

ВАКУУМ-ПЛОТНАЯ КОРУНДОВАЯ КЕРАМИКА НА ОСНОВЕ УЛЬТРАДИСПЕРСНЫХ ПОРОШКОВ

O.Амелина, C.Нестеров sbnesterov@niivt.ru

НИИВТ им. С.А.Векшинского изготавливает керамические изделия электроизоляционного и конструкционного назначения (марки ВК94-1 (22 ХС) и ВК100-2 (ПОЛИКОР)) из вакуум-плотной корундовой керамики, а также металлокерамические узлы на ее основе [1].

Основные направления использования вакуум-плотной корундовой керамики (рис.1–4)

- авиационно-космическая и ракетная техника (вводы датчиков, находящихся вне корпуса корабля, приборы и аппараты автоматического управления космическими термоэмиссионными преобразователями солнечной энергии);
- выходные устройства мощных СВЧ-приборов (диэлектрические окна для вывода в волноводный тракт генерируемой внутри прибора элек-

- тромагнитной энергии);
- монолитные интегральные схемы усилителей большой мощности;
- системы охлаждения термоэлектрических преобразователей на основе элементов Пельтье;
- теплопроводящие изоляторы нагревателей активных термостатов;
- сборки линеек лазерных лиолов.

Эти материалы непроницаемы для газов, пропускают с малым поглощением электромагнитные колебания высоких и

сверхвысоких частот, обладают большой механической прочностью, могут работать в условиях высокого вакуума в широком интервале температур. Их важная особенность - способность образовывать вакуум-плотные высокотемпературные соединения с металлами. Такую керамику с использованием сравнительно простых конструктивных решений можно надежно паять медью и никелем, молибденом и вольфрамом, сплавами на основе железа.

Для получения формоустойчивых металлокерамических узлов возможно использование металлических элементов с большой толщиной стенки.

Многообразие методов формования и механической обработки, применяемых в технологии вакуум-

Рис.3. **Металлокерамические** ножки для ЭВП

Рис.4. Различные керамические и металлокерамические изделия

плотной керамики, позволяет изготавливать изделия сложной конфигурации и различных габаритов от долей до нескольких сотен миллиметров.

Важное преимущество вакуумплотной керамики состоит в том, что газовыделение при ее нагреве не выше, чем у металлов, применяемых в производстве электронных вакуумных приборов. До 1000°С эти материалы имеют незначительную газопроницаемость, которая на несколько порядков ниже, чем у металлов и носит диффузионный характер.

Корунд отличается высокой химической стойкостью по отношению к кислым и щелочным реагентам. При нормальной температуре на него практичес-

Рис.1. **Керамические изоляторы размером не более 30 мм**

Рис.2. Проходные высоковольтные изоляторы различных типоразмеров

HAHOMATEPHAJIBI

ки не действует даже плавиковая кислота. Корунд устойчив и к действию большинства металов, в том числе щелочных, при температуре их плавления.

Стабильность свойств и геометрических размеров промышленно выпускаемых керамических деталей позволяет проводить не только их кратковременную высокотемпе-

ратурную обработку при изготовлении приборов, но и обеспечивает длительную работоспособность при 1400–1700°С.

В частности, испаряемость Al_2O_3 даже при предельно высоких температурах (1900–2000 0 C) невелика и составляет около 1–1,5 · 10^{-7} г/см 2 , что позволяет длительно эксплуатировать корундовые керамические изде-

Основные свойства керамики BK94-1 (22XC) и BK100-2 (KM)

КЕРАМИКА			
Физико-механические и электрические свойства	BK94-1 (22XC)	BK100-2 (KM)	
Объемная масса, г/см ³ , не менее	3,65	3,88	
Водопоглощение, %, не более	0,02	0,02	
Предел прочности при статическом изгибе, кг/см 2 , не менее	3200	3200	
Диэлектрическая проницаемость при 10^6 Гц и 25^0 С, не более	10,3	10,5	
Тангенс угла диэлектрических потерь при 10^6 Γ ц и 25^0 C, не более	6 · 10 ⁻⁴	2 · 10 ⁻⁴	
Диэлектрическая проницаемость при 10^{10} Гц и 25^{0} С, не более	10,3	10,1	
Тангенс угла диэлектрических потерь при $10^{10}\ \Gamma$ ц и 25^0 С, не более	15 · 10 ⁻⁴	10-4	
Удельное объемное электрическое сопротивление, Ом·см, при 100°С, не менее	10^{13}	10 ¹⁴	

МЕТАЛЛОКЕРАМИКА			
Свойства	На основе керамики ВК94-1	На основе керамики ВК100- 2	
Швы вакуумплотные	+	+	
Сопротивление изоляции, не менее	10 ¹¹	5•10 ¹²	
Сохранение герметичности	После 5 термоциклов: (25±10) ⁰ C — (600±20) ⁰ C — (25±10) ⁰ C		

лия даже в условиях вакуума.

Корундовая керамика марок ВК94-1 и ВК100-2 обладает высокими электрофизическими свойствами, благодаря чему успешно применяется в радиотехнике и электронике. Среднее значение ее удельного объемного сопротивления при нормальной температуре лежит в пределах 10^{14} – 10^{16} Ом · см, а диэлектрическая проницаемость (tg8) при 100– 200^0 С составляет $2 \cdot 10^{-4}$; а при 300^0 С — $4 \cdot 10^{-4}$.

Благодаря уникальному сочетанию свойств вакуумплотные керамические материалы перспективны для производства и конструирования электронных устройств, особенно вакуумных СВЧ-приборов.

Выпускаемые материалы соответствуют ТУ 11-78 «Керамика вакуум-плотная» Технические условия аЯ0.027.002 ТУ, а металлокерамические изделия на их основе – ОТ0.487.000 ТУ «Изделия металлокерамические. Технические условия».

Основные свойства керамики рассматриваемых марок, а также металлокерамических узлов на их основе [2] приведены в таблице.

Литература

1. www.niivt.ru.

2. Каталог продукции и услуг ФГУП «НИИВТ им. С.А.Векшинского»./Под ред. Романько В.А., Нестерова С.Б., Андросова А.В. – М.:ОМР.ПРИНТ, 2010, с. 32.

ФГУП «НИИВТ им. С.А. Векшинского» Россия, 117105, Москва, Нагорный проезд, д. 7, тел. +7 499 789-97-37, тел./факс + 7-499-123-43-08, info@niivt.ru, www.niivt.ru

