Radboud University Nijmegen

Outline

Calculus and Probability Theory: basic info and derivatives

B. Jacobs

Institute for Computing and Information Sciences - Digital Security Radboud University Nijmegen

Version: fall 2014

Organization

Foundations

Continuous functions and limits

Derivatives

Function investigation

About this course I

Lectures

- Weekly, 2 hours, on Tuesdays 10:45 (LIN 5)
- Presence not compulsory . . .
 - · but active attitude expected, when present
- Covering the same material as in:
 - Calculus lecture notes by Bernd Souvignier ("LNBS Calculus")
 - Kansrekening lecture notes by Bernd Souvignier ("LNBS Kansrekening")
 - we use some slides (work in progress), but also the chalkboard · topics as in LNBS, sometimes different examples
- Course URL:

www.ru.nl/ds/education/courses/analyse_2014/

About this course II Exercise sessions

- Also weekly meetings, on Fridays, 8:45, three locations
 - Presence not compulsory
 - Questions about homework and solving exercises as well
- Handing in homeworks is compulsory (at least 5/8)
 - · Homework exercises have to be done individually
- Assistants: Staff: Gergely Alpár, Ana Helena Sanchez; students: Safet Acifovic, Arjen Zijlstra
- Schedule:
 - New exercise on the web on Thursday (web page of the course), say in week n
 - You can try them yourself immediately and ask advice on Friday morning in week *n*
 - You can ask final questions, again on Friday in week n+1

Radboud University Nijmegen

Radboud University Nijmegen

About this course IV

Radboud University Nijmegen

About this course III

Exercise groups

- There will be three groups for the exercise classes, based on three levels of mathematical skills
- Rate your own skill honestly, according to:
 - strong, eg. $\geq 7\frac{1}{2}$ at secondary school

 - suboptimal, eg. little background (from HBO)
- Based on this input we will organise groups, and let you know, via Blackboard email
 - · the classifications of the groups will not be used explicitly

Examination

- Final, written exam (4 Nov., 8:30-10:30, HAL 2)
- Final mark is the average of:
 - 1 50% {Average homework grade}+ 50% Written exam
 - 2 (the exam mark must be ≥ 5)

About this course V

How to pass this course .

- Practice, practice, practice
- You don't learn it it by just staring at the slides not a spectator sport!
- Exam questions will be in line with exercises

Some special points

About this course VI

- You can fail for this course!
- 3ec means $3 \times 28 = 84$ hours in total
 - · Let's say 20 hours for exam
 - 64 hours for 8 weeks means: 8 hours per week!
 - on average 4 hours for studying & making exercises
- Why computer scientists need math?
 - problem solving
 - programming, esp. for embedded/hybrid systems
 - · computer hardware and architecture: computer networks, data encryption and compression, ...
- Coming up-to-speed is your own responsibility
 - if you lack background knowledge, or have forgotten basic mathematics: Voorkennis site (via webpage), or Wikipedia

Radboud University Nijmegen

Radboud University Nijmegen

Different numbers

$\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

- In the natural numbers \mathbb{N} you can add and multiply: x + ywith 0, $x \cdot y$ with 1.
- In the integers \mathbb{Z} you can also subtract: x y
- In the rationals \mathbb{Q} you can divide: $\frac{x}{y}$, for $y \neq 0$
- In the reals $\mathbb R$ you can take limits: $\lim r_n$, and thus also roots \sqrt{x} , for x > 0.
- ullet In the complex numbers ${\mathbb C}$ one can take all roots, in particular $\sqrt{-1} = i$.

Numbers: some basic properties

- associative laws, for addition and multiplication
 - a + (b + c) = (a + b) + c $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- commutative laws, for addition and multiplication
 - a + b = b + a $a \cdot b = b \cdot a$
- distributive law
- $a \cdot (b+c) = a \cdot b + a \cdot c$
- existence of an additive and multiplicative identities:
 - a + 0 = a = 0 + a $a \cdot 1 = a = 1 \cdot a$
- existence of additive and multiplicative inverses

$$a + (-a) = 0 = (-a) + a$$
 $a \cdot \frac{1}{a} = 1 = \frac{1}{a} \cdot a$, for $a \neq 0$

Radboud University Nijmegen

Radboud University Nijmegen

Basic definitions

Definition (Functions)

A real function $f: D \to \mathbb{R}$, for $D \subseteq \mathbb{R}$, is a rule which assigns to each $x \in D$ precisely one $f(x) \in \mathbb{R}$.

