

AAE1001 Introduction to Artificial Intelligence and Data Analytics in Aerospace and Aviation Engineering

Week 12 (Project Additional Tasks)

Dr <u>Guohao Zhang</u>, and Dr Lingxiao Wu Assisted by

Mr Feng HUANG (Darren), Mr Penghui Xu Mr Zekun Zhang and Miss Hongmin Zhang

Additional Tasks (Optional)

- 1. Adding Checkpoints
- 2. Changing Environment
- 3. Compare Different Algorithms

^{*}Start working on the following Tasks after you finish the previous ones (Create separate .py files so these tasks don't affect each other)

Task A1 - Adding a Checkpoint

Assume the aircraft is a supply craft that must reach <u>2</u> drop-off points to drop supplies before heading to base.

- Add one checkpoint for each cost intensive area (2 in total)
- Reach all checkpoints before arriving at the destination

Requirements:

- 1. This is an add-on for the code you are currently working on
- 2. Checkpoints should be generated <u>inside</u> the cost intensive areas
- 3. Plot the checkpoints together with your planned path with appropriate visualization

Task A2 - Changing Environment

Assume the mission and the environment keep changing for each operation.

Modify the code so that:

- 1. Only the fuel-consuming area remains and generate it randomly with a fixed area (40x40)
- 2. Diagonal movement is **disabled**, change parameter(s) so that the object could travel **within one grid size**
- 3. Obstacles are generated randomly with reasonable density
- 4. Destination and starting points are generated randomly with at least a 40-unit distance in-between
- 5. Plotting of the fuel-consuming area would not cover the obstacles, and obstacles **should not generate** at/near the start and end point

Task A3 - Comparing Algorithms

A-star is one of the many path planning algorithms Different Algorithms:

- Different theories
- Different performance
- Difference limitations and strengths

Requirements:

- 1. Choose 2 more algorithms from GitHub repositories
- 2. Modify the code so all 3 algorithms are working with the <u>same obstacle set</u>
- 3. Try and <u>compare</u> the algorithms and conduct a discussion

<u>ASt</u>	ar	fix unittest animation bugs (#429)
■ BSp	DlinePath	mypy fix test
Bate	chInformedRRTStar	fix scanning error (#339)
■ Bez	tierPath	Replaced sqrt(x**2+y**2) with hypot in PathPlanning/BezierPath/bezier
Bidi	irectionalAStar	fix scanning error (#339)
Bidi	irectional Breadth First Search	fix scanning error (#339)
■ Brea	adthFirstSearch	Update breadth_first_search.py (#374)
■ Bug	Planning	fix docstring error
Clo:	sedLoopRRTStar	Fix No module error in GridBasedSweepCPP and ClosedLoopRRTStart (#516)
Cub	picSpline	improve test coverage (#352)
■ DSt	ar	change DStar animation
■ DSt	arLite	Add D* Lite. (#511)
■ Dep	othFirstSearch	Update breadth_first_search.py (#374)
Dijk	sstra	Update breadth_first_search.py (#374)
Dub	binsPath	fix dubins path length bug and clean up codes. (#527)
Dyn	namicWindowApproach	dwa pr (#390)
Eta:	3SplinePath	use pytest for test runner (#452)
Eta:	3SplineTrajectory	use pytest for test runner (#452)
Flov	wField	fix unittest animation bugs (#429)
Frer	netOptimalTrajectory	mypy fix test
■ Gre	edyBestFirstSearch	Update greedy_best_first_search - calc_final_path method (#477)
■ Grid	dBasedSweepCPP	Fix No module error in GridBasedSweepCPP and ClosedLoopRRTStart (#516)
Hyb	oridAStar	Test code clean up (#456)
lnfo	ormedRRTStar	Using scipy.spatial.rotation matrix (#335)
LQF	RPlanner	add comment for stopping the simulation
LQF	RRRTStar	add comment for stopping the simulation
■ Mo	del Predictive Trajectory Generator	Merge pull request #222 from zhkmxx9302013/master
Pote	entialFieldPlanning	Potential field - potential range and ocillations (#345)