

अध्याय 10

तरंग-प्रकाशिकी

10.1 भूमिका

सन् 1637 में दकार्ते ने प्रकाश के कणिका मॉडल को प्रस्तुत किया तथा स्नेल के नियम को व्युत्पन्न किया। इस मॉडल से किसी अंतरापृष्ठ पर प्रकाश के परावर्तन तथा अपवर्तन के नियमों की व्याख्या की गई है। कणिका मॉडल ने प्रागुक्त किया कि यदि प्रकाश की किरण (अपवर्तन के समय) अभिलंब की ओर मुड़ती है, तब दूसरे माध्यम में प्रकाश की चाल अधिक होगी। आइज़क न्यूटन ने प्रकाश के कणिका सिद्धांत को अपनी प्रसिद्ध पुस्तक ऑपटिक्स (Opticks) में और अधिक विकसित किया। इस पुस्तक की भारी लोकप्रियता के कारण कणिका मॉडल का श्रेय प्राय: न्यूटन को दिया जाता है।

सन् 1678 में डच भौतिकविद क्रिस्टिआन हाइगेंस ने प्रकाश के तरंग सिद्धांत को प्रस्तुत किया— इस अध्याय में हम प्रकाश के इसी तरंग सिद्धांत पर विचार करेंगे। हम देखेंगे कि तरंग मॉडल परावर्तन तथा अपवर्तन की घटनाओं की संतोषप्रद रूप से व्याख्या कर सकता है; तथापि, यह प्रागुक्त करता है कि अपवर्तन के समय यदि तरंग अभिलंब की ओर मुड़ती है तो दूसरे माध्यम में प्रकाश की चाल कम होगी। यह प्रकाश के कणिका मॉडल को उपयोग करते समय की गई प्रागुक्ति के विपरीत है। सन् 1850 में फूको द्वारा किए गए प्रयोग द्वारा दर्शाया गया कि जल में प्रकाश की चाल वायु में प्रकाश की चाल से कम है। इस प्रकार तरंग मॉडल की प्रागुक्ति की पुष्टि की गई।

📮 भौतिकी

मुख्यत: न्यूटन के प्रभाव के कारण तरंग सिद्धांत को सहज ही स्वीकार नहीं किया गया। इसका एक कारण यह भी था कि प्रकाश निर्वात में गमन कर सकता है और यह महसूस किया गया कि तरंगों के एक बिंदु से दूसरे बिंदु तक संचरण के लिए सदैव माध्यम की आवश्यकता होती है। तथािप, जब टॉमस यंग ने सन् 1801 में अपना व्यितकरण संबंधी प्रसिद्ध प्रयोग किया तब यह निश्चित रूप से प्रमाणित हो गया कि वास्तव में प्रकाश की प्रकृति तरंगवत है। दृश्य प्रकाश की तरंगदैर्घ्य को मापा गया और यह पाया गया कि यह अत्यंत छोटी है; उदाहरण के लिए पीले प्रकाश की तरंगदैर्घ्य लगभग 0.6µm है। दृश्य प्रकाश की तरंगदैर्घ्य छोटी होने के कारण (सामान्य दर्पणों तथा लेंसों के आकार की तुलना में), प्रकाश को लगभग सरल रेखाओं में गमन करता हुआ माना जा सकता है। यह ज्यामितीय प्रकाशिकी का अध्ययन क्षेत्र है, जिसके विषय में हम अध्याय 9 में चर्चा कर चुके हैं। वास्तव में प्रकाशिकी की वह शाखा जिसमें तरंगदैर्घ्य की परिमितता को पूर्ण रूप से नगण्य मानते हैं ज्यामितीय प्रकाशिकी कहलाती है तथा किरण को ऊर्जा संचरण के उस पथ की भाँति परिभाषित करते हैं जिसमें तरंगदैर्घ्य का मान शून्य की ओर प्रवृत्त होता है।

सन् 1801 में टॉमस यंग द्वारा किए गए व्यतिकरण प्रयोग के पश्चात, आगामी लगभग 40 वर्ष तक प्रकाश तरंगों के व्यतिकरण तथा विवर्तन संबंधी अनेक प्रयोग किए गए। इन प्रयोगों का स्पष्टीकरण केवल प्रकाश के तरंग मॉडल के आधार पर संतोषजनक रूप से किया जा सका है। इस प्रकार उन्नीसवीं शताब्दी के लगभग मध्य तक तरंग सिद्धांत भली-भाँति स्थापित हो गया प्रतीत होता था। सबसे बडी कठिनाई उस मान्यता के कारण थी, जिसके अनुसार यह समझा जाता था कि तरंग संचरण के लिए किसी माध्यम की आवश्यकता होती है. तो फिर, प्रकाश तरंगें निर्वात में कैसे संचरित हो सकती हैं। इसकी व्याख्या मैक्सवेल द्वारा प्रकाश संबंधी प्रसिद्ध वैद्युतचुंबकीय सिद्धांत प्रस्तुत करने पर हो पाई। मैक्सवेल ने विद्युत तथा चुंबकत्व के नियमों का वर्णन करने वाले समीकरणों का एक सेट विकसित किया और इन समीकरणों का उपयोग करके उन्होंने तरंग समीकरण व्युत्पन्न किया, जिससे उन्होंने वैद्युतचुंबकीय तरंगों * के अस्तित्व की भविष्यवाणी की। मैक्सवेल तंरग समीकरणों का उपयोग कर मुक्त आकाश में, वैद्युतचुंबकीय तरंगों के वेग की गणना कर पाए और उन्होंने पाया कि तरंग वेग का यह सैद्धांतिक मान, प्रकाश की चाल के मापे गए मान के अत्यंत निकट है। इससे उन्होंने यह निष्कर्ष निकाला कि *प्रकाश अवश्य ही वैद्युतचुंबकीय तरंग है*, इस प्रकार मैक्सवेल के अनुसार प्रकाश तरंगें परिवर्तनशील विद्युत तथा चुंबकीय क्षेत्रों से संबद्ध हैं। परिवर्तनशील विद्युत क्षेत्र समय तथा दिक्स्थान (आकाश) में परिवर्तनशील चुंबकीय क्षेत्र उत्पन्न करता है तथा परिवर्तनशील चुंबकीय क्षेत्र समय तथा दिक्स्थान में परिवर्तनशील विद्युत क्षेत्र उत्पन्न करता है। परिवर्तनशील विद्युत तथा चुंबकीय क्षेत्र निर्वात में भी वैद्युतचुंबकीय तरंगों (या प्रकाश तरंगों) का संचरण कर सकते हैं।

इस अध्याय में हम सर्वप्रथम *हाइगेंस के सिद्धांत* के मूल प्रतिपादन पर विचार-विमर्श करेंगे एवं परावर्तन तथा अपवर्तन के नियमों को व्युत्पन्न करेंगे। अनुच्छेद 10.4 तथा 10.5 में हम व्यतिकरण की परिघटना का वर्णन करेंगे जो अध्यारोपण के सिद्धांत पर आधारित है। अनुच्छेद 10.6 में हम विवर्तन की परिघटना पर विचार करेंगे जो हाइगेंस-फ्रेनेल सिद्धांत पर आधारित है। अंत में अनुच्छेद 10.7 में हम ध्रुवण के बारे में विचार-विमर्श करेंगे जो इस तथ्य पर आधारित है कि प्रकाश तरंगें अनुप्रस्थ वैद्यतचुंबकीय तरंगें हैं।

लगभग सन् 1864 में मैक्सवेल ने वैद्युतचुंबकीय तरंगों के अस्तित्व की भिवष्यवाणी की; इसके काफ़ी समय पश्चात (लगभग 1890 में) हेनरी हर्ट्ज ने प्रयोगशाला में रेडियो तरंगें उत्पन्न कीं। जगदीश चंद्र बोस तथा मारकोनी ने हर्ट्ज की तरंगों का प्रायोगिक उपयोग किया।

10.2 हाइगेंस का सिद्धांत

सर्वप्रथम हम तरंगाग्र को परिभाषित करेंगे। जब हम किसी शांत जल के तालाब में एक छोटा पत्थर फेंकते हैं तब प्रतिघात बिंदु से चारों ओर तरंगें फैलती हैं। पृष्ठ का प्रत्येक बिंदु समय के साथ दोलन करना प्रारंभ कर देता है। किसी एक क्षण पर पृष्ठ का फ़ोटोग्राफ़ उन वृत्ताकार वलयों को दर्शाएगा जिनके ऊपर विक्षोभ अधिकतम हैं। स्पष्टत: इस प्रकार के वृत्त के सभी बिंदु समान कला में दोलन करते हैं क्योंकि वे स्रोत से समान दूरी पर हैं। समान कला में दोलन करते ऐसे सभी बिंदुओं का बिंदु पथ तरंगाग्र कहलाता है। अत: एक तरंगाग्र को एक समान कला के पृष्ठ के रूप में परिभाषित किया जाता है। जिस गित के साथ तरंगाग्र स्रोत से बाहर की ओर बढ़ता है, वह तरंग की चाल कहलाती है। तरंग की ऊर्जा तरंगाग्र के लंबवत चलती है।

