Problem Set 1b

Anirudh Penmatcha

2023-09-12

```
library(car)
# Part 1: R Questions
# Question 1: Loading, summarizing and plotting the dataset
dataframe <- read.csv("Advertising.csv")</pre>
summary(dataframe)
                       \mathsf{TV}
##
        Χ
                                    Radio
                                                  Newspaper
## Min.
        : 1.00
                  Min.
                        : 0.70
                                 Min. : 0.000
                                                Min. : 0.30
                                                1st Qu.: 12.75
## 1st Qu.: 50.75
                                 1st Qu.: 9.975
                  1st Qu.: 74.38
## Median :100.50
                  Median :149.75
                                 Median :22.900
                                                Median : 25.75
        :100.50
                        :147.04
                                                Mean : 30.55
## Mean
                  Mean
                                 Mean
                                       :23.264
## 3rd Qu.:150.25
                  3rd Qu.:218.82
                                 3rd Qu.:36.525
                                                3rd Qu.: 45.10
## Max. :200.00
                  Max. :296.40
                                                Max. :114.00
                                 Max. :49.600
##
      Sales
## Min.
         : 1.60
## 1st Qu.:10.38
## Median :12.90
## Mean :14.02
## 3rd Qu.:17.40
        :27.00
## Max.
plot(dataframe)
```


- # Question 2: Simple Linear Regression
- # Yes, there is a relationship between sales and the mediums of advertisement.
- # TV and Sales have a clear linear relationship. With more advertisements on TV, the sales are almost proportionally high.
- # Radio and Sales also share somewhat of a relationship, however, it isn't as linear as with TV and Sales.
- # Newspaper and Sales don't show much of a relationship. Which means investing much of the advertising budget in Newspapers will not be worthwhile.

print(dataframe[5])

```
##
       Sales
## 1
        22.1
## 2
        10.4
        9.3
## 3
## 4
        18.5
## 5
        12.9
## 6
         7.2
        11.8
## 7
## 8
        13.2
## 9
         4.8
```

```
## 10
        10.6
## 11
         8.6
## 12
        17.4
## 13
         9.2
## 14
         9.7
## 15
        19.0
## 16
        22.4
## 17
        12.5
## 18
        24.4
## 19
        11.3
## 20
        14.6
## 21
        18.0
## 22
        12.5
## 23
         5.6
## 24
        15.5
## 25
        9.7
## 26
        12.0
## 27
        15.0
## 28
        15.9
## 29
        18.9
## 30
        10.5
## 31
        21.4
## 32
        11.9
## 33
         9.6
## 34
        17.4
         9.5
## 35
## 36
        12.8
## 37
        25.4
## 38
        14.7
## 39
        10.1
## 40
        21.5
## 41
        16.6
## 42
        17.1
## 43
        20.7
## 44
        12.9
## 45
         8.5
## 46
        14.9
## 47
        10.6
## 48
        23.2
## 49
        14.8
## 50
         9.7
## 51
        11.4
## 52
        10.7
## 53
        22.6
## 54
        21.2
## 55
        20.2
## 56
        23.7
## 57
         5.5
        13.2
## 58
## 59
        23.8
```

```
## 60
        18.4
## 61
         8.1
## 62
        24.2
## 63
        15.7
## 64
        14.0
## 65
        18.0
         9.3
## 66
## 67
         9.5
## 68
        13.4
## 69
        18.9
## 70
        22.3
## 71
        18.3
## 72
        12.4
## 73
         8.8
## 74
        11.0
## 75
        17.0
         8.7
## 76
         6.9
## 77
## 78
        14.2
## 79
         5.3
## 80
        11.0
## 81
        11.8
## 82
        12.3
## 83
        11.3
## 84
        13.6
        21.7
## 85
## 86
        15.2
        12.0
## 87
## 88
        16.0
## 89
        12.9
## 90
        16.7
## 91
        11.2
## 92
         7.3
## 93
        19.4
## 94
        22.2
## 95
        11.5
## 96
        16.9
## 97
        11.7
## 98
        15.5
## 99
        25.4
        17.2
## 100
## 101
        11.7
## 102
        23.8
## 103
        14.8
## 104
        14.7
## 105
        20.7
## 106
        19.2
## 107
         7.2
         8.7
## 108
## 109
         5.3
```

```
## 110
        19.8
## 111
        13.4
## 112
        21.8
## 113
        14.1
## 114
        15.9
## 115
        14.6
## 116
        12.6
## 117
        12.2
## 118
         9.4
        15.9
## 119
## 120
         6.6
## 121
        15.5
## 122
         7.0
## 123
        11.6
## 124
        15.2
## 125
        19.7
## 126
        10.6
## 127
         6.6
## 128
         8.8
## 129
       24.7
## 130
         9.7
## 131
         1.6
## 132
        12.7
## 133
         5.7
## 134
        19.6
## 135
        10.8
## 136
        11.6
## 137
         9.5
## 138
        20.8
## 139
        9.6
## 140
        20.7
## 141
        10.9
## 142
        19.2
## 143
        20.1
