

Roteiro 2 - Estrutura Sequencial

Para prosseguirmos com a disciplina alguns conceitos devem ser dados para melhor entendimento do conteúdo.

Características da Linguagem

- Composta basicamente por variáveis e funções;
- A diretiva **#include "avisa"** ao compilador que serão usados procedimentos de uma determinada biblioteca. As bibliotecas são arquivos contendo várias funções que podem ser incorporadas no programa sem a necessidade de implementação.

```
#include<math.h> /* Funções Matemáticas * /
#include<stdlib.h> /* Funções de Gerência de Memória* /
#include<string.h> /* Funções de Manipulação de Strings * /
```

• A linguagem C/C++ é **sensível ao caso (case sensitive)**, ou seja, considera que letras maiúsculas e minúsculas são diferentes

```
MDC != Mdc != mdc
main != Main != maiN
```

• Todos os comandos da linguagem devem ser escritos com letras minúsculas.

Declaração de Variáveis

Variáveis são objetos que não possuem valor fixo. Representam uma região na memória e possuem um **tipo** e um **identificador** associado. Além disso, variáveis simples podem armazenar somente um valor a cada momento. Portanto, declarar uma variável significa dizer, a grosso modo, que estamos reservando um espaço de memória que possui um identificador (nome) para armazenar valores de um determinado tipo. É importante notar que as variáveis são declaradas após a especificação do seu tipo.

Exemplo:

```
int main()
{
   //Declaração de variáveis
   int Y;
   float X;
   char sexo, nome[40];
}
```

Tipos Básicos

Thos Dasicos		
Tipo	Descrição	
Int	Representa conjunto dos números inteiros	
float ou double	Representa conjunto dos números reais (ponto flutuante)	
Char	Representa um ou mais caracteres do teclado	
Bool	Representa um valor lógico (V) ou (F)	

Regras básicas para formação de identificadores

- Permitido: números, letras e caractere sublinhado (underline)
- Primeiro caractere deve ser sempre uma letra ou sublinhado
- Não permite-se uso de espaço em branco e caracteres especiais (@,#,\$,%, etc)
- Não é permitido a utilização de palavras reservadas (pertencem a uma linguagem de programação específica)

Exemplos corretos:

float notaMedia;
int numero;

char nome:

Exemplo incorretos:

int nota Media;
float @numero;
char 2nome;

Comandos de Entrada e Saída

```
int main()
{
    //Declaração de variáveis
    int num, x, soma;

    cout<<"Digite um numero: "; //Comando de Saída
    cin>>num; //Comando de Entrada

    //Atribuição de valores
    x = 3;
    soma = num + x;

    //Comando de Saída
    cout<<"A soma dos numeros e: "<<soma;
}</pre>
```

- Para entrada de dados em C/C++, o comando que será utilizado é o cin>>. Assim, com o comando (cin>>num;) o valor digitado pelo usuário será armazenado na variável com nome num.
- Para saída de dados em C/C++, o comando que será utilizado é o cout<<. Assim, com o comando (cout<<''O numero e '', num;)o texto O número e '' valor da variável num'' aparecerá na tela do computador para o usuário.

Caracteres especiais para impressão:

Ex.:
\n - Quebra de linha
\t - Tabulação
\" - Caracter "
\% - Caracter %
\a - Sinal de alerta (beep)

Atribuição de Valores às variáveis

- A atribuição de valores é utilizada para atribuir valores às variáveis, sendo representada pelo sinal = (igualdade).
- Pode ser feita na declaração (int num = 2;) ou através de um comando fora da declaração (num = 2; ou num = x + y; ou num = 2 + 2; etc).

```
int main()
{
  int y, x, soma;

  //Atribuição de valores
  y = 2;
  x = 3;
  soma = y + x;
}
```

Constantes

Em ocasiões específicas pode ser que seja requisitada uma variável que não altera o valor durante a execução do programa, como por exemplo o valor de **PI**. Nesses casos a utilização de constantes é indicada.

