

SRI RAMACHANDRA FACULTY OF ENGINEERING AND TECHNOLOGY

CSC 580

ADVANCED PYTHON PROGRAMMING

Submitted by

SURESH N - E7322020

MASTER OF SCIENCE

in

DATA ANALYTICS

Sri Ramachandra Faculty of Engineering and Technology

Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai -600116

JAN,2023

E7322020

BONAFIDE CERTIFICATE

Certified that this project report is the bonafide record of work done by "SURESH N-E7322020".

Signature of the Course Faculty

Signature of Vice-Principal

Dr. Pitchumani Angayarkanni S

Associate Professor,

Department of Computer Science and Engineering

Sri Ramachandra Faculty of Engineering and Technology,

SRIHER, Porur, Chennai-600 116.

Prof. M. Prema

Vice-Principal,

Department of Computer Science and Engineering

Sri Ramachandra Faculty of Engineering and Technology,

SRIHER, Porur, Chennai-600 116.

Evaluation Date:

(Category - I Deemed to be University) Porur, Chennai SRI RAMACHANDRA FACULTY OF ENGINEERING AND TECHNOLOGY

TABLE OF CONTENTS

QUESTION NO.	PAGE NO.	CO's
1	4	CO1
2	11	CO2
3	15	CO3
4	24	CO3
5	29	CO4
6	45	CO4
7	57	CO5
8	58	CO5

1.

Data Science engineer your task is to first analyse the dataset and its features. Perform preprocessing and data normalization techniques which is a preliminary stage for an effective prediction machine learning model. CO1

Dataset: titanic dataset and cancer dataset

Perform the following on the dataset

- A. Total number of observations and features.
- B. Find missing values if any in the columns and replace the missing values based on relevant statistical analysis.
- C. Perform SMOTE analysis to oversample if the dataset is imbalanced.
- D. Rescale the data using MinMaxScaler and StandardScaler.

from sklearn import datasets

import pandas as pd

import numpy as np

data=pd.read_csv("C:\\python_code\\titanic - titanic.csv")

data

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	S
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q
891 r	ows × 12 colu	mns										

data.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                Non-Null Count Dtype
    Column
                -----
    PassengerId 891 non-null
0
                               int64
                            int64
1
    Survived
                891 non-null
2
    Pclass
                891 non-null
                               int64
3
               891 non-null object
    Name
               891 non-null object
4
    Sex
                714 non-null float64
5
    Age
6
                891 non-null int64
    SibSp
7
    Parch
                891 non-null int64
                891 non-null object
891 non-null float64
    Ticket
9
    Fare
                204 non-null object
10 Cabin
11 Embarked
               889 non-null
                               object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

Total number of observations:891

data.isnull().sum()

PassengerId	0
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2
dtype: int64	

INTERPRETATION

Missing values found in the given dataset in the column age, cabin, and embarked.

```
data=data.select_dtypes(exclude=['object'])
from sklearn.impute import SimpleImputer
imputer=SimpleImputer(strategy='most_frequent')
data.iloc[:,:]=imputer.fit_transform(data)
data.isnull().sum()
```

```
PassengerId
                 0
 Survived
                 0
 Pclass
                 0
                 0
 Age
 SibSp
                 0
 Parch
 Fare
 dtype: int64
X=data.drop('Survived',axis=1)
y=data['Survived']
from imblearn.over_sampling import SMOTE
oversample=SMOTE()
X,y=oversample.fit\_resample(X,y)
X.shape
(1098, 6)
y.shape
 (1098,)
y.describe().T
 count
          1098.000000
 mean
             0.500000
 std
             0.500228
 min
             0.000000
 25%
             0.000000
 50%
             0.500000
 75%
             1.000000
              1.000000
 Name: Survived, dtype: float64
```

The dataset is balanced using oversample method in SMOTE analysis.

```
#Standardization
data=data.select_dtypes(exclude=['object'])
#standardization-standardscaler
from sklearn.preprocessing import StandardScaler
#remove the id and class label columns
```

```
scaler=StandardScaler()
```

data.iloc[:,:]=scaler.fit_transform(data)

data

:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	-1.730108	-0.789272	0.827377	-0.497793	0.432793	-0.473674	-0.502445
1	-1.726220	1.266990	-1.566107	0.715048	0.432793	-0.473674	0.786845
2	-1.722332	1.266990	0.827377	-0.194583	-0.474545	-0.473674	-0.488854
3	-1.718444	1.266990	-1.566107	0.487640	0.432793	-0.473674	0.420730
4	-1.714556	-0.789272	0.827377	0.487640	-0.474545	-0.473674	-0.486337
886	1.714556	-0.789272	-0.369365	-0.118780	-0.474545	-0.473674	-0.386671
887	1.718444	1.266990	-1.566107	-0.725201	-0.474545	-0.473674	-0.044381
888	1.722332	-0.789272	0.827377	-0.346188	0.432793	2.008933	-0.176263
889	1.726220	1.266990	-1.566107	-0.194583	-0.474545	-0.473674	-0.044381
890	1.730108	-0.789272	0.827377	0.260233	-0.474545	-0.473674	-0.492378

891 rows x 7 columns

from sklearn import preprocessing

#scaler=preprocessing.MinMaxScaler()->default feature range=(0,1)

scalar=preprocessing.MinMaxScaler(feature_range=(0,2))

data.iloc[:,:]=scalar.fit_transform(data)

data

]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	0.000000	0.0	2.0	0.542347	0.25	0.000000	0.028302
1	0.002247	2.0	0.0	0.944458	0.25	0.000000	0.278271
2	0.004494	2.0	2.0	0.642875	0.00	0.000000	0.030937
3	0.006742	2.0	0.0	0.869063	0.25	0.000000	0.207289
4	0.008989	0.0	2.0	0.869063	0.00	0.000000	0.031425
886	1.991011	0.0	1.0	0.668007	0.00	0.000000	0.050749
887	1.993258	2.0	0.0	0.466951	0.00	0.000000	0.117112
888	1.995506	0.0	2.0	0.592611	0.25	0.666667	0.091543
889	1.997753	2.0	0.0	0.642875	0.00	0.000000	0.117112
890	2.000000	0.0	2.0	0.793667	0.00	0.000000	0.030254

891 rows x 7 columns

cancer=datasets.load_breast_cancer()

cancer

```
: {'data': array([[1.799e+01, 1.038e+01, 1.228e+02, ..., 2.654e-01, 4.601e-01,
         1.189e-01],
         [2.057e+01, 1.777e+01, 1.329e+02, ..., 1.860e-01, 2.750e-01,
          8.902e-02],
         [1.969e+01, 2.125e+01, 1.300e+02, ..., 2.430e-01, 3.613e-01,
         8.758e-02],
         [1.660e+01, 2.808e+01, 1.083e+02, ..., 1.418e-01, 2.218e-01,
          7.820e-02],
         [2.060e+01, 2.933e+01, 1.401e+02, ..., 2.650e-01, 4.087e-01,
         1.240e-01],
         [7.760e+00, 2.454e+01, 4.792e+01, ..., 0.000e+00, 2.871e-01,
          7.039e-02]]),
   0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,
         1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,
         1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,
         1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,
        0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
        1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,
        1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,
        0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,
        1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,
        1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
         0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,
```

df_cancer = pd.DataFrame(cancer.data, columns=cancer.feature_names)

df_cancer['target'] = pd.Series(cancer.target)

df_cancer

7.77 132.90 1.25 130.00 0.38 77.58	1001.0 1326.0 1203.0 386.1 1297.0	0.11840 0.08474 0.10960 0.14250 0.10030	0.27760 0.07864 0.15990 0.28390 0.13280	0.30010 0.08690 0.19740 0.24140 0.19800	0.14710 0.07017 0.12790 0.10520 0.10430	0.2419 0.1812 0.2069 0.2597 0.1809	0.05667 0.05999 0.09744		17.33 23.41 25.53 26.50 16.67	152.50 98.87	2019.0 1956.0 1709.0 567.7 1575.0	0.16220 0.12380 0.14440 0.20980 0.13740
1.25 130.00 0.38 77.58 4.34 135.10 	1203.0 386.1 1297.0	0.10960 0.14250 0.10030	0.15990 0.28390 0.13280	0.19740 0.24140 0.19800	0.12790 0.10520 0.10430	0.2069 0.2597	0.05999 0.09744		25.53 26.50	152.50 98.87	1709.0 567.7	0.14440 0.20980
0.38 77.58 4.34 135.10 	386.1 1297.0 	0.14250 0.10030	0.28390 0.13280	0.24140 0.19800	0.10520 0.10430	0.2597	0.09744		26.50	98.87	567.7	0.20980
4.34 135.10	1297.0	0.10030	0.13280	0.19800	0.10430							
						0.1809	0.05883		16.67	152.20	1575.0	0.13740
2.20 1/2.00												
2.39 142.00	1479.0	0.11100	0.11590	0.24390	0.13890	0.1726	0.05623		26.40	166.10	2027.0	0.14100
8.25 131.20	1261.0	0.09780	0.10340	0.14400	0.09791	0.1752	0.05533		38.25	155.00	1731.0	0.11660
8.08 108.30	858.1	0.08455	0.10230	0.09251	0.05302	0.1590	0.05648		34.12	126.70	1124.0	0.11390
9.33 140.10	1265.0	0.11780	0.27700	0.35140	0.15200	0.2397	0.07016		39.42	184.60	1821.0	0.16500
4.54 47.92	181.0	0.05263	0.04362	0.00000	0.00000	0.1587	0.05884		30.37	59.16	268.6	0.08996
9.3	3 140.10	140.10 1265.0 14 47.92 181.0	13 140.10 1265.0 0.11780 14 47.92 181.0 0.05263	13 140.10 1265.0 0.11780 0.27700 14 47.92 181.0 0.05263 0.04362	13 140.10 1265.0 0.11780 0.27700 0.35140 14 47.92 181.0 0.05263 0.04362 0.00000	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.01587	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884	3 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 39.42 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 30.37	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 39.42 184.60 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 30.37 59.16	13 140.10 1265.0 0.11780 0.27700 0.35140 0.15200 0.2397 0.07016 39.42 184.60 1821.0 14 47.92 181.0 0.05263 0.04362 0.00000 0.00000 0.1587 0.05884 30.37 59.16 268.6

df_cancer.isnull().sum()

mean radius	0
mean texture	0
mean perimeter	0
mean area	0
mean smoothness	0
mean compactness	0
mean concavity	0
mean concave points	0
mean symmetry	0
mean fractal dimension	0
radius error	0
texture error	0
perimeter error	0
area error	0
smoothness error	0
compactness error	0
concavity error	0
concave points error	0
symmetry error	0
fractal dimension error	0
worst radius	0
worst texture	0
worst perimeter	0
worst area	0
worst smoothness	0
worst compactness	0
worst concavity	0
worst concave points	0
worst symmatry	а

