203 Utilisation de la notion de compacité.

I - Diverses caractérisations de la compacité

1. Caractérisation topologique

Définition 1. Un espace métrique (E, d) est **compact** s'il vérifie la propriété de Borel-Lebesgue :

[GOU20] p. 27

De toute recouvrement de E par des ouverts de E, on peut en extraire un sous-recouvrement fini.

Exemple 2. Tout espace métrique fini est compact.

Proposition 3. Un espace métrique (E, d) est compact si de toute famille de fermés de E d'intersection vide, on peut extraire une sous-famille d'intersection vide.

Proposition 4. (i) Une réunion finie de parties compactes est compacte.

(ii) Une intersection quelconque de parties compactes est compacte.

2. Caractérisation séquentielle

Soit (E, d) un espace métrique.

[**DAN**] p. 51

Théorème 5 (Bolzano-Weierstrass). (E, d) est compact si toute suite de E admet une soussuite convergente dans E.

Exemple 6. Tout segment [a, b] de \mathbb{R} est compact, mais \mathbb{R} n'est pas compact.

Proposition 7. (i) Un espace métrique compact est complet.

(ii) Un espace métrique compact est borné.

Proposition 8. Soit $A \subseteq E$.

- (i) Si *A* est compacte, alors *A* est une partie fermée bornée de *E*.
- (ii) Si *E* est compact et *A* est fermée, alors *A* est compacte.

Proposition 9. Un produit d'espaces métriques compacts est compact pour la distance produit.

Application 10. Soit (E, d) un espace métrique compact. Soit (u_n) une suite de E telle que $d(u_n, u_{n-1}) \longrightarrow 0$. Alors l'ensemble Γ des valeurs d'adhérence de (u_n) est connexe.

[**I-P**] p. 116

Corollaire 11 (Lemme de la grenouille). Soient $f:[0,1] \to [0,1]$ continue et (x_n) une suite de [0,1] telle que

$$\begin{cases} x_0 \in [0,1] \\ x_{n+1} = f(x_n) \end{cases}$$

Alors (x_n) converge si et seulement si $\lim_{n\to+\infty} x_{n+1} - x_n = 0$.

3. Caractérisation dans un espace vectoriel normé de dimension finie

[DEV]

Théorème 12. En dimension finie, toutes les normes sont équivalentes.

[**LI**] p. 15

Corollaire 13. Les parties compactes d'un espace vectoriel normé de dimension finie sont les parties fermées bornées.

Corollaire 14. (i) Tout espace vectoriel de dimension finie est complet.

- (ii) Tout espace vectoriel de dimension finie dans un espace vectoriel normé est fermé dans cet espace.
- (iii) Si E est un espace vectoriel normé, alors toute application linéaire $T: E \to F$ (où F désigne un espace vectoriel normé arbitraire) est continue.

Application 15. L'exponentielle d'une matrice est un polynôme en la matrice.

[**C-G**] p. 407

Théorème 16 (Riesz). La boule unité fermée d'un espace vectoriel normé est compacte si et seulement s'il est dimension finie.

[LI] p. 17

II - Utilisation en analyse

1. Continuité et compacité

Proposition 17. Soient (E, d_E) , (F, d_F) deux espaces métriques et $f : E \to F$ une application continue. Si E est compact, alors f(E) est compact.

[**DAN**] p. 55

Corollaire 18. Toute application définie et continue sur un espace métrique compact à valeurs dans un espace métrique est bornée.

Proposition 19. Sous les hypothèses et notations de la Proposition 17, en supposant de plus f injective, alors f réalise un homéomorphisme entre E et f(E).

Théorème 20 (des bornes). Toute fonction réelle continue sur un espace métrique compact est bornée et atteint ses bornes.

Corollaire 21 (Théorème des valeurs intermédiaires). L'image d'un segment [a, b] de \mathbb{R} par une fonction réelle continue est un segment [c, d] de \mathbb{R} .

Application 22 (Théorème de Rolle). Soit f une fonction réelle continue sur un intervalle [a,b], dérivable sur]a,b[et telle que f(a)=f(b). Alors,

[GOU20] p. 73

[ROU]

p. 171

$$\exists c \in]a, b[$$
 tel que $f'(c) = 0$

Application 23 (Point fixe dans un compact). Soit (E, d) un espace métrique compact et $f: E \to E$ telle que

$$\forall x, y \in E, x \neq y \implies d(f(x), f(y)) < d(x, y)$$

alors f admet un unique point fixe et pour tout $x_0 \in E$, la suite des itérés

$$x_{n+1} = f(x_n)$$

converge vers ce point fixe.

