1D- M52. Viet-Amh NGUYEN Vérifions que (E, +) est un groupe abétien. Viet-anh. nguyen @ unij-litte. Is soit f, g E Ez, observous

Associativité Exercies de remise à mireau: [(f+g)+h](n) = (f+g)(n) + h(n) = f(x)+g(x) + h(n)Ex1: soit IK, mg les ens ci-dessaus $\begin{aligned}
&= f(x) + (g(x) + h(x)) \\
&= f(x) + (g+h)(x) \\
&= [f + (g+h)](x)
\end{aligned}$ st des especes Vectoriels se th. (1) E₁ := { f: [0,1] → K g muni de \mathcal{D}' où (f+g)+h=f+(g+h). l'oddid f+g des fonctions & de la multiplical pax un nombre $A \in \mathbb{K} : \mathcal{A}_{f}$, => (+) est associative. Ventre Vx e [9,1] ie: (f+g)(n):= f(n)+g(n) <u>L'élément neutre</u> de Ez est la f zéro $O_{E_2}(n) = 0$, $(\lambda f)(x) := \lambda(f(x))$ En effet, $(f + O_{E_{\lambda}})(x) = f(x) + O_{E_{\lambda}}(x) = f(x) + O = f(x)$ (2) Ez := { (an): IN - K & Pens des suites D'où $f + O_{E_{\Delta}} = f$; de même $O_{E_{\Delta}} + f = f$. à valuer de the, muni de l'addit des suites: (Um)+(Um):= (Um+Um) Considérons $-f := (-1) \times f$ En $e \left[(-f) + f \right](n) = (-f)(n) + f(n)$ Invert $f \in C_{9} \cup J$ & la multiplicat pube & & K. A (Um): = (2 C/m). = (-1) f(n) + f(n) = -f(x) + f(x) = 0(3) E3:= {P∈ K[n]: deg P≤mg oei n E M est clonné. Ez est muni de \mathcal{D}' où $(-f)+f=0_{\mathbf{E}_{\mathbf{S}}}$. l'addit des polynômes P+Q et de la mlipt pu AEK 2. P pr P, Q E E3. De m f+(-f) = OEs.

Con a myé l'associativité, l'êst neutre, l'est invoise. $[\lambda(f+g)(n) = \lambda f(n) + \lambda g(n) \quad \text{ar} \quad (H, \bullet)$ = (af+Ag)(a) = for the Done (E,+) est un groupe. D'autre part, pr n ∈ [0,1], D'ai $\lambda(f+g)=\lambda f+\lambda g$. Pais $[(\lambda+\mu)f](n)=(\lambda+\mu).f(n)$ (f+g)(x) = f(n)+g(x) est commutatif = g(x) + f(x) car (+x,+) μ = Inf(m) + u f(m) care & =(g+f)(n)Enfin, il mi reste à vérifier que le multiplicat associative, ie (10 n) j= 2. (n j) D'où f+g=g+fLone (E1, +) est commutatif, (abélien) En effet, pr n & [0,1], ona: $[[A,\mu], f](n) = ([A,f]) \cdot f(n) = A(\mu f(n)) (IK, \cdot) = 0$ Ensuite, verifions que la multiplicat scalaire est distributive par rapport à l'addit, ER ER ER associatif. $= \frac{\int_{0}^{\infty} ((u \cdot f)(n))}{\int_{0}^{\infty} (u \cdot f)(n)}$ ie pa A, MEK & J, g E Es, on a $= \left[\lambda \cdot (\mu, f) \right] (\alpha)$ $\lambda (f+g) = \lambda f + \lambda g$ $(\lambda + \mu) f = \lambda f + \mu f$ Etapes: mg (E,+) est un groupe. D'Elt mente mg (E,+) groupe abélien. D'Elt inverse mg clibributité metple scalaire. meffet pan∈ [o,1]; $\left[\left(\frac{1}{3} + \frac{1}{3} \right) \right] (n) = \left(\frac{1}{3} + \frac{1}{3} \right) (n)$ $= \lambda f(n) + \lambda g(n)$ @ my mttple & scalaire associative.

Sole: Il suffit de remplace de sol 2, l'intervalle [0,1] p TV partout. Le prouve reste valable.

Considérans I:= 20,1,..., n y & F:= } f: I -> K & muni de l'addit & la multiplicat scaleire à de 1). On a ru do \$1 que Feet un esq. Vect. Mg Fest Equivalent à E3. In $P \in E_3$, on pt écrire: P(x) = an x + an x + - + a, x + ao

pc am, an-2, --, ao ∈ K (onsiderons $\phi: E_3 \rightarrow F$ $\phi(P):= f$ où $f(0) = a_0, f(1) = a_1, \dots, f(n) = a_n$.

O est sijective.

