Object description

What is an object descriptor?

• An object is a collection of pixels in an image

- A descriptor is a representation for some property of the group of pixels
 - > generally a scalar

Need for a descriptor: quantification, recognition

Desired properties of a descriptor

- 1. **Completeness** Two objects can have identical descriptors iff the objects are identical in shape
- 2. Congruence Similar objects must have similar descriptors
- **3. Invariance** Descriptor must be invariant to scale, rotation, orientation, etc.
- **4.** Compactness Descriptor must be an efficient representation for the object.
 - i.e capture the uniqueness with minimal information

Classes of object descriptors

- Shape boundary-based
 - ► Chain codes
 - >Fourier descriptor

- Region-based
 - ➤ Basic (area, perimeter, compactness, dispersion)
 - ➤ Moments (First order, Centralised, Zernike)

Boundary descriptor 1

{Boundary, region}

- Boundary A pixel which belongs to the object and has at least one background pixel as a neighbour
 - The entire set is found by contour following
- Region A pixel in the <u>interior</u> of the object
 - ➤ Pixel which belongs to the object but not on the boundary

The above will change depending on connectivity rules

Boundary descriptor 2

Chain Codes

• A representation for shape of an object

<u>Version1</u>: Store coordinates of boundary pixels

<u>version 2</u>: Store only their relative positions

Unlike version1 version2 preserves order and is more compact

CHAIN CODE

Fourier descriptor

- Fourier theory applied to shapes
 - >descriptor encodes the shape in terms of frequency

Approach:

• Treat the locus (trace) of the boundary points as a periodic function → Expand using Fourier series

1-D Fourier transform- review

• N-length sequence $f[n] \Leftrightarrow DFT F[k]$

$$F[k] = \frac{1}{N} \sum_{n=0}^{N-1} f[n] e^{-j\frac{2\pi kl}{N}}; \quad k = 0, 1..N - 1$$
$$f[n] = \sum_{k=0}^{N-1} F[k] e^{j\frac{2\pi kl}{N}} \qquad n = 0, 1..N - 1$$

- f can be real or complex
- *F* is generally complex

Fourier descriptor – for shapes

Given a set of N boundary points for the shape, with coordinates (x,y])

- 1. define b[l] = x[l] + j y[l]
- 2. Find the DFT of b[l] as

$$B[k] = \frac{1}{N} \sum_{l} b(l) e^{-j\frac{2\pi kl}{N}} = \frac{1}{N} \sum_{l} x(l) e^{-j\frac{2\pi kl}{N}} + j\frac{1}{N} \sum_{l} y(l) e^{-j\frac{2\pi kl}{N}}$$

$$k, l = 0, 1... N - 1$$

B[k] is the Fourier descriptor of the shape (Elliptic form)

l=0 gives the average value of the boundary points (position/centroid of the shape)

l > 0 encodes details

Reconstruction from M<N coeffs.

$$b[l] = \sum_{k=-M/2}^{M/2} F[k]e^{j\frac{2\pi kl}{N}} \qquad l = 0,1..N-1$$

Reconstructed shape with M = 1 to 4

From http://fourier.eng.hmc.edu/e161/lectures/fd/node1.html

Variant of Fourier Descriptor

B[k] is **not** invariant to scale, translation, rotation and starting point shift

Ex. Translation by $b_0 \rightarrow B[k] + b_0 \delta[k]$ Why? (check by deriving it mathematically)

To achieve these, one can

- drop the phase and the l = 0 term
- do a normalisation

Normalised magnitude form of FD

$$C[k] = \frac{|B[k]|}{\max\{|B[k]|\}} \quad k = 1, (N-1), 2, (N-2)...$$

Fourier descriptors..contd.

- Very popular for representing shape
- Many variants exist
 - ➤ All aimed at invariance+ improving discriminating power
- Dalitz *et al.* (Eurasip J of Sig proc. 2013) propose one aimed at handling 'broken' shapes
 - \triangleright Uses the radial distance r[k] from centroid and a distance transform to encode shape

MPEG-7 CE-1 dataset

Neumes (broken shapes) dataset

Old music notation

Recognition vs number of descriptors

Region descriptors

Basic ones:

• $Area\ A$ – total number of object pixels

- Perimeter P total number of boundary pixels
- Compactness $-A/(P^2/4\pi)$
 - ➤ denominator is the area of a circle with perimeter P; max for a circular object
- Dispersion major chord length/area
 - > simpler defn: max radius/min radius

Moments (statistical)

Describes the layout of the object pixels

Moments

$$m_{pq} = \sum_{x} \sum_{y} x^{p} y^{q} I[x, y]$$

- $> m_{00} =$ area under the shape I
- $ightharpoonup Centroid: [x, y] = [\frac{m_{10}}{m_{00}}, \frac{m_{01}}{m_{00}}]$
- Centralised moments $\mu_{pq} = \sum_{x} \sum_{y} (x \overline{x})^{p} (y \overline{y})^{q} I[x, y]$
 - > to attain invariance to translation
 - \triangleright measure of skewness in x-direction: $\frac{\mu_{30}}{\sqrt{(m_{20})^3}}$
 - \triangleright measure of skewness in y-direction $\frac{\mu_{03}}{\sqrt{(m_{02})^3}}$

Moment invariants

- Central moments are combined to create 7 moment invariants to attain invariance to
 - > Translation
 - **Rotation**
 - **Reflection**

Orthogonal moments

- Zernike polynomials
 - > set of orthogonal polynomials defined on a disc
- Start with orthogonal basis functions (in polar coords):

$$V_{nm}(\rho,\theta) = R_{n,m}e^{jm\theta};$$

 $n > 0; |m| \le n; n-|m| \text{ is even}$

$$R_{n,m}(\rho) = \sum_{s=0}^{(n-|m|)/2} (-1)^s \cdot \frac{(n-s)!}{s!(\frac{n+|m|}{2}-s)!(\frac{n-|m|}{2}-s)!} \rho^{n-2s}$$

Zernike moments

• Find the projection of the image onto the polynomials defined onto a disc i.e. $(x^2 + y^2) = 1$

$$A_{nm} = \frac{n+1}{\pi} \sum_{x} \sum_{y} I(x, y) V^*_{nm}(\rho, \theta)$$

• If we use $|A_{nm}|$ the moments are rotationally invariant

 Have been used in retrieval, quantify mass volume, classify malignant/benign masses based on shape,