ENSF 612: Fall 2021 Lecture 1. Introduction

Dr. Gias Uddin, Assistant Professor
Electrical and Software Engineering (ESE)
Schulich School of Engineering
University of Calgary

https://giasuddin.ca/

Topics

- Course objectives
- Topics
- Grading
- Labs
- Textbooks
- Course Website

Course Objectives

- Understand reasons for data increase, i.e., big data
- Understand benefits from big data analysis
- Understand challenges in analyzing large datasets
- Learn about some platforms for big data analysis
- Understand typical steps in big data analysis
- Learn common algorithms used in big data analysis
- Implement machine learning pipelines from big data

Course objectives – cont'd

- Learning outcomes
 - Familiarity with algorithms that can process large amounts of data
 - Large scale text processing
 - Social network analysis
 - Large scale linear algebra
 - Building predictive models from big data
 - Using large scale machine learning algorithms
 - Familiarity with the Apache Hadoop and Apache Spark platforms

Topics

- Introduction and motivation
 - Reasons for data proliferation
 - Benefits of big data analysis real life case studies
 - Challenges in analyzing large datasets
 - Typical steps in big data analysis
- Introduction to Hadoop MapReduce framework
 - System architecture
 - Phases of a MapReduce job
 - Scalability and reliability of a MapReduce system
 - Algorithms that can benefit from MapReduce paradigm

Topics – Cont'd

- MapReduce programming using Hadoop streaming
- MapReduce algorithms Text processing
 - Counting words in a large document corpus
 - Sorting large datasets
 - Searching in a large document corpus
 - Constructing N-grams
- MapReduce algorithms Graph analysis
 - Large scale graph algorithms
 - Social network applications
- MapReduce algorithms Linear algebra
 - Operations on large matrices

Topics – Cont'd

- Hadoop ecosystem
 - Tools/platforms built on top of Hadoop
- Limitations of Hadoop MapReduce
- In-memory big data clusters Apache Spark
 - System architecture
 - Differences from Hadoop MapReduce
- Programming Spark using PySpark
- Large scale machine learning using Spark
 - Machine learning basics
 - Linear and Logistic regression

Grading

Component	Weight
2 Lab assignments – individual	10%
2 Quizzes – individual	10%
1 Midterm Exam – individual	25%
3 Project presentations – Group	15%
1 Project Final Report – Group	20%
1 Project Code and Data Quality – Group	20%

Need to obtain passing grade in project final report to pass course

50% of Grading – as an Individual: Assignments, Quiz, Midterm

- Lab assignments
 - Two assignments
 - Will involve writing Hadoop and Spark code
- Midterm
 - One midterm
 - Based on course lectures
- Quiz
 - Two quizzes
 - One before midterm to practice
 - One after the last lecture of the course to recap what we have learned in the course

50% of Grading – as a team: Course Project

- Project
 - To be completed in group of 3 students
 - Will involve coding in python and spark ML (Machine Learning)
- Project Grading involves three components
 - Presentations
 - Project Source Code and Data
 - Project Final Report

50% of Grading – as a team: Course Project

Item 1 - Project presentation (15%)

- To be done in a group of 3 students
- Based on progress on group project:
 - first on project idea,
 - second on project progress, and
 - third on project completion
- Each presentation is judged on of three items:
 - 2-minute video demo
 - 10-minute presentation
 - 5 minutes for Q&A

50% of Grading – as a team: Course Project

- Item 2 Project data and source code (20%)
 - Each project will generate a curated dataset based on manual analysis and data preprocessing of several online data sources, such as Stack Overflow, GitHub
 - Each group will manually label the textual contents to some predefined categories
 - Each group will use the labeled data to experiment with a suite of Machine Learning classifiers in pyspark

50% of Grading – as a team: Course Project

- Item 3 Project final report (20%)
 - A template will be provided to write the final report
 - Need to pass on the final report to pass on the course

Lab

There will be no labs

- Coding exercises and projects will be in python
 - Databricks community edition
 - For small data analysis and project demo
 - Hadoop Hortonworks sandbox
 - VM that you can run on your laptop
 - For code development and debugging using small data sets
 - U of C Hadoop cluster
 - For running code on medium/large sized data sets
 - Microsoft/Amazon/Google Cloud
 - For running code on medium/large sized data sets

Textbooks

- There is NO official textbook for this course
- Slides will be a major source of content
- However, they are not the only source
 - Take good notes during lectures
 - Refer to the recommended textbooks

Recommended textbooks

Title	Hadoop: The Definitive Guide
Author(s)	Tom White
Edition, Year	Edition 3, 2012
Publisher	O' Reilly Publishers

Title	Data-Intensive Text Processing with MapReduce
Author(s)	Jimmy Lin and Chris Dyer
Edition, Year	Edition 1, 2012
Publisher	Morgan and Claypool Publishers

Textbooks – cont'd

Recommended textbooks – cont'd

Title	Mining of Massive Datasets
Author(s)	Anand Rajaraman and Jeffrey David Ullman
Edition, Year	Edition 1, 2010
Publisher	Cambridge University Press

Title	Learning Spark: Ligthining-Fast Big Data Analysis
Author(s)	Holden Karau, Andy Kowinski, Patrick Wendell and Matei
	Zaharia
Edition, Year	Edition 1, 2015
Publisher	O' Reilly Publishers

Course Website

- D2L will be used for the course
- Will have lecture slides, assignments, and projects
- Follow the announcements carefully!

Topics

- Course objectives
- Topics
- Grading
- Labs
- Textbooks
- Course Website