

FEEG 2005 Structures: Lecture 5

Buckling 2: Imperfect columns with eccentric loading, initial curvature and lateral loading

Last lecture

• We reviewed Euler buckling theory from Statics: where 'K' depends on the boundary conditions.

$$P_{crit} = \frac{\pi^2 EI}{(KL)^2}$$

- Pinned-pinned: K = 1
- Fixed-free: K = 2
- Fixed-fixed: K = 0.5
- Fixed-pinned: K = 0.7

- Assumptions:
 - The column is (initially) perfectly straight with a uniform section
 - Homogenous, isotropic, linear elastic material behaviour
 - The compressive load is applied through the centroid

There is a lateral

load on the column

This lecture

What happens if...

The column is eccentrically loaded.

The column is NOT initially straight.

Watch the recorded video and read the slides!

Question

 Which statement(s) is/are correct for a column with initial small curvature under compressive load? (P_c=Euler's critical buckling load for a similar perfect column).

3. For a quasi-static loading, the beam never reaches a bifurcation point so never becomes unstable.

Real column with imperfection

Ideal Euler strut without imperfection

Real strut with imperfection

How do we solve buckling problems?

- 1. Draw the buckled shape, take a cut and apply equilibrium to get the moment M(x)
- 2. Sub the moment into the bending deflection 'v(x)' differential eq (DE): $-EI\frac{d^2v(x)}{dx^2} = M(x)$
- 3. Solve the second order DE to obtain the deflection solution 'v(x)'
- 4. Use the boundary conditions to get unknown constants!

Eccentrically loaded column

Buckling of Eccentrically Loaded Columns

 When the load is not applied through the centroid of the column it is loaded eccentrically.

 A pinned-pinned beam with length of 2L is similar to a fixed-pinned end beam with length L.

Bending moment in the beam

V= detorma+;UN

Finding the differential equation

2) The deflection equation for the column is:

$$EI\frac{d^2v(x)}{dx^2} = -M(x)$$

3) Combine these into a single differential eq (DE):
$$EI\frac{d^2v(x)}{dx^2} = P(e+a-v(x)) \text{ for all } \text{ for a$$

$$\frac{d^2v(x)}{dx^2} + \mu^2v(x) = \mu^2(e+a) \text{ whereas } \mu^2 = \frac{P}{EI}$$

Solution to the differential equatoin

$$v_c(x) = Asin(\mu x) + Bcos(\mu x)$$

• The particular integral is: $v_p(x) = e + a$

A solution for the RH side of the DE

A DE when the RH side is zero

The solution is a linear combination of these two:

$$v(x) = Asin(\mu x) + Bcos(\mu x) + e + a$$

Check this by differentiating and subbing into the DE

Applying the Boundary Conditions

- The solution to the buckling DE is:
- $v(x) = Asin(\mu x) + Bcos(\mu x) + e + a$
- Obtain A, B and a using the boundary conditions (BCs):

1.
$$v(0) = a - Max$$
 Reformation occurs at top

- $2. \quad v'(L) = 0$
- 3. v(L) = 0
- 1. v(0) = a gives B = -e
- 2. v'(L) = 0 and $v'(x) = \mu A cos(\mu x) \mu B sin(\mu x)$ therefore $v'(L) = \mu A cos(\mu L) + \mu e sin(\mu L) = 0$ and finally: $A = -e tan(\mu L)$

Applying the third boundary condition

- 3. Obtain the final constant with the third BC: v(L) = 0
- We already have $A = -e \tan(\mu L)$ and B = -e:
- $v(x) = -e \tan(\mu L) \sin(\mu x) e \cos(\mu x) + e + a$
- $v(L) = -e \tan(\mu L) \sin(\mu L) e \cos(\mu L) + e + a = 0$
- Therefore: $a = e \left[tan(\mu L) sin(\mu L) + cos(\mu L) 1 \right]$

