Package 'NlsyLinks'

January 13, 2013

2 NIsyLinks-package

Nlsyl	nks-package Utilities and kinship information for Behavior Genetics and Develomental research using the NLSY.	p-
Index		30
	ValidatePairLinksAreSymmetric	. 28
	ValidatePairLinks	
	ValidateOutcomeDataset	
	SubjectDetails79	. 24
	RGroupSummary	
	ReadCsvNlsy79	. 21
	Links79PairExpanded	
	Links79Pair	
	GetEstimate-methods	. 17
	GetDetails-methods	
	ExtraOutcomes79	. 15

Description

Utilities and kinship information for Behavior Genetics and Developmental research using the NLSY.

Details

Package: NlsyLinks
Type: Package
Version: 1.200
Date: 2012-12-18
License: GPL
LazyLoad: yes

An overview of how to use the package, including the most important functions

Note

This package considers both Gen1 and Gen2 subjects. "Gen1" refers to subjects in the original NLSY79 sample (http://www.bls.gov/nls/nlsy79.htm). "Gen2" subjects are the biological children of the Gen1 females -ie, those in the NLSY79 Children and Young Adults sample (http://www.bls.gov/nls/nlsy79ch.htm).

Author(s)

Will Beasley, Joe Rodgers, Kelly Meredith, and David Bard Maintainer: Will Beasley <wibeasley@hotmail.com>

References

This package's development was largely supported by the NIH Grant 1R01HD65865, "NLSY Kinship Links: Reliable and Valid Sibling Identification" (PI: Joe Rodgers)

Ace 3

Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. *Behavior Genetics*, *35* (2), 211-217.

Rodgers, J.L., Bard, D., Johnson, A., D'Onofrio, B., & Miller, W.B. (2008). The Cross-Generational Mother-Daughter-Aunt-Niece Design: Establishing Validity of the MDAN Design with NLSY Fertility Variables. *Behavior Genetics*, *38*, 567-578.

D'Onofrio, B.M., Van Hulle, C.A., Waldman, I.D., Rodgers, J.L., Rathouz, P.J., & Lahey, B.B. (2007). Causal inferences regarding prenatal alcohol exposure and childhood externalizing problems. *Archives of General Psychiatry*, *64*, 1296-1304.

Rodgers, J.L. & Doughty, D. (2000). Genetic and environmental influences on fertility expectations and outcomes using NLSY kinship data. In J.L. Rodgers, D. Rowe, & W.B. Miller (Eds.) *Genetic influences on fertility and sexuality*. Boston: Kluwer Academic Press.

Cleveland, H.H., Wiebe, R.P., van den Oord, E.J.C.G., & Rowe, D.C. (2000). Behavior problems among children from different family structures: The influence of genetic self-selection. *Child Development*, 71, 733-751.

Rodgers, J.L., Rowe, D.C., & Buster, M. (1999). Nature, nurture, and first sexual intercourse in the USA: Fitting behavioural genetic models to NLSY kinship data. *Journal of Biosocial Sciences*, 31.

Rodgers, J.L., Rowe, D.C., & Li, C. (1994). Beyond nature versus nurture: DF analysis of non-shared influences on problem behaviors. *Developmental Psychology*, 30, 374-384.

Examples

```
library(NlsyLinks) #Load the package into the current R session.
data(Links79Pair) #Load the dataset from the NlsyLinks package.
summary(Links79Pair) #Summarize the five variables.
hist(Links79Pair$R) #Display a histogram of the Relatedness values.
table(Links79Pair$R) #Create a table of the Relatedness values for the whole sample.
```

Ace

Estimates the heritability of additive traits using a single variable.

Description

An ACE model is the foundation of most Behavior Genetic research. It estimates the additive heritability (with a), common environment (with c) and unshared heritability/environment (with e).

The AceUnivariate function is a wrapper that calls DeFriesFulkerMethod1 or DeFriesFulkerMethod3. Future versions will incorporate methods that use latent variable models.

Usage

```
AceUnivariate(method=c("DeFriesFulkerMethod1", "DeFriesFulkerMethod3"),
  dataSet, oName_1, oName_2, rName="R",
  manifestScale="Continuous")

DeFriesFulkerMethod1(dataSet, oName_1, oName_2,
  rName="R")

DeFriesFulkerMethod3(dataSet, oName_1, oName_2,
  rName="R")
```

4 Ace

Arguments

m	ethod	The specific estimation technique.
d	ataSet	The data.frame that contains the two outcome variables and the relatedness coefficient (corresponding to oName_1, oName_2, and rName)
0	Name_1	The name of the outcome variable corresponding to the first subject in the pair. This should be a character value.
0	Name_2	The name of theoutcome variable corresponding to the second subject in the pair. This should be a character value.
r	Name	The name of the relatedness coefficient for the pair (this is typically abbreviated as R). This should be a character value.
m	anifestScale	Currently, only continuous manifest/outcome variables are supported.

Value

Currently, a list is returned with the arguments HSquared, CSquared, ESquared, and RowCount. In the future, this may be changed to an S4 class.

Author(s)

Will Beasley

References

Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. *Behavior Genetics*, *35* (2), *211-217*.

Examples

```
library(NlsyLinks) #Load the package into the current R session.
dsOutcomes <- ExtraOutcomes79
dsOutcomes$SubjectTag <- CreateSubjectTag(subjectID=dsOutcomes$SubjectID,</pre>
  generation=dsOutcomes$Generation)
dsLinks <- Links79Pair
dsLinks <- dsLinks[dsLinks$RelationshipPath=='Gen2Siblings', ] #Use only the Gen2 Siblings (ie, NLSY79-C so
dsDF <- CreatePairLinksDoubleEntered(outcomeDataset=dsOutcomes, linksPairDataset=dsLinks,
  outcomeNames=c("MathStandardized", "HeightZGenderAge", "WeightZGenderAge"))
estimatedAdultHeight <- DeFriesFulkerMethod3(</pre>
  dataSet=dsDF.
  oName_1="HeightZGenderAge_1",
  oName_2="HeightZGenderAge_2")
estimatedAdultHeight #ASquared and CSquared should be 0.606 and 0.105 for this rough analysis.
estimatedMath <- DeFriesFulkerMethod3(</pre>
  dataSet=dsDF,
  oName_1="MathStandardized_1",
  oName_2="MathStandardized_2")
estimatedMath #ASquared and CSquared should be 0.878 and 0.048.
class(GetDetails(estimatedMath))
summary(GetDetails(estimatedMath))
```

AceEstimate-class 5

AceEstimate-class

Class "AceEstimate"

Description

A class containing information about a single univariate ACE model.