यदि एक बिंदु-स्रोत प्रत्येक दिशा में एक समान तरंगें उत्सर्जित करता है तो उन बिंदुओं का बिंदुपथ, जिनका आयाम समान है और जो एक समान कला में कंपन करते हैं, गोला होता है तथा हमें चित्र 10.1 (a) की भाँति एक गोलीय तरंग प्राप्त होती है। स्रोत से बहुत अधिक दूरी पर, गोले का एक छोटा भाग समतल माना जा सकता है और हमें एक समतल तरंग प्राप्त होती है [चित्र 10.1 (b)]।

अब यदि हमें t=0 पर किसी तरंगाग्र की आकृति ज्ञात है तो हाइगेंस के सिद्धांत द्वारा हम किसी बाद के समय τ पर तरंगाग्र की आकृति ज्ञात कर सकते हैं। अतः हाइगेंस का सिद्धांत वास्तव में एक ज्यामितीय रचना है जो किसी समय यदि तरंगाग्र की आकृति दी हुई हो तो किसी बाद के समय पर हम तरंगाग्र की आकृति ज्ञात कर सकते हैं। आइए, एक अपसरित तरंग के बारे में विचार करें और मान लीजिए F_1F_2 , t=0 समय पर एक गोलीय तरंगाग्र के एक भाग को प्रदर्शित करता है (चित्र 10.2)। अब हाइगेंस के सिद्धांत के अनुसार, तरंगाग्र का प्रत्येक बिंदु एक द्वितीयक विक्षोभ का म्रोत है और इन बिंदुओं से होने वाली तरंगिकाएँ तरंग की गित से सभी दिशाओं में फैलती हैं। तरंगाग्र से निर्गमन होने वाली इन तरंगिकाओं को प्रायः द्वितीयक तरंगिकाओं के नाम से जाना जाता है और यदि हम इन सभी गोलों पर एक उभयनिष्ठ स्पर्शक पृष्ठ खींचें तो हमें किसी बाद के समय पर तरंगाग्र की नयी स्थिति प्राप्त हो जाती है।

चित्र 10.2 F_1F_2 गोलीय तरंगाग्र को t=0 समय पर निरूपित करता है (O केंद्र के साथ)। $F_1F_2 \ \text{से निर्गमन होने वाली द्वितीयक तरंगिकाओं का आवरण आगे बढ़ते हुए तरंगाग्र <math display="block">G_1G_2 \ \text{को उत्पन्न करता है। पश्च तरंग}$ $D_1D_2 \ \text{विद्यमान नहीं होती}$

अत: यदि हम $t = \tau$ समय पर तरंगाग्र की आकृति ज्ञात करना चाहते हैं तो हम गोलीय तरंगाग्र के प्रत्येक बिंदु से $v\tau$ त्रिज्या के गोले खींचेंगे, जहाँ पर v माध्यम में तरंग की चाल को

चित्र 10.1 (a) एक बिंदु-स्रोत से निर्गमन होती एक अपसरित गोलीय तरंग। तरंगाग्र गोलीय है।

चित्र 10.1 (b) स्रोत से बहुत अधिक दूरी पर, गोलीय तरंग का एक छोटा भाग समतल तरंग माना जा सकता है।

भौतिकी

चित्र 10.3 दाईं ओर संचरित होने वाली एक समतल तरंग के लिए हाइगेंस का ज्यामितीय निर्माण। F, F,, है तथा G₁G₂ τ समय बाद का एक तरंगाग्र है। रेखाएँ A,A, B,B, ... आदि F,F, तथा G,G, दोनों के लंबवत हैं तथा किरणों को निरूपित करती हैं।

निरूपित करता है। यदि हम इन सभी गोलों पर एक उभयनिष्ठ स्पर्श रेखा खींचें. तो हमें $t=\tau$ समय पर तरंगाग्र की नयी स्थिति प्राप्त होगी। चित्र 10.2 में G_1 G_2 द्वारा प्रदर्शित नया तरंगाग्र पुन: गोलीय है जिसका केंद्र O है।

उपरोक्त मॉडल में एक दोष है। हमें एक पश्च तरंग भी प्राप्त होती है जिसे चित्र 10.2 में D,D, द्वारा दर्शाया गया है। हाइगेंस ने तर्क प्रस्तुत किया कि आगे की दिशा में द्वितीयक तरंगिकाओं का आयाम अधिकतम होता है तथा पीछे की दिशा में यह शुन्य होता है। इस तदर्थ कल्पना से हाइगेंस पश्च तरंगों की अनपस्थिति को समझा पाए। तथापि यह तदर्थ कल्पना संतोषजनक नहीं है तथा पश्चतरंगों की अनुपस्थिति का औचित्य वास्तव में एक अधिक परिशुद्ध तरंग सिद्धांत द्वारा बताया जा सकता है।

इसी विधि द्वारा हम हाइगेंस के सिद्धांत का उपयोग किसी माध्यम में संचरित होने वाली समतल तरंग के तरंगाग्र की आकृति ज्ञात करने के लिए कर सकते हैं (चित्र 10.3)।

10.3 हाइगेंस सिद्धांत का उपयोग करते हुए समतल तरंगों का अपवर्तन तथा परावर्तन

10.3.1 समतल तरंगों का अपवर्तन

t = 0 पर एक समतल तरंगाग्र अब हम हाइगेंस के सिद्धांत का उपयोग अपवर्तन के नियमों को व्युत्पन्न करने के लिए करेंगे। मान लीजिए PP' माध्यम 1 तथा माध्यम 2 को पृथक करने वाले पृष्ठ को निरूपित करता है (चित्र 10.4)। मान लीजिए v_1 तथा v_2 क्रमश: माध्यम 1 तथा माध्यम 2 में प्रकाश की चाल को निरूपित करते हैं। हम मान लेते हैं कि एक समतल तरंगाग्र AB, A'A दिशा में संचरित होता हुआ चित्र में दर्शाए अनुसार अंतरापृष्ठ पर कोण i बनाते हुए आपतित होता है। मान लीजिए BC दूरी चलने के लिए तरंगाग्र द्वारा लिया गया समय τ है। अत:

 $BC = v_1 \tau$

चित्र 10.4 एक समतल तरंगाग्र AB माध्यम 1 तथा माध्यम 2 को पृथक करने वाले पृष्ठ PP' पर कोण i बनाते हुए आपतित होता है। समतल तरंगाग्र अपवर्तित होता है तथा CE अपवर्तित तरंगाग्र को निरूपित करता है। चित्र $\mathbf{v}_{_{2}}<\mathbf{v}_{_{1}}$ के तदनुरूप है, अतः अपवर्तित तरंगें अभिलंब की ओर मुडती हैं।

अपवर्तित तरंगाग्र की आकृति ज्ञात करने के लिए हम बिंदु A से $v_2\tau$ त्रिज्या का एक गोला दूसरे माध्यम में खींचते हैं (दूसरे माध्यम में तरंग की चाल v_2 है)। मान लीजिए CE बिंदु C से गोले पर खींचे गए स्पर्शी तल को निरूपित करता है। तब, $AE = v_2 \tau$ तथा CE अपवर्तित तरंगाग्र को निरूपित करेगी। अब यदि हम त्रिभुज ABC तथा AEC पर विचार करें तो हमें प्राप्त होगा

$$\sin i = \frac{BC}{AC} = \frac{v_1 \tau}{AC} \tag{10.1}$$

और

$$\sin r = \frac{AE}{AC} = \frac{v_2 \tau}{AC} \tag{10.2}$$

यहाँ i और r क्रमशः आपतन कोण तथा अपवर्तन कोण हैं। अतः हमें प्राप्त होगा

$$\frac{\sin i}{\sin r} = \frac{v_1}{v_2} \tag{10.3}$$

उपरोक्त समीकरण से हमें एक महत्वपूर्ण परिणाम प्राप्त होता है। यदि r < i (अर्थात, यदि किरण अभिलंब की ओर मुड़ती है), तो दूसरे माध्यम में प्रकाश तरंग की चाल (v_2) पहले माध्यम में प्रकाश तरंग की चाल (v_1) से कम होगी। यह प्रागुक्ति प्रकाश के कणिका मॉडल की प्रागुक्ति के विपरीत है और जैसा कि बाद के प्रयोगों ने दर्शाया, तरंग सिद्धांत की प्रागुक्ति सही है। अब यदि c निर्वात में प्रकाश की चाल को निरूपित करती है, तब,

