

Conditional Probability

Name: Chong-kwon Kim

SCONE Lab.

Independence

• Definition: Two events E and F are independent iff

$$Pr(E \cap F) = Pr(E) \cdot Pr(F)$$

- Example
 - Flip a coin twice
 - Event E: First trial is heads
 - Event F: Second trial is tails

- Pr(E) =
$$\frac{1}{2}$$
, Pr(F) = $\frac{1}{2}$ → Pr(E ∩ F) = $\frac{1}{4}$

What if the coin is unfair?

 \bullet Generally, If events $E_1, E_2, \dots E_n$ are mutually independent iff

$$Pr(E_1 \cap E_2 \cap ... \cap E_n) = \prod_{i=1}^n Pr(E_i)$$

- Example
 - Baseball Matchup on a same day: Kia-Nx, Ss-LG, KT-SK, Hw-Do, NC-Lo
 - Prob. that Kia, Ss, KT, Do, NC win?

Independence

- Roll two dice, yielding values D1 and D2
- Events
 - E: D1 = 1
 - F: D2 = 1
 - What is Pr(E), Pr(F), and $Pr(E \cap F)$?
 - $Pr(E) = Pr(F) = 1/6, Pr(E \cap F) = 1/36$
 - \rightarrow Pr(E \cap F) = Pr(E) Pr(F) Independent
- Another event G: D1+D2 = 5 \rightarrow {(1,4), (2,3), (3,2), (4,1)}
 - What is Pr(E), Pr(G), and $Pr(E \cap G)$?
 - $Pr(E) = 1/6, Pr(G) = 4/36, Pr(E \cap G) = 1/36$
 - \rightarrow Pr(E \cap G) \neq Pr(E) Pr(G) Dependent

Expectation of sum of rolling two dice? Expectation of sum of rolling two dice given one is 1?

Conditional Probability

Conditional probability, Pr(E|F)

- Probability that E occurs given that F has already occurred
- "Conditioning on F"
- Sample space, Ω , shrinks to those elements in F (i.e. $\Omega \rightarrow \Omega \cap F$)
- Event space, E, reduced to those elements coincide with F

(i.e.
$$E \cap F$$
)

• With equally likely outcomes:

$$Pr(E \mid F) = \frac{\# of \ outcomes \ in \ E \cap F}{\# of \ outcomes \ in \ F} = \frac{|E \cap F|}{|F|}$$

$$Pr(E|F) = \frac{Pr(E \cap F)}{Pr(F)}$$
 where $Pr(F) > 0$

Example

- \bullet Roll two dice, yielding values D_1 and D_2
- Let E be event: $D_1 + D_2 = 4$
- What is Pr(E)?
 - $|\Omega| = 36, E = \{(1, 3), (2, 2), (3, 1)\}$
 - Pr(E) = 3/36 = 1/12
- Let F be event: $D_1 = 2$
- Pr(E | F)?
 - $F = \{(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6)\}$
 - $E \cap F = \{(2, 2)\}$
 - Pr(E | F) = I/6

Chain Rule

• From
$$\Pr(E|F) = \frac{\Pr(E \cap F)}{\Pr(F)}$$
,
we obtain $\Pr(E \cap F) = \Pr(E \mid F) \cdot \Pr(F)$ Chain Rule

- If E and F are independent \rightarrow Pr(E|F) = Pr(E)
 - Example: Given the first coin flip is heads, the second coin flip is tails
- Generalized chain rule (Or Multiplication rule)

$$Pr(E_1 \cap E_2 \cap ... \cap E_n)$$

 $= Pr(E_1)Pr(E_2 \mid E_1)Pr(E_3 \mid E_1 \cap E_2)...Pr(E_n \mid E_1 \cap E_2 \cap ... \cap E_{n-1})$

Properties of Conditional Probability

• Lemma:

- $-0 \le Pr(E \mid F) \le 1$
- $Pr(\Omega \mid F) = 1$
- For any sequence of pairwise mutually disjoint events E_1, E_2, \dots, E_n $Pr(\bigcup_{i=1}^n E_i \mid F) = \sum_{i=1}^n Pr(E_i \mid F)$

Polynomial Identities: Revisit

- Let $F(x) \neq G(x)$
- Randomized algorithm: Perform k trials and decide F(x)=G(x) if all trials claim F(x)=G(x)

