

Információs rendszerek elméleti alapjai

Információelmélet

Irodalom

Irodalomjegyzék

- 1. J. Aczél, Z. Daróczy. *On Measures of Information and Their Characterization*. Academic Press, New York. 1975.
- 2. R. B. Ash. *Information Theory*. Interscience, New York. 1965.
- 3. J. Berstel, D. Perrin. *Theory of Codes*. Academic Press, New York. 2002.
- 4. G. Birkhoff, T.C. Bartee. *A modern algebra a számítógéptudományban*. Műszaki Könyvkiadó, Budapest. 1964.
- 5. T. M. Cover, J.A. Thomas. *Elements of information theory*. Wiley, New York. 1991.
- 6. Csiszár I., Fritz József. *Információelmélet*. Tankönyvkiadó, Budapest. 1980.
- 7. C. E. Shannon, W.Weaver. *A kommunikáció matematikai elmélete*. OMIKK, Budapest. 1986.
- 8. Györfi László, Győri Sándor, Vajda István: Információelmélet és kódelmélet, Typotex, 2000
- 9. Linder Tamás, Lugosi Gábor: Bevezetés az információelméletbe, Tankönyvkiadó 1990

Az információelmélet kezdetei

The Mathematical Theory
Of Communication

THE UNIVERSITY OF ILLINOIS PRESS: URBANA

1949

BME Fizikai Intézet Könyvtára

Információlemélet alapjai

- 1. Kommunikáció
 - 1. Információs rendszerek világa
 - 2. Véletlen jelenségekre épít
- 2. Shannon féle entrópia
 - 1. Jövőre vonatkozik
- 3. Kolmogorov entrópia
 - 1. Számításelméletre épül, múltra vonatkozik.

Kommunikáció lényege emberi elmék (tudatok) kölcsönhatása.

Fig. 1—Schematic diagram of a general communication system.

információfor rás	adó	csatorna	vevő	rendeltet ési hely
		zajforrás		Címzett

A hírközlés során egy üzenetet juttatunk el egy tér- és

i<u>dőbeli pontból egy másikb</u>ą.

Shanon kommunikációs modellje

W. Weaver: A kommunikáció felöleli mindazokat az eljárásokat, amelyekkel az egyik emberi elme a másikra hatni képes

Szintek

1. Mennyiségi szint:

- Mennyire vihető át rekonstruálhatóan a kibocsátott üzenet az adott csatornán (mennyiségi jellemzők, és csatorna kapacitás).
- 2. Megértési szint (jelentés, szemantika).
- 3. Hatékonysági szint (a kívánt hatás elérése, "hatásosság, eredményesség; effectivity/efficacy"; szemiotika, pragmatika).

Kommunikáció modellje

Történeti állomások

- Beszéd kialakulása
 - Hangképzés, megfelelő finomságú, hallás, tudat/agy, gesztikulálás, testbeszéd
 - Hanghullám terjedése
 - A közös ismeretek egy része van mindenkinél, csak élő tudatban létezik
 - Egy részét elérhetővé tesszük mások számára.
- Feljegyzés írás, rajz, kép
 - Írás megmarad, tartósság [jövő számára tudattól függetlenül megőrződik]
 - Nyomtatás (könnyű sokszorosítás)
 - Középkor, kódexek
 - Irattár, levéltár
 - Könyvtár, szolgáltatás
 - Rögzített üzenetek azonos formában
 - Többszörösen, elérhetővé válik
 - Közös ismeretetek,
 - Bürokrácia

Az információelmélet kezdetei

- Állatvilágról
- Emberi információcsere fontosabb lépései
 - közvetlen információcsere
 - távoli személyek közti információcsere
 - Gépek közvetítésével való hírközlés
 - gépek által generált adatforgalom
- Az információelmélet kezdetei, Hartley, Shannon
- Az információelmélet a gyakorlatban

Jelek

Rádiófrekvenciás műsorszórás -> hírközlés

Telefon ->adatátvitel, távközlés (telematika)

Fénykép-> digitális műszerek

Írógép

Számítógép -> adattárolás, adatelérés, számítások (érzékszervek jelentősége csökken)

Közös észlelés: nem szükséges, hogy egy időben történjen mindenkinél.

Zajos csatornák

Galileo
$$\rightarrow$$
 radio \rightarrow Earth

$$\begin{array}{c} \text{computer} \\ \text{memory} \end{array} \hspace{-2pt} \hspace{-2$$

A hírközlés során egy üzenetet juttatunk el egy tér- és időbeli pontból egy másikba.

A hírközlés során egy üzenetet juttatunk el egy tér- és időbeli pontból egy másikba.

A hírközlés során egy üzenetet juttatunk el egy tér- és időbeli pontból egy másikba.

A hírközlés során egy üzenetet juttatunk el egy tér- és időbeli pontból egy másikba.

a vevő a
csatorna végén
levő "műszaki"
berendezés,
leemeli a
jeleket a
csatornáról,
ezeket fogja a
dekódoló az
üzenetnek
megfelelő
szimbólumokká
alakítani

Matematikai kitérő – A valószínűségszámítás alapfogalmairól

Esemény: sokszor végrehajtható kísérlet eredménye.

Kísérlet, ill. kimenetel lehet például:

- Egy dobozból golyókat veszünk ki, és vizsgáljuk a színüket.
 Esemény, hogy piros, zöld, lila, ... golyót találtunk.
- Fej vagy írást játszunk egy érmével.
 Esemény: a fej vagy az írás oldal van felül.
- Minden kedden reggel 7 és 8 óra között vizsgáljuk egy buszmegállóban a megálló buszok számát.
 Esemény: 0 busz állt meg, 1, 2, ... busz állt meg.
- Egy hírközlési csatornára bocsátunk egy bizonyos jelet és vizsgáljuk a kimeneti jelet.
 - Esemény: a vett jel azonos a leadottal, a vett jel amplitúdója azonos a leadottéval, de a frekvenciája kétszeres, ...

A valószínűségszámítás alapfogalmairól

Az A esemény <u>ellentett eseménye</u> (komplementer eseménynek) a kísérlet minden A-n kívüli kimenetele. Jelölés: A.

