CSE 431/531: Analysis of Algorithms (Summer 2023) Theory of complexity

Chen Xu

August 1-8, 2023

Outline

- Problems
- Classes of Problems
- Reductions
- NP-Complete Problem
- FPT and approximation algorithms

What are hard problems?

- There are some problems that people have not found algorithms that solve them in $O(n^k)$ for a small fixed constant k.
- \bullet For example, the 0/1-Knapsack problem and traveling salesman problem we have learned in the lecture.
- People found a fact that these problems all stem from one single problem that solving it would lead to the solution for all.

Introduction to Boolean Formula

Boolean Formula:

Formulas in which the variables can take on only two possible values: TRUE (1) or FALSE (0).

Basic Operations:

- AND (∧): The result is TRUE if both variables are TRUE.
- OR (V): The result is TRUE if either or both variables are TRUE.
- NOT (\neg) : The result is the inverse of the input variable.

Example:

$$(a \wedge b) \vee (\neg a \wedge c)$$

Setting a=1, b=1, and c=0, the evaluation will be:

$$(1 \land 1) \lor (\neg 1 \land 0) = 1 \lor (0 \land 0) = 1 \lor 0 = 1$$

Thus, the formula is TRUE with this assignment.

Definition of the SAT Problem

SAT Problem

Input: A Boolean formula ϕ of n variables

Output: Yes if there exists an assignment that makes this formula outputs True, otherwise No.

Example (Yes instance):

$$(a \wedge b) \vee (\neg a \wedge c) \vee (b \wedge \neg c)$$

а	b	С	$(a \wedge b) \vee (\neg a \wedge c) \vee (b \wedge \neg c)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

5 / 45

No Instance of the SAT Problem

Example (No instance):

Consider the formula:

$$a \wedge \neg b \wedge b$$

We analyze all possible assignments:

	а	b	$a \wedge \neg b \wedge b$							
	0	0	0							
I	0	1	0							
	1	0	0							
	1	1	0							

No satisfying assignment exists, so the formula is "unsatisfiable".

Boolean formula parse tree

Parse Tree:

Boolean Formula in Conjunctive Normal Form

CNF Form:

A common way to encode Boolean formula is in Conjunctive Normal Form (CNF).

A CNF formula is a conjunction of one or more **clauses**, where a clause is a disjunction of **literals** (variables or their negation).

Example:

The formula $(a \land b) \lor (\neg a \land c) \lor (b \land \neg c)$ can be encoded in CNF as: $(a \lor \neg a) \land (b \lor c \lor \neg c)$

3-SAT

 3-SAT is the SAT problem when we restrict the input boolean formula to have at most three literals per clauses.

3-SAT Problem

Input: A Boolean formula ϕ of n variables, m clauses of at most 3 literals **Output: Yes** if there exists an assignment that makes this formula outputs True, otherwise **No**.

Hamiltonian Cycle Problem

A Hamiltonian cycle in a graph is a closed loop on the graph such that every node is visited exactly once.

HC problem

Input: A graph *G*.

Output: Yes if a Hamiltonian cycle exists, otherwise No.

Yes instance:

Hamiltonian Cycle Problem – No instance

Can you find a hamiltonian cycle in the graph below?

Decision Problem vs Optimization Problem

- Some problems do not answer yes/no. For example, a lot of optimization problems answer how many.
- A problem is called **decision problem** if the answer is 0/1.

Maximum Independent Set Problem

Definition

An **independent set** of G = (V, E) is a subset $I \subseteq V$ such that no two vertices in I are adjacent in G.

Maximum Independent Set Problem

Input: A graph *G*

Output: What is the maximum size of the independent set?

Note that this is an optimization problem.

Decision version of Maximum Independent Set problem

k-Independent Set problem

Input: A graph *G* and a positive number *k*

Output: Does there exist an independent size at least k?

