$11n_{123} (K11n_{123})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -2418u^{15} - 2313u^{14} + \dots + 1243b - 778, \ -8755u^{15} - 9533u^{14} + \dots + 1243a - 8595, \\ &u^{16} + u^{15} + 5u^{14} + 3u^{13} + 16u^{12} + 7u^{11} + 34u^{10} + 8u^9 + 46u^8 - 3u^7 + 40u^6 - 10u^5 + 24u^4 - 3u^3 + 8u^2 + 17u^2 \\ I_2^u &= \langle 613651112649u^{21} + 1301363271193u^{20} + \dots + 2238186198787b + 596588806112, \\ &- 1570251208513u^{21} - 3146564850505u^{20} + \dots + 2238186198787a - 6111907356770, \\ &u^{22} + 2u^{21} + \dots + 3u + 1 \rangle \\ I_3^u &= \langle -u^5 + u^4 - 2u^3 + u^2 + b - u, \ -2u^5 + 2u^4 - 3u^3 + u^2 + a - 1, \ u^6 - u^5 + 2u^4 - u^3 + u^2 + 1 \rangle \\ I_4^u &= \langle -u^3 + u^2 + b - 3u + 1, \ a, \ u^4 - u^3 + 3u^2 - u + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 48 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -2418u^{15} - 2313u^{14} + \dots + 1243b - 778, -8755u^{15} - 9533u^{14} + \dots + 1243a - 8595, u^{16} + u^{15} + \dots + 8u^2 + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 7.04344u^{15} + 7.66935u^{14} + \dots + 21.9067u + 6.91472 \\ 1.94529u^{15} + 1.86082u^{14} + \dots + 8.04344u + 0.625905 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 7.04344u^{15} + 7.66935u^{14} + \dots + 20.9067u + 6.91472 \\ 1.94529u^{15} + 1.86082u^{14} + \dots + 8.04344u + 0.625905 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5.09815u^{15} + 5.80853u^{14} + \dots + 13.8632u + 6.28882 \\ 1.94529u^{15} + 1.86082u^{14} + \dots + 8.04344u + 0.625905 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -3.95414u^{15} - 0.515688u^{14} + \dots + 4.04344u + 0.625905 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -3.95414u^{15} - 0.515688u^{14} + \dots + 4.22767u + 4.98391 \\ 2.08367u^{15} + 2.91874u^{14} + \dots + 4.22767u + 4.98391 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.87047u^{15} + 2.40306u^{14} + \dots - 21.4264u + 16.7828 \\ 2.08367u^{15} + 2.91874u^{14} + \dots + 4.22767u + 4.98391 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -4.35800u^{15} - 4.21963u^{14} + \dots - 16.1569u - 4.81577 \\ -0.679002u^{15} + 0.390185u^{14} + \dots - 5.57844u + 3.59212 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -12.5093u^{15} - 14.9574u^{14} + \dots - 35.6838u - 21.5559 \\ -4.06436u^{15} - 2.39903u^{14} + \dots - 18.7136u + 3.08930 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.72164u^{15} + 6.67418u^{14} + \dots - 13.6613u + 22.3612 \\ 3.59212u^{15} + 4.27112u^{14} + \dots + 9.76508u + 5.57844 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1.72164u^{15} + 6.67418u^{14} + \dots - 13.6613u + 22.3612 \\ 3.59212u^{15} + 4.27112u^{14} + \dots + 9.76508u + 5.57844 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{7257}{1243}u^{15} - \frac{4223}{1243}u^{14} + \dots - \frac{16867}{1243}u + \frac{8997}{1243}u^{14} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{16} - 5u^{15} + \dots - 25u + 4$
c_2, c_6	$u^{16} + 11u^{15} + \dots + 15u + 16$
