Algoritmi (modulo di laboratorio)

Corso di Laurea in Matematica

Roberto Cordone DI - Università degli Studi di Milano

Lezioni: Martedì 8.30 - 10.30 in aula 8 Mercoledì 10.30 - 13.30 in aula 2

Giovedì 15.30 - 18.30 in aula 2 Venerdì 10.30 - 12.30 in aula 3

Ricevimento: su appuntamento (Dipartimento di Informatica)

E-mail: roberto.cordone@unimi.it

Pagina web: http://homes.di.unimi.it/~cordone/courses/2023-algo/2023-algo.html

Sito Ariel: https://mgoldwurma.ariel.ctu.unimi.it

Lezione 3: Complessità computazionale

Milano, A.A. 2022/23

Complessità di un algoritmo (costo)

Applicare un algoritmo significa

- eseguire una sequenza finita di operazioni elementari (passi)
- manipolare una sequenza finita di simboli (celle di memoria), che include I all'inizio, S alla fine e risultati parziali nei passi intermedi

Per risolvere un'istanza I con un algoritmo A, quindi si paga un costo

- temporale $T_A(I)$, pari al numero di passi eseguiti
- spaziale $S_A(I)$, pari al numero massimo di celle usate in un passo

È intuitivo che questi costi (complessità) dipendono

- dalle operazioni elementari disponibili (modello computazionale)
- dai simboli disponibili (alfabeto)

ma si dimostra che la dipendenza non è fortissima

Comunque, useremo quasi sempre la macchina RAM

Confronto fra algoritmi (1)

Ora vogliamo definire il costo degli algoritmi che risolvono un problema P in modo che A sia meglio di A' quando impiega meno tempo (o spazio)

Per una singola istanza *I* è facile:

$$A(I) \leq A'(I) \Leftrightarrow T_A(I) \leq T_{A'}(I)$$

Vorremmo estendere il confronto da singole istanze all'intero problema *P*, istituendo una relazione di ordine debole dotata di:

- 1 riflessività: $A \leq A$
- 2 transitività: $A \leq A'$ e $A' \leq A'' \Rightarrow A \leq A''$
- **3** completezza: $A \not \preceq A' \Rightarrow A' \preceq A$

per ogni terna di algoritmi A, A' e A'' che risolvono P

Confronto fra algoritmi (2)

Ci sono tre definizioni naturali per la relazione d'ordine $A \leq A'$

- **1** su tutte le istanze: $T_A(I) \leq T_{A'}(I)$ per ogni $I \in \mathcal{I}_P$
 - è molto complicata da verificare
 - l'ordine non è quasi mai completo

A sarà migliore su alcune istanze, A' su altre

- 2 nel caso medio: $E[T_A(I)] \leq E[T_{A'}(I)]$
 - richiede di considerare tutte le istanze
 - richiede una distribuzione di probabilità delle istanze
 - richiede calcoli complicati

È una buona definizione, ma complicata e in parte arbitraria

- - spesso è facile identificare le istanze peggiori
 - fornisce un limite superiore, che è un'informazione comunque utile
 - in alcuni problemi il caso pessimo è abbastanza frequente e quindi la complessità nel caso pessimo è simile a quella nel caso medio (ad es., l'insuccesso in una ricerca)

È una definizione sbilanciata, ma utile in pratica

Complessità e dimensione (1)

Caso medio e caso pessimo hanno però un difetto fondamentale:

$$\sup_{I\in\mathcal{I}_P}T_A(I)=+\infty$$

cioè non esiste un tempo massimo su \mathcal{I}_P e spesso neppure medio, perché il problema include infinite istanze, senza limite sul tempo di risoluzione

Si può legare il tempo $T_A(I)$ alla dimensione |I| dell'istanza I, definita

- secondo la teoria, come numero di simboli della codifica di *I* (criterio di *costo logaritmico*)
- in pratica, attraverso un indice dal significato concreto (o più indici)
 - se il problema riguarda insiemi, il numero di elementi (n)
 - se il problema riguarda relazioni (grafi), il numero di elementi/nodi (n) e/o il numero di coppie in relazione/archi (m)

(criterio di costo uniforme)

Complessità e dimensione (2)

