THAÍS GAUDENCIO GAUDENCIOTHAIS@GMAIL.COM

Avaliação de Modelos Preditivos

Análise do desempenho do preditor gerado por ele na rotulação de novos objetos, não apresentados previamente em seu treinamento.

Métricas para Classificação

$$err(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{f}(x_i))$$

- TAXA DE ERRO OU DE CLASSIFICAÇÕES INCORRETAS.
- I(A) = 1, SE A É VERDADEIRO E 0, EM CASO CONTRÁRIO.

Tamanho (P)	Largura (P)	Tamanho (S)	Largura (S)	Espécie
5,1	3,5	1,4	0,2	Setosa
4,9	3,0	1,4	0,2	Setosa
7,0	3,2	4,7	1,4	Versicolor
6,4	3,2	4,5	1,5	Versicolor

Métricas para Classificação

- A TAXA DE ERRO VARIA ENTRE 0 E 1, E VALORES PRÓXIMOS AO EXTREMO 0 SÃO MELHORES.
- O COMPLEMENTO DESSA TAXA CORRESPONDE A TAXA DE ACERTO OU ACURÁCIA DO CLASSIFICADOR.

$$ac(\hat{f}) = 1 - err(\hat{f})$$

 NESSE CASO, VALORES PRÓXIMOS DE 1 SÃO CONSIDERADOS MELHORES.

Matriz de confusão

 MATRIZ QUE ILUSTRA O NÚMERO DE PREDIÇÕES CORRETAS E INCORRETAS EM CADA CLASSE.

Métricas para Regressão

• O erro da hipótese f pode ser calculado pela distância entre o valor yi conhecido e aquele predito pelo modelo, ou seja, f(xi).

 As medidas de erro mais conhecidas e usadas nesse caso são o erro quadrático médio (MSE) - mean squared error e a distância absoluta média (MAD) - mea absolute distance.

$$MSE(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{f}(x_i))^2$$

$$MAD(\hat{f}) = \frac{1}{n} \sum_{i=1}^{n} \left| y_i - \hat{f}(x_i) \right|$$

Métricas para Regressão

O MSE e MAD são sempre não negativos. Para ambas as medidas, valores mais baixos correspondem a melhores modelos, ou seja, melhores aproximações dos rótulos verdadeiros dos objetos.

Definem-se subconjuntos de treinamento e teste para obtenção de estimativas de predição.

Esses subconjuntos são disjuntos para assegurar que as medidas de desempenho sejam obtidas a partir de um conjunto de exemplos diferente daquele usado no aprendizado.


```
trainSample = data.sample(frac=0.8, random_state = 1)
```

```
from sklearn.model_selection import KFold

scores = []
cv = KFold(n_splits=10, shuffle=True)

for train_index, test_index in cv.split(X):
    X_train, X_test, y_train, y_test = X[train_index], X[test_index], y[train_index], y[test_index]
    reg.fit(X_train, y_train)
    scores.append(reg.score(X_test, y_test))
```


Holdout

- UMA PROPORÇÃO DE P PARA TREINAMENTO E (1-P) PARA TESTE;
- NORMALMENTE, EMPREGA-SE P=2/3;
- GERALMENTE USADA QUANDO UM CONJUNTO DE DADOS É GRANDE O SUFICIENTE;
- NÃO PERMITE AVALIAR O QUANTO O DESEMPENHO EM RELAÇÃO A CONSTRUÇÃO DE CONJUNTOS COM DIFERENTES COMBINAÇÕES DE OBJETOS.
- SOLUÇÃO: RANDOM SUBSAMPLING.

Validação Cruzada

Amostragem

No Leave-One-Out, o modelo final para produção é treinado com todos os dados disponíveis, após a validação feita com as múltiplas divisões de treino e teste.

- O CONJUNTO DE EXEMPLOS

 É DIVIDIDO EM R SUBCONJUNTOS DE

 TAMANHO APROXIMADAMENTE

 IGUAL;
- R-FOLD CROSS VALIDATION
 ESTRATIFICADO: MANTÉM EM CADA
 PARTIÇÃO A PROPORÇÃO DE
 EXEMPLOS DE CADA CLASSE
 SEMELHANTE A PROPORÇÃO
 CONTIDA NO CONJUNTO DE DADOS
 TOTAL;
- LEAVE-ONE-OUT: A CADA CICLO EXATAMENTE UM EXEMPLO É SEPARADO PARA TESTE, ENQUANTO N-1 EXEMPLOS RESTANTES SÃO UTILIZADOS NO TREINAMENTO DO PREDITOR.

Boostrap

- R SUBCONJUNTOS SÃO GERADOS A PARTIR DO CONJUNTO DE EXEMPLOS ORIGINAL;
- OS EXEMPLOS SÃO AMOSTRADOS ALEATORIAMENTE DESSE CONJUNTO, COM REPOSIÇÃO;
- NORMALMENTE, ADOTA-SE
 R ≥ 100;
- GERALMENTE APLICADO EM AMOSTRAS DE DADOS PEQUENAS.

