- 1.1. MC Fragen: Supremum und Infimum in \mathbb{R} . Wählen Sie die einzige richtige Antwort.
- (a) Wenn $A \subset \mathbb{R}$ ein Maximum besitzt, dann besitzt $A \setminus \mathbb{Q}$ auch ein Maximum.

Richtig

Falsch

Lösung: Wir geben ein Gegenbeispiel: Sei $A = \{x \in \mathbb{R} \mid x \leq c\}$, wobei $c \in \mathbb{Q}$ ist. Dann ist $\max(A) = c$, aber $A \setminus \mathbb{Q} = \{x \in \mathbb{R} \setminus \mathbb{Q} \mid x \leq c\}$ hat kein Maximum.

(b) Sei $A = \left\{ \frac{1}{1+n} \mid n \in \mathbb{N} \right\}$. Dann gilt

 $\bigcap \max(A) = 1, \min(A) = 0.$

 \bullet max(A) = 1, inf(A) = 0.

 \bigcirc A hat kein Maximum, $\inf(A) = 0$. \bigcirc $\sup(A) = 1$, $\min(A) = 0$.

- (c) Sei S eine nichtleere, nach oben beschränkte Teilmenge von \mathbb{R} und sei $a \in \mathbb{R}$ ihr Supremum. Dann gilt:
 - \bigcirc für jedes $\varepsilon > 0$ existiert eine obere Schranke b von S, so dass $a \varepsilon < b < a$;
 - $\bigcirc S \setminus \{a\}$ besitzt ein Maximum;
 - $S \cup \{a\}$ besitzt ein Maximum;
- 1.2. Ordnung der reellen Zahlen. Zeigen Sie die folgenden beiden Aussagen über die Ordnung der reellen Zahlen. Geben Sie jede Verwendung der Axiome O1-O4 und K1, K2 explizit an.
 - (i) Für alle $x, y, u, v \in \mathbb{R}$ mit 0 < x < y und 0 < u < v gilt $x \cdot u < y \cdot v$.
 - (ii) Für alle $s, t, \alpha \in \mathbb{R}$ mit s < t und $\alpha < 0$ gilt $\alpha \cdot s > \alpha \cdot t$.

Lösung:

(i) Aus y > x folgt durch Subtraktion von x, dass y - x > 0 (Axiom K1). Da auch u>0 gilt, folgt daraus $(y-x)\cdot u\geq 0$ (Axiom K2). Es kann nicht $(y-x)\cdot u=0$ gelten, da R ein Körper ist und somit keine Nullteiler enthält (vgl. Abschnitt 5.5.4 im Diskrete Mathematik Skript). Also gilt $(y-x) \cdot u > 0$. Analog erhalten wir $y \cdot (v - u) > 0$. Durch Addition von $(y - x) \cdot u$ (Axiom K1) folgt

$$y \cdot v - x \cdot u = y \cdot (v - u) + (y - x) \cdot u \ge (y - x) \cdot u. \tag{1}$$

1. März 2024 1/9 Da wir schon wissen, dass die rechte Seite von (1) grösser als 0 ist, folgt aus der Transitivität (Axiom O2), dass

$$y \cdot v - x \cdot u \ge 0. \tag{2}$$

Würde in (2) Gleichheit gelten, so wäre wegen (1) sowohl $(y-x) \cdot u \leq 0$ als auch $(y-x) \cdot u > 0$ (zuvor gezeigt), was der Antisymmetrie (Axiom O3) widerspricht. Somit gilt in (2) die strikte Ungleichung >. Letztlich verwenden wir Axiom K1, um $x \cdot u$ zu addieren, woraus wie gewünscht $y \cdot v > x \cdot u$ folgt.

(ii) Da $\alpha < 0$ ist, folgt durch Addition von $-\alpha$, dass $-\alpha > 0$ (Axiom K1). Wie am Beginn des Beweises von Teil (i) können wir folgern, dass $(-\alpha) \cdot (t-s) > 0$. Multiplizieren wir dies mittels Distributivität aus, so erhalten wir

$$(-\alpha) \cdot t + (-\alpha) \cdot (-s) > 0. \tag{3}$$

Korollar 1.1.6(3) (ausführlichere Version aus der Vorlesung) impliziert $(-\alpha) \cdot t = -\alpha \cdot t$ und $(-\alpha) \cdot (-s) = \alpha \cdot s$. Somit besagt (3), dass $\alpha \cdot s - \alpha \cdot t > 0$. Mit Axiom K1 dürfen wir $\alpha \cdot t$ addieren, und schliessen wie gewünscht $\alpha \cdot s > \alpha \cdot t$.

