MAC 110 - INTRODUÇÃO À COMPUTAÇÃO Primeiro Semestre de 2019 - BMAC - Prof. MARCILIO EXERCÍCIO PROGRAMA II - ENTREGAR ATÉ 19/05/2019

Um gráfico de frequências por intervalos (histograma) pode ser desenhado no vídeo, utilizando-se um caractere gráfico para indicar o número de vezes que ocorrem valores em cada intervalo.

Suponha por exemplo a seguinte sequência de 20 valores no intervalo [0,1), ou seja, valores maiores ou iguais a 0 e menores que 1.

0.001	0.564	0.193	0.809	0.585	0.480	0.350	0.896	0.823	0.747
0.174	0.859	0.711	0.514	0.304	0.015	0.091	0.364	0.147	0.166

Dividindo em 4 intervalos, o gráfico fica:

Intervalo		Frequência	Gráfico	
0.000 A	0.250	7	*****	
0.250 A	0.500	4	****	
0.500 A	0.750	5	****	
0.750 A	1.000	4	***	

Os intervalos são considerados fechados à esquerda e abertos à direita.

Dada uma amostra de dados num determinado intervalo, o objetivo do exercício é agrupar os valores em intervalos diferentes, para buscar alguma relação na distribuição dos mesmos.

Para isso deve ser fornecido ao programa o intervalo [a, b), a quantidade de elementos da amostra e a amostra. Em seguida, algumas opções de quantidade de intervalos. Para cada quantidade de intervalos o programa deve construir o gráfico. Quando for digitado um número de intervalo inválido (menor ou igual a zero), o programa deve solicitar um novo intervalo [a, b), uma nova quantidade de elementos e uma nova amostra.

O exemplo abaixo ilustra a possível saída do programa:

Entre com o intervalo: 0.0 1.0

Entre com a quantidade de elementos da amostra: 100

Amostra	:								
0.001	0.564	0.193	0.809	0.585	0.480	0.350	0.896	0.823	0.747
0.174	0.859	0.711	0.514	0.304	0.015	0.091	0.364	0.147	0.166
0.989	0.446	0.119	0.005	0.009	0.378	0.532	0.571	0.602	0.607
0.166	0.663	0.451	0.352	0.057	0.608	0.783	0.803	0.520	0.302
0.876	0.727	0.956	0.926	0.539	0.142	0.462	0.235	0.862	0.210
0.780	0.844	0.997	1.000	0.611	0.392	0.266	0.297	0.840	0.024
0.376	0.093	0.677	0.056	0.009	0.919	0.276	0.273	0.588	0.691
0.838	0.726	0.485	0.205	0.744	0.468	0.458	0.949	0.744	0.108
0.599	0.385	0.735	0.609	0.572	0.361	0.152	0.225	0.425	0.803
0.517	0.990	0.752	0.346	0.169	0.657	0.492	0.064	0.700	0.505

Entre com o número de intervalos: 10

Intervalo		Frequência	Gráfico
0.000 A	0.100	11	
0.100 A	0.200	10	
0.200 A	0.300	8	
0.300 A	0.400	11	
0.400 A	0.500	9	
0.500 A	0.600	12	
0.600 A	0.700	10	
0.700 A	0.800	10	
0.800 A	0.900	11	
0.900 A	1.000	8	

Entre com o número de intervalos: 20

Intervalo		Frequência	Gráfico
0.000 A	0.050	- 6	
0.050 A	0.100	5	
0.100 A	0.150	4	
0.150 A	0.200	6	
0.200 A	0.250	4	
0.250 A	0.300	4	
0.300 A	0.350	3	
0.350 A	0.400	8	
0.400 A	0.450	2	
0.450 A	0.500	7	
0.500 A	0.550	6	
0.550 A	0.600	6	
0.600 A	0.650	5	
0.650 A	0.700	5	
0.700 A	0.750	7	
0.750 A	0.800	3	
0.800 A	0.850	7	
0.850 A	0.900	4	
0.900 A	0.950	3	
0.950 A	1.000	5	

Entre com o número de intervalos: 5

Intervalo	Frequência	Gráfico
0.000 A 0.200	21	
0.200 A 0.400	19	
0.400 A 0.600	21	
0.600 A 0.800	20	
0.800 A 1.000	19	

Entre com o número de intervalos: 0

Entre com o intervalo: 5.0 10.0

Entre com a quantidade de elementos da amostra: 1000

• • • • •

A amostra será gerada usando a função **GeraAmostra** abaixo, que usa funções da biblioteca **random** para isso. Ela gera uma sequência pseudo aleatória de n valores dentro de um intervalo [a,b), ou seja, valores maiores ou iguais a a e menores que b. A amostra é devolvida numa lista de n elementos.

Imprima os números gerados como no exemplo de saída acima. Assim, você pode conferir se o programa está contando certo a quantidade de valores em cada intervalo.

Considere o valor mínimo do intervalo de 0,001. Assim, ao imprimir os valores do intervalo, use 3 casas decimais. Entretanto, os valores gerados poderão ter mais de 3 casas. O programa deve consistir se o valor calculado para o intervalo (**b - a**) / **n** é maior ou igual a 0,001. Se não for, solicitar novos a, b e n.

O programa mainteste () abaixo mostra um exemplo de como usar a função GeraAmostra.

Ajuste do Gráfico

Considere que há espaço no vídeo para representar uma altura máxima de 100 caracteres. Caso o máximo de elementos em algum dos intervalos seja maior que 100, é necessário ajustar as quantidades de cada um dos intervalos para que fiquem entre 0 e 100. Basta usar a proporcionalidade (regra de três), transformando um valor no intervalo [0, máximo] no intervalo [0, 100].

Se **freq[0..n-1**] contém as quantidades em cada intervalor e **máximo** é o maior dos valores em **freq[0..n-1**], basta fazer a seguinte transformação:

```
freq[k] = round(100 * freq[k] / máximo)
```

A função round() trunca ou arredonda conforme a parte fracionária do resultado acima seja ≥ 0.5 ou < 0.5.

Função GeraAmostra

```
from random import seed, randrange
# Gera n números aleatórios no intervalo [a, b)
def GeraAmostra(a, b, n):
    # Use o seu NUSP como semente
    NUSP = 1234567
    seed (NUSP)
    amostra = n * [0]
    for k in range(n):
        amostra[k] = a + float(randrange(1000000)) * (b - a)/1000000.0
    return amostra
# Exemplo de uso da função GeraAmostra
def mainteste():
    # 100 elementos no intervalo [1.0, 2.0)
    am = GeraAmostra(1.0, 2.0, 100)
    # imprime 5 elementos por linha
    for k in range(100):
        if k % 5 == 4: print("%10.5f" %am[k])
        else: print("%10.5f" %am[k], end = ' ')
mainteste()
```

Caracteres gráficos ASCII e Unicode

Para desenhar o gráfico pode usar qualquer caractere gráfico do código ASCII (*, +, -, =, #, etc.). Se preferir use algum caractere UNICODE.

Exemplos:

Caractere	Hexadecimal		
	\u2588		
	\u2586		
	\u25a0		
	\u2593		
	\u2592		

Para imprimir um caractere UNICODE:

```
print("\u2588")
```