Lesson overview

Contents -

- 1. Classical information
- 2. Quantum information
 - · Quantum state vectors
 - Standard basis measurements
 - Unitary operations

Descriptions of quantum information

Simplified description (this unit)

- Simpler and typically learned first
- Quantum states represented by <u>vectors</u>; operations are represented by <u>unitary matrices</u>
- · Sufficient for an understanding of most quantum algorithms

General description (covered in a later unit)

- More general and more broadly applicable
- Quantum states represented by density matrices; allows for a more general class of measurements and operations
- Includes both the simplified description and classical information (including probabilistic states) as special cases

1. Classical information

Classical information

Consider a physical system that stores information: let us call it X.

Assume X can be in one of a finite number of *classical states* at each moment. Denote this classical state set by Σ .

Examples

- If X is a bit, then its classical state set is $\Sigma = \{0, 1\}$.
- If X is a six-sided die, then $\Sigma = \{1, 2, 3, 4, 5, 6\}.$
- If X is a switch on a standard electric fan, then perhaps
 Σ = {high, medium, low, off}.

There there may be *uncertainty* about the classical state of a system, where each classical state has some *probability* associated with it.

Classical information

For example, if X is a bit, then perhaps it is in the classical state 0 with probability 3/4 and in the classical state 1 with probability 1/4. This is a *probabilistic state* of X.

$$Pr(X = 0) = \frac{3}{4}$$
 and $Pr(X = 1) = \frac{1}{4}$

A succinct way to represent this probabilistic state is by a column vector:

$$\begin{pmatrix} \frac{3}{4} & \longleftarrow \text{ entry corresponding to 0} \\ \frac{1}{4} & \longleftarrow \text{ entry corresponding to 1} \end{pmatrix}$$

This vector is a *probability vector*:

- All entries are nonnegative real numbers.
- The sum of the entries is 1.

Dirac notation (first part)

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $|\alpha\rangle$ the column vector having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Example 1

If $\Sigma = \{0, 1\}$, then

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Dirac notation (first part)

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $|\alpha\rangle$ the column vector having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Example 2

If $\Sigma = \{ \spadesuit, \blacklozenge, \blacktriangledown, \spadesuit \}$, then we might choose to order these states like this:

$$| \blacklozenge \rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \qquad | \blacklozenge \rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \qquad | \blacktriangledown \rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \qquad | \blacklozenge \rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Dirac notation (first part)

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $|\alpha\rangle$ the column vector having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Vectors of this form are called *standard basis vectors*. Every vector can be expressed uniquely as a linear combination of standard basis vectors.

$$\begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \end{pmatrix} = \frac{3}{4} |0\rangle + \frac{1}{4} |1\rangle$$

Measuring probabilistic states

What happens if we *measure* a system X while it is in some probabilistic state?

We see a *classical state*, chosen at random according to the probabilities.

Suppose we see the classical state $\alpha \in \Sigma$.

This changes the probabilistic state of X (from our viewpoint): having recognized that X is in the classical state α , we now have

$$Pr(X = a) = 1$$

This probabilistic state is represented by the vector $|\alpha\rangle$.

Measuring probabilistic states

Example

Consider the probabilistic state of a bit X where

$$Pr(X = 0) = \frac{3}{4}$$
 and $Pr(X = 1) = \frac{1}{4}$

Measuring X selects (or reveals) a transition, chosen at random:

Deterministic operations

Every function $f: \Sigma \to \Sigma$ describes a deterministic operation that transforms the classical state α into $f(\alpha)$, for each $\alpha \in \Sigma$.

