Integer Programming

Prof. M. P. Biswal

 $\label{eq:Department} \mbox{ Department of Mathematics}$

Indian Institute of Technology, Kharagpur Kharagpur-721302 India

E-mail: mpbiswal@maths.iitkgp.ernet.in

Integer Linear Programming

General Model:

$$\max / \min : z = \sum_{j=1}^{n} c_j x_j$$
 (1.1)

subject to

$$\sum_{j=1}^{n} a_{ij} x_j (\leq \geq) b_i, \qquad i = 1, 2, \dots, m$$
 (1.2)

$$x_j = 0, 1, 2, 3, \dots, j = 1, 2, \dots, n$$
 (1.3)

where c_i , a_{ij} and b_i are integers.

Integer Linear Programming(cont.)

Methods:

- (i) Cutting Plane method
- (ii) Branch and Bound method

Applications

- Transportation Problem,
- Assignment Problem,
- Job-Shop Scheduling Problem,
- Man power Planning,
- Production Planning,
- Transhipment Problem.

Integer Linear Programming(cont.)

Methods:

- (i) Cutting Plane method
- (ii) Branch and Bound method

Applications:

- Transportation Problem,
- Assignment Problem,
- Job-Shop Scheduling Problem,
- Man power Planning,
- Production Planning,
- Transhipment Problem.

Cutting Plane method

Cutting Plane method

Cutting Plane method of Gomory (1958)

At first an Integer Programming Problem is solved as a regular LPP by dropping the integral condition. If the optimal solution (x^*) happens to be integer, terminate the process.

Otherwise, the secondary constrained will be added that will force the solution toward the integer solution. These constraints can be developed as follows:

Let the optimal Tableau for the LPP be given by:

C _B	NBV BV	<i>w</i> ₁	W 2	 w _j	 W _n	X _B
*	<i>x</i> ₁	α_{11}	α_{12}	 α_{1j}	 $lpha_{1n}$	β_1
*	x ₂	α_{21}	α_{22}	 α_{2j}	 $lpha_{2n}$	β_2
:	:	i	i	 i	 :	
*	X _i	α_{i1}	α_{i2}	 α_{ij}	 $lpha_{\it in}$	β_i
:	i i	:	:	 :	 :	
*	X _m	α_{m1}	α_{m2}	 α_{mj}	 $lpha_{\it mn}$	β_m
		$\overline{z_1-c_1}$	$\overline{z_2-c_2}$	 $\overline{z_j-c_j}$	 $\overline{z_n-c_n}$	Z

where $\overline{z_j - c_j} \ge 0$, j = 1, 2, ..., n. x_i (i = 1, 2, ..., m) is the i-th basic variable w_i (j = 1, 2, ..., n) is the j-th non-basic variable

Let x_i be non-integer. Its value β_i has the largest fractional part. i.e.,

$$x_i + \sum_{j=1}^n \alpha_{ij} w_j = \beta_i, \quad \beta_i > 0$$

where $\beta_i = [\beta_i] + f_i$, $0 < f_i < 1$ and $\alpha_{ij} = [\alpha_{ij}] + f_{ij}$, $0 \le f_{ij} < 1$

Example: $[k] \le k$: greatest integer function

$$\begin{bmatrix} 2\frac{1}{2} \end{bmatrix} = 2 \Rightarrow \frac{1}{2} + 2 = 2\frac{1}{2} \\
[-3\frac{1}{2}] = -4 \Rightarrow \frac{1}{2} - 4 = -3\frac{1}{2}$$

$$[5] = 5$$

$$[-5] = -5$$
 etc

Now.

$$x_i + \sum_{j=1}^n ([\alpha_{ij}] + f_{ij}) w_j = [\beta_i] + f_i$$

$$\Rightarrow \qquad x_i - [\beta_i] + \sum_{i=1}^n [\alpha_{ij}] w_j = f_i - \sum_{i=1}^n f_{ij} w_j$$

For all x_i , w_j LHS is an integer. Hence RHS is an integer.

But $f_i - \sum_{j=1}^n f_{ij} w_j \le f_i < 1$ an integer.