Egy A esemény valószínűsége: nagyon sokszor elvégezve a kísérletet (Ez a nagy számok törvénye, ezzel közelítjük az esemény valószínűségét)

$$p(A) \cong \frac{\text{azon kísérletek száma, amikor } A \text{ bekövetkezik}}{\text{az összes kísérlet száma}}$$

$$= \frac{lim}{kisérletekszáma \rightarrow \infty} \frac{\text{azon kísérletek száma, amikor } A \text{ bekövetkezik}}{\text{az összes kísérlet száma}}$$

A valószínűségszámítás alapfogalmairól

A valószínűség jellemzői:

- 1 ≥ p(A) ≥ 0, az 1 valószínűségű esemény biztosan bekövetkezik, a 0 valószínűségű sohasem következik be.
- $p(A)+p(\bar{A}) = 1.$

Matematikai kitérő – A valószínűségszámítás alapfogalmairól

A Kolmogorov-féle valószínűségi axiómákról:

Eseménytér: Az elemi események összessége: Ω ; a teljes

esemény

Események halmaza: S

Lehetetlen esemény: \emptyset .

Az S halmaz akkor és csak akkor <u>σ-algebra</u>, ha

• $\Omega \in S$ és $\emptyset \in S$,

• ha
$$A_i \in S \ \forall i$$
-re, akkor $\sum_i A_i \in S$

• ha
$$A_1 \in S$$
 és $A_2 \in S$, akkor

$$A_1 \cap A_2 \in S$$

• A megszámlálható metszet (szorzás) műveletre zárt (és az unió (összeadás) műveletére is) , azaz $i\in\mathbb{N}$

A valószínűségszámítás alapfogalmairól

A Kolmogorov-féle valószínűségi axiómákról:

Minden $A \in S$ eseményhez rendelhető egy p(A) szám, az A valószínűsége, melyre a következők igazak:

- $0 \le p(A) \le 1$
- $p(\Omega)=1$
- ha $A_i \cap A_j = 0 \ \forall i \neq j$ -re, akkor $\mathbb{P}\left(\sum_{i} A_i\right)$

$$p\left(\sum_{i}A_{i}\right) = \sum_{i}p(A_{i})$$

• (A és egy B esemény szorzatán/metszetén azt értjük, ha A és B is bekövetkezik)

A valószínűségszámítás alapfogalmairól

Egy dobozban 15 sárga, 6 lila, 42 fehér és 11 kék golyó van. Mi a valószínűsége, hogy ha egyetlen golyót veszünk ki a dobozból (nem odanézve), akkor az

$$p(k\acute{e}k) = \frac{11}{15+6+42+11} = \frac{11}{74}$$

$$p(sárga) = \frac{15}{15+6+42+11} = \frac{15}{74}$$

$$p(\overline{\text{sárga}}) = \frac{6+42+11}{15+6+42+11} = \frac{59}{74} = 1 - p(\overline{\text{sárga}})$$

$$p(\text{k\'ek vagy lila}) = \frac{6+42}{15+6+42+11} = \frac{48}{74}$$

$$p(piros)=0$$

A valószínűségszámítás alapfogalmairól

Egy A és egy B esemény szorzatán azt értjük, ha A és B is bekövetkezik.

A és B együttes bekövetkezési valószínűsége: $p(AB)/p(A \cap B)$.

Egy A és egy B esemény összege/uniója az, ha vagy A, vagy B (vagy mindkettő) bekövetkezik. Valószínűsége: $p(A+B)/p(A\cup B)$.

Az A és B események függetlenek, ha semmiféle befolyással nincs A-nak a bekövetkezése a B bekövetkezésére. Ekkor $p(AB) = p(A) \cdot p(B)$.

THE ROLL OF STREET

A valószínűségszámítás alapfogalmairól

```
Egyéb esetekben p(AB) \neq p(A) \cdot p(B), csak azt lehet tudni,
hogy
p(A+B) = p(A) + p(B) - p(AB),
p(A \cup B) = p(A) + p(B) - p(A \cap B)
és
p(A \cdot B) \leq \min(p(A), p(B))
```


A valószínűségszámítás alapfogalmairól

Egy dobozban 15 sárga, 6 lila, 42 fehér és 11 kék golyó van. Mi a valószínűsége, hogy ha két golyót veszünk ki a dobozból (nem odanézve), akkor

• az 1. kék lesz, a 2. fehér:
$$p((1.kék) \cdot (2.fehér)) = \frac{11}{74} \cdot \frac{42}{73}$$

• mindkettő sárga lesz:
$$p((1.\text{sárga})\cdot(2.\text{sárga})) = \frac{15}{74}\cdot\frac{14}{73}$$

valamelyik

• sárga lesz:
$$p((1.\text{sárga}) + (2.\text{sárga})) = \frac{15}{74} \cdot \frac{14}{73} + \frac{15}{74} \cdot (1 - \frac{14}{73}) + (1 - \frac{15}{74}) \cdot \frac{15}{73}$$

egyik sem lesz sárga:

$$p((1.s\acute{a}rga)\cdot(2.s\acute{a}rga)) = (1-\frac{15}{74})(1-\frac{15}{73})$$
$$(=1-p((1.s\acute{a}rga)+(2.s\acute{a}rga)))$$

Molnár Bálint, Benczúr András

A valószínűségszámítás alapfogalmairól

Az is érdekes, hogy ha ξ =A jelet adok, milyen η =B kerül a csatorna kimenetére, ez $\eta=B$ -nek $\xi=A$ feltétel melletti feltételes valószínűségével, $p(\eta=B \mid \xi=A)$ -val írható le:

$$p\!\!\left(\eta\!=\!B\big|\mathcal{\xi}\!=\!A\right)\!=\!\frac{p\!\!\left(AB\right)}{p\!\!\left(A\right)}$$
 Az együttes feltételes valószínűségek között fennáll:

$$p(AB)=p(B) \cdot p(A|B)=p(A) \cdot p(B|A)$$

A valószínűségszámítás alapfogalmairól

Egy dobozban 15 sárga, 6 lila, 42 fehér és 11 kék golyó van. Mi a feltételes valószínűsége annak, hogy ha az első kihúzott golyó kék volt, akkor a második

