Lecture 16: Classification

Professor Ilias Bilionis

Logistic regression with one variable

Example: Sensitivity of energetic materials

Experimental data

Height (cm)	Results
40.5	EEEEEEEEE
36.0	ENEEENEEE
32.0	EENEEENENE
28.5	NENNENNEN
25.5	NNNNNENNN
22.5	NNNNNNNN

Data from L. Smith, "Los Alamos National Laboratory explosives orientation course: Sensitivity and sensitivity tests to impact, friction, spark and shock," Los Alamos National Lab, NM (USA), Tech. Rep., 1987

The logistic regression model

Give:
$$x_{1:N} = (x_1, ..., x_N)$$
, $y_{1:N} = (y_1, ..., y_N)$; $y_i \in \{0, 1\}$

Find: $p(y|x, x_{1:N}, y_{1:N}) = ?$

Likelihood:

$$p(y_i = 1 | x_i, w) = f(x_i) = sym(x_i) = \frac{e^{x_i} x_i}{1 + e^{x_i} x_i}$$

$$p(y_i = 1 | x_i, w) = sign(w_i + w_i x_i)$$

$$p(y_i = 1 | x_i, w) = sign(w_i + w_i x_i)$$

$$= 1 - sign(w_i + w_i x_i)$$

$$p(y_i = 1 | x_i, w) = [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

$$p(y_i = 1 | x_i, w) = [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

$$p(y_i = 1 | x_i, w) = [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

$$p(y_i = 1 | x_i, w) = [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

$$= \prod_{i=1}^{N} [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

$$= \prod_{i=1}^{N} [sign(w_i + w_i x_i)] \cdot [1 - sign(w_i + w_i x_i)]$$

Training the model

$$\rho(y_{1:n} \mid x_{1:n}, y_{1:n}) \approx \rho(y_{1})$$

$$\rho(y_{1} \mid x_{1:n}, y_{1:n}) \approx \rho(y_{1:n} \mid x_{1:n}, y_{1}) \rho(y_{1})$$

$$\rho(y_{1} \mid x_{1:n}, y_{1:n}) \approx \rho(y_{1:n} \mid x_{1:n}, y_{1}) \rho(y_{1})$$

$$\rho(y_{1:n} \mid x_{1:n}, y_{1}) + \rho(y_{1:n}, y_{1}) + \rho(y_{1})$$

$$\rho(y_{1:n} \mid x_{1:n}, y_{1}) + \rho(y_{1:n}$$

How does the trained model look like?

Making point-wise predictions

Making point-wise predictions

Making point-wise predictions

Lecture 16: Classification

Professor Ilias Bilionis

Logistic regression with many features

Combining logistic regression with generalized linear models

Lecture 16: Classification

Professor Ilias Bilionis

Making decisions

HMX Example

How do you pick a single label?

Picking labels by minimizing the expected cost

p(y 1 x, w) (de of doice (y ,y). Pid lødel $\hat{\mathcal{G}}$. min $F[c(\hat{g}, y) | x_{1:n}, y_{1:n}]$ = min $[c(\hat{g}, y) p(y|x, x_{1:n}, y_{1:n}) dy$ $= \min_{\hat{y}} \int c(\hat{y}, y) p(y|x, w) dy$ Best decision when risk-neutral.
When risk-arene you reed whity theory Jitesh Pandral Decision Making.

The cost of making wrong predictions

The cost of making wrong predictions

Lecture 16: Classification

Professor Ilias Bilionis

Diagnostics for classification

Confusion matrix

Accuracy score

Imbalanced data

NNNNNN DNNN...

Stupid Mull(x) = N with 100%, prob.

99%, occurring because I happens only 1% of the time.

Because of inbalance between N and D.

PREDICTIVE SCIENCE LABORATORY True positives = TP = # of correctly predicted

The Negatives = TN = # of correctly pretected N.

False positives = FP = # of predicted D that

False regatives = FN = # of predicted N hut

Sensithinty = TP + FN = 1. of D that were

TP + FN prehided correctly.

Specificity = TN = 1/2 of N kust were predicted correctly

balanced accuracy = 1 (Sensitivity + Specificity)

= \frac{1}{2} (\frac{1}{2}, \text{ of corr. pred. 0's + 1'. I corr. pred. N)

Stupid Model's balan. acc. = 1 (0+1)=0.5

More Metrics

- Cross entropy loss
- Receiver operating characteristics curve
- f1-score
- Brier score
- ...

Lecture 16: Classification

Professor Ilias Bilionis

Multi-class logistic regression

Recognizing hand-written digits

inputs x =

Iabels y = 0 1 2 3

Multi-class logistic regression model

$$P(y=k \mid X, w) = \sum_{i=1}^{N} W_{ik} \psi_{i}(x)$$

$$P(y=k \mid X, w) = \sum_{i=1}^{N} W_{ik} \psi_{i}(x)$$

$$= \exp \left\{ \sum_{i=1}^{N} W_{ik} \psi_{i}(x) \right\}$$

$$= \exp \left\{ \sum_{i=1}^{N} W_{i}(x) \right\}$$

$$= \exp \left\{ \sum_{i=1}^{N} W_{ik} \psi_{i}(x) \right\}$$

Results

Results

Confusion Matrix