Given any function $f: \Sigma \to \Sigma$, there is a (unique) matrix M satisfying

$$M |\alpha\rangle = |f(\alpha)\rangle$$
 (for every $\alpha \in \Sigma$)

This matrix has exactly one 1 in each column, and 0 for all other entries:

$$M(b, \alpha) = \begin{cases} 1 & b = f(\alpha) \\ 0 & b \neq f(\alpha) \end{cases}$$

The action of this operation is described by *matrix-vector multiplication:*

$$\nu \longmapsto M\nu$$

Deterministic operations

Example

For $\Sigma = \{0, 1\}$, there are four functions of the form $f : \Sigma \to \Sigma$:

Here are the matrices corresponding to these functions:

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$
 $M_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ $M_4 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$

$$M(b, a) = \begin{cases} 1 & b = f(a) \\ 0 & b \neq f(a) \end{cases}$$

$$M |a\rangle = |f(a)\rangle$$

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1,\ldots,|\Sigma|$.

We denote by $\langle \alpha|$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Example

If $\Sigma = \{0, 1\}$, then

$$\langle 0| = \begin{pmatrix} 1 & 0 \end{pmatrix}$$
 and $\langle 1| = \begin{pmatrix} 0 & 1 \end{pmatrix}$

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $\langle \alpha|$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

$$\begin{pmatrix} * & * & * & \cdots & * \end{pmatrix} \begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} = \begin{pmatrix} * \end{pmatrix}$$

$$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a = b \\ 0 & a \neq b \end{cases}$$

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \end{pmatrix}$$

$$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a=b \\ 0 & a \neq b \end{cases}$$

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Multiplying a row vector to a column vector yields a scalar:

$$\begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \end{pmatrix}$$

$$\langle a|b\rangle = \langle a||b\rangle = \begin{cases} 1 & a=b \\ 0 & a \neq b \end{cases}$$

Let Σ be any classical state set, and assume the elements of Σ have been placed in correspondence with the integers $1, \ldots, |\Sigma|$.

We denote by $\langle \alpha |$ the <u>row vector</u> having a 1 in the entry corresponding to $\alpha \in \Sigma$, with 0 for all other entries.

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

$$|0\rangle\langle 0| = \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}$$

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

$$|0\rangle\langle 1| = \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1\\0 & 0 \end{pmatrix}$$

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

$$|1\rangle\langle 0| = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 1&0 \end{pmatrix} = \begin{pmatrix} 0&0\\1&0 \end{pmatrix}$$

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

$$|1\rangle\langle 1| = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0&1 \end{pmatrix} = \begin{pmatrix} 0&0\\0&1 \end{pmatrix}$$

Multiplying a column vector to a row vector yields a matrix:

$$\begin{pmatrix} * \\ * \\ * \\ * \\ \vdots \\ * \end{pmatrix} (* \quad * \quad * \quad \cdots \quad *) = \begin{pmatrix} * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ * & * & * & \cdots & * \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & * \end{pmatrix}$$

In general, the matrix

has a 1 in the (a, b)-entry and 0 for all other entries.

Deterministic operations

Every function $f: \Sigma \to \Sigma$ describes a deterministic operation that transforms the classical state α into $f(\alpha)$, for each $\alpha \in \Sigma$.

Given any function $f: \Sigma \to \Sigma$, there is a (unique) matrix M satisfying

$$M |\alpha\rangle = |f(\alpha)\rangle$$
 (for every $\alpha \in \Sigma$)

This matrix may be expressed as

$$M = \sum_{b \in \Sigma} |f(b)\rangle\langle b|$$

Its action on standard basis vectors works as required:

$$M|\alpha\rangle = \left(\sum_{b \in \Sigma} |f(b)\rangle\langle b|\right)|\alpha\rangle = \sum_{b \in \Sigma} |f(b)\rangle\langle b|\alpha\rangle = |f(\alpha)\rangle$$

Probabilistic operations

<u>Probabilistic operations</u> are classical operations that may introduce randomness or uncertainty.

Example

Here is a probabilistic operation on a bit:

If the classical state is 0, then do nothing.

