

Algorithm Design and Analysis (H) cs216

Instructor: Shan CHEN (陈杉)

chens3@sustech.edu.cn

(slides edited from Prof. Shiqi Yu)

Network Flow

Maximum Flow Application (Tolstoi 1930s)

• Soviet Union goal. Maximize flow of supplies to Eastern Europe.

Minimum Cut Application (RAND 1950s)

• "Free world" goal. Cut supplies (if Cold War turns into real war).

rail network connecting Soviet Union with Eastern European countries (map declassified by Pentagon in 1999)

Maximum Flow and Minimum Cut

- Max-flow and min-cut problems.
 - Beautiful mathematical duality.
 - Cornerstone problems in combinatorial optimization.
- They are widely applicable models.
 - Data mining, open-pit mining, bipartite matching, network reliability, baseball elimination, image segmentation, network connectivity, Markov random fields, distributed computing, security of statistical data, egalitarian stable matching, network intrusion detection, multi-camera scene reconstruction, sensor placement for homeland security, etc.

1

we will learn some of the applications in next section

1. Max Flow and Min Cut

Flow Network

- A flow network is a tuple G = (V, E, s, t, c).
 - Intuition: material flowing through a transportation network, originating from source and sent to sink.
 - \triangleright Digraph G = (V, E) with source s and sink t, no parallel edges.
 - \triangleright Capacity c(e) \ge 0 for each edge e. assume all nodes are reachable from s

7

Minimum-Cut Problem

- Def. An st-cut (or cut) is a partition (A, B) of V with $s \in A$ and $t \in B$.
- Def. The capacity of a cut (A, B) is $c(A, B) = \sum_{e \ out \ of \ A} c_e$

Minimum-Cut Problem

- Def. An st-cut (or cut) is a partition (A, B) of V with $s \in A$ and $t \in B$.
- Def. The capacity of a cut (A, B) is $c(A, B) = \sum_{e \ out \ of \ A} c_e$

Minimum-Cut Problem

- Def. An st-cut (or cut) is a partition (A, B) of V with $s \in A$ and $t \in B$.
- Def. The capacity of a cut (A, B) is $c(A, B) = \sum_{e \ out \ of \ A} c_e$
- Min-cut problem. Find a cut of minimum capacity.

Maximum-Flow Problem

- Def. An st-flow (or flow) f is a function that satisfies
 - For each $e \in E$: $0 \le f(e) \le c_e$ [capacity]
 - For each $v \in V \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]
- **Def.** The value of a flow f is $v(f) = \sum_{e \ out \ of \ s} f(e)$

Maximum-Flow Problem

- Def. An st-flow (or flow) f is a function that satisfies
 - For each $e \in E$: $0 \le f(e) \le c_e$ [capacity]
 - For each $v \in V \{s, t\}$: $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$ [flow conservation]
- **Def.** The value of a flow f is $v(f) = \sum_{e \ out \ of \ s} f(e)$

Maximum-Flow Problem

- Def. An st-flow (or flow) f is a function that satisfies
- **Def.** The value of a flow f is $v(f) = \sum_{e \ out \ of \ s} f(e)$
- Max-flow problem. Find a flow of maximum value.

2. Ford-Fulkerson Algorithm

Greedy algorithm.

- > Start with f(e) = 0 for all edges $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 0

Greedy algorithm.

- > Start with f(e) = 0 for all edges $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- Augment flow along path P.
- Repeat until you get stuck.

Flow value = 20

Greedy algorithm.

- > Start with f(e) = 0 for all edges $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).
- > Augment flow along path P.
- Repeat until you get stuck.

- Q. Why does the greedy algorithm fail?
- A. Once flow on an edge is increased, it never decreases.

• Bottom line. Need some mechanism to "undo" a bad decision.

18

Residual Network

- Original edge: $e = (u, v) \in E$.
 - \rightarrow Flow f(e), capacity c(e)
- Reverse edge: $e^R = (v, u)$.
 - "Undo" flow sent
- Residual capacity: c_f
 - \triangleright Original edge: $c_f(e) = c(e) f(e)$
 - \triangleright Reverse edge: $c_f(e^R) = f(e)$
- Residual network: $G_f = (V, E_f, s, t, c_f)$.
 - $F_f = \{e: f(e) < c(e)\} \cup \{e^R: f(e) > 0\}$: residual edges with positive residual capacity

flow on a reverse edge negates flow on corresponding original forward edge

• Key property. f' is a flow in G_f iff f + f' is a flow in G.

