Lab-6

MOVIE RECOMMENDATION SYSTEM

Koduri Gokul 19BCD7006

Rating Dataset:

1	userId	movield	rating	timestamp
2	1	16	4	1.218E+09
3	1	24	1.5	1.218E+09
4	1	32	4	1.218E+09
5	1	47	4	1.218E+09
6	1	50	4	1.218E+09
7	1	110	4	1.218E+09
8	1	150	3	1.218E+09
9	1	161	4	1.218E+09
10	1	165	3	1.218E+09
11	1	204	0.5	1.218E+09
12	1	223	4	1.218E+09
13	1	256	0.5	1.218E+09
14	1	260	4.5	1.218E+09
15	1	261	1.5	1.218E+09
16	1	277	0.5	1.218E+09
17	1	296	4	1.218E+09
18	1	318	4	1.218E+09
19	1	349	4.5	1.218E+09
20	1	356	3	1.218E+09
21	1	377	2.5	1.218E+09
22	1	380	3	1.218E+09
23	1	457	4	1.218E+09

Movie Dataset:

1	movield	title	genres			
2	1	Toy Story (1	Adventure	Animation	Children Comedy Fanta	isy
3	2	Jumanji (199	Adventure	Children Fa	antasy	
4	3	Grumpier O	Comedy Ro	mance	2 2 3 4 4 4	
5	4	Waiting to E	Comedy Dr	ama Roma	ance	
6	5	Father of th	Comedy			
7	6	Heat (1995)	Action Crim	ne Thriller		
8	7	Sabrina (199	Comedy Ro	mance		
9	8	Tom and Hu	Adventure	Children		
10	9	Sudden Dea	Action			
11	10	GoldenEye (Action Adv	enture Thr	iller	
12	11	American Pr	Comedy Dr	ama Roma	ance	
13	12	Dracula: De	Comedy Ho	orror		
14	13	Balto (1995)	Adventure	Animation	Children	
15	14	Nixon (1995	Drama			
16	15	Cutthroat Is	Action Adv	enture Ror	nance	
17	16	Casino (199	Crime Dran	na		
18	17	Sense and S	Drama Ron	nance		
19	18	Four Rooms	Comedy			
20	19	Ace Ventura	Comedy			
21	20	Money Train	Action Com	nedy Crime	Drama Thriller	
22		Get Shorty (-		
23	22	Copycat (19	Crime Dran	na Horror	Mystery Thriller	
24	23	Assassins (1	Action Crim	ne Thriller		
25	24	Powder (199	Drama Sci-	Fi		
26	25	Leaving Las	Drama Ron	nance		
27		Othello (199				
28	-	Now and Th				
29	28	Persuasion (Drama Ron	nance		
30	29	City of Lost	Adventure	Drama Far	ntasy Mystery Sci-Fi	

```
import pandas as pd
import numpy as np
from scipy.sparse import csr_matrix
from sklearn.neighbors import NearestNeighbors
import matplotlib.pyplot as plt
import seaborn as sns
```

```
movies = pd.read_csv("movies.csv")
ratings = pd.read_csv("ratings.csv")
```

movies.head()

genres	title	ovieId	mo
ation Children Comedy Fantasy	Toy Story (1995)	1	0
Adventure Children Fantasy	Jumanji (1995)	2	1
Comedy Romance	Grumpier Old Men (1995)	3	2
Comedy Drama Romance	Waiting to Exhale (1995)	4	3
Comedy	Father of the Bride Part II (1995)	5	4

ratings.head()

$\sqsubseteq \!$		userId	movieId	rating	timestamp	2
	0	1	1	4.0	964982703	
	1	1	3	4.0	964981247	
	2	1	6	4.0	964982224	
	3	1	47	5.0	964983815	
	4	1	50	5.0	964982931	

```
final dataset = ratings.pivot(index='movieId',columns='userId',values='rating')
 final_dataset.head()
                                            9 10 ... 601 602 603 604 605 606 607 608 609 610
  userId
 movieTd
         4.0 NaN NaN NaN 4.0 NaN 4.5 NaN NaN NaN
    2
        NaN NaN NaN NaN NaN
                              4.0 NaN 4.0 NaN NaN
                                                       NaN 40 NaN
                                                                    5.0
                                                                        3.5 NaN NaN
                                                                                     20 NaN NaN
         4.0 NaN
                NaN NaN
                              5.0 NaN NaN NaN NaN
                                                       NaN NaN NaN
                                                                   NaN NaN NaN NaN
                                                                                      2.0
                              3.0 NaN NaN NaN NaN
        Nan Nan Nan Nan Nan
                                                       Nan Nan Nan Nan Nan Nan Nan Nan Nan
        NaN NaN NaN NaN
                              5.0 NaN NaN NaN NaN
                                                       NaN NaN NaN
                                                                    3.0 NaN NaN NaN NaN NaN NaN
 5 rows × 610 columns
final dataset.fillna(0,inplace=True)
final dataset.head()
 userId
                                          9 10 ... 601 602 603 604 605 606 607 608 609 610
 movieId
                                                   ... 4.0 0.0 4.0 3.0 4.0 2.5 4.0 2.5 3.0
         4.0 0.0 0.0 0.0 4.0 0.0 4.5 0.0 0.0 0.0
                                                                                               5.0
   2
         0.0 0.0 0.0 0.0 0.0 4.0 0.0 4.0 0.0 0.0
                                                   ... 0.0 4.0 0.0 5.0 3.5 0.0 0.0 2.0 0.0 0.0
         4.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0
                                                      0.0 0.0 0.0
                                                                   0.0 0.0
                                                                            0.0 0.0 2.0 0.0
                                                                                               0.0
         0.0 0.0 0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0
                                                      0.0 0.0
                                                              0.0
                                                                    0.0 0.0
                                                                             0.0 0.0
                                                                                               0.0
         0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0
                                                       0.0 0.0 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0
5 rows × 610 columns
```

```
[9] no_user_voted = ratings.groupby('movieId')['rating'].agg('count')
no_movies_voted = ratings.groupby('userId')['rating'].agg('count')

f,ax = plt.subplots(1,1,figsize=(16,4))
# ratings['rating'].plot(kind='hist')
plt.scatter(no_user_voted.index,no_user_voted,color='mediumseagreen')
plt.axhline(y=10,color='r')
plt.xlabel('MovieId')
plt.ylabel('No. of users voted')
plt.show()
```

