

Amplificadores operacionais - AmpOp

Prof. Alceu André Badin

Especificações máximas

LM741

Tensão de alimentação	±22 V
Dissipação interna de potência	500 mW
Tensão de entrada diferencial	±30 V
Tensão de entrada	±15 V

Exemplo:

Determine a corrente drenada de uma fonte de alimentação dupla de ±12 V, considerando-se que o CI dissipa 500 mW.

Se considerarmos que cada fonte fornece metade da potência total para o CI, então

$$P = VI$$

250 mW = 12 V(I) $I = \frac{250 \text{ mW}}{12 \text{ V}} = 20,83 \text{ mA}$

Parâmetros de offset CC

- Mesmo quando a tensão de entrada é zero, um amp-op pode ter um **offset** de saída. Causado por:
- o Tensão de offset de entrada.
- o Corrente de offset de entrada.
- o Tensão de offset de entrada e corrente de offset de entrada.
- o Corrente de polarização de entrada.

Tensão de offset de entrada (V_{OS})

- A folha de dados para um amp-op indica uma tensão de offset de entrada (V_{OS}) .
- O efeito da tensão de offset de entrada pode ser calculado com:

Integrador com offset

•

Compensação de offset

Tensão de saturação

Taxa de inclinação (SR – slew rate)

• Taxa de inclinação (SR): a taxa máxima à qual um amp-op pode mudar sua saída sem distorção.

$$SR = \frac{\Delta V_o}{\Delta t}$$
 (in V/\mus)

A taxa de inclinação é listada nas folhas de dados como taxa V/µs.

Taxa de inclinação (SR)

$$SR = \frac{\Delta V_o}{\Delta t}$$
 (in V/\us)

Taxa de inclinação (SR)

Efeito da limitação do SR em uma forma de onda senoidal de alta frequência

Taxa de inclinação (SR)

Para um amp-op com uma taxa de inclinação $SR = 2 \text{ V/} \mu \text{s}$, qual é o máximo ganho de tensão de malha fechada que pode ser utilizado quando o sinal de entrada varia de 0,5 V em 10 μs ?

Visto que $V_o = A_{CL}V_i$, podemos utilizar

$$\frac{\Delta V_o}{\Delta t} = A_{\rm CL} \frac{\Delta V_i}{\Delta t}$$

de onde obtemos

$$A_{\rm CL} = \frac{\Delta V_o/\Delta t}{\Delta V_i/\Delta t} = \frac{\rm SR}{\Delta V_i/\Delta t}$$
$$= \frac{2 \, \rm V/\mu s}{0.5 \, \rm V/10 \, \mu s} = 40$$

Frequência de sinal máximo

• A taxa de inclinação determina a frequência mais alta do amp-op sem distorção.

$$f \leq \frac{SR}{2\pi V_p}$$

onde V_P é o pico de tensão.

Parâmetros de frequência

• Um amp-op é amplificador com ampla largura de banda. Os fatores seguintes afetam a largura da banda do amp-op:

o Ganho

Taxa de inclinação

Ganho e largura de banda

A alta resposta em frequência do amp-op é limitada por seus circuitos internos. O gráfico mostrado é para um ganho de malha aberta (A_{OL} ou A_{VD}). Isso significa que o amp-op está operando com o mais alto ganho possível sem resistor com realimentação.

• No modo de malha aberta, um amp-op tem uma largura de banda estreita. A largura da banda aumenta no modo de malha fechada, mas o ganho é inferior.

Ganho e largura de banda

Closed-Loop Gain	R_2/R_1	$f_{3 \text{ dB}} = f_{t}/(1 + R_{2}/R_{1})$
+1000	999	1 kHz
+100	99	10 kHz
+10	9	100 kHz
+1	0	1 MHz
– 1	1	0.5 MHz
-10	10	90.9 kHz
-100	100	9.9 kHz
-1000	1000	$\simeq 1 \text{ kHz}$

- Uma taxa que é única aos amp-ops é a CMRR ou razão de rejeição de modo comum.
- Pelo fato de o amp-op ter duas entradas que são opostas na fase (entrada inversora e entrada não inversora) qualquer sinal que seja comum a ambas as entradas será cancelado.
- A CMRR do amp-op é uma medida da capacidade de cancelar sinais de modo comum.

$$CMRR = 20 \log \frac{|A_d|}{|A_{cm}|}$$

$$CMRR = 20 \log \frac{|A_d|}{|A_{cm}|}$$

A_d: Ganho diferencial A_{cm}: Ganho de modo comum

Modo diferencial

Modo comum

Prof. Alceu A. Badin

UTFPR/DAELT

$$CMRR = 20 \log \frac{|A_d|}{|A_{cm}|}$$

A_d: Ganho diferencial A_{cm}: Ganho de modo comum

$$V_{c} = 1 \text{ mV}$$

$$V_{c} = 1 \text{ mV}$$

$$A_d = \frac{V_o}{V_d} = \frac{8 \text{ V}}{1 \text{ mV}} = 8000$$

$$A_c = \frac{V_o}{V_c} = \frac{12 \text{ mV}}{1 \text{ mV}} = 12$$

CMRR =
$$20 \log_{10} \frac{A_d}{A_c}$$

= $20 \log_{10} 666,7 = 56,48 \text{ dB}$

Prof. Alceu A. Badin

UTFPR/DAELT

Especificações

Ex.: LM741

Características	Mínima	Típica	Máxima	Unidade
V_{IO} Tensão de offset de entrada		1	6	mV
$I_{\rm IO}$ Corrente de offset de entrada		20	200	nA
$I_{\rm IB}$ Corrente de polarização de entrada		80	500	nA
$V_{\rm ICR}$ Faixa de tensão de entrada de modo-comum	±12	±13		V
V_{OM} Oscilação máxima de pico da tensão de saída	±12	±14		V
$A_{ m VD}$ Amplificação de tensão diferencial para grandes sinais	20	200		V/mV
r_i Resistência de entrada	0,3	2		$\mathbf{M}\Omega$
r_o Resistência de saída		75		Ω
C_i Capacitância de entrada		1,4		pF
CMRR Razão de rejeição de modo-comum	70	90		dB
I _{CC} Corrente de alimentação		1,7	2,8	mA
P_D Dissipação total de potência		50	85	mW

$$CMRR = 20 \log \frac{|A_d|}{|A_{cm}|}$$

A_d: Ganho diferencial A_{cm}: Ganho de modo comum

Prof. Alceu A. Badin

UTFPR/DAELT

Amplificador de diferencial

$$V_o = \frac{R_3}{R_1 + R_3} \frac{R_2 + R_4}{R_2} V_1 - \frac{R_4}{R_2} V_2$$

Amplificador de instrumentação

$$V_o = \frac{R_3}{R_1 + R_3} \frac{R_2 + R_4}{R_2} V_1 - \frac{R_4}{R_2} V_2$$

Amplificador de instrumentação

Amplificador de instrumentação

Circuito integrado com Amplificador de instrumentação: AD8221

$$G = 1 + \frac{49.4 \text{ k}\Omega}{R_G}$$

Circuito equivalente