• fehér:
$$p((2.\text{fehér })/(1.\text{kék })) = \frac{p((1.\text{kék }) \cdot (2.\text{fehér }))}{p(1.\text{kék })} = \frac{\frac{11}{74} \cdot \frac{42}{73}}{\frac{11}{74} \cdot \frac{1}{14}}$$

• **kék:**
$$p((2.\text{kék})/(1.\text{kék})) = \frac{p((1.\text{kék}) \cdot (2.\text{kék}))}{p(1.\text{kék})} = \frac{11}{74} \cdot \frac{10}{73}$$

• nem kék:
$$p((2.kék)/(1.kék)) = \frac{p((1.kék) \cdot (2.kék))}{p(1.kék)} = \frac{\frac{11}{74} \cdot {74 - 10 \choose 1 - 73}}{\frac{11}{74}}$$

BULLANDA OF DE BOX (100 OF DOLLAR)

A valószínűségszámítás alapfogalmairól

Ha az eseményekhez (kísérlet kimeneteihez) számértékek rendelhetők, (pl. árammérés), akkor kíváncsiak lehetünk a kísérlet eredményének <u>várható érték</u>ére. Legyen $X=\{x_1, x_2, \dots x_n\}$ számhalmaz a kísérlet kimenetének értékkészlete;

A kísérlet eredményei egy ξ valószínűségi változó értékei

A valószínűségi változók lehetnek diszkrétek, folytonosak vagy kevertek. Egy valószínűségi változót diszkrétnek nevezünk, ha értékkészlete véges (vagy megszámlálhatóan végtelen).

az x_1 kimenet valószínűsége $P(\xi = x_1)$, ... az x_n -é $P(\xi = x_n)$. Ekkor ξ várható értéke (*súlyozott átlag*)

$$E(\xi) = \sum_{i=1}^{n} P(\xi = x_i) x_i = \sum_{i=1}^{n} p_i x_i$$

Matematikai kitérő – A valószínűségszámítás alapfogalmairól Eloszlás

 $P(\xi = x_i) = p_i$, i = 1,...,n, valószínűségeket a valószínűségi változó **eloszlásának** nevezzük.

Matematikai kitérő – A valószínűségszámítás alapfogalmairól

Az is érdekelhet minket, hogy átlagosan mennyire $D(A) = \sqrt{\mathbb{E}\left[\left(\xi - \mathbb{E}(\xi)\right)^2\right]} = \sqrt{\mathbb{E}\left(\xi^2\right) - \mathbb{E}\left(\xi\right)^2}$ fog eltérni az eredmény a várhatóértéktől, ezt a szórással jellemezhetjük:

Ha több kísérletet vizsgálunk, A és B $\frac{\mathbb{E}[(\xi-\mathbb{E}(\xi))\cdot(\eta-\mathbb{E}(\eta))]}{\mathbb{E}(\xi)\cdot D(\eta)}$ mennyire függ a kettő egymástól

http://xkcd.com/552/

Az információ

Az <u>információ</u> valamely véges számú, előre ismert esemény közül annak megnevezése, hogy melyik következett be. Alternatív megfogalmazás: az információ mértéke azonos azzal a bizonytalansággal, amelyet megszüntet.

Hartley: m számú, azonos valószínűségű esemény közül egy megnevezésével nyert információ:

$$I = \log_2 m$$

(log₂m kérdéssel azonosítható egy elem)

Megjegyzés: Ha két eseményt egybevonunk, annak megnevezése 1 bittel lesz rövidebb, hiszen m/2 számú párból egy.

Az információ

Az <u>információ</u> valamely véges számú, előre ismert esemény közül annak megnevezése, hogy melyik következett be. Alternatív megfogalmazás: az információ mértéke azonos azzal a bizonytalansággal, amelyet megszűntet.

Shannon: minél váratlanabb egy esemény, bekövetkezése annál több információt jelent, annál több bizonytalanságot kell kiküszöbölni. Legyen $A=\{A_1,A_2,...A_m\}$ esemény-halmaz, az A_1 esemény valószínűsége p_1 , ... az A_m -é p_m . Ekkor az A_i megnevezésekor nyert információ:

$$I(A_i) = \log_2 \frac{1}{p_i} = -\log_2 p_i.$$

Megjegyzés: ha p=1/m, minden i-re, visszakapjuk Hartley definícióját.

THE ROLLING BOTTON OF THE PARTY OF THE PARTY

Az információ tulajdonságai

- 1. Csak az esemény valószínűségének függvénye.
- 2. Nem negatív: $l \ge 0$
- 3. Additív: ha $m = m_1 \cdot m_2$, $I(m_1 \cdot m_2) = I(m_1) + I(m_2)$

Megjegyzés: Ezek már a függvényegyenlet megoldásaként a logaritmus függvényt adják.

- 1. Monoton: ha $p_i \ge p_i$, akkor $I(A_i) \le I(A_i)$
- Normálás: legyen I(A)=1, ha p(A)=0,5. Ekkor kettes alapú logaritmus használandó és az információegysége a <u>bit</u>. $I(m_i)=log(1/p_i)$ [bit] binary unit/digit

Megjegyzés: ha tízes alapú logaritmust (lg-t) használunk, a hartley, az egység. Ekkor a normálás: I(p=0,1)=1. Ha természetes alapú logaritmussal definiáljuk az információt ($I=-\ln p$), akkor a natban mérjük az információt, a normálás pedig I(p=1/e)=1.

```
1 bit = In 2 nat

1 hartley = 3,3219 bit = 2,3026 nat

1 bit = 0,6931 nat = 0,3010 hartley

1 nat = 1,4427 bit = 0,4343 hartley
```

Az információ

A forrásunk a következő üzenetet adta le:

"ccndnddnnncdnndncdncdncdncdnnnncdcdncdcnnncd cccdcddcdccccnnn"

(21 db "c", 22 db "n", 17 db "d")

Mekkora lesz az információtartalma, ha a következő szimbólum "c" lesz?