Definita la dimensione di ogni istanza

• si considerano le istanze di ogni dimensione *n* fissata:

$$\mathcal{I}_P^{(n)} = \{I \in \mathcal{I}_P : |I| = n\}$$

• si determina il caso medio o il caso pessimo per ciascuna dimensione

$$T_{A}\left(n
ight) = rac{\sum_{I \in \mathcal{I}_{P}^{(n)}} T_{A}\left(I
ight)}{\left|\mathcal{I}_{P}^{(n)}
ight|} ext{ oppure } T_{A}\left(n
ight) = \max_{I \in \mathcal{I}_{P}^{(n)}} T_{A}\left(I
ight) ext{ per ogni } n \in \mathbb{N}$$

• si confrontano le funzioni $T_A(n)$ per ogni dimensione nMa anche le funzioni $T_A(n)$ sono ordinate molto raramente

Complessità asintotica

Conta di più risolvere in fretta le istanze "grandi" che quelle "piccole" Impiegare due giorni anziché uno è peggio che due secondi anziché uno

$$A \leq A' \Leftrightarrow T_A(n) \leq T_{A'}(n)$$
 per ogni $n \geq n_0$

A è meglio di A' quando usa meno tempo (o spazio)

- sulla peggior istanza di dimensione n
- per ogni valore di $n \geq n_0$, per un opportuno valore di $n_0 \in \mathbb{N}$

Notazione Θ

Data una funzione approssimante f(n)

$$T(n) \in \Theta(f(n))$$

significa formalmente che

$$\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N} : c_1 \ f(n) \leq T(n) \leq c_2 \ f(n) \ \text{for all} \ n \geq n_0$$

dove c_1 , c_2 e n_0 sono indipendenti da n

T(n) è "chiusa a sandwich" fra $c_1 f(n)$ e $c_2 f(n)$

- per qualche valore "piccolo" di c₁
- per qualche valore "grande" di c2
- per ogni valore "grande di n
- per qualche definizione di "piccolo" e "grande"

Asintoticamente, f(n) stima T(n) a meno di un fattore moltiplicativo:

 per istanze grandi, il tempo di calcolo è almeno e al massimo proporzionale ai valori della funzione f (n)

Notazione O

Data una funzione approssimante f(n)

$$T(n) \in O(f(n))$$

significa formalmente che

$$\exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} : T(n) \leq c \ f(n) \text{ for all } n \geq n_0$$

dove c, e n_0 sono indipendenti da n

T(n) è "dominata" da cf(n)

- per qualche valore "grande" di c
- per ogni valore "grande di n
- per qualche definizione di "grande"

Asintoticamente, f(n) stima T(n) per eccesso a meno di un fattore moltiplicativo:

• per istanze grandi, il tempo di calcolo è al massimo proporzionale ai valori della funzione f(n)

Notazione Ω

Data una funzione approssimante f(n)

$$T(n) \in \Omega(f(n))$$

significa formalmente che

$$\exists c > 0, n_0 \in \mathbb{N} : T(n) \ge c \ f(n) \text{ for all } n \ge n_0$$

dove c e n_0 sono indipendenti da n

T(n) "domina" cf (n)

- per qualche valore "piccolo" di c
- per ogni valore "grande di n
- per qualche definizione di "piccolo" e "grande"

Asintoticamente, f(n) stima T(n) per difetto a meno di un fattore moltiplicativo:

 per istanze grandi, il tempo di calcolo è almeno proporzionale ai valori della funzione f (n)

Perché ignorare le costanti moltiplicative?

Il tempo di calcolo effettivo è il prodotto del numero di operazioni elementari T_A per il tempo γ richiesto da ciascuna

$$T_{\rm eff} = T_A \gamma$$

Il tempo γ richiesto per un'operazione elementare

- dipende dalla tecnologia
- non è rigorosamente uguale per tutte le operazioni

Se cambia la specifica macchina usata, ma non la sua struttura

- il tempo γ richiesto per ciascuna operazione può cambiare
- il numero T_A di operazioni elementari rimane uguale

Un'analisi che ignora i fattori moltiplicativi è valida per tutte le macchine che aderiscono allo stesso modello computazionale

Impatto pratico della complessità

Supponiamo di avere

- un giorno di calcolo a disposizione (86 400 secondi)
- due macchine, il cui tempo medio per operazione elementare è pari, rispettivamente, a $\gamma_1=1\mu s/oper$. e $\gamma_2=1$ ns/oper.
- algoritmi di complessità diversa per lo stesso problema

