oraniz Manenamurkunt I Cenery

lingf(x)=b (=> VE>0:] S>0: Vx, x2EA: x + x0: 1x-x0/28 => 1 f(x)-6/2 E

 $e^{x} = \left[+ \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots + \frac{x^{n}}{h!} + o(x^{n}) \right] \times \rightarrow 0$

Teop. Hepibricano Bentymi (1+x) > 1+ xh , \dags, x>-1

Dob. Baza ingykuni: N=1: 1+× ≥1+ ×·1

Knok ingyryii: hungenumo, yo (1+x)n > 1+xn - bukototo

trepelifumos que n+1:

=/+x+xn+ x2n ≥ 1+ (n+1)x

Jakun mron, (1+2) h > 1 + hx

Зміст

Комплексні числа							
1.1	Арифметика						
1.2	Геометрична інтерпретація та додаткова арифметика						
1.3	Квадратні рівняння						
1.4	Показникова формула						
Інц	Інші теми						
2.1	Гіперболічні функції						
2.2	Полярні координати						
2.3	Про відображення						
2.4	Принцип математичної індукції						
2.5	Біноміальні коефіцієнти, біном Ньютона						
Про множину дійсних чисел							
3.1	Аксіоматика						
3.2	Точкові межі						
3.3	Основні нерівності						
3.4	Аксіома Архімеда та основні наслідки						
3.5	Основні твердження мат. аналізу						
Гра	Границі числової послідовності						
4.1	Основні означення						
4.2	Нескінченно малі/великі послідовності						
4.3	Нерівності в границях						
4.4	Трошки про першу чудову границю						
4.5	Трошки про першу чудову границю						
	чудову границю						
4.6	Підпослідовності						
4.7	Фундаментальна послідовність						
4.8	Послідовність комплексних чисел						
Гра	Границі функції						
5.1	Основні означення						
5.2	Перша чудова границя						
5.3	Друга чудова границя						
5.4	Односторонні границі та границі монотонних функцій						
5.5	Порівняння функцій, відношення О-велике, о-маленьке та						
	еквівалентності						
	1.1 1.2 1.3 1.4 IHIII 2.1 2.2 2.3 2.4 2.5 IIpo 3.1 3.2 3.3 3.4 3.5 Ipa 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 Ipa 5.1 5.1 5.2 5.3 5.4						

6	Неперервність функції					
	6.1	Неперервність в точці	61			
	6.2	Неперервність елементарних функцій	64			
	6.3	Неперервність функції на відрізку/інтервалі	66			
	6.4	Рівномірна неперервність	69			
7	Диференціювання					
	7.1	Основні означення	71			
	7.2	Дотична та нормаль до графіку функції	76			
	7.3	Приблизне обчислення значень для диференційованих функц	цій 77			
	7.4	Диференціал функції	78			
	7.5	Похідні по один бік	79			
	7.6	Інваріантність форми першого диференціалу	80			
	7.7	Похідна від параметрично заданої функції	80			
	7.8	Похідна вищих порядків	80			
	7.9	Основні теореми	83			
	7.10	Дослідження функції на монотонність	86			
	7.11	Екстремуми функції	87			
		7.11.1 Локальні	87			
		7.11.2 Глобальні	89			
	7.12	Формула Тейлора та правила Лопіталя	90			
	7.13	Опуклі функції	94			
		Асимптоти функції	97			
		Дослідження графіків функції	98			

Початкові нотації

```
\forall - для будь-якого, для довільного, ... \exists - існує, знайдеться принаймні один, ... \exists! - існує єдиний \not\exists - не існує \Longrightarrow - випливає \Longleftrightarrow - еквівалентно; тоді й тільки тоді, коли...; 'теж саме, що' x \in A - елемент x належить множині A A \ni x - множина A містить елемент x
```

Авторські нотації:

Definition - означення

Theorem - теорема

Corollary - наслідок

Proposition - твердження

Lemma - лема

Example - приклад

Remark - зауваження

Proof. - доведення

ProofMI. - доведення методом математичної індукції

кінець доведення

^{! *}купа тексту* ! - частина доведення якогось факту від супротивного

1 Комплексні числа

1.1 Арифметика

Комплексним числом будемо називати число такого формату:

$$a + ib$$

Тут $a, b \in \mathbb{R}$, тобто будь-яке число

А i називають **уявною одиницею** - таке число, що

$$i^2 = -1$$

Множину комплексних чисел ми позначимо за С

Якщо у нас є два комплексних числа a_1+ib_1 та a_2+ib_2 , а також відомо, що

$$a_1+ib_1=a_2+ib_2$$
, то це теж саме, що $\begin{cases} a_1=a_2 \\ b_1=b_2 \end{cases}$

Більш математично це записується так (використовуючи нотації):

$$a_1 + ib_1 = a_2 + ib_2 \iff \begin{cases} a_1 = a_2 \\ b_1 = b_2 \end{cases}$$

Основна арифметика: ми можемо два комплексних числа довадати/віднімати, множити та ділити

$$(a_1 + ib_1) \pm (a_2 + ib_2) = (a_1 \pm a_2) + i(b_1 \pm b_2)$$

$$(a_1+ib_1)\cdot(a_2+ib_2) = a_1a_2+a_1ib_2+ib_1a_2+i^2b_1b_2 = (a_1a_2-b_1b_2)+i(a_1b_2+a_2b_1)$$

З діленням ситуація цікавіша. Спочатку введемо поняття **комплексно спряжене число** - число формата

$$a - ib$$

По суті кажучи, замість знаку + ми ставимо знак — Якщо тепер перемножити стандартне комплексне число на його спряжене, то ми отримаємо наступне:

$$(a+ib)(a-ib) = a^2 - (ib)^2 = a^2 + b^2$$

Ідея ділення двох комплексних чисел полягає домноженню дроба на комплексно спряжене число знаменника

$$\frac{a_1 + ib_1}{a_2 + ib_2} = \frac{(a_1 + ib_1)(a_2 - ib_2)}{(a_2 + ib_2)(a_2 - ib_2)} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + i\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + i\frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2} = \frac{(a_1a_2 + b_1b_2) + i(a_2b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{(a_1a_2 + b_1b_2) + i(a_1b_1 - a_1b_2)}{a_2^2 + b_2^2} = \frac{(a_1a_2 + b_1b_2) + i(a_1b_1 - a_1b_2)}{a$$

1.2 Геометрична інтерпретація та додаткова арифметика

Нехай є комплексне число $z=x+iy,\quad x,y\in\mathbb{R},z\in\mathbb{C}$ Нові позначення:

 $x = \operatorname{Re} z$ - дійсна частина

 $y = \operatorname{Im} z$ - уявна частина

Комплексно спряжене до числа z позначаємо $\bar{z}=x-iy$

Копмлексне число можна інтерпретувати як 'вектор' на такій системі координат

Можемо знайти **довжину** комплексного числа - відстань до початку координат

$$|z| = \sqrt{x^2 + y^2}$$

Із цього випливає наступна формула:

$$z \cdot \bar{z}(x+iy)(x-iy) = x^2 + y^2 = |z|^2$$

Ще одне нове позначення:

$$arphi = \arg z$$
 - аргумент комплексного числа

Повернімось до малюнку та спробуємо знайти x,y. За геометрічними міркуваннями:

$$\begin{cases} x = |z| \cos \varphi \\ y = |z| \sin \varphi \end{cases}$$

 Такі значення x,y ми підставимо в комплексне число z=x+iy

Отримаємо тригонометричну формулу комплексного числа

$$z = |z|(\cos\varphi + i\sin\varphi)$$

З'ясуємо арифметику комплексних чисел в тригонометричній формулі. Нехай є 2 комплексних числа:

$$z_1 = |z_1|(\cos\varphi_1 + i\sin\varphi_1)$$

$$z_2 = |z_2|(\cos\varphi_2 + i\sin\varphi_2)$$

1. Множення

$$z_{1} \cdot z_{2} = |z_{1}||z_{2}|(\cos \varphi_{1} + i \sin \varphi_{2})(\cos \varphi_{1} + i \sin \varphi_{2}) =$$

$$= |z_{1}||z_{2}|(\cos \varphi_{1} \cos \varphi_{2} - \sin \varphi_{1} \sin \varphi_{2} + i[\sin \varphi_{1} \cos \varphi_{2} + \sin \varphi_{2} \cos \varphi_{1}]) =$$

$$= |z_{1}||z_{2}|(\cos(\varphi_{1} + \varphi_{2}) + i \sin(\varphi_{1} + \varphi_{2}))$$

Отримали, що коли ми множимо два комплексних числа, модулі ми множимо, а аргументи ми додаємо, тобто

$$\begin{cases} |z_1 \cdot z_2| = |z_1| \cdot |z_2| \\ \arg(z_1 \cdot z_2) = \arg z_1 + \arg z_2 \\ z_1 \cdot z_2 = |z_1| |z_2| (\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2)) \end{cases}$$

2. Ділення
$$\frac{z_1}{z_2} \stackrel{\text{позн.}}{=} w,$$

де
$$w = |w|(\cos \psi + i \sin \psi)$$

Ми вже навчилися множити два комплексних числа, тому зведемо таким чином:

$$z_1 = wz_2 \implies \begin{cases} |z_1| = |z_2| \cdot |w| \\ \arg z_1 = \arg z_2 + \arg w \end{cases} \implies \begin{cases} |z_1| = |z_2| \cdot |w| \\ \varphi_1 = \varphi_2 + \psi \end{cases}$$

Звідси знайдемо, чому дорівнює |w| та ψ

$$\begin{cases} |w| = \frac{|z_1|}{|z_2|} \\ \psi = \varphi_1 - \varphi_2 \end{cases}$$

В результаті отримаємо:

$$w = \frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

3. Зведення в степінь

$$z^{n} = z \cdots z = |z| \cdots |z|(\cos(\varphi + \cdots + \varphi) + i\sin(\varphi + \cdots + \varphi)) =$$

= $|z|^{n}(\cos(n\varphi) + i\sin(n\varphi))$

Отримали формулу Муавра

$$z^{n} = |z|^{n}(\cos(n\varphi) + i\sin(n\varphi))$$

4. Вилучення коренів

$$\sqrt[n]{z} \stackrel{\text{позн.}}{=} w,$$

$$g = |w|(\cos \psi + i \sin \psi)$$

Ми щойно навчилися зводити комплексне число в степінь, тому зведемо таким чином:

$$z = w^n$$

$$|z|(\cos\varphi + i\sin\varphi) = |w|^n(\cos n\psi + i\sin n\psi)$$

Отримаємо, що
$$\begin{cases} |w|^n = z \\ n\psi = \varphi + 2\pi k \end{cases} \implies \begin{cases} |w| = \sqrt[n]{|z|} \\ \psi = \frac{\varphi + 2\pi k}{n} \end{cases}$$

Більш детальне пояснення другого рівняння системи:

Ми мали, що $\cos \varphi = \cos(n\psi)$

Оскільки \cos - 2π -періодична функція, то нас влаштовують не лише $\varphi = n\psi$, а також кути $+2\pi$, $+4\pi$, . . .

В результаті отримаємо:

$$w = \sqrt[n]{z} = \sqrt[n]{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right)$$

$$k = 0, 1, \dots, n - 1$$

Якщо k=n, то ми отримаємо комплексне число для випадку k=0 через періодичність тригонометричних функцій

Якщо k=n+1, то ми отримаємо комплексне число для випадку k=1 через періодичність тригонометричних функцій

. . .

Якщо k=-1, то ми отримаємо комплексне число для випадку k=n-1 через періодичність тригонометричних функцій

Отже, коли ми витягаємо корінь, ми маємо n штук комплексних чисел

Example 1.2.1 Знайти $\sqrt[3]{i}$

Розпишемо $i = 0 + i \cdot 1$

Якщо це намалювати на площині, то отримаємо, що

$$|i| = \sqrt{0^2 + 1^2} = 1$$
, $\arg i = \varphi = \frac{\pi}{2}$

А тепер витягаємо корінь:

$$\sqrt[3]{i} = \sqrt[3]{1} \left(\cos \frac{\frac{\pi}{2} + 2\pi k}{3} + i \sin \frac{\pi}{2} + 2\pi k}{3} \right), \quad k = 0, 1, 2$$

$$k = 0 \implies \cos \frac{\pi}{6} + i \sin \frac{\pi}{6} = \frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$k = 1 \implies \cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

$$k = 2 \implies \cos \frac{3\pi}{2} + i \sin \frac{3\pi}{2} = -i$$

1.3 Квадратні рівняння

Одна із головних мотивацій створення комплексних чисел - це квадратне рівняння

$$x^2 = -1$$

В дійсних числах (в школі) казали, що розв'язків нема. І дійсно, яке б ми число не зводили в квадрат, ми завжди отримуємо додатнє число Тепер ситуація змінюється і ми навчилися вилучати від'ємні корені $x=\sqrt{-1}=\pm i$

 $\mathbf{Remark}\ \mathbf{1.3.1}\ \mathbf{T}$ ам не випадково не написано \pm перед коренем, тому що

$$\sqrt{z} = \sqrt{|z|} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right) = \begin{bmatrix} \sqrt{|z|} \left(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \right) \\ \sqrt{|z|} \left(-\cos \frac{\varphi}{2} - i \sin \frac{\varphi}{2} \right) \end{bmatrix} = \pm \sqrt{|z|} \left(\cos \frac{\varphi}{2} + i \sin \frac{\varphi}{2} \right)$$

Тобто вилучаючи квадратний корінь, ми вже отримуємо два значення

Але тепер можна спокійно розв'язувати квадратні рівняння $az^2 + bz + c = 0$

$$a\left(z^{2} + \frac{bz}{2a}z + \left(\frac{b}{2a}\right)^{2}\right) + c - \frac{b^{2}}{4a} = 0$$

$$a\left(z + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a}$$
$$\left(z + \frac{b}{2a}\right) = \frac{b^2 - 4ac}{a^2}$$
$$z + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$z = \frac{-b \pm \sqrt{D}}{2a}$$

1.4 Показникова формула

Коли ми множимо два комплексних числа, то аргументи ми додаємо $(\cos \varphi + i \sin \varphi)(\cos \psi + i \sin \psi) = \cos(\varphi + \psi) + i \sin(\varphi + \psi)$ Додавання при множенні чогось виявляється в степенях: $a^x a^y = a^{x+y}$

Така паралель буде мотивацією нової форми комплексного числа $\text{Нехай } z = |z|(\cos \varphi + i \sin \varphi)$

Показникова форма має наступний вигляд

$$z = |z|e^{i\varphi}$$

Звідси автоматично випливає формула Ейлера

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

Шо таке e і звідки воно, дізнаємось трохи згодом, а поки сприймаємо це так: $e \approx 2.71$

Запишемо формулу Ейлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \ (1)$$

Підставимо в цю формулу $-\varphi$, отримаємо:

$$e^{-i\varphi} = \cos\varphi - i\sin\varphi \ (2)$$

$$(1) + (2) \implies \cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$e^{-i\varphi} = \cos \varphi - i \sin \varphi \ (2)$$

$$(1) + (2) \implies \cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$(1) - (2) \implies \sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i}$$

2 Інші теми

2.1 Гіперболічні функції

Гіперболічні функції визначимо таким чином:

$$\sh x = rac{e^x - e^{-x}}{2}$$
 - гіперболічний сінус $\ch x = rac{e^x + e^{-x}}{2}$ - гіперболічний косінус

Коли в стандартній тригонометрії ми мали тотожність $\cos^2 x + \sin^2 x = 1$

то в гіперболічному вигляду воно виглядає так:

$$\cosh^2 x - \sinh^2 x = 1$$

Дійсно,
$$\cosh^2 x - \sinh^2 x = \frac{1}{4}(e^{2x} + 2 + e^{-2x} - e^{2x} + 2 - e^{-2x}) = 1$$

$$2 \operatorname{ch} x \operatorname{sh} x = \operatorname{sh} 2x$$
 Дійсно, $2 \frac{e^x + e^{-x}}{2} \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - e^{-2x}}{2} = \operatorname{sh} 2x$

Геометрична репрезентація

Співвідношення $\cos^2 x + \sin^2 x = 1$ дає репрезентацію кола $x^2 + y^2 = 1$ Співвідношення $\cosh^2 x + \sinh^2 x = 1$ водночає дає репрезентацію гіперболи $x^2 - y^2 = 1$

2.2 Полярні координати

Задано полярний промінь (піввісь)

Точка задається такою парою координат: $A(\rho, \varphi)$, де

 φ - кут між промінем, на якій лежить т. A, та полярним променем

 ρ - відстань від початку координат до т. A

Знайдемо зв'язок між полярною та декартовою систем координат

З геометричних міркувань, отримаємо наступний зв'язок:

$$\begin{cases} x_A = \rho \cos \varphi \\ y_A = \rho \sin \varphi \end{cases}$$

Розглянемо тепер рівняння кола

$$x^2 + y^2 = 1$$

Підставимо щойно отриманий зв'язок. Тоді отримаємо рівняння кола радіуса R із центром в початку координат в полярних системах коордиат

$$\rho = R$$

Рівняння променя, що виходить із початку координат:

$$arphi=arphi_0$$
, де $arphi_0$ - якась величина

Example 2.2.1 Побудуємо $\rho = \sin 3\varphi$

Малювати будемо за точками, але перед цим знайдемо, які кути нас задовільняють

$$\rho \ge 0 \implies \sin 3\varphi \ge 0 \implies 3\pi k \le 3\varphi \le \pi + 2\pi k, k = 0, 1, 2$$

$\frac{\varphi}{0}$	ρ	-	φ	ρ
π	$\frac{1}{2}$		$\frac{2\pi}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{18}{\pi}$	$\sqrt{2}$		$\frac{9}{\pi}$	$\sqrt{2}$
$\overline{12}$	$\frac{1}{2}$		$\overline{\frac{4}{5\pi}}$	$\frac{2}{1}$
$\frac{\pi}{9}$	$\frac{\sqrt{3}}{2}$		$\frac{18}{\pi}$	$\frac{1}{2}$
$\frac{\pi}{6}$	1		$\overline{3}$	0

Це ми щойно розглянули більш зручні нам кути з нерівності $3\pi k \leq 3\varphi \leq \pi + 2\pi k$ при k=0

Перша пелюстка при k=0, друга пелюстка при k=1, третя пелюстка при k=2

2.3 Про відображення

Definition 2.3.1 Задані дві множини A, B

Відображенням назвемо таке правило f, що кожному елементу із множини A відповідає елемент множини B

Позначення: $f:A \to B$

Definition 2.3.2 Задані два відображення: $f: A \to B, g: B \to C$ **Композицією відображень** f та g називають відображення $h: A \to B$ таке, що:

$$\forall x \in A : h(x) = g(f(x)), \text{ a fo } h(x) = (g \circ f)(x)$$

Example 2.3.3 $f,g:\mathbb{R}\to\mathbb{R},\,f(x)=x^2,\,g(x)=\sin x$ Тоді $h:\mathbb{R}\to\mathbb{R},\,h(x)=g(f(x))=\sin x^2$

Proposition 2.3.4 Задані відображення $f:A\to B,\,g:B\to C,\,h:C\to D.$ Тоді $h\circ (g\circ f)=(h\circ g)\circ f$

Proof.

$$(h \circ (g \circ f))(x) = h((g \circ f)(x)) = h(g(f(x)))$$

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))) \blacksquare$$

$$h \circ (g \circ f) = (h \circ g) \circ f$$

$$g \circ f$$

$$h \circ g$$

Definition 2.3.5 Задано відображення $f: A \to B$ **Образом** множини $A_0 \subset A$ називається множина

$$f(A_0) = \{ f(x) \in B : x \in A_0 \}$$

Повним прообразом множини $B_0 \subset B$ називається множина

$$f^{-1}(B_0) = \{ x \in A : f(x) \in B_0 \}$$

Example 2.3.6 Задано відображення $f: \mathbb{R} \to \mathbb{R}$: $f(x) = x^2$ A = [-5, 4)

$$\Rightarrow f(A) = \{f(x) = x^2 : x \in [-5, 4)\} = [0, 25]$$

$$\Rightarrow f^{-1}(A) = \{x : f(x) = x^2 \in [-5, 4)\} \stackrel{x^2 < 4}{=} (-2, 2)$$

Proposition 2.3.7 Справедливі рівності:

$$1)f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

$$2)f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

$$3)f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$$

Випливає з теорії множин

Remark 2.3.8 Властивість образів не часто співпадають: $f(A \cap B) \neq f(A) \cap f(B)$

2.4 Принцип математичної індукції

Definition 2.4.1 Числова множина E називається **індуктивною**, якщо

$$\forall x \in E : x + 1 \in E$$

Example 2.4.2 Множини
$$\mathbb{N}, \left\{ x \in \mathbb{Q} : x > \frac{127}{19} \right\}$$
 - індуктивні

Proposition 2.4.3 Множина № - мінімальна індуктивна множина, що містить одиничку

Інакше кажучи, будь-яка підмножина E, що містить одиничку буде надмножиною \mathbb{N} , тобто $E\supset\mathbb{N}$

Proof.

Зафіксуємо таку індуктивну множину E, що $1 \in E$

Покажемо, що $\mathbb{N} \subset E \iff \forall n \in \mathbb{N} : n \in E$

$$1 \in E \stackrel{\text{індуктивна}}{\Longrightarrow} 2 \in E \stackrel{\text{індуктивна}}{\Longrightarrow} 3 \in E \stackrel{\text{індуктивна}}{\Longrightarrow} \dots \stackrel{\text{індуктивна}}{\Longrightarrow} n \in E$$

Таким чином, $\mathbb{N} \subset E \blacksquare$

Corollary 2.4.4 Метод математичної індукції

Хочемо перевірити, що $\forall n \in \mathbb{N}$ виконується твердження P(n) (може бути якась рівність, нерівність або ще щось)

- 1. База індукції. Перевірка, що P(1) виконано
- 2. Крок індукції. Припускаємо, що P(n) виконано для n (або для всіх $k \leq n$). На основі цього доводимо, що P(n+1) виконано

Тоді множина $P = \{n : P(n) - \text{виконано}\}$ - індуктивна та містить одиничку

Отже, $\mathbb{N} \subset P$, а це означає, що $\forall n \in \mathbb{N} : P(n)$ - виконано

Example 2.4.5 Доведемо рівність: $1+2+\cdots+n=\frac{n(n+1)}{2}, \forall n\in\mathbb{N}$

Позначимо
$$P(n) = \left(1 + 2 + \dots + n = \frac{n(n+1)}{2}\right)$$

- 1. База індукції. $P(1) = \left(1 = \frac{1 \cdot 2}{2} = 1\right)$ виконано
- 2. Крок індукції. Припустимо, що P(n) виконано для фіксованого n, тобто

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$
 (*)

Перевіримо, що P(n+1) - виконано

$$1 + 2 + \dots + n + (n+1) \stackrel{(*)}{=} \frac{n(n+1)}{2} + (n+1) = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

$$\implies P(n+1)$$
 - виконано

Таким чином, отримали, що P(n) виконано $\forall n \in \mathbb{N}$, або

$$1+2+\cdots+n=\frac{n(n+1)}{2}, \forall n \in \mathbb{N}$$

MI доведено

2.5 Біноміальні коефіцієнти, біном Ньютона

Зробимо нове позначення:

$$n\cdot (n-1)\dots 2\cdot 1=n!$$
 - факторіал натуралнього числа

Властивість:
$$(n+1)! = (n+1) \cdot \underbrace{n \cdot (n-1) \dots 2 \cdot 1}_{!} = (n+1)n!$$

Домовленість: 0! = 1

Definition 2.5.1 Біноміальним коефіцієнтом назвемо ось таке число

$$C_n^k = \frac{n!}{k!(n-k)!}$$

Інтерпретація того числа: серед n студентів обрати k студентів, що будуть відраховані

Властивість:
$$C_n^k + C_n^{k+1} = C_{n+1}^{k+1}$$

$$C_n^k + C_n^{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-(k+1))!} \equiv$$

За властивістю факторіала, (n-k)! = (n-k-1)!(n-k), а також (k+1)! = (k+1)k!

$$= \frac{n!}{k!(n-k-1)!} \frac{n+1}{(n-k)(k+1)} =$$

Знову за властивістю факторіала, (n+1)n! = (n+1)!, а також

$$(n-k)(n-k-1)! = (n-k)!, (k+1)k! = (k+1)!$$

Трикутник Паскаля

В школі були такі формули:

$$(a+b) = a+b$$

$$(a+b)^2 = a^2 + 2ab + b^2$$

$$(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

$$(a+b)^4 = ?$$

Приберімо зараз літери a,b та отримаємо такий малюнок:

1

По краям трикутника ми будемо завжди з одиницями. Червоне число 3 взялося шляхом додавання двох чисел зверху: 1+2. Якщо дотримуватись аналогічних міркувань, то ми зможемо розширити трикутник Паскаля:

Із цього трикутника ми тепер можем знайти $(a+b)^4$, якщо знати, як повернути літери:

$$(a+b)^4 = 1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4$$

Формула починається з a^4 та b^0 . А далі степінь a зменшуємо на одиницю, а степінь b, навпаки, збільшуємо на одиницю

А тепер узагальнимо це

Theorem 2.5.2 Біном Ньютона

$$(a+b)^n = C_n^0 a^n b^0 + C_n^1 a^{n-1} b + C_n^2 a^{n-2} b^2 + \dots + C_n^{n-1} a b^{n-1} + C_n^n a^0 b^n \stackrel{\text{коротко}}{=}$$

$$= \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Proof MI.

- 1. База індукції. $n=1 \implies (a+b)^1 = C_1^0 a^1 b^0 + C_1^1 a^0 b^1 = a+b$
- 2. Крок індукції. Припустимо, що для фіксованого n формула виконана, тобто

$$(a+b)^n = \sum_{k=0}^n C_n^k a^{n-k} b^k$$

Перевіримо цю формулу для n+1

$$(a+b)^{n+1} = (a+b)(a+b)^n \stackrel{\text{припущення MI}}{=} (a+b) \sum_{k=0}^n C_n^k a^{n-k} b^k =$$

$$= \sum_{k=0}^{n} C_n^k a^{n-k+1} b^k + \sum_{k=0}^{n} C_n^k a^{n-k} b^{k+1} =$$

$$= a^{n+1} + \sum_{k=1}^{n} C_n^k a^{n-k+1} b^k + \sum_{k=0}^{n-1} C_n^k a^{n-k} b^{k+1} + b^{n+1} =$$

В другій сумі ми замінимо лічильник: m = k + 1

Було: $0, 1, 2, \ldots, n-1$

Стало: $1, 2, 3, \ldots, n$

Замінимо літеру m=k, сума від цього не зміниться

3 Про множину дійсних чисел

3.1 Аксіоматика

Візьмемо якісь числа $a,b,c\in\mathbb{R}$. Тоді наступні твердження/рівності справедливі:

Відносно операції +:

a+b=b+a - комутативність

(a+b)+c=a+(b+c) - асоціативність

 $\exists 0 \in \mathbb{R} : a+0=a$ - існування нейтрального елементу

 $\exists (-a) \in \mathbb{R} : a + (-a) = 0$ - існування оберненого елементу

Відносно операції ::

 $a \cdot b = b \cdot a$ - комутативність

 $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ - асоціативність

 $\exists 1 \in \mathbb{R} : a \cdot 1 = a$ - існування нейтрального елементу

 $\exists \left(\frac{1}{a}\right) \in \mathbb{R} : a \cdot \frac{1}{a} = 1$ - існування оберненого елементу

$$(a+b) \cdot c = a \cdot c + b \cdot c$$

Відношення порядка:

Якщо a > b, то a + c > b + c

Якщо c>0 та a>b, то a+c>b

Якщо c>0 та a>b, то $a\cdot c>b\cdot c$

Аксіома відокремленості

Нехай є дві множини $A,B\subset\mathbb{R}$. Відомо, що $\forall a\in A,\, \forall b\in B:a\leq b$. Тоді $\exists c\in\mathbb{R}:a\leq c\leq b$

Remark 3.1.1. Мотивацією такої аксіоми може слугувати наступний приклад

$$A = \{x \in \mathbb{Q} : x^2 < 2\}, B = \{x \in \mathbb{Q} : x^2 > 2\}$$

Тут дійсно $\forall a \in A, b \in B: a < b,$ але не існує самого числа c, що може розділити обидві множини в раціональних числах. Але $c = \sqrt{2} \in \mathbb{R},$ тобто в дійсних числах, все працює. Коротше, цим можна казати, що на числовій прямій тупо всі числа лежать

3.2 Точкові межі

Definition 3.2.1 Задана множина $A \subset \mathbb{R}$

Множина A називається **обмеженою зверху**, якщо

$$\exists c \in \mathbb{R} : \forall a \in A : a \le c$$

Definition 3.2.2 Задана множина $B \subset \mathbb{R}$

Множина B називається **обмеженою знизу**, якщо

$$\exists d \in \mathbb{R} : \forall b \in B : b > d$$

Множину всіх чисел, що обмежують множину зверху, позначу за UpperA, тобто

$$UpperA = \{c \in \mathbb{R} : \forall a \in A : a \le c\}$$

Множину всіх чисел, що обмежують множину знизу, позначу за LowerB, тобто

$$LowerB = \{d \in \mathbb{R} : \forall b \in B : b \ge d\}$$

Example 3.2.3 Задана множина $A = \{1 - 2^{-n} | n \in \mathbb{N}\} = \left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots\right\}$

 \in обмеженою зверху, наприклад, числом $2 \in \mathbb{R}$, тобто $\forall a \in A : a < 2$ \in обмеженою знизу, наприклад, числом $0 \in \mathbb{R}$, тобто $\forall a \in A : a > 0$

Proposition 3.2.4

Якщо $c \in UpperA$ та $c_1 > c$, то $c_1 \in UpperA$

Якщо $d \in LowerB$ та $d_1 < d$, то $d_1 \in LowerB$

Обидва твердження випливають з визначення множин

Proposition 3.2.5 Множина UpperA обмежена знизу, а множина LowerB обмежена зверху

Випливає з означень обмеженості

Proposition 3.2.6 Для множини UpperA існує мінімальний елемент, а для множини LowerB існує максимальний елемент

Proof.

