0.1 极限问题综合

例题 0.1 设二阶可微函数 $f:[1,+\infty) \to (0,+\infty)$ 满足

$$f''(x) \leqslant 0$$
, $\lim_{x \to +\infty} f(x) = +\infty$.

求极限

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)}.$$

Ŷ 笔记 本例非常经典,深刻体现了"拉格朗日中值定理"保持阶不变和"和式和积分"转化的思想.

证明 由条件 $f''(x) \le 0$ 可知, f 是上凸函数. 而上凸函数只能在递增、递减、先增后减中发生一个. 又 $\lim_{x \to +\infty} f(x) = +\infty$, 因此 f 一定在 $[1,+\infty)$ 上递增. 再结合 $f''(x) \le 0$ 可知 $f' \ge 0$ 且单调递减. 下面来求极限.

由 Lagrange 中值定理可得, 对 $\forall n \in \mathbb{N}_+$, 存在 $\theta_n \in (2n-1,2n)$, 使得

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \sum_{n=1}^{\infty} \left[\frac{1}{f^s(2n)} - \frac{1}{f^s(2n-1)} \right] \xrightarrow{\text{Lagrange \neq till \mathbb{Z}}} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)}. \tag{1}$$

由于 $\theta_n \in (2n-1,2n), \forall n \in \mathbb{N}_+$ 且 $f \geq 0$ 单调递增, $f' \geq 0$ 单调递减, 因此

$$s\sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} \leqslant s\sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)}.$$
 (2)

又因为 $\left[\frac{-f'(x)}{f^{s+1}(x)}\right]' = \frac{f''(x)f(x) - (s+1)f'(x)}{f^{s+2}(x)} \leqslant 0$,所以 $\frac{-f'(x)}{f^{s+1}(x)}$ 单调递减. 从而一方面,我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \leqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n-1}^{n} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{3}$$

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} \geqslant -\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(2x)}{f^{s+1}(2x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{2}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{2}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(2)} \right] = -\frac{1}{2}. \tag{4}$$

于是利用(3)(4)式,由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n)}{f^{s+1}(2n)} = -\frac{1}{2}.$$
 (5)

另一方面, 我们有

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \leqslant -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \sum_{n=2}^{\infty} \int_{n-1}^{n} \frac{f'(2x-1)}{f^{s+1}(2x-1)} dx \right] = -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \sum_{n=2}^{\infty} \int_{2n-3}^{2n-1} \frac{f'(x)}{f^{s+1}(x)} dx \right]$$

$$= -\lim_{s \to 0^{+}} s \left[\frac{f'(1)}{f^{s+1}(1)} + \frac{1}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx \right] = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x) = \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty}$$

$$= -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{6}$$

$$\lim_{s \to 0^{+}} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} \geqslant -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \sum_{n=1}^{\infty} \int_{2n-1}^{2n+1} \frac{f'(x)}{f^{s+1}(x)} dx$$

$$= -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{f'(x)}{f^{s+1}(x)} dx = -\lim_{s \to 0^{+}} \frac{s}{2} \int_{1}^{+\infty} \frac{1}{f^{s+1}(x)} df(x)$$

$$= \lim_{s \to 0^{+}} \frac{s}{2} \cdot \frac{1}{s f^{s}(x)} \Big|_{1}^{+\infty} = -\lim_{s \to 0^{+}} \left[\frac{s}{2} \cdot \frac{1}{s f^{s}(1)} \right] = -\frac{1}{2}. \tag{7}$$

于是利用(6)(7)式, 由夹逼准则可得

$$\lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(2n-1)}{f^{s+1}(2n-1)} = -\frac{1}{2}.$$
 (8)

故结合(1)(2)(5)(8)式,由夹逼准则可得

$$\lim_{s \to 0^+} \sum_{n=1}^{\infty} \frac{(-1)^n}{f^s(n)} = \lim_{s \to 0^+} s \sum_{n=1}^{\infty} \frac{-f'(\theta_n)}{f^{s+1}(\theta_n)} = -\frac{1}{2}.$$

例题 **0.2** 求极限 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k}$.

证明 根据对称性,不妨设 $x \in \left[0, \frac{1}{2}\right]$,先尝试找到最大值点. 在 $x = 0, \frac{1}{2}$ 时代入,很明显对应的极限是零,考虑 $x \in \left(0, \frac{1}{2}\right)$,根据等比数列求和公式有

$$\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = (1-x)^n \sum_{k=1}^{n-1} \left(\frac{x}{1-x}\right)^k = \frac{x(1-x)}{1-2x} ((1-x)^n - x^n)$$

如果 $\delta \in \left(0, \frac{1}{2}\right)$ 已经取定,则在区间 $\left[\delta, \frac{1}{2}\right]$ 中

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \leqslant n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

右端是指数级趋于零的并且上式不依赖于x,所以函数会一致趋于零.因此最大值点应该在x=0附近,近似的有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx nx(1-x)^n$$

取 $x = \frac{1}{n}$ 显然极限是 $\frac{1}{e}$, 我们猜测这就是答案, 下面开始证明. 首先取 $x = \frac{1}{n}$ 有

$$\lim_{n\to\infty}n\sum_{k=1}^{n-1}\left(\frac{1}{n}\right)^k\left(1-\frac{1}{n}\right)^{n-k}=\lim_{n\to\infty}\frac{1-\frac{1}{n}}{1-\frac{2}{n}}\left(\left(1-\frac{1}{n}\right)^n-\left(\frac{1}{n}\right)^n\right)=\frac{1}{e}$$

