Supplementary Information

Direct esterification of amides by the

dimethylsulfate-mediated activation of amide C-N bonds

Contents

General Information	1
Experimental section	2
Synthesis of (hexahydrocyclopenta[c]pyrrol-2(1H)-yl)(p-tolyl)-methanone 1hc	2
General procedure for preparation of 8-aminoquinoline amide substrates	2
General procedure for preparation of 3-Azaspiro[5.5]undecane amide substrates	5
General procedure for preparation of amino acids derivative with protective group so	ubstrates
	7
General procedure for amide esterification	8
Synthesis of n-butyl 2-ethoxybenzoate	18
General procedure for cleavage of acyl protective group on amines with dimethyl sul	phate 20
Computational details	23
DFT Calculations	23
Supplementary References:	30

Supplementary Note 1

General Information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography plates were visualized by exposure to ultraviolet light and/or staining with ninhydrin hydrate followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Brucker 400 Hz, 500 Hz, or 600 Hz instrument. Data for ¹H NMR was presented as the chemical shift in ppm, and multiplicities were denoted as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. Data for ¹³C NMR were reported as chemical shift. The ESI mass spectra were determined on a Thermo Fisher FINNIGAN LTQ instrument. All high-resolution mass spectra (HRMS) results were obtained on an Agilent 1290-6545 UHPLC-QTOF LC/MS spectrometer or Thermo Scientific Orbitrap **Exploris** GC/MS spectrometer. Thin-layer chromatography (TLC) inspections were performed on silica gel plates (GF-254). All commercially available chemicals and solvents were directly used without further purification unless otherwise noted.

Experimental section

Synthesis of

(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)(p-tolyl)-methanone 1hc

To a solution of octahydrocyclopenta[c]pyrrole (111 mg, 1.0 mmol, 1.0 equiv.) in dicholoromethane (5.0 mL) was slowly added 4-methylbenzoyl chloride (186 mg, 1.2 mmol, 1.2 equiv.) followed by triethylamine (152 mg, 1.5 mmol, 1.5 equiv.) at 0 °C. After complete addition, the reaction was allowed to stir continuously until all the starting material was consumed completely (monitored by TLC, approx. 3-5 h). After completion, the reaction mixture was quenched with water and extracted with dichloromethane. The combined organic layer was washed with brine solution, dried over Na₂SO₄. The product was purified by column chromatography on silica gel to afford pure compound **1hc** (202 mg, 88% yield) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, J = 8.1 Hz, 2H), 7.19 (d, J = 7.9 Hz, 2H), 3.84 (s, 1H), 3.71 – 3.40 (m, 2H), 3.22 (s, 1H), 2.66 (d, J = 15.6 Hz, 2H), 2.37 (s, 3H), 1.94 – 1.67 (m, 3H), 1.67 – 1.45 (m, 2H), 1.35 (s, 1H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.63, 139.79, 134.21, 128.82, 127.22, 55.36, 51.83, 43.82, 41.91, 32.32, 31.72, 25.60, 21.38. HRMS (EI): calcd for C₁₅H₁₉NO: 229.1467, found: 229.1465.

General procedure for preparation of 8-aminoquinoline amide substrates

To a mixture of substituted carboxylic acids (1 mmol, 1.0 equiv) in dichloromethane (5 mL) was added 8-aminoquinoline (1.0 mmol, 1.0 equiv), HATU (1.0 mmol, 1.0 equiv) and followed by DIPEA (1.5 mmol, 1.5 equiv). After complete addition, the reaction was allowed to stir continuously until all the starting material was consumed completely (monitored by TLC, approx. 2-5 h). After completion, the reaction mixture was quenched with water and extracted with dichloromethane. The combined organic layer was washed with brine solution, dried over Na₂SO₄. The product was purified by column chromatography on silica gel to afford pure compounds.

3-phenyl-N-(quinolin-8-yl)propanamide

Following the general procedure compound $1\mathbf{k}$ was obtained from 3-phenylpropanoic acid (150 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (DCM/MeOH = 100/1 to 30/1) to afford the title compound $1\mathbf{k}^1$ (248 mg, 90%) as a white solid;

m.p. 64–66 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s, 1H), 8.91 (dd, J = 7.5, 1.1 Hz, 1H), 8.82 (dd, J = 4.2, 1.5 Hz, 1H), 8.16 (dd, J = 8.3, 1.5 Hz, 1H), 7.82 (d, J = 15.6 Hz, 1H), 7.64 – 7.49 (m, 4H), 7.48 – 7.35 (m, 4H), 6.79 (d, J = 15.6 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 170.74, 148.11, 140.81, 138.33, 136.36, 134.47, 128.58, 128.43, 127.94, 127.44, 126.26, 121.60, 121.46, 116.49, 39.74, 31.50. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₇N₂O 277.1136, found: 277.1134.

N-(quinolin-8-yl)cinnamamide

Following the general procedure compound **11** was obtained from cinnamic acid (148 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (DCM/MeOH = 100/1 to 30/1) to afford the title compound **11**² (250 mg, 91%) as a white solid; m.p. 110-113 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.01 (s,

1H), 8.91 (dd, J = 7.5, 1.1 Hz, 1H), 8.82 (dd, J = 4.2, 1.5 Hz, 1H), 8.16 (dd, J = 8.3, 1.5 Hz, 1H), 7.82 (d, J = 15.6 Hz, 1H), 7.64 – 7.49 (m, 4H), 7.48 – 7.35 (m, 4H), 6.79 (d, J = 15.6 Hz, 1H). 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 164.15, 148.13, 142.11, 138.41, 136.51, 134.83, 134.65, 129.93, 128.89, 128.07, 128.00, 127.54, 121.69, 121.68, 121.58, 116.93. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₈H₁₅N₂O 275.1179, found: 275.1176.

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-phenyl-N-(quinolin-8-yl)propanamide

Following the general procedure compound **1m** was obtained from (S)-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoic acid (295 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (DCM/MeOH = 100/1 to 30/1) to afford the title compound **1m**³ (358 mg, 85%) as a white solid; m.p. 122 - 123 °C. ¹H NMR (400 MHz, CDCl₃) δ

10.25 (s, 1H), 8.66 (dd, J = 6.4, 2.5 Hz, 1H), 8.53 (dd, J = 4.2, 1.6 Hz, 1H), 8.04 (dd, J = 8.3, 1.6 Hz, 1H), 7.74 (dd, J = 5.5, 3.1 Hz, 2H), 7.63 (dd, J = 5.5, 3.1 Hz, 2H), 7.49 – 7.38 (m, 2H), 7.31 (dd, J = 8.3, 4.2 Hz, 1H), 7.22 – 7.06 (m, 5H), 5.38 (dd, J = 9.8, 6.9 Hz, 1H), 3.78 – 3.69 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.85, 165.38, 147.24, 137.43, 135.69, 135.22, 133.14, 132.82, 130.60, 127.98, 127.66, 126.80, 126.27, 125.92, 122.51, 120.96, 120.58, 115.74, 55.20, 33.71. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₆H₂₀N₃O₃ 422.1499, found: 422.145.

(S)-2-(1,3-dioxoisoindolin-2-yl)-4-methyl-N-(quinolin-8-yl)pentanamide

Following the general procedure compound **1n** was obtained from

(S)-2-(1,3-dioxoisoindolin-2-yl)-4-methylpentanoic acid (261 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (DCM/MeOH = 100/1 to 30/1) to afford the title compound $1n^4$ (340 mg, 88%) as a white solid; m.p. 103 - 106 °C. ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.82 – 8.68 (m, 2H), 8.17 (dd, J = 8.3, 1.6 Hz, 1H), 7.93 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.59 – 7.50 (m, 2H), 7.45 (dd, J = 8.3, 4.3 Hz, 1H), 5.26 (dd, J = 11.3, 5.0 Hz, 1H), 2.68 (ddd, J = 13.9, 11.4, 4.3 Hz, 1H), 2.20 – 2.08 (m, 1H), 1.67 – 1.58 (m, 1H), 1.07 (dd, J = 10.7, 6.6 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.17, 167.39, 148.27, 138.42, 136.44, 134.21, 133.93, 131.92, 127.90, 127.38, 123.61, 121.90, 121.60, 116.88, 53.66, 37.42, 25.59, 23.25, 21.32. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₃H₂₂N₃O₃ 388.1656, found: 388.1654.

(S)-2-(1,3-dioxoisoindolin-2-yl)-3-methyl-N-(quinolin-8-yl)butanamide

Following the general procedure compound **1nn** was obtained from (S)-2-(1,3-dioxoisoindolin-2-yl)-3-methylbutanoic acid (247 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (DCM/MeOH = 100/1 to 30/1) to afford the title compound **1nn**³ (317g, 85%) as a white solid; m.p. 112 - 114 °C. ¹H NMR (400 MHz, CDCl₃) δ

10.58 (s, 1H), 8.93 – 8.68 (m, 2H), 8.13 (dd, J = 8.3, 1.6 Hz, 1H), 7.89 (dd, J = 5.4, 3.1 Hz, 2H), 7.73 (dd, J = 5.5, 3.0 Hz, 2H), 7.58 – 7.36 (m, 3H), 4.70 (d, J = 10.8 Hz, 1H), 3.36 – 3.11 (m, 1H), 1.23 (d, J = 6.6 Hz, 3H), 1.00 (d, J = 6.6 Hz, 3H). 13 C { 1 H}NMR (100 MHz, CDCl₃) δ 168.14, 166.84, 148.53, 138.72, 136.19, 134.27, 131.63, 127.91, 127.25, 123.66, 121.98, 121.63, 117.00, 77.37, 77.06, 76.74, 63.22, 27.34, 20.48, 19.62. HRMS (ESI): m/z [M + H]⁺ calcd for $C_{22}H_{20}N_3O_3$ 374.1499, found: 374.1496.

1-(quinolin-8-yl)pyrrolidine-2,5-dione

Succinic anhydride (118 mg, 1.18 mmol) and 8-aminoquinoline 5 (190 mg, 1.30 mmol) were dissolved in tetrahydrofuran (5 mL). The solvent was removed in vacuo and the residue was heated at 150 °C for 5 hours. The crude product was purified by silica-gel column chromatography (DCM/MeOH = 150/1 to 50/1) to afford the title compound $10f^5$ (253 mg, 95%) as an off-white solid; m.p. 186-188 °C. 1 H NMR (400 MHz, CDCl₃) δ 8.88 (dd, J = 1.6 Hz, J = 4.2 Hz, 1 H), 8.20 (dd, J = 1.6 Hz, J = 8.3 Hz, 1 H), 7.93 (dd, J = 2.1 Hz, J = 7.4 Hz, 1 H), 7.66 – 7.60 (m, 2 H), 7.46 – 7.42 (m, 1 H), 3.20 – 2.91 (m, 4 H). 13 C{ 1 H}NMR (100 MHz, CDCl₃) δ 176.90, 150.99, 143.47, 136.24, 130.15, 129.78, 129.46, 129.28, 126.14, 122.02, 28.95. HRMS (EI): calcd for C₁₃H₁₀N₂O₂: 226.0742, found: 226.0740

1-(quinolin-8-yl)piperidine-2,6-dione

Glutaric anhydride (135 mg, 1.18 mmol) and 8-aminoquinoline 5 (190 mg, 1.30 mmol) were dissolved in tetrahydrofuran (5 mL). The solvent was removed in vacuo and the residue was heated at 150 °C for 5 hours. The crude product was purified by silica-gel column chromatography (DCM/MeOH = 150/1 to 50/1) to afford the title compound $\mathbf{10g}^6$ (260 mg, 92%) as a foamy solid. ¹H NMR (400 MHz, CDCl₃) δ 8.84 (dd, J = 4.1, 1.4 Hz, 1H), 8.19 (d, J = 8.1 Hz, 1H), 7.89 (dd, J = 8.1, 1.1 Hz, 1H), 7.67 – 7.51 (m, 2H), 7.41 (dd, J = 8.2, 4.1 Hz, 1H), 2.99 (dd, J = 15.1, 7.0 Hz, 2H), 2.88 (ddd, J = 17.2, 7.6, 4.9 Hz, 2H), 2.31 (dd, J = 7.9, 5.6 Hz, 1H), 2.24 – 2.09 (m, 1H). 13 C 1 H 1 NMR (100 MHz, CDCl₃) δ 173.03, 150.77, 143.70, 136.45, 136.32, 133.48, 129.79, 129.22, 129.08, 126.18, 121.69, 33.06, 17.45.

HRMS (EI): calcd for C₁₄H₁₂N₂O₂: 240.2620, found: 240.2617.