$$n_1 = \frac{c}{v_1} \tag{10.4}$$

तथा

$$n_2 = \frac{c}{v_2} \tag{10.5}$$

 n_1 तथा n_2 , क्रमश: माध्यम 1 तथा माध्यम 2 के अपवर्तनांक हैं। अपवर्तनांकों के रूप में समीकरण (10.3) को निम्न प्रकार से लिख सकते हैं

$$n_1 \sin i = n_2 \sin r \tag{10.6}$$

यह स्नैल का अपवर्तन संबंधी नियम है। यदि λ_1 तथा λ_2 क्रमश: माध्यम 1 तथा माध्यम 2 में प्रकाश की तरंगदैर्घ्य को निरूपित करते हैं और यदि दूरी BC, λ_1 के बराबर है तब दूरी AE, λ_2 के बराबर होगी (क्योंकि यदि कोई शृंग B से C तक τ समय में पहुँचता है तो वह शृंग A से E तक भी τ समय में ही पहुँचेगा); अत:

$$\frac{\lambda_1}{\lambda_2} = \frac{BC}{AE} = \frac{v_1}{v_2}$$

अथवा

$$\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2} \tag{10.7}$$

क्रिस्टिआन हाइगेंस (1629-1695) डच भौतिकविद खगोल-शास्त्री, गणितज्ञ एवं प्रकाश के तरंग सिद्धांत के प्रणेता। उनकी पुस्तक ट्रीटीज ऑन लाइट (Treatise on light), आज भी पढने में अच्छी लगती है। इस पुस्तक में परावर्तन और अपवर्तन के अतिरिक्त, खनिज कैलसाइट द्वारा प्रदर्शित दोहरे-अपवर्तन की प्रक्रिया को भी बहत सुंदर ढंग से समझाया गया है। वही पहले व्यक्ति थे जिन्होंने वृत्तीय गति एवं सरल-आवर्त गति का विश्लेषण प्रस्तुत किया और सुधरी हुई घडियाँ एवं टेलिस्कोप बनाए। उन्होंने शनि-वलयों की सही ज्यामिति प्रस्तत की।

व्यतिकरण, विवर्तन, अपवर्तन, अनुनाद तथा डॉप्लर प्रभाव का प्रदर्शन http://www.falstad.com/ripple/

भौतिकी

उपरोक्त समीकरण में अंतर्निहित है कि जब तरंग सघन माध्यम में अपवर्तित होती है ($v_1 > v_2$), तो तरंगदैर्घ्य तथा संचरण की चाल कम हो जाती है, लेकिन आवृत्ति v (= v/λ) उतनी ही रहती है।

10.3.2 विरल माध्यम पर अपवर्तन

आइए, एक समतल तरंग के विरल माध्यम में होने वाले अपवर्तन पर विचार करें, अर्थात $v_2 > v_1$ । पहले की भाँति ही कार्यवाही करते हुए हम चित्र 10.5 में दर्शाए अनुसार अपवर्तित तरंगाग्र का निर्माण कर सकते हैं। अब अपवर्तन कोण आपतन कोण से बड़ा होगा; तथापि इस बार भी $n_1 \sin i = n_2 \sin r$ । हम एक कोण i_2 को निम्न समीकरण द्वारा परिभाषित कर सकते हैं

$$\sin i_c = \frac{n_2}{n_1} \tag{10.8}$$

अत:, यदि $i=i_c$ तब $\sin r=1$ तथा $r=90^\circ$ । स्पष्टतया, $i>i_c$ के लिए कोई भी अपवर्तित तरंग प्राप्त नहीं होगी। कोण i_c को *क्रांतिक कोण* कहते हैं तथा क्रांतिक कोण से अधिक सभी आपतन कोणों के लिए हमें कोई भी अपवर्तित तरंग प्राप्त नहीं होगी तथा तरंग का *पूर्ण आंतरिक परावर्तन* हो जाएगा। पूर्ण आंतरिक परावर्तन की परिघटना तथा इसके अनुप्रयोगों की परिचर्चा अनुच्छेद 9.4 में की गई थी।

10.3.3 समतल पृष्ठ से एक समतल तरंग का परावर्तन

अब हम एक परावर्तक पृष्ठ MN पर किसी कोण i से आपितत एक समतल तरंग AB पर विचार

चित्र 10.5 विरल माध्यम जिसके लिए $v_2 > v_1$ पर आपितत एक समतल तरंग का अपवर्तन। समतल तरंग अभिलंब से दूर मुड़ जाती है।

करते हैं। यदि v माध्यम में तरंग की चाल को निरूपित करता है तथा यदि τ तरंगाग्र द्वारा बिंदु B से C तक आगे बढ़ने में लिए गए समय को निरूपित करता है, तब दूरी

 $BC = v\tau$

परावर्तित तरंगाग्र का निर्माण करने के लिए हम बिंदु A से त्रिज्या $\upsilon\,\tau$ का गोला खींचते हैं (चित्र 10.6)। मान लीजिए CE इस गोले पर बिंदु C से खींची गई स्पर्शी समतल को निरूपित करती है। स्पष्टतया

 $AE = BC = v\tau$

अब यदि हम त्रिभुजों EAC तथा BAC पर विचार करें तो हम पाएँगे कि ये सर्वांगसम हैं और इसीलिए, कोण i तथा r बराबर होंगे (चित्र 10.6)। यह परावर्तन का नियम है।

चित्र 10.6 परावर्तक पृष्ठ MN द्वारा समतल तरंग AB का परावर्तन। AB तथा CE क्रमश: आपितत तथा परावर्तित तरंगाग्र को निरूपित करती हैं।

एक बार परावर्तन तथा अपवर्तन के नियमों को जान लेने के पश्चात प्रिज्मों, लेंसों तथा दर्पणों के व्यवहार को समझा जा सकता है। इस परिघटना की प्रकाश के सरल रेखीय पथ पर गमन करने के आधार पर अध्याय 9 में विस्तार से चर्चा की गई थी। यहाँ हम केवल परावर्तन तथा अपवर्तन के समय तरंगाग्रों के व्यवहार का वर्णन करेंगे। चित्र 10.7(a) में हम एक पतले प्रिज़्म से गुजरने वाली समतल तरंग पर विचार करते हैं। स्पष्टतया, क्योंकि काँच में प्रकाश तरंगों की चाल कम है, अंदर आते हुए तरंगाग्र का निचला भाग (जो काँच की अधिकतम मोटाई को पार करता है) सबसे अधिक विलंबित होगा। इसके परिणामस्वरूप प्रिज़्म से बाहर निकलने वाली तरंगाग्र चित्र में दर्शाए अनुसार झुक जाएगा। चित्र 10.7(b) में हम एक पतले उत्तल लेंस पर आपितत होने वाली समतल तरंग पर विचार करते हैं। आपितत समतल तरंग का मध्य भाग लेंस के सबसे मोटे भाग से होकर जाता है तथा सर्वाधिक विलंबित होता है। लेंस से बाहर निकलने वाले तरंगाग्र में केंद्र पर अवनमन होता है और इसीलिए तरंगाग्र गोलीय हो जाता है तथा एक बिंदु F पर अभिसरित होता है जिसे फ़ोकस कहते हैं। चित्र 10.7(c) में एक अवतल दर्पण पर एक समतल तरंग आपितत होती है तथा परावर्तन पर हमें एक गोलीय तरंग प्राप्त होती है जो फ़ोकस बिंदु F पर अभिसरित होती है। इसी प्रकार हम अवतल लेंसों तथा उत्तल दर्पणों द्वारा अपवर्तन तथा परावर्तन को समझ सकते हैं।

चित्र 10.7 एक समतल तरंगाग्र का अपवर्तन (a) एक पतले प्रिज्म द्वारा, (b) एक उत्तल लेंस द्वारा, (c) एक समतल तरंगाग्र का अवतल दर्पण द्वारा परावर्तन।

उपरोक्त विवेचन से यह ज्ञात होता है कि वस्तु पर किसी बिंदु से प्रतिबिंब के संगत बिंदु तक लगा कुल समय एक ही होता है, चाहे जिस भी किरण के अनुदिश मापा जाए। उदाहरण के लिए, जब कोई उत्तल लेंस, प्रकाश को एक वास्तविक प्रतिबिंब बनाने के लिए फ़ोकस करता है तो यद्यपि केंद्र से होकर जाने वाली किरणें छोटा पथ तय करती हैं, लेकिन काँच में धीमी चाल के कारण लगने वाला समय उतना ही होता है जितना कि लेंस के किनारे के निकट से होकर चलने वाली किरणों के लिए होता है।

उदाहरण 10.1

- (a) जब एकवर्णीय प्रकाश दो माध्यमों को पृथक करने वाली सतह पर आपितत होता है, तब परावर्तित एवं अपवर्तित दोनों प्रकाश की आवृत्तियाँ समान होती हैं। स्पष्ट कीजिए क्यों?
- (b) जब प्रकाश विरल से सघन माध्यम में गित करता है तो उसकी चाल में कमी आती है। क्या चाल में आई कमी प्रकाश तरंगों द्वारा संचारित ऊर्जा की कमी को दर्शाती है?
- (c) प्रकाश की तरंग अवधारणा में, प्रकाश की तीव्रता का आकलन तरंग के आयाम के वर्ग से किया जाता है। वह क्या है जो प्रकाश की फ़ोटॉन अवधारणा में प्रकाश की तीव्रता का निर्धारण करता है?

