FIAP

Relatório de Simulação e Modelagem Energética de Residência Inteligente

Integrantes:

João Pedro Tomas Dominguito

Luiz Gustavo Lima da Silva

Matheus Lara Carneiro

Vicente Casellato Rodriguez

Sumário

1	Intr	odução	2	
2	Mod	delagem Matemática dos Componentes	2	
	2.1	Modelo de Geração Solar Fotovoltaica	2	
	2.2	Modelo de Consumo Residencial	3	
	2.3	Modelo de Carregamento do Veículo Elétrico (VE)	3	
	2.4	Modelo da Bateria Estacionária (BESS)	3	
	2.5	Justificativa dos Parâmetros da Simulação	4	
3	Aplicação de Conceitos de Cálculo na Análise		4	
	3.1	Integral para Cálculo de Energia	4	
	3.2	Derivada para Análise de Rampas	5	
4	Resultados e Análise da Simulação		5	
	4.1	Análise Quantitativa	5	
	4.2	Visualização Gráfica dos Resultados	6	
	4.3	Interpretação dos Resultados	6	

1 Introdução

Este documento apresenta uma análise detalhada da modelagem matemática e simulação computacional do comportamento energético de uma residência inteligente ao longo de um período de 24 horas. O sistema modelado é composto por quatro elementos principais: um sistema de geração solar fotovoltaica (PV), as cargas de consumo da residência, um sistema de armazenamento de energia por bateria (BESS - Battery Energy Storage System) e um veículo elétrico (VE) em processo de carregamento.

O objetivo da simulação é analisar a interação dinâmica entre a geração e o consumo de energia, o papel da bateria como um elemento de gerenciamento ativo e o impacto do sistema na rede elétrica externa. A análise é fundamentada em conceitos de Cálculo, como integrais para a quantificação de energia e derivadas para a análise das taxas de variação de potência, proporcionando uma visão aprofundada da dinâmica do sistema.

2 Modelagem Matemática dos Componentes

A simulação do sistema energético foi construída a partir de modelos matemáticos que descrevem o comportamento de cada componente.

2.1 Modelo de Geração Solar Fotovoltaica

A potência gerada pelo sistema fotovoltaico, $P_{PV}(t)$, é influenciada principalmente pela irradiância solar e pela temperatura das células fotovoltaicas. O modelo implementado considera ambos os fatores. A irradiância ao longo do dia é aproximada por uma função cossenoidal, enquanto a perda de eficiência devido ao aumento da temperatura é modelada por um fator de correção linear. A potência final é dada por:

$$P_{PV}(t) = I(t) \cdot A \cdot \eta_{painel} \cdot (1 + K_T \cdot (T_{celula}(t) - T_{ref}))$$

Onde:

- I(t): Irradiância solar no instante t (W/m²).
- A: Área total dos painéis (m²).
- η_{painel} : Eficiência nominal do painel.
- K_T : Coeficiente de temperatura de potência (%/°C).
- $T_{celula}(t)$: Temperatura da célula fotovoltaica no instante t (°C).
- T_{ref} : Temperatura de referência (tipicamente 25°C).

2.2 Modelo de Consumo Residencial

O consumo da residência, $P_{casa}(t)$, foi modelado com um perfil que reflete os hábitos típicos de uma família, consistindo em um consumo de base constante acrescido de picos de demanda em períodos específicos (manhã e noite). Para aumentar o realismo da simulação, um componente estocástico (ruído gaussiano) foi adicionado ao consumo de base, representando a variabilidade inerente ao uso de eletrodomésticos.

2.3 Modelo de Carregamento do Veículo Elétrico (VE)

O modelo de carregamento do VE implementado simula o padrão **CC-CV (Corrente Constante - Tensão Constante)**, que é o método padrão para baterias de íon-lítio. A potência de carga, $P_{VE}(t)$, não é constante, mas depende do Estado de Carga (SoC) da bateria do veículo.

- Fase de Corrente Constante (CC): Enquanto o SoC é inferior a um limiar (e.g., 80%), o carregamento ocorre na potência máxima do carregador.
- Fase de Tensão Constante (CV): Após atingir o limiar, a potência de carga diminui progressivamente para proteger a bateria, até que o SoC alvo seja alcançado.

Este modelo é fisicamente mais preciso do que um modelo baseado puramente no tempo.