General procedure for preparation of 3-Azaspiro[5.5]undecane amide substrates

HN
$$\longrightarrow \frac{R_1 - CI}{DIPEA, DCM} \xrightarrow{R_1} N \longrightarrow R_1$$

To a solution of 3-azaspiro[5.5]undecane (2.0 mmol, 1.0 equiv.) in dicholoromethane (5.0 mL) was slowly added respective acid chlorides (2.4 mmol, 1.2 equiv.) followed by triethylamine (3.0 mmol, 1.5 equiv.) at 0 °C. After complete addition, the reaction was allowed to stir continuously until all the starting material was consumed completely (monitored by TLC, approx. 3-5 h). After completion, the reaction mixture was quenched with water and extracted with dichloromethane. The combined organic layer was washed with brine solution, dried over Na₂SO₄. The product was purified by column chromatography on silica gel to afford pure compounds.

1-(3-Azaspiro[5.5]undecan-3-yl)ethan-1-one

Following the general procedure compound $1\mathbf{u}$ was obtained from 3-azaspiro[5.5]undecane (306 mg, 2.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 10/1 to 4/1) to afford the title compound $1\mathbf{u}$ (277 mg, 80%) as a colorless oil; $^1\mathrm{H}$ NMR (400 MHz, CDCl₃) δ 3.63 – 3.47 (m, 2H), 3.45 – 3.29 (m, 2H),

2.08 (s, 3H), 1.52 - 1.30 (m, 14H). $^{13}C\{^{1}H\}NMR$ (100 MHz, CDCl₃) δ 168.86, 42.37, 37.36, 36.11, 31.27, 26.64, 21.51, 21.39. HRMS (EI): calcd for $C_{12}H_{21}NO$: 195.1623, found: 195.1621.

Phenyl(3-azaspiro[5.5]undecan-3-yl)methanone

Following the general procedure compound **1ub** was obtained from 3-azaspiro[5.5]undecane (306 mg, 2.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 10/1 to 4/1) to afford the title compound **1ub** (437 mg, 85%) as a foamy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.9 Hz, 2H), 6.90 – 6.79 (m, 2H), 6.78 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H),

3.79 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.29, 136.53, 129.35, 128.39, 126.84, 36.22, 31.57, 26.67, 21.42. HRMS (EI): calcd for C₁₇H₃₃NO: 257.178, found: 257.176.

2,2-Dimethyl-1-(3-azaspiro[5.5]undecan-3-yl)propan-1-one

Following the general procedure compound **1uc** was obtained from 3-azaspiro[5.5]undecane (306 mg, 2.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 10/1 to 4/1) to afford the title compound **1uc** (394 mg, 83%) as a foamy solid. ¹H NMR (400 MHz, CDCl₃) δ 3.61 – 3.47 (m, 4H), 1.40 (dd, J = 14.9, 9.0 Hz, 14H), 1.27 (s, 9H).

¹³C{¹H}NMR (100 MHz, CDCl₃) δ 176.16, 41.02, 38.65, 36.50, 36.39, 31.42, 28.46, 26.71, 21.46. HRMS (EI): calcd for C₁₅H₂₇NO: 237.2093, found: 237.2090.

Tert-butyl 3-azaspiro[5.5]undecane-3-carboxylate

Following the general procedure compound **1ud** was obtained from 3-azaspiro[5.5]undecane (306 mg, 2.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 10/1 to 4/1) to afford the title compound **1ud** (428 mg, 89%) as a colorless oil;. ¹H NMR (400 MHz, CDCl₃) δ 3.44 – 3.27 (m, 4H), 1.50 – 1.30 (m, 23H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 155.05, 79.03, 39.40, 36.12, 31.06, 28.46,

26.73, 21.39. HRMS (EI): calcd for $C_{15}H_{27}NO_2$: 253.2042, found: 253.2040.

Benzyl 3-azaspiro[5.5]undecane-3-carboxylate

Following the general procedure compound **1ue** was obtained from 3-azaspiro[5.5]undecane (306 mg, 2.0 mmol). The crude product was purified by silica-gel column chromatography

(EA/PE = 10/1 to 4/1) to afford the title compound **1ue** (436 mg, 89%) as a colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 7.43 – 7.20 (m, 5H), 5.12 (s, 2H), 3.50 – 3.37 (m, 4H), 1.51 – 1.26 (m, 14H). 13 C{ 1 H}NMR (100 MHz, CDCl₃) δ 155.46, 137.08, 128.46, 127.80, 66.88, 39.73, 36.10, 31.11, 26.71, 21.40. HRMS (EI): calcd for C₁₈H₂₅NO₂: 287.1885, found: 287.1882.

General procedure for preparation of amino acids derivative with protective group substrates

To a solution of amino acids (1.0 equiv.) derivatives in DMF (0.2 M) was added Na₂CO₃ (1.0 equiv.), n-bromobutane (1.2 equiv.) and heated for 2–3h at 65°C in a sealed vial under an atmosphere of N₂ (monitored by TLC). Then the mixture was cooled to room temperature, quenched water, extracted with ethyl acetate, and washed with brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated. The residue was purified by column chromatography on silica gel to give pure products.

Butyl (tert-butoxycarbonyl)-L-phenylalaninate

Following the general procedure compound 1w was obtained from (tert-butoxycarbonyl)-L-phenylalanine (265 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 6/1 to 2/1) to afford the title

compound $1\mathbf{w}^7$ (290 mg, 91%) as a foamy solid. ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.25 (m, 3H), 7.16 (d, J = 6.9 Hz, 2H), 5.00 (d, J = 7.6 Hz, 1H), 4.59 (d, J = 7.4 Hz, 1H), 4.17 – 4.11 (m, 2H), 3.10 (t, J = 6.9 Hz, 2H), 1.63 – 1.55 (m, 2H), 1.44 (s, 9H), 1.29 (dd, J = 14.2, 7.0 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 171.97, 155.08, 136.12, 129.34, 128.49, 126.95, 79.82, 65.20, 54.48, 38.47, 30.51, 28.30, 19.04, 13.64.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{28}NO_4$ 322.2013, found: 322.2011.

Butyl ((benzyloxy)carbonyl)-L-phenylalaninate

Following the general procedure compound **1wb** was obtained from ((benzyloxy)carbonyl)-L-phenylalanine (300 mg, 1.0 mmol). The crude product was purified by silica-gel column

chromatography (EA/PE = 6/1 to 2/1) to afford the title compound 1wb^8 (327 mg, 92%) as a foamy solid. ^1H NMR (400 MHz, CDCl₃) δ 7.42 – 7.19 (m, 8H), 7.17 – 7.04 (m, 2H), 5.24 (d, J = 8.0 Hz, 1H), 5.09 (s, 2H), 4.65 (dd, J = 14.0, 6.0 Hz, 1H), 4.20 – 4.00 (m, 2H), 3.10 (t, J = 6.1 Hz, 2H), 1.56 (dd, J = 14.5, 7.0 Hz, 2H), 1.31 (dd, J = 15.0, 7.4 Hz, 2H), 0.91 (t, J = 7.4 Hz, 3H). $^{13}\text{C}\{^1\text{H}\}$ NMR (100 MHz, CDCl₃) δ 171.61, 155.63, 136.32, 135.80, 129.33, 128.58, 128.54, 128.19, 128.10, 127.10, 66.95, 65.39, 54.88, 38.36, 30.48, 19.05, 13.66. HRMS (ESI): m/z [M + H]⁺ calcd for C₂₁H₂₆NO₄ 356.1856, found: 356.1852.

Butyl (tert-butoxycarbonyl)-L-leucinate

Following the general procedure compound 1x was obtained from (tert-butoxycarbonyl)-L-leucine (231 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 6/1 to 2/1) to afford the title compound 1x (256 mg,

90%) as a foamy solid. ¹H NMR (400 MHz, CDCl₃) δ 4.88 (d, J = 7.7 Hz, 1H), 4.30 (d, J = 5.4 Hz, 1H), 4.12 (td, J = 6.7, 2.8 Hz, 2H), 1.71 (dd, J = 14.1, 6.6 Hz, 1H), 1.62 (dt, J = 8.5, 6.7 Hz, 3H), 1.53 – 1.47 (m, 1H), 1.44 (s, 9H), 1.40 – 1.33 (m, 2H), 0.96 – 0.93 (m, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 173.45, 155.17, 79.67, 65.04, 52.17, 41.98, 30.59, 28.33, 24.81, 22.81, 22.00, 19.08, 13.67. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₅H₃₀NO₄ 288.2169, found: 288.2165.

Butyl ((benzyloxy)carbonyl)-L-leucinate

Following the general procedure compound 1xb was obtained from ((benzyloxy)carbonyl)-L-leucine (265 mg, 1.0 mmol). The crude product was purified by silica-gel column chromatography (EA/PE = 6/1 to 2/1) to afford the title compound $1xb^8$ (282 mg, 88%) as a foamy solid. ¹H NMR

(400 MHz, CDCl₃) δ 7.38 – 7.30 (m, 5H), 5.13 (d, J = 13.1 Hz, 3H), 4.38 (dd, J = 14.0, 8.7 Hz, 1H), 4.13 (t, J = 6.6 Hz, 2H), 1.74 – 1.58 (m, 4H), 1.55 – 1.47 (m, 1H), 1.38 (dd, J = 14.9, 7.4 Hz, 2H), 0.94 (q, J = 6.7 Hz, 9H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 173.20, 155.94, 136.31, 128.53, 128.17, 128.09, 66.97, 65.22, 52.61, 41.98, 30.55, 24.78, 22.80, 21.95, 19.07, 13.67.

HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{18}H_{28}NO_4$ 322.2013, found: 322.2010.

General procedure for amide esterification

To a solution of amide 1 (1.0 equiv) in alcohols (0.2 M) was added dimethyl sulfate (1.0 equiv), and heated for 8-24h at 65-120°C in a sealed vial under an atmosphere of N_2

(monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 V) and washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel column chromatography to give ester product 2.

Methyl benzoate⁹

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, J = 8.3, 1.2 Hz, 2H), 7.52 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.7 Hz, 2H), 3.89 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 167.03, 132.87, 130.18, 129.55, 128.33, 52.01. HRMS (EI): m/z [M] calcd for C₈H₈O₂ 136.0524, found: 136.0522.

Ethyl benzoate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dt, J = 8.5, 1.6 Hz, 2H), 7.60 – 7.50 (m, 1H), 7.49 – 7.36 (m, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.64, 132.80, 130.52, 129.54, 128.32, 60.95, 14.34. HRMS (EI): m/z [M] calcd for C₉H₁₀O₂ 150.0681,

found: 150.0678.

Butyl benzoate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 7.95 (m, 2H), 7.61 – 7.51 (m, 1H), 7.49 – 7.38 (m, 2H), 4.33 (t, J = 6.6 Hz, 2H), 1.76 (dt, J = 14.5, 6.7 Hz, 2H), 1.58 – 1.40 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.71, 132.79, 130.56, 129.54, 128.32, 64.84, 30.80, 19.29, 13.77. HRMS (EI):

 $\label{eq:mz} \mbox{m/z} \mbox{ [M] calcd for $C_{11}H_{14}O_2$ 178.0994, found: 178.0992.}$

Benzyl benzoate¹¹

Colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 8.16 – 8.01 (m, 2H), 7.65 – 7.50 (m, 1H), 7.49 – 7.29 (m, 7H), 5.37 (s, 2H). 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 166.46, 136.10, 133.05, 130.18, 129.73, 128.62, 128.40, 128.26, 128.19, 66.71. HRMS (EI): m/z [M] calcd for C_{14} H $_{12}$ O $_{2}$ 212.0837, found: 212.0835.

Isobutyl benzoate¹²

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 8.00 (m, 2H), 7.61 – 7.51 (m, 1H), 7.51 – 7.36 (m, 2H), 4.11 (d, J = 6.6 Hz, 2H), 2.09 (dt, J = 13.4, 6.7 Hz, 1H), 1.03 (d, J = 6.7 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.65, 132.82, 130.55, 129.55, 128.34, 71.02, 27.93, 19.21. HRMS (EI): m/z [M] calcd

for C₁₁H₁₄O₂ 178.0994, found: 178.0991.

2-hydroxyethyl benzoate¹³

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, J = 5.2, 3.3 Hz, 2H), 7.65 – 7.49 (m, 1H), 7.44 (dd, J = 10.7, 4.7 Hz, 2H), 4.50 – 4.39 (m, 2H), 4.04 – 3.88 (m, 2H), 2.29 (brs, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.99, 133.19, 129.87, 129.69, 128.42, 66.67, 61.37. HRMS (EI): m/z [M] calcd for

C₉H₁₀O₃ 166.0630, found: 166.0628.