 $UpperA = \{c \in \mathbb{R} : \forall a \in A : a \le c\}$

За аксіомою відокремленості, $\exists c' \in \mathbb{R} : a \leq c' \leq c \Rightarrow c' \in UpperA$

 $\forall c \in UpperA : c' \le c \Rightarrow c' = \min UpperA$

Для LowerB доведення аналогічне

Definition 3.2.7

Точковою верхньою межею називають наступне число:

$$\sup A = \min UpperA$$

Точковою нижньою межею називають наступне число:

$$\inf B = \max LowerB$$

Theorem 3.2.8 Критерій супремуму

$$c' = \sup A \iff \begin{cases} \forall a \in A : a \leq c' \\ \forall \varepsilon > 0 : \exists a_{\varepsilon} \in A : a_{\varepsilon} > c' - \varepsilon \end{cases}$$

Другий пункт каже ось що: якщо ми візьмемо супремум та трохи зменшимо, то ми знайдемо такий елемент, що буде явно більше за 'зменшеного супремуму' - а отже, цей 'зменший супремум' не буде супремумом. І так для кожного зменшеного

$$\begin{array}{ccc}
A & c' = \sup A \\
\hline
c' - \varepsilon
\end{array}$$

В червоній зоні буде завжди якийсь елемент a_{ε}

Proof.

 \Rightarrow Дано: $c' = \sup A$

Тоді автоматично $c' \in UpperA$, тобто $\forall a \in A : a \leq c'$

Оскільки це мінімальне значення, то

$$\forall \varepsilon > 0 : c' - \varepsilon \notin UpperA \Rightarrow \exists a_{\varepsilon} \in A : a_{\varepsilon} > c' - \varepsilon$$

← Дано: система з двох умов

Із першої умови випливає, що $c' \in UpperA$, а із другої умови - $c' = \min UpperA = \sup A \blacksquare$

Theorem 3.2.9 Критерій інфімуму

$$d' = \inf B \iff \begin{cases} \forall b \in B : b \ge d' \\ \forall \varepsilon > 0 : \exists b_{\varepsilon} \in B : b_{\varepsilon} < d' + \varepsilon \end{cases}$$

Доведення є аналогічним до критерію супремуму

Example 3.2.10 Повернімось до множини

$$A = \{1 - 2^{-n} | n \in \mathbb{N}\} = \left\{\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \dots\right\}$$

Доведемо, що $\sup A = 1$

Дійсно,
$$\forall a \in A : a = 1 - \frac{1}{2^n} < 1$$

Залишилось довести, що $\tilde{\forall} \varepsilon > 0 : \exists a_{\varepsilon} : a_{\varepsilon} > 1 - \varepsilon$

Або
$$\exists n: 1-2^{-n} > 1-\varepsilon \Rightarrow n > -\log_2 \varepsilon$$

Definition 3.2.11 Множина $F \subset \mathbb{R}$ називається **обмеженою**, якщо

$$\exists p > 0 : \forall f \in F : |f| \le p$$

Remark 3.2.12

Якщо A не ϵ обмеженою зверху, то вважаємо $\sup A = +\infty$ Якщо B не ϵ обмеженою знизу, то вважаємо $\inf B = -\infty$

3.3 Основні нерівності

Theorem 3.3.1 Нерівність Бернуллі

Для всіх x > -1 виконується нерівність:

$$(1+x)^n \ge 1 + nx$$

Proof MI.

- 1. База індукції. n = 1: $(1 + x)^1 \ge 1 + 1 \cdot x$. Нерівність виконується
- 2. Крок індукції. Нехай для фіксованого n дана нерівність виконується. Доведемо для значення n+1

$$(1+x)^{n+1} = (1+x)(1+x)^n \ge (1+x)(1+nx) = 1+(n+1)x+nx^2 \ge 0$$
оскільки $x^2 \ge 0$
 $\ge 1+(n+1)x$

Отже, така нерівність справедлива $\forall n \geq 1$

MI доведено **■**

Theorem 3.3.2 Нерівність Коші

Для всіх $a_1, \cdots, a_n \geq 0$ виконується нерівність:

$$\frac{a_1 + \dots + a_n}{n} \ge \sqrt[n]{a_1 \cdots a_n}$$

Proof.

Тимчасове перепозначення: $A_n = \frac{a_1 + \dots + a_n}{n}, G_n = \sqrt[n]{a_1 \dots a_n}$

Зрозуміло, що $\frac{A_n}{A_{n-1}} > 0 \Rightarrow \frac{A_n}{A_{n-1}} - 1 > -1$. Тоді за нерівністю Бернуллі

$$\left(1 + \left(\frac{A_n}{A_{n-1}} - 1\right)\right)^n \ge 1 + n \cdot \left(\frac{A_n}{A_{n-1}} - 1\right)$$

$$(A_n)^n > a_n$$

$$\Rightarrow \frac{(A_n)^n}{(A_{n-1})^n} \ge \frac{a_n}{A_{n-1}}$$

$$\Rightarrow (A_n)^n \ge a_n (A_{n-1})^{n-1}, \, \forall n \ge 1.$$
 Тоді

$$(A_n)^n \ge a_n (A_{n-1})^{n-1} \ge \cdots \ge a_n a_{n-1} \cdots a_1$$
. Отже,

 $A_n \ge G_n$, що й хотіли довести \blacksquare

Theorem 3.3.3 Нерівність трикутника

Для довільних $x, y \in \mathbb{R}$ справедлива нерівність:

$$|x+y| \le |x| + |y|$$

Proof.

$$(|x+y|)^2 = (x+y)^2 = x^2 + 2xy + y^2 = |x|^2 + 2xy + |y|^2 \le |x|^2 + 2|x||y| + |y|^2 = (|x| + |y|)^2$$

$$\Rightarrow |x+y| \le |x| + |y| \blacksquare$$

Аксіома Архімеда та основні наслідки 3.4

Аксіома Архімеда

Множина натуральних чисел \mathbb{N} не ϵ обмеженою зверху, тобто

$$\forall a \in \mathbb{R} : \exists n \in \mathbb{N} : n > a$$

Corollary 3.4.1 Множина цілих чисел \mathbb{Z} не ε обмеженою взагалі

Proof. Відомо, що $\forall a \in \mathbb{R} : \exists n \in \mathbb{N} : n > a$

Тоді $\exists m \in \mathbb{N} : (-a) < m \iff (-m) < a$

A число $-m \in \mathbb{Z}$

Corollary 3.4.2 Задано таке число a, що

$$-a \ge 0$$

-
$$\forall \varepsilon > 0 : a < \varepsilon$$

Тоді
$$a=0$$

Proof.

! Припустимо, що $a \neq 0$, тобто лишається випадок a > 0

Тоді звідси
$$\frac{1}{a} > 0$$

За аксіомою Архімеда, $\exists n \in \mathbb{N} : n > \frac{1}{a} \iff a > \frac{1}{n}$ Проте нам відомо, що $\forall \varepsilon > 0 : a < \varepsilon$. Суперечність!

Таким чином, a=0

Corollary 3.4.3 Задані такі два числа $a, \in \mathbb{R}$, що a < b

Тоді
$$\exists q = \frac{m}{n} \in \mathbb{Q} | m \in \mathbb{Z}, n \in \mathbb{N} : a < \frac{m}{n} < b$$

Інакше кажучи, в будь-якому інтервалі (a, b) знайдеться принаймні одне раціональне число

Proof.

a < b, тоді розглянемо число $b-a > 0 \stackrel{\text{аксіома Архімеда}}{\Longrightarrow} \exists n : \frac{1}{n} < b-a$

Розглянемо таке число m, що $\frac{m-1}{n} \leq a$ та $\frac{m}{n} > a$

!Припустимо, що $\frac{m}{n} \ge b$, ми цим кажемо, що $\frac{m}{n}$ НЕ потрапляє в інтервал (a,b)

Тоді маємо: $b-a \leq \frac{m}{n} - \frac{m-1}{n} = \frac{1}{n}$

Отримали, що $b-a \leq \frac{1}{n}$ - суперечність! Оскільки в нас була нерівність навпаки

Таким чином, $\frac{m}{n} < b$

Остаточно: $a < \frac{m}{n} < b \implies q = \frac{m}{n} \in (a, b)$

Corollary 3.4.4 Задано число h>0 - одиниця шкали, масштаб Тоді $\forall x\in\mathbb{R}:\exists!m\in\mathbb{Z}:(m-1)h\leq x\leq mh$

Proof.

Маємо h > 0. Із аксіоми Архімеда випливає, що

 $\exists ! m \in \mathbb{Z} : \frac{x}{h} < m$, а також $m-1 \leq \frac{x}{h}$

Отже, $m-1 \le \frac{x}{h} \le m \implies (m-1)h < x \le mh$

Remark 3.4.5 Якщо встановити n=1, то $\exists! m \in \mathbb{Z} : m-1 \leq x < m$ В такому випадку позначимо m-1=[x] - ціла частина числа x Тобто найближче менше ціле число

$$[2.6] = 2, [-1.1] = -2$$

3.5 Основні твердження мат. аналізу

Lemma 3.5.1 Лема Кантора про вкладені відрізки

Задані відрізки наступним чином: $\forall n \geq 1: [a_n,b_n] \supset [a_{n+1},b_{n+1}].$ Інакше кажучи, $[a_1,b_1]\supset [a_2,b_2]\supset\dots$ Тоді

- 1) $\exists c \in \mathbb{R} : \forall n \ge 1 : c \in [a_n, b_n]$
- 2) Якщо $\forall \varepsilon > 0$: $\exists n \in \mathbb{N} : b_n a_n < \varepsilon$, то $\exists ! c \in \mathbb{R} : \forall n \geq 1 : c \in [a_n, b_n]$

Proof.

1) Із умови випливає, що $\forall n,m\in\mathbb{N}$:

$$a_1 \le a_2 \le \dots \le a_n \le \dots < \dots \le b_n \le \dots \le b_2 \le b_1$$

Отже, $\forall n, m \in \mathbb{N} : a_n \leq b_m$

Тому що:

$$-n < m : a_n \le \dots \le a_m < b_m \le \dots \le b_n$$

$$-n > m : a_n < b_n \le \dots \le b_m$$

Розглянемо множини $A = \{a_1, \dots, a_n\}, B = \{b_1, \dots, b_m\}$

$$\forall a_n \in A : \forall b_m \in B : a_n \leq b_m$$

Тоді за аксіомою відокремленості, $\exists c \in \mathbb{R} : \forall n, m \in \mathbb{N} : a_n \leq c \leq b_m$ Таким чином, $\forall n \geq 1 : c \in [a_n, b_n]$

2) Розглянемо окремо, коли $\forall \varepsilon > 0 : \exists n : b_n - a_n < \varepsilon$

!Припустимо, що $\exists c' \in \mathbb{R}$:, тобто ще один елемент, що $\forall n \geq 1$:

$$c' \in [a_n, b_n]$$
, але $c \neq c'$

Задамо
$$\varepsilon = |c' - c| > 0$$

Тоді $\exists n: b_n - a_n < \varepsilon$, але $c, c' \in [a_n, b_n]$ для заданого n

Тому
$$\varepsilon = |c' - c| < a_n - b_n < \varepsilon$$
 - суперечність!

Отже, така точка c є єдиною, причому

$$[a_1, b_1] \cap [a_2, b_2] \cap \dots = \{c\} \blacksquare$$

Definition 3.5.2 Задано множина $A \subset \mathbb{R}$

Точка $a_0 \in \mathbb{R}$ називатимемо **граничною точкою** множини A, якщо

$$\forall \varepsilon > 0 : (a_0 - \varepsilon, a_0 + \varepsilon) \cap A$$
 - нескінченна множина

Водночас інтервал $(a_0 - \varepsilon, a_0 + \varepsilon) \stackrel{\text{позн.}}{=} U_{\varepsilon}(a_0)$ називають ε -окілом т. a_0

Example 3.5.3 Задано множина A = [0, 1). Знайдемо всі граничні точки 1. $a \in (0, 1)$

$$\forall \varepsilon > 0 : (a - \varepsilon, a + \varepsilon) \cap [0, 1) = \begin{bmatrix} (0, a + \varepsilon) & \text{aso } (0, 1), \varepsilon \ge a \\ (a - \varepsilon, a + \varepsilon) & \text{aso } (a, 1), 0 < \varepsilon < a \end{bmatrix}$$

Всі множини є нескінченними

Отже: із (0,1) всі точки є граничними

$$2.1) a = 0$$

 $(a-\varepsilon,a+\varepsilon)\cap [0,1)=[0,a+\varepsilon)$ або [0,1) - нескінченні множини. Тож a=0 - гранична

$$2.2) a = 1$$

 $(a-\varepsilon,a+\varepsilon)\cap [0,1)=(1-\varepsilon,1)$ або [0,1) - нескінченні множини. Тож a=1 - гранична

Розглянемо
$$\varepsilon = \frac{-a}{2}$$

Тоді
$$(a-\varepsilon,a+\varepsilon)=\left(\frac{3a}{2},\frac{a}{2}\right)\subset\left(\frac{3a}{2},0\right)$$
 $\Longrightarrow (a-\varepsilon,a+\varepsilon)\cap[0,1)=\emptyset$ - порожня множина Отже, жодна точка, яка $a<0$, не є граничною

$$3.2) \ a > 1$$

Розглянемо $\varepsilon = \frac{a-1}{2}$

Тоді
$$(a-\varepsilon,a+\varepsilon)=\left(\frac{a+1}{2},\frac{3a-1}{2}\right)\subset\left(1,\frac{3a-1}{2}\right)$$

 $\implies (a-\varepsilon, a+\varepsilon) \cap [0,1) = \emptyset$ - порожня множина

Отже, жодна точка, яка a>1, не є граничною

Example 3.5.4 Задано множина $A = \left\{ \frac{1}{n} | n \in \mathbb{N} \right\} = \left\{ 1, \frac{1}{2}, \frac{1}{3}, \dots \right\}$. Знайдемо всі граничні точки

1.
$$a \in (0, 1]$$

Ми завжди можемо знайти номер $n \in \mathbb{N}$, що $\frac{1}{n+1} \le a \le \frac{1}{n}$

Зафіксуємо
$$\varepsilon=\frac{1}{(n+1)^{20}}$$
. Тоді $(a-\varepsilon,a+\varepsilon)\cap A=\emptyset$ або $=\frac{1}{n}$

Зафіксуємо
$$\varepsilon=\dfrac{a-1}{2}$$
. Тоді $(a-\varepsilon,a+\varepsilon)\cap A=\emptyset$

3.
$$a < 0$$

Зафіксуємо
$$\varepsilon = \frac{-a}{2}$$
. Тоді $(a - \varepsilon, a + \varepsilon) \cap A = \emptyset$

$$4. \ a = 0$$

Тоді
$$\forall \varepsilon>0: (a-\varepsilon,a+\varepsilon)\cap A=(-\varepsilon,+\varepsilon)\cap A$$
 - нескінчення множина Тому що $\exists N: \forall n\geq N: \frac{1}{n}<\varepsilon\iff n>\frac{1}{\varepsilon}$

Остаточно: a = 0 - єдина гранична точка

Theorem 3.5.5 Теорема Больцано-Вейєрштрасса

Задано множина A - обмежена множина з нескінченною кількістю елементів.

Тоді вона містить принаймні одну граничну точку

Proof.

Оскільки A - обмежена, то:

$$\exists a \in \mathbb{R} : \forall x \in A : x \ge a$$

$$\exists b \in \mathbb{R} : \forall x \in A : x \leq b$$

Тобто маємо множину $A \subset [a, b]$

Розіб'ємо множину
$$[a,b]$$
 навпіл: $\left[a,\frac{a+b}{2}\right]$ та $\left[\frac{a+b}{2},b\right]$

Оскільки A має нескінченну кількість чисел, то принаймні одна з множин $\left[a,\frac{a+b}{2}\right]\cap A$ або $\left|\frac{a+b}{2},b\right|\cap A$ - нескінченна множина. Ту половину позначимо за множину $[a_1, b_1]$ (якщо обидва нескінченні, то вибір довільний). Тоді $A \cap [a_1, b_1]$ - нескінченна множина

Розіб'ємо множину $[a_1,b_1]$ навпіл: $a_1,\frac{a_1+b_1}{2}$ та $\left|\frac{a_1+b_1}{2},b_1\right|$

I за аналогічними міркуваннями одна з множин нескінченна, позначу за $[a_2,b_2]$. Тоді $A\cap [a_2,b_2]$ - нескінченна множина

Розіб'ємо множину $[a_2, b_2]$ навпіл: $\left|a_2, \frac{a_2 + b_2}{2}\right|$ та $\left[\frac{a_2 + b_2}{2}, b_2\right]$

В результаті матимемо вкладені відрізки: $[a,b]\supset [a_1,b_1]\supset [a_2,b_2]\supset\dots$

Причому $\forall n: b_n-a_n=\frac{b-a}{2^n}$ Зафіксуємо $\varepsilon>0$ та перевіримо, чи існує n, що $b_n-a_n<\varepsilon$

Maemo: $\frac{b-a}{2^n} < \varepsilon \Rightarrow \cdots \Rightarrow n > \log_2 \frac{b-a}{\varepsilon}$

Тоді за лемою Кантора, $\exists!c \in \mathbb{R} : \forall n \geq 1 : c \in [a_n, b_n]$

A далі покажемо, що c - дійсно гранична точка множини A

Зафіксуємо $\varepsilon > 0$. Знайдемо, чи існує n: $b_n - a_n = \frac{b-a}{2^n} < \frac{\varepsilon}{2} \Rightarrow \cdots \Rightarrow$

 $n > \log_2 \frac{2(b-a)}{c}$

Тоді $[a_n, b_n] \subset (c - \varepsilon, c + \varepsilon)$, оскільки $c - a_n \leq \frac{\varepsilon}{2}$ та $b_n - c \leq \frac{\varepsilon}{2}$

I це все виконується $\forall \varepsilon > 0$

Таким чином, $A \cap (c - \varepsilon, c + \varepsilon) \supset A \cap [a_n, b_n]$ - нескінченна множина, а отже, c - гранична точка $A \blacksquare$

Границі числової послідовності 4

4.1 Основні означення

Definition 4.1.1 Числовою послідовністю називають якийсь набір чисел $\{a_n, n \ge 1\}$

Тобто кожному номеру n буде зіставлено якесь число a_n

Definition 4.1.2 Число *а* називається **границею числової послідовності** $\{a_n, n \ge 1\}$, якщо справедливе таке твердження:

$$\forall \varepsilon > 0 : \exists N(\varepsilon) \in \mathbb{N} : \forall n \geq N : |a_n - a| < \varepsilon$$

Позначення: $\lim_{n\to\infty} a_n = a$ або $a_n \stackrel{n\to\infty}{\longrightarrow} a$

Якщо в деякої послідовності існує чисельна границя, то така послідовність називається збіжною. В інакшому випадку - розбіжна

Theorem 4.1.3 Для збіжної границі існує єдина границя Proof.

!Припустимо, задана збіжна числова послідовність $\{a_n, n \geq 1\}$, для якої існують дві границі:

 $\lim_{n \to \infty} a_n = a, \lim_{n \to \infty} a_n = b$ Врахуємо, що a < b (для a > b міркування є аналогічними)

Оскільки границі існують, ми можемо задати $\varepsilon = \frac{b-a}{2}$. Тоді

$$\exists N_1 : \forall n \ge N_1 : |a_n - a| < \frac{b - a}{3} \Rightarrow a_n < a + \frac{b - a}{3}$$

$$\exists N_2 : \forall n \ge N_2 : |a_n - b| < \frac{b - a}{3} \Rightarrow a_n > b - \frac{b - a}{3}$$

Аби обидві нерівності працювали одночасно, ми зафіксуємо новий $N = \max\{N_1, N_2\}$. Тоді:

$$\forall n \ge N : a_n < \frac{a + (a+b)}{3} < \frac{b + (a+b)}{3} < a_n$$

Отримали суперечність! Отже, обидва ліміти не існують одночасно

Example 4.1.4 Доведемо за означенням, що $\lim_{n\to\infty}\frac{1}{n}=0$

Задане довільне $\varepsilon > 0$. Необхідно знайти $N: \forall n \geq N: \left|\frac{1}{n} - 0\right| < \varepsilon$

$$\left| \frac{1}{n} - 0 \right| < \varepsilon \iff \frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}$$

Зафіксуємо $N = \left| \frac{1}{\varepsilon} \right| + 1$. Тоді маємо:

$$\forall \varepsilon > 0: \exists N = \left[\frac{1}{\varepsilon}\right] + 1: \forall n \geq N: n > \frac{1}{\varepsilon} \Rightarrow \left|\frac{1}{n} - 0\right| < \varepsilon$$

Отже, означення виконується, тому $\lim_{n\to\infty}\frac{1}{n}=0$

Як працює означення границі на малюнку. Тут на малюнку я обрав $\varepsilon = 0.1$. Тоді починаючи з n = 11 (або з 12, 13,...), всі решта члени не покидатимуть червоного коридору. Якщо члени не будуть покидати ці лінії для будь-якого заданого ε , то тоді границя існує

Example 4.1.5 Доведемо за означенням, що $\lim_{n\to\infty} \sqrt[n]{n} = 1$

Знову задамо довільне $\varepsilon>0$. Знову необхідно знайти $N: \forall n\geq N: |\sqrt[n]{n}-1|<\varepsilon\iff \sqrt[n]{n}<1+\varepsilon$

Використовуючи нерівність Коші, ми отримаємо таку оцінку:

$$\sqrt[n]{n} = \sqrt[n]{\sqrt{n} \cdot \sqrt{n} \cdot 1 \cdots 1} \le \frac{\sqrt{n} + \sqrt{n} + 1 + \cdots + 1}{n} = \frac{2\sqrt{n} + n - 2}{n} = \frac{2}{\sqrt{n}} + 1 - \frac{2}{n} < \frac{2}{\sqrt{n}} + 1.$$
 Тоді:
$$\sqrt[n]{n} < \frac{2}{\sqrt{n}} + 1 < 1 + \varepsilon \iff \frac{2}{\sqrt{n}} < \varepsilon \iff n > \frac{4}{\varepsilon^2}$$

Тепер зафіксуємо $N=\left[\frac{4}{\varepsilon^2}\right]+2021$. Ну й тоді $\forall n\geq N$ всі нерівності виконуються, зокрема $|\sqrt[n]{n}-1|<\varepsilon$ Остаточно, $\lim_{n\to\infty}\sqrt[n]{n}=1$

Example 4.1.6 Доведемо за означенням, що $\lim_{n\to\infty}\frac{n^k}{b^n}=0,\,b>1$ Вже було доведено в **Ex. 4.1.5.**, що $\lim_{n\to\infty}\sqrt[n]{n}=1,\,$ а тому означення

працює: $\forall \varepsilon' > 0$: $\exists N_0(\varepsilon') : \forall n \geq N_0 : \left| \sqrt[n]{n} - 1 \right| < \varepsilon' \iff \sqrt[n]{n} < 1 + \varepsilon'$ Оскільки границя існує, ми оберемо $\varepsilon' = \sqrt[2k]{b} - 1$. Тоді: $\sqrt[n]{n} < 1 + \sqrt[2k]{b} - 1 \iff n^k < b^{\frac{n}{2}}$

Отже, ми отримали, що $\forall n \geq N_0: n^k < b^{\frac{n}{2}}$. Дану оцінку використаємо для доведення бажаного ліміту

Зафіксуємо інше $\varepsilon>0$. Хочемо знайти $N_1: \forall n\geq N_1: \left|rac{1}{b^{rac{n}{2}}}
ight|<arepsilon$

$$\iff \cdots \iff n > 2\log_b \frac{1}{\varepsilon}$$
. Тоді $N_1 = \left\lceil \log_b \frac{1}{\varepsilon} \right\rceil + 2^2$

Нарешті, якщо зафіксувати $N = \max\{N_0, N_1\}$, то $\forall n \geq N$ справедлива оцінка:

$$\left|\frac{n^k}{b^n}\right| < \left|\frac{1}{b^{\frac{n}{2}}}\right| < \varepsilon'$$

Остаточно, $\forall \varepsilon > 0 : \exists N = \max\{N_0(\varepsilon), N_1(\varepsilon)\} : \forall n \geq N : \left| \frac{n^k}{b^k} - 0 \right| < \varepsilon$

$$\stackrel{\text{def.}}{\iff} \lim_{n \to \infty} \frac{n^k}{b^n} = 0, \ b > 1$$

Example 4.1.7 Доведемо, що не існує $\lim_{n\to\infty} (-1)^n$

Припускаємо, що даний ліміт збіжний, тобто $\lim_{n\to\infty} (-1)^n = a$, тобто

 $\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \geq N : |(-1)^n - a| < \varepsilon.$ Тоді

$$2 = \left| (-1)^n - (-1)^{n+1} \right| = \left| ((-1)^n) - a + (a - (-1)^{n+1}) \right| \stackrel{\text{нер-ть трикутника}}{\leq} \\ \leq \left| (-1)^n - a \right| + \left| a - (-1^{n+1}) \right| < 2\varepsilon \Rightarrow \varepsilon > 1$$

Прийшли до суперечності. Тому даний ліміт існувати не може

Тут на малюнку я встановил границю a=1. Лише для деяких ε всі члени потраплятимуть всередину. Однак, скажімо, не для $\varepsilon=0.5$ як на малюнку, ось чому ліміт не може бути рівним 1. І так для кожного a

Definition 4.1.8 Послідовність $\{a_n, n \geq 1\}$ називається **обмеженою**, якщо

$$\exists C > 0 : \forall n \ge 1 : |a_n| \le C$$

Theorem 4.1.9 Будь-яка збіжна послідовність є обмеженою Proof.

Нехай задана збіжна послідовність $\{a_n, n \geq 1\}$, тобто для неї

 $\exists \lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$

Оскільки ліміт існує, то задамо $\varepsilon=1$. Тоді: $\forall n\geq N: |a_n-a|<1$ Спробуємо оцінити вираз $|a_n|$ для нашого бажаного:

 $|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|$. Це виконується $\forall n \ge N$. Інакше кажучи, всі числа, починаючи з N, є обмеженими.

