Yujiong Liu

Robotics & Mechatronics Lab

Department of Mechanical Engineering Virginia Tech Blacksburg, VA 24060 Home Address 1740 Donlee Dr Blacksburg, VA 24060 (218) 940-1085

EDUCATION

Doctor of Philosophy, Mechanical Engineering

Virginia Tech, Blacksburg, VA

expected May 2022

DISSERTATION - Serpentine Robotic Tail: Modeling, Control, and Implementations

Advisor: Prof. Pinhas Ben-Tzvi

GPA 4.00/4.00

Master of Science, Applied and Computational Mathematics (Minoring in Computer Science)

University of Minnesota, Duluth, MN

May 2017

THESIS - A Connection Between Analytic and Nonanalytic Singular Perturbations of the Quadratic Map

Advisor: Prof. Bruce Peckham

GPA 4.00/4.00

Master of Engineering, Mechatronics Engineering

Harbin Institute of Technology, Harbin, China

July 2015

THESIS - Research on the Nonlinear Control of High-Speed Delta Robot

Advisor: Prof. Minxiu Kong

GPA 82.5/100

Bachelor of Engineering, Mechanical Engineering

Tongji University, Shanghai, China

July 2013

SENIOR PROJECT - Research on Flow Rate Pulsation of Piston Pump in Airplane Hydraulic System

Advisor: Prof. Jing Li GPA 4.11/5 or 86.09/100

RESEARCH INTEREST

I enjoy exploring uncharted areas of human knowledge and I am always eager to learn new things. I am interested in all areas of robotics and have a special interest on bioinspired robots and how to build these robots. I am good at combining both the analytical methods and the hands-on experience to solve problems.

PROFESSIONAL EXPERIENCE

GRA & Lab Manager (2020-present) @Robotics & Mechatronics Lab

August 2017 – Present

Virginia Tech, Blacksburg, VA

GTA @ Mathematics & Statistics Department University of Minnesota Duluth, Duluth, MN September 2015 – May 2017

GRA @Medical Robot Lab

September 2013 – July 2015

State Key Laboratory of Robotics and System, Harbin, China

PROFESSIONAL SKILLS

[Math] Mathematical Modeling and Analysis, System Dynamics and Control, Optimization

[Hardware] Mechanical Design (e.g. Solidworks), Mechanical Manufacturing (e.g. CNC), Electrical Design (e.g. PCB)

[Embedded System Development] Bare-metal (e.g. Arduino, ARM/Mbed OS), Embedded Linux (e.g. Buildroot, Yocto)

[Software] ROS, Linux, GNU toolchain

[Coding] C/C++, Matlab, Qt

ACADEMIC MEMBERSHIPS

Mathematical Association of America (MAA), Student Member (2015-2017) American Society of Mechanical Engineers (ASME), Student Member (2019-present) Institute of Electrical and Electronics Engineers (IEEE), Student Member (2019-present)

ACADEMIC SERVICES

I serviced as reviewers for several international journals and conferences

IEEE Transactions on Robotics

IEEE/ASME Transactions on Mechatronics

Autonomous Robots

Journal of Mechanisms and Robotics, Transactions of the ASME

ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE) 2018-2021

ASME Dynamic Systems and Control Conference (DSCC) 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020

IEEE International Conference on Robotics and Automation (ICRA) 2022

TEACHING EXPERIENCE

GTA@Mechanical Engineering Department, Virginia Tech, Blacksburg, VA August 2018 - May 2019

- ME4006 Mechanical Engineering Lab II (2018 Fall)
- ME4005 Mechanical Engineering Lab I (2019 Spring)

GTA@Math Department, University of Minnesota Duluth, Duluth, MN September 2015 – May 2017

- MATH3298 Calculus III (2015 Fall, 2017 Spring)
- MATH1160 Finite Math (2016 Spring, 2016 Fall)
- MATH3810 Numerical Analysis (2017 Spring)

HONORS AND AWARDS

Distinction in Comprehensive Examination, Math Dep., University of Minnesota Duluth	2016
Outstanding Graduate, Mechatronics School, Harbin Institute of Technology	2015
First Class Scholarship (Twice), Harbin Institute of Technology	2013, 2014
First Prize of the 5th National College Mechanical Innovation Design Competition, Xian, China	a 2012
National Encouragement Scholarship, Ministry of Education, P.R. China	2011
Learning Scholarship (Twice), ME Dep., Tongji University	2011, 2012
Outstanding Student, ME Dep., Tongji University	2010

