本科生实验实践能力测试 物理实验实践能力(C1-2级)达标测试样题 (理工类)

颞目一 电阳的测量及其应用

一、任务

- 1. 了解电表的内部结构及工作原理;
- 2. 了解电阻的分类、参数、识别与使用选择规则;
- 3. 参考图 1 所示的示意图, 改装一款中值电阻为 300 欧姆的欧姆表。

图 1 欧姆表结构示意图

二、要求

- 1. 基本要求
- (1) 利用替代法测量表头内阻 (至少测量 3 次);
- (2) 根据所测出的内阻改装中值电阻为 300Ω 的欧姆表;
- (3)给出 0Ω 、 150Ω 、 300Ω 、 400Ω 、 450Ω 、 500Ω 、 ∞ Ω 所对应的表盘刻度值。
- 2. 发挥部分
- (1) 从不同类型的电阻中分别选出 470 欧姆的金属膜电阻和碳膜电阻,用改装后的欧姆表测量其阻值,测量 5 次,求出平均值;
 - (2) 用所给惠斯登电桥或数字万用表测量所选电阻的阻值(标准值);
 - (3) 计算测量结果的相对误差,分析误差来源。

三、说明

1. 当
$$R_x = r + \frac{R_m(R_0 + R_g)}{R_m + (R_0 + R_g)} \approx R_m$$
时,有:

$$I = \frac{R_m}{R_x + R_m} \cdot \frac{E}{R_0 + R_o} = \frac{1}{2} I_g$$

即当待测电阻等于欧姆表内阻时,微安表半偏转,指针正对着刻度尺中央,此时欧姆表的示值称为中值电阻,亦即 $R_{+}=R_{m}$ 。

2. 本题目重点考核学生对电阻的认识及测量方法的掌握, 电表结构及工作原理的了解。

四、评分标准

类	别	项 目	满 分
报	告	设计表格、记录数据、误差分析合理性	15

	完成第(1)项	20
基本要求	完成第(2)项	20
	完成第(3)项	15
	完成第(1)项	10
发挥部分	完成第(2)项	10
	完成第(3)项	10
	100	

五、测试记录与评分表

电阻的测量及其应用测试记录与评分表

	班级	专	业 姓名 _	学号 _		总分		-
* Pri	今旦	洲24 45100	洞尘女从五	亚八七烯	(井八	海口 (七 八郎)	須八	

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	实验准备	仪器摆放位置(2分) 开关状态选择(2分) 电阻箱初值选择(2分); 滑动变阻器滑动端位置选择(2分) 线路连接顺序(2分)	10			
基本要求	(2)	替代法测量 表头内阻	闭合开关 K_1 、 K_2 ,调节 R_1 、 R_2 使标准表显示某整数值(7分) 调节 R_3 使标准表显示相同的整数值(8分)	15			
	(3)	改装中值电 阻为 300Ω 的 欧姆表	当 <i>R</i> _x =0 欧姆时,使表头满偏(7 分) 当 <i>R</i> _x =300 欧姆时,使表头半偏(8 分)	15			
	(4)	 标注表盘刻		15			
				55			
	(1)	选电阻,测阻值	选出 470 欧姆的金属膜电阻和碳膜电阻 (5 分) 用改装后的欧姆表测量待测电阻(5 分)	10			
发挥 部分	(2)	用电桥或万用 表测电阻阻值	用电桥或万用表测量选出的电阻阻值(10 分)	10			
	(3)	误差计算及分 析	计算相对误差(5分) 误差分析(5分)	10			
			小 计	30			
	测评总分			85			
			报告总分	15			
			总 分	100			

测评教师(签名)_____

年 月 日

题目二 频率的测量

一、任务

- 1.掌握频率的含义、参数、使用选择规则;
- 2.掌握频率的测量方法;
- 3.掌握机械波、电磁波基本特性(频段、波速、能量);
- 4.掌握谐振动的定义、振动方程的物理意义;
- 5.掌握谐振动的合成规律:
- 6.掌握两个相互垂直谐振动的合成原理;
- 7.掌握李萨如图形测量频率的原理。

