MT251P - Lecture 19

Chapter 6 – Subspaces, Dimension and Rank.

Section 6.1 – Linear Independence and Basis.

Definition 1.

The vectors $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k} \in \mathbb{R}^n$ are called linearly independent if the only $\alpha_i \in \mathbb{R}$ for $1 \le i \le k$ that satisfy

$$\alpha_1 \underline{u_1} + \alpha_2 \underline{u_2} + \dots + \alpha_k \underline{u_k} = \underline{0}$$

are
$$\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0$$

Definition 2.

If the vectors $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k} \in \mathbb{R}^n$ are not linearly independent, then we call them linearly dependent.

Example 1.

(a) (1,0,0),(0,2,0),(0,0,-1) are linearly independent in \mathbb{R}^3 since

$$\alpha_1(1,0,0) + \alpha_2(0,2,0) + \alpha_3(0,0,-1) = (0,0,0)$$

$$\iff$$
 $(\alpha_1, 2\alpha_2, -\alpha_3) = (0, 0, 0)$

$$\iff \alpha_1 = \alpha_2 = \alpha_3 = 0$$

(b) (2,0,0),(0,2,0),(2,4,0) are linearly dependent in \mathbb{R}^3 since

$$(2,0,0) + 2(0,2,0) + (-1)(2,4,0) = (0,0,0)$$

Example 2.

Are (0,2,1), (-3,1,1), (-6,6,4) linearly independent in \mathbb{R}^3 ?

Solution.

$$\alpha_1(0,2,1) + \alpha_2(-3,1,1) + \alpha_3(-6,6,4) = (0,0,0)$$

$$\iff$$
 $-3\alpha_2 - 6\alpha_3 = 0$, $2\alpha_1 + \alpha_2 + 6\alpha_3 = 0$, $\alpha_1 + \alpha_2 + 4\alpha_3 = 0$

This is a system of three linear equations in $\alpha_1, \alpha_2, \alpha_3$. One can show there are infinitely many solutions for $\alpha_1, \alpha_2, \alpha_3$ and so (0, 2, 1), (-3, 1, 1), (-6, 6, 4) are linearly dependent.

Definition 3.

A non–empty subset S of \mathbb{R}^n is called a subspace of \mathbb{R}^n if the following two conditions are satisfied:

(i)
$$\underline{x} + y \in S$$
, for all $\underline{x}, y \in S$

(ii)
$$\alpha x \in S$$
, for all $\alpha \in \mathbb{R}$, $x \in S$

Example 3.

Consider $S = \{(0, t) : t \text{ is a prime number}\}$ as a subset of \mathbb{R}^2 . Is S a subspace of \mathbb{R}^2 ?

Solution.

No, because $(0,3), (0,5) \in S$ but $(0,3) + (0,5) = (0,8) \notin S$.

Example 4.

Consider $S = \{(t, 0, 0) : t \text{ is an even integer}\}$ as a subset of \mathbb{R}^3 . Is S a subspace of \mathbb{R}^3 ?

Solution.

No, because $\frac{1}{2}(2,0,0) \notin S$.

Example 5.

Consider $S = \{(0,0,0,0)\}$ as a subset of \mathbb{R}^4 . Is S a subspace of \mathbb{R}^4 ?

Solution.

Yes, because the two conditions in definition 3 are satisfied.

Definition 4.

The vectors $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}$ span (or generate) a subspace S of \mathbb{R}^n if every $\underline{x} \in S$ can be written in the form:

$$\underline{x} = \alpha_1 \underline{u_1} + \alpha_2 \underline{u_2} + \dots + \alpha_k \underline{u_k}, \text{ for some } \alpha_i \in \mathbb{R}, 1 \le i \le k$$

In this case we call $\{\underline{u_1},\underline{u_2},\ldots,\underline{u_k}\}$ a spanning set of S.

Definition 5.

Suppose $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}$ are vectors in \mathbb{R}^n . A linear combination of $\underline{u_1}, \underline{u_2}, \dots, \underline{u_k}$ is an expression of the form:

$$\alpha_1 \underline{u_1} + \alpha_2 \underline{u_2} + \dots + \alpha_k \underline{u_k}, \text{ where } \alpha_i \in \mathbb{R}, \quad 1 \le i \le k$$