$$p(\mathbf{c}) = 21/(21+22+17) = 21/60 = 0.35$$

$$I(\mathbf{c}) = -\log_2 0.35 = -\ln 0.35/\ln 2 = 1.51$$

Az információ

A forrásunk a Υ , Υ , Π , \mathfrak{D} , Ω szimbólumokat bocsátja ki p_{Υ} =0,12, p_{Ξ} =0,37, p_{Π} =0,06, $p_{\mathfrak{D}}$ =0,21, $p_{\mathfrak{Q}}$ =0,24 valószínűséggel. Mekkora lesz az információtartalma , ha a következő szimbólum a Υ jel?

$$I(\mathcal{S}) = -\log_2 0.37 = -\ln 0.37/\ln 2 = 1.43$$

DISZKRÉT FORRÁS, DISZKRÉT, ZAJMENTES CSATORNA

Példa legegyszerűbb csatornával kezdjük (logikai, formális lehet)

Jelei: 0,1

Átviteli idő: mindkettőre: 1/C sec (Hasonlóak a digitális csatornák).

Egy forrás: igen – nem üzeneteket választ

- a) Szabályos pénzérme feldobása *c*-szer. Időegység alatt.
 - a) 2^c egyforma lehetőség. Kódolás:
 - a) Igen ->0
 - b) Nem ->1
 - b) 2^c különböző kódszó, egységnyi idő hosszú.

 2^{c} különböző kódszó, egységnyi idő hossz alatt. Pl. $c=1024=2^{10}$, 2^{1024} ,

Lottó húzás

Igen: létezik ötös találat a szelvényemen

Nem: nincs ötös találat a szelvényemen

1024=2¹⁰, két hosszú húzássorozat eredményét milyen rövid idő alatt tudjuk csatornánk segítségével a címzetthez juttatni.

3 eset:

Egy ötös van, k-dik: 10 (a kódszó) sorszám (10 bit, 1024= 2^{10}) [log₂k]; p_1 =(1-P(ötös találat))¹⁰²³ P(ötös találat); 1023=1024-1= 2^{10} -1

Ha több ötös van : 11 (a kódszó) 1024 hosszú kódban jelöljük az ötös találatokat. (k bit)

A teljes sorozat p_2 =1- p_0 - p_1

| P(ötös | 1-P(ötös |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| találat) |

Ötös lottó:

```
1 szelvény kitöltésével
```

```
az ötös valószínűsége = 1:43 949 268 = 0.00000275\%, \binom{90}{5}
```

a négyes valószínűsége = 1:103 410 = 0.000967%

a hármas valószínűsége = 1:1 231 = 0.081%

a kettes valószínűsége = 1:44 = 2.273%

egy vagy nulla találat valószínűsége = 97.65%

Átviteli bit mennyiség várható értéke:

$$(p_0(1)+p_1(2+10)+p_2(2+1024)) \le 2;$$

Poisson eloszlás közelítése, binomiális eloszlás határeloszlása $np=\lambda$;

$$\lambda = 1024* \binom{90}{5}^{-1} = 2,33*10^{-5}$$

p_0 =0,999977	$p_0 = e^{-\lambda}$
p_1 =2,33*10 ⁻⁵	$p_1 = \lambda e^{-\lambda}$
$oldsymbol{p_2}$ számítási hibánál kisebb	

Matematikai kitérő –

A valószínűségszámítás alapfogalmairól Poisson eloszlás

$$P(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

- . Kifejezi az adott idő alatt ismert valószínűséggel megtörténő események bekövetkezésének számát (például: egy telefonközpontba adott időszakban és időtartamban beérkezett telefonhívások száma, vagy egy radioaktív anyag adott idő alatt elbomló atomjainak száma).
- A Poisson eloszlás a kis valószínűségű, vagy ritka események eloszlása. Poisson eloszlású a sajtóhibák száma egy újság lapjain, egy öntvényben előforduló buborékok száma, egy telefonközpontba beérkező hívások száma, adott idő alatt elbomlott radioaktív atomok száma stb.

Mennyiségek

- Csatorna kapacitás: adott csatornához a kapacitás- a bináris szimmetrikus csatornával való ekvivalencia alapján:
 - Egységnyi idő alatt "átlag" ugyanannyi különböző jelsorozat vihető át, mint egy C bit/sec sebességű bináris csatornán. Ekkor a csatorna kapacitás C.
- A forrás szimbólumok sorozatát választja, a választás bizonytalanságát jellemezzük az egy szimbólumra jutó átlagos mennyiséggel, ez lesz a Shannon-entrópia.
- 3. N hosszú sorozatok lehetnek, n lehetséges szimbólum, $p_1, p_2 \dots p_n^{N_r}$ eloszlás

Mennyiségek

$$I = \sum_{i=1}^{n^N} p_i$$
 p,-k a valószínűségek

Shannon-entrópia: ξ valószínűségi változó $P(\xi=x_i)=p_{i,}$ az események eloszlása, a ξ valószínűségi változó által felvehető értékek $\{x_1,...,x_i,x_n^N\}$, $i=1,...,n^N$

$$H(p_1, p_2, ..., p_{n^N}) = \mathbb{E}(I(\xi)) = \sum_{i=1}^{n^N} p_i I(\xi = x_i) = -\sum_{i=1}^{n^N} p_i \log_2 p_i$$
N hosszú forrás egy szimbólumra jutó átlagos

N hosszú forrás egy szimbólumra jutó átlagos bizonytalansága

$$H(p_1, p_2, ..., p_n) = \frac{1}{N} \sum_{i=1}^{n^N} p_i \log_2 p_i^{-1}$$

H bit/szimbólum, entrópia; = 1/N H(az N hosszú üzenetek eloszlása)

Shannon csatorna kódolás alaptétele

C bit/sec csatorna kapacitás, a H bit/szimbólum a Shannon-entrópia, V szimbólum /sec forrás sebessége

Megválasztható-e a forrás sebessége; hány szimbólumot választ másodpercenként?

Mennyiségi feladat megoldhatósága?

<u>Veszteségmentesen</u> átvihető-e minden üzenet? Vagyis az átvitt üzenet egyértelműen rekonstruálható-e.

