INCO Zusammenfassung

Manuel Strenge

Zahlensysteme

Binär & Hexadezimal

Binär

Ein Zahlensystem mit Basis 2 heisst 2-er System, Binärsystem oder Dualsystem

Figure 1: Binär Beispiel

Grössen

Name	Speicher
Bit (binary digit) Byte (Octet)	Speicher 0/1 (True/False) 8 Bit oder 2 Nibble a 4 Bit

Hexadezimal

Das Zahlensystem mit der Basis 16 heisst 16-er System oder Hexadezimalsystem.

- Es umfasst 16 Werte ($0..15_d$)
- Da unser bekanntes Zahlensystem nur zehn Ziffern umfasst, behilft man sich für die Werte 10 bis 15 mit Buchstaben: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
- Wir bezeichnen die Hexadezimalzahlen mit einem Index h. Beispiel: $AF3C_h$

Beispiel:

$$0xAF3C = 10 * 16^{3} + 15*16^{2} + 3*16^{1} + 12*16^{0} =$$

$$= 10*4096 + 15*256 + 3*16 + 12 * 1 = 44860_{d}$$
dezimal

Figure 2: Hexadezimal Beispiel

Tabelle

10er System	2er System	16er System
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	A
11	1011	В
12	1100	$^{\mathrm{C}}$
13	1101	D
14	1110	E
15	1111	F

Berechnungen

Der einfachste weg ist immer zu Dezimal zu konvertieren und darauf wieder zurückzuwandeln in das gewünschte Format.

Folgende Probleme können auftreten:

- Es ist nicht jede beliebig grosse Zahl darstellbar
- Die zahlenmässige Bedeutung eines Bitmusters hängt davon ab, ob man von vorzeichenlosen oder vorzeichenbehafteten Zahlen spricht.
- Bei der Berechnung von Summen oder Produkten kommt es zu Überläufen, wenn das Resultat nicht mehr darstellbar ist
- Bei vorzeichenlosen Zahlen passieren Überläufe zwischen 0 und der grössten darstellbaren Zahl.
- Bei vorzeichenbehafteten Zahlen passieren Überläufe zwischen der grössten positiven und der kleinsten negativen Zahl.
- Bei Überläufen kann ein falsches Resultat entstehen, wenn das betreffende Überlaufsflag (Carry, Overflow) nicht beachtet wird (was der Normalfall ist).

Negative Zahlen(2-er Komplement) & Endliche Zahlen(Fixe Anzahl Bit und Modulo Rechnung)

Hierbei geht es darum wo der Umschlagspubkt im Format definiert wurde. (Hier 4 Bit's) Hier ein paar Möglichkeiten:

Binär	Dezimal	Sign+Magn.	Einerkomp.	Zweierkomp.	Exzess-8	
1111	Ø 15	7	⊙ -0	, -1	<u>4</u> 7	
1110	14	-6	-1	-2	+6	
1101	13	-5	-2	-3	+5	
1100	12	-4	-3	-4	+4	
1011	11	-3	-4	-5	+3	
1010	10	-2	-5	-6	+2	
1001	9	-1	-6	-7	+1	
1000	8	⊙⊘ −0	⊘ -7	⊘-8	0	
0111	7	+7	[⊘] +7	+7	-1	
0110	6	+6	+6	+6	-2	
0101	5	+5	+5	+5	-3	
0100	4	+4	+4	+4	-4	
0011	3	+3	+3	+3	-5	
0010	2	+2	+2	+2	-6	
0001	1	+1	+1	+1	-7	
0000	Ø 0	⊙ +0	⊙ +0	0	⊘-8	

Digitaltechnik

Kombinatorik

- Einfache Logische Operationen
 - Symbole / Logische Gleichungen / Warheitstabellen

Einfache logische Operationen

AND: Z=A&B OR: Z=A#B NAND: Z=!(A&B) NOR: Z=!(A#B) EXOR: Z=A\$B

A	В	A&B	A#B	!(A&B)	!(A#B)	A\$B
0	0	0	0	1	1	0
0	1	0	1	1	0	1
1	0	0	1	1	0	1
1	1	1	1	0	0	0

Alle Symbole

Figure 3: Alle Symbole

Vereinfachung

Ziel ist die Disjunktive Normalform (DNF) Die DNF besteht (auf der obersten Ebene) ausschliesslich aus OR-Verknüpfungen von ANDverknüpften Eingangsvariablen, die auch invertiert sein können.

