Nikko J. Cleri

Eberly Postdoctoral Fellow The Pennsylvania State University

Summary

Research: Galaxy Evolution, High-Redshift Galaxies, Emission-Line Galaxies, Population III Stars,

Active Galactic Nuclei, Black Hole Seeds, Star Formation, Dust Attenuation

Techniques: UV/Optical/Near-IR Spectroscopy, Photoionization Modeling

Proposals: As PI/Co-PI: 1 JWST, 1 HST, >300k USD awarded

As Co-I: 11 JWST, 1 Gemini, >700 hours total awarded

Collaborations: CEERS, NGDEEP, RUBIES, CAPERS, POPPIES

Publications: 4 first author, 5 significant author, 66 coauthor, 3765 citations, h-index 32

Presentations: 18 research, 11 outreach and professional development

Academic and Professional Appointments

2024-	Eberly Postdoctoral Fellow	Penn State
2021-24	Graduate Student (Advisor: Prof. Casey Papovich)	Texas A&M
2019-21	Graduate Student (Advisor: Prof. Jonathan Trump)	UConn
2017-20	Research Assistant (Advisor: Prof. Gerald Dunne)	UConn
2018	NSF REU Student (Advisor: Prof. Louis Strigari)	Texas A&M

Education

Ph.D. Astronomy	Texas A&M University	2021 - 2024

Advisor: Casey Papovich

Thesis: Spectroscopic Studies of Stars and Black Holes Across Cosmic Time

M.S. Physics University of Connecticut 2019 - 2021

Advisor: Jonathan R. Trump

Thesis: CLEAR: Paschen-β Star Formation Rates and Dust Attenuation in Low Redshift Galaxies

B.S. Physics | *Mathematics Minor* University of Connecticut 2015 - 2019

Advisor: Gerald V. Dunne

Undergraduate Research: Resurgent trans-series for generalized Hastings-McLeod solutions

Awarded Proposals and Grants

Principal Investigator 2

2024 JWST-AR-5558: A Census of Optical Diagnostics of Ionizing Sources Across

Cosmic Time

 \sim \$174k

2021	HST-AR-16609: Peering Through the Dust: Paschen-beta Indicators of Star Formation and Dust Attenuation	~\$136k
Co-Investigator		12
2025	JWST-GO-8047: Extremely massive galaxies in the early universe? Confirming the nature of the most model-breaking object by hunting for stellar absorption features (PI: B. Wang)	19.6 hours
2025	JWST-GO-7488: Echoes of Silence: Absorption Line Spectroscopy of a Massive Quiescent Galaxy at $z=7.3$ (PI: A. Weibel)	14.1 hours
2025	JWST-GO-8559: SPAM: Star-formation from Photometry through the Addition of Medium-bands (PI: K. Davis)	62.8 hours
2025	JWST-GO-8410: A Census of Galaxy Kinematics and Outflows to $z\sim7$ (PI: R. Simons)	110.0 hours
2025	JWST-GO-8204: Give me a break: the search for stars in a prototypical Little Red Dot (PI: J. Greene)	17.4 hours
2024	JWST-GO-5718: A Spectroscopic Census of Faint, Broad-Line AGN at z>5 (PI: D. Kocevski)	20.49 hours
2024	JWST-GO-5943: What really are the Physical Properties of Galaxies in the Epoch of Reionization? (PI: C. Papovich)	61.83 hours
2024	JWST-GO-5407: MEOW: The MIRI Early Obscured-AGN Wide Survey (PI: G. Leung)	73.95 hours
2024	JWST-GO-5507: Deep Spectroscopy of Galaxies at z=4-14: Uncovering Drivers of Early Galaxy Formation and Black Hole Growth (PI: T. Hutchison)	23.29 hours
2024	JWST-GO-6368: The CANDELS-Area Prism Epoch of Reionization Survey (CAPERS) (PI: M. Dickinson)	293.21 hours
2023	JWST-GO-3703: Breaking the z=10 barrier with MIRI: redshift confirmation and detection of rest-frame optical emission lines (PI: J. Zavala)	24.33 hours
2023	GS-2023A-Q-136: Optical Spectroscopy of JWST ERO Galaxies (PI: B. Backhaus)	20 hours

