



ATTORNEY DOCKET NO. 14114.0325U2

SEQUENCE LISTING

<110> Rosely M. Zancope-Oliveira  
Timothy J. Lott  
Leonard W. Mayer  
Errol Reiss  
George S. Deepe

<120> NUCLEIC ACIDS OF THE M ANTIGEN GENE OF  
*HISTOPLASMA CAPSULATUM*, ANTIGENS, VACCINES AND ANTIBODIES,  
METHODS AND KITS FOR DETECTING HISTOPLASMOSIS

<130> 14114.0325U2

<140> 09/674,195  
<141> 2000-10-26

12  
<150> PCT/US99/09151  
<151> 1999-04-27

<150> 60/083,676  
<151> 1998-04-30

<160> 20

<170> FastSEQ for Windows Version 4.0

<210> 1  
<211> 3862  
<212> DNA  
<213> *Histoplasma capsulatum*

<220>  
<221> misc\_feature  
<222> 3258  
<223> n = g, a, c or t(u)

<400> 1  
ggatcctgct ggctccgata actttgcttt atccaaagggt ctcggcgaat gccaggtgcc 60  
atcgatctat atttgaagt ttatcacctc aatggctca ccccatgacg cacctttat 120  
ttttattttc attcatcttc tctgtggcaa acatgcaggat atgcgagctc tggaccctgg 180  
ggtgtggccc ttgatgcata tggtttattt atagccgccc ggaagccctg gcctgttaaa 240  
ttttggacct cctccgcaca ttctttccaa acttcgtgcg tccgtttccc atttcccccc 300  
tccccatttg ggttccctat aggccactgc gtgtccact caagaagggt cccagtcaat 360  
ttggccctta ccctctccaa cactatctgc atatgtataa tatatcgata tctaactgcc 420  
attgattatt tgtctcttc agcattttt tgtctcgagc aagcttactc cacgttcaat 480  
tcagggggta aaaatgcgggt cgctcaagct tataactcgcc tcggcggttg ttgtttctgc 540  
agcctgtccc tacatgtcag gggagatgcc tagcggtcag aaaggcccc tcgatcgccg 600  
ccatgacact ctctccgacc ctacggacca gtttcttagc aagtttaca ttgacgatga 660  
acagtcgggt ctaacaacgg acgtgggtgg tcccatcgag gaccaacaca gcctgaaggc 720  
tggaaataga ggcccaactc tacttgagga ttttatcttc cgccagaaga ttcaacactt 780  
tgatcatgag agggatatgta gataaaaaat atgtgaccgt gttgcaaaatc cgctaattca 840  
atttacgca ggttccctgag cgccgcgtcc atgctcgagg agctggtgcc catggcgtat 900

