Topología – 2° cuatrimestre 2015

CONEXIÓN Y ARCO-CONEXIÓN

Ejercicio para entregar

- 1. Sean $\prod X_{\alpha}$ con la topología producto, $x = (x_{\alpha}) \in X$. Pruebe que $C_x = \prod C_{x_{\alpha}}$.
- 2. Sea \mathbb{R}^{ω} con la topología caja. Pruebe que $x \in \mathbb{R}^{\omega}$ está en la misma componente conexa que la sucesión nula $\mathbf{0}$ si y sólo si x es eventualmente cero. Deduzca que $x, y \in \mathbb{R}^{\omega}$ están en la misma componente conexa si y sólo si x y es eventualmente cero.

Demostración 1. Sea $x \in C$, entonces como C es conexo y p_i es continua, $p_i(x) = x_i \in p_i(C)$ con $p_i(C)$ conexo, por ende $p_i(C) \subset C_i$ pues C_i es el mayor conexo que contine a x_i ; por ende $x_i \in C_i \ \forall i$. Entonces $C \subseteq \prod_i C_i$.

Sea $f: \prod C_i \to \{0,1\}$ y sea $(x_i) \in f^{-1}(0)$, entonces como f es continua $\exists U \ni x$ entorno básico tal que $U \subset f^{-1}(0)$, ie: $U_1 \times \cdots \times U_k \times \prod_{i>k} C_i \subseteq f^{-1}(0)$ y por ende $\{x_1\} \times \cdots \times \{x_k\} \times \prod_{i>k} C_i \subseteq f^{-1}(0)$. Ahora usemos el siguiente lema:

Lema 0.1 Si $x_i = y_i$ salvo para $i = j_0$ fijo, entonces x, y están en la misma componente conexa.

Demostración (Del lema) $C_{j_0} \times \prod_{i \neq j_0} \{x_i\} \simeq C_{j_0}$ y C_{j_0} es conexo

Por endeusando el lema k veces tenemos que $\prod_{C_i} \subset f^{-1}(0)$ y entonces $\prod C_i$ es conexo, por ende $x \in \prod C_i \subset C$.

2. Notemos primero que $f_y(x) = x + y$ es un homeomorfismo, y por ende C(x) = x + C(0). Ahora si sea B el conjunto de los puntos eventualmente cero y sea $x \in B$ y consideremos $f: I \to \mathbb{R}^{\omega}$ dado por $t \mapsto tx$. Veamos que f es continua! Sea $t_0 \in f^{-1}(U)$ con U abierto y sea $U_1 \times \ldots$ un abierto básico conteniendo a $f(t_0)$. Sea entonces r_i el radio tal que $B((f(t_0))_i, r_i) \subset U_i$ y sea N tal que $x_n = 0 \forall n \geq N$. Entonces si consideramos $r = \min_{i < N} r_i$ entonces $f(B(t_0, r)) \subset U$, por ende f es continua. Notemos que f(0) = 0 y f(1) = x por lo que B es arco-conexo y $x, 0 \in B \subset C(0)$.

Ahora veamos que si $x \notin B$ entonces $x \neq 0$ no están en la misma componente conexa! Para esto usemos el siguiente lema:

Lema 0.2 $C = \{x \in \mathbb{R}^{\omega} , x_n \text{ no acotada}\}$ es abierto y cerrado en \mathbb{R}^{ω} con la topología uniforme, y por ende con la topología caja.

Demostración (Del lema) Trivial.

Dado $x=(x_1,x_2,\dots)$ sea $k_i=1$ $\chi_{x_i=0}+\frac{n}{x_i}$ $\chi_{x_i\neq 0}$ y sea $f:\mathbb{R}^\omega\to\mathbb{R}^\omega$ dado por $f(x)=(k_1x_1,k_2x_2,\dots)$ Entonces f es homeo y si $x\not\in B$ entonces $f(x)_n=n$ para infinito n y entonces f(x) no está acotado, mientras que f(0) sí. Como las acotadas son una partición de \mathbb{R}^ω tenemos que x,0 no pueden estar en la misma componente conexa.

1. Ejercicio 1

Demostración Sea $X = U \cup V$ una desconección donde $U, V \in \tau'$, entonces $U, V \in \tau$ y como (X, τ) es conexo $U = \emptyset$, por ende (X, τ') es conexo

 $^{^1}Sugerencia$: Construya un homeomorfismo entre \mathbb{R}^{ω} que mande a $\mathbf{0}$ y x a una sucesión acotada y una no acotada respectivamente.