由此可知 $\lim_{n\to\infty} n \sup_{x\in[0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \geqslant \frac{1}{e}$,下面估计上极限. 根据对称性,不妨只考虑 $x\in\left[0,\frac{1}{2}\right]$,对任意 $\delta\in\left(0,\frac{1}{2}\right)$ 取定,当 $x\in\left[\delta,\frac{1}{2}\right]$ 时总有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant n\sum_{k=1}^{n-1} \left(\frac{1}{2}\right)^k (1-\delta)^{n-k} \leqslant n(1-\delta)^n \sum_{k=0}^{\infty} \left(\frac{1}{2(1-\delta)}\right)^k = \frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}}$$

当 $x \in [0, \delta]$ 时,结合均值不等式有

$$n\sum_{k=1}^{n-1} x^k (1-x)^{n-k} = \frac{nx(1-x)}{1-2x} ((1-x)^n - x^n) \approx \frac{nx(1-x)^n}{1-2\delta} \leqslant \frac{\left(1-\frac{1}{n+1}\right)^{n+1}}{1-2\delta} \leqslant \frac{1}{e} \frac{1}{1-2\delta}$$

所以可以取 n > N 充分大, 使得 $\frac{n(1-\delta)^n}{1-\frac{1}{2(1-\delta)}} < \frac{1}{e}$, 此时便有

$$n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant \frac{1}{e} \frac{1}{1-2\delta} \Rightarrow \overline{\lim}_{n \to \infty} n \sup_{x \in [0,1]} \sum_{k=1}^{n-1} x^k (1-x)^{n-k} \leqslant \frac{1}{e} \frac{1}{1-2\delta}$$

最后,根据 δ 的任意性,可知结论成立.

例题 0.3 设 $x_n > 0, k$ 为正整数, 证明: $\overline{\lim}_{n \to \infty} \frac{x_1 + x_2 + \dots + x_{n+k}}{x_n} \geqslant \frac{(k+1)^{k+1}}{k^k}$ 且常数是最佳的.

笔记 此类问题反证法将会带来一个恒成立的不等式,有很强的效果,所以一般都用反证法,证明的灵感来源于 k=1 时的情况.

证明 设 $S_n = x_1 + x_2 + \cdots + x_n$, 采用反证法, 则存在 N 使得 $n \ge N$ 时恒成立

$$S_{n+k} \leqslant \lambda(S_n - S_{n-1}), \lambda \in \left[1, \frac{(k+1)^{k+1}}{k^k}\right)$$

显然 S_n 是单调递增的, 如果 S_n 有界, 则在不等式两端取极限可知 S_n 收敛到零, 矛盾, 所以 S_n 严格单调递增趋于 正无穷, 因此对任意 $n\geqslant N$ 有 $S_n>S_{n-1}$. 如果已经得到了 $S_n>cS_{n-1}$ 对任意 $n\geqslant N$ 恒成立, 这里 c 是正数, 则对 任意 $n \ge N$ 有

$$S_{n+k} > cS_{n+k-1}, S_{n+k-1} > cS_{n+k-2}, \cdots, S_{n+1} > cS_n \Rightarrow S_{n+k} > c^k S_n$$

$$0 < S_{n+k} - c^k S_n \leqslant (\lambda - c^k) S_n - \lambda S_{n-1} \Rightarrow S_n > \frac{\lambda}{\lambda - c^k} S_{n-1}$$

这样不等式就加强了, 记 $c' = \frac{\lambda}{\lambda - c^k}$, 我们得到 $S_n > c' S_{n-1}$ 对任意 $n \geqslant N$ 恒成立. 定义数列 u_n 为 $u_1 = 1, u_{n+1} = 1$ $\frac{\lambda}{\lambda-u^k}$,则重复以上过程可知 $S_n>u_mS_{n-1}$ 对任意 m 以及 $n\geqslant N$ 都恒成立,所以 u_m 这个数列必须是有界的,下面 我们就由此导出矛盾. 因为 $u_{n+1} > u_n \Leftrightarrow (\lambda - u_n^k)u_n < \lambda \Leftrightarrow (\lambda - u_n^k)^k u_n^k < \lambda^k$, 由均值不等式有

$$kx^k(\lambda - x^k)^k \le \left(\frac{k\lambda}{k+1}\right)^{k+1} < k\lambda^k \Leftrightarrow \lambda < \frac{(k+1)^{k+1}}{k^k}$$

显然成立, 所以 u_m 单调递增, 而如果极限存在, 则极限点满足方程 $x=\frac{\lambda}{\lambda-x^k}$ \Leftrightarrow $x(\lambda-x^k)=\lambda$, 这与前面均值不等式导出的结果矛盾, 所以 u_m 单调递增趋于正无穷, 又与有界性矛盾. 综上结论得证.

例题 0.4 设 $x_n>0$, $x_n\to 0$ 且 $\lim_{n\to\infty}\frac{\ln x_n}{x_1+x_2+\cdots+x_n}=a<0$, 证明: $\lim_{n\to\infty}\frac{\ln x_n}{\ln n}=-1$.

例题 **0.4** 设
$$x_n > 0, x_n \to 0$$
 且 $\lim_{n \to \infty} \frac{\ln x_n}{x_1 + x_2 + \dots + x_n} = a < 0$, 证明: $\lim_{n \to \infty} \frac{\ln x_n}{\ln n} = -1$.

