Data Mining and Business Intelligence

Lecture 5: Text Mining Applications

Jing Peng
University of Connecticut

2/20/20

Recap

- Which approach is more time consuming, stemming or lemmatization?
- In the TF-IDF matrix, what do TF and IDF capture, respectively?

	D1	D2	D3	D4	D5
complexity	2		3	2	3
algorithm	3			4	4
entropy	1			2	
traffic		2	3		
network		1	4		

Term-document matrix

Interpretations of Matrices Produced by SVD

• $A = U \Sigma V^T$ - example: Users to Movies

Jure Leskovec, Stanford CS246: Mining Massive Datasets

-0.02 0.12 **-0.69 -0.69**

-0.80 0.40

Text Mining in SAS

Loading Data

- Input Data node: SAS dataset (automatically created while dragging it from Data Sources to the diagram)
- File Import node: non-SAS format dataset (.xlsx format is recommended over .csv for text data)
- Text Import node: a collection of texts stored in separate files (each file represents one record in the data)

Text Mining Nodes

Step	Action	Description	Tools
1	File Preprocessing	Create a SAS data set from a document collection that is used as input for the Text Parsing node.	Text Import node, %TMFILTER macro, or SAS DATA step.
2	Text Parsing	Decompose textual data, and generate a quantitative representation that is suitable for data mining purposes. Parsing might include:	Text Parsing node
		stemming automatic recognition of multi-word terms normalization of various entities such as dates, currency, percent, and year part-of-speech tagging extraction of entities such as organization names, product names, and addresses support for synonyms language-specific analyses	
3	Text Filtering	Transform the quantitative representation into a compact and informative format; reduce dimensions.	Text Filter node
4	Document Analysis	Cluster, classify, predict, or link concepts.	Text Topic node, Text Cluster node, Text Rule Builder node, Text Profile node, and SAS Enterprise Miner predictive modeling nodes

SVD in SAS (Text Cluster Node)

- Max SVD Dimension: Maximum allowed latent dimensions (actually used dimension is often smaller) for words
- Number of Clusters: Maximum number of clusters for documents
 - Exact or Maximum Number: Whether to create an exact or maximum number of clusters
- Is it possible to have more clusters than SVD dimensions?

TextCluster vs. TextTopic

TextCluster node

- Performs SVD and Clustering
- Soft group assignment

TextTopic node

- Performs clustering, but only retain terms and documents whose relevance exceeds certain thresholds
- Hard group assignment

• Bug: SAS incorrectly labels TextCluster_prob as binary and TextTopic as interval.

Model Selection and Prediction

Save Data Node

Output Options → Variables: specify which variables you want to save

Output Data → Select Roles: specify which subset to save (train, valid, test, or score)

Output Format: which format to save as

Tweets Popularity Prediction

Data Collection

- 12 funniest brands on Twitter
- We focus on the top 3 of them
 - Moosejaw (screen name: MoosejawMadness)
 - Netflix (screen name: netflix)
 - KFC (screen name: kfc)
- Run brand_tweets.R

Enterprise Miner Diagram

Popularity.xml

Steps: Loading and Parsing Data

- Add File Import node (set is_popuar as a binary target variable)
- Append Data Partition node (70% train and 30% validation)
- Append Text Parsing node (default settings)
- Append Text Filter node (Filter Viewer)
 - Concept linking in Filter Viewer (double click to expand)
 - Add Term to Search Expression (remember to clear)
 - Treat as Synonyms (select multiple → right click)

Steps: Clustering and Modeling

- Append Text Clustering node (SVD Resolution: High, max SVD Dimensions: 20; Number of Clusters: 3)
- Add **Text Topic** node (Number of Multi-term Topics: 3) → Results (Descriptive Terms) → Topic Viewer
- Append Decision Tree, Regression, Text Rule Builder, Gradient Boosting, and Neural Network models

Steps: Evaluation and Prediction

- Add Model Comparison node for all models (selection statistic: misclassification rate; selection table: validation)
- Add File Import node to import score data (Role: Score). Append Score node to this new File Import node and Model Comparison node
- Append SaveData node to Score node (Filename Prefix: predictions;
 File Format: xlsx; Choose Directory)
- Press Ctrl + S in the diagram window to save the diagram as xml file

Readings

- Highly Recommended: Getting Started with <a>SAS Text Miner
- SAS Enterprise Miner Documentation: <a> (press F1)
- Text Mining with R: <u>ebook</u>