CSE 100: MARKOV, AVL

PA2 background

- Explain how Markov processes can be used to generate text
- Distinguish between training on text and generating text
- Create Markov models to generate text

Note: Punctuation is part of a word in my examples here. In the assignment, you may be asked to separate out "," "." "!" among others.

Predicting the future

Predicting the future

Predicting the future: Markov processes

Predicting the future: Markov processes

Hello, Goodbye

SONG

You say yes, I say no,

You say stop, and I say go, go, go,

Oh no.

You say goodbye and I say hello, hello, hello, I don't know why you say goodbye, I say hello, hello, hello,

I don't know why you say goodbye, I say hello.

I say high, you say low,

You say why, and I say I don't know.

Oh no.

You say goodbye and I say hello, hello, hello. I don't know why you say goodbye, I say hello, hello, hello,

I don't know why you say goodbye, I say hello.

Why, why, why, why, why,

Do you say goodbye.

Oh no.

You say goodbye and I say hello, hello, hello. I don't know why you say goodbye, I say hello, hello, hello,

I don't know why you say goodbye, I say hello.

You say yes, I say no,

You say stop and I say go, go, go.

Cover artwork for the single, as used in the US Single by The Beatles

B-side "I Am the Walrus" Released November 24, 1967

Released November 24, Format 7"

Recorded 2 October - 2 November 1967 EMI Studios, London

Genre Pop rock

Length 3:27
Label Parlophone
Writer(s) Lennon-McCartney
Producer George Martin

Certification Gold (RIAA)

You say hello. I don't know why you say hello, hello. I say goodbye. Oh no. You say no, You

You say hello. I don't know why you say hello, hello. I say goodbye. Oh no. You say no, You

Suppose "hello." is followed by: "I", "I", "Why", "I", "You", and "You"

What should be the Markov Model for the word "hello."?

Stage 1: Train
Build model based on data

Stage 1: Train
Build model based on data input String

Stage 1: Train
Build model based on data input String

"You say yes, I say no, You say ..."

Stage 1: Train
Build model based on data input String

Stage 1: Train

"You"	"say"	"yes,"	" "	"say"	"no,"	"You"	"say"

Stage 1: Train

For each new word: need to keep track of word + next words

For each new word: need to keep track of word + next words

Keep going through the next "say" to show duplicates

Stage 1: Train

"I don't know why you say goodbye, I say hello. I say high, you say low, ...

Stage 1: Train

... I say hello, hello. I don't know why you say goodbye ...

Stage 1: Train

... I say hello. Why, why, why, why, why, why, ...


```
word → "hello.
"
nextWords → "|", "|", "Why,"
```

Stage 1: Train

... hello, hello. I don't know ...

Stage 1: Train

... I say hello. You say yes, I say no, ...

Stage 1: Train

etc.

Stage 2: Generate

You

Pick Randomly
But we could do better
than a list, right?

Stage 2: Generate

Until we have enough words:

- Find current word as the word of some node in present word list
- Generate a random number between 0 and the size of nextWords list of this node
- Print the word at that index,
- Repeat

Given the text below, build your structure

"I like my cat. I like to see my dog. My dog likes to see me."

Note – treat a "." as a separate word in this case.

Given the text below, build your structure

"I like my cat. I like to see my dog. My dog likes to see me."

Note – treat a "." as a separate word in this case.

Which of the following Strings could not have been created with the text above?

- A. I like to see my cat.
- B. I like to see me.
- C. I like my cat.
- D. My dog likes to see my cat.
- E. All of the above are possible.

Which of the following is/are balanced trees?

And thus can become AVL trees by adding the balance factors

D. A&C

E. A&B&C

Annotate the trees with balance factors

An AVL Tree is worst case O(logN) to find an element!

How would you prove this?

Come up with a formula that shows that the height of the tallest AVL tree with N nodes is never bigger than c*logN + k, for some c and k (assuming large N).

The key to this proof is showing that the height stays "small", no matter how legally "unbalanced" the tree is.

But how does the tree stay balanced??

Insert 3

Insert 3

Insert 3

Insert 3

Inserting and rebalancing

Insert 3

Inserting and rebalancing

We just did a single right rotation at 10

Insert 3

What could you insert into this AVL tree that would result in a single rotation?

A. 71

B. 10

C. 50

D. 66

Insert 50. Draw the resulting AVL tree. (Don't peek)

What rotation do we need to do? Right...

After insertion

After rotation

What happens if we insert 66?

Why won't a single rotation work? Try it.

Reattaching 66 here will always work with respect to the BST properties, and we know that 66 will always fit here because 60 used to be 70s left child.

The problem is that this won't fix the balance issue!

Watch for this curve/kink

Single rotations only work to balance the tree when involved nodes are "in a line" This is not the case here. We want 66 to be the top node, not 60. So we will first rotate left at 60 to get 66 in the middle, then we can rotate right at 70.

Single rotations only work when involved nodes are "in a line" So we will first rotate left at 60, then we can rotate right at 70.

Single rotations only work when involved nodes are "in a line" So we will first rotate left around 60, then we can rotate right around 70.

Single rotations only work when involved nodes are "in a line" So we will first rotate left at 60, then we can rotate right at 70.

Single rotations only work when involved nodes are "in a line" So we will first rotate left at 60, then we can rotate right at 70.

Single rotations only work when involved nodes are "in a line" So we will first rotate left around 60, then we can rotate right around 70.

