

NORDA TECHNICAL NOTE 26

AD A 0 79886

THERMISTOR ARRAY IMPEDANCE CONSIDERATIONS

CLIFFORD R. HOLLAND

Ocean Technology

Code 350

Naval Oceanographic Laboratory

90

June 1978

UNLIMITED DISTRIBUTION

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

NAVAL OCEAN RESEARCH AND DEVELOPMENT ACTIVITY
National Space Technology Laboratories
NSTL Station, Ms. 39529

80 1 21 024

EXECUTIVE SUMMARY

This study examines the effects of cable resistance changes on temperature measurement accuracy when using a typical thermistor array for ocean temperature measurements. The analysis demonstrates that while some of the effects can be calculated or calibrated out, the major effects of insulation leakage can not be so corrected. Depending on choice of thermistor, measurement errors as large as a few degrees Celsius are possible, with errors of a few tenths of a degree Celsius likely. Even with great care, errors of a few hundredths of a degree Celsius are probable. To avoid sensitivity to cable impedance changes, it is strongly recommended that appropriate signal conditioning electronics be utilized at the thermistor sensor. The use of signal conversion and line driving electronics will insure that the accuracy of measured parameters will be maximally preserved during transmission to the output end of the array.

ACCESSION for	
NTIS	White Section
DDC	Buff Section 🔲
UNANNOUNCED	
JUSTIFICATION	
	AVAILABILITY COOKS and/or SPECIAL
4	

THERMISTOR ARRAY IMPEDANCE CONSIDERATIONS

This analysis studies the effects of changing transmission line impedance on the accuracy of thermistor temperature data. Changes in transmission line impedance result primarily from temperature induced series resistance changes in the conductors and shunt resistance changes due to leakage of the conductor insulating jacket.

Consider the following thermistor array configuration and its distributed and lumped parameter equivalent circuits:

Typical of Each Array Element

 ℓ = line length to Thermistor Element

where:

 R'_{s} = Elemental Series Resistance

 $R_{L}^{'}$ = Elemental Shunt Resistance

 R_T = Thermistor Resistance

LUMPED PARAMETER EQUIVALENT

WHERE:

 R_{S1} = Series Resistance Between Output & Shunt Leakage

 R_{S2} = Series Resistance Between Shunt Leakage & Thermistor

R, = Shunt Leakage Resistance

R, = Thermistor Resistance

Z_{in} = Combined Resistance of Cable and Thermistor. It is this resistance that will be interpreted as a measured temperature

The signal frequencies being dwelt with here are so low as to be essentially \mathbb{D}^c and so the analysis which follows is one of simple resistance dividers.

The "Ideal" Situation

In the ideal situation R_{L} is extremely high, $R_{S1}+R_{S2}$ is very very low, and R_{T} is in between. $R_{S1}+R_{S2}$ is determined by the material type and size selected for the conducting cables. Table 1 gives resistance values for copper wire of various sizes 0 200 D per 1000 linear feet.

* TABLE 1 - COPPER WIRE DC RESISTANCE

AWG SIZE	HARD DRAWN @ 20°C	MEDIUM DRAWN @ 20°C	SOFT DRAWN @ 20°C
20	10.5Ω	10.5Ω	10.12
22	16.912	16,80	16.20
24	26.7 Ω	26.6 Ω	25.7 Ω
26	72.7 Ω	42.4 Ω	41.0Ω
28	67.9 Ω	67.6Ω	65.3 ₂

Let's assume our thermistor array will be approximately 1000 m (3000 ft.) long and that we will use AWG #22 wire for the thermistor signal transmission. The furthest thermistor from the readout end will "see" the greatest $R_{\rm S1}+R_{\rm S2}$ effect while the closest thermistor will "see" the least effect. If we wish our outputs to be reasonably independent of $R_{\rm S1}+R_{\rm S2}$ so as to avoid individual and unique calibration of each thermistor/cable combination, then $R_{\rm T}$ must be chosen such that:

$$\frac{R_T}{2(R_{S1} + R_{S2})}$$
 = 100 for a 1% error (approx.)

$$\frac{R_7}{2(R_{S1} + R_{S2})}$$
 = 1000 for a 0.1% error (approx.)

*Standard Handbook for Electrical Engineers, Tenth Edition, Pages 4-47, 4-48, McGraw-Hill 1969.

$$\frac{RT}{2R_{S1} + R_{S2}}$$
 = 10,000 for a 0.01% error (approx.)