证明 不妨设 a = -1, 否则将 x_n 换成 x_n^k 即可, 取 k 将 a 变成 -1

设 $S_n = x_1 + x_2 + \cdots + x_n$, 则 $S_n > 0$ 严格单调递增, 如果 S_n 收敛, 则 $\ln x_n \to -\infty$ 与条件矛盾, 所以 S_n 单调递

因为
$$\frac{\ln x_n}{\ln n} = \frac{\ln x_n}{S_n} \frac{S_n}{\ln n}, \frac{\ln x_n}{S_n} \to -1$$
, 所以等价的只要证明 $\frac{S_n}{\ln n} \to 1$.

$$\lim_{n \to \infty} \frac{\ln x_{n+1}}{S_n} = \lim_{n \to \infty} \frac{\ln x_{n+1}}{S_{n+1}} \frac{S_{n+1}}{S_n} = -\lim_{n \to \infty} \left(1 + \frac{x_{n+1}}{S_n} \right) = -1$$

现在等价的,已知 S_n 单调递增趋于无穷且 $\lim_{n\to\infty}\frac{\ln(S_{n+1}-S_n)}{S_n}=-1$,要证明 $\lim_{n\to\infty}\frac{S_n}{\ln n}=1$. 由极限定义,对任意 $\varepsilon>0$,存在 N 使得任意 n>N 都有 $(-1-\varepsilon)S_n<\ln(S_{n+1}-S_n)<(-1+\varepsilon)S_n$ 也即

$$\left(\frac{1}{e} - \varepsilon\right)^{S_n} + S_n < S_{n+1} < \left(\frac{1}{e} + \varepsilon\right)^{S_n} + S_n, \forall n \geqslant N$$

不妨要求 $S_N > 1$, 考虑

$$f(x) = \left(\frac{1}{e} + \varepsilon\right)^x + x, f'(x) = 1 + \left(\frac{1}{e} + \varepsilon\right)^x \ln\left(\frac{1}{e} + \varepsilon\right) > 1 - \left(\frac{1}{e} + \varepsilon\right)^x > 0$$

再定义 $u_N=S_N, u_{n+1}=\left(\frac{1}{\rho}+\varepsilon\right)^{u_n}+u_n$,于是若有 $u_n\leqslant S_n$ 则结合单调性可知 $u_{n+1}=f(u_n)\leqslant f(S_n)=S_{n+1}$,这说

明 $S_n \leq u_n$ 对任意 $n \geq N$ 恒成立. 同样考虑

$$g(x) = \left(\frac{1}{e} - \varepsilon\right)^x + x, g'(x) = 1 - \left(\frac{1}{e} - \varepsilon\right)^x \ln\left(\frac{1}{e} - \varepsilon\right) \ge 1 - \left(\frac{1}{e} - \varepsilon\right) \ln\left(\frac{1}{e} - \varepsilon\right) > 0$$

再定义 $v_N = S_N, v_{n+1} = \left(\frac{1}{e} - \varepsilon\right)^{v_n} + v_n$,同样道理 $S_n \geqslant v_n$ 恒成立,于是 $\frac{v_n}{\ln n} \leqslant \frac{S_n}{\ln n} \leqslant \frac{u_n}{\ln n}, n \geqslant N$.

注意 u_n, v_n 具备完全一样的形式, 所以统一的考虑 $a_1 > 1, a_{n+1} = a_n + e^{ca_n}$, 其中 c 在 $\frac{1}{e}$ 附近, 显然这个数列是单调递增趋于正无穷的, 我们用 stolz 公式来计算相应的极限, 则有

$$\lim_{n \to \infty} \frac{\ln a_n}{n} = \lim_{n \to \infty} \frac{\ln a_{n+1} - \ln a_n}{1} = \lim_{n \to \infty} \frac{e^{-ca_n}}{c^{-a_n} - 1} = \lim_{n \to \infty} \frac{1}{e^{-a_{n+1}} - e^{-a_n}} = \lim_{n \to \infty} \frac{1}{e^{-ca_n}(e^{-(a_{n+1} - a_n)} - 1)}$$

$$= \lim_{n \to \infty} \frac{e^{ca_n}}{e^{-e^{-ca_n}} - 1} = \lim_{x \to +\infty} \frac{e^{cx}}{e^{-x \ln c} - 1} = \lim_{x \to 0+} \frac{x}{e^{-x \ln c} - 1} = \frac{1}{-\ln c}$$

所以

$$\lim_{n\to\infty}\frac{u_n}{\ln n}=\frac{1}{-\ln(\frac{1}{a}+\varepsilon)}=\frac{1}{1-\ln(1+e\varepsilon)}, \lim_{n\to\infty}\frac{v_n}{\ln n}=\frac{1}{-\ln(\frac{1}{a}-\varepsilon)}=\frac{1}{1-\ln(1-e\varepsilon)}$$

这意味着

$$\overline{\lim_{n\to\infty}}\frac{S_n}{\ln n}\leqslant \frac{1}{1-\ln(1+e\varepsilon)}, \underline{\lim_{n\to\infty}}\frac{S_n}{\ln n}\geqslant \frac{1}{1-\ln(1-e\varepsilon)}, \forall \varepsilon>0$$

由此可知结论成立.

例题 0.5 设 $n \in \mathbb{N}$, 计算

$$\lim_{x \to 0} \frac{1 - \cos x \sqrt{\cos(2x)} \cdot \sqrt[3]{\cos(3x)} \cdot \dots \cdot \sqrt[p]{\cos(nx)}}{x^2}.$$

解 由 Taylor 公式知

$$\cos x = 1 - \frac{x^2}{2} + o(x^2), x \to 0.$$

$$\sqrt[k]{1+x} = 1 + \frac{x}{k} + o(x), x \to 0.$$

于是

$$\sqrt[k]{\cos x} = \sqrt[k]{1 - \frac{x^2}{2} + o(x^2)} = 1 + \frac{-\frac{x^2}{2} + o(x^2)}{k} + o(x^2) = 1 - \frac{k}{2}x^2 + o(x^2), x \to 0.$$

从而

$$\prod_{k=1}^{n} \sqrt[k]{\cos kx} = \prod_{k=1}^{n} \left(1 - \frac{k}{2}x^2 + o(x^2) \right) = 1 - \left(\sum_{k=1}^{n} \frac{k}{2} \right) x^2 + o(x^2), x \to 0.$$

故

$$\lim_{x \to 0} \frac{1 - \prod_{k=1}^{n} \sqrt[k]{\cos kx}}{x^2} = \lim_{x \to 0} \frac{\left(\sum_{k=1}^{n} \frac{k}{2}\right) x^2 + o(x^2)}{x^2} = \frac{n(n+1)}{4}.$$

