1. ОСНОВНЫЕ ПОНЯТИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ

Обыкновенным дифференциальным уравнением называется уравнение, связывающее между собой независимые переменные, искомую функцию (или дифференциал) и ее производные. Обыкновенное дифференциальное уравнение имеет следующий вид:

$$F[x, y(x), y'(x), \dots, y^{(n)}(x)] = 0$$
 (1)

Здесь x— независимая переменная, $y(x), y'(x), \dots, y^{(n)}(x)$ — искомая функция и ее производные вплоть до производной порядка n.

Порядком дифференциального уравнения называется порядок старшей производной (или дифференциала), входящей в уравнение (число n в формуле (1)). Так, уравнение $y'' + y' = \cos x$ является дифференциальным уравнением второго порядка.

Решением дифференциального уравнения называется такая функция, которая при подстановке в уравнение обращает его в тождество.

Общим решением дифференциального уравнения называется решение, содержащее столько произвольных постоянных, каков порядок уравнения. Общее решение дифференциального уравнения (1) имеет вид:

$$y = y(x; C_1, C_2, ..., C_n),$$
 (2)

где $C_1, C_2,, C_n$ произвольные постоянные, или *постоянные* интегрирования.

Если решение уравнения (1) получено в неявном виде

$$\varphi(x; C_1, C_2, ..., C_n) = 0,$$
 (3)

то такое решение называется общим интегралом уравнения (1).

Частным решением дифференциального уравнения называется решение, полученное из общего выбором конкретных значений произвольных постоянных.

Задачей Коши для дифференциального уравнения (1) называется задача отыскания решения y(x) этого уравнения, удовлетворяющего следующим начальным условиям:

$$y(x_0) = y_0, y'(x_0) = y'_0, \dots, y^{(n)}(x_0) = y_0^{(n)}.$$
 (4)

Число начальных условий равно порядку уравнения, что позволяет определить все произвольные постоянные в общем решении (2).

График каждого частного решения в плоскости (x, y) представляет линию, называемую *интегральной кривой*, а совокупность всех интегральных кривых образует семейство интегральных кривых.

Рассмотрим уравнение (1) в виде, разрешенном относительно старшей производной:

$$y^{n}(x) = f(x, y, ..., y^{(n-1)}).$$
 (5)

Теорема. Если в некоторой окрестности точки x_0 функция $f(x, y, ..., y^{(n-1)})$ определена и имеет непрерывные частные производные по переменным $y, ..., y^{(n-1)}$, то в этой окрестности задача Коши имеет единственное решение.

Особым решением дифференциального уравнения называется решение, в каждой точке которого нарушаются условия теоремы существования и единственности. Оно не может быть получено из общего подбором значений произвольных постоянных.

Линейным называется дифференциальное уравнение, линейное относительно искомой функции и ее производных:

$$y^{(n)} + a_1(x)y^{(n-1)} + ... + a_n(x)y = f(x),$$

где $a_{_{1}}(x)$, ..., $a_{_{n}}(x)$, f(x) — некоторые функции, непрерывные в некоторой области D.

При $f(x) \equiv 0$ уравнение называется *однородным*, в остальных случаях *неоднородным*.

При постоянстве коэффициентов $a_1, ..., a_n$ уравнение называется уравнением с постоянными коэффициентами.

2. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПЕРВОГО ПОРЯДКА

2.1 Уравнение с разделяющимися переменными

Дифференциальным уравнением с разделяющимися переменными называется уравнение вида:

$$f_1(x)g_1(y)dx = f_2(x)g_2(x)dy$$

Для его решения следует сначала разделить переменные, то есть разнести их в разные стороны уравнения:

$$\frac{f_1(x)}{f_2(x)}dx = \frac{g_2(x)}{g_1(x)}dy \quad (f_2(x) \neq 0; \ g_1(y) \neq 0),$$

а затем проинтегрировать обе части уравнения:

$$\int \frac{f_1(x)}{f_2(x)} dx = \int \frac{y_2(x)}{y_1(x)} dy.$$

Следует иметь в виду, что полученные неопределенные интегралы могут различаться на произвольную постоянную C.

