Taylor Rules and the Prospect of Indeterminacy: A Bayesian Econometric Investigation* Online Appendix

Joshua Brault[†] Louis Phaneuf[‡]

1960Q1:1979Q2 Estimation Results

In the following tables we report structural parameter estimates and posterior probabilities of determinacy for a longer Great Inflation sample running from 1960Q1 to 1979Q2.

^{*}Brault and Phaneuf acknowledge financial support from SSHRC.

[†]Department of Economics, Carleton University, joshua.brault@carleton.ca

[‡]Corresponding Author, Department of Economics and Research Chair On Macroeconomics and Forecasting, Université du Québec à Montréal, phaneuf.louis@uqam.ca

Table 1: 1960I:1979II POSTERIOR ESTIMATES GAP RULE

	Prio				Posterior	
	Dist.	Mean	SD	$\xi_p = 0.50$	$\xi_p = 0.55$	$\xi_p = 0.65$
h	Beta	0.7	0.1	0.524	0.514	0.520
				[0.405,0.651]	[0.383,0.635]	[0.401,0.637
x 5 p	Beta	_	0.1	0.586	0.614	0.644
•				[0.483,0.688]	[0.521,0.718]	[0.547,0.743
α_{π}	Gamma	1.5	0.3	1.674	1.877	1.651
				[1.189,2.191]	[1.375,2.408]	[1.138,2.158
α_y	Gamma	0.125	0.1	0.289	0.296	0.348
				[0.122,0.419]	[0.150,0.438]	[0.159,0.575
α_{dy}	Gamma	0.125	0.1	_		_
				[—,—]	[—,—]	[—,—]
o_R	Beta	0.6	0.2	0.565	0.547	0.564
				[0.399,0.721]	[0.408,0.708]	[0.400,0.742
Ā	Normal	0.370	0.15	0.405	0.439	0.431
				[0.178,0.619]	[0.223,0.663]	[0.231,0.632
$\bar{\pi}$	Normal	0.985	0.75	1.212	1.161	1.162
				[0.943,1.482]	[0.905,1.433]	[0.891,1.43]
R	Gamma	1.597	0.25	1.486	1.448	1.479
				[1.239,1.736]	[1.204,1.707]	[1.232,1.714
o_b	Beta	0.5	0.2	0.465	0.462	0.475
				[0.149,763]	[0.178,0.729]	[0.173,0.760
O_A	Beta	0.5	0.2	0.754	0.798	0.683
				[0.587,0.886]	[0.693,0.912]	[0.356,0.882
O_r	Beta	0.5	0.2	0.509	0.564	0.532
				[0.323,0.699]	[0.394,0.719]	[0.309,0.71]
τ_b	Inverse Gamma	0.5	4	0.932	0.954	1.327
U				[0.271,1.873]	[0.267,1.755]	[0.281,2.393
τ_A	Inverse Gamma	0.5	4	0.584	0.523	0.563
				[0.338,0.816]	[0.290,0.734]	[0.340,0.783
σ_r	Inverse Gamma	0.5	4	0.286	0.316	0.289
				[0.209,0.362]	[0.218,0.402]	[0.208,0.373
σ_{ζ}	Inverse Gamma	0.5	4	0.339	0.336	0.323
				[0.249,0.425]	[0.242,0.423]	[0.250,0.400
M_b	Normal	0	1	-0.039	-0.058	-0.002
U				[-0.414,0.248]	[-0.435,0.207]	[-0.249,0.22
M_A	Normal	0	1	0.372	0.839	0.240
				[-0.661,1.294]	[-0.560,2.162]	[-0.718,1.12
M_r	Normal	0	1	0.372	0.499	0.223
				[-0.474,1.013]	[-0.205,1.127]	[-0.621,0.98
$\log p(X^T)$				-141.9454	-141.5080	-140.8163
Prob(det)				0.0004	0.0000	0.0000

Notes: In each case above, the column references the prior mean of the Calvo parameter and for each case the prior standard deviation is set to 0.1. Numbers in square brackets indicate 90% confidence intervals.

