P1 Chapter 11: 3D Vectors

Solving Geometric Problems

Geometric Problems

For more general problems involving vectors, often **drawing a diagram** helps!

[Textbook] A, B, C and D are the points (2, -5, -8), (1, -7, -3), (0, 15, -10) and (2, 19, -20) respectively.

- a. Find \overrightarrow{AB} and \overrightarrow{DC} , giving your answers in the form $p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$.
- b. Show that the lines \overrightarrow{AB} and \overrightarrow{DC} are parallel and that $\overrightarrow{DC} = 2\overrightarrow{AB}$.
- c. Hence describe the quadrilateral ABCD.

?

, i

?

[Textbook] P,Q and R are the points (4,-9,-3),(7,-7,-7) and (8,-2,0) respectively. Find the coordinates of the point S so that PQRS forms a parallelogram.

?

Geometric Problems

For more general problems involving vectors, often **drawing a diagram** helps!

[Textbook] A, B, C and D are the points (2, -5, -8), (1, -7, -3), (0, 15, -10) and (2, 19, -20) respectively.

- a. Find \overrightarrow{AB} and \overrightarrow{DC} , giving your answers in the form $p\mathbf{i} + q\mathbf{j} + r\mathbf{k}$.
- b. Show that the lines \overrightarrow{AB} and \overrightarrow{DC} are parallel and that $\overrightarrow{DC} = 2\overrightarrow{AB}$.
- c. Hence describe the quadrilateral ABCD.
- $\overrightarrow{AB} = -i 2j + 5k$ $\overrightarrow{DC} = -2i 4j + 10k$
- $\overrightarrow{DC} = 2(-i + 2j + 5k) = 2\overrightarrow{AB}$ They are multiples : parallel.
- AB and DC are parallel but different in length. Therefore ABCD is a trapezium.

[Textbook] P, Q and R are the points (4, -9, -3), (7, -7, -7) and (8, -2, 0) respectively. Find the coordinates of the point S so that PQRS forms a parallelogram.

(Draw a diagram, recalling that the letters go in a clockwise or anticlockwise order)

$$\overrightarrow{QP} = \begin{pmatrix} -3 \\ -2 \\ 4 \end{pmatrix}$$

$$\therefore \overrightarrow{OS} = \overrightarrow{OR} + \overrightarrow{RS}$$

$$= \overrightarrow{OR} + \overrightarrow{QP}$$

$$= \begin{pmatrix} 8 \\ -2 \\ 0 \end{pmatrix} + \begin{pmatrix} -3 \\ -2 \\ 4 \end{pmatrix} = \begin{pmatrix} 5 \\ -4 \\ 4 \end{pmatrix}$$

$$S(5, -4, 4)$$

This is basically just saying "whatever we move from Q to P, we do the same movement starting from R"

Comparing Coefficients

There are many contexts in maths where we can 'compare coefficients', e.g.

$$3x^2 + 5x \equiv A(x^2 + 1) + Bx + C$$

Comparing x^2 terms: $3 = A$

We can do the same with vectors:

[Textbook] Given that $3\mathbf{i} + (p+2)\mathbf{j} + 120\mathbf{k} = p\mathbf{i} - q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p, q and r.

Ż

[Textbook] The diagram shows a cuboid whose vertices are O,A,B,C,D,E,F and G. Vectors a,b and c are the position vectors of the vertices A,B and C respectively. Prove that the diagonals OE and BG bisect each other.

The strategy behind this type of question is to find the point of intersection in 2 ways, and compare coefficients.

?

Comparing Coefficients

There are many contexts in maths where we can 'compare coefficients', e.g.

$$3x^2 + 5x \equiv A(x^2 + 1) + Bx + C$$

Comparing x^2 terms: $3 = A$

We can do the same with vectors:

[Textbook] Given that $3\mathbf{i} + (p+2)\mathbf{j} + 120\mathbf{k} = p\mathbf{i} - q\mathbf{j} + 4pqr\mathbf{k}$, find the values of p,q and r.

Comparing i: 3 = p

Comparing j: p + 2 = -q $\therefore q = -5$

Comparing k: 120 = 4pqr : r = -2

[Textbook] The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. Vectors a, b and c are the position vectors of the vertices A, B and C respectively. Prove that the diagonals OE and BG bisect each other.

The strategy behind this type of question is to find the point of intersection in 2 ways, and compare coefficients.

Suppose there is a point of intersection H of OE and BG.

We can get to H in two ways:

 $\overrightarrow{OH} = r \ \overrightarrow{OE}$ for some scalar r.

