Assignmen#4

Python programming

Assignment Date	1 NOV 2022
Student Name	Suvalakshmi.D
Student Roll Number	2019pitec230
Maximum Marks	2 Marks

Question13

1. Importing Required Page agention

:

import pandas as pd import numpy as np import seaborn as sbn import matplotlib.pyplot as plt

Question22:

1 . Localding then @ Dastets extlution:

db = pd.read_csv('/Mall_Customers.
csv') Db

Output

Out[4]:		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	б
	3	4	Female	23	16	77
	4	5	Female	31	17	40
		***	(Table		***	***
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows Ãf— 5 columns

Question33:

1 . Wisa atiztations

1. Ublivia/iartica for Almaisysis

1.Solution: plt.

hist(db['Annual Income (k\$)'])

Output:

3.1.2 Solution plt.hist(db['Age'])

Output:

3.1.3 Solution: sbn_countplot(db['Age'])

3.1.4 Solution:

 ${\sf sbn}\underline{.}{\sf countplot}({\sf db['Gender']})$

Output:

3.1.5 Solution :

plt_hist(db['Spending Score
(1-100)'])

1. BBi/a/rærten/Almailysis

1. Solution:

plt_scatter(db['Spending Score (1-100)'],db['Annual Income (k\$)'])

3.2.2 Solution:

 $\label{eq:content_of_potential} plt\underline{\mbox{.}} scatter(db['Gender'],db['Annual Income (k$)'])$

3.2.3 Solution:

plt_scatter(db['Age'],db['Spending Score (1-100)'])

Output:

3.2.4 Solution:

plt_scatter(db['Age'],db['Annual Income (k\$)'])

3.2.5 Solution:

sbn_heatmap(db _corr(), annot =

True) Output:

3.2.6 Solution:

sbn_barplot(db['Gender'], db['Age'])

1. Multi-Variate Analysis

1. Solution:

sbn_Implot("Spending Score (1-100)","Annual Income (k\$)", db, hue="Gender", fit_reg=#fable;

Output:

3.3.2 Solution:

sbn_pairplot(db)

Question 4:

1 <u>.</u> Perform descriptive statistics ത്ന the dataset

1.Solution: db.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

4.2 Solution:

db.dtypes

Output:

CustomerID int64
Gender object
Age int64
Annual Income (k\$) int64
Spending Score (1-100) int64

dtype: object

4.3 Solution : db.var()

Output:

CustomerID 3350.000000
Age 195.133166
Annual Income (k\$) 689.835578
Spending Score (1-100) 666.854271
dtype: float64

4.4 Solution:

db.skew() Output

:

CustomerID 0.000000
Age 0.485569
Annual Income (k\$) 0.321843
Spending Score (1-100) -0.047220
dtype: float64

4.5 Solution:

db.corr()

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
CustomerID	1.000000	-0.026763	0.977548	0.013835
Age	-0.026763	1.000000	-0.01 <mark>2</mark> 398	-0.327227
Annual Income (k\$)	0.977548	-0.012398	1.000000	0.009903
Spending Score (1-100)	0.013835	-0.327227	0.009903	1.000000

4.6 Solution:

db.std()

Output:

CustomerID	57.879185	
Age	13.969007	
Annual Income (k\$)	26.264721	
Spending Score (1-100)	25.823522	
dtype: float64		

Question55:

1. Checkofor Missing walaes and weal with

1. Solution :

db.isna().sum()

```
Output:
 CustomerID
 Gender
 Age
 Annual Income (k$)
 Spending Score (1-100) 0
 dtype: int64
5.2 Solution:
db_isna()_sum()_
sum() Output :
0
5.3 Solution : db_duplicated().
sum() Output :
0
Question 6±
1 . Find the outliers and replace them
 outliers
1.Solution: ig,ax=plt_subplots(figsize=(25,
5))
plt_subplot(1, 5, 2) sbn_boxplot(x=db['Age'])
plt_subplot(1, 5, 3) sbn_
boxplot(x=db['Annual Income (k$)'])
plt_subplot(1, 5, 4)
sbn_boxplot(x=db['Spending Score (1-100)'])
plt_subplot(1, 5, 1) sbn_
boxplot(x=db['CustomerID']) Output :
```


6.2 Solution:

quantile = $db_{\underline{q}}$ quantile(q = [0.25, 0.75]) quantile

Output:

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
0.25	50.75	28.75	41.5	34.75
0.75	150.25	49.00	78.0	73.00

6.3 Solution:

quantile<u>.</u>

loc[0.75]

Output:

CustomerID	150.25
Age	49.00
Annual Income (k\$)	78.00
Spending Score (1-100)	73.00
Name: 0.75, dtype: float64	

6.4 Solution:

quantile. loc[0.25]

CustomerID	50.75
Age	28.75
Annual Income (k\$)	41.50
Spending Score (1-100)	34.75
Name: 0.25, dtype: float	64

6.5 Solution:

 $IQR = quantile_iloc[1] - quantile_i$ iloc[0] IQR

Output:

CustomerID 99.50 20.25 Age Annual Income (k\$) 36.50 Spending Score (1-100) 38.25 dtype: float64