Honors and Awards

2024	Dean's Climate and Diversity Award (Group)	Penn State
2022	Texas Space Grant Consortium Graduate Fellow - \$5K	Texas A&M
2018	NSF REU - \$5K	Texas A&M
2016	Dean's List - College of Liberal Arts and Sciences	UConn
2015-19	Governor's Scholarship - \$8.5K/yr	UConn
2015	Community Service Scholarship - \$1K	UConn

Teaching Experience

Teaching Assistant/Course Assistant

PHYS 1501: Physics for Engineers I UConn
PHYS 1025: Introduction to Astronomy UConn

Service

Physics & Astronomy Community

Referee - Astronomy & Astrophysics (A&A)

Referee - Astrophysical Journal (ApJ)

College

Astronomy Representative - Eberly College of Science Postdoctoral Council

Penn State

Department

Member – Climate and Diversity CommitteePenn StateGraduate RepresentativeTexas A&MOrganizer – Astronomy Journal ClubTexas A&M

Mentoring

Primary Mentor – Penn State-Nanjing Exchange Program

Coordinator – Mentoring and Advising Graduates in an Inclusive Community (MAGIC)

Mentor – Mentoring and Advising Graduates in an Inclusive Community (MAGIC)

Texas A&M

Mentor – UConn Undergraduate Peer Mentoring

UConn

Outreach

Volunteer – Gateway to Graduate School

Demonstrator – Physics and Engineering Festival

High School Research Reviewer – Lumiere

Texas A&M

Presenter – Astronomy on Tap BCS 'In the News'

Treasurer – Astronomy on Tap BCS

Texas A&M

Pen-Pal – Letters to a Pre-Scientist

Volunteer – Mitchell Institute Star Party Group

Texas A&M

Collaborations and Survey Membership

Co-I	CAPERS: The CANDELS-Area Prism Epoch of Reionization Survey	JWST
Member	POPPIES: The Public Observation Pure Parallel Infrared Emission-Line Survey	JWST
Member	RUBIES: Red Unknowns: Bright Infrared Extragalactic Survey	JWST
Member	NGDEEP: The Next Generation Deep Exploratory Public Survey	JWST
Member	CEERS: The Cosmic Evolution Early Release Science Survey	JWST
Member	CLEAR: The CANDELS Ly α Emission at Reionization Survey	HST

Technical Skills and Programming Languages

Programming Fluent: Python, LaTeX

Familiar: SQL, Julia, C, C++, R, IDL, perl, Mathematica, MATLAB, HTML, CSS

Software Fluent: Cloudy, PyNeb, LiMe

Familiar: grizli, DS9, IRAF, sbatch, slurm

Website Architect

Personal Website: njcleri.github.io

TAMU Astronomy (co-author): tamu-astro.github.io/

Mentoring and Advising Graduates in an Inclusive Community (MAGIC) (co-author): tx.ag/tamumagic

Publications

Lead/Co-Lead Author

- 4. Cleri, N. J., Olivier, G. M., Hutchison T. A., et al. 2023, Using [Ne V]/[Ne III] to Understand the Nature of Extreme-Ionization Galaxies, ApJ, 953, 10
- 3. Cleri, N. J., Yang, G., Papovich, C, et al. 2023, CLEAR: High-Ionization [Ne V] λ 3426 Emission-line Galaxies at 1.4 < z < 2.3, ApJ, 948, 112
- 2. **Cleri, N. J.**, Trump, J. R., Backhaus, B. E., et al. 2022, *CLEAR: Paschen-β Star Formation Rates and Dust Attenuation of Low Redshift Galaxies*, ApJ, 929, 3
- 1. **Cleri, N. J.**, Dunne, G. V., 2020, *Resurgent trans-series for generalized Hastings-McLeod solutions*, Journal of Physics A: Mathematical General, 53, 355203