## 144
        10.4
## 145
        11.4
## 146
        10.3
## 147
        13.2
## 148
        25.4
## 149
        10.9
## 150
        10.1
        16.1
## 151
## 152
        11.6
## 153
        16.6
## 154
        19.0
## 155
        15.6
## 156
         3.2
## 157
        15.3
## 158
        10.1
## 159
        7.3
```

```
## 160 12.9
## 161
        14.4
## 162
        13.3
## 163
        14.9
## 164
        18.0
## 165
        11.9
## 166
        11.9
## 167
         8.0
## 168
        12.2
## 169
        17.1
## 170
       15.0
## 171
         8.4
## 172
        14.5
## 173
         7.6
## 174
        11.7
## 175
        11.5
## 176
        27.0
## 177
        20.2
        11.7
## 178
## 179
        11.8
## 180
       12.6
## 181
        10.5
## 182
        12.2
## 183
         8.7
## 184
        26.2
## 185
        17.6
## 186
        22.6
## 187
        10.3
## 188
        17.3
## 189
        15.9
## 190
         6.7
## 191
        10.8
## 192
         9.9
## 193
         5.9
## 194
        19.6
## 195
        17.3
## 196
         7.6
## 197
         9.7
## 198
        12.8
## 199
        25.5
## 200
        13.4
# Running a simple regression over each of the variables
lm_model_TV <- lm(unlist(dataframe[5]) ~ unlist(dataframe[2]), data =</pre>
dataframe)
summary(lm_model_TV)
##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[2]), data =
```

```
dataframe)
##
## Residuals:
                10 Median
                                3Q
                                       Max
      Min
## -8.3860 -1.9545 -0.1913 2.0671 7.2124
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
                                                      <2e-16 ***
## (Intercept)
                        7.032594
                                   0.457843
                                              15.36
## unlist(dataframe[2]) 0.047537
                                   0.002691
                                              17.67
                                                      <2e-16 ***
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.259 on 198 degrees of freedom
## Multiple R-squared: 0.6119, Adjusted R-squared: 0.6099
## F-statistic: 312.1 on 1 and 198 DF, p-value: < 2.2e-16
plot(unlist(dataframe[2]), unlist(dataframe[5]))
abline(lm_model_TV, col = "red")
```



```
lm_model_RADIO <- lm(unlist(dataframe[5]) ~ unlist(dataframe[3]), data =
dataframe)
summary(lm_model_RADIO)

##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[3]), data =</pre>
```

```
dataframe)
##
## Residuals:
       Min
                  10
                       Median
                                    3Q
                                            Max
## -15.7305 -2.1324
                       0.7707
                                2.7775
                                         8.1810
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
                                                       <2e-16 ***
## (Intercept)
                         9.31164
                                    0.56290
                                             16.542
## unlist(dataframe[3]) 0.20250
                                    0.02041
                                              9.921
                                                       <2e-16 ***
## ---
## Signif. codes:
                     '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.275 on 198 degrees of freedom
## Multiple R-squared: 0.332, Adjusted R-squared: 0.3287
## F-statistic: 98.42 on 1 and 198 DF, p-value: < 2.2e-16
plot(unlist(dataframe[3]), unlist(dataframe[5]))
abline(lm_model_RADIO, col = "blue")
```



```
lm_model_NEWSPAPER <- lm(unlist(dataframe[5]) ~ unlist(dataframe[4]), data =
dataframe)
summary(lm_model_NEWSPAPER)

##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[4]), data =</pre>
```

```
dataframe)
##
## Residuals:
       Min
                 10
                      Median
                                    3Q
                                            Max
## -11.2272 -3.3873
                     -0.8392
                                3.5059 12.7751
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
                                              19.88 < 2e-16 ***
## (Intercept)
                                    0.62142
                        12.35141
## unlist(dataframe[4]) 0.05469
                                    0.01658
                                               3.30 0.00115 **
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 5.092 on 198 degrees of freedom
## Multiple R-squared: 0.05212,
                                   Adjusted R-squared: 0.04733
## F-statistic: 10.89 on 1 and 198 DF, p-value: 0.001148
plot(unlist(dataframe[4]), unlist(dataframe[5]))
abline(lm_model_NEWSPAPER, col = "green")
```


We see from the graphs that the coefficients of TV and Sales model have a good fit. Radio and Sales have an average fit.
