

FCC PART 15.247 TEST REPORT

For

SHENZHEN TENDA TECHNOLOGY CO., LTD.

6-8 Floor, Tower E3, No. 1001, Zhongshanyuan Road, Nanshan District, Shenzhen, China. 518052

Test Model: HG305-G FCC ID: V7THG305-GP

Report Type: **Product Name:** Original Report N300 Wireless VoIP GPON Router **Report Number:** RDG170817001-00 **Report Date:** 2017-08-23 Jerry Zhang Jerry Zhang **EMC Manager Reviewed By:** Bay Area Compliance Laboratories Corp. (Dongguan) **Test Laboratory:** No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China Tel: +86-769-86858888 Fax: +86-769-86858891 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Dongguan).

Report No.: RDG170817001-00

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	4
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS LOCAL SUPPORT EQUIPMENT LIST AND DETAILS	9
SUPPORT CABLE LIST AND DETAILS	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	12
APPLICABLE STANDARD	12
FCC §15.203 - ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	13
FCC §15.207 (a)– AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT Setup	14
EMI TEST RECEIVER SETUP	
TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	15
TEST EQUIPMENT LIST AND DETAILS	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	19
TEST PROCEDURE	19
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	
TEST DATA	
FCC §15.247(a) (2)–6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS	
FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER	
Applicable Standard	
TEST PROCEDURE TEST EQUIPMENT LIST AND DETAILS.	

TEST DATA	35
FCC §15.247(d)– 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	37
APPLICABLE STANDARD	37
TEST PROCEDURE	37
TEST EQUIPMENT LIST AND DETAILS.	37
TEST DATA	38
FCC §15.247(e) - POWER SPECTRAL DENSITY	47
APPLICABLE STANDARD	47
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	47
TEST DATA	47

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The SHENZHEN TENDA TECHNOLOGY CO., LTD.'s product, model number: HG305-G (FCC ID: V7THG305-GP) (the "EUT") in this report was a N300 Wireless VoIP GPON Router, which was measured approximately: 19.0 cm (L) x 14.3 cm (W) x 3.1 cm (H), rated input voltage: DC 12V from adapter.

Report No.: RDG170817001-00

Adapter Information: Model:BN036-A12012U INPUT:AC100-240~50/60Hz, 0.4A OUTPUT:DC12V 1.0A

*All measurement and test data in this report was gathered from final production sample, serial number: 170817001 (assigned by the BACL, Dongguan). The EUT was received on 2017-08-17.

Objective

This report is prepared on behalf of *SHENZHEN TENDA TECHNOLOGY CO., LTD.* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communications Commission's rules.

The tests were performed in order to determine the compliance of the EUT with FCC Rules Part 15-Subpart C, section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Related Submittal(s)/Grant(s)

No related submittal(s)/grant(s).

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Dongguan).

Measurement Uncertainty

Parameter	Measurement Uncertainty	
Occupied Channel Bandwidth	±5 %	
RF output power, conducted	±0.61dB	
Power Spectral Density, conducted	±0.61 dB	
	30M~200MHz: 4.58 dB for Horizontal, 4.59 dB for Vertical	
Unwanted Emissions, radiated	200M~1GHz: 4.83 dB for Horizontal, 5.85 dB for Vertical	
	1G~6GHz: 4.45 dB, 6G~25GHz: 5.23 dB	
Unwanted Emissions	±1.5 dB	
Temperature	±1℃	
Humidity	±5%	
DC and low frequency voltages	±0.4%	
Duty Cycle	1%	
AC Power Lines Conducted Emission	3.12 dB (150 kHz to 30 MHz)	

FCC Part 15.247 Page 4 of 60

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Dongguan) to collect test data is located on the No.69 Pulongcun, Puxinhu Industry Area, Tangxia, Dongguan, Guangdong, China

Report No.: RDG170817001-00

Bay Area Compliance Laboratories Corp. (Dongguan) has been accredited to ISO 17025 by CNAS(Lab code: L5662). And accredited to ISO 17025 by NVLAP(Test Laboratory Accreditation Certificate Number 500069-0), the FCC Designation No. CN5002 under the KDB 974614 D01.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 273710. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

Bay Area Compliance Laboratories Corp. (Dongguan) was registered with ISED Canada under ISED Canada Registration Number 3062D.

FCC Part 15.247 Page 5 of 60

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in Engineering Mode, which was provided by the manufacturer.

Report No.: RDG170817001-00

For 2.4GHz band, total 11 channels are provided:

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11b, 802.11g, and 802.11 n20 modes were test with channel 1,6,11.

For 802.11 n40 mode was test with channel 3,6,9.

EUT Exercise Software

The software "cmd.exe" was used for testing, the commands were provided by manufacturer. The worst-case data rates are determined to be as follows for each mode based upon investigations by measuring the average power and PSD across all date rates bandwidths, and modulations. For 802.11n mode, the device support MIMO and SISO modes, per pretest, MIMO mode was the worst and reported in the report.

