

The Roles of Preventive and Curative Health Care in Economic Development

Master's thesis

Istanbul Technical University, Department of Economics
Anna Pirogova | pirogova23@itu.edu.tr

10.07.2025

Health = core component of human capital and productivity

Global **rise** in health expenditures → pressure on public budgets

Policymakers often assume that all health expenditure is equally growth-enhancing, but:

- Preventive care → reduces risk of illness
- → Different mechanisms, different economic roles.

oECD countries: **aging populations & fiscal constraints** → optimizing health investment is critical for sustainability and long-term growth.

Research Gap

Existing studies rarely focus on **both health care spending** components

Lack of evidence on **separate effects** of curative vs. preventive care

Nonlinearities (e.g., thresholds) often ignored

- Effects may differ by income level or institutional context
- Few models test interactions with education spending
- Endogeneity rarely addressed systematically

Research Questions:

- ? What are the separate effects of curative and preventive health spending on the real GDP per capita?
- ? Do these effects exhibit nonlinear (threshold-based) behavior?
- ? How do these effects vary across countries with different income levels?
- ? Does the impact of curative health spending depend on the level of education investment?

Hypotheses:

- PH1: Curative health spending is expected to have a stronger and more direct impact on the real GDP per capita than preventive spending.
- PH2: The relationship between health spending and real GDP per capita is nonlinear, involving threshold effects.
- PH3: The positive effect of health spending on real GDP per capita is stronger in higher-income countries.
- H4: Greater education investment strengthens the
 positive effects of curative health spending.

Health as Human Capital

Becker (1964), Mushkin (1962), Grossman (1972)

Health-Led Growth Hypothesis

Better health → ↑ productivity, ↓ absenteeism GDP per capita as proxy for development

Prevention vs. Cure Debate

Prevention = harder to measure, long-term effects Only ~20% of interventions are cost-saving Effectiveness is context-dependent

Optimal Allocation (Wang, 2016–2021)

Nonlinear returns to both spending types
Underinvestment → missed gains
Overinvestment → marginal returns, inefficiencies

Health spending → **positive economic effect**

- •OECD: Beylik (2022), Atilgan (2024)
- •Developing countries: Baldacci (2004), Piabuo & Tieguhong (2017)

Prevention: nonlinear and threshold effects

- •Wang (2021, 2024): optimal prevention share ≈ 1.2%; underinvestment harms productivity
- •Hu & Wang (2024): income threshold affects spending impact

Our study vs. Literature

- •Uses balanced OECD panel (1998–2021)
- Employs FE and DML (not GMM)
- •Tests nonlinearity and interactions with education, income decomposition

SampleOECD countries:

Australia, Austria, Belgium, Canada, Czechia, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Italy, Japan, Luxembourg, Mexico, Netherlands, Norway, Poland, Portugal, Slovakia, South Korea, Spain, Sweden, Switzerland, UK and the USA

Period: 1998-2021

- → Balanced panel
- → Total observations: 24*29=648

Data Sources:

OECD Health Statistics
World Bank, UN, UNESCO

Data Description

Key Variables: Dependent Variable

Log of real GDP per capita (2010 USD)

Main Independent Variables:

Curative health expenditure (% of GDP)
Preventive health expenditure (% of GDP)

Control Variables:

Demographics: Life expectancy, elderly population share, total population

Economic: Education spending (% of GDP), trade (% of GDP), savings (% of GDP), short-term interest rate

38789.60 90.94 41.44	21778.28 56.64	5627.55 18.13	127117.10
		18.13	000 11
41.44			393.14
	62.02	0.27	332.05
16.20	3.78	4.78	29.79
79.49	2.80	70.13	84.56
5.18	1.19	2.89	8.61
6.32	6.18	-15.71	27.92
2.83	3.51	-0.80	27.10
8.81	2.22	3.60	18.60
4.98	1.46	1.72	11.90
0.26	0.15	0.00	1.27
	2.83 8.81 4.98	2.833.518.812.224.981.46	2.83 3.51 -0.80 8.81 2.22 3.60 4.98 1.46 1.72

Table 3.1 : Summary Statistics.

Cross-Country Variation:

GDP per capita: \$9,247 (Mexico) — \$95,359 (Luxembourg)

Life expectancy: 73.8 years (Mexico) — 82.8 years (Japan).