Objects from the Class

```
Objects can be created by calls of the form:

new("AceEstimate", aSquared, cSquared, eSquared, caseCount, unity, withinBounds, details, ...)
```

Slots

ASquared: The proportion of variability due to a shared genetic influence (typically represented as a^2 , or sometimes h^2).

CSquared: The proportion of variability due to shared common environmental influence.

ESquared: The proportion of variability due to unexplained/residual/error influence.

CaseCount: The number cases contributing to this estimate.

Unity: Indicates if the three components sum to 1.

WithinBounds: Indicates if the three components are each bounded by [0, 1].

Details: A list that contains the modeling and estimation output and details.

Methods

```
GetDetails signature(object = "AceEstimate"): ...
initialize signature(.Object = "AceEstimate"): ...
print signature(x = "AceEstimate"): ...
show signature(object = "AceEstimate"): ...
```

Note

The contents of the Details list depends on the underlying estimation routine. For example, when the ACE model is estimated with a DF analysis, the output is an 1m object, because the 1m function was used (ie, the basical general linear model). Alternatively, if the user specified the lavaan package should estimate that ACE model, the output is a lavaan object.

Examples

```
library(NlsyLinks) #Load the package into the current R session.
showClass("AceEstimate")
est <- CreateAceEstimate(.5, .2, .3, 40)
est
print(est)</pre>
```

6 AceLavaanGroup

AceLavaanGroup	A simple multiple-group ACE model with the lavaan package.	
AceLavaanGroup	A simple multiple-group ACE model with the lavaan package.	

Description

This function uses the **lavaan** package to estimate a univariate ACE model, using multiple groups. Each group has a unique value of R (i.e., the *R*elatedness coefficient).

Usage

```
AceLavaanGroup(dsClean, estimateA=TRUE, estimateC=TRUE,
    printOutput=FALSE)
```

Arguments

dsClean	The data.frame containing complete cases for the R groups to be included in the estimation.
estimateA	Should the <i>A</i> variance component be estimated? A^2 represents the proportion of variability due to a shared genetic influence.
estimateC	Should the C variance component be estimated? C^2 represents the proportion of variability due to a shared environmental influence.
printOutput	Indicates if the estimated parameters and fit statistics are printed to the console.

Details

The variance component for E is always estimated.

Value

An AceEstimate object.

Note

Currently, the variables in dsClean must be named M1, M2 and R. This may not be as restrictive as it initially seems, because dsClean is intented to be produced by CleanSemAceDataset. If this is too restrictive for your uses, we'd like to here about it (*please email wibeasley at hotmail period com*).

Author(s)

Will Beasley

References

The **lavaan** package is developed by Yves Rosseel at Ghent University. Two good starting points are the documentation (http://cran.r-project.org/web/packages/lavaan/) and his upcoming JSS paper (http://users.ugent.be/~yrosseel/lavaan/lavaanJSSpreview.pdf).

See Also

Further ACE model details are discussed in our package's vignette (in the console, type vignette("NlsyAce")).

CleanSemAceDataset 7

Examples

```
library(NlsyLinks) \#Load the package into the current R session.
dsLinks <- Links79PairExpanded #Start with the built-in data.frame in NlsyLinks
dsLinks <- dsLinks[dsLinks$RelationshipPath=='Gen2Siblings', ] #Use only the Gen2 Siblings (ie, NLSY79-C so
oName_1 <- "MathStandardized_1" #Stands for Outcome1
oName_2 <- "MathStandardized_2" #Stands for Outcome2
dsGroupSummary <- RGroupSummary(dsLinks, oName_1, oName_2)</pre>
dsClean <- CleanSemAceDataset(dsDirty=dsLinks, dsGroupSummary, oName_1, oName_2)</pre>
ace <- AceLavaanGroup(dsClean)</pre>
ace
#Should produce:
# [1] "Results of ACE estimation: [show]"
      ASquared
                  CSquared
                                ESquared
                                             CaseCount
#
     0.6681874
                  0.1181227
                               0.2136900 8390.0000000
library(lavaan) #Load the package to access methods of the lavaan class.
GetDetails(ace)
#Exmaine fit stats like Chi-Squared, RMSEA, CFI, etc.
fitMeasures(GetDetails(ace)) #The function 'fitMeasures' is defined in the lavaan package.
#Examine low-level details like each group's individual parameter estimates and standard errors.
summary(GetDetails(ace))
#Extract low-level details. This may be useful when programming simulations.
inspect(GetDetails(ace), what="converged") #The lavaan package defines 'inspect'.
inspect(GetDetails(ace), what="coef")
```

 ${\tt CleanSemAceDataset}$

Produces a cleaned dataset that works well with when using SEM to estimate a univariate ACE model.

Description

This function takes a 'GroupSummary' data.frame (which is created by the RGroupSummary function) and returns a data.frame that is used by the Ace function.

Usage

```
CleanSemAceDataset(dsDirty, dsGroupSummary, oName_1,
  oName_2, rName = "R")
```

Arguments

dsDirty This is the data.frame to be cleaned.

dsGroupSummary The data.frame containing information about which groups should be included in the analyses. It should be created by the RGroupSummary function.

oName_1 The name of the manifest variable (in dsDirty) for the first subject in each pair.

8 CleanSemAceDataset

oName_2 The name of the manifest variable (in dsDirty) for the second subject in each

pair.

rName The name of the variable (in dsDirty) indicating the pair's relatedness coeffi-

cient.

Details

The function takes dsDirty and produces a new data. frame with the following features:

- [A] Only three existing columns are retained: 01, 02, and R. They are assigned these names.
- [B] A new column called GroupID is created to reflect their group membership (which is based on the R value). These values are sequential integers, starting at 1. The group with the weakest R is 1. The group with the strongest R has the largest GroupID (this is typically the MZ tiwns).
- [C] Any row is excluded if it has a missing data point for 01, 02, or R.
- [D] The data.frame is sorted by the R value. This helps program against the multiple-group SEM API sometimes.

Value

A data.frame with one row per subject pair. The data.frame contains the following variables (which can NOT be changed by the user through optional parameters):

R The pair's R value.

O1 The outcome variable for the first subject in each pair.

The outcome variable for the second subject in each pair.

GroupID Indicates the pair's group membership.

Author(s)

Will Beasley

Examples

```
library(NlsyLinks) #Load the package into the current R session.
dsLinks <- Links79PairExpanded #Start with the built-in data.frame in NlsyLinks
dsLinks <- dsLinks[dsLinks$RelationshipPath=='Gen2Siblings', ] #Use only NLSY79-C siblings

oName_1 <- "MathStandardized_1" #Stands for Outcome1
oName_2 <- "MathStandardized_2" #Stands for Outcome2
dsGroupSummary <- RGroupSummary(dsLinks, oName_1, oName_2)

dsClean <- CleanSemAceDataset( dsDirty=dsLinks, dsGroupSummary, oName_1, oName_2, rName="R" )
summary(dsClean)

dsClean$AbsDifference <- abs(dsClean$01 - dsClean$02)
plot(jitter(dsClean$R), dsClean$AbsDifference, col="gray70")</pre>
```

ColumnUtilities 9

ColumnUtilities	A collection of functions that helps data management data.frames, particularly those derived from NLS Extracts.

