如何判断一个矩阵是否可逆?

- (1) 找一个同阶矩阵 B, 使 $AB = I_n$ (或 $BA = I_n$);
- (2) 找一个同阶矩阵 B, 使 AB 或 BA 是可逆矩阵;
- (3) 若 |A| = 0, 则 A 不是可逆阵, 反之 A 是可逆矩阵.

• 设 n 阶矩阵 A 适合等式 $A^2-3A+2I_n=O$, 求证: A 和 $A+I_n$ 都是可逆矩阵, 而若 $A\neq I_n$,则 $A-2I_n$ 必不是可逆矩阵.

• 设 n 阶矩阵 A 和 B 满足 A+B=AB, 求证: In-A 是可 逆矩阵且 AB=BA.

• 设A是奇数阶矩阵, |A|>0, $\nabla AA^T=I_n$, 证明 I_n-A 是奇异阵.

习题1. 设 A 为三阶矩阵,且 |A| = 4,则 $\left| (\frac{1}{2}A)^2 \right| = ____.$

设 A 为 3×3 矩阵,B 为 4×4 ,且 |A| = 1, |B| = -2,则 $|B|A| = ____$.

习题1. 设 A 为三阶矩阵,且|A|=4,则 $\left|(\frac{1}{2}A)^2\right|=$ ____.

设 A 为 3×3 矩阵,B 为 4×4 ,且 |A| = 1, |B| = -2,则 $|B|A| = ____$.

$$\left| \left(\frac{1}{2} A \right)^2 \right| = \left| \frac{1}{4} A^2 \right| = \left(\frac{1}{4} \right)^3 |A|^2 = \frac{1}{4}$$

$$||B|A| = |B|^{3}|A| = (-2)^{3} \cdot 1 = -8.$$

习题2. 矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$, 求矩阵 A 的伴随矩阵及逆矩阵

$$|A| = \begin{vmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{vmatrix} = 2 \neq 0,$$

$$\therefore A^{-1} = \frac{1}{|A|} A^* = \frac{1}{2} \begin{pmatrix} -5 & 2 & -1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix} = \begin{pmatrix} -5/2 & 1 & -1/2 \\ 5 & -1 & 1 \\ 7/2 & -1 & 1/2 \end{pmatrix}.$$

习题2. 矩阵 $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -3 & 2 & -5 \end{pmatrix}$, 求矩阵 A 的伴随矩阵及逆矩阵

$$A_{11} = \begin{vmatrix} 1 & 0 \\ 2 & -5 \end{vmatrix} = -5, \quad A_{12} = -\begin{vmatrix} 2 & 0 \\ -3 & -5 \end{vmatrix} = 10, \quad A_{13} = \begin{vmatrix} 2 & 1 \\ -3 & 2 \end{vmatrix} = 7,$$

$$A_{21} = -\begin{vmatrix} 0 & 1 \\ 2 & -5 \end{vmatrix} = 2, \ A_{22} = \begin{vmatrix} 1 & 1 \\ -3 & -5 \end{vmatrix} = -2, \ A_{23} = -\begin{vmatrix} 1 & 0 \\ -3 & 2 \end{vmatrix} = -2,$$

$$A_{31} = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix} = -1, \ A_{32} = -\begin{vmatrix} 1 & 1 \\ 2 & 0 \end{vmatrix} = 2, \ A_{33} = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1.$$

$$\therefore A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} = \begin{pmatrix} -5 & 2 & -1 \\ 10 & -2 & 2 \\ 7 & -2 & 1 \end{pmatrix}.$$

习题3. 设 A 为三阶方阵, A^* 为 A 的伴随矩阵, $|A| = \frac{1}{8}$,计算 $\left| (\frac{1}{3}A)^{-1} - 8A^* \right|$

习题3. 设 A 为三阶方阵, A^* 为 A 的伴随矩阵, $|A| = \frac{1}{8}$,计算 $\left| (\frac{1}{3}A)^{-1} - 8A^* \right|$

因为
$$A^* = |A|A^{-1} = \frac{1}{8}A^{-1}$$
,所以

$$\left| \left(\frac{1}{3} A \right)^{-1} - 8A^* \right| = \left| 3A^{-1} - A^{-1} \right| = \left| 2A^{-1} \right| = 2^3 \frac{1}{|A|} = 64$$

习题4. 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 且 $AB + E = A^2 + B$ 求 B

习题4. 设
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 且 $AB + E = A^2 + B$ 求 B

由
$$AB + E = A^2 + B$$
, 得 $(A-E)B = A^2 - E$
即 $(A-E)B = (A-E)(A+E)$

因为
$$|A-E|=\begin{vmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix} \neq 0$$
,所以 $(A-E)$ 可逆

从而,
$$B = A + E = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$

习题5. 解矩阵方程 AX + B = X,其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$

习题5. 解矩阵方程
$$AX + B = X$$
,其中 $A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}, B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix}$

