Estimação: (A) Propriedades e Distribuições Amostrais

Wagner H. Bonat Fernando P. Mayer Elias T. Krainski

Universidade Federal do Paraná Departamento de Estatística Laboratório de Estatística e Geoinformação

Sumário

- Introdução
- Estimação pontua
 - Parâmetros, estimadores e estimativas
 - Propriedades dos estimadores
- Oistribuições amostrais
 - Introdução
 - Distribuição amostral da média
 - Distribuição amostral da proporção
- 4 Exercícios

Inferência estatística

Seja X uma variável aleatória com função densidade (ou de probabilidade) denotada por $f(x,\theta)$, em que θ é um parâmetro desconhecido. Chamamos de **inferência estatística** o problema que consiste em especificar um ou mais valores para θ , baseado em um conjunto de valores X.

A inferência pode ser feita de duas formas:

- estimativa pontual
- estimativa intervalar

Redução de dados

Um experimentador usa as informações em uma amostra aleatória X_1, \ldots, X_n para se fazer inferências sobre θ .

Normalmente n é grande e fica inviável tirar conclusões baseadas em uma longa **lista** de números.

Por isso, um dos objetivos da inferência estatística é **resumir** as informações de uma amostra, da maneira mais **compacta** possível, mas que ao mesmo tempo seja também **informativa**.

Normalmente esse resumo é feito por meio de **estatísticas**, por exemplo, a média amostral e a variância amostral.

4 / 54

População e amostra

O conjunto de valores de uma característica associada a uma coleção de indivíduos ou objetos de interesse é dito ser uma população.

Uma sequência X_1,\ldots,X_n de n variáveis aleatórias independentes e identicamente distribuídas (iid) com função densidade (ou de probabilidade) $f(x,\theta)$ é dita ser uma amostra aleatória de tamanho n da distribuição de X.

Como normalmente n > 1, então temos que a fdp ou fp conjunta será

$$f(\mathbf{x}, \boldsymbol{\theta}) = f(x_1, \dots, x_n, \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i, \boldsymbol{\theta}).$$

População e amostra

Sumário

- Introdução
- Estimação pontual
 - Parâmetros, estimadores e estimativas
 - Propriedades dos estimadores
- Oistribuições amostrais
 - Introdução
 - Distribuição amostral da média
 - Distribuição amostral da proporção
- 4 Exercícios

8 / 54

Parâmetro e Estatística

População \rightarrow censo \rightarrow parâmetro

Uma medida numérica que descreve alguma característica da **população**, usualmente representada por letras gregas: θ , μ , σ , . . .

Exemplo: média populacional = μ

População o amostra o estatística

Uma medida numérica que descreve alguma característica da **amostra**, usualmente denotada pela letra grega do respectivo parâmetro com um acento circunflexo: $\hat{\theta}$, $\hat{\mu}$, $\hat{\sigma}$, ..., ou por letras do alfabeto comum: \bar{x} , s, ...

Exemplo: média amostral = \bar{x}

Parâmetros

É importante notar que um parâmetro não é restrito aos modelos de probabilidade. Por exemplo:

- $X \sim N(\mu, \sigma^2) \Rightarrow \text{parâmetros: } \mu, \sigma^2$
- $Y \sim \mathsf{Poisson}(\lambda) \Rightarrow \mathsf{parâmetro}: \lambda$
- $Y = \beta_0 + \beta_1 X \Rightarrow \text{parâmetros: } \beta_0, \beta_1$
- $L_t = L_{\infty}[1 e^{-k(t-t_0)}] \Rightarrow \text{parâmetros}$: L_{∞} , k, t_0

Estatística

Qualquer função da amostra que não depende de parâmetros desconhecidos é denominada uma estatística, denotada por $T(\mathbf{X}) = T(X_1, X_2, \dots, X_n)$

Exemplos:

•
$$T_1(X) = \sum_{i=1}^n X_i = X_1 + X_2 + \cdots + X_n$$

•
$$T_2(\mathbf{X}) = \prod_{i=1}^n X_i = X_1 \cdot X_2 \cdots X_n$$

•
$$T_3(\mathbf{X}) = X_{(1)}$$

•
$$T_4(\mathbf{X}) = \sum_{i=1}^{n} (X_i - \mu)^2$$

Estatística

Qualquer função da amostra que não depende de parâmetros desconhecidos é denominada uma estatística, denotada por $T(\mathbf{X}) = T(X_1, X_2, \dots, X_n)$

Exemplos:

•
$$T_1(X) = \sum_{i=1}^n X_i = X_1 + X_2 + \cdots + X_n$$

•
$$T_2(\mathbf{X}) = \prod_{i=1}^n X_i = X_1 \cdot X_2 \cdots X_n$$

•
$$T_3(\mathbf{X}) = X_{(1)}$$

•
$$T_4(\mathbf{X}) = \sum_{i=1}^{n} (X_i - \mu)^2$$

Verificamos que T_1 , T_2 , T_3 são estatísticas, mas T_4 não.

Como é uma função da amostra, então uma estatística também é uma variável aleatória o distribuições amostrais

Estimador

Espaço paramétrico

O conjunto Θ em que θ pode assumir seus valores é chamado de **espaço** paramétrico

Estimador

Qualquer estatística que assume valores em Θ é um estimador para θ .

Estimador pontual

Dessa forma, um **estimador pontual** para θ é qualquer estatística que possa ser usada para estimar esse parâmetro, ou seja,

$$\hat{\theta} = T(X)$$

LEG/DEST/UFPR

Estimador

Observações:

- Todo estimador é uma estatística, mas nem toda estatística é um estimador.
- O valor assumido pelo estimador pontual é chamado de estimativa pontual,

$$\hat{\theta} = T(\mathbf{X}) = T(X_1, \dots, X_n) = t$$

ou seja, o estimador é uma **função** da amostra, e a estimativa é o **valor observado** de um estimador (um número) de uma amostra particular.

A ideia geral por trás da estimação pontual é muito simples:

Quando a amostragem é feita a partir de uma população descrita por uma função $f(x,\theta)$, o conhecimento de θ a partir da amostra, gera todo o conhecimento para a população.

Dessa forma, é natural que se procure um **método** para se achar um **bom** estimador para θ .

Existem algumas **propriedades** que definem o que é um bom estimador, ou o "**melhor**" estimador entre uma série de candidatos.

Localização do problema: Considere X_1, \ldots, X_n uma amostra aleatóra de uma variável aleatória X com fdp ou fp $f(x, \theta)$, $\theta \in \Theta$. Sejam:

$$\hat{\theta}_1 = T_1(X_1, ..., X_n)$$
 $\hat{\theta}_2 = T_2(X_1, ..., X_n)$

Qual dos dois estimadores pontuais é **melhor** para θ ?

Como não conhecemos θ , não podemos afirmar que $\hat{\theta}_1$ é melhor do que $\hat{\theta}_2$ e vice-versa.

O problema da estimação pontual é então escolher um estimador $\hat{\theta}$ que se aproxime de θ segundo algumas **propriedades**.

Exemplo 1: Considere uma amostra aleatória (X_1, \ldots, X_n) de uma variável aleatória $X \sim N(\mu = 3, \sigma^2 = 1)$ e os estimadores pontuais para μ

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 e $\hat{\theta}_2 = \frac{X_{(1)} + X_{(n)}}{2}$

Qual dos dois estimadores pode ser considerado como o **melhor** para estimar o verdadeiro valor de μ ?