Shannon csatorna kódolás alaptétele (Shannon)

Nem lehet veszteségmentesen működtetni a kommunikációs rendszert ha:

V> C/H ;

Tetszőleges ε> 0-hoz ∃ kódolás: V < C/H- ε sebességgel veszteségmentesen működtethető a csatorna, rendszer

(Ennek formális bizonyítása a legelemibb esetre később).

Diszkrét, zajmentes csatorna

 $S_1, S_2, ...S_m$ a jelek

 t_1 , t_2 , ... t_m – átviteli idő jelenként.

Szimmetrikus csatorna $t_1 = t_2 = \dots = t_m = t$

Szimmetrikus bináris csatorna m=2, a jelek a bitek, { megint ! binary digit (de ez nem ugyanaz mint az információ mértékegysége)}.

Kapacitás a másodpercenként átvihető bitek száma.

Nyilván $C=t^{-1}$, ha t^{-1} egész szám. Ha nem, és t és t nem összemérhető, akkor T idő alatt N(T) jelsorozatot lehet, ahol

$$2^{T(t^{-1}-\varepsilon)} < N(T) < 2^{T(t^{-1}+\varepsilon)}$$

teljesül tetszőleges ε >0, ha T elég nagy

A logaritmust képezve (2-es alapú logaritmust használunk a továbbiakban) és T-vel osztva:

$$\left| \left(t^{-1} - \varepsilon \right) < \frac{1}{T} \log_2 N(T) < \left(t^{-1} + \varepsilon \right) \right|$$

azaz a határérték C=t-1

Intuitív:

Két csatorna ekvivalens, ha T hosszú sorozataik száma minden T-re (határértékben) megegyezik. A T hosszú kód-szavak kölcsönösen megfeleltethetők egymásnak

Pontos definíció:

Legyen *N(T)* egy csatorna *T* hosszú, (*T*-nél nem hosszabb, *T* maximális hosszú) jelsorozatainak *száma* A csatorna kapacitás:

$$C = \frac{\lim_{T \to \infty} \frac{\log_2 N(T)}{T}}{T}$$

Következmény:

Minden C kapacitású csatorna ekvivalens a C kapacitású bináris csatornával. Ezért C dimenziója bit/sec.

Példa:

1. Szimmetrikus csatorna, *m* db. szimbólum, *t* egy szimbólum átviteli ideje:

$$N(T) \cong m^{T/t}$$

$$C = \lim_{T \to \infty} \frac{\log_2 m^{T/t}}{T} = t^{-1} \log_2 m$$

- 2. Egyszerű nem szimmetrikus csatorna, t_1 , t_2 , ... t_m átviteli idő jelenként; $(S_1, S_2, ... S_m, szimbólumkészlet; nincs megszorítás a jelsorozatra), <math>N(T)$ -el jelöljük a T átviteli idő tartamú sorozatok számát, akkor
- $N(T)=N(T-t_1)+N(T-t_2)+...+N(T-t_m)$ (differencia egyenlet), a sorozatok számának teljes összege (amely sorozatok $S_1, S_2, ...S_m$ szimbólummal/ban végződnek)
- A véges differencia egyenletek elmélete alapján *N(T)* (aszimptotikusan nagy *T*-kre) jellemezhető
- karakterisztikus polinommal: (Shannon-HirkozlesMatElm1948-magy.pdf,

$$1 - x^{-t_1} - x^{-t_2} - \dots - x^{-t_m} = 0$$

 x_0 : a legnagyobb pozitív megoldás (kis gyökök elhanyagolható adalékokat adnak. $N(T)=k x_0^T$

 x_0 hatványai úgy viselkednek mint N(T).

$$C = \frac{\lim}{T \to \infty} \frac{\log_{2} N(T)}{T} = \log_{2} x_{0} = C$$

T lineáris növelés exponenciális növekedést okoz N(T)-ben.

- A hírközlő rendszer minden lehetséges üzenet választásra (sokszor ismétlődő választásra) működjön. Nem az a fontos az átvitelben, hogy mit választunk, hanem az, hogy milyen bizonytalan a választás.
- (A szimbólumokat a forrás átnevezheti, ettől független a hírközlés mennyiségi viselkedése)
- A forrás N hosszú választásait a n szimbólumból egy n^N elemű **valószínűség-eloszlás** jellemzi.
- Az eloszlás meghatározása empirikus alapokon, közelítőleg, történhet. (Később megnézzük az alapeseteket).

Feladatunk:

Keressük a diszkrét valószínűség-eloszlások halmazán a

 $H(p_1, p_2, ..., p_m)$ függvényt, $\Sigma p_i=1$, i=1, ..., m, $p_i \neq 0$;

- A függvénnyel kapcsolatban támasztott természetes elvárások (Shannon-axiómák):
- 1. H minden argumentumában legyen folytonos;
- A(n)=H(1/n, 1/n, ... 1/n) ≤ H(1/m, 1/m, ... 1/m)=A(m), ha n < m (monoton növekedő függvény)
- 3. Elágazási szabály

Elágazási szabály: ha egy választási lehetőség, két rákövetkező választási lehetőségbe ágaztatunk szét. Az eredeti H függvényértékhez hozzá kell adnunk az elágazás valószínűségével súlyozva az elágazás utáni események feltételes eloszlásának H függvényét.

H(1/2,1/3,1/6) = H(1/2,1/2) + 1/2 H(2/3,1/3)

3. Elágazási szabály (grouping axiom) (ábra):

$$H(p_{1}, \dots p_{n-2}, p_{n-1}, p_{n}) = H(p_{1}, p_{2}, \dots, p_{n-1} + p_{n}) + (p_{n-1} + p_{n}) H(\frac{p_{n-1}}{p_{n-1} + p_{n}}, \frac{p_{n}}{p_{n-1} + p_{n}})$$

Általános elágazási szabály: (indukcióval) legyen,

$$\Sigma_{i=1}^{nj} p_{j,i} = q_j$$
, $i, j=1, ..., m$, $\Sigma_{j=1}^{m} q_j = 1$, akkor

$$|H(p_{1,1},...p_{1,n_1},p_{2,1},p_{2,n_2},...,p_{m,1},...,p_{m,n_m}) = |H(q_1,q_2,...,q_m) + \sum_{j=1}^{m} q_j H(\frac{p_{j,1}}{q_j},...,\frac{p_{j,n_j}}{q_j})$$

<u>Tétel</u>: Az 1-3 axiómákat kielégítő függvény csak a $K \Sigma p_i \log_2 p_i$, i=1,...n alakú függvények lehetnek, ahol K < 0 konstans.

