NASA/TP-2015-218751

NDARC NASA Design and Analysis of Rotorcraft

Input

Appendix 4 Release 1.11 October 2016

Wayne Johnson NASA Ames Research Center, Moffett Field, CA Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its

research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of
 completed research or a major significant phase of research that present
 the results of NASA programs and include extensive data or theoreti-cal
 analysis. Includes compilations of significant scientific and technical
 data and information deemed to be of continuing reference value.
 NASA's counterpart of peer-reviewed formal professional papers but has
 less stringent limita-tions on manuscript length and extent of graphic
 presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and tech-nical findings by NASA-sponsored contractors and grantees.
- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Telephone the NASA Access Help Desk at (301) 621-0390
- Write to: NASA Access Help Desk NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320

NASA/TP-2015-218751

NDARC NASA Design and Analysis of Rotorcraft

Input

Wayne Johnson NASA Ames Research Center, Moffett Field, CA

National Aeronautics and Space Administration

Ames Research Center Moffett Field, California 94035-1000

October 2016

Available from:

NASA Center for AeroSpace Information 7115 Standard Drive Hanover, MD 21076-1320 (301) 621-0390 National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 (703) 487-4650

Contents

1.	Data Structures and Input	1
2.	Input Based on Configuration	13
3.	Parameters and Constants	21
4.	Job	25
5.	Design	32
6.	Cases	34
7.	Size	38
	SizeParam	39
9.	OffDesign	45
10.	OffParam	46
11.	Performance	47
12.	PerfParam	48
13.	MapEngine	49
14.	MapAero	52
15.	FltCond	55
16.	Mission	61
17.	MissParam	62
18.	MissSeg	69
19.	FltState	78
20.	FltAircraft	79

Contents

21.	FltFuse	97
22.	FltGear	98
23.	FltRotor	99
24.	FltWing	105
25.	FltTail	108
26.	FltTank	109
27.	FltProp	111
28.	FltEngn	113
29.	FltJet	116
30.	FltChrg	119
31.	Solution	122
32.	Cost	126
33.	CostCTM	128
34.	Emissions	130
35.	Aircraft	132
36.	XAircraft	148
37.	Systems	150
38.	WFltCont	157
39.	WDeIce	159
40.	Fuselage	160
41.	AFuse	164
42.	WFuse	167
43.	LandingGear	168
44.	AGear	170

Contents

45.	WGear	171
46.	Rotor	172
47.	PRotorInd	188
48.	PRotorPro	192
49.	PRotorTab	195
50.	DRotor	197
51.	IRotor	199
52.	WRotor	201
53.	Wing	203
54.	AWing	212
55.	WWing	215
56.	WWingTR	216
57.	Tail	218
58.	ATail	222
59.	Wtail	224
60.	FuelTank	225
61.	WTank	228
62.	Propulsion	230
63.	WDrive	235
64.	EngineGroup	236
65.	DEngSys	245
66.	WEngSys	246
67.	JetGroup	247
68.	DJetSys	253
69.	WJetSys	254
70.	ChargeGroup	255

	•
Contents	1V

71. 72.	DChrgSys	259 260
73.	EngineModel	261
74.	EngineParamN	267
	EngineTable	
	RecipModel	
77.	CompressorModel	276
78.	MotorModel	278
79.	JetModel	281
80.	FuelCellModel	284
81.	SolarCellModel	286
	BatteryModel	
83.	Location	290
84.	Weight	292

1-1 Overview

The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. Figure 1-1 illustrates the tasks. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks.

The aircraft description (figure 1-1) consists of all the information, input and derived, that defines the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions (indicated by light arrows).

The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized.

Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted so the fuel required for the mission (burned plus reserve) equals the takeoff fuel weight. The mission iteration is on fuel weight or energy.

Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for antitorque or auxiliary thrust rotor sizing. The flight condition parameters include gross weight and useful load.

For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available.

A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude. The aircraft must be trimmed, by solving for the controls and motion that produce equilibrium in the specified flight state. Different trim solution definitions are required for various flight states. Evaluating the rotor hub forces may require solution of the blade flap equations of motion.

Figure 1-1 Outline of NDARC tasks.

Figure 1-2 NDARC Interfaces.

```
&JOB INIT input=0, INIT data=0, &END
&DEFN action='ident',created='time-date',title='standard input',&END
&DEFN action='read file',file='engine.list',&END
&DEFN action='read file',file='helicopter.list',&END
1-----
&DEFN quant='Cases',&END
&VALUE title='Helicopter', TASK size=0, TASK mission=1, TASK perf=1, &END
&DEFN quant='Size',&END
&VALUE nFltCond=0,nMission=0,&END
!-----
&DEFN quant='OffDesign', &END
&VALUE title='mission analysis',nMission=1,&END
&DEFN quant='OffMission', &END
&VALUE
     (one mission, mission segment parameters as arrays)
& END
&DEFN quant='Performance', &END
&VALUE title='performance analysis',nFltCond=2,&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN quant='PerfCondition', &END
&VALUE
     (one condition)
&END
&DEFN action='endofcase',&END
&DEFN action='endofjob', &END
```

Figure 1-3a Illustration of NDARC input (primary input).

```
&DEFN action='ident',created='time-date',title='Helicopter',&END
! default helicopter
&DEFN action='configuration', &END
&VALUE config='helicopter',rotate=1,&END
!-----
&DEFN quant='Cases',&END
&VALUE title='Helicopter', FILE design='helicopter.design', &END
&DEFN quant='Size',&END
&VALUE
  title='Helicopter',
  SIZE perf='none', SET rotor='radius+Vtip+sigma', 'radius+Vtip+sigma',
  FIX_DGW=1,SET_tank='input',SET_SDGW='input',SET_WMTO='input',
&END
&DEFN quant='Solution', &END
&VALUE &END
&DEFN quant='Aircraft', &END
&VALUE (Aircraft parameters) &END
&DEFN quant='Geometry', &END
&VALUE (geometry) &END
&DEFN quant='Rotor 1', &END
&VALUE (Rotor 1 parameters) &END
!-----
     (other parameters in other structures)
!-----
&DEFN quant='TechFactors', &END
&VALUE (technology factors) & END
&DEFN action='endoffile',&END
```

Figure 1-3b Illustration of NDARC input (secondary input file).

1-2 NDARC Input and Output

Figure 1-2 illustrates the input and output environment of NDARC. Table 1-1 lists the possible input and output files. A job reads input from one or more files. The primary input is obtained from standard input (perhaps redirected to a file). The primary input can direct the code to read other files, identified by file name or logical name. The input data are read in namelist format. Unit numbers are part of the job input. Output file names are part of the case input. Input files names are defined in the input itself.

Table 1-1. Input and output files.

	file logical name	unit number (and default)
INPUT		
Primary Input	standard input	nuin = 5
Secondary Input File	FILE	nufile = 40
Aircraft Description	FILE	nufile = 40
Solution	FILE	nufile = 40
OUTPUT		
Output	standard output	nuout = 6
Design	DESIGNn	nudesign = 41
Performance	PERFn	nuperf = 42
Airframe Aerodynamics	AEROn	nuaero = 43
Engine Performance	ENGINEn	nuengine = 44
Geometry	GEOMETRYn	nugeom = 45
Aircraft Description	AIRCRAFTn	nuacd = 46
Solution	SOLUTIONn	nusoln = 47
Sketch	SKETCHn	nusketch = 48
Errors	ERRORn	nuerror = 49

1-2.1 Input

Figure 1-3 illustrates NDARC input. The primary input starts with a JOB namelist, then DEFN namelists are read to define the action and contents of the subsequent information. The job parameters include initialization control, error action, and input/output unit numbers. Job parameters can be read during case input using QUANT='Job'. The initialization takes place before case input, so changed initialization parameters in QUANT='Job' input take effect for the next case. The DEFN namelist has the following parameters.

- a) ACTION: character string (length = 32; case independent).
- b) QUANT: character string (length = 32, case independent); corresponds to data structure in input; string includes structure number (1 or next condition/mission if absent).
- c) SOURCE: integer; for copy action.
- d) FILE: file name or logical name (length = 256).
- e) CREATED: character string of creation time and date (length = 20).
- f) TITLE: character string of title identifying input file (length = 80).
- g) VERSION: code version number as character string (length = 6).
- h) MODIFICATION: character string of code modification (length = 32).

Table 1-2 describes the options for the ACTION variable in the DEFN namelist. The code searches for the keyword in the ACTION character string. A solution file (text or binary) can be written by an NDARC job and then read by a subsequent job, restoring the solution to the state that existed when the file was created. Then additional output and additional cases can be obtained. An aircraft description file can be written by an NDARC job and then read by a subsequent job, restoring the aircraft model (but not the solution). A secondary input file has DEFN namelists to define action and contents. When ACTION='end' (or EOF) is encountered in a secondary input file, the file is closed and the code returns to primary input.

A DEFN namelist with ACTION='ident' identifies the file; probably there is only one identification per file, and only the last occurrence is stored. The identification consists of the CREATED, TITLE, VERSION, MODIFICATION variables. CREATED and TITLE are written when a file is created by NDARC, and read and stored for each input file. If present, VERSION and MODIFICATION are compared with the version and modification of the code, and input continues only if they match.

The parameter QUANT identifies the data structure to be read (namelist format), initialized, or copied. Table 1-3 describes the options. The input corresponds to the data structures of the analysis. The QUANT string includes the structure number; if absent, the number is 1, or the next condition or mission. Note that each mission, with the mission segment parameters as arrays, is input with QUANT='SizeMission' or QUANT='OffMission'; and each condition is input with QUANT='SizeCondition' or QUANT='PerfCondition'.

A case inherits input for flight conditions and missions from the previous case if INIT_input = last-case-input (default). A DEFN namelist with ACTION='delete' deletes this input as specified by QUANT='SizeCondition n', QUANT='SizeMission n', QUANT='OffMission n', or QUANT='PerfCondition n'. ACTION='delete all' deletes all (ignore structure number); ACTION='delete one' deletes structure n (all if number absent); ACTION='delete structure n and subsequent structures (all if number absent).

 $For ACTION = 'nosize', input variables in the Size structure are set for no size iteration: SIZE_perf='none', SIZE_jet='none', SIZE_charge='none', SET_rotor='radius+Vtip+sigma', SET_wing='area+span', FIX_DGW=1, SET_tank='input', SET_limit_ds='input', SET_SDGW='input', SET_WMTO='input'.$

Table 1-2. ACTION options.

ACTION	keyword	QUANT	function
Primary Input Only			
blank	_	blank	open and read secondary input file, name = FILE
'open file'	file,open		open and read secondary input file, name = FILE
'load aircraft'	aircraft,desc		load aircraft description file, name = FILE
'read solution'	solution	'text'	read complete solution file, name = FILE (text)
'read solution'	solution	not 'text'	read complete solution file, name = FILE (binary)
'end of case'	end+case		stop case input, execute case
'end of job'	end+job,quit		stop job input, execute case, exit code
Primary or Secondary Input			
blank	_	'structure'	read VALUE namelist
'read namelist'	list	'structure'	read VALUE namelist
'copy input'	сору	'structure'	copy input from source (same structure), SOURCE=SRCnumber
'initialize'	init	'structure'	set structure variables to default values
'delete all'	del+all	'structure'	delete all conditions or missions
'delete one'	del+one	'structure'	delete one condition or mission
'delete last'	del+last	'structure'	delete last conditions or missions
'configuration'	config		set input based on aircraft configuration
'nosize'	nosize		set input for no size iteration
'identification'	ident		identify file
'end'	end (or EOF)		Secondary: close file, return to primary input
'end'	end (or EOF)		Primary: same as ACTION='endofjob'

Table 1-3. QUANT options. QUANT	data structures read	maximum n
'Job' 'Cases'	Job Cases	
'Size' 'SizeCondition n' 'SizeMission n' 'OffDesign' 'OffMission n' 'Performance' 'PerfCondition n' 'MapEngine' 'MapAero'	SizeParam one FltCond+FltState one MissParam, MissSeg+FltState as array OffParam one MissParam, MissSeg+FltState as array PerfParam one FltCond+FltState MapEngine MapAero	nFltCond nMission nMission nFltCond
'Solution'	Solution	
'Cost' 'Emissions' 'Aircraft' 'Systems' 'Fuselage' 'LandingGear' 'Rotor n' 'Wing n' 'Tail n' 'FuelTank n' 'Propulsion n' 'EngineGroup n' 'JetGroup n' 'ChargeGroup n'	Cost, CostCTM Emissions Aircraft Systems, WFItCont, WDelce Fuselage, AFuse, WFuse LandingGear, AGear, WGear Rotor, PRotorInd, PRotorPro, PRotorTab, IRotor, DRotor, WRotor Wing, AWing, WWing, WWingTR Tail, ATail, WTail FuelTank, WTank Propulsion, WDrive EngineGroup, DEngSys, WEngSys JetGroup, DJetSys, WJetSys ChargeGroup, DChrgSys, WChrgSys	nRotor nWing nTail nTank nPropulsion nEngineGroup nJetGroup nChargeGroup
'EngineModel n' 'EngineParamN n' 'EngineTable n' 'RecipModel n' 'CompressorModel n' 'MotorModel n' 'JetModel n' 'FuelCellModel n' 'SolarCellModel n' 'BatteryModel n'	EngineModel EngineParamN EngineTable RecipModel CompressorModel MotorModel JetModel FuelCellModel SolarCellModel BatteryModel	nEngineModel nEngineParamN nEngineTable nRecipModel nCompressorModel nMotorModel nJetModel nFuelCellModel nSolarCellModel
'TechFactors' 'Geometry'	all TECH_xxx all Location	

1-2.2 Formats

```
Namelist input has the following format (see also figure 1-3).
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &DEFN quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='NAMELIST', quant='STRUCTURE n', &END
 &VALUE param=value, &END
 &DEFN action='COPY', quant='STRUCTURE n', source=#, &END
An aircraft description file is written in a separate file by NDARC, from theDesign(kcase):
 &DEFN action='IDENT', created='time-date', title='xxx', version='n.n', modification='xxx', &END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This aircraft description file is read by identifying it in the primary input:
 &DEFN action='AIRCRAFT', file='aircraft.acd', &END
A solution file is written in a separate file by NDARC, from the Design (kcase), in binary or text format:
 &DEFN action='IDENT',created='time-date',title='xxx',version='n.n',modification='xxx',&END
 &VALUE ADIMEN nrotor=m, nwing=m, ntail=m, ntank=m, npropulsion=m, nenginegroup=m, njetgroup=m, nchargegroup=m,
      nenginemodel=m,nengineparamn=m,nenginetable=m,nrecipmodel=m,ncompressormodel=m,nmotormodel=m,njetmodel=m,
      nfuelcellmodel=m,nsolarcellmodel=m,nbatterymodel=m,&END
 &VALUE SDIMEN nsizecond=m,nsizemiss=m,nperfcond=m,noffmiss=m,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
 &VALUE theStructure%xxx,&END
This solution file is read by identifying it in the primary input, with QUANT identifying the file as text or binary:
 &DEFN action='SOLUTION, quant='TEXT', file='aircraft.soln'&END
```

1-2.3 Conventions

Each flight condition (FltCond and FltState variables) is input in a separate SizeCondition or PerfCondition namelist.

Each mission (MissParam, MissSeq, and FltState variables) is input in a separate SizeMission or OffMission namelist. All mission segments are defined in this namelist, so MissSeq and FltState variables are arrays. Each variable gets one more dimension, with the first array index always segment number.

Geometry input includes Location variables, which are read as elements of the data structure (for example, loc_rotor%SL).

Variables can appear in more than one namelist. Specifically there are separate namelists for all technology factors (all TECH_xxx variables), and all geometry (all Location variables), with corresponding options for output. A variable that is a scalar in the Rotor, Wing, Tail, Propulsion, EngineGroup, JetGroup, or ChargeGroup input becomes an array in the TechFactors or Geometry input. Note that it is the Location variable that is the array (for example, loc rotor(1)%SL).

Case is not important in character string input. Character string input consists of keywords; the code searches for the keywords in the string.

Default values are specified in the dictionary (blank implies a default of zero); all elements of arrays have the same default value.

Tasks, aircraft, and components have title variables. There are also notes variables (long character string) to record information about the input.

1-3 Software Tool

All information about data structures is contained in a dictionary file. This information includes the parameter name, dimension, type, default value, description, identification as input, and formats for write of the parameter. A software tool was created to manage the data, including construction of the module of data structures. The software tool reads this dictionary file and creates subroutines for the input process: namelist read, copy, print of input, initialization, set to default. This software tool is a program that manipulates character strings, to produce compilable module and subroutines for NDARC.

1–4 Data Structures

Table 1-4 outlines the data structures used for NDARC. The following chapters describe the contents of each structure. Note that a "+" sign in the column between the type and description identifies input variables. Input variables can be changed by the analysis, so may not be the same at the end of a case as at the beginning. All variables, input and other, are initialized to zero or blank. If default values exist (only for input variables), they supersede that initialization.

Table 1-4. NDARC data structures.

sign	Fuselage	FuelTank(ntankmax)	FltState(nfltmax)	
Cases	[Location]loc_fuselage	[Location]loc_auxtank(nauxtankmax)	FltAircraft	
Size	AFuse	Weight	FltFuse	
SizeParam	Weight	WTank	FltGear	
FltCond(nfltmax)	WFuse	Propulsion(npropmax)	FltRotor(nrotormax	
FltState(nfltmax)	LandingGear	Weight	FltWing(nwingmax	
Mission(nmissmax)	[Location]loc_gear	WDrive	FltTail(ntailmax)	
MissParam	AGear	${\sf EngineGroup(nengmax)}$	FltTank(ntankmax)	
MissSeg(nsegmax)	Weight	[Location]loc_engine	FltProp(npropmax)	
FltState(nsegmax)	WGear	DEngSys	FltEngn(nengmax)	
OffDesign	Rotor(nrotormax)	Weight	FltJet(njetmax)	
OffParam	$[Location]loc_rotor$	WEngSys	FltChrg(nchrgmax)	
Mission(nmissmax)	[Location]loc_pylon	JetGroup(njetmax)		
MissParam	[Location]loc_pivot	[Location]loc_jet		
MissSeg(nsegmax)	[Location]loc_nac	DJetSys		
FltState(nsegmax)	PRotorInd	Weight		
Performance	PRotorPro	WJetSys		
PerfParam	${\sf PRotorTab}$	${\sf ChargeGroup(nchrgmax)}$		
FltCond(nfltmax)	I Rotor	[Location]loc_charger		
FltState(nfltmax)	DRotor	DChrgSys		
MapEngine	Weight	Weight		
MapAero	WRotor	WChrgSys		
Solution	Wing(nwingmax)	EngineModel(nengmax)		
Cost	[Location]loc_wing	EngineParamN(nengpmax)		
CostCTM	AWing	EngineTable(nengmax)		
Emissions	Weight	RecipModel(nengmax)		
Aircraft	WWing	CompressorModel(nengmax)		
[Location]loc_cg	WWingTR	MotorModel(nengmax)		
Weight	Tail(ntailmax)	JetModel(njetmax)		
XAircraft	[Location]loc_tail	FuelCellModel(nchrgmax)		
Systems	ATail	SolarCellModel(nchrgmax)		
Weight	Weight	BatteryModel(ntankmax)		
WFltCont	WTail			
WDelce				

The rotorcraft configuration is identified by the variable config in the QUANT='Aircraft' input. With ACTION='configuration', the analysis defines a number of input parameters in order to facilitate modelling of conventional configurations. The input required to execute ACTION='configuration' is:

```
&DEFN action='configuration',&END  
&VALUE config='aaaa',nRotor=#,rotate=#,#,overlap_tandem=#,#,ang_multicopter=#,#,&END
```

The VALUE namelist contains only the parameters Aircraft%config (rotorcraft configuration), Aircraft%nRotor (number of rotors, only for multicopter), Rotor%rotate (direction of rotation, each rotor), Rotor%overlap_tandem (each rotor, only for tandem helicopter), and Rotor%ang_multicopter (each rotor, only for multicopter). The convention is that the first rotor is the main rotor for the helicopter or compound configuration; the front rotor for the tandem configuration; the right rotor for the tiltrotor configuration. This capability has been implemented for rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, and airplane configurations. The analysis creates the following input, through the code in the file input_config.f90. Note that default values are defined for all input quantities.

2-1 All Configurations

a) Components: nRotor=2 (except multicopter), nWing=0, nTail=2; nPropulsion=1, nEngineGroup=1, nEngineModel=1, nJetGroup=0, nChargeGroup=0

b) Aircraft

Aircraft controls: ncontrol=7, IDENT control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder'

Control states: nstate control=1

Trim states: nstate trim=10, selected by FltAircraft%STATE trim=IDENT trim; compound state not active

	$IDENT_trim$	mtrim	trim_quant	trim_var
6-variable	'free'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','pitch','roll'
longitudinal	'long'	4	'force x','force z','moment y','moment z'	'coll','Ingcyc','pitch','pedal'
symmetric 3-variable	'symm'	3	'force x','force z','moment y'	'coll','Ingcyc','pitch'
weight and drag	'force'	2	'force x', 'force z'	'coll','pitch'
hover thrust and torque	'hover'	2	'force z','moment z'	'coll','pedal'
hover thrust	'thrust'	1	'force z'	'coll'
hover rotor C_T/σ	'rotor'	1	'CTs rotor 1'	'coll'
wind tunnel	'windtunnel'	3	'CTs rotor 1','betac 1','betas 1'	'coll','latcyc','lngcyc'
full power	'power'	1	'P margin 1'	'coll'
ground run	'ground'	1	'force x'	'coll'
compound	'comp'	6	'force x','force y','force z','moment x','moment y','moment z'	'coll','latcyc','lngcyc','pedal','prop','roll'

```
c) Systems: MODEL FWfc=0, MODEL CVfc=0 (no fixed wing flight controls, no conversion controls)
d) Landing Gear: KIND LG=0 (fixed gear), Wgear%nLG=3
e) Fuel Tank: place=1 (internal tank), Mauxtanksize=1, WTank%ntank int=1, WTank%nplumb=2
f) Rotor
First rotor is primary: kPropulsion=1, KIND xmsn=1
Second and other rotors are dependent: kPropulsion=1, KIND xmsn=0, INPUT gear=1 (input quantity is tip speed)
Configuration: direction='main'
Drag: SET aeroaxes=1 (helicopter), Idrag=0. (not tilt); DRotor%SET Dspin=1, DRotor%DoQ spin=0. (no spinner drag)
Weight: WRotor%MODEL config=1 (rotor), WRotor%KIND rotor=2 (not tilting)
Control:
   INPUT coll=0, INPUT latcyc=0, INPUT lngcyc=0, INPUT incid=0, INPUT cant=0, INPUT diam=0 (no connection to aircraft controls)
   T coll=0., T latcyc=0., T lngcyc=0., T incid=0., T cant=0., T diam=0. (all controls, all states)
   KIND control=1 (1 for thrust and TPP command)
   KIND coll=2 (1 for thrust, 2 for C_T/\sigma)
   KIND lngcyc=1, KIND latcyc=1 (1 for TPP tilt, 2 for hub moment, 3 for lift offset)
   KIND tilt=0 (fixed shaft)
g) Wing
Control:
   INPUT flap=0, INPUT flaperon=0, INPUT aileron=0, INPUT incid=0 (no connection to aircraft controls)
   T flap=0., T flaperon=0., T aileron=0., T incid=0. (all controls, all states, all panels)
Drag: Idrag=0. (not tilt)
h) Tail
First tail is horizontal tail: KIND tail=1, WTail%MODEL Htail=1 (helicopter)
Second tail is vertical tail: KIND tail=2, WTail%MODEL Vtail=1 (helicopter)
Configuration: KIND TailVol=2, TailVolRef=1 (rotor reference)
Control:
   INPUT cont=1 (tail control connection to aircraft controls), INPUT incid=0 (no connection of tail incidence to aircraft controls)
   T cont=0., T incid=0. (all controls, all states)
i) Propulsion: nGear=1, STATE gear wt=1, INPUT DN=0
```

```
i) Engine Group
Configuration: kPropulsion=1, INPUT gear=1 (gear ratio from N spec), SET power=0 (sized), fPsize=1., direction='x', SET geom=0 (standard position)
Drag: MODEL drag=1, ldrag=0. (not tilt)
k) Engine Group, Jet Group, Charge Group
Control:
   INPUT amp=0, INPUT incid=0, INPUT yaw=0 (no connection to aircraft controls)
   T_amp=0., T_incid=0., T_yaw=0. (all controls, all states)
2–2 Helicopter
a) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(4,1)=-r (rotor collective connection to aircraft control 'pedal')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–3 Tandem
a) Components: nTail=0 (no tail)
b) Fuel Tank: place=2 (sponson)
```

```
c) Rotor
Configuration: config='main+tandem', fDGW=.5, SET geom='tandem', fRadius=1.
   fArea = 1 - m/2, from m = (2/\pi)(\cos^{-1} h - h\sqrt{1 - h^2}), h = 1 – overlap tandem
First rotor is front rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=-1., T latcyc(2,1)=-r, T latcyc(4,1)=-r
Second rotor is aft rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT latcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(3,1)=1., T latcyc(2,1)=-r, T latcyc(4,1)=r
Performance: PRotorInd%MODEL twin='tandem', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
2-4 Coaxial
a) Rotor
Configuration: config='main+coaxial', fDGW=.5, fArea=.5, SET geom='coaxial', fRadius=1.
First rotor is lower rotor: otherRotor=2
   rotation: r = 1, if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT latcyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is upper rotor: otherRotor=1, rotate=-Rotor(1)%rotate
   rotation: r = 1, if (Rotor(1)%rotate < 0) r = -1; r = -r
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   control: T coll(1,1)=1., T coll(4,1)=r, T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Performance: PRotorInd%MODEL_twin='coaxial', PRotorInd%Kh twin=1., PRotorInd%Kf twin=0.85, IRotor%MODEL int twin=2
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
b) Tail
Horizontal tail: T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7,1)=1. (rudder direct control)
c) Propulsion: WDrive%ngearbox=1. WDrive%ndriveshaft=0. WDrive%fShaft=0.1: WDrive%fTorque=0.6. WDrive%fPower=0.6
```

2-5 Tiltrotor

```
a) Components: nWing=1, nEngineGroup=2 (engine at each nacelle)
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tilt', 'flap', 'flaperon', 'elevator', 'aileron', 'rudder'
Control states: nstate control=2 (state 1 for helicopter mode, state 2 for airplane mode)
Control state in conversion: kcont hover=1, kcont conv=1, kcont cruise=2
Drive state in conversion: kgear hover(1)=1, kgear conv(1)=1, kgear cruise(1)=1
c) Systems: MODEL FWfc=1, MODEL CVfc=1 (fixed wing flight controls, conversion control)
d) Landing Gear: KIND LG=1 (retractable)
e) Fuel Tank: place=3 (wing), fFuelWing(1)=1.
f) Rotor
Configuration: config='main+tiltrotor', fDGW=.5, fArea=1.; SET geom='tiltrotor', KIND TRgeom=1 (from clearance), fRadius=1., WingForRotor=1
First rotor is right rotor: otherRotor=2
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1., T coll(2,1)=-1., T lngcyc(3,1)=-1., T lngcyc(4,1)=1.
Second rotor is left rotor: otherRotor=1, rotate=-Rotor(1)%rotate; INPUT gear=2 (input quantity is gear ratio)
   helicopter mode control: INPUT coll=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
   helicopter mode control: T coll(1,1)=1, T coll(2,1)=1, T lngcyc(3,1)=-1, T lngcyc(4,1)=-1.
Airplane mode control state: T coll(1,2)=1. (collective connection to aircraft control 'coll')
Tilt: KIND tilt=1 (shaft control = incidence), incid ref=90. (helicopter mode reference), SET Wmove=1, fWmove=1. (wing tip weight move)
   control: INPUT incid=1, T incid(5,1)=1., T incid(5,2)=1. (incidence connection to aircraft control 'tilt')
Performance: PRotorInd%MODEL twin='tiltrotor', PRotorInd%Kh twin=1., PRotorInd%Kf twin=1., IRotor%MODEL int twin=2
Weight: WRotor%KIND rotor=1 (tilting)
Drag: SET aeroaxes=2 (tiltrotor), ldrag=90. (tiltrotor)
   DRotor%SET Dhub=1, DRotor%DoQ hub=0., DRotor%CD hub=0., DRotor%SET Vhub=1, DRotor%DoQV hub=0., DRotor%CDV hub=0. (no hub drag)
g) Wing
Configuration: fDGW=1., nRotorOnWing=2, RotorOnWing(1)=1, RotorOnWing(2)=2, SET ext=0
Control: KIND flaperon=3 (independent), nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(2,2)=-1. (airplane mode aileron connection to aircraft control 'latcyc')
```

```
T flap(6,1)=1., T flap(6,2)=1. (flap direct control)
   T flaperon(7,1)=1., T flaperon(7,2)=1. (flaperon direct control)
   T aileron(9,1)=1., T aileron(9,2)=1. (aileron direct control)
Weight: WWing%MODEL wing=3 (tiltrotor)
h) Tail
Configuration: KIND TailVol=1, TailVolRef=1 (wing reference); Wtail%MODEL Htail=2, Wtail%MODEL Vtail=2 (tiltrotor)
Horizontal tail control: nVincid=1
   T \cot(3,2)=1. (airplane mode elevator connection to aircraft control 'lngcyc')
   T cont(8,1)=1., T cont(8,2)=1. (elevator direct control)
Vertical tail control: nVincid=1
   T cont(4,2)=1. (airplane mode rudder connection to aircraft control 'pedal')
   T cont(10,1)=1., T cont(10,2)=1. (rudder direct control)
i) Propulsion: WDrive%ngearbox=2, WDrive%ndriveshaft=1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6
j) Engine Group
Configuration: fPsize=0.5, SET geom=1 (tiltrotor)
First engine group: RotorForEngine=1
Second engine group: RotorForEngine=2
Control: INPUT incid=1; T incid(5,1)=1., T incid(5,2)=1. (nacelle incidence connection to aircraft control 'tilt')
Drag: SET Swet=1, Swet=0., MODEL drag=0, Idrag=90. (no engine nacelle drag)
   DEngSys%SET drag=1, DEngSys%DoQ=0., DEngSys%CD=0.; DEngSys%SET Vdrag=1, DEngSys%DoQV=0., DEngSys%CDV=0.
2-6 Compound
a) Components: nRotor=3, nWing=1
b) Aircraft
Aircraft controls: ncontrol=10, IDENT control='coll', 'latcyc', 'lngcyc', 'pedal', 'tailinc', 'elevator', 'rudder', 'prop', 'aileron', 'flap'
Trim states: nstate trim=10; compound state active
c) Rotor
First rotor is main rotor: config='main', fDGW=1., fArea=1., SET geom='standard'
   rotation: r = 1; if (Rotor(1)\%rotate < 0) r = -1
   control: INPUT coll=1, INPUT lateyc=1, INPUT lngcyc=1 (rotor control connection to aircraft controls)
```

```
control: T coll(1,1)=1., T latcyc(2,1)=-r, T lngcyc(3,1)=-1.
Second rotor is tail rotor: config='tail+antiQ', fThrust=1., fArea=0., SET geom='tailrotor', mainRotor=1
   direction='tail', WRotor%MODEL config=2 (tail rotor)
   rotation: r = 1; if (Rotor(1)%rotate < 0) r = -1
   control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(4,1) = -r (rotor collective connection to aircraft control 'pedal')
Third rotor is propeller: config='prop+auxT', fThrust=1., fArea=0., SET geom='standard'
   direction='prop', WRotor%MODEL config=3 (auxiliary thrust)
   control: KIND control=2 (thrust and NFP command); INPUT coll=1, T coll(8,1)=1. (rotor collective connection to aircraft control 'prop')
Performance: PRotorInd%MODEL twin='none'
Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag)
d) Wing
Configuration: fDGW=1.
Control: nVincid=1
   INPUT flap=1, INPUT flaperon=1, INPUT aileron=1 (wing control connection to aircraft controls)
   T aileron(9,1)=1. (aileron direct control)
   T flap(10,1)=1. (flap direct control)
Weight: WWing%MODEL wing=2 (parametric)
e) Tail
Control: INPUT incid=1 (tail incidence connection to aircraft controls)
Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(6,1)=1. (elevator direct control)
Vertical tail: T cont(7.1)=1. (rudder direct control)
f) Propulsion: WDrive%ngearbox=3, WDrive%ndriveshaft=1, WDrive%fShaft=0.1, WDrive%fTorque=0.03, WDrive%fPower=0.15
2–7 Multicopter
a) Components: nTail=0 (no tail)
b) Rotor
Configuration: config='main', fDGW=1/nRotor, fArea=1., SET geom='multicopter'
Control: KIND control=2 (thrust and NFP command); INPUT coll=1
   rotation: r = 1; if (rotate < 0) r = -1; a = ang multicopter
   T coll(1,1)=1, T coll(2,1)=-\sin(a), T coll(3,1)=\cos(a), T coll(4,1)=r (rotor collective connection to aircraft controls)
```

Performance: PRotorInd%MODEL twin='none'

Drag: SET Sspin=1, Swet spin=0., DRotor%SET Dspin=1, DRotor%DoQ spin=0., DRotor%CD spin=0. (no spinner drag) c) Propulsion: WDrive%ngearbox=nRotor, WDrive%ndriveshaft=nRotor-1, WDrive%fShaft=0.1; WDrive%fTorque=0.6, WDrive%fPower=0.6 2–8 Airplane a) Components: nRotor=1, nWing=1 b) Solution: KIND Lscale=2 (wing span reference) c) Aircraft Geometry: INPUT geom=2, KIND scale=2, kScale=1 (geometry scaled with wing span); KIND Ref=2, kRef=1 (wing reference) Aircraft controls: ncontrol=9, IDENT control='coll','latcyc','lngcyc','pedal','tailinc','elevator','rudder','aileron','flap' coll = propeller, lateyc = lateral stick, lngcyc = longitudinal stick d) Systems: MODEL FWfc=1 (fixed wing flight controls) e) Rotor Propeller: config='prop+auxT', fThrust=1., fDGW=0., SET_geom='standard' direction='prop', WRotor%MODEL config=3 (auxiliary thrust) Control: KIND control=2 (thrust and NFP command); INPUT_coll=1, T_coll(1,1)=1. (rotor collective connection to aircraft control 'coll') f) Wing Configuration: fDGW=1. Control: nVincid=1 INPUT flap=1, INPUT aileron=1 (wing control connection to aircraft controls) T aileron(2,1)=1. (lateral stick), T aileron(8,1)=1. (aileron direct control) T flap(9,1)=1. (flap direct control) Weight: WWing%MODEL wing=2 (parametric) g) Tail: KIND_TailVol=1, TailVolRef=1 (wing reference) Control: INPUT incid=1 (tail incidence connection to aircraft controls) Horizontal tail: T incid(5,1)=1. (incidence connection to aircraft control 'tailine'), T cont(3,1)=1. (longitudinal stick), T cont(6,1)=1. (elevator direct control) Vertical tail: T cont(4,1)=1. (pedal), T cont(7,1)=1. (rudder direct control) h) Propulsion: WDrive%ngearbox=1, WDrive%ndriveshaft=1, WDrive%fShaft=0.1

Chapter 3

Parameters	Value				
ncasemax	10	ndesignmax	41	npanelmax	5
nfilemax	40	ncontmax	20	nauxtankmax	4
nrotormax	8	nsweepmax	200	ngearmax	8
npropmax	4	qsweepmax	4	nratemax	20
nengmax	8	ntrimstatemax	20	nengtmax	20
njetmax	4	mtrimmax	16	neng×ma×	100
nchrgmax	4	nvnemax	32	nengkmax	6
nstatemax	10	niasmax	40	nengrmax	40
nwingmax	8	nvelmax	20	nengpmax	20
ntailmax	6	ntablemax	32	nspeedmax	8
ntankmax	4	nrmax	51	nrowmax	4000
nmissmax	20	mrmax	40	naeromax	100
nsegmax	20	mpsimax	36		
nfltmax	21	ngetablemax	40		
Constants	Value				
ACTION_error	0	SET_takeoff_transition	6	$TRIM_{QUANT_{tank}}$	19
ACTION_file	1	$SET_takeoff_climb$	7	$TRIM_QUANT_Bmargin$	20
$ACTION_{ident}$	2	${\sf SET_takeoff_brake}$	8	$TRIM_{QUANT_{rotorL}}$	21
ACTION_list	3	$MAX_{QUANT_{none}}$	0	$TRIM_QUANT_rotorfL$	22
ACTION_copy	4	$MAX_{QUANT_{end}}$	1	TRIM_QUANT_CLs	23
ACTION_init	5	$MAX_{QUANT_{range}}$	2	$TRIM_{QUANT_{rotorV}}$	24
ACTION_delete	6	$MAX_QUANT_rangelow$	3	$TRIM_{QUANT_{rotorX}}$	25
ACTION_delone	7	MAX_QUANT_range100	4	$TRIM_{QUANT_{rotorfX}}$	26
ACTION dellast	8	MAX QUANT climb	5	TRIM QUANT CXs	27

ACTION_config	9	MAX_QUANT_angle	6	TRIM_QUANT_XoQ	28
ACTION_nosize	10	MAX_QUANT_power	7	TRIM_QUANT_CTs	29
ACTION_desc	11	MAX_QUANT_PoV	8	TRIM_QUANT_Tmargs	30
ACTION_soln	12	MAX_QUANT_alt	9	TRIM_QUANT_Tmargt	31
ACTION_endfile	13	MAX_QUANT_Pmargin	10	$TRIM_{QUANT_{T}}Tmarge$	32
ACTION_endcase	14	MAX_QUANT_Qmargin	11	$TRIM_{QUANT_{betac}}$	33
ACTION_endjob	15	MAX_QUANT_PQmargin	12	$TRIM_{QUANT_{betas}}$	34
STATE_newcase	1	MAX_QUANT_Jmargin	13	$TRIM_{QUANT_{hubM} \times}$	35
STATE_onecase	2	MAX_QUANT_PJmargin	14	TRIM_QUANT_hubMy	36
STATE_endofjob	3	MAX_QUANT_QJmargin	15	$TRIM_{QUANT_{hubQ}}$	37
STATE_init	1	${\sf MAX_QUANT_PQJmargin}$	16	$TRIM_{QUANT_{wingL}}$	38
STATE_size	2	$MAX_QUANT_Bmargin$	17	$TRIM_{QUANT_{wingfL}}$	39
STATE_miss	3	MAX_QUANT_L margin	18	TRIM_QUANT_CL	40
STATE_perf	4	MAX_QUANT_Tmargs	19	$TRIM_{QUANT_{L}}margin$	41
STATE_maps	5	${\sf MAX_QUANT_Tmargt}$	20	$TRIM_{QUANT_{tailL}}$	42
STATE_out	6	MAX_QUANT_Tmarge	21	$TRIM_VAR_not_found$	0
SIZE_perf_engine	1	MAX_VAR_none	0	TRIM_VAR_pitch	-1
SIZE_perf_rotor	2	MAX_VAR_vel	-1	TRIM_VAR_roll	-2
SIZE_perf_none	3	MAX_VAR_ROC	-2	TRIM_VAR_ROC	-3
SIZE_jet_jet	1	MAX_VAR_side	-3	$TRIM_VAR_side$	-4
SIZE_jet_none	2	MAX_VAR_alt	-4	$TRIM_VAR_speed$	-5
SIZE_charge_chrg	1	MAX_VAR_{turn}	-5	TRIM_VAR_turn	-6
SIZE_charge_none	2	MAX_VAR_pullup	-6	TRIM_VAR_pullup	-7
SIZE_rotor_none	1	MAX_VAR_xaccF	-7	$TRIM_VAR_Vtip$	-8
SIZE_rotor_radius	2	MAX_VAR_yaccF	-8	TRIM_VAR_Nspec	-9
SIZE_rotor_thrust	3	MAX_VAR_zaccF	-9	AERO_VAR_none	0
SET_rotor_radius	1	MAX_VAR_xaccI	-10	$AERO_VAR_not_found$	-1
SET_rotor_DL	2	MAX_VAR_yaccl	-11	$AERO_VAR_alpha$	-2
SET_rotor_ratio	3	MAX_VAR_zaccl	-12	$AERO_VAR_beta$	-3
SET_rotor_scale	4	MAX_VAR_xaccG	-13	$RCCONFIG_rotorcraft$	0
$SET_{rotor_{not}radius}$	5	MAX_VAR_yaccG	-14	RCCONFIG_helicopter	1
SET_wing_area	1	MAX_VAR_zaccG	-15	$RCCONFIG_tandem$	2
SET_wing_WL	2	MAX_VAR_pitch	-16	RCCONFIG_coaxial	3
SET_wing_not_area	3	MAX_VAR_roll	-17	$RCCONFIG_tiltrotor$	4

SET_wing_span	4	MAX_VAR_Vtip	-18	RCCONFIG_compound	5
SET_wing_ratio	5	MAX_VAR_Nspec	-19	$RCCONFIG_{multicopter}$	6
SET_wing_radius	6	SET_vel_general	1	RCCONFIG_airplane	7
SET_wing_width	7	SET_vel_hover	2	ROTORCONFIG_main	1
SET_wing_hub	8	SET_vel_vert	3	ROTORCONFIG tail	2
SET_wing_panel	9	SET_vel_right	4	ROTORCONFIG prop	3
SET wing not span	10	SET_vel_left	5	ROTORCONFIG tandem	4
SET_tank_input	1	SET_vel_rear	6	ROTORCONFIG_coaxial	5
SET_tank_miss	2	SET_vel_Vfwd	7	$ROTORCONFIG_{tiltrotor}$	6
SET_tank_misspower	3	SET_vel_Vmag	8	ROTORCONFIG_not_twin	7
SET_tank_fmiss	4	SET_vel_climb	9	SET_geom_standard	0
SET_SDGW_input	1	SET_vel_VNE	10	SET_geom_tiltrotor	1
SET_SDGW_fDGW	2	SET_vel_takeoff	11	SET_geom_coaxial	2
SET_SDGW_fWMTO	3	SET_vel2_TAS	1	SET_geom_tandem	3
SET_SDGW_maxfuel	4	SET_vel2_CAS	2	SET_geom_tailrotor	4
SET_SDGW_perf	5	SET_vel2_IAS	3	SET_geom_multicopter	5
SET_WMTO_input	1	SET_vel2_Mach	4	MODEL_twin_none	0
SET_WMTO_fDGW	2	SET_atmos_input	-1	$MODEL_twin_sidebyside$	1
SET_WMTO_fSDGW	3	SET_atmos_dens	-2	MODEL_twin_coaxial	2
SET_WMTO_maxfuel	4	SET_atmos_notair	-3	$MODEL_twin_tandem$	3
SET_WMTO_perf	5	${\sf SET_atmos_std}$	1	$MODEL_twin_multirotor$	4
SET_limit_input	1	${\sf SET_atmos_std_dtemp}$	2	tablevar_none	0
SET_limit_Ratio	2	${\sf SET_atmos_std_temp}$	3	$tablevar_V$	1
SET_limit_Pav	3	SET_atmos_polar	4	$tablevar_Vh$	2
SET_limit_Preq	4	${\sf SET_atmos_polar_dtem}$	5	tablevar_mu	3
SET_GW_DGW	1	${\sf SET_atmos_polar_temp}$	6	tablevar_muz	4
SET_GW_SDGW	2	SET_atmos_trop	7	tablevar_alpha	5
SET_GW_WMTO	3	${\sf SET_atmos_trop_dtemp}$	8	$table var_muTPP$	6
SET_GW_fDGW	4	$SET_atmos_trop_temp$	9	$table var_muz TPP$	7
SET_GW_fSDGW	5	SET_atmos_hot	10	${\sf tablevar_alphaTPP}$	8
SET_GW_fWMTO	6	${\sf SET_atmos_hot_dtemp}$	11	${\sf tablevar_CTs}$	9
SET_GW_input	7	${\sf SET_atmos_hot_temp}$	12	$tablevar_Mx$	10
SET_GW_maxP	8	$SET_atmos_hot_table$	13	tablevar_Mtip	11
SET_GW_maxQ	9	SET_Vtip_input	1	tablevar_Mat	12

SET_GW_maxPQ	10	SET_Vtip_ref	2	SET_panel_free	0
SET_GW_maxJ	11	SET_Vtip_speed	3	SET_panel_span	1
SET_GW_maxPJ	12	SET_Vtip_conv	4	SET_panel_bratio	2
SET_GW_maxQJ	13	SET_Vtip_hover	5	SET_panel_edge	3
SET_GW_maxPQJ	14	SET_Vtip_cruise	6	SET_panel_station	4
SET_GW_source	15	SET_Vtip_man	7	SET_panel_radius	5
SET_GW_fsource	16	SET_Vtip_OEI	8	SET_panel_width	6
SET_GW_payfuel	17	SET_Vtip_xmsn	9	SET_panel_hub	7
SET_GW_paymiss	18	SET_Vtip_mu	10	SET_panel_adjust	8
SET_UL_pay	1	SET_Vtip_Mat	11	SET_panel_area	9
SET_UL_fuel	2	SET_Vtip_Nrotor	12	SET_panel_Sratio	10
SET_UL_payfuel	3	STATE_LG_default	0	SET_panel_chord	11
SET_UL_miss	4	STATE_LG_extend	1	SET_panel_cratio	12
SET_UL_paymiss	5	STATE_LG_retract	2	SET_panel_taper	13
SET_pay_none	1	$TRIM_{QUANT_{not}}found$	0	SET_tail_area	1
SET_pay_input	2	TRIM_QUANT_forcex	1	SET_tail_vol	2
SET_pay_delta	3	$TRIM_{QUANT_{forcey}}$	2	SET_tail_span	3
SET_pay_scale	4	TRIM_QUANT_forcez	3	SET_tail_AR	4
KIND_MissSeg_taxi	1	$TRIM_{QUANT_{moment}}X$	4	SET_tail_chord	5
$KIND_MissSeg_dist$	2	$TRIM_{QUANT_{momenty}}$	5	MODEL_engine_RPTEM	1
$KIND_MissSeg_time$	3	$TRIM_{QUANT_{momentz}}$	6	$MODEL_engine_table$	2
$KIND_MissSeg_hold$	4	TRIM_QUANT_nz	7	MODEL_engine_recip	3
$KIND_MissSeg_climb$	5	TRIM_QUANT_nx	8	MODEL_engine_comp	4
$KIND_MissSeg_spiral$	6	TRIM_QUANT_ny	9	$MODEL_engine_compreact$	5
$KIND_MissSeg_fuel$	7	$TRIM_{QUANT_{power}}$	10	MODEL_engine_motor	6
KIND_MissSeg_burn	8	$TRIM_{QUANT_{P}}Pmargin$	11	MODEL_engine_gen	7
$KIND_MissSeg_takeoff$	9	$TRIM_QUANT_Qmargin$	12	MODEL_engine_motorgen	8
SET_takeoff_none	0	$TRIM_{QUANT_{powerEG}}$	13	$MODEL_engine_motorcell$	9
SET_takeoff_start	1	$TRIM_QUANT_PEGmarg$	14	$MODEL_jet_RPJEM$	1
$SET_takeoff_groundrun$	2	$TRIM_{QUANT_{thrust}}$	15	MODEL_jet_react	2
SET_takeoff_enginefail	3	$TRIM_QUANT_Jmargin$	16	$MODEL_jet_simple$	3
SET_takeoff_liftoff	4	$TRIM_{QUANT_{charge}}$	17	$MODEL_charge_fuelcell$	1
$SET_takeoff_rotation$	5	$TRIM_{QUANT_{C}}Cmargin$	18	$MODEL_charge_solarcell$	2

Chapter 4

Common: Job

Variable	Type	Description	Default
version modification versionout	c*6 c*32 c*64	NDARC Version (set by main program) number n.n modification string for headers (Version n.n, modification "xxx")	
INIT in and	int	+ Initialization	1
INIT_input INIT_data	int int	 input parameters (0 default, 1 last case input, 2 last case solution) other parameters (0 default, 1 start of last case, 2 end of last case) 	1 0
		INIT_input: if default, all input variables set to default values if last-case-input, then case inherits input at beginning of previous case if last-case-solution, then case inherits input at end of previous case use INIT_input=2 to analyze case #1 design in subsequent cases INIT_data: if always start-last-case, then case starts from default if default, all other variables set to default values	
		+ Errors	
ACT_error	int	+ action on error (0 none, 1 exit)	1
ACT_version	int	+ action on version mismatch in input (0 none, 1 exit) + File open	0
OPEN_status	int	+ status keyword for write (0 unknown, 1 replace, 2 new, 3 old)	2

Common: Job

		+	Input/output unit numbers	
		+	input	
nuin	int	+	standard input	5
nufile	int	+	secondary file input	40
		+	output	
nuout	int	+	standard output	6
nudesign	int	+	design (DESIGNn)	41
nuperf	int	+	performance (PERFn)	42
nuaero	int	+	airframe aerodynamics (AEROn)	43
nuengine	int	+	engine performance (ENGINEn)	44
nugeom	int	+	geometry output (GEOMETRYn)	45
nuacd	int	+	aircraft description (AIRCRAFTn)	46
nusoln	int	+	solution (SOLUTIONn)	47
nusketch	int	+	sketch output (SKETCHn)	48
nuerror	int	+	errors (ERRORn)	49

default input/output unit numbers usually acceptable default OPEN_status can be changed as appropriate for computer OS

Analysis

kcase	int	current case number
ncase	int	number of cases (maximum ncasemax)
case_state	int	case state
job_state	int	job state
out_design_state	int	design output state (1 file open)
out_perf_state	int	performance output state (1 file open)
out_geom_state	int	geometry output state (1 file open)
out_error_state	int	errors output state (1 file open)
nuinit	int	nuout or nuerror
fscratch	FltState	scratch structure

Common: Job

Input int fil

nread

ninputfile

file input status (0 for primary file, 1 for secondary file, 2 for aircraft or solution file)

unit number for input (nuin for primary file, nufile for secondary file)

Input file identification (stored from action=IDENT data)

number of identifications (maximum nfilemax; first is standard input)

input title(nfilemax) c*80 title

input created(nfilemax) c*20 creation date

int

int

 $\begin{array}{ll} \text{theDesign(ncasemax)} & \text{Design} & \text{Design} \\ \text{theInput} & \text{Design} & \text{Input} \end{array}$

theLastCaseInput Design Input from last case

system data = Job + theDesign(ncase) + theInput + theLastCaseInput

all data structure parameters = input (can be changed by analysis) or other (generated by analysis)

theInput used for input (not changed by analysis)

theLastCaseInput used to print only what changed from last case

after case input concluded, kcase incremented and theInput copied to theDesign(kcase)

CPU time

CPUtime_case_start(ncasemax)

real case start

CPUtime_case_end(ncasemax) real case end
CPUtime_case(ncasemax) real case
CPUtime_job real job
Clock time

DateTime_case_start(8,ncasemax)

int case start

DateTime case end(8,ncasemax)

int case end

ElapsedTime_case(ncasemax) real case
ElapsedTime job real job

Common: Job

	Ca	ase dimensions			
nrotor_case	int	number of rotors (Aircraft)			
nwing_case	int	number of wings (Aircraft)			
ntail_case	int	number of tails (Aircraft)			
ntank_case	int	number of fuel tank systems (Aircraft)			
npropulsion_case	int	number of propulsion groups (Aircraft)			
nenginegroup_case	int	number of engine groups (Aircraft)			
njetgroup_case	int	number of jet groups (Aircraft)			
nchargegroup_case	int	number of charge groups (Aircraft)			
nenginemodel_case	int	number of engine models (Aircraft)			
nengineparamn_case	int	number of engine model parameters (Aircraft)			
nenginetable_case	int	number of engine tables (Aircraft)			
nrecipmodel_case	int	number of reciprocating engine models (Aircraft)			
ncompressormodel_case	int	number of compressor models (Aircraft)			
nmotormodel_case	int	number of motor models (Aircraft)			
njetmodel_case	int	number of jet models (Aircraft)			
nfuelcellmodel_case	int	number of fuel cell models (Aircraft)			
nsolarcellmodel_case	int	number of solar cell models (Aircraft)			
nbatterymodel_case	int	number of bettery models (Aircraft)			
ncontrol_case	int	number of controls (Aircraft)			
nstate_control_case	int	number of control states (Aircraft)			
npanel_case(nwingmax)	int	number of wing panels (Wing)			
mauxtanksize_case(ntankmax)					
	int	number of aux tank sizes (FuelTank)			
ngear_case(npropmax)	int	number of drive system states (Propulsion)			
nstate_trim_case	int	number of trim states (Aircraft)			
mtrim_case(ntrimstatemax)	int	number of trim variables (Aircraft)			
nwoful_case	int	number of other fixed useful load categories (System)			
	Jo	b constants			
pi	real	π			
twopi	real	2π			
halfpi	real	$\pi/2$			
degrad	real	degree/radian = $180/\pi$			
raddeg	real	radian/degree = $\pi/180$			

Common: Job

		Case constants
gravity	real	gravity g (ft/sec ² or m/sec ²)
density_sls	real	SLS density ρ_0 (slug/ft ³ or kg/m ³)
csound_sls	real	SLS speed of sound c_s (ft/sec or m/sec)
		Conversion factors
powerconv	real	power (hp from ft-lb/sec; kW from m-N/sec)
knotsconv	real	speed (knots from ft/sec or m/sec)
nmconv	real	range (nm from ft or m)
weightconv	real	weight (lb from lb; kg from N)
massconv	real	mass (slug from lb; kg from kg)
volumeconv	real	volume (gal from ft ³ ; liter from m ³)
		Conversion factors for scaled D/q
DoQconv23	real	$D/q = kW^{2/3}$ (ft ² from $k=m^2/kg^{2/3}$; m ² from $k=ft^2/lb^{2/3}$; depending on Units_Dscale)
DoQconv12	real	$D/q = kW^{1/2}$ (ft ² from $k=m^2/kg^{1/2}$; m ² from $k=ft^2/lb^{1/2}$; depending on Units_Dscale)
		Conversion factors for mission and flight condition input
uconv_vel	real	velocity (knots from input)
uconv_alt	real	altitude (ft or m from input)
uconv_pay	real	payload (lb or kg from input)
uconv_time	real	time (minutes from input)
uconv_dist	real	distance (nm from input)
uconv_drag	real	drag (ft ² or m ² from input)
uconv_ROC	real	rate of climb (ft/sec or m/sec from input)
		Conversion factors for weight equations
wtconv_hp	real	power (hp from hp or kW)
wtconv_lb	real	weight (lb from lb or kg)
wtconv_frc	real	force (lb from lb or N)
wtconv_ft	real	length (ft from ft or m)
wtconv_ft2	real	area (ft^2 from ft^2 or m^2)
wtconv_gal	real	fuel (gal from gal or liter)
wtconv_slug	real	slug (slug/lb or kg/kg)
wtconv_in	real	inches (in/ft or m/m)
wtconv_kW	real	power (kW from hp or kW)
wtconv_m	real	meter (m from ft or m)

Common: Job

		Conversion factors for energy
Econv_kg	real	weight (kg from lb or kg)
Econv_L	real	volume (liter from gal or liter)
Econv_dE	real	energyflow (MJ/hr from hp or kW)
		Conversion factors
DLconv	real	disk loading (lb/ft ² from lb/ft ² or kg/m ²)
tonconv	real	ton (from lb or kg)
rangeconv	real	range for fuel=1%GW (nm from $1/(lb/hp-hr)$) or $1/(kg/kW-hr)$, times $ln(1/.99)$)
endconv	real	endurance for fuel=1%GW (min from hr, times $\ln(1/.99)$)
		Output
WRITEenergy_case	int	write fuel energy for burn weight
		Units for output
Uwrite	int	analysis units (from Cases)
Uwrite_temp	int	mission units, temperature (from Cases)
Ukts	c*10	speed (knots, mph, kph, ft/sec, m/sec); uconv_vel
UROC	c*10	rate of climb (ft/min, ft/sec, m/sec); uconv_ROC
Udist	c*10	distance (nm, mile, km); uconv_dist
Utime	c*10	time (min, hr); uconv_time
UDoQ	c*10	$drag\ (ft^2,m^2);$ uconv_drag
Upay	c*10	payload (lb, kg); uconv_pay
Ualt	c*10	altitude (ft, m); uconv_alt
Ulen	c*10	length
Uarea	c*10	area
Uvel	c*10	velocity
Utemp	c*10	temperature
Uwt	c*10	weight
Upwr	c*10	power
Ufuelflow	c*10	fuel flow
Umassflow	c*10	mass flow
Usfc	c*10	sfc
Utsfc	c*10	thrust sfc
Uspecrange	c*10	specific range
Ufueleff	c*10	fuel efficiency
Uproductivity	c*10	productivity

Common: Job 31

c*10	force
c*10	moment
c*10	dynamic pressure
c*10	density
	c*10

Structure: Design

Variable	Type De	escription	Default
Cases	Cases	Cases	
Size	Size	Size Aircraft for Design Conditions and Missions	
OffDesign	OffDesign	Mission Analysis	
Performance	Performance	Flight Performance Analysis	
MapEngine	MapEngine	Map of Engine Performance	
MapAero	MapAero	Map of Airframe Aerodynamics	
Solution	Solution	Solution Procedures	
Cost	Cost	Cost	
Emissions	Emissions	Emissions	
Aircraft	Aircraft	Aircraft	
Systems	Systems	Systems	
Fuselage	Fuselage	Fuselage	
LandingGear	${\sf LandingGear}$	Landing Gear	
Rotor(nrotormax)	Rotor	Rotors	
Wing(nwingmax)	Wing	Wings	
Tail(ntailmax)	Tail	Tails	
FuelTank(ntankmax)	FuelTank	Fuel Tank Systems	
Propulsion(npropmax)	Propulsion	Propulsion Groups	
${\sf EngineGroup(nengmax)}$	EngineGroup	Engine Groups	
JetGroup(njetmax)	JetGroup	Jet Groups	
${\sf ChargeGroup(nchrgmax)}$	ChargeGroup	Charge Groups	
EngineModel(nengmax)	EngineModel	Engine Models	
EngineParamN(nengpmax)	${\sf EngineParamN}$	Engine Model Parameters	
EngineTable(nengmax)	EngineTable	Engine Tables	
RecipModel(nengmax)	RecipModel	Reciprocating Engine Models	
${\sf CompressorModel(nengmax)}$	CompressorMod	del Compressor Models	
MotorModel(nengmax)	${\sf MotorModel}$	Motor Models	
JetModel(njetmax)	JetModel	Jet Models	

Structure: Design

FuelCellModel(nchrgmax) FuelCellModel Fuel Cell Models
SolarCellModel(nchrgmax) SolarCellModel Solar Cell Models
BatteryModel(ntankmax) BatteryModel Battery Models

