Álgebra lineal – Semana 3 Bases y dimensión

Grupo EMAC grupoemac@udea.edu.co

Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Universidad de Antioquia

27 de julio de 2021

Base de un espacio vectorial

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \mathbf{o} $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Observación 1

Una base $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ para un espacio vectorial V debe cumplir dos condiciones:

- ② B no puede tener tantos vectores de modo que uno de ellos pueda escribirse como una combinación lineal de los demás vectores en B.
- lacktriangledown B debe tener suficientes vectores para generar a V.

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \bullet { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 1 (Base canónica de \mathbb{R}^3)

Muestre que el conjunto de vectores de \mathbb{R}^3 ,

$$B = \left\{ \underbrace{(1,0,0)}_{\mathbf{e}_1}, \underbrace{(0,1,0)}_{\mathbf{e}_2}, \underbrace{(0,0,1)}_{\mathbf{e}_3} \right\},\,$$

es una base para \mathbb{R}^3 .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \bullet { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 2 (Base canónica de \mathbb{R}^n)

El conjunto de vectores de \mathbb{R}^n ,

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \quad \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \quad \dots, \quad \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}.$$

es una base para \mathbb{R}^n .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \bullet { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 3 (Base no estándar de \mathbb{R}^2)

Muestre que el conjunto de vectores de \mathbb{R}^2 ,

$$B = \left\{ \underbrace{(1,1)}_{\mathbf{v}_1}, \underbrace{(1,-1)}_{\mathbf{v}_2} \right\},\,$$

es una base para \mathbb{R}^2 .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 4 (Base canónica para P_3)

Muestre que el conjunto de vectores de P_3 ,

$$B = \left\{ \underbrace{1}_{\mathbf{v}_1}, \underbrace{x}_{\mathbf{v}_2}, \underbrace{x^2}_{\mathbf{v}_3}, \underbrace{x^3}_{\mathbf{v}_4} \right\},$$

es una base para P_3 .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \bullet { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } es linealmente independiente (LI).
- \bullet $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 5 (Base canónica para P_n)

El conjunto de vectores de P_n ,

$$B = \left\{1, x, x^2, \dots, x^n\right\},\,$$

es una base para P_n .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \mathbf{o} $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Ejemplo 6 (Base canónica para M_{22})

Muestre que el conjunto de vectores de M_{22} ,

$$B = \left\{ \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{\mathbf{v_1}}, \underbrace{\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}_{\mathbf{v_2}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{\mathbf{v_3}}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{\mathbf{v_4}} \right\},$$

es una base para M_{22} .

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \bullet { $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ } es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Propiedad 1

Sea $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ una base para un espacio vectorial V. Entonces para cada vector $\mathbf{v} \in V$, existen escalares *únicos*

$$c_1, c_2, \ldots, c_n$$

tales que

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

Definición 1 (Base)

Un conjunto de vectores $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ en un espacio vectorial V es una **base** para V si se cumplen las dos siguientes condiciones:

- \mathbf{o} $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es linealmente independiente (LI).
- $\mathbf{0} \ \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V.

Propiedad 2

Si $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base para un espacio vectorial V, entonces cualquier conjunto que tenga más de n vectores en V es linealmente dependiente (LD).

Propiedad 2

Si $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base para un espacio vectorial V, entonces cualquier conjunto que tenga más de n vectores en V es linealmente dependiente (LD).

Ejemplo 7

Determine si el conjunto de vectores de \mathbb{R}^3 ,

$$S = \{ (1, 2, -1), (1, 1, 0), (2, 3, 0), (5, 9, -1) \},\$$

es LI o LD.

Propiedad 2

Si $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es una base para un espacio vectorial V, entonces cualquier conjunto que tenga más de n vectores en V es linealmente dependiente (LD).

Ejemplo 8

Determine si el conjunto de vectores de P_3 ,

$$S = \left\{ 1, 1 + x, 1 - x, 1 + x + x^2, 1 - x + x^2 \right\},\,$$

es LI o LD.

Propiedad 3

Si un espacio vectorial V tiene una base con n vectores, entonces cualquier otra base tiene también n vectores.

Ejemplo 9

Determine si el conjunto de vectores de \mathbb{R}^3 ,

$$S = \{ (3, 2, 1), (7, -1, 4) \},$$

es base para \mathbb{R}^3 .

Propiedad 3

Si un espacio vectorial V tiene una base con n vectores, entonces cualquier otra base tiene también n vectores.

Ejemplo 10

Determine si el conjunto de vectores de P_3 ,

$$S = \left\{ x + 2, x^{2}, x^{3} - 1, 3x + 1, x^{2} - 2x + 3 \right\},\,$$

es base para P_3 .

