Consumption Heterogeneity: Micro Drivers and Macro Implications

Edmund Crawley Andreas Kuchler

Federal Reserve Board

Danmarks Nationalbank

EEA Virtual Congress August 25, 2020

Viewpoints and conclusions stated in this paper are the responsibility of the authors alone and do not necessarily reflect the viewpoints of the Federal Reserve Board or Danmarks Nationalbank.

What Do We Do?

We estimate the **consumption response**to permanent and transitory **shocks to income**for **different groups** of households

Hasn't This Been Done Before?

Yes, but...

Our method addresses bias in previous results

Our data allows sharp focus on household heterogeneity

2

Hasn't This Been Done Before?

Our method addresses bias in previous results

Our data allows sharp focus on household heterogeneity

2

Hasn't This Been Done Before?

Why Do We Care? (as macroeconomists)

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

Conclusion

Why Do We Care? (as macroeconomists)

e.g. Consumption smoothing requires liquid wealth

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

Why Do We Care? (as macroeconomists)

e.g. Consumption smoothing requires liquid wealth

- 1) Heterogenous agent models have testable micro behavior
- 2) Quantify Macro Implications

e.g. Redistribution in Monetary Policy

What do we find? (Liquid Wealth)

Low Liquid Wealth Households:

- Hand-to-Mouth
- Spend 85 cents out of every marginal dollar, both transitory and permanent

Conclusion

What do we find? (Liquid Wealth)

Low Liquid Wealth Households:

- Hand-to-Mouth
- Spend 85 cents out of every marginal dollar, both transitory and permanent

High Liquid Wealth Households:

- Large Response to Transitory Shocks (25 cents per dollar)
- Small Response to Permanent Shocks (60 cents per dollar)

relative to Permanent Income Hypothesis or Buffer-Stock models

What do we find? (Liquid Wealth)

Low Liquid Wealth Households:

- Hand-to-Mouth
- Spend 85 cents out of every marginal dollar, both transitory and permanent

High Liquid Wealth Households:

- Large Response to Transitory Shocks (25 cents per dollar)
- Small Response to Permanent Shocks (60 cents per dollar)

relative to Permanent Income Hypothesis or Buffer-Stock models

Liquid wealth accurately predicts MPCs across all other dimensions we look at

Medium MPX ≈ 0.5

High MPX ≈ 0.8

Low MPX ≈ 0.25

MPX: Marginal Propensity to eXpend (includes durables)

Conclusion

Decrease spending a *lot*

Increase spending a little

 $\begin{array}{c} \text{1yr rate} ~\uparrow ~1\% \\ \text{Aggregate Spending} ~\downarrow ~26 \text{ basis points} \end{array}$

Through this redistribution channel alone

Identifying Restrictions on

Income

and

Consumption

In Continuous Time

Identifying Restrictions on

Consumption

In Continuous Time

and

Conclusion

Identifying Restrictions on

In Continuous Time

Income Permanent (random walk) shocks shocks and

Consumption Permanent (random walk) shocks shocks

Permanent (random walk) response response

Transitory (<2 years) response

In Continuous Time Time Aggregation Problem

Identifying Restrictions on

```
Income Permanent (random walk) shocks shocks and

Consumption Permanent (random walk) response response

Transitory (<2 years) response

Toma Aggregation Problem
```

But first some intuition: Naïvely Regress

Change in Consumption on Change in Income (over N years)

Conclusion

Key to BPP Identification

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Key to BPP Identification

Transitory shock year *t*

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Key to BPP Identification

Transitory shock year *t*

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Key to BPP Identification

Transitory shock year t

$$\Delta y_{t+1} = \Delta p_{t+1} + \Delta \varepsilon_{t+1}$$
 is a valid instrument for ε_t

Negatively correlated with transitory shocks in year t

Uncorrelated with permanent shocks in year t

Fails due to the Time Aggregation Problem

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

Observed permanent income growth is *positively* autocorrelated

BPP misinterprets *positive* permanent income shocks as *negative* transitory shocks

→ Thinks negative transitory shocks result in consumption increasing

If the Permanent Income Hypothesis holds, BPP will estimate the MPC to be -0.6

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheets

Data

What we need:

- Panel Data on Income and Expenditure
- Household Balance Sheets

What we have: Registry data for all Danish households

Income

Third party reported After-tax, restrict to heads aged 30-55

Balance Sheet

Wealth on 31 Dec Asset category, mortgage tenure

Danish Mortgage Market

Expenditure

No direct measure of spending

Data: Expenditure

Intertemporal budget constraint

Saving Expenditure Income

0

Results

Data: Expenditure

Intertemporal budget constraint

Data: Expenditure

Intertemporal budget constraint

```
Expenditure
                         Income
                                              Saving
                                     = Change in Net Worth
                                       (adj. for capital gains)
```

- Works well for households with simple financial lives
- Problem: Capital gains
 - Houses off balance sheet (exclude transaction years)
 - Exclude business owners
 - Capital gains based on a diversified index
- Noisy, but perhaps better than surveys (Kuchler et al. 2018)
- Huge sample size advantage: sample covers 7.6 million observations over 2004-2015

Results by Liquid Wealth

MPX by Liquid Wealth Quantile

MPX by Net Wealth

MPX Results are Robust to Misspecification

Regressing Consumption Growth on Income Growth

MPX by Net Wealth

MPX by Unhedged Interest Rate Exposure

MPX by Unhedged Interest Rate Exposure

14

Results

MPX by Unhedged Interest Rate Exposure

Liquid Wealth Predicts MPX Across Other Dimensions

Median liquid wealth predicts MPX to approximately four percentage points

Conclusion

New Method to Estimate Consumption Behavior

- Corrects for Bias in BPP
- Estimates align with natural experiment literature
- Potential to use on a wide variety of datasets and applications

Applied to Danish Registry Data

- ullet Sample Size \Longrightarrow Sharp Focus on Heterogeneity
- High MPC from transitory shocks, Low MPC from Permanent shocks
- Liquid Wealth sufficient to determine MPC
- Quantify Monetary Policy Transmission Channels

Thank you!