The maximum power levels were configured as below table, that provided by the manufacturer:

Test Mode	Test Software Version	Cmd command			
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11b	Data Rate	1Mbps	1Mbps	1Mbps	
802.110	Chain 0	40	50	50	
	Chain 1	40	50	40	
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11g	Data Rate	6Mbps	6Mbps	6Mbps	
602.11g	Chain 0	50	50	50	
	Chain 1	50	50	50	
	Test Frequency	2412MHz	2437MHz	2462MHz	
802.11n20	Data Rate	MCS8	MCS8	MCS8	
	Chain 0&1	50	50	50	
	Test Frequency	2422MHz	2437MHz	2452MHz	
802.11n40	Data Rate	MCS8	MCS8	MCS8	
	Chain 0&1	40	40	40	

FCC Part 15.247 Page 6 of 60

The maximum duty cycle as below:

Mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11b	20	20	100
802.11g	20	20	100
802.11 n20	20	20	100
802.11 n40	20	20	100

802.11b

Date: 25.AUG.2017 12:15:56

FCC Part 15.247 Page 7 of 60

Date: 25.AUG.2017 12:17:12

802.11 n20

Date: 25.AUG.2017 12:21:27

FCC Part 15.247 Page 8 of 60

Date: 25.AUG.2017 12:20:17

Equipment Modifications

No modification was made to the EUT.

Local Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	Laptop	PP11L	QDS-BRCM1017

Support Cable List and Details

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	То
RJ45 cable	No	No	10	EUT	Laptop
RJ45 cable*2	No	No	10	EUT	Load
Adapter Cable	No	No	1.3	Adapter	EUT

FCC Part 15.247 Page 9 of 60

Block Diagram of Test Setup

FCC Part 15.247 Page 10 of 60

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.247 (i) & §1.1310 & §2.1091	Maximum Permissable Exposure (MPE)	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Bandwidth	Compliance
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

Report No.: RDG170817001-00

FCC Part 15.247 Page 11 of 60

FCC §15.247 (i) & §1.1310 & §2.1091- MAXIMUM PERMISSIBLE **EXPOSURE (MPE)**

Applicable Standard

According to subpart 15.247(i)and subpart §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Report No.: RDG170817001-00

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm²)	Averaging Time (minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34–30	824/f	2.19/f	*(180/f²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculation formula:

Prediction of power density at the distance of the applicable MPE limit

 $S = PG/4\pi R^2$ = power density (in appropriate units, e.g. mW/cm²); P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Frequency (MHz)	Ante	nna Gain	Conducted output power including Tune- up Tolerance		Evaluation Distance (cm)	Power Density (mW/cm²)	MPE Limit (mW/cm²)
	(dBi)	(numeric)	(dBm)	(mW)			
2412-2462	5	3.16	28	630.96	20.00	0.3971	1.0

Result: The device meet FCC MPE at 20 cm distance

FCC Part 15.247 Page 12 of 60

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RDG170817001-00

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

Antenna Connector Construction

The EUT has 2 external antennas permanently attached to the EUT, both antenna gains are 5.0 dBi. Please refer to the EUT photos.

Result: Compliance.

FCC Part 15.247 Page 13 of 60

FCC §15.207 (a)-AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207(a)

EUT Setup

Report No.: RDG170817001-00

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207.

The spacing between the peripherals was 10 cm.

The adapter was connected to the main lisn with a 120 V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

FCC Part 15.247 Page 14 of 60

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$

$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R: reading voltage amplitude A_c: attenuation caused by cable loss VDF: voltage division factor of AMN

C_f: Correction Factor

The "Margin" column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Report No.: RDG170817001-00

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS 30	830245/006	2016-12-08	2017-12-08
R&S	L.I.S.N	ESH2-Z5	892107/021	2016-09-01	2017-09-01
R&S	Two-line V-network	ENV 216	3560.6550.12	2016-12-08	2017-12-08
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A
Unknown	Coaxial Cable	2m	Con-1	2016-09-01	2017-09-01

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 15 of 60

Test Data

Environmental Conditions

Temperature:	26.5 °C
Relative Humidity:	52 %
ATM Pressure:	99.9 kPa

The testing was performed by Gaochao Gong on 2017-08-21.

Test Mode: Transmitting AC120 V, 60 Hz, Line:

Report No.: RDG170817001-00

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.178741	46.0	9.000	L1	10.8	18.5	64.5	Compliance
0.259937	38.2	9.000	L1	10.3	23.2	61.4	Compliance
0.432855	31.5	9.000	L1	9.9	25.7	57.2	Compliance
0.604902	34.2	9.000	L1	9.8	21.8	56.0	Compliance
1.239175	37.8	9.000	L1	9.7	18.2	56.0	Compliance
1.289541	36.0	9.000	L1	9.7	20.0	56.0	Compliance

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.178741	36.2	9.000	L1	10.8	18.3	54.5	Compliance
0.567545	23.2	9.000	L1	9.8	22.8	46.0	Compliance
0.975701	22.9	9.000	L1	9.8	23.1	46.0	Compliance
1.239175	31.5	9.000	L1	9.7	14.5	46.0	Compliance
1.289541	30.3	9.000	L1	9.7	15.7	46.0	Compliance
24.594166	24.3	9.000	L1	10.1	25.7	50.0	Compliance

FCC Part 15.247 Page 16 of 60

AC120 V, 60 Hz, Neutral:

Report No.: RDG170817001-00

Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.173134	48.2	9.000	N	10.9	16.6	64.8	Compliance
0.257874	39.4	9.000	N	10.3	22.1	61.5	Compliance
0.595338	40.4	9.000	N	9.8	15.6	56.0	Compliance
0.852094	35.1	9.000	N	9.8	20.9	56.0	Compliance
1.239175	40.1	9.000	N	9.7	15.9	56.0	Compliance
1.289541	38.3	9.000	N	9.7	17.7	56.0	Compliance

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.429420	28.8	9.000	N	9.9	18.5	47.3	Compliance
0.450448	31.1	9.000	N	9.9	15.8	46.9	Compliance
0.567545	35.6	9.000	N	9.8	10.4	46.0	Compliance
0.812315	28.2	9.000	N	9.8	17.8	46.0	Compliance
1.219583	32.9	9.000	N	9.7	13.1	46.0	Compliance
1.289541	32.6	9.000	N	9.7	13.4	46.0	Compliance

FCC Part 15.247 Page 17 of 60

FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard

FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1GHz:

Report No.: RDG170817001-00

Above 1GHz:

The radiated emission tests were performed in the 3 meters distance, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

The spacing between the peripherals was 10 cm.

FCC Part 15.247 Page 18 of 60

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 25 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

30MHz-1000MHz:

Detector	RBW	Video B/W	IF B/W
QP	120 kHz	300 kHz	120kHz

Report No.: RDG170817001-00

1GHz-25GHz:

Detector	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
Avia	>98%	1MHz	10 Hz
Ave.	<98%	1MHz	1/T

Note: T is minimum transmission duration

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1 GHz, peak and Average detection modes for frequencies above 1 GHz.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.247 Page 19 of 60

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCI	100224	2016-09-01	2017-08-31
Sunol Sciences	Antenna	JB3	A060611-1	2014-11-06	2017-11-05
HP	Amplifier	8447E	2434A02181	2016-09-01	2017-09-01
R&S	Spectrum Analyzer	FSU 26	200256	2016-12-08	2017-12-08
ETS-Lindgren	Horn Antenna	3115	000 527 35	2016-01-05	2019-01-04
Ducommun Technolagies	Horn Antenna	ARH-4223-02	1007726-02 1304	2017-06-16	2020-06-15
Mini-Circuit	Amplifier	ZVA-213-S+	SN054201245	2017-02-19	2018-02-19
Quinstar	Amplifier	QLW-18405536-JO	15964001001	2016-09-06	2017-09-06
Unknown	Coaxial Cable	Chamber A-1	4m	2016-09-01	2017-09-01
Unknown	Coaxial Cable	Chamber B-1	0.75m	2016-09-01	2017-09-01
Unknown	Coaxial Cable	Chamber A-2	10m	2016-09-01	2017-09-01
Unknown	Coaxial Cable	Chamber B-2	8m	2016-09-01	2017-09-01
Farad	Test Software	EZ-EMC	V1.1.4.2	N/A	N/A

Report No.: RDG170817001-00

Test Data

Environmental Conditions

Temperature:	28.5~30.0 °C
Relative Humidity:	43~48 %
ATM Pressure:	99.9~100.5 kPa

The testing was performed by Calvin Chen on 2017-08-19 and 2017-08-21.

Test Result: Compliance, please Refer to the following data

Test Mode: Transmitting

FCC Part 15.247 Page 20 of 60

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

1) 30MHz-1GHz(802.11b mode Middle channel was the worst):

Horizontal:

Report No.: RDG170817001-00

Frequency (MHz)	Receiver Reading (dBuV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
44.5500	37.94	QP	-9.54	28.40	40.00	11.60
117.3000	36.49	QP	-4.99	31.50	43.50	12.00
169.6800	33.79	QP	-7.29	26.50	43.50	17.00
280.2600	34.08	QP	-3.78	30.30	46.00	15.70
399.5700	34.85	QP	-2.45	32.40	46.00	13.60
500.4500	32.61	QP	-1.11	31.50	46.00	14.50

FCC Part 15.247 Page 21 of 60

Vertical:

Report No.: RDG170817001-00

Frequency (MHz)	Receiver Reading (dBuV)	Detector	Correction Factor (dB/m)	Cord. Amp. (dBuV/m)	Limit (dBuV/m)	Margin (dB)
35.8200	33.83	QP	-3.13	30.70	40.00	9.30
51.3400	46.88	QP	-11.98	34.90	40.00	5.10
119.2400	33.01	QP	-4.91	28.10	43.50	15.40
139.6100	33.54	QP	-6.24	27.30	43.50	16.20
286.0800	28.92	QP	-4.02	24.90	46.00	21.10
400.5400	36.73	QP	-2.43	34.30	46.00	11.70

FCC Part 15.247 Page 22 of 60

2) 1-25GHz:

802.11b (Chain 0 was the worst):

