EXPERIMENT: 8(a)

A python program to implement ada boost

AIM:

To implement a python program for Ada Boosting.

ALGORITHM:

Step 1: Import Necessary Libraries

Import numpy as np.

Import pandas as pd.

Import DecisionTreeClassifier from sklearn.tree.

Import train_test_split from sklearn.model_selection.

Import accuracy_score from sklearn.metrics.

Step 2: Load and Prepare Data

Load your dataset using pd.read_csv() (e.g., df = pd.read_csv('data.csv')).

Separate features (X) and target (y).

Split the dataset into training and testing sets using train_test_split().

Step 3: Initialize Parameters

Set the number of weak classifiers n_estimators.

Initialize an array weights for instance weights, setting each weight to 1 /

number_of_samples.

Step 4: Train Weak Classifiers

Loop for n_estimators iterations:

Train a weak classifier using

DecisionTreeClassifier(max_depth=1) on the training data weighted by weights.

Predict the target values using the trained weak classifier.

Calculate the error rate err as the sum of weights of misclassified samples divided by the sum of all weights.

Compute the classifier's weight alpha using 0.5 * np.log((1 - err) / err).

Update the weights: multiply the weights of misclassified samples by np.exp(alpha)

and the weights of correctly classified samples by np.exp(-alpha).

Normalize the weights so that they sum to 1.

Append the trained classifier and its weight to lists classifiers and alphas.

Step 5: Make Predictions

For each sample in the testing set:

Initialize a prediction score to 0.

For each trained classifier and its weight:

Add the classifier's prediction (multiplied by its weight) to the prediction score.

Take the sign of the prediction score as the final prediction.

Step 6: Evaluate the Model

Compute the accuracy of the AdaBoost model on the testing set using accuracy_score().

Step 7: Output Results

Print or plot the final accuracy and possibly other evaluation metrics.

CODE 1:

import pandas as pd

import numpy as np

import seaborn as sns

from sklearn.tree import DecisionTreeClassifier, plot_tree from mlxtend.plotting import plot_decision_regions import matplotlib.pyplot as plt

```
df = pd.DataFrame()
df['X1']=[1,2,3,4,5,6,6,7,9,9]
```

Create dataset

df['X2']=[5,3,6,8,1,9,5,8,9,2]

df['label']=[1,1,0,1,0,1,0,1,0,0]

display(df)

OUTPUT1:

	X1	X2	label	
0	1	5	1	
1	2	3	1	
2	3	6	0	
3	4	8	1	
4	5	1	0	
5	6	9	1	
6	6	5	0	
7	7	8	1	
8	9	9	0	
9	9	2	0	

CODE 2:

sns.scatterplot(x=df['X1'], y=df['X2'], hue=df['label'], s=80)
plt.title("Initial Data Distribution")
plt.show()

OUTPUT 2:

CODE 3: df['weights'] = 1/df.shape[0] display(df)

OUTPUT 3:

	X1	X2	label	weights
0	1	5	1	0.1
1	2	3	1	0.1
2	3	6	0	0.1
3	4	8	1	0.1
4	5	1	0	0.1
5	6	9	1	0.1
6	6	5	0	0.1

	X1	X2	label	weights
7	7	8	1	0.1
8	9	9	0	0.1
9	9	2	0	0.1

CODE 4:

```
x = df.iloc[:, 0:2].values
y = df.iloc[:, 2].values
dt1 = DecisionTreeClassifier(max_depth=1)
dt1.fit(x, y)

plt.figure(figsize=(6,4))
plot_tree(dt1)
plt.title("Decision Tree 1 (Weak Classifier)")
plt.show()
```

OUTPUT 4:

$$x[0] <= 2.5$$
 $gini = 0.5$
 $samples = 10$
 $value = [5, 5]$
 se
 $gini = 0.0$
 $samples = 2$
 $value = [0, 2]$
 $gini = 0.469$
 $samples = 8$
 $value = [5, 3]$

CODE 5:

plot_decision_regions(x, y, clf=dt1, legend=2)
plt.title("Decision Boundary of 1st Weak Classifier")
plt.show()

OUTPUT 5:


```
CODE 6:
df['y_pred'] = dt1.predict(x)
display(df)
def calculate_model_weight(error):
 return 0.5 * np.log((1 - error) / error)
alpha1 = calculate_model_weight(0.3)
def update_row_weights(row, alpha):
 if row['label'] == row['y_pred']:
   return row['weights'] * np.exp(-alpha)
  else:
   return row['weights'] * np.exp(alpha)
df['updated_weights'] = df.apply(lambda r:
update_row_weights(r, alpha1), axis=1)
df['normalized_weights'] = df['updated_weights'] /
df['updated_weights'].sum()
display(df[['X1','X2','label','weights','y_pred','normalized_weight
s']])
print("Sum of normalized weights:",
df['normalized_weights'].sum())
```

OUTPUT 6:

	X	1	X2	label	weigh	ts	y_pred
0	1		5	1	0.1		1
1	2		3	1	0.1		1
2	3		6	0	0.1		0
3	4		8	1	0.1		0
4	5		1	0	0.1		0
5	6		9	1	0.1		0
6	6		5	0	0.1		0
7	7		8	1	0.1		0
8	9		9	0	0.1		0
9	9		2	0	0.1		0
	X1	X2	label	weights	y_pred	normal	ized_weights
0	1	5	1	0.1	1	0.07142	29
1	2	3	1	0.1	1	0.071429	
2	3	6	0	0.1	0	0.07142	.9
3	4	8	1	0.1	0	0.166667	
4	5	1	0	0.1	0	0.07142	.9
5	6	9	1	0.1	0	0.16666	57

	X1	X2	label	weights	y_pred	normalized_weights
6	6	5	0	0.1	0	0.071429
7	7	8	1	0.1	0	0.166667
8	9	9	0	0.1	0	0.071429
9	9	2	0	0.1	0	0.071429

Sum of normalized weights: 0.999999999999999

CODE 7:

df['cumsum_upper'] = np.cumsum(df['normalized_weights'])
df['cumsum_lower'] = df['cumsum_upper'] df['normalized_weights']

display(df[['X1','X2','label','weights','y_pred','normalized_weight s','cumsum_lower','cumsum_upper']])

OUTPUT 7:

	X	X	lab	weig	y_pr	normalized_w	cumsum_l	cumsum_u
	1	2	el	hts	ed	eights	ower	pper
0	1	5	1	0.1	1	0.071429	0.000000	0.071429
1	2	3	1	0.1	1	0.071429	0.071429	0.142857
2	3	6	0	0.1	0	0.071429	0.142857	0.214286
3	4	8	1	0.1	0	0.166667	0.214286	0.380952
4	5	1	0	0.1	0	0.071429	0.380952	0.452381
5	6	9	1	0.1	0	0.166667	0.452381	0.619048

	X 1	X 2	lab el	weig hts	y_pr ed	normalized_w eights	cumsum_l ower	cumsum_u pper
6	6	5	0	0.1	0	0.071429	0.619048	0.690476
7	7	8	1	0.1	0	0.166667	0.690476	0.857143
8	9	9	0	0.1	0	0.071429	0.857143	0.928571
9	9	2	0	0.1	0	0.071429	0.928571	1.000000

CODE 8:

```
def create_new_dataset(df):
 indices = []
 for i in range(df.shape[0]):
   a = np.random.random()
   for index, row in df.iterrows():
     if row['cumsum_upper'] > a and a >
row['cumsum_lower']:
       indices.append(index)
 return indices
index_values = create_new_dataset(df)
print("Sampled indices for next dataset:", index_values)
second_df = df.iloc[index_values, [0,1,2,3]]
```

display(second_df)

OUTPUT 8:

Sampled indices for next dataset: [3, 2, 0, 2, 7, 9, 3, 7, 4, 7]

	X1	X2	label	weights
3	4	8	1	0.1
2	3	6	0	0.1
0	1	5	1	0.1
2	3	6	0	0.1
7	7	8	1	0.1
9	9	2	0	0.1
3	4	8	1	0.1
7	7	8	1	0.1
4	5	1	0	0.1
7	7	8	1	0.1

CODE 9:

x2 = second_df.iloc[:,0:2].values

y2 = second_df.iloc[:,2].values

dt2 = DecisionTreeClassifier(max_depth=1)

dt2.fit(x2, y2)

```
plt.figure(figsize=(6,4))
plot_tree(dt2)
plt.title("Decision Tree 2 (Weak Classifier)")
plt.show()
plot_decision_regions(x2, y2, clf=dt2, legend=2)
plt.title("Decision Boundary of 2nd Weak Classifier")
plt.show()
second_df['y_pred'] = dt2.predict(x2)
display(second_df)
alpha2 = calculate_model_weight(0.1)
print("Alpha 2 =", alpha2)
OUTPUT 9:
         Decision Tree 2 (Weak Classifier)
```

$$x[1] <= 7.0$$
 $gini = 0.48$
 $samples = 10$
 $value = [4, 6]$
 se
 $gini = 0.32$
 $samples = 5$
 $value = [4, 1]$
 $gini = 0.0$
 $samples = 5$
 $value = [0, 5]$

	X1	X2	label	weights	y_pred
3	4	8	1	0.1	1
2	3	6	0	0.1	0
0	1	5	1	0.1	0
2	3	6	0	0.1	0
7	7	8	1	0.1	1
9	9	2	0	0.1	0
3	4	8	1	0.1	1
7	7	8	1	0.1	1
4	5	1	0	0.1	0
7	7	8	1	0.1	1

Alpha 2 = 1.0986122886681098

CODE 10:

query = np.array([1,5]).reshape(1,2)

```
print("\nQuery [1,5] predictions:")
print("dt1:", dt1.predict(query))
print("dt2:", dt2.predict(query))
query2 = np.array([9,9]).reshape(1,2)
print("\nQuery [9,9] predictions:")
print("dt1:", dt1.predict(query2))
print("dt2:", dt2.predict(query2))
OUTPUT 10:
Query [1,5] predictions:
dt1: [1]
dt2: [0]
Query [9,9] predictions:
dt1: [0]
dt2: [1]
RESULT:
Thus a python program to implement ada boost is written and
```

the output is verified.