

Ecole Nationale Supérieure d'Ingénieurs de Tunis

EXAMEN

Classe: 3GMAM

Matière:

Data Mining

Enseignant(e): Mohamed Koutheair Khribi

Date: 05/01/2019

Durée: 02h00

Nombre de pages: 10

Documents autorisés: Non ☑ Oui □

- This exam has 10 pages, make sure you have all pages before you begin.
- There are 06 multipart questions, for a total of 20 points.
- Please write your answer on the provided exam.
- Read all the questions before you start working and write concise answers.
- No materials or electronic devices shall be used.
- No partial credit on multiple-choice questions, the set of all correct answers must be checked.

Good Luck!

Questions	Question	Question II	Question III	Question IV	Question V	Question VI	Total
Points	7	3.5	3	3	2.5	1	20
Score							

Question I. (True/False) [7 points]:

In perceptron algorithm, choosing large learning rate will speed up the algorithm and let previously incorrect classifications becoming correct. The perceptron algorithm.	True	False
The perceptron algorithm does not converge if the training samples are not linearly separable.		\square
3) In standardia di	True	False
 3) In standardization, rescaled features are centered to the mean μ = 0 with σ = 1. 4) In Min-Max and unit vector normalization and 	$+$ \bigcirc	
 4) In Min-Max and unit vector normalization, values are converted to the range [0,1]. 5) In underfitting, the model suffers from low perfectors. 	True	False
 5) In underfitting, the model suffers from low performance on training and test data. 6) In overfitting, the model performs well on training data to the range [0,1]. 	True	alse
6) In overfitting, the model performs well on training data but suffers from low performance on test data. 7) Adding a feature of the model performs well on training data but suffers from low and the model performs well on training data but suffers from low and the model performs well on training data but suffers from low and the model performs well on training data but suffers from low performance on training and test data.	True	alse
Periodified On toet 1.	True	False
7) Adding a feature to a linear regression model can decrease model variance. 8) After applying a regularization penalty in linear regression.	True	
8) After applying a regularization penalty in linear regression, some of the 9) In regression and		False
9) In regression analysis resident	True	False
9) In regression analysis, residuals should be maximized to let the line fitting better 10) LASSO Regularization.	True	False
10) LASSO Regularization can be used to	1100	
10) LASSO Regularization can be used for variable selection in Linear Regression. 11) In optimization using gradient descent for linear regression, the cost function has 12) We can get multiple lead to let the line fitting better	True	Traise
many local optima and converges for one of them. Problem:	True	False
Droblem t God Ontimus		
12) We can get multiple local optimum solutions if we solve a linear regression problem by minimizing the sum of squared errors using gradient descent. 13) In regularization, additional information is added in order to penalize extreme 14) When the feature space is larger.	True	False
Palameter Did Informati	Tiue	
14) When the feature extreme		False
15) Increasing regularizes:	True	False
16) Decreasing regularization parameter can help to fix high variance. 17) Reducing the number of features can help to fix high bias.		
17) Reducing the	True	False
17) Reducing the number of features can help to fix high bias. 18) Zero correlation between two random variables implies that the problem.	True	False
18) Zero correlation between two random variables implies that the two variables are independent.	True	False
independent.	True	False
15) Overfitting is more likely when we have hugo account of		
20) kNN is a parametric method that performs well in case of high dimensional data.	True	
21) Training a k-nearest-neighbors also if the mission dimensional data.	True	e False
21) Training a k-nearest-neighbors classifier takes more computational time than applying on new samples.	Tru	e False
22) The more training examples, the more accurate the prediction of a k-nearest neighbors.	- T	
	- 111	ue False
23) k-nearest-neighbors cannot be used for regression.		\mathcal{D}
24) Given n distinct classes in a dataset all us all classic	1	rue False
		True False
5)In regression analysis, logistic regression can be used as the learning func-	1	
	tion	True False
Using slack variables can beln to reduce overfitti		
Using slack variables can help to reduce overfitting in an SVM classifier.		True False
Choosing large value of the tuning parameter C in SVM can lead to low bias	224	
and the state of t		True False
Choosing small value of the tuning parameter C in SVM can lead to high bias		\bigcirc
owwariance of the tuning parameter C in SVM can lead to high bias	and	True Fals
ow variance.	and	D Fais