• Simplify with trig identities: $a = e [\sec(\mu L) - 1]$

Final solution for the deformation v(x)

- Combining the result for all constants:
- $v(x) = -e \tan(\mu L) \sin(\mu x) e \cos(\mu x) + e + e \sec(\mu L) e$
- $v(x) = e[-tan(\mu L) sin(\mu x) cos(\mu x) + sec(\mu L)]$
- $v(x) = e\left[-\frac{\sin(\mu L)}{\cos(\mu L)}\sin(\mu x) \cos(\mu x)\frac{\cos(\mu L)}{\cos(\mu L)} + \frac{1}{\cos(\mu L)}\right]$
- $v(x) = \frac{e}{\cos(\mu L)} \left[-\sin(\mu L)\sin(\mu x) \cos(\mu L)\cos(\mu x) + 1 \right]$
- $v(x) = e \sec(\mu L) \left[-\left(\sin(\mu L)\sin(\mu x) + \cos(\mu L)\cos(\mu x)\right) + 1 \right]$

Angle sum identity for cos

• Finally: $v(x) = e \sec(\mu L) [1 - \cos(\mu L - \mu x)]$

Maximum deflection of eccentrically loaded columns

- The max deflection ' v_{max} ' occurs at the top of the column 'x = 0' so it is equal to 'a':
- $v_{max} = a = e [\sec(\mu L) 1]$

$$v_{max} = e \left[\sec(\mu L) - 1 \right]$$

• NOTE: only applies if e>0 . If e=0 use Euler's formula!

No bifurcation, no instability

 Unlike the perfect column, eccentrically loaded columns loaddeflection doesn't have a bifurcation point

Stress in Eccentrically Loaded Columns

Stress in the column comes from:

Total stress = axial stress + bending stress

- Max comp. stress in the column at the fixed end, x = Lwhere bending moment is maximum.
- M(x) = -P(e + a v(x)) with v(L) = 0 and $a = e [\sec(\mu L) 1]$
- $M(L) = -P(e + e \sec(\mu L) e) \rightarrow M(L) = -Pe \sec(\mu L)$ Sub into the bending stress eq: $\sigma_b = \pm \frac{Pey}{I} \sec(\mu L)$
- So, the total comp. stress is: $\sigma_{tot_comp} = -\frac{P}{A} \frac{Pey}{r} \sec(\mu L)$

Max stress and deflection

- Max comp. stress in the column at the fixed end x = L:
- $\sigma_{max} = -\frac{P}{A} \frac{Pey}{I} \sec(\mu L)$. Let define $\kappa^2 = \frac{I}{A}$ as 'radius of gyration'
- $\sigma_{max} = -\frac{P}{A} \left[1 + \frac{ey}{\kappa^2} \operatorname{sec}(\mu L) \right]$ with: $\mu^2 = \frac{P}{EI}$
- Summary:
- 1) Stress (compressive)

$$\sigma_{max} = -\frac{P}{A} \left[1 + \frac{ey}{\kappa^2} \sec(\mu L) \right]$$

2) Deflection

$$v_{max} = e \left[\sec(\mu L) - 1 \right]$$

The Secant Formula vs Euler's critical load

- $\sigma_{max} = -\frac{P}{A} \Big[1 + \frac{ey}{\kappa^2} \sec(\mu L) \Big]$ with $\mu^2 = \frac{P}{EI}$ and $\kappa^2 = \frac{I}{A}$ $v_{max} = e [\sec(\mu L) 1]$ $\sec(\mu L) = \frac{1}{\cos(L\sqrt{\frac{P}{EI}})}$. So, as $L\sqrt{\frac{P}{EI}} \to \frac{\pi}{2}$ then $\sec(\mu L) \to \infty$
 - If $P \to P_c = \frac{\pi^2 EI}{4L^2}$ then $v_{max} \to \infty$ and $\sigma_{max} \to \infty$

Question

• What happens if the value of e, eccentricity, is very small?

