PATENT ABSTRACTS OF JAPAN

(11) Publication number: 09027336 A

(43) Date of publication of application: 28.01.97

(51)	Int.	C

H01M 8/04

(21) Application number: 07177075

(22) Date of filing: 13.07.95

(71) Applicant:

TOSHIBA CORP

(72) Inventor:

YAJIMA TORU **AOKI TSUTOMU**

(54) FUEL CELL STACK DIAGNOSTIC METHOD

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a fuel cell stack diagnostic method capable of surely detecting the generation of a cross leak of a fuel cell stack without making specific equipment necessary.

SOLUTION: Hydrogen-containing gas containing a constant concentration of hydrogen is supplied to a fuel electrode 1a of a fuel cell and oxygen- containing gas containing a constant concentration of oxygen is supplied to an oxidizing agent electrode 1b. The corresponding relation of the over time change of the supply amount of the oxygen-containing gas to the corresponding of voltage change over time in a fuel cell stack is recorded. When the change of generating voltage of the stack corresponding to the change of the supply amount of the oxygen-containing gas is sharp, that is detected as the generation of hydrogen leak in the stack. From the corresponding relation of the supply amount of the oxygen-containing gas to the voltage change over time in the stack 2, the amount of hydrogen leak in the stack 2 is calculated. When the amount of hydrogen leak is more than the amount of hydrogen leak in the normal state of the stack 2, that is decided as

the generation of a cross leak.

COPYRIGHT: (C)1997,JPO

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1]A cell formed across an electrolyte layer between a fuel electrode and an oxidizing agent pole, and a stack by which plural laminates were carried out so that said cell might mutually electrically be connected in series, A fuel gas manifold which supplies fuel gas to a fuel electrode in each cell, Supply hydrogen containing gas which makes a diagnosis subject a fuel cell provided with an oxidizer gas manifold which supplies oxidant gas to an oxidizing agent pole in each cell, and contains hydrogen of fixed concentration in said fuel electrode, and. Supply oxygen containing gas containing oxygen of fixed concentration to said oxidizing agent pole, and A change with time of the amount of supply of said oxygen containing gas, A correspondence relation with a change with time of voltage generated in said stack in connection with this is recorded, When change of a generated voltage of said stack accompanying change of the amount of supply of said oxygen containing gas is rapid, Detect that disclosure of hydrogen has occurred in said stack, and from a correspondence relation of a change with time of the amount of supply of said oxygen containing gas, and voltage generated in said stack. A diagnosing method of a fuel cell stack which computes a hydrogen leak rate in said stack, and is characterized by specifying generating of cross leakage when the hydrogen leak rate concerned is more than a hydrogen leak rate at the time of normal of said stack.

[Claim 2]A cell formed across an electrolyte layer between a fuel electrode and an oxidizing agent pole, and a stack by which plural laminates were carried out so that said cell might mutually electrically be connected in series, A fuel gas manifold which supplies fuel gas to a fuel electrode in each cell, Supply hydrogen containing gas which makes a diagnosis subject a fuel cell provided with an oxidizer gas manifold which supplies oxidant gas to an oxidizing agent pole in each cell, and contains hydrogen of fixed concentration in said fuel electrode, and. Quantity of said oxygen containing gas which supplies oxygen containing gas containing oxygen of fixed concentration to said oxidizing agent pole, and is supplied to it for two or more cells of every or each cell of every is computed, A change with time of quantity of said oxygen containing gas supplied for said two or more cells of every or each cell of every, A correspondence relation with a change with time of voltage generated for two or more cells of every or each cell of every in connection with this is recorded, When change of a generated voltage for each cell of every for two or more cells of every in accordance with change of the amount of supply of said oxygen containing gas is rapid, A change with time of quantity of said oxygen containing gas which detects that disclosure of hydrogen has occurred for two or more cells of every or each cell of every, and is supplied for two or more cells of every or each cell of every in it, From a correspondence relation with a change with time with voltage generated in said stack for each cell of every for two or more cells of every in accordance with this. A diagnosing method of a fuel cell stack which computes a hydrogen leak rate for each cell of every for two or more cells of every, and is characterized by specifying generating of cross leakage when the hydrogen leak rate concerned is more than a hydrogen leak rate at the time of normal of each cell of every for two or more cells of every.

[Claim 3] After intercepting current which said fuel cell is connected to a circuit which sends load current, and flows into load current from said stack, supply hydrogen containing gas which

contains hydrogen in said fuel electrode, and. A diagnosing method of the fuel cell stack according to claim 1 or 2 supplying oxygen containing gas containing oxygen to said oxidizing agent pole.

[Claim 4]An oxygen content of said oxygen containing gas is a complement at a reaction with hydrogen of said hydrogen containing gas to reveal.

And a diagnosing method of a fuel cell stack given in any 1 clause of Claims 1-3 being said 0.1% or less of oxygen containing gas.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to the diagnosing method of the fuel cell stack for detecting the abnormalities caused in the fuel cell stack, and relates to the diagnosing method of the fuel cell stack for specifying especially generating of the cross leakage which is disclosure of fuel gas or oxidant gas.

[0002]

[Description of the Prior Art]A fuel cell is equipment which transforms into electrical energy directly the energy released with oxidation reaction by oxidizing fuel in the Electrochemistry Sub-Division process. Although power generation is performed through the process of thermal energy or kinetic energy, a power generation system like fire power and water-power generation, Since the power generation system by a fuel cell is direct electricity generation which does not pass through such a process, the chemical energy which fuel has can be exploited effectively and the high thermal efficiency of 40 to 50% can be expected also on a comparatively small scale. Since a combustion cycle is not included in a power plant, there are very few discharges of SOx and NOx used as the big social problem as a public nuisance factor in recent years. And cooling water is not necessarily needed for a large quantity, and since noise and vibration are small, it has the feature of excelling in the environmental capability extremely.

[0003] Since it tends to use the heat generated with power generation as hot water supply or heating and cooling while the response of a fuel cell is good and it can expect high conversion efficiency theoretically to a load change, it is possible as a cogeneration (electric heat double wage) system to raise total energy efficiency.

[0004] Such a fuel cell has composition sandwiched by the electrode (a fuel electrode and an oxidizing agent pole) of the couple for which the electrolyte layer holding an electrolyte generally used the porous material. And fuel gas is contacted at the back of a fuel electrode as reactant gas, and by contacting oxidant gas at the back of an oxidizing agent pole as reactant gas, electrochemical reaction is produced and electrical energy is taken out from inter-electrode. As an electrolyte, although there are an acidic solution, melting carbonate, an alkali solution, etc., the phosphoric acid fuel cell which used phosphoric acid is considered to be the closest to utilization now.

[0005]An example of such a phosphoric acid fuel cell is explained below according to drawing 4. That is, the power generation part of the fuel cell is constituted by the fuel cell stack 2. The fuel cell stack 2 is the layered product by which two or more cells 1 were laminated via the gas separating plate 3.

[0006] The cell 1 is constituted by inserting the electrolyte layer 1c which impregnated phosphoric acid into the fuel electrode (anode electrode) 1a and the oxidizing agent pole (cathode terminal) 1b which use a porous material. In the fuel electrode 1a and the oxidizing agent pole 1b, the catalyst by platinum etc. is applied to the electrolyte layer 1c and the field which counters, respectively. And the fuel circulating groove where fuel gas, such as hydrogen, circulates is formed in the back of the fuel electrode 1a. The oxidizing-agent-flows groove where oxidant gas, such as oxygen, circulates is formed in the back of the oxidizing agent pole 1b.

[0007] Such two or more the cells 1 and the gas separating plates 3 are laminated by turns, and the fuel cell stack 2 is constituted by inserting the cold plate 4 for every number of fixed laminations further. The gas separating plate 3 classifies the gas supplied to each of the fuel electrode 1a and the oxidizing agent pole 1b, and it is a component which secures the electrical link between the cells 1. Generally the fuel electrode 1a, the oxidizing agent pole 1b, the gas separating plate 3, and the cold plate 4 are made by each considering carbon as a material. The Reason for using carbon is because it excels in phosphoric acid-proof nature (corrosion resistance), heat resistance, electrical conductivity, and thermal conductivity and can manufacture by low cost.

[0008] The collecting electrode plate 6 which takes out the current produced in the fuel cell stack 2 at the end of the upper and lower sides of the fuel cell stack 2 is arranged. On the other hand, in the side of the fuel cell stack 2, the gas manifold 5 which supplies and discharges fuel gas and oxidant gas is arranged at the fuel cell stack 2.

[0009] The operation of the phosphoric acid type fuel cell which has the above composition is as follows. That is, in each cell 1 which constitutes the fuel cell stack 2, the hydrogen supplied to the fuel electrode 1a causes a reaction like the following formula 1 by operation of the catalyst applied to the fuel electrode 1a.

[0010]

[Mathematical formula 1] $H_2 \rightarrow 2 H^+ + 2 e$...式1

The hydrogen ion (H⁺) generated by the dissociative reaction of this hydrogen moves in the inside of the phosphoric acid stored in the electrolyte layer 1c, and arrives at the oxidizing agent pole 1b.

[0011]On the other hand, an electron (e $^-$) flows through an external circuit from the fuel electrode 1a, works through power load, and arrives at the oxidizing agent pole 1b. And a reaction like the following formula 2 occurs by operation of the catalyst applied to the oxidizing agent pole 1b with the hydrogen ion (H $^+$) which has moved from the fuel electrode 1a, the oxygen (O $_2$) supplied to the oxidizing agent pole 1b, and the electron (e $^-$) which has worked in the external circuit.

[0012] [Mathematical formula 2] $4 \, \text{H}^{\,\dagger} + \text{O}_{2} + 4 \, \text{e}^{\,\top} \rightarrow 2 \, \text{H}_{2} \, \text{O}$ …式2

Therefore, in a cell, hydrogen oxidizes, and it becomes water and the chemical energy at this time turns into electrical energy given to external power load. Thus, the overall reaction as a cell of a cell is completed. Although the reaction in the above-mentioned cell 1 is an exoergic reaction, this heat is removed by pouring refrigerants, such as water, inside the cold plate 4 inserted in stack 2 inside, and the temperature of the fuel cell stack 2 is kept constant. [0013] In a actual phosphoric acid fuel cell, as fuel gas, a steam (H₂O) is added to the natural gas which mainly consists of methane (CH₄), it heats, and hydrogen like the following formula 3 and the formula 4 generated by what is called a reforming reaction is usually used. [0014]

[Mathematical formula 3] CH₄ +H₂ O→3H₂ +CO …式3

[Mathematical formula 4] CO+H₂O→H₂+CO₂ …式4

In this reaction, it is simultaneously generated by carbon dioxide (CO₂) with hydrogen. Therefore, the gas supplied to a fuel cell turns into mixed gas of hydrogen and carbon dioxide. Such quantity is like [which can be disregarded] although unreacted methane and carbon monoxide (CO) are

contained slightly. Hereafter, this mixed gas is called "fuel gas." Since carbon dioxide is inertness electrochemically, even if a fuel cell is supplied, the above-mentioned reaction is not checked. Generally as oxidant gas, air is used. Although air mainly consists of nitrogen and oxygen, since nitrogen is also inactive gas, it is satisfactory even if a fuel cell is supplied. [0015]

[Problem to be solved by the invention] By the way, in order for a fuel cell to generate electricity, each reactant gas fully needs to be supplied to the fuel electrode 1a and the oxidizing agent pole 1b. However, a deficit etc. occur in the electrolyte layer 1c, and when fuel gas is revealed to an oxidizing agent pole or oxidant gas is conversely revealed to a fuel electrode (this phenomenon is hereafter called "cross leakage"), the following problems arise. That is, if cross leakage occurs, hydrogen in fuel gas and oxygen in oxidant gas react directly, and since it is consumed, fuel gas and oxidant gas for power generation will run short. Thus, when fuel gas runs short, a reaction will be concentrated on the neighborhood (near a fuel gas inlet) to which fuel gas is supplied, and the calorific value of this portion will increase compared with a normal state. In the portion which the direct reaction of hydrogen and oxygen has produced, reaction fever arises and the temperature of an electrode rises.

