M04 : Capteurs de grandeurs mécaniques

Louis Heitz et Vincent Brémaud

Sommaire

Rapport du jury	3
Bibliographie	3
Introduction	4
I Capteur de position : LVDT	4
II Banc Doppler	4
III Balance à jauge de contrainte	4
Conclusion	4

Le code couleur utilisé dans ce document est le suivant :

- \bullet \rightarrow Pour des élements de correction / des questions posées par le correcteur
- Pour les renvois vers la bibliographie
- Pour des remarques diverses des auteurs
- \triangle Pour des points particulièrement délicats, des erreurs à ne pas commettre
- Pour des liens cliquables

Rapports du jury

Bibliographie

- [1] Compte rendu de Armel et Fabien
- [2] Les capteurs
- [3] Les capteurs en instrumentation industrielle

Introduction

On va mesurer différentes grandeurs mécaniques : position, vitesse, contrainte. On va mettre en évidence les caractéristiques d'un capteur : sensibilité / résolution. Et également si ils sont justes (retrouve la bonne valeur) / fidèles (peu de dispersion) / exacts (les 2). Principe d'un capteur : on utilise une dépendance physique pour pouvoir mesurer facilement une grandeur d'intérêt. Parler de la linéarité d'un capteur.

I Capteur de position : LVDT

Étalonnage du capteur, non linéarité, loi physique : induction. Vérification de l'étalonnage en direct. Mesure de la position au réglet.

II Banc Doppler

Étalonnage du capteur, linéarité (la vitesse du son ne change pas selon la vitesse de l'objet), loi physique : l'effet Doppler.

Vérification de l'étalonnage en direct. Mesure de la vitesse avec les fourches optiques.

III Balance à jauge de contrainte

Étalonnage du capteur, linéarité (avec un petit miracle de la nature), loi physique : loi d'Ohm, variation d'une résistance avec une variation de longueur.

Vérification de l'étalonnage en direct. Mesure du poids avec une balance.

Conclusion

On a pu mesurer différents types de grandeurs mécaniques, les notions de métrologie reviennent à chaque fois et permettent de caractériser le capteur que l'on utilise avec la sensibilité et la résolution.