- In this situation the subset $D \subseteq \mathbb{R}$ is called the domain of f. Sometimes we write D(f) for D.
- \mathbb{R} is the codomain of f, and the subset $R(f) = \{f(x) | x \in D\} \subseteq \mathbb{R}$ is called the range of f.

Definition

More definitions

A function $f: D \to \mathbb{R}$ is injective or one-to-one if f(x) = f(y)implies x = y, for all $x, y \in D$.

A function $f: D \to \mathbb{R}$ is surjective or onto if its image is equal to its codomain

• This means: $R(f) = \mathbb{R}$, or: for each $y \in \mathbb{R}$ there is an $x \in D$ with f(x) = y. Symbolically: $\forall y \in \mathbb{R} \exists x \in D f(x) = y$.

For a function $f: D \to \mathbb{R}$, the graph $G(f) \subset D \times \mathbb{R}$ of f contains

A function $f: D \to \mathbb{R}$ is bijective if it is both injective and surjective. Then it is an isomorphism $f: D \stackrel{\cong}{\longrightarrow} \mathbb{R}$.

Example

- f(x) = |x|, "absolute value", with $D(f) = \mathbb{R}$, $R(f) = [0, \infty)$
- $f(x) = \sqrt{9 x^2}$
- f(x) = sign(x)

all pairs (x, f(x)). So, we write: $G(f) = \{(x, f(x)) | x \in D\}$.

Definition (Graph of a real function)

A function $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if f(x) is close

A function $f: D \to \mathbb{R}$ is continuous if it is continuous in all $a \in D$.

Choose $\epsilon = \frac{1}{2}$, then any $x \neq 0$ with $|x| < \delta$ has |sign(x)| = 1. The

More formally: $f: D \to \mathbb{R}$ is continuous in point $a \in D$ if:

 $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in D \,|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon.$

The function f(x) = sign(x) is not continuous in 0

Indeed, $\exists \epsilon > 0 \, \forall \delta > 0 \, \exists x \text{ with } |x - 0| = |x| < \delta \text{ but}$

function values around 0 do not fall into the ϵ -interval.

More on functions

Definition (Inverse and composition)

If a function $f: D \to \mathbb{R}$, is injective, we can define an inverse function $f^{-1}: R(f) \to D \subseteq \mathbb{R}$, namely:

- for $y \in R(f)$, say y = f(x), define $f^{-1}(y) = x$
- this x is uniquely determined: if f(x) = y = f(x'), then x = x', since f is injective
- by construction: $f(f^{-1}(y)) = y$ and also $f^{-1}(f(x)) = x$.

The composition of functions $f: X \to Y$ and $g: Y \to Z$ is the function $h = g \circ f : X \to Z$, for which h(x) = g(f(x)), for each $x \in X$.

A function $f:(-a,a)\to\mathbb{R}$ is even if f(-x)=f(x), for all $x \in (-a, a)$, and odd if f(-x) = -f(x), for all $x \in (-a, a)$

Continuous functions and limits

Radboud University Nijmegen

Example

Radboud University Nijmegen &

Continuous functions and limits

Limits

Definition

A function $f: D \to \mathbb{R}$ has limit b for $x \to a$ if: $\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in D \,|x - a| < \delta \Rightarrow |f(x) - b| < \epsilon.$ In that case we write $\lim_{x \to a} f(x) = b$. (Note: a does not have to be in D.)

Example

- $\lim_{x \to 2} \frac{x^2 4}{x 2} = \lim_{x \to 2} \frac{(x 2)(x + 2)}{x 2} = 4.$
- $\lim_{x\to 1} \frac{-1}{x-1}$ is undefined

as $\frac{df}{dx}$ ("Leibniz notation")

Limits involving infinity

 $|f(x)-f(0)|=|f(x)|\geq \epsilon$

Continuous functions

to f(a) for each x that is close to a.

Definition

We also need $\lim f(x)$ or $\lim f(x)$. What does this mean?

