1 st year 2nd semester Exam 2013.(2012-13) Subject: Mathematics MAT-103BM, Credit: 03 Time .03 Hours

Calculus and Differential Equations

Answer any five Questions.

1	(a)	How do you define the limit of a function $f(x)$ at a point x_0 ? Using the (δ, \in) definition of limit, prove that	5
		$Lt_{x\to 3}(2x^3 - 3x^2 - 18x + 29) = 2.$	
	(b)	What condition must be satisfied by a function if it is to be continuous at a point? Graph the function	5
		$f(x) = \begin{cases} x; 0 \le x < \frac{1}{2} \\ 1 - x; \frac{1}{2} \le x < 1 \end{cases}$	
		Examine the continuity of $f(x)$ at $x = \frac{1}{2}$.	
	©	What does it mean for a function to be differentiable? Let $5x-4;0 < x \le 1$	4
		$f(x) = \begin{cases} 5x - 4; 0 < x \le 1 \\ 4x^2 - 3x; 1 < x < 2 \\ 3x + 4; x \ge 2 \end{cases}.$	
		Discuss $f'(x)$ at $x=1$ and $x=2$.	
2	(a)	Differentiate $x^{\sin x}$ w.r. to $(\sin x)^x$.	5
	(b)	State Leibnitz's theorem. If $y = (x + \sqrt{x^2 + 1})^m$, show that	5
E	Ø	$(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ State Rolle's theorem. Show that the conclusion to the Rolle's theorem satisfy for the case $f(x)=\cos x$ on $[\pi,5\pi]$	4
3	(a)	Find the nth derivative of the function $y = e^x \sin^2 x$	4
	(b)	Find the open intervals on which $f(x)=5+12x-x^3$, is increasing, decreasing, concave up and concave down. Also find their relative extrema.	4
	©	If V is a function of x and y, prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r} \frac{\partial V}{\partial r} + \frac{1}{r^2} \frac{\partial^2 v}{\partial r^2}, \text{ where } x = r \cos \theta \text{ and}$	6
4		$y = r \sin \theta$. Answer any four of the followings: Evaluate	14
		(i) $\int \frac{dx}{\sqrt{2x^2+2x+4}}$ (ii) $\int \frac{(2x-3)}{3x^2+4x-7} dx$	17
		(iii) $\int (4x+15)\sqrt{x^2+6x+10}dx$ (iv) $\int \frac{dx}{(1+x^2)\sqrt{1-x^2}}$	

	<u> </u>	2: 2	
		$(v) \int \frac{2\sin x + 3\cos x}{3\sin x + 4\cos x} dx$	
5	(a)	Define definite integral as a limit of a sum. Evaluate from first principle, $\int_{a}^{b} e^{x} dx$.	4
	(b)	Show that $\int_{0}^{1} \frac{\log(1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2.$	5
	©	If $I_n = \int_0^{\frac{\pi}{4}} \tan^n x dx$, then show that $I_n + I_{n-2} = \frac{1}{(n-1)}$ and hence	5
6	(a)	obtain the value of I_5 . How do you calculate thr area of the region between the graphs of two continuous functions? Find the area bounded on the right by the line $y = x-2$, on the left by the parabola $x = y^2$ and below by the x- axis.	5
	(b)	Define improper integral. Evaluate $\int_{1}^{4} \frac{1}{(x-2)^{\frac{2}{3}}} dx$	4
	© 1	Evaluate $\iint \sqrt{4x^2 - y^2} dx dy$ over the triangle formed by the straight lines $y = 0$, $x = 1$, $y = x$.	5
7	(a)	What do you mean by order and degree of a differential equation? Write down the general form of 1^{st} order and 1^{st} degree ODE. Solve the IVP: $4xydx + (x^2 + 1)dy = 0$; $y(0) = 1$ by the method of variables separable.	5
	(b)	Test the exactness of ODE: $(y^2e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$ and find its general solution.	5
	©	Find the integrator factor of the linear differential equation	4
		$\cos^2 x \frac{dy}{dx} + y = \tan x$ and hence solve it.	
8	(a)	Solve the differential equation $y'' + 4y = 12x^2 - 16x\cos 2x$ by the method of undetermined coefficients.	7
	(b)	Solve the differential equation $y'' - 2y' + y = e^x \sin^{-1} x$ by the method of variation of parameters.	7

THE END