Пример 2.1 Решить задачу Коши: $\frac{2}{3}e^{-x}dy = xy^{\frac{1}{3}}dx$, y(1) = 8.

Решение. Поделим обе части уравнения на $y^{\frac{1}{3}}e^{-x}$ ($y \neq 0$).

Тогда
$$\frac{2}{3}y^{-\frac{1}{3}}dy = xe^{x}dx$$
 и $\frac{2}{3}\int y^{-\frac{1}{3}}dy = \int xe^{x}dx$.

Вычисляя интегралы, находим: $y^{\frac{2}{3}} = e^{x}(x-1) + C$.

Отсюда $y(x) = (e^{x}(x-1) + C)^{\frac{3}{2}}$ – общее решение.

Подставим в это решение начальное условие: $y(1) = C^{\frac{3}{2}} = 8$; Следовательно, C = 4 и $y(x) = (e^x(x-1)+4)^{\frac{3}{2}}$ – искомое частное решение, то есть решение задачи Коши.

Пример 2.2

Решить дифференциальное уравнение: $\frac{dy}{dx} = (x+1)\cos^2 y$

Решение.

Разделим переменные:

$$\frac{dy}{(\cos^2 y)} = (x+1) \, dx$$

Т. к. начальные условия не заданы, возьмем неопределенный интеграл от обеих частей уравнения:

$$\int \frac{dy}{(\cos^2 y)} = \int (x+1) dx,$$

$$\operatorname{tg} y = \frac{x^2}{2} + x + C.$$

Осталось лишь выразить y через x:

$$y = \arctan\left(\frac{x^2}{2} + x + C\right)$$

Найдем также нулевые решения:

$$\cos^2 y = 0 \Leftrightarrow y = \frac{\pi}{2} + \pi n, \ n \in \mathbb{Z}$$

$$y(x)=\mathrm{arctg}\left(rac{x^2}{2}+x+C
ight),\ C=\mathrm{const},\ y(x)=rac{\pi}{2}+\pi n,\ n\in\mathbb{Z}$$

3. Однородное уравнение первого порядка

Однородным уравнением первого порядка называется уравнение вида:

$$y' = f(\frac{y}{x}). ag{6}$$

Для его решения введем новую переменную $z = \frac{y}{x}$. Тогда $y = z \cdot x$ и $y' = z' \cdot x + z$. Подставляя эти соотношения в (6), получаем:

$$z' \cdot x + z = f(z)$$
 или $\frac{dz}{dx} \cdot x = f(z) - z$. Это уравнение с

разделяющимися переменными, и оно легко интегрируется. Найдя z(x), получаем искомое решение $y(x) = z(x) \cdot x$.

Пример 3.1 Решить уравнение: $y' = \frac{y}{x} + \cos^2 \frac{y}{x}$.

Решение. Полагая $y = z \cdot x$ и $y' = z' \cdot x + z$, получим:

$$z' \cdot x + z = z + \cos^2 z$$
, или $\frac{dz}{\cos^2 z} = \frac{dx}{x}$.

Интегрируя обе части последнего уравнения, получим:

$$tgz = \ln x + \ln C.$$

Произвольная постоянная здесь взята в виде $\ln C$ для удобства. Тогда $z = arctg \ln(Cx)$ и окончательно общее решение принимает вид:

$$y = x \cdot arctg \ln(Cx)$$
.

Пример 3.2. Решить уравнение: $x^2y' = xy - y\sqrt{y^2 - x^2}$.

