

目录

ONE 非均衡数据集

准确度悖论

TWO 解决办法

调整类别权重

THREE 代码实现

scikit-learn

指标定义

各类别占比差别很大的数据集就是非均衡数据集

- · 在实际的应用中, 会经常遇到非均衡数据集, 比如信贷、反欺诈、广告预测等
- ·对于多元分类问题,如果使用OvR策略,也容易引发"潜在的"非均衡数据集

非均衡数据集会给模型搭建带来困难

准确度定义

准确度 = 预测准确的样本数 / 全体样本数

这个看似很直观的评估指标在面对非均衡分类问题时会严重失真

		真实值		
		1	0	
预测值	1	真阳性(true positive) TP	伪阳性 (false positive) FP	
	0	伪阴性 (false negative) FN	真阴性 (true negative) TN	

$$ACC = \frac{TP + TN}{TP + FP + FN + TN}$$

准确度悖论

非均衡分类问题

准确度悖论: 模型A比模型B更好?

 	- 11 Λ	真实值	
(大 <u>)</u>	型A	1	0
预测值	1	0	0
	0	10	990

$$ACC(A) = \frac{990+0}{990+10+0+0} = 99\%$$

大苔 4	F1 D	真实值	
了关 <u>一</u>	型B	1	0
预测值	1	9	90
	0	1	900

$$ACC(B) = \frac{900+9}{900+90+9+1} = 90.9\%$$

对建模的影响

使用逻辑回归模型对数据进行建模

- · 虽然y, x1, x2之间完美服从逻辑回 归模型的假设,但数据越不均衡,模 型效果越差
- · 当面对非均衡数据集时,准确度这个 评估指标会严重失真

$$y = \begin{cases} 1, x_1 - x_2 + \varepsilon > 0 \\ 0, else \end{cases}$$
 $\longrightarrow \mathcal{E}$ 是随机扰动项, $\longrightarrow \mathcal{E}$ 服从逻辑分布 辑回归模型的假设

目录

ONE 非均衡数据集

准确度悖论

TWO 解决办法

调整类别权重

THREE 代码实现

scikit-learn

解决办法

数学原因

L(Xi)靠近7, 预测结果为类别7; 反之预测结果为O

逻辑回归的参数估计公式:

$$h(X_i) = \frac{1}{(1 + e^{-X_i \beta})}$$

$$\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i} -y_i \ln h(X_i) - (1 - y_i) \ln[1 - h(X_i)]$$

非均衡数据集:

类别1少,类别0多

数据分布:

h(X)靠近0

每个点的权重都等于1

〇 类别0

〇 类别1

 $X_1 \approx X_2 \approx \ldots \approx X_6 \approx X$

模型训练结果:

$$h(X) \approx 0$$

"牺牲"类别7,"迁就"类别0; 模型预测结果几乎都为类别O

解决办法

调整类别权重

每个点的权重都等于1

$$\widehat{\beta} = \operatorname{argmin}_{\beta} \sum_{i} -y_{i} \ln h(X_{i}) - (1 - y_{i}) \ln[1 - h(X_{i})]$$

调整不同类别的权重

$$\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i} -w_{1}y_{i} \ln h(X_{i}) - w_{0}(1 - y_{i}) \ln[1 - h(X_{i})]$$

解决办法

调整类别权重

平衡类别权重后的模型效果

目录

ONE 非均衡数据集

准确度悖论

TWO 解决办法

调整类别权重

THREE 代码实现

scikit-learn

THANK YOU