2. Ejercicio 2

Demostración a) Supongamos que $\partial A = \emptyset$, entonces $\mathring{A} \subseteq A \subseteq \overline{A} \subseteq \mathring{A}$ y entonces A es abierto y cerrado, entonces $X = A \cup A^c$ donde ambos son abiertos y no vacíos. Abs! Entonces $\partial A \neq \emptyset$

b) En efecto como X es disconexo $\exists U/X = U \cup X \setminus U$, donde $U, X \setminus U$ son abiertos, entonces $\partial U = \emptyset$

3. Ejercicio 3

Demostración a) Sea $A \bigcup A_{\alpha} = U \cup V$ una disconexión, podemos suponer que $A \subset U$ pues A es conexo. Entonces como $A_{\alpha} \subset \bigcup A_{\alpha}$ es subespacio, tenemos que $U \cap A_{\alpha}, V \cap A_{\alpha}$ son una desconexión de A_{α} , pero como es conexo $V \cap A_{\alpha} = \emptyset$ $(A \subset U)$. Entonces $V = \bigcup V \cap A_{\alpha} = \emptyset$

b) Sea $\bigcup A_n = U \cup V$ y sea $x_0 \in A_n \cap A_{n+1}$, supongamos que $x_0 \in U$, entonces $A_n = U \cap A_n \cup V \cap A_n$ y como $A_n \cap U \ni x_0$ tenemos por conexión de A_n que $A_n \cap V = \emptyset$, por ende $V = \bigcup V \cap A_n = \emptyset$

4. Ejercicio 4

Demostración a) $\mathbb{N} \times [0,1) = [(1,0),(1,1)) \cup ((1,1),\infty)$ donde [(1,0),(1,1)) es abierto pues es de la forma $[min\Omega,a)$ que es subbásico, mientras que el otro es abierto por ser sub básico; y unen pues el $(1,1) \notin \mathbb{N} \times [0,1)$. Por ende no es conexo.

- b) $[0,1) \times \mathbb{N} = [(0,1),(0,3)) \cup ((0,2),\infty)$ y ambos son abiertos.
- c) Sea una desconexión $[0,1) \times [0,1] = U \cup V$, y consideremos r = sup(U) y v = inf(V), entonces $r \leq v$ pues sino no serían disjuntos. Pero si r < v entonces $\exists z$ en el medio y $z \notin U \cup V$! Por ende r = v y como son disjuntos $r \in U$, pero entonces $r + \epsilon \in U$ por ser U abierto y $r + \epsilon \in V$ por la propiedad del ínfimo de v, por ende $U \cap V \neq \emptyset$. O sea que es conexo.
- d) $[0,1] \times [0,1) = [(0,0),(0,1)) \cup ((0,1),(1,1))$ es una desconexión.

5. Ejercicio 5

Demostración Teórica. Por otro lado si $A = \overline{B(0,1)} \cup \overline{B(2,1)} \subset \mathbb{R}$ tenemos que A es conexo pero $\mathring{A} = (-1,1) \cup (1,2)$ que es disconexo. Y si considero un anillo vemos lo mismo para ∂A .

6. Ejercicio 6

Demostración Supongamos que $A \cap \partial B = \emptyset$, entonces $A = A \cap B \cup A \cap (X \setminus B)$, y como $A \cap \partial B = \emptyset$ entonces $B = \overline{B}^A = \overset{\circ}{B}^A$, o sea que B es abierto y cerrado en A y también su complemento. Abs! Pues A era conexo, entonces $A \cap \partial B \neq \emptyset$

7. Ejercicio 7

Demostración Consideremos $f: X \to \{0,1\}$ continua, entonces si $x \sim y$ entonces $x, y \in q^{-1}(y)$ que es conexo y entonces f(x) = f(y) pues sino tendría una $f|_{q^{-1}(y)} \to \{0,1\}$ continua no constante en un conexo. Abs! Entonces f respeta \sim , por lo que por la PU del cociente el siguiente diagrama conmuta:

$$\begin{array}{c} X \xrightarrow{f} \{0,1\} \\ \downarrow q & \overline{f} \end{array}$$

Pero como Y es conexo, $\overline{f} = C_1$, por ende $f = \overline{f} \circ q = C_1$ es constante. Entonces toda $f: X \to \{0, 1\}$ continua es contante, por ende X es conexo

8. Ejercicio 8

Demostración Les saco uno, dos extremos y quedan conexos o no.

9. Ejercicio 9

Demostración a) Supongamos que $g(x) := f(x) - f(-x) \neq 0 \ \forall x \in S^1$, entonces g > 0 por Bolzano pues S^1 es conexo. Pero $g(x_1) > 0 \iff f(x_1) > f(-x_1)$, y entonces $g(-x_1) < 0$ ABS! Entonces $\exists x \in S^1 / f(x) = f(-x)$

- b) g(x) := f x es continua y Bolzano.
- 10. Ejercicio 10

Demostración Cálculo Avanzado

11. Ejercicio 11

Demostración \bullet a) \Longrightarrow b)

Sea $A \subset X$ un subespacio abierto y sea $x \in A$, entonces como X es localmente conexo $\exists V_x \subset X$ abierto conexo tal que $x \in V_x \subset A$, por ende $V = V \cap A$ es abierto conexo de A. Entonces $A = \bigcup_{x \in A} V_x$ donde V_x son abiertos conexos de A. Sea $C \subset A$ una componente conexa, entonces notemos que $V_x \cap C = V_x$ o $V_x \cap C = \emptyset$ pues al ser ambos conexos tendría una desconexión de V_x , por ende $C = \bigcup_{x \in C} V_x$ y es abierto.

