

BUNDESREPUBLIK

DEUTSCHLAND

@ Offenlegungssch-fft ® DE 43 32 113 A 1

61 Int. Cl.6: E 21 D 9/06

DEUTSCHES PATENTAMT

P 43 32 113.5 Aktenzeichen: 22. 9.93 Anmeldetag:

23. 3.95 Offenlegungstag:

(71) Anmelder:

43 32 113

NLW Fördertechnik GmbH, 46509 Xanten, DE

Erfinder: Mohrmann, Michael, 47625 Kevelaer, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

(A) Bohrgerät für Bohrungen im Erdreich mit unterschiedlichen Bodenklassen

Beim Mikrotunnel-Bohrverfahren müssen die Bohrköpfe den jeweils zu erwartenden Bodenarten angepaßt werden. Böden mit schwankenden Bodenarten sind oft nicht zu bewältigen. Die neue Vorrichtung soll ohne Anpassungserbeiten in allen Bodenarten bohren können. Hierzu wird die Schürfscheibe (1) bedingt durch Ihre Lagerung auf einem Wellenzapfen (6a), der um einen spitzen Winkel gegenüber der Hauptwelle (6) angestellt ist, über einen hochtourig die Hauptwelle treibenden Motor (11) in hochfrequente Taumelbewegung versetzt. So können die Meißel (3) auf den Armen (1a) der Schürfscheibe die Ortsbrust schlagend abbauen. Ein auf der Schürfscheibe (1) angeordnetes Zahnrad (1b) läuft in einem ortfesten Zahnrad (8a) ab, wodurch der hochfrequenten Taumelbewegung eine niedrige rotetorische Bewegung der Schürfscheibe überlagert wird.

Durch die Überlagerung beider Bewegungen kann mit der Bohrmaschine sowohl Fels als auch weicher Boden gleichermaßen gut abgebaut werden.

BEST AVAILABLE COPY

Die Erfindung betrifft eine Bohrvorrichtung für Erdreich mit verschiedenen Bodenklassen, die mit einer angetriebenen Schürsscheibe ausgerüstet ist, welche mit 5 Hartmetallmeißeln bestückt ist.

Für Horizontalbohrungen von 150 mm bis 1300 mm Bohrdurchmesser, aber auch für Vertikalbohrungen im Erdreich werden Bohrvorrichtungen verwendet, bei denen innerhalb eines dem Bohrdurchmesser entspre- 10 chenden Gehäuses eine Welle drehbar gelagert ist, auf der eine Schürfscheibe bzw. ein Bohrkopf angeordnet ist

Je nach Bodenart wird die Schürfscheibe besonders ausgebildet. Der Abtransport des Bohrgutes erfolgt mit- 15 tels Schneckenförderung, hydraulischer Spülförderung oder durch pneumatischen Transport. Der Antrieb der Schürfscheibe bzw. des Bohrkopfes erfolgt entweder über ein Gestänge bzw. die Förderschnecke selber oder bei Materialtransport, bei dem keine Schnecke verwen- 20 det wird, über Motoren und Getriebemotoren, die das Drehmoment direkt auf die Welle der Schürfscheibe bzw. des Bohrkopfes übertragen.

Die Bohrungen werden von einem Startschacht oder einer Startgrube aus vorgetrieben, wobei die axialen 25 Kräfte für den Bohrvorgang und die Schubkräfte zum Einschieben des immer länger werdenden Rohrstranges von einer Preßstation in den Startschächten aufgebracht werden.

Die eingangs erwähnten Bohrungsdurchmesser von 30 150 bis ca. 1300 mm werden dem sogenannten unbegehbaren Bereich zugeordnet, weil Menschen in Rohren von 1000 mm Durchmesser oder kleiner nicht dauerhaft arbeiten sollen. Bei Bohrungen dieser Bereiche ist bohrt ist - ein Zugang zur Maschine oder zum Bohrkopf durch den Rohrstrang nicht mehr möglich. Die Bohrmaschine, insbesondere der Bohrkopf bzw. die Schürfscheibe muß daher so ausgebildet sein, daß sie die zu erwartenden Bodenarten optimal abbauen kann.