Please send your answers using the link below?

https://vevox.app/#/m/184613719

Max deflection versus applied load P

 Decreasing eccentricity (e) pushes the deflection graph towards perfect beam response.

Eccentric Loading: Fixed vs Pinned

ed:
$$x \mid L$$

$$v_{max} = e \left[\sec(\mu L) - 1 \right]$$

$$\sigma_{max} = -\frac{P}{A} \left[1 + \frac{ey}{\kappa^2} \sec(\mu L) \right]$$

$$v_{max} = e \left[\sec(\mu L/2) - 1 \right]$$

$$\sigma_{max} = -\frac{P}{A} \left[1 + \frac{ey}{\kappa^2} \sec(\mu L/2) \right]$$

Replaced L by L/2 in the equation!

Next: Example - Have a go first!

- Consider the hollow circular column shown in the figure. The column is made of steel (E=200~GPa, $\sigma_{ys}=250~MPa$). Find the compressive load that will cause failure if:
- The load is applied through the centroid
- The load is applied 10 mm away from the centroid

Colum cross section:

Initially curved columns

How to find the load-deflection equation

- 1. Draw the buckled shape, take a cut and apply equilibrium to get the moment M(x)
- 2. Sub the moment into the bending deflection 'v(x)' DE: $-EI\frac{d^2v(x)}{dx^2} = M(x)$
- 3. Solve the second order DE to obtain the deflection solution 'v(x)'
- 4. Using the boundary conditions to get unknown constants!

Free body diagram of a cut section

Draw the buckled shape

Take a cut and apply equilibrium:

$$M(x) = P(v(x) + v_0(x))$$

$$P$$

$$M(x)$$

$$v(x)$$

$$v_0(x)$$

Finding the differential equation

Sub the moment eq into the deflection DE:

$$-EI\frac{d^2v(x)}{dx^2} = M(x)$$
 with: $M(x) = P(v(x) + v_0(x))$

$$\frac{d^2v(x)}{dx^2} + \frac{P}{EI}v(x) = -\frac{P}{EI}v_0(x) \qquad \text{let: } \mu^2 = \frac{P}{EI}$$

$$\frac{d^2v(x)}{dx^2} + \mu^2v(x) = -\mu^2v_0(x)$$

Solutions to the DE

•
$$\frac{d^2v(x)}{dx^2} + \mu^2v(x) = -\mu^2v_0(x)$$
 with $\mu^2 = \frac{P}{EI}$

- A complementary solution to the homogeneous DE:
- $v_c(x) = Asin(\mu x) + Bcos(\mu x)$
- Assume the initial deflection is: $v_0(x) = a \sin\left(\frac{\pi x}{\tau}\right)$ Where a is the 'amplitude' of the initial deflection (constant)
- So, the particular integral is: $Csin\left(\frac{\pi x}{I}\right)$

A solution to the RH side of the DE

A solution when

Solving the DE – finding C

The solution is a linear combination of these:

$$v(x) = Asin(\mu x) + Bcos(\mu x) + Csin\left(\frac{\pi x}{L}\right)$$

Differentiate this twice:

$$v'(x) = \mu A \cos(\mu x) - \mu B \sin(\mu x) + C \frac{\pi}{L} \cos\left(\frac{\pi x}{L}\right)$$
$$v''(x) = -\mu^2 A \sin(\mu x) - \mu^2 B \cos(\mu x) - C \frac{\pi^2}{L^2} \sin\left(\frac{\pi x}{L}\right)$$

Substitute this into the original DE, the A and B terms cancel so:

$$-C\frac{\pi^2}{L^2}\sin\left(\frac{\pi x}{L}\right) + \mu^2\left(C\sin\left(\frac{\pi x}{L}\right)\right) = -\mu^2 v_0(x) \text{ where: } v_0(x) = a\sin\left(\frac{\pi x}{L}\right)$$