Considere os seguintes pseudo-códigos para um estudo de simulação do comportamento destes dois estimadores:

Pseudo-código 1

- ullet Simule uma amostra de tamanho n=10 da distribuição considerada
- Para essa amostra, calcule a média $(\hat{\theta}_1)$ e o ponto médio $(\hat{\theta}_2)$
- Repita os passos (1) e (2) acima m=1000 vezes
- Faça um gráfico da densidade das m=1000 estimativas de $\hat{\theta}_1$ e $\hat{\theta}_2$ e verifique seu comportamento

Pseudo-código 2

- Simule amostras de tamanhos (n) 2, 3, 5, 10, 20, 50, 100, 500, 1000 da distribuição considerada
- ullet Para cada amostra de tamanho n, calcule a média $(\hat{ heta}_1)$ e o ponto médio $(\hat{ heta}_2)$
- Repita os passos (1) e (2) acima m=100 vezes
- Faça um gráfico das m=100 estimativas de $\hat{\theta}_1$ e $\hat{\theta}_2$ para cada tamanho de amostra n e verifique seu comportamento

LEG/DEST/UFPR Estimação: Parte A 16 / 54

Estimação pontual: Pseudo-código 1 - $X \sim N(3,1)$

LEG/DEST/UFPR

Estimação pontual: Pseudo-código 2 - $X \sim N(3,1)$

Tamanho da amostra (escala log)

LEG/DEST/UFPR

Exemplo 2: Considere uma amostra aleatória (X_1, \ldots, X_n) de uma variável aleatória $Y \sim \mathsf{U}(\mathsf{min} = 2, \mathsf{max} = 4)$ (distribuição uniforme no intervalo [2,4]) e os estimadores pontuais para μ

$$\hat{\theta}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$
 e $\hat{\theta}_2 = \frac{X_{(1)} + X_{(n)}}{2}$

Qual dos dois estimadores pode ser considerado como o **melhor** para estimar a média de Y?

Estimação pontual: Pseudo-código 1 - $Y \sim U(2,4)$

LEG/DEST/UFPR

Estimação pontual: Pseudo-código 2 - $Y \sim U(2,4)$

Tamanho da amostra (escala log)

Propriedades dos estimadores

De modo geral, um "bom" estimador deve ser:

- Não viciado
- Consistente
- Eficiente

Propriedades dos estimadores: 1. Vício

Erro quadrático médio (EQM)

O Erro Quadrático Médio (EQM) de um estimador $\hat{\theta}$ de θ é dado por

$$\begin{aligned} \mathsf{EQM}[\hat{\theta}] &= \mathsf{E}[(\hat{\theta} - \theta)^2] \\ &= \mathsf{Var}[\hat{\theta}] + \mathsf{B}[\hat{\theta}]^2 \end{aligned}$$

onde

$$\mathsf{B}[\hat{\theta}] = \mathsf{E}[\hat{\theta}] - \theta$$

é denominado de **vício** do estimador $\hat{\theta}$. Portanto, dizemos que um estimador é **não viciado** para θ quando

$$B[\hat{\theta}] = 0 \quad \Rightarrow \quad E[\hat{\theta}] = \theta$$

Propriedades dos estimadores: 1. Vício

Estimador não viciado

Seja (X_1, \ldots, X_n) , uma amostra aleatória de uma variável aleatória com fdp ou fp $f(x, \theta)$, $\theta \in \Theta$, dizemos que o estimador $\hat{\theta} = T(\mathbf{X})$ é não viciado para θ se

$$\mathsf{E}[\hat{\theta}] = \mathsf{E}[\mathsf{T}(\mathsf{X})] = \theta \qquad \forall \, \theta \in \Theta$$

Um estimador $\hat{\theta}$ é dito assintoticamente não viciado se

$$\lim_{n\to\infty} \mathsf{E}[\hat{\theta}] = \theta$$

Ou seja, para grandes amostras, $\hat{\theta}$ passa a ser imparcial.

