

# EGZAMIN MATURALNY W ROKU SZKOLNYM 2016/2017

FORMUŁA OD 2015 i DO 2014 ("NOWA MATURA" i "STARA MATURA")

# MATEMATYKA POZIOM PODSTAWOWY

# ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P1

SIERPIEŃ 2017

## Zadania zamknięte

Punkt przyznaje się za wskazanie poprawnej odpowiedzi.

| Nr<br>zad. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Odp.       | С | C | В | D | A | D | A | D | A | A  | C  | В  | В  | D  | C  | C  | C  | A  | В  | A  | A  | В  | В  | D  | D  |

## Ogólne zasady oceniania zadań otwartych

Uwaga: Akceptowane są wszystkie odpowiedzi merytorycznie poprawne i spełniające warunki zadania.

## Zadanie 26. (0-2)

Rozwiąż nierówność  $2x^2 + x - 6 \le 0$ .

#### Przykładowe rozwiązanie

Rozwiązanie nierówności kwadratowej składa się z dwóch etapów.

**Pierwszy etap rozwiązania** polega na wyznaczeniu pierwiastków trójmianu kwadratowego  $2x^2 + x - 6$ .

Na przykład obliczamy wyróżnik tego trójmianu, a następnie stosujemy wzory na pierwiastki:

$$\Delta = 7^2$$
,  $x_1 = \frac{-1-7}{4} = -2$ ,  $x_2 = \frac{-1+7}{4} = \frac{3}{2}$ .

**Drugi etap rozwiązania** polega na wyznaczeniu zbioru rozwiązań nierówności  $2x^2 + x - 6 \le 0$ 

Podajemy zbiór rozwiązań nierówności:  $-2 \le x \le \frac{3}{2}$  lub  $\left\langle -2, \frac{3}{2} \right\rangle$  lub  $x \in \left\langle -2, \frac{3}{2} \right\rangle$ , np. odczytując go ze szkicu wykresu funkcji  $f(x) = 2x^2 + x - 6$ .



#### Schemat punktowania

- zrealizuje pierwszy etap rozwiązania i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności, np.
  - o obliczy lub poda pierwiastki trójmianu kwadratowego  $x_1 = -2$ ,  $x_2 = \frac{3}{2}$  i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności,

o zaznaczy na wykresie miejsca zerowe funkcji  $f(x) = 2x^2 + x - 6$  i na tym zakończy lub błędnie zapisze zbiór rozwiązań nierówności

albo

• realizując pierwszy etap błędnie wyznaczy pierwiastki (ale otrzyma dwa różne pierwiastki) i konsekwentnie do tego rozwiąże nierówność, np. popełni błąd rachunkowy przy obliczaniu wyróżnika lub pierwiastków trójmianu kwadratowego i konsekwentnie do popełnionego błędu rozwiąże nierówność.

• poda zbiór rozwiązań nierówności:  $-2 \le x \le \frac{3}{2}$  lub  $\left\langle -2, \frac{3}{2} \right\rangle$  lub  $x \in \left\langle -2, \frac{3}{2} \right\rangle$ 

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów



#### Uwagi

- 1. Jeżeli zdający podaje pierwiastki bez związku z trójmianem kwadratowym z zadania, to oznacza, że nie podjął realizacji 1. etapu rozwiązania i w konsekwencji otrzymuje **0 punktów** za całe rozwiązanie.
- 2. Jeśli zdający wyznacza ujemną deltę trójmianu kwadratowego, to otrzymuje **0 punktów** za całe rozwiązanie.

## Kryteria oceniania uwzględniające specyficzne trudności w uczeniu się matematyki

- 1. Akceptujemy sytuację, gdy zdający poprawnie obliczy lub poda pierwiastki trójmianu  $x_1 = -2$ ,  $x_2 = \frac{3}{2}$  i zapisze, np.  $x \in \left\langle -2, -\frac{3}{2} \right\rangle$ , popełniając tym samym błąd przy przepisywaniu jednego z pierwiastków, to za takie rozwiązanie otrzymuje **2 punkty**.
- 2. Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci  $x \in \left\langle \frac{3}{2}, -2 \right\rangle$ , to przyznajemy **2 punkty**.

#### Zadanie 27. (0-2)

Rozwiąż równanie  $(x^2-6)(3x+2)=0$ .

#### Przykładowe rozwiązanie

Lewa strona równania jest iloczynem dwóch czynników  $x^2 - 6$  oraz 3x + 2. Zatem iloczyn ten jest równy 0, gdy co najmniej jeden z tych czynników jest równy 0, czyli

$$x^2 - 6 = 0$$
 lub  $3x + 2 = 0$ .

Rozwiązaniem równania 3x + 2 = 0 jest  $x = -\frac{2}{3}$ .

