Inter-Annotator Agreement

Cohen's Kappa (κ) Fleiss' Kappa (κ)

Evaluating Annotations

Inter-Annotator Agreement (IAA) shows:

- How clear your guidelines are
- How uniformly the annotators understood it
- How reproducible the annotation task is

A high IAA doesn't lead to the high performance of a machine learning algorithm

But a low IAA is improbable to produce high performing ML.

Accuracy as IAA

Where do you see more (trustworthy) agreement?

		E	3
		positive	negative
Α	positive	4	1
7	negative	2	43

		I	3		
		positive negative			
Α	positive	25	1		
	negative	2	22		

1

2

Accuracy as IAA

The same accuracy but a significant difference in chance agreement

Where do you see more (trustworthy) agreement?

	47		0.12	0.88		47		0.54	0.46	
C	.10	50	positive	negative		0.52	50	positive	negative	
	Α	positive	4	1	5	A	positive	25	1	26
		negative	2	43	45		negative	2	22	24
			6	44	0.9400			27	23	0.9400
C	.90					0.48				

 $.90 \times .88 + .10 \times .12 = .80*$

 $.48 \times .46 + .52 \times .54 = .50*$

*Numbers are rounded

F1 score as IAA

The same F1 score but a significant difference in chance agreement

 $.13 \times .14 + .87 \times .87 = .77$

197				
	200	positive	negative	
A	positive	25	1	0.9615
	negative	2	172	
		0.9259		0.9434

 $.48 \times .46 + .52 \times .54 = .50$

47		E	Recall	
	50	positive negative		Mecan
A	positive	25	1	0.9615
	negative	2	22	
		0.9259		0.9434

Precision

F1

IAA measures: κ Kappa

Accuracy and F1 score don't take into account expected chance agreements that are likely to occur when people annotate texts

The measures taking expected chance agreement into account:

- \circ Cohen's κ : two annotators annotating each subject with a category
- \circ Fleiss' κ : each subject was annotated n times with a category

Observed agreement
$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$
 Chance agreement

Observed agreement

$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$

Chance agreement

Observed agreement

$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$

Chance agreement

Idea behind κ measures (2)

Example

250 movie reviews

Annotated by two coders:

Ann and Bob

With three categories:

- Positive
- Neutral
- Negative

*The errata: https://www.oreilly.com/catalog/errata.csp?isbn=0636920020578

Cohen's κ : calculate \boldsymbol{p}_o

Total items with annot. agreement

Total items

144			В			~4	
	250	positive	neutral	negative			
	positive	54	28	3			
Α	neutral	31	18	23		$ p_o $	
	negative	0	21	72			
					0.5760		

Accuracy: ratio of agreed annotations and total items

Cohen's κ : calculate \boldsymbol{p}_c

Calculate distribution of categories per annotator

144			В			85/250		
	250	positive	ositive neutral negative					
	positive	54	28	3	85	0.3400		
Α	neutral	31	18	23	72	0.2880		
	negative	0	21	72	93	0.3720		
		85	67	98	0.5760			
		0.3400	0.2680	0.3920				

Cohen's κ : calculate \boldsymbol{p}_c

Calculate distribution of categories per annotator

Calculate chance agreement from the distributions

144			В				0.34	1 x 0.34
	250	positive	neutral	negative				
	positive	54	28	3	85	0.3400	0.1156	
Α	neutral	31	18	23	72	0.2880	0.0772	\sum
	negative	0	21	72	93	0.3720	0.1458	
		85	67	98	0.5760		0.3386	
		0.3400	0.2680	0.3920				$\neg p_c$

Cohen's κ : calculate

$$A_{m} = \sum_{i=1}^{k} n_{mi}$$
 $B_{m} = \sum_{i=1}^{k} n_{im}$ $p_{m}^{X} = \frac{X_{m}}{N}$

		В		
Α				

	E	3		
	positive	negative		
positive	3	2		
negative	1	4		

$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$

7		E	3			
	10	positive	negative			
	positive	3	2	5	0.50	0.20
A	negative	1	4	5	0.50	0.30
		4	6	0.70	0.50	0.50
		0.40	0.60	0.20	0.40	

Cohen's κ vs Accuracy & F-score

Cohen's κ Accuracy

F1 score

Ī		T		— Accurac	
.694			В		
.05-1			positive	negative	
.727		positive	4	1	
	A	negativ e	2	43	

CV	. n. c	940			•
cy: 0.940				.880	
			positive	negative	
		positive	25	1	
	Α	negativ e	2	22	.943

			025	
		positiv e negative		.935
	positive	25	1	025
A	negativ e	2	172	.985

Cohen's

$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$

```
N, k = M.shape # N is # of items, k is # of categories
n annotators = np.sum(M[0, :]) # # of annotators
tot annotations = N * n annotators # the total # of annotations
# observed agreement
p = (np.sum(M * M, axis=1) - n annotators) / (n annotators * (n annotators - 1))
P \circ = np.sum(P) / N \# add all observed agreement
# chance agreement
p = np.sum(M, axis=0) / tot annotations # the distribution of each category
P = np.sum(p * p) # average chance agreement
k = (P \circ - P e) / (1 - P e)
```

Fleiss' x

Cohen's

Fleiss'

$$\kappa \equiv \frac{\overline{\boldsymbol{P}}_o - \overline{\boldsymbol{P}}_c}{1 - \overline{\boldsymbol{P}}_c}$$

$$\kappa \equiv \frac{A_o - A_c}{1 - A_c}$$

Fleiss' κ

Observed agreement

$$\kappa \equiv \frac{\overline{P}_o - \overline{P}_c}{1 - \overline{P}_c}$$

Chance agreement

Example

5 movie reviews

Annotated by 250 coders

With three categories:

- Positive
- Neutral
- Negative

Cohen's κ

What if an item is annotated by more than 2 annotators?