Question II. Select One or More Answer Choices [3.5 points]: Regularization: (Check all that apply) (a) Consists in penalizing the training error. (b) Used to avoid overfitting. (c) Equivalent to adjusting the bias/variance trade-off. (d) Tune the complexity of the model. 2. Lasso can be interpreted as least-squares linear regression where: (Check all that apply) (a) Weights are regularized with the L1 norm. (b) Weights are regularized with the L2 norm. (c) Weights often end up to being exactly zero. (d) Particular features are excluded from the model. 3. How does the bias-variance decomposition of a ridge regression estimator compare with that of ordinary simple linear regression? (Select one) (a) Ridge has larger bias, larger variance (b) Ridge has larger bias, smaller variance (c) Ridge has smaller bias, larger variance (d) Ridge has smaller bias, smaller variance 4. Assume we have N independent explanatory variables (X₁, X₂... X_n) and a target dependent variable Y. When applying linear regression by fitting the best fit line using least square error on this data, we found that correlation coefficient for one of its variables (e.g. Xi) with Y is -0.95. Which of the following is true for X? (a) Relation between the X_i and Y is weak (b) Relation between the X_i and Y is strong (c) Relation between the Xi and Y is neutral (d) Correlation can't judge the relationship 5. Given two variables V_1 and V_2 following the below two characteristics. - If V_1 increases, then V_2 also increases - If V_1 decreases, then V_2 behavior is unknown.

Which of the following option is the correct for Pearson correlation between V_1 and V_2 ?

(a) Pearson correlation will be close to 1.

- (b) Pearson correlation will be close to -1.
- (c) Pearson correlation will be close to 0.
- (d) None of these.

"Normal Equation" cha 1. The learning rat	racterized by the following: te has not to be chosen. comes slow when number o	
Which of the following	is/are true?	
(a) 1 and 3.		
(b) 2 and 3.		
(c) 1,2 and 3.		
Suppose we have fitted which describes bias in		enalty $arepsilon$ model on a dataset. Choose the option
(a) In case of very larg	ge \mathcal{E} ; bias is low.	
(b) In case of very larg	ge \mathcal{E} ; bias is high.	
(c) We can't say abou	it bias.	
(d) None of these.		
When we increase the variance:	he size of the training data	set, what do we expect to get as for bias and
(a) Bias increases and	variance increases.	
(b) Bias decreases and	d variance increases.	
(c) Bias decreases and		
(d) Bias increases and		
9. Assume we train a har	d-margin linear SVM on not tors. If we add one more mber of support vectors f	> 100 data points in R^2 , yielding a hyperplane with data point and retrain the classifier, what is the or the new hyperplane (assuming the n+1 points
(a) 2	b) 3 (c) n	(d) $n + 1$
10. Suppose we have got	ie following options would	iable space such that this added feature is very we expect to observe in such case?
(a) Training Error will o	decrease and validation er	ror will increase
(b) Training Error will in	crease and validation err	or will increase
(c) Training Error will in	crease and validation er	ror will decrease
(d) Training Error will de	crease and validation e	rror will decrease
(e) None of the above		

11 Which and
 11. Which of the following methods can achieve zero training error on any linearly separable dataset? (a) Adaline (b) Hard-margin SVM (c) 15-nearest neighbors (d) Perceptron 12. We run gradient descent for 15 iterations with η= 0.3 and compute the cost function J(w) after each iteration, we find that its value decreases slowly and it is still decreasing after 15 iterations. (b) We should try a larger value of η (e.g. η= 1.0) rather than the current value.
(b) The current value is an effective choice. (c) It would be more promising to try smaller value of η (e.g. η = 0.1) rather than the current value.
13. Assume we have been given the following scenario for training and validation error for linear regression:

Scenario	Learning rate	Number of iterations	Training error	Validation error
1	0.1	1000	100	110
2	0.2	600	90	105
3	0.3	400	110	110
4	0.4	300	120	130
5	0.4	250	130	150

Which of the following scenario would give us the right hyperparameter:

(a) 1 (b) 2 (c) 3 (d) 4 (e) 5

14. Considering a classifier trained till convergence on some training data D_{train}, and tested on a separate test set D_{test}. We look at the test error and find that it is very high. We then compute the training error and find that it is close to 0. Which of the following is expected to help? (Select all that apply).

