K-Means

Ha Phuong

January 21, 2022

1 Formula

Suppose we have a data set $\{x1,...,xN\}$ consisting of N observations of a random D-dimensional Euclidean variable x. We introducing a set of D-dimensional vectors μk , where k=1,...,K, in which μk is a prototype associated with the kth cluster.

An objective function

$$J = \sum_{n=1}^{N} \sum_{K=1}^{K} r_{nk} \|x_n - \mu_k\|^2$$
 (1)

with
$$\begin{cases} r_{n,k} \in \{0,1\}, \forall n, k \\ \sum_{j=1}^{K} r_{n,k} = 1 \lor n \end{cases}$$

Our goal is to find values for the rnk and the μk so as to minimize J.Now consider the optimization of the μk with the rnk held fixed. The objective function J is a quadratic function of μk , and it can be minimized by setting its derivative with respect to μk to zero giving

$$2\sum_{n=1}^{N} r_{nk}(x_n - \mu_k) = 0 (2)$$

$$\mu_k = \frac{\sum_{n=1} r_{nk} x_n}{\sum_{n=1} r_{nk}} \tag{3}$$

So µk equal to the mean of all of the data points xn assigned to cluster k