Table 2: 1960I:1979II POSTERIOR ESTIMATES MIXED RULE

	Prio	r		Posterior			
	Dist.	Mean	SD	$\xi_p = 0.50$	$\xi_p = 0.55$	$\xi_p = 0.65$	
h	Beta	0.7	0.1	0.536	0.610	0.537	
				[0.435,0.650]	[0.484,0.741]	[0.415,0.654]	
ξ_p	Beta	_	0.1	0.585	0.624	0.651	
				[0.478,0.701]	[0.532,0.725]	[0.543,0.755]	
α_{π}	Gamma	1.5	0.3	1.720	1.716	1.688	
				[1.148,2.212]	[1.142,2.237]	[1.264,2.205]	
α_y	Gamma	0.125	0.1	0.233	0.230	0.245	
	_			[0.079,0.385]	[0.094,0.362]	[0.045,0.448]	
α_{dy}	Gamma	0.125	0.1	0.158	0.107	0.134	
	_			[0.005,0.296]	[0.002,0.204]	[0.002,0.261]	
$ ho_R$	Beta	0.6	0.2	0.618	0.591	0.592	
-			0.4	[0.473,0.756]	[0.456,0.724]	[0.434,0.756]	
Ā	Normal	0.370	0.15	0.418	0.456	0.439	
_		0.00 =	o ==	[0.216,0.643]	[0.253,0.638]	[0.214,0.656]	
$\bar{\pi}$	Normal	0.985	0.75	1.257	1.208	1.182	
ō	C	1 507	0.25	[0.957,1.534]	[0.942,1.476]	[0.907,1.450]	
R	Gamma	1.597	0.25	1.528	1.489	1.479	
_	D. (-	0.5	0.2	[1.251,1.798]	[1.247,1.730]	[1.209,1.731]	
$ ho_b$	Beta	0.5	0.2	0.462	0.509	0.492	
	Data	0.5	0.2	[0.142,0.754]	[0.247,0.759]	[0.168,0.789]	
$ ho_A$	Beta	0.5	0.2	0.760	0.704	0.761	
	Doto	0.5	0.2	[0.624,0.896] 0.515	[0.543,0.866]	[0.639,0.888]	
ρ_r	Beta	0.3	0.2		0.567	0.540	
Œ.	Inverse Gamma	0.5	4	[0.348,0.680] 0.732	[0.397,0.739] 2.013	[0.374,0.708] 0.775	
σ_b	inverse Gainina	0.5	4	[0.270,1.274]	[0.302,3.372]	[0.234,1.524]	
σ_{\star}	Inverse Gamma	0.5	4	0.647	0.529	0.623	
σ_A	mverse Gamma	0.5	T	[0.348,0.908]	[0.293,0.745]	[0.337,0.866]	
σ_r	Inverse Gamma	0.5	4	0.288	0.290	0.294	
O T	inverse Gamma	0.0	-	[0.222,0.354]	[0.222,0.362]	[0.224,0.367]	
σ_{ζ}	Inverse Gamma	0.5	4	0.362	0.339	0.357	
υζ	inverse Gamma	0.0	•	[0.266,0.464]	[0.250,0.433]	[0.253,0.455]	
M_b	Normal	0	1	0.000	0.008	-0.010	
-· - <i>U</i>	_ 1011111	J	•	[-0.415,0.447]	[-0.192,0.206]	[-0.461,0.471]	
M_A	Normal	0	1	0.355	0.214	0.344	
71		-	-	[-0.575,1.199]	[-0.539,0.882]	[-0.460,1.178]	
M_r	Normal	0	1	0.214	0.319	0.313	
,		-		[-0.437,0.832]	[-0.334,0.901]	[-0.417,0.929]	
$\log p(X^T)$				-141.6707	-139.6953	-141.0848	
Prob(det)				0.0049	0.0001	0.0041	
1					.1 6.1		

Notes: In each case above, the column references the prior mean of the Calvo parameter and for each case the prior standard deviation is set to 0.1. Numbers in square brackets indicate 90% confidence intervals.