(a) Increase the training data size.

(b) Decrease the training data size.

(c) Increase model complexity (e.g. in case of an SVM, we use a more complex kernel).

(d) Decrease model complexity.

(e) None of the above

Question	111.	13	points	1:
Cucation.		1 -	Pour s	

(a)	The	following	table	gives	the	decision	table	for	"OR"	function.	X,	and
	x_2 at	re the input	s, and \	the ou	tput.	Can this fu	nction	be re	present	ted by a per	rcept	tron?
	Expl	ain your ans	wer.							, ,		

x_1	x_2	Y
0	0	0
0	1	1
1	0	1
1	1	1

11.1 10	on that predicts this function (give one possible solution
(D) It yes -:	
1-1 ACZ' BING 3 man	
. Dercente	On the
determini	Oil [Dat prodicts at 1
actellining w	Piculcis this function (give one possible solution
"S WO, W1, W/1	Di-++1
-, -, 1, 042).	FIOT the points and at the second sec
	Points and the decision boundary
	and decision bounds 7.
*******	on that predicts this function (give one possible solution Plot the points and the decision boundary.
******	***************************************

***************	***************************************

(c) Consider the function given in the following table. x_1 and x_2 are the inputs, and Y the output. Can this function be represented by a perceptron? Explain your answer.

χ_1	x_2	Y
0	0	1
0	1	1
1	0	0
1	1	1

	(d) If yes, draw a perceptron that represents this function (give one possible solution determining w_0 , w_1 , w_2). Plot the points and the decision boundary.
• • • • •	

a perceptron? Explain your answer.	a perceptron? Exp		T			
$IV. \ [3 \ points]:$ (a) Consider fitting a linear regression model for these data: $ \begin{array}{c c} x & y \\ -1 & 1 \\ 0 & -1 \\ 2 & 1 \end{array} $ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri		x_1	44			
$[V. \ [3 \ points]:$ (a) Consider fitting a linear regression model for these data: $ \begin{array}{c c} \hline & x & y \\ \hline & -1 & 1 \\ \hline & 0 & -1 \\ \hline & 2 & 1 \end{array} $ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri			X ₂	Y		
$\frac{1}{1} \frac{0}{1} \frac{1}{1} 0$ IV. [3 points]: (a) Consider fitting a linear regression model for these data: $\frac{x}{-1} \frac{y}{-1} \frac{1}{1} 0$ $\frac{1}{2} \frac{1}{1}$ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri		0	0	0		
IV. [3 points]: (a) Consider fitting a linear regression model for these data: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	1	1		
IV. [3 points]: (a) Consider fitting a linear regression model for these data:				1		
(a) Consider fitting a linear regression model for these data:		1	1	0		
(a) Consider fitting a linear regression model for these data:	***************************************					
(a) Consider fitting a linear regression model for these data:	***************************************	***************************************			***************************************	******
(a) Consider fitting a linear regression model for these data:	***************************************	***************************************			***********************	************
(a) Consider fitting a linear regression model for these data:	***************************************	***************************************				
(a) Consider fitting a linear regression model for these data:						
(a) Consider fitting a linear regression model for these data:	IV. [3 points].					
$ \begin{array}{c cccc} x & y & \\ \hline -1 & 1 & \\ \hline 0 & -1 & \\ \hline 2 & 1 & \\ \end{array} $ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri	to pointsj.					
$ \begin{array}{c cccc} x & y & \\ \hline -1 & 1 & \\ \hline 0 & -1 & \\ \hline 2 & 1 & \\ \end{array} $ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri	(a) Consider fitting a li					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	to, consider milling a lin	ear regression mo	odel for th	iese data:		
Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri						
Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri						
$\frac{2}{2}$ Fit $y_i = w_0 + \varepsilon_i$ model (intercept only) find w_0 using MSE as cost function (Hint: deri						
Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: deri						
Fit $y_i = w_0 + \varepsilon_i$ model (intercept only), find w_0 using MSE as cost function (Hint: derifunction and solve the equation).						
function and solve the equation).	Fit $v_i = w_0 + \varepsilon_i \mod d$	intercent L \ (C - 1 110	ing MASE as	east function / H	inte donie
	function and solve the a	mitercept only), t	ind W ₀ usi	IIR INIDE 92	.ost runction (H	iiit. deriv
	remetion and solve the e	quation).				