Solving the DE - finding C

•
$$-C\frac{\pi^2}{L^2}sin\left(\frac{\pi x}{L}\right) + \mu^2 Csin\left(\frac{\pi x}{L}\right) = -\mu^2 a sin\left(\frac{\pi x}{L}\right)$$

• Cancel $\sin \frac{\pi x}{L}$ and multiple both side by -1:

$$C\frac{\pi^2}{L^2} - \mu^2 C = \mu^2 a$$

• Finally: $C = \frac{\mu^2 a}{\left(\frac{\pi^2}{L^2} - \mu^2\right)}$ Where a is the 'amplitude' of the initial deflection (constant) and $\mu^2 = \frac{P}{EI}$

Applying BCs - Finding A and B

- Now we can get A and B from the boundary conditions.
- The column is pinned at both ends: v(0) = 0 and v(L) = 0

v(L) = 0 gives $Asin(\mu L) = 0$ so A = 0

•
$$v(x) = \frac{\mu^2}{\left(\frac{\pi^2}{L^2} - \mu^2\right)} a \sin\left(\frac{\pi x}{L}\right)$$

$$v_0(x) \qquad \frac{\mu^2}{\left(\frac{\pi^2}{L^2} - \mu^2\right)} \times \frac{1}{\frac{1}{\mu^2}} = \frac{1}{\left(\frac{\pi^2}{L^2\mu^2} - 1\right)}$$

$$\frac{\mu^2}{\left(\frac{\pi^2}{L^2} - \mu^2\right)} \times \frac{\frac{1}{\mu^2}}{\frac{1}{\mu^2}} = \frac{1}{\left(\frac{\pi^2}{L^2\mu^2} - 1\right)}$$

Deflection function v(x)

$$v(x) = \frac{1}{\left(\frac{\pi^2}{L^2 \mu^2} - 1\right)} \ a \sin\left(\frac{\pi x}{L}\right) \quad \text{or} \quad v(x) = \frac{v_0(x)}{\left(\frac{\pi^2}{L^2 \mu^2} - 1\right)}$$

$$v(x) = \frac{1}{\left(\frac{\pi^2}{L^2 \mu^2} - 1\right)} \quad v(x) = \frac{v_0(x)}{\left(\frac{\pi^2}{L^2 \mu^2} - 1\right)}$$

with:
$$\mu^2 = \frac{P}{EI}$$
 so: $v(x) = \frac{v_0(x)}{\left(\frac{\pi^2 EI}{L^2} \frac{1}{P} - 1\right)}$

The critical buckling load ' P_{crit} ' is:

$$P_{crit} = \frac{\pi^2 EI}{L^2}$$

Finally:
$$v(x) = \frac{v_0(x)}{\left(\frac{P_{crit}}{P} - 1\right)}$$

Maximum deflection due to load v(L/2)

The max deflection ' v_{max} ' occurs at the mid span 'x = L/2':

$$v(x) = \frac{v_0(x)}{\left(\frac{P_{crit}}{P} - 1\right)} \qquad v_0(x) = a \sin\left(\frac{\pi x}{L}\right) \qquad v(x) = \frac{a \sin\left(\frac{\pi x}{L}\right)}{\left(\frac{P_{crit}}{P} - 1\right)}$$

$$v(L/2) = \frac{a \sin\left(\frac{\pi}{2}\right)^{1}}{\left(\frac{P_{crit}}{P} - 1\right)} \longrightarrow v(L/2) = \frac{a}{\left(\frac{P_{crit}}{P} - 1\right)}$$

$$v(L/2) = \frac{a}{\left(\frac{P_{crit}}{P} - 1\right)} \times \frac{P}{P} \longrightarrow v(L/2) = \frac{a P}{\left(P_{crit} - P\right)}$$

