Stochastic Processes

2023年3月9日

目录

1	Review of Martingales	2
2	Markov Chains	2
3	Ergodic Theorem	

1 Review of Martingales

- $(X_n)_{n\geq 0}$ is L^2 -bounded martingale $\Rightarrow X_n$ converges in L^2 .
- $(X_n)_{n\geq 0}$ is L^1 -bounded martingale $\Rightarrow X_n$ converges a.s.
- (1) + (2): If $(X_n)_{n\geq 0}$ is L^p -bounded martingale for p>1, then X_n converges in $L^{p'}$ for $p'\in [1,p)$.
- Statement is false when p=1. Example: $\Omega=[0,1), \mathscr{F}_n=\sigma\{[\frac{i}{2^n},\frac{i+1}{2^n})\}_{i=0}^{2^n-1}, X_n(\omega):=\begin{cases} 2^n & \omega\in[0,\frac{1}{2^n})\\ 0 & \text{otherwise} \end{cases}$.
- Let p > 1 and $(X_n)_{n \ge 0}$ be L^p bounded martingale w.r.t. \mathscr{F}_n . Then $\exists X \in L^p(\Omega, \mathscr{F}_\infty, P)$ s.t. $X_n \to X$ in L^p and a.s. and $X_n = \mathbb{E}(X|\mathscr{F}_n)$.
- Doob's maximal inequality: Let p > 1, $\exists C = C_p$ s.t. \forall martingale $(X_n)_{n \geq 0}$, we have $\mathbb{E}|X_n^*|^p \leq C_p \mathbb{E}|X_n|^p$ where $|X_n^*| = \sup_{0 \leq k \leq n} \sup |X_k|$.
- Let $(Z_n)_{n\geq 0}$ be a nonnegative sub-martingale and $Z_n^* = \sup_{0\leq k\leq n} Z_k$, then $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda} \mathbb{E}(Z_n 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda} \mathbb{E}Z_n$. Corollary: $\mathbb{P}(Z_n^* > \lambda) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p 1_{\{Z_n^* > \lambda\}}) \leq \frac{1}{\lambda p} \mathbb{E}(Z_n^p)$.
- If $(X_n)_{n\geq 0}$ is a martingale with $\sup_n \mathbb{E}(|X_n|\log(1+|X_n|)) < +\infty$, then X_n converges in L^1 .
- Two probability measures \mathbb{P} and \mathbb{Q} on (Ω, \mathscr{F}) , $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_n for every n and $M_n = \frac{d\mathbb{Q}|_{\mathscr{F}_n}}{d\mathbb{P}|_{\mathscr{F}_n}}$. $(M_n)_{n\geq 0}$ is a \mathbb{P} -martingale w.r.t. $(\mathscr{F}_n)_{n\geq 0}$. $\mathbb{Q} << \mathbb{P}$ on \mathscr{F}_∞ if and only if $M_n \to M$ in L^1 . $\mathbb{Q}(A) = \int_A M d\mathbb{P} + \mathbb{Q}(A \cap \{M = +\infty\})$.
- Statement is false if $M_n \not\to M$ in L^1 . Example: $\Omega = \{\omega = (\omega_1, \cdots, \omega_n, \cdots) \in \{\pm 1\}^{\mathbb{N}}\}$, $X_n(\omega) = \omega_n$. X_n 's are i.i.d. under \mathbb{P} and \mathbb{Q} , but $\mathbb{P}(X_n = 1) = \frac{1}{2}$, $\mathbb{P}(X_n = -1) = \frac{1}{2}$, $\mathbb{Q}(X_n = 1) = \frac{1}{3}$, $\mathbb{Q}(X_n = -1) = \frac{2}{3}$. $\mathscr{F}_n = \sigma(X_1, \cdots, X_n)$. $\mathbb{P}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = 0) = 1$, $\mathbb{Q}(\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n X_k = -\frac{1}{3}) = 1$.
- Monotone class theorem for functions: Suppose \mathcal{A} us a π -system and \mathcal{H} be a class of functions from Ω to \mathbb{R} s.t. (1) $1_A \in \mathcal{H}$ for every $A \in \mathscr{A}$, (2) if $f, g \in \mathcal{H}$ then $af + bg \in \mathcal{H}$, (3) if $f_n \in \mathcal{H}$ and $f_n \uparrow f$ then $f \in \mathcal{H}$. Then all nonnegative $\sigma(\mathcal{A})$ -measurable functions are in \mathcal{H} .
- Let $(Y_n)_{n\geq 0}$ be i.i.d., nonnegative r.v.'s with $\mathbb{E}Y_k=1$. Then $M_n=\prod_{k=1}^n Y_k$ converges in L^1 iff $Y_n\equiv 1$. Otherwise $M_n\to 0$ a.s.
- Kakutani's theorem: $M_n = \prod_{k=1}^n Y_k$, $Y_k \ge 0$ are independent, $\mathbb{E}Y_k = 1$, $\lambda_k = \mathbb{E}\sqrt{Y_k}$. (1) If $\prod_k \lambda_k > 0$, then $M_n \to M$ in L^1 ; (2) If $\prod_k \lambda_k = 0$, then $M_n \to 0$ a.s.