Rozwiązania równania  $x^2 - 6 = 0$  możemy wyznaczyć, korzystając:

• z postaci iloczynowej trójmianu  $x^2-6$  (wzoru skróconego mnożenia na różnicę kwadratów)

$$(x-\sqrt{6})(x+\sqrt{6}) = 0$$
, stad  $x = \sqrt{6}$  lub  $x = -\sqrt{6}$ 

albo

• ze wzorów na pierwiastki trójmianu kwadratowego:  $\Delta = 24$ .

$$x_1 = \frac{0 - 2\sqrt{6}}{2} = -\sqrt{6}$$
,  $x_2 = \frac{0 + 2\sqrt{6}}{2} = \sqrt{6}$ ,

albo

• z własności wartości bezwzględnej, przekształcając najpierw równanie do postaci równoważnej  $|x| = \sqrt{6}$ , skąd  $x = \sqrt{6}$  lub  $x = -\sqrt{6}$ .

Zatem wszystkie rozwiązania równania to:  $x = -\frac{2}{3}$  lub  $x = \sqrt{6}$ , lub  $x = -\sqrt{6}$ .

#### Schemat punktowania

• zapisze dwa równania:  $x^2 - 6 = 0$  lub 3x + 2 = 0 (wystarczy, że z rozwiązania wynika, że zdający wyznacza pierwiastki każdego z wielomianów:  $x^2 - 6$  oraz 3x + 2)

albo

• zapisze rozwiązanie  $x = -\frac{2}{3}$ ,

albo

• wyznaczy dwa pierwiastki wielomianu  $x^2 - 6$ ,

i na tym zakończy lub dalej popełnia błędy.

#### Uwagi

1. Jeżeli zdający zapisuje zamiast znaku = znak  $\neq$  i zamieszcza zapisy typu:  $x^2 - 6 \neq 0$  lub  $3x + 2 \neq 0$ , to oznacza, że podejmuje próbę wyznaczenia miejsc zerowych dwóch wielomianów i otrzymuje przynajmniej **1 punkt**.

2. Jeżeli zdający nie zapisuje warunku  $x^2 - 6 = 0$ , ale pisze od razu błędną postać iloczynową  $x^2 - 6$ , np. (x - 3)(x - 2) = 0, (x - 6)(x + 6) = 0, i nie wyznacza poprawnie miejsca zerowego drugiego wielomianu, to otrzymuje **0 punktów**.

#### Zadanie 28. (0-2)

Udowodnij, że dla dowolnej dodatniej liczby rzeczywistej x prawdziwa jest nierówność

$$4x + \frac{1}{x} \ge 4.$$

#### Przykładowe rozwiązanie

#### I sposób rozwiązania

Dla dodatnich liczb x nierówność  $4x + \frac{1}{x} \ge 4$  jest równoważna kolejno nierównościom

$$4x^{2} + 1 \ge 4x,$$
  

$$4x^{2} - 4x + 1 \ge 0,$$
  

$$(2x - 1)^{2} \ge 0.$$

Ta nierówność jest prawdziwa, gdyż lewa strona tej nierówności jest kwadratem liczby rzeczywistej. To kończy dowód.

#### II sposób rozwiązania

Dla dodatnich liczb x nierówność  $4x + \frac{1}{x} \ge 4$  jest równoważna kolejno nierównościom

$$4x - 4 + \frac{1}{x} \ge 0,$$
$$\left(2\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 \ge 0$$

Ta nierówność jest prawdziwa, gdyż lewa strona tej nierówności jest kwadratem liczby rzeczywistej. To kończy dowód.

#### III sposób rozwiązania

Dla dodatnich liczb x nierówność  $4x + \frac{1}{x} \ge 4$  jest równoważna kolejno nierównościom

$$4x^2 + 1 \ge 4x$$
,  
 $4x^2 - 4x + 1 \ge 0$ .

Ponieważ wyróżnik trójmianu kwadratowego  $4x^2 - 4x + 1$  jest równy  $\Delta = (-4)^2 - 4 \cdot 1 \cdot 4 = 0$  i współczynnik przy  $x^2$  jest dodatni, więc nierówność jest prawdziwa dla każdej liczby rzeczywistej x. To kończy dowód.

#### Uwaga

Możemy też naszkicować wykres tego trójmianu  $y = 4x^2 - 4x + 1$ .