With replacement

- Select r_i uniformly at random repeatedly from $\mathbf{R} = \{1, 2, ..., 100d\}$
- Return r_i to **R** after the trial
- Let Fi be an event that i-th trial fails \rightarrow F(r_i) = G(r_i)
- $Pr(F_1) = Pr(F_2) = ... = Pr(F_k) \le 1/100$
- Pr(Randomized algorithm fails) = Pr(F₁ \cap F₂ \cap ... \cap F_k) $\leq (\frac{1}{100})^k$

Polynomial Identities: Revisit

Without replacement

- Discard ri after the i-th trial
- After the i-th trial, there are 100d-i elements in **R** and at most d-i roots in **R**

$$ightharpoonup \Pr(\mathsf{F}_{\mathsf{i}} \mid \mathsf{F}_{\mathsf{I}} \cap \mathsf{F}_{\mathsf{2}} \cap \ldots \cap \mathsf{F}_{\mathsf{i-1}}) \leq \frac{d - (i - 1)}{100d - (i - 1)}$$

- Pr(Randomized algorithm fails)
 - $= \Pr(F_1 \cap F_2 \cap ... \cap F_k)$
 - $= Pr(F_1)Pr(F_2 \mid F_1)Pr(F_3 \mid F_1 \cap F_2)...Pr(F_k \mid F_1 \cap F_2 \cap ... \cap F_{k-1})$

$$\leq \prod_{i=1}^{k} \frac{d - (i-1)}{100d - (i-1)} < \left(\frac{1}{100}\right)^k$$

Only **SLIGHTLY** better than with replacement algorithm

Example: Project Team

- With 12 students and make three project teams each of which consists of four randomly selected students
- Family name distribution: 3 Kim's (Let AKim, BKim, CKim) and 9 other surnames
- Probability that each team has exactly one Kim
- Solution
 - EI:AKim is in any one team
 - E2:AKim and BKim in different teams
 - E3:AKim, BKim and CKim in different teams
 - $Pr(E3 \mid E1 \cap E2) = 4/10$

Bayses' Theorem (Law/Rule)

• Rev. Thomas Bayes (1702-1761) was a British minister

S_{eoul} N_{ational} U_{niversity} 2016-03-10

Bayes' Theorem

• E = (E
$$\cap$$
F) U (E \cap \overline{F})

Note $(E \cap F) \cap (E \cap \overline{F}) = \emptyset$

•
$$Pr(E) = Pr(E \cap F) + Pr(E \cap \overline{F})$$

= $Pr(E \mid F) Pr(F) + Pr(E \mid \overline{F}) Pr(\overline{F})$

More generally,

- Let F₁, F₂, ... F_n be mutually exclusive and exhaustive events
- Given E observed, want to determine which of F_j also occurred

$$\Pr(\mathsf{Fj} \mid \mathsf{E}) = \frac{\Pr(E \mid F_j)\Pr(F_j)}{\sum_{i=1}^{n} \Pr(E \mid F_i)\Pr(F_i)}$$

Spam Email

- Frequently used words and phrases in spam email
 - "Dear Friend", "Prize", "Make Money Fast", "Hot", "Million", ...
- 60% of all email is spam
 - 50% of spam has MMF
 - 10% of non-spam has MMF
- An email has MMF. What is the probability that the email is spam?
 - E: Email has MMF
 - F: Email is spam

$$Pr(F|E) = \frac{Pr(E \mid F)Pr(F)}{Pr(E \mid F)Pr(F) + Pr(E \mid \overline{F})Pr(\overline{F})}$$

Learn: Naïve Bayesian Filtering (NBF)

Another Example

• Three coins

- Two of them are un-biased and one is biased such that Pr(heads) = 2/3
- Flip three coins in a random order and found that first and second coins are heads and third is tails
- Compute the probability that the first coin is the biased coin

Solution

- Observed event: (H,H,T)
- F1: First coin is biased, (similarly F2, F3)
- Pr(F1 | (H, H, T)) = ?

YAE: Mamma Mia

- Child is born with (A, a) gene pair (Event (A,a))
 - Mother has (A,A) gene pair
 - Two possible fathers:
 - Adam: (a,a), Bob: (A,a)
 - Mother's belief: Pr(Adam) = p, Pr(Bob) = (1-p)
 - What is probability that the father is Adam?
 - $Pr(Adam \mid (A,a)) = ?$

S_{eoul} N_{ational} U_{niversity} 2016-03-10

Probability Inference

• Bayes' Theorem

• Probability changes after evidences (E) are observed

Monty Hall Problem

SCONE Lab.

Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?

Marilyn Savant vs Erdos

Monty Hall Problem

- Without loss of generality, assume the player picks door 1
- O Define events
 - C1: Car is behind door 1 (Similarly C2, C3) → Pr(C1) = 1/3
 - X1: Player pick door 1
 - H3: Host open door 3
 - $Pr(H3 \mid C1 \cap X1) = \frac{1}{2}$, $Pr(H3 \mid C2 \cap X1) = 1$, $Pr(H3 \mid C3 \cap X1) = 0$
- Probability of win after switching = $Pr(C2 \mid H3 \cap X1)$
 - \rightarrow Show that it is 2/3

Refer to Wikipedia

Random Bit Generator

- A random number bit generator produces a series of random bits, with probability p of producing a 1
 - Each bit generated is an independent trial
 - E: First n nits are all 1's, followed by a single 0
- Pr(E)?
 - Pr(first n 1's) = Pr(Ist bit = 1)·Pr(2nd bit = 1) · · · · Pr(n-th bit = 1) = p^n
 - $Pr(E) = Pr(first n 1's) \cdot Pr(n+1^{st} bit = 0)$ = $p^n(1-p)$
- Let F: k out of n random bits are 1
 - Pr(First k bits are 1, then n-k 0's) = $p^k(1-p)^{n-k}$
 - Pr(k out of n random bits are 1) = $\binom{n}{k} p^k (1-p)^{n-k}$

Search, Hashing and Bitcoin

- A fundamental operation in data analysis is to **find** (search) an object in a big dataset
- Many search algorithms
 - BST (Binary Search Tree)
 - Hashing
 - Usually, hashing is the most efficient and popular, yet simplest algorithm
 - Complexity = O(I)
- A hash function maps a large number to a smaller number, deterministically
 - One-way function
 - Given an input it is easy to compute its output, but the reverse is difficult
- Bitcoin
 - POW(Proof Of Work)
 - Given an output, find inputs that are close enough
 - SHA256 (256 bit Secure Hashing Algorithm)

Hash Table

SCONE

Index

Lab.

• Key, Hash function, and Hash table

- Example: 주민번호
 - Each person has a unique key of 13 digits
 - Key space (K) = 10^{13}
 - There are $< 10^8$ unique keys
- Hash function h: $K \rightarrow (0, 1, ..., n-1)$
 - Simple uniform hash function: Each key is equally likely to hash to any of n slots (buckets)
- Collision
 - Two different keys are mapped to the same slot

Hash Table

• m keys are hashed into a hash table of n slots

- Each key hashing is an independent trial
- E: At least one key hashed to the first slot
- Pr(E)?

Hint: Think out independent events. Then AND (intersection) of them.

Solution

- Fi: Key i not hashed to the first slot $(0 \le i \le m)$
- Pr(Fi) = 1-1/n = (n-1)/n, for all $0 \le i \le m$
- Pr(no keys hashed to the fist slot) = $Pr(F_1 \cap F_2 \cap ... \cap F_m)$

$$- P(E) = 1-Pr(F_1 \cap F_2 \cap ... \cap F_m)$$
$$= 1 - \left(\frac{n-1}{n}\right)^m$$

• Similar to the birthday problem

- Among m friends, at least one friend has the same birthday as you (n = 365)

Hash Table

- m keys are hashed into a hash table of n slots
- E: At least one of slots (1 to k) has keys hashed to it

Solution

- Ei: At least one key hashed into the i-th slot

-
$$Pr(E) = Pr(E1 \cup E2 \cup ... \cup Ek)$$

= $1-Pr(\overline{E1} \cup E2 \cup ... \cup Ek)$
= $1-Pr(\overline{E1} \cap \overline{E2} \cap ... \cap \overline{Ek})$

Ei & Ej independent?

$$= 1 - \left(\frac{n-k}{n}\right)^m$$

Odds

• Odds of an event (H) is defined as

$$\frac{\Pr(H)}{\Pr(\overline{H})} = \frac{\Pr(H)}{1 - \Pr(H)}$$

Odds of H given evidence E

$$\frac{\Pr(H \mid E)}{\Pr(\overline{H} \mid E)} = \frac{\Pr(H) \Pr(E \mid H) / \Pr(E)}{\Pr(\overline{H}) \Pr(E \mid \overline{H}) / \Pr(E)}$$
$$= \frac{\Pr(H) \Pr(E \mid \overline{H})}{\Pr(\overline{H}) \Pr(E \mid \overline{H})}$$

• After observing E, update odds by $\frac{\Pr(E \mid H)}{\Pr(E \mid \overline{H})}$

Lee Sedol vs AlphaGo

SCONE Lab.