Isopropyl benzoate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 5.2, 3.4 Hz, 2H), 7.63 – 7.49 (m, 1H), 7.42 (dd, J = 10.6, 4.6 Hz, 2H), 5.26 (dt, J = 12.5, 6.3 Hz, 1H), 1.37 (d, J = 6.3 Hz, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.12, 132.69, 130.93, 129.51, 128.26,

68.33, 21.96. HRMS (EI): m/z [M] calcd for $C_{10}H_{12}O_3$ 164.0837, found: 164.0835.

Sec-butyl benzoate¹⁴

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 5.2, 3.3 Hz, 2H), 7.62 – 7.48 (m, 1H), 7.48 – 7.35 (m, 2H), 5.10 (dd, J = 12.5, 6.3 Hz, 1H), 1.83 – 1.57 (m, 2H), 1.34 (d, J = 6.3 Hz, 3H), 0.98 (t, J = 7.5 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ

166.25, 132.68, 130.95, 129.51, 128.28, 72.85, 28.97, 19.57, 9.74. HRMS (EI): m/z [M] calcd for $C_{11}H_{14}O_2$ 178.0994, found: 178.0993.

Cyclohexyl benzoate¹⁵

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.11 – 7.99 (m, 2H), 7.54 (dd, J = 10.5, 4.3 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 5.12 – 4.92 (m, 1H), 2.04 – 1.87 (m, 2H), 1.85 – 1.72 (m, 2H), 1.59 (ddd, J = 12.6, 8.1, 3.4 Hz, 3H), 1.42 (ddd, J = 31.0, 9.5, 3.1 Hz, 3H).

 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 166.00, 132.67, 131.05, 129.54, 128.26, 73.03, 31.65, 25.50, 23.67. HRMS (EI): m/z [M] calcd for C₁₃H₁₆O₂ 204.1150, found: 204.1148.

Tert-butyl benzoate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (dd, J = 5.2, 3.3 Hz, 2H), 7.51 (dd, J = 5.0, 3.7 Hz, 1H), 7.46 – 7.37 (m, 2H), 1.60 (s, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.79, 132.40, 132.04, 129.41, 128.17, 80.96, 28.21. HRMS (EI): m/z [M] calcd

for $C_{11}H_{14}O_2$ 178.0994, found: 178.0992.

Methyl 4-methoxybenzoate¹⁰

Colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 8.05 – 7.93 (m, 2H), 7.01 – 6.81 (m, 2H), 3.88 (s, 3H), 3.85 (s, 3H). 13 C{ 1 H}NMR

(100 MHz, CDCl₃) δ 166.85, 163.34, 131.58, 122.63, 113.60, 55.40, 51.83. HRMS (EI): m/z [M] calcd for C₉H₁₀O₃ 166.0630, found: 166.0627.

Ethyl 4-methoxybenzoate¹⁶

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 7.92 (m, 2H), 7.01 – 6.82 (m, 2H), 4.35 (q, J = 7.1 Hz, 2H), 3.85 (s, 3H), 1.38 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.40, 163.26, 131.54, 122.98, 113.55, 60.63, 55.41, 14.39. HRMS (EI): m/z [M] calcd for C₁₀H₁₂O₃

180.0786, found: 180.0785.

Butyl 4-methoxybenzoate¹⁷

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.07 – 7.93 (m, 2H), 7.00 – 6.83 (m, 2H), 4.29 (t, J = 6.6 Hz, 2H), 3.85 (s, 3H), 1.74 (dt, J = 14.6, 6.7 Hz, 2H), 1.47 (dd, J = 15.0, 7.5 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.46, 163.25, 131.54, 123.00, 113.56, 64.53, 55.41, 30.85,

19.31, 13.79. HRMS (EI): m/z [M] calcd for C₁₂H₁₆O₃ 208.1099, found: 208.1096.

Methyl 4-chlorobenzoate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.9 Hz, 2H), 6.90 – 6.79 (m, 2H), 6.78 (s, 1H), 4.15 (q, J = 7.1 Hz, 2H), 3.79 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 156.35, 155.88, 131.09, 122.72, 114.14, 62.98, 55.50, 14.44.

HRMS (EI): m/z [M] calcd for C₈H₇ClO₂ 170.0135, found: 170.0133.

Ethyl 4-chlorobenzoate¹⁸

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.90 (m, 2H), 7.49 – 7.33 (m, 2H), 4.37 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.75, 139.24, 130.94, 128.96, 128.65, 61.21, 14.29. HRMS (EI): m/z [M] calcd for C₉H₉ClO₂ 184.0291, found: 184.0290.

Butyl 4-chlorobenzoate 19

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.05 – 7.89 (m, 2H), 7.51 – 7.34 (m, 2H), 4.32 (t, J = 6.6 Hz, 2H), 1.75 (dt, J = 14.6, 6.7 Hz, 2H), 1.47 (dd, J = 15.0, 7.5 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.82, 139.24, 130.94, 128.99, 128.67, 65.10, 30.74, 19.26, 13.75.

HRMS (EI): m/z [M] calcd for $C_{11}H_{13}ClO_2$ 212.0604, found: 212.0601.

Methyl 4-nitrobenzoate²⁰

As a foamy solid; 1 H NMR (400 MHz, CDCl₃) δ 8.30 (d, J =

8.9 Hz, 2H), 8.22 (d, J = 8.9 Hz, 2H), 3.99 (s, 3H). 13 C $\{^{1}$ H $\}$ NMR (100 MHz, CDCl₃) δ 165.19, 150.57, 135.51, 130.73, 123.57, 52.85.

HRMS (EI): m/z [M] calcd for C₈H₇NO₄ 181.0375, found: 181.0373.

Butyl 4-nitrobenzoate¹⁷

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (d, J = 9.0 Hz, 2H), 8.21 (d, J = 9.0 Hz, 2H), 4.38 (t, J = 6.6 Hz, 2H), 1.77 (dd, J = 14.8, 6.9 Hz, 2H), 1.54 – 1.43 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C { ¹H } NMR (100 MHz, CDCl₃) δ 164.78, 150.50, 135.90, 130.67, 123.53, 65.84, 30.65,

19.23, 13.73. HRMS (EI): m/z [M] calcd for C₁₁H₁₃NO₄ 223.0845, found: 223.0841.

Methyl cyclohexanecarboxylate¹⁰

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 3.66 (s, 3H), 2.30 (ddd, J = 11.3, 7.6, 3.6 Hz, 1H), 1.90 (dd, J = 13.0, 2.6 Hz, 2H), 1.81 – 1.69 (m, 2H), 1.68 – 1.57 (m, 1H), 1.43 (td, J = 11.7, 5.8 Hz, 2H), 1.35 – 1.13 (m, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 176.58, 51.43, 43.11, 29.02, 25.75, 25.45.

HRMS (EI): m/z [M] calcd for C₈H₁₄O₂ 142.0994, found: 142.0992.

Ethyl cyclohexanecarboxylate²¹

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.11 (q, J = 7.1 Hz, 2H), 2.28 (tt, J = 11.3, 3.6 Hz, 1H), 1.90 (dd, J = 13.0, 2.5 Hz, 2H), 1.81 – 1.69 (m, 2H), 1.69 – 1.57 (m, 1H), 1.53 – 1.37 (m, 2H), 1.35 – 1.15 (m, 6H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 176.15, 60.01, 43.24, 29.02, 25.78, 25.46, 14.23.

HRMS (EI): m/z [M] calcd for C₉H1₆O₂ 156.1150, found: 156.1147.

Butyl cyclohexanecarboxylate²²

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (t, J = 6.6 Hz, 2H), 2.36 – 2.20 (m, 1H), 1.90 (d, J = 12.9 Hz, 2H), 1.79 – 1.71 (m, 2H), 1.61 (dd, J = 14.2, 7.4 Hz, 3H), 1.48 – 1.32 (m, 4H), 1.32 – 1.20 (m, 3H), 0.93 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 176.23, 63.95, 43.29, 30.74, 29.05, 25.79, 25.47,

19.16, 13.72. HRMS (EI): m/z [M] calcd for $C_{11}H_{14}O_2$ 184.1463, found: 184.1460.

Methyl 2-cyclohexylacetate²³

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 3.66 (s, 3H), 2.19 (d, J = 7.0 Hz, 2H), 1.84 – 1.57 (m, 6H), 1.40 – 1.06 (m, 3H), 1.05 – 0.85 (m, 2H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 173.61, 51.33, 41.98, 34.89, 33.03, 26.14, 26.02. HRMS (EI): m/z [M] calcd for

C₉H₁₆O₂ 156.1150, found: 56.1149.

Butyl 2-cyclohexylacetate

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.06 (t, J = 6.7 Hz, 2H), 2.17 (d, J = 7.0 Hz, 2H), 1.82 – 1.58 (m, 8H), 1.43 – 1.09 (m, 5H), 0.94 (dd, J = 9.7, 5.0 Hz, 5H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.29, 64.01, 42.27, 34.95, 33.03, 30.73, 26.17, 26.04, 19.17, 13.70. HRMS (EI): m/z [M] calcd for C₁₂H₁₆O₂

198.1620, found: 198.1616.

Methyl nicotinate²⁴

As a foamy solid; 1 H NMR (400 MHz, CDCl₃) δ 9.23 (d, J = 0.6 Hz, 1H), 8.90 – 8.66 (m, 1H), 8.43 – 8.20 (m, 1H), 7.40 (dt, J = 8.0, 4.1 Hz, 1H), 3.97 (d, J = 4.5 Hz, 3H). 13 C{ 1 H}NMR (100 MHz, CDCl₃) δ 165.71, 153.41, 150.89, 136.99, 126.00, 123.26, 52.38. HRMS (EI): m/z [M] calcd for C₇H₇NO₂ 137.0477, found:

137.0475.

Butyl nicotinate²²

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 9.23 (d, J = 1.6 Hz, 1H), 8.78 (dd, J = 4.8, 1.7 Hz, 1H), 8.30 (dt, J = 7.9, 1.9 Hz, 1H), 7.40 (ddd, J = 7.9, 4.9, 0.6 Hz, 1H), 4.37 (t, J = 6.6 Hz, 2H), 1.78 (dt, J = 14.5, 6.7 Hz, 2H), 1.57 – 1.40 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.31, 153.27, 150.86,

137.03, 126.38, 123.26, 65.30, 30.67, 19.21, 13.71. HRMS (EI): m/z [M] calcd for $C_{11}H_{14}O_2$ 179.0946, found: 179.0943.

Methyl 4-methylbenzoate¹⁰

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ .93 (d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.3 Hz, 2H), 3.89 (s, 3H), 2.40 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 167.18, 143.55, 129.60, 129.08, 127.45, 77.37, 77.05, 76.73, 51.93, 21.64.

HRMS (EI): m/z [M] calcd for $C_9H_{10}O_2$ 150.0681, found: 150.0680.

Butyl 4-methylbenzoate²⁵

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 8.2 Hz, 2H), 7.31 – 7.17 (m, 2H), 4.31 (t, J = 6.6 Hz, 2H), 2.40 (s, 3H), 1.74 (dd, J = 14.8, 6.9 Hz, 2H), 1.48 (dd, J = 15.0, 7.5 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.78, 143.40, 129.57, 129.03, 127.83, 64.65,

30.82, 21.64, 19.30, 13.78. HRMS (EI): m/z [M] calcd for $C_{12}H_{16}O_2$ 192.1150, found: 192.1147.

Methyl 1-naphthoate¹⁰

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 8.91 (d, J = 8.0 Hz, 1H), 8.18 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.64–7.58 (m, 1H), 7.56–7.45 (m, 2H), 3.99 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 167.29, 135.53, 132.51,

131.09, 129.38, 128.26, 128.17, 127.78, 127.41, 126.66, 125.25, 52.27. HRMS (EI): m/z [M] calcd for $C_{12}H_{10}O_2$ 186.0681, found: 150.0678.

Butyl 1-naphthoate²⁵

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.07 (dd, J = 8.6, 1.7 Hz, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.6 Hz, 2H), 7.56 (dtd, J = 16.1, 6.9, 1.3 Hz, 2H), 4.39 (t, J = 6.6 Hz, 2H), 1.81 (dt, J = 14.5, 6.7 Hz, 2H), 1.52 (dt, J = 16.6, 7.5 Hz, 2H), 1.01 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100

MHz, CDCl₃) δ 166.87, 135.50, 132.53, 130.94, 129.36, 128.16, 128.10, 127.81, 127.77, 126.60, 125.28, 65.01, 30.86, 19.34, 13.81. HRMS (EI): m/z [M] calcd for $C_{15}H_{16}O_2$ 228.1150, found: 228.1148.