#### IV sposób rozwiązania

Z twierdzenia o średniej arytmetycznej i geometrycznej dla liczb dodatnich 4x i  $\frac{1}{x}$  wynika, że prawdziwa jest nierówność

$$\frac{4x + \frac{1}{x}}{2} \ge \sqrt{4x \cdot \frac{1}{x}} = 2.$$

Stąd otrzymujemy  $4x + \frac{1}{x} \ge 4$ . To kończy dowód.

| Schemat punktowania                                                                                                              |
|----------------------------------------------------------------------------------------------------------------------------------|
| Zdający otrzymuje 1 p.                                                                                                           |
| gdy:                                                                                                                             |
| • przekształci poprawnie nierówność do postaci $(2x-1)^2 \ge 0$                                                                  |
| albo                                                                                                                             |
| • przekształci poprawnie nierówność do postaci $\left(2\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 \ge 0$ ,                           |
| albo                                                                                                                             |
| • przekształci poprawnie nierówność do postaci $4x^2 - 4x + 1 \ge 0$ i obliczy wyróżnik trójmianu $4x^2 - 4x + 1$ : $\Delta = 0$ |
| albo                                                                                                                             |
| • obliczy pochodną funkcji $f(x) = 4x + \frac{1}{x}$ i wykaże, że dla $x = \frac{1}{2}$ funkcja $f$ osiąga minimum lokalne       |
| i na tym zakończy lub dalej popełnia błędy.                                                                                      |
| Zdający otrzymuje                                                                                                                |
| gdy przeprowadzi pełne rozumowanie.                                                                                              |
|                                                                                                                                  |

## Uwaga

Jeżeli zdający sprawdzi prawdziwość tezy tylko dla konkretnych przypadków, to otrzymuje **0 punktów**.

#### Zadanie 29. (0-2)

Dany jest trójkąt prostokątny ABC, w którym  $| \not \prec ACB | = 90^\circ$  i  $| \not \prec ABC | = 60^\circ$ . Niech D oznacza punkt wspólny wysokości poprowadzonej z wierzchołka C kąta prostego i przeciwprostokątnej AB tego trójkąta. Wykaż, że |AD|: |DB| = 3:1.

#### Przykładowe rozwiązania

## I sposób rozwiązania

Sporządzamy pomocniczy rysunek ilustrujący treść zadania.



Ponieważ  $| <\!\!\!\! < ABC | = 60^\circ$ , więc  $|BC| = \frac{1}{2} |AB|$ . Podobnie, ponieważ  $| <\!\!\!\! < DBC | = 60^\circ$ , więc  $|DB| = \frac{1}{2} |BC|$ . Otrzymujemy zatem ciąg równości

$$|DB| = \frac{1}{2}|BC| = \frac{1}{2}(\frac{1}{2}|AB|) = \frac{1}{4}|AB|.$$

Zatem  $|AD| = \frac{3}{4}|AB|$ . Stąd wynika, że |AD|:  $|DB| = \frac{3}{4}|AB|$ :  $\frac{1}{4}|AB| = 3$ : 1. To kończy dowód.

#### Schemat punktowania I sposobu rozwiązania

$$|BC| = \frac{1}{2}|AB|$$
 i  $|DB| = \frac{1}{2}|BC|$ 

i na tym poprzestanie lub dalej popełni błędy.

**Zdający otrzymuje ......2 p.** gdy przeprowadzi pełne, poprawne rozumowanie.

#### II sposób rozwiązania

Sporządzamy pomocniczy rysunek ilustrujący treść zadania.



Z trójkatów prostokatnych ADC i BDC otrzymujemy równości

$$tg30^{\circ} = \frac{|CD|}{|AD|} i tg 60^{\circ} = \frac{|CD|}{|DB|},$$

czyli równości

$$|CD| = \frac{\sqrt{3}}{3} |AD| i |CD| = \sqrt{3} |DB|.$$

Porównujemy prawe strony obu równań i zapisujemy równanie

$$\frac{\sqrt{3}}{3}|AD| = \sqrt{3}|DB|,$$

równoważne równaniu

$$\frac{|AD|}{|DB|} = \frac{\sqrt{3}}{\frac{\sqrt{3}}{3}} = 3.$$

Otrzymana równość oznacza tezę twierdzenia.

#### Schemat punktowania II sposobu rozwiązania

$$|CD| = \frac{\sqrt{3}}{3} |AD| \text{ i } |CD| = \sqrt{3} |DB|$$

i na tym poprzestanie lub dalej popełni błędy.

#### III sposób rozwiązania

Sporządzamy pomocniczy rysunek ilustrujący treść zadania.



Niech |AC| = b. Wtedy w trójkącie ACD mamy:

$$|CD| = \frac{b}{2} i |AD| = \frac{b\sqrt{3}}{2}.$$

Ponadto, w trójkącie ABC:

$$|BC| = \frac{b\sqrt{3}}{3}$$
.

Ponieważ  $| \angle DBC | = 60^{\circ}$ , więc  $|DB| = \frac{b\sqrt{3}}{6}$ . Zatem  $\frac{|AD|}{|DB|} = \frac{b\sqrt{3}}{2}$ :  $\frac{b\sqrt{3}}{6} = 3$ .