	***************************************	***************************************				

	***************************************	***************************************				************
) Fit $y_i = x * w_1 + \varepsilon_i$ if	lodel (linear regi	ression w	ithout the	ntercept term)	, find w
) Fit $y_i = x * w_1 + \varepsilon_i$ model (linear regression without the intercept term), find w	MSE as cost function	(Hint: derive the	function	and solve	the equation)	
Fit y _i = x * w ₁ + ε _i model (linear regression without the intercept term), find w MSE as cost function (Hint: derive the function and solve the equation)					equation).	
MSE as cost function (Hint: derive the function and solve the equation).	***************************************					
MSE as cost function (Hint: derive the function and solve the equation).	***************************************					
MSE as cost function (Hint: derive the function and solve the equation).						
MSE as cost function (Hint: derive the function and solve the equation).			********	*******		220100000000000000000000000000000000000
MSE as cost function (Hint: derive the function and solve the equation).						
MSE as cost function (Hint: derive the function and solve the equation).						

(c) Assume we are training a model on a training dataset containing 165 examples, using a binary classifier, we've got 100 true positives predictions, 50 true negatives, 10 false positives, and 5 false negatives. Complete the confusion matrix below:

Predicted Yes	Predicted No

(d) Based on H	
Accuracy rate:	sion matrix, compute the following evaluation metrics:
Error rate:	
False positive rate:	
True negative rate:	
Recall:	
Precision:	
F1-score:	

estion V. Interpreting figures [2.5 points]:

(a) Consider the following figure showing the plot of the validation error rate in function of the value of k when applying kNN algorithm:

What which would be the best value for k? Explain.

(b) Consider the following plots showing the cost J in function of the number of iterations:

Suppose η_1,η_2 and η_3 are the three learning rates for A, B and C respectively, compare the values of the learning rates η_1,η_2 and η_3 . Explain.

(c) Consider the following scatterplot:

What would be the mean squared errors for this data if we run a linear regression model of the form $y = w_0 + x * w_1$? Explain.

(d) Assume that we will debug a classifier using train and test errors. We found that the test error is very high, and the training error is close to zero. Which of the following plots showing the mean error as function of the model complexity is the plot expected to look like. Explain.

********			**************	*************					

on VI. Gift	[1 point]	1:							
(a) How d	ifficult w	as this	exam?						
Easy									Hard
1	2	3	4	5	6	7	8	9	10
11.10									
(b) Do you	I have ar	y comn	nents on t	the numb	or of au	actions o	r their a	uality?	
				CIIC HUHITI	Jei Oi qu	Cariona	I FIIFII O	ci ci i i i i	

		••••••							
	•••••••		••••••						
	······································	•••••••••••••••••••••••••••••••••••••••	······································						
	•••••••••••••••••••••••••••••••••••••••		······································						
			•••••••••••						
			•••••••••••						
			•••••••••••						Llavel
	fficult is	this cou	irse?						Hard
	fficult is	this cou	•••••••••••			7	8	9	Hard 10
	fficult is	this cou	irse?	5	6	7	8	9	10
Easy 1 Do you	fficult is 2 have an	this cou	irse?	5	6	7	8	9	
	fficult is 2 have an	this cou	irse?	5	6	7	8	9	10
Ensy 1 Do you	fficult is 2 have an	this cou	irse?	5	6	7	8	9	10

Thanks and Good Luck!