The share of the 65+ population: $<5\% - \sim 30\%$

Curative health expenditure: 2.96% (Mexico) — 10.2% (USA).

Preventive spending: 0.12% (Greece) — 0.59% (Canada).

Figure 3.1 : Average Curative Health Expenditure Over Time.

Figure 3.3: Box-plot Distribution of Curative Expenditure Over Time.

Trends in Average Health Spending (OECD, 1998–2021)

Figure 3.2: Average Preventive Health Expenditure Over Time.

Figure 3.4 : Box-plot Distribution of Preventive Expenditure Over Time.

- Panel regression with two-way fixed effects, controlling for country-specific and time-specific unobserved factors.
- → Common approach in cross-country growth and health studies (Baldacci et al., 2004; Moreno-Serra & Smith, 2011).
- **FE estimators** → eliminate omitted variable bias due to country-specific heterogeneity (Wooldridge, 2010; Baltagi, 2005).
- Control variables follow Barro-style growth regressions (Barro & Sala-i-Martin, 2004).

Base model FE* model with time and country fixed effects:

$$\log(\mathsf{GDP}_{it}) = \alpha_i + \delta_t + \beta_1 \cdot \mathsf{HealthExp}_{it} + \beta_2 \cdot \mathsf{HealthExp}_{it}^2 + \gamma' X_{it} + \varepsilon_{it}$$

- $log(GDP_{it})$: the natural logarithm of real GDP per capita for country i at time t,
- α_i : country-specific fixed effects,
- δ_t : captures time-specific effects,
- HealthExp_{it}: denotes either curative or preventive health spending as a share of GDP,
- Health Exp_{it}^2 : squared term of either curative or preventive health spending,
- X_{it}: vector of controls
- ε_{it} : the idiosyncratic error term.

Endogeneity concern: (Potential reverse causality)

Real GDP per capita ↔ Health expenditure

→ Used **lagged regressors** to reduce simultaneity bias:

$$\log(\mathsf{GDP}_{it}) = \alpha_i + \delta_t + \beta_1 \cdot \mathsf{HealthExp}_{i,t-1} + \beta_2 \cdot \mathsf{HealthExp}_{i,t-1}^2 + \gamma' \mathsf{X}_{i,t-1} + \varepsilon_{it}$$

1st extension (adding income group):

$$\log(GDP_{it}) = \alpha_i^g + \delta_t^g + \beta_1^g \cdot Curative_{i,t-1} + \beta_2^g \cdot Curative_{i,t-1}^2 + \gamma^{g'}X_{i,t-1} + \varepsilon_{it}$$

$$g \in \{\text{low, high}\} \text{ indicates the income group}$$

2nd extension (adding interaction with education expenditure):

$$\log(GDP_{it}) = \alpha_i + \delta_t + \beta_1 \cdot Curative_{i,t-1} + \beta_2 \cdot Curative_{i,t-1}^2 + \beta_3 \cdot \left(Curative_{i,t-1} \times Educ_{i,t-1}\right) + \beta_4 \cdot \left(Curative_{i,t-1}^2 \times Educ_{i,t-1}\right) + \gamma' X_{i,t-1} + \varepsilon_{it}$$

Double or Debiased Machine Learning (DML) (Chernozhukov et al., 2018)

Goal: Estimate causal parameters (e.g., treatment effects) in high-dimensional settings while maintaining valid statistical inference.

Neyman Orthogonality: the estimating equations are locally insensitive to small errors in the ML step

Use ML to flexibly model nuisance parameters, such as control variables

"De-biases" estimates by partialling out the influence of covariates from both the treatment and the outcome.

Sample splitting — estimating nuisance functions on one fold and evaluating on another.

Result: Root-n consistent, asymptotically normal estimates of treatment effects

Partially linear regression*

$$Y_{it} = \beta D_{it} + \gamma D_{it}^2 + g(X_{it}, X_{it}^2, X_{it}^3, X_{it}X_{jt}, \overline{X}_i, \overline{X}_t) + \varepsilon_{it},$$

- *Y_{it}*: the log of real GDP per capita,
- D_{it} : health expenditure (curative or preventive),
- D_{it}^2 : nonlinear term (quadratic) of health expenditure
- $g(\cdot)$: high-dimensional, nonparametric function of covariates and their nonlinear transformations and interactions,
- X_{it}^2, X_{it}^3 : higher order transformations
- \bar{X}_i and \bar{X}_t : country and year means used to account for unobserved country and time heterogeneity
- ε_{it} : the idiosyncratic error term.