हल

- (a) परावर्तन तथा अपवर्तन, आपितत प्रकाश की पदार्थ के परमाणवीय अवयवों के साथ अन्योन्य क्रिया के द्वारा हो पाता है। परमाणुओं को दोलित्र के रूप में देखा जा सकता है जो बाह्य साधन (प्रकाश) की आवृत्ति को लेकर प्रणोदित दोलन कर सकते हैं। एक आवेशित दोलक द्वारा उत्सर्जित प्रकाश की आवृत्ति उसके दोलन की आवृत्ति के बराबर होती है। अत: विकिरित प्रकाश की आवृत्ति आपितत प्रकाश की आवृत्ति के बराबर होती है।
- (b) नहीं। तरंग द्वारा ले जाने वाली ऊर्जा तरंग के आयाम पर निर्भर करती है, यह तरंग संचरण की चाल पर निर्भर नहीं करती।
- (c) फ़ोटॉन चित्रण में किसी दी हुई आवृत्ति के लिए प्रकाश की तीव्रता एकांक क्षेत्रफल से एकांक समय में गमन करने वाले फ़ोटॉन की संख्या द्वारा निर्धारित होती है।

10.4 तरंगों का कला-संबद्ध तथा कला-असंबद्ध योग

इस अनुच्छेद में हम दो तरंगों के अध्यारोपण द्वारा उत्पन्न व्यतिकरण के चित्राम (पैटर्न) पर विचार-विमर्श करेंगे। आपको याद होगा, हमने कक्षा 11 की पाठ्यपुस्तक के अध्याय 14 में अध्यारोपण के सिद्धांत का विवेचन किया था। वास्तव में व्यतिकरण का समस्त क्षेत्र अध्यारोपण के सिद्धांत पर आधारित है, जिसके अनुसार किसी माध्यम में एक विशिष्ट बिंदु पर अनेक तरंगों द्वारा उत्पन्न परिणामी विस्थापन इनमें से प्रत्येक तरंग के विस्थापनों का सिदश योग होता है।

दो सुइयों \mathbf{S}_1 तथा \mathbf{S}_2 की कल्पना करें जो जल की एक द्रोणिका में ऊपर और नीचे समान आवर्ती गित कर रही हैं [चित्र 10.8 (a)]। वे जल की दो तरंगें उत्पन्न करती हैं तथा किसी विशिष्ट बिंदु पर, प्रत्येक तरंग द्वारा उत्पन्न विस्थापनों के बीच कलांतर समय के साथ नहीं बदलता। जब ऐसा होता है तो इन दो स्रोतों को कला-संबद्ध कहा जाता है। चित्र 10.8 (b) में किसी दिए हुए समय पर शृंग (सतत वृत्त) तथा गर्त (बिंदुकित वृत्त) दर्शाए गए हैं। एक बिंदु P पर विचार करें जिसके लिए

 $S_1 P = S_2 P$

क्योंकि दूरियाँ S_1 P तथा S_2 P बराबर हैं, इसलिए S_1 तथा S_2 से तरंगें P बिंदु तक चलने में समान समय लेंगी तथा जो तरंगें S_1 तथा S_2 से समान कला में निर्गम होती हैं, वे P बिंदु पर भी समान कला में पहुँचेंगी।

इस प्रकार, यदि स्रोत S, द्वारा किसी बिंदु P पर उत्पन्न विस्थापन

 $y_1 = a \cos \omega t$

द्वारा दिया गया है तो स्रोत \mathbf{S}_2 द्वारा उत्पन्न विस्थापन (बिंदु \mathbf{P} पर) भी

 $y_2 = a \cos \omega t$

चित्र 10.8 (a) जल में समान कला में कंपन करती दो सुइयाँ दो संबद्ध स्रोतों को निरूपित करती हैं।

(b) जल के पृष्ठ पर किसी समय पर जल के अणुओं के विस्थापन का पैटर्न जिसमें निस्पंदी (शून्य विस्थापन) तथा प्रस्पंदी (अधिकतम विस्थापन) रेखाएँ दर्शायी गई हैं।

द्वारा प्रदर्शित होगा। अत: परिणामी विस्थापन होगा

$$y = y_1 + y_2 = 2 \alpha \cos \omega t$$

क्योंकि तीव्रता विस्थापन के वर्ग के समानुपातिक है, इसलिए परिणामी तीव्रता होगी

$$I = 4 I_0$$

जहाँ I_0 प्रत्येक स्रोत की पृथक तीव्रता को निरूपित करती है। हम देख रहे हैं कि I_0 , α^2 के समानुपाती है। वास्तव में S_1S_2 के लंबअर्धक के किसी भी बिंदु पर तीव्रता $4I_0$ होगी। दोनों स्रोतों को रचनात्मक रूप से व्यतिकरण करते हुए कहा जाता है और इसे हम *संपोषी व्यतिकरण* कहते हैं। अब हम बिंदु Q पर विचार करते हैं [चित्र 10.9(a)], जिसके लिए

$$S_2Q - S_1Q = 2\lambda$$

 S_1 से निर्गमित तरंगें S_2 से आने वाली तरंगों की अपेक्षा ठीक दो चक्र पहले पहुँचती हैं तथा फिर से समान कला में होंगी [चित्र 10.9 (a)]। यदि S_1 द्वारा उत्पन्न विस्थापन

$$y_1 = a \cos \omega t$$

हो तो S, द्वारा उत्पन्न विस्थापन

$$y_2 = a\cos(\omega t - 4\pi) = a\cos\omega t$$
 होगा।

यहाँ हमने इस तथ्य का उपयोग किया है कि 2λ का प्रथांतर 4π के कलांतर के संगत है। दोनों विस्थापन फिर से समान कला में हैं तथा तीव्रता फिर $4\,I_0$ होगी और इससे संपोषी व्यतिकरण होगा। उपरोक्त विश्लेषण में हमने यह मान लिया है कि दूरियाँ S_1Q तथा S_2Q , d (जो S_1 तथा S_2 के बीच दूरी निरूपित करता है) की अपेक्षा बहुत अधिक हैं, अतएव यद्यपि S_1Q तथा S_2Q समान नहीं हैं, प्रत्येक तरंग द्वारा उत्पन्न विस्थापन का आयाम लगभग समान है।

अब हम एक बिंदु R पर विचार करते हैं [चित्र 10.9(b)] जिसके लिए

$$S_2R - S_1R = -2.5\lambda$$

 S_1 से निर्गिमित तरंगें स्रोत S_2 से आने वाली तरंगों की अपेक्षा 2.5 चक्र बाद पहुँचती हैं [चित्र 10.10(b)]। अतः यदि स्रोत S_1 द्वारा उत्पन्न विस्थापन का मान है

$$y_1 = a \cos \omega t$$

तब स्रोत S_2 द्वारा उत्पन्न विस्थापन

$$y_2 = a\cos(\omega t + 5\pi) = -a\cos\omega t$$
 होगा।

यहाँ हमने इस तथ्य का उपयोग किया है कि 2.5λ का पथांतर 5π के कलांतर के संगत है। दोनों विस्थापन अब विपरीत कलाओं में हैं तथा दोनों विस्थापन एक-दूसरे को रद्द कर देते हैं तथा शून्य तीव्रता प्राप्त होती है। इसे *विनाशी व्यतिकरण* कहते हैं।

सारांशत: यदि दो संबद्ध स्रोत S_1 तथा S_2 समान कला में कंपन कर रहे हैं तब किसी यथेच्छ बिंदु P के लिए जबिक पथांतर

$$S_1P \sim S_2P = n\lambda \quad (n = 0, 1, 2, 3,...)$$
 (10.9)

हमें संपोषी व्यतिकरण प्राप्त होगा तथा परिणामी तीव्रता $4I_0$ होगी। S_1P तथा S_2 P के बीच चिह्न (~) S_1P तथा S_2 P के बीच अंतर को निरूपित करता है। दूसरी ओर यदि बिंदु P इस प्रकार है कि पर्थांतर,

$$S_1P \sim S_2P = (n + \frac{1}{2}) \lambda \quad (n = 0, 1, 2, 3, ...)$$
 (10.10)

चित्र 10.9

(a) बिंदु Q पर संपोषी व्यतिकरण जिसके लिए पथांतर 2λ है। (b) बिंदु R पर विनाशी व्यतिकरण जिसके लिए पथांतर 2.5 λ है।

