Линейная алгебра

Конспект лекций Баскакова А.В. 1-2 семестры

НИЯУ «МИФИ»

2020 г.

Аннотация

Данное пособие предназначено для студентов первого курса (в основном второго семестра) $\mathbf{W} \mathbf{A} \mathbf{\Phi} \mathbf{u} \mathbf{T}$.

Конспект представляет собой ответы на экзаменационные вопросы (касающиеся линейной алгебры) по курсу лекций **Баскакова Алексея Викторовича**, которые были предложены студентам в 2019–2020-х годах при подготовке к сдаче экзамена по *аналитической геометрии* и *линейной алгебре* в первом и втором семестрах соответственно.

Хочется особенно подчеркнуть, что данный сборник предназначен исключительно для ревизии вопросов линейной алгебры первого курса нашего университета, поскольку автор не ставит своей задачей превзойти лекции по содержанию или же по форме изложения материала.

Таким образом, пособие не может заменить ваши собственные конспекты лекций.

Сам же курс лектора, по его собственным словам, основывается на учебнике «Линейная алгебра и некоторые её приложения», 1985 г. под авторством Головиной Л.И.

Оглавление

U	Ооозначения						
1	Перестановки						
	1.1	Чётно	ость перестановки	4			
		1.1.1	Перестановка	4			
		1.1.2	Чётность	4			
	1.2	Измен	нение чётности перестановки при транспозиции	4			
		1.2.1	Транспозиции	4			
		1.2.2	Изменение чётности	6			
	1.3	Обрат	гная перестановка	6			
		1.3.1	Обратная перестановка	6			
		1.3.2	Чётность обратной перестановки	7			
2	Опр	редели	итель матрицы	8			
	2.1	Опред	деление определителя матрицы	8			
	2.2	Teope	ма об определителе транспонированной матрицы	8			
		2.2.1	Транспонированная матрица	8			
		2.2.2	Теорема об определителе транспонированной матрицы	9			
	2.3	Влиян	ние элементарных преобразований на определитель матрицы	9			
	2.4	Вычи	сление определителя треугольной матрицы	11			
		2.4.1	Треугольный вид матрицы	11			
		2.4.2	Приведение матрицы к верхнетреугольному виду	11			
	2.5	Лемм	ы о разложении определителя по последней строке	12			
		2.5.1	Дополнительный минор, алгебраическое дополнение	12			
		2.5.2	Лемма I	13			
		2.5.3	Лемма II	13			
		2.5.4	Лемма III	14			
	2.6	Разло	жение определителя по любой строке или столбцу	14			
	2.7	Фалы	шивое разложение определителя	15			

		2.7.1	Определитель матрицы с одинаковыми строками/столбцами	15			
		2.7.2	Теорема о произведении элементов матрицы одной строки на алгебраические дополнения элементов другой строки	15			
3	Произведение матриц						
	3.1	Свойс	тва произведения матриц	17			
		3.1.1	Определение произведения матриц	17			
		3.1.2	Дистрибутивность	17			
		3.1.3	Ассоциативность	18			
		3.1.4	Некоммутативность (контрпример)	18			
	3.2	Едини	ичная матрица	18			
	3.3	Teope	ма об определителе произведения матриц (без доказательства)	19			
	3.4	Обратная матрица		19			
		3.4.1	Определение обратной матрицы	19			
		3.4.2	Критерий существования обратной матрицы	19			
		3.4.3	Построение обратной матрицы через алгебраические дополнения	20			
		3.4.4	Построение обратной матрицы методом ЭПС	21			
4	Ран	іг матј	рицы	24			
	4.1	Опред	целение ранга матрицы	24			
		4.1.1	Минор	24			
		4.1.2	Ранг матрицы	24			
	4.2	Влиян	ние элементарных преобразований строк на ранг матрицы	25			
	4.3	Вычи	сление ранга с помощью ЭП строк	26			
	4.4	Свойс	тво базисных строк и базисных столбцов матрицы	26			
		4.4.1	Базисный минор матрицы	26			

Обозначения

Опр	Определение
$\underline{\Pi \mathbf{p}}$	Пример
Л	Лемма
Th	Теорема
	Начало доказательства
	Конец доказательства
\mathbb{N}	Множество натуральных чисел
\mathbb{Z}	Множество целых чисел
\mathbb{R}	Множество действительных чисел
\forall	Квантор всеобщности (любой, все)
∃	Квантор существования (существует)
∄	Не существует
∃!	Существует, причём единственный
\in	Элемент принадлежит множеству
\subset	Множество содержится во множестве
U	Объединение множеств
\cap	Пересечение множеств
$\sum_{\mathfrak{A}}^{\mathfrak{B}}$	Сумма по элементам 🎞
$\prod_{\mathfrak{A}}^{\mathfrak{B}}$	Произведение по элементам \mathfrak{AB}
$\overline{a,b}$	Целые числа на отрезке $[a;b]$
Q	Противоречие
$\langle \cdots \rangle$	Комментарий

Глава 1

Перестановки

1.1 Чётность перестановки

1.1.1 Перестановка

Опр Перестановка

Расставим числа $1, 2, 3, \ldots, n$ в каком-то порядке, тогда (для n = 5):

$$\begin{pmatrix} 3 & 4 & 1 & 5 & 2 \end{pmatrix} - \underline{\text{перестановка}}$$
 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} - \underline{\text{единичная перестановка}}$

Для n элементов существует n! перестановок

$$\begin{pmatrix} i_1 & i_2 & i_3 & \cdots & i_n \end{pmatrix}$$

1.1.2 Чётность

Опр Инверсия

В перестановке $(i_1 \ i_2 \ \cdots \ i_n)$ элементы i_k и i_p образуют инверсию, если k < p, но $i_k > i_p$

Опр Чётность

Чётностью перестановки называется чётность числа инверсий.

1.2 Изменение чётности перестановки при транспозиции

1.2.1 Транспозиции

Опр Транспозиция

Транспозицией перестановки называется перемена местами любых двух элементов перестановки.

Опр Элементарная транспозиция (ЭТ)

Перемена местами двух соседних элементов перестановки — элементарная транспозиция ($\Im T$).

