Final Project: Milestone 2

Derek Caramella, Lisa Pink, & Tapan Pradyot

Department of Computer Science, University of Rochester

CSC 461: Database Systems

Dr. Zhupa

October 14, 2021

Task A: Draw an ER Diagram

Figure 1: ER Diagram

The ER diagram consists of six entities: ORDER, COMPLETED_ORDER, BARTENDER, ITEM_SUPPLIES, RECIPES and ORDERABLE_ITEM. Each entity has a primary key that uniquely identifies the tuple. The attributes of **ORDER** are Order_id (primary key), Order_item, and Order_time. The **ORDERABLE_ITEM** entity consists of the attributes Item_id (primary key), Item_name, Available and Item_price. **ITEM_SUPPLIES** contains attributes Supply_id (primary key), Item_name, Item_size, and Item_price. The **BARTENDER** entity has attributes Bartender_id (primary key), First_name, Last_name, Employment_type. The **COMPLETED_ORDER** entity has attributes Order_id (primary key), Bartender_service, and Order_complete_time. The **RECIPES** entity has attributes

Finished item id, Supply id and Recipe amount

Each ORDERABLE_ITEM is *created_from* one RECIPES. Each ORDER *consists* of one ORDERABLE_ITEM. Each COMPLETED_ORDER is *completed_by* a BARTENDER. Each COMPLETED_ORDER is *completed_from* one ORDER, creating a 1:1 relationship. Each RECIPES *depends_on* ITEM_SUPPLIES for the creation of an order.

There are no weak entities, weak relationships, or class hierarchies in our schema.

Task B: Relational Database Design Using ER-to-Relational Mapping

I. ER to Relation Mapping Algorithm

1. *Mapping of Regular Entity Types*. For each regular entity type *E* in the ER, a relation *R* is made that includes the simple attributes of *E*. A key attribute is chosen for each entity type *E* as the primary key. The six relations are displayed below in Figure 2:

ORDERS				
Order_id	Order_item	Order_time		
ORDERABLE ITEMS				
Item_id	Item_name	Item_price	Available	
RECIPES				
Finished_Item_id	Supply_id	Recipe_amount		
ITEM_SUPPLIES				
Supply_id	Item_name	Item_size	Item_price	
BARTENDERS				
Bartender_id	First_name	Last_name	Employment_type	
COMPLETED_ORDERS				
Order_id	Bartender_service	Order_complete_time		

Figure 2: Mapping of Regular Entity Types

- 2. *Mapping of Weak Entity Types*. We skip this step because the ER model does not contain any weak entity types.
- 3. *Mapping of Binary 1:1 Relation Types*. For each 1:1 relationship *R* in the schema, relations *S* and *T* identify the corresponding entity types in *R*. The foreign key approach is utilized by map between entities.
 - For the *completed_from* relationship, the foreign key Order_id from the COMPLETED_ORDER entity references the primary key Order_id from the ORDER entity.
- 4. *Mapping of 1:N Relationship Types*. There are four 1:N relationship types in the ER model.
 - For the *created_from* relationship, the foreign key attribute Finished_item_id of RECIPES references the attribute Item id of ORDERABLE ITEMS.
 - In the *consists_of* relationship, the attribute Item_id of ORDERABLE_ITEM is the foreign key that references the attribute Order_item in the ORDER entity. Partial participation exists for ORDERABLE_ITEMS because we can have a record from ORDERABLE_ITEMs that has not been purchased in ORDER.
 - The *completed_by* relationship between BARTENDER and COMPLETED_ORDER. Each COMPLETED_ORDER is *completed_by* one BARTENDER, but each BARTENDER can complete multiple COMPLETED_ORDERs. The foreign key Bartender_service from the COMPLETED_ORDER entity references the primary key Bartender_id from the BARTENDER entity. Partial participation exists for BARTENDER because we can have bartender who did not complete any orders (i.e., if a bartender is a new hire).
 - The depends_on relationship between RECIPES and ITEM_SUPPLIES. The attribute Supply_id of RECIPES references the primary key Supply_id of ITEM_SUPPLIES entity. Each recipe is created using multiple Supply_id of the entity ITEM_SUPPLIES hence creating a 1:N relationship. Partial participation exists by both RECIPES and ITEM_SUPPLIES because we can have recipes that do

not have the required, and we can have items in ITEM_SUPPLIES that are not being used by the RECIPIES.

- 5. *Mapping of Binary M:N Relationship Types*. No M:N relationships exist in the ER model; subsequently, this step is bypassed.
- 6. *Mapping of Multivalued Attributes*. No multivalued attributes exist in the ER model; subsequently, this step is bypassed.
- 7. *Mapping of N-ary Relationship Types*. No N-ary relationships exist in the ER model; subsequently, this step is bypassed.
- 8. Applicable to only to EER models, thus, the step is skipped, and the mapping process has been completed.
- 9. Applicable to only to EER models, thus, the step is skipped, and the mapping process has been completed.

