BOSSES ARE USUALLY PRETTY PUMB.

BOSSES ARE USUALLY PRETTY DUMB.

• THEY DON'T LISTEN MUCH (EXCEPT TO THEIR BOSSES)

- THEY DON'T KNOW MUCH (EXCEPT HOW TO KEEP THEIR BOSSES HAPPY)
- THEY THINK THEY KNOW A LOT, EVEN WHEN THEY DON'T

JUST GIVE ME THE 10-SECOND VERSION"

SOME BOSSES ARE A LITTLE LESS PUMB.

"JUST GIVE ME THE 30-SECOND VERSION"

"JUST GIVE ME THE 10-SECOND VERSION" JUST THE MEAN WILL DO

"JUST GIVE ME THE 30-SECOND VERSION"

MEAN AND STANDARD DEVIATION WILL DO IT!

YOU ARE A TOY MANUFACTURER

YOU WANT TO OUTSOURCE THE PACKAGING OF YOUR TOYS

THERE ARE 2 CONTENDERS

BOTH SENT YOU SAMPLES OF THEIR PACKAGING

CONTENPER 1:

CONTENPER 2:

MEAN HEIGHT = 11 CM

CONTENPER 1:

CONTENDER 2:

11 CM

WHICH ONE SHOULD GET THE CONTRACT?

CONTENDER 1:

THE "SPREAD" OF CONTENDER 2'S BOXES IS LESSER THAN CONTENDER 1

HERE ARE THE HISTOGRAMS OF THE BOX SIZES FROM EACH CONTENDER

CONTENPER 1:

CONTENPER 2:

CONTENPER 1:

CONTENDER 2

BOTH OF THE DATASETS ARE CLUSTERED AROUND THE SAME CENTRAL POINT

CONTENDER 1:

CONTENDER 2:

BUT CONTENDER I'S DATA HAS MORE "VARIATION"

IN REAL LIFE, JUST AS IN THIS EXAMPLE

IT'S IMPORTANT TO UNDERSTAND THE "SPREAD" OF A DATASET

NOT JUST THE CENTRAL POINT

JUST AS THERE ARE MULTIPLE WAYS TO FIND THE CENTRAL POINT

MEAN, MEDIAN, MODE

IT'S IMPORTANT TO UNDERSTAND THE "SPREAD" OF A DATASET

JUST AS THERE ARE MULTIPLE WAYS TO

FIND THE CENTRAL POINT

MEAN, MEDIAN, MODE

THE "SPREAD" CAN BE UNDERSTOOD IN MULTIPLE WAYS

1. SORT THE PATA IN ASCENDING ORDER

98	a &	a a	10.1	101	102	102	107	108	108	11	111	11 2	11 2	11 2	112	11 7	11 8	11 9	11 9	
J.0	7.0	J.J	10.1	10.1	10,2	10.5	10.7	10.8	10.8	6 6	• • • •	11,2	11,2	11,5		11,7	11.0	11.5	11.5	

1. SORT THE PATA IN ASCENDING ORDER

2. DIVIDE INTO 4 EQUAL PARTS THE POINTS THAT DEFINE THE QUARTILES PARTITIONS ARE CALLED

- 1. SORT THE PATA IN ASCENDING ORDER
- 2. PIVIPE INTO 4 EQUAL PARTS

THE SECOND QUARTILE IS NOTHING BUT THE MEDIAN

- 1. SORT THE PATA IN ASCENDING ORDER
- 2. DIVIPE INTO 4 EQUAL PARTS

THE FIRST QUARTILE IS THE MEDIAN OF THE LOWER HALF

- 1. SORT THE PATA IN ASCENDING ORDER
- 2. DIVIPE INTO 4 EQUAL PARTS

THE THIRD QUARTILE IS THE MEDIAN OF THE UPPER HALF

- 1. SORT THE PATA IN ASCENDING ORDER
- 2. DIVIPE INTO 4 EQUAL PARTS

TELLS US SOMETHING ABOUT HOW THE DATA IS SPREAD AROUND THE MEDIAN

- 1. SORT THE PATA IN ASCENDING ORDER
- 2. PIVIPE INTO 4 EQUAL PARTS

BOX AND WHISKER PLOTS ARE A WAY TO VISUALIZE THE IQR

FIRST A BOX IS DRAWN TO REPRESENT THE 3 QUARTILES

BOX AND WHISKER PLOTS

BOX AND WHISKER PLOTS

THEN WHISKERS ARE DRAWN UPTO 1.5*1QR FROM THE MEDIAN

BOX AND WHISKER PLOTS

THESE PLOTS ARE VERY USEFUL TO IDENTIFY OUTLIERS

BOX AND WHISKER PLOTS

ANY POINTS THAT LIE BEYOND THE WHISKERS ARE OUTLIERS