

N-Channel JFETs

J111 SST111 J112 SST112 J113 SST113

PRODUCT SUMMARY									
Part Number	V _{GS(off)} (V)	$r_{DS(on)}$ Max (Ω)	I _{D(off)} Typ (pA)	t _{on} Typ (ns)					
J/SST111	−3 to −10	30	5	4					
J/SST112	−1 to −5	50	5	4					
J/SST113	≤-3	100	5	4					

FEATURES

• Low On-Resistance: 111 < 30 Ω

Fast Switching—t_{ON}: 4 ns
Low Leakage: 5 pA

Low Capacitance: 3 pFLow Insertion Loss

BENEFITS

- Low Error Voltage
- High-Speed Analog Circuit Performance
- Negligible "Off-Error," Excellent Accuracy
- Good Frequency Response, Low Glitches
- Eliminates Additional Buffering

APPLICATIONS

- Analog Switches
- Choppers
- Sample-and-Hold
- Normally "On" Switches
- Current Limiters

DESCRIPTION

The J/SST111 series consists of all-purpose analog switches designed to support a wide range of applications. The J/SST113 are useful in a high-gain amplifier mode.

The J series, TO-226AA (TO-92) plastic package, provides low cost, while the SST series, TO236 (SOT-23) package, provides surface-mount capability. Both the J and SST series are available in tape-and-reel for automated assembly (see Packaging Information).

For similar products in TO-206AA(TO-18) packaging, see the 2N/PN/SST4391 series, 2N4856A/4857A/4858A, and 2N5564/5565/5566 (duals) data sheets.

TO-226AA (TO-92) D (1) S (2) Top View J111 J112

ABSOLUTE MAXIMUM RATINGS

Gate-Drain, Gate-Source Voltage
Gate Current
Lead Temperature (1/16" from case for 10 seconds)
Storage Temperature55 to 150°C
Operating Junction Temperature

 Power Dissipation^a
 350 mW

 (TO-236)
 350 mW

 (TO-226AA)
 360 mW

Notes

a. Derate 2.8 mW/ $^{\circ}$ C above 25 $^{\circ}$ C

For applications information see AN105.

J/SST111 Series

Vishay Siliconix

		Test Conditions			Limits						
					J/SST111		J/SST112		J/SST113		
Parameter	Symbol			Тура	Min	Max	Min	Max	Min	Max	Unit
Static											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	$I_G = -1 \mu A$, $V_{DS} = 0 V$		-55	-35		-35		-35		V
Gate-Source Cutoff Voltage	V _{GS(off)}	$V_{DS} = 5 \text{ V}, I_{D} = 1 \mu A$			-3	-10	-1	- 5		-3	
Saturation Drain Current ^b	I _{DSS}	V _{DS} = 15 V, V _{GS} = 0 V			20		5		2		mA
Gate Reverse Current	I _{GSS}	$V_{GS} = -15 \text{ V}, V_{DS} = 0 \text{ V}$		-0.005		-1		-1		-1	nA
			T _A = 125°C	-3							IIA
Gate Operating Current	I _G	$V_{DG} = 15 V,$	_	- 5							pA
Drain Cutoff Current	I _{D(off)}	$V_{DS} = 5 V, V$	/ _{GS} = −10 V	0.005		1		1		1	nA
			T _A = 125°C	3							
Drain-Source On-Resistance	r _{DS(on)}	$V_{GS} = 0 \text{ V}, V_{DS} = 0.1 \text{ V}$				30		50		100	Ω
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 1 \text{ mA}$, $V_{DS} = 0 \text{ V}$		0.7							V
Dynamic											
Common-Source Forward Transconductance	9fs	$V_{DS} = 20 \text{ V, } I_{D} = 1 \text{ mA}$ f = 1 kHz		6							mS
Common-Source Output Conductance	9 _{os}			25							μS
Drain-Source On-Resistance	r _{ds(on)}	$V_{GS} = 0 \text{ V}, I_D = 0 \text{ mA}$ f = 1 kHz				30		50		100	Ω
Common-Source Input Capacitance	C _{iss}	V_{DS} = 0 V, V_{GS} = -10 V f = 1 MHz		7		12		12		12	pF
Common-Source Reverse Transfer Capacitance	C _{rss}			3		5		5		5	
Equivalent Input Noise Voltage	e _n	V_{DG} = 10 V, I_D = 1 mA f = 1 kHz		3							nV∕ √Hz
Switching											
Turn-On Time	t _{d(on)}	V _{DD} = 10 V, V _{GS(H)} = 0 V See Switching Circuit		2							ns
	t _r			2							
Turn-Off Time	t _{d(off)}			6							
	t _f		15								

NCB

Notes a. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b. Pulse test: PW \leq 300 μ s duty cycle \leq 3%.

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

Vishay Siliconix

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

TYPICAL CHARACTERISTICS (TA = 25°C UNLESS OTHERWISE NOTED)

*Non-inductive

INPUT PULSE

Rise Time < 1 ns Rise Time 0.4 ns

Fall Time < 1 ns Pulse Width 100 ns PRF 1 MHz

Input Resistance 10 MΩ
Input Capacitance 1.5 pF

SAMPLING SCOPE

