Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО» Факультет Информационных технологий и программирования

Расчетно-графическая работа «Линейный оператор, спектральный анализ и евклидово пространство»

Специальные разделы высшей математики

Выполнили: Бобков Артем Грибов Артем Комашко Александр Насонов Петр Орлов Максим

> <u>Группа:</u> М3100 ∡

<u>Преподаватель:</u> Далевская Ольга Петровна

Содержание

1	Задание 1. Евклидовы пространства функций.	3
2	Задание 2. Приведение уравнения поверхности 2-го порядка к каноническому виду.	8
3	Задание 3. Линейный оператор и спектральный анализ.	10

Задание 1. Евклидовы пространства функций.

Условие.

А) Дано пространство многочленов с вещественными коэффициентами, степени не выше третьей, определенных на отрезке [-1;1].

Проведите исследование:

- 1. Проверьте, что система векторов $B = \{1, t, t^2\}$ является базисом этого пространства. Ортогонализируйте систему (построенный ортогональный базис обозначьте B_H)
- 2. Выпишите первые четыре (при n = 0, 1, 2, 3) многочлена Лежандра:

$$L_{n}\left(t\right)=rac{1}{2^{n}n!}\;rac{d^{n}}{dt^{n}}\left(\left(t^{2}-1
ight)^{n}
ight),$$
 где $rac{d^{n}}{dt^{n}}\left(y\left(t
ight)
ight)$ - производная n - ого порядка функции $y\left(t
ight)$

- 3. Найдите координаты полученных многочленов $L_n(t)$ в базисе B_H . Сделайте вывод об ортогональности системы векторов $L_n(t)$.
- 4. Разложите данный многочлен $P_3(t)$ (см. варианты) по системе векторов $L_n(t)$.

$$P_3(t) = 2t^3 - t^2 + t + 2$$

Решение.

1. Система векторов $B = \{1, t, t^2\}$ не является базисов, так как при помощи нее нельзя составлять вектора вида $P_3(t) = t^3 + P_2(t)$

Однако система B уже ортогональная, поэтому чтобы получить базис, следует добавить в систему вектор t^3 :

$$B_H = \{1, t, t^2, t^3\}$$

2. Выпишем первые четыре многочлена Лежандра:

$$L_{0}(t) = \frac{1}{2^{0}0!} \left(\left(t^{2} - 1 \right)^{0} \right) = 1$$

$$L_{1}(t) = \frac{1}{2^{1}1!} \frac{d}{dt} \left(t^{2} - 1 \right) = \frac{1}{2} 2t = t$$

$$L_{2}(t) = \frac{1}{2^{2}2!} \frac{d^{2}}{dt^{2}} \left(\left(t^{2} - 1 \right)^{2} \right) = \frac{1}{8} \frac{d^{2}}{dt^{2}} \left(t^{4} - 2t^{2} + 1 \right) = \frac{1}{8} \frac{d}{dt} \left(4t^{3} - 4t \right) = \frac{12t^{2} - 4}{8} = \frac{3t^{2} - 1}{2}$$

$$L_{3}(t) = \frac{1}{2^{3}3!} \frac{d^{3}}{dt^{3}} \left(\left(t^{2} - 1 \right)^{3} \right) = \frac{1}{48} \frac{d^{2}}{dt^{2}} \left(3 \left(t^{2} - 1 \right)^{2} 2t \right) = \frac{1}{48} \frac{d^{2}}{dt^{2}} \left(6t^{5} - 12t^{3} + 6t \right) = \frac{1}{48} \frac{d}{dt} \left(30t^{4} - 36t^{2} + 6 \right) = \frac{120t^{3} - 72t}{48} = \frac{5t^{3} - 3t}{2}$$

3. Представим базис B_H как $\{e_1=1,e_2=t,e_3=t^2,e_4=t^3\}$, тогда многочлены Лежандра можно разложить по базису B_H так:

$$L_{0}(t) = 1 = e_{1}$$

$$L_{1}(t) = t = e_{2}$$

$$L_{2}(t) = \frac{3t^{2} - 1}{2} = \frac{3}{2}e_{3} - \frac{1}{2}e_{1}$$

$$L_{3}(t) = \frac{5t^{3} - 3t}{2} = \frac{5}{2}e_{4} - \frac{3}{2}e_{2}$$

Определим скалярное произведение на нашем пространстве, как:

$$(P_3(t),Q_3(t))=a_3b_3+a_2b_2+a_1b_1+a_0b_0,$$
 где $P_3(t)=a_3t^3+a_2t^2+a_1t+a_0,$ $Q_3(t)=b_3t^3+b_2t^2+b_1t+b_0$