RECEIVED

MAY 29 2003

TECH CENTER 1600/2900

tcacatccta taataactgg tcgaatatac cagccgcac cttcttgaac gcggcaggaa 960  
 agcagacacc agtattcgtg cgggtttcta cagtcgctgg tagcagaggg agtgttgact 1020  
 ctgctcgcga tatccacgg a tttgcgaccc gtctgtatac cgatgaaggc aatttggta 1080  
 agcattatac cgtggtagtc atactcataa cagcacaaca aatatgaata caaaccagg 1140  
 acctaggctg actactcggc aatgtagata tcgtcgaaa caacgttcca gtcttcttca 1200  
 ttcaggacgc tattcaattc cctgatttga ttcacgctgt caagccgcaa ccagacagtg 1260  
 aaattccca ggctgcaact gcacatgata cggcatggg tttcctcagc cagcagccca 1320  
 gctcattgca tggcccttcc tgggcaatgt caggacatgg aatccctcgc tcaatgcgtc 1380  
 atgttgcgttgg gtggggcgtc cataccttcc gacttgcac cgacgagggg aactcgacct 1440  
 tggtaagtt tcgcttggaa accccttcaag gaagagcggg cctggatgg gaagaggcac 1500  
 aggcttgcgttgg cggaaagaat cccgacttcc atcgacaaaga cctctggat gccattgaat 1560  
 ctggaaggta ccctgagtgg gaggttaagat atgatcccc caaatcatta gttctgacag 1620  
 tgtttctctg ctctgtcggt tgctctttc gtcttttct atatcttca ctaagactga 1680  
 ctttatatac gttttactca tatactggg ctttcaattt gtgaatgaag cagatcaatc 1740  
 caagtttgcgttgg ttcgatctat tagatcccc caaatcatac ccagaagaac ttgttccccc 1800  
 caccggaaatc ggaaaaatgg tcttgaaccg aaaccaaaa agttatttt ccgaaactga 1860  
 gcatcgatcg gttggccac cccctatata tttggatat gaatacatgt atagcttagat 1920  
 gaagcgtata tctaaatata tttccacagt tccaaaccagg tcatgttagt cgcggaaatcg 1980  
 atttcacggg tgacccttgc cttcagggcc gcttgcactc ctaccttgc actcaattga 2040  
 atcgccatgg aggtcccaac ttgcagcaac tgccgatcaa cagaccggc atcccatcc 2100  
 ataacaacaa tcgcgacggt gctggtaagc tacttctcac ctaccatgtc aacttccatc 2160  
 ttgacccaaat cgattttat agagtattaa catccccgtc tgcacaggac aaatgttcat 2220  
 ccctctaaac acggccgcat atacacccaa ctcaatgagc aacggattcc cacaacaagc 2280  
 caaccggacc cataacagag gatttctcac cgacactggg cgtatggta atggaccact 2340  
 agtgcgcgag ctccggccga gcttcaacga cgtctggcc caaccggcgtc tcttctacaa 2400  
 ctcactcacc gtcttcgaga agcaatttcc cgtcaacgc atgcgttcc aaaactccca 2460  
 cgtgcggagt gaaaccgtgc gtaagaacgt catcatccag ctgaaccggc tcgacaacga 2520  
 cctcgcccgcc cgcgtcgcc tagctatgg cgtcaaccc ccattttccgg accccaaacctt 2580  
 ctaccacaaac aaggcaacccg tccccatgg caccttcggc acgaatctcc tcgggtcga 2640  
 cgggctgaaa atgcgccttc tgacaagaga cgacggtagc ttacgatcg cggagcagct 2700  
 cccggcccgcc tttaacagcg ccaacaacaa agtagatatc gtccttagtgg gtcatcgct 2760  
 tgatccccaa cgcggcggtg acatgaccta ttccggccgac gacggctcga tcttcgatgc 2820  
 cgtgatcggtc tcggggccg tgctcacgag cgccctcaacg caataacccaa gaggtcgccc 2880  
 gctcaggatt attacggatg catacgcgtt tggaaagccc gttggccgc tcgggtacgg 2940  
 tagcaatgaa gcccctcggt acgtccctt ggcgcgtt ggggatgcgt cgaatgggct 3000  
 ggaccagccc ggtgtgtata ttccaaacga tggatggatgg gcttacgtt gaagttgtt 3060  
 ggacggattt acggcatatc gtttcttggaa tcgggtcccg ttggatagaa gcttggatgg 3120  
 aggttgggg cgcaaatatg gtttactac ccccccccccc ccctttttt ttttctttt 3180  
 ctgtttttcc atcttgggtt gaggtatata tgcagatatac agtaaattgc gtttacgaaa 3240  
 gcccgtgtca agcttcanga ggcctaatta atttgaagag gaggttgaag tggaaatctt 3300  
 gtgttaactat aataatttat aataactat aacttataat taatgtctat tgtaatttcc 3360  
 tctcacattt aatctatatt tgatccttgc ctttgcgtt tggatggatggaa gcttggatgg 3420  
 gagacaataa atgatagatt aacaataat tgcacacccca ataggccttc cctcacgata 3480  
 tcagatattt tctatcatgt tgtaatgata cctcaaaaat gccacaagct tgcctgatatt 3540  
 tgaatattt tatgtgttaa atgttagggaa gagcgtacca tccaaataac cagaaaaaca 3600  
 tggatggatgg taaaatctca ctaaggtcggt tcgtgtctat tggaaatggc tcgggcaagc 3660  
 tgactatctg ataaaaatgt ctgtatttcc gcttccacgac gcatgtttag actttcgat 3720  
 atagataaaaa cctgaacgat ttagccctt gttggggaaa taggggttag gggggcgagc 3780  
 tacatattcat tcccatatga caaaaacta aaatagatataat atatataat atatataat 3840  
 acaacacccctt caaaaaggat cc 3862

