PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-063023

(43)Date of publication of application: 07.03.1995

(51)IntCI.

F01L 1/04

F01L 1/12 F01L 1/26

(21)Application number : 05-328072

(71)Applicant: BAYERISCHE MOTOREN WERKE AG

(22)Date of filing:

24.12.1993

(72)Inventor: UNGER HARALD

(30)Priority

Priority number : 93 4326331

Priority date: 05.08.1993

Priority country: DE

(54) VALVE GEAR ASSEMBLY FOR INTERNAL COMBUSTION ENGINE

(57)Abstract:

PURPOSE: To provide a valve gear assembly capable of adjusting a valve stroke process so as to be various and different from each

CONSTITUTION: This internal combustion engine is provided with at least two intake-stroke valves for each cylinder. The stroke processes of the stroke valves can be adjusted so as to be different from each other. This adjustment is made by an eccentric shaft 10. The eccentric shaft moves the supporting point of a transfer member between respective cams 5a and stroke valves 4. Both eccentric bodies 10a, 10a' attached onto the cylinder are of a different geometry from each other. The transfer member are supported by the eccentric bodies 10a, 10a' and formed by a locker lever operated by the cam 5a. The locker lever works onto a swing lever. Other transfer member includes a gate track 8a.

LEGAL STATUS

[Date of request for examination]

28.04.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3245492

[Date of registration]

26.10.2001

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[Industrial Application] It has at least two shuttle valves for every cylinder, and this shuttle valve acts on parallel mutually, and this invention is operated by the cam and the transfer member, respectively, and it relates to the moving valve mechanism of the internal combustion engine which can adjust so that the both-way processes of a shuttle valve may differ mutually. [0002]

[Description of the Prior Art] Such a moving valve mechanism is known for example, by the Federal Republic of Germany patent application disclosure No. 3739246 description. The transfer member is formed as a tilting lever in that case. Each tilting lever of the shuttle valve attached to one cylinder can be mutually connected through a clutch element. Since a cam which is different on each tilting lever is attached in the case of this well-known technical level, it is possible to operate a predetermined shuttle valve directly by suitable control of this tilting lever clutch element using the cam of other shuttle valves using the cam attached to it. The valve round trip process of this predetermined shuttle valve is changeable with it so that it may differ from the valve round trip process of other shuttle valves.

[0003] This well-known moving valve mechanism is each shuttle valve, and has the fault that only the both-way process established by the cam which exists actually can be generated. Other deformation is impossible in that case. Furthermore, the clutch element of a tilting lever or a transfer member receives very big mechanical load.

[0004]

[Problem(s) to be Solved by the Invention] Then, the technical problem of this invention is devising to the moving valve mechanism equipped with the shuttle valve which acts on two parallel a means a valve round trip process's being adjusted so that it may differ colorfully and mutually even if few per cylinder.

[0005]

[Means for Solving the Problem] In order to solve this technical problem, it can adjust with the pivotable eccentric body with which the supporting point of a transfer member was prepared on the common eccentric shaft, and the lift curves of at least two eccentric bodies established for every cylinder differ mutually.

[0006] By this invention, the supporting point of the transfer member prepared between each cam and each valve can be adjusted. or [that this transfer member is a tilting lever like an above-mentioned technical level] -- or they are a rocker lever or a swing lever. However, in addition to this, other operation forms are possible. For example, the gate element which has a gate orbit for rollers is sufficient. Migration of the supporting point of this swing lever, a tilting lever, or a gate element produces the both-way process which deformed about the shuttle valve attached, respectively. It is because it is delivered that cam strokes differ. this principle for changing a valve round trip process -- itself -- being well-known (the Federal Republic of Germany patent No. 3833540 description) -- this well-known operation form does not show how the supporting point of a transfer member is moved simply.

[0007] This is performed by the eccentric object by this invention. The transfer member is supported by this eccentric object. An eccentric object is the component of one common eccentric shaft. If two

or more cylinders make a train and are prepared, this eccentric shaft is prolonged over all cylinders. This eccentric shaft is simply pivotable. In this invention, the eccentric bodies attached to the cylinder of further each differ. By it, it can adjust so that the valve attached to each eccentric body of this so that it might be wanted can be operated so that it may differ mutually, and the both-way process of a valve may be differed mutually.

[0008]

[Example] Next, based on two advantageous examples, this invention is explained in detail. [0009] The reference figure 1 has shown an internal combustion engine's cylinder head. This cylinder head is vertically prolonged over two or more cylinders in <u>drawing 1</u> to the flat surface of a drawing. At least two inhalation-of-air paths 2 leading to a combustion chamber 3 are established in each cylinder. In this case, one shuttle valve 4 is formed in each inhalation-of-air path 2 so that it may be well-known. This shuttle valve is operated by cam 5a of a cam shaft 5. Cam 5a acts on a roller 6. This roller itself rolls on the tappet 7 of a shuttle valve 4.