If the classical state is 1, then flip the bit with probability 1/2.

$$\begin{pmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{pmatrix}$$

Probabilistic operations are described by stochastic matrices:

- All entries are nonnegative real numbers
- The entries in every column sum to 1

Probabilistic operations

<u>Probabilistic operations</u> are classical operations that may introduce randomness or uncertainty.

Example

Here is a probabilistic operation on a bit:

If the classical state is 0, then do nothing.

If the classical state is 1, then flip the bit with probability 1/2.

$$\begin{pmatrix}1&\frac{1}{2}\\0&\frac{1}{2}\end{pmatrix}=\frac{1}{2}\begin{pmatrix}1&1\\0&0\end{pmatrix}+\frac{1}{2}\begin{pmatrix}1&0\\0&1\end{pmatrix}$$

Probabilistic operations are described by stochastic matrices:

- All entries are nonnegative real numbers
- The entries in every column sum to 1

Composing operations

Suppose X is a system and M_1,\ldots,M_n are stochastic matrices representing probabilistic operations on X.

Applying the first probabilistic operation to the probability vector $\boldsymbol{\nu}$, then applying the second probabilistic operation to the result yields this vector:

$$M_2(M_1v) = (M_2M_1)v$$

The probabilistic operation obtained by $\frac{composing}{composing}$ the first and second probabilistic operations is represented by the $\frac{matrix\ product}{matrix\ product}\ M_2M_1$.

Composing the probabilistic operations represented by the matrices M_1,\ldots,M_n (in that order) is represented by this matrix product:

$$M_n\cdots M_1$$

Composing operations

Suppose X is a system and M_1, \ldots, M_n are stochastic matrices representing probabilistic operations on X.

Composing the probabilistic operations represented by the matrices M_1, \ldots, M_n (in that order) is represented by this matrix product:

$$M_n \cdots M_1$$

The order is important: matrix multiplication is *not commutative!*

$$M_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \qquad M_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$M_2 M_1 = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \qquad M_1 M_2 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

2. Quantum information

Quantum information

A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system:

- The entries are complex numbers.
- The sum of the absolute values squared of the entries must equal 1.

Definition

The *Euclidean norm* for vectors with complex number entries is defined like this:

$$v = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \implies ||v|| = \sqrt{\sum_{k=1}^n |\alpha_k|^2}$$

Quantum state vectors are therefore *unit vectors* with respect to this norm.

Quantum information

A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system:

- The entries are complex numbers.
- The sum of the absolute values squared of the entries must equal 1.

Examples of qubit states

- Standard basis states: |0 and |1 and |1
- Plus/minus states:

$$|+\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle$$
 and $|-\rangle = \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle$

• A state without a special name:

$$\frac{1+2i}{3}\left|0\right\rangle-\frac{2}{3}\left|1\right\rangle$$

Quantum information

A *quantum state* of a system is represented by a *column vector* whose indices are placed in correspondence with the classical states of that system:

- The entries are complex numbers.
- The sum of the absolute values squared of the entries must equal 1.

Example

A quantum state of a system with classical states Φ , \blacklozenge , \triangledown , and Φ :

$$\frac{1}{2} | \spadesuit \rangle - \frac{\mathbf{i}}{2} | \spadesuit \rangle + \frac{1}{\sqrt{2}} | \spadesuit \rangle = \begin{pmatrix} \frac{1}{2} \\ -\frac{\mathbf{i}}{2} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}$$

Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector:

$$|\psi\rangle = \frac{1+2i}{3} |0\rangle - \frac{2}{3} |1\rangle$$

For any column vector $|\psi\rangle$, the row vector $\langle\psi|$ is the *conjugate transpose* of $|\psi\rangle$:

$$\langle \psi | = | \psi \rangle^{\dagger}$$

Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector:

$$|\psi\rangle = \frac{1+2i}{3} \, |0\rangle - \frac{2}{3} \, |1\rangle$$

$$\langle \psi | = \frac{1-2i}{3} \langle 0 | -\frac{2}{3} \langle 1 |$$

For any column vector $|\psi\rangle$, the row vector $\langle\psi|$ is the *conjugate transpose* of $|\psi\rangle$:

$$\langle \psi | = | \psi \rangle^{\dagger}$$

Dirac notation (third part)

The Dirac notation can be used for arbitrary vectors: any name can be used in place of a classical state. Kets are column vectors, bras are row vectors.

