实验二

病毒尾区段寄生实验

病毒寄生的问题

- 如果将病毒直接粘贴的在PE文件后面,用x64dbg加载后, 在内存中没有看到粘结上的部分。
- 可见PE文件加载时,直接粘贴的代码并未获得PE加载器的 认可。
- 合理的猜想是、PE文件加载器应该根据某些字段来将文件 内容加载到内存
- 所以,一定有什么字段描述了有效的代码部分有多长,哪 些代码应该加载,而我们只是粘贴了代码,却没有修改相 关字段,所以没有被PE文件加载器加载到内存,寄生失败

PE描述文件大小的字段

```
typedef struct IMAGE SECTION HEADER {
           Name[IMAGE_SIZEOF_SHORT_NAME];
   BYTE
   union {
           DWORD PhysicalAddress;
           DWORD VirtualSize:
     Misc:
   DWORD
           VirtualAddress:
   DWORD SizeOfRawData:
   DWORD PointerToRawData:
   DWORD PointerToRelocations:
   DWORD PointerToLinenumbers:
   WORD NumberOfRelocations:
   WORD NumberOfLinenumbers:
   DWORD Characteristics:
  IMAGE SECTION HEADER, *PIMAGE SECTION HEADER;
```

- 1)区段表中每个区段头都对应一个节,其中描述了对应节的文件大小(SizeOfRawData)和加载到内存的大小(VirtualSize)
- 两者可能不同,文件大小小于内存大小时,将在内存中补0

每一个节都有一个对应的 结构ImageSectionHeader

VirtualSize表明本段加载到内存后的大小 即加载到内存的实际字节数(未对齐)

SizeOfRawData字段表明本节在文件中的大小(对齐后) 因此,必须是FileAlignment(在可选映像头中)的整数倍

PE描述文件大小的字段

在PE可选头中, SizeOflmage给出了整个程序包括所有头部加载到内存后的大小。其值应该是SectionAlignment的整数倍

ÓСµ½С++.exe	pFile	Data	Description	Value
MAAGE BOO HEADED	00000400		Decemption	Value
IMAGE_DOS_HEADER	00000108	010B	Magic	IMAGE_NT_OPTIONAL_HDR32_MAGIC
MS-DOS Stub Program	0000010A	0E	Major Linker Version	
- IMAGE_NT_HEADERS	0000010B	21	Minor Linker Version	
Signature	0000010C	00007000	Size of Code	
IMAGE_FILE_HEADER	00000110	00005000	Size of Initialized Data	
IMAGE_OPTIONAL_HEADER	00000114	00000000	Size of Uninitialized Data	
IMAGE_SECTION_HEADER .textbss	00000118	00011023	Address of Entry Point	
IMAGE_SECTION_HEADER .text	0000011C	00001000	Base of Code	
IMAGE_SECTION_HEADER .rdata	00000120	00001000	Base of Data	
IMAGE_SECTION_HEADER .data	00000124	00400000	Image Base	
IMAGE_SECTION_HEADER .idata	00000128	00001000	Section Alignment	
IMAGE_SECTION_HEADER .msvcjmc	0000012C	00000200	File Alignment	
IMAGE_SECTION_HEADER .00cfg	00000130	0006	Major O/S Version	
IMAGE_SECTION_HEADER .rsrc	00000132	0000	Minor O/S Version	
IMAGE_SECTION_HEADER .reloc	00000134	0000	Major Image Version	
SECTION .text	00000136	0000	Minor Image Version	
SECTION .rdata	00000138	0006	Major Subsystem Version	
SECTION .data	0000013A	0000	Minor Subsystem Version	
SECTION .idata	0000013C	00000000	Win32 Version Value	
SECTION .msvcjmc	00000140	00021000	Size of Image	
SECTION .00cfg	00000144	00000400	Size of Headers	
SECTION .rsrc	00000148	00000000	Checksum	
SECTION .reloc	0000014C	0003	Subsystem	IMAGE_SUBSYSTEM_WINDOWS_CUI
	0000014E	8140	DLL Characteristics	

