Grupo ARCOS

uc3m Universidad Carlos III de Madrid

Tema 4 (III) El procesador

Estructura de Computadores Grado en Ingeniería Informática

Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

Modos de ejecución

- Se indica con un bit situado en el registro de estado (U)
- Al menos 2 modos:
 - Modo usuario
 - El procesador no puede ejecutar instrucciones privilegiadas (ejemplo: instrucciones de E/S, de habilitación de interrupciones, ...)
 - Si un proceso de usuario ejecuta una instrucción privilegiada se produce una interrupción
 - Modo núcleo
 - Reservado al sistema operativo
 - ▶ El procesador puede ejecutar todo el repertorio de instrucciones

Idea de interrupción

- Señal que llega a la U.C. y que rompe la secuencia normal de ejecución:
 - Se pausa la ejecución del programa actual y se transfiere la ejecución a otro programa que atiende la interrupción (ISR).
 - Al terminar el ISR la ejecución del programa se reanuda.
- Ejemplo de causas:
 - Cuando un periférico solicita la atención del procesador,
 - Cuando ocurre un error en la ejecución de la instrucción,
 - Etc.

Clasificación de las interrupciones

Excepciones hardware síncronas

Cuando un error ocurre en la ejecución de la instrucción en curso:
 División por cero, acceso a una posición de memoria ilegal, etc.

Excepciones hardware asíncronas

Fallos o errores en el hardware no relacionados con la instrucción en curso: impresora sin papel, etc.

Interrupciones externas

 Cuando un periférico precisa de atención por parte de la CPU: periféricos, interrupción del reloj

Llamadas al sistema

- Petición de servicio del sistema operativo
 - Instrucciones máquina especiales que generan una interrupción para activar al sistema operativo

Excepciones hardware asíncronas e Interrupciones externas

- Originan una ruptura de secuencia no programada
 - Antes del ciclo de fetch de la siguiente instrucción, ver si hay interrupción pendiente, y si la hay...
 - ...Bifurcación a subrutina del S.O. que la trata
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido.
- Causa asíncrona a la ejecución del programa en curso
 - Atención a periférico
 - Etc.

Excepciones hardware síncronas

- Originan una ruptura de secuencia no programada
 - Dentro del microprograma de la instrucción en curso...
 - ...Bifurcación a subrutina del S.O. que la trata
- Posteriormente, restituye el estado y devuelve el control al programa interrumpido o finaliza su ejecución
- Causa síncrona a la ejecución del programa en curso
 - División entre cero
 - Etc.

Activación de interrupción en el registro de estado

Se indica con un bit situado en el registro de estado (I)

Activación de interrupción en el registro de estado

Operación de SELEC:

```
if (SelP1 = 1 AND SelP0 == 1)
Output = C' V' N' Z' I U
```

Ciclo de reconocimiento de la interrupción (CRI)

- Forma parte del microcódigo antes del ciclo de fetch
 - Trata especialmente las interrupciones asíncronas
- ▶ Estructura general del CRI:
- 1. Comprueba se hay activada una señal de interrupción.
- 2. Si está activada:
 - 1. Salva PC y RE (el contador de programa y el registro de estado)
 - Equivalent to "push pc, push sr"
 - 2. Pasa de modo usuario a modo núcleo
 - □ Equivalent to "SR.U = 0"
 - 3. Obtiene la dirección de la rutina de tratamiento de la interrupción
 - □ Equivalent to "isr_addr = Vector_interrupts[id_interrupt]"
 - 4. Almacena en el contador de programa la dirección obtenida (de esta forma la siguiente instrucción será la de la rutina de tratamiento)
 - Equivalent to "PC = isr_addr"

Rutina de tratamiento de la interrupción (RTI)

- Forma parte del código del sistema operativo
 - Hay una RTI por cada interrupción que pueda darse
- Estructura general de las RTI:
- 1. Salva el resto de registros del procesador (que precise)
- 2. Atiende la interrupción
- 3. Restaura los registros del procesador guardados en (2)
- 4. Ejecuta una instrucción máquina especial: RETI
 - Restaura el registro de estado del programa interrumpido (fijando de nuevo el modo del procesador a modo usuario)
 - Restaura el contador de programa (de forma que la siguiente instrucción es la del programa interrumpido).

