Week 11: Committee Voting

Instructor: Warut Suksompong

National University of Singapore

CS4261/5461 Semester 1, 2025

Voting

Selecting a public outcome, shared by everyone.

Voting

- Types of ballots (i.e., input):
 - Ranking: Submit an ordering of the candidates
 - Score: Submit a number for each candidate
 - Approval: Submit a subset of approved candidates
 - Advantages: Simple, less cognitive effort required
 - Disadvantages: Does not allow refined or combinatorial preferences
- Output of voting:
 - Single-winner (e.g., president of student council)
 - Multiwinner/committee (e.g., student council committee, places to visit on a family trip, dishes to serve in a reunion party)
 - Ranked committee (e.g., president, vice president, and secretary)

Approval Committee Voting

- Voters $N = \{1, 2, ..., n\}$
- Candidates C, where |C| = m
- Voter *i* approves a set of candidates $A_i \subseteq C$
- We want to choose a committee W of size k, where $k \leq m$ is given
- Voter *i*'s utility is $u_i(W) = |A_i \cap W|$
- Social welfare: Total number of approvals obtained by members of the committee ("excellence")
- Coverage: Number of voters who approve at least one committee member ("diversity")
- If a voter approves a candidate, we say that the candidate covers the voter.

AV and CC

- Approval Voting (AV): Select a committee maximizing social welfare
- Chamberlin-Courant (CC): Select a committee maximizing coverage

• Example:

- n = m = 6, k = 3
- $A_1 = \{a, b, c, d, e\}$
- $A_2 = \{b, c, d, e, f\}$
- $A_3 = \{a, b, c, d\}$
- $A_4 = \{a, b, c\}$
- $A_5 = A_6 = \{e, f\}$
- b, c, e: 4 votes, a, d, f: 3 votes
- AV returns {*b*, *c*, *e*}
- CC returns, for example, $\{a, b, e\}$ (covers all voters)

Beyond AV/CC

- Let's consider a more extreme example:
 - n = 301, m = 5, k = 3
 - $A_1 = A_2 = \cdots = A_{200} = \{a, b, c\}$
 - $A_{201} = A_{202} = \cdots = A_{300} = \{d\}$
 - $A_{301} = \{e\}$
 - AV returns {*a*, *b*, *c*}
 - CC returns, e.g., {a, d, e}
 - Neither feels "proportional"...
 - ... a more proportional committee would be, e.g., $\{a, b, d\}$
- Intuition of proportionality: A sufficiently large group of voters that agrees on sufficiently many candidates should be correspondingly satisfied in the committee.

Justified Representation

- There are n voters and k committee slots, so a group of n/k voters "deserves" one slot.
- **First attempt:** For a group of voters $S \subseteq N$ such that $|S| \ge n/k$ and $|\bigcap_{i \in S} A_i| \ge 1$, we have $|(\bigcap_{i \in S} A_i) \cap W| \ne \emptyset$.
- Unfortunately, this cannot always be satisfied . . .
 - n = m = 4, k = 2, so n/k = 2
 - $A_1 = \{a, b\}, A_2 = \{b, c\}, A_3 = \{c, d\}, A_4 = \{d, a\}$
 - $S = \{1, 2\}$ demands that we pick b
 - Similarly, we must pick c, d, a, but this exceeds the committee size.
- Call a group of voters $S \subseteq N$ such that $|S| \ge n/k$ and $|\bigcap_{i \in S} A_i| \ge 1$ a cohesive group.
- Justified representation (JR): For any cohesive group of voters $S \subseteq N$, there exists $i \in S$ such that $|A_i \cap W| \neq \emptyset$.
- No cohesive group should go unrepresented!

Justified Representation

- AV may fail JR.
 - n = 300, k = 3
 - $A_1 = A_2 = \cdots = A_{200} = \{a, b, c\}$
 - $A_{201} = A_{202} = \cdots = A_{300} = \{d\}$
 - AV chooses $\{a, b, c\}$
 - n/k = 100, so the group of voters $\{201, 202, \dots, 300\}$ is cohesive, but goes unrepresented in the AV committee!
- CC always satisfies JR.
 - Suppose for contradiction that it does not.
 - Let S be a cohesive group of voters that is unrepresented by the CC committee W, and let x be a candidate approved by all voters in S.
 - Consider the marginal contribution of each $w \in W$ to the coverage. This is the number of voters who approve w but no one else in W.
 - Since the coverage of W is < n, the marginal contribution of some $w^* \in W$ is less than n/k.
 - Remove w^* and add x to obtain higher coverage.

GreedyCC

- Computing a CC committee is NP-hard (by a reduction from SET COVER)
- Fortunately, there is a greedy variant, which runs in polynomial time.
- GreedyCC:
 - Start with an empty set of candidates.
 - In each step, choose a candidate that covers as many uncovered voters as possible.
 - Repeat this until k candidates have been chosen.

