Show that
$$\mathcal{B}([a,b]) = \sigma(\pi[a,b])$$

赖睿航 518030910422

March 30, 2020

Proof. According to the definition of $\pi(\mathbb{R})$ and $\pi[a,b]$, we have:

$$\pi[a, b] = \{A \cap [a, b] \mid A \in \pi(\mathbb{R})\}$$

$$= \{(-\infty, x] \cap [a, b] \mid x \in \mathbb{R}\}$$

$$= \{[a, x] \mid x \in [a, b]\}.$$

Let τ be all the open sets on \mathbb{R} . By the definition of subspace topology, we have

$$\mathcal{B}([a,b]) = \sigma(\{\text{all open sets on } [a,b]\})$$
$$= \sigma(\{[a,b] \cap U \mid U \in \tau\}).$$

Hence intervals such as $[a, b], [a, x), (x, b], x \in (a, b)$ are all open intervals on [a, b].

We first show that $\sigma(\pi[a,b]) \subseteq \mathcal{B}([a,b])$. By definition of σ -algebra, we only need to show that $\pi[a,b] \subseteq \mathcal{B}([a,b])$. For any interval $[a,x] \in \pi[a,b]$ with $x \in [a,b]$, there are two cases:

- 1. If $x \in [a, b)$, then $[a, x] = \bigcap_{n \in \mathbb{N}} [a, x + \frac{b x}{2n}) \in \mathcal{B}([a, b])$.
- 2. If x = b, then $[a, x] = [a, b] \in \mathcal{B}([a, b])$ since [a, b] is an open set.

Thus $\pi[a,b] \subseteq \mathcal{B}([a,b])$.

Then we show that $\mathcal{B}([a,b]) \subseteq \sigma(\pi[a,b])$. Equivalently we show that every open set on [a,b] is contained in $\sigma(\pi[a,b])$. Every open set on $\sigma(\pi[a,b])$ is a countable union of open intervals. So we only need to show that every open interval on [a,b] belongs to $\sigma(\pi[a,b])$. For any open interval I, there are four cases:

- 1. If I = [a, b], then $I = [a, b] \in \sigma(\pi[a, b])$ is trivial.
- 2. If $I = [a, y), y \in (a, b]$, then $I = [a, y) = \bigcup_{n \in \mathbb{N}} [a, y \frac{y a}{2n}] \in \sigma(\pi[a, b])$.
- 3. If $I = (x, b], x \in [a, b)$, then $I = (x, b] = [a, b] \setminus [a, x] \in \sigma(\pi[a, b])$.
- 4. If $I = (x, y), a \leqslant x < y \leqslant b$, then $I = (x, y) = [a, y) \setminus [a, x] = (\bigcup_{n \in \mathbb{N}} [a, y \frac{y a}{2n}]) \setminus [a, x] \in \sigma(\pi[a, b])$.

Hence every open interval on [a,b] belongs to $\sigma(\pi[a,b])$. So every open set on [a,b] belongs to $\sigma(\pi[a,b])$. And therefore $\mathcal{B}([a,b]) = \sigma(\pi[a,b])$.