Classification metrics optimization: AUC and Kappa

In this video

- Logloss
- Accuracy
- AUC
- (Quadratic weighted) Kappa

AUC (ROC)

How do you optimize it? Run the right model (or just optimize logloss)

Pointwise loss

$$\min \sum_{i}^{N} l_{point}(\hat{\mathbf{y}}_{i}; y_{i})$$

We want:

Pairwise loss

$$\min \sum_{i}^{N} \sum_{j}^{N} l_{pair}(\hat{y}_i, \hat{y}_j; y_i, y_j)$$

Pairwise loss

Loss =
$$-\frac{1}{N_0 N_2} \sum_{j:y_j=1}^{N_1} \sum_{i:y_i=0}^{N_0} \log(\operatorname{prob}(\hat{y}_j - \hat{y}_i))$$

AUC

Tree-based

```
XGBoost, LightGBM

<u>sklearn.RandomForestClassifier</u>
```

Linear models

```
sklearn. LogisticRegression
sklearn.SGDRegressor
Vowpal Wabbit
```

Neural nets

PyTorch, Keras, TF - not out of the box

Read the docs!

Quadratic weighted Kappa

How do you optimize it?

- Optimize MSE and find right thresholds
 - Simple
- Custom smooth loss for GBDT or neural nets
 - Harder

MSE + tresholds

1. Optimize MSE

Kappa
$$(y, \hat{y}) \approx 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{\text{hard to deal with part}} = 1 - \frac{\text{MSE}(y, \hat{y})}{\text{hard to deal with part}}$$

MSE + tresholds

1. Optimize MSE

Kappa
$$(y, \hat{y}) \approx 1 - \frac{\frac{1}{N} \sum_{i=1}^{N} (\hat{y}_i - y_i)^2}{\text{hard to deal with part}} = 1 - \frac{\text{MSE}(y, \hat{y})}{\text{hard to deal with part}}$$

2. Find right thresholds

- Bad: np.round(predictions)
- Better: optimize thresholds

Smooth loss

Lesson conclusion

- Target metric is how competitors are scored
- Target metric VS optimization loss
- Regression metrics
 - MSE, RMSE, R-squared
 - MAE
 - MSPE, MAPE
 - RMSLE
- Classification metrics
 - Accuracy
 - Logloss
 - AUC
 - (Quadratic weighted) Kappa