© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°17

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – CCP PSI 2006

Si *n* est un entier naturel non nul, on note

$$\sigma_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

et on pose $\sigma_0 = 0$.

A toute suite complexe a, on associee la suite a^* définie par :

$$\forall n \in \mathbb{N}, \ a_n^* = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} a_k$$

Partie I – Deux exemples

I.1 Cas d'une suite constante.

Soit $\alpha \in \mathbb{C}^*$. On suppose que la suite a est définie par $\forall n \in \mathbb{N}, \ a_n = \alpha$.

I.1.a Expliciter
$$\sum_{k=0}^{n} \binom{n}{k}$$
 pour $n \in \mathbb{N}$.

I.1.b Expliciter a_n^* pour $n \in \mathbb{N}$.

I.1.c La série
$$\sum_{n\geq 0} a_n$$
 (resp. $\sum_{n\geq 0} a_n^*$) est-elle convergente?

I.2 Cas d'une suite géométrique.

Soit $z \in \mathbb{C}$; on suppose que la suite a est définie par : $\forall n \in \mathbb{N}, \ a_n = z^n$.

- **I.2.a** Exprimer a_n^* en fonction de z et n.
- **I.2.b** On suppose que |z| < 1.

I.2.b.i Justifier la convergence de la série
$$\sum_{n\geq 0} a_n$$
 et expliciter sa somme $A(z) = \sum_{n=0}^{+\infty} a_n$.

- **I.2.b.ii** Justifier la convergence de la série $\sum_{n\geq 0} a_n^*$ et expliciter sa somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de A(z).
- **I.2.c** On suppose que $|z| \ge 1$.

I.2.c.i Quelle est la nature (convergente ou divergente) de la série $\sum_{n \ge 0} a_n$?

I.2.c.ii Quelle est la nature de
$$\sum_{n\geq 0} a_n^*$$
 si $z=-2$?

© Laurent Garcin MP Dumont d'Urville

I.2.c.iii On suppose $z=e^{i\theta}$, avec θ réel tel que $0<|\theta|<\pi$. Montrer que la série $\sum_{n\geq 0}a_n^*$ est convergente. Calculer la partie réelle et la partie imaginaire de la somme $\sum_{n=0}^{+\infty}a_n^*$.

Partie II - Etude du procédé de sommation

Dans cette partie, et pour simplifier, on suppose que a est à valeurs réelles.

II.1 Comparaison des convergences des deux suites.

- **II.1.a** Soit $n \in \mathbb{N}^*$, on considère une entier k fixé, $k \in [0, n]$.
 - **II.1.a.i** Préciser un équivalent de $\binom{n}{k}$ lorsque n tend vers $+\infty$.
 - **II.1.a.ii** En déduire la limite de $\frac{1}{2^n} \binom{n}{k}$ lorsque n tend vers $+\infty$.
- **II.1.b** Soit a une suite réelle et q un entier naturel fixé.

On considère pour n > q la somme $S_q(n, a) = \sum_{k=0}^{q} \binom{n}{k} \frac{a_k}{2^n}$. Quelle est la limite de $S_q(n, a)$ lorsque l'entier n tend vers $+\infty$?

- **II.1.c** On suppose que a_n tend vers 0 lorsque n tend vers $+\infty$. Montrer que a_n^* tend vers 0 lorsque n tend vers $+\infty$.
- **II.1.d** On suppose que a_n tend vers ℓ (limite finie) lorsque n tend vers $+\infty$. Quelle est la limite de a_n^* lorsque n tend vers $+\infty$?
- **II.1.e** La convergence de la suite (a_n) est-elle équivalente à la convergence de la suite (a_n^*) ?

II.2 Comparaison des convergences des séries $\sum a_n$ et $\sum a_n^*$.

Pour $n \in \mathbb{N}^*$, on note $S_n = \sum_{k=0}^n a_k$, $T_n = \sum_{k=0}^n a_k^*$, $U_n = 2^n T_n$.

