When to use regression?

If target variable is a continuous numeric variable (100–2000), then use a regression algorithm.

Types of Regression Algorithms:

- Linear regression
- Multiple linear regression
- Polynomial regression
- Ridge regression
- Lasso regression
- ElasticNet regression

Linear Regression

Linear Regression is a statistical model used to predict the relationship between independent and dependent variables denoted by x and y respectively

Simple Linear Regression is where only one independent variable is present and the model has to find the linear relationship of it with the dependent variable

Performance Metrics for Regression Problem

Error = Y (actual) — Y (predicted)

Mean Absolute Error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - \hat{y}_i|$$

where, $N = total \ number \ of \ data \ points$ $Yi = actual \ value$ $\hat{Y}i = predicted \ value$

the lower the MAE, the less error in your model.

Mean Squared Error (MSE)

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

where, $n = total \ number \ of \ data \ points$ $Yi = actual \ value$ $\hat{Y}i = predicted \ value$

Thus, as with MAE, the lower the MSE, the less error in the model.

Root Mean Squared Error (RMSE)

$$RMSE = \sqrt{\sum_{i=1}^{n} \frac{(\hat{y}_i - y_i)^2}{n}}$$

Where, $n = total \ number \ of \ data \ points$ $Yi = actual \ value$ $\hat{Y}i = predicted \ value$

lower RMSE \rightarrow lower error.

R-Squared (R2)

The R² metric gives an indication of how well a model fits your data, but is unable to explain if your model is good or not.

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y}_{i})^{2}}$$

y = dependent variable values, y_hat = predicted values from model, y_bar = the mean of y

The R² value ranges from 0 to 1, with higher values denoting a strong fit, and lower values denoting a weak fit. Typically, it's agreed that:

$$R^2 < 0.5 \rightarrow Weak fit$$

$$0.5 \le R^2 \le 0.8 \rightarrow Moderate fit$$

$$R^2 > 0.8 \rightarrow Strong fit$$

 $R^2 = 0.9186211060937284$

Muliple Linear Regression:

Multiple Linear Regression is one of the important regression algorithms, which models the linear relationship between a single dependent continuous variable and more than one independent variable.

Polynomial Regression:

It is a form of regression analysis in which the relationship between the independent variables and dependent variables are modeled in the **nth degree polynomial**.

Simple Linear Regression

$$y = b_0 + b_1 x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

Polynomials	Form	Degree	Examples
Linear Polynomial	p(x): ax+b, a ≠0	Polynomial with Degree 1	x + 8
Quadratic Polynomial	p(x): ax²+b+c, a ≠ 0	Polynomial with Degree 2	3x²-4x+7
Cubic Polynomial	$p(x): ax^3 + bx^2 + cx,$ $a \neq 0$	Polynomial with Degree 3	$2x^3+3x^2+4x+6$

It does not require the relationship between the independent and dependent variables to be linear in the data set.