La massima dimensione trattabile nel tempo disponibile è

$$\bar{n} = \max \left\{ n \in \mathbb{N} : T_A(n) \gamma \le 8.64 \cdot 10^{10} \mu \text{s} = 1 \, \text{giorno} \right\}$$

	$ar{n}$					
$T_{A}(n)$	n	$n \log_2 n$	n^2	n^3	2 ⁿ	3 ⁿ
$\gamma=1~\mu$ s/op	$8.64 \cdot 10^{10}$	$2.75 \cdot 10^{9}$	$2.94 \cdot 10^{5}$	$4.42 \cdot 10^{3}$	36.33	22.92
$\gamma=1$ ns/op	$8.64 \cdot 10^{13}$	$8.29\cdot10^{11}$	$9.30\cdot 10^6$	$4.42\cdot 10^4$	46.30	29.21

Se ne deduce facilmente che

- un algoritmo migliore surclassa una macchina migliore
- una macchina più veloce è utile solo se si usa un algoritmo veloce

Esercizio 1

Dimostrare che $T(n) = 3n^2 + 7n + 8 \in \Theta(n^2)$, cioè che

$$\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N}^+ : c_1 n^2 \le 3n^2 + 7n + 8 \le c_2 n^2 \quad \forall n \ge n_0$$

Il procedimento è semplice

- lacktriangle si fa un'ipotesi sul valore di c_1 e c_2 , basata su regole generali, intuizione o semplici tentativi
- 2 si ricava n_0 in modo da rispettare la tesi

Poniamo $c_1 = 3 e c_2 = 4$:

• la prima disuguaglianza diventa

$$0 \le 7n + 8$$
 che vale per ogni $n \in \mathbb{N}^+$ (dunque $n \ge 1$)

• la seconda disuguaglianza diventa

$$7n + 8 \le n^2$$
 che vale per ogni $n \ge 8$

Di conseguenza, $c_1=3$, $c_2=4$ e $n_0=8$ soddisfano la definizione

Esercizio 2

Dimostrare che $T(n) = 3n^2 - 7n + 2 \notin \Theta(n)$, cioè che

$$\exists c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N}^+ : c_1 n \le 3n^2 - 7n + 2 \le c_2 n \quad \forall n \ge n_0$$

Questo equivale a

$$\exists n \geq n_0 : c_1 n > 3n^2 - 7n + 2 \text{ oppure } 3n^2 - 7n + 2 > c_2 n \ \forall c_1, c_2 \in \mathbb{R}^+, n_0 \in \mathbb{N}^+$$

Si deve trovare una n funzione di c_1 , c_2 e n_0 che soddisfi la tesi

Basta soddisfare una delle due disuguaglianze: scegliamo la seconda

$$3n^2 - (7 + c_2) n + 2 > 0$$

Se $(7 + c_2)^2 - 24 = \phi(c_2) < 0$, la disuguaglianza vale per ogni $n \in \mathbb{N}$.

Altrimenti, vale per $n < \frac{7+c_2-\sqrt{\phi(c_2)}}{6}$ oppure per $n > \frac{7+c_2+\sqrt{\phi(c_2)}}{6}$

Scegliamo la seconda disuguaglianza, e la combiniamo con $n \ge n_0$:

$$n = \max\left(n_0, \left\lceil \frac{7 + c_2 + \sqrt{\phi(c_2)}}{6} \right\rceil + 1\right)$$

Altri esercizi

Si dimostri che:

•
$$n^2 \in \Theta(n^2 + 4n + 3)$$

$$\bullet \ 2n^2 + 3n \in \Theta\left(n^2\right)$$

•
$$6n^2 + 2n \in \Theta(n^2)$$

•
$$n^2 \in O(n^2/4-2)$$

•
$$2n^2 + 3n \in O(n^3)$$

•
$$n^4 \in O(2^n)$$

•
$$n \log_2 n \in O(n^2)$$

•
$$n^2 \in \Omega(n^2 + 2n + 5)$$

•
$$3n^2 - 2n \in \Omega(n^2)$$

•
$$3n^5 \in \Omega(n^4)$$

•
$$4n^2 \notin \Theta(n^3)$$

•
$$n^2 \notin O(10^6 n)$$

•
$$3^n \notin O(2^n)$$

•
$$2n^2 - 3n \notin \Omega(n \log_2 n)$$

Proprietà fondamentali (1)

Riflessività

- $f(n) \in \Theta(f(n))$
- $f(n) \in O(f(n))$
- $f(n) \in \Omega(f(n))$

Simmetria (solo per Θ)

