Regresión Lineal Simple y Correlación

Los datos que se muestran a continuación corresponden al número de gérmenes patógenos por centímetro cúbico de un cierto cultivo transcurrido determinado periodo de tiempo en horas.

Тіетро	0	1	1.5	2	3	3.5	4	5	6
Nro. de gérmenes	20	26	33	33	41	35	47	53	59
Тіетро	6.5	7	7.5	8	9	10	10.5	11	11.5
Nro. de gérmenes	59	68	70	72	64	89	93	95	101

Se procesaron los datos con el software SPSS, el cual arrojó las salidas que se muestran a continuación.

Resumen del modelo(b)

Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
1	,981(a)		,960	

a Variables predictoras: (Constante), Tiempo (h) b Variable dependiente: Nro. de gérmenes por cm cúbico

ANOVA(b)

Modelo		Suma de cuadrados	gl	Media cuadrática	F	Sig.
1	Regresión	10155,383	1	10155,383	408,535	,000(a)
	Residual		16	24,858		
	Total	10553,111	17			

a Variables predictoras: (Constante), Tiempo (h) b Variable dependiente: Nro. de gérmenes por cm cúbico

Coeficientes(a)

Modelo		Coeficientes no estandarizados		Coeficientes estandarizado s	t	Sig.	Intervalo de confianza para B al 95%	
		В	Error típ.	Beta	Límite inferior	Límite superior	В	Error típ.
1	(Constante) Tiempo (h)	18,951 6,731	2,294 ,333	,981		,000, ,000,	14,087	23,814

a Variable dependiente: Nro. de gérmenes por cm cúbico

1. Usando la información que se obtuvo gracias al software, escriba la ecuación de la recta de regresión que permite expresar el número de gérmenes por centímetro cúbico de cultivo en función del tiempo transcurrido.

- **2.** Estime el número de gérmenes por centímetro cúbico que se contabilizarán cuando transcurran 9 horas.
- 3. Empleando la información arrojada por el software, complete la segunda columna de la segunda tabla y última columna de la primera tabla. ¿Cuál es el valor de la variación del error experimental alrededor de la recta de regresión?
- **4.** Recurriendo a los datos tabulados construya un intervalo del 95% confianza para la pendiente de la recta de regresión poblacional. Pruebe que la misma es mayor a 6, utilizando una significancia del 5%.
- **5.** Obtenga un intervalo del 99% de confianza para la cantidad promedio de gérmenes que se contabilizarán al cabo de 9 horas.
- **6.** Construya un intervalo de predicción del 99% para la cantidad de gérmenes que se contabilizarán al cabo de 9 horas.
- 7. Complete la primera tabla con el valor correspondiente del coeficiente de determinación muestral. ¿Qué porcentaje de la variación del número de gérmenes es explicado por el tiempo transcurrido? ¿Es adecuado el modelo propuesto? Justifique.
- **8.** Efectué un test de hipótesis para evaluar si existe una correlación lineal positiva entre las variables consideradas. Utilice una significancia del 10%. Concluya.
- 9. Cargue los datos en SPSS y verifique los supuestos del modelo (test de normalidad de residuos y gráficos para probar la aleatoriedad de los residuos).