Indian Institute of Information Technology Vadodara MA 102: Linear Algebra and Matrices Tutorial 6

- 1. Are the following sets vector spaces over \mathbb{R} ? If yes then find a basis p a) $V_1 = \{aX^2 | a_i \in \mathbb{R}\}$, the set of all homogeneous degree 2 polynomi
 - b) $V_2 = \{ f(X) \in \mathbb{R}[X] | f(0) = 0 \}$ c) $V_3 = \{ A \in M_3(\mathbb{R}) | A^T = -A \}$

 - d) The set V_4 of all polynomials of degree ≥ 3 , together with 0.
 - e) $V_5 = \{ A \in M_3(\mathbb{R}) | det(A) = 0 \}$
- 2. The first four Hermite polynomials (which arise naturally in the study of certain differential equations in Mathematical Physics) are 1, 2t, -2+ $4t^2$, $-12t + 8t^3$. Do they form a basis for $\mathbb{R}_3[X]$?
- 3. Find a basis of \mathbb{R}^3 containing a vector $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- 4. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $V = \{B \in M_2(\mathbb{R}) | BA = AB\}$. Is V a vector space over \mathbb{R} ? If yes then give its basis and dimension.
- 5. Let V be the set of positive real numbers with vector addition being ordinary multiplication, and scalar multiplication being $a.v = v^a$. Show that V is a vector space.
- 6. Given subspaces H and K of a vector space V, the sum of H and K, written as H + K, is the set of all vectors in V that can be written as the sum of two vectors, one in H and the other in K; that is, H + K = $\{u+v|u\in H,v\in K\}$. Show that H+K is also a subspace of V. Find H + K for H, K two different lines passing through origin in \mathbb{R}^2 .
- 7. Define a function $T: M_2(\mathbb{R}) \to M_2(\mathbb{R})$ as T(B) = AB, where A = $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Is T a linear transformation? If yes then find its null space
- 8. Let V denote the space of all functions $f: \mathbb{R} \to \mathbb{R}$ for which the derivatives f', f'' exist. Show that f1, f2, and f3 in V are linearly independent

provided that their wronskian w(x) is nonzero for some x, where

$$w(x) = \det \begin{bmatrix} f_1(x) & f_2(x) & f_3(x) \\ f'_1(x) & f'_2(x) & f'_3(x) \\ f''_1(x) & f''_2(x) & f''_3(x) \end{bmatrix}$$