Покладемо $C = \max\{|a_1|, |a_2|, \cdots, |a_{N-1}|, 1+|a|\}$. Тоді отримаємо, що $\forall n \geq 1: |a_n| \leq C$, що й позначає обмеженість \blacksquare

Remark 4.1.10 Обернене твердеження не є вірним

В **Ex.** 4.1.7. послідовність $\{a_n = (-1)^n, n \ge 1\}$ є обмеженою, але не збіжна

Definition 4.1.11 Посідовність $\{a_n, n \geq 1\}$ має границю ∞ (тобто або $+\infty$, або $-\infty$), якщо виконується твердження:

$$\forall E > 0 : \exists N(E) \in \mathbb{N} : \forall n \ge N : |a_n| > E$$

Якщо $+\infty$, то $a_n > E$ Якщо $-\infty$, то $-a_n > E$

Example 4.1.12 Доведемо за означенням, що $\lim_{n\to\infty} 2^n = +\infty$

Задано довільне E>0. Необхідно знайти $N: \forall n\geq N: 2^n>E\iff n>\log_2 E$

Фіксуємо $N = [\log_2 E] + 2^2$. Тоді $\forall n \geq N$ виконується остання нерівність, а отже, початкова

Tomy $\lim_{n\to\infty} 2^n = +\infty$

Тут на малюнку E=6. Тоді починаючи з n=3 (або з 4, 5,...), всі решта члени будуть вище за червону лінію. Тому границя є - це плюс нескінченність

4.2 Нескінченно малі/великі послідовності

Definition 4.2.1

Якщо послідовність $\{a_n, n \geq 1\}$ містить границю $\lim_{n \to \infty} a_n = 0$, то така послідовність називається **нескінченно малою (н.м.)** Якщо послідовність $\{a_n, n \geq 1\}$ містить границю $\lim_{n \to \infty} a_n = \infty$, то така послідовність називається **нескінченно великою (н.в.)**

Example 4.2.2 Зокрема $\left\{a_n = \frac{1}{n}, n \geq 1\right\}$ є нескінченно малою, а $\{b_n = 2^n, n \geq 1\}$ є нескінченно великою, виходячи з минулих прикладів

Theorem 4.2.3 Арифметика н.м. та н.в.

Задані такі послідовності:

- 1. $\{a_n, n \ge 1\}$ H.M.;
- 2. $\{b_n, n \ge 1\}$ н.м.;
- 3. $\{c_n, n \ge 1\}$ обмежена;
- 4. $\{d_n, n \ge 1\}$ н.в.;
- 5. $\{p_n, n \ge 1\}$ послідовність, що віддалена від 0

$$(\exists \delta > 0 : \forall n \ge 1 : |p_n| \ge \delta)$$

Тоді наступні послідовності:

- 1) $\{a_n + b_n, n \ge 1\}$ н.м.
- 2) $\{C \cdot a_n, n \ge 1\}$ H.M.
- 3) $\{c_n \cdot a_n, n \ge 1\}$ н.м.

4)
$$\{\frac{1}{a_n}, n \ge 1\}$$
 - H.B.

5)
$$\{\frac{1}{d}, n \ge 1\}$$
 - H.M.

6)
$$\{p_n \cdot d_n, n \ge 1\}$$
 - H.B.

Proof.

1)
$$\lim_{n \to \infty} a_n = 0$$
, $\lim_{n \to \infty} b_n = 0$ \iff

$$\forall \varepsilon > 0 : \exists N_1(\varepsilon) : \forall n \ge N_1 : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \frac{\varepsilon}{2}$$

$$\forall \varepsilon > 0 : \exists N_2(\varepsilon) : \forall n \ge N_2 : |b_n - 0| < \varepsilon \Rightarrow |b_n| < \frac{\varepsilon}{2}$$

Нехай існує $N = \max\{N_1, N_2\}$. Тоді $\forall n \geq N$:

$$|a_n + b_n| \le |a_n| + |b_n| < \varepsilon$$

Отже, $\{a_n + b_n, n \ge 1\}$ - н.м.

3)
$$\lim_{n\to\infty} a_n = 0 \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \frac{\varepsilon}{M}$$

Також $\exists M > 0 : \forall n \ge 1 : |c_n| < M$

Тоді
$$\forall n \geq N : |a_n \cdot c_n| = |a_n| \cdot |c_n| < \varepsilon$$

Отже, $\{a_n \cdot c_n, n \geq 1\}$ - н.м.

4)
$$\lim_{n \to \infty} a_n = 0 \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - 0| < \varepsilon \Rightarrow |a_n| < \varepsilon$$

Зафіксуємо
$$\varepsilon = \frac{1}{E}$$
. Тоді $\forall n \geq N : |a_n| < \frac{1}{E} \iff \left| \frac{1}{a_n} \right| > E$

Отже,
$$\{\frac{1}{a_n}, n \ge 1\}$$
 - н.в.

2), 6) доводиться як 3). 5) доводиться аналогічно як 4) \blacksquare

Remark 4.2.4 Є випадки, які НЕ дають точний результат:

- 1) H.B + H.B.
- 2) н.м. н.в.
- $(3) \frac{\text{H.M.}}{\text{H.M.}}, \frac{\text{H.B.}}{\text{H.B.}}$

Lemma 4.2.5 Про характеризацію збіжної послідовності

Послідовність $\{a_n, n \ge 1\}$ є збіжною $\iff a_n = a + \alpha_n$, де $\{\alpha_n, n \ge 1\}$ - н.м.

Proof.

 \implies Дано: $\{a_n, n \geq 1\}$ - збіжна, тобто

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$$

Позначимо $a_n-a=\alpha_n$. Тоді $a_n=a+\alpha_n$ та послідовність $\{\alpha_n,n\geq 1\}$ - н.м., оскільки $|\alpha_n-0|=|\alpha_n|=|a_n-a|<\varepsilon$

$$\sqsubseteq$$
 Дано: $\{\alpha_n, n \geq 1\}$ - н.м., де $a_n = a + \alpha_n$. Тоді

$$\forall \varepsilon > 0: \exists N(\varepsilon): \forall n \geq N: |\alpha_n - 0| < \varepsilon \Rightarrow |a_n - a| < \varepsilon$$
 Отже, $\{a_n, n \geq 1\}$ - збіжна \blacksquare

Theorem 4.2.6 Задані $\{a_n, n \geq 1\}, \{b_n, n \geq 1\}$ та

1)
$$\exists \lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$

2)
$$\forall C \in \mathbb{R} : \exists \lim_{n \to \infty} C \cdot a_n = C \lim_{n \to \infty} a_n$$

3)
$$\exists \lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

Писотент 4.2.6 Заданг
$$\{a_n, n \geq 1\}$$
, $\{a_n, n \geq 1\}$, $\{a_n,$

Proof.

Обидва послідовності збіжні \iff $a_n = a + \alpha_n, \{\alpha_n, n \geq 1\}$ - н.м., а також $b_n = b + \beta_n, \{\beta_n, n \ge 1\}$ - н.м.

1)
$$a_n+b_n=a+\alpha_n+b+\beta_n=(a+b)+(\alpha_n+\beta_n)$$
, причому $\{\alpha_n+\beta_n, n\geq 1\}$ - н.м. \iff послідовність $\{a_n+b_n, n\geq 1\}$ має границю: $\lim_{n\to\infty}(a_n+b_n)=a+b=\lim_{n\to\infty}a_n+\lim_{n\to\infty}b_n$

- 2) довести самостійно
- 3) $a_nb_n-ab=(a+\alpha_n)(b+\beta_n)-ab=\alpha_nb+\alpha_n\beta_n+a\beta_n=\gamma_n$, причому послідовність $\{\gamma_n, n \geq 1\}$ - н.м. \iff послідовність $\{a_nb_n, n \geq 1\}$ має

$$\lim_{n \to \infty} (a_n \cdot b_n) = ab = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$$

4) В принципі, це є наслідком 3), якщо представити послідовність

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n}$$

Треба лишень довести, що $\frac{1}{h_n} \to \frac{1}{h}, n \to \infty$

Відомо, що $b_n \to b \iff \forall \varepsilon > 0 : \exists N' : \forall n \geq N : |b_n - b| < \varepsilon$

Зафіксую $\varepsilon = \frac{|b|}{2},$ тоді $\exists N: \forall b \geq N'': \forall n \geq N'':$

$$|b_n| = |b_n - b + b| \le |b_n - b| + |b| < \frac{3|b|}{2}$$

Я хочу одночасно $|b_n| < \frac{3|b|}{2}$ та $|b_n - b| < \varepsilon$, тож нехай $N = \max\{N', N''\}$, тоді

$$\forall n \ge N : \left| \frac{1}{b_n} - \frac{1}{b} \right| = \frac{|b_n - b|}{|b_n||b|} < \frac{\varepsilon}{\frac{3|b|}{2}|b|} = \frac{2}{3}\varepsilon$$

Таким чином, можна твердити, що $\frac{1}{b_n} \to \frac{1}{b}, n \to \infty$

Example 4.2.7 Знайти границю
$$\lim_{n\to\infty}\frac{2n^2-3n+5}{1-n-3n^2}=\lim_{n\to\infty}\frac{2-\frac{3}{n}+\frac{5}{n^2}}{\frac{1}{n^2}-\frac{1}{n}-3}=\frac{\lim_{n\to\infty}2-\frac{3}{n}+\frac{5}{n^2}}{\lim_{n\to\infty}\frac{1}{n^2}-\frac{1}{n}-3}=\frac{\lim_{n\to\infty}2-\frac{3}{n}+\frac{5}{n^2}}{\lim_{n\to\infty}\frac{1}{n^2}-\frac{1}{n}-3}=\frac{\lim_{n\to\infty}2-\lim_{n\to\infty}\frac{3}{n}+\lim_{n\to\infty}\frac{5}{n^2}}{\lim_{n\to\infty}\frac{1}{n^2}-\lim_{n\to\infty}\frac{1}{n}-\lim_{n\to\infty}3}=\frac{2-0+5}{0-0-3}=-\frac{2}{3}$$

Remark 4.2.8 Більш детально, чому рівності спрацьовують: Оскільки існують ліміти в четвертому дробі, то існують ліміти в третьому дробі (як сума), то тоді існує ліміт в другому дробі (як частка)

Нерівності в границях 4.3

Theorem 4.3.1 Задані дві збіжні числові послідовності $\{a_n, n \geq 1\}$, $\{b_n, n \geq 1\}$ таким чином, що $\exists N' : \forall n \geq N' : a_n \leq b_n$. Тоді $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$

Proof.

Задані дві збіжні послідовності, для яких $\lim_{n\to\infty}a_n=a,\lim_{n\to\infty}b_n=b$

Припустимо, що a>b та розглянемо $\varepsilon=\frac{a-b}{2}$. Тоді за означенням границі,

 $\exists N_1 : \forall n \ge N_1 : |a_n - a| < \varepsilon \Rightarrow a_n > a - \varepsilon$

 $\exists N_2 : \forall n \ge N_2 : |b_n - b| < \varepsilon \Rightarrow b_n < b + \varepsilon$

Задамо $N = \max\{N_1, N_2\}$. Тоді

 $b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{a+b}{2} = a - \frac{a-b}{2} = a - \varepsilon < a_n \Rightarrow b_n < a_n.$ Суперечність! ■

Corollary 4.3.2 Задана збіжна числова послідовность $\{b_n, n \geq 1\}$ таким чином, що $\exists N': \forall n \geq N': a \leq b_n$. Тоді $a \leq \lim_{n \to \infty} b_n$ Вказівка: розглянути послідовність $\{a_n = a, n \geq 1\}$ - так звана стаціонарна

послідовність

Remark 4.3.3 Для інших нерівностей: $<, \ge, >$ - ці теореми теж працюють

Theorem 4.3.4 Теорема про 3 послідовності

Задані три послідовності: $\{a_n, n \geq 1\}, \{b_n, n \geq 1\}, \{c_n, n \geq 1\}$ таким

чином, що
$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=a$$
. Більш того, $\exists N':\forall n\geq N':a_n\leq c_n\leq b_n$.

Тоді
$$\exists \lim_{n \to \infty} c_n = a$$

Така теорема має іншу назву: "про двох поліцаїв"

Proof.

Гоог.
$$\lim_{n\to\infty} a_n = a \iff \forall \varepsilon > 0 : \exists N_1(\varepsilon) : \forall n \geq N_1 : |a_n - a| < \varepsilon \Rightarrow a_n > a - \varepsilon$$

$$\lim_{n\to\infty} b_n = a \iff \forall \varepsilon > 0 : \exists N_2(\varepsilon) : \forall n \geq N_2 : |b_n - a| < \varepsilon \Rightarrow b_n < a + \varepsilon$$
 Зафіксуємо $N = \max\{N_1, N_2, N'\}$. Тоді $\forall n \geq N$:
$$a - \varepsilon < a_n \leq c_n \leq b_n < a + \varepsilon \Rightarrow |c_n - a| < \varepsilon$$
 Отже,
$$\lim_{n\to\infty} c_n = a \blacksquare$$

Example 4.3.5 Знайти границю $\lim_{n \to \infty} \sqrt[n]{2^n + 7^n}$

Можна отримати наступну оцінку:

$$\sqrt[n]{7^n} \le \sqrt[n]{2^n + 7^n} \le \sqrt[n]{n \cdot 7^n}$$

Ця нерівність виконується завжди, починаючи з якогось номера n. Рахуємо ліміти з обох сторін

$$\lim_{n\to\infty}\sqrt[n]{7^n}=7$$

$$\lim_{n\to\infty}\sqrt[n]{n\cdot 7^n}=7\lim_{n\to\infty}\sqrt[n]{n}=7$$
 Тому з цього випливає, що $\lim_{n\to\infty}\sqrt[n]{2^n+7^n}=7$

4.4 Трошки про першу чудову границю

Розглянемо наступний геометричний малюнок:

Коло радіусом 1

Виділимо з малюнку наступні дані:

$$|AB| = \sin \alpha$$

$$|AC| = \alpha$$

$$|KC| = \operatorname{tg} \alpha$$

Зрозуміло, що $|AB| < |AC| < |KC| \Rightarrow$

 $\sin \alpha < \alpha < \tan \alpha$

Розглянемо обидва сторони:

$$\sin\alpha < \alpha \Rightarrow \frac{\sin\alpha}{\alpha} < 1$$

$$\alpha < \tan\alpha = \frac{\sin\alpha}{\cos\alpha} \Rightarrow \frac{\sin\alpha}{\alpha} > \cos\alpha = 1 - 2\sin^2\frac{\alpha}{2} > 1 - 2\frac{\alpha^2}{4} = 1 - \frac{\alpha^2}{2}$$

$$1 - \frac{\alpha^2}{2} < \frac{\sin\alpha}{\alpha} < 1$$
 Hexaй $\alpha = \frac{1}{n}$. Тоді
$$1 - \frac{1}{2n^2} < \frac{\sin\frac{1}{n}}{\frac{1}{n}} < 1, n \to \infty$$

Отже, отримаємо наступні розрахунки:

Theorem 4.4.1
$$\lim_{n\to\infty} \frac{\sin\frac{1}{n}}{\frac{1}{n}} = 1$$

4.5 Монотонні послідовності. Число e та трошки про другу чудову границю

Definition 4.5.1 Послідовність $\{a_n, n \ge 1\}$ називається:

- строго монотонно зростаючою, якщо $\forall n \geq 1: a_{n+1} > a_n$
- монотонно не спадною, якщо $\forall n \geq 1 : a_{n+1} \geq a_n$
- строго монотонно спадною, якщо $\forall n \geq 1 : a_{n+1} < a_n$
- монотонно не зростаючою, якщо $\forall n \geq 1 : a_{n+1} \leq a_n$

Example 4.5.2 Дослідимо послідовність $\{a_n = \sqrt{n}, n \geq 1\}$ на монотонність $a_{n+1} - a_n = \sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} > 0$ $\Rightarrow a_{n+1} > a_n$, тобто дана послідовність зростає

Theorem 4.5.3 Теорема Вейєрштрасса

Будь-яка обмежена та монотонна (принаймні починаючи з якогось номера) послідовність є збіжною

Proof.

Нехай задана послідовність $\{a_n, n \geq 1\}$, що задовільняє умові теореми.

Нехай вона монотонно не спадає

Оскільки вона монотонна, а ще - обмежена, то $\exists \sup\{a_n\} = a < +\infty$.

За критерієм sup:

 $\forall n \geq 1 : a_n \leq a$

 $\forall \varepsilon > 0 : \exists N(\varepsilon) : a_N > a - \varepsilon$

Отримаємо наступний ланцюг нерівностей: $\forall n \geq N$:

$$a - \varepsilon < a_N \le a_n \le a < a + \varepsilon \Rightarrow |a_n - a| < \varepsilon$$

Отже, $\exists \lim a_n = \sup\{a_n\}$

Для інших випадків монотонності все аналогічно

Example 4.5.4 Довести, що для послідовності $\left\{a_n = \frac{2000^n}{n!}, n \ge 1\right\}$ існує границя

Перевіримо на монотонність:

$$\frac{a_{n+1}}{a_n} = \frac{2000^{n+1}n!}{(n+1)!2000^n} = \frac{2000}{n+1}$$

Отримаємо, що $a_{n+1} < a_n$ принаймні $\forall n \ge 2000$

Послідовність обмежена принаймні знизу, тому що $a_n > 0$. Тоді для цієї послідовності існує ліміт:

$$a = \lim_{n \to \infty} a_n$$
. Тоді також $a = \lim_{n \to \infty} a_{n+1}$

 $a=\lim_{n\to\infty}a_n$. Тоді також $a=\lim_{n\to\infty}a_{n+1}$ В послідовності ми зробили зсув вперед, але тим не менш від цього границя не зміниться

$$a = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{2000}{n+1} a_n = 0$$
. Отже, $\lim_{n \to \infty} a_n = 0$

Remark 4.5.5 Такими самими міркуваннями можна довести, що

$$rac{n^k}{b^n},rac{b^n}{n!},rac{n!}{n^n} o 0$$
, якщо $n o \infty$

Число e

Розглянемо послідовність $\left\{a_n = \left(1 + \frac{1}{n}\right)^n, n \ge 1\right\}$. Спробуємо для неї знайти границю

1. Покажемо, що вона є монотонно зростаючою

$$\frac{a_{n+1}}{a_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \left(1 + \frac{1}{n+1}\right) \left(\frac{1 + \frac{1}{n+1}}{1 + \frac{1}{n}}\right)^n = \frac{n+2}{n+1} \cdot \left(\frac{n(n+2)}{(n+1)^2}\right)^n = \frac{n(n+2)}{(n+1)^2} \cdot \left(\frac{n(n+2)}{(n+$$

$$= \frac{n+2}{n+1} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^n = \frac{\frac{n+2}{n+1}}{1 - \frac{1}{(n+1)^2}} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} =$$

$$= \frac{n+2}{n+1} \cdot \frac{(n+1)^2}{n^2+2n} \cdot \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \ge$$

Тут ми маємо права на третю дужку використати нерівність Бернуллі,

оскільки
$$-\frac{1}{(n+1)^2} > -1$$

$$\ge \frac{n+2}{n+1} \cdot \frac{(n+1)^2}{n^2+2n} \cdot \left(1 - \frac{n+1}{(n+1)^2}\right) = \frac{n+1}{n} \left(1 - \frac{1}{n+1}\right) = 1$$

Коротше, $\frac{a_{n+1}}{a_n} \ge 1 \Rightarrow a_{n+1} \ge a_n$. Тобто наша послідовність монотонно зростає

2. Доведемо, що вона є обмеженою

Для цього треба розглянути $\{b_n = \left(1 + \frac{1}{n}\right)^{n+1}, n \geq 1\}$ і довести, що:

- a) $a_n < b_n \forall n \ge 1$
- b) вона є монотонно спадною
- а) Перший пункт очевидний, оскільки $\left(1+\frac{1}{n}\right)^n < \left(1+\frac{1}{n}\right)^{n+1}$ однакову основу степені, що є більше одинички
- b) A це розпишу:

$$\frac{b_{n-1}}{b_n} = \frac{\left(1 + \frac{1}{n-1}\right)^n}{\left(1 + \frac{1}{n}\right)^{n+1}} = \frac{1}{\left(1 + \frac{1}{n}\right)} \cdot \left(\frac{n^2}{n^2 - 1}\right)^n = \frac{n}{n+1} \cdot \left(1 + \frac{1}{n^2 - 1}\right)^n \ge 1$$

За аналогічними причинами я можу користатися нерівностю Бернуллі для другої дужки

Коротше, $\frac{b_{n-1}}{b_n} > 1 \Rightarrow b_n < b_{n-1}$. Тобто ця послідовність монотонно спадає

В результаті всього можемо отримати наступну оцінку:

 $2=a_1 \leq a_2 \leq \cdots \leq a_n < b_n \leq \cdots \leq b_2 \leq b_1 = 4$. Тобто довели обмеженість

А це означає, що для послідовності $\left\{a_n = \left(1 + \frac{1}{n}\right)^n, n \geq 1\right\}$ існує границя:

Theorem 4.5.6
$$\lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n = e \approx 2.71...$$

До речі, оскільки $\{a_n\}$ зростає, а $\{b_n\}$ спадає та обидва обмежені, то: $\forall n \ge 1 : a_n < e < b_n$

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$

Зробимо нове позначення: $\log_e a = \ln a$. Тоді:

$$n\ln\left(1+\frac{1}{n}\right) < 1 < (n+1)\ln\left(1+\frac{1}{n}\right)$$

В результаті ми можемо отримати одну оцінку:

$$\frac{1}{1+n} < \ln\left(1 + \frac{1}{n}\right) < \frac{1}{n}$$

4.6 Підпослідовності

Definition 4.6.1 Послідовністю натуральних чисел називають строго зростаючу послідовність $\{n_k, k \geq 1\} \subset \mathbb{N}$

Definition 4.6.2 Задана послідовність $\{a_n, n \ge 1\}$ та послідовність натуральних чисел $\{n_k, k \ge 1\}$

Послідовність $\{a_{n_k}, k \ge 1\}$ називається **підпослідовністю**

Proposition 4.6.3 Якщо для $\{a_n, n \geq 1\}$ $\exists \lim_{n \to \infty} a_n = a$, то для $\{a_{n_k}, k \geq 1\}$

$$\exists \lim_{k \to \infty} a_{n_k} = a$$

Proof.

$$\exists \lim_{n \to \infty} a_n = a \iff \forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |a_n - a| < \varepsilon$$

Візьмемо підпослідовність $\{a_{n_k}, k \geq 1\}$. Оскільки послідовність

 $\{n_k, k \geq 1\}$ - строга зростаюча послідовність натуральних чисел, то $\exists \lim_{k \to \infty} n_k = \infty$

Тоді для $E = N(\varepsilon) : \exists K(\varepsilon) : \forall k \geq K : n_k > N$

Зокрема оскільки $n_k > N$, то одразу $|a_{n_k} - a| < \varepsilon$

$$\Rightarrow \lim_{k \to \infty} a_{n_k} = a \blacksquare$$

Theorem 4.6.4 Теорема Больцано-Вейєрштрасса

Для будь-якої обмеженої послідовності існує збіжна підпослідовність

Proof.

Розглянемо послідовність $\{a_n, n \geq 1\}$. Існують 2 випадки:

1. Послідовність - скінченна (наприклад, як в **Ex. 4.1.7**) Тоді одне із значень послідовності буде прийматись нескінченну кількість разів. Отримаємо стаціонарну підпослідовність, яка є збіжною

2. Послідовність - нескінченна (наприклад, як в Ех. 4.6.7) Оскільки вона є обмеженою, то за іншою теоремою Больцано-Вейєрштрасса, в неї існує гранична точка $b_* \iff \forall \varepsilon > 0 : \{a_n\} \cap (b_* - \varepsilon, b_* + \varepsilon)$ нескінченна множина

Розглянемо
$$\varepsilon = \frac{1}{k}$$
 $k = 1 : \{a_i\} \cap (b_i)$

$$k = 1 : \{a_n\} \cap (b_*^n - 1, b_* + 1) \ni a_{n_1}$$

$$k = 2 : \{a_n\} \cap (b_* - \frac{1}{2}, b_* + \frac{1}{2}) \ni a_{n_2}, n_2 > n_1$$

Побудовали підпослідовність $\{a_{n_k}, k \geq 1\}$ таким чином, що

$$b_* - \frac{1}{k} < a_{n_k} < b_* + \frac{1}{k}$$

 $b_* - \frac{1}{k} < a_{n_k} < b_* + \frac{1}{k}$ А далі спрямуємо k до нескінченності. В результаті чого отримаємо:

$$b_* - \frac{1}{k} < a_{n_k} < b_* + \frac{1}{k}, k \to \infty$$

$$\downarrow \qquad \qquad \swarrow$$

Тоді за теоремою про два поліцая, $\exists \lim_{k \to \infty} a_{n_k} = b_* \blacksquare$

Corollary 4.6.5 Множина всіх часткових границь не є порожньою Таку множину позначу за A

Definition 4.6.6

Верхньою границею називають число:

$$\overline{\lim}_{n \to \infty} a_n \stackrel{\text{afo}}{=} \limsup_{n \to \infty} a_n = \sup A$$

Нижньою границею називають число:

$$\underline{\lim}_{n \to \infty} a_n \stackrel{\text{afo}}{=} \liminf_{n \to \infty} a_n = \inf A$$

Example 4.6.7 Знайдемо часткові границі для послідовнонсті

$$\left\{a_n = (-1)^n \frac{n-1}{n}, n \ge 1\right\}$$

Якщо n = 2k, то отримаємо підпослідовність $\left\{ a_{n_k} = \frac{2k-1}{2k}, k \ge 1 \right\}$.

$$\lim_{k\to\infty}\frac{2k-1}{2k}=1$$

Якщо n=2k+1, то отримаємо підпослідовність $\left\{a_{n_k}=-\frac{2k+1-1}{2k+1}, k\geq 1\right\}$.

$$\lim_{k \to \infty} -\frac{2k+1-1}{2k+1} = -1$$

 $\lim_{k\to\infty} -\frac{2k+1-1}{2k+1} = -1$ Множина всіх часткових границь: $A=\{-1,1\}$ - є не порожньою

$$\overline{\lim_{n\to\infty}} a_n = 1, \ \underline{\lim_{n\to\infty}} a_n = -1$$

Remark 4.6.8 Якщо послідовність $\{a_n, n \ge 1\}$ не є обменежою:

- зверху, то
$$\overline{\lim} = +\infty$$

- знизу, то
$$\lim_{n\to\infty}^{n\to\infty}=-\infty$$

Theorem 4.6.9 Будь-яка обмежена послідовність має верхню/нижню границю

Proof.

Наша мета: показати, що існує така $\{a_{n_k}, k \geq 1\}$, що

$$\lim_{k \to \infty} a_{n_k} = \underline{\lim}_{n \to \infty} a_n = x_* = \inf X$$

Оскільки
$$X$$
 - множина часткових границь, то $\forall \varepsilon > 0: \exists x_{\varepsilon} \in X: x_{*} \leq x_{\varepsilon} < x_{*} + \frac{\varepsilon}{2}$

Оскільки $x_{\varepsilon} \in X$, то тоді це - часткова границя для послідовності

 $\{a_n, n \geq 1\}$. Тому за Больцано-Вейєрштрасса, $\exists \{a_{n_m}^{(\varepsilon)}, m \geq 1\}$:

$$\lim_{m \to \infty} a_{n_m}^{(\varepsilon)} = x_{\varepsilon}$$

$$\Rightarrow \exists M(\varepsilon) : \forall m \ge M : |a_{n_m}^{(\varepsilon)} - x_{\varepsilon}| < \varepsilon$$

$$\Rightarrow |a_{n_m}^{(\varepsilon)} - x_*| = |a_{n_m}^{(\varepsilon)} - x_{\varepsilon} + x_{\varepsilon} - x_*| \le |a_{n_m}^{(\varepsilon)} - x_{\varepsilon}| + |x_{\varepsilon} - x_*| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

При
$$\varepsilon=1$$
 маємо: $|a_{n_{M(1)}}^{(1)}-x_*|<1$

При
$$\varepsilon=rac{1}{2}$$
 маємо: $|a_{n_{M(rac{1}{2})}}^{(rac{1}{2})}-x_*|<rac{1}{2}$

А тепер розглянемо підпослідовність $\{a_{n_k}, k \geq 1\}$, таку, що $a_{n_k} = a_{n_{M(\frac{1}{k})}}^{(\frac{1}{k})}$

За побудовою,
$$|a_{n_k}-x_*|<\frac{1}{k}\Rightarrow x_*-\frac{1}{k}< a_{n_k}< x_*+\frac{1}{k}, k\to\infty$$

Таким чином, для $\{a_{n_k}, k \geq 1\}$ існує $\lim_{k \to \infty} a_{n_k} = x_* = \underline{\lim}_{n \to \infty} a_n$

Corollary 4.6.10 Перепозначу $\lim_{n\to\infty} a_n = x_*, \overline{\lim}_{n\to\infty} a_n = x^*$

 $\forall \varepsilon > 0$: в кожному інтервалі: $(x^* + \varepsilon, +\infty)$ та $(-\infty, x_* - \varepsilon)$ - міститься скінченна кількість елементів послідовності

Proof.

