- 1. Let X_1, \ldots, X_{n_1} be a random sample of size n_1 from $N(\mu_1, \sigma^2)$.
 - (a) Find a constant c such that $c \sum_{i=1}^{n_1-1} (X_{i+1} X_i)^2$ is an unbiased estimator of σ^2 .
 - (b) Let Y_1, \ldots, Y_{n_2} be another random sample of size n_2 from $N(\mu_2, \sigma^2)$. Assuming X and Y are mutually independent, show that $S_p^2 = aS_1^2 + (1-a)S_2^2$ is an unbiased estimator of σ^2 , where

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
 and $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$,

with a constant $a \in [0, 1]$.

(c) Find a such that $var(S_p^2)$ is minimized and the estimator becomes

$$S_p^2 = \frac{1}{n_1 + n_2 - 2} \left\{ \sum_{i=1}^{n_1} (X_i - \bar{X})^2 + \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \right\}.$$

[Hint]: Show that $\operatorname{var}(S_p^2) = g(a)\sigma^4$ and find a such that g'(a) = 0 and g''(a) > 0.

2. For women in a certain high-risk population, suppose that the number of lifetime events of domestic violence involving emergency room treatments is assumed to have a Poisson distribution

$$f_X(x|\theta) = \theta^x e^{-\theta} / x!, \quad x = 0, 1, \dots, \quad \theta > 0.$$

Let X_1, \ldots, X_n be a random sample chosen for the high-risk population.

(a) Find the maximum likelihood estimator (MLE) of the parameter $\tau(\theta)$, where

$$\tau(\theta) = P(X_1 = 0) = e^{-\theta}.$$

- (b) Find Crámer-Rao Lower Bound (CRLB) for every unbiased estimator of the parameter $\tau(\theta)$.
- (c) Let $Y = \sum_{i=1}^{n} X_i$. Show that $T = (1 1/n)^Y$ is an unbiased estimator of $\tau(\theta)$ using the fact that $Y \sim \text{Poisson}(n\theta)$. Derive the variance of T and compare the variance to the CRLB.

- (d) Show that T is the uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$.
- 3. Assume that the distribution of wages (in thousands of dollars) in a large U.S. city follows a Pareto distribution with pdf

$$f_Y(y) = \theta \gamma^{\theta} y^{-(\theta+1)}, \quad 0 < \gamma < y < \infty, \quad 0 < \theta < \infty,$$

where γ is a unknown parameter but θ is assumed a known constant. Let Y_1, \dots, Y_n be a random sample from $f_Y(y)$. To test the null hypothesis $H_0: \gamma \leq \gamma_0$ versus the alternative hypothesis $H_1: \gamma > \gamma_0$, one intend to develop a likelihood ratio test (LRT) to conclude whether the minimum wage is smaller than some value γ_0 .

(a) Derive the likelihood ratio test statistic $\lambda(\boldsymbol{y})$ and show that the rejection region $R = \{\boldsymbol{y} : \lambda(\boldsymbol{y}) \leq c\}$ is equivalent to $R^* = \{\boldsymbol{y} : y_{(1)} \geq c^*\}$, where $y_{(1)}$ is the minimum order statistic.