9: Filtering

1 Announcements

2 Projects

Name	Topic	Data	Algorithms	Prelim Work	
Osman	Banana	fprints	х	х	
	Wavelets				
Ham	News SOM	Gdelt, news	SOM, word		
		feeds	frequency		
			count		
Ross	Tennis	OK	Monte carlo,	Χ	
Catalano	Social	Facebook	Scraper		
	Networks	social netwok			
		data			
Booth	Satellite	х	Х		
	Imagery				
Silayi	Molecular	generate	Verlet Velocity		
	Dynamics		Integration		
Essiaw	Object				
	Isolation				
Zhang	Restaurant	Yelp food	Data mining		
	Classification	image data			
Goldfeder	Lungs	Kaggle			
Andrews	Titanium	generate	Monte Carlo		
	Dioxide				
Franklin	Lung				

3 Files to Get

C16correlations.pdf

C19Gabor.pdf

Rolls.png

Hdi-Print-Circuit-Board.jpg

4 Theory

See C16correlations.pdf: Sections 16.1 and 16.2

- Correlation
- Math
- Operator notation
- Simple 5x5 kernel. Scipy.signal.correlate2d

•

- Center of correlation should be the dot product.
- Correlations are shifted dot products Inherently first order.

```
>>> a = np.random.ranf( (7,7) )
>>> c = ss.correlate2d( a,a )
>>> c.shape
(13, 13)
>>> import scipy.misc as sm
>>> sm.imsave('dud.png', c )
>>> a = np.random.ranf( (7,7) )-0.5 # zero sum
>>> c = ss.correlate2d( a,a )
>>> sm.imsave('dud.png', c )
```

5 Fourier Transforms and Correlations

See C16correlations.pdf: Sections 16.3

Theory ONLY: Theory combining Fourier and correlations.

6 Rolls Royce

• Measure size of one of the circles.

- Make filter for that size.
- Correlate.

```
>>> exec(open('gogabor.py').read())
>>> fname = 'images/rolls.png'
>>> corr =Rolls( fname )
```

•

- Comment on how bad this idea worked.
- Edge Enhance the target.
 - O Why does this work better?

```
>>> corr = Rolls2( fname )
>>> sm.imsave('dud.png', corr.real )
```


7 Boats

Use C16correlations.pdf

8 Invariances

- Shift
- Rotation
 - o Rotate the filter
 - Rpolar smooth horizontally IRPolar
 - o Sensitivity: dependent on the shape. Pencils are more sensitive than circles.
- Scale
- Others: Deformation, out of plane rotation, occlusion, noise

9 Composite Filtering

C16correlations.pdf section; 16.4

- Theory. Include pseudo inverse.
- What is Q?
- Tach example
- Limitations: Dimension of Q
- Only the center is constrained. Large sidelobes possible.
- Change values of the constraint vector (-1,+1) or (theta)
- MACE
- FPF
- Dual FPF
- Circuit board: http://image.made-in-china.com/2f0j00SejtQbvnwMcw/Hdi-Print-Circuit-Board.jpg
 - o Resize clean, grayscale
 - o Create 2 FPFs.
 - Correlate with 0-degrees to confirm.
 - Correlate with another angle.
 - o Correlate with many angles to get telephone poles.
 - Optimize alpha
 - o Random testing orientation

```
>>> a = LoadBoard( 'images/board.jpg')
>>> sm.imsave('dud.png', a )
>>> for i in range( 20 ):
        a = nd.rotate( data, i/3., reshape=False )
        v[i]= (filt2*a).sum().real*V*H
>>> filt = filt.reshape( (V,H) )
>>> filt2 = ft.ifft2( filt )
>>> sm.imsave('dud.png', filt2.real )
>>> filta = filt + 0
>>> filtb = Filter2( data )
>>> filt3 = ft.ifft( filtb.reshape(V,H))
>>> sm.imsave('dud.png', filt3.real )
>>> filt5 = Filter2( data )
>>> filt6 = Filter2( data )
>>> filt7 = Filter2( data )
>>> filt8 = filter2( data )
>>> filt9 = Filter2( data )
>>> filt9 = Filter2( data )
>>> filt9 = Filter2( data )
```


10 Gabor Filters

C19Gabor.pdf

Osman's project will extend this.

```
>>> a = gabor.GaborCos( (256,256), .2, 0, 1,1 )
>>> sm.imsave('dud.png', a )
>>> A = ft.fft2( a )
```

11 Noise

Additive

```
>>> sm.imsave('dud.png', rolls )
>>> V,H = rolls.shape
>>> noise = np.random.ranf( (V,H) ) * 75
>>> sm.imsave('dud.png', rolls + noise )
```

- Multiplicative.
- Compare FFT of image with FFT of image with additive noise. It's high frequency.
- Colored noise

```
>>> Rolls = ft.fft2( rolls )
>>> A = Rolls*noise
>>> a = ft.ifft2( A )
>>> sm.imsave('dud.png', a.real )
```