Description

A collection of functions that helps data management data. frames, particularly those derived from NLS Extracts.

Usage

```
VerifyColumnExists( dataFrame, columnName )
RenameColumn( dataFrame, oldColumnName, newColumnName )
RenameNlsyColumn( dataFrame, nlsyRNumber, newColumnName )
```

Arguments

dataFrame	\boldsymbol{A} data. frame object whose columns are to be verified or renamed.	
columnName	The name of the column to verify is present in the data.frame.	
nlsyRNumber	The name of the column to change.	
oldColumnName	The name of the column to change.	
newColumnName	The desired name of the column.	

Details

The RNumber assigned by the NLS has a pattern. In the Nlsy79 Gen1 dataset, the names start with a 'R' or 'T' and are followed by seven digits (eg, R0000100). In the Nlsy79 Gen2 dataset, the names start with 'C' or 'Y' and are followed by seven digits (eg, C0007030, Y1994600).

In the NLS Investigator, a decimal is present in the RNumber (eg, R00001.00). When the Investigator saves the dataset as a CSV, the decimal is removed (R0000100).

Value

IMPORTANT The RenameColumn and RenameNlsyColumn functions do not use side-effects to rename the data.frame. Instead, it returns a new data.frame. In the example below, notice the assignment to ds: ds <- RenameNlsyColumn(...).

The VerifyColumnExists function check that exactly one column exists with the specified columnName. If so, the index of the column is returned. If not, an exception is thrown.

Author(s)

Will Beasley

10 CreateAceEstimate

Examples

CreateAceEstimate

Instantiate an AceEstimate-class object.

Description

Creates an instance of the S4 class, AceEstimate instantiating arguments set the parameter values estimated by the ACE model.

Usage

```
CreateAceEstimate(aSquared, cSquared, eSquared,
  caseCount, details=list(), unityTolerance = 1e-11)
```

Arguments

aSquared	The proportion of variability due to a shared genetic influence (typically represented as a^2, or sometimes h^2).
cSquared	The proportion of variability due to shared common environmental influence.
eSquared	The proportion of variability due to unexplained/residual/error influence.
caseCount	The number of cases used to estimate the model.
unityTolerance	Specifies how close the the sum of the ACE components should be to one, to be considered properly scaled to one.
details	A list that contains the modeling output and details.

Details

The contents of the details list depends on the underlying estimation routine. For example, when the ACE model is estimated with a DF analysis, the output is an 1m object, because the 1m function was used (ie, the basical general linear model). Alternatively, if the user specified the lavaan package should estimate that ACE model, the output is a lavaan object.

Value

An S4 object of AceEstimate-class.

CreatePairLinks 11

Author(s)

Will Beasley

CreatePairLinks

Creates a pairs linking file.

Description

Creates a linking file for BG designs using this file structure (e.g., DF analysis, other ACE modeling).

A DF analysis requires a double-entered file that contains the R value for the pair, and their two outcome variable values.

CreatePairLinksDoubleEnteredWithNoOutcomes is intended to be a primarily a helper function for CreateSpatialNeighbours.

Usage

```
CreatePairLinksDoubleEntered(outcomeDataset,
  linksPairDataset, outcomeNames, linksNames =
  c("ExtendedID", "R", "RelationshipPath"),
  validateOutcomeDataset = TRUE)

CreatePairLinksSingleEntered(outcomeDataset,
  linksPairDataset, outcomeNames, linksNames =
  c("ExtendedID", "R", "RelationshipPath"),
  validateOutcomeDataset = TRUE)

CreatePairLinksDoubleEnteredWithNoOutcomes(linksPairDataset,
  linksNames = c("ExtendedID", "R", "RelationshipPath"))
```

Arguments

outcomeDataset A data frame containing the outcome variable(s)

linksPairDataset

A data frame containing the SubjectTags of each subject in the pair and their R

coefficient.

outcomeNames The column names of the outcome variable(s)

linksNames The column names desired to be present in the newly created data frame. Subject1Tag

and Subject2Tag are included automatically.

validateOutcomeDataset

Indicates if characteristics of the outcomeDataset should be validated.

Author(s)

Will Beasley

References

For more information about a DF analysis, see: Rodgers, Joseph Lee, & Kohler, Hans-Peter (2005). Reformulating and simplifying the DF analysis model. *Behavior Genetics*, *35* (2), 211-217.

Examples

```
dsSingleLinks <- data.frame(</pre>
  ExtendedID=c(1, 1, 1, 2),
  Subject1Tag=c(101, 101, 102, 201),
  Subject2Tag=c(102, 103, 103, 202),
  R=c(.5, .25, .25, .5),
 RelationshipPath=rep("Gen2Siblings", 4)
dsSingleOutcomes <- data.frame(</pre>
  SubjectTag=c(101, 102, 103, 201, 202),
  DV1=c(11, 12, 13, 41, 42),
 DV2=c(21, 22, 23, 51, 52))
dsDouble <- CreatePairLinksDoubleEntered(</pre>
  outcomeDataset=dsSingleOutcomes,
  linksPairDataset=dsSingleLinks,
  outcomeNames=c("DV1", "DV2"),
  validateOutcomeDataset=TRUE)
dsDouble #Show the 8 rows in the double-entered pair links
summary(dsDouble) #Summarize the variables
```

 $\label{thm:condition} Validate Pair Links Are Symmetric (ds Double) \ \#Should \ return \ TRUE.$

CreateSpatialNeighbours

Distances between related family members, formated for spatial analysis.

Description

This helper function formats the LinksPair datasets so it can be used in some types of spatial analyses. The **spdep** (Spatial Dependence) uses a sparse matrix (actually a data.frame) to represent neigbours.

Usage

 ${\tt CreateSpatialNeighbours(linksPairsDoubleEntered)}$

Arguments

links Pairs Double Entered

A data. frame containing the links, preferably created by a function like CreatePairLinksDoubleEr

Details

There is one row per unique pair of subjects, *respecting order*. This is different than Links79Pair and Links79PairExpanded, which has one row per unique pair of subjects, *irrespective of order*. #CreateSpatialNeighbours79Gen2 automatically creates dataset of NLSY79 Gen2 subjects (i.e., the children of the mothers in the initial NLSY79 sample.

