

Recommender Systems 101: Accelerated Training at Scale

Minseok Lee | 03-20-2023

Recommender Systems

Personalization Engines of the Internet

Multi-stage Recommender System Pipeline

and Scope of This Presentation

Deep Learning Recommendation Models (DLRM)

Simplified View

- Bottom MLPs
 - Process dense input features, often independent to the embedding lookups
- Embedding tables
 - Map one-hot/multi-hot categorical features into the embedding vectors
- Interaction
 - Learn effective feature crosses
- Top MLPs
 - Output the final recommendation result, e.g., click probability

MLPerf DLRM-DCNv2 Training Performance

Train 4 Billion Samples in 1 Minute

- DLRM-DCNv2: a new MLPerf recommendation benchmark since the v3.0 submission with the following updates:
 - Criteo 4TB multi-hot dataset
 - 3 Cross layers
 - Adagrad optimizer
 - 26B parameters

- How could we achieve such training performance?
 - We will answer the question throughout this talk
 - But it is not limited to a specific benchmark

Goals of This Presentation

- Understand common challenges in training large-scale recommender systems
- Explore solutions and best practices to tackle them in a framework-agnostic manner
- Share the achieved multi-node training performance of our reference design on NVIDIA DGX H100s

GPU for Recommender System Training

- Embedding operations are memory bound
 - GPU has very high memory bandwidth, e.g., H100 up to 3.35TB/s
 - GPU has highly parallel memory subsystem, good for scattered accesses
 - Caches do deduplication because categorical data follows power-law distribution

- Interaction and MLPs are highly dependent on linear algebra operations
 - GPU has proven its excellence in accelerating such operations, esp., GEMMs with Tensor Cores

Challenges of Large-Scale Recommender System Training

- Growing memory capacity demands
 - o As content, users, and their interactions multiply, datasets and embedding tables expand
 - Embedding tables don't often fit into a single GPU
- Memory- and communication-bound embedding table operations
 - Embedding table lookups and related operations are memory bound
 - o Distributing tables across multiple GPUs requires extensive inter-GPU communication
- Balancing workload distribution
 - o different embedding tables with varying characteristics, e.g., different distribution, hotness, table size, vector size, etc.

Challenges of Large-Scale Recommender System Training

and Solutions

- Growing memory capacity demands -> Employ distributed training with hybrid parallelism
 - As content, users, and their interactions multiply, datasets and embedding tables expand
 - Embedding tables don't often fit into a single GPU
- Memory- and communication-bound embedding table operations
 - o Embedding table lookups and related operations are memory bound > Fuse their data structures and operations
 - o Distributing tables across multiple GPUs requires extensive inter-GPU communication
 - > Leverage a fast, scalable network fabric such as NVSwitch, compress the communication traffic, and hide their overhead
- Balancing workload distribution \rightarrow Create per-table sharding strategies
 - o different embedding tables with varying characteristics, e.g., different distribution, hotness, table size, vector size, etc.

Distributed Training with Hybrid Parallelism

Hybrid Parallelization Approach

- Large-scale recommender system training requires both model and data parallelisms:
 - o Data parallelism for small embedding tables, MLP and interaction layers
 - Model parallelism for large embedding tables tables are sharded on specific GPUs
- Their judicious orchestration overcomes GPU memory capacity limit and maximizes the training throughput

Taxonomy of Model Parallelism

Embedding Table Sharding Schemes

Embedding tables can be sharded at a variety of granularities:

Table 0
Table 1
Table 2
Table 3
(row, col) denotes a shard

Legend

^{*} First introduced in: Mudigere et al., "Software-Hardware Co-design for Fast and Scalable Training of Deep Learning Recommendation Models", in ISCA'22.

Embedding Table Sharding Schemes

Pros and Cons

Scheme	Advantages	Disadvantages		
Data-parallel	 No all-to-all communication during the forward pass Can leverage NVLink Sharp (NVLS) to offload AllReduce for the gradient calculation 	 Larger tables may not fit in GPU memory A table-sized AllReduce for the gradient calculation 		
Table-wise	 Simple and straightforward Best communication efficiency with compressions 	 Cannot handle embeddings larger than single GPU's memory Very inefficient for cases where # GPUs > # tables Bad at handling load imbalance among tables 		
Table-row-wise	Help reduce lookup time for features with very high hotness	Cannot handle embeddings too large to fit in a single node		
Row-wise	Not limited by the table size	 All-to-all message size per GPU is proportional to # GPUs Have the intra-table load imbalance issue 		
Column-wise	 No need to compromise between load balance and compression ratio Useful in increasing parallelism when # hotness > # GPUs 	 The inputs to tables must be replicated Only attractive for large embedding vector sizes 		

• A single scheme cannot satisfy all tables, models and systems of various characteristics

