See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/12159029

Cytotoxic Cholestane Glycosides from the Bulbs of Ornithogalum s aundersiae

ARTICLE in JOURNAL OF NATURAL PRODUCTS · FEBRUARY 2001			
Impact Factor: 3.8 · DOI: 10.1021/np0003084 · Source: PubMed			
CITATIONS	READS		
32	30		

5 AUTHORS, INCLUDING:

John A Beutler

National Cancer Institute (USA)

181 PUBLICATIONS 3,385 CITATIONS

SEE PROFILE

Cytotoxic Cholestane Glycosides from the Bulbs of Ornithogalum saundersiae

Minpei Kuroda,† Yoshihiro Mimaki,*,† Akihito Yokosuka,† Yutaka Sashida,† and John A. Beutler‡

Laboratory of Medicinal Plant Science, School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan, and Laboratory of Drug Discovery Research & Development, Developmental Therapeutics Program Division of Cancer Treatment, Diagnosis and Centers, National Cancer Institute, Bldg. 1052, National Cancer Institute-Frederick Cancer Research Center, Frederick, Maryland 21702-1201

Received June 19, 2000

Further phytochemical analysis of the bulbs of *Ornithogalum saundersiae* has yielded two new cytotoxic cholestane triglycosides (1 and 2). The structures of these compounds were determined by spectroscopic analysis, including 2D NMR spectroscopic data, and the results of hydrolytic cleavage. Compounds 1 and 2 and several analogues were evaluated for their cytotoxicity against HL-60 cells.

An acylated cholestane glycoside (3), isolated previously from the bulbs of *Ornithogalum saundersiae* L. (Liliaceae) in good yield, has been found to show potent cytotoxicity against a variety of tumor cell culture lines and experimental animal tumors. 1,2 Recently, we have isolated 3 and several related compounds and evaluated their cytotoxic activity against HL-60 human promyelocytic leukemia cells.² Further phytochemical work has been carried out on O. saundersiae bulbs, with particular inference to the cholestane glycoside constituents, and has resulted in the isolation of two new compounds (1 and 2). In this paper, we report the structure determination and cytotoxicity of 1 and 2.

The concentrated MeOH extract of the bulbs of O. saundersiae (16.2 kg, fresh wt) was partitioned between *n*-BuOH and H₂O. The *n*-BuOH-soluble phase was passed through a porous-polymer resin (Diaion HP-20), and the MeOH eluate fraction was subjected to column chromatography on Si gel and octadecylsilanized (ODS) Si gel, as well as preparative HPLC to give compounds 1 (11.2 mg) and 2 (18.5 mg).

Compound 1 was obtained as an amorphous solid, $[\alpha]_D$ -56.0° (MeOH). The HRFABMS (positive mode) showed an accurate $[M + Na]^+$ ion peak at m/z 1087.5108 in accordance to the empirical molecular formula C54H80O21 (Δ +1.8 mmu), which was supported by the ¹³C NMR spectrum combined with DEPT data. The ¹H NMR spectrum of 1 (C_5D_5N) was very similar to that of 4,1 showing signals for five typical steroid methyl groups at δ 1.32 (3H, d, J = 7.4 Hz), 1.08 (3H, s), 1.01 (3H, s), 0.89 (3H, d, J =6.1 Hz), and 0.86 (3H, d, J = 6.1 Hz); a trisubstituted olefinic group at δ 5.39 (1H, br d, J = 4.2 Hz); a 3,4dimethoxybenzoyl group at δ 8.05 (1H, dd, J= 8.5, 1.7 Hz), 7.91 (1H, d, J = 1.7 Hz), 7.04 (1H, d, J = 8.5 Hz), and 3.81 and 3.79 (each 3H, s); and an acetyl group at δ 1.99 (3H, s). Furthermore, three anomeric proton signals were recognized at δ 5.13 (1H, d, J = 7.1 Hz), 5.04 (1H, d, J =7.8 Hz), and 4.58 (1H, d, J = 6.0 Hz). Acid hydrolysis of 1 with 1 M HCl in dioxane-H₂O (1:1) gave L-arabinose, D-xylose, and D-glucose, and alkaline hydrolysis with 4% KOH in EtOH resulted in the production of 3,4-dimethoxybenzoic acid and a deacyl cholestane glycoside (1a). The ¹³C NMR spectrum of 1 also showed a close similarity to that of **4**. However, a set of additional signals, correspond-

