

A Delay Generation Technique for Narrow Time Interval Measurement

By: Rashid Rashidzadeh University of Windsor

Why Narrow Time Interval Measurement

- 1. Laser-based distance measurement
- 2. Rise/Fall time
- 3. Clock skew degradation measurement in digital circuits
- 4. Jitter or phase noise measurement (variation of rising and falling edges of digital signals)

Possible Measurement Methods

Off-Chip Measurement

- Test channel loading effect
- Significant loss and distortion
- Large number of parameters or nodes to be monitored

On-Chip Measurement

 The timing quantities to be measured are on the same magnitude as the resolution of the measurement device

Proposed Measurement Methods in the Literature

Increasing the effective measurement resolution through: Subsampling or pulse stretching methods

- (a) A delay line without a reference oscillator
- (b) An interpolator with a reference oscillator
- (c) Two delay lines used as a Vernier delay line or ring oscillators
- (d) Time Amplifier

Time to Digital Conversion Using a Delay Line

Basic Time to Digital Converter (TDC)

TDC Using a Reference Oscillator

Timing Diagram of TDC with Two Reference Oscillators

$$T_{in} = N_1 \times T_A + N_2 \times (T_A - T_B)$$

An Alternative Method of Short Time Interval Measurement

CMOS Implementation of Time Amplifier

Charge Pump Delay Locked Loop (DLL)

Before the Phase Lock is acquired

DLL Architecture with Two Distinct Inputs

Block Diagram of the Proposed Time Amplifier

At the Locked state

$$\Phi_A = \Phi_B$$

$$\Phi_{in1} + \frac{T_{D0}}{T} \times 2\pi = \Phi_{in2} + \frac{T_{C0}}{T} \times 2\pi$$

$$\Phi_{in1} - \Phi_{in2} = \frac{2\pi}{T} \times (T_{C0} - T_{D0})$$

Two Delay Lines with Selectable Outputs

Schematic Diagram of the Employed TDC

Layout of the Proposed Time Measurement System

Transfer Characteristic of the Time Amplifier

Effect of process variations on Measurement Results

Input and output of the amplifier for fastfast, slow-slow and typical-typical process corners

Standard deviation under the worst case process variations in the linear region.