SKA 2015

~磁場と電波バーストと100ペタフロップス~

赤堀卓也

鹿児島大学/SKA機構

筑波天体形成研究会 2015/10/31

内容

❖SKA計画の外観

- SKA(Square Kilometre Array)のデザイン
- SKAのサイエンス

❖FRBを用いた銀河間磁場探査

- FRB(Fast Radio Burst)の観測の現状
- 偏波したFRBの実用性

❖SDPが求めるスパコン性能について

- SDP(Science Data Processor)のデザイン
- SDPの課題

❖まとめ

1. SKAの話

3

1. SKA SKA第1期 (SKA1)

4

- ❖ 建設2018-2023、初期科学運用2020-、本運用2023-2028
- * 建設費 ~650M€、5年間運営費 ~75M€/年

SKA1-LOW 豪州 ログペリ13万基 256基×512台 最大基線長80km

<u>SKA1-MID 南ア</u> 15mSKA鏡 133台 13.5mMeerKAT鏡64台 最大基線長150km

<u>ASKAP 豪州</u> 12mASKAP鏡36台 フェイズド・アレ イ・フィード(PAF)

1. SKA SKA第2期 (SKA2)

- ❖ コンセプト2016-、設計2018-、建設2023-、運用2028-
- * 建設費~?000M€、運営費~?00M€/年

SKA2-LFAA 豪州 ログペリ50万基 最大基線長250km

SKA2-DISH 南ア 15mSKA鏡2500台 最大基線長3500km

SKA2-MFAA 南ア 密開ロアンテナ250局 フェイズドアレイ技術 PAFか広帯域フィード (視野200平方度)

2015/10/31

http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215

1. SKA SKA1&2ヘッドラインサイエンス1

6

	SKA1	SKA2
宇宙の夜明けと	宇宙再電離構造の直接撮像 (z = 6 – 12)	宇宙の夜明けの直接撮像 (z = 12 - 30)
宇宙再電離	宇宙の夜明けを垣間見る(1分角までの空間 スペクトル、10分角での撮像)	夜明け前の宇宙を垣間見る (z > 30)
ブラックホールや パルサーを使った	nHzの確率論的な宇宙背景重力波の 世界初の検出	個別の天体の重力波天文学の新展開 (銀河進化、宇宙論など多岐に波及)
強重力場の検証	一般相対性理論の検証を可能にする NS-NSまたはPSR-BH連星系の発見と利用	天の川銀河の4万のパルサーを全て見つける。 宇宙検閲官仮説と脱毛定理の検証。
中性水素で探る	1千万銀河のガスの性質を平均0.3、最大1の 赤方偏移まで紐解く。バリオン音響振動。	10億銀河のガスの性質を平均1、最大5の赤 方偏移まで紐解く。世界最高の精密宇宙論
銀河進化	3 Mpc離れて、銀河に50pcの分解能、 N _H < 10 ¹⁷ の銀河間ガスに1kpcの分解能	10 Mpc離れて、銀河に50pcの分解能、 N _H < 10 ¹⁷ の銀河間ガスに1kpcの分解能
ダイナミックな	FRBを使って宇宙論が予言する 最後のピース(ミッシングバリオン)を暴く	FRBを使って独立した宇宙論パラメータの 調査と銀河間磁場の調査を行う
電波の空	ガンマ線バーストのフィードバックと超巨大 ブラックホールによる星の潮汐破壊の研究	未知の発見

http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=215

1. SKA SKA1&2ヘッドラインサイエンス2

	SKA1	SKA2			
生命のゆりかごと	100pc内の原始惑星系円盤で氷雪帯内の撮像。 アミノ酸の調査	150pc内の原始惑星系円盤で サブAUスケールの撮像。アミノ酸の研究			
宇宙生命の探査	1万個の近傍の星から 空港レーダーを見つける	10万個の近傍星から空港レーダーを見つける 10の最近傍星ではTV中継が見える感度			
宇宙磁場の	銀河内から宇宙ウェブまでの磁場の役割。 1100万RM画素の全天マップ	宇宙磁場の起源と増幅の歴史。 1.8億RM画素の全天マップ			
起源と進化	14 Mpc先で100pc, z~0.04で1kpcの分解能 での3次元トモグラフィー	50 Mpc先で100pc, z~0.13で1kpcの分解能 での3次元トモグラフィー			
宇宙論と	暗黒エネルギー、修正重力、超地平線スケー ルでの物質分布の制限(Euclid衛星と比類)	暗黒エネルギー、修正重力、超地平線スケー ルでの物質分布の制限(世界最高品質)			
暗黒エネルギー	原始非ガウス性と物質双極性。 Euclid対比2倍強いfNL制限	原始非ガウス性と物質双極性。 Euclid対比10倍強いfNL制限			
連続波で探る	星形成率調査 (10 M _o /yrならz ~ 4まで)	星形成率調査 (10 M _o /yrならz ~ 10まで)			
銀河進化	空間分解した星形成の宇宙物理 (活動的なsub-kpc領域がz ~ 1まで)	空間分解した星形成の宇宙物理 (活動的なsub-kpc領域がz ~ 6まで)			

