Curs 9 – Complexitatea algoritmilor

- Recursivitate
- Complexitate

Curs 8 – Testarea programelor

- Moștenire, UML
- Unit teste in python
- Depanarea aplicațiilor python

Recursivitate

O noțiune e recursivă dacă e folosit în propria sa definiție.

O funcție recursivă: funcție care se auto-apelează. Rezultatul este opținut apelând același funcție dar cu alți parametrii

```
def factorial(n):
    """
    compute the factorial
    n is a positive integer
    return n!
    """
    if n== 0:
        return 1
    return factorial(n-1)*n
```

- Recursivitate directă: P apelează P
- Recursivitate indirectă: P apelează Q, Q apelează P

Cum rezolvăm probleme folosind recursivitatea:

- Definim cazul de bază: soluția cea mai simplă.
 - Punctul în care problema devine trivială (unde se oprește apelul recursiv)
- Pas inductiv: înpărțim problema într-o variantă mai simplă al aceleași probleme plus ceva pași simplii
 - ex. apel cu n-1, sau doua apeluri recusive cu n/2

```
def recursiveSum(1):
                                                  def fibonacci(n):
    Compute the sum of numbers
                                                      compute the fibonacci number
    1 - list of number
                                                      n - a positive integer
    return int, the sum of numbers
                                                      return the fibonacci number for a given n
    #base case
                                                      #base case
                                                      if n==0 or n==1:
    if l==[]:
        return 0
                                                           return 1
    #inductive step
                                                      #inductive step
    return 1[0]+recursiveSum(1[1:])
                                                      return fibonacci (n-1) + fibonacci (n-2)
```

Obs recursiveSum(l[1:]):

l[1:] - crează o copie a listei l exercițiu: modificați funcția recursiveSum pentru a evita l[1:]

Recursivitate în python:

- la fiecare apel de metodă se crează o noua tabelă de simboluri (un nou namespace). Această tabelă conține valorile pentru parametrii și pentru variabilele locale
- tabela de simboluri este salvat pe stack, când apelul se termină tabela se elimină din stivă

```
def isPalindrome(str):
    """
    verify if a string is a palindrome
    str - string
    return True if the string is a palindrome False otherwise
    """
    dict = locals()
    print id(dict)
    print dict

if len(str) == 0 or len(str) == 1:
    return True

return str[0] == str[-1] and isPalindrome(str[1:-1])
```

Recursivitate

Avantaje:

- claritate
- cod mai simplu

Dezavantaje:

- consum de memorie mai mare
 - pentru fiecare recursie se crează o nouă tabelă de simboluri

Analiza complexității

Analiza complexități – studiul eficienței algoritmilor.

Eficiența algoritmilor în raport cu:

- timpul de execuție necesar pentru rularea programului
- spațiu necesar de memorie

Timp de execuție, depinde de:

- algoritmul folosit
- datele de intrare
- hardwareul folosit
- sistemul de operare (apar diferențe de la o rulare la alta).

Exemplu timp de execuție

```
def fibonacci2(n):
def fibonacci(n):
     compute the fibonacci number
                                                      compute the fibonacci number
     n - a positive integer
                                                      n - a positive integer
    return the fibonacci number for a given n
                                                     return the fibonacci number for a given n
    11 11 11
                                                     11 11 11
    #base case
                                                     sum1 = 1
    if n==0 or n==1:
                                                     sum2 = 1
        return 1
                                                     rez = 0
    #inductive step
                                                     for i in range (2, n+1):
    return fibonacci (n-1) + fibonacci (n-2)
                                                         rez = sum1 + sum2
                                                         sum1 = sum2
                                                         sum2 = rez
                                                     return rez
def measureFibo(nr):
    sw = StopWatch()
    print "fibonacci2(", nr, ") =", fibonacci2(nr)
    print "fibonacci2 take " +str(sw.stop())+" seconds"
    sw = StopWatch()
    print "fibonacci(", nr, ") =", fibonacci(nr)
    print "fibonacci take " +str(sw.stop())+" seconds"
measureFibo(32)
fibonacci2(32) = 3524578
fibonacci2 take 0.0 seconds
fibonacci (32) = 3524578
fibonacci take 1.7610001564 seconds
```

Eficiența algoritmilor

• Eficiența algoritmilor poate fi definită ca fiind cantitatea de resurse utilizate de algoritm (timp, memorie).