Fleiss' κ : compute \overline{P}_c

0 + * 6 - ÷ =

Total annotations

1250	Positive	Neutral	Negative	
Review 1	85	72	93	No info per
Review 2	85	67	98	annotator
Review 3	68	99	83	
Review 4	88	88	74	
Review 5	58	120	72 ₀	$3072^2 + 0.3568^2 + 0.3360^2$
	384	446	420	
P_c	0.3072	0.3568	0.3360	0.3346 P _c

Distribution of categories

Fleiss' κ : compute \overline{P}_o

1250	Positive	Neutral	Negative		P_o
Review 1	85	72	93	250	0.3343
Review 2	85	67	98		
Review 3	68	99	83		
Review 4	88	88	74	85 × 84 +	$72 \times 71 + 9$
Review 5	58	120	72	2	50 × 249
	384	446	420		
P_c	0.3072	0.3568	0.3360	_	$72^2 + 93^2 - 2$
				250	$0 \times 250 - 250$

Fleiss' κ : compute \overline{P}_o

1250	Positive	Neutral	Negative		P_o
Review 1	85	72	93	250	0.3343
Review 2	85	67	98	250	0.3384
Review 3	68	99	83	250	0.3384
Review 4	88	88	74	250	0.3328
Review 5	58	120	72	250	0.3646
	384	446	420		0.3417
P_c	0.3072	0.3568	0.3360	0.3346	

 $\frac{\sum}{5}$

Fleiss' κ : compute $\kappa \equiv \frac{\overline{P}_o - \overline{P}_c}{1 - \overline{P}_c}$

1250	Positive	Neutral	Negative		P_o
Review 1	85	72	93	250	0.3343
Review 2	85	67	98	250	0.3384
Review 3	68	99	83	250	0.3384
Review 4	88	88	\overline{P}_{o} -	$-\overline{P}_c$	0.3328
Review 5	58	120	12	750	0.3646
	384	446	\overline{P}_{c} 20	0.0071	0.3417
P_c	0.3072	0.3568	0.3360	0.3346	0.0107

Fleiss' κ for 2 coders

Scott's π

		В		
		positive	negative	
_	positive	3	2	
A	negative	1	4	

Fleiss' κ for 2 coders

		В		
		positive	negative	
A	positive	3	2	
	negative	1	4	

20	Pos.	Neg.		
Review 1	2	0	2	1
Review 2	2	0	2	1
Review 3	2	0	2	1
Review 4	1	1	2	0
Review 5	1	1	2	0
Review 6	0	2	2	1
Review 7	0	2	2	1
Review 8	0	2	2	1
Review 9	0	2	2	1
Review 10	1	1	2	0
	9	11	0.1950	0.70
	0.45	0.55	0.5050	0.3939

```
for an1, an2 in zip(ann1, ann2):
   if an1 == an2:
       count += 1
A = count / len(ann1) # observed agreement A (Po)
uniq = set(ann1 + ann2)
E = 0 # expected agreement E (Pe)
for item in uniq:
   cnt1 = ann1.count(item)
   cnt2 = ann2.count(item)
   count = ((cnt1 / len(ann1)) * (cnt2 / len(ann2)))
  E += count
k = (A - E) / (1 - E)
```

Cohen's κ vs Fleiss' κ

2 annotators

Each annotator annotates every item

Table: confusion matrix

- Annotation counts of Annotator 1
- Annotation counts of Annotator 2

X annotators

Every item is not necessarily annotated by each annotator

Table: annotation counts per items:

- •Items
- Annotation counts per item

Fleiss' κ is an extension of Scott's π for two coders (not Cohen's κ) $\stackrel{{\scriptstyle (1)}}{\smile}$

Cohen's κ is more informative than Scott's π due to the way the chance agreement is calculated

Interpreting κ coefficients

Values	Agreement level	* By no mea	ns universally accepted
< 0	Poor		The number of categories
0.01 - 0.20	Slight		The number of annotators
0.21 - 0.40	Fair	Part-of-speech tagging	Annotation task
0.41 - 0.61	Moderate	VS Semantic role labelling	
0.61 - 0.80	Substantial		
0.81 - 1.00	Almost perfec	t	Compare κ coefficients of related tasks
1	perfect		of related tasks

^{*}Landis, J.R.; Koch, G.G. (1977). "The measurement of observer agreement for categorical data". Biometrics. 33 (1)

Adjudication 💒

Prerequisite: being happy with IAA

Deliverable: gold standard dataset

Who: those who helped create the guidelines

Tool: adjudication software

Time: ~ annotation time per annotator

How: break up the adjud. task into layers

Caution: same decision → correct

Advice: IAA for more than one adjudicator

Hire new

After annotation, rate IAA with:

- Cohen's κ
- Fleiss' κ

Most common in computational linguistics

Calculating κ is not always straightforward

Text extent annotations

Possible revisions (via the MAMA cycle) for satisfactory IAA

Interpreting IAA scores isn't an exact science

High IAA means the task is likely to be reproducible

Not necessarily suitable for feeding ML algorithms

After high IAA scores, set the annotators loose on the full data

Adjudicate disagreements (use IAA score for adjudicators)