# FRACTION NINJA BOOTCAMP LEVEL 2





### **COMMON FACTORS**



For each pair of numbers, find the greatest common factor.

56, 35 Factors of 
$$56: 1, 2, 4, 98, 14, 28, 56$$
  
Factors of  $35: 1, 5, 935$   
 $gcf(56, 35) = 7$ 

60, 42 Factors of 60: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60  
Factors of 42: 1, 2, 3, 6, 7, 14, 21, 42  

$$gcf(60, 42) = 6$$

54,84 Factors of 54: 1,2,3,6,9,18,27,54

Factors of 84: 1,2,3,4,6,7,12,14,21,28,42,84

$$gcf(54,84)=6$$

Here is a cool way to find the greatest common factor of two numbers by writing each number as a product of prime facts. (Prime numbers can't be broken down into a product of smaller numbers.)

To get the greatest common factor of 150 and 400, we

1. Write each number as a product of primes.

$$150 = 2 \times 3 \times 5 \times 5$$
 and  $400 = 2 \times 2 \times 2 \times 2 \times 5 \times 5$ 

2. Find all the prime factors that were in common.

$$150 = 2 \times 3 \times 5 \times 5$$
 and  $400 = 2 \times 2 \times 2 \times 2 \times 5 \times 5$ 



3. Multiply out the prime factors that were in common to get the greatest common factor.

 $2\times5\times5$  = 50 is the greatest common factor of 150 and 400.

Let's try this trick to find the greatest common factor of 60 and 96.

- 1.  $60 = 2 \times 2 \times 3 \times 5$  and  $96 = 2 \times 2 \times 2 \times 2 \times 2 \times 3$
- 2. The factors in common are 2, 2, and 3.
- 3. The greatest common factor of 60 and 96 is  $2 \times 2 \times 3 = 12$ .



For each pair of numbers, find the greatest common factor. Can you do it using the technique described above?

 $240 = 2 \times 2 \times 2 \times 2 \times 3 \times 5$ 

$$75 = 3 \times 5 \times 5$$

$$gcf(240,75) = 3 \times 5$$

$$= 15.$$

$$112 = 2 \times 2 \times 2 \times 2 \times 7$$

$$128 = 2 \times 2$$

$$gcf(112,128) = 2 \times 2 \times 2 \times 2$$

$$= 16.$$



### SIMPLIFYING FRACTIONS



$$\frac{8}{24} = \frac{1}{3}$$

$$\frac{40}{48} = \frac{5}{6}$$

$$\frac{21}{33} = \frac{7}{11}$$

$$\frac{54}{72} = \frac{3}{4}$$

$$\frac{66}{70} = \frac{33}{35}$$

$$\frac{56}{77} = \frac{8}{11}$$

$$\frac{32}{80} = \frac{2}{5}$$

$$\frac{25}{80} = \frac{5}{16}$$

$$\frac{8}{28} = \frac{2}{7}$$

$$\frac{20}{25} = \frac{4}{5}$$

$$\frac{12}{36} = \frac{1}{3}$$

$$\frac{15}{50} = \frac{3}{10}$$

$$\frac{13}{26} = \frac{1}{2}$$

$$\frac{6}{54} = \frac{1}{9}$$

$$\frac{18}{45} = \frac{2}{5}$$

$$\frac{64}{100} = \frac{16}{25}$$

$$\frac{45}{80} = \frac{9}{16}$$

$$\frac{15}{33} = \frac{5}{11}$$

$$\frac{36}{56} = \frac{9}{14}$$

$$\frac{12}{66} = \frac{2}{11}$$

$$\frac{24}{100} = \frac{6}{25}$$

$$\frac{22}{30} = \frac{11}{15}$$

$$\frac{48}{100} = \frac{12}{25}$$

$$\frac{16}{26} = \frac{8}{13}$$

$$\frac{62}{100} = \frac{31}{50}$$

$$\frac{28}{56} = \frac{1}{2}$$

$$\frac{36}{44} = \frac{9}{11}$$

$$\frac{72}{80} = \frac{9}{10}$$

$$\frac{6}{46} = \frac{3}{23}$$

$$\frac{60}{144} = \frac{5}{12}$$

### Simplified Fraction Maze

Travel through the maze by only visiting fractions that are in simplified form.