2 Markov Chains

- Let $(X_n)_{n\geq 0}$ be a time-homogeneous Markov chain on a discrete space S. \mathbb{P}^x : law of $(X_n)_{n\geq 0}$ conditioned on $X_0 = x$. $\mathbb{P}(X_{n+1} \in A | \mathscr{F}_n) = \mathbb{P}^{X_n}(X_1 \in A) = \mathbb{P}(X_1 \in A | X_0 = X_n)$. \mathbb{E}^x : expectation under \mathbb{P}^x . $\mathbb{P}^x(X_1 = y) = p(x,y)$.
- For every $f: S \to \mathbb{R}$ bounded, define $(\mathcal{P}f)(x) = \sum_{y \in S} p(x,y) f(y) = \mathbb{E}^x (f(X_1)), (\mathcal{L}f)(x) = \sum_{y \in S} p(x,y) f(y) f(x)$. $\mathcal{L} = \mathcal{P} \mathrm{id}$, the generator.
- Let $(X_n)_{n\geq 0}$ be a homogeneous Markov chain with generator \mathcal{L} . Then for every bounded $f: S \to \mathbb{R}$, $M_n = f(X_n) f(X_0) \sum_{k=0}^{n-1} (\mathcal{L}f)(X_k)$ is a martingale. Conversely, let $(X_n)_{n\geq 0}$ be a process and \mathcal{L} be an operator on $\mathcal{B}(S)$ s.t. M_n^f is a martingale for every f, then $(X_n)_{n\geq 0}$ is a Markov chain with generator \mathcal{L} .
- Given operator \mathcal{L} on $\mathcal{B}(S)$, we say $f: S \to \mathbb{R}$ is (1) harmonic for \mathcal{L} if $\mathcal{L}f = 0$; (2) sub-harmonic for \mathcal{L} if $\mathcal{L}f \geq 0$; (3) super-harmonic for \mathcal{L} if $\mathcal{L}f \leq 0$.