- Let H: Lee is better than AG
- Before the match, Pr(H) = 0.9

- If Lee is better than AG, then Lee wins game with 0.8 probability
- If AG is better than Lee, then AG wins game with 0.9 probability
- E: AG won a game
- What is updated odds after the game?
- What if AG wins two games in a row?

S_{eoul} N_{ational} U_{niversity} 2016-03-10

Coins & Urns

• An urn contains 2 coins: A and B

- A comes up heads with probability 1/4
- B comes up heads with probability ³/₄
- Pick coin randomly and flip it, and it comes up heads

• What are the odds that A was picked?

- Before the experiment $Pr(A) = Pr(\overline{A}) = Pr(B) = \frac{1}{2}$

After the experiment

Verifying Matrix Multiplication

- o Given three $n \times n$ matrices A, B, and C
- Want to verify that **AB** = **C**
- Complexity of matrix multiplication
 - $-\Theta(n^3)$
 - $\Theta(n^{2.37})$ (Best Algorithm)
- Randomized algorithm
 - Select a vector $\bar{r} = (r_1, r_2, ..., r_n) \in \{0, 1\}^n$
 - Compute $\mathbf{A}\mathbf{B}\bar{r}$ (First compute $\mathbf{B}\bar{r}$ and then $\mathbf{A}(\mathbf{B}\bar{r})$, Complexity = $\Theta(n^2)$)
 - Compute $\mathbf{C}\bar{r}$
 - Decision:
 - If $AB\bar{r} = C\bar{r} \rightarrow Conclude$ that AB = C
 - If $AB\bar{r} \neq C\bar{r} \Rightarrow$ Conclude that $AB \neq C$

Theorem

o If $AB \neq C$ and if \bar{r} is chosen uniformly at random from $\{0, 1\}^n$, then $Pr(AB\bar{r} = C\bar{r}) \leq \frac{1}{2}$

• Proof

- First, note that selecting \bar{r} uniformly at random from $\{0,1\}^n$ is equivalent to select each r_i uniformly at random from $\{0,1\}$
- Let $D = AB C \neq 0$
- From $\mathbf{AB}\bar{r} = \mathbf{C}\bar{r}$, we know that $\mathbf{D}\bar{r} = \mathbf{0}$
- Because $\mathbf{D} \neq \mathbf{0}$, there must be some non-zero elements in \mathbf{D}
- Let a non-zero element is d_{11}

$$-\sum_{j=1}^{n} d_{1j} \cdot r_{j} = 0$$

$$\Rightarrow r_{1} = -\frac{\sum_{j=2}^{n} d_{1j} \cdot r_{j}}{d_{11}}$$
 (1)

- There is at most one choice of r_1 that satisfies Eq 1.
- Because r_1 can be either 0 or 1, the probability that $\mathbf{AB}\bar{r} = \mathbf{C}\bar{r}$ is at most $\frac{1}{2}$

Randomized Algorithm

- Assume that $AB \neq C$
- Repeat the test k times with \bar{r} selected uniformly at random from $\{0,1\}^n$.

If all k test results are $AB\bar{r} = C\bar{r}$, then conclude that AB = C

Analysis

- Fi: Event that i-th test fails
- $Pr(F_1) = Pr(F_2) = ... = Pr(F_k) \le 1/2$
- Pr(Algorithm fails) = Pr(F₁ ∩ F₂ ∩ ... ∩ F_k) ≤ 2^{-k}

Application of Bayes' Theorem

- E: Event that AB = C
- At the beginning, we do not know if it is true or false
 - → Prior knowledge $Pr(E) = Pr(\overline{E}) = \frac{1}{2}$
- B1: First test returns that the identity is correct