Third Prize of the 27th National Physics Competition (Shanghai Area), Shanghai, China	2010
Third Prize of Tongji Physics Competition, Tongji University	2010
First Prize in the Chinese Chemistry Olympiad (Provincial), Ministry of Education, P.R. China,	2008
Second Prize in the Chinese Physics Olympiad (Provincial), Ministry of Education, P.R. China,	2008
Third Prize in the Chinese Mathematics Olympiad (Provincial), Ministry of Education, P.R. China.	2008

PUBLICATIONS

Peer Reviewed Journal Articles

- [J11] Yang, J., Saab, W., Liu, Y. and Ben-Tzvi, P., "Reuleaux Triangle Based Two Degree of Freedom Bipedal Robot", Robotics, In Press, Oct. 2021.
- [J10] Liu, Y. and Ben-Tzvi, P., 2021, "Dynamic Modeling, Analysis, and Design Synthesis of a Reduced Complexity Quadruped with a Serpentine Robotic Tail", Integrative and Comparative Biology, 61(2), pp. 464–477.
- [J9] Liu, Y. and Ben-Tzvi, 2021, "A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission", Journal of Mechanisms and Robotics, Transactions of the ASME, 13(3), p. 031112.
- [J8] Liu, Y. and Ben-Tzvi, P., 2021, "Dynamic Modeling, Analysis, and Comparative Study of a Quadruped with Bio-inspired Robotic Tails", Multibody System Dynamics, 51(2), pp. 195-219.
- [J7] Wang, J., Liu, Y. and Ben-Tzvi, P., 2021 "Robust Adaptive Input-Output Control for a Class of Modular Robotic Systems via Inverse Optimality Theory", International Journal of Control, Published Online, DOI: 10.1080/00207179.2021.1885741.
- [J6] Liu, Y. and Ben-Tzvi, P., 2020, "An Articulated Closed Kinematic Chain Planar Robotic Leg for High Speed Locomotion", Journal of Mechanisms and Robotics, Transactions of the ASME, 12(4), p. 041003.
- [J5] Liu, Y. and Ben-Tzvi, P., 2020, "Design, Analysis, and Integration of a New Two-DOF Articulated Multi-link Robotic Tail Mechanism", Journal of Mechanisms and Robotics, Transactions of the ASME, 12(2), p. 021101.
- [J4] Liu, Y., Wang, J. and Ben-Tzvi, P., 2019, "A Cable Length Invariant Robotic Tail Using a Circular Shape Universal Joint Mechanism", *Journal of Mechanisms and Robotics, Transactions of the ASME*, 11(5), p. 051005.
- [J3] Wan, N., Yao, W., Fang, X. and Liu, Y., 2019, "Partially Independent Control Scheme for Spacecraft Rendezvous in Near-Circular Orbits", Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, p. 0954410018776418.
- [J2] Rone, W., Liu, Y. and Ben-Tzvi, P., 2019, "Maneuvering and Stabilization Control of a Bipedal Robot with a Universal-Spatial Robotic Tail", Bioinspiration & Biomimetics, 14(1), p. 016014.
- [J1] Liu, Y., Kong, M., Wan, N. and Ben-Tzvi, P., 2018, "A Geometric Approach to Obtain the Closed-Form Forward Kinematics of H4 Parallel Robot", Journal of Mechanisms and Robotics, Transactions of the ASME, 10(5), p. 0510113.

Peer Reviewed Conference Proceedings

- [C6] Liu, Y. and Ben-Tzvi, P., "Systematic Development of a Novel, Dynamic, Reduced Complexity Quadruped Robot Platform for Robotic Tail Research", 2022 IEEE International Conference on Robotics and Automation (ICRA), May 23-27, 2022, Philadelphia, PA, USA, Submitted.
- [C5] Liu, Y. and Ben-Tzvi, P., "Feedback Control of the Locomotion of a Tailed Quadruped Robot", Proceedings of the ASME 2021 IDETC/CIE, 45th Mechanisms & Robotics Conference, Virtual, Online, Aug. 17-20, 2021.
- [C4] Liu, Y. and Ben-Tzvi, P., "A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission", *Proceedings of the ASME 2020 IDETC/CIE*, 44th Mechanisms & Robotics Conference, St. Louis, MO, USA, p. V010T10A065, Aug. 16-19, 2020.