Тогда система $L = \{L_0, L_1, L_2, L_3\}$ неортогональна, так как $(L_0, L_2) = -\frac{1}{2}$, что говорит о том,

4. Чтобы разложить $P_3(t) = 2t^3 - t^2 + t + 2$ на систему L, режим уравнение $c_0L_0(t) + c_1L_1(t) +$ $c_2L_2(t) + c_3L_3(t) = P_3(t)$ или в матричном виде:

$$\begin{pmatrix}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 1 & 0 & -\frac{3}{2} \\
0 & 0 & \frac{3}{2} & 0 \\
0 & 0 & 0 & \frac{5}{2}
\end{pmatrix}
\begin{pmatrix}
c_0 \\
c_1 \\
c_2 \\
c_3
\end{pmatrix} = \begin{pmatrix}
2 \\
-1 \\
1 \\
2
\end{pmatrix}$$

$$\begin{cases}
c_0 + -\frac{1}{2}c_2 = 2 \\
c_1 - \frac{3}{2}c_3 = -1
\end{cases}
\begin{cases}
c_0 + -\frac{1}{2}c_2 = 2 \\
c_1 - \frac{3}{2}c_3 = -1
\end{cases}$$

$$\begin{cases}
c_0 + -\frac{1}{2}c_2 = 2 \\
c_1 - \frac{3}{2}c_3 = -1
\end{cases}$$

$$\begin{cases}
c_0 = \frac{7}{3} \\
c_1 = \frac{1}{5} \\
c_2 = \frac{2}{3} \\
c_3 = \frac{4}{5}
\end{cases}$$

$$\begin{cases}
c_0 = \frac{7}{3} \\
c_1 = \frac{1}{5} \\
c_2 = \frac{2}{3} \\
c_3 = \frac{4}{5}
\end{cases}$$

Проверим это:

$$P_3(t) = 2t^3 - t^2 + t + 2 = \frac{7}{3}L_0 + \frac{1}{5}L_1 + \frac{2}{3}L_2 + \frac{4}{5}L_3 = \frac{7}{3} + \frac{1}{5}t + \frac{2}{3}\frac{3t^2 - 1}{2} + \frac{4}{5}\frac{5t^3 - 3t}{2} = \frac{7}{3} + \frac{1}{5}t + t^2 - \frac{1}{3} + 2t^3 - \frac{6}{5}t = 2 - t + t^2 + 2t^3$$
 - верно

Тогда
$$P_3(t) = \frac{7}{3}L_0(t) + \frac{1}{5}L_1(t) + \frac{2}{3}L_2(t) + \frac{4}{5}L_3(t)$$

Б) Дано пространство R функций, непрерывных на отрезке $[-\pi;\pi]$ со скалярным произве-

дением $(f,g)=\int_{-\pi}^{\pi}f(t)g(t)dt$ и длиной вектора $\|f\|=\operatorname{sqrt}(f,f)$. Тригонометрические многочлены $P_n(t)=\frac{a_0}{2}+a_1\operatorname{cos} t+b_1\sin t+\cdots+a_n\cos nt+b_n\sin nt$, где a_k, b_k - вещественные коэффициенты, образуют подпространство P пространства R.

Требуется найти многочлен $P_n(t)$ в пространстве R, минимально отличающийся от функции f(t) - вектора пространства R.

Указание. Требуется решить задачу о перпендикуляре: расстояние от $f\left(t\right)$ до $P_{n}\left(t\right)$ будет наименьшим, если это длина перпендикуляра $h = f(t) - P_n(t)$, опущенного из точки f(t) на подпространство P. В этом случае, $P_n(t)$ будет ортогональной проекцией вектора f(t) на P. Таким образом, требуется найти координаты вектора $P_n(t)$ (коэффициенты многочлена) в заданном базисе Р. Если выбран ортонормированный базис, то эти координаты суть проекции вектора f(t) на векторы данного базиса.

