Search for charged Higgs boson with the $extbf{H}^\pm o tb$ decay in fully hadronic final state

B2G Resonances meeting

A. Attikis¹, K. Christoforou¹, M. Kolosova¹, **S. Konstantinou**¹, S. Lehti², C.Leonidou¹, L.Paizanos¹, F. Ptochos¹, H. Saka¹, A. Stepennov¹

¹UCY ²HIP

Friday 25th November, 2022

INTRODUCTION extended Higgs sector

Many BSM theories need to enlarge their Higgs sector to two Higgs doublets

- ► The minimal two-Higgs-doublet models (2HDMs) predict 5 physical states:
 - lacktriangle two neutral, ${\cal CP}$ -even particles h and H ($m_{
 m h} \leq m_{
 m H})$
 - ightharpoonup one neutral, \mathcal{CP} -odd particle A^0
 - ► two charged Higgs bosons H[±]

SM fermion coupling to 2HDs (no FCNCs):

- I All quarks & leptons couple to Φ_2
- II All *u*-type to Φ_2 and all *d*-type & ℓ to Φ_1
- X Both u & d types couple to Φ_2 , all ℓ to Φ_1
- Y Roles of two doublets reversed wrt type II

Туре	и	d	ℓ
1	Φ ₂	Φ ₂	Φ ₂
П	Φ ₂	Φ_1	Φ_1
III (X)	Φ ₂	Φ ₂	Φ_1
IV (Y)	Φ ₂	Φ_1	Φ ₂

For each 2HDMs type there are 7 free parameters (incl. $m_{\rm h}$, $m_{\rm H}$, $m_{\rm A}$, $m_{\rm u}\pm$):

- **1** $\beta \equiv \frac{V_2}{V_1}$, the ratio of the Higgs doublet VEVs
- $\sin(\beta \alpha)$, α : the mixing angle of the \mathcal{CP} -even states
- $\mathbf{0} m_{12}$, diagonal term of the mass matrix of the Higgs doublets

Three mass categories are commonly defined in H^{\pm} searches:

$$lacktriangle$$
 Light $m_{
m H^\pm} < m_{
m t} - m_{
m b}$, intermediate $m_{
m H^\pm} \sim m_{
m t}$, heavy $m_{
m H^\pm} > m_{
m t} + m_{
m b}$

Decay BRs model-dependent ⇒ different searches constrain different scenarios.

BRs of $H^{\pm} \rightarrow tb$ dominanates at high $m_{H^{\pm}}$, for wide range of $tan \beta$

This analysis searches for a heavy H[±]

Fully-hadronic final state of associated production characterised by:

- ► High jet & b jet multiplicities
- ✓ Large branching ratio $\mathcal{B} \simeq 46\%$
- ✓ Invariant mass reconstruction of H[±]
- ✗ QCD multijet & tt̄ background
- X Combinatorial (self-)background

INTRODUCTION topology

Various m_{H^\pm} reconstruction techniques available due to signal process kinematics:

- **Resolved t**: At moderate $m_{\mathrm{H}^{\pm}} \& p_{\mathrm{T},\mathrm{H}^{\pm}}$ the decay products of H^{\pm} are well separated
- ▶ Boosted W/t: As m_H± increases the H[±] decay products become boosted
- ▶ Boosted H^{\pm} : As $p_{T,H^{\pm}}$ increases its decay products become collinear

Previous results

- Resolved t, Boosted W/t studied separately by dedicated analyses
- 2016 ReReco data
- ► CADI HIG-18-015

This work

- Resolved t, Boosted t, Boosted W
- ► Full Run II data
- ► This talk: status of 2018 data
- ► Last report (HExtended): 25 Oct 2021

Resolved CADI: HIG-18-015

- Resolved t (t^{res}) identification: custom top tagger (BDT)
- ▶ Selected events contain \geq 7 jets, \geq 3 b-tagged, 2 t^{res}
- ▶ H[±]mass reconstruction (m_{bt}) : leading p_T t^{res} + leading p_T b jet
- ► Main background:
 - ► Misid. B: From data using CRs (ABCD method)
 - Genuine B: from simulation
- $ightharpoonup m_{bt}$ is used to extract the signal in the presence of the SM background.