例题 0.6 计算

$$\lim_{n\to\infty} \sqrt{n} \left(1 - \sum_{i=1}^n \frac{1}{n+\sqrt{i}} \right).$$

Ŷ 笔记 注意到

$$\sum_{i=1}^{n} \frac{1}{n+\sqrt{i}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{\sqrt{i}}{n}},$$

对 $\forall i \in \mathbb{N}$, 都有

$$\frac{\sqrt{i}}{n} \leqslant \frac{1}{\sqrt{n}} \to 0, n \to \infty.$$

故
$$\sum_{i=1}^{n} \frac{1}{1 + \frac{\sqrt{i}}{n}}$$
 中的每一项 $\frac{1}{1 + \frac{\sqrt{i}}{n}}$ 都可以 Taylor 展开.

解 由 Taylor 公式知

$$\sum_{i=1}^{n} \frac{1}{n+\sqrt{i}} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+\frac{\sqrt{i}}{n}} = \frac{1}{n} \sum_{i=1}^{n} \left(1 - \frac{\sqrt{i}}{n} + \frac{i}{n^2} + O\left(\frac{i\sqrt{i}}{n^3}\right)\right)$$

$$= \frac{1}{n} \left[n - \frac{\sum_{i=1}^{n} \sqrt{i}}{n} + \frac{\sum_{i=1}^{n} i}{n^2} + nO\left(\frac{1}{n\sqrt{n}}\right)\right]$$

$$= 1 - \frac{\sum_{i=1}^{n} \sqrt{i}}{n^2} + \frac{n+1}{2n^2} + O\left(\frac{1}{\sqrt{n}}\right)$$

$$= 1 - \frac{\sum_{i=1}^{n} \sqrt{i}}{n^2} + O\left(\frac{1}{n}\right).$$

于是

$$\lim_{n \to \infty} \sqrt{n} \left(1 - \sum_{i=1}^{n} \frac{1}{n + \sqrt{i}} \right) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \sqrt{i}}{n \sqrt{n}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{i}{n}} = \int_{0}^{1} \sqrt{x} dx = \frac{2}{3}.$$

例题 0.7 设 $f \in R[0,1]$, 证明

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (-1)^k f\left(\frac{k}{n}\right) = 0.$$

$$\frac{1}{2n} \sum_{k=1}^{2n} (-1)^k f\left(\frac{k}{2n}\right) = \frac{1}{2n} \sum_{k=1}^n f\left(\frac{2k}{2n}\right) - \frac{1}{2n} \sum_{k=1}^n f\left(\frac{2k-1}{2n}\right)$$

$$= \frac{1}{2n} \sum_{k=1}^n f\left(\frac{k}{n}\right) - \frac{1}{2n} \sum_{k=1}^n f\left(\frac{k-\frac{1}{2}}{n}\right)$$

$$\to \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x - \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x = 0, n \to \infty.$$

$$\frac{1}{2n-1} \sum_{k=1}^{2n-1} (-1)^k f\left(\frac{k}{2n-1}\right) = \frac{1}{2n-1} \sum_{k=1}^{n-1} f\left(\frac{2k}{2n-1}\right) - \frac{1}{2n-1} \sum_{k=1}^n f\left(\frac{2k-1}{2n-1}\right)$$
$$= \frac{n}{2n-1} \cdot \frac{1}{n} \sum_{k=1}^{n-1} f\left(\frac{2k}{2n-1}\right) - \frac{n}{2n-1} \cdot \frac{1}{n} \sum_{k=1}^n f\left(\frac{2k-1}{2n-1}\right)$$
$$\to \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x - \frac{1}{2} \int_0^1 f(x) \, \mathrm{d}x = 0, n \to \infty.$$

故由子列极限命题 (b) 可知

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} (-1)^k f\left(\frac{k}{n}\right) = 0.$$

例题 **0.8** 设 $x_{n+1} = x_n - x_n^3, x_1 \in \mathbb{R}$, 判断 $\lim_{n \to \infty} x_n$ 收敛性.

笔记 因为递推函数 $g(x) = x(1-x^2)$ 关于原点对称, 而 $\{x_n\}$ 的敛散性只由 x_1 决定, 所以我们只需要考虑 $x_1 > 0$ 的情况即可, 由于 g(x) 关于原点对称, 故 $x_1 < 0$ 的情况和 $x_1 > 0$ 的情况类似. 因此我们可以直接考虑数列 $\{|x_n|\}$. 这

样能避免很多分类讨论. 注意这个递推函数 g(x) 只有一个不动点 x=0.

如果不加绝对值, 原递推函数的蛛网图会比较杂乱, 加上绝对值后讨论会比较清晰. 实际上, 通过蛛网图分析, 也能得到使得 $\{x_n\}$ 发散的 x_1 的临界点满足 $g(x_1)=x_2, g(x_2)=x_1$, 即 $g(g(x_1))=x_1$. 于是就有

$$-x_1^6 + 3x_1^4 - 3x_1^2 + 2 = 0. (9)$$

但是当 $x_1 = \pm 1, \pm 2$ 上式不成立,故上述方程没有有理根. 令 $t = x_1^2$,则上式可化为

$$-t^3 + 3t^2 - 3t + 2 = 0.$$

当 t=2 时,上式成立.故上式可化为

$$(t-2)(-t^2+t-1)=0.$$

因此上式只有一个实根 t=2, 即(9)式只有当 $x_1^2=2$ 时才有实根. 故(9)式只有两个实根 $x_1=\pm\sqrt{2}$.

考虑 $|x_{n+1}| = |x_n - x_n^3| = |x_n||1 - x_n^2|$, 记 $f(x) = x|1 - x^2|$, 则 f(x) 有两个不动点 $x = \pm \sqrt{2}$.

