# Statistics: The Science of Decisions

## **Stroop Task Experiment**

### **Independent Variable**

The independent variable are the task conditions – congruent or incongruent.

#### **Dependent Variable**

The dependent variable is the time taken to complete a task condition.

### **Hypothesis**

Let  $\mu_C$  represent the mean of Congruent tasks Let  $\mu_I$  represent the mean of Incongruent tasks Let  $\mu_D$  represent the mean of Differences of Incongruent to Congruent tasks

 $\mu_D = \mu_{I-} \mu_C$ 

 $H_o: \mu_D \le 0$  $H_a: \mu_D > 0$ 

I expect to perform an one Sample t-test for dependent means. We assume the sampled data is from a defined population, and scores are normally distributed in the population. Since each user is taking first the congruent and then incongruent task this suggests dependency between data sets. We do not have the full population data and therefore cannot perform a z-test.

The  $H_o$  predicts there will be no difference in average task times, or that the average incongruent task time will be less than the average congruent task time .  $H_a$  predicts the opposite, and that the average incongruent task time will be greater than the average congruent task time.

Therefore the t-test will be a one tailed test with  $\alpha$  level 0.05 in the positive direction.

### My Stroop Task Times (seconds)

Congruent: 19.384 Incongruent: 32.085

### **Statistics**

| Statistic          | Congruent   | Incongruent |
|--------------------|-------------|-------------|
| N (sample size)    | 24          | 24          |
| Mean (µ)           | 14.051125   | 22.01591667 |
| Median             | 14.3565     | 21.0175     |
| Variance           | 12.14115286 | 22.05293383 |
| Standard Deviation | 3.559357958 | 4.797057122 |

### Visualizations



This line graph demonstrates that the incongruent times are always longer for each individual in the sample. However, some individuals are able to complete the incongruent task faster than others congruent task.



We can see from the histograms that the Congruent task is a normal distribution. The majority of entries are in the 12-15 bin, where it's mean is above at approx 14.05. The remaining values fall around it in almost equal proportion. The Incongruent histogram and mean suggests a positively skewed distribution starting from 15-18 seconds while the mean is calculated further out at 22.01

### Statistical Test

| Statistic                                  | Value       |
|--------------------------------------------|-------------|
| df                                         | 23          |
| α                                          | 0.05        |
| T-critical (one tailed)                    | 1.6787      |
| T-critical (two tailed) for Cl calculation | 2.069       |
| X <sub>d</sub> (sample mean difference)    | 7.964791667 |
| Standard Deviation                         | 4.86482691  |

| Standard Error  | 0.9930286348 |
|-----------------|--------------|
| Margin of Error | 2.054576245  |
| t-score         | 8.020706944  |
| Cohens d        | 1.637219949  |
| r²              | 0.7366364161 |

t(23) = 8.02, p < 0.0001, one- tailed Confidence Level on the Mean Difference, 95%, (5.91, 10.02)

Effect Size Measures

d=1.63

 $r^2=0.74$ 

#### Conclusions

The data is statistically significant and we can reject the H<sub>o</sub>.

The r<sup>2</sup> suggests the stroop task accounts for 74% of time difference between tasks (congruent and incongruent).

I expected the incongruent task to take a longer time - especially after taking the test myself. I didn't expect the time difference gap to be as wide as suggested. After reading the Theories section on the wiki on the stroop effect (<a href="https://en.wikipedia.org/wiki/Stroop\_effect">https://en.wikipedia.org/wiki/Stroop\_effect</a>) I feel that Automaticity makes the most sense to me. I personally find it's extremely difficult to ignore written word and required much more concentration and active focus to determine the color blocks during the test.

A similar test may be using shapes and words, where in test 1 the shape has the name of the shape within it. In test 2 the shape has a different named shape within it.

Used to determine p-value <a href="http://www.graphpad.com/quickcalcs/pValue2/">http://www.graphpad.com/quickcalcs/pValue2/</a>

To help understand the results <a href="https://en.wikipedia.org/wiki/Stroop\_effect">https://en.wikipedia.org/wiki/Stroop\_effect</a>