Variable	Type		Description	Default
		+	Case Description	
title	c*100	+	title	
subtitle1	c*100	+	subtitle	
subtitle2	c*100	+	subtitle	
subtitle3	c*100	+	subtitle	
notes	c*1000	+	notes	
ident	c*32	+	identification	
timedate	c*20		time-date identification	
		+	Case Tasks (0 for none)	
TASK_Size	int	+	size aircraft for design conditions	1
TASK_Mission	int	+	mission analysis	1
TASK_Perf	int	+	flight performance analysis	1
TASK_Map_engine	int	+	map of engine performance	0
TASK_Map_aero	int	+	map of airframe aerodynamics	0
			Turn off all tasks to just initialize and check the model, including geometry and weights	
		+	Write Input Parameters	
WRITE_input	int	+	selection (0 none, 1 all, 2 first case)	2
$WRITE_{input}TechFactors$	int	+	TechFactors (0 for none)	1
WRITE_input_Geometry	int	+	Geometry (0 for none)	1

		+	Output	
		+	selection (0 for none)	
OUT_design	int	+	design file	0
OUT_perf	int	+	performance file	0
OUT_geometry	int	+	geometry file	0
OUT_aircraft	int	+	aircraft description file	0
$OUT_{solution}$	int	+	solution file (1 text, 2 binary)	0
OUT_sketch	int	+	sketch file	0
OUT_error	int	+	errors file	0
		+	file name or logical name (blank for default logical name)	
FILE_design	c*256	+	design file (DESIGNn)	, ,
FILE_perf	c*256	+	performance file (PERFn)	, ,
FILE_geometry	c*256	+	geometry file (GEOMETRYn)	, ,
FILE_aircraft	c*256	+	aircraft description file (AIRCRAFTn)	, ,
FILE_solution	c*256	+	solution file (SOLUTIONn)	, ,
FILE_sketch	c*256	+	sketch file (SKETCHn)	, ,
FILE_engine	c*256	+	engine performance file (ENGINEn)	, ,
FILE_aero	c*256	+	airframe aerodynamics file (AEROn)	, ,
FILE_error	c*256	+	errors file (ERRORn)	, ,
		+	formats	
$WRITE_{page}$	int	+	page control (0 none, 1 form feed, 2 extended Fortran)	1
WRITE_design	int	+	design (1 first case only, 2 all cases)	2
WRITE_wt_level	int	+	weight statement, max level (1 to 5)	5
$WRITE_wt_long$	int	+	weight statement, style (0 omit zero lines, 1 all lines)	0
WRITE_wt_comp	int	+	weight statement, component (0 for none)	1
WRITE_energy	int	+	fuel energy for burn weight (0 for none)	0
WRITE_flight	int	+	flight state, component loads (0 for none)	1
WRITE_files	int	+	design, performance, or geometry (1 single file of all cases)	0
WRITE_sketch_load	int	+	sketch component forces (0 none)	1
WRITE_sketch_cond	int	+	sketch flight condition (0 none, 1 design, 2 performance)	0
ksketch	int	+	flight condition number	0

selected files are generated for each case (n = case number in default name) option single file of all cases for design, performance, or geometry (form feed between cases)

size and analysis tasks can produce design and performance files same information as in standard output, in tab-delimited form aircraft or solution file can be read by subsequent case or job geometry file has information for graphics and other analyses

sketch file has information to check geometry and solution (DXF format)

flight condition required to use Euler angles, control and incidence, component forces engine map task (TASK_Map_engine) produces engine performance file airframe aerodynamics map task (TASK_Map_aero) produces airframe aerodynamics file error messages to standard output (OUT_error=0) or separate file (OUT_error=1)

		+	Gravity	
SET_grav	int	+	specification (0 standard, 1 input)	0
grav	real	+	input gravitational acceleration g	
		+	Environment	
density_ref	real	+	reference density (0. for air at SLS)	0.
csound_ref	real	+	reference speed of sound (0. for air at SLS)	0.
		+	Units	
Units	int	+	analysis units (1 English, 2 SI)	1
		+	units for input of missions and flight conditions	
Units_miss	int	+	override default units (0 no, 1 yes)	0
Units_vel	int	+	velocity units (0 knots; 1 mile/hr, 2 km/hr, 3 ft/sec, 4 m/sec)	0
Units_alt	int	+	altitude units (0 ft or m; 1 ft, 2 m)	0
Units_pay	int	+	payload units (0 lb or kg; 1 lb, 2 kg)	0
Units_time	int	+	time units (0 minutes; 1 hours)	0
Units_dist	int	+	distance units (0 nm; 1 miles; 2 km)	0
Units_temp	int	+	temperature (0 F or C; 1 F, 2 C)	0
Units_drag	int	+	drag units (0 ft 2 or m 2 ; 1 ft 2 , 2 m 2)	0
$Units_ROC$	int	+	rate of climb units (0 ft/min; 1 ft/sec, 2 m/sec)	0
		+	units for parameters	
Units_Dscale	int	+	input D/q scaled with gross weight (0 analysis default, 1 English, 2 SI)	0

Analysis units: must be same for all cases in job

English: ft-slug-sec-F; weights in lb, power in hp (internal units)

SI: m-kg-sec-C; weights in kg, power in kW (internal units)

Weight in the design description is actually mass

pounds converted to slugs using reference gravitational acceleration

Default units for flight condition and mission: override with ${\tt Units_xxx}$

speed in knots, time in minutes, distance in nm, ROC in ft/min

Input for case

inCases int Cases inSize int Size

inSizeCondition(nfltmax) int SizeCondition inSizeMission(nmissmax) int SizeMission inOffDesign int OffDesign

 $\begin{array}{lll} \text{inOffMission(nmissmax)} & \text{int} & \text{OffMission} \\ \text{inPerformance} & \text{int} & \text{Performance} \end{array}$

inPerfCondition(nfltmax) int PerfCondition
inMapEngine int MapEngine
inMapAero int MapAero
inSolution int Solution

Last input

lastSizeCondition int SizeCondition lastSizeMission int SizeMission lastOffMission int OffMission lastPerfCondition int PerfCondition

case input of other structures recorded in Aircraft structure there must be input for systems, fuselage, landing gear, fuel tank there must be input for all structures used

Structure: Size

Variable	Type	Description	Default
		Size Aircraft for Design Conditions and Missions	
SizeParam	SizeParam	Parameters	
		Sizing Flight Conditions	
FltCond(nfltmax)	FltCond	conditions	
FltState(nfltmax)	FltState	conditions	
		Design Missions	
Mission(nmissmax)	Mission	missions	

Chapter 8

Variable	Type		Description	Default
		+	Size Aircraft for Design Conditions and Missions	
title	c*100	+	title	
notes	c*1000 ·	+	notes	
		+	Sizing Method	
$SIZE_{perf}(npropmax)$	c*16	+	quantity sized from performance	'engine'
$SIZE_jet(njetmax)$	c*16	+	jet group sized from performance	'jet'
$SIZE_charge(nchrgmax)$	c*16	+	charge group sized from performance	'none'
SIZE_param	int ·	+	parameter iteration (0 not required)	0
$SET_{rotor}(nrotormax)$	c*32	+	rotor parameters	'DL+Vtip+CWs'
SET_wing(nwingmax)	c*16	+	wing parameters	${}'WL+aspect'$
FIX_DGW	int ·	+	design gross weight (0 calculated, 1 fixed)	0
FIX_WE	int ·	+	weight empty (0 calculated, 1 fixed)	0
$SET_{tank}(ntankmax)$	c*16	+	fuel tank capacity	'miss'
SET_SDGW	c*16	+	structural design gross weight	'f(DGW)'
SET_WMTO	c*16	+	maximum takeoff weight	'f(DGW)'
$SET_limit_ds(npropmax)$	c*16	+	drive system torque limit	'ratio'

size task (Cases%TASK_Size=1): at least one nFltCond or nMission no size task (Cases%TASK_Size=0): size input specifies how fixed aircraft determined

SIZE_perf:

'engine' = power from maximum of power required for all designated conditions and missions

'rotor' = radius from maximum of power required for all designated conditions and missions

'none' = power required not used to size engine/rotor

flight conditions and missions (max GW, max effort, or trim)

that have zero power margin are not used to size engine or rotor that have zero torque margin are not used to size transmission

```
SIZE jet:
      'jet' = thrust from maximum of thrust required for all designated conditions and missions
      'none' = thrust required not used to size jet group
          flight conditions and missions (max GW, max effort, or trim)
                that have zero thrust margin are not used to size jet group
SIZE charge:
      'charge' = power from maximum of power required for all designated conditions and missions
      'none' = power required not used to size charge group
'SIZE param': use to force parameter iteration
SET rotor, rotor parameters: required for each rotor
rotor parameters: input three or two quantities, others derived
    SET rotor = input three of ('radius' or disk loading 'DL' or 'ratio'), 'CWs', 'Vtip', 'sigma'
    except if SIZE perf='rotor': SET rotor = input two of 'CWs', 'Vtip', 'sigma' for one or more main rotors
    SET rotor = 'ratio+XX+XX' to calculate radius from radius of another rotor
    tip speed is Vtip ref for drive state #1
rotor parameters for an antitorque or aux thrust rotor:
    SET rotor = input three of ('radius' or 'DL' or 'ratio' or 'scale'), 'CWs', 'Vtip', 'sigma'
    SET rotor = 'scale+XX+XX' to calculate tail rotor radius from parametric equation,
         using main rotor radius and disk loading
    thrust from designated sizing conditions and missions (DESIGN thrust)
SET wing, wing parameters: for each wing; input two quantities, other two derived
    SET wing = input two of ('area' or wing loading 'WL'), ('span' or 'ratio' or 'radius' or 'width' or 'hub' or 'panel'),
                    'chord', aspect ratio 'aspect'
    SET wing = 'ratio+XX' to calculate span from span of another wing
    SET wing = 'radius+XX' to calculate span from rotor radius
    SET wing = 'width+XX' to calculate span from rotor radius, fuselage width, and clearance (tiltrotor)
    SET wing = 'hub+XX' to calculate span from rotor hub position (tiltrotor)
    SET wing = 'panel+XX' to calculate span from wing panel widths
FIX DGW: input DGW restricts SIZE perf, SET GW parameters
FIX WE: fixed weight empty obtained by adjusting contingency weight
```

```
SET tank, fuel tank sizing: usable fuel capacity Wfuel cap (weight) or Efuel cap (energy)
      'input' = input Wfuel cap or Efuel cap
      'miss' = calculate from mission fuel used
           Wfuel cap or Efuel cap = max(fFuel cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
      'miss+power' = calculate from mission fuel used and mission battery discharge power
      'f(miss)' = function of mission fuel used
           Wfuel cap or Efuel cap = dFuel cap + fFuel cap*((maximum mission fuel)+(reserve fuel))
SET SDGW, structural design gross weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{SD}=dSDGW+fSDGW*W_{D}
    'f(WMTO)' = based on WMTO; W_{SD}=dSDGW+fSDGW*W_{MTO}
    'maxfuel' = based on fuel state; W_{SD}=dSDGW+fSDGW*W_G, W_G = W_D-Wfuel DGW+fFuelSDGW*W_{\text{fuel-cap}}
    'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN sdgw)
    Aircraft input parameters: dSDGW, fSDGW, fFuelSDGW
SET WMTO, maximum takeoff weight:
    'input' = input
    'f(DGW)' = based on DGW; W_{MTO}=dWMTO+fWMTO*W_D
    'f(SDGW)' = based on SDGW; W_{MTO}=dWMTO+fWMTO*W_{SD}
    'maxfuel' = based on maximum fuel; W_{MTO}=dWMTO+fWMTO*W_G, W_G = W_D-Wfuel_DGW+W_{\rm fuel-cap}
     'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN wmto)
    Aircraft input parameters: dWMTO, fWMTO
SET limit ds, drive system torque limit: input (use Plimit xx) or calculate (from fPlimit xx)
    'input' = Plimit ds input
    'ratio' = from takeoff power, fPlimit_ds\sum (N_{\rm eng} P_{\rm eng})
    'Pav' = from engine power available at transmission sizing conditions and missions (DESIGN xmsn)
         fPlimit_ds(\Omega_{ref}/\Omega_{prim}) \sum (N_{eng}P_{av})
    'Preq' = from engine power required at transmission sizing conditions and missions (DESIGN xmsn)
          fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{reg})
engine shaft limit also uses EngineGroup%SET limit es
rotor shaft limit also uses Rotor%SET_limit_rs, rotor limits only use power required (or input)
convergence may be improved if do not apply drive system limits to power available (FltState%SET Plimit=off)
    for transmission sizing conditions and mission segments (DESIGN xmsn)
```

```
input required to transmit sized rotorcraft to another job (through aircraft description file) or to following case:
    turn off sizing: Cases%TASK_size=0, Cases%TASK_mission=1, Cases%TASK_perf=1
    fix aircraft: use ACTION='nosize', or
        SIZE_perf='none', SIZE_jet='none', SIZE_charge='none'
        SET_rotor='radius+Vtip+sigma', SET_wing='area+span', FIX_DGW=1
        SET_tank='input', SET_limit_ds='input', SET_SDGW='input', SET_WMTO='input'
    with wing panels: SET_wing='WL+panel', Wing%SET_panel='width+taper', 'span+taper'
```

performance (SIZE_jet_jet, param, none) performance (SIZE_charge_chrg, param, none) rotor sized (SIZE_rotor_radius, thrust, none) rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius) rotor C_W/σ (1 fixed, 0 not) rotor $V_{\rm tip}$ (1 fixed, 0 not) rotor σ (1 fixed, 0 not) wing area (SET_wing_area, WL, not_area) wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span) wing chord (1 fixed, 0 not) wing aspect ratio (1 fixed, 0 not) fuel tank (SET_tank_input, miss, misspower, fmiss) SDGW (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)

WMTO (SET WMTO input, fDGW, fSDGW, maxfuel, perf)

drive system torque limit (SET limit input, ratio, Pav, Preq)

performance (SIZE perf engine, rotor, param, none)

Number of conditions and missions conditions and missions for size engine or rotor nSIZE engine(npropmax) int nSIZE jet(njetmax) int conditions and missions for size jet group nSIZE charge(nchrgmax) conditions and missions for size charge group int nDESIGN GW design conditions and missions for DGW int design conditions and missions for transmission nDESIGN xmsn(npropmax) int

Specification

int

iSIZE perf(npropmax)

iSIZE charge(nchrgmax)

iSIZE rotor(nrotormax)

iSET rotor radius(nrotormax)

FIX rotor CWs(nrotormax)

FIX rotor Vtip(nrotormax)

FIX_rotor_sigma(nrotormax)

iSET wing area(nwingmax)

iSET wing span(nwingmax)

FIX wing chord(nwingmax)

FIX wing AR(nwingmax)

iSET limit ds(npropmax)

iSET tank(ntankmax)

iSET SDGW

iSET WMTO

iSIZE jet(njetmax)

nDESIGN sdgw	int		design conditions for SDGW	
nDESIGN wmto	int		design conditions for WMTO	
nDESIGN tank	int		design missions for fuel tank	
nDESIGN_tank	int		design conditions and missions for rotor thrust	
IIDESIGN_tillust	1111		Size aircraft	
kind_iter_size	int		kind iteration, performance (0 none, 1 size engine or radius or jet group or charge group)	
	int		kind iteration, parameters (0 none, 1 calculate parameters)	
kind_iter_param issizeconv	int		converged (0 not)	
			number of iterations, performance loop	
count_size	int		· L	
count_param	int		number of iterations, parameter loop	
count_total	int		total number of iterations	
error_engine(nengmax)	real		error ratio, engine	
error_jet(njetmax)	real		error ratio, jet	
$error_charge(nchrgmax)$	real		error ratio, charge	
error_rotor(nrotormax)	real		error ratio, rotor	
error_DGW	real		error ratio, DGW	
error_xmsn(npropmax)	real		error ratio, Plimit	
error_sdgw	real		error ratio, structural design gross weight	
error_wmto	real		error ratio, maximum takeoff weight	
error_tank	real		error ratio, Wfuelcap	
$error_thrust(nrotormax)$	real		error ratio, thrust	
error_WE	real		error ratio, WE	
Pratio(npropmax)	real		ratio P_{reqPG}/P_{avPG} (max all sizing conditions and missions)	
PratioEG(nengmax)	real		ratio P_{reqEG}/P_{avEG} (max all sizing conditions and missions)	
Jratio(njetmax)	real		ratio T_{regJG}/T_{avJG} (max all sizing conditions and missions)	
Cratio(nchrgmax)	real		ratio P_{reqCG}/P_{avCG} (max all sizing conditions and missions)	
nFltCond out	int		number of conditions for output	
nMission_out	int		number of missions for output	
		+	Sizing Flight Conditions	_
nFltCond	int	+	number of conditions (maximum nfltmax)	0
		+	Design Missions	
nMission	int	+	number of missions (maximum nmissmax)	0

input one condition (FltCond and FltState variables) in SizeCondition namelist

input one mission (MissParam, MissSeg, and FltState variables) in SizeMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Structure: OffDesign

Variable	Type	Description	Default
OffParam Mission(nmissmax)	OffParam Mission	Mission Analysis Parameters Missions	

Structure: OffParam

Variable	Type	Description	Default
	-	+ Mission Analysis	
title	c*100 -	+ title	
notes	c*1000	+ notes	
nMission_out	int	Analyze mission number of missions for output	
nMission		+ Missions + number of missions (maximum nmissmax)	0

mission analysis input required if Cases%TASK_Mission=1

input one mission (MissParam, MissSeg, and FltState variables) in OffMission namelist all mission segments are defined in this namelist, so MissSeg and FltState variables are arrays each variable gets one more dimension, first array index is always segment number

Structure: Performance

Variable	Type	Description	Default
		Flight Performance Analysis	
PerfParam	PerfParam	Parameters	
		Performance Flight Conditions	
FltCond(nfltmax)	FltCond	conditions	
FltState(nfltmax)	FltState	conditions	

Chapter 12

Structure: PerfParam

Variable	Type		Description	Default
		+	Flight Performance Analysis	
title	c*100	+	title	
notes	c*1000	+	notes	
			Analyze performance	
nFltCond_out	int		number of conditions for output (including sweeps)	
nsweep_total	int		total number of sweep conditions	
		+	Performance Flight Conditions	
nFltCond	int	+	number of conditions (maximum nfltmax)	0
			flight performance analysis input required if Cases%TASK_Perf=1	
			inglit performance analysis input required if Cases / (TASK_Fert—1	
			input one condition (FltCond and FltState variables) in PerfCondition namelist	

Chapter 13

Structure: MapEngine

Variable	Type		Description	Default
		+	Map of Engine Performance	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Identification	
kEngineGroup	int	+	engine group	1
KIND_map	int	+	Kind (1 performance, 2 model)	1
			engine map only available for RPTEM model and reciprocating engine model (performance only)	
			engine map input required if Cases%TASK_Map_engine=1	
			only performance parameters or only model parameters used	
		+	Performance	
		+	independent variables (0 none, 1 altitude, 2 temperature, 3 flight speed, 4 engine speed, 5 power)	
SET_var(5)	int	+	first set	0
SET_var2(5)	int	+	second set	0
WRITE_header	int	+	output format (1 single header, 2 header for inner variable)	2
SET_atmos	c*12	+	atmosphere specification	'std'
SET_utillos	0 12	+	altitude h (Units_alt)	Sta
altitude_min	real	+	minimum	0.
altitude_max	real	+	maximum	20000.
altitude_inc		•		
· · · · · · · · · · · · · · · · · · ·	real	+	increment	1000.

Structure: MapEngine 50

		+	temperature τ or temperature increment ΔT (Units_temp)	
temp_min	real	+	minimum	0.
temp_max	real	+	maximum	100.
temp_inc	real	+	increment	10.
temp_base	real	+	baseline	0.
		+	flight speed V (TAS, Units_vel)	
Vkts_min	real	+	minimum	0.
Vkts_max	real	+	maximum	200.
Vkts_inc	real	+	increment	50.
Vkts_base	real	+	baseline	0.
SET_rpm	int	+	engine speed N (1 rpm, 2 percent)	2
Nturbine_min	real	+	minimum	90.
Nturbine_max	real	+	maximum	110.
Nturbine_inc	real	+	increment	5.
Nturbine_base	real	+	baseline	100.
SET_power	int	+	power required (1 power, 2 fraction of power available (0. to 1.+)	2
power_min	real	+	minimum	.1
power_max	real	+	maximum	1.
power_inc	real	+	increment	.1
power_base	real	+	baseline	1.
STATE_IRS	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
KIND_loss	int	+	installation losses (0 for none)	0

independent variables: 1 to 5 variables, last is innermost loop; outer loop is always rating quantities not identified as independent variables fixed at baseline values

SET_atmos, atmosphere specification:

determines whether temp_xxx is temperature or temperature increment

'std' = standard day at specified altitude (use altitude_xxx)

'temp' = standard day at specified altitude, and specified temperature (use altitude_xxx, temp_xxx)

'dtemp' = standard day at specified altitude, plus temperature increment (use altitude_xxx, temp_xxx) see FltState%SET_atmos for other options (polar, tropical, and hot days)

Structure: MapEngine 51

		+	Model	
		+	flight speeds $V(TAS, Units_vel)$	
nV_model	int	+	number (maximum 10)	1
$V_{model}(10)$	real	+	values	0.
V_{min}	real	+	minimum	0.
V_max	real	+	maximum	400.
V_inc	real	+	increment	50.
		+	temperature ratio T/T_0	
ntheta_model	int	+	number (maximum 10)	1
$theta_model(10)$	real	+	values	1.
theta_min	real	+	minimum	8.
theta_max	real	+	maximum	1.1
theta_inc	real	+	increment	.02
		+	engine speed, $N/N_{\rm spec}$ (percent)	
fN_{min}	real	+	minimum	90.
fN_{max}	real	+	maximum	110.
fN_inc	real	+	increment	5.
		+	fraction static MCP power, P/P_{0C}	
fP_min	real	+	minimum	.1
fP_{max}	real	+	maximum	2.
fP_{inc}	real	+	increment	.1

RPTEM model

performance: fuel flow, mass flow, net jet thrust, optimum turbine speed vs power fraction and airspeed (use fP and V_model) turbine speed: power ratio vs turbine speed and airspeed (use fN and V_model) power available: specific power, mass flow, power, fuel flow vs temperature ratio (use theta and V_model) vs airspeed (use V and theta_model)

Specification

kEnginelVlodel	int	engine model
iSET_atmos	int	atmosphere (SET_atmos_xxx)
nSET_var	int	number of independent variable sets

0

'retract'

Chapter 14

STATE_LG

Nauxtank(nauxtankmax,ntankmax)

Structure: MapAero

int

+

c*12

landing gear state

Variable	Type	Description	Default
		+ Map of Airframe Aerodynamics	
title	c*100	+ title	
notes	c*1000	+ notes	
		+ Tables	
$KIND_{table}$	int	+ kind (1 one-dimensional, 2 multi-dimensional)	1
		+ aerodynamic loads (0 for components off)	
SET_fuselage	int	+ fuselage and landing gear	1
SET_tail	int	+ tails	1
SET_wing	int	+ wings	1
SET_rotor	int	+ rotors	1
SET_engine	int	+ engines and fuel tank	1
		airframe aerodynamics map input required if Cases%TASK_Map_aero=1 multi-dimensional: generate 6 files of three-dimensional tables one file for each load=DRAG, SIDE, LIFT, ROLL, PITCH, YAW filename=FILE_aero//load or AEROn//load one-dimensional: generate 1 file of all six loads function of single independent variable = var_lift(1)	
STATE_control	int	+ Operating Condition + aircraft control state	1

number of auxiliary fuel tanks $N_{
m auxtank}$ (each aux tank size)

Structure: MapAero 53

SET_extkit	int	+	wing extension kit on aircraft (0 none, 1 present)	1
KIND_alpha	int	+	angle of attack and sideslip angle representation (1 conventional, 2 reversed)	1
$SET_comp_control$	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	0
control(ncontmax)	real	+	aircraft controls	0.
tilt	real	+	tilt	0.
alpha	real	+	angle of attack α	0.
beta	real	+	sideslip angle eta	0.
			landing gear state: STATE_LG='extend', 'retract' (keyword = ext, ret)	

		+	Independent variables	
$var_lift(3)$	c*16	+	lift	
$var_drag(3)$	c*16	+	drag	
var_side(3)	c*16	+	side force	
var_pitch(3)	c*16	+	pitch moment	
var_roll(3)	c*16	+	roll moment	
var_yaw(3)	c*16	+	yaw moment	
		+	Variable range	
		+	angle of attack and sideslip variation	
angle_lowinc	real	+	low range increment (deg)	2.
angle_highinc	real	+	high range increment (deg)	5.
angle_low	real	+	low range value (deg)	40.
angle_max	real	+	maximum value (deg)	180.
		+	control variation	
control_lowinc	real	+	low range increment (deg)	2.
control_highinc	real	+	high range increment (deg)	2.
control_low	real	+	low range value (deg)	45.
control_max	real	+	maximum value (deg)	90.
		+	third independent variable	
gamma_lowinc	real	+	low range increment (deg)	20.
gamma_highinc	real	+	high range increment (deg)	20.
gamma_low	real	+	low range value (deg)	60.
gamma_max	real	+	maximum value (deg)	60.

Structure: MapAero 54

```
var_load identify independent variables
    only var_lift(1) used for KIND_table=one-dimensional
    values: 'alpha', 'beta', IDENT_control(ncontrol)
    var_load(2) blank for 1D table, var_load(3) blank for 2D table
alpha/beta/controls/tilt fixed if not independent variable (tilt replace control(ktilt))
assume control system defined so aircraft controls connected to flaperon, elevator, aileron, rudder
angle, control, gamma variation: by lowinc for -low to +low; by highinc to -max and +max
maximum total values = naeromax
```

Operating Condition landing gear state (STATE LG extend, retract) **iSTATE LG** int Independent variables (AERO_VAR_none, alpha, beta, or control number) number of independent variables nvar(6) int variables (drag, side, lift, roll, pitch, yaw) ivar(3,6)int **Tables** number of angles (maximum naeromax) nang int angle values ang(naeromax) real number of controls (maximum naeromax) ncnt int cnt(naeromax) real control values number of gamma (maximum naeromax) ngam int gam(naeromax) real gamma values

Chapter 15

Variable	Type		Description	Default
		+	Sizing or Performance Flight Condition	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*12	+	gross weight	'DGW'
GW	real	+	input gross weight W_G	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
SET_alt	int	+	altitude (0 input, 1 from KIND_source)	0
		+	source for gross weight and altitude	
KIND_source	int	+	kind (1 size mission, 2 size condition, 3 off design mission, 4 performance condition)	1
kSource	int	+	mission or condition number	0
kSegment	int	+	segment number	0
seg_source	int	+	segment (1 start, 2 midpoint)	1
SET_UL	c*12	+	useful load	'pay'
Wpay	real	+	input payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition $W_{ m ammo}$ (Units_pay)	0.
Wpay_weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.

		+	fuel tank system	
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
SET_auxtank(ntankmax)	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 0 no change)	1
mauxtank(ntankmax)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,ntai	nkmax)			
	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	
		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment $\delta N_{\rm crew}$	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
dNpass_seat	int	+	passenger seat increment $\delta N_{\mathrm{pass-seat}}$	0
		+	kits on aircraft (0 none, 1 present)	
SET_foldkit	int	+	folding kit	1
$SET_{extkit}(nwingmax)$	int	+	wing extension kit	1
SET_wingkit(nwingmax)	int	+	wing kit on aircraft	1
SET_otherkit	int	+	other kit on aircraft	0
DESIGN_engine	int	+	design condition for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design condition for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design condition for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design condition for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design condition for transmission (1 to use for transmission sizing)	1
DESIGN_sdgw	int	+	design condition for SDGW (1 to use for SDGW calculation)	1
DESIGN_wmto	int	+	design condition for WMTO (1 to use for WMTO calculation)	1
DESIGN_thrust	int	+	design condition for antitorque or aux thrust (1 to use for rotor sizing)	1

```
label is short description for output
sizing flight condition: use all parameters except sweep
    fixed gross weight conditions not used to determine DGW, SDGW, WMTO
        (set DESIGN GW=0, DESIGN sdgw=0, DESIGN wmto=0)
    condition not used to size engine or rotor if power margin fixed (max GW, max effort, or trim)
    condition not used to size transmission if zero torque margin (max GW, max effort, or trim)
performance flight condition: not use DESIGN xx
SET GW, SET UL values determine which input parameters used
SET GW, set gross weight W_G:
      'DGW' = design gross weight W_D; input (FIX DGW) or calculated
      'SDGW' = structural design gross weight W_{SD} (may depend on DGW)
      'WMTO' = maximum takeoff gross weight W_{MTO} (may depend on DGW)
      'f(DGW)' = function DGW: fGW*W_D+dGW
      'f(SDGW)' = function SDGW: fGW*W_{SD}+dGW
      'f(WMTO)' = function WMTO: fGW*W_{MTO}+dGW
      'input' = input (use GW)
      'source' = gross weight from specified mission segment or flight condition (KIND source)
      'f(source)' = function of source: fGW*W_{source}+dGW
      'maxP', 'max' = maximum GW for power required equal specified power: P_{reg} = \text{fPav}P_{av} + \text{dPav}
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
     'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{req} = \mathrm{fTav}T_{av} + \mathrm{dTav}
              \min((fT_{avJG} + d) - T_{reqJG}) = 0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
SET UL, set useful load: with fixed useful load adjustments in fallout weight
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
```

```
if SET_GW='pay+fuel', assume SET_UL same (actual SET_UL ignored)  
KIND_source, source for gross weight or altitude: source must be solved before this condition calculation order: size missions, size conditions, off design missions, performance conditions input fuel weight: W_{\rm fuel} = \min({\rm dFuel+fFuel*}W_{\rm fuel-cap}, W_{\rm fuel-cap}) + \sum {\rm Nauxtank*}W_{\rm aux-cap}  
auxiliary fuel tanks: SET_auxtank used for fallout fuel weight (SET_UL='pay')  
adjust Nauxtank for first fuel tank system with SET_auxtank > 0  
otherwise number of auxiliary fuel tanks fixed at input value  
payload: only Wpay used if SET_Wpayload = no details  
crew: only dWcrew used if SET_Wcrew = no details  
equipment: dNcrew seat and dNpass seat require non-zero weight per seat
```

```
Parameter sweep
                                              sweep (0 for none, 1 from list, 2 from range)
SET sweep
                             int
                                                                                                                                                                  0
                                              initialize trim (0 for not)
                                                                                                                                                                  0
INIT sweep
                             int
                                              number of swept quantities (1 to gsweepmax)
                                                                                                                                                                  1
nquant sweep
                             int
                                              list, number of values (maximum nsweepmax)
                             int
nsweep
                             c*12
                                              quantity (parameter name)
quant sweep(qsweepmax)
                                      +
                                      +
                                              range
sweep first(qsweepmax)
                                                  first parameter value
                             real
                                      +
sweep last(gsweepmax)
                                      +
                                                  last parameter value
                             real
sweep inc(qsweepmax)
                                      +
                                                  parameter increment
                             real
                                             list
sweep(nsweepmax,qsweepmax) real
                                      +
                                                  parameter values
```

Parameter sweep: only for performance flight conditions, not sizing flight conditions maximum total number of values for all conditions is nsweepmax

Single sweep, simultaneously varying nquant_sweep quantities

```
Sweeps executed from sweep last to sweep first
    sweep analyzed using single data structure, only solution for sweep first saved (last value executed)
    sweep_last (first value executed) should be condition that will converge
    sign of parameter step determined by sign of (sweep last-sweep first); sign of sweep inc ignored
    sweep_inc of first quantity determines number of values, sweep_inc of other quantities not used
INIT_sweep: control/pitch/roll values of trim iteration initialized from previous condition of sweep
Available parameters: quant_sweep = parameter name
     GW, dGW, fGW, dPavn, fPavn, dTavn, Wpay, dFueln, fFueln, dWcrew, dWeguip
    Vkts, Mach, ROC, climb, side, pitch, roll, rate turn, nz turn, bank turn, rate pullup, nz pullup
     ax linear, ay linear, az linear, nx linear, ny linear, nz linear
    altitude, dtemp, temp, density, csound, viscosity, HAGL
    controln, coll, latcyc, lngcyc, pedal, tilt, Vtipn, Npecn, fPower, fThrust, fCharge
    DoQ_pay, fDoQ_pay, DoQV_pay, dSLcg, dBLcg, dWLcg, trim_targetn
n = propulsion group (Vtip, Nspec, dPav, fPav), jet group (dTav, fTav), fuel tank system, control number, or trim quantity;
1 if absent
for fPower, value is factor on input fPower for all engine groups, all propulsion groups
for fThrust, value is factor on input fThrust for all jet groups
for fCharge, value is factor on input fCharge for all charge groups
```

parent kFltCond kcol_out	int int int	parent (1 Size, 2 Performance) FltCond number performance output column (first for sweep)
		Specification
iSET_GW	int	gross weight (SET_GW_xxx)
iSET_maxGW	int	max gross weight (0 no iteration; SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
iSET_UL	int	useful load (SET_UL_pay, fuel, payfuel)
iSETPmargin(npropmax)	int	power margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size engine or rotor
iSETQmargin(npropmax)	int	torque margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size transmission
iSETJmargin(njetmax)	int	jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim); not used to size jet group
iSETCmargin(nchrgmax)	int	charger power margin as quantity (1 trim); not used to size charge group
${\sf iSETBmargin}({\sf ntankmax})$	int	battery power margin as quantity (2 max effort, 1 trim); not used to size fuel tank

 $fixed\ gross\ weight;\ DESIGN_GW=0,\ DESIGN_sdgw=0,\ DESIGN_wmto=0$ $isFIX_GW$ int Parameter sweep kquant_sweep(qsweepmax) quantity number int label_sweep c*8 quantity column label vsweep(nsweepmax,qsweepmax) parameter values real fraction of rated engine power available fPower_original(nengmax) real fraction of rated jet thrust available fThrust_original(njetmax) real fraction of rated charger power available fCharge_original(nchrgmax) real

Structure: Mission

Variable	Type	Description	Default
		Mission Profile	
MissParam	MissParam	Parameters	
		Mission Segments	
MissSeg(nsegmax)	MissSeg	mission segments	
FltState(nsegmax)	FltState	flight conditions	

Chapter 17

Structure: MissParam

Variable	Type		Description	Default
		+	Mission Profile	
title	c*100	+	title	
label	c*8	+	label	
		+	Specification	
SET_GW	c*16	+	mission takeoff gross weight W_G	'pay+miss'
GW	real	+	input gross weight	0.
dGW	real	+	gross weight increment	0.
fGW	real	+	gross weight factor	1.
SET_UL	c*16	+	useful load	'pay+miss'
Wpay	real	+	input takeoff payload weight W_{pay} (Units_pay)	0.
Npass	int	+	number of passengers N_{pass}	0
Wpay_cargo	real	+	cargo $W_{ m cargo}$ (Units_pay)	0.
Wpay_extload	real	+	external load $W_{ m ext-load}$ (Units_pay)	0.
Wpay_ammo	real	+	ammunition $W_{ m ammo}$ (Units_pay)	0.
Wpay_weapons	real	+	weapons $W_{ m weapons}$ (Units_pay)	0.
SET_pay	c*16	+	payload changes	'delta'
		+	fuel tank systems	
$FIX_missfuel(ntankmax)$	int	+	mission fuel weight (0 calculated, 1 fixed)	0
dFuel(ntankmax)	real	+	fuel weight or energy increment	0.
fFuel(ntankmax)	real	+	fuel capacity factor	1.
SET_auxtank(ntankmax)	int	+	auxiliary fuel tanks (1 adjust Nauxtank, 2 only increase, 3 increase at start and drop, 0 no change)	1
mau×tank(ntankma×)	int	+	tank size changed (-1 first, -2 first size already used, m for m -th size)	-1
dNauxtank(ntankmax)	int	+	number tanks added or dropped	1
Nauxtank(nauxtankmax,nta	nkmax)			
·	int	+	number of auxiliary fuel tanks $N_{\rm auxtank}$ (each aux tank size)	
		+	fixed useful load	
SET_foldkit	int	+	folding kit on aircraft (0 none, 1 present)	1

Structure: MissParam 63

SET_reserve	int	+	fuel reserve (1 fraction mission fuel, 2 fraction fuel capacity, 3 only mission segments)	1
fReserve	real	+	fuel reserve fraction $f_{\rm res}$	0.
		+	split segments	
dist_inc	real	+	distance increment (Units_dist)	100.
time_inc	real	+	time increment (Units_time)	30.
alt_inc	real	+	altitude increment (Units_alt)	2000.
VTO_inc	real	+	takeoff velocity increment	10.
hTO_inc	real	+	takeoff height increment	10.
DESIGN_engine	int	+	design mission for power (1 to use for engine sizing)	1
DESIGN_jet	int	+	design mission for jet thrust (1 to use for jet group sizing)	1
DESIGN_charge	int	+	design mission for charge power (1 to use for charge group sizing)	1
DESIGN_GW	int	+	design mission for DGW (1 to use for DGW calculation)	1
DESIGN_xmsn	int	+	design mission for transmission (1 to use for transmission sizing)	1
DESIGN_tank	int	+	design mission for fuel tank (1 to use for fuel tank capacity)	1
DESIGN_thrust	int	+	design mission for antitorque or aux thrust (1 to use for rotor sizing)	1

'input' = input (use GW)

```
label is short description for output sizing mission: use all parameters fixed gross weight missions not used to determine DGW (set DESIGN_GW=0) mission segment not used to size engine or rotor if power margin fixed (max GW, max effort, or trim) mission segment not used to size transmission if zero torque margin (max GW, max effort, or trim) mission segment not used for sizing if set MissSeg%SizeZZZ=0 off design mission: not use DESIGN_xx  \begin{array}{l} \text{SET\_GW, SET\_UL values determine which input parameters used} \\ \text{SET\_GW, set mission takeoff gross weight $W_G$:} \\ \text{'DGW'} = \text{design gross weight $W_D$; input (FIX\_DGW) or calculated} \\ \text{'SDGW'} = \text{structural design gross weight $W_{SD}$ (may depend on DGW)} \\ \text{'WMTO'} = \text{maximum takeoff gross weight $W_{MTO}$ (may depend on DGW)} \\ \text{'f(DGW)'} = \text{function DGW: } \text{fGW*} W_D + \text{dGW} \\ \text{'f(SDGW)'} = \text{function SDGW: } \text{fGW*} W_{MTO} + \text{dGW} \\ \text{'f(WMTO)'} = \text{function WMTO: } \text{fGW*} W_{MTO} + \text{dGW} \\ \text{'f(WMTO)'} = \text{function WMTO: } \text{fGW*} W_{MTO} + \text{dGW} \\ \end{array}
```

Structure: MissParam 64

```
'maxP', 'max' = maximum GW for power required equal specified power: P_{req} = \text{fPav}P_{av} + \text{dPav}
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fP_{avPG} + d) - P_{reaPG}) = 0, over all propulsion groups
      'maxQ' = maximum GW for transmission torque equal limit: zero torque margin
              at mission segment MaxGW, minimum gross weight of designated segments
              \min(P_{\text{limit}} - P_{reg}) = 0, over all propulsion groups, engine groups, and rotors
     'maxPQ', 'maxQP' = maximum GW for power required equal specified power and transmission torque equal limit
              at mission segment MaxGW, minimum gross weight of designated segments
              most restrictive of power and torque margins
      'maxJ' = maximum GW for jet thrust required equal specified thrust: T_{reg} = \text{fTav}T_{av} + \text{dTav}
              at mission segment MaxGW, minimum gross weight of designated segments
              \min((fT_{avJG}+d)-T_{reqJG})=0, over all jet groups
      'maxPJ', 'maxQJ', 'maxPQJ' = maximum GW for most restrictive of power, torque, and thrust margins
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
SET UL, set useful load:
      'pay' = input payload weight (Wpay); fuel weight fallout
      'fuel' = input fuel weight (dFuel, fFuel, Nauxtank); initial payload weight fallout
      'miss' = fuel weight from mission; initial payload weight fallout
      'pay+fuel' = input payload and fuel weights; gross weight fallout
      'pay+miss' = input payload, fuel weight from mission; gross weight fallout
if SET GW='pay+fuel' or 'pay+miss', assume SET UL same (actual SET UL ignored)
FIX missfuel only used for SET UL='miss' or 'pay+miss', with more than one fuel tank system
SET pay, set payload changes: mission segment payload (use of MissSeg%xWpay)
      'none' = no changes
      'input' = value; payload = xWpay (not use Wpay)
      'delta' = increment; payload = (initial payload weight)+(xWPay-xWpay(seg1))
      'scale' = factor; payload = (initial payload weight)*(xWPay/xWpay(seg1))
when SET GW='max' and SET UL='fuel' or 'miss' (so payload is fallout), payload (from SET pay and xWpay) must
not be zero at the maximum GW segments
payload: only Wpay and xWpay used if SET Wpayload = no details
```

```
input fuel weight: W_{\text{fuel}} = \min(\text{dFuel+fFuel}*W_{\text{fuel-cap}}, W_{\text{fuel-cap}}) + \sum \text{Nauxtank}*W_{\text{aux-cap}}
                                                             for fallout fuel weight, this is the initial value for the mission iteration
                                                        auxiliary fuel tanks:
                                                             SET auxtank options: fixed; or adjust Nauxtank for each segment; or
                                                                  increase at mission start, then constant; or increase at start, then drop
                                                              for input fuel (SET_UL = 'fuel' or 'pay+fuel'), start with input Nauxtank, then drop
                                                             for mission fuel (SET_UL = 'miss' or 'pay+miss'), fixed W_{\text{fuel}} or E_{\text{fuel}} at start
                                                             for fallout (SET_UL = 'pay'), adjust W_{\text{fuel}} with change in Nauxtank (fixed W_G - W_{\text{pay}} = W_O + W_{\text{fuel}})
                                                             for all SET UL, adjust W_O with change in Nauxtank
                                                              fuel tank design mission: Nauxtank=0, allow W_{\text{fuel}} or E_{\text{fuel}} to exceed tank capacity
                                                        SET reserve: maximum of fuel for designated reserve mission segments
                                                             and fraction of fuel (f_{\text{res}}W_{\text{burn}}) or f_{\text{res}}E_{\text{burn}}) or fraction of fuel capacity (f_{\text{res}}W_{\text{fuel-cap}}) or f_{\text{res}}E_{\text{fuel-cap}})
                                                  Segment integration
                                                       method (0 segment start, 1 segment midpoint, 2 trapezoidal)
KIND_SegInt
                                   int
                                                                                                                                                                                                 1
                                                 Mission iteration (supersede Solution input if nonzero)
                                                      relaxation factor (mission fuel)
relax miss
                                             +
                                                                                                                                                                                                0.
                                   real
relax range
                                   real
                                             +
                                                      relaxation factor (range credit)
                                                                                                                                                                                                0.
                                                      relaxation factor (max takeoff GW)
                                             +
                                                                                                                                                                                                0.
relax gw
                                   real
                                                      tolerance (fraction reference)
toler miss
                                   real
                                                                                                                                                                                                0.
                                             +
                                                      trace iteration (0 for none)
                                                                                                                                                                                                 0
trace miss
                                   int
                                                 Mission Segments
nSeg
                                   int
                                                       number of mission segments (maximum nsegmax)
                                                                                                                                                                                                 1
                                                        input all mission segments as arrays in single mission namelist
                                                  parent (1 Size, 2 OffDesign)
                                   int
parent
kMission
                                   int
                                                  Mission number
```

kcol out

int

performance output column

		Specification
iSET_GW	int	gross weight (SET_GW_xxx)
$iSET_{max}GW$	int	max gross weight (SET_GW_maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ)
${\sf nSET_maxGW}$	int	number max gross weight segments
iSET_UL	int	useful load (SET_UL_pay, fuel, payfuel, miss, paymiss)
iSET_pay	int	payload changes (SET_pay_none, input, delta, scale)
iSETPmargin(npropmax)	int	power margin as quantity (all mission segments); not used to size engine or rotor
iSETQmargin(npropmax)	int	torque margin as quantity (all mission segments); not used to size transmission
iSETJmargin(njetmax)	int	jet thrust margin as quantity (all mission segments); not used to size jet group
iSETCmargin(nchrgmax)	int	charger power margin as quantity (all mission segments); not used to size charge group
iSETBmargin(ntankmax)	int	battery power margin as quantity (all mission segments); not used to size fuel tank
isFIX_GW	int	fixed gross weight; DESIGN_GW=0
		Segments
nreserve	int	number reserve segments
nadjust	int	number adjustable segments
kind_adjust	int	kind adjustable (0 none, 1 distance, 2 time)
kind_range	int	kind range credit (0 none, 1 all forward, 2 all backward, 3 both)
ntakeoff	int	number takeoff segments
		Iteration
kind_iter	int	kind iteration (0 none, 1 calculate mission fuel, 2 adjust mission, 3 only range credit or integration)
ismissconv	int	converged (0 not)
count_miss	int	number of iterations
error_miss(3)	real	error ratio (Wfuel, range credit, takeoff GW)
		Mission quantities
isFirstSol	int	first solution (initialize GW_to and Wfuel_to)
GW_to	real	takeoff gross weight (start of mission)
GW_endmiss	real	gross weight (end of mission, excluding reserve segments; last non-reserve segment)
GW_{end}	real	gross weight (end of mission; last segment)
Wfuel_to(ntankmax)	real	takeoff fuel weight (start of mission)
$Wfuel_add(ntankmax)$	real	added fuel weight (fill/add/drop during mission)
$Wfuel_endmiss(ntankmax)$	real	fuel weight (end of mission, excluding reserve segments; last non-reserve segment)
$Wfuel_end(ntankmax)$	real	fuel weight (end of mission; last segment)
Wburn(ntankmax)	real	weight fuel burned $W_{ m burn}$

Wres(ntankmax)	real	weight reserve fuel $W_{\rm res}$ (maximum of fraction or reserve segments)
Wfuel_miss(ntankmax)	real	calculated mission fuel weight $(W_{\rm burn} + W_{\rm res})$
Efuel_to(ntankmax)	real	takeoff fuel energy (start of mission)
Efuel_add(ntankmax)	real	added fuel energy (fill/add/drop during mission)
Efuel_endmiss(ntankmax)	real	fuel energy (end of mission, excluding reserve segments; last non-reserve segment)
Efuel_end(ntankmax)	real	fuel energy (end of mission; last segment)
Eburn(ntankmax)	real	energy fuel burned $E_{ m burn}$
Eres(ntankmax)	real	energy reserve fuel $E_{\rm res}$ (maximum of fraction or reserve segments)
Efuel_miss(ntankmax)	real	calculated mission fuel energy $(E_{\text{burn}} + E_{\text{res}})$
exceedP	int	exceed power available: any mission segment $P_{reqPG} > (1 + \epsilon)P_{avPG}$
exceedQ	int	exceed torque available: any mission segment $P_{reqPG} > (1 + \epsilon)P_{DSlimit}$
exceedJ	int	exceed jet thrust available: any mission segment $T_{reqJG} > (1 + \epsilon)T_{avJG}$
exceedC	int	exceed charger power available: any mission segment $P_{reqCG} > (1 + \epsilon)P_{avCG}$
exceedWf	int	exceed fuel capacity: any mission segment $W_{\rm fuel} > (1+\epsilon)W_{\rm fuel-cap}$ or $E_{\rm fuel} > (1+\epsilon)E_{\rm fuel-cap}$
exceedB	int	exceed battery power: any mission segment $ \dot{E}_{\rm batt} > (1+\epsilon)P_{\rm max}$
		Total mission, excluding reserve segments
endurance	real	endurance E , block time (min)
range	real	range R (nm)
airdist	real	air distance (nm)
blockspeed	real	block speed (kts; range/endurance)
range_factor	real	range factor $RF = R/\ln(W_{to}/(W_{to} - W_{burn}))$ (nm)
end_factor	real	efficiency factor $EF = E/2((W_{to}/(W_{to}-W_{burn}))^{3/2}-1)$ (min)
fuel_eff	real	fuel efficiency $e = W_{\rm pay} R/W_{\rm burn}$ (ton-nm/lb or ton-nm/kg)
productivity_o	real	productivity $p = W_{\text{pay}}V/W_O$ (ton-kt/lb or ton-kt/kg)
productivity_f	real	productivity $p = W_{\text{pay}}V/W_{\text{burn}}$ (ton-kt/lb or ton-kt/kg)
		Cost
ASM	real	available seat miles
DOC	real	direct operating cost
		Emissions Trading Scheme (kg CO2, per mission)
ETS	real	total
ETS_fuel	real	fuel burned
ETS_energy	real	energy used
		Weight of emissions (kg, per mission)
W_CO2	real	carbon dioxide

W_NO×	real	NO_x
W_H2O	real	water vapor
W_soot	real	soot
W_SO4	real	sulphates
		Average Temperature Response (deg C)
ATR	real	total
ATR_{noAIC}	real	total without AIC
ATR_CO2	real	carbon dioxide
ATR_CH4	real	NO_x - methane
ATR_O3L	real	NO_x - ozone (long life)
ATR_O3S	real	NO_x - ozone (short life)
ATR_H2O	real	water vapor
ATR_soot	real	soot
ATR_SO4	real	sulphates
ATR_AIC	real	aviation induced cloudiness

Chapter 18

Variable	Type		Description	Default
		+	Segment definition	
kind	c*12	+	kind	'dist'
dist	real	+	distance D (Units_dist)	0.
time	real	+	time T (Units_time)	0.
		+	segment	
reserve	int	+	reserve (0 for not)	0
adjust	int	+	adjustable for flexible mission (0 for not)	0
range_credit	int	+	segment number for range credit (0 for no reassignment)	0
ignore	int	+	ignore segment (0 for not)	0
сору	int	+	copy segment (source segment number)	0
split	int	+	split segment (number segments; -1 calculated; 0 for not split)	0
SET_tank(ntankmax)	int	+	segment fuel use or replace	0
dTank(ntankmax)	real	+	fuel increment	0.
fTank(ntankmax)	real	+	fuel factor	1.
SET_refuel(ntankmax)	int	+	refuel (0 not, 1 fill all tanks, 2 add fuel, 3 drop fuel, 4-5 fill/add below rWfuel, 6-7 fill/add below mWfuel)	0
xWfuel(ntankmax)	real	+	fuel weight or energy change	0.
rWfuel(ntankmax)	real	+	threshold fraction	0.
mWfuel(ntankmax)	real	+	threshold weight or energy	0.
		+	gross weight	
MaxGW	int	+	maximize gross weight (0 not)	0
dPav(npropmax)	real	+	power increment, each propulsion group	0.
fPav(npropmax)	real	+	power factor, each propulsion group	1.
dTav(njetmax)	real	+	thrust increment, each jet group	0.
fTav(njetmax)	real	+	thrust factor, each jet group	1.
		+	useful load	
xWpay	real	+	payload weight change (Units_pay)	0.
×Npass	int	+	number of passengers increment $\delta N_{\rm pass}$	0

		+	fixed useful load	
dWcrew	real	+	crew weight increment	0.
dNcrew	int	+	number of crew increment $\delta N_{\rm crew}$	0
dWoful(10)	real	+	other fixed useful load increment (nWoful categories)	0.
dWequip	real	+	equipment weight increment	0.
dNcrew_seat	int	+	crew seat increment $\delta N_{\rm crew-seat}$	0
dNpass_seat	int	+	passenger seat increment $\delta N_{\rm pass-seat}$	0
		+	kits on aircraft (0 none, 1 present)	
$SET_{extkit}(nwingmax)$	int	+	wing extension kit	1
$SET_{wingkit}(nwingmax)$	int	+	wing kit	1
SET_otherkit	int	+	other kit	0
SET_alt	int	+	altitude at start of segment (0 input, 1 from previous segment, 2 from kSeg_alt)	0
kSeg_alt	int	+	source of altitude	0
SET_wind	int	+	wind specification (0 none, 1 headwind, 2 tailwind)	0
dWind	real	+	wind increment, knots (dWind+fWind*altitude)	0.
fWind	real	+	wind gradient, knots (dWind+fWind*altitude)	0.
		+	design mission (0 to not use segment for sizing)	
SizeEngine	int	+	power	1
SizeJet	int	+	jet thrust	1
SizeCharge	int	+	charger power	1
SizeGW	int	+	DGW	1
SizeXmsn	int	+	transmission	1
SizeThrust	int	+	antitorque or aux thrust	1

segment kind

kind='taxi', 'idle': taxi/warm-up mission segment (use time)

kind='dist': fly segment for specified distance (use dist)

kind='time': fly segment for specified time (use time)

kind='hold', 'loiter': fly segment for specified time (use time), fuel burned but no distance added to range

kind='climb': climb/descend from present altitude to next segment altitude

kind='spiral': climb/descend from present altitude to next segment altitude, fuel burned but no dist added to range

kind='fuel': use or replace specified fuel amount, calculate time and distance

kind='burn', 'charge': use or replace specified fuel amount, calculate time but no distance added to range

kind='takeoff', 'TO': takeoff distance calculation

```
only one of reserve, adjust, range credit designations for each segment
reserve: time and distance not included in block time and range
range credit: to facilitate specification of range
     range calculated for this segment credited to segment = range credit
    range_credit segment must be kind='dist', specified distance is for group of segments
         actual distance flown in range credit segment is specified dist less distances from other segments
     if credit to earlier segment, iteration required
adjustable: for SET UL not 'miss', can adjust one or more segments
     if more than one segment adjusted, must be all kind='dist' or all kind='time'/'hold'
     adjust time or distance based on fuel burn (proportional to initial values)
split segment: number specified, or calculated from MissParam%dest inc, time inc, alt inc
ignore segment: removed from input; segments using MaxGW, range credit, FltCond%KIND source can not be ignored
SET tank: segment fuel use or replace for kind='fuel' or 'burn'
     SET tank = 0: no requirement
    SET_tank = 1: target dTank+fTank*W_{\rm fuel-cap} or dTank+fTank*E_{\rm fuel-cap}
     SET tank = 2: target dTank+fTank*W_{\text{fuel}} or dTank+fTank*E_{\text{fuel}}
    SET_tank = 3: increment dTank+fTank*W_{\rm fuel-cap} or dTank+fTank*E_{\rm fuel-cap}
    SET_tank = 4: increment dTank+fTank*W_{\text{fuel}} or dTank+fTank*E_{\text{fuel}}
     charge if \dot{E} < 0 (not based on keyword, increment always positive)
     target limited by capacity, if target already achieved then no requirement
     increment limited by current fuel (use) or capacity minus current fuel (replace)
SET_refuel, refuel: change at start of segment; weight or energy
     SET refuel = 1: fill all tanks (including any auxiliary tanks installed)
     SET refuel = 2: add fuel \timesWfuel
    SET refuel = 3: drop fuel \timesWfuel
     SET refuel = 4: if below fraction rWfuel of fuel capacity (including auxiliary tanks), fill all tanks
     SET refuel = 5: if below fraction rWfuel of fuel capacity (including auxiliary tanks), add xWfuel
     SET refuel = 6: if below mWfuel, fill all tanks
     SET refuel = 7: if below mWfuel, add xWfuel
    added fuel limited by capacity; not used for first segment
    xWfuel positive (add or drop determined by SET refuel)
```

maximize gross weight: MaxGW designate segments if SET_GW='maxP' or 'maxQ' or 'maxPQ'

climb/descend or spiral segment: end altitude is that of next segment; last segment kind can not be climb or spiral begin altitude is that input for this segment (SET alt=0), or altitude of previous segment (SET alt=1),

