Task

predict insurance premiums based on various factors.

Here is all the data you need: "sample_submission.csv" "test.csv" "train.csv"

Data loading

Subtask:

Load the provided CSV files into pandas DataFrames.

Reasoning: Load the three CSV files into pandas DataFrames.

```
1 import pandas as pd
2
3 df_train = pd.read_csv('train.csv')
4 df_test = pd.read_csv('test.csv')
5 df_submission = pd.read_csv('sample_submission.csv')
6
7 display(df_train.head())
8 display(df_test.head())
9 display(df_submission.head())
```


th re	Loca	tion	• • •	Previous Claims	Veh:	icle Age	Cred: Sco
61	61 Urban			2.0		17.0	372
31	I	Rural		1.0		12.0	694
49	Subu	ırban		1.0		14.0	Na
44	I	Rural		1.0		0.0	367
94	I	Rural		0.0		8.0	598
	alth core	Loca	tion	Policy	Туре		vious laims
7.65	7981		Rural	Basic			NaN
3.38	1379	Subi	urban	Premium			NaN
1.35	4527	l	Urban Comprehensive			NaN	
5.13	6225	Subu	urban	Comprehensive		e 1.	
1.84	4155	Subu	Suburban		emium		NaN

Data exploration

Subtask:

Explore the training dataset (df_train) to understand its characteristics.

Reasoning: Explore the training dataset (df_train) by examining its shape, data types, descriptive statistics, missing values, and data distributions of numerical and categorical features. This will provide initial insights into the data's characteristics, potential outliers, and relationships between variables.

```
import matplotlib.pyplot as plt
   import seaborn as sns
   # Data Shape and Info
   print("Shape of df train:", df train.shape)
   print("\nInfo of df train:")
   display(df train.info())
 8
   # Descriptive Statistics
   print("\nDescriptive Statistics of Numerical Features:")
    display(df train.describe())
11
12
13
   # Missing Values
   print("\nMissing Values:")
14
   missing values = df train.isnull().sum()
   missing percentage = (missing values / len(df train)) * 100
    missing df = pd.DataFrame({'Missing Values': missing values, 'Percentage':
```

```
missing percentage})
   display(missing df)
19
20
   # Visualization of missing data pattern (heatmap)
   plt.figure(figsize=(12, 6))
21
    sns.heatmap(df train.isnull(), cbar=False, yticklabels=False, cmap='viridis')
22
   plt.title('Missing Values Heatmap')
23
   plt.show()
24
25
26
   # Data Distribution
    numerical features = df train.select dtypes(include=['number']).columns
27
28
    categorical features = df train.select dtypes(exclude=['number']).columns
29
30
   # Histograms for numerical features
   for col in numerical features:
31
32
      plt.figure(figsize=(8, 4))
      sns.histplot(df train[col], kde=True)
33
      plt.title(f'Distribution of {col}')
34
35
      plt.show()
36
   # Value counts for categorical features
   for col in categorical features:
38
      print(f"\nValue counts for {col}:")
39
      display(df train[col].value counts())
40
41
    # Relationships between numerical features and target variable
42
43
    for col in numerical features:
      if col != 'Premium Amount' and col != 'id':
44
        plt.figure(figsize=(8, 4))
45
46
        sns.scatterplot(x=col, y='Premium Amount', data=df_train)
        plt.title(f'Relationship between {col} and Premium Amount')
47
```

```
plt.show()
48
49
50
   # Relationships between categorical features and target variable
51
   for col in categorical features:
      if col != 'Policy Start Date': # Exclude date column for boxplot
52
53
        plt.figure(figsize=(10, 6))
        sns.boxplot(x=col, y='Premium Amount', data=df train)
54
        plt.title(f'Relationship between {col} and Premium Amount')
55
        plt.xticks(rotation=45, ha='right') # Rotate x-axis labels for better
56
        readability
57
        plt.show()
58
59
   # Outlier detection (using boxplots)
60
   for col in numerical features:
61
      if col != 'Premium Amount' and col != 'id':
          plt.figure(figsize=(8, 4))
62
63
          sns.boxplot(x=col, data=df train)
64
          plt.title(f'Boxplot of {col}')
          plt.show()
65
```

