期中考试参考答案

2022年5月2日

$ightharpoonup \sim \mathcal{H}$

A, C, B, B, ACD

六

(1)

主方法不可用于求解 $T(n) = 8T\left(\frac{n}{2}\right) + 3n^3\log^3 n$ 。理由如下:该递归式符合主方法考虑的 $T(n) = aT\left(\frac{n}{b}\right) + f(n)$ 的形式,其中 $a = 8, b = 2, f(n) = \Theta\left(n^3\log^3 n\right)$ 。这里 $n^{\log_b a} = n^{\log_2 8} = n^3$,满足 $f(n) = \Omega\left(n^{\log_b a}\right)$,但由于 f(n) 渐进上只比 $n^{\log_b a}$ 大一个 $\log^3 n$ 的项,故不存在常数 $\varepsilon > 0$ 满足 $f(n) = \Omega\left(n^{\log_b a + \varepsilon}\right)$,从而该递归式不符合主方法的任何一种情况,不能使用主方法求解。

(2)

下面用迭代法求解 $T(n)=8T\left(\frac{n}{2}\right)+3n^3\log^3n$ 。假设 n 是 2 的正整数 次幂,有:

$$\begin{split} T(n) &= 8T\left(\frac{n}{2}\right) + 3n^3\log^3 n \\ &= 8\left(8T\left(\frac{n}{2^2}\right) + 3\left(\frac{n}{2}\right)^3\log^3\left(\frac{n}{2}\right)\right) + 3n^3\log^3 n \\ &= 8^2T\left(\frac{n}{2^2}\right) + 3n^3\left(\log^3 n + (\log n - 1)^3\right) \\ &= 8^2\left(8T\left(\frac{n}{2^3}\right) + 3\left(\frac{n}{2^2}\right)^3\log^3\left(\frac{n}{2^2}\right)\right) + 3n^3\left(\log^3 n + (\log n - 1)^3\right) \\ &= 8^3T\left(\frac{n}{2^3}\right) + 3n^3\left(\log^3 n + (\log n - 1)^3 + (\log n - 2)^3\right) \\ &= \cdots \\ &= 8^{\log n} + 3n^3\sum_{k=1}^{\log n} k^3 \\ &= \Theta\left(n^3\log^4 n\right). \end{split}$$

七

算法: 利用最坏线性时间求中位数的算法求出 n 个油井的 y 坐标的中位数,作为主管道的位置。

正确性证明:

证明. 设 n 个油井的 y 坐标从小到大依次为 y_1, y_2, \ldots, y_n ,则需要确定主管 道的位置 y,满足 $\sum_{k=1}^n |y-y_k|$ 最小。

当 n 为偶数时,由绝对值不等式,可得

$$\sum_{k=1}^{n} |y - y_k|$$

$$= \sum_{k=1}^{n/2} (|y - y_k| + |y - y_{n+1-k}|)$$

$$\geq \sum_{k=1}^{n/2} (y_{n+1-k} - y_k),$$

当且仅当对任意 $1 \le k \le \frac{n}{2}$ 均有 $y_k \le y \le y_{n+1-k}$ 时,等号成立。而算法得到的 y 为中位数 $y_{n/2}$,满足该条件。

类似地, 当 n 为奇数时, 有

$$\sum_{k=1}^{n} |y - y_k|$$

$$\geq \sum_{k=1}^{\lfloor n/2 \rfloor} (|y - y_k| + |y - y_{n+1-k}|)$$

$$\geq \sum_{k=1}^{\lfloor n/2 \rfloor} (y_{n+1-k} - y_k),$$

当且仅当对任意 $1 \le k \le \left\lfloor \frac{n}{2} \right\rfloor$ 均有 $y_k \le y \le y_{n+1-k}$,且 $y = y_{\lfloor n/2 \rfloor + 1}$ 时,等号成立。而算法得到的 y 为中位数 $y_{\lfloor n/2 \rfloor + 1}$,满足条件。

综上, 无论 n 为偶数还是奇数, 算法均能返回最优结果。

时间复杂度: 最坏 O(n)。

人

(1)

最终结果 (答案不唯一):

真实代价: min 节点的儿子节点个数加上根链表中其它节点的个数,为6。

势能函数表达式: t(H) + 2m(H), 其中 t(H) 为根链表中节点的个数,m(H) 为被标记的节点个数。

势能变化:根链表中节点个数减少 4 个,标记节点个数减少 1 个,故 势能变化为 $-4-2\times 1=-6$ 。

摊还代价: 6 + (-6) = 0 (这里真实代价实际上是没法准确计算的,大致正确即可)。

(2)

最终结果:

真实代价:执行切割的次数,为4。

势能变化:根链表中节点个数增加 4 个,标记节点个数减少 3 个,故 势能变化为 $4-2\times 3=-2$ 。

摊还代价: 4+(-2)=2。

九

(1)

设二进制计数器 A 的势能函数为 $\Phi(A)$ 等于满足 A[i]=1 的 i 的个数。该势能函数满足 $\Phi(A)\geq 0$ 恒成立。由本小题的假设知, $\Phi(A)$ 的初始值为 0。故可将单次操作的实际代价与势能差之和作为摊还代价。

设一次INCREMENT操作中将 c 个 A[i] 由 1 重置为了 0。由伪代码知该次INCREMENT操作的实际代价为 O(c),势能差为 1-c,故摊还代价为

O(c)+1-c=O(1),因为我们可以设置势能的单位来抵消前面 O(c) 中的常数。

(2)

势能函数的定义同上,此时势能函数仍满足 $\Phi(A) \geq 0$ 恒成立,但不满足初始值 $\Phi(A_0) = 0$ 。

记 n 次 INCREMENT的实际代价分别为 c_1, c_2, \ldots, c_n ,实际代价加上势能差分别为 $\hat{c}_1, \hat{c}_2, \ldots, \hat{c}_n$ 。由第 (1) 小问知 $\hat{c}_i = O(1), \forall 1 \leq i \leq n$ 。由 \hat{c}_i 的定义知 $\sum_{i=1}^n \hat{c}_i = \sum_{i=1}^n c_i + \Phi(A_n) - \Phi(A_0)$,其中 A_n, A_0 分别为 n 次操作结束后和初始时的计数器。则有

$$\sum_{i=1}^{n} c_k = \sum_{i=1}^{n} \hat{c}_i + \Phi(A_0) - \Phi(A_n)$$

$$\leq \sum_{i=1}^{n} \hat{c}_i + \Phi(A_0)$$

$$\leq \sum_{i=1}^{n} \hat{c}_i + k$$

$$= O(n+k).$$

因此,可将 $O\left(\frac{n+k}{n}\right) = O\left(1 + \frac{k}{n}\right)$ 作为单次 INCREMENT 的摊还代价。当 n = O(1) 时,该代价为 O(k);当 $n = \Omega(k)$ 时,该代价为 O(1)。

十

(1)

证法 1. 对 $1 \le i < j \le n$,设随机变量 X_{ij} 为事件 "P[i] = P[j]" 的指示器随机变量,则 $\mathrm{E}[X_{ij}] = \mathrm{Pr}\left[P[i] = P[j]\right] = \frac{1}{n^3}$ 。

设随机变量 X 为满足 P[i] = P[j], i < j 的 i, j 的个数,则 $X = \sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij}$,根据期望的线性性,有 $\mathrm{E}[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \mathrm{E}[X_{ij}] = \binom{n}{2}/n^3 \leq \frac{1}{n}$ 。

根据马尔可夫不等式,有

$$\Pr[X \ge 1] = \Pr\left[X \ge \frac{1}{\mathrm{E}[X]} \cdot \mathrm{E}[X]\right] \le \left(\frac{1}{\mathrm{E}[X]}\right)^{-1} = \mathrm{E}[X] \le \frac{1}{n},$$

即 $P[1], P[2], \ldots, P[n]$ 中有相同值的概率不超过 $\frac{1}{n}$,故它们均不相同的概率至少为 $1-\frac{1}{n}$ 。

证法 2. 对 $1 \le i < j \le n$,设 A_{ij} 为事件 "P[i] = P[j]",则 $\Pr[A_{ij}] = \frac{1}{n^3}$ 。由合集不等式,有

$$\Pr\left[\bigcup_{i=1}^{n-1}\bigcup_{j=i+1}^{n}A_{ij}\right]$$

$$\leq \sum_{i=1}^{n-1}\sum_{j=i+1}^{n}\Pr[A_{ij}]$$

$$= \binom{n}{2} / n^{3}$$

$$\leq \frac{1}{n},$$

即 $P[1], P[2], \dots, P[n]$ 中有相同值的概率不超过 $\frac{1}{n}$,故它们均不相同的概率 至少为 $1-\frac{1}{n}$ 。

(2)

用较好的方法实现该算法的时间复杂度是 O(n) 的。理由如下: 首先,算法除对 P 数组进行排序外均可在 O(n) 时间内运行。而注意到 P 数组中的数均为 $[1,n^3]$ 中的整数,可以将它们减去 1 之后视为不超过 3 位的 n 进制数,来进行基数排序,即 3 次复杂度为 O(n+n)=O(n) 的计数排序,总时间复杂度为 O(n)。

+-

(1)