 $\overrightarrow{OH} = \overrightarrow{OB} + \overrightarrow{BH} = \overrightarrow{OB} + s \overrightarrow{BG}$ for some scalar s.

$$\overrightarrow{OH} = r(\boldsymbol{a} + \boldsymbol{b} + \boldsymbol{c}) = \boldsymbol{b} + s(\boldsymbol{a} - \boldsymbol{b} + \boldsymbol{c})$$

 $r\boldsymbol{a} + r\boldsymbol{b} + r\boldsymbol{c} = s\boldsymbol{a} + (1 - s)\boldsymbol{b} + s\boldsymbol{c}$

Comparing coefficients, r = s and r = 1 - s

Adding: $2r = 1 : r = s = \frac{1}{2}$

Therefore lines bisect each other.

Exercise 12C

Pearson Pure Mathematics Year 2/AS Pages 107-108

Homework Exercise

- 1 The points A, B and C have position vectors $\begin{pmatrix} 1 \\ -4 \\ 8 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 4 \\ 7 \end{pmatrix}$ and $\begin{pmatrix} 10 \\ 0 \\ 30 \end{pmatrix}$ relative to a fixed origin, O.
 - a Show that:

$$|\overrightarrow{OA}| = |\overrightarrow{OB}|$$

ii
$$|\overrightarrow{AC}| = |\overrightarrow{BC}|$$

- **b** Hence describe the quadrilateral *OACB*.
- 2 The points A, B and C have coordinates (2, 1, 5), (4, 4, 3) and (2, 7, 5) respectively.
 - a Show that triangle ABC is isosceles.
 - b Find the area of triangle ABC.
 - c Find a point D such that ABCD is a parallelogram.
- 3 The points A, B, C and D have coordinates (7, 12, -1), (11, 2, -9), (14, -14, 3) and (8, 1, 15) respectively.
 - a Show that AB and CD are parallel, and find the ratio AB: CD in its simplest form.
 - b Hence describe the quadrilateral ABCD.
- 4 Given that $(3a + b)\mathbf{i} + \mathbf{j} + ac\mathbf{k} = 7\mathbf{i} b\mathbf{j} + 4\mathbf{k}$, find the values of a, b and c.
- 5 The points A and B have position vectors $10\mathbf{i} 23\mathbf{j} + 10\mathbf{k}$ and $p\mathbf{i} + 14\mathbf{j} 22\mathbf{k}$ respectively, relative to a fixed origin O, where p is a constant.

Given that $\triangle OAB$ is isosceles, find three possible positions of point B.

6 The diagram shows a triangle ABC.

Given that
$$\overrightarrow{AB} = 7\mathbf{i} - \mathbf{j} + 2\mathbf{k}$$
 and $\overrightarrow{BC} = -\mathbf{i} + 5\mathbf{k}$

a find the area of triangle ABC.

(7 marks)

The point D is such that $\overrightarrow{AD} = 3\overrightarrow{AB}$, and the point E is such that $\overrightarrow{AE} = 3\overrightarrow{AC}$

b Find the area of triangle ADE.

(2 marks)

Homework Exercise

7 A parallelepiped is a three-dimensional figure formed by six parallelograms. The diagram shows a parallelepiped with vertices O, A, B, C, D, E, F, and G.
a, b and c are the vectors OA, OB and OC respectively. Prove that the diagonals OF and AG bisect each other.

8 The diagram shows a cuboid whose vertices are O, A, B, C, D, E, F and G. **a**, **b** and **c** are the position vectors of the vertices A, B and C respectively. The point M lies on OE such that OM: ME = 3:1. The straight line AP passes through point M. Given that AM: MP = 3:1, prove that P lies on the line EF and find the ratio FP: PE.

Challenge

1 a, **b** and **c** are the vectors $\begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix}$ and $\begin{pmatrix} -5 \\ 3 \\ 1 \end{pmatrix}$ respectively. Find scalars p, q and r such that $p\mathbf{a} + q\mathbf{b} + r\mathbf{c} = \begin{pmatrix} 28 \\ -12 \\ -4 \end{pmatrix}$

- 2 The diagram shows a cuboid with vertices O, A, B, C, D, E, F and G. M is the midpoint of FE and N is the midpoint of AG.
 - **a**, **b** and **c** are the position vectors of the vertices *A*, *B* and *C* respectively.

Prove that the lines OM and BN trisect the diagonal AF.

Hint Trisect means divide into three equal parts.