Für gesteuerte Bohrungen mit Micro-Tunnel-Technik oder ungesteuerte Preßbohrungen wurden für die verschiedensten Bodenarten spezielle Bohrköpfe entwikkelt, die auch zu relativ guten Bohrleistungen führen solange die Bodenart über die ganze Bohrlänge homo- 45 gen und konstant bleibt. Schwierigkeiten treten immer dann auf, wenn sich über die Bohrlänge die abzubauende Bodenart ändert. Felsbohrköpfe, die in der Regel mit Rollmeißeln oder Disken besetzt sind, verkleben in bindigen Böden; Bohrköpfe dagegen, die in bindigen oder 50 rolligen Böden gute Bohrleistungen zeigen, versagen wegen zu hohen Verschleißes, sobald sie auf Fels oder große Steine treffen. Mühseliges Erneuern oder Austauschen der Bohrköpfe mit Hilfe eines Notschachtes sind die Folge.

Der Erfindung liegt demgegenüber die Aufgabe zugrunde, einen Bohrkopf für Bohranlagen des unbegehbaren Bereiches so auszubilden, daß die Bohrmaschine in allen unterschiedlichsten Bodenklassen problemlos eingesetzt werden kann.

Erfindungsgemäß wird die Aufgabe durch die Merkmale des Anspruches 1 und der folgenden der Patentschrift gelöst.

Der Bohrkopf der erfindungsgemäßen Art unterscheidet sich von Bohrköpfen bekannter Bohrmaschi- 65 nen für den unbegehbaren Bereich dadurch, daß er sowohl schnelle Stöße mit hoher Frequenz und demzufolge mit hoher kinetischer Energie gegen die Ortsbrust

ausüben kann, wobei Hartmetallmeißel faßt senkrecht aufschlagen und gleichzeitig mit hohem Drehmoment und langsamer Drehzahl das gelöste Bohrgut abräumen kann - oder, wenn die Ortsbrust zu weich zum Abplatzen ist, Boden mit großem Drehmoment abschälen kann.

Die fast senkrechten Stöße der Meißel gegen die Ortsbrust werden durch die Taumelbewegung der Schürfscheibe erreicht. Diese Taumelbewegung ist eine Folge der in spitzem Winkel angestellten Wellenzapfens am vorderen Ende der Hauptwelle, auf dem die Schürfscheibe drehbar gelagert ist. Alle Massepunkte der Schürsscheibe taumeln um einen ruhenden Schwingungsmittelpunkt, der im Schnittpunkt der Achsen der Hauptwelle und des Wellenzapfens liegt, und zwar um eine Amplitude, die proportional zum Abstand vom Schwingungsmittelpunkt ist und vom doppelten Winkel gekennzeichnet ist, in dem die Achsen der Wellenteile aufeinander zulaufen.

Bei den der Masse und dem Radius der Schürfscheibe entsprechenden hohen Drehzahlen der Hauptwelle z. B. 2000 bis 4000 Umdrehungen pro Minute und einen Winkel von 2 bis 5° zwischen Wellenzapfen und Hauptwelle - vibriert jeder Arm der Schürfscheibe, und zwar in senkrechter Richtung zur Orstbrust.

Ein am rückwärtigen Ende der Schürfscheibe angebrachtes Kegelrad läuft dabei in einem ortsfesten Kegelrad ab und wird dadurch bei jeder Umdrehung der Hauptwelle um z. B. nur einen Zahn weitergedreht. Dadurch können Untersetzungen von 30:1 bis 60:1 erreicht werden. Mit der untersetzten Drehzahl rotiert die Schürfscheibe um den Wellenzapfen.

Durch diese Ausbildung des Antriebes der Schürfscheibe wird Gestein an der Ortsbrust mit hoher kinetinachdem die Bohrmaschine einmal ins Erdreich einge- 35 scher Energie von den Meißeln abgeschlagen und nicht abgeschält, wodurch fast verschleißfreier Abbau gewährleistet ist. Ein weiterer Vorteil dieser Ausführung liegt in den um ein mehrfaches geringeren Anpreßkräften der Bohrvorrichtung gegen die Ortsbrust als sie bei rein schälender Gewinnung oder auch bei der Gewinnung mit Rollmeißeln erforderlich sind.