1.2

payload: only Wpay and xWpay used if SET_Wpayload = no details

xNpass is change from MissParam%Npass

Takeoff distance calculation

transition load factor n_{TR}

nz transition

real

crew: only dWcrew used if SET_Wcrew = no details

equipment: $dNcrew_seat$ and $dNpass_seat$ require non-zero weight per seat

takeoff segment kind SET takeoff c*12 'none' Vkts takeoff ground speed or climb speed (knots, CAS) real + 0. climb angle relative ground γ (deg) climb takeoff real + 0. height takeoff height during climb h (ft or m) real + 0. slope of ground γ_G (+ for uphill; deg) slope ground 0. real friction coefficient μ friction 0.04 real decision delay after engine failure t_1 (sec) t decision real + 1.5 rotation time t_R (sec) 2.0 t rotation real +

```
takeoff distance calculation: set of consecutive kind='takeoff' segments first segment identified by SET_takeoff='start' (V=0) last segment if next segment is not kind='takeoff', or is SET_takeoff='start' takeoff segment kind SET_takeoff='start', 'ground run' (keyword = ground or run), 'engine fail' (keyword = eng or fail) SET_takeoff='liftoff', 'rotation', 'transition', 'climb', 'brake' each segment requires appropriate configuration, trim option, max effort specification not use dist, time, reserve, adjust, range_credit, SET_refuel, MaxGW, SET_alt max_var='alt' not allowed in maximum effort velocity specification (SET_vel) and HAGL superseded; SET_turn=SET_pullup=0
```

can split segment (except start, rotation, transition): split height for climb, velocity for others splitting liftoff or engine failure segment produces additional ground run segments separate definition of multiple ground run, climb, brake segments allows configuration variations define takeoff profile in terms of velocities

integrate acceleration vs velocity to obtain time and distance segments correspond to ends of integration intervals analysis checks for consistency of input velocity and calculated acceleration analysis checks for consistency of input height and input/calculated climb angle

takeoff distance definition: includes SET_takeoff='liftoff' segment order: start, ground run, engine failure, ground run, liftoff, rotation, transition, climb only one liftoff; only one engine failure, rotation, transition (or none) engine failure before liftoff; all ground run before liftoff, all climb after liftoff accelerate-stop distance definition: does not have SET_takeoff='liftoff' segment order: start, ground run, engine failure, brake only one engine failure (or none)

engine failure segment (if present) identifies point for decision delay
until t_decision after engine failure segment, use engine rating, fPower, fraction of engine failure segment
so engine failure segment corresponds to conditions before failure
number of inoperative engines specified by nEnglnop for each segment
if engine failure segment present, nEnglnop specification must be consistent

parent	ınt	parent (1 Size, 2 OffDesign)
kMission	int	Mission number
kMissSeg	int	MissSeg number
kcol_out	int	performance output column
		Specification
ikind	int	kind (MissSeg_kind_taxi, dist, time, hold, climb, spiral, fuel, burn)
SET foldkit	int	folding kit on aircraft (0 none, 1 present)

```
Segments
kind range
                              int
                                               this segment receives range credit (0 not, 1 source forward, 2 source backward, 3 both)
fadjust
                              real
                                               adjustment ratio (initial time or dist ratio)
                                               split segment (number segments; 0 for not split)
wassplit
                              int
ksplit first
                                                   first segment after split
                              int
                                                   last segment after split
ksplit last
                              int
dWpay
                              real
                                               payload increment (xWpay-xWpay(seg1)) or factor (xWpay/xWpay(seg1))
iSET maxGW
                                               max gross weight (0 no iteration; SET GW maxP, maxQ, maxPQ, maxJ, maxPJ, maxQJ, maxPQJ + maxGW)
                              int
                                               power margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETPmargin(npropmax)
                              int
                                              torque margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETQmargin(npropmax)
                              int
                                              jet thrust margin as quantity (3 max GW, 2 max effort, 1 trim)
iSETJmargin(njetmax)
                              int
                                               charger power margin as quantity (1 trim)
iSETCmargin(nchrgmax)
                              int
                                              battery power margin as quantity (2 max effort, 1 trim)
iSETBmargin(ntankmax)
                              int
                                          Maximum gross weight
                                               converged (0 not)
                              int
ismaxgwconv
                                               number of iterations
count maxgw
                              int
                                               error ratio
error maxgw
                              real
GW inc
                              real
                                               gross weight increment
                                          Takeoff distance calculation
                                               takeoff segment kind (SET takeoff xxx)
iSET takeoff
                              int
VCAS TO
                              real
                                               ground speed or climb speed (CAS)
                                               ground speed (ft/sec or m/sec)
V TO
                              real
                                               angle relative ground (deg)
climb TO
                              real
isConsistent TO
                                               consistent acc and V change, climb and h change
                              int
FxG TO
                              real
                                               net force T - D (ground axes)
                                               net force W - L (ground axes)
FzG TO
                              real
                                              friction drag \mu F_{zG}
FzGmu TO
                              real
                                              acceration (ground axes)
acc TO
                              real
                                              height (ft or m)
h TO
                              real
                                               time (sec)
t TO
                              real
s TO
                              real
                                               distance (ft or m)
time TO
                                               cumulative time (sec)
                              real
dist TO
                              real
                                               cumulative distance (ft or m)
                                               original value for engine failure decision (from FltAircraft)
```

```
c*12
                                                      engine rating
rating original(nengmax)
krate original(nengmax)
                               int
                                                      engine rating
fPower_original(nengmax)
                                                      fraction of rated engine power available
                               real
rating jet original(njetmax)
                               c*12
                                                     jet rating
krate jet original(njetmax)
                               int
                                                      jet rating
fThrust original(njetmax)
                                                      fraction of rated jet thrust available
                                real
rating_charge_original(nchrgmax)
                               c*12
                                                      charger rating
krate charge original(nchrgmax)
                                int
                                                      charger rating
                                                     fraction of rated charger power available
fCharge original(nchrgmax)
                                real
                                                      friction coefficient
friction original
                                real
kSegEF TO
                                                 engine failure segment (0 for none)
                               int
                                             Performance (from FltState; at start or midpoint)
                                                 horizontal speed V_h (knots)
speed
                                real
                                                 climb velocity V_c (ft/sec or m/sec)
Vclimb
                                real
fuelflow(ntankmax)
                                real
                                                 fuel flow \dot{w} (lb/hr or kg/hr)
                                                 energy flow \dot{E} (MJ/hr)
energyflow(ntankmax)
                                real
                                                 trapezoidal integration
                                                     horizontal speed V_h
speed start
                                real
Vclimb start
                                real
                                                      climb velocity V_c
fuelflow start(ntankmax)
                                                      fuel flow \dot{w}
                                real
energyflow start(ntankmax)
                                                      energy flow E
                                real
                                                     horizontal speed V_h
speed end
                                real
                                                      climb velocity V_c
Vclimb end
                                real
fuelflow end(ntankmax)
                                                      fuel flow \dot{w}
                                real
                                                     energy flow \dot{E}
energyflow end(ntankmax)
                                real
                                                  altitude h at start of segment (ft or m)
alt start
                                real
                                                 altitude h at end of segment (from start of next segment, only used for kind='climb' or 'spiral')
alt end
                                real
                                             Headwind V_w (knots)
Wind
                                real
                                             Ground speed (V_h - V_w) (knots)
groundspeed
                                real
```

		Mission segment quantities
Т	real	time T (minutes)
D	real	ground distance D (nm)
otherDpast	real	distance from past range credit (nm)
otherDfuture	real	distance from future range credit (nm)
dR	real	range contribution dR (nm)
airdist	real	air distance (nm)
Wburn(ntankmax)	real	fuel burned $W_{\rm burn}$ (lb or kg)
Wfuel_add(ntankmax)	real	fuel added at start of segment
$Wfuel_start(ntankmax)$	real	fuel weight W_{fuel} (segment start)
Eburn(ntankmax)	real	fuel burned $E_{\rm burn}$ (MJ)
Efuel_add(ntankmax)	real	fuel added at start of segment
$Efuel_start(ntankmax)$	real	fuel energy E_{fuel} (segment start)
GW_start	real	gross weight W_G (segment start)
		Emissions Trading Scheme (kg CO2, per mission)
ETS	real	total
ETS_fuel	real	fuel burned
ETS_energy	real	energy used
		Weight of emissions (kg, per mission)
W_CO2	real	carbon dioxide
W_NOx	real	NO_x
W_H2O	real	water vapor
W_soot	real	soot
W_SO4	real	sulphates
		Average Temperature Response (deg C)
ATR	real	total
ATR_noAIC	real	total without AIC
ATR_CO2	real	carbon dioxide
ATR_CH4	real	NO_x - methane
ATR_O3L	real	NO_x - ozone (long life)
ATR_O3S	real	NO_x - ozone (short life)
ATR_H2O	real	water vapor
ATR_soot	real	soot
ATR_SO4	real	sulphates

ATR_AIC aviation induced cloudiness real

 $EI_{{
m NO}_x}=\sum EI\dot{w}/\sum \dot{w},$ input or turboshaft calculated, weighted for engine group $f_P=P_q/P_{to}$ for \dot{w} EI_NOx(ntankmax) real

fPto(nengmax) real

Chapter 19

Structure: FltState

Variable	Type	Description	
		Flight State	
FltAircraft	FltAircraft	Aircraft	
		Components	
FltFuse	FltFuse	fuselage	
FltGear	FltGear	landing gear	
FltRotor(nrotormax)	FltRotor	rotors	
FltWing(nwingmax)	FltWing	wings	
FltTail(ntailmax)	FltTail	tails	
FltTank(ntankmax)	FltTank	fuel tank systems	
FltProp(npropmax)	FltProp	propulsion groups	
FltEngn(nengmax)	FltEngn	engine groups	
FltJet(njetmax)	FltJet	jet groups	
FltChrg(nchrgmax)	FltChrg	charge groups	

Variable	Type		Description	Default
		+	Flight State	
		+	Specification	
SET_max	int	+	maximum effort performance (maximum 2, 0 to analyze specified condition)	0
$max_quant(2)$	c*12	+	quantity	, ,
$max_var(2)$	c*12	+	variable	, ,
$max_limit(2)$	int	+	switch quantity if exceed limit (0 not, 1 power margin, 2 torque margin, 3 both)	0
$max_Vlimit(2)$	int	+	velocity limited by V_{NE} (0 not)	0
fVel(2)	real	+	flight speed factor	1.
SET_vel	c*12	+	flight speed	'general'
Vkts	real	+	horizontal velocity V_h (TAS or CAS or IAS, Units_vel)	0.
Mach	real	+	horizontal velocity M (Mach number)	0.
ROC	real	+	vertical rate of climb V_c (Units_ROC)	0.
climb	real	+	climb angle θ_V (deg)	0.
side	real	+	sideslip angle ψ_V (deg)	0.
		+	aircraft motion	
SET_pitch	int	+	pitch motion specification (0 Aircraft value, 1 FltState input)	1
SET_roll	int	+	roll motion specification (0 Aircraft value, 1 FltState input)	1
pitch	real	+	pitch $ heta_F$	0.
roll	real	+	$\operatorname{roll} \phi_F$	0.
SET_turn	int	+	turn specification (0 zero, 1 turn rate, 2 load factor, 3 bank angle)	0
rate_turn	real	+	turn rate $\dot{\psi}_F$ (deg/sec)	0.
nz_turn	real	+	load factor n (g)	1.
bank_turn	real	+	bank angle ϕ_F (deg)	0.
SET_pullup	int	+	pullup specification (0 zero, 1 pitch rate, 2 load factor)	0
rate_pullup	real	+	pitch rate $\dot{\theta}_F$ (deg/sec)	0.
nz_pullup	real	+	load factor n (g)	1.
SET_acc	int	+	linear acceleration specification (0 zero, 1 acceleration, 2 load factor)	0
ax_linear	real	+	x-acceleration a_{ACx} (ft/sec ² or m/sec ²)	0.

ay_linear	real	+	y-acceleration a_{ACy} (ft/sec ² or m/sec ²)	0.
az_linear	real	+	z-acceleration a_{ACz} (ft/sec ² or m/sec ²)	0.
nx_linear	real	+	x-load factor increment n_{Lx} (g)	0.
ny_linear	real	+	y-load factor increment n_{Ly} (g)	0.
nz_linear	real	+	z-load factor increment n_{Lz} (g)	0.
altitude	real	+	altitude h (Units_alt)	0.
SET_atmos	c*12	+	atmosphere specification	'std'
temp	real	+	temperature $ au$ (Units_temp)	
dtemp	real	+	temperature increment ΔT (Units_temp)	0.
density	real	+	density $ ho$	
csound	real	+	speed of sound c_s	
viscosity	real	+	viscosity μ	
SET_GE	int	+	ground effect (0 OGE, 1 IGE)	0
HAGL	real	+	height of landing gear above ground level h_{LG}	999.
STATE_LG	c*12	+	landing gear state	'default'
STATE_control	int	+	aircraft control state	1
SET_control(ncontmax)	int	+	control specification (0 Aircraft value, 1 FltState input)	1
SET_coll	int	+	collective stick	1
SET_latcyc	int	+	lateral cyclic stick	1
SET_Ingcyc	int	+	longitudinal cyclic stick	1
SET_pedal	int	+	pedal	1
SET_tilt	int	+	tilt (0 Aircraft value, 1 FltState input, 2 Aircraft conversion schedule)	1
control(ncontmax)	real	+	aircraft controls	
coll	real	+	collective stick c_{AC0}	0.
latcyc	real	+	lateral cyclic stick c_{ACc}	0.
Ingcyc	real	+	longitudinal cyclic stick c_{ACs}	0.
pedal	real	+	pedal c_{ACp}	0.
tilt	real	+	tilt $lpha_{ m tilt}$	0.
$SET_comp_control$	int	+	use component control (0 for $c = Tc_{AC}$; 1 for $c = Tc_{AC} + c_0$)	1
SET_cg	int	+	center of gravity specification (0 baseline plus increment, 1 input)	0
dSLcg	real	+	stationline	0.
dBLcg	real	+	buttline	0.
dWLcg	real	+	waterline	0.

		+	Specification, each propulsion group	
SET_Vtip(npropmax)	c*12	+	rotor tip speed specification	'hover'
Vtip(npropmax)	real	+	tip speed	
mu_Vtip(npropmax)	real	+	tip speed from μ	
$Mat_Vtip(npropmax)$	real	+	tip speed from M_{at}	
Nrotor(npropmax)	real	+	rotor speed (rpm)	
Nspec(npropmax)	real	+	engine speed (rpm)	
STATE_gear(npropmax)	int	+	drive system state	1
rating_ds(npropmax)	c*12	+	drive system rating	, ,
SET_Plimit(npropmax)	int	+	drive system limit (0 not applied to power available)	1
$SET_{Qlimit_{rs}}(npropmax)$	int	+	rotor shaft limit (0 not used for torque margin)	1
dPacc(npropmax)	real	+	accessory power increment $dP_{\rm acc}$	0.
		+	Specification, each engine group	
rating(nengmax)	c*12	+	engine rating	'MCP'
fPower(nengmax)	real	+	fraction of rated engine power available f_P (0. to 1.+)	1.
nEngInop(nengmax)	int	+	number of inoperative engines $N_{\rm inop}$	0
SET_Preq(nengmax)	int	+	power required (1 distributed, 2 fixed A , 3 fixed AP_{av} , 4 fixed $AP_{\rm eng}$)	1
STATE_IRS(nengmax)	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each jet group	
rating_jet(njetmax)	c*12	+	jet rating	'MCT'
fThrust(njetmax)	real	+	fraction of rated jet thrust available f_T (0. to 1.+)	1.
nJetInop $(n$ jet $max)$	int	+	number of inoperative jets $N_{\rm inop}$	0
SET_Jreq(njetmax)	int	+	thrust required (1 from component, 2 fixed A , 3 fixed AT_{av} , 4 fixed AT_{jet})	2
$STATE_IRS_jet(njetmax)$	int	+	IR suppressor system state (0 off, hot exhaust; 1 on, suppressed exhaust)	0
		+	Specification, each charge group	
$rating_charge(nchrgmax)$	c*12	+	charger rating	'MCP'
fCharge(nchrgmax)	real	+	fraction of rated charger power available f_C (0. to 1.+)	1.
nChrgInop(nchrgmax)	int	+	number of inoperative chargers N_{inop}	0
$SET_Creq(nchrgmax)$	int	+	power required (2 fixed A , 4 fixed $AP_{\rm chrg}$)	2
dPeq(ntankmax)	real	+	Equipment power increment $dP_{ m eq}$, each fuel tank	0.
		+	Specification, each fuel tank (battery)	
ffade(ntankmax)	real	+	battery capacity fade factor	1.
Tcell(ntankmax)	real	+	cell temperature (deg C)	20.
fcurrent(ntankmax)	real	+	maximum current (fraction x_{mbd} or $x_{CC_{max}}$)	1.

STATE_deice	int	+	Deice system state (0 off)	0
		+	Performance	
DoQ_pay	real	+	payload forward flight drag increment D/q (Units_drag)	0.
$fDoQ_pay$	real	+	payload drag increment scaling with weight $\Delta(D/q)/W_{\mathrm{pay}}$ (Units_drag, Units_pay)	0.
$DoQV_{pay}$	real	+	payload vertical drag increment D/q (Units_drag)	0.
		+	Rotor (nonzero to supersede rotor model)	
Ki(nrotormax)	real	+	induced power factor κ	0.
cdo(nrotormax)	real	+	profile power mean c_d	0.
$MODEL_Ftpp(nrotormax)$	int	+	inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)	0
MODEL_Fpro(nrotormax)	int	+	inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	0
KIND_control(nrotormax)	int	+	control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)	0
		+	Trim solution	
STATE_trim	c*12	+	aircraft trim state (match IDENT_trim, 'none' for no trim)	'none'
trim_target(mtrimmax)	real	+	trim quantity targets	
		+	Iterations (supersede Solution input if nonzero)	
		+	relaxation factor	
relax_rotor	real	+	all rotors	0.
relax_trim	real	+	trim	0.
relax_fly(2)	real	+	maximum effort	0.
relax_maxgw	real	+	maximum gross weight	0.
		+	tolerance (fraction reference)	
toler_rotor	real	+	all rotors	0.
toler_trim	real	+	trim	0.
$toler_fly(2)$	real	+	maximum effort	0.
toler_maxgw	real	+	maximum gross weight	0.
		+	reinitialize aircraft controls (0 no, 1 force retrim)	
init_trim	int	+	trim	0
init_fly	int	+	maximum effort	0
		+	variable perturbation amplitude (fraction reference, 0. for no limit)	
perturb_trim	real	+	trim	0.
$perturb_fly(2)$	real	+	maximum effort	0.
perturb_maxgw	real	+	maximum gross weight	0.

		+	maximum derivative amplitude (0. for no limit)	
maxderiv_fly(2)	real	+	maximum effort	0.
maxderiv_maxgw	real	+	maximum gross weight	0.
		+	maximum increment fraction (0. for no limit)	
maxinc_fly(2)	real	+	maximum effort	0.
maxinc_maxgw	real	+	maximum gross weight	0.
		+	solution method	
$method_flymax(2)$	int	+	maximum effort	0
		+	trace iteration (0 for none)	
trace_rotor	int	+	all rotors	0
trace_trim	int	+	trim (2 for component controls)	0
$trace_fly(2)$	int	+	maximum effort	0
trace_maxgw	int	+	maximum gross weight	0

maximum effort performance: one or two quantity/variable identified; first is inner loop

two variables must be unique

two variables can be identified for same maximized quantity (endurance, range, climb)

ROC or altitude can be outer loop quantity only if it is also inner loop variable

fVel is only used for max_var='speed' or 'ROC'

ceiling calculation should use 'Pmargin'/'alt' as inner loop, 'power'/'speed' as outer loop

best range calculation often requires maxinc fly=0.1 for convergence

ROC for zero power margin initialized based on level flight power margin if input ROC=0

 $max_quant='rotor(s)\ n'\ uses\ Rotor\%CTs_steady, \\ max_quant='rotor(t)\ n'\ uses\ Rotor\%CTs_tran$

max_quant='rotor(e) n' uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

if energy burned (not weight) or multiple fuels, use equivalent fuel flow obtained from weighted energy flow

max_var='Vtip' or 'Nspec': requires FltAircraft%SET_Vtip='input'

if trailing "n" is absent, use first component (n=1)

max limit: switch quantity to power and/or torque margin if margin negative; useful for best range

description	max_quant	
endurance	'end'	maximum (1/fuelflow)
range (high side)	'range'	0.99 maximum (V/fuelflow)
range	'range $(100)'$	maximum (V/fuelflow)
range (low side)	'range(low)'	0.99 maximum (V/fuelflow), low side
climb or descent rate	'climb'	maximum (ROC)
climb rate (power)	'power'	maximum (1/Power)
climb or descent angle	'angle'	maximum (ROC/V)
climb angle (power)	'power/V'	maximum (V/Power)
ceiling	'alt'	maximum (altitude)
power margin	'P margin'	$\min(P_{av} - P_{req}) = 0$ (all propulsion groups)
torque margin	'Q margin',	$\min(Q_{\text{limit}} - Q_{req}) = 0$ (all limits)
jet thrust margin	'J margin',	$\min(T_{av} - T_{req}) = 0$ (all jet groups)
power and torque margin	'PQ margin',	most restrictive
power and thrust margin	'PJ margin',	most restrictive
torque and thrust margin	'QJ margin',	most restrictive
power, torque, thrust margin	'PQJ margin',	most restrictive
battery power margin	'B margin'	$\min(P_{\max} - \dot{E}_{\mathrm{batt}}) = 0$ (all fuel tanks)
rotor thrust margin	'rotor(t) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (transient)
rotor thrust margin	'rotor(s) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (sustained)
rotor thrust margin	'rotor(e) n'	$(C_T/\sigma)_{\rm max} - C_T/\sigma = 0$ (equation)
wing lift margin	'stall n'	$C_{L\text{max}} - C_L = 0$

description	max_var	
horizontal velocity	'speed'	times fVel
vertical rate of climb	'ROC'	times fVel
aircraft velocity	'side'	sideslip angle
altitude	'alt'	
aircraft angular rate	'pullup', 'turn'	Euler angle rates
aircraft acceleration	'xacc', 'yacc', 'zacc'	linear, airframe axes
aircraft acceleration	'xaccl', 'yaccl', 'zaccl'	linear, inertial axes

description	max_var	
aircraft acceleration	'xaccG', 'yaccG', 'zaccG'	linear, ground axes
aircraft control	match IDENT_control	
aircraft orientation	'pitch', 'roll'	body axes relative inertial axes
propulsion group tip speed	'Vtip n'	
propulsion group engine speed	'Nspec n'	

```
SET vel, velocity specification:
     'general' = general (use Vkts=horizontal, ROC, side)
     'hover' = hover (zero velocity)
     'vert' = hover or VROC (use ROC; Vkts=0, climb=0/+90/-90)
     'right' = right sideward (use Vkts, ROC; side=90)
     'left' = left sideward (use Vkts, ROC; side=-90)
     'rear' = rearward (use Vkts, ROC, side=180)
     'Vfwd' = general (use Vkts=forward velocity, ROC, side)
     'Vmag' = general (use Vkts=velocity magnitude, ROC, side)
     'climb' = general (use Vkts=velocity magnitude, climb, side)
     'VNE' = never-exceed speed
     '+Mach' = use Mach not Vkts
     '+CAS' = Vkts is CAS not TAS
     '+IAS' = Vkts is IAS not TAS
velocities: forward V_f = V_h \cos(\text{side}), side V_s = V_h \sin(\text{side}), climb V_c = V_h \tan(\text{climb})
aircraft motion:
     orientation velocity relative inertial axes defined by climb and sideslip angles (\theta_V, \psi_V)
         sideslip positive aircraft moving to right, climb positive aircraft moving up
         specify horizontal velocity, vertical rate of climb, and sideslip angle
     orientation body relative inertial axes defined by Euler angles, yaw/pitch/roll (\psi_F, \theta_F, \phi_F)
         yaw positive to right, pitch positive nose up, roll positive to right
     SET PITCH and SET roll, pitch and roll motion specification:
         Aircraft values (perhaps function speed) or flight state input
         initial values specified if motion is trim variable; otherwise fixed for flight state
     SET turn, bank angle and load factor in turn: use turn rate, load factor, or bank angle
         \tan(\text{roll}) = \sqrt{n^2 - 1} = (\text{turn})V/q; calculated using input Vkts for flight speed
```

SET pullup, load factor in pullup: use pullup rate or load factor n = 1 + (pullup)V/g; calculated using input Vkts for flight speed SET acc, linear acceleration: use acceleration or load factor SET atmos, atmosphere specification: 'std' = standard day at specified altitude (use altitude) 'polar' = polar day at specified altitude (use altitude) 'trop' = tropical day at specified altitude (use altitude) 'hot' = hot day at specified altitude (use altitude) 'xxx+dtemp' = specified altitude, plus temperature increment (use altitude, dtemp) 'xxx+temp' = specified altitude, and specified temperature (use altitude, temp) 'hot+table' = hot day table at specified altitude (use altitude) 'dens' = input density and temperature (use density, temp) 'input' = input density, speed of sound, and viscosity (use density, csound, viscosity) 'notair' = input, not air on earth (use density, csound, viscosity) SET GE: use HAGL; out-of-ground-effect (OGE) if rotor more than 1.5Diameter above ground height rotor = landing gear above ground + hub above landing gear = HAGL + (WL hub-WL gear+d gear) STATE LG: 'default' (based on retraction speed), 'extend', 'retract' (keyword = def, ext, ret) STATE_control, aircraft control state: identifies control matrix STATE control=0 to use conversion schedule, STATE control=n (1 to nstate control) to use state#n SET control, control specification: Aircraft values (perhaps function speed) or flight state input coll/latcyc/lngcyc/pedal/tilt specification and values put in SET control and control, based on IDENT control initial values specified if control is trim variable; otherwise fixed for flight state SET control=0 to use Aircraft%cont and Aircraft%Vcont; 1 to use FltState%control SET tilt: 0 to use Aircraft%tilt and Aircraft%Vtilt; 1 to use FltState%tilt 2 to use conversion speeds Aircraft%Vconv hover and Aircraft%Vconv cruise SET cg, center of gravity position: input for this flight state; or baseline cg position plus shift due to nacelle tilt, plus input cg increment

```
tip speed, engine, transmission: for each propulsion group
SET Vtip, primary rotor tip speed: for primary rotor of propulsion group
     'input' = use input Vtip for this flight state
    'Nrotor' = use input Nrotor (rpm) for this flight state
    'ref' = use Vtip ref (for drive state STATE gear)
    'speed' = use default Vtip(speed)
    'conv' = use conversion schedule (Vtip hover or Vtip cruise)
    'hover' = use default Vtip hover = Vtip ref(1)
    'cruise', 'man', 'OEI', 'xmsn' = use default Vtip cruise, Vtip man, Vtip oei, Vtip xmsn
     'mu' = use tip speed from \mu (mu Vtip)
    'Mat' = use tip speed from M_{at} (Mat Vtip)
    'xxx+Mat' = for tip speed limited by M_{at} (Mat Vtip)
    'xxx+diam' = for variable diameter rotor, scale V_{\rm tip} with radius ratio
    without rotors, specify engine group speed by SET Vtip='input' (use input Nspec) or 'ref'
STATE gear, drive system state: identifies gear ratio set for multiple speed transmissions
    state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n
drive system rating: match rating designation in propulsion group; blank for same as rating of first engine group
    rating ds='speed' to use schedule with speed
    if Propulsion%nrate ds≤ 1, drive system rating not used
SET Plimit: usually should not be applied for flight conditions and mission segments that size transmission
engine rating: match rating designation in engine model; e.g. 'ERP','MRP','MRP','MCP'
    or rating='idle' or rating='takeoff'
fPower reduces engine group power available (fPower = 0 to 1; > 1 is an acceptable input)
    the engine model gives the power available, accounting for installation losses and mechanical limits
         then the power available is reduced by the factor fPower
             next torque limits are applied (unless SET_Plimit=off), first engine shaft limit and then drive system limit
    for SET_GW='maxP' or 'maxPQ' (flight condition or mission), the gross weight is determined
    such that P_{reqPG} = fP_{avPG} + d
         either fPower or fPav can be used to reduce the available power
             with identical results, unless the engine group is operating at a torque limit
nEnglnop, number inoperative engines: 1 for one engine inoperative (OEI), maximum nEngine
SET Preq: distribution of propulsion group power required among engine groups
    distributed (SET_Preq=1): P_{reqEG} from P_{reqPG}, proportional P_{eng}
         except for reaction drive, P_{reaEG} equals rotor power required
```

fixed options use engine group amplitude control variable A, for each operable engine engine group that consumes shaft power (generator or compressor) only uses fixed option engine group that produces no shaft power (converted to turbo jet or reaction drive) only uses fixed option EngineGroup%SET_Power, fPsize defines power distribution for sizing

jet rating: match rating designation in jet model; or rating_jet='idle' or rating_jet='takeoff' fThrust reduces jet group thrust available (fThrust = 0 to 1; > 1 is an acceptable input) nJetlnop, number inoperative jets: 1 for one jet inoperative (OEI), maximum nJet SET_Jreq: fixed options use jet group amplitude control variable A, for each operable jet from component (SET_Jreq=1): only for reaction drive, $T_{reqJG} = F_{\rm react}$ of rotor

charger rating: match rating designation in charger model; or rating_charge='idle' or rating_charge='takeoff' fCharge reduces charger group power available (fCharge = 0 to 1; > 1 is an acceptable input) nChrglnop, number inoperative chargers: 1 for one charger inoperative (OEI), maximum nCharge SET Creq: use charge group amplitude control variable A, for each operable charger

STATE_trim, aircraft trim state: match IDENT_trim, 'none' for no trim identifies trim variables and quantities

ACTION='configuration' defines trim states with following identification:

IDENT_trim='free', 'symm', 'hover', 'thrust', 'rotor', 'windtunnel', 'power', 'ground', 'comp' requirement for trim_target depends on designation of Aircraft%trim_quant

parent (1 SizeCond, 2 SizeMiss, 3 OffMiss, 4 PerfCond)
Mission number
MissSeg number
FltState number
performance output column
Maximum effort
quantity (MAX_QUANT_xxx)
quantity structure number
quantity is slope (maximize)
variable (MAX_VAR_xxx, or control number)
variable structure number

```
Specification
iSET vel
                               int
                                                velocity (SET vel xxx)
iSET vel2
                               int
                                                velocity (SET vel2 TAS, SET vel2 CAS, SET vel2 Mach)
                                                sideward flight (1 for sideward flight)
isSideward
                               int
iSET atmos
                               int
                                                atmosphere (SET atmos xxx)
                                                landing gear state (STATE_LG_default, extend, retract)
iSTATE LG
                               int
                                                aircraft trim state (number, 0 for no trim)
iSTATE trim
                               int
                                            Specification, each propulsion group
                                                rotor tip speed (SET Vtip input, Nrotor, ref, speed, conv, hover, cruise, man, OEI, xmsn, mu, Mat)
iSET Vtip(npropmax)
                               int
iSET Vtip Mat(npropmax)
                               int
                                                rotor tip speed limited by M_{at}
iSET Vtip VarDiam(npropmax)
                                                rotor tip speed for variable diameter rotor (1 to scale V_{\rm tip} with radius ratio)
                               int
iSETPmargin(npropmax)
                               int
                                                power margin as quantity (2 maximum effort, 1 trim)
                                                torque margin as quantity (2 maximum effort, 1 trim)
iSETQmargin(npropmax)
                               int
krate ds(npropmax)
                                                drive system rating number
                               int
                                            Specification
                                                engine rating number
krate(nengmax)
                               int
krate jet(njetmax)
                               int
                                                jet rating number
krate charge(nchrgmax)
                                                charger rating number
                               int
                                                jet thrust margin as quantity (2 maximum effort, 1 trim)
iSETJmargin(njetmax)
                               int
iSETCmargin(nchrgmax)
                                                charger power margin as quantity (1 trim)
                               int
iSETBmargin(ntankmax)
                                                battery power margin as quantity (2 maximum effort, 1 trim)
                               int
                                            Weight
GW
                                                gross weight W_G
                               real
Wfuel total
                               real
                                                usable fuel weight W_{\text{fuel}}
                                                    usable fuel weight
Wfuel(ntankmax)
                               real
                                                    standard tanks
Wfuel std(ntankmax)
                               real
Wfuel aux(ntankmax)
                                                    auxiliary tanks
                               real
                                                payload weight W_{\rm pay}
Wpayload
                               real
                                                    passengers W_{\rm pass}
Wpay pass
                               real
                                                    cargo W_{\rm cargo}
Wpay cargo
                               real
                                                    external load W_{\text{ext-load}}
Wpay extload
                               real
                                                    ammunition W_{\rm ammo}
Wpay ammo
                               real
Wpay weapons
                                                    weapons W_{\text{weapons}}
                               real
```

Wpay_other	real	other $W_{ m other}$
WFixUL	real	fixed useful load W_{FUL}
dW_fixUL	real	fixed useful load increment (relative weight statement W_fixUL)
Wcrew	real	<pre>crew (replace weight statement W_fixUL_crew)</pre>
Wauxtank	real	auxiliary fuel tanks (replace weight statement W_fixUL_auxtank)
$W_{fix}UL_{other}$	real	other fixed useful load (replace weight statement W_fixUL_other)
Woful(10)	real	categories
Wequip	real	equipment increment (replace weight statement W_fixUL_equip)
Wfoldkit	real	folding kit (replace weight statement W_fixUL_foldkit)
Wextkit	real	wing extension kit (replace weight statement W_fixUL_extkit)
Wwingkit	real	wing kit (replace weight statement W_fixUL_wingkit)
Wotherkit	real	other kit (replace weight statement W_fixUL_otherkit)
WO	real	operating weight W_O
Ncrew	int	number of crew
Npass	int	number of passengers
Ncrew_seat	int	number of crew seats
Npass_seat	int	number of passenger seats
Efuel_total	real	usable fuel energy $E_{ m fuel}$
Efuel(ntankmax)	real	usable fuel energy
$Efuel_std(ntankmax)$	real	standard tanks
Efuel_aux(ntankmax)	real	auxiliary tanks
		Weight at mission segment start
GW_start	real	gross weight W_G
$Wfuel_start(ntankmax)$	real	usable fuel weight $W_{ m fuel}$
$Wfuel_std_start(ntankmax)$	real	standard tanks
$Wfuel_aux_start(ntankmax)$	real	auxiliary tanks
$Efuel_start(ntankmax)$	real	usable fuel energy $E_{ m fuel}$
$Efuel_std_start(ntankmax)$	real	standard tanks
$Efuel_aux_start(ntankmax)$	real	auxiliary tanks
zcg(3)	real	Center of gravity position
SLcg	real	stationline
BLcg	real	buttline
WLcg	real	waterline

Moments of inertia

lxx	real	I_{xx}
lyy	real	I_{yy}
Izz	real	I_{zz}
lxy	real	I_{xy}
lyz	real	I_{yz}
lxz	real	I_{xz}

weight statement defines fixed useful load and operating weight for design configuration so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments gross weight = weight empty + useful load = operating weight + payload + usable fuel useful load = fixed useful load + payload + usable fuel operating weight = weight empty + fixed useful load

Atmosphere

```
altitude h
alt
                                  real
                                  real
                                                     temperature \tau
tmp
                                                     temperature increment \Delta T
                                  real
dtmp
                                                     density ratio \rho/\rho_0
sigma
                                  real
                                                     temperature ratio T/T_0
theta
                                  real
                                                     pressure ratio p/p_0
delta
                                  real
                                                     kinematic viscosity \nu = \mu/\rho
kinvis
                                  real
                                                     density altitude h_d
altdens
                                  real
                                                     pressure altitude h_p
                                 real
altpress
                                                Flight condition
                                                     rotor radius R
radius(nrotormax)
                                  real
VNE
                                 real
                                                     never-exceed speed V_{NE} (knots TAS)
                                                     rotational speeds
Vtip trim(nrotormax)
                                                         rotor tip speed \Omega R
                                  real
                                                         \text{rotor rpm }\Omega
rpm trim(nrotormax)
                                  real
rN trim rotor(nrotormax)
                                                         rotor \Omega/\Omega_{\rm ref}
                                  real
```

$N_{trim}(nengmax)$	real	engine rpm N
rN_trim_eng(nengmax)	real	engine $N/N_{ m spec}$
$rN_trim_ref(npropmax)$	real	propulsion group reference speed ratio
		flight speed
speed	real	horizontal speed V_h (knots)
Vclimb	real	climb velocity V_c (ft/sec or m/sec)
side_trim	real	sideslip angle ψ_V (deg)
		derived
Vhoriz	real	horizontal velocity V_h (ft/sec or m/sec)
Mhoriz	real	horizontal Mach number V_h/c_s
climb_trim	real	climb angle θ_V (deg)
Vside	real	sideward velocity V_s (ft/sec or m/sec)
Vmag	real	velocity magnitude $ V $
Vfwd	real	forward velocity V_f (ft/sec or m/sec)
VCAS	real	calibrated airspeed $V_{\rm cal}$ (knots) ($V\sqrt{\sigma}f(\delta,M)$)
VIAS	real	indicated airspeed V_{ind} (knots)
VAC(3)	real	velocity v_{AC} in F axes
ed(3)	real	drag vector, $-v_{AC}/ v_{AC} $ in F axes
qAC	real	dynamic pressure q_{AC}
		angular velocity
turn_trim	real	turn ψ_{F} (yaw rate)
pullup_trim	real	pullup $\dot{\theta}_F$ (pitch rate)
turnRadius	real	turn radius R_T
wAC(3)	real	ω_{AC} in F axes
		acceleration
aAC(3)	real	a_{AC} in F axes (linear)
nAC(3)	real	load factor n_{AC} (linear acc and angular rate)
$KIND_{alpha}$	int	angle of attack and sideslip angle representation (1 conventional, 2 reversed)
		orientation of body axes relative inertial axes
pitch_trim	real	pitch angle θ_F (deg)
roll_trim	real	roll angle ϕ_F (deg)
		rotation matrices
CFI(3,3)	real	C^{FI} , velocity axes relative inertial axes
CVI(3,3)	real	C^{VI} , body axes relative inertial axes

```
C^{FV}, body axes relative velocity axes
CFV(3,3)
                                   real
control trim(ncontmax)
                                   real
                                                       aircraft controls
Nauxtank(nauxtankmax,ntankmax)
                                                      number of auxiliary fuel tanks N_{\rm auxtank} (each aux tank size), from FltCond or MissSeg
                                   int
SET extkit(nwingmax)
                                                       wing extension kit on aircraft (0 none, 1 present)
                                  int
                                                       wing kit on aircraft (0 none, 1 present)
SET wingkit(nwingmax)
                                   int
                                                      total fuel capacity W_{\text{fuel-cap}}, including auxiliary tanks
Wfuel cap(ntankmax)
                                   real
                                                      total fuel capacity E_{\rm fuel-cap}, including auxiliary tanks
Efuel cap(ntankmax)
                                   real
                                                       slope of ground \gamma_G (+uphill; deg), from MissSeg
slope ground
                                   real
SET sweep
                                   int
                                                      parameter sweep, from FltCond
                                                        angle of attack and sideslip angle representation: from Aircraft and isSideward
                                                        orientation body relative inertial axes defined by Euler angles, with yaw/pitch/roll sequence (\psi_F, \theta_F, \phi_F)
                                                             yaw positive to right, pitch positive nose up, roll positive to right
                                                             C^{FI} = X_{\text{roll}} Y_{\text{pitch}} Z_{\text{vaw}}, yaw angle = (turn)*time
                                                        orientation velocity relative inertial axes defined by climb and sideslip angles (\theta_V, \psi_V)
                                                              sideslip positive aircraft moving to right, climb positive aircraft moving up
                                                             C^{VI} = Y_{\text{climb}} Z_{\text{side}} Z_{\text{yaw}}
                                                        orientation body relative velocity axes: C^{FV} = X_{\text{roll}} Y_{\text{pitch}} Z_{\text{-side}} Y_{\text{-climb}}
```

```
Trim (last)
                                                 converged (0 not)
istrimconv
                               int
                                                 number of iterations
count trim
                               int
error trim(mtrimmax)
                               real
                                                 error ratio
gain trim(mtrimmax,mtrimmax)
                               real
                                                 gain matrix
                                            Maximum effort (principal iteration, 99% range iteration; inner, outer loops)
                                                 converged (0 not)
isflyconv(2,2)
                               int
count fly(2,2)
                                                 number of iterations
                               int
error fly(2,2)
                               real
                                                 error ratio
isSwitched(2)
                                                 quantity switched (1 P margin, 2 Q margin, 3 both)
                               int
```

· ·	ght (flight condition or mission takeoff)
ismaxgwconv int converged (0 not	
count_maxgw int number of iteration	ons
error_maxgw real error ratio	
Rotor flap equation (all converged or any not converged)
isrotorconv int converged (0 not	, –1 no iteration)
Solution state	
count_control int count of solution	(0 at start, get aircraft controls)
trim_deriv_exist int trim derivative m	natrix exist (0 for not)
Loads	
forces (F axes, at	oout cg)
	F_{aero}^F (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Frotor(3) real rotor F_{rotor}^F	
Fengine(3) real engine group	os F_{eng}^F (jet thrust, momentum drag)
Fjet(3) real jet groups F_j	F et
Fchrg(3) real charge group	os $F_{ m charge}^F$
Fgrav(3) real gravitational	$F_{ m grav}^F$
Finertia(3) real inertial F_{iner}^F	
moments (F axes	
	M_{aero}^F (fuselage, rotor, wing, tail, tank, engine, jet, charger)
Mrotor(3) real rotor M_{rotor}^F	
Mengine(3) real engine group	os $M_{ m engine}^F$ (jet thrust, momentum drag)
Mjet(3) real jet groups M	$rac{rF}{ m jet}$
Mchrg(3) real charge group	os $M_{ m charge}^F$
Minertia(3) real inertial $M_{\rm ine}^F$	rtial (turn)
	es, about cg); $F + F_{\text{grav}} - F_{\text{inertia}}$
	axes, about cg); $M - M_{\rm inertia}$
Download real download, aero I	F_z (I axes); set to 0 if V>10 knots
Thrust real rotor thrust, rotor	$r - F_z$ (I axes; sum Fvert)
DLoT real download/thrust	,
DLoW real download/weight	t DL/W

```
Aircraft performance
                                                      power
                                                           power required P_{reg} (engine groups)
Preq
                                   real
                                                           power margin, min(P_{av} - P_{rea}) (propulsion groups and converted engine groups)
Pmargin
                                   real
                                                           torque margin, min(P_{limit} - P_{reg})
Qmargin
                                   real
                                                           exceed power available: any propulsion group P_{reaPG} > (1 + \epsilon)P_{avPG}
exceedP
                                   int
                                                           exceed torque available: any propulsion group P_{reaPG} > (1 + \epsilon)P_{DSlimit}
exceedQ
                                   int
                                                      thrust
                                                           thrust required T_{\text{iet}} (jet groups)
Tjet
                                   real
                                                           jet thrust margin, \min(T_{av} - T_{reg})
Jmargin
                                   real
                                                           exceed jet thrust available: any jet group T_{reqJG} > (1 + \epsilon)T_{avJG}
exceedJ
                                  int
                                                      charging
Pchrg
                                                           power required P_{\text{chrg}} (charge groups)
                                   real
                                                           charger power margin, \min(P_{av} - P_{reg})
Cmargin
                                   real
                                                           exceed charger power available: any charge group P_{reqCG} > (1 + \epsilon)P_{avCG}
exceedC
                                   int
                                                      equivalent aircraft power required P = P_{reg} + VT_{iet}
Pequiv
                                   real
Pclimb
                                   real
                                                       climb power, V_{\text{climb}}W
fuelflow(ntankmax)
                                   real
                                                      fuel flow \dot{w}
                                                      total fuel flow \dot{w}
fuelflow total
                                   real
fuelflow equiv
                                   real
                                                      equivalent fuel flow \dot{w}_{\rm equiv}, from energy flow
                                                      energy flow \dot{E}
energyflow(ntankmax)
                                   real
energyflow total
                                                      total energy flow \dot{E}
                                   real
                                                      exceed fuel capacity: W_{\rm fuel} > (1+\epsilon)W_{\rm fuel-cap} or E_{\rm fuel} > (1+\epsilon)E_{\rm fuel-cap}
exceedWf
                                  int
                                                           battery power margin, \min(P_{max} - |\dot{E}_{batt}|) (MJ/hr)
Bmargin
                                   real
                                                           exceed battery power: any fuel tank |\dot{E}_{\rm batt}| > (1 + \epsilon) P_{\rm max}
exceedB
                                   int
sfc
                                   real
                                                      sfc, P_{\rm equiv}/\dot{w}_{\rm equiv}
                                                      specific range, V/\dot{w}_{\rm equiv}
                                   real
spec_range
                                                  Performance indices
                                                      aircraft figure of merit FM = W \sqrt{W/(2\rho A_{\rm ref})}/P
FΜ
                                   real
LoDe
                                                       aircraft effective lift-to-drag ratio L/D_e = WV/P
                                   real
Drage
                                   real
                                                       aircraft effective drag D_e = P/V
                                                       aircraft drag D_{AC}
DragAC
                                   real
DoQAC
                                                      aircraft drag area D/q = D_{AC}/q_{AC}; set to 0 if V<10 knots
                                   real
```

WoP	real	power loading W/P
range_onepcW	real	range for fuel=1%GW (nm)
fuel_eff	real	fuel efficiency $e = W_{\rm pay} V / \dot{w}_{\rm equiv}$ (ton-nm/lb or ton-nm/kg)
productivity	real	productivity $p = W_{\text{pay}}V/W_O$ (ton-kt/lb or ton-kt/kg)
		Operating size
length_op	real	length
width_op	real	width

area

real

area_op

Structure: FltFuse

Variable	Type	Description	Default
		Flight State - Fuselage	
		aerodynamics	
VintR(3,nrotormax)	real	interference velocity v_{int}^F , from rotors (F axes)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
DoQ_pay	real	payload D/q	
DoQ_cont	real	contingency D/q	
CL	real	lift coefficient C_L	
CM	real	pitch moment coefficient C_M	
CD	real	drag coefficient C_D	
CY	real	side force coefficient C_Y	
CN	real	yaw moment coefficient C_N	
L	real	lift	
M	real	pitch moment	
D	real	drag	
Υ	real	side force	
N	real	yaw moment	
		loads	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)	
Drag	real	$\operatorname{drag} e_d^T F_{ ext{aero}}^F$	
Download	real	download, aero F_z (I axes)	

Chapter 22

Structure: FltGear

Variable	Type	Description	Default
		Flight State - Landing Gear	
		aerodynamics	
iSTATE_LG	int	landing gear state (STATE_LG_extended, retracted)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
ed(3)	real	drag vector, $-v/ v $ in F axes	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)	
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$	
Download	real	download, aero F_z (I axes)	

Structure: FltRotor

Variable	Type	Description	Default
		Flight State - Rotor	
		control mode	
$KIND_control_coll$	int	collective control mode (1 thrust command, 2 pitch command)	
$KIND_control_cyc$	int	cyclic control mode (1 TPP command, 2 NFP command)	
Scoll	real	collective T matrix scale factor $S(1, a/6, \rho V_{\rm tip}^2 A_{\rm blade} a/6)$	
Scyc	real	cyclic T matrix scale factor S (–1 TPP command, 1 NFP command)	
		controls	
coll	real	collective	
Ingcyc	real	longitudinal cyclic	
latcyc	real	lateral cyclic	
incid	real	incidence	
cant	real	cant	
diam	real	diameter	
fgear	real	gear ratio factor	
		geometry	
Ccont(3,3)	real	shaft control, $C_{ m cont}$	
CSF(3,3)	real	shaft relative airframe, C^{SF}	
zhub(3)	real	hub position, $z_{ m hub}$	
zpylon(3)	real	pylon position, $z_{ m pylon}$	
znac(3)	real	nacelle cg position, $z_{ m nac}$	
CBF(3,3)	real	pylon relative airframe, C^{BF}	
		condition	
radius	real	radius R	
Vtip	real	tip speed $V_{\mathrm{tip}} = \Omega R$	
Omega	real	rotational speed Ω	
Mtip	real	tip Mach number $M_{ m tip}$	
Mat	real	maximum Mach number M_{at} (advancing tip or helical)	
sigma	real	solidity σ (thrust weighted)	

Structure: FltRotor

gamma	real	Lock number γ	
Iblade	real	blade moment of inertia I_{blade}	
flapfreq	real	flap frequency ν	
conefreq	real	coning frequency ν	
Khub	real	hub stiffness $K_{ m hub}$	
	pe	performance	
_		shaft axis loads	
T	real	thrust	
Н	real	drag force	
Υ	real	side force	
M×	real	roll moment	
My	real	pitch moment	
Q	real	torque	
СТ	real	thrust coefficient C_T	
CH	real	drag force coefficient C_H	
CY	real	side force coefficient C_Y	
CM×	real	roll moment coefficient C_{Mx}	
СМу	real	pitch moment coefficient C_{My}	
CQ	real	torque coefficient C_Q	
		control and motion	
theta75	real	collective pitch $\theta_{0.75}$ (0.75R)	
thetas	real	longitudinal cyclic pitch θ_s	
thetac	real	lateral cyclic pitch θ_c	
beta0	real	coning β_0	
betac	real	longitudinal flapping eta_c	
betas	real	lateral flapping β_s	
lambda0	real	$inflow \lambda_0 = \kappa \lambda_i$	
CPS(3,3)	real	tip-path plane relative shaft, C^{PS}	
		velocity and inflow	
VoVtip	real	$V/V_{ m tip}$	
VF(3)	real	total velocity relative air v^F (F axes)	
VS(3)	real	total velocity relative air v^S (S axes)	
mux	real	μ_x	
muy	real	μ_y	
•		, y	

```
muz
                                    real
                                                             angular velocity \omega^S (S axes)
omegaS(3)
                                    real
                                                                  \dot{\alpha}_x
                                    real
dax
                                                                  \dot{\alpha}_u
                                    real
day
                                                             \mu = \sqrt{\mu_x^2 + \mu_y^2}
                                    real
mu
                                                             \alpha = \tan^{-1}(\mu_z/\mu)
alphas
                                    real
fDuctA
                                    real
                                                             ducted fan area ratio f_A
                                                             ducted fan thrust ratio f_T
fDuctT
                                    real
fDuctW
                                                             ducted fan far wake ratio f_W
                                    real
                                                             height rotor hub above ground, z_a/D
                                    real
zg
                                                             effective height, z_q C_q/(D\cos\epsilon)
zge
                                    real
                                                             ground effect inflow ratio f_q
fg
                                    real
                                                             ground effect thrust ratio \kappa_a
kappag
                                    real
                                                             C_T for inflow solution
CTe
                                    real
                                                             reference \lambda_h = \sqrt{C_T/2}
lambdah
                                    real
                                                             ideal induced velocity \lambda_i
lambda ideal
                                    real
                                                             ideal induced power C_{Pideal} = C_T \lambda_i
CPideal
                                    real
kappax
                                    real
                                                             inflow gradient \kappa_x
                                                             inflow gradient \kappa_y
kappay
                                    real
                                                             inflow gradient \kappa_m = (\sigma a/8) f_m/U
kappam
                                    real
CTs
                                                        thrust coefficient/solidity, |C_T/\sigma|
                                    real
                                                        profile power factor F_P
FPpro
                                    real
FHpro
                                    real
                                                        profile drag factor F_H
                                                        interference velocity v_{\mathrm{int}}^F from wings, normal (F axes) interference velocity v_{\mathrm{int}}^F from wings, inplane (F axes)
VintWn(3,nwingmax)
                                    real
VintWp(3,nwingmax)
                                    real
                                                        inplane forces
CHtpp
                                                             drag force C_H, tpp
                                    real
                                                             side force C_Y, tpp
CYtpp
                                    real
CHo
                                    real
                                                             drag force C_H, profile
                                                             side force C_Y, profile
CYo
                                    real
                                                        blockage factor f_B = \Delta T/T = B f_\mu f_z
fΒ
                                    real
                                                        download factor f_{DL} = 1/(1 - \Delta T/T) = 1/(1 - DL f_u f_z)
fDL
                                    real
                                                    rotor flap equations
                                                        converged (0 not, -1 no iteration)
isrotorconv
                                    int
```

count_rotor	int	iteration count	
error_rotor(3)	real	error ratio (E_t, E_c, E_s)	
rotor_deriv_exist	int	rotor derivative matrix exist (0 for not)	
	lo	ads	
Frotor(3)	real	rotor force $F^F_{ m rotor}$ (F axes, about cg) rotor moment $M^F_{ m rotor}$ (F axes, about cg)	
Mrotor(3)	real	rotor moment M_{rotor}^F (F axes, about cg)	
L	real	lift (wind axis)	
X	real	drag (wind axis)	
CL	real	lift coefficient C_L	
CX	real	drag coefficient C_X	
Fvert	real	vertical force (inertia axes)	
CTs_steady	real	$\max C_T/\sigma$ (sustained)	
CTs_tran	real	$\max C_T/\sigma$ (transient)	
CTs_eqn	real	$\max C_T/\sigma$ (equation)	
$Tmargin_steady$	real	thrust margin, $(C_T/\sigma)_{\rm max} - C_T/\sigma $ (sustained)	
$Tmargin_tran$	real	thrust margin, $(C_T/\sigma)_{\rm max} - C_T/\sigma $ (transient)	
$Tmargin_eqn$	real	thrust margin, $(C_T/\sigma)_{\rm max} - C_T/\sigma $ (equation)	
Plimit_rs	real	drive system limit $P_{RSlimit}$ (at rpm_trim and rating_ds)	
Qmargin_rs	real	torque margin, $P_{RSlimit} - P$	
$exceedQ_rs$	int	exceed torque available: $P > (1 + \epsilon)P_{RSlimit}$	
	po	ower	
Р	real	rotor power P	
Pind	real	induced power P_i	
Ppro	real	profile power P_o	
Ppar	real	parasite power P_p	
Pw	real	wing interference power P_w	
Pd	real	propulsive force efficiency power P_d	
Pv	real	climb efficient power P_v	
CP	real	rotor power coefficient C_P	
CPind	real	induced power coefficient C_{Pi}	
CPpro	real	profile power coefficient C_{Po}	
CPpar	real	parasite power coefficient C_{Pp}	
CPw	real	wing interference power coefficient P_w	
CPd	real	propulsive force efficiency power coefficient P_d	

CPv	real	climb efficient power coefficient P_v
lambda	real	induced velocity λ
lambdat	real	wing interference velocity $\lambda_t = C_{Pw}/C_F$
Ki	real	induced power factor κ
cdmean	real	mean drag coefficient $c_{d\text{mean}}$
FM	real	hover figure of merit, Tf_Dv/P
etaprop	real	propulsive efficiency, TV/P
etamom	real	momentum efficiency, $T(V + f_D v)/P$
CDe	real	effective drag, $(C_{Pi} + C_{Po})/(V/V_{\rm tip})$
LoDe	real	effective lift-to-drag, C_L/C_{De}
		shaft power and reaction drive
Pshaft	real	shaft power $P_{ m shaft}$
Preact	real	reaction drive power $P_{\rm react}$
Freact	real	reaction drive net force $F_{\rm react} = P_{\rm react}/\Omega r_{\rm reac}$
rOmegareact	real	blade velocity $\Omega r_{\mathrm{react}}$
		aerodynamics
) / (0)	1	hub
Vaero_hub(3)	real	total velocity relative air v^F (F axes)
Vmag_hub	real	velocity magnitude
q_hub	real	dynamic pressure
ed_hub(3)	real	drag vector, $-v/ v $ in F axes
VB_hub(3)	real	total velocity relative air v^B (B axes)
alpha_hub	real	angle of attack α (deg)
		pylon
$Vaero_pylon(3)$	real	total velocity relative air v^F (F axes)
$Vmag_pylon$	real	velocity magnitude
q_pylon	real	dynamic pressure
ed_pylon(3)	real	drag vector, $-v/ v $ in F axes
$VB_pylon(3)$	real	total velocity relative air v^B (B axes)
alpha_pylon	real	angle of attack α (deg)
CDhub	real	drag coefficient, hub $C_{D\mathrm{hub}}$
CDpylon	real	drag coefficient, pylon $C_{D_{\text{pylon}}}$
CDduct	real	drag coefficient, duct $C_{D ext{duct}}$
Dhub	real	drag, hub $D_{ m hub}$

Dpylon	real	drag, pylon $D_{ m pylon}$
Dduct	real	drag, duct $D_{ m duct}$
Dspin	real	drag, spinner $D_{\rm spin}$
	lo	ads
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)
	in	terference
lambda_int	real	ideal induced velocity λ_i (from C_T)
vind(3)	real	induced velocity v_{ind}^F (F axes)
chi_wake	real	wake angle χ
Fint_fus	real	interference factor $f_W f_z f_r f_t$ at fuselage
$Fint_wingLp(nwingmax,npar)$	ielmax)	
	real	interference factor $f_W f_z f_r f_t$ at wing, left panel
Fint_wingRp(nwingmax,npar	nelmax)	
	real	interference factor $f_W f_z f_r f_t$ at wing, right panel
$Fint_tail(ntailmax)$	real	interference factor $f_W f_z f_r f_t$ at tail
isInWake_fus	int	fuselage inside wake
$isInWake_wingLp(nwingmax)$	npanelmax)	
	int	wing inside wake, left panel
$isInWake_wingRp(nwingmax)$,npanelmax)	
	int	wing inside wake, right panel
$isInWake_tail(ntailmax)$	int	tail inside wake
ftwin	real	twin rotor factor f_t
Aint_wing(nwingmax)	real	induced power interference at wing α_{int}

Chapter 24

Structure: FltWing

Variable	Type	Description	Default
		Flight State - Wing	
		controls	
flap(npanelmax)	real	flap δ_F	
flaperon(npanelmax)	real	flaperon δ_f	
aileron(npanelmax)	real	aileron δ_a	
incid(npanelmax)	real	incidence i	
		aerodynamics	
VintR_Lp(3,nrotormax,np	anelmax)		
	real	interference velocity v_{int}^F at left wing panel, from rotors (F axes)	
VintR_Rp(3,nrotormax,np	anelmax)		
	real	interference velocity v_{int}^F at right wing panel, from rotors (F axes)	
VintR(3,nrotormax)	real	interference velocity v_{int}^F (panel area weighted), from rotors (F axes)	
VintW(3,nwingmax)	real	interference velocity v_{int}^F , from other wings (F axes)	
AintW(nwingmax)	real	interference angle $\alpha_{\rm int}$, from other wings	
AintR(nrotormax)	real	induced power interference α_{int} , from rotors	
		with mean interference	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
alpha_int	real	angle of attack α , with interference (deg)	
CDV	real	vertical drag coefficient C_{DV}	
		left panel	
$Vaero_Lp(3,npanelmax)$	real	total velocity relative air v^F (F axes)	

Structure: FltWing

VB_Lp(3,npanelmax)	real	total velocity relative air v^B (B axes)
alpha_Lp(npanelmax)	real	angle of attack α (deg)
$beta_Lp(npanelmax)$	real	sideslip angle β (deg)
$CBA_Lp(3,3,npanelmax)$	real	C^{BA}
$Vmag_Lp(npanelmax)$	real	velocity magnitude
$q_{Lp}(npanelmax)$	real	dynamic pressure
$CL_Lp(npanelmax)$	real	lift coefficient C_{Lp}
$CDp_Lp(npanelmax)$	real	drag coefficient, parasite C_{Dpp}
$CM_{Lp}(npanelmax)$	real	pitch moment coefficient C_{Mp}
$CR_{Lp}(npanelmax)$	real	roll moment coefficient $C_{\ell p}$
$L_Lp(npanelmax)$	real	lift
$Dp_Lp(npanelmax)$	real	drag, parasite
$M_Lp(npanelmax)$	real	pitch moment
$R_Lp(npanelmax)$	real	roll moment
		right panel
$Vaero_{Rp}(3,npanelmax)$	real	total velocity relative air v^F (F axes)
$VB_Rp(3,npanelmax)$	real	total velocity relative air v^B (B axes)
$alpha_Rp(npanelmax)$	real	angle of attack α (deg)
$beta_Rp(npanelmax)$	real	sideslip angle β (deg)
$CBA_Rp(3,3,npanelmax)$	real	C^{BA}
$Vmag_{Rp}(npanelmax)$	real	velocity magnitude
$q_Rp(npanelmax)$	real	dynamic pressure
$CL_{Rp}(npanelmax)$	real	lift coefficient C_{Lp}
$CDp_Rp(npanelmax)$	real	drag coefficient, parasite C_{Dpp}
$CM_{Rp}(npanelmax)$	real	pitch moment coefficient C_{Mp}
$CR_{Rp}(npanelmax)$	real	roll moment coefficient $C_{\ell p}$
$L_Rp(npanelmax)$	real	lift
$Dp_Rp(npanelmax)$	real	drag, parasite
$M_Rp(npanelmax)$	real	pitch moment
$R_Rp(npanelmax)$	real	roll moment
qS	real	qS (sum over panels)
qeff	real	(qS)/S (weighted by panel area)
dCLda3D	real	compressible 3D lift curve slope $C_{L\alpha}$
AoA_max	real	$lpha_{ m max}$

