Lecture-2

Sushrut Tadwalkar; 55554711

January 10, 2024

Quotes of the day: 01/10/2024

No quotes today:(

Figure 1: Visualization of points in Taylor's theorem.

Proof. We start by noting that for n = 0, ?? says $f(x) = f(x_0) + f'(c)(x - x_0)$.

Define $A \in \mathbb{R}$ by

$$f(x) - P_n(x) = \frac{A}{(n+1)!} (x - x_0)^{n+1}.$$

Our goal here is to show that there exists a c between x_0 and x such that $f^{(n+1)}(c) = A$.

Define
$$g(t) = f(t) - P_n(t) - \frac{A}{(n+1)!}(t-x_0)^{n+1}$$
.

Figure 2: Visualization of how we shrink the interval to possibly apply Rolle's theorem.

Observe

$$g(x_0) = f(x_0) - P_n(x_0)$$

= $f(x_0) - f(x_0) - 0$
= 0 .

so g(x) = 0 by definition of A. Hence, for $j = 0, \dots, n$,

$$g^{(j)}(x_0) = f^{(j)}(x_0) - P_n^{(j)}(x_0) - \frac{d^j}{dt^j} \left\{ \frac{A}{(n+1)!} (t - x_0)^{n+1} \right\} \Big|_{t=x_0}$$

$$= f^{(j)}(x_0) - f^{(j)}(x_0) - 0$$

$$= 0,$$

which tells us that $g^{(n+1)}(t) = f^{(n+1)}(t) - 0 - A$. Now, our goal is to find a c such that $g^{(n+1)}(c) = 0$.

Note that

 $g(x_0)=0, g(x)=0$ by Rolle's theorem, there exists c_1 between x_0 and x such that $g'(c_1)=0$. $g'(x_0)=0, g'(x)=0$ by Rolle's theorem, there exists c_2 between x_0 and c such that $g''(c_2)=0$.

 $g^{(n)}(x_0) = 0$, $g^{(n)}(x) = 0$ by Rolle's thoerem, there exists c_{n+1} between x_0 and c_n such that $g^{(n+1)}(c_{n+1}) = 0$.

Finally, set $c := c_{n+1}$ to conclude the proof.

Figure 3: Visualization of the iterative process to find c_{n+1} .

Example 1. Why is Taylor's theorem so useful? We look at a few examples which illustrate this: set $x_0 = 0$,

- 1. f is a polynomial of degree D; $P_n(t)$ will be the first terms of f up to degree n.
- 2. If $f(t) = e^t$, we get

$$P_n(t) = \frac{1}{0!} + \frac{t}{1!} + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots + \frac{t^n}{n!}.$$

3. If $f(x) = \sin x$, we get

$$P_n(t) = 0 + t + 0 - \frac{t^3}{3!} + 0 + \frac{t^5}{5!} + \dots$$