Vorteilhafterweise wird die Schürfscheibe sternförmig in zwei bis fünf Arme unterteilt, so daß jeder Arm in Folge des Taumelvorganges gegen die Orstbrust geschleudert wird und dadurch die Scheibe nicht weich in ständiger Anlehnung an der Ortsbrust abrollt.

Vorteilhafterweise werden die Arme der Schürfscheibe unter einen Winkel nach hinten angestellt, weil dadurch ein Überschnitt erreicht werden kann.

Zur Abförderung des Bohrgutes eignet sich die pneumatische Abförderung besonders gut, weil die gelöste Körnung sofort vom Luftstrom von der Ortsbrust abgefördert wird und somit keine dämpfende Schicht bildet. Bei hydraulischer Spülförderung würde die hochfre-55 quente Taumelbewegung durch den umgebenden Brei zu stark gedämpft.

Bei dem Bohren in weichen Böden, bei denen das Schlagen der Meißel mit hoher kinetischer Energie gegen die Ortsbrust keine Abbauwirkung hat, schälen die 60 Arme der Schürfscheibe beim bohren die Ortsbrust in der üblichen Weise mit der untersetzten Drehzahl ab. Bei Gesteinseinschlüssen im Erdreich werden diese Steine durch den Schlageffekt abgebaut.

Der pneumatische Bohrgutabtransport ist in weichen Böden ebenfalls von Vorteil. Bohrmaschinen der erfindungsgemäßen Art sind somit auch in nicht homogenen Böden vorteilhaft einsetzbar.

Fig. 1 zeigt einen Querschnitt durch ein erfindungsge-

5

10

15

20

35

50

55

60

65

mäßes Bohrgerät.

Fig. 2 stellt die Ansicht einer Schürfscheibe von vorne

Fig. 3 zeigt einen Schnitt senkrecht zur Hauptachse

durch das Getriebesystem. Die Schürfscheibe (1), die an ihrer Spitze mit einer Zentralbohrspitze (2) versehen ist sowie auf den Armen (1a) mit Meißeln (3) besetzt ist, ist über Lager (4 und 5) auf den Wellenzapfen (6 a) der Hauptwelle (6) drehbar

gelagert.

Die Hauptwelle (6) ist über Lager (7 und 9) wiederum drehbar in dem Gehäuse (8) gelagert. Gegen das Gehäuse (8) ist auf der offenen Seite der Antriebsmotor (11) geslanscht, der über eine formschlüssige Verbindung (10) die Hauptwelle (6) mit hoher Drehzahl antreibt.

Das rückwärtige Teil der Schürfscheibe (1) ist als zentrisch angeordnetes Kegelzahnrad (1b) ausgeführt, dessen Kopskegelsläche mit ihrer Spitze im Schnittpunkt (12) der Achsen von Wellenzapfen (6a) und Hauptwelle

(6) liegt. Auch im Schnittpunkt (12) liegt die Spitze der Kopfkegelsläche des innen verzahnten Kegelrades (8a), das als fester Bestandteil des Gehäuses (8) ausgeführt ist.

Der Winkel a zwischen den Achsen von Wellenzapfen (6a) und Hauptwelle (6), die Entfernung der Kegel- 25 zahnräder vom Schnittpunkt (12) und die Teilkreisdurchmesser der Kegelzahnräder (1a und 9a) sind so aufeinander abgestimmt, daß bei einer Umdrehung der Hauptwelle (6) - bei der das Kegelrad (1a) im Kegelrad (8a) abläuft - die Verzahnung nur um einen Zahn wei- 30 ter in Eingriff gelangt. Die Funktionsweise mit der hierdurch erreichbaren hohen Untersetzung ist in Fig. 3 dargestellt.

Entsprechend der hohen Untersetzung wird ein gro-Bes Drehmoment an der Schürfscheibe (1) erreicht.

