Aufgabe 1: Sprache vs. Grammat:	: Sprache vs. Grammatil	k
---------------------------------	-------------------------	---

(a)

(b) Grammatik definition

(2 Punkte)

Definieren Sie kontextfreie Grammatiken (für Sprachen L mit $\varepsilon \not\in L).$

Alle Regeln haben die Form. . . $V \to (V \cup \Sigma)^+$

Aufgabe 2: Sprachen

(12 Punkte)

korrekt	falsch	
\boxtimes		Die Sprache $\left\{0^k1^\ell2^k22^\ell\mid k,\ell\geq 0\right\}$ ist kontextfrei.
		Nicht-deterministische Kellerautomaten, die maximal ein Symbol im Keller speichern können, sind nur so mächtig wie deterministische endliche Automaten.
		Man kann jeden deterministischen Kellerautomaten in einen nichtdeterministischen Kellerautomaten umformen, dessen Keller immer maximal 2 Elemente enthält.
		Es gibt endliche Mengen, die nicht das Alphabet einer Sprache sein können
		Das Alphabet einer Sprache kann unendlich groß sein.
		Σ^* ist die Potenzmenge von Σ .

Wir definieren das Ergebnis des *Klebeoperators* o als die Zahl, die durch das Hintereinanderschreiben der Dezimaldarstellungen ihrer einzelnen Argumente repräentiert wird. Wir können mehrere Klebeoperationen gesammelt schreiben, z.B.

$$\bigcirc_{i=1}^{4} i^2 = 1 \circ 4 \circ 9 \circ 16 = 14916.$$

Betrachten Sie das folgende Problem:

Gegeben: Drei jeweils m-elementige Mengen $\mathcal{A} := \{a_i\}_{1 \leq i \leq k}, \ \mathcal{B} := \{b_i\}_{1 \leq i \leq k}, \ \mathcal{C} := \{c_i\}_{1 \leq i \leq k}$ mit Elementen aus \mathbb{N} .

Frage: Gibt es eine Sequenz $s(1), s(2), \ldots, s(n)$ mit $n \ge 1$ und $s(i) \in \{1, \ldots, k\}$ für alle $1 \le i \le n$, sodass

$$\bigcap_{i=1}^{n} a_{s(i)} - \bigcap_{i=1}^{n} b_{s(i)} = \bigcap_{i=1}^{n} c_{s(i)}$$
("Gleichung")

(a) Beispiele (4 Punkte)

Geben Sie jeweils ein Beispiel einer Ja- und einer Nein-Instanz für dieses Problem an:

Ja-Instanz Nein-Instanz

Sei
$$\mathcal{A} = \mathcal{B} := \{1, 1, 1\}, \mathcal{C} := \{0, 0, 0\}.$$
 Offensichtlich ist die Instanz lösbar mit $s(1) = s(2) = s(3) \in \{1, 2, 3\}.$

$$\mathcal{A} = \mathcal{B} = \mathcal{C} := \{1, 2, 3\}$$

(b) Semi-Entscheidbarkeit

(4 Punkte)

Wir beweisen die Semi-Entscheidbarkeit, indem wir einen Algorithmus angeben, der eine Lösung findet, sofern sie existiert.

```
for n = 1,...,\infty:

foreach \vec{i} in \{1,...,n\}^k:

\vec{i} \quad \bigcap_{i=1}^n a_{\vec{i}[i]} - \bigcap_{i=1}^n b_{\vec{i}[i]} = \bigcap_{i=1}^n c_{\vec{i}[i]}:

return true
```

Es gibt in einer n-Elementigen Menge nur endlich viele Auswahlen von k Elementen. Gibt es eine Lösung, wird sie also irgendwann gefunden.

(c) Unentscheidbarkeit

(4 Punkte)

Beschreiben Sie kurz die notwendige Reduktion (von? nach? wie?) um zu begründen, warum das Problem nicht entscheidbar ist:

Es muss ein unentscheidbares Problem auf das Klebeproblem reduziert werden. Es bietet sich hierfür das PCP an. Gegeben eine PCP-Instanz mit Tupelmenge

$$\mathcal{M} = \{ (x_i, y_i) \mid 1 \le i \le k, x, y \in \mathbb{N} \}$$

und $|\mathcal{M}| = k$, erstellen wir eine Klebeinstanz mit

$$\mathcal{A} := \{x_i \mid 1 \le i \le k, (x_i, y_i) \in \mathcal{M}\}, \ \mathcal{B} := \{0\}^k, \ \mathcal{C} := \{y_i \mid 1 \le i \le k, (x_i, y_i) \in \mathcal{M}\}.$$

Offensichtlich ist die PCP-Instanz lösbar, genau dann, wenn die Klebeinstanz lösbar ist, da

$$\bigcirc_{i=1}^{k} a_{s(i)} - \{0\}^{k} = \bigcap_{i=1}^{k} c_{s(i)}$$

gleichbedeutend ist mit der Aussage, dass links dieselbe Zahl steht wie rechts. Da links die x_i der PCP-Instanz stehen und rechts die y_i , sind die Problemstellungen identisch. Man muss eine Auswahl an Indizes finden (wobei nicht alle k vorkommen müssen, und Indizes mehrfach verwended werden können), sodass die konkatenierten x_i gleich den konkatenierten y_i sind, was genau der Klebeoperation entspricht.