Parte I: Capítulo 3

3.4 Demostración de los Lemas 3.3.1 y 3.3.2

(Proofs of Lemma 3.3.1 and Lemma 3.3.2)

Eduardo Velázquez

28 de septiembre de 2023

Recordemos...

- (V, π^V) y (W, π^W) son módulos de persistencia.
- ▶ $\delta > 0$, $f: V \to W[\delta]$ y $g: W \to V[\delta]$ son morfismos de entrelazamiento, es decir, $g[\delta] \circ f = \Phi_V^{2\delta}$ y $f[\delta] \circ g = \Phi_W^{2\delta}$

Demostración del Lema 3.3.1

Lema 3.3.1 Sean (V,π^V) y (W,π^W) dos módulos de persistencia $\delta-$ entrelazados, y sean

$$f: V o W[\delta]$$
 y $g: W o V[\delta]$

sus morfismos de entrelazamiento. Considere el mapeo suprayectivo $f:V\to\operatorname{im} f$ y el apareamiento inducido $\mu_{sur}:\mathcal{B}(V)\to\mathcal{B}(\operatorname{im} f)$. Entonces

- 1. $\operatorname{\mathsf{coim}} \mu_{\mathsf{sur}} \supseteq \mathcal{B}(V)_{2\delta}$,
- 2. $\lim \mu_{sur} = \mathcal{B}(\operatorname{im} f)$,
- 3. μ_{sur} mapea $(b, d] \in \text{coim } \mu_{sur}$ a (b, d'], donde $d' \in [d 2\delta, d]$.

2. Por demostrar: im $\mu_{sur} = \mathcal{B}(\text{im } f)$.

Demostración.

Se sigue de la Proposición 3.2.8, ya que $\mu_{sur}: \mathcal{B}(V) \to \mathcal{B}(\operatorname{im} f)$ y,

Proposión 3.2.8

Si existe un mapeo suprayectivo del módulo (V,π) al módulo (W,θ) , entonces el mapeo inducido $\mu:\mathcal{B}\to\mathcal{C}$ satisface:

- ightharpoonup im $\mu_{\it sur}={\cal C}$,
- $ightharpoonup \mu_{\mathit{sur}}\left(b,d
 ight] = \left(b,e
 ight] \mathsf{con}\; d \geq e$.

1. Por demostrar: $\operatorname{coim} \mu_{sur}(f) \supseteq \mathcal{B}(V)_{2\delta}$.

Demostración.

El mapeo suprayectivo se construye como $\mu_{sur}: \mathcal{B}(V) \to \mathcal{B}(\operatorname{im} f)$. Por hipótesis,

$$V \xrightarrow{f} \operatorname{im} f \xrightarrow{g[\delta]} \operatorname{im} \Phi_V^{2\delta}$$

$$\Phi_V^{2\delta}$$

y por la Afirmación 3.2.13,

$$\mathcal{B}(V) \xrightarrow{\mu_{\text{sur}}(f)} \mathcal{B}(\operatorname{im} f) \xrightarrow{\mu_{\text{sur}}(g[\delta])} \mathcal{B}(\operatorname{im} \Phi_V^{2\delta})$$

$$\mu_{\text{sur}}(\Phi_V^{2\delta})$$

Notemos que por construcción, coim $\mu_{sur}(\Phi_V^{2\delta}) = \mathcal{B}(V)_{2\delta}$, y $\mathcal{B}(V)_{2\delta}$ son las barras de $\mathcal{B}(V)$ de longitud al menos 2δ

Las barras de $\mathcal{B}(V)$ y las barras

$$\mathcal{B}(\operatorname{\mathsf{im}}\Phi_V^{2\delta}) = \{(b,d-2\delta] : (b,d] \in \mathcal{B}(V), d-b > 2\delta\}$$

están en correspondencia (matched) usando el criterio de "mayor longitud primero", pero no así las barras de $\mathcal{B}(V)$ de menor longitud a 2δ . Esto significa que

$$\mathsf{coim}\mu_{\mathit{sur}}(f)\supseteq \mathsf{coim}\,\mu_{\mathit{sur}}(\Phi_V^{2\delta})=\mathcal{B}(V)_{2\delta}\,.$$

3. Por demostrar: μ_{sur} mapea $(b, d] \in \text{coim } \mu_{sur}$ a (b, d'], donde $d' \in [d - 2\delta, d]$.

Demostración.

Sea $(b,d] \in \mathcal{B}(V)$. Analicemos $\mu_{sur}(f)(b,d]$.

► Caso 1. $d - b > 2\delta$. Por la Afirmación 3.2.8,

$$(b,d] \stackrel{\mu_{sur}(f)}{\mapsto} (b,d']$$
, p.a. $d' \leq d$.

Y además,

$$(b,d'] \overset{\mu_{sur}(g[\delta])}{\mapsto} (b,d'']$$
, p.a. $d'' \leq d'$,

además, $(b,d'']=(b,d-2\delta]$.

Por tanto, $d-2\delta \leq d' \leq d$.