2. FRBの話

8

2. FRB Fast Radio Burst

❖ Jyレベルの強い電波放射が ~1/100秒の間に発生する現象

- GHz帯のパルサー観測中に検出

Transient Discovery Space Fender+15(AASKA14-051)

Thornton+ 13

2015/10/31

2. FRB 発見されたFRBの性質

0

- ❖10のFRBs, DM~300-1100 pc/cm³ →系外起源?
- ❖ FRB140514: V~21±7% (3 σ), P<10% (1 σ)
- ❖いずれ直線偏波とRMも検出されるだろう

FRB	(°)	(°)	DM _{obe} (pc cm ⁻³)	Peak flux (Jy)	Fluence (Jy ms)	Freq. (GHz)	Ref.	DM _{ISM} (pc cm ⁻³)	DM _{halo} (pc cm ⁻³)	DM _{local sim} (pc cm ⁻³)	DM _{cosmo} (pc cm ⁻³
010125 ¹	356.6	-20.0	790 ± 3	1.10+0.22	11.2+6.0	1.4	1,2	110	30	13	650
010621	25.4	-4.0	746 ± 1	1.04+0.26	$8.6^{+7.2}_{-3.8}$	1.4	3,2	537	-	-	-
010724	300.8	-41.9	375 ± 1	> 3.16	> 63.0	1.4	4,2	44	30	20	301
110220	50.8	-54.7	944.38 ± 0.05	2.22+2.24	$14.6^{+4.8}_{-3.4}$	1.3	5,2	35	30	5	879
110626	355.8	-41.7	723.0 ± 0.3	1.260.40	$1.8^{+2.6}_{-0.4}$	1.3	5,2	47	30	10	646
110703	81.0	-59.0	1103.6 ± 0.7	0.9+0.42	3.6+4.6	1.3	5,2	33	30	14	1041
120127	49.2	-66.2	553.3 ± 0.3	$1.24^{+0.26}_{-0.20}$	1.6+1.5	1.3	5,2	32	30	9	491
121102	175.0	-0.2	557 ± 2	0.8+0.8	2.4+8.0	1.4	6,2	192	30	10	335
131104	260.6	-21.9	$778.5^{+0.2}_{-0.3}$	2.2+0.1	1.9+0.08	1.4	7	71	30	10	678
140514	50.8	-54.6	562.7 ± 0.6	$0.94^{+0.22}_{-0.16}$	2.6+4.6	1.4	8,2	35	30	5	498

References: (1) Burke-Spolaor & Bannister (2014); (2) Keane & Petroff (2015); (3) Keane et al. (2012); (4) Lorimer et al. (2007); (5) Thornton et al. (2013); (6) Spitler et al. (2014); (7) Ravi et al. (2014); (8) Petroff et al. (2014a).

Dolag+ 15より

¹This burst was misnamed FRB 011025 by Burke-Spolaor & Bannister (2014).

2. FRB FRBの起源

11

❖ 起源は不明

- 電子レンジ×
- 実時間発見後の多波長観測→ 変動性ある対応天体なし (Petroff+15)→近傍(z<0.3) 超新星や長周期GRBは棄却

❖ イベントレート

- Parkes: 0.15-0.4/deg/day
- SKA1-MID = x10感度 & x15視野 (tile out primary beam): 7500 times higher (if S_{min}~N^{-3/2})
- 詳しくはMacquart+15, (AASKA14-55)を参照

Source candidates

- Rotating radio transients
- Nearby flaring stars(Loeb+2013)
- ccSN(Falcke+2013)
- WDWD merger(Kashiyama+2013)
- NSNS merger(Totani2013)
- Magnetar giant flare(Popov+2007,Thornton+2013)
- Collapse of hyper massive neutron star
- Giant pulse from a young pulsar
- Evaporation of BH (Keane+2012)
- Superconducting cosmic strings (Cai+2012)
- And more ...

