

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – Winkler	05 Funktionslogik / Regelung 02.06.2022 – Winkler	05 Funktionslogik / Regelung 02.06.2022 – Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI	08 MMI	08 MMI Übung
30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler	30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS 21.07.2022 – Feig	11 Analyse und Bewertung FAS 21.07.2022 – Feig	11 Übung Analyse und Bewertung FAS 21.07.2022 – Feig
12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme
28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung
- 2. Operatoren
 - 2.1 Sobel-Operator
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

Was soll hängen bleiben?

- Wofür & wie werden Bilder aufgenommen und digital dargestellt?
- Warum sind Kanten für FAS wichtig?
- Wie funktioniert die diskrete Faltung?
- Wie werden einfache Filtermasken für die Kantendetektion hergeleitet?
- Wie funktioniert die Anwendung?

获取图像的目的和方式是什么? 为什么边缘对 FAS 很重要?

离散卷积是如何工作的?

用于边缘检测的简单滤波器掩码是如何产生的?

应用程序如何运行?

Funktionalität Kamera (Tesla Autopilot)

Maschinelles Sehen

im Fahrzeug, bspw. hinter der Windschitzscheibe

Kamera, bspw. Flir Tau CNV

Durch Kamera: Projektion von 3D Raumpunkten auf 2D Bildpunkte

→ Vorstellung des "Lochkameramodells" in der Vorlesung

Diskretisierung & Digitalisierung

- Bildsignale nach bisheriger Betrachtung:
 - Ortskontinuierlich
 - Wertkontinuierlich
 - Zeitkontinuierlich
- Digitalisierung: Diskretisierung in jeder Dimension

Winner, TUD nach Stiller 2002

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung
- 2. Operatoren
 - 2.1 Sobel-Operator
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

Bildvorbereitung

- Annahme: eigentliches Bild ist stetige Funktion (=> Herleitung)
- → Kennen nur Werte auf diskretem Gitter
- → Werte des Gitters → Matrix
- Verwendung nur eines Kanals (z.B. Helligkeit)

(Bild ist Funktion $f: \mathbb{R}^2 \to \mathbb{R}$)

具有视觉冲击力的图像特征

使人和物体等的轮廓清晰可见

在人类视觉中发挥重要作用

属于最重要的图像信息(极端情况:即使是线条图也足以识别人、物体等)

Stellen mit abrupter Helligkeitsänderung

Warum Kanten?

- Optisch prägnante Bildmerkmale
- Ermöglichen Umrisse von Menschen, Objekten etc. wahrzunehmen
- Spielen wichtige Rolle beim menschlichen Sehen
- Gehören zu den wichtigsten Bildinformationen (Extremfall: selbst Strichzeichnungen genügen, um Personen, Objekte usw. zu erkennen)

Eigenschaften von Kanten

沿明显方向的局部强烈强度变化

观察图像函数边缘的导数 → 导数的局部最大值

- Lokal starke Intensitätsänderung entlang ausgeprägter Richtung
- Betrachtung der Ableitung der Bildfunktion
- Kanten → lokale Maxima der Ableitung

Anforderungen an Kantenfilter

- Verschiebungsfreiheit:
 - → Kantendetektion invariant unter Verschiebungen

- Isotropie (Invarianz unter Bilddrehungen):
 - → Intensität/Erkennungsgüte nicht von Kantenrichtung abhängig
 - → Bilddrehung ändert Kantenintensitäten nicht

(Schwachpunkt fast aller klassischen Kantendetektionsverfahren)

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung 折叠式
- 2. Operatoren
 - 2.1 Sobel-Operator
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

原则:

Lineare Filter

小邻域内像素的线性连接

程序:

每个像素和某个邻域内的所有像素都用一个系数加权,然后求和。

得出该点的元素值

Prinzip:

Lineare Verknüpfung von Pixeln in kleinen Nachbarschaften

Vorgehen:

- Jedes Pixel sowie alle Pixel in einer gewissen Nachbarschaft werden mit einem Koeffizienten gewichtet und dann aufsummiert
- Dies ergibt den Wert des Elements an dieser Stelle

Faltung

- Lineare Filter lassen sich als Matrizen darstellen
- Anwendung mittels diskreter Faltung mit der Bildmatrix

Definition:

