2023-2024 Assignment#1 - The CPU Emulator, Due Date: March 27th 2024

Introduction

This assignment aims to make students comfortable with a basic computer system and its functionalities. For this homework, you are free to use any function from the Java language.

Description

Write a CPU emulator software that supports a basic instruction set (15 instructions) given below. Assume that the computer has 256 bytes of available memory (**M**) initially set to zero. Your emulator should load a program code from a text file. For simplicity you can store the program code in any data type you like. The use of your emulator is like:

java a1YourStudentId program.txt

The following example code is an app that can compute the sum of the numbers between 0 and 20. Your emulator must execute this sample code at minimum. Note that I may test your emulator with any code that is supported by the instruction set. You can implement your code in **Java**. Assume that initially all flags are set to zero.

You **cannot** write all your code under the main function, i.e. you must write user-defined functions and use them. Here is a sample program.txt file.

%A Hello world app that computes the sum of the numbers between 0 to 20

- 0 START
- 1 LOAD 20
- 2 STORE 200
- 3 LOAD 0
- 4 STORE 201
- 5 STORE 202
- 6 CMPM 200
- 7 CJMP 15
- 8 LOADM 202
- 9 ADDM 201
- 10 STORE 202
- 11 LOADM 201
- 12 ADD 1
- 13 STORE 201
- 14 JMP 6
- 15 LOADM 202
- 16 DISP
- 17 HALT

Instruction	Short description	Description
START	Start execution	Starts the program execution
LOAD X	Load immediate	Load the immediate value X to AC
	value	Ex:
		LOAD 25 means
		AC=25
LOADM	Load a memory	Load memory value stored at M[X] to AC
M[X]	value	
STORE X	Store a value	Store value in AC to memory location M[X]
		Ex:
		STORE 140 means
		M[140]=AC
CMPM	Compare	If the integer value in AC is greater than value in M[X] then set F flag to 1
M[X]		If the integer value in AC is less than integer value in M[X] then set F flag to -1
		If the integer value in AC is equal to integer value in $M[X]$ then set ${f F}$ flag to ${f O}$
CJMP X	Conditional Jump	Update the PC with X if the F flag value is positive

JMP X	Unconditional	Update the PC value with X
	Jump	Ex:
		JMP 114
		PC=114
ADD X	Immediate	Add immediate value of X to AC
	Addition	Ex:
		ADD 67 means
		AC=AC+67
ADDM	Addition with	Add Memory value of M[X] to AC
M[X]	memory	Ex:
		ADDM 180 means
		AC=AC+M[180]
SUBM	Subtraction with	Subtract Memory value of M[X] from AC
M[X]	memory	Ex:
		SUBM 150 means
		AC=AC-M[150]
SUB X	Immediate	Subtract immediate value of X from AC
	Subtraction	Ex:
		SUB 75 means
		AC=AC-75
MUL N	Immediate	Multiply AC with immediate value of N
	Multiplication	Ex:
		MUL 4 means
		AC=AC×N
MULM N	Multiplication with	Multiply AC with M[N]
	memory	Ex:
		MULM 4 means
		AC=AC×M[4]
DISP	Display	Display the value in AC on screen
HALT	Stop execution	Stop Execution

IMPORTANT!

If your code does not compile, then you will get **zero**. Please be careful about this and double check your code before submission.