

LE MISURE DI VARIABILITA'

In assenza di variabilità in una popolazione la statistica non sarebbe necessaria: un singolo elemento o unità campionaria sarebbe sufficiente a determinare tutto ciò che occorre sapere su una popolazione. Ne consegue, perciò, che nel presentare informazioni su un campione non è sufficiente fornire semplicemente una misura della media ma servono informazioni sulla variabilità.

Esempio Si considerino inizialmente, le seguenti due distribuzioni di valori riferiti all'età di 10 individui:

Soggetti	I gruppo	II gruppo
1	20	10
2	30	25
3	40	40
4	50	55
5	60	70
Tot	200	200
Media Aritmetica	200/5=40	200/5=40

LE MISURE DI VARIABILITÀ

- ✓ Campo di variazione (range);
- ✓ Devianza;
- √ Varianza;
- ✓ Deviazione Standard;
- ✓ Coefficiente di variazione (variabilità relativa).

IL CAMPO DI VARIAZIONE O RANGE

DEFINIZIONE: Il <u>Campo di variazione o</u> <u>Range</u> corrisponde alla differenza fra la modalità più piccola e la modalità più grande della distribuzione.

 $R = X_{max} - X_{min}$

Limiti del campo di variazione:

- √ è troppo influenzato dai valori estremi;
- ✓ tiene conto dei due soli valori estremi, trascurando tutti gli altri.

Occorre allora un indice di dispersione che consideri tutti i dati (e non solo quelli estremi), confrontando questi con il loro valor medio.

1a idea
$$\sum_{i=1}^{n} (x_i - \overline{x})$$
2a idea
$$\sum_{i=1}^{n} |x_i - \overline{x}|$$
3a idea
$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

LA DEVIANZA

DEFINIZIONE: La somma dei quadrati degli scarti dalla media aritmetica

$$\sum_{i=1}^k (x_i - \bar{x})^2$$

Esempio 9 Valori del tasso glicemico in 10 soggetti

X _i (glicemia mg/100cc)	$_{\mathrm{X}}$ i $-\overline{\mathcal{X}}$	$(\mathbf{x}_{i} - \overline{\mathbf{x}})^{2}$
103	+8	64
97	+2	4
90	-5	25
119	+24	576
107	+12	144
71	-24	576
94	-1	1
81	-14	196
92	-3	9
96	+1	1
$\bar{x} = 95$	94	1596

La quantità 1596 esprime la *Devianza*

LA VARIANZA

DEFINIZIONE: La somma dei quadrati degli scarti dalla media aritmetica divisi per la numerosità campionaria

$$\sum_{i=1}^{k} (x_i - \bar{x})^2$$

$$S^2 = \frac{i=1}{n-1}$$

LA DEVIAZIONE STANDARD

DEFINIZIONE: La radice quadrata della varianza

$$S = \sqrt{\frac{\sum_{i=1}^{k} (x_i - \overline{x})^2}{n-1}}$$

Calcolare la deviazione standard (DV) delle seguenti 10 osservazioni (mm):

81 79 82 83 80 78 80 87 82 82

1. Si calcoli la media, x:

$$\overline{x} = \frac{\sum x}{n} = \frac{814}{10} = 81.40$$

2.Si calcolino gli scarti dalla media sottraendo da ciascun valore la media; si elevi al quadrato tale quantità (il quadrato elide il segno -):

$$(81-81.4)^2 = 0.16$$
 $(78-81.4)^2 = 11.56$

$$(79-81.4)^2 = 5.76 (80-81.4)^2 = 1.96$$

$$(82-81.4)^2 = 0.36 (87-81.4)^2 = 31.36$$

$$(83-81.4)^2 = 2.56 (82-81.4)^2 = 0.36$$

$$(80-81.4)^2 = 1.96 (82-81.4)^2 = 0.36$$

3. Si sommino tali quantità: la somma è pari a 56.4. La somma $\sum (x - \overline{x})^2$ è detta somma dei quadrati degli scarti o, più semplicemente, somma dei quadrati.

4. Si divida tale quantità per il numero di osservazioni meno 1:

$$\frac{\text{somma de i quadrati}}{(n-1)} = \frac{\sum (x - \overline{x})^2}{n-1} = \frac{56.4}{9} = 6.27$$

5. La deviazione standard è la radice quadrata di tale valore:

DS =
$$\sqrt{6.27}$$
 = 2.50 mm

Quindi la deviazione standard del campione di 10 unità estratto dalla popolazione è pari a 2.50 mm.

SCARTO INTERQUARTILE (IQR)

Scarto interquartile = (3°quartile)-(1°quartile)

E' molto più *resistente* della varianza in presenza di poche osservazioni estreme. Per questo motivo e usato soprattutto nelle situazioni in cui si sospetta la possibile presenza di osservazioni anomale.

BOX-PLOT

Il nome deriva dall'inglese (box and whiskers plot spesso, anche in italiano, abbreviato in boxplot).

Scarto interquartile (o differenza interquartile o ampiezza interquartile, o *IQR*) è la differenza tra il terzo e il primo quartile, ovvero l'ampiezza della fascia di valori che contiene la metà "centrale" dei valori osservati.

Lo scarto interquartile è un indice di dispersione, cioè una misura di quanto i valori si allontanino da un valore centrale. Viene utilizzato nel disegno del diagramma box-plot.

Particolari percentili sono i quartili:

 Q_1 : primo quartile: 25-esimo percentile

Q2: secondo quartile: 50-esimo percentile, ovvero la Mediana

Q₃: terzo quartile: 75-esimo percentile

Si può dare una definizione quantitativa in termini dei quartili:

Def.: Un valore x del campione si definisce outlier se

$$x \le Q_1 - 1.5(Q_3 - Q_1)$$
 oppure $x \ge Q_3 + 1.5(Q_3 - Q_1)$;

in particolare e' detto outlier debole se

$$Q_1 - 3(Q_3 - Q_1) < x \le Q_1 - 1.5(Q_3 - Q_1)$$

oppure

$$Q_3 + 1.5(Q_3 - Q_1) \le x < Q_3 + 3(Q_3 - Q_1),$$

outlier forte se

$$x \le Q_1 - 3(Q_3 - Q_1)$$
 oppure $x \ge Q_3 + 3(Q_3 - Q_1)$