c_3, c_{10}	$u^{16} + 8u^{14} + \dots - u + 1$
c_4, c_{11}	$u^{16} - u^{15} + \dots + 8u^2 + 1$
c_{7}, c_{9}	$u^{16} - 2u^{15} + \dots - 5u + 1$
c ₈	$u^{16} - 11u^{15} + \dots - 9u + 2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{16} + 11y^{15} + \dots + 15y + 16$
c_2, c_6	$y^{16} - 9y^{15} + \dots + 3679y + 256$
c_3,c_{10}	$y^{16} + 16y^{15} + \dots + 13y + 1$
c_4, c_{11}	$y^{16} + 9y^{15} + \dots + 16y + 1$
c_7, c_9	$y^{16} + 20y^{15} + \dots + 89y + 1$
<i>c</i> ₈	$y^{16} - 9y^{15} + \dots + 67y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.182868 + 1.082360I		
a = -0.245163 + 0.184305I	0.087550 - 0.115204I	2.02768 - 0.43913I
b = -0.534837 + 1.195060I		
u = -0.182868 - 1.082360I		
a = -0.245163 - 0.184305I	0.087550 + 0.115204I	2.02768 + 0.43913I
b = -0.534837 - 1.195060I		
u = 0.153974 + 1.184900I		
a = 0.067583 - 1.055900I	4.72589 - 3.00353I	9.61260 + 1.22526I
b = -0.138027 - 0.297204I		
u = 0.153974 - 1.184900I		
a = 0.067583 + 1.055900I	4.72589 + 3.00353I	9.61260 - 1.22526I
b = -0.138027 + 0.297204I		
u = 0.571189 + 0.516899I		
a = 0.465400 + 0.095953I	-0.30256 - 1.83448I	0.83977 + 3.70409I
b = 0.600357 + 0.236415I		
u = 0.571189 - 0.516899I		
a = 0.465400 - 0.095953I	-0.30256 + 1.83448I	0.83977 - 3.70409I
b = 0.600357 - 0.236415I		
u = -0.025357 + 0.613269I		
a = -1.140780 + 0.093929I	0.807041 - 1.112270I	4.93277 + 4.22512I
b = -0.456590 + 0.613056I		
u = -0.025357 - 0.613269I		
a = -1.140780 - 0.093929I	0.807041 + 1.112270I	4.93277 - 4.22512I
b = -0.456590 - 0.613056I		
u = -0.87363 + 1.12508I		
a = -1.102560 - 0.750912I	-9.63409 + 1.32861I	-2.22452 - 1.49647I
b = 0.04840 - 1.41972I		
u = -0.87363 - 1.12508I		
a = -1.102560 + 0.750912I	-9.63409 - 1.32861I	-2.22452 + 1.49647I
b = 0.04840 + 1.41972I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.93365 + 1.17761I		
a = 1.064180 - 0.515654I	-5.07602 - 7.48555I	0.37702 + 4.74920I
b = 0.34787 - 1.42806I		
u = 0.93365 - 1.17761I		
a = 1.064180 + 0.515654I	-5.07602 + 7.48555I	0.37702 - 4.74920I
b = 0.34787 + 1.42806I		
u = -0.101130 + 0.483106I		
a = 4.05859 + 0.78880I	-4.12337 + 3.39887I	1.84182 + 0.78536I
b = 0.727529 + 1.055710I		
u = -0.101130 - 0.483106I		
a = 4.05859 - 0.78880I	-4.12337 - 3.39887I	1.84182 - 0.78536I
b = 0.727529 - 1.055710I		
u = -0.97583 + 1.17333I		
a = -1.167260 - 0.382800I	-9.5135 + 13.5240I	-1.40716 - 7.09485I
b = -0.59470 - 1.66211I		
u = -0.97583 - 1.17333I		
a = -1.167260 + 0.382800I	-9.5135 - 13.5240I	-1.40716 + 7.09485I
b = -0.59470 + 1.66211I		

TT

 $I_2^u = \langle 6.14 \times 10^{11} u^{21} + 1.30 \times 10^{12} u^{20} + \dots + 2.24 \times 10^{12} b + 5.97 \times 10^{11}, \ -1.57 \times 10^{12} u^{21} - 3.15 \times 10^{12} u^{20} + \dots + 2.24 \times 10^{12} a - 6.11 \times 10^{12}, \ u^{22} + 2u^{21} + \dots + 3u + 1 \rangle$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.701573u^{21} + 1.40585u^{20} + \dots + 9.05835u + 2.73074 \\ -0.274173u^{21} - 0.581437u^{20} + \dots - 5.23195u - 0.266550 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{21} + 2u^{20} + \dots + 15u + 3 \\ -0.298427u^{21} - 0.594145u^{20} + \dots - 4.94165u - 0.269259 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.975746u^{21} + 1.98729u^{20} + \dots + 14.2903u + 2.99729 \\ -0.274173u^{21} - 0.581437u^{20} + \dots - 5.23195u - 0.266550 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.959986u^{21} + 1.89743u^{20} + \dots + 13.7253u + 3.00284 \\ -0.378333u^{21} - 0.739672u^{20} + \dots + 4.23796u - 0.332002 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.581652u^{21} + 1.15776u^{20} + \dots + 9.48733u + 2.67084 \\ -0.378333u^{21} - 0.739672u^{20} + \dots - 4.23796u - 0.332002 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.119474u^{21} + 0.251847u^{20} + \dots + 4.26741u + 2.58228 \\ -0.0953666u^{21} - 0.241791u^{20} + \dots + 3.21559u - 0.997831 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.451476u^{21} + 0.537517u^{20} + \dots + 7.60383u - 0.659673 \\ 0.0178553u^{21} + 0.0471570u^{20} + \dots + 1.48034u + 0.254377 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.391301u^{21} + 0.842507u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 4.87766u + 2.29577 \\ -0.190351u^{21} - 0.315251u^{20} + \dots + 2.60967u - 0.375067 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= -\frac{2340479983939}{2238186198787}u^{21} - \frac{5426028325222}{2238186198787}u^{20} + \dots - \frac{64839493010449}{2238186198787}u - \frac{12900652043582}{2238186198787}u^{20} + \dots - \frac{64839493010449}{2238186198787}u^{20} + \dots - \frac{64839493010449}{223818619878}u^{20} + \dots - \frac{64839493010449}{223818619878}u^{20} + \dots - \frac{64839493010449}{223818619878}u^{20} + \dots - \frac{64839493010449}{223818619878}u^{20} + \dots - \frac{64839493010449}{22381861988}u^{20} + \dots - \frac{6483949010449}{22381861988}u^{20} + \dots - \frac{6483949010449}{22381861988}u^{20} + \dots - \frac{6483949010449}{2238186198}u^{20} + \dots - \frac{64839499010449$$

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^{11} + 2u^{10} + \dots + 4u + 1)^2$
c_2, c_6	$(u^{11} + 8u^{10} + \dots - 18u^2 - 1)^2$
c_3,c_{10}	$u^{22} + 10u^{20} + \dots + 265u + 47$
c_4, c_{11}	$u^{22} - 2u^{21} + \dots - 3u + 1$
c_{7}, c_{9}	$u^{22} + 5u^{21} + \dots - 94u + 53$
<i>c</i> ₈	$(u^{11} + 5u^{10} + \dots - 10u - 4)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^{11} + 8y^{10} + \dots - 18y^2 - 1)^2$
c_2, c_6	$(y^{11} - 8y^{10} + \dots - 36y - 1)^2$
c_3,c_{10}	$y^{22} + 20y^{21} + \dots - 5647y + 2209$
c_4, c_{11}	$y^{22} + 12y^{20} + \dots + 21y + 1$
c_7, c_9	$y^{22} + 23y^{21} + \dots - 34700y + 2809$
<i>c</i> ₈	$(y^{11} - 5y^{10} + \dots + 108y - 16)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.459600 + 0.859618I		
a = -1.56146 + 0.19719I	-2.74251 - 5.63735I	-0.48609 + 8.17754I
b = -1.74595 + 0.63036I		
u = 0.459600 - 0.859618I		
a = -1.56146 - 0.19719I	-2.74251 + 5.63735I	-0.48609 - 8.17754I