Măsurarea eficienței:

- analiză matematică a algoritmului analiză asimptotică
 Descrie eficiența sub forma unei funcții matematice.
 Estimeaza timpul de execuție pentru toate intrările pisibile.
- o analiză empirică a algoritmului determinarea timpului exact de execuție pentru date specifice nu putem prezice timpul pentru toate datele de intrare.

Timpul de execuție pentru un algoritm este studiat în relație cu dimensiunea datelor de intrare.

- Estimăm timpul de execuție în funcție de dimensiunea datelor.
- Realizăm o **analiză** *asymptotică*. Determinăm ordinul de mărime pentru resursa utilizată (timp, memorie), ne interesează în special pentru cazurile în care datele de inrare sunt mari

Complexitate

- caz favorabil datele de intrare care conduc la timp de execuție minim
 - best-case complexity (BC): $BC(A) = \min_{I \in D} E(I)$
- caz defavorabil date de intrare unde avem cel mai mare timp de execuție.
 - worst-case complexity (WC): $WC(A) = \max_{I \in D} E(I)$
- caz mediu timp de execuție.
 - average complexity (AC): $AC(A) = \sum_{I \in D} P(I)E(I)$
- A algoritm; E(I) număr de operații; P(I) probabilitatea de a avea I ca și date de intrare D multimea tutoror datelor de intrare posibile pentru un n fixat

Obs. Dimensiunea datelor (n) este fixat (un numar mare) caz favorabil/caz defavorabil se referă la un anumit aranjament al datelor de intrare care produc timp minim/maxim

Complexitate timp de execuție

- **numărăm pași** (operații elementare) efectuați (de exemplu numărul de instrucțiuni, număr de comparații, număr de adunări).
- numărul de pași nu este un număr fixat, **este o funcție**, notat T(n), este in funcție de dimensiunea datelor (n), nu rezultă timpul exact de execuție
- Se surprinde doar esențialul: cum crește timpul de execuție în funcție de dimensiunea datelor. Ne oferă **ordinea de mărime** pentru timpul de execuție (dacă $n \to \infty$, then $3 \cdot n^2 \approx n^2$).
- putem ignora constante mici dacă $n \to \infty$ aceste constante nu afectează ordinea de mărime.

Ex:
$$T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$$

Fiindcă $0 < \log_2 n < n$, $\forall n > 1$ și $\sqrt{n} < n$, $\forall n > 1$, putem conclude că temenul n^3 domină această expresie cand n este mare

Ca urmare, timpul de execuție a algoritmului crește cu ordinul lui n^3 , ceea se scrie sub forma $T(n) \in O(n^3)$ și se citește "T(n) este de ordinul n^3

În continuare, vom nota prin f o funcție $f:N\to\Re$ și prin T funcția care dă complexitatea timp de excuție a unui algoritm, $T:N\to N$.

Definiția 1 (Notația O, "Big-oh"). Spunem că $T(n) \in O(f(n))$ dacă există \mathbf{c} și $\mathbf{n_0}$ constante pozitive (care nu depind de n) astfel încât $0 \le T(n) \le c \cdot f(n)$, $\forall n \ge n_0$.

Cu alte cuvinte, notația O dă marginea superioară

Definiția alternativă: Spunem că $T(n) \in O(f(n))$ dacă $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ este 0 sau o constantă, dar $\underline{\mathbf{nu}}_{-\infty}$.

Observații.

- **1.** Dacă $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$, atunci $\lim_{n \to \infty} \frac{T(n)}{n^3} = 13$. Deci, putem spune că $T(n) \in O(n^3)$.
- **2.** Notația O este bună pentru a da o limită superioară unei funcții. Observăm, totuși, că dacă $T(n) \in O(n^3)$, atunci este și $O(n^4)$, $O(n^5)$, etc atâta timp cât limita este 0. Din această cauză avem nevoie de o notație pentru limita inferioară a complexității. Această notație este Ω .