二、要求

- 1.调整示波器、信号源处于理想工作状态;
- 2.调节使示波器上出现稳定清晰的李萨如图形;
- 3.用示波器、信号源测量未知信号的频率。

三、说明

1.李萨如图形如图 1 所示:

Sr/Sx	0°	45°	- 90°	135°	180°
1	/	0		0	\
2	\otimes		\bigcap	\bigvee	\otimes
3	M	000	\sim	(XX)	\bigvee
3 2	\bigotimes	\bigcirc	\bigotimes	X	

图 1 李萨如图形

2.测量电路如图 2 所示:

图 2 测量电路

3.振动频率公式:
$$f_0 = \frac{1}{2\pi RC}$$

4.本题目重点考核学生对频率的认识及测量方法的了解,进一步掌握示波器的使用及振动合成的理论

四、评分标准

类 别	项 目	满 分
报 告	设计表格、记录数据、误差分析合理性	15
要求	完成第(1)项	25

	100	
	完成第(3)项	35
	完成第(2)项	25

五、测试记录与评分表

频率的测量测试记录与评分表

姓名

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	调整示波器、信号源	调节示波器(10分);	20			
	(1)	妈 霍小伙爷、	调节信号源(10分)。	20			
	(2)	李萨如图形调节	连接电路(15分);	20			
要	(2)	子严如图形则口	调出稳定李萨如图形(15分)。	30			
			确定频率之比(8分);				
求	(2)	测量未知信号的频率	信号源频率读取(5分);	25			
	(3)	侧里不知由与时侧平	测量计算频率值(7分);	25			
			理论计算频率值(5分)。				

 测评总分
 85

 报告总分
 15

 总分
 100

10

月

年

日

计算相对误差(5分);

分析误差来源(5分)。

题目三 检流计特性的测量

一、任务

(4)

1.了解检流计的结构及其测量原理;

误差计算及分析

测评教师(签名)___

- 2.了解检流计与电流表的结构区别;
- 3.了解检流计的种类及其结构特点;
- 4.掌握灵敏电流计和冲击电流计的结构、测量原理及使用方法;
- 5.掌握影响检流计阻尼状态的因素,如何判断临界阻尼状态;
- 6..掌握标准电阻的结构及其原理;
- 7.掌握回路法接线规则。

二、要求

- 1.测量灵敏电流计的内阻;
- 2.测量灵敏电流计临界外阻;
- 3.判断灵敏电流计的阻尼状态;
- 4.测量灵敏电流计电流常数(要求至少2种方法);
- 5.分析测量灵敏电流计电流常数的误差来源。

三、说明

1.灵敏电流计实验电路图如图 1 所示:

图 1 灵敏电流计实验电路图

2.灵敏电流计电流常数为:

$$K_i = \frac{R_s U}{R_1 (R + R_g) d}$$

3.定偏法测量电流计常数及内阻:

$$R = \frac{R_s}{K_i R_1 d} U - R_g$$

4.本实验重点考核学生对电流计的结构和工作原理的理解,掌握影响电流计光标振荡阻 尼状态的因素,学会测量微小电流电阻的方法,掌握灵敏电流计电流常数的测量方法。

四、评分标准

H · 1/2 N··E		
类 别	项 目	满分
报告	设计表格、记录数据、误差分析合理性	15
	完成第(1)项	15
	完成第(2)项	20
要求	完成第(3)项	10
	完成第(4)项	30
	完成第(5)项	10
	合 计	100