2.4 Modelo da Bateria Estacionária (BESS)

A bateria estacionária é o componente ativo do sistema, e seu comportamento é governado por uma equação diferencial que descreve a variação do seu Estado de Carga (SoC). Este método é conhecido como **Contagem de Coulomb**. A equação é:

$$\frac{d(SoC)}{dt} = \frac{P_{BESS}(t)}{C_{kWh}}$$

Onde:

- SoC(t): Estado de Carga no instante t.
- $P_{BESS}(t)$: Potência de carga (negativa) ou descarga (positiva) da bateria (kW).
- C_{kWh} : Capacidade nominal da bateria (kWh).

Na simulação, esta equação é resolvida numericamente a cada passo de tempo. A lógica de controle implementada é a de **autoconsumo**: a bateria absorve o excesso de geração solar e fornece energia para a casa quando a demanda excede a geração, minimizando a interação com a rede elétrica.

2.5 Justificativa dos Parâmetros da Simulação

Para ancorar a simulação em um cenário prático e realista, os valores utilizados como entrada no modelo foram baseados em equipamentos comerciais da marca **GoodWe**, líder no setor de inversores e soluções de armazenamento.

- Geração Solar: A área de 25 m² e eficiência de 21% correspondem a um sistema fotovoltaico de 5.25 kWp, tamanho compatível com o inversor híbrido utilizado.
- Consumo Residencial: O consumo base de 300 W e pico adicional de 1500 W representam um perfil de uso típico para uma residência de médio porte.
- Bateria Estacionária (BESS): O sistema de armazenamento foi modelado com base na combinação de um inversor híbrido **GoodWe GW5K-ET Plus+** com dois módulos de bateria **GoodWe Lynx Home U**. Esta configuração resulta em uma capacidade total de 10.8 kWh e uma potência máxima de carga e descarga de 5 kW. A eficiência de ida e volta de 95% segue a especificação técnica do sistema.
- Veículo Elétrico (VE): A potência de carga de 7.0 kW corresponde a um carregador residencial (wallbox) da **série HCA da GoodWe**, compatível com veículos elétricos populares com baterias na faixa de 60 kWh.

3 Aplicação de Conceitos de Cálculo na Análise

A análise dos resultados da simulação baseia-se fundamentalmente em conceitos de Cálculo para extrair informações significativas.

3.1 Integral para Cálculo de Energia

A energia (em kWh) é a integral da potência (em kW) ao longo do tempo. Na simulação computacional, esta integral é aproximada numericamente através de uma **Soma de Riemann**, onde a área sob a curva de potência é calculada pela soma das áreas de pequenos retângulos. A energia total, E, em um intervalo de tempo é:

$$E = \int_{t_1}^{t_2} P(t) dt \approx \sum_{i} P_i \cdot \Delta t$$

Este método foi utilizado para calcular a energia total gerada, consumida, puxada e injetada na rede ao longo das 24 horas.

3.2 Derivada para Análise de Rampas

A derivada da potência líquida da rede em relação ao tempo, dP_{rede}/dt , representa a **taxa de variação** ou a **rampa** de demanda da rede. Rampas muito íngremes (valores altos da derivada) indicam um estresse significativo para a estabilidade do sistema elétrico. A derivada foi aproximada numericamente pelo **método das diferenças finitas**:

$$\frac{dP}{dt} \approx \frac{\Delta P}{\Delta t} = \frac{P(t_i) - P(t_{i-1})}{t_i - t_{i-1}}$$

A análise dos valores máximos e mínimos desta derivada permite identificar os momentos de maior aceleração no consumo ou injeção de energia, que são pontos críticos para a operação da rede.

4 Resultados e Análise da Simulação

A execução da simulação com os parâmetros baseados nos equipamentos da GoodWe produz um conjunto de dados que descreve o estado do sistema a cada instante de tempo.

4.1 Análise Quantitativa

O resumo numérico dos resultados ao longo das 24 horas de simulação é apresentado abaixo. Esta análise inclui o balanço energético total e a identificação de pontos críticos de operação.

```
--- ANÁLISE ENERGÉTICA COMPLETA (24h) ---
--- ENERGIA TOTAL (kWh) ---
                    36.67 kWh
Energia Solar Gerada:
Energia Consumida (Total): 47.45 kWh
 - Casa:
                         15.95 kWh
  - Carro Elétrico:
                         31.50 kWh
-----
Energia Puxada da Rede: 21.27 kWh
Energia Injetada na Rede: 6.16 kWh
Balanço Líquido com a Rede: -15.11 kWh
--- PONTOS CRÍTICOS (kW) ---
Pico de Consumo da Rede: -8.88 kW às 20.6 h
Pico de Injeção na Rede: 4.39 kW às 12.2 h
--- ANÁLISE DE DERIVADAS (RAMPAS) ---
```

```
Rampa Máxima de Subida (dP/dt): 12.74 kW/h às 11.1 h Rampa Máxima de Descida (dP/dt): -56.13 kW/h às 19.0 h
```

4.2 Visualização Gráfica dos Resultados

Para facilitar a interpretação, os resultados são apresentados em um dashboard com múltiplos painéis, conforme a Figura 1.