Let Z_{it} be the full set of covariates (including interactions, transformations, and fixed effects).

Step 1: Estimating Linear Effect β

Treat D_{it} as the treatment; absorb D_{it}^2 into controls.

Stage 1: Nuisance Estimation:
$$\hat{\ell}(Z_{it}, D_{it}^2) = E[Y_{it} \mid Z_{it}, D_{it}^2], \quad \widehat{m}(Z_{it}, D_{it}^2) = E[D_{it} \mid Z_{it}, D_{it}^2]$$

Stage 2: Residual Regression:
$$\overset{\sim}{Y_{it}} = Y_{it} - \hat{\ell}(Z_{it}, D_{it}^2),$$

 $\overset{\sim}{D_{it}} = D_{it} - \widehat{m}(Z_{it}, D_{it}^2) \rightarrow \overset{\sim}{Y_{it}} = \beta \overset{\sim}{D_{it}} + \varepsilon_{it}$

Step 2: Estimating Nonlinear Effect γ

Treat D_{it}^2 as the treatment; absorb D_{it} into controls.

First Stage: Nuisance Estimation:
$$\hat{\ell}(Z_{it}, D_{it}) = E[Y_{it} \mid Z_{it}, D_{it}],$$
 $\hat{m}(Z_{it}, D_{it}) = E[D_{it}^2 \mid Z_{it}, D_{it}]$

Second Stage: Residual Regression:
$$Y_{it} = Y_{it} - \hat{\ell}(Z_{it}, D_{it}),$$

$$D_{it}^2 - \hat{m}(Z_{it}, D_{it}) \rightarrow Y_{it} = \gamma D_{it}^2 + \varepsilon_{it}$$

 $D^2_{it} =$

We employed 5 machine learning models to estimate nuisance functions $l(Z_{it}, D_{it})$ and $m(Z_{it}, D_{it})$ under a cross-fitting scheme with K=5 folds. These learners are Lasso, Ridge, Elastic Net Regression, Random Forest, and XGboost (boosted trees).

Summary of Table 4.2 : FE regressions for Curative Expenditure.

Model	Curative	Curative ²	Controls	Lagged	R ²
OLS (1)	0.590***	-0.034***	No	No	0.244
FE with controls (3)	-0.195+	0.032**	Yes	No	0.295
FE Lag with controls (6) + p < 0.1, * p < 0.05, ** p < 0.07			Yes	Yes	0.331

- → Nonlinear U-shaped relationship of the curative spending and GDP per capita
- → Above ~2.87% of GDP, curative spending starts to have a positive effect on GDP per capita
- → Pattern is similar in both contemporaneous and lagged FE models

Figure 4.1: Marginal Effect for Curative Expenditure, 95% CI bands.

Figure 4.2: Predicted Log of GDP per Capita and Curative Expenditure.

Summary of Table 4.4 : FE Models for Preventive Expenditure.

Model	Preventive	Preventive ²	Controls	Lagged	R ²	
OLS (7)	+1.971***	-1.340***	No	No	0.056	
FE with controls (9)	-0.317	+0.378	Yes	No	0.149	
FE Lagged (12)	-0.445	+0.672	Yes	Yes	0.191	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001						

- → Preventive health expenditure shows **no significant relationship with GDP per capita** at 5% significance level when country-level heterogeneity and controls are accounted for.
- → Possible reasons: low variation in preventive spending, data quality limitations

Figure 4.3: Marginal Effect for Preventive Expenditure, 95% Confidence Figure 4.4: Predicted Log of GDP and Preventive Expenditure (Holding Bands.

Group	Curative	Curative ²	R ²			
Low Income	-0.075	0.025	0.698			
High Income	0.211*	-0.012+	0.221			
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001						

The effect of curative spending varies by income level

- No significant effect in low-income group* (threshold 1.5% of GDP)
- Some evidence of nonlinear relationship in high-income group* (threshold ≈ 8.79% of GDP)

Results – Income-Level Decomposition of Curative Spending

Marginal Effect of Lagged Curative Spending by Income Group

Figure 4.5 : Marginal Effect for Curative Spending by Income Group.

* Income groups were created based on the sample mean of real GDP per capita (relative classification)

Summary of Ta	able 4.6 : Curative Expenditure - Decomposition by
	Education Expenditure.

