МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа прикладной математики и информатики

Отчёт о выполнении лабораторной работы 3.1.1

Соболевский Федор Александрович Б05-111

1 Аннотация

В данной работе был исследован магнитомер – прибор для измерения величины и направления магнитного поля. С помощью магнитометра была измерена горизонтальная составляющая магнитного поля Земли. По результатам измерений величины электрического тока в установке двумя независимыми способами с использованием полученной величины магнитного поля Земли установлено количественное соотношение между единицами электрического тока в системах СИ и СГС.

2 Теоретические сведения

2.1 Общие сведения о магнитометре

Магнитометр – прибор для магнитных измерений, например: компас, теодолит, веберметр и пр. С помощью магнитометров измеряют намагниченность ферромагнетиков, напряжённость магнитных полей, исследуют магнитные аномалии. Разработаны магнитометры различных конструкций: магнитостатические, электромагнитные, магнитодинамические, индукционные, резонансные. Эталонные магнитометры позволяют измерять горизонтальную и вертикальную составляющие напряжённости магнитного поля Земли с точностью 10^{-6} Э.

В данной работе помощью электромагнитного магнитометра измеряется горизонтальная составляющая земного магнитного поля и абсолютным образом определяется сила тока по его магнитному действию.

2.2 Экспериментальная установка

Магнитометр (рис. 1) состоит из нескольких последовательно соединённых круговых витков K, расположенных вертикально. В центре кольца K радиусом R на тонкой неупругой вертикальной нити подвешена короткая магнитная стрелка C. Жёстко связанная со стрелкой крыльчатка погружена в масло и служит для демпфирования колебаний.

Рис. 1: Схема устройства магнитометра

В отсутствие других магнитных полей стрелка располагается по направлению горизонтальной составляющей земного магнитного поля B_0 , т. е. лежит в плоскости магнитного меридиана.

Прибор настраивают с помощью световых зайчиков, отражённых от двух зеркал: 3_1 , прикреплённого к стрелке (подвижный зайчик), и 3_2 , расположенного в плоскости кольца К и жёстко связанного с ним (неподвижный зайчик). Оба зеркала освещаются одним и тем же

Рис. 2: Схема измерения угла отклонения магнитной стрелки

осветителем О. Вращением кольца вокруг вертикальной оси можно совместить оба зайчика. При этом плоскость витков совпадает с плоскостью магнитного меридиана.

При появлении дополнительного горизонтального магнитного поля B_{\perp} стрелка С установится по равнодействующей обоих полей B_{Σ} (см. рис. 2). В нашей установке дополнительное поле может быть создано либо малым ферромагнитным стержнем, расположенным на кольце на его горизонтальном диаметре (B_1) , либо током, проходящим по кольцу (B_2) . В обоих случаях дополнительное поле можно считать однородным, так как размеры стрелки много меньше радиуса кольца. Поле намагниченного стержня вдали от него может быть приближённо вычислено как поле точечного диполя:

$$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4\pi} \left(3 \frac{(\mathbf{m} \cdot \mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{m}}{r^3} \right),$$

где \mathfrak{m} — магнитный момент стержня, \mathbf{r} — радиус-вектор, проведённый из центра диполя в точку наблюдения. На оси, перпендикулярной стержню, имеем

$$B_1 = \frac{\mu_0}{4\pi} \frac{\mathfrak{m}}{R^3},\tag{1}$$

где R — радиус кольца. Магнитное поле в центре кольца с током I по закону Био и Савара равно

$$B_2 = \frac{\mu_0 I}{2R} N. \tag{2}$$

Здесь N — число витков в кольце, I — сила тока в единицах СИ (амперах). Измерив угол отклонения стрелки φ , можно связать поля B_0 и B_{\perp} (B_1 или B_2):

$$B_{\perp} = B_0 \cdot \operatorname{tg} \varphi. \tag{3}$$

2.3 Определение горизонтальной составляющей магнитного поля Земли

Для определения горизонтальной составляющей земного магнитного поля B_0 тонкий короткий намагниченный стержень устанавливается в отверстие P на горизонтальном диаметре кольца (см. рис. 1). Измерив тангенс угла отклонения стрелки

$$\operatorname{tg}\varphi_1 = \frac{x_1}{2L},\tag{4}$$

можно с помощью уравнений (1), (3) и (4) рассчитать поле B_0 , если исключить величину \mathfrak{m} — магнитный момент стержня. Для исключения магнитного момента предлагается измерить период крутильных колебаний стержня в поле Земли. Подвешенный горизонтально за середину на тонкой длинной нити стержень в положении равновесия установится по полю Земли (упругость нити пренебрежимо мала). Если ось стержня отклонить в горизонтальной плоскости от направления B_0 на малый угол α , то под действием возвращающего механического момента

$$M_{\text{mex}} = |\mathbf{m} \times \mathbf{B}| = \mathbf{m} B_0 \sin \alpha \approx \mathbf{m} B_0 \alpha$$