При элементарной транспозиции чётность перестановки меняется

$$\begin{pmatrix}
i_1 & i_2 & i_3 & \cdots & i_k & i_{k+1} & \cdots & i_n \\
& & & & \downarrow \\
(i_1 & i_2 & i_3 & \cdots & i_{k+1} & i_k & \cdots & i_n)
\end{pmatrix}$$

Инверсии, которые i_k и i_{k+1} составляли с остальными элементами, сохранились. Инверсия, связанная с перестановкой i_k и i_{k+1} либо появилась, либо исчезла.

Таким образом, количество инверсий изменилось на 1, следовательно, чётность перестановки изменилась. ■

1.2.2 Изменение чётности

(Th) При любой транспозиции чётность перестановки меняется

Переставим элемент i_k со впереди стоящим элементом вплоть до места с номером l (всего [l-k] ЭТ).

Элемент i_l оказался на (l-1)-ом месте. Перемещаем его элементарными транспозициями на k-ое место (всего [l-1-k] ЭТ).

Свели транспозицию к [(l-k)+(l-1-k)]=[2(l-k)-1] — нечётному числу ЭТ \Longrightarrow сменили чётность нечётное число раз \Longrightarrow чётность изменилась.

1.3 Обратная перестановка

1.3.1 Обратная перестановка

Опр Обратная перестановка

Пусть переставили элементы $\{1; 2; 3; \cdots; n\}$:

$$\begin{pmatrix} 1 \\ i_1 \end{pmatrix} \begin{pmatrix} 2 \\ i_2 \end{pmatrix} \cdots \begin{pmatrix} n \\ i_n \end{pmatrix}$$

Переставим столбцы так, чтобы нижняя строка превратилась в единичную перестановку:

$$\begin{pmatrix} j_1 \\ 1 \end{pmatrix} \begin{pmatrix} j_2 \\ 2 \end{pmatrix} \cdots \begin{pmatrix} j_n \\ n \end{pmatrix}$$

Получим перестановку $(j_1 \ j_2 \ \cdots \ j_n)$, называемую обратной к перестановке $(i_1 \ i_2 \ \cdots \ i_n)$.

1.3.2 Чётность обратной перестановки

Тһ Чётность прямой и обратной перестановок совпадает
\square При перестановке столбцов совершается одинаковое число транспозиций над верхней и нижней перестановками.

Глава 2

Определитель матрицы

2.1 Определение определителя матрицы

Опр Определитель матрицы

Для матрицы M размером $n \times n$:

$$|M| \equiv \det M = \sum_{(i_1 i_2 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} a_{1i_1} a_{2i_2} \cdots a_{ni_n},$$

где $\sigma(i_1 \cdots i_n)$ — дефект перестановки $(i_1 \ i_2 \ \cdots \ i_n)$, численно равный количеству инверсий этой перестановки.

Πp

Пусть дана матрица $M = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Тогда её определитель $\det M_{2\times 2} = \sum_{\substack{(1\ 2)\\(2\ 1)}} (-1)^{\sigma(i_1\ i_2)} a_{1i_1} a_{2i_2} = (-1)^{\sigma(1\ 2)} a_{11} a_{22} + (-1)^{\sigma(2\ 1)} a_{12} a_{21} = a_{11} a_{22} - a_{12} a_{21}.$

2.2 Теорема об определителе транспонированной матрицы

2.2.1 Транспонированная матрица

Опр Транспонированная матрица

Матрица $\underset{n \times n}{B}$ является транспонированной матрицей $\underset{n \times n}{A}$:

$$\underset{n \times n}{B} = \underset{n \times n}{A^{\mathrm{T}}}$$
, если ($\forall \, i \leq j, \, j \leq n$) $b_{ij} = a_{ji}$

Пр

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \implies A^{T} = \begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}$$

2.2.2 Теорема об определителе транспонированной матрицы

 $\stackrel{ extbf{(Th)}}{ extbf{E}}$ Если для матрицы A матрица $B=A^{ ext{T}},$ то |B|=|A|, т.е. $\left|A^{ ext{T}}\right|=|A|$

$$|B| = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} b_{1i_1} b_{2i_2} \cdots b_{ni_n} = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n} = \dots$$

Выставляя элементы $a_{i_k k}$ в порядке возрастания первых индексов, получим перестановку $(j_1 \ j_2 \ \cdots \ j_n)$, обратную к $(i_1 \ i_2 \ \cdots \ i_n)$. Причём, $\sigma(j_1 \cdots j_n) = \sigma(i_1 \cdots i_n)$

$$\dots = \sum_{(j_1 \dots j_n)} (-1)^{\sigma(j_1 \dots j_n)} a_{1j_1} a_{2j_2} \dots a_{nj_n} = |A|$$

Таким образом, $|A^{\mathrm{T}}| = |A|$

2.3 Влияние элементарных преобразований на определитель матрицы

Опр Умножение строки/столбца матрицы на число

 $\boxed{ \upbegin{align*} \upbegin{$

$$egin{aligned} \overline{iggl\{a_{lj}=\lambda b_{lj},\quad j=\overline{1,n}\ a_{ij}=b_{ij},\quad i
eq l,\ j=\overline{1,n}, \end{aligned}}, ext{ To } |A|=\lambda |B|$$

|A| =

$$|A| = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} a_{1i_1} \cdots a_{li_l} \cdots a_{ni_n} =$$

$$= \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} a_{1i_1} \cdots \lambda b_{li_l} \cdots a_{ni_n} =$$

$$= \lambda \cdot \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} b_{1i_1} \cdots b_{li_l} \cdots b_{ni_n} =$$

$$= \lambda |B|$$

Поскольку $|A| = |A^{\mathrm{T}}|$, то свойство верно и для столбцов.