The ER to Relation mapping is summarized below in Figure 3:

Figure 3: ER to Relation Mapping

The entities and relations can be summarized further in the table below:

Relation Name	ER Diagram Components	
ORDER	E(Order) + R(consists_of)	
COMPLETED_ORDER	E(Completed_order) + R(completed_from)	
ORDERABLE_ITEM	E(Orderable_item) + R(created_from)	
BARTENDER	$E(Bartender) + R(completed_by)$	
ITEM_SUPPLIES	E(Item_supplies)	
RECIPES	E(Recipes) +R(depends_on)	

Table 1: Summary of Mapping

II. Database Schema

- **ORDER:** The contains information about the drink orders at the bar. The primary key is Order_id, as each order has a different identification number. Moreover, the Order_id acts as a foreign key to the COMPLETED_ORDER table. Additionally, the Order_item is a foreign key to Item_id in the ORDERABLE_ITEM entity. In the case of a DELETE operation, the delete is cascaded onto the COMPLETED_ORDER table. The attributes of this relation are listed below:
 - o **Order id:** Uniquely identifies the order. It is of datatype INT (5).

- Order_item: Tells which type of drink was ordered. This attribute is of datatype VARCHAR (50).
- Order_time: States the time at which the order occurred. The datatype is DATETIME.
- **COMPLETED_ORDER:** This relation tracks orders that have been completed by the bartenders. The primary key is Order_id. The Order_id acts as a foreign key to the ORDER table. Additionally, the Bartender_service is a foreign key to Bartender_id in the BARTENDER entity. In the case of a DELETE operation, the delete is cascaded onto the ORDER table. The attributes of this relation are listed below:
 - Order_id: Uniquely identifies the order that has been completed. This attribute is of datatype INT (5).
 - Bartender_service: Provides the Bartender identifier of the bartender that has completed the order with datatype INT (5).
 - **Order_complete_time:** Provides the time at which the order was completed. The datatype is DATETIME.
- **ORDERABLE_ITEM:** The table contains information about items that are on the drink menu. The primary key is Order_id. The Order_id is a foreign key to the RECIPES table and the ORDER entity. For DELETE operations, the DELETE is cascaded onto RECIPES. The attributes of this relation are listed below:
 - Item_id: Uniquely identifies the item that can be ordered from the menu, the datatype is INT (5)
 - Item_name: Holds the name of the drink on the menu. The data type is VARCHAR(50).
 - Item_price: States the price of the drink. This attribute is of datatype DECIMAL(4,2).
 - Available: This a binary attribute that takes 1 or 0 value. It is allowed to have a NULL value. The attribute datatype is TINYINT(1).
- **BARTENDER:** The entity holds relevant information about the bartenders that are employed by the bar. The primary key is Bartender_id. Moreover, the Bartender_id serves as a foreign key to the COMPLETED_ORDER entity. DELETE operations set NULL values in the COMPLETED_ORDER entity. The attributes of this relation are listed below:
 - o **Bartender_id:** Uniquely identifies the bartender with datatype INT(5).
 - First name: The first time of the bartender. The datatype is VARCHAR (50).
 - Last name: The last name of the bartender. The datatype is VARCHAR(50).
 - Employment_type: Specifies whether the bartender is a full-time, part-time, or inactive employee with datatype VARCHAR(9).
- ITEM_SUPPLIES: This relation contains information about the supplies need to produce the drinks at the bar. The primary key is Supply_id; moreover, the Supply_id acts a foreign key to the RECIPES entity. The DELETE operation cascades onto the RECIPES entity. The attributes of this relation are listed below:
 - **Supply_id:** Uniquely identifies the supply with datatype is INT(5).
 - o **Item name:** The name of the bottle. The data type is VARCHAR (13).
 - Item_size: The size of the bottle purchased within management supply chain,
 INT (5). It is allowed to have NULL values.
 - o **Item_price:** The cost of the bottle purchased within management supply chain, DECIMAL(5,2). It is allowed to have **NULL** values.

- **RECIPES:** This relation contains recipes to create an Orderable item in the entity ORDERABLE_ITEM. The primary key is a combination of attributes Supply_id and Finished_item_id. In case of a DELETE operation, no action is taken on other entities; however, corner case exists: if a single record of finished_item_id remains, the DELETE operation is prevented. The Finished_item_id acts a foreign key to the ORDERABLE_ITEM entity and the Supply_id acts as a foreign key to the ITEM_SUPPLIES entity.
 - o **Supply id:** Identifies the supply to be used in the Recipe, INT(5).
 - o Finished_item_id: References the PK of entity ORDERABLE_ITEM, INT(5)
 - **Recipe_amount:** References the quantity of an Item to be used in the creation of drink, INT (5).

Task C: Milestone 1 Feedback Response

Feedback: I am just a little puzzled about your target group and who the users would be.

Response: The application's target audience are bar owners looking to view revenue streams, identify marketing channels, and appraise employee performance.