Péndulo Simple Modelado de sistemas

E. Benavides I. Ayala S. Campos L. Almanza Y. Casas

Centro de Investigación y de Estudios Avanzados del IPN Robótica y Manufactura Avanzada

RyMA 2019

Contenido

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Outline

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Objetivos del proyecto

- Desarrollar el modelo matemático del péndulo simple.
- Implementar un simulador del sistema en MATLAB.
- Comparar la simulación con un modelo físico.

00000

Outline

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Diagrama de cuerpo libre

Figura 1: Péndulo simple.

Mecánica Newtoniana y Lagrangiana

Ecuación de movimiento para la formulación de Newton

$$\ddot{\theta} = -\frac{g}{I}\sin(\theta) + \frac{k}{m}\dot{\theta} \tag{1}$$

Ecuación de movimiento para la formulación de Lagrange

$$\ddot{\theta} = -\frac{g}{I}\sin(\theta) \tag{2}$$

MATLAB

Longitud (/)	0.193 [m]
Masa (m)	0.1232109 [kg]
Coeficiente de fricción (k)	$\{0,0.1\}\ [N\cdot s/m]$
Posición angular inicial (θ_0)	0.5π [rad]
Velocidad angular inicial $(\dot{ heta})$	0 [rad/s]
Tiempo de simulación	10 [s]
Gravedad (g)	9.81 $[m/s^2]$

Tabla 1: Condiciones de simulación del sistema.

Caso con fricción

Figura 2: Comportamiento de $\theta(t)$ y $\dot{\theta}(t)$ en el tiempo.

Outline

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Modelo matemático

$$\mathcal{L} = \frac{1}{2}ml^2\dot{\theta}^2 - mgl(1 - \cos\theta)$$
 (3)

$$q = \theta$$
 (4a)

$$p = P_{\theta} \tag{4b}$$

$$\mathcal{O}_{\theta} = rac{\partial \mathcal{L}}{\partial \dot{ heta}}$$
 (4c)

$$p_{ heta} = ml^2\dot{ heta}$$
 (4d)

Hamiltoniano

$$\mathcal{H} = p_{\theta}\dot{\theta} - \mathcal{L}$$

$$= ml^{2}\dot{\theta}^{2} - (\frac{1}{2}ml^{2}\dot{\theta}^{2} - mgl(1 - \cos\theta))$$

$$= \frac{1}{2}ml^{2}\dot{\theta}^{2} + mgl(1 - \cos\theta)$$
(5)

Ecuaciones de movimiento

$$\dot{\mathcal{D}}_{\theta} = -rac{\partial \mathcal{H}}{\partial heta}$$
 (6a)

$$= -mgl\sin\theta \tag{6b}$$

$$=\frac{\partial \mathcal{H}}{\partial p_{\theta}} \tag{6c}$$

$$=\frac{p_{\theta}}{ml^2} \tag{6d}$$

Diagrama fase

Figura 3: Comportamiento de $\theta(t)$ y p_{θ} en el tiempo.

Outline

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Péndulo simple

Función de decaimiento

Outline

- 1 Introducción
 - Objetivos
 - Trabajo previo
- 2 Nuevos desarrollos
 - Formulación Hamiltoniana
 - Implementación
 - Análisis de video

Tracker

Figura 5: Diagrama de fase del modelo físico para x y \dot{x}

Tracker

Figura 6: Diagrama de fase del modelo físico para θ y $\dot{\theta}$.

Modelo matemático original

Posición angular del péndulo

Figura 7: Comparación de la posición angular del sistema simulado y real.

Análisis de video

Modelo matemático original

Figura 8: Comparación de la velocidad angular del sistema simulado y real.

Análisis de video

Coeficiente de fricción

Figura 9: Posición angular para el nuevo valor del coeficiente de fricción k = 0.135.

Coeficiente de fricción

Velocidad angular del péndulo

Figura 10: Velocidad angular para el nuevo valor del coeficiente de fricción k=0.135.

Longitud

Figura 11: Posición angular para el nuevo valor de longitud l = 0.22[m].

Longitud

Figura 12: Velocidad angular para el nuevo valor de longitud l = 0.22[m].

Fin