证明. 对 $i=1,2,\ldots,n$,设随机变量 X_i 为事件"投 n 个球后第 i 个盒子为空"的指示器随机变量,则 $E[X]=\Pr[投_n$ 个球后第i个盒子为空] = $\left(1-\frac{1}{n}\right)^n$,因为每次投球未投到第 i 个盒子的概率均为 $1-\frac{1}{n}$,而 n 次投球是独立的。

设随机变量 X 为投 n 个球后空盒子所占的比例,则 $X = \frac{1}{n} \sum_{i=1}^{n} X_i$,由期望的线线性有 $\mathrm{E}[X] = \frac{1}{n} \sum_{i=1}^{n} \mathrm{E}[X_i] = \frac{1}{n} \cdot n \cdot \left(1 - \frac{1}{n}\right)^n = \left(1 - \frac{1}{n}\right)^n$,进一步有

$$\lim_{n\to\infty} \mathrm{E}[X] = \lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \lim_{n\to\infty} \left(\left(1+\frac{1}{-n}\right)^{-n}\right)^{-1} = \frac{1}{e},$$

即为欲证结论。

(2)

证明. 考虑将该扔球的过程划分为 n 个阶段 S_1, S_2, \ldots, S_n ,其中第 $i(1 \le i \le n)$ 个阶段为恰好有 i-1 个盒子有球时进行的所有扔球,包括其中最后一次使得有 i 个盒子有球的那次扔球。对 $1 \le i \le n$,设随机变量 X_i 为第 i 个阶段中扔球的个数。

注意到,阶段 $S_i(1\leq i\leq n)$ 中,每次扔球前恰有 i-1 个盒子有球,而 X_i 为该阶段中第一次将球扔到空盒子中时所扔的球数,故 X_i 服从成功概率为 $1-\frac{i-1}{n}=\frac{n-i+1}{n}$ 的几何分布,从而有 $\mathrm{E}[X]=\frac{n}{n-i+1}$ 。

由题意有 $X = \sum_{i=1}^{n} X_i$,由期望的线线性得到

$$E[X] = \sum_{i=1}^{n} E[X_i]$$

$$= \sum_{i=1}^{n} \frac{n}{n-i+1}$$

$$= n \sum_{i=1}^{n} \frac{1}{i}$$

$$= O(n \log n),$$

即为欲证结论。

十二

(1)

证明. 设 x,y 为任意满足 $x,y \in \{0,1\}^w$ 且 $x \neq y$ 的数。下面考虑计算 H 中满足 h(x) = h(y) 的 h 的个数,即求关于 a 的方程

$$\left\lfloor \frac{ax \bmod 2^w}{2^{w-l}} \right\rfloor = \left\lfloor \frac{ay \bmod 2^w}{2^{w-l}} \right\rfloor \tag{1}$$

的满足 $a \in \{0,1\}^w$ 且 a 为奇数的解的个数。

注意到,方程(1)的解的个数不超过一系列方程

$$ax \bmod 2^w = ay \bmod 2^w + k \tag{2}$$

的解的个数之和,其中 $k \in [-(2^{w-l}-1), 2^{w-l}-1]$ 。进一步地,这些方程(2)的解的个数之和不超过一系列方程

$$a(x-y) \bmod 2^w = t \tag{3}$$

的解的个数之和的两倍,其中 $t \in \{0,1\}^{w-l}$ 。

不妨设 x>y,并设 $x-y=2^r\cdot s$,其中 $2\nmid s$ 。由于 a 是奇数,且 r< w,故若 $2^r\nmid t$,则方程(3)无解,否则其等价于

$$as \bmod 2^{w-r} = \frac{t}{2^r}.$$

注意到 t 的范围为 $\{0,1\}^{w-l}$,若 w-l < r,则方程解的个数为 0;否则,由于奇数在模 2^w 意义下存在唯一乘法逆元,故对于一个 $\frac{t}{2^r} \in \{0,1\}^{w-l-r}$,至多只有一个奇数 $a \in \{0,1\}^{w-r}$ 满足方程(3),从而至多只有 2^r 个奇数 $a \in \{0,1\}^w$ 满足方程(3),故对所有 t,方程(3)解的个数之和不超过 2^r · $2^{w-l-r} = 2^{w-l}$ 。

注意到 $|H|=2^{w-1}$,哈希表的大小为 $m=2^l$,故对任意 $x,y\in\{0,1\}^w$ 且 $x\neq y$,冲突概率不超过 $\frac{2\cdot 2^{w-l}}{2^{w-1}}=\frac{4}{2^l}=\frac{4}{m}$,故 H 是全域的。

(2)

本题给出的哈希函数族计算更高效,因为对 2^w 取模以及除以 2^{w-l} 再取下取整的运算均可通过位运算实现。