证明 考虑 $|x_{n+1}| = |x_n - x_n^3| = |x_n||1 - x_n^2|$, 则

- (1) 当 $|x_1| > \sqrt{2}$ 时,则 $|x_{n+1}| = |x_n||x_n^2 1| \ge |x_n| > \sqrt{2}$. 故此时 $\{|x_n|\}$ 递增,且有下界 $\sqrt{2}$. 而 f 没有大于 $\sqrt{2}$ 的不动点,因此 $\lim_{n\to\infty}|x_n|=+\infty$.
- (2) 当 $|x_1| \leq \sqrt{2}$ 时,则 $|x_{n+1}| = |x_n||x_n^2 1| \leq |x_n| \leq \sqrt{2}$.故此时 $\{|x_n|\}$ 递减,且有下界 $\sqrt{2}$.于是 $A \triangleq \lim_{n \to \infty} |x_n|$ 存在.对 $|x_{n+1}| = |x_n||x_n^2 1|$ 两边同时取极限得 A = 0 或 $\sqrt{2}$.
 - (i) 若 A=0, 则由 $\lim_{n\to\infty}|x_n|=A=0$ 可知 $\lim_{n\to\infty}x_n=0$.
- (ii) 若 $A = \sqrt{2}$, 则由 $\{|x_n|\}$ 遊减, 且 $|x_n| \le \sqrt{2}$ 知 $\sqrt{2} = \lim_{n \to \infty} |x_n| \le |x_n| \le \sqrt{2} \Rightarrow |x_n| = \sqrt{2}, n = 1, 2, \cdots$. 此时 $x_1 = \pm \sqrt{2}$, 再代入 $x_{n+1} = x_n x_n^3$ 得 $x_n = (-1)^n x_1, n = 2, 3, \cdots$. 故此时 $\{x_n\}$ 发散.

$$\lim_{n\to\infty} x_n = \begin{cases} \not \text{\noting the points}, |x_1| \geqslant \sqrt{2} \\ 0, |x_1| < \sqrt{2} \end{cases}.$$

例题 0.9 设函数 $f:[a,b] \rightarrow [a,b]$ 满足

$$|f(x) - f(y)| \leq |x - y|, \forall x, y \in [a, b]$$

设递推

综上

$$x_1 \in [a, b], x_{n+1} = \frac{1}{2}(x_n + f(x_n)), n = 1, 2, \dots$$

证明 $\lim_{n\to\infty} x_n$ 存在.

证明 由于 $a \leq f(x) \leq b$, 因此归纳易得 $a \leq x_n \leq b$. 令 $g(x) = \frac{x + f(x)}{2}$, 则

$$g(y)-g(x)=\frac{y-x-[f(y)-f(x)]}{2}\geqslant 0, \forall y\geqslant x.$$

由命题可知递增递推数列 $\{x_n\}$ 一定单调, 故 $\lim_{n\to\infty} x_n$ 存在.

例题 0.10 设 $f(x) \in C[0,1], f(x) > 0$, 证明

$$\lim_{n \to \infty} \frac{\int_0^1 f^{n+1}(x) dx}{\int_0^1 f^n(x) dx} = \max_{[0,1]} f.$$

笔记 回顾例题??和 命题??. 因此我们只需证明命题??的反向, 再结合例题??就能得证. 但是反向 Stolz 定理一般不会直接应用, 因此我们可以尝试利用单调有界定理证明比值极限存在, 再利用命题??就能直接得证.

实际上, 只要证明了单调性, 就能利用反向 Stolz 定理证明命题??的反向也成立, 再利用例题??就能得到结论. 证明 注意到

$$\frac{\int_{0}^{1} f^{n+2}(x) dx}{\int_{0}^{1} f^{n+1}(x) dx} \geqslant \frac{\int_{0}^{1} f^{n+1}(x) dx}{\int_{0}^{1} f^{n}(x) dx} \Longleftrightarrow \int_{0}^{1} f^{n+2}(x) dx \int_{0}^{1} f^{n}(x) dx \geqslant \left(\int_{0}^{1} f^{n+1}(x) dx\right)^{2}.$$
 (10)

由 Cauchy 不等式知

$$\int_{0}^{1} f^{n+2}(x) dx \int_{0}^{1} f^{n}(x) dx \geqslant \left(\int_{0}^{1} f^{\frac{n+2}{2}}(x) f^{\frac{n}{2}}(x) dx \right)^{2} = \left(\int_{0}^{1} f^{n+1}(x) dx \right)^{2}.$$
故(10)式成立,即
$$\left\{ \frac{\int_{0}^{1} f^{n+1}(x) dx}{\int_{0}^{1} f^{n}(x) dx} \right\}_{n=0}^{\infty} \text{ 单调递增. 因此 } \lim_{n \to \infty} \frac{\int_{0}^{1} f^{n+1}(x) dx}{\int_{0}^{1} f^{n}(x) dx} \in \mathbb{R} \cup \{+\infty\}. \text{ 由例题??可知}$$

$$\lim_{n \to \infty} \sqrt[n]{\int_{0}^{1} f^{n}(x) dx} = \max_{[0,1]} f.$$

再根据命题??可知

$$\lim_{n \to \infty} \frac{\int_0^1 f^{n+1}(x) dx}{\int_0^1 f^n(x) dx} = \lim_{n \to \infty} \sqrt[n]{\int_0^1 f^n(x) dx} = \max_{[0,1]} f.$$

例题 0.11

1. 设 $\{x_n\}_{n=1}^{\infty}$ ⊂ $(0, +\infty)$ 满足

$$x_n + \frac{1}{x_{n+1}} < 2, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限. 2. 设 $\{a_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 满足

$$a_{n+1} + \frac{4}{a_n} < 4, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} a_n$ 存在并求极限. 3. 设 $\{x_n\}_{n=1}^{\infty}\subset (0,+\infty)$ 满足

$$x_n + \frac{4}{x_{n+1}^2} < 3, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限. 4. 设 $\{x_n\}_{n=1}^{\infty} \subset (0,+\infty)$ 满足

$$\ln x_n + \frac{1}{x_{n+1}} < 1, \ n = 1, 2, \cdots$$

证明: $\lim_{n\to\infty} x_n$ 存在并求极限.