Figure 1. HMBC correlations of the acylated triglycoside moiety

ing to a terminal β -D-glucopyranosyl group, appeared at δ 103.7 (CH), 74.5 (CH), 78.4 (CH), 71.6 (CH), 78.9 (CH), and 62.5 (CH₂) in the ¹³C NMR spectrum of 1. The glucosyl group was involved in a glycosidic linkage at C-4 of the xylosyl group, because the signal due to C-4 of the xylosyl residue was markedly displaced downfield at δ 77.7 (+7.0 ppm), while the signals due to C-3 and C-5 were shifted upfield at δ 73.6 (-1.7 ppm) and 64.1 (-2.9 ppm), respectively, when comparing the ¹³C NMR spectrum of 1 with that of 4. This was confirmed by the observation of a longrange correlation from the anomeric proton signal of the glucosyl group at δ 5.04 to C-4 of the xylosyl moiety in the HMBC spectrum. The xylosyl-(1→3)-arabinosyl structure and its linkage to C-16 of the aglycon, and the respective linkage positions of the acetyl and 3,4-dimethoxybenzoyl groups at C-2 of the arabinosyl and at C-2 of the xylosyl were ascertained by additional HMBC correlations as shown in Figure 1. All of these data were consistent with the structure 3β , 17α -dihydroxy- 16β -[(O- β -D-glucopyranosyl- $(1\rightarrow 4)$ -O-(2-O-3,4-dimethoxybenzoyl- β -D-xylopyranosyl)- $(1\rightarrow 3)-2$ -*O*-acetyl- α -L-arabinopyranosyl)oxylcholest-5-en-22one, which was assigned to 1.

Compound 2 was isolated as an amorphous solid with a molecular formula C₅₅H₈₂O₂₂, as determined by the data of the HRFABMS (positive mode), which showed an [M + Na]⁺ peak at m/z 1117.5170 (Δ –2.6 mmu), in conjunction with the ¹³C NMR and DEPT spectra. The ¹H and ¹³C NMR spectra of 2 were almost superimposable on those of 1, except for the aromatic region signals due to the substi-

^{*} To whom correspondence should be addressed. Tel.: +81-426-76-4577. Fax: +81-426-76-4579. E-mail: mimakiy@ps.toyaku.ac.jp. † Tokyo University of Pharmacy and Life Science.

[‡] National Cancer Institute.

tuted benzoyl moiety. The aromatic acid was assigned as 3,4,5-trimethoxybenzoic acid from the UV [λ_{max} 260 nm (log ϵ 4.02)], ¹H NMR [δ 7.69 (2H, s)], and ¹³C NMR [δ 126.1 (C), 108.2 (CH) \times 2, 153.6 (CH) \times 2, 143.3 (C), 165.4(C=O), 60.7 (Me), and 56.2 (Me) \times 2] spectra. Alkaline hydrolysis of 2 furnished 3,4,5-trimethoxybenzoic acid and **1a**. An HMBC correlation from the resonance at δ 5.68 (dd, J = 8.9, 7.1 Hz, H-2 of xylose) to the carbonyl carbon signal at δ 165.4 gave evidence for the ester linkage position of the 3,4,5-trimethoxybenzoyl moiety at C-2 of the xylosyl residue. Thus, the structure of **2** was established as 3β , 17α-dihydroxy-16β-[(*O*-β-D-glucopyranosyl-(1→4)-*O*-(2-*O*-3,4,5-trimethoxybenzoyl- β -D-xylopyranosyl)- $(1\rightarrow 3)$ -2-O-acetyl- α -L-arabinopyranosyl)oxy]cholest-5-en-22-one.

The IC₅₀ values of 1-3, when evaluated against HL-60 cells, are shown in Table 2. The ester groups attached to the glycoside moiety were found to be essential for the exhibition of potent cytotoxic activity because the deacyl derivatives (1a and 3a) were far less cytotoxic compared with the original compounds (1 and 3). Slight differences in the aromatic acid structures and glucosylation of the C-3 hydroxyl group of the aglycon resulted in no discernible effects on activity. However, the cytotoxicities of the new compounds (1 and 2), having a glucosyl unit at C-4 of the terminal xylosyl moiety, were less potent than that of 3 by about 2 orders of magnitude. Recently, Fuchs and coworkers have provided some insight regarding the common and important role of C-22 oxocarbenium ions in the bioactivity of both 3 and cephalostatin³ as a result of the synthesis of the aglycon of 3 and several cephalostatin derivatives followed by evaluation for their cytotoxic activity.^{4,5} In fact, the activity of **3a** was about 40-fold more potent than that of the corresponding C-22 hydroxyl derivative (3b) prepared by treatment of 3a with NaBH₄ in MeOH. Although the role of the acylated diglycoside moiety remains to be determined, a structural requirement for the significant cytotoxic activity of 3 may be concluded to be a combination of the acylated diglycoside moiety and the C-22 carbonyl group. This suggests that the mechanism of action of 3 may be somewhat different from that of cephalostatin, despite their similar cytotoxicity profiles in