• Example:

- n = 6. k = 3
- $A_1 = \{a, d\}, A_2 = \{b, d\}, A_3 = \{c, d\}, A_4 = \{a\}, A_5 = \{b\}, A_6 = \{c\}$
- GreedyCC returns, e.g., {a, b, d}.
- Coverage is worse than CC committee $\{a, b, c\}$.
- GreedyCC satisfies JR (see assignment)

Is JR Sufficient?

- Is JR sufficient?
 - n = 100. k = 10
 - $A_1 = A_2 = \cdots = A_{50} = \{a_1, a_2, \ldots, a_{10}\}$
 - $A_{51} = A_{52} = \cdots = A_{100} = \{b_1, b_2, \ldots, b_{10}\}$
- Does $W = \{a_1, a_2, ..., a_{10}\}$ satisfy JR?
- No. Voters 51, 52,..., 60 form a cohesive group that is unrepresented.
- Does $W = \{a_1, a_2, ..., a_9, b_1\}$ satisfy JR?
- Yes.
- But $\{a_1, a_2, \ldots, a_5, b_1, b_2, \ldots, b_5\}$ feels much more "proportional"!

Extended Justified Representation

- For a positive integer t, call a group of voters $S \subseteq N$ such that $|S| \ge t \cdot n/k$ and $|\bigcap_{i \in S} A_i| \ge t$ a t-cohesive group.
- The previous definition of cohesive group is when t = 1.
- Extended Justified representation (EJR): For any positive integer t and any t-cohesive group of voters $S \subseteq N$, there exists $i \in S$ such that $|A_i \cap W| \ge t$.
- This fixes the problem with JR.
 - n = 100. k = 10
 - $A_1 = A_2 = \cdots = A_{50} = \{a_1, a_2, \ldots, a_{10}\}$
 - $A_{51} = A_{52} = \cdots = A_{100} = \{b_1, b_2, \ldots, b_{10}\}$
 - $W = \{a_1, a_2, \dots, a_9, b_1\}$ fails EJR: Take $S = \{51, 52, \dots, 100\}$ and t = 5
 - $W = \{a_1, a_2, \dots, a_5, b_1, b_2, \dots, b_5\}$ satisfies EJR.

Proportional Approval Voting

- Fix an infinite nonincreasing sequence s_1, s_2, \ldots
- Thiele methods: Choose a committee W maximizing the score

$$\sum_{i\in N} \left(s_1+s_2+\cdots+s_{u_i(W)}\right)$$

- AV: $s_i = 1$ for all i
- CC: $s_1 = 1$, $s_2 = s_3 = \cdots = 0$
- Proportional Approval Voting (PAV): $s_i = 1/i$ for all i
 - If a voter approves r candidates in the committee, the voter contributes $1 + \frac{1}{2} + \cdots + \frac{1}{r}$ to the score of the committee.
 - $1 + \frac{1}{2} + \cdots + \frac{1}{r}$ is the r-th harmonic number, usually denoted by H_r

Harmonic Numbers

- Why harmonic numbers?
- Harmonic numbers result in a roughly "proportional" committee.
 - n = 12, k = 6
 - $A_1 = A_2 = A_3 = A_4 = A_5 = A_6 = \{a_1, \ldots, a_6\}$
 - $A_7 = A_8 = A_9 = A_{10} = \{b_1, \ldots, b_6\}$
 - $A_{11} = A_{12} = \{c_1, \ldots, c_6\}$
 - AV: $\{a_1, \ldots, a_6\}$
 - CC: Any committee containing at least one candidate from each of the three "categories"
 - Marginal contribution to the score of candidates from each category
 - a_i : 6, 3, 2, 1.5, 1.2, 1
 - b_i : 4, 2, 1.3, 1, 0.8, 0.7
 - $c_i : 2, 1, 0.7, 0.5, 0.4, 0.3$
 - PAV: Choose 3 of the a_i 's, 2 of the b_i 's, and 1 of the c_i 's

PAV and Nash

- AV = utilitarian
- CC \approx egalitarian
- PAV \approx Nash
 - Maximize $\sum_{i \in N} H_{u_i(W)}$
 - Fact: $H_r \approx \ln r$ for each positive integer r
 - Maximizing $\sum_{i \in N} \ln(u_i(W))$ is the same as maximizing $\prod_{i \in N} u_i(W)$, i.e., maximizing the Nash welfare!
- Can we use Nash instead of PAV?
- Not a good idea!
 - n = 301, k = 3
 - $A_1 = A_2 = \cdots = A_{200} = \{a, b, c\}$
 - $A_{201} = A_{202} = \cdots = A_{300} = \{d\}$
 - $A_{301} = \{e\}$
 - Nash returns, e.g., $\{a, d, e\}$

