MATH 450 Assignment 2

Please submit using your Crowdmark link for this assignment by the due date.

- (1) Determine the closures of the following subsets of the ordered square.
 - (a) $A = \left\{ \frac{1}{n} \times 0 : n \in \mathbb{N} \right\}$
 - (b) $B = \left\{ \frac{1}{n} \times a : n \in \mathbb{N}, a \in \mathbb{Q} \right\}$
 - (c) $C = \{x \times 0 : 0 < x < 1\}$
 - (d) $D = \{ \frac{y}{2} \times y : 0 < y < 1 \}.$
- (2) Let $A \subseteq \tilde{X}$, $B \subseteq Y$ where \tilde{X} and Y are topological spaces. Show that in the space $X \times Y$, we have that

$$\overline{A \times B} = \overline{A} \times \overline{B}.$$

- (3) Show that a topological space X is Hausdorff if and only if the diagonal $\Delta = \{x \times x : x \in X\}$ is closed in $X \times X$.
- (4) Show that the T_1 axiom is equivalent to the condition that for each pair of points of a topological space X, each has a neighbourhood not containing the other.
- (5) If $A \subseteq X$ a topological space, we define the boundary of A by

$$\operatorname{Bd} A = \bar{A} \cap \overline{X - A}.$$

- (a) Show that $x \in \operatorname{Bd} A$ if and only if every neighbourhood of x contains a point in A and a point in X A.
- (b) Show that $\operatorname{Int} A$ and $\operatorname{Bd} A$ are disjoint, and $\bar{A} = \operatorname{Int} A \cup \operatorname{Bd} A$.
- (c) Show that $\operatorname{Bd} A = \emptyset$ if and only if A is both open and closed.
- (d) Show that U is open if and only if $\operatorname{Bd} U = \overline{U} U$.
- (e) If U is open, is it true that $U = \operatorname{Int} \bar{U}$? Justify your answer.
- (6) Find the boundary and the interior of each of the following subsets of \mathbb{R}^2 .

1

- (a) $A = \{x \times y : y = 0, x \in \mathbb{R}\}$
- (b) $B = \{x \times y : x > 0, y \neq 0\}$
- (c) $C = A \cup B$
- $(\mathbf{d}) \ D = \{x \times y : x \in \mathbb{Q}\}$