|        | $\frac{4}{22}$  | <del>9</del><br><del>86</del> | $\frac{17}{60}$              | $\frac{3}{76}$  | 13<br>56        | 9<br>109               | $\frac{7}{38}$  | $\frac{4}{49}$  | 59<br>77        | $\frac{3}{6}$   | 63<br>72           | $\frac{4}{5}$   | exit |
|--------|-----------------|-------------------------------|------------------------------|-----------------|-----------------|------------------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|------|
|        | 50<br>75        | 2<br>75                       | 14<br>35                     | <u>2</u> 62     | 65<br>85        | 70<br>77               | 10<br>25        | <u>4</u><br>10  | 12<br>37        | <u>52</u><br>89 | 4 <u>9</u> 63      | <del>7</del> 95 |      |
| •      | 25<br>45        | 33<br>100                     | 1 <u>5</u> 26                | <u>1</u><br>96  | 38<br>53        | $\frac{3}{8}$          | 99<br>101       | <u>36</u><br>61 | 20<br>30        | $\frac{1}{2}$   | 5<br>156           | 49<br>92        |      |
|        | 16<br>18        | <u>26</u><br>66               | 19<br>38                     | 13<br>39        | 20<br>42        | 90<br>108              | 15<br>42        | <u>42</u><br>81 | 3/34            | <u>21</u><br>56 | <u>55</u><br>66    | 45<br>50        |      |
|        | <u>33</u><br>43 | 1<br>11                       | $\frac{21}{26}$              | <u>6</u><br>11  | 33<br>45        | 18<br>33               | 10<br>18        | 3/33            | 13<br>59        | $\frac{43}{70}$ | 8/83               | <u>56</u><br>75 |      |
|        | 421             | 1 <u>5</u> 21                 | 33<br>55                     | 45<br>49        | 42<br>49        | <u>20</u><br><u>55</u> | 12<br>24        | 990             | <u>5</u><br>15  | 65<br>80        | 36<br>81           | 28<br>41        |      |
|        | 13<br>15        | 24<br>44                      | <del>7</del> <del>69</del> — | <u>17</u><br>31 | <u>62</u><br>66 | 36<br>54               | <u>6</u><br>8   | 60<br>75        | 100<br>110      | <u>81</u><br>90 | <u>4</u> <u>28</u> | 22<br>25        |      |
|        | <u>3</u> 7      | <u>88</u><br>90               | <u>3</u><br>56               | 32<br>58        | 42<br>48        | <u>8</u><br>18         | <u>21</u><br>42 | 28<br>32        | <u>11</u><br>66 | <u>6</u><br>32  | 16<br>24           | <u>3</u><br>83  |      |
| r<br>→ | $-\frac{1}{5}$  | 30<br>42                      | <u>29</u><br>34              | 3 14            | <u>5</u><br>18  | 24<br>43               | 36<br>49        | 17<br>99        | 12<br>67        | 7/76            | $\frac{3}{5}$      | 1<br>99         |      |

enter



### MIXED NUMBERS ON THE NUMBER LINE



Label each number on the number line.



 $5\frac{1}{3}$ 

 $1\frac{2}{5}$   $7\frac{5}{6}$   $4\frac{1}{2}$ 

Label each number on the number line.



 $9\frac{2}{3}$ 

 $2\frac{3}{5}$   $1\frac{1}{3}$   $8\frac{2}{5}$ 

Label each number on the number line.



Label each number on the number line.



- $3\frac{6}{7}$
- $4\frac{1}{8}$
- $4\frac{5}{6}$
- $4\frac{2}{5}$
- $3\frac{3}{4}$
- $4\frac{1}{2}$

Inches are a unit of measure that usually gets broken up into 16 equal pieces. Below is a ruler measured in inches. Label each of the arrows with the appropriate fraction. (Be sure to simplify the fraction.)



Centimeters are a unit of measure that usually gets broken up into 10 equal pieces (called millimeters). Below is a 10-centimeter ruler that has locations marked with arrows. Label each arrow with the appropriate fraction. (Be sure to simplify the fraction.)



Do you prefer inches or centimeters as a unit of measurement? Explain why.

There is no wrong answer.

I prefer centimeters because they match
our base - 10 number system.

Calculations with decimals are easier with centimeters.

# CONVERTING FRACTIONS TO MIXED NUMBERS

Convert each fraction to a mixed number.

$$\frac{25}{3} = 8\frac{1}{3}$$

$$\frac{29}{5} = 5\frac{4}{5}$$

$$\frac{66}{9} = 7\frac{3}{9} = 7\frac{1}{3}$$

$$\frac{43}{4} = 10\frac{3}{4}$$

$$\frac{51}{7} = 7\frac{2}{7}$$

$$\frac{37}{3} = 12\frac{1}{3}$$

$$\frac{60}{11} = 5\frac{5}{11}$$

$$\frac{60}{8} = 7\frac{4}{8} = 7\frac{1}{2}$$

$$\frac{93}{12} = 7\frac{9}{12} = 7\frac{3}{4}$$

$$\frac{81}{10} = 8 \frac{1}{10}$$

$$\frac{19}{4} = 4\frac{3}{4}$$

$$\frac{31}{7} = 4\frac{3}{1}$$

Convert each fraction to a mixed number.

$$\frac{257}{3} = 85\frac{2}{3}$$

$$\frac{214}{7} = 30\frac{4}{7}$$

$$\frac{3,434}{5} = 686 \frac{4}{5}$$

$$\frac{123,456,789}{10} = 12,345,678\frac{9}{10}$$
Dividing by 10 sh-inks all the place values.