стержень с моментом инерции J в соответствии с уравнением гармонических крутильных колебаний

$$J\ddot{\alpha} + \mathfrak{m}B_0\alpha = 0$$

будет совершать крутильные колебания с периодом

$$T = 2\pi \sqrt{\frac{J}{\mathfrak{m}B_0}}. (5)$$

Момент инерции цилиндрического стержня относительно оси вращения

$$J = m\left(\frac{l^2}{12} + \frac{r^2}{4}\right) = \frac{ml^2}{12} \left[1 + 3\left(\frac{r}{l}\right)^2\right],\tag{6}$$

где m – масса стержня, l – длина, а r – его радиус. Таким образом, рассчитав момент инерции J и измерив тангенс угла отклонения стрелки φ_1 и период малых крутильных колебаний стержня T, можно с помощью формул (1), (3), (4) и (5) определить горизонтальную составляющую магнитного поля Земли:

$$B_0 = \frac{2\pi}{TR} \sqrt{\frac{\mu_0 JL}{2\pi R x_1}}$$
 [ед. СИ]. (7)

2.4 Определение электродинамической постоянной

Ток в цепи кольца можно измерить двумя независимыми способами: по магнитному действию тока на стрелку магнитометра и по заряду, протекающему через цепь в единицу времени. Первый способ измерения соответствует тому, как эталон тока определён в системе СИ, а второй — в гауссовой системе (СГС). По отношению результатов этих измерений можно определить электродинамическую постоянную c.

Пропуская некоторый ток через витки магнитометра, измерим тангенс угла отклонения стрелки (tg $\varphi_2 = x_2/2L$,) и по формулам (2) и (3) рассчитаем силу тока:

$$I = \frac{2B_0R}{\mu_0 N} \operatorname{tg} \varphi_2$$
 [ед. СИ]. (8)

Величина $A = 2B_0R/(\mu_0N)$ является постоянной прибора в данном месте земной поверхности (точнее, в данном месте комнаты – с учётом многочисленных сторонних источников магнитного поля).

Тот же ток можно измерить абсолютным образом по прошедшему в единицу времени заряду, что соответствует определению эталона тока в гауссовой системе (СГС). Если разрядить конденсатор известной ёмкости C, заряженный до напряжения U, через витки, то через них протечёт заряд q = CU (рис. 3). Если ν раз в секунду последовательно заряжать конденсатор от источника и разряжать через витки, то через них за секунду протечёт заряд $CU\nu$. Средний ток, прошедший через витки, равен при этом

$$I = CU\nu$$
 [абс. ед.]. (9)

Рис. 3: Схема питания катушки магнитометра

Для вычисления абсолютного значения тока по (9) необходимо измерить напряжение U на конденсаторе известной ёмкости C. Напряжение необходимо выразить в единицах СГС (измерительные приборы, как правило, проградуированы в единицах СИ: $1B \approx \frac{1}{300}$ ед. СГС). Ёмкость конденсатора C [см] должна быть выражена в сантиметрах ($1\Phi \approx 9 \cdot 10^{11}$ см).

По отношению численных значений одного и того же тока, выраженных в единицах СИ и СГС (гауссовой) по формулам (8) и (9) соответственно, можно определить значение электродинамической постоянной:

$$c = \frac{1}{10} \frac{I_{\text{[C\Gamma C]}}}{I_{\text{[CM]}}}.$$
 (10)

3 Оборудование и инструментальные погрешности

В работе использовались: магнитометр, осветитель со шкалой, источник питания, вольтметр, электромагнитный переключатель, конденсатор, намагниченный стержень, прибор для определения периода крутильных колебаний, секундомер, рулетка, штангенциркуль.

Инструментальные погрешности:

- Измерительная шкала: $\Delta_x = 2$ мм;
- Рулетка: $\Delta_L = 2$ см;

• Секундомер: $\Delta_T = 0.01 \text{ c}$;

• Штангенциркуль: $\Delta_l = 0.1$ мм;

• Вольтметр: $\Delta_U = 1$ В.

4 Результаты измерений и обработка экспериментальных данных

4.1 Измерение горизонтальной составляющей магнитного поля Земли

Параметры магнитометра: L=1 см, R=20 см, N=44 витка, $C=9\cdot 10^5$ см $\pm 2\%$, $\nu=50$ Гц. Параметры магнитного стержня: $m=5{,}900\pm 0{,}001$ г, $l=4{,}00\pm 0{,}01$ см, $r=0{,}245\pm 0{,}010$ см.

