GIS: Data Formats, Design & Quality

Vector Data Concepts

Learning Objectives

At the end of this lesson, you should be able to:

- Explain how vector data is structured
- Explain how vector features are created
- Discuss object model of vector data
- Discuss precision of vector calculations

Classifying Vector Data

Two types of data in GIS:

- Vector (points, lines, polygons)
- Raster (a grid of pixels)

Object Data Model

Generalization

Represent real things as locations and attributes

Objects = conceptualizations of real items

Concrete or abstract

Object Data Model

Object Data Model

Building	Height	Construction Materials	Capacity	Hours
Building 1	205 m	Steel, Glass	5,000	3AM-12AM
Building 2	180 m	Steel, Glass, Concrete	4,000	4AM-11PM
Building 3	176 m	Steel, Brick, Glass, Concrete	3,750	6AM-10PM

Vector Calculations

Raster is faster,
but
vector is "corrector"

Vector Calculations

Re-projection is precise

Vector data is great for reliably storing:

Point observations

Edges

Boundaries

Attributes stay reliable if joined properly

Vector and raster data use different tools

Summary

Vector Data follows an object model:

Select attributes of items

Create a conceptualization (object)

Data tables

Feature classes

Locations are constructed of:

Points

Lines

Polygons

Good precision for geospatial calculations