

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA

GRUPO DE SISTEMAS ELÉTRICOS

POTÊNCIA EM CIRCUITOS

CORRENTE

ALTERNADA

ALUNO(A): Progetie Mareira

TURMA: 03 - 6

Espaço reservado ao Professor/Monitor:

PREPARAÇÃO/Simulação Digital: MEDIÇÃO/Análise dos Resultados: Visto:

Visto:

Stegerio Moreira Almeido

(3) Ruparação

1"

Eigma dodos V = 220V L = 300 m H f = 60 Hz k = 150 n $1 = \frac{V}{Z} = \frac{220}{R + \text{JWL}} = \frac{220}{150 + \text{J} 113,0} = \frac{220}{150 + \text$

Grogerio Morcina Almerda 12110599

Antes de lapocitor.

Depois de lapocitor

$$|S| = \frac{P}{fP} = \frac{205,59}{0,95} = 216,36 \text{ VA}$$

$$\frac{1}{(R+jwL)^{1/\frac{1}{jwc}}} = \frac{220 \angle 0^{\circ}}{(R+jwL) \cdot \frac{1}{jwc}} = \frac{220 \angle 0^{\circ}}{187,85 \angle 37,01 \cdot 553,77 \angle 90}$$

$$\frac{1}{(R+jwL)^{1/\frac{1}{jwc}}} = \frac{220 \angle 0^{\circ}}{(R+jwL) \cdot \frac{1}{jwc}} = \frac{1}{187,85 \angle 37,01 \cdot 553,77 \angle 90}$$

$$\frac{1}{(R+jwL)^{1/\frac{1}{jwc}}} = \frac{1}{(R+jwL) \cdot \frac{1}{jwc}} = \frac{1}{187,85 \angle 37,01 \cdot 553,77 \angle 90}$$

$$\hat{I} = \frac{220/0^{\circ}}{223,51/18,21^{\circ}} = 0,98/-18,21$$

Saginia Méreira Almeida 121110599

5. PROCEDIMENTO EXPERIMENTAL

Utilizando o material fornecido monte o circuito da figura 1 conectando os instrumentos conforme a figura

- 1) Antes de conectar o capacitor efetue a leitura dos instrumentos e anote os valores lidos na tabela 1;
- 2) Introduza o capacitor no circuito e refaça as medições do item anterior.
- 3) Preencha com os valores experimentais a coluna correspondente da tabela-1

TABELA - 1

TABLEA - I						
	Valores calculados		Simulação digital		Valores Experimentais	
	Sem o capacitor	Com o capacitor	Sem o capacitor	Com o capacitor	Sem o capacitor	Com o capacitor
Tensão aplicada (RMS)(V)	220.00	220,00	220.00	220,00	220,00	220,00
Corrente (RMS)(A)	1,17	0,98	1,17	998	1,05	0,85
Potência ativa (W)	20554	205,54	205,73	205,43	200,00	200,00
Fator de potência		0,95(in)	0,80 ind	0,95	0,75 ind	0,95 ind
Potência reativa (V•A)	15494	67,54	155,10	67,61	176.38	65,72
Potência aparente (V•A)	257,40	216,33	257,65	216,27	26966	210,52

Obs: Esta página deve fazer parte do trabalho a ser entregue ao professor

6 - ANÁLISE DOS RESULTADOS / QUESTIONÁRIO

O questionário será entregue pelo professor/monitor após a realização das montagens e medições.

7 - BIBLIOGRAFIA

Epaminondas A. N. & Outros Apostila do Laboratório de Sistemas, DEE/CCT/UFCG, 2003.

Nilsson, J.W. & Riedel, S.A. Circuitos Elétricos, LTC Editora S.A., Rio de Janeiro, 1996.

Edminister, J. A. Circuitos Elétricos. Editora McGraw-Hill do Brasil Ltda., Rio de janeiro, 1971.

William D. Stevenson Jr., Elementos de análise de sistemas de potência

Robba, Ernesto João, Introdução a sistemas elétricos de potência: Componentes Simétricos

Universidade Federal de Campina Grande

Centro de Engenharia Elétrica e Informática

Departamento de Engenharia Elétrica

Laboratório de Sistemas Elétricos 2023.2 (A)

Aluno(a):Rogério Moreira Almeida.

TURMA:T03B

Matrícula: 121110599

Exp_01 - QUESTIONÁRIO / Análise dos Resultados

Potência em Circuitos de Corrente Alternada

- 1) A partir dos valores obtidos na Simulação Digital;
- a) Construa o triângulo de potências para as seguintes situações estudadas;
 - i. Antes da introdução do capacitor.
 - iii. Após a introdução do capacitor.
 - b) Trace diagrama fasorial com todos os fasores do circuito nas duas situações estudadas.
- 2) Fazendo uso das leituras do Voltímetro, Amperímetro e do Wattimetro, determine o fator de potência do circuito antes da introdução do capacitor,
- A partir dos resultados da Simulação Digital, determine o valor resultante da impedância da carga após a introdução do capacitor, apresente seu resultado na forma cartesiana;
- 4) Avalie as consequências da introdução do capacitor para correção do fator de potência;
- 5) Apresente sua análise dos resultados observados no experimento.