 \bullet b) \Longrightarrow c)

Sea $U \subset X$ abierto, entonces por b) $U = \bigcup x \in UC_x$ es la unión de sus componente conexas, que son abiertas, por lo que dado $U \subset X$ abierto $\exists V$ abierto conexo tal que $V \subset U$, por ende una base de τ esta compuesta por abiertos conexos.

 \bullet c) \Longrightarrow a)

Sea $x \in U$ entorno de X, entonces $\exists V \in \tau$ tal que $x \in V \subset U$ por definición de base y por c) V es abierto conexo, por ende X es localmente conexo.

12. Ejercicio 12

Demostración Sea $x_0 \in X$ y consideremos $f(x_0)$, entonces tenemos $U = \{x \in X , f(x) = f(x_0)\}$ y $V = \{x \in X , f(x) \neq f(x_0)\}$. Supongamos que f no es constante, entonces $U, V \neq \emptyset$ y si $x \in U$, entonces $x \in W \subset U$ por la constante localidad, por lo que U, V son abiertos no vacíos disjuntos de X ABS! Entonces $f = C_{f(x_0)}$

13. Ejercicio 13

Demostración Cálculo avanzado

14. Ejercicio 14

Demostración Sea $x_0 \in A \cap B$ y entonces dados $x, y \exists \gamma_1, \gamma_2$ caminos de x a x_0 y de x_0 a y, tomo $\gamma = \gamma_1 * \gamma_2$ es un camino de x a y

15. Ejercicio 15

Demostración Sean $(x_1, y_1), (x_2, y_2) \in X \times Y$ y sean γ_1 camino de x_1 a x_2 y γ_2 camino de y_1 a y_2 , tomo $\gamma = (\gamma_1, \gamma_2)$

16. Eercicio 16

Demostración a) Sea $x \in U$, entonces como U es un entorno abierto de x, $\exists V \subset X$ abierto arcoconexo tal que $x \in V \subset U$, como U es abierto tenemos que V es abierto en U y entonces U es localmente arco-conexo.

- b) Fijemos $x_0 \in X$ y sea $C = \{x \in X , \exists \gamma : I \to X , \gamma(0) = x_0 , \gamma(1) = x\}$, entonces $x_0 \in C$. Además como X es localmente arco-conexo $\exists V \subset X$ abierto arco-conexo tal que $x \in V \subset X$ y por ende $x \in V \subset C$, o sea que C es abierto. Finalmente sea $x \notin C$ por el mismo argumento C^c es abierto y por ende C es cerrado, abierto y no vacío, entonces C = X.
- c) Trivial

17. Ejercicio 17

Demostración Sea [a,b) un intervalo degenerado, entonces $[a,b) = [a,c) \cup [c,b)$ si b > a por lo que lo desconectamos. Entonces las únicas componentes no vacías son $\{x\}$. Por otro lado si C es componente arco-conexa, entonces es conexa, entonces $C = \{x\}$.

18. Ejercicio 18

Demostración Sea $x \in U \subset I^2$ con U entorno, entonces $\exists V \subset U$ abierto tal que $x \in V \subset U$, y como V es abierto $\exists \epsilon > 0$ tal que $x \in (x-\epsilon, x+\epsilon) \cap I^2 \subset V \subset U$ donde $(x-\epsilon, x+\epsilon) \cap I^2$ es abierto conexo. Pero no puede ser localmente arco-conexo pues entonces la cantidad de componente conexas y arco-conexas sería igual pero I^2 es conexo y no arco-conexo. Resta ver $\pi_0(I^2)$! Pero si vemos la demostración de que I^2 no es arco-conexo vemos que el problema era cruzar intervalos pues ahí obteniamos no numerables abiertos disjuntos! Por ende es natural que $\pi_0(I^2) = \{\{a\} \times [0,1]\}$.

19. Ejercicio 19

Demostración Tanto a) como b) son claros, asi que veamos el c)!

- $K \times [0,1] \cup \{0\} \times [0,1]$ Es claro que las componentes son $\{\frac{1}{n}\} \times [0,1]$ o $\{0\} \times [0,1]$
- $A \setminus \{(0, \frac{1}{2})\}$ Que es A??
- $B \cup [0,1] \times \{0\}$ Que es B ??
- $K \times [0,1] \cup -K \times [-1,0] \cup [0,1] \times -K \cup [-1,0] \times K$ Posta no entiendo este espacio...