Exemple 24. sin admet un unique point fixe sur [0, 1].

Application 25 (Théorème de d'Alembert-Gauss). Tout polynôme non constant de $\mathbb C$ admet une racine dans $\mathbb C$.

[**DAN**] p. 58

Théorème 26 (Heine). Une application continue à valeurs dans un espace métrique définie sur un espace métrique compact est uniformément continue.

[**GOU20**] p. 238

- **Théorème 27** (Théorèmes de Dini). (i) Soit (f_n) une suite *croissante* de fonctions réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.
 - (ii) Soit (f_n) une suite de *fonctions croissantes* réelles *continues* définies sur un segment I de \mathbb{R} . Si (f_n) converge simplement vers une fonction *continue* sur I, alors la convergence est uniforme.

2. Approximation de fonctions

[DEV]

Théorème 28 (Weierstrass). Toute fonction continue $f : [a, b] \to \mathbb{R}$ (avec $a, b \in \mathbb{R}$ tels que $a \le b$) est limite uniforme de fonctions polynômiales sur [a, b].

p. 304

On a une version plus générale de ce théorème.

Théorème 29 (Stone-Weierstrass). Soit K un espace compact et $\mathscr A$ une sous-algèbre de l'algèbre de Banach réelle $\mathscr C(K,\mathbb R)$. On suppose de plus que :

[LI] p. 46

- (i) \mathscr{A} sépare les points de K (ie. $\forall x \in K, \exists f \in A$ telle que $f(x) \neq f(y)$).
- (ii) A contient les constantes.

Alors \mathscr{A} est dense dans $\mathscr{C}(K,\mathbb{R})$.

Remarque 30. Il existe aussi une version "complexe" de ce théorème, où il faut supposer de plus que \mathcal{A} est stable par conjugaison.

Exemple 31. La suite de polynômes réels (r_n) définie par récurrence par

$$r_0 = 0 \text{ et } \forall n \in \mathbb{N}, r_{n+1} : t \mapsto r_n(t) + \frac{1}{2}(t - r_n(t)^2)$$

converge vers $\sqrt{.}$ sur [0, 1].

3. Étude d'équations différentielles

Théorème 32 (Arzelà-Peano). Soit F une fonction continue sur un ouvert U de $\mathbb{R} \times \mathbb{R}^n$ à valeurs dans \mathbb{R}^n . On considère l'équation différentielle

[**GOU20**] p. 375

$$y' = F(t, y)$$

Pour tout couple (y_0, t_0) de U, le problème de Cauchy admet une solution y définie sur un intervalle ouvert contenant t_0 .

Exemple 33. L'équation différentielle

$$y' = \begin{cases} 0 & \text{si } y < 0\\ \sqrt{y} & \text{si } y \ge 0 \end{cases}$$

admet des solutions.

Théorème 34 (Lemme de sortie de tout compact). Soient]a,b[un intervalle ouvert de \mathbb{R} , O un ouvert de \mathbb{R}^n et $F:]a,b[\times O \to \mathbb{R}^n$ une fonction continue et localement lipschitzienne en la seconde variable. Soit $\varphi:]\alpha,\beta[\to\mathbb{R}^n$ une solution maximale de y'=F(t,y).

Alors, si $\beta < b$ (resp. si $a < \alpha$), pour tout compact $K \subseteq O$, il existe un voisinage V de β (resp. de α) dans $]\alpha, \beta[$ tel que $\varphi(t) \notin K$ pour tout $t \in V$.

4. Recherche d'extrema

Proposition 35. Le maximum de

[**ROU**] p. 409

p. 400

$$f: \begin{array}{ccc} \mathbb{R}^n \times \dots \times \mathbb{R}^n & \to & \mathbb{R} \\ (\nu_1, \dots, \nu_n) & \mapsto & \det(\nu_1, \dots, \nu_n) \end{array}$$

est atteint sur le cercle unité de \mathbb{R}^n .

Corollaire 36 (Inégalité de Hadamard).

$$\forall v_1, \dots, v_n \in \mathbb{R}^n, |\det(v_1, \dots, v_n)| \le ||v_1|| \dots ||v_n||$$

où $\|.\|$ désigne la norme associée au produit scalaire usuel sur \mathbb{R}^n . On a égalité si et seulement si un des v_i est nul.