Sei I(x, y) die Bildmatrix und H(x, y) die Faltungsmatrix an der Stelle (x, y). Dann ist die diskrete Faltung I * H definiert als

$$(\mathbf{I} * \mathbf{H})(x, y) := \sum_{i=-n}^{n} \sum_{j=-n}^{n} \mathbf{I}(x+i, y+j) \mathbf{H}(n+i, n+j)$$

wobei $\mathbf{H} \in \mathbb{R}^{(2n+1)\times(2n+1)}$

Bildmatrix I:

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Maske H:

1	2	3
4	5	6
7	8	9

*

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	1	2	3
*	4	5	6
	7	8	9

$$3 * 1 + 0 * 2 + 1 * 3$$

$$+1*4+5*5+8*6$$

$$+2*7+7*8+2*9$$

$$= 171$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	1	2	3
*	4	5	6
	7	8	9

171		

$$0*1+1*2+2*3$$

$$+5*4+8*5+9*6$$

$$+7*7+2*8+5*9$$

$$= 232$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

	1	2	3
*	4	5	6
	7	8	9

171	232	

Herleitung: Kante → Filtermaske

Umwandlung der Ableitung in einfache
 Matrixoperation durch diskrete zentrale Differenzen:

$$\frac{\partial f}{\partial x} \approx \frac{-f(x-1,y) + f(x+1,y)}{2}$$

→ Abbildung der diskreten Differenz durch Faltung:

1 2	2 3	*	-1	0	1	=	2
-----	-----	---	----	---	---	---	---

 Um Rauschen zu verringern, werden 3x3 Matrizen verwendet (hier: Prewitt-Operator in x-Richtung zur Detektion vertikaler Kanten):

-1	0	1
-1	0	1
-1	0	1

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

Prewitt-Operator (vertikal):

-1	0	1
-1	0	1
-1	0	1

*

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

	-1	0	1
*	٦	0	1
	-1	0	1

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
10	10	10	10	10	10
10	10	10	10	10	10
10	10	10	10	10	10

Prewitt-Operator (vertikal):

-1	0	1
-1	0	1
-1	0	1

*

0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
10	10	10	10	10	10
10	10	10	10	10	10
10	10	10	10	10	10

	-1	0	1
*	-1	0	1
	-1	0	1

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung
- 2. Operatoren
 - 2.1 **Sobel-Operator**
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

Sobel-Operator

- Entspricht der 1. Ableitung
- Errechnet vertikale und horizontale Kanten separat
- Stärkere Gewichtung der Zentralen Matrixspalte (vgl. Prewitt)

Bild: Sobel-Operator in y-Richtung
→ Detektion horizontaler Kanten

Herleitung: Sobel-Operator

 Umwandlung der Ableitung in einfache Matrixoperation durch diskrete zentrale Differenzen:

$$\frac{\partial f}{\partial x} \approx \frac{-f(x-1,y) + f(x+1,y)}{2}$$

Jetzt: Verdopplung der mittleren Matrixspalte:

-1	0	1
-2	0	2
-1	0	1

- Vorteil gegenüber Prewitt-Operator:
 - → bessere Isotropie

Sobel-Operator

Sobel-Operator S_x in x zur Detektion von vertikalen Kanten

> -1 0 1 -2 0 2 -1 0 1

Sobel-Operator S_y in y zur Detektion von horizontalen Kanten

-1	-2	-1
0	0	0
1	2	1

Tausch der Vorzeichen beeinflusst Funktionsweise nicht

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung
- 2. Operatoren
 - 2.1 Sobel-Operator
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

Laplace-Filter

- Entspricht der zweiten Ableitung
- Benötigt nur einen Rechenschritt → Weniger Rechenzeit
- Rauschempfindlich

Herleitung über Laplace-Operator

■ Laplace Operator: $\Delta f = div(grad \ f) = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

→ Zur Detektion von vertikalen und horizontalen Kanten

Herleitung 45°-Laplace-Filter

0	1	0
1	-4	1
0	1	0

0	0	1
0	-2	0
1	0	0

Übung Kantenerkennung in Bildern Andreas Schimpe, M.Sc.

Agenda

- 1. Grundlagen
 - 1.1 Kanten
 - 1.2 Faltung
- 2. Operatoren
 - 2.1 Sobel-Operator
 - 2.2 Laplace-Filter
- 3. Matlab-Übungsaufgaben

