Physique du solide et des semiconducteurs

1 Électrons libres : capacité calorifique, susceptibilité ...

Dans cette partie on considère N électrons indépendants dont la seule interaction est celle induite par le confinement à l'intérieur d'une boîte de volume V.

- 1. Quelle simplification entraîne l'hypothèse d'absence d'interaction entre les électrons?
- 2. Ecrire l'équation de Schrödinger satisfaite par les fonctions d'onde stationnaires d'une particule quantique. Quelles sont les solutions, et les énergies ϵ associées, si l'on applique des conditions aux limites périodiques?
- 3. Définir et calculer la densité d'états $\rho(\epsilon)$ dans le cas des conditions aux limites périodiques.
- 4. Rappeler l'expression de la distribution de Fermi-Dirac $f^{FD}(\epsilon, T, \mu)$ ainsi que sa signification. Représenter son allure pour différentes températures.
- 5. Quelle condition fixe le potentiel chimique μ ? Expliciter la valeur du niveau de Fermi $\epsilon_{\rm F}$ en fonction de la densité électronique volumique n=N/V. Retrouver l'ordre de grandeur de n et de $\epsilon_{\rm F}$ dans un solide. Définir une échelle de température $T_{\rm F}$ associée au niveau de Fermi et la comparer aux températures usuelles.
- 6. On suppose dans cette question que T=0. Quelle est l'énergie totale des N électrons? Comment peuton définir une pression pour ce système de particules? La calculer, ainsi que le module de compression $-V\left.\frac{\partial p}{\partial V}\right|_{N}$.
- 7. On s'intéresse maintenant au régime des basses températures. On peut alors montrer (développements de Sommerfeld) que des intégrales du produit de la distribution de Fermi-Dirac par une fonction une fonction g régulière, peuvent se développer en puissances paires de T comme

$$I = \int_0^{+\infty} d\epsilon \ f^{FD}(\epsilon, T, \mu) \ g(\epsilon) = \int_0^{\mu} d\epsilon \ g(\epsilon) + \frac{\pi^2}{6} (k_{\rm B} T)^2 g'(\mu) + \mathcal{O}(T^4)$$

- 8. Déterminer le comportement de la chaleur spécifique à l'ordre le plus bas en température en appliquant le développement de Sommerfeld au calcul du nombre de particules et de l'énergie. De quelle autre contribution à la chaleur spécifique doit-on tenir compte dans un solide? Laquelle domine à basse température?
- 9. Quelle propriété des solides ne peut pas être expliquée dans le cadre du modèle des électrons libres?

2 Structure de bande : électrons presque libres

On considère un modèle de cristal à une dimension consistant en une rangée d'atomes identiques uniformément espacés de a, disposés le long de l'axe Ox. Une fraction des électrons de chaque atome est susceptible de se propager le long de la rangée en subissant le potentiel périodique des ions. L'énergie potentielle qui en résulte est de la forme $U(x) = V_1 \cos(gx)$ avec $g = 2\pi/a$. On prendra $V_1 > 0$. On suppose que V_1 est suffisamment faible pour que l'on puisse résoudre l'équation de Schrödinger par approximations successives.

- 1. Donner, en fonction de leur vecteur d'onde k, la fonction d'onde $\psi_k^0(x)$ et l'énergie E_0 des électrons considérés quand $V_1 = 0$.
- 2. V_1 est désormais différent de zéro et on cherche pour $\psi(x)$ des solutions sous la forme :

$$\psi_k(x) = \psi_k^0(x)v(x)$$
, où $v(x) = v(x+a)$.

L'énergie associée est $E=E_0+E_1$. Justifier brièvement cette forme de la fonction d'onde.

- 3. Donner l'équation différentielle satisfaite par v(x).
- 4. On décompose l'amplitude v(x) en ondes planes

$$v(x) = \sum_{n = -\infty}^{+\infty} A_n e^{ignx},$$

Justifier cette décomposition.

5. Montrer que l'équation différentielle satisfaite par v(x) peut se réécrire :

$$\sum_{n=-\infty}^{+\infty} e^{ignx} \left\{ \left[\frac{\hbar^2}{2m} (k+ng)^2 - E \right] A_n + \frac{V_1}{2} (A_{n-1} + A_{n+1}) \right\} = 0$$

En déduire les équations satisfaites par les coefficients A_n .

- 6. Donner les 3 équations obtenues pour n = 0, 1 et -1.
- 7. On suppose que V_1 est petit et que l'on peut développer la solution autour de la solution pour $V_1 = 0$ (méthode des perturbations). Ainsi, on suppose $A_0 = 1$ et les autres A_n pour $n \neq 0$ d'ordre $\mathcal{O}(V_1)$. On suppose enfin que l'énergie des solutions peut aussi s'écrire $E = E_0 + E_1$ où E_1 est au moins d'ordre $\mathcal{O}(V_1)$. Avec ce jeu d'approximation, déduire, à l'ordre $\mathcal{O}(V_1)$ en perturbation, les coefficients A_n ainsi que l'énergie E_1 . Commentaires?
- 8. Montrer que la première contribution à l'énergie est d'ordre 2 en perturbation. Donner l'expression de l'énergie E_1 à l'ordre 2.
- 9. Montrer que les résultats ainsi obtenus sont en général compatibles avec les hypothèses faites à savoir $|A_n| \ll 1$ et $\frac{|E-E_0|}{E_0} \ll 1$ sauf quand $k \approx \pm \frac{\pi}{a}$.

Ordre de grandeur : Pour a=3Å, $U_1=2$ eV. Calculez A_1 et A_{-1} ainsi que $|E-E_0|$ pour $k=\pi/2a$. On donne $\frac{\hbar^2}{2m}(\frac{\pi}{2a})^2=1$ eV.

Quand $k \approx \pm \frac{\pi}{a}$, le développement n'est plus valide. Un nouveau jeu d'approximation est alors nécessaire, comme habituel en théorie des perturbations.

- 10. Pour étudier l'énergie d'un vecteur d'onde voisin de $k \approx \pi/a$, on considère désormais que dans l'expression de v(x), le coefficient A_{-1} n'est plus négligeable, mais peut-être a priori d'ordre $\mathcal{O}(1)$, les autres coefficients A_n (sauf A_0) étant toujours au moins d'ordre $\mathcal{O}(V_1)$. Montrer que le coefficient A_{-1} intervient simultanément dans deux relations concernant les A_n . En déduire l'expression de les deux solutions possibles pour l'énergie E.
- 11. Quand k n'est plus au voisinage de π/a , l'énergie E obtenue à la question 10 doit être sensiblement égale à celle trouvée à la question 8. On pose $k = \pi/a + \Delta k$. En séparant le cas Δk positif et négatif, en déduire laquelle des deux solutions de la question 10 doit être sélectionnée selon le signe de Δk .
- 12. Dans le cas où Δk est petit devant g/2, donner l'expression simplifiée de E jusqu'à l'ordre 2 en puissance de $\Delta k/g$. En déduire l'existence d'une discontinuité pour $k=\pi/a$. Quelle est l'amplitude de cette discontinuité et la valeur prise alors par A_{-1} ? Remarques?
- 13. Donner la forme de la courbe représentative E = f(k) dans l'intervalle $-2\pi/a < k < 2\pi/a$, puis dans la première zone de Brillouin. Commentaires?
- 14. L'élément considéré est mono-valent. Sera-t-il conducteur ou isolant?
- 15. L'élément considéré est bi-valent. Sera-t-il conducteur ou isolant?