Table 1. ¹³C NMR Spectral Data for Compounds 1, 1a, 2 and 3ha

carbon 1 1a 2 3b 1 37.8 37.8 37.8 37.8 2 32.6 32.5 32.6 32.6 3 771.3 771.3 771.3 71.3 4 43.5 43.5 43.5 43.5 5 141.9 141.9 141.9 141.9 6 121.1 121.2 121.2 121.2 7 32.3 32.3 32.2 32.4 8 32.1 32.1 32.1 32.1 32.3 9 50.2 50.2 50.2 50.2 50.2 50.2 10 36.9 36.9 36.9 36.9 36.9 36.9 36.9 31.1 22.9 22.1 20.9 21.1 22.3 27 32.7 32.9 32.7 32.9 32.7 32.9 32.7 32.9 32.7 32.9 32.7 32.9 32.1 12 32.8 34.1 14	2 , and 3b ^a				
2 32.6 32.5 32.6 32.6 32.6 32.6 3 71.3 71.3 71.3 71.3 71.3 71.3 71.3 71	carbon	1	1a	2	3b
3 71.3 71.3 71.3 71.3 44 43.5 43.5 43.5 43.5 5 141.9 141.9 141.9 141.9 6 121.1 121.2 121.2 121.2 121.2 7 32.3 32.3 32.2 32.4 8 32.1 32.1 32.1 32.1 32.1 32.3 9 50.2 50.2 50.2 50.2 50.2 50.4 10 36.9 36.9 36.9 36.9 36.9 36.9 11 20.9 21.0 20.9 21.1 12 32.7 32.7 32.7 32.7 32.7 32.7 32.7 32.					
4 43.5 43.5 43.5 43.5 141.9 14					
5					
6					
7 32.3 32.3 32.2 32.4 8 32.1 32.1 32.1 32.1 9 50.2 50.2 50.2 50.2 50.4 10 36.9 36.9 36.9 36.9 36.9 11 20.9 21.0 20.9 21.1 12 32.7 32.7 32.7 32.7 13 46.6 46.5 46.6 47.3 14 48.6 48.7 48.5 49.1 15 34.6 36.2 34.5 36.0 16 88.4 88.9 88.4 90.1 17 85.7 86.2 85.7 88.0 18 13.6 13.7 13.6 13.6 19 19.6 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 12.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.6 32.7 32.4 25 27.7 27.9 27.7 28.6 26 22.8 23.0 22.8 23.2 27 22.4 22.6 22.4 22.8 1' 100.8 105.5 100.8 106.9 2' 71.8 71.7 71.9 72.2 3' 80.4 84.0 80.4 84.0 4' 67.8 68.9 68.0 69.4 4' 67.8 68.9 68.0 69.4 4' 67.8 68.9 68.0 69.4 4' 67.8 68.9 68.0 69.4 4' 77.7 78.1 71.9 72.2 3' 80.4 84.0 80.4 84.0 4' 67.8 68.9 68.0 69.4 4' 77.7 78.1 77.7 71.9 75.4 3" 73.6 76.3 73.6 78.2 4" 77.7 78.1 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 102.9 106.7 102.8 107.0 2" 74.6 74.8 74.9 75.4 3" 73.6 76.3 73.6 78.2 4" 77.7 78.1 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 2" 74.5 74.4 74.6 3" 78.4 78.2 78.3 4" 77.7 77.1 103.8 103.7 2" 74.5 74.4 74.6 3" 78.9 78.9 78.9 78.9 6" 62.5 62.7 62.5 1"" 11.2 153.6 6 6"" 62.5 62.7 62.5 1"" 13.6 108.2 2"" 113.6 108.2 3"" b 153.6 6 4"" 154.1 143.3 5"" 111.2 153.6 6 6"" 124.5 7"" 165.5 100.8 OMe 55.9 × 2 60.7 60.7 56.2 × 2					
8 32.1 32.1 32.1 32.1 32.3 9 50.2 50.2 50.2 50.4 10 36.9 36.9 36.9 36.9 36.9 36.9 11 20.9 21.0 20.9 21.1 12 32.7 32.7 32.7 32.7 32.9 13 46.6 46.5 46.6 47.3 36.0 14 48.6 48.7 48.5 49.1 15 34.6 36.2 34.5 36.0 16 88.4 88.9 88.4 90.1 17 85.7 86.2 85.7 88.0 18 13.6 13.7 13.6 13.6 19 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 12.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.6 32.7 32.4 25 27.7 27.9 27.7 28.6 26 22.8 23.0 22.8 23.2 27 22.4 22.6 22.4 22.8 1' 100.8 105.5 100.8 106.9 2' 71.8 71.7 71.9 72.2 3' 80.4 84.0 80.4 84.0 84.4 84.0 84.4 84.0 84.4 84.0 84.4 84.0 86.4 86.0 69.4 67.5 65.6 67.2 65.7 67.2 65.7 67.2 65.7 67.2 65.7 67.2 65.7 67.2 65.7 66.5 66.7 66.3 73.6 78.2 67.5 100.8 103.7 74.5 74.6 74.8 74.9 75.4 37 77.7 78.1 77.7 71.6 75.7 66.1 64.1 64.8 64.2 67.5 100.8 103.7 74.5 74.4 74.6 74.8 74.9 75.4 77.7 78.1 77.7 71.6 71.6 71.6 71.6 71.7 71.6 71.6					