Structure: FltWing

CL	real	lift coefficient C_L
CDp	real	drag coefficient, parasite C_{Dp}
CDi	real	drag coefficient, induced C_{Di}
CM	real	pitch moment coefficient C_M
CR	real	roll moment coefficient C_ℓ
CLmax	real	maximum lift coefficient $C_{L\max}$
L	real	lift
Dp	real	drag, parasite
Di	real	drag, induced
D	real	drag
M	real	pitch moment
R	real	roll moment
Lmargin	real	stall margin, $C_{L ext{max}} - C_{L}$
	lo	pads
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{ m aero}^F$
Download	real	download, aero F_z (I axes)
	ir	nterference
Vint_tail(3,ntailmax)	real	velocity at tail v_{int}^F (F axes)
vind(3)	real	induced velocity v_{ind}^F (F axes)
Vint_wing(3,nwingmax)	real	velocity at other wing v_{int}^F (F axes)
Aint_wing(nwingmax)	real	angle at other wing $(\alpha_{\rm int} = v_{\rm int}/v^B = K_{\rm int}v_{\rm ind}/v^B)$
Vintn_rotor(3,nrotormax)	real	velocity at rotor v_{int}^F , normal (F axes)
Vintp_rotor(3,nrotormax)	real	velocity at rotor $v_{\text{int}}^{\text{r}}$, inplane (F axes)
		int, inplane (1 alles)

Structure: FltTail

Variable	Type	Description	Default
		Flight State - Tail	
		controls	
cont	real	control δ	
incid	real	incidence i	
		aerodynamics	
VintR(3,nrotormax)	real	interference velocity v_{int}^F , from rotors (F axes)	
VintW(3,nwingmax)	real	interference velocity v_{int}^F , from wings (W axes)	
Vaero(3)	real	total velocity relative air v^F (F axes)	
VB(3)	real	total velocity relative air v^B (B axes)	
alpha	real	angle of attack α (deg)	
beta	real	sideslip angle β (deg)	
CBA(3,3)	real	C^{BA}	
Vmag	real	velocity magnitude	
q	real	dynamic pressure	
dCLda3D	real	compressible 3D lift curve slope $C_{L\alpha}$	
AoA_max	real	$lpha_{ m max}$	
CL	real	lift coefficient C_L	
CDp	real	drag coefficient, parasite C_{Dp}	
CDi	real	drag coefficient, induced C_{Di}	
CLmax	real	maximum lift coefficient $C_{L{ m max}}$	
L	real	lift	
D	real	drag	
		loads	
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)	
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)	
Drag	real	$\mathrm{drag}e_d^T F_{\mathrm{aero}}^F$	
Download	real	download, aero F_z (I axes)	

Structure: FltTank

Variable	Type	Description	Default
		Flight State - Fuel Tank Systems	
		all tanks (standard plus auxiliary)	
Wfuel	real	usable fuel weight	
Efuel	real	usable fuel energy	
Wfuel_cap	real	fuel weight capacity	
Efuel_cap	real	fuel energy capacity	
rWfuel	real	fraction weight capacity	
rEfuel	real	fraction energy capacity = state-of-charge = 1 - depth-of-discharge	
		battery ($\dot{E} > 0$ discharge, $\dot{E} < 0$ charge; power and current positive)	
Pfuel_cap	real	power capacity $P_{\rm cap} = x_{mbd} E_{\rm fuel-cap}$ (MJ/hr)	
state	int	state (1 discharging, -1 CC charge, -2 CV charge)	
X	real	current x (1/hr)	
xi	real	current $\xi = x/x_{mbd}$	
V	real	voltage V	
Edotcomp	real	component energy flow $\dot{E}_{ m comp}$ (MJ/hr)	
etabatt	real	battery efficiency η_{batt}	
Ploss	real	power loss $P_{\rm loss}$ (MJ/hr)	
Edotbatt	real	battery energy flow $\dot{E}_{ m batt}$ (MJ/hr)	
dcrit	real	effective capacity factor $d_{ m crit}$	
Edoteff	real	effective energy flow $\dot{E}_{ m eff}$ (MJ/hr)	
xmax	real	maximum current x_{max} (1/hr)	
Pmax	real	maximum power (for x_{max}) (MJ/hr)	
Bmargin	real	battery power margin $P_{ m max} - \dot{E}_{ m batt} $ (MJ/hr)	
exceedB	int	exceed battery power: $ \dot{E}_{\mathrm{batt}} > (1+\epsilon)P_{\mathrm{max}}$	
		equipment power	
Peq	real	power loss $P_{ m eq}$	
fuelflow	real	fuel flow \dot{w}	

Structure: FltTank

energyflow	real	energy flow \dot{E}
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{ m equiv},$ from energy flow
		auxiliary tanks
		aerodynamics
Vaero(3,nauxtankmax)	real	total velocity relative air v^F (F axes)
Vmag(nauxtankmax)	real	velocity magnitude
q(nauxtankmax)	real	dynamic pressure
ed(3,nauxtankmax)	real	drag vector, $-v/ v $ in F axes
D(nauxtankmax)	real	$\operatorname{drag} D$
DL(nauxtankmax)	real	download, aero F_z (I axes)
		loads
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\operatorname{drag} e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)

Chapter 27

Structure: FltProp

Variable	Type	Description	Default	
		Flight State - Propulsion Group		
STATE_gear	int	drive system state		
		control		
DN_trim	real	rotational speed increment, primary rotor or primary engine (rpm)		
		power		
Pcomp	real	power required P_{comp} , all components		
Pcomp_rotor	real	rotor		
Pcomp_eng	real	engine groups		
Pxmsn	real	transmission losses P_{xmsn}		
Pacc	real	accessory power $P_{ m acc}$		
PreqPG	real	power required $P_{reqPG} = P_{comp} + P_{xmsn} + P_{acc}$, propulsion group		
PavPG	real	power available P_{avPG} , propulsion group (sum all engine groups producing shaft power)		
PavElsum	real	engine installed power available P_{avEI} (sum all engine groups producing shaft power)		
PavEGsum	real	engine group power available P_{avEG} (sum all engine groups producing shaft power)		
Pratio	real	P_{reqPG}/P_{avPG} , propulsion group		
Plimit_ds	real	drive system limit $P_{DSlimit}$ (at rpm_trim(primary) and rating_ds)		
atPlimit_ds	int	at drive system limit (P_{avPG} limited by $P_{DS ext{limit}}$)		
Qmargin_ds	real	torque margin, $P_{DS ext{limit}} - P_{reqPG}$		
Pmargin	real	power margin, $P_{avPG} - P_{reqPG}$		
exceedP	int	exceed power available: $P_{reqPG} > (1 + \epsilon)P_{avPG}$		
$exceedQ_ds$	int	exceed torque available: $P_{reqPG} > (1 + \epsilon)P_{DSlimit}$		
Qmargin	real	torque margin, min(propulsion group, engine groups, rotors)		
exceedQ	int	exceed torque available: any propulsion group, engine groups, rotors		
		propulsion group engines		
fuelflow(ntankmax)	real	fuel flow \dot{w}		
fuelflow_total	real	total fuel flow \dot{w}		
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{ m equiv}$, from energy flow		
energyflow(ntankmax)	real	energy flow \dot{E}		

Structure: FltProp

energyflow_total	real	total energy flow E
sfc	real	specific fuel consumption $sfc = \dot{w}_{equiv}/P_{req}$
Fprop(3)	real	jet thrust and momentum drag force $F_{\text{prop}}^{\dot{F}}$ (\dot{F} axes, about cg)
Mprop(3)	real	jet thrust and momentum drag moment M_{prop}^F (F axes, about cg)
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)

Structure: FltEngn

Variable	Type	Description	Default
		Flight State - Engine Group	
		controls	
amp	real	amplitude A	
mode	real	$\operatorname{mode} B$	
incid	real	incidence i	
yaw	real	yaw ψ	
fgear	real	gear ratio factor $f_{ m gear}$	
		geometry	
CBF(3,3)	real	engine relative airframe, C^{BF}	
ef(3)	real	engine direction, e_f	
		engine	
Pq	real	uninstalled power required, P_q	
Plossq	real	installation loss $P_{\rm loss}$	
etalossq	real	installation efficiency η_{loss}	
Preq_eng	real	installed power required, $P_{req-eng}$	
N_{trim}	real	engine rpm N	
mdot	real	mass flow \dot{m}	
wdot	real	fuel flow \dot{w}	
Edot	real	energy flow \dot{E}	
FG	real	gross installed jet thrust F_G	
Fmom	real	momentum thrust F_{mom}	
FN	real	net installed jet thrust F_N	
Daux	real	momentum drag of auxiliary air flow $D_{ m aux}$	
Pa	real	uninstalled power available, P_a	
Plossa	real	installation loss $P_{ m loss}$	
etalossa	real	installation efficiency η_{loss}	
Pav_eng	real	installed power available, P_{av-eng}	

Structure: FltEngn

Pmech	real	engine mechanical limit P_{mech} (at N_trim)
atPmech	int	at mechanical limit (P_{av-eng} limited by P_{mech})
etamotor	real	motor/generator efficiency $\eta_{ m motor}$
etacell	real	fuel cell efficiency $\eta_{ m cell}$
		engine group
ReactionMode	int	reaction drive mode (MODEL_engine_compreact or converted)
Converted	int	converted (KIND=RPTEM with mode=1; 0 shaft power, 1 reaction, 2 jet)
ProducePower	int	shaft power (0 consumed (generator or compressor), 1 produced)
Pcomp	real	component power P_{comp} (generator or compressor); (Nengine–NEngInOp) P_qK_{ffd}
Preq	real	power required P_{reqEG}
PavEl	real	engine installed power available P_{avEI} ; (Nengine–NEngInOp) $P_{av-\mathrm{eng}}$
Pav	real	power available, P_{avEG} ; fPower(Nengine–NEngInOp) P_{av-eng}
Qreq	real	torque required Q_{req} (at N_trim)
Pratio	real	P_{reqEG}/P_{avEG}
Pmargin	real	power margin, $P_{avEG} - P_{reqEG}$
Plimit_es	real	drive system limit $P_{ES ext{limit}}$ (at N_trim and rating_ds)
atPlimit_es	int	at drive system limit (P_{avEG} limited by $P_{ES limit}$)
Qmargin_es	real	torque margin, $P_{ESlimit} - P_{reqEG}$
$exceedQ_es$	int	exceed torque available: $P_{reqEG} > (1 + \epsilon)P_{ESlimit}$
fuelflow	real	fuel flow \dot{w} (negative if generated)
energyflow	real	energy flow \dot{E} (negative if generated)
fuelflow_equiv	real	equivalent fuel flow $\dot{w}_{\rm equiv}$, from energy flow
sfc	real	specific fuel consumption $\mathrm{sfc} = \dot{w}_{\mathrm{equiv}}/P_{req}$
FNEG	real	net installed jet thrust F_N
DauxEG	real	momentum drag of auxiliary air flow $D_{\rm aux}$
Fjet(3)	real	jet thrust force F_{iet}^F (F axes, about cg)
Mjet(3)	real	jet thrust moment $M_{\rm jet}^F$ (F axes, about cg)
Faux(3)	real	momentum drag force F_{aux}^F (F axes, about cg)
Maux(3)	real	momentum drag moment M_{aux}^F (F axes, about cg)
(-)		
		aerodynamics
Vaero(3)	real	total velocity relative air v^F (F axes)
Vmag	real	velocity magnitude
q	real	dynamic pressure
ed(3)	real	drag vector, $-v/ v $ in F axes

Structure: FltEngn

VB(3)	real	total velocity relative air v^B (B axes)
alpha	real	angle of attack α (deg)
CD	real	drag coefficient C_D
D	real	drag
		load
Faero(3)	real	aerodynamic force F_{aero}^F (F axes, about cg)
Maero(3)	real	aerodynamic moment M_{aero}^F (F axes, about cg)
Drag	real	$\mathrm{drag}\ e_d^T F_{\mathrm{aero}}^F$
Download	real	download, aero F_z (I axes)

Structure: FltJet

Variable	Type	Description	Default
		Flight State - Jet Group	
		controls	
amp	real	amplitude A	
mode	real	$mode\ B$	
incid	real	incidence i	
yaw	real	yaw ψ	
		geometry	
CBF(3,3)	real	jet relative airframe, C^{BF}	
ef(3)	real	jet direction, e_f	
		jet	
Tq	real	uninstalled thrust required, T_q	
Tlossq	real	installation loss $T_{\rm loss}$	
etalossq	real	installation efficiency $\eta_{\rm loss}$	
Treq_jet	real	installed thrust required, $T_{req-jet}$	
mdot	real	mass flow \dot{m}	
wdot	real	fuel flow \dot{w}	
Edot	real	energy flow \dot{E}	
FG	real	gross installed jet thrust F_G	
Fmom	real	momentum thrust F_{mom}	
FN	real	net installed jet thrust F_N	
Daux	real	momentum drag of auxiliary air flow D_{aux}	
Ta	real	uninstalled thrust available, T_a	
Tlossa	real	installation loss $T_{ m loss}$	
etalossa	real	installation efficiency η_{loss}	
Tav_jet	real	installed thrust available, T_{av-jet}	
Tmech	real	jet mechanical limit $T_{ m mech}$	
atTmech	int	at mechanical limit (T_{av-jet} limited by T_{mech})	

Structure: FltJet

```
jet group
ReactionMode
                                   int
                                                       reaction drive mode (MODEL jet react or converted)
Converted
                                   int
                                                       converted (RPJEM with mode=1; 0 jet, 1 reaction)
                                                       thrust required T_{reaJG}
Treq
                                   real
                                                       jet installed thrust available T_{avJI}; (Njet-NJetInOp)T_{av-\text{jet}}
TavJI
                                   real
                                                       thrust available, T_{avJG}; fThrust(Njet-NJetInOp)T_{av-\text{jet}}
Tav
                                   real
Jratio
                                                       T_{reaJG}/T_{avJG}
                                   real
                                                       thrust margin, T_{avJG} - T_{reqJG}
Jmargin
                                   real
                                                       exceed thrust available: T_{regJG} > (1 + \epsilon)T_{avJG}
exceedJ
                                   int
fuelflow
                                                       fuel flow \dot{w} (negative if generated)
                                   real
                                                       energy flow \dot{E} (negative if generated)
energyflow
                                   real
                                                       equivalent fuel flow \dot{w}_{\rm equiv}, from energy flow
fuelflow equiv
                                   real
                                                       specific fuel consumption sfc = \dot{w}_{equiv}/T_{req}
sfc
                                   real
FNJG
                                                       net installed jet thrust F_N
                                   real
                                                       momentum drag of auxiliary air flow D_{\rm aux}
DauxJG
                                   real
                                                       jet thrust force F_{\text{iet}}^F (F axes, about cg)
Fjet(3)
                                   real
                                                       jet thrust moment M_{\rm jet}^F (F axes, about cg)
Mjet(3)
                                   real
                                                       momentum drag force F_{\text{aux}}^F (F axes, about cg)
Faux(3)
                                   real
                                                       momentum drag moment M_{\text{aux}}^F (F axes, about cg)
Maux(3)
                                   real
                                                  loads
                                                       force F_{\text{iet}}^F (F axes)
F(3)
                                   real
                                                       moment M_{\text{iet}}^F (F axes)
M(3)
                                   real
                                                   aerodynamics
                                                       total velocity relative air v^F (F axes)
Vaero(3)
                                   real
Vmag
                                   real
                                                       velocity magnitude
                                                       dynamic pressure
                                   real
q
                                                       drag vector, -v/|v| in F axes
ed(3)
                                   real
                                                       total velocity relative air v^B (B axes)
VB(3)
                                   real
                                                       angle of attack \alpha (deg)
alpha
                                   real
CD
                                                       drag coefficient C_D
                                   real
D
                                                       drag
                                   real
                                                  load
                                                       aerodynamic force F^F_{
m aero} (F axes, about cg) aerodynamic moment M^F_{
m aero} (F axes, about cg)
Faero(3)
                                   real
Maero(3)
                                   real
```

Structure: FltJet 118

Drag Download real

drag $e_d^T F_{\text{aero}}^F$ download, aero F_z (I axes) real

Structure: FltChrg

Type	Description	Default
	Flight State - Charge Group	
	controls	
real	amplitude A	
real	$\operatorname{mode} B$	
real	incidence i	
real	yaw ψ	
	geometry	
real	charger relative airframe, C^{BF}	
real	charger direction, e_f	
	charger	
real		
real	cell energy flow available $E_{a\text{cell}} = P_0$	
real	cell energy flow required $\dot{E}_{q\mathrm{cell}} = \dot{E}_{req}/\eta_{\mathrm{chrg}}$	
real	cell power required $\dot{E}_{q\mathrm{cell}} = \dot{E}_{req}/\eta_{\mathrm{chrg}}$	
real	charger efficiency $\eta_{ m chrg}$	
real	installed power required $\dot{E}_{req}=\dot{E}_{reqCG}K_{ffd}/(Ncharge-NChrgInOp)$	
	charger, fuel cell	
real	mass flow \dot{m}	
real	fuel flow \dot{w}	
real	gross installed jet thrust F_G	
real	momentum thrust $F_{ m mom}$	
real	net installed jet thrust F_N	
real	momentum drag of auxiliary air flow $D_{\rm aux}$	
	charge group	
real	power required $P_{reqCG} = \dot{E}_{reqCG}$	
real	energy flow required $P_{reqCG} = \dot{E}_{reqCG}$	
real	total cell power required $P_{req ext{total}}$; (Ncharge–NChrgInOp) $\dot{E}_{q ext{cell}}$	
	real real real real real real real real	Flight State - Charge Group controls $ \begin{array}{ccccccccccccccccccccccccccccccccccc$

Structure: FltChrg

```
total cell power available P_{av 	ext{total}}; fCharge(Ncharge-NChrgInOp)\dot{E}_{a	ext{cell}}
Pavtotal
                                     real
Cratio
                                     real
                                                           P_{reqtotal}/P_{avtotal}
Cmargin
                                                           power margin, P_{avtotal} - P_{regtotal}
                                      real
                                                          exceed power available: P_{regtotal} > (1 + \epsilon)P_{avtotal}
exceedC
                                     int
                                                          energy flow \dot{E} (negative if generated)
energyflow
                                     real
fuelflow equiv
                                     real
                                                          equivalent fuel flow \dot{w}_{\rm equiv}, from energy flow
                                                      charge group, fuel cell
                                                           fuel burn
                                                                fuel flow \dot{w}
fuelflow burn
                                     real
                                                                energy flow \dot{E}
energyflow_burn
                                      real
                                                               equivalent fuel flow \dot{w}_{\mathrm{equiv}}, from energy flow
fuelflow equiv burn
                                      real
sfc
                                                               specific fuel consumption sfc = \dot{w}_{\rm equiv}/P_{reg}
                                      real
FNCG
                                                           net installed jet thrust F_N
                                     real
                                                          momentum drag of auxiliary air flow D_{\text{aux}}
DauxCG
                                     real
                                                          jet thrust force F_{\text{jet}}^F (F axes, about cg)
Fjet(3)
                                     real
Mjet(3)
                                                          jet thrust moment M_{\rm jet}^F (F axes, about cg)
                                      real
                                                          momentum drag force F^F_{
m aux} (F axes, about cg) momentum drag moment M^F_{
m aux} (F axes, about cg)
Faux(3)
                                     real
Maux(3)
                                     real
                                                     loads
                                                          force F_{\text{chrg}}^F (F axes)
F(3)
                                      real
                                                          moment M_{\text{chrg}}^F (F axes)
M(3)
                                     real
                                                      aerodynamics
                                                          total velocity relative air v^F (F axes)
Vaero(3)
                                      real
Vmag
                                     real
                                                           velocity magnitude
                                      real
                                                           dynamic pressure
q
                                                          drag vector, -v/|v| in F axes
ed(3)
                                     real
                                                           total velocity relative air v^B (B axes)
VB(3)
                                     real
                                                           angle of attack \alpha (deg)
alpha
                                     real
                                                           drag coefficient C_D
CD
                                     real
D
                                                           drag
                                     real
                                                     load
                                                          aerodynamic force F^F_{
m aero} (F axes, about cg) aerodynamic moment M^F_{
m aero} (F axes, about cg)
Faero(3)
                                      real
Maero(3)
                                     real
```

Structure: FltChrg 121

Drag Download real

drag $e_d^T F_{\text{aero}}^F$ download, aero F_z (I axes) real

Chapter 31

Structure: Solution

Variable	Type		Description	Default
		+	Solution Procedures	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Rotor	
		+	convergence control	
$niter_rotor(nrotormax)$	int	+	maximum number of iterations	40
$toler_rotor(nrotormax)$	real	+	tolerance (deg)	.01
$relax_rotor(nrotormax)$	real	+	relaxation factor	.5
deriv_rotor(nrotormax)	int	+	derivative (1 first order, 2 second order)	1
maxinc_rotor(nrotormax)	real	+	maximum increment amplitude (0. for no limit)	4.
$trace_rotor(nrotormax)$	int	+	trace iteration (0 for none)	0
		+	Trim	
		+	convergence control	
niter_trim	int	+	maximum number of iterations	40
toler_trim	real	+	tolerance (fraction reference)	.001
relax_trim	real	+	relaxation factor	.5
		+	perturbation identification of derivative matrix	
deriv_trim	int	+	perturbation (1 first order, 2 second order)	1
mpid_trim	int	+	number of iterations between identification (0 for never recalculated)	0
perturb_trim	real	+	variable perturbation amplitude (fraction reference)	.002
init_trim	int	+	reinitialize aircraft controls (0 no, 1 force retrim)	0
trace_trim	int	+	trace iteration (0 for none, 2 for component controls)	0
		+	Maximum effort	
method_fly	int	+	method (1 secant, 2 false position)	1
method_flymax	int	+	maximization method (1 secant, 2 false position, 3 golden section search, 4 curve fit)	3
		+	convergence control	

Structure: Solution 123

niter_fly	int	+	maximum number of iterations	80
toler_fly	real	+	tolerance (fraction reference)	.002
relax_fly	real	+	relaxation factor	.5
perturb_fly	real	+	variable perturbation amplitude (fraction reference)	.05
maxderiv_fly	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_fly	real	+	maximum increment fraction (0. for no limit)	0.
rfit_fly	real	+	extent of curve fit (fraction maximum)	.98
nfit_fly	int	+	order of curve fit (2 quadradic, 3 cubic)	3
init_fly	int	+	reinitialize aircraft controls (0 no, 1 force retrim)	0
trace_fly	int	+	trace iteration (0 for none)	0
		+	Maximum gross weight (flight condition or mission takeoff)	
method_maxgw	int	+	method (1 secant, 2 false position)	1
		+	convergence control	
niter_maxgw	int	+	maximum number of iterations	40
toler_maxgw	real	+	tolerance (fraction reference)	.002
relax_maxgw	real	+	relaxation factor	.5
perturb_maxgw	real	+	variable perturbation amplitude (fraction reference)	.02
maxderiv_maxgw	real	+	maximum derivative amplitude (0. for no limit)	0.
maxinc_maxgw	real	+	maximum increment fraction (0. for no limit)	0.
trace_maxgw	int	+	trace iteration (0 for none)	0
		+	Mission	
		+	convergence control	
niter_miss	int	+	maximum number of iterations	40
toler_miss	real	+	tolerance (fraction reference)	.01
relax_miss	real	+	relaxation factor (mission fuel)	1.
relax_range	real	+	relaxation factor (range credit)	1.
relax_gw	real	+	relaxation factor (max takeoff GW)	1.
trace_miss	int	+	trace iteration (0 for none)	0
		+	Size aircraft	
		+	convergence control	
niter_size	int	+	maximum number of iterations (performance loop)	40
niter_param	int	+	maximum number of iterations (parameter loop)	40
toler_size	real	+	tolerance (fraction reference)	.01

Structure: Solution				124
		+	relaxation factors	
relax_size	real	+	power or radius	1.
relax_DGW	real	+	gross weight	1.
relax_xmsn	real	+	drive system limit	1.
relax_wmto	real	+	WMTO and SDGW	1.
relax_tank	real	+	fuel tank capacity	1.
relax_thrust	real	+	rotor thrust	1.
_		+	maximum increment fraction (0. for no limit)	
maxinc_size	real	+	power or radius	0.
maxinc_DGW	real	+	gross weight	0.
maxinc_xmsn	real	+	drive system limit	0.
maxinc_wmto	real	+	WMTO and SDGW	0.
maxinc_tank	real	+	fuel tank capacity	0.
maxinc_thrust	real	+	rotor thrust	0.
trace_size	int	+	trace iteration (0 for none, 2 for power)	0
			with niter_param=1, parameter iteration is part of performance loop (can be faster than niter_param > 1)	
	. ,	+	Case	
trace_case	int	+	trace operation (0 for none, 1 trace, 2 for all iterations)	1
trace_start	int	+	counter at start trace of iterations	0
trace_count	int		counter	
			use trace_case=2 to identify point at which analysis diverges	
			counter written if trace_case=1 or 2; trace of iterations suppressed until counter > trace_start	
			then turn on trace selectively for mission/segment/condition	
			Eliabt condition and mission segment	
	1	+	Flight condition and mission segment	005
toler_check	real	+	check Preq, Qlimit, Wfuel (fraction reference)	.005

Structure: Solution 125

		. ,	
		+ ′	Tolerance and perturbation scales
$KIND_{W}scale$	int	+	weight scale (1 design gross weight, 2 nominal C_T/σ)
KIND_Pscale	int	+	power scale (1 aircraft power, 2 derived from weight scale)
KIND_Lscale	int	+	length scale (1 rotor radius, 2 wing span, 3 fuselage length)
scaleRotor	int	+	rotor number
scaleWing	int	+	wing number
]	Derived tolerance and perturbation scales
Wscale	real		weight scale
Pscale	real		power scale
Lscale	real		length scale
Ascale	real		angle scale
Fscale	real		force scale
Mscale	real		moment scale
Vscale	real		horizontal velocity scale
Rscale	real		vertical velocity scale
Oscale	real		angular velocity scale
Tscale	real		C_T/σ scale
Cscale	real		C_L scale
Hscale	real		altitude scale
Gscale	real		acceleration scale
Xscale	real		range scale

Chapter 32

Structure: Cost

Variable	Type	Description	Default
		+ Cost	
title	c*100	+ title	
notes	c*1000	+ notes	
		+ Inflation	
MODEL_inf	int	+ model (1 only input factor; 2 CPI; 3 DoD)	3
year_inf	int	+ year for internal inflation factor	1994
inflation	real	+ inflation factor (per cent, relative 1994 or year_inf)	100.00
EXTRAP_inf	int	+ year beyond CPI/DoD table data (0 error, 1 extrapolate factor)	1
		inflation: F_i multiplies airframe purchase price and maintenance cost factor inflation always used, even with internal table CPI or DoD table: $F_i = \text{inflation} \left(F_{\text{table}}(\text{year_inf}) / F_{\text{table}}(1994) \right)$ input factor: $F_i = \text{inflation}$ (relative 1994) cost factors and rates include technology and inflation, correspond to year_inf	
MODEL and	_	+ Cost + model (1 CTM)	1
MODEL_cost CostCTM	CostCTM		1
	_	+ fuel price G_{fuel} (\$/gallon or \$/liter)	5.0
FuelPrice(ntankmax) EnergyPrice(ntankmax)	_	+ energy price G_{energy} (\$/MJ)	0.04
,			0.04
EnergyCredit(ntankmax)	_		•
Npass	int	+ number of passengers N_{pass}	100

equivalent energy price for fuel burned: $MJ\cong(gal)/126.2$ (based on 42.8 MJ/kg and 6.5 lb/gal of JP-4/JP-8) EnergyCredit=0. if no credit for generated energy

Structure: Cost

		+	Direct Operating Cost	
BlockHours	real	+	available block hours per year B	3751
NonFlightTime	real	+	non-flight time per trip T_{NF} (min)	12
DepPeriod	real	+	depreciation period D (years)	15
LoanPeriod	real	+	loan period L (years)	15
IntRate	real	+	interest rate i (%)	8
ResidValue	real	+	residual value V (%)	10
Spares	real	+	spares per aircraft S (% purchase price)	25
		+	Technology Factors	
TECH_cost_af	real	+	airframe χ_{AF}	0.8
TECH cost maint	real	+	maintenance Vancint	1 (

Chapter 33

Structure: CostCTM

Type		Description	Default
	+	CTM rotorcraft cost model	
	+	Purchase Price	
int	+	aircraft (1 rotorcraft, 2 turboprop airliner)	1
int	+	engine (1 turbine, 2 piston)	1
	+	airframe	
real	+	additional cost rate r_{comp} for composite construction (\$/lb or \$/kg)	0.0
real	+	composite weight in body (fraction body weight)	0.0
real	+	composite weight in tail (fraction tail weight)	0.0
real	+	composite weight in pylon (fraction pylon weight)	0.0
real	+	composite weight in wing (fraction wing weight)	0.0
	+	systems (fixed useful load)	
real	+	cost factor r_{FCD} , flight control electronics (\$/lb or \$/kg)	10000.
real	+	cost factor $r_{\rm MEP}$, mission equipment package (\$/lb or \$/kg)	10000.
		cost factors and rates include technology and inflation, correspond to year_inf rComp negative for cost reduction	
	+	Maintenance	
int	+	maintenance cost estimate (1 total only, 2 separate components)	2
real	+		160.
real	+		0.
real	+		0.0017
real	+	parts factor $M_{\rm parts}$	34.
real	+		1.45
icai		engine overhauf factor mengine	1.73
	int int real real real real real real real real	+ int + real + r	+ CTM rotorcraft cost model + Purchase Price int + aircraft (1 rotorcraft, 2 turboprop airliner) int + engine (1 turbine, 2 piston) + airframe real + additional cost rate r_{comp} for composite construction (\$/lb or \$/kg) real + composite weight in body (fraction body weight) real + composite weight in tail (fraction tail weight) real + composite weight in pylon (fraction pylon weight) real + composite weight in wing (fraction wing weight) real + cost factor r_{CD} , flight control electronics (\$/lb or \$/kg) real + cost factor r_{MEP} , mission equipment package (\$/lb or \$/kg) cost factors and rates include technology and inflation, correspond to year_inf rComp negative for cost reduction + Maintenance int + maintenance cost estimate (1 total only, 2 separate components) real + labor rate (\$ per hour) real + maintenance man hours per flight hour real + MMH/FH factor M_{labor} real + parts factor M_{parts}

Structure: CostCTM 129

labor rate includes inflation, corresponds to year_inf current best practice: Mlabor=0.0017, Mparts=34, Mengine=1.45, Mmajor=18 current average practice: Mlabor=0.0027, Mparts=56, Mengine=1.74, Mmajor=28

maintenance man hours per flight hour calculated from sum of fixed term (MMHperFH) and term scaling with weight empty (Mlabor)

+	Direct Operating Cost
---	-----------------------

MODEL_doc	int	+	crew+depreciation+insurance estimate (1 total only, 2 separate components)	2
Kcdi	real	+	crew+depreciation+insurance factor $K_{\rm cdi}$	1.0
Kcrew	real	+	crew cost factor K_{crew}	1.0

Chapter 34

Structure: Emissions

Variable	Type		Description	Default
		+	Emissions	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Emissions Trading Scheme (ETS)	
Kfuel(ntankmax)	real	+	CO_2 emissions from fuel used, K_{fuel} (kg/kg)	3.75
Kenergy(ntankmax)	real	+	CO_2 emissions from energy used, K_{energy} (kg/MJ)	0.14
		+	Average Temperature Response (ATR)	
Н	real	+	aircraft operating lifetime H (yr)	30.
U	real	+	aircraft utilization rate U (missions/yr)	350.
r	real	+	ATR discount rate r	0.03
tmax	real	+	ATR integration period t_{max} (yr)	500.
		+	emission index (kg/kg)	
EI_CO2(ntankmax)	real	+	carbon dioxide, EI_{CO_2}	3.16
EI_H2O(ntankmax)	real	+	water vapor, $EI_{ m H_2O}$	1.26
EI_SO4(ntankmax)	real	+	sulphates, $EI_{\mathrm{SO_4}}$	0.0002
$EI_soot(ntankmax)$	real	+	soot, $EI_{ m soot}$	0.00004
EI_NOx(ntankmax)	real	+	nitrogen oxides, EI_{NO_x}	0.01
$MODEL_{NOx}(ntankmax)$	int	+	turboshaft engine NOx emission model (0 input EI_{NO_x} , 1 DLR, 2 Swiss)	1
$KIND_NOx(ntankmax)$	int	+	model parameters (0 input, 1 low emissions, 2 high emissions)	1
KEI0(ntankmax)	real	+	DLR model, K_{EI0}	0.0036739
KEI1(ntankmax)	real	+	DLR model, K_{EI1}	0.00748
KEIs(ntankmax)	real	+	Swiss model, K_{EIs}	0.004
fAIC	real	+	aviation induced cloudiness factor, $f_{\rm AIC}$	1.0
		+	energy emission factor (kg/MJ)	
K_CO2(ntankmax)	real	+	carbon dioxide, $K_{\rm CO_2}$	0.14
K_H2O(ntankmax)	real	+	water vapor, $K_{ m H_2O}$	0.
K_SO4(ntankmax)	real	+	sulphates, K_{SO_4}	0.

Structure: Emissions

K_soot(ntankmax)	real	+	soot, $K_{ m soot}$	0.
$K_NOx(ntankmax)$	real	+	nitrogen oxides, K_{NO_x}	0.
SET credit	int	+	Emissions credit for energy generated (0 for none)	1

EI default values are for turboshaft engine

emission index (EI and $K_{\rm fuel}$) only used for tanks that store and use fuel as weight (SET_burn=1) energy emission factor (K and $K_{\rm energy}$) only used for tanks that store and use fuel as energy (SET_burn=2)

ATR discount rate: $r \ge 100000$ evaluated as $r = \infty$

ATR factors

 $\begin{array}{ccccc} {\sf ZCO2} & {\sf real} & {\sf CO_2} \\ {\sf ZNOx} & {\sf real} & {\sf NO}_x \, ({\sf CH_4} \, {\sf and} \, {\sf O}_{3L}) \\ {\sf Zs} & {\sf real} & {\sf short} \, {\sf life} \\ & & {\sf turboshaft} \, {\sf NO}_x \, {\sf model} \\ {\sf fPower} ({\sf 11,nengmax}) & {\sf real} & {\sf power} \, {\sf factor}, \, P_q = f_P P_{to} \end{array}$

wdot(11,nengmax) real fuel flow, \dot{w}

Chapter 35

Variable	Type		Description	Default
		+	Aircraft	
title	c*100	+	title	
notes	c*1000	+	notes	
config	c*16	+	Configuration	'helicopter'
RCconfig	int		$configuration \ (RCconfig_rotorcraft, helicopter, tandem, coaxial, tiltrotor, compound, multicopter, airplane)$	
nRotor_main	int		number of main rotors	
			config: identifies rotorcraft configuration	
			config = 'rotorcraft', 'helicopter', 'tandem', 'coaxial', 'tiltrotor', 'compound', 'multicopter', 'airplane'	
		+	Aircraft Controls	
ncontrol	int	+	number of aircraft controls (maximum ncontmax)	4
IDENT_control(ncontmax)	c*16	+	labels of aircraft controls	7
nstate_control	int	+	number of control states (maximum nstatemax)	1
instate_control	m	•	pilot's controls (control number)	-
kcoll	int		collective stick	
klatcyc	int		lateral cyclic stick	
klngcyc	int		longitudinal stick	
kpedal	int		pedal	
ktilt	int		tilt	
		+	control values (function speed)	
nVcont(ncontmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	
nVcoll	int	+	collective stick	0
nVlatcyc	int	+	lateral cyclic stick	0
nVIngcyc	int	+	longitudinal stick	0

nVpedal	int	+	pedal
nVtilt	int	+	tilt
<pre>cont(nvelmax,ncontmax)</pre>	real	+	values
coll(nvelmax)	real	+	collective stick c_{AC0}
latcyc(nvelmax)	real	+	lateral cyclic stick c_{ACc}
Ingcyc(nvelmax)	real	+	longitudinal cyclic stick c_{ACs}
pedal(nvelmax)	real	+	pedal c_{ACp}
tilt(nvelmax)	real	+	tilt $lpha_{ m tilt}$
Vcont(nvelmax,ncontmax)	real	+	speeds (CAS or TAS)
Vcoll(nvelmax)	real	+	collective stick
Vlatcyc(nvelmax)	real	+	lateral cyclic stick
VIngcyc(nvelmax)	real	+	longitudinal cyclic stick
Vpedal(nvelmax)	real	+	pedal
Vtilt(nvelmax)	real	+	tilt
,			

```
control system: set of aircraft controls c_{AC} defined
```

aircraft controls connected to individual controls of each component, $c = Tc_{AC} + c_0$

for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule

 c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

use of component control c_0 can be suppressed for flight state using SET_comp_control aircraft controls: identified by IDENT_control

typical aircraft controls are pilot's controls; default IDENT_control='coll','latcyc','lngcyc','pedal','tilt' available for trim (flight state specifies trim option)

initial values specified if control is trim variable; otherwise fixed for flight state each aircraft control can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) coll/latcyc/lngcyc/pedal/tilt input put in appropriate nVcont-cont-Vcont, based on IDENT_control flight state input can override

0

by connecting aircraft control to component control, flight state can specify component control value sign conventions for pilot's controls: collective + up, lat cyclic + right, long cyclic + forward, pedal + nose right rotor controls are positive Fourier series, with azimuth measured in direction of rotation

		+	Aircraft Motion	
		+	aircraft pitch angle $ heta_F$	
nVpitch	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	
pitch(nvelmax)	real	+	values	
Vpitch(nvelmax)	real	+	speeds (CAS or TAS)	
		+	aircraft roll angle ϕ_F	
nVroll	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	
roll(nvelmax)	real	+	values	
Vroll(nvelmax)	real	+	speeds (CAS or TAS)	
			aircraft motion	
			available for trim (depending on flight state)	
			each motion can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)	
			flight state input can override; initial value if trim variable	
			Conversion	
Veeny hover	real	+	maximum speed for hover and helicopter mode (CAS or TAS)	
Vconv_hover	real		minimum speed for cruise (CAS or TAS)	
Vconv_cruise	ieai	+	control state	
kaant hawar	int	+		1
kcont_hover		+	hover and helicopter mode ($V \le V_{\text{conv-hover}}$)	1
kcont_conv	int	+	conversion mode ($V_{\text{conv-hover}} < V < V_{\text{conv-cruise}}$)	1
kcont_cruise	int	+	cruise mode ($V \ge V_{\text{conv-cruise}}$)	1
	:4	+	drive system state (each propulsion group)	-
kgear_hover(npropmax)	int	+	hover and helicopter mode ($V \le V_{\text{conv-hover}}$)	1
kgear_conv(npropmax)	int	+	conversion mode ($V_{\text{conv-hover}} < V < V_{\text{conv-cruise}}$)	1
kgear_cruise(npropmax)	int	+	cruise mode ($V \ge V_{\text{conv-cruise}}$)	1

conversion control: use depends on STATE_control, SET_tilt, SET_Vtip of FltState

nacelle tilt angle: 0 for cruise, 90 deg for helicopter mode flight

cruise mode ($V \ge V_{\rm conv-cruise}$): use tilt=0, Vtip_cruise, kgear_cruise, kcont_cruise conversion mode: tilt linear with V, use Vtip_hover, kgear_conv, kcont_conv

 $\label{eq:conv-hover} \text{hover and helicopter mode } (V \leq V_{\text{conv-hover}}) \text{: use tilt=90, Vtip_hover, kgear_hover, kcont_hover}$

```
Never-exceed speed
SET VNE
                             c*32
                                             model
                                                                                                                                                           'none'
iSET VNE
                                                 limits defined (0 for none)
                             int
                                                 table
iSET VNE table
                             int
iSET VNE stall
                                                 stall
                             int
                                                 compressibility
iSET VNE comp
                             int
iSET VNE Mat
                             int
                                                 Mach number
                                             table
                                                 velocity (0 TAS, 1 CAS, 2 IAS)
                                                                                                                                                               0
KIND VNE table
                             int
nwt VNE
                                     +
                                                 number of weights (maximum nvnemax)
                             int
                                                 number of altitudes (maximum nvnemax)
nalt VNE
                             int
                                     +
                                                 weight ratio r_W = W_G/W_D (fraction DGW)
rwt VNE(nvnemax)
                             real
alt VNE(nvnemax,nvnemax)
                                                 density altitude h_d(nalt,nwt)
                             real
                                                 never-exceed speed V_{NEt}(nalt,nwt) (knots)
VNE(nvnemax,nvnemax)
                                     +
                             real
                                             stall model, each rotor (0 for no limit, 1 steady, 2 transient, 3 equation)
                                                                                                                                                               3
KIND VNE stall(nrotormax)
                                     +
                            int
C VNE(5)
                             real
                                     +
                                             compressibility limit constants C_n
                                             advancing tip Mach number M_{at}, each rotor (0. for no limit)
Mat VNE(nrotormax)
                             real
                                     +
                                                                                                                                                               1.
                                     +
                                            limits (0. not used)
                                                 TAS maximum (knots)
VNEmaxTAS
                                                                                                                                                               0.
                             real
                                     +
VNEmaxIAS
                                                 IAS maximum (knots)
                                                                                                                                                               0.
                             real
VNEminTAS
                                     +
                                                 TAS minimum (knots)
                                                                                                                                                               0.
                             real
VNEminIAS
                                                 IAS minimum (knots)
                             real
                                     +
                                                                                                                                                               0.
```

```
never-exceed speed: calculate V_{\rm NE} in knots TAS; depends on density altitude h_d and gross weight W_G (in terms of weight ratio r_W = W_G/W_D, fraction DGW) 
SET_VNE = 'none', or one to four of ('table', 'stall', 'comp', 'Mat') table limit: V_{\rm NE}_t(h_d, r_W)
```

stall limit: $V_{\rm NE}$ from rotor thrust capability $(C_T/\sigma \text{ vs } \mu)$

compressibility limit: $V_{\text{NE}c} = C_1 - C_2 h_d + C_3 \tau - C_4 V_{\text{tip}} - C_5 r_W$ (knots IAS; temperature in deg C)

Mach number limit: $V_{\text{NE}m}$ from advancing tip Mach number M_{at}

Structure: Aircraft	136

nIAS IAS(niasmax) CAS(niasmax) dIAS(niasmax) SET_Vschedule	int real real real int	+ + + + +	Indicated airspeed correction number of values (maximum niasmax, 0 no correction) indicated airspeed (knots) calibrated airspeed (knots) CAS-IAS Velocity schedules (1 CAS, 2 TAS, 3 IAS)	0	
			indicated airspeed correction: IAS(1)=CAS(1)=0., both IAS and CAS unique and sequential velocity schedules: all described as function CAS or TAS or IAS conversion, controls and motion, rotor tip speed, landing gear retraction, trim targets, drive system ratings	-	
		_	Trim states		
nstate_trim	int	+	number of trim states (maximum ntrimstatemax)	1	
IDENT_trim(ntrimstatemax)	c*12	+	label of trim state		
mtrim(ntrimstatemax)	int	+	number of trim variables (maximum mtrimmax)	0	
${\sf trim_quant(mtrimmax,ntrimstatemax)}$					
	c*16	+	trim quantity name		
trim_var(mtrimmax,ntrimstatemax)					
	c*16	+	trim variable name		
trim_target(mtrimmax,ntrimstatemax)		+	target course (1 FlaCtore 2 component)	1	
	int	+	target source (1 FltState, 2 component) Derived trim states	1	
itrim_quant(mtrimmax,ntrims	tatemax)		Derived trini states		
=4.5	int		trim quantity name (TRIM_QUANT_xxx)		
itrim_quantn(mtrimmax,ntrim	statemax)			
	int		trim quantity structure number		
itrim_quantk(mtrimmax,ntrim	statemax)			
	int		trim quantity kind (0 other, 1 rotor, 2 rotor lift, 3 rotor prop, 4 wing, 5 wing lift)		
itrim_var(mtrimmax,ntrimstate	. ′		trian providela manna (TDIM MAD		
itrim_varn(mtrimmax,ntrimsta	int		trim variable name (TRIM_VAR_xxx, or control number)		
itiiii_varii(iiitiiiiiiiax,iitriiiista	int		trim variable structure number		
	1111		tim variable structure mainter		

trim state: one or more set of quantities and variables for trim iteration
FltState identifies trim state (STATE_trim match IDENT_trim),
trim quantity:

description	trim_quant	target
aircraft total force	'force x', 'force y', 'force z'	zero
aircraft total moment	'moment x', 'moment y', 'moment z'	zero
aircraft load factor	'nx', 'ny', 'nz'	FltState%trim_target
propulsion group power	'power n'	FltState%trim_target
power margin	'P margin n'	FltState%trim_target
torque margin	'Q margin n'	FltState%trim_target
engine group power	'power EG n'	FltState%trim_target
power margin	'PEG margin n'	FltState%trim_target
jet group thrust	'jet n'	FltState%trim_target
jet thrust margin	['] J margin n'	FltState%trim_target
charge group power	'charge n'	FltState%trim_target
charge power margin	'C margin n'	FltState%trim_target
fuel tank energy flow	'tank n [']	FltState%trim_target
battery power margin	'B margin n'	FltState%trim_target
rotor lift	'lift rotor n', 'flift rotor n'	FltState%trim_target, Rotor%Klift
rotor lift	'CLs rotor n', 'vert rotor n'	FltState%trim_target, Rotor%Klift
rotor propulsive force	'prop rotor n', 'fprop rotor n'	FltState%trim_target, Rotor%Kprop
rotor propulsive force	'CXs rotor n', 'X/q rotor n'	FltState%trim_target, Rotor%Kprop
rotor thrust	'CTs rotor n'	FltState%trim_target, Rotor%Klift
rotor thrust margin	'T margin n'	FltState%trim_target
rotor thrust margin	'T margin tran n', 'T margin eqn n'	FltState%trim_target
rotor flapping	'betac n', 'Ingflap n'	FltState%trim_target
rotor flapping	'betas n', 'latflap n'	FltState%trim_target
rotor hub moment	'hub Mx n', 'roll n'	FltState%trim_target
rotor hub moment	'hub My n', 'pitch n'	FltState%trim_target
rotor torque	'hub Mz n', 'torque n'	FltState%trim_target
wing lift	'lift wing n', 'flift wing n'	FltState%trim_target, Wing%Klift
wing lift coefficient	'CL wing n'	FltState%trim_target, Wing%Klift
wing lift margin	'L margin n'	FltState%trim_target
tail lift	'lift tail n'	FltState%trim_target

trim variable:

description	trim_var	
aircraft control aircraft orientation aircraft velocity aircraft velocity aircraft angular rate propulsion group tip speed propulsion group engine speed	match IDENT_control 'pitch', 'roll' 'speed', 'ROC' 'side' 'pullup', 'turn' 'Vtip n' 'Nspec n'	body axes relative inertial axes horizontal, vertical flight speed sideslip angle Euler angle rates

if trim_target=1, trim quantity target value is FltState%trim_target; otherwise component Klift or Kprop used if trailing "n" is absent, use first component (n=1)

trim_quant='flift rotor n' or trim_quant='flift wing n': target is fraction total aircraft lift (GW*nAC(3)) trim_quant='fprop rotor n': target is fraction total aircraft drag (qAC*DoQ) trim_quant='T margin n' uses Rotor%CTs_steady, trim_quant='T margin tran n' uses Rotor%CTs_tran trim_quant='T margin eqn n' uses equation for rotor thrust capability (Rotor%K0_limit and Rotor%K1_limit)

trim var='Vtip' or 'Nspec': requires FltAircraft%SET Vtip='input'

		+	Geometry	
INPUT_geom	int	+	input (1 fixed, SL/BL/WL; 2 scaled, from XoL/YoL/ZoL)	2
		+	scaled geometry	
		+	reference length	
KIND_scale	int	+	kind (1 rotor radius, 2 wing span, 3 fuselage length)	1
kScale	int	+	identification (component number)	1
		+	reference point	
KIND_Ref	int	+	kind (0 input, 1 rotor, 2 wing, 3 fuselage, 4 center of gravity)	0
kRef	int	+	identification (component number)	1
SL_Ref	real	+	stationline	
BL_Ref	real	+	buttline	
WL_Ref	real	+	waterline	

calculated reference point (input or component) SLref real stationline **BLref** real buttline WI ref real. waterline baseline center of gravity location loc cg Location + Geometry: Location for each component fixed geometry input (INPUT geom = 1): dimensional SL/BL/WL stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale) XoL + aft, YoL + right, ZoL + up; from reference point option to fix some geometry (FIX geom in Location override INPUT geom)

component reference must be fixed certain Locations can be calculated from other parameters (configuration specific)

option to specify reference length (KIND_scale in Location override this global KIND_scale) reference point: KIND Ref, kRef; input dimensional XX Ref, or position of identified component

center of gravity: baseline is for nacelle angle = 90

flight state has calculated or input actual cg location

Takeoff flight condition c*12 atmosphere specification SET atmos 'std' temperature τ temp real temperature increment ΔT 0. dtemp real + density ρ density real csound real + speed of sound c_s viscosity real + viscosity μ altitude altitude real + Derived takeoff flight condition atmosphere (SET atmos xxx) iSET atmos int density to real density ρ density ratio ρ/ρ_0 sigma to real theta to real temperature ratio T/T_0 pressure ratio p/p_0 delta to real

```
takeoff condition (density) used for C_T/\sigma in rotor sizing
SET_atmos, atmosphere specification:
     'std' = standard day at specified altitude (use altitude)
     'dtemp' = standard day at specified altitude, plus temperature increment (use altitude, dtemp)
     'temp' = standard day at specified altitude, and specified temperature (use altitude, temp)
     'dens' = input density and temperature (use density, temp)
     'input' = input density, speed of sound, and viscosity (use density, csound, viscosity)
     'notair' = input, not air on earth (use density, csound, viscosity)
     see FltState%SET atmos for other options (polar, tropical, and hot days)
```

Size

aircraft disk loading

Aref	real	reference rotor area
wingload	real	aircraft wing loading
Sref	real	reference wing area
Pav	real	total takeoff power available
powerload	real	aircraft power loading
Tav	real	total takeoff thrust available
thrustload	real	aircraft weight-to-thrust

real

diskload

```
aircraft disk loading = W_D/A_{\rm ref}, A_{\rm ref} = \sum f_A A; rotor disk loading = f_W W_D/A aircraft wing loading = W_D/S_{\rm ref}, S_{\rm ref} = \sum S; individual wing loading = f_W W_D/S aircraft power loading = f_W W_D/A_{\rm av} are f_W W_D/A_{\rm av} = \sum f_{\rm reg} P_{\rm eng} (each engine group at takeoff rating)
aircraft thrust-to-weight = W_D/T_{av}, T_{av} = \sum N_{\rm jet} T_{\rm jet} (each jet group at takeoff rating)
```

Configuration

nWingExt	int	wing extensions (0 for none)
nWingExtKit	int	wing extension kits (0 for none)
nWingKit	int	wing kits (0 for none)
nWotherkit	int	other kit (0 for none)
SET_fold	int	folding (0 none, 1 fold weights, 2 with kit) (from Systems)

		Neutral point
SLna	real	stationline SL_{na}
		Operating size (hover; controls = 0 except tilt = 90)
length_op	real	length
width_op	real	width
area_op	real	area
		Fuel tank system
burnweight	int	first fuel tank that burns weight (0 none)
eref	real	reference specific energy (MJ/kg)
		Cost
CAC	real	aircraft C_{AC}
CAC_nokit	real	aircraft C_{AC} , folding kit not installed
Cmaint	real	maintenance $C_{ m maint}$
Cmaint_nokit	real	maintenance $C_{\rm maint}$, folding kit not installed
factor_inf	real	inflation factor F_i (year_inf relative 1994, including factor inflation)
factor_inf2011	real	inflation factor F_i (2011 relative 1994, CPI)
Ccomp	real	composite cost increment C_{comp}
CMEP	real	mission equipment package cost C_{MEP}
CFCE	real	flight control electronics cost C_{FCE}
Wcomp	real	composite weight increment W_{comp}
WMEP	real	mission equipment package weight W_{MEP}
WFCE	real	flight control electronics weight $W_{ m FCE}$
Kconfig	real	configuration factor, $K_{ET}K_{EN}K_{LG}K_R$
rAF	real	airframe C_{AF}/W_{AF} (\$/lb or \$/kg)
rAC	real	total aircraft C_{AC}/W_{EK} (\$/lb or \$/kg)
WAFcost	real	airframe weight W_{AF}
WEKcost	real	$W_{EK} = \text{weight empty} + \text{airframe kits} = W_{AF} + W_{\text{MEP}} + W_{\text{FCE}}$
Pcost	real	rated takeoff power P
Clabor	real	labor cost $C_{ m labor}$
Cparts	real	parts cost $C_{ m parts}$
Cengine	real	engine overhaul cost $C_{ m engine}$
Cmajor	real	major periodic maintenance cost $C_{ m major}$
MMHperFH	real	maintenance man hours per flight hour

		+	Weight	
DGW	real	+	design gross weight W_D	
$Wfuel_DGW$	real	+	mission fuel $W_{ m fuel}$ corresponding to DGW	
$Wpay_DGW$	real	+	payload $W_{\rm pay}$ corresponding to DGW	
		+	structural design gross weight	
SDGW	real	+	structural design gross weight W_{SD}	
dSDGW	real	+	gross weight increment	0.
fSDGW	real	+	gross weight factor	1.
fFuelSDGW	real	+	fraction main fuel tanks filled at SDGW	1.
		+	maximum takeoff weight	
WMTO	real	+	maximum takeoff weight W_{MTO}	
dWMTO	real	+	gross weight increment	0.
fWMTO	real	+	gross weight factor	1.
nz_ult	real	+	design ultimate flight load factor n_{zult} at SDGW	6.0

```
input or calculated: design gross weight W_D (FIX_DGW), structural design gross weight W_{SD} (SET_SDGW), maximum takeoff weight W_{MTO} (SET_WMTO), weight empty W_E (FIX_WE)
```

if calculated, then input parameter is initial value

fixed weight empty (FIX_WE=1): adjust contingency weight to achieve

DGW, design gross weight: used for rotor disk loading and blade loading, wing loading, power loading, thrust loading to obtain aircraft moments of inertia from radii of gyration

for tolerance and perturbation scales of the solution procedures

optionally to define structural design gross weight and maximum takeoff weight

optionally to specify the gross weight for missions and flight conditions

Wfuel_DGW and Wpay_DGW usually calculated (identified as input so inherited by next case)

SET_SDGW, structural design gross weight:

```
'input' = input
```

'f(DGW)' = based on DGW; W_{SD} =dSDGW+fSDGW* W_{D}

'f(WMTO)' = based on WMTO; W_{SD} =dSDGW+fSDGW* W_{MTO}

'maxfuel' = based on fuel state; W_{SD} =dSDGW+fSDGW* $W_G, W_G = W_D$ -Wfuel_DGW+fFuelSDGW* $W_{\rm fuel-cap}$ 'perf' = calculated from maximum gross weight at SDGW sizing conditions (DESIGN sdgw)

SET WMTO, maximum takeoff weight:

'input' = input

```
\label{eq:forward_equation} \begin{tabular}{l} 'f(DGW)' = based on DGW; $W_{MTO} = dWMTO + fWMTO * W_D$ \\ 'f(SDGW)' = based on SDGW; $W_{MTO} = dWMTO + fWMTO * W_SD$ \\ 'maxfuel' = based on maximum fuel; $W_{MTO} = dWMTO + fWMTO * W_G$, $W_G = W_D - Wfuel_DGW + W_{fuel-cap}$ \\ 'perf' = calculated from maximum gross weight at WMTO sizing conditions (DESIGN_wmto) \\ SDGW used for weights (fuselage, rotor, wing) \\ WMTO used for cost, drag (scaled aircraft and hub drag), and weights (system, fuselage, landing gear, engine group) \\ nz_ult, design ultimate flight load factor at SDGW: used for weights (fuselage, rotor, wing) \\ \end{tabular}
```

+ Weight

```
Weight
                                                   aircraft weight statement (operating weight, without payload and usable fuel)
                                 Weight
WO
                                 real
                                                        operating weight W_O
WE
                                                        weight empty W_E
                                 real
                                                       growth factor = W_D/(W_D - W_{\text{scaled}} - W_{\text{fuel}})
growth factor
                                 real
                                                   moments of inertia (based on design gross weight, scaled with reference length)
                                                        roll radius of gyration k_x/L
kx
                                 real
                                                        pitch radius of gyration k_u/L
ky
                                 real
kz
                                 real
                                                        yaw radius of gyration k_z/L
                                               Derived moments of inertia (corresponding to aircraft weight statement)
                                                   I_{xx}
lxx
                                 real
                                 real
                                                   I_{uu}
lyy
lzz
                                 real
                                                   I_{zz}
lxy
                                                   I_{xy}
                                 real
                                                   I_{yz}
lyz
                                 real
lxz
                                 real
                                                   I_{xz}
```

```
weight empty = structure + propulsion + systems and equipment + vibration + contingency operating weight = weight empty + fixed useful load weight statement defines fixed useful load and operating weight for design configuration so for flight state, additional fixed useful load = auxiliary fuel tank and kits and increments flight state can also increment crew weight or equipment weight flight state: gross weight, useful load (payload, usable fuel, fixed useful load), operating weight gross weight = weight empty + useful load = operating weight + payload + usable fuel useful load = fixed useful load + payload + usable fuel
```

FIX_drag DoQ CD kDrag FIX_DL DoQV kDL	int real real real int real real	+ Drag total aircraft D/q (0 calculated; 1 fixed, input D/q ; 2 scaled, input C_D ; 3 scaled, from k) + area D/q coefficient C_D (based on rotor area, $D/q = A_{\rm ref}C_D$) + $k = (D/q)/(W_{MTO}/1000)^{2/3}$ (Units_Dscale) + total aircraft download (0 calculated; 1 fixed, input D/q_V ; 2 scaled, from k_{DL}) + area $(D/q)_V$ + $k_{DL} = (D/q)_V/A_{\rm ref}$	0 0. 0.008 2.5 0 0.
		fixed drag or download: obtained by adjusting contingency D/q or $(D/q)_V$ FIX_drag: minimum drag, excludes drag due to lift and angle of attack use only one of input DoQ, CD, kDrag (others calculated) $A_{\rm ref} = {\rm reference\ rotor\ area;\ units\ of\ kDrag\ are\ ft^2/klb^{2/3}\ or\ m^2/Mg^{2/3}}$ CD = 0.02 for old helicopter, 0.008 for current low drag helicopters kDrag = 9 for old helicopter, 2.5 for current low drag helicopters, 1.6 for current tiltrotors, 1.4 for turboprop aircraft (English units) FIX_DL, download: $A_{\rm ref} = {\rm reference\ rotor\ area,\ kDL} \sim DL/T$ use only one of DoQV, kDL (other calculated)	
KIND_alpha	int	+ Aerodynamics + angle of attack and sideslip angle representation (1 conventional, 2 reversed for sideward flight) angle of attack and sideslip angle: reversed definition best for sideward flight	2
DoQC_comp DoQH_comp DoQV_comp	real real real	Derived aircraft drag sum component cruise drag, area $(D/q)_{\rm comp}$ (without contingency) sum component helicopter drag, area $(D/q)_{\rm comp}$ (without contingency) sum component vertical drag, area $(D/q)_{\rm comp}$ (without contingency) total cruise drag, area $(D/q)_{\rm comp}$ (without contingency)	

