Section 4.2 – Matrices and Linear Systems

Let $a_{11}(t)$, $a_{12}(t)$, ..., $a_{nn}(t)$ and $b_1(t)$, $b_2(t)$, ..., $b_n(t)$ be continuous functions on the interval I. The system of n 1st-order differential equations:

$$\begin{aligned} x_1' &= a_{11}(t)x_1 + a_{12}(t)x_2 + \dots + a_{1n}(t)x_n + b_1(t) \\ x_2' &= a_{21}(t)x_1 + a_{22}(t)x_2 + \dots + a_{2n}(t)x_n + b_2(t) \\ &\vdots \\ x_n' &= a_{n1}(t)x_1 + a_{n2}(t)x_2 + \dots + a_{nn}(t)x_n + b_n(t) \end{aligned}$$

Is called a 1st-order linear differential system.

The system is *homogeneous* if $b_1(t) \equiv b_2(t) \equiv ... \equiv b_m(t) \equiv 0$ on *I*, otherwise, the system is *nonhomogeous* if the functions $b_i(t)$ are not all identically zero on *I*.

$$A(t) = \begin{pmatrix} a_{11}(t) & a_{12}(t) & \dots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \dots & a_{2n}(t) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{n1}(t) & a_{n2}(t) & \dots & a_{nn}(t) \end{pmatrix} \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \qquad b(t) = \begin{pmatrix} b_1(t) \\ b_2(t) \\ \vdots \\ b_n(t) \end{pmatrix}$$

The system can be written in the vector-matrix form X' = A(t)X + b(t) (S)

A(t): Coefficient matrix

b(t): Constant matrix

A solution of the linear differential system (S) is a differentiable vector function

$$\vec{v} = \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$$
 Satisfies (S) on the interval I.

The derivative of A: $A'(t) = \frac{dA}{dt} = \left[\frac{da_{ij}}{dt}\right]$

Example

Find the derivative if
$$x(t) = \begin{pmatrix} t \\ t^2 \\ e^{-t} \end{pmatrix}$$
 $A(t) = \begin{pmatrix} \sin t & 1 \\ t & \cos t \end{pmatrix}$

Solution

$$x'(t) = \begin{pmatrix} 1 \\ 2t \\ -e^{-t} \end{pmatrix} \qquad A(t) = \begin{pmatrix} \cos t & 0 \\ 1 & -\sin t \end{pmatrix}$$

Example

The 1st-order system
$$\begin{cases} x_1' = 4x_1 - 3x_2 \\ x_2' = 6x_1 - 7x_2 \end{cases}$$

$$X' = \begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 4x_1 - 3x_2 \\ 6x_1 - 7x_2 \end{bmatrix}$$
$$= \begin{pmatrix} 4 & -3 \\ 6 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} 4 & -3 \\ 6 & -7 \end{pmatrix} X$$

$$\frac{dX}{dt} = P(t)X + f(t) \quad with \quad P(t) = \begin{pmatrix} 4 & -3 \\ 6 & -7 \end{pmatrix} \quad f(t) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0$$

To verify that the vector functions:

$$x_1(t) = \begin{pmatrix} 3e^{2t} \\ 2e^{2t} \end{pmatrix} \quad x_2(t) = \begin{pmatrix} e^{-5t} \\ 3e^{-5t} \end{pmatrix}$$

Are both solutions of the matrix differential equations with coefficient matrix P.

8

$$Px_1 = \begin{pmatrix} 4 & -3 \\ 6 & -7 \end{pmatrix} \begin{pmatrix} 3e^{2t} \\ 2e^{2t} \end{pmatrix} = \begin{pmatrix} 6e^{2t} \\ 4e^{2t} \end{pmatrix} = x_1'$$

$$Px_2 = \begin{pmatrix} 4 & -3 \\ 6 & -7 \end{pmatrix} \begin{pmatrix} e^{-5t} \\ 3e^{-5t} \end{pmatrix} = \begin{pmatrix} -5e^{-5t} \\ -15e^{-5t} \end{pmatrix} = x_2'$$

When $f(t) = 0 \implies \frac{dX}{dt} = P(t)X$ is a homogeneous equation

A homogeneous system

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0$$

Always has at least one solution namely $x_1 = x_2 = \dots = x_n = 0$ called the **trivial solution** That is, homogeneous systems are always **consistent**

Theorem

If \vec{v} is a solution of (H) and α is any \mathbb{R} , then $\vec{u} = \alpha \vec{v}$ is also a solution of (H); any constant multiple of a solution of (H) is a solution of (H).