Max total deflection $v_{total}(L/2)$

• The max total deflection ' v_{max} ' occurs at the mid span 'x = L/2':

$$v_{total}(x) = v(x) + v_0(x)$$

$$v_{total}(L/2) = v_{max} = v(L/2) + v_0(L/2)$$

$$v_{max} = \frac{a P}{P_{crit} - P} + a$$
 $v_{max} = a \left(\frac{P}{P_{crit} - P} + 1 \right)$

$$v_{max} = a \left(\frac{P}{P_{crit} - P} + \frac{P_{crit} - P}{P_{crit} - P} \right)$$

$$v_{max} = a \frac{P_{crit}}{P_{crit} - P}$$
 with: $P_{crit} = \frac{\pi^2 EI}{L^2}$

$$P_{crit} = \frac{\pi^2 EI}{L^2}$$

Max compressive stress

Stress in the column comes from:

$$\sigma_{a(xial)} = \frac{F}{A} \quad \qquad \sigma_{b(ending)} = \frac{My}{I} \quad \qquad \sigma_{t(otal)} = \frac{F}{A} + \frac{My}{I}$$

Moment is dependent on deflection which is max at the midspan:

$$M(L/2) = P(v(L/2) + v_0(L/2)) - v_{max} = a \frac{P_{crit}}{P_{crit} - P}$$

$$\sigma_b = a \frac{P_{crit}}{P_{crit} - P} \frac{Py}{I}$$

'a' is the initial amplitude of the column deflection

$$\sigma_{max} = \frac{P}{A} + a \frac{P_{crit}}{P_{crit} - P} \frac{Py}{I} \Longrightarrow \sigma_{max} = \frac{P}{A} \left(1 + \frac{ay}{\kappa^2} \frac{P_{crit}}{P_{crit} - P} \right) \qquad \kappa^2 = \frac{I}{A}$$

$$\sigma_{max} = \frac{P}{A} \left(1 + \frac{ay}{\kappa^2} \frac{P_{crit}}{P_{crit} - P} \right)$$

'radius of gyration'

$$\kappa^2 = \frac{I}{A}$$

Buckling of an Initially Curved Column: Summary

- The initial deflection of the column was assumed to be:
- $v_0(x) = a \sin\left(\frac{\pi x}{L}\right)$ Where a is the 'amplitude' of the initial deflection (constant)
- 1) Max total deflection $v_{max} = a \frac{P_{crit}}{P_{crit} P}$
- 2) Max stress $\sigma_{max} = \frac{P}{A} \left(1 + \frac{ay}{\kappa^2} \frac{P_{crit}}{P_{crit} P} \right)$

$$P_{crit} = \frac{\pi^2 EI}{L^2}$$

 $\kappa^2 = \frac{I}{\Lambda}$

Next: Example – Have a go first!

- The hollow square section shown below is used for a column that needs to support an axial load of 120kN in compression. The column is 3 m long and pinned on its ends. Find:
 - The axial stress in the column and the safety factor against buckling if the column is perfectly straight.
 - The percentage increase in the axial stress if the column is initially curved with
 - an amplitude of 0.5% of its length and the corresponding safety factor. – The column is made of steel with E=200~GPa , $\sigma_{ys}=250~MPa$

laterally loaded columns

How to find the load-deflection equation

- 1. Draw the buckled shape, take a cut and apply equilibrium to get the moment M(x)
- 2. Sub the moment into the bending deflection 'v(x)' DE: $-EI\frac{d^2v(x)}{dx^2} = M(x)$
- 3. Solve the second order DE to obtain the deflection solution 'v(x)'
- 4. Using the boundary conditions to get unknown constants!

