Diamonds Projeto

Robson Silva

Entendendo as variáveis

	Column	Description
	Price	Price in US dollars (326-18,823)
	Carat	Weight of the diamond (0.25.01)
4C's	Cut	Quality of the cut (Fair, Good, Very Good, Premium, Ideal)
703	Color	Diamond colour, from J (worst) to D (best)
	Clarity	A measurement of how clear the diamond is (I1 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best))
	х	Length in mm (010.74)
	у	Width in mm (058.9)
	z	Depth in mm (031.8)
	Depth	Total depth percentage = z / mean(x , y) = 2 * z / (x + y) (4379)
	Table	Width of top of diamond relative to widest point (4395)

"Diamond carat weight is the measurement of how much a diamond weighs. A metric "carat" is defined as

200 milligrams."

https://www.brilliance.com/education/diamonds/depth-table

Essentially, anything between 50 and 69 percent is considered alright. However, the <u>most ideal</u> <u>TABLE PERCENTAGES are between 54 and</u> <u>60 percent.</u> At this proportion, the table is large enough to allow light to enter the stone at the correct angles to reflect and refract off the smaller facets below."

Análises do Dataset

- Criação de novas features;
- Regressão Linear.

Inserindo novas colunas:

- Volume;
- Densidade;
- Carat x Volume;
- **3Cs:** Clarity x Cut x Color
- 3Cs x Vol

Dataset pronto para Regressão:

	carat	cut	color	clarity	depth	table	price	x	у	z	clarityNew	colorNew	cutNew	volume	density	carat*Vol	3Cs	3Csxvol
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43	2	6	5	10.001411	0.022997	2.300325	60	600.084672
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31	3	6	4	9.033990	0.023246	1.897138	72	650.447276
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31	5	6	2	9.968566	0.023073	2.292770	60	598.113939
3	0.29	Premium	- 1	VS2	62.4	58.0	334	4.20	4.23	2.63	4	2	4	12.232621	0.023707	3.547460	32	391.443883
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75	2	1	2	13.591922	0.022808	4.213496	4	54.367689

Definindo uma função para Múltiplas Análises

```
## Function for comparing different approaches
 2 from sklearn.model selection import train test split
   def score dataset(df):
       model = LinearRegression()
       y = df.price
       results = []
       for i in list(df.columns):
           if type(df[i][0]) != str:
 9
               X = df[[i]]
10
               X train, X test, y train, y test = train test split(X, y, test size=0.2, random state = 0)
11
               model.fit(X train, y train)
               preds = model.predict(X test)
12
13
               results.append( (i, mean absolute error(y test,preds), model.score(X train, y train) ) )
       return results
14
```

Analisando a performance

```
[('carat', 1010.6385120654585, 0.8496675874577887),
('depth', 3062.993107599667, 0.0001524325286271777),
('table', 3013.202731588257, 0.01649906126461831),
('price', 4.2722411210737817e-13, 1.0),
('x', 1371.3344701089952, 0.7869746343926203),
('y', 1369.231589508964, 0.7891432918567728),
('z', 1390.5284414225846, 0.7778587353338537),
('clarityNew', 2970.645934437729, 0.021697735375831306),
('colorNew', 2987.5658365267927, 0.030145110949522436),
('cutNew', 3048.1165441561043, 0.002819880901487881),

('volume', 1001.8440202571396, 0.8528797670926731),
('density', 2993.550579312727, 0.02004459763267541),
('carat*Vol', 1036.6571502159306, 0.7989266741237522),
('3Cs', 2921.741694038112, 0.037645135414547504),
('3Csxvol', 2474.637933069794, 0.2849633172127253)]
```

score dataset(diamondsNew)

Aplicando a realidade

```
1 data = diamondsNew.query('clarityNew == 5 and colorNew == 6 and cutNew == 4')
1 sns.scatterplot(x = data.volume , y= np.log(data.price));
```


Mean Absolute Error: 0.1328

Score: 0.9580

r2_score ScikitLearn: 0.963

Regressão usando múltiplas variáveis

```
1  X = diamondsNew[['clarityNew','colorNew','cutNew','volume']]
2  y = diamondsNew.price
3  X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state = 0)
4  model = LinearRegression()
5  model.fit(X_train, y_train)
6  preds = model.predict(X_test)
7  print(f'Mean Absolute Error: {mean_absolute_error(y_test,preds)}')
8  print(f'Score: {model.score(X_train, y_train)}')
9  print(f'r2_score ScikitLearn: {r2_score(y_test, preds)}')
```

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n-1}{n-p-1}$$

Mean Absolute Error: 856.4662

Score: 0.9050

r2_score Scikit Learn: 0.9052284

N = is the number of points of data sample. p = is the number of independent regressors.

R2 adjusted: 0.9051933

Analisando os gráficos

Analisando os gráficos

Free templates for all your presentation needs

For PowerPoint and Google Slides

100% free for personal or commercial use

Ready to use, professional and customizable

Blow your audience away with attractive visuals