CreateSpatialNeighbours accepts any paired relationships in a data.frame, as long as it contains the columns Subject1Tag, Subject2Tag, and R. See Links79Pair for more details.

Value

An S3 spatial.neighbours object to work with functions in the **spdep** package. Subject1Tag is renamed from. Subject2Tag is renamed to. R is renamed weight. The attribute region.id specifies each unique SubjectTag. The attribue n specifies the number of unique subjects.

Note

Notice the British variant of 'neighbours'

Author(s)

Will Beasley David Bard

References

Bivand, R., Pebesma, E., & Gomez-Rubio, V. (2008). *Applied Spatial Data Analysis with R*. New York: Springer. (Especially Chapter 9.) ##David, can you please give me some of the articles/books that you used this with?

Examples

##Need something here

 ${\tt CreateSpatialNeighbours79Gen2}$

Automatically creates dataset of NLSY79 Gen2 subjects (i.e., the children of the mothers in the initial NLSY79 sample).

Description

CreateSpatialNeighbours79Gen2 automatically creates dataset of NLSY79 Gen2 subjects (i.e., the children of the mothers in the initial NLSY79 sample).

For more information, please see CreateSpatialNeighbours

Usage

CreateSpatialNeighbours79Gen2()

14 CreateSubjectTag

CreateSubjectTag	Creates a SubjectTag. This value uniquely identifies subjects, when both generations are included in the same dataset.

Description

A SubjectTag uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 becomes 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

Usage

CreateSubjectTag(subjectID, generation)

Arguments

subjectID The ID assigned by the NLSY. For Gen1 subjects, this will be their CaseID (ie,

R00001.00). For Gen2 subjects, this will be their CID (ie, C00001.00).

generation The generation of the subject. Values are either 1 or 2, representing Gen1 and

Gen2. Note that this variable is not a factor (in constrast with data frames like Links79Pair). This dataset is supposed to mimick the dataset provided by the

researcher, which typically will not have been converted to a factor.

Details

For a fuller explanation of SubjectTag in context, see the Links79Pair dataset documentation.

Value

A integer value under normal circumstances. An error is thrown if the vectors subjectID and generation are different lengths. If either input vector has NA values, the respective output element(s) will be NA too.

Author(s)

Will Beasley

See Also

Links79Pair

Examples

```
library(NlsyLinks) #Load the package into the current R session.
data(ExtraOutcomes79) #Load the dataset from the NlsyLinks package.
#Typically these two vectors will come from a data frame.
subjectIDs <- c(71:82, 10001:10012)
generation <- c(rep(1, 12), rep(2, 12))</pre>
```

ExtraOutcomes79 15

```
CreateSubjectTag(subjectIDs, generation)
#Returns 7100, ..., 8200, 10001, ..., 10012

#Use the ExtraOutcomes79 dataset, with numeric variables 'SubjectID' and 'Generation'.
ExtraOutcomes79$SubjectTag <- CreateSubjectTag(
    subjectID=ExtraOutcomes79$SubjectID,
    generation=ExtraOutcomes79$Generation
)</pre>
```

ExtraOutcomes79

Extra outcome variables in the NLSY79

Description

This dataset is provided primarily to facilitate documentation examples.

Currently this dataset contains only Gen2 subjects. However, it soon will include Gen1 subjects. Code written using this dataset should NOT assume it contains only Gen2 subjects. See below for an example of filtering by generation.

Usage

```
data(ExtraOutcomes79)
```

Format

A data frame with 11,495 observations on the following 6 variables. There is one row per subject.

SubjectTag The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their "CaseID" (ie, R00001.00). For Gen2 subjects, this is their "CID" (ie, C00001.00).

SubjectID The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their "CaseID" (ie, R00001.00). For Gen2 subjects, this is their "CID" (ie, C00001.00).

Generation The generation of the subject. Values are either 1 or 2, representing Gen1 and Gen2. Note that this variable is not a factor (in constrast with data frames like Links79Pair). This dataset is supposed to mimick the dataset provided by the researcher, which typically will not have been converted to a factor.

AfgtRescaled2006Gaussified Armed Forces Qualification Test Score for Gen1.

HeightZGender The subject's height, standardized by gender (see Details).

HeightZGenderAge The subject's height, standardized by gender and age (see Details).

WeightZGender The subject's weight, standardized by gender (see Details).

WeightZGenderAge The subject's weight, standardized by gender and age (see Details).

Afi Self-reported age of first intercourse (see Details).

Afm Self-reported age of first menstration (see Details).

MathStandardized Standardized PIAT Math score for Gen2 (see Details).

Author(s)

Will Beasley

16 GetDetails-methods

Source

Gen1 information comes from the May 15, 2010 release of the NLSY79 sample. Gen2 information comes from the Sept 15, 2010 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

The SubjectTag variable uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 has a SubjectTag of 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

For Gen2, an NLSY79 variable of MathStandardized is C0580100.00.

Afi, Afm, and MathStandardized values were simplied (to one value per subject) by Kelly Meredith in January 2012 using the Sept 15, 2010 release of NLSY data.

Examples

```
library(NlsyLinks) #Load the package into the current R session.
data(ExtraOutcomes79) #Load the dataset from the NlsyLinks package.
gen2Outcomes <- subset(ExtraOutcomes79, Generation==2) #Create a dataset of only Gen2 subjects.

plot(ExtraOutcomes79)
summary(ExtraOutcomes79)

oldPar <- par(mfrow=c(3,2))
hist(ExtraOutcomes79$Generation)
hist(ExtraOutcomes79$MathStandardized)
hist(ExtraOutcomes79$HeightZGenderAge)
hist(ExtraOutcomes79$WeightZGenderAge)
hist(ExtraOutcomes79$Afi)
hist(ExtraOutcomes79$Afm)
par(oldPar)</pre>
```

 ${\tt GetDetails-methods}$

A generic function for extracting the Details slot of an object.

Description

A generic function for extracting the Details slot of an AceEstimation object.

Methods

Here's a filler description.

Extracts the Details slot of an AceEstimation object.

Author(s)

```
signature(object = "AceEstimate") Will Beasley
```

GetEstimate-methods 17

GetEstimate-methods	Generic function for returning the contents from an AceEstimate class.
---------------------	--

Description

Extract the values

Methods

```
signature(object = "AceEstimate")
```

Author(s)

Will Beasley

Links79Pair Kinship linking file for pairs of relatives in the NLSY79 and NLSY79
Children and Young Adults

Description

This dataset specifies the relatedness coefficient (ie, 'R') between subjects in the same extended family. Each row represents a unique relationship pair. An extended family with k subjects will have k(k-1)/2 rows. Typically, Subject1 is older while Subject2 is younger.

