Positive Long Run Capital Taxation: Chamley-Judd Revisited (Straub and Werning)

Agustin Gutierrez

Theory of Income II 2019 (Based on Werning's presentation)

Today

- Straub & Werning (2018), *Positive Long Run Capital Taxation:* Cahmley-Judd Revisited. (Working paper).
- How to compute the stationary distribution with the computer?

Motivation

- Classic question in public finance: Should we tax capital income?
- Two common rationales:
 - reduce distortionary labor taxes.
 - redistribution
- Potentially large efficiency costs

Motivation (cont.)

Two benchmark models to think about capital income tax:

- Chamley (1986):
 - Representative agent model.
 - ► Trade-off: lower labor taxes vs. efficiency
- Judd (1985)
 - ► Two class model: worker vs capitalist
 - ► Trade-off: redistribution vs. efficiency
- Both models: zero tax on capital in the steady state.
- Intuition: not clear, the result surprise many economist at the time (today I don't know it either).

This paper

- Revisit the Chamley-Judd results using their own models.
 - ► Show their results hold under certain assumptions on preferences (not explicit in their original work)
 - Particularly important the IES. Overturn conclusions when IES<1 (Judd model, Chamley requires something else).
- What went wrong in their proof?
- Their results require convergence to interior steady state for quantities and multipliers. Under certain assumptions:
 - ▶ Judd (1985): possibly non-interior steady state for quantities
 - ► Chamley (1986): possibly non-interior steady state for multipliers

Road map

- Judd (1985): Capital taxation and redistribution.
 - Model
 - ▶ Review of Judd (1985) result
 - How to overturn the result

Judd (1985)

Two agents: Capitalists and workers with preference over consumption

Capitalists

- only capital income
- own initial capital stock k₀

Workers

- only labor income, inelastic labor supply of 1
- don't have access to the saving market (consume hand-to-mouth)

Policy instruments

- capital taxes, lump-sum transfers to workers
- no government bonds, no consumption taxes
- full ex-ante commitment to tax policy

Environment

Workers:

$$\max \sum_{t=0}^{\infty} \beta^{t} u(c_{t}), \quad c_{t} = w_{t} + T_{t}$$

Capitalists:

$$\begin{split} \max \sum_{t=0}^{\infty} \beta^t \frac{C^{1-\sigma}}{1-\sigma}, \\ C_t + a_{t+1} &= R_t a_t, \quad a_{t+1} \geq 0 \end{split}$$

 $R_t = after-tax$ interest rate on capital.

• Firm:

$$R_t^* = f'(k_t) + 1 - \delta, \quad w_t = f(k_t) - f'(k_t)$$

• Market clearing:

$$c_t + C_t + g + k_{t+1} = f(k_t) + (1 - \delta) k_t,$$
 $a_t = k_t$

Balanced budget:

$$g + T_t = (R_t^* - R_t) k_t$$

$Optimality + Market \ Clearing$

Workers:

$$c_t = f(k_t) - f'(k_t) + T_t$$

Capitalists:

$$\beta U'(C_t)(C_t + k_{t+1}) = U'(C_{t-1}) k_t \lim_{t \to \infty} \beta^t U'(C_t) k_{t+1} = 0$$

• Market clearing:

$$c_t + C_t + g + k_{t+1} = f(k_t) + (1 - \delta)k_t,$$
 $a_t = k_t$

Ramsey Problem

Planner maximizes weighted sum of utilities

$$\begin{aligned} \max \sum_{t=0}^{\infty} \beta^{t} \left\{ u(c_{t}) + \gamma U(C_{t}) \right\} \\ s.t. \ c_{t} + C_{t} + g + k_{t+1} &= f(k_{t}) + (1 - \delta) k_{t}, \\ \beta U'(C_{t})(C_{t} + k_{t+1}) &= U'(C_{t-1}) k_{t}, \\ \lim_{t \to \infty} \beta^{t} U'(C_{t}) k_{t+1} &= 0. \end{aligned}$$

- - requires sufficiently low γ.
 - for simplicity let $\gamma = 0$

Ramsey Problem: FOC

- Let μ_t be the multiplier for the Implementability constraint and λ_t the multiplier for the resource constraint.
- Define $\kappa_t = k_t/C_{t-1}$, $v_t = U'(C_t)/u'(c_t)$.