Boosted CADI: HIG-18-015

Events are split in four main categories

- ▶ Boosted t/W identification: Based on m_{SD} , $\tau_{\textit{N}}$, $N_{\textit{b}}$ subjets
- ightharpoonup H $^\pm$ mass reconstruction (m_{bt}) : t + leading $p_{
 m T}$ b jet
- Further categorization according to:
 - ▶ $N_b \in [=1, =2, \ge 3]$

 - $ightharpoonup m_{\mathrm{tb}} \in [\mathrm{below}, \mathrm{in}, \mathrm{above}] \ \mathrm{of} \ \mathrm{FWHM} \ \mathrm{of} \ \mathrm{signal}$
- Main background

QCD : from data using CRs (inverted τ_N), sidebands with $m_{\mathrm{tb}} \in [\mathrm{below}, \mathrm{above}])$

 $\mathsf{t}\bar{\mathsf{t}}$: from sim., normalized in CR with 1 ℓ

 \blacktriangleright H_T is used to extract the signal from SM background inside the m_{bt} window.

PREVIOUS RESULTS review

Associated production

Resolved and Boosted analysis overlayed limits

- ightharpoonup Resolved: $m_{_{
 m H}\pm} \leq 0.8$ TeV
 - No excess above the estimated background
- Interpretation in hMSSM: maximum $\tan \beta = 0.88$ excluded for $m_{\text{H}^{\pm}} = 0.20\text{-}0.55$ TeV

s-channel

Boosted categories

Boosted analysis:

- ▶ Upper limits in the s-channel production for $m_{\rm H}^{\pm}$ 0.8 to 3 TeV
- ▶ Most sensitive main category is t1b
- ► Least sensitive category is *Wbj*

THIS WORK strategy

Three main categories with different topology

- Both top candidates are resolved
 RESOLVED
- **2** Associated top is resolved, top from H^{\pm} is boosted < BOOSTED
- Both top candidates are boosted
 BOOSTED
- ► This analysis targets full Run II data
- ► This talk presents a study using 2018 data (RunIISummer20UL18)

Datasets	Luminosity (pb^{-1})
JetHT_Run2018A_UL2018_MiniAODv2_v1_315257_316995	14026.95
JetHT_Run2018B_UL2018_MiniAODv2_v1_317080_319310	7060.79
JetHT_Run2018C_UL2018_MiniAODv2_v1_319337_320065	6894.78
JetHT_Run2018D_UL2018_MiniAODv2_v2_320413_325172	31834.89
Total	: 59817.41

- ► MC simulated samples include:
 - ▶ Signal: $m_{\mu} \pm = 200 3000 \text{ GeV (17 points)}$
 - ► QCD (*H*_T binned)
 - ► Top (Single top, $t\bar{t}$, $t\bar{t} + X$)
 - ► V+jets, diboson, triboson

Signal region (SR):

Trigger	H_T + multijet + 1 or 2 b jets	
e veto	$ ho_{ m T} > 10$ GeV, $ \eta < 2.4$, Loose minilso, cutBasedElectronID (veto)	
μ veto	$ ho_{ m T} > 10$ GeV, $ \eta < 2.4$, Loose minilso isCutBasedIDLoose	
au veto	$p_{ m T} >$ 20 GeV, $ \eta <$ 2.3, DeepTau $D_{ m e}^{ m vloose}$, $D_{\mu}^{ m medium}$, $D_{j}^{ m loose}$	
≥ 7 jets	$p_T^{6th} >$ 40 GeV, $p_T^{7th} >$ 30 GeV, $ \eta <$ 2.4, Tight ID, $H_T >$ 500 GeV	
\geq 3 b jets	$p_{ m T} >$ 40 GeV, DeepJet Medium WP	
≥ 1 resolved top (t^{res})	custom DNN medium, $130 < m_{ m t^{res}} < 210~{ m GeV}$	

SR categorization based on t^{res}

- ▶ $1M1L_{t^{res}}$: medium $t_{\rm H}^{res}$ loose-not-medium t_{assoc}^{res}
- ▶ $2M_{t^{res}}$: both t^{res} medium tagged

Invariant H[±] mass reconstruction:

$$m_{\rm tb} = t_{ldg}^{res} + b jet_{ldg}^{free} p_{\tau}$$

Wed 23rd

Nov. 2022

RESOLVED top tagging

A fully connected NN is developed to reconstruct resolved top-quarks

▶ Distinguishes trijets from top-quark decays and trijets from combinatorial background.

ightharpoonup Training on simulated $t\bar{t}$ events

► Signal: truth-matched trijets

► Background: non-matched trijets (> 1 non-matched jet)

signal

background

Mass decorrelation using sample reweighting:

Background is reweighted such that m_{top} matches the signal.

