Let V be a vector space over the field \mathbb{R} , equipped with a positive, symmetric inner product $(-,-): V \times V \to R$.

A set of vectors $v_1, ..., v_j$ is known as an orthogonal set if

$$(v_i, v_j) = \begin{cases} 0 & i \neq j \\ > 0 & i = j \end{cases}$$

and orthonormal if $(v_i, v_i) = 1$. We have shown that any orthogonal set is a linearly independent set; any orthonormal set with n elements is a basis and is known as the orthonormal basis.

We will prove that any Euclidean vector space admits an orthonormal basis.

We will begin by defining a formula for the orthogonal projection. Let $U \subseteq V$, with $P_U: V \to V$ and $P_{U^{\perp}}: V \to V$, satisfying $\operatorname{Im} P_U = U$ and $\operatorname{Im} P_{U^{\perp}} = U^{\perp}$. Let $v_1, ..., v_r \in U$ be an orthonormal basis of U. Then for some $v \in V$,

$$P_U(v) = \sum_{i=1}^r (v, v_i) v_i.$$

This is proven below.

Let $A = \sum_{i=1}^{r} (v, v_i) v_i$; then $A \in U$. Then we want to show that $v - A = U^{\perp}$, which is equivalent to showing that $(v - A, v_i) = 0, i = 1, ..., r$. Then for some i_0 , we have

$$(v - A, v_{i_0}) = (v, v_{i_0}) - (A, v_{i_0})$$

$$= (v, v_{i_0}) - \left(\sum_{i=1}^r (v, v_i)v_i, v_{i_0}\right)$$

$$= (v, v_{i_0}) - \sum_{i=1}^r (v, v_i)(v_i, v_{i_0})$$

$$= (v, v_{i_0}) - (v, v_{i_0})$$

$$= 0$$

and therefore $P_U(v) = A$.

We will now prove the main theorem above.

We are, as above, given a vector space V of dimension n over the field \mathbb{R} , equipped with an inner product (-,-). Let $v_1,...,v_n \in V$ be a basis of V. We will denote $V_r = \mathbb{R}\langle v_1,...,v_r\rangle$, which is the subspace spanned by the first r vectors in the basis. Then $\dim V_r = r$. We will orthonormalize $v_1,...,v_n$.

Consider $V_1 = \mathbb{R}v_1$. v_1 is not necessarily an orthonormal basis of V_1 , since it is not necessarily normalized; then define $u_1 = \frac{1}{\|v_1\|}v_1$ and $U_1 = \mathbb{R}u_1$. Then u_1 is an orthonormal basis of U_1 ; further, we claim that $V_1 = U_1$, and therefore u_1 is an orthonormal basis of V_1 .

Consider V_2 , and let $\tilde{v}_2 = v_2 - P_{U_1}(v_2) = P_{U^{\perp}}(v_2) = v_2 - (v_2, u_1)u_1$ be the orthogonal projection of v_2 onto the orthogonal projection of U_1 . Then $(\tilde{v}_2, u_1) = 0$, and letting $u_2 = \frac{1}{||\tilde{v}_2||}\tilde{v}_2$, we have $U_2 = \mathbb{R}\langle u_1, u_2 \rangle$. Then we claim that $V_2 = U_2$, since u_1 and u_2 are linear combinations of v_1 and v_2 , and since u_1 and u_2 form an orthonormal basis of U_2 , we have constructed an orthonormal basis of V_2 .

Finally, consider V_3 , and let $\tilde{v}_3 = v_3 - P_{U_2}(v_3) = v_3 - (v_3, u_1)u_1 - (v_3, u_2)u_2$. Then define $u_3 = \frac{1}{\|\tilde{v}_3\|}\tilde{v}_3$. Then as above, $U_3 = V_3$, and $\{u_1, u_2, u_3\}$ is an orthonormal basis of U_3 ; then we have an orthonormal basis of V_3 .

This process is known as the **Gram-Schmidt Orthonormalization Procedure** for forming an orthonormal basis from a standard basis. The general recursion procedure is as follows: given $u_1, u_2, ..., u_i$ as an orthonormal basis of $U_i = V_i$, then

$$\tilde{v}_{i+1} = v_{i+1} - \sum_{j=1}^{i} (v_{i+1}, u_j) u_j$$

and

$$u_{i+1} = \frac{1}{||u_{i+1}||} u_{i+1}.$$

We will demonstrate this procedure with some examples.

Let $V = \mathbb{R}^2$; consider the vectors $x = (x_1, x_2), y = (y_1, y_2)$ and their inner product $(x, y) = x_1y_1 + x_2y_2$. Consider the basis (1,0), (1,1). Then $u_1 = v_1$ as before; $\tilde{v}_2 = v_2 - (v_2, u_1)u_1 = (1,1) - (1,0) = (0,1)$; then an orthonormal basis of \mathbb{R}^2 is $\{(1,0), (0,1)\}$.

Consider the basis (1,1), (1,0). Then $u_1 = \frac{1}{\sqrt{2}}(1,1)$ and $\tilde{v}_2 = v_2 - (v_2, u_1)u_1 = (1,0) - \frac{1}{2}(1,1) = (\frac{1}{2}, -\frac{1}{2})$. Then another orthonormal basis of \mathbb{R}^2 is $\frac{1}{\sqrt{2}}\{(1,1), (1,-1)\}$. It is clear, then, that the Gram-Schmidt Procedure gives different results for different orders of vectors.

Now consider $V = \mathbb{R}^3$, with basis (1,0,0), (1,0,1), (1,1,0). Then $u_1 = v_1$, $\tilde{v}_2 = v_2 - (v_2,u_1)(u_1) = (1,0,1) - (1,0,0) = (0,0,1)$ and $u_2 = (0,0,1)$, and $\tilde{v}_3 = v_3 - (v_3,u_2)u_2 - (v_3,u_1)u_1 = (1,1,0) - (1,0,0) = (0,1,0)$ and $u_3 = (0,1,0)$. Then an orthonormal basis of \mathbb{R}^3 is $\{(1,0,0),(0,1,0),(0,0,1)\}$, which is the standard basis in a different order.