Where in the tree above should I cut to start the second rotation?

Single rotations only work when involved nodes are "in a line" So we will first rotate left at 60, then we can rotate right at 70.

It's sometimes even more complicated

Insert 64... do we need a double or a single rotation?

- A. Double
- B. Single
- C. No rotation needed

UH OH! Where do we put 64?? Are we stuck?

Will 64 always reattach there? Yes! Discuss why...

Finishing the rotation to balance the tree

Summary

- AVLs are balanced because we enforce balance at insertion (and removal)
 - Rotations allow us to achieve this and are constant time operations
- By enforcing balance, we ensure O(log n) find operations

Which of the following are legal red-black trees?

Red Black Trees, review

Red-Black Trees

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a *null reference* must contain the same number of black nodes

Is this a legal Red-Black tree?

A. Yes

B. No

Red-Black trees have height O(logN)

Intuition for proof – remove all red nodes all black nodes are at the same height. Can then reason about relationship between n and the height. Height of just black is will be O(log n). Add back red and you get just 2*height black.

Now for the fun part... insertions

Non-root insertions will always be red

Try inserting 13

Case 0: Parent was black. Insert new leaf node (red) and you're done.

Insertions: More complicated case

Try inserting 3

Case 1: Parent of leaf is red, parent is left child of grandparent, leaf is left child of parent, (& sibling of parent is black)

Right AVL rotation, and recolor

Which insertion can we not handle with the cases we've seen so far?

A. 1

B. 7

C. 12 D. 25

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Why didn't this work?

- A. It did! We're done!
- B. The property about red nodes having only black children is violated.
- C. The property about having the same number of black nodes on any path from the root through a null reference is violated.

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7 Recolor!

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insert 7

Case 2: Parent of leaf is red, parent is a left child of grandparent, leaf is right child of parent, (& sibling of parent is black)

Insertions: Summary, so far

Case 0: The parent of the node you are inserting is black. Insert and you're done

For the remaining cases, the parent of the node is red, the sibling of the parent is black:

Case 1: P is left child of G, X is left child of P (single rotate then recolor)

Case 2: P is left child of G, X is right child of P (double rotate then recolor)

Case 3: P is right child of G, X is right child of P

Case 4: P is right child of G, X is left child of P

Practice

Insert 1 and then insert 85. Draw the resulting tree.

The final tree

Insertions: Summary, so far

Case 0: The parent of the node you are inserting is black. Insert and you're done

For the remaining cases, the parent of the node is red, the sibling of the parent is black:

Case 1: P is left child of G, X is left child of P (single rotate then recolor)

Case 2: P is left child of G, X is right child of P (double rotate then recolor)

Case 3: P is right child of G, X is right child of P

Case 4: P is right child of G, X is left child of P

What if the sibling of the parent is red??

Insertions: Parent's sibling is red3

1

2

0

6

0

8

8

9
0

Insert 35?

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Property 4 is okay, but 3 is not. But wait – we've seen this before!

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

We've seen this case, must

Rotate at 70.

Case 1 in general

(assume this is a legal red-black tree, i.e. there are black nodes hidden in the subtrees)

If X's Parent (P) is red, P is a left child of G, X is a left child of P, (and P's sibling (S) is black), then Rotate P right, flip colors of P and G

Case 1 in general

Roots of subtrees a, b and c (and node S) must be black
X's and G's parent is now guaranteed to be black
BST property preserved through AVL rotations

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35?

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Insert 35? DONE!

- 1. Nodes are either red or black
- 2. Root is always black
- 3. If a node is red, all it's children must be black
- 4. For every node X, every path from X to a null reference must contain the same number of black nodes

Can any node have 2 red children?

- As we descend the tree, we detect if a node X has 2 red children, and if so we
 do an operation to change the situation
- Note that in doing so:
 - we may change things so that a node above X now has 2 red children, where it didn't before! (example: node 60 after we insert 35)
 - if we have to do a double rotation, we will move X up and recolor it so that it becomes black, and has 2 red children itself! (example: work through inserting 64 in the tree on the following page)
- But neither of these is a problem, because
 - it never violates any of the properties of red-black trees (those 2 red nodes will always have a black parent, for example),
 - and the 2 red siblings will be too "high" in the tree for either of them to be the sibling of the
 parent of any red node that we find or create when we continue this descent of the tree

- While not at a leaf:
 - Move down the tree to where node should be placed
 - If you encounter a node with two red children, recolor, then perform any necessary rotations to fix the tree
- Insert the node
- Perform any necessary rotations to fix the tree

Recolor

Double rotation (rotation 1)

Double rotation (rotation 2)

Recolor

Insert

- While not at a leaf:
 - Move down the tree to where node should be placed
 - If you encounter a node with two red children, recolor, then perform any necessary rotations to fix the tree
- Insert the node
- Perform any necessary rotations to fix the tree

Red-Black Trees vs. AVL trees

Is this an AVL tree?

A. Yes

B. No

Red-Black Trees vs. AVL trees

Is this an AVL tree? Yes

Are all red black trees AVL trees?

A. Yes

B. No

Is this an AVL tree? (Not anymore)

Are all red black trees AVL trees?

Why use Red-Black Trees

Fast to insert, slightly longer to find (but still guaranteed O(log(N)))

Why use Red-Black Trees

Faster to insert (than AVL): RBT insertion traverses the tree once instead of twice Slower to find (that AVL): RBTs are generally slightly taller than AVL trees