Sharding Strategy

- The combination of sharding schemes for all embedding tables of a given model
- A good sharding strategy should improve the training throughput by (1) achieving load balance and (2) minimizing their communication traffic among GPUs
- It is a NP-hard problem to find the optimal sharding strategy considering all given constraints including the properties of dataset, model, underlying hardware, etc.
- However, a heuristic or greedy algorithm still works decently for many cases

Optimizing Embedding Table Operations

Embedding Table Lookup

Single-GPU Case

- Each feature is mapped to its own embedding table
- Each table can have different # rows and # cols
- Each feature can have different hotness:
 - 1-hot: a single lookup per sample (User ID & Move ID)
 - M-hot: M lookups per sample (Location & Genre)
- Embedding vectors from a M-hot lookup are likely to be pooled into a single vector
 - Can be implemented as an in-register operation

Embedding Table Lookup

Multi-GPU Case

- Requested embedding vectors or tables may not reside in the requester GPU
- They must be received through the all-to-all communication (A2A) among GPUs
- The amount of A2A traffic is a function of embedding vector size, hotness, batch size, sharding and cluster size
- The A2A must be mitigated to better accelerate large-scale recommender training

A2A Traffic Reduction Technique 1

Hierarchical Reduce for Multi-Hot Features

 Partially reduce the vectors before A2A, and the n do the final reduction in the destination GPU

- Advantages:
 - Partial reduction can be done at the register-leve l effectively
 - Independent of batch size
- Disadvantages:
 - Compression ratio up to hotness of the feature
 - Compression ratio depends on the employed sharding scheme

A2A Traffic Reduction Technique 2

Unique Operation

sample 0 sample 1 sample 2 sample 3

	User ID	Movie ID	Genre					
Г	1024	33	0	Drama	Family	0	0	Thriller
١	64	47	Action	0	0	Horror	Picaresque	0
١	1024	17	Action	0	Family	Horror	0	0
	1024	3	Action	Drama	0	0	0	Thriller

per-column unique across samples

User ID	Movie ID	Genre					
1024	33	Action	Drama	Family	Horror	Picaresque	Thriller
64	47						
	17						
	3						

 Apply a unique op to each feature in a batch before any inter-GPU communication

- Advantages:
 - Independent of hotness
 - Less sensitive to the sharding scheme
- Disadvantages:
 - The compression ratio is highly dependent on input distribution and batch size

Hierarchical Communication

- To mitigate the cost of multi-node training and scale it out, leverage the full connectivity and high bandwidth of NVSwitch:
 - 1. Within the node, move the embedding vectors to a GPU that share the same InfiniBand rail as the destination GPU
 - 2. Send them as an aggregated message to the destination GPU without crossing rails
- Benefits:
 - Maximize effective message rate and minimize the transmission latency
 - Reduce traffic flow through the second-tier spine switches and optimizes network traffic
- The optimization is available in the name of PXN in NCCL

Fusing Embedding Tables

- Consider to fuse and co-optimize different embedding tables which share the characteristics, e.g., embedding vector size
- Such a fused embedding table can be implemented with the smaller number of operations
 - More efficient in terms of CUDA kernel launch overhead and GPU utilization
- If the original tables share the same vector size, it can be realized by applying offsets to their lookup indices
- Even if they have the same vector size, do not fuse them if their best sharding schemes are different, e.g., Data-Parallel vs. Row-Wise

MLPs Why Do We Care?

- MLPs can take a smaller portion of time than that those of CNN or NLP models
- But they still represent the significant portion of training time in a RecSys model
 - If we incorporate transformer layers beyond simple fully connected layers, it takes more time
- MLP optimization strategies
 - Lower precision
 - Kernel fusions
 - CUDA GraphPipelining

Kernel Fusion Example

Fully Connected (FC) Layers

- Simple but common pattern across various RecSys models
- cuBLAS GEMMs are already highly optimized
 - Well-designed kernels
 - Efficient TensorCore utilization
- But there is room for improvements:
 - Redundant reads/writes between kernels
 - bprop kernels share the same input data (d_out)
 - Weight gradients (d_W and d_b) and data gradient (d_in) are computed in the same CUDA stream even if they are independent

Kernel Fusion Example

Fully Connected (FC) Layers

- cuBLASLt, a flexible lightweight GEMM library, offers sever al fusion options through cublasLtEpilogue_t:
 - CUBLASLT_EPILOGUE_DEFAULT
 - CUBLASLT_EPILOGUE_RELU_AUX_BIAS
 - CUBLASLT_EPILOGUE_DRELU_BGRAD
- d_b and d_W are computed in parallel with d_in
 - They are launched into different CUDA streams