INTERPRETATION

No missing values found in the given dataset.

```
X=df_cancer.drop('target',axis=1)
y=df_cancer['target']
from imblearn.over_sampling import SMOTE
oversample=SMOTE()
X,y=oversample.fit_resample(X,y)
X.shape
 (714, 30)
y.shape
 (714,)
y.describe().T
 count
           714.000000
             0.500000
 mean
 std
             0.500351
             0.000000
 min
 25%
             0.000000
 50%
             0.500000
 75%
             1.000000
             1.000000
 Name: target, dtype: float64
```

The dataset is balanced using oversample method in SMOTE Analysis.

```
#standardization-standardscaler
from sklearn.preprocessing import StandardScaler
#remove the id and class label columns
scaler=StandardScaler()
df_cancer.iloc[:,:]=scaler.fit_transform(df_cancer)
df_cancer
```


from sklearn import preprocessing

#scaler=preprocessing.MinMaxScaler()->default feature range=(0,1)

scalar=preprocessing.MinMaxScaler(feature_range=(0,2))

df_cancer.iloc[:,:]=scalar.fit_transform(df_cancer)

df_cancer

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry	mean fractal dimension		worst texture	worst perimeter	worst area	smooth
0	1.042075	0.045316	1.091977	0.727466	1.187506	1.584075	1.406279	1.462227	1.372727	1.211036	***	0.283049	1.336620	0.901396	1.20
1	1.286289	0.545147	1.231567	1.003181	0.579760	0.363536	0.407216	0.697515	0.759596	0.282645		0.607143	1.079635	0.870429	0.69
2	1.202991	0.780521	1.191486	0.898834	1.028618	0.862033	0.925023	1.271372	1.019192	0.422494		0.720149	1.016883	0.749017	0.96
3	0.420181	0.721677	0.467003	0.205811	1.622642	1.622723	1.131209	1.045726	1.552525	2.000000		0.771855	0.482693	0.188016	1.83
4	1.259785	0.313155	1.261972	0.978579	0.860702	0.695786	0.927835	1.036779	0.756566	0.373631		0.247868	1.013895	0.683150	0.87
							1944	144					144		
564	1.379999	0.857626	1.357335	1.132980	1.053895	0.592111	1.142924	1.380716	0.672727	0.264111		0.766525	1.152348	0.905328	0.92
565	1.244640	1.253974	1.208071	0.948038	0.815564	0.515429	0.674789	0.973260	0.698990	0.226201		1.398188	1.041785	0.759831	0.60
566	0.910502	1.242475	0.891576	0.606235	0.576329	0.508680	0.433505	0.527038	0.535354	0.274642		1.178038	0.759898	0.461463	0.56
567	1.289129	1.327021	1.331076	0.951432	1.176672	1.580394	1.646673	1.510934	1.350505	0.850885		1.460554	1.336620	0.804070	1.23
568	0.073738	1.003044	0.057080	0.031813	0.000000	0.148703	0.000000	0.000000	0.532323	0.374052		0.978145	0.087156	0.040995	0.24

2. Perform the following operations on the datasets specified below:

Dataset 1: planet dataset from seaborn

Dataset 2: titanic dataset CO2

i.Load the dataset and display top 10 records and bottom 5 records

ii. Statistically analyse the overall properties of the dataset using a single command after dropping null or missing values

iii. Find the mean value of orbital periods (in days) that each method is sensitive to.

iv.Perform multiple aggregation like min, max and mean on the column orbital period.

- v.Statistically analyse the overall properties of the dataset using a single command after dropping null or missing values
- vi.Perform data imputation based on most frequent data value
- vii. Normalize the dataset
- viii. Analyse the correlation between the features

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import scipy
import seaborn as sns
```

#Load the dataset and display top 10 records and bottom 5 records

df=sns.load_dataset('titanic')

print(df.head(10))

print(df.tail(5))

III(U.	1.tan(3))														
	surviv	ed	pclass	sex	(age	sibs	рр	arch	1	fare	embarked	d	class	\
0		0	3	male	2	22.0		1	e	9	7.2500	9	5	Third	
1		1	1	female	9 3	88.0		1	6	7	1.2833	(First	
2		1	3	female	2	26.0		0	6)	7.9250	9	5	Third	
3		1	1	female	9 3	35.0		1	6	5	3.1000	9	5	First	
4		0	3	male	2 3	35.0		0	6)	8.0500	9	5	Third	
5		0	3	male	2	NaN		0	6)	8.4583	(2	Third	
6		0	1	male	2 5	4.0		0	6	5	1.8625	9	5	First	
7		0	3	male	2	2.0		3	1	. 2	1.0750	9	5	Third	
8		1	3	female	2	27.0		0	2	2 1	1.1333	9	5	Third	
9		1	2	female	2 1	4.0		1	e	3	0.0708	(9	Second	
	who	adu	lt_male	deck	emb	ark_t	own	aliv	e a	lon	e				
0	man		True	NaN	Sou	ıthamp	ton	n	o F	als	e				
1	woman		False	C	(Cherbo	urg	ye		als					
2	woman		False	NaN		ıthamp		ye		Tru					
3	woman		False	C		ıthamp		ye	s F	als	e				
4	man		True	NaN	Sou	ıthamp	ton	n	0	Tru	ie				
5	man		True	NaN	_	ieenst		n	0	Tru	ie				
6	man		True	Е	Sou	ıthamp	ton	n	0	Tru	ie				
7	child		False	NaN		ıthamp		n	o F	als	e				
8	woman		False	NaN	Sou	ıthamp	ton	ye	s F	als	e				
9	child		False	NaN	(herbo	_	ye		als					
	surv	ived	pclass	5 9	sex	age	si	bsp	par	٠ch	fare	embarked	d	class	\
88	86	0	2	2 ma	ale	27.0		0		0	13.00	9	5 5	Second	
88	87	1	1	L fema	ale	19.0		0		0	30.00	9	5	First	
88	88	0	3	3 fema	ale	NaN		1		2	23.45	9	5	Third	
88	89	1	1	L ma	ale	26.0		0		0	30.00	(First	
89	90	0	3	3 ma	ale	32.0		0		0	7.75	()	Third	

df.columns