For the furthest thermistor then:

$$R_{S1} + R_{S2} = 16.8\Omega* (3) = 50.4\Omega$$

and $2(R_{S1} + R_{S2}) = 100.8\Omega$

*AWG 22 Medium drawn @ 20°C

For the nearest thermistor (assuming 50' below surface)

$$2(R_{S1} + R_{S2}) = 2(16.8) \frac{50}{1000} = 1.68 \Omega$$

In order that (R_{S1} + R_{S2}) X 2 be less than 1% of R_T, then R_T must = 50.4 X 100 = 5040 Ω or greater (1% effect) or R_T must = 50.4 x 1000 = 50K Ω for 0.1% effect or R_T must = 50.4 X 10,000 = 500 K Ω for 0.01% effect.

A reasonable compromise in selecting R_T would be a value between $10 K\Omega$ and $40 K\Omega$ at a temperature that is mid-scale of the measurement range. Two Ysi thermistors (type 44006 & 44008) satisfy this requirement. Their characteristic curves are shown in Figure 1 on the next page.

Let us further assume a measurement range of 0° C to 40° C; the thermistor resistance variation will be as follows (See Figure 1):

Type	<u>0°C</u>	<u>10°C</u>	<u>20°C</u>	<u>30°C</u>	<u>40°C</u>
44006	29.49KΩ	18.79KΩ	12.26ΚΩ	8194Ω	5592Ω
44008	94.98ΚΩ	58.75ΚΩ	37.30ΚΩ	24.27ΚΩ	16.15ΚΩ

One could also use the Ysi thermilinear element type 44212 in resistance mode where $R_T = (-129.163)T+13698.23$

Type	0°C	10°C	20°C	30°C	40°C
<u>Type</u> 44212	13698.23Ω	12406.6Ω	11114.97Ω	$\overline{9823.34}$ Ω	8531 .71Ω

If a thermistor is chosen such that R $_{T}$ @ 20°C is say 12K $\!\Omega_{\star}$, then R $_{L}$ must be as follows:

$$R_L$$
= 12K Ω (100) = 1.2M Ω for a 1% effect (approx.)

$$R_i = 12K\Omega$$
 (1000) = 12.0M Ω for a 0.1% effect (approx.)

$$R_L = 12K\Omega$$
 (10,000) = 120M Ω for a 0.01% effect (approx.)

In summary, then, we have the following initial thermistor array design using "rule of thumb" resistance loading considerations:

FIGURE 1 - Thermistor Curves

Now let's look at some parameter variations and the resultant effects on the accuracy of the signal output. The following tabulations illustrate the deviation from "normal" operation caused by the parameter change specified.

			in AT VARIOU PUT RESISTAN	S CONDITIONS CE AT:	(See code below)
Condition Code	<u>0°C</u>	10°C	20°C	<u>30°C</u>	40°C
1	29.49ΚΩ	18.79KΩ	12.26KΩ	8.194ΚΩ	5.592ΚΩ
2	29.50 ΚΩ	18.86KΩ	12.35ΚΩ	8.288K Ω	5.690 KΩ
3	28.74ΚΩ	18.54ΚΩ	12.21ΚΩ	8.227ΚΩ	5.661KΩ
4	27.94ΚΩ	18.21ΚΩ	12.06KΩ	8.161ΚΩ	5.630ΚΩ
5	22.85 KΩ	15.90ΚΩ	11.01ΚΩ	7.667K Ω	5.391ΚΩ
6	28.80 ΚΩ	18.60ΚΩ	12.27ΚΩ	8.286KΩ	5.720ΚΩ
7	28.89 ΚΩ	18.69ΚΩ	12.36ΚΩ	8.380 KΩ	5.814ΚΩ
8	13.613ΚΩ	12.354ΚΩ	11.092ΚΩ	9.828KΩ	8.559 ΚΩ
9	12.137ΚΩ	11.128ΚΩ	10.094ΚΩ	9.037ΚΩ	7.954ΚΩ
10	13.698ΚΩ	12.407ΚΩ	11.115ΚΩ	9.823ΚΩ	8.532ΚΩ
11	13.780ΚΩ	12.492ΚΩ	11.203ΚΩ	9.914ΚΩ	8.625ΚΩ
Condition Code		Analy	sis Conditio	ns	
1	Type 440	6 Thermistor	alone (No 1	oading)	
2	Type 4400	6 with R _{S1} =	$R_{S2} = 25.2\Omega$	(AWG #22) an	$dR_L = 10M \Omega$
3	ıi II	11 11	ıı ıı	H	$R_{\perp} = 1M \Omega$
4	µ 11	11 11	ı •	et	$R_L = 500 K\Omega$
5	jj ti	11 11	, , ,	11	$R_L = 100K \Omega$
6	p H	" R _{S1} =	= R ₅₂ = 39.90	2 (AWG #24) AN	$DR_L = 1M\Omega$
7	n 11	" R _{SI} =	R _{S2} = 63.60	(AWG #26)	R II
8	Type 4	1212 with R _{SI}	= R _{S2} = 25.	2Ω (AWG #22)	and R $_{L}$ = 1M Ω
9	n 11	н (н н	11	$R_{t} = 100 K\Omega$
10	Type 4	4212 Thermis	tor alone (No	o loading)	
11	js 11	with R _S	= R _{S2} = 25	.2 Ω (AWG #22)) and R $_{L}$ = 10M Ω