A definição das constantes é realizada juntamente com a inclusão das bibliotecas. Veja um exemplo de utilização a seguir.

```
1
       /*
 2
       Programador: < Nome>
3
       Descricao: Calcula a area e operimetro de uma circunferencia.
 4
       Entrada: Raio.
 5
       Saida: area e perimetro.
 6
 7
8
       #include <iostream>
9
    #define Pi 3.141593 4
10
       using namespace std;
       int main()
12
13
14
           float raio, area, perimetro;
           cout << "\n Digite o valor do raio = " <<endl;</pre>
15
16
           cin>>raio;
17
           perimetro = 2*Pi*raio;
18
           area = Pi*raio*raio;
19
           cout << "\n Q valor do perimetro e = " << perimetro <<endl;</pre>
20
           cout << "\n 0 yalor da area e = " << area <<endl;
21
           cout<< "\n";
22
           return 0;
23
       }
24
```


No exemplo acima definiu-se a constante **Pi** com valor de 3.141593, assim a mesma pode ser utilizada durante o programa sem perda de generalidade.

Operadores e Funções predefinidas

A linguagem C/C++ possui alguns operadores e funções predefinidas destinadas a cálculos matemáticos e à manipulação de caracteres.

Operadores matemáticos:

Operador	Exemplo	Comentário	
+	x + y	Soma o conteúdo de X e de Y.	
-	x – y	Subtrai o conteúdo de Y do conteúdo de X	
*	x * y	Multiplica o conteúdo de X pelo conteúdo de Y	
/	x / y	Obtém o quociente da divisão de X por Y	
%	x % y	Obtém o resto da divisão de X por Y	
++	x ++	Aumenta o conteúdo de X em uma unidade (é o mesmo que x = x + 1)	
	x	Diminui o conteúdo de X em uma unidade (é o mesmo que x = x - 1)	

Operadores matemáticos de atribuição:

Operador	Exemplo	Comentário
+=	x + = y	Equivale a $X = X + Y$.
-=	x - = y	Equivale a $X = X - Y$.
* =	x * = y	Equivale a $X = X * Y$.
/=	x / = y	Equivale a $X = X / Y$.
% =	x % = y	Equivale a $X = X \% Y$.

- Devem ser utilizados somente com valores numéricos;
- Operador %(resto) só pode ser usado com variáveis do tipo inteiro;
- Operador / (divisão) quando utilizado com operandos inteiros retorna valores inteiro;
- Divisão por **zero** pode interromper a execução do programa.

Funções matemáticas predefinidas

A linguagem C/C++ possui algumas funções matemáticas prontas para serem usadas. Todas elas podem ser observadas detalhadamente na documentação da biblioteca **math.h**. Para se utilizar as funções dessa biblioteca deve-se adicionar a cláusula: *#include <math.h>*. Algumas das funções disponíveis nessa biblioteca são:

Função	Finalidade
abs(i)	Retorna o valor absoluto de i.
ceil(d)	Arredonda para cima, para o próximo valor inteiro maior que d.
cos(d)	Retorna o cosseno de d.
floor(d)	Arredonda para baixo, para o próximo valor inteiro menor que
	d.
log(d)	Calcula o logaritmo neperiano log(d).
pow(d1, d2)	Retorna d1 elevado a d2.
rand()	Retorna um inteiro positivo aleatório.
sin(d)	Retorna o seno de d.
sqrt(d)	Retorna a raiz quadrada de d.
tan(d)	Retorna a tangente de d.

INSTITUTO FEDERAL DE MINAS GERAIS Campus Sabará

Exemplo

Teorema de Pitágoras: O programa exemplificado calcula a hipotenusa de um triângulo retângulo, dados os seus catetos, pelo Teorema de Pitágoras.

```
1
 2
       Programador: < Nome >
 3
       Descricao: Calcula a hipotenusa de um triangulo retângulo dados os seus catetos.
 4
       Entrada: Lados b e c de um triângulo retângulo.
 5
       Saida: impressao da mensagem.
 6
 7
 8
       #include <iostream>
 9
       #include <math.h>
10
11
       using namespace std;
12
       int main()
13
14
           float a, b = 4, c = 3;
           a = sqrt (pow(b, 2) + pow(c, 2));
15
16
           cout << "\n Q yalor do cateto b = " << b <<endl;</pre>
           cout << "\n Q yalor do cateto c = " << c <<endl;</pre>
17
18
           cout << "\n Q yalor da hipotenusa a = " << a <<endl;</pre>
19
           cout<< "\n";
20
           return 0:
```