Проведите исследование:

- 1. Проверьте, что система функций $\{1,\cos t,\sin t,\ldots\cos nt,\sin nt\}$ является ортогональным базисом подпространства P. Нормируйте систему.
- 2. Найдите проекции вектора f(t) (см. варианты) на векторы полученного ортонормированного базиса. (На вектор {1} найдите проекцию отдельно, а проекции на векторы вида $\{\cos nt\}$ и $\{\sin nt\}$ запишите формулами в зависимости от n. Воспользуйтесь свойствами интегралов от четных и нечетных функций на симметрично промежутке.)

- 3. Запишите минимально отстоящий многочлен $P_n(t)$ с найденными коэффициентами (тригонометрический многочлен Фурье для данной функции).
- 4. Изобразите (например, в Desmos) графики функции f(t) и многочлена Фурье различных порядков n (можно положить n = 5; 10; 15).
- 5. Сделайте вывод о поведении многочлена при росте его порядка.

$$f(t) = -3t$$

Решение.

1. Линейной комбинацией системы функций $\{1,\cos t,\sin t,\ldots\cos nt,\sin nt\}$ является пространство $P_n(t)$, значит эта система — базис пространства.

Этот базис ортогональный, для любых двух векторов $e_i, e_j (i \neq j)$ $(e_i, e_j) = 0$:

$$(1, \sin nt) = \int_{-\pi}^{\pi} \sin nt dt = \frac{1}{n} \cos n\pi - \frac{1}{n} \cos n - \pi = 0 \text{ (так как косинус чётная функция.)}$$

$$(1, \cos nt) = \int_{-\pi}^{\pi} \cos nt dt = \frac{1}{n} \sin n\pi - \frac{1}{n} \sin n - \pi = \frac{2}{n} \sin n\pi = 0 \text{ (так как } n - \text{ целое число } \sin n\pi = 0)$$

$$(\sin nt, \cos mt) = \int_{-\pi}^{\pi} \sin nt \cos mt dt = \int_{-\pi}^{\pi} \frac{1}{2} (\sin(n-m)t + \sin(n+m)t dt) = \frac{1}{2} \left(\int_{-\pi}^{\pi} \sin(n-m)t dt + \int_{-\pi}^{\pi} \sin(n+m)t dt \right) = 0 \text{ так как } \int_{-\pi}^{\pi} \sin nt dt = 0 \text{ при целом } n \text{ (см. выше)}.$$
 Нормируем базис.

$$\sqrt{\int_{-\pi}^{\pi} 1^2 dt} = \sqrt{2\pi}$$

$$\sqrt{\int_{-\pi}^{\pi} sin^2 nt dt} = \sqrt{\int_{-\pi}^{\pi} \frac{1 - \cos 2nt}{2} dt} = \sqrt{\frac{2\pi}{2} - 0} = \sqrt{\pi}$$

$$\sqrt{\int_{-\pi}^{\pi} cos^2 nt dt} = \sqrt{\int_{-\pi}^{\pi} \frac{1 + \cos 2nt}{2} dt} = \sqrt{\frac{2\pi}{2} + 0} = \sqrt{\pi}$$

Итак, нормированный базис: $\frac{1}{\sqrt{2\pi}}, \frac{\sin t}{\sqrt{\pi}}, \frac{\cos t}{\sqrt{\pi}}, \dots \frac{\sin nt}{\sqrt{\pi}}, \frac{\cos nt}{\sqrt{\pi}}$

f(t) на векторы базиса найдём скалярное произведение.

$$a_{0} = \int_{-\pi}^{\pi} \frac{1}{\sqrt{2\pi}} f(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\pi}^{\pi} -3tdt = \frac{-3}{\sqrt{2\pi}} \int_{-\pi}^{\pi} tdt = \frac{-3}{\sqrt{2\pi}} \cdot \left(\frac{\pi^{2}}{2} - \frac{(-\pi)^{2}}{2}\right) = 0$$

$$a_{n} = \int_{-\pi}^{\pi} \frac{\cos nt}{\sqrt{\pi}} f(t)dt = \frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} -3t \cos ntdt = \frac{-3}{\sqrt{\pi}} \int_{-\pi}^{\pi} t \cos nbdt = \int_{-\pi}^{\pi} t \cos ntdt = \int_{-\pi}^{\pi} t \cos ntd$$