To kończy dowód.

## Schemat punktowania III sposobu rozwiązania

$$|AD| = \frac{b\sqrt{3}}{2}$$
 i  $|DB| = \frac{b\sqrt{3}}{6}$ 

i na tym poprzestanie lub dalej popełni błędy.

#### IV sposób rozwiązania

Niech |BC| = a. Ponieważ trójkąt ABC jest połową trójkąta równobocznego, więc  $|AC| = a\sqrt{3}$ .



Trójkąty ADC i CDB są podobne, a skala ich podobieństwa jest równa  $\frac{|AC|}{|BC|} = \frac{a\sqrt{3}}{a} = \sqrt{3}$ , więc stosunek pól tych trójkątów jest kwadratem tej skali, czyli  $\frac{P_{ADC}}{P_{CDB}} = \left(\sqrt{3}\right)^2 = 3$ . Te trójkąty mają wspólną wysokość CD, więc stosunek ich pól jest równy stosunkowi długości ich podstaw, czyli  $\frac{P_{ADC}}{P_{CDB}} = \frac{|AD|}{|BD|} = 3$  co kończy dowód.

#### Schemat punktowania IV sposobu rozwiązania

gdy przeprowadzi pełne, poprawne rozumowanie.

#### Uwagi

1. Jeżeli zdający sprawdzi prawdziwość tezy tylko dla konkretnych przypadków, to otrzymuje **0 punktów**. Uwaga ta nie dotyczy sytuacji, gdy zdający zapisuje stosowną własność: podobieństwo trójkątów o kątach 30°, 60°, 90°.

- 2. Jeżeli zdający ustali, że długości odcinków są równe: BD = x, BC = 2x, AB = 4x lub BD = x, BC = 2x, AD = 3x i nie towarzyszą tym ustaleniom zapisy świadczące o błędnym rozumowaniu, to może otrzymać **2 punkty**.
- 3. Jeżeli zdający przeprowadzi uzasadnienie, rozważając konkretne długości odcinków i zapisze, że ze względu na podobieństwo figur teza jest prawdziwa dla dowolnych długości boków, spełniających podane warunki, to może otrzymać **2 punkty**.

## Zadanie 30. (0-2)

Ze zbioru liczb {1, 2, 4, 5, 10} losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia *A* polegającego na tym, że iloraz pierwszej wylosowanej liczby przez drugą wylosowaną liczbę jest liczbą całkowitą.

## Przykładowe rozwiązania

#### I sposób rozwiązania ("metoda klasyczna")

Zdarzeniami elementarnymi są wszystkie pary uporządkowane (x, y) liczb ze zbioru  $\{1, 2, 4, 5, 10\}$ . Jest to model klasyczny. Liczba wszystkich zdarzeń elementarnych jest równa  $|\Omega| = 5 \cdot 5 = 25$ .

Zdarzeniu A sprzyjają następujące zdarzenia elementarne:

$$(1,1), (2,1), (4,1), (5,1), (10,1), (2,2), (4,2), (10,2), (4,4), (5,5), (10,5), (10,10)$$

Zatem 
$$|A| = 12$$
 i stąd  $P(A) = \frac{|A|}{|\Omega|} = \frac{12}{25} = 0.48$ .

#### II sposób rozwiązania ("metoda tabeli")

Zdarzeniami elementarnymi są wszystkie pary uporządkowane (x, y) liczb ze zbioru  $\{1, 2, 4, 5, 10\}$ . Jest to model klasyczny. Budujemy tabelę ilustrującą sytuację opisaną w zadaniu.

Strona 10 z 20

Symbolem × oznaczono zdarzenia elementarne sprzyjające zdarzeniu A. Mamy więc 25, wszystkich zdarzeń elementarnych, czyli  $|\Omega|=25$ , oraz 12 zdarzeń elementarnych sprzyjających zdarzeniu A, czyli |A|=12. Stąd  $P(A)=\frac{|A|}{|\Omega|}=\frac{12}{25}=0,48$ .

#### Schemat punktowania I i II sposobu rozwiązania

Zdający otrzymuje ......1 p. gdy

- obliczy liczbę wszystkich możliwych zdarzeń elementarnych  $|\Omega|=25$  albo
  - przedstawi poprawny sposób wyznaczenia wszystkich elementów zbioru *A* lub wypisze wszystkie te zdarzenia elementarne:

$$(1,1),(2,1),(4,1),(5,1),(10,1),(2,2),(4,2),(10,2),(4,4),(5,5),(10,5),(10,10)$$

i na tym zakończy lub dalej popełnia błędy.

Zdający otrzymuje ......2 p.

gdy obliczy prawdopodobieństwo zdarzenia  $A: P(A) = \frac{|A|}{|\Omega|} = \frac{12}{25} = 0.48$ .

