

Long Short-Term Memory Curso ENAP - Processamento de Linguagem Natural

Prof. Dr. Vinícius Ruela Pereira Borges

viniciusrpb@unb.br

Brasilia-DF, 2024

Informação

- Esses slides foram redigidos e produzidos pelo Prof. Dr. Vinícius R. P. Borges;
- Material didático de referência:
 - Capítulo 9 do livro "Speech and Language Processing.
 Daniel Jurafsky & James H. Martin, 2021."
 - Slides do curso "CS224n: Natural Language Processing with Deep Learning" Stanford University

Roteiro

- Long Short-Term Memory
- Modelo de Linguagem LSTM
- Fluxo Bidirectional
- Montando Arquiteturas mais Complexas

- Long Short-Term Memory (LSTM) ¹ é um tipo de rede neural recorrente (RNN) modelada para lidar com o problema do "gradiente que encolhe" encontrado nas RNNs tradicionais;
- O modelo matemático que define a LSTM é mais complexo do que a RNN tradicional:
 - objetivo é permitir o fluxo de gradiente durante o Backpropagation;
 - mais parâmetros são necessários para regular o fluxo de informação que entra e sai da rede.

¹Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Relembrando a RNN

• Uma RNN de Elman com função de ativação "tangente hiperbólica".

• A LSTM com várias... vamos detalhar a seguir!

LSTM: Input Gate

• Objetivo: determina as informações que serão adicionadas ao estado da célula $c^{(t)}$

LSTM: Input Gate

LSTM: Forget Gate

• Objetivo: remoção de informações armazenadas na célula em relação às entradas $h^{(t-1)}$ e $x^{(t)}$;

LSTM: Forget Gate

LSTM: Atualização de Célula

• Objetivo: trata-se de uma estimativa das informações que devem ser adicionadas ao estado da célula no tempo $c^{(t)}$

LSTM: Atualização de Célula

$$g_t = \tanh(U_g x^{(t)} + W_g h^{(t-1)} + b_g)$$
 (3)

LSTM: Output Gate

(4)

LSTM: Output Gate

• Objetivo: determina a quantidade de informação útil que está célula que deve ser gerada na saída $h^{(t)}$;

LSTM: Estado da Célula

$$c^{(t)} = f^{(t)} \odot c^{(t-1)} + i^{(t)} \odot g^{(t)}$$
(5)

LSTM: Estado da Célula

• Objetivo: representa a memória a longo prazo da LSTM;

LSTM: Estado da Célula

• Repare que seu valor é o quanto se quer esquecer do estado anterior e o quanto que se quer aprender da informação que chega a LSTM.

LSTM: Estado Interno da Célula

$$h^{(t)} = o^{(t)} \odot \tanh(c^{(t)}) \tag{6}$$

LSTM: Estado Interno da Célula

• Objetivo: gerar a saída da célula, que compreende uma sumarização toda a entrada processada até o instante de tempo t.

Eu não acredito em duendes

Eu não acredito em duendes

io acredito em duendes

edito em duendes

m duendes

t-ésimo termo do texto de entrada

- Treinamento ocorre por meio do algoritmo Backpropagation through time (BTT);
- Deve-se otimizar os hiperparâmetros:
 - taxa de aprendizado;
 - quantidade de neurônios artificiais interno à célula.

Bidirectional Long Short-Term Memory (BiLSTM)

Redes Neurais Recorrentes Curso ENAP - Processamento de Linguagem Natural

Prof. Dr. Vinícius Ruela Pereira Borges

viniciusrpb@unb.br

Brasilia-DF, 2024