चित्र 10.10 उन बिंदुओं का बिंदुपथ जिनके लिए $S_1P - S_2P$ शून्य, $\pm \lambda$, $\pm 2\lambda$, $\pm 3\lambda$ हैं।

तो हमें विनाशी व्यतिकरण प्राप्त होगा तथा परिणामी तीव्रता शुन्य होगी। अब, किसी दूसरे यथेच्छ बिंदु G (चित्र 10.10) के लिए मान लीजिए दो विस्थापनों के बीच कलांतर ϕ है; तब यदि स्रोत S, द्वारा उत्पन्न विस्थापन

$$y_1 = a \cos \omega t$$

हो तो स्रोत S₂ द्वारा उत्पन्न विस्थापन

$$y_2 = a \cos(\omega t + \phi)$$
 होगा

तथा परिणामी विस्थापन होगा

$$y = y_1 + y_2$$

 $= a [\cos \omega t + \cos (\omega t + \phi)]$

=
$$2 a \cos (\phi/2) \cos (\omega t + \phi/2)$$
 $\left[\cos A + \cos B = 2 \cos \left(\frac{A+B}{2} \right) \cos \left(\frac{A-B}{2} \right) \right]$

परिणामी विस्थापन का आयाम $2a\cos{(\phi/2)}$ है इसलिए उस बिंदु पर तीव्रता होगी

$$I = 4 I_0 \cos^2(\phi/2) \tag{10.11}$$

यदि $\phi = 0, \pm 2 \pi, \pm 4 \pi,...$ जो समीकरण (10.9) की शर्त के संगत है, हमें संपोषी व्यतिकरण प्राप्त होगा तथा तीव्रता अधिकतम होगी। दूसरी ओर यदि $\phi = \pm \pi, \pm 3\pi, \pm 5\pi$... [जो समीकरण (10.10) की शर्त के संगत है] हमें विनाशी व्यतिकरण प्राप्त होगा तथा तीव्रता शून्य होगी।

अब यदि दो स्रोत कला-संबद्ध हैं (अर्थात इस प्रयोग में यदि दोनों सुइयाँ नियमित रूप से ऊपर नीचे आ-जा रही हैं) तो किसी भी बिंदू पर कलांतर ∅ समय के साथ नहीं बदलेगा तथा हमें स्थिर व्यतिकरण पैटर्न प्राप्त होगा, अर्थात् समय के साथ उच्चिष्ठ (maxima) तथा निम्निष्ठ (minima) की स्थितियाँ नहीं बदलेंगी। तथापि, यदि दोनों सुइयाँ निश्चित कलांतर नहीं रख पाती हैं, तो समय के साथ व्यतिकरण पैटर्न भी बदलेगा तथा यदि कलांतर समय के साथ बहत तेज़ी से बदलता है. तो उच्चिष्ठ तथा निम्निष्ठ की स्थितियाँ भी समय के साथ तेज़ी से बदलेंगी तथा हम 'काल औसत' तीव्रता वितरण देखेंगे। जब ऐसा होता है तो हमें औसत तीव्रता प्राप्त होगी, जिसका मान होगा

$$I = 2 I_0 (10.12)$$

जब समय के साथ दो कांपित स्रोतों का कलांतर तेज़ी से बदलता है, हम कहते हैं कि ये स्रोत कला-असंबद्ध हैं और जब ऐसा होता है तो तीव्रताएँ केवल जुड जाती हैं। वास्तव में ऐसा तब होता है जब दो अलग-अलग प्रकाश स्रोत किसी दीवार को प्रकाशित करते हैं।

10.5 प्रकाश तरंगों का व्यतिकरण तथा यंग का प्रयोग

अब हम प्रकाश तरंगों का उपयोग करके व्यतिकरण पर विचार करेंगे। यदि हम दो सूचिछिद्रों को प्रदीप्त करने के लिए दो सोडियम लैंपों का उपयोग करें (चित्र 10.11), तो हमें कोई व्यतिकरण फ्रिंज दिखाई नहीं देंगी। ऐसा इस तथ्य के कारण है कि एक सामान्य स्रोत (जैसे सोडियम लैंप) से उत्सर्जित होने वाली प्रकाश तरंगों में, $10^{-10}\,\mathrm{s}$ की कोटि के समय अंतरालों पर, आकस्मिक कला-परिवर्तन होता है। अत: दो स्वतंत्र प्रकाश स्रोतों से आने वाली प्रकाश तरंगों में कोई निश्चित कला संबंध नहीं होता तथा ये कला-असंबद्ध होते हैं। जैसी कि पहले अनुच्छेद में विवेचना की जा चुकी है, ऐसा होने पर परदे पर तीव्रताएँ जुड जाती हैं।

भौतिर्क

इंग्लैंड के भौतिकशास्त्री टॉमस यंग ने स्रोतों S_1 तथा S_2 से उत्सर्जित होने वाली तरंगों की कलाओं को नियंत्रित करने के लिए एक उत्तम तकनीक उपयोग की। उन्होंने एक अपारदर्शी परदे पर दो सूचिछिद्र S_1 तथा S_2 (एक-दूसरे को बहुत निकट) बनाए [चित्र 10.12(a)]। इन्हें एक अन्य सूचिछिद्र से प्रदीप्त किया गया जिसे एक दीप्त स्रोत से प्रकाशित कया गया था। प्रकाश तरंगें S से निकलकर S_1 तथा S_2 पर गिरती हैं। S_1 तथा S_2 दो कला-संबद्ध स्रोतों की भाँति कार्य करते हैं क्योंकि S_1 तथा S_2 से निकलने वाली प्रकाश तरंगें एक ही मूल स्रोत से व्युत्पन्न होती हैं तथा स्रोत S में अचानक कोई भी कला परिवर्तन S_1 तथा S_2 से आने वाले प्रकाश में ठीक उसी प्रकार का कला परिवर्तन करेगा। इस प्रकार दोनों स्रोत S_1 तथा S_2 समान कला में बँध जाएँगे अर्थात वे हमारे जल तरंगों के उदाहरण में [चित्र 10.8(a)] दो कंपित सुइयों की भाँति कला-संबद्ध होंगे।

चित्र 10.11 यदि दो सोडियम लैंप दो सूचिछिद्रों को प्रदीप्त करते हैं, तीव्रताएँ जुड़ जाती हैं तथा परदे पर व्यतिकरण फ्रिंजें दिखलाई नहीं देतीं।

इस प्रकार \mathbf{S}_1 तथा \mathbf{S}_2 से उत्सर्जित होने वाली गोलीय तरंगें चित्र 10.12(b) की भाँति परदे $\mathbf{G}\mathbf{G}'$ पर व्यतिकरण फ्रिंजें उत्पन्न करेंगी। अधिकतम तथा न्यूनतम तीव्रता की स्थितियों की गणना अनुच्छेद 10.4 में दिए गए विश्लेषण का उपयोग करके की जा सकती है।

चित्र 10.12 व्यतिकरण पैटर्न उत्पन्न करने के लिए टॉमस यंग की व्यवस्था।

हमें संपोषी व्यतिकरण द्वारा दीप्त क्षेत्र प्राप्त होंगे जब $\frac{xd}{D}=n\lambda$, अर्थात $x=x_n=\frac{n\lambda D}{d};\ n=0,\ \pm 1,\ \pm 2,\ \dots \eqno(10.13)$

होगा। दूसरी ओर हमें विनाशी व्यतिकरण द्वारा अदीप्त क्षेत्र प्राप्त होंगे जब

$$\frac{xd}{D} = \left(n + \frac{1}{2}\right)\lambda$$
, अर्थात
$$x = x_n = \left(n + \frac{1}{2}\right)\frac{\lambda D}{d}; \quad n = 0, \pm 1, \pm 2$$
 (10.14)

के निकट अदीप्त क्षेत्र प्राप्त होंगे।

इस प्रकार चित्र 10.13 की भाँति परदे पर अदीप्त तथा दीप्त बैंड दिखलाई देंगे। ऐसे बैंडों को फ्रिंज कहते हैं। समीकरण (10.13) तथा (10.14) दर्शाते हैं कि काले तथा दीप्त फ्रिंज समान दूरी पर हैं।

भौतिकी

टॉमस यंग (1773-1829) अंग्रेज भौतिकविद, कायचिकित्सक एवं मिस्र विशेषज्ञ। यंग ने बहुत तरह की वैज्ञानिक समस्याओं पर कार्य किया, जिनमें एक ओर आँख की संरचना और दृष्टि प्रक्रिया तो दूसरी ओर रोसेटा मणि का रहस्य भेदन शामिल है। उन्होंने प्रकाश के तरंग सिद्धांत को पुनर्जीवित किया और समझाया कि व्यतिकरण, प्रकाश के