DoQC_AC

real

total cruise drag, area $(D/q)_{AC}$

DoQH_AC	real		total helicopter drag, area $(D/q)_{AC}$	
DoQV_AC	real		total vertical drag, area $(D/q)_{AC}$	
CDC_AC	real		total cruise $(D/q)_{AC}/A_{\mathrm{ref}}$	
CDH_AC	real		total helicopter $(D/q)_{AC}/A_{\mathrm{ref}}$	
$kDragC_AC$	real		total cruise $(D/q)/(W_{MTO}/1000)^{2/3}$	
$kDragH_AC$	real		total helicopter $(D/q)/(W_{MTO}/1000)^{2/3}$	
kDL_AC	real		total vertical $(D/q)_V/A_{\mathrm{ref}}$	
DoQwet_AC	real		total cruise wetted drag, area $(D/q)_{\rm wet}$	
Swet_AC	real		total wetted area $S_{ m wet}$	
CD_AC	real		total cruise $(D/q)_{\mathrm{wet}}/S_{\mathrm{wet}}$	
		+	Number of Components	
nRotor	int	+	rotors (maximum nrotormax)	2
nWing	int	+	wings (maximum nwingmax)	0
nTail	int	+	tails (maximum ntailmax)	1
nTank	int	+	fuel tank systems (maximum ntankmax)	1
nPropulsion	int	+	propulsion groups (maximum npropmax)	1
nEngineGroup	int	+	engine groups (maximum nengmax)	1
nJetGroup	int	+	jet groups (maximum njetmax)	0
nChargeGroup	int	+	charge groups (maximum nchrgmax)	0
nEngineModel	int	+	engine models (maximum nengmax)	1
nEngineParamN	int	+	engine model parameters (maximum nengpmax)	0
nEngineTable	int	+	engine tables (maximum nengmax)	0
nRecipModel	int	+	reciprocating engine models (maximum nengmax)	0
${\sf nCompressorModel}$	int	+	compressor models (maximum nengmax)	0
nMotor M odel	int	+	motor models (maximum nengmax)	0
nJetModel	int	+	jet models (maximum njetmax)	0
nFuelCellModel	int	+	fuel cell models (maximum nchrgmax)	0
nSolarCellModel	int	+	solar cell models (maximum nchrgmax)	0
${\sf nBatteryModel}$	int	+	battery models (maximum ntankmax)	0

propulsion group is set of components and engine groups, connected by drive system engine model or engine table or reciprocating engine or motor model describes particular engine, used in one or more engine groups

jet model describes particular jet, used in one or more jet groups fuel cell model or solar cell model describes particular charger, used in one or more charge groups battery model describes particular batter, used in one or more fuel tanks

Aircraft Input for case Aircraft

inAircraft int inSystems int **Systems** inFuselage int Fuselage inLandingGear LandingGear int inRotor(nrotormax) Rotor int Wing inWing(nwingmax) int inTail(ntailmax) Tail int inFuelTank(ntankmax) int FuelTank inPropulsion(npropmax) Propulsion int inEngineGroup(nengmax) EngineGroup int inJetGroup(njetmax) JetGroup int inChargeGroup(nchrgmax) int ChargeGroup EngineModel inEngineModel(nengmax) int inEngineParamN(nengpmax) int **EngineParamN** inEngineTable(nengmax) EngineTable int inRecipModel(nengmax) RecipModel int inCompressorModel(nengmax) CompressorModel int MotorModel inMotorModel(nengmax) int inJetModel(njetmax) JetModel int inFuelCellModel(nchrgmax) FuelCellModel int inSolarCellModel(nchrgmax) SolarCellModel int inBatteryModel(ntankmax) int BatteryModel inCost Cost int

int

inEmissions

iSIZE perf(npropmax)

int Emissions
Design specification (from Size)

performance (SIZE_perf_engine, rotor, param, none)

iSIZE_jet(njetmax) int performance (SIZE_jet_jet, param, none)

$iSIZE_charge(nchrgmax)$	int	performance (SIZE_charge_chrg, param, none)
$iSIZE_{rotor}(nrotormax)$	int	rotor sized (SIZE_rotor_radius, thrust, none)
$iSET_rotor_radius(nrotormax)$		
	int	rotor radius (SET_rotor_radius, DL, ratio, scale, not_radius)
$FIX_rotor_CWs(nrotormax)$	int	rotor C_W/σ (1 fixed, 0 not)
$FIX_{rotor_Vtip(nrotormax)}$	int	rotor V_{tip} (1 fixed, 0 not)
$FIX_{rotor_sigma}(nrotormax)$	int	rotor σ (1 fixed, 0 not)
$iSET_wing_area(nwingmax)$	int	wing area (SET_wing_area, WL, not_area)
$iSET_wing_span(nwingmax)$	int	wing span (SET_wing_span, ratio, radius, width, hub, panel, not_span)
$FIX_wing_chord(nwingmax)$	int	wing chord (1 fixed, 0 not)
$FIX_wing_AR(nwingmax)$	int	wing aspect ratio (1 fixed, 0 not)
FIX_DGW	int	design gross weight (0 calculated, 1 fixed)
FIX_WE	int	weight empty (0 calculated, 1 fixed)
$iSET_tank(ntankmax)$	int	fuel tank (SET_tank_input, miss, misspower, fmiss)
iSET_SDGW	int	$SDGW\ (SET_SDGW_input, fDGW, fWMTO, maxfuel, perf)$
iSET_WMTO	int	$WMTO\ (SET_WMTO_input, fDGW, fSDGW, maxfuel, perf)$
$iSET_limit_ds(npropmax)$	int	drive system torque limit (SET_limit_input, ratio, Pav, Preq)
kind_iter_size	int	kind iteration, performance (0 none, 1 size engine or radius or jet group or charge group)
kind_iter_param	int	kind iteration, parameters (0 none, 1 calculate parameters)
$nSIZE_{\mathtt{engine}}(npropmax)$	int	conditions and missions for size engine or rotor
$nSIZE_jet(njetmax)$	int	conditions and missions for size jet group
${\sf nSIZE_charge(nchrgmax)}$	int	conditions and missions for size charge group
nDESIGN_GW	int	design conditions and missions for DGW
$nDESIGN_xmsn(npropmax)$	int	design conditions and missions for transmission
$nDESIGN_wmto$	int	design conditions for WMTO
$nDESIGN_tank$	int	design missions for fuel tank
$nDESIGN_thrust$	int	design conditions and missions for antitorque or aux thrust rotor
		Design data (from sizing)
DGW_source	int	design gross weight source (1 condition, 2 mission)
$DGW_{k}State$	int	design gross weight source number
DGW_kSeg	int	design gross weight segment number
nDesignState	int	number design of conditions and missions (maximum ndesignmax)
XAircraft(ndesignmax)	XAircraft	design data

Chapter 36

Variable	Type	Description	Default
		Design Data	
source	int	source (1 condition, 2 mission)	
kState	int	source number	
kSeg	int	segment number	
title	c*100	title	
kind	c*12	kind (condition or mission)	
number	c*12	number (condition or mission/segment)	
label	c*12	label	
setgw	c*12	Set Gross Weight	
setul	c*12	Set Useful Load	
design	c*12	design	
Nauxtank(nauxtankma	ax,ntankmax)		
	int	number of auxiliary fuel tanks N_{auxtank} (each aux tank size)	
Ncrew	int	number of crew	
Npass	int	number of passengers	
Ncrew_seat	int	number of crew seats	
Npass_seat	int	number of passenger seats	
kits	c*12	kits	
		Weights (from FltAircraft)	
GW	real	gross weight W_G ; at segment start	
Wpayload	real	payload weight $W_{ m pay}$	
Wpay_pass	real	passengers $W_{ m pass}$	
Wpay_cargo	real	cargo $W_{ m cargo}$	
Wpay_extload	real	external load $W_{ m ext-load}$	
Wpay_ammo	real	ammunition $W_{ m ammo}$	
Wpay_weapons	real	weapons $W_{ m weapons}$	
Wpay_other	real	other $W_{ m other}$	

$Wfuel_total$	real	usable fuel weight W_{fuel} ; at segment start
Wfuel(ntankmax)	real	usable fuel weight
$Wfuel_std(ntankmax)$	real	standard tanks
$Wfuel_aux(ntankmax)$	real	auxiliary tanks
WO	real	operating weight W_O
WE	real	weight empty W_E (from Aircraft)
WFixUL	real	fixed useful load W_{FUL}
Wcrew	real	crew
W_fixUL_fluid	real	fluids (from Aircraft%Weight)
Wauxtank	real	auxiliary fuel tanks
W_fixUL_other	real	other fixed useful load
Woful(10)	real	catagories
Wequip	real	equipment increment
Wfoldkit	real	folding kit
Wextkit	real	wing extension kit
Wwingkit	real	wing kit
Wotherkit	real	other kit
WUL	real	useful load W_{UL}
WML	real	military load
		Energy (from FltAircraft)
$Efuel_total$	real	usable fuel energy E_{fuel} ; at segment start
Efuel(ntankmax)	real	usable fuel energy
$Efuel_std(ntankmax)$	real	standard tanks
$Efuel_{aux}(ntankmax)$	real	auxiliary tanks

Chapter 37

Variable	Type		Description	Default
		+	Systems	
title	c*100	+	title	
notes	c*1000	+	notes	
		+	Weight	
Weight	Weight		weight statement (systems)	
SET_Wpayload	int	+	payload (1 no details; 2 all terms)	1
Upass	real	+	weight per passenger	
		+	fixed useful load	
SET_Wcrew	int	+	crew weight (1 no details; 2 all terms)	1
Wcrew	real	+	weight or adjustment	
Ucrew	real	+	weight per crew	
Ncrew	int	+	number of crew	
Wtrap	real	+	trapped fluids and engine oil weight	0.
		+	other fixed useful load	
nWoful	int	+	number of categories (0 for one value without name; maximum 10)	0
$Woful_name(10)$	c*24	+	category name	7 1
Woful(10)	real	+	baseline weight	0.
Wotherkit	real	+	other kit	0.

SET_Wpayload: payload specified by flight condition or mission

SET_Wcrew: no details (only Wcrew) or all terms (Ucrew*Ncrew+Wcrew)

other fixed useful load: can include baggage, gun installations, weapons provisions, aircraft survivability equipment, survival kits, life rafts, oxygen

Structure: Systems	151
--------------------	-----

SET_fold	int	+	folding (0 none, 1 fold weights, 2 with kit)	0
		+	folding weight in kit f_{foldkit} (fraction wing/rotor/tail/body fold weight)	
fWfoldkitW(nwingmax)	real	+	wing	0.5
fWfoldkitR(nrotormax)	real	+	rotor	0.5
fWfoldkitT(ntailmax)	real	+	tail	0.5
fWfoldkitFw	real	+	body (wing and rotor fold)	0.5
fWfoldkitFt	real	+	body (tail fold)	0.5
SET_Wvib	int	+	vibration treatment weight (1 fraction weight empty, 2 input)	1
Wvib	real	+	weight $W_{ m vib}$	
fWvib	real	+	fraction weight empty $f_{\rm vib}$	
SET_Wcont	int	+	contingency weight (1 fraction weight empty, 2 input)	1
Wcont	real	+	weight $W_{ m cont}$	
fWcont	real	+	fraction weight empty $f_{ m cont}$	

 W_E = (structure + propulsion group + systems and equipment) + $W_{\rm vib}$ + $W_{\rm cont}$

SET_Wvib: $W_{
m vib}$ input or $W_{
m vib} = f_{
m vib} W_E$

SET_Wcont: W_{cont} input or $W_{\text{cont}} = f_{\text{cont}}W_E$, or adjust W_{cont} for input W_E (FIX_WE=1)

SET_fold, folding:

set component dWxxfold=0 and fWxxfold=0 for no rotor/wing/tail/body fold weight fraction fWfoldkit of fold weight in fixed useful load as kit, remainder kept in component weight kit weight removable, absent for specified flight conditions and missions

		+	systems and equipment	
Wauxpower	real	+	auxiliary power group (APU)	0.
Winstrument	real	+	instruments group	0.
Wpneumatic	real	+	pneumatic group	0.
Wenviron	real	+	environmental control group	0.
SET_Welectrical	int	+	electrical group (1 no details; 2 all terms)	1
Welectrical	real	+	aircraft	0.
Welect_supply	real	+	power supply	0.

Welect_conv	real	+	power conversion	0.
Welect_distrib	real	+	power distribution and controls	0.
Welect_lights	real	+	lights and signal devices	0.
Welect_support	real	+	equipment supports	0.
SET_WMEQ	int	+	avionics group (1 no details; 2 all terms)	1
WMEQ	real	+	avionics	0.
Wavionics_com	real	+	communications	0.
Wavionics_nav	real	+	navigation	0.
Wavionics_ident	real	+	identification	0.
Wavionics_disp	real	+	control and display	0.
Wavionics_survive	real	+	aircraft survivability	0.
Wavionics_mission	real	+	mission system equipment	0.
		+	armament group	
SET_Warmor	int	+	armor (1 no details; 2 all terms)	1
Warmor	real	+	armor	0.
Uarmor_floor	real	+	cabin floor armor weight per area	
Uarmor_wall	real	+	cabin wall armor weight per area	
Uarmor_crew	real	+	armor weight per crew	
SET_Warmprov	int	+	armament provisions (1 no details; 2 all terms)	1
Warmprov	real	+	armament provisions	0.
Warmprov_gun	real	+	gun provisions	0.
Warmprov_turret	real	+	turret systems	0.
Warmprov_expend	real	+	expendable weapons provisions	0.
Warm_elect	real	+	armament electronics (avionics group)	0.
SET_Wfurnish	int	+	furnishings and equipment group (1 no details; 2 all terms)	1
Wfurnish	real	+	furnishings and equipment	0.
		+	accommodations for personnel	
Useat_crew	real	+	each crew seat	
Useat_pass	real	+	each passenger seat	
Uaccom_crew	real	+	miscellaneous accommodation per crew seat	
Uaccom_pass	real	+	miscellaneous accommodation per passenger seat	
Uox_crew	real	+	oxygen system per crew seat	
Uox_pass	real	+	oxygen system per passenger seat	
Wfurnish_misc	real	+	miscellaneous equipment	0.

		+	furnishings	
Wfurnish_trim	real	+	trim	0.
Uinsulation	real	+	acoustic and thermal insulation weight per cabin area	
		+	emergency equipment	
Wemerg_fire	real	+	fire detection and extinguishing	0.
Wemerg_other	real	+	other emergency equipment	0.
SET_Wload	int	+	load and handling group (1 no details; 2 all terms)	1
Wload	real	+	load and handling	0.
Whandling_aircraft	real	+	aircraft handling	0.
		+	load handling	
Uhandling_cargo	real	+	cargo handling weight per cabin floor area	
$Wload_hoist$	real	+	hoist	0.
Wload_extprov	real	+	external load provisions	0.
		+	systems and equipment	
Ncrew_seat	int	+	number of crew seats	0
Npass_seat	int	+	number of passenger seats	0
Ucrew_seat_inc	real	+	equipment weight increment per crew seat (0. for default)	0.
Upass_seat_inc	real	+	equipment weight increment per passenger seat (0. for default)	0.

```
SET_Welectrical=1: only Welectrical+WDIelect
```

miscellaneous accommodation includes galleys and toilets

miscellaneous equipment includes cockpit displays

trim includes floor covering, partitions, crash padding, acoustic and thermal insulation

excluding vibration absorbers

other emergency equipment includes first aid, survival kit, life raft

SET_Wload=1: only Wload

SET_WMEQ=1: only WMEQ; equipment weights include installation

SET_Warmor=1: only Warmor

SET_Warmprov=1: only Warmprov

SET_Wfurnish=1: only Wfurnish

```
equipment weight increment is for flight condition and mission; default (if SET_furnish=2 and SET_armor=2): Ucrew_seat_inc=Useat_crew+Uaccom_crew+Uox_crew+Uarmor_crew Upass_seat_inc=Useat_pass+Uaccom_pass+Uox_pass
```

```
Derived weights
                                              fixed useful load, fold kit
W fixUL foldkit fus
                             real
                                                  fuselage
W_fixUL_foldkit_rotor
                             real
                                                  rotors
W fixUL foldkit wing
                             real
                                                  wings
W fixUL foldkit tail
                                                  tails
                             real
                                              armament group
Warmor floor
                                                  cabin floor armor weight
                             real
Warmor wall
                             real
                                                  cabin wall armor weight
                                                  crew armor weight
Warmor crew
                             real
                                              furnishings and equipment group
Wseat
                             real
                                                  seats
Waccom
                             real
                                                  miscellaneous accommodation
Wox
                             real
                                                  oxygen system
Winsulation
                             real
                                                  acoustic and thermal insulation weight
                                              cargo handling weight
Whandling cargo
                             real
Ucrewseatinc
                             real
                                              equipment weight increment per crew seat
                                              equipment weight increment per passenger seat
Upassseatinc
                             real
Wtip(nrotormax)
                             real
                                              weight on wing tip
                                          Weight
                                              systems and equipment
                                      +
                                                  flight control group and hydraulic group
                                      +
                                                     model (0 input, 1 NDARC, 2 custom)
MODEL fc
                             int
                                      +
                                                                                                                                                                  1
                                                     rotary wing flight controls (0 not present, 1 global, 2 for each rotor)
MODEL RWfc
                                                                                                                                                                  1
                             int
                                      +
                                                          reference rotor number for global
refRotor
                             int
                                      +
                                                                                                                                                                  1
MODEL FWfc
                                                     fixed wing flight controls (0 for not present)
                                                                                                                                                                  1
                             int
                                      +
                                                     conversion controls (0 for not present)
MODEL CVfc
                             int
                                      +
                                                                                                                                                                  1
```

	+	flight control weight increment	
$dWRWfc_b$	real +	rotary wing, boosted	0.
$dWRWfc_mb$	real +	rotary wing, control boost mechanisms	0.
$dWRWfc_nb$	real +	rotary wing, non-boosted	0.
$dWFWfc_mb$	real +	fixed wing, control boost mechanisms	0.
dWFWfc_nb	real +	fixed wing, non-boosted	0.
$dWCVfc_mb$	real +	conversion, boosted	0.
$dWCVfc_nb$	real +	conversion, control boost mechanisms	0.
	+	fixed flight controls	
Wfc_cc	real +	cockpit controls	0.
Wfc_afcs	real +	automatic flight control system	0.
	+	hydraulic weight increment	
dWRWhyd	real +	rotary wing	0.
dWFWhyd	real +	fixed wing	0.
dWCVhyd	real +	conversion	0.
WEQhyd	real +	equipment hydraulics	0.
WFltCont	WFltCont	NDARC model	
	+	anti-icing group	
MODEL_DI	int +	model (0 input, 1 NDARC, 2 custom)	1
	+	weight increment	
dWDIelect	real +	electrical system	0.
dWDIsys	real +	anti-ice system	0.
WDelce	WDelce	NDARC model	

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

MODEL_RWfc: global option is based on just main rotors

"for each rotor" option sums separate contributions from all rotors

tiltrotor wing weight model requires weight on wing tip: distributed to designated rotor; sum rotary wing and conversion flight controls, hydraulic group, trapped fluids

		+	Technology Factors	
		+	rotary wing flight control weight	
TECH_RWfc_b	real	+	boosted χ_{RWb}	1.0
$TECH_RWfc_mb$	real	+	control boost mechanisms χ_{RWmb}	1.0
TECH_RWfc_nb	real	+	non-boosted χ_{RWnb}	1.0
		+	fixed wing flight control weight	
$TECH_FWfc_mb$	real	+	control boost mechanisms χ_{FWmb}	1.0
TECH_FWfc_nb	real	+	non-boosted χ_{FWnb}	1.0
		+	conversion flight control weight	
$TECH_CVfc_mb$	real	+	control boost mechanisms χ_{CVmb}	1.0
TECH_CVfc_nb	real	+	non-boosted χ_{CVnb}	1.0
		+	flight control hydraulics	
TECH_RWhyd	real	+	rotary wing $\chi_{RW\mathrm{hyd}}$	1.0
TECH_FWhyd	real	+	fixed wing $\chi_{FW\mathrm{hyd}}$	1.0
TECH_CVhyd	real	+	conversion $\chi_{CV\mathrm{hyd}}$	1.0
		+	anti-icing	
TECH_Dlelect	real	+	electrical system $\chi_{DI ext{elect}}$	1.0
TECH_DIsys	real	+	anti-ice system $\chi_{DI_{\mathrm{sys}}}$	1.0

Structure: WFltCont

Variable	Type		Description	Default
		+	Flight Control Group, NDARC Weight Model	
		+	rotary wing flight controls	
MODEL_WRWfc	int	+	model (1 fraction, 2 parametric, 3 Boeing, 4 GARTEUR, 5 Tishchenko)	1
fRWfc_nb	real	+	AFDD: non-boosted control weight f_{RWnb} (fraction boost mechanisms weight)	0.6
$xRWfc_red$	real	+	AFDD: hydraulic system redundancy/complexity factor f_{RW} red	3.0
KIND_WRWfc	int	+	AFDD: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
fRWfc_b	real	+	Boeing or GARTEUR or Tishchenko: boosted control weight f_{RWb} (fraction boosted + boost mech, or total)	0.2
fRWfc_mb	real	+	GARTEUR or Tishchenko: boost mechanisms weight f_{RWmb} (fraction total weight)	0.2
		+	fixed wing flight controls	
$MODEL_{WFWfc}$	int	+	model (1 full controls, 2 only on horizontal tail, 3 GARTEUR, Raymer (4 transport, 5 general aviation))	1
fFWfc_nb	real	+	non-boosted weight f_{FWnb} (fraction total fixed wing flight control weight)	0.10
nfunction	int	+	Raymer: number of control functions	6
fmech	real	+	Raymer: number of mechanical functions (fraction total)	0.2
		+	conversion controls	
fCVfc_mb	real	+	boost mechanisms weight f_{CVmb} (fraction maximum takeoff weight)	0.02
fCVfc_nb	real	+	non-boosted weight f_{CVnb} (fraction boost mechanisms weight)	0.10
		+	cockpit controls	
MODEL_cc	int	+	model (1 fixed Wfc_cc, 2 scaled with DGW)	1
Kcc	real	+	factor K_{cc}	1.7
Xcc	real	+	exponent X_{cc}	0.41
		+	Hydraulic Group, NDARC Model	
		+	flight control hydraulics	
fRWhyd	real	+	rotary wing f_{RWhyd} (fraction rotary wing boost mechanisms + hydraulic weight)	0.40
fFWhyd	real	+	fixed wing $f_{FW \text{hyd}}$ (fraction fixed wing boost mechanisms weight)	0.10
fCVhyd	real	+	conversion $f_{CV\mathrm{hyd}}$ (fraction conversion boost mechanisms weight)	0.10

Structure: WFltCont

flight controls = non-boosted (do not see aero surface or rotor loads) + boost mechanisms (actuators) + boosted

MODEL_WRWfc = fraction: parametric except for non-boosted controls (from fRWfc_nb)

typically fRWfc_nb = 0.6 (data range 0.3 to 1.8), fRWhyd = 0.4 xRWfc_red = 1.0 to 3.0

+ Custom Weight Model

WtParam_fc(8) real + parameters 0.

Chapter 39

Structure: WDeIce

Variable	Type		Description	Default
		+	Anti-Icing Group, NDARC Weight Model	
kDelce_elec(nrotormax)	real	+	weight factor for electrical system $K_{\rm elec}$ (lb/ft ² or kg/m ²)	0.25
kDelce_rotor(nrotormax)	real	+	weight factor for main rotor K_{rotor} (lb/ft ² or kg/m ²)	0.25
kDelce_wing(nwingmax)	real	+	weight factor for wing $K_{\rm wing}$ (lb/ft or kg/m)	0.0
kDelce_air(nengmax)	real	+	weight factor for engine air intake $K_{\rm air}$ (lb/lb or kg/kg)	0.006
kDelce_jet(njetmax)	real	+	weight factor for jet air intake $K_{ m jet}$ (lb/lb or kg/kg)	0.006
		+	Custom Weight Model	
$WtParam_DI(8)$	real	+	parameters	0.

Chapter 40

Variable	Type	Ι	Description	Default
		+]	Fuselage	_
title	c*100 -	+	title	
notes	c*1000 -	+	notes	
	-	+ (Geometry	
loc_fuselage	Location -	+	fuselage location	
SET_{length}	int -	+	fuselage length (1 input, 2 calculated, 3 from rotor and tail only, 4 from rotor only)	1
Length_fus	real -	+	length $\ell_{ m fus}$	
SET_nose	int -	+	nose length (distance forward of hub; 1 input, 2 calculated)	1
Length_nose	real -	+	nose length $\ell_{ m nose}$	
fLength_nose	real -	+	nose length (fraction reference length)	
SET_aft	int -	+	aft length (distance aft of hub; 1 input, 2 calculated)	1
Length_aft	real -	+	aft length $\ell_{ m aft}$	
fLength_aft	real -	+	aft length (fraction reference length)	
fRef_fus	real -	+	fuselage SL location relative nose $f_{\rm ref}$ (fraction fuselage length)	
Length_rotors	real		rotor-rotor longitudinal separation	
Length_tail	real		tail length (wing to horizontal tail)	
$Width_fus$	real -	+	fuselage width w_{fus}	
SET_Swet	int -	+	fuselage wetted area (1 input, 2 input plus boom, 3 from nose length, 4 from fuselage length)	2
Swet	real -	+	wetted area $S_{ m wet}$	
Sproj	real -	+	projected area $S_{ m proj}$	
fSwet	real -	+	factor for wetted area $f_{ m wet}$	1.
fSproj	real -	+	factor for projected area $f_{\rm proj}$	1.
Height_fus	real -	+	fuselage height $h_{ m fus}$	
Circum_boom	real -	+	tail boom effective circumference C_{boom}	
$Width_boom$	real -	+	tail boom effective width w_{boom}	
Swet_in	real		input wetted area $S_{ m wet}$	
Sproj_in	real		input projected area $S_{ m proj}$	

SET_Scabin	int	+	cabin area (1 input, 2 calculated)	2
Scabin	real	+	total cabin surface area $S_{ m cabin}$	
Scabin_floor	real	+	cabin floor area $S_{\text{cabin-floor}}$	
Scabin_wall	real	+	cabin wall area $S_{ m cabin-wall}$	
fScabin	real	+	factor for total cabin surface area $f_{\rm cabin}$	0.6
fScabin_floor	real	+	factor for cabin floor area $f_{\text{cabin-floor}}$	0.6
fScabin_wall	real	+	factor for cabin wall area $f_{\rm cabin-wall}$	0.6
KIND_scale	int	+	reference length (1 rotor radius, 2 wing span, 3 fuselage length)	1
refRotor	int	+	rotor number (for rotor radius)	1
refWing	int	+	wing number (for wing span)	1

SET_length: input (use Length_fus) or calculated (from nose and aft lengths) calculated uses rotor, tail, wing locations; or just rotor and tail, or just rotor which can not then be scaled with fuselage length

SET_nose: input (use Length_nose) or calculated (from fLength_nose); used for Length_fus and Swet

SET_aft: input (use Length_aft) or calculated (from fLength_aft); used for Length_fus

 $fRef_fus = (SL_fuselage - SL_nose) / Length_fus; used for operating length and sketch$

input required if $SET_length = input$, otherwise calculated

SET_Swet: both wetted area and projected area; input (use Swet, Sproj), or calculated (from fSwet, fSproj, Width_fus, Height_fus, and fuselage or nose length) boom circumference and width used if SET_Swet not input (set to zero if no boom)

SET_Scabin: cabin areas used for systems and equipment weights

+ Geometry (for graphics)

Height_ramp real + height of cargo ramp fLength_cargo real + fraction of fuselage length used for cargo

0.60

MODEL_aero AFuse DoQ_cont DoQV_cont DoQ_fus DoQV_fus DoQ_fit DoQ_rb	int AFuse real real real real real real	+ + + +	Aerodynamics $ \begin{array}{l} \text{model (0 none, 1 standard)} \\ \text{standard model} \\ \text{contingency drag, area } (D/q)_{\text{cont}} \\ \text{contingency vertical drag, area } (D/q)_{V \text{cont}} \\ \\ \text{Derived drag} \\ \text{fuse lage drag, area } (D/q)_{\text{fus}} \\ \text{fuse lage vertical drag, area } (D/q)_{V \text{fus}} \\ \text{fittings and fixtures drag, area } (D/q)_{\text{fit}} \\ \text{rotor-body interference drag, area } (D/q)_{\text{rb}} \\ \end{array} $	1 0. 0.
			DoQ_cont calculated if total drag fixed (Aircraft FIX_drag); otherwise input DoQV_cont calculated if total download fixed (Aircraft FIX_DL); otherwise input	
		+	Weight	
Weight	Weight		weight statement (component)	
		+	fuselage group	
MODEL_weight	int	+	fuselage group model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWbody	real	+	basic body	0.
dWmar	real	+	body marinization	0.
dWpress	real	+	pressurization	0.
dWcrash	real	+	body crashworthiness	0.
dWftfold	real	+	tail fold	0.
dWfwfold	real	+	wing fold	0.
WFuse	WFuse		AFFD model	
		+	Technology Factors	
TECH_body	real	+	basic body χ_{basic}	1.0
TECH_mar	real	+	body marinization χ_{mar}	1.0
TECH_press	real	+	pressurization $\chi_{ m press}$	1.0
TECH_crash	real	+	body crashworthiness χ_{cw}	1.0
TECH_ftfold	real	+	tail fold $\chi_{ m tfold}$	1.0
TECH_fwfold	real	+	wing fold $\chi_{ m wfold}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 41

Structure: AFuse

Variable	Type		Description	Default
		+	Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
AoA_max	real	+	angle of attack for maximum lift $\alpha_{\rm max}$ (deg)	10.
		+	lift	
SET_lift	int	+	specification (1 fixed, L/q ; 2 scaled, C_L)	2
dLoQda	real	+	lift slope, $d(L/q)/d\alpha$ (per rad)	0.
dCLda	real	+	lift slope, $C_{L\alpha} = dC_L/d\alpha$ (per rad; based on wetted area, $L/q = SC_L$)	0.
		+	pitch moment	
SET_moment	int	+	specification (1 fixed, M/q ; 2 scaled, C_M)	2
MoQ0	real	+	moment at zero lift, $(M/q)_0$	0.0
CM0	real	+	moment at zero lift, C_{M0} (based on wetted area and fuselage length, $M/q = S\ell C_M$)	0.0
dMoQda	real	+	moment slope, $d(M/q)/d\alpha$ (per rad)	0.0
dCMda	real	+	moment slope, $C_{M\alpha}=dC_M/d\alpha$ (per rad; based on wetted area and fuselage length, $M/q=S\ell C_M$)	0.0
SS_zy	real	+	sideslip angle for zero side force β_{zy} (deg)	0.
SS_max	real	+	sideslip angle for maximum side force $\beta_{\rm max}$ (deg)	10.
		+	side force	
SET_side	int	+	specification (1 fixed, Y/q ; 2 scaled, C_Y)	2
dYoQdb	real	+	side force slope, $d(Y/q)/d\beta$ (per rad)	0.
dCYdb	real	+	side force slope, $C_{Y\beta} = dC_Y/d\beta$ (per rad; based on wetted area, $Y/q = SC_Y$)	0.
		+	yaw moment	
SET_yaw	int	+	specification (1 fixed, N/q ; 2 scaled, C_N)	2
NoQ0	real	+	moment at zero lift, $(N/q)_0$	0.0
CN0	real	+	moment at zero lift, C_{N0} (based on wetted area and fuselage length, $N/q = S\ell C_N$)	0.0
dNoQdb	real	+	moment slope, $d(N/q)/d\beta$ (per rad)	0.0
dCNdb	real	+	moment slope, $C_{N\beta}=dC_N/d\beta$ (per rad; based on wetted area and fuselage length, $N/q=S\ell C_N$)	0.0

Structure: AFuse

SET_xxx: fixed (use XoQ) or scaled (use CX); other parameter calculated

		+	Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	0.005
		+	fixtures and fittings	
SET_Dfit	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_fit	real	+	area $(D/q)_{ m fit}$	
CD_fit	real	+	coefficient $C_{D ext{fit}}$ (based on wetted area, $D/q = SC_D$)	0.
		+	rotor-body interference	
SET_Drb	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQ_rb(nrotormax)$	real	+	area $(D/q)_{rb}$	
$CD_{rb}(nrotormax)$	real	+	coefficient C_{Drb} (based on wetted area, $D/q = SC_D$)	0.
CD_rb_total	real		total rotor-body interference drag, C_{Drb}	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+	coefficient C_{DV} (based on projected area, $D/q = S_{\text{proj}}C_D$)	0.
CDVs	real		$C_{DV}S_{ m proj}/S_{ m wet}$	
		+	sideward drag	
SET_Sdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQS	real	+	area $(D/q)_S$	
CDS	real	+	coefficient C_{DS} (based on wetted area, $D/q = SC_D$)	0.
		+	drag variation with angle of attack	
MODEL_drag	int	+	model (0 none, 1 general, 2 quadratic)	2
AoA_Dmin	real	+	angle of attack for fuselage minimum drag $C_{D \min}$ (deg)	0.0
Kdrag	real	+	drag increment $K_d, \Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	0.0
Xdrag	real	+	drag increment $X_d, \Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2.

Structure: AFuse

		+	transition from forward flight drag to vertical drag	
$MODEL_trans$	int	+	model (1 input transition angle of attack, 2 calculate for quadratic)	1
AoA_{tran}	real	+	angle of attack for transition α_t (deg)	25.
at	real		angle of attack for transition α_t (deg) (derived)	
Xd	real		exponent X_d (derived)	

Chapter 42

Structure: WFuse

Variable	Type		Description	Default
		+	Fuselage Group, NDARC Weight Model	
MODEL_body	int	+	model (1 AFDD84, 2 AFDD82, 3 other)	1
$MODEL_other$	int	+	model (1 Boeing, GARTEUR (2 airplane, 3 helicopter), 4 Tishchenko, 5 Torenbeek, Raymer (6 transport, 7 ge	n av))
$KIND_ramp$	int	+	AFDD: rear cargo ramp (0 none)	0
fLength_crg	real	+	Boeing: cabin length + ramp length + cg range (fraction fuselage length)	0.6
Vdive	real	+	Boeing or Torenbeek or Raymer: design dive speed $V_{ m dive}$ (knots)	200.
ndoor	int	+	Raymer: number of cargo doors	0
Pdelta	real	+	Raymer: cabin pressure differential (psi)	8.
fWbody_mar	real	+	body weight for marinization $f_{ m mar}$ (fraction basic body weight)	0.0
$fWbody_press$	real	+	body weight for pressurization f_{press} (fraction basic body weight)	0.0
fWbody_crash	real	+	body weight for crashworthiness f_{cw} (fraction body weight)	0.0
$fWbody_tfold$	real	+	tail fold weight $f_{\rm tfold}$ (fraction tail (AFDD84 or other) or body (AFDD82) weight)	0.0
$fWbody_wfold$	real	+	wing fold weight $f_{ m wfold}$ (fraction wing+tip (AFDD84 or other) or body+tailfold (AFDD82) weight)	0.0

AFDD84 (UNIV) is universal body weight model, for tiltrotor and tiltwing as well as for helicopters AFDD82 (HELO) is helicopter body weight model, should not be used for tiltrotor or tiltwing dive speed: $V_{\rm max}$ = SLS max speed, Vdive = $1.25V_{\rm max}$ fLength_crg = $(\ell_c + \ell_r + \Delta CG)/\ell_{\rm body} \cong 1.0$ for tandem, 0.3-0.6 for single main rotor (0.7-0.8 with ramp)

typically fWbody_crash = 0.06 typically fWbody_tfold = 0.30 (AFDD84 or other) or 0.05 (AFDD82) for folding tail

+ Custom Weight Model

WtParam_fuse(8) real + parameters

0.

Structure: LandingGear

Variable	Type	Description	Default
	-	Landing Gear	
title	c*100 +	title title	
notes	c*1000 +	notes	
	4	Geometry	
loc_gear	Location +	landing gear location	
d_gear	real +	distance from bottom of landing gear to WL_gear d_{LG}	0.
place	int +	placement (1 located on body, 2 located on wing)	1
KIND_LG	int +	retraction (0 fixed, 1 retracts)	1
speed	real +	retraction speed (CAS or TAS, knots)	
		landing gear location: with HAGL (FltState) determines rotor height above ground level height rotor = landing gear above ground + hub above landing gear = HAGL + (WL_hub-WL_gear+d_gear place: used for weight (fuselage and wing))
	4	- Aerodynamics	
MODEL_aero	int +	model (0 none, 1 standard)	1
AGear	AGear	standard model	
		Derived drag	
DoQC_LG	real	landing gear cruise drag, area D/q (0 for retractable gear)	
DoQH_LG	real	landing gear helicopter drag, area D/q	

Structure: LandingGear	169
------------------------	-----

		+	Weight	
Weight	Weight		weight statement (component)	
		+	alighting gear group	
MODEL_weight	int	+	alighting gear group model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWLG	real	+	basic landing gear	0.
dWLGret	real	+	retraction	0.
dWLGcrash	real	+	crashworthiness	0.
WGear	WGear		AFFD model	
		+	Technology Factors	
TECH_LG	real	+	basic landing gear χ_{LG}	1.0
TECH_LGret	real	+	retraction $\chi_{LG\mathrm{ret}}$	1.0
$TECH_LGcrash$	real	+	crashworthiness $\chi_{LG_{\mathrm{CW}}}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 44

Structure: AGear

Variable	Type		Description	Default
		+	Drag, Standard Model	
DoQ	real	+	drag area extended, D/q	

Chapter 45

Structure: WGear

Variable	Type		Description	Default
		+	Landing Gear Group, NDARC Weight Model	
MODEL_LG	int	+	model (1 fraction, 2 parametric rotary wing, 3 parametric fixed wing)	2
nLG	int	+	number of landing gear assemblies N_{LG}	3
fWLG_basic	real	+	basic landing gear weight f_{LG} (fraction maximum takeoff weight)	0.0325
fWLG_ret	real	+	landing gear weight for retraction f_{LGret} (fraction basic weight)	0.08
fWLG_crash	real	+	landing gear weight for crashworthiness f_{LGcw} (fraction basic+retraction weight)	0.14
			only MODEL_LG=fraction uses fWLG_basic typically fWLG_basic = 0.0325 (fraction method) typically fWLG_ret = 0.08, fWLG_crash = 0.14	
WtParam_gear(8)	real	++	Custom Weight Model parameters	0.

Chapter 46

Structure: Rotor

Variable	Type	Description	Default
	+	Rotor	
title	c*100 +	· title	
notes	c*1000 +	notes	
config	c*32 +	- Configuration	'main'
rotorconfig	int	configuration (ROTORCONFIG_main, tail, prop)	
isMainRotor	int	main rotor (0 not)	
isAntiQRotor	int	antitorque rotor (0 not)	
isAuxTRotor	int	auxiliary thrust rotor (0 not)	
isVariableDiam	int	variable diameter rotor (0 not)	
isDuctedFan	int	ducted fan (0 not)	
isReactionDrive	int	reaction drive (0 not)	
isMultiRotor	int	multiple rotors (0 not)	
twinrotor	int	$configuration \ ({\sf ROTORCONFIG_tandem}, {\sf coaxial}, {\sf tiltrotor}, {\sf not_twin})$	

```
configuration designation: principal designation required, rest identify special characteristics

principal designation = 'main', 'tail', 'prop'

antitorque = 'antiQ', 'auxT'

twin rotor = 'coaxial', 'tandem', 'tiltrotor' (keyword = tan, coax, tilt)

others = 'variable diameter', 'ducted fan', 'reaction drive', 'multirotor' (keyword = var, duct, react, multi)

principal designation determines where weight put in weight statement, and designates main rotors (isMainRotor)

separately specify appropriate performance and weight models

multiple rotor configurations have special options for geometry and performance

options defined by variables SET_geom, MODEL_twin, MODEL_int_twin

antitorque or aux thrust rotor has special options for sizing

options defined by variables SET_rotor, fThrust, Tdesign

reaction drive still requires propulsion group
```

kRotor	int		rotor number	
		+	Propulsion group	
kPropulsion	int	+	group number	1
KIND_xmsn	int	+	drive system branch (1 primary, 0 dependent)	1
$Vtip_ref(ngearmax)$	real	+	reference tip speed	
$rVtip_ref(ngearmax)$	real		ratio to state #1	
Omega_ref	real		reference rotational speed (state #1)	
INPUT_gear	int	+	gear ratio input for dependent branch (1 Vtip_ref, 2 gear)	1
gear(ngearmax)	real	+	gear ratio $r = \Omega_{\rm dep}/\Omega_{\rm prim}$ (ratio rpm to rpm of primary rotor)	1.0
		+	Reaction drive	
r_react	real	+	effective radial station of force (fraction Radius)	1.0
$prop_react(3)$	int		propulsion for reaction drive (group (1 engine, 2 jet), number, model)	
		+	drive system branch: only one primary rotor per propulsion group tip speed and gear ratio required for each drive system state primary: specify Vtip_ref and default tip speeds; $V_{\rm tip-hover} = V \text{tip_ref}(1)$ dependent: specify gear ratio, or specify Vtip_ref and calculate gear (depend on rotor radius) can not specify gear ratio if sizing changes dependent rotor $V_{\rm tip}$ (SET_rotor) if size task changes Vtip_ref(1), then rVtip_ref used to change Vtip_ref(n) for n>1 variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of dependent rotor reaction drive requires one and only one propulsion system (engine group or jet group)	
INPUT_Vtip	int	+	input form (1 tip speed, 2 hover $V_{\rm tip}$ and rpm ratio)	1
INFOT_VUP	IIIt	+	function of flight speed	1
nVrpm	int	+	number of speeds (1 constant; ≥ 2 piecewise linear, maximum nvelmax)	1
Vrpm(nvelmax)	real		speeds (CAS or TAS)	1
vipiii(iiveiiiiax)	ical	+	tip speed	
Vtin cruico	real		cruise	
Vtip_cruise	real	+		
Vtip_man		+	maneuvering flight	
Vtip_oei	real	+	OEI	

Vtip_xmsn	real	+	transmission sizing	
Vtip(nvelmax)	real	+	function of flight speed	
,		+	rpm ratio $(V_{ m tip}/V_{ m tip-hover})$	
fRPM_cruise	real	+	cruise	1.
fRPM_man	real	+	maneuvering flight	1.
fRPM_oei	real	+	OEI	1.
fRPM_xmsn	real	+	transmission sizing	1.
fRPM(nvelmax)	real	+	function of flight speed	1.
			default rotor tip speeds (including conversion): selectable by SET_Vtip of FltState only for primary rotor; V_{tip} calculated from gear(state) for dependent branch	
SET_limit_rs	int	++	Drive system torque limit rotor shaft (0 input, 1 fraction power, 2 fraction drive system limit)	1
Plimit_rs	real	+	rotor shaft power limit $P_{RS m limit}$	
fPlimit_rs	real	+	rotor shaft power limit factor	1.
Qlimit_rs	real		rotor shaft torque limit ($P_{RS m limit}$ at $\Omega_{ m ref}$)	
			drive system torque limit: Size%SET_limit_ds = input (use Plimit_rs) or calculated (from fPlimit_rs) $ \begin{array}{l} \text{SET_limit_ds='input': Plimit_rs input} \\ \text{SET_limit_ds='input': from rotor power required at transmission sizing flight conditions (DESIGN_xmsn)} \\ \text{rotor shaft: options for SET_limit_ds='input'} \\ \text{SET_limit_rs=0: Plimit_rs} \\ \text{SET_limit_rs=1: fPlimit_rs} \times (\text{rotor } P_{req}) \\ \text{SET_limit_rs=2: fPlimit_rs} \times P_{DS\text{limit}} \\ \text{rotor shaft power limit: corresponds to one rotor} \\ \end{array} $	_

can be used for max effort in flight state (max_quant='Q margin')

always check and print whether exceed torque limit

can be used for max gross weight in flight condition or mission (SET_GW='maxQ' or 'maxPQ')

		+	Parameters	
diskload	real	+	disk loading	
fArea	real	+	fraction rotor area for reference disk area f_A	
fDGW	real	+	fraction DGW f_W (for disk loading and blade loading)	
fThrust	real	+	thrust factor (antitorque or aux thrust rotor)	1.0
Radius	real	+	radius R	
CWs	real	+	blade loading C_W/σ (thrust-weighted)	
sigma	real	+	solidity $\sigma = Nc/\pi R$ (thrust-weighted)	
Tdesign	real	+	thrust for antitorque or aux thrust rotor	
Pdesign	real	+	power for antitorque or aux thrust rotor	
Ndesign	real	+	rotor speed (rpm) at Pdesign	
SET_thrust	int	+	rotor thrust for disk loading and blade loading (0 default; 1 fDGW*DGW, 2 fThrust*Tdesign)	0
iSET_thrust	int		rotor thrust for disk loading and blade loading (1 from DGW, 2 from Tdesign)	
			rotor disk loading = T/A ; aircraft disk loading = $W_D/A_{\rm ref}$, $A_{\rm ref} = \sum (f_A A)$ $W = f_W W_D$ (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor); can specify using SET_thrust Tdesign and Pdesign obtained from thrust design conditions and missions (DESIGN_thrust) if rotor sized from disk loading (SET_rotor='DL+xx+xx'), area = T /diskload if SET_rotor specify 'Vtip', use Vtip_ref(1) if SET_rotor not specify 'Vtip', calculate Vtip_ref(1), and then Vtip_ref for dependent rotors if SET_rotor='CWs+xx+xx', then C_W/σ from fDGW*DGW, takeoff condition, Vtip_ref, and thrust-weighted solidity for antitorque or aux thrust rotor, need design conditions and missions (DESIGN_thrust) to identify Tdesign otherwise use fDGW and design gross weight Tdesign and Pdesign generally calculated (identified as input so inherited by next case)	- /
		+	Geometry	
SET_geom	c*12	+	position (standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)	'std'
KIND_TRgeom	int	+	tiltrotor (1 from clearance, 2 at wing tip, 3 at wing panel edge)	0
		+	twin rotors	
fRadius	real	+	ratio rotor radius to that of other rotor	1.0
otherRotor	int	+	other rotor number	

1

 ${\sf WingForRotor}$

int

+

wing number

Structure: Rotor	176

PanelForRotor	int	+	wing panel number	1
clearance_fus	real	+	tiltrotor clearance between rotor and fuselage d_{fus}	0.6
fclearance_fus	real	+	tiltrotor clearance factor	1.0
sep_coaxial	real	+	coaxial rotor separation s (fraction Diameter)	0.08
overlap_tandem	real	+	tandem rotor overlap o (fraction Diameter)	0.25
			derived	
iSET_geom	int		position (SET_geom_standard, tiltrotor, coaxial, tandem, tailrotor, multicopter)	
clearance_calc	real		clearance between rotor and fuselage d_{fus}	
Hsep_twin	real		horizontal separation ℓ (fraction Diameter)	
Vsep_twin	real		vertical separation s (fraction Diameter)	
overlap_twin	real		overlap o (1 – separation/Diameter)	
m_twin	real		overlap area fraction m	
		+	tail rotor	
mainRotor	int	+	main rotor number	1
fRadius_tr	real	+	radius scale factor	1.0
clearance_tr	real	+	clearance between tail rotor and main rotor d_{tr}	0.5
		+	multicopter	
ang_multicopter	real	+	angle ψ (clockwise from forward, deg)	0.
len_multicopter	real	+	arm length ℓ (fraction Radius)	1.5
		+	variable diameter rotor	
$SET_{Var}Diam$	int	+	set diameter (1 conversion schedule, 2 function speed)	
fRcruise	real	+	ratio cruise radius to hover radius (variable diameter only)	

SET_geom: calculation override part of location input

SET_geom='tiltrotor': calculate lateral position (BL)

KIND_TRgeom=clearance: from WingForRotor, Width_fus, clearance_fus, fclearance_fus

KIND_TRgeom=wing tip: from WingForRotor, wing span

KIND_TRgeom=wing panel edge: from WingForRotor, PanelForRotor, panel edge and wing span

same WingForRotor for otherRotor, first rotor is right

BL or YoL in loc_pylon, loc_pivot, loc_naccg is relative calculated loc_rotor BL

SET_geom='coaxial': calculate position from sep_coaxial

same sep coaxial for otherRotor, first rotor is lower

loc_rotor (SL,BL,WL or XoL,YoL,ZoL) is midpoint between hubs

loc_pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc_rotor

```
SET geom='tandem': calculate longitudinal position (SL) from overlap tandem
         same overlap tandem for otherRotor, first rotor is front
         loc_rotor (SL or XoL only) is midpoint between hubs
         loc pylon SL or XoL is relative calculated loc rotor
    SET_geom='tailrotor': calculate longitudinal position (SL) from clearance_tr, mainRotor
         loc pylon SL or XoL is relative calculated loc rotor
     SET_geom='multicopter': calculate longitudinal and lateral position from ang_multicopter, len_multicopter
         loc rotor (SL,BL or XoL,YoL) is center of rotors
         loc pylon (SL,BL,WL or XoL,YoL,ZoL) is relative calculated loc rotor
         ang multicopter also used for Aircraft%config='multicopter' to define control
sizing:
     if SET rotor='ratio', Radius=fRadius*Radius(otherRotor); otherRotor not SET rotor='ratio'
twin rotors: config identify as twin rotor
antitorque: config identify as antitorque rotor
     if SET rotor='scale', Radius=fRadius tr*(main rotor Radius)*function(DiskLoad)
variable diameter: Radius is hover or reference radius; can be commanded by aircraft controls
    conversion schedule: R = \text{Radius in hover and helicopter mode} (V \leq V_{\text{conv-hover}})
         R = \text{Radius*fRcruise} in cruise mode (V \ge V_{\text{conv-cruise}}); linear with V in conversion mode
    function of speed: use nVdiam, fdiam, Vdiam to calculate R
```

		+	Geometry	
rotate	int	+	direction of rotation (1 counter-clockwise, –1 clockwise)	1
nBlade	int	+	number of blades N	
		+	planform and twist	
SET_chord	int	+	chord distribution (1 linear from fTWsigma, 2 linear from taper, 3 nonlinear from fchord)	1
fTWsigma	real	+	ratio thrust-weighted solidity to geometric solidity σ_t/σ_q	1.
taper	real	+	taper ratio t (tip chord/root chord)	1.
SET_twist	int	+	twist distribution (1 linear from twistL, 2 nonlinear from twist)	1
twistL	real	+	linear twist θ_L (deg, root to tip)	-10.
nprop	int	+	number of radial stations (maximum nrmax)	2
rprop(nrmax)	real	+	radial stations (r_{root}/R)	
fchord(nrmax)	real	+	chord distribution $c(r)/c_{ m ref}$	1.
twist(nrmax)	real	+	twist $\theta_{tw}(r)$ (deg)	

		+	flap dynamics	
KIND_hub	int	+	hub type (1 articulated, 2 hingeless)	1
flapfreq	real	+	first flapwise natural frequency ν (per-rev at hover tip speed)	1.04
conefreq	real	+	coning natural frequency ν (0. to use flapfreq)	0.
gamma	real	+	blade Lock number γ	8.
precone	real	+	precone β_p (deg)	0.
delta3	real	+	pitch-flap coupling δ_3 (deg)	0.
		+	aerodynamics	
dclda	real	+	blade section 2D lift-curve slope $a = c_{\ell\alpha}$ (per-rad)	5.7
tiploss	real	+	tip loss factor B (lift zero from BR to tip)	0.97
xroot	real	+	root cutout (r_{root}/R)	0.1

SET_chord: use one of fTWsigma, taper, or fchord(r); others calculated

for nonlinear distribution, scale input fchord to unit thrust-weighted chord

fTWsigma = sigma_tw/sigma_geom; for linear taper $f=c(.75R)/c(.5R)=(1+3{\rm taper})/(2+2{\rm taper})$ equivalent linear taper $=c({\rm tip})/c({\rm root})=(2f-1)/(3-2f)$ for linear taper $f_c=c/c_{\rm ref}=1+(r-0.75)4({\rm taper}-1)/(1+3{\rm taper})$

SET_twist: use one of twistL or twist(r); other calculated

for nonlinear distribution, twist relative 0.75R obtained from input

flap frequency and Lock number are used for flap dynamics and hub moments due to flap specified for hover radius and rotational speed

KIND_hub determines how flap frequency and hub moment spring vary with rotor speed and ${\cal R}$ weight models can have separate blade and hub values for flap frequency

blade Lock number gamma: for SLS density, a=5.7, thrust-weighted chord SET_lblade determines whether Lock number input or calculated

+ Geometry (for graphics)

thick real + blade thickness-to-chord ratio

Geometry (derived)

0.12

frotate real direction of rotation (1 counter-clockwise, -1 clockwise)

```
rotor area (\pi R^2)
Arotor
                                  real
chord
                                 real
                                                    thrust-weighted chord
                                                    solidity \sigma = Nc/\pi R; mean geometric chord
sigma_geom
                                  real
                                                    mean geometric chord
chord geom
                                 real
AspectRatio
                                 real
                                                    aspect ratio, R/chord geom
Ablade
                                                     thrust-weighted blade area
                                 real
ΚP
                                  real
                                                     tan(\delta_3)
                                                    chord distribution f_c = c(r)/c_{ref} (scaled to unit thrust-weighted chord)
fc(nrmax)
                                  real
tw(nrmax)
                                                    twist \theta_{tw}(r) (relative 0.75R)
                                 real
gamma calc
                                  real
                                                     blade Lock number \gamma
                                                     autorotation index KE/P
Al calc
                                 real
                                                    blade moment of inertia I_{\rm blade}
Iblade
                                 real
Kflap
                                  real
                                                    flap stiffness K_{\text{flap}} (KIND_hub = hingeless)
eflap
                                  real
                                                     flap hinge offset e (KIND hub = articulated)
                                                    cone stiffness K_{\text{cone}} (conefreq input)
                                  real
Kcone
                                                    hub moment spring K_{\text{hub}}
Khub
                                 real
                                                Blade element theory solution
                                                    integration
                                           +
                                           +
                                                         number of radial stations (xroot to 1; maximum mrmax)
                                                                                                                                                                                          4
                                 int
mr
                                           +
                                                         number of azimuth angles (maximum mpsimax)
                                                                                                                                                                                          8
mpsi
                                 int
dr
                                                         radial increment dr = (1 - xroot)/mr
                                  real
                                                         \cos(\psi_i), \psi_i = j \Delta \psi, j = 1 \text{ to mpsi } (\Delta \psi = 2\pi/\text{mpsi})
cspsi(mpsimax)
                                 real
                                                         \sin(\psi_i), \psi_i = j \Delta \psi, j = 1 to mpsi (\Delta \psi = 2\pi/\text{mpsi})
snpsi(mpsimax)
                                 real
                                               Geometry
                                                    hub location
loc rotor
                                  Location +
                                                    pylon location
loc pylon
                                 Location +
                                                    pivot location
loc pivot
                                 Location +
                                                    nacelle cg location
loc naccg
                                 Location +
                                                    nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z'; 'main' (-z), 'tail' (ry), 'prop' (x))
direction
                                 c*16
                                                                                                                                                                                     'main'
                                                    shaft control (0 fixed shaft, 1 incidence, 2 cant, 3 both controls)
KIND tilt
                                 int
                                           +
                                                                                                                                                                                         0
                                           +
                                                    orientation of rotor shaft
                                                         incidence \theta_h (deg)
incid hub
                                           +
                                                                                                                                                                                         0.
                                  real
cant_hub
                                  real
                                           +
                                                         cant angle \phi_h (deg)
                                                                                                                                                                                         0.
```

		+	orientation of pivot axes	
dihedral_pivot	real	+	pivot dihedral angle ϕ_p (deg)	
pitch_pivot	real	+	pivot pitch angle θ_p (deg)	
sweep_pivot	real	+	pivot sweep angle ψ_p (deg)	
		+	reference shaft control	
incid_ref	real	+	incidence i_{ref} (deg)	0.
cant_ref	real	+	cant angle c_{ref} (deg)	0.
		+	moving weight for cg shift	
SET_Wmove	int	+	weight (1 wing tip weight, 2 W_{gbrs} , 3 W_{gbrs} and W_{ES})	1
fWmove	real	+	fraction moving weight	1.
			Derived geometry	
iDirection	int		nominal orientation $(1, -1, 2, -2, 3, -3, -3, r2, 1)$	
axis_incid	int		axis incidence (± 123)	
axis_cant	int		axis cant (± 123)	
KIND_incid	int		incidence (0 fixed, 1 controlled)	
KIND_cant	int		cant angle (0 fixed, 1 controlled)	
CPF(3,3)	real		pivot axes relative airframe, C^{PF}	
CFP(3,3)	real		pivot axes relative airframe, C^{FP}	
WCHF(3,3)	real		WC^{HF} (C^{SF} for reference control)	
CSF(3,3)	real		rotor shaft relative airframe, C^{SF} (zero shaft control)	

loc_naccg, loc_pivot, orientation of pivot axes, and reference shaft control angles not used for KIND_tilt=fixed shaft for tiltrotor, locations and orientation specified in helicopter mode, so incid_ref = 90 SET_Wmove: cg shift calculated using incidence and cant rotation of loc_naccg relative loc_pivot moving weight fWmove*Wmove, Wmove = Wtip_total/nRotorOnWing or $w/N_{\rm rotor}$ $w=W_{gbrs}$ (drive system) or $W_{gbrs}+\sum(W_{ES})$ (drive system and engine system)

```
Controls
KIND control
                                                rotor control mode (1 thrust and TPP, 2 thrust and NFP, 3 pitch and TPP, 4 pitch and NFP)
                              int
                                                                                                                                                                         1
KIND_cyclic
                                                    cyclic input (1 tip-path-plane tilt, 2 hub moment, 3 lift offset)
                                                                                                                                                                         1
                               int
                                       +
                                                    collective input (1 thrust, 2 C_T/\sigma)
KIND_coll
                                                                                                                                                                         2
                                       +
                               int
                                                    scale collective T matrix (0 for none)
SCALE_coll
                               int
                                       +
                                                                                                                                                                         1
```