1.3. Monotonie und Eindeutigkeit von Wurzeln. Seien $a, b \in \mathbb{R}$ und $n \ge 1$ eine natürliche Zahl.

(i) Zeigen Sie, dass

$$b^{n} - a^{n} = (b - a)(b^{n-1} + b^{n-2}a + \dots + ba^{n-2} + a^{n-1}).$$

- (ii) Folgern Sie, dass aus $0 \le a < b$ folgt, dass $0 \le a^n < b^n$.
- (iii) Folgern Sie, dass jede reelle Zahl t höchstens eine nichtnegative n-te Wurzel hat, also dass es höchstens eine reelle Zahl $a \ge 0$ gibt mit $a^n = t$.

Lösung:

(i) Aus der Distributivität der Multiplikation folgt

$$(b-a)(b^{n-1}+b^{n-2}a+\cdots+ba^{n-2}+a^{n-1})$$

$$=b(b^{n-1}+b^{n-2}a+\cdots+ba^{n-2}+a^{n-1})-a(b^{n-1}+b^{n-2}a+\cdots+ba^{n-2}+a^{n-1})$$

$$=(b^n+b^{n-1}a+\cdots+b^2a^{n-2}+ba^{n-1})-(ab^{n-1}+b^{n-2}a^2+\cdots+ba^{n-1}+a^n),$$

und aus der Assoziativität und Kommutativität der Addition und Multiplikation folgt

$$(b^{n} + b^{n-1}a + \dots + b^{2}a^{n-2} + ba^{n-1}) - (b^{n-1}a + b^{n-2}a^{2} + \dots + ba^{n-1} + a^{n})$$

$$= b^{n} + (b^{n-1}a - ab^{n-1}) + \dots + (ba^{n-1} - a^{n-1}b) - a^{n}$$

$$= b^{n} - a^{n}.$$

(ii) Aus $0 \le a < b$ folgt mit den Kompatibilitätsaxiomen der Ordnung, dass $a^n \ge 0$ und dass $b^{n-1} + b^{n-2}a + \cdots + ba^{n-2} + a^{n-1} > 0$, da alle Summanden nichtnegativ sind und zumindest der erste Summand b^{n-1} strikt positiv ist. Da auch b-a>0 ist, folgt

ETH Zürich

FS 2024

$$(b-a)(b^{n-1}+b^{n-2}a+\cdots+ba^{n-2}+a^{n-1})>0.$$

Die linke Seite letzterer Ungleichung ist aufgrund von Teil (i) aber gleich $b^n - a^n$. Wir erhalten also $b^n > a^n$. Somit haben wir gezeigt, dass $0 \le a^n < b^n$, wenn $0 \le a < b$.

- (iii) Nehmen wir an, dass es zwei verschiedene nichtnegative reelle Zahlen a, b gibt, deren n-te Potenz gleich t ist. Ohne Beschränkung der Allgemeinheit können wir annehmen, dass a < b (ansonsten vertauschen wir a und b). Dann folgt aus Teil (ii), dass $a^n < b^n$ gilt, was der Annahme widerspricht.
- **1.4. Dichtheit von** \mathbb{Q} in \mathbb{R} . Lesen Sie über die Dichtheit von \mathbb{Q} in \mathbb{R} im Buch von Königsberger: Satz 4 und Satz 5 in Kapitel 2.3. (LINK)
- **1.5. Supremum und Infimum I.** Seien A, B zwei nichtleere beschränkte Teilmengen von \mathbb{R} und $s \in \mathbb{R}$.
 - (i) Bestimmen Sie das Supremum von $s \cdot A := \{s \cdot a \mid a \in A\}$. *Hinweis:* Fallunterscheidung nach dem Vorzeichen von s.
 - (ii) Zeigen Sie, dass für die Menge $A + B := \{a + b \mid a \in A, b \in B\}$ gilt:

$$\sup(A+B) = \sup(A) + \sup(B).$$

Lösung: Wir verwenden die folgende Charakterisierung des Supremums einer Menge: $R = \sup A \iff$ die folgenden zwei Bedingungen erfüllt sind:

- für alle Elemente $a \in A$ gilt $a \leq R$;
- für alle $\varepsilon > 0$ gibt es ein Element $a \in A$, so dass $a > R \varepsilon$.