तरंग गुण का प्रमाण प्रस्तुत करता है।

चित्र 10.13 दो स्रोतों S_1 तथा S_2 द्वारा GG' परदे पर (देखिए चित्र 10.12) उत्पन्न हुआ कंप्यूटर द्वारा बनाया गया फ्रिंज पैटर्न; $d=0.025~\mathrm{mm}~\dot{\mathrm{ah}}~\mathrm{fer}~(D=5~\mathrm{cm}~\mathrm{fer})~\lambda=5\times10^{-5}~\mathrm{cm}~\mathrm{('ऑपटिक्स'}~\mathrm{ए},$ घटक, टाटा मैक्सा हिल पब्लिशिंग कं.लि., नयी दिल्ली, 2000 से लिया गया।)

10.6 विवर्तन

यदि हम किसी अपारदर्शी वस्तु के द्वारा बनने वाली छाया को ध्यानपूर्वक देखें तो हम पाएँगे कि ज्यामितीय छाया के क्षेत्र के समीप व्यतिकरण के समान बारी-बारी से उदीप्त तथा दीप्त क्षेत्र आते हैं। ऐसा विवर्तन की परिघटना के कारण होता है। विवर्तन एक सामान्य अभिलक्षण है जो सभी प्रकार की तरंगों द्वारा प्रदर्शित किया जाता है, चाहे ये ध्विन तरंगें हों, प्रकाश तरंगें हों, जल तरंगें हों अथवा द्रव्य तरंगें हों। क्योंिक अधिकांश अवरोधकों के विस्तार से प्रकाश की तरंगदैर्घ्य अत्यंत छोटी है इसीलिए हमें दैनिक जीवन के प्रेक्षणों में विवर्तन के प्रभावों का सामना नहीं करना पड़ता। तथापि, हमारी आँख या प्रकाशिक यंत्रों जैसे दूरदर्शकों अथवा सूक्ष्मदर्शियों का निश्चित वियोजन विवर्तन की परिघटना के कारण सीमित रहता है। वास्तव में जब हम विवर्तन की परिघटना पर चर्चा करेंगे।

10.6.1 एकल झिरी

यंग के प्रयोग के विवेचन में, हमने कहा है कि एक संकीर्ण एकल झिरी नए स्रोत की तरह कार्य करती है, जहाँ से प्रकाश विस्तारित होता है। यंग के पहले भी, प्रारंभिक प्रयोगकर्ताओं जिनमें न्यूटन भी शामिल थे, के ध्यान में यह आ चुका था कि प्रकाश संकीर्ण छिद्रों तथा झिरियों से विस्तारित होता है। यह कोने से मुड़कर उस क्षेत्र में प्रवेश करता हुआ प्रतीत होता है जहाँ हम छाया की अपेक्षा करते हैं। इन प्रभावों को जिन्हें विवर्तन कहते हैं, केवल तरंग धारणा के उपयोग से ही उचित रूप से समझ सकते हैं। आखिर, आपको कोने के पीछे से किसी को बात करते हुए उसकी ध्विन तरंगों को सुनकर शायद ही आश्चर्य होता है।

जब यंग के प्रयोग की एकवर्णी स्रोत से प्रकाशित द्विझिरी को एक संकीर्ण एकल झिरी द्वारा प्रतिस्थापित किया जाता है तो एक ब्रॉड (चौड़ा) पैटर्न दिखाई पड़ता है जिसके मध्य में दीप्त क्षेत्र होता है। इसके दोनों ओर क्रमागत दीप्त एवं अदीप्त क्षेत्र होते हैं जिनकी तीव्रता केंद्र से दूर होने पर कम होती जाती है (चित्र 10.15)। इसको समझने के लिए चित्र 10.14 देखिए, जिसमें a चौड़ाई की एकल झिरी LN पर अभिलंबवत पड़ने वाले समांतर किरण पुंज को दर्शाया गया है। विवर्तित प्रकाश आगे रखे एक परदे पर आपतित होता है। झिरी का मध्य बिंदु M है।

बिंदु M से गुज़रने वाली और झिरी के तल के अभिलंबवत सरल रेखा परदे को बिंदु C पर मिलती है। हमें परदे के किसी बिंदु P पर तीव्रता ज्ञात करनी है। जैसा पहले चर्चा कर चुके हैं, P को विभिन्न बिंदुओं L, M, N आदि से जोड़ने वाली विभिन्न सरल रेखाएँ परस्पर समांतर एवं अभिलंब MC से कोण θ बनाती हुई मानी जा सकती हैं [चित्र 10.14]।

मूल धारणा यह है कि झिरी को बहुत से छोटे भागों में विभाजित किया जाए और बिंदु P पर उनके योगदानों को उचित कलांतर के साथ जोड़ा जाए। हम झिरी पर प्राप्त तरंगाग्र के विभिन्न भागों को द्वितीयक स्रोतों की तरह व्यवहार में लाते हैं। क्योंकि, आपाती तरंगाग्र झिरी के तल में समांतर है, तथा ये स्रोत एक ही कला में होते हैं।

प्रायोगिक प्रेक्षण दर्शाते हैं कि तीव्रता का केंद्रीय उच्चिष्ठ $\theta=0$ पर है तथा दूसरे द्वितीयक उच्चिष्ठ $\theta\approx(n+1/2)\,\lambda/a$ पर हैं जिनकी तीव्रता n का मान बढ़ने पर लगातार कम होती जाती है। निम्निष्ठ (शून्य तीव्रता) $\theta\approx n\lambda/a$, $n=\pm 1,\,\pm 2,\,\pm 3,\,\ldots$ पर हैं। फ़ोटोग्राफ़ तथा इसके संगत तीव्रता पैटर्न चित्र 10.15 में दर्शाए गए हैं।

व्यतिकरण तथा विवर्तन में क्या अंतर है, इस संबंध में इन परिघटनाओं की खोज के समय से ही वैज्ञानिकों में लंबा विचार-विमर्श होता रहा है। इस संबंध में रिचर्ड फ़ाइनमैन* ने अपने प्रसिद्ध फ़ाइनमैन लेक्चर्स ऑन फ़िजिक्स में क्या कहा है, यह जानना दिलचस्प रहेगा।

चित्र 10.14 किसी एकल झिरी द्वारा विवर्तन में पथांतर की ज्यामिति।

चित्र 10.15 एकल झिरी द्वारा विवर्तन के लिए फ्रिंजों का फ़ोटोग्राफ़ तथा तीव्रता वितरण।

अभी तक कोई भी व्यतिकरण तथा विवर्तन के बीच अंतर को संतोषप्रद रूप से परिभाषित नहीं कर पाया है। यह केवल उपयोग का प्रश्न है, इन दोनों के बीच कोई सुस्पष्ट तथा महत्वपूर्ण भौतिक अंतर नहीं है। मोटे तौर से हम अधिक से अधिक कह सकते हैं कि जब केवल कुछ स्रोत होते हैं, मान लीजिए दो व्यतिकारी स्रोत, तब प्राय: मिलने वाले परिणाम को व्यतिकरण कहते हैं, लेकिन यदि इनकी संख्या बहुत अधिक हो, ऐसा प्रतीत होता है कि विवर्तन शब्द प्राय: उपयोग किया जाता है।

^{*} रिचर्ड फ़ाइनमैन को 1965 का भौतिकी का नोबेल पुरस्कार मिला जो उनके क्वांटम वैद्युतगतिकी के मौलिक कार्य पर दिया गया।

📭 भौतिकी

द्विझिरी प्रयोग में, हमें ध्यान देना चाहिए कि परदे पर बनने वाला पैटर्न वास्तव में प्रत्येक झिरी या छिद्र द्वारा अध्यारोपण से बनने वाला एकल झिरी विवर्तन पैटर्न है, तथा द्विझिरी व्यतिकरण पैटर्न है।

10.6.2 एकल झिरी विवर्तन पैटर्न का अवलोकन

झिरी को फ़िलामेंट के समांतर रखिए, ठीक आँख के सामने। यदि आप चश्मा पहनते हैं तो उसका उपयोग करें। झिरी की चौड़ाई तथा किनारों की समांतरता के कुछ समायोजन से दीप्त तथा अदीप्त बैंडों के साथ पैटर्न दिखाई देना चाहिए। क्योंकि सभी बैंडों की स्थित (केंद्रीय बैंड को छोड़कर) तरंगदैर्घ्य पर निर्भर है, वे कुछ रंग दर्शाएँगी। लाल तथा नीले के लिए फ़िल्टर के उपयोग से फ्रिंजों अधिक स्पष्ट हो जाएँगी। यदि दोनों फ़िल्टर उपलब्ध हों तो नीले की तुलना में लाल रंग की फ्रिंजों अधिक चौडी देखी जा सकती हैं।

इस प्रयोग में, तंतु प्रथम स्रोत S की भूमिका निभा रहा है (चित्र 10.14)। नेत्र का लेंस परदे (नेत्र के रेटिना) पर पैटर्न को फ़ोकस करता है।

