ECE 219 Project 3: Recommender Systems

Sarah Wilen UCLA ECE Department

swilen1@g.ucla.edu
UID: 305070897

Marco Venegas UCLA ECE Department

venmarco310@g.ucla.edu
UID: 805461921

Henry Peters UCLA CS Department

hpeters@g.ucla.edu UID: 205704526

1. Question 1

1.1. Part A

Sparsity = 0.0170 Our R matrix is very sparse, which makes sense because if it wasn't, that means most users have watched and rated all of the movies in the set, which is not likely.

1.2. Part B

Figure 1: Frequency of the Rating Values

From the histogram shape with an upward trend, we can see that most ratings were higher than 3.0 stars.

1.3. Part C

Figure 2: Number of Ratings Received Among Movies

From this distribution, we see that a small minority of the movies have high ratings. The majority have fewer than 40 ratings.

1.4. Part D

Figure 3: Ratings Among Users

1.5. Part E

We notice that the larger the movie and user index, the smaller the ratings received/given. This may suggest that the majority amount of movies received low amount of ratings. Therefore, as we saw from part a, the rating matrix is sparse. For our recommender system, we should watch out for overfitting by introducing data augmentation (data imputation) and/or regularization. The intuition is that a movie without many ratings won't be recommended as much. Additionally, collaborative filtering will not work as well in this situation because these movie's ratings are not sampled enough.

1.6. Part F

Figure 4: Variance of the Rating Values Received by each movie

Since a majority of the variance lies between 0 and 1.5, we can tell that the ratings for movies are fairly consistent. This means that a movie's ratings do not vary drastically. The intuition is that when moves are rated very high and low, it is difficult for the recommender to recommend these movies, so it's good that we don't have too many controversial movies in our set.

2. Question 2

2.1. Part A

$$\mu_u = \frac{\sum_{k \in I_u} r_{uk}}{|I_u|}$$

2.2. Part B

The intersection of I_u and I_v means the set of movies that are rated by both users u and v. Since the rating matrix is quite sparse, it is possible that users u and v have not rated any of the same movies, therefore, their intersection is 0.

3. Question 3

Mean-centering allows us to obtain a dataset whose mean is zero. This allows different data sets to be comparable. For example, if someone tends to be a critique and rates everything equally low or someone doesn't really care and rates everything similarly high, then we need to subtract the mean to result in a more equitable distribution across users. It acts as a normalization to reduce bias and traits in the ratings, as well as variance caused by polar or critical ratings by some users. It essentially makes the data less noisy

Figure 5: Avg RMSE

Figure 6: Avg MAE

5. Question 5

The minimum k is 20 with the steady state average RMSE being 0.89 and the average MAE being 0.68

6. Question 6

The average RMSE plot for the unpopular and high variance does not have a clear trend. This is because the number of samples in the unpopular and high-variance subsets is small. For unpopular movies, the movies weren't rated by enough people across a spectrum, so we can't figure out how to recommend them. Additionally, for the high variance set, the movie was too problematic, so it won't likely be recommended. To improve these trimmed sets, we might want to include user and item-specific features. For example, we may want to include a genre feature, which we will do later, or the age and gender of the user

The popular set still exhibits a decreasing trend as we expect because there is still a large sample population to recommend from.

