Fundamentos de Algoritmos e Estrutura de Dados - Aula 02 - Listas Encadeadas

Prof. André Gustavo Hochuli

<u>gustavo.hochuli@pucpr.br</u> aghochuli@ppgia.pucpr.br

Plano de Aula

- Listas Encadeadas
- Filas e Pilhas
- Exercícios

Estruturas de Dados

Estruturas de Dados Estáticas (Ou contíguas)

- Alocação contígua
 - Vantagens
 - Acesso é rápido e sequencial
 - Baixo Overhead
 - Requer baixo nível de progran

- Desvantagem
 - Inviável para grandes massas
 - · Limitado ao número de blocos sequenciais livres

Array Element

Estruturas de Dados Dinâmicas (Ou Encadeadas)

- Alocação não-contígua
 - Vantagens
 - Armazenar grandes massas d
 - Memória física é o limite
 - Desvantagem
 - Desempenho
 - Alto Overhead
 - Elevado nível de abstração

Estruturas de Dados Dinâmicas (Ou Encadeadas)

Topologia

Pilha (Stack)

- Pilha ou (Stack)
 - Inserção e Remoção da cabeça (Last In First Out) LIFO
- Aplicações
 - Recursão (Programação)
 - Reverter Vetores
 - Histórico de Navegação
 - Etc

Fila (Queue)

- Fila (Queue)
 - Inserção da Cauda
 - Remoção da Cabeça
 - First In Last Out (FIFO)

- Aplicações
 - Compartilhamento de Recursos
 - CPU, Interrupções, Harwades e Perifericos
 - Controle de Acesso
 - Transfêrência de Dados
 - Playlists

Implementação e Discussão

Vamos codificar!!

Estrutura de Dados - DeepNote - Listas Ligadas

Exercícios

- Implemente um lista encadeada, com inserção e remoção em qualquer posição
- Implemente um algoritmo de ordenação utilizando listas ligadas
- Implemente o jogo da torre de Hanói
- Implemente a impressão da de forma recursiva (em ordem e ordem-inversa)
- Implemente a busca por elemento recursiva