

Deep Self-taught Graph Embedding Hashing with Pseudo Labels for Image Retrieval

Yu Liu[†], Yangtao Wang[†], Jingkuan Song[§], Chan Guo[†], Ke Zhou[†], and Zhili Xiao[‡]

†Huazhong University of Science and Technology, Wuhan, China

§University of Electronic Science and Technology of China, Chengdu, China ‡Tencent. Inc

Yu Liu

1/6/2020, Wuhan, China

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

6/9/2020 2

Hashing is widely used in large-scale retrieval owing to its efficiency for storage and matching

a=[0.328, -0.112,...,0.131]

|a-b| Exp(a²-b²)^{0.5} ab/|a||b|

b=[0.187, -0.016,...,-0.547]

0110000110

2

However, the dependence of label information in deep learning training restricts the practicability of deep hash algorithm

6/9/2020 4

Hash learning with pseudo labels

6/9/2020

5

Problems

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

Motivation

Dependency with the indirect correlation

Motivation

Second-order proximity

Wang D, Cui P, Zhu W. Structural deep network embedding[C]//Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining. 2016: 1225-1234.

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

Design Overview

Framework for DSTGeH

6/9/2020 11

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

Pseudo label generating stage

cosine distance :
$$u_{i,j} = \frac{v_i \cdot v_j}{\|v_i\| \cdot \|v_j\|}$$
.

Pseudo label generating stage

Pseudo label generating stage

Fine-tune after Stacked AutoEncoder

Second-order Proximity of reconstruction error:

$$\mathcal{L}_{soh} = \sum_{i=1}^{N} \sum_{m=2 \times t}^{M} \kappa_{t} \|f_{i}^{(m)} - \widehat{f_{i}^{(m)}}\|_{2}^{2},$$

s.t.
$$\frac{\kappa_t}{\kappa_{t+1}} = 2$$
, $\sum \kappa_t = 1$,

$$\mathcal{L}_{so} = \mu \sum_{i=1}^{N} \|u_i - \widehat{u}_i\|_2^2 + (1 - \mu)\mathcal{L}_{soh}$$

Pseudo label generating stage

First-order Proximity of reconstruction error:

$$\mathcal{L}_{fo} = \sum_{i,j=1}^{N} u_{i,j} \|\widetilde{h}_{i} - \widetilde{h}_{j}\|_{2}^{2}$$

Fine-tune after Stacked AutoEncoder

Regularize term:

$$\mathcal{L}_r = \frac{1}{2} \sum_{m=1}^{M} \|W^{(m)}\|_F^2 + \|\widehat{W^{(m)}}\|_F^2$$

Pseudo label generating stage

the terminal loss function:

$$\mathcal{L} = \alpha \mathcal{L}_{so} + \beta \mathcal{L}_{fo} + \gamma \mathcal{L}_{r}$$

Hash function learning stage

$$\begin{aligned} \text{BCEL:} \quad \mathcal{L}_h(h_i, \widetilde{H_i}) = & -\sum_{p=1}^g h_i^p log(\widetilde{H_i^p}) + (1-h_i^p) log(1-\widetilde{H_i^p}) \end{aligned}$$

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

Datasets: CIFAR-10 dataset

MS-COCO dataset

FLICKR25K dataset

- Experimental Procedures:
 - Comparison with the State-of-the-art Methods
 - > Ablation Studies

Comparison with the State-of-the-art Methods

Ablation Studies: Influence of hash length and distance metric

Table 1: Performance (mAP) variances varying code length L and distance metric.

Dataset	Distance Metric	mAP@Hash Code Length L							
		16-bits	32-bits	48-bits	64-bits	96-bits	128-bits		
CIFAR-10	Cosine Euclidean	0.2303 0.2223	0.2818 0.2702	0.3352 0.3165	0.3408 0.3252	0.3415 0.3247	0.3447 0.3269		
MS-COCO	Cosine Euclidean	0.3540 0.3543	0.3750 0.3552	0.4102 0.4008	0.4508 0.4388	0.4703 0.4607	0.4731 0.4621		

Ablation Studies: Influence of distance metric

Fig. 3: GE convergence on CIFAR-10 and MS-COCO with different distance metrics in the first stage.

