Homework III

Vicente V. Figueira — NUSP 11809301

May 24, 2025

Contents

Pr	blem 1	1
	A)	1
	B)	1
	C)	1
	D)	1
\mathbf{Pr}	blem 2	2
	2.A)	2
	2.B)	2
	2.C)	2
	(2.D)	2
\mathbf{Pr}	blem 3	3
	B.A)	3
	$(3.8)^{'}$	3
	$3.C^{'}$	3
	(3.D)	3
	$3.{ m E}^{'}$	3
	$3.F^{'}$	3
A	BRST A.1 Faddeev-Popov Gauge Fixing	4
Ρı	oblem 1	
1.	4)	
1.	3)	
1.		
1.))	

Problem 2

- 2.A)
- 2.B)
- 2.C)
- 2.D)

Problem 3

- 3.A)
- 3.B)
- 3.C)
- 3.D)
- 3.E)
- 3.F)

A BRST

A.1 Faddeev-Popov Gauge Fixing

We'll start with a discussion of the Faddeev-Popov procedure of gauge fixing, first, our action is,

$$S_X + \lambda \chi = \frac{1}{4\pi\alpha'} \int_M d^2\sigma \sqrt{h} h^{ab} \partial_a X^{\mu} \partial_b X_{\mu} + \frac{\lambda}{4\pi} \int_M d^2\sigma \sqrt{h} R + \frac{\lambda}{2\pi} \int_{\partial M} ds K$$

we would like to define the quantum theory by means of the path integral, that is, we expect that,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}h \exp\left(-S_X[X, h] - \lambda \chi\right)$$

should give a well defined theory, but, the integral should be only over physical and inequivalent configurations of X, h, and as we know, we have Diff×Weyl gauge redundancies in this theory, this means in the integral measure we're over-counting physical configurations, that is, instead of the integral $\int \mathcal{D}h$ being over the whole space of all possible metrics, it should be in the space of equivalence classes under Diff×Weyl of all possible metrics. Before correcting this over-counting, we can brake down the sum over all metrics by the value of the Euler Characteristic χ ,

$$Z \stackrel{?}{=} \int \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h] - \lambda \chi\right)$$

$$Z \stackrel{?}{=} \sum_{M_g} \int_{\text{Met}(M_g)} \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h] - \lambda \chi\right)$$

$$Z \stackrel{?}{=} \sum_{M_g} \exp\left(-\lambda g\right) \int_{\text{Met}(M_g)} \mathcal{D}h \int \mathcal{D}X \exp\left(-S_X[X, h]\right)$$

Where M_g is to be understood as a compact, not necessarily connected, two dimensional Riemannian manifold/surface with Euler Characteristic $\chi = g$, and $\text{Met}(M_g)$ is the space of all metrics which can be assigned to M_g . While for $M_g \cong \mathbb{R}^2 \cong \mathbb{C}$ it's true that all possible metrics are Diff×Weyl equivalent to each other, for non-trivial topologies this is not true, what do happens is the *moduli space*, or, the set of equivalence classes,

$$\mathcal{M}_q = \operatorname{Met}(M_q)/\operatorname{Diff} \times \operatorname{Weyl}$$

possesses more than one element. The equivalence class is to be understood as,

$$h'_{ab} \sim h_{ab} \Leftrightarrow h'_{ab}(\sigma'(\sigma)) = \exp(2\omega(\sigma)) \frac{\partial \sigma^c}{\partial \sigma'^a} \frac{\partial \sigma^d}{\partial \sigma'^b} h_{cd}(\sigma)$$

that is, two metrics are the same representative of an element of \mathcal{M}_g iff they differ by a composition of a Diff and Weyl transformation. We'll denote a given composition of a Diff followed by a Weyl by just ζ , so that

$$h' = \zeta \circ h$$

Thus, it's possible for us to set up a well defined version of the path integral, just replace $Met(M_g)$ by \mathcal{M}_g ,

$$Z = \sum_{M_g} \exp(-\lambda g) \int_{\mathcal{M}_g} \mathcal{D}h \int \mathcal{D}X \exp(-S_X[X, h])$$

where the integration is to be understood as by choosing for each equivalence class in \mathcal{M}_g a representative element in $\text{Met}(M_g)$. While this is a satisfactory definition for the path integral, it feels a little clunky, we rather have an path integral over all the possible metrics, well, this is achievable. First, for each equivalence class of \mathcal{M}_g elect one representative element of $\text{Met}(M_g)$, we'll denote these elements as $\hat{h}(t^I)$ — here t^I is a parametrization of the elements in \mathcal{M}_g —, by construction, these representatives are inequivalent under $\text{Diff} \times \text{Weyl}$, hence,

$$\zeta_1 \circ \hat{h}(t^I) = \zeta_2 \circ \hat{h}(t^K) \Leftrightarrow t^I = t^K \text{ and } \zeta_1 = \zeta_2$$

so that every element in $\operatorname{Met}(M_g)$ can be written as a unique¹ composition of a given ζ into a given $\hat{h}(t^I)$