9 50.2 50.2 50.2 50.2 50.4 10 36.9 36.9 36.9 36.9 36.9 11 20.9 21.0 20.9 21.1 12 32.7 32.7 32.7 32.7 32.9 13 46.6 46.5 46.6 47.3 14 48.6 48.7 48.5 49.1 15 34.6 36.2 34.5 36.0 16 88.4 88.9 88.4 90.1 17 85.7 86.2 85.7 88.0 18 13.6 13.7 13.6 13.6 19 19.6 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 12.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.4 25 27.7 27.9 27.7 28.6 26 22.8 23.0 22.8 23.2 27 22.4 22.6 22.4 22.8 17 100.8 105.5 100.8 106.9 27 71.8 71.7 71.9 72.2 37 80.4 84.0 80.4 84.0 47 67.8 68.9 68.0 69.4 47 67.8 68.9 68.0 69.4 47 77.7 77.7 77.1 102.9 106.7 102.8 107.0 22" 74.6 74.8 74.9 75.4 33" 73.6 76.3 73.6 76.3 73.6 76.2 1" 103.7 103.8 103.7 75.4 33" 73.6 76.3 73.6 76.3 73.6 76.2 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 113.6 108.2 7" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 113.6 108.2 7" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 113.6 108.2 7" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 64.2 67.5 1" 74.5 74.4 74.6 74.8 74.9 74.8 74.9 74.8 74.9 74.8 74.9 74.					
10 36.9 36.9 36.9 36.9 36.9 11 20.9 21.0 20.9 21.1 12 32.7 32.7 32.7 32.7 32.9 13 46.6 46.5 46.6 47.3 14 48.6 48.7 48.5 49.1 15 34.6 36.2 34.5 36.0 16 88.4 88.9 88.4 90.1 17 85.7 86.2 85.7 88.0 18 13.6 13.7 13.6 13.6 13.6 19 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 12.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.6 32.7 32.4 25 27.7 27.9 27.7 28.6 22.8 23.2 27 22.4 22.6 22.4 22.8 1' 100.8 105.5 100.8 106.9 2' 71.8 71.7 71.9 72.2 3' 80.4 84.0 80.4					
11					
12 32.7 32.7 32.7 32.7 32.9 13 46.6 46.5 46.6 47.3 14 48.6 48.7 48.5 49.1 15 34.6 36.2 34.5 36.0 16 88.4 88.9 88.4 90.1 17 85.7 86.2 85.7 88.0 18 13.6 13.7 13.6 13.6 19 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 12.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.6 32.7 32.4 25 27.7 27.9 27.7 28.6 26 22.8 23.0 22.8 23.2 27 22.4 22.6 22.4 22.8 1' 100.8 105.5 100.8 106.9 2' 71.8 71.7 71.9 72.2 3' 80.4 84.0 80.4 84.0 4' 67.8 68.9 68.0 69.4 5' 65.6 67.2 65.7 67.2 1" 102.9 106.7 102.8 107.0 2" 74.6 74.8 74.9 75.4 3" 73.6 76.3 73.6 78.2 4" 77.7 78.1 77.7 71.0 5" 64.1 64.8 64.2 67.5 1" 103.7 103.8 103.7 2" 74.5 74.4 74.6 3" 78.4 78.2 78.3 4" 71.6 71.7 71.6 5" 62.5 62.7 62.5 1" 13.6 108.2 3"" b 126.1 2"" 113.6 108.2 3"" b 154.1 143.3 5"" 111.2 153.6 6"" 124.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 108.2 7"" 165.5 106.4 004 169.3					
13					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
18 13.6 13.7 13.6 19.6 19 19.6 19.6 19.6 19.6 20 46.3 46.1 46.3 43.0 21 11.9 11.2 11.9 11.2 22 218.9 219.6 218.8 74.5 23 39.3 39.4 39.3 37.2 24 32.7 32.6 32.7 32.4 25 27.7 27.9 27.7 28.6 26 22.8 23.0 22.8 23.2 27 22.4 22.6 22.4 22.8 1' 100.8 105.5 100.8 106.9 2' 71.8 71.7 71.9 72.2 3' 80.4 84.0 80.4 84.0 4' 67.8 68.9 68.0 69.4 5' 65.6 67.2 65.7 67.2 1" 102.9 106.7 102.8 107.0 2" 74.6 74.8 74.9 75.4 3" <					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		100.8	105.5	100.8	106.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		71.8	71.7	71.9	72.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		80.4	84.0	80.4	84.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5″				67.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	-		02.7		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4''''	3""				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-				
$7^{\prime\prime\prime\prime}$ 165.5 165.4 OMe 55.9 × 2 60.7 56.2 × 2 Ac 169.3 169.3					
OMe 55.9×2 60.7 56.2×2 Ac 169.3 169.3					
Ac 169.3 169.3	OMe				
				56.2×2	
20.9 20.9	Ac	169.3			
		20.9	20.9		

