# Efficient First-Order Algorithms for Adaptive Signal Denoising

Dmitrii Ostrovskii\* Zaid Harchaoui<sup>†</sup>

\*INRIA Paris, Ecole Normale Supérieure

<sup>†</sup>University of Washington

ICML 2018 Stockholm

## Signal denoising problem

Recover discrete-time **signal**  $x=(x_{\tau})\in\mathbb{C}^{2n+1}$  from noisy **observations** 

$$y_{\tau} = x_{\tau} + \sigma \xi_{\tau}, \quad \tau = -n, ..., n,$$

where  $\xi_{\tau}$  are i.i.d. standard Gaussian random variables.





#### Difficulty: unknown structure

## Adaptive denoising: background\*

**Linear time-invariant estimator**: convolution of y with filter  $\varphi \in \mathbb{C}^{n+1}$ :

$$\widehat{x}_t = [\varphi * y]_t := \sum_{0 \le \tau \le n} \varphi_\tau y_{t-\tau}, \quad 0 \le t \le n,$$

• Suppose *x* satisfies discrete ODE (sines, polynomials, exponentials):

$$P(\Delta)x \approx 0$$
,

where  $[\Delta x]_t := x_{t-1}$ , and operator  $P(\Delta) = \sum_{k=1}^d p_k \Delta^k$  is **unknown**.

• Then there exists  $\varphi^o$  with near-optimal risk and small  $\ell_1$ -norm of Discrete Fourier transform  $\mathcal{F}_n[\varphi^o]$ :

$$\|\mathcal{F}_n[\varphi^o]\|_1 \leq \frac{r}{\sqrt{n+1}}, \quad r = \mathsf{poly}(\mathsf{deg}(P)).$$

**Goal:** construct **adaptive filter**  $\widehat{\varphi} = \widehat{\varphi}(y)$  with similar properties to  $\varphi^o$ .

<sup>\*[</sup>Juditsky and Nemirovski, 2009, 2010; Harchaoui et al., 2015; Ostrovsky et al., 2016]

### **Estimators**

$$\label{eq:minimize} \begin{split} & \text{minimize } & \text{Res}_p(\varphi) := \left\| \mathcal{F}_{\textit{\textbf{n}}}[\textit{\textbf{y}} - \varphi * \textit{\textbf{y}}]_n^{2n} \right\|_p \\ & \text{subject to } & \varphi \in \Phi(r) := \left\{ \|\mathcal{F}_{\textit{\textbf{n}}}[\varphi]\|_1 \leq \frac{r}{\sqrt{n+1}} \right\}. \end{split}$$

**Least Squares** [Ostrovsky et al., 2016]:  $p = 2 \ (\Rightarrow \ell_2$ -loss guarantees)

Uniform Fit [Harchaoui et al., 2015]:  ${\pmb \rho} = \infty \ (\Rightarrow \ell_{\infty} \text{-loss guarantees})$ 

- $\odot$  simple constraint: proximal mapping computed in O(n);
- $\odot$  **first-order oracle:** computed in  $O(n \log n)$  by reducing to FFT;
- © low accuracy: are crude approximate solutions sufficient?

#### First-order methods

## Strategies

Fourier-domain:  $u := \mathcal{F}_n[\varphi], \quad b = \mathcal{F}_n[[y]_n^{2n}], \quad \mathcal{A}u := \mathcal{F}_n[[y * \varphi]_n^{2n}].$ 

**Least Squares:** quadratic problem on  $\ell_1$ -ball:

$$\min_{\|u\|_1 \leq \frac{r}{\sqrt{n+1}}} \|\mathcal{A}u - b\|_2^2.$$

• Fast Gradient Method:  $O(1/T^2)$  convergence after T iterations.\*

**Uniform Fit**: reduced to a **bilinear saddle-point** problem:

$$\min_{\|u\|_1 \leq \frac{r}{\sqrt{n+1}}} \|\mathcal{A}u - b\|_{\infty} = \min_{\|u\|_1 \leq \frac{r}{\sqrt{n+1}}} \max_{\|v\|_1 \leq 1} \langle v, \mathcal{A}u \rangle - \langle v, b \rangle.$$

