Sistemas de Informação $\,$

IFMG - Ouro Branco Diego Santos Seabra

0040251

 $6^{\underline{o}}$ Período 13/01/2021

Tarefa 2

Projeto e Análise de Algoritmos

Contents

Exercício 1	2
Exercício 2	3
Pseudocódigo	3
Código Implementado	4
Exercício 3	5
Pseudocódigo	5
	6
Loop Invariante	7
Exercício 4	8
Exercício 4 Pseudocódigo	8
Código Implementado	9
Manuscrito	9

1) Usando o pseudocódigo do algoritmo de INSERTION-SORT, ilustre as operações realizadas no arranjo A = [31, 41, 59, 26, 41, 58] Solução:

Fig. 1: Operações do Insertion Sort no Array 31, 41, 59, 26, 41, 58

2) Reescreva o procedimento INSERTION-SORT para ordenar em ordem decrescente, em vez da ordem crescente.

Solução:

Pseudocódigo

1: ordena(A): 2: for $b \leftarrow 2$ to comprimento[A] do 3: chave $\leftarrow A[b]$ $i \leftarrow b-1$ 4: while i > 0 e chave > A[i] do 5: $A[i+1] \leftarrow A[i] \\ i \leftarrow i-1$ 6: 7: end while 8: $A[i+1] \leftarrow \text{chave}$ 9: 10: end for

Código Implementado

```
2 //
3 // Autor: Diego S. Seabra
4 // Matricula: 0040251
5 //
8 #define n 6
9
10 #include <stdio.h>
11
void ordena(int arr[n])
14
15
      int chave, i;
      for (int b = 1; b < n; b++) // b = 2
16
17
           chave = arr[b];
18
           i = b - 1;
19
20
           while (i \geq 0 && chave > arr[i]) // i > 0
21
22
               arr[i + 1] = arr[i];
23
               i = i - 1;
24
           arr[i + 1] = chave;
26
      }
27
28
30 void imprimeArranjo(int arr[n])
31 {
      for (int i = 0; i < n; i++)</pre>
32
          printf("%i ", arr[i]);
34
35
      printf("\n");
36
37
38
  int main()
39
40
      int arr[n] = \{31, 41, 59, 26, 41, 58\};
41
      printf("Inicial:\n");
42
      imprimeArranjo(arr);
43
44
      ordena(arr);
45
46
      printf("Ordenado:\n");
47
      imprimeArranjo(arr);
49 }
```

- 3) Considere o problema de pesquisa
- a) Entrada: Uma sequência de
n números A = <a1, a2, ..., an> e um valor v
- b) Saída: Um índice i tal que $\mathbf{v} = \mathbf{A}[\mathbf{i}]$ ou o valor especial NIL, se não aparecer em \mathbf{A}
- c) Escreva um pseudocódigo para pesquisa linear, que faça a varredura da sequencia, procurando por v. Usando um loop invariante, prove que seu algoritmo é correto.

Solução:

Pseudocódigo

varre(A, v):
 for i ← 1 to comprimento[A] do
 if A[i] == v then
 return i
 end if
 end for
 return NIL

Código Implementado

```
2 //
3 // Autor: Diego S. Seabra
4 // Matricula: 0040251
5 //
7
8 #define n 6
9
10 #include <stdio.h>
11
int varre(int arr[n], int v)
13
     for (int i = 0; i < n; i++)</pre>
14
15
         if(arr[i] == v){
16
            return i;
18
19
     return -1;
20
21
22
23 int main()
24 {
     int arr[n] = \{31, 41, 59, 26, 44, 58\};
25
26
27
     int res = varre(arr, 58);
28
29
30
     printf("%i\n", res);
31
32 }
```

Loop Invariante

Inicialização

Na etapa de inicialização do algoritmo, se o vetor estiver vazio, o loop invariante não será executado. Portanto o i se inicia a partir do 1.

Manutenção

Na etapa de manutenção do algoritmo, assumindo que o item não foi encontrado nas iterações anteriores, em cada iteração é checado o i-ésimo valor do arranjo com v, retornando i se A[i] = v; assim, devido ao algoritmo ter completado essa iteração, a linha 4 (return i) não foi executada, o que significa que a condição da linha 3 é falsa. Portanto seu inverso é verdadeiro e $A[i] \neq v$; a invariante ainda se mantém.