^a Spectra were measured in C₅D₅N. ^b Signals were overlapped with the residual solvent signals and could not be assigned unambiguously.

the National Cancer Institute 60 cell line assay (see Monks et al.6 and Supporting Information).

Experimental Section

General Experimental Procedures. NMR spectra were recorded on a Bruker DRX-500 (500 MHz for ¹H NMR, Karlsruhe, Germany) spectrometer using standard Bruker pulse programs. MS were recorded on a Finnigan MAT TSQ-700 (San Jose, CA) mass spectrometer, using a dithiothreitoldithioerythritol (3:1) matrix. Diaion HP-20 (Mitsubishi-Kasei, Tokyo, Japan), Si gel (Fuji-Silysia Chemical, Aichi, Japan), and ODS Si gel (Nacalai Tesque, Kyoto, Japan) were used for column chromatography. HPLC was performed using a system composed of a Tosoh CCPM pump (Tokyo, Japan), a Tosoh

Table 2. Cytotoxic Activities of **1**, **1a**, **2**, **3**, **3a**, **3b**, and Controls against HL-60 Cells

compound	IC_{50} (μM)
1	0.016
1a	a
2	0.014
3	0.00025
3a	0.19
3 b	8.3
etoposide	0.025
adriamycin	0.0072
methotrexate	0.012

^a $IC_{50} > 10 \mu M$.

CCP PX-8010 controller, a Tosoh UV-8000, or a Tosoh RI-8010 detector, and a Rheodyne injection port with a 2-mL sample loop for preparative HPLC and a 20- μ L sample loop for analytical HPLC. A Capcell Pak C_{18} column (10 mm i.d. \times 250 mm, 5 μ m, Shiseido, Tokyo, Japan) was used for preparative HPLC, and a Capcell Pak C_{18} column (4.6 mm i.d. \times 250 mm, 5 μ m, Shiseido) was employed for analytical HPLC. The following materials and reagents were used for bioassays: Inter Med Immuno-Mini NJ-2300 microplate reader (Tokyo, Japan); 96-well flat-bottom plate (Iwaki Glass, Chiba, Japan); HL-60 cells (ICN Biomedicals, Costa Mesa, CA); RPMI 1640 medium (GIBCO BRL, Rockville, MD); MTT (Sigma, St. Louis, MO).