## III sposób rozwiązania ("metoda drzewa")

Drzewo z istotnymi gałęziami



$$P(A) = 12 \cdot \frac{1}{5} \cdot \frac{1}{5} = \frac{12}{25} = 0,48$$
.

#### Schemat punktowania III sposobu rozwiązania

## Uwagi

- 1. Jeśli zdający rozwiąże zadanie do końca i otrzyma P(A)>1, to otrzymuje za całe rozwiązanie **0 punktów**.
- 2. Jeżeli zdający poprawnie obliczy prawdopodobieństwo w sytuacji rozważania losowania bez zwracania i uzyska wynik  $\frac{7}{20}$ , to może otrzymać **1 punkt**.
- 3. Jeżeli zdający przy opisie elementów zbioru *A* zmienia kolejność liczb i pisze na przykład (1, 2) zamiast (2, 1), to może otrzymać **2 punkty**.

#### Zadanie 31. (0-2)

Dany jest ciąg arytmetyczny  $(a_n)$ , określony dla  $n \ge 1$ , w którym spełniona jest równość  $a_{21} + a_{24} + a_{27} + a_{30} = 100$ . Oblicz sumę  $a_{25} + a_{26}$ .

#### Przykładowe rozwiązanie

Ponieważ w zadaniu należy obliczyć sumę  $a_{25}+a_{26}$ , więc zapiszemy daną równość  $a_{21}+a_{24}+a_{27}+a_{30}=100$  w postaci równoważnej

$$a_{25} - 4r + a_{25} - r + a_{26} + r + a_{26} + 4r = 100$$
,

gdzie r oznacza odpowiednio różnicę danego ciągu. Stąd wynika, że

$$a_{25} + a_{26} = 50$$
.

## Schemat punktowania

• zapisze równość  $a_{21}+a_{24}+a_{27}+a_{30}=100$  w postaci równoważnej  $a_{25}-4r+a_{25}-r+a_{26}+r+a_{26}+4r=100$  lub  $4a_1+98r=100$ , lub  $2a_1+49r=50$  i na tym zakończy lub dalej popełni błędy

albo

• zapisze, że  $a_{25} + a_{26} = a_1 + 24r + a_1 + 25r = 2a_1 + 49r$ i na tym zakończy lub dalej popełni błędy,

albo

• popełni błąd rachunkowy w przekształcaniu równości  $a_{21} + a_{24} + a_{27} + a_{30} = 100$  do postaci równoważnej i konsekwentnie do popełnionego błędu obliczy sumę  $a_{25} + a_{26}$ .

#### Uwagi

- 1. Jeżeli zdający zapisze równość  $a_{21}+a_{24}+a_{27}+a_{30}=100$  w postaci równoważnej  $4a_1+98r=100$ , a następnie wprowadzi konkretne wartości liczbowe do równania z dwiema niewiadomymi, np. r=1, i nawet poprawnie obliczy  $a_{25}+a_{26}$ , to otrzymuje **1 punkt** za takie rozwiązanie.
- 2. Jeżeli zdający myli własności ciągu arytmetycznego z własnościami ciągu geometrycznego, to za całe zadanie otrzymuje **0 punktów**.
- 3. Jeżeli zdający rozważa wyłącznie konkretne ciągi i nie podaje stosownego uzasadnienia na temat zastosowania tych rozważań do sytuacji ogólnej, to otrzymuje **0 punktów**.
- 4. Jeżeli zdający zapisuje wyłącznie  $a_{25} + a_{26} = 50$ , to otrzymuje **0 punktów**.

#### Zadanie 32. (0-4)

Funkcja kwadratowa  $f(x) = ax^2 + bx + c$  ma dwa miejsca zerowe  $x_1 = -2$  i  $x_2 = 6$ . Wykres funkcji f przechodzi przez punkt A = (1, -5). Oblicz najmniejszą wartość funkcji f.

#### Przykładowe rozwiązania

#### I sposób rozwiazania

Ponieważ znamy miejsca zerowe funkcji kwadratowej, to możemy zapisać wzór funkcji f w postaci iloczynowej f(x) = a(x-6)(x+2).

Wykres tej funkcji przechodzi przez punkt A = (1, -5), więc otrzymujemy równanie

$$-5 = a(1-6)(1+2),$$
  

$$-5 = -15a,$$
  

$$a = \frac{1}{3}.$$

Funkcja określona jest wzorem:  $f(x) = \frac{1}{3}(x-6)(x+2)$ .

Najmniejsza wartość jest przyjmowana przez funkcję f dla argumentu  $x_0$ , który jest średnią arytmetyczną miejsc zerowych tej funkcji.