802.11b (Chain 0 was the worst):									
Enggnengy	Re	ceiver	Rx A	ntenna	Cable	Amplifier	Corrected	Limit	Margin
Frequency (MHz)	Reading	Detector	Polar	Factor	loss	Gain	Amplitude	(dBµV/m)	(dB)
(WIIIZ)	(dBµV)	(PK/QP/AV)	(H/V)	(dB)	(dB)	(dB)	$(dB\mu V/m)$	(αΒμ ν/ιιι)	(ub)
Low Channel: 2412 MHz									•
2412	66.61	PK	Н	28.12	3.11	0.00	97.84	N/A	N/A
2412	60.63	AV	Н	28.12	3.11	0.00	91.86	N/A	N/A
2412	77.58	PK	V	28.12	3.11	0.00	108.81	N/A	N/A
2412	71.67	AV	V	28.12	3.11	0.00	102.90	N/A	N/A
2390	33.52	PK	V	28.08	3.10	0.00	64.70	74.00	9.30
2390	19.52	AV	V	28.08	3.10	0.00	50.70	54.00	3.30
4824	57.29	PK	V	32.95	4.33	35.49	59.08	74.00	14.92
4824	49.64	AV	V	32.95	4.33	35.49	51.43	54.00	2.57
7236	51.81	PK	V	35.81	5.47	35.97	57.12	74.00	16.88
7236	40.32	AV	V	35.81	5.47	35.97	45.63	54.00	8.37
3589	45.52	PK	V	31.50	3.72	35.10	45.64	74.00	28.36
3589	34.56	AV	V	31.50	3.72	35.10	34.68	54.00	19.32
		·	Mid	ldle Chann	el: 2437 l	MHz			
2437	69.26	PK	Н	28.17	3.11	0.00	100.54	N/A	N/A
2437	64.13	AV	Н	28.17	3.11	0.00	95.41	N/A	N/A
2437	82.28	PK	V	28.17	3.11	0.00	113.56	N/A	N/A
2437	76.95	AV	V	28.17	3.11	0.00	108.23	N/A	N/A
4874	56.11	PK	V	33.05	4.39	35.53	58.02	74.00	15.98
4874	48.02	AV	V	33.05	4.39	35.53	49.93	54.00	4.07
7311	53.56	PK	V	36.01	5.52	35.97	59.12	74.00	14.88
7311	43.57	AV	V	36.01	5.52	35.97	49.13	54.00	4.87
3625	45.51	PK	V	31.58	3.73	35.12	45.70	74.00	28.30
3625	34.15	AV	V	31.58	3.73	35.12	34.34	54.00	19.66
4121	46.25	PK	V	32.38	3.99	35.33	47.29	74.00	26.71
4121	34.47	AV	V	32.38	3.99	35.33	35.51	54.00	18.49
			Hi	gh Channe	l: 2462 N				
2462	70.32	PK	Н	28.22	3.10	0.00	101.64	N/A	N/A
2462	65.58	AV	Н	28.22	3.10	0.00	96.90	N/A	N/A
2462	83.51	PK	V	28.22	3.10	0.00	114.83	N/A	N/A
2462	77.64	AV	V	28.22	3.10	0.00	108.96	N/A	N/A
2483.5	34.17	PK	V	28.27	3.10	0.00	65.54	74.00	8.46
2483.5	20.04	AV	V	28.27	3.10	0.00	51.41	54.00	2.59
4924	54.16	PK	V	33.15	4.42	35.57	56.16	74.00	17.84
4924	40.23	AV	V	33.15	4.42	35.57	42.23	54.00	11.77
7386	54.17	PK	V	36.20	5.57	35.98	59.96	74.00	14.04
7386	41.11	AV	V	36.20	5.57	35.98	46.90	54.00	7.10
3541	45.57	PK	V	31.39	3.69	35.07	45.58	74.00	28.42
3541	33.59	AV	V	31.39	3.69	35.07	33.60	54.00	20.40

Report No.: RDG170817001-00

FCC Part 15.247 Page 23 of 60

802.11g (Chain 0 was the worst):

802.11g (Chain 0 wa	s the worst):							
т.	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T,	34
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Lo	w Channe	1: 2412 M	Hz			
2412	71.05	PK	Н	28.12	3.11	0.00	102.28	N/A	N/A
2412	60.12	AV	Н	28.12	3.11	0.00	91.35	N/A	N/A
2412	75.14	PK	V	28.12	3.11	0.00	106.37	N/A	N/A
2412	63.53	AV	V	28.12	3.11	0.00	94.76	N/A	N/A
2390	35.52	PK	V	28.08	3.10	0.00	66.70	74.00	7.30
2390	20.26	AV	V	28.08	3.10	0.00	51.44	54.00	2.56
4824	56.87	PK	V	32.95	4.33	35.49	58.66	74.00	15.34
4824	43.82	AV	V	32.95	4.33	35.49	45.61	54.00	8.39
7236	51.74	PK	V	35.81	5.47	35.97	57.05	74.00	16.95
7236	39.28	AV	V	35.81	5.47	35.97	44.59	54.00	9.41
3965	46.26	PK	V	32.32	3.89	35.34	47.13	74.00	26.87
3965	34.17	AV	V	32.32	3.89	35.34	35.04	54.00	18.96
			Mic	ldle Chann					
2437	71.23	PK	Н	28.17	3.11	0.00	102.51	N/A	N/A
2437	60.24	AV	Н	28.17	3.11	0.00	91.52	N/A	N/A
2437	78.37	PK	V	28.17	3.11	0.00	109.65	N/A	N/A
2437	66.31	AV	V	28.17	3.11	0.00	97.59	N/A	N/A
4874	56.61	PK	V	33.05	4.39	35.53	58.52	74.00	15.48
4874	44.64	AV	V	33.05	4.39	35.53	46.55	54.00	7.45
7311	52.01	PK	V	36.01	5.52	35.97	57.57	74.00	16.43
7311	40.32	AV	V	36.01	5.52	35.97	45.88	54.00	8.12
4152	46.33	PK	V	32.37	4.00	35.32	47.38	74.00	26.62
4152	34.45	AV	V	32.37	4.00	35.32	35.50	54.00	18.50
4568	46.25	PK	V	32.44	4.35	35.29	47.75	74.00	26.25
4568	34.86	AV	V	32.44	4.35	35.29	36.36	54.00	17.64
		·		gh Channe				1	·
2462	71.07	PK	Н	28.22	3.10	0.00	102.39	N/A	N/A
2462	59.84	AV	Н	28.22	3.10	0.00	91.16	N/A	N/A
2462	79.41	PK	V	28.22	3.10	0.00	110.73	N/A	N/A
2462	67.12	AV	V	28.22	3.10	0.00	98.44	N/A	N/A
2483.5	38.71	PK	V	28.27	3.10	0.00	70.08	74.00	3.92
2483.5	20.74	AV	V	28.27	3.10	0.00	52.11	54.00	1.89
4924	57.57	PK	V	33.15	4.42	35.57	59.57	74.00	14.43
4924	45.01	AV	V	33.15	4.42	35.57	47.01	54.00	6.99
7386	51.34	PK	V	36.20	5.57	35.98	57.13	74.00	16.87
7386	40.22	AV	V	36.20	5.57	35.98	46.01	54.00	7.99
3697	46.32	PK	V	31.73	3.73	35.17	46.61	74.00	27.39
3697	34.16	AV	V	31.73	3.73	35.17	34.45	54.00	19.55