```
Index(['survived', 'pclass', 'sex', 'age', 'sibsp', 'parch', 'fare',
        'embarked', 'class', 'who', 'adult_male', 'deck', 'embark_town',
        'alive', 'alone'],
      dtype='object')
df.info()
  <class 'pandas.core.frame.DataFrame'>
  RangeIndex: 891 entries, 0 to 890
 Data columns (total 15 columns):
  #
      Column Non-Null Count Dtype
      -----
                  -----
      survived
  0
                   891 non-null
                                  int64
  1
      pclass 891 non-null int64
  2
      sex
                  891 non-null object
                  714 non-null float64
891 non-null int64
  3
      age
                891 non-null
      sibsp
  4
  5
                 891 non-null int64
      parch
      fare
                 891 non-null float64
  6
     embarked 889 non-null object class 891 non-null category who 891 non-null object
  7
  8
  9
  10 adult_male 891 non-null
                                bool
                                category
  11 deck
                  203 non-null
  12 embark_town 889 non-null object
  13 alive 891 non-null
                                  object
  14 alone
                  891 non-null
                                  bool
  dtypes: bool(2), category(2), float64(2), int64(4), object(5)
 memory usage: 80.7+ KB
```

INTERPRETATION

Missing values found in the column age and deck.

#Statistically analyse the overall properties of the dataset using a single command after dropping null or missing values

df.dropna().describe()

	survived	pclass	age	sibsp	parch	fare
count	182.000000	182.000000	182.000000	182.000000	182.000000	182.000000
mean	0.675824	1.192308	35.623187	0.467033	0.478022	78.919735
std	0.469357	0.516411	15.671615	0.645007	0.755869	76.490774
min	0.000000	1.000000	0.920000	0.000000	0.000000	0.000000
25%	0.000000	1.000000	24.000000	0.000000	0.000000	29.700000
50%	1.000000	1.000000	36.000000	0.000000	0.000000	57.000000
75%	1.000000	1.000000	47.750000	1.000000	1.000000	90.000000
max	1.000000	3.000000	80.000000	3.000000	4.000000	512.329200

#Perform data imputation based on most frequent data value

from sklearn.impute import SimpleImputer

impute = SimpleImputer(strategy='most_frequent')

df.iloc[:,:] = impute.fit_transform(df)

df.isnull().sum()

survived	0	
pclass	0	
sex	0	
age	0	
sibsp	0	
parch	0	
fare	0	
embarked	0	
class	0	
who	0	
adult_male	0	
deck	0	
embark_town	0	
alive	0	
alone	0	
dtype: int64		

#Normalize the dataset

from sklearn import preprocessing

df.select_dtypes(exclude=[object]).iloc[:,:]=preprocessing.normalize(df.select_dtypes(exclude=[
object]))

df

survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_male	deck	embark_town	alive	alone
0	3	male	0.940169	1	0	0.309828	S	Third	man	True	С	Southampton	no	False
1	1	female	0.470309	1	0	0.882241	С	First	woman	False	С	Cherbourg	yes	False
1	3	female	0.949509	0	0	0.289418	S	Third	woman	False	С	Southampton	yes	True
1	1	female	0.550134	1	0	0.834632	S	First	woman	False	С	Southampton	yes	False
0	3	male	0.970426	0	0	0.223198	S	Third	man	True	С	Southampton	no	True
7724	200		1022			(222	223							(322)
0	2	male	0.898007	0	0	0.432374	S	Second	man	True	С	Southampton	no	True
1	1	female	0.534417	0	0	0.843816	S	First	woman	False	В	Southampton	yes	True
0	3	female	0.710849	1	2	0.694559	S	Third	woman	False	С	Southampton	no	False
1	1	male	0.654101	0	0	0.754732	С	First	man	True	С	Cherbourg	yes	True
0	3	male	0.967009	0	0	0.234197	Q	Third	man	True	С	Queenstown	no	True
	0 1 1 1 0 0 1	0 3 1 1 1 3 1 1 0 3 0 2 1 1 0 3 1 1	0 3 male 1 1 female 1 3 female 1 1 female 0 3 male 0 2 male 1 1 female 0 3 female 1 1 male	0 3 male 0.940169 1 1 female 0.470309 1 3 female 0.949509 1 1 female 0.550134 0 3 male 0.970426 0 2 male 0.898007 1 1 female 0.534417 0 3 female 0.710849 1 male 0.654101	0 3 male 0.940169 1 1 1 female 0.470309 1 1 3 female 0.949509 0 1 1 female 0.550134 1 0 3 male 0.970426 0 0 2 male 0.898007 0 1 1 female 0.534417 0 0 3 female 0.710849 1 1 male 0.654101 0	0 3 male 0.940169 1 0 1 1 female 0.470309 1 0 1 3 female 0.949509 0 0 1 1 female 0.550134 1 0 0 3 male 0.970426 0 0 0 2 male 0.898007 0 0 1 1 female 0.534417 0 0 0 3 female 0.710849 1 2 1 male 0.654101 0 0	0 3 male 0.940169 1 0 0.309828 1 1 female 0.470309 1 0 0.882241 1 3 female 0.949509 0 0 0.289418 1 1 female 0.550134 1 0 0.834632 0 3 male 0.970426 0 0 0.223198 0 2 male 0.898007 0 0 0.432374 1 1 female 0.534417 0 0 0.843816 0 3 female 0.710849 1 2 0.694559 1 male 0.654101 0 0 0.754732	0 3 male 0.940169 1 0 0.309828 S 1 1 female 0.470309 1 0 0.882241 C 1 3 female 0.949509 0 0 0.289418 S 1 1 female 0.550134 1 0 0.834632 S 0 3 male 0.970426 0 0 0.223198 S 0 2 male 0.898007 0 0 0.432374 S 1 1 female 0.534417 0 0 0.843816 S 0 3 female 0.710849 1 2 0.694559 S 1 male 0.654101 0 0 0.754732 C	0 3 male 0.940169 1 0 0.309828 S Third 1 1 female 0.470309 1 0 0.882241 C First 1 3 female 0.949509 0 0 0.289418 S Third 1 1 female 0.550134 1 0 0.834632 S First 0 3 male 0.970426 0 0 0.223198 S Third 0 2 male 0.898007 0 0 0.432374 S Second 1 1 female 0.534417 0 0 0.843816 S First 0 3 female 0.710849 1 2 0.694559 S Third 1 male 0.654101 0 0 0.754732 C First	0 3 male 0.940169 1 0 0.309828 S Third man 1 1 female 0.470309 1 0 0.882241 C First woman 1 3 female 0.949509 0 0 0.289418 S Third woman 1 1 female 0.550134 1 0 0.834632 S First woman 0 3 male 0.970426 0 0 0.223198 S Third man 0 2 male 0.898007 0 0 0.432374 S Second man 1 1 female 0.534417 0 0 0.843816 S First woman 0 3 female 0.710849 1 2 0.694559 S Third woman 1 1 male 0.654101 0 0 0.754732 C First man	0 3 male 0.940169 1 0 0.309828 S Third man True 1 1 female 0.470309 1 0 0.882241 C First woman False 1 3 female 0.949509 0 0 0.289418 S Third woman False 1 1 female 0.550134 1 0 0.834632 S First woman False 0 3 male 0.970426 0 0 0.223198 S Third man True 0 2 male 0.898007 0 0 0.432374 S Second man True 1 1 female 0.534417 0 0 0.843816 S First woman False 0 3 female 0.710849 1 2 0.694559 S Third woman False 1 1 male 0.654101 0 0 0.754732 C First man True	0 3 male 0.940169 1 0 0.309828 S Third man True C 1 1 female 0.470309 1 0 0.882241 C First woman False C 1 3 female 0.949509 0 0 0.289418 S Third woman False C 1 1 female 0.550134 1 0 0.834632 S First woman False C 0 3 male 0.970426 0 0 0.223198 S Third man True C	0 3 male 0.940169 1 0 0.309828 S Third man True C Southampton 1 1 female 0.470309 1 0 0.882241 C First woman False C Cherbourg 1 3 female 0.949509 0 0 0.289418 S Third woman False C Southampton 1 1 female 0.550134 1 0 0.834632 S First woman False C Southampton 0 3 male 0.970426 0 0 0.223198 S Third man True C Southampton 0 2 male 0.898007 0 0 0.432374 S Second man True C Southampton 1 1 female 0.534417 0 0 0.843816 S First woman False B Southampton 0 3 female 0.710849 1 2 0.694559 S Third woman False C Southampton 1 1 male 0.654101 0 0 0.754732 C First man True C Cherbourg	0 3 male 0.940169 1 0 0.309828 S Third man True C Southampton no 1 1 female 0.470309 1 0 0.882241 C First woman False C Cherbourg yes 1 3 female 0.949509 0 0 0.289418 S Third woman False C Southampton yes 1 1 female 0.550134 1 0 0.834632 S First woman False C Southampton yes 0 3 male 0.970426 0 0 0.223198 S Third man True C Southampton no 0 2 male 0.898007 0 0 0.432374 S Second man True C Southampton no 1 1 female 0.534417 0 0 0.843816 S First woman False B Southampton yes 0 3 female 0.710849 1 2 0.694559 S Third woman False C Southampton no 1 1 male 0.654101 0 0 0.754732 C First man True C Cherbourg yes

891 rows x 15 columns

#Analyse the correlation between the features

corr=df.corr()

sns.heatmap(corr)

<AxesSubplot:>

The stronger relationship shows between the age and survived.

3. Perform EDA on the Indian Premier league dataset. Formulate research questions based on the dataset and perform analysis on the same

import pandas as pd

import seaborn as sns

#load the data

df=pd.read_csv("C:\\python_code\\ipl.csv")

df

	id	season	city	date	team1	team2	toss_winner	toss_decision	result	dl_applied	winner	win_by_runs	win_by_wicke
0	1	2008	Bangalore	2008- 04-18	Kolkata Knight Riders	Royal Challengers Bangalore	Royal Challengers Bangalore	field	normal	0	Kolkata Knight Riders	140	
1	2	2008	Chandigarh	2008- 04-19	Chennai Super Kings	Kings XI Punjab	Chennai Super Kings	bat	normal	0	Chennai Super Kings	33	
2	3	2008	Delhi	2008- 04-19	Rajasthan Royals	Delhi Daredevils	Rajasthan Royals	bat	normal	0	Delhi Daredevils	0	
3	4	2008	Mumbai	2008- 04-20	Mumbai Indians	Royal Challengers Bangalore	Mumbai Indians	bat	normal	0	Royal Challengers Bangalore	0	
4	5	2008	Kolkata	2008- 04-20	Deccan Chargers	Kolkata Knight Riders	Deccan Chargers	bat	normal	0	Kolkata Knight Riders	0	
572	573	2016	Raipur	2016- 05-22	Delhi Daredevils	Royal Challengers Bangalore	Royal Challengers Bangalore	field	normal	0	Royal Challengers Bangalore	0	
573	574	2016	Bangalore	2016- 05-24	Gujarat Lions	Royal Challengers Bangalore	Royal Challengers Bangalore	field	normal	0	Royal Challengers Bangalore	0	

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 577 entries, 0 to 576
Data columns (total 18 columns):
Column Non-Null Count Dty

#	Column	Non-Null Count	Dtype
0	id	577 non-null	int64
1	season	577 non-null	int64
2	city	570 non-null	object
3	date	577 non-null	object
4	team1	577 non-null	object
5	team2	577 non-null	object
6	toss_winner	577 non-null	object
7	toss_decision	577 non-null	object
8	result	577 non-null	object
9	dl_applied	577 non-null	int64
10	winner	574 non-null	object
11	win_by_runs	577 non-null	int64
12	win_by_wickets	577 non-null	int64
13	player_of_match	574 non-null	object
14	venue	577 non-null	object
15	umpire1	577 non-null	object
16	umpire2	577 non-null	object
17	umpire3	0 non-null	float64
	63		1

dtypes: float64(1), int64(5), object(12)

memory usage: 81.3+ KB

INTERPRETATION

Missing values found in the dataset in city, winner, umpire_3 columns.

df.isnull().sum()

E7322020

id	0
season	0
city	7
date	0
team1	0
team2	0
toss_winner	0
toss_decision	0
result	0
dl_applied	0
winner	3
win_by_runs	0
win_by_wickets	0
player_of_match	3
venue	0
umpire1	0
umpire2	0
umpire3	577
dtype: int64	

#to visualize missing value

import missingno as msno

msno.matrix(df,figsize=(12,18))

E7322020

INTERPRETATION

Missing at random df.describe()

i	
٠	۰
	٠
	•

	id	season	dl_applied	win_by_runs	win_by_wickets	umpire3
count	577.000000	577.000000	577.000000	577.000000	577.000000	0.0
mean	289.000000	2012.029463	0.025997	13.715771	3.363951	NaN
std	166.709828	2.486247	0.159263	23.619282	3.416049	NaN
min	1.000000	2008.000000	0.000000	0.000000	0.000000	NaN
25%	145.000000	2010.000000	0.000000	0.000000	0.000000	NaN
50%	289.000000	2012.000000	0.000000	0.000000	3.000000	NaN
75%	433.000000	2014.000000	0.000000	20.000000	6.000000	NaN
max	577.000000	2016.000000	1.000000	144.000000	10.000000	NaN

#data types

df.dtypes

