Relazione Progetto OCAML

Niccolò Campitelli - 583283

SCELTE IMPLEMENTATIVE

E' stato introdotto il tipo di elementi omogenei accettati dal singolo insieme:

```
type set_t = SET_INT | SET_BOOL | SET_STRING
```

Sono stati introdotti a Run-Time i tipi:

```
type \ evT = | String \ of \ string \ | Set \ of \ (evT \ list) * set_t
```

Il tipo Set è quindi implementato a tempo di esecuzione come una coppia di elementi:

- Una lista di elementi evT che rappresenta astrattamente un insieme senza duplicati;
- Un'istanza di set_t che stabilisce l'unico tipo accettato nella lista di elementi.

La sintassi del linguaggio è stata estesa introducendo i due costruttori per il tipo Set:

```
type \ exp = | Empty \ of \ set_t | Singleton \ of \ exp * set_t
```

E il costruttore per il tipo *String*:

```
type exp = | CstString of string
```

Oltre alle nuove operazioni richieste per il tipo Set, sono state introdotte o estese nella sintassi:

- la divisione (**Div**) e il modulo (**Mod**) tra coppie di interi;
- la concatenazione (*Concat*) tra coppie di stringhe;
- il maggiore (Major) tra coppie di interi, booleani e stringhe;
- l'uguaglianza (**Eq**) tra coppie di interi, booleani, stringhe e insiemi.

Per un'implementazione più snella delle operazioni sui *Set* è stata utilizzata la libreria *List. mem.*Per una maggiore comprensione personale sono state rinominate alcune espressioni e tipi dato.

Le regole operazionali presentate nelle pagine seguenti astraggono dalla lista di elementi in *Set* trattandola come un insieme. Inoltre sono esplicitati i tipi a Run-Time e gli esiti del typechecker.

La batteria di test è presente in fondo al file dell'interprete.

TYPECHECKER STATICO

Il typechecker presente nella versione base dell'interprete è stato esteso per la verifica dei tipi **String, Set, Closure** ed è invocato rispettivamente con le stringhe "string", "set", "fun".

E' stata inoltre introdotta la funzione $set_typecheck$ di supporto al typechecker che prende come argomenti un set_t e un evT. Restituisce $true\ SSE$ l'elemento di tipo evT è ospitabile nell'insieme di tipo set_t (omogeneità rispettata).

REGOLE OPERAZIONALI - TIPO SET

$$\frac{(t:set_t)}{(env \triangleright \mathbf{Empty}(t)) \Rightarrow \operatorname{Set}(\emptyset, t)} \frac{(env \triangleright e \Rightarrow v), \ (t:set_t), \ (set_typecheck(t, v) = true)}{(env \triangleright \mathbf{Singleton}(e, t)) \Rightarrow \operatorname{Set}(\{v\}, t)}$$

REGOLE OPERAZIONALI - OPERAZIONI SU SET

$$(env \triangleright e1 \Rightarrow s)$$
, $(env \triangleright e2 \Rightarrow p)$, $(typecheck("set", s) = true)$, $(typecheck("fun", p) = true)$, $(s = Set(l, t))$, $(p = Closure(par, body, env'))$, $(\forall x \in l \Rightarrow (env'[x/par] \triangleright corpo \Rightarrow ris) \land (typecheck("bool", ris) = true))$ $(env \triangleright ForAll(e1, e2)) \Rightarrow Bool(\forall x \Rightarrow (ris = Bool(true)))$

$$(env \triangleright e1 \Rightarrow s)$$
, $(env \triangleright e2 \Rightarrow p)$, $(typecheck("set", s) = true)$, $(typecheck("fun", p) = true)$, $(s = Set(l, t))$, $(p = Closure(par, body, env'))$, $(\forall x \in l \Rightarrow (env'[x/par] \triangleright corpo \Rightarrow ris) \land (typecheck("bool", ris) = true))$ $(env \triangleright Exist(e1, e2)) \Rightarrow Bool(\exists x . (ris = Bool(true)))$

La condizione del quantificatore universale è in realtà limitata ai primi (k-1) valori controllati dell'insieme, con $k \mid ris = Bool(true)$ primo valore incontrato che rende vera l'Exist.

$$(env \triangleright e1 \Rightarrow s)$$
, $(env \triangleright e2 \Rightarrow p)$, $(typecheck("set", s) = true)$, $(typecheck("fun", p) = true)$, $(s = Set(l, t))$, $(p = Closure(par, body, env'))$, $(\forall x \in l \Rightarrow (env'[x/par] \triangleright corpo \Rightarrow ris) \land (typecheck("bool", ris) = true))$ $(env \triangleright Filter(e1, e2)) \Rightarrow Set(\{x \mid ris = Bool(true)\}, t)$

$$(env \triangleright e1 \Rightarrow s)$$
, $(env \triangleright e2 \Rightarrow p)$, $(typecheck("set",s) = true)$, $(typecheck("fun",p) = true)$, $(s = Set(l,t))$, $(p = Closure(par,body,env'))$, $(\forall x \in l \Rightarrow (env'[x/par] \triangleright corpo \Rightarrow ris) \land (set_typecheck(t,ris) = true))$ $(env \triangleright \mathbf{Map}(e1,e2)) \Rightarrow Set(\{ris\},t)$

Map restituisce solo insiemi con lo stesso tipo di quello preso come argomento.

$$(env \triangleright e1 \Rightarrow s1)$$
, $(env \triangleright e2 \Rightarrow s2)$, $(typecheck("set", s1) = true)$, $(typecheck("set", s2) = true)$, $(s1 = Set(l1, t1))$, $(s2 = Set(l2, t2))$, $(t1 = t2)$
 $(env \triangleright Eq(e1, e2)) \Rightarrow Bool(l1 = l2)$

Regola operazionale della Eq circoscritta al caso dei Set (opera anche con Int/Bool/String).