由
$$AX + B = X$$
 得 $(I - A)X = B$

因为
$$|I-A| \neq 0$$
所以 $X = (I-A)^{-1}B$

$$(I - A)^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & -1 \\ 1 & 0 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & 2/3 & 1/3 \\ -1 & 2/3 & 1/3 \\ 0 & -1/3 & 1/3 \end{pmatrix}$$

因而
$$X = (I - A)^{-1}B = \begin{pmatrix} 0 & 2/3 & 1/3 \\ -1 & 2/3 & 1/3 \\ 0 & -1/3 & 1/3 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 5 & -3 \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$$

习题6. 已知矩阵 A 满足关系式 $A^2 + 2A - 3E = O$,求 $(A + 4E)^{-1}$

习题6. 已知矩阵 A 满足关系式 $A^2 + 2A - 3E = O$,求 $(A + 4E)^{-1}$

因为
$$O = A^2 + 2A - 3E = (A+4E)(A-2E) + 8E-3E$$

$$\Rightarrow (A+4E)(A-2E) = -5E \Leftrightarrow (A+4E)(\frac{2}{5}E - \frac{1}{5}A) = E,$$

$$\Rightarrow (A+4E)^{-1} = \frac{2}{5}E - \frac{1}{5}A.$$

注: 此类问题, 首先应想到的是把所求问题的因式给分解出来

习题7. 已知矩阵A可逆,证明其伴随矩阵 A^* 也可逆,且 $(A^*)^{-1} = (A^{-1})^*$.

习题7. 已知矩阵A可逆,证明其伴随矩阵 A^* 也可逆,且 $(A^*)^{-1} = (A^{-1})^*$.

由
$$A^{-1} = \frac{A^*}{|A|}$$
,得 $A^* = A^{-1} |A|$,所以当 A 可逆时
$$|A^*| = |A|^n |A^{-1}| = |A|^{n-1} \neq 0 \quad 从而 A^* 也可逆.$$

因为
$$A^* = |A|A^{-1}$$
,所以
 $(A^*)^{-1} = |A|^{-1}A$.
 $\mathbf{Z}A = \frac{1}{|A^{-1}|}(A^{-1})^* = |A|(A^{-1})^*$,所以
 $(A^*)^{-1} = |A|^{-1}A = |A|^{-1}|A|(A^{-1})^* = (A^{-1})^*$.

习题8. 设 $A \setminus B \setminus A + B$ 都可逆,证明 $A^{-1} + B^{-1}$ 可逆,且

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B = B(A + B)^{-1}A$$

习题8. 设 $A \setminus B \setminus A + B$ 都可逆,证明 $A^{-1} + B^{-1}$ 可逆,且

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B = B(A + B)^{-1}A$$

证. 根据定义 $(A^{-1} + B^{-1}) [A(A+B)^{-1}B]$ $= A^{-1}A(A+B)^{-1}B + B^{-1}A(A+B)^{-1}B$ $= E(A+B)^{-1}B + B^{-1}A(A+B)^{-1}B$ $= B^{-1}B(A+B)^{-1}B + B^{-1}A(A+B)^{-1}B$ $= B^{-1}(B+A)(A+B)^{-1}B = E$

习题8. 设 $A \setminus B \setminus A + B$ 都可逆,证明 $A^{-1} + B^{-1}$ 可逆,且

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B = B(A + B)^{-1}A$$

解2. 恒等变形 将 $A^{-1} + B^{-1}$ 恒等变形,得到

$$A^{-1} + B^{-1} = A^{-1}(A + B)B^{-1}$$

$$A^{-1} + B^{-1} = B^{-1}(A + B)A^{-1}$$

从而
$$(A^{-1} + B^{-1})^{-1} = B(A + B)^{-1}A$$

$$(A^{-1} + B^{-1})^{-1} = A(A + B)^{-1}B$$

题目: 设矩阵 $A = (a_{ij})_{3\times 3}$ 满足 $A^* = A^T$, 其中 A^* 为 A 的伴随矩阵, A^T 为 A 的转置矩阵,若 a_{11}, a_{12}, a_{13} 为三个相等的正数,求 a_{11}

题目: 设矩阵 $A = (a_{ij})_{3\times 3}$ 满足 $A^* = A^T$, 其中 A^* 为 A 的伴随矩阵, A^T 为 A 的转置矩阵,若 a_{11}, a_{12}, a_{13} 为三个相等的正数,求 a_{11}

解答: 因为 $A^* = A^T$, 即

$$\begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix}$$

由此可知 $a_{ij} = A_{ij}, \forall i, j = 1, 2, 3$ 。那么

$$|A| = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} = a_{11}^2 + a_{12}^2 + a_{13}^2 = 3a_{11}^2 > 0$$

又由 $A^* = A^T$,两边取行列式并利用 $|A^*| = |A|^{n-1}$ 及 $|A^\top| = |A|$,得 $|A|^2 = |A|$ 从而 |A| = 1,因此 $3a_{11}^2 = 1$, $a_{11} = \frac{\sqrt{3}}{3}$