

Stat GR5205 Lecture 3

Jingchen Liu

Department of Statistics Columbia University

Least squares estimator for simple linear regression

Slope

$$\hat{\beta}_1 = \rho_{x,y} \frac{s_y}{s_x}.$$

► The fitted regression line

$$(x - \bar{x}) = \rho_{x,y} \frac{s_y}{s} (y - \bar{y})$$

Least squares estimator for simple linear regression

Slope

$$\hat{\beta}_1 = \rho_{x,y} \frac{s_y}{s_x}.$$

► The fitted regression line

$$(x - \bar{x}) = \rho_{x,y} \frac{s_y}{s_y} (y - \bar{y})$$

$$\blacktriangleright E(\hat{\beta}_0) = \beta_0 \quad E(\hat{\beta}_1) = \beta_1$$

► The variances are

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

$$ightharpoonup Var(\hat{\beta}_0) = Var(\bar{Y}) + Var(\bar{x}\hat{\beta}_1)$$
. Derive $Cov(\bar{Y}, \hat{\beta}_1) = 0$

► Normality: simulation illustration

$$\blacktriangleright E(\hat{\beta}_0) = \beta_0 \quad E(\hat{\beta}_1) = \beta_1$$

The variances are

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

$$ightharpoonup Var(\hat{\beta}_0) = Var(\bar{Y}) + Var(\bar{x}\hat{\beta}_1)$$
. Derive $Cov(\bar{Y}, \hat{\beta}_1) = 0$

► Normality: simulation illustration

$$\blacktriangleright E(\hat{\beta}_0) = \beta_0 \quad E(\hat{\beta}_1) = \beta_1$$

The variances are

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

- ► $Var(\hat{\beta}_0) = Var(\bar{Y}) + Var(\bar{x}\hat{\beta}_1)$. Derive $Cov(\bar{Y}, \hat{\beta}_1) = 0$
- ► Normality: simulation illustration

$$\blacktriangleright E(\hat{\beta}_0) = \beta_0 \quad E(\hat{\beta}_1) = \beta_1$$

The variances are

$$Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}, \quad Var(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$

- ► $Var(\hat{\beta}_0) = Var(\bar{Y}) + Var(\bar{x}\hat{\beta}_1)$. Derive $Cov(\bar{Y}, \hat{\beta}_1) = 0$
- Normality: simulation illustration

Confidence interval

- About confidence interval
- ▶ A confidence interval of β_0 and β_1 .

$$[\beta_i - 1.96 \times SD(\beta_i), \quad \beta_i + 1.96 \times SD(\beta_i)]$$

Confidence interval

▶ What if σ^2 unknown?

▶ The noise level

$$\sigma^2 = Var(\varepsilon_i) = E(y_i - \beta_0 - \beta_1 x_i)^2$$

▶ Point estimate

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

▶ The noise level

$$\sigma^2 = Var(\varepsilon_i) = E(y_i - \beta_0 - \beta_1 x_i)^2$$

Point estimate

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

About normal (Gaussian) distribution

- \triangleright $Z_1, ..., Z_n$ are independent and identically distributed N(0, 1)
- ▶ The χ^2 distribution with degrees of freedom n

$$Z_1^2 + ... + Z_n^2$$

▶ Distribution of $\hat{\sigma}^2$

$$\frac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-2}^2$$

- About χ^2 -distribution
- $ightharpoonup \hat{\sigma}^2$ is independent of $(\hat{\beta}_0, \hat{\beta}_1)$.
- ► Confidence interval of $\hat{\beta}_i$ when σ^2 is unknown.

▶ Distribution of $\hat{\sigma}^2$

$$\frac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-2}^2$$

- ▶ About χ^2 -distribution
- $ightharpoonup \hat{\sigma}^2$ is independent of $(\hat{\beta}_0, \hat{\beta}_1)$.
- ► Confidence interval of $\hat{\beta}_i$ when σ^2 is unknown.

▶ Distribution of $\hat{\sigma}^2$

$$\frac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-2}^2$$

- ▶ About χ^2 -distribution
- $\hat{\sigma}^2$ is independent of $(\hat{\beta}_0, \hat{\beta}_1)$.
- ► Confidence interval of $\hat{\beta}_i$ when σ^2 is unknown.

▶ Distribution of $\hat{\sigma}^2$

$$\frac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-2}^2$$

- ▶ About χ^2 -distribution
- $\hat{\sigma}^2$ is independent of $(\hat{\beta}_0, \hat{\beta}_1)$.
- ▶ Confidence interval of $\hat{\beta}_i$ when σ^2 is unknown.

$$ightharpoonup Z \sim \mathcal{N}(0,1)$$
 and $\gamma^2 \sim rac{\chi_{v}^2}{v}$

$$ightharpoonup T = rac{Z}{\gamma} \sim t_{V}$$

$$ightharpoonup Z \sim \mathcal{N}(0,1)$$
 and $\gamma^2 \sim rac{\chi_{v}^2}{v}$

$$ightharpoonup T = rac{Z}{\gamma} \sim t_{v}$$

► About *t*-distribution

$$ightharpoonup Z \sim \mathcal{N}(0,1)$$
 and $\gamma^2 \sim rac{\chi_{v}^2}{v}$

$$ightharpoonup T = \frac{Z}{\gamma} \sim t_{\rm v}$$

About t-distribution

- ▶ Normal approximation of *t*-distribution
- ► Rationale

- ▶ Normal approximation of *t*-distribution
- Rationale

Prediction

$$\hat{\mu}_x \triangleq \widehat{E(y|x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- \blacktriangleright The sampling distribution of $\hat{\mu}_{\times}$
- ► Confidence interval

