

Esami A e B di Architetture degli Elaboratori

Soluzione

N.B.: il punteggio associato ad ogni domanda è solo una misura della difficoltà, e peso, di ogni domanda. Per calcolare il voto complessivo bisogna normalizzare a 30 (circa).

1. Convertire il valore 203.42₅ in base 7.

R: (3 pt) Passiamo attraverso la base decimale:

$$203.42_5 = 2 \cdot 5^2 + 3 \cdot 5^0 + 4 \cdot 5^{-1} + 2 \cdot 5^{-2} = 50 + 3 + 0.8 + 0.08 = 53.88$$

53	1	7	.88		7
7	1	4	.16	1	6
1	1	0	.12	1	1
0		1	.84		0
			.88		5

da cui otteniamo immediatamente il valore nella nuova base: $104.\overline{6105}_{7}$.

- 2. Sono dati i seguenti valori n_1 e n_2 codificati in complemento a 2 a 8 bit: $n_1 = 10110111$, $n_2 = 00000011$. Si calcoli il prodotto $n_1 \cdot n_2$ e, se possibile, si esprima il risultato nella stessa codifica.
 - **R:** (3 pt) Conviene calcolare il modulo del prodotto e, successivamente, ricordare che n_1 ha segno negativo. Il modulo di n_1 si ottiene per complementazione a 2: $-n_1 = 01001001$, da cui immediatamente $|n_1| \cdot n_2$:

```
01001001 *
00000011 =
-----
01001001 +
01001001 =
-----
11011011
```

Ora, cambiare di segno di questo risultato richiederebbe almeno 9 bit adoperando per esso la codifica in complemento a 2. Dunque il prodotto appena calcolato non può essere espresso nella codifica richiesta.

- 3. [INF] Fornire il risultato dell'esercizio precedente in codifica floating point IEEE 754 a 32 bit.
 - R: (3 pt) Il risultato trovato sopra può essere subito messo nella forma -1.1011011E7. La codifica richiesta avrà dunque bit di segno asserito, esponente uguale a $127 + 7 = 134 = 10000110_2$ e infine mantissa uguale a 1011011. Sistemando sui 32 bit previsti dallo standard IEEE 754 e convertendo alla base esadecimale:

da cui la codifica richiesta: $C35B0000_{16}$.

- 4. La legge di Moore afferma che il numero di transistor nell'unità di memoria quadruplica ogni tre anni. Se la densità in un chip di memoria è uguale a $3 \cdot 10^7$ transistor/cm², che densità dobbiamo aspettarci nello stesso chip dopo 4 anni e mezzo?
 - R: (3 pt) Per come è definito, il tasso di crescita appena visto è per sua natura esponenziale. Se il numero quadruplica ogni tre anni allora il raddoppio avviene ogni anno e mezzo. Quindi dopo quattro anni e mezzo assistiamo a tre raddoppi, dunque la densità attesa sarà $2 \cdot 2 \cdot 2 \cdot 3 \cdot 10^7 = 24 \cdot 10^7$ transistor/cm².

5. Trovare il circuito col minore numero di porte AND, OR, NOT, il quale realizza l'espressione

$$E = \overline{A} B \overline{C} + A \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C}$$

 $E = \overline{A} \, B \, \overline{C} + \overline{A} \, \overline{B} \, \overline{C} + A \, \overline{B} \, \overline{C} = \overline{A} (B + \overline{B}) \overline{C} + A \, \overline{B} \, \overline{C} = \overline{A} \, \overline{C} + A \, \overline{B} \, \overline{C} = \overline{A} \, \overline{C} + A (\overline{B} + \overline{C}) = \overline{A} \, \overline{C} + A \overline{C} + A \overline{B} = \overline{C} + A \overline{B}$ da cui discende immediato il circuito contenente 2 porte NOT, una porta AND e una porta OR.

- 6. [INF] Verificare la minimizzazione ottenuta sopra con una mappa di Karnaugh.
 - R: (3 pt) Ci sono due regioni connesse, rispettivamente contenenti quattro e due simboli 1. La prima presenta la costanza del solo termine \overline{C} ; la seconda presenta la costanza dei termini A e \overline{B} .

BC	00	01	11	10
A				
0	1	0	0	1
1	1	<>1	0	1

- 7. [INF] Riprodurre il circuito appena progettato adoperando un multiplexer.
 - R: (3 pt) É sufficiente scegliere un multiplexer a 8 ingressi e 3 controlli collegati rispettivamente ad ABC, e poi connettere a una sorgente in tensione (per esempio 5V) gli ingressi associati ai valori di controllo 000, 010, 100, 101, 110. Viceversa, gli altri 3 ingressi dovranno essere collegati a una tensione nulla (detta anche di massa, o GND).

8. Progettare un comparatore di ingressi a 3 bit, cioè una rete combinatoria in grado di decidere se due ingressi $A_1A_2A_3$ e $B_1B_2B_3$ sono identici.