Припустимо, що $\exists \varepsilon > 0$, для якого $(x^* + \varepsilon, +\infty)$ містить НЕскінченну кількість членів послідовності

Візьмемо підпослідовність $\{a_{n_k}, k \geq 1\}$, таку, що $x^* \geq a_{n_k} > x^* + \varepsilon$ За Больцано-Вейєрштрасса, для $\{a_{n_{k_m}}, m \geq 1\}: \exists \lim_{m \to \infty} a_{n_{k_m}} = q$

3 одного боку,
$$|a_{n_{k_m}}-q| 3 іншого боку, $a_{n_{k_m}}>x^*+arepsilon$$$

З іншого боку,
$$a_{n_{km}} > x^* + \varepsilon$$

Отримаємо звідси, що
$$x^* + \varepsilon < a_{n_{km}} < q + \varepsilon$$

$$\Rightarrow q > x^*$$

Суперечність! Бо $x^* = \sup X$

4.7 Фундаментальна послідовність

Definition 4.7.1 Послідовність $\{a_n, n \geq 1\}$ називається фундаментальною, якщо

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$$

Theorem 4.7.2 Критерій Коші

Послідонвість $\{a_n, n \geq 1\}$ є збіжною \iff вона є фундаментальною **Proof.**

$$\Longrightarrow$$
Дано: $\{a_n, n \geq 1\}$ - збіжна, тобто: $\forall \varepsilon > 0: \exists N:$

$$\forall n \ge N : |a_n - a| < \frac{\varepsilon}{2}$$

$$\forall m \ge N : |a_m - a| < \frac{\varepsilon}{2}$$

А тоді отримаємо,

$$|a_n - a_m| = |a_n - a + a - a_m| \le |a_n - a| + |a_m - a| < \varepsilon$$

Отже, послідовність є фундаментальною

$$\sqsubseteq$$
Дано: $\{a_n, n \geq 1\}$ - фундаментальна, тобто

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n, m \ge N : |a_n - a_m| < \varepsilon$$

І. Доведемо, що вона є обмеженою

Для
$$\varepsilon=1:\exists N: \forall n\geq N, m=N: |a_n-a_N|<1$$

$$\Rightarrow |a_n| = |a_n - a_N + a_N| \le |a_n - a_N| + |a_N| < 1 + |a_N|$$

Задамо
$$C = \max\{|a_1|, \ldots, |a_{N-1}|, |1| + |a_N|\}$$

Тоді
$$\forall n \geq 1 : |a_n| \leq C$$
, тобто обмежена

II. Доведемо її збіжність

Оскільки наша послідовність обмежена, виділимо збіжну підпослідовність

$$\{a_{n_k}, k \ge 1\}, \lim_{n \to \infty} a_{n_k} = a \Rightarrow$$

$$\forall \varepsilon > 0 : \exists K : \forall k \ge K : |a_{n_k} - a| < \frac{\varepsilon}{2}$$

Покладемо $m=n_k$. Тоді:

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \varepsilon$$

Тобто
$$\exists \lim_{n \to \infty} a_n = a \blacksquare$$

Remark 4.7.3 Означення фундаментальної послідовності можна записати й таким чином

$$\forall \varepsilon > 0 : \exists N \in \mathbb{N} : \forall n \ge N : \forall p \ge 1 : |a_{n+p} - a_n| < \varepsilon$$

Дійсно, якщо покласти m=n+p, де $p\in\mathbb{N}$, то отримаємо бажане

Example 4.7.4 Розглянемо послідовність $\{a_n, n \ge 1\}$:

$$a_n = \frac{\sin 1}{1^2} + \frac{\sin 2}{2^2} + \dots + \frac{\sin n}{n^2}$$

Доведемо її фундаментальність за означенням

$$|x_{n+p} - x_n| \le \frac{1}{(n+1)^2} + \dots + \frac{1}{(n+p)^2} \le \frac{1}{n(n+1)} + \dots + \frac{1}{(n+p-1)(n+p)} = \frac{1}{n} - \frac{1}{n-1} + \dots + \frac{1}{n+p-1} - \frac{1}{n+p} = \frac{1}{n} - \frac{1}{n+p} \le \frac{1}{n} < \varepsilon$$

$$\Rightarrow n > \frac{1}{\varepsilon}$$

Встановимо $N=\left\lceil \frac{1}{arepsilon}
ight
ceil +1$. Тоді $\forall n\geq N: \forall p\geq 1: |x_{n+p}-x_n|<arepsilon$ Отже, наша послідовність - фундаментальна

4.8 Послідовність комплексних чисел

Definition 4.8.1 Число w називається границею послідовності $\{z_n, n \ge 1\}$, якщо

$$\forall \varepsilon > 0 : \exists N(\varepsilon) : \forall n \ge N : |z_n - w| < \varepsilon$$

Theorem 4.8.2 Послідовність $\{z_n = x_n + iy_n, n \ge 1\}$ - збіжна $\{x_n=\operatorname{Re} z,n\geq 1\}$ та $\{y_n=\operatorname{Im} z,n\geq 1\}$ - збіжні обидва

Proof.

Поон.

$$\implies$$
 Дано: $\{z_n, n \ge 1\}$ - збіжна, тобто $\exists \lim_{n \to \infty} z_n = w$
 $\implies \forall \varepsilon > 0 : \exists N : \forall n \ge N : |z_n - w| < \varepsilon$
Або $|x_n + iy_n - (x + iy)| = |(x_n - x) + i(y_n - y)| < \varepsilon$
Або $\sqrt{(x_n - x)^2 + (y_n - y)^2} < \varepsilon \implies (x_n - x)^2 + (y_n - y)^2 < \varepsilon^2$
 $\implies \begin{cases} (x_n - x)^2 < \varepsilon^2 \\ (y_n - y)^2 < \varepsilon^2 \end{cases} \implies \begin{cases} |x_n - x| < \varepsilon \\ |y_n - y| < \varepsilon \end{cases}$

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \begin{cases} |x_n - x| < \varepsilon \\ |y_n - y| < \varepsilon \end{cases}$$

Взагали ми отримали. $\forall \varepsilon > 0: \exists N: \forall n \geq N: \begin{cases} |x_n - x| < \varepsilon \\ |y_n - y| < \varepsilon \end{cases}$ А це означає, що $\begin{cases} \exists \lim_{n \to \infty} x_n = x \\ \exists \lim_{n \to \infty} y_n = y \end{cases}$, тобто $\{x_n, n \geq 1\}$ та $\{y_n, n \geq 1\}$ -

збіжні одночасно

$$\rightleftarrows$$
 Дано: $\{x_n=\operatorname{Re} z, n\geq 1\}$ та $\{y_n=\operatorname{Im} z, n\geq 1\}$ - збіжні обидва, тобто $\begin{cases}\exists \lim\limits_{n\to\infty}x_n=x \\ \exists \lim\limits_{n\to\infty}y_n=y\end{cases}$, тоді за означенням:

$$\forall \varepsilon > 0 : \begin{cases} \exists N_1 : \forall n \ge N_1 : |x_n - x| < \frac{\varepsilon}{\sqrt{2}} \\ \exists N_2 : \forall n \ge N_2 : |y_n - y| < \frac{\varepsilon}{\sqrt{2}} \end{cases}$$

Зафіксуємо номер $N=\max\{N_1,N_2\}$ для одночасного виконання обох нерівностей. Тоді

Перыностен. Тода
$$\forall n \geq N : |z_n - w| = |x_n + iy_n - (x + iy)| = |(x_n - x) + i(y_n - y)| = \sqrt{(x_n - x)^2 + (y_n - y)^2} < \sqrt{\frac{\varepsilon^2}{2} + \frac{\varepsilon^2}{2}} = \varepsilon$$
 А це означає, що $\exists \lim_{n \to \infty} z_n = w$

Example 4.8.3 Обчислимо $\lim_{n\to\infty} \frac{n-2ni}{n+2}$

Typ
$$x_n = \operatorname{Re}\left(\frac{n-2ni}{n+2}\right) = \frac{n}{n+2}, \qquad y_n = \operatorname{Im}\left(\frac{n-2ni}{n+2}\right) = \frac{-2n}{n+2}$$

Обчислимо границі послідовності $\{x_n\}, \{y_n\}$

$$\lim_{n\to\infty} x_n = \lim_{n\to\infty} \frac{n}{n+2} = \lim_{n\to\infty} \frac{1}{1+\frac{2}{n}} = 1$$

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{-2n}{n+2} = \lim_{n \to \infty} \frac{-2^n}{1 + \frac{2}{n}} = -2$$

Тоді отримаємо, що
$$\lim_{n\to\infty}\frac{n-2ni}{n+2}=1$$
—2 i

5 Границі функції

Перед цим я хотів би все ж таки додати загублену теорему (принаймні я в ГБ таке не зустрічал)

Theorem 5.0.1 Задано множина $A \subset \mathbb{R}$

a - гранична точка $A\iff\exists\{a_n,n\geq 1\}\subset A:\lim_{n\to\infty}a_n=a$, причому $\forall n\geq 1:a_n\neq a$

Proof.

 \implies Дано: a - гранична т. A, тоді $\forall \varepsilon>0: (a-\varepsilon,a+\varepsilon)\cap A$ - нескінченна множина

$$\varepsilon = 1 : \exists a_1 \in (a - 1, a + 1) \cap A$$

$$\varepsilon = \frac{1}{2} : \exists a_2 \in (a - \frac{1}{2}, a + \frac{1}{2}) \cap A$$

Побудували послідовність $\{a_n, n \ge 1\}$, таку, що $a_n \in (a - \frac{1}{n}, a + \frac{1}{n}) \cap A$

Тобто
$$a - \frac{1}{n} < a_n < a + \frac{1}{n}$$

За теоремою про двох поліцаїв, якщо $n \to \infty$, то отримаємо, що $\exists \lim_{n \to \infty} a_n = a$

$$\sqsubseteq$$
 Дано: $\exists \{a_n, n \geq 1\} \subset A : \forall n \geq 1 : a_n \neq a : \lim_{n \to \infty} a_n = a$ $\Longrightarrow \forall \varepsilon > 0 : \exists N : \forall n \geq N : |a_n - a| < \varepsilon \Longrightarrow a_n \in (a - \varepsilon, a + \varepsilon)$ А отже, $(a - \varepsilon, a + \varepsilon) \cap A$ - нескінченна множина, тож a - гранична точка

5.1 Основні означення

Definition 5.1.1 Задана функція $f: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Число b називається **границею функції в т.** x_0 , якщо:

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall x \in A: x \neq x_0: |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset A: x_n \neq x_0: \forall n \geq 1: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 - def. Гейне

Позначення: $\lim_{x \to x_0} f(x) = b$

Theorem 5.1.2 Означення Коші ⇔ Означення Гейне Proof.

⇒ Дано: означення Коші, тобто

 $\forall \varepsilon > 0: \exists \delta > 0: \forall x \in A: x \neq x_0: |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$ Зафіксуємо послідовність $\{x_n, n \geq 1\}$ таку, що: $\forall x_n \in A: \forall n \geq 1: x_n \neq x_0: \lim_{n \to \infty} x_n = x_0$ На це ми мали права, оскільки x_0 - гранична точка A Тоді для нашого заданого $\delta: \exists N: \forall n \geq N: |x_n - x_0| < \delta$ $\Rightarrow \forall \varepsilon > 0: \exists N: \forall n \geq N: |f(x_n) - b| < \varepsilon$ Таким чином, $\lim_{n \to \infty} f(x_n) = b$ - означення Гейне

Дано: означення Гейне, тобто $\forall \{x_n, n \geq 1\} \subset A : x_n \neq x_0 : \forall n \geq 1 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$!Припустимо, що означення Коші не виконується, тобто $\exists \varepsilon^* > 0 : \forall \delta > 0 : \exists x_\delta \in A : x_\delta \neq x_0 : |x_\delta - x_0| < \delta \Rightarrow |f(x_\delta) - b| \geq \varepsilon^*$ Зафіксуємо $\delta = \frac{1}{n}$. Тоді побудуємо послідовність $\{x_n, n \geq 1\}$ таким чином, що $x_n \in A : |x_n - x_0| < \frac{1}{n} \Rightarrow \exists \lim_{x \to \infty} x_n = x_0$ за теоремою про поліцаї, але водночає $|f(x_n) - b| \geq \varepsilon^*$ Отже, суперечність! \blacksquare

Remark 5.1.3 Границя функції має єдине значення Випливає з означення Гейне, оскільки границя числової послідовності є єдиною

Example 5.1.4 Довести, що $\lim_{x\to 2} x^2 = 4$ Покажемо це за означенням Коші, тобто $\forall \varepsilon > 0: \exists ? \delta > 0: \forall x: |x-2| < \delta \Rightarrow |x^2-4| < \varepsilon$ $|x^2-4| = |x-2||x+2| <$ Hexaй |x-2| < 1. Тоді $-1 < x-2 < 1 \Rightarrow |x+2| < 5$ $\le 5|x-2| < \varepsilon$ Якщо вказати $\delta = \min\left\{1, \frac{\varepsilon}{5}\right\}$, то тоді наше означення Коші буде виконаним $\forall \varepsilon > 0: \exists \delta = \min\left\{1, \frac{\varepsilon}{5}\right\}: \forall x: |x-2| < \delta \Rightarrow |x^2-4| < \varepsilon$ Отже, $\lim_{x\to 2} x^2 = 4$

Схематично це виглядає ось так. Наскільки б великим/маленьким я не задав червоний коридор, то завжди знайдеться блакитний коридор, що яки б я точки звідти не брав, то всі значення функції будут в червоному коридорі

Example 5.1.5 Довести, що не існує границі $\lim_{x\to 0} \arctan \frac{1}{x}$

За означенням Гейне зафіксуємо наступну послідовність:

$$\left\{x_n = \frac{(-1)^n}{n}, n \ge 1\right\}, \text{ де } \lim_{n \to \infty} x_n = 0$$
Але $\lim_{n \to \infty} \arctan \frac{1}{x_n} = \begin{bmatrix} \frac{\pi}{2}, n = 2k \\ -\frac{\pi}{2}, n = 2k - 1 \end{bmatrix}$

Таким чином, прийшли до висновку: границі не існує

Theorem 5.1.6 Властивості границь функції

1) Задана функція $f: A \to \mathbb{R}$, що містить границю навколо т. x_0 . Тоді вона є обмеженою в околі т. x_0

Proof.

$$\exists \lim_{x \to x_0} f(x) = b \Rightarrow \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

Зафіксуємо
$$\varepsilon=1$$
, тоді $|f(x)-b|<1$

$$|f(x)| = |f(x) - b + b| \le |f(x) - b| + |b| < 1 + |b|$$

Покладемо $c = \max\{1 + |b|, f(x_0)\}$. А тому отримаємо:

$$\forall x \in A : |x - x_0| < \delta \Rightarrow |f(x)| < c$$
. Отже, обмежена

Задані функції $f,g:A\to\mathbb{R}$, такі, що $\exists\lim_{x\to x_0}f(x)=b_1,\ \exists\lim_{x\to x_0}g(x)=b_2.$

Тоді:

$$(2.1)\forall c \in \mathbb{R}: \exists \lim_{x \to x_0} cf(x) = cb_1$$

$$2.1) \forall c \in \mathbb{R} : \exists \lim_{x \to x_0} cf(x) = cb_1$$
$$2.2) \exists \lim_{x \to x_0} (f(x) + g(x)) = b_1 + b_2$$

$$2.3) \exists \lim_{x \to x_0} f(x)g(x) = b_1 b_2$$

2.4)
$$\exists \lim \frac{f(x)}{g(x)} = \frac{b_1}{b_2}$$
 при $b_2, g(x) \neq 0$

Випливають з властивостей границь числової послідовності, якщо доводити за Гейне. Доведу лише другий підпункт

Proof.

$$\forall \{x_n, n \ge 1\} \subset A : x_n \ne x_0 : \forall n \ge 1 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \begin{cases} \lim_{n \to \infty} f(x_n) = b_1 \\ \lim_{n \to \infty} g(x_n) = b_2 \end{cases}$$

Тоді за властивостями границь числової послідовност

$$\exists \lim_{n \to \infty} (f(x_n) + g(x_n)) = b_1 + b_2$$

Таким чином, за Гейне,
$$\exists \lim_{x \to x_0} (f(x) + g(x)) = b_1 + b_2 \blacksquare$$

Example 5.1.7 Обчислити границю:
$$\lim_{x\to 0} \frac{x^2-1}{2x^2-2x-1}$$

Example 5.1.7 Обчислити границю:
$$\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - 2x - 1}$$

$$\lim_{x \to 0} \frac{x^2 - 1}{2x^2 - x - 1} = \frac{\lim_{x \to 0} (x^2 - 1)}{\lim_{x \to 0} (2x^2 - x - 1)} = \frac{\lim_{x \to 0} x^2 - \lim_{x \to 0} 1}{2\lim_{x \to 0} x^2 - \lim_{x \to 0} 1} = \frac{0 - 1}{0 - 0 - 1} =$$

=1

Definition 5.1.8 Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція **прямує до нескінченності в т.** x_0 , якщо:

$$\forall E>0:\exists \delta(E)>0: \forall x\in A: x\neq x_0: |x-x_0|<\delta\Rightarrow |f(x)|>E$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset A : x_n \neq x_0 : \forall n \geq 1 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \infty$$
 - def. Гейне

Позначення: $\lim f(x) = \infty$

Для $+\infty$ буде нерівність f(x) > E, для $-\infty$ буде нерівність -f(x) > E

Definition 5.1.9 Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Якщо $\lim_{x \to x_0} f(x) = \infty$, то функцію f(x) називають **нескінченно великою B T.** x_0 , and **H.B.**

Якщо $\lim_{x \to \infty} f(x) = 0$, то функцію f(x) називають **нескінченно малою в т.** x_0 , або **н.м.**

Theorem 5.1.10 Арифметичні властивості н.м. та н.в. великих функцій

Задані функції $f, g, h: A \to \mathbb{R}$ - відповідно н.м., н.в., обмежена, та $x_0 \in A$ - гранична точка. Тоді:

1)
$$f(x) \cdot h(x)$$
 - н.м.

1)
$$f(x) \cdot h(x)$$
 - H.M.
2) $\frac{1}{f(x)}$ - H.B.

3)
$$\frac{1}{g(x)}$$
 - H.M.

Proof.

Зафіксуємо $\{x_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} x_n = x_0$. Тоді за Гейне,

$$\lim_{n\to\infty} f(x_n) = 0, \lim_{n\to\infty} g(x_n) = \infty, \text{ отже}$$

$$\{f(x_n), n \ge 1\} \text{ - H.M.}$$

$$\{f(x_n), n \ge 1\}$$
 - H.M.

$$\{g(x_n), n \ge 1\}$$
 - H.B.

$$\{h(x_n), n \ge 1\}$$
 - досі обмежена

За властивостями границь числової послідовності, $\{f(x_n) \cdot h(x_n)\}$ - н.м.,

$$\left\{\frac{1}{f(x_n)}\right\}$$
 - H.B., $\left\{\frac{1}{g(x_n)}\right\}$ - H.M.

Ну а тому, існують відповідні границі: $\lim_{n\to\infty} f(x_n)h(x_n) = 0$,

$$\lim_{n \to \infty} \frac{1}{f(x_n)} = \infty, \lim_{n \to \infty} \frac{1}{g(x_n)} = 0$$

За Гейне, отримаємо бажане І

Example 5.1.11 Знайти границю $\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)}{(4x-5)^3}$

Завдяки щойно доведеної теореми, ми отримаємо наступне:

$$\lim_{x \to \infty} \frac{(x-1)(x-2)(x-3)}{(4x-5)^3} = \lim_{x \to \infty} \frac{(1-\frac{1}{x})(1-\frac{2}{x})(1-\frac{3}{x})}{(4-\frac{5}{x})^3} = \frac{1}{64}$$

Definition 5.1.12 Задана функція $f: \mathbb{R} \to \mathbb{R}$

Число b називається **границею функції** при $x \to \infty$, якщо:

$$\forall \varepsilon > 0 : \exists \Delta(\varepsilon) > 0 : \forall x \in \mathbb{R} : |x| > \Delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi

$$\forall \{x_n, n \geq 1\} \subset \mathbb{R}: \forall n \geq 1: \lim_{n \to \infty} x_n = \infty \Rightarrow \lim_{n \to \infty} f(x_n) = b$$
 - def. Гейне

Позначення: $\lim_{x\to\infty} f(x) = b$

Remark 5.1.13

1.Для $+\infty$ буде нерівність $x > \Delta$. Для $-\infty$ буде нерівність $-x > \Delta$

- 2. Можна спробувати самостійно записати def. Коші та def. Гейне для випадку $\lim_{x\to\infty}f(x)=\infty$
- 3. Для інших варіацій границь функції, еквівалентність означень Коші та Гейне залишається в силі

Theorem 5.1.14 Задана функція $f : \mathbb{A} \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Відомо, що в околі т. x_0 функція f(x) < c та $\exists \lim_{x \to x_0} f(x) = b$. Тоді $b \le c$

Proof.

За Гейне, $\forall \{x_n, n\geq 1\}\subset A: \lim_{n\to\infty}x_n=x_0\Rightarrow \lim_{n\to\infty}f(x_n)=b$. За властивостями границь числової послідовності, $b\leq c$

Corollary 5.1.15 Задані функції $f,g:A\to\mathbb{R}$ такі, що в околі т. x_0 справедлива $f(x)\leq g(x)$. Також $\exists\lim_{x\to x_0}f(x)=b_1,\ \exists\lim_{x\to x_0}g(x)=b_2$. Тоді $b_1\leq b_2$

Вказівка: розглянути функцію $h(x) = f(x) - g(x) \le 0$

Theorem 5.1.16 Теорема про 3 функції

Задані функції $f,g,h:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Відомо, що в околі т. $x_0\colon f(x)\le g(x)\le h(x)$ та $\exists\lim_{x\to x_0}f(x)=\lim_{x\to x_0}h(x)=a$ Тоді $\exists\lim_{x\to x_0}g(x)=a$

Випливає з теореми про двох поліцаїв в числової послідовності

Theorem 5.1.17 Критерій Коші

Задана функція $f: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка $\exists \lim_{x \to x_0} f(x) \iff \forall \varepsilon > 0 : \exists \delta(\varepsilon) : \forall x_1, x_2 \in A : x_1, x_2 \neq x_0 : \int |x_1 - x_0| < \delta$

$$\begin{cases} |x_1 - x_0| < \delta \\ |x_2 - x_0| < \delta \end{cases} \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Proof.

 \Longrightarrow Дано: $\exists \lim_{x \to x_0} f(x) = b,$ тобто за def. Коші,

 $\forall \varepsilon > 0: \exists \delta: \forall x \in A: x \neq x_0: |x - x_0| < \delta \Rightarrow |f(x) - b| < \frac{\varepsilon}{2}$ Тоді $\forall x_1, x_2 \in A: |x_1 - x_0| < \delta$ і одночачно $|x_2 - x_0| < \delta \Rightarrow |f(x_1) - f(x_2)| = |f(x_1) - b + b - f(x_2)| \le |f(x_1) - b| + |f(x_2) - b| < \varepsilon$ Отримали праву частину критерія

$$\sqsubseteq$$
 Дано: $\forall \varepsilon > 0$: $\exists \delta(\varepsilon) : \forall x_1, x_2 \in A :, x_1, x_2 \neq x_0 : \begin{cases} |x_1 - x_0| < \delta \\ |x_2 - x_0| < \delta \end{cases} \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Розглянемо послідовність $\{t_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} t_n = x_0$

Тоді за означенням,
$$\exists N: \forall n,m \geq N: \begin{cases} |t_n-x_0| < \delta \\ |t_m-x_0| < \delta \end{cases}$$

$$\Rightarrow |f(t_n) - f(t_m)| < \varepsilon$$

Отримаємо, що $\{f(t_n), n \geq 1\}$ - фундаментальна послідовність, а тому є збіжною, тобто

$$\exists \lim_{n \to \infty} f(t_n) = b$$

Розглянемо послідовність $\{s_n, n \geq 1\}$, таку, що $\lim_{n \to \infty} s_n = x_0$

Тоді за аналогічними міркуваннями, $\exists \lim_{n \to \infty} f(s_n) = a$

I нарешті, побудуємо послідовність $\{p_n, n \geq 1\}$ таким чином, що $p_{2k} = t_k$, $p_{2k-1} = s_k$

Тут $\exists \lim_{n\to\infty} p_n = x_0$. Тоді знову за аналогічними міркуваннями, $\exists \lim_{n\to\infty} f(p_n)$, але чому буде дорівнювати, зараз побачимо

Оскільки $\lim_{k\to\infty} f(p_{2k}) = b$ та $\lim_{k\to\infty} f(p_{2k-1}) = a$, то ми можемо отримати, що $\lim_{n\to\infty}f(s_n)=b$. Це означає, що результат не залежить від вибору послідовності

Тому за Гейне, отримаємо, що $\exists \lim_{x \to x_0} f(x) = b \blacksquare$

Theorem 5.1.18 Границя від композиції функції

Задані функції $f:A \to B,\, g:B \to \mathbb{R}$ та композиція h=g(f(x)). Більш того, $x_0 \in A$ - гранична точка, $\exists \lim_{x \to x_0} f(x) = y_0$ та $\exists \lim_{y \to y_0} g(y) = b$

Тоді
$$\exists \lim_{x \to x_0} h(x) = b$$

Proof.

$$\exists \lim_{y \to y_0} g(y) = b \stackrel{\text{def.}}{\Rightarrow} \forall \varepsilon > 0 : \exists \delta : \forall y \in B : |y - y_0| < \delta \Rightarrow |g(y) - b| < \varepsilon$$

$$\exists \lim_{x \to x_0} f(x) = y_0 \stackrel{\text{def.}}{\Rightarrow} \forall \delta > 0 : \exists \tilde{\delta} : \forall x \in A : |x - x_0| < \tilde{\delta} \Rightarrow |f(x) - y_0| < \delta$$

Таким чином, можемо отримати:

$$\forall \varepsilon > 0 : \exists \delta > 0 \Rightarrow \exists \tilde{\delta} : \forall x \in A : |x - x_0| < \tilde{\delta} \Rightarrow$$
 $|f(x) - y_0| = |y - y_0| < \delta \Rightarrow |g(y) - b| = |g(f(x)) - b| = |h(x) - b| < \varepsilon$
Отже, $\exists \lim_{x \to x_0} h(x) = b \blacksquare$

5.2 Перша чудова границя

У нас уже було, що $\forall x \in \left(0, \frac{\pi}{2}\right)$ виконується нерівність:

$$1 - \frac{x^2}{2} < \cos x < \frac{\sin x}{x} < 1$$

Можна розширити інтервал до $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Тому за теоремою про 3 функції, маємо наступне:

Theorem 5.2.1 Перша чудова границя

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Corollary 5.2.2

$$1. \lim_{x \to 0} \frac{\operatorname{tg} \dot{x}}{x} = 1$$

2.
$$\lim_{x \to 0} \frac{x}{\arcsin x} = 1$$
3.
$$\lim_{x \to 0} \frac{\arctan x}{x} = 1$$

$$3. \lim_{x \to 0} \frac{\arctan x}{x} = 1$$

Proof.