Propriedades dos estimadores: 2. Consistência

Estimador consistente

Seja (X_1, \ldots, X_n) , uma amostra aleatória de uma variável aleatória com fdp ou fp $f(x, \theta)$, $\theta \in \Theta$, o estimador $\hat{\theta} = T(\mathbf{X})$ é consistente para θ se satisfaz simultaneamente

$$\lim_{n\to\infty} \mathsf{E}[\hat{\theta}] = \theta$$

е

$$\lim_{n\to\infty} \mathsf{Var}[\hat{\theta}] = 0$$

Propriedades dos estimadores

Exemplo: média amostral $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ como estimador da média populacional μ :

$$\mathsf{E}(\bar{x}) = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^{n}x_{i}\right] = \mu$$

$$Var(\bar{x}) = Var\left[\frac{1}{n}\sum_{i=1}^{n}x_i\right] = \frac{\sigma^2}{n}$$

Portanto \bar{x} é um estimador **não viciado** e **consistente** para μ .

Propriedades dos estimadores

Exemplo: variância amostral $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2$ como estimador da variância populacional σ^2 :

$$\mathsf{E}(\hat{\sigma}^2) = \mathsf{E}\left[\frac{1}{n}\sum_{i=1}^n(x_i - \bar{x})^2\right] = \left(\frac{n-1}{n}\right)\sigma^2$$

Portanto $\hat{\sigma}^2$ é um estimador **viciado** para σ^2 . (Embora seja um estimador **assintoticamente** não viciado).

Para eliminar esse vício, podemos definir então um novo estimador:

$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$$
, e

$$\mathsf{E}(S^2) = \mathsf{E}\left[\frac{1}{n-1}\sum_{i=1}^n (x_i - \bar{x})^2\right] = \sigma^2$$

que é então um estimador **não viciado** para σ^2 .

Propriedades dos estimadores: 3. Eficiência

Eficiência relativa

Sejam $\hat{\theta}_1 = T_1(\mathbf{X})$ e $\hat{\theta}_2 = T_2(\mathbf{X})$ dois estimadores pontuais **não viciados** para θ . A eficiência relativa de $\hat{\theta}_1$ em relação a $\hat{\theta}_2$ é

$$\mathsf{ER}[\hat{\theta}_1,\hat{\theta}_2] = \frac{\mathsf{Var}[\hat{\theta}_1]}{\mathsf{Var}[\hat{\theta}_2]}$$

Se:

- ullet ER $[\hat{ heta}_1,\hat{ heta}_2]>1\Rightarrow\hat{ heta}_2$ é mais eficiente
- $\mathsf{ER}[\hat{\theta}_1,\hat{\theta}_2] < 1 \Rightarrow \hat{\theta}_1$ é mais eficiente

Exemplo 7.11

Uma amostra (X_1, \ldots, X_n) é retirada de uma população com $X \sim N(\mu, \sigma^2)$, e dois estimadores são propostos para μ :

$$\hat{\mu}_1 = \bar{X}$$
 e $\hat{\mu}_2 = \mathsf{mediana}(X_1, \dots, X_n)$

Qual dos dois é melhor para μ ?

Exemplo 7.11

Podemos notar que

$$\mathsf{E}(\hat{\mu}_1) = \mathsf{E}(\bar{X}) = \mu$$
 $\mathsf{Var}(\hat{\mu}_1) = \mathsf{Var}(\bar{X}) = \sigma^2/n$

$$\mathsf{E}(\hat{\mu}_2) = \mathsf{E}(\mathsf{mediana}(X_1,\ldots,X_n)) = \mu$$
 $\mathsf{Var}(\hat{\mu}_2) = \mathsf{Var}(\mathsf{mediana}(X_1,\ldots,X_n)) = (\pi/2)(\sigma^2/n)$

Portanto, ambos são estimadores não viciados e consistentes. Mas:

$$\mathsf{ER}[\hat{\mu}_1, \hat{\mu}_2] = \frac{\mathsf{Var}[\hat{\mu}_1]}{\mathsf{Var}[\hat{\mu}_2]} = \frac{\sigma^2/n}{(\pi/2)(\sigma^2/n)} = \frac{2}{\pi} = 0,63$$

Como $\mathsf{ER}[\hat{\mu}_1,\hat{\mu}_2] < 1$ então $\hat{\mu}_1 = \bar{X}$ é mais eficiente.

Propriedades dos estimadores

O erro padrão de um estimador dá uma ideia da precisão da estimativa.