Опр Перестановка строки/столбца матрицы

 $\overline{\prod}$ Если для матриц $A\left\{a_{ij}\right\}_{i,j=1}^n$ и $B\left\{b_{ij}\right\}_{i,j=1}^n$ на фиксированных строках k и l:

$$b_{ij} = egin{cases} a_{ij}, & i
eq k \ \mathrm{ii}
eq l \ a_{kj}, & \mathrm{строк} \ l \ a_{lj}, & \mathrm{строк} \ k \end{cases}, \ \mathrm{to} \ |A| = -|B|$$

$$|B| = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_l \, i_k \cdots i_n)} b_{1i_1} \cdots b_{li_l} b_{ki_k} \cdots b_{ni_n} =$$

$$= \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_l \, i_k \cdots i_n)} a_{1i_1} \cdots a_{ki_l} a_{li_k} \cdots a_{ni_n}$$

$$|A| = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_k i_l \cdots i_n)} a_{1i_1} \cdots a_{ki_l} a_{li_k} \cdots a_{ni_n} =$$

$$= \sum_{(i_1 \cdots i_n)} (-1) \cdot (-1)^{\sigma(i_1 \cdots i_l i_k \cdots i_n)} a_{1i_1} \cdots a_{ki_l} a_{li_k} \cdots a_{ni_n} =$$

$$= -|B|$$

Поскольку $|A| = |A^{\mathrm{T}}|$, то свойство верно и для столбцов.

Опр Прибавление строк/столбцов другой матрицы

 $\overline{\prod}$ Если для матриц $A\{a_{ij}\}_{i,j=1}^n,\ B\{b_{ij}\}_{i,j=1}^n,\ C\{c_{ij}\}_{i,j=1}^n$ на фиксированной строке l:

$$a_{ij}=egin{cases} b_{ij}=c_{ij},&i
eq l,\ j=\overline{1,n}\ b_{lj}+c_{lj},& ext{строка}\ l,\ j=\overline{1,n}, \end{cases}$$
 то $|A|=|B|+|C|$

 $|A| = \sum_{(i_{1} \cdots i_{n})} (-1)^{\sigma(i_{1} \cdots i_{n})} a_{1i_{1}} \cdots a_{li_{l}} \cdots a_{ni_{n}} =$ $= \sum_{(i_{1} \cdots i_{n})} (-1)^{\sigma(i_{1} \cdots i_{n})} a_{1i_{1}} \cdots (b_{li_{l}} + c_{li_{l}}) \cdots a_{ni_{n}} =$ $= \sum_{(i_{1} \cdots i_{n})} (-1)^{\sigma(i_{1} \cdots i_{n})} b_{1i_{1}} \cdots b_{li_{l}} \cdots b_{ni_{n}} + \sum_{(i_{1} \cdots i_{n})} (-1)^{\sigma(i_{1} \cdots i_{n})} c_{1i_{1}} \cdots c_{li_{l}} \cdots c_{ni_{n}} =$ = |B| + |C|

Поскольку $|A| = |A^{\mathrm{T}}|$, то свойство верно и для столбцов.

2.4 Вычисление определителя треугольной матрицы

2.4.1 Треугольный вид матрицы

Опр Верхнетреугольная матрица

Матрица $A \{a_{ij}\}_{i,j=1}^n$ имеет верхнетреугольный вид, если $(\forall j = \overline{1,n}, \forall i = \overline{2,n} \colon i > j)$ $a_{ij} = 0$.

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\ 0 & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\ 0 & 0 & \cdots & a_{3(n-1)} & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

 $\overline{\prod}$ Определитель верхнетреугольной матрицы равен $|A| = \prod_{i=1}^n a_{ii}$

 $|A| = \sum_{(i_1 \cdots i_n)} (-1)^{\sigma(i_1 \cdots i_n)} a_{1i_1} a_{2i_2} \cdots a_{ni_n} = \dots$

Заметим, что любая не единичная перестановка будет содержать нуль:

$$\dots = a_{11}a_{22}\cdots a_{nn} = \prod_{i=1}^{n} a_{ii}$$

2.4.2 Приведение матрицы к верхнетреугольному виду

Любую матрицу можно привести к верхнетреугольному виду путём элементарных преобразований строк/столбцов

- □ Применим метод математической индукции:
- 1) n = 1:

(1.1)
$$|a_{11}| = a_{11}$$
 — верно

- 2) Пусть лемма верна для n=m
- 3) Докажем её для n = m + 1:
 - (3.1) Если $\left(\forall\,i=\overline{1,m+1},\,\forall\,j=\overline{1,m+1}\right)a_{ij}=0$ уже верхнетреугольный вид
 - (3.2) Если $\exists a_{i_0j_0} \neq 0$:

ullet Переставим строку i_0 с первой строкой, а столбец j_0 с первым столбцом

$$\begin{pmatrix} a_{i_0j_0} & \cdots & a_{1(m+1)}^{\star} \\ a_{21}^{\star} & \cdots & a_{2(m+1)}^{\star} \\ \vdots & \ddots & \vdots \\ a_{(m+1)}^{\star} & \cdots & a_{(m+1)}^{\star} \\ 1 & & & & & \end{pmatrix}$$

• Занулим элементы, стоящие под $a_{i_0j_0}$, поочерёдно вычтя из второй по (m+1)-ю строки первую, умноженную на соответственно: $\frac{a_{21}^{\star}}{a_{i_0j_0}}, \frac{a_{31}^{\star}}{a_{i_0j_0}}, \dots, \frac{a_{(m+1)1}^{\star}}{a_{i_0j_0}}$

$$\begin{pmatrix} a_{i_0j_0} & \cdots & a_{1(m+1)}^{\star} \\ 0 & & \text{Матрица} \\ \vdots & & & \\ 0 & & & \\ \end{pmatrix}$$

• По предположению индукции можем привести матрицу размером $m \times m$ к верхнетреугольному виду.

2.5 Леммы о разложении определителя по последней строке

2.5.1 Дополнительный минор, алгебраическое дополнение

Опр Дополнительный минор

В квадратной матрице $A\left\{a_{ij}\right\}_{i,j=1}^n$ вычеркнем строку k, столбец l. Определитель полученной матрицы называется дополнительным минором \mathbf{M}_{kl} .

