Polygenic Scores (PGS) #7

LETS GET STARTED

#1 Genetic variation and personalised medicine		#3 Risk estimation from pedigrees	#4 Complex traits and quantitative genetics	#5 Estimation of genetic parameters	#6 Genome- wide association studies	#7 Risk estimation from genome wide data	#8 Somatic cancer genomics	#9 Germline cancer genomics	#10 Integrative genomics
5/2-25 [PDR]	7/2-25 [PDR]	12/2-25 [PDR]	27/2-25 [PDR]	6/3-25 [PDR]	17/3-25 [PDR]	24/3-25 [PDR]	31/3-25 [AKN PDR]	7/4-25 [AKN PDR]	16/4-25 [PLM PDR]

AGENDA

08:15 - 08:45	Recap [GWAS + R exercise from last
08:45 - 08:50	Break
08:50 - 09:20	Lecture [PGS]
09:20 - 09:30	Break
09:30 - 10:30	Exercise 1 + 2 [+ joint discussion]
10:30 – 10:40	Break
10:40 – 11:30	Group work
11:30 – 11:55	Presentation of group work
11:55 – 12:00	Evaluation at Moodle

AGENDA

08:15 - 08:45	Recap [GWAS + R exercise from last]
08:45 - 08:50	Break
08:50 - 09:20	Lecture [PGS]
09:20 - 09:30	Break
09:30 - 10:30	Exercise 1 + 2 [+ joint discussion]
10:30 - 10:40	Break
10:40 - 11:30	Group work
11:30 – 11:55	Presentation of group work
11:55 – 12:00	Evaluation at Moodle

Linkage disequilibrium (LD)

- what is it?

LD REVISITED

Mendel's law of independent assortment

- Genes do not influenec each other with regard to sorting of alleles into gameets
- Every possible combination of alleles for every gene is equally likely to occur

INDEPENDENT ASSORTMENT

NON-INDEPENDENT ASSORTMENT

Non-independent assortment

LD REVISITED

Non-independent assortment / Non-random association of loci within the population

Parameter of the entire population

LD can be "measured" between pairs of SNPs (correlation or D)

Which SNPs associate with height?

Quantitative trait loci (QTL)

→ not the causal variant

→ a variant LINKED to the causal (un-measured variant)

AGENDA

```
08:15 - 08:45
                   Recap [GWAS + R exercise from last]
08:45 - 08:50
                   Break
                   Lecture [PGS]
08:50 - 09:20
09:20 - 09:30
                   Break
09:30 - 10:30
                   Exercise 1 + 2 [+ joint discussion]
10:30 - 10:40
                   Break
10:40 - 11:30
                   Group work
11:30 - 11:55
                   Presentation of group work
11:55 - 12:00
                  Evaluation at Moodle
```


PREDICTING DISEASE RISK FROM GENETIC DATA?

A "polygenic score" is one way by which people can learn about their risk of developing a disease, based on the total number of changes (i.e., SNPs) related to the disease (NHI)

DIFFERENT NAMES

- BUT THE SAME

- Polygenic risk score (PRS)
- Polygenic score (PGS)
- Genetic score (GS)
- Genetic risk score (GRS)
- Genetic value
- Genetic liability
- **O** ...

DIFFERENT NAMES

- BUT THE SAME

- Polygenic risk score (PRS)
- Polygenic score (PGS)
- Genetic score (GS)
- Genetic risk score (GRS)
- Genetic value
- Genetic liability
- **O** ...

WHAT IS A PGS?

WHAT IS A PGS?

"A PGS combines information from large numbers of markers across the genome (hundreds to millions) to give a single numerical score for an individual's risk for developing a specific disease on the basis of the DNA variants they have inherited."

The genotype of the individual for SNP i (0, 1, 2 – counting the number of the alternative allele)

$$AA = 0$$

$$Aa = 1$$

$$aa = 2$$

SNP-2

HOW TO COMPUTE A (simple) PGS?

SNPs	Adams Genotypes	Ref allele	Alt allele	X	b	Xb
SNP-1	TC	T	С	1	0.04	0.04
SNP-2	GG	G	T	0	0.02	0.00
SNP-3	CC	Α	C	2	0.05	0.10
SNP-4	TG	T	G	1	0.02	0.02
SNP-5	AA	A	G	0	0.06	0.00

A LARGE PALETTE OF PGS METHODS

(B) PRS-CS **EB-PRS** lassosum PRS-CS-auto **LDpred** LDpred-funct RSS **SBLUP** LDpred-inf **BayesC BSLMM BVSR TlpSum MultiBLUP DPR SBayesR** 2D PRS **CNN NEG PANPRS** 2019 2011 2015 2017 2021 2001 2013 **AnnoPred** DNN Mak et al BayesA, C+T CTPR **BayesR** PleioPred **NPS** BayesCπ, BayesB **MTGBLUP BVR** wMT-SBLUP Bayesian BayesD,BayesD π So et al **SDPR JAMPred** Lasso **DBSLMM**

WHY DIFFERENT PGS METHODS

$$PGS = \sum X_i b_i$$

0: Set LD (=0.8) and *P* values (0.01)