Removing Noise from Data:

[11] final_dataset = final_dataset.loc[no_user_voted[no_user_voted > 10].index,:]

```
f,ax = plt.subplots(1,1,figsize=(16,4))
plt.scatter(no_movies_voted.index,no_movies_voted,color='mediumseagreen')
plt.axhline(y=50,color='r')
plt.xlabel('UserId')
plt.ylabel('No. of votes by user')
plt.show()
```



```
final_dataset=final_dataset.loc[:,no_movies_voted[no_movies_voted > 50].index]
  final_dataset
C→
  userId
       1 4 6 7 10 11 15 16 17 18 ... 600 601 602 603 604 605 606 607 608 610
  movieId
       4.0 0.0 0.0 4.5 0.0 0.0 2.5 0.0 4.5 3.5 ... 2.5 4.0 0.0 4.0 3.0 4.0 2.5 4.0 2.5 5.0
       0.0 \quad 0.0 \quad 4.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 0.0 \quad 3.0 \quad \dots \quad 4.0 \quad 0.0 \quad 4.0 \quad 0.0 \quad 5.0
                                                 3.5 0.0 0.0 2.0
       0.0 0.0 0.0
        4.0 0.0 4.0 0.0 0.0 5.0 0.0 0.0 0.0 4.0 ... 0.0 0.0 3.0 4.0 3.0 0.0 0.0 0.0
   0.0 4.0
                                         0.0
                                            0.0
                                               0.0
                                                  0.0
                                                    0.0
                                                       0.0 0.0
   0.0 4.0
                                         0.0
                                            0.0
                                               0.0
                                                  0.0 0.0 0.0
   0.0 4.5 0.0 0.0
                                               0.0 0.0
                                                    0.0
                                                       0.0 0.0 0.0
   2121 rows x 378 columns
   sample = np.array([[0,0,3,0,0],[4,0,0,0,2],[0,0,0,0,1]])
   sparsity = 1.0 - ( np.count nonzero(sample) / float(sample.size) )
   print(sparsity)
   0.7333333333333334
   csr sample = csr matrix(sample)
   print(csr sample)
    (0, 2)
                3
```

```
[16] csr_data = csr_matrix(final_dataset.values)
     final_dataset.reset_index(inplace=True)
```

2

Removing Sparsity:

(1, 0) (1, 4)

(2, 4)

Making the movie recommendation system model:

```
knn = NearestNeighbors(metric='cosine', algorithm='brute', n_neighbors=20, n_jobs=-1)
knn.fit(csr_data)

NearestNeighbors(algorithm='brute', metric='cosine', n_jobs=-1, n_neighbors=20)
```

Making the recommendation function:

```
def get_movie_recommendation(movie_name):
    n_movies_to_reccomend = 10
    movie_list = movies[movies['title'].str.contains(movie_name)]
    if len(movie_list):
        movie_idx= movie_list.iloc[0]['movieId']
        movie_idx = final_dataset[final_dataset['movieId'] == movie_idx].index[0]
        distances , indices = knn.kneighbors(csr_data[movie_idx],n_neighbors=n_movies_to_reccomend+1)
        rec_movie_indices = sorted(list(zip(indices.squeeze().tolist(),distances.squeeze().tolist())),key=lambda x: x[1])[:0:-1]
        recommend frame = []
        for val in rec_movie_indices:
             movie_idx = final_dataset.iloc[val[0]]['movieId']
            idx = movies[movies['movieId'] == movie_idx].index
            recommend_frame.append({'Title':movies.iloc[idx]['title'].values[0], 'Distance':val[1]})
        df = pd.<u>DataFrame(recommend_frame,index=range(1,n_movies_to_reccomend+1))</u>
    else:
        return "No movies found. Please check your input"
```

Final Outputs:

	Title	Distance
1	Up (2009)	0.368857
2	Guardians of the Galaxy (2014)	0.368758
3	Watchmen (2009)	0.368558
4	Star Trek (2009)	0.366029
5	Batman Begins (2005)	0.362759
6	Avatar (2009)	0.310893
7	Iron Man 2 (2010)	0.307492
8	WALL-E (2008)	0.298138
9	Dark Knight, The (2008)	0.285835

get_movie_recommendation('Memento')