笔记 此类问题其实就是把 x_{n+1},x_n 部分全部换成x,数字部分往往是x部分的一个最值,从把这个数字用不等式 放缩为数列来得到估计.

证明

1. 由均值不等式可知

$$x_n + \frac{1}{x_{n+1}} < 2 \leqslant x_{n+1} + \frac{1}{x_{n+1}} \Rightarrow x_{n+1} \geqslant x_n.$$

并且 $x_n < 2 - \frac{1}{x_n} < 2$, 故 $\lim_{n \to \infty} x_n \triangleq x$ 存在. 于是

$$2 \leqslant x + \frac{1}{x} = \lim_{n \to \infty} \left(x_n + \frac{1}{x_{n+1}} \right) \leqslant 2 \Rightarrow x + \frac{1}{x} = 2 \Rightarrow x = 1.$$

因此 $\lim_{n\to\infty} x_n = 1$.

2.

3.

4.

例题 **0.12** 设 $f(x) \in C^1(\mathbb{R}), |f(x)| \leq 1, f'(x) > 0$, 证明: 对任意 b > a > 0 有

$$\lim_{n \to \infty} \int_{a}^{b} f'\left(nx - \frac{1}{x}\right) dx = 0.$$

证明 证法一:

$$\int_{a}^{b} f'\left(nx - \frac{1}{x}\right) dx = \int_{a}^{b} \frac{1}{n + \frac{1}{x^{2}}} \left(n + \frac{1}{x^{2}}\right) f'\left(nx - \frac{1}{x}\right) dx = \int_{a}^{b} \frac{1}{n + \frac{1}{x^{2}}} df\left(nx - \frac{1}{x}\right)$$

$$= \frac{f\left(nb - \frac{1}{b}\right)}{n + \frac{1}{b^{2}}} - \frac{f\left(na - \frac{1}{a}\right)}{n + \frac{1}{a^{2}}} + \int_{a}^{b} f\left(nx - \frac{1}{x}\right) \frac{2}{x^{3} \left(n + \frac{1}{x^{2}}\right)^{2}} dx$$

$$\leqslant \frac{1}{n + \frac{1}{b^{2}}} + \frac{1}{n + \frac{1}{a^{2}}} + \frac{2}{a^{3} \left(n + \frac{1}{b^{2}}\right)^{2}} \int_{a}^{b} f\left(nx - \frac{1}{x}\right) dx$$

$$\leqslant \frac{1}{n + \frac{1}{b^{2}}} + \frac{1}{n + \frac{1}{a^{2}}} + \frac{2(b - a)}{a^{3} \left(n + \frac{1}{b^{2}}\right)^{2}} \to 0, n \to \infty.$$

证法二:令
$$y = nx - \frac{1}{x}$$
, 则 $x = \frac{y + \sqrt{y^2 + 4n}}{2n} > a > 0$. 于是

$$\int_{a}^{b} f'\left(nx - \frac{1}{x}\right) dx = \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} f'(y) \frac{1 + \frac{y}{\sqrt{y^{2} + 4n}}}{2n} dy = \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} \frac{1 + \frac{y}{\sqrt{y^{2} + 4n}}}{2n} df(y)$$

$$= \frac{1 + \frac{nb - \frac{1}{b}}{\sqrt{(nb - \frac{1}{b})^{2} + 4n}}}{2n} f\left(nb - \frac{1}{b}\right) - \frac{1 + \frac{na - \frac{1}{a}}{\sqrt{(na - \frac{1}{a})^{2} + 4n}}}{2n} f\left(na - \frac{1}{a}\right) - \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} f(y) \frac{\sqrt{y^{2} + 4n} + \frac{y^{2}}{\sqrt{y^{2} + 4n}}}}{4n^{2}(y^{2} + 4n)} dy$$

$$\leq \frac{1 + \frac{nb - \frac{1}{b}}{\sqrt{(nb - \frac{1}{b})^{2} + 4n}}}{2n} + \frac{1 + \frac{na - \frac{1}{a}}{\sqrt{(na - \frac{1}{a})^{2} + 4n}}}{2n} + \int_{na - \frac{1}{a}}^{nb - \frac{1}{b}} \frac{\sqrt{(nb - \frac{1}{b})^{2} + 4n} + \frac{(nb - \frac{1}{b})^{2}}{\sqrt{(na - \frac{1}{a})^{2} + 4n}}}}{4n^{2}\left((na - \frac{1}{a})^{2} + 4n\right)} dy$$

 $\rightarrow 0$, $n \rightarrow +\infty$.