[0010] As shown also in <u>drawing 3</u>, the roller 6 was formed in the shape of a stage, and is equipped with two or more rolling stages 6a, 6b, and 6c. Rolling stage 6a appears in a tappet 7, and, on the other hand, as for a roller 6, rolling stage 6b touches cam 5a. Since rolling stage 6c rolls the gate orbital 8a top of the gate element (fluting link element) 8, the roller 6 whole is guided along with gate orbital 8a with this gate element 8. By it, the gate element 8 and a roller 6 form the so-called transfer member 9 between cam 5a and a shuttle valve 4.

[0011] As shown in drawing, this transfer member 9 or the gate element 8 is supported by eccentric object 10a. Processing formation of this eccentric object is carried out from the eccentric shaft 10. If an eccentric shaft 10 rotates around the longitudinal axis 10b (two different locations are shown in drawing 1 and 2), the supporting point of the gate element 8 or a transfer element 9 will move. By this, the location of a roller 6 or gate orbital 8a also changes. This gate orbit guides the roller 6 moved by rotating cam 5a. By modification of the supporting point of the transfer member 9, as shown in drawing, in the same cam stroke, a different valve stroke arises. The maximum valve stroke h at the time of the maximum cam stroke is shown in drawing 1. On the other hand, in the case of drawing 2, 180 degrees of eccentric shafts 10 are rotating at the circumference of the longitudinal axis 10b. By sliding of the transfer member 9 produced as a result, the valve stroke of zero almost arises at the time of the maximum cam stroke. That is, the shuttle valve 4 is opened the fewest.

[0012] In order to ensure an above-mentioned function, the return lever 11 is required. Similarly, this return lever acted on rolling stage 6a of a roller 6, and has always pushed this roller against cam 5a. This return lever 11 is energized by compression spring 12a by the suitable approach. Therefore, compression spring 12a is pinched between press element 12b which acts on the return lever 11, and advice element 12c thrust into the cylinder head 1. Furthermore, the longitudinal direction guide 13 for the gate element 8 is shown theoretically.

[0013] As shown in drawing 3, two shuttle valves 4 and 4' are prepared in each cylinders 14a and 14b of the internal combustion engine cylinder head 1. The transfer member 9 of the proper which carried out the forms of the gate element 8 of a proper, 8', and the roller 6 of a proper and 6', and 9' are attached to each shuttle valve 4 of each cylinders 14a or 14b, and 4'. [cam 5a of a proper, 5a', and] Each gate element 8 and 8' are supported by eccentric object 10a of the proper of the eccentric shaft 10 prolonged over the cylinder head 1 whole, and 10a' in that case. As shown in drawing 1 and 2, both eccentricity object 10a attached to the cylinder heads 14a or 14b differs in the configuration from 10a'. Both eccentricity object 10a of a cylinder and 10a' have only the same point of the minimum eccentricity object stroke and the maximum eccentricity object stroke. By it, when the eccentric shaft 10 was in the location shown in drawing 2, both the shuttle valves 4 and 4' have almost been closed in spite of the maximum cam stroke. On the other hand, if the eccentric body 10 is in the location of drawing 1, both the shuttle valves 4 and 4' will carry out the maximum disconnection at the time of the maximum cam stroke (valve stroke h). On the other hand, at the time of the maximum cam stroke, when an eccentric shaft is in the mid-position, both the shuttle valves 4 and 4' are opened so that it may differ. It is possible to change so that valve stroke progress of each cylinder 14a or both this shuttle valve 4 of every 14b, and 4' may change mutually with accommodation of an eccentric shaft 10 by it.

[0014] This is clear from drawing 4 which shows various valve stroke progress in a graph. A crank angle or a cam shaft angle is written down in an axis of abscissa, and the valve stroke which can be attained on an axis of ordinate is filled in. The affiliation location of an eccentric shaft 10 is indicated about each five valve stroke progress selected in instantiation in that case. The numeric value which, on the other hand, indicated the numeric value indicated to the ascending curve in the downward curve about the 1st shuttle valve 4 expresses the required eccentric shaft location for 2nd shuttle valve 4' in that case. The location of an eccentric shaft 10 is indicated by the include angle in that case. In this case, the location of drawing 2 is equivalent to 0 degree, and the location of drawing 1 shows the location of 180 degrees.

[0015] Like previous statement, when an eccentric shaft location is 0 degree, both the shuttle valves 4 and 4' perform very short valve stroke motion. On the other hand, when an eccentric shaft location is 180 degrees, both the shuttle valves 4 and 4' attain the maximum valve stroke h. Although shuttle valve 4' maintains the minimum valve stroke also when eccentric shaft locations are 45 degrees and 90 degrees, in the case of this eccentric shaft location, the shuttle valve 4 is performing stroke motion which already clarified.

[0016] A valve round trip process in which two shuttle valves which act on parallel in each cylinder differ is desired in order to improve vortex-ization of the air supply into which it was put in gas exchange dynamics and a combustion chamber 3. According to the illustrated structure and other structures of explaining below, even if few, per cylinder, such a valve stroke property is simply acquired about the shuttle valve which acts on two parallel.

