Lasso Ridge Regularization

```
In [1]:

    import pandas as pd

            import numpy as np
In [2]:
         import seaborn as sns
            import matplotlib.pyplot as plt
            %matplotlib inline
from sklearn.preprocessing import PolynomialFeatures
           from sklearn.model selection import train test split
        from sklearn.linear_model import LinearRegression, Ridge, Lasso
           from sklearn.metrics import r2 score
         data=pd.read csv(r'C:\Users\yogay\OneDrive\Desktop\Yogita Yadav\Data Science\8th\TASK-22 LASSO,RIDGE\car-mpg.csv'
In [5]:

▶ data.head()
In [6]:
   Out[6]:
               mpg cyl
                        disp
                                   wt acc yr origin car_type
                                                                      car_name
                     8 307.0 130 3504 12.0 70
                                                         0 chevrolet chevelle malibu
               18.0
             1 15.0
                     8 350.0 165 3693 11.5 70
                                                                 buick skylark 320
              18.0
                     8 318.0 150 3436 11.0 70
                                                                 plymouth satellite
             3 16.0
                     8 304.0 150 3433 12.0 70
                                                                    amc rebel sst
             4 17.0
                     8 302.0 140 3449 10.5 70
                                                 1
                                                         0
                                                                      ford torino
```

```
In [7]: | data = data.drop(['car_name'], axis = 1)
             data['origin'] = data['origin'].replace({1: 'america', 2: 'europe', 3: 'asia'})
             data = pd.get dummies(data,columns = ['origin'])
             data = data.replace('?', np.nan)
             data = data.apply(lambda x: x.fillna(x.median()), axis = 0)
 Out[8]:
                                    wt acc yr car_type origin_america origin_asia origin_europe
                mpg cyl disp
                      8 307.0 130 3504 12.0 70
              0 18.0
                                                    0
                                                                 1
                                                                          0
                                                                                      0
              1 15.0
                      8 350.0 165 3693 11.5 70
                                                                          0
                                                                                       0
              2 18.0
                      8 318.0 150 3436 11.0 70
                                                                          0
                                                                                      0
              3 16.0
                      8 304.0 150 3433 12.0 70
                                                                                      0
              4 17.0
                     8 302.0 140 3449 10.5 70
                                                                          0
                                                                                      0
                                                                 1
 In [9]: N X = data.drop(['mpg'], axis = 1) # independent variable
            y = data[['mpg']] #dependent variable
In [10]: ► X_s = preprocessing.scale(X)
            X s = pd.DataFrame(X s, columns = X.columns)
            y s = preprocessing.scale(y)
            y_s = pd.DataFrame(y_s, columns = y.columns)
In [11]: N X_train, X_test, y_train,y_test = train_test_split(X_s, y_s, test_size = 0.30, random_state = 1)
            X train.shape
   Out[11]: (278, 10)
```

```
regression model = LinearRegression()
In [12]:
            regression model.fit(X train, y train)
            for idx, col name in enumerate(X train.columns):
                print('The coefficient for {} is {}'.format(col_name, regression_model.coef_[0][idx]))
            intercept = regression model.intercept [0]
            print('The intercept is {}'.format(intercept))
            The coefficient for cyl is 0.3210223856916103
            The coefficient for disp is 0.3248343091848394
            The coefficient for hp is -0.22916950059437657
            The coefficient for wt is -0.7112101905072294
            The coefficient for acc is 0.01471368276419114
            The coefficient for yr is 0.37558119495107434
            The coefficient for car_type is 0.3814769484233101
            The coefficient for origin america is -0.07472247547584179
            The coefficient for origin asia is 0.044515252035678
            The coefficient for origin_europe is 0.04834854953945406
            The intercept is 0.019284116103639722
ridge model.fit(X train, y train)
            print('Ridge model coef: {}'.format(ridge model.coef ))
             Ridge model coef: [[ 0.31649043  0.31320707 -0.22876025 -0.70109447  0.01295851  0.37447352
                0.37725608 -0.07423624 0.04441039 0.04784031]]
In [14]: ▶ lasso model = Lasso(alpha = 0.1)
            lasso model.fit(X train, y train)
            print('Lasso model coef: {}'.format(lasso model.coef ))
            Lasso model coef: [-0.
                                                      -0.01690287 -0.51890013 0.
                                                                                          0.28138241
                                           -0.
              0.1278489 -0.01642647 0.
                                                 0.
```

```
In [15]: ► #Model score - r^2 or coeff of determinant
            \#r^2 = 1 - (RSS/TSS) = Regression error/TSS
            #Simple Linear Model
            print(regression model.score(X train, y train))
            print(regression_model.score(X_test, y_test))
            print('**********************************
            #Ridge
            print(ridge_model.score(X_train, y_train))
            print(ridge_model.score(X_test, y_test))
            print('***************************
            #Lasso
            print(lasso model.score(X train, y train))
            print(lasso_model.score(X_test, y_test))
            0.8343770256960538
            0.8513421387780066
             ********
            0.8343617931312617
            0.8518882171608501
             ********
            0.7938010766228453
            0.8375229615977084
```

```
In [16]:  data_train_test = pd.concat([X_train, y_train], axis =1)
  data_train_test.head()
```