[0016]If the fuel electrode 1a and the air pole 1b become an elevated temperature by such a rise in heat, degradation of evaporation of a phosphoric acid electrolyte, a catalyst, etc. currently stored in the cell will advance quickly, and will become the cause of shortening the life of a cell. Although the electrolyte layer has achieved the function which intercepts gas when phosphoric acid fills the fine pores of a porous body, if evaporation of phosphoric acid advances, the quantity of the liquid which was burying the fine pores of the electrolyte layer will decrease, and disclosure of reactant gas will become still more intense.

[0017]When shortage of fuel gas is remarkable, since a hydrogen ion is not supplied to the oxidizing agent pole 1b, the generation reaction of water does not occur near a fuel gas outlet. And the reaction by which carbon which is the material of an electrode like the following formula 5 and the formula 6, a gas separating plate, and a cold plate is corroded instead of the generation reaction of water occurs.

[0018]

[Mathematical formula 5]
$$C + 2H_2 O \rightarrow CO_2 + 4H^+ + 4e^-$$
 …式5

If the corrosion reaction of such carbon advances, a deficit will arise in the main components of a fuel cell, and operation of a fuel cell will become impossible. And cross leakage may become intense further according to advance of this corrosion.

[0019]When cross leakage occurs, the above inconvenience will arise with shortage of reactant gas, the voltage generated in a fuel cell stack as a result will fall, and the amount of electrical energy (production of electricity) will fall.

[0020]In order to cope with generating of such cross leakage, in the conventional fuel cell, abnormalities are detected with the detection method based on an amplitude measurement. That is, it is supposed that the voltage of a fuel cell stack is measured, it judges that abnormalities occurred in the fuel cell when it became below constant value with measurement voltage, and subsequent correspondent treatment is performed.

[0021] However, a blockade according [the cause that the voltage of a fuel cell stack falls] to the foreign matter of a gas supplying groove in addition to cross leakage, and the poor gas diffusion by the superfluous impregnation of phosphoric acid are considered. Therefore, in the abnormality detecting method only by the above amplitude measurements, it cannot be specified whether voltage fell by that voltage fell by cross leakage, or other causes, and the prompt action which receives unusually cannot be performed.

[0022] Since this is coped with, how to detect cross leakage can be considered by measuring the

carbon dioxide levels in the gas discharged from an oxidizing agent pole. Since carbon dioxide is contained in fuel gas, if this method has disclosure of fuel gas, it will use that the concentration of carbon dioxide increases. However, since carbon dioxide is contained also in the air supplied as oxidant gas, when disclosure of fuel gas is little, it is difficult [it] to detect only the carbon dioxide by disclosure of fuel gas.

[0023] How to detect cross leakage can be considered by measuring the hydrogen concentration in the gas discharged from an oxidizing agent pole. This method uses that hydrogen is contained for the gas which all hydrogen in the fuel gas revealed to the oxidizing agent pole does not always react to oxygen, and is discharged from an oxidizing agent pole. However, also in this case, when disclosure of fuel gas is little, detection becomes difficult.

[0024] Since the equipment in which a gas chromatograph etc. are special in order to measure the concentration of the carbon dioxide in the above emission gas or hydrogen is needed, it becomes a high cost. And even if an abnormal occurrence is detectable with emission gas, since the gas discharged from all the cells of the fuel cell stack is mixed, the gas discharged from the outlet manifolds of an oxidizing agent pole cannot specify with which cell cross leakage has arisen.

[0025] Are proposed in order that this invention may solve the problem of the above conventional technologies, and the main purpose, When cross leakage arises in a fuel cell stack, it is providing the diagnosing method of the fuel cell stack which can detect the generating certainly, without needing special equipment.

[0026] The 2nd purpose is for specification of the cell by which it was generated to provide the diagnosing method of an easy fuel cell stack, when cross leakage arises in a cell with a fuel cell stack.

[0027]

[Means for solving problem]In order to attain the above-mentioned purpose, the diagnosing method of the fuel cell stack which is the invention according to claim 1, The cell formed across the electrolyte layer between the fuel electrode and the oxidizing agent pole, and the stack by which plural laminates were carried out so that said cell might mutually electrically be connected in series, The fuel gas manifold which supplies fuel gas to the fuel electrode in each cell, Supply the hydrogen containing gas which makes a diagnosis subject the fuel cell provided with the oxidizer gas manifold which supplies oxidant gas to the oxidizing agent pole in each cell, and contains hydrogen of fixed concentration in said fuel electrode, and. Supply the oxygen containing gas containing oxygen of fixed concentration to said oxidizing agent pole, and The change with time of the amount of supply of said oxygen containing gas, A correspondence relation with the change with time of the voltage generated in said stack in connection with this is recorded, When change of the generated voltage of said stack accompanying change of the amount of supply of said oxygen containing gas is rapid, Detect that disclosure of hydrogen has occurred in said stack, and from the correspondence relation of the change with time of the amount of supply of said oxygen containing gas, and the voltage generated in said stack. Compute the hydrogen leak rate in said stack, and when the hydrogen leak rate concerned is more than the hydrogen leak rate at the time of normal of said stack, Generating of cross leakage is specified.

[0028]In the above invention according to claim 1, the hydrogen containing gas which contains hydrogen of fixed concentration in a fuel electrode from the fuel gas manifold of a fuel cell first is supplied. Simultaneously, the oxygen containing gas containing oxygen of fixed concentration is supplied to an oxidizing agent pole from the oxidizer gas manifold of a fuel cell. Then, although voltage occurs in a stack, when changing the amount of supply of oxygen containing gas temporally, a generated voltage also changes temporally. And the correspondence relation between the change with time of the amount of supply of such oxygen containing gas and the change with time of a generated voltage is recorded. For example, when it is made to change so that the amount of supply of oxygen containing gas may decrease gradually, the voltage generated in a fuel cell stack falls gradually, and the rate of the fall becomes large gradually. [0029]Thus, if the amount of supply of oxygen containing gas is decreased gradually, when disclosure of hydrogen will have occurred in a stack, in an certain amount of supply, voltage falls

rapidly. The method of this change of potential is decided by the concentration of the oxygen contained in oxygen containing gas, and quantity of the hydrogen revealed by the abnormalities of a stack. Since the concentration of oxygen and the concentration of hydrogen containing gas which are contained in the oxygen containing gas supplied are constant, they compute the quantity of the hydrogen revealed by the abnormalities of a stack from the correspondence relation of the change with time of the amount of supply of oxygen containing gas and the change with time of voltage which were recorded as mentioned above.

[0030] However, since hydrogen in hydrogen containing gas dissolves in phosphoric acid which is an electrolyte in the state of a gas and this hydrogen that dissolved is spread in the oxidizing agent pole, disclosure of hydrogen of ultralow volume arises also in the stack at the time of normal, and the above changes of potential may be observed. The leak rate of hydrogen in this case is a grade no trouble is [grade] in operation of the usual fuel cell. For this reason, when the leak rate of the hydrogen for which it asked from the change of potential as mentioned above exceeds the leak rate of hydrogen at the time of normal, it is specified that it is cross leakage and it is determined whether continuation of operation of a fuel cell is possible. [0031] The diagnosing method of the fuel cell stack which is the invention according to claim 2, The cell formed across the electrolyte layer between the fuel electrode and the oxidizing agent pole, and the stack by which plural laminates were carried out so that said cell might mutually electrically be connected in series, The fuel gas manifold which supplies fuel gas to the fuel electrode in each cell, The fuel cell provided with the oxidizer gas manifold which supplies oxidant gas to the oxidizing agent pole in each cell is made into a diagnosis subject, The quantity of said oxygen containing gas supplied for two or more cells of every or each cell of every is computed, The change with time of the quantity of said oxygen containing gas which measures the voltage of said stack for two or more cells of every or each cell of every, and is supplied for said two or more cells of every or each cell of every, A correspondence relation with the change with time of the voltage generated for two or more cells of every or each cell of every in connection with this is recorded, When the change of the generated voltage for each cell of every for two or more cells of every in accordance with change of the amount of supply of said oxygen containing gas is rapid, The change with time of the quantity of said oxygen containing gas which detects that disclosure of hydrogen has occurred for two or more cells of every or each cell of every, and is supplied for two or more cells of every or each cell of every in it, From a correspondence relation with a change with time with the voltage generated in said stack for each cell of every for two or more cells of every in accordance with this. The hydrogen leak rate for each cell of every for two or more cells of every is computed, and when the hydrogen leak rate concerned is more than the hydrogen leak rate at the time of normal of each cell of every for two or more cells of every, generating of cross leakage is specified.

[0032]In the above invention according to claim 2, the quantity of the oxygen containing gas supplied to an oxidizing agent pole for two or more cells of every or each cell of every is computed first. What is necessary is simply, just to divide the quantity of the oxygen containing gas supplied to the fuel cell stack by the number of cells in a fuel cell stack, if oxygen containing gas is uniformly supplied to the oxidizing agent pole of all the cells. Or it is also possible to compute the rate of distribution of oxygen containing gas beforehand with survey or other calculation methods.

[0033] And the hydrogen containing gas which contains hydrogen of fixed concentration in a fuel electrode from the fuel gas manifold of a fuel cell is supplied. Simultaneously, the oxygen containing gas containing oxygen of fixed concentration is supplied to an oxidizing agent pole from the oxidizer gas manifold of a fuel cell. Then, although voltage occurs in a stack, when changing the amount of supply of oxygen containing gas temporally, a generated voltage also changes temporally. And the correspondence relation between the change with time of the amount of supply of the oxygen containing gas supplied for said two or more cells of every or each cell of every and the change with time of the voltage generated for two or more cells of every or each cell of every is recorded.

[0034] If the amount of supply of oxygen containing gas is decreased gradually, in two or more cells or independent cells containing the cell which disclosure of hydrogen has generated, voltage

will fall rapidly in an certain amount of supply. The method of this change of potential is decided by the concentration of the oxygen contained in oxygen containing gas, and quantity of the hydrogen revealed by the abnormalities of the cell concerned. Since the concentration of oxygen and the concentration of hydrogen containing gas which are contained in the oxygen containing gas supplied are constant, they compute the quantity of the hydrogen revealed by the abnormalities of the cell concerned from the correspondence relation of the change with time of the amount of supply of oxygen containing gas and the change with time of voltage which were recorded as mentioned above.

[0035]However, since hydrogen in hydrogen containing gas dissolves in phosphoric acid which is an electrolyte in the state of a gas and this hydrogen that dissolved is spread in the oxidizing agent pole, disclosure of hydrogen of ultralow volume arises also in the cell at the time of normal, and the above changes of potential may be observed. The leak rate of hydrogen in this case is a grade no trouble is [grade] in operation of the usual fuel cell. For this reason, when the leak rate of the hydrogen for which it asked from the change of potential as mentioned above exceeds the leak rate of hydrogen at the time of normal, it is specified when cross leakage has occurred in the cell concerned in either of two or more cells concerned, and it is determined whether continuation of operation of a fuel cell is possible.