Die erste dieser Bedingungen bedeutet genau, dass R eine obere Schranke von A ist, und die zweite Bedingung besagt genau, dass es keine kleinere obere Schranke von A geben kann. Somit beschreiben die beiden Bedingungen zusammen gemäss Definition genau das Supremum von A.

1. März 2024

(i) Wir behaupten, dass

$$\sup(s \cdot A) = \begin{cases} s \cdot \sup(A), & \text{falls } s \ge 0, \\ s \cdot \inf(A), & \text{falls } s < 0. \end{cases}$$

Der Fall s=0 ist unkompliziert: $\sup(s\cdot A)=0=0\cdot \sup(A)$, da $s\cdot A=\{0\}$. Wir nehmen nun an, dass s>0. Sei $R\in\mathbb{R}$ das Supremum von A. Dann gilt für alle $a\in A$, dass $s\cdot a\leq s\cdot R$. Sei nun $\varepsilon>0$. Dann gibt es ein $a\in A$ mit $a>R-\frac{\varepsilon}{s}$. Es folgt für das Element $s\cdot a$ von $s\cdot A$, dass $s\cdot a>s\cdot (R-\frac{\varepsilon}{s})=s\cdot R-\varepsilon$. Somit haben wir die beiden obigen Bedingungen für das Supremum für die Zahl $s\cdot R$ verifiziert. In anderen Worten haben wir gezeigt, dass $\sup(s\cdot A)=s\cdot R=s\cdot \sup(A)$, falls s>0. Sei nun s<0 und bezeichne mit r das Infimum von A. Dann gilt für alle $a\in A$, dass $s\cdot a\leq s\cdot r$ (da die Multiplikation mit der negativen Zahl s die Ungleichung s=10. Sei nun wieder s=10. Dann gibt aufgrund der Charakterisierung des Infimums von s=11. Sei nun wieder s=12. Dann gibt aufgrund der Charakterisierung des Infimums von s=13. Bedingungen am Anfang der Lösung für das Supremum für die Zahl $s\cdot r$ verifiziert. In anderen Worten haben wir gezeigt, dass $s \cdot s \cdot r = s \cdot \inf(A)$, falls s<0.

- (ii) Seien $R_A = \sup(A)$ und $R_B = \sup(B)$. Für alle Elemente $a \in A, b \in B$ gilt dann, dass $a + b \leq R_A + R_B$. Sei nun $\varepsilon > 0$ und wähle $a \in A$ mit $a > R_A \frac{\varepsilon}{2}$ und $b \in B$ mit $b > R_B \frac{\varepsilon}{2}$. Dies ist möglich aufgrund der einleitenden Charakterisierung des Supremums oben. Es folgt für das Element a + b von A + B, dass $a + b > R_A \frac{\varepsilon}{2} + R_B \frac{\varepsilon}{2} = R_A + R_B \varepsilon$. Somit haben wir die beiden Bedingungen in der Charakterisierung des Supremums für die Zahl $R_A + R_B$ verifiziert. In anderen Worten haben wir gezeigt, dass $\sup(A + B) = R_A + R_B = \sup(A) + \sup(B)$.
- 1.6. Supremum und Infimum II. Bestimmen Sie das Infimum und Supremum und, falls vorhanden, das Minimum und Maximum der folgenden Teilmengen der reellen Zahlen:

$$A_{1} = \left\{ t + \frac{1}{t} \middle| t \in (0, \infty) \right\},$$

$$A_{2} = \left\{ \frac{1}{2+k} + \frac{1}{3+m} \middle| k, m \in \mathbb{N} \right\}.$$

Lösung: Wegen $t + \frac{1}{t} \ge t$ ist klar, dass $\sup A_1 = \infty$. Die Menge A_1 hat also insbesondere kein Maximum. Für t = 1 gilt $t + \frac{1}{t} = 2$, also ist $\inf(A_1) \le 2$. Auf der anderen Seite ist die Ungleichung $t + \frac{1}{t} \ge 2$ für t > 0 äquivalent zu

$$0 \le t^2 - 2t + 1 = (t - 1)^2$$

1. März 2024

(Multiplikation mit der positiven Zahl t). Da letztere Ungleichung $(t-1)^2 \ge 0$ immer wahr ist (Korollar 1.1.6(5)), ist auch die Ungleichung $t+\frac{1}{t}\ge 2$ für t>0 immer wahr. Somit ist 2 eine untere Schranke von A_1 , und damit ist $\inf(A_1)\ge 2$. Da wir schon gezeigt haben, dass $\inf(A_1)\le 2$ ist, muss $\inf(A_1)=2$ gelten. Da $2\in A_1$ ist (setze t=1), ist 2 auch das Minimum von A_1 .