0.21	0.005
0.22	
0.22	0.0048
0.25	0.0003
0.1	0.04
0.05	0.15
0.02	0.49
0.03	0.87
0.12	0.003
0.14	0.0034
0.18	0.0004
0.21	0.00003
0.12	0.15
0.14	0.12
0.03	0.84
0.02	0.32
	0.25 0.1 0.05 0.02 0.03 0.12 0.14 0.18 0.21 0.12 0.14 0.03

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

SNP	b	р	r²
11	0.21	0.00003	1st var
3	0.25	0.0003	0.96
10	0.18	0.0004	0.93
8	0.12	0.003	0.88
9	0.14	0.0034	0.74
2	0.22	0.0048	0.4
1	0.21	0.005	0.03
4	0.1	0.04	0.04
13	0.14	0.12	0.05
5	0.05	0.15	0.03
12	0.12	0.15	0.04
15	0.02	0.32	0.01
6	0.02	0.49	0.01
14	0.03	0.84	0.01
7	0.03	0.87	0.01

ar<mark>iant in LD-pair</mark>

Have LD>r² – ignore those

0: Set LD (=0.8) and *P* values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

SNP	b	р	r²
11	0.21	0.00003	
3	0.25	0.0003	
10	0.18	0.0004	
8	0.12	0.003	
9	0.14	0.0034	1st va
2	0.22	0.0048	0.98
1	0.21	0.005	0.96
4	0.1	0.04	0.96
13	0.14	0.12	0.52
5	0.05	0.15	0.34
12	0.12	0.15	0.10
15	0.02	0.32	0.04
6	0.02	0.49	0.01
14	0.03	0.84	0.01
7	0.03	0.87	0.01

ariant in LD-pair

Have LD>r² – ignore those

0: Set LD (=0.8) and P values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based of thresholds

	r²	р	b	SNP
		0.00003	0.21	11
		0.0003	0.25	3
		0.0004	0.18	10
		0.003	0.12	8
		0.0034	0.14	9
		0.0048	0.22	2
	_	0.005	0.21	1
		0.04	0.1	4
riant in LD-pair	1st va	0.12	0.14	13
	0.86	0.15	0.05	5
	0.82	0.15	0.12	12
Have LD>r2 - i	0.81	0.32	0.02	15
	0.85	0.49	0.02	6
	0.85	0.84	0.03	14
	0.81	0.87	0.03	7

0: Set LD (=0.8) and *P* values (0.01)

SNP	b	р
1	0.21	0.005
2	0.22	0.0048
3	0.25	0.0003
4	0.1	0.04
5	0.05	0.15
6	0.02	0.49
7	0.03	0.87
8	0.12	0.003
9	0.14	0.0034
10	0.18	0.0004
11	0.21	0.00003
12	0.12	0.15
13	0.14	0.12
14	0.03	0.84
15	0.02	0.32

1: Sort by P-value

SNP	b	р
11	0.21	0.00003
3	0.25	0.0003
10	0.18	0.0004
8	0.12	0.003
9	0.14	0.0034
2	0.22	0.0048
1	0.21	0.005
4	0.1	0.04
13	0.14	0.12
5	0.05	0.15
12	0.12	0.15
15	0.02	0.32
6	0.02	0.49
14	0.03	0.84
7	0.03	0.87

2: Compute LD and select variants based on LD

3: Compute PGS based on effect sizes (b) and *P*-values

$$PGS = \sum X_i b_i$$

$$= X_{11} \times 0.21 + X_9 \times 0.14$$

Repeat for other *P*-value cutoffs (and LD values)

How does the PGS associate with the disease

$$y_{disease} = PGS + \varepsilon$$

SCHRINKAGE METHODS

Clumping and thresholding (C+T)

Bayes-N; $\beta \sim N(0, \sigma_{\beta}^2)$

Bayes-L; $f(\beta_j | \tau_j^2, \sigma_e^2) \sim N(\beta_j | 0, \tau_j^2 \times \sigma_e^2)$

Bayes-A; $\beta_j \sim N(0, \sigma_{\beta_i}^2)$

Bayes-C; $\beta_j \sim N(0, \sigma_{\beta_j}^2)$ with probability π , and $\beta_j = 0$ with probability $(1 - \pi)$, where π is assumed to follow a beta-distribution.

Bayes-R; $\beta_j \sim N(0, \gamma_C \sigma_{\beta_j}^2)$, where C defines number of classes (e.g., C=4, γ = (0, 0.01, 0.1, 1.0))

WHAT DO YOU NEED?

1. A large well-powered GWAS for your trait of interest

2. An independent cohort that has been genotyped

(3. That some individuals in the cohort has the phenotype)

AGENDA

08:15 - 08:45	Recap [GWAS + R	exercise from last]
---------------	-----------------	---------------------

08:45 – 08:50 Break

08:50 – 09:20 Lecture [*PGS*]

09:20 – 09:30 Break

09:30 – 10:30 Exercise 1 + 2 [+ joint discussion]

10:30 – 10:40 Break

10:40 – 11:30 Group work

11:30 – 11:55 Presentation of group work

11:55 – 12:00 Evaluation at Moodle

GROUP WORK

- 1) Make three groups
 - ☐ Within each group discuss the questions you get, and prepare to briefly present your thoughts in plenum
- 2) Plenum discuss [7 min pr group]

YOUR OPPINION MATTERS

MOODLE EVALUATION

