Регуляризованная логистическая регрессия

• L_2 -регуляризация решает проблему мультиколлинеарности (сокращает веса линейно зависимых признаков):

$$Q(w) = \sum_{i=1}^{\ell} \log (1 + \exp(-\langle w, x_i
angle y_i)) + au \sum_{j=1}^{n} w_j^2
ightarrow \min_{w}.$$

• L_1 -регуляризация имеет эффект отбора признаков (обнуляет веса w_j неинформативных признаков):

$$Q(w) = \sum_{i=1}^{\ell} \log ig(1 + \exp(-\langle w, x_i
angle y_i) ig) + au \sum_{j=1}^{n} ig| w_j ig|
ightarrow \min_{w}.$$

• Используется также их комбинация — ElasticNet.

Коэффициент регуляризации au подбирается по скользящему контролю.

Резюме

- Логистическая регрессия это линейный классификатор,
- оценивающий апостериорные вероятности классов P(y|x), необходимые в прикладных задачах оценивания рисков.
- Регуляризация улучшает обобщающую способность логистической регрессии:
 - L₂-регуляризация при мультиколлинеарности признаков;
 - L_1 -регуляризация для отбора признаков;
 - ElasticNet для менее агрессивного отбора признаков.