Teorema (4.4.5)
[Algoritmo de la división] - Si a, b \in \mathbb{Z} y b \neq 0, entonces existen q, r \in \mathbb{Z} \unicos
Tales que:
$a = b_4 + r y 0 \le r \le b $
Demostración:
Supongamos primero que b > 0. En tul caso b = b. Sea:
$A = \{a - bx \mid x \in \mathbb{Z} \mid a - bx \geq 0\}$
Claro que Ac NU {0}, y puesto que no hay enteros entre 0 y 1, entonces NU {
0) está bien ordenado por <
Veamos que A≠Ø: Como b>0, entonce s b≥1, por tunto:
- b < -1 N1 0
entonces:
enlonces: -blal <-lal Suponga que c=min Dt, c<1.
y como $- a \leq a$, enton ces: luego $c \in D^+ \Leftrightarrow 0 < c \Rightarrow 0 < c < 1$
-1000 - mind / #c
por tunto: Dian a pues c C = min D Asi, 1 es
$\frac{1}{\alpha - b(- a) \ge 0}$ el mínimo de D ⁺ .
tomando $x = - a $ se comple que $a-bx \in A$.
Como NU (0) está bien ordenado, entonces A tiene elemento mínimo, digumos que
este es r. Entonces:
$\gamma = \min A$
Como re A, entonces $\exists y \in \mathbb{Z}$ tal que:
r = a - bq
por tanto:
$\alpha = \beta_4 + \gamma \gamma 0 \leq \gamma$
atimamos que $r < b = b $.
S; $b \leqslant r$, entonces: $0 \leqslant b \Rightarrow -b \leqslant 0$
$0 \leqslant \gamma_{-b} \leqslant \gamma \qquad \Longrightarrow \gamma_{-b} \leqslant \gamma_{+0}$

y Como r= a-bq, entonces: $\gamma - b = a - b4 - b$ => r-b = a-b(q+1)=> $\gamma_{-b}=\alpha_{-b}(\underline{q+1})\in A$ r-h < r lo cual es una contradicción, pues r=minA. Por tanto: 0 < r < b = 16 Supongamos que 6<0, entonces 0<6. Por la probado unteriormente, existen q', rl∈Ztales que: $a = (-b)q + r', con 0 \le r' < -b = |b|$ por tanto: $\alpha = \beta(-4.) + \gamma', con 0 < \gamma' \leq |P|$ entonces existen q r = I, q = -q', r = r' tales que: a=64+r, con 0 < r < |6| probaremos la unicidad de q y n E Z Supongamos que: 4=b4+n y 0 < r < 151 a=bq1+r1 y 0 < r1 < |b| entonces: b4+r=b4)+r'y 05x(|b| y 05x1<|b| => r-r'= b(q'-q) y 0 (r < |b| y 0 < r' < |b| portanto, blr-r', entonces r-r'=0 o bl \langle |r-r'|. Pero esto último no puede ocurrir, pues: 0 < r < 161 y 0 < r < 161 por tanto: -16/ x-x1 < 16/

En consecuencia: $\gamma-\gamma=0 \Rightarrow \gamma=\gamma'=2$ g.e.d. Definición (4.4.6): Sean a, b = // no ambus cero. Decimos que de //, d>0 es un máximo Común divisor (mcd) de a y b, Si: i) da y db. iil Si ce Z, es tal que cla y clb, entonces cld. Notación: Para decir que des mod de a y b, escribiremos d= (4,5) í d=mod {a, Proposición (4.4.7) Ver las proposiciones y lemas. Si d=(a,b), entonces des único. Teorema (4.4.10): Si a, b \in \mathbb{Z} son no ambos cero, entonces existe d \in \mathbb{Z} tales que: d = (a, b)Además, des el mínimo entero positivo para el val existen s, f \(\mathbb{Z} \) tales que: d=as+bt Dem: Seu: A= {ax+by/x,yeZyax+by>0} entonces A < N Además A + p, pues eligiendo x=u y y=b: $ax + by = a \cdot a + b \cdot b = a^2 + b^2 > 0 + 0 = 0$ portanto, a2+b3 EA Como N'está bien ordenado, entonces tiene elemento minimo. Sea: d=min A entonces] 5, f = Z tules que:

d=as+h+

Probaremos que d= (u,b)

Claro que d>0 ildla ydlb Por algoritmo de la división, existen q, r tules que: a = dy+r y 0 < r < d Como d=as+bt, entonces: a = (as+bt)q+r y 0 < r < d por tanto: $r = a(1-s_4)-b(t_4) y 0 < r < d$ entonces me A y por tanto OX n y nXd, d=minA Portunto: v=0 y como: u=dy+r entonces da anúlogamente, alb ii) Si ce / estul que cla y clb, entonces cld: Como. d= 45+5+ y cla y clb, entonces cld. 4.e.d. 065: 5: 1= (d,b)=1. Proposición (4.4.11) Si a, b∈ Z Son no ambos Cero, entonces: (a,b) = (|a|,|b|)Desinición (9.4.12) Sea nell, y sean: u₀, ..., u_n ∈ // no todos cero. Derimos que de Z es mod de uo, ..., an, s; d>0 y: i) d ax 4 K = 0,1,...,n.

Definición (9.4.17) Decimus que pelles número primo, si p>1 y lus únicos divisores positivos de p, Son ly p mismo Teorema (9.4.18) Seun a, b, a, ..., an EZ y seu p un número primo. Entonces: i) plu ó (0,p)=1. ii) plab => pla o plb.
iii) pla: ... on => pla; para algún i=1,2,...,n.