```
id
                      int64
                      int64
season
city
                     object
date
                     object
team1
                     object
team2
                     object
toss_winner
                     object
toss_decision
                     object
result
                     object
dl_applied
                      int64
winner
                     object
win_by_runs
                      int64
                      int64
win_by_wickets
player_of_match
                     object
venue
                     object
umpire1
                     object
umpire2
                     object
                    float64
umpire3
```

dtype: object

number of rows and columns

df.shape

(577, 18)

#number of dimensions

df.ndim

2

#unique values of the data

df['win_by_runs'].unique()

```
array([140,
                    0,
                         6,
                              66,
                                   13,
                                         10,
                                              45,
                                                    9,
                                                         29,
                                                               5,
                                                                   18,
                                                                         23,
              33,
             12,
                   65,
                        25,
                               3,
                                    1,
                                         14, 105,
                                                   19,
                                                         75,
                                                              92,
                                                                   11,
                                                                         24,
        41,
                                                         55,
                                                                    34,
        27,
             38,
                    8,
                        78,
                              16,
                                   53,
                                          2,
                                               4,
                                                   31,
                                                              98,
                                                                         36,
        39,
             17,
                                                                         20,
                   40,
                        67,
                              63,
                                   37,
                                         57,
                                              35,
                                                   22,
                                                         21,
                                                              48,
                                                                    26,
                                              28,
        85, 32,
                   76, 111,
                              82,
                                   43,
                                         58,
                                                   74,
                                                         42,
                                                              59,
                                                                   46,
                                                                          7,
        47, 86,
                   44,
                        87, 130,
                                   15,
                                         60,
                                              77,
                                                   30,
                                                         50,
                                                              93,
                                                                   72,
                                                                         62,
                   71, 144, 80], dtype=int64)
        97, 138,
```

#to visualize the unique value

sns.countplot(df['win_by_runs'])

df.columns

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 577 entries, 0 to 576
Data columns (total 14 columns):
    Column
                   Non-Null Count Dtype
---
    -----
                   -----
0
    id
                  577 non-null
                                   int64
                  577 non-null
                                   int64
1
    season
2
                   577 non-null
                                   object
    date
                   577 non-null
3
    team1
                                   object
4
   team2
                  577 non-null
                                   object
   toss_winner 577 non-null object toss_decision 577 non-null object result 577 non-null object
5
   result 577 non-null
6
7
   dl_applied
                                   int64
    win_by_runs
                                   int64
9
10 win_by_wickets 577 non-null
                                   int64
11 venue
                    577 non-null
                                   object
12 umpire1
                    577 non-null
                                   object
13 umpire2
                   577 non-null
                                   object
dtypes: int64(5), object(9)
memory usage: 63.2+ KB
```

Dropping the columns containing missing values.

ipl1.isnull().sum()

```
id
                  0
                  0
season
date
                  0
team1
                  0
team2
                  0
toss winner
toss_decision
                  0
result
                  0
dl_applied
                  0
win_by_runs
                  0
win_by_wickets
                  0
                  0
venue
umpire1
                  0
umpire2
                  0
dtype: int64
```

ipl=ipl.groupby('season')['win_by_runs'].sum().reset_index()
print(ipl)

	season	win_by_runs
0	2008	705
1	2009	764
2	2010	976
3	2011	1098
4	2012	960
5	2013	1241
6	2014	644
7	2015	850
8	2016	676

import matplotlib.pyplot as plt

import seaborn as sns

plt.figure(figsize = (16,8))

sns.barplot(x="season", y="win_by_runs", data=ipl1)

plt.show()

INTERPRETATION

Barplot shows the increase in win by runs over years. Results stated that win by runs reaches its peak in the year of 2013.

#correlation

ipl1.corr()

:

	id	season	dl_applied	win_by_runs	win_by_wickets
id	1.000000	0.992806	0.017197	-0.014813	-0.012804
season	0.992806	1.000000	0.015600	-0.018098	-0.005966
dl_applied	0.017197	0.015600	1.000000	-0.005878	-0.023803
win_by_runs	-0.014813	-0.018098	-0.005878	1.000000	-0.572839
win_by_wickets	-0.012804	-0.005966	-0.023803	-0.572839	1.000000

INTERPRETATION

Negative correlation between season and win_by_runs.

#correlation plot
sns.heatmap(ipl1.corr())

: <AxesSubplot:>

#jointplot is used to analyse the correlation between the data sns.jointplot(x='season',y='win_by_runs',data=ipl1,kind='reg')

Presence of outliers.

- 4. Perform EDA on company_sales_data.csv with proper interpretation based on the visualization.
- a. Read all product sales data and show it using a multiline plot.
- b. Read toothpaste sales data of each month and show it using a scatter plot.
- c. Read face cream and facewash product sales data and show it using the bar chart.
- d. Read the total profit of each month and show it using the histogram to see the most common profit ranges.
- e. Calculate total sale data for last year for each product and show it using a Pie chart.

```
import matplotlib.pyplot as plt
%matplotlib inline
data=pd.read_csv("C:\\python_code\\company_sales_data - company_sales_data.csv")
data.info()
   <class 'pandas.core.frame.DataFrame'>
   RangeIndex: 12 entries, 0 to 11
   Data columns (total 9 columns):
                      Non-Null Count Dtype
        Column
                       -----
    0
       month number 12 non-null
                                        int64
       facecream 12 non-null
                                        int64
    1
                     12 non-null
    2
       facewash
                                        int64
       toothpaste 12 non-null
                                        int64
    3
       bathingsoap 12 non-null
                                        int64
    5 shampoo
                      12 non-null
                                        int64
        moisturizer 12 non-null
                                        int64
        total_units 12 non-null
                                        int64
        total_profit 12 non-null
                                        int64
   dtypes: int64(9)
   memory usage: 992.0 bytes
data.columns
 Index(['month_number', 'facecream', 'facewash', 'toothpaste', 'bathingsoap',
        'shampoo', 'moisturizer', 'total_units', 'total_profit'],
       dtype='object')
facecream=data['facecream']
facewash=data['facewash']
toothpaste=data['toothpaste']
bathingsoap=data['bathingsoap']
moisturizer=data['moisturizer']
shampoo=data['shampoo']
month_number=data['month_number']
plt.plot(month_number,facecream, linestyle='-',color='red', marker='o')
plt.plot(month_number,facewash, linestyle='-',color='green', marker='o')
plt.plot(month_number,toothpaste, linestyle='-',color='blue', marker='o')
plt.plot(month_number, bathingsoap, linestyle='-',color='orange', marker='o')
plt.plot(month_number,moisturizer, linestyle='-',color='brown',marker='o')
```

```
plt.plot(month_number,shampoo, linestyle='-', color='purple',marker='o' )
plt.title("All product sale data")
plt.xlabel("Months")
plt.ylabel("Sales")
plt.legend(labels = ['Facecream', 'Facewash', 'Toothpaste',
'Bathingsoap','Shampoo','Moisturizer'],loc="upper left")
plt.show()
```


Sales increased for the product bathingsoap, and decreased for shampoo.

```
plt.scatter(month_number,toothpaste, color="purple")
plt.title("Tooth Paste sales data")
plt.xlabel("Month")
plt.ylabel("Number of units Sold")
plt.legend(["Toothpaste Sales Data"],loc="upper right")
plt.show()
```


Toothpaste Sales is increased over the months.

plt.bar(data["month_number"] - 0.25, data["facecream"], width=0.25, color="blue",label="Face Cream sales data", align="edge")

 $plt.bar(data["month_number"] + 0.25, data["facewash"], width=-0.25, color="red", label="Face Wash sales data", align="edge")$

plt.title("Facewash and facecream sales data")

plt.xlabel("Month Number")

plt.ylabel("Sales units in number")

plt.legend(loc="upper left")

plt.show()

Face cream sales is increased compared to face wash over the months.

```
total_profit=data['total_profit']

plt.hist(total_profit,bins=10,density=False,color="brown")

plt.title("Profit Data")

plt.xlabel("Profit range")

plt.ylabel("Frequency")

plt.legend("Total profit")

plt.show()
```


INTERPRETATION

Profit reaches around 220000 with the frequency 4.0 with higher density.

```
colors=['purple','blue','red','brown','green','orange']
explode=[0,0.3,0.3,0.3,0.3,0.3,0.3]
plt.figure(figsize=(5,5))
total_sale = [sum(facecream), sum(facewash), sum(toothpaste), sum(bathingsoap), sum(shampoo),sum(moisturizer)]
plt.pie(total_sale ,explode=explode,colors=colors,autopct='%1.1f%%')
plt.title('Total Sale Data',color="blue",fontsize=15)
```

plt.legend(labels = ['Facecream', 'Facewash', 'Toothpaste',
'Bathingsoap','Shampoo','Moisturizer'])
plt.show()

INTERPRETATION

Sales of bathingsoap is increased compared to other product 40.6.