		+	collective (magnitude of thrust vector)	
INPUT coll	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_coll(ncontmax,nstatemax)	real	+	control matrix	1
nVcoll	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
coll(nvelmax)	real	+	values	U
Vcoll(nvelmax)	real		speeds (CAS or TAS)	
vcon(nveimax)	ieai	+		
INDUT	:4	+	longitudinal cyclic (tip-path plane tilt or no-feathering plane tilt)	1
INPUT_Ingcyc	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_Ingcyc(ncontmax,nstatemax	•			
	real	+	control matrix	_
nVIngcyc	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
Ingcyc(nvelmax)	real	+	values	
VIngcyc(nvelmax)	real	+	speeds (CAS or TAS)	
		+	lateral cyclic (tip-path plane tilt or no-feathering plane tilt)	
INPUT_latcyc	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_latcyc(ncontmax,nstatemax)$)			
	real	+	control matrix	
nVlatcyc	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
latcyc(nvelmax)	real	+	values	
Vlatcyc(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (nacelle tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
,		+	$\operatorname{cant} c$	
INPUT_cant	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_cant(ncontmax,nstatemax)	real	+	control matrix	
nVcant	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
cant(nvelmax)	real	+	values	-
Vcant(nvelmax)	real	+	speeds (CAS or TAS)	
· canality children		•	special (c. 12 or 112)	

		+	diameter $f_{\rm diam}$ (variable diameter only)	
INPUT_diam	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_diam(ncontmax,nstatemax)	real	+	control matrix	
nVdiam	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fdiam(nvelmax)	real	+	values	
Vdiam(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{\rm gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax,nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$

for each component control, define matrix T (for each control state) and value c_0

flight state specifies control state, or that control state obtained from conversion schedule

 c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input)

by connecting aircraft control to component control, flight state can specify component control value initial values if control is connected to trim variable; otherwise fixed for flight state

pylon moves with rotor; nontilting part is engine nacelle

```
Trim Targets
                                               rotor lift
nVlift
                                                   number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
                              int
Klift(nvelmax)
                              real
                                                   target
                                                   speeds (CAS or TAS)
Vlift(nvelmax)
                              real
                                               rotor propulsive force
                                                   number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVprop
                              int
Kprop(nvelmax)
                              real
                                                   target
                                                   speeds (CAS or TAS)
Vprop(nvelmax)
                              real
```

```
target definition determined by Aircraft%trim_quant Klift can be fraction total aircraft lift, lift, C_L/\sigma, or C_T/\sigma Kprop can be fraction total aircraft drag, propulsive force -X, -C_X/\sigma, or -X/q)
```

```
Rotor Thrust Capability (C_T/\sigma \text{ vs } \mu)
                                                  sustained
                                                      number of points (maximum 20)
nsteady
                                int
                                         +
                                                                                                                                                                               16
                                                      advance ratio
mu steady(20)
                                real
                                                      C_T/\sigma
CTs steady(20)
                                real
                                         +
                                                  transient
                                                      number of points (maximum 20)
ntran
                                int
                                                                                                                                                                               16
mu tran(20)
                                real
                                                      advance ratio
                                                      C_T/\sigma
CTs tran(20)
                                real
                                         +
                                                 equation, C_T/\sigma = K_0 - K_1\mu^2
                                         +
K0 limit
                                                      constant K_0
                                real
                                         +
                                                                                                                                                                             0.17
                                                      constant K_1
K1_limit
                                real
                                                                                                                                                                             0.25
```

CTs_steady, CTS_tran used to calculate rotor thrust margin, which available for max effort or trim defaults used if CTs(1)=0. default CTs_steady = .170,.168,.161,.149,.131,.109,.084,.050,.049,.048,.047,.046,.045,.044,.043,.042 default CTs_tran = .200,.197,.190,.177,.156,.135,.110,.080,.075,.070,.065,.060,.055,.050,.045,.040 default mu_steady = 0...10,.20,.30,.40,.50,.60,.70,.71,.72,.73,.74,.75,.76,.77,.78 default mu_tran = 0...10,.20,.30,.40,.50,.60,.70,.72,.74,.76,.78,.80,.82,.84,.86

1

+ Performance

MODEL_perf	int +	power model (1 standard, 2 table model)
PRotorInd	PRotorInd	standard model, induced power
PRotorPro	PRotorPro	standard model, profile power

PRotorTab	PRoto	orTab	table model			
$MODEL_Ftpp$	int	+	inplane forces, tip-path plane axes (1 neglect, 2 blade-element theory)	2		
$MODEL_Fpro$	int	+	inplane forces, profile (1 simplified, 2 blade element theory, 3 neglect)	2		
			if thrust and TPP command, and neglect inplane forces relative TPP, then pitch control angles not required			

+ Interference

MODEL_int model (0 none, 1 standard, 2 with transition) int 1 transition low velocity (knots) $Vint_low$ real 0. Vint_high high velocity (knots) real 0. standard model **IRotor IRotor**

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all with transition: interference factors linearly vary from Kint at $V \leq Vint_low$ to 0 at $V \geq Vint_low$

+ Geometry

SET aeroaxes	int	+	hub/pylon aerodynamic axes (0 input pitch, 1 helicopter, 2 propeller or tiltrotor)	1
pitch aero	real	+	pitch relative shaft axes $\theta_{\rm ref}$, $C^{BS} = Y_{-\theta_{\rm ref}}$	0.0
SET_Spylon	int	+	pylon wetted area (1 fixed, input Swet; 2 scaled, W_{qbrs} ; 3 scaled, W_{qbrs} and W_{ES})	2
Swet_pylon	real	+	area $S_{ m pylon}$	0.0
kSwet_pylon	real	+	factor, $k=S_{ m pylon}/(w/N_{ m rotor})^{2/3}$ (Units_Dscale)	1.0
SET_Sduct	int	+	duct area (1 fixed, input S_duct; 2 scaled, from fLength_duct)	2
S_duct	real	+	area $S_{ m duct}$	0.0
fLength_duct	real	+	duct length (fraction rotor radius)	1.2
SET_Sspin	int	+	spinner wetted area (1 fixed, input Swet; 2 scaled, from fSwet)	2
Swet_spin	real	+	area $S_{ m spin}$	0.0
$fSwet_spin$	real	+	factor, $k = S_{\rm spin}/A_{\rm spin}$	1.0
fRadius_spin	real	+	spinner radius (fraction rotor radius)	0.

```
Derived geometry
                                                   pylon axes relative shaft, C^{BS}
CBS(3,3)
                                 real
                                                   pylon axes relative airframe, C^{BF} (zero shaft control)
CBF(3,3)
                                 real
                                                   spinner radius R_{\rm spin}
Radius spin
                                 real
                                                     only SET_aeroaxes=input uses pitch_aero; pitch_aero=180 for helicopter, 90 for propeller
                                                     SET Spylon, pylon wetted area: input (use Swet pylon) or calculated (from kSwet pylon)
                                                          units of kSwet are ft^2/lb^{2/3} or m^2/kg^{2/3}
                                                          w=W_{gbrs} (drive system) or W_{gbrs}+\sum W_{ES} (drive system and engine system)
                                                          pylon wetted area used for pylon drag
                                                          rotor pylon must be consistent with engine group nacelle
                                                     SET Sduct, duct area: input (use S duct) or calculated (from fLength duct)
                                                          S_{\rm duct} = (2\pi R)\ell_{\rm duct}, \ell_{\rm duct} = fLength_duct*R; used for drag (wetted area 2S_{\rm duct}) and weight
                                                     SET Sspin, spinner wetted area: (use Swet spin) or calculated (from fSwet spin)
                                                          A_{\rm spin}=\pi R_{\rm spin}^2={\rm spinner} frontal area (from fRadius_spin*R); spinner radius used for drag and weight
```

		+	Drag	
MODEL_drag	int	+	model (0 none, 1 standard)	1
Idrag	real	+	incidence angle for helicopter nominal drag (deg; 0 for not tilt)	0.
DRotor	DRotor		standard model	
			Derived drag	
DoQC_hub	real		hub cruise drag, area $(D/q)_{ m hub}$	
DoQH_hub	real		hub helicopter drag, area $(D/q)_{ m hub}$	
DoQV_hub	real		hub vertical drag, area $(D/q)_{\rm hub}$	
DoQC_pylon	real		pylon cruise drag, area $(D/q)_{\rm pylon}$	
DoQH_pylon	real		pylon helicopter drag, area $(D/q)_{ m pylon}$	
DoQV_pylon	real		pylon vertical drag, area $(D/q)_{\rm pylon}$	
DoQC_duct	real		duct cruise drag, area $(D/q)_{\rm duct}$	
DoQH_duct	real		duct helicopter drag, area $(D/q)_{ m duct}$	
DoQV_duct	real		duct vertical drag, area $(D/q)_{ m duct}$	

DoQ_spin	real		spinner drag, area $(D/q)_{ m spin}$	
Swet_rotor	real		total wetted area $S_{ m wet}$	
		+	Download and blockage	
$MODEL_download$	int	+	model (0 none, 1 blockage, 2 download, 3 both)	0
download	real	+	download $DL = \Delta T/T$	0.0
blockage	real	+	blockage $B = \Delta T/T$	0.0
muDL	real	+	advance ratio μ_{DL} (0. for no correction)	0.16
zDL	real	+	height above ground $(z_g/D)_{DL}$ (fraction diameter, 0. for no correction)	0.41
aDL	real	+	forward flight constant a_{DL}	1.04
bDL	real	+	ground effect constant b_{DL}	0.23

download: rotor induced and profile power evaluated at thrust increased by $f_{DL}=1/(1-\Delta T/T)$ blockage: force acting on aircraft includes $f_B=(\Delta T/T)T$ opposing thrust download DL and blockage B are for hover, out of ground effect download and blockage zero for $\mu>\mu_{DL}$ or $z_g/D<(z_g/D)_{DL}$

- Weight

			C	
Weight	Weight		weight statement (component)	
		+	rotor group (or empennage or propulsion group)	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWblade	real	+	blade	0.
dWhub	real	+	hub and hinge	0.
dWshaft	real	+	inter-rotor shaft	0.
dWspin	real	+	fairing/spinner	0.
dWrfold	real	+	blade fold	0.
dWtr	real	+	tail rotor	0.
dWaux	real	+	auxiliary thrust	0.
dWrsupt	real	+	rotor support structure	0.
dWduct	real	+	duct	0.
WRotor	WRotor		NDARC model	

SET_Iblade	int	+	blade moment of inertia (0 from Lock number, 1 from blade wt, 2 tip wt from Lock number, 3 tip wt from AI)	1
AI	real	+	autorotation index $KE/P = \frac{1}{2}N_{\rm blade}I_{\rm blade}\Omega^2/P$ (sec)	3.0
Wblade_tip	real	+	tip weight (per blade)	0.
rWblade_tip	real	+	location tip weight (fraction blade radius)	0.9
fWblade_tip	real	+	distributed weight for centrifugal force (fraction Wblade_tip)	1.0
rblade	real	+	radius of gyration for distributed mass (fraction blade radius)	0.6
Wblade	real		blade weight (all blades; required for drive system weight)	
Wtip	real		weight on wing tip (required for tiltrotor wing weight)	
		+	Technology Factors	
$TECH_blade$	real	+	blade weight $\chi_{ m blade}$	1.0
TECH_hub	real	+	hub and hinge weight $\chi_{ m hub}$	1.0
$TECH_shaft$	real	+	inter-rotor shaft $\chi_{ m shaft}$	1.0
TECH_spin	real	+	fairing/spinner weight $\chi_{ m spin}$	1.0
TECH_rfold	real	+	blade fold weight $\chi_{ m fold}$	1.0
TECH_tr	real	+	tail rotor weight χ_{tr}	1.0
TECH_aux	real	+	auxiliary thrust weight χ_{at}	1.0
TECH_rsupt	real	+	rotor support structure weight $\chi_{ m supt}$	1.0
TECH_duct	real	+	duct weight χ_{duct}	1.0

Chapter 47

Variable	Type		Description	Default
		+	Rotor Induced Power, Standard Energy Performance Method	
$MODEL_ind$	int	+	model (0 none, 1 constant, 2 standard)	2
		+	induced velocity factors (ratio to momentum theory induced velocity)	
Ki_hover	real	+	hover $\kappa_{ m hover}$	1.12
Ki_climb	real	+	axial climb $\kappa_{ m climb}$	1.08
Ki_prop	real	+	axial cruise (propeller) κ_{prop}	2.0
Ki_edge	real	+	edgewise flight (helicopter) κ_{edge}	2.0
		+	variation with thrust	
$CTs_{-}Hind$	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for κ_h variation	0.08
kh1	real	+	coefficient k_{h1} for κ_h	0.
kh2	real	+	coefficient k_{h2} for κ_h	0.
Xh2	real	+	exponent X_{h2} for κ_h	2.
CTs_Pind	real	+	$(C_T/\sigma)_{\mathrm{ind}}$ for κ_p variation	0.08
kp1	real	+	coefficient k_{p1} for κ_p	0.
kp2	real	+	coefficient k_{p2} for κ_p	0.
Xp2	real	+	exponent k_{p2} for κ_p	2.
		+	variation with shaft angle	
kpa	real	+	coefficient $k_{h\alpha}$ for κ_p	0.
Xpa	real	+	exponent $X_{h\alpha}$ for κ_p	2.
Maxial	real	+	constant $M_{\rm axial}$ in transition from hover to climb	1.176
Xaxial	real	+	exponent X_{axial} in transition from hover to climb	0.65
		+	variation with axial velocity	
mu_prop	real	+	advance ratio $\mu_{z\mathrm{prop}}$ for Ki_prop	1.0
ka1	real	+	coefficient k_{a1} for $\kappa(\mu_z)$ (linear)	0.
ka2	real	+	coefficient k_{a2} for $\kappa(\mu_z)$ (quadratic)	0.
ka3	real	+	coefficient k_{a3} for $\kappa(\mu_z)$	0.
Xa	real	+	exponent X_a for $\kappa(\mu_z)$	4.5

	+	variation with edgewise velocity	
real	+	advance ratio μ_{edge} for Ki_edge	0.35
real	+	coefficient k_{e1} for $\kappa(\mu)$ (linear)	0.8
real	+	coefficient k_{e2} for $\kappa(\mu)$ (quadratic)	0.
real	+	coefficient k_{e3} for $\kappa(\mu)$	1.
real	+	exponent X_e for $\kappa(\mu)$	4.5
real	+	variation with rotor drag $k_{e\alpha}$	0.
	+	variation with lift offset	
real	+	coefficient k_{o1} for f_{off}	0.
real	+	factor k_{o2} for f_{off}	8.
real	+	minimum $\kappa_{ m min}$	1.
real	+	maximum $\kappa_{ m max}$	10.
real		edgewise scale factor S	
real		axial scale factor S	
	_	Climb power	
int		•	0
IIIt			0
int		· · · · · · · · · · · · · · · · · · ·	
Tour			
int			
real	+	climb speed V_c/v_h	
real	+	climb power factor f	
	+	climb power factor f	
	real real real real real real real real	real +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

		+	Momentum theory	
MODEL_grad	int	+	inflow gradient in forward flight (0 none, 1 White and Blake, 2 Coleman and Feingold)	1
fGradx	real	+	longitudinal gradient factor f_x	1.
fGrady	real	+	lateral gradient factor f_y	1.
fGradm	real	+	hub moment inflow gradient factor f_m	1.
		+	Ground effect	
MODEL_GE	int	+	model (0 none, 1 Cheeseman, 2 BE Cheeseman, 3 Law, 4 Hayden, 5 Zbrozek, 6 Maryland, 7 T table, 8 P table)	3
Cge	real	+	effective height correction C_g	1.
		+	table	
nCTsGE	int	+	number of C_T/σ values (maximum ngetablemax)	0
nhGE	int	+	number of h/D values (maximum ngetablemax)	0
CTsGE(ngetablemax)	real	+	blade loading C_T/σ	
hGE(ngetablemax)	real	+	rotor height above ground h/D	
\times GE(ngetablema \times ,ngetabler	nax)			
	real	+	ground effect factor $\kappa_g = x(C_T/\sigma, h/D)$ or $f_g = x(C_T/\sigma, h/D)$	

MODEL_GE: table options for $\kappa_g=T/T_\infty$ or $f_g=P/P_\infty$ as function of blade loading C_T/σ and rotor height above ground h/D (fraction rotor diameter) Cge: for tiltrotors, typically $C_g=0.5$; smaller effective height accounting for increased influence of ground compared to isolated rotor

+ Ducted fan

MODEL_duct	int	+	model (1 specify area ratio, 2 specify thrust ratio)	1
fDuctA	real	+	area ratio f_A (fan area/far wake area)	1.
fDuctT	real	+	thrust ratio f_T (rotor thrust/total thrust)	0.5
fDuctVx	real	+	velocity ratio f_{Vx} (fan edgewise velocity/free stream velocity)	1.
fDuctVz	real	+	velocity ratio f_{Vz} (fan axial velocity/free stream velocity)	1.

ducted fan model used only if config='duct'

		+	Twin rotors	
MODEL_twin	c*12	+	model (based on config, none, side-by-side, coaxial, tandem, multirotor)	'config'
Kh_twin	real	+	ideal induced velocity correction κ_{twin} for hover	1.00
Kf_twin	real	+	ideal induced velocity correction κ_{twin} for forward flight	0.85
Cind_twin	real	+	constant C in hover to forward flight transition	1.0
A_coaxial	real	+	coaxial rotor nonuniform disk loading factor $\bar{\alpha}$	1.05
xh_multi(nrotormax)	real	+	multirotor thrust factor x_h for hover	1.0
$\times f_{multi}(nrotormax)$	real	+	multirotor thrust factor x_f for forward flgiht	1.0
			Derived twin rotors	
iMODEL_twin	int		model (MODEL_twin_none, sidebyside, coaxial, tandem, multirotor)	
×h	real		thrust factor x_h , hover	
×f1	real		thrust factor x_{f1} , forward flight, this rotor	
xf2	real		thrust factor x_{f2} , forward flight, other rotor	
			MODEL twin: 'config', 'none', 'side-by-side' or 'tiltrotor', 'coaxial', 'tandem', or 'multirotor'	

MODEL_twin: 'config', 'none', 'side-by-side' or 'tiltrotor', 'coaxial', 'tandem', or 'multirotor' 'config' must identify rotor as twin or multiple rotors coaxial: MODEL_twin='coaxial' (use A_coaxial; Kh_twin not used) or MODEL_twin='tandem' with zero horizontal separation (typically Kh_twin=0.90)

coaxial and tandem: $Kf_{twin} = 0.88$ to 0.81 for rotor separation 0.06D to 0.12D

Chapter 48

Structure: PRotorPro

Variable	Type		Description	Default
		+	Rotor Profile Power, Standard Energy Performance Method	
		+	Technology factor	
TECH_drag	real	+	profile power χ	1.0
Re_ref	real	+	Reference Reynolds number Re_{ref} (0. for no correction)	0.0
X_Re	real	+	exponent for Reynolds number correction X_{Re}	0.2
MODEL_basic	int	+	Basic model $c_{d\text{basic}}$ (0 none, 1 array, 2 equation)	2
		+	array (c_d vs thrust-weighted C_T/σ)	
ncd	int	+	number of points (maximum 24)	24
CTs_cd(24)	real	+	blade loading	
cd(24)	real	+	drag coefficient	
		+	equation	
CTs_Dmin	real	+	$(C_T/\sigma)_{D \mathrm{min}}$ for minimum profile drag ($\Delta = C_T/\sigma - (C_T/\sigma)_{D \mathrm{min}} $)	0.07
d0_hel	real	+	coefficient $d_{0\text{hel}}$ in drag, $c_{dh} = d_{0\text{hel}} + d_{1\text{hel}}\Delta + d_{2\text{hel}}\Delta^2 + \Delta c_{d\text{sep}}$ (hover/edgewise)	0.009
d1_hel	real	+	coefficient $d_{1\text{hel}}$ in drag (hover/edgewise)	0.0
d2_hel	real	+	coefficient $d_{2\text{hel}}$ in drag (hover/edgewise)	0.5
d0_prop	real	+	coefficient $d_{0\text{prop}}$ in drag, $c_{dp} = d_{0\text{prop}} + d_{1\text{prop}}\Delta + d_{2\text{prop}}\Delta^2 + \Delta c_{d\text{sep}}$ (axial)	0.009
d1_prop	real	+	coefficient $d_{1\text{prop}}$ in drag (axial)	0.0
d2_prop	real	+	coefficient $d_{2\text{prop}}$ in drag (axial)	0.5
dprop	real	+	variation with shaft angle, coefficient $d_{p\alpha}$ for c_{dp}	0.
Xprop	real	+	variation with shaft angle, exponent $X_{p\alpha}$ for c_{dp}	2.
CTs_sep	real	+	$(C_T/\sigma)_{\rm sep}$ for separation $(\Delta c_{\rm dsep} = d_{\rm sep}(C_T/\sigma - (C_T/\sigma)_{\rm sep})^{X_{\rm sep}})$	0.07
dsep	real	+	factor d_{sep} in drag increment	4.0
Xsep	real	+	exponent $X_{\rm sep}$ in drag increment	3.0
df1	real	+	variation with edgewise velocity, coefficient d_{f1}	0.0
df2	real	+	variation with edgewise velocity, coefficient d_{f2}	0.0
Xf	real	+	variation with edgewise velocity, exponent X_f	2.

Structure: PRotorPro

default array (cd(1)=0.): C_T/σ = 0.0 to 0.23 (uniform increments) cd = .01100,.01075,.01025,.01000,.01010,.01070,.01050,.00975,.00925,.00926,.00938,.00977, .01048,.01152,.01336,.01593,.01920,.02381,.03014,.04000,.08000,.16000,.32000,1.0000

nonzero values of cdo in FltState supersede calculated cdmean

$MODEL_stall$	int	+	Stall model c_{dstall} (0 none)	1
		+	C_T/σ at stall $(\Delta_s= C_T/\sigma -(f_s/f_{lpha}f_{ m off})(C_T/\sigma)_s, \Delta c_d=d_{s1}\Delta_s^{X_{s1}}+d_{s2}\Delta_s^{X_{s2}})$	
nstall	int	+	number of points (maximum 20)	10
mu_stall(20)	real	+	advance ratio $V/V_{ m tip}$	
CTs_stall(20)	real	+	$(C_T/\sigma)_s$	
fstall	real	+	constant f_s in stall drag increment	1.0
dstall1	real	+	factor d_{s1} in stall drag increment	2.
dstall2	real	+	factor d_{s2} in stall drag increment	40.
Xstall1	real	+	exponent X_{s1} in stall drag increment	2.0
Xstall2	real	+	exponent X_{s2} in stall drag increment	3.0
		+	variation with lift offset	
do1	real	+	coefficient d_{o1} for f_{off}	0.
do2	real	+	factor d_{o2} for $f_{ m off}$	8.
dsa	real	+	variation with rotor drag d_{slpha}	0.
			default used if CTs_stall(1)=0.	
			default CTs_stall = 0.17,0.16,0.15,0.14,0.13,0.12,0.11,0.10,0.10,0.10	
			default mu stall = $0.00,0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.80$	
MODEL_comp	int	+	Compressibility model $c_{d\text{comp}}$ (0 none, 1 drag divergence, 2 similarity, 3 tip Mach number)	1
$MODEL_comp_ff$	int	+	compressibility increment (0 only used for hover or axial flight)	1
	_	+	similarity model	
fSim	real	+	factor f	1.0
thick_tip	real	+	blade tip thickness-to-chord ratio $ au$	0.08

Structure: PRotorPro

		+	drag divergence model ($\Delta_m=M_{at}-M_{dd},\Delta c_d=d_{m1}\Delta_m+d_{m2}\Delta_m^{A_m}$)	
dm1	real	+	coefficient d_{m1} in drag increment	0.056
dm2	real	+	coefficient d_{m2} in drag increment	0.416
Xm	real	+	exponent X_m in drag increment	2.0
		+	drag divergence Mach number ($M_{dd}={\sf Mdd0}-{\sf Mddcl}\ c_\ell$)	
Mdd0	real	+	M_{dd0} at zero lift	0.88
Mddcl	real	+	derivative with lift $\kappa = \partial M_{dd}/\partial c_\ell$	0.16
		+	tip Mach number model	
dmt	real	+	coefficient d_{mt}	
Mtip_limit	real	+	tip Mach number limit $M_{ m tiplimit}$	
CT_{limit}	real	+	thrust coefficient limit $C_{T m limit}$	
Mtip_ref	real	+	reference tip Mach number $M_{ m tipref}$	
MODEL_propeff	int	+	Propulsive force efficiency (0 none)	0
DoQ_ref	real	+	reference propulsive force $(D/q)_{ref}$	
nCTs_eff	int	+	number of blade loading values (maximum 20)	
nV_eff	int	+	number of rotor velocity values (maximum 20)	
CTs_eff(20)	real	+	blade loading C_T/σ	
V_eff(20)	real	+	rotor velocity $V/V_{ m tip}$	
propeff(20,20)	real	+	efficiency for propulsive force increment $\eta(C_T/\sigma, V/V_{\rm tip})$	

propeff: efficiency η gives $\Delta P_o = V \Delta D(1/\eta - 1)$

DoQ_ref corresponds to baseline profile and induced power models intended for use with table model for power at baseline propulsive force

Structure: PRotorTab

Variable	Type		Description	Default
		+	Performance, Table Method	
$MODEL_indTab$	int	+	induced power model (0 standard, 1 table, 2 table with equations)	1
nvar_ind	int	+	number independent variables (1 to 3)	0
var_ind(3)	c*12	+	variables	, ,
nv_ind(3)	int	+	number of variable values (maximum ntablemax)	0
v_ind(ntablemax,3)	real	+	independent variable	
MODEL_proTab	int	+	profile power model (0 standard, 1 table, 2 table with equations)	1
KIND_proTab	int	+	profile power model (0 standard, 1 table $c_{d\text{mean}}$, 2 table $c_{d\text{mean}}F = 8C_{Po}/\sigma$)	1
nvar_pro	int	+	number independent variables (1 to 3)	0
var_pro(3)	c*12	+	variables	, ,
nv_pro(3)	int	+	number of variable values (maximum ntablemax)	0
v_pro(ntablemax,3)	real	+	independent variable	
MODEL_geTab	int	+	ground effect model (0 inflow, 1 table thrust)	0
		+	table	
Ki(ntablemax,ntablemax,i	ntablemax)			
•	real	+	induced power factor κ	
cdo(ntablemax,ntablemax	(,ntablemax)		•	
,	real	+	profile power mean c_d	
			Derived	
ivar_ind(3)	int		induced power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)	
ivar_pro(3)	int		profile power variables (tablevar_V, Vh, mu, muz, alpha, muTPP, muzTPP, alphaTPP, CTs, Mx, Mtip, Mat)	

independent variables: var_ind and var_pro

'V': flight speed $V/V_{\rm tip}$ 'Vh': horizontal speed $V_h/V_{\rm tip}$

'mu', 'muHP': edgewise advance ratio μ (hub plane)

'muz', 'muzHP': axial velocity ratio μ_z (hub plane)

Structure: PRotorTab

```
'alpha', 'alphaHP': shaft angle-of-attack \alpha = \tan^{-1}(\mu_z/\mu) (hub plane)
```

'muTPP': edgewise advance ratio μ (tip-path plane) 'muzTPP': axial velocity ratio μ_z (tip-path plane)

'alphaTPP': shaft angle-of-attack $\alpha = \tan^{-1}(\mu_z/\mu)$ (tip-path plane)

'CTs', 'CT/s': blade loading C_T/σ 'Mx', 'offset': lift offset M_x/TR 'Mtip': tip Mach number $M_{\rm tip}$

'Mat': advancing tip Mach number M_{at}

MODEL_geTab: ground effect included in inflow, or table power evaluated at thrust decreased by κ_g MODEL_download ≥ 2 : table induced and profile power evaluated at thrust increased by $f_{DL}=1/(1-\Delta T/T)$

nonzero values of Ki and/or cdo in FltState supersede table (or table with equations) values

Variable	Type		Description	Default
		+	Rotor Drag, Standard Model	
		+	forward flight drag	
SET_Dhub	int	+	hub drag specification (1 fixed, D/q ; 2 scaled, C_D ; 3 scaled, squared-cubed; 4 scaled, square-root)	2
DoQ_hub	real	+	area $(D/q)_{ m hub}$	
CD_hub	real	+	coefficient C_{Dhub} (based on rotor area, $D/q = SC_D$)	0.0024
kDrag_hub	real	+	$k=(D/q)/(W/1000)^{2/3}$ or $(D/q)/W^{1/2}$ (Units_Dscale)	0.8
SET_Dpylon	int	+	pylon drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_pylon	real	+	area $(D/q)_{ m pylon}$	
CD_pylon	real	+	coefficient $C_{D_{\text{pylon}}}$ (based on pylon wetted area, $D/q = SC_D$)	0.0
SET_Dduct	int	+	duct drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ_duct	real	+	area $(D/q)_{ m duct}$	
CD_duct	real	+	coefficient $C_{D ext{duct}}$ (based on duct wetted area, $D/q = SC_D$)	0.0
SET_Dspin	int	+	spinner drag specification (1 fixed, D/q ; 2 scaled, C_D)	1
DoQ_spin	real	+	area $(D/q)_{ m spin}$	0.0
CD_spin	real	+	coefficient $C_{D\text{spin}}$ (based on spinner wetted area, $D/q = SC_D$)	0.0
		+	vertical drag	
SET_Vhub	int	+	hub drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQV_hub$	real	+	area $(D/q)_{V{ m hub}}$	
CDV_hub	real	+	coefficient $C_{DV \text{hub}}$ (based on rotor area, $D/q = SC_D$)	0.0
SET_Vpylon	int	+	pylon drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQV_pylon$	real	+	area $(D/q)_{V m pylon}$	
CDV_pylon	real	+	coefficient $C_{DV_{\text{pylon}}}$ (based on pylon wetted area, $D/q = SC_D$)	0.0
SET_Vduct	int	+	duct drag specification (1 fixed, D/q ; 2 scaled, C_D)	2
$DoQV_duct$	real	+	area $(D/q)_{V m duct}$	
CDV_duct	real	+	coefficient $C_{DV ext{duct}}$ (based on duct wetted area, $D/q = SC_D$)	0.0
		+	transition from forward flight drag to vertical drag	
$MODEL_Dhub$	int	+	hub drag model (1 general, 2 quadratic)	2
MODEL_Dpylon	int	+	pylon drag model (1 general, 2 quadratic)	2

$MODEL_Dduct$	int	+	duct drag model (1 general, 2 quadratic)	2
X_hub	real	+	hub drag, transition exponent X_d	2.
X_pylon	real	+	pylon drag, transition exponent X_d	2.
X_{duct}	real	+	duct drag, transition exponent X_d	2.
Xh	real		hub drag, transition exponent X_d (derived)	
Хp	real		pylon drag, transition exponent X_d (derived)	
Xd	real		duct drag, transition exponent X_d (derived)	

SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated

component drag contributions must be consistent; pylon is rotor support, and nacelle is engine support tiltrotor with tilting engines use pylon drag (and no nacelle drag), since pylon connected to rotor shaft axes tiltrotor with nontilting engines: use nacelle drag as well rotor with a spinner (such as on a tiltrotor aircraft) likely not have hub drag

SET_Dhub, hub drag: use one of DoQ_hub, CD_hub, kDrag_hub units of kDrag are $ft^2/klb^{2/3}$ or $m^2/Mg^{2/3};\,ft^2/lb^{1/2}$ or $m^2/kg^{1/2}$

CD = 0.0040 for typical hubs, 0.0024 for current low drag hubs, 0.0015 for faired hubs

kDrag(2/3 power) = 1.4 for typical hubs, 0.8 for current low drag hubs, 0.5 for faired hubs (English units)

kDrag (1/2 power) = 0.074 for single rotor helicopters, 0.049 for tandem helicopters,

0.038 for hingeless rotors, 0.027 for faired hubs (English units)

 $W = f_W W_{MTO}$ (main rotor) or fThrust*Tdesign (antitorque or aux thrust rotor)

Chapter 51

Variable	Type		Description	Default
		+	Rotor Interference, Standard Model	
		+	model	
MODEL_develop	int	+	development along wake axis (1 step function, 2 nominal, 3 input Xdevelop)	3
Xdevelop	real	+	rate parameter t	0.2
MODEL_boundary	int	+	immersion in wake (1 step function, 2 always immersed, 3 input Xboundary)	3
MODEL_contract	int	+	far wake contraction (0 no, 1 yes)	1
Xboundary	real	+	boundary transition s (fraction contracted radius)	0.2
MODEL_int_twin	int	+	twin rotor interference (1 no correction, 2 nominal, 3 input Ktwin)	1
Ktwin	real	+	velocity factor in overlap region K_T	1.4142
Nint_wing(nwingmax)	int	+	number wing span stations	6
Nint_tail(ntailmax)	int	+	number tail span stations	2
		+	interference factors K_{int} (0. for no interference)	
Kint_fus	real	+	at fuselage	1.0
Kint_wing(nwingmax)	real	+	at wing	1.0
Kint_tail(ntailmax)	real	+	at tail	1.0

Kint=0 to suppress interference at component; MODEL_int=0 for no interference at all interference factor linearly transition from Kint at $V \leq \text{Vint_low}$ to 0 at $V \geq \text{Vint_high}$

to account for wing or tail area in wake, interference averaged at Nint points along span

MODEL_develop: step function same as Xdevelop=0; nominal same as Xdevelop=1.

MODEL_boundary: step function same as Xboundary=0; always immersed same as Xboundary= ∞

MODEL_twin: only for coaxial or tandem or side-by-side; nominal same as Ktwin= $\sqrt{2}$

For tiltrotors, typically the interference is wing-like, with $C_{\rm int}\cong -0.06$

Chapter 52

Variable	Type		Description	Default
		+	Rotor Group, NDARC Weight Model	
$MODEL_config$	int	+	model (1 rotor, 2 tail rotor, 3 auxiliary thrust)	1
MODEL_Wblade	int	+	blade weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko)	1
$MODEL_Whub$	int	+	hub and hinge weight model (1 AFDD82, 2 AFDD00, 3 lift offset, 4 Boeing, 5 GARTEUR, 6 Tishchenko)	1
$MODEL_Wshaft$	int	+	inter-rotor shaft weight (from lift offset; 0 not included)	0
		+	AFDD00 weight models	
MODEL_type	int	+	hub weight equation depend on blade weight (for hub weight; 0 no, 1 yes)	1
KIND_rotor	int	+	rotor kind (for blade weight; 1 tilting, 2 not)	2
		+	AFDD00 and AFDD82: first flapwise natural frequency ν (per-rev at hover tip speed)	
flapfreq_blade	real	+	blade (0. to use flapfreq)	0.
flapfreq_hub	real	+	hub (0. to use flapfreq_blade)	0.
		+	lift offset rotor	
MODEL_offset	int	+	rotor tip clearance (for blade weight; 1 scaled, 2 fixed)	1
offset	real	+	design lift offset L (roll moment/ TR)	0.3
thick20	real	+	blade airfoil thickness-to-chord ratio $\tau_{.2R}$ (at 20%R)	0.21
clearance_tip	real	+	tip clearance, scaled s/R or fixed s (ft or m)	0.05
thick25	real	+	Boeing: blade airfoil thickness-to-chord ratio $\tau_{.25R}$ (at 25%R)	0.15
MODEL tr	int	+	tail rotor weight model (1 AFDD, 2 Boeing, 3 GARTEUR)	1
thick70	real	+	GARTEUR: blade airfoil thickness-to-chord ratio $\tau_{.7R}$ (at 70%R)	0.11
MODEL aux	int	+	auxiliary thrust weight model (1 AFDD10, 2 AFDD82, 3 Boeing, 4 GARTEUR, 5 Torenbeek)	1
thrust_aux	real	+	AFDD82: design maximum thrust T_{at}	0.
power aux	real	+	AFDD10: design maximum power P_{at}	0.
material_aux	real	+	AFDD10: material factor f_m	1.
rattach	real	+	Boeing: blade attachment (fraction rotor radius)	0.09
fWfold	real	+	blade fold weight f_{fold} (fraction total blade weight)	0.
fWsupt	real	+	rotor support structure weight (fraction maximum takeoff weight)	0.

Uduct real + duct weight per area $U_{\rm duct}$ (lb/ft² or kg/m²)

1.5

MODEL_config: tail rotor and auxiliary thrust models use only rotor, support, and duct weights (not shaft, fold, or separate blade and hub weights)

duct weight only used for ducted fan configuration

for teetering and gimballed rotors, the flap frequency flapfreq_blade should be the coning frequency

The AFDD00 hub weight equation using the calculated blade weight (MODEL_type = 0) results in a lower average error, and best represents legacy rotor systems.

Using the actual actual blade weight (MODEL_type = 1) is best for advanced technology rotors with blades lighter than trend.

if thrust_aux=0, use design maximum thrust of rotor from sizing task

if power_aux=0, use design maximum power of rotor from sizing task

material_aux=1 for composite construction, 1.20 for wood, 1.31 for aluminum spar, 1.44 for aluminum construction default Ω_{prop} is the reference rotor speed

typically fWfold = 0.04 for manual fold, 0.28 for automatic fold

rotor support structure weight must be consistent with engine support and pylon support weights of engine section

+ Custom Weight Model

WtParam rotor(8)

real

+ parameters

0.

Chapter 53

Variable	Type		Description	Default
		+	Wing	
title	c*100	+	title	
notes	c*1000	+	notes	
kWing	int		wing number	
		+	Geometry	
wingload	real	+	wing loading $W/S = f_W W_D/S$	
fDGW	real	+	fraction DGW f_W (for wing loading)	1.0
area	real	+	area S	
span	real	+	$\operatorname{span} b$	
chord	real	+	$\operatorname{chord} c$	
AspectRatio	real	+	aspect ratio AR	

		+	Geometry	
		+	rotors	
nRotorOnWing	int	+	number of rotors mounted on wing	0
RotorOnWing(nrotormax)	int	+	rotor numbers	
		+	span calculation	
fSpan	real	+	ratio wing span to span of other wing, or to rotor radius	1.0
otherWing	int	+	other wing number	0
RotorForSpan	int	+	rotor number for span (if nRotorOnWing=0)	0
RotorOnPanel(npanelmax)	int	+	rotor at wing panel edge	
thick	real	+	thickness ratio $ au_w$.23
$fWidth_box$	real	+	wing torque box chord w_{tb} (fraction wing chord)	0.45

RotorOnWing required for SET_wing = 'width' or 'hub'; MODEL_wing = tiltrotor; SET_Vdrag = airfoil c_{d90} RotorOnPanel required for SET_panel = 'width' or 'hub' SET_wing = 'radius' gets radius from RotorOnWing or RotorForSpan

taper, sweep, thickness used by weight equations
taper and sweep calculated for entire wing from wing panel geometry
fWidth_box used by tiltrotor weight equations
thick and fWidth_box used for fuel in wing

+ Geometry (for graphics)

twist	real +	twist	0.
		Geometry (derived)	
taper	real	taper ratio	
sweep	real	sweep (+ aft, deg)	
dihedral	real	dihedral (+ up, deg)	
MAC	real	mean aerodynamic chord \bar{c}_A	
×AC	real	mean aerodynamic center chordwise offset from root aero center \bar{x}_A (+ aft)	
zAC	real	mean aerodynamic center vertical offset from root aero center \bar{z}_A (+ up)	

		+	Geometry	
loc_wing	Location	n +	aerodynamic center location	
nPanel	int	+	number of wing panels (maximum npanelmax)	1
KIND_ACoffset	int	+	aero center offset (1 fixed, 2 fraction root chord, 3 fraction inboard chord)	1
		+	Wing Panels	
$SET_{panel}(npanelmax)$	c*24	+	panel parameters	'span+taper'
$span_panel(npanelmax)$	real	+	span (one side), b_p	
$area_panel(npanelmax)$	real	+	area (both sides), S_p	
${\sf chord_panel(npanelmax)}$	real	+	mean chord, c_p	
$fspan_panel(npanelmax)$	real	+	ratio span to wing span (one side), $b_p/(b/2)$	1.
$farea_panel(npanelmax)$	real	+	ratio area to wing area (both sides), S_p/S	1.
$fchord_panel(npanelmax)$	real	+	ratio mean chord to wing chord, c_p/c	1.
		+	panel edges	
$edge_{panel}(npanelmax)$	real	+	outboard edge, y_E	
$fedge_panel(npanelmax)$	real	+	outboard edge, $\eta_E = y/(b/2)$	1.
lambdal(npanelmax)	real	+	inboard chord ratio, $c_I/c_{ m ref}$	1.
lambdaO(npanelmax)	real	+	outboard chord ratio, $c_O/c_{ m ref}$	1.
		+	aerodynamic center locus	
$sweep_panel(npanelmax)$	real	+	sweep Λ_p (deg, + aft)	0.
dihedral_panel(npanelmax)	real	+	dihedral δ_p (deg, + up)	0.
$d \times AC_panel(npanelmax)$	real	+	chordwise offset at panel inboard edge x_{Ip} (+ aft)	0.
$dzAC_panel(npanelmax)$	real	+	vertical offset at panel inboard edge z_{Ip} (+ up)	0.
		+	control surfaces	
$fchord_flap(npanelmax)$	real	+	flap chord $\ell_F = c_F/c_p$ (fraction panel chord)	0.25
$fchord_flaperon(npanelmax)$	real	+	flaperon/aileron chord $\ell_f = c_f/c_p$ (fraction panel chord)	0.25
$fspan_flap(npanelmax)$	real	+	flap span $f_b = b_F/b_p$ (fraction panel span)	0.5
$fspan_flaperon(npanelmax)$	real	+	flaperon/aileron span $f_b = b_f/b_p$ (fraction panel span)	0.5
$fAC_aileron(npanelmax)$	real	+	aileron aerodynamic center lateral position y	0.7

```
wing panels: SET_panel not required with only one panel SET_panel: specify consistent definition of panels (span, edge, area, chord) panel span: 'span' or 'bratio', else free 'span' = input span_panel, b_p 'bratio' = input ratio to wing span, fspan_panel, b_p/(b/2)
```

```
panel outboard edge: 'edge', 'station', 'width', 'hub', or 'adjust' (not used for tip panel)
         'edge' = input edge panel, y_E
         'station' = input fraction wing semispan fedge_panel, \eta_E = y/(b/2)
         'radius' = from rotor radius
         'width' = from rotor radius, fuselage width, and clearance (tiltrotor)
         'hub' = from rotor hub position (tiltrotor)
         'adjust' = from adjacent input panel span or span ratio
     panel area or chord: 'area', 'Sratio', 'chord', 'cratio', 'taper', else free
         'area' = input area_panel, S_p
         'Sratio' = input ratio to wing area, farea panel, S_n/S
         'chord' = input chord_panel, c_p
         'cratio' = input ratio to wing chord, fchord panel, c_n/c
         'taper' = from chord ratios lambdal and lambdaO
     require consistent definition of panel spans and outboard edges, and consistent with SET wing
         all edges known (from input edge or station, or from adjacent panel span or span ratio)
         resulting edges unique and sequential
         if wing span calculated from panel widths:
               one and only one input panel span or span ratio that not used to define edge
         if known span: no input panel span or span ratio that not used to define edge
     panel area or chord:
         if one or more taper (and no free), calculate c_{ref} from wing area
         if one (and only one) free, calculate S_p from wing area
fAC aileron: from panel inboard edge, fraction panel span
     for nPanel=1, from centerline and fraction wing semispan
```

Derived geometry

```
\begin{array}{lll} {\sf iSET\_panel\_span(npanelmax)} & {\sf int} & {\sf span\,(SET\_panel\_span,\,bratio,\,free}) \\ {\sf iSET\_panel\_edge(npanelmax)} & {\sf int} & {\sf edge\,(SET\_panel\_edge,\,station,\,radius,\,width,\,hub,\,adjust}) \\ {\sf iSET\_panel\_area(npanelmax)} & {\sf int} & {\sf area\,(SET\_panel\_area,\,Sratio,\,chord,\,cratio,\,taper,\,free}) \\ {\sf kind\_area} & {\sf int} & {\sf kind\,area\,\,and\,\,chord\,\,solution\,\,(1\,\,tapered\,\,panels,\,2\,\,free\,\,panel)} \\ {\sf chordl(npanelmax)} & {\sf real} & {\sf inboard\,\,chord\,\,}c_{Ip} \\ \end{array}
```

chordO(npanelmax)	real		outboard chord c_{Op}	
$eAC_aileron(npanelmax)$	real		aileron aerodynamic center lateral position y (from centerline, fraction wing semispan)	
$rArea_flap(npanelmax)$	real		flap area/panel area	
$rArea_flaperon(npanelmax)$	real		flaperon-aileron area/panel area	
$Ktef_flap(4,npanelmax)$	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
$Ktef_flaperon(4,npanelmax)$	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
rArea_Wflap	real		total flap area/wing area	
rArea_Wflaperon	real		total flaperon-aileron area/wing area	
isConsistent	int		consistent geometry (0 if calculated geometry not consistent)	
		+	Wing Extensions	
SET_ext	int	+	extension (0 for none)	0
$kPanel_ext$	int	+	wing panel number	2
KIT_ext	int	+	wing extension as kit (0 not kit)	0
$\operatorname{area} X$	real		extension area S_X (both sides)	
spanX	real		extension span b_X (one side)	
areal	real		inboard area $(S - S_X)$	
spanl	real		inboard span $(b-2b_X)$	
area_flapl	real		inboard flap area	
area_flaperonl	real		inboard flaperon-aileron area	
AspectRatiol	real		inboard wing aspect ratio	
sweepl	real		inboard wing sweep	
taperl	real		inboard wing taper	
		+	Wing Kit	
KIT_wing	int	+	wing as kit (0 not, 1 kit, 2 kit as fixed useful load)	0
fWkit	real	+	kit weight (fraction total wing weight)	0.
		+	Controls (each panel)	
		+	kind deflection	
$KIND_flap(npanelmax)$	int	+	flap (1 fraction root flap; 2 increment relative root flap; 3 independent)	3
$KIND$ _aileron(npanelmax)	int	+	aileron (1 fraction root aileron; 2 increment relative root aileron; 3 independent)	3
$KIND_{incid}(npanelmax)$	int	+	incidence (1 fraction root incidence; 2 increment relative root incidence; 3 independent)	3
$KIND_{flaperon}(npanelmax)$	int	+	kind flaperon deflection (1 fraction flap; 2 increment relative flap; 3 independent)	1

		+	flap δ_{Fp}	
$INPUT_flap(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_flap(ncontmax,nstatemax,n)$	panelma	()		
	real	+	control matrix	
nVflap(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flap(nvelmax,npanelmax)	real	+	values	
Vflap(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	
		+	flaperon δ_{fp}	
${\sf INPUT_flaperon(npanelmax)}$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{flaperon}(ncontmax,nstatem)$	nax,npane	lmax)		
	real	+	control matrix	
nVflaperon(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
flaperon(nvelmax, npanelmax)				
	real	+	values	
Vflaperon(nvelmax,npanelmax	()			
	real	+	speeds (CAS or TAS)	
		+	aileron δ_{ap}	
$INPUT_{aileron}(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{a}ileron(ncontmax,nstatemax)$	x,npanelr	max)		
	real	+	control matrix	
nVaileron(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
aileron(nvelmax,npanelmax)	real	+	values	
Vaileron(nvelmax,npanelmax)				
	real	+	speeds (CAS or TAS)	
		+	incidence i_p	
$INPUT_incid(npanelmax)$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{i}ncid(ncontmax,nstatemax,$	npanelma	ax)		
	real	+	control matrix	
nVincid(npanelmax)	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax,npanelmax)	real	+	values	
Vincid(nvelmax,npanelmax)	real	+	speeds (CAS or TAS)	

Structure: Wing 209

> aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

```
Trim Target
                                                wing lift
                                                    number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVlift
                               int
Klift(nvelmax)
                               real
                                                    speeds (CAS or TAS)
Vlift(nvelmax)
                               real
```

target definition determined by Aircraft%trim quant Klift can be fraction total aircraft lift, lift, or C_L

Aerodynamics model (0 none, 1 standard) incidence angle i for helicopter nominal drag (deg; 0 for not tilt)

1

0.

real **AWing AWing** standard model

int

MODEL aero

Idrag

Derived drag

wing cruise drag, area $(D/q)_{\rm wing}$ DoQC wing real wing helicopter drag, area $(D/q)_{\rm wing}$ DoQH wing real wing vertical drag, area $(D/q)_{\text{wing}}$ DoQV wing real wing-body interference drag, area $(D/q)_{wb}$ DoQ wb real

total wetted area S_{wet} Swet real

Structure: Wing

		+	Weight	
Weight	Weight		weight statement (component)	
		+	wing group	
$MODEL_{weight}$	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWprim	real	+	wing primary structure	0.0
dWext	real	+	wing extension	0.0
dWfair	real	+	fairing	0.0
dWfit	real	+	fittings	0.0
dWflap	real	+	flaps and control surfaces	0.0
dWwfold	real	+	wing fold	0.0
dWefold	real	+	wing extension fold	0.0
WWing	WWing	g	NDARC model (except tiltrotor)	
WWingTR	WWing	gΤR	NDARC tiltrotor model	
		+	tiltrotor model	
xWtip	real	+	increment for weight on wing tips	0.0
Wwing_total	real		wing weight	
Wwing_ext	real		wing extension weight	
Wwing_kit	real		wing kit weight	
Wtip_total	real		weight on wing tips	
		+	Technology Factors	
TECH_prim	real	+	wing primary structure (torque box) weight χ_{prim}	1.0
TECH_ext	real	+	wing extension weight $\chi_{ m ext}$	1.0
TECH_fair	real	+	fairing weight $\chi_{ m fair}$	1.0
TECH_fit	real	+	fittings weight $\chi_{ m fit}$	1.0
$TECH_flap$	real	+	flaps and control surfaces weight χ_{flap}	1.0
TECH_wfold	real	+	wing fold weight $\chi_{ m fold}$	1.0
TECH_efold	real	+	wing extension fold weight $\chi_{ m efold}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

tiltrotor model requires weight on wing tips: both sides; calculated as sum of rotor group, engine section or nacelle group, air induction group,

Structure: Wing

engine system, drive system (less drive shaft), rotary wing and conversion flight controls, hydraulic group, trapped fluids, wing tip extensions xWtip adjusts Wtip_total, without changing weight statements negative increment required when engine and transmission not at tip location with rotor

Chapter 54

Structure: AWing

Variable	Type		Description	Default
_		+	Wing Aerodynamics, Standard Model	_
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
CLmax	real	+	maximum lift coefficient $C_{L{ m max}}$	1.5
SET_compress	int	+	compressibility correction (0 none, 1 lift, 2 drag, 3 both)	0
		+	lift	
SET_lift	int	+	specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$)	2
dCLda	real	+	lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad)	5.73
Tind	real	+	lift curve slope non-elliptical loading correction $ au$	0.25
Eind	real	+	Oswald or span efficiency $e\left(C_{Di}=(C_L-C_{L0})^2/(\pi eAR)\right)$	0.8
CL_Dmin	real	+	lift coefficient for minimum induced drag C_{L0}	0.0
dCLda3D	real		incompressible 3D lift curve slope $C_{L\alpha}$ (derived)	
fDind	real		$1/(\pi eAR)$	
AoA_max	real		$lpha_{ m max} = C_{L{ m max}}/(dC_L/dlpha_{3D})$ (deg)	
eta0	real	+	control effectiveness factor $\eta_0, \eta_0 - \eta_1 \delta $	0.85
eta1	real	+	control effectiveness factor $\eta_1, \eta_0 - \eta_1 \delta $	0.43
Mdiv	real	+	lift-divergence Mach number $M_{ m div}$	0.75
		+	pitch moment	
CMac	real	+	pitch moment coefficient about aerdynamic center C_{Mac}	0.
		+	Wing Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wing area, $D/q = SC_D$)	0.012
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D ; 3 airfoil c_{d90})	2
DoQV	real	+		
CDV	real	+		2.

Structure: AWing 213

cd90 fd90 CDcc Mcc0 Mcc1	real real real real real	+ + + +	airfoil drag coefficient c_{d90} (-90 deg) airfoil drag coefficient flap effectiveness factor f_{d90} compressibility drag increment C_{Dcc} at M_{cc} critical Mach number constant M_{cc0} critical Mach number constant M_{cc1}	1.4 2.5 0.0011 0.74 0.31
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	<u> </u>
MODEL_drag	int	+ +	drag variation with angle of attack model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for wing minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
MODEL_sep	int	+	separated flow model (0 none, 1 general, 2 quadratic, 3 cubic) $\Delta C_D = C_{D0}K_s(\alpha_e - \alpha_s)^{X_s}$	3
AoA_sep	real	+	angle of attack for separation α_s (deg)	10.
Ksep	real	+	drag increment K_s	0.
Xsep	real	+	drag increment X_s	2.
Xd	real		drag exponent X_d (derived)	
Xs	real		drag exponent X_s (derived)	
		+	transition from forward flight drag to vertical drag	
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.
			Conventionally the Oswald efficiency e represents the wing parasite drag variation with lift, as well as the induced of C_{Dp} varies with angle-of-attack, then e is just the span efficiency factor for the induced power (and C_{L0} should zero).	
		+	wing-body interference drag	
SET_wb	int	+	specification (1 fixed, D/q 2 scaled, C_D)	1
DoQ_wb	real	+	area $(D/q)_{wb}$	0.
CD_wb	real	+	coefficient C_{Dwb} (based on wing area, $D/q = SC_D$)	0.
_				

Structure: AWing

		+	Interference velocity	
Etail(ntailmax)	real	+	angle of attack change at tail, $E=d\epsilon/d\alpha$ (rad/rad)	0.
$Kint_wing(nwingmax)$	real	+	interference factor K_{int} at other wings (0. for no interference)	0.
		+	interference power factor K_{int} at rotors (0. for no interference)	
Kintn_rotor(nrotormax)	real	+	normal (helicopter)	0.
$Kintp_rotor(nrotormax)$	real	+	inplane (propeller)	0.

for tandem wings, typically

Kint_wing(aftwing)=2. for front-on-aft interference

Kint_wing(frontwing)=0. for aft-on-front interference

for biplane wings, typically Kint_wing(otherwing)=0.7

with mutual interference (as for biplane), require trim or other iteration for convergence

interference power: inplane (propeller) factor Kintp_rotor negative for favorable

Chapter 55

Structure: WWing

Variable	Type		Description	Default
		+	Wing Group, NDARC Weight Model	
MODEL_wing	int	+	model (1 area, 2 parametric, 3 tiltrotor, 4 other)	2
MODEL_other	int	+	model (1 Boeing, 2 GARTEUR, Torenbeek (3 light, 4 transport), Raymer (5 transport, 6 general aviation))	
fLift	real	+	lift factor	1.0
bFold	real	+	parametric method: fraction wing span that folds b_{fold} (0 to 1)	0.0
wfus	real	+	Boeing: maximum fuselage width (fraction wing span)	
Vdive	real	+	Boeing or Raymer: design dive speed $V_{\rm dive}$ (knots)	200.
rflaplift	real	+	GARTEUR: ratio maximum lift with and without flaps	
		+	area method	
Uprim	real	+	weight per area U_{prim} , wing primary structure (lb/ft ² or kg/m ²)	5.
Uext	real	+	weight per area $U_{\rm ext}$, wing extension (lb/ft ² or kg/m ²)	3.
		+	weight factors (fraction total wing weight)	
fWfair	real	+	fairing $f_{ m fair}$	0.10
fWfit	real	+	fittings $f_{ m fit}$	0.12
fWflap	real	+	flaps and control surfaces $f_{ m flap}$	0.10
fWfold	real	+	wing fold $f_{ m fold}$	0.0
fWefold	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.0
		+	Custom Weight Model	
$WtParam_wing(8)$	real	+	parameters	0.

Chapter 56

Structure: WWingTR

Variable	Type		Description	Default
		+	Wing Group, NDARC Tiltrotor Weight Model	
		+	jump takeoff condition	
CTs_jump	real	+	rotor maximum blade loading C_T/σ	0.20
n_jump	real	+	load factor n_{jump} at SDGW	2.0
Vtip_jump	real	+	rotor tip speed (0. to use hover $V_{\rm tip}$)	750.0
thickTR	real	+	wing airfoil thickness-to-chord ratio $ au_w$	0.23
		+	width of wing structural attachments to body	
SET_Attach	int	+	definition (0 input wAttach, 1 fraction fuselage width, 2 fraction wing span)	1
fAttach	real	+	fraction width $w_{ m attach}/w_{ m fus}$	1.
wAttach	real	+	width $w_{\rm attach}$ (ft or m)	0.
fRG_pylon	real	+	pylon radius of gyration $r_{\rm pylon}/R$ (fraction rotor radius)	0.30
		+	wing mode frequencies (per rev, fraction rotor speed)	
freq_beam	real	+	beam bending frequency ω_B	0.5
freq_chord	real	+		0.8
freq_tors	real	+	torsion frequency ω_T	0.9
SET_{refrpm}	int	+	reference rotor speed (0 from input Vtip_freq, 1 hover $V_{\rm tip}$, 2 cruise $V_{\rm tip}$)	0
Vtip_freq	real	+	rotor tip speed	600.
$MODEL_form$	int	+	form factors (1 calculate, 2 input)	1
form_beam	real	+	torque box beam bending F_B	0.6048
form_chord	real	+	torque box chord bending F_C	0.4874
form_tors	real	+	torque box torsion F_T	1.6384
form_spar	real	+	spar caps vertical/horizontal bending F_{VH}	0.5018
eff_spar	real	+	spar structural efficiency e_{sp}	0.8
eff_box	real	+	torque box structural efficiency e_{tb}	0.8
		+	tapered spar cap correction factors	
C_t	real	+	weight correction C_t (equivalent stiffness)	0.75
C_j	real	+	weight correction C_j (equivalent strength)	0.50
 C_m	real	+	strength correction C_m (equivalent stiffness)	1.5

Structure: WWingTR 217

		+	material (lb/in ² , in/in, lb/in ³ ; or N/m ² , m/m, kg/m ³)	
E_spar	real	+	spar modulus E_{sp}	10.E6
E_box	real	+	torque box modulus E_{tb}	10.E6
G_box	real	+	torque box shear modulus G_{tb}	4.0E6
$StrainU_spar$	real	+	spar ultimate strain allowable ϵ_U	0.01
$StrainU_box$	real	+	torque box ultimate strain allowable ϵ_U	0.01
density_spar	real	+	density spar cap $ ho_{sp}$	0.06
density_box	real	+	density torque box ρ_{tb}	0.06
		+	weight per area (lb/ft ² or kg/m ²)	
Ufair	real	+	fairing $U_{ m fair}$	2.
Uflap	real	+	flaps and control surfaces U_{flap}	3.
UextTR	real	+	wing extension $U_{ m ext}$	3.
		+	weight factor	
fWfitTR	real	+	fittings $f_{\rm fit}$ (fraction maximum thrust of one rotor)	0.01
fWfoldTR	real	+	wing fold f_{fold} (fraction total wing weight excluding fold)	0.0
fWefoldTR	real	+	wing extension fold $f_{ m efold}$ (fraction wing extension weight)	0.0
			jump takeoff: hover $V_{ m tip}$ obtained from RotorOnWing(1) rotor	
			wing frequencies: reference rotor rotation speed from rotor $V_{ m tip}$ and radius	
			from RotorOnWing(1) rotor; hover tip speed Vtip_ref(1), cruise Vtip_cruise	

+ Custom Weight Model

WtParam_wingtr(8) real + parameters 0.