3. Por demostrar: μ_{sur} mapea $(b, d] \in \text{coim } \mu_{sur}$ a (b, d'], donde $d' \in [d - 2\delta, d]$.

Caso 2. $d - b \le 2\delta$. El intervalo (b, d] (en la coimagen de $\mu_{sur}(f)$) está asociado (matched) a (b, d'] con $d \ge d'$. Pero $d' > b \ge d - 2\delta$, por tanto, $d' \in [d - 2\delta, d]$.

Demostración del Lema 3.3.2

Lema 3.3.2 Sean (V,π^V) y (W,π^W) dos módulos de persistencia $\delta-$ entrelazados, y sean

$$f: V o W[\delta]$$
 y $g: W o V[\delta]$

sus morfismos de entrelazamiento. Considere el mapeo inyectivo im $f \to W[\delta]$ y el apareamiento inducido $\mu_{inj}: \mathcal{B}(\operatorname{im} f) \to \mathcal{B}(W[\delta])$. Entonces

- 1. $\operatorname{\mathsf{coim}} \mu_{\mathit{inj}} = \mathcal{B}(\operatorname{\mathsf{im}} f)$,
- 2. im $\mu_{inj}\supseteq \mathcal{B}(W[\delta])_{2\delta}$,
- 3. μ_{inj} mapea $(b, d'] \in \text{coim } \mu_{inj}$ a (b', d'], donde $b' \in [b-2\delta, b]$.

1. Por demostrar: coim $\mu_{inj} = \mathcal{B}(\mathsf{im}\,f)$.

Demostración. Se sigue de la Proposición 3.2.8,

Proposión 3.2.5

Si existe un mapeo inyectivo del módulo (V,π) al módulo (W,θ) , entonces el mapeo inducido $\mu_{inj}:\mathcal{B}\to\mathcal{C}$ satisface:

- ightharpoonup coim $\mu_{inj} = \mathcal{B}$,
- $\blacktriangleright \forall (b,d] \in \mathcal{B}, (b,d] = (c,d] \text{ con } c \leq b.$

2. Por demostrar: im $\mu_{inj} \supseteq \mathcal{B}(W[\delta])_{2\delta}$

Demostración.

Por hipótesis, $f[\delta] \circ g = \Phi_W^{2\delta}$, es decir,

$$W \xrightarrow{g} \operatorname{im} g \xrightarrow{f[\delta]} W[2\delta]$$

$$\Phi_W^{2\delta}$$

Entonces, im $\Phi_W^{2\delta} \subseteq \operatorname{im} f[\delta] \subseteq W[2\delta]$. Es decir, existen mapeos inyectivos i, j, k, tales que

$$\operatorname{im} \Phi_W^{2\delta} \xrightarrow{j} \operatorname{im} f[\delta] \xrightarrow{i} W[2\delta]$$

2. Por demostrar: im
$$\mu_{inj} \supseteq \mathcal{B}(W[\delta])_{2\delta}$$

Por la afirmación 3.2.13,

$$\mathcal{B}(\operatorname{im}\Phi_{W}^{2\delta}) \xrightarrow{\mu_{\operatorname{inj}}(j)} \mathcal{B}(\operatorname{im}f[\delta]) \xrightarrow{\mu_{\operatorname{inj}}(i)} \mathcal{B}(W[2\delta])$$

$$\xrightarrow{\mu_{\operatorname{inj}}(k)}$$

Podemos ver que,

- $\blacktriangleright \text{ im } \mu_{inj}(k) = \mathcal{B}(W[2\delta])_{2\delta},$
- lacksquare Vimos que im $\Phi^{2\delta}_W\subseteq \operatorname{im} f[\delta]\subseteq W[2\delta]$. Notemos que

$$\mathcal{B}(\mathsf{im}\,\Phi^{2\delta}_W) = \{(b,d-2\delta]\,:\, (b,d\in\mathcal{B}(W),\,d-b>2\delta)\}\,,$$

$$\mathcal{B}(W[2\delta]) = \left\{ (b-2\delta, d-2\delta) : (b,d] \in \mathcal{B}(W) \right\},$$

y
$$\mu_{inj}(k)(b, d-2\delta] = (b-2\delta, d-2\delta],$$

 $\therefore \operatorname{im} \mu_{inj}(i) \supseteq \operatorname{im} \mu_{inj}(k) = \mathcal{B}(W[2\delta])_{2\delta}.$

3. Por demostrar:
$$\mu_{inj}$$
 mapea $(b, d'] \in \text{coim } \mu_{inj}$ a $(b', d']$, donde $b' \in [b-2\delta, b]$

Demostración.

Sea $(b,d] \in \mathcal{B}(\operatorname{im} f[\delta])$, y $\mu_{inj}(i)(b,d]) = (b',d]$ p.a. b' tal que $(b',d] \in \mathcal{B}(W[2\delta])$. Por la proposición 3.2.5, $b' \leq b$.

- ▶ Caso $d b' \le 2\delta$. Se tiene $b' \ge d 2\delta > b 2\delta$.
- ▶ Caso $d b' > 2\delta$. Existe un intervalo $(b' + 2\delta, d] \in \mathcal{B}(\operatorname{im} \Phi_W^{2\delta})$ tal que

$$\mu_{inj}(k)(b'+2\delta,d] = \mu_{inj}(i)(b,d] = (b',d],$$

por lo que $b \le b' + 2\delta$. Por tanto, $b - 2\delta \le b' \le b$.

 \Box