Lycée de garçons 2

Composition du 1^{er} trimestre

Epreuve de Mathématiques

Exercice 1: (8pts)

1. Mettre les nombres suivants sous forme de fractions irréductibles :

a.
$$\frac{5}{6} + 1 - \frac{10}{4} + \frac{2}{3}$$

b.
$$\frac{2+\frac{1}{3}}{\frac{3}{7}\times\frac{28}{27}}$$

c.
$$\frac{10^{-4} \times \left(10^3\right)^2}{10^3}$$

d.
$$\frac{18 \times 15}{27 \times 25} - \frac{3}{25}$$

Année: 2013/2014

2. Résoudre dans \mathbb{R} :

a).
$$|x + 3| = \frac{1}{2}$$

$$b$$
). $\left|x-\frac{2}{3}\right| \le 1$

$$c$$
). $\left|x-\frac{5}{6}\right| \ge \frac{2}{3}$

3. Recopier et compléter le tableau suivant :

Valeur absolue	Distance	Intervalle	Encadrement
$ x-3 \le 1$			
	$d(x, -4) \le 2$		
		1	$-2 \le x \le 2$
		$x \in [6, 10]$	

Exercice 2: (5pts)

1. Construire un parallélogramme ABCD puis Placer les points E et F tels que

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB}$$
 et $\overrightarrow{AF} = 3\overrightarrow{AD}$

2. Exprimer les vecteurs \overrightarrow{CE} et \overrightarrow{CF} en fonction de \overrightarrow{AB} et \overrightarrow{AD} .

3. Montrer que les points E, C et F sont alignes.

Exercice 3: (7pts)

ABC est un triangle tel que : AB = 6cm, AC = 5cm et BC = 7cm.

Les points I, J et K sont définis par les relations vectorielles suivantes :

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$$

$$9\overrightarrow{AJ} + 3\overrightarrow{CJ} = \overrightarrow{0}$$

$$6\overline{BK} = \overline{CK}$$

 $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AB}$ $9\overrightarrow{AJ} + 3\overrightarrow{CJ} = \overrightarrow{0}$ $6\overrightarrow{BK} = \overrightarrow{CK}$ **a.** En cherchant à exprimer le vecteur \overrightarrow{AJ} en fonction du vecteur \overrightarrow{AC} , démontrer que le point J se trouve au quart du segment [AC] à partir de l'extrémité A.

b. En cherchant à exprimer le vecteur \overrightarrow{BK} en fonction du vecteur \overrightarrow{BC} , démontrer que $\overrightarrow{BK} = \frac{1}{5}\overrightarrow{CB}$

c. Faire une figure correspondant à la situation décrite ci-dessus.

d. Démontrer que $\overrightarrow{IK} = \frac{8}{15} \overrightarrow{AB} - \frac{1}{5} \overrightarrow{AC}$ Démontrer que les points I. J et K sont alignés. On appelle L le point d'intersection de la droite (AC) et de la parallèle à la droite (JI) passant par B.

e. Exprimer le vecteur \overrightarrow{CL} en fonction du vecteur \overrightarrow{CA} .