Example

The notation $|\psi\rangle$ is commonly used to refer to an arbitrary vector:

$$\begin{split} |\psi\rangle &= \frac{1+2i}{3} \; |0\rangle - \frac{2}{3} \; |1\rangle = \begin{pmatrix} \frac{1+2i}{3} \\ -\frac{2}{3} \end{pmatrix} \\ \langle \psi| &= \frac{1-2i}{3} \; \langle 0| - \frac{2}{3} \; \langle 1| = \left(\frac{1-2i}{3} \;\;\; -\frac{2}{3}\right) \end{split}$$

Measuring quantum states

For this lesson will restrict our attention to standard basis measurements:

- The possible *outcomes* are the *classical states*.
- The probability for each classical state to be the outcome is the
 absolute value squared of the corresponding quantum state vector entry.

Example 1

Measuring the quantum state

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

yields an outcome as follows:

$$Pr(\text{outcome is 0}) = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} \qquad Pr(\text{outcome is 1}) = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Measuring quantum states

For this lesson will restrict our attention to standard basis measurements:

- The possible outcomes are the classical states.
- The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry.

Example 2

Measuring the quantum state

$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

yields an outcome as follows:

$$Pr(outcome is 0) = \left| \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2} Pr(outcome is 1) = \left| -\frac{1}{\sqrt{2}} \right|^2 = \frac{1}{2}$$

Measuring quantum states

For this lesson will restrict our attention to standard basis measurements:

- The possible outcomes are the classical states.
- The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry.

Example 3

Measuring the quantum state

$$\frac{1+2i}{3}|0\rangle - \frac{2}{3}|1\rangle$$

yields an outcome as follows:

$$Pr(\text{outcome is 0}) = \left| \frac{1+2i}{3} \right|^2 = \frac{5}{9} \quad Pr(\text{outcome is 1}) = \left| -\frac{2}{3} \right|^2 = \frac{4}{9}$$

Measuring quantum states

For this lesson will restrict our attention to standard basis measurements:

- The possible outcomes are the classical states.
- The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry.

Example 4

Measuring the quantum state $|0\rangle$ gives the outcome 0 with certainty, and measuring the quantum state $|1\rangle$ gives the outcome 1 with certainty.

Measuring quantum states

For this lesson will restrict our attention to standard basis measurements:

- The possible *outcomes* are the *classical states*.
- The probability for each classical state to be the outcome is the absolute value squared of the corresponding quantum state vector entry.

Measuring a system changes its quantum state: if we obtain the classical state a, the new quantum state becomes $|a\rangle$.

Unitary operations

The set of allowable *operations* that can be performed on a quantum state is different than it is for classical information.

Operations on quantum state vectors are represented by unitary matrices.

Definition

A square matrix $\, U \,$ having complex number entries is $\, \underline{\text{\it unitary}} \,$ if it satisfies the equalities

$$u^{\dagger}u = 1 = uu^{\dagger}$$

where \textbf{U}^{\dagger} is the conjugate transpose of U and $\mathbb{1}$ is the identity matrix.

Both equalities are equivalent to $U^{-1} = U^{\dagger}$.

Unitary operations

Definition

A square matrix $\,U\,$ having complex number entries is $\frac{\it unitary}{\it if}$ if it satisfies the equalities

$$u^{\dagger}u = 1 = uu^{\dagger}$$

where \textbf{U}^{\dagger} is the conjugate transpose of U and 1 is the identity matrix.