$$\mu_0 = 0 \tag{1}$$

$$\lambda_t = u'(c_t) \tag{2}$$

$$\mu_{t+1} = \mu_t \left(\frac{\sigma - 1}{\sigma \kappa_{t+1}} + 1 \right) + \frac{1}{\beta \sigma \kappa_{t+1} \nu_t}$$
 (3)

$$\frac{u'(c_{t+1})}{u'(c_t)} \left[f'(k_{t+1}) + 1 - \delta \right] = \frac{1}{\beta} + v_t \left(\mu_{t+1} - \mu_t \right) \tag{4}$$

Ramsey Problem: Solution

Theorem

(Judd, 1985 - adjusted) Suppose quantities and multipliers converge to an interior steady state. Then, the tax on capital is zero in the limit:

$$\mathscr{T}_t = 1 - \frac{R_t}{R_t^*} \to 0.$$

Proof.

Interior steady state implies: $c_t=c>0$, $C_t=C>0$, $k_t=k>0$ and $\mu_t=\mu$. Using the previous equations:

$$R^* = \frac{1}{\beta}$$
$$R = \frac{1}{\beta}$$

Hence $\mathscr{T}_t \to 0$.

Ramsey Problem: Solution

• · · · or not?

Ramsey Problem (Lansing,1999 and Reinhorn, 2002 and 2013)

• Simple case: $\sigma = 1 \implies U(C) = \log C$. Optimality in capitalist's problem:

$$C_t = (1 - \beta) R_t k_t$$
$$k_{t+1} = \beta R_t k_t$$

• Substitute into Planner's problem ($\gamma = 0$):

$$\begin{aligned} &\max \sum_{t=0}^{\infty} \beta^t u(c_t) \\ &s.t. \ c_t + \frac{1}{\beta} k_{t+1} + g \leq f(k_t) + (1-\delta) k_t \end{aligned}$$

Neoclassical growth model with higher cost of capital!

• Steady State implies $R^* = 1/\beta^2$ and $R = 1/\beta$. The tax is then $\mathcal{T} = 1 - \beta$.

Ramsey Problem (Lansing,1999 and Reinhorn, 2002 and 2013)

• Simple case: $\sigma = 1 \implies U(C) = \log C$. Optimality in capitalist's problem:

$$C_t = (1 - \beta) R_t k_t$$
$$k_{t+1} = \beta R_t k_t$$

• Substitute into Planner's problem ($\gamma = 0$):

$$\max \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + \frac{1}{\beta} k_{t+1} + g \le f(k_t) + (1 - \delta) k_t$

Neoclassical growth model with higher cost of capital!

• Steady State implies $R^* = 1/\beta^2$ and $R = 1/\beta$. The tax is then $\mathcal{T} = 1 - \beta$.

Ramsey Problem (Lansing,1999 and Reinhorn, 2002 and 2013)

• Simple case: $\sigma = 1 \implies U(C) = \log C$. Optimality in capitalist's problem:

$$C_t = (1 - \beta) R_t k_t$$
$$k_{t+1} = \beta R_t k_t$$

• Substitute into Planner's problem ($\gamma = 0$):

$$\max \sum_{t=0}^{\infty} \beta^t u(c_t)$$
s.t. $c_t + \frac{1}{\beta} k_{t+1} + g \le f(k_t) + (1 - \delta) k_t$

Neoclassical growth model with higher cost of capital!

• Steady State implies $R^*=1/\beta^2$ and $R=1/\beta$. The tax is then $\mathcal{T}=1-\beta$.

Straub and Werning on Judd result

- The previous example showed a case where an interior steady state for quantities exists however tax on capital are positive.
- Why? Multipliers do not converge to an interior solution! (Reinhorn 2002).
- The result is not specific to log-preferences.
- When $\sigma > 1$ taxes are positive in the long run but non-interior steady state $c_t = 0$ $k = k_g$.
 - ▶ Haven't got through the entire proof but, workers own n = 1, $k = k_g \implies w = f(k_g) f'(k_g) \implies T = -[f(k_g) f'(k_g)]$.
 - What happened with redistribute towards workers???