[0036]In the diagnosing method of the fuel cell stack according to claim 1 or 2 the invention according to claim 3, It is connected to the circuit which sends load current, and said fuel cell supplies the hydrogen containing gas which contains hydrogen in said fuel electrode, after intercepting the current which flows into load current from said stack, and it supplies the oxygen containing gas containing oxygen to said oxidizing agent pole.

[0037]In the above invention according to claim 3, by opening the circuit which sends the load current provided in the stack, it will be in a power generation stop state, and the temperature of a stack will be stabilized at low temperature. Since a generated voltage will be stabilized if the temperature of a stack is stable, it becomes possible to measure the change of potential correctly.

[0038] The invention according to claim 4 carries out that it is a complement and is said 0.1% or less of oxygen containing gas to a reaction with hydrogen of said hydrogen containing gas which reveals the oxygen content of said oxygen containing gas with the feature in the diagnosing method of a fuel cell stack given in any 1 clause of Claims 1-3.

[0039] By making into 0.1% or less concentration of the oxygen contained in oxygen containing gas in the above invention according to claim 4, The rise of the potential of the oxidizing agent pole accompanying releasing the circuit which sends load current can be controlled, and a platinum catalyst becomes possible [preventing the dissolution and the characteristics degradation by re-depositing and particles being enlarged (sintering)].
[0040]

[Mode for carrying out the invention]Hereafter, the embodiment of the diagnosing method of the fuel cell stack of this invention is described below with reference to Drawings. Identical codes are given to the element which is the same as the conventional example shown in <u>drawing 4</u>, or corresponds, the explanation is omitted, and only a portion different here is described. In <u>drawing 1</u>, it is drawn so that fuel gas (and hydrogen containing gas) and oxidant gas (and oxygen containing gas) may flow into a uniform direction within the fuel cell stack 2, but fuel gas and oxidant gas flow in the direction which intersects perpendicularly mutually as shown in Fig. 4 actually. And in <u>drawing 1</u>, the gas manifold 5 and the collecting electrode plate 6 are omitted. Although it simplifies and only the one cell 1 is shown, the fuel cell stack 2 shown in <u>drawing 3</u> is actually formed by laminating two or more unit cells 1, gas separating plates 3, and cold plates 4, as shown in drawing 4.

[0041](1) Describe below one embodiment corresponding to the diagnosing method of the fuel cell power plant which is invention 1st given in embodiment Claim 1 as a 1st embodiment. [0042](a) Explain an example of fuel cell power plant **** used as the diagnosis subject of a 1st embodiment, and the fuel cell power plant used for this embodiment according to drawing 1. That is, the fuel gas supply pipe 11 and the exhaust pipe 12 are connected to the fuel electrode 1a in the fuel cell stack 2. Natural gas and the reformer (not shown) made to generate hydrogen by a

reforming reaction from a steam are connected to the fuel gas supply pipe 11 as a supply source of fuel gas. The oxidant gas feed pipe 13 and the exhaust pipe 14 are connected to the oxidizing agent pole 1b. The blower etc. which send air are connected to the oxidant gas feed pipe 13 as a supply source of oxidant gas.

[0043] The flow control valve 15 which adjusts the flow of the gas which flows through the inside, and the flow instrument 16 which measures the flow of gas are formed in the oxidant gas feed pipe 13. And the recording equipment 20 is connected to the flow instrument 16. The flow rate value measured by the flow instrument 16 is changed into an electric signal, is sent to the recording equipment 20, and has the composition that a time change of a flow is recorded by this recording equipment. The oxygen containing gas feed pipe 18 which formed the selector valve 17 is connected to the oxidant gas feed pipe 13. The gas bomb 19 into which the gas which mixed 0.1% of oxygen to nitrogen was put as a supply source of oxygen containing gas is connected to this oxygen containing gas feed pipe 18.

[0044]On the other hand, via the current line 31, a direct current taken out from the fuel cell stack 2 is changed into alternating current by the inverter 33 through the switch 32, and has composition supplied to power load of the exterior which is not illustrated. The voltmeter 34 which measures voltage generated in the fuel cell stack 2 is connected among two poles of the fuel cell stack 2. A value of voltage measured with the voltmeter 34 is sent to the recording equipment 20, and has composition that a time change is recorded with this recording equipment.

[0045](b) Describe this embodiment using an operation, next an above-mentioned fuel cell power plant of a 1st embodiment according to a procedure of the enforcement.

[0046]** When an above-mentioned fuel cell power plant is in a power generation state from a power generation stop to supply of oxygen containing gas and hydrogen containing gas, as shown in drawing 1, the selector valve 17 is opened in the direction which supplies oxidant gas (generally air) to the oxidant gas feed pipe 13. Since the switch 32 is in a closed circuit state, current is flowing into all of load (not shown) of the fuel cell stack 2, the current line 31, the inverter 33, and the exterior.

[0047]In order to enforce a diagnosing method by this embodiment to the above fuel cell power plants, it is necessary to change a fuel cell power plant first into a power generation stop state from a power generation state but, and this is generally performed as follows. That is, supply inactive gas, such as nitrogen, to the fuel electrode 1a and the oxidizing agent pole 1b, and fuel gas and oxidant gas are discharged compulsorily, and the switch 32 is opened and current which is flowing into the fuel cell stack 2 is intercepted.

[0048] Thus, since potential of an oxidizing agent pole will rise if a circuit which sends load current is opened, a platinum catalyst re—[the dissolution and] deposits and particles are enlarged (sintering). Then, since activation polarization increases with reduction of surface area of a platinum catalyst and phosphoric acid flows into fine pores of a catalyst bed, the diffusibility of gas may fall and a fall of the characteristic which makes an increase in diffusion polarization, etc. a cause may advance. However, in this embodiment, a rise of potential of an oxidizing agent pole is controlled by making into 0.1% or less concentration of oxygen contained in oxygen containing gas.

[0049]After suspending power generation as mentioned above, change the selector valve 17, oxygen containing gas is made to flow into the oxidant gas feed pipe 13, and oxygen containing gas is supplied to the oxidizing agent pole 1b. Hydrogen containing gas is supplied to the fuel electrode 1a from the fuel gas supply pipe 11.

[0050]** detection of a generated voltage — if oxygen containing gas is supplied to the oxidizing agent pole 1b as mentioned above and hydrogen containing gas is supplied to the fuel electrode 1a, voltage will occur in the fuel cell stack 2. And if the amount of supply of oxygen containing gas supplied to the fuel cell stack 2 is changed when cross leakage has occurred in the fuel cell stack 2, voltage generated in the fuel cell stack 2 will change as follows.

[0051] For example, if the amount of supply is decreased when it is the amount of supply of oxygen containing gas which about [0.6-0.8V] voltage generates per cell, voltage falls gradually. And when cross leakage has occurred in the fuel cell stack 2, if it becomes below a value with a

flow, voltage will fall rapidly and will be about 0.1-0.2V per cell.

[0052] The amount of supply of such oxygen containing gas is measured by the flow instrument 16, and a generated voltage is measured by the voltmeter 34. Those measured value is sent to the recording equipment 20, and is recorded for every fixed time. The graph which shows a time change of the relation of the amount of supply of oxygen containing gas and the generated voltage which were recorded in this way is shown in <u>drawing 2</u>. If it becomes below a value with the amount of supply of oxygen containing gas so that clearly from this graph, the phenomenon in which voltage falls rapidly will happen.

[0053]** The sag phenomenon of the relation above of the amount of supply of oxygen containing gas, voltage, and change can be explained as follows. First, the current which flows into a cell is 0, and the voltage E generated with a cell is theoretically expressed by Nernst's equation like the following formula 7, when the oxygen density in C_H and oxygen containing gas is set [the temperature of a cell] to Co for the hydrogen concentration in T and hydrogen containing gas.

[0054]

```
[Mathematical formula 7]

E = E_0 + (2.3RT/2F) \log (C_H \cdot Co^{1/2})

= E_0 + (2.3RT/2F) \log (C_H)

+ (2.3RT/4F) \log (Co) ...±
```

Here, E_0 is called standard electromotive force, and although it is 1.23V at the time of 25 **, it changes with temperature. R is 8.31 (J/mol-K) and F is 96485 (C/mol) in a Faraday constant at a gas constant.

[0055]However, since only the change of potential should be measured here although E_0 is lower than a theoretical value when it actually measures, the difference from the theoretical value of E_0 is not important. When cross leakage has arisen, the inclination of the voltage E to the logarithm (log (Co)) of an oxygen density is larger than 2.3RT/4F, The difference is almost equal to the value (inclination [on the relation between the current I which flows into a cell, and the voltage E generated with a cell, and as opposed to the logarithm logI of current] of the voltage E) generally measured as Tafel inclination. Therefore, experimentally, when the Tafel inclination is set to b, the relation with the oxygen density Co in hydrogen concentration C_H in the voltage E and hydrogen containing gas and oxygen containing gas is expressed like the following formula 8. [0056]

```
[Mathematical formula 8] E = E_0 + (2.3RT/2F) \log (C_H) + (b+2.3RT/4F) \log (C_0) …式8
```

Here, there are a deficit etc. in the electrolyte layer 1c etc. in a fuel cell power plant, and suppose that it is in the state where cross leakage occurs at the time of operation. In this case, if oxygen containing gas is supplied to the oxidizing agent pole 1b as mentioned above and hydrogen containing gas is supplied to the fuel electrode 1a, hydrogen containing gas will be revealed to the oxidizing agent pole 1b. Then, oxygen of the oxygen containing gas supplied to the oxidizing agent pole 1b is consumed by a reaction with hydrogen, and an oxygen density falls.

[0057]Supposing the whole quantity of the revealed hydrogen reacts to oxygen of an oxidizing agent pole, oxygen density Co^{out} in the oxidant gas exit of a cell is expressed [amount of supply / of Coⁱⁿ and oxygen containing gas] like the following formula 9 in the oxygen density in oxygen containing gas, when the leak rate of S and hydrogen is set to L. [0058]

```
[Mathematical formula 9]
C \circ ^{out} = (C \circ ^{in} \times S - L/2) / S …式 9
```

Therefore, if (the formula 8) (formula 9) is doubled, relation between the amount of supply of oxygen containing gas and voltage can be found like the following formula 10. [0059]

```
[Mathematical formula 10]

E = E_0 + (2.3RT/2F) \log (C_H) + (b+2.3RT/4F) \log ((Co^{in} \times S - L/2)/S)
```

In the above (formula 10), although a value will emit at the time of CoⁱⁿxS<=L/2, At this time, all oxygen of an oxidizing agent pole is actually consumed by a reaction with hydrogen, an oxidizing agent pole has also become a hydrogen atmosphere, and it is thought that about [0.1-0.2V] voltage produces it since a cell is in a state of a concentration cell of hydrogen.

[0060]Also when cross leakage has not arisen, the above changes of potential are observed. This is for the phenomenon same since hydrogen in hydrogen containing gas dissolves in phosphoric acid which is an electrolyte in the state of a gas and this hydrogen that dissolved is spread in an oxidizing agent pole to arise as cross leakage of ultralow volume has arisen. This quantity is a grade no trouble is [grade] in operation of the usual fuel cell. For this reason, only when a leak rate of hydrogen by cross leakage for which it asked by an above—mentioned method is over upper limit (leak rate of hydrogen at the time of normal) defined beforehand, it will be judged that it is unusual.