SET_Attach: attachment width used for both torsion stiffness and fairing area

thickTR only used for tiltrotor wing weight

Chapter 57

Variable	Type		Description	Default
		+	Empennage	
title	c*100	+	title	
notes	c*1000	+	notes	
KIND_tail	int	+	kind (1 horizontal tail, 2 vertical tail, 3 V-tail horizontal, 4 V-tail vertical)	1
isHortail	int		horizontal tail (0 vertical)	
isVtail	int		V-tail (0 not)	
kTail	int		tail number	
		+	Geometry	
SET_tail	c*16	+	specification	'vol $+$ aspect $'$
area	real	+	area S	
span	real	+	span b	
chord	real	+	$\operatorname{chord} c$	
AspectRatio	real	+	aspect ratio AR	
TailVol	real	+	tail volume V	
KIND_TailVol	int	+	tail volume reference (1 wing, 2 rotor)	2
TailVolRef	int	+	wing or rotor number for tail volume	1
otherVtail	int	+	other V-tail number	

V-tail: modeled as pair of horizontal and vertical tails (identified by otherVtail) separately sized, aerodynamic loads for each; dihedral calculated, cant set to zero weight only for second tail, based on V-tail area and aspect ratio

		+	Geometry (for graphics and weights)	
taper	real	+	taper ratio	1.0
sweep	real	+	sweep (+ aft, deg)	0.
dihedral	real	+	dihedral (deg)	0.
thick	real	+	thickness ratio	.12
			Derived geometry	
iSet_tail_area	int		area (SET_tail_area, vol)	
iSet_tail_len	int		length (SET_tail_span, AR, chord)	
Length_tail	real		tail length ℓ	
rArea_control	real		control surface area/tail area	
_ Ktef_cont(4)	real		trailing edge flap factors (L_f, X_f, M_f, D_f)	
CBF(3,3)	real		tail axes relative airframe, C^{BF}	
areaVtail	real		V-tail area S_V	
spanVtail	real		V-tail span b_V	
AspectRatioVtail	real		V-tail aspect ratio	
		+	Geometry	
loc_tail	Locatio	n +	aerodynamic center location	
cant	real	+	cant angle ϕ (deg)	0.0
fchord_cont	real	+	control surface chord c_f/c (fraction tail chord)	0.25
fspan_cont	real	+	control surface span b_f/b (fraction tail span)	1.0
		+	Controls	
		+	elevator δ_e or rudder δ_r	
INPUT_cont	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_cont(ncontmax,nstatemax)	real	+	control matrix	
nVcont	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
cont(nvelmax)	real	+	values	
Vcont(nvelmax)	real	+	speeds (CAS or TAS)	

		+	incidence i	
INPUT incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_incid(ncontmax,nstatemax)			, , , , , , , , , , , , , , , , , , ,	
_ ,	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
			horizontal tail cant angle: + to left (vertical tail for cant = 90) vertical tail cant angle: + to right (horizontal tail for cant = 90)	
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state	
		+	Aerodynamics	
MODEL_aero	int	+	model (0 none, 1 standard)	1
ATail	ATail		standard model	
			Derived drag	
DoQ_tail	real		tail drag, area $(D/q)_{\rm tail}$	
DoQV_tail	real		tail vertical drag, area $(D/q)_{V ext{tail}}$	
Swet	real		total wetted area	
		+	Weight	
Weight	Weight		weight statement (component)	
		+	tail (empennage group)	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
			* 1 * *	

0.0

0.0

dWtail

dWfold

real

real

+

+

+

weight increment

basic

fold

WTail WTail NDARC model tail weight $Wtail_total$ real

Technology Factors

 $TECH_{tail}$ real + tail weight χ_{ht} or χ_{vt}

1.0 $\mathsf{TECH_tfold}$ fold weight χ_{fold} 1.0 real +

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 58

Variable	Type		Description	Default
		+	Tail Aerodynamics, Standard Model	
AoA_zl	real	+	zero lift angle of attack α_{zl} (deg)	0.
CLmax	real	+	maximum lift coefficient $C_{L{ m max}}$	1.
SET_compress	int	+	compressibility correction (0 none, 1 lift, 2 drag, 3 both)	0
		+	lift	
SET_lift	int	+	specification (2 2D $dC_L/d\alpha$; 3 3D $dC_L/d\alpha$)	2
dCLda	real	+	lift curve slope $C_{L\alpha} = dC_L/d\alpha$ (per rad)	5.73
Tind	real	+	lift curve slope non-elliptical loading correction $ au$	0.25
Eind	real	+	Oswald efficiency $e\left(C_{Di}=(C_L-C_{L0})^2/(\pi eAR)\right)$	0.8
CL_Dmin	real	+	lift coefficient for minimum induced drag C_{L0}	0.0
dCLda3D	real		incompressible 3D lift curve slope $C_{L\alpha}$ (derived)	
fDind	real		$1/(\pi eAR)$	
AoA_max	real		$\alpha_{\rm max} = C_{L{ m max}}/(dC_L/d\alpha_{3D})$ (deg)	
eta0	real	+	control effectiveness factor η_0 , $\eta_0 - \eta_1 \delta $	0.85
eta1	real	+	control effectiveness factor $\eta_1, \eta_0 - \eta_1 \delta $	0.43
Mdiv	real	+	lift-divergence Mach number $M_{ m div}$	0.75
		+	Tail Drag, Standard Model	
		+		
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	(7)	
CD	real	+	coefficient C_{D0} (based on tail area, $D/q = SC_D$)	0.011
		+	vertical drag	
SET_Vdrag	int	+		2
DoQV	real	+	(7)	
CDV	real	+		1.

CDcc Mcc0 Mcc1	real real real	+ + +	compressibility drag increment C_{Dcc} at M_{cc} critical Mach number constant M_{cc0} critical Mach number constant M_{cc1}	0.0011 0.74 0.31
			SET_xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	
MODEL duam	int	+	drag variation with angle of attack	2
MODEL_drag		+	model (0 none, 1 general, 2 quadratic) $\Delta C_D = C_{D0} K_d \alpha_e ^{X_d}$	2
AoA_Dmin	real	+	angle of attack for tail minimum drag $\alpha_{D \min}$ (deg)	0.
Kdrag	real	+	drag increment K_d	0.
Xdrag	real	+	drag increment X_d	2.
Xd	real		exponent X_d (derived)	
		+	transition from forward flight drag to vertical drag	
AoA_tran	real	+	angle of attack for transition α_t (deg)	25.

Chapter 59

Variable	Type		Description	Default
		+	Tail, NDARC Weight Model	
MODEL_tail	int	+	model (1 horizontal tail, 2 vertical tail, 3 based on KIND_tail)	3
		+	horizontal tail	
$MODEL_Htail$	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
$MODEL_Hother$	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
KIND_Htail	int	+	Torenbeek or Raymer: kind (1 fixed, 2 variable incidence)	1
wfus	real	+	Raymer: fuselage width at horizontal tail w_f/b_{ht} (fraction span)	0.2
		+	vertical tail	
$MODEL_Vtail$	int	+	model (1 helicopter or compound, 2 tiltrotor or tiltwing, 3 area, 4 other)	1
$MODEL_Vother$	int	+	model (1 GARTEUR, Torenbeek (2 low speed, 3 transport), Raymer (4 transport, 5 general aviation))	
place_AntiQ	int	+	AFDD: antitorque placement (0 none, 1 on tail boom, 2 on vertical tail)	1
KIND_Vtail	int	+	Torenbeek or Raymer: kind (1 conventional, 2 T-tail)	1
fTtail	real	+	Torenbeek: T-tail factor $(S_{ht}h_{ht})/(S_{vt}b_{vt})$	8.0
Vdive	real	+	design dive speed $V_{ m dive}$ (knots)	200.
		+	area method	
Utail	real	+	weight per area U_{tail} (lb/ft ² or kg/m ²)	3.
fTfold	real	+	fold weight factor f_{fold} (fraction total tail weight excluding fold)	0.0
			weight models can use taper ratio, sweep, and thickness ratio	
			dive speed: $V_{\rm max}$ = SLS max speed, Vdive = $1.25V_{\rm max}$	

+ Custom Weight Model

WtParam_tail(8) real + parameters 0.

Structure: FuelTank

Variable	Type		Description	Default
		+	Fuel Tank System	
title	c*100	+	title	
notes	c*1000	+	notes	
kTank	int		tank number	
		+	Configuration	
SET_burn	int	+	fuel quantity stored and used (1 weight, 2 energy)	1
		+	fuel weight properties	
fuel_density	real	+	fuel weight per volume $ ho_{ m fuel}$ (lb/gallon or kg/liter)	6.5
specific_energy	real	+	6, T	42.8
fFuelWing(nwingmax)	real	+	fraction wing torque box filled by fuel tanks	1.0
		+	fuel tank sizing	
Wfuel_cap	real	+	fuel capacity $W_{\text{fuel-cap}}$ (weight, lb or kg)	
Efuel_cap	real	+	fuel capacity $E_{\rm fuel-cap}$ (energy, MJ)	
fFuel_cap	real	+	ratio capacity to mission fuel $f_{\rm fuel-cap}$	1.0
dFuel_cap	real	+	capacity increment $d_{\text{fuel-cap}}$	0.0
IDENT_battery	c*16	+	battery identification	, ,

```
store and use weight: energy calculated from weight
use Wfuel_cap, Waux_cap, fuel_density, specific_energy, fFuelWing; fWtank, fWauxtank, other weight parameters
store and use energy: fuel weight zero
use Efuel_cap, Eaux_cap, IDENT_battery; eWtank, eWauxtank, energy_density, other weight parameters
fuel tank sizing: usable fuel capacity Wfuel_cap (weight) or Efuel_cap (energy)

SET_tank='input': input Wfuel_cap or Efuel_cap

SET_tank='miss': calculate from mission fuel used

Wfuel_cap or Efuel_cap = max(fFuel_cap*(maximum mission fuel), (maximum mission fuel)+(reserve fuel))
```

Structure: FuelTank 226

SET_tank='miss+power' = calculate from mission fuel used and mission battery discharge power SET_tank='f(miss)' = function of mission fuel used

Wfuel_cap or Efuel_cap = dFuel_cap + fFuel_cap*((maximum mission fuel)+(reserve fuel))

battery identification: energy storage only, match ident of BatteryModel

place	int	+	Geometry (for graphics) placement (1 internal, 2 sponson, 3 wing, 4 combination)	1
piaco	1110	+	Auxiliary Fuel Tank	-
Mauxtanksize	int	+	number of auxiliary tank sizes (minimum 1, maximum nauxtankmax)	1
Waux_cap(nauxtankmax)	real	+	fuel capacity $W_{\rm aux-cap}$ (weight)	1000.
Eaux_cap(nauxtankmax)	real	+	fuel capacity $E_{\text{aux-cap}}$ (energy)	20000.
fWauxtank(nauxtankmax)	real	+	tank weight f_{auxtank} (fraction auxiliary fuel weight)	0.
eWauxtank(nauxtankmax)	real	+	tank weight $e_{\rm auxtank}$ (MJ/kg)	0.
DoQ_auxtank(nauxtankmax)	real	+	$drag (D/q)_{auxtank}$ (each tank)	
loc_auxtank(nauxtankmax)	Locatio	n +	location	
		+	Equipment power	
MODEL_Peq	int	+	model (0 for none)	0
sfc	real	+	specific fuel consumption	0.0
Peq_0	real	+	power loss $P_{\rm eq0}$, constant	0.0
Peq_d	real	+	power loss $P_{\mathrm{eq}d}$, scale with density	0.0
Peq_t	real	+	power loss $P_{\mathrm{eq}t}$, scale with temperature	0.0
Peq_deice	real	+	deice power loss $P_{\mathrm{eq}i}$	0.0

specific fuel consumption: weight (lb/hp-hr or kg/kW-hr) or energy (MJ/hp-hr or MJ/kW-hr)

Structure: FuelTank 227

			Derived	
Vfuel_cap	real		fuel capacity $V_{\rm fuel-cap}$ (volume)	
Wfuel_wing	real		wing fuel capacity $W_{ m fuel-wing}$	
rWfuel_wing	real		wing fuel capacity (fraction Wfuel_cap)	
ncomp_in_tank	int		number of components in fuel tank system	
kBatteryModel	int		battery identification (BatteryModel, from IDENT_battery)	
specific_power	real		specific power $\pi_{\rm tank} = x_{mbd} e_{\rm tank} / 3.6 (kW/kg)$	
		+	Weight	
Weight	Weight		weight statement (component, not including auxiliary tanks)	
		+	fuel system (propulsion group)	
MODEL_weight	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWtank	real	+	tanks and support; battery management system	0.
dWplumb	real	+	plumbing; power distribution (wiring)	0.
WTank	WTank		NDARC model	
Neng	int		number of main engines	
fuelflow	real		total fuel flow F at DGW takeoff conditions (lb/hr or kg/hr)	
		+	Technology Factors	
TECH_tank	real	+	fuel tank weight χ_{tank}	1.0
$TECH_plumb$	real	+	plumbing weight $\chi_{ m plumb}$	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

Chapter 61

Structure: WTank

Variable	Type		Description	Default
		+	Fuel System, NDARC Weight Model	
		+	weight storage	
		+	fuel tank	
$MODEL_tank$	int	+	model (1 fraction, 2 parametric, Torenbeek (3 integral, 4 generic), Raymer (5 transport, 6 general aviation	2))
ntank_int	int	+	number of internal tanks N_{int}	4
fWtank	real	+	tank weight $f_{\rm tank}$ (fraction fuel capacity weight)	0.09
Ktoler	real	+	parametric: ballistic tolerance factor f_{bt} (1.0 to 2.5)	2.5
KIND_crash	int	+	parametric: survivability (1 baseline, 2 UTTAS/AAH level of survivability)	2
Ktank	real	+	Torenbeek (generic): factor $K_{\rm tank}$	3.2
Xtank	real	+	Torenbeek (generic): exponent X_{tank}	0.727
fint	real	+	Raymer: integral tank capacity (fraction total)	1.0
fprot	real	+	Raymer: protected tank capacity (fraction total)	1.0
		+	plumbing	
$MODEL_plumb$	int	+	model (1 fraction, 2 parametric)	2
nplumb	int	+	total number of fuel tanks (internal and auxiliary) for plumbing $N_{ m plumb}$	4
K0_plumb	real	+	weight increment $K_{0\text{plumb}}$ (lb)	150.
K1_plumb	real	+	weight factor $K_{1\text{plumb}}$ (lb)	2.0
fWplumb	real	+	plumbing weight f_{plumb} (fraction total fuel system weight)	0.4
		+	energy storage	
eWtank	real	+	tank weight $e_{\rm tank}$ (MJ/kg)	
energy_density	real	+	tank volume density ρ_{tank} (MJ/liter)	
fBMS	real	+	battery management system (fraction basic tank weight)	0.2
fwire	real	+	power distribution (wiring) weight (fraction basic tank weight)	0.2

Structure: WTank

MODEL_tank: fraction method uses fWtank; parametric method uses ntank_int, Ktoler, KIND_crash

K1_plumb is a crashworthiness and survivability factor; typically K1_plumb = 2.

K0_plumb is the sum of weights for auxiliary fuel, in-flight refueling, pressure refueling, inerting system, etc.; typically K0_plumb = 50 to 250 lb

+ Custom Weight Model

WtParam_tank(8) real + parameters 0.

Variable	Type	Description	Default
		+ Propulsion Group	
title	c*100	+ title	
notes	c*1000	0 + notes	
		propulsion group is set of components and engine groups, connected by drive system	
		components (rotors) define power required, engine groups define power available	
		drive system defines ratio of rotational speeds of components (relative primary rotor speed)	
kPropulsion	int	propulsion group number	
		Specification	
kRotor_prim	int	primary rotor	
$rotor_in_group(nrotormax)$	int	rotors in group (0 no, 1 main rotor, 2 other)	
nRotor	int	number of rotors in group	
nRotor_main	int	number of main rotors	
kEngine_prim	int	primary engine group	
<pre>engine_in_group(nengmax)</pre>	int	engine groups in propulsion group (0 no, 1 only produce power, 2 can consume power)	
nEngineGroup	int	number of engine groups	
firstEngineGroup	int	first engine group	
can Consume Power	int	engine group generator or compressor, can consume shaft power (0 only produce power)	
		+ Drive system	
nGear	int	+ number of states (maximum ngearmax)	1
STATE_gear_var	int	+ drive system state for variable speed transmisson (0 for none)	0

drive system branches: one primary rotor per propulsion group (specify $V_{\rm tip}$), others dependent (specify gear ratio) specify primary engine group only if no rotors in propulsion group drive system state: identifies gear ratio set for multiple speed transmissions state=0 to use conversion schedule, state=n (1 to nGear) to use gear ratio #n variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of dependent rotors and engines

		+	Transmission losses	
MODEL_Xloss	int	+	model (1 fraction component power required; 2 with function drive shaft limit)	2
fPloss_xmsn	real	+	gear box loss ℓ_{xmsn} (fraction total component power required)	0.04
Ploss_windage	real	+	power loss due to windage $P_{ m windage}$	0.0
		+	Accessory losses	
Pacc_0	real	+	power loss $P_{ m acc0}$, constant	0.0
Pacc_d	real	+	power loss $P_{ m acc}$, scale with density	0.0
Pacc_n	real	+	power loss $P_{\rm accn}$, scale with density and rpm	0.0
Pacc_deice	real	+	deice power loss $P_{\mathrm{acc}i}$	0.0
fPacc_ECU	real	+	ECU (etc.) power loss $\ell_{\rm acc}$ (fraction component+transmission power)	0.0
fPacc_IRfan	real	+	IRS fan loss ℓ_{IRfan} (fraction total engine power)	0.0
		+	Geometry	
SET_length	int	+	drive shaft length (1 input; 2 calculated)	2
Length_ds	real	+	length ℓ_{DS}	
fLength_ds	real	+	factor	0.9
			SET_length: input (use Length_ds) or calculated (from fLength_ds)	

+	Drive system torque	e limit
---	---------------------	---------

Plimit_ds	real	+	drive system power limit $P_{DS m limit}$	
fPlimit ds	real	+	drive system power limit factor	1.0

		+	Drive system ratings	
nrate_ds	int	+	number of ratings (maximum nratemax)	1
rating_ds(nratemax)	c*12	+	drive system rating designation	, ,
frating_ds(nratemax)	real	+	torque limit factor	1.0
		+	schedule	
Vdrive_hover	real	+	maximum speed for hover and helicopter mode (CAS or TAS)	
Vdrive_cruise	real	+	minimum speed for cruise (CAS or TAS)	
rating_ds_hover	c*12	+	rating for hover and helicopter mode ($V \leq V_{\text{drive-hover}}$)	, ,
rating_ds_conv	c*12	+	rating for conversion mode ($V_{\text{drive-hover}} < V < V_{\text{drive-cruise}}$)	, ,
rating_ds_cruise	c*12	+	rating for cruise mode ($V \ge V_{\text{drive-cruise}}$)	, ,
			Derived drive system limit	
Qlimit_ds	real		drive system torque limit ($P_{DS ext{limit}}$ at primary rotor reference speed)	
arating_ds(nratemax)	c*12		drive system rating designation	
xrating_ds(nratemax)	real		torque limit factor	
krate_ds_hover	int		rating number for hover and helicopter mode	
krate_ds_conv	int		rating number for conversion mode	
krate_ds_cruise	int		rating number for cruise mode	
			drive system torque limits: SET_limit_ds = input (use Plimit_xx) or calculate (from fPlimit_xx) $ \begin{array}{l} \text{SET_limit_ds='input': Plimit_ds input} \\ \text{SET_limit_ds='ratio': from takeoff power, fPlimit_ds} \sum (N_{\rm eng}P_{\rm eng}) \\ \text{SET_limit_ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN_xmsn)} \\ \text{fPlimit_ds}(\Omega_{\rm ref}/\Omega_{\rm prim}) \sum (N_{\rm eng}P_{av}) \\ \text{SET_limit_ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN_xmsn)} \\ \text{fPlimit_ds}(\Omega_{\rm ref}/\Omega_{\rm prim}) \sum (N_{\rm eng}P_{req}) \\ \text{engine shaft: options for SET_limit_ds$\neq'input'} \\ \text{SET_limit_es=0: Plimit_es} \end{array} $	
			SET_limit_es=1: fPlimit_es \times (engine group $P_{\rm eng}$ or P_{av} or P_{req} , depending on SET_limit_ds) SET_limit_es=2: fPlimit_es $\times P_{DS {\rm limit}}(P_{{\rm eng}EG}/P_{{\rm eng}PG})$ drive system power limit: corresponds to power of all engines of propulsion group (all engine groups)	
			can be used for trim (trim_quant='Q margin') used for drive system weight, tail rotor weight, transmission losses	

limits propulsion group P_{av} (if FltState%SET_Plimit=on)

```
engine shaft power limit: corresponds to all engines of engine group (nEngine \times Peng) limits engine group P_{av} (if FltState%SET_Plimit=on) rotor shaft power limit: corresponds to one rotor all limits can be used for max effort in flight state (max_quant='Q margin') can be used for max gross weight in flight condition or mission (SET_GW='maxQ' or 'maxPQ') always check and print whether exceed torque limit the engine model gives the power available, accounting for installation losses and mechanical limits then the power available is reduced by the factor FltState%fPower next torque limits are applied (unless FltState%SET_Plimit=off), first engine shaft limit and then drive system limit drive system ratings: blank to use engine ratings of first engine group limit at flight state is rxP_{\rm limit}, where r is the rotor speed ratio and x is the rating factor frating_ds if nrate_ds\leq 1, drive system rating not used schedule used if FltAircraft%rating_ds='speed'
```

```
Control
                                               rotational speed increment \Delta N, primary rotor or primary engine (rpm)
                                                  connection to aircraft controls (0 none, 1 input T matrix)
INPUT DN
                              int
                                                                                                                                                                    0
                                                  control matrix
T DN(ncontmax,nstatemax)
                              real
nVDN
                                                  number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                    0
                              int
DN(nvelmax)
                                                  values
                              real
VDN(nvelmax)
                                                  speeds (CAS or TAS)
                              real
```

aircraft controls connected to individual controls of component, $c=Tc_{AC}+c_0$

for each component control, define matrix T (for each control state) and value c_{0}

flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

		+	Weight	
Weight	Weight		weight statement (component, not including EngineGroup)	
		+	drive system (propulsion group)	
MODEL_DS	int	+	model (0 input, 1 NDARC, 2 custom)	1
		+	weight increment	
dWgb	real	+	gear box	0.
dWrs	real	+	rotor shaft	0.
dWds	real	+	drive shaft	0.
dWrb	real	+	rotor brake	0.
dWcl	real	+	clutch	0.
dWgd	real	+	gas drive	0.
WDrive	WDrive		NDARC model	
STATE_gear_wt	int	+	drive system state for weight	1
kEngineGroup_wt	int	+	EngineGroup for weight	1
Wtip	real		weight on wing tip	
Wgbrs	real		weight gear box and rotor shaft	
		+	Technology Factors	
TECH_gb	real	+	gear box weight χ_{gb}	1.0
TECH_rs	real	+	rotor shaft weight χ_{rs}	1.0
TECH_ds	real	+	drive shaft weight χ_{ds}	1.0
TECH_rb	real	+	rotor brake weight χ_{rb}	1.0
TECH_cl	real	+	clutch weight χ_{cl}	1.0
TECH_gd	real	+	gas drive weight χ_{gd}	1.0

weight model result multiplied by technology factor and increment added:

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

drive system weight = gear box (including rotor shaft) + drive shaft + rotor brake + clutch + gas drive tiltrotor wing weight model requires weight on wing tip (drive system, without rotor shaft)

Chapter 63

Structure: WDrive

Variable	Type		Description	Default
		+	Drive System, NDARC Weight Model	
		+	gear box (including rotor shafts)	
MODEL_gbrs	int	+	model (1 AFDD83, 2 AFDD00, 3 other)	1
$MODEL_other$	int	+	model (1 Boeing, 2 Boeing (alternate), GARTEUR (3 helicopter, 4 tiltrotor), 5 Tishchenko)	
fShaft	real	+	rotor shaft weight f_{rs} (fraction gear box and rotor shaft weight)	0.13
ngearbox	int	+	AFDD83: number of gear boxes N_{qb}	7
fTorque	real	+	AFDD83: second (main or tail) rotor rated torque f_Q (fraction total drive system rated torque)	0.03
nstage	int	+	Boeing: number of stages in main-rotor drive	4
KIND_other	int	+	other: separate tail rotor drive weight increment (0 none)	0
Ktrgb	real	+	tail rotor drive weight increment factor K_{trgb}	1.0
fPower_tr	real	+	tail rotor power (fraction total drive system rated power)	0.15
gear_tr	real	+	tail rotor gear ratio	5.0
		+	drive shaft (AFDD82)	
ndriveshaft	int	+	number of intermediate drive shafts N_{ds} (excluding rotor shafts)	6
fPower	real	+	second (main or tail) rotor rated power f_P (fraction total drive system rated power)	0.15
			fPower = fTorque*(otherrotor RPM)/(mainrotor RPM)	
			typically fTorque=fPower=0.6 for twin main rotors (tandem, coaxial, tiltrotor)	
			for single main rotor and tail rotor, $fTorque = 0.03$, $fPower = 0.15$ (0.18 for 2-bladed teeter)	
			typically $fShaft = 0.13$ (data range 0.06 to 0.20)	

+ Custom Weight Model

WtParam_drive(8) real + parameters 0.

Variable	Type		Description	Default
		+	Engine Group	
title	c*100	+	title	
notes	c*1000	+	notes	
kEngineGroup	int		engine group number	
		+	Description	
MODEL_engine	c*32	+	engine model	'RPTEM'
IDENT_engine	c*16	+	engine identification	'Engine'
IDENT_system2	c*16	+	second system identification	1 1
nEngine	int	+	number of engines $N_{ m eng}$	1
nEngine_main	int	+	number of main engines	1
Peng	real	+	engine power $P_{\rm eng}$ (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12	+	takeoff power rating	'MCP'
rating_idle	c*12	+	idle power rating	'MCP'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
		+	Propulsion Group	
kPropulsion	int	+	group number	1
KIND_xmsn	int	+	drive system branch (1 primary, 0 dependent)	0
INPUT_gear	int	+	gear ratio input (1 from Nspec, 2 gear)	1
gear(ngearmax)	real	+	engine gear ratio $r=\Omega_{\rm spec}/\Omega_{\rm prim}$ (ratio rpm to rpm of primary rotor in propulsion group)	1.0
			Derived	
iMODEL_engine	int		engine model (MODEL_engine_xxx)	
KIND_engine	int		engine model (MODEL_engine_RPTEM, table, recip, comp, motor)	
canConsumePower	int		can consume shaft power (0 only produce power), generator or compressor	
canProducePower	int		can produce shaft power (0 only consume power)	
isConvertReact	int		convertible engine, reaction drive (0 not)	
isConvertJet	int		convertible engine, turbojet/fan (0 not)	

kModel_eng	int	identification (EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel, from IDENT_engine)
kModel_sys2	int	identification (EngineModel, from IDENT_system2)
kBattery	int	battery model, from kFuelTank (0 for none)
nrate	int	number of ratings
rating(nratemax)	c*12	rating designations (lowercase)
krateC	int	MCP rating number
krate_to	int	takeoff power rating number
WOneEng	real	weight one engine $W_{ m one\ eng}$
Nref	real	reference engine speed (at drive state #1)

```
MODEL_engine: engine model 

'RPTEM', 'shaft' = turboshaft engine (RPTEM); IDENT_engine \rightarrow EngineModel; fuel is weight 

'table' = turboshaft engine (table); IDENT_engine \rightarrow EngineTable; fuel is weight 

'recip' = reciprocating engine; IDENT_engine \rightarrow RecipModel; fuel is weight 

'comp' = compressor; IDENT_engine \rightarrow CompressorModel; not use fuel 

'comp+react' = compressor for reaction drive; IDENT_engine \rightarrow CompressorModel; not use fuel 

'motor' = electric motor; IDENT_engine \rightarrow MotorModel; fuel is energy (generated, not burned) 

'motor+gen' = motor + generator (mode B \geq 0 for motor); IDENT_engine \rightarrow MotorModel; fuel is energy 

'motor+cell' = motor + fuel cell; IDENT_engine \rightarrow MotorModel; fuel is weight 

MODEL_engine: convertible engine; only with turboshaft 

'+react' = reaction drive (mode B = 1); IDENT_system2 \rightarrow EngineModel 

'+jet', '+fan' = turbojet/turbofan (mode B = 1); IDENT_system2 \rightarrow EngineModel
```

engine identification: match ident of EngineModel or EngineTable or RecipModel or CompressorModel or MotorModel second system identification: match ident of EngineModel; not use weight number of main engines: for fuel tank weight

for fixed engine: use $P_{\rm eng}=0$. and no size task (or engine power not sized) takeoff power rating: for engine scaling, aircraft power loading, fuel tank weight FltState%rating can be set to 'idle' (rating idle) or 'takeoff' (rating to)

fuel tank system identified for burn must store and use weight (turboshaft, reciprocating, fuel cell) or energy (motor, may have BatteryModel) fuel tank system identified for generation must store and use energy (may have BatteryModel)

drive system branch: primary engine group only designated if no rotors for propulsion group INPUT_gear: calculate gear from Nspec and Vtip_ref of primary rotor of propulsion group, or specify gear ratio variable speed transmission: for drive system state STATE_gear_var, gear ratio factor $f_{\rm gear}$ (control) included when evaluate rotational speed of engine

+ Sizing

SET_power: used if SIZE_perf='engine', to distribute power required among engine groups must size at least first engine group; SET_power and fPsize values not used for first group calculate fPsize for first engine group, must be >0.

FltState%SET_Preq specifies distribution of power required for flight state

Engine model performance parameters (one engine)

```
P0(nratemax)
                                                    power (P_0)
                                 real
SP0(nratemax)
                                 real
                                                    specific power (SP_0)
Pmech(nratemax)
                                                    mechanical limit of power (P_{\text{mech}} or P_{\text{peak}})
                                 real
                                                    specific fuel consumption at MCP (sfc_{0C})
sfc0C
                                 real
                                                    gross jet thrust at MCP (F_{q0C} = ST_{0C}\dot{m}_{0C})
Fg0C
                                 real
                                                    specification engine speed (N_{\rm spec})
Nspec
                                 real
                                                    optimum engine speed at MCP (N_{\text{opt}0C})
Nopt0C
                                 real
                                                    mass flow at MCP (\dot{m}_{0C} = P_{0C}/SP_{0C})
mdot0C
                                 real
                                                    fuel flow at MCP (\dot{w}_{0C} = \text{sfc}_{0C} P_{0C})
wdot0C
                                 real
                                                    specific fuel consumption (sfc_0)
sfc0(nratemax)
                                 real
                                               Engine model performance parameters (one engine), ratio converted to base
                                                    specific fuel consumption at MCP
rsfc0C conv
                                 real
rFg0C conv
                                 real
                                                    gross jet thrust at MCP, jet/fan only
rwdot0C conv
                                                    fuel flow at MCP
                                 real
```

1

reciprocating: only P0, Pmech, Nspec used, and sfc0 motor or generator: only P0, Pmech, Nspec used motor + fuel cell: and mdot0C, wdot0C, sfc0C, with Fg0C=0

```
Drive system torque limit
                                                   engine shaft (0 input, 1 fraction power, 2 fraction drive system limit)
SET limit es
                                 int
                                                   engine shaft power limit P_{ESlimit}
Plimit es
                                 real
fPlimit es
                                 real
                                                   engine shaft power limit factor
                                                                                                                                                                                    1.0
                                               Derived engine shaft limit
                                                   engine shaft torque limit (P_{ES \text{limit}} at engine reference speed)
Qlimit es
                                 real
                                                     drive system torque limits: SET limit ds = input (use Plimit es) or calculated (from fPlimit es)
                                                          SET limit ds='input': Plimit ds input
                                                          SET_limit_ds='ratio': from takeoff power, fPlimit_ds\sum (N_{\rm eng} P_{\rm eng})
                                                          SET limit ds='Pav': from engine power available at transmission sizing conditions and missions (DESIGN xmsn)
                                                                fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{av})
                                                          SET limit ds='Preq': from engine power required at transmission sizing conditions and missions (DESIGN xmsn)
                                                                fPlimit_ds(\Omega_{ref}/\Omega_{prim})\sum(N_{eng}P_{req})
                                                     engine shaft: options for SET limit ds≠'input'
                                                          SET limit es=0: Plimit es
                                                          SET_limit_es=1: fPlimit_es \times (engine group P_{eng} or P_{av} or P_{reg}, depending on SET_limit_ds)
                                                          SET_limit_es=2: fPlimit_es \times P_{DS \text{limit}}(P_{\text{eng}EG}/P_{\text{eng}PG})
                                                     engine shaft power limit: corresponds to all engines of engine group (nEngine × Peng)
                                                          limits engine group P_{av} (if FltState%SET Plimit=on)
                                                          can be used for max effort in flight state (max quant='Q margin')
                                                          can be used for max gross weight in flight condition or mission (SET GW='maxQ' or 'maxPQ')
```

always check and print whether exceed torque limit

		+	Installation	
Kffd	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
eta_d	real	+	engine inlet efficiency η_d (fraction, for δ_M)	0.98
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_inlet	real	+	engine inlet loss ℓ_{in}	0.0
fPloss_ps	real	+	inlet particle separator loss ℓ_{in}	0.0
fPloss_exh	real	+	engine exhaust loss ℓ_{ex} (IRS off)	0.015
		+	auxiliary air momentum drag (IRS off)	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	IR suppressor	
		+	power losses (IRS on)	
$fPloss_exh_IRon$	real	+	engine exhaust loss ℓ_{ex}	0.030
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow $f_{\rm aux}$ (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on engine fuel flow or performance K_{ffd}	1.05
		+	power losses (fraction power available, P_{loss}/P_a)	
fPloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.015
		+	Model	
SET_FN	int	+	net jet force (0 for no force)	1
SET_Daux	int	+	auxiliary air momentum drag (0 for no drag)	1

installation power losses = inlet + particle separator + exhaust (including IRS)
IR suppressor state specified by STATE_IRS in operating condition
motor or generator: only use Kffd; motor + fuel cell: Kffd, fMF_auxair, eta_auxair

	+	Geometry	
loc_engine L	_ocation +	location	
direction c	c*16 +	nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')	'x'
SET_geom is	nt +	position (0 standard, 1 tiltrotor)	0
RotorForEngine is	nt +	rotor number	1
SET_Swet is	nt +	nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled, W_{ES} ; 3 scaled, W_{ES} and W_{qbrs})	2
Swet	eal +	and the word of the state of th	0.0
kSwet	eal +	factor, $k = S_{ m wet}/(w/N_{ m eng})^{2/3}$ (Units_Dscale)	0.8
Snac	eal	nacelle/cowling area $S_{ m nac}$	
Swet_nac r	eal	total wetted area	

SET_geom: calculation override part of location input SET_geom=tiltrotor: calculate lateral position (BL) from RotorForEngine SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are ${\rm ft^2/lb^2/3}$ or ${\rm m^2/kg^2/3}$ $w=W_{ES}$ (engine system) or $W_{ES}+W_{gbrs}/N_{EG}$ (engine system and drive system) nacelle wetted area used for nacelle drag, and for cowling weight engine group nacelle must be consistent with rotor pylon

Derived geometry

iDirection	int	nominal orientation $(1, -1, 2, -2, 3, -3)$
axis_incid	int	axis incidence (± 123)
axis_yaw	int	axis yaw (± 123)
isFixed	int	orientation (1 fixed)
CBF(3,3)	real	engine axes relative airframe, C^{BF} (fixed)
ef0(3)	real	engine direction, e_{f0}
ef(3)	real	engine direction, e_f (fixed)

		+	Controls	
		+	amplitude A (fixed engine group power)	
INPUT_amp	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_amp(ncontmax,nstatemax)$	real	+	control matrix	
nVamp	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
amp(nvelmax)	real	+	values	
Vamp(nvelmax)	real	+	speeds (CAS or TAS)	
		+	$\operatorname{mode} B$	
$INPUT_mode$	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{mode}(ncontmax,nstatemax)$	real	+	control matrix	
nVmode	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
mode(nvelmax)	real	+	values	
Vmode(nvelmax)	real	+	speeds (CAS or TAS)	
		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_{incid}(ncontmax, nstatemax)$				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_yaw(ncontmax,nstatemax)$	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	
		+	gear ratio factor $f_{\rm gear}$ (variable speed transmission only)	
INPUT_fgear	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_fgear(ncontmax, nstatemax)$				
	real	+	control matrix	
nVfgear	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
fgear(nvelmax)	real	+	values	
Vfgear(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

+ Nacelle Drag

real

DoQV nac

model (0 none, 1 standard) MODEL drag int 1 incidence angle i for helicopter nominal drag (deg; 0 for not tilt) 0. Idrag real standard model **DEngSys DEngSys** Derived drag nacelle cruise drag, area $(D/q)_{\rm nac}$ DoQC nac real nacelle helicopter drag, area $(D/q)_{\rm nac}$ DoQH nac real

component drag contributions must be consistent pylon is rotor support, and nacelle is engine support tiltrotor with tilting engines use pylon drag (and no nacelle drag),

nacelle vertical drag, area $(D/q)_{\text{nac}}$

since pylon connected to rotor shaft axes tiltrotor with nontilting engines, use nacelle drag as well

Weight

Weight	Weight		weight statement (component, including engine weight)	
		+	engine weight	
MODEL_weight	int	+	model (0 input, 1 RPTEM or NASA, 2 custom)	1
dWEng	real	+	weight increment (all engines)	0.0

		+	engine system (except engine), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1
MODEL_nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1
		+	weight increment	
dWexh	real	+	exhaust	0.0
dWacc	real	+	accessories	0.0
dWsupt	real	+	engine support	0.0
dWcowl	real	+	engine cowling	0.0
dWpylon	real	+	pylon support	0.0
dWair	real	+	air induction	0.0
WEngSys	WEngs	Sys	NDARC model	
Weng_total	real		engine weight	
WES	real		engine system weight W_{ES} (engine, exhaust, accessories)	
Wtip	real		weight on wing tip	
		+	Technology Factors	
TECH_eng	real	+	engine weight $\chi_{ m eng}$	1.0
TECH_cowl	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
TECH_pylon	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_supt	real	+	engine support structure weight $\chi_{ m supt}$	1.0
TECH_air	real	+	air induction system weight $\chi_{ m airind}$	1.0
TECH_exh	real	+	exhaust system weight χ_{exh}	1.0
TECH_acc	real	+	engine accessories weight $\chi_{ m acc}$	1.0

```
weight model result multiplied by technology factor and increment added:
```

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for rotor pylon wetted area, engine nacelle wetted area, rotor moving weight)

nacelle weight = support + cowl + pylon

engine weight parameters in EngineModel

tiltrotor wing weight model requires weight on wing tip:

engine section or nacelle group, air induction group, engine system

Chapter 65

Structure: DEngSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+		
		+	transition from forward flight drag to vertical drag	
Xdrag	real	+	exponent X_d	2.0
			SET xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	

Chapter 66

Structure: WEngSys

Variable	Type		Description	Default
		+	Engine Section or Nacelle Group, NDARC Weight Model	
MODEL_nacelle	int	+	model (1 parametric, 2 scale with power, 3 Boeing, 4 Raymer (transport))	1
fWpylon	real	+	pylon support structure weight f_{pylon} (fraction maximum takeoff weight)	0.0
		+	nacelle group weight, W vs P_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent $X_{ m nac}$	
n_clf	real	+	Boeing: crash load factor	20.
fWidth_nac	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
$MODEL_{airind}$	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight f_{airind} (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
		+	exhaust system weight, per engine, including IR suppressor; W_{exh} vs P_{0C}	
Kwt0_exh	real	+	$K_{0 m exh}$	0.0
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
		+	engine accessories	
MODEL_lub	int	+	lubrication system weight (1 in engine weight, 2 in accessory weight)	1
			typically fWair = 0.3 (data range 0.1 to 0.6)	
			engine support and pylon support weights must be consistent with rotor support structure weight	

+ Custom Weight Model

WtParam_engsys(8) real + parameters 0.

Variable	Type		Description	Default
		+	Jet Group	
title	c*100	+	title	
notes	c*1000	+	notes	
kJetGroup	int		jet group number	
		+	Description	
MODEL_jet	c*32	+	jet model	'RPJEM'
IDENT_jet	c*16	+	jet identification	'Jet'
IDENT_system2	c*16	+	second system identification	, ,
nJet	int	+	number of jets $N_{ m jet}$	1
Tjet	real	+	jet thrust T_{jet} (SLS static at takeoff rating, 0. for T0_ref(rating_to))	0.
rating_to	c*12	+	takeoff thrust rating	'MCT'
rating_idle	c*12	+	idle thrust rating	'MCT'
kFuelTank	int	+	fuel tank system number	1
kRotor_react	int	+	rotor number for reaction drive	
			Derived	
iMODEL_jet	int		jet model (MODEL_jet_xxx)	
KIND_jet	int		jet model (MODEL_jet_RPJEM, simple)	
isConvertReact	int		convertible engine (0 not)	
kModel_jet	int		identification (JetModel, from IDENT_jet)	
kModel_sys2	int		identification (JetModel, from IDENT_system2)	
nrate	int		number of ratings	
rating(nratemax)	c*12		rating designations (lowercase)	
krateC	int		MCT rating number	
krate_to	int		takeoff thrust rating number	
WOneJet	real		weight one jet $W_{ m one\ jet}$	

MODEL_jet: jet model 'RPJEM', 'jet', 'fan' = turbojet/turbofan engine (RPJEM); IDENT_jet \rightarrow JetModel; fuel is weight 'react' = reaction drive (RPJEM)); IDENT_jet \rightarrow JetModel; fuel is weight 'simple' = simple force generator; no model identified; fuel is weight or energy MODEL_jet: convertible engine; only with turbojet/turbofan '+react' = reaction drive (mode B=1); IDENT_system2 \rightarrow JetModel jet identification: match ident of JetModel second system identification: match ident of JetModel; not use weight

for fixed jet: use $T_{\rm jet} = 0$. and no size task (or jet thrust not sized)

Jet model performance parameters (one jet) T0(nratemax) real thrust (T_0) specific thrust (ST_0) ST0(nratemax) real Tmech(nratemax) mechanical limit of thrust (T_{mech}) real specific fuel consumption at MCT (sfc_{0C}) sfc0C real mdot0C mass flow at MCT ($\dot{m}_{0C} = T_{0C}/ST_{0C}$) real fuel flow at MCT ($\dot{w}_{0C} = \mathrm{sfc}_{0C} T_{0C}$) wdot0C real Edot0C real energy flow at MCT ($\dot{w}_{0C} = \text{sfc}_{0C}T_{0C}$) Jet model performance parameters (one jet), ratio converted to base specific fuel consumption at MCT rsfc0C conv real fuel flow at MCT rwdot0C conv real Installation deterioration factor on jet fuel flow K_{ffd} Kffd 1.05 real jet inlet efficiency η_d (fraction, for δ_M) eta d real + 0.98 power losses (fraction thrust available, T_{loss}/T_a) + engine inlet loss ℓ_{in} fTloss inlet + 0.0 real engine exhaust loss ℓ_{ex} (IRS off) fTloss exh real + 0.01 + auxiliary air momentum drag (IRS off) mass flow f_{aux} (fraction engine mass flow) 0.007 fMF auxair + real eta auxair real + ram recovery efficiency $\eta_{\rm aux}$ 0.75

		+	IR suppressor	
		+	power losses (IRS on)	
$fTloss_exh_IRon$	real	+	engine exhaust loss ℓ_{ex}	0.03
		+	auxiliary air momentum drag (IRS on)	
fMF_auxair_IRon	real	+	mass flow f_{aux} (fraction engine mass flow)	0.01
eta_auxair_IRon	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Convertible	
Kffd_conv	real	+	deterioration factor on jet fuel flow K_{ffd}	1.05
		+	power losses (fraction thrust available, T_{loss}/T_a)	
fTloss_exh_conv	real	+	engine exhaust loss ℓ_{ex}	0.01
			installation power losses = inlet + exhaust (including IRS)	
			IR suppressor state specified by STATE_IRS_jet in operating condition	
		+	Simple force generator	
Tmax	real	+	design maximum thrust $T_{ m max}$	0.0
SET_burn	int	+	fuel quantity used (1 weight, 2 energy)	1
sfc	real	+	thrust specific fuel consumption (weight or energy)	1.0
SW	real	+	specific weight S (per jet)	
KIND_simple	int	+	weight group (1 engine system, 2 propeller/fan installation, 3 tail rotor)	1
			fuel tank system identified must be consistent with SET_burn	
		+	Geometry	
loc_jet	Locatio		location	
direction	c*16	+	nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')	'x'
SET_Swet	int	+	nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled)	2
Swet	real	+	area S_{wet} (per jet)	0.0
kSwet	real	+	factor, $k = S_{ m wet}/(W_{ES}/N_{ m jet})^{2/3}$ (Units_Dscale)	0.8
Snac	real		nacelle/cowling area $S_{\rm nac}$	
Swet_nac	real		total wetted area	

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are $\rm ft^2/lb^2/3$ or $\rm m^2/kg^2/3$ nacelle wetted area used for nacelle drag, and for cowling weight

```
Derived geometry
                                               nominal orientation (1, -1, 2, -2, 3, -3)
iDirection
                              int
axis incid
                              int
                                               axis incidence (\pm 123)
                                               axis yaw (\pm 123)
axis yaw
                              int
                                               orientation (1 fixed)
isFixed
                              int
                                               jet relative airframe, C^{BF} (fixed)
CBF(3,3)
                              real
                                               jet direction, e_{f0}
ef0(3)
                              real
                                               jet direction, e_f (fixed)
ef(3)
                              real
                                           Controls
                                               amplitude A
INPUT amp
                                                    connection to aircraft controls (0 none, 1 input T matrix)
                              int
                                                                                                                                                                        1
T amp(ncontmax,nstatemax)
                                                    control matrix
                              real
                                       +
nVamp
                              int
                                                    number of speeds (0 zero value; 1 constant; > 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                        0
amp(nvelmax)
                                       +
                                                    values
                              real
                                                    speeds (CAS or TAS)
Vamp(nvelmax)
                              real
                                               \mathsf{mode}\ B
INPUT mode
                                                    connection to aircraft controls (0 none, 1 input T matrix)
                                                                                                                                                                        1
                              int
T mode(ncontmax,nstatemax) real
                                                    control matrix
                                                   number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)
nVmode
                              int
                                                                                                                                                                        0
mode(nvelmax)
                                                    values
                              real
                                       +
                                                   speeds (CAS or TAS)
Vmode(nvelmax)
                              real
                                               incidence i (tilt)
                                       +
                                                    connection to aircraft controls (0 none, 1 input T matrix)
INPUT incid
                              int
                                       +
                                                                                                                                                                        1
T incid(ncontmax,nstatemax)
                              real
                                                    control matrix
nVincid
                                                   number of speeds (0 zero value; 1 constant; ≥ 2 piecewise linear, maximum nvelmax)
                                                                                                                                                                        0
                              int
                                       +
incid(nvelmax)
                                                    values
                              real
                                       +
Vincid(nvelmax)
                                       +
                                                    speeds (CAS or TAS)
                              real
```

INPUT_yaw T_yaw(ncontmax,nstatemax) nVyaw yaw(nvelmax) Vyaw(nvelmax)	int real int real real	+ + + + + +	yaw ψ connection to aircraft controls (0 none, 1 input T matrix) control matrix number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax) values speeds (CAS or TAS)	1
			aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state	
		+	Nacelle Drag	
MODEL_drag	int	+	model (0 none, 1 standard)	1
ldrag	real	+	incidence angle i for helicopter nominal drag (deg; 0 for not tilt)	0.
DJetSys	DJetSys	5	standard model	
			Derived drag	
$DoQC_{\mathtt{nac}}$	real		nacelle cruise drag, area $(D/q)_{ m nac}$	
$DoQH_nac$	real		nacelle helicopter drag, area $(D/q)_{ m nac}$	
$DoQV_{nac}$	real		nacelle vertical drag, area $(D/q)_{ m nac}$	
		+	Weight	
Weight	Weight	•	weight statement (component, including jet weight)	
		+	jet weight	
MODEL_weight	int	+	model (0 input, 1 RPJEM, 2 custom)	1
dWJet	real	+	weight increment (all jets)	0.0
		+	engine system (except jet), engine section or nacelle group, air induction group	
		+	model (0 input, 1 NDARC, 2 custom)	
MODEL_sys	int	+	engine system	1
MODEL_nac	int	+	engine section or nacelle	1
MODEL_air	int	+	air induction	1

Structure: JetGroup	252

		+	weight increment	
dWexh	real	+	exhaust	0.0
dWacc	real	+	accessories	0.0
dWsupt	real	+	engine support	0.0
dWcowl	real	+	engine cowling	0.0
dWpylon	real	+	pylon support	0.0
dWair	real	+	air induction	0.0
WJetSys	$WJetS_{y}$	/S	NDARC model	
Wjet_total	real		jet weight	
WES	real		engine system weight W_{ES} (engine, exhaust, accessories)	
		+	Technology Factors	
TECH_jet	real	+	jet weight $\chi_{ m jet}$	1.0
TECH_jetcowl	real	+	engine cowling weight $\chi_{ m cowl}$	1.0
$TECH_jetpylon$	real	+	pylon structure weight $\chi_{ m pylon}$	1.0
TECH_jetsupt	real	+	engine support structure weight $\chi_{ m supt}$	1.0
TECH_jetair	real	+	air induction system weight $\chi_{ m airind}$	1.0
$TECH_jetexh$	real	+	exhaust system weight $\chi_{ m exh}$	1.0
TECH_jetacc	real	+	engine accessories weight $\chi_{ m acc}$	1.0

```
weight model result multiplied by technology factor and increment added:
```

Wxx = TECH_xx*Wxx_model + dWxx; for fixed (input) weight use MODEL_xx=0 or TECH_xx=0.

engine system weight = engine + exhaust + accessory (WES used for nacelle wetted area) nacelle weight = support + cowl + pylon jet weight parameters in JetModel

Chapter 68

Structure: DJetSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+		
		+	transition from forward flight drag to vertical drag	
Xdrag	real	+	exponent X_d	2.0
			SET xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	

Chapter 69

Structure: WJetSys

Variable	Type		Description	Default
		+	Engine Section or Nacelle Group, NDARC Weight Model	
MODEL_nacelle	int	+		1
fWpylon	real	+	pylon support structure weight f_{pylon} (fraction maximum takeoff weight)	0.0
		+	nacelle group weight, W vs T_{0C}	
Knac	real	+	factor $K_{ m nac}$	
Xnac	real	+	exponent $X_{ m nac}$	
n_clf	real	+	Boeing: crash load factor	20.
fWidth_nac	real	+	Raymer: nacelle width (fraction nacelle length)	0.2
		+	Air Induction Group, NDARC Weight Model	
MODEL_airind	int	+	model (1 parametric, 2 area)	1
fWair	real	+	air induction weight $f_{ m airind}$ (fraction engine support plus air induction weight)	0.3
Uair	real	+	weight per nacelle area $U_{\rm airind}$ (lb/ft ² or kg/m ²)	
		+	Engine System, NDARC Model	
		+	exhaust system weight, per jet; W_{exh} vs T_{0C}	
Kwt0_exh	real	+	$K_{0\mathrm{exh}}$	0.0
Kwt1_exh	real	+	$K_{ m 1exh}$	0.002
		+	engine accessories	
MODEL_lub	int	+	lubrication system weight (1 in jet weight, 2 in accessory weight)	1
		+	Custom Weight Model	
$WtParam_jetsys(8)$	real	+	parameters	0.

Variable	Type	Description	Default
	+	Charge Group	
title	c*100 +	title	
notes	c*1000 +	notes	
kChargeGroup	int	charge group number	
	+	Description	
MODEL_charge	c*32 +	charger model	1 1
IDENT_charge	c*16 +	charger identification	'Charge'
nCharge	int +	number of chargers $N_{ m chrg}$	1
Pchrg	real +	charger power P_{chrg} (SLS static at takeoff rating, 0. for P0_ref(rating_to))	0.
rating_to	c*12 +	takeoff thrust rating	'MCP'
rating_idle	c*12 +	idle thrust rating	'MCP'
kFuelTank	int +	fuel tank system number (generated)	1
kFuelTank_burn	int +	fuel tank system number (burned)	
		Derived	
iMODEL_charge	int	charger model (MODEL_charge_xxx)	
$KIND_charge$	int	charger model (MODEL_charge_fuelcell, solarcell)	
kModel_chrg	int	identification (FuelCellModel or SolarCellModel, from IDENT_charge)	
kBattery	int	battery model, from kFuelTank (0 for none)	
nrate	int	number of ratings	
rating(nratemax)	c*12	rating designations (lowercase)	
krateC	int	MCP rating number	
krate_to	int	takeoff thrust rating number	
WOneChrg	real	weight one charger $W_{ m one~chrg}$	

MODEL_charge: charger model

'fuel' = fuel cell; IDENT_charge \rightarrow FuelCellModel; fuel generated is energy

fuel burned is weight (kFuelTank_burn)

 $\hbox{'solar'} = solar\ cell;\ IDENT_charge \rightarrow SolarCellModel;\ fuel\ generated\ is\ energy$

charger identification: match ident of FuelCellModel or SolarCellModel

for fixed charger: use $P_{\rm chrg}=0$. and no size task (or charger power not sized)

fuel tank system identified for generation must store and use energy (may have BatteryModel)

fuel tank system identified for burn must store and use weight

			Charger model performance parameters (one charger)	
P0(nratemax)	real		power (P_0)	
sfc0C	real		specific fuel consumption at MCP (sfc_{0C})	
mdot0C	real		mass flow at MCP (\dot{m}_{0C})	
wdot0C	real		fuel flow at MCP ($\dot{w}_{0C} = \mathrm{sfc}_{0C} P_{0C}$)	
solararea	real		solar cell total area	
		+	Installation	
Kffd	real	+	deterioration factor on charger fuel flow or performance K_{ffd}	1.05
		+	auxiliary air momentum drag	
fMF_auxair	real	+	mass flow $f_{\rm aux}$ (fraction charger mass flow)	0.007
eta_auxair	real	+	ram recovery efficiency $\eta_{ m aux}$	0.75
		+	Geometry	
loc_charger	Locatio	n +	location	
direction	c*16	+	nominal orientation ('+x', '-x', '+y', '-y', '+z', '-z')	'x'
SET_Swet	int	+	nacelle/cowling wetted area (1 fixed, input Swet; 2 scaled)	2
Swet	real	+	area S_{wet} (per charger)	0.0
kSwet	real	+	factor, $k = S_{\rm wet}/(W/N_{\rm chrg})^{2/3}$ (Units_Dscale)	0.8
Snac	real		nacelle/cowling area $S_{ m nac}$	
Swet_nac	real		total wetted area	

SET_Swet, wetted area: input (use Swet) or calculated (from kSwet) units of kSwet are $\rm ft^2/lb^{2/3}$ or $\rm m^2/kg^{2/3}$ nacelle wetted area used for nacelle drag

			Derived geometry	
iDirection	int		nominal orientation $(1, -1, 2, -2, 3, -3)$	
axis_incid	int		axis incidence (± 123)	
axis_yaw	int		axis yaw (± 123)	
isFixed	int		orientation (1 fixed)	
CBF(3,3)	real		charger relative airframe, C^{BF} (fixed)	
ef0(3)	real		charger direction, e_{f0}	
ef(3)	real		charger direction, e_f (fixed)	
		+	Controls	
		+	amplitude A	
INPUT amp	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_amp(ncontmax,nstatemax)	real	+	control matrix	-
nVamp	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
amp(nvelmax)	real	+	values	-
Vamp(nvelmax)	real	+	speeds (CAS or TAS)	
,		+	$\operatorname{mode} B$	
INPUT mode	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_mode(ncontmax,nstatemax)	real	+	control matrix	
nVmode	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
mode(nvelmax)	real	+	values	
Vmode(nvelmax)	real	+	speeds (CAS or TAS)	
,		+	incidence i (tilt)	
INPUT_incid	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
T_incid(ncontmax,nstatemax)				
	real	+	control matrix	
nVincid	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
incid(nvelmax)	real	+	values	
Vincid(nvelmax)	real	+	speeds (CAS or TAS)	
		+	yaw ψ	
INPUT_yaw	int	+	connection to aircraft controls (0 none, 1 input T matrix)	1
$T_yaw(ncontmax,nstatemax)$	real	+	control matrix	
nVyaw	int	+	number of speeds (0 zero value; 1 constant; \geq 2 piecewise linear, maximum nvelmax)	0
yaw(nvelmax)	real	+	values	
Vyaw(nvelmax)	real	+	speeds (CAS or TAS)	

aircraft controls connected to individual controls of component, $c = Tc_{AC} + c_0$ for each component control, define matrix T (for each control state) and value c_0 flight state specifies control state, or that control state obtained from conversion schedule c_0 can be zero, constant, or function of flight speed (CAS or TAS, piecewise linear input) by connecting aircraft control to comp control, flight state can specify comp control value initial values if control is connected to trim variable; otherwise fixed for flight state

```
Nacelle Drag
                                                model (0 none, 1 standard)
MODEL drag
                                                                                                                                                                        1
                              int
                                               incidence angle i for helicopter nominal drag (deg; 0 for not tilt)
Idrag
                              real
                                                                                                                                                                        0.
DChrgSys
                              DChrgSys
                                               standard model
                                           Derived drag
                                               nacelle cruise drag, area (D/q)_{\rm nac}
DoQC nac
                              real
                                               nacelle helicopter drag, area (D/q)_{\text{nac}}
DoQH nac
                              real
                                               nacelle vertical drag, area (D/q)_{\rm nac}
DoQV nac
                              real
                                           Weight
Weight
                              Weight
                                                weight statement (component, including charger weight)
                                                charger weight
                                                   model (0 input, 1 NDARC, 2 custom)
MODEL_weight
                                       +
                                                                                                                                                                        1
                              int
                                                   weight increment (all chargers)
dWChrg
                                                                                                                                                                      0.0
                              real
                                                    NDARC model
WChrgSys
                              WChrgSys
                                                charge group weight
Wchrg_total
                              real
                                               engine system weight W_{ES} (engine, exhaust, accessories)
WES
                              real
                                           Technology Factors
                                               charger weight \chi_{\rm chrg}
TECH chrg
                              real
                                                                                                                                                                      1.0
```

```
weight model result multiplied by technology factor and increment added:
```

engine system weight = engine + exhaust + accessory = charge group weight (WES used for nacelle wetted area) charger weight parameters in FuelCellModel or SolarCellModel

Chapter 71

Structure: DChrgSys

Variable	Type		Description	Default
		+	Nacelle Drag, Standard Model	
		+	forward flight drag	
SET_drag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQ	real	+	area $(D/q)_0$	
CD	real	+	coefficient C_{D0} (based on wetted area, $D/q = SC_D$)	
		+	vertical drag	
SET_Vdrag	int	+	specification (1 fixed, D/q ; 2 scaled, C_D)	2
DoQV	real	+	area $(D/q)_V$	
CDV	real	+		
		+	transition from forward flight drag to vertical drag	
Xdrag	real	+	exponent X_d	2.0
			SET xxx: fixed (use DoQ) or scaled (use CD); other parameter calculated	

Chapter 72

Structure: WChrgSys

Variable	Type		Description	Default
		+	Custom Weight Model	
$WtParam_chrgsys(8)$	real	+	parameters	0.