Доведу лише другу границю

$$\lim_{x \to 0} \frac{\arcsin x}{x} =$$

Проведемо заміну: $\arcsin x = t$, тобто $x = \sin t$. Оскільки $x \to 0$, то $t \to 0$. Тоді за теоремою про границю композиції, рівність буде справедливою

Друга чудова границя 5.3

Відомо, що $\forall x \in \mathbb{R}$ справедлива нерівність: $[x] \leq x < [x] + 1$ Тоді можна дійти до цієї нерівності:

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} < \left(1 + \frac{1}{x}\right)^x < \left(1 + \frac{1}{[x]}\right)^{[x]+1}$$

Вважаємо, що $x \to +\infty$, тоді відповідно $[x] \to +\infty$ та $[x] + 1 \to +\infty$

Також $[x] \in \mathbb{N}$, тому за визначенням числа e маємо

$$\lim_{[x] \to +\infty} \left(1 + \frac{1}{[x]}\right)^{[x]} = e$$

Скористаємось цим фактом для нашої нерівності:

$$\left(1 + \frac{1}{[x]+1}\right)^{[x]} = \frac{\left(1 + \frac{1}{[x]+1}\right)^{[x]+1}}{1 + \frac{1}{[x]+1}} \to \frac{e}{1} = e$$

$$\left(1 + \frac{1}{[x]}\right)^{[x]+1} = \left(1 + \frac{1}{[x]}\right)^{[x]} \left(1 + \frac{1}{[x]}\right) \to e \cdot 1 = e$$

I це все при $x \to +\infty$. Тоді за теоремою про поліцаїв, отримаємо так звану ще одну чудову границю

Theorem 5.3.1 Друга чудова границя

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e$$

Corollary 5.3.2

$$1. \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e$$

2.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = \epsilon$$

2.
$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e$$
3. $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$
4. $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$

$$4. \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

5.
$$\lim_{x \to 0} \frac{(1+x)^{\alpha} - 1}{x} = \alpha$$

Вказівка до 4: $e^x - 1 = t$

Вказівка до 5: $1 + x = e^t$

5.4Односторонні границі та границі монотонних функцій

Definition 5.4.1 Задана функція $f: A \to \mathbb{R}$, та $x_0 \in A$ - гранична точка Числом b називають **границею справа**, якщо

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall x \in A: x \neq x_0: 0 < x - x_0 < \delta \Rightarrow |f(x) - b| < \varepsilon$$
 - def. Komi $\forall \{x_n, n \geq 1\} \subset A: \forall n \geq 1: x_n > x_0: \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = b$ - def. Гейне

Позначення: $\lim_{x \to x_0^+} f(x) = b$

Числом b називають **границею зліва**, якщо

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x \in A : x \neq x_0 : 0 < x_0 - x < \delta \Rightarrow |f(x) - \tilde{b}| < \varepsilon$$
 - def. Komi $\forall \{x_n, n \geq 1\} \subset A : \forall n \geq 1 : x_n < x_0 : \lim_{n \to \infty} x_n = x_0 \Rightarrow \lim_{n \to \infty} f(x_n) = \tilde{b}$ - def. Гейне

Позначення: $\lim_{x \to x_0^-} f(x) = \tilde{b}$

Theorem 5.4.2 Задана функція $f:A\to\mathbb{R}$, та $x_0\in A$ - гранична точка

$$\exists \lim_{x \to x_0} f(x) = b \iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

Proof.

$$\exists \lim_{x \to x_0} f(x) = b \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x) - b| < \varepsilon$$

$$\iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow \begin{cases} x - x_0 < \delta \\ x_0 - x < \delta \end{cases} \Rightarrow |f(x) - b| < \varepsilon$$

$$\iff \exists \begin{cases} \lim_{x \to x_0^+} f(x) = b \\ \lim_{x \to x_0^-} f(x) = b \end{cases}$$

Definition 5.4.3 Задана функція $f:(a,b) \to \mathbb{R}$

Її називають **монотонно**:

- строго зростаючою, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$
- не спадною, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)$
- строго спадною, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$
- не зростаючою, якщо $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) \leq f(x_2)$

 $\ddot{\text{I}}$ ї називають **обмеженою**, якщо $\exists M > 0 : \forall x \in (a,b) : |f(x)| \leq M$

Theorem 5.4.4 Задана функція $f:(a,b) \to \mathbb{R}$ - монотонна та обмежена Тоді $\exists \lim_{x \to b^-} f(x) = d$ або $\exists \lim_{x \to a^+} f(x) = c$ **Proof.**

Доведу лише першу границю і буду вважати, що функція строго спадна. Для решти аналогічно

Отже, f - строго спадає, тобто $\forall x_1, x_2 \in (a, b) : x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$ Більш того, f - обмежена, тому $\exists \inf_{x \in (a,b)} f(x) = d$

Доведемо, що вона є границею зліва. За критерієм inf:

- 1) $\forall x \in (a,b) : f(x) \ge d$
- 2) $\forall \varepsilon > 0 : \exists x_{\varepsilon} \in (a, b) : f(x_{\varepsilon}) < c + \varepsilon$

Оберемо $\delta = b - x_{\varepsilon} > 0$. Тоді $\forall x \in (a, b) : b - x < \delta \Rightarrow$

$$x > b - (b - x_{\varepsilon}) = x_{\varepsilon} \Rightarrow f(x) < f(x_{\varepsilon})$$

Звідси справедлива наступна нерівність:

$$d - \varepsilon < d \le f(x) < f(x_{\varepsilon}) < d + \varepsilon \Rightarrow |f(x) - d| < \varepsilon$$

Остаточно, за def. Коші, $\exists \lim_{x \to b^-} f(x) = d \blacksquare$

Порівняння функцій, відношення О-велике, о-маленьке 5.5та еквівалентності

Definition 5.5.1 Задані функції $f, g: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Функція f називається **порівнянною** з функцією g, якщо

$$\exists L > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| \le L|g(x)|$$

Позначення: $f(x) = O(g(x)), x \to x_0$

Інакше називають, що f - обмежена відносно g при $x \to x_0$ Чоловіча мова: "функція f(x) наближається до т. x_0 не швидше за g(x)"

Theorem 5.5.2 Властивості

1)
$$f(x) = O(g(x)), x \to x_0 \iff \frac{f(x)}{g(x)}$$
 - обмежена в околі т. x_0

2) Якщо
$$\exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = c$$
, то $f(x) = O(g(x)), x \to x_0$

3) Нехай
$$f_1(x) = O(g(x)), f_2(x) = O(g(x))$$
. Тоді:

a)
$$f_1(x) + f_2(x) = O(g(x))$$

b)
$$\forall \alpha \in \mathbb{R} : \alpha f_1(x) = O(q(x))$$

c)
$$\forall \alpha \neq 0 : f_1(x) = O(\alpha g(x))$$

Всюди $x \to x_0$

4) Нехай f(x) = O(g(x)), g(x) = O(h(x)). Тоді $f(x) = O(h(x)), x \to x_0$ **Proof.**

Доведу лише 3 а). Інші очевидно

$$f_1(x) = O(g(x)) \Rightarrow \exists L_1 : \exists \delta_1 : \forall x : |x - x_0| < \delta_1 \Rightarrow |f_1(x)| \le L_1 |g(x)|$$

 $f_2(x) = O(g(x)) \Rightarrow \exists L_2 : \exists \delta_2 : \forall x : |x - x_0| < \delta_2 \Rightarrow |f_2(x)| \le L_2 |g(x)|$
Тоді $\exists \delta = \min\{\delta_1, \delta_2\} : \forall x : |x - x_0| < \delta \Rightarrow$
 $|f(x_1) + f(x_2)| \le |f(x_1)| + |f(x_2)| \le (L_1 + L_2)|g(x)|$
A TOMY $f_1(x) + f_2(x) = O(g(x))$

Example 5.5.3 Довести, що $x + x^2 = O(x), x \to 0$

Знайдемо наступну границю:

$$\lim_{x \to 0} \frac{x + x^2}{x} = \lim_{x \to 0} (1 + x) = 1$$
Otke, $x + x^2 = O(x), x \to 0$

Definition 5.5.4 Задані функції $f, g: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Функція f називається **знехтувально малою** відносно g, якщо

$$\forall \varepsilon > 0 : \exists \delta > 0 : \forall x \in A : x \neq x_0 : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)|$$

Позначення: $f(x) = o(g(x)), x \to x_0$

Інакше кажуть, що f - **нескінченно малой порівняльно з** g при $x \to x_0$

Чоловіча мова: "функція f(x) приймає значення близьке за нуль довше, ніж g(x)"

Theorem 5.5.5 Властивості

1)
$$f(x) = o(g(x)), x \to x_0 \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$$

- 2) Нехай $f_1(x) = o(g(x)), f_2(x) = o(g(x))$. Тоді:
- a) $f_1(x) + f_2(x) = o(g(x))$
- b) $\forall \alpha \in \mathbb{R} : \alpha f_1(x) = o(g(x))$
- c) $\forall \alpha \neq 0 : f_1(x) = o(\alpha g(x))$

Всюди $x \to x_0$

3) Нехай f(x) = o(g(x)), g(x) = o(h(x)). Тоді $f(x) = o(h(x)), x \to x_0$ **Proof.**

Доведу лише 1. Інші очевидно

$$|f(x)| = o(g(x)), x \to x_0 \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow |f(x)| < \varepsilon |g(x)| \iff \left| \frac{f(x)}{g(x)} - 0 \right| < \varepsilon \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \blacksquare$$

Example 5.5.6 Довести, що $x^3 - x^2 - x + 1 = o(x - 1), x \to 1$

Знайдемо наступну границю:

$$\lim_{x \to 1} \frac{x^3 - x^2 - x + 1}{x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) - (x - 1)}{x - 1} = \lim_{x \to 1} (x^2 - 1) = 0$$
 Отже, $x^3 - x^2 - x + 1 = o(x - 1), x \to 1$

Тут x-1 миттєво стала нулем і миттєво пішла далі. А x^3-x^2-x+1 набагато довше була близька в нулі

Theorem 5.5.7 Інші властивості

1.1)
 Нехай
$$f(x) = o(g(x))$$
 та $g(x) = O(h(x))$. Тоді $f(x) = o(h(x)), x \to x_0$

1.2) Нехай
$$f(x) = O(g(x))$$
 та $g(x) = o(h(x))$. Тоді $f(x) = o(h(x)), x \to x_0$

2) Нехай f(x) = o(g(x)). Тоді $f(x) = O(g(x)), x \to x_0$

Proof.

1) для обох випадків

$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{f(x)}{g(x)} \frac{g(x)}{h(x)} = (\text{обм *H.м.}) = 0 \Rightarrow f(x) = o(h(x)), x \to x_0$$

2) Випливає з властивості 2 О-великого ■

Definition 5.5.8 Задані функції $f, g: A \to \mathbb{R}$ та $x_0 \in A$ - гранична точка Функція f називається **еквівалентною** q, якщо

$$f(x) - g(x) = o(g(x)), x \to x_0$$

Позначення: $f(x) \sim g(x), x \rightarrow x_0$

Чоловіча мова: "функції f(x) та g(x) в околі т. x_0 дуже близькі між собою"

Theorem 5.5.9 $f(x) \sim g(x) \iff \exists \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$

Proof.

$$f(x) \sim g(x), x \to x_0 \iff f(x) - g(x) = o(g(x)), x \to x_0 \iff \lim_{x \to x_0} \frac{f(x) - g(x)}{g(x)} = 0 \iff \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \blacksquare$$

Theorem 5.5.10 Граничний перехід

Нехай $f_1(x) \sim g_1(x)$ та $f_2(x) \sim g_2(x), x \to x_0$. Тоді:

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} g_1(x) g_2(x)$$

1)
$$\lim_{x \to x_0} f_1(x) \approx g_1(x)$$
 for $g_2(x) \approx g_2(x)$
2) $\lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}$

З початкових умов, отримаємо за **Th. 3.6.9.**, що:

$$\exists \lim_{x \to x_0} \frac{f_1(x)}{g_1(x)} = 1, \ \exists \lim_{x \to x_0} \frac{f_2(x)}{g_2(x)} = 1. \ ext{Тодi}$$

1)
$$\lim_{x \to x_0} f_1(x) f_2(x) = \lim_{x \to x_0} \frac{f(x_1) f_2(x) g_1(x) g_2(x)}{g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_1(x) f_2(x)}{g_1(x) g_2(x)} \lim_{x \to x_0} g_1(x) g_2(x) = \lim_{x \to x_0} \frac{f_2(x) f_2(x)}{g_1(x) g_2(x)} = \lim_{x \to x_0} \frac{f_2(x) f_2(x)}{g_2(x)} = \lim_{x \to x_0$$

$$= \lim_{x \to x_0} g_1(x)g_2(x)$$

$$2) \lim_{x \to x_0} \frac{f_1(x)}{f_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_1(x)g_2(x)}{f_2(x)g_1(x)g_2(x)} = \lim_{x \to x_0} \frac{f_1(x)g_2(x)}{f_2(x)g_1(x)} \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)} = \lim_{x \to x_0} \frac{g_1(x)}{g_2(x)}$$

Remark 5.5.11 Еквівалентні функції задають відношення еквівалентності - рефлексивність, симетричність, транзитивність

Використовуючи всі наслідки від чудових границь, ми можемо отримати наступні еквівалентні функції: $x \to 0$

$$\sin x \sim x \qquad \ln(1+x) \sim x$$

$$\tan x \sim x \qquad e^x - 1 \sim x$$

$$\arcsin x \sim x \qquad (1+x)^{\alpha} - 1 \sim \alpha x$$

$$\arctan x \sim x \qquad a^x - 1 \sim x \ln a$$

Example 5.5.12 Обчислити границю $\lim_{x\to 0} \frac{\arcsin x\cdot (e^x-1)}{1-\cos x}$

Маємо, з таблиці еквівалентності:

$$\lim_{x \to 0} \frac{\arcsin x \cdot (e^x - 1)}{1 - \cos x} = \lim_{x \to 0} \frac{x \cdot x}{2\sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{x \cdot x}{2\frac{x^2}{4}} = 2$$

Remark 5.5.13 Узагальнене зауваження

$$f(x)=O(1), x o x_0 \iff f(x)$$
 - обмежена в околі т. x_0 $f(x)=o(1), x o x_0 \iff f(x)$ - н.м. функція

В околі т. $x_0 = 0$ функція $\sin x$ дуже схожа на x

Неперервність функції 6

Неперервність в точці 6.1

Definition 6.1.1 Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція f(x) називається **неперервною в т.** x_0 , якщо

$$\exists \lim_{x \to x_0} f(x) = f(x_0)$$

Якщо $\exists \lim_{x \to x_0^+} f(x) = f(x_0)$, то **неперервна справа в т.** x_0

Якщо $\exists \lim_{x \to \infty} f(x) = f(x_0)$, то **неперервна зліва в т.** x_0

Якщо в т. x_0 вона не ϵ неперервною, то її називають **точкою розриву**

Theorem 6.1.2 Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функція f - неперервна в т. $x_0 \iff \Phi$ ункція f - неперервна зліва та справа

Bunлuвae з Th. 5.4.2.

Класифікації точок розриву

І роду:

- усувна, якщо $\exists\lim_{x\to x_0}f(x)\neq f(x_0)$ стрибок, якщо $\exists\lim_{x\to x_0^+}f(x),\ \exists\lim_{x\to x_0^-}f(x),$ але вони не рівні

II роду:

якщо виконується один з 4 випадків:

- 1) $\lim f(x) = \infty$ $x \rightarrow x_0^-$
- $2) \lim_{x \to x_0^+} f(x) = \infty$
- $3) \not\exists \lim_{x \to x_0^-} f(x)$
- 4) $\not\exists \lim_{x \to x_0^+} f(x)$

Example 6.1.3
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$

В т. x_0 функція f(x) є неперервною, оскільки

$$\lim_{x\to 0} \frac{\sin x}{x} \stackrel{\text{I чудова границя}}{=} 1 = f(0)$$

Example 6.1.4
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

А в цьому випадку в т. x_0 буде усувною, оскільки

$$\lim_{x \to 0} \frac{\sin x}{x}$$
 Т чудова границя $1 \neq f(0)$ В цьому випадку у нас $f(0) = 0$

Example 6.1.5 $f(x) = 2x - \frac{x-2}{|x-2|}$ Тут проблема виникає в т. $x_0 = 2$. Розглянемо границі в різні сторони:

$$\lim_{x \to 2^{-}} \left(2x - \frac{x - 2}{2 - x} \right) = \lim_{x \to 2^{-}} (2x - 1) = 3$$

$$\lim_{x \to 2^{+}} \left(2x - \frac{x - 2}{x - 2} \right) = \lim_{x \to 2^{+}} (2x + 1) = 5$$

Обидва ліміти не рівні, а отже, $x_0 = 2$ - стрибок

Example 6.1.6 $f(x) = \frac{1}{x+1}$ Проблема в т. $x_0 = -1$. Але принаймні по одну сторону, наприклад $\lim_{x \to -1^{+0}} = \frac{1}{x+1} = +\infty$, матимемо нескінченність Тому одразу т. $x_0 = -1$ - розрив 2 роду

Theorem 6.1.7 Арифметичні властивості неперервних функцій

Задані функції $f,g:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка

f, g - неперервні в т. x_0 . Тоді:

- 1) $\forall c \in \mathbb{R} : (cf)(x)$ неперервна в т. x_0
- 2) (f+q)(x) неперервна в т. x_0
- 3) (fg)(x) неперервна в т. x_0
- 4) $\frac{f}{g}(x)$ неперервна в т. x_0 при $g(x_0) \neq 0$

Proof.

1), 2), 3), 4) Всі вони випливають із означення

Але в 4) Тут більш детально розпишу одну річ

Переконаємось, що все буде коректно визначено:

g - неперервна в $x_0,$ тобто $\forall \varepsilon > 0$: $\exists \delta$: $\forall x \in A$: $|x - x_0| \, < \, \delta \, \Rightarrow$ $|g(x) - g(x_0)| < \varepsilon$

Оберемо $\varepsilon = \frac{|g(x_0)|}{2}$

Тоді $g(x_0) - \varepsilon < g(x) < g(x_0) + \varepsilon$

Якщо $g(x_0) > 0$, то $\varepsilon = \frac{g(x_0)}{2} \Rightarrow 0 < g(x) < \frac{3}{2}g(x_0)$

Якщо $g(x_0) < 0$, то $\varepsilon = -\frac{g(x_0)}{2} \Rightarrow \frac{3}{2}g(x_0) < \frac{1}{2}g(x_0) < 0$

Тобто $\exists \delta : \forall x \in A : |x - x_0| < \delta \Rightarrow \bar{g}(x) \neq 0$

Отже, наше означення є коректним

Theorem 6.1.8 Неперервність композиції

Задані функції $f:A\to B, q:B\to \mathbb{R}$ та $h=q\circ f$

Відомо, що $x_0 \in A$ - гранична т. A, де f неперервна; та $f(x_0) = y_0$ гранична т. B, де q неперервна.

Тоді h - неперервна в т. x_0

Випливає з означення та властивості композиції

Definition 6.1.9 Функція $f:A\to\mathbb{R}$ називається **неперервною на множині** A, якщо вона є неперервною $\forall x \in A$

Позначення: C(A) - множина неперервних функцій в AТобто з означення, $f \in C(A)$

6.2Неперервність елементарних функцій

0) f(x) = x - неперервна на \mathbb{R}

Proof.

$$\forall \varepsilon > 0 : \exists \delta = \varepsilon : \forall x : |x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |x - x_0| < \delta = \varepsilon$$

1) $f(x) = a_0 + a_1 x + \cdots + x_n x^n$ неперервна на \mathbb{R}

Proof.

Оскільки $g(x) = x \in C(\mathbb{R})$, то

$$h(x)=x^n=x\cdot\cdots\cdot x\in C(\mathbb{R})$$
 як добуток функцій $\forall n\geq 1$

 $f(x)=a_0+a_1x+\cdots+x_nx^n\in C(\mathbb{R})$ як сума неперервних функцій, множений на константу

2) $f(x) = \sin x$ - неперервна на \mathbb{R}

Proof.

Вже відомо нам давно ця нерівність:

$$1 - \frac{x^2}{2} < \frac{\sin x}{x} < 1 \Rightarrow x - \frac{x^3}{2} < \sin x < x$$

Вже відомо нам давно дл. порти $1 - \frac{x^2}{2} < \frac{\sin x}{x} < 1 \Rightarrow x - \frac{x^3}{2} < \sin x < x$ Якщо $x \to 0$, то за теоремою про 2 поліцая, $\lim_{x \to 0} \sin x = 0 = \sin 0$

Отже, $\sin x$ - неперервна лише в т. 0

Перевіримо неперервність в т. $a \in \mathbb{R}$:

Перевіримо неперервніств в 1.
$$a \in \mathbb{R}$$
.
$$\lim_{x \to a} (\sin x - \sin a) = \lim_{x \to a} 2 \sin \frac{x - a}{2} \cos \frac{x + a}{2} =$$
Проведемо заміну: $\frac{x - a}{2} = t$. Тоді $t \to 0$

$$= \lim_{t \to 0} 2 \sin t \cos(t + a) = (\text{H.M * obm}) = 0$$
$$\Rightarrow \lim_{x \to a} \sin x = \sin a$$

Остаточно, $f(x) = \sin x \in C(\mathbb{R})$

3) $f(x) = \cos x$ - неперервна на \mathbb{R}

Proof.

$$f \in C(\mathbb{R})$$
 як композиція, бо $\cos x = \sin\left(\frac{\pi}{2} - x\right)$

4.1)
$$f(x)=\operatorname{tg} x$$
 - неперервна всюди, окрім $x=\frac{\pi}{2}+\pi k, k\in\mathbb{Z}$

4.2)
$$f(x) = \operatorname{ctg} x$$
 - неперервна всюди, окрім $x = \pi k, k \in \mathbb{Z}$

Proof.

$$1.f \in C$$
 як частка, бо $\operatorname{tg} x = \frac{\sin x}{\cos x}$

$$2.f \in C$$
 за аналогічними міркуваннями

5)
$$f(x) = e^x$$
 - неперервна на $\mathbb R$

Proof.

Спочатку побудуємо цю функцію:

Ми навчились зводити в натуральну, цілу та навіть в раціональну степіні.

Покажемо зведення в дійсну степінь

Визначення: $\forall x \in \mathbb{R} \setminus \mathbb{Q} : e^x = \sup\{e^y | y \in \mathbb{Q}, y < x\}$

Для
$$x = \pi$$
: $e^{\frac{3}{1}}, e^{\frac{31}{10}}, e^{\frac{314}{100}}, \dots$

Хочемо виконання наступних умов:

1)
$$e^{x_1}e^{x_2} = e^{x_1+x_2}$$

2)
$$(e^{x_1})^{x_2} = e^{x_1 x_2}$$

3)
$$x_1 < x_2 \Rightarrow e^{x_1} < e^{x_2}$$

4)
$$e^0 = 1$$

Зафіксуємо два числа:

$$e^{x_1} = \sup\{e^{y_1} | y_1 \in \mathbb{Q}, y_1 < x_1\}$$

$$e^{x_2} = \sup\{e^{y_2} | y_2 \in \mathbb{Q}, y_2 < x_2\}$$

1)
$$e^{x_1+x_2} = \sup\{e^y|y \in \mathbb{Q}, y < x_1+x_2\} \stackrel{y=y_1+y_2}{=}$$

 $= \sup\{e^{y_1+y_2}|y_1, y_2 \in \mathbb{Q}, y_1+y_2 < x_1+x_2\} =$
 $= \sup\{e^{y_1+y_2}|y_1, y_2 \in \mathbb{Q}, y_1 < x_1, y_2 < x_2\} =$
 $= \sup\{e^{y_1}|y_1 \in \mathbb{Q}, y_1 < x_1\} \cdot \sup\{e^{y_2}|y_2 \in \mathbb{Q}, y_2 < x_2\} = e^{x_1}e^{x_2}$
Краще читати в зворотньому напрямку

2)
$$(e^{x_1})^{x_2} = \sup\{(e^{x_1})^{y_2}, y_2 \in \mathbb{Q} : y_2 < x_2\} = \sup\{(e^{y_1})^{y_2}, y_1, y_2 \in \mathbb{Q} : y_1 < x_1, y_2 < x_2\} = \sup\{e^y, y \in \mathbb{Q} : y < x_1x_2\} = e^{x_1x_2}$$

3)
$$x_1 < x_2 \Rightarrow \{y_1 \in \mathbb{Q}, y_1 < x_1\} \subset \{y_2 \in \mathbb{Q} : y_2 < x_2\} \Rightarrow \{e^{y_1} \in \mathbb{Q}, y_1 < x_1\} \subset \{e^{y_2} \in \mathbb{Q} : y_2 < x_2\}$$
 За властивостями $\sup \{e^{y_1} \in \mathbb{Q}, y_1 < x_1\} \leq \sup \{e^{y_2} \in \mathbb{Q} : y_2 < x_2\} \Rightarrow e^{x_1} < e^{x_2}$

4)
$$\lim_{x\to 0} (e^x - 1) = \lim_{x\to 0} \frac{e^x - 1}{x} \cdot x = 0$$
 $\Rightarrow \lim_{x\to 0} e^x = 1 = e^0$, тобто неперервна в т. 0
Тоді $\lim_{x\to a} (e^x - e^a) = \lim_{x\to a} e^a (e^{x-a} - 1) \stackrel{x-a=t}{=} \lim_{t\to 0} e^a (e^t - 1) = 0$
 $\Rightarrow \lim_{x\to a} e^x = e^a$
Отже, $f(x) = e^x \in C(\mathbb{R})$

6.3 Неперервність функції на відрізку/інтервалі

Theorem 6.3.1 Теорема Вейєрштрасса 1

Задана функція $f \in C([a,b])$. Тоді вона є обмеженою на [a,b]

Proof.

!Припустимо, що f не ϵ обмежено, тобто

$$\forall n \ge 1 : \exists x_n \in [a, b] : |f(x_n)| > n$$

Отримаємо послідовність $\{x_n, n \ge 1\}$

Є два випадки, тому виділимо 2 підпослідовності:

1)
$$\{x_{n_k}, k \ge 1\}$$
 : $f(x_{n_k}) > n_k$

2)
$$\{x_{n_m}, m \ge 1\}$$
: $f(x_{n_m}) < -n_m$

Розглянемо другу. Вона є обмеженою, оскільки $\{x_{n_m}, m \geq 1\} \subset [a, b]$

Тоді за Вейєрштрасса, для підпослідовності $\{x_{n_{m_p}}, p \geq 1\}$:

$$\exists \lim_{n \to \infty} x_{n_{m_p}} = x_*$$

Тому за означенням Гейне і за неперервністю, $\exists \lim_{n \to \infty} f(x_{n_{m_p}}) = f(x_*)$

Але в той же час ми маємо, що функція не є обмеженою знизу, тобто $\exists \lim_{p \to \infty} f(x_{n_{m_p}}) = -\infty$. Суперечність!

Для першого пункту все аналогічно і теж є суперечність

Отже, f - все ж таки обмежена на [a,b]

Theorem 6.3.2 Теорема Вейєрштрасса 2

Задана функція $f \in C([a,b])$. Тоді:

$$- \exists x_* \in [a, b] : f(x_*) = \inf_{x \in [a, b]} f(x)$$

$$-\exists x^* \in [a,b] : f(x^*) = \sup_{x \in [a,b]} f(x)$$

Proof.

