Is |x| + |y| = 0?

Since absolute value is non-negative the from |x|+|y|=0 we have that the sum of two non-negative values equals to zero, which is only possible if both of them equal to zero. So, the question basically asks whether x=y=0

(1) x + 2 |y| = 0. It's certainly possible that x = y = 0 but it's also possible that x = -2 and y = 1. Not sufficient.

Notice that from this statement $|y|=-\frac{x}{2}$, so $-\frac{x}{2}$ equals to a non-negative value (|y|), so $-\frac{x}{2} \geq 0$... $x \leq 0$.

(2) y + 2 |x| = 0. It's certainly possible that x=y=0 but it's also possible that y=-2 and x=1. Not sufficient.

Notice that from this statement $|x| = -\frac{y}{2}$, so $-\frac{y}{2}$ equals to a non-negative value (|x|), so $-\frac{y}{2} \ge 0$... $y \le 0$.

(1)+(2) We have that $x \le 0$ and $y \le 0$, hence equations from the statements transform to: x-2y=0 and y-2x=0. Solving gives x=y=0. Sufficient.

Answer: C.

2

If |x+2|=4, what is the value of x?

$$|x+2| = 4$$
 ... $x = 2$ or $x = -6$.

(1)
$$x^2$$
 is different from 4 --> $x^2 \neq 4$ --> $x \neq 2$ (and $x \neq -2$), so $x = -6$. Sufficient.

(2)
$$x^2 = 36 \rightarrow x = 6$$
 or $x = -6$, so $x = -6$. Sufficient.

Answer: D.

3

If
$$x \neq 0$$
, is $\frac{x^2}{|x|} < 1$? ---> reduce by $|x|$ ---> is $|x| < 1$? or is $-1 < x < 1$?

Two statements together give us the sufficient info.

Answer: C.

Given:
$$\frac{x^2}{|x|} < 1$$

Consider this:

$$\frac{x^2}{|x|} = \frac{|x|^*|x|}{|x|} = |x|$$
. It's basically the same as if it were $\frac{x^2}{x}$ --> we could reduce this fraction by x and we would get x , and $\frac{x^2}{x}$.

when x is positive, result is positive and when x is negative, result is negative. Now, |x| is the ratio of two positive values and the result can not be negative, so we can not get x, we should get |x| to guarantee that the result is positive.

OR:

$$x < 0... \text{ then } |x| = -x ... \frac{x^2}{|x|} = \frac{x^2}{-x} = -x < 1 ... x > -1;$$

$$x>0$$
 ... then $|x|=x$... $\frac{x^2}{|x|}=\frac{x^2}{x}=x<1$;

4

$$\int_{1}^{1} x \neq 0$$
 is $|x| < 1$?

$$|x| < 1$$
, $|x| < 1$, $|x| < 1$, $|x| < 1$, $|x| < 1$

(1) $x^2 < 1 - - 1 < x < 1$. Sufficient.

(2) $|x| < \frac{1}{x}$ --> since LHS (|x|) is an absolute value which is always non-negative then RHS (1/x), must be positive (as $|x| < \frac{1}{x}$), so $\frac{1}{x} > 0$ --> x > 0.

Now, if x>0 then |x|=x and we have: $x<\frac{1}{x}$ --> since x>0 then we can safely multiply both parts by it: $x^2<1$ --> -1< x<1, but as x>0, the final range is 0< x<1. Sufficient.

Answer D.

 \boldsymbol{X} cannot be negative. Refer to the solution above.

Also if x < 0 then we have $-x < \frac{1}{x}$ and now if we cross multiply by negative x then we should flip the sign: $-x^2 > 1$... $x^2 + 1 < 0$ which cannot be true for any real value of x (the sum of two positive value cannot be less than zero).

5

2. If y is an integer and y = |x| + x, is y = 0?

(1) x < 0

(2) v < 1

Notice that since y=|x|+x then y is never negative. If x>0 (so if x is positive) then y=x+x=2x and for $x\leq 0$ then (when x is negative or zero) then y=-x+x=0.

(1)
$$x < 0$$
 --> $y = |x| + x = -x + x = 0$. Sufficient.

(2) y < 1, as we concluded y is never negative, and we are given that y is an integer, hence y = 0. Sufficient.

Answer: D.

6

What does | 2b | equal?

(1) b^2-|b|-20=0. Solve quadratics for |b|: $(|b|)^2-|b|-20=0$... |b|=-4 or |b|=5 . Since absolute value cannot be negative then we have that |b|=5 and |2b|=10. Sufficient.

(2) |2b|=3b+25. Two cases:

If $b \le 0$ then we would have that $-2b = 3b + 25 \implies b = -5$. If b > 0 then we would have that $2b = 3b + 25 \implies b = -25$, but since we are considering the rangeo when b > 0 then discard this solution.

So, we have that b=-5, hence $\left|2b\right|=10$. Sufficient.

Answer: D.