Wyznaczamy  $x_0$  i najmniejszą wartość funkcji  $f(x_0)$ :

$$x_0 = \frac{6-2}{2} = 2$$
,  $f(x_0) = f(2) = \frac{1}{3}(2-6)(2+2) = -\frac{16}{3}$ .

#### II sposób rozwiązania

Z treści zadania wynika, że możemy zapisać układ trzech równań:

$$\begin{cases} a \cdot (-2)^2 + b \cdot (-2) + c = 0 \\ a \cdot 6^2 + b \cdot 6 + c = 0 \\ a \cdot 1^2 + b \cdot 1 + c = -5 \end{cases}$$

Po rozwiązaniu układu równań otrzymujemy  $a = \frac{1}{3}$ ,  $b = -\frac{4}{3}$  i c = -4.

Stąd wynika, że funkcja f określona jest wzorem:  $f(x) = \frac{1}{3}x^2 - \frac{4}{3}x - 4$ .

Funkcja ta przyjmuje najmniejszą wartość dla argumentu  $x_0 = \frac{-b}{2a} = \frac{\frac{4}{3}}{2 \cdot \frac{1}{3}} = 2$ .

Obliczamy najmniejszą wartość funkcji:  $f(2) = \frac{1}{3} \cdot 2^2 - \frac{4}{3} \cdot 2 - 4 = -\frac{16}{3}$ .

#### Uwaga

Po obliczeniu współczynników a,b i c możemy najmniejszą wartość funkcji obliczyć ze wzoru  $q=-\frac{\Delta}{4a}$ . Wtedy otrzymujemy

$$f_{\min} = -\frac{\left(-\frac{4}{3}\right)^2 - 4 \cdot \frac{1}{3} \cdot \left(-4\right)}{4 \cdot \frac{1}{3}} = -\frac{\frac{16}{9} + \frac{16}{3}}{\frac{4}{3}} = -\frac{16}{3}.$$

#### Schemat punktowania

- obliczy pierwszą współrzędną wierzchołka paraboli: p = 2 albo
  - zapisze wzór funkcji f w postaci iloczynowej, z jednym nieznanym współczynnikiem: f(x) = a(x-6)(x+2),

albo

• zapisze trzy równania, w których niewiadomymi są współczynniki *a*, *b*, *c* trójmianu kwadratowego:

$$a \cdot (-2)^{2} + b \cdot (-2) + c = 0$$

$$a \cdot 6^{2} + b \cdot 6 + c = 0$$

$$a \cdot 1^{2} + b \cdot 1 + c = -5$$

i na tym poprzestanie lub dalej popełnia błędy.

• zapisze wzór funkcji f w postaci iloczynowej, z jednym nieznanym współczynnikiem: f(x) = a(x-6)(x+2) i obliczy wartość a:  $a = \frac{1}{3}$ 

albo

• obliczy współczynniki trójmianu kwadratowego:  $a = \frac{1}{3}$ ,  $b = -\frac{4}{3}$  i c = -4 i na tym poprzestanie lub dalej popełnia błędy.

## 

• obliczy współczynniki trójmianu kwadratowego:  $a=\frac{1}{3}$ ,  $b=-\frac{4}{3}$  i c=-4 oraz obliczy pierwszą współrzędną wierzchołka paraboli: p=2

albo

• obliczy współczynniki trójmianu kwadratowego:  $a = \frac{1}{3}$ ,  $b = -\frac{4}{3}$  i c = -4 oraz zapisze, że najmniejsza wartość funkcji jest równa  $-\frac{\Delta}{4a}$  oraz obliczy  $\Delta = \left(-\frac{4}{3}\right)^2 - 4 \cdot \frac{1}{3} \cdot \left(-4\right)$ 

albo

• zapisze wzór funkcji f w postaci iloczynowej, z jednym nieznanym współczynnikiem: f(x) = a(x-6)(x+2) i obliczy wartość a:  $a = \frac{1}{3}$  oraz obliczy pierwszą współrzędną wierzchołka paraboli: p = 2

i na tym poprzestanie lub dalej popełnia błędy.

#### Uwagi

- 1. Jeżeli zdający popełni błędy (rachunkowe, w przepisywaniu), które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać co najwyżej **3 punkty** za takie rozwiązanie.
- 2. Jeżeli zdający przyjmuje konkretna wartość a > 0, to może otrzymać co najwyżej **1 punkt**.
- 3. Jeżeli zdający przy wyznaczaniu a popełnia błąd rachunkowy i otrzymuje a > 0, to może otrzymać co najwyżej **3 punkty**.
- 4. Jeżeli zdający przy wyznaczaniu a popełnia błąd rachunkowy i otrzymuje a < 0, to może otrzymać co najwyżej **2 punkty**.