• Pr(E | B1) =
$$\frac{\Pr(B1|E) \cdot \Pr(E)}{\Pr(B1|E) \cdot \Pr(E) + \Pr(B1|\bar{E}) \cdot \Pr(\bar{E})}$$
$$\geq 2/3$$

• B2: Second test returns that the identity is correct

•
$$Pr(E \mid B2) \ge \frac{^2/_3}{^2/_3 + ^1/_3 \cdot ^1/_2} \ge 4/5$$

• Assume that after i-th test, our belief is that $Pr(E) \ge 2^i / (2^{i+1})$

•
$$Pr(E \mid Bi+1) \ge \frac{2^{i+1}}{2^{i+1}+1} = 1 - \frac{1}{2^{i}+1}$$

Advanced Conditional Probability

- Insurance companies have been using probabilities to make different yet proper charges to customers
 - For example, customers who are more probable to incur costs are charged more than customers with less risks
- Car insurance company problem
 - There are two types of drivers: Careful (0.6) and Careless(0.4)
 - Probabilities that careful and careless customer have accidents in a year are 0.2 and 0.4, respectively
 - Events to have accidents in each year are independent (Depends only on the driver types)
 - Given that a new customer has accidents in the first year, What is the probability that the customer have accidents in the second year?
- Note $Pr(E \mid F) = Pr(E \mid G \cap F) Pr(G \mid F) + Pr(E \mid \overline{G} \cap F) Pr(\overline{G} \mid F)$
 - $Pr(E \mid F) = Pr(E \cap G \mid F) + Pr(E \cap \overline{G} \mid F)$ = $Pr(E \cap G \cap F) / Pr(F) + Pr(E \cap \overline{G} \cap F) / Pr(F)$ = $Pr(E \mid G \cap F) Pr(G \cap F) / Pr(F) + Pr(E \mid \overline{G} \cap F) Pr(\overline{G} \cap F) / Pr(F)$ = $Pr(E \mid G \cap F) Pr(G \mid F) Pr(F) / Pr(F)$ + $Pr(E \mid \overline{G} \cap F) Pr(\overline{G} \mid F) Pr(F) / Pr(F)$

Advanced Conditional Probability

Solution

- A2: Event that the customer have accidents in the second year
- A1: Event that the customer have accidents in the first year
- C: Event that customer is careful (\overline{C} : Careless)
- $\Pr(E \mid F) = \Pr(E \mid G \cap F) \Pr(G \mid F) + \Pr(E \mid \overline{G} \cap F) \Pr(\overline{G} \mid F)$
- $E \leftarrow A2, F \leftarrow A1, G \leftarrow C$
- $\operatorname{Pr}(A2 \mid A1) = \operatorname{Pr}(A2 \mid A1 \cap C) \operatorname{Pr}(C \mid A1) + \operatorname{Pr}(A2 \mid A1 \cap \overline{C}) \operatorname{Pr}(\overline{C} \mid A1)$
- Compute Pr(C | A1) using Bayes' Theorem
- Pr(A2 | A1 ∩ C) ??
- Suppose a customer have accidents in first and second years consecutively, what is the probability that the customer is a careful driver?
 - **→** Pr (C | A1 ∩ A2)

AlphaGo W/W/W/L

Sequential Information Update

Sequential Information Update

- A hypotheses H (such as a driver is careful driver) with an initial guess is given Pr(H is True) = p = 1 Pr(H is False)
- After an Event E is occurred, the conditional probability that H is True (Let this be T) is given as

$$- Pr(T \mid E) = \frac{Pr(E \mid T)Pr(T)}{Pr(E \mid T)Pr(T) + Pr(E \mid F)Pr(F)}$$

Now, suppose we observed two successive (independent) events E1 and E2

$$- \Pr(T \mid E1 \cap E2) = \frac{\Pr(E1 \cap E2 \mid T)\Pr(T)}{\Pr(E1 \cap E2 \mid T)\Pr(T) + \Pr(E1 \cap E2 \mid F)\Pr(F)}$$

- Can we consider E2 as E and $Pr(T \mid E1)$ as Pr(T)?
- Solution
 - Yes, if E1 and E2 are conditionally independent given H

$$\rightarrow$$
 Pr(E1 \cap E2 | H) = Pr(E2 | H) Pr(E1 | H)