Conjunto validação

O conjunto validação fornece uma avaliação do ajuste do modelo ao conjunto treinamento enquanto é feito o ajuste dos hiperparâmetros, por exemplo, o número de camadas escondidas em uma rede neural.

Problema de Duas Classes n=VP+VN+FP+FN

VP-VERDADEIROS POSITIVOS

objetos da classe positiva classificados corretamente

FP-FALSOSPOSITIVOS

classe verdadeira é negativa, mas que foram classificados incorretamente como da classe positiva

VN-VERDADEIROS NEGATIVOS

objetos da classe negativa classificados corretamente

FN-FALSOS NEGATIVOS

classe verdadeira é positiva, mas que foram classificados incorretamente como da classe negativa

Matriz de Confusão

CLASSES PREDITAS

		+	-
CLASSES VERDADEIRAS	+	VP	FN
	-	FP	VN

ACURÁCIA TOTAL

$$ac(\hat{f}) = \frac{VP + VN}{n}$$

SENSIBILIDADE

$$sens(\hat{f}) = rev(\hat{f}) = TVP(\hat{f}) = \frac{VP}{VP + FN}$$

• PRECISÃO

$$prec(\hat{f}) = \frac{VP}{VP + FP}$$

ESPECIFICIDADE

$$esp(\hat{f}) = \frac{VN}{VN + FP} = 1 - TFP(\hat{f})$$

"Quantos elementos selecionados são relevantes?"

"Quantos elementos relevantes foram selecionados?"

```
print("\nK-NN")
print("Acurácia: %0.2f" % (metrics.accuracy_score(testTarget, resultKNN)))
print("Medida F1: %0.2f" % (metrics.fl_score(testTarget, resultKNN)))

matrizConfusao = metrics.confusion_matrix(testTarget, resultKNN)
print("Matriz de Confusão:\n",matrizConfusao)
print("Sensibilidade: %0.2f" % (matrizConfusao[0][0]/(matrizConfusao[0][0] + matrizConfusao[1][1])))
print("Especificidade: %0.2f" % (matrizConfusao[1][0]/(matrizConfusao[1][0] + matrizConfusao[0][1])))
```

```
K-NN
Acurácia: 0.78
Medida F1: 0.76
Matriz de Confusão:
[[41 11]
[ 9 31]]
Sensibilidade: 0.57
Especificidade: 0.45
```


- A precisão pode ser vista como uma medida de exatidão do modelo;
- A revocação é uma medida de completude;
- Geralmente a precisão e a revocação são combinadas em uma única medida, como a medida-F, que é a média harmônica ponderada da precisão e a revocação:

Lembrando que Revocação = Sensibilidade

O número 2 na fórmula do F1-score aparece porque ele é a média harmônica entre a precisão (precision) e o recall (revocação)

$$F = 2 \cdot rac{ ext{precis} \cdot ext{revoc}}{ ext{precis} + ext{revoc}}$$

LEMBREM!!!!!

Principalmente em problemas de classes desbalanceadas, utilizar só a acurácia não é interessante, uma vez que, caso o modelo tenda a prever as instâncias, inclusive da classe minoritária como sendo da classe majoritária, essa métrica permanecerá alta, o que não demonstra a qualidade do modelo!!!

Coeficiente de Matthews

Diferentemente de métricas como a acurácia, o MCC avalia o desempenho do modelo de forma mais completa e justa. Ele varia de -1 a 1, onde 1 indica uma classificação perfeita, 0 uma classificação aleatória e -1 uma classificação totalmente incorreta.

Modelos muito complexas - chance alta de overfitting

Modelos muito generalistas - chance alta deunderfitting

Métricas de desempenho ajudam a observar esses efeitos!!!

Cada ponto da curva ROC corresponde a um valor de corte diferente do modelo

CURVA ROC

ÁREA SOB A CURVA ROC AUC

```
#AUC Curve
y_pred_probability = clf.predict_proba(X_test)[::,1]
fpr, tpr, _ = metrics.roc_curve(y_test, y_pred_probability)
auc = metrics.roc_auc_score(y_test, y_pred_probability)
plt.plot(fpr,tpr,label="data 1, auc="+str(auc))
plt.legend(loc=4)
plt.show()
```

Função de Perda

Uma função de perda é uma função que compara os valores de saída previstos com os esperados

Métricas de avaliação - Imagens

Métricas de avaliação - Imagens

Aspecto	Dice	IoU (Jaccard)	
Sensibilidade	Mais sensível a verdadeiros positivos	Mais rigoroso, penaliza mais a falta de sobreposição	
Uso comum	Segmentação médica, visão computacional	Detecção de objetos, benchmarks padrão	
Penalização	Penaliza menos falsos negativos	Penaliza mais falsos positivos e negativos	
Aplicação ideal	Quando se quer maximizar similaridade geral	Quando a precisão da localização é crítica	