Recap: . Is I an convergent or divergent? * Geometric Series: $\sum_{n \geq r} a(r)$ power of r.

If |r| < 1, $\sum_{n \geq r} a(r)$ power of r. If Irl> 1, divergent * Zi L is divergent * Telescoping & sequence of partial sums. e D'ivergence test:

If lim an +0 then Zian is

N-100 divergent If lun an= o then THERE'IS WORK TO D I

That I all the political of the politica

CHAPTER 8. SEQUENCES & INFINITE SERIES Section 8.3. The Integral and Comparison Tests.

Theorem. Suppose that f is a continuous, positive function and decreasing on $[1, \infty)$. Let $a_n = f(n)$. Then the series

$$\sum_{n=1}^{\infty} a_n$$
 is convergent if and only if $\int_{1}^{\infty} f(x) dx$ is convergent.

This means:

- 1. If $\int_{1}^{\infty} f(x) dx$ is convergent then $\sum_{n=1}^{\infty} a_n$ is convergent.
- 2. If $\int_{1}^{\infty} f(x) dx$ is divergent then $\sum_{n=1}^{\infty} a_n$ is divergent.

• Consequence.

Recall from section 6.6 that $\int_1^\infty \frac{1}{x^p} dx$ is convergent if p > 1 and divergent if $p \le 1$. Therefore, by the Integral Test, we can conclude that

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 is convergent if $p > 1$ and divergent if $p \le 1$

Series of the form $\sum_{p=1}^{\infty} \frac{1}{n^p}$ are called *p*-series.

• Exercise: Determine whether the series is convergent or divergent.

$$\sum_{n=1}^{\infty} \frac{n}{e^n}$$

- 1) Divergence test: $\lim_{n\to\infty} \frac{n}{e^n} = 0$
- (2) Integral test: Let $f(x) = \frac{x}{e^x} = xe^{-x}$ for $x \ge 1$ fis combinuous, f(x) > 0 on $E(1, \infty)$

$$f'(x) = e^{-x} - xe^{-x} = e^{-x} (1-x) \le 0 \text{ for } x > 1$$

$$\int_{1}^{t} xe^{-x} dx = -xe^{-x} \Big|_{1}^{t} + \int_{1}^{t} e^{-x} dx = -te^{-t} - e^{-t} - e^{-t}$$

$$u = x \quad dv = e^{-x} dx \quad e^{-x} \Big|_{1}^{t} = 2e^{-t} - te^{-t} - e^{-t}$$

IBP
$$u = x$$
 $dv = e^{-x}dx$

$$du = dx \quad \sqrt{z} = e^{-x}$$

$$\lim_{t \to \infty} (2e^{-t} - te^{-t}) = 2e^{-t}$$

Conclusion:
$$\int_{1}^{\infty} xe^{-x} dx$$
 is convergent $\sum_{n=1}^{\infty} ne^{-n}$ is convergent

- The Comparison Test. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms.
 - 1. (a) If $\sum_{n=1}^{\infty} b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also convergent.
 - (b) If $\sum_{n=1}^{\infty} b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum_{n=1}^{\infty} a_n$ is also divergent.
- For $n \ge 2$, $n = \sqrt{n}$ (Grues : as $n = \infty$ or $n = \sqrt{n}$ is divergent)

 For $n \ge 2$, $n = \sqrt{n}$ (Grues : as $n = \infty$ or $n = \sqrt{n}$ is divergent)

 Lest, $n = \sqrt{n}$ is divergent, $n = \sqrt{n}$ the comparison test, $n = \sqrt{n}$ is divergent.

3.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 bn=?

 $n! = (.2.3.4-...n > (.2.2.2....2)$

For $n > 1$ $n! > 2^{n-1} = 2^{n-1}$
 $n! = (.2.3.4-...n > (.2.2.2....2)$
 $n! = (.2.3.4-...n > (.2.2.2....2)$
 $n! = (.2.3.4-...n > (.2.2.2....2)$

For $n > 1$ $n! > 2^{n-1} = 2^{n-1}$ Since $2^{n-1} = 2^{n-1}$
 $n! = (.2.3.4-...n > (.2.2.2....2)$

The convergent $n! > 2^{n-1} = 2^{n-1}$ is convergent.