 Πp

$$A_{3\times3} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$\mathbf{M}_{22} \begin{pmatrix} A \\ 3 \times 3 \end{pmatrix} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} = a_{11}a_{33} - a_{31}a_{13}$$

Опр Алгебраическое дополнение

Алгебраическое дополнение, соответствующее элементу a_{kl} , равно $A_{kl}=(-1)^{k+l}M_{kl}$

2.5.2 Лемма I

 $\boxed{oldsymbol{\Pi}}$ Если в матрице $A\left\{a_{ij}
ight\}_{i,j=1}^n,\,\left(orall\,j=\overline{1,n-1}
ight)a_{nj}=0,\, ext{то}\,\,|A|=a_{nn} ext{A}_{nn}$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1(n-1)} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2(n-1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{(n-1)} & a_{(n-1)} & \cdots & a_{(n-1)} & a_{(n-1)} \\ 1 & 2 & & (n-1) & n \\ 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

$$|A| = \sum_{(i_1 \cdots i_{n-1} i_n)} (-1)^{\sigma(i_1 \cdots i_{n-1} i_n)} a_{1i_1} a_{2i_2} \cdots a_{ni_n} =$$

$$= 0 + 0 + 0 + \cdots + 0 + \sum_{(i_1 \cdots i_{n-1} n)} (-1)^{\sigma(i_1 \cdots i_{n-1} n)} a_{1i_1} a_{2i_2} \cdots a_{\binom{n-1}{i_{n-1}}} a_{nn} =$$

$$= a_{nn} \cdot \sum_{(i_1 \cdots i_{n-1})} (-1)^{\sigma(i_1 \cdots i_{n-1})} a_{1i_1} a_{2i_2} \cdots a_{\binom{n-1}{i_{n-1}}} =$$

$$= a_{nn} M_{nn} = a_{nn} \cdot (-1)^{n+n} M_{nn} = a_{nn} A_{nn}$$

2.5.3 Лемма II

 $\boxed{oldsymbol{\Pi}}$ Если в матрице $A\left\{a_{ij}
ight\}_{i,j=1}^n,\, (orall\,j
eq l)\, a_{nj} = 0, ext{ то } |A| = a_{nl} \mathrm{A}_{nl}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1l} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & a_{nl} & \cdots & 0 \end{pmatrix}$$

Переставим столбец l на место столбца n путём последовательных элементарных транспозиций (всего [n-l] ЭТ):

$$|A| = (-1)^{n-l} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1(l-1)} & a_{1(l+1)} & \cdots & a_{1n} & a_{1l} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & a_{nl} \end{vmatrix} \xrightarrow{\text{\textit{Jemma I}}} (-1)^{n-l} \cdot a_{nl} M_{nl} =$$
$$= \left\langle (-1)^{n-l} = (-1)^{n+l} \right\rangle = a_{nl} \cdot (-1)^{n+l} M_{nl} = a_{nl} A_{nl}$$

2.5.4 Лемма III

$$\boxed{oldsymbol{\Pi}}$$
 Определитель матрицы $A\left\{a_{ij}
ight\}_{i,j=1}^n$ равен $|A|=\sum_{i=1}^n a_{ni} \mathrm{A}_{ni}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n-1} & \cdots & a_{n-1} \end{pmatrix}$$

По свойству прибавления строк другой матрицы можем представить определитель |A| как сумму определителей $|A^{(i)}|$ матриц $A^{(i)}$, для которых элементы последней строки равны

 $a_{nj}^{(i)} = egin{cases} a_{ni}, & j=i \\ 0, & j \neq i \end{cases}$, а остальные элементы совпадают с элементами матрицы A:

$$|A| = \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & 0 & \cdots & \cdots & 0 \end{bmatrix}}_{|A^{(1)}|} + \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n2} & \cdots & \cdots & 0 \end{bmatrix}}_{|A^{(2)}|} + \cdots + \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & a_{nn} \end{bmatrix}}_{|A^{(n)}|}$$

$$|A| = \sum_{i=1}^{n} |A^{(i)}| \xrightarrow{\underline{\underline{\underline{Memma II}}}} \sum_{i=1}^{n} a_{ni} A_{ni}$$

2.6 Разложение определителя по любой строке или столбцу

$$oxed{ ext{Th}}$$
 Для матрицы $A\left\{a_{ij}
ight\}_{i,j=1}^n \ (orall\, k=\overline{1,n})\, |A|=\sum_{i=1}^n a_{ki} \mathrm{A}_{ki}$

 \square Начиная со строки k, последовательно переставим строки вплоть до строки n:

$$|A| = (-1)^{n-k} \cdot \begin{vmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{(k-1)} & \cdots & a_{(k-1)} \\ a_{(k+1)} & \cdots & a_{(k+1)} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \\ a_{k1} & \cdots & a_{kn} \end{vmatrix} \xrightarrow{\text{Jemma III}} (-1)^{n-k} \cdot \sum_{i=1}^{n} a_{ki} A_{ki} =$$

$$= (-1)^{n-k} \sum_{i=1}^{n} (-1)^{n+i} a_{ki} M_{ki} = \sum_{i=1}^{n} (-1)^{2n-k+i} a_{ki} M_{ki} =$$

$$= \sum_{i=1}^{n} (-1)^{k+i} a_{ki} M_{ki} = \sum_{i=1}^{n} a_{ki} A_{ki}$$

2.7 Фальшивое разложение определителя

2.7.1 Определитель матрицы с одинаковыми строками/столбцами

 $\boxed{f J}$ Если матрица содержит одинаковые строки/столбцы, то её определитель равен нулю

 $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ C_1 & \cdots & C_n \\ \vdots & \ddots & \vdots \\ C_1 & \cdots & C_n \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$ или $B = \begin{pmatrix} b_{11} & \cdots & V_1 & \cdots & V_1 & \cdots & b_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ b_{n1} & \cdots & V_n & \cdots & V_n & \cdots & b_{nn} \end{pmatrix}$

При вычислении определителя матриц переставим одинаковые строки/столбцы местами, получим:

$$|A|=(-1)\cdot |A|\implies |A|=0$$
 (аналогично $|B|=0)$

2.7.2 Теорема о произведении элементов матрицы одной строки на алгебраические дополнения элементов другой строки

$$\stackrel{ ext{ (Th)}}{ ext{ Если задана матрица }} A\left\{a_{ij}
ight\}_{i,j=1}^n, ext{ то } (orall\, l
eq k) \sum_{j=1}^n a_{lj} \mathrm{A}_{kj} = 0$$

$$\square$$
 Составим матрицу $B\left\{b_{ij}\right\}_{i,j=1}^n$, в которой $b_{ij}=\begin{cases}a_{ij}, & i\neq k\\a_{lj}, & i=k\end{cases}$

