

Functional Analysis Applied to PDEs (2024-1)

Google Classroom: kmk6w62 Telegram: https://t.me/+bOM71NAzRMI2MDQx

> Professor: Dr. Alberto Saldaña Email: alberto.saldana@im.unam.mx Telegram: AlbertoSaldana

Homework 3

<u>Instructions</u>: Solve the following exercises, justifying your answers carefully. Upload your written answers in LaTeX using the Google Classroom platform no later than **Monday**, **September 18**.

Exercises:

1. (2 points) Let $p, q, r \in (1, \infty)$ be such that

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{r}.$$

Let $\Omega \subseteq \mathbb{R}^N$ be open and $f \in L^q(\Omega)$. Let's prove that (Lu)(x) := f(x)u(x) defines a bounded linear operator L from $L^p(\Omega)$ to $L^r(\Omega)$.

Let $u \in L^p(\Omega)$, observe that this is equivalen to $u^r \in L^{\frac{p}{r}}(\Omega)$. By the same reason $f^r \in L^{\frac{q}{r}}(\Omega)$. By hypothesis made about p, q, r we have that $\frac{r}{p} + \frac{r}{q} = 1$, therefore Holder's inequality implies that $f^r u^r \in L^1(\Omega)$ and

$$||Lu||_{r}^{r} = \int_{\Omega} |f(x)|^{r} |u(x)|^{r} dx$$

$$\leq \left(\int_{\Omega} |f(x)|^{r\frac{q}{r}} dx\right)^{\frac{r}{q}} \left(\int_{\Omega} |u(x)|^{r\frac{p}{r}} dx\right)^{\frac{r}{p}} = ||f||_{q}^{r} ||u||_{p}^{r}.$$

Therfore $||Lu||_r \leq ||f||_q ||u||_p$. This prooves that L is well defined and that is a bounded linear operator.

2. Let E be a Banach space and let¹

$$X := \{ A \in \mathcal{L}(E) : A \text{ is bijective and } A^{-1} \in \mathcal{L}(E) \}.$$

¹Later in the course, we will see that if $A \in \mathcal{L}(E)$ is bijective and E is a Banach space, then it is always the case that $A^{-1} \in \mathcal{L}(E)$. Completeness hypothesis is important! In general, a bounded operator $A: E_1 \to E_2$ between two normed spaces E_1 and E_2 can have an unbounded inverse if E_1 and/or E_2 are not Banach spaces, see for example: https://math.stackexchange.com/questions/1580369/do-there-exist-bounded-operators-with-unbounded-inverses

(a) (2 Points) Let $A \in X$ and $B \in \mathcal{L}(E)$ be such that $||I - BA^{-1}|| < 1$. Let's show that $B \in X$ and give a formula for B^{-1} .

The Neumann series theorem asserts that in a Banach space E if $A \in \mathcal{L}(E)$ and ||A|| < 1 then I - A is invertible and it's inverse is given by $(I - A)^{-1} = \lim_{n \to \infty} A_n$, where $A_n = \sum_{k=0}^n A^k$. The operator $I - BA^{-1}$ is in $\mathcal{L}(E)$ since by hypothesis $B, A^{-1} \in \mathcal{L}(E), I \in \mathcal{L}(E)$ and $\mathcal{L}(E)$ is a vectorial space closed under composition. In addition $||I - BA^{-1}|| < 1$. Applying Neumann's series theorem $I - I + BA^{-1} = BA^{-1}$ is invertible and $AB^{-1} = (BA^{-1})^{-1} = \lim_{n \to \infty} \sum_{k=0}^n (I - BA^{-1})^k$. Then B is invertible and it's inverse is given by

$$B^{-1} = \lim_{n \to \infty} \sum_{k=0}^{n} A^{-1} (I - BA^{-1})^{k}.$$
 (1)

(b) (2 Points) Let's show that X is open in $\mathcal{L}(E)$ and that the mapping

$$X \to X$$
, $A \mapsto A^{-1}$

from an operator to its inverse is continuous.

Let $A \in \mathcal{L}(E)$ and $0 < \varepsilon < \frac{1}{\|A^{-1}\|}$. Suppose that $B \in \mathcal{L}(E)$ is such that $\|A - B\| < \varepsilon$. Take $x \in E$, since A is invertible, there is a $y \in E$ such that x = Ay. Therfore

$$\begin{split} \left\| I - BA^{-1}(x) \right\|_{E} &= \left\| (I - BA^{-1})(Ay) \right\|_{E} \\ &= \left\| Ay - By \right\|_{E} \\ &\leq \left\| A - B \right\| \left\| y \right\|_{E} \\ &\leq \varepsilon \left\| A^{-1}x \right\|_{E} \\ &\leq \varepsilon \left\| A^{-1} \right\| \left\| x \right\|_{E} \leq \left\| x \right\|_{E}. \end{split} \tag{2}$$

Therfore $||I - BA^{-1}|| < 1$, and by a) B is invertible. By 1

$$||B^{-1}|| = \left\| \lim_{n \to \infty} \sum_{k=0}^{n} A^{-1} (I - BA^{-1})^{k} \right\|$$

$$\leq ||A^{-1}|| \lim_{n \to \infty} \sum_{k=0}^{n} ||I - BA^{-1}||^{k} < \infty$$

since the last is a geometric series with reason < 1. Therefore B^{-1} is bounded. This proves that X is open in $\mathcal{L}(E)$.

