Redes de computadores

Camada de rede

Prof. Luís Eduardo Tenório Silva luis.silva@garanhuns.ifpe.edu.br

Sumário

- Camada de rede
- Repasse e roteamento
- Modelo de serviço
- Redes de datagramas
- Circuitos virtuais e datagramas
- Roteador de pacotes
- IP
- Cabeçalho IPv4
- Fragmentação do datagrama IP

Camada de Rede

- Oferece o serviço de comunicação hospedeiro (host) a hospedeiro;
- Função de repasse e roteamento de pacotes;
- Transporta os pacotes de um hospedeiro remetente a um hospedeiro destinatário;
- A informação manipulada pela camada de rede (PDU) são chamadas de pacotes ou datagramas;
- O dispositivo físico que lida com pacotes é denominado roteador;

Símbolo do roteador (Comutador de pacotes)

Repasse e roteamento

Repasse

» Recebe o pacote em um enlace e o conduz para outro enlace apropriado;

Roteamento

- » Determina a rota ou caminho que os pacotes devem percorrer do remetente a um destinatário;
- » Calcula o melhor caminho que os pacotes devem percorrer;
- Os algoritmos que calculam os caminhos são denominados algoritmos de roteamento;

Repasse e roteamento

- Cada roteador possui uma tabela de repasse
 - » O roteador repassa um pacote examinando o valor de um campo no cabeçalho do pacote;
 - » Dependendo do protocolo de camada de rede, o valor do cabeçalho pode ser o endereço de rede de destino (IP) ou uma indicação da conexão à qual ele pertence (MPLS);

Repasse e roteamento

- O algoritmo de roteamento determina os valores que serão definidos na tabela de repasse local;
 - » Algoritmos centralizados: Executa os cálculos em um local central e repassa aos demais roteadores;
 - » Algoritmos decentralizado: Um pedaço do algoritmo executa em cada roteador;
- O roteador compartilham mensagens que são utilizadas para configurar sua tabela de repasse;
 - » Em pequenas redes, é possível configurar rotas estáticas em todos os roteadores, dispensando o uso de algoritmos de roteamento.
 - » Para redes do tamanho da internet, são necessários algoritmos de roteamento;

Modelo de serviço

- Modelo de serviço da camada de rede da Internet: melhor esforço (best-effort)
 - » Não garante largura de banda;
 - » Não possui garantia contra perdas;
 - » Os pacotes são mandados em qualquer ordem;
 - » Não garante temporização;
 - » Não possui indicação de congestionamento;

Modelo de serviço

- Outras arquiteturas de camada de rede (ATM, Frame Relay, MPLS) garantem alguns serviços:
 - » Orientado a conexão;
 - » Com largura de banda mínima ou constante garantida;
 - » Ordenação;
 - » Indicação de congestionamento.

Modelo de serviço

Arquitetura da rede	Modelo de serviço	Garantia de largura de banda	Garantia contra perda	Ordenação	Temporização	Indicação de congestionamento
Internet	Melhor esforço	Nenhuma	Nenhuma	Qualquer ordem possível	Não mantida	Nenhuma
ATM	CBR	Taxa constante garantida	Sim	Na ordem	Mantida	Não haverá congestionamento
ATM	ABR	Mínima garantida	Nenhuma	Na ordem	Não mantida	Indicação de congestionamento

Redes de datagramas

- O sistema final de origem marca o pacote com o endereço do sistema final de destino;
- Roteadores em uma rede de datagrama não mantêm nenhuma informação de estado de circuitos virtuais;
- Um pacote passa por uma série de roteadores antes de chegar ao destino;
- Cada roteador utiliza o endereço de destino do pacote para repassá-lo;
- O endereço de destino de um datagrama IPv4 possui 32 bits.

Redes de datagramas

Faixa de endereços de destino	Interface de enlace
11001000 00010111 00010000 00000000	
até	0
11001000 00010111 00010111 11111111	
11001000 00010111 00011000 00000000	
até	1
11001000 00010111 00011000 11111111	
11001000 00010111 00011001 00000000	
até	2
11001000 00010111 00011111 11111111	
senão	3

Circuitos virtuais e datagramas

Redes de circuitos virtuais (CV)

- » Raízes no mundo da telefonia;
- » Os roteadores mantêm estabelecimento de canais e estados das chamadas;
- » Mais complexo que uma rede de datagramas;
- » Complexidade dentro da própria rede.

Redes de datagramas

- » Conectar computadores;
- » Modelo de rede mais simples possível;
- » Funcionalidades adicionais (entrega em ordem, transferência confiável, controle de congestionamento) implementada na camada superior.

