Final Review PLT-4115

Q1. Consider the basic block:

```
y := 3
x := y
```

$$z := 4 * x$$

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.

- For this example, what is the best order in which to apply the three optimizations, if each can be applied only once?

Ans: copy propagation, constant propagation, constant folding correct

Q2. Consider the basic block:

```
y := 3
x := y
```

z := 4 * x

Now consider the local optimizations:

- constant propagation
- copy propagation,
- constant folding.

- For this example, What is the worst possible order (i.e., requires the most passes) for the basic block?

Ans: constant folding, constant propagation, copy propagation

Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. W := W + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7. q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12. q := y + w

- a. Draw the CFG where each node is a BB.
- b. Which variables are live immediately before the execution of statement 7? Assume only variable q is live after the statement in line 12.

Ans: y,z,w

Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

- c. Assume the constant propagation algorithm has completed. Which of the following statements is true?
- L_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L variable v is some constant
- $C(L,v,in) = \top$ means v is not a constant.

C(L7,	W,	in)	=	Т
C(L2,	у,	out)	=	С
C(L5,	Χ,	out)	=	С
C(L4,	у,	in)	=	Т
C(L8,	z,	out)	=	С

Q3. Consider the following intermediate code:

- 1.x := 5
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

- c. Assume the constant propagation algorithm has completed. Which of the following statements is true?
- L_N is the statement at line N
- C(L,v,in) = C means that at the "in" of statement L
 variable v is some constant
- $C(L,v,in) = \top$ means v is not a constant.

C(L7,	W,	in)	=	Т
C(L2,	у,	out)	=	С
C(L5,	Χ,	out)	=	С
C(L4,	у,	in)	=	Τ
C(L8,	z,	out)	=	С

Q4. Consider the following intermediate code:

- 1. x := 5, z := 2, y := 3
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. W := W + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.12: q := y + w

a. Which lines (using the numbering given above) are now unreachable?

Do constant propagation and dead code elimination

- 1. x := 5, z := 2, y := 3
- 2. if y > 1 goto Label3
- 3. Label1:
- 4. w := w + 1
- 5. if y > 2 goto Label3
- 6. Label2:
- 7.q := 3
- 8. if z < 1 goto Label1
- 9. Label3:
- 10.w := 2
- 11.if z > 1 goto Label2
- 12.q := y + w

Q5. Optimize the following intermediate code:

$$3: x := 1$$

$$4: y := 2$$

$$5: z := x + y$$

7: Label1:

8:
$$w := x + 1$$

9:
$$y := x + 1$$

10: Label2:

11:
$$a := x + y$$

12:
$$b := a * z$$

$$1: z := 3$$

$$3: x := 1$$

$$4: y := 2$$

5:
$$z := x + y 3$$

7: Label1:

8:
$$w := x + 1$$

Line 8 can also be removed if you assume w will not be used after line 12

9:
$$y := x + 1 w$$

11:
$$a := x + y$$

12:
$$b := a * \neq 3$$

Q6. Consider the following CFG

Q6. Consider the following CFG

Q6. Consider the following CFG

15: return