The dataset contains Gen1 and Gen2 subjects. "Gen1" refers to subjects in the original NLSY79 sample (http://www.bls.gov/nls/nlsy79.htm). "Gen2" subjects are the biological children of the Gen1 females -ie, those in the NLSY79 Children and Young Adults sample (http://www.bls.gov/nls/nlsy79ch.htm).

Usage

data(Links79Pair)

Format

A data frame with 11,075 observations on the following 5 variables. There is one row per unique pair of subjects, irrespective of order.

ExtendedID Identity of the extended family of the pair; it corresponds to the HHID in the NLSY79. See References below.

Subject1Tag Identity of the pair's first subject. See Details below.

Subject2Tag Identity of the pair's second subject. See Details below.

R The pair's Relatedness coefficient. See Details below.

RelationshipPath Specifies the relationship category of the pair. This variable is a factor, with levels Gen1Housemates=1, Gen2Siblings=2, Gen2Cousins=3, ParentChild=4, AuntNiece=5.

18 Links79Pair

Details

Subjects will be in the same extended family if either: [1] they are Gen1 housemates, [2] they are Gen2 siblings, [3] they are Gen2 cousins (ie, they have mothers who are Gen1 sisters in the NLSY79, [4] they are mother and child (in Gen1 and Gen2, respectively), or [5] they are auntluncle and niecelnephew (in Gen1 and Gen2, respectively).

The variables Subject1Tag and Subject2Tag uniquely identify subjects. For Gen2 subjects, the SubjectTag is identical to their CID (ie, C00001.00 -the SubjectID assigned in the NLSY79-Children files). However for Gen1 subjects, the SubjectTag is their CaseID (ie, R00001.00), with "00" appended. This manipulation is necessary to identify subjects uniquely in inter-generational datasets. A Gen1 subject with an ID of 43 has a SubjectTag of 4300. The SubjectTags of her four children remain 4301, 4302, 4303, and 4304.

Level 5 of RelationshipPath (ie, AuntNiece) is gender neutral. The relationship could be either Aunt-Niece, Aunt-Nephew, Uncle-Niece, or Uncle-Nephew. If there's a widely-accepted gender-neutral term, please tell me.

MZ twins have R=1. DZ twins and full-siblings have R=.5. Half-siblings have R=.25. Typical first-cousins have R=.125 Unrelated subjects have R=0 (this occasionally happens for Gen1Housemates). Other R coefficients are possible. ??Joe, do you have an earlier paper that enumerates all the obscure combinations, like half-cousins or an ambiguous AuntNiece??

Author(s)

Will Beasley

Source

Gen1 information comes from the May 15, 2010 release of the NLSY79 sample. Gen2 information comes from the Sept 15, 2010 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

The internal version for the links is Links2011V51.

References

The NLSY79 variable HHID (ie, R00001.49) is the source for the ExtendedID variable. This is discussed at http://www.nlsinfo.org/nlsy79/docs/79html/79text/hhcomp.htm. ** We need an introduction reference/information for 'R'/Relatedness. **

See Also

The LinksPair79 dataset contains columns necessary for a basic BG analysis. The Links79PairExpanded dataset contains further information that might be useful in more complicated BG analyses.

A tutorial that produces a similar dataset is http://www.nlsinfo.org/childya/nlsdocs/tutorials/linking_mothers_and_children/linking_mothers_and_children_tutorial.html. It provides examples in SAS, SPSS, and STATA.

The current dataset (ie, Links79Pair) can be saved as a CSV file (comma-separated file) and imported into in other programs and languages. In the R console, type the following two lines of code:

```
library(NlsyLinks); data(Links79Pair)
write.csv(Links79Pair, "C:/BGDirectory/Links79Pair.csv")
```

where "C:/BGDirectory/" is replaced by your preferred directory. Remember to use forward slashes instead of backslashes; for instance, the path "C:\BGDirectory\Links79Pair.csv" will be misinterpreted.

Examples

```
library(NlsyLinks) #Load the package into the current R session.
data(Links79Pair) #Load the dataset from the NlsyLinks package.
summary(Links79Pair) #Summarize the five variables.
hist(Links79Pair$R) #Display a histogram of the Relatedness coefficients.
table(Links79Pair$R) #Create a table of the Relatedness coefficients for the whole sample.
#Create a dataset of only Gen2 sibs, and display the distribution of R.
gen2Siblings <- subset(Links79Pair, RelationshipPath=='Gen2Siblings')
table(gen2Siblings$R) #Create a table of the Relatedness coefficients for the Gen2 sibs.</pre>
```

Links79PairExpanded

Kinship linking file for pairs of relatives. It builds upon the Links79Pair dataset.

Description

Please first read the documentation for Links79Pair. That dataset contains the same pairs/rows, but only a subset of the variables/columns.

Specifies the relatedness coefficient (ie, 'R') between subjects in the same extended family. Each row represents a unique relationship pair. An extended family with k subjects will have k(k-1)/2 rows. Typically, Subject1 is older while Subject2 is younger.

Currently this dataset contains only Gen2 siblings. However, it soon will be generalized to the five categories specified by the RelationshipPath variable. Code written using this dataset should NOT assume it contains only Gen2 sibiling pairs. See an example of filtering the relationship category in the in Links79Pair documentation.

Usage

data(Links79PairExpanded)

Format

A data frame with 11,075 observations on the following 22 variables. There is one row per unique pair of subjects, irrespective of order.

ExtendedID see the variable of the same name in Links79Pair

Subject1Tag see the variable of the same name in Links79Pair

Subject2Tag see the variable of the same name in Links79Pair

R see the variable of the same name in Links79Pair

RFull This is a superset of R. This includes all the R values we estimated, while R (i.e., the variable above) excludes values like R=0 for Gen1Housemates, and the associated relationships based on this R value (i.e., Gen2Cousins and AuntNieces).

RelationshipPath see the variable of the same name in Links79Pair

EverSharedHouse Indicate if the pair likely live in the same house. This is TRUE for Gen1Housemates, Gen2Siblings, and ParentChild. This is FALSE for AuntNiece and Gen2Cousins

IsMz Indicates if the pair is from the same zygote (ie, they are identical twins/triplets). This variable is a factor, with levels No=0, Yes=1, DoNotKnow=255.

Subject1LastSurvey The year of Subject1's most recently completed survey. This may be different that the survey's administration date.

