

Technische Universität Berlin

Fakultät I - Geisteswissenschaften Fachgebiet Audiokommunikation Audiokommunikation und -technologie M.Sc.

Self-Organizing Maps for Sound Corpus Organization

MASTER'S THESIS

Vorgelegt von: Jonas Margraf

Matrikelnummer: 372625

E-Mail: jonasmargraf@me.com

Erstgutachter: Prof. Dr. Stefan Weinzierl

Zweitgutachter: Dr. Diemo Schwarz **Datum**: February 7, 2019

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und eigen-
händig sowie ohne unerlaubte fremde Hilfe und ausschließlich unter Verwen-
dung der aufgeführten Quellen und Hilfsmittel angefertigt habe.
Berlin, den February 7, 2019

Jonas	Μ	ar	g	ra	ıf									

Zusammenfassung	Die Zusammen	fassung auch au	f Deutsch.	

Acknowledgements

This is where the thank yous go.

Contents

1		oducti			1
	1.1			Problem Description	
	1.2			ctives	
	1.3	Previo	ous Work		. 1
2	Bac	kgroui	nd		2
	2.1	_		Extraction	
		2.1.1		nentals	
		2.1.2		Pre-Processing	
		2.1.3		omain Features	
			2.1.3.1	Root Mean Square (RMS)	
			2.1.3.2	Zero-Crossing Rate (ZCR)	
		2.1.4	Frequence	cy-Domain Features	
			2.1.4.1	Spectral Centroid	
			2.1.4.2	Spectral Flatness	
			2.1.4.3	Spectral Kurtosis	
			2.1.4.4	Spectral Skewness	
			2.1.4.5	Spectral Slope	
			2.1.4.6	Spectral Spread	
			2.1.4.7	Spectral Rolloff	
		2.1.5	Perceptu	ual Features	
			2.1.5.1		
	2.2	Self-O	rganzing	Map	. 2
3	Imp	lemen	tation		3
	3.1	Groun	ndwork: C	CataRT Extension	
	3.2	SOM	Browser		. 3
4	Eva	luatioi	n		4
_	4.1			M-Induced Quantization	
	4.2		_	Similarity Survey	
	4.3			User Interviews	
5	Res	111tc			F
J	Ites	uius			٠
6	Disc	cussior	ı		6
	6.1	Outlo	ok		. 6
7	Ref	erence	s		7

Appendices	9
A LaTeX Sources	9
B Thesis Bibliography	9
Glossary	I
Acronyms	I
List of Figures	II
List of Listings	III
List of Tables	IV
Digital Resource	\mathbf{V}

1 Introduction 1

1 Introduction

This is the Introduction. Here's a citation about Self-Organizing Maps (SOMs)(Kohonen, 1990).

- 1.1 Motivation and Problem Description
- 1.2 Aims and Objectives
- 1.3 Previous Work

2 Background 2

2 Background

This is the Background section.

2.1 Audio Feature Extraction

- 2.1.1 Fundamentals
- 2.1.2 Audio Pre-Processing
- 2.1.3 Time-Domain Features
- **2.1.3.1 Root Mean Square (RMS)** Root Mean Square (RMS) goes here.
- 2.1.3.2 Zero-Crossing Rate (ZCR)
- 2.1.4 Frequency-Domain Features
- 2.1.4.1 Spectral Centroid
- 2.1.4.2 Spectral Flatness
- 2.1.4.3 Spectral Kurtosis
- 2.1.4.4 Spectral Skewness
- 2.1.4.5 Spectral Slope
- 2.1.4.6 Spectral Spread
- 2.1.4.7 Spectral Rolloff
- 2.1.5 Perceptual Features
- 2.1.5.1 Loudness

2.2 Self-Organzing Map

Something about SOMs and also neurons have IDs.

3 Implementation 3

3 Implementation

This is the Implementation.

3.1 Groundwork: CataRT Extension

3.2 SOM Browser

4 Evaluation 4

4 Evaluation

This is the Evaluation.

4.1 Measuring SOM-Induced Quantization

- 4.2 Online Sound Similarity Survey
- 4.3 Semistructured User Interviews

5 Results 5

5 Results

This is the Results section.

6 Discussion 6

6 Discussion

This is the Discussion.