• $g(n) \in \Theta(f(n)) \Leftrightarrow f(n) \in \Theta(g(n))$

Simmetria trasposta (fra O e Ω)

• $g(n) \in O(f(n)) \Leftrightarrow f(n) \in \Omega(g(n))$

Antisimmetria

•
$$\begin{cases} f(n) \in O(g(n)) \\ f(n) \in \Omega(g(n)) \end{cases} \Leftrightarrow f(n) \in \Theta(g(n))$$

Sono facili da ricordare, associando mentalmente Θ a =, O a < e Ω a >

Proprietà fondamentali (2)

Transitività

•
$$\begin{cases} f(n) \in \Theta(g(n)) \\ g(n) \in \Theta(h(n)) \end{cases} \Rightarrow f(n) \in \Theta(h(n))$$
•
$$\begin{cases} f(n) \in O(g(n)) \\ g(n) \in O(h(n)) \end{cases} \Rightarrow f(n) \in O(h(n))$$
•
$$\begin{cases} f(n) \in \Omega(g(n)) \\ g(n) \in \Omega(h(n)) \end{cases} \Rightarrow f(n) \in \Omega(h(n))$$

Sono facili da ricordare, associando mentalmente Θ a =, O a \leq e Ω a \geq

Non vale la completezza: esistono funzioni non confrontabili (sono rare e "strane": per esempio, n e $n^{1+\sin\left(\frac{\pi}{2}n\right)}$)

Complessità asintotica e limiti

Un'altra terna di relazioni fra funzioni si basa sul concetto di limite

•
$$T(n) \in o(f(n))$$
 quando $\lim_{n \to +\infty} \frac{T(n)}{f(n)} = 0$

•
$$T(n) \sim f(n)$$
 quando $\lim_{n \to +\infty} \frac{T(n)}{f(n)} = 1$

•
$$T(n) \in \omega(f(n))$$
 quando $\lim_{n \to +\infty} \frac{T(n)}{f(n)} = +\infty$

Queste relazioni sono legate alle precedenti, ma sono più restrittive

- $T(n) \in o(f(n)) \Rightarrow T(n) \in O(f(n))$
- $T(n) \sim f(n) \Rightarrow T(n) \in \Theta(f(n))$
- $T(n) \in \omega(f(n)) \Rightarrow T(n) \in \Omega(f(n))$

Per dimostrarlo, basta applicare la definizione di limite

$$T(n) \in O(f(n)) \Leftrightarrow \exists c \in \mathbb{R}^+, n_0 \in \mathbb{N} : T(n) \le c \ f(n) \text{ for all } n \ge n_0$$

 $T(n) \in o(f(n)) \Leftrightarrow \forall \epsilon \in \mathbb{R}^+, \exists n_\epsilon \in \mathbb{N} : T(n) \le \epsilon \ f(n) \text{ for all } n \ge n_\epsilon$

Sono facili da ricordare, associando mentalmente o a < e ω a >

Principi di sostituzione

I fattori moltiplicativi costanti non sono significativi

- $f(n) \in O(h(n)) \Leftrightarrow c f(n) \in O(h(n))$ per ogni $c \in \mathbb{R}^+$
- $f(n) \in \Theta(h(n)) \Leftrightarrow c f(n) \in \Theta(h(n))$ per ogni $c \in \mathbb{R}^+$
- $f(n) \in \Omega(h(n)) \Leftrightarrow c f(n) \in \Omega(h(n))$ per ogni $c \in \mathbb{R}^+$

Aggiungere o sottrarre termini dominati non ha effetti significativi

- $f(n) \in O(h(n)) \Leftrightarrow (f(n) + c g(n)) \in O(h(n))$
- $f(n) \in \Theta(h(n)) \Leftrightarrow (f(n) + c g(n)) \in \Theta(h(n))$
- $f(n) \in \Omega(h(n)) \Leftrightarrow (f(n) + c g(n)) \in \Omega(h(n))$

per ogni $c \in \mathbb{R}$ e per ogni $g(n) \in o(f(n))$

Queste proprietà

- non valgono per le corrispondenti relazioni fra numeri
- consentono di usare approssimanti semplici per classificare le funzioni