Dimensión de un espacio vectorial

Definición 1 (Dimensión)

 \odot Si un espacio vectorial V tiene una base con n vectores, entonces al número n se le llama la dimensi'on de V y escribimos

$$\dim V = n.$$

• Si V es el espacio vectorial que consiste solamente del vector cero $(V = \{0\})$, definimos la dimensi'on de V como cero.

Ejemplo 1

En cada uno de los siguientes ejemplos, la dimensión se determina simplemente contando el número de vectores en la base canónica.

- O dim $P_n = n + 1$.

Dimensión de un subespacio

Definición 1 (Dimensión)

 \odot Si un espacio vectorial V tiene una base con n vectores, entonces al número n se le llama la dimensión de V y escribimos

$$\dim V = n.$$

 \bullet Si V es el espacio vectorial que consiste solamente del vector cero $(V=\{\mathbf{0}\}),$ definimos la $\emph{dimensi\'on}$ de V como cero.

Ejemplo 2

Determine la dimensión de cada uno de los siguientes subespacios de \mathbb{R}^3 :

- $W = \{(b, a b, a) \mid a \text{ y } b \text{ son números reales}\}.$

Dimensión de un subespacio

Definición 1 (Dimensión)

 \odot Si un espacio vectorial V tiene una base con n vectores, entonces al número n se le llama la dimensi'on de V y escribimos

$$\dim V = n.$$

 \bullet Si V es el espacio vectorial que consiste solamente del vector cero $(V=\{\mathbf{0}\})$, definimos la dimensi'on de V como cero.

Ejemplo 3

Sea W el subespacio de todas las matrices simétricas en M_{22} . Halle la dimensión de W.

Conjuntos LI

Propiedad 1

Sea V un espacio vectorial de dimensión n y $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ es un conjunto de vectores en V linealmente independiente, entonces $m \leq n$.

Dimensión de un subesapcio

Propiedad 2

Si V un espacio vectorial de dimensión finita y H es un subespacio vectorial de V, entonces $\dim H \leq \dim V$.

Comprobación de una base en un espacio n-dimensional

Propiedad 3

Sea V un espacio vectorial de dimensión n.

- ② Si $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ es un conjunto de vectores en V linealmente independiente (LI), entonces S es una base para V.
- \bullet Si $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ genera a V, entonces S es una base para V.

Observación 1

Como consecuencia del teorema anterior, para verificar si un conjunto S de n vectores en un espacio vectorial V de dimensión n es una base para V, es suficiente con verificar que S es linealmente independiente (LI) o que S genera a V.

Propiedad 3

Sea V un espacio vectorial de dimensión n.

- \circ Si $S = {\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n}$ es un conjunto de vectores en V linealmente independiente (LI), entonces S es una base para V.
- \bullet Si $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ genera a V, entonces S es una base para V.

Ejemplo 4

Muestre que el conjunto de vectores de \mathbb{R}^5 ,

$$S = \left\{ \underbrace{\begin{pmatrix} 1\\2\\-1\\3\\4 \end{pmatrix}}_{\mathbf{v}_1}, \underbrace{\begin{pmatrix} 0\\1\\3\\-2\\3 \end{pmatrix}}_{\mathbf{v}_2}, \underbrace{\begin{pmatrix} 0\\0\\2\\-1\\5 \end{pmatrix}}_{\mathbf{v}_3}, \underbrace{\begin{pmatrix} 0\\0\\0\\2\\-3 \end{pmatrix}}_{\mathbf{v}_4}, \underbrace{\begin{pmatrix} 0\\0\\0\\0\\-2 \end{pmatrix}}_{\mathbf{v}_5} \right\}$$

es una base para \mathbb{R}^5 .

Dimensión del espacio solución de un sistema homogéneo

Ejemplo 5

Halle la dimensión del espacio solución del sistema homogéneo

$$x + 2y - z = 0$$

$$2x \ - \quad y \ + \ 3z \ = \ 0$$

Dimensión del espacio solución de un sistema homogéneo

Ejemplo 6

Halle la dimensión del espacio solución del sistema homogéneo

$$2x - y + 3z = 0$$
$$4x - 2y + 6z = 0$$
$$-6x + 3y - 9z = 0$$

Bibliografía

- Clara Mejía
 Álgebra lineal elemental y aplicaciones
 Ude@, 2006.
- Stanley Grossman
 Álgebra lineal
 McGraw-Hill Interamericana, Edición 8, 2019.
- David Poole Álgebra lineal: una introducción moderna Cengage Learning Editores, 2011.
- Bernard Kolman
 Álgebra lineal
 Pearson Educación, 2006.
- Ron Larson
 Fundamentos de Álgebra lineal
 Cengage Learning Editores, 2010.