Augmenting Path

增广路是残军网络中的简单《七路经

- Def. An augmenting path is a simple s-t path in the residual network G_f .
- Def. The bottleneck capacity of an augmenting path *P* is the minimum residual capacity of any edge in *P*. 懷下幾中最小的 capacity
- **Key property.** Let f be a flow and let P be an augmenting path in G_f . Then, after calling $f' \leftarrow \text{Augment}(f, c, P)$, the resulting f' is a flow and $val(f') = val(f) + bottleneck(G_f, P)$.

```
Augment(f, c, P) {
  b = bottleneck(P)
  foreach e ∈ P {
    if (e ∈ E) f(e) = f(e) + b forward edge
    else f(eR) = f(eR) - b reverse edge
  }
  return f
}
```


Ford-Fulkerson Algorithm

Ford-Fulkerson algorithm.

- > Start with f(e) = 0 for each edge $e \in E$.
- Find an s-t path P in the residual network G_f .
- Augment flow along path P.
- Repeat until you get stuck.

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E: f(e) = 0
   G<sub>f</sub> = residual network of G wrt f

while (there exists an augmenting path P) {
   f = Augment(f, c, P)
      update G<sub>f</sub>
   }
   return f
}
```


Ford-Fulkerson Algorithm Demo

3. Max-Flow Min-Cut Theorem

• Flow value lemma. Let f be any flow, and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$v(f) = f^{out}(A) - f^{in}(A)$$

• Flow value lemma. Let f be any flow, and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$v(f) = f^{out}(A) - f^{in}(A)$$

• Flow value lemma. Let f be any flow, and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$v(f) = f^{out}(A) - f^{in}(A)$$

• Flow value lemma. Let f be any flow, and let (A, B) be any cut. Then, the value of the flow f equals the net flow across the cut (A, B).

$$v(f) = f^{out}(A) - f^{in}(A) \qquad v(f) = f^{in}(B) - f^{out}(B)$$

• Pf.

$$v(f) = \sum_{e \text{ out of } s} f(e) = f^{out}(s) = f^{out}(s) - f^{in}(s) = 0$$

$$= \sum_{v \in A} (f^{out}(v) - f^{in}(v)) \qquad f^{out}(v) - f^{in}(v) = 0$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ into } A} f(e) = f^{out}(A) - f^{in}(A)$$

• Weak duality. Let f be any flow, and let (A, B) be any cut. Then the value of the flow f is at most the capacity of the cut: $v(f) \le c(A, B)$.

$$c(A,B) = \sum_{e \ out \ of \ A} c_e$$

• Weak duality. Let f be any flow, and let (A, B) be any cut. Then the value of the flow f is at most the capacity of the cut: $v(f) \le c(A, B)$.

• Pf.
$$v(f) = f^{\text{out}}(A) - f^{\text{in}}(A)$$

flow value $\leq f^{\text{out}}(A)$

lemma

$$= \sum_{e \text{ out of } A} f(e)$$

$$\leq \sum_{e \text{ out of } A} c_e$$

$$= c(A, B).$$

Certificate of Optimality

• Corollary. Let f be any flow, and let (A, B) be any cut. If v(f) = c(A, B), then f is a max flow and (A, B) is a min cut.

Max-Flow Min-Cut Theorem

- Max-flow min-cut theorem. [Ford-Fulkerson 1956] Value of a max flow is equal to capacity of a min cut.
- Augmenting path theorem. Flow f is a max flow iff no augmenting paths.
- Pf. We prove both by showing the following are equivalent:
 - (i) There exists a cut (A, B) such that v(f) = c(A, B).
 - (ii) f is a max flow.
 - (iii) There is no augmenting path with respect to f.
 - (i) \Rightarrow (ii): This is the weak duality corollary.
 - (ii) \Rightarrow (iii): We prove the contrapositive.
 - Let f be a flow. If there exists an augmenting path, then we can improve flow f by sending flow along this path. Then, f is not a max flow. Contradiction!

Max-Flow Min-Cut Theorem

• Pf continued.

- (i) There exists a cut (A, B) such that v(f) = c(A, B).
- (iii) There is no augmenting path with respect to f.

(iii)
$$\Rightarrow$$
 (i):

- Let f be a flow with no augmenting paths.
- \triangleright Let A = set of nodes reachable from s in residual network G_f .
- \triangleright By definition of A: $s \in A$. By definition of flow f: $t \notin A$.

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$
flow value lemma $= \sum_{e \text{ out of } A} c(e) - 0$
 $= cap(A, B)$

Max-Flow Min-Cut Theorem

• Pf continued.

- (i) There exists a cut (A, B) such that v(f) = c(A, B).
- (iii) There is no augmenting path with respect to f.

(iii)
$$\Rightarrow$$
 (i):

given any max flow f (then no augmenting path) can find a min cut in O(m) time

- \triangleright Let f be a flow with no augmenting paths.
- \triangleright Let A = set of nodes reachable from s in residual network G_f .
- \triangleright By definition of A: $s \in A$. By definition of flow f: $t \notin A$.

$$val(f) = \sum_{e ext{ out of } A} f(e) - \sum_{e ext{ in to } A} f(e)$$
flow value lemma $= \sum_{e ext{ out of } A} c(e) - 0$
 $= cap(A, B)$

original flow network G

4. Capacity-Scaling Algorithm

Ford-Fulkerson Algorithm: Analysis

- Assumption. Every edge capacity c_e is an integer between 1 and C.
- Integrality invariant. Throughout FF, every edge flow f(e) and residual capacity $c_f(e)$ are integers.
- Theorem. FF terminates after at most $val(f^*) \le nC$ augmenting paths, where f^* is a max flow.
 - Pf. Each augmentation increases the value of the flow by at least 1. •
- Corollary. The running time of FF is O(mnC).
 - **Pf.** Can use either BFS or DFS to find an augmenting path in O(m) time. •
- Integrality theorem. There exists an integral max flow f^* .
 - **Pf.** Since FF always terminates when capacities are integral, theorem follows from integrality invariant (and augmenting path theorem).

Ford-Fulkerson: Exponential Example

- Q. Is generic Ford-Fulkerson algorithm polynomial in input size?
- A. No. If max capacity is C, then algorithm can take 2C iterations.

Choosing Good Augmenting Paths

- Use care when selecting augmenting paths.
 - Some choices lead to exponential algorithms.
 - Clever choices lead to polynomial algorithms.
- Note. If capacities can be irrational, FF may not terminate or converge!
- Goal. Choose augmenting paths so that:
 - Can find augmenting paths efficiently.
 - Few iterations.
- Choose augmenting paths with:
 - Max bottleneck capacity ("fattest"). ← how to find?
 - Sufficiently large bottleneck capacity. ← coming next
 - Fewest number of edges. [Edmonds-Karp 1972, Dinitz 1970]

next section

though capacities are rational in practice

FF could still run in exponential time

invented in response to a class

exercise by Adel'son-Vel'skii

Capacity-Scaling Algorithm

- Overview. Choosing augmenting paths with "large" bottleneck capacity.
 - \triangleright Maintain scaling parameter \triangle .
 - Let $G_f(\Delta)$ be the subnetwork of the residual network containing only those edges with capacity $\geq \Delta$.
 - \triangleright Any augmenting path in $G_f(\Delta)$ has bottleneck capacity $\geq \Delta$.

not necessarily largest

Capacity-Scaling Algorithm

