Definition of Schemes

Simon Pohmann

February 22, 2022

Contents

I	Category-theoretical stuff	1
2	Schemes	3
3	Coproduct (gluing) in Sch	4
4	Products in Sch	6
5	Properties of Schemes and Morphisms	8

1 Category-theoretical stuff

Let \mathcal{C} be a sub-category of **Set** that has small limits and colimits, and let X be a topological space.

Definition 1.1. A sheaf on X is a functor

$$F: \operatorname{Top}(X)^{\operatorname{op}} \to \mathcal{C}$$

that satisfies a local-to-global condition, i.e. for $(U_i)_i$ open and $s_i \in F(U_i)$ such that

$$s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$$

there exists a unique $s \in F(\bigcup_i U_i)$ such that

$$s|_{U_i} = s_i$$

Here we write $s|_V$ for the image of $s \in F(U)$ under the map $F(U) \to F(V)$ (which we get from the inclusion morphism $V \subseteq U$ in Top(X)).

Definition 1.2. Let F be a sheaf on X. Then the stalk of F at some $x \in X$ is the colimit

$$F_x := \operatorname*{colim}_{U\ni x \text{ open}} F(U)$$

Definition 1.3. Let B be a basis of X. A B-sheaf is a functor

$$F: \underline{\mathrm{Top}(X)|_{B}}^{\mathrm{op}} \to \mathcal{C}$$

 $F: \underbrace{\mathrm{Top}(X)\big|_B}^\mathrm{op} \to \mathcal{C}$ The subcategory of $\mathrm{Top}(X)$ containing only the objects from B

that satisfies a local-to-global condition, i.e. for $(U_i)_i$ in B and $s_i \in F(U_i)$ such that

$$\forall x \in U_i \cap U_j \ \underline{\exists x \in V \subseteq U_i \cap U_j}: \ s_i\big|_V = s_j\big|_V \quad \text{and} \quad U := \bigcup_i U_i \in B$$
 Since B is a basis, there is always at least one such V

there exists a unique $s \in F(U)$ such that

$$s|_{U_i} = s_i$$

Theorem 1.4. Let F be a B-sheaf for some basis B of X. Then there exists a unique (up to unique isomorphism) sheaf \tilde{F} on X that extends F.

Proof. First, we show Existence. For an open U in X, define

$$\tilde{F}(U) := \lim_{V \subseteq U, \ V \in B} F(V)$$

For an inclusion $U_1 \subseteq U_2$ and $s \in \tilde{F}(U_2)$, define then $\tilde{F}(U_1 \subseteq U_2)$ as the unique map such that

$$\tilde{F}(U_2) \xrightarrow{\tilde{F}(U_1 \subseteq U_2)} \tilde{F}(U_1) \to F(V)$$
 is $\tilde{F}(U_1) \to F(V)$

for all $V \subseteq U_1, V \in B$.

Now note that for $U_1 \subseteq U_2 \subseteq U_3$ we also have a map

$$\tilde{F}(U_3) \to \tilde{F}(U_2) \to \tilde{F}(U_1)$$

that is compatible with the maps $F(V_1 \subseteq V_2)$ for $V_1 \subseteq V_2$, $V_1, V_2 \in B$, and so by uniqueness above, we see

$$\tilde{F}(U_1 \subseteq U_3) = \tilde{F}(U_1 \subseteq U_2) \circ \tilde{F}(U_2 \subseteq U_3)$$

Furthermore, clearly $\tilde{F}(\mathrm{id}_U)=\mathrm{id}_{\tilde{F}(U)}$, so \tilde{F} is a presheaf. Note that $\tilde{F}(V)\cong F(V)$ for all $V \in B$ and similar for morphisms, so indeed \tilde{F} extends F.

