FACULTAD DE CIENCIAS EXACTAS, NATURALES Y AMBIENTALES CATÁLOGO STEM • ÁLGEBRA LINEAL Y GEOMETRÍA ANALÍTICA

RESUMEN NO. 10: PRODUCTO INTERNO Andrés Merino • Periodo 2025-1

1. ESPACIOS CON PRODUCTO INTERNO

DEFINICIÓN 1: Producto interno.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial. Un producto interno sobre E es una función

$$\langle \cdot, \cdot \rangle \colon E \times E \longrightarrow \mathbb{R}$$

$$(\mathfrak{u}, \mathfrak{v}) \longmapsto \langle \mathfrak{u}, \mathfrak{v} \rangle$$

tales que cumple:

I. $\langle v, v \rangle \geqslant 0$ para todo $v \in E$;

II. $\langle v, v \rangle = 0$ si y solo si v = 0;

III. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ para todo $u, v, w \in E$;

IV. $\langle \alpha v, w \rangle = \alpha \langle v, w \rangle$ para todo $v, w \in E$ y $\alpha \in \mathbb{R}$.

V. $\langle v, w \rangle = \langle w, v \rangle$ para todo $v, w \in E$.

A

Otra notación para el producto interno es

$$\langle \mathbf{u}, \mathbf{v} \rangle = (\mathbf{u} | \mathbf{v}).$$

Si se define un producto interno sobre un espacio vectorial E, a este se lo denomina espacio con producto interno o pre-Hilbertiano.

TEOREMA 1.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial provisto de producto interno $\langle \cdot, \cdot \rangle$, entonces:

I. Para todo $u, v, w \in E$

$$\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle.$$

II. Para todo $\mathfrak{u},\mathfrak{v}\in\mathsf{E}$ y $\alpha\in\mathbb{R}$

$$\langle u, \alpha v \rangle = \alpha \langle u, v \rangle.$$

III. Para todo $\mathfrak{u} \in E$

$$\langle u, 0 \rangle = \langle 0, u \rangle = 0.$$

1.1 Productos internos usuales

i. En $(\mathbb{R}^n, +, \cdot, \mathbb{R})$, para $x, y \in \mathbb{R}^n$:

$$\langle x, y \rangle = \sum_{k=1}^{n} x_k y_k.$$

1

II. En $(\mathbb{R}_n[x], +, \cdot, \mathbb{R})$, para $\mathfrak{p}(x), \mathfrak{q}(x) \in \mathbb{R}_n[x]$, si

$$p(x) = a_0 + a_1x + \dots + a_nx^n \qquad y \qquad q(x) = b_0 + b_1x + \dots + b_nx^n$$

entonces

$$\langle p(x), q(x) \rangle = \sum_{k=0}^{n} a_k b_k.$$

III. En $(\mathbb{R}^{m \times n}, +, \cdot, \mathbb{R})$, para $A, B \in \mathbb{R}^{m \times n}$:

$$\langle A, B \rangle = tr(AB^{\mathsf{T}}).$$

IV. En $(\mathcal{C}([a,b]),+,\cdot,\mathbb{R})$, para f, $g\in\mathcal{C}([a,b])$:

$$\langle f, g \rangle = \int_{a}^{b} f(x)g(x)dx.$$

DEFINICIÓN 2.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial provisto de producto interno y suponga que $\mathfrak{u}, \mathfrak{v} \in E$. Entonces:

- I. u y v son ortogonales si $\langle u, v \rangle = 0$.
- II. La norma de \mathfrak{u} , denotada por $\|\mathfrak{u}\|$, está dada por

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle}$$

DEFINICIÓN 3.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial provisto de producto interno. La distancia en el espacio se define por

$$d\colon E\times E\longrightarrow \mathbb{R}$$

$$(u,v)\longmapsto \|u-v\|.$$

TEOREMA 2: Vectores ortogonales.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial provisto de producto interno. Para $\mathfrak{u},\mathfrak{v}\in E$, se dice que son ortogonales si

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0.$$

TEOREMA 3: Teorema de Pitágoras.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial provisto de producto interno. Si \mathfrak{u},ν son vectores ortogonales de E, entonces

$$\|u + v\|^2 = \|u\|^2 + \|v\|^2$$
.

TEOREMA 4: Desigualdad de Cauchy-Schwartz.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial provisto de producto interno. Para todo $\mathfrak{u},\mathfrak{v}\in E$ se cumple que

$$|\langle \mathbf{u}, \mathbf{v} \rangle| \leq \|\mathbf{u}\| \|\mathbf{v}\|.$$

TEOREMA 5: Desigualdad triangular.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial provisto de producto interno. Para todo $\mathfrak{u},\nu\in E$ se cumple que

$$||u + v|| \le ||u|| + ||v||.$$

DEFINICIÓN 4: Conjunto ortogonal.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial provisto de producto interno y

$$C = \{v_1, v_2, \dots, v_n\} \subseteq E.$$

Se dice que C es un conjunto ortogonal en E si

$$\langle v_i, v_j \rangle = 0$$

para todo $i \neq j$.

DEFINICIÓN 5: Conjunto ortonormal.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial provisto de producto interno y

$$C = \{\nu_1, \nu_2, \dots, \nu_n\} \subseteq E.$$

Se dice que C es un conjunto ortonormal en E si es ortogonal y

$$\|v_k\| = 1$$

para todo $k \in \{1, ..., n\}$.