6.1 Outlook

7 References 7

7 References

Bauer, H-U and R Der (1996): "Controlling the magnification factor of self-organizing feature maps." In: *Neural computation*, 8(4), pp. 757–771.

- DeSieno, Duane (1988): "Adding a conscience to competitive learning." In: *IEEE international conference on neural networks*, vol. 1. Institute of Electrical and Electronics Engineers New York, pp. 117–124.
- Fasciani, Stefano (2016): "TSAM: a tool for analyzing, modeling, and mapping the timbre of sound synthesizers." In: .
- Fiebrink, Rebecca and Baptiste Caramiaux (2016): "The machine learning algorithm as creative musical tool." In: *Handbook of Algorithmic Music*.
- Fried, Ohad; Zeyu Jin; Reid Oda; and Adam Finkelstein (2014): "AudioQuilt: 2D Arrangements of Audio Samples using Metric Learning and Kernelized Sorting." In: *NIME*. pp. 281–286.
- Gillet, Olivier and Gaël Richard (2006): "ENST-Drums: an extensive audiovisual database for drum signals processing." In: *ISMIR*. pp. 156–159.
- Goto, Masataka; Hiroki Hashiguchi; Takuichi Nishimura; and Ryuichi Oka (2002): "RWC Music Database: Popular, Classical and Jazz Music Databases." In: *ISMIR*, vol. 2. pp. 287–288.
- Kohonen, Teuvo (1990): "The self-organizing map." In: *Proceedings of the IEEE*, **78**(9), pp. 1464–1480.
- Kohonen, Teuvo (1997): "Exploration of very large databases by selforganizing maps." In: *Proceedings of International Conference on Neural* Networks (ICNN'97), vol. 1. IEEE, pp. PL1-PL6.
- Lazar, Jonathan; Jinjuan Heidi Feng; and Harry Hochheiser (2017): Research methods in human-computer interaction. Morgan Kaufmann.
- Lerch, Alexander (2012): An introduction to audio content analysis: Applications in signal processing and music informatics. Wiley-IEEE Press.
- Lykartsis, Athanasios (2014): Evaluation of accent-based rhythmic descriptors for genre classification of musical signals. Master's thesis, Master's thesis, Audio Communication Group, Technische Universität Berlin
- Mayring, Philipp (2010): "Qualitative Inhaltsanalyse." In: *Handbuch qualitative Forschung in der Psychologie*. Springer, pp. 601–613.

7 References 8

Merenyi, Erzsbet; Abha Jain; and Thomas Villmann (2007): "Explicit magnification control of self-organizing maps for "forbidden" data." In: *IEEE Transactions on Neural Networks*, **18**(3), pp. 786–797.

- Moffat, David; David Ronan; Joshua D Reiss; et al. (2015): "An evaluation of audio feature extraction toolboxes." In: .
- Rawlinson, Hugh; Nevo Segal; and Jakub Fiala (2015): "Meyda: an audio feature extraction library for the web audio api." In: The 1st Web Audio Conference (WAC). Paris, Fr.
- Scholler, Simon and Hendrik Purwins (2010): "Sparse coding for drum sound classification and its use as a similarity measure." In: *Proceedings of 3rd international workshop on Machine learning and music.* ACM, pp. 9–12.
- Shier, Jordie; Kirk McNally; and George Tzanetakis (2017): "Analysis of Drum Machine Kick and Snare Sounds." In: Audio Engineering Society Convention 143. Audio Engineering Society.
- Vagias, Wade M (2006): "Likert-type Scale Response Anchors. Clemson International Institute for Tourism." In: & Research Development, Department of Parks, Recreation and Tourism Management, Clemson University.
- Vesanto, Juha; Johan Himberg; Esa Alhoniemi; and Juha Parhankangas (2000): "SOM toolbox for Matlab 5." In: *Helsinki University of Technology, Finland*, p. 109.
- Villmann, Thomas and Jens Christian Claussen (2006): "Magnification control in self-organizing maps and neural gas." In: *Neural Computation*, **18**(2), pp. 446–469.

Appendices

A LaTeX Sources

The \LaTeX sources for this work can be found in XXX.

B Thesis Bibliography

The references used in this work can be found in XXX.

Glossary

ID A name or number that identifies an object.

Acronyms

RMS Root Mean Square.

SOM Self-Organizing Map.

List of Figures

List of Listings

List of Tables

Digital Resource

This page holds a data disk.