PAV and EJR

- Theorem: PAV satisfies EJR.
- Proof idea:
 - Suppose for contradiction that $u_i(W) < t$ for all voters i belonging to some t-cohesive group S.
 - There is a candidate x which is approved by all members of S but not included in W.
 - By adding x to W, the PAV score increases by at least $(1/t) \cdot (tn/k) = n/k$.
 - Need to show that there is a candidate $y \in W$ such that by removing y from $W \cup \{x\}$, the PAV score decreases by less than n/k.
- PAV is NP-hard to compute.
- A greedy variant of PAV does not even satisfy JR.
- Can we satisfy EJR in polynomial time?

- Method of Equal Shares (MES):
 - Each voter has a budget of k/n.
 - Each candidate costs 1; the voters who approve this candidate have to "pool" their money to add this candidate to the committee.
 - Start with an empty committee.
 - In each round, we want to add a candidate whose approved voters have a total budget of ≥ 1 left.
 - If there are several such candidates, choose one such that the maximum amount that any agent has to pay is minimized.
 - If no more candidate can be afforded but the committee still has size < k, fill in the rest of the committee using some tie-breaking criterion (e.g., by maximizing approval score).

• Example:

- n = 8, k = 3
 A₁ = A₂ = A₃ = {a, b}
 A₄ = A₅ = {c, d}
 A₆ = A₇ = {a, c}
 A₈ = {b, d}
- Each voter starts with a budget of 3/8.
- a is chosen first. Each of voters 1, 2, 3, 6, 7 pays 1/5, and has budget 3/8 1/5 = 7/40 left.
- b is not affordable, c would require some voter to pay 13/40, while d would require some voter to pay 1/3.
- Since 13/40 < 1/3, c is chosen second. Voters 6,7 pay 7/40 each (and have 0 left), while voters 4,5 pay 13/40 each (have 1/20 left).
- No more candidate is affordable, so *b* is chosen third by if we do the tie-breaking by approval score.

- MES never chooses more than k candidates.
 - Total budget of all n voters is $(k/n) \cdot n = k$, and each candidate costs 1.
- Theorem: MES satisfies EJR (and can be implemented in polytime).
- Proof:
 - Suppose for contradiction that $u_i(W) < t$ for all voters i belonging to some t-cohesive group S.
 - When MES stops, some voter $i \in S$ must have budget $< \frac{k}{tn}$ left. (Otherwise, the voters in S have budget $\ge |S| \cdot \frac{k}{tn} \ge 1$ and should have bought a candidate that they all approve.)
 - *i* has used budget $> \frac{k}{n} \frac{k}{tn} = \frac{(t-1)k}{tn}$, so for some chosen committee member, *i* paid more than $\frac{1}{t-1} \cdot \frac{(t-1)k}{tn} = \frac{k}{tn}$.

• Proof (cont.):

- Consider the first committee member x such that some voter in S paid more than $\frac{k}{kn}$ for it.
- Before x was added, each voter in S has $\leq t-1$ approved candidates, and paid $\leq \frac{k}{tn}$ for each of them.
- Thus, each voter in S has budget at least $\frac{k}{n} (t-1) \cdot \frac{k}{tn} = \frac{k}{tn}$ remaining.
- Since $|S| \ge \frac{tn}{k}$, the voters in S could afford a commonly approved candidate by paying $\le \frac{k}{tn}$ each.
- No voter in S should have paid more than $\frac{k}{tn}$ for x, a contradiction!

Summary

	JR	EJR	Polytime
AV (maximizes welfare)	X	X	✓
CC (maximizes coverage)	/	X	X
GreedyCC	/	X	✓
PAV	1	1	X
MES	1	✓	✓

 Participatory budgeting: A generalization of committee voting where the "candidates" (i.e., projects) may have unequal costs.

Participatory Budgeting

Participatory Budgeting & Citizen Design in Town Councils

WHAT IS IT?

Participatory Budgeting (PB) is a process whereby a community decides how to spend a portion of public budget.^[1]

The process can be used by a Town Council to engage its citizens in developing ideas, deliberate on them, and vote on how the budget is used. A portion of the discretionary budget for estate improvement can be earmarked for this purpose as a social experiment.

We can start with a specific set of blocks or HDB estate within a Town Council if we can secure the support of a sponsoring MP.

http://futurereadysociety.sg/participatory-budgeting-citizen-design-in-town-councils

MES in Participatory Budgeting

It provides proportional representation and allows every voter to decide about an equal part of the budget.

сн Аагаи

PL Wieliczka

http://equalshares.net/

PL Świecie