62

<210> 2  
<211> 707  
<212> PRT  
<213> *Histoplasma capsulatum*

<400> 2  
Met Pro Ser Gly Gln Lys Gly Pro Leu Asp Arg Arg His Asp Thr Leu  
1 5 10 15  
Ser Asp Pro Thr Asp Gln Phe Leu Ser Lys Phe Tyr Ile Asp Asp Glu  
20 25 30  
Gln Ser Val Leu Thr Thr Asp Val Gly Gly Pro Ile Glu Asp Gln His  
35 40 45  
Ser Leu Lys Ala Gly Asn Arg Gly Pro Thr Leu Leu Glu Asp Phe Ile  
50 55 60  
Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg Val Pro Glu Arg  
65 70 75 80  
Ala Val His Ala Arg Gly Ala Gly Ala His Gly Val Phe Thr Ser Tyr  
85 90 95  
Asn Asn Trp Ser Asn Ile Thr Ala Ala Ser Phe Leu Asn Ala Ala Gly  
100 105 110  
Lys Gln Thr Pro Val Phe Val Arg Phe Ser Thr Val Ala Gly Ser Arg  
115 120 125  
Gly Ser Val Asp Ser Ala Arg Asp Ile His Gly Phe Ala Thr Arg Leu  
130 135 140  
C2  
Tyr Thr Asp Glu Gly Asn Phe Asp Ile Val Gly Asn Asn Val Pro Val  
145 150 155 160  
Phe Phe Ile Gln Asp Ala Ile Gln Phe Pro Asp Leu Ile His Ala Val  
165 170 175  
Lys Pro Gln Pro Asp Ser Glu Ile Pro Gln Ala Ala Thr Ala His Asp  
180 185 190  
Thr Ala Trp Asp Phe Leu Ser Gln Gln Pro Ser Ser Leu His Ala Leu  
195 200 205  
Phe Trp Ala Met Ser Gly His Gly Ile Pro Arg Ser Met Arg His Val  
210 215 220  
Asp Gly Trp Gly Val His Thr Phe Arg Leu Val Thr Asp Glu Gly Asn  
225 230 235 240  
Ser Thr Leu Val Lys Phe Arg Trp Lys Thr Leu Gln Gly Arg Ala Gly  
245 250 255  
Leu Val Trp Glu Glu Ala Gln Ala Leu Gly Gly Lys Asn Pro Asp Phe  
260 265 270  
His Arg Gln Asp Leu Trp Asp Ala Ile Glu Ser Gly Arg Tyr Pro Glu  
275 280 285  
Trp Glu Leu Gly Phe Gln Leu Val Asn Glu Ala Asp Gln Ser Lys Phe  
290 295 300  
Asp Phe Asp Leu Leu Asp Pro Thr Lys Ile Ile Pro Glu Glu Leu Val  
305 310 315 320  
Pro Phe Thr Pro Ile Gly Lys Met Val Leu Asn Arg Asn Pro Lys Ser  
325 330 335  
Tyr Phe Ala Glu Thr Glu Gln Ile Met Phe Gln Pro Gly His Val Val  
340 345 350  
Arg Gly Ile Asp Phe Thr Asp Asp Pro Leu Leu Gln Gly Arg Leu Tyr  
355 360 365

12

Ser Tyr Leu Asp Thr Gln Leu Asn Arg His Gly Gly Pro Asn Phe Glu  
370 375 380  
Gln Leu Pro Ile Asn Arg Pro Arg Ile Pro Phe His Asn Asn Asn Arg  
385 390 395 400  
Asp Gly Ala Gly Gln Met Phe Ile Pro Leu Asn Thr Ala Ala Tyr Thr  
405 410 415  
Pro Asn Ser Met Ser Asn Gly Phe Pro Gln Gln Ala Asn Arg Thr His  
420 425 430  
Asn Arg Gly Phe Phe Thr Ala Pro Gly Arg Met Val Asn Gly Pro Leu  
435 440 445  
Val Arg Glu Leu Ser Pro Ser Phe Asn Asp Val Trp Ser Gln Pro Arg  
450 455 460  
Leu Phe Tyr Asn Ser Leu Thr Val Phe Glu Lys Gln Phe Leu Val Asn  
465 470 475 480  
Ala Met Arg Phe Glu Asn Ser His Val Arg Ser Glu Thr Val Arg Lys  
485 490 495  
Asn Val Ile Ile Gln Leu Asn Arg Val Asp Asn Asp Leu Ala Arg Arg  
500 505 510  
Val Ala Leu Ala Ile Gly Val Glu Pro Pro Ser Pro Asp Pro Thr Phe  
515 520 525  
Tyr His Asn Lys Ala Thr Val Pro Ile Gly Thr Phe Gly Thr Asn Leu  
530 535 540  
Leu Arg Leu Asp Gly Leu Lys Ile Ala Leu Leu Thr Arg Asp Asp Gly  
545 550 555 560  
Ser Phe Thr Ile Ala Glu Gln Leu Arg Ala Ala Phe Asn Ser Ala Asn  
565 570 575  
Asn Lys Val Asp Ile Val Leu Val Gly Ser Ser Leu Asp Pro Gln Arg  
580 585 590  
Gly Val Asn Met Thr Tyr Ser Gly Ala Asp Gly Ser Ile Phe Asp Ala  
595 600 605  
Val Ile Val Val Gly Gly Leu Leu Thr Ser Ala Ser Thr Gln Tyr Pro  
610 615 620  
Arg Gly Arg Pro Leu Arg Ile Ile Thr Asp Ala Tyr Ala Tyr Gly Lys  
625 630 635 640  
Pro Val Gly Ala Val Gly Asp Gly Ser Asn Glu Ala Leu Arg Asp Val  
645 650 655  
Leu Met Ala Ala Gly Gly Asp Ala Ser Asn Gly Leu Asp Gln Pro Gly  
660 665 670  
Val Tyr Ile Ser Asn Asp Val Ser Glu Ala Tyr Val Arg Ser Val Leu  
675 680 685  
Asp Gly Leu Thr Ala Tyr Arg Phe Leu Asn Arg Phe Pro Leu Asp Arg  
690 695 700  
Ser Leu Val  
705