O erro padrão (EP) de um estimador é o seu desvio-padrão (raíz quadrada da variância), ou seja,

$$\mathsf{EP}(\hat{\theta}) = \sqrt{\mathsf{Var}(\hat{\theta})}$$

Exemplo: Sabemos que a distribuição de \bar{X} tem média μ e variância σ^2/n . Então o erro padrão de \bar{X} é

$$\mathsf{EP}(ar{X}) = \sqrt{\mathsf{Var}(ar{X})} = \sqrt{rac{\sigma^2}{n}} = rac{\sigma}{\sqrt{n}}$$

Sumário

- Introdução
- Estimação pontual
 - Parâmetros, estimadores e estimativas
 - Propriedades dos estimadores
- Distribuições amostrais
 - Introdução
 - Distribuição amostral da média
 - Distribuição amostral da proporção
- 4 Exercícios

Distribuições amostrais

De maneira geral, uma amostra de tamaho n será descrita pelos valores x_1, x_2, \ldots, x_n das variáveis aleatórias $X_1, X_2, \ldots, X_n \Rightarrow$ Amostra Aleatória No caso de uma Amostragem Aleatória Simples (AAS) com reposição, X_1, X_2, \ldots, X_n serão variáveis aleatórias independentes e identicamentes distribuídas (iid) com função de probabilidade (fp) ou função densidade de probabilidade (fdp) conjunta dada por

$$f(x_1, x_2, \ldots, x_n, \boldsymbol{\theta}) = f(x_1, \boldsymbol{\theta}) \cdot f(x_2, \boldsymbol{\theta}) \cdots f(x_n, \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i, \boldsymbol{\theta})$$

Onde o mesmo valor do parâmetro $\boldsymbol{\theta}$ é utilizado em cada um dos termos no produto.

Distribuições amostrais

Quando uma amostra X_1, X_2, \ldots, X_n é obtida, geralmente estamos interessados em um resumo destes valores, que pode ser expresso matematicamente pela estatística $T(x_1, x_2, \ldots, x_n)$.

Dessa forma, $Y = T(x_1, x_2, ..., x_n)$ é também uma variável aleatória. Se Y é uma VA, então ela possui uma distribuição de probabilidade.

Uma vez que a distribuição de Y é derivada da amostra X_1, X_2, \ldots, X_n , vamos denominá-la de **distribuição amostral** de Y.

Distribuições amostrais

Distribuições amostrais

A distribuição de probabilidade de uma estatística $Y = T(x_1, x_2, ..., x_n)$ é denominada de **distribuição amostral** de Y. Assim, uma estatística também é uma variável aleatória, pois seus valores mudam conforme a amostra aleatória.

Exemplo: duas estatísticas comumente utilizadas para o resumo de uma amostra aleatória são a **média amostral** \bar{x} , e a **proporção amostral** \hat{p} . Cada uma delas também possui uma distribuição amostral.

Para estudarmos a distribuição amostral da estatística \bar{X} , considere uma população identificada pela VA X, com parâmetros

$$\mathsf{E}(\mathsf{X}) = \mu = \mathsf{m\'edia}$$
 $\mathsf{Var}(\mathsf{X}) = \sigma^2 = \mathsf{vari\^ancia}$

supostamente conhecidos. Em seguida, realizamos os seguintes passos:

- Retiramos m amostras aleatórias (AAS com reposição) de tamanho n dessa população
- $oldsymbol{arrho}$ Para cada uma das m amostras, calculamos a média amostral $ar{x}$
- Verificamos a distribuição das m médias amostrais e estudamos suas propriedades

Seja $X \sim N(10, 16)$, como se comporta \bar{X} para n = 10, 30, 50, 100?

LEG/DEST/UFPR

Através do estudo da distribuição da média amostral chegamos em um dos resultados mais importantes da inferência estatística.

