ミリ波分光計を用いた北極域・南極域における 中層大気中の一酸化窒素分子変動の観測的研究

> 名古屋大学大学院工学研究科電気工学専攻 後藤宏文

目次

第1章	イントロダクション・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.1	オゾンの重要性とオゾン減少・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.2	先行研究の結果と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.3	本研究の目的と研究手法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
第2章	ミリ波観測法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2.1	観測手法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2.1.1	観測手法の概観と観測装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2.1.2	電波強度のキャリブレーション ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2.1.3	光学的厚み・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
2.1.4	周波数スイッチング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
2.2	観測場所・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.2.1	ノルウェー・トロムソでの観測 (69.35°N, 19.14°E)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
2.2.2	南極・昭和基地での観測 (69.00°S, 39.85°E) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
第3章	ミリ波観測解析手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
3.1	光学的厚みデータを用いたスクリーニング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
3.2	NO スペクトルデータに含まれるノイズによるスクリーニング ・・・・・・・・・・	24
3.3	光学的厚みデータの補正 (Tromsø) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
3.4	NO スペクトルデータのベースラインの補正 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
3.5	NO 柱密度(Column Density)の導出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	32
第4章	結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
4.1	ノルウェー・トロムソでの解析結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
4.2	南極・昭和基地での解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	33
第5章	考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
5.1	SOFIE データによって導出された NO 柱密度との比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
5.2	高エネルギー電子の降り込みとの比較・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	35
第6章	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
付録 A	SOFIE · · · · · · · · · · · · · · · · · · ·	39
付録 B	POES/MetOp · · · · · · · · · · · · · · · · · · ·	40

第4章 結果

4章では、3章で紹介した手法を踏まえて導出した柱密度の結果について述べていく。まず、トロムソと昭和基地で共通してわかったこととしては、どちらとも NO の短期的変動が確認できたことである。以降、トロムソ(4.1節)と昭和基地(4.2節)と観測場所別に分けて述べていく。

4.1 ノルウェー・トロムソでの解析結果

スクリーニングの結果、2 つの期間が残った。1 つ目の期間は、2019 年 1 月 23 日~2019 年 2 月 4 日、2 つ目の期間は 2019 年 2 月 17 日~2019 年 2 月 20 日となった。参考として 2 つの期間の間の時間変動を確認するため、本来スクリーニングされた期間(2019 年 2 月 5 日~2019 年 2 月 16 日)についてもプロットした(図 4.1 のグレーのエラーバー)。時間分解能は 24 時間となり、プロット間隔も 24 時間(1 日 1 プロット)とした。NO の柱密度について、エラーバーの範囲を超える有意

図 4.1: トロムソにおける NO 柱密度の時間変動(グレーのエラーバーは本来スクリーニングされた期間であることを示す)

な増加がみられる期間が 2 つあった(2019 年 1 月 23 日~2019 年 1 月 27 日と 2019 年 2 月 2 日~ 2019 年 2 月 4 日)。1 つ目の時期(2019 年 1 月 23 日~2019 年 1 月 27 日)は緩やかな増加となり、2 つ目の時期(2019 年 2 月 2 日~2019 年 2 月 4 日)は急激な増加が確認できた。

4.2 南極・昭和基地での解析結果

スクリーニングの結果、2023 年 3 月 22 日~2023 年 3 月 30 日の期間が残った。時間分解能は 12 時間とトロムソの解析結果(4.1 節)と比べて良くなった。プロット間隔は 6 時間とした。柱密度の誤差の平均は、トロムソの解析結果と比べて 20 % 小さくすることができた。NO の柱密度について、エラーバーの範囲を超える有意な増加がみられる期間が 2 つあった(2023 年 3 月 23 日 21

時~2023 年 3 月 24 日 3 時間と 2023 年 3 月 25 日 9 時~2023 年 3 月 25 日 21 時)。どちらも急激な増加となった。

図 4.2: 昭和基地における NO 柱密度の時間変動

参考文献

- [1] Eugene Rozanov, M Calisto, T Egorova, T Peter, and W Schmutz. Influence of the precipitating energetic particles on atmospheric chemistry and climate. *Surveys in geophysics*, Vol. 33, pp. 483–501, 2012.
- [2] A Seppälä, CE Randall, Mark A Clilverd, Eugene Rozanov, and CJ Rodger. Geomagnetic activity and polar surface air temperature variability. *Journal of Geophysical Research: Space Physics*, Vol. 114, No. A10, 2009.
- [3] Manuel López-Puertas, B Funke, S Gil-López, T Von Clarmann, GP Stiller, M Höpfner, S Kellmann, H Fischer, and CH Jackman. Observation of NOx enhancement and ozone depletion in the northern and southern hemispheres after the october—november 2003 solar proton events. Journal of Geophysical Research: Space Physics, Vol. 110, No. A9, 2005.
- [4] Yasuko Isono, Akira Mizuno, Tomoo Nagahama, Yoshizumi Miyoshi, Takuji Nakamura, Ryuho Kataoka, Masaki Tsutsumi, Mitsumu K Ejiri, Hitoshi Fujiwara, Hiroyuki Maezawa, et al. Ground-based observations of nitric oxide in the mesosphere and lower thermosphere over antarctica in 2012–2013. *Journal of Geophysical Research: Space Physics*, Vol. 119, No. 9, pp. 7745–7761, 2014.
- [5] A Mizuno, T Nagahama, A Morihira, H Ogawa, N Mizuno, Y Yonekura, H Yamamoto, H Nakane, and Y Fukui. Millimeter-wave radiometer for the measurement of stratospheric ClO using a superconductive (SIS) receiver installed in the southern hemisphere. *International Journal of Infrared and Millimeter Waves*, Vol. 23, No. 7, pp. 981–995, 2002.
- [6] 伊藤弘樹. ノルウェー・トロムソに向けたミリ波分光観測装置の開発~NO 分子両極域同時観測を目指して~. 名古屋大学大学院 理学研究科 修士論文, 2017.
- [7] 上村美久. 地上ミリ波観測装置による極域中間圏一酸化窒素の時間変動. 名古屋大学大学院 理学研究科 修士論文, 2014.
- [8] Yasuko Isono, Akira Mizuno, Tomoo Nagahama, Yoshizumi Miyoshi, Takuji Nakamura, Ryuho Kataoka, Masaki Tsutsumi, Mitsumu K Ejiri, Hitoshi Fujiwara, and Hiroyuki Maezawa. Variations of nitric oxide in the mesosphere and lower thermosphere over antarctica associated with a magnetic storm in april 2012. Geophysical Research Letters, Vol. 41, No. 7, pp. 2568–2574, 2014.
- [9] 岩田裕之. 南極昭和基地における中層大気多分子同時観測のためのミリ波分光観測装置フロントエンドの開発. 名古屋大学大学院 工学研究科 修士論文, 2019.
- [10] 小瀬垣貴彦. 南極昭和基地における中層大気多分子同時観測のためのミリ波分光観測装置フロントエンドの開発. 名古屋大学大学院 工学研究科 修士論文, 2020.
- [11] 後藤宏文. トロムソにおける一酸化窒素 (NO) スペクトルデータのスクリーニングとキャリブレーションに関する考察. 名古屋大学 工学部 卒業論文, 2021.