Figura 1: Dashboard com os resultados da simulação energética de 24 horas.

4.3 Interpretação dos Resultados

A análise do dashboard revela a dinâmica precisa do sistema. A geração solar (linha amarela) supera o consumo total (linha vermelha) durante o pico do dia. O excesso de energia é direcionado para carregar a bateria estacionária (BESS), que atinge sua capacidade máxima de 100% por volta das 11.5h. A partir deste ponto, como a bateria está cheia, o sistema passa a **injetar o excedente na rede elétrica**, resultando em um balanço positivo (área azul acima de zero), com um pico de injeção de **4.39 kW**.

Ao final da tarde, com o declínio da geração solar, a bateria começa a descarregar para suprir o consumo da casa. Às 19h, inicia-se o carregamento do veículo elétrico (7 kW) somado

ao pico de consumo noturno da residência. A bateria descarrega em sua potência máxima (5 kW) para abater parte desta demanda, mas o consumo total excede a capacidade combinada de geração e descarga. Como resultado, a residência precisa **puxar uma quantidade significativa de energia da rede**, atingindo um pico de consumo de **-8.88 kW** às 20.6h.

A análise da derivada (rampa) mostra que o momento de maior estresse para a rede ocorre às 19h, quando a carga do VE é acionada. Neste instante, a demanda da rede sofre uma queda abrupta (a maior rampa de descida, **-56.13 kW/h**), pois a bateria, que estava suprindo um consumo menor, passa a suprir uma carga muito maior, fazendo a rede assumir a diferença instantaneamente. A simulação demonstra a eficácia do sistema BESS, mas evidencia que o gerenciamento de grandes cargas simultâneas no período noturno continua sendo o principal desafio para a autonomia energética.

Referências

- [1] S. R. Ambati e S. Srinivasa Rao, "A review of microgrid modelling, design and control simulations," *International Journal of Renewable Energy Research*, 2021. Disponível em: https://www.researchgate.net/publication/355392458_A_review_of_microgrid_modelling_design_and_control_simulations
- [2] PV Performance Modeling Collaborative (PVPMC), Sandia National Laboratories, "PV Performance Metrics". Disponível em: https://pvpmc.sandia.gov/modeling-guide/5-ac-system-output/pv-performance-metrics/normalized-efficiency/
- [3] EPE (Empresa de Pesquisa Energética), "Nota Técnica EPE-NT-EPE-DEA-005/2020 Metodologia de Projeção da Carga Horária do SIN,"2020. Disponível em: https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-476/NT%20Metodologia%20Proje%C3%A7%C3%A3o%20Carga%20Hor%C3%A1ria_EPE-NT-EPE-DEA-005-2020.pdf
- [4] Battery University, "BU-409: Charging Lithium-ion,"Cadex Electronics Inc. Disponível em: https://batteryuniversity.com/article/bu-409-charging-lithium-ion
- [5] GoodWe, "ET Series (5-10kW) Three Phase Hybrid Inverter, "Datasheet (PDF), GoodWe Australia. Disponível em: https://www.goodwe.com.au/Ftp/Downloads/Datasheet/AU/GW_ET_Datasheet-AU.pdf
- [6] X. Hu, S. E. Li, e Y. Jia, "A Review of State of Charge, State of Health, and State of Power Estimation of Batteries," *Energies*, vol. 14, no. 14, p. 4074, 2021. Disponível em: https://www.mdpi.com/1996-1073/14/14/4074
- [7] Khan Academy, "Somas de Riemann e integrais,"Seção de Cálculo. Disponível em: https://pt.khanacademy.org/math/ap-calculus-ab/ab-integration-new/ab-6-3/v/riemann-sums-and-integrals
- [8] Wikipedia, "Método das diferenças finitas". Disponível em: https://pt.wikipedia.org/wiki/M%C3%A9todo_das_diferen%C3%A7as_finitas