Wir beweisen, dass 0 das Infimum von A_2 ist und dass A_2 kein Minimum hat. Da für alle $k,m\in\mathbb{N}$

$$\frac{1}{2+k} + \frac{1}{3+m} > 0 \tag{4}$$

gilt, ist 0 eine untere Schranke von A_2 . Sei $\varepsilon > 0$ und wähle $k, m \in \mathbb{N}$ so dass $k, m > \frac{2}{\varepsilon}$. Dann gilt:

$$\frac{1}{2+k}+\frac{1}{3+m}<\frac{1}{2+\frac{2}{\epsilon}}+\frac{1}{3+\frac{2}{\epsilon}}=\frac{\varepsilon}{2\varepsilon+2}+\frac{\varepsilon}{3\varepsilon+2}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Also ist ε keine untere Schranke von A_2 , und somit gibt es keine grössere untere Schranke als 0. Dies zeigt, dass $\inf(A_2) = 0$. Aus (4) folgt, dass $0 \notin A_2$, und somit hat A_2 kein Minimum.

Das Maximum und das Supremum von A_2 sind $\max A_2 = \sup A_2 = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$.

- 1.7. MC Fragen: Intervalle und komplexe Zahlen. Wählen Sie die einzige richtige Antwort.
- (a) Wenn A und B zwei Intervalle in \mathbb{R} sind, dann ist $A \cup B$ auch ein Intervall.

Richtig

• Falsch

Lösung: Wir geben ein Gegenbeispiel: Seien A = [0,1] und B = [2,3]. Dann ist $A \cup B = [0,1] \cup [2,3]$ kein Intervall.

(b) Seien a_0, \ldots, a_4 reelle Zahlen. Falls $z \in \mathbb{C}$ eine Lösung der Gleichung

$$a_0 + a_1 z + \dots + a_4 z^4 + z^5 = 0$$

ist, dann ist \bar{z} auch eine Lösung.

Richtig

O Falsch

Lösung: Für alle $z_1, z_2 \in \mathbb{C}$ und $a \in \mathbb{R}$ gilt:

$$\overline{z_1 z_2} = \bar{z}_1 \bar{z}_2, \quad \overline{z_1 + z_2} = \bar{z}_1 + \bar{z}_2, \quad \bar{a} = a.$$

Daraus folgt

$$a_{0} + a_{1}z + \dots + a_{4}z^{4} + z^{5} = 0 \iff \overline{a_{0} + a_{1}z + \dots + a_{4}z^{4} + z^{5}} = \overline{0}$$

$$\iff \overline{a_{0} + \overline{a_{1}z} + \dots + \overline{a_{4}z^{4}} + \overline{z^{5}}} = \overline{0}$$

$$\iff \overline{a_{0} + \overline{a_{1}z} + \dots + \overline{a_{4}(z)^{4}} + (\overline{z})^{5} = \overline{0}}$$

$$\iff a_{0} + a_{1}\overline{z} + \dots + a_{4}(\overline{z})^{4} + (\overline{z})^{5} = 0.$$

- (c) Seien z_1 und z_2 zwei komplexe Zahlen, so dass $|z_1| = |z_2|$. Dann gilt $z_1 = z_2$ oder $z_1 = -z_2$.
 - Richtig

• Falsch

Lösung: Wir geben ein Gegenbeispiel: $z_1 = 1$ und $z_2 = i$. Dann ist $|z_1| = |z_2| = 1$ aber $1 \neq i$ und $1 \neq -i$.

- (d) Sei z eine komplexe Zahl. Dann existiert ein $b \in \mathbb{R}$ mit z=ib genau dann, wenn $\bar{z}=-z$.
 - Richtig

○ Falsch

Lösung: Wir schreiben z in kartesischer Form z=a+ib mit $a,b\in\mathbb{R}$. Dann gilt

$$\bar{z} = -z \iff \overline{a+ib} = -(a+ib) \iff a-ib = -a-ib \iff a = -a$$

 $\iff a = 0.$

Dies zeigt, dass $\bar{z}=-z$ genau dann, wenn z=ib.