Free body diagram

• Consider a beam loaded by 'self weight uniform' w + axial

Apply **equilibrium** to get the

vertical reactions at the pins:

$$R_1 = R_2 = R = \frac{wL}{2}$$

• Consider the buckled shape and take a 'cut' at 'x':

Finding the internal bending moment M(x)

• Take moments about the cut to obtain M(x):

$$M(x) - R x - P v(x) + wx \left(\frac{x}{2}\right) = 0$$

$$M(x) = \frac{wLx}{2} - \frac{wx^2}{2} + P v(x)$$

$$M(x) = \frac{w}{2}(Lx - x^2) + P v(x)$$

$$R = \frac{wL}{2}$$

The differential equation

 Substitute the equation for the moment into the DE for the beam deflection:

$$-EI\frac{d^2v(x)}{dx^2} = M(x)$$
 with $M(x) = \frac{w}{2}(Lx - x^2) + Pv(x)$

$$EI\frac{d^2v(x)}{dx^2} + P \ v(x) = -\frac{w}{2}(Lx - x^2)$$

$$\frac{d^2v(x)}{dx^2} + \mu^2 \ v(x) = -\frac{w}{2EI}(Lx - x^2) \quad \text{with: } \mu^2 = \frac{P}{EI}$$

W

Finding the solution to the DE

• 3. Solve the second order DE:

$$\frac{d^2v(x)}{dx^2} + \mu^2 \ v(x) = -\frac{w}{2EI}(Lx - x^2) \text{ with } \mu^2 = \frac{P}{EI}$$

A complementary solution to the homogeneous DE:

$$v_c(x) = Asin(\mu x) + Bcos(\mu x)$$

A solution when the RH side is zero

• The particular integral is a second order polynomial:

$$v_p(x) = Cx^2 + Dx + F$$
 A solution to the RH side of the DE

• Differentiating twice: $v_p'(x) = 2Cx + D$ and $v_p''(x) = 2C$

Finding the particular solution

Substitute the particular integral into the DE:

•
$$\frac{d^2v(x)}{dx^2} + \mu^2 \ v(x) = -\frac{w}{2EI}(Lx - x^2)$$

•
$$(2C) + \mu^2 (Cx^2 + Dx + F) = -\frac{w}{2EI} (Lx - x^2)$$

•
$$\frac{P}{EI}Cx^2 + \frac{P}{EI}Dx + \frac{P}{EI}F + 2C = \frac{w}{2EI}x^2 - \frac{wL}{2EI}x$$

-
$$x^2$$
 coefficients : $\frac{P}{EI}C = \frac{w}{2EI}$ gives $C = \frac{w}{2P}$

- Similarly,
$$D = \frac{-wL}{2P}$$
 and $F = -\frac{wEI}{P^2}$ or $-\frac{w}{P\mu^2}$

Applying BCs and finding the complete solution

• The general solution to the DE is a linear combination of these:

$$v(x) = v_c(x) + v_p(x) = Asin(\mu x) + Bcos(\mu x) + \frac{w}{2P} \left(x^2 - Lx - \frac{2}{\mu^2}\right)$$

- Now get A and B from the boundary conditions:
- The beam is pinned so: v(0) = 0 and v(L) = 0

$$v(0) = 0 \implies B = \frac{w}{P \,\mu^2}$$

$$v(L) = 0 \implies A = \frac{w}{P \mu^2} \left(\frac{1 - \cos(\mu L)}{\sin(\mu L)} \right)$$

Solution for the deflection

The general solution to the DE is:

$$v(x) = \frac{w}{P \mu^2} \left(\frac{1 - \cos(\mu L)}{\sin(\mu L)} \right) \sin(\mu x) + \frac{w}{P \mu^2} \cos(\mu x) + \frac{w}{2P} \left(x^2 - Lx - \frac{2}{\mu^2} \right)$$

• The max deflection ' v_{max} ' occurs at the midspan 'x = L/2':

$$v(L/2) = \frac{w}{P \mu^2} \left[\left(\frac{1 - \cos(\mu L)}{\sin(\mu L)} \right) \sin\left(\frac{\mu L}{2}\right) + \cos\left(\frac{\mu L}{2}\right) \right] + \frac{w}{2P} \left[\left(\frac{L}{2}\right)^2 - L\left(\frac{L}{2}\right) - \frac{2}{\mu^2} \right]$$

$$= \frac{w}{P \mu^2} \left[\frac{\sin^2\left(\frac{\mu L}{2}\right) + \cos^2\left(\frac{\mu L}{2}\right)}{\cos\left(\frac{\mu L}{2}\right)} - \frac{\mu^2 L^2}{8} - 1 \right]$$