Out[16]:

	cyl	disp	hp	wt	acc	yr	car_type	origin_america	origin_asia	origin_europe	mpg
350	-0.856321	-0.849116	-1.081977	-0.893172	-0.242570	1.351199	0.941412	0.773559	-0.497643	-0.461968	1.432898
59	-0.856321	-0.925936	-1.317736	-0.847061	2.879909	-1.085858	0.941412	- 1.292726	-0.497643	2.164651	-0.065919
120	-0.856321	-0.695475	0.201600	-0.121101	-0.024722	-0.815074	0.941412	- 1.292726	-0.497643	2.164651	-0.578335
12	1.498191	1.983643	1.197027	0.934732	-2.203196	-1.627426	-1.062235	0.773559	-0.497643	-0.461968	-1.090751
349	-0.856321	-0.983552	-0.951000	-1.165111	0.156817	1.351199	0.941412	-1.292726	2.009471	-0.461968	1.356035

```
Out[17]: Intercept
                           0.019284
         cyl
                           0.321022
         disp
                           0.324834
                          -0.229170
         hp
                          -0.711210
         wt
                           0.014714
         acc
         yr
                           0.375581
                           0.381477
         car_type
                         -0.074722
         origin america
         origin_europe
                           0.048349
         origin_asia
                           0.044515
         dtype: float64
```

In [18]: ▶ print(ols1.summary())

OLS Regression Results										
Dep. Variable: Model:		mpg OLS	R-squared: Adj. R-squ		 0.834 0.829					
Method:	Lea	st Squares	F-statisti		150.0					
Date:		8 Nov 2023	Prob (F-st		3.12e-99					
Time:	nea, c	23:26:54	Log-Likeli	•	-1 46.89					
No. Observations:		278	AIC:		313.8					
Df Residuals:		268	BIC:		350.1					
Df Model:		9								
Covariance Type:		nonrobust								
==========	coef	std err	-====== t	P> t	[0.025	0.975]				
Intercept	0.0193	0.025	0.765	0.445	-0.030	0.069				
cyl	0.3210	0.112	2.856	0.005	0.100	0.542				
disp	0.3248	0.128	2.544	0.012	0.073	0.576				
hp	-0.2292	0.079	-2.915	0.004	-0.384	-0.074				
wt	-0.7112	0.088	-8.118	0.000	-0.884	-0.539				
acc	0.0147	0.039	0.373	0.709	-0.063	0.092				
yr	0.3756	0.029	13.088	0.000	0.319	0.432				
car_type	0.3815	0.067	5.728	0.000	0.250	0.513				
	-0.0747	0.020	- 3.723	0.000	-0.114	-0.035				
· - ·	0.0483	0.021	2.270	0.024	0.006	0.090				
origin_asia	0.0445 	0.020 	2.175 	0.031	0.004 	0.085				
Omnibus:	22.678		Durbin-Wat	son:	2.105					
Prob(Omnibus):	0.000		Jarque-Ber	а (ЈВ):	36.139					
Skew:	0.513		Prob(JB):		1.42e-08					
Kurtosis:		4.438	Cond. No.		1.27e+16					
=======================================	=======	========		=======	========	====				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.72e-30. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

Root Mean Squared Error: 0.3776693425408784

C:\Users\yogay\anaconda3\lib\site-packages\numpy\core\fromnumeric.py:3430: FutureWarning: In a future version, D ataFrame.mean(axis=None) will return a scalar mean over the entire DataFrame. To retain the old behavior, use 'f rame.mean(axis=0)' or just 'frame.mean()'

return mean(axis=axis, dtype=dtype, out=out, **kwargs)


```
In [21]:  y_pred = regression_model.predict(X_test)
plt.scatter(y_test['mpg'], y_pred,c='red')
```

Out[21]: <matplotlib.collections.PathCollection at 0x1a0f63e2ef0>

