Overview

- Latent semantic analysis
 - words as vectors
- Neural networks
 - distributed representation
 - spreading activation
 - adjustment of connection strengths
- Simple Recurrent Networks
 - recurrence
 - emergent representation
- learning
 - back propagation (next week)

what is meaning?

- the meaning of a word is knowledge of the contexts in which that word can occur.
- words with similar meanings can be used in similar contexts
- similarity and context are good ways to think about the mental representation of meaning
 - The more similar the meanings, the more their representations 'overlap' (= "semantic overlap")

co-occurrence

- On average, the words in a description of the brain are more similar to each other than to words in a description of a drain.
 - The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals.
 - In some systems the drain is for discharge of waste fluids, such as the drain in a sink in which the water is drained when it is no longer needed.
- words that co-occur in such descriptions are more similar to one another than to words that do not
 - the premise underlying Latent Semantic Analysis

(60,768 words, 30,473 articles)

An example:

Context (Document)						
	#1	#2	#3	#4	#5	
CAT						
DOPAMINE						
DOG						
REWARD						

- CAT and DOG are more similar to each other than they are to DOPAMINE or REWARD.
- Conversely, DOPAMINE and REWARD are more similar to each other than they are to CAT or DOG.
- There is some <u>overlap</u> between DOG and REWARD

(60,768 words, 30,473 articles)

An example:

Context (Document)					
	#1	#2	#3	coordinate	
CAT	✓				
DOPAMINE			✓		
DOG	✓	✓			
REWARD		✓	✓		

(60,768 words, 30,473 articles)

An example:

Context (Document)					
	#1	#2	#3	coordinate	
CAT	✓			1, 0, 0	
DOPAMINE			✓	0, 0, 1	
DOG	✓	✓		1, 1, 0	
REWARD		✓	✓	0, 1, 1	

Context (Document)					
	#1	#2	#3	coordinate	
CAT	✓			1, 0, 0	
DOPAMINE			✓	0, 0, 1	
DOG	✓	✓		1, 1, 0	
REWARD		✓	✓	0, 1, 1	

Context (Document)					
	#1	#2	#3	coordinate	
CAT	✓			1, 0, 0	
DOPAMINE			✓	0, 0, 1	
DOG	✓	✓		1, 1, 0	
REWARD		✓	✓	0, 1, 1	

Context (Document)					
	#1	#2	#3	coordinate	
CAT	✓			1, 0, 0	
DOPAMINE			✓	0, 0, 1	
DOG	✓	✓		1, 1, 0	
REWARD		✓	✓	0, 1, 1	

(60,768 words, 30,473 articles)

- count how many times each word occurs in each 'document'
- reduce the dimensions through a form of factor analysis (principle components analysis)

(methods for finding optimal [smaller] number of dimensions from which the original data can be reconstructed)

- 'distance' in semantic space = distance between points on a graph
- distance correlates with e.g. priming and other measures of "semantic overlap".

Elman, 1990

(29 words, 10,000 sentences)

could we build a system that learns about cooccurrence?

the mechanism: a 'blank' neural network, and some input

- How they 'represent'...
 - Patterns of activation

- How they 'represent'...
 - Patterns of activation
- Spreading Activation

connection strength

- How they 'represent'...
 - Patterns of activation
- Spreading Activation
- How they learn
 - Adjustment of connection strength

connection strength

Elman, 1990

(29 words, 10,000 sentences)

- the mechanism: a 'blank' neural network, and some input
 - ► A "Simple Recurrent Network" (we're getting there!)
- the task: predict what word will come next
- adjust internal weights to better match the actual next input
 - the model learned that verbs follow nouns, that verbs like 'eat' are preceded by animates, and followed by edibles... 'categories' 'emerged'

the nature of the prediction

frequency-of-occurrence

accessing words ...frequency

Emergent representations

What the SRN learned...

- The SRN learned about the contexts in which words could occur
 - It learned that certain words could occur after certain other words
 - e.g. that what we call 'verbs' come after what we call 'nouns' (**syntactic knowledge**!) That what we call 'edible' things are likely to be mentioned after words like *eat*, or that what we call 'animate' things will precede words like *eat* or *chase* (**semantic knowledge**!).
- This knowledge is referred to as 'emergent representation'

How do Recurrent Networks work?

Adjusting connection strength

- How they learn
 - Adjustment of connection strength

"Cat"

We adjust the connection strengths so that "what we get" is closer to "what we want"

Beware the 'shower syndrome'

"Deep" neural networks (next time)

next time

- learning across layers
 - back propagation
- why backdrop doesn't scale up
- Word2Vec
 - word embeddings
 - negative sampling
 - getting rid of recurrence
- the following week
 - bringing back recurrence
 - why it doesn't scale up
 - using LSTMs and GRUs to enable scaling
- a couple of weeks later
 - getting rid of recurrence (again)
 - Transformers