D'antre part, pour P, P C E3 et P(P)=f $\phi(q)=g$

 $\Phi(P+Q) = h + h(i) = f(i) + g(i)$ $cax g(n) = f(n) n^{m} + ... + f(4) n + f(0) . n^{0}.$ $Q(x) = g(n) x^{n} + \dots + g(o) x^{o}.$ $(P+Q)(n) = (f(n)+g(n))_{2}^{m} + ... + (f(o)+g(o))_{n}^{o}.$ Dow $\phi(P+Q) = \phi(P) + \phi(Q)$. On pt vénfix que $\phi(AP) = \lambda \phi(P)$, $\forall A \in \mathcal{H}$, $\forall P \in \mathcal{E}_3$.

De (F,+,*) et $(E_3,+,*)$ at g \hat{m} .

Gr (F, +, x) est un esp. vect. d'après 1), il en est de même pour (Ez, t, x).

ReD 2 ev & K, $V & V^*$ st isomorphes s' \exists appli sijective $\Psi: V \rightarrow V$ of respect is greaters. In $\Psi(V) = V^* \Rightarrow \Psi(u + v) = u^* + v^*$ or $\Psi(u) = u$ $\Psi(u) = u$ $\Psi(u) = u$ u^* .

Bonus : Déterminer din Ez. E3 = Vect (1, x, X, ..., pr P E E3. P(x) = an X + gn-1 X + --+ a X + ao Donc dim E3 = Card {1, x, ..., x m} = m+1. End soit E un K-ev 1) soit F& G des sous espaces Vect de E. Mg FUG est un 21-espace <=> FCG on GCF. 8) soit H un troisième ss- EV de E. Mg GCF \Rightarrow Fn (G+H) = G+(FNH) Kappel: soit E un K-W, soit FCE: Par définit, F est sous-espace si (F,+, *) est un ev. En pt mg Fest ss-esp. vect. Fest stable

C=> V u, u2 EF: 4+42 EF

& V A BK, u EF: 24 EF.

E=IR²

F= droite

G= droite

(<=) in FCG alors FUG= G est un @ on GCF alors FUG= F est un @

(=) Supposons par l'absurde Fubest Jev mais F & G et G & F.

FJEF: JEG. JgEG: gEF.

Considérions h := f + g. Fu G par hypothète $h \in Vect (F, G)$ cax $f \in F, g \in G$ & h = f + g. Gx $h \notin F$ cax xirron $g = h - f \in F$ $g \in F$ $g \in G$ $g \notin F$.

h & G can rimon $f = h - g \in G$ 9 controlinant $f \notin G$. Done $h \in F \cup G$ mais $h \notin F$, $h \notin G \Rightarrow 9$?

(1)

Normes, normes Equivalentes

End pr $a = (a_1, a_2, ..., a_m) \in \mathbb{K}^m$, on pose $\|a\|_{2} = \sum_{k=1}^{m} |a_{k}|$ $\|a\|_{2} = \left(\sum_{k=1}^{m} |a_{k}|^{2}\right)^{1/2}$ $\|a\|_{\infty} = \max_{1 \le k \le m} |a_{k}|$

a) Mg ju p=1,2, xx; (K", 11-1/p) est un K-espace vectoriel mouné.

(i) $\forall n, y \in E$: $||x+y|| \leq ||x|| + ||y||$

a) Mg ||.||s est une norme. noit $a := (a_1, ..., a_m) \in \mathbb{K}^m$, posons $\tilde{S} := (c_1, ..., c_m) \in \mathbb{K}^m$, $g \in \mathbb{K}$.

Gn a $||a||_{2} = 0 \iff \sum_{h=1}^{\infty} |a_{h}| = 0 \iff |a_{h}| = 0 \iff k$ Donc $||\cdot||_{2}$ vérifie (i).

Emprite, $||\lambda a||_{2} = ||(\lambda a_{h}, \lambda a_{h})||_{2} \iff ||\lambda a_{h}| = ||\lambda|| \sum_{h=1}^{\infty} ||\lambda a_{h}||_{2} = ||\lambda|||_{2} = ||\lambda|||_{2}$

Enfin, $||a+b||_{\Delta} = ||(a_1+b_1),...,a_m+b_m)||_{\Delta} = \sum_{h=1}^{m} |a_k+b_h|$ $\leq \sum_{k=1}^{m} (|a_k|+|b_k|)$ cax $|a_k+b_k| \leq |a_k|+|b_k|$ $= ||a||_{\Delta} + ||b||_{\Delta}$ De $||...||_{\Delta}$ virifie (iii)

al 11.112 est une norme.