Definition

A function $f: D \to \mathbb{R}$ has limit b for $x \to \infty$ if: $\forall \epsilon > 0 \,\exists n \in \mathbb{N} \,\forall x \in D \, x > n \Rightarrow |f(x) - b| < \epsilon.$ In that case we write $\lim f(x) = b$. Formulate yourself what $\lim f(x) = b \text{ means.}$

Example

$$\lim_{x \to \pm \infty} \frac{1}{x} = 0 \qquad \lim_{x \to \pm \infty} \frac{6x^2 + 2x + 1}{5x^2 - 3x + 4}$$

$\lim_{x \to +\infty} \frac{2x^3}{x^2 + 1}$

Radboud University Nijmegen

Radboud University Nijmegen

Derivatives

Definition

A function $f: D \to \mathbb{R}$ is differentiable at a if $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. In this case the limit is denoted f'(a) and is called the derivative of f at a.

f is differentiable if f is differentiable at a for every $a \in D$. If $f(x) = \cdots$ then f' ("Lagrange notation") is sometimes written

We also define the tangent line to f at a to be the line through $(a, f(a)) \in G(f)$ with slope f'(a).

More examples

Example (Geometric interpretation)

Find a tangent line of a curve $f(x) = \frac{1}{x}$ in x = 2.

Example

Check that f(x) = |x| is *not* differentiable in 0.

(Differentiable implies continuous, but not the other way around, as this example shows.)

Differentiation rules

Derivatives of powers

Let $f, g: D \to \mathbb{R}$ be differentiable functions in $a \in D$

- For a constant function $f(x) = c, c \in \mathbb{R}$, we have f'(x) = 0
- f(x) = x, then f'(x) = 1.
- plus/minus rule $(f \pm g)'(a) = f'(a) \pm g'(a)$.
- scalar rule: $(c \cdot f)'(a) = c \cdot f'(a)$.
- multiplication rule $(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$.
- division rule $(\frac{f}{g})'(a) = \frac{f'(a)g(a) f(a)g'(a)}{g^2(a)}$.
- chain/composition rule $(g \circ f)'(a) = g'(f(a)) \cdot f'(a)$
- if f has an inverse f^{-1} , then $(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}$

Lemma

- **1** For $n \in \mathbb{N}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$
 - This can be shown by induction on n
- 2 In fact, for $n \in \mathbb{Z}$ and $f(x) = x^n$ we have $f'(x) = nx^{n-1}$
 - This follows from the previous point, using the division rule.
- **3** It can be shown that $\frac{dx^a}{dx} = ax^{a-1}$, for each $a \in \mathbb{R}$.

Derivation exercises

Example

- f(x) = (2+3x)(2-3x). Find f'.
- $y = x^5 3x^3 + 4x^2 3$. Find f'.
- $y = \sqrt{2 5x}$. Find f'.
- $f(x) = x^2$. Find $(f^{-1})'$.

Exponential, for $a \ge 0$

• $a^0 = 1$, $a^{x+y} = a^x \cdot a^y$

- $a^1 = a$, $a^{x \cdot y} = (a^x)^y$
- $a^{-x} = \frac{1}{2^x}$, and thus $a^{x-y} = \frac{a^x}{2^y}$

Recall exponential and logarithm

The logarithm is defined as inverse of power: $x = \log_a(y) \iff a^x = y$, for y > 0.

Logarithm

- $\log_a(a^x) = x$ and $a^{\log_a x} = x$
- $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$, and $\log_a(x^y) = y \cdot \log_a(x)$
- $\log_a(\frac{x}{y}) = \log_a(x) \log_a(y)$
- $\frac{\log_a x}{\log_a b} = \log_b x$

Radboud University Nijmegen

Introducing Euler's number e

Consider $f_a(x) = a^x$. Then:

$$f_a'(x) = (a^x)' = \lim_{h \to 0} \frac{a^{x+h} - a^x}{h} = \lim_{h \to 0} \frac{a^x (a^h - 1)}{h}$$
$$= a^x \cdot \lim_{h \to 0} \frac{a^{0+h} - a^0}{h} = a^x \cdot \lim_{h \to 0} \frac{f_a(0 + h) - f_a(0)}{h}$$
$$= a^x \cdot f_a'(0).$$

- We have: $f_a'(0) = 1$ for a = e = 2.71828...
- and thus $(e^x)' = e^x$
- The natural logarithm In uses base e_i in: In = \log_e

Important derivatives with logarithms

$$(a^{x})' = a^{x} \cdot \ln(a)$$
 and $\ln'(y) = \frac{1}{y}$

- We have $(e^{f(x)})' = e^{f(x)} \cdot f'(x)$ by the chain rule
- Thus: $(a^x)' = a^x \cdot \ln(a)$, since:

$$(a^{x})' = ((e^{\ln(a)})^{x})' = (e^{\ln(a) \cdot x})' = e^{\ln(a) \cdot x} \cdot \ln(a) = a^{x} \cdot \ln(a)$$

- For $f(x) = e^x$ we have $f^{-1}(y) = \ln y$
- We use the inverse function law $(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
- Thus $\ln'(y) = \frac{1}{f'(\ln y)} = \frac{1}{f(\ln y)} = \frac{1}{e^{\ln y}} = \frac{1}{y}$.