4.
$$\sum_{n=1}^{\infty} \frac{1}{n+1}$$
 ("Guess" As $n \to \infty$ $\frac{1}{n+1} \approx \frac{1}{n}$, $\frac{\infty}{n}$ $\frac{1}{n}$ is divergent)

For $n > 1$ $\frac{1}{n+1}$ $\frac{1}{n}$. The Comparison test is in conclusive.

- The Limit Comparison Test. Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If
 - (a) $\lim_{n\to\infty} \frac{a_n}{b_n} = c > 0$, then either both series diverge or both series converge.
 - (b) $\lim_{n\to\infty}\frac{a_n}{b_n}=0$, and $\sum_{n=1}^{\infty}b_n$ is convergent, then $\sum_{n=1}^{\infty}a_n$ is also convergent.
 - (c) $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$, and $\sum_{n=1}^{\infty} b_n$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is also divergent.

We can now do Exercise (3).

• Exercises. Determine whether the series diverges or cenverges .

1.
$$\sum_{n=3}^{\infty} \frac{1}{n^2-4}$$
 (Green: a, n-s $\Rightarrow \frac{1}{n^2-4} \approx \frac{1}{n^2}$, $\sum_{n=3}^{\infty} \frac{1}{n^2}$ is convergent)

Limit comparison test with In= 1

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{\frac{1}{n^2-u}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{n^2}{n^2-u} = 1>0$$

2.
$$\sum_{n=1}^{\infty} \frac{2n^2 + 7n}{3^n(n^2 + 5n - 1)} \left\{ \text{Guens: As } n - 3 \infty \right. \frac{2n^2 + 7n}{3^n(n^2 + 5n - 1)} \sim \frac{2}{3^n} = 2\left(\frac{1}{3}\right)$$

$$\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$$
, convergent geometric series $\left(|\Gamma| = \frac{1}{3} < 1\right)$ $\int_{0}^{\infty} dx = \left(\frac{1}{3}\right)^{\frac{1}{3}}$

 $\lim_{n\to\infty} \frac{\frac{2n^{2}+7n}{3^{2}(n^{2}+5n-1)} = \lim_{n\to\infty} \frac{3^{2}(2n^{2}+7n)}{3^{2}(n^{2}+5n-1)} = 2>0$

$$\frac{3^{k}(2n^{2}+7n)}{3^{k}(n^{2}+5n-1)} = 2>0$$

$$\frac{3^{k}(2n^{2}+7n)}{3^{k}(n^{2}+5n-1)} = 2>0$$

$$\frac{3^{k}(2n^{2}+7n)}{3^{k}(n^{2}+5n-1)} = 2>0$$

is convergent.

Additional Examples: Test the series for convergence or divergence. Show all steps that lead to your answer.

Comparisor test:

Franzo
$$\frac{1+8inn}{10^n} = \frac{2}{10^n} = 2\left(\frac{1}{10}\right)^n$$
. Since $\frac{2}{10^n} = \frac{2}{10^n} =$

2.
$$\sum_{n=3}^{\infty} \frac{\ln n}{n}$$
 Divergence test: $\lim_{n\to\infty} \frac{\ln n}{n} = 3$ no conducion for $n>3$ $\lim_{n\to\infty} \frac{1}{n}$ is divergent. Therefore by the comparison test $\lim_{n\to\infty} \frac{\ln n}{n}$ is divergent.

Limit comparison testi an=
$$\frac{\ln n}{n}$$
, $\ln n = \frac{1}{n}$
 $\lim_{n \to \infty} \frac{\ln n}{n} = \lim_{n \to \infty} |n = \infty$. Since $\lim_{n \to \infty} \frac{1}{n}$ is divergent,