## PanopTOP: a framework for generating viewpoint-invariant human pose estimation datasets

Nicola Garau, Giulia Martinelli, <u>Niccolò Bisagno</u>, Piotr Bródka, Nicola Conci University of Trento, Italy



#### **Human Pose Estimation 2D/3D**



# Issues and challenges

#### Viewpoint generalization



#### Lack of suitable dataset

| Dataset RGB D |   | Depth        | Top-view     | Multi-View | 2D Pose GT | 3D Pose GT   | Camera parameters |  |
|---------------|---|--------------|--------------|------------|------------|--------------|-------------------|--|
| PanopTOP31K   | Y | Y            | Y            | Y          | Y          | Y            | Y                 |  |
| ITOP          | N | $\mathbf{Y}$ | $\mathbf{Y}$ | Y          | N          | $\mathbf{Y}$ | Y                 |  |
| <b>EVAL</b>   | N | $\mathbf{Y}$ | N            | N          | N          | $\mathbf{Y}$ | N                 |  |
| TVPR          | Y | Y            | $\mathbf{Y}$ | N          | N          | N            | N                 |  |
| TVPR 2        | Y | Y            | Y            | N          | N          | N            | N                 |  |
| K2HPD         | N | Y            | N            | N          | N          | $\mathbf{Y}$ | N                 |  |
| UBC3V         | N | $\mathbf{Y}$ | N            | Y          | N          | $\mathbf{Y}$ | $\mathbf{Y}$      |  |
| Human3.6M     | Y | N            | N            | Y          | N          | Y            | Y                 |  |

### **Proposed Solution**

#### **Proposed Solution**



#### **Advantages**





## **Experiments**

#### PanopTOP31k

- 3 viewpoints: front, side, and top view
- 30K RGB images, 30K depth maps, 10K filtered point clouds, and 10K 3D meshes
- 23 different subjects
- 256x256 images
- 15 joints skeleton model









#### Benchmarking on depth: ITOP vs PanopTOP31k

- Real vs semi-synthetic dataset
- Vanilla version of V2V network
- Same set, cross-validation, dataset transfer and combined experiments
- [I] = ITOP
- [P] = PanopTOP31k
- [Train][Validation][Test]















#### **Benchmarking**

|            | Experiment      | Head   | Neck   | Shoulders | Elbows | Hands | Torso  | Hips  | Knees | Feet  |
|------------|-----------------|--------|--------|-----------|--------|-------|--------|-------|-------|-------|
| (a)        | [I],[I],[I]     | 99.50  | 99.60  | 99.05     | 97.90  | 90.80 | 100.00 | 98.55 | 95.20 | 87.15 |
| <b>(b)</b> | [I],[I],[P]     | 96.60  | 97.90  | 93.80     | 76.10  | 63.60 | 97.80  | 89.90 | 84.60 | 46.50 |
| <b>(c)</b> | [I],[I+P],[P]   | 97.20  | 98.10  | 95.45     | 77.15  | 59.10 | 98.00  | 90.25 | 70.20 | 35.80 |
| <b>(d)</b> | [I+P],[I+P],[P] | 98.50  | 99.70  | 99.70     | 98.20  | 90.90 | 99.70  | 99.40 | 95.80 | 95.55 |
| <b>(e)</b> | [P],[P],[P]     | 98.50  | 99.70  | 99.70     | 97.80  | 90.85 | 99.60  | 99.35 | 96.30 | 95.45 |
| <b>(f)</b> | [P],[P],[I]     | 99.50  | 99.50  | 98.10     | 93.90  | 61.45 | 99.30  | 94.85 | 75.45 | 26.80 |
| <b>(g)</b> | [P],[I+P],[I]   | 99.60  | 99.80  | 97.95     | 94.00  | 66.60 | 99.50  | 94.45 | 83.55 | 59.20 |
| (h)        | [I+P],[I+P],[I] | 100.00 | 100.00 | 100.00    | 97.80  | 90.35 | 100.00 | 99.55 | 96.30 | 89.35 |

Table 2: Percentages of correctly detected joints for the ITOP and PanopTOP31K datasets in our 8 conducted experiments. Each experiment is identified by a letter (a-h) and a data split [train],[validation],[test] (P = PanopTOP31K, I = ITOP). Each value represents the percentage of joints with L2 distance smaller than a threshold T = 0.2m from the ground truth. The top scores for each joint regarding tests on the ITOP dataset are highlighted in **blue**, while the PanopTOP31K ones are highlighted in **green**. The top overall scores for each joint are in *italic*.

#### **Benchmarking**



Figure 3: Mean per-joints errors in meters for ITOP and PanopTOP31K datasets, respectively, with (green, blue) and without (red, orange) training-wise augmentation. Red, green, yellow and blue bars correspond to experiments (a), (h), (e) and (d) respectively.

#### **Results on RGB data**



#### Enabling viewpoint equivariant approaches: DECA



#### **Conclusions**

We presented PanopTOP, a framework for generating viewpoint-invariant human pose estimation datasets

- 1. A new framework
- 2. PanopTOP31K dataset
- 3. Dataset benchmarking and validation

#### References

[5] N. Garau, N. Bisagno, P. Bródka, N. Conci, DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders (ICCV 2021 - Oral)