Facewash product is the least sales data.

- 5. Perform the classification on the breast cancer using four different algorithms:
- A. Analyse the performance metrics of the four algorithms.
- B. Interpret which algorithm gives a very good accuracy score and why?
- C. Remove the target variable column and perform clustering by choosing k value using elbow method. Apply the cluster label as target and perform classification using the best model from 5A. Analyse the performance metrics of clustering.
- D. Perform clustering customer dataset by using elbow method. By providing the Cluster label as target column perform classification and analyse its performance metrics.
- #5A. Perform the classification on the breast cancer using four different algorithms: from sklearn import datasets

cancer=datasets.load_breast_cancer()

df_cancer = pd.DataFrame(cancer.data, columns=cancer.feature_names)

```
df_cancer['target'] = pd.Series(cancer.target)
df_cancer
X=df_cancer.drop('target',axis=1)
y=df_cancer['target']
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=101)
from sklearn.linear_model import LinearRegression
lm=LinearRegression()
lm.fit(X_train,y_train)
 LinearRegression()
print(lm.intercept_)
 2.8791124302214155
print(lm.coef_)
 [ 1.88483067e-01 -1.10810198e-03 -1.92103818e-02 -2.87082019e-04
   1.66060120e+00 4.22854350e+00 -1.77440725e+00 -2.09765541e+00
  -7.62432719e-01 5.37073957e-01 -7.91902416e-01 1.06334753e-02
   6.84641664e-02 8.15822173e-04 -9.58224490e+00 -1.15873529e-01
   4.27311559e+00 -1.13627936e+01 -3.28027537e+00 6.51029908e+00
  -1.92646209e-01 -9.46135655e-03 2.67498659e-03 1.02486499e-03
  -1.71984338e+00 -1.53672081e-01 -4.05447900e-01 -5.18672336e-01
  -1.79236096e-01 -3.72493843e+00]
cdf=pd.DataFrame(lm.coef_,X_train.columns,columns=['Coeff'])
cdf
```

```
]:
                               Coeff
              mean radius
                            0.188483
             mean texture
                            -0.001108
           mean perimeter
                           -0.019210
                           -0.000287
                mean area
         mean smoothness
                            1.660601
                            4.228544
        mean compactness
           mean concavity
                           -1.774407
                           -2.097655
      mean concave points
           mean symmetry
                           -0.762433
     mean fractal dimension
                            0.537074
               radius error
                           -0.791902
              texture error
                            0.010633
            perimeter error
                            0.068464
                            0.000816
                area error
prediction=lm.predict(X_test)
from sklearn.linear_model import LogisticRegression
model=LogisticRegression()
model.fit(X_train,y_train)
prediction=model.predict(X_test)
prediction
 array([1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
         1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1,
```

from sklearn.metrics import classification_report,confusion_matrix print("Classification Report")

1, 1, 1, 0])

Classificatio	on Report precision	recall	f1-score	support
0	0.93	0.93	0.93	42
1	0.96	0.96	0.96	72
accuracy			0.95	114
macro avg	0.94	0.94	0.94	114
weighted avg	0.95	0.95	0.95	114

Logistic regression shows 94% accuracy.

```
print(classification_report(y_test,prediction))
print("Confusion matrix")
print(confusion_matrix(y_test,prediction))
```

print(confusion_matrix(y_test,prediction))								
	precision	recall	f1-score	support				
0	0.93	0.90	0.92	42				
1	0.95	0.96	0.95	72				
accuracy			0.94	114				
macro avg	0.94	0.93	0.93	114				
weighted avg	0.94	0.94	0.94	114				
Confusion mat [[38 4] [3 69]]	rix							

from sklearn.metrics import accuracy_score

print('Accuracy Score: %.3f' % accuracy_score(y_test,prediction))

#Remove the target variable column

data=df_cancer.drop('target',axis=1)

data.info()

```
<class 'pandas.core.frame.DataFrame'>
  RangeIndex: 569 entries, 0 to 568
  Data columns (total 30 columns):
       Column
                                 Non-Null Count Dtype
       -----
   0
       mean radius
                                 569 non-null
                                                  float64
   1
       mean texture
                                569 non-null
                                                  float64
   2
                                569 non-null
                                                  float64
       mean perimeter
                                                  float64
   3
       mean area
                                569 non-null
   4
      mean smoothness
                                569 non-null
                                                  float64
                               569 non-null float64
   5 mean compactness
      mean compactness
mean concavity 569 non-null floato4
mean concave points 569 non-null float64
569 non-null float64
   6 mean concavity
   7
   8 mean symmetry
       mean fractal dimension 569 non-null float64
                                                  float64
   10 radius error
                         569 non-null
   11 texture error
                                 569 non-null
                                                  float64
                               569 non-null float64
   12 perimeter error
                                569 non-null
                                                  float64
   13 area error
   14 smoothness error
                                 569 non-null
                                                  float64
# perform clustering by choosing k value using elbow method.
from sklearn.cluster import KMeans
Kmeans=KMeans(n_clusters=2)
Kmeans.fit(data)
def converter(target):
  if target=='Yes':
    return 1
  else:
    return 0
data['Cluster']=df_cancer['target'].apply(converter)
from sklearn.metrics import classification_report,confusion_matrix
print(classification_report(data['Cluster'],Kmeans.labels_))
```

	precision	recall	f1-score	support
0	1.00	0.23	0.37	569
1	0.00	0.00	0.00	0
accuracy			0.23	569
macro avg	0.50	0.12	0.19	569
weighted avg	1.00	0.23	0.37	569

KMeans shows 50% accuracy.

```
print(confusion_matrix(data['Cluster'],Kmeans.labels_))
    [[131 438]
             0]]
#calculating mena squared error
from scipy.spatial.distance import cdist
data=data.drop('Cluster',axis=1)
distortion=[]
K=range(2,10)
for k in K:
  kmeans=KMeans(n_clusters=k)
  kmeans.fit(data)
  mse=sum(np.min(cdist(data,kmeans.cluster_centers_,'euclidean'),axis=1))/data.shape[0]
  distortion.append(mse)
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(K,distortion)
plt.xlabel('Cluster K value')
plt.ylabel('MSE')
plt.title('Elbow Method')
plt.show()
```

E7322020

INTERPRETATION

As K value increases mean squared error dectreases.

from sklearn.neighbors import KNeighborsClassifier

knn_model=KNeighborsClassifier(n_neighbors=1) #(increase in neighbor decrease in accuracy)

knn_model.fit(X_train,Y_train)

pred=knn_model.predict(X_test)

from sklearn.metrics import classification_report,confusion_matrix

print(classification_report(Y_test,pred))

print(confusion_matrix(Y_test,pred))

	precision	recall	f1-score	support	
0	0.90	0.92	0.91	59	
1	0.95	0.95	0.95	112	
accuracy			0.94	171	
macro avg	0.93	0.93	0.93	171	
weighted avg	0.94	0.94	0.94	171	
[[54 5] [6 106]]					

INTERPRETATION

KNN shows 93% accuracy.

```
error_rate=[]

for i in range(1,40):

knn=KNeighborsClassifier(n_neighbors=i)

knn.fit(X_train,Y_train)

pred_i=knn.predict(X_test)

error_rate.append(np.mean(pred_i!=Y_test))

plt.figure(figsize=(10,6))

plt.plot(range(1,40),error_rate,color='blue',linestyle='dashed',marker='o',markerfacecolor='red', markersize=10)

plt.title('Error rate Vs. K-value')

plt.xlabel('K')

plt.ylabel('Error Rate')

Text(0, 0.5, 'Error Rate')
```


Error rate is minimal between the range of 20 and 35 with higher accuracy rate.

```
from sklearn.tree import DecisionTreeClassifier
clf=DecisionTreeClassifier()
clf=clf.fit(X_train,Y_train)
```

pred_tree=clf.predict(X_test)
print(classification_report(Y_test,pred_tree))
print(confusion_matrix(Y_test,pred_tree))

	precision	recall	f1-score	support
0	0.83	0.93	0.88	59
1	0.96	0.90	0.93	112
accuracy			0.91	171
macro avg	0.90	0.92	0.91	171
weighted avg	0.92	0.91	0.91	171
[[55 4] [11 101]]				

INTERPRETATION

Decision tree shows 90% accuracy.

from sklearn import tree

tree.plot_tree(clf,feature_names=X_train.columns)

B.Logistic regression is the best model.

