Internet of Things

Second Edition (2021)

G. Anastasi, C. Vallati, F. Righetti

- Credits: 9
 - Lectures: 65 hours
 - Practical Activities: 25 hours
- Prerequisites
 - Computer Architecture
 - Operating Systems
 - Concurrent Programming
 - Computer Networking

- Theoretical background on the IoT
- Basic methodologies for developing IoT applications
- Design and implementation of applications based on the IoT paradigm
 - smart cities
 - smart buildings
 - smart grid
 - smart industry
 - **...**

- Preliminary Concepts
- Smart objects
- Low-power and Lossy Networks (LLNs)
- IoT protocols
- IoT Platforms
- Industrial IoT (IIoT)
- Applications
- Practical activities

Preliminary Concepts

- Introduction to Smart Objects
- Introduction to the Internet of Things
- IoT Architecture & Protocol Stack

Smart objects

- RFID, sensors, sensor/actuator nodes
- Hardware Architecture
- Operating Systems for Smart Objects
- Energy Management

Low-power and Lossy Networks (LLN)

- Definition
- Communication technologies for LLNs

```
⇒ Bluetooth, IEEE 802.15.4
```

⇒ PLC

⇒ ..

IoT protocols

- IPv6 for LLNs
- 6LowPAN Adaptation Layer
- Routing Protocol for LLNs (RPL)
- Constrained Application Protocol (COAP)

IoT Platforms

- IoT/M2M
- OneM2M

Industrial IoT (IIoT)

- Requirements
- Communication technologies for Industrial Applications (TSCH, ...)
- Limits of the IoT architecture
- 6TiSCH Architecture

Applications

- IoT-based applications in different application domains
 - ⇒ Smart cities (pollution monitoring, smart lighting, ...)
 - ⇒ Smart mobility (smart parking)
 - ⇒ Smart home (energy efficiency)
 - ⇒ Industry 4.0

Practical activities

- Hands-on activities using IoT nodes and computers (or student's personal computer) in the IT classroom
 - ⇒ based on material provided by the teacher
- Contiki Operating System
- Programming smart objects
 - ⇒ based on Contiki OS
- Design and implementation of IoT-based applications

- The student will be assessed on her/his demonstrated ability to understand and put into practice the main contents illustrated during the course. During the oral exam the student must demonstrate her/his knowledge of the course material and present concepts with an appropriate terminology
- The student will also be assessed on her/his ability to put into practice the concepts illustrated during the course. To this end, she/he is required to design and implement a simple system/application and to report on this activity during the oral exam
- Lab project + oral test
- Lab project
 - will consists in the design and implementation of an IoT-based application

References

- J.-P. Vasseur, A. Dunkels. Interconnecting Smart Objects with
 IP: The Next Internet. Morgan Kaufmann, 2010
- Class presentations, papers and other material made available by the instructors
 - Course materials will be made available through TEAMS

Contact Information

Prof. Giuseppe Anastasi

Dept. of Information Engineering, University of Pisa

Address: Largo Lucio Lazzarino 1, Pisa

Phone: 050 2217 559

E-mail: giuseppe.anastasi@unipi.it

Skype: giuseppe.anastasi

Office Time: Wednesday, 15:30 – 18:30

Questions

Industry 4.0 Curriculum

This course is part of the Industry 4.0 learning path

Department of Excellence

Interdisciplinary, Integrated and Opens Labs for INDUSTRY 4.0

The CrossLab project

Research & Technology Transfer

- 5 new interdisciplinary and integrated labs (CrossLabs)
- Research activities on Industry 4.0
- CrossLab are open to industrial cooperation

Education

- New Masters on
 - ⇒ Artificial Intelligence & Data Engineering (AIDE)
- Special short curriculum on *Industry 4.0* in each Master
- New PhD program on Smart Industry
- Special curriculum on *Industry 4.0* in the PhD program on IT

CrossLabs are

Interdisciplinary

Each CrossLab includes competences from different disciplines, including social and human sciences

Integrated

Activities of different CrossLab are strictly integrated They can be regarded as a single Lab on Industry 4.0

Open

CrossLabs are open to industry collaboration
Industries can use CrossLab infrastructures and take advantage of the available know how

Advanced Manufacturing

Industrial Internet of Things

Information Technology & Society

Impact of Information Technology on the Society

- ⇒ Sociological issues
- ⇒ Economic issues
- ⇒ Psychological issues
- ⇒ ...

National & International Links

Partner of the

CINI Smart Cities National Lab

http://www.consorzio-cini.it/index.php/it/laboratori-nazionali/smart-cities

- E-health
- Food
- Smart Energy & Smart Buildings
- Mobility, Transports, & Logistics
- F-tourism & F-culture
- E-education
- E-government
- E-inclusion
- Urban Security

- Formal Cooperation Agreement
 - Missouri University of Science & Technology (MST)
 - Ref. Prof. Sajal K. Das
 Past Director, Dept. of Computer Science
 http://en.wikipedia.org/wiki/Sajal_K._Das

Facing the Challenges of Industry 4.0

Dr. Giuseppe Dr. Carlo
Anastasi Vallati
University of Pisa, Italy

Monday, February 15th, 10:00 AM CST Zoom link at: https://umsystem.zoom.us /j/91226409145

Password: 1234

- Informal Cooperation
 - Research Institute of Sweden (RISE)
 - ⇒ Former Swedish Institute for Computer Science (SICS)
 - Ref. Prof. Thiemo Voigt https://www.ri.se/en/thiemo-voigt

The Open Source OS for the Internet of Things

- Informal Cooperation
 - Research Institute of Sweden (RISE)
 - ⇒ Former Swedish Institute for Computer Science (SICS)
 - Ref. Dr. Marco Tiloca

https://www.ri.se/en/marco-tiloca

- Informal Cooperation
 - Hong Kong Polytechnic University
 - **⇒** Internet and Mobile Computing Lab
 - Ref. Prof. Jiannong CaoPast Director, Dept. of Computing

http://www4.comp.polyu.edu.hk/~csjcao/

Questions

https://docs.google.com/forms/d/e/1FAIpQLSflNqQVKxzyrpb UhXbK 5LsobEH75 Y5R8-6NvV6WVArwxPrA/viewform

- Email Address
- Family Name
- Given Name
- Master's Degree
 - Computer Engineering
 - Artificial Intelligence & Data Engineering
 - Embedded Computing Systems
 - Other (please specify)