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kn} \\ \vdots & \ddots & \vdots \\ a_{ln} & \cdots & a_{nn} \end{pmatrix}, B = \begin{pmatrix} b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{l1} & \cdots & b_{ln} \\ \vdots & \ddots & \vdots \\ b_{k1} & \cdots & b_{kn} \\ \vdots & \ddots & \vdots \\ b_{1n} & \cdots & b_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{l1} & \cdots & a_{ln} \\ \vdots & \ddots & \vdots \\ a_{ln} & \cdots & a_{nn} \end{pmatrix}$$

Поскольку B содержит две одинаковые строки, то |B|=0. С другой стороны, разложив |B| по k-ой строке, получим $|B|=\sum_{j=1}^n b_{kj} \mathbf{B}_{kj}=\sum_{j=1}^n a_{lj} \mathbf{A}_{kj}=0$

Глава 3

Произведение матриц

3.1 Свойства произведения матриц

3.1.1 Определение произведения матриц

Опр Произведение матриц

Если заданы матрицы A, B, то произведением $A \cdot B$ называется матрица C такая, что:

$$A \cdot B_{m \times n} \cdot B_{n \times k} = C_{m \times k}$$

$$(\forall i = \overline{1, m}, \forall j = \overline{1, k}) c_{ij} = \sum_{t=1}^{n} a_{it} b_{tj}$$

3.1.2 Дистрибутивность

Произведение матриц дистрибутивно

$$\underbrace{\frac{A}{\sum_{k \times m}^{R\{r_{ij}\}} \mu C}}_{D\{d_{ij}\}} = \underbrace{\underbrace{\lambda AB}_{n \times m}^{P\{p_{ij}\}} + \underbrace{\mu AC}_{n \times m}}_{F\{f_{ij}\}} (\lambda, \mu \in \mathbb{R})$$

$$d_{ij} = \sum_{t=1}^{k} a_{it} r_{tj} = \sum_{t=1}^{k} a_{it} \left(\lambda b_{tj} + \mu c_{tj} \right) = \lambda \sum_{t=1}^{k} a_{it} b_{tj} + \mu \sum_{t=1}^{k} a_{it} c_{tj} = p_{ij} + q_{ij} = f_{ij} \implies$$

$$\implies D = F$$

3.1.3 Ассоциативность

Произведение матриц ассоциативно

$$\left(\overbrace{A \cdot B}_{m \times k} \cdot \overbrace{k \times l} \right) \cdot C = T_{m \times n}$$

$$A \cdot \left(\overbrace{B \cdot C}_{k \times l} \right) = D_{m \times n}$$

Покажем, что T = D:

$$t_{ij} = \sum_{p=1}^{l} f_{ip} c_{pj} = \sum_{p=1}^{l} c_{pj} \left(\sum_{q=1}^{k} a_{iq} b_{qp} \right) = \sum_{q=1}^{k} a_{iq} \left(\sum_{p=1}^{l} b_{qp} c_{pj} \right) = \sum_{q=1}^{k} a_{iq} g_{qj} = d_{ij} \implies T = D$$

3.1.4 Некоммутативность (контрпример)

Произведение матриц некоммутативно

В общем случае $A \cdot B \neq B \cdot A$

Пр

$$A = \begin{pmatrix} 3 & 1 \\ -1 & 4 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix}$$

$$A \cdot B = \begin{pmatrix} 3 & 1 \\ -1 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ -14 & -1 \end{pmatrix}$$

$$B \cdot A = \begin{pmatrix} 2 & 1 \\ -3 & 0 \end{pmatrix} \cdot \begin{pmatrix} 3 & 1 \\ -1 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 6 \\ -9 & -3 \end{pmatrix}$$

$$\Rightarrow A \cdot B \neq B \cdot A$$

3.2 Единичная матрица

Опр Единичная матрица

Единичная матрица — матрица
$$E\left\{e_{ij}\right\}_{i,j=1}^n, \ \left(\forall \ i=\overline{1,n}, \forall \ j=\overline{1,n}\right) e_{ij} = \left(\overbrace{\delta_{ij}}\right) = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$$

 $\overline{|\Pi|}$ Если $\exists\,A\cdot E$, то $A\cdot E=A$ (аналогично $E\cdot B=B$)

$$\frac{A}{m \times n} \cdot \frac{E}{n \times n} = \frac{C}{m \times n}$$

$$\left(\forall i = \overline{1, m}, \forall j = \overline{1, n}\right) c_{ij} = \sum_{t=1}^{n} a_{it} \delta_{tj} = 0 + 0 + \dots + a_{ij} \delta_{jj} = a_{ij} \implies C = A$$

3.3 Теорема об определителе произведения матриц (без доказательства) 1

 (\mathbf{Th}) Если A и B — квадратные матрицы одного порядка, то $|A\cdot B|=|A|\cdot |B|$

3.4 Обратная матрица

3.4.1 Определение обратной матрицы

Опр Обратная матрица

Если для матрицы A существует матрица B такая, что $A\cdot B=B\cdot A=E$, то матрицу B называют обратной к матрице A и обозначают $B\equiv A^{-1}$.

3.4.2 Критерий существования обратной матрицы

 $\stackrel{ extbf{Th}}{ extbf{E}}$ Если у матрицы $\stackrel{A}{\underset{n imes n}{A}},\, |A|
eq 0,\, ext{то}\,\,\exists !\, A^{-1}\colon A\cdot A^{-1} = A^{-1}\cdot A = E$

1) Существование:

• Докажем, что если |A|=0, то $\not\equiv A^{-1}$: Предположим противное — A^{-1} существует и |A|=0:

$$A \cdot A^{-1} = E$$
$$|A| \cdot |A^{-1}| = |E|$$
$$0 = 1 \implies \mathfrak{A}$$

 $^{^{1}}$ Полное доказательство можно обнаружить в упомянутом в аннотации учебнике Л.И. Головиной (Глава III. Линейные операторы / §2. Действия над линейными операторами / Теорема 3).

