```
In [1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
train_data='C:/Users/swetha/Desktop/train.csv'
train_data=pd.read_csv(train_data)
train data.describe()
test data='C:/Users/swetha/Desktop/test.csv'
test data=pd.read csv(test data)
test_data.describe()
Out[1]:
              Id MSSubClass LotFrontage
                                           LotArea OverallQual OverallCond
                                                                           YearBuilt YearRemodAdd MasVnrArea Bs
 count 1459.000000
                  1459.000000
                            1232.000000
                                        1459.000000
                                                  1459.000000
                                                              1459.000000
                                                                        1459.000000
                                                                                      1459.000000
                                                                                                 1444.000000
 mean 2190.000000
                   57.378341
                              68.580357
                                        9819.161069
                                                      6.078821
                                                                 5.553804 1971.357779
                                                                                      1983.662783
                                                                                                  100.709141
       421.321334
                   42.746880
                              22.376841
                                        4955.517327
                                                      1.436812
                                                                          30.390071
                                                                                                  177.625900
   std
                                                                 1.113740
                                                                                        21.130467
  min 1461.000000
                   20.000000
                              21.000000
                                        1470.000000
                                                      1.000000
                                                                 1.000000 1879.000000
                                                                                      1950.000000
                                                                                                   0.000000
  25% 1825 500000
                   20 000000
                              58 000000
                                                      5 000000
                                                                 5 000000 1953 000000
                                                                                      1963 000000
                                        7391.000000
                                                                                                   0.000000
  50% 2190.000000
                   50.000000
                              67.000000
                                        9399.000000
                                                      6.000000
                                                                 5.000000 1973.000000
                                                                                      1992.000000
                                                                                                   0.000000
                   70 000000
  75% 2554 500000
                              80 000000
                                       11517.500000
                                                      7 000000
                                                                 6.000000 2001.000000
                                                                                      2004.000000
                                                                                                  164 000000
                                                                                                            7
  max 2919.000000
                   190.000000
                             200.000000
                                       56600.000000
                                                     10.000000
                                                                 9.000000 2010.000000
                                                                                      2010.000000 1290.000000 40
8 rows × 37 columns
4
                                                                                                           F
In [8]:
print("train_data shape:", train_data.shape)
print("test data shape:", test data.shape)
train_data shape: (1460, 81)
test data shape: (1459, 80)
In [10]:
print(train data.head())
   Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \
0
   1
               60 RL
                               65.0
                                             8450 Pave
                                                                NaN
                                                                          Reg
1
    2
                20
                          RL
                                      80.0
                                                9600
                                                        Pave
                                                                NaN
                                                                          Reg
2
    3
                 60
                          RL
                                      68.0
                                               11250
                                                        Pave
                                                                NaN
                                                                          IR1
3
    4
                70
                          RT.
                                      60.0
                                                9550
                                                        Pave
                                                                NaN
                                                                          TR1
                60
                         RL
                                      84.0
                                             14260
                                                        Pave
                                                                NaN
                                                                         IR1
  LandContour Utilities ...
                                      PoolArea PoolQC Fence MiscFeature MiscVal
0
                           ...
           Lvl
                AllPub
                                              0
                                                   NaN
                                                          NaN
                                                                       NaN
1
           Lvl
                  AllPub
                                              0
                                                   NaN
                                                          NaN
                                                                       NaN
                                                                                   0
                             . . .
                  AllPub
                                              0
                                                                                   0
2
           T.v.1
                                                   NaN
                                                          NaN
                                                                       NaN
                             . . .
                  AllPub
                                                                                   0
           Lvl
                                                   NaN
                                                          NaN
                                                                       NaN
                             . . .
                  AllPub
4
          Lvl
                                              0
                                                   NaN
                                                          NaN
                                                                       NaN
                                                                                   0
  MoSold YrSold SaleType SaleCondition SalePrice
0
                                              208500
      2 2008
                    WD
                                   Normal
        5
            2007
                         WD
                                                 181500
1
                                     Normal
2
       9
            2008
                         WD
                                    Normal
                                                223500
       2
                                    Abnorml
3
            2006
                         WD
                                                 140000
      12
            2008
                         WD
                                     Normal
                                                 250000
[5 rows x 81 columns]
In [11]:
plt.style.use(style='ggplot')
```

```
plt.rcParams['figure.figsize'] = (10, 6)
print (train data.SalePrice.describe())
           1460.000000
count
         180921.195890
mean
std
          79442.502883
          34900.000000
min
25%
         129975.000000
50%
         163000.000000
         214000.000000
75%
         755000.000000
max
Name: SalePrice, dtype: float64
```

In [12]:

```
print ("Skew is:", train_data.SalePrice.skew())
plt.hist(train_data.SalePrice, color='blue')
plt.show()
```