थोड़े प्रयत्न से, एक ब्लेड की सहायता से ऐलुमिनियम की पन्नी में द्विझिरी काटी जा सकती है। बल्ब तंतु को यंग के प्रयोग को दोहराने के लिए पहले की भाँति देखा जा सकता है। दिन के समय में, नेत्र पर एक छोटा कोण बनाने वाला एक दूसरा उपयुक्त दीप्त म्रोत है। यह किसी चमकीले उत्तल पृष्ठ (उदाहरण के लिए एक साइकिल की घंटी) में सूर्य का परावर्तन है। सूर्य-प्रकाश के साथ सीधे ही प्रयोग न करें— यह नेत्र को क्षति पहुँचा सकता है तथा इससे फ्रिंजें भी नहीं मिलेंगी क्योंकि सूर्य (1/2)° का कोण बनाता है।

व्यतिकरण तथा विवर्तन में प्रकाश ऊर्जा का पुनर्वितरण होता है। यदि यह अदीप्त फ्रिंज उत्पन्न करते समय एक क्षेत्र में घटती है तो दीप्त फ्रिंज उत्पन्न करते समय दूसरे क्षेत्र में बढ़ती है। ऊर्जा में कोई लाभ अथवा हानि नहीं होती जो ऊर्जा संरक्षण के सिद्धांत के अनुकुल है।

एक लंबी डोरी पर विचार कीजिए जिसे क्षैतिज रखकर पकड़ा गया है और इसका दूसरा सिरा स्थिर माना गया है। यदि हम डोरी के सिरे को ऊपर-नीचे आवर्ती रूप से गित कराएँ तो एक तरंग उत्पन्न कर पाएँगे जो +x दिशा में संचारित होगी (चित्र 10.17)। ऐसी तरंग को समीकरण (10.15) द्वारा व्यक्त किया जा सकता है।

$$y(x,t) = a\sin(kx - \omega t) \tag{10.15}$$

जहाँ a तथा $\omega(=2\pi v)$ क्रमशः तरंग का आयाम तथा कोणीय आवृत्ति निरूपित करते हैं। इसके अतिरिक्त,

$$\lambda = \frac{2\pi}{k} \tag{10.16}$$

चित्र 10.16 एक एकल झिरी निर्मित करने के लिए दो ब्लेडों को पकड़ना। एक बल्ब तंतु जिसे झिरी में से देखा जाता है, स्पष्ट विवर्तन बैंड दर्शाता है।

चित्र 10.17 (a) वक्र किसी डोरी का क्रमश: t=0 तथा $t=\Delta t$ पर विस्थापन निरूपित करते हैं, जब एक ज्यावक्रीय तरंग +x दिशा में संचरित होती है। (b) वक्र विस्थापन x=0 के समय-विचरण को निरूपित करता है, जबिक एक ज्यावक्रीय तरंग +x दिशा में संचरित हो रही है। $x=\Delta x$ पर विस्थापन का समय-विचरण थोड़ा-सा दाईं ओर विस्थापित हो जाएगा।

इसी प्रकार हम x-z तल में z-ध्रुवित तरंग उत्पन्न करके किसी डोरी के कंपन पर विचार कर सकते हैं, जिसका विस्थापन प्राप्त होगा

$$z(x,t) = a \sin(kx - \omega t) \tag{10.17}$$

यह बतलाना आवश्यक है कि [समीकरणों (10.15) तथा (10.17) से वर्णित] सभी रैखिकत: ध्रुवित तरंगें अनुप्रस्थ तरंगें होती हैं; अर्थात डोरी के प्रत्येक बिंदु का विस्थापन सदैव तरंग संचरण की दिशा के लंबवत होता है। अंतत:, यदि डोरी के कंपन के तल को अत्यंत अल्प अंतराल में यादृच्छिकत: बदला जाए तो हमें अध्रुवित तरंग प्राप्त होगी। इस प्रकार एक अध्रुवित तरंग के लिए विस्थापन, समय के साथ, यादृच्छिकत: बदलता रहता है, यद्यपि यह सदैव तरंग संचरण की दिशा के लंबवत रहता है।

भौतिकी

प्रकाश की तरंगों की प्रकृति अनुप्रस्थ होती है; अर्थात संचिरत हो रही प्रकाश तरंग से संबद्ध विद्युत क्षेत्र सदैव तरंग संचरण की दिशा के लंबवत होता है। इसे एक सरल पोलेगॅइड का उपयोग करके सरलता से प्रदर्शित किया जा सकता है। आपने पतली प्लास्टिक जैसी शीटें देखी होंगी जिन्हें पोलेगॅइड कहते हैं। पोलेगॅइड में अणुओं की एक लंबी शृंखला होती है जो एक विशेष दिशा में पंक्तिबद्ध होते हैं। पंक्तिबद्ध अणुओं की दिशा के अनुदिश विद्युत सिदश (संचिरत होती प्रकाश तरंगों से संबद्ध) अवशोषित हो जाता है। इस प्रकार यदि कोई अध्ववित प्रकाश तरंग ऐसे पोलेगॅइड पर आपितत होती तो प्रकाश तरंग रेखीय ध्रुवित हो जाती है, जिसमें विद्युत सिदश पंक्तिबद्ध अणुओं की लंबवत दिशा के अनुदिश दोलन करता है, इस दिशा को पोलेगॅइड की पारित-अक्ष (pass-axis) कहते हैं।

इस प्रकार, जब किसी साधारण स्रोत (जैसे एक सोडियम लैंप) का प्रकाश पोलेरॉइड की किसी शीट P_1 से पारित होता है तो यह देखा जाता है कि इसकी तीव्रता आधी हो जाती है। P_1 को घुमाने पर पारगत किरण-पुंज पर कोई प्रभाव नहीं पड़ता क्योंकि पारगिमत तीव्रता स्थिर रहती है। अब हम एक समरूप पोलेरॉइड P_2 को P_1 से पहले रखते हैं। अपेक्षानुसार, लैंप से आने वाले प्रकाश की तीव्रता केवल P_2 से ही पारित होने में कम हो जाएगी। परंतु अब P_1 के घुमाने का P_2 से आने वाले प्रकाश पर एक नाटकीय प्रभाव पड़ेगा। एक स्थिति में P_2 से पारगिमत तीव्रता P_1 से पारित होने पर लगभग शून्य हो जाती है। जब इस स्थित से P_1 को 90° पर घुमाते हैं तो यह P_2 से आने वाली लगभग पूर्ण तीव्रता को पारगिमत कर देता है (चित्र 10.18)।

चित्र 10.18 (a) दो पोलेरॉइड P_2 तथा P_1 से होकर प्रकाश का पारगमन। पारगमित अंश 1 से 0 तक गिरता है, जब उनके बीच का कोण 0° से 90° तक परिवर्तित होता है। ध्यान रखें कि प्रकाश जब एक ही पोलेरॉइड P_1 से देखा जाता है तब वह कोण के साथ परिवर्तित नहीं होता। (b) जब प्रकाश दो पोलेरॉइडों से पारित होता है तो विद्युत सिंदश का व्यवहार पारगिमत ध्रुवण पोलेरॉइड अक्ष के समांतर घटक है। द्विबाणाग्र विद्युत सिंदश के दोलन को दर्शाते हैं।

उपरोक्त प्रयोग को यह मानकर आसानी से समझा जा सकता है कि पोलेरॉइड P_2 से पारगिमत प्रकाश का P_2 की पारित अक्ष (pass-axis) के अनुदिश ध्रुवण हो जाता है। यदि P_2 की पारित अक्ष, P_1 की पारित अक्ष से θ कोण बनाती है, तब जबिक ध्रुवित प्रकाश-पुंज पोलोरॉइड P_1 से पारगिमत होती है, तो P_1 से घटक $E\cos\theta$ (P_1 की पारित अक्ष के अनुदिश) पारित होगा। इस प्रकार जब हम पोलेरॉइड P_1 (या पोलेरॉइड P_2) को घुमाते हैं तो तीव्रता निम्न प्रकार बदलेगी :

$$I = I_0 \cos^2 \theta \tag{10.18}$$

यहाँ I_0 , P_1 से गुज़रने के पश्चात ध्रुवित प्रकाश की तीव्रता है। इसे मेलस का नियम (Malus' Law) कहते हैं। उपरोक्त विवेचन दर्शाता है कि एक पोलेरॉइड से आने वाले प्रकाश की तीव्रता, आपितत तीव्रता की आधी है। दूसरा पोलेरॉइड रखकर तथा दोनों पोलेरॉइडों की पारित-अक्षों के बीच के कोण को समायोजित करके तीव्रता को आपितत तीव्रता के 50% से शून्य तक नियंत्रित कर सकते हैं।

पोलेरॉइडों को धूप के चश्मों, खिड़की के शीशों आदि में तीव्रता नियंत्रित करने में उपयोग किया जा सकता है। पोलेरॉइडों का उपयोग फ़ोटोग्राफ़ी कैमरों तथा 3D (त्रिआयामी) चलचित्र कैमरों में भी किया जाता है।