$$\begin{split} &=\frac{-3}{\sqrt{\pi}}\cdot\left(\frac{nt\sin nt+\cos nt}{n^2}\Big|_{-\pi}^{\pi}\right)=\frac{-3}{\sqrt{\pi}}\left(\left(\frac{n\pi\sin(n\pi)}{n^2}-\frac{-n\pi\sin(-\pi n)}{n^2}\right)+\left(\frac{\cos(n\pi)}{n^2}\right]-\frac{\cos(-\pi n)}{n^2}\right)\right)=\\ &=\frac{-3}{\sqrt{\pi}}(0+0)=0\\ &b_n=\int_{-\pi}^{\pi}\frac{\sin nt}{\sqrt{\pi}}f(t)dt=\frac{1}{\sqrt{\pi}}\int_{-\pi}^{\pi}-3t\sin ntdt=\frac{-3}{\sqrt{\pi}}\int_{-\pi}^{\pi}t\sin ntdt=\\ &\int t\sin(nt)dt=\frac{1}{n}\int td\cos(nt)=-\frac{1}{n}\left(t\cos(nt)-\int\cos(nt)dt\right)=\frac{-\left(t\cos(nt)-\frac{1}{n}\sin(nt)\right)}{n}=\\ &-\left(\frac{nt\cos(nt)-\sin(nt)}{n^2}\right)\\ &=\frac{3}{\sqrt{\pi}}\left(\frac{nt\cos(nt)-\sin(nt)}{n^2}\right)\Big|_{-\pi}^{\pi}=\frac{3}{\sqrt{\pi}}\left(\left(\frac{n\pi\cos(n\pi)}{n^2}-\frac{-\pi n\cos(-\pi n)}{n^2}\right)-\left(\frac{\sin(\pi n)}{n^2}-\frac{\sin(-\pi n)}{n^2}\right)\right)=\\ &\frac{3}{\sqrt{\pi}}\left(\frac{2\pi n\cos(n\pi)-2\sin(n\pi)}{n^2}\right)=\frac{6n\pi\cos(n\pi)-6\sin(n\pi)}{n^2\sqrt{\pi}} \end{split}$$

3. Минимально отстоящий многочлен:

$$P_n(t) = \sum_{n=1}^{\infty} \left(\frac{6n\pi \cos(n\pi) - 6\sin(n\pi)}{\sqrt{\pi}n^2} \frac{\sin(nt)}{\sqrt{\pi}} \right) = \sum_{n=1}^{\infty} \left(\frac{6\cos(n\pi)}{n} \sin(nt) \right) = \sum_{n=1}^{\infty} \left(\frac{(-1)^n 6}{n} \sin(nt) \right)$$

4. Графики функций:

5. При росте порядка многочлен больше приближается к функции f(t) на отрезке $[-\pi,\pi]$

Задание 2. Приведение уравнения поверхности 2-го порядка к каноническому виду.

Условие.

Дано уравнение поверхности 2-го порядка:

$$2x^2 + 4y^2 + 2z^2 + 2xz - 12 = 0$$

План:

- 1. С помощью теории квадратичных форм приведите к каноническому виду данное урав-
- 2. Изобразите график уравнения в исходной системе координат. Какую поверхность оно задаёт? Укажите на графике оси исходной и приведённой систем координат.

Решение.

1. Возьмем матрицу этой поверхности $Q(x, y, z) = 2x^2 + 4y^2 + 2z^2 + 2xz - 12 = a_{11}x^2 + 2a_{12}xy + a_{12}xy + a_{13}xy + a_{14}xy + a_{15}xy + a_$ $a_{22}y^2 + 2a_{13}xz + 2a_{23}yz + a_{33}z^2 + C \Rightarrow Q_e = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix}$. Чтобы привести ее к каноническому виду, найдем собственные числа этой матрицы: $|Q_e - \lambda E| = \begin{vmatrix} 2 - \lambda & 0 & 1 \\ 0 & 4 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = 0$. Раскроем определитель по второй строчке: $(4 - \lambda) \begin{vmatrix} 2 - \lambda & 1 \\ 1 & 2 - \lambda \end{vmatrix} = (4 - \lambda)((2 - \lambda)^2 - 1) = (4 - \lambda)((2 - \lambda)^2 - 1)$ $\lambda(\lambda^2 - 4\lambda + 3) = (4 - \lambda)(3 - \lambda)(1 - \lambda) = 0 \Rightarrow \lambda_1 = 4, \lambda_2 = 3, \lambda_3 = 0$