[0017] In the 2nd example shown in drawing 5, the reference number 1 has shown an internal combustion engine's cylinder head. This cylinder head is also vertically prolonged over two or more cylinders to the flat surface of a drawing in the graphic display. At least two inhalation-of-air paths 2 leading to a combustion chamber 3 are established in each cylinder. In this case, the shuttle valve 4 is formed in each inhalation-of-air path 2. This shuttle valve 4 and 4' are operated by cam 5a of a cam shaft which is one respectively, and 5a'. In this case, each cam acts on a rocker lever 16 and 16'. This rocker lever itself acts on the swing lever 17 and 17'. In the swing lever 17 and 17', the fluid pressure-type play compensator 18 and 18' are supported. The shuttle valve 4 and the shaft of 4' are supported by this play compensator. The rocker lever 16 and the swing lever 17 form the transfer member 19 or 19'. By this transfer member, the stroke of cam 5a or 5a' is transmitted to a shuttle valve 4 or 4'.

[0018] The transfer member 19 or the rocker lever 16 is supported by eccentric object 10a so that clearly. This eccentric object is processed from the eccentric shaft 19. If an eccentric shaft 10 rotates to the circumference of the longitudinal axis 10b, the supporting point of a rocker lever 16 or the transfer member 19 will move. By such change of the supporting point of the transfer member 19, a valve stroke which is different by the same cam stroke arises. It is because a motion orbit which is different to the swing lever 17 at the time of the revolution of cam 5a is progressed based on the support by which the rocker lever 16 was changed, so it moves so that the swing levers 17 may also differ, the shuttle valve 4 other than the maximum valve stroke carries out the minimum disconnection especially by this -- the valve stroke of zero can almost be attained. [0019] A rocker lever 16 is guided with the pin-slot-guide in which the whole was shown with the reference number 20. The rocker lever 16 is equipped with slot 20a so that clearly. The rocker lever is hung from pin 20b through this slot. This pin is being fixed to bearing part 20c of a cylinder. Based on this pin-slot-guide 20, a rocker lever 16 can occupy a different location. Of course, the pinslot-guide 20 can be formed in reverse. That is, pin 20b can be fixed to a rocker lever 15, and slot 20a can be prepared in cylinder head bearing part 20c. In order to ensure the above-mentioned accommodation function, further, it returns to heel 16a of a rocker lever, and the mandril 11 is acting. This return mandril has always forced the rocker lever 16 on cam 5a and eccentric object 10a. Therefore, the return mandril 11 is energized by compression spring 12a by the suitable approach. This compression spring is supported by advice element 12c included in the cylinder head 1. [0020] As shown in drawing 6 and 7, two shuttle valves 4 and 4' are prepared about each cylinder or combustion chamber 3 of the cylinder head 1 of an internal combustion engine. Cam 5a of a proper, 5a', and the transfer member 19 of a proper and 19' are prepared in each shuttle valve 4 and 4'. This transfer member has the rocker lever 16 of a proper, 16' and the swing lever 17 of a proper, and the

form of 17'. Each rocker lever 16 and 16' are supported by eccentric object 10a of the proper of the eccentric shaft 10 prolonged over the cylinder head 1 whole, and 10a' in that case. As shown in drawing 5, both eccentricity object 10a attached to the cylinder or the combustion chamber 3 differs in the configuration from 10a'. Both eccentricity object 10a of one cylinder or a combustion chamber and 10a' are the same only in respect of the minimum eccentric object stroke and the greatest eccentric stroke. In the location of the illustrated minimum eccentricity object stroke, both the shuttle valves 4 of one cylinder and 4' are almost closed, although a cam stroke is max. On the other hand, if it departs from a graphic display location, only 180 degrees of eccentric shafts 10 rotate and the eccentric body adjusts a rocker lever 16 and 16' based on the maximum eccentricity object stroke at that time of eccentric object 10a and 10a' by it, both the shuttle valves 4 and 4' will carry out the maximum disconnection in the case of the maximum cam stroke. On the other hand, in the midposition of an eccentric shaft 10, both the shuttle valves 4 and 4' open only an amount which is different when a cam stroke is max. Therefore, by adjusting an eccentric shaft 10, valve stroke progress of both this shuttle valve 4 and 4' is changeable so that it may differ mutually. [0021] When the transfer member 19 reaches by the rocker lever 16 and is formed of the swing lever 17, it becomes extremely reliable structure. This structure has further the advantage of saving space. In order to lessen friction loss of a moving valve mechanism, rolling friction arises in the contact range between cam 5a and a rocker lever 16, and the contact range between a rocker lever 16 and the swing lever 17. That is, a rocker lever 16 supports roller 16b, and the swing lever 17 is supporting roller 17b.

[0022] Roller 16b of each rocker lever 16 is guided in between both-arms 16c of the rocker lever selectively formed in the shape of 2 arms, and is supported by the roller shaft which was fixed to the arm of this rocker lever and which is not illustrated in detail. Based on the part of a rocker lever 16 which drawing 8 especially shows being formed in the shape of 2 arms, eccentric object 10a attached to this rocker lever 16 is formed of two parts especially for weight relief. That is, the eccentric disk of a proper is prepared for each arm 16c of a rocker lever. In this case, it is the same configuration as well as both the eccentricity disk with which only the width of face of roller 16b was mutually detached, was put in order, and was prepared.

