Laboratory Exercise 6

Counters

Part I Counter I

Consider the circuit in Figure 1. It is a 4-bit synchronous counter which uses four T-type flip-flops. The counter increments its value on each positive edge of the clock if the *Enable* signal is asserted. The counter is reset to 0 by setting the *Reset* signal. You are to implement a 16-bit counter of this type.

Figure 1: A 4-bit counter.

- 1. Write a Verilog file that defines a 16-bit counter by using the structure depicted in Figure 1. Your code should include a T flip-flop module that is instantiated 16 times to create the counter. Compile the circuit. How many logic elements (LEs) are used to implement your circuit? What is the maximum frequency, F_{max} , at which your circuit can be operated?
- 2. Simulate your circuit to verify its correctness.
- 3. Augment your Verilog file to use the pushbutton KEY_0 as the Clock input, switches SW_1 and SW_0 as Enable and Reset inputs, and 7-segment displays HEX3-0 to display the hexadecimal count as your circuit operates. Make the necessary pin assignments needed to implement the circuit on the DE2-115 board, and compile the circuit.
- 4. Download your circuit into the FPGA chip and test its functionality by operating the implemented switches.

Part II Counter II

Specify your Verilog code so that the counter specification is based on the Verilog statement:

$$Q \le Q + 1;$$

Compile a 16-bit version of this counter and determine the number of LEs needed and the F_{max} that is attainable. Use the RTL Viewer to see the structure of this implementation and comment on the differences with the design from Part I.

Part III Counter Design with LPM

Use an LPM from the Library of Parameterized modules to implement a 16-bit counter. Choose the LPM options to be consistent with the above design, i.e. with enable and synchronous clear. How does this version compare with the previous designs?

Part IV BCD Incremental Counter

Design and implement a circuit that successively flashes digits 0 through 9 on the 7-segment display *HEX0*. Each digit should be displayed for about one second. Use a counter to determine the one second intervals. The counter should be incremented by the 50-MHz clock signal provided on the DE2-series board. Do not derive any other clock signals in your design–make sure that all flip-flops in your circuit are clocked directly by the 50-MHz clock signal.

Part V HELLO Shifter

Design and implement a circuit that displays the word HELLO, in ticker-tape fashion, on the eight 7-segment displays *HEX7-0*. Make the letters move from right to left in intervals of about one second. The patterns that should be displayed in successivive clock intervals are given in Table 1(from right to left). Use a button switch KEY0 to toggle the direction of the shift. Also use a button switch KEY1 to toggle between shifting and blinking(without shifting) of characters.

Clock cycle		Displayed pattern							
0				Н	Е	L	L	О	
1			Н	E	L	L	O		
2		Н	E	L	L	O			
3	Н	E	L	L	O				
4	Е	L	L	Ο				Η	
5	L	L	O				Η	E	
6	L	O				Η	E	L	
7	О				Н	E	L	L	
8				Η	E	L	L	Ο	
	and	and so on							

Table 1. Scrolling the word HELLO in ticker-tape fashion.