Решение. Пусть $y \neq 0$. Тогда разделим обе части уравнения на x^2 :

$$y' = \frac{y}{x} - \frac{y}{x} \sqrt{\frac{y^2}{x^2} - 1}.$$

После замены переменной $y = z \cdot x$ это уравнение приводится к виду:

$$\frac{dz}{dx} = -z\sqrt{z^2 - 1}, \text{ или } \int \frac{dz}{z\sqrt{z^2 - 1}} = -\int dx.$$

Вычислим интеграл в левой части последнего уравнения:

$$\int \frac{dz}{z\sqrt{z^2 - 1}} = \frac{1}{2} \int \frac{dz^2}{z^2 \sqrt{z^2 - 1}} = \frac{1}{2} \int \frac{dt}{t\sqrt{t - 1}} = \int \frac{du}{1 + u^2} = arctgu = arctg\sqrt{z^2 - 1}.$$

Тогда $arctg \sqrt{z^2 - 1} = -x + C$, и общее решение уравнения записывается в следующем виде:

$$y = x \cdot \sqrt{1 + tg^2(C - x)} = x \cdot \cos^{-1}(C - x)$$
.

Пример 3.3 Найти общий интеграл (общее решение) дифференциального уравнения.

$$y' = \frac{x + 2y}{2x - y}$$

Решение:

Разделим числитель и знаменатель правой части на х:

$$y' = \frac{\frac{x + 2y}{x}}{\frac{2x - y}{x}}; \qquad y' = \frac{1 + 2\frac{y}{x}}{2 - \frac{y}{x}}.$$

Сделаем замену переменной $t = \frac{y}{x}$ или y = tx, где t = t(x).

Найдем y' = t'x + t и подставим в преобразованное уравнение

$$t'x + t = \frac{1+2t}{2-t}; \ t'x = \frac{1+2t}{2-t} - t; \ t'x = \frac{1+2t-t(2-t)}{2-t};$$

$$t'x = \frac{1+2t-2t+t^2}{2-t}, t'x = \frac{1+t^2}{2-t}$$

Пришли к уравнению первого порядка с разделяющимися переменными относительно переменной х и новой искомой

функции t(x). Заменяя $t' = \frac{dt}{dx}$ и разделяя переменные, получим $\frac{dt}{dx}x = \frac{1+t^2}{2-t}$ $\frac{(2-t)dt}{1+t^2} = \frac{dx}{x}$

Проинтегрируем обе части полученного уравнения

$$\int \frac{(2-t)dt}{1+t^2} = \int \frac{dx}{x}$$

$$\int \frac{(2-t)dt}{1+t^2} = \int \left(\frac{2}{1+t^2} - \frac{t}{1+t^2}\right)dt = \int \frac{2dt}{1+t^2} - \int \frac{dt}{1+t^2} = \begin{bmatrix} x - 1 + t^2 \\ dx - 2tdt \\ dt - \frac{1}{2}dx \end{bmatrix}$$

$$-2 \arctan t - \int \frac{\frac{1}{2} dx}{x} - 2 \arctan t - \frac{1}{2} \ln |x| - 2 \arctan t - \frac{1}{2} \ln |x| + t^2|$$

$$\int \frac{dx}{x} = \ln |x|$$

Возвращаясь к исходному уравнению, получим

$$2\arctan\left|-\frac{1}{2}\ln 1 + t^{2}\right| = \ln x + \frac{1}{2}C$$

Умножив обе части равенства на два и уединяя произвольную постоянную, получим общий интеграл уравнения с разделяющимися переменными

$$4\arctan -\ln |1+t^2| - 2\ln |x| = C$$

Для нахождения общего интеграла исходного уравнения вернемся к

 $t = \frac{y}{x}$ старой переменной через замену

$$4 \arctan \frac{y}{x} - \ln \left| 1 + \left(\frac{y}{x} \right)^2 \right| - 2 \ln |x| = C$$

 $4\arctan\frac{y}{x} - \ln\left|\frac{x^2 + y^2}{x^2}\right| - 2\ln|x| = C$

$$4\arctan\frac{y}{x} - \ln(x^2 + y^2) + \ln x^2 - 2\ln|x| = C$$

$$4\arctan \frac{y}{x} - \ln(x^2 + y^2) + 2\ln x - 2\ln x = C$$

Таким образом, общий интеграл исходного уравнения примет вид:

$$4\arctan\frac{y}{x} - \ln(x^2 + y^2) = C$$