- [C3] Liu, Y. and Ben-Tzvi, P., "A New Approach to Model the Constant Curvature Continuum Robot Dynamics", Proceedings of the ASME 2019 Dynamic Systems and Control Conference, Park City UT, USA, p. V003T20A001, Oct. 8–11, 2019.
- [C2] Liu, Y. and Ben-Tzvi, P., "Design, Analysis, and Optimization of a New Two-DOF Articulated Multi-link Robotic Tail", Proceedings of the ASME 2019 IDETC/CIE, 43rd Mechanisms & Robotics Conference, Anaheim CA, USA, p. V05BT07A008, Aug. 18–21, 2019.
- [C1] Liu, Y. and Ben-Tzvi, P., "Dynamic Modeling of the Quadruped with a Robotic Tail Using Virtual Work Principle", Proceedings of the ASME 2018 IDETC/CIE, 42nd Mechanisms & Robotics Conference, Quebec City, Canada, pp.V05BT07A021-V05BT07A021, Aug. 26-29, 2018.

Other Publications

- [O4] Liu, Y. and Ben-Tzvi, P., "A Systematic Approach to Develop a Reduced Complexity Quadruped Robot with a Serpentine Robotic Tail", Southeast Control Conference 2021, Blacksburg VA, USA, Nov. 29-30, 2021. [Abstract Submission]
- [O3] Ben-Tzvi, P. and Liu, Y., "Robots With Tails", ASME Mechanical Engineering Magazine, 143(6), pp. 32-37, Available Online at: https://www.asme.org/topics-resources/content/engineers-could-put-tails-on-robots
- [O2] Liu, Y. and Ben-Tzvi, P., "Towards Dynamic Locomotion of Legged Robots Using Biomimetic Articulated Robotic Tails", 2021 Society for Integrative and Comparative Biology Annual Meeting (SICB 2021), Washington D.C., USA, Jan. 3-7, 2021. [Abstract Submission]
- [O1] Liu, Y. and Ben-Tzvi, P., "Maneuvering and Stabilization of Reduced Complexity Legged Robots Using Bioinspired Robotic Tails", 2019 Do Good Robotics Symposium, College Park MD, USA, October 3-4, 2019. [Extended Abstract Submission]

Patents

- [P5] Ben-Tzvi, P., Liu, Y., 2021, Extensible Continuum Manipulator, Patent App. No. 63/032,200, INTERNATIONAL (PCT), 5/28/2021
- [P4] Ben-Tzvi, P., Saab, W., Rone, W., Liu, Y., 2019, Articulated Multi-Link Robotic Tail Systems and Methods, Patent App. No. 16/428,732, UNITED STATES, Publication Date 12/5/2019
- [P3] Wang, S., Liu, Y., Gong, P., Sun, T., Pan, Q., Yin, Y., 2014, A Quadruped Walking Robot, Patent No. CN 201410214222.3, P.R. CHINA.
- [P2] Ji, C., Liu, Y., Kong, M., 2014, An O-ring Gripper Used for Automatic Assembly, Patent No. CN 201410145847.9, P.R. CHINA.
- [P1] Ji, C., Liu, Y., Kong, M., 2014, A Novel Fourth Axis of Delta Robot with an Upper Placed Ball Joint Clamping a Square Shaft, Patent No. CN 201410126057.6, P.R. CHINA.

Thesis and Dissertation

- [T2] Liu, Y., "A Connection Between Analytic and Nonanalytic Singular Perturbations of the Quadratic Map", University of Minnesota, May 2017.
- [T1] Liu, Y., "Research on the Nonlinear Control of High-Speed Delta Robot", Harbin Institute of Technology, July 2015.

OTHERS

Mentoring

Senior Design Team (7 students) Shikhar Kashyap (M.Eng) Isaac Pressgrove (M.S) Alex Broz (Undergraduate) Logan Stevenson (Undergraduate)

Proposal Writing

National Science Foundation (NSF) CMMI 1906727: Control of Dynamically Coupled Agile Legged Robots and Bioinspired Robotic Tails $\text{ROLE} = \text{participating author, STATUS} = \text{funded} \\ \text{National Science Foundation (NSF) NRI3.0: Utilizing Serpentine Robotic Tails to Achieve Dexterous and} \\ \text{Agile Legged Locomotion} \\ \text{ROLE} = \text{leading author, STATUS} = \text{writing} \\ \text{ROLE} = \text{leading author, STATUS} = \text{leading au$

Invited Talks

"Serpentine Robotic Tails: Modeling, Control, and Implementations", School of Astronautics, Northwestern Polytechnical University, China 04/07/2021