Ch 1.4 Itt. We want to show that if xeB°, then xeA°. 43 If x ∈ B°, then x € B. Since $A \subset B$, $x \notin A$. That implies $x \in A^c$. t1: try something, but doesn't make #2. An (BUC) = (AnB) U (Anc) sense. t2: try to show & E AN (BUC) if XEB, then de A, ⇒ d ∈ A and d ∈ BUC ⇒ \(\alpha \) \(\ext{e} \) \(\text{A} \) \(\text{ord} \) \(\text{d} \) \(\text{e} \) \(\text{d} \) (=) either & eANB or & e ANC <⇒ < ∈ (ANB) U (Anc) $(2UA) \cap (BUB) = (20B) \cup (BUC)$ a e A U (Bnc) ⇔ either d ∈ A or d ∈ B ∩ C ⇔ either x ∈ A or x ∈ B and x ∈ C ⇔ x ∈ (AUB) ∩ (BUC)

#3

IA $\cap B$) $^{c} = A^{c} \cup B^{c}$ $A \in (A \cap B)^{c}$ $A \in (A \cap B)^{c}$ $A \notin A \cap B$ $A \notin A$

#8. A = blood reads with anti-A

B = " anti-B.

Type $A = A \cap B^c$ Type $B = A^c \cap B$

Type $AB = A \cap B$ Type $O = A^c \cap B^c$

#11.

a. $S = \emptyset$ (xy): $0 \le x \le 5$ and $0 \le y \le 5$?

b. $A = \emptyset$ (xy) $\in S : x + y \ge 6$?

b. $A = \{ (x,y) \in S : x + y \ge 6 \}$ $B = \{ (x,y) \in S : x = y \}$ $C = \{ (x,y) \in S : x > y \}$ $D = \{ (x,y) \in S : x < x + y < 6 \}$

C. | (a,y): == y and dey = 5 }

D. f (x,y): a+y < 6, y > 2 }

 $= \beta_c \cup C_c \cup \beta_c$

Ch 1.5

##. Let
$$A = \text{ student } A$$
 foils

 $B = "B".$
 $P(A) = .5 , P(B) = .2 , P(A \cap B) = .1.$
 $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ by general additionity

 $= .5 + .2 - .1 = .6 .$ for two exercises

#5 $P(A \cap B^{\circ}) = P(A \cup B)$
 $= 1 - P(A \cup B)$
 $= 1 - .6 = .4 .$

#6. $P(A \cap B^{\circ}) \cup (B \cap A^{\circ}) = P(A \cup B) - P(A \cap B)$
 $= .6 - .1 = .5 .$

$$\frac{6}{8} = \frac{3}{4}$$

41 (a)

K1 (P)

Ch 1.6.

#2.
$$S = \{(1,1), (1,2), (1,3), \dots, (6,6)\}$$
.

#4. $S = \{(1,1), (1,3), (1,5), \dots, (6,6)\}$.

Since $S = \{(1,1), (1,3), (1,5), \dots, (6,6)\}$.

Since $S = \{(1,1), (1,3), (1,5), \dots, (6,6)\}$.

#3. $S = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (3,3), (3,4), (3,5), (4,2), (4,3), (4,4), (4,5), (4,6), (5,3), (5,4), (5,5), (5,6), (6,4), (6,5), (6,6)\}$

Since $S = \{(1,1), (1,2), (1,3), (1,4), (1,5)$

Since
$$S$$
 is a finite sample space,
$$\frac{G}{S} + GG = 1$$

Thurstone,
$$P(G1) = \frac{2}{7}$$
, $P(G2) = \cdots = P(G6) = \frac{1}{7}$.

$$=\frac{2}{7}+\frac{1}{7}+\frac{7}{7}$$