Shape of df_train: (1200000, 21)

Info of df_train:

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1200000 entries, 0 to 1199999

Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0		1200000 non-null	
1	Age	1181295 non-null	float64
2	Gender	1200000 non-null	object
3	Annual Income	1155051 non-null	float64
4	Marital Status	1181471 non-null	object
5	Number of Dependents	1090328 non-null	float64
6	Education Level	1200000 non-null	object
7	Occupation	841925 non-null	object
8	Health Score	1125924 non-null	float64
9	Location	1200000 non-null	object
10	Policy Type	1200000 non-null	object
11	Previous Claims	835971 non-null	float64
12	Vehicle Age	1199994 non-null	float64
13	Credit Score	1062118 non-null	float64
14	Insurance Duration	1199999 non-null	float64
15	Policy Start Date	1200000 non-null	object
16	Customer Feedback	1122176 non-null	object
17	Smoking Status	1200000 non-null	object
18	Exercise Frequency	1200000 non-null	object
19	Property Type	1200000 non-null	object
20	Premium Amount	1200000 non-null	_
dtyp	es: float64(9), int64(
	rv usaga. 192 3+ MR		

memory usage: 192.3+ MB

None

Descriptive Statistics of Numerical Features:

	id	Age	Annual Income	Number of Dependents	Health Score	Previous Claims	Vehicle Age	Credit Score	Ins Du
count	1.200000e+06	1.181295e+06	1.155051e+06	1.090328e+06	1.125924e+06	835971.000000	1.199994e+06	1.062118e+06	1.1999
mean	5.999995e+05	4.114556e+01	3.274522e+04	2.009934e+00	2.561391e+01	1.002689	9.569889e+00	5.929244e+02	5.0182
std	3.464103e+05	1.353995e+01	3.217951e+04	1.417338e+00	1.220346e+01	0.982840	5.776189e+00	1.499819e+02	2.5943
min	0.000000e+00	1.800000e+01	1.000000e+00	0.000000e+00	2.012237e+00	0.000000	0.000000e+00	3.000000e+02	1.0000

3/5/25, 11:59 PM Untitled7.ipynb - Colab

25%	2.999998e+05	3.000000e+01	8.001000e+03	1.000000e+00	1.591896e+01	0.000000	5.000000e+00	4.680000e+02	3.0000
50%	5.999995e+05	4.100000e+01	2.391100e+04	2.000000e+00	2.457865e+01	1.000000	1.000000e+01	5.950000e+02	5.0000
75%	8.999992e+05	5.300000e+01	4.463400e+04	3.000000e+00	3.452721e+01	2.000000	1.500000e+01	7.210000e+02	7.0000
max	1.199999e+06	6.400000e+01	1.499970e+05	4.000000e+00	5.897591e+01	9.000000	1.900000e+01	8.490000e+02	9.0000

Missing Values:

irssing varacs.		
	Missing Values	Percentage
id	0	0.000000
Age	18705	1.558750
Gender	0	0.000000
Annual Income	44949	3.745750
Marital Status	18529	1.544083
Number of Dependents	109672	9.139333
Education Level	0	0.000000
Occupation	358075	29.839583
Health Score	74076	6.173000
Location	0	0.000000
Policy Type	0	0.000000
Previous Claims	364029	30.335750
Vehicle Age	6	0.000500
Credit Score	137882	11.490167
Insurance Duration	1	0.000083
Policy Start Date	0	0.000000
Customer Feedback	77824	6.485333
Smoking Status	0	0.000000
Exercise Frequency	0	0.000000

3/5/25, 11:59 PM Untitled7.ipynb - Colab

Property Type 0 0.000000

Premium Amount 0 0.000000

Missing Values Heatmap

Distribution of id

https://colab.research.google.com/drive/1UtZxpzx88tl7YUZhlKaczqeFTXMfja4e?authuser=0#scrollTo=KHrxW5CrnN5i&printMode=true