Model	Curative	Cur ²	Cur × Edu	Cur ² × Edu	R ²	
FE (17)	-0.279*	+0.053***	0.011	-0.003*	0.331	
FE Lag (18)	-0.283*	+0.056***	0.013	-0.004*	0.367	
+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001						

Turning point (Curative %)
2.72
3.53
5.05

- In high-education countries, marginal returns to curative spending decline sooner
- Reflects faster diminishing returns as education rises

Summary of Table 4.7 : Curative Expenditure - DML Estimates.

Curative Expenditure – Double ML****

	•			
Model	Curative	SE	Curative ²	SE
Lasso (CV)	0.0493	0.0998	0.0051	0.0094
Ridge (CV)	0.1146***	0.0336	0.0057	0.0032
Elastic Net (.5, CV)	0.0325	0.0992	0.0037	0.009
Random Forest	0.0083	0.0517	0.0022	0.0038
XGBoost (Depth 4)	0.1630	0.0986	0.0069	0.0052
Best Performing Model	0.1630	0.0986	0.0069	0.0052
Least Squares Avg.	0.1561	0.1101	0.0070	0.0061

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Results - DML for Curative

Summary of Table 4.8: Lagged Curative Expenditure - DML Estimates.

Lagged Curative Expenditure – Double ML****

		•		
Model	Curative	SE	Curative ²	Curative ² SE
Lasso (CV)	0.0261	0.1056	0.0081	0.0095
Ridge (CV)	0.1141***	0.0312	0.0074**	0.0030
Elastic Net (.5, CV)	-0.0120	0.0987	0.0075	0.0091
Random Forest	-0.0018	0.0464	0.0006	0.0038
XGBoost (Depth 4)	0.1013	0.0720	0.0069***	0.0022
Best Performing Model	0.1013	0.0720	0.0069***	0.0022
Least Squares Avg.	0.0738	0.0643	0.0000	0.0037

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

^{****} In both tables we report the "only initial X specification"

Summary of Tables 4.9-4.11

Model	RMSE_Y	RMSE_ Curative	RMSE_Cur ²
XGBoost	0.0805	0.0804	0.6104
Random Forest	0.1097	0.1102	1.5382
Elastic Net (.5)	0.2113	0.2087	1.0849
Lasso (CV)	0.2058	0.2058	1.0541
Ridge (CV)	0.2453	0.2459	2.3507

→ XGBoost outperforms all learners
Lowest RMSE for Y, Curative, and Curative²

→Ridge performs worst: RMSE_Cur > 0.24, RMSE_Cur² > 2.35

- → Tree-based models (XGBoost, RF) > Linear models (Lasso, Ridge) = Better at capturing nonlinear patterns
- → However ! Better fit ≠ more significant causal estimates

Summary of Table 4.13: Preventive Expenditure - DML Estimates.

Preventive Expenditure – Double ML****

Model	Preventive	SE	Preventive ²	SE
Lasso (CV)	0.7839***	0.1356	-0.4362**	0.1486
Ridge (CV)	0.612***	0.1467	-0.181	0.1057
Elastic Net (.5, CV)	0.7785***	0.1095	-0.4065***	0.1195
Random Forest	0.1543	0.1481	0.0214	0.0943
XGBoost (Depth 4)	-0.1842	0.1586	-0.1315**	0.0507
Best Performing Model	-0.1842	0.1586	-0.1315**	0.0507
Least Squares Avg.	0.2385	0.4484	0.0412	0.1951
***p < 0.001, **p < 0	0.01, *p < 0.05			

Results - DML for Preventive

Summary of Table 4.14: Lagged Preventive Expenditure - DML Estimates.