Now we show the local-to-global condition. Assume we have $(U_i)_i$ open in X and $s_i \in \tilde{F}(U_i)$ such that

$$s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$$

Let $U = \bigcup_i U_i$. By the local-to-global condition of F, for each $V \subseteq U$, $V \in B$ there exists a unique $s_V \in \tilde{F}(V) = F(V)$ with

$$s_V|_{V_i} = s_i|_{V_i}$$
 for all $V_i \subseteq U_i \cap V$, $V_i \in B$

Since

$$\lim_{V \subseteq U, \ V \in B} F(V) \cong \{(a_V)_V \in \prod_V F(V) \mid F(V_1 \subseteq V_2)(a_{V_2}) = a_{V_1} \}$$

we see that these s_V lift to one (necessarily unique) $s \in \tilde{F}(U)$.

For Uniqueness, assume we have two such sheaves, say G and H. Now note that for all open U in X with $V_i \in B$, we have

$$G(U) \cong \{(a_V)_V \in \prod_{V \subseteq U, \ V \in B} F(V) \mid F(V_1 \subseteq V_2)(a_{V_2}) = a_{V_1} \}$$

where \supseteq follows from general structure and \subseteq from the local-to-global property. The same holds for H, so $G \cong H$.

2 Schemes

Definition 2.1. A locally ringed space is a topological space X with a sheaf of rings \mathcal{O}_X on X such that all stalks $\mathcal{O}_{X,x}$ are local rings.

Definition 2.2. Let R be a ring (commutative, unital). Then let $\mathcal{O}_{\text{Spec}R}$ be the sheaf on SpecR that results from extending the B-sheaf

$$\mathcal{O}_{\operatorname{Spec} R}(D_f) := R_f, \quad f \in R$$

to a sheaf as in Theorem 1.4. Here the sets

$$D_f = \{ \mathfrak{p} \le R \mid f \notin \mathfrak{p} \} \subseteq \operatorname{Spec} R$$

are the basic open sets and form a basis of Spec R.

Definition 2.3. A morphism between locally ringed spaces (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) is a continuous map $f: X \to Y$ together with a natural transformation $\eta: \mathcal{O}_Y \Rightarrow f_*\mathcal{O}_X$ that satisfies

$$\eta_y: (f_*\mathcal{O}_X)_y \cong \mathcal{O}_{X,f(y)} \to \mathcal{O}_{Y,y} \quad \text{maps} \quad \eta_y(\mathfrak{m}) \subseteq \mathfrak{m}$$

for all $y \in Y$.

Here

$$f_*: \operatorname{Sh}(X) \to \operatorname{Sh}(Y), \quad F \mapsto (U \mapsto F(f^{-1}(U)))$$

is the pullback of f.

Definition 2.4. A locally ringed space (X, \mathcal{O}_X) is an *affine scheme*, if there exists a ring R such that $(X, \mathcal{O}_X) \cong (\operatorname{Spec} R, \mathcal{O}_{\operatorname{Spec} R})$.

Definition 2.5. A locally ringed space (X, \mathcal{O}_X) is a *scheme*, if there exists a covering $X = \bigcup_i U_i$ with open $U_i \subseteq X$ such that each $(U_i, \mathcal{O}_X|_{U_i})$ is an affine scheme. Such U are also called *affine opens*.

Definition 2.6. Denote the category of schemes by **Sch** and the subcategory of affine schemes by **Aff**

Definition 2.7. Let $\phi: R \to S$ be a ring homomorphism. Then this induces a morphism of affine schemes

$$\operatorname{Spec} \phi : \operatorname{Spec} S \to \operatorname{Spec} R$$

given by

$$\operatorname{Spec} \phi : \mathfrak{p} \mapsto \phi^{-1}(\mathfrak{p})$$

and on basic open sets D_g , $g \in R$ by

$$(\operatorname{Spec}\phi)_{D_g}: \mathcal{O}_{\operatorname{Spec}R}(D_g) \to \mathcal{O}_{\operatorname{Spec}S}(D_{\phi(g)}), \quad \frac{x}{g^k} \to \frac{\phi(x)}{\phi(g)^k}$$

Proposition 2.8. The functor

$$\mathrm{Spec}: extit{Ring}^\mathrm{op} o extit{Aff}$$

is an equivalence of categories.