Finalização

Na etapa de finalização, há duas maneiras do loop ser finalizado:

- 1. A primeira é quando i é maior que o tamanho do arranjo, ou seja, i = comprimento[A] + 1. Como demonstrado na parte de manutenção, o algoritmo executaria a linha depois do loop, retornando NIL, o que é o resultado correto (pois não foi encontrado um valor A[i] == v).
- 2. A segunda é a finalização na linha 4. Se isto ocorre, a condição da linha 3 era verdadeira (A[i] == v). Neste caso o algoritmo retorna i, que é o resultado correto (e esperado).

Como todos os casos de terminação (como demonstrado acima) são todos os casos possíveis, podemos afirmar que nosso algoritmo está correto.

4) Considere o problema de somar dois inteiros binários de n bits, armazenados em dois arranjos de n elementos A e B. A soma dos dois inteiros deve ser armazenada em forma binária em um arranjo de (n+1) elementos C. Escreva o pseudocódigo para somar os dois valores binários.

Solução:

Pseudocódigo

1: add(A,B): 2: $carry, i \leftarrow 0$ 3: **for** $i \leftarrow 1$ to comprimento[A] **do** 4: C[i] = (A[i] + B[i] + carry)%25: carry = (A[i] + B[i] + carry)/26: **end for** 7: C[i] = carry

Código Implementado

```
2 //
3 // Autor: Diego S. Seabra
4 // Matricula: 0040251
5 //
7
8 #define n 3
9
10 #include <stdio.h>
#include <string.h>
void add(int A[n], int B[n], int C[n + 1])
14 {
      int carry, i = 0;
15
      for (i = 0; i < n; i++)</pre>
16
17
          C[i] = (A[i] + B[i] + carry) % 2; // resto
18
          carry = (A[i] + B[i] + carry) / 2; // quociente
19
20
      C[i] = carry;
21
22 }
23
void imprime(int arr[n + 1])
25
      for (int i = 0; i < n + 1; i++)
26
27
          printf("%i ", arr[i]);
28
      printf("\n");
30
31 }
32
33 int main()
34 {
      int A[n] = \{1, 1, 1\};
35
      int B[n] = \{1, 1, 1\};
36
      int C[n + 1];
37
38
39
      memset(C, 0, n + 1);
40
41
      add(A, B, C);
42
      imprime(C);
43
44 }
```

Iniah ourficando o array na posição 1 Vesitica se o próximo item (59) e' menor que a chave atual (91) Verition se o próximo item (26) troca dos itens anteriores 58 5 troca dos itens anternoras 26 41 Veritice si o próximo item Verifico se o próximo itam (58) é 41 59 58 3 4 5 menor que a chare atval (59). Troca Array está ordenado

Fig. 2: Exercício 1

S		
S		
	T	
	•	
	0-	
	CENT	
	3	
	M	
	m	
	m	
	telle	
	term	
	RECEIVE	
	see e e e	
	RESERVE	
	THE STANKE	

	D	5	T	Q	Q	S
2) ordene (A):			,			
for b & 2 to comprimendo[A]						
chave - A[6]						
i ∈ b-1				,	,	
while i > 0 e chave > AIi]		-				
$AI:+IJ \leftarrow AI:J$						
i ← j-1						
A I;+1] < chave						
2) (()						
3) Varre (A, v):						
3) varre (A, V): for i < 1 to compriments [A]		-				
if A[i] == v				-		
return NIL						
TOM NOTE				100	-	
Loop Invariante:		,			-	_
					÷.	
Inicialização: Na etapa de inicialização	1	_	10	~~	·In	
of octor costiver vacao, a loop invariante	. ,	200	ί.			
Mentado. Portanto o i si inicia a pi	en o	4n	0	le.	1.	
Manutenção: Ma etapa de manutenção d	0_	als	on	tm	0/	
assumindo que o item pois foi encontras	S	n	m			
iterações anteriores, em cada iteração é co	he	200	له	0_		
Afil == v: assim dente un la che	<u>wd</u>	- 1		<u>(</u>		
Afi] == v; assim, den de au afforêtmo te essa itaqção, a linha 4 (returni) mão	2	con	20 L	esa	<u>do</u>	
o que significa que a condição de linha	₽	27	ece 1	La	20/4	
MASIMA MASIMA		· ·	7	2/12	-	

Fig. 3: Exercício 2 e 3

Fig. 4: Exercício 3 e 4

Diego Santos Seabra 0040251