# CONVERTING MIXED NUMBERS TO FRACTIONS

Convert each mixed number to a fraction.

$$11\frac{1}{2} = \frac{2 \times || + ||}{2}$$

$$= \frac{23}{2}$$

$$6\frac{3}{5} = \frac{5 \times 6 + 3}{5}$$

$$= \frac{33}{5}$$

$$12\frac{3}{7} = \frac{7 \times 12 + 3}{7}$$

$$= \frac{87}{7}$$

$$5\frac{9}{10} = \frac{10 \times 5 + 9}{10}$$

$$= 5\frac{9}{10}$$

$$1\frac{13}{20} = \frac{20 \times 1 + 13}{20}$$
$$= \frac{33}{20}.$$

$$4\frac{11}{12} = \frac{12 \times 4 + 11}{12}$$

$$= \frac{59}{12}$$

$$20\frac{1}{3} = \frac{3 \times 20 + 1}{3}$$

$$= \frac{61}{3}$$

$$8\frac{5}{6} = \frac{6 \times 8 + 5}{6}$$

$$= \frac{53}{6}$$

$$15\frac{2}{3} = \frac{3 \times 15 + 2}{3}$$

$$= \frac{47}{3}$$

$$9\frac{6}{11} = \frac{11 \times 9 + 6}{11}$$

$$= \frac{105}{11}$$

$$6\frac{2}{7} = \frac{7 \times 6 + 2}{7}$$

$$= \frac{44}{7}$$

$$20\frac{3}{4} = \frac{4 \times 20 + 3}{4}$$

$$= \frac{83}{4}$$

Convert each mixed number to a fraction.

$$125\frac{2}{5} = \frac{5 \times 125 + 2}{5}$$

$$= \frac{627}{5}$$

$$100\frac{7}{12} = \frac{12 \times 100 + 7}{12}$$
$$= \frac{1207}{12}$$

$$136\frac{72}{73} = \frac{73 \times 136 + 72}{73}$$

$$= \frac{9,928 + 72}{73}$$

$$= \frac{10,000}{73}$$

$$99\frac{23}{101} = \frac{101 \times 99 + 23}{101}$$

$$= \frac{9,999 + 23}{101}$$

$$= \frac{10,022}{101}$$



## COMPARING FRACTIONS



In each box, declare whether the fractions are "=", "<", or ">" to each other.

$$\frac{8}{24} < \frac{9}{25}$$

$$\frac{6}{32}$$
  $\leq \frac{12}{16}$ 

$$\frac{14}{50}$$
  $<$   $\frac{21}{60}$ 

$$\frac{45}{54} = \frac{10}{12}$$

$$\frac{21}{35} = \frac{3}{5}$$

$$\frac{15}{35} \checkmark \frac{5}{11}$$

$$\frac{36}{88} > \frac{10}{25}$$

$$\frac{24}{36}$$
  $\frac{12}{18}$ 

$$\frac{11}{28} > \frac{4}{14}$$

$$\frac{12}{24} = \frac{22}{44}$$

$$\frac{14}{22} < \frac{2}{3}$$

$$\frac{35}{40} < \frac{9}{10}$$

$$\frac{6}{11} = \frac{30}{55}$$

$$\frac{4}{48}$$
  $\frac{10}{80}$ 

$$\frac{23}{29} \le \frac{31}{41}$$

$$\frac{20}{120} > \frac{6}{40}$$

$$\frac{26}{52} = \frac{3}{6}$$

$$\frac{22}{24} < \frac{23}{25}$$

Place the following numbers in ascending order (from least to greatest).

$$\frac{3}{7} \quad \frac{5}{6} \quad \frac{1}{2} \quad \frac{2}{5} \quad \frac{4}{9} \quad \frac{5}{8}$$

$$\frac{2}{5} < \frac{3}{7} < \frac{4}{9} < \frac{1}{2} < \frac{5}{8} < \frac{5}{6}$$

Place the following numbers in ascending order (from least to greatest).

$$4\frac{11}{12} \quad 5\frac{1}{4} \quad 6\frac{4}{7} \quad 4\frac{1}{3} \quad 5\frac{5}{6} \quad 4\frac{3}{7}$$

$$4\frac{3}{7} < 4\frac{3}{7} < 5\frac{1}{4} < 5\frac{1}{4} < 5\frac{5}{6} < 6\frac{4}{7}$$

Place the following numbers in ascending order (from least to greatest).

$$\frac{43}{7} \frac{15}{2} \frac{35}{4} \frac{27}{6} \frac{77}{12} \frac{53}{9}$$

$$\frac{27}{6} < \frac{53}{9} < \frac{43}{7} < \frac{77}{12} < \frac{15}{2} < \frac{35}{4}$$

Place the following numbers in ascending order (from least to greatest).

$$6\frac{4}{7} \quad \frac{60}{9} \quad 8\frac{1}{4} \quad \frac{240}{30} \quad \frac{77}{10} \quad 6\frac{11}{12}$$

$$6\frac{4}{7} < \frac{60}{9} < 6\frac{11}{12} < \frac{77}{10} < \frac{240}{30} < 8\frac{1}{4}$$

Some of the quests have pipeflow puzzles. These can be quite challenging, so solutions are included below. Only peek if absolutely necessary.

