

UNIVERSIDADE DE AVEIRO
DEPARTAMENTO DE FÍSICA
3810-193 AVEIRO

Mecânica e Campo Eletromagnético Ano letivo 2015/2016

> Capítulo 3. Campos elétrico e magnético 2ª serie

- 1. Considere um condensador cilíndrico de comprimento infinito, cujas armaduras possuem raios r_1 (interna) e r_2 (externa).
 - a) Determine a capacidade deste condensador, por unidade de comprimento.
 - b) Mostre que se $r_1 \approx r_2$, ou seja $(r_2 r_1) \ll r_1$, a expressão se pode aproximar à de um condensador plano de comprimento supostamente infinito, com largura $(2\pi r_1)$ e distância entre placas $(r_2 - r_1)$.

Solução:

a)
$$\frac{C}{L} = \frac{2\pi\varepsilon_0}{\log\left(\frac{r_2}{r_1}\right)}$$
 (F/m) b) $\frac{C}{L} \approx \frac{2\pi r_1 \varepsilon_0}{\left(r_2 - r_1\right)}$ (F/m)

- 2. Considere um condensador plano de capacidade C ligado a um gerador que fornece uma tensão constante V.
 - Calcule a energia armazenada no condensador.
 - Se mantiver o gerador ligado, o que aconteceria à energia armazenada se a distância entre placas aumentar para o triplo? Utilize a expressão da capacidade de um condensador de placas paralelas.
 - Verifique que a resposta é a mesma se utilizar a expressão da energia em função do c) campo elétrico.
 - d) Se o afastamento das placas se fizesse depois de desligar o gerador, como iria variar a energia do condensador? De onde vem a energia extra?

Solução:

a)
$$W = \frac{1}{2}CV^2$$
 (J)

a)
$$W = \frac{1}{2}CV^2$$
 (J) b) c) $W' = \frac{1}{3}W$ (J) d) $W'' = 3W$ (J)

d)
$$W^{\prime\prime} = 3W$$
 (J)

- Considere um condensador de capacidade C, carregado com uma carga Q. Suponha 3. que o liga em paralelo a outro condensador de capacidade C', inicialmente descarregado.
 - a) Calcule a carga e a d.d.p. final de cada condensador.
 - b) Calcule a energia do condensador inicial e do conjunto dos dois.
 - Justifique a diferença de energia, tendo em consideração que a mesma é uma grandeza conservativa.

Solução:

a)
$$Q_f = \frac{CQ}{C+C'}$$
 (C); $Q'_f = \frac{C'Q}{C+C'}$ (C); $V_f = \frac{Q}{C+C'}$ (C)

b)
$$W_i = \frac{1}{2} \frac{Q^2}{C}$$
 (J); $W_f = \frac{1}{2} \frac{Q^2}{C + C'}$ (J)

4. Considere uma esfera condutora de raio r_o envolvida por uma coroa esférica condutora de raios, respetivamente, r_{int} e r_{ext} . No exterior, existe uma coroa esférica de raio r_c , de espessura infinitesimal e, também, metálica. Suponha que a esfera interior tem carga +Q e que a exterior está ligada à terra.

- a) Determine o campo elétrico, em todas as regiões.
- b) Determine a relação entre a carga da esfera e o seu potencial.
- c) Compare o resultado com o que obteria se removesse a coroa esférica intermédia. Comente.

Solução: a) $r < r_o$ e $r_{int} < r < r_{ext}$: $\vec{E} = \vec{0}$ (V/m); $r_o < r < r_{int}$ e $r > r_{ext}$: $\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2} \vec{u}_r$ (V/m)

b)
$$\frac{Q}{V} = 4\pi\epsilon_0 \left(-\frac{1}{r_c} + \frac{1}{r_{ext}} - \frac{1}{r_{int}} + \frac{1}{r_0} \right)^{-1}$$
 (F)

$$\frac{Q}{V} = 4\pi\varepsilon_0 \left(\frac{1}{r_0} - \frac{1}{r_c}\right)^{-1}$$
 (F)

5. Determine a capacidade das seguintes associações de condensadores:

Solução: a)
$$C_{eq} = 2 \text{ (nF)}; \text{ b) } C_{eq} = C \text{ (F)}; \text{ c) } C_{eq} = \left(\frac{1+\sqrt{3}}{2}\right)C \text{ (F), d) } C_{eq} = \left(\frac{\sqrt{3}-1}{2}\right)C \text{ (F)}$$

- **6.** Considere um condensador plano com área A e distância entre as placas igual a d.
 - a) Se colocar uma placa metálica muito fina à distância d/3 de uma das placas, qual será a nova capacidade do condensador? Justifique o cálculo.
 - c) E se a placa tiver uma espessura d/6?