Das Gehäuse (6) wird fest im Maschinenrohr (13) der Vorrichtung eingebaut und in den Schottwänden (13a und 13b) zentriert und verschraubt. Oben sind in die Schottwände (13a und 13b) Öffnungen (13c und 13d) angebracht, durch die die Förderluft bis an die Ortsbrust 40 gelangen kann. Durch das Förderrohr (14) erfolgt der pneumatische Abtransport des Bohrgutes.

Das Massesystem, gebildet aus Schürfscheibe (1), Lagern (4 und 5) sowie dem Wellenzapfen (6a), dessen Mittelpunkt auf der Achse des Wellenzapfens (6a) liegt 45 und somit bei Drehung eine Zentrifugalkraft auf die Hauptwelle (6) ausübt, wird durch ein Gegengewicht (15) ausgewechselt.

Bezugszeichenliste

1 Schürfscheibe 1a Arme der Schürfscheibe 1b Kegelzahnrad 2 Zentralbohrspitze

3 Meißel

4 Lager

5 Lager

6 Hauptwelle

6a Wellenzapfen

7 Lager

8 Gehäuse

8a Innenverzahntes Kegelrad

9 Lager

10 Formschlüssige Verbindung

11 Antriebsmotor

12 Schnittpunkt

13a Schottwand

13b Schottwand 14 Förderrohr 15 Gegengewicht

Patentansprüche

1. Bohrvorrichtung für Erdreich, bei der die die Schürfscheibe lagernde und antreibende Hauptwelle drehbar und zentrisch in einem Gehäuse gelagert ist, dadurch gekennzeichnet, daß die Schürfscheibe (1) drehbar auf dem vorderen Wellenzapfen (6a) der Hauptwelle gelagert ist und die Achse des Wellenzapfens (6 a) einen spitzen Winkel a zur Achse der Hauptwelle (6) bildet, wobei sich die Achsen im Schnittpunkt (12) treffen, der etwa in

der Spitze der Schürfscheibe (1) liegt.

2. Bohrrichtung für Erdreich gemäß Anspruch 1, dadurch gekennzeichnet, daß am ortsbrustabgewandten Teil der Schürfscheibe (1) ein Kegelzahnrad (1b) angeordnet ist, welches in ein feststehendes innen verzahntes Kegelrad (8a) eingreift, das ein festes Teil des Gehäuses (8) sein kann, wobei die Spitzen der Kopfkegelflächen bei den Kegelrädern im Schnittpunkt (12) der Achsen der Wellenzapfen (6a) und Hauptwelle (6) liegen.

3. Bohrvorrichtung für Erdreich gemäß Anspruch 1 und 2, dadurch gekennzeichnet, daß der spitze Winkel α, die Entfernung der Kegelräder (1b und 8a) vom Schnittpunkt (12) und die Teilkreisdurchmesser der Kegelräder (1b und 8a) so aufeinander abgestimmt sind, daß sich Untersetzungen von 30:1

bis 60: 1 ergeben.

4. Bohrvorrichtung für Erdreich gemäß Anspruch 1 bis 3 dadurch gekennzeichnet, daß die Hauptwelle (6) mit einem Gegengewicht (15) versehen wird, welches die Zentrifugalkräfte des Massensystemes der Schürfscheibe (1) dynamisch auswuchtet.

5. Bohrvorrichtung für Erdreich gemäß Anspruch 1 bis 4 dadurch gekennzeichnet, daß die Arme (1a) der Schürfscheibe (1) um einen Winkel β von 10 bis

30° rückwärts gestellt sind.

6. Bohrvorrichtung für Erdreich gemäß Anspruch 1 bis 5 dadurch gekennzeichnet, daß die Hauptwelle (6) mit einem schnell laufenden Motor (11) angetrieben wird.

7. Bohrvorrichtung für Erdreich gemäß Anspruch 1 bis 6 dadurch gekennzeichnet, daß die Schürfscheibe (1) in zwei bis fünf Arme aufgeteilt wird.

8. Bohrvorrichtung für Erdreich gemäß Anspruch 1 bis 7 dadurch gekennzeichnet, daß Öffnungen (13c und 13d) für pneumatischen Bohrgutabtransport vorgesehen sind.

Hierzu 2 Seite(n) Zeichnungen

Fig. 2

408 082/316