Homework Answers

1 **a** i
$$|\overrightarrow{OA}| = 9$$
; $|\overrightarrow{OB}| = 9 \Rightarrow |\overrightarrow{OA}| = |\overrightarrow{OB}|$
ii $\overrightarrow{AC} = \begin{pmatrix} 9 \\ 4 \\ 22 \end{pmatrix}$, $|\overrightarrow{AC}| = \sqrt{581}$; $\overrightarrow{BC} = \begin{pmatrix} 6 \\ -4 \\ 23 \end{pmatrix}$, $|\overrightarrow{BC}| = \sqrt{581}$

Therefore $|\overrightarrow{AC}| = |\overrightarrow{BC}|$

2 **a**
$$\overrightarrow{AB} = 2\mathbf{i} + 3\mathbf{j} - 2\mathbf{k} \Rightarrow |\overrightarrow{AB}| = \sqrt{17}$$

 $\overrightarrow{AC} = 6\mathbf{j} \Rightarrow |\overrightarrow{AC}| = 6$
 $\overrightarrow{BC} = -2\mathbf{i} + 3\mathbf{j} + 2\mathbf{k} \Rightarrow |\overrightarrow{BC}| = \sqrt{17}$
 $|\overrightarrow{AB}| = |\overrightarrow{BC}|$, so ABC is isosceles.
b $6\sqrt{2}$ **c** $(4, 10, 3), (0, 4, 7)$ or $(4, -2, 3)$

3 **a**
$$\overrightarrow{AB} = 4\mathbf{i} - 10\mathbf{j} - 8\mathbf{k} = 2(2\mathbf{i} - 5\mathbf{j} - 4\mathbf{k})$$

 $\overrightarrow{CD} = -6\mathbf{i} + 15\mathbf{j} + 12\mathbf{k} = -3(2\mathbf{i} - 5\mathbf{j} - 4\mathbf{k})$
 $\overrightarrow{CD} = -\frac{3}{2}\overrightarrow{AB}$, so AB is parallel to CD
 $AB : CD = 2 : 3$

b ABCD is a trapezium

4
$$a = \frac{8}{3}, b = -1, c = \frac{3}{2}$$

5 $(7, 14, -22), (-7, 14, -22) \text{ and } (\frac{1813}{20}, 14, -22)$
6 a $18.67 (2 \text{ d.p.})$ **b** $168.07 (2 \text{ d.p.})$

7 Let
$$H = \text{point of intersection of } OF \text{ and } AG$$
.

$$\overrightarrow{OH} = r\overrightarrow{OF} = \overrightarrow{OA} + s\overrightarrow{AG}$$

$$\overrightarrow{OF} = \mathbf{a} + \mathbf{b} + \mathbf{c}, \overrightarrow{AG} = -\mathbf{a} + \mathbf{b} + \mathbf{c}$$
So $r(\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{a} + s(-\mathbf{a} + \mathbf{b} + \mathbf{c})$

$$r = 1 - s = s \Rightarrow r = s = \frac{1}{2}, \text{ so } \overrightarrow{OH} = \frac{1}{2}\overrightarrow{OF} \text{ and } \overrightarrow{AH} = \frac{1}{2}\overrightarrow{AG}.$$

Show that $\overrightarrow{FP} = \frac{2}{3}\mathbf{a}$ (multiple methods possible) Show that $\overrightarrow{PE} = \frac{1}{3}\mathbf{a}$ (multiple methods possible) Therefore FP and PE are parallel, so P lies on FEFP:PE = 2:1

Homework Answers

Challenge

1
$$p = \frac{24}{11}$$
, $q = \frac{32}{11}$, $r = -4$
2 $\overrightarrow{OM} = \frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c}$, $\overrightarrow{BN} = \mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c}$, $\overrightarrow{AF} = -\mathbf{a} + \mathbf{b} + \mathbf{c}$
Let \overrightarrow{OM} and \overrightarrow{AF} intersect at X : $\overrightarrow{AX} = \overrightarrow{rAF} = r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
 $\overrightarrow{OX} = \overrightarrow{SOM} = S(\frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c})$ for scalars r and s
 $\overrightarrow{OX} = \overrightarrow{OA} + \overrightarrow{AX} = \mathbf{a} + r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
 $\Rightarrow S(\frac{1}{2}\mathbf{a} + \mathbf{b} + \mathbf{c}) = \mathbf{a} + r(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
Comparing coefficients in \mathbf{a} , \mathbf{b} and \mathbf{c} gives $r = s = \frac{2}{3}$
Let \overrightarrow{BN} and \overrightarrow{AF} intersect at Y : $\overrightarrow{AY} = \overrightarrow{pAF} = p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
 $\overrightarrow{BY} = \overrightarrow{qBN} = q(\mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c})$ for scalars p and q
 $\overrightarrow{BY} = \overrightarrow{BA} + \overrightarrow{AY} = \mathbf{a} - \mathbf{b} + p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
 $\Rightarrow q(\mathbf{a} - \mathbf{b} + \frac{1}{2}\mathbf{c}) = \mathbf{a} - \mathbf{b} + p(-\mathbf{a} + \mathbf{b} + \mathbf{c})$
Comparing coefficients in \mathbf{a} , \mathbf{b} and \mathbf{c} gives $p = \frac{1}{3}$, $q = \frac{2}{3}$
 $\overrightarrow{AX} = \frac{2}{3}\overrightarrow{AF}$, $\overrightarrow{AY} = \frac{1}{3}\overrightarrow{AF}$

So the line segments OM and BN trisect the diagonal AF.