Bizonyítás:

(i) $H(\frac{1}{2}, \frac{1}{2})=1$, egységnyi entrópia => -K (-1)=1 => K=-1 – racionális értékű eloszlás esetén.

Bizonyítás:

(i) $H(\frac{1}{2}, \frac{1}{2})=1$, egységnyi entrópia => -K (-1)=1 => K=-1 – racionális értékű eloszlás esetén. $p_i=q_i/m$ -re, i=1,...n, és $\Sigma q_i=m$, $\Sigma p_i=1$.

Fejezzük ki $H(p_1, ... p_{n-2}, p_{n-1}, p_n)$ –et, A(m) és $A(q_i)$ segítségével.

$$\underbrace{H(p_1, \ldots, p_n)}_{\text{elágazásig}} = \underbrace{H(\frac{1}{m}, \ldots, \frac{1}{m})}_{\text{teljes}} - \underbrace{\sum_{i=1}^{n} p_i H(\frac{1}{q_i}, \frac{1}{q_i}, \ldots, \frac{1}{q_i})}_{\text{elágazás} \text{ után}} =$$

$$A(m) - \sum_{i=1}^{n} p_i A(q_i) = -\sum_{i=1}^{n} p_i (A(q_i) - A(m)).$$
 $\sum_{i=1}^{n} p_i = 1$

Az m elemű egyenletes eloszlásból indulva, csoportok képzése, elágozási szabály felhasználásával

$$A(m) = H(\underbrace{\frac{1}{m}, \frac{1}{m}, \dots \frac{1}{m}}_{\substack{n \text{ darab} \\ \text{teljes}}}) = \underbrace{H(\underbrace{\frac{q_i}{m}, \dots, \frac{q_n}{m}}_{\substack{n \text{ elágazásig}}}) + \underbrace{\sum_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ diagazás}}} H(\underbrace{\frac{1}{m}, \dots, \frac{1}{m}}_{\substack{q_i \text{ elágazás}}}) = \underbrace{\underbrace{\prod_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} H(\underbrace{\frac{q_i}{m}, \dots, \frac{q_n}{m}}_{\substack{n \text{ elágazás}}}) + \underbrace{\sum_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} A(q_i) = \underbrace{\underbrace{\prod_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} A(q_i) = \underbrace{\underbrace{\prod_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} A(q_i) - \underbrace{\underbrace{\prod_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} A(q_i) = \underbrace{\underbrace{\prod_{i=1}^{n} \frac{q_i}{m}}_{\substack{n \text{ elágazás}}} A(q_i) - A(m))}_{\substack{n \text{ elágazás}}}$$

(ii) Lemma: A(n) =c log₂ n, ahol c> 0 tetszőleges Biz: Elágazási szabállyal

$$A(nm) = H(\underbrace{\frac{1}{nm}, \dots, \frac{1}{nm}}_{m}, \dots, \underbrace{\frac{1}{nm}, \dots, \frac{1}{nm}}_{m}) = H(\underbrace{\frac{1}{n}, \dots, \frac{1}{n}}_{elágazásig}) + n \cdot \underbrace{\frac{1}{n}}_{elágazás} \underbrace{H(\underbrace{\frac{1}{m}, \dots, \frac{1}{m}}_{elágazás})}_{elágazás}) = A(n) + A(m)$$

Ebből $A(n^m)=mA(n)$ adódik, mivel A(nm)=A(m)+A(n) $A(n)=k'\log_2 n$

Legyen s>0, rögzített egész szám, $\forall t$ -re, és n-re, $\exists m$,

(1)
$$s^m < t^n \le s^{m+1}$$
;

Az A függvény monoton, $A(s^m) < A(t^n) \le A(s^{m+1})$ [felhasználva (1)-t].

(2) $mA(s) < nA(t) \le (m+1)A(s)$ ebből

(3)
$$\frac{m}{n} < \frac{A(t)}{A(s)} \le \frac{m+1}{n} \quad \forall n - re$$

$$(4) \quad \frac{m}{n} < \frac{\log_2 t}{\log_2 s} \le \frac{m+1}{n} \quad \forall n - re \quad \log_2 f \ddot{u} g g v \acute{e} n y r e$$

(3), (4) egyenlőtlenségekből, n-> ∞,

$$\frac{A(t)}{A(s)} = \frac{\log_2 t}{\log_2 s}$$

adódik tehát,

$$C = \frac{A(s)}{\log_2 s}$$
 választással $A(t) = C \log_2 t$

bizonyítja a lemma állítását

(iii) (ii) lemma és a racionális elemű eloszlásokra az (i) alatt kapott kifejezés együttesen

$$H(p_1, ..., p_n) = -\sum_{i=1}^n p_i (A(q_i) - A(m)) = -C\sum_{i=1}^n p_i \log_2 \frac{q_i}{m} =$$

$$-C\sum_{i=1}^n p_i \log_2 p_i$$

Ezzel a tételt racionális értékű eloszlásokra igazoltuk.

Tetszőleges eloszlásokra a folytonosságból és *log*₂ folytonosságából következik a tétel.

