$$S_{y=0} \cap \text{gráfica } f = \{(x, y, z, t) \mid y = 0, t = x^2 - z^2\},$$

es decir, el conjunto de puntos de la forma $(x,0,z,x^2-z^2)$, que se puede considerar como una superficie en el espacio xzt (véase la Figura 2.1.14).

Hemos visto cómo los métodos de las secciones y de los conjuntos de nivel se pueden usar para entender el comportamiento de una función y su gráfica; estas técnicas pueden resultar bastante útiles a aquellos que deseen una visualización exhaustiva de datos complicados. Para hacer esto hay disponibles muchos programas informáticos. En la Figura 2.1.15. se muestra el resultado de uno de estos programas.

Figura 2.1.15 Gráfica generada por computadora de $z = (x^2 + 3y^2) \exp(1 - x^2 - y^2)$ representada de tres formas: (a) por secciones, (b) por curvas de nivel sobre la gráfica y (c) por curvas de nivel en el plano xy.

Ejercicios

1. Indicar si las funciones siguientes son funciones con valores vectoriales o con valores escalares.

(a)
$$f(x, y, z) = e^x z^x \sin y$$

(b)
$$q(x,y) = (x^2y^2, 2x - 1)$$

(c)
$$h(t) = (\cos t, \sin t, t^2, t^3)$$

2. Indicar si las funciones siguientes son funciones con valores vectoriales o con valores escalares.

(a)
$$f(u, v, w) = (u^2 v, w e^u, 5v)$$

(b)
$$g(x) = \log \sqrt{x}$$

(c)
$$h(x,y) = x^5y^{-3}$$