• Докажем, что если $|A| \neq 0$, то $\exists A^{-1} = \frac{1}{|A|} (A^*)^{\mathrm{T}}$, где $A = \{a_{ij}\}_{i,j=1}^n$, $A^* = \{A_{ij}\}_{i,j=1}^n$: Рассмотрим $B = \frac{1}{|A|} (A^*)^{\mathrm{T}}$ и докажем, что $A \cdot B = B \cdot A = E$: $A \cdot B = C \\ n \times n \cdot n \times n = C \\ n \times n \cdot n \times n \times n = C$

$$c_{ij} = \sum_{t=1}^{n} a_{it} b_{tj} = \sum_{t=1}^{n} a_{it} \cdot \frac{1}{\Delta} A_{jt} = \frac{1}{\Delta} \sum_{t=1}^{n} a_{it} A_{jt} =$$

$$= \begin{cases} \frac{1}{\Delta} \cdot \Delta, & i = j \\ 0, & i \neq j \end{cases} = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases} \Rightarrow \delta_{ij} \Rightarrow$$

$$\Rightarrow C = E$$

Аналогично $B \cdot A = E$, т.к. разложение для определителя справедливо и для столбцов.

2) Единственность:

Пусть для матрицы A существуют матрицы B и C такие, что $\begin{cases} A \cdot B = B \cdot A = E \\ A \cdot C = C \cdot A = E \end{cases}$ Тогда, $\begin{cases} C \cdot A \cdot B = (C \cdot A) \cdot B = E \cdot B = B \\ C \cdot A \cdot B = C \cdot (A \cdot B) = C \cdot E = C \end{cases} \implies B = C \implies \mathbb{R}$

3.4.3 Построение обратной матрицы через алгебраические дополнения

 $\underline{\Pi \mathbf{p}}$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

1)
$$A_{11} = (-1)^{1+1}M_{11} = 4$$
 $A_{12} = (-1)^{1+2}M_{12} = -3$ $A_{21} = (-1)^{2+1}M_{21} = -2$ $A_{22} = (-1)^{2+2}M_{22} = 1$

2)
$$A^* = \begin{pmatrix} 4 & -3 \\ -2 & 1 \end{pmatrix} \implies (A^*)^{\mathrm{T}} = \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$$

3)
$$|A| = 4 - 6 = -2$$

4)
$$A^{-1} = \frac{1}{|A|} (A^*)^{\mathrm{T}} = \begin{pmatrix} -2 & 1\\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix}$$

5)
$$A \cdot A^{-1} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -2+3 & 1-1 \\ -6+6 & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

$$A^{-1} \cdot A = \begin{pmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} -2+3 & -4+4 \\ \frac{3}{2}-\frac{3}{2} & 3-2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

3.4.4 Построение обратной матрицы методом элементарных преобразований строк

Умножение k−ой строки на $\alpha \in \mathbb{R}$

 $\boxed{\Pi}$ Соответствует левостороннему домножению на $B\left\{b_{ij}\right\}_{i,j=1}^n,$

 \square $B \cdot A = C$

1.1)
$$(i = k, j = \overline{1, n}) c_{kj} = \sum_{t=1}^{n} b_{kt} a_{tj} = \delta_{k1} a_{1j} + \delta_{k2} a_{2j} + \dots + \delta_{k(k-1)} a_{(k-1)j} + \alpha a_{kj} + \dots + \delta_{kn} a_{nj} = 0 + 0 + \dots + 0 + \alpha a_{kj} + \dots + 0 = \alpha a_{kj}$$

1.2)
$$(i \neq k, j = \overline{1, n})$$
 $c_{ij} = \sum_{t=1}^{n} b_{it} a_{tj} = \delta_{i1} a_{1j} + \dots + \delta_{ii} a_{ij} + \dots + \delta_{in} a_{nj} = 0 + \dots + 1 \cdot a_{ij} + \dots + 0 = a_{ij}$

Таким образом,
$$c_{ij}= egin{cases} \alpha a_{ij}, & i=k,\ j=\overline{1,n} \\ a_{ij}, & i \neq k,\ j=\overline{1,n} \end{cases}$$

 $\Pi \mathbf{p}$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{\kappa=2} \begin{pmatrix} 1 & 2 & 3 \\ 4c & 5c & 6c \\ 7 & 8 & 9 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies B \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4c & 5c & 6c \\ 7 & 8 & 9 \end{pmatrix}$$

Перемена местами l-ой и k-ой строк

 $\overline{\prod}$ Соответствует левостороннему домножению на $B\left\{b_{ij}\right\}_{i,j=1}^n$,

$$b_{ij} = egin{cases} \delta_{ij}, & i
eq k, \, i
eq l, \, j = \overline{1,n} \ \delta_{kj}, & i = l, \, j = \overline{1,n} \ \delta_{lj}, & i = k, \, j = \overline{1,n} \end{cases}$$

$$\square$$
 $B \cdot A = C$

2.1)
$$(i \neq k, i \neq l, j = \overline{1,n}) c_{ij} = \sum_{t=1}^{n} b_{it} a_{tj} = 0 + \dots + 0 + \delta_{ii} a_{ij} = a_{ij}$$

2.2)
$$(i = l, j = \overline{1, n})$$
 $c_{lj} = \sum_{t=1}^{n} b_{lt} a_{tj} = 0 + \dots + 0 + \delta_{kk} a_{kj} = a_{kj}$

2.3)
$$(i = k, j = \overline{1, n}) c_{kj} = \sum_{t=1}^{n} b_{kt} a_{tj} = 0 + \dots + 0 + \delta_{ll} a_{lj} = a_{lj}$$

Таким образом,
$$c_{ij} = \begin{cases} a_{ij}, & i \neq k, \ i \neq l, \ j = \overline{1,n} \\ a_{kj}, & i = l, \ j = \overline{1,n} \\ a_{lj}, & i = k, \ j = \overline{1,n} \end{cases}$$

Пр

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow[k=2]{l=1} \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies B \cdot A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 4 & 5 & 6 \\ 1 & 2 & 3 \\ 7 & 8 & 9 \end{pmatrix}$$

Добавление к k-ой строке l-ую, умноженную на $\alpha \in \mathbb{R}$

 $\overline{\prod}$ Соответствует левостороннему домножению на $B\left\{b_{ij}\right\}_{i,j=1}^n,$

$$b_{ij} = egin{cases} lpha + \delta_{kl}, & i = k \ \ \mathrm{i} = l \ \delta_{ij}, & i
eq k \ \ \mathrm{илu} \ j
eq l \end{cases}$$

$$\Box \quad B \cdot A = C$$

3.1)
$$(i = k \neq l, j = \overline{1,n})$$
 $c_{kj} = \sum_{t=1}^{n} b_{kt} a_{tj} = 0 + \dots + 0 + \delta_{kk} a_{kj} + a_{lj} (\alpha + 0) = a_{kj} + \alpha a_{lj}$

