Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2024

CB3CO23 Design & Analysis of Algorithms

Branch/Specialisation: CSBS Programme: B.Tech.

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of

		should be written in full inste Notations and symbols have the	•		a i					
Q.1	i.	i. Two main measures for the efficiency of an algorithm are-								
		(a) Processor and memory	(b) Complexit	y and capacity						
		(c) Time and space	(d) Data and space							
	ii.	How many cases are there under Master's theorem?								
		(a) 2 (b) 3	(c) 4	(d) 5						
	iii.	Fractional knapsack problem the following algorithm?	n is solved mo	est efficiently by which of	1					
		(a) Divide and conquer (b) Dynamic programming								
		(c) Greedy algorithm	ing							
	iv.	What is the auxiliary space co	is the auxiliary space complexity of merge sort?							
		(a) $O(1)$ (b) $O(\log n)$	(c) O(n)	(d) $O(n log n)$						
	v.	From the following algorithm design techniques which one is used								
		find all the pairs of shortest distances in a graph?								
		(a) Backtracking	(b) Greedy							
		(c) Dynamic programming	(d) Divide and	d conquer						
	vi.	vi. Floyd Warshall algorithm can be used for finding								
		(a) Single source shortest path								
		(b) Topological sort								
		(c) Minimum spanning tree								
		(d) Transitive closure								
	vii.	Which of the problems canno	ot be solved by	backtracking method?	1					
		(a) n-queen problem								
		(b) Subset sum problem								
		(c) Hamiltonian circuit proble	em							
		(d) Travelling salesman prob	lem							

P.T.O.

- viii. What is vertex coloring of a graph?
 - (a) A condition where any two vertices having a common edge should not have same color
 - (b) A condition where any two vertices having a common edge should always have same color
 - (c) A condition where all vertices should have a different color
 - (d) A condition where all vertices should have same color
- is the class of decision problems that can be solved by 1 ix. non-deterministic polynomial algorithms.
 - (a) NP
- (b) P
- (c) Hard
- (d) Complete

1

3

- To which of the following class does a CNF-satisfiability problem 1 belong?
 - (a) NP class (b) P class
- (c) NP complete
- (d) NP hard
- Define algorithm. Also state its characteristics. Q.2 i.
 - Explain how algorithms performance is analyzed? Describe 3 ii. asymptotic notation.
 - What do you mean by recurrence relations? Solve this recurrence 5 relation T(n) = 2T(n/2) + n using recursive tree method.
- $T(n) = 3T(n/2) + n^2$. Solve this in master theorem. Also state which 5 OR iv. case it follows.
- Differentiate between greedy algorithm and divide and conquer. Q.3 i.
 - Write short notes on spanning trees. Solve this graph using Prim's 8 algorithm.

Compute its time complexity along with its algorithm.

- Illustrate with an example the knapsack problem along with algorithm **8** OR iii. using greedy approach.
- Q.4 i. Explain the following graph traversal-
 - (a) Depth first search
- (b) Breath first search.

Define dynamic programming. Solve multistage graph using dynamic 7 programming also compute its time complexity.

7

- Difference between fractional knapsack and 0/1 knapsack.
- Q.5 i. When to use a backtracking algorithm? Explain its term related to 4 backtracking. Write its applications.
 - Suppose you have 4 vertices A, B, C, D. Apply graph colouring using 6 backtracking.
- OR iii. Define branch and bound.

Solve this TSP using branch and bound.

- Q.6 Attempt any two:
 - Discuss in detail about the class P, NP, NP-hard and NP-complete 5 problems.
 - What do you mean by Randomized algorithms? Explain its 5 classification.
 - 5 Define Quantum algorithms and Cook's theorem.

[4]

Marking Scheme

CB3CO23 (T) Design And Analysis of Algorithms

Q.1	 i) ii) iii) iv) v) vi) vii) viii) ix) x) 	C B C C C D A A C	1 1 1 1 1 1 1 1
Q.2	i. ii.	Define Algorithm. Also state its characterstics Definition of Algorithm 2 points in Characteristic Explain how algorithms performance is analyzed? Describe asymptotic notation?	3
	iii.	Algorithm Performance -1mark Asymptotic Notation -2mark What do you mean by Recurrence Relations? Solve this recurrence relation $T(n) = 2T(n/2) + n$ using recursive tree method. Recurrence Relation Definition -1mark Solution to equation -2mark	5
OR	iv.	Time complexity -2mark $T(n) = 3T(n/2) + n^2$. Solve this in master theorem. Also state which case it follows. Steps to solution -3mark $T(n) = \Theta(n^2)$ (case 3)2mark	5
Q.3	i. ii.	Differentiate between Greedy Algorithm and Divide and conquer. Greedy algorithm -1mark Divide and conquer -1mark Write short notes on spanning trees. Solve this graph using Prim's Algorithm.	8

OR	iii.	Solve graph Algorithm Time complexity Illustrate with an example Knapsack problem algorithm using greedy approach. Example	-2marks -2marks -3marks -1 mark along with	8
Q.4	i.	Algorithm Explain the following graph traversal (a) Depth First search (b) Breath First search	-4mark	3
	ii.	Depth First search Breath First search Define Dynamic programming. Solve multistage graph using dynamic programming	-1.5 mark -1.5 mark	7

Definition of dynamic programming

-2mark

P.T.O.

-4mark

7

6

6

5

-1.5mark

-2mark

Solve graph

		Time c	omplexi	ity				-1mark
OR	iii.	Difference between Fractional knapsack and 0/1 kr Fractional knapsack 0/1 knapsack						0/1 knapsack3.5mark -3.5mark
Q.5	i. ii.	When to use a Backtracking algorithm? Explain its term related to backtracking. Write its applications. When to use backtracking -1 mark Explain its term in backtracking -1 mark Applications -2mark Suppose you have 4 vertices A,B,C,D. Apply graph colouring using backtracking.						
0.5			acking p					-2mark -4mark
OR	iii.	Define	branch 1	and bou 2	na. 3	4	5	
		1	∞	20	30	10	11)
		2	15	∞	30	10	11	
		3	3	5	∞	2	4	
		4	19	6	18	∞	3	
		5	16	4	7	16	∞_	J
		Solve t Definit Solve r	ion	using b	ranch ar	nd bour	nd.	-1mark -5mark
Q.6	i.	probler Definit Definit	ns.		the clas	ss P, N	P, NP-ł	nard and NP-complete -1mark -1 mark -1.5mark

What do you mean by Randomized algorithms. Explain its 5 classification.

Definition NP Complete

Definition

	Classification	-3mark	
iii.	Define Quantum algorithms and Cook's theorem.		5
	Quantum algorithm	-2.5mark	
	Cook's theorem	-2.5mark	