And Newspaper and Sales has the worst fit. As for each medium's contribution to sales, TV and Radio definitely contribute, but
Newspaper doesn't seem to.

```
# Question 3: Multiple Linear Regression
mult_lm_model <- lm(unlist(dataframe[5]) ~ unlist(dataframe[4]) +</pre>
unlist(dataframe[3]) + unlist(dataframe[2]), data = dataframe)
summary(mult lm model)
##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[4]) +
unlist(dataframe[3]) +
      unlist(dataframe[2]), data = dataframe)
##
## Residuals:
      Min
                1Q Median
                                3Q
                                       Max
## -8.8277 -0.8908 0.2418 1.1893 2.8292
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                         2.938889 0.311908
                                              9.422
                                                       <2e-16 ***
## unlist(dataframe[4]) -0.001037  0.005871 -0.177
                                                        0.86
## unlist(dataframe[3]) 0.188530 0.008611 21.893
                                                       <2e-16 ***
## unlist(dataframe[2]) 0.045765 0.001395 32.809 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.686 on 196 degrees of freedom
## Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
## F-statistic: 570.3 on 3 and 196 DF, p-value: < 2.2e-16
mult_lm_model$coefficients
##
            (Intercept) unlist(dataframe[4]) unlist(dataframe[3])
                               -0.001037493
                                                      0.188530017
##
            2.938889369
## unlist(dataframe[2])
            0.045764645
##
# The coefficient of newspaper is negative while TV and Radio are positive.
We also see the p-value given in the summary as
# less than 2.2e-16 which means that coefficients are statistically
significant because typically a p-value < 0.05 is considered
# statistically significant.
# Do they all contribute to sales?
# Newspaper definitely doesn't because of the negative relationship. But TV
and Radio do due to the positive coefficients.
# Reconciling results of multiple and simple regressions for newspaper
# If we look at the coefficients of the simple Linear Regression's model and
compare it with the respective coefficients of the
```

```
# Multiple Linear Regression models, they aren't too far apart. It won't be
the exact same but will be close to each other
# because in multiple Linear Regression model, it's trying to fit it for all
the three advertising mediums.
# How strong is the relationship between advertising and sales?
# It's mostly okay because it's not the strongest with Radio and Newspaper
but if a business had to invest their budget
# into advertisements for increasing their sales, then they should do it only
in TV and Radio because they have good relationship
# with sales.
# Discussing R-squared results
# The R-Squared value is computed to be 0.8972 or 89.72% which is very good.
It means that we got a good fit and the model is
# able to accurately predict the output for 90% of the data. However, it is
also important to keep in mind to use other
# metrics
# Plotting a 3d graph of Sales, TV and Radio.
#scatter3d(Sales~TV+Radio)
# Ouestion 4: Models with interaction terms
lm model TV Radio <- lm(unlist(dataframe[5]) ~ unlist(dataframe[3]) *</pre>
unlist(dataframe[2]), data = dataframe)
summary(lm model TV Radio)
##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[3]) *
unlist(dataframe[2]),
##
      data = dataframe)
##
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -6.3366 -0.4028 0.1831 0.5948 1.5246
##
## Coefficients:
                                             Estimate Std. Error t value
##
Pr(>|t|)
## (Intercept)
                                            6.750e+00 2.479e-01 27.233
<2e-16
## unlist(dataframe[3])
                                            2.886e-02 8.905e-03
                                                                   3.241
0.0014
                                            1.910e-02 1.504e-03 12.699
## unlist(dataframe[2])
<2e-16
```

```
## unlist(dataframe[3]):unlist(dataframe[2]) 1.086e-03 5.242e-05 20.727
<2e-16
##
                                              ***
## (Intercept)
## unlist(dataframe[3])
                                              **
## unlist(dataframe[2])
                                              ***
## unlist(dataframe[3]):unlist(dataframe[2]) ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9435 on 196 degrees of freedom
## Multiple R-squared: 0.9678, Adjusted R-squared: 0.9673
## F-statistic: 1963 on 3 and 196 DF, p-value: < 2.2e-16
# R-squared = 0.9678 (or) 96.78; F-statistic = 1963
# It seems like the R-Squared has gone up by a lot more. And the F-statistic
is much higher which means it is
# statistically significant and does a much better job of explaining the
variation in the dependent variable, which means it estimates the output
# quite precisely. So yes, there is a lot of synergy between TV and Radio due
to the improved performance that we've observed.
