FYS4150 Project 1: 1-dimensional Poisson equation

Marie Foss¹, Maria Hammerstrøm¹

¹ Institute of Theoretical Astrophysics, University of Oslo

Abstract. We discovered ...

1. Introduction

In this project we will solve the one-dimensional Poissson equation with Dirichlet boundary conditions by rewriting it as a set of linear equations. The equation to be solved is:

$$-u''(x) = f(x) x \in (0,1), u(0) = u(1) = 0 (1)$$

MORE COMING HERE.

2. Solving the problem

2.1. Simple algorithm

In our case we are dealing with a simple tridiagonal matrix **A**:

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & \dots \\ 0 & -1 & 2 & -1 & 0 & \dots \\ & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & & -1 & 2 & -1 \\ 0 & \dots & & 0 & -1 & 2 \end{pmatrix}$$
 (2)

We can therefore rewrite our matrix A in terms of one-dimensional vectors a, b, c of length 1:n.

MORE COMING HERE.

2.2. Using a library package

In addition to solving the linear second-order differential equation Eq. XX using the simple algorithm described above, we want to solve the equation using Gaussian elimination and LU decomposition, then compare the results.

MORE COMING HERE.

3. Analaysis

The modeling of ...

4. Conclusions

The answer is 42.

Acknowledgements. We are much indebted to Rob Rutten for exemplary instruction. Our research made much use of NASA's Astrophysics Data System.