五、测试记录与评分表

检流计特性的测量测试记录与评分表

班级	专业	姓名	学号	总分	
クエ シ ス	<u> </u>	XL1J			

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注				
			仪器摆放位置(2分)								
			开关状态选择(2分)								
	(1)	实验准备	电阻箱初值选择(2分)	10							
			滑动变阻器滑动端位置选择(2分)								
			线路连接顺序(2分)								
			电流计初始状态调节(5分)								
要						测量灵敏电流	定偏法测量灵敏电流计内阻及电流常				
4-	(2)	计的内阻及电	数(15 分)	35							
求		流常数	非定偏法测量灵敏电流计内阻及电流								
			常数(15 分)								
	(2)	测量灵敏电流	测导目微电流计收用机阻(15 八)	1.5							
	(3)	计临界外阻	测量灵敏电流计临界外阻(15 分)	15							
	(4)	判断灵敏电流	调节电路使灵敏电流计分别处于欠阻	1.5							
	(4)	计的阻尼状态	尼、过阻尼、临界阻尼状态(15分)	15							

(5)	误差计算与分 析	两种方法测量电流常数结果比较(5 分) 分析测量电流常数的误差来源(5 分)	10		
测评总分			85		
报告总分					
			100		

测评教师(签名)

年 月 日

题目四 电源及其参数测量

一、任务

- 1.掌握电源的分类及选用规则;
- 2.掌握电源的内部结构及工作原理;
- 3.了解电源的控制模式;
- 4.了解常用电源的输入输出形式及其应用;
- 5.掌握电源参数(如电动势、内阻等)的概念;
- 6.掌握电源电动势及内阻的测量方法(如伏安法、补偿法等);
- 7.掌握电位差计的工作原理;
- 8.掌握对实验电路参数的估算及校准的方法。

二、要求

- 1.分别用伏安法、补偿法测量未知电动势的大小;
- 2.测量电源的内阻;
- 3.测量电源的输出特性;
- 4.测量误差不大于5%;
- 5.要求线路连接和操作具有保护措施。

三、说明

1. 电位差计原理图如图 1 所示:

图 1

2. 本实验重点考核学生对电源电动势的理解和测量方法;电位差计工作原理的理解和应用。

四、评分标准

类 别	项 目	满分
报告	设计表格、记录数据、误差分析合理性	15
要求	完成第(1)项	30

合 计	100
完成第(3)项	25
完成第(2)项	30

五、测试记录与评分表

电源及其参数测量测试记录与评分表

	班级 _	专业	姓名	学号	总分
--	------	----	----	----	----

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	实验准备	仪器摆放位置(2分) 开关状态选择(2分) 可变电阻选择(3分) 线路连接顺序(3分)	10			
	(2)	伏安法测量电动势	内接法测量电动势(5分) 外接法测量电动势(5分) 两种测量方法比较(5分)	15			
要	(3)	电位差计测量电动势	工作电压参数选择(5 分) 测量计算电源电动势(15分)	20			
求	(4)	电源内阻测量	设计测量方案(5分) 画出实验电路图(5分) 连接电路(5分) 测量计算电源内阻(5分)	20			
	(5)	电源外特性的测量	设计测量方案(5分) 画出实验电路图(5分) 连接电路,测量路端电压和负载 电流(5分) 画出电源外特性曲线(5分)	20			
	测评总分			85			
	报告总分			15			
		总分					

测评教师(签名	2)		В
かいしい みよかし くつかつ	コノ	• /1	

题目五 霍尔元件及其应用

一、任务

- 1.掌握霍尔元件的概念及工作原理;
- 2.掌握霍尔器件的概念、参数及优缺点;
- 3.掌握霍尔效应的产生原理;
- 4.掌握霍尔元件参数的概念及特征(霍尔系数、霍尔灵敏度等);
- 5.掌握霍尔元件的分类及其应用;
- 6.掌握霍尔效应伴随的负效应及其消除的方法;
- 7.掌握磁场的测量方法(如感应法、磁通计等);

- 8.掌握用霍尔效应法测量 U 型磁铁狭缝的磁场;
- 9.掌握电位差计的工作原理及使用方法。

二、要求

- 1.用霍尔效应法及磁通计分别测量 U 型磁铁狭缝的磁场;
- 2.测量霍尔元件的载流子浓度,判断霍元器件的导电类型;
- 3.调整霍尔器件到最佳位置,注明依据;
- 4.比较两种测量方法的优缺点;
- 5.计算 U 型磁铁狭缝的磁场理论值,并计算相对误差。

