

Module 6

Enabling EIGRP and OSPF

Introducing EIGRP

EIGRP Support

- Network Topology 변화에 수렴 시간이 빠르다
- Multiple Routed Protocol (IP, IPX, Apple talk)을 지원한다
- EIGRP는 Auto Summary 및 Manual Summary를 지원한다
- 정상 운용 중에 적은 Network 자원을 이용해 Routing Table을 유지한다
- Classless Routing Protocol 지원

EIGRP Packets

Hello

- Establish neighbor relationships
- Ack 번호를 0을 가지고 multicast (224.0.0.10)

Update

- Send routing updates
- New neighbor 발견 시 topology table 동기화: unicast
- Topology Change 발견 시 : multicast

Query

Ask neighbors about routing information: always multicast

Reply

Response to query about routing information : unicast

ACK

- Acknowledgement of a reliable packet (update, query, reply)
- Nonzero ack 번호를 가진 unicast

EIGRP Terminology

Neighbor Table	EIGRP router는 인접 Router(직접 연결된 neighbor router)에 대한 table을 보유하여 인접 router간의 양방향 통신을 확립한 다. 지원하는 프로토콜(IP, IPX, AppleTalk)별로 각각의 Neighbor Table을 유지한다
Topology Table	EIGRP router는 routing 정보교환에 의하여 알게 된 모든 네트 워크에 대한 Topology Table을 유지한다. 지원하는 프로토콜 별로 각각의 Topology Table을 유지한다
Routing Table	EIGRP router는 Topology Table을 기초로 하여 Destination에 대한 최적의 경로를 routing table에 보유한다. 지원하는 프로 토콜 별로 각각의 Routing Table을 유지한다
Successor	Destination에 대한 Primary Route이다. Routing Table에 유지된다.
Feasible Successor	Destination에 대한 Backup Router이다. Feasible Successor는 Successor와 동시에 선택되는데 Topology Table에 보유된다. Destination에 대해서 여러 개의 Feasible Successor를 보유할 수 있다

EIGRP Terminology

Comparing EIGRP and IGRP

- Metric 운영은 비슷한 방법을 사용한다
- Load Balancing 지원은 동일하다
- Convergence time은 개선 되었다
- Network overhead는 많이 줄어들었다

Configuring EIGRP

• IP Routing Protocol을 위한 EIGRP 설정하기

```
Router(config)#router eigrp autonomous-system
Router(config-router)#
Router(config-router)#
```

• 연결된 Network 설정하기 (Classful Network Address를 할당한다)

```
Router(config-router)#network network-number
Router(config-router)#
Router(config-router)#
```

EIGRP Configuration Example

Verifying the EIGRP Configuration

・IP EIGRP Neighbor 量 丑시	
Router#show ip eigrp neighbors	
・IP EIGRP Topology를 표시	
Router#show ip eigrp topology	
• Routing Table에 EIGRP Route 정보를 표시	
Router#show ip route eigrp	
・현재 Router에 구성된 Active Routing Protocol의 상세정보를 표시	
Router#show ip protocols	
・IP EIGRP 송수신 Packet에 수를 표시	
Router#show ip eigrp traffic	