[0061]** From the relation of the oxygen containing gas amount of supply and voltage as shown in calculation <u>drawing 2</u> of the leak rate of hydrogen, in order to calculate the leak rate L of hydrogen, perform it as follows.

[0062]Most simply, in Fig. 2, since it will be $\mathrm{Co^{in}} \times \mathrm{S_E} = \mathrm{L/2}$ as shown in (the formula 10) if oxygen containing gas amount-of-supply $\mathrm{S_E}$ when voltage falls rapidly is measured, the value of the leak rate L is calculated from the oxygen density in oxygen containing gas, and the value of $\mathrm{S_E}$. [0063]When voltage $\mathrm{E_1}$ at the time of oxygen containing gas amount-of-supply $\mathrm{S_1}$ and voltage $\mathrm{E_2}$ at the time of amount-of-supply $\mathrm{S_2}$ are measured, it is [Mathematical formula 11] from (the formula 10).

formula 10).

$$E_1 - E_2 = (b + 2. 3RT/4F) \log \frac{(Co^{in} \times S_1 - L/2)/S_1}{(Co^{in} \times S_2 - L/2)/S_2}$$
...\$\pi 11

Since it becomes, (the formula 11) can be solved and the leak rate L can be calculated. If fitting [the measurement result of Fig. 2 / (the formula 10) / with the least square method etc.] by making L and E_0 into a variable in order to ask still more correctly, it can ask for L. And when the leak rate L of the hydrogen called for as mentioned above is over the upper limit (hydrogen leak rate at the time of normal) defined beforehand, it will be judged that cross leakage has occurred.

[0064](c) the effect of a 1st embodiment — the effect of these above embodiments is as follows. That is, since the leak rate of hydrogen by cross leakage can be detected without needing special equipment, such as a gas chromatograph, generating of cross leakage is certainly detectable.

[0065] Thus, in [when generating of the cross leakage in a fuel cell power plant is detected] subsequent operation, The amount of supply of fuel gas and oxidant gas is made to increase, lack of reactant gas is kept from arising, or the reliability as a power plant can be raised by the method of exchanging fuel cell stacks.

[0066]Since it is performed after diagnosis opens the circuit which sends load current, stops a power generation state and reduces the temperature of the fuel cell stack 2, the temperature of the fuel cell stack 2 becomes fixed, standard electromotive force is stabilized and a detection value becomes exact.

[0067]Since the concentration of the oxygen contained in oxygen containing gas is 0.1%, the rise of the potential of the oxidizing agent pole accompanying releasing the circuit which sends load current is controlled. Therefore, a platinum catalyst is enabled to prevent the dissolution and the characteristics degradation by re-depositing and particles being enlarged (sintering), and influence which diagnosis has on a fuel cell power plant can be lessened.

[0068](2) Describe below one embodiment corresponding to the diagnosing method of the fuel cell power plant which is invention 2nd given in embodiment Claim 2 as a 2nd embodiment. [0069](a) Explain an example of fuel cell power plant **** used as the diagnosis subject of a 2nd embodiment, and the fuel cell power plant used for this embodiment according to drawing 3. The same mark is given to the same component as the fuel cell power plant used for a 1st embodiment, and explanation is omitted. That is, whenever, as for the fuel cell stack 2, the fixed number of pieces laminates the cell 1 and the gas separating plate 3, the cold plate 4 is inserted. Two or more cells 1 between this cold plate 4 and cold plate 4 and the group of the gas separating plate 3 are called "sub stacks." And the voltmeter 34 which measures the voltage generated for such every sub stacks or each cell of every is formed.

[0070](b) Describe this embodiment using an operation, next the above-mentioned fuel cell power plant of a 2nd embodiment according to the procedure of the enforcement. The same procedure as a 1st embodiment simplifies explanation.

[0071]the quantity of the oxygen containing gas supplied to measure, each sub stacks, or each cell 1 is computed by survey or calculation. What is necessary is just to easy usually divide the quantity of the oxygen containing gas supplied to the fuel cell stack 2 whole by the number of sub stacks, or the number of the cells 1, since gas is supplied to each cell 1 almost uniformly. [0072]And like a 1st embodiment, a fuel cell power plant is changed into a power generation stop state, oxygen containing gas is supplied to the oxidizing agent pole 1b, and hydrogen containing gas is supplied to the fuel electrode 1a. The amount of supply of oxygen containing gas is measured by the flow instrument 16, and the amount of supply of the oxygen containing gas for each cell of every for every sub stacks is computed as mentioned above. The generated voltage for every sub stacks or the generated voltage for each cell of every is measured by the voltmeter 34. Each oxygen containing gas amount of supply and generated voltage for every cell for every sub stacks are sent to the recording equipment 20, and are recorded for every fixed time. The graph which shows a time change of the relation of the amount of supply of oxygen containing gas and the generated voltage which were recorded in this way is similarly indicated to be drawing 2.

[0073]Based on the relation of this oxygen containing gas amount of supply and generated voltage, the leak rate of hydrogen for each cell of every for every sub stacks is calculated like a 1st above-mentioned embodiment. And when there is the sub stacks or the cell 1 with which the calculated leak rate which was carried out in this way is over the upper limit (leak rate of hydrogen at the time of normal of corresponding sub stacks or the cell 1) defined beforehand, It will be judged that cross leakage has occurred in one of the cells 1 or the cells 1 concerned of the sub stacks concerned.

[0074](c) the effect of a 2nd embodiment — the effect of these above embodiments is as follows. That is, since the leak rate of hydrogen by cross leakage can be detected like a 1st embodiment, without needing special equipment, such as a gas chromatograph, generating of cross leakage is certainly detectable.

[0075]Since generating of cross leakage is detectable for each sub stacks of every or each cell of every, it becomes easy to specify in which cell abnormalities have arisen. Therefore, only the large cell 1 or sub stacks of the amount of cross leakage can be removed, and a fuel cell power plant can be succeedingly operated only with the normal cell 1 by exchange, bypassing electrically, etc.

[0076] While the fuel cell stack 2 is generating electricity, the difference has arisen to temperature according to each cell 1 or a difference of the position of the plane direction in one cell. However, since the circuit which sends load current was opened and power generation is suspended like a 1st embodiment before diagnosing when carrying out this embodiment, the temperature of the fuel cell stack 2 is falling to about 1 appearance. Therefore, the temperature

of the fuel cell stack 2 becomes fixed, standard electromotive force is stabilized and a detection value becomes exact.

[0077](3) Other embodiment this inventions are not limited to the above embodiments, and the quantity of each component used, a kind, the procedure of enforcement, etc. can be changed suitably.

[0078] For example, in the above-mentioned embodiment, although the content of oxygen in oxygen containing gas was 0.1%, as long as it is 0.1% or less, other values may be sufficient. As a supply source of oxygen containing gas, the method of mixing nitrogen gas other than a gas bomb at a fixed rate to air is also possible.

[0079]Even if the fuel gas used for power generation is used for the hydrogen containing gas supplied to the fuel electrode 1a, the mixed gas of inactive gas and hydrogen, such as pure water matter gas supplied from a gas bomb etc. or nitrogen, may be used for it. Since that influence is great when cross leakage has arisen in the higher one, the concentration of hydrogen in this hydrogen containing gas is advantageous to detection of cross leakage, but if hydrogen is contained at least 1% or more, detection will be possible and will not have an adverse effect on a fuel cell stack. However, it is necessary to make it concentration not change with time. [0080]Fuel gas and oxidant gas were made to discharge compulsorily by supply of inactive gas before implementation of diagnosis in the above-mentioned embodiment from the fuel electrode 1a and the oxidizing agent pole 1b. However, since fuel gas can be used as hydrogen containing gas as it is as mentioned above, it is not necessary to supply inactive gas to the fuel electrode 1a.

[0081]In the above-mentioned embodiment, it was diagnosing, after stopping the power generation state and reducing the temperature of the fuel cell stack 2. This is for stabilizing standard electromotive force and expecting the accuracy of a detection value by making temperature of the fuel cell stack 2 regularity. Therefore, as long as it keeps temperature from changing by time by the device of improving the structure of the cold plate 4, and the performance of a refrigerant, it may diagnose with temperature when operating. Since the one where temperature is higher is easy for detection of cross leakage, it becomes easy to detect the direction of diagnosis by an operating temperature of cross leakage. However, since degradation of the catalyst bed of a cell, evaporation of phosphoric acid, etc. will be accelerated if it becomes an elevated temperature, it is not so preferred to make temperature high more than an operating temperature.

[0082] Although the fuel cell power plant which was the target of the above-mentioned embodiment already continued fixed time use and was performed, this invention is applicable also to fuel cell power plants other than this. For example, after manufacture of a fuel cell power plant is completed, before starting generating operation, the above-mentioned embodiment is also applicable.

[0083]

[Effect of the Invention] According to above this inventions, from the correspondence relation of the change with time of the amount of supply of oxygen containing gas, and the voltage generated in a stack. By computing the hydrogen leak rate in a stack, and specifying generating of cross leakage, when the hydrogen leak rate concerned is more than the hydrogen leak rate at the time of normal of said stack, The diagnosing method of the fuel cell stack which can detect generating of cross leakage certainly can be provided without needing special equipment. [0084] According to this invention, the amount of supply of the oxygen containing gas for each cell of every for two or more cells of every, From the correspondence relation of a change with time with the voltage generated for two or more cells of every or each cell of every. By computing the hydrogen leak rate for each cell of every for two or more cells of every, and specifying generating of cross leakage, when the hydrogen leak rate concerned is more than the hydrogen leak rate at the time of normal of each cell of every for two or more cells of every, The diagnosing method of the fuel cell stack which can distinguish certainly the cell which cross leakage generated can be provided.

[Translation done.]

* NOTICES *

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1]It is a block diagram showing an example of the composition of the fuel cell power plant for enforcing the diagnosing method of the fuel cell stack by a 1st embodiment of this invention.

[Drawing 2] It is a characteristic figure showing an example of the relation between the amount of supply of the oxygen containing gas supplied to the fuel cell stack in the fuel cell power plant of drawing 1, and the voltage generated in a fuel cell stack.

[Drawing 3] It is a block diagram showing an example of the composition of the fuel cell power plant for enforcing the diagnosing method of the fuel cell stack by a 2nd embodiment of this invention.

[Drawing 4] It is an exploded perspective view showing the example of composition of a common phosphoric acid fuel cell.