Definiția 2 (Notația Ω , "Big-omega"). Spunem că $T(n) \in \Omega(f(n))$ dacă există \mathbf{c} și $\mathbf{n_0}$ constante pozitive (care nu depind de n) astfel încât $0 \le c \cdot f(n) \le T(n)$, $\forall n \ge n_0$.

notația Ω dă marginea inferioară

Definiția alternativă: Spunem că $T(n) \in \Omega(f(n))$ dacă $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ este o constantă sau_ ∞ , dar <u>nu</u> 0.

<u>Definiția 3</u> (**Notația** θ , "**Big-theta**"). Spunem că $T(n) \in \theta(f(n))$ dacă $T(n) \in O(f(n))$ și dacă $T(n) \in \Omega(f(n))$, altfel spus dacă există **c1**, **c2** și **n**₀ constante pozitive (care nu depind de n) astfel încât $c1 \cdot f(n) \le T(n) \le c2 \cdot f(n)$, $\forall n \ge n_0$.

notația θ mărginește o funcție până la factori constanți

Definiția alternativă Spunem că $T(n) \in \theta(f(n))$ dacă $\lim_{n \to \infty} \frac{T(n)}{f(n)}$ este o constantă nenulă (dar <u>nu</u> 0 sau ∞).

Observații.

- 1. Timpul de execuție al unui algoritm este $\theta(f(n))$ dacă și numai dacă timpul său de execuție în cazul cel mai defavorabil este O(f(n)) și timpul său de execuție în cazul cel mai favorabil este $\Omega(f(n))$.
- **2.** Notația O(f(n)) este de cele mai multe ori folosită în locul notației $\theta(f(n))$.
- **3.** Dacă $T(n) = 13 \cdot n^3 + 42 \cdot n^2 + 2 \cdot n \cdot \log_2 n + 3 \cdot \sqrt{n}$, atunci $\lim_{n \to \infty} \frac{T(n)}{n^3} = 13$. Deci, $T(n) \in \theta(n^3)$. Acest lucru poate fi dedus și din faptul că $T(n) \in O(n^3)$ și $T(n) \in \Omega(n^3)$.

Sume

for i in range(0, n):

#some instructions

presupunând că ceea ce este în corpul structurii repetitive (*) se execută în f(i) pași \Rightarrow timpul de execuție al întregii structuri repetitive poate fi estimat astfel

$$T(n) = \sum_{i=1}^{n} f(i)$$

Se poate observa că, în cazul în care se folosesc bucle imbricate, vor rezulta sume imbricate. În continuare, vom prezenta câteva dintre sumele uzuale:

Calculul se efectueaza astfel:

- se simplifică sumele eliminăm constantele, separăm termenii in sume individuale
- facem calculul pentru sumele simplificate.

Exemple cu sume

Analizați complexitatea ca timp de execuție pentru următoarele funcții

<pre>def f1(n): s = 0 for i in range(1,n+1): s=s+i return s</pre>	$T(n) = \sum_{(i=1)}^{n} 1 = n \rightarrow T(n) \in \Theta(n)$ Complexitate (Overall complexity) $\Theta(n)$ Cazurile Favorabil/Mediu/Defavorabil sunt identice
<pre>def f2(n): i = 0 while i<=n: #atomic operation i = i + 1</pre>	$T(n) = \sum_{(i=1)}^{n} 1 = n \rightarrow T(n) \in \Theta(n)$ Overall complexity $\Theta(n)$ Cazurile Favorabil/Mediu/Defavorabil sunt identice
<pre>def f3(1): """ 1 - list of numbers return True if the list contains an even nr """ poz = 0 while poz<len(1) !="0:" 1[poz]%2="" and="" poz="poz+1" poz<len(1)<="" pre="" return=""></len(1)></pre>	Caz favorabil: primul element e număr par: $T(n)=1\in\Theta(1)$ Caz defavorabil: Nu avem numere pare în listă: $T(n)=n\in\Theta(n)$ Caz mediu: While poate fi executat 1,2,n ori (același probabilitate). Numărul de pași = numărul mediu de iterații $T(n)=(1+2++n)/n=(n+1)/2 \rightarrow T(n)\in\Theta(n)$ Complexitate $O(n)$

