Oppgave 2 øving 1

Oppgave 2 a)

```
i) 4n^2 + 50n - 10 = O(n^2)
```

ii)
$$10n + 4\log_2 n + 30 = O(n)$$

iii)
$$13n^3 - 22n^2 + 50n + 20 = O(n^3)$$

iv) $35 + 13 \log_2 n = O(\log_2 n)$

Oppgave 2 b)

```
for (int i = 1; i <= n; i++) {
  for (int j = 1; j <= n; j++) {
     sum = sum + 1;
  }
}</pre>
```

Finn antall tilordninger (=) for algoritmen og effektiviteten uttrykt i O-notasjon.

Begrunn svaret. Vi ser kun på løkkekroppen nå vi analyserer løkker!

Svar:

Sum = sum +1 er lik O(1), denne blir repetert n*n ganger altså n^2 tilordninger.

Koden har derfor en O-notasjon lik $O(n^2)$ fordi denne koden er i en løkke som blir gjentatt n ganger, og denne koden igjen er inni enda en løkke som blir gjentatt n ganger. Altså n^2 .

Oppgave 2 c)

Algoritme A:

```
sum = 0
for (int i = 1; i <= n; i++) {
    sum = sum + i;
}</pre>
```

Algoritme B:

```
sum = 0
for (int i = 1; i <= n; i++) {
  for (int j = 1; j <= i; j++) {
      sum = sum + 1
    }
}</pre>
```

Algoritme C:

```
sum = n*(n + 1)/2
```

Finn antall operasjoner (tilordninger, addisjoner, multiplikasjoner, divisjoner) for hver av algoritmene og fyll ut tabellen under. *Vi tar ikke med tilordning av løkkeindeks*.

////	Algoritme A	Algoritme B	Algoritme C
Tilordninger =	n	n ²	1
Addisjoner +	n	n ²	1
Multiplikasjoner *	0	0	1
Divisjoner /	0	0	1
Totalt antall operasjoner	2n	2n ²	4

Oppgave 2 d)

Vi antar at det foreligger 5 algoritmer av ulik orden. I tabellen er det gitt de tilhørende vekstfunksjonene. Vi er interessert i å finne ut tiden det tar å prosessere 10^6 elementer for de ulike algoritmene på en prosessor som kan utføre 10^6 operasjoner pr. sekund.

 $log n betyr her log_2 n$; $log_2 n = ln n/ln 2$. Fyll ut siste kolonne i tabellen

t(n)	t(10 ⁶)/ 10 ⁶
log₂ n	0,00002 [sekunder]
n	1 [sekunder]
n log₂ n	19,93 [sekunder]
n²	11,57 [dager]
n³	31 688 [år]

Oppgave 2 e)

første løkke: n-1 ganger

andre løkke: n-2 ganger, da det er 1 mindre enn første løkke å sammeligne med.

Formel: $(n^2 - 3n + 2) * x$, hvor x er antall ganger hvor det blir gjort en sammenligning.

O-notasjon ved stor verdi for n er da: O(n²)

Oppgave 2 f)

i)
$$t_1 = 8n + 4n^3$$

$$\rightarrow$$
 O(n³)

ii)
$$t_2 = 10 \log_2 n + 20$$

$$\rightarrow$$
 O(log₂n)

iii)
$$t_3 = 20n + 2nlog_2n + 2n$$

$$\rightarrow$$
 O(nlog₂n)

iv)
$$t_4 = 4\log_2 n + 2n$$

$$\rightarrow$$
 O(nlog₂n)

Av algoritmene ovenfor så er algoritme «ii» mest effektiv og algoritme «i» minst effektiv ved stor verdi av n. Dette kan vi se gjennom å sammenligne dem som vekstfunksjoner. Da ser vi at $O(n^3)$ og $O(nlog_2n)$ har begge større økning over tid enn $O(log_2n)$. Dette er også logisk med tanke på at en eksponent som n^3 fort kan bli veldig stor som vi kan se i oppgave 2d.

Oppgave 2 g)

```
public static void tid(long n)
{
    long k= 0;
    for(long i= 1; i<= n; i++)
    {
        k= k+ 5;
    }
}</pre>
```

Vi ønsker å måle tiden for n= 10 mill, 100 mill, og 1000 mill.

Hvorfor er vekstfunksjonen her t(n) = cn, der c er en konstant?

→ Det vil være endringer utifra hvilke maskin/ kompilator som er brukt. Derfor har vi en ekstra konstant.

```
public static void main(String[] args) {
    long startTime = System.currentTimeMillis();
    //tid(100000000L);
    //tid(1000000000L);
    tid(1000000000L);
    long endTime = System.currentTimeMillis();
    long tidbrukt = endTime - startTime;
    System.out.println("tid i millisekund: " + tidbrukt);
}
```

Ved bruk av Java-metoden ovenfor (System.currentTimeMillis()) så kan vi beregne systemtiden gått fra start til slutt av den delen fra koden vi var interessert i.

Kjørt på min maskin ble tidene slik:

```
«100000000L» → ~ 71 millisek.

«1000000000L» → ~ 658 millisek

«10000000000L» → ~ 6597 millisek.
```