Proposition 2.9. Let (X, \mathcal{O}_X) be a scheme. Then X is T0.

Proof. Assume not, i.e. there are two points $x, y \in X$ such that every open neighborhood of x contains y and vice versa. As (X, \mathcal{O}_X) has a cover by affine opens, consider an affine open U containing x, y. Then $(U, \mathcal{O}_X|_U)$ is isomorphic to $\operatorname{Spec} R$ for some ring R. However, $\operatorname{Spec} R$ is T0, a contradiction.

Definition 2.10. An open subscheme of a scheme (X, \mathcal{O}_X) is $(U, \mathcal{O}_X|_U)$ for an open subset $U \subseteq X$.

Remark 2.11. The notion of a general subscheme is more tricky. We more or less want to have some subset $U \subseteq X$ and a corresponding sheaf \mathcal{O}_U that should be derived from \mathcal{O}_X . However, we obviously cannot take $\mathcal{O}_X|_U$, and in fact, it is not easy to find a suitable one. Hence, for now, we will remain with defining open subschemes.

3 Coproduct (gluing) in Sch

Proposition 3.1. For affine schemes $SpecR_1$ and $SpecR_2$ have that the coproduct in Sch is

$$\operatorname{Spec} R_1 \sqcup \operatorname{Spec} R_2 = \operatorname{Spec} (R_1 \times R_2)$$

Proof. Observe that

$$\operatorname{Spec}(R_1 \times R_2) = \underbrace{\{\mathfrak{p} \times R_2 \mid \mathfrak{p} \in \operatorname{Spec} R_1\}}_{=:V_1} \cup \underbrace{\{R_1 \times \mathfrak{p} \mid \mathfrak{p} \in \operatorname{Spec} R_2\}}_{=:V_2}$$

First of all, the projection maps $\pi_i: R_1 \times R_2 \to R_i$ give rise to morphisms

$$\phi_i: \operatorname{Spec} R_i \to \operatorname{Spec} (R_1 \times R_2)$$

So we have to show that this cocone is universal.

Let (W, \mathcal{O}_W) be a scheme with morphisms

$$\psi_i: \operatorname{Spec} R_i \to (W, \mathcal{O}_W)$$

Define

$$f: \operatorname{Spec}(R_1 \times R_2) \to W, \quad \begin{tabular}{ll} \mathfrak{p} \times R_2 & \mapsto & \psi_1(\mathfrak{p}) \\ R_1 \times \mathfrak{p} & \mapsto & \psi_2(\mathfrak{p}) \end{tabular}$$

This is well-defined, as $\psi_i(R_i)$ is a point such that $\psi_i(\operatorname{Spec} R_i)$ is contained in every open neighborhood of it. Hence $\psi_1(R_1)$ and $\psi_2(R_2)$ cannot be separated by open sets, and thus must be equal as W is T0.

Furthermore, for any open $U \subseteq W$ note that

$$f^{-1}(U) = \{ \mathfrak{p} \times R_2 \mid \mathfrak{p} \in \psi_1^{-1}(U) \} \cup \{ R_1 \times \mathfrak{p} \mid \mathfrak{p} \in \psi_2^{-1}(U) \}$$

is a union of open sets, hence open. So f is continuous.

Now note that

$$(V_i, \mathcal{O}_{\operatorname{Spec}(R_1 \times R_2)} \Big|_{V_i}) \cong \operatorname{Spec} R_i$$

where the isomorphisms are natural in V_i . So $s \in \mathcal{O}_W(U)$ yields via $\mathcal{O}_W(U) \to \mathcal{O}_{\operatorname{Spec}(R_i)}(\psi^{-1}(U)) \cong \mathcal{O}_{\operatorname{Spec}(R_1 \times R_2)}(f^{-1}(U) \cap V_i)$ elements

$$s_1' \in \mathcal{O}_{\text{Spec}(R_1 \times R_2)}(f^{-1}(U) \cap V_1), \quad s_2' \in \mathcal{O}_{\text{Spec}(R_1 \times R_2)}(f^{-1}(U) \cap V_2)$$

These glue together to some $s' \in \mathcal{O}_{\operatorname{Spec}(R_1 \times R_2)}(f^{-1}(U))$. Hence define a morphism of sheaves

$$\eta: \mathcal{O}_W \to f_*\mathcal{O}_{\operatorname{Spec}(R_1 \times R_2)}, \quad \eta_U(s) := s'$$

as it is clearly compatible with restriction maps.