回到可选映像头ImageOptionalHeader中观察: SizeOfImage给出了整个文件在内存中对齐后的大小 SectionAlignment是内存对齐的粒度 FileAlignment是文件对齐的粒度

⊩test.exeIMAGE_DOS_HEADERMS-DOS Stub ProgramIMAGE_NT_HEADERSSignatureIMAGE_FILE_HEADERIMAGE_OPTIONAL_HEADER
IMAGE_SECTION_HEADER .text IMAGE_SECTION_HEADER .rdata IMAGE_SECTION_HEADER .data IMAGE_SECTION_HEADER .idata IMAGE_SECTION_HEADER .reloc SECTION .rdata
⊕ SECTION .rdata □ SECTION .data ⊕ SECTION .idata □ SECTION .reloc □ IMAGE_BASE_RELOCATION □ IMAGE_DEBUG_TYPE_CODEVIEW

pFile	Data	Description
000000F0	010B	Magic
000000F2	06	Major Linker Version
000000F3	00	Minor Linker Version
000000F4	00022000	Size of Code
000000F8	0000A000	Size of Initialized Data
000000FC	00000000	Size of Uninitialized Data
00000100	00001690	Address of Entry Point
00000104	00001000	Base of Code
00000108	00001000	Base of Data
00000100	00300000	Image Base
00000110	00001000	Section Alignment
00000110 00000114	00001000 00001000	Section Alignment File Alignment
		ū
00000114	00001000	File Alignment
00000114 00000118	00001000 0004	File Alignment Major O/S Version
00000114 00000118 0000011A	00001000 0004 0000	File Alignment Major O/S Version Minor O/S Version
00000114 00000118 0000011A 0000011C	00001000 0004 0000 0000	File Alignment Major O/S Version Minor O/S Version Major Image Version
00000114 00000118 0000011A 0000011C 0000011E	00001000 0004 0000 0000 0000	File Alignment Major O/S Version Minor O/S Version Major Image Version Minor Image Version
00000114 00000118 0000011A 0000011C 0000011E 00000120	00001000 0004 0000 0000 0000 0004	File Alignment Major O/S Version Minor O/S Version Major Image Version Minor Image Version Major Subsystem Version
00000114 00000118 0000011A 0000011C 0000011E 00000120 00000122	00001000 0004 0000 0000 0000 0004 0000	File Alignment Major O/S Version Minor O/S Version Major Image Version Minor Image Version Major Subsystem Version Minor Subsystem Version

小结

- 1)区段表中每个区段头都对应一个节,其中描述了对应节的文件大小(SizeOfRawData)和加载到内存的大小(VirtualSize)
- 2) 在PE可选头中, SizeOfImage给出了整个程序包括所有头部 加载到内存后的大小。其值应该是SectionAlignment的整数倍
- PE文件总大小和每个节的大小都有参数

病毒寄生在PE文件尾区段

本实验在PE文件最后一个区段末尾添加指令,并检验其是否被加载到内存。

本实验的意义:为病毒寄生摸索关键技术点。

实验步骤:

- 1. 如果该区段具有足够空洞,我们就在文件中将指令加到该节的空洞中, 然后修改节表中的VirtualSize字段(未对齐的内存大小)为修改后的大小。
 而对齐后的文件大小SizeOfRawData保持不变。
- 2. 如果该节空洞不够,我们还需要在末尾增加一个新节,这就修改节的 VirtualSize, SizeOfRawData字段,以及整个文件的SizeOfImage字段

实验

寄生在PE文件最后节的空洞

寄生后文件长度不变

1. 观察最后一个节是否具有空洞

打开一个PE文件,判断其最后一个节是否具有空洞文件大小

最后一个节.reloc

对齐大小SizeOfRawData = 3800

实际大小VirtualSize = 36A0

VirtualSize < SizeOfRawData, 说明reloc节具有空洞

∃- cloudmusic.exe
IMAGE_DOS_HEADER
MS-DOS Stub Program
IMAGE_SECTION_HEADER .text
IMAGE_SECTION_HEADER .rdata
IMAGE_SECTION_HEADER .data
IMAGE_SECTION_HEADER .tls
IMAGE_SECTION_HEADER .rsrc
IMAGE_SECTION_HEADER .reloc
SECTION .text