TEOREMA 6.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial provisto de producto interno. Si $C \subseteq E$ es un conjunto ortogonal de vectores no nulos, entonces es linealmente independiente.

A partir de aquí, siempre consideraremos espacios vectoriales provistos con un producto interno.

1.2 Bases ortogonales

DEFINICIÓN 6: Base ortogonal (ortonormal).

En un espacio vectorial, una base ortogonal (ortonormal) es una base cuyos vectores forman un conjunto ortogonal (ortonormal).

TEOREMA 7.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $\{u_1,u_2,\ldots,u_n\}$ una base ortogonal para E. Se tiene que, para $\nu\in E$,

$$v = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n$$

donde

$$c_k = \frac{\langle v, u_k \rangle}{\langle u_k, u_k \rangle}$$

para todo $k \in \{1, 2, \dots, n\}$.

TEOREMA 8.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $\{u_1,u_2,\ldots,u_n\}$ una base ortonormal para E. Se tiene que, para $v\in E$,

$$v = \alpha_1 u_1 + \alpha_2 u_2 + \cdots + \alpha_n u_n$$

donde

$$c_k = \langle \nu, u_k \rangle$$

para todo $k \in \{1, 2, ..., n\}$.

TEOREMA 9: Proceso de Gram-Schmidt.

Sean $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $\{\mathfrak{u}_1,\mathfrak{u}_2,\ldots,\mathfrak{u}_n\}$ un conjunto linealmente independiente de E. Definamos

I.
$$v_1 = u_1 y$$

II.
$$v_k = u_k - \sum_{i=1}^{k-1} \frac{\langle u_k, v_i \rangle}{\langle v_i, v_i \rangle} v_i$$
, para $k=2,\dots,n$.

Se tiene que el conjunto

$$\{v_1, v_2, \ldots, v_n\}$$

es un conjunto ortogonal. Además, si definimos

$$w_k = \frac{v_k}{\|v_k\|}$$

para k = 1, ..., n, se tiene que el conjunto

$$\{w_1, w_2, \dots, w_n\}$$

es un conjunto ortonormal.

TEOREMA 10.

Todo espacio vectorial de dimensión finita tiene una base ortogonal y una base ortogonal.

EJEMPLO 1. Considere la base $S = \{u_1, u_2, u_3\}$ de \mathbb{R}^3 , donde

$$u_1 = (1, 1, 0), \quad u_2 = (0, 1, 1), \quad u_3 = (1, 0, 1)$$

mediante el proceso de Gram-Schmidt, se obtiene la base ortonormal $T = \{w_1, w_2, w_2\}$ para \mathbb{R}^3 donde

$$w_1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \qquad w_2 = \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}\right), \qquad w_3 = \left(\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

1.3 Complemento ortogonal

A partir de aquí, siempre consideraremos espacios vectoriales provistos con un producto interno.

DEFINICIÓN 7: Complemeto ortogonal.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y $H\subset E$. El complemento ortogonal de H, denotado por H^{\perp} , se define por:

$$H^{\perp} = \{x \in E : \langle x, h \rangle = 0, \text{ para todo } h \in H\}.$$

TEOREMA 11.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial y H subespacio vectorial de H, entonces:

- ı. H^{\perp} es un subespacio vectorial de E.
- II. $H \cap H^{\perp} = \{0\}.$
- III. Si dim(E) = n, entonces dim(H^{\perp}) = n dim(H)

TEOREMA 12.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial de dimensión finita, W un subespacio vectorial de E, entonces

$$E = W \oplus W^{\perp}$$
.

TEOREMA 13.

Sea $(E, +, \cdot, \mathbb{R})$ un espacio vectorial de dimensión finita, W un subespacio vectorial de E, entonces

$$(W^{\perp})^{\perp} = W.$$

DEFINICIÓN 8: Proyección ortogonal.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial y H un subespacio vectorial de E, con base ortogonal $\{u_1,u_2,\ldots,u_n\}$. Para $v\in E$, la proyección ortogonal de v sobre H, denotado por proy_H v, se define por:

$$\text{proy}_{H}(\nu) = \frac{\langle \nu, u_1 \rangle}{\langle u_1, u_1 \rangle} u_1 + \frac{\langle \nu, u_2 \rangle}{\langle u_2, u_2 \rangle} u_2 + \dots + \frac{\langle \nu, u_n \rangle}{\langle u_n, u_n \rangle} u_n,$$

donde proy_H $(v) \in H$.

TEOREMA 14: Teorema de la proyección.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial de dimensión finita, H un subespacio vectorial de E y $v \in E$. Se tiene que

$$v = \text{proy}_{H}(v) + \text{proy}_{H^{\perp}}(v).$$

TEOREMA 15.

Sea $(E,+,\cdot,\mathbb{R})$ un espacio vectorial de dimensión finita, H un subespacio vectorial de E y $v\in E$. Se tiene que el vector en H más cercano a v es $\operatorname{proy}_H(v)$, es decir,

 $\| \mathbf{v} - \mathbf{w} \| \quad \text{es mínima cuando} \quad \mathbf{w} = \mathrm{proy}_{W}(\mathbf{v}).$