b = -1.74595 - 0.63036I		
u = -0.670381 + 0.843079I		
a = 1.36153 + 0.63867I	-5.00595 + 2.60776I	-5.49826 - 2.04245I
b = 0.41764 + 1.61796I		
u = -0.670381 - 0.843079I		
a = 1.36153 - 0.63867I	-5.00595 - 2.60776I	-5.49826 + 2.04245I
b = 0.41764 - 1.61796I		
u = 0.783710 + 0.088000I		
a = -1.93047 - 0.70159I	-5.00595 - 2.60776I	-5.49826 + 2.04245I
b = 0.403600 - 0.151320I		
u = 0.783710 - 0.088000I		
a = -1.93047 + 0.70159I	-5.00595 + 2.60776I	-5.49826 - 2.04245I
b = 0.403600 + 0.151320I		
u = 0.816160 + 0.913545I		
a = -1.019150 + 0.057227I	-0.25878 - 3.13682I	5.62912 + 1.87495I
b = -0.561626 + 0.977866I		
u = 0.816160 - 0.913545I		
a = -1.019150 - 0.057227I	-0.25878 + 3.13682I	5.62912 - 1.87495I
b = -0.561626 - 0.977866I		
u = -0.475290 + 0.551526I		
a = 1.71279 + 0.12691I	-0.25878 + 3.13682I	5.62912 - 1.87495I
b = 0.883704 - 0.005644I		
u = -0.475290 - 0.551526I		
a = 1.71279 - 0.12691I	-0.25878 - 3.13682I	5.62912 + 1.87495I
b = 0.883704 + 0.005644I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.077760 + 0.707508I	, ,	
a = 1.108020 - 0.433957I	-2.74251 + 5.63735I	-0.48609 - 8.17754I
b = 0.389001 + 1.117020I		
u = -1.077760 - 0.707508I		
a = 1.108020 + 0.433957I	-2.74251 - 5.63735I	-0.48609 + 8.17754I
b = 0.389001 - 1.117020I		
u = -1.011520 + 0.825413I		
a = -0.633146 - 0.377582I	-10.59450 + 5.64581I	-3.10897 - 3.66343I
b = -0.37963 - 1.79002I		
u = -1.011520 - 0.825413I		
a = -0.633146 + 0.377582I	-10.59450 - 5.64581I	-3.10897 + 3.66343I
b = -0.37963 + 1.79002I		
u = 1.133190 + 0.778692I		
a = 0.533769 - 0.366790I	-6.33840	-6 - 1.167441 + 0.10I
b = 0.12411 - 1.47210I		
u = 1.133190 - 0.778692I		
a = 0.533769 + 0.366790I	-6.33840	-6 - 1.167441 + 0.10I
b = 0.12411 + 1.47210I		
u = 0.35734 + 1.44486I		
a = -0.249751 + 0.405356I	1.20928 - 2.43685I	-2.45208 + 7.14380I
b = -0.159367 + 0.805498I		
u = 0.35734 - 1.44486I		
a = -0.249751 - 0.405356I	1.20928 + 2.43685I	-2.45208 - 7.14380I
b = -0.159367 - 0.805498I		
u = -1.22659 + 0.86184I		
a = -0.465716 - 0.441913I	-10.59450 - 5.64581I	-3.10897 + 3.66343I
b = 0.27756 - 1.47343I		
u = -1.22659 - 0.86184I		
a = -0.465716 + 0.441913I	-10.59450 + 5.64581I	-3.10897 - 3.66343I
b = 0.27756 + 1.47343I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.088447 + 0.246861I		
a = 1.64359 + 2.14516I	1.20928 + 2.43685I	-2.45208 - 7.14380I
b = 0.350965 - 1.259140I		
u = -0.088447 - 0.246861I		
a = 1.64359 - 2.14516I	1.20928 - 2.43685I	-2.45208 + 7.14380I
b = 0.350965 + 1.259140I		

$$\begin{aligned} \text{III. } I_3^u = \langle -u^5 + u^4 - 2u^3 + u^2 + b - u, \ -2u^5 + 2u^4 - 3u^3 + u^2 + a - 1, \ u^6 - u^5 + 2u^4 - u^3 + u^2 + 1 \rangle \end{aligned}$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 2u^{5} - 2u^{4} + 3u^{3} - u^{2} + 1 \\ u^{5} - u^{4} + 2u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 2u^{5} - 2u^{4} + 3u^{3} - u^{2} + u + 1 \\ u^{5} - u^{4} + u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{5} - u^{4} + u^{3} - u + 1 \\ u^{5} - u^{4} + 