Тогда матрица этой поверхности в каноническом виде будет выглядеть так: $\begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

Проверим правильность с помощью преобразования координат. Собственные век-

Проверим правильность с помощью преооразования координат. Сооственные векторы этой матрицы:
$$Q_e x_1 = \lambda_1 x_1 \Rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 4a_1 \\ 4a_2 \\ 4a_3 \end{pmatrix} \Rightarrow 2a_1 = a_3, a_2 = a_2, 2a_3 = a_3$$

$$a_{1} \Rightarrow x_{1} = C \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \ Q_{e}x_{2} = \lambda_{2}x_{2} \Rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} 3a_{1} \\ 3a_{2} \\ 3a_{3} \end{pmatrix} \Rightarrow a_{1} = a_{3}, a_{2} = 0 \Rightarrow x_{2} = C \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix};$$

$$Q_{e}x_{3} = \lambda_{3}x_{3} \Rightarrow \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} = \begin{pmatrix} a_{1} \\ a_{2} \\ a_{3} \end{pmatrix} \Rightarrow a_{1} = -a_{3}, a_{2} = 0 \Rightarrow x_{3} = C \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}.$$

Тогда ортонормированный базис из их этих векторов: $\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{-} & 0 & -\frac{1}{-} \end{pmatrix}$, преобразование

координат:
$$\begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 2 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 4 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Тогда уравнение будет $Q(x,y,z)=4x^2+3y^2+z^2-12$, канонический вид уравнения: $\frac{x^2}{3}+\frac{y^2}{4}+\frac{z^2}{12}=1$. 2. Поверхность с осями исходной СО (черным цветом) и приведённой СО (разными цветами)

Уравнение задает эллипс.

Задание 3. Линейный оператор и спектральный анализ.

Условие.

А) Дано пространство геометрических векторов \mathbb{R}^3 , его подпространства L_1 и L_2 и линейный оператор $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$. Проведите исследование:

- 1. Изобразите на графике подпространства L_1 и L_2 .
- 2. Методами векторной алгебры составьте формулу для линейного оператора \mathcal{A} .
- 3. Составьте его матрицу в базисе $\{\vec{i},\vec{j},\vec{k}\}$ пространства \mathbb{R}^3 .
- 4. Решите задачу о диагонализации полученной матрицы методом спектрального анализа.
- 5. На построенном ранее графике изобразите базис, в котором матрица линейного оператора $\mathcal A$ имеет диагональный вид. Объясните его смысл.

 \mathcal{A} — оператор отражения пространства \mathbb{R}^3 в L_1 параллельно L_2 , где L_1 задано уравнением $x=0,\,L_2$ — уравнением 2x=y=-z.

Решение.

1. Графики подпространства

2. Формула для линейного оператора

Отражение через Oyz параллельно прямой значит что нам надо пройти через Oyz по x в другую сторону на x. Т.е. сделать x = -x. И также поправить все другие координаты. Как? По нужной прямой, параллельной 2x = y = -z.

Чтобы ее построить можно задать прямую проходящую через нашу точку в \mathbb{R}^3 . Т.е. $2(x-x_0)=(y-y_0)=-(z-z_0)$. Т.е. нам надо прибавить какой-то вектор параллельный нашей прямой.

Когда мы проходим расстояние x = 1 то y и z меняются на z. Т.е. наш вектор $x = \{1, 2, -2\}$. Этот вектор нужно умножить на два и вычесть из нашего вектора (если мы просто вычтем этот вектор из данного, мы окажемся в плоскости x = 0).

Т.е. $\mathcal{A}: \mathbb{R}^3 \to \mathbb{R}^3$ задает перемещение и выглядит: $\mathcal{A}x = x - \{1, 2, -2\} * 2 * (x, i)$, где (x, i) - скалярное произведение (необходимое для нахождения координаты x).