6.1. No Trim:

Figure 7: No Trim: Average RMSE

k_min = 20 Average RMSE at k_min = 20: 0.891

Figure 8: No Trim: ROC

Figure 9: No Trim: ROC

Figure 10: No Trim: ROC

Figure 11: No Trim: ROC

6.2. Popular Trim:

Figure 12: Popular Trim: Average RMSE

 $k_min = 20$ Average RMSE at $k_min = 20$: 0.877

Figure 13: Popular Trim: ROC

Figure 14: Popular Trim: ROC

Figure 15: Popular Trim: ROC

Figure 16: Popular Trim: ROC

6.3. Unpopular Trim:

Figure 17: Unpopular Trim: Average RMSE

k_min = 58 Average RMSE at k_min = 20: 1.024

Figure 18: Unpopular Trim: ROC

Figure 19: Unpopular Trim: ROC

Figure 20: Unpopular Trim: ROC

Figure 21: Unpopular Trim: ROC

6.4. High Variance Trim:

Figure 22: High Variance Trim: Average RMSE

k_min = 58 Average RMSE at k_min = 20: 1.574

Figure 23: High Variance Trim: ROC

Figure 24: High Variance Trim: ROC

Figure 25: High Variance Trim: ROC

Figure 26: High Variance Trim: ROC

A function is convex if the Hessian is positive semi-definite. A matrix is positive semi-definite if all of the eigenvalues of the matrix are non-negative.

$$W_{i,j}(r_{i,j} - (UV^T)_{i,j})^2$$

for brevity...

$$w(r - uv)^2 = w(r^2 - 2ruv - u^2v^2)$$

$$H_r(u,v) = \begin{bmatrix} \frac{d^2f}{du^2} & \frac{d^2f}{dudv} \\ \frac{d^2f}{dvdu} & \frac{d^2f}{dv^2} \end{bmatrix}$$

$$H_r(u,v) = \begin{bmatrix} 2v^2 & 4uv - 2r \\ 4uv - 2r & 2u^2 \end{bmatrix}$$

let v = 2, u = 1, r = 1

$$H_r(u,v) = \begin{bmatrix} 8 & 6 \\ 6 & 2 \end{bmatrix}$$

$$\lambda_{1,2} = 5 \pm 3\sqrt{5}$$

$$5 - 3\sqrt{5} < 0$$

Therefore, NMF is NOT convex

Least Squares Set up:

$$\min_{V} \sum_{i=1}^{m} \sum_{j=1}^{n} W_{i,j} (r_{i,j} - (UV^{T})_{i,j})^{2}$$

8. Question 8

8.1. Part A

Figure 27: K vs. RMSE

Figure 28: K vs. MAE

8.2. Part B

 $\min k = 18$

average RMSE = 0.9134

 $\min k = 20$

average MAE = 0.6939

There are 18 defined genres, so the optimal number of latent factors is, in fact, similar to the number of genres (which is 20 if you count no genres as a group).

8.3. Part C

8.3.1 Popular Trim

Figure 29: Popular Trim: RMSE

k=17 Average RMSE: 0.9017

Figure 30: Popular Trim: ROC

8.3.2 Unpopular Trim

Figure 31: Unpopular Trim: RMSE

k=50 Average RMSE: 1.117

Figure 32: Unpopular Trim: ROC

8.3.3 High Variance Trim

Figure 33: High Variance Trim: RMSE

k=32 Average RMSE: 1.56

Figure 34: High Variance Trim: ROC

In previous questions, we noticed that the optimal number of latent factors was around 18, which is the number of genres that the set has. Therefore, in this problem, when we set the latent factors to 20, we sorted the top 10 movies within that column (within that latent factor). We notice that the movies tend to be within the same genre within each column (each latent factor). For example, column 0's top 10 movies are mostly drama and comedy. Column 1's top 10 movies are mostly drama and comedy. Therefore, we can tell that there IS a connection between the latent factors and movie genres, which makes sense. Latent factors are factors that are inferred, and although we didn't do any filtering directly on the genre feature, genres are inherent to the movie's rating and likeability, so it naturally is a factor.

