中国矿业大学

2017 级 硕 士研究生课程考试试卷

考试科	目	数理统证	<u>十 </u>
考试时	闰	2017.11.	17
学生姓名	名		
学	号		
所在院	系		
任课教	斦		

中国矿业大学研究生院培养管理处印制

可能用到的数据: $\Phi(0.4)=0.6554$, $\chi^2_{0.05}(4)=9.488$, $F_{0.05}(2,27)=3.35$, $F_{0.05}(2,29)=3.33$ 一、(10 分) 设总体 $X\sim N(\mu_1,\sigma^2)$,总体 $Y\sim N(\mu_2,\sigma^2)$, X_1,X_2,\cdots,X_{n_1} 和 Y_1,Y_2,\cdots,Y_{n_2} 分别来

自总体
$$X$$
 和 Y 的简单随机样本,试求 $E\left[\frac{\displaystyle\sum_{i=1}^{n_1}(X_i-\overline{X})^2+\sum_{j=1}^{n_2}(Y_j-\overline{Y})^2}{n_1+n_2-2}\right].$

二、(15 分)某射手进行射击,每次射击击中目标的概率为 p (0 < p < 1),射击进行到击中目标两次时停止。令 X 表示第一次击中目标时的射击次数,Y 表示第二次击中目标时的射击次数,试求联合分布律 $P\{X=x_i,Y=y_j\}=p_{ij}$,条件分布律 $P\{X=x_i\big|Y=y_j\}$ 和 $P\{Y=y_j\big|X=x_i\}$.

- 三、(15分) 某农贸市场的某种商品每日的价格为 $Y_n=Y_{n-1}+X_n$ $(n\geq 1)$,其中 Y_n 表示第n 天该商品的价格, X_n 表示第n 天较前一天商品价格的变化.
- (1) 写出 Y_n 与 $Y_0, X_1, X_2, \dots, X_n$ 之间的关系;
- (2) 已知 $X_1, X_2, \dots, X_n, \dots$ 相互独立,且 $E(X_n) = 0, D(X_n) = 2$ $(n = 1, 2, \dots)$ 如果今天该商品的价格为 100 元,用中心极限定理估计 50 天后该商品的价格在 96 元与 104 元之间的概率.

四、(15 分) 已知总体
$$X$$
 的分布函数为 $F(x) = \begin{cases} 1 - e^{-(x-\mu)}, & x > \mu \\ 0, & x \leq \mu \end{cases}$ $(\mu \in R)$,

其中 μ 为未知参数. X_1,X_2,\cdots,X_n 是来自总体X的简单随机样本. 试求 μ 的极大似然估计量 $\hat{\mu}$,并判断它是否为 μ 的无偏估计?

五、(10分) 标准差 σ 是衡量机床加工精度的重要特征. 在生产条件稳定的情况下,一自动机床所加工零件的尺寸服从正态分布,假设设计要求 σ 不超过 0.5mm. 为了控制生产过程,定时对产品进行抽验:每次抽验 5 件,测定其尺寸的标准差为 S ,试制定一种规则,以便根据 S 值就可以判断机床的精度是否降低了. (显著性水平为 α = 0.05)

六、(15 分) 设随机变量 y 与自变量 x 之间有关系 $y=1+ax+\varepsilon$,其中 $\varepsilon\sim N(0,\sigma^2)$,根据所学线性回归理论,求做如下问题

- (1) 试求参数a的最小二乘估计 \hat{a} ,
- (2) 判断参数 \hat{a} 的最小二乘估计是否是无偏的.

七、(15 分)某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生成的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。通过对每个工人生成的产品数进行方差分析得到下面的结果:

方差来源	平方和	自由度	均方	F 值	P-value	F临界值
组间			210		0.245946	3.354131
组内	3836					
总计		29				

- (1) 填写上面的方差分析表;
- (2) 若显著性水平 $\alpha = 0.05$,检验三种方法组装的产品数量之间是否有显著差异.

八、(5分) 试分析"常在河边走,哪能不湿鞋"所蕴含的数学道理.