Significant Author

- 5. Backhaus, B.E., **Cleri, N.J.**, et al. 2025, *Emission-Line Diagnostics at z>4:* [OIII] λ 4363/H γ , arXiv e-prints, arXiv:2502.03519
- Larson, R.L., Finkelstein, S.L., Kocevski, D.D., Hutchison, T.A., Trump, J.R., Arrabal Haro, P., Bromm, V., Cleri, N.J., et al. 2023, A CEERS Discovery of an Accreting Supermassive Black Hole 570 Myr after the Big Bang: Identifying a Progenitor of Massive z > 6 Quasars, ApJL, 953, L29
- Backhaus, B.E., Bridge J.S., Trump, J.R., Cleri, N.J., et al. 2023, CLEAR: Detecting Low-Luminosity Active Galactic Nuclei at 0.6 < z < 1.3 via Spatially Resolved Hubble Space Telescope Grism Emission Line Ratios, ApJ, 943, 37
- 2. Prescott, M.K.M., Finlator, K.M., Cleri, N.J., et al. 2022, Using Multiple Emission Line Ratios to Constrain the Slope of the Dust Attenuation Law, ApJ, 928, 71
- 1. Backhaus, B.E., Trump, J.R., Cleri, N.J., et al. 2022, CLEAR: Emission Line Ratios at Cosmic High Noon, ApJ, 926, 161

Co-Author: Published

- 49. Cole, J.W., et al. 2025, CEERS: Increasing Scatter along the Star-forming Main Sequence Indicates Early Galaxies Form in Bursts, ApJ, 979, 193
- 48. Zavala, J., et al. 2024, A luminous and young galaxy at z = 12.33 revealed by a JWST/MIRI detection of $H\alpha$ and [O III], Nature Astronomy, 9, 155
- 47. Cheng, Y., et al. 2024, *Unveiling the Dark Side of UV/Optical Bright Galaxies: Optically Thick Dust Absorption*, ApJ, 979, 71
- 46. Bisigello, L., et al. 2024, *Spectroscopic confirmation of a dust-obscured, metal-rich dwarf galaxy at z*∼5, A&A, 693, L18
- 45. de Graaff, A., et al. 2024, Efficient formation of a massive quiescent galaxy at redshift 4.9, Nature Astronomy
- 44. Rose, C., et al. 2024, CEERS Key Paper. IX. Identifying Galaxy Mergers in CEERS NIRCam Images Using Random Forests and Convolutional Neural Networks, ApJL, 976, L8
- 43. Llerena, M., et al. 2024, Physical properties of extreme emission-line galaxies at $z\sim 4-9$ from the JWST CEERS survey, A&A, 691, A59
- 42. Gupta, A.R., et al. 2024, *Emission-Line Ratios and Ionization Conditions of CEERS Star-Forming Galaxies with JWST/NIRSpec*, Research Notes of the American Astronomical Society, 8, 266

