GPUnit

Daniel Bagnell Jason Economou Rajkumar Jayachandran Tim McJilton Gabriel Schwartz Andrew Sherman

Advisor: Prof. Jeremy Johnson Stakeholders: Prof. Steve McMillan Alfred Whitehead The Leiden Observatory

Overview

Introduction

Purpose

Purpose of GPUnit Target Audiences

Components and Features

User Interface

Experiment Editor Cluster Control Module Specification

Testing

Demo

Motivation

- ► Astrophysics researchers need to simulate star clusters and galaxies.
- **Every star pulls on all of the others:** $O\left(n^2\right)$ for the naive case.
- ► Stars evolve over time, mass changes.

Figure: N-Body Simulation: 1024 Stars

Astrophysical Multipurpose Software Environment (AMUSE)

Figure: AMUSE Architecture

State of AMUSE

- ► Currently used by researchers to run large-scale simulations.
- Scripts, diagnostics, logging are all written by hand.
- ► AMUSE API/programming knowledge is required to create experiments.

Purpose of GPUnit

- Ease the use of AMUSE
- Create/Design/Modify experiments
- ▶ Select, configure, swap out modules and initial conditions
- ► Store and restore progress of running experiments.

Target Audiences

- ► Physics Students
- Observational Astrophysicists
- ► Theoretical Astrophysicists

Features and Design

- ► Configurable experiments that can be saved and shared.
- Diagnostic tools that compute useful metrics.
- Storage of experiment state in case of crashes.
- ▶ Interface for custom diagnostics and code.

Features and Design

- Written in Python using the PyQt4 GUI toolkit.
- ► AMUSE is written in Python, improves interaction.
- Provides a display of cluster usage to aid in scheduling.

Experiment Editor

Cluster Control

Figure: Cluster View

Module Specification

⊗ ⊜ ® Module Editor			
Module Name	hermite0		
Description		ody integration module w dermite integration schei	
Domain			\$
Stopping Conditions	None	Collision	☐ Pair
	Escaper	✓ Timeout	☑ NumberOfSteps
	☑ OutOfBox	₽	
Class Name	Hermite		
Code Location	amuse/community/hermite0/interface.py		
	☑ Parallel Execution Support		

Figure: Module Editor

Tests

► Table of tests that pass.

Team Management

- ▶ Used Mercurial as our version control system.
 - Distributed, allows offline commits.
- Team met weekly.
 - Once to plan work, once to code.
- Bi-weekly advisor meetings.

Commit History

/home/hape/gpunit

Demo

▶ Demonstrate a simulation from start to finish here.

Questions

▶ Questions?