Column: 0 Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 1 Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 2 Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er
Column: 3 Drama Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 4 Drama Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 5 Drama Romance War Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er
Column: 7 Drama Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 10 Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er	Column: 15 Drama Romance War Comedy Drama Romance Horror Mystery Thriller Adventure Children Come dy Drama Thriller Comedy Action Drama War Drama Romance Action Adventure Thrill er

Column: 17	Column: 18	Column: 19
Drama	Drama	Drama
Drama Romance War	Drama Romance War	Drama Romance War
Comedy Drama Romance	Comedy Drama Romance	Comedy Drama Romance
Horror Mystery Thriller	Horror Mystery Thriller	Horror Mystery Thriller
Adventure Children Come	Adventure Children Come	Adventure Children Come
dy	dy	dy
Drama Thriller	Drama Thriller	Drama Thriller
Comedy	Comedy	Comedy
Action Drama War	Action Drama War	Action Drama War
Drama Romance	Drama Romance	Drama Romance
Action Adventure Thrill	Action Adventure Thrill	Action Adventure Thrill
er	er	er

Figure 35: Column Genres

10.1. Part A

Figure 36: K vs. RMSE

Figure 37: K vs. MAE

10.2. Part B

 $\min k = 28$ average RMSE = 0.867

 $\min k = 28$

average MAE = 0.6642

There are 20 genres and the optimal latent factors for MF is around 28. however, if we zoom the RMSE and MAE graphs out a bit, we'll notice that the error is pretty consistent around 0.86 and 0.66 respectively, so there is not much of a difference in RMSE and MAE for latent factors of 18 vs. 28, so it is possible that the number of latent factors is representative of the number of movie genres.

10.3. Part C

10.3.1 Popular Trim

Figure 38: Popular Trim: RMSE

min k = 44 average RMSE = 0.866

Figure 39: Popular Trim: ROC

10.3.2 Unpopular Trim

Figure 40: Unpopular Trim: RMSE

min k = 3 average RMSE = 0.8559

Figure 41: Unpopular Trim: ROC

10.3.3 High Variance Trim

Figure 42: High Variance Trim: RMSE

min k = 22 average RMSE = 1.575

Figure 43: High Variance Trim: ROC

11. Question 11

No Trim - Average RMSE: 0.9410519556984109 Popular Trim- Average RMSE: 0.9376202968550311 Unpopular Trim- Average RMSE: 1.0198618036753762 High Variance Trim- Average RMSE: 1.1113117513991662

Figure 44: K-NN, NMF, MF ROC Curves

KNN: Average RMSE: 0.8910136771553069 NMF: Average RMSE: 0.9161861277754252

MF with Bias: Average RMSE: 0.8674998266046834

While all three collaborative filters seem to perform with similar average RMSE, the MF with bias has the largest area under the curve. The area under the curve may serve as a good indicator for the best collaborative filter for predicting movie ratings because it uses the whole ROC curve and involves all possible classification thresholds to represent the measure of separability.

13. Question 13

Precision is the items that are both liked by the user and correctly recommended to the user over the number of total items recommended to the user. Essentially, it measures the percentage of the predicted items that are actually liked by the user.

Recall is the items that are both liked by the user and correctly recommended to the user over the number of total items that the user actually likes. Essentially, it measures what percent of true positives (movies liked by the user) were actually identified out of all the movies that the user actually likes.

14.1. KNN

Figure 45: T vs. Precision

Figure 46: T vs. Recall

Figure 47: Recall vs. Precision

Figure 48: T vs. Precision

Figure 49: T vs. Recall

Figure 50: Recall vs. Precision

Figure 51: T vs. Precision

Figure 52: T vs. Recall

Figure 53: Recall vs. Precision

14.4. Combined Algorithms

Figure 54: Precision-Recall curves for all 3 Architectures

In general, we notice as the number of items recommended to users (t) increase, the precision decreases and the recall increases. This makes sense because there is a tradeoff between precision and recall. Our models in general have higher recall than precision meaning that our models identified a large proportion of the movies that the user actually liked. It makes sense for precision to decrease as we increase t because as t increases, the set of items recommended to the user increases, so the intersection between what is recommended and what the user actually likes does not increase as much as the S(t) increases, so overall, the precision decreases.