- 41. Calabró, A., et al. 2024, The evolution of the star formation rate and Σ_{SFR} of galaxies in cosmic morning (4 < z < 10), A&A, 690, A290
- 40. Davis, K., et al. 2024, A Census from JWST of Extreme Emission-line Galaxies Spanning the Epoch of Reionization in CEERS, ApJ, 974, 42
- 39. Chworowsky, K., et al. 2024, Evidence for a Shallow Evolution in the Volume Densities of Massive Galaxies at z = 4 to 8 from CEERS, AJ, 168, 113
- 38. Seillé, L.-M., et al. 2024, *Physical properties of strong 1 < z < 3 Balmer and Paschen lines emitters observed with JWST*, A&A, 689, A102
- 37. Hu, W., et al. 2024, Characterizing the Average Interstellar Medium Conditions of Galaxies at $z \sim 5.6$ -9 with UV and Optical Nebular Lines, ApJ, 971, 21
- 36. Napolitano, L., et al. 2024, 'Peering into cosmic reionization: the Ly α visibility evolution from galaxies at z=4.5-8.5 with JWST, A&A, 688, A106
- 35. Ronayne, K., et al. 2024, CEERS: 7.7 μm PAH Star Formation Rate Calibration with JWST MIRI, ApJ, 970, 61
- 34. Wang, B., et al. 2024, RUBIES: Evolved Stellar Populations with Extended Formation Histories at $z\sim7-8$ in Candidate Massive Galaxies Identified with JWST/NIRSpec, ApJL, 969, L13
- 33. Finkelstein, S.L., et al. 2024, The Complete CEERS Early Universe Galaxy Sample: A Surprisingly Slow Evolution of the Space Density of Bright Galaxies at $z \sim 8.5-14.5$, ApJL, 969, L2
- 32. Pirzkal, K., et al. 2024, The Next Generation Deep Extragalactic Exploratory Public Near-Infrared Slitless Survey Epoch 1 (NGDEEP-NISS1): Extra-Galactic Star-formation and Active Galactic Nuclei at 0.5 < z < 3.6, ApJ, 969, 90
- 31. Jung, I., et al. 2024, CEERS: Diversity of Lyman-Alpha Emitters during the Epoch of Reionization, ApJ, 967, 73
- 30. Mascia, S. et al. 2024 New insight on the nature of cosmic reionizers from the CEERS survey A&A, 685, A3
- 29. Morales, A.M., et al. 2024, Rest-Frame UV Colors for Faint Galaxies at $z\sim 9-16$ with the JWST NGDEEP Survey, ApJL, 964, L24
- 28. Cheng, Y., et al. 2024, Exploring the Gas-Phase Metallicity Gradients of Star-forming Galaxies at Cosmic Noon, ApJ, 964, 94
- 27. Shen, L., et al. 2024, NGDEEP Epoch 1: Spatially Resolved H α Observations of Disk and Bulge Growth in Star-Forming Galaxies at $z \sim 0.6$ -2.2 from JWST NIRISS Slitless Spectroscopy, ApJL, 963, L49
- 26. Barro, G., et al. 2023, Extremely Red Galaxies at z = 5–9 with MIRI and NIRSpec: Dusty Galaxies or Obscured Active Galactic Nuclei?, ApJ, 963, 128
- 25. Backhaus, B.E., et al. 2023, CEERS Key Paper. VIII. Emission-line Ratios from NIRSpec and NIRCam Wide-Field Slitless Spectroscopy at z > 2, ApJ, 962, 195
- 24. Kirkpatrick, A., et al. 2023, CEERS Key Paper VII: JWST/MIRI Reveals a Faint Population of Galaxies at Cosmic Noon Unseen by Spitzer, ApJL, 959, L7
- 23. Calabró, A, et al. 2023, *Near-infrared emission line diagnostics for AGN from the local Universe to redshift 3*, A&A, 679, A80
- 22. Fujimoto, S., et al. 2023, ALMA FIR View of Ultra High-redshift Galaxy Candidates at $z \sim 11$ -17: Blue Monsters or Low-z Red Interlopers?, ApJ, 955, 130
- 21. Kocevski, D.D., et al. 2023, Hidden Little Monsters: Spectroscopic Identification of Low-Mass, Broad-Line AGN at z>5 with CEERS, ApJL, 954, L4
- 20. Arrabal Haro, P., et al. 2023, Spectroscopic confirmation of CEERS NIRCam-selected galaxies at $z \simeq 8-10$, ApJL, 951, L22