6.6 Solution:

upper = quantile_iloc[1] ++(1.5 *IQR)upper

Output:

CustomerID 299.500 79.375 Age Annual Income (k\$) 132.750 Spending Score (1-100) 130.375

dtype: float64

6.7 Solution:

lower = quantile_iloc[0] - (1.5* IQR) lower

Output:

CustomerID -98.500 -1.625 Annual Income (k\$) -13.250 Spending Score (1-100) -22.625 dtype: float64

6.8 Solution:

db.mean()

CustomerID	100.50
Age	38.85
Annual Income (k\$)	60.56
Spending Score (1-100)	50.20
dtype: float64	

1. Solution : db['Annual

Income (k\$)']<u>.</u>

max() Output:

1.37 1.50 ution : sbn.

boxplot(db['CustomerID'])

Output:

6.11 Solution:

sbn_boxplot(db['Age'])

6.12 Solution:

sbn_boxplot(db['Annual Income
(k\$)']) Output :

6.13 Solution:

sbn_boxplot(db['Spending Score
(1-100)'])

Question 7:

inplace=TrTrel)edb

1. Check for Categorical columns and perform encoding

```
1.Solution : db_select_dtypes(include='object')_
columns Output :

Index(['Gender'], dtype='object')

1. Solution :
db['Gender']_unique() Output :

1. Solution :
    array(['Male', 'Female'], dtype=object)
db['Gender']_replace({'Male':1,'Female':0},
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.00	39
1	2	1	21	15.00	81
2	3	0	20	16.00	6
3	4	0	23	16.00	77
4	5	0	31	17.00	40
	***				***
195	196	0	35	120.00	79
196	197	0	45	126.00	28
197	198	1	32	126.00	74
198	199	1	32	60.55	18
199	200	1	30	60.55	83

200 rows Ãf— 5 columns

7.4 Solution : db.head()

Output:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	1	19	15.0	39
1	2	1	21	15.0	81
2	3	0	20	16.0	6
3	4	0	23	16.0	77
4	5	0	31	17.0	40

Question 8:

$1\,\underline{.}$ Scalling the data

1. Solution:

from sklearn.preprocessing importoftandardScaler
ss = StandardScaler().
fit_transform(db)

Question 9:

1 . Performany of the clastering or ithms algorithms

1. Solution:

from sklearn.cluster **import** KMeans TWSS = [] k = list(range(2,9))

```
forri imk:
```

kmeans = KMeans(n_clusters = i , init = 'kmeans++') kmeans_fit(db)

TWSS_append(kmeans_inertia_) TWSS

Output:

```
[381507.64738523855,
268062.55433747417,
191557.78099047023,
153327.3825004856,
119166.15727643928,
101296.86197582977,
85792.73210128325]
```

9.2 Solution:

plt_plot(k,TWSS, 'ro--')
plt_xlabel('No of
Clusters') plt_
ylabel('TWSS')

Output

9.3 Solution:

```
model = KMeans(n_clusters ==4)
model_fit(db)
```

Output:

KMeans(n_clusters=4)

9.4 Solution:

```
mb = pd_Series(model_labels_)
db['Cluster'] = mb db
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.00	39	1
1	2	1	21	15.00	81	1
2	3	0	20	16.00	6	1
3	4	0	23	16.00	77	1
4	5	0	31	17.00	40	1
	444		***	Yes		
195	196	0	35	120.00	79	2
196	197	0	45	126.00	28	0
197	198	1	32	126.00	74	2
198	199	1	32	60.55	18	0
199	200	1	30	60.55	83	2

200 rows Ãf— 6 columns

9.5 Solution:

mb=pd_Series(model___labels_)
db_head(3)

Output:

9		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	0	1	1	19	15.0	39	1
	1	2	1	21	15.0	81	1
	2	3	0	20	16.0	6	1

Question 10:

1 . A Add the the usluster data hwith the primary dataset

1. Solution:

db['Cluster']=kmeans_labels_ db_head()

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
0	1	1	19	15.0	39	5
1	2	1	21	15.0	81	2
2	3	0	20	16.0	6	5
3	4	0	23	16.0	77	2
4	5	0	31	17.0	40	5

10.2 Solution:

db.tail()

Output:

8		CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	Cluster
	195	196	0	35	120.00	79	6
	196	197	0	45	126.00	28	1
	197	198	1	32	126.00	74	6
	198	199	1	32	60.55	18	1
	199	200	1	30	60.55	83	6

Question 11:

1 . Split the data into dependent and riddependent variables

1. Solution:

X=db_drop('Cluster',axis=1) Y=db['Cluster'] y=db['Cluster'] y
Output :

```
0
1
     2
2
3
     2
4
     5
195
     6
196
    1
197 6
198
   1
199
     6
Name: Cluster, Length: 200, dtype: int32
```

11.2 Solution:

from sklearn.model_selection **imppctrt** train_test_split X_train,X_test,y_train, y_test=train_test_split(X,Y,test_size=0.2,random_state=42)

print("Number transactions X_train dataset: ", X_train_shape) print(" Number transactions y_train dataset: ", y_train_shape) print("Number transactions X_test dataset: ", X_test_shape) print("Number transactions y_test dataset: ", y_test_shape)