Approssimazioni asintotiche

Dai principii di sostituzione deriva che

• i fattori moltiplicativi e la base dei logaritmi si possono ignorare

$$\log_b f(n) = \frac{\log_a f(n)}{\log_a b}$$

• di un polinomio si può considerare solo il termine direttore

$$(c_r n^r + c_{r-1} n^{r-1} + \ldots + c_1 n + c_0) \in \Theta(n^r)$$

Inoltre

- tutte le funzioni limitate appartengono a $\Theta(1)$
- si possono ignorare gli arrotondamenti all'intero per le funzioni che non convergono asintoticamente a 0

Approssimanti di uso comune

Le approssimanti più usate per la complessità T(n) di un algoritmo sono

- polilogaritmiche: $(\log n)^r$ con $r \ge 0$
- potenze: $n^r ext{con } r > 0$
- esponenziali: $r^n \operatorname{con} r > 1$

oppure prodotti di tali approssimanti

Le approssimanti fondamentali si dominano in ordine lessicografico stretto

$$(\log n)^r \in o(n^s)$$
 per ogni $r \ge 0$ e $s > 0$
 $n^r \in o(s^n)$ per ogni $r > 0$ e $s > 1$

Ovviamente le funzioni con esponenti o basi più grandi dominano le altre Gli algoritmi con queste approssimanti sono debolmente ordinati (quindi, non tutti gli algoritmi, ma quasi)

Sommario

La complessità asintotica di un algoritmo nel caso pessimo fornisce una misura del tempo di calcolo dell'algoritmo attraverso i seguenti passaggi

- misuriamo il tempo col numero *T* di operazioni elementari eseguite (così la misura è indipendente dallo specifico meccanismo usato)
- 2 scegliamo un valore *n* che misuri la dimensione di un'istanza (per es., il numero di elementi dell'insieme, di righe o colonne della matrice, di nodi o archi del grafo)
- 3 troviamo il tempo di calcolo massimo o medio per ogni dimensione n

$$T_A(n) = rac{\sum_{I \in \mathcal{I}_P^{(n)}} T_A(I)}{|\mathcal{I}_P^{(n)}|} \circ T_A(n) = \max_{I \in \mathcal{I}_P^{(n)}} T_A(I) \qquad n \in \mathbb{N}$$

(questo riduce la complessità a una funzione $T: \mathbb{N} \to \mathbb{N}$)

- approssimiamo T (n) con una funzione f (n) più semplice, di cui interessa solo l'andamento per n → +∞
 (è più importante che l'algoritmo sia efficiente su dimensioni grandi)
- ⑤ raccogliamo le funzioni in classi con la stessa approssimante semplice (la relazione di approssimazione è una relazione di equivalenza)

Algoritmi iterativi e sommatorie

Un algoritmo iterativo ripete le stesse operazioni più volte su dati diversi

For
$$i:=1$$
 to n do ${ t Operazioni}(i,I)$

Sia f(i) la complessità di Operazioni(i, I) (in generale dipende anche da |I|, ma qui semplifichiamo)

La complessità dell'intero ciclo è

$$F(n) = \sum_{i=1}^{n} f(i)$$

Come approssimarla asintoticamente rispetto al numero di iterazioni n?

Algoritmi iterativi e sommatorie

Teorema: si possono sostituire gli addendi con un'approssimante

$$f(i) \in \Theta(g(i)) \Rightarrow \sum_{i=1}^{n} f(i) \in \Theta\left(\sum_{i=1}^{n} g(i)\right)$$

Dimostrazione: si veda a pag. 20 delle dispense

Quindi studiamo le sommatorie di approssimanti fondamentali

Stima mediante minorazione e maggiorazione

Vogliamo trovare un'espressione asintotica per la complessità

$$F(n) = \sum_{i=1}^{n} f(i)$$

Quasi sempre è possibile ipotizzare che f(i) sia

- **1** non negativa: $f(i) \ge 0$ per ogni $i \in \mathbb{N}$
- **2** non decrescente: $f(i+1) \ge f(i)$ per ogni $i \in \mathbb{N}$

Sotto queste ipotesi valgono le banali stime per difetto e per eccesso:

$$f(n) \leq F(n) \leq n f(n)$$

e quindi

$$F(n) \in \Omega(f(n))$$
 $F(n) \in O(nf(n))$

Tipicamente

- le funzioni esponenziali cadono in $\Theta(f(n))$
- le potenze e le funzioni polilogaritmiche cadono in $\Theta(nf(n))$

Approssimanti esponenziali: somma geometrica

Per le somme di esponenziali esiste una nota soluzione in forma chiusa

$$\sum_{i=0}^{n} r^{i} = \frac{r^{n+1}-1}{r-1} \Rightarrow F(n) \in \Theta(f(n))$$