Skew is: 1.8828757597682129

In [13]:

```
target = np.log(train_data.SalePrice)
print ("\n Skew is:", target.skew())
plt.hist(target, color='blue')
plt.show()
```

Skew is: 0.12133506220520406

In [14]:

```
numeric_features = train_data.select_dtypes(include=[np.number])
corr = numeric_features.corr()
print (corr['SalePrice'].sort_values(ascending=False)[:5], '\n')
print (corr['SalePrice'].sort_values(ascending=False)[-5:])
                1.000000
SalePrice
OverallQual
              0.790982
                0.708624
GrLivArea
GarageCars
                0.640409
GarageArea
                0.623431
Name: SalePrice, dtype: float64
YrSold
                  -0.028923
OverallCond
                  -0.077856
MSSubClass
                  -0.084284
                 -0.128578
EnclosedPorch
                 -0.135907
KitchenAbvGr
Name: SalePrice, dtype: float64
```

In [15]:

```
plt.scatter(x=train_data['WoodDeckSF'], y=target)
plt.ylabel('sale price')
plt.xlabel('WoodDeckSF')
plt.show()
```


In [16]:

```
train_data=train_data[train_data['WoodDeckSF']< 1200]
plt.scatter(x=train_data['WoodDeckSF'], y=np.log(train_data.SalePrice))
plt.xlim(-250,1500)
plt.ylabel('Sale Price')
plt.xlabel('WoodDeckSF')
plt.show()</pre>
```



```
11.5 -

10.5 -

-200 0 200 400 600 800 1000 1200 1400

WoodDeckSF
```

In [17]:

```
nulls = pd.DataFrame(train_data.isnull().sum().sort_values(ascending=False)[:25])
nulls.columns = ['Null Count']
nulls.index.name = 'Feature'
print(nulls)
```

	Null	Count
Feature		
PoolQC		1453
MiscFeature		1406
Alley		1369
Fence		1179
FireplaceQu		690
LotFrontage		259
GarageCond		81
GarageType		81
GarageYrBlt		81
GarageFinish		81
GarageQual		81
BsmtExposure		38
BsmtFinType2		38
BsmtFinType1		37
BsmtCond		37
BsmtQual		37
MasVnrArea		8
MasVnrType		8
Electrical		1
Utilities		0
YearRemodAdd		0
MSSubClass		0
Foundation		0
ExterCond		0
ExterQual		0

In [18]:

```
categoricals = train_data.select_dtypes(exclude=[np.number])
print(categoricals.describe())
```

	MSZoning	Street	Alley	LotShape	Lanc	dContour	Util	ities	LotCon:	fig	/
count	1460	1460	91	1460		1460		1460	1	460	
unique	5	2	2	4		4		2		5	
top	RL	Pave	Grvl	Reg		Lvl	P	AllPub	Ins	ide	
freq	1151	1454	50	925		1311		1459	1	052	
	LandSlope	e Neighl	oorhood	d Condition	on1			Garag	geType	/	
count	1460)	1460) 14	460				1379		
unique	3	3	25	5	9				6		
top	Gt]	<u>L</u>	NAmes	s No	orm			I	Attchd		
freq	1382	2	225	5 12	260				870		
	GarageFir	nish Ga:	rageQua	al Garage	Cond	PavedDri	ive E	PoolQC	Fence	\	
count	1	379	137	79	1379	14	460	7	281		
unique		3		5	5		3	3	4		
top		Unf	7	TA.	TA		Y	Gd	MnPrv		
freq		605	131	.1	1326	13	340	3	157		
	MiscFeatu	ire Sale	eType S	SaleCondit	tion						
count		54	1460		1460						
unique		4	9		6						
top	Sł	ned	WD	No	rmal						
freq		49	1267		1198						
4			,	•							

```
[4 rows x 43 columns]
In [19]:
print ("Original: \n")
print (train_data.Street.value_counts(), "\n")
Original:
        1454
Pave
Grvl
Name: Street, dtype: int64
In [21]:
train data['enc street'] = pd.get dummies(train data.Street, drop first=True)
test data['enc street'] = pd.get dummies(test data.Street, drop first=True)
print ('Encoded: \n')
print (train_data.enc_street.value_counts())
Encoded:
    1454
1
Name: enc street, dtype: int64
In [22]:
condition_pivot = train_data.pivot_table(index='SaleCondition', values='SalePrice', aggfunc=np.medi
condition pivot.plot(kind='bar', color='blue')
plt.xlabel('Sale Condition')
plt.ylabel('Median Sale Price')
plt.xticks(rotation=0)
plt.show()
   250000 - SalePrice
   200000
Median Sale Price
  150000
   100000
    50000
            Abnormi
                        AdjLand
                                     Alloca
                                                 Family
                                                            Normal
                                                                         Partial
                                       Sale Condition
In [23]:
```

```
def encode(x) : return 1 if x== 'Partial' else 0
train_data['enc_condition'] = train_data.SaleCondition.apply(encode)
test_data['enc_condition'] = test_data.SaleCondition.apply(encode)
condition_pivot = train_data.pivot_table(index='enc_condition', values='SalePrice', aggfunc=np.medi
an)
condition_pivot.plot(kind='bar', color='blue')
plt.xlabel('Encoded Sale Condition')
plt.ylabel('Median Sale Price')
plt.xticks(rotation=0)
plt.show()
```