Digite e compile o código acima. Observe a utilização das funções matemáticas predefinidas. Como exercício, faça o mesmo programa requisitando que o usuário entre com os valores dos catetos.

Exercícios

- 1. Crie um algoritmo que calcule a soma e a média de 3 números passados pelo usuário.
- 2. Implemente um algoritmo que receba 3 números reais de entrada. Calcule e mostre o resultado da multiplicação dos dois primeiros números dividido pelo terceiro número fornecido pelo usuário. Sabe-se que o denominador não pode ser zero, mas neste momento não se preocupe com as validações.
- 3. Faça um algoritmo que receba 3 notas e seus respectivos pesos, calcule e mostre a media ponderada dessas notas.
- 4. Faça um programa que receba o salário base de um funcionário, calcule e mostre o salário a receber, sabendo que esse funcionário possui uma gratificação de 10% sobre o salário base e paga 5% de imposto sobre o valor acumulado (salário base + gratificação).
- 5. Funcionários da IFVende tem como benefício a receber ao final de cada mês um salário fixo mais 4% de comissão sobre as vendas realizadas pelo mesmo. Assim, faça um algoritmo que receba o salário fixo e o valor de vendas realizadas por um funcionário, calcule e mostre o benefício a ser recebido pelo mesmo.

- 6. Faça um algoritmo que calcule a área de um retângulo e o perímetro de um retângulo recebendo os valores dos lados.
- 7. Zé Borba Gato é dono de um terreno na cidade de Sabará e deseja saber qual seria o preço médio de venda desse terreno. Conforme visto na planta do mesmo, nota-se que o lote possui um formato de trapézio (Figura abaixo).

Assim sendo, dados os valores das medidas da base maior, base menor e da altura do terreno (em metros), e sabendo o valor médio (R\$) pago por metro quadrado no local onde se encontra o lote, calcule e mostre a área total e o valor médio de venda (R\$) que Zé Borba Gato pode pedir pelo terreno.

- 8. Implemente um algoritmo que receba o número de lados de um polígono convexo regular, calcule e mostre o número de diagonais desse polígono. Sabe-se que ND = N*(N 3)/2, em que N representa o número de lados do polígono.
- 9. Uma pessoa depositou R\$2000,00 em um fundo de investimento que rende 0.5% ao mês. Essa pessoa gostaria de saber qual o total acumulado após 2 anos. Faça um programa que forneça tais informações. (Obs. desconsidere correção monetária e utilize a fórmula de juros compostos).
- 10. João recebeu seu salário e precisa pagar 2 contas atrasadas. Em razão do atraso, ele deverá pagar multa de 2% sobre cada conta. Faça um programa que receba o salário do João e o valor de cada conta, calcule e mostre quanto restará de salário após o pagamento das duas contas.
- 11. Dona Maria das Couve é uma mulher muito preocupada com sua saúde e busca a prática de exercícios físicos constantes. Devido a crise financeira, Dona Maria está sem dinheiro para pagar academia, e teve como alternativa fazer caminhada diária ao redor do quarteirão de sua casa. O quarteirão da casa dela possui formato de um triângulo retângulo (figura abaixo), sabendo que ela deve caminhar um valor fixo de km por dia e dadas as medidas das ruas A e B da figura abaixo, calcule e mostre quantas voltas Dona Maria precisa fazer no quarteirão para que ela atinja sua meta.