Now, by construction, have that for $\mathfrak{p} \in \operatorname{Spec} R_i$

$$(f \circ \phi_i)(\mathfrak{p}) = f(\pi_i^{-1}(\mathfrak{p})) = \psi_i(\mathfrak{p})$$

and

$$\phi_i \circ \eta = \psi_i$$

The latter is true, as the isomorphism in

$$\mathcal{O}_W(U) \to \mathcal{O}_{\operatorname{Spec} R_i}(\psi_i^{-1}(U)) \cong \mathcal{O}_{\operatorname{Spec}(R_1 \times R_2)}(f^{-1}(U) \cap V_i)$$

in the direction \leftarrow on basic open sets is given by the extension of the projection map $\pi_i: (R_1 \times R_2)_g \to (R_i)_{\pi_i(g)}$ and hence is ϕ_i .

The uniqueness of the morphism (f, η) is clear.

Proposition 3.2. Let $(U_i)_i$ be a family of schemes with open subschemes $U_{ij} \subseteq U_i$ and isomorphisms $\phi_{ij}: U_{ij} \to U_{ji}$. If

- $U_{ii} = U_i$ and $\phi_{ii} = id$
- $\phi_{ij}(U_{ij} \cap U_{ik}) \subseteq U_{ji} \cap U_{jk}$
- $\phi_{ik}|_{U_{ij}\cap U_{ik}} = \phi_{jk} \circ \phi_{ij}|_{U_{ij}\cap U_{ik}}$

then there is a scheme X (unique up to unique isomorphism) with an open cover $X = \bigcup X_i$ and isomorphisms of schemes $\psi_i : U_i \to X_i$ such that

$$\psi_j \circ \phi_{ij} = \psi_i \big|_{U_{ii}}$$

Remark 3.3. The above easily shows that coproducts exist in **Sch** (just take U_i to be the empty scheme $(\emptyset, \emptyset \mapsto \{0\})$). However, **Sch** is not cocomplete¹, so coequalizers do not exist in general.

4 Products in Sch

Proposition 4.1. Let $f: X \to Z$ and $g: Y \to Z$ be schemes over a scheme Z. The fiber product (or pullback) $X \times_Z Y$ is defined as the limit of

$$X \xrightarrow{f} Z \xleftarrow{g} Y$$

(Finite) fiber products exist in **Sch**.

Proof. We show that binary fiber products exist. Let $f: X \to Z$, $g: Y \to Z$ be as above.

Step 1: X, Y, Z affine Assume $X = \operatorname{Spec} R$, $Y = \operatorname{Spec} S$, $Z = \operatorname{Spec} T$ and f, g are induced by ring homomorphisms

$$f^{\#}: T \to R, \quad g^{\#}: T \to S$$

We claim that $\operatorname{Spec}(R \otimes_T S)$ with

$$(\cdot \otimes 1)^{\#} : \operatorname{Spec}(R \otimes_T S) \to \operatorname{Spec}(R \otimes_T S) \to \operatorname{Spec}(R \otimes_T S) \to \operatorname{Spec}(R \otimes_T S)$$

works. For this, it suffices to show that $R \otimes_T S$ is the pushout (i.e. co-fiber product) of R, S considered as T-algebras. This follows easily from the universal property of the tensor product.

¹https://mathoverflow.net/questions/9961/colimits-of-schemes

Step 2: Y, Z affine Assume $Y = \operatorname{Spec} S$, $Z = \operatorname{Spec} T$. Let $X = \bigcup X_i$ be a cover of X by affine opens. We want to glue all $X_i \times_Z Y$.