Output:

```
Number transactions X_train dataset: (160, 5)
Number transactions y_train dataset: (160,)
Number transactions X_test dataset: (40, 5)
Number transactions y_test dataset: (40,)
```

Question 12:

1 . SpSiplithehtertheitadinteintragming tenting

testing 1.Solution: X_train

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
79	80	0	49	54.0	42
197	198	1	32	126.0	74
38	39	0	36	37.0	26
24	25	0	54	28.0	14
122	123	0	40	69.0	58
				100	***
106	107	0	66	63.0	50
14	15	1	37	20.0	13
92	93	1	48	60.0	49
179	180	1	35	93.0	90
102	103	1	67	62.0	59

160 rows $\tilde{A}f\hat{A}$ — 5 columns

12.2 Solution:

X_test

	CastomeriD	Gender	Age	Annual Income (kd)	Spending Score (1-100)
95	96	1	24	6215	52
15	19	1	77	202	75
30	- 31	1	60	102	4
158	198	1	34	78.0	1
28	127	-1	59	214	11
15	110	0	19	653	16
69	/a	D	32	483	47
70	171	- 1	40	673	11
74	175	0	52	863	ti ti
45	46	- 0	24	390	65
00	67	0	43	480	56
82	183	- 39	46	962	15
65	166	10	36	85.0	36
78	79	- 0	23	540	52
36	387	D	54	301,0	24
77	178	- 33	22	880	60
58	57.	3 0	3)	440	(50
52	753		344	JRD	20
az.	83	- 33	67	543	- 41
68	60	13	39	480	55
24	173		23	700	75
16	TV.	0	35	21.0	я
48	141	. 0	34	/6.5	11
22	94	0	40	602	46
65	bis.	1	111	4810	55
68	65	1	70	46.0	54
04	85	p	21	543	31
87	68	ü	66	483	48
25	126	#	31	702	W
32	133	0	25	122	34
9	10	b	30	193	72
18	10	- 1	52	210	25
55	98	- 1	47	450	41
75	76	- 14	26	540	54
50	151	- 34	43	78.0	3 17
104	105	71	49	620	58
35	130	.0	29	732	3 88
37	138	39	32	732	n
64	786	37	50	2 560	Ď.
76	77	0	345	198	0 :

12.3 Solution:

y_train
Output:

```
4
79
197
     6
38
    5
24
    5
122 0
106
    0
14
    5
92
     0
179
    6
102
   0
Name: Cluster, Length: 160, dtype: int32
```

12.14 Solution:

y_test Output :

```
95
15
      5
      7
158
128
115
      0
      4
69
170
      1
      1
174
45
      2
66
      4
      1
182
165
      6
78
186
      1
177
      6
      4
56
      7
152
      4
82
68
124
      5
16
      7
148
      0
93
65
      4
      4
60
84
67
      4
125
      3
      7
132
      2
      5
18
55
75
150
      7
      0
104
      3
135
137
      3
164
      1
Name: Cluster, dtype: int32
```

Question 13:

. Build the Model

1. Solution:

from sklearn.linear_model importoregisticRegression model=LogisticRegression() model_fit(X_train,y_train) from sklearn.linear_model import LogisticRegression from sklearn.linear_model importoregisticRegression from sklearn.linear_model importoregisticRegression from sklearn.linear_model import LogisticRegression from sklearn.lin

```
LogisticRegression()
Question 14: 14. Train
the Train the Model:
model.
score(X_train,y_train)
Output:
 0.83125
Question 15: 15. Test
the Model
model.
score(X_test,y_test)
Output:
 0.675
Question 16:
1. Myleasure the performancing simple tialulation. Metrics
1.
     Solution:
       sklearn.metricsimpiorport
                                   confusion_matrix,
classification report
                        y_pred=model.predict(X_test)
confusion_matrix(y_test,y_pred)
Output:
 array([[5, 0, 0, 0, 0, 0, 1, 0],
         [0, 5, 0, 0, 0, 0, 0, 0],
         [0, 0, 3, 0, 0, 0, 0, 0],
        [0, 0, 0, 3, 0, 0, 0, 0],
        [3, 0, 2, 0, 6, 0, 0, 0],
        [0, 0, 0, 0, 0, 3, 0, 0],
        [0, 0, 0, 1, 0, 0, 1, 0],
        [0, 6, 0, 0, 0, 0, 0, 1]])
```

16.2 Solution:

print(classification_report(y_test, y_pred))

	precision	recall	t1-score	support
0	0.62	0.83	0.71	6
1	0.45	1.00	0.62	5
2	0.60	1.00	0.75	3
3	0.75	1.00	0.86	3
4	1.00	0.55	0.71	11
5	1.00	1.00	1.00	3
6	0.50	0.50	0.50	2
7	1.00	0.14	0.25	7
accuracy			0.68	40
macro avg	0.74	0.75	0.68	40
weighted avg	0.80	0.68	0.64	40