Variable	Type	D	Description	Default
		+ E	Engine Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input (eg 'T800')	
			installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N	
			uninstalled: power available P_a , power required P_q , gross jet thrust F_q , net jet thrust F_n	
			"0" = SLS static; "C" = MCP	
			mass flow = power / specific power ($SP = P/\dot{m}$); fuel flow = specific fuel consumption * power (sfc = \dot{w}/P)	
			engine model can be used by more than one engine group, so all parameters fixed	
			as model for turbojet or reaction drive of convertible engine:	
			only use sfc0C_ref, sfc0C_ref, and parameters for optimum speed, thrust available, and performance	
			P0_ref and SP0_ref required, but not used; weight, ratings, technology, and scaling variables not used	
kEngineModel	int	e	engine model number	
		+ V	Veight	
MODEL_weight	int	+	RPTEM model (0 fixed, 1 $W(P)$, 2 $SW(\dot{m})$)	1
Weng	real	+	engine weight (fixed)	0.
		+	engine weight, W_{eng} vs P_{0C} model ($W = K_{0\text{eng}} + K_{1\text{eng}}P + K_{2\text{eng}}P^{X_{\text{eng}}}$)	
Kwt0_eng	real	+	constant $K_{0\mathrm{eng}}$	0.
Kwt1_eng	real	+	constant $K_{ m 1eng}$	0.25
Kwt2_eng	real	+	constant K_{2eng}	0.
Xwt_eng	real	+	exponent X_{eng}	0.

SW_ref SW_limit	real real	+ + +	engine weight, $SW = P/W_{\rm eng}$ vs \dot{m}_{0C} model specific weight reference $SW_{\rm ref}$ ($\dot{m} = \dot{m}_{\rm tech}$) specific weight limit $SW_{\rm lim}$ ($\dot{m} = \dot{m}_{\rm lim}$)	4. 5.
		+	Custom Weight Model	
WtParam_engine(8)	real	+	parameters	0.
		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	2000.
SP0_ref(nratemax)	real	+	specific power (SP_0)	150.
Pmech_ref(nratemax)	real	+	mechanical limit of power (P_{mech})	2500.
sfc0C_ref	real	+	specific fuel consumption at MCP (sfc_{0C})	0.45
SF0C_ref	real	+	specific jet thrust $(F_{q0C} = SF_{0C}\dot{m}_{0C})$	10.
Nspec_ref	real	+	specification turbine speed $(N_{\rm spec})$	20000.
Nopt0C_ref	real	+	optimum turbine speed at MCP $(N_{\text{opt}0C})$	20000.
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rSP0(nratemax)	real		specific power (SP_{0R}/SP_{0C})	
rPmech(nratemax)	real		mechanical limit of power $(P_{\mathrm{mech}R}/P_{0C})$	
			Reference Engine Rating: SLS, static if MCP scaled, ratios to MCP values kept constant engine rating: match rating designation in FltState; typically designated as 'ERP' = Emergency Rated Power (OEI power) 'CRP' = Contigency Rated Power (2.5 min) 'MRP' = Maximum Rated Power (5 or 10 min)	

'IRP' = Intermediate Rated Power (30 min)

'MCP' = Maximum Continuous Power (normal operations) engine model being used may not contain data for all ratings

		+	Technology	
SP0C_tech	real	+	specific power at MCP SP_{tech} (0. for SP0_ref(MCP))	0.
sfc0C_tech	real	+	specific fuel consumption at MCP sfc _{tech} (0. for sfc0C_ref)	0.
Nspec_tech	real	+	specification turbine speed $N_{\rm tech}$ (0. for Nspec_ref)	0.
		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
MF_limit	real	+	mass flow at limit SP and $\mathrm{sfc}\ (\dot{m}_{\mathrm{lim}})$	30.
SP0C_limit	real	+	specific power limit SP_{lim}	200.
sfc0C_limit	real	+	specific fuel consumption limit ${ m sfc_{lim}}$	0.34
KNspec	real	+	specification turbine speed variation (K_{Ns2})	0.
			Derived scaling	
			specific power available (SLS static, MCP, $N_{\rm spec}$), SP_{0C} vs \dot{m}_{0C}	
P0C_limit	real		power limit	
Ksp0	real		K_{sp0}	
Ksp1	real		K_{sp1}	
			specific fuel consumption (SLS static, MCP, $N_{\rm spec}$), sfc _{0C} vs \dot{m}_{0C}	
Ksfc0	real		K_{sfc0}	
Ksfc1	real		K_{sfc1}	
			specification turbine speed, $N_{\rm spec}$ vs \dot{m}_{0C}	
KNs1	real		K_{Ns1}	
KNs2	real		K_{Ns2}	
			optimum turbine speed, $N_{\mathrm{opt}0C}$	
KNo	real		K_{No}	
			engine weight, $SW = P/W_{\rm eng}$ vs \dot{m}_{0C}	
Ksw0	real		K_{sw0}	
Ksw1	real		K_{sw1}	

SP and sfc functions are defined by values SPOC_tech, sfc0C_tech, $\dot{m}_{\rm tech}$ =POC_ref/SPOC_tech and limits SPOC_limit, sfc0C_limit, MF_limit defaults SPOC_tech=SPO_ref(MCP), sfc0C_tech=sfc0C_ref, Nspec_tech=Nspec_ref require $\dot{m}_{\rm tech} < \dot{m}_{\rm lim}$ (otherwise get SP_{0C} = SPOC_tech and sfc $_{0C}$ = sfc0C_tech)

for no variation of SP, sfc, and SW with scale, use FIX_size=1 or MF_limit=0.

engine weight scaling determined by MODEL_weight

		+	Optimum Power Turbine Speed	
MODEL_OptN	int	+	model (0 none, 1 linear, 2 cubic)	1
		+	linear, $N_{ m opt}/N_{ m spec}$ vs P_q/P_0	
KNoptA	real	+	constant $K_{N ext{opt} A}$	1.
KNoptB	real	+	constant $K_{N ext{opt} B}$	0.
		+	cubic, $N_{ m opt}/N_{ m opt0C}$ vs $P_q/P_{ m 0C}$	
KNopt0	real	+	constant K_{Nopt0}	1.
KNopt1	real	+	constant K_{Nopt1}	0.
KNopt2	real	+	constant K_{Nopt2}	0.
KNopt3	real	+	constant K_{Nopt3}	0.
XNopt	real	+	exponent $X_{N ext{opt}}$	0.
		+	power turbine efficiency function, $\eta_t(N)/\eta_t(N_{\rm spec})$	
XNeta	real	+	exponent $X_{N\eta}$	2.0

engine power and performance variation with power turbine speed determined by $N_{\rm opt}$ and $X_{N\eta}$ used only for INPUT_param = single set; no variation if MODEL_OptN=0

+ Power Available and Power Required Parameters

			1	
INPUT_param	int	+	parameter input form (1 single set; 2 function of engine speed)	1
Param	EngineF	ParamN	single set (input moved to Param for use)	
		+	function of engine speed	
nspeed	int	+	number of engine speeds (maximum nspeedmax)	1
rNeng(nspeedmax)	real	+	engine speed ratio, $N/N_{\rm spec}$	1.
kEngineParamN(nspeedmax)	int	+	identification of parameter sets	1

function of engine speed: parameters interpolated, rNeng unique and sequential

		+	Power Available	
INPUT_lin	int	+	input form (1 coefficients K_0, K_1 ; 2 values θ_b, K_b)	1
		+	referred specific power available, SP_a/SP_0 vs temperature	
Nspa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kspa0(nengkmax,nratemax)	real	+	K_{spa0} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	3.5
Kspa1(nengkmax,nratemax)	real	+	K_{spa1} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	-2.5
Tspak(nengkmax,nratemax)	real	+	$ heta_b$.	
Kspab(nengkmax,nratemax)	real	+	K_{spa-b}	
Xspa0(nengkmax,nratemax)	real	+	X_{spa0} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	2
Xspa1(nengkmax,nratemax)	real	+	X_{spa1} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	0.
Tspax(nengkmax,nratemax)	real	+	$ heta_b$.	
Xspab(nengkmax,nratemax)	real	+	X_{spa-b}	
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature	
Nmfa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kmfa0(nengkmax,nratemax)	real	+	K_{mfa0} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	.3
Kmfa1(nengkmax,nratemax)	real	+	K_{mfa1} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	3
Tmfak(nengkmax,nratemax)	real	+	$ heta_b$	
Kmfab(nengkmax,nratemax)	real	+	K_{mfa-b}	
Xmfa0(nengkmax,nratemax)	real	+	X_{mfa0} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	1.
Xmfa1(nengkmax,nratemax)	real	+	X_{mfa1} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	0.
Tmfax(nengkmax,nratemax)	real	+	$ heta_b$	
Xmfab(nengkmax,nratemax)	real	+	X_{mfa-b}	
·			<u> </u>	

piecewise linear function:

```
input form = coefficients K_0, K_1 (N sets) or values \theta_b, K_b (N+1 values) form not input is calculated (N-1 \theta_b, K_b or N K_0, K_1) input K_0, K_1: adjacent K_1 different, resulting \theta_b unique and sequential input \theta_b, K_b: \theta_b unique and sequential
```

 $N_{\rm spec}$ = specification power turbine speed

 $S\hat{P}_a$, \dot{m}_a = referred specific power and mass flow available, at $N_{\rm spec}$

 SP_0 , \dot{m}_0 = referred specific power and mass flow available, at $N_{\rm spec}$, SLS static

N = power turbine speed, $N_{
m opt}$ = optimum power turbine speed

 η_t = power turbine efficiency; assume gas power available $P_G = P_a/\eta_t$ insensitive to N, so $\eta_t(N)$ give $P_a(N)$

		+	Performance at Power Required	
		+	referred fuel flow at power required, $\dot{w}_{req}/\dot{w}_{0C}$ vs P_q/P_{0C}	
Kffq0	real	+	constant K_{ffq0}	.2
Kffq1	real	+	constant K_{ffq1}	.8
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.3
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	.6
Kmfq1	real	+	constant K_{mfq1}	.78
Kmfq2	real	+	constant K_{mfq2}	48
Kmfq3	real	+	constant K_{mfq3}	.1
Xmfq	real	+	exponent X_{mfq}	3.5
		+	gross jet thrust at power required, F_g/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	.2
Kfgq1	real	+	constant K_{fgq1}	8.
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fgq}	2.0
		+	installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs ℓ_{ex}	
Kfgr0	real	+	constant K_{fgr0}	.8
Kfgr1	real	+	constant K_{fgr1}	.6
Kfgr2	real	+	constant K_{fgr2}	0.
Kfgr3	real	+	constant K_{fgr3}	0.

Chapter 74

Structure: EngineParamN

Variable	Type		Description	Default
		+	Engine Model Parameters	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
kEngineParamN	int		engine param number	
		+	Power Available	
nrate	int	+	number of ratings	1
INPUT_lin	int	+	input form (1 coefficients K_0, K_1 ; 2 values θ_b, K_b)	1
		+	referred specific power available, SP_a/SP_0 vs temperature	
Nspa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kspa0(nengkmax,nratemax)	real	+	K_{spa0} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	3.5
Kspa1(nengkmax,nratemax)	real	+	K_{spa1} (piecewise linear $K_{spa} = K_0 + K_1\theta$)	-2.5
Tspak(nengkmax,nratemax)	real	+	$ heta_b$	
Kspab(nengkmax,nratemax)	real	+	K_{spa-b}	
Xspa0(nengkmax,nratemax)	real	+	X_{spa0} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	2
Xspa1(nengkmax,nratemax)	real	+	X_{spa1} (piecewise linear $X_{spa} = X_0 + X_1\theta$)	0.
Tspax(nengkmax,nratemax)	real	+	$ heta_b$	
Xspab(nengkmax,nratemax)	real	+	X_{spa-b}	
		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0 vs temperature	
Nmfa(nratemax)	int	+	number of regions (maximum nengkmax-1)	0
Kmfa0(nengkmax,nratemax)	real	+	K_{mfa0} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	.3
Kmfa1(nengkmax,nratemax)	real	+	K_{mfa1} (piecewise linear $K_{mfa} = K_0 + K_1\theta$)	3
Tmfak(nengkmax,nratemax)	real	+	$ heta_b$	
Kmfab(nengkmax,nratemax)	real	+	K_{mfa-b}	
Xmfa0(nengkmax,nratemax)	real	+	X_{mfa0} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	1.
Xmfa1(nengkmax,nratemax)	real	+	X_{mfa1} (piecewise linear $X_{mfa} = X_0 + X_1\theta$)	0.
Tmfax(nengkmax,nratemax)	real	+	$ heta_b$	
Xmfab(nengkmax,nratemax)	real	+	X_{mfa-b}	

Structure: EngineParamN 268

number of ratings consistent with EngineModel

		+	Performance at Power Required	
		+	referred fuel flow at power required, $\dot{w}_{req}/\dot{w}_{0C}$ vs P_q/P_{0C}	
Kffq0	real	+	constant K_{ffq0}	.2
Kffq1	real	+	constant K_{ffq1}	.8
Kffq2	real	+	constant K_{ffq2}	0.
Kffq3	real	+	constant K_{ffq3}	0.
Xffq	real	+	exponent X_{ffq}	1.3
		+	referred mass flow at power required, $\dot{m}_{req}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	.6
Kmfq1	real	+	constant K_{mfq1}	.78
Kmfq2	real	+	constant K_{mfq2}	48
Kmfq3	real	+	constant K_{mfq3}	.1
Xmfq	real	+	exponent X_{mfq}	3.5
		+	gross jet thrust at power required, F_g/F_{g0C} vs P_q/P_{0C}	
Kfgq0	real	+	constant K_{fgq0}	.2
Kfgq1	real	+	constant K_{fgq1}	8.
Kfgq2	real	+	constant K_{fgq2}	0.
Kfgq3	real	+	constant K_{fgq3}	0.
Xfgq	real	+	exponent X_{fgq}	2.0
		+	installed net jet thrust at power required, F_G/F_g (installed thrust loss) vs ℓ_{ex}	
Kfgr0	real	+	constant K_{fgr0}	8.
Kfgr1	real	+	constant K_{fgr1}	.6
Kfgr2	real	+	constant K_{fgr2}	0.
Kfgr3	real	+	constant K_{fgr3}	0.

Chapter 75

Structure: EngineTable

Variable	Type		Description	Default
		+	Engine Table	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input	
			engine table can be used by more than one engine group, so all parameters fixed	
			engine not scaled (SET_power, fPsize not used); eta_d not used	
			fixed engine weight dWEng (MODEL_weight=0)	
			no mass flow value, so no momentum drag of auxillary air flow (fMF_auxair, eta_auxair not used)	
			obtain Peng from table; mechanical limits included in power available data	
			tables intended for installed engine, including losses (fPloss inlet, fPloss ps, fPloss exh not used)	
			fuel flow multiplied by Kffd, accounting for deterioration of engine efficiency	

kEngineTable	int		engine table number	
	:4	+	Engine ratings	1
nrate	ınt	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
Nspec	real	+	Specification turbine speed $(N_{\rm spec})$	

Structure: EngineTable

		+	Table	
KIND_table	int	+	format (1 E, 2 H)	1
nalt	int	+	number of altitudes (maximum nengtmax)	
ntemp	int	+	number of temperatures (maximum nengxmax)	
nspeed	int	+	number of speeds (maximum nengtmax)	
nalt_ram	int	+	number of altitudes for f_{RAM} (maximum nengtmax)	
ntemp_ram	int	+	number of temperatures for $f_{ m RAM}$ (maximum nengxmax)	
alt(nengtmax)	real	+	altitude h	
$temp(neng \times max)$	real	+	temperature $ au$	
speed(nengtmax)	real	+	speed V (TAS)	
$alt_{ram}(nengtmax)$	real	+	altitude h for f_{RAM}	
temp_ram(nengxmax)	real	+	temperature $ au$ for $f_{ m RAM}$	
			table format E: use alt, speed	
			table format H: use alt, temp; and for $f_{ m RAM}$ use speed, alt_ram, temp_ram; no jet thrust	

+	Technology factors	
---	--------------------	--

Kp	real	+	power available	1.0
Kw	real	+	fuel flow	1.0
Kf	real	+	net thrust	1.0

+ Table format E

Tp(nengtmax,nengtmax,nratemax)

real + power available $P_a(h, V, R)$

Tw(nengtmax,nengtmax,nratemax)

real + fuel flow $\dot{w}(h, V, R)$

 $\mathsf{Tf}(\mathsf{nengtmax}, \mathsf{nengtmax}, \mathsf{nratemax})$

real + net thrust $F_N(h, V, R)$

Structure: EngineTable

		+	Table format H	
KIND_temp	int	+	temperature units (0 F or C based on Units; 1 F, 2 C)	0
change_temp	int		change temperature units (0 not, 1 F to C, 2 C to F)	
		+	power available	
P0(nengtmax,nengxmax,nrate	emax)			
	real	+	static power $P_0(h, \tau, R)$	
fRAM(nengtmax,nengxmax,ne	engtmax)			
	real	+	ram factor $f_{\mathrm{RAM}}(V, au,h)$	
		+	fuel flow	
nfuelflow	int	+	number of fuel flow values (maximum nengxmax)	
$Pq_ref(nengxmax)$	real	+	reference power required, $P_q/\delta^{X_{dp}}\theta^{X_{rp}}$	
$ff_ref(nengxmax)$	real	+	reference fuel flow, $\dot{w}/\delta^{X_{df}}\theta^{X_{rf}}$	
Xdp	real	+	reference power, pressure exponent X_{dp}	.0
Xrp	real	+	reference power, temperature exponent X_{rp} 0.	.5
Xdf	real	+	reference fuel flow, pressure exponent X_{df} 1.	.0
Xrf	real	+	reference fuel flow, temperature exponent X_{rf} 0.	.5

Structure: RecipModel

Variable	Type		Description	Default
		+	Reciprocating Engine Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Engine'
			engine identification: used by IDENT_engine of EngineGroup input	
			installed: power available P_{av} , power required P_{req} , gross jet thrust F_G , net jet thrust F_N uninstalled: power available P_a , power required P_q , gross jet thrust F_g , net jet thrust F_n fuel flow = specific fuel consumption * power (sfc = \dot{w}/P); mass flow = fuel flow / fuel-air ratio	
			reciprocating engine model can be used by more than one engine group, so all parameters fixed	
kRecipModel	int		reciprocating engine model number	
		+	Weight	
MODEL_weight	int	+	model (0 fixed, 1 W(P))	1
Weng	real	+	engine weight (fixed)	0.
		+	engine weight, $W_{\rm eng}$ vs P_0 model ($W = K_{\rm 0eng} + K_{\rm 1eng} P + K_{\rm 2eng} P^{X_{\rm eng}}$)	
Kwt0_eng	real	+	constant $K_{0\mathrm{eng}}$	0.
Kwt1_eng	real	+	constant $K_{1\mathrm{eng}}$	0.25
Kwt2_eng	real	+	constant $K_{2\mathrm{eng}}$	0.
Xwt_eng	real	+	exponent X_{eng}	0.
		+	Custom Weight Model	
$WtParam_recip(8)$	real	+	parameters	0.

Structure: RecipModel 273

		+	Parameters	
		+	Engine Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	1000.
$sfc0_ref(nratemax)$	real	+	specific fuel consumption (sfc $_0$)	0.60
$F0_{ref(nratemax)}$	real	+	fuel-air ratio (F_0)	0.08
SF0_ref(nratemax)	real	+	specific jet thrust $(F_g = SF_0\dot{m})$	0.
$Pmep_ref(nratemax)$	real	+	mean effective pressure limit $(P_{\rm mep})$	1000.
$Pcrit_ref(nratemax)$	real	+	critical (throttle) limit (P_{crit})	1000.
$N0_{ref(nratemax)}$	real	+	reference engine speed (N_0)	2000.
Nspec_ref	real	+	specification engine speed $(N_{\rm spec})$	2000.
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rN0(nratemax)	real		reference engine speed $(N_{0R}/N_{\rm spec})$	
rcrit(nratemax)	real		critical power $(P_{\text{crit}R}/P_{0R})$	
rmep(nratemax)	real		mechanical limit of power $(P_{\text{mech}R}/P_{0R} * N_{\text{spec}}/N_{0R})$	

Reference Engine Rating: SLS, static

if MCP scaled, ratios to MCP values kept constant

engine rating: match rating designation in FltState; typically designated as

'MRP' = Maximum Rated Power (5 or 10 min)

'MCP' = Maximum Continuous Power (normal operations)

ratings encompass mixture settings and supercharger speeds

Pmep_ref: zero for no mechanical (mep) limit

Pcrit_ref: zero for no critical (throttle) limit; Xcrit = 0. for limit independent of engine speed

Structure: RecipModel 274

		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
Xo	real	+	specific output exponent X_o	0.2
Xs	real	+	mean piston speed exponent X_s	0.3
Xf	real	+	specific fuel consumption exponent X_f	0.1
			Derived scaling	
Xsfc	real		exponent $-X_f/(2-X_o)$	
XN	real		exponent $-(1+X_s)/(2-X_o)$	
		+	Power Available	
Kp(nratemax)	real	+	factor K_p	1.
Kram(nratemax)	real	+	constant K_{ram}	1.
XpN(nratemax)	real	+	exponent X_{pN}	1.
Xpt(nratemax)	real	+	exponent $X_{p\theta}$	0.5
Xcrit(nratemax)	real	+	exponent $X_{ m crit}$	3.0
		+	Performance at Power Required	
		+	fuel flow, \dot{w}_{req}/\dot{w}_0 vs P_q/P_0	
MODEL_Kffq	int	+	model (1 polynomial, 2 piecewise linear)	1
		+	polynomial	
Kffq0(nratemax)	real	+	constant K_{ffq0}	0.
Kffq1(nratemax)	real	+	constant K_{ffq1}	1.
Kffq2(nratemax)	real	+	constant K_{ffq2}	0.
Kffq3(nratemax)	real	+	constant K_{ffq3}	0.
		+	piecewise linear	
Nffq(nratemax)	int	+	number of values (maximum nengrmax)	0
Pffq(nengrmax,nratemax)	real	+	power ratio P_q/P_0	
Kffq(nengrmax,nratemax)	real	+	factor K_{ffq}	
Xffq(nratemax)	real	+	exponent X_{ffq}	0.
		+	fuel-air ratio, F_{req}/F_0 vs P_q/P_0	
MODEL_KFq	int	+	model (1 polynomial, 2 piecewise linear)	1
		+	polynomial	
KFq0(nratemax)	real	+	constant K_{Fq0}	1.
KFq1(nratemax)	real	+	constant K_{Fq1}	0.
KFq2(nratemax)	real	+	constant K_{Fq2}	0.
KFq3(nratemax)	real	+	constant K_{Fq3}	0.

Structure: RecipModel 275 piecewise linear number of values (maximum nengrmax) NFq(nratemax) int 0 PFq(nengrmax,nratemax) power ratio P_q/P_0 real + KFq(nengrmax,nratemax) real factor K_{Fq} exponent X_{Fq} installed net jet thrust, $K_{fgr}=F_G/F_g$ (installed thrust loss) constant K_{fgr} XFq(nratemax) 0. real + + Kfgr(nratemax) 1. real +

Structure: CompressorModel

Variable	Type		Description	Default
		+	Compressor Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Comp'
			compressor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			mass flow = power / specific power ($SP=P/\dot{m}$); gross thrust = specific thrust * mass flow ($ST=T/\dot{m}$)	
			compressor model can be used by more than one engine group, so all parameters fixed	
kCompressorModel	int		compressor model number	
		+	Weight	
MODEL_weight	int	+	$\operatorname{model}(0 \operatorname{fixed}, 1 W(P))$	1
Wcomp	real	+	compressor weight (fixed)	0.
		+	compressor weight, W_{comp} vs P_{0C} model ($W = K_{0\text{comp}} + K_{1\text{comp}}P + K_{2\text{comp}}P^{X_{\text{comp}}}$)	
Kwt0_comp	real	+	constant $K_{0\text{comp}}$	0.
Kwt1_comp	real	+	constant $K_{1\text{comp}}$	0.2
Kwt2_comp	real	+	constant $K_{2\text{comp}}$	0.
Xwt_comp	real	+	exponent X_{comp}	0.
		+	Custom Weight Model	
$WtParam_comp(8)$	real	+	parameters	0.

Structure: CompressorModel 277

		+	Parameters	
		+	Compressor Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	
$SP0_ref(nratemax)$	real	+	specific power (SP_0)	
$Pmech_ref(nratemax)$	real	+	mechanical limit of power (P_{mech})	
ST0C_ref	real	+	specific jet thrust ($F_{g0C} = ST_{0C}\dot{m}_{0C}$)	
Nspec_ref	real	+	specification compressor speed $(N_{\rm spec})$	
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
rSP0(nratemax)	real		specific power (SP_{0R}/SP_{0C})	
rPmech(nratemax)	real		mechanical limit of power $(P_{\mathrm{mech}R}/P_{0C})$	
			Reference Compressor Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			compressor rating: match rating designation in FltState	
		+	Power Available	
		+	referred specific power available, SP_a/SP_0	
Xspa	real	+	exponent X_{spa}	1.
·		+	referred mass flow at power available, \dot{m}_a/\dot{m}_0	
Xmfa	real	+	exponent X_{mfa}	1.
		+	Performance at Power Required	
		+	referred mass flow at power required, $\dot{m}_{reg}/\dot{m}_{0C}$ vs P_q/P_{0C}	
Kmfq0	real	+	constant K_{mfq0}	
Kmfq1	real	+	constant K_{mfq1}	
Kmfq2	real	+	constant K_{mfq2}	
Kmfq3	real	+	constant K_{mfq3}	
Xmfq	real	+	exponent X_{mfq}	1.
٦		+	referred specific thrust at power required, ST_{rea}/ST_0	
Xstq	real	+	exponent X_{stq}	1.
	1001	•	-siq	1.

0.

0.

0

0.

Kwt2_motor

 Xwt_motor

KIND_design

WtParam_motor(8)

real

real

int

real

Structure: MotorModel

Variable	Type		Description	Default
		+	Motor Model	
title	c*100	+	title	'Default'
notes	c*1000) +	notes	
ident	c*16	+	identification	'Motor'
			motor identification: used by IDENT_engine of EngineGroup input	
			"0" = SLS static; "C" = MCP	
			motor model can be used by more than one engine group, so all parameters fixed	
kMotorModel	int		motor model number	
		+	Weight	
MODEL_weight	int	+	77.00	2
Wmotor	real	+		0.
		+	motor weight, W_{motor} vs P_{0C} model ($W = K_{0\text{motor}} + K_{1\text{motor}}P + K_{2\text{motor}}P^{X_{\text{motor}}}$)	
Kwt0_motor	real	+	constant $K_{0\mathrm{motor}}$	0.
Kwt1 motor	real	+	constant $K_{1 m motor}$	0.

motor weight, $W_{
m motor}$ vs $Q_{
m peak}$ model torque-to-weight design (0 only high Q/W; 1 high Q/W, 2 low Q/W factor)

constant K_{2motor}

exponent X_{motor}

Custom Weight Model

parameters

Structure: MotorModel 279

		+	Parameters	
		+	Motor Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
$P0_{ref(nratemax)}$	real	+	power (P_0)	0.
$Ppeak_ref(nratemax)$	real	+	mechanical limit of power (P_{peak})	
Nspec_ref	real	+	specification motor speed $(N_{\rm spec})$	
			Derived ratios	
rP0(nratemax)	real		$power (P_{0R}/P_{0C})$	
rPpeak(nratemax)	real		mechanical limit of power $(P_{\text{peak}R}/P_{0C})$	
			Reference Motor Rating: SLS, static if MCP scaled, ratios to MCP values kept constant motor rating: match rating designation in FltState	
		+	Performance	
		+	Motor/Generator Efficiency	
KIND_eff	int	+	kind (1 fixed, 2 function power, 3 map)	2
_		+	fixed or function power	
eta motor	real	+	reference efficiency (at $P_{\rm eng}$)	1.00
loss motor	real	+	power loss (fraction $P_{\rm eng}$)	0.00
_		+	efficiency map $(P_{\text{loss}} = P_{\text{eng}} f_{\text{loss}} \sum_{i=0}^{3} \sum_{j=0}^{3} C_{ij} t^{i} n^{j})$	
Closs(4,4)	real	+	loss coefficients Closs $(i+1,j+1) = C_{ij}$	0.00
floss	real	+	factor $f_{\rm loss}$	1.00
eta cont	real	+	controller efficiency	1.00
_			•	

Structure: MotorModel	280

		+	Fuel Cell	
sfc0C	real	+	specific fuel consumption at MCP (sfc_{0C})	0.
Kmf	real	+	mass flow ratio (\dot{m}/\dot{w})	86.
KIND_eff_cell	int	+	efficiency kind (1 fixed, 2 function power)	2
eta_cell	real	+	reference efficiency (at $P_{\rm eng}$)	1.00
loss_cell	real	+	power loss (fraction $P_{\rm eng}$)	0.00
		+	Scaling	
KNspec	real	+	specification motor speed variation (K_{Ns})	0.
KNbase	real	+	base motor speed variation (K_{Nb})	0.

 $N_{
m spec}$ used by efficiency map; $N_{
m base}$ affects $P_{
m peak}$ scaling for no variation of motor speeds with scale, use KNspec = KNbase = 0.

Structure: JetModel

Variable	Type		Description	Default
		+	Jet Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Jet'
			jet identification: used by IDENT_jet of JetGroup input installed: thrust available T_{av} , thrust required T_{req}	
			uninstalled: thrust available T_a , thrust required T_q	
			"0" = SLS static; " C " = MCT	
			mass flow = thrust / specific thrust ($ST = T/\dot{m}$); fuel flow = specific fuel consumption * thrust (sfc = \dot{w}/T)	
			jet model can be used by more than one jet group, so all parameters fixed	
			as model for reaction drive of convertible engine: only use sfc0C_ref and parameters for thrust available and performance at thrust required T0_ref and ST0_ref required, but not used; weight, ratings, technology, and scaling variables not used	

kJetModel	int		jet model number	
		+	Weight	
MODEL_weight	int	+	RPJEM model (0 fixed, 1 $W(T)$)	1
Wjet	real	+	jet weight (fixed)	0.
		+	jet weight, W_{jet} vs T_{0C} model ($W = K_{0\text{jet}} + K_{1\text{jet}}T + K_{2\text{jet}}T^{X_{\text{jet}}}$)	
Kwt0_jet	real	+	constant $K_{0 m jet}$	0.
Kwt1_jet	real	+	constant $K_{1 m jet}$	0.2

Structure: JetModel 282

Kwt2_jet	real	+	constant $K_{ m 2jet}$	0.
Xwt_{jet}	real	+	exponent X_{jet}	0.
		+	Custom Weight Model	
$WtParam_jet(8)$	real	+	parameters	0.
		+	Parameters	
		+	Jet Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCT'
krateC	int		MCT rating number	
		+	Reference	
$T0_{ref(nratemax)}$	real	+	thrust (T_0)	0.
ST0_ref(nratemax)	real	+	specific thrust (ST_0)	
Tmech_ref(nratemax)	real	+	mechanical limit of thrust (T_{mech})	
sfc0C_ref	real	+	specific fuel consumption at MCT (sfc_{0C})	
			Derived ratios	
rT0(nratemax)	real		thrust (T_{0R}/T_{0C})	
rST0(nratemax)	real		specific thrust (ST_{0R}/ST_{0C})	
rTmech(nratemax)	real		mechanical limit of thrust $(T_{\mathrm{mech}R}/T_{0C})$	
			Reference Jet Rating: SLS, static	
			if MCT scaled, ratios to MCT values kept constant	
			jet rating: match rating designation in FltState	
		+	Technology	
ST0C_tech	real	+	specific thrust at MCT ST_{tech} (0. for ST0_ref(MCT))	0.
sfc0C_tech	real	+	specific fuel consumption at MCT sfc_{tech} (0. for $sfc0C_ref$)	0.
		+	Scaling	
FIX_size	int	+	engine size (0 scaled, 1 fixed)	0
MF_limit	real	+	mass flow at limit ST and $\mathrm{sfc}\ (\dot{m}_{\mathrm{lim}})$	0.
ST0C_limit	real	+	specific thrust limit $ST_{ m lim}$	0.
-f-0C l::+	ma a 1		ansaifa fual consumntian limit afa	

specific fuel consumption limit ${
m sfc_{lim}}$

 $sfc0C_limit$

real

Structure: JetModel 283

		Derived scaling	
		specific thrust available (SLS static, MCT), ST_{0C} vs \dot{m}_{0C}	
T0C_limit	real	thrust limit	
Kst0	real	K_{st0}	
Kst1	real	K_{st1}	
		specific fuel consumption (SLS static, MCT), sfc_{0C} vs \dot{m}_{0C}	
Ksfc0	real	K_{sfc0}	
Ksfc1	real	K_{sfc1}	
		ST and sfc functions are defined by values ST0C_tech, sfc0C_tech, $\dot{m}_{\rm tech}$ =T0C_ref/ST0C_tech	
		and limits STOC_limit, sfcOC_limit, MF_limit	
		defaults ST0C_tech=ST0_ref(MCT), sfc0C_tech=sfc0C_ref	
		require $\dot{m}_{\rm tech} < \dot{m}_{\rm lim}$ (otherwise get $ST_{0C} = {\sf ST0C_tech}$ and ${\rm sfc}_{0C} = {\sf sfc0C_tech}$)	
		for no variation of ST and sfc with scale, use FIX_size=1 or MF_limit=0.	

bypass	real	+	Turbofan bypass ratio (0. for turbojet)	0.	
		+	Thrust Available		
		+	referred specific thrust available, ST_a/ST_0		
Xsta	real	+	exponent X_{sta}	1.	
		+	referred mass flow at thrust available, \dot{m}_a/\dot{m}_0		
Xmfa	real	+	exponent X_{mfa}	1.	
		+	Performance at Thrust Required		
		+	referred fuel flow at thrust required, $\dot{w}_{req}/\dot{w}_{0C}$ vs T_q/T_{0C}		
Kffq0	real	+	constant K_{ffq0}	0.	
Kffq1	real	+	constant K_{ffq1}	1.	
Kffq2	real	+	constant K_{ffq2}	0.	
Xffq	real	+	exponent X_{ffq}	1.	
		+	referred mass flow at thrust required, $\dot{m}_{req}/\dot{m}_{0C}$ vs T_q/T_{0C}		
Kmfq	real	+	constant K_{mfq} (0, 1, or 1/2)	1.	
Xmfq	real	+	exponent X_{mfq}	1.	

Structure: FuelCellModel

Variable	Type		Description	Default
		+	Fuel Cell Model	
title	c*100		title	'Default'
notes	c*1000) +	notes	
ident	c*16	+	identification	'Cell'
			fuel cell identification: used by IDENT_charge of ChargerGroup input	
			"0" = SLS static; "C" = MCP	
			fuel cell model can be used by more than one charger group, so all parameters fixed	
kFuelCellModel	int		fuel cell model number	
		+	Weight	
$MODEL_weight$	int	+	$\operatorname{model}(0 \operatorname{fixed}, 1 W(P))$	1
Wcell	real	+	fuel cell weight (fixed)	0.
		+	fuel cell weight, W_{cell} vs P_{0C} model ($W = K_{0\text{cell}} + K_{1\text{cell}}P + K_{2\text{cell}}P^{X_{\text{cell}}}$)	
Kwt0_cell	real	+	constant $K_{ m 0cell}$	0.
Kwt1_cell	real	+	constant $K_{ m 1cell}$	0.
Kwt2_cell	real	+	constant $K_{ m 2cell}$	0.
Xwt_cell	real	+	exponent X_{cell}	0.
		+	Custom Weight Model	
$WtParam_fuelcell(8)$	real	+	parameters	0.

Structure: FuelCellModel 285

		+	Parameters	
		+	Fuel Cell Ratings	
nrate	int	+	number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+	rating designations	'MCP'
krateC	int		MCP rating number	
		+	Reference	
P0_ref(nratemax)	real	+	power (P_0)	0.
sfc0C_ref	real	+	specific fuel consumption at MCP (sfc_{0C})	0.
			Derived ratios	
rP0(nratemax)	real		power (P_{0R}/P_{0C})	
			Reference Fuel Cell Rating: SLS, static	
			if MCP scaled, ratios to MCP values kept constant	
			fuel cell rating: match rating designation in FltState	
		+	Performance	
Kmf	real	+	mass flow ratio (\dot{m}/\dot{w})	86.
		+	Efficiency	
KIND_eff	int	+	kind (1 fixed, 2 function power)	2
eta_cell	real	+	reference efficiency (at $P_{\rm chrg}$)	1.00
loss_cell	real	+	power loss (fraction $P_{\rm chrg}$)	0.00

Structure: SolarCellModel

Variable	Type	Description	Default
title notes	c*100 c*1000	+ Solar Cell Model + title + notes	'Default'
ident		+ identification	'Cell'
		solar cell identification: used by IDENT_charge of ChargerGroup input "0" = SLS static; "C" = MCP	
		solar cell model can be used by more than one charge group, so all parameters fixed	
kSolarCellModel	int	solar cell model number	
		+ Weight	
MODEL_weight	int	+ $\operatorname{model}(0 \operatorname{fixed}, 1 W(A))$	1
Wsolar	real	+ solar cell weight (fixed)	0.
ssolar	real	+ weight density (kg/m^2)	
WtParam_solarcell(8)	real	+ Custom Weight Model + parameters	0.
vvtFaram_solarcell(o)	icai	+ parameters	0.
		+ Parameters	
		+ Solar Cell Ratings	
nrate	int	+ number of ratings (maximum nratemax)	1
rating(nratemax)	c*12	+ rating designations	'MCP'
krateC	int	MCP rating number	

287

+ Performance

esolar real + power density (W/m^2)

Structure: SolarCellModel

+ Efficiency

KIND_eff int + kind (1 fixed, 2 function power) 2 eta_cell real + reference efficiency (at $P_{\rm chrg}$) 1.00

loss_cell real + power loss (fraction $P_{\rm chrg}$) 0.00

Structure: BatteryModel

Variable	Type		Description	Default
		+	Battery Model	
title	c*100	+	title	'Default'
notes	c*1000	+	notes	
ident	c*16	+	identification	'Battery'
			battery identification: used by IDENT_battery of FuelTank input	
			battery model can be used by more than one fuel tank system, so all parameters fixed	
kBatteryModel	int		battery model number	
MODEL hottom	int	+	Performance model (1 agriculant circuit 2 lithium ion)	1
MODEL_battery Vref	real	+	model (1 equivalent circuit, 2 lithium-ion) reference voltage $V_{\rm ref}$	1 4.2
xmbd	real	+	maximum burst discharge current x_{mbd} (1/hr)	20.
xCCmax	real	+	maximum charge current x_{mbd} (1/hr)	20. 4.
ACCIIIAA	icai		Derived performance	т.
CfromE	real		charge capacity C (A-hr) from energy capacity (MJ); $(10^6/3600)$ /Vref	
PfromE	real		power capacity P (hp or kW) from energy capacity (MJ); xmdb/Econv_dE	
		+	Equivalent Circuit Model	
KIND_eff	int	+	kind (1 fixed, 2 function power)	2
		+	discharge	
eta_dischrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_dischrg	real	+	power loss (fraction $P_{\rm ref}$)	0.00

Structure: BatteryModel 289

		+	charge	
eta_chrg	real	+	reference efficiency (at $P_{\rm ref}$)	1.00
loss_chrg	real	+	power loss (fraction $P_{\rm ref}$)	0.00
		+	Lithium-Ion Model	
		+	discharge	
fcrit	real	+	critical voltage factor ($F_V = f_{\text{crit}}$ is capacity)	0.6
fd	real	+	nominal discharge voltage ($V_d = f_d V_{\text{ref}}$)	1.0
		+	open circuit voltage ratio ($V_o = V_d F_V(d)$)	
nFV	int	+	number of points (maximum 40)	0
DoD(40)	real	+	depth-of-discharge d (fraction)	0.
FV(40)	real	+	F_V	0.
Tref	real	+	reference temperature $T_{\rm ref}$ (deg C)	20.
fTC	real	+	temperature control power loss f_{TC} (fraction component power)	0.01
		+	current influence on discharge voltage	
R	real	+	internal resistance $x_{mbd}CR/V_{ref}$	0.1
kdl	real	+	depth-of-discharge $k_{dI}x_{mbd}C$	0.05
		+	temperature influence on discharge voltage	
kVT	real	+	voltage increment k_{VT}	0.005
kdT	real	+	depth-of-discharge k_{dT}	0.000005
		+	charge	
fc	real	+	nominal charge voltage ($V_c = f_c V_{ref}$)	1.0
kcV	real	+	CC phase starting voltage decrement k_{cV}	0.1
ks	real	+	CV phase parameter k_{σ}	0.2
			Derived lithium-ion discharge	
DoDrev(40)	real		reversed DoD	
FVrev(40)	real		reversed FV	

open circuit voltage ratio: monotonically decreasing; default used if nFV=0 default DoD = 0.,1,2,3,4,5,6,7,8,9,91,92,93,94,95,96,97,98,99,1,1.01,1.02 default FV = 1,,97,95,93,915,90,89,88,87,85,847,842,835,826,815,8,78,75,7,6,4,0.

Chapter 83

Structure: Location

Variable	Type		Description	Default
		+	Location	
		+	input	
		+	fixed (dimensional, arbitrary origin)	
FIX_geom	c*8	+	input	, ,
SL	real	+	stationline	
BL	real	+	buttline	
WL	real	+	waterline	
		+	scaled (based on reference length, from reference point)	
XoL	real	+	x/L	
YoL	real	+	y/L	
ZoL	real	+	1 =	
		+	reference length	
KIND_scale	int	+	kind (0 global, 1 rotor radius, 2 wing span, 3 fuselage length)	0
kScale	int	+	11 10 11 1	1

```
Fixed input: FIX_geom = 'x', 'y', 'z' (or combination) to override INPUT_geom=2

Geometry: Location for each component

fixed geometry input (INPUT_geom = 1): dimensional SL/BL/WL

stationline + aft, buttline + right, waterline + up; arbitary origin; units = ft or m

scaled geometry input (INPUT_geom = 2): divided by reference length (KIND_scale, kScale)

XoL + aft, YoL + right, ZoL + up; from reference point

option to fix some geometry (FIX_geom in Location override INPUT_geom)

option to specify reference length (KIND_scale in Location override global KIND_scale)

Reference point: KIND_Ref, kRef; input dimensional XX_Ref, or position of identified component component reference must be fixed

Locations can be calculated from other parameters (configuration specific)
```

Structure: Location 291

```
Derived
                                               input, from Aircraft%INPUT geom and FIX geom (1 fixed; 2 scaled)
INPUT_geom_x
                              int
                                                   \boldsymbol{x}
INPUT geom y
                              int
                                                   y
INPUT_geom_z
                              int
                                               from Aircraft%INPUT geom and FIX geom (0 calculated, 1 fixed, 2 scaled)
FIX x
                              int
FIX y
                              int
                                                   y
FIX z
                              int
                                                   all fixed (0 not, some scaled or calculated)
isFixed
                              int
                                               fixed (dimensional, arbitrary origin)
SLloc
                                                   stationline
                              real
BLloc
                              real
                                                   buttline
                                                   waterline
WLloc
                              real
                                               scaled (based on reference length, from reference point)
XoLloc
                              real
                                                   x/L
                                                  y/L
YoLloc
                              real
                                                   z/L
ZoLloc
                              real
                                               reference length
                                                  from Aircraft%KIND_scale and KIND_scale (1 rotor radius, 2 wing span, 3 fuselage length)
KIND scale loc
                              int
                                                   from Aircraft%kScale and kScale (component number)
kScale loc
                              int
                                                   reference length
scale
                              real
                                                FIX = 0: x calculation depends on component/configuraton; calc SLloc and XoLloc
                                                FIX = 1: x from SLloc; calc XoLloc
                                                FIX = 2: x from XoLloc; calc SLloc
```

```
Geometry (dimensional, body axes, relative reference point)
```

Variable	Type	Description	Default
WE	real	WEIGHT EMPTY	
W_structure	real	STRUCTURE	
W_wing	real	wing group	
W_wing_basic	real	basic structure	
W_wing_secondary	real	secondary structure	
W_wing_fair	real	fairings (not RP8A)	
W_{wing_fit}	real	fittings (not RP8A)	
W_{wing_fold}	real	fold/tilt (not RP8A)	
$W_{wing_control}$	real	control surfaces	
W_rotor	real	rotor group	
W_{rotor_blade}	real	blade assembly	
W_{rotor_hub}	real	hub & hinge	
W_rotor_basic	real	basic (not RP8A)	
W_{rotor_shaft}	real	inter-rotor shaft (not RP8A)	
W_rotor_fair	real	fairing/spinner (not RP8A)	
W_{rotor_fold}	real	blade fold (not RP8A)	
W_{rotor_supt}	real	rotor support structure (not RP8A)	
W_{rotor_duct}	real	duct (not RP8A)	
W_tail	real	empennage group	
W_Htail	real	horizontal tail (not RP8A)	
W_Htail_basic	real	basic (not RP8A)	
W_Htail_fold	real	fold (not RP8A)	
W_Vtail	real	vertical tail (not RP8A)	
W_Vtail_basic	real	basic (not RP8A)	
W_Vtail_fold	real	fold (not RP8A)	
$W_{tailrotor}$	real	tail rotor (not RP8A)	
W_{tr}	real	blades	
W_tr_hub	real	hub & hinge	

W_tr_supt	real	rotor supports
W_{tr}_{duct}	real	rotor/fan duct
$W_fuselage$	real	fuselage group
W_fus_basic	real	basic (not RP8A)
$W_fus_wingfold$	real	wing & rotor fold/retraction (not RP8A)
$W_fus_tailfold$	real	tail fold/tilt (not RP8A)
W_fus_mar	real	marinization (not RP8A)
W_fus_press	real	pressurization (not RP8A)
W_fus_crash	real	crashworthiness (not RP8A)
W_gear	real	alighting gear group
W_gear_basic	real	basic (not RP8A)
$W_gear_retract$	real	retraction (not RP8A)
W_gear_crash	real	crashworthiness (not RP8A)
$W_nacelle$	real	engine section or nacelle group
$W_nac_engsupt$	real	engine support (not RP8A)
$W_nac_cowling$	real	engine cowling (not RP8A)
W_nac_pylon	real	pylon support (not RP8A)
W_airind	real	air induction group
$W_propulsion$	real	PROPULSION GROUP
W_{engsys}	real	engine system
W_engine	real	engine
W_exhaust	real	exhaust system
W_acc	real	accessories (not RP8A)
$W_propeller$	real	propeller/fan installation
W_prop_blade	real	blades (not RP8A)
W_prop_hub	real	hub & hinge (not RP8A)
W_prop_supt	real	rotor supports (not RP8A)
W_prop_duct	real	rotor/fan duct (not RP8A)
$W_fuelsys$	real	fuel system
W_fuel_tank	real	tanks and support
W_fuel_plumb	real	plumbing
W_drive	real	drive system
W_drive_box	real	gear boxes
_		•

W_drive_rtrsft	real	rotor shaft
W_drive_brake	real	rotor brake (not RP8A)
W_drive_clutch	real	clutch (not RP8A)
W_drive_gas	real	gas drive
W_equip	real	SYSTEMS AND EQUIPMENT
$W_fltcont$	real	flight controls group
W_fc_cockpit	real	cockpit controls
W_fc_afcs	real	automatic flight control system
W_fc_system	real	system controls
W_fc_fw	real	fixed wing systems
$W_fc_fw_nonboost$	real	non-boosted (not RP8A)
$W_fc_fw_mech$	real	boost mechanisms (not RP8A)
W_fc_rw	real	rotary wing systems
$W_fc_rw_nonboost$	real	non-boosted (not RP8A)
$W_fc_rw_mech$	real	boost mechanisms (not RP8A)
$W_fc_rw_boost$	real	boosted (not RP8A)
W_fc_cv	real	conversion systems
$W_fc_cv_nonboost$	real	non-boosted (not RP8A)
$W_fc_cv_mech$	real	boost mechanisms (not RP8A)
W_auxpower	real	auxiliary power group
$W_{instrument}$	real	instruments group
$W_hydraulic$	real	hydraulic group
W_hyd_fw	real	fixed wing (not RP8A)
W_hyd_rw	real	rotary wing (not RP8A)
W_hyd_cv	real	conversion (not RP8A)
W_hyd_eq	real	equipment (not RP8A)
$W_pneumatic$	real	pneumatic group
$W_{electrical}$	real	electrical group
$W_{elect_aircraft}$	real	aircraft (not RP8A)
W_{elect_deice}	real	anti-icing (not RP8A)
W_avionics	real	avionics group (mission equipment)
W_arm	real	armament group
$W_armprov$	real	armament provisions (not RP8A)
W_{armor}	real	armor (not RP8A)

W furnish	real	furnishings & equipment group
W environ	real	environmental control group
W_deice	real	anti-icing group
W load	real	load & handling group
W vib	real	VIBRATION (not RP8A)
W_cont	real	CONTINGENCY
W_fixUL	real	FIXED USEFUL LOAD
$W_{fix}UL_{crew}$	real	crew
$W_{fix}UL_{fluid}$	real	fluids (oil, unusable fuel) (not RP8A)
W_fixUL_auxtank	real	auxilary fuel tanks
$W_{fix}UL_{other}$	real	other fixed useful load (not RP8A)
W_fixUL_equip	real	equpment increment (not RP8A)
$W_fixUL_foldkit$	real	folding kit (not RP8A)
W_fixUL_extkit	real	wing extension kit (not RP8A)
W_fixUL_wingkit	real	wing kit (not RP8A)
$W_fixUL_otherkit$	real	other kit (not RP8A)
Wpayload	real	PAYLOAD
Wfuel	real	USABLE FUEL
$Wfuel_std$	real	standard tanks (not RP8A)
Wfuel_aux	real	auxiliary tanks (not RP8A)
Wscaled	real	scaled weight (sum all K=3 in operating weight)
Wfixed	real	fixed weight (sum all K=2 in operating weight)
Wfeature	real	military features in empty weight
WO	real	OPERATING WEIGHT = weight empty + fixed useful load
WUL	real	USEFUL LOAD = fixed useful load + payload + usable fuel
GW	real	GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel

follows SAWE RP8A Group Weight Statement, except as noted typical only lowest elements of hierarchy specified, others obtained by summation

set status flag when define weight

can define weights (k=2 or 3) at any level, ignore child weights if not lowest level when print weight statement, designate all fixed (ie input) quantities

usage:

set all W=K=0; put W, with K=2 or 3

then fill structure: if K=0 and some child defined/sum, then $W=\sum$ (child) and K=1 addition or increment sums all elements, with status Kt of total as follows

	Ka =	0	1	2	3
Kb = 0		0	1	2	3
Kb = 1		1	1	3	3
Kb = 2		2	3	2	3
Kb = 3		3	3	3	3

Status (0 none; 1 sum of child; 2 defined, fixed (input); 3 defined, not fixed (scaled, wt eq; or composite))

```
ΚE
                                           WEIGHT EMPTY
                              int
                                              STRUCTURE
K_structure
                              int
K_wing
                                                  wing group
                              int
                                                      basic structure
K_wing_basic
                              int
K_wing_secondary
                                                      secondary structure
                              int
K_wing_fair
                                                          fairings (not RP8A)
                              int
                                                          fittings (not RP8A)
K_wing_fit
                              int
                                                          fold/tilt (not RP8A)
K wing fold
                              int
K_wing_control
                                                      control surfaces
                              int
K rotor
                              int
                                                  rotor group
                                                      blade assembly
K rotor blade
                              int
                                                      hub & hinge
K rotor hub
                              int
K_rotor_basic
                              int
                                                          basic (not RP8A)
                                                          inter-rotor shaft (not RP8A)
K rotor shaft
                              int
                                                          fairing/spinner (not RP8A)
K rotor fair
                              int
K rotor fold
                                                          blade fold (not RP8A)
                              int
                                                      rotor support structure (not RP8A)
K_rotor_supt
                              int
                                                      duct (not RP8A)
K_{rotor\_duct}
                              int
K tail
                              int
                                                  empennage group
                                                      horizontal tail (not RP8A)
K_Htail
                              int
```

K_Htail_basic	int	basic (not RP8A)
K_Htail_fold	int	fold (not RP8A)
K_Vtail	int	vertical tail (not RP8A)
K_Vtail_basic	int	basic (not RP8A)
K_Vtail_fold	int	fold (not RP8A)
$K_{tailrotor}$	int	tail rotor (not RP8A)
K_{tr} blade	int	blades
$K_{tr}hub$	int	hub & hinge
K_{tr}	int	rotor supports
K_{tr}_{duct}	int	rotor/fan duct
$K_{fuselage}$	int	fuselage group
K_fus_basic	int	basic (not RP8A)
$K_fus_wingfold$	int	wing & rotor fold/retraction (not RP8A)
$K_fus_tailfold$	int	tail fold/tilt (not RP8A)
K_fus_mar	int	marinization (not RP8A)
K_fus_press	int	pressurization (not RP8A)
K_fus_crash	int	crashworthiness (not RP8A)
K_{gear}	int	alighting gear group
K_gear_basic	int	basic (not RP8A)
$K_{gear_retract}$	int	retraction (not RP8A)
K_{gear_crash}	int	crashworthiness (not RP8A)
$K_nacelle$	int	engine section or nacelle group
$K_nac_engsupt$	int	engine support (not RP8A)
$K_nac_cowling$	int	engine cowling (not RP8A)
K_nac_pylon	int	pylon support (not RP8A)
K_airind	int	air induction group
$K_propulsion$	int	PROPULSION GROUP
K_engsys	int	engine system
K_engine	int	engine
$K_{exhaust}$	int	exhaust system
K_acc	int	accessories (not RP8A)
$K_propeller$	int	propeller/fan installation
K_prop_blade	int	blades (not RP8A)
K_prop_hub	int	hub & hinge (not RP8A)

K_prop_supt	int	rotor supports (not RP8A)
K_prop_duct	int	rotor/fan duct (not RP8A)
$K_fuelsys$	int	fuel system
K_fuel_tank	int	tanks and support
K_fuel_plumb	int	plumbing
K_drive	int	drive system
K_drive_box	int	gear boxes
K_drive_xmsn	int	transmission drive
K_drive_rtrsft	int	rotor shaft
K_drive_brake	int	rotor brake (not RP8A)
K_drive_clutch	int	clutch (not RP8A)
K_drive_gas	int	gas drive
K_equip	int	SYSTEMS AND EQUIPMENT
$K_fltcont$	int	flight controls group
$K_{fc_cockpit}$	int	cockpit controls
K_fc_afcs	int	automatic flight control system
K_{fc_system}	int	system controls
K_fc_fw	int	fixed wing systems
$K_fc_fw_nonboost$	int	non-boosted (not RP8A)
$K_fc_fw_mech$	int	boost mechanisms (not RP8A)
K_fc_rw	int	rotary wing systems
$K_{fc_rw_nonboost}$	int	non-boosted (not RP8A)
$K_{fc_rw_mech}$	int	boost mechanisms (not RP8A)
$K_{fc_rw_boost}$	int	boosted (not RP8A)
K_fc_cv	int	conversion systems
$K_{fc}_{cv}_{nonboost}$	int	non-boosted (not RP8A)
$K_{fc}_{cv}_{mech}$	int	boost mechanisms (not RP8A)
$K_auxpower$	int	auxiliary power group
$K_{instrument}$	int	instruments group
$K_hydraulic$	int	hydraulic group
K_hyd_fw	int	fixed wing (not RP8A)
K_hyd_rw	int	rotary wing (not RP8A)
K_hyd_cv	int	conversion (not RP8A)
K_hyd_eq	int	equipment (not RP8A)

K pneumatic	int	pneumatic group
K electrical	int	electrical group
K_elect_aircraft	int	aircraft (not RP8A)
K_elect_deice	int	anti-icing (not RP8A)
K avionics	int	avionics group (mission equipment)
K_arm	int	armament group
K_armprov	int	armament group armament provisions (not RP8A)
- '	int	armor (not RP8A)
K_armor		
K_furnish	int :	furnishings & equipment group
K_environ	int	environmental control group
K_deice	int	anti-icing group
K_load	int	load & handling group
K_vib	int	VIBRATION (not RP8A)
K_{cont}	int	CONTINGENCY
$K_{fix}UL$	int	FIXED USEFUL LOAD
K_fixUL_crew	int	crew
K_fixUL_fluid	int	fluids (oil, unusable fuel) (not RP8A)
$K_fixUL_auxtank$	int	auxilary fuel tanks
K_fixUL_other	int	other fixed useful load (not RP8A)
K_fixUL_equip	int	equipment increment (not RP8A)
$K_fixUL_foldkit$	int	folding kit (not RP8A)
$K_{fix}UL_{extkit}$	int	wing extension kit (not RP8A)
K_fixUL_wingkit	int	wing kit (not RP8A)
K fixUL otherkit	int	other kit (not RP8A)
Kpayload	int	PAYLOAD
Kfuel	int	USABLE FUEL
Kfuel std	int	standard tanks (not RP8A)
Kfuel_aux	int	auxiliary tanks (not RP8A)
KO	int	OPERATING WEIGHT = weight empty + fixed useful load
KUL	int	USEFUL LOAD = fixed useful load + payload + usable fuel
KGW	int	GROSS WEIGHT = weight empty + useful load = operating weight + payload + usable fuel
·· ·· ··		operating weight abuse rules