Simulating Study Data

Simulating data to compute EVSI requires:

• S simulations for each of the P model inputs of a health economic decision model (θ) .

Simulated Model Inputs

$\theta_1^{(1)}$	$\theta_2^{(1)}$		$ heta_{\mathcal{P}}^{(1)}$
$\theta_1^{(2)}$	$\theta_2^{(2)}$		$\theta_{\mathcal{P}}^{(2)}$
$\theta_1^{(3)}$	$\theta_2^{(3)}$		$\theta_{\mathcal{P}}^{(3)}$
$\theta_1^{(4)}$	$\theta_2^{(4)}$		$\theta_{\mathcal{P}}^{(4)}$
:	:	٠	:
$\theta_1^{(\mathcal{S})}$	$\theta_2^{(S)}$		$ heta_{\mathcal{P}}^{(\mathcal{S})}$

Simulating Study Data

Simulating data to compute EVSI requires:

- S simulations for each of the P model inputs of a health economic decision model (θ) .
- 2 A data-generating mechanism that depends on:
 - ► The model inputs.
 - ▶ Information about individual-level variability.
 - The proposed study design.

Simulated Model Inputs

$\theta_1^{(1)}$	$\theta_2^{(1)}$		$ heta_{\mathcal{P}}^{(1)}$
$\theta_1^{(2)}$	$\theta_2^{(2)}$		$\theta_{\mathcal{P}}^{(2)}$
$\theta_1^{(3)}$	$\theta_2^{(3)}$		$\theta_{\mathcal{P}}^{(3)}$
$\theta_1^{(4)}$	$\theta_2^{(4)}$		$\theta_{\mathcal{P}}^{(4)}$
:	:	٠	:
$\theta_1^{(\mathcal{S})}$	$\theta_2^{(S)}$		$ heta_{\mathcal{P}}^{(\mathcal{S})}$

Individual Level Uncertainty

Uncertainty in our knowledge of the model input

Variation in the individual outcomes

Individual Level Uncertainty

Uncertainty in our knowledge of the model input

Variation in the individual outcomes

Individual Level Uncertainty

Uncertainty in our knowledge of the model input

Variation in the individual outcomes

General Purpose Algorithm

- We design studies of M participants, collecting O different outcomes.
- Study data is at the individual level, which generates $\mathcal{O} \times \mathcal{M}$ data points.
- Each row of model inputs generates data from one study.

General Purpose Algorithm

- We design studies of M participants, collecting O different outcomes.
- Study data is at the individual level, which generates $\mathcal{O} \times \mathcal{M}$ data points.
- Each row of model inputs generates data from one study.
- Data summaries, e.g., mean, can sometimes be easily simulated to simplifying the data simulation.

Model Inputs		Simulated datasets			
$ heta_1^{(1)}$		$ heta_{\mathcal{P}}^{(1)}$	$x_1^{(1)}$		$x_{\mathcal{O} \times \mathcal{M}}^{(1)}$
$\theta_1^{(2)}$		$ heta_{\mathcal{P}}^{(2)}$	$x_1^{(2)}$		$x_{\mathcal{O} \times \mathcal{M}}^{(2)}$
$\theta_1^{(3)}$		$\theta_{\mathcal{P}}^{(3)}$	$x_1^{(3)}$		$x_{\mathcal{O} \times \mathcal{M}}^{(3)}$
$ heta_1^{(4)}$		$ heta_{\mathcal{P}}^{(4)}$	$x_1^{(4)}$		$x_{\mathcal{O}\times\mathcal{M}}^{(4)}$
:	٠	:	:	٠	:
$\theta_1^{(\mathcal{S})}$		$\theta_{\mathcal{P}}^{(\mathcal{S})}$	$x_1^{(\mathcal{S})}$		$x_{\mathcal{O} \times \mathcal{M}}^{(\mathcal{S})}$

Study records whether participants have a stroke and θ_1 the probability of a stroke.

- Binary data either observed or not.
- Bernoulli distribution with parameter θ_1 .
- The number of participants with a stroke can be simulated with a Binomial distribution with parameters θ_1 and \mathcal{M} .


```
8 ## Generating Binary Outcome Data
10
11 - #### Example 1 ####
12 S <- 1000 # Number of simulated datasets
13 M <- 100 # Number of individuals enrolled in the study
14 x <- matrix(NA, nrow = S, ncol = M) # Set up empty matrix
15 theta_1 <- runif(S, 0.1, 0.2) # Distribution for theta_1
16 \star for (s in 1:S) { # Simulate s = 1,..., S studies
     p <- theta_1[s] # Set the Bernoulli parameter to the s-th value
17
18
     x[s, ] \leftarrow rbinom(n = M, size = 1, prob = p) # Sample M binary a
19 - 3
20
21 - #### Example 2 ####
22 M <- 100
23 Wx <- numeric(length = S) # Set up empty vector
24 \checkmark for (s in 1:S) { # Simulate s = 1,...,S studies
25
     p <- theta_1[s] # Set the Binomial parameter to the s-th value
     Wx[s] \leftarrow rbinom(n = 1, size = M, prob = p) # Sample count of ad
26
27 - }
28
```

Study records the systolic blood pressure for participants and θ_2 is the mean systolic blood pressure in the population.