- 19. Estrada-Carpenter, V., et al. 2023, *CLEAR: The Morphological Evolution of Galaxies in the Green Valley*, ApJ, 951, 115
- 18. Yang, G., et al. 2023, CEERS Key Paper VI: JWST/MIRI Uncovers a Large Population of Obscured AGN at High Redshifts, ApJL, 950, L5
- 17. Papovich, C., et al. 2023, CEERS Key Paper IV: Galaxies at 4 < z < 9 are Bluer than They Appear Characterizing Galaxy Stellar Populations from Rest-Frame ~ 1 micron Imaging, ApJL, 949, L18
- 16. Simons, R.C., et al. 2023, CLEAR: Survey Overview, Data Analysis and Products, ApJS, 266, 13
- 15. Constantin, L. et al. 2023, Expectations of the size evolution of massive galaxies at $3 \le z \le 6$ from the TNG50 simulation: the CEERS/JWST view, ApJ, 946, 71
- Perez-Gonzalez, P.G.. et al. 2022, CEERS Key Paper V: A triality on the nature of HST-dark galaxies, ApJL, 946, L16
- 13. Kocevski, D.D., et al. 2023, CEERS Key Paper II: The Resolved Host Properties of AGN at 3 < z < 5 with JWST, ApJL, 946, L14
- 12. Finkelstein, S.L.. et al. 2023, CEERS Key Paper I: An Early Look into the First 500 Myr of Galaxy Formation with JWST, ApJL, 946, L13
- Guo, Y. et al. 2023, First Look at z > 1 Bars in the Rest-Frame Near-Infrared with JWST Early CEERS Imaging, ApJL, 945, L10
- 10. Trump, J.R. et al. 2023, The Physical Conditions of Emission-Line Galaxies at Cosmic Dawn from JWST/NIRSpec Spectroscopy in the SMACS 0723 Early Release Observations, ApJ, 945, 35
- 9. García-Argumánez, A. et al. 2023, Probing the earliest phases in the formation of massive galaxies with simulated HST+JWST imaging data from Illustris, ApJ, 944, 3
- 8. Zavala, J. et al. 2023, *Dusty starbursts masquerading as ultra high redshift galaxies in JWST observations*, ApJL, 943, L9
- 7. Rose, C. et al. 2023, *Identifying Galaxy Mergers in Simulated CEERS NIRCam Images using Random Forests*, ApJ, 942, 54
- 6. Finkelstein, S.L. et al. 2022, A Long Time Ago in a Galaxy Far, Far Away: A Candidate $z \sim 14$ Galaxy in Early JWST CEERS Imaging, ApJL, 940, L55
- 5. Papovich, C. et al. 2022, CLEAR: The Ionization and Chemical-Enrichment Properties of Galaxies at 1.1 < z < 2.3 ApJ, 937, 22
- 4. Matharu, J. et al. 2022, CLEAR: The Evolution of Spatially Resolved Star Formation in Galaxies between $0.5 \le z \le 1.7$ using $H\alpha$ Emission Line Maps, ApJ, 937, 16
- 3. Jung, I. et al. 2022, CLEAR: Boosted Ly α Transmission of the Intergalactic Medium in UV bright Galaxies, ApJ, 933, 87
- 2. Simons, R. C. et al. 2021, CLEAR: The Gas-Phase Metallicity Gradients of Star-Forming Galaxies at 0.6 < z < 2.6, ApJ, 923, 203
- 1. Estrada-Carpenter, V. et al. 2020, CLEAR II: Evidence for Early Formation of the Most Compact Quiescent Galaxies at High Redshift, ApJ, 880, 2

Co-Author: Submitted

- 17. Setton, D.J., et al. 2025, A confirmed deficit of hot and cold dust emission in the most luminous Little Red Dots, arXiv e-prints, arXiv:2503.02059
- 16. Mascia, S., et al. 2025, Little impact of mergers and galaxy morphology on the production and escape of ionizing photons in the early Universe, arXiv e-prints, arXiv:2501.08268