Verifying EIGRP Operation

· 송수신되는 EIGRP Packet을 표시

Router#debug eigrp packet

• EIGRP Advertisement 및 EIGRP Routing Table 생성 과정 표시

Router#debug ip eigrp route

• EIGRP Routing Activity의 간략한 정보 표시

Router#debug ip eigrp summary

• Route Calculation을 포함한 다양한 EIGRP Activity에 대한 간략한 정보 표시

Router#show ip eigrp events

Debug IP EIGRP Command

```
Router#debug ip eigrp
IP-EIGRP: Processing incoming UPDATE packet
IP-EIGRP: Ext 192.168.3.0 255.255.255.0 M 386560 - 256000 130560 SM
360960 - 256000 104960
IP-EIGRP: Ext 192.168.0.0 255.255.255.0 M 386560 - 256000 130560 SM
360960 - 256000 104960
IP-EIGRP: Ext 192.168.3.0 255.255.255.0 M 386560 - 256000 130560 SM
360960 - 256000 104960
IP-EIGRP: 172.69.43.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 172.69.43.0 255.255.255.0 metric 371200 - 256000 115200
IP-EIGRP: 192.135.246.0 255.255.255.0, - do advertise out Ethernet0/1
TP-FTGRP: Fxt 192.135.246.0 255.255.255.0 metric 46310656 - 45714176
596480
IP-EIGRP: 172.69.40.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 172.69.40.0 255.255.255.0 metric 2272256 - 1657856 614400
IP-EIGRP: 192.135.245.0 255.255.255.0, - do advertise out Ethernet0/1
IP-EIGRP: Ext 192.135.245.0 255.255.255.0 metric 40622080 - 40000000
622080
IP-EIGRP: 192.135.244.0 255.255.255.0, - do advertise out Ethernet0/1
```


LAB

EIGRP Enable LAB

Enabling OSPF

Introducing OSPF

- OSPF는 IETF 표준이다 (RFC 2328)
- Shortest Path First(SPF) 알고리즘을 사용한다
- Link-state Routing Protocol 이다

OSPF as a Link-State Protocol

- OSPF는 Routing Table을 Update하지 않고 Link-State정보를 광고한다
- OSPF는 동일한 Area내의 다른 모든 Router에게 LSA(Link-State Advertisement)의 전송을 요청한다
- OSPF는 Link-State Database에 상태가 변경되면 즉시 LSA를 전달하여 다른 Router에게 알린다
- OSPF는 목적지 경로에 대한 최적의 정보를 SPF 알고리즘을 사용하여 계산한 다
 - Link = router interface
 - State = Interface와 Neighbor 연결 관계를 설명한다

OSPF Hierarchical Routing

- SPF 계산 빈도가 줄어든다
- Routing Table이 더 작다
- Link-State Update 과부하가 줄어든다

Shortest Path First Algorithm

- SFP 알고리즘에서는 Tree의 Root에 각 라우터를 두고 수신지에 도달하는데 필요한 누적 Cost를 기반으로 각 Node로 가는 최단 경로를 계산한다
- Cost = 108/bandwidth (bps)

Configuring Single Area OSPF

• Router ospf 명령을 사용하여 OSPF Routing Process를 시작하고, Network 명령을 사용하여 Address들을 연결 시킨다

Router(config)#router ospf process-id
Router(config-router)#network address wildcard-mask area area-id
Router(config-router)#

OSPF configuration Example

- "router ospf 100"은 OSPF Routing Process ID 100으로 활성화 한다
- "network 10.1.1.2 0.0.0.0 area 0"은 Interface Serial 2에서 OSPF Process를 활성화하고, ID 100의 OSPF Process를 사용하여 Interface Serial 2와 연계된 Network, Subnetwork, Mask를 광고한다
- "network 10.2.2.2 0.0.0.0 area 0"은 Interface Serial 3에서 OSPF Process를 활성화하고, ID 100의 OSPF Process를 사용하여 Interface Serial 3과 연계된 Network, Subnetwork, Mask를 광고한다

Verifying the OSPF Configuration

• 전체 Router에 대한 Timer, Filter, Metric, Network등의 매개변수들을 표시

Router#show ip protocols

• Router에 알려진 경로와 경로가 학습된 방법을 표시

Router#show ip route

• Area-ID와 Neighbor 인접성을 표시

Router#show ip ospf interface

• Interface 별로 OSPF Neighbor 정보를 표시

Router#show ip ospf neighbor

OSPF Debug Commands

Router#debug ip ospf events

OSPF:hello with invalid timers on interface Ethernet0 hello interval received 10 configured 10 net mask received 255.255.255.0 configured 255.255.255.0 dead interval received 40 configured 30 Router# debug ip ospf packet

OSPF: rcv. v:2 t:1 1:48 rid:200.0.0.117 aid:0.0.0.0 chk:6AB2 aut:0 auk:

Router#debug ip ospf packet

OSPF: rcv. v:2 t:1 1:48 rid:200.0.0.116 aid:0.0.0.0 chk:0 aut:2 keyid:1 seq:0x0

LAB

OSPF Enable LAB