The result in a graph

Figure 1: Optimal time paths for capital (left) and wealth taxes (right).

Note. This figure shows the optimal time paths of capital k_t (left panel) and wealth taxes \mathcal{T}_t (right panel) for various values of the inverse IES σ .

Fix notation:

- Aiyagari type model. Assets are denote with a, labor shock with ℓ .
- Policy function for assets tomorrow $g(a, \ell)$.
- Distribution of assets and labor productivity **today** $\phi_t(a,\ell)$ where $(a,\ell) \in \mathscr{A} \times \mathscr{L}$.
- Distribution of assets and labor productivity **tomorrow** $\phi_{t+1}(a,\ell)$ where $(a,\ell) \in \mathscr{A} \times \mathscr{L}$.
- In what follow we let $\mathscr{L} = \{\ell_L, \ell_H\}$ and $\mathscr{A} = \{a_1, a_2, \cdots, a_n\}$.
- ℓ is first order Markov. Transition matrix Π .

What to do?

- Construct the "Law of Motion" for ϕ_t .
- Translate that into the computer.

$$\phi_{t+1}(a_k, \ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \left\{ g(a_i, \ell_m) = a_k \right\} \phi_t(a_i, \ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ► $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m) \Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow.
 - the sums just account for the many possibilities to get to (a_k, ℓ_i)

$$\phi_{t+1}(a_k, \ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \left\{ g(a_i, \ell_m) = a_k \right\} \phi_t(a_i, \ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic:
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i,\ell_m)=a_k\}\phi_t(a_i,\ell_m)\Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow.
 - the sums just account for the many possibilities to get to (a_k, ℓ_i)

$$\phi_{t+1}(a_k, \ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \{ g(a_i, \ell_m) = a_k \} \phi_t(a_i, \ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic:
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $1\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m) \Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow
 - ▶ the sums just account for the many possibilities to get to (a_k, ℓ_j) .

$$\phi_{t+1}(a_k, \ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \{ g(a_i, \ell_m) = a_k \} \phi_t(a_i, \ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic:
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m) \Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow.
 - the sums just account for the many possibilities to get to (a_k, ℓ_i)

$$\phi_{t+1}(a_k, \ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \{ g(a_i, \ell_m) = a_k \} \phi_t(a_i, \ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic:
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i,\ell_m)=a_k\}\phi_t(a_i,\ell_m)\Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow.
 - ▶ the sums just account for the many possibilities to get to (a_k, ℓ_i) .

$$\phi_{t+1}(a_k,\ell_j) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \left\{ g(a_i,\ell_m) = a_k \right\} \phi_t(a_i,\ell_m) \Pi_{mj} \right\}.$$

- Decompose the sum to understand the logic:
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} = 1$ if agent with state (a_i, ℓ_m) chooses a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i, \ell_m) = a_k\} \phi_t(a_i, \ell_m)$ is the proportion of agents today with state (a_i, ℓ_m) that choose a_k for tomorrow.
 - ▶ $\mathbf{1}\{g(a_i,\ell_m)=a_k\}\phi_t(a_i,\ell_m)\Pi_{mj}$ from those only Π_{mj} will have ℓ_j tomorrow.
 - ▶ the sums just account for the many possibilities to get to (a_k, ℓ_j) .

• The stationary distribution solves:

$$\phi(a_{k},\ell_{j}) = \sum_{m=1}^{2} \left\{ \sum_{i=1}^{n} \mathbf{1} \{ g(a_{i},\ell_{m}) = a_{k} \} \phi(a_{i},\ell_{m}) \Pi_{mj} \right\}$$

- Suggest how to obtain ϕ :
 - **1** Star with a guess for ϕ : $\phi_0(a, \ell)$
 - ② Use the above equation to compute $\phi_1(a,\ell)$.
 - **③** Check the difference between the two: $\max_{\{a,\ell\}} |\phi_1 \phi_0|$. If less than tolerance error stop. Otherwise set $\phi_0 = \phi_1$ an repeat.

Remark

It is possible to state the equation above in terms of matrices and then just solve the system:

$$(\mathbb{I} - \mathbb{T}) \phi = 0.$$

That is ϕ is the eigenvector associated with the unit eigenvalue of the matrix \mathbb{T} .