Доведемо перший випадок, другий є аналогічним

Нехай $\inf_{x \in [a,b]} f(x) = c$. За означенням:

1)
$$\forall x \in [a, b] : f(x) \ge c$$

2)
$$\forall \varepsilon > 0: \exists x_{\varepsilon} \in [a,b]: f(x_{\varepsilon}) < c + \varepsilon$$
 Зафіксуємо $\varepsilon = \frac{1}{n}$

Зафіксуємо
$$\varepsilon = \frac{1}{n}$$

Тоді
$$\exists x_n \in [a,b] : c \leq f(x_n) < c + \frac{1}{n}$$

Ми також маємо обмежену послідовність $\{x_n, n \geq 1\} \subset [a, b]$

Тому за Вейєрштрассом, для $\{x_{n_k}, k \geq 1\}$: $\exists \lim_{n \to \infty} x_{n_k} = x_*$ Отже, за Гейне і за неперервністю, $\exists \lim_{k \to \infty} f(x_{n_k}) = f(x_*)$

Але в той самий час, $\exists x_{n_k} \in [a, b] : c \le f(x_{n_k}) < c + \frac{1}{n_k}$

Коли $k \to \infty$, то за теоремою про поліцаїв, $\exists \lim_{k \to \infty} f(x_{n_k}) = c$ Таким чином отримали, що $c = f(x_*) = \inf_{x \in [a,b]} f(x) = \min_{x \in [a,b]} f(x)$

Theorem 6.3.3 Теорема Коші про нульове значення

Задана функція $f \in C([a,b])$, причому $f(a) \cdot f(b) < 0$ Тоді $\exists x_0 \in (a,b) : f(x_0) = 0$

Proof.

Розглянемо випадок, коли f(a) < 0, f(b) > 0Розглянемо множину $M = \{x \in [a, b], f(x) < 0\}$ Оскільки f - неперервна, то $\exists \lim_{x \to a} f(x) = f(a)$

$$\Rightarrow$$
 для $\varepsilon = -\frac{f(a)}{2}:\exists \delta: \forall x: |x-a| < \delta \Rightarrow |f(x)-f(a)| < -\frac{f(a)}{2}$ $\Rightarrow \frac{3f(a)}{2} < f(x) < \frac{f(a)}{2} \Rightarrow \forall x: |x-a| < \delta \Rightarrow f(x) < 0$ Отже, $M \neq \emptyset$

A оскільки $M \subset [a,b]$, то вона є обмеженою

З двох міркувань випливає, що $\exists \sup M \stackrel{\text{позн.}}{=} x_0$

А тепер пеервіримо, що дійсно $f(x_0) = 0$

Розглянемо послідовність $\{x_n, n \geq 1\} \subset M : \exists \lim_{n \to \infty} x_n = x_0$ Отже, за Гейне та неперервністю, $\exists \lim_{n \to \infty} f(x_n) = f(x_0) \leq 0$

3 іншого боку, ми маємо $\lim_{x \to b} f(x) = f(b)$

$$\Rightarrow$$
 для $\tilde{\varepsilon} = \frac{f(b)}{2}$: $\exists \tilde{\delta} : \forall x : |x - b| < \tilde{\delta} \Rightarrow |f(x) - f(b)| < \frac{f(b)}{2}$ $\Rightarrow \frac{f(b)}{2} < f(x) < \frac{3f(b)}{2} \Rightarrow \forall x : |x - b| < \tilde{\delta} \Rightarrow f(x) > 0$

Жодна з цих значень аргументів не потрапляє в нашу множину M

Оскільки ми маємо $\sup M = x_0$, то тоді $\forall n \geq 1 : x_0 + \frac{1}{n} \not\in M$

Тому розглянемо послідовність $\{\tilde{x_n} = x_0 + \frac{1}{n}, n \ge 1\}$

Tyr
$$\lim_{n\to\infty} \tilde{x_n} = x_0 \Rightarrow \exists \lim_{n\to\infty} f(\tilde{x_n}) = f(x_0) > 0$$

Остаточно, $f(x_0) = 0$

Corollary 6.3.4 Теорема Коші про проміжкове значення

Задана функція $f \in C([a,b])$

Тоді
$$\forall L \in (f(a), f(b)) : \exists x_L \in (a, b) : f(x_L) = L$$
 або $(f(b), f(a))$

Theorem 6.3.5 Про існування оберненої функції

Задана функція $f:(a,b)\to(c,d)$ - строго монотонна і неперервна

Відомо, що $\lim_{x \to a^+} f(x) = c$, $\lim_{x \to b^-} f(x) = d$

Тоді існує функція $g:(c,d) \to (a,b)$ - строго монотонна (як і f) і неперервна, яка ϵ оберненою до f

Proof.

Розглянемо випадок монотонно зростаючої функції f. Для спадної аналогічно Тоді c < d

За теоремою про проміжкове значення, $\forall y \in (c,d) : \exists x \in (a,b) : y = f(x)$ Покажемо, що $\forall y \in (c,d) : \exists ! x \in (a,b) : y = f(x)$

!Припустимо, не єдиний x існує, тобто $\exists x_1, x_2 : f(x_1) = y, f(x_2) = y$, але при цьому $x_1 \neq x_2$

Тоді якщо $x_1 < x_2$, то через монотонно зростаючу функцію $f(x_1) < f(x_2)$ Тоді якщо $x_1 > x_2$, то через монотонно зростаючу функцію $f(x_1) > f(x_2)$

Суперечність!

Таким чином, $\exists!x \in (a,b): y = f(x)$

Ба більше, $\forall x \in (a,b) : f(x) \in (c,d)$

Тоді створімо функцію $q:(c,d)\to(a,b)$, що є оберненою до f

1. Покажемо, що g(x) - монотонно зростає

 $\forall y_1, y_2 : y_1 > y_2$

 $x_1 = g(y_1), x_2 = g(y_2)$

 $y_1 \neq y_2 \iff x_1 \neq x_2$

Якщо $x_1 < x_2$, то тоді $y_1 = f(x_1) < f(x_2) = y_2$, що не є можливим

Отже, $x_1 > x_2 \implies g(y_1) > g(y_2)$

Це й є ознака строгого зростання

2. Покажемо, що $q \in C((c,d))$

!Припустимо, що це не так, тобто $\exists y_0 : q(y)$ - не є неперервною в т. y_0 Тобто ми заперечуємо факт, що $\lim g(y) = g(y_0)$, а отже, заперечуємо означення Гейне, яке має такий вигляд:

$$\forall \{y_n, n \ge 1\} \subset (c, d) : \lim_{n \to \infty} y_n = y_0 \Rightarrow \lim_{n \to \infty} g(y_n) = g(y_0)$$

Заперечення означення Гейне має такий вигляд:

$$\exists \{y_n, n \geq 1\} \subset (c,d): \lim_{n \to \infty} y_n = y_0 \Rightarrow \lim_{n \to \infty} g(y_n) \neq g(y_0)$$
 А тепер зафіксуємо дві послідовності, що збігаються до т. y_0

$$\exists \{y_n^1, n \geq 1\}, \{y_n^2, n \geq 1\} : \lim_{n \to \infty} y_n^1 = y_0, \lim_{n \to \infty} y_n^2 = y_0$$

Але водночас $\lim_{n \to \infty} g(y_n^1) \neq g(y_0), \lim_{n \to \infty} g(y_n^1) \neq g(y_0)$

А це означає, що $\lim_{n\to\infty}g(y_n^1)\neq\lim_{n\to\infty}g(y_n^2)$ Позначимо $\{x_n^1=g(y_n^1),n\geq 1\},\,\{x_n^2=g(y_n^2),n\geq 1\}$

Тоді $\lim_{n\to\infty} x_n^1 \neq \lim_{n\to\infty} x_n^2$ Позначимо $\lim_{n\to\infty} x_n^1 = u_1$, $\lim_{n\to\infty} x_n^2 = u_2$

Тоді з неперервності
$$f(x)$$
 отримаємо, що:
$$f(u_1) = \lim_{n \to \infty} f(x_n^1) = \lim_{n \to \infty} f(g(y_n^1)) = \lim_{n \to \infty} y_n^1 = y_0 = \lim_{n \to \infty} y_n^2 = \lim_{n \to \infty} f(g(y_n^2)) = \lim_{n \to \infty} f(x_n^2) = f(u_2)$$

Тобто $f(u_1)=f(u_2)$. Суперечність! Оскільки f - СТРОГО монотонно зростаюча функція

Отже, наше припущення - невірне. Тоді $g \in C((c,d))$

Фінальний висновок: $q \in C((c,d))$ та строго монотонно зростаюча на (c,d)

6.4 Рівномірна неперервність

Definition 6.4.1 Функція f називається рівномірно неперервною на **множині** A, якщо

$$\forall x \in A : \forall \varepsilon > 0 : \exists \delta(\varepsilon, x) > 0 : \forall x_1 \in A : |x - x_1| < \delta \Rightarrow |f(x) - f(x_1)| < \varepsilon$$

Або це означення можна записати інакше:

$$\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall x_1, x_2 \in A : |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Proposition 6.4.2 Якщо функція f - рівномірно неперервна на A, то тоді вона ϵ (просто) неперервною на A

 $Bunлива \varepsilon$ з означення

Проте в зворотньому напрямку працює не завжди, це покаже наступний приклад

Example 6.4.3 Розглянемо функцію $f(x) = \ln x$, де $x \in (0,1)$

Доведемо, що вона - неперервна, але не рівномірно

Маємо означення рівномірно неперервної функції:

$$\forall \varepsilon > 0: \exists \delta(\varepsilon) > 0: \forall x_1, x_2 \in A: |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$
 Заперечення має такий вигляд:

$$\exists \varepsilon^* > 0 : \forall \delta > 0 : \exists x_{1\delta}, x_{2\delta} \in A : |x_{1\delta} - x_{2\delta}| < \delta$$
, але $|f(x_{1\delta}) - f(x_{2\delta})| \ge \varepsilon^*$ Маємо ось що:

$$\left|\ln x_{1\delta} - \ln x_{2\delta}\right| = \left|\ln \frac{x_{1\delta}}{x_{2\delta}}\right| \ge 1 = \varepsilon^*$$
, якщо $\frac{x_{1\delta}}{x_{2\delta}} \ge e$

Ми вже зафіксували $\varepsilon^* = 1$, а тепер лишилось надати $x_{1\delta}, x_{2\delta}$

Маємо $x_{1\delta} \ge ex_{2\delta}$, а також $|x_{1\delta} - x_{2\delta}|_1 < \delta$

Оскільки δ в нас задовільне, то $\exists n: \frac{1}{n} < \delta$

Тоді надамо
$$x_{1\delta} = \frac{e}{3n}, x_{2\delta} = \frac{1}{3n}$$

$$x_{1\delta} \ge ex_{2\delta}$$
 буде виконана

$$x_{1\delta} \geq ex_{2\delta}$$
 буде виконана $|x_{1\delta}-x_{2\delta}|=rac{e}{3n}-rac{1}{3n}=rac{e-1}{3n}<rac{1}{n}<\delta$

$$\exists \varepsilon^* = 1 : \forall \delta : \exists n : \exists x_{1\delta} = \frac{e}{3n}, x_{2\delta} = \frac{1}{3n} : |x_{1\delta} - x_{2\delta}| < \frac{1}{n} < \delta$$
, але $|f(x_{1\delta}) - f(x_{2\delta})| \ge 1$

Що й доводить те, що функція НЕ є рівномірно неперервною Але в звортньому напрямку твердження буде працювати, якщо зробити додаткове обмеження. Це буде записано в наступній теоремі

Theorem 6.4.4 Теорема Кантора

Якщо $f \in C([a,b])$, то вона - рівномірно неперервна на [a,b]Важливо: неперервна на відрізку. Це й є обмеження для того, щоб працювала теорема в зворотньому напрямку

Proof.

!Припустимо, що вона не є рівномірно неперервною, тобто

$$\exists \varepsilon^* > 0 : \forall \delta : \exists x_{1\delta}, x_{2\delta} \in [a, b] : |x_{1\delta} - x_{2\delta}| < \delta \Rightarrow |f(x_{1\delta}) - f(x_{2\delta})| \ge \varepsilon^*$$

Розглянемо
$$\delta = \frac{1}{n}$$
. Тоді $x_{1\delta}, x_{2\delta} = x_{1n}, x_{2n}$

Створимо послідовність $\{x_{1n}, n \geq 1\}$ - обмежена, тому

для
$$\{x_{1n_k}, k \ge 1\}$$
 : $\exists \lim_{k \to \infty} x_{1n_k} = x_1^*$

Розглянемо послідовність $\{x_{2k}, k \geq 1\}$. Вона теж обмежена, тому

для
$$\{x_{2n_{km}}, m \geq 1\}$$
 : $\exists \lim_{m \to \infty} x_{2n_{km}} = x_2^*$ Також $\lim_{m \to \infty} x_{1n_{km}} = x_1^*$

Також
$$\lim_{m\to\infty} x_{1n_{k_m}} = x_1^*$$

Отримали, що
$$|x_{1n}-x_{2n}|<rac{1}{n}\Rightarrow |x_{1n_{k_m}}-x_{2n_{k_m}}|<rac{1}{n_{k_m}}$$

Звідси
$$\lim_{m\to\infty} x_{1n_{k_m}} = \lim_{m\to\infty} x_{2n_{k_m}} = x^*$$

Звідси
$$\lim_{m \to \infty} x_{1n_{k_m}} = \lim_{m \to \infty} x_{2n_{k_m}} = x^*$$
 Тоді за Гейне, $\exists \lim_{m \to \infty} f(x_{1n_{k_m}}) = \lim_{m \to \infty} f(x_{2n_{k_m}}) = f(x^*)$ АЛЕ $|f(x_{1n_{k_m}}) - f(x_{2n_{k_m}})| = 0 \ge \varepsilon^*$. Суперечність!

АЛЕ
$$|f(x_{1n_{k_m}}) - f(x_{2n_{k_m}})| = 0 \ge \varepsilon^*$$
. Суперечність!

Example 6.4.5 A тепер розглянемо функцію $f(x) = \ln x, x \in [1, 3]$

Можна одразу сказати за теоремою Кантора, що f(x) - рівномірно неперервна, оскільки вона неперервна на [1, 3]

7 Диференціювання

7.1Основні означення

Definition 7.1.1 Задана функція $f:A\to\mathbb{R}$ та $x_0\in A$ - гранична точка Функцію f називають **диференційованою** в т. x_0 , якщо

$$\exists L \in \mathbb{R} : f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0$$

Proposition 7.1.2 Задана функція f - диференційована в т. x_0 . Тоді вона в т. x_0 неперервна

Proof.

$$\lim_{x \to x_0} (f(x) - f(x_0)) = \lim_{x \to x_0} (L(x - x_0) + o(x - x_0)) = 0 \blacksquare$$

Proposition 7.1.3 Функція f - диференційована в т. $x_0 \iff$

$$\iff \exists \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = L = f'(x_0)$$

Definition 7.1.4 Тут число $f'(x_0)$ називають **похідною** функції в т. x_0 Proof.

f - диференційована в т. $x_0 \stackrel{\text{def.}}{\Longleftrightarrow}$

 $\iff \exists L:$

$$f(x) - f(x_0) = L(x - x_0) + o(x - x_0), x \to x_0 \iff$$

$$\iff \exists L : o(x - x_0) = f(x) - f(x_0) - L(x - x_0), x \to x_0 \iff$$

$$\iff \exists L : o(x - x_0) = f(x) - f(x_0) - L(x - x_0), x \to x_0 \iff \\ \iff \lim_{x \to x_0} \frac{f(x) - f(x_0) - L(x - x_0)}{x - x_0} = 0 \iff \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = L = 0$$

$$f'(x_0) \blacksquare$$

Proposition 7.1.5 Арифметичні властивості

Задані функції f,g - диференційовані в т. $x_0,\,f'(x_0),g'(x_0)$ - їхні похідні. Тоді:

1) $\forall c \in \mathbb{R} : cf$ - диференційована в т. x_0 , а її похідна

$$(cf)'(x_0) = cf'(x_0)$$

2) $f \pm g$ - диференційована в т. x_0 , а її похідна

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

3) $f \cdot g$ - диференційована в т. x_0 , а її похідна

$$(f \cdot g)(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

4) $\frac{f}{a}$ - диференційована в т. x_0 при $g(x_0) \neq 0$, а її похідна

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{(g(x_0))^2}$$

Proof.

Доведення буде проводитись за допомогою минуло доведеного твердження:

Доведення оуде проводитись за допомогою минуло доведеного твердженн 1)
$$(cf)'(x_0) = \lim_{x \to x_0} \frac{cf(x) - cf(x_0)}{x - x_0} = cf'(x_0) \Rightarrow cf$$
 - диференційована в т. x_0

2)
$$(f+g)'(x_0)=\lim_{x\to x_0}\frac{f(x)+g(x)-f(x_0)-g(x_0)}{x-x_0}=\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}+\lim_{x\to x_0}\frac{g(x)-g(x_0)}{x-x_0}=f'(x_0)+g'(x_0)\Rightarrow f+g$$
 - диференційована в т. x_0

3)
$$(f \cdot g)'(x_0) = \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} \frac{f(x)g(x) - f(x_0)g(x) + f(x_0)g(x) - f(x_0)g(x_0)}{x - x_0} =$$

$$= \lim_{x \to x_0} g(x) \frac{f(x) - f(x_0)}{x - x_0} + f(x_0) \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = f'(x_0)g(x_0) + f(x_0)g'(x_0) \Rightarrow$$
 fg - диференційована в т. x_0

$$4) \left(\frac{f}{g}\right)'(x_0) = \lim_{x \to x_0} \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x_0)}}{x - x_0} = \lim_{x \to x_0} \frac{f(x)g(x_0) - f(x_0)g(x)}{g(x)g(x_0)(x - x_0)} \stackrel{\text{так само як в 3})}{=}$$

$$= \frac{1}{(g(x_0))^2} (f'(x_0)g(x_0) - f(x_0)g'(x_0)) \Rightarrow \frac{f}{g} - \text{диференційована в т. } x_0 \blacksquare$$

Proposition 7.1.6 Похідна від композиції

Задані функції f, g та $h = g \circ f$. Відомо, що f - диференційована в т. x_0 , а g - диференційована в т. $y_0 = f(x_0)$

Тоді функція h - диференційована в т. x_0 , а її похідна

$$h'(x) = g'(f(x_0)) \cdot f'(x_0)$$

Proof.

$$h'(x) = \lim_{x \to x_0} \frac{h(x) - h(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x))}{x - x_0} = \lim_{x \to x_0} \frac{g(f($$

Розіб'ємо дві дроби на окремі границі. В першому дробі заміна: y = f(x)

Якщо $x \to x_0$, то $f(x) \to f(x_0)$ або $y \to y_0$

=
$$\lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} \lim_{x \to x_0} \frac{f(x) \to f(x_0)}{x - x_0} = g'(y_0)f'(x_0) = g'(f(x_0))f'(x_0)$$
 $\Rightarrow h$ - диференційована в т. x_0

Definition 7.1.7 Функція $f \in \mathbf{диференційованою}$ на множині A, якщо $\forall x_0 \in A : f$ - диференційована

Таблиця похідних

f(x)	f'(x)
$\overline{}$ $const$	0
$x^{\alpha}, \alpha \neq 0$	$\alpha \cdot x^{\alpha-1}$
e^x	e^x
a^x	$a^x \cdot \ln a$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\operatorname{tg} x$	$\frac{1}{\cos^2 x}$
$\operatorname{ctg} x$	$-\frac{1}{\sin^2 x}$
$ \ln x$	$\frac{1}{x}$
$\log_a x$	$\frac{1}{x \cdot \ln a}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$
$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
arctg x	$\frac{1}{1+x^2}$
arcctg x	$-\frac{1}{1+x^2}$
$\ln\left(x + \sqrt{1 + x^2}\right)$	$\frac{1}{\sqrt{1+x^2}}$

Для повного доведення таблиць похідних заведу ще одне твердження:

Proposition 7.1.8 Похідна від оберненої функції

Задані функції f,g - взаємно обернені. Відомо, що f - диференційована в т. x_0 . Тоді g - диференційована в т. $y_0=f(x_0),$ а її похідна $g'(y_0)=\frac{1}{f'(x_0)}$

$$g'(y_0) = \frac{1}{f'(x_0)}$$

Proof.
$$g'(y_0) = \lim_{y \to y_0} \frac{g(y) - g(y_0)}{y - y_0} =$$

Заміна: y=f(x). Звідси через взаємну оберненість g(y)=g(f(x))=x. Якщо $y\to y_0$, то $g(y)\to g(y_0)\Rightarrow x\to x_0$ $=\lim_{x\to x_0}\frac{x-x_0}{f(x)-f(x_0)}=\frac{1}{f'(x_0)}\Rightarrow g$ - диференційована в т. y_0

Тепер почергово доведемо кожну похідну:

1.
$$f(x) = const$$

$$f'(x_0) = \lim_{x \to x_0} \frac{c - c}{x - x_0} = \lim_{x \to x_0} 0 = 0$$

2.
$$f(x) = x^{\alpha}$$

$$f'(x_0) = \lim_{x \to x_0} \frac{x^{\alpha} - x_0^{\alpha}}{x - x_0} \stackrel{x - x_0 = t \to 0}{=} \lim_{t \to 0} \frac{(t + x_0)^{\alpha} - x_0^{\alpha}}{t} = x_0^{\alpha - 1} \lim_{t \to 0} \frac{\left(1 + \frac{t}{x_0}\right)^{\alpha} - 1}{\frac{t}{x_0}} = \alpha x_0^{\alpha - 1}$$

3.
$$f(x) = e^x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{e^x - e^{x_0}}{x - x_0} = \lim_{x \to x_0} \frac{e^{x_0}(e^{x - x_0} - 1)}{x - x_0} = e^{x_0}$$

4.
$$h(x) = a^x$$

Перепишемо інакше: $h(x) = e^{x \cdot \ln a}$

Побачимо, що $y=f(x)=x\cdot \ln a$, а в той час $g(y)=e^y \Rightarrow h(x)=g(f(x))$

Тоді за композицією,

$$h'(x_0) = g'(y_0)f'(x_0) = e^{y_0} \ln a = e^{x_0 \ln a} \ln a = a^{x_0} \ln a$$

$$5. f(x) = \sin x$$

$$f'(x_0) = \lim_{x \to x_0} \frac{\sin x - \sin x_0}{x - x_0} = \lim_{x \to x_0} \frac{2 \sin \frac{x - x_0}{2} \cos \frac{x - x_0}{2}}{x - x_0} = \lim_{x \to x_0} \frac{\sin \frac{x - x_0}{2}}{\frac{x - x_0}{2}} \cos \frac{x - x_0}{2} = \cos x_0$$

6.
$$h(x) = \cos x = \sin \left(\frac{\pi}{2} - x\right)$$

$$f(x) = \frac{\pi}{2} - x, \ g(y) = \sin y \Rightarrow h(x) = g(f(x))$$

Отже,
$$h'(x_0) = g'(y_0)f'(x_0) = \cos y_0(-1) = -\cos\left(\frac{\pi}{2} - x\right) = -\sin x$$

$$7. f(x) = \operatorname{tg} x$$

A60
$$f(x) = \frac{\sin x}{\cos x}$$

Тоді
$$f'(x) = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

8.
$$f(x) = \operatorname{ctg} x$$

За аналогічними міркуваннями до 7.

9.
$$g(y) = \ln y$$

Маємо функцію
$$f(x)=e^x$$
, тоді f,g - взаємно обернені Тоді оскільки $f'(x_0)=e^{x_0}$, то $g'(y_0)=\frac{1}{f'(x_0)}=\frac{1}{e^{x_0}}=\frac{1}{e^{\ln y_0}}=\frac{1}{y_0}$

10.
$$f(x) = \log_a x$$

Abo $f(x) = \frac{\ln x}{\ln a} \Rightarrow f'(x_0) = \frac{1}{\ln a} \frac{1}{x_0}$

11.
$$g(y) = \arcsin y$$

Маємо функцію $f(x) = \sin x$, тоді f, g - взаємно обернені

Тоді оскільки
$$f'(x_0) = \cos x_0$$
, то $g'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{\cos x_0} = \frac{1}{\cos(\arcsin y_0)} =$

$$= \frac{1}{\sqrt{1 - \sin^2(\arcsin y_0)}} = \frac{1}{\sqrt{1 - y_0^2}}$$

Важливо, що тут функція $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right] \to [-1,1]$

12.
$$f(x) = \arccos x$$

Або
$$f(x) = \frac{\pi}{2} - \arcsin x \Rightarrow f'(x_0) = -\frac{1}{\sqrt{1 - x_0^2}}$$

13.
$$g(y) = \operatorname{arctg} y$$

За аналогічними міркуваннями до 11., але тут вже $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R},$ $f(x) = \operatorname{tg} x$

14.
$$f(x) = \operatorname{arcctg} x$$

3a аналогічними міркуваннями до 12., але $\operatorname{arcctg} x = \frac{\pi}{2} - \operatorname{arctg} x$

15.
$$f(x) = \ln(x + \sqrt{1 + x^2})$$

$$f'(x_0) = \frac{1}{x_0 + \sqrt{1 + x_0^2}} \cdot (x_0 + \sqrt{1 + x^2})'_{x=x_0} = \frac{1 + \frac{1}{2\sqrt{1 + x_0^2}} \cdot (1 + x^2)'_{x=x_0}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{x_0}{2\sqrt{1 + x_0^2}}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1 + \frac{1}{2\sqrt{1 + x_0^2}} \cdot (1 + x^2)'_{x=x_0}}{x_0 + \sqrt{1 + x_0^2}} = \frac{1}{x_0 + \sqrt{1 + x_0^2}} = \frac{1}{\sqrt{1 + x_0^2}}$$

Тут треба більш детально про $f(x) = \ln(x + \sqrt{1 + x^2})$ сказати:

Розглянемо рівняння $\operatorname{sh} x = y$

Розв'яжемо її відносно x

$$\frac{e^x - e^{-x}}{2} = y \Rightarrow e^x - e^{-x} = 2y \Rightarrow e^{2x} - 2ye^x - 1 = 0$$

$$\Rightarrow e^x = y \pm \sqrt{1 + y^2} \Rightarrow e^x = y + \sqrt{1 + y^2}$$

$$\Rightarrow x = \ln\left(y + \sqrt{1 + y^2}\right)$$

Таким чином, можна стверджувати, що $\ln\left(y+\sqrt{1+y^2}\right)=\operatorname{arcsh}\,y$ Але найбільше застосування все ж таки виявляється згодом (коли підуть інтеграли)

7.2 Дотична та нормаль до графіку функції

Definition 7.2.1 Пряма $y = k(x - x_0) + f(x_0)$ називається **дотичною** до графіку функції f(x) в т. x_0 , якщо

$$f(x) - [k(x - x_0) + f(x_0)] = o(x - x_0), x \to x_0$$

Чоловічою мовою: "навколо т. x_0 функція f(x) та пряма y майже співпадають, а в самій точці x_0 вони приймають одне значення"

Proposition 7.2.2 Функція f має дотичну в т. $x_0 \iff f$ - диференційована в т. x_0 . При цьому $k=f'(x_0)$

Proof.

$$f(x) - [k(x - x_0) + f(x_0)] = o(x - x_0), x \to x_0 \iff$$
 $\iff f(x) - f(x_0) = k(x - x_0) + o(x - x_0), x \to x_0 \iff f$ -диференційована в т. $x_0, k = f'(x_0)$
Таким чином, $y - f(x_0) = f'(x_0)(x - x_0)$ - рівняння дотичної

Definition 7.2.3 Пряма, яка проходить через т. дотику $(x_0, f(x_0))$ та перпендикулярна до дотичної, називається **нормаллю до графіку функції** f(x) в т. x_0

Знайдемо безпосереднью рівняння нормалі. Маємо рівняння дотичної: $f'(x_0)(x-x_0)-(y-f(x_0))=0$

Нормальний вектор дотичної задається координатами $\vec{n} = (f'(x_0); -1)$ Тоді для рівняння нормалі даний вектор буде напрямленим. Нам також відомо, що нормаль проходить через т. $(x_0, f(x_0))$, а отже,

$$\frac{x - x_0}{f'(x_0)} = \frac{y - f(x_0)}{-1} \Rightarrow f'(x_0)(y - f(x_0)) = -(x - x_0)$$

Таким чином $y - f(x_0) = -\frac{1}{f'(x_0)}(x - x_0)$ - рівняння нормалі

Графік функції, до якої проведена дотична (червоний) та нормаль (синій)