Therefore.

$$f_{i} - \sum_{j=1}^{n} f_{ij} w_{j} \leq 0$$

$$\Rightarrow \sum_{j=1}^{n} f_{ij} w_{j} \geq f_{i}$$

$$\Rightarrow -\sum_{j=1}^{n} f_{ij} w_{j} \leq -f_{i}$$

$$\Rightarrow -\sum_{i=1}^{n} f_{ij} w_{j} + s_{i} = -f_{i}$$

This fractional cut may be added to the last simplex Tableau. The problem may be solved by Dual Simplex method. This procedure is repeated till we find an integer solution.

Example

Problem-1

$$\max : Z = 5x_1 + 4x_2$$

subject to

$$x_1 + x_2 \le 3$$

$$4x_1+x_2\leq 8$$

$$x_1, x_2 = 0, 1, 2, \\$$

Initial Simplex Tableau

BV	<i>X</i> ₁	<i>X</i> 2	X_B
X3	1	1	
X4	4	1	
		-4	

Example

Problem-1

$$\max: Z = 5x_1 + 4x_2$$
 subject to

$$x_1 + x_2 \le 3$$

 $4x_1 + x_2 \le 8$
 $x_1, x_2 = 0, 1, 2,$

Initial Simplex Tableau

СВ	NBV BV	<i>x</i> ₁	<i>X</i> ₂	X _B
0	<i>X</i> ₃	1	1	3
0	<i>X</i> 4	4	1	8
		-5	-4	0

Cutting Plane method

Example(cont.)

Simplex Tableau (cont.)

		0	4	
СВ	NBV BV	X4	<i>X</i> 2	X _B
0	<i>X</i> 3	$-\frac{1}{4}$	3 4	1
5	<i>X</i> ₁	$\frac{1}{4}$	$\frac{1}{4}$	2
		5 4	$-\frac{11}{4}$	10

Simplex Tableau (cont.)

	NBV BV	<i>X</i> 3	X_B
4	<i>X</i> ₂		
5	<i>X</i> ₁		

Cutting Plane method

Example(cont.)

Simplex Tableau (cont.)

		0	4	
СB	NBV BV	<i>X</i> 4	<i>X</i> 2	X _B
0	<i>X</i> 3	$-\frac{1}{4}$	3 4	1
5	<i>x</i> ₁	$\frac{1}{4}$	$\frac{1}{4}$	2
		514	$-\frac{11}{4}$	10

Simplex Tableau (cont.)

		0	0	
СВ	NBV BV	<i>X</i> 4	<i>X</i> 3	X _B
4	<i>X</i> ₂	$-\frac{1}{3}$	4 3	4 3
5	<i>X</i> ₁	$\frac{1}{3}$	$-\frac{1}{3}$	<u>5</u> 3
		$\frac{1}{3}$	11 3	$\frac{41}{3}$

Example(cont.)

Second constraint has the largest fractional part. Hence it is selected.

$$x_1 + \frac{1}{3}x_4 - \frac{1}{3}x_3 = \frac{5}{3}$$

Using the cutting plane method we establish the constraint as follows:

$$\frac{2}{3}x_3 + \frac{1}{3}x_4 \ge \frac{2}{3}$$

$$\Rightarrow \qquad -\frac{2}{3}x_3 - \frac{1}{3}x_4 \le -\frac{2}{3}$$

Simplex Tableau

	NBV BV	<i>X</i> 3	X_B
4	X ₂		
5	<i>X</i> ₁		

Example(cont.)

Second constraint has the largest fractional part. Hence it is selected.

$$x_1 + \frac{1}{3}x_4 - \frac{1}{3}x_3 = \frac{5}{3}$$

Using the cutting plane method we establish the constraint as follows:

$$\frac{2}{3}x_3 + \frac{1}{3}x_4 \ge \frac{2}{3}$$

$$\Rightarrow -\frac{2}{3}x_3 - \frac{1}{3}x_4 \le -\frac{2}{3}$$

Simplex Tableau

СВ	NBV BV	<i>X</i> 4	<i>X</i> 3	X _B
4	<i>x</i> ₂	$-\frac{1}{3}$	4/3	4/3
5	<i>X</i> ₁	$\frac{1}{3}$	$-\frac{1}{3}$	5/3
0	<i>s</i> ₁	$-\frac{1}{3}$	$-\frac{2}{3}$	$-\frac{2}{3}$
		$\frac{1}{3}$	$\frac{11}{3}$	$\frac{41}{3}$

Example(cont.)