Dimostrazione:

$$r ext{ } F(n) = r ext{ } + ext{ } r^2 + \dots + r^n ext{ } + r^{n+1}$$
 $F(n) = 1 ext{ } + ext{ } r ext{ } + \dots + r^{n-1} + r^n$
 $(r-1) F(n) = r^{n+1} - 1$

$$\sum_{i=0}^{6} 2^i = 2^7 - 1$$

Approssimante lineare: somma aritmetica

Per le somme di funzioni lineari, esiste una nota soluzione in forma chiusa

$$F(n) = \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \Rightarrow F(n) \in \Theta(nf(n))$$

Dimostrazione:

$$2F(n) = 1 + 2 + ... + (n-1) + n +$$
 $n + (n-1) + ... + 2 + 1 =$
 $(n+1) + (n+1) + ... + (n+1) + (n+1) = n(n+1)$

$$\sum_{i=1}^{5} i = \frac{5(5+1)}{2}$$

Per le potenze, c'è un'espressione esatta, ma anche una stima semplice

Stima mediante integrali

Sia f(x) una funzione non decrescente

La somma è pari all'area sottesa dal grafico a scaletta

$$F(n) = \sum_{i=1}^{n} f(i)$$

ed è compresa fra le aree sottese dai grafici di f(x) e f(x-1)

$$f(1) + \int_{2}^{n+1} f(x-1) dx \le F(n) \le \int_{1}^{n} f(x) dx + f(n)$$
$$f(1) + \int_{1}^{n} f(x) dx \le F(n) \le \int_{1}^{n} f(x) dx + f(n)$$

Per le funzioni non crescenti, basta scambiare f (1) e f (n)

Approssimante polinomiale

$$f(i) = i^r$$
 e $F(n) = \sum_{i=1}^{n} i^r$

La stima con l'integrale è

$$1^{r} + \int_{1}^{n} x^{r} dx \leq F(n) \leq \int_{1}^{n} x^{r} dx + n^{r}$$

da cui

$$1 + \frac{n^{r+1} - 1}{r+1} \le F(n) \le \frac{n^{r+1} - 1}{r+1} + n^r$$

e quindi $F(n) \in \Theta(n^{r+1})$

Per le somme di potenze, $F(n) \in \Theta(nf(n))$ come nel caso lineare

Stima mediante decomposizione

Stime per difetto e per eccesso si possono eseguire anche

- decomponendo la somma
- approssimando separatamente le singole parti

Applichiamo questa tecnica alle funzioni polilogaritmiche:

$$F(n) = \sum_{i=1}^{n} (\log i)^{r} = \sum_{i=1}^{n/2} (\log i)^{r} + \sum_{i=n/2+1}^{n} (\log i)^{r} >$$

$$> \frac{n}{2} (\log 1)^{r} + \frac{n}{2} (\log \frac{n}{2})^{r}$$

Siccome per *n* abbastanza grande vale $\log \frac{n}{2} > \frac{\log n}{2}$:

$$F(n) > 0 + \frac{n}{2} \frac{(\log n)^r}{2^r}$$

Quindi $F(n) \in \Omega(n(\log n)^r)$ e siccome in generale $F(n) \in O(n(\log n)^r)$

$$F(n) \in \Theta(n(\log n)^r)$$
, cioè ancora $F(n) \in \Theta(nf(n))$

Traccia per i prodotti di approssimanti

In generale

• se f(i) contiene esponenziali, si maggiorano gli altri singoli termini

$$F(n) = \sum_{i=1}^{n} \left(r^{i} i^{a} (\log i)^{b} \right) \leq \sum_{i=1}^{n} \left(r^{i} n^{a} (\log n)^{b} \right) = n^{a} (\log n)^{b} \sum_{i=1}^{n} r^{i}$$

e si conclude che $F(n) \in \Theta(f(n))$

• se f(i) non contiene esponenziali, si decompone la somma

$$F(n) = \sum_{i=1}^{n} \left(i^a (\log i)^b \right) \ge \sum_{i=n/2+1}^{n} \left(i^a (\log i)^b \right) \ge \frac{n}{2} \left(\left(\frac{n}{2} \right)^a \left(\log \frac{n}{2} \right)^b \right)$$

e si conclude che $F(n) \in \Theta(nf(n))$