In [26]:

```
data = train_data.select_dtypes(include=[np.number]).interpolate().dropna()
print(sum(data.isnull().sum() != 0))

y = np.log(train_data.SalePrice)
X = data.drop(['SalePrice', 'Id'], axis=1)

from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
from sklearn import linear_model

X_train_data, X_test_data, y_train_data, y_test_data = train_test_split(X, y, random_state=42, test_size=.50)

lr = linear_model.LinearRegression()

model = lr.fit(X_train_data, y_train_data)
print("R^2 is: \n", model.score(X_test_data, y_test_data))
```

In [27]:

RMSE is: 0.02394509463942047

0.8564064602783424

Linear Regression Model

In [29]:

```
submission = pd.DataFrame()
submission['Id']= test_data.Id
feats = test_data.select_dtypes(
include=[np.number]).drop(['Id'], axis=1).interpolate()
predictions = model.predict(feats)
final_predictions = np.exp(predictions)
print("Original predictions are: \n", predictions[:40], "\n")
print("Final predictions are: \n", final_predictions[:40])
```

Original predictions are:

```
[11.64895308 11.94044415 12.02718676 12.16293269 12.09403452 12.07047626 12.1687319 12.04426022 12.17618814 11.67184269 12.16642843 11.61225858 11.52634696 11.95546319 11.71022329 12.72590215 12.42180477 12.51715624 12.4580164 12.93300047 12.59926236 12.1888906 12.0113667 11.98331652 12.21426629 12.22087499 12.65961758 12.40790143 12.13720351 12.2588244 12.16809354 11.46426006 12.34979425 12.61164918 12.55310659 12.22537645 12.0431446 11.95569907 12.02735878 11.95820936]
```

Final predictions are:

```
[114571.35343198 153344.78374893 167240.26268141 191555.46600358 178802.03377128 174638.99980394 192669.56384032 170120.14884681 194111.52398311 117224.09162669 192226.26594999 110443.41456896 101351.19674025 155665.25627003 121810.67644177 336348.17931076 248153.99179247 272980.66261582 257304.73463441 413743.07486959 296339.89113047 196592.94557298 164615.32964291 160061.99951776 201645.46075501 202982.48872687 314776.32245404 244727.69658731 186689.76603865 210833.58478991 192546.6112499 95249.97766235 230912.52675172 300033.42918215 282972.94895208 203898.26512872 169930.46461656 155701.97973291 167269.03412926 156093.32693999]
```

In [32]:

```
submission['SalePrice'] = final_predictions
```

In [33]:

submission

Out[33]:

	ld	SalePrice
0	1461	114571.353432
1	1462	153344.783749
2	1463	167240.262681
3	1464	191555.466004
4	1465	178802.033771
5	1466	174638.999804
6	1467	192669.563840
7	1468	170120.148847
8	1469	194111.523983
9	1470	117224 091627

J		
10	ld 1471	SalePrice 192226.265950
11	1472	110443.414569
12	1473	101351.196740
13	1474	155665.256270
14	1475	121810.676442
15	1476	336348.179311
16	1477	248153.991792
17	1478	272980.662616
18	1479	257304.734634
19	1480	413743.074870
20	1481	296339.891130
21	1482	196592.945573
22	1483	164615.329643
23	1484	160061.999518
24	1485	201645.460755
25	1486	202982.488727
26	1487	314776.322454
27	1488	244727.696587
28	1489	186689.766039
29	1490	210833.584790
23	1430	210055.504790
1429	2890	96007 102202
1430		86907.103282
	2891	129737.004413 75257.706921
1431	2892	
	2893	94986.358081
1433	2894	59612.255071
1434	2895	295909.261968
1435	2896	
1436		199398.834811
		154965.623789
1438	2899	208737.231563
1439		
1440		196225.569718
1441		
1442		
1443		344602.616175
1444		88128.048886
1445		232363.630129
1446	2907	
1447		
1448	2909	153124.097829
1449	2910	
1450	2911	
1451		144493.976251
1452		95963.610525
1453	2914	86090.649570
1454	2915	94429.122479
1455		95093.464891
1456	2917	160328.550453
1457	2918	109073.351547

459 rows × 2 columns			
n []:			
n []:			