三、说明

- 1. 磁场理论值公式: $B = \frac{U_H}{K_H I}$ 。
- 2. 本实验重点考核学生对稳恒磁场中霍尔效应的理解,以及利用霍尔效应判断霍尔器件导电类型方法的掌握。

四、评分标准

- · · · · · · · · · · · · · · · · · · ·		
类 别	项 目	满分
报告	设计表格、记录数据、误差分析合理性	15
	完成第(1)项	25
	完成第(2)项	25
要求	完成第(3)项	15
	完成第(4)项	10
	完成第(5)项	10
	100	

五、测试记录与评分表

霍尔元件及其应用测试记录与评分表

班级	专业	姓名	学号	总分	
-///			, ,		

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
要求	(1)	实验准备	仪器摆放位置(3分) 开关状态选择(3分) 线路连接顺序(4分)	10			
	(2)	消磁	开关选择(5 分) 励磁电流的选取 500mA、300mA、 100mA (5 分)	10			
	(3)	霍尔器件导电 类型的判断	判断霍尔器件的导电类型,注明判断 依据(5分)	5			
	(4)	霍尔器件位置 的调节	调整霍尔器件最佳位置(10分)	10			
	(5)	霍尔电压的测量	励磁电流为 800mA,工作电流在 0~10mA 范围内变化时,测量霍尔电压(10分)用电位差计测量霍尔电压(10分)	20			

	(6)	计算磁场的实验值	描绘霍尔电压与工作电流的变化曲线 (10 分) 由斜率求出 800mA 对应的磁场(5 分)	15		
	(7)	磁通计测磁场	用磁通计测磁场(至少测量5次)(10分)	10		
	(8)	测量方法比较	比较两种测量方法的优缺点,计算相对误差(5分)	5		
	测评总分			85		
报告总分			15			
总分			100			

测评教师(签名)

年 月 日

题目六 磁场及其测量

一、任务

- 1.掌握磁场的概念;
- 2.了解宇宙磁场:
- 3.掌握磁场的种类及其产生(如恒定磁场、交变磁场等);
- 4.掌握两种常见磁场(电磁场和地磁场)的特性及其测量方法;
- 5.掌握磁场的磁感线、磁通量、磁通量、安培力等技术术语的含义;
- 6.掌握常用的磁场的测量方法(如感应法、霍尔效应法、磁通计等);
- 7.掌握法拉第电磁感应定律:
- 8.掌握互感器的结构、工作原理及其参数的测量;
- 9.掌握直螺线管磁场分布规律以及应用;
- 10.掌握冲击电流计的结构和工作原理。

二、要求

- 1.用数字式冲击电流计测量直螺线管磁场分布,要求充、放电分别测量;
- 2.用磁通计测量螺线管轴线上的磁场分布;
- 3.比较两种测量方法的优缺点;
- 4.测量数字积分式冲击电流计回路的总电阻,要求充、放电分别测量;
- 5.计算直螺线管内部中心点及管口处磁场的理论值、实验值及其相对误差。

三、说明

1.螺线管轴线上距中心 O 点 x 处的磁感应强度为:

$$B_{x} = \frac{\mu NI}{2l} \left\{ \frac{\frac{l}{2} - x}{\left[\left(\frac{l}{2} - x \right)^{2} + r_{0}^{2} \right]^{\frac{1}{2}}} + \frac{\frac{l}{2} + x}{\left[\left(\frac{l}{2} + x \right)^{2} + r_{0}^{2} \right]^{\frac{1}{2}}} \right\}$$

2.直螺线管内中心(x=0 处)的磁感应强度为: $B_0 = \frac{\mu NI}{(l^2 + 4r_0^2)^{\frac{1}{2}}}$

3.磁场实验值公式:
$$B = -\frac{QR}{nS}$$
 或 $B = \frac{QMI_0}{nSQ_M}$ 。

4.本实验重点考核学生对磁场的测量方法的掌握,直螺线管磁场分布规律的理解以及对 电磁感应原理的应用。

四、评分标准

类 别	项 目	满分
报告	设计表格、记录数据、误差分析合理性	15
	完成第(1)项	20
	完成第(2)项	20
要求	完成第(3)项	10
	完成第(4)项	20
	完成第(5)项	15
	100	