[0023] In itself, the swing lever 17 is equipped with swing lever bearing 17a so that it may be well-known. This swing lever bearing was left and swing lever arm 17c is prolonged to 17d of hold sections. This hold section is supporting the fluid pressure type play compensator 18 which acts on a shuttle valve 4. Roller 17b is prepared in the side of swing lever arm 17c. By this unsymmetrical formation, it becomes very space-saving structure so that <u>drawing 9</u> may especially show. Roller 17b is similarly supported by the shaft in that case. On the other hand, this shaft is being fixed to swing lever arm 17c by other contiguity arm 17e. This contiguity arm 17e is similarly prolonged from swing lever bearing 17a to 17d of hold sections.

[0024] the same advantage produced when a transfer member is formed of a rocker lever 16 and the swing lever 17 it is reliable and concerning being easy and space-saving structure -- between cam 5a and the transfer members 19 -- and this contact surface when the contact surface in a transfer member is formed with Rollers 16b and 17b -- the crown -- also when formed as a ** or the straight sliding surface, of course, it is generated. Not only structure is easy, but both above equipments have the advantage that there is the highest dependability, in that case. Of course, a majority of other deformation of the structure of the example illustrated especially is possible, without deviating from the content of the claim.

[0025] It is as follows when the advantageous configuration of the moving valve mechanism of the internal combustion engine by this invention is mentioned.

1. Moving valve mechanism of multiple cylinder mold internal combustion engine characterized by establishing eccentric shaft 10 common for cylinders 14a and 14b arranged in the shape of train. [0026] 2. Moving valve mechanism characterized by forming transfer member 9 as roller 6 which rolls between tappet 7 of shuttle valve 4, and cam 5a, and being shown to it to this roller with gate element 8 which can be adjusted by eccentric object 10a.

[0027] 3. Moving valve mechanism characterized by equipping the roller 6 with different rolling stages 6a, 6b, and 6c which collaborate with gate orbital 8a of cam 5a, a tappet 7, or the gate element 8.

[0028] 4. Moving valve mechanism characterized by returning to a roller 6 and the lever 11 acting. [0029] 5. Transfer member 19, rocker lever 16 to which 19' is supported by eccentric object 10a and 10a', and acts on swing lever 17 and 17', moving valve mechanism characterized by being formed as 16'.

[0030] 6. Moving Valve Mechanism Characterized by Having at Least One of the Following Descriptions, - The rocker lever 16 selectively formed in the shape of 2 arms is equipped with roller 16b rolling on a cam 5a top. - The eccentric disk of one proper is prepared, respectively for both rocker-levers arm 16c. - Roller 17b by which the swing lever 17 was formed in the side of swing lever arm 17c is supported. The rocker lever 16 acted on this roller, and have extended to 17d of hold sections for play compensator 18 in which swing lever arm 17c supports a shuttle valve 4 from swing lever bearing 17a. - A rocker lever 16 is supported by an internal combustion engine's cylinder head 1 through the pin-slot-guide 20, and slot 20a is prepared in a rocker lever 16 or cylinder head bearing part 20c.

[0031]

[Effect of the Invention] As explained above, the moving valve mechanism of this invention has the advantage that a valve round trip process can be adjusted so that it may differ colorfully and mutually.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] Equip every cylinder (14a, 14b) with at least two shuttle valves, and this shuttle valve acts on parallel mutually. And are operated by the cam (5a, 5a') and the transfer member (9, 9', 19, 19'), respectively, and it sets to the moving valve mechanism of the internal combustion engine which can adjust so that the both-way processes of a shuttle valve may differ mutually. It can adjust with the pivotable eccentric object (10a, 10a') with which the supporting point of a transfer member (9, 9', 19, 19') was prepared on the common eccentric shaft (10). The moving valve mechanism of the internal combustion engine characterized by the lift curves of at least two eccentric bodies (10a, 10a') prepared in every cylinder (14a, 14b) differing mutually.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DRAWINGS

[Drawing 2]

[Drawing 4]

[Drawing 6]

[Translation done.]

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平7-63023

(43)公開日 平成7年(1995)3月7日

(51) Int. C1. ⁶ F 0 1 L	13/00	識別記号 3 0 1	· 庁内整理番号	F I 技術表示箇所
	1/04	001	D' 6965 – 3 G	
	1/12		B 6965 – 3 G	
	1/26		B 6965 – 3 G	•
<u>-</u>	審査請求	未請求請	求項の数 1 C	·) L (全8頁)
(21)出題番号	特頭	平5-328072		(71)出顧人 391009671
(22)出顧日	平成5年(1993)12月24日			バイエリッシェ モートーレン ウエルケ アクチエンゲゼルシャフト
(31) 優先権主張番号 P4326331.3 (32) 優先日 1993年8月5日 (33) 優先権主張国 ドイツ (DE)				BAYERISCHE MOTOREN WERKE AKTIENGESELLS CHAFT ドイツ連邦共和国 デー・80788 ミュン ヘン ベツエルリング 130 (72)発明者 ハラルト ウンガー ドイツ連邦共和国 デー・81927 ミュン ヘン アン デア トゥーフプライヒェ 1 (74)代理人 弁理士 伊藤 武久 (外1名)

