

# Chapter 5

# Digital transmission through the AWGN channel

— by Prof. XIAOFENG LI SICE, UESTC

- Introduction
- Geometric rep. of the sig waveforms
- Pulse amplitude modulation
- 2-d signal waveforms
- M-d signal waveforms
- Opt. reception for the sig. In AWGN
- Optimal receivers and probs of err

## 5.5 Opt. reception for the sig. In AWGN

In the nth interval, the process is as follows,



2) **Detector**: estimate the sym from the observation



**Detector**: estimate the sym from the observation

What is the problem in the detector?





**Detector**: estimate the sym from the observation

What is the problem in the detector?





**Detector**: estimate the sym from the observation

What is the problem in the detector?





**Detector**: estimate the sym from the observation

What is the problem in the detector?





**Detector**: estimate the sym from the observation

All the possibilities form a cloud centered at **\$1.** The dense of the cloud is higher at the center, and becomes less as departing from the center. The dense indicates basically the probability density or **r**.





**Detector**: estimate the sym from the observation

All the possibilities form a cloud centered at **\$1.** The dense of the cloud is higher at the center, and becomes less as departing from the center. The dense indicates basically the probability density or **r**.



What is a good detector? ---- Make error as less as posible

How to measure error? ---- Probability of error

Let  $R_m$  be the region in the space for which we select  $\mathbf{S}_m$ ,  $R_m^c$  be the complement of  $R_m$ . They are decided by the criterion.

The average probability of errors is,

$$P_e = P(e) = 1 - \sum_{m=1}^{M} \int_{R_m} P(\mathbf{s}_m \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

where,  $P(\mathbf{s}_m | \mathbf{r})$  is the prob that  $\mathbf{s}_m$  has been transmitted on the reception of  $\mathbf{r}$   $f(\mathbf{r})$  is the unconditional pdf of  $\mathbf{r}$ .

What is a good detector? ---- Make error as less as posible

How to measure error? ---- Probability of error

Let  $R_m$  be the region in the space for which we select  $\mathbf{S}_m$ ,  $R_m^c$  be the complement of  $R_m$ . They are decided by the criterion.



The average probability of errors is,

$$P_e = P(e) = 1 - \sum_{m=1}^{M} \int_{R_m} P(\mathbf{s}_m \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

$$P(success | \mathbf{s}_1) = \int_{R_1} P(\mathbf{s}_1 | \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

where,  $P(\mathbf{s}_m \mid \mathbf{r})$  is the prob that  $\mathbf{s}_m$  has been transmitted on the reception of  $\mathbf{r}$   $f(\mathbf{r})$  is the unconditional pdf of  $\mathbf{r}$ .

#### What is the best detector?

 $P_e$  is minimum when  $R_{\scriptscriptstyle m}$  corresponds to max  $P(\mathbf{s}_{\scriptscriptstyle m} \mid \mathbf{r})$  .

That lead to MAP criterion as follows.

$$P_e = P(e) = 1 - \sum_{m=1}^{M} \int_{R_m} P(\mathbf{s}_m \mid \mathbf{r}) f(\mathbf{r}) d\mathbf{r}$$

#### Maximum a posterior probability (MAF

 $\mathbf{s}_m$  that max the  $P(\mathbf{s}_m \mid \mathbf{r})$ . Denoted by,

$$\hat{\mathbf{s}}_m = \arg\max_{\mathbf{s}_m} \{ P(\mathbf{s}_m \mid \mathbf{r}) \}$$

## Note that $P(\mathbf{s}_m \mid \mathbf{r})$ is often called a posterior probability.

#### The Optimum Detector:

MAP: Maximum a posterior probability

ML: Maximum-likelihood

Min-Dist: Minimum-distance

Max-Corr: Maximum Correlation

Using Bayes' rule,

$$P(\mathbf{s}_m \mid \mathbf{r}) = \frac{f(\mathbf{r} \mid \mathbf{s}_m)P(\mathbf{s}_m)}{f(\mathbf{r})}$$

where,  $f(\mathbf{r} | \mathbf{s}_m)$  is the condi pdf of  $\mathbf{r}$  given  $\mathbf{s}_m$ ;  $P(\mathbf{s}_m)$  is prob of transmitting  $\mathbf{s}_m$ , called priori probability

Let 
$$PM(\mathbf{r}, \mathbf{s}_m) = f(\mathbf{r} \mid \mathbf{s}_m) P(\mathbf{s}_m)$$

MAP is equivalent to:  $\hat{\mathbf{s}}_m = \arg \max_{\mathbf{s}_m} PM(\mathbf{r}, \mathbf{s}_m)$ 

**Maximum a posterior probability (MAP):** to select the  $\mathbf{s}_m$  that max the  $P(\mathbf{s}_m \mid \mathbf{r})$ . Denoted by,

$$\hat{\mathbf{s}}_m = \arg\max_{\mathbf{s}_m} \{ P(\mathbf{s}_m \mid \mathbf{r}) \}$$

Note that  $P(\mathbf{s}_m \mid \mathbf{r})$  is often called a posterior probability.

Note that  $f(\mathbf{r} | \mathbf{s}_m)$  is usually called likelihood function.

**Maximum-likelihood (ML):** to select the  $s_m$  that max the  $f(\mathbf{r} \mid \mathbf{s}_m)$ .

Denoted by, 
$$\hat{\mathbf{s}}_m = \arg \max_{\mathbf{s}_m} \{ f(\mathbf{r} \mid \mathbf{s}_m) \}$$

Obviously, when the symbols are equally probable, we have, ML=MAP Equally-probable case is very common, thus ML is widely used in practical.