Theorem

If \vec{v}_1 and \vec{v}_2 are solutions of (H), then $\vec{u} = \vec{v}_1 + \vec{v}_2$ is also a solution of (H); the sum of any 2 solutions of (H) is a solution of (H).

$$\begin{split} \vec{v}_1' &= A(t)\vec{v}_1 & \vec{v}_1' + \vec{v}_2' = A(t)\vec{v}_1 + A(t)\vec{v}_2 \\ \vec{v}_2' &= A(t)\vec{v}_2 & \left(\vec{v}_1 + \vec{v}_2\right)' = A(t)\left(\vec{v}_1 + \vec{v}_2\right) \\ \vec{u}' &= A(t)\vec{u}' & \text{Since } \vec{u} = \vec{v}_1 + \vec{v}_2 \end{split}$$

In general,

Theorem

If \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n are solutions of (H), and is c_1 , c_2 , ..., c_n are $\mathbb R$ then $c_1\vec{v}_1$, $c_2\vec{v}_2$, ..., $c_n\vec{v}_n$

Is a solution of (H); any linear combination of solutions of (H) is also a solution of (H).

$$\begin{aligned} \vec{v}_1' &= A(t)\vec{v}_1 + c_1 \\ \vec{v}_2' &= A(t)\vec{v}_2 + c_2 \\ \vdots &\vdots \\ \vec{v}_n' &= A(t)\vec{v}_n + c_n \end{aligned}$$

Linear Dependent and Independent

Let

$$\vec{x}_{1}(t) = \begin{pmatrix} v_{11} \\ v_{21} \\ \vdots \\ v_{m1} \end{pmatrix}, \quad \vec{x}_{2}(t) = \begin{pmatrix} v_{12} \\ v_{22} \\ \vdots \\ v_{m2} \end{pmatrix}, \quad , \dots \quad \vec{x}_{m}(t) = \begin{pmatrix} v_{1n} \\ v_{2n} \\ \vdots \\ v_{mn} \end{pmatrix}$$

Be vector functions defined on some interval *I*.

The vectors are linearly dependent on I if exist n real numbers $c_1, c_2, ..., c_n$ not all zero such that

$$c_1 \vec{v}_1(t) + c_2 \vec{v}_2(t) + \dots + c_n \vec{v}_n(t) = 0$$
 on I

Otherwise the vectors are linearly independent on I.

Wronskian of solutions

Theorem

Let $x_1, x_2, ..., x_n$ are n solutions of the homogeneous linear equation x' = P(t)x on an interval I.

Let
$$W = W(x_1, x_2, ..., x_n)$$

$$W = \begin{vmatrix} v_{11} & v_{12} & \cdots & v_{1n} \\ v_{21} & v_{22} & \cdots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ v_{n1} & \cdots & \cdots & v_{nn} \end{vmatrix} = 0 \qquad on I$$

Called the Wronskian of the vector functions \vec{v}_1 , \vec{v}_2 , ..., \vec{v}_n

Special Case n solutions of (H)

Theorem

Let $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ be solution of (H). Exactly one of the following holds.

- 1. $W(\vec{v}_1, \vec{v}_2, ..., \vec{v}_n)(t) \equiv 0$ on *I* and the solutions are Linearly Dependent.
- 2. $W(\vec{v}_1, \vec{v}_2, ..., \vec{v}_n)(t) \neq 0$ for all $t \in I$ and the solutions are Linearly Independent.

Theorem

Let $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$ be n L.I solutions of (H) $(W \neq 0)$

Let \vec{u} be any solution of (H). Then there exists a unique set of constants $c_1, c_2, ..., c_n$ such that

$$\vec{u} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$$

That is, every solution of (H) can be written as a unique linear combination of $\vec{v}_1, \vec{v}_2, ..., \vec{v}_n$

A set of n L.I solutions $(W \neq 0)$ of (H) is called a *fundamental set of solutions*.

A fundamental set is also called a *solution basis* for (*H*).