उदाहरण 10.2 जब दो क्रॉसित पोलेरॉइडों के बीच में पॉलराइड की एक तीसरी शीट को घुमाया जाता है तो पारगिमत प्रकाश की तीव्रता में होने वाले परिवर्तन की विवेचना कीजिए। हल माना कि प्रथम पोलेराइड P_1 से गुज़रने के बाद ध्रुवित प्रकाश की तीव्रता I_a है। तब दूसरे पोलेराइड P_2 से गुज़रने के बाद प्रकाश की तीव्रता होगी,

$$I = I_0 \cos^2 \theta,$$

जहाँ कोण θ , P_1 एवं P_2 की पारित-अक्षों के बीच बना कोण है। क्योंकि P_1 एवं P_3 क्रॉसित हैं उनके पारित-अक्षों के बीच कोण ($\pi/2-\theta$) होगा। अतः P_3 से निर्गमित होने वाले प्रकाश की तीव्रता होगी,

$$I = I_0 \cos^2 \theta \cos^2 \left(\frac{\pi}{2} - \theta\right)$$
$$= I_0 \cos^2 \theta \sin^2 \theta = (I_0/4) \sin^2 2\theta$$

अत:, कोण $\theta = \pi/4$ के लिए पारगमित प्रकाश की तीव्रता अधिकतम होगी।

सारांश

- हाइगेंस का सिद्धांत बतलाता है कि किसी तरंगाग्र का प्रत्येक बिंदु द्वितीयक तरंगों का म्रोत होता है, जो जुड़कर कुछ समय पश्चात एक तरंगाग्र बनाते हैं।
- 2. हाइगेंस की रचना हमें यह बतलाती है कि नया तरंगाग्र द्वितीयक तरंगों का अग्र आवरण है। जब प्रकाश की चाल दिशा पर निर्भर नहीं करती हो तो द्वितीयक तरंगें गोलीय होती हैं। किरणें तब दोनों तरंगाग्रों के लंबवत होती हैं तथा यात्रा काल किसी भी किरण की दिशा में समान होता है। इस सिद्धांत से परावर्तन तथा अपवर्तन के सुज्ञात नियम प्राप्त होते हैं।
- 3. जब दो अथवा दो से अधिक प्रकाश स्रोत एक ही बिंदु को प्रदीप्त करते हैं तो तरंगों के अध्यारोपण का सिद्धांत लागू होता है। जब हम एक बिंदु पर इन स्रोतों द्वारा प्रकाश की तीव्रता का विचार करते हैं तो विशिष्ट तीव्रताओं के योग के अतिरिक्त एक व्यतिकरण पद प्राप्त होता है। परंतु यह पद तभी महत्वपूर्ण होता है जबिक इसका औसत शून्य नहीं है, जो केवल तभी होता है जबिक स्रोतों की आवृत्तियाँ समान हों तथा इनके बीच एक स्थिर कलांतर हो।
- 4. पृथकता d वाली टॉमस यंग की द्विझिरी से समान अंतराल की व्यतिकरण फ्रिंजें प्राप्त होती हैं।
- 5. चौड़ाई a की एक एकल झिरी एक विवर्तन पैटर्न देती है जिसमें एक केंद्रीय उच्चिष्ठ होता है। तीव्रता $\pm \lambda/a$, $\pm 2\lambda/a$, आदि कोणों पर शून्य होती है तथा इनके बीच में उत्तरोत्तर क्षीण होते द्वितीयक उच्चिष्ठ होते हैं।
- 6. प्राकृतिक प्रकाश, जैसे सूर्य से प्राप्त प्रकाश, अध्विवत होता है। इसका अर्थ यह हुआ कि अनुप्रस्थ तल में विद्युत सिदश मापन के समय, द्रुतत: तथा यादृच्छिकत: सभी संभव दिशाओं में हो सकता है। पोलेगॅइड केवल एक घटक (एक विशिष्ट अक्ष के समांतर) को पारगिमत करता है। पिरणामी प्रकाश को रेखीय ध्रुवित अथवा समतल ध्रुवित कहते हैं। जब इस प्रकार के प्रकाश को एक दूसरे पोलेगॅइड में से देखते हैं, जिसका अक्ष 2π से घूमता है तो तीव्रता के दो उच्चिष्ठ तथा निम्निष्ठ दिखलाई देते हैं।

विचारणीय विषय

- 1. एक बिंदु स्रोत से तरंगें सभी दिशाओं में प्रसरित होती हैं, जबिक प्रकाश को संकीर्ण किरणों के रूप में चलते हुए देखा गया था। तरंग सिद्धांत से प्रकाश के व्यवहार के सभी पक्षों के विश्लेषण को समझने के लिए हाइगेंस, यंग तथा फ्रेनेल के प्रयोगों तथा अंतर्दृष्टि की आवश्यकता हुई।
- 2. तरंगों का महत्वपूर्ण तथा नया स्वरूप भिन्न स्रोतों के आयामों का व्यतिकरण है, जो यंग के प्रयोग में दर्शाए अनुसार संपोषी तथा विनाशी दोनों हो सकता है।
- 3. विवर्तन परिघटना से किरण प्रकाशिकी की परिसीमा परिभाषित होती है। दो बहुत निकटस्थ वस्तुओं के विभेदन के लिए सुक्ष्मदर्शियों तथा दुरदर्शियों की सक्षमता की सीमाएँ भी प्रकाश की तरंगदैर्घ्य द्वारा निर्धारित होती हैं।
- 4. अधिकांश व्यतिकरण तथा विवर्तन प्रभाव अनुदैर्घ्य तरंगों, जैसे वायू में ध्विन के लिए भी होते हैं। परंतु ध्रवण परिघटना केवल अनुप्रस्थ तरंगों, जैसे प्रकाश तरंगों की, विशिष्टता है।

- 10.1 589 nm तरंगदैर्घ्य का एकवर्णीय प्रकाश वायु से जल की सतह पर आपितत होता है। (a) परावर्तित तथा (b) अपवर्तित प्रकाश की तरंगदैर्घ्य, आवृत्ति तथा चाल क्या होगी? जल का आवर्तनांक 1.33 है।
- 10.2 निम्नलिखित दशाओं में प्रत्येक तरंगाग्र की आकृति क्या है?
 - (a) किसी बिंदु स्रोत से अपसरित प्रकाश।
 - (b) उत्तल लेंस से निर्गमित प्रकाश, जिसके फ़ोकस बिंदु पर कोई बिंदु स्रोत रखा है।
 - (c) किसी दूरस्थ तारे से आने वाले प्रकाश तरंगाग्र का पृथ्वी द्वारा अवरोधित (intercepted) भाग।
- 10.3 (a) काँच का अपवर्तनांक 1.5 है। काँच में प्रकाश की चाल क्या होगी? (निर्वात में प्रकाश की चाल $3.0 \times 10^8 \,\mathrm{m \ s^{-1}}$ है।)
 - (b) क्या काँच में प्रकाश की चाल, प्रकाश के रंग पर निर्भर करती है? यदि हाँ, तो लाल तथा बैंगनी में से कौन-सा रंग काँच के प्रिज़्म में धीमा चलता है?
- **10.4** यंग के द्विझिरी प्रयोग में झिरियों के बीच की दूरी $0.28 \, \mathrm{mm}$ है तथा परदा $1.4 \, \mathrm{m}$ की दूरी पर रखा गया है। केंद्रीय दीप्त फ्रिंज एवं चतुर्थ दीप्त फ्रिंज के बीच की दूरी 1.2 cm मापी गई है। प्रयोग में उपयोग किए गए प्रकाश की तरंगदैर्घ्य ज्ञात कीजिए।
- **10.5** यंग के द्विझिरी प्रयोग में, λ तरंगदैर्घ्य का एकवर्णीय प्रकाश उपयोग करने पर, परदे के एक बिंदु पर जहाँ पथांतर λ है, प्रकाश की तीव्रता K इकाई है। उस बिंदु पर प्रकाश की तीव्रता कितनी होगी जहाँ पथांतर λ/3 है?

- **10.6** यंग के द्विझिरी प्रयोग में व्यतिकरण फ्रिंजों को प्राप्त करने के लिए, $650~\mathrm{nm}$ तथा $520~\mathrm{nm}$ तरंगदैर्घ्यों के प्रकाश-पुंज का उपयोग किया गया।
 - (a) 650 nm तरंगदैर्घ्य के लिए परदे पर तीसरे दीप्त फ्रिंज की केंद्रीय उच्चिष्ठ से दूरी ज्ञात कीजिए।
 - (b) केंद्रीय उच्चिष्ट से उस न्यूनतम दूरी को ज्ञात कीजिए जहाँ दोनों तरंगदैर्घ्यों के कारण दीप्त फ्रिंज संपाती (coincide) होते हैं।