Distribution of Health Score

Distribution of Previous Claims

3/5/25, 11:59 PM Untitled7.ipynb - Colab

3/5/25, 11:59 PM Untitled7.ipynb - Colab

Premium Amount

Value counts for Gender:

count

Gender

Male 602571

Female 597429

dtype: int64

Value counts for Marital Status:

count

Marital Status

Single 395391 **Married** 394316

Divorced 391764

dtype: int64

Value counts for Education Level:

count

Education Level

 Master's
 303818

 PhD
 303507

 Bachelor's
 303234

High School 289441

dtype: int64

Value counts for Occupation:

count

Occupation

Employed 282750

Self-Employed 282645

Unemployed 276530

dtype: int64

Value counts for Location:

count

Location

Suburban 401542

Rural 400947

Urban 397511

dtype: int64

Value counts for Policy Type:

count

Policy Type

Premium 401846

Comprehensive 399600

Basic 398554

dtype: int64

Value counts for Policy Start Date:

count

Policy Start Date

2020-02-08 15:21:39.134960 142

2023-08-13 15:21:39.155231 137

 2022-02-02 15:21:39.134960
 137

 2022-08-30 15:21:39.134960
 134

 2023-11-02 15:21:39.134960
 118

 ...
 ...

 2021-06-07 15:21:39.104139
 1

 2024-07-19 15:21:39.233998
 1

 2019-12-14 15:21:39.110557
 1

 2020-07-23 15:21:39.217387
 1

 2020-10-19 15:21:39.118178
 1

167381 rows × 1 columns

dtype: int64

Value counts for Customer Feedback:

count

Customer Feedback

Average	377905
Poor	375518
Good	368753

dtype: int64

Value counts for Smoking Status:

count

Smoking Status

Yes	601873
No	598127

dtype: int64

Value counts for Exercise Frequency:

count

Exercise Frequency

Weekly	306179
Monthly	299830
Rarely	299420
Daily	294571

dtype: int64

Value counts for Property Type:

count

Property Type

House	400349
Apartment	399978
Condo	399673

dtype: int64

Relationship between Age and Premium Amount

Relationship between Number of Dependents and Premium Amount

Relationship between Previous Claims and Premium Amount

Relationship between Occupation and Premium Amount

Customer Feedback

Exercise Frequency

Boxplot of Age

Boxplot of Annual Income

Boxplot of Number of Dependents

Boxplot of Health Score

Boxplot of Previous Claims

Boxplot of Vehicle Age

Boxplot of Credit Score

Boxplot of Insurance Duration

Reasoning: The previous code block generated a large number of plots, many of which are difficult to interpret or irrelevant. I will refine the code to focus on more informative visualizations and statistical summaries related to the target variable "Premium Amount" and key features, addressing missing values and outliers effectively.

```
1 import matplotlib.pyplot as plt
 2 import seaborn as sns
4 # Focus on relationships with 'Premium Amount'
 5 numerical features = df train.select dtypes(include=['number']).columns
 6 categorical features = df train.select dtypes(exclude=['number']).columns
7
8 # Correlation matrix (heatmap) for numerical features
9 plt.figure(figsize=(10, 8))
10 correlation matrix = df train[numerical features].corr()
11 sns.heatmap(correlation matrix, annot=True, cmap='coolwarm', fmt=".2f")
12 plt.title('Correlation Matrix of Numerical Features')
13 plt.show()
14
15
16 # Pairplot for selected numerical features and 'Premium Amount'
17 selected numerical features = ['Age', 'Annual Income', 'Health Score', 'Credit Score',
18 sns.pairplot(df train[selected numerical features], diag kind='kde')
19 plt.suptitle('Pairplot of Selected Numerical Features', y=1.02)
20 plt.show()
21
22 # Box plots for categorical features vs. 'Premium Amount'
23 for col in categorical features:
      if col not in ['Policy Start Date', 'id']:
24
          plt.figure(figsize=(10, 6))
25
          sns.boxplot(x=col, y='Premium Amount', data=df train)
26
```