[Explanations of letters or numerals]

- 1 -- Cell
- 2 -- Fuel cell stack
- 3 -- Gas separating plate
- 4 -- Cold plate
- 5 -- Gas manifold
- 6 -- Collecting electrode plate
- 11 -- Fuel gas supply pipe
- 12 -- Fuel gas exhaust pipe
- 13 -- Oxidant gas feed pipe
- 14 -- Oxidant gas exhaust pipe
- 15 -- Flow control valve
- 16 -- Flow instrument
- 17 -- Selector valve
- 18 -- Oxygen containing gas feed pipe
- 19 -- Oxygen content gas bomb
- 20 -- Recording equipment
- 31 -- Current line
- 32 -- Switch
- 33 -- Inverter
- 34 -- Voltmeter
- 41 -- Electrode holder
- 42 -- Gas seal
- 43 -- Heater

[Translation done.]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-27336

(43)公開日 平成9年(1997)1月28日

(51) Int.Cl.⁶

識別記号

庁内整理番号

 \mathbf{F} I

技術表示箇所

H01M 8/04

H01M 8/04

Z

審査請求 未請求 請求項の数4 OL (全 11 頁)

(21)出願番号

特顏平7-177075

(71)出願人 000003078

株式会社東芝

(22)出願日

平成7年(1995)7月13日

神奈川県川崎市幸区堀川町72番地

(72)発明者 矢嶋 亨

神奈川県川崎市川崎区浮島町2番1号 株

式会社東芝浜川崎工場内

(72)発明者 青木 努

神奈川県川崎市川崎区浮島町2番1号 株

式会社東芝浜川崎工場内

(74)代理人 弁理士 木内 光春

(54) 【発明の名称】 燃料電池スタックの診断方法

(57)【要約】

【課題】 特殊な装置を必要とせずに、燃料電池スタックのクロスリークの発生を確実に検知可能な燃料電池スタックの診断方法を提供する。

【解決手段】 燃料電池の燃料極1aに一定の濃度の水素を含む水素含有ガスを供給すると共に、酸化剤極1bに一定の濃度の酸素を含む酸素含有ガスを供給する。酸素含有ガスの供給量の経時的変化と、これに伴って燃料電池スタック2において発生する電圧の経時的変化に伴うスタック2の発生電圧の変化が急激な場合に、スタック2において水素の漏洩が発生していることを検知する。酸素含有ガスの供給量とスタック2において発生する電圧との経時的変化の対応関係から、スタック2における水素漏洩量を算出する。水素漏洩量が、スタック2の正常時における水素漏洩量以上である場合に、クロスリークの発生を特定する。

【特許請求の範囲】

【請求項1】 燃料極と酸化剤極との間に電解質層を挟 んで形成された単電池と、前記単電池が互いに電気的に 直列に接続されるように複数積層されたスタックと、各 単電池における燃料極に燃料ガスを供給する燃料ガスマ ニホールドと、各単電池における酸化剤極に酸化剤ガス を供給する酸化剤ガスマニホールドとを備えた燃料電池 を診断対象とし、

前記燃料極に一定の濃度の水素を含む水素含有ガスを供 給すると共に、前記酸化剤極に一定の濃度の酸素を含む 10 酸素含有ガスを供給し、

前記酸素含有ガスの供給量の経時的変化と、これに伴っ て前記スタックにおいて発生する電圧の経時的変化との 対応関係を記録し、

前記酸素含有ガスの供給量の変化に伴う前記スタックの 発生電圧の変化が急激な場合に、前記スタックにおいて 水素の漏洩が発生していることを検知し、

前記酸素含有ガスの供給量と前記スタックにおいて発生 する電圧との経時的変化の対応関係から、前記スタック における水素漏洩量を算出し、

当該水素漏洩量が、前記スタックの正常時における水素 漏洩量以上である場合に、クロスリークの発生を特定す ることを特徴とする燃料電池スタックの診断方法。

【請求項2】 燃料極と酸化剤極との間に電解質層を挟 んで形成された単電池と、前記単電池が互いに電気的に 直列に接続されるように複数積層されたスタックと、各 単電池における燃料極に燃料ガスを供給する燃料ガスマ ニホールドと、各単電池における酸化剤極に酸化剤ガス を供給する酸化剤ガスマニホールドとを備えた燃料電池 を診断対象とし、

前記燃料極に一定の濃度の水素を含む水素含有ガスを供 給すると共に、前記酸化剤極に一定の濃度の酸素を含む 酸素含有ガスを供給し、

複数の単電池でとに又は個々の単電池でとに供給される 前記酸素含有ガスの量を算出し、

複数の前記単電池でとに又は個々の単電池でとに供給さ れる前記酸素含有ガスの量の経時的変化と、これに伴っ て複数の単電池ごとに又は個々の単電池ごとに発生する 電圧の経時的変化との対応関係を記録し、

前記酸素含有ガスの供給量の変化に伴う複数の単電池で との又は個々の単電池ごとの発生電圧の変化が急激な場 合に、複数の単電池ごとに又は個々の単電池ごとに水素 の漏洩が発生していることを検知し、

複数の単電池ごとに又は個々の単電池ごとに供給される 前記酸素含有ガスの量の経時的変化と、これに伴う複数 の単電池ごとの又は個々の単電池ごとの前記スタックに おいて発生する電圧との経時的変化との対応関係から、 複数の単電池でとの又は個々の単電池でとの水素漏洩量 を算出し、

池ごとの正常時における水素漏洩量以上である場合に、 クロスリークの発生を特定することを特徴とする燃料電 池スタックの診断方法。

【請求項3】 前記燃料電池は負荷電流を流す回路に接 続され、

前記スタックから負荷電流に流れる電流を遮断した後 に、前記燃料極に水素を含む水素含有ガスを供給すると 共に、前記酸化剤極に酸素を含む酸素含有ガスを供給す ることを特徴とする請求項1又は請求項2記載の燃料電 池スタックの診断方法。

【請求項4】 前記酸素含有ガスの酸素含有量は、漏洩 する前記水素含有ガスの水素との反応に必要な量であ り、且つ前記酸素含有ガスの0. 1%以下であることを 特徴とする請求項1~3のいずれか1項に記載の燃料電 池スタックの診断方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、燃料電池スタック に発生した異常を検知するための燃料電池スタックの診 20 断方法に係り、特に、燃料ガスや酸化剤ガスの漏洩であ るクロスリークの発生を特定するための燃料電池スタッ クの診断方法に関するものである。

[0002]

【従来の技術】燃料電池は、燃料を電気化学プロセスで 酸化させることにより、酸化反応にともなって放出され るエネルギーを直接電気エネルギーに変換する装置であ る。火力・水力発電のような発電方式は、熱エネルギー や運動エネルギーの過程を経て発電が行われるものであ るが、燃料電池による発電システムはこのような過程を 30 経ない直接発電であるので、燃料の持つ化学エネルギー を有効に利用でき、比較的小さな規模でも、40~50 %という高い熱効率が期待できる。また、発電装置内に 燃焼サイクルを含まないので、近年、公害要因として大 きな社会問題となっているSOx、NOxの排出量が極 めて少ない。そして、冷却水を大量に必要とするという こともなく、騒音や振動が小さいため、環境特性に極め て優れているという特徴を有している。

【0003】さらに、燃料電池は負荷変動に対して応答 性が良く、原理的に高い変換効率が期待できるととも に、発電に伴って発生する熱が給湯や暖冷房として利用 しやすいため、コージェネレーション(電熱併給)シス テムとして、総合エネルギー効率を高めることが可能で

【0004】このような燃料電池は、一般的に、電解質 を保持する電解質層が、多孔質材料を使用した一対の電 極(燃料極と酸化剤極)によって挟まれた構成となって いる。そして、燃料極の背面に反応ガスとして燃料ガス を接触させると共に、酸化剤極の背面に反応ガスとして 酸化剤ガスを接触させることにより、電気化学反応を生 当該水素漏洩量が、複数の単電池ごとの又は個々の単電 50 じさせ、電極間から電気エネルギーを取り出すものであ

る。電解質としては、酸性溶液、溶融炭酸塩、アルカリ 溶液などがあるが、現在は、リン酸を用いたリン酸型燃 料電池が最も実用化に近いと考えられている。

【0005】このようなリン酸型燃料電池の一例を、図 4に従って以下に説明する。すなわち、燃料電池の発電 部は燃料電池スタック2によって構成されている。燃料 電池スタック2は、単電池1がガス分離板3を介して複 数個積層された積層体である。

【0006】単電池1は、リン酸を含浸した電解質層1 cが、多孔質材料を使用した燃料極(アノード電極) 1 aと酸化剤極(カソード電極) l bとに挟まれることに よって構成されている。燃料極1 aと酸化剤極1 bに は、それぞれ電解質層1cと対向する面に、白金などに よる触媒が塗布されている。そして、燃料極1aの背面 には、水素などの燃料ガスが流通する燃料流通溝が形成 されている。また、酸化剤極lbの背面には、酸素など の酸化剤ガスが流通する酸化剤流通溝が形成されてい

【0007】このような単電池1とガス分離板3とは交 互に複数個積層され、さらに一定積層数ごとに冷却板4 が挿入されることにより燃料電池スタック2が構成され*

$$H_2 \rightarrow 2 H^+ + 2 e$$

この水素の解離反応により発生した水素イオン(H·) は、電解質層1cに蓄えられたリン酸中を移動し、酸化 剤極1bに達する。

【0011】一方、電子(e-)は、燃料極1aから外 部回路を流れ、電力負荷を通って仕事をし、酸化剤極1 bに達する。そして、燃料極1aから移動してきた水素※

$$4 H^{+} + O_{2} + 4 e^{-} \rightarrow 2 H_{2} O$$

従って、単電池では、水素が酸化されて水になると共 に、このときの化学エネルギーが外部の電力負荷に与え る電気エネルギーとなる。このようにして、単電池の電 池としての全反応が完結する。なお、上記の単電池1に おける反応は発熱反応であるが、この熱は、スタック2 内部に挿入されている冷却板4の内部に水などの冷媒を 流すことにより除去され、燃料電池スタック2の温度が 一定に保たれる。

$$CH_4 + H_2 O \rightarrow 3H_2 + CO$$

【数4】

この反応では、水素と共に二酸化炭素(CO,)も同時 に発生する。従って、燃料電池に供給されるガスは水素 と二酸化炭素との混合ガスとなる。また、未反応のメタ ンや一酸化炭素(CO)も僅かながら含まれているが、 これらの量は無視できるほどである。以下、この混合ガ スのことを「燃料ガス」と称する。二酸化炭素は電気化 学的に不活性であるので、燃料電池に供給されても上記 の反応を阻害することはない。また、酸化剤ガスとして 50 しかし、電解質層1 c に欠損等が発生し、燃料ガスが酸

* ている。ガス分離板3は、燃料極1a及び酸化剤極1b のそれぞれに供給されるガスを区分すると共に、単電池 1間の電気的接続を確保する部材である。なお、一般 に、燃料極1a、酸化剤極1b、ガス分離板3及び冷却 板4はいずれも、炭素を材料として作られている。炭素 を用いる理由は、耐リン酸性(耐蝕性)、耐熱性、電気 伝導性及び熱伝導性に優れ、かつ低コストで製作できる ためである。

【0008】さらに、燃料電池スタック2の上下の端部 10 には、燃料電池スタック2で生じた電流を取り出す集電 板6が配置されている。一方、燃料電池スタック2の側 面には、燃料電池スタック2に燃料ガスと酸化剤ガスと を供給・排出するガスマニホールド5が配置されてい る。

【0009】以上のような構成を有するリン酸型の燃料 電池の作用は、以下の通りである。すなわち、燃料電池 スタック2を構成する各単電池1においては、燃料極1 aに供給された水素が、燃料極1aに塗布された触媒の 作用により、次の式1のような反応を起こす。

[0010]

【数1】

…式1

※イオン(H·)と、酸化剤極1bに供給された酸素(O ,) と、外部回路で仕事をしてきた電子(e⁻)とによ り、酸化剤極1 bに塗布された触媒の作用によって、次 の式2のような反応が起こる。

[0012]

【数2】

…式2

★【0013】また、実際のリン酸型燃料電池では通常、 燃料ガスとしては、主としてメタン(CH,)からなる 天然ガスに水蒸気(H,O)を加えて加熱し、次の式 3、式4のような、いわゆる改質反応によって発生させ た水素を用いる。

[0014]

【数3】

…式3

…式 4

は、一般に空気が用いられる。空気は主に窒素と酸素か らなるが、窒素も不活性ガスであるので、燃料電池に供 給されても問題はない。

[0015]

