

Rotating Machines

- Motor
- Generator

e la constant de la c

Motor

Electrical Power

Mechanical Power

Generator

Mechanical Power

Electrical Power

Type of Electric Motors

Classification of Motors

DC Machine

THE DIRECT CURRENT MOTOR.

DRAWN BY. didon Flynn

Rotating machine

An electrical motor consists of a cylindrical rotor that spins inside a stator.

Cross sectional View of DC motor Eyebolt Frame, Rotor **Wound Stator** Insulation Fan **End Shield Rotor Laminations** Grease Inlet - Bearing an Cover Conduit Box Shaft Shaft Slinger **Gasket Cover** Draining Gasket Protection To Frame To inner

Major Parts of DC Motor

- I. Magnetic frame or Yoke
- 2. Pole core & Pole shoes
- 3. Field or Exciting coils
- 4. Armature core
- 5. Armature winding
- 6. Commutator
- 7. Shaft
- 8. End Housing
- 9. Bearings
- 10. Brushes

Magnetic frame or Yoke

- Mechanical protection
- Low reluctance for magnetic flux
- Made of cast iron –smaller M/c
 & cast steel or fabricated rolled
 steel bigger M/c

- Support field or exciting coils
- Spread magnetic flux over armature

Winding done on pole core

Armature

 Major parts of rotor (armature) and stator (field).

- Rotating part of motor
- Made up by silicon steel stamping
- Stamping varies 0.3 to 0.5mm

ARMATURE

- More loops of wire = higher rectified voltage
- In practical, loops are generally placed in slots of an iron core
- The iron acts as a magnetic conductor by providing a low-reluctance path for magnetic lines of flux to increase the inductance of the loops and provide a higher induced voltage. The commutator is connected to the slotted iron core. The entire assembly of iron core, commutator, and windings is called the armature. The windings of armatures are connected in different ways depending on the requirements of the machine.

Loops of wire are wound around slot in a metal core

DC machine armature

Armature winding

Lap winding and wave winding

A=P for lap winding

A=2 for wave winding

ARMATURE WINDINGS (Cont)

Commutator & Brush connection

Commutator

- > Connects the rotating armature conductors to stationary external circuit through brushes
- Converts alternating current AC induced in armature conductor into unidirectional current

Armature with Commutator

Brushes

Made of high grade carbon

Rotor

Permanent Magnets

Windings

Stator

 Most DC machines use wound electromagnets to provide the magnetic field.

- Two types of field windings are used :
 - series field
 - shunt field

Consider a DC generator with the following parameters,

```
P = Number of field poles
```

Ø= Flux produced per pole in Wb (weber)

Z = Total No. of armature conductors

A = No. of parallel paths in armature

N = Rotational speed of armature in revolutions per minute (rpm)

Now,

Average emf generated per conductor is given by $d\Phi/dt$ (Volts) eqn. I

Flux cut by one conductor in one revolution = $d\Phi$ = $P\Phi$(Weber),

Above equation-2 gives the emf generated in one conductor of the generator. The conductors are connected in series per parallel path, and the emf across the generator terminals is equal to the generated emf across any parallel path.

Therefore,

```
Generated EMF Eg = P\Phi NZ / 60A (For Generator)
Back EMF Eb = P\Phi NZ / 60A (For Motor)
```

For lap winding,

No. of parallel paths is equal to the number of poles (i.e. A = P)

For Wave winding,

Number of parallel paths is equal to 2 (i.e. A = 2)

has 51 5645 be each having 24 conductors . The the ametice solate ato give an induced my of 2200, what will be the voltage developed by the winding to lap connected & the armalus cotate at the same time speed

Induced Emf Eq =
$$\frac{4 \times NP}{60A}$$
 $4 = 0.01 \text{ sob}$
 $2 = 51 \times 24 = 1224$
 $E = 220V$, $P = 4$
 $A = 2 \cdot (\text{wate soliding})$
 $220 = 0.01 \times 1224 \times Ny4$
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120
 120

TYPE OF D.C. GENERATOR

- I. Separately excited d.c. generators.
- Self excited D.C. generators these are further classified 3 categories-
- i. Shunt wound d.c. generators
- ii. Series wound d.c. generators
- iii. Compund wound d.c. generators
- a. Long shunt compund wound generators
- b. Short shunt compund wound generators.

Separately excited DC generator

$$V = Eg - IaRa$$

$$[la = l_{L}]$$

$$V = Eg - IaRa - 2Vb$$

(When Considering Brush drop)

Power Developed = IaEg
Output Power = VI_L

- 1) Series Wound DC Generator
- 2) Shunt Wound DC Generator
- 3) Compound Wound DC Generator

Series Wound DC Generator

$$V = Eg - IaRa - I_LRse$$

= $Eg - Ia(Ra + Rse)$

$$[la = l_L]$$

$$V = Eg - Ia(Ra + Rse) - 2Vb$$

(When Considering Brush drop)

Shunt Wound DC Generator

$$V = Eg - IaRa$$

$$[la = l_L + l_{Sh}]$$

$$V = Eg - IaRa - 2Vb$$

(When Considering Brush drop)

Power Developed = IaEg
Output Power = VI_L

Compound Wound DC Generator

- I. Short Shunt Compound Wound DC Generator
- 2. Long Shunt Compound Wound DC Generator

Short Shunt Compound Wound DC Generator

$$V = Eg - IaRa - I_LRse$$

$$Ia = I_L + I_{Sh}$$

Long Shunt Compound Wound DC Generator

$$V = Eg - IaRa - I_{Se}Rse$$

$$Ia = I_{Se} = I_L + I_{Sh}$$

$$V = Eg - - IaRa - I_{Se}Rse - 2Vb$$

(When Considering Brush drop)

TYPE OF D.C. MOTOR

- I. Separately excited d.c. motor.
- Self excited D.C. motor
 these are further classified 3 categories-
- Shunt wound d.c. motor
- ii. Series wound d.c. motor
- iii. Compund wound d.c. motor
- a. Long shunt compund wound motor
- b. Short shunt compund wound motor.

Separately Excited DC Motor

$$Eb = V - IaRa = V - I_LRa$$

$$[I_L = Ia]$$

$$Eb = V - IaRa - 2Vb$$

(When Considering Brush drop)

Shunt Wound DC Motor

$$Eb = V - IaRa$$

$$Eb = V - IaRa - 2Vb$$

$$[I_L = Ia + Ish]$$

(When Considering Brush drop)

Series Wound DC Motor

$$Eb = V - Ia(Rse + Ra)$$

$$[la = lse = l_L]$$

Short Shunt DC Motor

Short Shund DC Motor

$$[I_L = Ia + Ish]$$
$$[I_L = Ise]$$

Eb = V - IseRse - IaRa) - 2Vb (When Considering Brush drop)

Long Shunt DC Motor

$$Eb = V - Ia(Rse + Ra)$$