Rua B

- 12. A copa do mundo de futebol da FIFA é uma competição internacional que iniciou em 1930, acontecendo desde então de 4 em 4 anos, exceto durante o período das guerras mundiais que impossibilitaram a realização 2 copas mundiais. Sabendo dessas informações, faça um algoritmo em c++ que dado o ano atual calcule o número de copas já realizadas e exiba o resultado ao usuário.
- 13. Sabe-se que, para iluminar corretamente os cômodos de uma casa, para cada m², deve-se usar 18 W de potência. Faça um programa que receba as dimensões de um cômodo retangular (em metros), calcule e mostre a área de mesmo (em m²) e a potência de iluminação necessária para iluminar corretamente o cômodo.
- 14. Faça um algoritmo que calcule a área de uma circunferência, recebendo o valor do raio. Obs.: Defina **PI** como constante de valor 3.1416.
- 15. Faça um algoritmo que receba uma quantidade qualquer em minutos e converta em horas e minutos (utilize divisão inteira e resto da divisão inteira).
- 16. Faça um programa que receba de entrada um número real, encontre e mostre:
 - a. A parte inteira desse número;
 - b. A parte fracionária desse número.
- 17. Sabe-se que o valor pago por quilowatt de energia custa um quinto do valor do salário mínimo. Faça um algoritmo que receba o valor atual do salário mínimo e a quantidade de quilowatt consumida em uma residência, calcule e mostre:
 - a. O valor pago por quilowatt;
 - b. O valor a ser pago pelo consumo nessa residência;
 - c. O valor a ser pago considerando um desconto de 15%.
- 18. Implemente m programa que receba um número positivo, calcule e mostre:
 - O número digitado elevado ao quadrado;
 - O número digitado elevado ao cubo;
 - A raiz quadrada do número;
 - A raiz cúbica do número.
- 19. Faça um algoritmo que receba o número de horas trabalhadas, o valor do salário mínimo e o número de horas extras trabalhadas. Calcule e mostre o salário a receber seguindo as seguintes regras:
 - a) a hora trabalhada é 0.125 do salário mínimo;
 - b) a hora extra vale 0.25 do salário mínimo;
 - c) o salário bruto equivale ao número de horas trabalhadas vezes o valor pago por hora;
 - d) a quantia a receber por horas extras equivale à horas extras realizadas multiplicado pelo valor pago por hora extra;
 - e) o salário a receber equivale à soma do salário bruto mais a quantia a receber pelas horas extras.

20. Faça um programa que receba a medida do ângulo formado por uma escada apoiada e a altura da parede. Calcule e mostre a medida da escada para que a ponta da parede possa ser alcançada.

- 21. Faça um algoritmo que leia dois valores numéricos e armazene nas variáveis **A** e **B**, após isso, efetue a troca dos valores de forma que **A** passe a possuir o valor de **B** e **B** passe a possuir o valor de **A**. Imprima os valores após troca.
- 22. Num dado momento, 3 canais de TV tinham, em sua programação, novelas em seu horário nobre: canal A, novela A, canal B, novela B, canal C novela C. Numa pesquisa com 3000 pessoas, perguntou-se quais novela agradavam. A tabela a seguir mostra o resultado da pesquisa:

Novelas	Nº de telespectadores
A	1450
В	1150
С	900
A e B	350
A e C	400
B e C	300
A, B e C	100

Implemente um algoritmo que encontre o número de telespectadores que nenhuma das novelas os agradam. Receba as informações de preferências na entrada de dados e utilize as fórmulas de teoria dos conjuntos.

23. Considere uma equação do segundo grau na forma genérica (ax² + bx + c) e calcule o valor das raízes da mesma. Sabe-se que os coeficientes a, b, e c devem ser fornecidos pelo usuário. Utilize as equações abaixo como teste. Teste também para alguns valores aleatórios de coeficientes (exemplo a = 3, b = 2 e c =4) e veja que em alguns casos não se retornam as raízes de forma correta. Identifique o porquê desse problema e indique uma solução.

$$1x^2 + 2x + 1 = 0$$

$$1x^2 + 3x + 2 = 0$$

$$1x^2 + 4x + 3 = 0$$

$$1x^2 + 4x + 4 = 0$$

$$2x^2 + 3x - 2 = 0$$