【発明が解決しようとする課題】ところで、燃料電池が 発電を行うためには、燃料極1 a 及び酸化剤極1 b にそ れぞれの反応ガスが十分に供給されている必要がある。

10

が更に激しくなる。

応が起こる。

【0018】 【数5】

5

化剤極へ漏洩したり、逆に酸化剤ガスが燃料極へ漏洩した場合(以下、この現象を「クロスリーク」と称する)には、次のような問題が起こる。すなわち、クロスリークが発生すると、燃料ガス中の水素と酸化剤ガス中の酸素が直接に反応し、消費されるため、発電のための燃料ガスや酸化剤ガスが不足することになる。このように燃料ガスが不足した場合には、反応は燃料ガスの供給される付近(燃料ガス入口付近)に集中し、この部分の発熱量が正常な状態に比べて増加することになる。また、水素と酸素の直接反応が生じている部分では反応熱が生じ、電極の温度が上昇する。

【0016】このような温度上昇により燃料極1a及び空気極1bが高温になると、電池に蓄えられているリン酸電解質の蒸発や触媒等の劣化が急速に進行して、電池*

 $C + 2 H_2 O \rightarrow C O_2 + 4 H^{+} + 4 e^{-}$

...₹5

【数6】

 $C + H_{2} O \rightarrow CO + 2H^{+} + 2e^{-}$

0 定…

このような炭素の腐食反応が進行すると、燃料電池の主 20 な構成材料に欠損が生じて燃料電池の運転が不可能になる。そして、この腐食の進行により更にクロスリークが 激しくなることもある。

【0019】クロスリークが発生すると、反応ガスの不足により上記のような不都合が生じ、結果的に燃料電池スタックにおいて発生する電圧が低下して、電気エネルギー量(発電量)が低下することとなる。

【0020】このようなクロスリークの発生に対処するため、従来の燃料電池においては、電圧測定に基づく検知方法により異常を検知している。すなわち、燃料電池 30 スタックの電圧を測定し、測定電圧がある一定値以下になったときに、燃料電池に異常が発生したと判断して、その後の対応処置を行うこととしている。

【0021】しかしながら、燃料電池スタックの電圧が低下する原因は、クロスリーク以外にガス供給溝の異物による閉塞、リン酸の過剰含浸によるガス拡散不良等も考えられる。従って、上記のような電圧測定のみによる異常検知方法では、クロスリークにより電圧が低下したのか、あるいは他の原因によって電圧が低下したのかを特定することができず、異常に対する迅速な対応ができない。

【0022】 これに対処するため、酸化剤極から排出されるガス中の二酸化炭素濃度を測定することによって、クロスリークを検知する方法が考えられる。この方法は、燃料ガスには二酸化炭素が含まれるため、燃料ガスの漏洩があれば二酸化炭素の濃度が高まることを利用するものである。しかし、酸化剤ガスとして供給される空気にも二酸化炭素が含まれているため、燃料ガスの漏洩が微量の場合には、燃料ガスの漏洩による二酸化炭素のみを検出することは困難である。

【0023】また、酸化剤極から排出されるガス中の水素濃度を測定することによって、クロスリークを検出する方法が考えられる。この方法は、酸化剤極に漏洩した燃料ガス中の水素が全て酸素と反応するとは限らず、酸化剤極から排出されるガスには水素が含まれていることを利用するものである。しかし、この場合にも、燃料ガスの漏洩が微量のときには検出が困難となる。

【0024】さらに、以上のような排出ガス中の二酸化炭素や水素の濃度を測定するためには、ガスクロマトグラフ等の特殊な装置を必要とするために、ガスクロマトグる。そして、たとえ排出ガスにより異常発生が検知できたとしても、酸化剤極の出口マニホールドから排出されるガスは、燃料電池スタックの全ての単電池から排出されたガスが混合されたものであるから、どの単電池でクロスリークが生じているかを特定することはできない。【0025】本発明は、以上のような従来技術の問題点を解決するために提案されたものであり、その主たる目的は、燃料電池スタックにおいてクロスリークが生じたときに、特殊な装置を必要とせずに、その発生を確実に検知することが可能な燃料電池スタックの診断方法を提供することである。

【0026】第2の目的は、燃料電池スタックのある単電池においてクロスリークが生じたときに、その発生した単電池の特定が容易な燃料電池スタックの診断方法を提供することである。

[0027]

40

【課題を解決するための手段】上記の目的を達成するために、請求項1記載の発明である燃料電池スタックの診断方法は、燃料極と酸化剤極との間に電解質層を挟んで形成された単電池と、前記単電池が互いに電気的に直列。 50 に接続されるように複数積層されたスタックと、各単電

* の寿命を短縮する原因となる。電解質層は、多孔質体の

細孔をリン酸が満たすことによりガスを遮断する機能を 果たしているが、リン酸の蒸発が進行すると、電解質層

の細孔を埋めていた液体の量が減少し、反応ガスの漏洩

【0017】さらに、燃料ガスの不足が著しい場合、燃

料ガス出口付近では、酸化剤極 l b に水素イオンが供給 されないため、水の生成反応が起こらない。そして、水

の生成反応の代わりに、次の式5、式6のような電極、 ガス分離板及び冷却板の材料である炭素が腐食される反 池における燃料極に燃料ガスを供給する燃料ガスマニホ ールドと、各単電池における酸化剤極に酸化剤ガスを供 給する酸化剤ガスマニホールドとを備えた燃料電池を診 断対象とし、前記燃料極に一定の濃度の水素を含む水素 含有ガスを供給すると共に、前記酸化剤極に一定の濃度 の酸素を含む酸素含有ガスを供給し、前記酸素含有ガス の供給量の経時的変化と、これに伴って前記スタックに おいて発生する電圧の経時的変化との対応関係を記録 し、前記酸素含有ガスの供給量の変化に伴う前記スタッ クの発生電圧の変化が急激な場合に、前記スタックにお いて水素の漏洩が発生していることを検知し、前記酸素 含有ガスの供給量と前記スタックにおいて発生する電圧 との経時的変化の対応関係から、前記スタックにおける 水素漏洩量を算出し、当該水素漏洩量が、前記スタック の正常時における水素漏洩量以上である場合に、クロス リークの発生を特定することを特徴とする。

【0028】以上のような請求項1記載の発明では、まず、燃料電池の燃料ガスマニホールドから燃料極に一定の濃度の水素を含む水素含有ガスを供給する。同時に、燃料電池の酸化剤ガスマニホールドから酸化剤極に一定20の濃度の酸素を含む酸素含有ガスを供給する。すると、スタックにおいて電圧が発生するが、酸素含有ガスの供給量を経時的に変化させたとき、発生電圧も経時的に変化する。そして、このような酸素含有ガスの供給量の経時的変化と発生電圧の経時的変化との対応関係が記録される。例えば、酸素含有ガスの供給量が次第に少なくなるように変化させたとき、燃料電池スタックにおいて発生する電圧は徐々に低下し、その低下の割合は徐々に大きくなっていく。

【0029】このように酸素含有ガスの供給量を徐々に減少させていくと、スタックにおいて水素の漏洩が発生している場合には、ある供給量において電圧が急激に低下する。この電圧の変化の仕方は、酸素含有ガスに含まれる酸素の濃度と、スタックの異常によって漏洩する水素の量によって決まる。供給される酸素含有ガスに含まれる酸素の濃度と水素含有ガスの濃度は一定であるため、上記のように記録された酸素含有ガスの供給量の経時的変化と電圧の経時的変化との対応関係から、スタックの異常によって漏洩する水素の量を算出する。

【0030】ただし、水素含有ガス中の水素は、電解質であるリン酸に気体の状態で溶解し、この溶解した水素が酸化剤極に拡散していくため、正常時のスタックにおいても極微量の水素の漏洩が生じ、上記のような電圧の変化が観察され得る。かかる場合における水素の漏洩量は、通常の燃料電池の運転には全く支障のない程度である。このため、上記のように電圧の変化から求めた水素の漏洩量が、正常時における水素の漏洩量を超えた場合に、クロスリークであると特定され、燃料電池の運転の継続が可能か否かを決定する。

【0031】請求項2記載の発明である燃料電池スタッ

クの診断方法は、燃料極と酸化剤極との間に電解質層を 挟んで形成された単電池と、前記単電池が互いに電気的 に直列に接続されるように複数積層されたスタックと、 各単電池における燃料極に燃料ガスを供給する燃料ガス マニホールドと、各単電池における酸化剤極に酸化剤ガ スを供給する酸化剤ガスマニホールドとを備えた燃料電 池を診断対象とし、複数の単電池ごとに又は個々の単電 池ごとに供給される前記酸素含有ガスの量を算出し、前 記スタックの電圧を、複数の単電池ごとに又は個々の単 電池ごとに測定し、複数の前記単電池ごとに又は個々の 単電池ととに供給される前記酸素含有ガスの量の経時的 変化と、これに伴って複数の単電池ごとに又は個々の単 電池ことに発生する電圧の経時的変化との対応関係を記 録し、前記酸素含有ガスの供給量の変化に伴う複数の単 電池ごとの又は個々の単電池ごとの発生電圧の変化が急 激な場合に、複数の単電池ごとに又は個々の単電池ごと に水素の漏洩が発生していることを検知し、複数の単電 池でとに又は個々の単電池でとに供給される前記酸素含 有ガスの量の経時的変化と、これに伴う複数の単電池で との又は個々の単電池ごとの前記スタックにおいて発生 する電圧との経時的変化との対応関係から、複数の単電 池ごとの又は個々の単電池ごとの水素漏洩量を算出し、 当該水素漏洩量が、複数の単電池ごとの又は個々の単電 池ごとの正常時における水素漏洩量以上である場合に、

【0032】以上のような請求項2記載の発明では、まず、複数の単電池ごとに又は個々の単電池ごとに酸化剤極に供給される酸素含有ガスの量を算出する。簡単には、燃料電池スタックにおいて、全ての単電池の酸化剤極に均等に酸素含有ガスが供給されるならば、燃料電池スタックに供給された酸素含有ガスの量を単電池の数で割ればよい。もしくは、実測又は他の計算方法により酸素含有ガスの配分の割合を予め算出することも可能である。

クロスリークの発生を特定することを特徴とする。

【0033】そして、燃料電池の燃料ガスマニホールドから燃料極に一定の濃度の水素を含む水素含有ガスを供給する。同時に、燃料電池の酸化剤ガスマニホールドから酸化剤極に一定の濃度の酸素を含む酸素含有ガスを供給する。すると、スタックにおいて電圧が発生するが、酸素含有ガスの供給量を経時的に変化させたとき、発生電圧も経時的に変化する。そして、複数の前記単電池ごとに又は個々の単電池ごとに供給される酸素含有ガスの供給量の経時的変化と複数の単電池ごとに又は個々の単電池ごとに発生する電圧の経時的変化との対応関係が記録される。

【0034】酸素含有ガスの供給量を徐々に減少させていると、水素の漏洩が発生している単電池を含む複数の単電池又は単独の単電池においては、ある供給量において電圧が急激に低下する。この電圧の変化の仕方は、酸素含有ガスに含まれる酸素の濃度と、当該単電池の異常

30

によって漏洩する水素の量によって決まる。供給される 酸素含有ガスに含まれる酸素の濃度と水素含有ガスの濃 度は一定であるため、上記のように記録された酸素含有 ガスの供給量の経時的変化と電圧の経時的変化との対応 関係から、当該単電池の異常によって漏洩する水素の量 を算出する。

