

Team 2: Kevin Pang, Humza Butt, Rianna He, Wayne Li, Stella Moon

What is your best score?

What if we can make the flappy bird to teach itself to learn how to play the game?

Agenda

- Background
- Overview of Algorithms
- Applications of Algorithms
- Experiment on Flappy Birds
- Conclusion

What is Flappy Bird?

Show
evolution of
the Bird as it
'Flaps' through!

How do we teach the bird?

Reinforcement Learning

Make the bird learn **strategies**

How do we teach the bird?

Reinforcement Learning

Make the bird learn **strategies**

NEAT Algorithm

Evolutionarily build the **brain** of the bird

Background

V.S

What is Genetic Algorithm?

Genetics Algorithm (GA) is a search-based technique that find the **best individuals** through the process of natural selection

GA Step by Step

Key Stages of GA

Ref: https://www.analyticsvidhya.com/blog/2017/07/introduction-to-genetic-algorithm/

Step 1: Initialization

Initial Population

- Each individual is a potential solution
- An individual characterized by a set of **Genes**

Ref: https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3

Step 2: Fitness Assignment

Fitness Assignment

- Fitness score is calculated for each individual
- Measure **suitability** of an individual to the problem

Step 3: Selection

Selection

- Measure "**fittestness**" by individual fitness scores
- Fittest individuals are selected to **pass their genes** to next generation

Step 4: Crossover

Crossover

- A **crossover point** is chosen randomly
- New offsprings are created and added to the population

Step 5: Mutation

Mutation

Some offspring genes subjected to **mutation** with a random probability

> **Before Mutation** A5 | 1 | 1 | 1 | 0 | 0 | 0 After Mutation A5 | 1 | 1 | 0 | 1 | 1 | 0

Step 6: Termination

Termination

- When population converges
- Some other user-defined stopping criteria

What is NEAT?

NeuroEvolution of Augmenting Topologies (NEAT)

- A type of Genetics Algorithm
- Simultaneously changing parameter weights & network structures

Disadvantage: Slower to Implement

Advantage: More likely to find global solution

How does NEAT work?

Genetic Encoding

Mutation

Crossover

Ref: https://blog.otoro.net/2016/05/07/backprop-neat/

Genetic Encoding

Node Genes

Connection Genes

- Specifies the *edge* of structure
- Offsprings are list of connection genes

Mutation

Type of Mutation

- **Mutate Connection**
- Mutate Node
- Each mutation action have a unique innovation number

Crossover

Connections genes are matched by innovation number

Inheritance:

- a. Both parents contain the same mutation
 → Randomly inherit one
- b. Only one parent contains the mutation
 - → Inherit directly

How is GA used?

Solutions to:

- **Optimization Problems**
- Multimodal optimization Problems

Real-life Applications in:

- Economics (e.g. Stock trading)
- Image Processing (e.g. Mona Lisa)

Ref: https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/

How is NEAT used?

Applications in:

- General game playing
- Self-driving cars
- Simulation of microorganism evolution

Ref: https://mofanpy.com/static/results/evolutionary-algorithm/4-1-0.mp4

Training the Bird

Behind the Scenes

Initial Input Neurons

- 1. Location of the **Bird**
- Distance from **Top Pipe**
- 3. Distance from **Bottom Pipe**

Behind the Scenes

Initial Input Neurons

- 1. Location of the Bird = 300
- Distance from Top Pipe = **200** (500-300)
- Distance from Bottom Pipe = 150 (300-150)

Initial Neural Network

Overview -

Back to the example:

Overview -

Evolution of the Network

Key Hyperparameters

Hyperparameters	Influence
Population Size	Influences starting fitness score
Node Add/Remove Probability	Adjusts topology of neural network
Mutation Rate	Influences probability of species changing
Number of Hidden Layer Nodes	Initial number of nodes in hidden layer
Maximum Stagnation	Removes species that have not improved after n generations
Change Activation Function*	Activation functions for each layer
Compatibility Threshold	Lower the threshold the more species in a population

Key Hyperparameters

Hyperparameters	Influence
Population Size	Influences starting fitness score
Node Add/Remove Probability	Adjusts topology of neural network
Mutation Rate	Influences probability of species changing
Number of Hidden Layer Nodes	Initial number of nodes in hidden layer
Maximum Stagnation	Removes species that have not improved after n generations
Change Activation Function*	Activation functions for each layer
Compatibility Threshold	Lower the threshold the more species in a population

Population Size

Hidden Layers

Hidden Layers

Comparing Model Runs

Limitations of Model

- **Population Size** is by far the most important parameter, but requires high compute power
- Randomness or seed can influence performance
- Mutation can be disruptive lead to poorer performance in the short term
- **Exploratory** instead of iterative

You learned...

Genetic Algorithm

- Evolutionarily builds neural networks
- Selection-based that takes the 'best genes' from previous to output an offspring

You learned...

Genetic Algorithm

- Evolutionarily builds neural networks
- Selection-based that takes the 'best genes' from previous to output an offspring

NEAT Algorithm

- NeuroEvolution of Augmenting Topologies
- Simultaneous changes in parameter weight & network structure

Overview

You also saw...

Real-world Applications

- GA in Optimization problems, Economics, Image processing
- NEAT in autonomous cars, games, microorganism evolution

You also saw...

Real-world Applications

- GA in Optimization problems, Economics, Image processing
- NEAT in autonomous cars, games, microorganism evolution

Flappy Bird

- Start with key initial nodes, evolutionarily build the network
- Effects of Hyperparameter Tuning

Best Takeaway: how to get the best score for Flappy Bird;)

Thank you!

References

Stanley, K., & Miikkulainen, R. (n.d.). Efficient evolution of neural network topologies. *Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)*. doi:10.1109/cec.2002.1004508

JAIN, S. (2017). Genetic Algorithm | Application Of Genetic Algorithm. Retrieved 2 May 2021, from https://www.analyticsvidhya.com/blog/2017/07/introduction-to-genetic-algorithm/

Mallawaarachchi, V. (2017). Introduction to Genetic Algorithms — Including Example Code. Retrieved 2 May 2021, from https://towardsdatascience.com/introduction-to-genetic-algorithms-including-example-code-e396e98d8bf3

Genetic Algorithms - Application Areas - Tutorialspoint. (n.d.). Retrieved 2 May 2021, from https://www.tutorialspoint.com/genetic_algorithms/genetic_algorithms_application_areas.htm

Johansson, V. (2008). Genetic Programming: Evolution of Mona Lisa. Retrieved 2 May 2021, from https://rogerjohansson.blog/2008/12/07/genetic-programming-evolution-of-mona-lisa/?fbclid=IwAR1IvWSOCzhICDQHRveCQQR2UTHUUW6UEp3vnM67VA88P6Is o_ZhDIkP1VU

Techwithtim/NEAT-Flappy-Bird. (2020). Retrieved 2 May 2021, from https://github.com/techwithtim/NEAT-Flappy-Bird

Code Output