```
Capacity-Scaling(G, s, t, c) {
   foreach e \in E: f(e) = 0
   \Delta = largest power of 2 \leq C
   G_f = residual network with respect to flow f
   while (\Delta \geq 1) {
       G_f(\Delta) = \Delta-residual network of G with respect to flow f
       while (there exists an augmenting path P in G_f(\Delta)) {
          f = Augment(f, c, P)
          update G_f(\Delta)
       \Delta = \Delta / 2
   return f
```


Capacity-Scaling Algorithm: Correctness

- Assumption. All edge capacities are integers between 1 and C.
- Integrality invariant. Throughout the algorithm, every edge flow f(e) and residual capacity $c_f(e)$ are integers.
- Theorem. If capacity-scaling algorithm terminates, then f is a max flow.
- Pf.
 - \triangleright By integrality invariant, when $\Delta = 1 \Rightarrow G_f(\Delta) = G_f$.
 - \triangleright Upon termination of Δ = 1 phase, there are no augmenting paths. \blacksquare

Capacity-Scaling Algorithm: Running Time

- Lemma 1. The outer while loop repeats $1 + \lfloor \log_2 C \rfloor$ times. Pf. Initially $C/2 < \Delta \le C$; Δ decreases by a factor of 2 each iteration.
- Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow $\leq v(f) + m \Delta$. (Proof on next slide.)
- Lemma 3. There are \leq 2m augmentations per scaling phase. Pf. Let f be the flow at the end of the previous scaling phase Δ '.
 - ► Lemma 2 \Rightarrow maximum flow value \leq v(f) + m Δ ' = v(f) + m(2 Δ).
 - \triangleright Each augmentation in a \triangle -phase increases v(f) by at least \triangle .
- Theorem. The capacity-scaling algorithm takes $O(m^2 \log C)$ time. • Pf. Lemma 1 + Lemma 3 \Rightarrow $O(m \log C)$ augmentations. Finding an augmenting path takes O(m) time.

Capacity-Scaling Algorithm: Running Time

- Lemma 2. Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow $\leq v(f) + m \Delta$.
- Pf. (similar to the proof of max-flow min-cut theorem)
 - \triangleright We show that there exists a cut (A, B) such that c(A, B) \leq v(f) + m Δ .
 - \triangleright Choose A to be the set of nodes reachable from s in $G_f(\Delta)$.
 - \triangleright By definition of A: $s \in A$. By definition of $f: t \notin A$.

$$val(f) = \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e)$$

flow value lemma $\geq \sum_{e \text{ out of } A} (c(e) - \Delta) - \sum_{e \text{ in to } A} \Delta$
 $\geq \sum_{e \text{ out of } A} c(e) - \sum_{e \text{ out of } A} \Delta - \sum_{e \text{ in to } A} \Delta$
 $\geq cap(A, B) - m\Delta$

5. Edmonds-Karp Algorithm

Shortest Augmenting Path (Edmonds-Karp)

- Q. How to choose next augmenting path in Ford-Fulkerson?
- A. Pick one that uses the fewest edges.

can find via BFS

Edmonds-Karp algorithm:

```
Edmonds-Karp(G, s, t, c) {
   foreach e ∈ E: f(e) = 0
   G<sub>f</sub> = residual network of G with respect to flow f

while (there exists an augmenting path P in G<sub>f</sub>) {
   P = Breath-First-Search(G<sub>f</sub>)
   f = Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```


Edmonds-Karp Algorithm: Analysis Overview

- Lemma 1. Length of a shortest augmenting path never decreases.
- Lemma 2. After at most *m* shortest-path augmentations, the length of a shortest augmenting path strictly increases.

- Theorem. The Edmonds-Karp algorithm takes $O(m^2n)$ time.
- Pf.
 - \triangleright O(m) time to find a shortest augmenting path via BFS.
 - \triangleright There are ≤ mn augmentations.
 - ✓ Augmenting paths are simple \Rightarrow at most n-1 different lengths
 - ✓ Lemma 1 + Lemma 2 \Rightarrow at most *m* augmenting paths for each length •

Edmonds-Karp Algorithm: Analysis

- Def. Given a digraph G = (V, E) with source s, its level graph is defined by:
 - \triangleright $\ell(v)$ = number of edges in shortest *s-v* path.
 - \triangleright $L_G = (V, E_G)$ is the subgraph of G that contains only those edges $(v, w) \in E$ such that $\ell(w) = \ell(v) + 1$.

• Key property. P is a shortest s-v path in G iff P is an s-v path in L_G .

all possible shortest s-v paths are captured in L_{G}

Edmonds-Karp Algorithm: Analysis

- Pf of Lemma 1: (Length of a shortest augmenting path never decreases.)
 - \triangleright Let f and f' be flow before and after a shortest-path augmentation.
 - \triangleright Let L_G and $L_{G'}$ be level graphs of G_f and $G_{f'}$. Only reverse edges added to $G_{f'}$.
 - ➤ Any s-t path that uses a reverse edge is longer than previous length. •

Edmonds-Karp Algorithm: Analysis

- Pf of Lemma 2: (After at most *m* shortest-path augmentations, the length of a shortest augmenting path strictly increases.)
 - \triangleright At least one (bottleneck) edge is deleted from L_G per augmentation.
 - \triangleright No new edge added to L_G until no s-t path exists, i.e., shortest length strictly

increases. •

Edmonds-Karp Algorithm: Summary

- Lemma 1. Length of a shortest augmenting path never decreases.
- Lemma 2. After at most *m* shortest-path augmentations, the length of a shortest augmenting path strictly increases.

• Theorem. The Edmonds-Karp algorithm takes $O(m^2n)$ time.

- Note. $\Theta(mn)$ augmentations necessary for some flow networks.
 - Try to decrease time per augmentation instead.
 - ➤ Simple idea $\Rightarrow O(mn^2)$ [Dinitz 1970] \leftarrow next section
 - \triangleright Dynamic trees \Rightarrow O(mnlog n) [Sleator—Tarjan 1983]

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Phase of normal augmentations.
 - \triangleright Construct level graph L_G .
 - \triangleright Start at s, advance along an edge in L_G until reach t or get stuck.
 - \triangleright If reach t, augment flow; update L_G ; and restart from s.
 - \triangleright If get stuck, delete node from L_G and retreat to previous node.