Результаты измерений смещения подвижного зайчика $x_{1\pm}$ при добавлении магнитного стержня представлены в таб. 1. Видно, что все измеренные значения совпадают в пределах инструментальной погрешности, поэтому полную погрешность измерения можно принять равной инструментальной.

№ измерения	1	2	3	4	5
$x_{1+}, \text{ cm}$	7,0	7,0	7,0	7,0	7,0
$x_{1-}, \text{ cm}$	-7,0	-7,0	-7,0	-7,0	-7,0

Таблица 1: Результаты измерения отклонения магнитометра с намагниченным стержнем

При измерении периода крутильных колебаний для достижения точности в более чем 1% проводить измерения нужно хотя бы в течении ≈ 60 с, т. е. более 1 минуты. Получаем 20 колебаний за $131,2\pm0,1$ с, следовательно, период 1 колебания равен $6,56\pm0,01$ с.

По формуле (6) вычисляем момент инерции стержня. Полученное значение:

$$J = (8.2 \pm 0.5) \cdot 10^{-7} \text{ кг} \cdot \text{м}^2.$$

По формуле (7) вычисляем горизонтальную составляющую магнитного поля Земли. Полученное значение:

$$B_0 = 14.8 \pm 0.6$$
 мкТл.

4.2 Измерение электродинамической постоянной

Результаты измерений отклонения зайчика x_2 при пропускании тока через цепь представлены в таб. 2. Все значения снова совпадают в пределах погрешности измерений.

№ измерения	1	2	3	4	5
$x_{2+}, \text{ cm}$	9,0	9,0	9,0	9,0	9,0
$x_{2-}, \text{ cm}$	-9,0	-9,0	-9,0	-9,0	-9,0

Таблица 2: Результаты измерений отклонения магнитометра при наличии тока в цепи

Напряжение на конденсаторе U=89,0 В. По формулам (8) и (9) рассчитано значение тока в цепи. Полученные значения:

$$I_{\text{CH}} = (4.8 \pm 0.3) \cdot 10^{-2} \text{ мA}; \quad I_{\text{CFC}} = (1.34 \pm 0.03) \cdot 10^{7} \text{ абс. ед.}$$

По формуле (10) вычислена электродинамическую постоянную:

$$c = 2,77 \pm 0,14 \cdot 10^8 \frac{M}{c}.$$

5 Обсуждение результатов и выводы

Полученные значения

В данной работе была измерена горизонтальная составляющая магнитного поля Земли, а также была определена электродинамическая постоянная.

Полученное значение горизонтальной составляющей магнитного поля Земли:

$$B_0 = 14.8 \pm 0.6$$
мкТл

соответствует табличному значению 15,97мкТл в пределах удвоенного стандартного отклонения. Основной вклад в погрешность вносит определение смещения зайчика и параметров магнитного стержня. Ошибка измерений может быть связано с наличием сторонних источников магнитного поля в лаборатории: мобильных телефонов, компьютеров и других электроприборов.

Полученное значение электродинамической постоянной:

$$c = 2,77 \pm 0,14 \cdot 10^8 \frac{M}{c}$$

также соответствует табличному значению $2.99 \cdot 10^8 \frac{\text{м}}{\text{c}}$ в пределах двух стандартных отклонений. Небольшое отклонение может быть вызвано наводкой от токов в цепи или особенностями экспериментальной установки, а также наличием сторонних источников магнитного поля. Основной вклад в погрешность вносит определение горизонтальной составляющей магнитного поля Земли при расчёте тока по определению системы СИ и определение отклонения зайчика.

Выводы

Опыт показал, что магнитное поле Земли имеет достаточную силу, чтобы производить видимое воздействие на достаточно точные магнитометры и другие приборы, измеряющие косвенно или непосредственно магнитное поле. При минимизациии количества сторонних источников поля можно достаточно точно измерить величину магнитной индукции поля Земли. Эксперимент с предложенной установкой позволил достаточно точно измерить горизонтальную составляющую данной величины, что говорит о применимости данной установки в качестве магнитометра. Экспериментально также удалось с достаточной точностью установить значение электродинамической постоянной, однако погрешность измерений слишком значительна, чтобы использовать полученное значение для точных вычислений в дальнейшем, поэтому предпочтительно использовать табличные значения.

Самый большой вклад в погрешность измерений внесла небольшая точность измерения угла отклонения магнитометра с помощью солнечных зайчиков и градуированной шкалы. Для повышения точности измерений можно использовать другие приборы для измерения углов, например, крутильные весы или стрелку с измерительной шкалой.