Beispiel:

$$Z = (A\&B\&C\&D)\#(A\&B\&!C\&!D)\#(C\&!D)$$

Vorteile

- $\bullet\,$ Verwendung von möglichst wenigen / einfachen Gattern (HW) oder Instruktionen (SW)
- Erzielung einer möglichst kurzen Durchlaufzeit (bei HW) oder Ausführungszeit (bei SW)
- Das Resultat ist möglicherweise leichter zu verstehen und zu testen

Nachteile

- Nachverfolgbarkeit: Die vereinfachte / optimierte Funktion entspricht nicht mehr dem «Pflichtenheft»
- Wartbarkeit: Bei Änderungen muss die Optimierung erneut vorgenommen werden
- Zuverlässigkeit: Die Optimierung ist eine mögliche Fehlerquelle

Gesetze

Sequenzielle Logik

D-Flip-Flop

Wert am Eingang D wird gespeichert und an den Ausgang Q übertragen, wenn C von 0 auf 1 wechselt.

Figure 4: D-Flip-Flop visualisierung

Hierbei wird bei jedem Takt (C) der input von D zu Q weitergegeben

Figure 5: Visualisierung der werte Weitergabe

Verwendungen

- Finite State Machine (Speicherzellen stellen den Systemzustand dar)
- Zähler (Neuer Zustand ist vorgegeben durch jetzigen Zustand.)
- Schieberegister (Mehrere in Reihe geschaltete FFs.)

Entropie, Information und Quellcodierungsthemen

Auftrittswahrscheinlichkeit:

$$P(x_n) = \frac{1}{N} \Rightarrow N = \frac{1}{P(x_n)}$$

Informationsgehalt in Bit:

$$I(x_n) = \log_2 \frac{1}{P(x_n)}$$

Bestimmung von $P(x_n)$ durch Auszählen:

Figure 6: D-Flip-Flop visualisierung

 $k(x_n)$ sei die absolute Häufigkeit von x_n in den K Ereignissen Die Auftretenswahrscheinlichkeit (oder relative Häufigkeit) ist dann:

$$P(x_n) = \frac{k(x_n)}{K}$$

Berechnung des Mittelwerts H(X) des Informationsgehalt auch **Entropie** genannt.

Binary Memoryless Source (BMS)

- Eine BMS kennt, wie der Name sagt, nur 2 Symbole
- st p die Auftretenswahrscheinlichkeit des einen Symbols, folgt dass (1-p) jene des anderen Symbols ist.
- Für die binäre Entropie H_b gilt:

$$H_b = p \cdot \log_2 \frac{1}{p} + (1-p) \cdot \log_2 \frac{1}{1-p}$$

Redundanz

Entropie:

$$H(X) = \sum_{n=0}^{N-1} P(x_n) \cdot I(x_n)$$

Mittlere Länge der Codiuerung $l_n =$ länge der Codes:

$$L = \sum_{n=0}^{N-1} P(x_n) \cdot l_n$$

redundanz (Bit/Symbol):

$$R = L - H$$

Verlustlose Quellencodierung

Runlength Encoding

- Original:
- ...TERRRRRRRRMAUIIIIIIIIIIIIIIIIIIWQCSSSSSSSSSL...
- RLE komprimiert:
 - ...TEA09RMA01AUA17IWQCA10SL...

Figure 7: Runlength Encoding visualisierung

Huffman

- Statistisches Kompressionsverfahren:
 - Häufige Symbole erhalten kurze Codes.
 - Seltene Symbole erhalten lange Codes.
- Symbol-Wahrscheinlichkeiten $P(x_n)$ müssen bekannt sein

LZ77

Alle Zeichen werden durch Token von fixer Länge ersetzt:

Token: (Offset, Länge, Zeichen)

Im Such-Buffer wird die längste Übereinstimmung mit dem Vorschau-Buffer gesucht und als Token ausgegeben. Keine Übereinstimmung: Token (0, 0, Zeichen) wird verwendet.

Figure 8: Huffman Encoding visualisierung

Figure 9: LZ77 visualisierung

Figure 10: LZ77 Beispiel

LZW

- Statt einem Sliding Window wird ein Wörterbuch verwendet.
- Der Index nummeriert die Einträge des Wörterbuchs.
- Der String bildet den eigentlichen Eintrag.
- Wörterbuch wird initialisiert mit den möglichen Zeichen resp. Byte-Werten (0..255).
- Token enthält nur den Index des schon bestehenden Eintrags im Wörterbuch, nicht aber das zusätzliche Zeichen. Token: (Index)
- Das neue Zeichen wird erst mit dem nächsten Token übermittelt (Überlappung):

