Codici Non Malleabili e Applicazioni

La De Cifris Incontra Roma

Prof. Daniele Venturi
Dipartimento di Informatica

Roma, 4 Ottobre 2018

Codici Non Malleabili e Applicazioni

La De Cifris Incontra Roma

Prof. Daniele Venturi
Dipartimento di Informatica

Roma, 4 Ottobre 2018

Cosa la Crittografia può fare in caso di Sabotaggio

La De Cifris Incontra Roma

<u>Prof. Daniele Venturi</u> Dipartimento di Informatica

Roma, 4 Ottobre 2018

Crittografia Moderna: Sicurezza Dimostrabile

- Definire obiettivi di sicurezza espliciti
 E.g., per la cifratura

 AES
- Progettare un crittosistema (e.g., RSA)
- Dimostrare la sicurezza (per riduzione)

Se una certa assunzione è vera (e.g., fattorizzare è difficile)

Il crittosistema è sicuro

Situazione io vinco-tu vinci

Crittosistemi a Scatola Nera

- L'attaccante può interagire con il sistema senza però poter guardare al suo interno
 - Possibilità di specificare input ed imparare gli output corrispondenti
 - Chiavi segrete completamente inaccessibili
 - L'implementazione di un crittosistema segue fedelmente la sua specifica

Attacchi Collaterali Passivi (a.k.a. Leakage)

- Attacchi passivi basati sulla misura di caratteristiche fisiche di un dispositivo crittografico a lavoro
 - Tempo necessario a compiere alcune operazioni
 - Potenza e campo magnetico emessi
 - Suono emesso dalla tastiera del computer o dalle componenti interne
- Tali attacchi sono pratici ed efficaci
 - In assenza di opportune contromisure, consentono di ricostruire l'intera chiave!!!

Manomissione (a.k.a. Tampering)

- Attacchi basati su fenomeni fisici
 - <u>Calore e radiazione infra-rossa:</u> Deviazioni di temperatura possono indurre inversione di bit
 - Attacchi ottici: La luce può essere usata per (re)settare singoli bit della memoria
 - <u>Correnti di Eddy:</u> <u>Settare/reset/invertire</u> singoli bit sfruttando campi magnetici
- Tali attacchi sono pratici ed efficaci
 - Ad esempio un singolo bit manomesso durante la computazione di una firma permette di fattorizzare facilmente il modulo RSA [BDL97]

Sabotaggio Furtivo di Algoritmi

- Implementazioni malevole di crittosistemi il cui output è polarizzato in modo da poter violare la sicurezza data una certa informazione ausiliaria
 - Seppur gli output prodotti appaiano corretti dal punto di vista dell'utente
- Rivelazioni di Edward Snowden: L'NSA ha indebolito alcuni crittosistemi deliberatamente, allo scopo di sorvegliare le masse
 - NIST Dual EC PRG, basato su parametri pubblici P, Q
 - La conoscenza di $d = \operatorname{dlog}_Q P$ consente di distinguere l'output del PRG da random

Che Cosa Può Fare la Crittografia?

- Crittografia resistente agli attacchi fisici
 - Modellare avversari in grado di manomettere ed ottenere informazioni parziali sulla memoria di un crittosistema al lavoro
 - Costruire crittosistemi con sicurezza dimostrabile anche in presenza di attacchi fisici
- Crittografia Post-Snowden
 - Modellare crittosistemi la cui implementazione è stata manomessa furtivamente da un attaccante
 - Costruire crittosistemi con sicurezza dimostrabile anche nel caso in cui l'implementazione di una data specifica crittografica non è fidata

Codici Non Malleabili [DPW10]

- Intuizione: Ottenere una qualche garanzia utile sul messaggio decodificato \widetilde{m} per classi generali ${\mathcal F}$
 - Correzione di errore: $\widetilde{m} = m$
 - Rilevazione di errore: $\widetilde{m}=m$, oppure accorgersi che \widetilde{c} è invalida
 - Non Malleabilità: $\widetilde{m} = m$, oppure \widetilde{m} indipendente da m
- ullet Proprietà più debole, ma ottenibile per classi ${\mathcal F}$ più grandi

Crittosistemi a Prova di Manomissione

- Problema: Progettare una firma digitale sicura in presenza di manomissione della memoria (rispetto una certa classe di attacchi \mathcal{F})
 - Attaccante può scegliere $f \in \mathcal{F}$ da applicare alla chiave segreta, ed osservare il relativo effetto sull'output
- Soluzione: Codificare la chiave con un codice non-malleabile (rispetto ad \mathcal{F})

- Decode(f(Encode(sk))) è (1) uguale ad sk, oppure (2) indipendente
 - Caso (1) ok per inforgiabilità, e caso (2) inutile per l'attaccante

12

Conclusioni e Prospettiva

- Codici non malleabili offrono soluzione generale rispetto al problema di manomissione della memoria
 - Ricerca focalizzata sulla costruzione di codici per famiglie ${\mathcal F}$ di interesse
 - Altre applicazioni: Crittografia non malleabile, ovvero progetto di crittosistemi resistenti contro attacchi attivi
- Sicurezza dimostrabile contro attacchi fisici e sabotaggio di algoritmi
 - Dovere morale della crittografia moderna [Rog15]: "I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work."
 - Area di ricerca piena di sfide aperte

Per approfondire:

http://danieleventuri.altervista.org/