端山さん SKAJP Transient研究会資料より

起源はさておき「新メッセンジャー」としての活用を考えてみる

2. FRB

ミッシングバリオンと磁場

2

ビックバン宇宙論

宇宙のバリオン総量

観測 銀河・銀河団・H_I・Ly α・O_{VI} 大規模構造プラズマ? _ MOND?

種磁場

インフレーション 再結合,再イオン化 第一世代星

初期宇宙

References Ryu+11;Widrow+11 Dubois & Tessier 08

Ryu+08; Donnert+09

種磁場 衝撃波・不安定性 増幅 圧縮・ダイナモ 大規模構造形成

種磁場

衝撃波・不安定性

増幅

銀河ダイナモ

漏れだし

銀河風・ジェット・ラム圧

銀河形成

- ❖ 中高温銀河間物質(WHIM)の銀河間磁場(IGMF)
- ❖ 銀河フィラメントで1-10 nG (e.g. Ryu+08) → RM ~1-10 rad/m² と予想される (TA+10;11)

 $RM = \int_{L}^{0} n_{e} B_{||} dl$

2. FRB RM/DM=平均視線磁場強度

13

❖ 宇宙論的な文脈におけるDMとRMの式

$$DM = C_{\rm D} \int_0^{z_i} \frac{n_{\rm e}(z)}{(1+z)} \frac{dl(z)}{dz} dz \;\; {
m pc} \; {
m cm}^{-3}$$
 たとえば McQuinn 2014 $RM = C_{\rm R} \int_{z_i}^0 \frac{n_{\rm e}(z)B_{\parallel}(z)}{(1+z)^2} \frac{dl(z)}{dz} dz \;\; {
m rad} \; {
m m}^{-2} \;$ たとえば TA & Ryu 2011

 C_D =1000, C_R ~811.9, 電子密度 n_e (z)(cm⁻³) 視線磁場強度 $B_{||}$ (z)(μ G) 線素dl(z)(kpc)

❖ 赤方偏移で平均した磁場強度

$$B_{||}^{\dagger} \equiv \langle B_{||}(z)/(1+z)\rangle_{z} \sim \frac{C_{\rm D}RM}{C_{\rm R}DM} = 12.3 \left(\frac{RM}{10 \text{ rad m}^{-2}}\right) \left(\frac{DM}{10^{3} \text{ pc cm}^{-3}}\right)^{-1} \text{ nG}$$

観測されたDMとRMから 大規模構造のDMとRMを抽出

大規模構造のDMとRMからフィラメントの磁場強度を推定

本研究で明らかにしたいこと 大規模構造のDMとRMから得る B_{||}†はフィラメントの銀河間磁場 の指標となりうるか?

2. FRB モデルと計算

14

❖ 構造形成シミュレーション

- Ryu et al. (2008)
- 磁場:乱流ダイナモ理論

❖ 4万平方度・1600万FRB

- 統計的な不定性とcosmic varianceを除くため
- 不可欠という意味ではない

ALL: すべてを含む経路積分

T79: 10⁷ K以上のガスのみ(clusters) T57: 10⁵⁻⁷ Kのガスのみ(filaments) T45: 10⁴⁻⁵ Kのガスのみ(sheets)

T04: 104 K以下のガスのみ(voids)

TS0: ALL – pixels (Tx*>10⁷ & Sx*>10⁻¹⁰)

T in [K], S in [erg/s/cm²/sr]

TA, Ryu (2011), ApJ, 738, 134

2. FRB 結果のまとめ

5

 Λ CDM(Ω_{m0} =0.27, $\Omega_{\Lambda0}$ =0.73, H₀=70), 40,000 deg², 320,000 FRBs/ Δ z, Δ z=0.1 —ALL IGM —clusters —filaments —sheets —voids —(ALL-clusters)

- ❖ DMは近傍ではフィラメントが支配的だが遠方ではボイドが支配的
- ❖ DMから赤方偏移を△z~0.2程度の不定性で推定しうる
- ❖ RMはX線情報から銀河団を取り除くとフィラメントが支配的
- ❖ B_{||}[†]=RM/DMは高赤方偏移ではボイドが寄与し過小評価する
- ❖ B_{||}[†]=B_{||}[†]/f_{DM(z)}は(1+z)のバイアス残るが因子2程度で合理的に推定