Lagged Preventive Expenditure – Double ML****

Model	Preventive	SE	Preventive	SE
Lasso (CV)	1.0669***	0.1451	-1.0583***	0.1927
Ridge (CV)	0.5417***	0.1774	-0.1168	0.1937
Elastic Net (.5, CV)	1.0736***	0.1476	-0.9589***	0.1728
Random Forest	0.3877***	0.0771	0.2380***	0.0481
XGBoost (Depth 4)	0.3763***	0.0472	0.2166***	0.0089
Best Performing Model	0.3763***	0.0472	0.2166***	0.0089
Least Squares Avg.	0.2491	0.3882	0.0940	0.1011
***p < 0.001, **p	< 0.01, *p < 0	.05		

[→] Diminishing returns to preventive health spending

[→] From Elastic Net optimal threshold is 0.95% of GDP

[→] Models disagree

[→] Linear models suggest inverted U-shape, with estimated turning point ≈ 0.504% of GDP

[→] Tree-based model give unrealistic estimations

^{****} In both tables we report the "only initial X specification"

Summary of Tables 4.15-4.17

Model	RMSE_Y	RMSE_ Preventive	RMSE_ Preventive ²
XGBoost	0.0806	0.0147	0.0315
Random Forest	0.1095	0.0397	0.0616
Elastic Net (.5)	0.2168	0.0533	0.0474
Lasso (CV)	0.2161	0.0536	0.0473
Ridge (CV)	0.2478	0.0527	0.0511

- → XGBoost again outperforms all learners
- →RMSE's are lower than for Curative DML models
- → Predicting the outcome variable remains the hardest task for our models

- Curative Health Expenditure
- → Both methods confirm **nonlinear effect (convex U-shaped relationship =** benefits emerge after a threshold)
- → DML estimates are smaller in size but robust
- → Linear term: both approaches conclude to be not significant
- Preventive Health Expenditure
- → FE: no significant effects in both specifications
- → DML: contemporaneous nonlinear effect, for lagged version contradicting estimates. Most likely concave (=benefits peak, then diminish)

Limitations

- Endogeneity may still remain an issue (no IV or GMM)
- Measurement errors in health expenditure: Preventive spending data is noisy and inconsistent across countries/years
- OECD sample only limited generalizability to low-income countries

5 Future Research Directions

- Apply instrumental variables or system GMM approach to address reverse causality/endogeneity problem
- Expand sample beyond OECD countries
- Test other sources of heterogeneity: two-way fixed effects versus interactive fixed effects

Context matters:

Positive economic effects appear only at a later threshold for highincome or high-education settings

In high education investment countries marginal returns decline sooner

Policy Implications

Health—education policy alignment
Efficiency benchmarks for health spending (GDP thresholds)
Improved classification/tracking of preventive spending

Curative health spending has a positive economic impact, but only beyond a certain threshold and with a time lag

Its effectiveness is depends on the income level of the country and education spending.

Thank you!

	OLS Curative	FE Curative	FE Control Curative	OLS lag Curative	FE lag Curative	FE lag Control lag Curative
	(model 1)	(model 2)	(model 3)	(model 4)	(model 5)	(model 6)
Curative	0.590***	-0.061	-0.195+	0.607***	-0.056	-0.175+
	(0.058)	(0.156)	(0.117)	(0.058)	(0.150)	(0.106)
Curative ²	-0.034***	0.006	0.032**	-0.035***	0.005	0.030**
	(0.004)	(0.011)	(0.011)	(0.004)	(0.011)	(0.011)
Num.Obs.	648	648	648	621	621	621
Intercept	Yes	No	No	Yes	No	No
Controls included	No	No	Yes	No	No	Yes
Lagged controls	No	No	No	No	No	Yes
R2	0.244	0.007	0.295	0.253	0.007	0.331
R2 Adj.	0.242	-0.078	0.225	0.251	-0.081	0.264
AIC	1054.1	-646.3	-853.7	1001.5	-640.8	-872.7
BIC	1072.0	-632.9	-809.0	1019.2	-627.5	-828.4
Log.Lik.	-523.067			-496.754		
RMSE	0.54	0.15	0.12	0.54	0.14	0.12

⁺ p < 0.1, *p < 0.05, ** p < 0.01, *** p < 0.001. Heteroskedasticity-robust standard errors. Models 4-6 use lagged versions of variables, identical row labels are used for readability; see model specifications for details.