CUDA Graph

Motivation

- CUDA kernel launch is not free
 - Overhead is aggregated with many small kernels

time

CUDA Graph

With CUDA Graph

- Encapsulate N kernel launches into a single CUDA graph launch
 - Construct an explicit CUDA graph or do a stream capture
 - CUDA library calls including NCCL are supported, e.g., AllReduce at the end of each backward pass

time

Trade-Offs of Embedding Vector Size and Batch Size

- Embedding vector size (or embedding width)
 - Too small
 - Cannot capture all information
 - Lead to computational inefficiency
 - Too large
 - may make your model overfit
 - increase the memory footprint
 - Choose the size as a multiple of 64B or 128B to achieve better memory utilization and parallel execution efficiency
- Batch size
 - Bigger batch size normally leads to more parallelism on GPUs, e.g., batched table lookups, batched MLPs, etc.
 - Cannot just increase it because it can affect the memory footprint and model accuracy

Pipelining Motivation

- In large-scale, multi-node DLRM training, per-GPU batch size might not be full
 - Some operations may make GPU underutilized, e.g., SMs may not have enough thread blocks
- Multi-node DLRM training requires heavy all-to-all communications for model parallel embeddings and all-reduce communication for the data-parallel parts
 - During the communication, GPU SMs are not fully utilized
- Some operations are independent with one another
 - No dependency on input data between iterations
 - Embeddings don't rely on Bottom MLPs
 - Data-parallel and model-parallel embedding table operations are independent
 - •

Pipelining

(A Simplified) Example: Before

Communications and computations are serialized in the same CUDA stream

Pipelining

(A Simplified) Example: After

- Overlap between computations and communications using different CUDA streams
- Prefetch next iteration data

Motivation

- Embedding table size can grow rapidly and dynamically
 - and it is sometimes hard to predict its size in advance -> Hard to preallocate

- Even if some categorical features can have large cardinalities, a large portion of the keys might be rarely used
 - It often follows a power-law-like distributions > No need to preallocate everything

Grow on Demand

• Start from a small, predefined capacity, and then grow the capacity on demand

^{*} Note: this is a very simplified view. The implementation details can be more complex.

Handling "True" Full Capacity

- The capacity of dynamic embedding table cannot grow beyond the GPU memory capacity
- If new keys occur, the least frequent embedding vectors must be removed from the embedding table
- How should the victim vectors be handled?
 - Naïve approach just discard it
 - Simple but affects accuracy
 - Conventional approach use CPU memory as the secondary storage
 - More complex to implement, possibly poorer performance

Alternative Approach

- Treat CPU memory as the extension of GPU memory based on DMA
- Performance is limited by the data distribution and PCIe bandwidth
- More suitable for GH200 Grace Hopper Superchip
 - NVLink-C2C provides 900GB/s bidirectional bandwidth between CPU and GPU
- Example implementation https://github.com/NVIDIA-Merlin/HierarchicalKV

Evaluation Setup

- Training System A cluster of NVIDIA DGX H100
 - Each DGX H100 has 8xH100 Tensor Core GPUs and 4xNVSwitchs

Model

Model	Source	# Emb. Tables	Avg. Hotness	Emb. vector size
DLRM-DCNv2	MLPerf Training 3.0	26	10	128
70B-Model	Synthetic	180	80	{32, 128}

- Framework NVIDA <u>HugeCTR</u>
 - But the introduced optimizations and practices are not limited to a specific framework

Scale-out Performance

Weak-Scaling Speedup

- Employed optimizations: better sharding + fused embedding tables + A2A traffic reduction + Better MLP + Pipelining
- A bigger model tends to achieve better scalability
- Observed the similar tendency in a DGX A100 based cluster

Takeaways

- A GPU based cluster is an attractive choice in training a large-scale recommender model if its high bandwidth memory and interconnect are well leveraged
- Considering diversities of models, datasets, and platforms, the best suite of optimizations and practices must be selected and implemented carefully
 - Sharding strategy
 - Embedding table fusion
 - A2A traffic compression
 - MLP optimizations
 - Pipelining
- Dynamic embedding also should be a good option to be explored, esp., if you don't have enough number of GPUs and/or it is hard to predict embedding table sizes

More Resources on Recommender System Training

At GTC 2024:

- S61278 Accelerate Recommender Systems and Increase GPU Utilization With Multiple CUDA Streams
- S62277 Implementing Lock-Free Linked-Lists Hash Table with a High-performance Memory Pool on GPU

NVIDIA Blogs:

- Fast, Terabyte-Scale Recommender Training Made Easy with NVIDIA Merlin Distributed-Embeddings
- Accelerating Embedding with the HugeCTR TensorFlow Embedding Plugin
- Merlin HugeCTR Sparse Operation Kit Part 1 [CN]
- Merlin HugeCTR Sparse Operation Kit Part 2 [CN]
- Breaking MLPerf Training Records with NVIDIA H100 GPUs

NVIDIA Repositories:

- Distributed Embeddings
- HugeCTR & SOK
- HiearachicalKV