- Continuous data blood pressure can take "any" value.
- Normal distribution with mean θ_2 and variance 80.
- The sample mean blood pressure can be sampled from a normal distribution with mean θ_2 and variance $\frac{80}{M}$.


```
30 ## Generating Normally Distributed Continuous Data
32
33 - #### Example 3 ####
34 S <- 1000
  M < - 100;
35
36 x \leftarrow matrix(nrow = S, ncol = M) # Set up empty matrix
  theta_2 <- runif(S, 120, 130) # Hypothetical distribution for theta_2
   v <- 80
38
39 \cdot for (s in 1:S)  { # Simulate s = 1,..., S studies
  mu <- theta_2[s] # Set the Normal mean parameter to the s-th value of
40
41 x[s, ] \leftarrow rnorm(n = M, mean = mu, sd = sqrt(v)) # Sample M blood press
42 - }
43
44 * #### Example 4 ####
45 M <- 100
46 V <- 80
47 Wx <- numeric(length = S) # Set up empty vector
48 	imes for (s in 1:S) { # Simulate s = 1,..., S studies}
49
     mu <- theta_2[s] # Set the Normal mean parameter to the s-th value of
    Wx[s] \leftarrow rnorm(n = 1, mean = mu, sd = sqrt(v / M)) \# Sample study mean
50
51 ^ }
```

Generating Multivariate Data

- So far, we've only generated data for a single outcome, e.g., $\mathcal{O}=1$.
- We can add univariate simulations together to generate multivariate data.
- We need to consider if data are correlated.
- We can reorder the data to give a specific correlation.


```
## Dependent Multivariate Data Simulation
126
127 - #### Example 8 ####
   library(SimJoint) # Package containing function to reorder data
128
129
   S <- 1000
130
   0 <- 2
131 M <- 100
132
    correlation \leftarrow matrix(c(1, -0.2, -0.2, 1), nrow = 2) # Specify the correlation matrix
133 X \leftarrow array(dim = c(M, O, S)) # Set up empty array
134 - for (s in 1:S) { # Simulate s = 1....S studies
     p <- theta_1[s] # Set the Bernoulli parameter to the s-th value of theta_1
135
136
      r <- -log(1 - theta 3[s]) # Derive rate from s-th value of the transition probability
      x[.1.5] < -rbinom(n = M. size = 1. prob = p) # Sample M binary adverse outcomes
137
      x[.2.s] < -rexp(n = M. rate = r) # Sample M times-to-progression
138
139
      x[.,s] \leftarrow postSimOpt(x[.,s],
140
                              correlation) $X # Reorder the columns so they are correlated
141 - 3
142
     x \leftarrow \text{round}(x, 14) # The postSimOpt function saves the value up to the computers level
143
     # of accuracy, this means that the Os for the binary outcomes are not saved properly.
144
     # By rounding the data, we can preserve the Os.
```

Setting 3

Study is a randomised controlled trial randomized control trial that will enrol ${\cal M}$ patients, randomised 1:1 to either the standard care or a novel treatment, and records whether the participants experience a stroke. This study updates information on θ_7 , the log-odds ratio of experiencing a stroke on treatment.

- Binary data for outcome.
- Data must be generated conditional on θ_8 , the baseline risk of a stroke.
- Must also simulate whether the participant received treatment or not.
- Data summary cannot be generated directly.

- Simulate the treatment $T_i \sim Bin(1, 0.5)$.
- ② Calculate the individual-level probability $p_i = logit(logit^{-1}(\theta_8) + T_i\theta_7).$
- Simulate the outcome $O_i \sim Bin(1, p_i)$.

```
#### Example 10 ####
library(boot) # Package for logit and inv.logit
S <- 1000
M < -100: 0 < -2
theta_7 <- rnorm(5, 1.2, 0.1) # Hypothetical distribution for log odds ratio
theta_8 <- runif(S, 0.2, 0.3) # Hypothetical distribution for baseline risk
x <- arrav(dim = c(M, 0, S)) # Set up empty array
Wx <- numeric(length = S) # Set up empty vector for simulated summary statistic
for (s in 1:S) { # Simulate s = 1,...,S studies
 # Sample M treatment indicators
 x[, 1, s] \leftarrow rbinom(n = M, size = 1, p = 0.5)
  # Calculate s-th baseline log odds
  baseline.logodds <- logit(theta_8[s])</pre>
 # Calculate odds for treated group from baseline log odds and the s-th log odds ratio
 individual.logodds <- baseline.logodds + theta_7[s] * x[ , 1, s]
 # Calculate probability from log odds
 individual.prob <- inv.logit(individual.logodds)
 # Sample M binary outcomes
 x[.2.s] \leftarrow rbinom(n = M. size = 1. prob = individual.prob)
  # Create a dataframe with the data
  data.complete <- data.frame(x[, , s])</pre>
  names(data.complete) <- c("Treatment", "Outcome")</pre>
  # Generalised linear model to compute odds ratio for the s-th dataset
  Wx[s] <- glm(Outcome ~ Treatment, data = data.complete, family = "binomial")$coef[2]</pre>
```

Setting 4: Missingness

Recall Example 1: Study records whether participants have a stroke and θ_1 the probability of a stroke. We now assume that 20% of data will be missing.

- We simulate a "missingness indicator": 1 = missing data, 0 = data observed.
- ullet Bernoulli distribution with parameter $heta_1$
- Data summary cannot be generated directly.


```
205 ## Missingness
207
208 - #### Example 11 ####
209 S <- 1000; theta_2 <- runif(S, 120, 130) # Hypothetical distribution for theta
210
  M <- 100: v <- 80
211
   x <- matrix(nrow = S, ncol = M) # Set up empty matrices
212 \rightarrow for (s in 1:S) { # Simulate s = 1,..., S studies
213
     mu <- theta 2 st # Set the Normal mean parameter to the s-th value of theta
    214
    missing <- rbinom(n = M. size = 1. prob = 0.2) # Sample missingness indicate
215
     x[s, which(missing == 1)] <- NA # Knock out the missing observations
216
```