• If we can solve the decision version, we can do multiple calls using different k values to get the answer to the maximum independent set. (Think about binary search)

Encoding

- Notice that the graphs and the Boolean formulae, the input of the above problems, can all be encoded as binary string.
- The size of the string is denoted as |s|.
- All decision problems can be abstracted as computing a function $X:\{0,1\}^* \to \{0,1\}$. The problem is solved by an algorithm in polynomial time if the algorithm gives the correct output X(s) and terminates in at most p(|s|) steps, p(*) is a polynomial function.

Class of P

- The **complexity class P** is a collection of problems that can be solved in $O(n^c)$ polynomial time.
- We already learned a lot of **P** class problems.

Certificate

Usually, our decision problem looks like this:

Some problem

Input: Some *x*

Output: Does there exist some y s.t. something about x, y holds?

- We call the y part a certificate.
- The **certificate** is the proof that the instance is a **yes-instance**.

Certificate for SAT

SAT Problem

Input: A Boolean formula ϕ of n variables

Output: Does there exist an assignment that makes this formula output True?

- The assignment of variables $x_1 = 0, x_2 = 1, x_3 = 0, ..., x_n = 1$ that makes the formula output True is a certificate.
- Each certificate can be verified whether it really makes the formula output True or not.
- For SAT problem, the verification can be done very efficiently in polynomial time.

Certificate for Hamiltonian Cycle

HC problem

Input: A graph *G*.

Output: Does there exist a Hamiltonian cycle?

- A cycle that is Hamiltonian is a certificate.
- The verification can also be done very efficiently in polynomial time.

Polynomial Verifier

- For a decision problem, the algorithm that verifies the certificate is called a verifier.
- If the verifier, taking the certificate and the input from the original problem, runs in polynomial time, then it is a polynomial verifier.

Class of NP

- The complexity class NP is the set of all problems for which there exists a polynomial verifier.
- Do all decision problems in P also have a polynomial verifier? Yes, class of P decision problems have polynomial verifiers and they themselves can be solved in polynomial time. So P is a subset of NP. The tree-joint-matched problem in HW2 is one of them. (Exercise: What is the certificate and the verifier?)

How to show a decision problem is in NP

- To show a problem in NP, it must first be a decision problem.
- The next step is to construct the polynomial verifier algorithm for it.
 The input of the verifier algorithm should also be polynomial of the size of the problem.

Example: Show $HC \in \mathbf{NP}$

- Input for the original problem is the graph *G*.
- Certificate is the Hamiltonian Cycle in the form of vertex sequence *C*.
- Build a polynomial verifier:

```
IsHam(G,C)
```

```
1: if |C| \neq n or C[1] \neq C[n] then

2: return False

3: for i = 2 to n do

4: if C[i] is not adjacent to C[i-1] in G then

5: return False

6: for j = i + 1 to n do

7: if C[i] = C[j] then

8: return False

9: return True
```

By definition,

$$\exists C \ \textit{IsHam}(G,C) = 1 \Leftrightarrow \textit{HC}(G) = 1$$

What do \exists , \forall mean?

- $\exists x$ Does there exist x such that it satisfies (some logic)? If there is at least one then it evaluates True, otherwise False.
- $\forall x$ Do all x satisfy (some logic)? If all satisfy then it evaluates True, otherwise False.
- $\neg \exists x$ Does there not exist x such that it satisfies (some logic)? We do not evaluate $\neg \exists$, we evaluate \exists then negate the result.
- $\forall x \neg \equiv \neg \exists x$ Do all x satisfy (negation of some logic) is equivalent to the above statement.
 - This \forall can be evaluated on the negation of the logic. Many logics while being polynomial size, their negations might not be polynomial size.

Complement of an NP problem

- Let us reiterate. Let R(x,y) be the polynomial verifier where x is the input of original problem and y is the input of the certificate. The characteristic of the **NP** class is that R(x,y) is easy but $\exists y R(x,y)$ is hard.
- The complement of a problem is putting a big negation before $\exists y R(x, y)$. It turns it into $\neg \exists y R(x, y)$ and finally $\forall y \neg R(x, y)$
- Let another $R'(x,y) = \neg R(x,y)$ we have $\forall y R'(x,y)$
- The complement of an NP problem goes like this:

Some complement problem

Input: Some *x*

Output: Do all y satisfy something about x, y?