- Subject2LastSurvey The year of Subject2's most recently completed survey. This may be different that the survey's administration date.
- RImplicitPass1 The pair's R coefficient, using only implicit information. Interpolation was NOT used.
- RImplicit The pair's R coefficient, using only implicit information. Interpolation was used.
- RImplicit2004 The pair's R coefficient released in our previous projects (**need reference**). This variable is provided primarily for previous users wishing to replicate previous analyses.
- RExplicitPass1 The pair's R coefficient, using only explicit information. Interpolation was NOT used.
- RExplicit The pair's R coefficient, using only explicit information. Interpolation was used.
- RExplicitOlderSibVersion The pair's R coefficient, according to the explicit item responses of the older sibling.
- RExplicitYoungerSibVersion The pair's R coefficient, according to the explicit item responses of the younger sibling.
- RPass1 The pair's estimated R coefficient, using both implicit and explicit information. Interpolation was NOT used. The variable R is identically constructed, but it did use interpolation.
- GenerationSubject1 The generation of the first subject. Values for Gen1 and Gen2 are 1 and 2, respectively.
- GenerationSubject2 The generation of the second subject. Values for Gen1 and Gen2 are 1 and 2, respectively.
- Subject1ID The ID value assigned by NLS to the first subject. For Gen1 Subjects, this is their "CaseID" (ie, R00001.00). For Gen2 subjects, this is their "CID" (ie, C00001.00).
- Subject2ID The ID value assigned by NLS to the second subject.
- MathStandardized_1 The PIAT-Math score for Subject1. See ExtraOutcomes79 for more information about its source.
- MathStandardized_2 The PIAT-Math score for Subject2. See ExtraOutcomes79 for more information about its source.
- HeightZGenderAge_1 The early adult height for Subject1. See ExtraOutcomes79 for more information about its source.
- HeightZGenderAge_2 The early adult height for Subject2. See ExtraOutcomes79 for more information about its source.

Details

Please first read the documentation for Links79Pair. That dataset contains the same pairs/rows, but only a subset of the variables/columns.

The specific steps to determine the R coefficient will be described in an upcoming publication. The following information may influence the decisions of an applied researcher.

A distinction is made between 'Explicit' and 'Implicit' information. Explicit information comes from survey items that directly address the subject's relationships. For instance in 2006, surveys asked if the sibling pair share the same biological father (eg, Y19940.00 and T00020.00). Implicit information comes from items where the subject typically isn't aware that their responses may be used to determine genetic relatedness. For instance, if two siblings have biological fathers with the same month of death (eg, R37722.00 and R37723.00), it may be reasonable to assume they share the same biological father.

ReadCsvNlsy79 21

'Interpolation' is our lingo when other siblings are used to leverage insight into the current pair. For example, assume Subject 101, 102, and 103 have the same mother. Further assume 101 and 102 report they share a biological father, and that 101 and 103 share one too. Finally, assume that we don't have information about the relationship between 102 and 103. If we are comfortable with our level of uncertainty of these determinations, then we can interpolate/infer that 102 and 103 are full-siblings as well.

The math and height scores are duplicated from ExtraOutcomes79, but are included here to make some examples more concise and accessible.

Author(s)

Will Beasley

Source

See Links79Pair.

Examples

```
library(NlsyLinks) #Load the package into the current R session.

data(Links79PairExpanded) #Load the dataset from the NlsyLinks package.

olderR <- Links79PairExpanded$RExplicitOlderSibVersion #Declare a concise variable name.

youngerR <- Links79PairExpanded$RExplicitYoungerSibVersion #Declare a concise variable name.

plot(jitter(olderR), jitter(youngerR)) #Scatterplot the siblings' responses.

table(youngerR, olderR) #Table of the relationship between the siblings' responses.

ftable(youngerR, olderR, dnn=c("Younger's Version", "Older's Version")) #A formatted table.

#write.csv(Links79PairExpanded, file='F:/Projects/RDev/NlsyLinksStaging/Links79PairExpanded.csv', # row.names=FALSE)
```

ReadCsvNlsy79

Read a CSV file downloaded from the NLS Investigator

Description

The function accepts a (file path to) CSV file and creates a data. frame. The data. frame is modified and augmented with columns to assist later routines.

Usage

ReadCsvNlsy79Gen2(filePath)

Arguments

filePath

A path to the CSV file. Remember to use double back-slashes in Windows, or forward-slashes in Windows or *nix.

22 RGroupSummary

Details

The function does seven things.

- 1) Reads the CSV into a data. frame.
- 2) Checks that the NLSY variables C00001.00 and C00002.00 exist in the data. frame.
- 3) The NLSY variable C00001.00 is renamed SubjectID.
- 4) A variable named Generation is given a value of 2 for all subjects.
- 5) The SubjectTag variable is created.
- 6) The NLSY variable C00002.00 is multiplied by 100 and renamed SubjectTagOfMother.
- 7) The NLSY variable R00001.49 (ie, their Mother's HHID is attached to each Gen2 record).

Value

A data. frame to facililate biometric analysis.

Author(s)

Will Beasley

Examples

```
## Not run:
filePathGen2 <- "F:/Projects/RDev/NlsyLinksStaging/Datasets/Gen2Birth.csv"
ds <- ReadCsvNlsy79Gen2(filePath=filePathGen2)
## End(Not run)</pre>
```

RGroupSummary

Calculates summary statistics for each Relatedness Group in the sample.

Description

Before and after running ACE Models, it is important to examine the characteristics of the different groups. When the ACE is estimated with an SEM using multiple groups, it is even even more important. Groups may contain too few subjects to have a well-behaved covariance matrix.

If a group's covariance matrix is not Positive Definite (or it's misbehaving in some other way), it's typically recommended to exclude that group from the SEM.

Usage

```
RGroupSummary(ds, oName_1, oName_2, rName,
  determinantThreshold=1e-5)
```

RGroupSummary 23

Arguments

ds The data. frame containing the following variables:

oName_1 The name of the outcome variable corresponding to the first subject in the pair.
oName_2 The name of the outcome variable corresponding to the first subject in the pair.

rName The name of the variable specifying the pair's Relatedness coefficient.

determinantThreshold

The minimum value the covariance matrix's determinant (for the group) should

exceed to be considered Positive Definite.

Details

This function doesn't specific to an ACE model and groups defined by R. It could be applied to any multiple-group SEM with two manifest/outcome variables. In the future, we may generalize it beyond two manifest variables.

To get summary stats for the entire sample, create a dummy indicator variable that assigns everyone to the same group. See the second example below.

The default determinantThreshold value is nonzero, in order to forgive slight numerical inaccuracies caused by fixed-precision arithmetic.

Value

A data.frame with one row per group. The data.frame contains the following variables:

R The group's R value. Note the name of this variable can be changed by the user,

by specifying a non-default value to the rName argument.

Included Indicates if the group should be included in a multiple-group SEM.

PairCount The number of pairs in the group with complete data for R and the two out-

come/manifest variables.

O1Variance The variance (of the outcome variable) among the group's first members.

O2Variance The variance (of the outcome variable) among the group's second members.

0102Covariance

The covariance (of the outcome variable) across the group's first and second

members.

Correlation The correlation (of the outcome variable) across the group's first and second

members.

