Red Wine Quality

Data

- "Red Wine Quality" From Keggle
- 11 Independent Variables -> Fixed acidity, Volatile acidity, Citric acid, Residual sugar, Chlorides, Free sulfur dioxide, Total sulfur dioxide, Density, pH, Sulphates, Alcohol
- 1 Dependent Variable -> Quality
 - Scale From 0 (Worst) to 10 (Best)
- 1599 Samples

Data Example

fixed acidit	volatile acic citric	acid	residual su	chlorides	free sulfur	total sulfur	density	pH	sulphates	alcohol	quality
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.8	0.88	0	2.6	0.098	25	67	0.9968	3.2	0.68	9.8	5
7.8	0.76	0.04	2.3	0.092	15	54	0.997	3.26	0.65	9.8	5
11.2	0.28	0.56	1.9	0.075	17	60	0.998	3.16	0.58	9.8	6
7.4	0.7	0	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
7.4	0.66	0	1.8	0.075	13	40	0.9978	3.51	0.56	9.4	5
7.9	0.6	0.06	1.6	0.069	15	59	0.9964	3.3	0.46	9.4	5
7.3	0.65	0	1.2	0.065	15	21	0.9946	3.39	0.47	10	7
7.8	0.58	0.02	2	0.073	9	18	0.9968	3.36	0.57	9.5	7
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	5
6.7	0.58	0.08	1.8	0.097	15	65	0.9959	3.28	0.54	9.2	
7.5	0.5	0.36	6.1	0.071	17	102	0.9978	3.35	0.8	10.5	
5.6	0.615	0	1.6	0.089	16	59	0.9943	3.58	0.52	9.9	
7.8	0.61	0.29	1.6	0.114	9	29	0.9974	3.26	1.56	9.1	5
8.9	0.62	0.18	3.8	0.176	52	145	0.9986	3.16	0.88	9.2	5
8.9	0.62	0.19	3.9	0.17	51	148	0.9986	3.17	0.93	9.2	5
8.5	0.28	0.56	1.8	0.092	35	103	0.9969	3.3	0.75	10.5	7
8.1	0.56	0.28	1.7	0.368	16	56	0.9968	3.11	1.28	9.3	5
7.4	0.59	0.08	4.4	0.086	6	29	0.9974	3.38	0.5	9	4
7.9	0.32	0.51	1.8	0.341	17	56	0.9969	3.04	1.08	9.2	6

Multiple Linear Regression

Find a Linear Equation to Predict Red Wine's quality

```
df <- read.csv("winequality-red.csv", sep=",", header = T)
FixedAcidity <- df[,1]
VolatileAcidity <- df[,2]
CitricAcid <- df[,3]
ResidualSugar <- df[,4]
Chlorides <- df[,5]
FreeSulfurDioxide <- df[.6]
TotalSulfurDioxide <- df[,7]
Density <- df[,8]
PH <- df[,9]
Sulphates <- df[,10]
Alcohol <- df[,11]
Quality <- df[,12]
model <- lm(Quality ~ FixedAcidity + VolatileAcidity + CitricAcid + ResidualSugar
+ Chlorides + FreeSulfurDioxide + TotalSulfurDioxide + Density + PH + Sulphates + Alcohol)
summary (model)
```

Multiple Linear Regression : Result

```
Call:
lm(formula = Quality ~ FixedAcidity + VolatileAcidity + CitricAcid +
   ResidualSugar + Chlorides + FreeSulfurDioxide + TotalSulfurDioxide +
   Density + PH + Sulphates + Alcohol)
Residuals:
              10 Median
-2.68911 -0.36652 -0.04699 0.45202 2.02498
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
FixedAcidity
                   2.499e-02 2.595e-02
                                         0.963
                                                 0.3357
VolatileAcidity
                  -1.084e+00 1.211e-01 -8.948
                                                < 2e-16 ***
CitricAcid
                  -1.826e-01 1.472e-01 -1.240
ResidualSugar
                   1.633e-02 1.500e-02 1.089
Chlorides
                  -1.874e+00 4.193e-01 -4.470 8.37e-06 ***
FreeSulfurDioxide 4.361e-03 2.171e-03
                                        2.009
TotalSulfurDioxide -3.265e-03 7.287e-04 -4.480 8.00e-06 ***
```

```
Density
                  -1.788e+01 2.163e+01 -0.827
                  -4.137e-01 1.916e-01 -2.159
                                                0.0310 *
                  9.163e-01 1.143e-01 8.014 2.13e-15 ***
Sulphates
Alcohol
                   2.762e-01 2.648e-02 10.429 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 0.648 on 1587 degrees of freedom Multiple R-squared: 0.3606, Adjusted R-squared: 0.3561 F-statistic: 81.35 on 11 and 1587 DF, p-value: < 2.2e-16