Report No.: RDG170817001-00

FCC Part 15.247 Page 24 of 60

802.11 n20 (2TX mode was the worst)

802.11 n20 (2TX mode was the worst)									
т.	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T,	3.6
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel: 2412 MHz									
2412	69.06	PK	Н	28.12	3.11	0.00	100.29	N/A	N/A
2412	61.24	AV	Н	28.12	3.11	0.00	92.47	N/A	N/A
2412	73.67	PK	V	28.12	3.11	0.00	104.90	N/A	N/A
2412	65.61	AV	V	28.12	3.11	0.00	96.84	N/A	N/A
2390	34.56	PK	V	28.08	3.10	0.00	65.74	74.00	8.26
2390	20.71	AV	V	28.08	3.10	0.00	51.89	54.00	2.11
4824	57.19	PK	V	32.95	4.33	35.49	58.98	74.00	15.02
4824	48.52	AV	V	32.95	4.33	35.49	50.31	54.00	3.69
7236	51.29	PK	V	35.81	5.47	35.97	56.60	74.00	17.40
7236	41.48	AV	V	35.81	5.47	35.97	46.79	54.00	7.21
3454	45.58	PK	V	31.19	3.62	35.06	45.33	74.00	28.67
3454	33.56	AV	V	31.19	3.62	35.06	33.31	54.00	20.69
			Mic	ldle Chann					
2437	69.04	PK	Н	28.17	3.11	0.00	100.32	N/A	N/A
2437	60.99	AV	Н	28.17	3.11	0.00	92.27	N/A	N/A
2437	77.17	PK	V	28.17	3.11	0.00	108.45	N/A	N/A
2437	69.63	AV	V	28.17	3.11	0.00	100.91	N/A	N/A
4874	57.15	PK	V	33.05	4.39	35.53	59.06	74.00	14.94
4874	47.89	AV	V	33.05	4.39	35.53	49.80	54.00	4.20
7311	50.24	PK	V	36.01	5.52	35.97	55.80	74.00	18.20
7311	39.69	AV	V	36.01	5.52	35.97	45.25	54.00	8.75
3352	45.36	PK	V	30.94	3.56	35.12	44.74	74.00	29.26
3352	33.58	AV	V	30.94	3.56	35.12	32.96	54.00	21.04
4117	46.31	PK	V	32.38	3.99	35.33	47.35	74.00	26.65
4117	34.21	AV	V	32.38	3.99	35.33	35.25	54.00	18.75
	-	1		gh Channe			1	ή	·
2462	69.29	PK	Н	28.22	3.10	0.00	100.61	N/A	N/A
2462	60.78	AV	Н	28.22	3.10	0.00	92.10	N/A	N/A
2462	77.46	PK	V	28.22	3.10	0.00	108.78	N/A	N/A
2462	69.93	AV	V	28.22	3.10	0.00	101.25	N/A	N/A
2483.5	34.03	PK	V	28.27	3.10	0.00	65.40	74.00	8.60
2483.5	21.23	AV	V	28.27	3.10	0.00	52.60	54.00	1.40
4924	56.36	PK	V	33.15	4.42	35.57	58.36	74.00	15.64
4924	47.18	AV	V	33.15	4.42	35.57	49.18	54.00	4.82
7386	49.97	PK	V	36.20	5.57	35.98	55.76	74.00	18.24
7386	39.59	AV	V	36.20	5.57	35.98	45.38	54.00	8.62
3665	45.35	PK	V	31.66	3.73	35.15	45.59	74.00	28.41
3665	46.29	AV	V	31.66	3.73	35.15	46.53	54.00	7.47