2u^{3} - u^{2} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} + 2u^{4} - 4u^{3} + 4u^{2} - 3u + 1 \\ u^{5} - u^{4} + u^{3} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{4} - 3u^{3} + 4u^{2} - 3u + 2 \\ u^{5} - u^{4} + u^{3} + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{5} + u^{4} - 2u^{3} + u^{2} - 2 \\ -u^{3} + u^{2} - u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -3u^{5} + 5u^{4} - 7u^{3} + 3u^{2} - 3 \\ -u^{5} + 3u^{4} - 4u^{3} + 3u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{5} - u^{4} + 3u^{2} - 4u + 3 \\ 2u^{5} - 2u^{4} + 3u^{3} - u^{2} + u + 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 2u^{5} - u^{4} + 3u^{2} - 4u + 3 \\ 2u^{5} - 2u^{4} + 3u^{3} - u^{2} + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $6u^4 7u^3 + 12u^2 4u + 2$

Crossings	u-Polynomials at each crossing
c_1	$u^6 - 2u^5 + 4u^4 - 4u^3 + 4u^2 - u + 1$
c_2, c_6	$u^6 + 4u^5 + 8u^4 + 14u^3 + 16u^2 + 7u + 1$
c_3, c_{10}	$u^6 + u^4 - u^3 + 2u^2 - u + 1$
c_4,c_{11}	$u^6 - u^5 + 2u^4 - u^3 + u^2 + 1$
c_5	$u^6 + 2u^5 + 4u^4 + 4u^3 + 4u^2 + u + 1$
c_{7}, c_{9}	$u^6 - 2u^5 + 5u^4 - 5u^3 + 4u^2 - 3u + 1$
c_8	$u^6 - 8u^5 + 30u^4 - 65u^3 + 84u^2 - 62u + 21$

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^6 + 4y^5 + 8y^4 + 14y^3 + 16y^2 + 7y + 1$
c_2, c_6	$y^6 - 16y^4 + 6y^3 + 76y^2 - 17y + 1$
c_3, c_{10}	$y^6 + 2y^5 + 5y^4 + 5y^3 + 4y^2 + 3y + 1$
c_4, c_{11}	$y^6 + 3y^5 + 4y^4 + 5y^3 + 5y^2 + 2y + 1$
c_7, c_9	$y^6 + 6y^5 + 13y^4 + 5y^3 - 4y^2 - y + 1$
<i>c</i> ₈	$y^6 - 4y^5 + 28y^4 - 135y^3 + 256y^2 - 316y + 441$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.800501 + 0.710292I		
a = -1.163950 - 0.050182I	-1.27956 - 3.69612I	-2.32375 + 5.61497I
b = -0.698934 + 0.620170I		
u = 0.800501 - 0.710292I		
a = -1.163950 + 0.050182I	-1.27956 + 3.69612I	-2.32375 - 5.61497I
b = -0.698934 - 0.620170I		
u = 0.155981 + 1.227730I		
a = -0.297083 + 1.291660I	3.99825 - 3.41127I	0.80640 + 5.19600I
b = -0.101839 + 0.801573I		
u = 0.155981 - 1.227730I		
a = -0.297083 - 1.291660I	3.99825 + 3.41127I	0.80640 - 5.19600I
b = -0.101839 - 0.801573I		
u = -0.456483 + 0.601395I		
a = 2.96104 + 0.19968I	-4.36362 + 4.05299I	-2.48265 - 9.09326I
b = 0.800773 + 1.054980I		
u = -0.456483 - 0.601395I		
a = 2.96104 - 0.19968I	-4.36362 - 4.05299I	-2.48265 + 9.09326I
b = 0.800773 - 1.054980I		

$$\text{IV. } I_4^u = \langle -u^3 + u^2 + b - 3u + 1, \ a, \ u^4 - u^3 + 3u^2 - u + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u^{3} - u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{3} + u^{2} - 3u + 1 \\ u^{3} - u^{2} + 2u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{3} + u^{2} - 3u + 1 \\ u^{3} - u^{2} + 3u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} - u^{2} + 3u - 1 \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ -u^{3} + u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u \\ u^{3} - u^{2} + 2u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $u^3 u^2 + 2u + 7$

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$(u^2+u+1)^2$