Logarithmic differentiation

Logarithmic differentiation, example

Definition

According to the chain rule:

$$(\ln f(x))' = \ln'(f(x)) \cdot f'(x) = \frac{1}{f(x)} \cdot f'(x) = \frac{f'(x)}{f(x)}$$

Briefly: $(\ln f)' = \frac{f'}{f}$. This is called the logarithmic derivative of fand this law is called logarithmic differentiation.

For $f(x) = \frac{6x}{\sqrt{x-1}}$ we can compute f'(x) via the fraction rule, but also by first taking logarithms on both sides:

$$\ln(f(x)) = \ln\left(\frac{6x}{\sqrt{x-1}}\right) = \ln(6x) - \ln((x-1)^{\frac{1}{2}}) = \ln(6x) - \frac{1}{2}\ln(x-1)$$

Differentiating on both sides gives:

$$\frac{f'(x)}{f(x)} = \frac{6}{6x} - \frac{1}{2} \cdot \frac{1}{x-1} = \frac{1}{x} - \frac{1}{2(x-1)} = \frac{2(x-1)-x}{2x(x-1)} = \frac{x-2}{2x(x-1)}$$

$$f'(x) = f(x) \cdot \frac{x-2}{2x(x-1)} = \frac{6x}{\sqrt{x-1}} \cdot \frac{x-2}{2x(x-1)} = \frac{3(x-2)}{(x-1)^{\frac{3}{2}}}$$

Radboud University Nijmegen

Recall sine, cosine and tangent

- geometric interpretation with $\sin(90^\circ) = \sin(\frac{\pi}{2}) = 1$ etc.
- $\sin^2(x) + \cos^2(x) = 1$
- sum rules: $\begin{cases} \sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y) \\ \cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y) \end{cases}$
- $\sin'(x) = \cos(x)$ and $\cos'(x) = -\sin(x)$
- $tan(x) = \frac{sin(x)}{cos(x)}$, with $tan'(x) = \frac{1}{cos^2(x)}$

Another example

Logarithmic differentation is useful for reducing products to sum, fractions to differences, and powers to products.

Take $f(x) = (\sin x)^x$.

$$\ln f(x) = \ln \left((\sin x)^x \right) = x \cdot \ln(\sin x)$$

Thus:

$$\frac{f'(x)}{f(x)} = \ln(\sin x) + x \cdot \frac{1}{\sin x} \cdot \cos x$$

And:

$$f'(x) = f(x) \cdot \left(\ln(\sin x) + \frac{x \cos x}{\sin x} \right) = (\sin x)^x \left(\ln(\sin x) + \frac{x \cos x}{\sin x} \right).$$

Radboud University Nijmegen

Overview: derivatives of special functions

- $f(x) = a^x$ then $f'(x) = a^x \cdot \ln a$. Special case $(e^x)' = e^x$
- $(\log_a x)' = \frac{1}{x \cdot \ln a}$, with special case $(\ln x)' = \frac{1}{x}$
- $(\sin x)' = \cos x$
- $(\cos x)' = -\sin x$
- $(\tan x)' = \frac{1}{\cos^2 x}$, where $\tan x = \frac{\sin x}{\cos x}$
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ where $\arcsin = \sin^{-1}$
- $(\arccos x)' = \frac{-1}{\sqrt{1-x^2}}$ where $\arccos = \cos^{-1}$
- $(\arctan x)' = \frac{1}{1+x^2}$ where $\arctan = \tan^{-1}$

Higher derivatives

Let f(x) a real function.

- One writes $f' = \frac{df}{dx}$
- The second derivative is written as: $f'' = \frac{d}{dx}f' = \frac{d^2f}{dx^2}$
- The *n*-the derivative is: $f^{(n)} = \frac{d}{dx} f^{(n-1)}$ with $f^{(0)} = f$

Example

Let
$$f(x) = x^n$$
, find $f^{(n)}(x)$.