 $H(\frac{1}{2}, \frac{1}{2})=1$, egységnyi entrópia => -K(-1)=1 => K=-1

$$K(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) = K(-1) = 1 \Rightarrow K = -1$$

Definició: $(p_1, p_2, ..., p_m)$, $\Sigma_{i=1,...,m}$ $p_i=1$, i=1,...,m, $p_i>0$; eloszlás bizonytalansága a Shannon-entrópia

$$H(p_1, ..., p_n) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

Az entrópia

Az entrópia az információ várható értéke:

$$H(p_1, p_2, ..., p_m) = \mathbb{E}(I(\xi)) = \sum_{i=1}^{m} p_i I(\xi = x_i) = -\sum_{i=1}^{m} p_i \log_2 p_i$$

Az entrópia tulajdonképpen annak a kijelentésnek a várható információ mennyisége, hogy az *m* db egymást kizáró esemény közül az egyik bekövetkezett. L'Hospital-

A $p \log_2 p$ kifejezés $p \rightarrow 0$ esetén:

$$\lim_{p \to 0} p \log_{2} p = \lim_{p \to 0} p \frac{\ln p}{\ln 2} = \frac{1}{\ln 2} \cdot \lim_{p \to 0} \left(\frac{\ln p}{\frac{1}{p}} \right) = \frac{1}{\ln 2} \quad \lim_{p \to 0} \frac{\frac{1}{p}}{\frac{-1}{p^{2}}} = 0$$

szabály

szerint

Az entrópia

A forrásunk a következő üzenetet adta le:

 $H(\{c,n,d\})=1,57$

Mekkora az üzenet entrópiája?(ha a relatív gyakoriság ádja a valószínűség-

eloszlást)

$$p(\mathbf{c})=21/60=0.35$$

$$p(\mathbf{n})=22/60=0.37$$

$$p(\mathbf{d})=17/60=0.28$$

$$H(\mathbf{c}) = -0.35 \log_2 0.35 = -0.35 \cdot (\ln 0.35/\ln 2) =$$

= -0.35\cdot(-1.51) = 0.53

$$H(\mathbf{n}) = -0.37 \log_2 0.37 = -0.37 \cdot (\ln 0.37/\ln 2) =$$

= -0.37 \cdot (-1.43) = 0.53

$$H(\mathbf{d}) = -0.28 \log_2 0.28 = -0.28 \cdot (\ln 0.28/\ln 2) =$$

= -0.28 \cdot (-1.84) = 0.51

Az entrópia

A forrásunk a Υ , Ξ , Π , \mathfrak{D} , Ω szimbólumokat bocsátja ki egyforma, $p_{\Upsilon} = p_{\Xi} = p_{\Pi} = p_{\mathfrak{D}} = p_{\Omega} = 0,2$ valószínűséggel.

Mennyi a forrás, mint halmaz entrópiája?

$$H(\Upsilon, \mathcal{S}, \Pi, \mathfrak{D}, \Omega) = (-0.2 \log_2 0.2) \cdot 5 = 2.32$$

A forrásunk a Υ , Ξ , Π , \mathfrak{D} , Ω szimbólumokat bocsátja ki p_{Υ} =0,12, p_{Ξ} =0,37, p_{Π} =0,06, $p_{\mathfrak{D}}$ =0,21, $p_{\mathfrak{Q}}$ =0,24 valószínűséggel.

Mennyi a forrás, mint halmaz entrópiája?

$$H(\Upsilon, \Xi, \Xi, \Omega) = -0.12 \log_2 0.12 - 0.37 \log_2 0.37 - 0.06 \log_2 0.06 - 0.21 \log_2 0.21 - 0.24 \log_2 0.24 = 0.37 + 0.53 + 0.24 + 0.47 + 0.49 = 0.31 + 0.53 + 0.53 + 0.54 + 0.47 + 0.49 = 0.31 + 0.53 + 0.53 + 0.54 + 0.47 + 0.49 = 0.31 + 0.53 + 0.53 + 0.54 + 0.47 + 0.49 = 0.31 + 0.53 + 0$$

Az entrópia tulajdonságai

- 1. Nem negatív: $H(p_1, p_2, ..., p_m) \ge 0$
- 2. Az események valószínűségeinek folytonos függvénye.
- 3. $H(p_1, p_2, ..., p_m, 0) = H(p_1, p_2, ..., p_m)$
- 4. Ha $p_i = 1$, a többi $p_k = 0$, (k=1, ..., i-1, i+1, ..., m), akkor $H(p_1, p_2, ..., p_m) = 0$.
- 5. $H(p_1, p_2, ..., p_m) \le H(1/m, 1/m, ... 1/m)$

Egyenlőség csak egyenletes eloszlásra, a legnagyobb bizonytalanságú eloszlásra.

6. $H(p_1, ..., p_{k-1}, p_{\ell}, p_{k+1}, ..., p_{\ell-1}, p_k, p_{\ell+1}, ..., p_m) = H(p_1, p_2, ..., p_m),$ $\forall k, \ell$; azaz az entrópia szimmetrikus változóinak cseréjére.

Legyen $\xi=\{x_1,...,x_{m_1}\}$ az elsőnek leadott jelek halmaza, $\eta=\{y_1,...,y_{m_2}\}$ pedig a másodiknak leadott jelek halmaza. Vizsgáljuk azt az összetett eseményt, hogy egy ξ -beli és egy η -beli esemény is bekövetkezik.

 x_i és y_i együttes bekövetkezési valószínűsége

$$p_{i,j} = p(x_i \ y_j), P(\xi = x_i, \eta = y_j)$$

a két esemény <u>együttes bekövetkezésekor nyert</u> <u>információ</u>

$$I(x_i \ y_j) = -\log_2 p(x_i \ y_j) = -\log_2 p_{i,j}$$
.

Mindig igaz a együttes információra, hogy $I(x_i, y_i) \ge I(x_i)$, és $I(x_i, y_i) \ge I(y_i)$.

a két esemény <u>együttes bekövetkezésekor nyert</u> információ

$$I(x_i \ y_j) = -\log_2 p(x_i \ y_j) = -\log_2 p_{i,j}$$
.