Obs.: O TRABALHO contendo: Capa Padronizada+Preparação+Tabelas+Diagramas da Simulação Digital+Questionário+Respostas

121110599 Exp.01- Questionório / Análise dos Resultodos

i. Antes do Copocitor

25765VA 41.41° P= 205,73W

Q= 154,30 var

ii. Depois de Copacitor

216,27V.A 216,27V.A P= 205,93W

Q = 67,60 var

Trogéries Moreira Almeida

Potencia restiva (V.A), com valdes experimentais

Antes de Copacitor:

Q= P. tg (4)

Q=205,73. tg (36,87)

Q=154,30 var

Apois de bapacitor

Q: P. tg (18,19)

Q=205,73. tg (18,19)

Q = 67,60 var

0= orces (0,80)=-36,87°

0,95) = 18,19°

Potencio aparente (V.A) com volores experimentais Antes de bapacitos

 $S = \sqrt{\rho^2 + \alpha^2} / \operatorname{ord}_3(\frac{\alpha}{\rho})$ $S = \sqrt{\rho^2 + \alpha^2} / \operatorname{ord}_3(\frac{\alpha}{\rho})$

S= 257, 16 / 41,41° V. A

Depois de l'opaciter S= VP2+ Q2 /arcte (P)

S = 216,55 / 18,19° V.A

Stagnio Moreina Almeida

1º B

i. Antes do Capacitar

 $\hat{V} = 220 \ \text{V}$ $\hat{V} = 36.87^{\circ}$ $\hat{I} = 1,17 \ \text{(-36.87^{\circ})} \text{A}$ $\hat{V} = 175,5 \ \text{(-36.87^{\circ})} \text{A}$ $\hat{V} = \hat{I} \cdot \hat{J} \text{WL} = 139,32 \ \text{(53.13 V)}$

ii. Depois de bepocite

 $\hat{V} = \hat{V}_{c} = 220 \angle 0^{\circ} V$ $\hat{V} = -36,81^{\circ}$ $\hat{I} = -18,19^{\circ}$ $\hat{I} = 0.98 \angle -18,19 A$ $\hat{V}_{R} = \hat{I}_{1} \cdot R \Rightarrow \hat{I}_{1} = 175,50/-37,36^{\circ} V$ $\hat{V}_{L} = \hat{I}_{1} \cdot jwL = 132,32 \angle 52,69^{\circ} V$ $\hat{V}_{L} = \hat{I}_{2} = 0.83 \cdot 0.71jA$ $\hat{I}_{1} = \hat{I}_{1} - \hat{I}_{2} = 0.83 \cdot 0.71jA$ $\hat{I}_{1} = 1.17 \angle -37,36^{\circ} A$ $\hat{V}_{L} = \hat{V}_{1} + \hat{V}_{0}$

Rogerio Moreira Almeida

Antes de Copocitor

V= 220 V

I= 1,05 (-41,41 A

P= 200 W

tota de patêncio = P 151

5p= 200

fo 200

 $f_p = 200 = 0.86 \text{ d}.$

3º Empedâncio do conga depois da interodução do capacitor

 $Z_T = \frac{|\hat{V}|}{I} = \frac{220}{0,98/-18.19}$

Er = 224,49 (1819°

Zt= 213,27+70,07 jon

A intercolução do copoción para correção do fotos de potencia, aumento a eficiência do sistema elítrico, poro a corrente sobere a carga diminue a porem a potencio otiva mão se altera, em contro portida a uma redução ma potencio rectiaroo. Implicando mo aumento da copocidade de transmissão e distenbuição da rede elétrico.

Todo resoltar que o copocitor a su utilizado Jeru ser bem dimensionado pois se o fotos de potacio for igual a "i" o sistema estario em resonâncio inseridos mo sustemo.

Foram observados mos resultados experimentais valores de correctes

tante para o cara do arcentor com capación, como para o

caso do circunto sem capación, infanores aos calculados e simulados,

tal directacio se do diredo as padas inamies do sistemo lísico, lam

como a magan de esse dos componentes porisos dos sistemo.

As potencias ativos dos sistemostambem farom infanistes, os minulados.

A potencia sectivo para o caso sem o capación, sustanos se superior

ao simulado, o que por sua vez foi netado pelo menos fotos de petencia

observado, tal furameno nose foi observado pelo o caso com capación

tor, o que por sua vez mostros-se, ando mais giárrie, no que representen

a correção do fotos de potácio, em comportativo com a simulação.