ERGODIC THEOREM

- Let f be the generator of a Markov chain $(X_n)_{n\geq 0}$. Then f is (sub-/super-)harmonic $\Leftrightarrow f(X_n)_{n\geq 0}$ is a (sub-/super-) martingale.
- f is (sub-/super-)harmonic on $D \subset S$ if $\mathcal{L}f \geq / \leq / = 0$ on D. Let $\tau = \inf\{k \geq 0 : X_k \in D^c\}$, then $(f(X_{n \wedge \tau}))_{n \geq 0}$ is a (sub-/super)martingale.
- Maximum principle: Let $(X_n)_{n\geq 0}$ be a Markov chain and $D\subset S$ s.t. the stopping time $\tau=\inf\{k\geq 0, X_k\in D^c\}$ is a.s. finite. If f is bounded and sub-harmonic on D, then $\sup_{x\in D}f(x)\leq \sup_{x\in D^c}f(x)$.
- $A \subset S$, $\tau_A = \sup\{k \geq 0 : X_k \in A\}$. (1) $u(x) = \mathbb{P}^x(\tau_A < +\infty) \Rightarrow \begin{cases} \mathcal{L}u = 0 & \text{on } A^c \\ u = 1 & \text{on } A \end{cases}$. (2) $u(x) = \mathbb{P}(\tau_A < \tau_B) \Rightarrow \begin{cases} \mathcal{L}u = 0 & \text{on } (A \cup B)^c \\ u = 1 & \text{on } A \end{cases}$. (3) $u(x) = \mathbb{E}^x[\tau_A] \Rightarrow \begin{cases} \mathcal{L}u = -1 & \text{on } A^c \\ u = 0 & \text{on } A \end{cases}$.
- Any nonnegative solution v to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = 1 & \text{on } A \end{cases}$ satisfies $v \geq u$. Furthermore, if $u \equiv 1$, then $\exists 1$ bounded solution to $\begin{cases} \mathcal{L}v = 0 & \text{on } A^c \\ v = f & \text{on } A \end{cases}$ with $v(x) = \mathbb{E}^x(f(X_{\tau_A}))$.
- Doob's h-transform: Let h be nonnegative, harmonic with $h(x_0) = 1$ for some $x_0 \in S$. Then $(h(X_n))_{n \geq 0}$ is a martingale with $\mathbb{E}^{\mathbb{P}^{x_0}}(h(X_n)) = 1$. Then $\exists 1$ measure \mathbb{Q}^h on \mathscr{F}_{∞} s.t. $\frac{d\mathbb{Q}^h}{d\mathbb{P}^{x_0}|_{\mathscr{F}_n}} = h(X_n), \forall n \geq 0$. $\mathbb{Q}^h(X_0 = x_0) = 1$, $(X_n)_{n \geq 0}$ never visits the set $D = \{x : h(x) = 0\}$. Under \mathbb{Q}^h , $(X_n)_{n \geq 0}$ is again a Markov chain on $S \setminus D$ with transition probability $q(x,y) = \frac{p(x,y)h(y)}{h(x)}$ (or equivalently, $(\mathcal{L}^h f)(x) = \frac{1}{h(x)}(\mathcal{L}(hf))(x)$).
- An irreducible Markov chain $(X_n)_{n\geq 0}$ (1) is transient if $\exists x$ and $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty|X_0=x)<1$; (2) is recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{P}(\tau_A<\infty)=1$ for all $x\in S$. (3) is positive recurrent if \exists a finite set $A\subset S$ s.t. $\mathbb{E}(\tau_A)<\infty$ for all $x\in S$.
- Foster-Lyapunov criterion: An irreducible MC on a countable state space S (1) is transient iff $\exists v : S \to \mathbb{R}^+$ and $A \subset S$ non-empty s.t. $\mathcal{L}v \leq 0$ on A^c and $v(x) < \inf_{y \in A} v(y)$ for some $x \in A^c$; (2) is recurrent iff $\exists v : S \to \mathbb{R}^+$ s.t. $\mathcal{L}v \leq 0$ on A^c where A is a finite set and $\{x : v(x) \leq N\}$ is finite for every N; (3) is positive recurrent iff $\exists v : S \to \mathbb{R}^+$, $A \subset S$ finite and $\epsilon > 0$ s.t. $\mathcal{L}v \leq -\epsilon$ on A^c .
- e.g. $h(x) = \frac{\mathbb{P}^x(\tau_A < \tau_B)}{\mathbb{P}^{x_0}(\tau_A < \tau_B)}$ is harmonic on $(A \cup B)^c$ with $h(x_0) = 1(x_0 \in (A \cup B)^c)$. Then $\forall x, y \in (A \cup B)^c$, $q(x, y) = \frac{h(y)p(x,y)}{h(x)} = \frac{\mathbb{P}^y(\tau_A < \tau_B)p(x,y)}{\mathbb{P}^x(\tau_A < \tau_B)} = \frac{\mathbb{P}^x(X_1 = y, \tau_A < \tau_B)}{\mathbb{P}^x(\tau_A < \tau_B)} = \mathbb{P}^x(X_1 = y | \tau_A < \tau_B)$.
- e.g. $\mathbb P$ is simple symmetric random walk on $\mathbb Z$ starting from $X_0=0$. Question: what is the law of $(X_n)_{n\geq 0}$ conditioned on $X_n\geq 0$ for all n? Let $\tau_k=\inf\{n\geq 0, X_n=k\}$. On $\{\tau_N<\tau_{-1}\}, \frac{h(y)}{h(x)}=\frac{\mathbb P^y(\tau_N<\tau_{-1})}{\mathbb P^x(\tau_N<\tau_{-1})}=\frac{y+1}{x+1}$. Thus $q_N(x,y)=\frac{1}{2}\frac{y+1}{x+1}, |x-y|=1, x\in\{0,\cdots,N-1\}\Rightarrow q(x,y)=\frac{1}{2}\frac{y+1}{x+1}, x\geq 0, |x-y|=1$.

3 Ergodic Theorem