Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření

PROTOKOL O MĚŘENÍ

Název úlohy

Číslo úlohy

Měření Charakteristik Rezonančních Obvodů

301 - 3R

Zadání

- 1. Nastudujte a v protokolu popište základní vlastnosti a rozdíly sériových a paralelních rezonančních obvodů. Zejména f_D , f_H , B a f_0 .
- 2. Změřte frekvenční charakteristiku sériového rezonančního obvodu, vstupní napětí volete $U_0 = 3 \text{ V ef.}$
- 3. Změřte frekvenční charakteristiku paralelního rezonančního obvodu, vstupní napětí volete $U_0 = 3 \text{ V ef.}$
- 4. Změřte frekvenční charakteristiku paralelního rezonančního obvodu se sníženým činitelem jakosti, vstupní napětí volete $U_0 = 3 \text{ V ef.}$
- 5. Změřené závislosti nakreslete na mm papír, nebo zobrazte pomocí programu EXCEL v PC. Do samostatných grafů, vyznačte v nich šířky pásma a označte f_D, f_H, B a f₀.

Poř. č. Příjmení a jméno			Třída	Skupina	Školní rok			
7	7 Horčička Askold			3.B		202	1/22	
Datum měření Datum odevzdání			Počet listů		Klasifikace			
			_	<u></u>	příprava	měření	protokol	obhajoba
31.5	5.2022	7.6.202	2	7				
Protokol o měření obsahuje: Teoret			retický úvod	Та	Tabulky naměřených a vypočtených hodnot			
		Schéma		Vz	Vzor výpočtu			
		Tabı	Tabulka použitých přístrojů		Grafy			
			Post	up měření	Závěr			

1. Teoretický úvod

- Rezonanční obvod je zapojení tří základních prvků elektrotechniky ať už do série či paralelně, jsou to činný rezistor, cívka a kondenzátor. Chování lze přirovnat k jednobranu nicméně s rozdílem, že rezonanční obvod má rezonanční frekvenci f₀, při této frekvenci jsou vyrovnané reaktance kondenzátoru a cívky. Při sériovém zapojení je a f₀ je impedance minimální, při paralelním zapojení a f₀ je impedance maximální.
- Základní vzorce pro výpočty:

Z pro sériový rezonanční obvod: $Z=R+j(\omega L-\frac{1}{(\omega c)})$ $[\Omega;\Omega,H,F]$

Y pro paralelní rezonanční obvod: $Y = \frac{1}{R} + j(\omega C - \frac{1}{(\omega L)})$ [Si; Ω , F, L]

Rezonanční frekvence obvodu: $f_0 = \frac{1}{(2\pi\sqrt{LC})}$ [Hz; H, F]

Šířka pásma: $B = f_H - f_D$ [Hz; Hz, Hz]

2. Schémata

Schéma č. 1: Sériový rezonanční obvod

Schéma č. 2: Paralelní rezonanční obvod

Schéma č. 3: Paralelní rezonanční obvod se sníženým činitelem jakosti

3. Tabulka použitých přístrojů

Označení v zapojení	Přístroj	Тур	Inventární číslo	Poznámka
G	Generátor	Stůl č. 1	-	-
mV	Minivoltmetr	GVT-417 B	20-0060/01	-
Ω	Ohm metr	MY75	MBIJO22735	-

Tabulka č. 1: Použité přístroje

4. Postup měření

- 1. Ověřujeme hodnoty rezistorů ohm metrem
- **2.** Zapojujeme přípravek podle schématu č. 1
- 3. Postupným měněním hodnot na generátoru nacházíme f₀
- **4.** Zapisujeme hodnoty napětí pro 10 frekvencí nahoru i dolů od f₀, krok jsou 2 kHz
- **5.** Opakujeme pro zbylá dvě zapojení podle schéma č. 2 a 3

5. Tabulka naměřených hodnot

 $(R_1 = 1 \text{ k}\Omega, R_2 = 100 \text{ k}\Omega, U_1 = 3 \text{ V}, f_0 \text{ zvýrazněna v tabulce})$

Tabulka č. 2: Měření sériového rezonančního obvodu

Ро	d f ₀	Nad f ₀		
f [kHz]	U [mV]	f [kHz]	U [mV]	
157 (f ₀)	77	177	300	
155	88	175	270	
153	110	173	240	
151	130	171	214	
149	160	169	188	
147	190	167	160	
145	220	165	132	
143	250	163	110	
141	285	161	90	
139	320	159	78	
137	350	157 (f ₀)	77	

Tabulka č. 3: Měření paralelního rezonančního obvodu

Ро	d f ₀	Nad f₀		
f [kHz]	U [mV]	f [kHz]	U [mV]	
153 (f ₀)	210	173	55	
151	205	171	60	
149	175	169	65	
147	140	167	70	
145	115	165	80	
143	100	163	95	
141	80	161	110	
139	70	159	135	
137	60	157	160	
135	55	155	195	
133	50	153 (f ₀)	210	

Tabulka č. 4: Měření paralelního rezonančního obvodu se sníženou jakostí

Ро	d f ₀	Nad f _o		
f [kHz]	U [mV]	f [kHz]	U [mV]	
153 (f ₀)	95	177	50	
155	94	175	52	
153	92	173	55	
151	85	171	61	
149	80	169	66	
147	73	167	72	
145	67	165	77	
143	60	163	82	
141	55	161	90	
139	50	159	93	
137	47	153 (f ₀)	95	

6. Vzory výpočtů

1. Sériový rezonanční obvod

Šířka pásma: $B = f_H - f_D = 162.3 - 153.3 = 9 \, kHz$

Činitel jakosti: $Q = \frac{f_0}{B} = \frac{157}{9} = 17.44$

2. Paralelní rezonanční obvod:

Šířka pásma: $B = \frac{f_H}{f_d} = 159 - 147 = 12 \, kHz$

Činitel jakosti: $Q = \frac{f_0}{B} = \frac{153}{12} = 12.75$

3. Paralelní rezonanční obvod se sníženou jakostí:

Šířka pásma: $B = f_H - f_D = 164.6 - 146.6 = 18 \, kHz$

Činitel jakosti: $Q = \frac{f_0}{B} = \frac{153}{23} = 6.65$

7. Grafy

Graf č. 1: Měření sériového obvodu

Graf č. 2: Měření paralelního obvodu

Graf č. 3: Měření paralelního obvodu se sníženou jakostí

8. Závěr

Chyby přístrojů:

Milivoltmetr: Chyba měření na milivoltmetru může být až 20 %, což je dost, nicméně záleží na použítém rozsahu, vhodnější rozsah znamená menší chyba. Záleží také na výchylce na milivoltmetru. Analogový milivoltmetr můžeme brát jako slabost našeho měření.

Generátor: Generovaný signál se pohyboval s chybou pod 2 %, spíše i méně, což je oproti našemu milivoltmetru dobrý výsledek.

Rezistory: Jako chybu můžeme brát i nepřesnosti součástek. Třeba ale rezistory mají oproti teoretické hodnotě velice malou výchylku, pod 0.4 %. Takže jsou zadedbatelné

Ostatní:

V teoretickém úvodu jsou popsány základní vzorečky a vlastnosti rezonančních obvodů. Změřené hodnoty můžeme vidět v tabulkách naměřených hodnot ale i graficky znázorněné v grafech společně s f_D , f_H , či f_0 . Z grafů si také můžeme ověřit, že při sériovém zapojení je impedance nejnižší při frekvenci f_0 , zatímco u paralelního zapojení rezonančního obvodu to je naopak.