Plant Material. The bulbs of *O. saundersiae* were purchased from a nursery in Heiwaen, Nara, Japan, in October 1996. The bulbs were cultivated, and the flowered plant was identified by Y. Sashida. A voucher of the plant is on file in our laboratory (96/96-OS-2).

Extraction and Isolation. The crude saponin fraction prepared from *O. saundersiae* bulbs (16.2 kg) was subjected to Si gel column chromatography, eluting with stepwise gradients of $CHCl_3$ –MeOH (9:1; 4:1; 2:1) and finally with MeOH alone, to give six fractions (I–VI). Fraction III was further separated by an ODS Si gel column eluting with $MeOH-H_2O$ (4:1) into four fractions (IIIa–IIId). Fraction IIId was chromatographed on Si gel eluting with $CHCl_3$ –MeOH (9:1) and ODS Si gel with $MeCN-H_2O$ (3:2) to give 1 and 2 in impure form. Final purification was carried out by preparative HPLC using $MeCN-H_2O$ (7:3) to yield 1 (11.2 mg) and 2 (18.5 mg) in pure form.

Compound 1: amorphous solid; $[\alpha]^{25}_D$ -56.0° (c 0.10, MeOH); UV (MeOH) λ_{max} 257 nm (log ϵ 4.10); IR (KBr) ν_{max} 3420 (OH), 2925 (CH), 1720 (C=O), 1705 (C=O), 1690 (C=O), 1595 and 1515 (aromatic ring), 1040 cm⁻¹; ¹H NMR (C₅D₅N) δ 8.05 (1H, dd, J = 8.5, 1.7 Hz, H-6""), 7.91 (1H, d, J = 1.7Hz, H-2""), 7.04 (1H, d, J = 8.5 Hz, H-5""), 5.68 (1H, dd, J =8.9, 7.1 Hz, H-2"), 5.56 (1H, dd, J = 8.0, 6.0 Hz, H-2'), 5.39 (1H, br d, J = 4.2 Hz, H-6), 5.13 (1H, d, J = 7.1 Hz, H-1"), 5.04 (1H, d, J = 7.8 Hz, H-1"), 4.58 (1H, d, J = 6.0 Hz, H-1'), 4.29 (1H, m, H-4"), 4.18 (1H, m, H-16), 4.16 (1H, m, H-3"), 3.81 (3H, s, OMe), 3.80 (1H, m, H-3), 3.79 (3H, s, OMe), 3.23 (1H, q, J = 7.4 Hz, H-20), 1.99 (3H, s, Ac), 1.32 (3H, d, J = 7.4 Hz, Me-21), 1.08 (3H, s, Me-19), 1.01 (3H, s, Me-18), 0.89 (3H, d, J = 6.1 Hz, Me-26), 0.86 (3H, d, J = 6.1 Hz, Me-27); ¹³C NMR (C_5D_5N) , see Table 1; FABMS (negative mode) m/z 1063 [M – H]⁻; HRFABMS (positive mode) m/z 1087.5108 [M + Na]⁺ (calcd for C₅₄H₈₀O₂₁Na, 1087.5090).

Acid Hydrolysis of 1. A solution of 1 (3 mg) in 1 M HCl (dioxane– H_2O , 1:1, 2 mL) was heated at 95 °C for 2 h under an Ar atmosphere. After cooling, the reaction mixture was neutralized using an Amberlite IRA-93ZU (Organo, Tokyo, Japan) column and passed through a Sep-Pak C_{18} cartridge (Waters, Milford, MA), eluting with H_2O –MeCN (4:1, 10 mL) followed by MeOH (10 mL), to give a sugar fraction (1 mg). The sugar fraction was dissolved in H_2O (1 mL), to which (–)- α -methylbenzylamine (5 mg) and Na[B H_3 CN] (8 mg) in EtOH (1 mL) were added. After being set aside at 40 °C for 4 h followed by addition of HOAc (0.2 mL) and evaporation to dryness, the reaction mixture was acetylated with Ac₂O (0.3