Interrupciones vectorizadas

Interrupciones vectorizadas

- ▶ El elemento que interrumpe suministra el vector de interrupción
- Este vector es un índice en una tabla que contiene la dirección de la rutina de tratamiento de la interrupción.
- La UC lee el contenido de esta entrada y carga el valor en el PC
- Cada sistema operativo rellena esta tabla con las direcciones de cada una de las rutinas de tratamiento, que son dependientes de cada sistema operativo.

Interrupciones en un PC con Windows

Interrupciones por software. Llamadas al sistema y sistemas operativos

- El mecanismo de llamadas al sistema es el que permite que los programas de usuario puedan solicitar los servicios que ofrece el sistema operativo
 - Cargar programas en memoria para su ejecución
 - Acceso a los dispositivos periféricos
 - Etc.
- Similar a las llamadas al sistema que ofrece el simulador CREATOR
 - Hay ejemplos en WepSIM que muestran cómo internamente se puede implementar las llamadas al sistema

Interrupciones software Llamadas al sistema (ejemplo: Linux)

Interrupciones del reloj y sistemas operativos

- La señal que gobierna la ejecución de las instrucciones máquina se divide mediante un divisor de frecuencia para generar una interrupción externa cada cierto intervalo de tiempo (pocos milisegundos)
- Estas interrupciones de reloj o tics son interrupciones periódicas que permite que el sistema operativo entre a ejecutar de forma periódica evitando que un programa de usuario monopolice la CPU
 - Permite alternar la ejecución de diversos programas en un sistema dado la apariencia de ejecución simultánea
 - Cada vez que llega una interrupción de reloj se suspende al programa y se salta al sistema operativo que ejecuta el planificador para decidir el siguiente programa a ejecutar

Félix García-Carballeira, Alejandro Calderón Mateos

Contenido

- 1. Elementos de un computador
- 2. Organización del procesador
- La unidad de control
- 4. Ejecución de instrucciones
- 5. Diseño de la unidad de control
- 6. Modos de ejecución
- 7. Interrupciones
- 8. Arranque de un computador
- 9. Prestaciones y paralelismo

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)


```
Award Modular BIOS v6.00PG, An Energy Star Ally
  Copyright (C) 1984-2007, Award Software, Inc.
Intel X38 BIOS for X38-DQ6 F4
Main Processor : Intel(R) Core(TM)Z Extreme CPU X9650 @ 4.00GHz(333x1Z
CPUID:0676 Patch ID:0000>
Menory Testing : 2096064K OK
Memory Runs at Dual Channel Interleaved
IDE Channel 0 Slave ; WDC WD3200AAJS-00RYA0 12.01801
IDE Channel 1 Slave : WDC WD3Z00AAJS-00RYA0 12.01B01
Detecting IDE drives ...
IDE Channel 4 Master : Mone
IDE Channel 4 Slave : Mone
IDE Channel 5 Master : Mone
IDE Channel 5 Slave : None
<DEL>:BIOS Setup <F9>:XpressRecoveryZ <F1Z>:Boot Menu <End>:Qflash
 9/19/2007-X38-ICH9-6A790G0QC-00
```

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)
 - Carga en memoria el cargador del sistema operativo (MBR)

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)
 - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
 - Establece opciones de arranque

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)
 - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
 - Establece opciones de arranque
 - Carga el programa de carga