Methyl 4-fluorobenzoate¹⁰

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 8.16 – 7.94 (m, 2H), 7.13 (t, J = 8.7 Hz, 2H), 3.94 (s, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 166.14, 165.76 (d, J = 253.7 Hz), 132.11 (d, J = 9.2 Hz), 126.43 (d, J = 3.0 Hz), 115.50 (d, J = 22.0 Hz), 52.17. HRMS (EI): m/z [M] calcd for C₈H₇FO₂ 154.0430,

found: 154.0428.

Ethyl 4-fluorobenzoate²⁶

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.13 – 8.01 (m, 2H), 7.17 – 7.02 (m, 2H), 4.38 (q, J = 7.1 Hz, 2H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.68 (d, J = 253.5 Hz), 165.61, 132.04 (d, J = 9.4 Hz), 126.76 (d, J = 3.0 Hz), 115.39 (d, J = 22.0 Hz), 61.05, 14.27. HRMS (EI):

m/z [M] calcd for $C_9H_9FO_2$ 168.0587, found: 168.0585.

Butyl 4-fluorobenzoate²⁷

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 8.15 – 7.98 (m, 2H), 7.10 (t, J = 8.7 Hz, 2H), 4.32 (t, J = 6.6 Hz, 2H), 1.74 (dd, J = 14.8, 6.8 Hz, 2H), 1.47 (dd, J = 15.0, 7.5 Hz, 2H), 0.98 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 165.69 (d, J = 253.3 Hz), 165.57, 132.04 (d, J = 9.4 Hz), 126.77 (d, J

= 3.0 Hz), 115.42 (d, J = 21.9 Hz), 64.96, 30.76, 19.26, 13.73. HRMS (EI): m/z [M] calcd for $C_{11}H_{13}FO_2$ 196.0900, found: 196.0897.

Butyl 3-phenylpropanoate²⁸

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.18 (m, 5H), 4.10 (t, J = 6.7 Hz, 2H), 2.98 (t, J = 7.8 Hz, 2H), 2.65 (t, J = 7.8 Hz, 2H), 1.61 (dt, J = 14.6, 6.8 Hz, 2H), 1.37 (dd, J = 15.0, 7.5 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 173.04, 140.60, 128.49, 128.31,

126.24, 64.37, 35.96, 31.03, 30.67, 19.12, 13.72. HRMS (EI): m/z [M] calcd for $C_{13}H_{18}O_2$ 206.1307, found: 206.1305.

Butyl cinnamate²⁹

As a white solid; m.p. 140-143 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 16.0 Hz, 1H), 7.53 (dd, J = 6.8, 2.8 Hz, 2H), 7.42 – 7.32 (m, 3H), 6.44 (d, J = 16.0 Hz, 1H), 4.21 (t, J = 6.7 Hz, 2H), 1.70 (dt, J = 14.6, 6.8 Hz, 2H), 1.51 – 1.37 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H}

NMR (100 MHz, CDCl₃) δ 167.13, 144.57, 134.50, 130.22, 128.89, 128.07, 118.32, 64.46, 30.80, 19.22, 13.78. HRMS (EI): m/z [M] calcd for C₁₃H₁₆O₂ 204.1150, found: 204.1146.

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate³⁰

As a white solid; m.p. 115–118 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dt, J = 7.0, 3.5 Hz, 2H), 7.73 – 7.63 (m, 2H), 7.24 – 7.06 (m, 5H), 5.16 (dd, J = 11.2, 5.3 Hz, 1H), 3.78 (s, 3H), 3.57 (qd, J = 14.3, 8.3 Hz, 2H). 13 C{ 1 H}NMR (100 MHz, CDCl₃) δ 169.36, 167.44, 136.71, 134.09, 131.59, 128.84, 128.56, 126.85, 123.47, 53.27, 52.90, 34.66.

HRMS (EI): m/z [M] calcd for C₁₈H₁₅NO₄ 309.1001, found: 309.1000.

Butyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-phenylpropanoate

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (td, J = 5.2, 2.0 Hz, 2H), 7.69 (td, J = 5.2, 2.0 Hz, 2H), 7.27 – 7.00 (m, 5H), 5.15 (dd, J = 11.1, 5.4 Hz, 1H), 4.19 (td, J = 6.6, 1.5 Hz, 2H), 3.57 (qd, J = 14.3, 8.3 Hz, 2H), 1.67 – 1.53 (m, 2H), 1.31 (dd, J = 15.0, 7.5 Hz, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.91,

167.52, 136.85, 134.07, 131.63, 128.85, 128.55, 126.81, 123.43, 65.87, 53.46, 34.67, 30.46, 19.01, 13.61. HRMS (EI): m/z [M] calcd for $C_{21}H_{21}NO_4$ 351.1471, found: 351.1470.

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-4-methylpentanoate³¹

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.0 Hz, 2H), 4.96 (dd, J = 11.5, 4.4 Hz, 1H), 3.73 (s, 3H), 2.38 – 2.29 (m, 1H), 2.00 –

1.94 (m, 1H), 1.55 – 1.42 (m, 1H), 0.94 (dd, J = 10.8, 6.6 Hz, 6H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 170.28, 167.75, 134.17, 131.87, 123.53, 52.72, 50.64, 37.29, 25.08, 23.16, 21.03. HRMS (EI): m/z [M] calcd for C₁₅H₁₇NO₄ 275.1158, found: 275.1156.

Butyl (S)-2-(1,3-dioxoisoindolin-2-yl)-4-methylpentanoate

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 5.5, 3.0 Hz, 2H), 7.74 (dd, J = 5.5, 3.0 Hz, 2H), 4.94 (dd, J = 11.6, 4.4 Hz, 1H), 4.13 (td, J = 6.7, 1.5 Hz, 2H), 2.37 – 2.30 (m, 1H), 1.99 – 1.92 (m, 1H), 1.60 – 1.53 (m, 2H), 1.53 – 1.49 (m, 1H), 1.30 (dt, J = 15.0, 7.4 Hz, 2H), 0.94 (dd, J = 9.9, 6.6 Hz, 6H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR

(100 MHz, CDCl₃) δ 169.85, 167.83, 134.14, 131.88, 123.48, 65.65, 50.84, 37.26, 30.46, 25.13, 23.19, 21.05, 18.99, 13.60. HRMS (EI): m/z [M] calcd for C₁₈H₂₃NO₄ 317.1627, found: 317.1624.

Methyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-methylbutanoate³¹

As a foamy solid; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (dd, J = 5.4, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H), 4.58 (d, J = 8.3 Hz, 1H), 3.71 (s, 3H), 2.87 – 2.67 (m, 1H), 1.15 (d, J = 6.7 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 169.32, 167.77, 134.20, 131.74, 123.58, 57.56, 52.42, 28.57, 20.94, 19.39.

HRMS (EI): m/z [M] calcd for $C_{14}H_{15}NO_4$ 261.1001, found: 261.1000.

Butyl (S)-2-(1,3-dioxoisoindolin-2-yl)-3-methylbutanoate

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.87 (dd, J = 5.5, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.0 Hz, 2H), 4.57 (d, J = 8.3 Hz, 1H), 4.13 (td, J = 6.7, 2.5 Hz, 2H), 2.90 – 2.66 (m, 1H), 1.56 (ddt, J = 13.8, 8.9, 7.1 Hz, 2H), 1.28 (dt, J = 15.0, 7.4 Hz, 2H), 1.16 (d, J = 6.7 Hz, 3H), 0.92 (d, J = 6.8 Hz, 3H), 0.85 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 168.90, 167.83, 134.17, 131.75, 123.51, 65.33, 57.82, 30.41, 28.54,

21.00, 19.50, 19.02, 13.56. HRMS (EI): m/z [M] calcd for $C_{17}H_{21}NO_4$ 304.1471, found: 304.1470.

Dibutyl succinate and 8-aminoquinoline

$$\frac{\text{Me}_2\text{SO}_4}{\text{n-butanol, refluxing}} \qquad \frac{\text{NH}_2}{\text{N}} + \frac{\text{NH}_2}{\text{N}}$$

To a solution of amide 1of (226 mg, 1mmol, 1.0 equiv) in n-butanol (5 mL) was

added dimethyl sulfate (252 mg, 2mmol, 2.0 equiv), and heated for 24h at 120°C in a sealed vial under an atmosphere of N₂ (monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 V) and washed with sodium bicarbonate saturated solution, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel column chromatography (5% EtOAc in *n*-hexane as the eluent) to give ester product **20f**²⁵ (207 mg, 90% yield); and silica-gel column chromatography (15% EtOAc in *n*-hexane as the eluent) to afford 8-aminoquinoline 3**o**³³ (126 mg, 88% yield).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.09 (t, J = 6.7 Hz, 4H), 2.62 (s, 4H), 1.61 (dt, J = 14.7, 6.8 Hz, 4H), 1.38 (dd, J = 15.0, 7.5 Hz, 4H), 0.93 (t, J = 7.4 Hz, 6H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 172.34, 64.54, 30.60,

29.17, 19.07, 13.65.

HRMS (EI): m/z [M] calcd for $C_{12}H_{22}O_4$ 230.1518, found: 230.1516.

Brown solid; m.p. 63–65 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (dd, J = 4.2, 1.6 Hz, 1H), 8.10 (dd, J = 8.3, 1.6 Hz, 1H), 7.45 – 7.33 (m, 2H), 7.18 (dd, J = 8.1, 0.8 Hz, 1H), 6.96 (dd, J = 7.5, 1.0 Hz, 1H), 4.98 (brs, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 147.42, 143.96, 138.41, 136.04, 128.88, 127.41, 121.35, 116.05, 110.07. HRMS (ESI):

 $m/z [M + H]^{+}$ calcd for $C_9H_9N_2$ 145.0760, found: 145.0758.

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.7 Hz, 2H), 7.15 (s, 1H), 6.91 (d, J = 8.7 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 1.85 – 1.64 (m, 12H), 1.47 (dd, J = 15.0, 7.5 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 167.46, 160.64, 131.95, 122.26, 115.36, 65.02, 30.76, 19.28,

13.77. HRMS (ESI): m/z [M - H] calcd for $C_{11}H_{13}O_3$ 193.0870, found: 193.0864.

Colorless oil; ¹H NMR (400 MHz, CDCl₃) 10.85 (s, 1H), 7.85 (dd, J = 8.0, 1.7 Hz, 1H), 7.56 – 7.37 (m, 1H), 6.98 (dd, J = 8.4, 0.8 Hz, 1H), 6.94 – 6.76 (m, 1H), 4.36 (t, J = 6.6 Hz, 2H), 1.77 (dt, J = 14.5, 6.6 Hz, 2H), 1.61 – 1.31 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C { ¹H } NMR (100 MHz, CDCl₃) δ 170.27, 161.66,

135.58, 129.88, 119.10, 117.57, 112.66, 65.23, 30.61, 19.22, 13.74. HRMS (ESI): m/z [M - H] calcd for $C_{11}H_{13}O_3$ 193.0870, found: 193.0867.

White solid; m.p. 56–58 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.98 – 7.70 (m, 2H), 6.82 – 6.51 (m, 2H), 4.26 (t, J = 6.6 Hz, 2H), 4.19 – 3.90 (brs, 2H), 1.72 (dt, J = 14.5, 6.6 Hz, 2H), 1.47 (dt, J = 14.9, 7.4 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.79, 150.66, 131.56, 120.19,

113.85, 77.38, 77.06, 76.74, 64.24, 30.91, 19.33, 13.82. HRMS (ESI): m/z [M + H]⁺ calcd for $C_{11}H_{15}NO_2$ 193.1103, found: 193.1098.**Dibutyl glutarate**

To a solution of amide **1og** (230 mg, 1mmol, 1.0 equiv) in n-butanol (5 mL) was added dimethyl sulfate (252 mg, 2mmol, 2.0 equiv), and heated for 24h at 120°C in a sealed vial under an atmosphere of N₂ (monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 V) and washed with sodium bicarbonate saturated solution, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel column chromatography (5% EtOAc in *n*-hexane as the eluent) to give ester product **2og**³² (227 mg, 93% yield); and silica-gel column chromatography (15% EtOAc in *n*-hexane as the eluent) to afford 8-aminoquinoline (122 mg, 85% yield).

