11) Assume that f: [a,b] -> IR is a twice continuously differentiable function with $x \neq a(a,b)$ such that $f(x \neq b) = 0$ and $f'(x \neq b) \neq 0$. Please show that there exists a 500 such that the sequence of Exn3 generated by Newton's method converges to x^* when $x_0 \in (x^*-1)$, x^*+1 Pf: the noot of $f \iff$ the fixed point of g $f(x^*) = 0 \iff$ $g(x^*) = x^*$ where $g(x) = x - \frac{f(x)}{f(x)}$ $f(x^*) = 0 \iff$ $f(x^*) = x^*$ $f(x^*) = x^*$ Claim: 9 is contractive on $[x^*-f, x^*+f]$. $\frac{\int \operatorname{Claim} \left| g(x_1) - g(x_2) \right| \leq \lambda \left| \chi_1 - \chi_2 \right| \iff \left| g'(\chi_3) \right| \leq \left| \left| \chi_3 \circ (a_3 b) \right|$ consider $g'(x) = 1 - \frac{f'(x)^2 - f(x)f'(x)}{(f'(x))^2} = \frac{f(x)f'(x)}{(f'(x))^2}$ x^* is $g'(x^*) = \frac{\int (x^*) \int (x^*)}{(f'(x^*))^2} = 0$ Since f, f', f'' are conti. then we have g, g' are conti. take &= (, 3 870 s.t. $|x-x^*| < \delta \implies |g'(x) - g'(x^*)| = |g'(x)| < \varepsilon = |$ That is, for $x \in (x^*-S, x^*+S)$, |g(x)| < | $\frac{2^{\circ} \text{Claim}}{2^{\circ}} \cdot \text{Claim} \cdot \text{g} : [x^*-S, x^*+S] \rightarrow [x^*-S, x^*+S]$ $\forall x \in [x^*-S, x^*+S]$, $|g(x)-x^*|=|g(x)-g(x^*)|$ = 1 9'cc) (x-x*) | with c between X and X* < /x-x*/ < } i.e. x*-8 < g(x) < x*+ \$ Hence, 9 is contractive on [x*-8, x*+8],

by Fixed-point iteration Thm, for any
$$x_0 \in [x^*-\delta, x^*+\delta]$$
 the seq. $\{x_n\} \xrightarrow{n \to \infty} x^*$

(1) Show that Newton's iterative method is quardratic convergence.

Pf: by Taylor's expansion at x_n ,

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{f'(x_n)}{2}(x - x_n)^2 + R_n$$

$$x^* \text{ is } = f(x_n) + f'(x_n)(x^*-x_n) + \frac{f(x_n)}{2}(x^*-x_n)^2$$

$$\Rightarrow f(x_n) + f'(x_n)(x^*-x_n) = -\frac{f'(x_n)}{2f(x_n)}(x^*-x_n)^2$$

$$x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$$

$$x^* - x_{n+1} = -\frac{f'(x_n)}{2f(x_n)}$$

$$x^* - x_{n+1} = -\frac{f'(x_n)}{2f(x_n)}$$

$$\Rightarrow \frac{|x^*-x_{n+1}|}{|x^*-x_n|^2} = |\frac{f'(x_n)}{2f(x_n)}|$$
where $0 \le |\frac{f'(x_n)}{2f(x_n)}| < \infty$

1.10. Finally is quardratic convergence.