- Mirror Prox: O(1/T) convergence after T iterations.\*

<sup>\*[</sup>Nesterov and Nemirovski, 2013; Juditsky and Nemirovski, 2011]

## Statistical accuracy: theoretical result

Let  $||x||_{n,p}$  be the "estimation norm" with the right scaling:

$$||x||_{n,p} = \left(\frac{1}{n+1} \sum_{t=n}^{2n} |x_t|^p\right)^{1/p}.$$

• Exact solutions [Harchaoui et al., 2015; Ostrovsky et al., 2016]:

$$\mathbb{P}\left\{\|x - \widehat{\varphi}_{LS} * y\|_{n,2} \ge C\sigma r \sqrt{\frac{\log(n/\delta)}{n+1}}\right\} \le \delta,$$

$$\mathbb{P}\left\{\|x - \widehat{\varphi}_{UF} * y\|_{n,\infty} \ge C\sigma r^2 \sqrt{\frac{\log(n/\delta)}{n+1}}\right\} \le \delta.$$

We extend these results to approximate solutions:

#### Theorem A

Approximate solutions  $\tilde{\varphi}$  with accuracy  $\varepsilon_* = \sigma r$  for Uniform Fit and  $\varepsilon_* = \sigma^2 r^2$  for Least Squares admit the same bounds as the exact ones.

## Experiment: early stopping

Comparison of  $\ell_2$ -loss and computation time in two scenarios: sum of sines with 4 random frequencies and 2 pairs of close frequencies (right)\*.



- Coarse: crude Least Squares solution with accuracy  $\varepsilon_* = \sigma^2 r^2$ ;
- Fine: near-optimal Least Squares solution with accuracy  $0.01\varepsilon_*$ ;
- Lasso: 10-fold oversampled Lasso estimator [Bhaskar et al., 2013].

  Code available at https://github.com/ostrodmit/AlgoRec

# Algorithmic complexity

#### Theorem B

To reach the statistical accuracy  $\varepsilon_*$ , in each case it is sufficient to perform

$$T_* = O(PSNR + 1)$$

steps of the corresponding algorithm.





Iteration at which accuracy  $\varepsilon_*$  is attained **experimentally** on the sum of sines with 4 random frequencies: Uniform Fit (left), Least Squares (right).

#### Thank you and see you at poster B#51

Where I will also show how to solve some non-smooth problems in  $O(1/T^2)$ .

## References

- Bhaskar, B., Tang, G., and Recht, B. (2013). Atomic norm denoising with applications to line spectral estimation. *IEEE Trans. Signal Processing*, 61(23):5987–5999.
- Harchaoui, Z., Juditsky, A., Nemirovski, A., and Ostrovsky, D. (2015). Adaptive recovery of signals by convex optimization. In *Proceedings of The 28th Conference on Learning Theory* (COLT) 2015, Paris, France, July 3-6, 2015, pages 929–955.
- Juditsky, A. and Nemirovski, A. (2009). Nonparametric denoising of signals with unknown local structure, I: Oracle inequalities. Appl. & Comput. Harmon. Anal., 27(2):157–179.
- Juditsky, A. and Nemirovski, A. (2010). Nonparametric denoising signals of unknown local structure, II: Nonparametric function recovery. Appl. & Comput. Harmon. Anal., 29(3):354–367.
- Juditsky, A. and Nemirovski, A. (2011). First-order methods for nonsmooth convex large-scale optimization, II: Utilizing problem structure. *Optimization for Machine Learning*, pages 149–183.
- Nesterov, Y. and Nemirovski, A. (2013). On first-order algorithms for  $\ell_1$ /nuclear norm minimization. *Acta Numerica*, 22:509–575.
- Ostrovsky, D., Harchaoui, Z., Juditsky, A., and Nemirovski, A. (2016). Structure-blind signal recovery. In *Advances in Neural Information Processing Systems*, pages 4817–4825.

# Convergence: numerical experiment



Convergence of the residual (95% upper confidence bound) for a sum of s=4 sinusoids with random frequencies and amplitudes, SNR = 4.

**Dashed:** online accuracy bounds via the dual certificate.