 η és ξ valószínűségi változók <u>együttes entrópiája</u>:

$$H(\xi = x_i, \eta = y_j) = -\sum_{i=1}^{m_1} \sum_{j=1}^{m_2} p_{i,j} \log_2 p_{i,j}.$$

A feltételes entrópia

Legyen $\xi=\{x_1,...,x_{m_1}\}$ a lehetséges leadott jelek halmaza, $\eta=\{y_1,...,y_{m_2}\}$ pedig a vehető jelek halmaza. Minden ξ -beli esemény bekövetkezése maga után von egy η -beli eseményt.

 x_i -nek y_j -re vonatkoztatott feltételes valószínűsége $p(x_i | y_j)$. Az ξ halmaz η halmazra vonatkoztatott feltételes entrópiája:

$$|H(\xi/\eta)| = -\sum_{j=1}^{m_2} p(\eta = z_j) \sum_{i=1}^{m_1} p(\xi = x_i | \eta = y_j) \log_2 p(\xi = x_i | \eta = y_j) =$$

$$= -\sum_{j=1}^{m_2} \sum_{i=1}^{m_1} p(\xi = x_i | \eta = y_j) \log_2 p(\xi = x_i | \eta = y_j).$$

A feltételes entrópia

Legyen $\xi=\{x_1,...,x_{m_1}\}$ a lehetséges leadott jelek halmaza, $\eta=\{y_1,...,y_{m_2}\}$ pedig a vehető jelek halmaza. Minden ξ -beli esemény bekövetkezése maga után von egy η -beli eseményt.

 x_i -nek y_j -re vonatkoztatott feltételes valószínűsége $p(x_i | y_j)$.

Mivel $p(x_iy_j)=p(y_j)\cdot p(x_i|y_j)$ minden *i*-re és *j*-re,

$$H(\xi \eta) = H(\eta) \cdot H(\xi \mid \eta) = H(\xi) \cdot H(\eta \mid \xi).$$

$$fgy H(\xi) \ge H(\xi \eta) \ge 0$$

Appendix

Matematikai kitérő –

A valószínűségszámítás alapfogalmairól

Egy hírközlési csatorna bemenetén és kimenetén megjelenő jelek nem függetlenek egymástól. Ha *B* jelet vettünk akkor annak a valószínűsége, hogy *A* jel volt a csatorna bemenetén:

A-nak B feltétel melletti **feltételes valószínűsége**

$$p(A \mid B) = \frac{p(A \cdot B)}{p(B)} = \frac{p(A \cap B)}{p(B)}$$

Összetett kisérlet

X valsz. vált. , változó értékeket A és B csoportra bontjuk,

$$A - x_{1}, x_{2}, ..., x_{r}; P(A) = \sum_{i=1}^{r} p_{i}$$

$$B - x_{r+1}, x_{r+2}, ..., x_{M}; P(B) = \sum_{i=r+1}^{M} p_{i}$$

$$P(X = x_{i} | x_{i} \in A) = p_{i} / (\sum_{i=1}^{r} p_{i});$$

$$P(X = x_{i} | x_{i} \in B) = p_{i} / (\sum_{i=r+1}^{M} p_{i});$$

Az összetett kísérlet (<u>ábra</u>) az *X* valsz. vált. eredeti kísérletével ekvivalens.

Y valsz. vált. , az összetett kísérlet (és annak kimenetei),

 $P(Y=x_1)=P$ {A-t választottuk, x_1 —t választottuk ki }= P {A-t választottuk}, P { x_1 —t választottuk ki | A-t választottuk }=($\sum_{i=1}^r p_i$) p_1 /($\sum_{i=1}^r p_i$)= p_1 ;

 $\Rightarrow P(Y=x_i) = p_i Y$ és X valsz. Eloszlása u.a.

Az összetett kísérlet (<u>ábra</u>) az *X* valsz. vált. eredeti kísérletével ekvivalens.

Az összetett kísérlet előtt, az átlagos

bizonytalanság: $H(p_1, ..., p_M)$

Ha feltárjuk, hogy A és B csoport közül melyiket választottuk, akkor megszüntetünk átlagosan

$$H(p_1 + ... + p_r, p_{r+1} + ... + p_M)$$

bizonytalanságot

A-t választottuk $(\sum_{i=1}^{r} p_i)$ valószínűséggel, a maradvány bizonytalanság $H \left[\frac{p_1}{\sum_{i=1}^r p_i}, \frac{p_2}{\sum_{i=1}^r p_i}, \dots, \frac{p_r}{\sum_{i=1}^r p_i} \right];$

B-t választottuk ($\sum_{i=r+1}^{M}$ p_i) valószínűséggel, a maradvány bizonytalanság

$$H\left(\frac{p_{r+1}}{\sum_{i=r+1}^{M}p_{i}}, \frac{p_{r+2}}{\sum_{i=r+1}^{M}p_{i}}, \dots, \frac{p_{M}}{\sum_{i=r+1}^{M}p_{i}}\right);$$

valamelyik csoport kiválasztása után

Az átlagos maradvány
$$(p_1 + ... + p_r)H\left(\frac{p_1}{\sum_{i=1}^r p_i}, \frac{p_2}{\sum_{i=1}^r p_i}, ..., \frac{p_r}{\sum_{i=1}^r p_i}\right) +$$
 bizonytalanság valamelvik csoport

$$(p_{r+1}+\ldots+p_M)H\left(\frac{p_{r+1}}{\sum\limits_{M}^{M}p_i},\frac{p_{r+2}}{\sum\limits_{M}^{M}p_i},\ldots,\frac{p_M}{\sum\limits_{M}^{M}p_i}\right);$$

A harmadik követelmény Hval (az átlagos bizonytalansággal szemben)

$$H(p_{1},...,p_{M}) = H(p_{1}+...+p_{r},p_{r+1}+...+p_{M}) + (p_{1}+...+p_{r})H\left(\frac{p_{1}}{\sum_{i=1}^{r}p_{i}},\frac{p_{2}}{\sum_{i=1}^{r}p_{i}},...,\frac{p_{r}}{\sum_{i=1}^{r}p_{i}}\right) + (p_{r+1}+...+p_{M})H\left(\frac{p_{r+1}}{\sum_{i=r+1}^{M}p_{i}},\frac{p_{r+2}}{\sum_{i=r+1}^{M}p_{i}},...,\frac{p_{M}}{\sum_{i=r+1}^{M}p_{i}}\right);$$

Numerikus példa

$$H(\underbrace{\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{8}}_{A}) = H(\underbrace{\frac{3}{4}, \frac{1}{4}}_{A}) + \underbrace{\frac{3}{4}H(\underbrace{\frac{2}{3}, \frac{1}{3}}_{A})}_{A} + \underbrace{\frac{1}{4}H(\underbrace{\frac{1}{2}, \frac{1}{2}}_{A})}_{B}$$