in this way is possible to separate the integral over all metrics $\int \mathcal{D}h$ into an integration over all inequivalent metrics $\int \mathcal{D}\hat{h}$ and an integration over all possible Diff×Weyl transformations $\int \mathcal{D}\zeta$, so that the partition function can be rewrote as,

$$Z \stackrel{?}{=} \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \exp\left(-S_X[X,\zeta \circ h]\right)$$

this still has the same problem of before, we're over-integrating the physical configurations, that is, \hat{h} are the physical configurations, but we're integrating also over the whole Diff×Weyl group in $\mathcal{D}\zeta$. One way of circumventing this problem is introducing by hand a Dirac delta to force $\zeta = 0$, what also forces we to integrate only over one copy of the physical configurations,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta) \exp\left(-S_X[X, \zeta \circ h]\right)$$

but this is not the most general way, we could set $\zeta = f(\sigma)$, for a arbitrary function, and this would still give the same theory,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp\left(-S_X[X, \zeta \circ h]\right)$$

we can go even further and give a function $G(\zeta)$ such that the solution to $G(\zeta) = 0$ is only $\zeta = f$, so that we can use the relations between Dirac deltas,

$$\delta(G(\zeta)) = \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \right|^{-1} \delta(\zeta - f)$$

to obtain,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \delta(\zeta - f) \exp\left(-S_X[X, \zeta \circ h]\right)$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp\left(-S_X[X, \zeta \circ \hat{h}]\right) \right|$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G}{\delta \zeta} \right] \right|_{\zeta = f} \left| \delta(G(\zeta)) \exp\left(-S_X[X, \zeta \circ \hat{h}]\right) \right|$$

There are some details here, as ζ is to represent both a Weyl and a Diff, it has to represent both a function ω and a vector field ξ such that,

$$\zeta \circ \hat{h} = \hat{h} + 2\omega \hat{h} + \pounds_{\xi} \hat{h} + \mathcal{O}(\omega^2, \xi^2, \omega \xi)$$

 $^{^{1}\}mathrm{The}$

$$\left[\zeta \circ \hat{h}\right]_{ab} = \hat{h}_{ab} + 2\omega \hat{h}_{ab} + 2\nabla_{(a}\xi_{b)} + \mathcal{O}(\omega^2, \xi^2, \omega\xi)$$

this means both $\zeta = f$ and $G(\zeta) = 0$ are in fact a collection of various equations. In particular, we'll choose

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab}$$

for a particular metric \tilde{h} . As $G_{ab}(\zeta)$ is in fact a function of $h = \zeta \circ \hat{h}$ alone,

$$G_{ab}(\zeta) = \left[\tilde{h}\right]_{ab} - \left[\zeta \circ \hat{h}\right]_{ab} = \left[\tilde{h}\right]_{ab} - [h]_{ab} = G_{ab}(h)$$

we can rewrite as,

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{\zeta=f} \left| \delta(G_{ab}(\zeta)) \exp \left(-S_X \left[X, \zeta \circ \hat{h} \right] \right) \right|_{\zeta=f}$$

$$Z = \int \mathcal{D}X \mathcal{D}\hat{h} \mathcal{D}\zeta \left| \operatorname{Det} \left[\frac{\delta G_{ab}}{\delta \zeta} \right] \right|_{G_{ab}(h)=0} \left| \delta(G_{ab}(h)) \exp \left(-S_X \left[X, h \right] \right) \right|_{G_{ab}(h)=0}$$

Notice that every term in the integrand depends on ζ only through $h = \zeta \circ \hat{h}$, this is what we do want, so that we can recombine the integration measure $\int \mathcal{D}\hat{h}\mathcal{D}\zeta = \int \mathcal{D}h$, the only problem in this procedure is the term,

$$\operatorname{Det}\left[\frac{\delta G_{ab}}{\delta \zeta}\right]\bigg|_{G_{ab}(h)=0}$$

which is manifestly dependent on ζ , or at least looks like it is. We'll prove it only depends on ζ through $h = \zeta \circ \hat{h}$. The point is, if

$$G_{ab}(h) = \tilde{h}_{ab} - h_{ab} = \tilde{h}_{ab} - \left[\zeta \circ \hat{h} \right]_{ab} = 0$$

is needed to have a solution, then exists the transformation $\tilde{\zeta}$, such that,

$$\tilde{\zeta} \circ \hat{h} = \tilde{h}$$

as this transformation is also an element of the gauge **group**, it certainly has an inverse, $\tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h} = \hat{h}$, thus,

$$G_{ab}(h) = \tilde{h} - \zeta \circ \hat{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{h}$$

$$G_{ab}(h) = \tilde{h} - \zeta' \circ \tilde{h}$$

where we defined the new gauge transformation $\zeta' = \zeta \circ \tilde{\zeta}^{-1}$, notice that,

$$h = \zeta \circ \hat{h}$$

$$h = \zeta \circ \tilde{\zeta}^{-1} \circ \tilde{\zeta} \circ \hat{h}$$

$$h = \zeta' \circ \tilde{h}$$