	-
Estimation	
Population parameter or sample	
estimates of population parameters The average income of all adult	
Americans. The percentage who favored	
increasing affirmative action programs in the Gallup survey.	
☐ The percentage of all Americans who favor increasing affirmative action	
programs.	
Estimation	-
When the GSS or Gallup or NBC takes a poll, they use the results they get	
to estimate the percentage of American adults who would agree with their results.	
Estimation is a process whereby we select a random sample from a	-
population and use a sample statistic to estimate a population parameter	

Why do we Estimate? ☐ It is much too expensive and time consuming and in some cases impossible to find information on a population. ■ We can learn a lot about a population by randomly selecting a sample from that population and obtaining an estimate of the population parameter. ☐ With this knowledge we learn about ourselves. Point and Interval Estimation ☐ There are two types of estimation. Point estimation Interval estimation ☐ Point estimates are sample statistics used to estimate the exact value of a population parameter. ☐ In Interval estimates (confidence intervals), we use a range of values within which the population parameter may fall. Estimation □ Confidence Interval A range of values defined by the confidence level within which the population parameter is estimated to fall Confidence Level ■ The likelihood, expressed as a percentage or a probability, that a specified interval will contain the population parameter

Confidence level

- When we use confidence intervals to estimate population parameters we can also evaluate the accuracy of this estimate by assessing the likelihood that any given interval will contain the mean.
- We express it as a percentage or a probability and we call it the confidence level

Confidence Intervals

- ☐ If we wanted to be 95% confident, all random sample means would fall within +\- 1.96 standard error (Z score).
- □ If we wanted to be 99% confident, all random sample means would fall within +\- 2.58 standard errors (Z scores).

Confidence Interval

■ We want to construct an estimate of where the population mean falls based on our The actual population par falls somewhere on this ii

This is our confidence interval

Confidence Interval Formula	
The general formula for constructing a confidence interval (CI) for any level is: $CI = \overline{Y} \pm Z(\sigma_{\overline{y}})$	
confidence interval , we take the sample mean and add to or subtract	
from it the product of a Z value and the standard error.	
Confidence Intervals	
☐ The Z score we choose depends on the desired confidence level.	
☐ For example, to obtain a 95% CI we would choose a Z of 1.96 because if we go to Appendix B it shows that 95% of the area under the curve is	
included between ± 1.96. ☐ You as the researcher get to choose	
how confident you would like to be.	
Determining the Confidence	
Interval	
☐ To determine the confidence interval for means, follow these steps: ■ Calculate the standard error of the	
mean. Decide on the level of confidence, and	
find the corresponding Z value. Calculate the confidence interval. Interpret the results.	
- Interpret the results.	

The Standard Error

- ☐ Standard Error of the Mean
 - The standard deviation of a sampling distribution

$$= \sigma_{\bar{y}} = \frac{\sigma_{y}}{\sqrt{N}}$$
Standard Error

Estimating Standard Errors

■ Because the standard error is generally not known, we work with the estimated standard error $s_{\overline{Y}} = \frac{s_{\overline{Y}}}{\sqrt{s_{\overline{Y}}}}$

$$s_{\overline{Y}} = \frac{s_{\overline{Y}}}{\sqrt{N}}$$

Now let us try!

- ☐ Calculating the standard error of the
- We are looking at the average age of 500 COD students.
- ☐ Lets say that the standard deviation for our population of COD students is 2.5
- We can now calculate the standard error of the mean.

Deside on a level of Confidence	
Decide on a Level of Confidence ☐ We have decided to use a 80%	
confidence level.	
☐ Find the corresponding Z value.	
Calculate the Confidence Interval	
☐ The confidence	
interval is $CI = \overline{Y} + Z(\sigma_{\overline{v}})$	
calculated by adding the	
subtracting from	
the observed sample mean the	
product of the	
standard error and Z.	
Interpreting the Results	-
☐ We can be 80% confident that the	
actual mean age of all COD students is not less than 20.66 years old and	
not greater than 20.94 years old.	
□ Remember, we can never be sure whether the population mean is	
actually contained within the	
confidence interval.	

Reducing Risk ■ We can reduce the risk of being incorrect by increasing the level of confidence. ☐ When we use the highest level of confidence, 99% confidence, there is only a 1% risk that we are wrong that the specified interval does not contain the true population mean. Sample Size and confidence intervals ☐ By increasing the sample size, researchers increases the precision of their estimate. Meaning their confidence interval is smaller. ☐ Larger samples result in smaller standard errors and therefore, in sampling distributions that are more clustered around the population mean. ☐ A Closer Look 8.2 on page 249. Confidence Intervals for Proportions and Percentages □ The procedures for estimating proportions and percentages are identical. □ The sampling distribution of proportions underlies the estimation of population proportions from the sample proportions. ☐ This is the same theory that we used for the sampling distribution of the mean.

Procedures for Estimating **Proportions** ☐ The general formula for constructing confidence intervals for proportion for any level of confidence is: \square CI = p ± Z (S_p) CI = confidence interval ■ P = the observed sample proportion Z = the Z corresponding to the CI S_p = the estimated standard error of proportions. Steps for Estimating Proportions □ Calculate the standard error of the proportion. ☐ Decide on the level of confidence, and find the corresponding Z value. □ Calculate the confidence interval. □ Interpret the results. Let's give it a try! ■ We are going to use the data from the textbook. □ The textbook looked at the result of the CBS News Poll on satisfaction with the election outcome.

Calculating the Estimated Standard Error of the Proportion

- □ For our study, the observed sample proportion (p) is .50 (50%) with a sample (N) of 1,048.
- □ Find the Estimated standard error of the proportion based on the information given.

Formula for estimated standard error of the proportion is

$$S_p = \sqrt{\frac{(p)(1-p)}{n}}$$

Decide on the Level of Confidence

- ☐ We have decided to use a 90% confidence level.
- ☐ Find the corresponding Z value.

Calculate the Confidence Interval	
☐ The confidence interval is calculated by adding the	
subtracting from the observed sample proportion the product of the standard error and Z. $CI = p \pm Z(s_p)$	
Interpreting the Results	
We are 90% confident that the true population proportion is somewhere between .475 and .525.	
□ We could also express the result in percentages and say that we are 90%	
confident that the true population percentage of satisfaction with the election outcome in between 47.5%	
and 52.5%.	