TA+ in preparation

3. SDPの話

16

3. SDP SKA1性能早見表

17

	SKA1 LOW	SKA1 MID	
バージョン	2015 Q2	2015 Q2	
所在地	オーストラリア	南アフリカ	
周波数レンジ	50 – 350 MHz	350 – 13800 MHz	
チャンネル数	最大65536	最大65536	
アンテナタイプ	ログペリオディックアンテナ	パラボラアンテナ	
台数	131,072 (256基*512局)	133 (15m) + 64 (13.5m)	
最大基線長,分解能	70 km, 9.4"@110 MHz	150 km, 0.25"@1.67 GHz	
集光面積	32664 m ² (!?)	32664 m ²	
感度 (A _{eff} /T _{sys})	559 m ² /K	1264 m ² /K	
走査力 (SSFoM)	6.5*10 ⁶ deg ² m ⁴ /K ⁻²	7.8*10 ⁵ deg ² m ⁴ /K ⁻²	
複素相関	3.4*10 ¹⁰	5.1*10 ⁹	
生データサイズ	160 TB/s, 4.9 ZB/yr	2 TB/s, 62 EB/yr	
SDP演算要求	100 PFLOPs	360 PFLOPs	

3. SDP 技術開発・設計の共同体

18

WPC(Work Package Consortia)

*はSKA2のWPC、他は 定義上はSKA1のWPC

❖2013年設立。20ヶ国100機関以上が参加

DSH

LFAA

MFAA*

WBSPF*

SaDT

CSP

SDP

TM

AIV

INFRASA

INFRAAU

3. SDP SDPの役割と装置

42U Rack

Processing blade 1

Processing blade 2

Processing blade 3
Processing blade 4

Processing blade 5

Processing blade 6

Processing blade 7

Processing blade 8
Processing blade 9
Processing blade 10
Leaf Switch-1 56Gb/s

Leaf Switch-2 56Gb/s
Processing blade 11

Processing blade 12 Processing blade 13

Processing blade 14 Processing blade 15

Processing blade 16 Processing blade 17

Processing blade 18 Processing blade 19 Processing blade 20 19

- ❖ データ取り込み
 - Calibration & Flagging
- ❖ データ並列演算
 - Imaging & Clean
- ❖ データ保存送信

	Blade S	pecification
:	20 TFlop 2x56 Gb/s comms 4 TB storage	Capable host (dual Xeon) Programmable
	<1kW power	Significant RAM

Card name	Release year	SP Peak performance		
Fermi	2010	1.0 TFLOP/s		
Kepler	2012	4.0 TFLOP/s		
Maxwell	2014	8.0 TFLOP/s		
Volta	2016 ?	16.0 TFLOP/s		
Unknown 1	2018 ?	32.0 TFLOP/s		
Unknown 2 2020 ?		64.0 TFLOP/s		

主演算器

- ・ホストCPU+加速器
- ・加速部で64TFlops/ノード
- ・1kW/ノード、20kW/ラック

ストレージ

- ・Lusterファイルシステム
- ・1ラック1.3PByte容量
- ・インフィニバンド接続
- ・2kW電力/ラック

↑2015時点最速はSP6.6TFlops(TITAN X, Maxwell)

3. SDP SDPハードの現実性

20

❖ 中央演算処理

- ラック(電源・配線・スイッチ)当たりで計算
- ラックあたりの単価は同じで、性能は2年で2倍と想定
 - 2020年に1500万円/Pflops
- 効率:理論ピーク性能の25%と仮定

❖ルーター

- 既存の技術で足りそう?他より高価ではない。

❖UVバッファー

- DRAM/フラッシュメモリ。ストレージの10倍コストと想定
 - 2020年に1億5000万円/PByte

◇ ストレージ

- 価格当たり容量は年20%増
 - 2020年に1500万円/PByte → EB,ZB/yrの保存なんて無理

3. SDP 2000年以降のTop 500

21

2015/10/31

まとめ

❖ SKA計画の外観

- LOW(13万基), MID(~200台), 50MHz~14GHz, 2020年~
- SKA1で様々なサイエンスの革命が期待される

❖ FRBを使った大規模構造の探査

- DMとRMに寄与する銀河間物質が同じとは限らない
- 赤方偏移が分かれば大規模構造の成分だけを推定できるかも

❖ SDPが求めるスパコン性能

- お金と電力で制限。準リアルタイム処理&生データ破棄
- ハード面は一応現実的予測か?ソフト面には課題あり

❖ 今後の課題

- 日本の電波天文学の次の大型・中型計画とSKAとの関係
- SKA計画に向けた偏波観測シミュレータの開発