Chapter 4 Network Layer: The Data Plane

Slides based on materials developed by Kurose and Ross

© All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Network Layer: Data Plane 4-1

Chapter 4: outline

- 4.1 Overview of Network layer
 - data plane
 - control plane
- 4.2 What's inside a router
- 4.3 IP: Internet Protocol
 - datagram format
 - fragmentation
 - IPv4 addressing
 - network address translation
 - IPv6

- 4.4 Generalized Forward and SDN
 - match
 - action
 - OpenFlow examples of match-plus-action in action

Network layer

- transport segment from sending to receiving host
- on sending side encapsulates segments into datagrams
- on receiving side, delivers segments to transport layer
- network layer protocols in every host, router
- router examines header fields in all IP datagrams passing through it

Two key network-layer functions

network-layer functions:

- •forwarding: move packets from router's input to appropriate router output
- routing: determine route taken by packets from source to destination
 - routing algorithms

analogy: taking a trip

- forwarding: process of getting through single intersection
- routing: process of planning trip from source to destination
 - E.g. googlemaps

Network layer: data plane, control plane

Data plane (Forwarding)

- local, per-router function
- determines how datagram arriving on router input port is forwarded to router output port
- forwarding function

Control plane (Routing)

- network-wide logic
- determines how datagram is routed among routers along end-end path from source host to destination host
- two control-plane approaches:
 - traditional routing algorithms: implemented in routers
 - software-defined networking (SDN): implemented in (remote) servers

Interplay between routing and forwarding

routing algorithm determines end-end-path through network

forwarding table determines local forwarding at this router

Per-router control plane

Individual routing algorithm components *in each and every router* interact in the control plane

Network Layer: Control Plane 5-7

Logically centralized control plane

A distinct (typically remote) controller interacts with local control agents (CAs)

Network service model

Q: What service model for "channel" transporting datagrams from sender to receiver?

example services for individual datagrams:

- guaranteed delivery
- guaranteed delivery with less than 40 msec delay

example services for a flow of datagrams:

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- restrictions on changes in inter-packet spacing

Network layer service models:

N	Network nitecture	Service Model	Guarantees ?				Congestion
Arch			Bandwidth	Loss	Order	Timing	feedback
	Internet	best effort	none	no	no	no	no (inferred via loss)
	ATM	CBR	constant rate	yes	yes	yes	no congestion
	ATM	VBR	guaranteed rate	yes	yes	yes	no congestion
	ATM	ABR	guaranteed minimum	no	yes	no	yes
	ATM	UBR	none	no	yes	no	no

Network Layer: Data Plane 4-10