Report No.: RDG170817001-00

FCC Part 15.247 Page 25 of 60

802.11 n40 (2TX mode was the worst)

802.11 n40 (2TX mode was the worst)									
TC	Re	eceiver	Rx A	ntenna	Cable	Amplifier	Corrected	T **4	N/
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/AV)	Polar (H/V)	Factor (dB)	loss (dB)	Gain (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Low Channel: 2422 MHz									
2422	65.24	PK	Н	28.14	3.11	0.00	96.49	N/A	N/A
2422	56.38	AV	Н	28.14	3.11	0.00	87.63	N/A	N/A
2422	72.51	PK	V	28.14	3.11	0.00	103.76	N/A	N/A
2422	59.35	AV	V	28.14	3.11	0.00	90.60	N/A	N/A
2390	33.55	PK	V	28.08	3.10	0.00	64.73	74.00	9.27
2390	20.35	AV	V	28.08	3.10	0.00	51.53	54.00	2.47
4844	54.11	PK	V	32.99	4.35	35.51	55.94	74.00	18.06
4844	43.59	AV	V	32.99	4.35	35.51	45.42	54.00	8.58
7266	47.59	PK	V	35.89	5.49	35.97	53.00	74.00	21.00
7266	36.69	AV	V	35.89	5.49	35.97	42.10	54.00	11.90
3524	45.52	PK	V	31.35	3.68	35.06	45.49	74.00	28.51
3524	34.57	AV	V	31.35	3.68	35.06	34.54	54.00	19.46
	•	•	Mic	ldle Chann	el: 2437 l	MHz		•	•
2437	64.28	PK	Н	28.17	3.11	0.00	95.56	N/A	N/A
2437	55.72	AV	Н	28.17	3.11	0.00	87.00	N/A	N/A
2437	73.29	PK	V	28.17	3.11	0.00	104.57	N/A	N/A
2437	64.25	AV	V	28.17	3.11	0.00	95.53	N/A	N/A
4874	53.32	PK	V	33.05	4.39	35.53	55.23	74.00	18.77
4874	43.22	AV	V	33.05	4.39	35.53	45.13	54.00	8.87
7311	48.21	PK	V	36.01	5.52	35.97	53.77	74.00	20.23
7311	37.21	AV	V	36.01	5.52	35.97	42.77	54.00	11.23
4226	46.51	PK	V	32.35	4.00	35.31	47.55	74.00	26.45
4226	34.25	AV	V	32.35	4.00	35.31	35.29	54.00	18.71
3579	45.52	PK	V	31.47	3.72	35.09	45.62	74.00	28.38
3579	33.29	AV	V	31.47	3.72	35.09	33.39	54.00	20.61
			Hi	gh Channe	1: 2452 N	ПНz			
2452	65.21	PK	Н	28.20	3.10	0.00	96.51	N/A	N/A
2452	58.86	AV	Н	28.20	3.10	0.00	90.16	N/A	N/A
2452	73.73	PK	V	28.20	3.10	0.00	105.03	N/A	N/A
2452	60.09	AV	V	28.20	3.10	0.00	91.39	N/A	N/A
2483.5	33.82	PK	V	28.27	3.10	0.00	65.19	74.00	8.81
2483.5	20.46	AV	V	28.27	3.10	0.00	51.83	54.00	2.17
4904	53.06	PK	V	33.11	4.42	35.56	55.03	74.00	18.97
4904	44.01	AV	V	33.11	4.42	35.56	45.98	54.00	8.02
7356	49.28	PK	V	36.13	5.55	35.98	54.98	74.00	19.02
7356	36.26	AV	V	36.13	5.55	35.98	41.96	54.00	12.04
3874	46.21	PK	V	32.12	3.81	35.28	46.86	74.00	27.14
3874	33.25	AV	V	32.12	3.81	35.28	33.90	54.00	20.10

Report No.: RDG170817001-00

FCC Part 15.247 Page 26 of 60

FCC §15.247(a) (2)-6 dB EMISSION BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No.: RDG170817001-00

Test Procedure

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) $\geq 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = \max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.6 °C
Relative Humidity:	47 %
ATM Pressure:	100.5 kPa

The testing was performed by Calvin Chen on 2017-08-19.

FCC Part 15.247 Page 27 of 60

Test Mode: Transmitting (Test only was performed at chain 0)

Test Result: Compliant. Please refer to the following table and plots.

Test mode	Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	Limit (MHz)
	Low	2412	10.08	≥0.5
802.11b	Middle	2437	10.08	≥0.5
	High	2462	10.08	≥0.5
	Low	2412	16.64	≥0.5
802.11g	Middle	2437	16.64	≥0.5
	High	2462	16.64	≥0.5
	Low	2412	17.84	≥0.5
802.11 n20	Middle	2437	17.92	≥0.5
	High	2462	17.92	≥0.5
	Low	2422	36.64	≥0.5
802.11 n40	Middle	2437	36.48	≥0.5
	High	2452	36.48	≥0.5