# Experimenting with variations in interaction terms
lm_model_TV_Newspaper <- lm(unlist(dataframe[5]) ~ unlist(dataframe[4]) *</pre>
unlist(dataframe[2]), data = dataframe)
summary(lm model TV Newspaper)
##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[4]) *
unlist(dataframe[2]),
       data = dataframe)
##
##
## Residuals:
       Min
                10 Median
                                3Q
                                       Max
## -9.1860 -1.5521 -0.0648 1.8062 8.7276
## Coefficients:
##
                                              Estimate Std. Error t value
Pr(>|t|)
                                             6.4042175 0.7333818
                                                                    8.732
## (Intercept)
1.1e-15
## unlist(dataframe[4])
                                             0.0241103 0.0192716
                                                                    1.251
0.212
## unlist(dataframe[2])
                                             0.0426585 0.0043105
                                                                    9.896 <
## unlist(dataframe[4]):unlist(dataframe[2]) 0.0001324 0.0001079
                                                                    1.228
0.221
##
                                             ***
## (Intercept)
```

```
## unlist(dataframe[4])
                                            ***
## unlist(dataframe[2])
## unlist(dataframe[4]):unlist(dataframe[2])
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.117 on 196 degrees of freedom
## Multiple R-squared: 0.6485, Adjusted R-squared: 0.6432
## F-statistic: 120.6 on 3 and 196 DF, p-value: < 2.2e-16
# R-squared = 0.6458 (or) 64.58%; F-statistic = 120.6
lm_model_Radio_Newspaper <- lm(unlist(dataframe[5]) ~ unlist(dataframe[4]) *</pre>
unlist(dataframe[3]), data = dataframe)
summary(lm_model_Radio_Newspaper)
##
## Call:
## lm(formula = unlist(dataframe[5]) ~ unlist(dataframe[4]) *
unlist(dataframe[3]),
      data = dataframe)
##
##
## Residuals:
       Min
                 10
                      Median
                                   30
                                           Max
## -15.6981 -2.1955
                      0.7567 2.7191
                                        8.2228
##
## Coefficients:
##
                                              Estimate Std. Error t value
## (Intercept)
                                             8.7904734 1.0224848
                                                                    8.597
## unlist(dataframe[4])
                                             0.0220611 0.0345866
                                                                    0.638
## unlist(dataframe[3])
                                             0.2145684 0.0382985
                                                                    5.603
## unlist(dataframe[4]):unlist(dataframe[3]) -0.0005259 0.0010642 -0.494
##
                                            Pr(>|t|)
## (Intercept)
                                            2.58e-15 ***
## unlist(dataframe[4])
                                               0.524
## unlist(dataframe[3])
                                            7.08e-08 ***
## unlist(dataframe[4]):unlist(dataframe[3])
                                               0.622
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.292 on 196 degrees of freedom
## Multiple R-squared: 0.3335, Adjusted R-squared: 0.3233
## F-statistic: 32.7 on 3 and 196 DF, p-value: < 2.2e-16
# R-squared = 0.3335 (or) 33.35%; F-statistic = 32.7
# Question 5: Optimize sales
```

```
# How should the budget be divided between TV & Radio?
budget TV Radio <- lm(unlist(dataframe[5]) ~ unlist(dataframe[3]) *</pre>
unlist(dataframe[2]), data = dataframe)
summary(budget_TV_Radio)
## *I'm not sure how to answer Question 5* ##
# Part 2: Reading
######################################
# What is the goal of Machine Learning?
# To develop high performance models that give useful predictions under
computing restraints
# What does Varian mean by "good out of sample predictions"?
# It means to get good estimates or predictions on data that the model hasn't
seen yet. Sample here is the data with which
# the model was estimated. So out of sample would mean data points outside
this sample.
# What is overfittina?
# How Varian explains this is when a model fits linear independent variables
perfectly with the training data, but don't predict
# well with data outside the training set, then the model is considered to be
overfitting the training set.
# What is model complexity?
# If we visualize a model and observe one that has overfit, it will have a
lot of depressions and curves so it touches all the
# points. However, one that is not overfit or underfit, will look less
twisted and bent with a fit which can be considered a good
# one. So these are different complexities in models.
# What is the training data?
```

The training data is the dataset with which we estimate our model