Note that $U_i := X_i \times_Z Y$ comes with a map $\pi_i : U_i \to X_i$. Now we can consider the open subscheme

$$U_{ij} := \left(\pi_i^{-1}(X_i \cap X_j), \ \mathcal{O}_X |_{\pi_i^{-1}(X_i \cap X_j)} \right)$$

Claim: U_{ij} is the fiber product $(X_i \cap X_j) \times_Z Y$. Clearly U_{ij} has maps $U_{ij} \to X_i \cap X_j$ and $U_{ij} \to Y$ inherited from $U_i \to X_i$ and $U_i \to Y$ such that

$$\begin{array}{ccc}
U_{ij} & \longrightarrow X_i \\
\downarrow & & \downarrow \\
Y & \longrightarrow Z
\end{array}$$

commutes. It is also not too hard to show that another scheme W with compatible maps $W \to X_i \cap X_j$ and $W \to Y$ factors through U_{ij} .

Hence, there is a unique isomorphism $\phi_{ij}: U_{ij} \to U_{ji}$ by the uniqueness of limits. Claim: The U_i , U_{ij} and ϕ_{ij} satisfy the gluing conditions.

- Clearly $U_{ii} = U_i$ and so $\phi_{ii} = \text{id}$ as there is a unique isomorphism $U_i \to U_i$.
- Note that by choice of ϕ_{ij} we know that the diagram

$$U_{ij} \xrightarrow{\pi_i} X_i \\ \phi_{ij} \\ V_{ji}$$

is commutative. Hence $\phi_{ij}^{-1}(\pi_j^{-1}(X_i \cap X_j)) = \pi_i^{-1}(X_i \cap X_j)$ and so $\phi_{ij}^{-1}(U_{ij}) \subseteq U_{ji}$.

• Let

$$U_{ijk} := \left(\pi_i^{-1}(X_i \cap X_j \cap X_k), \ \mathcal{O}_X|_{\pi_i^{-1}(X_i \cap X_j \cap X_k)}\right) = U_{ij} \cap U_{ik}$$

A similar argument as above also shows that U_{ijk} is the fiber product $(X_i \cap X_j \cap X_k) \times_Z Y$. Now, by uniqueness of limits, find that there is a unique isomorphism $U_{ijk} \to U_{kij}$. Note that both

$$\phi_{ik}|_{U_{ijk}}$$
 and $\phi_{jk}|_{U_{jik}} \circ \phi_{ij}|_{U_{ijk}}$

are such isomorphisms, hence

$$\phi_{ik}\big|_{U_{ijk}} = \phi_{jk}\big|_{U_{iik}} \circ \phi_{ij}\big|_{U_{ijk}}$$

Step 3: Z affine Exactly as in step 2 (note that we did not use Y affine there).

5 Properties of Schemes and Morphisms

Proposition 5.1. Let X be a scheme and let P be a property of affine opens (i.e. a class of embeddings $Spec R \to X$) such that

• for all $\alpha : \operatorname{Spec} R \to X$ and $f \in R$ have

$$\alpha \ satisfies P \Rightarrow \alpha_f \ satisfies P$$

where $\alpha_f : \operatorname{Spec} R_f \to X$.

• for all $\alpha : \operatorname{Spec} R \to X$ and $\operatorname{covers} \operatorname{Spec} R = \bigcup D_{f_i}$ have

all
$$\alpha_{f_i}$$
 satisfy $P \implies \alpha$ satisfies P

If there is a cover $X = \bigcup X_i$ of affine opens such that all inclusions $X_i \subseteq X$ satisfy P, then all inclusions $U \subseteq X$ of affine opens satisfy P.

Definition 5.2. A scheme X is

- Noetherian, if |X| is quasi-compact and for all affine open U have that $\mathcal{O}_X(U)$ is Noetherian.
- reduced, if for all open U have that $\mathcal{O}_X(U)$ is reduced.
- *irreducible*, if |X| is irreducible (i.e. not the union of two proper closed subsets).
- integral, if for all open U have that $\mathcal{O}_X(U)$ is integral.