Monotonicity and the derivative

Definition

Let $f: D \to \mathbb{R}$ be a function

- f is increasing if $x_1 < x_2 \Longrightarrow f(x_1) \le f(x_2)$, for all $x_1, x_2 \in D$
- f is strictly increasing if $x_1 < x_2 \Longrightarrow f(x_1) < f(x_2)$, for all $x_1, x_2 \in D$
- f is decreasing if $x_1 < x_2 \Longrightarrow f(x_1) \ge f(x_2)$, for all $x_1, x_2 \in D$
- f is strictly decreasing if $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$, for all $x_1, x_2 \in D$

Proposition

- If $f'(x) \ge 0$, $\forall x \in [a, b] \Rightarrow f$ is increasing on [a, b].
- If $f'(x) \le 0$, $\forall x \in [a, b] \Rightarrow f$ is decreasing on [a, b].

Radboud University Nijmegen

Radboud University Nijmegen &

Extremes and critical points

Definition

A critical point of a function $f: D \to \mathbb{R}$, is a point $a \in D$ such that f'(a) = 0. The value f(a) is called a critical value of f.

Fact

- We saw: extremes are critical if the function is differentiable
- The converse fails, see $f(x) = x^3$ in 0

In order to find the maximum and minimum of $f: D \to \mathbb{R}$ three kinds of points must be considered:

- the critical points of f in D,
- points x in D such that f is not differentiable at x,
- points on the edge of D, that is, points $x \in D$ with $[x - \delta, x) \cap D = \emptyset$ or $(x, x + \delta] \cap D = \emptyset$) for all $\delta > 0$.

Radboud University Nijmegen

Convexity and Concavity

Definition

A function f is convex (or concave) on an interval if for all a and b in the interval, the line segment joining (a, f(a)) and (b, f(b)) lies above (or below) the graph of f

Simply: convex = $\stackrel{\smile}{\smile}$, concave = $\stackrel{\smile}{\smile}$

A point of inflection (buigpunt) on a curve y = f(x) is a point at which f changes from concave to convex or vice versa.

Theorem

- If f''(x) > 0, for all $x \in (a, b)$, then f is convex on (a, b).
- If f''(x) < 0, for all $x \in (a, b)$, then f is concave on (a, b).
- If f has an inflection point at x and f" exists in $(x \delta, x + \delta)$, for some $\delta > 0$, then f''(x) = 0.

Definition

A real function $f: D \to \mathbb{R}$ has in $a \in D$ absolute minimum (or maximum) if $f(a) \le f(x)$ (or $f(a) \ge f(x)$), for all $x \in D$.

Absolute vs local, for extreme (= minimum or maximum)

This f has in $a \in D$ a <u>local minimum</u> (or maximum) if $\exists \delta > 0$ such that $f(a) \le f(x)$ (or $f(a) \ge f(x)$), for all $x \in (a - \delta, a + \delta)$.

Lemma

Let $f: D \to \mathbb{R}$ be differentiable in a. If f has a local minimum (or maximum) in a then f'(a) = 0.

Note: the first derivative need not exist in a local extreme. Example: f(x) = |x| has a minimum in 0.

Sufficient conditions for extremes

A differentiable function f(x) has a local minimum in a if $\exists \delta > 0$ such that f'(a) = 0, f'(x) < 0 for $x \in (a - \delta, a)$ and f'(x) > 0 on $(a, a + \delta)$. Especially, if f'(a) = 0 and f''(a) > 0, so that f' is increasing.

A differentiable function f(x) has a local maximum in a if $\exists \delta > 0$ such that f'(a) = 0, $f'(x) \ge 0$ for $x \in (a - \delta, a)$ and $f'(x) \le 0$ on $(a, a + \delta)$. Especially, if f'(a) = 0 and f''(a) < 0.

Example

Consider the function $f(x) = x^4 - 2x^2$. Critical points are -1,0,1. Which of them are min/max?

Radboud University Nijmegen

Asymptotes

Definition

- A vertical line x = a is called a vertical asymptote of f if the limit from below $\lim f(x)$ is infinite and the limit from above $\lim f(x)$ too.
- A horizontal line y = b is called a horizontal asymptote of f if $\lim_{x \to \infty} f(x) = b \text{ or } \lim_{x \to -\infty} f(x) = b.$
- A line y = ax + b is called a slant asymptote of f if $\lim_{x \to \pm \infty} f(x) - (ax + b) = 0$
 - find a, b as: $a = \lim_{x \to \infty} \frac{f(x)}{x}$ and $b = \lim_{x \to \infty} f(x) ax$

Example

 $f(x) = \frac{x^2 + 3x + 2}{x^2}$ has slant asymptote y = x + 5

Radboud University Nijmegen

Curve Sketching

Example

The following points should be investigated (for a function f(x)):

- $\mathbf{0}$ domain of f
- \bigcirc parity i.e. is f even or odd
- g points of intersection with x-axis and y-axis
- 4 behaviour of f on the edges of the domain
- asymptotes
- 6 monotonicity and min/max
- oncavity/convexity and points of inflection

Example

Sketch the graph of $f(x) = xe^{-x}$.