五、测试记录与评分表

磁场及其应用测试记录与评分表

月

日

年

班级 专业		桑 专业	4 姓名 学	学号	总分		
类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	实验准备	仪器摆放位置(2分) 开关状态选择(2分) 电阻箱初值选择(3分) 滑动变阻器滑动端位置选择(3分) 线路连接顺序(5分)	15			
	(2)	数字积分式冲击 电流计回路总电 阻的测量	开关K ₂ 位置的选择(5分) 充电时测感应电荷量(5分) 放电时测感应电荷量(5分)	15			
基本要求	(3)	冲击电流计测量 螺线管磁场分布	开关K ₂ 位置的选择(4分) 探测线圈位置的放置(4分) 充电时测感应电荷量(6分) 放电时测感应电荷量(6分) 绘制磁场分布曲线(5分)	25			
	(4)	磁通计测量螺线 管磁场分布	探测线圈位置放置(5分) 磁通计测磁场大小(5分) 绘制磁场分布曲线(5分)	15			
	(5)	误差计算	直螺线管内中心点及管口处磁场的理论值(5分) 直螺线管内中心点及管口处磁场的实验值(5分) 计算相对误差(5分)				
			测评总分	85			
			报告总分	15			
	_			100			

测评教师(签名)_____

题目七 光源及其相干性

一、任务

- 1.掌握光源的含义;
- 2.了解光源的产生途径;
- 3.掌握光源的种类及其发光机理;
- 4.掌握常见的光源及其技术指标;
- 5.掌握获取相干光源的方法(分波面、分振幅等);
- 6.掌握点光源、线光源、面光源的概念及实现方法;
- 7.掌握光的等倾干涉、等厚干涉原理;
- 8.掌握波长的概念及其测量方法:
- 9.掌握相干长度及谱线宽度的概念及其测量方法;
- 10.掌握迈克尔逊干涉仪的结构和调节方法。

二、要求

- 1.用迈克尔逊干涉仪测量激光波长的方法;
- 2.用迈克尔逊干涉仪测量钠黄光的波长差;
- 3.用迈克尔逊干涉仪测量钠光灯的相干长度。

三、说明

- 1.钠黄光双线的波长差计算公式: $\Delta \lambda = \frac{\lambda^2}{2\Delta d}$; Δd 为条纹从模糊到清晰再到模糊过程中,活动镜移动的距离。
- 2.钠光灯的相干长度公式: $\Delta L = 2\Delta d_{\max}$; Δd_{\max} 为等光程位置(d=0)开始到干涉条纹不再出现过程中,活动镜移动的距离。
 - 3.钠光的谱线宽度: $\delta \lambda = \frac{\lambda^2}{\Delta L}$ 。
- 4.本实验主要考核学生对迈克尔逊干涉仪(等厚干涉及等倾干涉)结构及工作原理的掌握以及对于相干长度、谱线宽度等概念的理解。

四、评分标准

类 别	项目	满分
报 告	设计表格、数据记录、测量方案等合理性	15
	完成第(1)项	30
要求	完成第(2)项	30
	完成第(3)项	25
	合 计	100

五、测试记录与评分表

光源及其相干性测试记录与评分表

	班级		≨亚	姓名	_ 学与]	总分		•
类别	序号	测试项目		测试条件及评分标准		满分	测试记录	得分	备注

	(1)	光路调节	迈克尔逊干涉仪底座水平调节(2分) 扩束镜调节(2分) 光源选择(3分) 光源高低水平调节(3分) 光束垂直入射调节(5分) 干涉仪固定平面镜、活动镜调节(5分)	30		
要求	(2)	钠黄光双线的 波长差	光源选取(5分) 调出等倾干涉条纹(5分) 测量条纹从模糊到清晰再到模糊过程 中,活动镜移动的距离(10分) 计算波长差(7分)	27		
	(3)	测量钠光灯的 相干长度	调出等光程位置(5分) 测量等光程位置到条纹消失,活动镜移 动的距离(10分) 计算相干长度(7分)	22		
	(4)	测量钠光谱线 宽度	根据测量得到的相干长度计算谱线宽度 (6分)	6		
			85			
			报告总分	15		
			100			