Example

Determine if the solutions are linearly dependent or independent using Wronskian.

$$\vec{x}_{1}(t) = \begin{pmatrix} 2e^{t} \\ 2e^{t} \\ e^{t} \end{pmatrix}, \quad \vec{x}_{2}(t) = \begin{pmatrix} 2e^{3t} \\ 0 \\ -e^{3t} \end{pmatrix}, \quad \vec{x}_{3}(t) = \begin{pmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{pmatrix}$$

Solution

$$W = \begin{vmatrix} 2e^{t} & 2e^{3t} & 2e^{5t} \\ 2e^{t} & 0 & -2e^{5t} \\ e^{t} & -e^{3t} & e^{5t} \end{vmatrix} = -4e^{9t} - 4e^{9t} - 4e^{9t} - 4e^{9t} = -16e^{9t} \neq 0$$

or
$$W = \begin{vmatrix} 2e^t & 2e^{3t} & 2e^{5t} \\ 2e^t & 0 & -2e^{5t} \\ e^t & -e^{3t} & e^{5t} \end{vmatrix} = e^{9t} \begin{vmatrix} 2 & 2 & 2 \\ 2 & 0 & -2 \\ 1 & -1 & 1 \end{vmatrix} = \underbrace{-16e^{9t} \neq 0}$$

The solutions x_1 , x_2 , and x_3 are linearly independent.

Example

Find the general solution of: $y''' - 3y'' - 4y' + 12y = 6e^t$

Solution

$$\lambda^{3} - 3\lambda^{2} - 4\lambda + 12 = 0$$

$$\lambda^{2}(\lambda - 3) - 4(\lambda - 3) = 0$$

$$(\lambda^{2} - 4)(\lambda - 3) = 0 \qquad \Rightarrow \lambda_{1} = 3, \ \lambda_{2} = 2, \ \lambda_{3} = -2$$
The Fundamental set:
$$\begin{cases} y_{1} = e^{3t}, & y_{2} = e^{2t}, & y_{3} = e^{-2t} \end{cases}$$

$$\underline{y_{h}} = C_{1}e^{3t} + C_{2}e^{2t} + C_{3}e^{-2t}$$
Particular solution:
$$z = e^{t} \Rightarrow z(t) = Ae^{t}$$

Particular solution:
$$z = e^t \implies z(t) = Ae^t$$

$$z' = Ae^t \quad z'' = Ae^t \quad z''' = Ae^t$$

$$Ae^t - 3Ae^t - 4Ae^t + 12Ae^t = 6e^t$$

$$6Ae^t = 6e^t \implies \boxed{A=1}$$

$$v = e^t$$

$$y_p = e^t$$

General solution:
$$y(t) = C_1 e^{3t} + C_2 e^{2t} + C_3 e^{-2t} + e^t$$

$$y''' = 3y'' + 4y' - 12y + 6e^t$$

 $y = x_1$ $y' = x_2$ $y'' = x_3$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}' = \begin{pmatrix} y' \\ y'' \\ y''' \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ 3x_3 + 4x_2 - 12x_1 + 6e^t \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 6e^t \end{pmatrix}$$

 $y = e^{3t} + e^t$ is a solution of the equation

Proof:
$$y' = 3e^{3t} + e^t$$
 $y'' = 9e^{3t} + e^t$ $y''' = 27e^{3t} + e^t$
 $y''' = 3(9e^{3t} + e^t) + 4(3e^{3t} + e^t) - 12(e^{3t} + e^t) + 6e^t$
 $= 27e^{3t} + 3e^t + 12e^{3t} + 4e^t - 12e^{3t} - 12e^t + 6e^t$
 $= 27e^{3t} + e^t$

Therefore;
$$X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{pmatrix} = \begin{pmatrix} e^{3t} + e^t \\ 3e^{3t} + e^t \\ 9e^{3t} + e^t \end{pmatrix}$$

For
$$y_1 = e^{3t}$$

$$x_1(t) = \begin{pmatrix} y_1 \\ y_1' \\ y_1'' \end{pmatrix} = \begin{pmatrix} e^{3t} \\ 3e^{3t} \\ 9e^{3t} \end{pmatrix}$$

For
$$y_2 = e^{2t}$$
 $x_2(t) = \begin{pmatrix} y_2 \\ y'_2 \\ y''_2 \end{pmatrix} = \begin{pmatrix} e^{2t} \\ 2e^{2t} \\ 4e^{2t} \end{pmatrix}$

For
$$y_1 = e^{-2t}$$
 $x_3(t) = \begin{pmatrix} y_3 \\ y'_3 \\ y''_3 \end{pmatrix} = \begin{pmatrix} e^{-2t} \\ -2e^{-2t} \\ 4e^{-2t} \end{pmatrix}$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}' = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

$$W = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -12 & 4 & 3 \end{vmatrix} = -12 \neq 0$$