【0035】ただし、水素含有ガス中の水素は、電解質であるリン酸に気体の状態で溶解し、この溶解した水素が酸化剤極に拡散していくため、正常時の単電池においても極微量の水素の漏洩が生じ、上記のような電圧の変 10化が観察され得る。かかる場合における水素の漏洩量は、通常の燃料電池の運転には全く支障のない程度である。このため、上記のように電圧の変化から求めた水素の漏洩量が、正常時における水素の漏洩量を超えた場合に、当該複数の単電池のいずれかにおいて又は当該単電池においてクロスリークが発生していると特定され、燃料電池の運転の継続が可能か否かを決定する。

【0036】請求項3記載の発明は、請求項1又は請求項2記載の燃料電池スタックの診断方法において、前記燃料電池は負荷電流を流す回路に接続され、前記スタックから負荷電流に流れる電流を遮断した後に、前記燃料極に水素を含む水素含有ガスを供給すると共に、前記酸化剤極に酸素を含む酸素含有ガスを供給することを特徴とする。

【0037】以上のような請求項3記載の発明では、スタックに設けられた負荷電流を流す回路を開放することにより発電停止状態となり、スタックの温度が低温に安定する。スタックの温度が安定していると発生電圧が安定するので、電圧の変化を正確に測定することが可能となる。

【0038】請求項4記載の発明は、請求項1~3のいずれか1項に記載の燃料電池スタックの診断方法において、前記酸素含有ガスの酸素含有量は、漏洩する前記水素含有ガスの水素との反応に必要な量であり、且つ前記酸素含有ガスの0.1%以下であることを特徴とする。

【0039】以上のような請求項4記載の発明では、酸素含有ガスに含まれる酸素の濃度を0.1%以下とすることにより、負荷電流を流す回路を解放することに伴う酸化剤極の電位の上昇を抑制することができ、白金触媒が溶解・再析出し、粒子が肥大化(シンタリング)する40ことによる特性低下を防ぐことが可能となる。

[0040]

【発明の実施の形態】以下、本発明の燃料電池スタックの診断方法の実施の形態を、図面を参照して以下に説明する。なお、図4に示した従来例と同一または対応する要素には同一符号を付してその説明を省略し、ここでは異なる部分についてのみ述べる。また、図1では、燃料ガス(および水素含有ガス)と酸化剤ガス(および酸素含有ガス)が燃料電池スタック2内で同一方向に流れるように振かれているが、実際には、燃料ガスと酸化剤ガ

スは、第4図に示すように互いに直交する方向に流れる。そして、図1においては、ガスマニホールド5、および集電板6を省略している。さらに、図3に示す燃料電池スタック2は、簡略化して1個の単電池1のみを示しているが、実際には、図4に示すように、単位電池1、ガス分離板3及び冷却板4を複数個積層することに

10

【0041】(1)第1の実施の形態

より形成されている。

請求項1記載の発明である燃料電池発電装置の診断方法 に対応する一つの実施の形態を、第1の実施の形態とし て以下に説明する。

【 0 0 4 2 】 (a) 第 1 の実施の形態の診断対象となる 燃料電池発電装置

まず、本実施の形態に用いる燃料電池発電装置の一例を、図1に従って説明する。すなわち、燃料電池スタック2における燃料極1aには、燃料ガス供給管11及び排出管12が接続されている。燃料ガス供給管11には、燃料ガスの供給源として、天然ガスと水蒸気から改質反応によって水素を発生させる改質器(図示せず)が接続されている。酸化剤板1bには、酸化剤ガス供給管13には、酸化剤ガスの供給源として、空気を送るブロワ等が接続されている。

【0043】また、酸化剤ガス供給管13には、その内部を流れるガスの流量を調節する流量調節弁15と、ガスの流量を計測する流量計16が設けられている。そして、流量計16には記録装置20が接続されている。流量計16によって計測された流量値は、電気的な信号に変換されて記録装置20に送られ、この記録装置によって流量の時間的な変化が記録される構成となっている。さらに、酸化剤ガス供給管13には、切替弁17を設けた酸素含有ガス供給管18には、酸素含有ガスの供給源として、0.1%の酸素を窒素に混合したガスを入れたガスボンベ19が接続されている。

【0044】一方、燃料電池スタック2から取り出された直流電流は、電流線31を介し、開閉器32を経てインバーター33により交流電流に変換され、図示しない外部の電力負荷に供給される構成となっている。また、燃料電池スタック2で発生する電圧を計測する電圧計34が、燃料電池スタック2の両極間に接続されている。電圧計34で計測された電圧の値は、記録装置20に送られ、この記録装置で時間的な変化が記録される構成となっている。

【0045】(b)第1の実施の形態の作用 次に、上述の燃料電池発電装置を用いた本実施の形態 を、その実施の手順に従って説明する。

【0046】 ①発電停止から酸素含有ガス及び水素含有ガスの供給まで

ように描かれているが、実際には、燃料ガスと酸化剤ガ 50 上述の燃料電池発電装置が発電状態にある場合には、図

1に示すように、切替弁17は酸化剤ガス供給管13に 酸化剤ガス(一般には空気)を供給する方向に開いてい る。また、開閉器32は閉路状態にあるため、燃料電池 スタック2、電流線31、インバーター33及び外部の 負荷(図示せず)のいずれにも電流が流れている。

【0047】以上のような燃料電池発電装置に対して、 本実施の形態による診断方法を実施するためには、ま ず、燃料電池発電装置を発電状態から発電停止状態にす る必要があるが、これは一般的には以下のように行われ る。すなわち、燃料極1aおよび酸化剤極1bに窒素等 の不活性ガスを供給して、燃料ガスおよび酸化剤ガスを 強制的に排出すると共に、開閉器32を開いて、燃料電 池スタック2に流れている電流を遮断する。

【0048】このように負荷電流を流す回路を開くと、 酸化剤極の電位が上昇するために、白金触媒が溶解・再 析出し、粒子が肥大化(シンタリング)する。すると、 白金触媒の表面積の減少に伴って活性化分極が増加し、 触媒層の細孔ヘリン酸が流入するため、ガスの拡散性が 低下し、拡散分極の増加等を原因とする特性の低下が進 行する可能性がある。しかし、本実施の形態において は、酸素含有ガスに含まれる酸素の濃度を0.1%以下 とすることにより、酸化剤極の電位の上昇が抑制され

【0049】以上のように発電を停止した後、切替弁1 7を切り替えて、酸化剤ガス供給管13に酸素含有ガス を流入させ、酸化剤極 l b に酸素含有ガスを供給する。. また、燃料極1 aには燃料ガス供給管11から水素含有 ガスを供給する。

【0050】②発生電圧の検出

以上のように酸化剤極1bに酸素含有ガスを供給し、燃*30

 $E = E_0 + (2. 3RT/2F) \log (C_H \cdot Co^{1/2})$ $=E_0 + (2.3RT/2F) log (C_H)$ + (2. 3RT/4F) log (Co)

ここで、E。は標準起電力と呼ばれ、25°Cのとき1. 23 Vであるが、温度によって変わる。また、Rは気体 定数で8、31 (J/mol·K)、Fはファラデー定 数で96485 (C/mol) である。

【0055】ただし、実際に測定を行うと、E。は理論 値よりも低いが、ここでは電圧の変化のみ測定されれば 40 良いので、E。の理論値との違いは重要ではない。ま た、クロスリークが生じているとき、酸素濃度の対数

(log(Co))に対する電圧Eの傾きは2.3RT※

 $E = E_n + (2. 3RT/2F) log (C_n)$ + (b+2. 3RT/4F) log(Co)

ここで、燃料電池発電装置において電解質層 1 c 等に欠 損等があり、運転時にクロスリークが発生する状態にあ るとする。この場合には、上記のように酸化剤極 1 b に 酸素含有ガスを供給し、燃料極1aに水素含有ガスを供 給すると、酸化剤極 1 b に水素含有ガスが漏洩する。す 50 る酸素濃度 C o *** は、酸素含有ガス中の酸素濃度を C

*料極laに水素含有ガスを供給すると、燃料電池スタッ ク2において電圧が発生する。そして、燃料電池スタッ 「ク2でクロスリークが発生している場合、燃料電池スタ ック2に供給する酸素含有ガスの供給量を変化させる と、燃料電池スタック2で発生する電圧は以下のように 変化する。

12

【0051】例えば、単電池1個当たり0.6~0.8 V程度の電圧が発生するような酸素含有ガスの供給量で あった場合、その供給量を減少させていくと、電圧は徐 々に低下していく。そして、もし燃料電池スタック2で クロスリークが発生している場合、流量がある値以下に なると電圧は急激に低下して、単電池1個当たり0.1 ~0.2 V程度になる。

【0052】このような酸素含有ガスの供給量は流量計 16によって測定され、発生電圧は電圧計34によって 測定される。それらの測定値は記録装置20に送られ、 一定時間ごとに記録される。このように記録された酸素 含有ガスの供給量と発生電圧との関係の時間的な変化を 示すグラフを、図2に示す。このグラフから明らかなよ うに、酸素含有ガスの供給量がある値以下になると電圧 は急激に低下するという現象が起こる。

【0053】 ③酸素含有ガスの供給量と電圧と変化の関

上記の電圧低下現象は、次のようにして説明できる。ま ず、単電池で発生する電圧Eは、単電池に流れる電流が 0で、単電池の温度をT、水素含有ガス中の水素濃度を C』、酸素含有ガス中の酸素濃度をCoとすると、理論 的にはネルンストの式により次式7のように表される。

[0054]

…式?

※/4Fよりも大きく、その差は一般にターフェル勾配と して測定される値(単電池に流れる電流 | と単電池で発 生する電圧Eとの関係において、電流の対数10glに 対する電圧Eの傾き)にほぼ等しい。従って、実験的に は、ターフェル勾配をbとすると、電圧Eと水素含有ガ ス中の水素濃度C_m及び酸素含有ガス中の酸素濃度Co との関係は、次式8のように表される。

[0056]

【数8】

… 式 8

ると、酸化剤極1 b に供給された酸素含有ガスの酸素が 水素との反応によって消費され、酸素濃度が低下する。 【0057】漏洩してきた水素の全量が、酸化剤極の酸 素と反応するとすると、単電池の酸化剤ガス出口におけ

o'"、酸素含有ガスの供給量をS、水素の漏洩量をしと * [0058]

すると、次の式9のように表わされる。 【数9】

 $Co^{out} = (Co^{in} \times S - L/2)/S$ ---式9

従って、(式8)と(式9)とを合わせると、酸素含有 **%**[0059] ガスの供給量と電圧との関係が次の式10のように求ま 【数10】

$$E = E_0 + (2. 3RT/2F) \log (C_H) + (b+2. 3RT/4F) \log ((Coin×S-L/2)/S)$$
 …式10

上記(式10)において、Co¹"×S≦L/2のときは 10★予め定められた上限値(正常時の水素の漏洩量)を超え 値が発散してしまうが、このときは実際には酸化剤極の 酸素が全て水素との反応によって消費され、酸化剤極も 水素雰囲気になっており、単電池は水素の濃淡電池の状 態になっているため、0.1~0.2 V程度の電圧が生 じると考えられる。

