姓名:	
学号:	
学院和年级	₹:

上海科技大学

2022-2023 学年第一学期本科生期中考试卷

开课单位:

授课教师: 陈浩, 李铮, 赵俐俐, 朱佐农

考试科目:《高等数学 I》

课程代码:

考生须知:

1. 请严格遵守考场纪律,禁止任何形式的作弊行为。

- 2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置。
- 3. 参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不准相互讨论,不准交换材料。

考试成绩录入表:

题目	_	11	=	四	五	六	七	总分
计分								
复核								

评卷人签名: 复核人签名:

日期: 日期:

一、 选择题	(每小题 4 分,共	;20 分)		
1. 若当 x →0时	$\int_{0}^{\infty} (\cos x - 1) \ln(1 + x)$	c²)是比 x sin ⁿ x Ϝ	高阶的无穷小,且 x si	n ⁿ x 是比
3 ^{x²} -1 高阶的无约	穷小,则正整数 n	的值为()	
(A) 1.	(B) 2.	(C) 3.	(D) 4.	
2. 已知平面曲约处的切线方程为		$r = \cos\theta + \sin\theta$,则该曲线在对应于。	$\theta = \frac{\pi}{4}$ 的点
(A) y = x.	(B) y = -x.	(C) $y = x -$	2. (D) $y = -x + 2$.	
$\sqrt{3}$. 极限 $\lim_{n\to\infty} \left(\frac{1}{\sqrt{n^2}} \right)$	$\frac{1}{n+n} + \frac{2}{\sqrt{n^4 + 2n}} + \cdots$	$\cdots + \frac{n}{\sqrt{n^4 + n^2}} \bigg) =$	()	
(A) $\frac{1}{2}$.	(B) $\frac{1}{3}$.	(C) $\frac{1}{6}$.	(D) 1 .	
4. 设函数 <i>f</i> (x) 右	$\mathbb{E}[a,b]$ 上可导,满	病足: $f(a)f(b)$ <	$0, \perp f'(x) > -f(x),$	$x \in (a, b)$,
则 $f(x)$ 在 $[a,b]$	上的零点个数为	()		
(A) 3.	(B) 2.	(C) 1.	(D) 0.	
5. 设 $f(x)$ 在 x_0 的 论断:	的某邻域 $U(x_0)$ 内	有定义,在去心	v 邻域 $\overset{\circ}{U}(x_{_{\! 0}})$ 内可导, $ar{U}$	则对于下列
(1) 若 $\lim_{x\to x_0} f$	$f'(x) = \infty , \text{if } f'(x)$	。)不存在;		
(2) 若 $f'(x_0)$)存在且等于常数	A ,则 $\lim_{x\to x_0} f'(x)$)也存在且等于 A ;	
(3) 若 $f'(x_0)$)不存在,则 $\lim_{x\to x_0}$	f'(x) 不存在.		

(A) 0. (B) 1. (C) 2. (D) 3.

正确论断的个数是()

二、 填空题(每小题 4 分, 共 20 分)

6. 极限
$$\lim_{n\to\infty} \left(\frac{n-1}{n+1}\right)^{2n} = \underline{\hspace{1cm}}.$$

9. 己知
$$f(a) = 2$$
, $f'(a) = 3$, 则极限 $\lim_{h \to 0} \frac{f^2(a+2h) - f^2(a-h)}{h} = \underline{\qquad}$

10. 设函数
$$f(x) = (1+x)^x$$
,则 $f(x)$ 带皮亚诺余项的二阶麦克劳林展开式为

三、 极限定义证明题(本题8分)

11. 用极限定义证明:
$$\lim_{x\to 3} \left(1 - \frac{3}{x}\right) = 0$$
.

- 四、极限计算(每小题8分,共16分)
- 12. 求极限 $\lim_{x\to 0} \frac{e^{-x}(x-\arcsin x)}{\sin x \ln(1+x^2)}$.

13. 已知函数 f(x) 满足: f(0) = f'(0) = 0, f''(0) = 6, 求 $\lim_{x\to 0} \frac{f(\sin^2 x)}{x^4}$.

- 五、导数计算(每小题9分,共18分)
- 14. 已知函数 y = y(x) 由方程 $e^{y} + 6xy + x^{2} 1 = 0$ 所确定,求 $\frac{dy}{dx}$, $\frac{d^{2}y}{dx^{2}}$.

设函数 $f(x) = (x+1)^2 \sin x + \ln x$,求 $f^{(2022)}(\pi)$.

Sinx = Sinx

16. 设 $-\frac{3}{2} < x_0 < 3$, $x_{n+1} = \sqrt{2x_n + 3}$, $n \in \mathbb{N}$. 证明数列 $\{x_n\}$ 收敛, 并求其极限.

七、证明题(本题10分,其中第(1)题4分,第(2)题6分)

19、设函数 f(x) 在 [0,1] 上连续, 在 (0,1) 上可导, 且 f(0) = f(1) = 0,

 $\max_{x \in [0,1]} f(x) = M > 0$. 证明: (1) 存在 $x_0 \in (0,1)$, 使得 $f'(x_0) = 0$; (2) 对于大于1的

任意正整数n, 存在 $\xi_1,\xi_2 \in (0,1)$, 且 $\xi_1 \neq \xi_2$, 使得 $\frac{1}{f'(\xi_1)} - \frac{1}{f'(\xi_2)} = \frac{n}{M}$.