Chapitre 2 : Second degré

Premières Spécialité Mathématiques

1 Fonctions polynomiales du second degré

Définition 1. <i>Une fonction polynomiale a nombre x associe un réel</i> $f(x)$ <i>de la forme :</i>	du second degré est une fonction f définie sur les réels qui à tout
nombre x ussocie un reci j (x) ue in jorme.	$ax^2 + bx + c$
où a , b et c sont des réels avec $a \neq 0$.	

Remarque. L'hypothèse $a \neq 0$ est essentielle, sinon la fonction est polynomiale de degré au plus 1.

L'objectif de ce chapitre est d'étudier les fonctions polynomiales du second degré : l'allure de leur courbe représentative, leur extremum, leurs racines...

1.1 Forme canonique

Proposition 1. Soit f une fonction polynomiale du second degré telle que $f(x) = ax^2 + bx + c$. Alors il existe	
lpha et eta tel que	
$f(x) = a(x - \alpha)^2 + \beta$	