数学分析作业3月7日交

May 5, 2019

习题 6.1 1. 解 (2) \forall 分割 π . $M_i = x_i$, $m_i = 0$. so $S(\pi) = \sum_{i=1}^n x_i(x_i - x_{i-1}) \xrightarrow{[||\pi||]} \int_0^1 x dx = \frac{1}{2}$. $s(\pi) = 0 \Rightarrow$ $\int_0^1 f dx = \frac{1}{2}, \int_0^1 f dx = 0$. 所以不可积。 (4) 当 $\frac{1}{x} \in [n, n+1)$ 时, $\left[\frac{1}{x}\right] = n$. 故在 $\left(\frac{1}{n+1}, \frac{1}{n}\right]$ 上, $f(x) = \frac{1}{x} - n$. 所有间断点为 $\{0\} \cup \{\frac{1}{n}\}_{n=1}^{\infty}$. 可知 $f \in R[0,1]$. 证明. h := g - f. 则 h 在有限外个点外 $\equiv 0 \Rightarrow h$ 在有限个点外连续 $\Rightarrow h \in R[a,b]$. 证明. 如果 $\exists \epsilon_0 > 0$, $s.t. \ \forall [\alpha, \beta] \subset [0, 1], \exists x \in [\alpha, \beta], \ for \ f(x) \ge \epsilon_0 \ \bigcup \ \bar{\int}_a^1 f(x) dx \ge \epsilon_0 > 0.$ 矛盾。 8. 证明. 对分割 π 的一段 $[x_{i-1},x_i]$,有 $w_i(\frac{1}{f})=\sup_{x,y\in[x_{i-1},x_i]}|\frac{1}{f(x)}-\frac{1}{f(y)}|$. 而 $|\frac{1}{f(x)}-\frac{1}{f(y)}|=$ $\frac{|f(x)-f(y)|}{f(x)f(y)} \le \frac{1}{C^2}|f(x)-f(y)| \Rightarrow w_i(\frac{1}{f}) \le \frac{1}{C^2}w_i(f). \ \forall \epsilon > 0, \ \text{由} \ f \in R[a,b], \ \exists \,$ 分割 $\pi, \ s.t. \ \sum_i w_i(f) \triangle x_i < 0$ $C^2\epsilon$. 于是 $\sum_i w_i(\frac{1}{\ell}) \triangle x_i \leq \sum_i w_i(f) \triangle x_i < \epsilon$. 证明. \bar{f} 与 f 单调! 证明. 令 $D = \{x \in [a,b] | f(x) \neq g(x) \}$. 则 $\forall \epsilon > 0, \exists \delta > 0, s.t. if ||\pi|| < \delta 就有$ $|\sum_i f(\xi_i) \triangle x_i - I| < \epsilon, \ \forall \xi_i \in [x_{i-1}, x_i]. \ |\sum_i f(g(\eta_i) \triangle x_i - J| < \epsilon, \ \forall \eta_i \in [x_{i-1}, x_i]. \ \text{mu}$ $\int_{a}^{b} g(x)dx = J \neq I. \quad \text{取 } \epsilon < \frac{|I-J|}{2}. \quad \text{不妨设 } J < I. \quad \text{注意 } D^{0} \cap [x_{i-1}, x_{i}] \neq \emptyset, \forall i \text{ 取 } \xi_{i} \in [x_{i-1}, x_{i}]/D$ 则 $f(\xi_i) = g(\xi_i)$. 于是 $J - \epsilon < \sum_i g(\xi_i) \triangle x_i < J + \epsilon < I - \epsilon < \sum_i f(\xi_i) \triangle x_i = \sum_i g(\xi_i) \triangle x_i$. 矛 盾。 11.

证明. 由 Lebesgue 定理, $\exists x_0 \in [a,b] \ s.t. \ f \ c.x_0$ 连续。设 $f(x_0) = A > 0$. 于是 $\exists [\alpha,\beta] \subset [a,b] \ s.t. \ \forall x \in [\alpha,\beta], f(x) > \frac{A}{2}$. $\forall \beta \exists \pi \ s.t. \ \alpha,\beta$ 是分点, $f(x) \geq \frac{A}{2}(\beta-\alpha) > 0$, but $\int_a^b f(x) dx = \int_a^b f(x) dx \geq s(\pi) \geq \frac{A}{2}(\beta-\alpha) > 0$. □ 习题 6.2

2.

证明. 利用 \sqrt{x} 在 $[0,\infty)$ 的连续性可知 $D_{|f|} \subset D_{f^2}$. $f^2 \in R[a,b] \Rightarrow D_{f^2}$ 零测 $\Rightarrow D_{|f|}$ 零测 $\Rightarrow |f| \in R[a,b]$. 另证: 用 Riemann 的判别法 + 例 6.1: 3 之方法。

3. 例子:

$$sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$
 (1)

$$R(x) = \begin{cases} \frac{1}{\epsilon}, & x = \frac{p}{q} \\ 1, & x = 0, 1 \\ 0, & x \in \mathbb{Q}^c \end{cases}$$
 (2)

则

$$sgn \circ R(x) = \begin{cases} 1, & x \in \mathbb{Q}, \\ 0, & x \in \mathbb{Q}^c \end{cases}$$
 (3)

不可积。