Distribuição amostral da média

- $\bullet \ \mathsf{E}(\bar{X}) = \mu_{\bar{X}} = \mu$
- $\operatorname{Var}(\bar{X}) = \sigma_{\bar{X}}^2 = \sigma^2/n$

Portanto, se

$$X \sim \mathsf{N}(\mu, \sigma^2)$$
 então $ar{X} \sim \mathsf{N}(\mu_{ar{X}}, \sigma_{ar{x}}^2)$

mas, como

$$\mu_{ar{X}} = \mu$$
 e $\sigma_{ar{X}}^2 = \sigma^2/n$

então, a **distribuição amostral** da média amostral $ar{X}$ é

$$\bar{X} \sim \mathsf{N}\left(\mu, \frac{\sigma^2}{\mathsf{n}}\right)$$

Pode-se mostrar que, para amostras suficientemente grandes, a média amostral \bar{X} converge para o verdadeiro valor da média populacional μ (é um estimador não viesado de μ).

Além disso, a variância das médias amostrais $\sigma_{\bar{X}}^2$ tende a diminuir conforme $n \to \infty$ (é um estimador consistente).

Estes resultados sugerem que, quando o tamanho da amostra aumenta,

independente do formato da distribuição da população original,

a distribuição amostral de \bar{X} aproxima-se cada vez mais de uma distribuição Normal, um resultado fundamental na teoria de probabilidade conhecido como Teorema Central do Limite.

Teorema Central do Limite (TCL)

Para amostras aleatórias simples (X_1, X_2, \dots, X_n) , retiradas de uma população com média μ e variância σ^2 , a distribuição amostral da média \bar{X} , terá forma dada por

$$Z = \frac{\bar{X} - \mu}{\sigma / \sqrt{n}}$$

no limite quando $n \to \infty$, onde $Z \sim N(0, 1)$.

- Se a população for normal, então X terá distribuição exata normal.
- A rapidez da convergência para a normal depende da distribuição da população da qual as amostras foram geradas.

Ver figura dist_amostrais.pdf

Em palavras, o teorema garante que que para *n* grande, a distribuição da média amostral, devidamente padronizada, **se comporta segundo um modelo normal** com média 0 e variância 1.

Pelo teorema, temos que quanto maior o tamanho da amostra, **melhor é a aproximação**.

Estudos envolvendo simulações mostram que, em muitos casos, **valores de** *n* **ao redor de 30** fornecem aproximações bastante boas para as aplicações práticas.

Quando calculamos a probabilidade de um valor estar em um determinado intervalo de valores, podemos usar o modelo Normal, como vimos anteriormente.

No entanto, quando temos uma **amostra**, e queremos calcular probabilidades associadas à **média amostral** (a probabilidade da média amostral estar em um determinado intervalo de valores), precisamos necessariamente usar os resultados do TCL.

Exemplo: Uma máquina de empacotamento que abastece pacotes de feijão apresenta distribuição normal com média de 500 g e desvio-padrão de 22 g. De acordo com as normas de defesa do consumidor, os pacotes de feijão não podem ter peso inferior a 2% do estabelecido na embalagem.

- Determine a probabilidade de um pacote selecionado aleatoriamente ter a peso inferior a 490 g.
- Determine a proabilidade de 20 pacotes selecionados aleatoriamente terem peso médio inferior a 490 g.
- Como podemos interpretar os resultados dos itens anteriores? O que é mais indicado para se tomar uma decisão sobre o funcionamento da máquina: selecionar um pacote ou uma amostra de pacotes?

Muitas vezes, o interesse é conhecer uma **proporção**, e não a média de uma população.

Suponha que uma amostra de tamanho n foi obtida de uma população, e que $x \le n$ observações nessa amostra pertençam a uma classe de interesse (ex.: pessoas do sexo masculino).

Dessa forma, a proporção amostral

$$\hat{p} = \frac{x}{n} = \frac{\text{número de sucessos}}{\text{total de tentativas}}$$

é o "melhor estimador" para a proporção populacional p.

Note que n e p são os parâmetros de uma distribuição binomial.

