Recitation #15: Infinite Series, Divergence and **Integral Tests**

Problem 1 Suppose $\{a_n\}_{n\geq 1}$ is a sequence and $\sum_{n=1}^{\infty} a_n$ converges to L>0. Let $s_n=\sum_{k=1}^n a_k$. Circle all of the statements that MUST be true.

$$A. \lim_{n \to \infty} a_n = L$$

$$B. \lim_{n \to \infty} a_n = 0$$

$$C. \lim_{n\to\infty} s_n = 0$$

$$D. \lim_{n \to \infty} s_n = L$$

D.
$$\lim_{n\to\infty} s_n = L$$
 E. $\sum_{n=1}^{\infty} s_n$ MUST diverge. F. $\sum_{n=1}^{\infty} (a_n + 1) = L + 1$

$$F. \sum_{n=1}^{\infty} (a_n + 1) = L + 1$$

G. The divergence test tells us
$$\sum_{n=1}^{\infty} a_n$$
 converges to L.

Problem 2 For each of the following, answer **True** or **False**, and explain why.

- (a) If $\sum_{n=0}^{\infty} a_n$ converges, then $\sum_{n=0}^{\infty} (a_n + 0.001)$ converges.
- (b) Since $\int_{1}^{\infty} x \sin(\pi x) dx$ diverges then, by the Integral Test, $\sum_{n=0}^{\infty} n \sin(\pi n)$ diverges.
- (c) Since $\int_{1}^{\infty} \frac{1}{x^2} dx = 1$ then, by the Integral Test, $\sum_{k=1}^{\infty} \frac{1}{k^2} = 1$.

Problem 3 Assume $\sum_{k=0}^{\infty} a_k = L$ and $b_k = 8$ for all k.

- (a) What is $\lim_{k\to\infty} (a_k + b_k)$?
- (b) What is $\lim_{k\to\infty}\sum_{n=0}^{k}(a_n+b_n)$?
- (c) What is $\lim_{k \to \infty} \sum_{n=0}^{k} (a_{n+1} a_n)$?

Problem 4 Determine if the following series converge or diverge. If they converge, find the sum.

1

(a)
$$\sum_{k=0}^{99} 2^k + \sum_{k=100}^{\infty} \frac{1}{2^k}$$

(b)
$$\sum_{k=4}^{\infty} \frac{5 \cdot 4^{k+3}}{7^{k-2}}$$

(c)
$$\sum_{k=0}^{\infty} e^{5-2k}$$

(d)
$$\sum_{i=1}^{\infty} \left(\frac{2}{i^2+2i}\right)$$
 Hint: $\frac{2}{i^2+2i} = \frac{1}{i} - \frac{1}{i+2}$ by partial fractions

Problem 5 Determine if the following series converge or diverge.

(a)
$$\sum_{n=0}^{\infty} \frac{n^2 + 2n + 1}{3n^2 + 1}$$

(b)
$$\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^2}$$

Problem 6 For a sequence $\{a_n\}_{n\geq 1}$ let $s_n=\sum_{k=1}^n a_k$ denote its sequence of partial sums. Now, suppose that $\{a_n\}_{n\geq 1}$ is a sequence such that $s_n=\frac{4n^2+9}{1-2n}$.

- (a) Find $a_1 + a_2 + a_3$.
- (b) Find $a_8 + a_9 + a_{10}$.
- (c) Determine whether $\sum_{k=1}^{\infty} a_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.
- (d) Determine whether $\sum_{k=1}^{\infty} s_k$ converges or diverges. If it converges, find the value to which it converges, or state that there is not enough information to determine this.