Remarque 37. Géométriquement, cette inégalité exprime que les parallélépipèdes de volume maximum sont rectangles.

5. Convexité et compacité

Théorème 38 (Hahn-Banach géométrique). Soit E un espace vectoriel normé. Soient C et E deux parties non vides de E disjointes et telles que E soit convexe et fermée, et E soit convexe et compacte. Alors, il existe une forme linéaire continue $\varphi i n E'$ telle que :

[**LI**] p. 159

$$\sup_{x \in C} \operatorname{Re}(\varphi(x)) < \inf_{x \in K} \operatorname{Re}(\varphi(x))$$

Corollaire 39 (Théorème de Minkowski). Toute partie convexe et fermée d'un espace vectoriel normé réel est égale à l'intersection des demi-espaces fermés qui le contiennent.

Corollaire 40. Soit H un espace de Hilbert sur $\mathbb R$ et soit D une partie de H. Alors l'enveloppe convexe fermée de D est égale à l'intersection des demi-espaces de la forme

[**BMP**] p. 133

$$\{y\in H\mid f(y)\leq\alpha\}$$

qui contiennent D, où $f \in H'$ et $\alpha \in \mathbb{R}$.

III - Utilisation en algèbre

Proposition 41. (i) $SO_n(\mathbb{R})$ est compact (et connexe).

p. 62

(ii) $\mathcal{O}_n(\mathbb{R})$ est compact (non-connexe).

p. 376

Application 42 (Décomposition polaire). L'application

$$\mu: \begin{array}{ccc} \mathcal{O}_n(\mathbb{R}) \times \mathcal{S}_n^{++}(\mathbb{R}) & \to & \mathrm{GL}_n(\mathbb{R}) \\ (O,S) & \mapsto & OS \end{array}$$

est un homéomorphisme.

Corollaire 43. Tout sous-groupe compact de $GL_n(\mathbb{R})$ qui contient $\mathcal{O}_n(\mathbb{R})$ est $\mathcal{O}_n(\mathbb{R})$.

Corollaire 44. $GL_n(\mathbb{R})^+$ est connexe.

p. 401

Bibliographie

Objectif agrégation [BMP]

Vincent BECK, Jérôme Malick et Gabriel Peyré. *Objectif agrégation*. 2^e éd. H&K, 22 août 2005. https://objectifagregation.github.io.

Nouvelles histoires hédonistes de groupes et de géométries

[C-G]

Philippe Caldero et Jérôme Germoni. *Nouvelles histoires hédonistes de groupes et de géométries. Tome 1.* Calvage & Mounet, 13 mai 2017.

http://www.calvage-et-mounet.fr/2022/05/09/nouvelles-histoires-hedoniste-de-groupes-et-de-geometrie/.

Mathématiques pour l'agrégation

[DAN]

Jean-François Dantzer. *Mathématiques pour l'agrégation. Analyse et probabilités.* De Boeck Supérieur, 20 avr. 2021.

https://www.deboecksuperieur.com/ouvrage/9782807332904-mathematiques-pour-1-agregation-analyse-et-probabilites.

Les maths en tête [GOU20]

Xavier Gourdon. Les maths en tête. Analyse. 3e éd. Ellipses, 21 avr. 2020.

https://www.editions-ellipses.fr/accueil/10446-les-maths-en-tete-analyse-3e-edition-9782340038561.html.

L'oral à l'agrégation de mathématiques

[I-P]

Lucas Isenmann et Timothée Pecatte. *L'oral à l'agrégation de mathématiques. Une sélection de développements.* 2^e éd. Ellipses, 26 mars 2024.

https://www.editions-ellipses.fr/accueil/15218-28346-loral-a-lagregation-de-mathematiques-une-selection-de-developpements-2e-edition-9782340086487.html.

Cours d'analyse fonctionnelle

[LI]

Daniel Li. Cours d'analyse fonctionnelle. avec 200 exercices corrigés. Ellipses, 3 déc. 2013.

https://www.editions-ellipses.fr/accueil/6558-cours-danalyse-fonctionnelle-avec-200-exercices-corriges-9782729883058.html.

Petit guide de calcul différentiel

[ROU]

François Rouvière. *Petit guide de calcul différentiel. à l'usage de la licence et de l'agrégation.* 4^e éd. Cassini, 27 fév. 2015.

https://store.cassini.fr/fr/enseignement-des-mathematiques/94-petit-guide-de-calcul-differentiel-4e-ed.html.