Solução: a)
$$C' = \frac{\varepsilon_o A}{d} = C$$
 (F) b) $C'' = \frac{6}{5} \frac{\varepsilon_o A}{d} = \frac{6}{5} C$ (F)

7. Um condensador é constituído por duas placas circulares 10 cm de raio e com uma separação de 1,0 mm entre si.

Calcule a capacidade deste condensador quando:

- a) Entre as placas existe apenas ar.
- b) O espaço entre as placas é preenchido por água, cuja permitividade relativa vale **81**.
- c) As placas são mergulhadas verticalmente em **5** cm de água.

Solução: a)
$$C = 10 \pi \epsilon_o \approx 278 \text{ pF}$$
 b) $C = 810 \pi \epsilon_o \approx 22.5 \text{ nF}$ c) $C \approx 4.62 \text{ nF}$

8. Um condensador de placas paralelas de área S é preenchido por dois materiais \mathbf{A} e \mathbf{B} , caracterizados, \mathbf{V}_o respetivamente, por constantes dielétricas ε e 2ε . Os volumes dos dois materiais são iguais, como indica a figura.

- a) Calcule a capacidade do condensador.
- b) Obtenha a expressão para o campo elétrico, em cada um dos materiais.
- c) Determine as densidades de carga (livre) nas placas do condensador.
- d) Escreva a expressão da energia total armazenada no condensador e indique de que modo essa energia se distribui pelos dois dieléricos.

Solução: a)
$$C = \frac{3}{2} \frac{\varepsilon S}{d}$$
 (F) b) $|\vec{E}| = \frac{V_o}{d}$ (V/m) c) $\sigma_A = D_A = \frac{\varepsilon V_o}{d}$ (C/m²); $\sigma_B = D_B = \frac{2\varepsilon V_o}{d}$ (C/m²) d) $W = \frac{3}{4} \frac{\varepsilon S}{d} V_o^2$; $W_A = \frac{1}{3} W$; $W_B = \frac{2}{3} W$ (J)

9. Considere o seguinte condensador de placas paralelas, com área S=10cm² e V=6V.

- a) Supondo que o dielétrico se caracteriza por ε_r = 5,6 , determine o campo elétrico no interior do dielétrico e no ponto **P**.
- b) Calcule as densidades de carga livre (σ).
- c) Suponha que se retira o dielétrico. Compare a nova capacidade do condensador com a capacidade anterior.
- Explique, sucintamente, por que é que num material com polarização uniforme tudo se passa como se houvesse apenas dois planos de carga em lados opostos do material.
- e) Escreva a forma mais geral da lei de Gauss e interprete-a.

Solução: a)
$$E_{int} = \frac{6}{\left(0.3 + 5.6 \times 0.7\right) \cdot 10^{-3}} \approx 1.422 \text{ V/m}$$
; $E_P = \varepsilon_r \cdot E_{int} = 7.962 \text{ V/m}$
b) $\sigma = \left|\vec{P}\right| = 57.8 \cdot 10^{-9} \text{ C/m}^2 \text{ c)}$ $C_i = 117.4 \text{ pF}$; $C_f = 88.5 \text{ pF}$

10. Um fio metálico de 2,5 m de comprimento e de 0,20 mm de diâmetro tem uma resistência de 1,4 Ω . Quanto vale a condutividade desse metal?

Solução:
$$\frac{1}{\rho} = \sigma = 5.68 \cdot 10^7 \ \Omega^{-1} \text{ m}^{-1}$$

11. Na figura seguinte está representado um corpo em forma de cone truncado, alongado, feito de um material com resistividade ρ .

- a) Calcule a resistência entre as duas bases do corpo.
- b) Qual deverá ser o diâmetro de um cilindro do mesmo material e com o mesmo comprimento para que tenha a mesma resistência?

12. Uma coroa circular de espessura d, constituída por um material condutor de resistividade ho, possui uma ranhura radial

estreita. Uma bateria está ligada às faces dessa ranhura. Supondo que a corrente flui circularmente, calcule a intensidade de corrente total.

Solução:
$$I = \frac{dV_0}{2\pi\rho} \log\left(\frac{r_{ext}}{r_{int}}\right)$$

13. Calcule uma resistência equivalente entre os terminais **A** e **B** dos seguintes circuitos, que se prolongam indefinidamente para a direita:

Solução: a)
$$R_{eq} = (\sqrt{3} - 1)R$$
 (Ω) b) $R_{eq} = R_1 + \sqrt{R_1^2 + 2R_1R_2}$ (Ω)

14. Para cada um dos seguintes circuitos, determine a intensidade da corrente que passa em cada uma das baterias e em cada uma das resistências. Calcule também a potência dissipada nas várias resistências.

15. Determine a relação que existe entre as quatro resistências de uma ponte de Wheatstone quando esta se encontra equilibrada, ou seja, quando a corrente medida pelo galvanómetro é nula.

Solução:
$$R_x = \frac{R_1 R_v}{R_2}$$
 (Ω)

16. Calcule as intensidades das correntes nos vários ramos dos seguintes circuitos e indique os respetivos sentidos. Determine também a d.d.p. entre **B** e **A**.