Report No.: RDG170817001-00

FCC Part 15.247 Page 28 of 60

802.11b Low Channel

Date: 19.AUG.2017 14:50:39

802.11b Middle Channel

Date: 19.AUG.2017 14:46:27

FCC Part 15.247 Page 29 of 60

802.11b High Channel

Date: 19.AUG.2017 14:44:28

802.11g Low Channel

Date: 19.AUG.2017 15:48:18

FCC Part 15.247 Page 30 of 60

802.11g Middle Channel

Date: 19.AUG.2017 15:51:18

802.11g High Channel

Date: 19.AUG.2017 15:53:15

FCC Part 15.247 Page 31 of 60

802.11 n20 Low Channel

Date: 19.AUG.2017 18:05:11

802.11 n20 Middle Channel

Date: 19.AUG.2017 18:08:15

FCC Part 15.247 Page 32 of 60

Report No.: RDG170817001-00

Date: 19.AUG.2017 18:13:57

802.11 n40 Low Channel

Date: 19.AUG.2017 18:16:32

FCC Part 15.247 Page 33 of 60

802.11 n40 Middle Channel

Date: 19.AUG.2017 18:29:15

802.11 n40 High Channel

Date: 19.AUG.2017 18:32:05

FCC Part 15.247 Page 34 of 60

FCC §15.247(b) (3) - MAXIMUM PEAK CONDUCTED OUTPUT POWER

Report No.: RDG170817001-00

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to test equipment.
- 3. Add a correction factor to the display.
- 4. Set the power Meter to test Peak output power, record the result as peak power.
- 5. Set the power meter to test average output power, record the result as average power.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54210016	2016-11-03	2017-11-03
Agilent	Wideband Power Sensor	N1921A	MY54170013	2016-11-03	2017-11-03
Agilent	P-Series Power Meter	N1912A	MY5000448	2016-11-03	2017-11-03
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.6 °C
Relative Humidity:	47 %
ATM Pressure:	100.5 kPa

The testing was performed by Calvin Chen on 2017-08-19.

FCC Part 15.247 Page 35 of 60

Test Mode: Transmitting

SISO:

Test mode	Test mode Channel		Max Peak Cond Pow (dB	ver	Limit (dBm)
		(MHz)	Chain 0	Chain 1	` ,
	Low	2412	19.42	19.52	30
802.11b	Middle	2437	23.31	24.2	30
	High	2462	23.57	19.86	30
	Low	2412	24.07	25.05	30
802.11g	Middle	2437	24.34	25.41	30
	High	2462	24.58	25.63	30

Report No.: RDG170817001-00

MIMO:

Test mode	Channel	Frequency (MHz)	Max Peak (Output (dB	Power	Total (dBm)	Limit (dBm)
		Ì	Chain 0	Chain 1		
	Low	2412	24.44	24.64	27.55	30
802.11 n20	Middle	2437	24.59	24.57	27.59	30
	High	2462	24.56	24.75	27.67	30
	Low	2422	19.38	19.44	22.42	30
802.11 n40	Middle	2437	19.47	19.41	22.45	30
	High	2452	19.23	19.29	22.27	30

FCC Part 15.247 Page 36 of 60

FCC §15.247(d)– 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

Report No.: RDG170817001-00

Applicable Standard

According to FCC§15.247(d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/

^{*} **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247 Page 37 of 60

Test Data

Environmental Conditions

Temperature:	25.6 °C
Relative Humidity:	47 %
ATM Pressure:	100.5 kPa

The testing was performed by Calvin Chen on 2017-08-19.

Report No.: RDG170817001-00

Test mode: Transmitting

Test Result: Compliant. Please refer to following plots.

FCC Part 15.247 Page 38 of 60

Chain 0, 802.11b: Band Edge, Left Side

Date: 19.AUG.2017 14:51:48

Chain 0, 802.11b: Band Edge, Right Side

Date: 19.AUG.2017 14:45:36

FCC Part 15.247 Page 39 of 60

Chain 0, 802.11g: Band Edge, Left Side

Date: 19.AUG.2017 15:49:36

Chain 0, 802.11g: Band Edge, Right Side

Date: 19.AUG.2017 15:54:41

FCC Part 15.247 Page 40 of 60

Chain 0, 802.11 n20 Band Edge, Left Side

Date: 19.AUG.2017 18:06:31

Chain 0, 802.11 n20 Band Edge, Right Side

Date: 19.AUG.2017 18:15:25

FCC Part 15.247 Page 41 of 60

Chain 0, 802.11 n40 Band Edge, Left Side

Report No.: RDG170817001-00

Date: 19.AUG.2017 18:18:10

Chain 0, 802.11 n40 Band Edge, Right Side

Date: 19.AUG.2017 18:33:35

FCC Part 15.247 Page 42 of 60

Chain 1, 802.11b: Band Edge, Left Side

Date: 19.AUG.2017 14:33:19

Chain 1, 802.11b: Band Edge, Right Side

Date: 19.AUG.2017 14:37:57

FCC Part 15.247 Page 43 of 60

Chain 1, 802.11g: Band Edge, Left Side

Date: 19.AUG.2017 18:00:09

Chain 1, 802.11g: Band Edge, Right Side

Date: 19.AUG.2017 17:55:54

FCC Part 15.247 Page 44 of 60

Chain 1, 802.11 n20 Band Edge, Left Side

Date: 19.AUG.2017 18:04:06

Chain 1, 802.11 n20 Band Edge, Right Side

Date: 19.AUG.2017 18:12:55

FCC Part 15.247 Page 45 of 60

Chain 1, 802.11 n40 Band Edge, Left Side

Report No.: RDG170817001-00

Date: 19.AUG.2017 18:22:48

Chain 1, 802.11 n40 Band Edge, Right Side

Date: 19.AUG.2017 18:36:51

FCC Part 15.247 Page 46 of 60

FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Report No.: RDG170817001-00