Note that as defined before, the notion of an open subscheme is relatively easy. Now we will also say what a closed subscheme is.

Definition 5.3. Let (X, \mathcal{O}_X) be a scheme. A scheme (C, \mathcal{O}_C) is a closed subscheme of (X, \mathcal{O}_X) if $C \subseteq X$ is closed and there exists a quasi-coherent sheaf of ideals \mathcal{I} on \mathcal{O}_X such that

$$i_*\mathcal{O}_C \cong \mathcal{O}_X/\mathcal{I}$$

where $i: C \to X$ is the inclusion map and $i_*: \operatorname{Sh}(C) \to \operatorname{Sh}(X)$ its pullback.

Here a sheaf of ideals \mathcal{I} on \mathcal{O}_X is called *quasi-coherent*, if for all affine opens $U \subseteq X$, there exists an ideal $I \leq \mathcal{O}_X(U)$ such that

$$\forall f \in \mathcal{O}_X(U): \ \mathcal{I}(D_f) = I\mathcal{O}_X(U)_f$$

Definition 5.4. A morphism of schemes $f: X \to Y$ is

• affine, if $f^{-1}(U)$ is affine for all affine open $U \subseteq X$.

- quasi-compact, if $f^{-1}(U)$ is quasi-compact for all quasi-compact and open $U \subseteq X$.
- locally of finite type, if for all affine opens $U \subseteq X$ and $V \subseteq Y$ with $f(U) \subseteq V$ have that $\mathcal{O}_X(U)$ becomes a finitely generated $\mathcal{O}_Y(V)$ -algebra when equipped with

$$\mathcal{O}_Y(V) \stackrel{f^\#}{\to} \mathcal{O}_X(f^{-1}(V)) \to \mathcal{O}_X(U)$$

- finite type, if it is quasi-compact and locally of finite type
- a closed immersion, if it is an isomorphism onto a closed subscheme of Y.
- an open immersion, if it is an isomorphism onto an open subscheme of Y.
- flat, if all $\mathcal{O}_{X,x}$ are flat $\mathcal{O}_{Y,f(x)}$ -modules, i.e. the functor $\mathcal{O}_{X,x} \otimes_{\mathcal{O}_{Y,f(x)}} \cdot$ of $\mathcal{O}_{Y,f(x)}$ -algebras is exact².
- separated, if $\Delta: X \to X \times_B X$ is a closed immersion. Here Δ is the unique morphism $X \to X \times_B X$ such that $\pi_i \circ \Delta = \mathrm{id}_X$, where $\pi_i: X \times_B X \to X$.
- universally closed, if for each $h:Z\to Y$ the unique morphism $X\times_YZ\to Z$ that makes the diagram

commute is closed.

• proper, if it is of finite type, separated and universally closed.

We say a scheme X is separated, if the canonical morphism $X \to \operatorname{Spec} \mathbb{Z}$ is.

Definition 5.5. A scheme X is called *variety*, if it is of finite type, integral and separated.

Proposition 5.6 (Characterization Noetherian). A quasi-compact scheme X is Noetherian, if and only if there is a cover $X = \bigcup_i U_i$ of affine opens such that all $\mathcal{O}_X(U_i)$ are Noetherian.

Proposition 5.7 (Characterization reduced). A scheme X is reduced, if and only if all stalks $\mathcal{O}_{X,x}$ are reduced.

Proposition 5.8 (Characterization irreducible). A scheme X is irreducible, if and only if all affine opens $U \subseteq X$ are irreducible³.

²here $\mathcal{O}_{X,x}$ becomes a $\mathcal{O}_{Y,f(x)}$ -algebra via f_x

³Irreducibility is not affine-local, and it does not suffice to have a cover of irreducible affine opens.

Proposition 5.9 (Characterization integral). A scheme X is integral, if and only if it is irreducible and reduced.

Proposition 5.10 (Characterization flat). An R-module M is flat if and only if for all injective $\alpha: N_1 \to N_2$ have that $\mathrm{id} \otimes \alpha: M \otimes_R N_1 \to M \otimes_R N_2$ is injective.