TABLE 3 - TEMPERATURE READING ERROR FOR TABLE 2
MEASUREMENT ERROR AT
THERMISTOR TEMP. OF:

CODE	<u>0∘c</u>	<u>10°C</u>	20°C	30°C	40°C
1	0	0	0	0	0
2	07°C	08°C	17°C	~.29°C	46°C
3	+.56°C	+.31°C	+.10°C	10°C	32°C
4	+1.17°C	+.72°C	+.41°C	+.11°C	18°C
5	+4.59°C	+3.84°C	+2.62°C	+1.71°C	+.99°C
6	+.51°C	+.23°C	02°C	28°C	60°C
1	+.45°C	+.12°C	19°C	57°C	1.04°C
8	+.66°C	+.48°C	+.18°C	04°C	21°C
9	+12.09°C	+9.90°C	+7.90°C	+6.09°C	+4.47°C
10	0	0	0	0	0
11	63°C	66°€	68°C	70°C	72°C

In addition to series resistance and shunt leakage resistance effects, one should also consider cable resistance changes due to surrounding water temperature changes. The standard handbook for Electrical Engineers, Tenth Edition, Page 4-5 gives the following relationship between wire resistance and temperature:

$$R_{T2} = R_{T1} [1 + \Omega_{T1} (T_2 - T_1)]$$

where: R_{12} = wire resistance at temperature T_2

 R_{T1} = wire resistance at temperature T_1

 α_n = wire temperature coefficient at temperature τ_i

 (T_2-T_1) = temperature difference in ${}^{\circ}C$

For 100% pure copper at 20° C, $Q_{20^{\circ}C} = 0.00393$

For copper clad steel at 20° C, $\mathbf{Q}_{20^{\circ}}$ C = 0.00378

Since the largest resistance change will occur for the biggest Q_{T1} (for a given temperature difference), pure copper will be most affected. Using $Q_{20^{\circ}C} = 0.00393$ and the medium drawn wire resistances of Table 1, we calculate the following table:

Table 4 - Temperature Effects on Wire Resistance

AWG Medium Drawn	<u>0°C</u>	20°C	40°C
20	9.66Ω	10.5Ω	11.34Ω
22	15.4 6 Ω	16.80	18.14Ω
24	24.47Ω	26.6 Ω	28.73Ω
26	39.0 1Ω	42.4 Ω	45.79Ω
28	62.19 Ω	67.6Ω	73.01Ω

NOTES: 1. Resistance values are per 1000 linear feet of wire.

2. 20°C is considered the nominal design point for temperature operation.

From Table 4, we see that in using AWG #22 wire, the resistance change is less than $1.5\Omega/1000^\circ$ from nominal, or $9\Omega/3000^\circ$ array. Considering the Table 3 temperature errors for condition codes 3, 6, and 7, we see that a 9Ω resistance change due to wire temperature would be expected to change the output reading by about .04 to .06°C worst case. From Table 3 it can be seen that this effect is much less important than those of series and shunt resistance.

Now, let's assume that we are willing to calibrate each thermistor sensor and its associated cable individually. The major effects will now result from series resistance changes due to temperature changes and shunt resistance changes due to insulation leakage. Since the series resistance of the cable will be calibrated out (at any one temperature), a lower resistance thermistor can be used; thereby also reducing the effects of shunt resistance changes. The following circuit will be analyzed:

TABLE 5 - "CALIBRATED" OUTPUT OF THERMISTOR PLUS CABLE ARRANGEMENT @ 20°C

Temp °C	Type 44004 T W/O Cable	hermistor W/Cable
0	735512	7455.84
1	6989_{Ω}	7089.8Ω
2	6644Ω	6744.8
3	6319Ω	6419.8,,
4	6011,2	6111.8.
5	5719s	5819.8
6	544452	يز8.444
7	5183Ω	5283.852
8	4937.2	5037.84
9	4703 Ω	4803.853
+10	4482 Ω	4582.85.
11	4273 ₂₂	4373.8 ₁₂
12	4074,2	4174.8
13	3886,	3986.8
14	3708 Ω	3808.84
15	3539 Ω	3639.80
16	3378₁⊋	3478.85
17	3226 Ω	3326.84
18	3081 Ω	3181.84
19	294452	3044.8
+20	2814Ω	2914.8.
21	2690_{Ω}	2790.8
22	257252	2672.8
23	2460 Ω	2560.84
24	2354Ω	2454.85.
25	22522	2352.84
26	2156 Ω	2256.84
27	2064 Ω	2164.80

TABLE 5 CONTINUED

Temp	W/O Cable	W/Cable
28	1977Ω	2077.8 Ω
29	1894Ω	1994.8 Ω
+30	1815Ω	1915.8Ω
31	1739Ω	1839.8 Ω
32	1667Ω	1767.8Ω
33	1599Ω	1699.80
34	1533Ω	1633.8Ω
35	1471Ω	1571.8Ω
36	1412Ω	1512.8 Ω
37	1355Ω	1455.8Ω
38	3301Ω	1401.8Ω
39	1249Ω	1349.8Ω
+40	1200Ω	1300.80
	1152Ω	1252.80
41	1107Ω	1207.80
42		

TABLE 6 - Zin FOR "CALIBRATED" ARRANGEMENT @ VARIOUS TEMP.

Condition Code	<u>0°C</u>	10°C	JTPUT RESISTAN 20°C	CE AT: 30°C	40°C
A	7455.80	4582.8	2914.854	1915.83	1300.8
В	7450.320	4580.7512	2913.98 Ω	1915.45	1300.64
С	7401.36 Ω	4562.35 Ω	2906.624	1912.33%	1299.24
D	7347.725.	4542.08 Ω	2898.480	1908.879	1297.68
£	6945.21	4386.281	2835.049	1881.64:	1285.36-
F	7393.38.	4554.35 ₁₂	2898.602	1904.3012	1291.12
G	7409.345	4570.35 Ω	2914.64 Ω	1920.35%	1307.27
н	7396.38	-	-	-	-

Condition Code	В година доветь надеет	ANALYS	IS CONDITI	ONS		
A	Type 440	004 Thermist	or W/Cable	(AWG #22)	and	R _ =
В	п	11 44	11	μ	11	$R_L = 10ML$
E	11	п в	"	"	n	$R_L = 1M = 2$
D	u	u n	u	••	н	R (= 500K)
E	11	u u	*1	и	и	R _L = 100K.
F	Type 44	004 W/Cable	(AWG #22)	0° C and	R (=	1M3.
G	n	u n	11	@ 40 ⁰ C "	R _L =	1M.)
Н	11	n u	11	@Temp. Pr	ofile	e of Fig. 2
	and	R, = 1MΩ				

TABLE 7 - TEMPERATURE READING ERROR FOR TABLE 6
THERMISTOR TEMP. OF

Condition		ITIE	WILDION IEMP. U	/ !	
Code	<u>0°C</u>	10°C	20°C	<u>30°C</u>	40°C
A	0	0	0	0	0
В	+.015°C	+.010°C	+.007°C	+.005°C	+.003°C
C	+.149°C	+.098°C	+.066°C	+.046° _C	+.033°C
D	+.295°C	+.195°C	+.132°C	+.091°C	+.065°C
E	+1.419°C	+.940°C	+.643°C	+.449°C	+.322°C
F	+.171°C	+.135°C	+.131°C	+.151°C	+.202°C
G	+.127°C	+.060°C	+.001°C	058°C	132°C
Н	+.162℃	-	-	-	•

Since a thermistor has been chosen of fairly low OHMIC value, Z_{in} will be more sensitive to cable resistance changes due to temperatures different than 20°C . Conditions F&G investigate the extremes of cable temperature change while condition H analyzes a "typical" ocean temperature profile (see Fig. 2*). The tropical temperature profile was chosen for condition H since it represents the greatest temperature change with depth. Method of calculating each R_{s} are given after Fig. 2.

* Source: Handbook of Ocean and Underwater Engineering, McGraw-Hill 1969, page 1-8, Fig. 1-4.