- To show
$$Pr(T \mid E1 \cap E2) = \frac{Pr(E2 \mid T)Pr(T \mid E1)}{Pr(E2 \mid T)Pr(T \mid E1) + Pr(E2 \mid F)Pr(F \mid E1)}$$

Conditional Independence

- Let E and F are independent
 - → E given G and F given G are independent also?
- No, Counter example
 - Roll two dice yielding values D1 and D2
 - E: D1=1
 - F: D2=6
 - G: D1+D2=7
 - E and F are independent, $Pr(E \cap F) = 1/36$ and Pr(E) = 1/6, Pr(F) = 1/6
 - Pr(E | G)=1/6, Pr(F | G)=1/6 and $Pr(E \cap F | G)=1/6$
- Events E and F are conditionally Independent given G iff $Pr(E \cap F \mid G) = Pr(E \mid G) Pr(F \mid G)$
- Prove that if E and F are conditionally independent given G then $Pr(E \mid F \cap G) = Pr(E \mid G)$

Another Example

• 100 person in Bldg 302

- 30 are in CS Dept. (Either students or faculty)
- 20 are Faculty
- There are 6 CS Faculty
- Pr(CS)=0.3, Pr(F)=0.2 $Pr(CS \cap F)=0.06$ \rightarrow CS and F are independent
- Only the persons in CS Dept. or Faculty can use the DiningHall
- CS given DiningHall and F given DiningHall are independent?

Solution

- D: DiningHall users = CS U F
- |D| = 30 + 20 6 = 44
- $Pr(CS|D) = 30/44, Pr(F|D) = 20/44, Pr(CS \cap F \mid D) = 6/44$

Conditionally Dependent

Independence & Conditioning

• Conditioning can make dependent events to independent?

• Yes, Example

- Sample space: {M,Tu,W,Th, F, Sa, Su}
- A: not Monday = $\{Tu, W, Th, F, Sa, Su\}$
- B: Sa
- C: {Sa, Su}
- Pr(A)=6/7, Pr(B)=1/7 and $Pr(A \cap B)=1/7$
 - → A and B are dependent
- Pr(A|C)=1, Pr(B|C)=1/2, $P(A \cap B|C)=1/2$
 - → A|C and B|C are independent

Gambler's Ruin Problem

• Game setting

- Gambler A and B
- Successive coin flips. If heads, A collect one unit from B. If tails, A give one unit to B
- Pr(heads) = p = 1-Pr(tails)
- A starts with i units and B starts with N-i units
- Game finishes when one of gamblers collects all
- Probability that A wins?

Solution

- E:A wins
- H: first flip is heads
- $Pi = Pr(E) = Pr(E \mid H)Pr(H) + Pr(E \mid \overline{H})Pr(\overline{H})$

Gambler's Ruin Problem

Solution

- Pi = Pr(E | H)•p + Pr(E |
$$\overline{H}$$
) •(1-p)
= p•P_{i+1} + q•P_{i-1}
 \Rightarrow p•P_i + q•P_i = p•P_{i+1} + q•P_{i-1}
 \Rightarrow P_{i+1} - P_i = q/p (P_i - P_{i-1})
- Obviously, Po = 0 and P_N = 1
P₂ - P₁ = q/p (P₁ - P₀) = (q/p) P₁
P₃ - P₂ = q/p (P₂ - P₁) = (q/p)² P₁
 \vdots
Pi - P_{i-1} = (q/p)ⁱ⁻¹ P₁
 \Rightarrow Pi - P₁ = P₁ [(q/p) + (q/p)² +...+ (q/p)ⁱ⁻¹]
 \Rightarrow P_i =
$$\begin{cases} \frac{1-(q/p)^{i}}{1-(q/p)} \cdot P_{1}, & \text{if } p \neq 1/2\\ i \cdot P_{1}, & \text{if } p = 1/2 \end{cases}$$

Gambler's Ruin Problem

Solution

- From $P_N = 1$, we obtain

$$P_1 = \begin{cases} \frac{1 - {\binom{q}/p}}{1 - {\binom{q}/p}^N} , & \text{if } p \neq 1/2 \\ \frac{1}{N} , & \text{if } p = 1/2 \end{cases}$$

→ Pi =
$$\begin{cases} \frac{1 - (^{q}/p)^{i}}{1 - (^{q}/p)^{N}}, & \text{if } p \neq 1/2 \\ \frac{i}{N}, & \text{if } p = 1/2 \end{cases}$$