Solution Concentrations

$$mass-to-mass\ ratios\ (e.g., \frac{1mg}{1kg})$$

$$ppm: \frac{1mg}{1kg} = \frac{10^{-3}g}{10^{3}g} = \frac{1g}{10^{6}g} = 1 ppm$$

$$M(molarity) = \frac{moles \text{ of solute}}{\text{volume of solution [L]}} = \frac{n}{V}$$

- \Rightarrow $n(solute) = M \cdot V$
- ⇒ mass(solute) = n · molar mass (solute)
 mass(solute) = n · M · V

$$m(molality) = \frac{moles \text{ of solute}}{mass \text{ of solvent [kg]}} = \frac{n}{mass}$$

Calculations with Solution Concentrations

Example 1: If you dissolve 25.5g KBr in enough water to make 1.75L of solution, what is the molarity of the solution?

Example 2: How many liters of a 0.125 M NaOH solution contain 0.255 mol of NaOH?

Example 3: What is the molarity of a 150 ppm aqueous solution of NaCl ($d = 1 \text{ g/cm}^3$; assume the density of water and the solution are the same).

Dilution

Stock Solution:

$$\mathbf{M}_i = \frac{n}{V_i} \Longleftrightarrow n = M_i \cdot V_i$$

Final Solution:

$$n = M_f \cdot V_f$$

Combine

$$M_i \cdot V_i = M_f \cdot V_f$$

Dilution

Example 1: To what volume should you dilute 0.200L of a 15.0 M NaOH solution to obtain a 3.00 M NaOH solution?

Example 2: You have a 1M HCl solution. What volume of this stock solution do you need to make 500 mL of a 0.01 M HCl solution?

Dissolution of an Ionic Compound in Water

$$NaCl(s) \xrightarrow{H_2O} Na^+(aq) + Cl^-(aq)$$

$$AgCl(s) \xrightarrow{H_2O} Ag^+(aq) + Cl^-(aq)$$

A soluble ionic compound completely dissociates in aqueous solution into cations and anions; a partially soluble ionic compound dissociates in water only to a certain degree

Dissolution of Non-Ionic Compounds in Water (e.g., Sugar)

$$C_{12}H_{22}O_{11}(s) \xrightarrow{H_2O} C_{12}H_{22}O_{11}(aq)$$

Summary: Electrolytes, Weak Electrolytes and Nonelectrolytes

Electrolyte: NaCl(s) $\xrightarrow{H_2O}$ Na⁺(aq) + Cl⁻(aq)

Weak Electrolyte: $CH_3COOH(aq) + H_2O \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$

A weak electrolyte dissolves only partially in water