<210> 3  
<211> 8  
<212> PRT  
<213> *Histoplasma capsulatum*

<400> 3  
Ser Asp Pro Thr Asp Gln Phe Leu  
1 5

<210> 4  
<211> 15  
<212> PRT  
<213> *Histoplasma capsulatum*

<400> 4  
Asp Phe Ile Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg  
1 5 10 15

<210> 5  
<211> 9  
<212> PRT  
<213> *Histoplasma capsulatum*

*C2*  
<400> 5  
Thr Leu Gln Gly Arg Ala Gly Leu Val  
1 5

<210> 6  
<211> 16  
<212> PRT  
<213> *Histoplasma capsulatum*

<400> 6  
Ala Gln Ala Leu Gly Gly Lys Asn Pro Asp Phe His Arg Gln Asp Leu  
1 5 10 15

<210> 7  
<211> 6  
<212> PRT  
<213> *Histoplasma capsulatum*

<400> 7  
Ser Gly Arg Tyr Pro Glu  
1 5

<210> 8  
<211> 10  
<212> PRT  
<213> Histoplasma capsulatum

<400> 8  
Phe Asp Phe Asp Leu Leu Asp Pro Thr Lys  
1 5 10

<210> 9  
<211> 14  
<212> PRT  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence; M antigen-specific oligonucleotide

<400> 9  
Ile Ile Pro Glu Glu Leu Val Pro Phe Thr Pro Ile Gly Lys  
1 5 10

02  
<210> 10  
<211> 15  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence; sense amplification primer

<220>  
<221> misc\_feature  
<222> 3  
<223> r = a or g

<220>  
<221> misc\_feature  
<222> 6, 12, 15  
<223> y = c or t

<220>  
<221> misc\_feature  
<222> 9  
<223> v = g, c or a

<400> 10  
aaraayccvg aytty 15

<210> 11  
<211> 14  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence; anti-sense amplification primer

<220>  
<221> misc\_feature  
<222> 3, 9  
<223> n = g, a, c or t(u)

<220>  
<221> misc\_feature  
<222> 6  
<223> d = g, a or t(u)

<220>  
<221> misc\_feature  
<222> 12  
<223> r = a or g

02  
<400> 11  
tnccdatng traa 14

<210> 12  
<211> 22  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence; sense cDNA amplification primer

<400> 12  
cggaatcctc cgaccctacg ga 22

<210> 13  
<211> 27  
<212> DNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence; anti-sense cDNA amplification primer

<400> 13  
accaagcttc tatccaacgg gaaccga 27

<210> 14  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct  
  
<220>  
<221> misc\_feature  
<222> 1  
<223> d = g, a or t(u)  
  
<400> 14  
dcgaagtcga ggcttcagc atg

23

<210> 15  
<211> 41  
<212> DNA  
<213> Artificial Sequence  
  
(02)<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct  
  
<220>  
<221> misc\_feature  
<222> 1  
<223> d = g, a or t(u)

<400> 15  
dtattagctc tagaattacc acgggtatcc aagtagtaag g

41

<210> 16  
<211> 41  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct  
  
<220>  
<221> misc\_feature  
<222> 1  
<223> d = g, a or t(u)

<400> 16  
dccccgaagg gcattggttt tttatcta at aaatacaccc c

41

<210> 17  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct  
  
<220>  
<221> misc\_feature  
<222> 1  
<223> d = g, a or t(u)  
  
<400> 17  
dcgaagtcga ggcttcagc atg

23

<210> 18  
<211> 23  
<212> DNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct  
  
<400> 18  
dcatgctgaa agcctcgact tcg

23

<210> 19  
<211> 23  
<212> RNA  
<213> Artificial Sequence  
  
<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct

<220>  
<221> misc\_feature  
<222> 1  
<223> r = a or g  
  
<400> 19  
rcaugcugaa agccucgacu ucg

23

<210> 20  
<211> 23  
<212> RNA  
<213> Artificial Sequence

<220>  
<223> Description of Artificial Sequence/Note =  
Synthetic Construct

<220>  
<221> misc\_feature  
<222> 1  
<223> r = a or g

<400> 20  
rcgaagucga ggcuuucagc aug

23

62