Let 
$$PM(\mathbf{r}, \mathbf{s}_m) = f(\mathbf{r} \mid \mathbf{s}_m) P(\mathbf{s}_m)$$

MAP is equivalent to:  $\hat{\mathbf{s}}_m = \arg \max_{\mathbf{s}_m} PM(\mathbf{r}, \mathbf{s}_m)$ 

Maximum a posterior probability (MAP): to select the

 $\mathbf{s}_m$  that max the  $P(\mathbf{s}_m \mid \mathbf{r})$ . Denoted by,

$$\hat{\mathbf{s}}_m = \arg\max_{\mathbf{s}_m} \{ P(\mathbf{s}_m \mid \mathbf{r}) \}$$

Note that  $P(\mathbf{s}_m \mid \mathbf{r})$  is often called a posterior probability.

Note that  $f(\mathbf{r} | \mathbf{s}_m)$  is usually called likelihood function.

**Maximum-likelihood (ML):** to select the  $s_m$  that max the  $f(\mathbf{r} \mid \mathbf{s}_m)$ .

Denoted by, 
$$\hat{\mathbf{s}}_m = \arg \max_{\mathbf{s}_m} \{ f(\mathbf{r} \mid \mathbf{s}_m) \}$$

**Minimum-distance (Min-Dist):** to select the  $s_m$  that is nearest to r,

that is 
$$\hat{\mathbf{s}}_m = \arg\min_{\mathbf{s}_m} D(\mathbf{r}, \mathbf{s}_m)$$
 and,  $D(\mathbf{r}, \mathbf{s}_m) = \|\mathbf{r} - \mathbf{s}_m\|^2$ 

Recall that, 
$$f(\mathbf{r} \mid \mathbf{s}_m) = \left(\frac{1}{\sqrt{\pi N_0}}\right)^N \exp\left[-\frac{\|\mathbf{r} - \mathbf{s}_m\|^2}{N_0}\right]$$

It is more convenient to work with,  $\ln f(\mathbf{r}|\mathbf{s}_m) = -\frac{N}{2}\ln(\pi N_0) - \frac{1}{N_0}\|\mathbf{r} - \mathbf{s}_m\|^2$ 

Clearly, max of  $f(\mathbf{r} | \mathbf{s}_m)$  is same as min of  $\|\mathbf{r} - \mathbf{s}_m\|^2$ , which is the distance bwtween  $\mathbf{r}$  and  $\mathbf{s}_m$ 

Note that  $f(\mathbf{r} | \mathbf{s}_m)$  is usually called likelihood function.

**Maximum-likelihood (ML):** to select the  $s_m$  that max the  $f(\mathbf{r} \mid \mathbf{s}_m)$ .

Denoted by, 
$$\hat{\mathbf{s}}_m = \arg \max_{\mathbf{s}_m} \{ f(\mathbf{r} \mid \mathbf{s}_m) \}$$

Minimum-distance (Min-Dist): to select the  $s_m$  that is nearest to r,

that is 
$$\hat{\mathbf{s}}_m = \arg\min_{\mathbf{s}_m} D(\mathbf{r}, \mathbf{s}_m)$$
 and,  $D(\mathbf{r}, \mathbf{s}_m) = \|\mathbf{r} - \mathbf{s}_m\|^2$ 

We can say more, 
$$D(\mathbf{r}, \mathbf{s}_m) = ||\mathbf{r}||^2 - 2\mathbf{r} \cdot \mathbf{s}_m + ||\mathbf{s}_m||^2$$

Note  $\|\mathbf{r}\|^2$  is common to all  $\mathbf{s}_m$ ,

 $\mathbf{r} \bullet \mathbf{s}_m$  is the correlation

and,  $\|\mathbf{s}_m\|^2$  is the energy of the symbol.

Note that  $f(\mathbf{r} | \mathbf{s}_m)$  is usually called likelihood function.

**Maximum-likelihood (ML):** to select the  $s_m$  that max the  $f(\mathbf{r} \mid \mathbf{s}_m)$ .

Denoted by, 
$$\hat{\mathbf{s}}_m = \arg\max_{\mathbf{s}_m} \{ f(\mathbf{r} \mid \mathbf{s}_m) \}$$

Minimum-distance (Min-Dist): to select

that is 
$$\hat{\mathbf{s}}_m = \arg\min_{\mathbf{s}_m} D(\mathbf{r}, \mathbf{s}_m)$$

We can say more,  $D(\mathbf{r}, \mathbf{s}_m) = ||\mathbf{r}||^2 - 2\mathbf{r} \cdot \mathbf{s}_m$ 

Let 
$$E_m = \|\mathbf{s}_m\|^2$$
 and  $C(\mathbf{r}, \mathbf{s}_m) = \mathbf{r} \cdot \mathbf{s}_m - E_m/2$ 

#### The Optimum Detector:

MAP: Maximum a posterior probability

ML: Maximum-likelihood

Min-Dist: Minimum-distance

Max-Corr: Maximum Correlation

**Maximum Correlation (Max-Corr):** to select the  $s_m$  that is most correlated with  $\mathbf{r}$ , possibly compensated by some bias due to unequal energy, that is,  $\hat{\mathbf{s}}_m = \arg\max_{\mathbf{s}} C(\mathbf{r}, \mathbf{s}_m)$ 



ML is often very simple and common. It is nice to see that , ML=MinDist=MaxCorr.

### **Example 5.5.3 on page 285.**

- 1) The observation vector;
- 2) The pdfs
- 3) MAP, ML(Min-Dist), or Mac-Corr

#### The Optimum Detector:

MAP: Maximum a posterior probability

ML: Maximum-likelihood

Min-Dist: Minimum-distance

Max-Corr: Maximum Correlation