(54)【発明の名称】内燃機関の動弁装置

(57)【要約】

【目的】 弁往復過程を多彩にかつ互いに異なるように 調節することができる動弁装置を提供する。

【構成】 内燃機関はシリンダ毎に少なくともに2個の 吸気ー往復弁4を備えている。この往復弁の往復過程は 互いに異なるように調節可能である。この調節は偏心軸 10によって行われる。この偏心軸は各カム5 a と各往 復弁4の間にある伝達部材19の支持点を移動させる。シリンダに付設された両偏心体10a,10a′は互いに異なる幾何学形状をしている。伝達部材19は偏心体10a,10a′に支持されカム5 a によって操作されるロッカーレバーによって形成されている。このロッカーレバーはスイングレバーに作用する。他の伝達部材は ゲート軌道8 a を備えている。

1

【特許請求の範囲】

【請求項1】 シリンダ(14a,14b)毎に少なく とも2個の往復弁を備え、この往復弁が互いに平行に作 用し、かつそれぞれカム (5 a, 5 a') と伝達部材 (9, 9', 19, 19') によって操作され、往復弁 の往復過程が互いに異なるように調節可能である内燃機 関の動弁装置において、伝達部材(9, 9′, 19, 1 9′)の支持点が共通の偏心軸(10)上に設けられた 回転可能な偏心体(10a,10a′) によって調節可 能であり、シリンダ(14a, 14b) 毎に設けられた 10 少なくとも2個の偏心体 (10a, 10a') のリフト カープが互いに異なっていることを特徴とする内燃機関 の動弁装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、シリンダ毎に少なくと も2個の往復弁を備え、この往復弁が互いに平行に作用 し、かつそれぞれカムと伝達部材によって操作され、往 復弁の往復過程が互いに異なるように調節可能である内 燃機関の動弁装置に関する。

[0002]

【従来の技術】このような動弁装置は例えばドイツ連邦 共和国特許出願公開第3739246号明細書によって 知られている。その際、伝達部材は傾動レバーとして形 成されている。一つのシリンダに付設された往復弁の個 々の傾動レバーは、クラッチ要素を介して互いに連結可 能である。この公知の技術水準の場合には、個々の傾動 レバーに異なるカムが付設されているので、この傾動レ バークラッチ要素の適当な制御によって、所定の往復弁 をそれに付設されたカムを用いて直接的に、あるいは他 30 の往復弁のカムを用いて操作することが可能である。そ れによって、この所定の往復弁の弁往復過程は、他の往 復弁の弁往復過程と異なるように変えることができる。 【0003】この公知の動弁装置は、個々の往復弁で、 実際に存在するカムによって設けられる往復過程だけし か発生することができないという欠点がある。その際、 他の変形は不可能である。更に、傾動レバーまたは伝達 部材のクラッチ要素はきわめて大きな機械的負荷を受け る。

[0004]

【発明が解決しようとする課題】そこで、本発明の課題 は、弁往復過程を多彩にかつ互いに異なるように調節す ることができる手段を、シリンダあたり少なくとも2個 の、平行に作用する往復弁を備えた動弁装置に講じるこ とである。

[0005]

【課題を解決するための手段】この課題を解決するため に、伝達部材の支持点が共通の偏心軸上に設けられた回 転可能な偏心体によって調節可能であり、シリンダ毎に

いに異なっている。

【0006】本発明により、個々のカムと個々の弁の間 に設けられた伝達部材の支持点が調節可能である。この 伝達部材は、上述の技術水準のように傾動レバーである かあるいはロッカーレバーまたはスイングレバーであ る。しかし、そのほかに他の実施形も可能である。例え ば、ローラ用のゲート軌道を有するゲート要素でもよ い。このスイングレバーまたは傾動レバーまたはゲート 要素の支持点が移動すると、それぞれ付設された往復弁 について、変形した往復過程が生じる。なぜなら、カム ストロークが異なるように伝達されるからである。弁往 復過程を変えるためのこの原理はそれ自体公知である (ドイツ連邦共和国特許第3833540号明細書) が、この公知の実施形は、伝達部材の支持点をどのよう にして簡単に移動させるかについて示していない。

2 .

【0007】これは本発明では偏心体によって行われ る。この偏心体に伝達部材が支持されている。偏心体は 共通の一つの偏心軸の構成要素である。複数のシリンダ が列をなして設けられていると、この偏心軸はすべての 20 シリンダにわたって延びている。この偏心軸は簡単に回 転可能である。本発明では更に、個々のシリンダに付設 された偏心体が異なってる。それによって、所望される ように、この個々の偏心体に付設された弁を互いに異な るように操作することができ、また弁の往復過程を互い に異なるように調節することができる。

[0008]

【実施例】次に、二つの有利な実施例に基づいて本発明 を詳しく説明する。

【0009】参照数字1によって内燃機関のシリンダへ ッドが示してある。このシリンダヘッドは図1では、図 面の平面に対して垂直に複数のシリンダにわたって延び ている。各シリンダには、燃焼室3に通じる、少なくと も二つの吸気通路2が設けられている。この場合、各吸 気通路 2 には公知のごとく 1 個の往復弁 4 が設けられて いる。この往復弁はカム軸5のカム5aによって操作さ れる。カム5aはローラ6に作用する。このローラ自体 は往復弁4のタペット7上で転動する。