	OLS Preventive (model 7)	FE Preventive (model 8)	FE Control Preventive (model 9)	OLS lag Preventive (model 10)	FE lag Preventive (model 11)	FE lag Control lag Preventive (model 12)
Preventive	1.971***	-0.576	-0.317	2.115***	-0.741	-0.445
	(0.385)	(0.616)	(0.460)	(0.516)	(0.629)	(0.514)
Preventive ²	-1.340***	0.493	0.378	-1.499*	0.649	0.672
	(0.380)	(0.424)	(0.350)	(0.635)	(0.532)	(0.522)
Num.Obs.	648	648	648	621	621	621
Intercept	Yes	No	No	Yes	No	No
Controls included	No	No	Yes	No	No	Yes
Lagged controls	No	No	No	No	No	Yes
R2	0.056	0.019	0.149	0.056	0.025	0.191
R2 Adj.	0.053	-0.065	0.065	0.053	-0.061	0.109
AIC	1198.6	-653.9	-732.2	1147.1	-652.1	-754.3
BIC	1216.5	-640.5	-687.4	1164.8	-638.8	-710.0
Log.Lik.	-595.319			-569.537		
RMSE	0.61	0.15	0.14	0.61	0.14	0.13

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Heteroskedasticity-robust standard errors. Models 4-6 use lagged versions of variables, identical row labels are used for readability; see model specifications for details

	FE Control Curative Low Income (model 13)	FE Control Lag Curative Low Income (model 14)	FE Control Curative High Income (model 15)	FE Control Lag Curative High Income(model 16)
Curative	-0.055	-0.075	0.129	0.211*
	(0.132)	(0.149)	(0.088)	(0.100)
Curative ²	0.023	0.025	-0.004	-0.012+
	(0.020)	(0.022)	(0.005)	(0.007)
Life Expectancy	-0.101*	-0.107*	-0.009	-0.010
	(0.040)	(0.045)	(0.045)	(0.043)
Education Spending	0.076*	0.060	-0.042*	-0.067**
	(0.035)	(0.037)	(0.019)	(0.024)
Population	-0.064***	-0.063***	-0.003	0.001
	(0.010)	(0.011)	(0.004)	(0.005)
Share of Population 65+	-0.108*	-0.115**	-0.022+	-0.015
	(0.042)	(0.036)	(0.012)	(0.013)
Trade	0.005**	0.006***	0.000	0.001
	(0.002)	(0.002)	(0.001)	(0.001)
Savings Rate	0.007	0.007	0.008*	0.011*

Appendix – Curative & Income Level

1	FE Control Curative Low Income (model 13)	FE Control Lag Curative Low Income (model 14)	FE Control Curative High Income (model 15)	FE Control Lag Curative High Income(model 16)
Short-term Interest Rate	-0.003	-0.000	0.041***	0.028**
	(0.009)	(0.009)	(0.009)	(0.009)
Num.Obs.	240	230	408	391
R2	0.665	0.698	0.202	0.221
R2 Adj.	0.596	0.634	0.095	0.114
AIC	-340.2	-361.2	-765.2	-742.6
BIC	-305.4	-326.8	-725.1	-702.9
RMSE	0.11	0.11	0.09	0.09

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Heteroskedasticity-robust standard errors. Models 14, 16 use lagged versions of variables, identical row labels are used for readability; see model specifications for details or refer to the full table in the Appendix

	FE Control Curative by Education (model 17)	FE Control Curative by Education (Lag) (model 18)
Curative	-0.279*	-0.283*
	(0.125)	(0.114)
Curative ²	0.053***	0.056***
	(0.013)	(0.013)
Curative * Education Spending	0.011	0.013
	(0.012)	(0.012)
Curative ² * Education Spending	-0.003*	-0.004*
	(0.002)	(0.002)
Life Expectancy	-0.070	-0.080
Population	(0.046) -0.036 ***	(0.051) -0.036 ***
Population	(0.009)	(0.009)
Share of Population 65+	-0.028	-0.027
	(0.019)	(0.018)
Trade	0.002	0.003+
	(0.002)	(0.001)
Savings Rate	0.008**	0.010**
Short-term Interest Rate	(0.003) -0.004	(0.003) -0.005
Short-term interest Rate	(0.006)	(0.006)
	(0.000)	(0.000)

Appendix – Curative & Education

	FE Control Curative by Education (model 17)	FE Control Curative by Education (Lag) (model 18)
Num.Obs.	648	621
R2	0.331	0.367
R2 Adj.	0.263	0.302
AIC	-885.6	-904.9
BIC	-836.4	-856.2
RMSE	0.12	0.11
Joint F-test: Interactions (F, df1, df2, p)	F = 11.35, df = (2, 588), p = 0.0000	F = 13.50, df = (2, 562), p = 0.0000

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001. Heteroskedasticity-robust standard errors. Model 18 uses lagged versions of variables, identical row labels are used for readability; see model specifications for details.