```
Quality = 21.97 + (0.02499 * FixedAcidity)
         +(-1.084 * VolatileAcidity)
         +(-0.1826*CitricAcid)
         + (0.01633 * ResidualSugar)
         +(-1.874*Chlorides)
         + (0.004361 * FreeSulfurDioxide)
         +(-0.003265 * TotalSulfurDioxide)
         +(-17.88*Density)+(-0.4137*PH)
         + (0.9163 * Sulphates) + (0.2762 * Alcohol)
```

- Significant Variables
 - Volatile Acidity, Chlorides, Total Sulfur Dioxide, Sulphates, Alcohol
- R-squared = 0.3606 (Quite Low)

Multiple Linear Regression: R-squared

- Why R-squared is quite low
 - Quality
 - Discrete
 - Little Sample in some Quality score

Multiple Linear Regression : Correlation

- Volatile Acidity
 - Correlation coefficient = -0.3905578

Multiple Linear Regression : Correlation

- Sulphates
 - Correlation coefficient = 0.2513971

Multiple Linear Regression: Correlation

- Alcohol
 - Correlation coefficient = 0.4761663

Anova-2-Factors (Fixed Acidity, Residual Sugar)

fixed acidity	residua
7.4	
7.8	
7.8	
11.2	
7.4	
7.4	
7.9	
7.3	
7.8	
7.5	
6.7	
7.5	

1.9 2.6 2.3 5 1.9 5 1.9 6 1.8 5 1.6 5 1.2 5 6.1 1.8 7 6.1 7 1.6 1.6 5	esidual sugar	quality
2.6 2.3 5 1.9 5 1.8 6 1.6 5 1.2 5 6.1 1.8 7 6.1 7 1.6 5	1.9	_
1.9 5 1.9 6 1.8 5 1.6 5 1.2 5 2 5 6.1 7 1.6 7 5 5	2.6	5
1.9 1.8 1.6 1.2 5 2 6.1 1.8 7 6.1 7 1.6	2.3	5
1.9 1.8 6 1.6 5 1.2 5 6.1 1.8 7 6.1 7 1.6	1.9	5
1.8 1.6 5 1.2 5 6.1 1.8 7 6.1 7 1.6	1.9	
1.2 5 2 6.1 5 1.8 7 6.1 7 1.6 5	1.8	6
2 6.1 1.8 7 6.1 7	1.6	5
6.1 5 1.8 7 6.1 7 1.6 5	1.2	5
6.1 1.8 7 6.1 7 1.6	2	
6.1 7	6.1	5
1.6	1.8	7
1.6	6.1	7
1.6	1.6	
	1.6	5

ResSugar			fixed_acidi	ty	
0	0.5	0	0	6	58
0.5	1	2	6	7	254
0	1.5	50	7	8	504
0	2	464	8	9	316
2	2.5	616	9	10	191
2.5	3	279	10	11	138
3	25	240	11	12	72
		0	12	16	66

Anova-2-Factors (Fixed Acidity, Residual Sugar)

ตารางแสดง Wine Quality ในระดับ Fixed Acidity และ Residual Sugar ต่างๆ

			residual sugar						
			[2,2.5)	[2.5,3)	>=3				
	[0,6)	5.78125	6.09090	5	6				
	[6,7)	5.393258426	5.66346	5.57894	5.428571428571				
	[7,8)	5.479768786	5.60696	5.57894	5.314814814814				
fixed egidity	[8,9)	5.670588235	5.56557	5.61904	5.565217391304				
fixed_acidity	[9,10)	5.923076923	5.57142	5.53333	5.7				
	[10,11)	5.925925925	5.84782	6	5.923076923076				
	[11,12)	6.083333333	5.83333	5.72222	6.166666666666				
	>=12	5.571428571	5.85	5.88888	5.904761904761				

Anova-2-Factors (Fixed Acidity, Residual Sugar)

SST	1.988783830906	df	31
SSA	0.20855349200	df	7
SSB	0.01286175858	df	3
SSE	1.76736858031	df	21

Hypothesis	Mean Square (MS)	Test Statistic (f)	Rejection region(α = 0.05)	
H_{0A} vs H_{0A}	0.02979335600	0.35400678895	2.4876	Do not Reject
