Tamizhan Skills SE RISE Internship – Machine Learning & AI

Task 1: Email Spam Detection using Naive Bayes

1 Name: Prachee

♠ B.Tech CSE (AI & ML), 2023-2027

Project Summary

>Objective:

To classify emails as "Spam" or "Not Spam" using a supervised machine learning algorithm like Naive Bayes or SVM.

>Tools Used:

Google Colab Python Scikit-learn (sklearn) Natural Language Toolkit (nltk) Email dataset (CSV)

>Approach:

- 1. Loaded and cleaned the email dataset
- 2. Preprocessed text using NLP techniques like tokenization, stopword removal, and stemming
- 3. Converted text into numerical format using TF-IDF or CountVectorizer
- 4. Trained a Naive Bayes classifier or SVM on the data
- 5. Evaluated performance using accuracy, precision, recall, and confusion matrix

>Result:

The final model accurately detects spam emails with good accuracy and can be used for email filtering systems in real-world applications.

Model Evaluation Screenshot:

Accuracy: 0.96 Precision: 1.0 Recall: 0.7466					
Classification	Report: precision	recall	f1-score	support	
0	0.96 1.00	1.00	0.98	965	
accuracy	1.00	0.75	0.85	150	
			0.97	1115	
macro avg	0.98	0.87	0.92	1115	
eighted avg	0.97	0.97	0.96	1115	

Code Used (Google Colab):

• Import libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import string
import nltk
from nltk.corpus import stopwords
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, precision_score,
recall_score, classification_report

nltk.download('stopwords')
```

Load and clean dataset

```
# Load the CSV file
data = pd.read_csv('spam.csv', encoding='latin-1')
```

```
# Keep only important columns
data = data[['v1', 'v2']]
data.columns = ['label', 'text']
# Display first 5 rows
data.head()
stop words = set(stopwords.words('english'))
def preprocess text(text):
  text = text.lower() # Lowercase
  text = ".join([char for char in text if char not in
string.punctuation]) # Remove punctuation
  words = text.split()
  words = [word for word in words if word not in stop words] #
Remove stopwords
  return ''.join(words)
data['clean_text'] = data['text'].apply(preprocess_text)
# Show cleaned data
data[['text', 'clean text']].head()
```

• Preprocess text

```
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(data['clean_text'])

# Convert labels: ham = 0, spam = 1
y = data['label'].map({'ham': 0, 'spam': 1})

# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Train model

```
model = MultinomialNB()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
```

• Evaluate model

```
print("Accuracy:", accuracy_score(y_test, y_pred))
print("Precision:", precision_score(y_test, y_pred))
print("Recall:", recall_score(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred))
```

→ This model can be extended using deep learning (LSTM) or deployed using Streamlit for live spam detection.