

CE/CS/EC/EE/IT/ME/SE S 15-1401 COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS

(2015 Scheme)

Time: 3 Hours

Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- Test whether the function f(z) = xy + iy analytic or not. I. (a)
 - Find an analytic function whose imaginary part is $3x^2y y^3$. (b)
 - Find the image of the circle |z-1|=1 in the complex plane under the mapping (c) $\omega = \frac{1}{2}$.
 - (d) Show that cross ratio remains invariant under a bilinear transformation.
 - Show that (i) $\frac{1}{z^2} = \sum_{n=0}^{\infty} (n+1)(z+1)^n$ when |z+1| < 1 and (e)

(ii)
$$\frac{1}{z^2} = \frac{1}{4} \sum_{n=0}^{\infty} (-1)^n (n+1) \left(\frac{z-2}{2}\right)^n$$
 when $|z-2| < 2$

- Form the partial differential equation of all spheres having centres on the z-(f) axis.
- Solve $3p^2 2q^2 = 4pq$. (g)
- Solve $z = p^2 + q^2$. (h)
- Derive one dimensional heat equation. (i)
- Solve the equation $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y}$ where $u(0, y) = 8e^{-3y}$ by the method of (j) separation of variables.

PART B

 $(4 \times 10 = 40)$

- Evaluate using Cauchy's integral formula $\int_{c}^{c} \frac{\sin 3z}{z + \frac{\pi}{2}} dz$ if c is the circle |z| = 5. II. (a)
 - Find Laurent's series expansion of $\frac{1}{(z+1)(z+3)}$ in powers of (z+1) for the (b) range 0 < |z+1| < 2.

III. (a) Evaluate using residue theorem $\int_{c}^{c} \frac{z \sec z}{(1-z^2)} dz$ where c is the ellipse $4x^2 + 9v^2 = 9$.

- (b) Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}.$
- IV. (a) Show that the polar form of Cauchy-Riemann equations are $\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}. \text{ Deduce that } \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0.$
 - (b) Discuss the mapping properties of $\omega = z^2$.

OR

- V. (a) Find the bilinear transformation which maps the points z = 1, i, -1 ONTO the points $\omega = i, 0, -i$.
 - (b) Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at the origin even though Cauchy-Riemann equations are satisfied at the origin.
- VI. (a) Form the partial differential equation by eliminating the arbitrary function from $\phi(x^2 + y^2 + z^2, xyz) = 0$.
 - (b) Find the general solution of $x(z^2 y^2)p + y(x^2 z^2)q = z(y^2 z^2)$.

ΩR

- VII. (a) Solve $(D^2 5DD' + 6D'^2)z = e^{x+y}$.
 - (b) Solve $q^2 p = y x$.
- VIII. (a) Solve one dimensional wave equation.
 - (b) Obtain solution of Laplaces equation over a rectangular region by the method of separation of variables.

OR

- IX. (a) Obtain D' Alembert's solution of wave equation.
 - (b) An insulated rod of length l has its ends A and B maintained at 0° c and 100° c respectively until steady state condition prevail. If B is suddenly reduced to 0° c and maintained at 0° c, find the temperature at a distance x from A at time t.