Project Report

Date	18 November 2023
Team ID	Team-591898
Project Name	Hand Gesture Recognition

S.No	Parameter	Description
1.	Problem Statement (Problem to be solved)	How to make communication among people of different cultures and languages possible?
2.	Idea / Solution description	The program uses deep learning algorithms to detect and differentiate various hand gestures given to it through video input by the user with a webcam.
3.	Novelty / Uniqueness	The innovation that we propose is using a deep GAN (generative adversarial neural network) for collecting data and image classification algorithms for detecting hand gestures.
4.	Social Impact / Customer Satisfaction	To make technology such as Al and robotics accessible to everyone for efficient communication without language barriers through hand gestures.
5.	Business Model (Revenue Model)	Used in Industries like Healthcare & VR to help make resources accessible to everyone hassle-free.

Empathy Map

Brainstorming

Requirements

- mediapipe 0.8.1
- OpenCV 3.4.2 or Later
- Tensorflow 2.3.0 or Later
- tf-nightly 2.5.0.dev or later (Only when creating a TFLite for an LSTM model)
- scikit-learn 0.23.2 or Later (Only if you want to display the confusion matrix)
- matplotlib 3.3.2 or Later (Only if you want to display the confusion matrix)

Data Flow Diagram:

User Stories:

User Type	User Story	User Story	Acceptance Criteria	
	Number			
Deaf User	USN-1	I want to be able to control my smart TV with	I can turn on/off and change	
		hand gestures so that I can watch TV without	the channels using hand	
		having to use a remote control.	gestures.	
Gamer	USN-2	I want to be able to control my video games with	I can move my character	
		hand gestures so that I can have a more immersive	and attack by hand gestures	
		and engaging gaming experience.	only.	
Surgeon	USN-3	I want to be able to control my surgical robots	I can move the robot's arm	
		with hand gestures so that I can operate on	and scalpels precisely using	
		patients more precisely and efficiently.	hand gestures.	
Teacher	USN-4	I want to be able to use hand gestures to control	I can advance, change the	
		my presentation software so that I can interact	view, and zoom in/out of the	
		with my students more effectively.	slides using hand gestures.	
Smart Home	USN-5	I want to be able to turn on and off lights, adjust	I can use multiple appliances	
User		the thermostat, and lock and unlock doors with	in my house using hand	
		hand gestures.	gestures.	
VR User	USN-6	I want to interact with the virtual world using	I can interact with the	
		hand gestures, such as picking up and throwing	virtual environment using	
		objects, and opening and closing doors.	hand gestures.	

Solution Architecture:

Reference:

Technical Architecture:

Components and Technology:

S.No	Component	Description	Technology		
1.	User Interface	How user interacts with application e.g.Web UI	HTML, CSS, JavaScript / Angular Js /React Js etc.		
2.	Application Logic-1	Logic for a process in the application	Java / Python		
3.	Application Logic-2	application Logic for a process in IBM Watson STT service			
4.	Application Logic-3	Logic for a process in the application	IBM Watson Assistant		
5.	Database	Data Type, Configurations etc.	MySQL, NoSQL, etc.		
7.	File Storage	File storage requirements	IBM Block Storage or Other StorageService or Local Filesystem		
8.	Machine Learning Model	Purpose of Machine Learning Model	Object Recognition Model, etc.		
9.	Infrastructure (Server)	Application Deployment on Local System Local Server Configuration:	Local, Cloud Foundry, Kubernetes, etc.		

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1		USN-1	Creation of Code	2	High	Saket
Sprint-1		USN-2	Creation of Functionality	2	High	Saket
Sprint-2		USN-3	Collection of Data	2	High	Anurag
Sprint-2		USN-4	Run Tests	1	Medium	Anurag

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	5 Days	10 Nov 2023	15 Nov 2023	20	15 Nov 2023
Sprint-2	20	5 Days	15 Nov 2023	20 Nov 2023	20	18 Nov 2023

Working Principle

The code assigns key points to different points of the hand and for each hand gesture, it records the positions of the key points for each label (registered hand gesture). The code then reads the key point positions to recognize which hand gesture is being shown.

Training

Press "k" to enter the mode to save key points (displayed as 「MODE: Logging Key Point」)

If you press "0" to "9", the key points will be added to "model/keypoint_classifier/keypoint.csv"

Model training

Open "<u>keypoint_classification.ipynb</u>" in Jupyter Notebook and execute from top to bottom.

To change the number of training data classes, change the value of "NUM_CLASSES = 3"

and modify the label of "model/keypoint_classifier/keypoint_classifier_label.csv" as appropriate.

Model Performance Testing:

S.No.	Parameter	Values
1.	Metrics	Mediapipe Tensorflow
2.	Tune the Model	Collect data by saving keypoints using the webcam

Results

Future Scope

It can provide options for integrationinto existing products by collaborating with established companies in the relevant industry.

Appendix

Dataflow: https://www.researchgate.net/figure/Architecture-of-gesture-recognition-system-5 fig4 284626785

Source code: https://github.com/kinivi/hand-gesture-recognition-mediapipe

GitHub Repo: https://github.com/smartinternz02/SI-GuidedProject-609262-1698050431

Project Demo Link: https://youtu.be/7sywpZ702gg?si=Az RwwuXpvynKlVy