Radboud University Nijmegen

Functions in several variables

Example 2.

Example

Sketch the graph of $f(x) = x^2 + \frac{2}{x}$.

$$f'(x) = 2x - \frac{2}{x^2}$$
 $f''(x) = 2 + \frac{4}{x^3}$

	$(-\infty, -\sqrt[3]{2})$	$-\sqrt[3]{2}$	$(-\sqrt[3]{2},0)$	0	(0, 1)	1	$(1, +\infty)$
f	$\lim_{-\infty} f = +\infty$	0	$\lim_{0^{-}} f = -\infty$	∉ D(f)	$\lim_{0^+} f = +\infty$	3	$\lim_{+\infty} f = +\infty$
f'		_			_	0	+
f		>			>	loc.min.	7
f"	+	0	-			+	
-		: £1					

- So far we have see functions $f(x) = \cdots$ in one variable x.
- One can also have functions in several variables: $f(x, y) = \cdots$ or even $g(x_1, \ldots, x_n) = \cdots$
 - These are functions $D \to \mathbb{R}$, where $D \subseteq \mathbb{R}^n$, for some $n \in \mathbb{N}$

Example

- Distance from origin in \mathbb{R}^2 , given by $f(x,y) = \sqrt{x^2 + y^2}$
- In physics: $f(x, y, t) = e^{-t} \cdot (\sin x + \cos y)$ describes heat distribution in a plane, as a function of position and time.
- Arbitrarily looking functions: $f(x_1, x_2, x_3) = \sin(x_3) \cdot \frac{x_2^{10}}{\ln(x_1)}$

Radboud University Nijmegen

Radboud University Nijmegen

Differentiation in several variables: partial derivatives

- Given a function in several variables, say f(x, y), one can take the derivative in each variable separately. These are called partial derivatives.
- Now the 'Leibniz' notation $\frac{df}{dx}$ and $\frac{df}{dy}$ is convenient. For partial derivatives they are written as curly d, as in: $\frac{\partial f}{\partial x}$ and
- Thus:

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} \qquad \frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$

• The standard rules for derivatives apply, where the 'other' variables are treated as constants.

Partial derivatives example

- Consider $f(x, y, t) = e^{-t} \cdot (\sin x + \cos y)$
- - $\frac{\partial f}{\partial x} = e^{-t} \cdot \cos x$ $\frac{\partial f}{\partial y} = -e^{-t} \cdot \sin y$
 - $\frac{\partial f}{\partial t} = -e^{-t} \cdot (\sin x + \cos x)$
- We can continue with successive partial derivatives:

$$\frac{\partial^2 f}{\partial x \partial t} = -e^{-t} \cdot \cos x$$

The Theorem of Schwarz says that it does not matter in which order you do this: $\frac{\partial^2 f}{\partial x \partial t} = \frac{\partial^2 f}{\partial t \partial x}$ (assuming all these derivatives exist and are continuous)

Example: least squares regression line

- Suppose you have *n*-points in a plane, say $(x_1, y_1), \ldots, (x_n, y_n)$ as outcome of some experiment.
- You want to find the line y = ax + b that best approximates
- Consider then the function that takes the sum of the (squares of the) vertical distance

$$f(a,b) = (ax_1 + b - y_1)^2 + \cdots + (ax_n + b - y_n)^2$$

- You want to find the (minimal:

 - Look for \$\frac{\partial f}{\partial a} = 0\$ and
 With some linear algorithms details)
 - Nice combination of

B. Jacobs Version: fall 20

ces to all these		
$-b-y_1)^2+\cdots$	$\cdots + (ax_n + b - y_n)^2$	
(a, b) for which	h this expression is	
$rac{\partial f}{\partial b}=0$ Igebra this gives	s a solution. (See LNE	3S for
of techniques fro	om calculus and algebr	ra.
)14	Calculus	48 / 48