Prediction

$$\hat{\mu}_x \triangleq \widehat{E(y|x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- lacktriangle The sampling distribution of $\hat{\mu}_{ imes}$
- Confidence interval

Prediction

$$\hat{\mu}_x \triangleq \widehat{E(y|x)} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- lacktriangle The sampling distribution of $\hat{\mu}_{ imes}$
- Confidence interval

Prediction of a new observation

- ▶ Prediction of a new observation when parameters are known
- ▶ When σ^2 is known
- ▶ When σ^2 is unknown

Prediction of a new observation

- ▶ Prediction of a new observation when parameters are known
- ▶ When σ^2 is known
- ▶ When σ^2 is unknown

Prediction of a new observation

- ▶ Prediction of a new observation when parameters are known
- When σ^2 is known
- ▶ When σ^2 is unknown

Simultaneous confidence band

- ▶ Simultaneous confidence band versus usual confidence interval
- ► The confidence band

$$\hat{\mu}_{x} \pm \lambda SD(\hat{\mu}_{x})$$

where

$$\lambda^2 = 2F(1-\alpha; 2, n-2)$$

Simultaneous confidence band

- ▶ Simultaneous confidence band versus usual confidence interval
- The confidence band

$$\hat{\mu}_{x} \pm \lambda SD(\hat{\mu}_{x})$$

where

$$\lambda^2 = 2F(1-\alpha; 2, n-2)$$

Comparing the intervals

Display 7.11 p. 189

The 95% confidence band on the population regression line, the 95% confidence interval band for single mean estimates, and a 95% prediction interval band for the Big Bang example

Some descriptive statistics – the Iris data

Some descriptive statistics – the Iris data

Some descriptive statistics

▶ The coefficient of determination (a.k.a. the R^2)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

► Another representation for the simple linear regression

$$R^2 = \rho^2$$

▶ Derive analysis of variance of simple linear regression

Some descriptive statistics

▶ The coefficient of determination (a.k.a. the R^2)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

► Another representation for the simple linear regression

$$R^2 = \rho^2$$

▶ Derive analysis of variance of simple linear regression

Some descriptive statistics

▶ The coefficient of determination (a.k.a. the R²)

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

► Another representation for the simple linear regression

$$R^2 = \rho^2$$

▶ Derive analysis of variance of simple linear regression

Hypothesis testing – the Iris data

► The fitted regression

$$y = -0.57 + 0.80x$$

and $\hat{\sigma} = 0.26$.

Question: whether plants with longer sepal tend to have wider sepal?

Hypothesis testing – the Iris data

► The fitted regression

$$y = -0.57 + 0.80x$$

and $\hat{\sigma} = 0.26$.

Question: whether plants with longer sepal tend to have wider sepal?

- ► Testing of hypotheses
- Basic setting
 - 1. Two families of models without overlap: the null hypothesis (H_0) and the alternative hypothesis (H_1)
 - 2. Which family were the data sampled from?

- ► Testing of hypotheses
- Basic setting
 - 1. Two families of models without overlap: the null hypothesis (H_0) and the alternative hypothesis (H_1)
 - 2. Which family were the data sampled from?

- ► Testing of hypotheses
- Basic setting
 - 1. Two families of models without overlap: the null hypothesis (H_0) and the alternative hypothesis (H_1)
 - 2. Which family were the data sampled from?

- ► Testing of hypotheses
- ► Basic setting
 - 1. Two families of models without overlap: the null hypothesis (H_0) and the alternative hypothesis (H_1)
 - 2. Which family were the data sampled from?

- ▶ The decision: reject the null or do not reject the null
- ▶ Two types of errors
 - ► Type I error
 - ► Type II error

- ▶ The decision: reject the null or do not reject the null
- ► Two types of errors
 - ► Type I error
 - ► Type II error

- ▶ The decision: reject the null or do not reject the null
- ► Two types of errors
 - Type I error
 - ► Type II error

- ▶ The decision: reject the null or do not reject the null
- ► Two types of errors
 - Type I error
 - ► Type II error

- ► The rationale: assuming the null hypothesis and trying to reach contradiction
- ► Rejection region
- ► Test statistic: differentiating the null and the alternative

- ► The rationale: assuming the null hypothesis and trying to reach contradiction
- Rejection region
- ► Test statistic: differentiating the null and the alternative

- ► The rationale: assuming the null hypothesis and trying to reach contradiction
- Rejection region
- ► Test statistic: differentiating the null and the alternative

Formulation

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

- $\hat{\beta}_1 = 0.80 \text{ and } SD(\hat{\beta}_1) = 0.10.$
- ▶ The sampling distribution of β_1

Formulation

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

- $\hat{\beta}_1 = 0.80$ and $SD(\hat{\beta}_1) = 0.10$.
- ▶ The sampling distribution of β_1

► Formulation

$$H_0: \beta_1 = 0$$
 versus $H_1: \beta_1 \neq 0$

- $\hat{\beta}_1 = 0.80 \text{ and } SD(\hat{\beta}_1) = 0.10.$
- ▶ The sampling distribution of β_1