ICME

Ablation Studies: Influence of GE component

Table 2: Performance (PR) variance on 48-bits varying GE method, recall and loss function.

Dataset	GE Method (Loss Function)	Precision@Recall					F_1
	OD Medica (Bess Fanction)	10%	20%	40%	60%	80%	-1
CIFAR-10	LE (BCEL)	0.3944	0.3302	0.2835	0.2397	0.2086	0.2828
	Word2Vec (BCEL)	0.5623	0.5037	0.4193	0.3025	0.2343	0.3260
	SDNE (BCEL)	0.5919	0.5578	0.4573	0.3604	0.2673	0.3487
	SDNE+SAE (BCEL)	0.5804	0.5601	0.4848	0.3962	0.2885	0.3610
	SDNE+SAE (MLML)	0.4311	0.3534	0.2942	0.2599	0.2217	0.2933
	SDNE+SAE (MLSML)	0.2319	0.2206	0.2032	0.1623	0.1303	0.1197
MS-COCO	LE (BCEL)	0.3120	0.2402	0.2001	0.1657	0.1304	0.2241
	Word2Vec (BCEL)	0.5509	0.5050	0.4001	0.3075	0.2265	0.3231
	SDNE (BCEL)	0.5932	0.5215	0.4188	0.3070	0.2173	0.3235
	SDNE+SAE (BCEL)	0.6136	0.5223	0.4347	0.3552	0.2709	0.3458
	SDNE+SAE (MLML)	0.3561	0.2437	0.2074	0.1763	0.1410	0.2322
	SDNE+SAE (MLSML)	0.2019	0.1882	0.1724	0.1592	0.1333	0.2098

Ablation Studies: Influence of loss function

Table 2: Performance (PR) variance on 48-bits varying GE method, recall and loss function.

Dataset	GE Method (Loss Function)	Precision@Recall					F_1
Dutuser	OB Medica (Boss Famelion)	10%	20%	40%	60%	80%	-1
CIFAR-10	LE (BCEL)	0.3944	0.3302	0.2835	0.2397	0.2086	0.2828
	Word2Vec (BCEL)	0.5623	0.5037	0.4193	0.3025	0.2343	0.3260
	SDNE (BCEL)	0.5919	0.5578	0.4573	0.3604	0.2673	0.3487
	SDNE+SAE (BCEL)	0.5804	0.5601	0.4848	0.3962	0.2885	0.3610
	SDNE+SAE (MLML)	0.4311	0.3534	0.2942	0.2599	0.2217	0.2933
	SDNE+SAE (MLSML)	0.2319	0.2206	0.2032	0.1623	0.1303	0.1197
MS-COCO	LE (BCEL)	0.3120	0.2402	0.2001	0.1657	0.1304	0.2241
	Word2Vec (BCEL)	0.5509	0.5050	0.4001	0.3075	0.2265	0.3231
	SDNE (BCEL)	0.5932	0.5215	0.4188	0.3070	0.2173	0.3235
	SDNE+SAE (BCEL)	0.6136	0.5223	0.4347	0.3552	0.2709	0.3458
	SDNE+SAE (MLML)	0.3561	0.2437	0.2074	0.1763	0.1410	0.2322
	SDNE+SAE (MLSML)	0.2019	0.1882	0.1724	0.1592	0.1333	0.2098

6/9/2020 25

Ablation Studies: Influence of loss function

Fig. 4: Hash function convergence on CIFAR-10 and MS-COCO with different loss functions in the second stage.

- Background
- Motivation
- Design Overview
- Methodology
- Experiment Results
- Conclusion

Conclusion

- > We propose a deep self-taught graph embedding hashing (DSTGeH) framework for image retrieval.
- ➤ We introduce the second-order proximity into the hash learning, which improves the precision of hash code in the self-taught framework with pseudo labels.
- ➤ DSTGeH achieves the best performances on most evaluation metrics and produce an overwhelming advantage on multi-label datasets.

Thank You!

Yu Liu

Yangtao Wang

Chan Guo

Ke Zhou

Jingkuan Song

Zhili Xiao