_				
I	RVA	Data	Description	Value
I	000002C8	2E 72 65 6C	Name	.reloc
I	000002CC	6F 63 00 00		
l	000002D0	000036A0	Virtual Size	Ť
I	000002D4	00081000	RVA	_ <u> </u>
l	000002D8	00003800	Size of Raw Data	
I	000002DC	00079000	Pointer to Raw Data	
I	000002E0	00000000	Pointer to Relocations	
I	000002E4	00000000	Pointer to Line Numbers	
I	000002E8	0000	Number of Relocations	
I	000002EA	0000	Number of Line Numbers	
1				

2. 在文件中定位寄生位置

reloc节的空洞大小是3800-36A0=160,现在我们准备在空洞插入4字节的机器码eb 02 90 90,4字节,先来定位文件中的寄生位置:

寄生位置的RVA是36A0,将其转化为文件位置为:

79000 (PointerToRawData) + 36A0 (VirtualSize) = 7C6A0

⊟- cloudmusic.exe	RVA	Data	Description
IMAGE_DOS_HEADER	000002C8	2E 72 65 6C	Name
MS-DOS Stub Program	000002CC	6F 63 00 00	
	000002D0	000036A0	Virtual Size
IMAGE_SECTION_HEADER .text	000002D4	00081000	RVA
IMAGE_SECTION_HEADER .rdata	000002D8	00003800	Size of Raw Data
IMAGE_SECTION_HEADER .data	000002DC	00079000	Pointer to Raw Data
IMAGE_SECTION_HEADER .tls	000002E0	00000000	Pointer to Relocations
IMAGE_SECTION_HEADER .rsrc	000002E4	00000000	Pointer to Line Numbers
IMAGE_SECTION_HEADER .reloc	000002E8	0000	Number of Relocations
SECTION .text	000002EA	0000	Number of Line Numbers
- SECTION .rdata	000002EC	42000040	Characteristics

3. 在文件中填入寄生代码

用UE打开文件,Ctrl+G定位7C6A0,填入机器码

cloudmusic.ex	<u> </u>															
0007c690h:																
0007c6a0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0007c6b0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0007c6c0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00
0007c6d0h:	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00

4. 修改PE文件的相关字段

- 有哪些字段需要修改呢?首先,最后一个节的实际大小(VirtualSize) 肯定需要修改,要由原值36A0修改为36A4
- 用pFile查看VirtualSize字段在文件偏移2D0处,用UE进行修改

由于没有增加新节,所以我们先不用修改SizeOfRawData以及SizeOfImage字段

5. 修改入口点RVA 验证寄生代码被加载到内存

- 在可选头中找到入口点RVA字段的文件偏移
- 用UE把其值改为寄生代码的RVA
 - = 81000 (reloc节起始RVA) + 36A0 = 846A0

00000130h: EE D9 02 00 00000140h: 00 10 00 00 00000150h: 05 00 01 00 00000160h: D9 F7 08 00

CPU - 主线程, 模块 - cloudmus						
地址	HEX 数据	反汇编				
006D46A0	√cEB 02	JMP SHORT cloudmus. 006D46A4				
006D46A2	90	NOP				
006D46A3	90	NOP				
006D46A4	₩ 0000	ADD BYTE PTR DS: [EAX], AL				
006D46A6	0000	ADD BYTE PTR DS: [EAX], AL				
006D46A8	0000	ADD BYTE PTR DS: [EAX], AL				
006D46AA	0000	ADD BYTE PTR DS: [EAX], AL				
006D46AC	0000	ADD BYTE PTR DS: [EAX], AL				
006D46AE	0000	ADD BYTE PTR DS: [EAX], AL				
006D46B0	0000	ADD BYTE PTR DS: [EAX], AL				
006D46B2	0000	ADD BYTE PTR DS: [EAX], AL				

实验要求:选择一个exe文件进行以上的寄生实验

建议选用: C:\Windows\System32\notepad.exe

FTP文件目录下有