Домашняя работа по дискретной математике №3

Вариант 72

Работу выполнил:

Тимошкин Роман, Р3131

Исходный граф:

													-	
V/V	e1	e2	e3	e4	e5	e6	e7	е8	e9	e10	e11	e12		
e1	0	2		2		4	3	5				5		
e2	2	0		3	1					4				
e3			0	4	4		2			4	1	4		
e4	2	3	4	0			2		1	4	2			
e5		1	4		0				1		3			
e6	4					0		1	3	5		1		
e7	3		2	2			0		2			3		
e8	5					1		0		5				
e9				1	1	3	2		0		3			
e10		4	4	4		5		5		0	1			
e11			1	2	3				3	1	0	3		
e12	5		4			1	3				3	0		
V/V		e1		e2		e3		e4		e5		e6	e7	e8
e1		0		2				2				4	3	5
e2		2		0				3		1				
e3						0		4		4			2	
e4		2		3		4		0					2	

V/V	e1	e2	e3	e4	e5	e6	e7	e8	e9	e10	e11	e12
e1	0	2		2		4	3	5				5
e2	2	0		3	1					4		
e3			0	4	4		2			4	1	4
e4	2	3	4	0			2		1	4	2	
e5		1	4		0				1		3	
e6	4					0		1	3	5		1
e7	3		2	2			0		2			3
e8	5					1		0		5		
e9				1	1	3	2		0		3	
e10		4	4	4		5		5		0	1	
e11			1	2	3				3	1	0	3
e12	5		4			1	3				3	0

Найти (s-t) путь с наибольшей пропускной способностью Воспользуемся алгоритмом Франка-Фриша s = e1, t = e12

Проведем разрез К1
Q1 = max[q_ij] = 5
Закорачиваем все рёбра графа (xi, xj) с q_ij ≥ Q1
Это ребра (e1, e8), (e1, e12), (e6, e10), (e8, e10). Получаем граф G1:

Вершины s-t объединены.

Пропускная способность искомого (s-t) пути Q(P) = Q1 = 5.

Сам путь: 1->12.

Построим граф, вершины которого — вершины исходного графа G, а рёбра - рёбра с пропускной способностью $q_ij >= Q(P) = 5$.