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 4.08 (t, J = 6.7 Hz, 4H), 2.37 (t, J = 7.4 Hz, 4H), 2.01 – 1.88 (m, 2H), 1.61 (dt, J = 14.7, 6.8 Hz, 4H), 1.38 (dd, J = 15.1, 7.5 Hz, 4H), 0.94 (t, J = 7.4 Hz, 6H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ

 $172.94,\,64.21,\,33.28,\,30.62,\,20.19,\,19.08,\,13.62.$

HRMS (EI): m/z [M] calcd for C₁₃H₂₄O₄ 244.1675, found: 244.1673.

Synthesis of n-butyl 2-ethoxybenzoate

Method A

Methyl 2- ethoxybenzimidate Methyl Hydrogen Sulfate (INT-1z).

To a 10 mL flask were charged **1z** (1.0g, 5.58 mmol) and dimethyl sulfate (2.11 g, 16.73 mmol). A clear solution formed when the temperature was raised to 70 °C, and the mixture was heated for an additional 8 h. The stirred reaction mixture was cooled to ambient temperature (15–20 °C), and methyl tert-butyl ether (4 mL) was added over 5 min. After an additional stirring for 1h, the resulting precipitate was collected by filtration, and the filter cake was washed with MTBE (0.50 mL × 3) and dried invacuum at 40 °C, giving **INT-1z** (1.40 g, 82%) as a white solid with slightly hygroscopic properties. ¹H NMR (500 MHz, chloroform-d): δ 12.08 (s, 1H), 10.24 (s, 1H), 8.04 (dd, J = 8.1, 1.5 Hz, 1H), 7.82 – 7.62 (m, 1H), 7.18 (dd, J = 13.7, 8.1 Hz, 2H), 4.49 (s, 3H), 4.40 (q, J = 7.0 Hz, 2H), 3.80 (s, 3H), 1.62 (t, J = 7.0 Hz, 3H). 13 C{ 1 H}NMR (125 MHz, CDCl₃) δ 169.99, 159.46, 138.21, 131.49, 121.81, 113.24, 111.65, 66.35, 60.01, 54.89, 14.48. HRMS (ESI): m/z [M – (*OSO₃Me)] + calcd for C₁₀H₁₄NO₂+ 180.1019, found: 180.1016. Elem. Anal. Calcd for C₁₁H₁₇NO₆S: C, 45.35; H, 5.88; N, 4.81; S, 11.01. Found: C, 45.43; H, 5.85; N, 4.87; S, 11.10.

A solution of **INT-1z** (291 mg, 1mmol, 1.0 equiv) in n-butanol (3 mL) was heated for 8 h at 100°C in a sealed vial under an atmosphere of N₂ (monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 mL) and washed with sodium bicarbonate saturated solution, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel column chromatography (5% EtOAc in *n*-hexane as the eluent) to give ester product **2z** (227 mg, 93% yield), as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.77 (dd, J = 8.0, 1.8 Hz, 1H), 7.51 – 7.33 (m, 1H), 6.96 (t, J = 7.3 Hz, 2H), 4.31 (t, J = 6.6 Hz, 2H), 4.11 (q, J = 7.0 Hz, 2H), 1.74 (dt, J = 14.5, 6.6 Hz, 2H), 1.56 – 1.38 (m, 5H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CDCl₃) δ 166.76, 158.42, 133.12, 131.51, 121.01, 120.06, 113.25, 64.67, 64.52, 30.80, 19.28, 14.75, 13.73.

HRMS (EI): m/z [M] calcd for $C_{13}H_{18}O_3$ 222.1256, found: 222.1253.

Method B

2- ethoxybenzimidate Methyl Hydrogen Sulfate (INT-3z).

To a solution of amide 1z (165 mg, 1 mmol) 5 mL of methanol was added methyl hydrogen sulfate (336 mg, 3 mmol), and then heating for 15 min. The resultant solutions were air cooled to room temperature and allowed in open vial for slow evaporation. Solid was obtained within two days.

¹H NMR (400 MHz, CD₃OD) δ 7.96 (dd, J = 7.8, 1.8 Hz, 1H), 7.56 – 7.41 (m, 1H), 7.13 (d, J = 8.2 Hz, 1H), 7.09 – 6.96 (m, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.68 (s, 3H), 1.49 (t, J = 7.0 Hz, 3H). ¹³C{¹H}NMR (100 MHz, CD₃OD) δ 168.98, 157.42, 133.32, 131.06, 120.74, 120.43, 112.55, 64.57, 53.72, 13.58. HRMS (ESI): m/z [M – (OSO₃Me)]⁺ calcd for C₉H₁₂NO₂⁺ 166.0863, found: 166.0855. Elem. Anal. Calcd for C₁₀H₁₅NO₆S: C, 43.32; H, 5.45; N, 5.05; S, 11.56. Found: C, 43.25; H, 5.48; N, 5.09; S, 11.64.

n-Butyl 2-ethoxybenzoate.

A solution of **INT-3z** (277 mg, 1mmol, 1.0 equiv) in n-butanol (3 mL) was heated for 8 h at 100°C in a sealed vial under an atmosphere of N₂ (monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 mL) and washed with sodium bicarbonate saturated solution, brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The crude product was purified by silica-gel column chromatography (5% EtOAc in *n*-hexane as the eluent) to give ester product **2z** (218 mg, 88% yield), as a colorless oil;

General procedure for cleavage of acyl protective group on amines with dimethyl sulphate

$$R_1$$
 R_2 R_3 R_3 R_3 R_3 R_3 R_3 R_3

To a solution of amide 1 (1.0 equiv) in n-butanol (0.2 M) was added dimethyl sulfate (1.0 equiv), and heated for 8h at 120°C in a sealed vial under an atmosphere of N_2 (monitored by TLC). The resulting mixture concentrated in vacuo to give residues. Then the residues were dissolved in ethyl acetate (30 V) and washed with sodium bicarbonate saturated solution, brine, dried over Na_2SO_4 , filtered, and concentrated in

vacuo. The crude product was purified by silica-gel column chromatography to give amine product 3.

2-(3,4-Dimethoxyphenyl)ethan-1-amine³³

Brown solid; m.p. 153–155 °C. ¹H NMR (400 MHz, CDCl₃) δ 6.77 (d, J = 7.8 Hz, 1H), 6.72 – 6.67 (m, 2H), 3.83 (s, 3H), 3.81 (s, 3H), 2.89 (d, J = 6.8 Hz, 2H), 2.65 (s, 2H), 1.18 (s, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 148.92, 147.45, 132.46, 120.71, 112.08, 111.34, 55.91, 55.81, 43.65, 39.63. HRMS (ESI): m/z [M + H]⁺

calcd for C₁₀H₁₆NO₂ 182.1176, found: 182.1175.

Isoindoline³⁴

Colorless oil; 1 H NMR (400 MHz, CD₃OD) δ 7.59 – 7.22 (m, 4H), 4.63 (s, 4H). 13 C{ 1 H} NMR (100 MHz, CD₃OD) δ 134.16, 128.52, 122.65, 50.54. HRMS (ESI): m/z [M + H] $^{+}$ calcd for C₈H₁₀N 120.0808, found: 182.1175.

Dibenzylamine³⁵

Colorless oil; 1 H NMR (400 MHz, CDCl₃) δ 7.38 – 7.21 (m, 10H), 3.81 (s, 4H), 1.74 (s, 1H). 13 C{ 1 H} NMR (100 MHz, CDCl₃) δ 140.28, 128.43, 128.19, 126.99, 53.16. HRMS (ESI): m/z [M + H]⁺ calcd for C₁₄H₁₆N 198.1277, found: 192.1275.

N-Methylaniline³⁶

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.23 – 7.14 (m, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.61 (dd, J = 8.5, 0.8 Hz, 2H), 2.83 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 149.34, 129.23, 117.29, 112.45, 30.77. HRMS (ESI): m/z [M + H]⁺ calcd for C₇H₁₀N 108.0808,

found: 108.0805.

3-Azaspiro[5.5]undecane

As a foamy solid; 1 H NMR (400 MHz, CD₃OD) δ 3.21 – 3.12 (m, 4H), 1.75 – 1.66 (m, 4H), 1.57 – 1. 44 (m, 10H). 13 C{ 1 H} NMR (100 MHz, CD₃OD) δ 39.68, 35.33, 32.39, 29.98, 26.05, 20.82. HRMS (ESI): HRMS (EI): m/z [M] calcd for C₁₀H₁₉N 153.1517,

found: 153.1514.

1-Methylpiperazine³⁷

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 2.60 (dd, J = 8.6, 4.3 Hz, 4H), 2.08 (s, 3H), 2.05 – 1.86 (m, 4H), 1.71 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 56.10, 46.44, 45.75. HRMS (ESI): m/z [M + H]⁺ calcd for C₅H₁₃N₂ 101.1073, found: 101.1070.

Butyl L-phenylalaninate³⁸

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 7.45 – 7.21 (m, 5H), 4.29 (t, J = 7.0 Hz, 1H), 4.17 (t, J = 6.5 Hz, 2H), 3.26 – 3.13 (m, 2H), 1.68 – 1.43 (m, 2H), 1.29 (dd, J = 15.1, 7.5 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CD₃OD) δ

170.33, 135.40, 130.48, 130.19, 128.99, 67.46, 55.28, 37.59, 31.46, 19.98, 13.99. HRMS (ESI): $m/z \left[M+H\right]^+ \text{calcd for } C_{13}H_{20}NO_2$ 222.1489, found: 222.1487.

Butyl L-leucinate

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 4.26 (t, J = 6.5 Hz, 2H), 4.01 (t, J = 6.8 Hz, 1H), 1.87 – 1.61 (m, 5H), 1.43 (dd, J = 15.1, 7.5 Hz, 2H), 1.08 – 0.86 (m, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.21, 67.41, 52.59, 40.80, 31.59, 25.70, 22.53, 22.51,

20.09, 13.99. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{10}H_{22}NO_2$ 188.1645, found: 188.1643.

Butyl L-valinate

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 4.29 (td, J = 6.6, 2.6 Hz, 2H), 3.94 (d, J = 4.6 Hz, 1H), 2.39 – 2.23 (m, 1H), 1.71 (dt, J = 8.7, 6.7 Hz, 2H), 1.56 – 1.35 (m, 2H), 1.10 (dd, J = 7.0, 3.5 Hz, 6H), 0.99 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz,

CD₃OD) δ 170.10, 67.28, 59.47, 31.66, 31.02, 20.12, 18.36, 18.23, 13.91. HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₂₀NO₂ 174.1489, found: 188. 174.1486.

Butyl D-phenylalaninate

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 7.49 – 7.21 (m, 1H), 4.31 (t, J = 7.0 Hz, 1H), 4.19 (t, J = 6.5 Hz, 1H), 3.29 – 3.13 (m, 1H), 1.66 – 1.49 (m, 1H), 1.30 (dd, J = 15.1, 7.5 Hz, 1H), 0.92 (t, J = 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, CD₃OD) δ

171.17, 67.36, 52.54, 40.76, 31.54, 25.65, 22.48, 22.46, 20.04, 13.94.HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{13}H_{20}NO_2$ 222.1489, found: 222.1488.

Butyl D-leucinate

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 4.26 (t, J = 6.5 Hz, 2H), 4.01 (t, J = 6.8 Hz, 1H), 1.87 – 1.61(m, 5H), 1.49 – 1.39 (m, 2H), 1.16 – 0.79 (m, 9H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 171.21, 67.41, 52.59, 40.80, 31.59, 25.70, 22.53, 22.51, 20.09,

13.99. HRMS (ESI): $m/z [M + H]^+$ calcd for $C_{10}H_{22}NO_2$ 188.1645, found: 188.1642.

Butyl D-valinate

Colorless oil; ¹H NMR (400 MHz, CD₃OD) δ 4.27 (td, J = 6.6, 2.6 Hz, 2H), 3.92 (d, J = 4.6 Hz, 1H), 2.43 – 2.15 (m, 1H), 1.68 (dt, J = 8.7, 6.7 Hz, 1H), 1.53 – 1.30 (m, 2H), 1.07 (dd, J = 7.0, 3.5 Hz, 6H), 0.97 (t, J = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz,

CD₃OD) δ 170.13, 67.31, 59.50, 31.69, 31.05, 20.15, 18.39, 18.26, 13.95. HRMS (ESI): m/z [M + H]⁺ calcd for C₉H₂₀NO₂ 174.1489, found: 188. 174.1488.

