# Using Machine Learning and Word Embedding to Characterise the DDoS Landscape with **DDoS2Vec**

Ravjot Singh Samra Marinho Barcellos



#### Volumetric Distributed Denial of Service (DDoS) Attacks

DDoS has been a plague on the Internet since the beginning

Attacks seem to be ever growing in size and impact

Attackers continuously improve their strategies to cause more damage using less resources



#### Outline

- 1. The meaning of DDoS attack characterisation
- 2. Handling data and labels: tiny lab networks versus the Internet
- 3. Leveraging natural language processing: **DDoS2Vec**
- 4. Longitudinal analysis on a year's worth of IXP traffic

So, what does "characterisation" mean here?

#### **DDoS Attack Characterisation**



#### Data Requirements

Before we start characterising DDoS attacks, we need the following for evaluation:

A realistic **network traffic dataset** with serious scale

and

A set of ground truth or labels describing characteristics

#### Publicly Available Datasets

Popular ones you may have come across:

- KDD Cup 1999
- DARPA Intrusion Detection Evaluation Dataset (1998, 1999)
- CAIDA UCSD DDoS Dataset (2007)
- UNSW-NB15 (2015)
- CIC-DDoS2019
- NF-UQ-NIDS (2021, combination of older datasets like UNSW-NB15)

They almost always contain *two general flaws and shortcomings*:

- Unrealistic and/or unknown attack configurations
- Unrealistic network environment scale

Let's move on to a real-world alternative...

# IXP Flow Samples

- Private IXP flow sample dataset from 2019 (1:4096 sample rate)
- Medium-sized IXP with over 200 member networks
- Represents real-world traffic at Internet infrastructure scale



# **Obtaining Ground Truth**

- Issue: our IXP dataset is unlabelled
- The recent <u>IXP Scrubber</u> work can help us with their filtering rules artefact
- Vast majority of the rules are for UDP only, which limits our evaluation
- A filtering rule match on a flow can be considered the defining characteristic of the flow

#### **Example Filtering Rule**

```
"20d10ae9":{
   "protocol":17,
   "port_src":53,
   "port_dst":2701,
   "packet_size":"(1400,1500]",
   "confidence":1.0,
   "antecedent population":410966
},
```

#### Natural Language Processing (NLP)

- NLP has seen a recent increase in both interest and research
- Network security research has taken advantage of that:

See IP2Vec, DANTE, DarkVec, etc.

- What about applying such techniques to DDoS attack characterisation?
- Untested on a realistic network traffic dataset
- Problem: NLP approaches require natural language corpora, not flows

#### **Example Document Corpus: Visualised**

- A corpus is a collection of sentences, paragraphs, documents, etc.
- Previously mentioned work uses sentences; we use documents
- **Example**: a tiny document corpus with Wikipedia articles

| Document Tag | Words   |       |        |             |        |  |
|--------------|---------|-------|--------|-------------|--------|--|
| Bread        | bread   | is    | a      | staple      | food   |  |
| Pluto        | pluto   | minor | planet | designation | pluto  |  |
| Flour        | flour   | is    | a      | powder      | made   |  |
| Jupiter      | jupiter | is    | the    | fifth       | planet |  |
| Earth        | earth   | is    | the    | third       | planet |  |
| Wheat        | wheat   | is    | a      | grass       | widely |  |

#### Example Document Corpus: "2Vec"

- How can we find similar articles?
- Turn documents into an embedding:
   a unified vector space
- We can use Doc2Vec for this

| Document Tag | Vector |       |
|--------------|--------|-------|
| Bread        | 0.061  | 5.192 |
| Pluto        | -5.044 | 1.291 |
| Flour        | 0.579  | 6.434 |
| Jupiter      | -6.073 | 1.073 |
| Earth        | -4.238 | 1.550 |
| Wheat        | 0.367  | 5.683 |



#### Flow Corpus Generation



- We can convert flow records into a document corpus first
- The words will need to describe *flow-level behaviour and patterns*
- There is no standard "correct" way to do this: trial and error

# Flow Corpus Generation: Example

| Field                           | 1 <sup>st</sup> Flow |  |
|---------------------------------|----------------------|--|
| Timestamp (initial packet, UTC) | 1648468800           |  |
| Source IP Address               | 192.168.1.40         |  |
| Destination IP Address          | 192.168.1.50         |  |
| Source Port                     | 11211                |  |
| Destination Port                | 60000                |  |
| Packets                         | 2                    |  |
| Bytes                           | 2230                 |  |
| Protocol                        | UDP                  |  |

#### Flow Corpus Generation: Example...

| Field                           | 1 <sup>st</sup> Flow |
|---------------------------------|----------------------|
| Timestamp (initial packet, UTC) | 1648468800           |
| Source IP Address               | 192.168.1.40         |
| Destination IP Address          | 192.168.1.50         |
| Source Port                     | 11211                |
| Destination Port                | 60000                |
| Packets                         | 2                    |
| Bytes                           | 2230                 |
| Protocol                        | UDP                  |



Ready for input into an NLP technique...

# NLP Techniques & Approaches

Many NLP approaches are compatible

- Word2Vec: most relevant to prior work...
   but requires a document-to-sentence conversion
- Doc2Vec: essentially a document-based modification of Word2Vec
   No changes to the corpus required

Latent Semantic Analysis (LSA): a much older approach
 Performs the best, despite its simplicity — a key part of DDoS2Vec

# Longitudinal Analysis: Multi-Label Classification

**Challenge**: predict the IXP Scrubber filtering rules that apply to traffic destined for a potential unseen victim IP address in each month of 2019

**Classifier**: Distance weighted k-NN (k = 10)

#### For training month (June 2019):



For every other (testing) month in 2019:



#### Longitudinal Analysis: Classification Performance



Fig. 3. Classification performance over 2019 of a DDoS2Vec embedding trained on 2019-06-01 - 2019-07-01.

- One training month does not contain all attack characteristics
- For classification performance: *sharp* initial drop-off, *subtle* decline

# Longitudinal Analysis: Time Performance



Fig. 5. Time taken for months based on corpus size.

#### Limitations & Future Work

- Evaluation was held back to UDP-based volumetric DDoS attacks
  - → We require a real dataset with more labelled characteristics in general
- **Limited comparison** to other approaches
  - → We are unaware of other possible multi-label classification baselines
- Behind the state-of-the-art in NLP no deep learning or LLMs here
  - → Doc2Vec, Word2Vec, LSA, etc. are at minimum roughly a decade old

#### **Key Takeaways**

- Publicly available datasets created in lab environments are inadequate
- **DDoS2Vec** can characterise volumetric DDoS attacks in a highly novel way It can do so across time with a reasonable performance drift
- NLP is a promising concept to leverage for DDoS attack characterisation
   We recommend experimenting with flow corpus generation, NLP techniques, etc.

Thanks for listening