#### Zadanie 33. (0-4)

Punkt C = (0,0) jest wierzchołkiem trójkąta prostokątnego ABC, którego wierzchołek A leży na osi Ox, a wierzchołek B na osi Oy układu współrzędnych. Prosta zawierająca wysokość tego trójkąta opuszczoną z wierzchołka C przecina przeciwprostokątną AB w punkcie D = (3,4).



Oblicz współrzędne wierzchołków A i B tego trójkąta oraz długość przeciwprostokątnej AB.

## Przykładowe rozwiązania

#### I sposób rozwiazania

Współczynnik kierunkowy prostej CD jest równy

$$a_{CD} = \frac{y_D - y_C}{x_D - x_C} = \frac{4 - 0}{3 - 0} = \frac{4}{3}.$$

Prosta AB jest prostopadła do prostej CD, więc jej współczynnik kierunkowy jest równy

$$a_{AB} = -\frac{3}{4}.$$

Prosta ta przechodzi przez punkt D = (3,4), więc jej równanie ma postać

$$y = -\frac{3}{4}(x-3)+4,$$
  
$$y = -\frac{3}{4}x + \frac{25}{4}.$$

Ponieważ prosta AB przecina oś Oy w punkt B, więc  $B = \left(0, \frac{25}{4}\right)$ , natomiast oś Ox w punkcie A, więc  $A = \left(x_A, 0\right)$ . Zatem

$$0 = -\frac{3}{4}x_A + \frac{25}{4},$$
$$x_A = \frac{25}{3},$$

czyli 
$$A = \left(\frac{25}{3}, 0\right)$$
.

Długość przeciwprostokatnej AB jest zatem równa

$$|AB| = \sqrt{\left(\frac{25}{3} - 0\right)^2 + \left(0 - \frac{25}{4}\right)^2} = \sqrt{\frac{625}{9} + \frac{625}{16}} = \sqrt{625 \cdot \left(\frac{1}{9} + \frac{1}{16}\right)} =$$
$$= \sqrt{625 \cdot \frac{25}{9 \cdot 16}} = 25 \cdot \frac{5}{3 \cdot 4} = \frac{125}{12} = 10 \cdot \frac{5}{12}.$$

#### Schemat punktowania I sposobu rozwiązania

#### II sposób rozwiązania

Niech  $A = (x_A, 0)$  i  $B = (0, y_B)$ . Długość odcinka *CD* jest równa

$$|CD| = \sqrt{(3-0)^2 + (4-0)^2} = 5$$
.

Z twierdzenia dla trójkątów ACD i BDC otrzymujemy

$$|AD|^{2} + |CD|^{2} = |AC|^{2} \text{ i } |CD|^{2} + |BD|^{2} = |BC|^{2},$$

$$\left(\sqrt{(3-x_{A})^{2} + (4-0)^{2}}\right)^{2} + 5^{2} = x_{A}^{2} \text{ i } \left(\sqrt{(3-0)^{2} + (4-y_{B})^{2}}\right)^{2} + 5^{2} = y_{B}^{2},$$

$$9 - 6x_{A} + x_{A}^{2} + 16 + 25 = x_{A}^{2} \text{ i } 9 + 16 - 8y_{B} + y_{B}^{2} + 25 = y_{B}^{2},$$

$$50 = 6x_{A} \text{ i } 50 = 8y_{B},$$

$$x_{A} = \frac{50}{6} = \frac{25}{3} = 8\frac{1}{3} \text{ i } y_{B} = \frac{50}{8} = \frac{25}{4} = 6\frac{1}{4}.$$

Zatem  $A = \left(\frac{25}{3}, 0\right)$  i  $B = \left(0, \frac{25}{4}\right)$ 

Długość przeciwprostokatnej AB jest zatem równa

$$|AB| = \sqrt{\left(\frac{25}{3} - 0\right)^2 + \left(0 - \frac{25}{4}\right)^2} = \sqrt{\frac{625}{9} + \frac{625}{16}} = \sqrt{625 \cdot \left(\frac{1}{9} + \frac{1}{16}\right)} =$$
$$= \sqrt{625 \cdot \frac{25}{9 \cdot 16}} = 25 \cdot \frac{5}{3 \cdot 4} = \frac{125}{12} = 10 \cdot \frac{5}{12}.$$

## Schemat punktowania II sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze

Zdający zapisze jedno z równań:  $\left(\sqrt{(3-x_{A})^{2}+(4-0)^{2}}\right)^{2}+5^{2}=x_{A}^{2}$ ,

$$\left(\sqrt{\left(3-0\right)^2+\left(4-y_B\right)^2}\right)^2+5^2=y_B^2$$
 z niewiadomą odpowiednio  $x_A$ ,  $y_B$ 

i na tym poprzestanie lub dalej popełnia błędy.

Rozwiązanie, w którym jest istotny postęp ...... 2 p.