D.

import pandas as pd

import numpy as np

cu=pd.read_csv("C:\\python_code\\segmented_customers - segmented_customers.csv")

cu

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
0	1	Male	19	15	39	4
1	2	Male	21	15	81	3
2	3	Female	20	16	6	4
3	4	Female	23	16	77	3
4	5	Female	31	17	40	4
195	196	Female	35	120	79	1
196	197	Female	45	126	28	2
197	198	Male	32	126	74	1
198	199	Male	32	137	18	2
199	200	Male	30	137	83	1

200 rows x 6 columns

cu.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object
2	Age	200 non-null	int64
3	Annual Income (k\$)	200 non-null	int64
4	Spending Score (1-100)	200 non-null	int64
5	cluster	200 non-null	int64

dtypes: int64(5), object(1)
memory usage: 9.5+ KB

#to fetch the columns with numerical data types

cu_numeric=cu.select_dtypes(exclude=['object'])

cu_numeric

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)	cluster
0	1	19	15	39	4
1	2	21	15	81	3
2	3	20	16	6	4
3	4	23	16	77	3
4	5	31	17	40	4
195	196	35	120	79	1
196	197	45	126	28	2
197	198	32	126	74	1
198	199	32	137	18	2
199	200	30	137	83	1

200 rows x 5 columns

to find number of observations, number of columns and missing value if any cu.columns

#to remove whitespace

cu.columns=cu.columns.str.strip()

cu.columns

#to replace whitespace with underscore

cu.columns=cu.columns.str.replace(' ','_')

cu.columns

```
<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 200 entries, 0 to 199
 Data columns (total 5 columns):
     Column
 #
                             Non-Null Count Dtype
     -----
                             -----
     CustomerID
                             200 non-null
  0
                                            int64
  1
     Age
                            200 non-null int64
     Annual Income (k$) 200 non-null int64
  2
     Spending Score (1-100) 200 non-null int64
  3
                             200 non-null int64
 4
     cluster
 dtypes: int64(5)
 memory usage: 7.9 KB
cu.isnull().sum()
CustomerID
Gender
                         0
Age
Annual_Income_(k$)
Spending_Score_(1-100)
cluster
dtype: int64
#removing the class label(age)
data=cu.drop('Age',axis=1)
data=cu.drop('Gender',axis=1)
data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 200 entries, 0 to 199
 Data columns (total 5 columns):
     Column
                             Non-Null Count Dtype
     -----
                            -----
     CustomerID
                           200 non-null
                                           int64
 0
                            200 non-null
                                           int64
  1
     Age
  2
     Annual_Income_(k$)
                           200 non-null int64
     Spending_Score_(1-100) 200 non-null int64
  3
 4
     cluster
                            200 non-null int64
 dtypes: int64(5)
 memory usage: 7.9 KB
from sklearn.cluster import KMeans
kmeans=KMeans(n_clusters=2)# creating 2 cluster
kmeans.fit(data)
 KMeans(n clusters=2)
#to find center of the data
```

kmeans.cluster_centers_

```
array([[150. , 37.77227723, 81.35643564, 50.45544554, 1.82178218], [50. , 39.94949495, 39.34343434, 49.93939394, 2.67676768]])
```

kmeans.labels

from sklearn.metrics import classification_report,confusion_matrix print(classification_report(data['cluster'],kmeans.labels_))

	precision	recall	f1-score	support
	•			
0	0.33	0.73	0.46	45
1	0.39	1.00	0.56	39
2	0.00	0.00	0.00	35
3	0.00	0.00	0.00	22
4	0.00	0.00	0.00	21
5	0.00	0.00	0.00	38
accuracy			0.36	200
macro avg	0.12	0.29	0.17	200
weighted avg	0.15	0.36	0.21	200

INTERPRETATION

KMeans shows 12% accuracy.

print(confusion_matrix(data['cluster'],kmeans.labels_))

```
[[33 12 0 0 0 0]
[0 39 0 0 0 0]
[0 35 0 0 0 0]
[22 0 0 0 0 0]
[21 0 0 0 0 0]
[23 15 0 0 0 0]
```

```
#calculating mean squared error(mse)
from scipy.spatial.distance import cdist
data.shape
 (200, 5)
data.shape[0]
 200
distortion=[]
K=range(2,5)
for k in K:
  kmeans=KMeans(n_clusters=k)
  kmeans.fit(data)
  mse=sum(np.min(cdist(data,kmeans.cluster_centers_,'euclidean'),axis=1))/data.shape[0]
  distortion.append(mse)
import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(K,distortion)
plt.xlabel('Cluster K value')
plt.ylabel('MSE')
plt.title('Elbow Method')
plt.show#error decreases as K value increases
```


INTERPRETATION

As K value increases error rate decreases with high precision rate.

```
target=[]
for i in range(len(data['cluster'])):
    if data['cluster'][i]==1:
        target.append('A')
    elif data['cluster'][i]==2:
        target.append('B')
    elif data['cluster'][i]==3:
        target.append('C')
    else:
        target.append('D')
```

	CustomerID	Age	Annual_Income_(k\$)	Spending_Score_(1-100)	cluster	target
0	1	19	15	39	4	D
1	2	21	15	81	3	С
2	3	20	16	6	4	D
3	4	23	16	77	3	С
4	5	31	17	40	4	D
195	196	35	120	79	1	Α
196	197	45	126	28	2	В
197	198	32	126	74	1	Α
198	199	32	137	18	2	В
199	200	30	137	83	1	Α

200 rows x 6 columns

x=data.drop(['cluster','target'],axis=1)

y=data['cluster']

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=101)#80%-train,20%-test,101=seed point

#create the model and train the model

from sklearn.linear_model import LinearRegression

lm=LinearRegression()

lm.fit(x_train,y_train)

LinearRegression()

#evaluate the model

print(lm.intercept_)

8.350586398901937

print(lm.coef_)#coeff of 5 independent variables in the dataset

[-0.01725505 -0.09080864 0.01264395 -0.03049777]

pred=lm.predict(x_test)

testing_prediction=lm.predict(x_test)

plt.scatter(y_test,testing_prediction)#more or less similar

<matplotlib.collections.PathCollection at 0x1ff6b0f7490>

from sklearn import metrics

metrics.mean_absolute_error(y_test,testing_prediction)

0.9278475527645952

metrics.mean_squared_error(y_test,testing_prediction)

1.4943365115159322

import numpy as np

rmse=np.sqrt(metrics.mean_squared_error(y_test,testing_prediction))

print(rmse)

1.222430575335848

6. A. Consider you are provided with the planet's dataset from seaborn library. The dataset gives information on planets that astronomers have discovered around other stars (known as extrasolar planets or exoplanets for short). Perform the following operations on the dataset

Load the dataset and display top 10 records and bottom 5 records

- o Statistically analyse the overall properties of the dataset using a single command after
- o dropping null or missing values
- o Find the mean value of orbital periods (in days) that each method is sensitive to.
- o Perform multiple aggregation like min, max and mean on the column orbital period.
- o Remove the column method from the dataset

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import scipy

import seaborn as sns

print(sns.get_dataset_names())

```
['anagrams', 'anscombe', 'attention', 'brain_networks', 'car_crashes', 'diamonds', 'dots', 'dowjones', 'exercise', 'flights', 'fmri', 'geyser', 'glue', 'healthexp', 'iris', 'mpg', 'penguins', 'planets', 'seaice', 'taxis', 'tips', 'titanic']
```

#Load the dataset and display top 10 records and bottom 5 records df=sns.load_dataset('planets')

df.head(10)

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.300	7.10	77.40	2006
1	Radial Velocity	1	874.774	2.21	56.95	2008
2	Radial Velocity	1	763.000	2.60	19.84	2011
3	Radial Velocity	1	326.030	19.40	110.62	2007
4	Radial Velocity	1	516.220	10.50	119.47	2009
5	Radial Velocity	1	185.840	4.80	76.39	2008
6	Radial Velocity	1	1773.400	4.64	18.15	2002
7	Radial Velocity	1	798.500	NaN	21.41	1996
8	Radial Velocity	1	993.300	10.30	73.10	2008
9	Radial Velocity	2	452.800	1.99	74.79	2010

df.tail(5)

	method	number	orbital_period	mass	distance	year
1030	Transit	1	3.941507	NaN	172.0	2006
1031	Transit	1	2.615864	NaN	148.0	2007
1032	Transit	1	3.191524	NaN	174.0	2007
1033	Transit	1	4.125083	NaN	293.0	2008
1034	Transit	1	4.187757	NaN	260.0	2008

df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1035 entries, 0 to 1034
Data columns (total 6 columns):
    Column
                   Non-Null Count Dtype
    -----
                   -----
    method
0
                   1035 non-null
                                   object
    number
                   1035 non-null int64
1
    orbital_period 992 non-null
2
                                  float64
 3
    mass
                    513 non-null
                                   float64
4
                   808 non-null
                                  float64
    distance
    year
                   1035 non-null
                                   int64
dtypes: float64(3), int64(2), object(1)
memory usage: 48.6+ KB
```

#dropping null or missing values

df.isnull().sum()

