Course	21FCC202T Course	ANALOG AND LINEAR ELECTRONIC CIRCUITS	Course	^	PROFESSIONAL CORE	L	T	Р	С	,
Code	Name	ANALOG AND LINEAR ELECTRONIC CIRCUITS	Category	C	PROFESSIONAL CORE	3	0	0	3	

	requisite N	Co- requisite Courses	Nil Progressive Courses	Nil
Cou	rse Offering Department	ECE	Data Book / Codes / Standards	Nil

Course Learning Rationale (CLR): The purpose of learning this course is to: Program Outcomes (P		s (PO)		Program														
CLR-1:	.R-1: understand the operation and design of transistor amplifier circuits for a given specification			3	4	5	6	7	8	9	10	11	12		Specific Outcomes				
CLR-2:	discuss the elementary concepts and characteristics of an operational amplifier			77		4	. "	<u>it</u>											
CLR-3:	introduce the concepts of negative feedback on amplifier circuits, and investigate different feedback				stigations of	Usage	id society	Sustainability	N.	m Work		Finance	bu						
CLR-4:	analyze and design RC and LC <mark>oscillator</mark> circuits				arni														
CLR-5:	analyze and design linear and <mark>non-line</mark> ar applications of op-amp	Engineering Kn Problem Analys Design/develop Solutions Conduct investi complex proble Modern Tool Us The engineer a Environment & Ethics Communication Project Mgt. & Fe		g Le															
		nee	roblem	gu,	onduct	ern	eng	5	SS	ng/	E E	əct	Long	7	7	က္			
Course C	utcomes (CO): At the end of this course, learners will be able to:	Engi	- Po	Desi	S S E	Mode	The	Enzi	Ethics	Individual	Com	Project	<u>l</u> e	PS0-1	PSO-2	PSO-3			
CO-1:	apply the small signal equivalent circuit in the analysis of single and multistage transistor amplifier circuits	2	2	3		-	7	-	i	-	-	-	-	-	-	3			
CO-2:	infer the DC and AC charac <mark>teristics o</mark> f operational amplifier		2	3	1-	-	-	-		-	-	-	-	-	-	3			
CO-3:	classify and identify the suitable feedback topologies and oscillators as per application		2	3	-	-	-	-	-	-	-	-	-	-	-	3			
CO-4:	4: elucidate and design linear and non-linear applications of op-amp			3	-	-	-	-	-	-	-	-	-	-	-	3			
CO-5:	illustrate the function of appli <mark>cation sp</mark> ecific ICs			3	-	-	-	-	7	-	-	-	-	-	-	3			

Unit-1 - Single and Multistage Amplifiers

9 Hour

Bipolar Linear amplifier: Load line analysis, small-signal models, analysis of common-emitter, common-base, common-collector amplifiers and multistage amplifiers (cascade, cascade and Darlington) using Hybrid-π model, low- and high-frequency response of BJT amplifiers. MOSFET Linear Amplifier: Load line analysis, small-signal model, analysis of common-source, common-gate and common-drain amplifiers using hybrid-π model, low and high Frequency response analysis of MOSFET amplifier.

Unit-2 - Introduction to Linear IC's 9 Hour

BJT and MOSFET differential amplifier with passive and active loads, Internal Structure of Op-amp, output stages and power amplifiers (Class-A and Class-AB push-pull Complementary amplifier configuration), Ideal operational amplifier, IC 741 packages, characteristics of op-amp, open-loop configurations, non-ideal effects in op-amp, Frequency response of an op-amp.

Unit-3 - Feedback Amplifiers and Oscillators

9 Hour

Negative feedback amplifier: Introduction to feedback and types, advantages and disadvantages of negative feedback, basic feedback concepts, ideal feedback topologies, voltage (shunt- series) amplifier, current (shunt-series) amplifier, trans conductance (series-series) amplifiers, transresistance (shunt-shunt) amplifiers, stability analysis of the feedback Circuit (BJT/MOSFET/Op-amp). Oscillators: Principles of oscillation, classification of oscillators, RC, LC and Crystal oscillators (BJT/MOSFET/Op-amp)

Unit-4 - Applications of Linear ICs - I

9 Hour

Summing amplifier, subtractor, integrator, differentiator, difference amplifier, instrumentation amplifier, voltage-to-current converter, current-to-voltage converter, comparators, Schmitt triggers and Non sinusoidal oscillators, active filters, first order and second order low and high pass filters, band-pass filters, band-stop filters, waveform generators.

Unit-5 - Applications of Linear ICs - II

9 Hour

Converters: Weighted -Resistor D/A and R-2R ladder D/A, Analog-to-Digital Converter: Successive approximation A/D Converters, precision rectifiers, clippers, and clampers. Specialized ICs: 555 Timer, functional block, 566 VCO and 565 PLL, Applications of PLL and 555 Timer, voltage regulators-LM78xx, LM79xx, LM723, LM380 power amplifiers.

Learning	
Resource	25

- 1. David A. Bell, "Electronic Devices and Circuits", 5th ed., Oxford University Press, 2015
- 2. Donald Neaman, "Electronic Circuits: Analysis and Design", 3rd ed., Mc-Graw-Hill Education, 2011
- 3. Muhammad Rashid, "Microelectronic Circuits: Analysis and Design", 2nd ed., Cengage Learning, 2010
- 4. Robert L. Boylestad Louis Nashelsky, "Electronic Devices and Circuit Theory", 11th ed., 7. Sergio Franco, "Design with Operational amplifiers and Analog Integrated circuits", 4th Pearson Education, 2013
- 5. D. Roy Choudhry, Shail Jain, "Linear Integrated Circuits", 5th ed., New Age International Pvt. Ltd., 2015
- 6. Ramakant A. Gayakwad, "Op-amp and Linear ICs", 4th ed., Printice Hall/Pearson, Education, 2015
 - ed., Tata McGraw-Hill, 2016

arning Assessn			Continuous Learning	g Assessment (CLA)		Cum	mativa	
Bloom's Level of Thi <mark>nking</mark>		CLA-1 Avera	native age of unit test 0%)	Life-Long CLA (10	1-2	Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	15%	Carlotte Carlotte	15%		15%	-	
Level 2	Understand	20%	A Section of the Section	20%	. 1 - 7	20%	-	
Level 3	Apply	25%	188 1 1 1 1 450 Och	25%		25%	-	
Level 4	Analyze	25%	MR - 1847 1947	25%		25%	-	
Level 5	Evaluate	10%	171 172 35	10%		10%	-	
Level 6	Create	5%	St. 37.77 2	5%	3 -	5%	-	
	Total	10	0 %	100	%	10	0 %	

Course Designers	2.00	
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
Mr. Saivineeth, ML Accelerator Architect@ Google	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University,	1. Dr. E. Sivaku <mark>mar, SRM</mark> IST
	meena68@annauniv.edu	→ N (10 m)
2. Mr. Anuj Kumar, Program Delivery Manager, Nagarro Software	2. Dr Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	2. Mr. AVM. Manikandan, SRMIST
Pvt. Ltd. Gurgaon, kumaranuj.anii@gmail.com		