题目八 透镜及其应用

一、任务

- 1.掌握透镜的概念及其分类;
- 2.掌握玻璃透镜的材料及其制作方法;
- 3.掌握透镜的成像原理;
- 4.了解透镜的应用;
- 5.掌握透镜的分类、参数与使用选择规则;
- 6.掌握透镜参数的测量方法;
- 7.掌握光学系统同轴等高的调节方法;
- 8.掌握望远镜的结构及放大原理;
- 9.掌握望远镜的技术参数指标。

二、要求

- 1.分别用两种方法测量凸透镜、凹透镜的焦距;
- 2.组装一个放大倍数为5的望远镜;
- 3.计算并测量望远镜的放大率。

三、说明

1. 望远镜的放大本领即放大率: $M = f_1' / f_2'$, 其中 f_1', f_2' 分别是物镜、目镜的焦距。

2. 测量放大率光路图如图 1 所示:

图 1 测量放大率光路图

3. 本题目主要考核学生对透镜的认识,几何光学中望远镜成像规律的掌握以及放大倍率的测量方法。

四、评分标准

类 别	项 目	满分
报告	设计表格、数据记录、测量方案等合理性	15
	完成第(1)项	30
要求	完成第(2)项	35
	完成第(3)项	20
	合 计	100

五、测试记录与评分表

透镜及其应用测试记录与评分表

	班级	专业	姓名	学長	<u> </u>	总分	
类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	光路调节	透镜类型鉴别(2分) 判断透镜焦距大小(3分) 透镜安装(2分) 粗调光学系统同轴等高(3分) 光学系统同轴等高细调(5分)	15			
要	(2)	测量凸透镜焦距	自准法 (5分) 物距相距法(5分) 共轭法 (10分)	20			
求	(3)	测量凹透镜焦距	自准法(10分) 视差法(10分)	20			
	(4)	组装望远镜	画出光路图(5分) 选择合适的透镜(5分) 计算望远镜放大倍率(5分) 组装望远镜(5分) 测量放大倍率(5分) 计算放大倍率的相对误差(5分)	30			
测			评总分	85			•
报			告总分	15			
l l				100			

年

月

日

测评教师(签名)_____

题目九 表面平整度的检测

一、任务

- 1.掌握表面平整度的概念;
- 2.了解混凝土楼面表面平整度测量方法;
- 3.了解钢构件表面平整度参数及测量方法;
- 4.了解薄膜表面平整度参数及的测量方法;
- 5.掌握光学表面的参数的概念;
- 6.掌握玻璃表面光洁度及表面平整度的概念;
- 7.掌握玻璃表面平整度的测量方法;
- 8.掌握光的等厚干涉原理:
- 9.掌握用光的干涉测量玻璃表面平整度的方法;
- 10.掌握读数显微镜结构和使用方法。

二、要求

- 1.用读数显微镜测量透镜的曲率半径;
- 2.用读数显微镜测量细丝的直径;
- 3.用读数显微镜判断玻璃片表面的缺陷类型,说明依据;
- 4.测量玻璃片表面缺陷的大小。

三、说明

- 1.相邻条纹对应的光程差为: $\Delta = \frac{\lambda}{n}$, n 玻璃折射率 (由实验室给出)。
- 2.本实验主要考核学生对于波动光学中等厚干涉原理的理解,掌握劈尖干涉条纹生成原因及其特点,并利用它来检验并测量光学器件表面的平整度。