Append the cutting plane to the last simplex tableau and apply Dual Simplex method.

СВ	NBV BV	s ₁	<i>X</i> 3	X _B
4	<i>X</i> ₂	-1	2	2
5	<i>X</i> ₁	1	-1	1
0	<i>X</i> 4	3	2	2
		1	3	13

Optimal Solution

$$x_1^* = 1, \ x_2^* = 2, \ Z^* = 1$$

Cutting Plane method

Example(cont.)

Append the cutting plane to the last simplex tableau and apply Dual Simplex method.

СВ	NBV BV	s ₁	<i>X</i> 3	X _B
4	<i>X</i> ₂	-1	2	2
5	<i>X</i> ₁	1	-1	1
0	<i>X</i> 4	3	2	2
		1	3	13

Optimal Solution:

$$x_1^* = 1, \ x_2^* = 2, \ Z^* = 13$$

Branch and Bound Method (1960)

General Model

$$\max / \min : Z = \sum_{j=1}^{n} c_j x_j \tag{1.4}$$

subject to

$$\sum_{j=1}^{n} a_{ij} x_{j} (\leq = \geq) b_{i}, \qquad i = 1, 2, \dots, m$$
 (1.5)

$$x_j = 0, 1, 2, 3, \dots, j = 1, 2, \dots, n$$
 (1.6)

where the cost coefficients c_j , technological coefficients a_{ij} and target value b_i are integers for i = 1, 2, ..., m; j = 1, 2, ..., n.

- Solve the Integer Programming problem by graphical method (2D)/ Simplex method by dropping integer restrictions.
- Let x_j be an integer variable whose optimal value x_j^* is fractional. Then the range

$$[x_j^*] < x_j < [x_j^*] + 1$$

can not include any solution which is integer

• A feasible integral value of x_j must satisfy either

$$x_j \ge [x_j^*] + 1 \tag{1.7}$$

or

$$x_j \le [x_j^*] \tag{1.8}$$

- Solve the Integer Programming problem by graphical method (2D)/ Simplex method by dropping integer restrictions.
- Let x_j be an integer variable whose optimal value x_j^* is fractional. Then the range

$$[x_j^*] < x_j < [x_j^*] + 1$$

can not include any solution which is integer.

 A feasible integral value of x_j must satisfy either

$$x_j \ge [x_j^*] + 1 \tag{1.7}$$

or

$$x_j \le [x_j^*] \tag{1.8}$$

- Solve the Integer Programming problem by graphical method (2D)/ Simplex method by dropping integer restrictions.
- Let x_j be an integer variable whose optimal value x_j^* is fractional. Then the range

$$[x_j^*] < x_j < [x_j^*] + 1$$

can not include any solution which is integer.

 A feasible integral value of x_j must satisfy either

$$x_j \ge [x_j^*] + 1 \tag{1.7}$$

or

$$x_j \le [x_j^*] \tag{1.8}$$

- By imposing the constraints (2.7) and (2.8) to the original LPP we find two mutually exclusive LP Problems.
- Hence the problem is branched into two subproblems. The optimal value of the objective function Z for the non-integer case be Z*.
- For the integer case (discrete case) the optimal value Z^* is $\leq [Z^*]$. It is a bound (upper bound) for the objective function.
- ullet This procedure is to be repeated a number of times to find an all integer solution x^*

- By imposing the constraints (2.7) and (2.8) to the original LPP we find two mutually exclusive LP Problems.
- Hence the problem is branched into two subproblems. The optimal value of the objective function Z for the non-integer case be Z^* .
- For the integer case (discrete case) the optimal value Z^* is $\leq [Z^*]$. It is a bound (upper bound) for the objective function.
- ullet This procedure is to be repeated a number of times to find an all integer solution x^*

