EE 5313 MICROPROCESSOR PROJECT SPRING 2016 SDRAM CONTROLLER DESIGN

By,

1001227227 - Navjot S. Saran

1001227227 - Kshitija Kulkarni

1001227274 - Mitali Salunkhe

CONTENTS:

- 1. Introduction
- 2. Interfacing Diagram
- 3. Initialization
- 4. Row and Bank Activation
- 5. Reading from SDRAM memory
 - 5.1 Read with Auto Precharge
 - 5.2 Read state transistion table (Auto Precharge)
 - 5.3 Read with Manual Precharge
 - 5.4 Read state transistion table (Auto Precharge)
- 6. Writing to SDRAM memory
 - 6.1 Write with Auto Precharge
 - 6.2 Write state transistion table (Auto Precharge)
 - 6.3 Write with Manual Precharge
 - 6.4 Write state transistion table (Auto Precharge)
- 7. Auto Refresh
- 8. Address Signal Generation
- 9. Command Signals
- 10. Control Signals
- 11. Extra Credits

INTRODUCTION:

80386DX has only asynchronous memory support. In this project we are basically designing a SDRAM controller that interfaces the MT48LC8M8A2 SDRAM (2M X 8 X 4banks) memory with 80386DX microprocessor. The SDRAM controller located between the processor and memory and enables the conversion of 80386 commands into synchronous SDRAM memory command and control words. A burst length of 4 is supported by this design. In the project, we have used -75 MT48LC8M8A2 SDRAM Configuration. Our 80386DX microprocessor is working at 25MHz frequency (CLK2 = 50 MHz).

Fig 1. Shows the basic interference diagram between the 80386DX processor, the SDRAM controller and SDRAM memory.

INTERFACING DIAGRAM:

Fig 1: Basic Block diagram of SDRAM - 80386DX Interface

MEMORY INITIALIZATION:

 $NOP_{1} = t_{rcd}$ $NOP_{3} = t_{rp}$ $NOP_{5} = Start$ Auto Precharge $NOP_{7} = 100$ us state $NOP_{9} = t_{mrd}$

NOP₂ = t_{cl} NOP₄ = t_{wr} NOP₆ = Clock Stable NOP₈ = Auto Refresh Delay

Fig 2: State diagram: FSM initialization

Initialization Transition Table

Current		
State	Conditions	Next State
	Vdd,Vddq,CKE=0,CLK	
Χ	Stable	NOP6
NOP6	Count_100µs=0	Precharge
Precharge	X	NOP3
NOP3	Count_trp=0	Auto-Refresh
Auto		
Refresh	X	NOP8
NOP8	Count_trfc=0	Auto-Refresh
Auto-		
Refresh	X	NOP8
NOP8	Count_trfc=0	LMR
LMR	X	NOP8
NOP8	Count_tmrd=0	INIT DONE

Load Mode Register Fields:

1.	Burst Length (BL) = 4		:010
2.	Burst Type (BT)	= Sequential	: 0
3.	CAS Latency	= 2	:010
4.	Op Mode	= Standard Operation	:00
5.	WB	= Programmed Burst Length	า : 0
6.	Reserved		: 0 0

READ OPERATION WITH AUTO PRECHARGE:

Fig 3: State diagram: Reading from SDRAM memory (with auto precharge)

READ WITH AUTO PRECHARGE TRANSISTION TABLE:

PRESENT STATE	CONDITION	NEXT STATE
ACTIVE	LOAD VALUE t _{RCD}	NOP1
NOP1	$Count_{RCD} = 0$	READ
READ	LOAD VALUE t _{CL}	NOP2
NOP2	t _{CL} VALUE = 0	Rxfer1
Rxfer1	X	Rxfer2
Rxfer2	X	Rxfer3
Rxfer3	X (next clock)	Rxfer4
Rxfer3	X(same clock)	AUTO PRECHARGE (A10 = 1)
AUTO PRECHARGE	Load_count=t _{RP}	NOP3
NOP3	$Count_{RP} = 0$	IDLE

Fig 4: State Table: Read with Auto Precharge

READ OPERATION WITH MANUAL PRECHARGE:

Fig 5: State diagram: Reading from SDRAM memory (with manual precharge)

READ WITH MANUAL PRECHARGE TRANSISTION TABLE:

PRESENT STATE	CONDITION	NEXT STATE
ACTIVE	LOAD VALUE t _{RCD}	NOP1
NOP1	t _{RCD} VALUE = 0	READ
READ	LOAD VALUE t _{CL}	NOP2
NOP2	t _{CL} VALUE = 0	Rxfer1
Rxfer1	X	Rxfer2
Rxfer2	X	Rxfer3
Rxfer3	X (next clock)	Rxfer4
Rxfer3	X(same clock)	PRECHARGE (A10 = 0)
PRECHARGE	Load_count=t _{RP}	NOP3
NOP3	t _{RP} VALUE = 0	IDLE

Fig 6: State Table: Read with Manual Precharge

WRITE OPERATION WITH AUTO PRECHARGE:

Fig 7: State diagram: Writing to SDRAM memory (with auto precharge)

WRITE WITH AUTO PRECHARGE TRANSISTION TABLE:

PRESENT STATE	CONDITION	NEXT STATE
ACTIVE	LOAD VALUE t _{RCD}	NOP1
NOP1	t _{RCD} VALUE = 0	WRITE,
WRITE	X(same clock)	Wxfer1
Wxfer1	X(next clock)	Wxfer2
Wxfer2	X	Wxfer3
Wxfer3	X	Wxfer4
Wxfer4	LOAD VALUE t _{WR}	NOP4
NOP4	t _{WR} VALUE = 0	NOP5
NOP5	LOAD VALUE t _{RP}	NOP3
NOP3	t _{RP} VALUE = 0	IDLE

Fig 8: State Transition Table: Write with auto precharge

WRITE OPERATION WITH MANUAL OPERATION:

Fig 9: State diagram: Writing to SDRAM memory(with manual precharge)

WRITE WITH MANUAL PRECHARGE TRANSISTION TABLE:

PRESENT STATE	CONDITION	NEXT STATE
ACTIVE	LOAD VALUE t _{RCD}	NOP1
NOP1	t _{RCD} VALUE = 0	WRITE,
WRITE	X(same clock)	Wxfer1
Wxfer1	X(next clock)	Wxfer2
Wxfer2	X	Wxfer3
Wxfer3	X	Wxfer4
Wxfer4	LOAD VALUE t _{WR}	NOP4
NOP4	t _{WR} VALUE = 0	PRECHARGE
NOP5	LOAD VALUE t _{RP}	NOP3
NOP3	t _{RP} VALUE = 0	IDLE

Fig 10: State Transition Table: Write with manual precharge

AUTO REFRESH:

- 1. This command must be issued each time a refresh is required. All active banks must be precharged before issuing an auto refresh command.
- 2. Address bits are "Don't Care" during AUTO REFRESH since the internal refresh controller does the addressing part.
- 3. Regardless of the SDRAM memory configuration, there are 4096 rows. Hence it requires 4096 auto refresh cycles every 64ms (commercial and industrial) and 16ms (automotive).

NOTE: SELF REFRESH command is initiated like AUTO REFRESH command except CKE is disabled (LOW).

Fig 11: State Diagram: Auto Refresh

AUTO REFRESH TRANSISTION TABLE:

PRESENT STATE	CONDITION	NEXT STATE
IDLE	X	AUTO REFRESH
AUTO REFRESH	LOAD VALUE t _{RFC}	NOP
NOP	t _{RFC} VALUE = 0	IDLE

Fig 12: State Transition Diagram: Auto Refresh

Address Signal Generation:

Fig 13: Block Diagram for Address Generation

In this memory address latching with microprocessor is done as following: A2-A8 forms column address (LSBs of column are hardcoded), A9-A20 forms row address and A21-A22 forms BA0-BA1 signals to the memory.

Data Path Module (For Read):

Fig 14: Block Diagram of Data Flow (READ)

In data line interface, while reading the data from the memory is latched byte by byte to 4 different latches corresponding to 4 different data for BL=4 and is outputted simultaneously from all 4 latches on READY# signal to give 32-bit data to the microprocessor.

Data Path Module (For write):

Fig 15: Block Diagram of Data Flow (WRITE)

Similarly, while writing each eight bit- data is given to the memory using a 4:1 multiplexer.

Command Signals:

Depending upon our state we are enabling various command signals such as:

NOP:

LMR (LOAD MODE REGISTER):

ACTIVE:

READ:

Write:

Precharge:

Refresh:

CONTROL SIGNALS:

1. RAS (Row Address Strobe):

1: STATE = ALL OTHER STATES

2. CAS (Column Address Strobe):

3. WE (Write Enable):

1: STATE = ALL OTHER STATES

4. MRDC (Memory Read Control)#:

80386DX does not have MRDC# and MWTC# signals so we need to generate these signals using these logics.

5. MWTC (Memory Write Control)#:

6. **READY SIGNAL**

Design of Various Delay Counters:

1. Count to be loaded = $100 \mu s / 10 ns = 2710 H$

2. Auto Refresh Counter:

 $t_{refresh} = 64 \text{ ms} / (No \text{ of rows})$

= 64 ms / 4096

= 15.6 μ s (Count to be loaded 0820H)

3. $t_{rcd} = 15 \text{ ns} / 10 \text{ ns} = 2 \text{ clock cycles}$

4. $t_{cl} = 15 \text{ ns} / 10 \text{ ns} = 2 \text{ clock cycles}$

5. $t_{rp} = 15 \text{ ns} / 10 \text{ ns} = 2 \text{ clock cycles}$

6. twr

7. LMR: $t_{mrd} = 15 \text{ ns} / 7.5 \text{ ns} = 2 \text{ clock cycles}$

8. $t_{rfc} = 66 / 10 = 7$ clock cycles

9. $t_{rc} = 60/10 = 6$ clock cycles

10. $t_{LMR} = 2 trfc + trp$

EXTRA CREDITS:

Showing Support for MT48LC16M4A2 -4 Meg x 4 x 4 banks with higher burst length (BL=8). Here, we will interface a 4bit width memory with 80386DX microprocessor. Showing Data-Path Module(For Read Operation):

Data Path Module (For Write Operation):

Finite State Diagram:

1) Read Cycle:

2) Finite State Machine (Write Cycle):

Address Generation(for X 4 mode):

STATE = ACTIVE | READ | WRITE

0 : STATE = ACTIVE | LMR

1 : STATE = READ | WRITE