Numbel

nsı

Ā

Pairplot of Selected Numerical Features

temale

Male

Education Level vs. Premium Amount

Location

Box Plot for Age with Missing Values

Distribution of Annual Income with Missing Values

Distribution of Health Score with Missing Values

Distribution of Credit Score with Missing Values

Distribution of Previous Claims with Missing Values

Distribution of Number of Dependents with Missing Values

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Number of Dependents

Occupation

Box Plot for Occupation with Missing Values

Data cleaning

Subtask:

Clean the training and testing datasets (df_train and df_test)

Reasoning: Impute missing values and handle outliers in both df_train and df_test datasets. Use the mean for numerical features and mode for categorical features for imputation. Cap outliers at the 95th percentile. Apply the same strategy to both datasets.

```
1 import pandas as pd
 2 import numpy as np
 3
4 # Identify numerical and categorical columns
 5 numerical cols = df train.select dtypes(include=np.number).columns
 6 categorical cols = df train.select dtypes(exclude=np.number).columns
 8 # Impute missing numerical values with the mean
9 for col in numerical cols:
10
      if df train[col].isnull().any():
          mean val = df train[col].mean()
11
          df train[col].fillna(mean val, inplace=True)
12
          df test[col].fillna(mean val, inplace=True)
13
14
15 # Impute missing categorical values with the mode
16 for col in categorical cols:
      if df train[col].isnull().any():
17
18
          mode val = df train[col].mode()[0]
          df train[col].fillna(mode val, inplace=True)
19
          if col in df test.columns: # Check if the column exists in df test
20
               df test[col].fillna(mode val, inplace=True)
21
```

```
22
23 # Outlier handling (capping at the 95th percentile)
24 for col in numerical_cols:
25    if col != 'id' and col != 'Premium Amount': # Exclude ID and target
26         upper_limit = df_train[col].quantile(0.95)
27         df_train[col] = np.where(df_train[col] > upper_limit, upper_limit, df_train[col]
28         df_test[col] = np.where(df_test[col] > upper_limit, upper_limit, df_test[col])
29
30 display(df_train.head())
31 display(df_test.head())
```


<ipython-input-4-c81664d17b69>:12: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[c

df_train[col].fillna(mean_val, inplace=True)

<ipython-input-4-c81664d17b69>:13: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[c

df_test[col].fillna(mean_val, inplace=True)

<ipython-input-4-c81664d17b69>:19: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[c

df_train[col].fillna(mode_val, inplace=True)

<ipython-input-4-c81664d17b69>:21: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through
The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we

For example, when doing 'df[col].method(value, inplace=True)', try using $'df.method({col: value}, inplace=True)'$ or df[col].method(value, inplace=True)'

df_test[col].fillna(mode_val, inplace=True)

	id	Age	Gender	Annual Income	Marital Status	Number of Dependents	Education Level	Occupation	Occupation Health Score		• • •	Previous Claims	Vehicle Age	Cr §
0	0	19.0	Female	10049.0	Married	1.0	Bachelor's	Self- Employed	22.598761	Urban		2.0	17.0	372.0
1	1	39.0	Female	31678.0	Divorced	3.0	Master's	Employed	15.569731	Rural		1.0	12.0	694.0
2	2	23.0	Male	25602.0	Divorced	3.0	High School	Self- Employed	47.177549	Suburban		1.0	14.0	592.9
3	3	21.0	Male	103528.0	Married	2.0	Bachelor's	Employed	10.938144	Rural		1.0	0.0	367.0
4	4	21.0	Male	39651.0	Single	1.0	Bachelor's	Self- Emploved	20.376094	Rural		0.0	8.0	598.0

