Invertible linear transformations

Nachiketa Mishra IIITDM Kancheepuram, Chennai

Invertible function

A function $f: X \longrightarrow Y$ is invertible if there exists a function

- $g: Y \longrightarrow X$ such that
- (i) $gof: X \longrightarrow X$ and
- (ii) $fog: Y \longrightarrow Y$ are identity functions.

Onto function

A function $f: X \longrightarrow Y$ is onto if range of f, R(f) = Y. That is every element in Y has at least one pre-image under f.

One to one (1:1) function

A function $f: X \longrightarrow Y$ is one to one if each element in Y has at most one pre-image under f.

$$f(x) = f(y) \Longrightarrow x = y$$

Lemma

A linear transformation : $V \longrightarrow W$ is invertible if and only if

- (1) T is 1:1, that is, $T(\alpha) = T(\beta) \Longrightarrow \alpha = \beta$.
- (2) T is onto, that is, R(T) = W.

Theorem 7 (Text book order)

Let V and W be two vector spaces over the field F and let $T:V\longrightarrow W$ be a linear transformation. If T is invertible, then the inverse function $T^{-1}:W\longrightarrow V$ is a linear transformation.

Proof : Suppose that $T:V\longrightarrow W$ is an invertible linear transformation. Then there exists a function $T^{-1}:W\longrightarrow V$ such that

- (i) $TT^{-1}: W \longrightarrow W$ and
- (ii) $T^{-1}T:V\longrightarrow V$ are identity functions.

It is enough to prove that

$$T^{-1}(c\beta_1 + \beta_2) = cT^{-1}(\beta_1) + T^{-1}(\beta_2)$$
 for all $\beta_1, \beta_2 \in W, c \in F$

Theorem 7 contd.

Let $\alpha_1 = T^{-1}(\beta_1)$ and $\alpha_2 = T^{-1}(\beta_2)$. Since T is invertible, α_1, α_2 are unique vectors in V such that $T(\alpha_1) = \beta_1$ and $T(\alpha_2) = \beta_2$. Since T is a linear transformation,

$$T(c\alpha_1 + \alpha_2) = cT(\alpha_1) + T(\alpha_2) = c\beta_1 + \beta_2$$

$$\implies T^{-1}(c\beta_1 + \beta_2) = c\alpha_1 + \alpha_2 = cT^{-1}(\beta_1) + T^{-1}(\beta_2)$$

Hence T^{-1} is a linear transformation.

Non-singular linear transformation

A linear transformation $T:V\longrightarrow W$ is non-singular if

$$T(\alpha) = 0 \implies \alpha = 0$$

Lemma 1

```
If T:V\longrightarrow W is a non-singular linear transformation, then N(T)=\{0\}. 
Proof: Since T is a linear transformation, T(0)=0. Hence 0\in N(T) and \{0\}\subseteq N(T)-----(1). Let \alpha\in N(T).\Longrightarrow T(\alpha)=0.\Longrightarrow \alpha=0, since T is non-singular. \Longrightarrow \alpha\in\{0\} and thus N(T)\subseteq\{0\}----(2). From (1) and (2) N(T)=\{0\}
```

Lemma 2

Let $T:V\longrightarrow W$ be a linear transformation. Then following statements are equivalent.

- (1) T is one to one.
- (2) T is non-singular.

Proof: $(1) \Longrightarrow (2)$.

Suppose that T is one to one. Show that T is non-singular.

Consider $T(\alpha) = 0 = T(0)$ (Note that T is a L.T.). Hence

 $T(\alpha) = T(0)$ and T is one-one. $\Longrightarrow \alpha = 0$. $\Longrightarrow T$ is non-singular.

 $(2) \Longrightarrow (1).$

Suppose that T is non-singular. Then $N(T) = \{0\}$, by previous Lemma. Consider $T(\alpha) = T(\beta)$.

$$\Longrightarrow T(\alpha - \beta) = T(\alpha) - T(\beta) = 0. \Longrightarrow \alpha - \beta \in N(T) = \{0\}.$$

$$\Longrightarrow \alpha - \beta = 0. \Longrightarrow \alpha = \beta. \Longrightarrow T$$
 is one to one.

Theorem 8 (Non-singular linear transformations preserve linear independence)

Let $T:V\longrightarrow W$ be a linear transformation. Then T is non-singular if and only if T carries each linearly independent subset of V onto a linearly independent subset of W.

Proof:

Case 1 : Suppose that T is non-singular. By Lemma 1, $N(T) = \{0\}$. Let S be a linearly independent subset of V. Let $\alpha_1, \alpha_2, \ldots, \alpha_k$ be distinct vectors in S. It is enough to show that $\{T(\alpha_1), T(\alpha_2), \ldots, T(\alpha_k)\}$ is a linearly independent subset of W. Consider

$$c_1 T(\alpha_1) + c_2 T(\alpha_2) + \ldots + c_k T(\alpha_k) = 0$$

$$\implies T(c_1\alpha_1 + c_2\alpha_2 + \ldots + c_k\alpha_k) = 0$$

Theorem 8 contd.