【0010】図3にも示すように、ローラ6は段状に形 成され、複数の転動段6a,6b,6cを備えている。 40 ローラ6は転動段6aがタペット7に載り一方、転動段 6 bがカム 5 a に接触している。転動段 6 c がゲート要 素(溝付リンク要素)8のゲート軌道8a上を転動する ので、ローラ6全体はこのゲート要素8によってゲート 軌道8aに沿って案内される。それによって、ゲート要 素8とローラ6はカム5aと往復弁4の間にあるいわゆ る伝達部材9を形成する。

【0011】図から判るように、この伝達部材9または ゲート要素8は偏心体10aに支持されている。この偏 心体は偏心軸10から加工形成されている。偏心軸10 設けられた少なくとも2個の偏心体のリフトカーブが互 50 がその長手軸線10bの回りに回転すると(図1,2に

は二つの異なる位置が示してある)、ゲート要素8また は伝達要素9の支持点が移動する。これによって、ロー ラ6またはゲート軌道 8 a の位置も変わる。このゲート 軌道は回転するカム5aによって動かされるローラ6を 案内する。伝達部材 9 の支持点の変更により、図に示す ように、同じカムストロークの場合、異なる弁ストロー クが生じる。図1には、最大カムストロークのときの最 大弁ストロークhが示してある。これに対して、図2の 場合には、偏心軸10がその長手軸線10b回りに18 0°回転している。その結果生じる伝達部材9の摺動に 10 より、最大カムストロークのときにほとんど零の弁スト ロークが生じる。すなわち、往復弁4は最も少なく開放 している。

【0012】上述の機能を確実にするためには、戻しレ バー11が必要である。この戻りレバーは同様に、ロー ラ6の転動段6aに作用し、このローラを常にカム5a に押しつけている。この戻しレバー11は適当な方法で 圧縮ばね12 aによって付勢されている。そのために、 圧縮ばね12aは戻しレバー11に作用する押圧要素1 2 b とシリンダヘッド1 にねじ込まれた案内要素 1 2 c の間に挟持されている。更に、ゲート要素8のための長 手方向ガイド13が原理的に示してある。

【0013】図3に示すように、内燃機関シリンダヘッ ド1の個々のシリンダ14a, 14bには、2個の往復 弁4, 4´ が設けられている。個々のシリンダ14 a ま たは14bの各往復弁4, 4'には、固有のカム5a. 5 a′と、固有のゲート要素8,8′と固有のローラ 6,6′の形をした固有の伝達部材9,9′が付設され ている。その際、各ゲート要素8,8′はシリンダヘッ ド1全体にわたって延びる偏心軸10の固有の偏心体1 0a, 10a′に支持されている。図1, 2に示すよう に、シリンダヘッド14aまたは14bに付設された両 偏心体10a, 10a′はその形状が異なっている。シ リンダの両偏心体10a, 10a′は最小偏心体ストロ ークと最大偏心体ストロークの点だけが同一である。そ れによって、偏心軸10が図2に示す位置にあると、最 大カムストロークにもかかわらず、両往復弁4. 4′は ほとんど閉じたままである。これに対して、偏心体10 が図1の位置にあると、最大カムストロークのときに、 両往復弁4, 4′は最大開放する(弁ストロークh)。 これに対して、偏心軸が中間位置にあるときには、最大 カムストロークのときに両往復弁4, 41 は異なるよう に開放する。それによって、各シリンダ14aまたは1 4 b 毎のこの両往復弁4, 4′の弁ストローク経過は、 偏心軸10の調節によって、互いに異なるように変化す ることが可能である。

【0014】これは、いろいろな弁ストローク経過をグ ラフで示す図4から明らかである。横軸にクランク角ま たはカム軸角が記入され、縦軸に達成可能な弁ストロー

の個々の弁ストローク経過について、偏心軸10の所属 位置が記載してある。その際、上昇カープに記載した数 値は第1の往復弁4に関するものであり一方、下降カー プに記載した数値は第2の往復弁4′のための必要な偏 心軸位置を表している。その際、偏心軸10の位置は角 度によって記載されている。この場合、図2の位置は0 。 に相当し、図1の位置は180°の位置を示す。

【0015】既述のように、偏心軸位置が0°のとき に、両往復弁4,4′はきわめて短い弁ストローク運動 を行う。一方、偏心軸位置が180°のときには、両往 復弁4,4′はその最大弁ストロークhを達成する。偏 心軸位置が45°と90°のときにも、往復弁4′は最 小の弁ストロークを維持するが、この偏心軸位置の場合 往復弁4はすでにはっきりしたストローク運動を行って いる。

【0016】各シリンダにおいて平行に作用する二つの. 往復弁の異なる弁往復過程は、ガス交換ダイナミクスと 燃焼室3内に入れられた給気の渦流化を改善するために 望まれている。図示した構造によって、および次に説明 する他の構造により、シリンダ当たり少なくとも2個の 平行に作用する往復弁について、このような弁ストロー ク特性が簡単に得られる。