mL) in pyridine (0.3 mL) at 40 °C for 12 h. The crude mixture was passed through a Sep-Pak C_{18} cartridge with $H_2O-MeCN$ (4:1; 1:1, each 10 mL) mixtures as solvents. The $H_2O-MeCN$ (1:1) eluate was further passed through a Toyopak IC–SP M cartridge (Tosoh, Tokyo, Japan) with EtOH (10 mL) to give a mixture of the 1-[(S)-N-acetyl- α -methylbenzylamino]-1-deoxyalditol acetate derivatives of the monosaccharides, 8 which was then analyzed by HPLC under the following conditions: solvent, MeCN– H_2O (2:3); flow rate, 0.8 mL/min; detection, UV 230 nm. The derivatives of L-arabinose, D-xylose, and D-glucose were detected as follows: t_R (min) 13.09 (derivative of L-arabinose), 13.90 (derivative of D-xylose), 17.42 (derivative of D-glucose).

Alkaline Hydrolysis of 1. Compound **1** (6 mg) was treated with 4% KOH in EtOH (2 mL) at room temperature for 30 min. The reaction mixture was neutralized by an Amberlite IR-120B (Organo, Tokyo, Japan) column and passed through a Sephadex LH-20 (Pharmacia, Uppsala, Sweden) column to give a crude deacyl triglycoside and 3,4-dimethoxybenzoic acid (0.8 mg). Purification of the glycoside was carried out by Si gel column chromatography eluting with $CHCl_3-MeOH-H_2O$ (40:10:1) to afford **1a** (4.7 mg) as a pure compound.

Compound 1a: amorphous solid; $[α]^{28}_D$ -18.0° (c 0.10, MeOH); IR (film) $\nu_{\rm max}$ 3360 (OH), 2960, 2925, 2870, and 2850 (CH), 1740 (C=O), 1077, 1045 cm⁻¹; ¹H NMR (C₅D₅N) δ 5.39 (1H, br d, J = 4.3 Hz, H-6), 5.12 (1H, d, J = 7.7 Hz, H-1″), 5.08 (1H, d, J = 7.9 Hz, H-1″), 4.46 (1H, d, J = 5.6 Hz, H-1/), 4.29 (1H, m, H-4″), 4.23 (1H, m, H-16), 4.03 (1H, m, H-3′), 3.84 (1H, m, $W_{1/2}$ = 21.0 Hz, H-3), 3.41 (1H, q, J = 7.4 Hz, H-20), 1.33 (3H, d, J = 7.4 Hz, Me-21), 1.08 (3H, s, Me-19), 0.94 (3H, s, Me-18), 0.93 (3H, d, J = 6.5 Hz, Me-26), 0.88 (3H, d, J = 6.4 Hz, Me-27); ¹³C NMR (C₅D₅N), see Table 1; FABMS (negative mode) m/z 857 [M - H]⁻; FABMS (positive mode) m/z 881 [M + Na]⁺.

Compound 2: amorphous solid; $[\alpha]^{25}_D$ -54.4° (*c* 0.10, MeOH); UV (MeOH) λ_{max} 260 nm (log ϵ 4.02); IR (KBr) ν_{max} 3410 (OH), 2930 and 2880 (CH), 1720 (C=O), 1705 (C=O), 1690 (C=O), 1585 and 1500 (aromatic ring), 1055, 1030 cm⁻¹; ¹H NMR (C₅D₅N) δ 7.69 (2H, s, H-2"" and H-6""), 5.68 (1H, dd, J = 8.9, 7.1 Hz, H-2"), 5.56 (1H, dd, J = 8.1, 6.1 Hz, H-2"), 5.39 (1H, br d, J = 4.0 Hz, H-6), 5.15 (1H, d, J = 7.1 Hz, H-1"), 5.04 (1H, d, J = 7.8 Hz, H-1"), 4.58 (1H, d, J = 6.1 Hz, H-1'), 4.30 (1H, m, H-4"), 4.17 (1H, m, H-16), 4.16 (1H, m, H-3"), 3.96 (3H, s, OMe), 3.82 (3H \times 2, s, OMe \times 2), 3.80 (1H, m, H-3), 3.23 (1H, q, J = 7.4 Hz, H-20), 1.99 (3H, s, Ac), 1.33 (3H, d, J = 7.4 Hz, Me-21), 1.07 (3H, s, Me-19), 1.01 (3H, s, Me-18), 0.89 (3H, d, J = 6.1 Hz, Me-26), 0.87 (3H, d, J = 6.1 Hz, Me-27); ^{13}C NMR (C_5D_5N), see Table 1; FABMS (negative mode) m/z 1093 [M - H]⁻; HRFABMS (positive mode) m/z1117.5170 $[M + Na]^+$ (calcd for $C_{55}H_{82}O_{22}Na$, 1117.5196).