- ▶ El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)
 - Carga en memoria el cargador del sistema ope
- Se ejecuta el cargador del s
 - Establece opciones de ai
 - Carga el programa de ca
- Se ejecuta el programa de carga
 - Establece estado inicial para el S.O.
 - Carga el sistema operativo y lo ejecuta


```
tting sustem time from the hardware clock (localtime).
      etc/random-seed to initialize /dev/urandom.
nitializing basic system settings ...
dating shared libraries
etting hostname: engpc23.murdoch.edu.au
IIT: Entering runlevel: 4
.M ==> Going multiuser..
nitialising advanced hardware
nitialising network
etting up localhost ...
etting up inet1 ...
etting up route ...
etting up fancy console and GUI
pading fc-cache
outlinit ==> Going to runlevel 4
tarting services of runlevel 4
 ree86 Display Manager
  mebuffer /dev/fb0 is 307200 bytes
```

resumen

- El Reset carga en los registros sus valores predefinidos
 - PC ← dirección de arranque del programa iniciador (en memoria ROM)
- Se ejecuta el programa iniciador
 - Test del sistema (POST)
 - Carga en memoria el cargador del sistema operativo (MBR)
- Se ejecuta el cargador del sistema operativo
 - Establece opciones de arranque
 - Carga el programa de carga
- Se ejecuta el programa de carga
 - Establece estado inicial para el S.O.
 - Carga el sistema operativo y lo ejecuta

Tiempo de ejecución de un programa

Iron law of processor performance

$$Tiempo_{ejecución} = NI \times CPI \times t_{ciclo_CPU} + NI \times AMI \times t_{ciclo_mem}$$

- NI es el número de instrucciones máquina del programa
- es el número medio de ciclos de reloj necesario para ejecutar una instrucción
- t_{ciclo CPI} es el tiempo que dura el ciclo de reloj del procesador
- AMI es el número medio de accesos a memoria por instrucción
- t_{ciclo mem} es el tiempo de un acceso a memoria

Factores que afecta al tiempo de ejecución

	NI	CPI	t _{ciclo_CPI}	AMI	t _{ciclo_mem}
Programa	✓			√	
Compilador	✓	√		✓	
Juego de instrucciones (ISA)	✓	√	✓	>	
Organización		√	√		✓
Tecnología			√		✓

Modelo de procesador basado en camino de datos (sin bus interno)

Paralelismo a nivel de instrucción

- Procesamiento concurrente de varias instrucciones
- Combinación de elementos que trabajan en paralelo:
 - Procesadores segmentados: utilizan técnicas de pipeline para procesar varias instrucciones simultáneamente
 - Procesadores superescalares: procesador segmentado que puede ejecutar varias instrucciones en paralelo cada una de ellas en una unidad segmentada diferente
 - Procesadores multicore: procesador que combina dos o más procesadores independientes en un solo empaquetado

Segmentación de instrucciones

- Etapas de ejecución de una instrucción:
 - LI: Lectura de la instrucción e incremento del PC
 - D: Decodificación
 - ▶ LO: Lectura de Operandos
 - EJ: Ejecución de la instrucción
 - **EO**: Escritura de Operandos

Segmentación de instrucciones sin pipeline

Etapas de ejecución de una instrucción:

- LI: Lectura de la instrucción e incremento del PC
- D: Decodificación
- ▶ LO: Lectura de Operandos
- EJ: Ejecución de la instrucción
- **EO**: Escritura de Operandos

Segmentación de instrucciones sin pipeline

- Si cada fase dura N ciclos de reloj, entonces
 - Una instrucción se ejecuta en 5*N ciclos de reloj
 - ▶ Se ejecuta 1/5 de instrucción cada N ciclos de reloj

Segmentación de instrucciones con pipeline

- Si cada fase dura N ciclos de reloj, entonces
 - ▶ Una instrucción se ejecuta en 5*N ciclos de reloj
 - Cada N ciclos de reloj termina I de instrucción

Superescalar

Pipeline con varias unidades funcionales en paralelo

Multicore

Múltiples procesadores en el mismo encapsulado

Multicore

Múltiples procesadores en el mismo encapsulado

http://wccftech.com/intel-knights-landing-detailed-16-gb-highbandwidth-ondie-memory-384-gb-ddr4-system-memory-support-8-billion-transistors/