De \tilde{m} pr ||.||e $\frac{1}{2} \left(\sum_{k=1}^{n} |a_{k}|^{2} \right)^{4/e}$; \tilde{m} reisonnt que ||.||s ($\tilde{a}\tilde{u}\tilde{u}$) ||a+b||2= ||(a_{1}+b_{1},...,a_{n}+b_{m})||e = $\left(\sum_{k=1}^{\infty} |a_{k}+b_{k}|^{c} \right)^{4/2}$

Glorevons que (lathle /bll = + 11 bll = 2=> ||a+ ||e | ||a||e + ||b||e + 2||a||e ||b||e ∑ lah+bel ≤ Σlant + Σleel + 21/2 lax |2/(2/21/2) / Il vient de : En atilisant d'identité, pr 3, W C C 13+W/= (3+W) (3+W) = 33 + 3 w + w3 + ww = 1312+3W+W3+W2 Le membre de genche de la dernière ligne est [] axl + [| bxl + I qbh + I qbk Par conségt, la dernière égalité est réquirlle à $\sum a_k b_k + \sum \bar{a_k} b_k \leq 2 \sqrt{(\sum |a_k|^2)} (\sum |b_k|^2)$ Ro Inégalité de Cauchy- Schwarz, si 31,-., 3m, W1,..., Wn E C alors 1 = 1 3h Wh 1 = (\(\sum_{n=1} | 3h |^2) (\sum_{n=1} | wh |^2)

Par Cauchy- Schwaz, $|\Sigma a_k \overline{b_h}| \leq V(\Sigma |a_k|^2)(\Sigma |b_h|^2)$ | Zak bk + Zak bk | S | Zak bk | + | Zak bk $-2|\sum_{k}a_{k}b_{k}| car \sum_{k}a_{k}b_{k}=(\sum_{k}a_{k}b_{k})$ < 2√(∑|ax|2)(∑|bk|2) D'où iii) venfier pr 11-12.

6) My cos 3 normes st équivalentes. Considerons onto la 11.110, Deux normes $\|\cdot\|_{\mathbb{I}} & \|\cdot\|_{\mathbb{I}}$ stéguivaltes s'à 2 austantes que >0 ty \forall $n \in E$ (i) ||a| = 0 (=) man |apl = 0 (=) |ah |=0, th (=) ah=0, th (=) a=0. $C_{\perp} \| \mathbf{a} \|_{\mathbf{I}} \leq \| \mathbf{a} \|_{\mathbf{I}} \leq C_{\perp} \| \mathbf{a} \|_{\mathbf{I}}$ De l'elso vérifie (i) Puis 12 allo = 1(2a, ..., 2am) (x $c_1 < \frac{\|n\|_{\overline{1}}}{\|n\|_{\tau}} < c_2.$ = man | 20k | = | 2/ man lak | = |2/ | | all go 15/600 Il suffit de mg 11.11 0 5 11.112 511.112 a D'on 11-Up ventic (in). e n 11.11x > 11.11x 2 Emante verijions 1 In a $\in \mathbb{K}^m$, on a: $\|a\|_{\infty} = man |a_k| = |a_k|$ $\lim_{k \to \infty} |a_k| = |a_k|$ $\lim_{k \to \infty} |a_k|^2 = |a_k|^2 = |a_k|^2$ $\lim_{k \to \infty} |a_k|^2 = |a_k|^2$ 11 a + B 11 po = [(an+ bn) 1 po = man | an+ bn | Cobservans pe 1 5 k En, | ax+ bx | 5 | ax | + | bx | 6 man | ai | + man | bi |

16 i En 16 i Emourtes Malle & Malle (Malle Malle (\sum | \langle = . Ilallo + 11 bllo de lla+bllo & llello + 16llo. (2 \ [ai||aj| 20 et mai. Aims (iii) estrénfié. DC 114112 (11211 1 . D'où 11-llap est une moime. Chinsi on a myé inégalité (1).

Mg on $\|\cdot\|_{\infty}$ > $\|\cdot\|_{\perp}$,

on a $\|a\|_{2} = \sum_{k=1}^{m} |a_{k}| \le \sum_{k=1}^{m} \|a\|_{\infty}$ con $|a_{k}| \le \max_{k \le 1} |a_{k}| \le 1$ Note that $|a_{k}| \le 1$ de $\|a\|_{2} \le \max_{k \le 1} |a|_{\infty}$

en condumt (1), (2), (3): les 3 mormes et Equivalentes.

C) Cen suppose K=1R=n=2. Dessinor les boutes unités pre chaucre des 3 mormes.

E=Ke. a(n,y) e Re.

B':= {aeE, || a|| 219 = {(n,y)e R?: |x|+|y| (15) = l'intérieux du corré de

= l'intérieur des couré de sommets (1,0), (0,1), (-1,0), (6,-1).

 $B^{s}_{i=}\{a \in E, \|a\|_{2} (19) \in \mathbb{R}^{2} : V_{En_{2}}^{2} + \xi_{y}^{2} \} = \xi_{e} \text{ disque uniter}$

 $|B^{\infty}| = \{a \in \mathcal{E}, \||a||_{\infty} \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : \max(|x|,|y|) \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$ $= \{(a,y) \in \mathbb{R}^2 : |x| \leq 1 \text{ by } \leq 1\}$

