Non-redundant array

Observed phase ϕ , true phase ϕ_0 , phase error φ

$$\phi^{\text{BC}} = \phi_0^{\text{BC}} + (\varphi^{\text{B}} - \varphi^{\text{C}})$$
 $\phi^{\text{AC}} = \phi_0^{\text{AC}} + (\varphi^{\text{A}} - \varphi^{\text{C}})$ $\phi^{\text{BA}} = \phi_0^{\text{BA}} + (\varphi^{\text{B}} - \varphi^{\text{A}})$

Matrix A encodes the baselines.

$$\mathbf{\Phi} = \mathbf{\Phi}_0 + \mathbf{A} \bullet \mathbf{\phi}$$

0	1	-1
1	O	-1
-1	1	0

non-redundant triangular array

Martinache (2013)

Closure-phase

Want an observable which is independent of phase errors $(\mathbf{\varphi})$.

$$\mathbf{\Phi} = \mathbf{\Phi}_0 + \mathbf{A} \bullet \mathbf{\phi}$$

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & -1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix}$$

Multiply by a transfer matrix **K** such that **K** • **A** = 0

Then
$$\mathbf{K} \bullet \mathbf{\Phi} = \mathbf{K} \bullet \mathbf{\Phi}_0$$

non-redundant triangular array

Martinache (2013)