Since
$$N(T) = \{0\}$$
,

$$c_1\alpha_1+c_2\alpha_2+\ldots+c_k\alpha_k=0$$

Since S is linearly independent and $\alpha_1, \alpha_2, \ldots, \alpha_k$ be distinct vectors in S,

$$c_1=c_2=\ldots=c_k=0.$$

Hence $\{T(\alpha_1), T(\alpha_2), \dots, T(\alpha_k)\}$ is a linearly independent subset of W and it completes Case 1.

Theorem 8 contd.

Case 2 : Suppose that T carries linearly independent subset onto linearly independent subset. Show that T is non-singular. Consider $T(\alpha) = 0$. If $\alpha \neq 0$, then T carries a linearly independent set $\{\alpha\}$ onto a linearly dependent set $\{T(\alpha)\} = \{0\}$, a contradiction. $\Longrightarrow \alpha = 0$. $\Longrightarrow T$ is non-singular.

Problem 1

Let $T(x_1, x_2) = (x_1 + x_2, x_1)$ be a linear operator defined on F^2 . Find T^{-1} if exists.

Solution:

$$T(x_1, x_2) = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \implies T(X) = AX$$
$$[A|I] = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} I|A^{-1} \end{bmatrix}$$
$$T^{-1}(Z) = A^{-1}Z = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} \implies T^{-1}(z_1, z_2) = (z_2, z_1 - z_2)$$

Problem 2

Find the inverse of a linear operator T on \mathbb{R}^3 defined as

$$T(x_1, x_2, x_3) = (3x_1, x_1 - x_2, 2x_1 + x_2 + x_3).$$

Solution:

$$T(x_1, x_2, x_3) = \begin{bmatrix} 3 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Problem 2 contd.

$$[A|I] = \begin{bmatrix} 3 & 0 & 0 & 1 & 0 & 0 \\ 1 & -1 & 0 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\sim \begin{bmatrix} 1 & 0 & 0 & \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{3} & -1 & 0 \\ 0 & 0 & 1 & -1 & 1 & 1 \end{bmatrix} = [I|A^{-1}]$$

$$T^{-1}(Y) = A^{-1}Y$$

$$T^{-1}(y_1, y_2, y_3) = \left(\frac{1}{3}y_1, \frac{1}{3}y_1 - y_2, -y_1 + y_2 + y_3\right)$$

Theorem 9

Let V and W be finite dimensional vector spaces over the field such that dim $V=\dim W.$ If $T:V\longrightarrow W$ is a linear transformation, the following are equivalent.

- (i) T is invertible.
- (ii) T is non-singular.
- (iii) T is onto, that is, R(T) = W.

Proof: Let dim $V = \dim W = n$.

By Rank-Nullity-Dimension Theorem,

$$\mathsf{rank}\ (T) + \ \mathsf{nullity}\ (T) = n - - - - (1)$$

Theorem 9 contd.

 \implies T is onto.

First we prove that $(i) \Longrightarrow (ii) \Longrightarrow (iii)$. T is invertible. $\Longrightarrow T$ is one to one. $\Longrightarrow T$ is non-singular (by Lemma 2). $\Longrightarrow N(T) = \{0\}$ (by Lemma 1). \Longrightarrow nullity (T) = 0. \Longrightarrow rank (T) = n, see (1). \Longrightarrow dim $R(T) = \dim W$. $\Longrightarrow R(T) = W$ (Reason: $R(T) \subseteq W$ and dim $R(T) = \dim W$).

Next we prove that $(iii) \Longrightarrow (i)$.

T is onto. $\Longrightarrow R(T) = W$. \Longrightarrow rank $(T) = \dim W = n$.

 \implies nullity (T) = 0, see (1). $\implies N(T) = \{0\}$.

Claim: *T* is one to one.

Let $T(\alpha) = T(\beta)$. $\Longrightarrow T(\alpha - \beta) = 0$. $\alpha - \beta \in N(T) = \{0\}$. $\Longrightarrow \alpha = \beta$. $\Longrightarrow T$ is one to one. Note that T is onto (assumption) and T is one to one (above Claim). Hence T is invertible.

Theorem 9A (Assignment)

Let V and W be finite dimensional vector spaces over the field such that dim $V = \dim W$. If $T: V \longrightarrow W$ is a linear transformation, the following are equivalent.

- (i) T is invertible.
- (ii) T is non-singular.
- (iii) T is onto, that is, R(T) = W.
- (iv) If $\{\alpha_1, \ldots, \alpha_n\}$ is a basis for V, then $\{T(\alpha_1), \ldots, T(\alpha_n)\}$ is a basis for W.
- (v) There is some basis $\{\alpha_1, \ldots, \alpha_n\}$ for V such that $\{T(\alpha_1), \ldots, T(\alpha_n)\}$ is a basis for W.