3.2)
$$(i = k = l = q, j = \overline{1, n})$$
 $c_{kj} = c_{lj} = c_{qj} = \sum_{t=1}^{n} b_{qt} a_{tj} = 0 + \dots + 0 + a_{qj} (\alpha + 1) = a_{qj} + \alpha a_{qj}$

3.3)
$$(i \neq k, j = \overline{1,n})$$
 $c_{ij} = \sum_{t=1}^{n} b_{it} a_{tj} = \sum_{t=1}^{n} b_{it} a_{tj} = 0 + \dots + 0 + \delta_{ii} a_{ij} = a_{ij}$

Таким образом,
$$c_{ij}= egin{cases} a_{kj}+\alpha a_{lj}, & i=k,\ j=\overline{1,n} \\ a_{ij}, & i\neq k,\ j=\overline{1,n} \end{cases}$$

Пр

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow[k=2]{l=1} \begin{pmatrix} 1 & 2 & 3 \\ 4+\alpha & 5+2\alpha & 6+3\alpha \\ 7 & 8 & 9 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ \alpha + \delta_{21} & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \implies B \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ \alpha & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 + \alpha & 5 + 2\alpha & 6 + 3\alpha \\ 7 & 8 & 9 \end{pmatrix}$$

Пр

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \xrightarrow{l=3} \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 + 7\alpha & 8 + 8\alpha & 9 + 9\alpha \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha + \delta_{33} \end{pmatrix} \implies B \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \alpha + 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7(\alpha + 1) & 8(\alpha + 1) & 9(\alpha + 1) \end{pmatrix}$$

Таким образом, последовательное применение ЭП строк к матрице A эквивалентно последовательному домножению слева матрицы A на соответствующую матрицу B_i .

Метод элементарных преобразований строк

Пусть имеется некая квадратная матрица A. Изобразим её и единичную матрицу:

$$(A \mid E)$$

Производя ЭП строк над обеими матрицами, добьёмся того, чтобы слева образовалась единичная матрица. Тогда справа образуется матрица, обратная A:

$$(A \mid E) \sim (E \mid A^{-1})$$

 \square По доказанному выше, применение ЭП строк эквивалентно левому домножению на некоторую матрицу B_i . Таким образом, получим:

4.1)
$$A \sim B_m \cdots B_n A = E \implies (B_m \cdots B_n) = A^{-1}$$

4.2)
$$E \sim B_m \cdots B_n E = (B_m \cdots B_n) \implies E \sim A^{-1}$$

 Πp

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 1 & -1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 3 & -2 \\ 0 & 1 & -1 & 1 \end{pmatrix}$$

Таким образом, $A^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$

$$A \cdot A^{-1} = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 3 - 2 & -2 + 2 \\ 3 - 3 & -2 + 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = E$$

Глава 4

Ранг матрицы

4.1 Определение ранга матрицы

4.1.1 Минор

Опр Минор

В матрице A выделим строки i_1, i_2, \ldots, i_r и столбцы j_1, j_2, \ldots, j_r . Определитель, составленный из выделенных элементов матрицы A, называется минором $\mathbf{M}_{i_1\cdots i_r}^{j_1\cdots j_r}$.

Порядок минора — количество r выделенных строк и столбцов.

Для краткости некоторый минор порядка r соответствующей матрицы A будем обозначать как $M^r(A)$, а соответствующую матрицу минора как $A(M^r)$.

Πp

$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \end{pmatrix}$$

$$M_{12}^{23}(A) = \begin{vmatrix} 1 & 2 & 3 & 0 \\ 4 & 5 & 6 & 0 \\ 7 & 8 & 9 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = 12 - 15 = -3$$

$$A(M_{12}^{23}) = \begin{pmatrix} 2 & 3 \\ 5 & 6 \end{pmatrix}$$

Обратим внимание читателя на то, что понятие *минора* матрицы **отличается** от понятия *дополнительного минора* матрицы, вводившегося ранее.

В частности, минор некого порядка можно вычислить для любой матрицы, а дополнительный минор — только для квадратной.

4.1.2 Ранг матрицы

Опр Ранг матрицы

Pанг матрицы A — максимальный порядок отличного от нуля минора.

То есть, если $\operatorname{rank} A = r$, то $\exists \{i_1, \dots, i_r\}$ и $\{j_1, \dots, j_r\} : \operatorname{M}_{i_1 \cdots i_r}^{j_1 \cdots j_r} \neq 0$, а любой другой минор более высокого порядка равен нулю.

4.2 Влияние элементарных преобразований строк на ранг матрицы

 $\overline{\left(Th^1 \right)}$ При $\Im \Pi$ строк ранг матрицы не увеличивается

- \square Пусть rank A = r.
- 1) Переставим строки l и k. $A \rightarrow B$.
 - Рассмотрим минор матрицы B порядка r+1. Он либо совпадает с соответствующим минором матрицы A, либо отличается порядком строк. Отсюда, $M^{r+1}(B) = \pm M^{r+1}(A) = 0 \implies \operatorname{rank} B \le r$.
- 2) Умножим k-ю строку A на $\lambda \in \mathbb{R}$. $A \to B$.
 - Рассмотрим минор матрицы B порядка r+1. Он либо совпадает с минором A (если k–я строка не вошла), либо отличается в λ раз.

Отсюда,
$$M^{r+1}(B) = \begin{bmatrix} \lambda \cdot M^{r+1}(A) = 0 \\ M^{r+1}(A) = 0 \end{bmatrix} \implies \operatorname{rank} B \le r.$$

- 3) Прибавим к k-ой строке l-ю, умноженную на $\lambda \in \mathbb{R}$. $A\{a_{ij}\} \to B\{b_{ij} \mid b_{kj} = a_{kj} + \lambda a_{lj}\}$.
 - Рассмотрим минор матрицы B порядка r+1:
 - а) Если k–я строка не вошла, то $M^{r+1}(B) = M^{r+1}(A) = 0$.
 - b) Если k-я строка вошла, то из лемм о влиянии ЭП на определитель матрицы получим $M^{r+1}(B) = \left| B(M^{r+1}) \right| = \left| A(M^{r+1}) \right| + \lambda \cdot 0 = 0.$

Отсюда, rank $B \leq r$.