Determinant The determinant of the group's covariance matrix.

PosDefinite Indicates if the group's covariance matrix is positive definite.

Author(s)

Will Beasley and David Bard

References

Please see ZZZ (200?) for more information about SEM with multiple groups.

TODO: refs for determinant & positive definite.

24 SubjectDetails79

Examples

```
library(NlsyLinks) \#Load the package into the current R session.
dsLinks <- Links79PairExpanded #Load the dataset from the NlsyLinks package.
dsLinks <- dsLinks[dsLinks$RelationshipPath=='Gen2Siblings', ]</pre>
oName_1 <- "MathStandardized_1" #Stands for Outcome1
oName_2 <- "MathStandardized_2" #Stands for Outcome2
dsGroupSummary <- RGroupSummary(dsLinks, oName_1, oName_2)</pre>
dsGroupSummary
#Should return:
# R Included PairCount O1Variance O2Variance O1O2Covariance Correlation Determinant PosDefinite
# 1 0.250
          TRUE 2719 169.1291 207.0233 40.66048 0.2172970
                                                                                              TRUF
                                                                              33360.38
# 2 0.375
             TRUE
                             167.9943 181.8788
                                                      40.67609 0.2327024
                                                                                              TRUF
                       141
                                                                              28900.07
# 3 0.500
             TRUE
                       5508 230.9663 233.3492
                                                    107.59822 0.4634764
                                                                                              TRUE
                                                                              42318.42
                                        18.0000
# 4 0.750
            FALSE
                        2 220.5000
                                                      63.00000
                                                                 1.0000000
                                                                                  0.00
                                                                                             FALSE
                         22 319.1948 343.1169
# 5 1.000
             TRUE
                                                    277.58874 0.8387893
                                                                              32465.62
                                                                                              TRUE
#To get summary stats for the whole sample, create one large inclusive group.
dsLinks$Dummy <- 1
(dsSampleSummary <- RGroupSummary(dsLinks, oName_1, oName_2, rName="Dummy"))</pre>
#Should return:
# Dummy Included PairCount M1Variance M2Variance M1M2Covariance Correlation Determinant PosDefinite
#1
                     8392
                             216.466 229.2988 90.90266 0.4080195
                                                                              41372.1
           TRUE
                                                                                            TRUE
###
### ReadCsvNlsy79
###
## Not run:
filePathGen2 <- "F:/Projects/RDev/NlsyLinksStaging/Datasets/Gen2Birth.csv"</pre>
ds <- ReadCsvNlsy79Gen2(filePath=filePathGen2)</pre>
## End(Not run)
```

SubjectDetails79

Dataset containing further details of the Gen1 and Gen2 subjects.

Description

These variables are useful to many types of analyses (not just behavior genetics), and are provided to save users time.

Usage

```
data(SubjectDetails79)
```

Format

A data frame with 24,181 observations on the following 12 variables.

SubjectTag see the variable of the same name in Links79Pair ExtendedID see the variable of the same name in Links79Pair Generation Indicates if the subject is in generation 1 or 2.

SubjectDetails79 25

SiblingCountInNls The number of the subject's siblings, including himself/herself (a singleton has a value of one). This considers only the siblings in the NLSY. For Gen1, this can exclude anyone outside the age range. For Gen2, this excludes anyone who doesn't share the same mother.

BirthOrderInNls Indicates the subject's birth order among the NLSY siblings.

SimilarAgeCount ??I forgot what this is??

KidCountBio The number of biological children known to the NLSY (but not necessarily interviewed by the NLSY.

KidCountInNls The number of children who belong to the NLSY. This is nonnull for only Gen1 subjects.

Mob The subject's month of birth. The exact day is not available to the public. By default, we set their birthday to the 15th day of the month.

LastSurveyYearCompleted ##This variable is not available yet## The year of the most recently completed survey.

AgeAtLastSurvey ##This variable is not available yet## The subject's age at the most recently completed survey.

IsDead ##This variable is not available yet## Indicates if the subject was alive for the last attempted survey.

DeathDate ##This variable is not available yet## The subject's month of death. The exact day is not available to the public. By default, we set their birthday to the 15th day of the month.

Author(s)

Will Beasley

Source

Gen1 information comes from the May 15, 2010 release of the NLSY79 sample. Gen2 information comes from the Sept 15, 2010 release of the NLSY79 Children and Young Adults sample. Data were extracted with the NLS Investigator (https://www.nlsinfo.org/investigator/).

Examples

26 ValidateOutcomeDataset

```
breaks=seq(from=0, to=max(SubjectDetails79$KidCountInNls, na.rm=TRUE), by=1)
)
#hist(SubjectDetails79$Mob, main="",
# breaks=seq.Date(
# from=min(SubjectDetails79$Mob, na.rm=TRUE),
# to=max(SubjectDetails79$Mob, na.rm=TRUE),
# by="year")
#)
par(oldPar)
```

ValidateOutcomeDataset

Validates the schema of datasets containing outcome variables.

Description

The **NlsyLinks** handles a lot of the plumbing code needed to transform extracted NLSY datasets into a format that statistical routines can interpret. In some cases, a dataset of measured variables is needed, with one row per subject. This function validates the measured/outcome dataset, to ensure it posses an interpretable schema. For a specific list of the requirements, see Details below.

Usage

ValidateOutcomeDataset(dsOutcome, outcomeNames)

Arguments

dsOutcome A data frame with the measured variables

outcomeNames
The column names of the measure variables that eventually will be used by a

statistical procedure.

Details

The dsOutcome parameter must: 1) Have a non-missing value. 2) Contain at least one row. 3) Contain a column called 'SubjectTag' (case sensitive). 4) Have the SubjectTag column containing only positive numbers. 5) Have the SubjectTag column where all values are unique (ie, two rows/subjects cannot have the same value).

The outcomeNames parameter must:#' 1) Have a non-missing value #' 2) Contain only column names that are present in the dsOutcome data frame.

Value

Returns TRUE if the validation passes. Returns an error (and associated descriptive message) if it false.

Author(s)

Will Beasley

ValidatePairLinks 27

Examples

```
library(NlsyLinks) #Load the package into the current R session.
ds <- ExtraOutcomes79
outcomeNames <- c("MathStandardized", "WeightZGenderAge")
ValidateOutcomeDataset(dsOutcome=ds, outcomeNames=outcomeNames) #Returns TRUE.
outcomeNamesBad <- c("MathMisspelled", "WeightZGenderAge")
#ValidateOutcomeDataset(dsOutcome=ds, outcomeNames=outcomeNamesBad) #Throws error.</pre>
```

ValidatePairLinks

Validates the schema of a links for pairs of relatives

Description

A helper function that verifies the linking dataset contains (A) the essential columns exist, and (B) at least one row. It is called by CreatePairLinks.