- By imposing the constraints (2.7) and (2.8) to the original LPP we find two mutually exclusive LP Problems.
- Hence the problem is branched into two subproblems. The optimal value of the objective function Z for the non-integer case be Z^* .
- For the integer case (discrete case) the optimal value Z^* is $\leq [Z^*]$. It is a bound (upper bound) for the objective function.
- This procedure is to be repeated a number of times to find an all integer solution x*

- By imposing the constraints (2.7) and (2.8) to the original LPP we find two mutually exclusive LP Problems.
- Hence the problem is branched into two subproblems. The optimal value of the objective function Z for the non-integer case be Z*.
- For the integer case (discrete case) the optimal value Z^* is $\leq [Z^*]$. It is a bound (upper bound) for the objective function.
- ullet This procedure is to be repeated a number of times to find an all integer solution x^*

Example-1

P:

max :
$$Z = 5x_1 + 4x_2$$

subject to
 $x_1 + x_2 \le 3$
 $4x_1 + x_2 \le 8$
 $x_1, x_2 = 0, 1, 2, ...$

 P_1 :

$$\max: Z = 5x_1 + 4x_2$$
 subject to
$$x_1 + x_2 \le 3$$

$$4x_1 + x_2 \le 8$$

Example-1

P:

$$\max : Z = 5x_1 + 4x_2$$
 subject to
$$x_1 + x_2 \le 3$$
$$4x_1 + x_2 \le 8$$

 $x_1, x_2 = 0, 1, 2, \dots$

 P_1 :

$$\max: Z = 5x_1 + 4x_2$$
 subject to
$$x_1 + x_2 \le 3$$

$$4x_1 + x_2 \le 8$$

 $x_1, x_2 \ge 0$

200

Initial Simplex Tableau:

	CN	5	4	
CB	NB B	<i>x</i> ₁	<i>x</i> ₂	X _B
0	<i>X</i> ₃	1	1	3
0	X ₃ X ₄	4	1	8
		-5	-4	0

Optimal (Final) Simplex Tableau

	NB B	X4	<i>X</i> ₃	X_B
4	X2			
5	X_1			

Optimal Solution:

$$x_1^* = \frac{5}{3} = 1\frac{2}{3}$$

 $x_2^* = \frac{4}{3} = 1\frac{1}{3}$
 $Z^* = \frac{41}{3} = 13\frac{2}{3}$
 $[Z^*] = 13$

(ㅁㅏ <鬪ㅏ <불ㅏ <불ㅏ 글 જ)익(C

Branch and Bound Method

Example-1(continued)

Initial Simplex Tableau:

	CN	5	4	
c _B	NB B	<i>x</i> ₁	<i>x</i> ₂	X _B
0	<i>X</i> 3	1	1	3
0	<i>X</i> ₃ <i>X</i> ₄	4	1	8
		-5	-4	0

Optimal (Final) Simplex Tableau:

	CN	0	0	
C B	NB B	<i>X</i> ₄	<i>X</i> ₃	X _B
4	X2	$-\frac{1}{3}$	$\frac{4}{3}$	<u>4</u> 3
5	x ₂ x ₁	$\frac{1}{3}$	$-\frac{1}{3}$	<u>5</u>
		$\frac{1}{3}$	$\frac{11}{3}$	$\frac{41}{3}$

Optimal Solution

$$x_1^* = \frac{5}{3} = 1\frac{2}{3}$$

 $x_2^* = \frac{4}{3} = 1\frac{1}{3}$
 $Z^* = \frac{41}{3} = 13\frac{2}{3}$
 $[Z^*] = 13$

Initial Simplex Tableau:

	CN	5	4	
CB	NB B	<i>x</i> ₁	<i>x</i> ₂	X _B
0	<i>X</i> 3	1	1	3
0	X ₃ X ₄	4	1	8
		-5	-4	0

Optimal (Final) Simplex Tableau:

	CN	0	0	
c _B	NB B	<i>X</i> ₄	<i>X</i> ₃	X _B
4	X2	$-\frac{1}{3}$	<u>4</u> 3	<u>4</u> 3
5	<i>X</i> ₂ <i>X</i> ₁	$\frac{1}{3}$	$-\frac{1}{3}$	$\frac{5}{3}$
		$\frac{1}{3}$	11/3	$\frac{41}{3}$