- 15. Finkelstein, S.L., et al. 2025, *The Cosmic Evolution Early Release Science Survey (CEERS)*, arXiv e-prints, arXiv:2501.04085
- 14. Leung, G.C.K., et al. 2024, Exploring the Nature of Little Red Dots: Constraints on AGN and Stellar Contributions from PRIMER MIRI Imaging, arXiv e-prints, arXiv:2411.12005
- 13. Setton, D.J., et al. 2024, Little Red Dots at an Inflection Point: Ubiquitous "V-Shaped" Turnover Consistently Occurs at the Balmer Limit, arXiv e-prints, arXiv:2411.03424
- 12. Burgarella, D., et al. 2024, CEERS: Forging the First Dust Transition from Stellar to ISM Grain Growth in the Early Universe, arXiv e-prints, arXiv:2410.23959
- 11. Shen, L., et al. 2024, NGDEEP: The Star Formation and Ionization Properties of Galaxies at 1.7 < z < 3.4, arXiv e-prints, arXiv:2410.23349
- 10. Cooper, O.R., et al. 2024, RUBIES: JWST/NIRSpec resolves evolutionary phases of dusty star-forming galaxies at $z \sim 2$, arXiv e-prints, arXiv:2410.08387
- 9. Brooks, M., et al. 2024, Here There Be (Dusty) Monsters: High Redshift AGN are Dustier Than Their Hosts, arXiv:e-prints, arXiv:2410.07340
- 8. Brooks, M., et al. 2024, *Here There Be (Dusty) Monsters: High Redshift AGN are Dustier Than Their Hosts*, arXiv:e-prints, arXiv:2410.07340
- 7. Taylor, A.J., et al. 2024, Broad-Line AGN at 3.5 < z < 6: The Black Hole Mass Function and a Connection with Little Red Dots, arXiv e-prints, arXiv:2409.06772
- de Graaff, A., et al. 2024, RUBIES: a complete census of the bright and red distant Universe with JWST/NIRSpec, arXiv e-prints, arXiv:2409.05948
- 5. Weibel, A., et al. 2024, RUBIES Reveals a Massive Quiescent Galaxy at z=7.3, arXiv e-prints, arXiv:2409.03829
- 4. Katz, H., et al. 2024, 21 Balmer Jump Street: The Nebular Continuum at High Redshift and Implications for the Bright Galaxy Problem, UV Continuum Slopes, and Early Stellar Populations, arXiv e-prints, arXiv:2408.03189
- 3. Kocevski, D.D., et al. 2024, The Rise of Faint, Red AGN at z>4: A Sample of Little Red Dots in the JWST Extragalactic Legacy Fields, arXiv e-prints, arXiv:2404.03576
- 2. Wang, B., et al. 2024a, RUBIES: JWST/NIRSpec Confirmation of an Infrared-luminous, Broad-line Little Red Dot with an Ionized Outflow, arXiv e-prints, arXiv:2403.02304
- 1. Jung, I, et al. 2022, New z>7 Lyman-alpha Emitters in EGS: Evidence of an Extended Ionized Structure at $z\sim7.7$, arXiv e-prints, arXiv:2212.09850