Usage

ValidatePairLinks(linksPair)

Arguments

linksPair

The data.frame to validate.

Details

Typical use of **NlsyLinks** will not require this function, since a valid paired links are supplied for each supported sample (ie, Links79Pair).

The **NlsyLinks** uses several types of linking schemas. This function validates the type where each relative subject has their own row.

The following four columns must be present: (1) Subect1Tag, (2) Subect2Tag, (3) R, and (4) MultipleBirth. They must have a numeric mode/datatype.

Value

Returns TRUE if the validation passes. Returns an error (and associated descriptive message) if it false.

Author(s)

Will Beasley

See Also

Links79Pair,Links79PairExpanded,

Examples

```
dsSingleLinks <- data.frame(</pre>
  ExtendedID=c(1, 1, 1, 2),
  Subject1Tag=c(101, 101, 102, 201),
  Subject2Tag=c(102, 103, 103, 202),
  R=c(.5, .25, .25, .5),
  RelationshipPath=rep("Gen2Siblings", 4)
dsSingleOutcomes <- data.frame(</pre>
  SubjectTag=c(101, 102, 103, 201, 202),
  DV1=c(11, 12, 13, 41, 42),
 DV2=c(21, 22, 23, 51, 52))
dsDouble <- CreatePairLinksDoubleEntered(</pre>
  outcomeDataset=dsSingleOutcomes,
  linksPairDataset=dsSingleLinks,
  outcomeNames=c("DV1", "DV2"),
  validateOutcomeDataset=TRUE)
dsDouble #Show the 8 rows in the double-entered pair links
summary(dsDouble) #Summarize the variables
ValidatePairLinksAreSymmetric(dsDouble) #Should return TRUE.
```

ValidatePairLinksAreSymmetric

Verifies that the pair relationships are symmetric.

Description

For certain analyses, the pairs links (which can be considered a type of sparse matrix) need to be symmetric. For instance, if there is a row for Subjects 201 and 202 with R=0.5, there should be a second row for Subjects 202 and 201 with R=0.5.

This validation function is useful to some types of DF methods and some spatially-inspired methods.

Usage

```
ValidatePairLinksAreSymmetric(linksPair)
```

Arguments

linksPair The data.frame object that should be symmetric

Value

Returns TRUE if symmetric. Throw an error with stop if asymmetric.

Author(s)

Will Beasley

See Also

CreatePairLinksDoubleEntered

Examples

```
dsSingleLinks <- data.frame(</pre>
  ExtendedID=c(1, 1, 1, 2),
Subject1Tag=c(101, 101, 102, 201),
  Subject2Tag=c(102, 103, 103, 202),
  R=c(.5, .25, .25, .5),
  RelationshipPath=rep("Gen2Siblings", 4)
dsSingleOutcomes <- data.frame(</pre>
  SubjectTag=c(101, 102, 103, 201, 202),
  DV1=c(11, 12, 13, 41, 42),
  DV2=c(21, 22, 23, 51, 52))
dsDouble <- CreatePairLinksDoubleEntered(</pre>
  outcomeDataset=dsSingleOutcomes,
  linksPairDataset=dsSingleLinks,
  outcomeNames=c("DV1", "DV2"),
  validateOutcomeDataset=TRUE)
dsDouble #Show the 8 rows in the double-entered pair links
summary(dsDouble) #Summarize the variables
```

 $\label{thm:continuous} Validate Pair Links Are Symmetric (ds Double) \ \#Should \ return \ TRUE.$

Index

*Topic ACE	CreatePairLinksSingleEntered
AceEstimate-class, 5	(CreatePairLinks), 11
AceLavaanGroup, 6	CreateSpatialNeighbours, 11, 12, 13
CleanSemAceDataset, 7	CreateSpatialNeighbours79Gen2, 13
CreateAceEstimate, 10	CreateSubjectTag, 14
RGroupSummary, 22	
*Topic analysis	data.frame, <i>12</i> , <i>28</i>
CreateSpatialNeighbours, 12	DeFriesFulkerMethod1 (Ace), 3
*Topic classes	DeFriesFulkerMethod3 (Ace), 3
AceEstimate-class, 5	Fytra0utaamaa70 15 20 21
*Topic datasets	ExtraOutcomes79, 15, 20, 21
ExtraOutcomes79, 15	GetDetails (GetDetails-methods), 16
Links79Pair, 17	GetDetails, AceEstimate-method
Links79PairExpanded, 19	(AceEstimate-class), 5
SubjectDetails79, 24	GetDetails-methods, 16
*Topic methods	GetEstimate, AceEstimate-method
GetDetails-methods, 16	(GetEstimate-methods), 17
GetEstimate-methods, 17	getEstimate, AceEstimate-method
*Topic package	(AceEstimate-class), 5
NlsyLinks-package, 2	GetEstimate-methods, 17
*Topic spatial	
CreateSpatialNeighbours, 12	initialize,AceEstimate-method
*Topic validation	(AceEstimate-class), 5
ValidateOutcomeDataset, 26	Link - 70D-in 12 14 15 17 10 21 24 27
ValidatePairLinks, 27	Links79Pair, 12, 14, 15, 17, 19–21, 24, 27
ValidatePairLinksAreSymmetric, 28	Links79PairExpanded, <i>12</i> , <i>18</i> , 19, <i>27</i>
	NlsyLinks(NlsyLinks-package), 2
Ace, 3	NlsyLinks-package, 2
AceEstimate-class, 5, 10	Misylimo paenage, 2
AceEstimate-method	<pre>print,AceEstimate-method</pre>
(GetDetails-methods), 16	(AceEstimate-class), 5
AceLavaanGroup, 6	
AceUnivariate (Ace), 3	ReadCsvNlsy79, 21
•	ReadCsvNlsy79Gen2 (ReadCsvNlsy79), 21
CleanSemAceDataset, 7	RenameColumn(ColumnUtilities), 9
ColumnUtilities, 9	RenameNlsyColumn(ColumnUtilities),9
CreateAceEstimate, 10	RGroupSummary, 22
CreatePairLinks, 11	about AssEstimate method
CreatePairLinksDoubleEntered, 12, 28	<pre>show, AceEstimate-method (AceEstimate-class), 5</pre>
CreatePairLinksDoubleEntered	stop, 28
(CreatePairLinks), 11	SubjectDetails79,24
CreatePairLinksDoubleEnteredWithNoOutcomes	SubjectDetalls/5, 24
(CreatePairLinks) 11	ValidateOutcomeDataset 26

INDEX 31

ValidatePairLinks, 27 ValidatePairLinksAreSymmetric, 28 VerifyColumnExists (ColumnUtilities), 9