5 rows × 21 columns

	id	Age	Gender	Annual Income	Marital Status	Number of Dependents	Education Level	Occupation Health Score		Location	Policy Type	Previous Claims
0	1200000	28.0	Female	2310.0	Single	4.0	Bachelor's	Self- Employed	7.657981	Rural	Basic	1.002689
1	1200001	31.0	Female	103528.0	Married	2.0	Master's	Self- Employed	13.381379	Suburban	Premium	1.002689
2	1200002	47.0	Female	17092.0	Divorced	0.0	PhD	Unemployed	24.354527	Urban	Comprehensive	1.002689
3	1200003	28.0	Female	30424.0	Divorced	3.0	PhD	Self- Employed	5.136225	Suburban	Comprehensive	1.000000
4	1200004	24.0	Male	10863.0	Divorced	2.0	High School	Unemployed	11.844155	Suburban	Premium	1.002689

Untitled7.ipynb - Colab

Reasoning: Fix the chained assignment warnings from the previous code block and re-run the data cleaning steps.

```
1 import pandas as pd
 2 import numpy as np
4 # Identify numerical and categorical columns
 5 numerical cols = df train.select dtypes(include=np.number).columns
 6 categorical cols = df train.select dtypes(exclude=np.number).columns
 7
8 # Impute missing numerical values with the mean
9 for col in numerical cols:
10
      if df train[col].isnull().any():
11
          mean val = df train[col].mean()
          df train[col] = df train[col].fillna(mean val)
12
13
          df test[col] = df test[col].fillna(mean val)
14
15 # Impute missing categorical values with the mode
16 for col in categorical cols:
      if df train[col].isnull().any():
17
18
          mode val = df train[col].mode()[0]
19
          df train[col] = df train[col].fillna(mode val)
          if col in df test.columns: # Check if the column exists in df test
20
21
              df test[col] = df test[col].fillna(mode val)
22
23 # Outlier handling (capping at the 95th percentile)
24 for col in numerical cols:
      if col != 'id' and col != 'Premium Amount': # Exclude ID and target
25
26
          upper limit = df train[col].quantile(0.95)
27
          df train[col] = np.where(df train[col] > upper limit, upper limit, df train[co
          df test[col] = np.where(df test[col] > upper limit, upper_limit, df test[col])
28
```

```
29
```

30 display(df_train.head())

31 display(df_test.head())

c		_
	4.	_
	7	\neg

	id	Age	Gend	er	Annual Income	Marita Statu		ber of ndents		ation Level	0ccu _l	pation		alth core	Locat	tion	• • •	Previous Claims	Vehicl Ag		Cr S	
0	0	19.0	Fema	ale	10049.0	Marrie	d	1.0			En	Self- Employed		8761	U	Jrban		2.0	17	.0	372.(
1	1	39.0	Fema	ale	31678.0	Divorce	d	3.0			En	nployed	15.569731		Rural			1.0	12	.0	694.(
2	2	23.0	Male 25602.0 Divorced		3.0	High School		En	Self- aployed	17 177510		Suburban			1.0	14	.0	592.9				
3	3	21.0	Ma	ale 1	03528.0	Marrie	d	2.0 B		chelor's E		nployed	10.938144		Rural			1.0	0	.0	367.(
4	4	21.0	Ma	ale	39651.0	Singl	Э	1.0	1.0 Bachelor's		En	Self- nployed	20.37	6094	Rural			0.0	8	.0	598.(
5 ro	ws ×	21 col	lumns																			
		id	Age	Gend	1er		arital Status	Numbe Depend				Occupa	tion	Health Score		Location		Policy T	ype P		evious Claims	
0	120	0000	28.0	Fem	nale 23	310.0	Single		4.0	Bach	elor's	Emp	Self- loyed	7.65	7981	F	Rural	В	asic 1	1.002	2689	
1	120	0001	31.0	Fem	nale 1035	528.0	Married		2.0	Mas	ster's	Emp	Self- loyed	13.38	1379	Subu	rban	Pren	nium ´	1.002	2689	
2	120	0002	47.0	0 Female 17092.0 Divorced			0.0		PhD	PhD Unemploy		24.354527		Urban		Comprehen	sive 1	1.00268				
3	120	0003	28.0	Fem	nale 304	124.0 D	ivorced		3.0		PhD Emp		Self- loyed	5.136225		Suburban		Comprehen	sive 1	re 1.0000		
4	120	0004	24.0	M	Male 10863.0 Divorced		2.0	S	High chool			11.84	4155	Subu	rban	Pren	nium 1	1.002	2689			

Feature engineering

Subtask:

Engineer new features from existing ones in both the training (df_train) and testing (df_test) datasets to potentially improve model performance.