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT was set without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set the RBW = 3 kHz, VBW = 10 kHz, Set the span to 1.5 times the DTS bandwidth.
- 4. Use the peak marker function to determine the maximum amplitude level.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESPI	100120	2016-12-08	2017-12-08
Unknown	Coaxial Cable	0.1m	C-1	Each Time	/

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Dongguan) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	25.6 °C		
Relative Humidity:	47 %		
ATM Pressure:	100.5 kPa		

The testing was performed by Calvin Chen on 2017-08-19.

FCC Part 15.247 Page 47 of 60

Test Result: Compliance

Test Mode: Transmitting

SISO:

Test mode	Channel Frequency			SD /3kHz)	Limit
	(MH	(MHz)	Chain 0	Chain 1	(dBm/3kHz)
802.11b	Low	2412	-14.05	-14.11	≤8
	Middle	2437	-10.22	-9.45	≤8
	High	2462	-10.09	-13.7	≤8
802.11g	Low	2412	-12.86	-11.67	≤8
	Middle	2437	-12.73	-11.12	≤8
	High	2462	-12.03	-11.38	≤8

Report No.: RDG170817001-00

MIMO:

Test mode	Channel Frequency		PSD (dBm/3kHz)		Total	Limit
		(MHz)	Chain 0	Chain 1	(dBm/3kHz)	(dBm/3kHz)
802.11 n20	Low	2412	-11.33	-11.82	-8.56	≤8
	Middle	2437	-10.75	-12.42	-8.49	≤8
	High	2462	-10.75	-11.89	-8.27	≤8
802.11 n40	Low	2422	-19.26	-19.88	-16.55	≤8
	Middle	2437	-19.35	-18.96	-16.14	≤8
	High	2452	-18.68	-19.56	-16.09	≤8

Please refer to the following plots

FCC Part 15.247 Page 48 of 60

Chain 0:

Power Spectral Density, 802.11b Low Channel

Date: 19.AUG.2017 14:51:31

Power Spectral Density, 802.11b Middle Channel

Date: 19.AUG.2017 14:47:16

FCC Part 15.247 Page 49 of 60

Power Spectral Density, 802.11b High Channel

Date: 19.AUG.2017 14:45:18

Power Spectral Density, 802.11g Low Channel

Date: 19.AUG.2017 15:49:19

FCC Part 15.247 Page 50 of 60

Power Spectral Density, 802.11g Middle Channel

Date: 19.AUG.2017 15:52:10

Power Spectral Density, 802.11g High Channel

Date: 19.AUG.2017 15:54:17

FCC Part 15.247 Page 51 of 60

Power Spectral Density, 802.11 n20 Low Channel

Date: 19.AUG.2017 18:06:05

Power Spectral Density, 802.11 n20 Middle Channel

Date: 19.AUG.2017 18:09:08

FCC Part 15.247 Page 52 of 60

Power Spectral Density, 802.11 n20 High Channel

Date: 19.AUG.2017 18:15:00

Power Spectral Density, 802.11 n40 Low Channel

Date: 19.AUG.2017 18:17:40

FCC Part 15.247 Page 53 of 60

Power Spectral Density, 802.11 n40 Middle Channel

Date: 19.AUG.2017 18:30:33

Power Spectral Density, 802.11 n40 High Channel

Date: 19.AUG.2017 18:33:12

FCC Part 15.247 Page 54 of 60

Chain 1:

Power Spectral Density, 802.11b Low Channel

Date: 19.AUG.2017 14:32:56

Power Spectral Density, 802.11b Middle Channel

Date: 19.AUG.2017 18:40:29

FCC Part 15.247 Page 55 of 60

Power Spectral Density, 802.11b High Channel

Date: 19.AUG.2017 14:37:35

Power Spectral Density, 802.11g Low Channel

Date: 19.AUG.2017 17:59:45

FCC Part 15.247 Page 56 of 60

Power Spectral Density, 802.11g Middle Channel

Date: 19.AUG.2017 17:57:37

Power Spectral Density, 802.11g High Channel

Date: 19.AUG.2017 17:55:37

FCC Part 15.247 Page 57 of 60

Power Spectral Density, 802.11 n20 Low Channel

Date: 19.AUG.2017 18:03:43

Power Spectral Density, 802.11 n20 Middle Channel

Date: 19.AUG.2017 18:11:03

FCC Part 15.247 Page 58 of 60

Power Spectral Density, 802.11 n20 High Channel

Date: 19.AUG.2017 18:12:37

Power Spectral Density, 802.11 n40 Low Channel

Date: 19.AUG.2017 18:22:18

FCC Part 15.247 Page 59 of 60

Power Spectral Density, 802.11 n40 Middle Channel

Report No.: RDG170817001-00

Date: 19.AUG.2017 18:28:21

Power Spectral Density, 802.11 n40 High Channel

Date: 19.AUG.2017 18:36:14

***** END OF REPORT *****

FCC Part 15.247 Page 60 of 60