Practical-4

Implement a function of sequential search and count the steps executed by function on various inputs for best case and worst case. Also write complexity in each case and draw a comparative chart.

```
Code:
#include <iostream>
using namespace std;
void LinearSearch(int arr[], int len, int item){
for(int i=0;i<len;i++){
if(arr[i] == item){
cout << item << " Found at index : " << i;</pre>
return;
}
cout << "Not found";</pre>
}
int main() {
int arr[] = {10, 5, 15, 21, 30, 7};
// calculating length of array
int len = sizeof(arr)/sizeof(arr[0]);
```

```
// item to be searched
int item = 21;
LinearSearch(arr, len, item);
return 0;
}
```

Output:

```
Status Successfully executed Date 2022-04-26 15:27:25 Time 0.008029 sec Mem 5.468 kB

Output

10 Found at index : 0
```

BEST CASE:

Size of Array	Time complexity
5	0.008029
10	0.008545
15	0.00833
20	0.010289

WORST CASE:

Size of Array	Time complexity
5	0.007772
10	0.007694
15	0.008963
20	0.007157

COMPARISION CHART:

Size of Array	Best case	Worst case
5	0.008029	0.007772
10	0.008545	0.007694
15	0.00833	0.008963
20	0.010289	0.007157

CONCLUSION:

IN THIS PRACTICAL WE EXAMINED THE TIME COMPLEXITY OF SEQUENTIAL SEARCH. FURTHER WE ANALYSED THE BEST AND WORST CASE TIME COMPLEXITY FOR LINEAR SEARCH AND DRAWN A COMPARTIVE GRAPH FOR BOTH CASE.