Reasoning: Apply one-hot encoding to categorical features, create interaction and polynomial features, and then scale numerical features using standardization. This addresses all parts of the subtask instructions in one go.

```
1 import pandas as pd
 2 from sklearn.preprocessing import StandardScaler
 4 # 1. Categorical Encoding
 5 categorical cols = ['Gender', 'Marital Status', 'Education Level', 'Occupation', 'Local
 6 df train = pd.get dummies(df train, columns=categorical cols, drop first=True)
 7 df test = pd.get dummies(df test, columns=categorical cols, drop first=True)
 9 # Align columns in df test with df train
10 missing cols = set(df train.columns) - set(df test.columns)
11 for c in missing cols:
12 df test[c] = 0
13 df_test = df_test[df_train.columns] # Ensure same order
14 df test = df test.drop(columns=['Premium Amount'])
15
16
17 # 2. Interaction Features (Example: Age * Annual Income)
18 df train['Age AnnualIncome'] = df train['Age'] * df train['Annual Income']
19 df test['Age AnnualIncome'] = df test['Age'] * df test['Annual Income']
20
21 # 3. Polynomial Features (Example: Age^2)
22 df train['Age squared'] = df train['Age'] ** 2
23 df test['Age squared'] = df test['Age'] ** 2
24
```

```
25
26 # 4. Feature Scaling
27 numerical_cols = ['Age', 'Annual Income', 'Health Score', 'Number of Dependents', 'Pre'
28 scaler = StandardScaler()
29 df_train[numerical_cols] = scaler.fit_transform(df_train[numerical_cols])
30 df_test[numerical_cols] = scaler.transform(df_test[numerical_cols])
31
32 display(df_train.head())
33 display(df_test.head())
```


Data splitting

Untitled7.ipynb - Colab

3/5/25, 11:59 PM

Subtask:

Split the training data (df train) into training and validation sets.

Reasoning: Split the training data into training and validation sets, stratifying by the target variable 'Premium Amount'.

```
1 from sklearn.model_selection import train_test_split
2
3 # Separate features (X) and target variable (y)
4 X = df_train.drop(columns=['Premium Amount', 'Policy Start Date', 'id'])
5 y = df_train['Premium Amount']
6
7 # Split data into training and validation sets
8 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42
```

```
ValueError
                                          Traceback (most recent call last)
<ipython-input-7-fe444ea34ee4> in <cell line: 0>()
      7 # Split data into training and validation sets
----> 8 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
                                 3 frames
/usr/local/lib/python3.11/dist-packages/sklearn/model_selection/_split.py in _iter_indices(self, X, y, groups)
   2316
                class counts = np.bincount(y indices)
   2317
                if np.min(class counts) < 2:</pre>
-> 2318
                    raise ValueError(
   2319
                        "The least populated class in y has only 1"
   2320
                        " member, which is too few. The minimum"
ValueError: The least populated class in y has only 1 member, which is too few. The minimum number of groups for any
class cannot be less than 2.
```

```
Next stens: Fynlain error
```

Reasoning: The error message indicates that stratification is failing because at least one class in the target variable 'Premium Amount' has only one member. Since stratification is used to maintain the class distribution in the training and validation sets, and this is not possible with a single member class, try splitting without stratification.

```
1 from sklearn.model_selection import train_test_split
2
3 # Separate features (X) and target variable (y)
4 X = df_train.drop(columns=['Premium Amount', 'Policy Start Date', 'id'])
5 y = df_train['Premium Amount']
6
7 # Split data into training and validation sets without stratification
```