Alkaline Hydrolysis of 2. Compound **2** (6.5 mg) was subjected to alkaline hydrolysis as described for **1** to give **1a** (5.0 mg) and 3,4,5-trimethoxybenzoic acid (1.1 mg).

Reduction of 3a. A mixture of $3a^1$ (60 mg) and NaBH₄ (90 mg) in MeOH (12 mL) was stirred for 30 min at room temperature. The reaction mixture was chromatographed on Si gel eluting with CHCl₃–MeOH–H₂O (60:10:1) and ODS Si gel with MeCN–H₂O (1:1) to yield 3b (12.1 mg).

Compound 3b: amorphous solid; $[\alpha]^{25}_{\rm D}$ -6.7° (c 0.10, MeOH); IR (film) $\nu_{\rm max}$ 3420 (OH), 2948 (CH), 1076 cm⁻¹; 1 H NMR (C_5D_5 N) δ 5.39 (1H, br d, J = 4.1 Hz, H-6), 5.15 (1H, d, J = 7.6 Hz, H-1"), 4.83 (1H, d, J = 7.5 Hz, H-1'), 4.49 (1H, dd, J = 7.9, 4.5 Hz, H-16), 4.18 (1H, br d, J = 9.1 Hz, H-22), 4.14 (1H, dd, J = 9.2, 3.6 Hz, H-3'), 3.80 (1H, m, H-3), 1.32 (3H, d, J = 7.2 Hz, Me-21), 1.10 (3H, s, Me-19), 1.06 (3H, s, Me-18), 0.89 (3H, d, J = 6.6 Hz, Me-26), 0.87 (3H, d, J = 6.5 Hz, Me-27); 13 C NMR (C_5D_5 N), see Table 1; FABMS (negative mode) m/z 697 [M - H]⁻; FABMS (positive mode) m/z 721 [M + Na]⁺.

HL-60 Cell Culture Assay. HL-60 leukemia cells were maintained in RPMI 1640 medium containing 10% fetal bovine serum supplemented with L-glutamine, 100 units/mL penicillin, and 100 μ g/mL streptomycin. The cells (3 \times 10⁴ cells/mL) were continuously treated with each compound for 72 h, and

the cell growth was measured with an MTT reduction assay procedure.9 A dose-response curve was plotted for each compound, and the concentration giving 50% inhibition (IC50) was calculated.

Acknowledgment. This work was partially supported by a Grant-in-Aid for Scientific Research (C) (no. 11672118) from the Ministry of Education, Science, Sport and Culture, Japan.

Supporting Information Available: GI_{50} , TGI, and LC_{50} values of **3** against the NCI 60 cell-line tumor panel. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Kubo, S.; Mimaki, Y.; Terao, M.; Sashida, Y.; Nikaido, T.; Ohmoto, T. *Phytochemistry* **1992**, *31*, 3969–3973.

- (2) Mimaki, Y.; Kuroda, M.; Kameyama, A.; Sashida, Y.; Hirano, T.; Oka, K.; Maekawa, R.; Wada, T.; Sugita, K.; Beutler, J. A. Bioorg. Med. Chem. Lett. 1997, 7, 633-636.
- (3) Pettit, G. R.; Tan, R.; Xu, J. P.; Ichihara, Y.; Williams, M. D.; Boyd, M. R. J. Nat. Prod. 1998, 61, 955-958, and references therein.
- (4) Guo, C.; Fuchs, P. L. Tetrahedron Lett. 1998, 39, 1099-1102.
- (5) Guo, C.; LaCour, T. G.; Fuchs, P. L. Bioorg. Med. Chem. Lett. 1999, 9, 419-424.
- (6) Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose, C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.; Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757–766.
- (7) Kuroda, M.; Mimaki, Y.; Sashida, Y. Phytochemistry 1999, 52, 435-
- (8) Oshima, R.; Yamauchi, Y.; Kumanotani, J. Carbohydr. Res. 1982, 107,
- (9) Sargent, J. M.; Taylor, C. G. Br. J. Cancer 1989, 60, 206-210.

NP0003084