Or: Does there not exist y s.t. something about x, y holds?

Class of co-NP

- If a problem is in **NP**, its complement problem is in **co-NP**.
- If a problem is in co-NP, its complement problem is in NP.
- Yes-instances of an NP problem is exactly No-instances of its complement and vice-versa.

Example of co-NP problem

co-HC problem

Input: A graph *G*.

Output: Does G satisfy that there exists no Hamiltonian cycle in G?

- The yes-instance for this problem is the no-instance for HC problem.
- We are unlikely to find a certificate for the yes-instances of co-HC problem.
- It is only possible to find certificates for the no-instances although not easy.

P,NP,co-NP relations

- Whether NP = co-NP? is another open problem. Most believe that $NP \neq co-NP$
- Exercise: How to show **P** is a subset of **co-NP**.
- Here is the most believed relation between P, NP and co-NP. Note that we also believe P ≠ NP∩co-NP too.

Self Reduction

 Recall that we had learned about concept of subproblems in previous lectures. For instance:

Some greedy algorithm

```
1: Greedy(V,n)
```

- 2: ...
- 3: (Perform actions on the input)
- 4: ...
- 5: temp = Greedy($V \setminus \{v\}$, n-1)
- 6: (Make some decisions, compile some information)
- 7: return result
 - This is viewed as a **reduction** from a problem on n vertices to a smaller problem on n-1 vertices. The problem structure is the same. It is calling itself. To solve problem P_n we need to solve P_{n-1} . P_{n-1} is not harder than P_n .

Reduction from one problem to another problem

 The reduction from problem A to problem B looks like (assume A and B are decision problems):

Algorithm that solves A

```
    A(x):
    ...
    (Perform actions on the input x, get a converted input f(x))
    ...
    temp = B(f(x))
    (Process temp and get result)
    return result
```

- We use B as a black box.
- If this algorithm A works, then we say A reduces to B. Denote as $A \leq B$

Further simplification

• We can simplify it:

Algorithm that solves A

```
1: A(x):
2: ...
3: (Perform actions on the input x, get a converted input f(x))
4: ...
5: return B(f(x))
```

• Computing f(x) should not take longer than computing B(f(x)). In fact, the polynomial time reduction is putting more restrictions on f(*).

Polynomial time reduction

- The **polynomial time reduction** restricted that f(*) needs to be computed in polynomial time. We denote polynomial time reduction from A to B as $A \leq_p B$.
- If $A \leq_p B$ and B can be solved in polynomial time, then A can be solved in polynomial time.
- If $A \leq_p B$ and A cannot be solved in polynomial time, then B cannot be solve in polynomial time.

NP-complete problem

Definition for NP-complete problem

Problem *A* is **NP-complete**, if

- \bullet $A \in NP$, and
- ② For every problem $B \in NP$, $B \leq_p A$.
 - In other words, A is one of the hardest problems in **NP**.

How do we show that a problem is hard in general?

Although you may have a trivial algorithm that runs in exponential time.

Trivial algorithm for HC(G)

- 1: **for** all possible cycles *c* in *G* **do**
- 2: **if** c is Hamiltonian **then**
- 3: **return** True
- 4: return False

Showing a trivial algorithm does not suffice to claim hardness. Because there is no guarantee your trivial algorithm is the best possible one.

However, you can show the hardness of a problem P by reducing an NPC problem A(x) to P in polynomial time.

Some NPC problem A(x)

- 1: x' = f(x), f(x) runs in poly-time.
- 2: **return** P(x')

If your algorithm for A is **correct**, then you have shown problem P is at least as hard as A. Solving P faster will result in solving A faster.

How to show a problem is NP-complete

- First, show the problem is in **NP**.
- Next, there are two ways of showing NP-completeness.
 - By proving that the problem matches the definition of NP-complete problem. This is hard.
 - Sy reducing from another NP-complete problem using polynomial reductions. This is easier.