Exemple cu sume

```
T(n) = \sum_{i=1 \atop j=1}^{(2n-2)} \sum_{i=i+2 \atop j=1}^{2n} 1 = \sum_{i=1 \atop j=1}^{(2n-2)} (2n-i-1)
 def f4(n):
     for i in range (1,2*n-2):
          for j in range (i+2,2*n):
                #some computation
                                                  T(n) = \sum_{(i=1)}^{(2n-2)} 2n - \sum_{(i=1)}^{(2n-2)} i - \sum_{(i=1)}^{(2n-2)} 1
                pass
                                                 T(n)=2n\sum_{(i=1)}^{(2n-2)}1-(2n-2)(2n-1)/2-(2n-2)
                                                  T(n) = 2n^2 - 3n + 1 \in \Theta(n^2) Overall complexity \Theta(n^2)
def f5():
                                                Caz favorabil: While se execută odată
     for i in range (1, 2*n-2):
                                                  T(n) = \sum_{(i-1)}^{(2n-2)} 1 = 2n - 2 \in \Theta(n)
          j = i+1
          cond = True
          while j<2*n and cond:
                                                Caz defavorabil: While executat 2n-(i+1) ori
                #elementary operation
                                                  T(n) = \sum_{(i-1)}^{(2n-2)} (2n-i-1) = \dots = 2n^2 - 3n + 1 \in \Theta(n^2)
                if someCond:
                      cond = False
                                                Caz mediu:
                                                Pentru un i fixat While poate fi executat 1,2..2n-i-1 ori
                                                număr mediu de pași:
                                                 C_i = (1+2+...+2n-i-1)/2n-i-1 = ... = (2n-i)/2
                                                 T(n) = \sum_{(i=1)}^{(2n-2)} C_i = \sum_{(i=1)}^{(2n-2)} (2n-i)/2 = ... \in \Theta(n^2)
                                                Overall complexity O(n^2)
```

Formule cu sume:

$$\sum_{i=1}^{n} 1 = n$$
 suma constantă.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 suma liniară (progresia aritmetică)

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{2}$$
 suma pătratică

$$\sum_{i=1}^{n} \frac{1}{i} = \ln(n) + O(1)$$
 suma armonică

$$\sum_{i=1}^{n} c^{i} = \frac{c^{n+1} - 1}{c - 1}, \quad c \neq 1$$
 progresia geometrică (crește exponențial)

Complexități uzuale

$T(n) \in O(1)$	- timp <i>constant</i> . It is a great complexity. This means that the algorithm takes only constant time.
$T(n) \in O(\log_2 \log_2 n)$	- timp foarte rapid (aproape la fel de rapid ca un timp constant)
$T(n) \in O(\log_2 n)$	- complexitate $logaritmic \ddot{a}$: timp foarte bun (este ceea ce căutăm, în general, pentru orice algoritm); $log_2 1000 \approx 10$, $log_2 1.000.000 \approx 20$; complexitate căutare binară, înâlțimea unei arbore binar echilibrat
$T(n) \in O((\log_2 n)^k)$	- unde k este factor constant; se numește complexitate <i>polilogaritmică</i>

(este destul de bună);

Complexități uzuale

$$T(n) \in O(n)$$
 - complexitate *liniară*;

$$T(n) \in O(n \cdot \log_2 n)$$
 - este o complexitate faimoasă, întâlnită mai ales la sortări (MergeSort, QuickSort);

$$T(n) \in O(n^2)$$
 - este complexitate pătratică (cuadratică); dacă n este de ordinul milioanelor, nu este prea bună;

$$T(n) \in O(n^k)$$
 - unde k este constant; este complexitatea polinomială (este practică dora daca k nu este prea mare);

$$T(n) \in O(2^n), O(n^3), O(n!)$$
 - complexitate *exponențială* (algoritmii cu astfel de complexități sunt practici doar pentru valori mici ale lui n : $n \le 10, n \le 20$).

Recurențe

O recurență este o formulă matematică definită recursiv.

Ex. numărul de noduri (notat N(h)) dintr-un arbore ternar complet de înălțime h ar putea fi descris sub forma următoarei formule de recurență:

$$\begin{cases} N(0) = 1 \\ N(h) = 3 \cdot N(h-1) + 1, & h \ge 1 \end{cases}$$

Explicația ar fi următoarea:

- Numărul de noduri dintr-un arbore ternar complet de înălțime 0 este 1.
- Numărul de noduri dintr-un arbore ternar complet de înălțime *h* se obține ca fiind de 3 ori numărul de noduri din subarborele de înălțime *h-1*, la care se mai adaugă un nod (rădăcina arborelui).