Zdający zapisze oba równania:  $\left(\sqrt{\left(3-x_{A}\right)^{2}+\left(4-0\right)^{2}}\right)^{2}+5^{2}=x_{A}^{2}$ ,

$$\left(\sqrt{\left(3-0\right)^2+\left(4-y_B\right)^2}\right)^2+5^2=y_B^2$$
 z niewiadomą odpowiednio  $x_A$ ,  $y_B$ 

i na tym poprzestanie lub dalej popełnia błędy.

Pokonanie zasadniczych trudności zadania ....... 3 p.

Zdający obliczy współrzędne punktów A i B:  $A = \left(\frac{25}{3}, 0\right)$ ,  $B = \left(0, \frac{25}{4}\right)$  i na tym poprzestanie lub dalej popełnia błędy.

Zdający obliczy długość przeciwprostokątnej AB trójkąta ABC:  $|AB| = 10 \frac{5}{12}$ .

#### Uwaga (do schematów punktowania I i II sposobu rozwiązania)

Jeżeli zdający popełni błędy (rachunkowe, w przepisywaniu), które nie przekreślają poprawności rozumowania i konsekwentnie rozwiąże zadanie do końca, to może otrzymać co najwyżej **3 punkty** za takie rozwiązanie.

#### Zadanie 34. (0-5)

Podstawą graniastosłupa prostego ABCDEF jest trójkąt prostokątny ABC, w którym  $| \not \prec ACB | = 90^\circ$  (zobacz rysunek). Stosunek długości przyprostokątnej AC tego trójkąta do długości przyprostokątnej BC jest równy 4 : 3. Punkt S jest środkiem okręgu opisanego na trójkącie ABC, a długość odcinka SC jest równa 5. Pole ściany bocznej BEFC graniastosłupa jest równe 48. Oblicz objętość tego graniastosłupa.



#### Przykładowe rozwiązanie

Odcinek CS jest promieniem okręgu opisanego na trójkącie ABC. Zatem

$$|CS| = |AS| = |BS| = 5,$$

skąd otrzymujemy |AB| = 10.

Ponieważ stosunek długości przyprostokątnej AC do długości przyprostokątnej BC jest równy 4:3, więc możemy przyjąć |AC|=4x oraz |BC|=3x, gdzie x oznacza współczynnik proporcjonalności. Z twierdzenia Pitagorasa otrzymujemy równanie

$$10^{2} = (4x)^{2} + (3x)^{2},$$
  

$$100 = 25x^{2},$$
  

$$x^{2} = 4,$$
  

$$x = 2.$$

Zatem |AB| = 8 oraz |BC| = 6. Pole trójkąta ABC jest równe  $P = \frac{1}{2} \cdot 8 \cdot 6 = 24$ .

Pole ściany bocznej BEFC jest równe 48, więc

 $|BC| \cdot H = 48$ , gdzie |BE| = H to wysokość graniastosłupa.

$$6 \cdot H = 48,$$
  
$$H = 8.$$

Objętość graniastosłupa jest równa  $V = P_p \cdot H = 24 \cdot 8 = 192$ .

## Schemat punktowania

• obliczy długość przeciwprostokątnej trójkąta ABC: |AB| = 10

albo

• zapisze zależność między długościami przyprostokątnych trójkąta ABC, np.:

$$\frac{b}{a} = \frac{4}{3} \text{ lub } (|AC| = 4x \text{ i } |BC| = 3x)$$

i na tym poprzestanie lub dalej popełnia błędy.

## 

- równanie pozwalające obliczyć długości przyprostokątnych, np.:  $(3x)^2 + (4x)^2 = 10^2$  albo
  - układ równań pozwalający obliczyć długości przyprostokatnych, np.:

$$\frac{b}{a} = \frac{4}{3}$$
 i  $a^2 + b^2 = 10^2$ 

i na tym poprzestanie lub dalej popełnia błędy.

#### Uwaga

Akceptujemy rozwiązanie, w którym zdający wykorzystuje trójkę pitagorejską (6, 8, 10).

- nie obliczy objętości bryły, ale obliczy wysokość graniastosłupa: H = 8 albo
  - obliczy objętość graniastosłupa, popełniając w trakcie rozwiązania błędy rachunkowe.

#### Uwagi

- 1. Jeżeli zdający rozważa w podstawie graniastosłupa trójkąt inny niż do trójkąta o bokach 6, 8, 10, ale podobny do tego trójkąta o bokach 6, 8, 10, to może otrzymać co najwyżej **2 punkty**.
- 2. Jeżeli zdający rozkłada liczbę 48 na iloczyn 8 · 6 i przyjmuje, że 6 jest długością *BC*, a następnie wyznacza pole podstawy i objętość bryły, to może otrzymać co najwyżej **3 punkty**.