Computational details

Density functional theory (DFT) calculations were performed with Gaussian16³⁹ package. Geometry optimizations were carried out using the M06-2X functional⁴⁰ and 6-31G(d) basis set⁴¹ in solution (1-butanol, ε =17.332) by the continuum method PCM⁴². Frequency analysis was performed at the same level under standard conditions to either a minimum (i.e., no imaginary frequency) or a transition state (i.e., only one imaginary frequency) and to obtain thermodynamic energy corrections. Intrinsic reaction coordinate (IRC) calculations⁴³ were conducted to verify that all transition state structures connected the corresponding reactants and products. Single-point calculations with the M06-2X/6-311++G(d,p) level of theory⁴⁴ and SMD⁴⁵ solvent model were performed using the geometries obtained at optimization step. The free energies presented in this work represent M06-2X/6-311++G(d,p) calculated single-point energies with M06-2X/6-31G(d) calculated thermodynamic $\Delta G_{sol}(M06-2X)$ SMD/6-311++G(d,p) // corrections, denoted PCM/6-31G(d)) or simply as ΔG_{sol} for the sake of clarity.

DFT Calculations

Energy values for the reported species and imaginary frequencies for the transition states

Optimized cartesian coordinates of the calculated structures

1a	+Me ₂ SO	4		Н	Н	-2.70111100	-1.18539800	1.74684600
C	-4.64759000	-1.42448500	0.84004300	H	Н	-3.48454900	1.28305000	-1.67600300
C	-3.38086800	-0.86463000	0.96432200	H	Н	-5.73037900	0.29371700	-1.88558200
C	-2.96173300	0.13002100	0.07804900	H	Н	-6.48574900	-1.44183000	-0.28194200
C	-3.81195500	0.54308700	-0.95127300	C	С	-1.58450100	0.69330600	0.26997600
C	-5.07703700	-0.02406000	-1.07950000	C	О	-0.70646100	0.05139000	0.84995200
C	-5.49809600	-1.00288200	-0.18147200	N	N	-1.35739900	1.92839100	-0.22296100
Н	-4.97192200	-2.19029100	1.53735700	H	Н	-2.14014300	2.49080400	-0.52315800

C	-0.06681400	2.56979300	-0.04882300	Н	H	-0.64094900	0.60557200	-1.91104700
Н	-0.06865800	3.51081400	-0.59797500	C	2	0.08996400	-2.51012700	0.62369000
Н	0.13628700	2.77012800	1.00908900	H	I	0.00212700	-2.84441900	-0.41229900
Н	0.72836600	1.92827700	-0.43733300	H	I	-0.82670600	-1.99624900	0.92388700
S	3.56979800	-0.27511500	-0.35458900	H	I	0.24478900	-3.37698800	1.26468000
О	4.96204100	-0.53656700	-0.60480200	N	N	1.26122900	-1.64660000	0.74465500
О	2.93033600	0.91926500	-0.86242400	H	I	1.87632200	-1.80993300	1.53022500
О	2.80446900	-1.56421400	-0.87348400					
О	3.33463500	-0.36367800	1.21489100	I	IN	T-1		
C	1.37287000	-1.58910200	-0.65802100	C	2	5.20737600	-1.29638400	-0.01886100
C	2.43749700	0.59897100	1.83293700	C	2	5.97023600	-0.13113000	0.04998600
Н	1.02136700	-2.45665300	-1.21182400	C	C	5.35127200	1.11844200	0.06900600
Н	1.16121800	-1.69886900	0.40635700	C	2	3.96583500	1.20737500	0.02878500
Н	0.91935400	-0.67427300	-1.04108400	C	C	3.20019400	0.03630500	-0.02776300
Н	2.48505000	0.35822900	2.89305000	C	C	3.82143600	-1.21742800	-0.06370300
Н	2.80403100	1.60969200	1.65339600	C	C	1.73080000	0.09635700	-0.05709500
Н	1.42104800	0.47602600	1.45247000	C)	1.14684800	-0.89414900	-0.66325900
				N	N	1.09221300	1.09628900	0.49302500
TS	S-1			C	2	-0.30381000	1.51228500	0.28137000
C	4.87305300	0.95337700	-1.08860700	C	2	-0.19374400	-1.33838400	-0.31356000
C	5.47029800	1.12494200	0.15906600	H	Н	5.69256100	-2.26606300	-0.03630100
C	4.82705600	0.67226400	1.30964100	H	Н	7.05294700	-0.19613400	0.08146800
C	3.59464900	0.03455300	1.21494600	H	Н	5.94780400	2.02325100	0.10320900
C	2.99865000	-0.14698200	-0.03723000	H	H	3.49202400	2.18419800	0.00255900
C	3.63551500	0.32773900	-1.18694000	H	Н	3.21609400	-2.11557500	-0.11411400
C	1.67850000	-0.81941500	-0.20734900	H	H	1.66765100	1.72113800	1.04756300
О	1.01481400	-0.60450400	-1.25636800	H	I	-0.36412500	2.55726500	0.57899300
О	-2.70746200	0.35455200	-1.24626600	H	H	-0.55258700	1.42624400	-0.77602000
S	-3.54765100	0.01493800	-0.04080900	H	I	-1.00186000	0.91394300	0.86931700
О	-4.79503700	-0.64516100	-0.38423400	H	Н	-0.21218500	-2.38371900	-0.61280900
О	-2.73742500	-0.59645400	1.01554100	H	I	-0.34585700	-1.24137100	0.76028600
О	-4.03404800	1.45627900	0.51358900	H	Н	-0.94557200	-0.76720400	-0.85512700
C	-2.97766100	2.33660000	0.91625300	S	S	-3.75814400	-0.26276500	0.46263900
Н	5.36987500	1.31004600	-1.98471600	C)	-4.43977800	-1.42535900	-0.11872000
Н	6.43361300	1.61873400	0.23647200	C)	-4.66133700	0.76437500	0.99526600
Н	5.28069600	0.82154900	2.28364200	C)	-2.61884200	-0.59017800	1.33202400
Н	3.09519600	-0.27961500	2.12683100	C)	-2.98180300	0.45925200	-0.80263500
Н	3.15322300	0.19419500	-2.14897700	C	2	-3.84546600	0.87833000	-1.85788900
Н	-3.46490200	3.25002900	1.25359400	Н	I	-3.21129900	1.36449800	-2.59945700
Н	-2.40562800	1.89110900	1.73354600	Н	Н	-4.34813000	0.01610600	-2.30423000
Н	-2.32379000	2.55293700	0.06713200	Н	Н	-4.58812400	1.58751300	-1.48181500
C	-0.83430700	-0.17932200	-1.19868900					
Н	-0.80260200	0.02753200	-0.13995900	1	1-]	BuOH		
Н	-1.11849300	-1.15676800	-1.54941700	C	2	1.31007700	0.47287500	0.00000900

Н	1.33472600	1.12358300	0.88680800	С	-2.80212100	-2.10975200	2.01682800
Н	1.33473300	1.12358100	-0.88679100	Н	-2.06072000	-2.49651900	2.71586400
О	2.40924400	-0.42520900	0.00001400	Н	-2.99182400	-1.05365800	2.23421100
C	0.03046100	-0.34321800	0.00000500	Н	-3.73003200	-2.67865300	2.09428200
Н	0.03021600	-0.99697400	0.88142500	C	-1.79415300	2.47569300	1.36332800
Н	0.03023800	-0.99699600	-0.88139900	Н	-2.64834200	2.87510700	1.92134200
C	-1.22123700	0.53163000	-0.00002200	Н	-0.87956000	2.84832300	1.83733600
Н	-1.20517100	1.18877800	-0.87878900	O	-1.78249600	1.05146300	1.53105100
Н	-1.20518300	1.18881700	0.87871600	C	-1.86657100	2.89558500	-0.09667300
C	-2.50530700	-0.29410600	-0.00001200	Н	-2.76731000	2.46295000	-0.54996100
Н	-2.55327700	-0.93832800	0.88417600	Н	-1.00929700	2.48642600	-0.64770400
Н	-3.39279900	0.34496600	-0.00003800	C	-1.88884600	4.41651900	-0.24385100
Н	-2.55326000	-0.93837600	-0.88416500	Н	-0.98770600	4.83925400	0.21757500
Н	3.22186600	0.09954100	0.00006200	Н	-2.74346000	4.82048800	0.31276200
				C	-1.97343800	4.85153300	-1.70456800
TS	S-2			Н	-2.88114100	4.45968600	-2.17476000
C	5.60132700	0.62261900	1.07237300	Н	-1.98957700	5.94113800	-1.79446000
C	6.44650700	0.10273600	0.09256300	Н	-1.11506000	4.47822100	-2.27263800
C	5.92671900	-0.67320200	-0.94215500	Н	-2.35119300	0.62851900	0.82910600
C	4.55952800	-0.92115700	-1.00722100				
C	3.70990900	-0.38982900	-0.03212600	Bu	ıOCH ₃		
C	4.23558100	0.37082400	1.01589800	C	-0.71362300	0.37855500	-0.00000700
C	2.24028900	-0.62418300	-0.05422700	Н	-0.77800600	1.03074700	-0.88722700
О	1.61159200	-0.62582400	1.03772400	Н	-0.77804300	1.03070200	0.88724200
N	1.65477900	-0.82095500	-1.23085400	О	-1.78142900	-0.54375400	-0.00005300
C	0.29422100	-1.32036700	-1.41537400	C	0.59764900	-0.38508300	0.00000200
C	-0.07516100	0.20158200	1.22862800	Н	0.62587700	-1.03751900	-0.88163200
Н	6.00748800	1.22221200	1.88019700	Н	0.62583300	-1.03757100	0.88159900
Н	7.51345800	0.29577300	0.13982000	C	1.81049000	0.54309700	0.00006000
Н	6.58641400	-1.09371600	-1.69361600	Н	1.76647700	1.19871600	0.87894200
Н	4.16842400	-1.55624500	-1.79678900	Н	1.76651500	1.19877600	-0.87878000
Н	3.56417500	0.76175900	1.77294100	C	3.12816700	-0.22786500	0.00006200
Н	2.21848300	-0.68470100	-2.06007100	Н	3.20340500	-0.86930500	-0.88426400
Н	0.25791900	-1.87805800	-2.35003700	Н	3.98754400	0.44856000	0.00010600
Н	0.03795900	-1.99291500	-0.59542800	Н	3.20336400	-0.86936900	0.88434500
Н	-0.44148800	-0.51392000	-1.46007000	C	-3.03201200	0.10149700	-0.00006600
Н	0.23142500	0.50275800	2.21784600	Н	-3.15631100	0.73322700	-0.89134100
Н	0.11518500	0.85610900	0.38987300	Н	-3.80289500	-0.67130800	-0.00011000
Н	-0.60657400	-0.72720000	1.08524800	Н	-3.15635700	0.73317200	0.89124200
S	-3.13137500	-1.68338500	-0.52788000				
О	-4.50943400	-2.08091000	-0.24602500	IN	T-2		
О	-2.50045200	-2.30506500	-1.68772200	C	3.56922200	-1.70569200	-0.07896000
0	-2.92257600	-0.20956300	-0.46798700	C	4.57586000	-0.95733700	0.53086400
О	-2.22936500	-2.26933800	0.71404100	C	4.39259500	0.40385600	0.76810700

