Bonding

What is Coulomb's Law?

Energy Profile:

Covalent Bonds

Electronegativity and Linus Pauling

2.1																
Н		_														
1.0	1.5											2.0	2.5	3.0	3.5	4.0
Li	Be											В	C	N	О	F
0.9	1.2											1.5	1.8	2.1	2.5	3.0
Na	Mg											Al	Si	P	S	Cl
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.7	0.9		1.3	1.5	1.7	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.7	0.9															
Fr	Ra															

Unequal Sharing

Polar Covalent Bond

Coordinate Covalent Bond

nic		

How can you theoretically determine what type of bond is forming?

 F_2

 H_2O

HC1

KCl

 CH_4

 NO_2

Lewis Structures

Valence electrons

Straight Forward Structures

 H_2

 Cl_2

 H_2O

 CH_4

 I_2

 NH_3

 C_2H_6

 CCl_4

 PCl_3

Structures Containing Multiple Bonds

 O_2

 C_2H_4

 CO_2

 N_2

 C_2H_2

CO

HCN

 C_2Cl_4

COCl₂

Complex Shapes/ Different Rules/ Ring Structures

PCl₅

 XeF_2

 SF_4

 I_3^-

 BeH_2

 PBr_5

 SF_6

 BF_3

 C_6H_6

VSEPR

Type	Picture	Shape	Example	Type	Picture	Shape	Example
A ₂ and AB ₂	•—•	Linear	H ₂ /CO ₂	AB_4E	-	Irregular tetrahedral (sea saw)	SF ₄
AB_3		Triangular	BCl ₃	AB_3E_2	4	T-shaped	ClF ₃
AB ₂ E		Angular or Bent	PbI ₂	AB_2E_3		Linear	XeF ₂
AB_4		Tetrahedral	CH ₄	AB_6		Octahedral	SF ₆
AB ₃ E		Triangular pyramidal	NH ₃	AB_5E		Square pyramidal	ClF ₅
AB_2E_2		Angular or Bent	H ₂ O	AB_4E_2		Square planar	XeF ₄
AB ₅		Triangular bipyramidal	PCl ₅	AB_7		Pentagonal bipyramidal	IF ₇

Resonance

What is resonance?

 NO_3^{-}

 NO_2^{-}

 XeO_3

Isomers

What is an isomer?

Draw the three Lewis Structures for $C_2H_2Cl_2$

What are cis and trans structures?

Free Radicals

Draw the Lewis Structure for NO_2 Why does it dimerize?

Lewis Acids and Bases

Formal Charge

How do you calculate formal charge?

Draw three Lewis Structures for the sulfate ion. Calculate the formal charge on sulfur for each.

Polarity

How can we distinguish between a polar bond and a polar molecule

Dipole moments

 H_2 HCl

BCl₃ NH₃

How does symmetry effect a dipole moment?

Why Hybridize?

Remember the shapes of the orbitals:

The formation of sp³ hybrid orbitals

sp² Hybridization

Figure 9.8 The formation of sp^2 hybrid orbitals

Steven S. Zumdahl, Chemistry, Third Edition, © 1993 by D. C. Heath and Company

sp Hybridization

Figure 9.14

The formation of *sp* hybrid orbitals

Steven S. Zumdahl, *Chemistry*, Third Edition, © 1993 by D. C. Heath and Company

dsp³ Hybridization

 d^2sp^3 Hybridization

How do we determine the Hybrid Orbital Number?

Number of things attached	Hybrid Orbital	Geometry around	Hybridization
to the central atom	Number	the central atom	

Delocalized Electron Model

Benzene as predicted by Hybrid Orbital Model

Benzene as predicted by Molecular Orbital Model

Some Cool Molecules

- 1. For each of the following molecules or ions:
 - a. Identify the central atom (or atoms)
 - b. Draw the Lewis structure, and find from that the number of sigma bonds and the number of unshared pairs on the central atom.
 - c. Identify the hybridization on the central atom.
 - d. Determine the geometry of the atoms and lone pairs.
 - e. Does the molecule have a dipole moment or other unusual features?

CH₄ CIF₃

 H_2O PI_5

 SF_6 I_3^-

 BH_3 SF_4

 NO_2^- BeCl₂

1999

Answer the following questions using principles of chemical bonding and molecular structure.

- (a) Consider the carbon dioxide molecule, CO₂, and the carbonate ion, CO₃²⁻.
 - (i) Draw the complete Lewis electron-dot structure for each species.
 - (ii) Account for the fact that the carbon-oxygen bond length in ${\rm CO_3}^{2-}$ is greater than the carbon-oxygen bond length in ${\rm CO_2}$.
- (b) Consider the molecules CF₄ and SF₄.
 - (i) Draw the complete Lewis electron-dot structure for each molecule.
 - (ii) In terms of molecular geometry, account for the fact that the CF_4 molecule is nonpolar, whereas the SF_4 molecule is polar.

1989

CF₄ XeF₄ ClF₃

- (a) Draw a Lewis electron-dot structure for each of the molecules above and identify the shape of each.
- (b) Use the valence shell electron-pair repulsion (VSEPR) model to explain the geometry of each of these molecules.