We have data on value of household cars

• Construct expenditure excluding car purchases and sales

$$C_T^{\mathsf{nocar}} = C_T - \Delta \mathsf{CarValue}$$

• Construct proxy for non durable consumption (Cars \approx 42.1% durable expenditure)

$$C_T^{\text{nondurable}} = C_T - \frac{1}{0.421} \Delta \text{CarValue}$$

Evidence of Consumption Decay Within 2 Years

From Fagereng, Holm, and Natvik (2016)

From Gelman (2016)

Notes: 1,445,560 observations from 48,059 individuals. The vertical bars on each coefficient represent 95% confidence intervals using heteroskedasticity robust errors clustered at the individual level.

MPX by Net Wealth

Permanent and Transitory Variance by Net Wealth Quantile

MPX by Net Wealth Quantile

Back

Interest Rate Exposure: Out of Sample

Total URE sums to zero - this is not true for our household sample

	MPX	URE	URE \mathcal{E}_R component	
Estimation Sample	See Distribution	-61	-0.29	
Young	0.5	-15	-0.06	
Old	0.5	6	0.02	
Pension Funds	0.1	37	0.03	
Government	0.0	-23	0.00	
Non-financial Corp.	0.1	-13	-0.01	
Financial Sector	0.1	61	0.05	
Rest of World	0.0	9	0.00	
Total		0	-0.26	

Notes: URE numbers are in billions of 2015 USD.

Summary Statistics

	Esti	Estimation Sample			Population (Age 30-55)		
	Mean	Median	Std Dev	Mean	Median	Std Dev	
After Tax Income	59,261	57,804	28,819	58,312	53,304	68,799	
Consumption	52,680	48,344	28,581	54,022	46,373	38,126	
Liquid Assets	18,438	6,856	33,016	23,331	6,578	81,473	
Net Worth	74,937	19,115	157,295	85,799	12,952	564,404	
Homeowner	0.57	1.00	0.50	0.50	1.00	0.50	
Car Owner	0.66	1.00	0.47	0.55	1.00	0.50	
Higher Education	0.31	0.00	0.46	0.33	0.00	0.47	
Age	43.5	44.0	7.1	42.5	42.0	7.3	
URE	-28,052	-12,627	108,382	-47,589	-19,374	243,604	
NNP	-109,685	-65,810	156,523	-158,321	-85,207	542,498	

No. Hou	sehold-vear obs	7,664,360	18,050,340

Notes: Values are 2015 USD. Age refers to the age in 2008 of the main income earner in the household. For the purposes of calculation of consumption in the population, top and bottom 1% in terms of consumption have been excluded. URE and NNP can only be calculated in the period 2009-2015 due to mortgage information being insufficiently detailed in the previous years.

Data: When is Measurement Error a Problem?

We have the same issues as the regression:

$$\Delta c_i = \alpha + \beta \Delta y_i + \varepsilon_i$$

That is measurement error in:

 Δy_i leads to attenuation bias

 Δc_i should be uncorrelated with Δy_i

Data: When is Measurement Error a Problem?

We have the same issues as the regression:

$$\Delta c_i = \alpha + \beta \Delta y_i + \varepsilon_i$$

That is measurement error in:

 Δy_i leads to attenuation bias \nearrow

 Δc_i should be uncorrelated with Δy_i

High quality income data

Data: When is Measurement Error a Problem?

We have the same issues as the regression:

$$\Delta c_i = \alpha + \beta \Delta y_i + \varepsilon_i$$

That is measurement error in:

High quality income data

 Δy_i leads to attenuation bias

 Δc_i should be uncorrelated with Δy_i

When might this fail?

- Off balance sheet saving
- Returns correlated with changes in income (e.g. stock compensation)
- When insurance is provided by friends and family

Danish Mortgage Market

All Five Transmission Channels

$$\frac{dC}{C} = \underbrace{\frac{dY}{M}\frac{dY}{Y}}_{\text{Interest Rate Exposure Channel}}_{\text{Exposure Channel}}$$

Earnings Heterogeity Channel Fisher Channel
$$+\gamma\mathcal{E}_{Y}\frac{dY}{Y} \qquad \qquad -\mathcal{E}_{P}\frac{dP}{P}$$

$$-\sigma\mathcal{S}\frac{dR}{R}$$
el Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.52 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.73 \mathcal{E}_{R} -0.26 \mathcal{S} 0.49

All Five Transmission Channels

Aggregate Income Channel
$$\frac{dC}{C} = \frac{\frac{dY}{Y}}{\frac{dY}{Y}}$$

$$\underbrace{+\mathcal{E}_R \frac{dR}{R}}_{\text{Interest Rate Exposure Channel}}$$

Earnings Heterogeity Channel $+ \gamma \mathcal{E}_{Y} \frac{dY}{Y}$ Fisher Channel $-\mathcal{E}_{P} \frac{dP}{P}$ dR

Intertemporal Substitution Channel

$$\mathcal{M}$$
 0.52 \mathcal{E}_{Y} -0.03 \mathcal{E}_{P} -0.73 \mathcal{E}_{R} 0.26 \mathcal{S} 0.49

Compare \mathcal{E}_R to σS :

 $\sigma pprox$ 0.1 Best, Cloyne, Ilzetzki, and Kleven (2018)

$$\sigma S \approx 0.05$$

Back