Theory Computing - CSC/CSE 273 (Section 1)

Programming assignment

(Total 100 Points)

Due on 13th August by 11:59 PM

Write a program to converts an ε -NFA into a DFA. There must be two parts in your implementation.

- 1. Convert an ε -NFA into a DFA.
- 2. Take a string as input and it should print the list of states the DFA goes through, and then print either "Accepted" or "Rejected".

1. Convert an ε-NFA into a DFA

End

The Algorithm for this is as follows:-

Let the DFA be D & its transition table be DTran. Dstates represents the states of the DFA. Let NFA be N.

```
Initially e-closure(s){start state of NFA} is the only state in Dstate and it is unmarked. While there is an unmarked state T in Dstate do begin
```

```
Mark T;

For each input symbol a do begin

U=e-closure(move(T,a));

If U is not in Dstates then

Add U as unmarked state to Dstate.

Dtran[T,a]=U;

End
```

A state D is an accepting state if it is a set of NFA states containing at least one accepting state of the N.

Transition table for ϵ - NFA

	a	b	e (Epsilon)
STATES			
->0	_	_	{1,7}
1	_	_	{4,2}
2	{ 3 }	_	_
3	_	_	{ 6 }
4	_	{ 5 }	_
5	-	_	{ 6 }
6	_	_	{1 , 7}
7	{ 8 }	_	_
8	_	{9}	_
9	-	{10}	_
*10	_	_	_

Input format:

Number of states: 11 Start state: 0 Number of final state(s): 1 Number of input symbols: 2 1: a 2: b Number of transitions for epsilon from state 0: 2 2. 7 Number of transitions for a from state 0: 0 Number of transitions for b from state 0: 0 Number of transitions for epsilon from state 1: 2 1. 2 2. 4 Number of transitions for a from state 1:0 Number of transitions for b from state 1:0 Number of transitions for epsilon from state 2:0 Number of transitions for a from state 2: 1 1. 3 Number of transitions for b from state 2: 0 Number of transitions for epsilon from state 3: 1 Number of transitions for a from state 3: 0 Number of transitions for b from state 3: 0 Number of transitions for epsilon from state 4: 0 Number of transitions for a from state 4: 0 Number of transitions for b from state 4: 1 Number of transitions for epsilon from state 5: 1 Number of transitions for a from state 5: 0 Number of transitions for b from state 5: 0 Number of transitions for epsilon from state 6: 2 1. 1 2. 7 Number of transitions for a from state 6: 0 Number of transitions for b from state 6: 0 Number of transitions for epsilon from state 7: 0 Number of transitions for a from state 7: 1 1. 8 Number of transitions for b from state 7: 0 Number of transitions for epsilon from state 8: 0 Number of transitions for a from state 8: 0 Number of transitions for b from state 8: 1 1. 9

Number of transitions for epsilon from state 9:0 Number of transitions for a from state 9: 0 Number of transitions for b from state 9: 1 Number of transitions for epsilon from state 10:0

Number of transitions for a from state 10:0 Number of transitions for b from state 10: 0

The e-closures are calculated as follows:

eclosure(0)={0,1,2,4,7}=A=start state in corresponding DFA eclosure(move(A,a))={1,2,3,4,6,7,8}=B eclosure(move(A,b))={1,2,4,5,6,7}=C eclosure(move(B,a))=B eclosure(move(B,b))={1,2,4,5,6,7,9}=**D** eclosure(move(C,a))=B eclosure(move(C,b))=C eclosure(move(D,a))=B eclosure(move(D,b))={1,2,4,5,6,7,10}=**E=final state** eclosure(move(E,a))=B eclosure(move(E,b))=C

Output:

The Corresponding DFA is:-

Transition table for DFA

STATE	a	b
->A	В	С
В	В	D
С	В	С
D	В	E
*E	В	С

2. Input and output

Input String: bababb

A -> C -> B -> D -> B -> D -> E

Accepted.

Input String: aabba B -> B -> D -> E -> B

Rejected.

Extra credit: 30 Points

For this part you have to minimize states in DFA.

Output for the above DFA

Transition table for minimized DFA

	a	b
STATE		
->{A,C}	В	{A,C}
В	В	D
D	В	E
*E	В	{A,C}

This part will only be counted if your ϵ - NFA to DFA conversion is correct.