CALCULATIONS FOR ANALYSIS CONDITION H:

Using the relationship: $R_{T2} = R_{T1} [1 + Q_{T1}(T_2 - T_1)]$

If R_T is at 0° C then $R_T = 7355 \Omega$

$$R_{SI} = \frac{16.8\Omega}{1000} \times 300' \quad [1 + .00393 (23.5-20)] = 5.109\Omega$$

$$R_{S2} = \frac{16.8\Omega}{1000^4} \times 300^4 \quad [1 + .00393 (16.5 - 20)] = 4.971\Omega$$

$$R_{S3} = \frac{16.8\Omega}{1000^{\circ}} \times 600^{\circ} \quad [1 + .00393 (9.5 - 20)] = 9.663\Omega$$

$$R_{S4} = \frac{16.8\Omega}{1000^{\circ}} \times 600^{\circ} [1 + .00393 (4.5 - 20)] = 9.465\Omega$$

$$R_{SS} = \frac{16.8\Omega}{1000^{\circ}} \times 600^{\circ} [1 + .00393 (2.5 - 20)] = 9.387\Omega$$

$$R_{50} = \frac{16.8x^2}{1000^4} \times 600^4 [1 + .00393 (1.5 - 20)] = 9.348x^2$$

Also:
$$\frac{1}{R_L} = \frac{1}{R_{L1}} + \frac{1}{R_{L2}} + \frac{1}{R_{L3}} + \frac{1}{R_{L4}} + \frac{1}{R_{L5}} = \frac{1}{1M \Omega}$$

or
$$R_{11} = R_{12} = R_{13} = R_{14} = R_{15} = 5M \Omega$$

Using the above calculated values:

$$Z_{in} = 0.0^{\circ}C = 7396.38 \Omega$$

SUMMARY:

This analysis was designed to explore the temperature measurement errors induced by changes in array cable series and shunt (leakage) resistances. The analysis has indicated that shunt resistance changes produce the greatest detrimental effects. It is also true that the shunt or leakage resistance can change unpredictably with time, and measurements to determine the value will indicate only

what it is now, not what it will be in the near or far future! Because the shunt resistance varies in an uncontrolled and unpredictable manner, the potential exists, and with high probability, that significant errors will be introduced into the temperature measurements without being detected. The major effect of this realization is to cast a doubt of credibility on all the collected data; i.e., which part is really true?

What then is the solution to this disturbing situation? The signal from the temperature sensing element(s) must be conditioned in such a manner that the values transmitted along the array cable are insensitive to cable parameter changes over a reasonably wide range. The necessary signal conditioning will require the use of electronic circuitry at the temperature sensor. Adequate signal conditioning techniques exist and modern, low power integrated circuits make their incorporation very beneficial.

UNCLASSIFIED

	SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)							
1	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS						
		BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER						
	NORDA Technical Note 26							
	4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED						
	γ_{c}	7						
6	THERMISTOR ARRAY IMPEDANCE CONSIDERATIONS,	TECHNICAL NOTE						
	7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(a)						
10	Clifford R. Holland							
	Naval Oceanographic Laboratory / Naval Ocean R&D Activity NSTL Station, MS 39529	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS						
	Same as Item 9.	June 78						
	14 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	18. SECURITY CLASS. (of this report) Unclassified 18a. DECLASSIFICATION ADDWNGRADING SCHEDULE NA						
	Unlimited Distribution. DISTRIBUTION STATEMENT A Approved for public release; Distribution Unlimited							
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)							
	(14) NORDA-TN-26							
	10. SUPPLEMENTARY MITES							
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number)							
	Temperature Measurements Ocean Instrumentation Thermistor Arrays	a a a						
	392 7	73 2001						
	20. ABSTRACT (Continue on reverse side if necessary and identify by block number) This study examines the effects of cable resistant							
	measurement accuracy when using a typical thermist ture measurements. The analysis demonstrates that can be calculated or calibrated out, the major effican not be so corrected. Depending on choice of the errors as large as a few degrees Celsius are possible tenths of a degree Celsius likely. Even with great calculated the control of t	tor array for ocean tempera- t while some of the effects fects of insulation leakage thermistor, measurement ible, with errors of a few						
	PAR FORM 1472 FRITIAN OF LINEVAS IS OPEN STE	INCLASSIFIED						

S/N 0102-014-6601 /

BLOCK	UNCLASSIFICATION OF T	HIS PAGE(When De				
imped condi signa of me	edths of a deg ance changes, tioning electr l conversion a asured paramet utput end of t	it is stron onics be ut nd line dri ers will be	gly recomme ilized at t	nded that a ne thermist	ppropriate s or sensor.	ignal The use of
		K				
			1			
					•	•