$H_{0B}vs H_{0B}$	0.00428725286	0.05094144544	3.0725	Do not Reject
Error	0.08416040858			

Analysis of Categorical Data

		residual sugar						
		[0,2)	[2,2.5)	[2.5,3)	>=3			
	[0,6)	32	22	1	3			
	[6,7)	89	104	19	42			
	[7,8)	173	201	76	54			
fived exists.	[8,9)	85	122	63	46			
fixed_acidity	[9,10)	39	77	45	30			
	[10,11)	27	46	39	26			
	[11,12)	12	24	18	18			
	>=12	7	20	18	21			

Independence test

Hypothesis Test:

Null Hypothesis (Ho)=> Pij = Pi*Pj

Alternative hypothesis (Ha)=> Ho is not true

ทดสอบค่า residual sugar Independence กับ fixed_acidity หรือไม่

Analysis of Categorical Data

		residual sugar						
		[0,2)	[2,2.5)	[2.5,3)	>=3			
	[0,6)	16.8305	22.3439	10.1200	8.70544			
	[6,7)	73.7060	97.8511	44.3189	38.1238			
	[7,8)	146.251	194.161	87.9399	75.6472			
fixed exidity	[8,9)	91.6973	121.736	55.1369	47.4296			
fixed_acidity	[9,10)	55.4246	73.5809	33.3264	28.6679			
	[10,11)	40.0450	53.1632	24.0787	20.7129			
	[11,12)	20.8930	27.7373	12.5628	10.8067			
	>=12	19.1519	25.4258	11.5159	9.90619			

โดยจะได้ค่าต่างๆดังนี้ (กำหนด α = 0.001)

- Test Statistic = 120.017
- Degree of Freedom = 21
- $\alpha = 0.001$
- Chisquare test = 46.797

Note: แม้ว่า α = 0.001 ก็ยัง Reject

สรุป: ค่า Teststatistic > ค่า Chisquare test ดังนั้นเราจะปฏิเสธสมมติฐานนี้และ สรุปได้ว่าค่า Residual Sugar ที่ระดับต่างๆ นั้น Dependence ต่อ Fixd_Acidity

Analysis of variance

ตารางแสดงถึงค่าของน้ำตาลที่มีอยู่ในไวน์ โดยแยกกลุ่มออก

Group of quality	นภาพข	เองไวน์	Sample Mean	Sample SD								
3	2.2	2.1	4.25	1.5	3.4	2.1	1.2	2.1	5.7	1.8	2.635	1.401596
4	4.4	1.5	2.8	2.1	2.1	1.5	1.4	3.4	1.3	1.6	2.21	1.024641
5	2	1.5	2	2.5	2.4	2.4	2	2.5	1.8	2	2.11	0.331495
6	1.9	2	1.6	2	2.8	2.1	2.4	2	2	2.6	2.14	0.356526
7	2.2	2.2	2.6	1.8	5.6	3.5	5.6	2.5	2.5	3.2	3.17	1.370361
8	1.4	2.2	5.2	2.8	2.6	2.6	2	2.3	1.8	1.9	2.48	1.045413
				9			0			Xbar	2.4575	

ภาพจาก

Analysis of variance

สมมติฐานคั้งต้นให้ค่าเฉลี่ยของปริมาณน้ำตาลที่อยู่ในกลุ่มของคุณภาพต่างๆมีปริมาณที่เท่ากัน

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6$

สมมติฐานรองคือค่าเฉลี่ยของปริมาณน้ำตาลที่อยู่ในกลุ่มของคุณภาพต่างๆมีปริมาณที่ไม่เท่ากัน

 H_a : Not all μ'_i s are equal (at least two of the μ i's are different)

Analysis of variance

	df	SS	MS	f	Rejection region	
Treatment	5	301.4660625	60.2932125	58.1406621	3.37691159	REJECT
Error	54	55.99925	1.037023148			
Total	59	357.4653125				

ทำการทดสอบ Test Statistic ที่ค่า $oldsymbol{lpha} = 0.01$

 H_0 is <u>reject</u>. ค่าเฉลี่ยของปริมาณน้ำตาลที่อยู่ในกลุ่มของคุณภาพต่างๆมีปริมาณที่ไม่เท่ากัน

สรุป ค่าเฉลี่ยของปริมาณน้ำตาลในไวน์ที่อยู่ในกลุ่มของคุณภาพไวน์ที่ระคับต่างๆมีปริมาณที่ไม่เท่ากัน