```
method 0
number 0
orbital_period 43
mass 522
distance 227
year 0
dtype: int64
```

df.dropna()

	method	number	orbital_period	mass	distance	year
0	Radial Velocity	1	269.30000	7.100	77.40	2006
1	Radial Velocity	1	874.77400	2.210	56.95	2008
2	Radial Velocity	1	763.00000	2.600	19.84	2011
3	Radial Velocity	1	326.03000	19.400	110.62	2007
4	Radial Velocity	1	516.22000	10.500	119.47	2009
640	Radial Velocity	1	111.70000	2.100	14.90	2009
641	Radial Velocity	1	5.05050	1.068	44.46	2013
642	Radial Velocity	1	311.28800	1.940	17.24	1999
649	Transit	1	2.70339	1.470	178.00	2013
784	Radial Velocity	3	580.00000	0.947	135.00	2012

498 rows x 6 columns

#Statistically analyse the overall properties of the dataset using a single command after df.describe()

	number	orbital_period	mass	distance	year
count	1035.000000	992.000000	513.000000	808.000000	1035.000000
mean	1.785507	2002.917596	2.638161	264.069282	2009.070531
std	1.240976	26014.728304	3.818617	733.116493	3.972567
min	1.000000	0.090706	0.003600	1.350000	1989.000000
25%	1.000000	5.442540	0.229000	32.560000	2007.000000
50%	1.000000	39.979500	1.260000	55.250000	2010.000000
75%	2.000000	526.005000	3.040000	178.500000	2012.000000
max	7.000000	730000.000000	25.000000	8500.000000	2014.000000

#Find the mean value of orbital periods (in days) that each method is sensitive to.

df.groupby('method')['orbital_period'].mean()

method Astrometry 631.180000 Eclipse Timing Variations 4751.644444 Imaging 118247.737500 Microlensing 3153.571429 Orbital Brightness Modulation 0.709307 Pulsar Timing 7343.021201 Pulsation Timing Variations 1170.000000 Radial Velocity 823.354680 Transit 21.102073 Transit Timing Variations 79.783500 Name: orbital_period, dtype: float64

#Perform multiple aggregation like min, max and mean on the column orbital period.

df.agg({'orbital_period':{'mean','min','max'}})

orbital_period

max	730000.000000
min	0.090706
mean	2002.917596

#Remove the column method from the dataset

del df['mass']

df

	method	number	orbital_period	distance	year
0	Radial Velocity	1	269.300000	77.40	2006
1	Radial Velocity	1	874.774000	56.95	2008
2	Radial Velocity	1	763.000000	19.84	2011
3	Radial Velocity	1	326.030000	110.62	2007
4	Radial Velocity	1	516.220000	119.47	2009
1030	Transit	1	3.941507	172.00	2006
1031	Transit	1	2.615864	148.00	2007
1032	Transit	1	3.191524	174.00	2007
1033	Transit	1	4.125083	293.00	2008
1034	Transit	1	4.187757	260.00	2008

1035 rows x 5 columns

B. Perform the Quantitative analysis on the Brazillian fire dataset which has the following information like:

CO₂

- o Load the dataset and display top 10 records and bottom 5 records
- o Statistically analyse the overall properties of the dataset using a single command after
- o dropping null or missing values
- o Find the mean value of orbital periods (in days) that each method is sensitive to.
- o Perform multiple aggregation like min, max and mean on the column orbital period.
- o Remove the column method from the dataset
- B. Perform the Quantitative analysis on the Brazillian fire dataset which has the following information like:

Year: when the fire occurred

State: where the fire was reported

Month: when the fire occurred

Number of fires: frequency reported

Date reported: when the fire was reported.

import pandas as pd import matplotlib.pyplot as plt import numpy as np import scipy import seaborn as sns df=sns.load_dataset('planets') print(df.head(5))

	method	number	orbital_period	mass	distance	year	
0	Radial Velocity	1	269.300	7.10	77.40	2006	
1	Radial Velocity	1	874.774	2.21	56.95	2008	
2	Radial Velocity	1	763.000	2.60	19.84	2011	
3	Radial Velocity	1	326.030	19.40	110.62	2007	
4	Radial Velocity	1	516.220	10.50	119.47	2009	

import matplotlib.pyplot as plt

import seaborn as sns

 $data = pd.read_csv("E:\python\ code\Brazilian-fire-dataset.csv")$

data

	Year	State	Month	Number of Fires	Date Reported
0	1998	Acre	January	0.0	1/01/1998
1	1999	Acre	January	0.0	1/01/1999
2	2000	Acre	January	0.0	1/01/2000
3	2001	Acre	January	0.0	1/01/2001
4	2002	Acre	January	0.0	1/01/2002
6449	2012	Tocantins	December	128.0	1/01/2012
6450	2013	Tocantins	December	85.0	1/01/2013
6451	2014	Tocantins	December	223.0	1/01/2014
6452	2015	Tocantins	December	373.0	1/01/2015
6453	2016	Tocantins	December	119.0	1/01/2016

6454 rows x 5 columns

data.isnull().sum()

0
0
0
0
0

data.info()

```
<class 'pandas.core.frame.DataFrame'>
  RangeIndex: 6454 entries, 0 to 6453
  Data columns (total 5 columns):
     Column
                    Non-Null Count Dtype
                       -----
  ---
   0
      Year
                     6454 non-null
                                       int64
   1
      State
                     6454 non-null object
   2 Month
                      6454 non-null object
      Number of Fires 6454 non-null float64
   4 Date Reported 6454 non-null object
  dtypes: float64(1), int64(1), object(3)
  memory usage: 252.2+ KB
data.columns
 Index(['Year', 'State', 'Month', 'Number of Fires', 'Date Reported'], dtype='object')
data.columns=data.columns.str.strip()
data.columns
Index(['Year', 'State', 'Month', 'Number of Fires', 'Date Reported'], dtype='object')
data.columns=data.columns.str.replace(' ','_')
data.columns
 Index(['Year', 'State', 'Month', 'Number_of_Fires', 'Date_Reported'], dtype='object')
data.info()
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 6454 entries, 0 to 6453
 Data columns (total 5 columns):
      Column
                     Non-Null Count Dtype
  #
      -----
                      -----
  0
     Year
                      6454 non-null int64
      State
                      6454 non-null object
  1
  2
      Month
                      6454 non-null object
    Number of Fires 6454 non-null float64
  3
      Date Reported 6454 non-null object
 dtypes: float64(1), int64(1), object(3)
 memory usage: 252.2+ KB
year=data.groupby('Year')['Number_of_Fires'].sum().reset_index()
print(year)
```

		•
	Year	Number_of_Fires
0	1998	20013.971
1	1999	26882.821
2	2000	27351.251
3	2001	29071.612
4	2002	37390.600
5	2003	42760.674
6	2004	38453.163
7	2005	35004.965
8	2006	33832.161
9	2007	33037.413
10	2008	29378.964
11	2009	39117.178
12	2010	37037.449
13	2011	34633.545
14	2012	40084.860
15	2013	35146.118
16	2014	39621.183
17	2015	41208.292
18	2016	42212.229
19	2017	36685.624

```
plt.figure(figsize = (16,8))
sns.barplot(x="Year", y="Number_of_Fires", data=year)
plt.show()
```


INTERPRETATION

Number of fires is increased in 2003,2016.

```
state=data.groupby('State')['Number_of_Fires'].sum().reset_index()
print(state)
```

```
State
                           Number_of_Fires
0
                                 18464.030
                    Acre
1
                 Alagoas
                                  4644.000
2
                   Amapá
                                 21831.576
3
                Amazonas
                                 30650.129
4
                   Bahia
                                 44746.226
5
                   Ceará
                                 30428.063
6
       Distrito Federal
                                  3561.000
7
         Espírito Santo
                                  6546.000
8
                   Goiás
                                 37695.520
9
                Maranhão
                                 25129.131
10
             Mato Grosso
                                 48477.827
11
     Mato Grosso do Sul
                                 47768.201
12
           Minas Gerais
                                 37475.258
13
                  Paraná
                                 39648.918
                 Paraíba
14
                                 12787.000
15
                    Pará
                                 24512.144
16
              Pernambuco
                                 24498.000
17
                   Piauí
                                 37803.747
18
    Rio Grande do Norte
                                  9426.000
19
      Rio Grande do Sul
                                 24031.865
         Rio de January
20
                                 11703.000
21
                Rondônia
                                 20285.429
22
                 Roraima
                                 24385.074
23
         Santa Catarina
                                 24359.852
24
                 Sergipe
                                  3237.000
```

plt.figure(figsize = (16,8))

sns.barplot(x="State", y="Number_of_Fires", data=state)

plt.show()

INTERPRETATION

Number of fires is increased in different state.

month=data.groupby('Month')['Number_of_Fires'].sum().reset_index()
print(month)

	114-	
	Month	Number_of_Fires
)	April	28188.770
L	August	88050.435
2	December	57535.480
3	February	30848.050
ļ	January	47747.844
5	July	92326.113
5	June	56010.675
7	March	30717.405
3	May	34731.363
)	November	85508.054
10	October 0	88681.579
1	September	58578.305

```
plt.figure(figsize = (16,8))
sns.barplot(x="Month", y="Number_of_Fires", data=month)
plt.show()
```


INTERPRETATION

Number of fire is increased in the month of July a d declines in the month of march

data['Number_of_Fires'].describe()

```
6454.000000
 count
            108.293163
 mean
            190.812242
 std
              0.000000
 min
 25%
              3.000000
 50%
             24.000000
 75%
            113.000000
            998.000000
 max
 Name: Number_of_Fires, dtype: float64
date=data.groupby('Date_Reported')['Number_of_Fires'].sum().reset_index()
print(date)
     Date Reported Number of Fires
  0
          1/01/1998
                            20013.971
  1
         1/01/1999
                            26882.821
  2
         1/01/2000
                            27351.251
  3
         1/01/2001
                            29071.612
  4
                            37390.600
          1/01/2002
  5
                           42760.674
         1/01/2003
  6
         1/01/2004
                           38453.163
  7
         1/01/2005
                           35004.965
  8
                            33832.161
          1/01/2006
  9
         1/01/2007
                            33037.413
  10
         1/01/2008
                            29378.964
  11
         1/01/2009
                            39117.178
  12
         1/01/2010
                            37037.449
  13
                            34633.545
         1/01/2011
  14
         1/01/2012
                           40084.860
                            35146.118
  15
         1/01/2013
  16
         1/01/2014
                            39621.183
  17
         1/01/2015
                           41208.292
  18
         1/01/2016
                           42212.229
  19
         1/01/2017
                            36685.624
plt.figure(figsize = (16,8))
sns.barplot(x="Date_Reported", y="Number_of_Fires", data=date)
plt.show()
```

E7322020

7. Perform the following TensorFlow operations on matrix and a constant

- i) Addition
- ii) Subtraction
- iii) Multiplication
- iv) Division

import tensorflow as tf
with tf.compat.v1.Session() as sess:

#ADDITION

```
b=tf.constant (3)
c=tf.add(a,b)
d=sess.run(c)
print(d)
```

a=tf.constant (15)

#SUBTRACTION

e=tf.subtract(a,b)
f=sess.run(e)
print(f)

#MULTIPLICATION

```
g=tf.multiply(a,b)
h=sess.run(g)
print(h)
#DIVISION
i=tf.divide(a,b)
j=sess.run(i)
print(j)

18
12
45
5.0
```

- 8. Perform AutoML model on the following datasets
- A. advertisement dataset.
- B. house price prediction dataset.
- C. Titanic dataset.

Plot the Leader board of 10 best algorithms with accuracy score. Interpret your results.

A.