Dacă ar fi să rezolvăm recurența, am obține că numărul de noduri din arborele ternar complet

de înălțime *h* este
$$N(h) = 3^h \cdot N(0) + (1+3^1+3^2+...+3^{h-1}) = \sum_{i=0}^h 3^i$$

Exemple

```
def recursiveSum(1):
                                                Recurrence: T(n) = \begin{cases} 1 \text{ for } n = 0 \\ T(n-1) + 1 \text{ otherwise} \end{cases}
     11 11 11
     Compute the sum of numbers
     1 - list of number
     return int, the sum of numbers
                                                     T(n) = T(n-1) + 1
                                                  T(n-1) = T(n-2) + 1
     #base case
                                                  T(n-2) = T(n-3) + 1 = T(n) = n+1 \in \Theta(n)
    if l==[]:
          return 0
     #inductive step
                                                     T(1) = T(0) + 1
     return l[0]+recursiveSum(l[1:])
def hanoi(n, x, y, z):
                                                Recurrence: T(n) = \begin{cases} 1 & \text{for } n=1 \\ 2T(n-1) + 1 & \text{otherwise} \end{cases}
        n -number of disk on the x
stick
        x - source stick
                                                  T(n)=2T(n-1)+1 T(n)=2T(n-1)+1

T(n-1)=2T(n-2)+1= 2T(n-1)=2^2T(n-2)+2

T(n-2)=2T(n-3)+1 => 2^2T(n-2)=2^3T(n-3)+2^2
                                                                                       T(n) = 2T(n-1)+1
        v - destination stick
        z - intermediate stick
     11 11 11
     if n==1:
                                                     print "disk 1 from", x, "to", y
       return
    hanoi(n-1, x, z, y)
    print "disk ",n,"from",x,"to",y
    hanoi(n-1, z, y, x)
                                                  T(n)=2^{(n-1)}+1+2+2^2+2^3+...+2^{(n-2)}
                                                  T(n)=2^n-1\in\Theta(2^n)
```

Complexitatea spațiu de memorare

Complexitatea unui algoritm din punct de vedere al *spațiului de memorare* estimează cantitatea de memorie necesară algoritmului pentru stocarea datelor de intrare, a rezultatelor finale și a rezultatelor intermediare. Se estimează, ca și *timpul de execuție* al unui algoritm, în notațiile O,Θ,Ω .

Toate obsevațiile referitoare la notația asimptotică a complexității ca timp de execuție sunt valabile și pentru complexitatea ca spațiu de memorare.

Exemplu

Analizați complexitatea ca spațiu de memorare pentru următoarele funcții

```
def iterativeSum(1):
                                                        Avem nevoie de spațiu pentru numerele din listă
    Compute the sum of numbers
                                                          T(n)=n\in\Theta(n)
    1 - list of number
    return int, the sum of numbers
    11 11 11
    rez = 0
    for nr in 1:
         rez = rez+nr
    return rez
def recursiveSum(1):
                                                        Recurență: T(n) = \begin{cases} 0 \text{ for } n=1\\ T(n-1)+1 \text{ otherwise} \end{cases}
    Compute the sum of numbers
    1 - list of number
    return int, the sum of numbers
    #base case
    if l==[]:
         return 0
    #inductive step
    return l[0]+recursiveSum(l[1:])
```

Analza complexității (timp/spațiu) pentru o funcție

1 Dacă există caz favorabil/defavorabil:

- descrie Caz favorabil
- calculează complexitatea pentru Best Case
- descrie Worst Case
- calculează complexitatea pentru Worst case
- calculează complexitatea medie
- calculează complexitatea generală

2 Dacă Favorabil = Defavorabil = Mediu - (nu avem cazuri favorabile/defavorabile)

• calculează complexitatea

Calculează complexitatea:

- dacă avem recurență
 - o calculează folosind egalități
- altfel
 - o calculează folosind sume

Curs 9 – Complexitatea algoritmilor

- Recursivitate
- Complexitate

Curs 10 – Căutări sortări

- Căutări
- Sortări