

Slide 1 of 18

Position

DDD Benefits

Challenges

Addresses Challenge Benefits

reasibility

Future Wor

Conclusions

Position Paper: A Knowledge-Based Approach to Scientific Software Development

Dan Szymczak, Spencer Smith and Jacques Carette

Computing and Software Department Faculty of Engineering McMaster University

SE4Science, May. 16, 2016

Slide 2 of 18

DDD Benefit

Challenges

Solution

Eggaibilit

Future Wor

Conclusions

Knowledge-Based Doc Driven Design (DDD)

- 1 Position
- 2 DDD Benefits
- 3 Challenges for DDD
- 4 Solution Knowledge Based Approach (KBA) Addresses Challenges Benefits
- 5 Feasibility (Introducing Drasil)
- 6 Future Work
- 7 Conclusions

Slide 3 of 18

Position

DDD Benefits

Challenges

Addresses Challeng

Feasibility

Future Wor

Conclusions

Knowledge-Based DDD

- DDD leads to high quality SCS
- Knowledge Based Approach
 - Facilitates DDD
 - Provides benefits

Slide 4 of 18

Da aiti a la

DDD Benefits

Challenges

Addresses Challenge Benefits

reasibilit

Future Wor

Conclusions

Benefits of DDD

- Improve qualities
 - Verifiability
 - Maintainability
 - Reusability
 - Reproducibility
- Better communication
- How and Why to Fake It (Parnas and Clements, 1996)

Slide 5 of 18

Position

DDD Benefit

Challenges

Addresses Challeng Benefits

1 Gasibilit

Future Wo

Conclusions

Reasons "Manual" DDD is Unpopular

- Up front requirements are challenging
- Rapid change for numerical algorithms
- Information duplication
- Synchronization headaches between artifacts
- Perceived over-emphasis on non-executable artifacts

Slide 6 of 18

Position

DDD Benefit

Challenge

Solution

Addresses Challenge Benefits

reasibilit

Future Wor

Conclusions

Knowledge Based Approach

- Capture knowledge
- From one "source" recipes to generate artifacts
- Automated
- Inspired by Knuth's Literate Programming

Slide 7 of 18

Position

DDD Benefit

Challenges

Ŭ

Addresses Challenges

Feasibility

Future Wor

Conclusions

How Addresses Challenges

- Supports changing requirements and design
 - Generation
 - Automated traceability
- Supports duplication
 - Knowledge is entered once, generated/transformed
 - Eases maintenance
 - · If incorrect, incorrect everywhere
- Non-executable artifacts are generated

Slide 8 of 18

Position

DDD Benefit

Challenges

Addresses Challenge Benefits

Feasibility

Future Wo

Conclusion

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	<i>L</i> > 0	1.5 m	10%
D	D > 0	0.412 m	10%
V_P	$V_P > 0$	$0.05 \; \text{m}^3$	10%
A_P	$A_P > 0$	1.2 m ²	10%
$ ho_{P}$	$ ho_P>0$	1007 kg/m ³	10%

- · Sanity checks captured and reused
- Generate guards against invalid input
- Generate test cases

Slide 9 of 18

Position

DDD Benefits

Challenges

Solution Addresses Challenges Benefits

Feasibilit

Future Wor

Conclusion

Reusability

Number	T1	
Label	Conservation of energy	
Equation	$-\nabla \cdot \mathbf{q} + \mathbf{q}''' = \rho C \frac{\partial T}{\partial t}$	
Description	The above equation gives the conservation of energy for time varying heat transfer in a material of specific heat capacity C and density ρ , where \mathbf{q} is the thermal flux vector, q''' is the volumetric heat generation, T is the temperature, ∇ is the del operator and t is the time.	

Slide 10 of 18

Position

DDD Benefit

Challenges

Addresses Challenge Benefits

reasibilit

Future Wor

Conclusion

Usability

- As simple as possible, but not simpler (Einstein)
- Usability challenges for general purpose SCS
 - Complex, confusing
 - Generic symbols and terminology
- Generate apps suited to specific scientific and engineering needs
- Finite element software example

Slide 11 of 18

Position

DDD Benefit

Challenges

Addresses Challenge

Benefits

i casibilit

Future Wo

Conclusions

Reproducibility

- Knowledge is explicitly stored for the future
- Recipes can be use to regenerate any artifacts
- Recipes include build instructions

Slide 12 of 18

Position

DDD Benefit

Challenges

Solution
Addresses Challenge
Benefits

Eggaibility

Euturo Wor

Conclusion

Software Certification

- Recertification can be expensive and time consuming
- Change propagates through documentation
- Recipes help with changing documentation standards

Slide 13 of 18

Position

DDD Benefits

Challenges

Orialieriges

Addresses Challenges

Feasibility

Future Wor

Conclusions

Drasil Framework Design

Slide 14 of 18

Position

DDD Benefits

Challenges

- . . .

Addresses Challeng Benefits

Feasibility

Future Wor

Conclusions

Example Recipe

Slide 15 of 18

Position

DDD Benefits

Challenges

Solution Addresses Challenges

Feasibility

i utule vvoii

Conclusions

Reusable Chunks

```
metre, second, kelvin :: FundUnit
metre = fund "Metre" "length (metre)" "m"
second = fund "Second" "time (second)" "s"
kelvin = fund "Kelvin" "temperature (kelvin)" "K"
```

Slide 16 of 18

Position

DDD Benefits

Challenges

Addresses Challenge Benefits

Feasibility

Future Wor

Conclusions

The *h_c* Chunk

```
h_c_eq :: Expr
h_c_eq = 2*(C k_c)*(C h_b) /
  (2*(C k_c) + (C tau_c)*(C h_b))

h_c :: EqChunk
h_c = fromEqn "h_c"
  "convective heat transfer coefficient between clad and coolant"
  (sub h c) heat_transfer h_c_eq
```


Slide 17 of 18

Pocition

DDD Benefits

Challenges

Addresses Challeng Benefits

reasibilit

Future Work

Conclusions

Next Steps

- Generate more artifact types
- Generate different document views
- More types of information in chunks
- Use constraints to generate test cases
- Implement larger examples

Slide 18 of 18

Position

DDD Benefit

Challenges

Addresses Challenge Benefits

I Gasibilit

Future Wo

Conclusions

Conclusions

- SCS has the opportunity to lead other software fields by leveraging its solid existing knowledge base
- DDD is feasible with a knowledge-based approach
- Documentation for QA and software certification does not have to be painful, expensive or time consuming
- Drasil will be developed via practical case studies