SF vs $t^{\textit{res}}$ p_{T} measured in a region with 1 isolated ℓ

 $\begin{array}{l} \hbox{HIG-21-010 Submitted to JHEP} \\ \hbox{Documentation: AN } 2021/019 \end{array}$

Approved by JMAR group

RESOLVED background

Main background for the $H^\pm\!\!\to tb$ fully hadronic final state:

- ► QCD multijet **C** DATA DRIVEN
- ightharpoonup EWK processes (mainly $t\bar{t}$) < SIMULATION

QCD background measurement

Defining 3 orthogonal control regions (CR) for each SR

- ▶ t_{assoc}^{res} mass: On-mass \rightarrow Off-mass "sidebands"
- $ightharpoonup t_{H^{\pm}}^{res}$ mva: t-tagged (t) ightharpoonup non t-tagged (!t)

"ABCD" method

$$N_{QCD}^{SR} = \sum_{i}^{\text{bins}} N_{QCD,i}^{CR(off-m,t)} \cdot \left(\frac{N_{QCD,i}^{CR(on-m,t)}}{N_{QCD,i}^{CR(off-m,t)}} \right)$$

- ▶ Performed in bins of the $t_{assoc}^{res} p_{T}$:
 - ightharpoonup 2 $M_{r^{res}}$: $p_{\mathrm{T}} \in [0, 100, 300, \infty]$ GeV
 - ▶ $1M1L_{res}$: $p_{T} \in [0, 175, \infty]$ GeV

Sidebands

Two validation regions (VRs) for each SR

- ▶ $t\bar{t}$ enriched: == 2 b jets, $m_{t_{\mu^{\pm}}^{res}} \in [145, 195] \text{ GeV}, \Delta R_{min}(bb) > 1.2$
- ▶ QCD enriched: == 2 b jets, $m_{t_{H^{\pm}}^{res}} \notin [145, 195] \text{ GeV}, \Delta R_{min}(bb) < 0.9$

RESOLVED signal extraction

A parameterized DNN is developed to extract signal from SM background

- ▶ Signal: H^{\pm} → tb for different mass hypotheses
- ▶ Background: $t\bar{t} \to SR$, Combinatorial $\to CR^{(\textit{off-m},t)} < t\bar{t} MC$

Input variables

1
$$\Delta\theta(t_{H+}, b_{H+})$$
 in H^{\pm} CM

- $2 H_{T,3b}$
- $3 p_T(bb_{dRmin})$
- 4 $m(bb_{maxPt})$

5 y23 =
$$p_{T,j3}^2/(p_{T,j1}+p_{T,j2})^2$$

- 6 $p_{T,b(H^{\pm})}/H_{T,3b}$
- 7 m_u±

8
$$p_T^{Asym}(H^{\pm}, b_{H^{\pm}})$$

- 9 Circularity
- 10 Sphericity
- 11 Aplanarity
- 12 Number of medium tops
- 13 True mass

Parameterized DNN

- ► True mass is the θ parameter
- In background events, the true mass is randomly assigned to the same values used for signal
- ► Training (test) is done using 2017 (2018) data

RESOLVED parameterized DNN

Parameterized DNN is trained using 6 different mass hypotheses.

