DBMS Concepts

Entity Relation Model

- Entity: Distinguishable from other objects
- Entity Set: Group of Entities
- Record: Each Row of Dataset

Models

- Network: ER model restricted to Binary, Many-One Relationships, To break a many many relation insert temp between them and insert 2 many-one relations
- Hierarchical: Kind of Decision

Armstrong's Axioms

- 1. If $Y \subset X \subset U$ then $X \to Y$, reflexive
- 2. If $X \to Y$ and $Z \subset U$ then $XZ \to YZ$, augmented
- 3. If $X \to Y$ and $Y \to Z$ then $X \to Z$, transitive

Inference Rules

- 1. $\{X \to Y, X \to Z\}$ then $X \to YZ$, Union Rule
- 2. $\{X \to Y, WY \to Z\}$ then $XW \to Z$
- 3. $\{X \to Y, Z \subset Y\}$ then $X \to Z$
- 4. $\{X \to YZ\}$ then $X \to Y, X \to Z$

Keys

- Super: A combination of fields by which a row is uniquely identified. If u add any column to primary key it becomes a super key.
- Primary key: Any key which can uniquely identify rows of the current table
- Candidate key: The minimal super key. Individual columns in a table which qualifies for uniqueness of all
- Foreign Key: Field or collection of fields which uniquely identifies a row of another table.

3NF or Third Normal Form

 $X \to A$ is in 3NF if $A \notin X$ and either X is a key of relation or A is a prime attribute.

Transformation removes Partial And Dependency

Basic Relational Algebra Operators

- **Union:** $R \cup S$ Set of Tuples either in R or S both. R,S must have same number of attributes
- **Set Difference:** R S Set of Tuples present in R but not in S. Same attributes
- Cartesian Product: $R \times S$, Let R,S have <u>arity</u>(no of <u>attributes</u>) k1,k2. Then RxS is set of tuples with arity k1+k2 with 1st k1 components form tuple of R and last k2 components tuples of S
- **Projection:** $\pi_{i_1,i_2,\dots,i_N}(R)$ Set of tuples with attributes i_1,i_2,\dots,i_N with same content with that of
- **Selection:** $\sigma_E(R)$ set of tuples satisfying criteria F {Select C1,C2 from T1 where C3>2}

Core Diagram Database User Query Application Query Query DDI Compiler Compiled Database Database Manager Description File Manager Physical Database

Terminologies

- Cardinality: No of Tuples
- Arity: No of Attributes
- Tuples: Represents Rows

Type of Joins

- Natural Join: (or Inner Join) when tuples with same values for same attributes in R,S are represented in the same column
- Left Join: Takes values of all tuples of left join, wherever same values for same attributes in R,S are represented in the same column, if there doesn't exists a value in R, it will print NULL
- Right Join: here R and S is interchanged from

X+ Algorithm of Bernstein

Set N=0 and X(0) = X(given)

- $\forall A \rightarrow B \text{ in f such that } A \subset X \text{ and } B \notin X.\text{then}$ $X = X \cup B$
- Repeat step two until no $A \rightarrow B$ such exists

Elementary and Redundant FD

 $X \to Y$ is Elementary if $\not\exists (X' \subset X \ and \ X' \to Y)$ F is a Redundant FD if $(F - f)^+ = F^+$

In such cases partial dependency exists

Lossless Join Property

If $r=\pi_{R1}(r)\bowtie\pi_{R2}(r)$ Lossless if $R_1\cap R_2\to R_1-R_2$ or R_2-R_1 exists in f

1st Normal Form(1NF)

As per the rule of first normal form, an attribute (column) of a table cannot hold multiple values. It should hold only atomic values.

Boyce Codd Normal Form(BCNF)

A relation is in BCNF if $X \rightarrow Y$ exists $\& Y \notin X$ then X is a key(candidate or super)

Prime Attribute

A attribute which is a member or a subset of the key

2nd Normal Form(2NF)

- Table is in 1NF (First normal form)
- No non-prime attribute is dependent on the proper subset of any candidate key of table.

Partial Dependency is Removed

Additional Relational Algebra Operators

- **Intersection:** $R \cap S = R (R S)$ Set of Tuples both in R or S both. R,S must have same number of attributes
- **Quotient:** $R \div S$ let arity of R is r and S is s and r > s, set of tuples 't' with arity r - s st \forall tuples 'U' in S, the tuple tu(concat) is in R
- **\theta Join:** $R \bowtie_{i\theta i} S$, Set of Tuples that is in the subset of $R \times S$ satisfying $i\theta i$
- **Natural Join:** $R \bowtie S$, Subset of $R \times S$ in which only those tuples with same values for same attributes in R,S are represented in same column