Práctica evaluativa Fundamentos de Programación

Porcentaje: 10%

Temas: Strings y tablas

Utilizando el lenguaje de programación Python, hacer un programa que reciba como datos de entrada dos matrices con números enteros, las multiplique e imprima la matriz resultante. Tenga en cuenta que, para multiplicar dos matrices A y B, es

necesario que el número de columnas de A sea igual al número de filas de B.

 $A = \begin{pmatrix} 5 & 4 \\ 1 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 8 & 4 & 0 \\ -1 & 6 & 7 \end{pmatrix} \qquad A \times B = \begin{pmatrix} 36 & 44 & 28 \\ 11 & -14 & -21 \end{pmatrix}$

En Python, existe la función dot del módulo numpy, la cual se utiliza para multiplicar dos matrices de forma rápida, para este ejercicio no se debe utilizar dicha función, el ejercicio no tendrá validez para la calificación si se realiza con dicho recurso. En su lugar, utilice su lógica de programación y los temas abordados

durante el semestre.

Entrada

La entrada contiene dos líneas, cada una con el tamaño de cada matriz, el número de filas y de columnas de cada arreglo deben estar separados entre sí por el signo x, adicionalmente, se deben ingresar los elementos de cada matriz (ver tabla con signales)

ejemplos).

Nota: No incluya mensajes para los datos de entrada.

Salida

La salida contiene la matriz que sea el resultado de la multiplicación entre las dos matrices ingresadas. En cada fila de la matriz, cada número debe estar separado por un espacio en blanco, el último elemento de cada fila no debe contener dicho espacio.

En caso de que el número de columnas de la primera matriz no sea igual que el número de filas de la segunda matriz, no debe realizar ningún cálculo, en su lugar, debe aparecer el siguiente mensaje de salida, sin tildes ni signos de puntuación:

Las columnas de la primera tabla deben ser iguales a las filas de la segunda tabla

Ejemplos:

- Para el caso:

$$A = \begin{pmatrix} 5 & 4 \\ 1 & -3 \end{pmatrix} \qquad B = \begin{pmatrix} 8 & 4 & 0 \\ -1 & 6 & 7 \end{pmatrix} \qquad A \times B = \begin{pmatrix} 36 & 44 & 28 \\ 11 & -14 & -21 \end{pmatrix}$$

Ejemplo de entrada	Ejemplo de salida
2x2 2x3	36 44 28
2x3	11 -14 -21
5	
4	
1	
-3	
8	
4	
0	
-1	
6	
7	

- Para el caso:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \qquad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \qquad A \times B = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$$

Ejemplo de entrada	Ejemplo de salida
2x2	19 22
2x2 2x2	43 50
1	
2	
3	
4	
5	
6	
7	
8	

- Para el caso:

Ejemplo de entrada	Ejemplo de salida
2x5	Las columnas de la primera tabla deben ser
3x6	iguales a las filas de la segunda tabla

- Para el caso:

$$A = \begin{pmatrix} 5 & 2 & 8 \\ -1 & 6 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 1 & 0 \\ 2 & 6 \\ 4 & -5 \end{pmatrix} \qquad AxB = \begin{pmatrix} 41 & -28 \\ 11 & 36 \end{pmatrix}$$

Ejemplo de entrada	Ejemplo de salida
2x3	41 -28
3x2	11 36
5	
2	
8	
-1	
6	
0	
1	
0	
2	
6	
4	
-5	

- Para el caso:

$$A = \begin{pmatrix} 4 \\ 6 \end{pmatrix}$$
 $B = \begin{pmatrix} 5 & 1 & 2 \end{pmatrix}$ $A \times B = \begin{pmatrix} 20 & 4 & 8 \\ 30 & 6 & 12 \end{pmatrix}$

Ejemplo de entrada	Ejemplo de salida
2x1	20 4 8
1x3	30 6 12
4	
6	
5	
1	
2	