Ejercicio Semanal 2

Diego Méndez Medina

Considera la siguiente información:

- Si Manuel es delgado, entonces Paola no es pelirroja o Fernando no es alto.
- Si Fernando es alto, entonces Sandra es cariñosa.
- Si Sandra es cariñosa y Paola es pelirroja, entonces Manuel es delgado.
- Paola es pelirroja.
- 1. Traduce cada uno de los enunciados anteriores a lógica proposicional usando el siguiente glosario:
 - \blacksquare *M* para indicar que Manuel es delgado.
 - P para indicar que Paola es pelirroja.
 - ullet F para indicar que Fernando es alto.
 - $\,\blacksquare\,\, S$ para indicar que Sandra es cariñosa.

Solución:

Dado el glosario antes mencionado y la información tenemos:

- $M \to (\neg P \vee \neg F)$
- $F \to S$
- \bullet $(S \wedge P) \to M$
- P
- 2. Encuentra la Forma Normal Negativa de las fórmula anteriores.

Solución:

Siguiendo la proposición dos de la nota tres y la solución a la pregunta anterior:

$$M\to (\neg P\vee \neg F)\equiv \neg M\vee \neg P\vee \neg F$$
 Eliminando implicación
$$=fnn(M\to (\neg P\vee \neg F))$$
 Eliminando implicación
$$F\to S\equiv \neg F\vee S$$
 Eliminando implicación
$$=fnn(F\to S)$$
 Eliminando implicación
$$\equiv fnn(F\to S)$$
 Eliminando implicación
$$\equiv \neg S\vee \neg P\vee M$$
 Eliminando implicación
$$\equiv \neg S\vee \neg P\vee M$$
 De Morgan
$$=fnn((S\wedge P)\to M)$$
 Lo cumple por definición

3. Encuentra la Forma Normal Conjuntiva de cada fórmula.

Solución:

Siguiendo la *proposición tres de la nota tres* y la forma normal negativa calculada el inciso anterior, siendo bien explicitos solo en el primero y en los demás siguiendo lo dicho en este:

 $M \to (\neg P \lor \neg F)$

$$M \to (\neg P \vee \neg F) \equiv \neg M \vee \neg P \vee \neg F$$
 fnn

M es un átomico, entonces $\neg M$ es una literal. Dada la definición de clausula $\neg M$ es una una clausula, sea C_1' .

P es un átomico, entonces $\neg P$ es una literal. Junto a la clausula C_1 , $\neg P \lor C_1'$ tambíen es una clausula, llamemosla C_2' .

F es un átomico, $\neg F$ es una literal. Así $\neg F \lor C_2'$ es tambíen una clausula, sea C_1 .

op es un átomico y así una literal y una clausula. Y además $C_1 \equiv C_1 \wedge op$

Al C_1 y \top ser clausulas, $C_1 \wedge \top$ es una forma normal conjuntiva. Entonces:

$$fnc(M \to (\neg P \lor \neg F)) = C_1 \land \top = (\neg M \lor \neg P \lor \neg F) \land \top \equiv \neg M \lor \neg P \lor \neg F$$

 $\blacksquare F \to S$

$$F \to S \equiv \neg F \vee S \qquad \qquad \text{fnn}$$

$$\equiv (\neg F \vee S) \wedge \top \qquad \qquad \text{juntando dos clausulas}$$

$$= fnc(F \to S)$$

 \bullet $(S \wedge P) \to M$

$$\begin{array}{ll} (S\wedge P)\to M\equiv \neg S\vee \neg P\vee M & \text{fnn}\\ &\equiv (\neg S\vee \neg P\vee M)\wedge \top & \text{juntando clausulas}\\ &=fnc((S\wedge P)\to M) \end{array}$$

■ *P*

$$P \wedge \top$$

4. Usando resolución binaria indica si *Fernando no es alto* es consecuencia lógica del conjunto de fórmulas. **Solución:**

Sea
$$\Gamma = \{M \to (\neg P \vee \neg F), F \to S, (S \wedge P) \to M, P\}$$
 , queremos ver si:

$$\Gamma \models \neg F$$

Que con lo visto en clase basta demostrar que $\Gamma \cup \{\neg \neg F\}$ es insatisfasible, que es lo que haremos a continuación.

El conjunto de formas normales conjuntivas para $\Gamma \cup \{\neg \neg F\}$ es:

$$\{\neg M \lor \neg P \lor \neg F, \neg F \lor S, \neg S \lor \neg P \lor M, P, F\}$$

De aquí obtenemos la siguiente derivación de \square :

1.	$\neg M \vee \neg P \vee \neg F$	Hip
2.	$ eg F \lor S$	Hip
3.	$\neg S \vee \neg P \vee M$	Hip
4.	P	Hip
5.	F	Hip
6.	S	$\mathop{\rm Res}(2,5)$
7.	$\neg P \lor M$	$\mathop{\rm Res}(3,6)$
8.	M	$\mathop{\rm Res}(4,7)$
9.	$\neg P \lor \neg F$	$\mathop{\rm Res}(1,8)$
10.	$\neg F$	$\mathop{\rm Res}(4,9)$
11.		$\mathop{\rm Res}(5,10)$

De manera que el argumento es correcto y Fernando no es alto es consecuencia de la información dada.