C	3.19815700	1.01853400	0.40520500	F	Н	-1.57306500	2.51163300	-0.73374100
C	2.18802600	0.26699600	-0.20120500	F	Н	-0.59699500	3.26060100	0.54099900
C	2.37808100	-1.09407200	-0.45257100	F	Н	-0.15646300	3.49255600	-1.18566300
C	0.89158600	0.86818500	-0.61104600	S	S	-2.34350300	-0.83504600	-0.31594300
О	0.28167700	0.41368100	-1.61031300	C	С	-3.60084100	-1.36442600	-0.83954300
N	0.42159900	1.88527200	0.10837500	C	С	-1.72168300	-1.63759200	0.74353900
C	-0.77280100	2.64071200	-0.23993300	C	О	-1.38975000	-0.39380600	-1.36199700
Н	3.71390900	-2.76526500	-0.26234100	C	О	-2.69591100	0.60954500	0.37179700
Н	5.50743300	-1.43502500	0.81738200	C	C	-3.57570200	0.53051700	1.49678500
Н	5.18190000	0.98884200	1.22828900	F	Н	-3.73915100	1.55608700	1.82578200
Н	3.07249900	2.08576800	0.56486800	F	Н	-4.52580800	0.07743100	1.20163400
Н	1.57886800	-1.65663000	-0.92308400	H	Н	-3.11423100	-0.05253700	2.29756000
Н	0.90114300	2.12327800	0.96681600	H	Н	1.62478600	3.40822600	0.20692900
Н	-0.93582900	2.56118000	-1.31513100					
Н	-1.64721900	2.25686700	0.29102700	7	TS	-3		
Н	-0.61629900	3.68641800	0.02533200	C	C	-3.21542000	-1.61731700	-0.68781700
S	-2.19563800	-0.92249700	0.06560200	C	C	-2.22580900	-0.83277900	-0.10564600
О	-3.23970500	-1.91240800	-0.07969900	C	C	-2.38299300	0.55339000	-0.03515700
О	-0.88249300	-1.30441500	0.53875300	C	C	-3.54523500	1.14424200	-0.52668200
О	-2.08914400	-0.11819200	-1.26165400	C	C	-4.53460600	0.35508600	-1.11138100
О	-2.68880300	0.18658900	1.11257900	C	C	-4.37002200	-1.02404000	-1.19748800
C	-4.01593200	0.70651900	0.89307000	C	C	-1.31717000	1.41015500	0.62022400
Н	-4.16149300	1.45409600	1.67012600	Ν	N	-1.21711200	1.16276700	1.99290000
Н	-4.07520200	1.16911100	-0.09491800	C	С	0.00883000	1.00132300	-0.10366700
Н	-4.74880200	-0.09542700	0.98862500	C	С	-1.45126100	2.75710800	0.41094000
Н	-1.07290400	0.18160100	-1.44374900	C	C	0.97206000	2.03714200	-0.43534800
				C	C	2.30802800	1.38388300	-0.73093800
IN	T-3			C	C	3.34070800	2.41651800	-1.18226100
C	2.29785600	-2.14621700	0.21959100	C	C	4.69228000	1.76883900	-1.47220700
C	3.68983600	-2.10003600	0.15636700	F	Н	-3.08149300	-2.69315800	-0.74287400
C	4.34980100	-0.87662700	0.04508200	F	Н	-1.33236100	-1.30811400	0.28937200
C	3.61934000	0.30353600	-0.00532900	F	Н	-3.69459600	2.21567800	-0.43937600
C	2.22115300	0.25166700	0.04457000	F	Н	-5.43617300	0.82254300	-1.49353500
C	1.55419000	-0.97367500	0.16359900	F	Н	-5.14087600	-1.63684500	-1.65348700
C	1.46674300	1.50906800	-0.02446100	H	Н	-1.28848500	0.17021400	2.19377200
О	2.13161200	2.58524400	0.32973700	F	Н	0.49755000	0.07849500	0.45964000
N	0.22877400	1.56731900	-0.40753000	F	Н	0.59204000	2.56623600	-1.31329500
C	-0.56265800	2.79520300	-0.44759200	H	Н	1.04658400	2.74295000	0.39512200
Н	1.78650900	-3.09730400	0.32120500	H	Н	2.67087100	0.86299100	0.16253400
Н	4.26327100	-3.02040500	0.19992100	F	Н	2.17976800	0.62110600	-1.50875500
Н	5.43274700	-0.84218000	-0.00220600	H	Н	2.97496000	2.93124100	-2.07912500
Н	4.12218100	1.26008900	-0.09425900	F	Н	3.45478400	3.18206500	-0.40505900
Н	0.47178600	-1.02565000	0.24288800	H	Н	5.42855600	2.51190400	-1.79028400
Н	-0.25170800	0.70861500	-0.75318700	F	Н	5.08085500	1.26542300	-0.58111800

Н	4.60176700	1.01975000	-2.26546100	Н	4.12730700	3.41154800	-2.52125400
С	-0.11945500	1.80049100	2.71687000	Н	3.43063300	1.84857100	-2.97579400
Н	-0.25834800	1.61300800	3.78220700	Н	2.47314400	3.32625500	-3.14583100
Н	0.86754300	1.41979000	2.42238300	С	-0.94358400	1.68301500	2.95975500
Н	-0.15813800	2.87820000	2.54941400	Н	-1.31638400	1.59310500	3.98161800
S	1.56565600	-2.08702900	0.60616700	Н	0.08743600	1.30294900	2.93216600
О	2.74570100	-1.72411300	-0.16123600	Н	-0.93790500	2.74141300	2.69096800
О	1.68799900	-3.08698200	1.64515800	S	1.78448600	-2.00588100	0.05275800
О	0.85492400	-0.85128100	1.16745800	О	2.29376900	-3.28380200	0.48920600
О	0.49235900	-2.71070900	-0.42722300	О	1.26483600	-1.83232100	-1.28420600
C	0.42998900	-2.08992100	-1.72337300	О	0.74087800	-1.53699300	1.12324100
Н	-0.38193900	-2.59501400	-2.24442100	О	2.93329200	-0.90059500	0.17747100
Н	0.19718900	-1.02448200	-1.63086400	C	3.67732300	-0.90090000	1.41525500
Н	1.37486400	-2.22899500	-2.24994300	Н	4.36858900	-0.06514900	1.32982800
Н	-1.62816100	2.92120300	-0.53003200	Н	2.99804400	-0.74874000	2.25716400
				Н	4.21862000	-1.84153100	1.52018200
IN	T-4			Н	-1.74621000	2.44702500	-0.65601500
C	-2.89874500	-1.53275600	-1.80737100				
C	-2.00706400	-0.72600900	-1.09981100	IN	T-5		
C	-2.48523800	0.12924800	-0.10740200	C	4.90766300	1.13547500	0.15534000
C	-3.85639600	0.18296200	0.16288700	C	3.51600600	1.08105000	0.17697600
C	-4.74094100	-0.62098200	-0.54712500	C	2.86139100	-0.06609600	-0.27144200
C	-4.26214200	-1.48364800	-1.53360800	C	3.59710100	-1.15596000	-0.73954700
C	-1.57327900	1.06427500	0.67629200	C	4.98754000	-1.09682700	-0.75760800
N	-1.85396800	0.96636800	2.07119200	C	5.64387900	0.04825500	-0.30987700
О	-0.20646900	0.67180800	0.34852200	C	1.34939800	-0.16686900	-0.22222200
О	-1.75360600	2.39596200	0.31334800	N	0.97603700	-0.94873700	1.08313900
C	0.86167800	1.63695500	0.34233300	О	0.81949600	1.09533500	-0.11023700
C	1.39955300	1.79222300	-1.06828100	О	0.90085500	-0.92803200	-1.26022900
C	2.67471400	2.63170900	-1.09783200	C	-0.60728100	1.22047400	-0.17733700
C	3.20951600	2.81706700	-2.51545200	C	-0.94999800	2.69046800	-0.05072700
Н	-2.52065000	-2.20133100	-2.57442400	C	-2.45731700	2.92041900	-0.15335500
Н	-0.94590500	-0.76927900	-1.32033500	C	-2.82553900	4.39260900	0.00987400
Н	-4.21657000	0.85747400	0.93308700	Н	5.41535800	2.03024000	0.50052900
Н	-5.80381400	-0.57523700	-0.33164600	Н	2.93653400	1.92674900	0.53072200
Н	-4.95191200	-2.11359100	-2.08666200	Н	3.07997700	-2.03840300	-1.10335500
Н	-1.91836400	-0.01412700	2.33059400	Н	5.55742500	-1.94321000	-1.12681800
Н	0.28112500	-0.66139300	0.81766400	Н	6.72815900	0.09376800	-0.32635600
Н	0.50162900	2.58677300	0.74078100	Н	-0.03450600	-1.23270400	1.06430600
Н	1.63834800	1.25135000	1.01370000	Н	-0.96974900	0.81595600	-1.12939000
Н	1.59956200	0.79499300	-1.47879200	Н	-1.07334600	0.65202500	0.63730800
Н	0.62716700	2.25312700	-1.69860500	Н	-0.57689700	3.06395900	0.91108800
Н	2.48206200	3.61159100	-0.64280200	Н	-0.42871700	3.24715700	-0.83864000
Н	3.43608200	2.14230300	-0.47656600	Н	-2.81066400	2.55539100	-1.12651600

Н	-2.96946800	2.31839000	0.60755900	Н	-0.55430300	3.17469900	-1.10126400
Н	-3.90523000	4.54435900	-0.07330500	Н	-2.93213600	2.42991700	-1.17163900
Н	-2.50643800	4.76709100	0.98806200	Н	-2.93915300	2.22141500	0.57437100
Н	-2.33820700	5.00354700	-0.75705700	Н	-3.97285800	4.41613500	-0.06302100
C	1.22723500	-0.22069200	2.35280900	Н	-2.49416200	4.68511900	0.87171400
Н	0.92832600	-0.86328400	3.17951000	Н	-2.47906500	4.89132900	-0.88565700
Н	2.28707300	0.02132300	2.42217000	C	1.27269900	0.73938900	2.61314900
Н	0.63307200	0.69171800	2.34901000	Н	1.23503700	0.61501400	3.70283900
Н	1.51345400	-1.82160400	1.06361400	Н	2.23669000	1.18770300	2.35161900
S	-2.49524400	-1.76399400	0.12853100	Н	0.48893200	1.44648500	2.32440000
О	-3.45997100	-2.85536900	0.13612400	Н	1.80253700	-1.18234900	2.13637400
О	-1.68691500	-1.62806800	1.35926000	S	-2.45160000	-1.80702700	0.18424600
О	-1.66925400	-1.70123100	-1.10044600	O	-3.38331800	-2.91731600	0.08026100
О	-3.34142500	-0.37788900	0.15109700	O	-1.69054700	-1.66885800	1.41958000
C	-4.18622000	-0.17196400	-0.98831500	O	-1.57390600	-1.71470600	-1.04475100
Н	-4.72771600	0.75257600	-0.79238400	О	-3.31627800	-0.43971700	0.14446600
Н	-3.58009300	-0.06996300	-1.89227000	C	-4.19581300	-0.30317000	-0.98168900
Н	-4.88785900	-1.00319900	-1.09329300	Н	-4.72436900	0.63650200	-0.82849300
Н	-0.06429100	-1.14682700	-1.18492400	Н	-3.61651100	-0.26389900	-1.90805700
				Н	-4.90260500	-1.13492000	-1.00924100
TS	S-4			Н	-0.33734900	-1.30943600	-0.89198600
C	4.92533500	1.05179300	-0.16928000				
	,2000000	1.03177300	******				
C	3.53651200	1.07607300	-0.23546300	[N	IeNH ₃] M	eSO ₄	
				[N .	1eNH ₃] M	eSO ₄ -0.90460800	-0.20055300
C	3.53651200	1.07607300	-0.23546300	-			-0.20055300 0.42044600
C C	3.53651200 2.83864600	1.07607300 -0.11082000	-0.23546300 -0.47632000	N	2.46555100	-0.90460800	
C C	3.53651200 2.83864600 3.52362500	1.07607300 -0.11082000 -1.31624900	-0.23546300 -0.47632000 -0.65095900	N H	2.46555100 1.64436200	-0.90460800 -1.06743200	0.42044600
C C C	3.53651200 2.83864600 3.52362500 4.91142700	1.07607300 -0.11082000 -1.31624900 -1.33200200	-0.23546300 -0.47632000 -0.65095900 -0.58276400	N H C	2.46555100 1.64436200 3.25083900	-0.90460800 -1.06743200 0.24697600	0.42044600 0.31947600
CCCCC	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400	N H C	2.46555100 1.64436200 3.25083900 3.61731600	-0.90460800 -1.06743200 0.24697600 -0.00036500	0.42044600 0.31947600 1.31351400
CCCCC	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100	N H C H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000	0.42044600 0.31947600 1.31351400 -0.35526700
C C C C C N	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900	N H C H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000
C C C C C N	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400	N H C H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400
C C C C C N O O	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500	N H C H H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600
C C C C C O O C C	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500	N H C H H H S	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000
C C C C C O C C C C C C C C C C C C C C	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500	N H C H H H S O	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800
C C C C C C C C C C C C C C C C C C C	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500 -0.23754400	N H C H H S O	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45444800 -0.68121100
C C C C C C C C C C C C	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500 -0.23754400 -0.06921100	N H C H H S O O	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300
C C C C C C C C H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500 -0.23754400 -0.06921100 0.01592200	N H C H H S O O C	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500
C C C C C C C C C H H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600 2.99302500	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300 2.00555300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.26092500 -0.23754400 -0.06921100 0.01592200 -0.10578700	N H C H H S O O C H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400 -3.42702100	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200 -1.55300500	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500 -0.34188700
C C C C C C C H H H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600 2.99302500 2.96424000	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300 2.00555300 -2.22694700	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500 -0.23754400 -0.06921100 0.01592200 -0.10578700 -0.83506600	N H C H H S O O C H H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400 -3.42702100 -2.33612600	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200 -1.55300500 -1.47961100	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500 -0.34188700 1.07314200
C C C C C C C C C H H H H H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600 2.99302500 2.96424000 5.44793600	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300 2.00555300 -2.22694700 -2.26523800	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.26092500 -0.23754400 -0.06921100 0.01592200 -0.10578700 -0.83506600 -0.71699000	N H C H H S O O C H H H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400 -3.42702100 -2.33612600 -3.26134000 2.03810400	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200 -1.55300500 -1.47961100 -0.02753900	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500 -0.34188700 1.07314200 0.57679100
C C C C C C C H H H H H H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600 2.99302500 2.96424000 5.44793600 6.69536300	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300 2.00555300 -2.22694700 -2.26523800 -0.16477900	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.39374500 -0.26092500 -0.23754400 -0.06921100 0.01592200 -0.10578700 -0.83506600 -0.71699000 -0.28977400	N H C H H H S O O C H H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400 -3.42702100 -2.33612600 -3.26134000 2.03810400	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200 -1.55300500 -1.47961100 -0.02753900	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500 -0.34188700 1.07314200 0.57679100
C C C C C C C C H H H H H H H H H H H H	3.53651200 2.83864600 3.52362500 4.91142700 5.61137600 1.36486100 1.10167000 0.80733100 0.76682700 -0.63373800 -0.99072500 -2.50644300 -2.88725700 5.47229600 2.99302500 2.96424000 5.44793600 6.69536300 0.18908700	1.07607300 -0.11082000 -1.31624900 -1.33200200 -0.14958100 -0.10895300 -0.49840600 1.06320200 -1.16303300 1.15826700 2.62209300 2.81835500 4.28670500 1.97008300 2.00555300 -2.22694700 -2.26523800 -0.16477900 -0.91753300	-0.23546300 -0.47632000 -0.65095900 -0.58276400 -0.34225400 -0.54400100 1.85872900 -0.45369400 -0.89639500 -0.26092500 -0.23754400 -0.06921100 0.01592200 -0.10578700 -0.83506600 -0.71699000 -0.28977400 2.03520200	N H C H H S O O C H H H H	2.46555100 1.64436200 3.25083900 3.61731600 4.08062700 2.57939800 3.02587200 -0.53781200 0.36529600 -1.20842200 -1.69459200 0.07991500 -2.74294400 -3.42702100 -2.33612600 -3.26134000 2.03810400	-0.90460800 -1.06743200 0.24697600 -0.00036500 0.44596000 1.10252300 -1.75399400 0.38100600 0.57756500 1.58310500 -0.56486100 -0.43535400 -0.92276200 -1.55300500 -1.47961100 -0.02753900	0.42044600 0.31947600 1.31351400 -0.35526700 0.36095000 -0.29463400 -0.03572600 -1.18059000 0.45448800 -0.68121100 1.03965300 0.22493500 -0.34188700 1.07314200 0.57679100