```
pip install auto-sklearn
import pandas as pd
import numpy as numpy
import autosklearn.regression
df=pd.read_csv("/content/Advertising - Advertising.csv")
df
```

	Unna	med: 0	TV	Radio	Newspaper	Sales	%
	0	1	230.1	37.8	69.2	22.1	
	1	2	44.5	39.3	45.1	10.4	
	2	3	17.2	45.9	69.3	9.3	
	3	4	151.5	41.3	58.5	18.5	
	4	5	180.8	10.8	58.4	12.9	
	195	196	38.2	3.7	13.8	7.6	
	196	197	94.2	4.9	8.1	9.7	
	197	198	177.0	9.3	6.4	12.8	
	100	100	283.6	42 N	66.2	25.5	
2 3 17.2 45.9 69.3 9.3 3 4 151.5 41.3 58.5 18.5 4 5 180.8 10.8 58.4 12.9 195 196 38.2 3.7 13.8 7.6 196 197 94.2 4.9 8.1 9.7 197 198 177.0 9.3 6.4 12.8							
Auto	SklearnRegress						
from	sklearn.met	rics imp	ort mea	n_absolı	ite_error		
y_pre	ed=automl.p						

print(automl.sprint_statistics())

auto-sklearn results:

Dataset name: 227ab608-a3a9-11ed-8067-0242ac1c000c

Metric: r2

Best validation score: 0.996496 Number of target algorithm runs: 99

Number of successful target algorithm runs: 99 Number of crashed target algorithm runs: 0

Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0

mae=mean_absolute_error(y_test,y_pred) print(mae)

0.36154500253498567

print(automl.leaderboard())

	rank	ensemble_weight	type	cost	duration
model_id					
66	1	0.06	gaussian_process	0.003504	0.645696
99	2	0.42	gaussian_process	0.003513	0.578452
56	3	0.02	gaussian_process	0.003581	0.637213
46	4	0.02	gaussian_process	0.003828	0.622897
86	5	0.14	gaussian_process	0.004125	0.686262
17	6	0.20	gaussian_process	0.004400	1.047740
26	7	0.02	libsvm_svr	0.005810	0.601968
24	8	0.10	extra_trees	0.012480	0.937476
31	9	0.02	gaussian_process	0.038229	0.622404

import PipelineProfiler

 $profiler_data = Pipeline Profiler.import_autosklearn(automl)$

PipelineProfiler.plot_pipeline_matrix(profiler_data)

3s completed at 3:34 PM

INTERPRETATION

Leaderboard shows 99% accuracy.

B.

pip install auto-sklearn
import pandas as pd
import numpy as numpy
import autosklearn.classification
df=pd.read_csv("/content/Housing - Housing.csv")
df

E* price area bedrooms bathrooms stories mainroad guest

	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking
0	13300000	7420	4	2	3	yes	no	no	no	yes	2
1	12250000	8960	4	4	4	yes	no	no	no	yes	3
2	12250000	9960	3	2	2	yes	no	yes	no	no	2
3	12215000	7500	4	2	2	yes	no	yes	no	yes	3
4	11410000	7420	4	1	2	yes	yes	yes	no	yes	2
	(***)	***		(994)	***	444	1222	***	3500	1440	400
540	1820000	3000	2	1	1	yes	no	yes	no	no	2
541	1767150	2400	3	1	1	no	no	no	no	no	0
542	1750000	3620	2	1	1	yes	no	no	no	no	0
543	1750000	2910	3	1	1	no	no	no	no	no	0

#to fetch the columns with numerical data types df_numeric=df.select_dtypes(exclude=['object']) df_numeric

	price	area	bedrooms	bathrooms	stories	parking
0	13300000	7420	4	2	3	2
1	12250000	8960	4	4	4	3
2	12250000	9960	3	2	2	2
3	12215000	7500	4	2	2	3
4	11410000	7420	4	1	2	2
540	1820000	3000	2	1	1	2
541	1767150	2400	3	1	1	0

df.isnull().sum()

```
price
area
                     0
bedrooms
bathrooms
stories
                     0
mainroad
                    0
guestroom
basement
                     0
hotwaterheating
                    0
airconditioning
                    0
parking
                     0
prefarea
furnishingstatus
dtype: int64
```

data=df.drop(["mainroad","guestroom","basement","hotwaterheating","airconditioning","prefare a"],axis=1)
data

	price	area	bedrooms	bathrooms	stories	parking	furnishingstatus	
0	13300000	7420	4	2	3	2	furnished	
1	12250000	8960	4	4	4	3	furnished	
2	12250000	9960	3	2	2	2	semi-furnished	
3	12215000	7500	4	2	2	3	furnished	
4	11410000	7420	4	1	2	2	furnished	
540	1820000	3000	2	1	1	2	unfurnished	

x=data.drop(["furnishingstatus"],axis=1)

y=data["furnishingstatus"]

automl=autosklearn.classification.AutoSklearnClassifier(time_left_for_this_task=5*60,per_run_time_limit=30)

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=40) automl.fit(x_train,y_train)

AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>, per_run_time_limit=30, time_left_for_this_task=300)

from sklearn.metrics import mean_absolute_error
y_pred=automl.predict(x_test)
print(automl.sprint_statistics())

auto-sklearn results:

Dataset name: 9c5c4c85-a3a7-11ed-8204-0242ac1c000c

Metric: accuracy

Best validation score: 0.569444 Number of target algorithm runs: 75

Number of successful target algorithm runs: 75 Number of crashed target algorithm runs: 0

Number of target algorithms that exceeded the time limit: 0 Number of target algorithms that exceeded the memory limit: 0

print(automl.leaderboard())

	rank	ensemble_weight	type	cost	duration
model_id					
51	1	0.24	random_forest	0.430556	1.490602
71	2	0.30	lda	0.444444	1.075507
24	3	0.04	passive aggressive	0.472222	0.981555
44	4	0.02	libsvm_svc	0.479167	0.716349
45	5	0.04	extra trees	0.493056	1.577940
65	6	0.02	random forest	0.493056	1.700721
12	7	0.02	random_forest	0.500000	1.709357
27	8	0.02	mlp	0.534722	1.618086
42	9	0.12	adaboost	0.534722	1.342932
63	10	0.02	random forest	0.562500	1.578375
34	11	0.12	adaboost	0.569444	1.101399
38	12	0.04	extra trees	0.569444	1.652863

pip install PipelineProfiler

import PipelineProfiler

profiler_data=PipelineProfiler.import_autosklearn(automl)

PipelineProfiler.plot_pipeline_matrix(profiler_data)

E7322020

INTERPRETATION

Leaderboard shows 56% accuracy.

C.

pip install auto-sklearn import pandas as pd import numpy as numpy import autosklearn.classification df=pd.read_csv("/content/titanic - titanic.csv")

5]	df												
		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	5
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	(
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
					.***	***	396	***	***			***	- 13
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.4500	NaN	

df.isnull().sum()

```
PassengerId
                  0
Survived
                  0
Pclass
                 0
Name
                  0
Sex
                 0
Age
               177
SibSp
                 0
Parch
                  0
Ticket
                  0
Fare
                  0
Cabin
               687
Embarked
                  2
dtype: int64
```

data=df.select_dtypes(exclude=['object']) data

from sklearn.impute import SimpleImputer imputer=SimpleImputer(strategy='mean') data.iloc[:,:]=imputer.fit_transform(data)

data.isnull().sum()

```
PassengerId 0
Survived 0
Pclass 0
Age 0
SibSp 0
Parch 0
Fare 0
dtype: int64
```

x=data.drop(["Survived"],axis=1)
y=data["Survived"]

 $automl=autosklearn.classification. AutoSklearnClassifier (time_left_for_this_task=5*60, per_run_time_limit=30)$

from sklearn.model_selection import train_test_split

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=40)

automl.fit(x_train,y_train)

```
AutoSklearnClassifier(ensemble_class=<class 'autosklearn.ensembles.ensemble_selection.EnsembleSelection'>, per_run_time_limit=30, time_left_for_this_task=300)
```

from sklearn.metrics import mean_absolute_error
y_pred=automl.predict(x_test)

print(automl.sprint_statistics())

```
auto-sklearn results:
Dataset name: 8570094d-a3d6-11ed-806f-0242ac1c000c
Metric: accuracy
Best validation score: 0.723404
Number of target algorithm runs: 54
Number of successful target algorithm runs: 52
Number of crashed target algorithm runs: 1
Number of target algorithms that exceeded the time limit: 1
Number of target algorithms that exceeded the memory limit: 0
```

print(automl.leaderboard())

	rank	ensemble_weight	type	cost	duration
model_id					
28	1	0.10	qda	0.276596	1.140786
20	2	0.06	extra_trees	0.285106	1.676613
4 9	2	0.06	extra_trees	0.293617	1.841954
9	4	0.02	mlp	0.293617	1.680628
35	6	0.04	lda	0.302128	0.961989
45	5	0.04	lda	0.302128	1.091437
2	7	0.04	random_forest	0.310638	2.875540
22	9	0.06	mlp	0.310638	4.662967
46	8	0.06	qda	0.310638	1.095160
18	10	0.02	gradient_boosting	0.314894	1.418257
29	11	0.02	k_nearest_neighbors	0.319149	0.882213
38	12	0.22	adaboost	0.319149	1.078088
7	14	0.02	extra trees	0.323404	2.222743
24	13	0.02	mlp	0.323404	1.395840
21	15	0.04	random_forest	0.336170	2.682881
8	16	0.02	mlp	0.344681	3.442860
44	17	0.08	lda	0.357447	0.930164
51	18	0.02	gradient_boosting	0.357447	1.406636
14	19	0.06	passive aggressive	0.361702	1.114763

pip install PipelineProfiler

import PipelineProfiler

profiler_data=PipelineProfiler.import_autosklearn(automl)

PipelineProfiler.plot_pipeline_matrix(profiler_data)

E7322020

INTERPRETATION

Leaderboard shows 72% accuracy.