Presentations

Research Presentations

18.	Talk: High-Redshift Diagnostics of Star Formation and Active Galactic Nuclei, The Pennsylvania State University, State College, Pennsylvania, USA	10 February 2025
17.	Talk: High-Redshift Diagnostics of Star Formation and Active Galactic Nuclei, The Pennsylvania State University, State College, Pennsylvania, USA	17 September 2024
16.	Talk: <i>High-Redshift Diagnostics of Ionizing Sources</i> , University of Wisconsin, Madison, Wisconsin, USA	17 July 2024
15.	Discussion Chair: <i>Active Galactic Nuclei and Little Red Dots</i> , San Lorenzo de El Escorial, Spain	13 May 2024
14.	Talk: Diagnostics of Ionizing Sources at High-z using Models and Observations, San Lorenzo de El Escorial, Spain	13 May 2024
13.	Talk: Diagnostics of AGN, Black Hole Seeds, and Population III Stars with JWST at the AAS 243rd Meeting, New Orleans, Louisiana, USA	10 January 2024
12.	Poster: Emission Line Ratio Diagnostics of AGN, Black Hole Seeds and Population III Stars with JWST at the First Year of JWST Science Conference, Space Telescope Science Institute, Baltimore, Maryland, USA	11 September 2023
11.	Talk: <i>Diagnostics of Exotic Ionizing Sources with JWST</i> at Texas A&M Astrosymposium, College Station, Texas, USA	17 August 2023
10.	Talk: Diagnostics of Exotic Ionizing Sources Across Cosmic Time - High-Ionization Emission-Line Ratios: Ne53 at University of Texas, Austin, Texas, USA	10 May 2023
9.	Poster: High-Ionization [Ne V] Emission-Line Galaxies at Cosmic Noon and the Epoch of Reionization at AAS 241st Meeting, Seattle, Washington, USA	12 January 2023
8.	Talk: Using [Ne V] to Constrain the Sources of Highly-Energetic Photoionization Across Cosmic Time: Exploring the "Mystery of Neon" with HST and JWST at Texas A&M University, College Station, Texas, USA	2 December 2022
7.	Talk: Extreme High-Ionization Emission-Line Galaxies at Cosmic Noon and the Epoch of Reionization: Exploring the "Mystery of Neon" with HST and JWST at Texas A&M University, College Station, Texas, USA	18 August 2022
6.	Talk: The Evolution of Spectroscopy from HST to JWST: Implications for the Epoch of Reionization at Texas A&M University, College Station, Texas, USA	22 July 2022
5.	Poster: HST Grism Observations of Paschen-Line Star-Formation and Dust Attenuation: A Precursor to the JWST Era at AAS 240th Meeting, Pasadena, California, USA	14 June 2022
4.	Talk: Paschen- β Star Formation Rates and Dust Attenuation with HST and JWST at Texas A&M Astrosymposium, College Station, Texas, USA	27 August 2021
3.	Poster: CLEAR: Paschen- β Star Formation Rates and Dust Attenuation in Low Redshift Galaxies at AAS 237th Meeting, Virtual	13 January 2021
2.	Poster: Modeling 8B Solar Neutrino Detection with CE ν NS at AAS 233rd Meeting, Seattle, Washington, USA	9 January 2019
1.	Poster: Modeling 8B Solar Neutrino Detection with $CE\nu NS$ at TAMU Undergraduate Research Poster Session, College Station, Texas, USA	1 August 2018

Outreach Presentations

3.	Talk: The Evolving Universe Through JWST's Eyes Penn State University, State College, Pennsylvania	1 February 2025
2.	Talk: <i>The Origin of the Elements: Chemistry Across Cosmic Time</i> at Astronomy on Tap State College, State College, Pennsylvania, USA	19 September 2024
1.	Talk: Beyond the Telescope: Unraveling Mysteries with AI in Astronomy at Astronomy on Tap B/CS, Bryan, Texas, USA	24 April 2024
Prof	essional Development Presentations	
8.	Panel: GLASS Postdoc Panel at Texas A&M University, College Station, Texas, USA	8 March 2024
7.	Talk: How to Be A Referee at Texas A&M University, College Station, Texas, USA	10 November 2023
6.	Panel: How to Get Into Grad School at Texas A&M University, College Station, Texas, USA	28 July 2023
5.	Talk: Data Visualization in Astronomy: More Important than the Science Itself? at Texas A&M University, College Station, Texas, USA	11 November 2022
4.	Panel: How to Get Into Grad School at Texas A&M University, College Station, Texas, USA	29 July 2022
3.	Data Visualization in Astronomy: More Important than the Science Itself? at Texas A&M University, College Station, Texas, USA	2 June 2022
2.	Workshop: <i>Matplotlib: The Champion of Plotting in Python</i> at Texas A&M University, College Station, Texas, USA	2 June 2022
1.	Workshop: pandas: Your Best Friend for Data Analysis in Python at Texas A&M University, College Station, Texas, USA	1 June 2022

References

Postdoctoral Mentor Prof. Joel Leja Penn State

The Pennsylvania State University Department of Astronomy and Astrophysics Davey Laboratory, State College, PA, 16802 joel.leja@psu.edu

PhD Advisor Prof. Casey J. Papovich Texas A&M

Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy 4242 TAMU, College Station, TX 77843-4242 papovich@tamu.edu

M.S. Advisor Prof. Jonathan R. Trump UConn

University of Connecticut Department of Physics 196 Auditorium Road, Unit 3046, Storrs, CT, 06269-3046 jonathan.trump@uconn.edu

PhD Mentor Prof. Robert C. Kennicutt Texas A&M

Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy 4242 TAMU, College Station, TX 77843-4242 rck@tamu.edu