Maximum deflection

Finally, the max deflection is:

W

- For small values of *P*, the deflection approaches the solution for the lateral load by itself
- For $P o P_{crit}$ the term $\sec\left(\frac{\mu L}{2}\right) o \infty$, where $P_{crit} = \frac{\pi^2 EI}{L^2}$

Max Stress

- The max stress comes from the compressive axial load + bending
- The max bending stress occurs at the location with max moment (the midspan of the beam, x = L/2):

•
$$M(x) = \frac{w}{2}(Lx - x^2) + P v(x)$$
 so $M(L/2) = M_{max} = \frac{wL^2}{8} + P v_{max}$

•
$$M_{max} = \frac{wL^2}{8} + P v_{max}$$
 we derived this on the previous slide

•
$$M_{max} = \frac{wL^2}{8} + \frac{w}{\mu^2} \left[\sec\left(\frac{\mu L}{2}\right) - \frac{\mu^2 L^2}{8} - 1 \right]$$
 Moment for just the distrib. load 'w'

•
$$M_{max} = \frac{w}{\mu^2} \left[\sec\left(\frac{\mu L}{2}\right) - 1 \right]$$
 or $M_{max} = \frac{wL^2}{8} \left[\frac{8(\sec(\mu L/2) - 1)}{\mu^2 L^2} \right]$ Amplification due to comp. load 'P'

Max Stress

- The max stress comes from the compressive axial load + bending:
- $\sigma_{max} = -\frac{P}{A} \frac{M_{max}y}{I}$ with $M_{max} = \frac{w}{\mu^2} \left[\sec\left(\frac{\mu L}{2}\right) 1 \right]$ and $\mu^2 = \frac{P}{EI}$
- Finally, the max stress is:

$$\sigma_{max} = -\frac{P}{A} - \frac{wy}{I\mu^2} \left[\sec\left(\frac{\mu L}{2}\right) - 1 \right]$$

Next: Example – Have a go first!

The simply support I-beam shown in the figure is designed to carry a distributed load of 4 kN/m in addition to its own weight. The beam is made of steel with: $\rho = 7850~kg.m^{-3}$, E = 200~GPa, $\sigma_{ys} = 250~MPa$. It is 4m long and has the cross-sectional geometry shown. Determine the safety factor against failure if the beam is also required to support a compressive axial load of 200kN. HINT: check buckling along the y and z axis of the beam.

Summary: Buckling of Imperfect Columns

1) Max Comp. Stress:

$$\sigma_{max} = -\frac{P}{A} \left[1 + \frac{ey}{\kappa^2} \sec(\mu L) \right]$$

$$v_{max} = e \left[\sec(\mu L) - 1 \right]$$

$$\mu^2 = \frac{P}{EI}$$

$$\kappa^2 = \frac{I}{A}$$

$$v_{max} = a \frac{P_{crit}}{P_{crit} - P}$$

$$P_{crit} = \frac{\pi^2 EI}{L^2}$$

Curved:
$$v(x)$$
 $v_0(x)$

$$\sigma_{max} = -\frac{P}{A} \left(1 + \frac{ay}{\kappa^2} \frac{P_{crit}}{P_{crit} - P} \right)$$

Lateral Load:

$$\sigma_{max} = -\frac{P}{A} - \frac{wy}{I\mu^2} \left[\sec\left(\frac{\mu L}{2}\right) - 1 \right]$$

$$v_{max} = \frac{w}{P \mu^2} \left[\sec\left(\frac{\mu L}{2}\right) - \frac{\mu^2 L^2}{8} - 1 \right]$$