Figure 11: LZW Überlappung

			ВАВААВААА		P=A C = empty		ВАВАА	BAAA		P=B C = empty		ВАВААВААА			P=A C = empty
		Encoder	Output	String	Table		Encoder	Output	String	Table		Encoder	Output	String	Table
		Output Code	representing	codeword	string		Output Code	representing	codeword	string		Output Code	representing	codeword	string
		66	В	256	BA		66	В	256	BA		66	В	256	ВА
							65	Α	257	AB		65	Α	257	AB
Index	String											256	BA	258	BAA
			LZW comp	ression step	1			LZW comp	pression step	2			LZW com	pression step	3
65	A	BABAAB	1AAA ↑		=A = empty	_	BABAABAA	Â		P=A C = A	_	BABAABAA	^ ↑		P=AA C = empty
		Encoder	Output	String	Table		Encoder	Output	String	Table		Encoder	Output	String	Table
•••	•••	Output Code	representing	codeword	string		Output Code	representing	codeword	string		Output Code	representing	codeword	string
77	M	66	В	256	ВА	1	66	В	256	BA		66	В	256	BA
		65	A	257	AB		65	А	257	AB		65	А	257	AB
		256	BA	258	BAA		256	BA	258	BAA		256	BA	258	BAA
84	T	257	AB	259	ABA		257	AB	259	ABA		257	AB	259	ABA
							65	A	260	AA		65	Α	260	AA
255	2											260	AA		
255	?		LZW comp	ression step	4			LZW compr	ession step 5	5			LZW compr	ession step 6	

Verlustbehaftete Quellencodierung:Einfache, kurze Prinzipfragen

JPEG

Audiocodierung

Audio unkomprimiert: Wave-File Format

Kanalmodell für BSC und Kanalcodierungstheorem (ohne Entropien im Zusammenhang mit dem Kanalmodell)

Erfolgswahrscheinlichkeit: $P_{0,N} = (1 - \varepsilon)^N$

Fehlerwahrscheinlichkeit auf N Datenbits: $1 - P_{0,N} = 1 - (1 - \varepsilon)^N$

Die Wahrscheinlichkeit $P_{F,N}$, dass in einer Sequenz von N Datenbits genau F Bitfehler auftreten, ist:

$$B_{F,N} = \binom{N}{F} \cdot \varepsilon^F \cdot (1 - \varepsilon)^{N - F}$$

 $\binom{N}{F}$ ist der sogenannte Binomialkoeffizient aus der Kombinatorik.

Für die Wahrscheinlichkeit, dass maximal F Fehler bei einer Übertragung von N Bits auftreten, bilden wir die Summe aller Fälle:

$$P_{\leq F,N} = \sum_{t=0}^{F} \binom{N}{t} \cdot \varepsilon \cdot (1 - \varepsilon)^{N-t}$$

Oft will man die Restfehlerwahrscheinlichkeit wissen, also die Wahrscheinlichkeit, dass mehr als F Fehler bei einer Übertragung von N Bits auftreten:

$$P_{>F,N} = P_{$$

Eigenschaften von Codes (zB systematisch, linear, zyklisch, perfekt)

Systematischer (N,K)-Blockcode:

Die K Informationsbits erscheinen im Codewort am einem Stück

Figure 12: Blockcode

Systematische Blockcodes lassen sich besonders einfach decodieren: Es müssen lediglich die Fehlerschutzbits entfernt werden.

Binärer Blockcodes: Linearität

Bei einem linearen(N,K)-Blockcode ist die bitweise Exor-Verknüpfung von 2 beliebigen Codewörtern (inklusive des selben) wieder ein gültiges Codewort:

Jeder lineare Code muss zwingend das Null-Codewort (000) enthalten Anmerkung: Mathematisch nennt man die bitweise Exor-Verknüpfung eine bitweise Modulo-2-Summe (1-bit-Summe ohne Übertrag).

Bei linearen (N,K)-Blockcodes ist d_{min} die minimale Hamming Distanz der gültigen Codes zum Null-Codewort,

```
• Beispiel: C = (000), (110), (011), (101)
```

- Beliebiges Codewort xor mit sich selber:
$$\underline{c}_j \oplus \underline{c}_j = (000)$$

- Beliebiges Codewort xor mit (000):
$$\underline{c}_j \oplus (000) = \underline{c}_j$$

- Restliche Fälle: $(110) \oplus (011) = (101)$

ne Fälle:
$$(110) \oplus (011) = (101)$$

$$d_{\min}(C) = \min_{j \neq k} d_H(\underline{c}_j, \underline{c}_k) \qquad (110) \oplus (101) = (011) (011) \oplus (101) = (110)$$

Figure 13: Linearer Code

j	\underline{u}_j	<u>c</u> _j			(000)		(000)		
0	(00)	(000)			(000)	→ (*)	(000)		
1	(10)	(110)				O			
2	(11)	(011)	(110)	\longrightarrow	(011)	\longrightarrow	(101)	\longrightarrow	(110)
3	(01)	(101)		O		O		O	

Figure 14: Zyklischer Code

Linearer, zyklischer (N,K)-Blockcode

Die zyklische Verschiebung eines Codeworts gibt wieder ein Codewort:

Ein linearer, zyklischer Blockcode wird später eingehend besprochen (siehe Abschnitt CRC).