【0060】なお、クロスリークが生じていない場合に も、上記のような電圧の変化が観察される。これは、水 素含有ガス中の水素は、電解質であるリン酸に気体の状 態で溶解し、この溶解した水素が酸化剤極に拡散してい くため、極微量のクロスリークが生じているのと同様の 20 現象が生じるためである。この量は、通常の燃料電池の 運転には全く支障のない程度である。このため、上記の 方法により求めたクロスリークによる水素の漏洩量が、★

$$S_1 - E_2$$

= (b+2. 3RT/4F) log $\frac{(Co^{in} \times S_1 - L/2)/S_1}{(Co^{in} \times S_2 - L/2)/S_2}$

となるから、(式11)を解いて漏洩量しを求めること ができる。さらに正確に求めるためには、第2図の測定 結果に、しおよびE。を変数として、(式10)を最小 二乗法等によりフィッティングすると、しを求めること ができる。そして、以上のように求められた水素の漏洩 量しが、予め定められた上限値(正常時の水素漏洩量) を超えているときに、クロスリークが発生していると判 断されることになる。

【0064】(c)第1の実施の形態の効果 以上のような本実施の形態の効果は、以下の通りであ る。すなわち、ガスクロマトグラフ等の特殊な装置を必 要とせずに、クロスリークによる水素の漏洩量が検出で きるので、クロスリークの発生を確実に検知することが できる。

【0065】このように、燃料電池発電装置におけるク ロスリークの発生が検知された場合、その後の運転にお いて、燃料ガス及び酸化剤ガスの供給量を増加させ、反 応ガスの欠乏が生じないようにするか、あるいは燃料電 池スタックを交換する等の方法により、発電装置として の信頼性を向上させることができる。

【0066】また、診断は、負荷電流を流す回路を開 き、発電状態を停止させて燃料電池スタック2の温度を 50 に冷却板4が挿入されている。この冷却板4と冷却板4

ているときにのみ、異常と判断されることになる。

14

【0061】④水素の漏洩量の算出

図2 に示すような酸素含有ガス供給量と電圧との関係か ら、水素の漏洩量しを求めるには、以下のようにする。 【0062】最も簡単には、第2図において、電圧が急 激に低下するときの酸素含有ガス供給量S。を測定すれ ば、(式10)から分かるように、Co¹"×S_e=L/ 2であるから、酸素含有ガス中の酸素濃度とS。の値か ら、漏洩量しの値が求められる。

【0063】また、酸素含有ガス供給量S、のときの電 圧E、と、供給量S、のときの電圧E、を測定すると、 (式10)より、

 $(C \circ ^{in} \times S_1 - L/2) / S_1$

【数11】

低下させた後に行うので、燃料電池スタック2の温度が 30 一定になり、標準起電力が安定し、検出値が正確とな

【0067】さらに、酸素含有ガスに含まれる酸素の濃 度が0.1%となっているので、負荷電流を流す回路を 解放することに伴う酸化剤極の電位の上昇を抑制され る。したがって、白金触媒が溶解・再析出し、粒子が肥 大化(シンタリング)することによる特性低下を防ぐこ とが可能となり、診断が燃料電池発電装置に与える影響 を少なくすることができる。

【0068】(2)第2の実施の形態

請求項2記載の発明である燃料電池発電装置の診断方法 に対応する一つの実施の形態を、第2の実施の形態とし て以下に説明する。

【0069】(a)第2の実施の形態の診断対象となる 燃料電池発電装置

まず、本実施の形態に用いる燃料電池発電装置の一例 を、図3に従って説明する。なお、第1の実施の形態に 用いる燃料電池発電装置と同一の部材には同一の符号を 付して説明は省略する。すなわち、燃料電池スタック2 は、単電池1とガス分離板3を一定の個数積層するごと との間の複数個の単電池1及びガス分離板3の組を、「サブスタック」と呼ぶ。そして、このような各サブスタックごとに又は個々の単電池ごとに発生する電圧を測定する電圧計34が設けられている。

【0070】(b)第2の実施の形態の作用 次に、上述の燃料電池発電装置を用いた本実施の形態 を、その実施の手順に従って説明する。なお、第1の実 施の形態と同様の手順は説明を簡略化する。

【0071】ます、各サブスタック又は個々の単電池1 に供給される酸素含有ガスの量を、実測あるいは計算により算出する。簡単には、通常、各単電池1にはガスはほぼ均等に供給されるので、燃料電池スタック2全体に供給される酸素含有ガスの量を、サブスタックの数又は単電池1の数で割ればよい。

【0072】そして、第1の実施の形態と同様に、燃料電池発電装置を発電停止状態にし、酸化剤極1bに酸素含有ガスを供給し、燃料極1aに水素含有ガスを供給する。酸素含有ガスの供給量は流量計16によって測定され、上記のように各サブスタックごとの又は個々の単電池1ごとの酸素含有ガスの供給量が算出される。各サブスタックごとの発生電圧又は個々の単電池1ごとの発生電圧は、電圧計34によって測定される。各サブスタックごとの又は個々の単電池1ごとの発生電圧は、電圧計34によって測定される。各サブスタックごとの又は個々の単電池1ごとの酸素含有ガス供給量及び発生電圧は記録装置20に送られ、一定時間ごとに記録される。このように記録された酸素含有ガスの供給量と発生電圧との関係の時間的な変化を示すグラフが、図2と同様に示される。

【0073】かかる酸素含有ガス供給量と発生電圧との関係に基づいて、上記の第1の実施の形態と同様に、各サブスタックごとの又は個々の単電池1ごとの水素の漏 30 洩量を求める。そして、このようにした求めた漏洩量が、予め定められた上限値(対応するサブスタック又は単電池1の正常時の水素の漏洩量)を超えているサブスタック又は単電池1がある場合に、当該サブスタックのいずれかの単電池1又は当該単電池1においてクロスリークが発生していると判断されることとなる。

【0074】(c)第2の実施の形態の効果以上のような本実施の形態の効果は、以下の通りである。すなわち、第1の実施の形態と同様に、ガスクロマトグラフ等の特殊な装置を必要とせずに、クロスリークによる水素の漏洩量が検出できるので、クロスリークの発生を確実に検知することができる。

【0075】さらに、クロスリークの発生を、個々のサブスタックでとに又は個々の単電池1でとに検知することができるので、どの単電池において異常が生じているかを特定しやすくなる。従って、クロスリーク量の大きい単電池1又はサブスタックのみを取り除き、交換あるいは電気的にバイパスする等により、正常な単電池1のみによって燃料電池発電装置の運転を引き続き行うことができる。

16

【0076】なお、燃料電池スタック2が発電を行っているときには、個々の単電池1によって、あるいは1つの単電池内の平面方向の位置の相違によって、温度に差が生じている。しかし、本実施の形態を実施する場合は、第1の実施の形態と同様に、診断を行う前に負荷電流を流す回路を開き、発電を停止しているので、燃料電池スタック2の温度はほぼ一様に低下している。従って、燃料電池スタック2の温度が一定になり、標準起電力が安定し、検出値が正確となる。

【0077】(3)他の実施の形態

本発明は、以上のような実施の形態に限定されるものではなく、使用される各部材の数量、種類、実施の手順等は適宜変更可能である。

【0078】例えば、上記の実施の形態においては、酸素含有ガスにおける酸素の含有量は0.1%であったが、0.1%以下であれば他の値でもよい。また、酸素含有ガスの供給源としては、ガスボンベの他に、空気に窒素ガスを一定の割合で混合する方法も可能である。

【0079】また、燃料極1aに供給される水素含有ガスは、発電に用いる燃料ガスを用いても、あるいはガスボンベ等から供給される純水素ガス、または窒素等不活性ガスと水素との混合ガスを用いてもよい。この水素含有ガス中の水素の濃度は高い方が、クロスリークが生じていた場合にはその影響が大きいのでクロスリークの検出には有利だが、水素が最低1%以上含まれていれば検出は可能であり、燃料電池スタックに悪影響を及ぼすこともない。ただし、時間によって濃度が変化しないようにする必要がある。

【0080】上記の実施の形態においては、診断の実施の前に、不活性ガスの供給によって、燃料極1a及び酸化剤極1bから燃料ガス及び酸化剤ガスを強制的に排出させていた。しかし、上記のように燃料ガスはそのまま水素含有ガスとして使うことができるので、燃料極1aには不活性ガスを供給しなくてもよい。

【0081】また、上記実施の形態では、発電状態を停止させて燃料電池スタック2の温度を低下させた後に診断を行っていた。これは、燃料電池スタック2の温度を一定にすることにより、標準起電力を安定させ、検出値の正確を期すためである。したがって、冷却板4の構造や冷媒の性能を高める等の工夫により温度が時間によって変動しないようにすれば、運転しているときの温度のままで診断を行ってもよい。なお、クロスリークの検出は温度が高い方が容易であるため、運転温度による診断の方がクロスリークの検出が容易となる。但し、あまり高温になると単電池の触媒層の劣化やリン酸の蒸発等が加速されるので、運転温度以上に温度を高くするのは好ましくない。

【0082】さらに、上記実施の形態の対象となった燃料電池発電装置は、既に一定期間使用を継続して行った 50 ものであったが、本発明は、これ以外の燃料電池発電装 置に対しても適用可能である。例えば、燃料電池発電装 置の製作が完了した後、発電運転を開始する前に、上記 実施の形態を適用することもできる。

[0083]

【発明の効果】以上のような本発明によれば、酸素含有 ガスの供給量とスタックにおいて発生する電圧との経時 的変化の対応関係から、スタックにおける水素漏洩量を 算出し、当該水素漏洩量が、前記スタックの正常時にお ける水素漏洩量以上である場合に、クロスリークの発生 を特定することによって、特殊な装置を必要とせずに、 クロスリークの発生を確実に検知することが可能な燃料 電池スタックの診断方法を提供することができる。

【0084】また、本発明によれば、複数の単電池ごと の又は個々の単電池ごとの酸素含有ガスの供給量と、複 数の単電池ごとに又は個々の単電池ごとに発生する電圧 との経時的変化の対応関係から、複数の単電池でとの又 は個々の単電池ごとの水素漏洩量を算出し、当該水素漏 洩量が、複数の単電池ごとの又は個々の単電池ごとの正 常時における水素漏洩量以上である場合に、クロスリー クの発生を特定することによって、クロスリークの発生 20 した単電池を確実に判別することが可能な燃料電池スタ ックの診断方法を提供することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施の形態による燃料電池スタ ックの診断方法を実施するための燃料電池発電装置の構 成の一例を示すブロック図である。

【図2】図1の燃料電池発電装置における燃料電池スタ ックに供給される酸素含有ガスの供給量と、燃料電池ス タックで発生する電圧との関係の一例を示す特性図であ る。

*【図3】本発明の第2の実施の形態による燃料電池スタ ックの診断方法を実施するための燃料電池発電装置の構 成の一例を示すブロック図である。

18

【図4】一般的なリン酸型燃料電池の構成例を示す分解 斜視図である。

【符号の説明】

- 1…単電池
- .2…燃料電池スタック
- 3…ガス分離板
- 10 4…冷却板
 - 5…ガスマニホールド
 - 6…集電板
 - 11…燃料ガス供給管
 - 12…燃料ガス排出管
 - 13…酸化剤ガス供給管
 - 14…酸化剤ガス排出管
 - 15…流量調節弁
 - 16…流量計
 - 17…切替弁
- 18…酸素含有ガス供給管
 - 19…酸素含有ガスボンベ
 - 20…記録装置:
 - 31…電流線
 - 32…開閉器
 - 33…インバーター
 - 3 4 …電圧計
 - 41…ホルダー
 - 42…ガスシール
 - 43…ヒーター

*****30

【図1】

【図2】