Example 7.2.4 Знайти дотичну до графіку функції $f(x) = 2\cos x + 5$ в

т.
$$x_0 = \frac{\pi}{2}$$
 $y = f'(x_0)(x - x_0) + f(x_0)$ $f(x_0) = f(\frac{\pi}{2}) = 5$ $f'(x_0) = f'(\frac{\pi}{2}) = -2\sin x|_{x=\frac{\pi}{2}} = -2$ Отже, маємо: $y = -2(x - \frac{\pi}{2}) + 5 = -2x + (5 - \pi)$

7.3 Приблизне обчислення значень для диференційованих функцій

Задана функція f - диференційована в т. x_0 Тоді за твердженням, функція має дотичну $y = f'(x_0)(x - x_0) + f(x_0)$, для якого:

$$f(x) - y = o(x - x_0), x \to x_0$$

Тому коли x 'близьке' до x_0 , тобто $|x - x_0| << 1$, то маємо: $f(x) - y \approx 0$
 $\Rightarrow f(x) \approx f'(x_0)(x - x_0) + f(x_0)$

Example 7.3.1 Знайти значення $\sqrt{65}$

Перетворимо значення іншим чином:

$$\sqrt{65} = \sqrt{64 \cdot \frac{65}{64}} = 8\sqrt{\frac{65}{64}} = 8\sqrt{1 + \frac{1}{64}}$$

А тепер розглянемо функцію $f(x) = 8\sqrt{x}$

Тут
$$x = \frac{65}{64}$$
, в той час $x_0 = 1$

$$|x - x_0| = \left| \frac{65}{64} - 1 \right| = \frac{1}{64} << 1$$

Знайдемо значення функції та похідну в т. x_0 :

$$f(x_0) = f(1) = 8$$

$$f'(x_0) = f'(1) = 8\frac{1}{2\sqrt{x}}|_{x=1} = 4$$

Таким чином, отримаємо:

$$\sqrt{65} \approx 4\left(\frac{65}{64} - 1\right) + 8 = \frac{1}{16} + 8 = 8.0625$$

7.4 Диференціал функції

Задана функція f - диференційована в т. x_0 Почнемо з позначення: $dx \stackrel{\text{позн.}}{=} x - x_0, x \to x_0$

Remark 7.4.1 Якщо б $x \not\to x_0$, то це б було просто $\Delta x = x - x_0$. Ось і вся різниця між dx та Δx

Example 7.4.2 Диференціалом функції f(x) в т. x_0 називають приріст дотичної, коли $x \to x_0$

Позначення: $df(x_0)$

А тепер знайдемо, чому дорівнює це $df(x_0)$ Побудуємо дотичну в т. x_0

Синій - це $df(x_0)$: приблизна різниця між функціями в двох точках. А синій+зелений - це $\Delta f(x_0)$: точна різниця між функціями в двох точках

Нагадування: $k = f'(x_0) = \operatorname{tg} \alpha$

Тоді з малюнка можна, з трикутника, який я збільшив, можна виділити:

$$tg \alpha = f'(x_0) = \frac{df(x_0)}{dx}$$

$$\Rightarrow df(x_0) = f'(x_0) dx$$

Для більш простого випадку, якщо y = f(x), то тоді:

$$dy = f'(x) dx$$

7.5 Похідні по один бік

Definition 7.5.1 Односторонню похідну функції f(x) в т. x_0 називають:

- справа:
$$f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

- зліва:
$$f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

Theorem 7.5.2 Функція f - диференційована в т. $x_0 \iff$ вона містить похідну зліва та справа, а також $f'(x_0^+) = f'(x_0^-)$

Proof.

f - диференційована в т. $x_0 \iff \exists f'(x_0)$, тобто \exists границя $\iff \exists$ та сама границя зліва та справа, які рівні ⇔ вона містить похідну зліва та справа та $f'(x_0^+) = f'(x_0^-)$

Example 7.5.3 Знайти похідну функції f(x) = |x|

Якщо
$$x > 0$$
, то $f(x) = x \Rightarrow f'(x) = 1$

Якщо
$$x < 0$$
, то $f(x) = -x \Rightarrow f'(x) = -1$

Перевіримо існування похідної в т. $x_0 = 0$

Перевіримо існування похідної і
$$f'(0^+) = \lim_{x \to 0^+} \frac{|x| - |0|}{x - 0} = 1$$

$$f'(0^-) = \lim_{x \to 0^-} \frac{|x| - |0|}{x - 0} = -1$$

$$\Rightarrow f'(0^+) \neq f'(0^-), \text{ отже } \not\exists f'(0)$$

$$f'(0^-) = \lim_{x \to 0^-} \frac{|x| - |0|}{x - 0} = -1$$

$$\Rightarrow f'(0^+) \neq f'(0^-), \text{ отже } \not\exists f'(0)$$

Взагалі-то кажучи, похідну функції можна переписати інакше:

$$f'(x) = \frac{|x|}{x}$$

Інваріантність форми першого диференціалу 7.6

Задана функція y = f(x), коли в той же час x = x(t)

Мета: знайти значення dy - перший диференціал

З одного боку:

$$dy \stackrel{\text{def.}}{=} f'(x) dx = f'(x(t)) d(x(t)) = f'(x(t)) \cdot x'(t) dt$$

З іншого боку:

$$dy = df(x(t)) = (f(x(t)))' dt \stackrel{\text{композиція}}{=} f'(x(t)) \cdot x'(t) dt$$

Помічаємо, що ми отримали один й той самий результат, що й свідчить про інваріантність форми першого диференціалу

Похідна від параметрично заданої функції 7.7

Задана параметрично функція $y: \begin{cases} y = y(t) \\ x = x(t) \end{cases}$

Мета: знайти y_x' - похідну функції за x

З точки зору диференціалу:
$$\begin{cases} dx = x'_t dt \\ dy = y'_t dt \end{cases} \Rightarrow \frac{dy}{dx} = \frac{y'_t}{x'_t} \Rightarrow$$

$$y_x'(t) = \frac{y_t'(t)}{x_t'(t)}$$

Example 7.7.1 Знайти похідну від функції: $y:\begin{cases} x=\ln t \\ u=t^3 \end{cases}$

$$x'_t = \frac{1}{t}, y'_t = 3t^2$$

$$\Rightarrow y'_x = \frac{3t^2}{\frac{1}{t}} = 3t^3$$

Сюди ми ще повернемось

Похідна вищих порядків 7.8

Definition 7.8.1 Задана функція f, для якої $\exists f'(x)$ **Похідною** 2-го порядку від f(x) називають f''(x) = (f'(x))', якщо вона існує

Definition 7.8.2 Задана функція f, для якої $\exists f^{(n)}(x)$ **Похідною** (n+1)-го порядку від f(x) називають $f^{(n+1)}(x) = (f^{(n)}(x))'$, якщо вона існує

Example 7.8.3 Знайдемо похідну *n*-го порядку функції $f(x) = \cos x$ $g(x) = \cos x \Rightarrow g'(x) = -\sin x \Rightarrow g''(x) = -\cos x \Rightarrow g'''(x) = \sin x \Rightarrow g^{(4)}(x) = \cos x \Rightarrow \dots$

Продовжувати можна довго, але можемо помітити, що:

 $\cos x = \cos x$

$$-\sin x = \cos \left(x + \frac{1\pi}{2}\right) = (\cos x)'$$

$$-\cos x = \cos \left(x + \pi\right) = \cos \left(x + \frac{2\pi}{2}\right) = (\cos x)''$$

$$\sin x = \cos \left(x + \frac{3\pi}{2}\right) = (\cos x)'''$$

... Спробуемо ствердити, що працює формула: $(\cos x)^{(n)} = \cos\left(x + \frac{n\pi}{2}\right)$.

Покажемо, що для (n+1)-го члену це теж виконується

$$(\cos x)^{(n+1)} = ((\cos x)^{(n)})' = (\cos \left(x + \frac{n\pi}{2}\right))' = -\sin \left(x + \frac{n\pi}{2}\right) = \cos \left(x + \frac{n\pi}{2} + \frac{\pi}{2}\right) = \cos \left(x + \frac{(n+1)\pi}{2}\right)$$

Остаточно отримаємо, що

 $f(x) = \cos x$

$$\forall n \ge 1 : f^{(n)}(x) = \cos\left(x + \frac{n\pi}{2}\right)$$

А тепер уявімо собі іншу проблему: задані функції f, g, для яких існують n похідних

Спробуємо знайти $(fg)^{(n)}$

Будемо робити по черзі:

$$(fg)' = f'g + fg'$$

$$(fg)'' = ((fg)')' = (f'g+fg')' = (f'g)'+(fg')' = (f''g+f'g')+(f'g'+fg'') = f''g+2f'g'+fg''$$

$$(fg)''' = ((fg)'')' = (f''g + 2f'g' + fg'')' =$$

$$= f'''q + f''q + 2f''q' + 2f'q'' + f'q'' + fq''' = f'''q + 3f''q' + 3f'q'' + fq'''$$

Це можна продовжувати до нескінченності, але можна зробити деякі зауваження, що форма виразу схожа дуже на формулу бінома Ньютона, якщо порядок похідної замінити УЯВНО на степінь

Тому припустимо, що справедлива формула:

$$(fg)^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}$$

Зауважу, що $f^{(0)} = f$, тобто стандартна функція без похідних

Доведемо, що для n+1-го ця формула спрацьовує:

$$(fg)^{(n+1)} = ((fg)^{(n)})' = \left(\sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k)}\right)' =$$

$$= \sum_{k=0}^{n} C_n^k (f^{(k)} g^{(n-k+1)} + f^{(k+1)} g^{(n-k)}) = \sum_{k=0}^{n} C_n^k f^{(k)} g^{(n-k+1)} + \sum_{k=0}^{n} C_n^k f^{(k+1)} g^{(n-k)} =$$

$$= C_n^0 f^{(0)} g^{(n+1)} + \sum_{k=1}^{n} C_n^k f^{(k)} g^{(n-k+1)} + \sum_{k=0}^{n-1} C_n^k f^{(k+1)} g^{(n-k)} + C_n^n f^{(n+1)} g^{(0)} =$$

Замінимо лічильник в другій сумі: l = k + 1, а потім l = k, сума від зміни літери не зміниться

$$=C_n^0 f^{(0)} g^{(n+1)} + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} + \sum_{k=1}^n C_n^{k-1} f^{(k)} g^{(n-k+1)} + C_n^n f^{(n+1)} g^{(0)}$$

Об'єднаємо під один знак суми, винесеми щось за дужки, а в дужках $C_n^k + C_n^{k-1} = C_{n+1}^k$. Також $C_n^n = 1 = C_{n+1}^{n+1}$, $C_n^0 = 1 = C_{n+1}^0$

$$\boxed{ } \boxed{ } C_{n+1}^0 f^{(0)} g^{(n+1)} + \sum_{k=1}^n f^{(k)} g^{(n+1-k)} C_{n+1}^k + C_{n+1}^{n+1} f^{(n+1)} g^{(0)} = \sum_{k=0}^{n+1} C_{n+1}^k f^{(k)} g^{(n+1-k)}$$

Таким чином довели:

Theorem 7.8.4 Формула Лейбніца

$$\forall n \ge 1 : (f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x)g^{(n-k)}(x)$$

Вище доведення за МІ було аналогічним як доведення за МІ біном Ньютона

Example 7.8.5 Знайти похідну n-го порядку функції $y = x^2 \cos x$

$$f(x) = x^2 \Rightarrow f'(x) = 2x \Rightarrow f''(x) = 2 \Rightarrow f'''(x) = 0 \Rightarrow \dots$$

Коротше, $\forall n \ge 3 : f^{(n)}(x) = 0$

$$g(x) = \cos x \stackrel{\text{минулий приклад}}{\Rightarrow} \forall n \ge 1 : g^{(n)}(x) = \cos \left(x + \frac{n\pi}{2}\right)$$

Скористаємось ф-лою Лейбніца:

$$y^{(n)} = (f(x)g(x))^{(n)} = \sum_{k=0}^{n} C_n^k f^{(k)}(x) g^{(n-k)}(x) =$$

$$= C_n^0 f(x) g^{(n)}(x) + C_n^1 f'(x) g^{(n-1)}(x) + C_n^2 f''(x) g^{(n-2)}(x) +$$

$$+ C_n^3 f'''(x) g^{(n-3)}(x) + \dots + C_n^n f^{(n)}(x) g(x) =$$

$$= f(x) g^{(n)}(x) + n f'(x) g^{(n-1)}(x) + \frac{n(n-1)}{2} f''(x) g^{(n-2)}(x) + 0 =$$

$$= x^2 \cos\left(x + \frac{n\pi}{2}\right) + 2nx \cos\left(x + \frac{(n-1)\pi}{2}\right) + n(n-1)\cos\left(x + \frac{(n-2)\pi}{2}\right) =$$

Тут зауважу, що

$$\cos\left(x + \frac{(n-1)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \frac{\pi}{2}\right) = \sin\left(x + \frac{n\pi}{2}\right)$$

$$\cos\left(x + \frac{(n-2)\pi}{2}\right) = \cos\left(x + \frac{n\pi}{2} - \pi\right) = -\cos\left(x + \frac{n\pi}{2}\right)$$

$$= \left[x^2 - n(n-1)\right]\cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right)$$
Остаточно,
$$y^{(n)} = \left[x^2 - n(n-1)\right]\cos\left(x + \frac{n\pi}{2}\right) + 2nx\sin\left(x + \frac{n\pi}{2}\right)$$

Повертаємось до π . 7.7.

Нагадую, є функція
$$y: \begin{cases} y=y(t) \\ x=x(t) \end{cases}$$

Вже з'ясували, що $y'_x(t) = \frac{y'_t(t)}{x'_t(t)}$

Знайдемо другу похідну:
$$y_{x^2}''(t) = (y_x'(t))_x' = \frac{(y_x'(t))_t'}{x_t'(t)} = \frac{y_{t^2}''(t)x_t'(t) - x_{t^2}''(t)y_t'(t)}{(x_t'(t))^3}$$

Теоретично виглядає надто складно, тому краще повернемось до прикладу з того пункту

Maemo
$$y: \begin{cases} x = \ln t \\ y = t^3 \end{cases}$$

$$x'_t = \frac{1}{t}, y'_t = 3t^2$$
$$\Rightarrow y'_x = 3t^3$$

Тоді отримаємо:

$$y_{x^2}'' = \frac{(y_x')_t'}{x_t'} = \frac{9t^2}{t^3} = \frac{9}{t}$$

Основні теореми 7.9

Lemma 7.9.1 Лема Ферма

Задана функція $f:(a,b)\to\mathbb{R}$ - диференційована в т. $x_0\in(a,b)$. Більш того, в т. x_0 функція f приймає найбільше (або найменше) значення Тоді $f'(x_0) = 0$

Proof.

Розглянемо випадок тах. Для тіп аналогічно В т. x_0 функція f приймає найбільше значення, тобто $\forall x \in (a,b): f(x_0) > f(x)$

Оскільки
$$\exists f'(x_0)$$
, то тоді $\exists f'(x_0^+), f'(x_0^-)$ $f'(x_0^+) \stackrel{\text{def.}}{=} \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\geq 0} \right) \leq 0$ $f'(x_0^-) \stackrel{\text{def.}}{=} \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\leq 0} \right) \geq 0$ Таким чином, $0 \leq f'(x_0^-) = f'(x_0^+) \leq 0 \Rightarrow f'(x_0^-) = f'(x_0^+) = 0$ $\Rightarrow f'(x_0) = 0$

Theorem 7.9.2 Теорема Ролля

Задана функція $f:[a,b]\to\mathbb{R},\ f\in C([a,b])$ та диференційована на (a,b)Більш того, f(a) = f(b)

Тоді $\exists \xi \in (a,b) : f'(\xi) = 0$

Proof.

Оскільки $f \in C([a,b])$, то за Th. Вейєрштрасса,

 $\exists x_1 \in [a, b] : f(x_1) = \min_{x \in [a, b]} f(x)$ $\exists x_2 \in [a, b] : f(x_2) = \max_{x \in [a, b]} f(x)$

Розглянемо два випадки:

I. $f(x) = const \Rightarrow f'(x) = 0 \forall x \in (a, b), \xi = x$

II. $f(x) \neq const \Rightarrow$ або є x_1 , або є x_2 , або навіть обидва

Якщо беремо x_2 , то функція f приймає найбільше значення, тому за лемою Ролля, $f'(x_2) = 0 \Rightarrow \xi = x_2$

Для x_1 - аналогічно

Theorem 7.9.3 Теорема Лагранжа

Задана функція $f:[a,b] \to \mathbb{R},\, f \in C([a,b])$ та диференційована на (a,b)

Тоді
$$\exists c \in (a,b) : f'(c) = \frac{f(b) - f(a)}{b-a}$$

Proof.

Розглянемо функцію $h(x) = (f(x) - f(a)) - \frac{f(b) - f(a)}{b - a}(x - a)$

За сумою та добутками, маємо, що $h \in C([a,b])$ і теж диференційована на (a,b)

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$$

Зауважимо, що
$$h(a) = 0$$
 та $h(b) = 0 \Rightarrow h(a) = h(b)$ Тому за теоремою Ролля, $\exists \xi = c \in (a,b) : f'(c) = 0$ $\Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a}$

Для f в т. c проведемо дотичну. І в цій точці відрізок, що сполучає початкову та кінцеву точку, буде паралельна дотичній

Corollary 7.9.4 Наслідки з теореми Лагранжа

- 1. Якщо $\forall x \in (a, b) : f'(x) = 0$, то f(x) = const
- 2. Якщо $\forall x \in (a,b) : f'(x) = k$, то f(x) = kx + q
- 3. Нехай g така ж за властивостями як і f

Якщо $\forall x \in (a, b) : f'(x) = g'(x)$, то f(x) = g(x) + C

4. Якщо $\exists M \in \mathbb{R}: \forall x \in (a,b): |f'(x)| \leq M,$ то вона задовільняє умові Ліпшиця

Remark 7.9.5 Задовільняє **умові Ліпшиця** означає для функції f ось що:

$$\exists L \in \mathbb{R} : \forall x_1, x_2 \in [a, b] : |f(x_1) - f(x_2)| \le L|x_1 - x_2|$$

Proof.

1.
$$\exists c: f(b) - f(a) = f'(c)(b-a) \Rightarrow f(b) = f(a)$$

Але взагалі-то кажучи $\exists c \in (x_1, x_2) \subset (a, b): f(x_1) = f(x_2)$
Коротше, $f(x) = const$

2. Розглянемо функцію g(x) = f(x) - kx, теж неперервна і диференційована на (a,b)

Тоді
$$g'(x) = f'(x) - k \Rightarrow g'(x) = 0 \stackrel{\text{насл 1.}}{\Rightarrow} g(x) = q$$

Отже, $g(x) = kx + q$

3. Розглянемо функцію h(x) = f(x) - g(x), теж неперервна і диференційована

на
$$(a,b)$$

Тоді
$$h'(x) = f'(x) - g'(x) = 0 \stackrel{\text{насл 1.}}{\Rightarrow} h(x) = C \Rightarrow f(x) = g(x) + C$$

4.
$$\exists c \in (x_1, x_2) \subset (a, b) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$
 $\Rightarrow |f(x_2) - f(x_1)| = |f'(c)||x_2 - x_1| \leq M|x_2 - x_1|$. Тоді встановлюючи $L = M$, маємо умову Ліпшиця

Theorem 7.9.6 Теорема Коші

Задані функції $f:[a,b]\to\mathbb{R},\,f\in C([a,b])$ та диференційовані на (a,b). При цьому $g(x) \not\equiv 0$

Тоді
$$\exists c \in (a,b) : \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

Proof.

За теоремою Лагранжа, отримаємо, що $\exists c \in (a,b)$:

$$f'(c) = \frac{f(b) - f(a)}{b - a}, g'(c) = \frac{g(b) - g(a)}{b - a}$$

$$\Rightarrow \frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)} \blacksquare$$

7.10Дослідження функції на монотонність

Означення монотонної функції можна побачити в розділу про границі функції. Тому приступимо безпосередньо до теорем

Theorem 7.10.1 Задана функція $f:[a,b] \to \mathbb{R}, f \in C([a,b])$ та диференційована на [a,b]

Функція
$$f$$
 монотонно $\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix} \iff \forall x \in [a,b] : \begin{bmatrix} f'(x) \geq 0 \\ f'(x) \leq 0 \end{bmatrix}$

Proof.

Розглянемо випадок зростаючої функції. Для спадної аналогічно

 \Rightarrow Дано: f - зростає

Оскільки диференційована
$$\forall x_0 \in [a, b]$$
, то $\exists f'(x_0^+) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\geq 0}{\geq 0}\right) \geq 0$

$$\exists f'(x_0^-) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \left(\frac{\leq 0}{\leq 0}\right) \geq 0$$

Також $f'(x_0^+) = f'(x_0^-)$, а отже, $\forall x_0 \in [a, b] : f(x_0) \ge 0$

$$\sqsubseteq$$
Дано: $\forall x \in [a,b] : f'(x) \ge 0$

Зафіксуємо такі x_1, x_2 , що $x_2 \ge x_1$

Знаємо, що $\forall x \in (x_1, x_2) \subset [a, b] : f$ - неперервна та диференційована. Тоді за Лагранжом,

 $\exists c \in (x_1, x_2) : f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \ge 0$ Остаточно, $f(x_2) \ge f(x_1)$, тобто монотонно зростає

Theorem 7.10.2 Критерій строгої монотонності

Задана функція $f:[a,b] \to \mathbb{R}, f \in C([a,b])$ та диференційована на (a,b)

Функція f строго монотонно $\begin{bmatrix} \text{зростає} \\ \text{спадає} \end{bmatrix}$

1. $\forall x \in (a,b) : \begin{bmatrix} f'(x) \ge 0 \\ f'(x) \le 0 \end{bmatrix}$ 2. $\not\exists (\alpha,\beta) \subset [a,b] : \forall x \in (\alpha,\beta) : f'(x) = 0$

Proof.

Розглянемо випадок зростаючої функції. Для спадної аналогічно

 \Rightarrow Дано: f - монотонно строго зростає

Тоді за попередньою теоремою, $\forall x \in (a,b) : f'(x) \geq 0$

A тепер припустимо, що $\exists (\alpha, \beta) \subset [a, b] : \forall x \in (\alpha, \beta) : f'(x) = 0$

Тоді за наслідком Лагранжа, f(x) = const на інтервалі (α, β) , що суперечить умові строгої монотонності

Таким чином, отримали 2 пункти з теореми

(₹ Дано:

1. $\forall x \in (a, b) : f'(x) \ge 0$

2. $\not\exists (\alpha, \beta) \subset [a, b] : \forall x \in (\alpha, \beta) : f'(x) = 0$

3 першого пункту одразу випливає за попередньою теоремою, що f монотонно зростає

А тепер припустимо, що наша функція дійсно зростає нестрого, тобто

 $\exists x_1^*, x_2^* \in (a, b) : x_1^* < x_2^* \Rightarrow f(x_1^*) = f(x_2^*)$

Тоді $\forall x \in (x_1^*, x_2^*) : f(x_1^*) \le f(x) \le f(x_2^*)$

Звідси f(x) = const на інтервалі $(x_1^*, x_2^*) \subset [a, b]$, а отже, f'(x) = 0 суперечність.

Таким чином, функція f монотонно строго зростає

Example 7.10.3 Розглянемо функцію $f(x) = x^3$

Похідна $f'(x) = 3x^2 \ge 0$. Тобто дана функція монотонно зростає на всьому інтервалі

Екстремуми функції 7.11

Локальні 7.11.1

Definition 7.11.1 Задана функція $f: A \to \mathbb{R}, x_0 \in A$

Точку x_0 називають точкою **локального**

максимуму, якщо $\exists \varepsilon > 0 : \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap A : f(x_0) > f(x)$ мінімуму, якщо $\exists \varepsilon > 0 : \forall x \in (x_0 - \varepsilon, x_0 + \varepsilon) \cap A : f(x_0) \leq f(x)$

Definition 7.11.2 Якщо в т. x_0 маємо $f'(x_0) = 0$ або $\not \exists f'(x_0)$, то таку точку називають **критичною**

Theorem 7.11.3 Необхідна умова для екстремума

Задана функція $f:A\to\mathbb{R}$ та т. $x_0\in A$ - локальний екстремум Тоді ця точка є критичною

Proof.

Розглянемо випадок точки максимуму. Для мінімума аналогічно x_0 - локальна точка максимуму - тобто, приймає в околі т. x_0 функція f приймає найбільшого значення. Тоді за лемою Ферма, $f'(x_0) = 0$ При строгого локального максимуму $\not \exists f'(x_0) \blacksquare$

Example 7.11.4 Головні приклади, чому ця умова не є достатньою, - функції $f(x) = x^3, \, g(x) = \frac{1}{x}$

 $f'(x)=3x^2 \overset{f'(x)=0}{\Rightarrow} x=0$, але вона не є естремумом, оскільки минулого разу дізнались, що така функція зростає всюди

$$f'(x) = -\frac{1}{x^2}$$
, тобто $\not\exists f'(0)$, але не екстремум

Theorem 7.11.5 Достатня умова для екстремума

Задана функція $f:A\to\mathbb{R}$ та т. $x_0\in A$ - критична точка Відомо, що f - диференційований на $(x_0-\varepsilon,x_0)\cup(x_0,x_0+\varepsilon)$

Також
$$\forall x \in \begin{cases} (x_0 - \varepsilon, x_0) : f'(x_0) < 0 \\ (x_0, x_0 + \varepsilon) : f'(x_0) > 0 \end{cases}$$
 (або нерівності навпаки)

Тоді x_0 - точка локального мінімуму (максимуму)

Proof.

Розглянемо випадок, коли
$$\forall x \in \begin{cases} (x_0 - \varepsilon, x_0) : f'(x_0) < 0 \\ (x_0, x_0 + \varepsilon) : f'(x_0) > 0 \end{cases}$$
. Для нерівностей

навпаки все аналогічно

Тоді звідси f - спадає на $(x_0 - \varepsilon, x_0)$ і зростає на $(x_0, x_0 + \varepsilon)$ Або математично,

$$\forall x \in (x_0 - \varepsilon, x_0) : f(x_0) < f(x)$$
 та $\forall x \in (x_0, x_0 + \varepsilon) : f(x_0) < f(x)$ За означенням, це й є точка локального мінімуму

Висновок: щоб знайти локальний екстремум, треба спочатку знайти всі критичні точки, а потім дослідити, які значення вона приймає навколо

Example 7.11.6 Задана функція $f(x) = x^3 - 3x^2 - 9x + 2$. Знайдемо всі локальні екстремуми

Спочатку шукаємо критичні точки:

$$f'(x) = 3x^2 - 6x - 9 = 0$$

$$f'(x) = 0 \Rightarrow x^2 - 2x - 3 = 0 \Rightarrow x = -1, x = 2$$

Перевіримо екстремуми на інтервалі

Стрілки вказують на зростання або на спадання функції на даному інтервалі. Тоді можемо зробити висновок, що x=-1 - локальний максимум, а x=2 - локальний мінімум

7.11.2 Глобальні

Theorem 7.11.7 Задана функція
$$f:[a,b] \to \mathbb{R}, f \in C([a,b])$$
 x_1,x_2,\ldots,x_n - критичні точки на (a,b) . Тоді $\max_{x\in[a,b]}f(x)=\max\{f(a),f(x_1),f(x_2),\ldots,f(x_n),f(b)\}$ $\min_{x\in[a,b]}f(x)=\min\{f(a),f(x_1),f(x_2),\ldots,f(x_n),f(b)\}$

Proof.