Optimal Solution:

$$x_1^* = \frac{5}{3} = 1\frac{2}{3}$$

 $x_2^* = \frac{4}{3} = 1\frac{1}{3}$
 $Z^* = \frac{41}{3} = 13\frac{2}{3}$
 $[Z^*] = 13$

< □ > < 圖 > < 差 > < 差 > 差 釣 < ②

Select x_1 , then we have $x_1^* = \frac{5}{3} \Rightarrow \left[\frac{5}{3}\right] < x_1 < \left[\frac{5}{3}\right] + 1 \Rightarrow 1 < x_1 < 2$. There is no integer solution in $1 < x_1 < 2$. Hence either $x_1 \le 1$ or $x_1 \ge 2$.

$$P_2:$$

$$\max: Z = 5x_1 + 4x_2$$
subject to
$$x_1 + x_2 \le 3$$

$$4x_1 + x_2 \le 8$$

$$x_1 \le 1$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 1, \ x_2^* = 2, \ Z^* = 13$$

$$P_3$$
:

max: $Z = 5x_1 + 4x_2$

subject to

 $x_1 + x_2 \le 3$
 $4x_1 + x_2 \le 8$
 $x_1 \ge 2$
 $x_1, x_2 \ge 0$
 $x_1^* - 2, x_2^* - 0, x_2^* - 10$

Select x_1 , then we have $x_1^* = \frac{5}{3} \Rightarrow \left[\frac{5}{3}\right] < x_1 < \left[\frac{5}{3}\right] + 1 \Rightarrow 1 < x_1 < 2$. There is no integer solution in $1 < x_1 < 2$. Hence either $x_1 \le 1$ or $x_1 \ge 2$.

P_2 :

$$\max : Z = 5x_1 + 4x_2$$

subject to

$$x_1 + x_2 < 3$$

$$4x_1 + x_2 < 8$$

$$x_1 < 1$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 1, x_2^* = 2, Z^* = 13$$

P_3 :

$$\max : Z = 5x_1 + 4x_2$$

subject to

$$x_1 + x_2 < 3$$

$$4x_1+x_2\leq 8$$

$$x_1 \geq 2$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 2, \ x_2^* = 0, \ Z^* = 10$$

Select x_1 , then we have $x_1^* = \frac{5}{3} \Rightarrow \left[\frac{5}{3}\right] < x_1 < \left[\frac{5}{3}\right] + 1 \Rightarrow 1 < x_1 < 2$. There is no integer solution in $1 < x_1 < 2$. Hence either $x_1 \le 1$ or $x_1 \ge 2$.

P_2 :

$$\max : Z = 5x_1 + 4x_2$$

subject to

$$x_1 + x_2 < 3$$

$$4x_1 + x_2 < 8$$

$$x_1 < 1$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 1, x_2^* = 2, Z^* = 13$$

P_3 :

$$\max : Z = 5x_1 + 4x_2$$

subject to

$$x_1 + x_2 < 3$$

$$4x_1+x_2\leq 8$$

$$x_1 \geq 2$$

$$x_1, x_2 \ge 0$$

$$x_1^* = 2, \ x_2^* = 0, \ Z^* = 10$$

Example-2

Example-2

$$\max : Z = 10x_1 + x_2$$

subject to

$$2x_1 + 5x_2 \le 11$$

$$x_1, x_2 = 0, 1, 2, \dots$$

Example-2(cont.)

Branch and Bound Method

Example-3

Example-3

$$\max : Z = x_1 + 3x_2$$

subject to

$$x_1 + 2x_2 \le 11$$

$$x_1 + 4x_2 \le 16$$

$$x_1, x_2 = 0, 1, 2, \dots$$

Example-3(cont.)

Some of the integer programming problem have alternative optimal solution also.

References

H.A. Taha, Operations Reaserch, 2006.

Ravindran, Philips and Solberg, Operations Reaserch, 2007.

Thank You