- **II.2.a** Pour $n \in [0,3]$, exprimer U_n comme combinaison linéaire des sommes S_k , c'est à dire sous la forme $U_n = \sum_{k=0}^n \lambda_{n,k} S_k$.
- **II.2.b** On se propose de déterminer l'expression explicite de U_n comme combinaison linéaire des sommes S_k pour $k \in [0, n]$:

$$(\mathcal{E}) U_n = \sum_{k=0}^n \lambda_{n,k} S_k \text{ pour } n \in \mathbb{N}$$

- **II.2.b.i** A quelle expression des coefficients $\lambda_{n,k}$ (en fonction de n et k) peut-on s'attendre compte-tenu des résultats obtenus à la question précédente?
- **II.2.b.ii** Etablir la formule (\mathcal{E}) par récurrence sur l'entier n (on pourra remarquer que pour tout $k \in [0, n]$, $a_k = S_k S_{k-1}$ avec la convention $S_{-1} = 0$).
- **II.2.c** On suppose que la série $\sum a_n$ est convergente. Montrer que la série $\sum a_n^*$ est convergente et exprimer la somme $\sum_{n=0}^{+\infty} a_n^*$ en fonction de la somme $\sum_{n=0}^{+\infty} a_n$.
- **II.2.d** La convergence de la série $\sum a_n$ est-elle équivalente à la convergence de la série $\sum a_n^*$?

Partie III - Une étude de fonctions.

Pour x réel, lorsque cela a du sens, on pose :

$$f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n+1)!}$$

$$g(x) = \sum_{n=0}^{+\infty} \frac{\sigma_n x^n}{n!}$$

$$\phi(x) = \sum_{n=0}^{+\infty} \sigma_n x^n$$

III.1 Etude de f.

III.1.a Vérifier que f est définie et continue sur \mathbb{R} .

III.1.b Expliciter x f(x) pour tout x réel.

III.1.c Expliciter $e^{-x} f(x)$ pour tout x réel.

III.2 Etude de g.

III.2.a Montrer que g est définie et de classe \mathcal{C}^1 sur \mathbb{R} .

III.2.b On désigne par g' la dérivée de la fonction g. Exprimer g' - g en fonction de f.

III.2.c Montrer que pour tout *x* réel :

$$g(x) = e^x \int_0^x e^{-t} f(t) dt$$

III.3 La fonction F.

On condidère la fonction F définie sur \mathbb{R} par :

$$F(x) = \int_0^x e^{-t} f(t) dt$$

III.3.a Montrer que la fonction F est développable en série entière sur \mathbb{R} et expliciter son développement.

III.3.b Pour $n \in \mathbb{N}^*$, on note $\gamma_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k \cdot k!(n-k)!}$. Exprimer γ_n en fonction de n et σ_n .

III.4 La série $\sum \frac{(-1)^{k+1}}{k}$.

III.4.a Soit
$$w_k = \ln\left(\frac{k+1}{k}\right) - \frac{1}{k+1}$$
 pour $k \in \mathbb{N}^*$.

III.4.a.i Montrer que la série $\sum_{k>1} w_k$ est convergente.

III.4.a.ii En déduire que la suite de terme général $\sigma_n - \ln(n)$ admet une limite finie (que l'on ne demande pas de calculer) lorsque n tend vers $+\infty$.

III.4.b Pour $n \in \mathbb{N}^*$, on pose $\tau_n = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Exprimer τ_{2n} en fonction de σ_{2n} et σ_n .

III.4.c Montrer en utilisant les questions précédentes que la série $\sum_{k\geq 1} \frac{(-1)^{k+1}}{k}$ est convergente et déterminer sa somme $\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$.

III.5 Etude de la fonction ϕ .

III.5.a Déterminer le rayon de convergence R de la série entière $\sum_{n\geq 1} \sigma_n x^n$.

III.5.b Préciser l'ensemble de définition Δ de la fonction ϕ , et étudier ses variations sur [0, R[.

III.5.c Valeur de $\phi\left(\frac{1}{2}\right)$.

En utilisant les résultats de la partie 2 et de la question **III.4.c**, expliciter la valeur de $\phi\left(\frac{1}{2}\right)$.

III.5.d Expliciter $\phi(x)$ pour $x \in \Delta$ et retrouver la valeur de $\phi\left(\frac{1}{2}\right)$.