Roteador de pacotes

- Arquitetura de um roteador
 - » Portas de entrada
 - » Elemento de comutação
 - » Portas de saída
 - » Processador de roteamento

Visão alto nível dos elementos de um roteador

Camada de rede

- 3 principais componentes
 - » Protocolo IP
 - » Protocolos de roteamento: Determinam o caminho que os datagramas devem seguir
 - » Protocolo ICMP: Comunica os erros e outras informações da Internet

- Internet Protocol Protocolo de Internet
- Protocolo responsável pelo endereçamento e repasse de pacotes/datagrama na internet;
- Duas versões em uso na internet:
 - » IPv4 (RFC 791)
 - » IPv6 (RFC 2460, RFC 4291)
- Tamanho padrão do cabeçalho IPv4: 20 bytes

32 bits

Versão	Comprimento do cabeçalho	Tipo de serviço	Comprimento do datagrama (byte			
	Identificador de	e 16 bits	Flags	Deslocamento de fragmentação (13 bits)		
Tempo de vida		Protocolo da camada superior	Soma de verificação do cabeçalho			
Endereço IP da origem						
Endereço IP do destino						
Opções (se houver)						
Dados						

- Versão (4 bits): Especifica a versão do protocolo;
- Comprimento do cabeçalho (16 bits): Comprimento total do cabeçalho (padrão 20 bytes)
- Tipo de serviço (8 bits): Utilizado para diferenciar os diferentes tipos de datagrama IP (ex: diferenciar datagramas de tempo real de tráfego que não é de tempo real)
- Comprimento do datagrama (16 bits): Tamanho total do datagrama IP + dados
- Identificador, flags e deslocamento de fragmentação (32 bits): Utilizado para fragmentar um datagrama IP.
- TTL (8 bits): Garante que um datagrama não fique circulando infinitamente na rede. A cada roteador o valor é decrementado. O o datagrama é descartado.

 Protocolo de camada superior (8 bits): Usado no sistema final para identificar qual protocolo da camada de transporte deverá ser utilizado.

» 0x06: TCP

» 0x17: UDP

- Soma de verificação (16 bits):
 Utilizado para detectar erros no datagrama. Calculado em cada roteador devido a mudança do TTL e outros campos.
- Endereço IP de origem (32 bits): Identifica o endereço IP de origem.
- Endereço IP de destino (32 bits):
 Identifica o endereço IP de destino.
- **Opções (32 bits)**: Permite estender o cabeçalho IP. Usado raramente.

 Dados: Dados carregados pelo datagrama. Possuem o segmento da camada de transporte (TCP ou UDP) + dados da aplicação ou mensagens ICMP.

- Vários protocolos de enlace não podem transportar pacotes do mesmo tamanho.
 - » Quadros Ethernet devem conter no máximo 1500 bytes;
 - » Quadros Jumbo Frames podem transportar acima de 9000 bytes;
 - » Enlaces de longa distância contém no máximo 576 bytes;
- O MTU define a quantidade máxima que pode ser transportado pela camada de enlace;
- Quando um pacote possui um tamanho maior que o tamanho do MTU, é necessário fragmentar os dados do datagrama IP em 2 ou mais datagramas menores.
- Fragmentos precisam ser reconstruídos antes de ser encaminhado à camada de transporte.
 - » Os sistemas finais são responsáveis por reconstruir os datagramas;

- Os campos identificação, flag e deslocamento são usados para identificar fragmentação no datagrama e reconstruí-lo no sistema final;
 - » Identificação: Identifica o número do datagrama criado pelo sistema final de origem;
 - » Flag: Quando há fragmento, aponta se existe ou não novos fragmentos;
 - » Deslocamento: Define a posição em bytes onde os dados devem ser inseridos.
- Datagramas são preenchidos com um número de identificação e são incrementados a cada novo datagrama criado pelo sistema final de origem.

Fragmento	Bytes	ID	Deslocamento	Flag
1º fragmento	1.480 bytes no campo de dados do datagrama IP	identificação = 777	0 (o que significa que os dados devem ser inseridos a partir do byte 0)	1 (o que significa que há mais)
2º fragmento	1.480 bytes de dados	identificação = 777	185 (o que significa que os dados devem ser inseridos a partir do byte 1.480. Note que 185 x 8 = 1.480)	1 (o que significa que há mais)
3º fragmento	1.020 bytes de dados (= 3.980 -1.480 -1.480)	identificação = 777	370 (o que significa que os dados devem ser inseridos a partir do byte 2.960. Note que 370 x 8 = 2.960)	0 (o que significa que esse é o último fragmento)

Dúvidas?