61

(s)

- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - > Special: length of shortest path strictly increases.
- Dinitz's algorithm per normal phase: (as refined by Even and Itai)

```
Dinitz-Normal-Phase(G<sub>f</sub>, s, t) {
                                                 Advance(v) {
   L_{G} = level graph of Gf
                                                     if (v = t)
   P = empty path
                                                        f = Augment(f, c, P)
   Advance(s)
                                                        remove bottleneck edges from L<sub>c</sub>
                                                        P = empty path
                                                        Advance(s)
Retreat(v) {
                                                     if (there exists (v, w) \in L_G)
   if (v = s) return
                                                        add edge (v, w) to P
   else
                                                        Advance (w)
       delete v and incident edges from L<sub>G</sub>
       remove last edge (u, v) from P
                                                     Retreat(v)
      Advance (u)
```


- Two types of augmentations.
 - Normal: length of shortest path does not change.
 - Special: length of shortest path strictly increases.
- Dinitz's algorithm:

```
Dinitz(G, s, t, c) {
   foreach e ∈ E: f(e) = 0
   G<sub>f</sub> = residual network of G with respect to flow f

   while (there exists an augmenting path P in G<sub>f</sub>) {
        Dinitz-Normal-Phase(G<sub>f</sub>, s, t)
   }
   return f
}
```


Dinitz's Algorithm: Analysis

- Lemma. A phase can be implemented to run in O(mn) time.
- Pf.
 - \triangleright Initialization happens once per phase. \leftarrow O(m) using BFS
 - At most m augmentations per phase. $\leftarrow O(mn)$ per phase (because an augmentation deletes at least one edge from L_G)
 - At most *n* retreats per phase. $\leftarrow O(m + n)$ per phase (because a retreat deletes one node and all incident edges from L_G)
 - At most mn advance calls per phase. $\leftarrow O(mn)$ per phase (because at most n advances before retreat or augmentation)
- Theorem. [Dinitz 1970] Dinitz' algorithm runs in $O(mn^2)$ time.
- Pf. There are at most n-1 phases and each phase runs in O(mn) time. •

Augmenting-Path Algorithms: Summary

year	method	# augmentations	running time			
1955	augmenting path	n C	O(m n C)			
1972	fattest path	$m \log (mC)$	$O(m^2 \log n \log (mC))$	7		
1972	capacity scaling	$m \log C$	$O(m^2 \log C)$	fat paths		
1985	improved capacity scaling	$m \log C$	$O(m n \log C)$			
1970	shortest augmenting path	m n	$O(m^2 n)$	7		
1970	level graph	m n	$O(m n^2)$	shortest paths		
1983	dynamic trees	m n	$O(m n \log n)$] '		
augmenting-path algorithms with m edges, n nodes, and integer capacities between 1 and C						

Max-Flow Algorithms: Theory Highlights

year	method	worst case	discovered by
1951	simplex	$O(m n^2 C)$	Dantzig
1955	augmenting paths	O(m n C)	Ford–Fulkerson
1970	shortest augmenting paths	$O(m n^2)$	Edmonds-Karp, Dinitz
1974	blocking flows	$O(n^3)$	Karzanov
1983	dynamic trees	$O(m \ n \log n)$	Sleator–Tarjan
1985	improved capacity scaling	$O(m n \log C)$	Gabow
1988	push-relabel	$O(m n \log (n^2 / m))$	Goldberg–Tarjan
1998	binary blocking flows	$O(m^{3/2}\log{(n^2/m)}\log{C})$	Goldberg–Rao
2013	compact networks	O(m n)	Orlin
2014	interior-point methods	$\tilde{O}(mn^{1/2}\logC)$	Lee–Sidford
2016	electrical flows	$\tilde{O}(m^{10/7} C^{1/7})$	Mądry
20xx		35 <u>5</u>	

 \max -flow algorithms with \min edges, \min nodes, and integer capacities between 1 and C

Max-Flow Algorithms: Practice

- Caveat. Worst-case running time is generally not useful for predicting or comparing max-flow algorithm performance in practice.
- Best in practice. Push-relabel algorithm [Goldberg-Tarjan 1988] with gap relabeling: $O(m^{3/2})$ in practice. [Textbook, Section 7.4]
 - > Increases flow one edge at a time instead of one augmenting path at a time.

• Computer vision. Different algorithms work better for some dense problems that arise in applications to computer vision.

Implementation. MATLAB, Google OR-Tools, etc.

