Chapter 6

The Riemann-Stieltjes Integral

6.1 Notes

1/28:

- Plan:
 - 1. Finish up Fundamental Theorem of Calculus proof.
 - 2. Basic consequences.
 - 3. Rectifiable curves.
- Recall that we're given $f:[a,b]\to\mathbb{R}$ continuous, $f:[a,b]\to\mathbb{R}$, and $x\mapsto\int_a^x f(t)\,\mathrm{d}t$.
- Goal: Show $F'(x_0) = f(x_0)$.
 - WTS: Find δ such that $|x x_0| < \delta$ implies

$$\left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - f(x_0) \right| = \left| \frac{1}{x - x_0} \int_{x_0}^x f(t) dt - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0)) dt \right|$$

$$\leq \frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| dt$$

$$\leq \epsilon$$

- Since f is continuous, there exists δ such that if $|x-x_0| < \delta$, then $|f(x)-f(x_0)| < \epsilon$.
- Now

$$\frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)| \, \mathrm{d}t < \frac{1}{|x - x_0|} \int_{x_0}^x \epsilon \, \mathrm{d}t$$

$$= \epsilon$$

- Applications:
 - 1. Theorem (MVT for integration): $f:[a,b]\to\mathbb{R}$ continuous, then there exists $x_0\in[a,b]$ such that

$$f(x_0) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x$$

– Apply MVT to $F(x) = \int_a^x f(t) dt$. Then

$$F'(x_0) = f(x_0) = \frac{F(b) - F(a)}{b - a}$$

as desired.

2. Theorem (Integration by parts): Let $F, G : [a, b] \to \mathbb{R}$ be differentiable with F' = f, G' = g and with f and g both integrable. Then

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- Just use the product rule plus the FTC to prove.
- We have

$$\int_{a}^{b} (FG)' = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$F(b)G(b) - F(a)G(a) = \int_{a}^{b} fG + \int_{a}^{b} Fg$$

$$\int_{a}^{b} Fg = F(b)G(b) - F(a)G(a) - \int_{a}^{b} fG$$

- 3. Theorem (u-substitution).
 - Follows similarly from the chain rule and FTC.
- Integration of vector-valued functions.
- If $f:[a,b]\to\mathbb{R}^k$, we define $\int_a^b f$ by

$$\int_{a}^{b} f = \left(\int_{a}^{b} f_{1}, \dots, \int_{a}^{b} f_{k} \right)$$

- Alternatively, you can define $\int_a^b f$ using P, U(f, P), L(f, P), etc. and then prove that the integral exists iff all f_i are integrable and in this case the above definition holds.
- Rectifiable curves: Let $\gamma:[a,b]\to\mathbb{R}^k$ be a continuous function.
- Plan: Define the length of γ and show that we can compute it with an integral.
 - Idea: For polygonal paths, we know how to define length. So let's approximate γ by polygons and take a limit.
 - Ref: Given a partition P, then define the length of γ with respect to P as $\Lambda(\gamma, P)$. Let the length of γ be $\Lambda(\gamma) = \sup_{P} \Lambda(\gamma, P)$ if this limit exists in this case, we call γ rectifiable.
- Fractals are not rectifiable their length diverges.
- Theorem: Suppose γ is continuously differentiable (i.e., γ is differentiable and γ' is continuous). Then γ si rectifiable and

$$\Lambda(\gamma) = \int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t$$

- Notice: If $P \leq P'$, then $\Lambda(\gamma, P) \leq \Lambda(\gamma, P')$. (Prove with triangle inequality.)
- WTS: For all partitions P, $\Lambda(\gamma, P) \leq \int_a^b |\gamma'(t)| dt$ and thus $\Lambda(\gamma) \leq \int_a^b |\gamma'(t)| dt$.
- We have that

$$\Lambda(\gamma, P) = \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})|$$

$$= \sum_{i=1}^{n} \left| \int_{x_{i-1}}^{x_i} \gamma'(t) dt \right|$$

$$\leq \sum_{i=1}^{n} \int_{x_{i-1}}^{x_i} |\gamma'(t)| dt$$

$$= \int_{a}^{b} |\gamma'(t)| dt$$

- Catch up.
 - I should make up PSets 1-2.
 - Exams have less than Rudin-strength problems.
 - Exams are mostly true/false (and of that, mostly false, provide a counterexample).

6.2 Exam 1 Additional Topics

• A continuous function that is not always differentiable.

$$f(x) = |x|$$

• A differentiable function with a discontinuous derivative.

$$f(x) = x^2 \sin \frac{1}{x}$$

• A vector-valued function that doesn't satisfy the MVT.

$$\mathbf{f}(x) = e^{ix}$$

- Between 0 and 2π .
- A pair of vector-valued functions that don't satisfy L'Hôpital's rule.

$$f(x) = x g(x) = x + x^2 e^{i/x^2}$$