

Compósito - mistura ou combinação de dois ou mais materiais insolúveis uns nos outros.

- osso: minerais são incorporados como elementos de reforço, enquanto o colagénio funciona como matriz;
- > outros compósitos biológicos: madeira, dentina, cartilagem....

Objetivo: combinar dois ou mais materiais por forma a obter um material cujas propriedades sejam superiores às propriedades de cada um dos componentes individuais.

Fase dispersa influencia propriedades do compósito:

Matriz

- √ transferir as tensões para a fase dispersa; proteger a fase dispersa do ambiente;
- √ tipos: metal, cerâmico ou polímero

Elementos de reforço

- ✓ tipos: partículas, fibras
- ✓ melhorar propriedades (elétricas, térmicas, resistência, módulo elástico, ...)

Classificação

Compósitos reforçados com partículas

0.75 μm**≡**

> Betão - cascalho + areia + cimento + água

Compósitos reforçados com fibras

Tipos de fibras: fibras de vidro, fibras de carbono e fibras de aramido (ou fibras aramídicas)

propriedades	vidro E (HTS)	carbono (tipo HT)	aramido (Kevlar 49)
resistência à tração, MPa	2410	3100	3617
módulo de elasticidade em tração, GPa	69	220	124
alongamento na rotura, %	3,5	1,40	2,5
massa volúmica, g/cm³	2,54	1,75	1,48

vidro E: 52-56% SiO₂; 12-16% Al₂O₃; 16-25% CaO e 8-13% B₂O₃

vidro S: 65% SiO₂; 25% Al₂O₃; 10% MgO

Kevlar (polifenileno de tereftalato):

Bom desempenho em tensão: as fibras melhoram a resistência e a rigidez do material.

Compósitos estruturais

Laminados

- > folhas reforçadas com fibras empilhadas e ligadas
- > vantagem: controlo da rigidez

Estruturas em sanduiche

- > material central ensanduichado entre duas camadas finas
- > vantagens: rigidez, resistência e leveza

Propriedades mecânicas

Estimativa da rigidez do compósito, E_c

CASO 1 – Modelo de Voigt

- ✓ compósito carregado na direção do alinhamento da fibra (direção longitudinal);
- ✓ comportamento elástico;
- \checkmark condição de **isodeformação**: $\varepsilon_{\mathcal{C}}=\varepsilon_{m}=\varepsilon_{f}$

$$F_{\mathcal{C}}=F_{m}+F_{f}$$

$$\sigma_{\mathcal{C}}~A_{\mathcal{C}}=\sigma_{m}~A_{m}+\sigma_{f}~A_{f}~\sigma_{\text{C}}$$
 – resistência à tração do compósito

Se o comprimento do compósito, das fibras e da matriz são iguais:

$$\frac{A_m}{A_C} = V_m \quad e \quad \frac{A_f}{A_C} = V_f$$

 $\frac{A_m}{A_C} = V_m \qquad e \qquad \frac{A_f}{A_C} = V_f \qquad \qquad \text{as frações de área da matriz e da}$ fibra são iguais às respetivas frações de volume, V_m e V_f .

Admitindo comportamento elástico:

$$E_{\mathcal{C}} = E_{m} \left(1 - V_{f} \right) + E_{f} V_{f}$$

Estimativa do módulo de elasticidade de um compósito em condições de isodeformação (regra das misturas para compósitos binários)

$$\frac{F_f}{F_m} = \frac{E_f}{E_m} \frac{V_f}{V_m}$$

$$\left(V_f + V_m = 1\right)$$

 $\frac{F_f}{F_m} = \frac{E_f}{E_m} \frac{V_f}{V_m}$ Equação para o cálculo das forças nas regiões de fibra e nas regiões de matriz

CASO 2 – Modelo de Reuss

- ✓ compósito carregado na direção transversal ao alinhamento da fibra;
- ✓ comportamento elástico;
- \checkmark condição de **isotensão**: $\sigma_{\mathcal{C}} = \sigma_m = \sigma_f$

A deformação sofrida pelo compósito:

$$\varepsilon_{c} = \varepsilon_{m} \, V_{m} + \varepsilon_{f} \, V_{f}$$

Admitindo comportamento elástico:

$$\frac{1}{E_c} = \frac{V_m}{E_m} + \frac{V_f}{E_f}$$

Rearranjando:

$$E_C = \frac{E_m E_f}{(1 - V_f)E_f + V_f E_m}$$

Estimativa do módulo de elasticidade de um compósito em condições de isotensão

COMPARAÇÃO DAS CONDIÇÕES DE ISODEFORMAÇÃO E DE ISOTENSÃO

(compósito do tipo laminado, de matriz polimérica reforçada por fibras unidirecionais)

Vantagens.....