To prove that $A\mapsto A^{-1}$ is continuous let's prove that it's continuous at $A\in\mathcal{L}(E)$. Let $\delta>0$. In equation 2 taking ε such that $0<\varepsilon<\frac{1}{2\|A^{-1}\|}$ then if

 $\|B-A\|<\varepsilon$ we have that $\|I-BA^{-1}\|<\frac{1}{2}$. Therefore there is $n_0\in \mathbb{N}$ such that $\sum_{k=n_0}^{\infty}\|I-BA^{-1}\|^k<\frac{\delta}{2}$ (is a convergent geometric series). Since multiplying by a bounded linear operator, taking it's opposite, adding the identity and raising to the power k is a continuous function we have for $\|B-A\|$ small enough, let's say $\|B-A\|<\tilde{\varepsilon}$, that $\|I-\sum_{k=0}^{n_0}(I-BA^{-1})^k\|<\frac{\delta}{2}$, because $I-\sum_{k=0}^{n_0}(I-AA^{-1})=0$. Now if we take $\|B-A\|$ small enough, let's say $\|B-A\|<\min\{\varepsilon,\tilde{\varepsilon}\}$, then

$$||A^{-1} - B^{-1}|| = ||A^{-1} - A^{-1} \sum_{k=0}^{\infty} (I - BA^{-1})^{k}||$$

$$= ||A^{-1} \left(I - \sum_{k=0}^{\infty} (I - BA^{-1})^{k}\right)||$$

$$\leq ||A^{-1}|| ||\left(I - \sum_{k=0}^{\infty} (I - BA^{-1})^{k}\right)||$$

$$= ||A^{-1}|| ||\left(I - \sum_{k=0}^{n_{0}} (I - BA^{-1})^{k}\right) + \sum_{k=n_{0}}^{\infty} (I - BA^{-1})^{k}||$$

$$\leq ||A^{-1}|| ||\left(I - \sum_{k=0}^{n_{0}} (I - BA^{-1})^{k}\right)|| + \sum_{k=n_{0}}^{\infty} ||I - BA^{-1}||^{k}$$

$$\leq ||A^{-1}|| \left(\frac{\delta}{2} + \frac{\delta}{2}\right) = ||A^{-1}|| \delta.$$

Since delta was arbitrary we conclude that $B^{-1} \to A^{-1}$ when $||B - A|| \to 0$, therefore $A \mapsto A^{-1}$ is continous.

3. (2 points) Let E, F, G be normed spaces, and let $A: E \times F \to G$ be a bilinear map: For all $x_0 \in E$ and $y_0 \in F$, the maps $A[x_0, \cdot]: F \to G$ and $A[\cdot, y_0]: E \to G$ are linear. Let's prove that A is continuous if and only if there exists $C \geq 0$ such that

$$||A[x,y]||_G \le C||x||_E||y||_F \quad \text{for all } x \in E, \ y \in F.$$
 (3)

First suppose that 3 holds. Let $(x_k, y_k) \subseteq E \times F$ such that $(x_k, y_k) \to (x, y) \in E \times F$. Then

$$||A[x,y] - A[x_k,y_k]|| \le ||A[x,y] - A[x,y_k]|| + ||A[x,y_k] - A[x_k,y_k]||$$

$$= ||A[x - x_k,y]|| + ||A[x,y - y_k]||$$

$$\le C[||x - x_k|| ||y|| + ||x_n|| ||y - y_n||] \to 0$$

when $k \to \infty$ because $||x_n||$ is bounded and $x_k \to x$ and $y_k \to y$.

Now suppose that A is continuous. Let's prove first that it exists r > 0 such that $A(B_E(r,0) \times B_F(r,0)) \subseteq B_G(1,0)$, where $B_E(r,0)$ is the closed ball in E with radius r centered in 0. By contradiction, suppose that no such r exists. Then for every r > 0 there are $(x,y) \in B_E(r,0) \times B_F(r,0)$ and ||A[x,y]|| > 1. Letting r go to 0 we have that $(x,y) \to (0,0)$ but $A[x,y] \ge 1$, a contradiction with the continuity of A at (0,0). Now let $(x,y) \in E \times F$, then

$$||A[x,y]|| = \frac{||x|| \, ||y||}{r^2} A \, ||A\left[\frac{rx}{||x||}, \frac{ry}{||y||}\right]|| \le \frac{||x|| \, ||y||}{r^2}.$$

4. (2 points) Let E be a Hilbert space and let F and G be closed linear subspaces of E such that $F \perp G$. Let's prove that $F \cap G = \{0\}$ and that $F \oplus G$ is closed.

Let $x \in F \cap G$. Then $||x||^2 = \langle x, x \rangle = 0$ and therefore x = 0. This proves $F \cap G = \{0\}$. To prove that $F \oplus G$ is closed, take $w_k := x_k + y_k \subseteq F \oplus G$ such that $x_k + y_k = w_k \to w \in E$ and $x_k \in F$ and $y_k \in G$. Using the ortogonality $F \perp G$ we have that

$$||w_{m} - w_{n}||^{2} = \langle w_{m} - w_{n}, w_{m} - w_{n} \rangle$$

$$= \langle x_{m} + y_{m} - x_{n} - y_{n}, x_{m} + y_{m} - x_{n} - y_{n} \rangle$$

$$= \langle x_{m} - x_{n}, x_{m} - x_{n} \rangle + \langle y_{m} - y_{n}, y_{m} - y_{n} \rangle$$

$$= ||x_{m} - x_{n}||^{2} + ||y_{m} - y_{n}||^{2}$$

for all $m, n \in \mathbb{N}$. Since (w_k) is a Cauchy sequence in E, so are (x_n) and (y_n) in F and G respectively. Since F and G are closed in a complete space, then $x_n \to x \in F$ and $y_n \to y \in G$. Therefore $w_n = x_n + y_n \to x + y$. We new that $w_n \to w$ so $w = x + y \in F \oplus G$. We conclude that $F \oplus G$ is a closed linear subspace of E.