Perfekter Code

Ein Code heisst ein «perfekter Code», wenn jedes empfangene Wort w genau ein Codewort c hat, zu dem es einen geringsten HammingAbstand hat und zu dem es eindeutig zugeordnet werden kann

Hammingdistanz

• Hamming-Distanz ist die Anzahl der wechselnden Bits von einem gültigen Code zum nächsten gültigen Code

Das Hamming-Gewicht $w_H(c_i)$

- gibt an, wieviele Einsen das Codewort c_i enthält.
- darf nicht mit Hamming-Distanz verwechselt werden!

Coderate berechnen

Coderate
$$R: R = \frac{K}{N}$$

Figure 15: Visualisierung Hamming Distanz

Kanalkapazität berechnen

C: Kanalkapazität in bit/bit (Nutzbare Bits pro Kanalbenutzung)

$$H_b = \varepsilon \cdot \log_2 \frac{1}{\varepsilon} + (1 - \varepsilon) \cdot \log_2 \frac{1}{1 - \varepsilon}$$

$$C_{BSC}(\varepsilon) = 1 - H_b(\varepsilon)$$

Kan alco dierungs theorem

Das Kanalcodierungstheorem beschreibt, unter welcher Bedingung sich die Wahrscheinlichkeit von Fehlern beliebig reduzieren lässt.

Möchte man die Restfehlerwahrscheinlichkeit eines Fehlerschutzcodes beliebig klein machen, so muss R < C sein.

Kanalcodierung

CRC (einfache Beispiele)

Generator-Polynome (Divisor) werden in der folgenden Form beschrieben: X^4+X+1 , was $X^4*1+X^3*0+X^2*0+X^1*1+X^0*1$ bedeutet und 10011(entspricht.

Die Hamming-Distanz ist abhängig von der Wahl des Generator Polynoms und der Länge der Daten.

Spezialfall: Wenn der Fehlervektor durch g teilbar ist, wird auch das Bitmuster h ohne Rest durch g teilbar sein à der Fehler ist nicht erkennbar

Blockcodes mit Generator-und Paritycheckmatrix, Syndrom Encoding

Durch Multiplikation des Datenvektors u mit der Generatormatrix G wird das Codewort c_{10} erzeugt.

$$\begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \\ Codewort - c_{10} & 0 & 1 & 0 & 1 \end{bmatrix}$$
Generator matrix - G

Bei der Übertragung von c_{10} gilt die Annahme, dass maximal ein Bitfehler auftritt. Der Fehlervektor e darf also keine oder genau eine 1 enthalten.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 1 \end{bmatrix}$$

$$Codewort - c_{10}$$

$$Fehlervektor - e$$

$$Bitmuster - Empfangen - \widetilde{c}$$

Decoding

Durch Multiplikation des empfangenen Bitmusters \tilde{c} mit der Prüfmatrix wird das Syndrom bestimmt: * s = 000: Kein Fehler * s != 000: Der Index von s in der Prüfmatrix H^T ist die Position des zu korrigierenden Fehlers.

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 1 \\ Bitmuster-Empfangen-\widetilde{c} & & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ Syndrom-s \\ Syndrom-s \\ Pr \widetilde{u}fmatrix-H^T$$

Erstellen Generator / Paritycheck Matrix

- Die Generatormatrix setzt sich wie erwähnt zusammen aus der Paritätsmatrix und einer Einheitsmatrix.
- Die Paritätsbits müssen voneinander unabhängig sein; jede Spalte muss unterschiedlich sein.
- Der Code ist linear. Für die geforderte $d_{min}=3$ muss jeder Code (ausserdem Null-Code) mindestens 3 Einsen enthalten.
 - Mindestens eine Eins ist stets in der Einheitsmatrix
 - Jede Zeile der Paritätsmatrix muss mindestens 2 Einsen aufweisen
 - Ein Datenbit wird also stets von mindestens 2 Paritätsbits gesichert.

Figure 16: Bildung Matrix

Faltungscodes (Trellis)

Bei Faltungscodes spricht man nicht von minimaler Hamming-Distanz, sondern einer freien Distanz d_{free} (free distance). * Da Faltungscodes stets linear sind, gilt auch $d_{free} = w_{min}$ * Gesucht ist das Codewort, das die minimale Anzahl Einer enthält (aber mindestens eine).

Regel: Es können $\frac{d_{free}-1}{2}$ Fehler korrigiert werden auf N = 3 . . . 6 · m Bits

$\ddot{\mathbf{U}}\mathbf{bersicht}$