Нехай
$$\max_{x \in [a,b]} f(x) = f(x^*)$$
, де $x^* \in (a,b)$

Оберемо
$$\varepsilon > 0 : \varepsilon = \min\{b - x^*, x^* - a\}$$

Тоді маємо, що
$$\forall x \in (x^* - \varepsilon, x^* + \varepsilon) \subset (a, b) : f(x^*) \geq f(x)$$

Тоді x^* - локальний екстремум $\Rightarrow x^*$ - критична точка, тобто $f'(x^*) = 0$, або $\not \exists f'(x^*)$

Тому $x^* \in \{x_1, x_2, \dots, x_n\}$, тобто це є один з наборів критичних точок. Таким чином, $\max_{x \in [a,b]} f(x) = \max\{f(a), f(x_1), f(x_2), \dots, f(x_n), f(b)\}$

Випадок, коли $\max_{x \in [a,b]} f(x) = f(a)$ абоf(b) автоматично доводить теорему

Випадок min аналогічний

Theorem 7.11.8 \in три випадки для функції. x_1, x_2, \ldots, x_n - критичні точки на області визначення для кожного пункту. Розглянемо кожний випадок окремо:

1. Задана фукнція
$$f:(a,+\infty)\to\mathbb{R}, f\in C((a,+\infty))$$
. Тоді
$$\sup_{x\in(a,+\infty)}f(x)=\max\{f(a^+),f(x_1),f(x_2),\ldots,f(x_n),f(+\infty)\}$$

$$\inf_{x\in(a,+\infty)}f(x)=\min\{f(a^+),f(x_1),f(x_2),\ldots,f(x_n),f(+\infty)\}$$

2. Задана фукнція
$$f:(-\infty,b)\to\mathbb{R},\,f\in C((-\infty,b))$$
. Тоді
$$\sup_{x\in(-\infty,b)}f(x)=\max\{f(-\infty),f(x_1),f(x_2),\ldots,f(x_n),f(b^-)\}$$

$$\inf_{x\in(-\infty,b)}f(x)=\min\{f(-\infty),f(x_1),f(x_2),\ldots,f(x_n),f(b^-)\}$$

3. Задана фукнція
$$f: \mathbb{R} \to \mathbb{R}, f \in C(\mathbb{R})$$
. Тоді $\sup_{x \in \mathbb{R}} f(x) = \max\{f(-\infty), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$ $\inf_{x \in \mathbb{R}} f(x) = \min\{f(-\infty), f(x_1), f(x_2), \dots, f(x_n), f(+\infty)\}$ Всі вони доводяться аналогічно до минулої теореми

Example 7.11.9 Задана функція $f(x) = |x^2 - 7x + 10|$ на інтервалі

[-1, 4]. Знайдемо глобальні екстремуми

$$f(x) = |(x-2)(x-5)| \Rightarrow f(x) = \begin{cases} x^2 - 7x + 10, & x \in [-1, 2] \\ -x^2 + 7x - 10, & x \in [2, 4] \end{cases}$$
$$f'(x) = \begin{cases} 2x - 7, & x \in [-1, 2] \\ -2x + 7, & x \in [2, 4] \end{cases}$$

$$f'(x) = 0 \Rightarrow \begin{bmatrix} x = 3.5 \\ x = -3.5 \end{bmatrix}$$

Але точка x = -3.5 не в інтервалі, тому залишається x = 3.5

Якщо перевірити на інтервалі, то ця точка буде локальним максимумом Отже, ми маємо безліч кандидатів:

$$x = -1, x = 2, x = 3.5, x = 4$$

 $f(-1) = 18, f(2) = 0, f(3.5) = 2.25, f(4) = 2$
Остаточно маємо:
 $\max_{x \in [-1,4]} f(x) = 18, \min_{x \in [-1,4]} f(x) = 0$

7.12 Формула Тейлора та правила Лопіталя

Theorem 7.12.1 Теорема Тейлора (варіант 1)

Задана функція $f \in C^{(n+1)}((a,b))$ та т. $x_0 \in (a,b)$

Тоді $\exists \theta(x) \in (x, x_0)$:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\theta(x))}{(n+1)!} (x - x_0)^{n+1}$$
остатковий член у формі Лагранжа

Proof.

Розглянемо наступну функцію:

$$g(t)=f(x)-\left(\sum_{k=0}^n rac{f^{(k)}(t)}{k!}(x-t)^k+rac{L}{(n+1)!}(x-t)^{(n+1)}
ight)$$
 За властивостями, $g\in C((a,b))$

Знайдемо її похідну:

$$g'(t) = 0 - \left(f(t) + \frac{f'(t)}{1!}(x-t) + \dots + \frac{f^{(n)}}{n!}(x-t)^n + \frac{L}{(n+1)!}(x-t)^{(n+1)}\right)' =$$

$$= -f'(t) - \frac{f''(t)}{1!}(x-t) - \frac{f'(t)}{1!}(-1) - \frac{f'''(t)}{2!}(x-t)^2 - \frac{f''(t)}{2!}(-2)(x-t) - \dots - \frac{f^{(n+1)}(t)}{n!}(x-t)^n - \frac{f^{(n)}(t)}{n!}(-n)(x-t)^{n-1} - \frac{L}{(n+1)!}(-1)(n-1)(x-t)^n = \frac{L}{(n+1)!}(-1)(n-1)(x-t)^n - \frac{L}{(n+1)!}(-1)(n-1)(x-t)^n = \frac{L}{(n+1)!}(-1)(n-1)(x-t)^n = \frac{L}{(n+1)!}(-1)(n-1)(x-t)^n = \frac{L}{(n+1)!}(-1)(x-t)^n = \frac{L}{$$

Якщо обережно придивитись, то із нашої суми залишуться лише два доданки, а решта скоротяться

$$= -\frac{f^{(n+1)}(t)}{n!}(x-t)^n + \frac{L}{n!}(x-t)^n$$

Зрозуміло, що якщо t=x, то g(x)=0

Ми уявно хочемо таке L, щоб $g(x_0) = 0$

Тоді уявно спрацьовує теорема Ролля на $[x_0,x]$, тобто $\exists c \in (x_0,x): g'(c)=0$

Тоді:

$$g'(c) = \frac{L}{n!}(x-c)^n - \frac{f^{(n+1)}(c)}{n!}(x-c)^n = 0$$

$$\Rightarrow L = f^{(n+1)}(c)$$

Підставимо отримане значення L в наше рівняння $g(x_0) = 0$:

$$g(x_0) = f(x) - \left(\sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{(n+1)}\right) = 0$$

Перепозначимо $c = \theta(x) \in (x_0, x)$ та отримаємо нашу бажану формулу:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\theta(x))}{(n+1)!} (x - x_0)^{n+1} \blacksquare$$

Theorem 7.12.2 Теорема Тейлора (варіант 2)

Задана функція $f \in C^{(n+1)}((a,b))$ та т. $x_0 \in (a,b)$

Тоді

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \underbrace{o((x - x_0)^n)}_{\text{остатковий член у формі Пеано}}, x \to x_0$$

Proof.

Вже доведена попередня теорема. Тому достатньо довести, що:

$$\frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0)^{(n+1)} = o((x-x_0)^n), x \to x_0$$

Це теж саме, що:

$$\lim_{x \to x_0} \frac{\frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0)^{(n+1)}}{(x-x_0)^n} = \lim_{x \to x_0} \frac{f^{(n+1)}(\theta(x))}{(n+1)!}(x-x_0) =$$

У нас $f \in C^{(n+1)}((a.b))$, тому є обмеженою. $x - x_0 \to 0$ - н.м.. Отже, н.м*обм. = н.м

$$=0$$

Основні розклади в Тейлора

Всі вони розглядатимуться в т. $x_0 = 0$, всюди $x \to x_0$

I.
$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n})$$

II. $\sin x = \frac{x}{1!} - \frac{x^{3}}{3!} + \dots + \frac{(-1)^{n}}{(2n+1)!} x^{(2n+1)} + o(x^{2n+2})$
III. $\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} + \dots + \frac{(-1)^{n}}{(2n)!} x^{2n} + o(x^{2n+1})$
IV. $(1+x)^{\alpha} = \frac{\alpha x}{1!} + \frac{\alpha(\alpha-1)x^{2}}{2!} + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-(n-1))x^{n}}{n!} + o(x^{n})$

Example 7.12.3 Обчислити границю функції $\lim_{x\to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x(1 - \cos x)}$

Маємо, що:

$$\lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x(1 - \cos x)} = \lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{2x \sin^2 \frac{x}{2}} = 2\lim_{x \to 0} \frac{e^x - 1 - \sin x - \frac{x^2}{2}}{x^3} = 2\lim_{x \to$$

Розкладемо e^x та $\sin x$ до степеня знаменника:

$$=2\lim_{x\to 0}\frac{1+x+\frac{x^2}{2}+\frac{x^3}{6}+o(x^3)-1-x+\frac{x^3}{6}+o(x^4)-\frac{x^2}{2}}{x^3}=\\=2\lim_{x\to 0}\frac{\frac{x^3}{6}+o(x^3)+\frac{x^3}{6}+o(x^4)}{x^3}=2\lim_{x\to 0}\left(\frac{1}{3}+\frac{o(x^3)}{x^3}+\frac{o(x^4)}{x^3}\right)=\\2\lim_{x\to 0}\left(\frac{1}{3}+\frac{x^4}{x^3}+\frac{x^5}{x^3}\right)=\frac{2}{3}$$

Theorem 7.12.4 I правило Лопіталя

Задані функції $f,g \in C([a,b])$ - диференційовані на (a,b) та $\forall x \in (a,b)$: $g'(x) \neq 0$. Також відомо, що:

$$g(x) \neq 0$$
. Також відомо, що:
1. $\exists \lim_{x \to b^{-}} f(x) = 0, \ \exists \lim_{x \to b^{-}} g(x) = 0$

2.
$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$$

Tym можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне

Proof.
$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f(x) - f(b)}{g(x) - g(b)} =$$

За теоремою Коші,
$$\exists c \in (x,b) : \frac{f(x) - f(b)}{g(x) - g(b)} = \frac{f'(c)}{g'(c)}$$

Тут $x < c < b$. Коли $x \to b^-$, $b \to b^-$. Отже, $c \to b^-$
$$= \lim_{c \to b^-} \frac{f'(c)}{g'(c)} = L \blacksquare$$

Theorem 7.12.5 II правило Лопіталя

Задані функції $f,g\in C([a,b])$ - диференційовані на (a,b) та $\forall x\in (a,b):$ $g'(x)\neq 0.$ Також відомо, що:

1.
$$\exists \lim_{x \to b^{-}} g(x) = \infty$$

$$2. \exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L$$

Тоді
$$\exists \lim_{x \to b^-} \frac{f(x)}{g(x)} = L$$

Tym можна замість $x \to b^-$ записати $x \to a^+$, доведення аналогічне

Proof.

$$\exists \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = L \iff \forall \varepsilon > 0 : \exists \delta : \forall x \in (b - \delta, b) : x \neq b : 0 < b - x < \delta$$

$$\Rightarrow \left| \frac{f'(x)}{g'(x)} - L \right| < \varepsilon \Rightarrow L - \varepsilon < \frac{f'(x)}{g'(x)} < L + \varepsilon$$

Тоді за Коші,
$$\forall x, x_0 \in (b - \delta, b) : \exists c \in (x_0, x) : \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \frac{f'(c)}{g'(c)}$$

Для
$$c \in (x_0, x) \Rightarrow c \in (b - \delta, b) \Rightarrow L - \varepsilon < \frac{f'(c)}{g'(c)} < L + \varepsilon$$

$$\Rightarrow L - \varepsilon < \frac{f(x) - f(x_0)}{g(x) - g(x_0)} < L + \varepsilon \Rightarrow L - \varepsilon < \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)}}{1 - \frac{g(x_0)}{g(x)}} < L + \varepsilon$$

Фіксуємо $x_0 \in (b - \delta, b)$

Нам ще відомо з дано, що:

$$\lim_{x\to b^-} g(x) = \infty \Rightarrow \lim_{x\to b^-} \frac{f(x_0)}{g(x)} = 0 \text{ Ta } \lim_{x\to b^-} \frac{g(x_0)}{g(x)} = 0 \iff$$

Для нашого
$$\varepsilon: \exists \delta_1: \forall x \in (b-\delta_1,b) \Rightarrow \left|\frac{f(x_0)}{g(x)}\right| < \varepsilon, \left|\frac{g(x_0)}{g(x)}\right| < \varepsilon$$

Розглянемо $\tilde{\delta} = \min\{\delta, \delta_1\}$

$$x_0 \in (b - \tilde{\delta}, b)$$

$$\Rightarrow -\varepsilon < \frac{f(x_0)}{g(x)} < \varepsilon, -\varepsilon < \frac{g(x_0)}{g(x)} < \varepsilon$$

Скоро це сюди підставимо:

$$L - \varepsilon < \frac{\frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)}}{1 - \frac{g(x_0)}{g(x)}} < L + \varepsilon \iff$$

$$\iff (L - \varepsilon) \left(1 - \frac{g(x_0)}{g(x)} \right) < \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)} < (L + \varepsilon) \left(1 - \frac{g(x_0)}{g(x)} \right) \iff$$

$$\iff (L - \varepsilon)(1 - \varepsilon) < \frac{f(x)}{g(x)} - \frac{f(x_0)}{g(x)} < (L + \varepsilon)(1 + \varepsilon) \iff$$

$$\iff (L - \varepsilon)(1 - \varepsilon) + \frac{f(x_0)}{g(x)} < \frac{f(x)}{g(x)} < (L + \varepsilon)(1 + \varepsilon) + \frac{f(x_0)}{g(x)} \iff$$

$$\iff L - 2\varepsilon - L\varepsilon + \varepsilon^2 < + \frac{f(x)}{g(x)} < L + 2\varepsilon + L\varepsilon + \varepsilon^2 \iff$$

$$\iff -L\varepsilon - 3\varepsilon < -L\varepsilon - 2\varepsilon - \varepsilon^2 < -L\varepsilon - 2\varepsilon + \varepsilon^2 < + \frac{f(x)}{g(x)} - L <$$

$$L\varepsilon + 2\varepsilon + \varepsilon^2 < L\varepsilon + 3\varepsilon \Rightarrow \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon(L + 3)$$
Остаточно:

$$\forall \varepsilon > 0 : \exists \tilde{\delta} : \forall x \in (b - \tilde{\delta}, b) : \left| \frac{f(x)}{g(x)} - L \right| < \varepsilon(L + 3) \Rightarrow \exists \lim_{x \to b^{-}} \frac{f(x)}{g(x)} = L \blacksquare$$

Example 7.12.6 Обчислити границю $\lim_{x \to a} x^x$

$$\lim_{x \to 0^{+}} x^{x} = \lim_{x \to 0^{+}} e^{x \ln x} = e^{\lim_{x \to x_{0}} \frac{\ln x}{\frac{1}{x}}}$$
Перевіримо по границю за Лоцітал

Перевіримо цю границю за Лопіталем:

$$\lim_{x \to 0^+} \frac{(\ln x)'}{\left(\frac{1}{x}\right)'} = \lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = 0$$

Отже, можемо продовжувати наш ланцюг обчислення:

$$=e^0=1$$

Remark 7.12.7 Границю типа $\lim_{x\to 0} \frac{\sin x}{x}$ в жодному (!) випадку не можна рахувати за Лопіталем, хоча й результат буде таким самим. Все це тому, що $(\sin x)'$ ми отримали завдяки цієї границі, ми посилаємось на те, що ми знаємо цю границю вже. Коротше, замнений круг відносно логічної послідовності виклада

Опуклі функції 7.13

Definition 7.13.1 Задана функція $f: A \to \mathbb{R}$ Цю функцію називають опуклою догори, якщо

$$\forall x_1, x_2 \in A : \forall \lambda \in [0, 1] : f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Remark 7.13.2 Якщо $\lambda \in (0,1)$ нерівність строга (INSERT PICTURE)

Для дослідження функції на опуклість введемо функцію наклона:

$$g_{x_1}(x) = \frac{f(x) - f(x_1)}{x - x_1}$$

Lemma 7.13.3 Функція $f:A \to \mathbb{R}$ - опукла догори \iff функція

 $g_{x_1}(x)$ - монотонно спадає

Proof.

Розглянемо такі точки: $x_1 < x_2 < x_3$

Оскільки $x_2 \in (x_1, x_3) \subset A$, то $\exists \lambda : x_2 + \lambda x_1 + (1 - \lambda)x_3$

Звідси знайдемо λ та $1 - \lambda$:

$$\lambda = \frac{x_2 - x_3}{x_1 - x_3}, 1 - \lambda = \frac{x_1 - x_2}{x_1 - x_3}$$

$$x_2 = \frac{x_2 - x_3}{x_1 - x_3} x_1 + \frac{x_1 - x_2}{x_1 - x_3} x_3$$

Тепер починаємо ланцюг:

f - опукла догори $\iff f(x_2) = f(\lambda x_1 + (1-\lambda)x_3) >$

$$> \lambda f(x_1) + (1 - \lambda)f(x_3) = \frac{x_2 - x_3}{x_1 - x_3}f(x_1) + \frac{x_1 - x_2}{x_1 - x_3}f(x_3)$$

$$\iff f(x_2) > \frac{x_3 - x_2}{x_3 - x_1} f(x_1) + \frac{x_2 - x_1}{x_3 - x_1} f(x_3)$$

$$\iff (x_3 - x_1)f(x_2) > (x_3 - x_2)f(x_1) + (x_2 - x_1)f(x_3)$$

$$\iff (x_3 - x_1)f(x_2) > (x_3 - x_1 + x_1 - x_2)f(x_1) + (x_2 - x_1)f(x_3)$$

$$\iff (x_3 - x_1)(f(x_2) - f(x_1)) > (x_2 - x_1)(f(x_3) - f(x_1))$$

$$\iff (x_3 - x_1)(f(x_2) - f(x_1)) > (x_2 - x_1)(f(x_3) - f(x_1))$$

$$\iff g_{x_1}(x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} > \frac{f(x_3) - f(x_1)}{x_3 - x_1} = g_{x_1}(x_3)$$

 $\iff g_{x_1}(x)$ - монотонно спадає \blacksquare

Lemma 7.13.4 Задана функція $f:(a,b)\to\mathbb{R}$ - диференційована на (a,b)

(a, b) f - опукла догори $\iff f'$ строго спадає зростає

Proof.

 \Rightarrow Дано: f - опукла догори

Розглянемо $x_2 < x_3 \in (a, b)$ та $u, v, x_0 \in (a, b)$

Таким чином розглядаємо, що:

$$x_2 < u < x_1 < x_0 < v < x_3$$

Тоді:

$$\frac{g_u(x_2) > g_u(x_1) = g_{x_1}(u) > g_{x_1}(x_0) = g_{x_0}(x_1) > g_{x_0}(v) = g_v(x_0) > g_v(x_3)}{f(x_2) - f(u)} > \frac{f(x_1) - f(u)}{x_1 - u} > \frac{f(x_1) - f(x_0)}{x_1 - x_0} > \frac{f(v) - f(x_0)}{v - x_0} > \frac{f(x_3) - f(v)}{x_3 - v}$$

Оскільки f - диференційована, то маємо, що:

$$f'(x_2) = \lim_{u \to x_2} \frac{f(x_2) - f(u)}{x_2 - u}$$

$$f'(x_3) = \lim_{v \to x_3} \frac{f(x_3) - f(v)}{x_3 - v}$$

$$\Rightarrow f'(x_2) > \frac{f(x_1) - f(x_2)}{x_1 - x_2} > \frac{f(x_1) - f(x_0)}{x_1 - x_0} > \frac{f(x_3) - f(x_0)}{x_3 - x_0} > f'(x_3)$$

 \subset Дано: f' - строго спадає

Нехай $x_2 < x_1 < x_3$

Розглянемо точки $c_{12} \in (x_2, x_1), c_{13} \in (x_1, x_3) \Rightarrow c_{12} < c_{13}$

$$g_{x_1}(x_2) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(c_{12})$$
 $g_{x_1}(x_3) = \frac{f(x_3) - f(x_1)}{x_3 - x_1} = f'(c_{13})$
 $f'(c_{12}) > f'(c_{13}) \Rightarrow g_{x_1}(x_2) > g_{x_1}(x_3) \Rightarrow$
 f - опукла догори

Theorem 7.13.5 Задана функція $f:(a,b)\to\mathbb{R}$ - двічі диференційована на (a,b)

$$f$$
 - опукла $\begin{bmatrix} догори \\ донизу \end{bmatrix}$

1.
$$\forall x \in (a, b) : \begin{cases} f''(x) \le 0 \\ f''(x) \ge 0 \end{cases}$$

2.
$$\not\exists (\alpha, \beta) \subset (a, b) : f''(x) = 0$$

Proof.

$$f$$
 - опукла догори $\iff f'$ - спадає \iff 1. $\forall x \in (a,b): \begin{bmatrix} f''(x) \leq 0 \\ f''(x) \geq 0 \end{bmatrix}$

2.
$$\not\exists (\alpha, \beta) \subset (a, b) : f''(x) = 0 \blacksquare$$

Example 7.13.6 Функція $f(x) = x^2$ буде опуклою донизу, оскільки f''(x) = 2 > 0

Example 7.13.7 Дослідимо на опуклість функцію $f(x) = \frac{(x-1)^3}{4} + 2$

$$f''(x) = \frac{3}{2}(x-1) = 0$$

Тут буде т. x=1 - точка перегину - така точка, що змінює напрямок опуклості

Якщо
$$x > 1$$
, то $f''(x) > 0$. А якщо $x < 1$, то $f''(x) < 0$

Отже, на $(-\infty, 1)$ - випукла догори, а на $(1, +\infty)$ - випукла донизу

Theorem 7.13.8 Нерівність Єнсена

Задана функція $f:(a,b) o \mathbb{R}$ - опукла догори. Тоді

$$\forall \alpha_1, \dots, \alpha_n \in (0, 1) : \alpha_1 + \dots + \alpha_n = 1 :$$

$$f(\alpha_1 x_1 + \dots + \alpha_n x_n) < \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$$

Proof MI.

$$n=2$$
. Тоді $\forall \alpha_1, \alpha_2: \alpha_1+\alpha_2=1 \Rightarrow \alpha_2=1-\alpha_1:$ $f(\alpha_1x_2+\alpha_2x_2)=f(\alpha_1x_2+(1-\alpha_1)x_2)<\alpha_1f(x_1)+(1-\alpha_1)f(x_2),$ оскільки наша функція опукла догори

Припустимо, що для n-1 нерівність виконана. Доведемо для n:

$$\forall \alpha_1, \ldots, \alpha_n \in (0,1) : \forall x \in (a,b) :$$

$$f\left(\alpha_{1}x_{1}+\cdots+\alpha_{n}x_{n}\right)=f(\alpha_{n}x_{n}+(1-\alpha_{n})\left(\frac{\alpha_{1}}{1-\alpha_{n}}x_{1}+\cdots+\frac{\alpha_{n-1}}{1-\alpha_{n-1}}x_{n-1}\right)\right)<$$
Зауважу, що
$$\frac{\alpha_{1}}{1-\alpha_{n}}+\cdots+\frac{\alpha_{n-1}}{1-\alpha_{n-1}}=1\text{ та всі доданки}>0$$

$$<\alpha_{n}f(x_{n})+(1-\alpha_{n})\left(\frac{\alpha_{1}}{1-\alpha_{n}}x_{1}+\cdots+\frac{\alpha_{n-1}}{1-\alpha_{n-1}}x_{n-1}\right)=$$

 $= \alpha_1 f(x_1) + \dots + \alpha_n f(x_n)$

MI доведено **■**

7.14 Асимптоти функції

Definition 7.14.1 Пряма $x = x_0$ називається **вертикальною асимптотою**, якщо

$$\lim_{x \to x_0^-} f(x) = \infty$$

$$\lim_{x \to x_0^+} f(x) = \infty$$

Тобто якщо x_0 - це точка розриву II-го роду

Definition 7.14.2 Пряма y = kx + b називається **похилою асимптотою** графіка функції y = f(x), якщо

$$f(x) - (kx + b) = o(x), x \to +\infty$$
 and $x \to +\infty$ and $x \to +\infty$

Theorem 7.14.3 Пряма y = kx + b - похила асимптота \iff

$$\begin{cases} k_{+/-} = \lim_{x \to +/-\infty} \frac{f(x)}{x} \\ b_{+/-} = \lim_{x \to +/-\infty} (f(x) - k_{+/-}x) \end{cases}$$

Proof.

Розглянемо випадок $+\infty$, для $-\infty$ - аналогічно

$$\Longrightarrow$$
 Дано: $y=k_+x+b_+$ - похила асимптота $\Rightarrow f(x)-(k_+x+b_+)=o(x), x\to +\infty$

$$\Rightarrow \lim_{x \to +\infty} \frac{f(x) - (k_+ x + b_+)}{x} = 0$$

$$\Rightarrow \lim_{x \to +\infty} \left(\frac{f(x)}{x} - k_+ - \frac{b_+}{x}\right) = 0 \Rightarrow k_+ = \lim_{x \to +\infty} \frac{f(x)}{x}$$

$$\Rightarrow \lim_{x \to +\infty} (f(x) - k_+ x) = \lim_{x \to +\infty} (b_+ + o(x)) = b_+$$

Із другої умови, $\lim_{x\to +\infty} (f(x)-(k_+x+b_+))=0$ - н.м.

A
$$\lim_{x \to +\infty} \frac{f(x) - (k_+ x + b_+)}{x} = \lim_{x \to +\infty} \left(\frac{f(x)}{x} - k_+ - b_+ \right) = b_+ - b_+ = 0$$
Отже, $f(x) - (k_+ x + b_+) = o(x), x \to +\infty$, що й є означенням похил

асимптоти

7.15 Дослідження графіків функції

Задана функція f(x), яку ми хочемо побудувати:

- 1. Знайти область визначення функції f(x), тобто D(f)
- 2. Знайти область значень функції f(x), тобто E(f) (за можливістю)
- 3. Перевірити на парність/непарність функцію f(x)
- 4. Визначити періодичність (за можливістю)
- 5. Знайти точки перетину з вісями координат (за можливістю)
- 6. Знаходимо f'(x) та шукаємо критичні точки
- 7. Знаходимо інтервали монотонності функції f(x)
- 8. Знаходимо локальні екстремуми
- 9. Знаходимо f''(x) та шукаємо всі можливі точки
- 10. Знаходимо інтервали опуклості функції f(x)
- 11. Знаходимо точки перегину
- 12. Шукаємо вертикальні та похилі асимптоти
- 13. Малюємо графік функції на основі всіх даних

Example 7.15.1 Побудуємо графік функції $f(x) = x^2 e^{-x}$

- 1. $D(\bar{f}) = \mathbb{R}$
- 2. Досить складно, але можна надати це після побудови функції

3.
$$f(-x) = x^2 e^x \neq f(x) \neq -f(x)$$

Отже, маємо функцію стандартного вигляду

4. Не є періодичною

5. Знайдемо точки перетину з:

$$OX: f(x) = 0 \implies x^2 e^{-x} = 0 \implies x = 0$$

$$OY: f(0) = 0^2 e^{-0} = 0$$

6.
$$f'(x) = 2xe^{-x} - x^2e^{-x}$$

$$f'(x)=0 \implies xe^{-x}(2-x)=0 \implies \begin{bmatrix} x=0 \\ x=2 \end{bmatrix}$$
 - критичні точки

Отже, функція зростає на інтервалі (0,2) та спадає на $(-\infty,0)$, а також на $(2,+\infty)$

8. Водночас т. x = 0, x = 2 - локальні екстремуми, порахуємо їхні значення функції

$$f(0) = 0$$

$$f(2) = \frac{4}{e^2}$$

9.
$$f''(x) = 2e^{-x} - 2xe^{-x} - 2xe^{-x} + x^2e^{-x} = e^{-x}(x^2 - 4x + 2)$$

$$f''(x) = 0 \implies e^{-x}(x - [2 + \sqrt{2}])(x - [2 - \sqrt{2}]) = 0 \implies \begin{bmatrix} x = 2 + \sqrt{2} \\ x = 2 - \sqrt{2} \end{bmatrix}$$

10. Знову інтервали

- 11. Точки $x = 2 \sqrt{2}$, $x = 2 + \sqrt{2}$ точки перегину
- 12. Шукаємо:

вертикальну асимптоту:

А їх нема

похилу асимптоту:

$$k=\lim_{x o +\infty}rac{f(x)}{x}=\lim_{x o +\infty}rac{x}{e^x}=0$$
 $b=\lim_{x o +\infty}(f(x)-kx)=\lim_{x o +\infty}x^2e^{-x}=0$ $\Longrightarrow y=0$ - похила асимптота

До речі, $E(f) = [0, +\infty)$