【0017】図5に示す第2の実施例では、内燃機関の シリンダヘッドが参照番号1で示してある。このシリン ダヘッドも、図示では図面の平面に対して垂直に複数の シリンダにわたって延びている。各シリンダには、燃焼 室3に通じる少なくとも二つの吸気通路2が設けられて いる。この場合、各吸気通路2には往復弁4が設けられ ている。この往復弁4,4′はカム軸の各々一つのカム 5 a, 5 a′によって操作される。この場合、各カムは ロッカーレバー16, 16'に作用する。このロッカー レバー自体はスイングレバー17,17′に作用する。 スイングレバー17,17′内には液圧式の遊び補償要 素18,18′が支承されている。この遊び補償要素に は往復弁4, 4′のシャフトが支持されている。ロッカ ーレバー16とスイングレバー17は伝達部材19また は19′を形成している。この伝達部材により、カム5 aまたは5 a′のストロークが往復弁4または4′に伝 達される。

【0018】明らかなように、伝達部材19またはロッ カーレバー16は偏心体10aに支持されている。この 偏心体は偏心軸19から加工されている。偏心軸10が その長手軸線10b回りに回転すると、ロッカーレバー 16または伝達部材19の支持点が移動する。伝達部材 19の支持点のこのような変化により、同じカムストロ ークで異なる弁ストロークが生じる。というのは、ロッ カーレバー16の変更された支持に基づいて、カム5a の回転時にスイングレバー17に対して異なる運動軌道 を進むので、スイングレバー17も異なるように移動す クが記入されている。その際、例示的に選び出した5つ 50 るからである。これによって特に、最大弁ストロークの

ほかに、往復弁4が最小開放するほとんど客の弁ストロ ークを達成することができる。

【0019】ロッカーレバー16は全体を参照番号20 で示したピンー長穴ーガイドによって案内される。明ら かなように、ロッカーレバー16は長穴20aを備えて いる。ロッカーレバーはこの長穴を介してピン20bに 懸吊されている。このピンはシリンダの支承個所 20 c に固定されている。このピン-長穴-ガイド20に基づ いて、ロッカーレバー16は異なる位置を占めることが できる。勿論、ピンー長穴ーガイド20は逆に形成可能 10 である。すなわち、ピン20bをロッカーレバー15に 固定し、長穴20aをシリンダヘッド支承個所20cに 設けることができる。上記の調節機能を確実にするため に更に、ロッカーレバーのかかと16aに戻し心棒11 が作用している。この戻し心棒はロッカーレバー16を 常にカム5aおよび偏心体10aに押付けている。その ために、戻し心棒11は適当な方法で圧縮ばね12aに よって付勢されている。この圧縮ばねはシリンダヘッド 1に組み込まれた案内要素 12 c に支持されている。

【0020】図6, 7に示すように、内燃機関のシリン 20 ダヘッド1の各シリンダまたは燃焼室3について、2個 の往復弁4, 4′が設けられている。各往復弁4, 4′ には、固有のカム5a, 5a'と固有の伝達部材19, 19′が設けられている。この伝達部材は、固有のロッ カーレバー16, 16' および固有のスイングレバー1 7, 17′の形をしている。その際、各ロッカーレバー 16, 16'は、シリンダヘッド1全体にわたって延び る偏心軸10の固有の偏心体10a, 10a′に支持さ れている。図5に示すように、シリンダまたは燃焼室3 に付設された両偏心体10a,10a′はその形状が異 30 なっている。一つのシリンダまたは燃焼室の両偏心体1 0a, 10a′は最小の偏心体ストロークと最大の偏心 ストロークの点でのみ同じである。図示しした最小偏心 体ストロークの位置では、一つのシリンダの両往復弁 4, 4'は、カムストロークが最大であるにもかかわら ずほとんど閉じている。これに対して、図示位置から出 発して、偏心軸10が180°だけ回転され、それによ って偏心体10a, 10a′のそのときの最大偏心体ス トロークに基づいて偏心体がロッカーレバー16、1 6′を調節すると、最大カムストロークの際に、両往復 40 弁4, 4´が最大開放する。これに対して、偏心軸10 の中間位置では、両往復弁4,4′はカムストロークが 最大のときに異なる量だけ開放する。従って、この両往 復弁4, 4′の弁ストローク経過は、偏心軸10を調節 することにより、互いに異なるように変えることができ

【0021】伝達部材19がロッカーレバー16によっ でおよびスイングレバー17によって形成されることに より、きわめて信頼性のある構造となる。この構造は更 損失を少なくするために、カム5aとロッカーレバー1 6の間の接触範囲およびロッカーレバー16とスイング レバー17の間の接触範囲に、ころがり摩擦が生じる。 すなわち、ロッカーレバー16はローラ16bを支持 し、スイングレバー17はローラ17bを支持してい

6

【0022】各ロッカーレバー16のローラ16bは、 部分的に2本腕状に形成されたロッカーレバーの両腕1 6 cの間を案内され、このロッカーレバーの腕に固定さ れた詳しく図示していないローラ軸に支承されている。 特に図8から判るロッカーレバー16の部分が2本腕状 に形成されていることに基づいて、特に重量軽減のた め、このロッカーレバー16に付設された偏心体10a は二つの部分によって形成されている。すなわち、ロッ カーレバーの各々の腕16cのために、固有の偏心ディ スクが設けられている。この場合、ローラ16bの幅だ け互いに離して並べて設けられた両偏心ディスクは勿 論、同じ形状である。