Circuit-SAT is **NP-complete**

- In practice, we usually choose the polynomial reduction. This requires a unique **first** problem that is proved NP-complete by definition.
- People have already done the work decades ago. They found the first NP-complete problem called Circuit Satisfiability Problem (Circuit-SAT). It is a very close variant to the SAT problem.

Theorem 1

Circuit-SAT is NP-complete.

 The basic idea is to translate every step of a verifier into boolean circuit implementation so that every NP class problem with a polynomial verifier reduces to a boolean circuit SAT of polynomial size. We will not cover this in the lecture. Further readings: [Coo71]

Classical NP-complete problems

People have also done reductions to a lot of classical problems.

$SAT \leq_p 3-SAT$

• Recall that we have a binary parse tree for every boolean formula. We can put additional variables on the inner nodes. Let ϕ be any boolean formula. As an example, we have $\phi = (a \wedge b) \vee (\neg a \wedge c) \vee (b \wedge \neg c)$.

The original ϕ is equivalent to the following boolean formula:

$$(y_1 = y_2 \lor y_3) \land (y_2 = a \land b) \land (y_3 = y_4 \lor y_5) \land (y_4 = \neg a \land c) \land (y_5 = b \land \neg c)$$

$SAT \leq_p 3-SAT$

• For each of the small clauses we can convert it into a 3-CNF. For example, $y_1 = y_2 \lor y_3$

<i>y</i> ₂	<i>y</i> 3	<i>y</i> ₁	$y_1 = y_2 \vee y_3$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

$SAT \leq_p 3-SAT$

• Let the instance from SAT be ϕ . We perform the boolean table conversion for every inner node and conjunct them altogether. This gives us a 3-SAT instance ψ such that

 ϕ is satisfiable $\Leftrightarrow \psi$ is satisfiable

ullet Therefore we can just feed the ψ to the 3-SAT solver.

SAT solver

- 1: From ϕ , construct ψ using the procedure described above.
- 2: **return** 3-SAT(ψ)

Theorem 2

3-SAT is NP-complete.

3-SAT $\leq_p k$ -Independent Set

Recall that we have the k-Independent Set problem. We would like to reduce from 3-SAT to it.

k-Independent Set problem

Input: A graph G and a positive number k

Output: Does there exist an independent size **at least** *k*?

• Our target is to construct a (G, k) instance from any 3-SAT instance ϕ such that

 ϕ is satisfiable $\Leftrightarrow G$ has an independent set of size at least k

3-SAT $\leq_p k$ -Independent Set

- Given any 3-SAT instance ϕ , create a vertex for every literal in a clause. 3m vertices are created.
- Connect the vertices corresponding to the literals within a clause. They form triangles. 3*m* edges are created.
- Across the different clauses, connect the vertices with conflicting literals. i.e. connect x_1 to $\neg x_1$.
- Set *k* be the number of clauses.

Example

- This is a yes-instance of 3-SAT: $\phi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$
- The reduced instance of *k*-Independent Set is:

Correctness

- **1** ϕ is satisfiable \Rightarrow G has an independent set of size k.
 - Since ϕ is satisfiable at least one of literals in a clause is picked. We can pick one of corresponding vertex in the graph. We cannot pick more than one because the triangle restricts us to pick only one.
 - ϕ is satisfiable implies that there is no conflict, which means no edges whose both ends across the different triangles are picked. There are exactly k vertices in k different triangles in the independent set.
- **2** *G* has an independent set of size $k \Rightarrow \phi$ is satisfiable.
 - Suppose *I* is the independent set of *G*, then each triangle has exactly one vertex being picked.
 - The vertices are not conflicting each other, meaning if the vertex named x_1 is picked then $x_1 = 1$ otherwise 0.
 - ullet This is the truth assignment that makes ϕ return true.
- **3** Therefore, ϕ is satisfiable $\Leftrightarrow G$ has an independent set of size k. The reduction is correct.

Theorem 3

k-Independent Set is NP-complete.

References

[Coo71] Stephen A. Cook. "The Complexity of Theorem-Proving Procedures". In: Proceedings of the Third Annual ACM Symposium on Theory of Computing (1971), pp. 151–158.