- 9. [INF] Progettare la macchina a stati finiti (di Mealy oppure di Moore) che realizza il comparatore di cui sopra, supponendo che essa a ogni istante riceva per un tempo indefinitamente lungo coppie di bit A_1B_1 , A_2B_2 , A_3B_3 , ..., A_nB_n , ..., e all'istante n-esimo debba stabilire se gli ingressi $A_{n-2}A_{n-1}A_n$ e $B_{n-2}B_{n-1}B_n$ sono identici.
 - R: (3 pt) La seguente macchina di Moore effettua la comparazione partendo dallo stato I, producendo un'uscita uguale a 0 in corrispondenza degli stati I, A e B; viceversa, produce un'uscita uguale a 1 in corrispondenza dello stato C.

- 10. Si vogliono codificare le cifre decimali 0,1,...,9 con 4 bit adoperando un codice a *lunghezza variabile* il quale ottimizzi l'efficienza della codifica delle cifre decimali 0 e 1. Si dia un possibile codice che rispetta questo vincolo.
 - R: (3 pt) Quattro bit sono sufficienti, ma non necessari per codificare 10 simboli. Poichè con 3 bit possiamo codificare 8 simboli, assegniamo il valore 0 del bit più significativo alla codifica delle cifre 0 e 1; altrimenti occorrerà valutare i tre bit meno significativi per decodificare le restanti otto cifre decimali. Quindi, per esempio,
 - 0 -> 00
 - 1 -> 01
 - 2 -> 1000
 - 3 -> 1001
 - 4 -> 1010
 - 5 -> 1011
 - 6 -> 1100
 - 7 -> 1101
 - 8 -> 1110
 - 9 -> 1111

In tal modo, 0 e 1 necessitano di due soli bit per essere codificati mentre tutte le altre cifre necessitano di 4 bit.

- 11. Una CPU interagisce con 4 dispositivi esterni etichettati A, B, C, D. Ogni richiesta del dispositivo D dev'essere servita prima di quelle provenienti da C, e ogni richiesta del dispositivo B dev'essere servita prima di quelle provenienti da A e D. In quanti modi possono essere disposti i dispositivi in un bus che implementa il protocollo daisy chain? Elencarli.
 - R: (3 pt) Il bus monterà, in ordine di prossimità alla CPU, i seguenti dispositivi: BADC, BDAC oppure BDCA.
- 12. Si dia schematicamente un esempio di mascheramento dell'interrupt durante il servizio a dispositivi esterni da parte della CPU.
 - R: (3 pt) Qualunque variazione della situazione descritta in figura è accettabile.

13. I campi in figura appartengono a un'istruzione macchina per ARM che prevede la possibilità di traslare o ruotare il contenuto di un registro. Quale valore posizionale va sostituito al '?' in alto a sinistra nella figura? Quali sono le traslazioni o rotazioni minime e massime ammesse in tal caso sul registro?

R: (3 pt) Se parliamo di un'architettura a 32 bit, allora le traslazioni o rotazioni ammesse sul registro variano da un minimo di 0 bit a un massimo di 31 bit. Occorrendo 5 bit per specificare l'entità di queste operazioni, il campo più a sinistra in figura occuperà i bit dal 7 all'11.

- 14. Una memoria virtuale paginata può contare su una memoria principale di 1 MB. Quanto è lunga ogni riga della page table? Se il campo offset di ogni indirizzo fisico è lungo 14 bit, qual è la dimensione di ogni pagina?
 - R: Una memoria di 1 MB necessita di 20 bit per essere indirizzata. Includendo il bit di presenza/assenza della pagina in memoria, la page table si comporrà di righe lunghe 21 bit. Infine, noto l'offset, ogni pagina avrà un'estensione di $2^{14} = 16$ kB.
- 15. [INF] Scrivere un programma in assembly per ARM, il quale trova il valore massimo tra n elementi contenuti in un file testuale di nome inputLista.txt. Il file contiene il numero $\mathbf n$ di elementi nella prima riga e n valori interi nelle righe successive. Al termine dell'esecuzione il programma avrà restituito in memoria l'indice dell'elemento di valore massimo, oppure il valore -1 se il file contiene 0 elementi. Nel caso in cui nel file esista più di un elemento di valore massimo il programma restituirà l'indice del primo massimo presente nel file.

R: (9 pt)

```
.data
stringa:
        .asciiz "inputLista.txt"
output:
        .skip 4
        .text
main:
        ldr r0, =stringa
                                ; string address in r0
        mov r1, #0
                                ; read mode
        swi 0x66
                                ; open file in read mode
        mov r2, r0
                                ; save file handler
        swi 0x6c
                                ; read number of integers
        mov r3, r0
                                ; save number of integers in r3
        mov r5, #0x80000000
                                 ; start with minInt in r5
        mov r4, #0
                                 ; current element in r4
        mov r6, #0xFFFFFFF
                                 ; min element in r6
loop:
        subs r3, r3, #1
                                 ; decrement r3 and set status
        blt exit
                                 ; exit if negative
                                 ; increment r4
        add r4, r4, #1
                                ; load file handler
        mov r0, r2
        swi 0x6c
                                ; read integer from file
        cmp r5, r0
                                ; if r0-r5 < 0...
                                 ; ..then update minimum..
        movlt r5, r0
                                 ; ..and its index
        movlt r6, r4
        b loop
                                 ; next element
exit:
        mov r0, r2
                                 ; load input file handler
        swi 0x68
                                 ; close file
        ldr r0, =output
                                 ; output address in r0
        str r6, [r0]
                                 ; save min element index
;; end
        swi 0x11
                                 ; exit
        .end
```