【0023】スイングレバー17はそれ自体公知のよう に、スイングレバー軸受17aを備えている。このスイ ングレバー軸受から出発してスイングレバーアーム17 cが収容部17dまで延びている。この収容部は往復弁 4に作用する液圧式遊び補償要素18を支持している。 スイングレバーアーム17cの側方にはローラ17bが 設けられている。特に図9から判るようにこの非対称の 形成により、きわめて省スペース的な構造となる。その 際、ローラ17bは同様に軸に支承されている。この軸 は一方ではスイングレバーアーム17cに、他方では他 の隣接アーム17eに固定されている。この隣接アーム 17eは同様に、スイングレバー軸受17aから収容部 17 dまで延びている。

【0024】伝達部材がロッカーレバー16とスイング レバー17によって形成されることにより生じる、信頼 性があって簡単で省スペース的な構造に関する同じ利点 は、カム5aと伝達部材19の間でおよび伝達部材内の 接触面がローラ16b, 17bによって形成されるとき ではなく、この接触面が中高状または真っ直ぐな滑り面 として形成されるときにも、勿論生じる。その際、上記 の両装置は構造が簡単であるだけでなく、最高の信頼性 があるという利点がある。勿論、特許請求の範囲の内容 を逸脱することなく、特に図示した実施例の構造の多数 の他の変形が可能である。

【0025】本発明による内燃機関の動弁装置の有利な 構成を挙げると、次の通りである。

1. 列状に配置されたシリンダ14a, 14bのために 共通の偏心軸10が設けられていることを特徴とする多 シリンダ型内燃機関の動弁装置。

【0026】 2. 伝達部材 9 が往復弁 4 のタペット 7 と カム5aの間で転動するローラ6として形成され、この に、空間を節約するという利点がある。動弁装置の摩擦.50 ローラが偏心体10aによって調節可能なゲート要素8

7

によって案内されていることを特徴とする動弁装置。

【0027】3. ローラ6がカム5a、タペット7またはゲート要素8のゲート軌道8aと協働する異なる転動段6a,6b,6cを備えていることを特徴とする動弁装置。

【0028】4. ローラ6に戻しレバー11が作用していることを特徴とする動弁装置。

【0029】5. 伝達部材19,19′が偏心体10 る。 a,10a′に支持されスイングレバー17,17′に 【図8】 作用するロッカーレバー16,16′として形成されて 10 である。 いることを特徴とする動弁装置。 【図9】

【0030】6. 次の特徴の少なくとも一つを備えていることを特徴とする動弁装置、

- 部分的に2本腕状に形成されたロッカーレバー16が、カム5a上を転動するローラ16bを備えている、
- 両ロッカーレバーアーム16cのためにそれぞれーつの固有の偏心ディスクが設けられている、
- スイングレバー17がスイングレバーアーム17 c の側方に設けられたローラ17bを支持し、このローラ にロッカーレバー16が作用し、スイングレバーアーム 2017 c がスイングレバー軸受17 a から往復弁4を支持 する遊び補償要素18用の収容部17 d まで延びている。
- ロッカーレバー16がピン-長穴-ガイド20を介して内燃機関のシリンダヘッド1に支承され、長穴20aがロッカーレバー16またはシリンダヘッド支承個所20cに設けられている。

[0031]

【発明の効果】以上説明したように、本発明の動弁装置は、弁往復過程を多彩にかつ互いに異なるように調節す 30 ることができるという利点がある。

【図面の簡単な説明】

【図1】本発明による動弁装置を備えた内燃機関シリンダヘッドの半分の断面図である。この場合、最大のカムストロークが最大の弁ストロークに変換されている。

【図2】図1と同じ構造を示す図である。この場合、最大のカムストロークが最小の弁ストロークを生じる。

【図3】図1のX方向の矢視図である。

【図4】複数の弁往復過程を示すグラフである。

【図5】本発明による他の動弁装置を備えた内燃機関シリンダヘッドの半分の断面図である。

【図6】一つのシリンダのための図5の動弁装置の斜視図である。

【図7】図6の動弁装置の他の方向から見た斜視図である。

【図8】この他の動弁装置の特に伝達部材を示す斜視図である。

【図9】図8の伝達部材の構成部品であるスイングレバーを示す斜視図である。

【符号の説明】

1 .	シリンダヘッド
4, 4'	往復弁
5 a, 5 a′	カム・、
6	ローラ
6a, 6b, 6c	転動段
7	タペット
8	ゲート要素
8 a	ゲート軌道
9, 9', 19, 19'	伝達部材
1 0	偏心軸
10a, 10a'	偏心体
1 1	戻しレバー
14a, 14b	シリンダ
1 6	ロッカーレバー
1 6 b	ローラ
1 6 c	ロッカーレバーアーム
17, 17'	スイングレバー
17 a	スンイングレバー軸受
1 7 c	スイングレバーアーム
1 7 d	収容部
1 8	遊び補償要素
2 0	ピンー長穴ーガイド
2 0 a	長穴

【図9】

【図4】

【図5】

【図6】

(8)

特開平7-63023

【図7】