四、评分标准

类	别	项 目	满分
报	告	设计表格、数据记录、测量方案等合理性	15
		完成第(1)项	20
==	44-	完成第(2)项	15
要	求	完成第(3)项	30
		完成第(4)项	20
		合 计	100

五、测试记录与评分表

表面平整度的检测测试记录与评分表

班级	专业	姓名	学号	总分

类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
要求	(1)	光路调节	仪器摆放(2分) 光学元件的拿取(2分) 调节读数显微镜视场最亮(3分) 叉丝清晰且分别与 X、Y 轴大致平行(3分)	10			

(2)	干涉条纹调节	调节干涉条纹清晰(5分) 劈尖条纹与目镜叉丝Y轴平行(5分)	10		
(3)	测量透镜曲率 半径	鼓轮转动方向(5分) 测量牛顿环直径或弦长(10分) 计算透镜曲率半径(8分)	23		
(4)	测量细丝直径	劈尖安装及摆放(5 分) 条纹间距测量(10 分) 计算细丝直径(7 分)	22		
(5)	测量玻璃片表面缺陷大小	判断玻璃片表面缺陷的类型(5分) 判断缺陷类型依据(5分) 测量缺陷的大小(10分)	20		
测评总分					
报告总分			15		
总 分			100		

测评教师(签名)__

年 月 日

题目十 折射率的测量

一、任务

- 1.掌握介质的概念以及光在介质中的传播特性;
- 2.掌握折射率的概念;
- 3.掌握绝对折射率、相对折射率的概念;
- 4.掌握折射率的影响因素;
- 5.掌握固体介质折射率的测量方法(如玻璃、金属、玉器等);
- 6.了解气体、液体介质折射率的测量方法;
- 7.掌握折射率测量方法的应用条件、范围以及测量精度(如最小偏向角、自准直法、读数显微镜法、掠入射法、折射极限法、插针法、阿贝折射仪等);
 - 8.掌握玻璃折射率及测量方法。

二、要求

- 1.调节分光计达到最佳工作状态(要做到"三垂直"和"三聚焦");
- 2.用分光计测量三棱镜顶角;
- 3.用最小偏向角与掠入射法分别测量三棱镜玻璃折射率(至少三组数据);
- 4.对比测量方法的优劣。

三、说明

1.掠入射法光路图如图 1:

图 1 掠入射法光路图

2.掠入射法计算折射率公式:

$$n = \left[\left(\frac{\sin i_1 + \cos A}{\sin A} \right)^2 + 1 \right]^{\frac{1}{2}}$$

3.本实验主要考核学生对分光计结构的了解、调节方法的掌握及玻璃折射率的测量方法。

四、评分标准

类 别	项目	满分
报 告	设计方案合理性、测试方案合理性	15
	完成第(1)项	30
# #	完成第(2)项	20
要求	完成第(3)项	30
	完成第(4)项	5
	合 计	100

五、测试记录与评分表

折射率的测量测试记录与评分表

	班级	辛』	k 姓名 学長	<u>.</u>	总分)	
类别	序号	测试项目	测试条件及评分标准	满分	测试记录	得分	备注
	(1)	分光计的调节	望远镜、载物台、平行光管大致水平(2分)刻度盘的调节(2分)望远镜的调节(3分)载物台的调节(10分)平行光管的调节(3分)	20			
要	(2)	三棱镜顶角的测量	三棱镜拿取(2分) 三棱镜两个面能看到出射光线(8分) 测量数据计算顶角(10分)	20			
求	(3)	掠入射法测 量三棱镜折 射率	光源的选择(2分) 出射面看到半明半暗视场(8分) 测量记录数据并计算折射率(10分)	20			
	(4)	最小偏向角 测三棱镜折 射率	观察到出射光(2分) 移动望远镜,找到最小偏向角位置(8分) 测量记录数据并计算折射率(10分)	20			
	(5)	测量方法比 较	比较两种测量方法的优缺点(5分)	5			
			测评总分	85			
			报告总分	15			
				100			

年

月

日

测评教师(签名)_____