Statistics and Variability from your Mechanical Laboratory

Materials 2, 2025

Histogram: measured strength

Histogram: Steel

Histogram: Steel

Histogram: Steel

Histogram: 3D printed PLA

Histogram: measured strength

Materials 2: Granta and Materials Selection

Tom Reynolds

Performance Indices (Ashby, 2011)

Defining the problem: what properties matter?

Thermal insulation for buildings

CC BY-SA 2.0 Wikipedia

Defining the problem: what properties matter?

Thermal insulation for buildings

- Thermal conductivity
- Toxicity
- Flammability
- Embodied carbon
- Cost

CC BY-SA 2.0 Wikipedia

Performance Indices (Ashby, 2011)

Function: thermal insulation

Function: thermal insulation

Constraints

- Low heat flux
- Non-toxic
- Non-flammable

Fixed variables: area A of wall, temperature difference ΔT

Free variable: thickness *t*

Objective: minimize cost

Cost per unit area:

$$\mathcal{E} = \frac{cAt\rho}{A}$$

Cost per unit mass c

Thickness t

Density ρ

Area A

Performance metric

Low heat transfer: 1/q

Low cost: 1/£

Combine into performance metric:

$$P = \frac{1}{q} \times \frac{1}{\pounds} = \frac{t}{\lambda \Delta T} \times \frac{1}{ct\rho}$$

Performance metric

Low heat transfer: 1/q

Low cost: 1/£

Combine into performance metric:

$$P = \frac{1/\lambda}{c\rho} \times \frac{1}{\Delta T}$$

Granta software

Material-process matrix

WHAT Framework

Materials

- Classifications
- Properties
- Small scale structure (microstructure)
- Processing / manufacturing
- Applications

Process class	Material class							ДРРП
	Metals Ferrous, light, precious, other non-ferrous	Ceramics & glass				Polymers & Composites		
		Cementitious	Clay fired	Advanced/ engineering	Glass	Thermo- plastics	Elastomers	Polymer matrix (thermoset) composites
Casting	✓	-	-	-	✓	-	-	-
Moulding	-	✓	✓	-	-	√	√	-
Deformation	✓	-	-	-	✓	-	-	-
Heat treatment	√	-	√	-	-	-	√	-
Machining	√	-	-	-	-	-	-	-
Composite forming	-	-	-	-	-	-	-	√
Powder methods	-	-	-	√	-	-	-	-
Special methods	-	-	-	√	-	-	-	-

Applications

WHAT Framework

Materials

- Classifications
- Properties
- Small scale structure (microstructure)
- Processing / manufacturing
- Applications
- Has this material been used for this application?
- Has it been used in an analogous application in another field?

Applications

WHAT Framework

Materials

- Classifications
- Properties
- Small scale structure (microstructure)
- Processing / manufacturing
- Applications
- A conservative choice e.g. glass bottles, steel cans rejects the opportunity for innovation
- Examples where a new material has captured a market: plastic bottles, aluminium cans, polycarbonate eyeglass lenses
- It is important in the early stage of design, or of re-design, to examine all materials, not rejecting options merely because they are unfamiliar