

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B. Sc. General Degree in Applied Sciences Second Year - Semester I Examination – June/July 2018 MAP 2301 – ALGEBRA

Time: Three (03) hours

Answer All (06) questions

1. a) Let A and B be two sets. Show that $A \subseteq B$ if and only if $B = A \cup (B \setminus A)$.

b) The symmetric difference of the sets A and B is defined by $A\Delta B = (A \setminus B) \cup (B \setminus A)$. Let

A, B and C be three sets. Prove the following:

i.
$$A\Delta\phi = A$$
.

ii.
$$A \cap (B\Delta C) = (A \cap B)\Delta(A \cap C)$$
.

c) Compute the truth tables for the following propositional formulas:

i.
$$(p \land \neg q) \lor \not \prec (p \rightarrow q)$$
.

ii.
$$(p \land \neg q) \lor (r \to \neg s) \lor \neg (p \to r)$$
.

2. a) Define the following terms:

i. Reflexive relation

ii. Symmetric relation

iii. Anti-symmetric relation

iv. - Transitive relation

v. Equivalence relation

b) Let R be a relation defined on Z by xRy if $x^2 - y^2$ divisible by 7 for $x, y \in Z$.

Is R an equivalence relation? Justify your answer.

c) Let $S=\Re-\{0\}$ be a set. Define a relation R on the set S by xRy if $\frac{x}{y}\in Q$ for each $x,y\in S$. Prove that S is an equivalence relation.

- i. Well defined function
- ii. One to one function
- iii. Onto function
- iv. Bijective function

b) Which of the following functions are Well defined , one to one , onto or Bijective ?Justify your answers

i.
$$f: \mathbb{R} \to \mathbb{R}$$
, where $f(x) = x^3 - 2x + 1$

ii.
$$f: \Re -\{1\} \rightarrow \Re$$
, where $f(x) = \frac{2x+3}{x-1}$

iii.
$$f: \Re \to \Re$$
, where $f(x) = \begin{cases} x^2 & ; x \le 0 \\ x+2 & ; x > 0 \end{cases}$

iv.
$$f: \mathbb{R} \to \mathbb{R}$$
, where $f(x) = \sin x$

c) Which of the followings are binary operations? Justify your answer

i.
$$a*b = \frac{ab}{5}$$
, where $a, b \in \mathbb{Q}$.

ii.
$$a*b = \frac{a}{a^2 + b^2}$$
, where $a, b \in \Re$.

iii.
$$a*b = \sqrt{a}$$
, where $a, b \in \Re^+$.

iv.
$$a*b = e^{\frac{a}{b}}$$
, where $a, b \in \mathbb{Z}$.

4. (a). Determine whether the following permutations are even or odd.

(b). Let
$$\alpha = \begin{pmatrix} 1 & 9 & 2 \end{pmatrix} \begin{pmatrix} 3 & 5 & 8 & 7 \end{pmatrix}$$
, $\beta = \begin{pmatrix} 3 & 7 & 5 & 4 \end{pmatrix}$ and $\gamma = \begin{pmatrix} 3 & 2 & 7 \end{pmatrix} \begin{pmatrix} 1 & 5 & 4 \end{pmatrix}$.

i. Find the orders of α , β and γ .

ii. Find
$$\alpha^{-1}, \beta^{-3}, \alpha^2 \beta^3 \gamma^{-4}$$
 .

iii.
$$lpha^{2018}eta^{400}\gamma^{99}$$

5. a) Write the axioms of the groups.

Let $G = \left\{ M = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \middle| a, b \in R, \det M \neq 0 \right\}$ and Let \times denotes the ordinary matrix multiplication. Show that (G, \times) is a group.

b) Let G be a group. Suppose $(ab)^n = a^n b^n$ for all $a, b \in G$ where n > 1 is a fixed integer. Show that:

i.
$$(ab)^{n-1} = b^{n-1}a^{n-1}$$

ii. $a^nb^{n-1} = b^{n-1}a^n$

ii.
$$a^n b^{n-1} = b^{n-1} a^n$$

c) Define a sub group of a group G.

Prove that, a non-empty subset H of a group G is a sub group of G if and only if $ab^{-1} \in H$ for all $a, b \in H$.

- 6. a) Prove that, $1^3 + 2^3 + 3^3 + ... + n^3 = \left[\frac{n(n+1)}{2}\right]^2$ for all $n \ge 1$.
 - b) Given integers a and b, with b > 0, show that there exist unique integers q and r satisfying a = qb + r, $0 \le r < b$.
 - c) Prove that a linear Diophantine equation ax + by = c has a solution if and only if $d \mid c$, where $d = \gcd(a, b)$. If (x_0, y_0) is a particular solution of this equation, then the General solution is given by

$$x = x_0 + \left(\frac{b}{d}\right)t$$
, $y = y_0 - \left(\frac{a}{d}\right)t$ where t an integer

d) Solve the Diophantine linear 172 x + 20 y = 1000.

.....END.....