Exercises Section 4.2 – Matrices and Linear Systems

Write the given system in the form x' = P(t)x + f(t)

1.
$$x' = -3y$$
, $y' = 3x$

2.
$$x' = 3x - 2y$$
, $y' = 2x + y$

3.
$$x' = tx - e^t y + \cos t$$
, $y' = e^{-t}x + t^2y - \sin t$

4.
$$x' = y + z$$
, $y' = z + x$, $z' = x + y$

5.
$$x' = 2x - 3y$$
, $y' = x + y + 2z$, $z' = 5y - 7z$

6.
$$x' = 3x - 4y + z + t$$
, $y' = x - 3z + t^2$, $z' = 6y - 7z + t^3$

7.
$$x'_1 = x_2, \quad x'_2 = 2x_3, \quad x'_3 = 3x_4, \quad x'_4 = 4x_1$$

8.
$$x'_1 = x_2 + x_3 + 1$$
, $x'_2 = x_3 + x_4 + t$, $x'_3 = x_1 + x_4 + t^2$, $x'_4 = 4x_1 + x_2 + t^3$

For the systems below:

- a) Verify that the given vectors are solutions of the given system.
- **b**) Use the Wronskian to show that they are linearly independent.
- c) Write the general solution of the system.
- d) Find the particular solution that satisfies the given initial conditions

9.
$$\mathbf{x}' = \begin{bmatrix} 4 & 2 \\ -3 & -1 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} 2e^t \\ -3e^t \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{2t} \\ -e^{2t} \end{bmatrix}$$

10.
$$\mathbf{x}' = \begin{bmatrix} -3 & 2 \\ -3 & 4 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} e^{3t} \\ 3e^{3t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 2e^{-2t} \\ e^{-2t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 0 \\ x_2(0) = 5 \end{cases}$$

11.
$$\mathbf{x}' = \begin{bmatrix} 3 & -1 \\ 5 & -3 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = e^{2t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \vec{x}_2 = e^{-2t} \begin{bmatrix} 1 \\ 5 \end{bmatrix}, \quad \begin{cases} x_1(0) = 5 \\ x_2(0) = -3 \end{cases}$$

12.
$$\mathbf{x}' = \begin{bmatrix} 4 & -3 \\ 6 & -7 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} 3e^{2t} \\ 2e^{2t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{-5t} \\ 3e^{-5t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 8 \\ x_2(0) = 0 \end{cases}$$

13.
$$\mathbf{x}' = \begin{bmatrix} 3 & -2 & 0 \\ -1 & 3 & -2 \\ 0 & -1 & 3 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} 2e^t \\ 2e^t \\ e^t \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} -2e^{3t} \\ 0 \\ e^{3t} \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 2e^{5t} \\ -2e^{5t} \\ e^{5t} \end{bmatrix}, \quad \begin{cases} x_1(0) = 0 \\ x_2(0) = 0 \\ x_3(0) = 4 \end{cases}$$

14.
$$\mathbf{x}' = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} e^{2t} \\ e^{2t} \\ e^{2t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} e^{-t} \\ 0 \\ -e^{-t} \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ e^{-t} \\ -e^{-t} \end{bmatrix}, \quad \begin{bmatrix} x_1(0) = 10 \\ x_2(0) = 12 \\ x_3(0) = -1 \end{bmatrix}$$

15.
$$\mathbf{x}' = \begin{bmatrix} 1 & -4 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 6 & -12 & -1 & -6 \\ 0 & -4 & 0 & -1 \end{bmatrix} \mathbf{x}; \quad \vec{x}_1 = \begin{bmatrix} e^{-t} \\ 0 \\ 0 \\ e^{-t} \end{bmatrix}, \quad \vec{x}_2 = \begin{bmatrix} 0 \\ 0 \\ e^{-t} \\ 0 \end{bmatrix}, \quad \vec{x}_3 = \begin{bmatrix} 0 \\ e^t \\ 0 \\ -2e^t \end{bmatrix}, \quad \vec{x}_4 = \begin{bmatrix} e^t \\ 0 \\ 3e^t \\ 0 \end{bmatrix}, \quad \begin{bmatrix} x_1(0) = 1 \\ x_2(0) = 3 \\ x_3(0) = 4 \\ x_4(0) = 7 \end{bmatrix}$$