- 1.8. Komplexe Zahlen Wiederholung. Finden Sie für jede der folgenden komplexen Zahlen \boldsymbol{z}
 - ihre kartesische Form x + iy mit $x, y \in \mathbb{R}$,
 - ihren Betrag |z|,
 - ihre Konjugierte \bar{z} ,
 - ihr Reziprokes 1/z (in kartesischer Form):

$$z_1 = -42,$$
 $z_2 = -\frac{1}{i},$ $z_3 = \frac{1-i}{1+i},$ $z_4 = \cos \alpha + i \sin \alpha,$ $z_5 = \sin \alpha + i \cos \alpha,$ $z_6 = 2022 + i^{2021},$ $z_7 = (1+i)^6,$

wobei $\alpha \in \mathbb{R}$.

 ${\it Hinweis:}$ Vielleicht möchten Sie z_7 zuerst in Polarform schreiben.

Bemerkung: Die kartesische Form darf nicht i im Nenner erhalten! Z.B. ist 1+i OK, aber 1/(1+i) nicht.

Lösung:

- Wir betrachten $z_1 = -42$.
 - kartesische Form: -42;
 - Betrag: 42;
 - Konjugierte: -42;
 - Reziprokes: $-\frac{1}{42}$.
- Wir betrachten $z_2 = -\frac{1}{i}$.
 - kartesische Form: $-\frac{1}{i} = -\frac{1}{i} \cdot \frac{i}{i} = i;$
 - Betrag: 1;
 - Konjugierte: -i;
 - Reziprokes: -i.
- Wir betrachten $z_3 = \frac{1-i}{1+i}$.
 - kartesische Form:

$$\frac{1-i}{1+i} = \frac{1-i}{1+i} \cdot \frac{1-i}{1-i} = \frac{1-2i-1}{1-i^2} = \frac{-2i}{2} = -i;$$

- Betrag: 1;
- Konjugierte: *i*;
- Reziprokes: $-\frac{1}{i} = i$.
- Wir betrachten $z_4 = \cos \alpha + i \sin \alpha$.

- kartesische Form: $\cos \alpha + i \sin \alpha$;
- Betrag: $\sqrt{\cos^2 \alpha + \sin^2 \alpha} = 1$;
- Konjugierte: $\cos \alpha i \sin \alpha$;
- Reziprokes:

$$\frac{1}{\cos\alpha + i\sin\alpha} = \frac{\cos\alpha - i\sin\alpha}{\cos^2\alpha + \sin^2\alpha} = \cos\alpha - i\sin\alpha.$$

- Wir betrachten $z_5 = \sin \alpha + i \cos \alpha$.
 - kartesische Form: $\sin \alpha + i \cos \alpha$;
 - Betrag: $\sqrt{\sin^2 \alpha + \cos^2 \alpha} = 1$;
 - Konjugierte: $\sin \alpha i \cos \alpha$;
 - Reziprokes:

$$\frac{1}{\sin\alpha + i\cos\alpha} = \frac{\sin\alpha - i\cos\alpha}{\sin^2\alpha + \cos^2\alpha} = \sin\alpha - i\cos\alpha.$$

- Wir betrachten $z_6 = 2022 + i^{2021}$.
 - kartesische Form: Wir benutzen, dass $i^4=1$. Dann gilt:

$$2022 + i^{2021} = 2022 + (i^4)^{505} \cdot i = 2022 + i;$$

- Betrag: $|2022 + i| = \sqrt{2022^2 + 1^2} = \sqrt{4088485}$;
- Konjugierte: 2022 i;
- Reziprokes:

$$\frac{1}{2022+i} = \frac{2022-i}{2022^2+1} = \frac{2022}{2022^2+1} - \frac{i}{2022^2+1}.$$

- Wir betrachten $z_7 = (1+i)^6$.
 - kartesische Form: Wir benutzen, dass $1+i=r(\cos\varphi+i\sin\varphi)$ für $r=\sqrt{2}$ und $\varphi=\frac{\pi}{4}$. Dann gilt:

$$(1+i)^6 = (r(\cos\varphi + i\sin\varphi))^6 = r^6 (\cos(6\varphi) + i\sin(6\varphi))$$
$$= 8\left(\cos\left(\frac{3}{2}\pi\right) + i\sin\left(\frac{3}{2}\pi\right)\right) = -8i;$$

- Betrag: 8;

- Konjugierte: 8i;

– Reziprokes: $-\frac{1}{8i} = \frac{1}{8}i$.