

Few-shot object detection using self-supervised learning

STUDENT TEAM: Daniel Reisenbüchler, Daniel Sens, Onat Sahin, Rahul PS

SCIENTIFIC LEAD: Mathias Sundholm Hamdi Belhassen

PROJECT LEAD: Dr. Ricardo Acevedo Cabra

TUM CO-MENTOR: Michael Rauchensteiner

High-level project description - Recap

Recap object detection - 2 stage training process

Problem description - task environments

even fine-tuning needs hundreds of labeled examples to yield high accuracies

Problem description - task environments

C_label specific customer data and finetune the model again and again

PROBLEM: domain shift for every new customer.

different customers - different task environments

Problem description - task environments

Feature extractor trained on a general dataset like lmageNet may not be suitable

Images from PreciBake

Images from ImageNet

Problem description - proposed solutions

PROBLEM 1: A good embedding that works well with task environments is necessary

SOLUTION: Use self-supervised learning to pre-train a backbone with unlabeled images similar to task environment.

(For example: Food images instead of ImageNet)

Use Faster R-CNN to experiment on backbones

PROBLEM 2: Fine-tuning for new task environments should be effortless

SOLUTION: Use few-shot object detectors

Use the backbones obtained with Attention-RPN with Multi Relation Detector

Faster R-CNN for Object Detection^[1]

Experiments on Self-Supervised Backbones for Faster RCNN (with ResNet50)

Overview of **Experiments**

- Dataset ImageNet^[4]
- [1] Mathilde Caron, et al. "Emerging Properties in Self-Supervised Vision Transformers." (2021). [2] Enze Xie, et al. "DetCo: Unsupervised Contrastive Learning for Object Detection." (2021).
- [3] Tsung-Yi Lin et al. Feature Pyramid Networks for Object Detection. (2017).
- [4] Olga Russakovsky et al. "ImageNet Large Scale Visual Recognition Challenge". In: International Journal of Computer Vision (IJCV) 115.3 (2015),

DINO: Self-distillation with no labels^[1]

- Student and Teacher network have the same architecture
- Student network weights updated by SGD
- Teacher network updated by ema of the student weights

$$\theta_t \leftarrow \lambda \theta_t + (1 - \lambda)\theta_s$$

$$P_s(x)^{(i)} = \frac{\exp(g_{\theta_s}(x)^{(i)}/\tau_s)}{\sum_{k=1}^K \exp(g_{\theta_s}(x)^{(k)}/\tau_s)}$$

Centering to prevent collapse

$$g_t(x) \leftarrow g_t(x) + c$$

$$c \leftarrow mc + (1 - m)\frac{1}{B} \sum_{i=1}^{B} g_{\theta_t}(x_i)$$

[1] Mathilde Caron, et al. "Emerging Properties in Self-Supervised Vision Transformers." (2021).

DetCo: Unsupervised Contrastive Learning for Object Detection^[2]

$$\mathcal{L}(\mathbf{I}_q, \mathbf{I}_k, \mathbf{P}_q, \mathbf{P}_k) = \sum_{i=1}^4 w_i \cdot (\mathcal{L}_{g \leftrightarrow g}^i + \mathcal{L}_{l \leftrightarrow l}^i + \mathcal{L}_{g \leftrightarrow l}^i)$$

- It is important to have strong discriminative ability at each stage of the network
- Local patch features are as important as global representations of an image

Momentum Contrast (MoCo)[3]

$$\mathcal{L}_{g \leftrightarrow g}(\mathbf{I}_q, \mathbf{I}_k) = -\log \frac{\exp(q^g \cdot k_+^g / \tau)}{\sum_{i=0}^K \exp(q^g \cdot k_i^g / \tau)}$$

^[2] Enze Xie, et al. "DetCo: Unsupervised Contrastive Learning for Object Detection." (2021).

^[3] Kaiming He et al. Momentum Contrast for Unsupervised Visual Representation Learning. (2020)

Metrics for Object Detection


```
for classes in [1 :1 :K]

for T \in \{0.50\} \mid \mid \{0.75\}

Calculate AP

mAP = AP/K
```

IOU > Threshold **T** → True Positive

Solving Problem 1: Self-Supervised Learning

Insight 1

It is important for backbones to preserve spatial context for object detection. DINO (which uses contrastive losses between different image crops) performs poorer than DetCO, which uses multi-stage contrastive losses in global as well as local patch scales.

Pre-training for object classification may not translate to object detection.

Solving Problem 1: Self-Supervised Learning

Insight 2

Using FPN with ResNet speeds up training significantly, while giving similar performance for the same amount of epochs.

Feature Pyramid Network

Backbone	Training time per epoch	
Faster RCNN without FPN	11 hours	
Faster RCNN FPN	~ 4 hours	

Overview

feature extractor initialized with self-supervised pretrained weights

Attention in subsequent stages

MoBY - SSL for Swin-T

Swin Transformer + FPN and Visualization

Results: SSL in object detection

feature extractor initialized with self-supervised pretrained weights

Backbone	Initialization	AP
ResNet50 + FPN	supervised	37.93
ResNet50 + FPN	self-supervised (DetCo)	30.18
Swin-T + FPN	supervised	38.89
Swin-T + FPN	self-supervised (MoBY)	38.91

Overview

feature extractor initialized with self-supervised pretrained weights

feature extractor initialized self-supervised + change Faster-RCNN to FSOD setup (fixed)

Few-shot object detection

- ullet Given two sets of categories \mathcal{C}_{base} and \mathcal{C}_{novel} , where $\mathcal{C}_{base} \cap \mathcal{C}_{novel} = \varnothing$
- ullet Detect objects of $\mathcal{C}_{base}\cup\mathcal{C}_{novel}$ by learning from datasets \mathcal{D}_{base} and \mathcal{D}_{novel}
- ullet \mathcal{D}_{base} contains abundant annotated instances of \mathcal{C}_{base} (e.g. 500k instances)
- \mathcal{D}_{novel} contains K annotated instances of $|\mathcal{C}_{novel}|=N$ categories, where typically $K\in[1,30]\cap\mathbb{N}$
- ullet Used model trains only on \mathcal{D}_{base} and at test time utilizes $\mathcal{D}_{support} = \mathcal{D}_{novel}$

FSOD - Detection Head

Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector, Qi Fan, et al., 2020

Attention RPN

Rol Pooling

FSOD - Experiments

Detection head Feature Extractor Attention RPN and ResNet-50 Multi-relation detector SSL method DetCo Attention RPN and Swin Transformer FPN Multi-relation detector SSL method MoBY

FSOD - Problems

- Froze the first 2 stages of each backbone
 - => Low level features do not change during training
 - => Causes poor generalisation to novel Classes
- SwinT with batch size 2 and ResNet50 with batch size 4
 - => gradient has very high variance
 - => need to reduce LR to compensate for it, but then we learn very slow
- Attention RPN is hardcoded w.r.t. Its expected input

FSOD - Conclusion

- We showed that general object detection can benefit from SSL
 - => Usability of self-supervised method depends on the target task
 - => Could be further improved if SSL is applied to target data
- We tried to assess if FSOD could also benefit from SSL
 - => need more computational resources for efficient research
 - => research in this topic still in early stages
 - =>could be used as a label support tool

Thank you! Questions?