46 / 54

Distribuição amostral da proporção

Exemplo: em 5 lançamentos de uma moeda considere que o evento "cara" (C) seja o sucesso ("sucesso" = 1; "fracasso" = 0). Um possível resultado seria o conjunto $\{C, C, R, R, C\}$. A proporção amostral seria

$$\hat{p} = \frac{x}{n} = \frac{\text{número de sucessos}}{\text{total de tentativas}} = \frac{3}{5} = 0,6$$

Exemplo: em uma amostra de 2500 eleitores de uma cidade, 1784 deles eram favoráveis à reeleição do atual prefeito. A proporção amostral é então

$$\hat{p} = \frac{x}{n} = \frac{\text{número de sucessos}}{\text{total de tentativas}} = \frac{1784}{2500} = 0,7136$$

A distribuição amostral de uma **proporção** é a distribuição das proporções de todas as possíveis amostras de tamanho n retiradas de uma população.

Exemplo:

- Uma moeda é lançada n=10,30,50,100 vezes, e a proporção de caras é registrada
- Esse processo é repetido m = 1000 vezes

Com isso, concluimos que:

- A média das proporções para $n \to \infty$ tende para a verdadeira proporção populacional p=0,5
- A distribuição amostral das proporções segue aproximadamente uma distribuição normal

LEG/DEST/UFPR

Através do estudo da distribuição amostral da proporção, chegamos aos seguintes resultados

- $E(\hat{p}) = \mu_{\hat{p}} = p$
- $Var(\hat{p}) = \sigma_{\hat{p}}^2 = \frac{p(1-p)}{n}$

Ou seja, \hat{p} é um estimador **não viciado** e **consistente** para p.

Assim, a distribuição amostral de \hat{p} será

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right)$$

Note que o **erro padrão** de \hat{p} será

$$\mathsf{EP}(\hat{p}) = \sqrt{\mathsf{Var}(\hat{p})} = \sqrt{rac{p(1-p)}{n}}$$

Assim, usando o TCL, podemos mostrar que a quantidade

$$Z = rac{\hat{p} - p}{\sqrt{rac{p(1-p)}{n}}} \sim \mathsf{N}(0,1)$$

segue uma distribuição normal padrão com média 0 e variância 1.

Quando não conhecemos p, usamos $\hat{p} = x/n$ como estimativa para calcular o erro padrão.

Suponha que a proporção de peças fora da especificação em um lote é de 40%. Uma amostra de 30 peças foi selecionada. Qual é a probabilidade da proporção de peças defeituosas ser menor do que 0,5?

Suponha que a proporção de peças fora da especificação em um lote é de 40%. Uma amostra de 30 peças foi selecionada. Qual é a probabilidade da proporção de peças defeituosas ser menor do que 0,5?

 $X \sim \text{Bin}(30, 0.4)$. Assim:

$$P(\hat{p} < 0.5) = P(X/30 < 0.5) = P(X < 15)$$
$$= \sum_{x=0}^{14} {30 \choose x} 0.4^{x} 0.6^{30-x}$$

Usando o R:

LEG/DEST/UFPR

Considerando a aproximação pela Normal, temos

$$\hat{\rho} \sim \mathsf{N}\left(0.4, \frac{0.4(1-0.4)}{30}\right)$$

Assim,

$$P(\hat{p} < 0.5) \approx P\left(\frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} < \frac{0.5 - 0.4}{\sqrt{\frac{0.4(1-0.4)}{30}}}\right)$$
$$= P(Z < 1, 12) = 0.8686$$

Usando o R:

pnorm(1.12)

[1] 0.8686431

Sumário

- Introdução
- Estimação pontual
 - Parâmetros, estimadores e estimativas
 - Propriedades dos estimadores
- Oistribuições amostrais
 - Introdução
 - Distribuição amostral da média
 - Distribuição amostral da proporção
- 4 Exercícios

Exercícios recomendados

- Seção 7.1 1 a 3
- Seção 7.2 1 a 5
- Seção 7.3 1 a 7
- Seção 7.5 1 a 5, 9 a 12