Math 108. Topics in combinatorics: The probabilistic method.

Assignment 2. Due on Tuesday, 2/5/2008.

1. We are given $m = 2^{n-1}K$ sets A_1, \ldots, A_m , each of size n, in a universe V. Consider the following randomized algorithm for coloring: First color each point $v \in V$ randomly. Now, for each one of the sets A_i that was monochromatic after the first coloring, select a random vertex $v \in A_i$ and switch its color. Call the algorithm a failure if some set A_i originally had all but one vertex the same color and ended with all the vertices that color. Find K as large as you can (as an asymptotic function of n) so that the failure probability is less than one.

(Note that this, unfortunately, does not give us any result on m(n) since there are other ways that a set A_i could end up monochromatic.)

- 2. Let $A_i \subseteq \Omega$, $1 \le i \le n$, with all $|A_i| = n$. For $\chi : \Omega \to \{-1,1\}$ and $A \subseteq \Omega$ we will write $\chi(A) = \sum_{a \in A} \chi(a)$. Prove, for β as small as your technique allows, that there exists $\chi : \Omega \to \{-1,1\}$ with all $|\chi(A_i)| \le \beta$. (Use a random coloring and the large deviation results.)
- 3. The goal of this problem is to show that a random tournament T_n has $\operatorname{fit}(T_n, \sigma) < Cn^{3/2}$ for all $\sigma \in S_n$, where C is a computable constant. We set $n = 2^t$ and assume (avoiding some technical stuff) that t is a positive integer. For $1 \le i \le t$ let $\operatorname{fit}_i(T_n, \sigma)$ be the number of nonupsets minus the number of upsets in the games between $\sigma(j), \sigma(k)$ where

$$(2u-2)n2^{-i} < j \le (2u-1)n2^{-i} < k \le 2un2^{-i}$$

and $1 \leq u \leq 2^{i-1}$. (Plugging in i = 1 and i = 2 will be helpful in understanding the problem.) Call σ_1 and σ_2 *i*-similar if the pairs $\sigma(j), \sigma(k)$ above are the same for σ_1 and σ_2 . Note that when this holds, $\operatorname{fit}_i(T, \sigma_1) = \operatorname{fit}_i(T, \sigma_2)$ for any tournament T on n players. This splits S_n into equivalence classes.

- (a) Give a precise formula for the number $A_i(n)$ of equivalence classes under *i*-equivalence.
- (b) Give precisely the distribution of $\operatorname{fit}_i(T_n, \sigma)$ for σ fixed and T_n the random tournament.
- (c) Let i be fixed, with $n \to \infty$. Find the best constant β_i so that $A_i(n) \leq \beta_i^n$. For this β_i show that $A_i(n)\beta_i^{-n} \to 0$.
- (d) Let i be fixed. Let FAIL_i be the event that $\mathrm{fit}_i(T_n,\sigma) > c_i n^{3/2}$ for some σ , where $c_i := \sqrt{i 2^{-i} \ln 2}$. Show that $\mathrm{Pr}[\mathrm{FAIL}_i] \to 0$ as $n \to \infty$.
- (e) Show that $\Pr[\text{FAIL}_i] < 2^{-2^{i-1}}$.
- (f) Let $C := \sum_{i=1}^{\infty} c_i$. Deduce that there exists a tournament T_n on n players with $\operatorname{fit}(T_n, \sigma) < Cn^{3/2}$ for all $\sigma \in S_n$.