3. Линейный оператор

Запишем, как должна меняться каждая координата при применении оператора:

(мы знаем что \boldsymbol{x} меняет знак, а все остальные координаты можно найти через уравнение прямой)

$$\begin{cases} x' = -x \\ y' = 2(x'-x) + y \\ z' = -2(x'-x) + z \end{cases}$$

$$\begin{cases} x' = -x \\ y' = -4x + y \\ z' = -4x + z \end{cases}$$

$$\begin{cases} x' = -x + 0y + 0z \\ y' = -4x + y + 0z \\ z' = 4x + 0y + z \end{cases}$$

Как можно видеть:

$$A = \begin{pmatrix} -1 & 0 & 0 \\ -4 & 1 & 0 \\ 4 & 0 & 1 \end{pmatrix}$$

4. Диагонализация

Чтобы решить задачу диагонализации, найдем ортогональный базис из собственных векторов этой матрицы.

$$\begin{vmatrix} -1 - \lambda & 0 & 0 \\ -4 & 1 - \lambda & 0 \\ 4 & 0 & 1 - \lambda \end{vmatrix} = -(1 + \lambda) \begin{vmatrix} 1 - \lambda & 0 \\ 0 & 1 - \lambda \end{vmatrix} = -(1 + \lambda)(1 - \lambda)^{2}$$

Значит $\lambda = 1$ или $\lambda = -1$.

(a) $\lambda = 1$

$$\begin{pmatrix} -2 & 0 & 0 \\ -4 & 0 & 0 \\ 4 & 0 & 0 \end{pmatrix} = 0$$
. Как видно $x=0$ всегда должен быть, а что на y,z вообще не

важно. Для простоты возьмем y=1 и z=1. Т.е. эта система нам дает два вектора: $\{0,1,0\},\{0,0,1\}.$

(b) $\lambda = -1$

$$\begin{pmatrix} 0 & 0 & 0 \\ -4 & 2 & 0 \\ 4 & 0 & 2 \end{pmatrix} = 0. \begin{pmatrix} -4 & 0 & -2 \\ 0 & 2 & 2 \end{pmatrix} = 0.$$

Как видно из системы: $-4x-2z=0 \to x=-1/2z, \ 2y+2z=0 \to y=-z$. Т.е. получаем один собственный вектор, который является ФСР данной системы: $\{-0.5z, -z, z\}$, т.е. $\{-0.5, -1, 1\}$.

(с) Базис диагонализированного оператора

Три вектора: \overrightarrow{DC} , \overrightarrow{DE} , \overrightarrow{DF} . Это соответственно вектора: $\{0,0,1\}$, $\{0,1,0\}$, $\{-0.5,-1.1\}$. Первые два вектора буквально значат то, что мы можем перемещаться относительно Oyz(y=1,z=1). Третий же вектор и означает то самое параллельное отражение относительно прямой 2x=y=-z.

- Б) Дано множество функций L и отображение $\mathcal{A}:\ L \to L.$ Проведите исследование:
- 1. Проверьте, что L является линейным пространством над полем \mathbb{R} .
- 2. Выберите в нём базис.
- 3. Убедитесь, что отображение ${\mathcal H}$ является линейным (оператором).
- 4. Решите задачу о диагонализации матрицы линейного оператора $\mathcal A$ в выбранном базисе методом спектрального анализа:
 - ullet в случае, если ${\mathcal A}$ имеет скалярный тип, для диагонализации используйте собственный базис.
 - в случае, если \mathcal{A} имеет общий тип, для диагонализации используйте жорданов базис (приведите матрицу в жорданову форму).

L – множество многочленов P(x) степени не выше 2,

$$\mathcal{A}(P(x)) = \int_{-1}^{1} K(x,y) P(y) dy$$
, где $K(x,y) = y^2 + 2x(y-1) + (1-3y^2)x^2$.

Решение.

