

Laboratoire

Unité : INF1 Labo no : 8 Jeu de la vie	
--	--

But

- Présentation du code aussi propre que possible
- Décomposition en librairies et sous-programmes réutilisables
- Utilisation de tableaux C à 2 dimensions

A faire

Le jeu de la vie, inventé par J. H. Conway, utilise une grille rectangulaire de cellules, chacune d'entre elles pouvant contenir 0 ou 1 habitant.

Chaque cellule a jusqu'à huit et nous utiliserons « occ(k) » pour désigner le nombre de cellules voisines de la cellule k qui sont occupées.

L'état d'une nouvelle génération est obtenu à partir de la précédente en appliquant deux règles simples :

- Un habitant situé dans la cellule k survit à la génération suivante si occ(k) = 2 ou 3, et meurt dans le cas contraire.
- Il y aura une "naissance" dans une cellule k vide si occ(k) = 3, sinon la cellule restera vide.

Ecrire un programme en C++ qui, partant d'une configuration initiale donnée (cf. Indications), calcule un certain nombre de générations suivantes en application des règles ci-dessus et affiche chacune des configurations trouvées.

L'affichage sera fait en utilisant les symboles

- O cellule vide
- X cellule occupée

Contraintes

- Utiliser des tableaux C, les tailles sont connues à la compilation
- Ne pas utiliser de notation pointeur, comme par exemple ie *(tab + indice)
- Représenter les grilles comme dans les exemples ci-dessous
- Prévoir un mode DEBUG selon l'exemple ci-dessous
- Une fonction doit permettre de générer la prochaine génération en mettant à jour le tableau reçu en paramètre
- Une autre fonction doit permettre de générer N générations et s'arrêter automatique, selon un paramètre booléen, s'il aucun changement est détecté

Laboratoire

Sans mode DEBUG

	G	ENR	ATI	ON I	NO (0			
	0	1	2	3	4	5	6	7	8
0									
1									
2 3 4	•	•			Χ	•		•	
3	•	•		Χ	Χ	Χ		•	
4	•	•	Χ	Χ	Χ	Χ	Х	•	
5	•	•		Χ	Χ	Χ		•	
6	•	•			Χ	•		•	
7	•	•	•		•	•	•	•	
8	•	•	٠	٠	•	•	•	•	•
	 G	ENR	ATI	ON I	NO :	1			
	0	1	2	3	4	5	6	7	8
0									
1									
2	•	•		Χ	Χ	Χ		•	
3	•	•	Χ		•	•	Χ	•	
4	•	•	Χ		•	•	Χ	•	
5	•	•	Χ	•	•	•	Χ	•	
6	•	•	•	Χ	Χ	Χ	•	•	
7	•	•	•	•	•	•	•	•	
8									

Avec mode DEBUG

	0	1	2	3	4	5	6	7	8
0									
1			•	•					
2		•	•	•	X	•		•	
3	•	•	•	X	X	X	•	•	•
4	•	٠	Χ		X	X	Χ	•	•
5	•	•	•	Χ	X	Χ	•	•	•
6 7	•	•	•	•	Χ	•	•	•	•
8	•	•	•	•	•	•	•	•	•
0	•	•	•	•	•	•	•	•	•
ab [= 3				anc	е	
ab [= 3	=>	su	rvi		_	
ab[[5] [2]	= 3 = 3				anc anc		
ab [: ab [:		31	= 5		mo.		anc	е	
ab[41	= 6		mo	-			
ab[51	= 5						
ab[61	= 3				anc	٩	
ab [21	= 3					_	
ab [31	= 6		mo		_		
tab [4] [4]	= 8	=>	mo	rt			
ab[4] [5]	= 6	=>	mo	rt			
ab[4] [6]	= 3	=>	su	rvi	e		
tab[5][2]	= 3	=>	na	iss	anc	e	
tab[5][3]	= 5	=>	mo	rt			
ab[5][4]	= 6	=>	mo	rt			
ab[5]		=>	mo	rt			
ab[6]	= 3				anc		
ab [3]	= 3				anc	е	
tab[4]	= 3	=>		rvi			
tab[6][5]	= 3	=>	na	İSS	anc	е	

	0	1	2	3	4	5	6	7	8
0									
1									
2				Χ	Χ	Χ			
3			Χ				Χ		
4			Χ				Χ		
5			Χ				Χ		
6				Χ	Χ	Χ			
7									
8									

```
tab[1][4] = 3 => naissance
tab[2][3] = 2 => survie
tab[2][4] = 2 => survie
tab[2][5] = 2 => survie
tab[3][2] = 2 => survie
tab[3][6] = 2 => survie
tab[3][6] = 2 => survie
tab[4][1] = 3 => naissance
tab[4][2] = 2 => survie
tab[4][3] = 3 => naissance
tab[4][5] = 3 => naissance
tab[4][6] = 2 => survie
tab[4][7] = 3 => naissance
tab[5][2] = 2 => survie
tab[5][4] = 3 => naissance
tab[5][6] = 2 => survie
tab[6][6] = 2 => survie
```