例题 0.13 求极限

$$\lim_{n\to\infty}\int_0^\infty \frac{\sin nx}{x}e^{-x}\mathrm{d}x.$$

证明 证法一:对 $\forall \delta > 0$, 我们有

$$\int_{\delta}^{\infty} \frac{e^{-x}}{x} \mathrm{d}x < \frac{1}{\delta} \int_{\delta}^{\infty} \frac{1}{e^{x}} \mathrm{d}x < +\infty.$$

于是由 Riemman 引理可知

$$\int_{s}^{\infty} \frac{\sin nx}{x} e^{-x} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \sin x dx \int_{s}^{\infty} \frac{e^{-x}}{x} dx = 0.$$

注意到

$$\int_0^{\delta} \frac{\sin nx}{x} e^{-x} dx \sim \int_0^{\delta} \frac{\sin nx}{x} dx, \ \delta \to 0^+,$$

$$\int_0^{\delta} \frac{\sin nx}{x} dx = \int_0^{n\delta} \frac{\sin x}{x} dx \to \int_0^{\infty} \frac{\sin x}{x} dx \xrightarrow{\frac{\delta}{2} \frac{m!}{2} (2)} \frac{\pi}{2}, \ n \to \infty,$$

故

$$\int_0^\infty \frac{\sin nx}{x} e^{-x} dx = \int_0^\delta \frac{\sin nx}{x} e^{-x} dx + \int_\delta^\infty \frac{\sin nx}{x} e^{-x} dx = \frac{\pi}{2}.$$

证法二:记
$$p(x) = \frac{e^{-x} - 1}{x}$$
, $p(0) = -1$, 则 $p(x)$ 可导, 并且
$$\int_0^\infty \frac{\sin nx}{x} e^{-x} dx = \int_0^\infty \frac{e^{-x} - 1}{x} \sin nx dx + \int_0^\infty \frac{\sin nx}{x} dx \xrightarrow{\text{命题}??(2)} \int_0^\infty p(x) \sin nx dx + \frac{\pi}{2}$$
$$= \frac{\pi}{2} - \int_0^\infty p(x) d\frac{\cos nx}{n} = \frac{\pi}{2} - \frac{1}{n} \left(1 - \int_0^\infty p'(x) \cos nx dx \right).$$

求导有
$$p'(x) = \frac{1 - xe^{-x} - e^{-x}}{x^2}, p'(0) = \frac{1}{2},$$
 所以 $\left| \int_0^\infty p'(x) \cos nx dx \right| \le \int_0^\infty \frac{1 - xe^{-x} - e^{-x}}{x^2} dx < \infty.$ 由此可知
$$\lim_{n \to \infty} \int_0^\infty \frac{\sin nx}{x} e^{-x} dx = \frac{\pi}{2}.$$

例题 0.14 设 $f(x), g(x) \in C[0,1]$ 且 $\lim_{x\to 0^+} \frac{g(x)}{x}$ 为有限数,证明:

$$\lim_{n \to \infty} n \int_0^1 f(x)g(x^n) dx = f(1) \int_0^1 \frac{g(x)}{x} dx.$$

证明 证法一: 注意到

$$n \int_0^1 f(x)g(x^n) dx = \int_0^1 f\left(x^{\frac{1}{n}}\right) g(x) x^{\frac{1}{n} - 1} dx = \int_0^1 \frac{g(x)}{x} \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx.$$

$$n\int_0^1 f(x)g(x^n)dx = \int_0^1 h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx.$$

 $\forall \varepsilon > 0$, \mathbb{R} $\delta = \varepsilon$, $\forall x \in [\delta, 1]$, $\lim_{n \to \infty} x^{\frac{1}{n}} = 1$ \mathcal{D} $f \in C[0, 1]$ \mathcal{T} \mathcal{D} , \mathcal{T} \mathcal{T}

$$\left|x^{\frac{1}{n}}-1\right|<\varepsilon,\quad \left|f\left(x^{\frac{1}{n}}\right)-f(1)\right|<\varepsilon, \forall n>N.$$

设 $|h(x)|, |f(x)| \leq M \in \mathbb{R}$, 则

$$\left| \int_{0}^{1} h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx - f(1) \int_{0}^{1} h(x) dx \right| = \left| \int_{0}^{1} h(x) \left[x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right] dx$$

$$\leq \int_{0}^{\delta} |h(x)| \left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right| dx + \int_{\delta}^{1} |h(x)| \left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - f(1) \right| dx$$

$$\leq 2M^{2} \delta + \int_{\delta}^{1} |h(x)| \left[\left| x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) - x^{\frac{1}{n}} f(1) \right| + \left| x^{\frac{1}{n}} f(1) - f(1) \right| \right] dx$$

$$= 2M^{2} \delta + \int_{\delta}^{1} |h(x)| \left[x^{\frac{1}{n}} \left| f\left(x^{\frac{1}{n}}\right) - f(1) \right| + f(1) \left| x^{\frac{1}{n}} - 1 \right| \right] dx$$

$$< 2M^{2} \varepsilon + \int_{\varepsilon}^{1} M \left[1 + f(1) \right] \varepsilon dx = \left(2M^{2} + M \left[1 + f(1) \right] (1 - \varepsilon) \right) \varepsilon.$$

故

$$\lim_{n \to \infty} \int_0^1 h(x) \cdot x^{\frac{1}{n}} f\left(x^{\frac{1}{n}}\right) dx = f(1) \int_0^1 h(x) dx.$$

即

$$\lim_{n \to \infty} n \int_0^1 f(x)g(x^n) dx = f(1) \int_0^1 \frac{g(x)}{x} dx.$$

证法二:因为可以用在两个端点, 插值于 f 的多项式 (f 的 Berstein 多项式也可以) 在 [0,1] 上一致逼近 f, 所以只需对连续可导的函数 f 证明.

对
$$x \in (0,1]$$
 定义 $G(x) = \int_0^x \frac{g(t)}{t} dt$, 则 G 可导, 且 $G'(x) = \frac{g(x)}{x}$. 因而 $\left(\frac{1}{n}G(x^n)\right)' = \frac{g(x^n)}{x}$. 用分部积分法, 得
$$n \int_0^1 f(x)g(x^n) dx = n \int_0^1 x f(x) \cdot \frac{g(x^n)}{x} dx$$

$$= n \left[x f(x) \cdot \frac{1}{n}G(x^n) \Big|_0^1 - \int_0^1 \left(f(x) + x f'(x) \right) \frac{1}{n}G(x^n) dx \right]$$

$$= f(1)G(1) - \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) dx$$

$$= f(1) \int_0^1 \frac{g(x)}{x} dx - \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) dx.$$

因为 $\lim_{x\to 0^+} \frac{g(x)}{x}$ 收敛, 所以存在 M>0, 使得

$$|f(x) + xf'(x)| \le M$$
, $G'(x) = \frac{|g(x)|}{x} \le M$ $(x \in [0, 1])$.

