NOT function (Inverter)

- Boolean expression $X = \overline{A}$
- Truth table

Input	Output
LOW (0)	HIGH (1)
HIGH (1)	LOW (0)

• Logic circuit

Circuit implementation

AND operation

• Boolean expression X = AB

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{X}
0	0	0
0	1	0
1	0	0
1	1	1

A B C X 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 1 1 1 1	Inputs			Output
0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0	\boldsymbol{A}	\boldsymbol{B}	<i>C</i>	X
0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0	0	0	0	0
$egin{array}{cccccccccccccccccccccccccccccccccccc$	0	0	1	0
1 0 0 0 1 0 1 0 1 1 0 0	0	1	0	0
1 0 1 0 1 1 0 0	0	1	1	0
1 1 0 0	1	0	0	0
	1	0	1	0
1 1 1 1	1	1	0	0
	1	1	1	1

• Logic circuit

Application of AND gate

Seat Belt Alarm System

If the ignition is on and the seat belt is unbuckled and the timer is running, the output is HIGH.

OR operation

- Boolean expression X = A + B
- Truth table

A	В	A + B = X
0	0	0 + 0 = 0
0	1	0 + 1 = 1
1	0	1 + 0 = 1
1	1	1 + 1 = 1

• Logic circuit

Question: draw the truth table for 3-input OR gate

Application of OR gate

When one of the windows or the door is opened, the gate output goes HIGH.

NAND gate

Boolean expression

$$X = \overline{AB}$$

Logic circuit

• Truth table

Inputs		Output
\boldsymbol{A}	В	\boldsymbol{X}
0	0	1
0	1	1
1	0	1
1	1	0

 Inherent in a NAND gate's operation is the fact that one or more LOW inputs produce a HIGH output

Question: draw the truth table for 3-input NAND gate

 V_{DD}

Circuit

NOR gate

• Boolean expression

$$X = \overline{A + B}$$

Logic circuit

• Truth table

Inp	outs	Output
\boldsymbol{A}	В	\boldsymbol{X}
0	0	1
0	1	0
1	0	0
1	1	0

 A HIGH is produced on the gate output only when all of the inputs are LOW

Question: draw the truth table for 3-input NOR gate

pull up $\Rightarrow V_{\Upsilon} = V_{DD} \Rightarrow pmos$ pull down $\Rightarrow V_{\Upsilon} = 0 \Rightarrow pmos$

$$0 - 015$$

$$V_{GS} = -V_{DO} - V_{TP}$$

$$V_{T,max} = V_{DD}$$

NMOS is not good pull up

$$V_{Y} = V_{10} - V_{+}$$

PMOS is not good pull up

 $V_{Y} = V_{10} - V_{+}$
 $V_{QS} = V_{00} - V_{00} - V_{+}$
 $= V_{+}n$

$$\frac{1}{\sqrt{2}}$$

$$\sqrt{2}$$

$$\sqrt{3}$$

$$\sqrt{4}$$

$$\sqrt{4}$$

$$\sqrt{4}$$

$$\sqrt{4}$$

Exclusive-OR (XOR) gate

- The output of XOR is HIGH only when the two inputs are at opposite logic levels.
- Truth table

Inputs		Output
\boldsymbol{A}	\boldsymbol{B}	X
0	0	0
0	1	1
1	0	1
1	1	0

• Logic circuit

Question: draw the truth table for 3-input XOR gate

```
(A+B) = A'B'
 A \oplus B = A'B + AB' (AB)' = A' + B'
A \oplus B \oplus C = (A'B + AB') \oplus C
         = (A'B+AB') c + (A'B+AB') c'
          = (A'B) (AB) C+ ..
         = (A+B')(A'+B) C + ···
= AAC + ABC + ABC+ BBC + ABC + ABC
    ABCTABCTABCTABC
         ABB ABBEC
                      O
```

Exclusive-NOR (XNOR) gate

- The output of XNOR is LOW only when the two inputs are at opposite logic levels.
- Truth table

Inp	outs	Output
\boldsymbol{A}	В	\boldsymbol{X}
0	0	1
0	1	0
1	0	0
1	1	1

- Boolean expression $X = \overline{AB} + AB$
- Logic circuit

Think about it:

In the truth table with two inputs, how many lines? How many columns?

Truth Table & Boolean Expression

Even or odd 1s

Boolean Expression & Logic Circuit

$$B[(AB)' + C(DE + A)'] \Rightarrow Circuit?$$

$$A(B + CD)$$

$$B \Rightarrow Boolean expression?$$

Truth Table & Logic Circuit

Inputs				Output
\boldsymbol{A}	В	\boldsymbol{C}	D	A(B + CD)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1

Reading materials

• Chapter 3 of Floyd book