Table 3: 1960I:1979II POSTERIOR ESTIMATES GROWTH RULE

	Prio			Posterior			
	Dist.	Mean	SD	$\xi_p = 0.50$	$\xi_p = 0.55$	$\xi_p = 0.65$	
h	Beta	0.7	0.1	0.553	0.577	0.586	
				[0.453,0.648]	[0.477,0.671]	[0.482,0.695	
x , p	Beta	_	0.1	0.429	0.486	0.531	
•				[0.342,0.513]	[0.365,0.634]	[0.394,0.691	
x_{π}	Gamma	1.5	0.3	1.372	1.308	1.273	
				[1.088,1.678]	[0.908,1.671]	[0.881,1.662	
x_y	Gamma	0.125	0.1	_	_	_	
	_			[—,—]	[—,—]	[—,—]	
α_{dy}	Gamma	0.125	0.1	0.171	0.203	0.216	
				[0.047,0.282]	[0.057,0.360]	[0.057,0.354	
O_R	Beta	0.6	0.2	0.428	0.507	0.534	
-				[0.275,0.586]	[0.328,0.710]	[0.357,0.726	
$ar{A}$	Normal	0.370	0.15	0.412	0.411	0.400	
				[0.196,0.614]	[0.212,0.621]	[0.182,0.64	
$\bar{\tau}$	Normal	0.985	0.75	1.118	1.152	1.144	
=	_			[0.890,1.338]	[0.826,1.457]	[0.875,1.40	
R	Gamma	1.597	0.25	1.456	1.492	1.487	
	.			[1.217,1.721]	[1.162,1.829]	[1.179,1.74	
o_b	Beta	0.5	0.2	0.865	0.740	0.715	
	D .	o =	0.0	[0.806,0.932]	[0.355,0.947]	[0.345,0.94	
O_A	Beta	0.5	0.2	0.243	0.372	0.378	
	.			[0.069,0.385]	[0.078,0.752]	[0.086,0.76	
O_{r}	Beta	0.5	0.2	0.498	0.491	0.492	
		0.5		[0.390,0.624]	[0.345,0.640]	[0.343,0.646	
σ_b	Inverse Gamma	0.5	4	0.900	0.889	0.897	
		0.5	4	[0.502,1.315]	[0.342,1.346]	[0.327,1.393	
τ_A	Inverse Gamma	0.5	4	1.769	1.563	1.672	
_	Increme a Comm	٥٦	1	[1.391,2.137]	[0.649,2.185]	[0.532,2.40	
τ_r	Inverse Gamma	0.5	4	0.314	0.295	0.285	
T	Invance Comme	0.5	1	[0.241,0.384]	[0.220,0.373]	[0.212,0.35]	
σ_{ζ}	Inverse Gamma	0.5	4	0.596	0.470	0.445	
λ 1/.	Normal	0	1	[0.257,0.924] -0.003	[0.236,0.704] 0.012	[0.222,0.70] -0.109	
M_b	normai	U	1				
M_A	Normal	0	1	[-1.609,1.572] -0.057	[-1.295,1.502] 0.208	[-1.574,1.46	
	INUIIIIAI	U	1			-0.143	
M_r	Normal	0	1	[-1.674,1.561]	[-1.041,1.682]	[-1.386,0.96	
.V1γ	inorinai	U	1	-0.060	0.125	-0.035	
$\log p(X^T)$				[-1.695,1.509]	[-1.351,1.517]	[-1.325,0.99	
				-144.4772 0.9881	-146.7588 0.7079	-146.873	
Prob(det)				0.9881	0.7079	0.6239	

Notes: In each case above, the column references the prior mean of the Calvo parameter and for each case the prior standard deviation is set to 0.1. Numbers in square brackets indicate 90% confidence intervals.