因此 $|G(x)| \leq Mx$. 故

$$\left| \int_0^1 \left(f(x) + x f'(x) \right) G(x^n) \, \mathrm{d}x \right| \leqslant M^2 \int_0^1 x^n \, \mathrm{d}x = \frac{M^2}{n+1} \to 0, n \to \infty.$$

因此

$$\lim_{n \to +\infty} n \int_0^1 f(x)g(x^n) \, dx = f(1) \int_0^1 \frac{g(x)}{x} \, dx.$$

例题 **0.15** 设 $f: \mathbb{R} \to \mathbb{R}$, 且 f(0) = 0, 当 $x \neq 0$ 时, $f(x) = \int_0^x \cos \frac{1}{t} \cos \frac{3}{t} \cos \frac{5}{t} \cos \frac{7}{t} dt$, 求证: f 是可导的, 并求 f'(0).

\$

笔记 此类问题一般都是利用 Riemman 引理解决.

证明 由 Riemman 引理可知

$$\int_{1}^{\infty} \frac{\cos nx}{x^2} dx = \frac{1}{2\pi} \int_{0}^{2\pi} \cos x dx \int_{1}^{\infty} \frac{1}{x^2} dx = 0, \ \forall n \in \mathbb{N}.$$

于是

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{1}{x} \int_{0}^{x} \cos \frac{1}{t} \cos \frac{3}{t} \cos \frac{5}{t} \cos \frac{7}{t} dt$$

$$= \frac{t - \frac{1}{u}}{u} \lim_{x \to 0^{+}} \frac{1}{x} \int_{\frac{1}{x}}^{\infty} \frac{\cos u \cos 3u \cos 5u \cos 7u}{u^{2}} du = \lim_{\lambda \to +\infty} \lambda \int_{\lambda}^{\infty} \frac{\cos u \cos 3u \cos 5u \cos 7u}{u^{2}} du$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\cos(\lambda x) \cos(3\lambda x) \cos(5\lambda x) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{2} (\cos(2\lambda x) + \cos(4\lambda x)) \cos(5\lambda x) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{4} (\cos(3\lambda x) + \cos(7\lambda x) + \cos(9\lambda x) + \cos(\lambda x)) \cos(7\lambda x)}{x^{2}} dx$$

$$= \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{\frac{1}{8} [\cos(16\lambda x) + \cos(14\lambda x) + \cos(10\lambda x) + \cos(6\lambda x) + \cos(4\lambda x) + \cos(2\lambda x) + 1]}{x^{2}} dx$$

$$= \frac{1}{8} \lim_{\lambda \to +\infty} \int_{1}^{\infty} \frac{1}{x^{2}} dx = \frac{1}{8}.$$

例题 0.16 证明:

$$\lim_{n \to \infty} n \left(n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} \mathrm{d}x - \frac{1}{\pi^2} \right) = 0.$$

 $\stackrel{ extbf{P}}{ extbf{P}}$ 笔记 如果需要估计得更精确, 就需要利用 E-M 公式对 $\sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2}$ 进行更精确的估计和计算.

证明 注意到

$$\int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \int_0^{n\pi} \frac{|\sin x|}{(x+n\pi)^2} dx = \sum_{k=1}^n \int_0^{k\pi} \frac{|\sin x|}{(x+n\pi)^2} dx$$

$$= \sum_{k=1}^n \int_0^{\pi} \frac{|\sin x|}{(x+(n+k-1)\pi)^2} dx = \int_0^{\pi} \sin x \sum_{k=1}^n \frac{1}{(x+(n+k-1)\pi)^2} dx$$

$$= \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx.$$

对 $\forall x \in [0, \pi]$, 我们有

$$\sum_{k=n}^{2n-1} \frac{1}{[(k+1)\pi]^2} \leqslant \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} \leqslant \sum_{k=n}^{2n-1} \frac{1}{(k\pi)^2}.$$

又因为

$$\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} \leqslant \frac{1}{k^2} \leqslant \frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}, \ \forall k \in \mathbb{N},$$

所以一方面, 我们有

$$\lim_{n \to \infty} n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx \le \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(k\pi)^2} dx$$

$$\le \frac{1}{\pi^2} \lim_{n \to \infty} n \sum_{k=n}^{2n-1} \left(\frac{1}{k-1} - \frac{1}{k} \right) \int_0^{\pi} \sin x dx$$

$$= \frac{2}{\pi^2} \lim_{n \to \infty} n \left(\frac{1}{n-1} - \frac{1}{2n-1} \right) = \frac{1}{\pi^2}.$$

另一方面,我们有

$$\lim_{n \to \infty} n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} dx = \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{(x+k\pi)^2} dx \geqslant \lim_{n \to \infty} n \int_0^{\pi} \sin x \sum_{k=n}^{2n-1} \frac{1}{[(k+1)\pi]^2} dx$$

$$\geqslant \frac{1}{\pi^2} \lim_{n \to \infty} n \sum_{k=n}^{2n-1} \left(\frac{1}{k+1} - \frac{1}{k+2} \right) \int_0^{\pi} \sin x dx$$

$$= \frac{2}{\pi^2} \lim_{n \to \infty} n \left(\frac{1}{n+1} - \frac{1}{2n+1} \right) = \frac{1}{\pi^2}.$$

故由夹逼准则可知

$$\lim_{n \to \infty} \left(n \int_{n\pi}^{2n\pi} \frac{|\sin x|}{x^2} \mathrm{d}x - \frac{1}{\pi^2} \right) = 0.$$