1.
$$\forall P(x) \operatorname{deg} P \leq 2 \exists a, b, c \in \mathbb{R} \quad P(x) = ax^2 + bx + c$$

- $\exists (a, b, c)$ арифметический вектор. Так как мы знаем, что пространство арифметических векторов линейное, а многочлен мы можем представить, как вектор коэффициентов (при этом операции между многочленом и векторами будут давать одинаковые результаты), то мы можем сказать, что пространство многочленов изоморфно пространству векторов и соответственно линейно.
- 2. Так как L изоморфно \mathbb{R}^3 , за базис можно взять стандартный базис:

$$\{\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}\} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \sim \{1, t, t^2\} = E_3 \subset L$$

3.
$$(A)(P(x)) = \int_{-1}^{1} K(x,y)P(y)dy = \int_{-1}^{1} (y^2 + 2x(y-1) + (1-3y^2)x^2)(ay^2 + by + c)dy = -\frac{2}{15}(a(4x^2 + 10x - 3) - 5(2bx - 6cx + c)) - \frac{2}{15}(4ax^2 + x(10a - 10b + 30c) - 3a - 5c)$$

Тогда
$$\forall x = (a, b, c)$$
 $\mathcal{A}(x) = (-\frac{8}{15}a, -\frac{4}{3}a + \frac{4}{3}b - 4c, \frac{2}{5}a + \frac{2}{3}c)$

Тогда $\forall x = (a, b, c)$ $\mathcal{A}(x) = (-\frac{8}{15}a, -\frac{4}{3}a + \frac{4}{3}b - 4c, \frac{2}{5}a + \frac{2}{3}c)$ Так как каждая компонента вектора - многочлен Q(a, b, c), $\deg P = 1$, то по свойствам сложения и умножения $\mathcal{A}(x+y) = \mathcal{A}x + \mathcal{A}y$ и $\mathcal{A}(\lambda x) = \lambda \mathcal{A}x$

$$(!) \ \forall y \in \mathbb{R}^3 \ \exists ! x \in \mathbb{R}^3 \quad \mathcal{A}x = y = \begin{pmatrix} d \\ e \\ f \end{pmatrix}$$

$$\begin{pmatrix} -\frac{8}{15}a \\ -\frac{4}{3}a + \frac{4}{3}b - 4c \\ \frac{2}{5}a + \frac{2}{3}c \end{pmatrix} = \begin{pmatrix} d \\ e \\ f \end{pmatrix} \iff \begin{cases} a = -\frac{15}{8}d \\ b = \frac{3}{4}e + 3c + a \\ c = \frac{3}{2}f - \frac{3}{5}a \end{cases} \iff \begin{cases} a = -\frac{15}{8}d \\ b = \frac{3}{4}e + \frac{9}{2}f + \frac{3}{2}d \end{cases} \iff \exists ! \text{ обратная}$$

$$\Leftarrow \mathcal{A}$$
 - линейный оператор, $\mathcal{A}: L \xrightarrow{\mathcal{I}} L$

Тогда его матрица
$$A = \begin{pmatrix} -\frac{8}{15} & 0 & 0 \\ -\frac{4}{3} & \frac{4}{3} & -4 \\ \frac{2}{5} & 0 & \frac{2}{3} \end{pmatrix}$$
 - общий тип

4. Решим вековое уравнение

$$|A - \lambda I| = \begin{vmatrix} -\frac{8}{15} - \lambda & 0 & 0 \\ -\frac{4}{3} & \frac{4}{3} - \lambda & -4 \\ \frac{2}{5} & 0 & \frac{2}{3} - \lambda \end{vmatrix} = \left(-\frac{8}{15} - \lambda \right) \left(\frac{4}{3} - \lambda \right) \left(\frac{2}{3} - \lambda \right) = \left(\frac{8}{15} + \lambda \right) \left(\frac{4}{3} - \lambda \right) \left(\frac{2}{3} - \lambda \right) = 0$$

$$\begin{cases} \lambda_1 = -\frac{8}{15} \\ \lambda_2 = \frac{2}{3} \end{cases} \implies \text{диагональная форма} \begin{pmatrix} -\frac{8}{15} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{4}{3} \end{cases}$$

$$\begin{cases} \lambda_1 = -\frac{8}{15} \\ \lambda_2 = \frac{2}{3} \\ \lambda_3 = \frac{4}{3} \end{cases} \implies$$
 диагональная форма
$$\begin{pmatrix} -\frac{8}{15} & 0 & 0 \\ 0 & \frac{2}{3} & 0 \\ 0 & 0 & \frac{4}{3} \end{pmatrix}$$

Матрица из собственных векторов (жорданов базис):
$$\begin{pmatrix} 3 & 0 & 0 \\ 0 & 6 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$