ALGEBRA 1B, Lista 11

Niech R będzie pierścieniem przemiennym z 1 i $n \in \mathbb{N}_{>0}$.

1. Niech $r_1, \ldots, r_n \in R$. Udowodnić, że

$$(r_1,\ldots,r_n)=r_1R+\ldots+r_nR.$$

2. Niech $I \leq R$ oraz

$$\sqrt{I} := \{ a \in R : (\exists n \in \mathbb{N}) (a^n \in I) \}.$$

Udowodnić, że $\sqrt{I} \leq R$.

- 3. Niech $f:R\to S$ będzie homomorfizmem pierścieni przemiennych z 1, $I\leqslant R, J\leqslant S$. Udowodnić, że:
 - $f^{-1}(J) \leqslant R$.
 - Jeśli f jest epimorfizmem, to $f(I) \leq S$.
 - Podać przykład f, I takich, że $f(I) \not \triangleleft S$.
- 4. Znaleźć $f \in \mathbb{Q}[X]$ taki, że $(f) = (X^2 1, X^3 + 1)$.
- 5. Udowodnić, że ideał $(2, X) \leq \mathbb{Z}[X]$ nie jest główny.
- 6. Niech $\phi:R\to S$ będzie epimorfizmem pierścieni, gdzie R jest noetherowski. Udowodnić, że S jest też noetherowski.
- 7. Znaleźć podpierścień $R \subseteq \mathbb{Z}[X]$ taki, że R nie jest noetherowski.
- 8. Niech $d \in \mathbb{C} \setminus \mathbb{Z}$ i $d^2 \in \mathbb{Z}$. Rozważmy funkcję:

$$v: \mathbb{Q}(d) \to \mathbb{Q}, \quad v(n+md) = n^2 - m^2 d^2.$$

Udowodnić, że:

- (a) Dla każdych $\alpha, \beta \in \mathbb{Q}(d)$ mamy $v(\alpha\beta) = v(\alpha)v(\beta)$.
- (b) Dla każdego $\alpha \in \mathbb{Z}[d]$ mamy: $\alpha \in \mathbb{Z}[d]^*$ wtedy i tylko wtedy, gdy $v(\alpha) \in \{-1,1\}.$
- 9. Udowodnić, że pierścień $\mathbb{Z}[\sqrt{2}]$ jest euklidesowy.
- 10. Opisać grupę $\mathbb{Z}[\sqrt{-5}]^*$.
- 11. Udowodnić, że grupa $\mathbb{Z}[\sqrt{2}]^*$ jest nieskończona.
- 12. Tu można znaleźć "Earliest Known Uses of Some of the Words of Mathematics": http://jeff560.tripod.com/mathword.html.