$c_3, c_4, c_{10} \ c_{11}$	$u^4 - u^3 + 3u^2 - u + 1$
<i>C</i> ₅	$(u^2 - u + 1)^2$
c_{7}, c_{9}	$(u+1)^4$
<i>c</i> ₈	u^4

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5 c_6	$(y^2+y+1)^2$
c_3, c_4, c_{10} c_{11}	$y^4 + 5y^3 + 9y^2 + 5y + 1$
c_{7}, c_{9}	$(y-1)^4$
<i>c</i> ₈	y^4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.148403 + 0.632502I		
a = 0	1.64493 + 2.02988I	7.50000 + 0.86603I
b = -0.35160 + 1.49853I		
u = 0.148403 - 0.632502I		
a = 0	1.64493 - 2.02988I	7.50000 - 0.86603I
b = -0.35160 - 1.49853I		
u = 0.35160 + 1.49853I		
a = 0	1.64493 - 2.02988I	7.50000 - 0.86603I
b = -0.148403 + 0.632502I		
u = 0.35160 - 1.49853I		
a = 0	1.64493 + 2.02988I	7.50000 + 0.86603I
b = -0.148403 - 0.632502I		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{2} + u + 1)^{2}(u^{6} - 2u^{5} + 4u^{4} - 4u^{3} + 4u^{2} - u + 1)$ $\cdot ((u^{11} + 2u^{10} + \dots + 4u + 1)^{2})(u^{16} - 5u^{15} + \dots - 25u + 4)$
c_2, c_6	$(u^{2} + u + 1)^{2}(u^{6} + 4u^{5} + 8u^{4} + 14u^{3} + 16u^{2} + 7u + 1)$ $\cdot ((u^{11} + 8u^{10} + \dots - 18u^{2} - 1)^{2})(u^{16} + 11u^{15} + \dots + 15u + 16)$
c_3, c_{10}	$(u^{4} - u^{3} + 3u^{2} - u + 1)(u^{6} + u^{4} - u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{16} + 8u^{14} + \dots - u + 1)(u^{22} + 10u^{20} + \dots + 265u + 47)$
c_4, c_{11}	$ (u^{4} - u^{3} + 3u^{2} - u + 1)(u^{6} - u^{5} + 2u^{4} - u^{3} + u^{2} + 1) $ $ \cdot (u^{16} - u^{15} + \dots + 8u^{2} + 1)(u^{22} - 2u^{21} + \dots - 3u + 1) $
c_5	$(u^{2} - u + 1)^{2}(u^{6} + 2u^{5} + 4u^{4} + 4u^{3} + 4u^{2} + u + 1)$ $\cdot ((u^{11} + 2u^{10} + \dots + 4u + 1)^{2})(u^{16} - 5u^{15} + \dots - 25u + 4)$
c_7, c_9	$(u+1)^{4}(u^{6}-2u^{5}+5u^{4}-5u^{3}+4u^{2}-3u+1)$ $\cdot (u^{16}-2u^{15}+\cdots-5u+1)(u^{22}+5u^{21}+\cdots-94u+53)$
c_8	$u^{4}(u^{6} - 8u^{5} + 30u^{4} - 65u^{3} + 84u^{2} - 62u + 21)$ $\cdot ((u^{11} + 5u^{10} + \dots - 10u - 4)^{2})(u^{16} - 11u^{15} + \dots - 9u + 2)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$(y^{2} + y + 1)^{2}(y^{6} + 4y^{5} + 8y^{4} + 14y^{3} + 16y^{2} + 7y + 1)$ $\cdot ((y^{11} + 8y^{10} + \dots - 18y^{2} - 1)^{2})(y^{16} + 11y^{15} + \dots + 15y + 16)$
c_2, c_6	$(y^{2} + y + 1)^{2}(y^{6} - 16y^{4} + 6y^{3} + 76y^{2} - 17y + 1)$ $\cdot ((y^{11} - 8y^{10} + \dots - 36y - 1)^{2})(y^{16} - 9y^{15} + \dots + 3679y + 256)$
c_3, c_{10}	$(y^4 + 5y^3 + 9y^2 + 5y + 1)(y^6 + 2y^5 + 5y^4 + 5y^3 + 4y^2 + 3y + 1)$ $\cdot (y^{16} + 16y^{15} + \dots + 13y + 1)(y^{22} + 20y^{21} + \dots - 5647y + 2209)$
c_4, c_{11}	$(y^4 + 5y^3 + 9y^2 + 5y + 1)(y^6 + 3y^5 + 4y^4 + 5y^3 + 5y^2 + 2y + 1)$ $\cdot (y^{16} + 9y^{15} + \dots + 16y + 1)(y^{22} + 12y^{20} + \dots + 21y + 1)$
c_7, c_9	$(y-1)^4(y^6+6y^5+13y^4+5y^3-4y^2-y+1)$ $\cdot (y^{16}+20y^{15}+\cdots+89y+1)(y^{22}+23y^{21}+\cdots-34700y+2809)$
c_8	$y^{4}(y^{6} - 4y^{5} + 28y^{4} - 135y^{3} + 256y^{2} - 316y + 441)$ $\cdot ((y^{11} - 5y^{10} + \dots + 108y - 16)^{2})(y^{16} - 9y^{15} + \dots + 67y + 4)$