C	-1.72579300	0.21147500	-0.00014100
C	-1.81560700	-1.18274500	-0.00029300
C	-3.06646700	-1.79224100	-0.00010600
C	-4.22322300	-1.01371800	0.00023900
Н	-5.03359900	0.98286300	0.00066500
Н	-2.79011500	2.07180700	0.00032600
Н	-0.91083100	-1.78029400	-0.00056100
Н	-3.13936800	-2.87496600	-0.00022900
Н	-5.19750200	-1.49258200	0.00038500
C	-0.41195600	0.91673300	-0.00034900
О	-0.28799300	2.12295200	0.00004300
C	1.92832200	0.68166500	-0.00023200
Н	2.02061400	1.31899100	-0.88574200
Н	2.02032800	1.31910600	0.88522100
О	0.62658900	0.07399200	-0.00041300
C	2.95654500	-0.43069400	-0.00000400
Н	2.80068000	-1.06327400	-0.88227600
Н	2.80044900	-1.06312800	0.88233200
C	4.38170400	0.12052900	0.00013700
Н	4.52359400	0.76138600	0.87920700
Н	4.52382200	0.76123700	-0.87900600
C	5.42659500	-0.99237000	0.00036700
Н	5.31744700	-1.62846600	-0.88413400
Н	6.44155300	-0.58553100	0.00046200
Н	5.31722000	-1.62831200	0.88495100

Supplementary References:

- (1) Pan, F.; Shen, P.; Zhang, L.; Wang, X.; Shi, Z. Org. Lett. 2013, 15, 4758 4761.
- (2) Ano, Y.; Tobisu, M.; Chatani, N. Org. Lett. 2012, 14, 354 357.
- (3) Wang, H.; Park, Y.; Bai, Z.; Chang, S.; He, G.; Chen, G. J. Am. Chem. Soc. 2019, 141, 7194 7201.
- (4) Reddy, B. V.; Reddy, L. R.; Corey. *Org. Lett.* **2006**, *8*, 3391 3394.
- (5) Zeng, L.; Tang, S.; Wang, D.; Deng, Y.; Chen, J.; Lee, J.; Lei, A. *Org. Lett.* **2017**, *19*, 2170 2173.
- (6) Govindan, K.; Chen, N.; Chuang, Y.; Lin, W. Org. Lett. 2021, 23, 9419 9424.
- (7) Ulatowski, F.; Jurczak, J. *Tetrahedron Asymmetry*, **2014**, 25, 962 968.
- (8) Maegawa, Y.; Agura, K.; Hayashi, Y.; Ohshima, T.; Mashima, K. Synlett, 2012, 13, 137 141.
- (9) Weinhold, T.; Reece, N..; Ribeiro, K.; Lopez Ocasio, M.; Watson, N.; Hanson, K.; Longstreet, A. R. J. Org. Chem. **2022**, 87, 16928 16936.
- (10) Ganesan, V.; Moon, Seokyeong; Yoon, S. J. Org. Chem. 2023, 88, 5127 5134.
- (11) Liu, H.; Shi, G.; Pan, S.; Jiang, Y.; Zhang, Y. Org. Lett. 2013, 15, 4098 4101.
- (12) Tang, Z.; Jiang, Q.; Peng, L.; Xu, X.; Li, J.; Qiu, R.; Au, C. *Green Chem.* **2017**, *19*, 5396 5402.
- (13) Wakita, N.; Hara, S. Tetrahedron 2010, 66, 7939 7945.
- (14) Gaspa, S.; Porcheddu, A.; De Luca, L. Org. Lett. 2015, 17, 3666 3669.
- (15) Gan, S.; Shi, L.; Song, L.; Yin, J.; Yu, Z. Green Chem. 2022, 24, 2232 2239.
- (16)Zhou, Y.; Yang, D.; Luo, G.; Zhao, Y.; Luo, Y.; Xue, N.; Qu, J. *Tetrahedron* **2014**, *70*, 4668 4674.
- (17) Yang, X.; Guo, Y.; Tong, H.; Liu, R.; Zhou, R. Green Chem. 2023, 25, 1672 1678.
- (18)Cao, Z.; Chen, X.; Chen, Y.; Kong, X.; Lu, Z.; Ni, Sh.; Wang, W. Org. Lett. **2022**, 24, 2137 2142.
- (19) Chakraborti, A.; Singh, B.; Chankeshwara, S.; Patel, A. J. Org. Chem. 2009, 74, 5967 5974.
- (20)Zhu, Y.; Yan, H.; Lu, L.; Liu, D.; Rong, G.; Mao, J. J. Org. Chem. 2013, 78, 9898 9905.
- (21) Wang, Y.; Chang, Z.; Hu, Y.; Lin, X.; Dou, X. Org. Lett. 2021, 23, 1910 1914.
- (22) Pandey, G.; Koley, S.; Talukdar, R.; Sahani, P. Org. Lett. 2018, 20, 5861 5865.
- (23) Tsukamoto, Y.; Itoh, S.; Kobayashi, M.; Obora, Y. Org. Lett. 2019, 21, 3299 3303.
- (24)Ma, C.; Zhao, C.; Xu, X.; Li, Z.; Wang, X.; Zhang, K.; Mei, T. Org. Lett. **2019**, 21, p. 2464 2467.
- (25) Sonam, N.; Shinde, V.; Kumar, A. J. Org. Chem. 2022, 87, 2651 2661.
- (26) Shang, R.; Fu, Y.; Li, J.; Zhang, S.; Guo, Q.; Liu, L. J. Am. Chem. Soc. 2009, 131, 5738 5739.
- (27) Mašek, T.; Jahn, U. J. Org. Chem. 2021, 86, 11608 11632.
- (28) Nishii, Y.; Akiyama, S.; Kita, Y.; Mashima, K. Synlett, 2015, 26, 1831 1834.
- (29) Fernández, E.; Rivero-Crespo, M.; Domínguez, I.; Rubio-Marqués, P.; Oliver-Meseguer, J.; Liu, L.; Cabrero-Antonino, M.; Leyva-Pérez, A.; Corma, A. J. Am. Chem. Soc. **2019**, 141, 1928 1940.
- (30) Shendage, D.; Froehlich, R.; Haufe, G. Org. Lett. 2004, 6, 3675 3678.

- (31) Nathanael, J.; Wille, U. J. Org. Chem. 2019, 84, 3405 3418.
- (32) Britton, J.; Dalziel, S.; Raston, C. L. Green Chem. 2016, 18, 2193 2200.
- (33) Goyal, V.; Bhatt, T.; Dewangan, C.; Narani, Anand; N., Ganesh; B., Ekambaram; Natte, K.; Jagadeesh, R. *J. Org. Chem.* **2023**, *88*, 2245 2259.
- (34)Xu, F.; Simmons, B.; Reamer, R..; Corley, E.; Murry, J.; Tschaen, D. J. Org. Chem. **2008**, 73, 312 315.
- (35) Tien, C.; Adams, M..; Ferguson, M..; Johnson, E..; Speed, Al.H. *Org. Lett.* **2017**, 19, 5565 5568.
- (36)Mondal, A.; Karattil Suresh, A.; Sivakumar, G.; Balaraman, E. *Org. Lett.* **2022**, 24, 8990 8995.
- (37) Vignaroli, G.; Zamperini, C.; Dreassi, E.; Radi, M.; Angelucci, A.; Sanita, P.; Crespan, E.; Musumeci, F.; Botta, M. *ACS Med. Chem. Lett.* **2013**, 4, 622 626.
- (38) Kapitanov, I.; Jordan, A.; Karpichev, Y.; Spulak, M.; Perez, L.; Kellett, A.; Kümmerer, K.; Gathergood, N. *Green Chem.* **2019**, 21, 1777 1794.
- (39) Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- (40)Zhao, Y., Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 2008, 120, 215–241.
- (41)(a) Ditchfield, R., Hehre, W. J., Pople, J. A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724-728. (b) Hariharan, P. C., Pople, J. A. The influence of polarization functions on molecular orbital. hydrogenation energies. Theor. Chim. Acta 1973, 28, 213-222. (c) Hehre, W. J., Ditchfield, R., Pople, J. A. Self-Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian-Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. J. Chem. Phys. 1972, 56, 2257-2261.
- (42)G. Scalmani and M. J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, J. Chem. Phys., 2010,132, 114110.
- (43)(a) Gonzalez, C.; Schlegel, H. B. An improved algorithm for reaction path following. J. Chem. Phys. 1989, 90, 2154. (b) Gonzalez, C.; Schlegel, H. B. Reaction Path Following in Mass-Weighted Internal Coordinates. J. Phys. Chem. 1990, 94, 5523.
- (44)(a) Krishnan, R., Binkley, J. S., Seeger, R., Pople, J. A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650-654. (b)

Clark, Timothy, Chandrasekhar, Jayaraman, Spitznagel, Günther W., Schleyer, Paul Von Ragué. Efficient diffuse function-augmented basis sets for anion calculations. III. The 3-21+G basis set for first-row elements, Li-F. J. Comput. Chem. 1983, 4, 294-301. (c) Francl, Michelle M., Pietro, William J., Hehre, Warren J., Binkley, J. Stephen, Gordon, Mark S., DeFrees, Douglas J., Pople, John A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654-3665. (d) Spitznagel, Günther W., Clark, Timothy, Schleyer, Paul von Ragué, Hehre, Warren J. An evaluation of the performance of diffuse function-augmented basis sets for second row elements, Na-Cl. J. Comput. Chem. 1987, 8, 1109-1116.

(45)Marenich AV, Cramer CJ, Truhlar DG. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B. 2009 May 7;113(18):6378-96.