- ► Training masses = [220, 350, 600, 1000, 1500, 2500] GeV
- lacktriangle Performance compared to DNNs with fixed $m_{
 m H}^{\pm}$

ROC

- ► Each curve is evaluated at the true mass DNN(x,m_u±)
 - Comparable results!
- ► Good prediction even for masses not given in the training

RESOLVED signal region

Expected limits on $\sigma_{\operatorname{H}^\pm t(b)} \times \mathcal{B}(\operatorname{H}^\pm \to \operatorname{tb})$

- Statistical uncertainties only
- lacktriangle Sensitivity comes to a plateau for $m_{H^\pm}>1000$ GeV
- ► Results improved by a factor of 2 wrt 2016 data analysis <

BOOSTED strategy

Two SRs based on the number of boosted tops (t^{bst}) :

 $\begin{array}{l} {\rm SR1} \; : \; {\rm N}_{t^{bst}} == 1 \\ {\rm SR2} \; : \; {\rm N}_{t^{bst}} == 2 \end{array}$

Preliminary

SR1	SR2			
Trigger	Trigger	H_T + multijet + 1 or 2 b jets		
		H_T + AK8 jet + trim mass		
ℓ veto	ℓ veto	same as resolved		
$=1 t^{bst}$	$= 2 t^{bst}$	$p_{ m T} >$ 400 GeV, $ \eta <$ 2.4, <code>ParticleNet_TvsQCD</code> Medium WP		
≥ 4 jets	≥ 2 jets	$ ho_{ m T} >$ 40 GeV, $ \eta <$ 2.4, tight ID, $H_{ m T} >$ 500 GeV		
≥ 2 b jets	≥ 1 b jets	DeepJet Medium WP		
$\leq 2 t^{res}$	$\geq 0 t^{res}$	custom DNN loose, $130 < m_{ m t^{res}} < 210$ GeV		
$\Delta R(t^{bst}, b^{ldg}) > 1.2$	$\Delta R(t^{bst}, b^{ldg}) > 0.0$			
$\max(m_{bb}) > 200 \text{ GeV}$	$\max(m_{bb}) > 0 \text{ GeV}$			

Invariant H[±] mass reconstruction:

$$m_{\rm th} = t^{bst} + bjet^{ldg} p_T$$

Boosted top jets $t^{\textit{bst}}$ are identified using the ParticleNet_TvsQCD discriminant

Designed decorrelated tagger (DDT)

A 3D map of the tagger's score for a fixed mID rate vs $p_{\rm T}$ and $\rho = \ln(m_{SD}^2/p_T^2)$

- Calculated with simulation QCD multijet events
- ▶ For each (p_T, ρ) bin: estimate the WP that corresponds to $\frac{y}{y}$ mID rate: X(y%)
- ► Selection requirment *X*(*DDT*) > 0

BOOSTED background

Main background: QCD multijet, tt

- ightharpoonup 2D (m_{SD}^t, m_{tb}) templates derived from MC simulation
- lacktriangle Normalization: from sidebands on $m_{
 m tb}$ or CRs with inverted requirements lacktriangle

SUMMARY

Search for $H^\pm\!\!\to tb$ in fully hadronic final state presented with 2018 UL Data

New with respect to the previous results:

- ► Three search topologies containing resolved and/or boosted tops
- ► Resolved Analysis:
 - ► Top tagging: custom mass-decorrelated DNN (almost published!)
 - ightharpoonup Event categorization based on the number of medium tagged t^{res}
 - ▶ QCD background measurement shows good agreement in validation region
 - ▶ Mass parameterized event-based tagger used as a final discriminant
 - First expected limits with 2018 data with statistical uncertainties only
- ► Boosted Analysis:
 - boosted top indentification with ParticleNet (mva-based)
 - ▶ Study new category with 1 boosted and 1 resolved top
 - ▶ Designed decorrelated t-tagger to eliminate the mass sculpting effect
 - ► Event categorization based on the number of t^{bst}
 - First results show improved signal sensitivity and significance

FUTURE WORK

- Resolved Analysis:
 - ► Incorporate the systematic uncertainties < IN PROGRESS
 - ► Final touches on the event-based tagger ✓ IN PROGRESS
- Boosted Analysis:
 - ▶ ParticleNet W/t re-calibration: Work in progress (L.Paizanos)
 - ► Study the boosted W-jet category
 - ightharpoonup Categorization based on the top tagging rate and N_{bjets}^{extra}
 - \blacktriangleright Extract SD mass templates for QCD and $t\bar{t}$ (t, W, non-matched)
 - ► Background data driven method < IN PROGRESS
 - Produce first limits with simultaneous 2D-fit in (m_{SD}^t, m_{th}) plane
 - ► Investigate using the particleNet regressed mass
- Finalize and release documentation
- Extend the analysis with entire Run II

BACKUP