Mecánica Vectorial - Tarea 1 (Ejercicio 8) - Briones Andrade Joshua

1) Sea el vector posición \vec{r} que varía con respecto el tiempo de la siguiente forma.

$$\vec{r}$$
(t)=(Cos (ω t), $e^{\omega t}$)

R1x = Plot[Cos[$\omega * t$] /. $\omega \rightarrow 1$, {t, 0, 4 Pi}]

R1y = Plot[Exp[$\omega * t$] /. $\omega \rightarrow Pi / 4$, {t, 0, 4 Pi}, PlotStyle $\rightarrow Red$]

La velocidad de las componentes de *R* esta definida como la derivada con respecto al tiempo de sus componentes entonces tenemos lo siguiente.

$$\vec{V(t)} = \frac{d\vec{r(t)}}{dt} = \frac{d}{dt} \left(\cos(\omega t), e^{\omega t} \right) = \left(\frac{d(\cos(\omega t))}{dt}, \frac{d(e^{\omega t})}{dt} \right) = \left(-\sin(\omega t) \frac{\omega t}{dt}, e^{\omega t} \frac{\omega t}{dt} \right) = \left(-\omega \sin(\omega t), \omega e^{\omega t} \right) = \vec{V}(t)$$

$$V1x = Plot[-Sin[\omega t] * \omega /. \omega \rightarrow Pi / 4, \{t, 0, 4 Pi\}];$$

 $Show[V1x, AxesLabel \rightarrow \{HoldForm[Tiempo[s]], HoldForm[HoldForm[Velocidad[\frac{m}{s}]]]\},$

PlotLabel → "Velocidad en X"]

V1y = Plot[Exp[$\omega * t$] * ω /. $\omega \rightarrow Pi / 4$, {t, 0, 4 Pi}, PlotStyle $\rightarrow Red$]; Show[V1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Velocidad[$\frac{m}{s}$]]},

PlotLabel → HoldForm[Velocidad en Y], LabelStyle → {GrayLevel[0]}]

Continuamos ahora con la aceleración.

$$\vec{a} = \frac{d\vec{V}}{dt} = \frac{d}{dt} \left(-\omega \operatorname{Sin}(\omega t), \ \omega e^{\omega t} \right) = \left(\frac{d(-\omega \operatorname{Sin}(\omega t))}{dt}, \ \frac{d(\omega e^{\omega t})}{dt} \right) = \left(-\omega^2 \operatorname{Cos}(\omega t), \ \omega^2 e^{\omega t} \right) = \vec{a}$$

A1x = Plot[$-\cos[\omega * t] * \omega^2 /. \omega \rightarrow Pi/4, \{t, 0, 4 Pi\}$];

 $Show[Alx, AxesLabel \rightarrow \left\{ HoldForm[Tiempo[s]], HoldForm[Aceleración[\frac{m}{s^2}]] \right\},$ PlotLabel → HoldForm[Aceleración en X], LabelStyle → {GrayLevel[0]}

 ${\tt Aly = Plot[Exp[$\omega *t] * ω^2 /. $\omega \to {\tt Pi/4}$, {\tt \{t, 0, 4\,Pi\}, PlotStyle} \to {\tt Red];}}$ Show[A1y, AxesLabel \rightarrow {HoldForm[Tiempo[s]], HoldForm[Aceleración[$\frac{m}{s^2}$]]}, $PlotLabel \rightarrow HoldForm[Aceleración en Y], LabelStyle \rightarrow \{GrayLevel[0]\}]$