$\left(\mathrm{Th^2}\right)$ При $\Im\Pi$ строк ранг матрицы не изменяется

□ ЭП обратимы.

•
$$A \xrightarrow{\Im\Pi} B$$
. Π o $\left[\mathbf{Th^1}\right]$ rank $B \leq \operatorname{rank} A$

•
$$B \xrightarrow{\Im\Pi} A$$
. Π o $\begin{bmatrix} \mathbf{Th^1} \end{bmatrix}$ rank $A \leq \operatorname{rank} B$

Отсюда, $\operatorname{rank} B = \operatorname{rank} A$.

4.3 Вычисление ранга с помощью ЭП строк

 $\stackrel{\textstyle ext{$($Th$}^3)}{}$ У матрицы ступенчатого вида ранг равен числу ненулевых строк

 \square Пусть у матрицы ступенчатого вида r ненулевых строк (без ограничения общности, пусть это строки $1,\ldots,r$). Пусть тогда k_1,\ldots,k_r — ненулевые столбцы, в которых стоят начала ступенек.

$$\mathbf{M}_{1\cdots r}^{k_{1}\cdots k_{r}} = \begin{vmatrix} a_{1k_{1}} & \cdots & \cdots & \cdots & \cdots \\ 0 & a_{2k_{2}} & \cdots & \cdots & \cdots \\ 0 & 0 & \ddots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & a_{rk_{n}} \end{vmatrix} = \prod_{n=1}^{r} a_{nk_{n}} \neq 0$$

Это минор порядка r. Любой другой минор большего порядка равен нулю.

Таким образом, приводя матрицу ЭП строк к ступенчатому виду, можно определить её ранг.

4.4 Свойство базисных строк и базисных столбцов матрицы

4.4.1 Базисный минор матрицы

Опр Базисный минор, базисные строки/столбцы

Если для матрицы A, rank A = r, то $M^r(A) \neq 0$ — базисный минор.

Строки и столбцы матрицы A, входящие в базисный минор, называются базисными строками и базисными столбцами соответственно.

 $\boxed{\Pi^1}$ Для квадратной матрицы $A,\,|A|
eq 0 \Longleftrightarrow$ строки A линейно независимы

 $\square \quad \langle \Rightarrow \rangle$ Предположим противное: существуют линейно зависимые строки.

Пусть всего
$$n$$
 строк: $\overrightarrow{\mathbf{A}}_1, \cdots, \overrightarrow{\mathbf{A}}_m, \cdots, \overrightarrow{\mathbf{A}}_n$. Пусть $\overrightarrow{\mathbf{A}}_m = \sum_{\substack{k=1, k \neq m}}^n \alpha_k \overrightarrow{\mathbf{A}}_k$.

Вычитая поочерёдно из этой строки все $\alpha_k \overrightarrow{\mathbf{A}}_k \left(k = \overline{1,n}, \, k \neq m \right)$, произведём над этой строкой ЭП-я и в итоге получим нулевую строку $\implies |A| = 0 \implies \mathfrak{A}$

Значит, все строки линейно независимы.

□ ⟨⇐⟩ Приведём матрицу к ступенчатому виду.

Нулевых строк нет (они линейно независимы), поэтому матрица имеет верхнетреугольный

вид
$$\implies a_{kk} \neq 0 \ (\forall k = \overline{1,n}) \implies |A| = \prod_{k=1}^n a_{kk} \neq 0$$

$\mathbf{T}\mathbf{h^1}$) Строки, входящие в базисный минор, линейно независимы

Пусть rank $A=r \implies \exists \operatorname{M}^r(A) \neq 0$. Пусть, для определённости, это минор $\operatorname{M}^{1\cdots r}_{1\cdots r}$.

По $\lceil \mathbf{J}^1 \rceil$, т.к. $\mathbf{M}_{1 \dots r}^{1 \dots r} \neq 0$, то строки матрицы минора будут линейно независимы.

Теперь рассмотрим матрицу из первых r строк матрицы A. Докажем, что они линейно независимы.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1r_1} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{r1} & \cdots & a_{rr_1} & \cdots & a_{rn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \cdots & \cdots & \cdots & a_{mn} \end{pmatrix}$$

Предположим противное: одна из этих строк (пусть r-я) является линейной комбинацией других.

$$orall \, k = \overline{1,n} : \ a_{rk} = \sum_{i=1}^{r-1} \lambda_i a_{ik},$$
 причём $r \leq n$

Это будет верно и для $\forall k=\overline{1,r}$. Следовательно, r-я строка матрицы минора $\mathbf{M}_{_{1\cdots r}}^{^{1\cdots r}}$ является линейной комбинацией других \Longrightarrow \mathfrak{A} .

Значит, строки, входящие в базисный минор, линейно независимы.

(То же самое относится и к базисным столбцам).

$|\Pi^2|$ Если в матрице A есть m штук линейно независимых строк, то существует $M^m(A) \neq 0$

 \square Приведём эту матрицу к ступенчатому виду. Найдутся l_1, \dots, l_m и k_1, \dots, k_m – ненулевые строки и столбцы соответственно. Таким образом, ранг матрицы A равен m и нужный минор имеет вид $\mathrm{M}^{k_1\cdots k_m}_{l_1\cdots l_m}=\mathrm{M}^m(A)\neq 0.$

Далее будем пользоваться следующими обозначениями:

$$\overrightarrow{\mathbf{A}} = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix}$$
 – вектор-строка $\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ – вектор-столбец

 ${f b}$ – любой вектор (вектор-строка ИЛИ вектор-столбец)

 $\boxed{f \Pi^3}$ Если система векторов $\{{f a}_1,\ldots,{f a}_k\}$ — линейно независима, а $\{{f a}_1,\ldots,{f a}_k\}\cup\{{f b}\}$ линейно зависима, то $\mathbf{b} \in L(\mathbf{a}_1 \cdots \mathbf{a}_k)$