The condition that an $n \times n$ matrix U is unitary is equivalent to

$$||\mathbf{U}\mathbf{v}|| = ||\mathbf{v}||$$

for every n-dimensional column vector v with complex number entries.

If ν is a quantum state vector, then $U\nu$ is also a quantum state vector.

1. Pauli operations

Pauli operations are ones represented by the Pauli matrices:

$$1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Common alternative notations: $X = \sigma_x$, $Y = \sigma_u$, and $Z = \sigma_z$.

The operation σ_x is also called a bit flip (or a NOT operation) and the σ_z operation is called a phase flip:

$$\sigma_{x}|0\rangle = |1\rangle$$
 $\sigma_{z}|0\rangle = |0\rangle$ $\sigma_{x}|1\rangle = |0\rangle$ $\sigma_{z}|1\rangle = -|1\rangle$

2. Hadamard operation

The Hadamard operation is represented by this matrix:

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

Checking that H is unitary is a straightforward calculation:

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}^{\dagger} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} + \frac{1}{2} & \frac{1}{2} - \frac{1}{2} \\ \frac{1}{2} - \frac{1}{2} & \frac{1}{2} + \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

3. Phase operations

A phase operation is one described by the matrix

$$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix}$$

for any choice of a real number θ .

The operations

$$S = P_{\pi/2} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad \text{and} \qquad T = P_{\pi/4} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

are important examples.

Example 1

$$H |0\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = |+\rangle$$

$$H |1\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = |-\rangle$$

$$H |+\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$

$$H |-\rangle = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

H | 0 \ - | + \ H | + \ - | 0 \

$$\begin{split} H \mid 0 \rangle &= \mid + \rangle \qquad H \mid + \rangle = \mid 0 \rangle \\ H \mid 1 \rangle &= \mid - \rangle \qquad H \mid - \rangle = \mid 1 \rangle \\ H \left(\frac{1+2i}{3} \mid 0 \rangle - \frac{2}{3} \mid 1 \rangle \right) &= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1+2i}{3} \\ -\frac{2}{3} \end{pmatrix} = \begin{pmatrix} \frac{-1+2i}{3\sqrt{2}} \\ \frac{3+2i}{3\sqrt{2}} \end{pmatrix} \\ &= \frac{-1+2i}{3\sqrt{2}} \mid 0 \rangle + \frac{3+2i}{3\sqrt{2}} \mid 1 \rangle \end{split}$$

Example 2

$$T|0\rangle = |0\rangle \quad \text{and} \quad T|1\rangle = \frac{1+i}{\sqrt{2}}|1\rangle$$

$$T|+\rangle = T\left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right)$$

$$= \frac{1}{\sqrt{2}}T|0\rangle + \frac{1}{\sqrt{2}}T|1\rangle$$

$$= \frac{1}{\sqrt{2}}|0\rangle + \frac{1+i}{2}|1\rangle$$

$$T = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

Example 2

$$T \mid + \rangle = \frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{1+i}{2} \mid 1 \rangle$$

$$HT \mid + \rangle = H\left(\frac{1}{\sqrt{2}} \mid 0 \rangle + \frac{1+i}{2} \mid 1 \rangle\right)$$

$$= \frac{1}{\sqrt{2}} H \mid 0 \rangle + \frac{1+i}{2} H \mid 1 \rangle$$

$$= \frac{1}{\sqrt{2}} \mid + \rangle + \frac{1+i}{2} \mid - \rangle$$

$$= \left(\frac{1}{2} \mid 0 \rangle + \frac{1}{2} \mid 1 \rangle\right) + \left(\frac{1+i}{2\sqrt{2}} \mid 0 \rangle - \frac{1+i}{2\sqrt{2}} \mid 1 \rangle\right)$$

$$= \left(\frac{1}{2} + \frac{1+i}{2\sqrt{2}}\right) \mid 0 \rangle + \left(\frac{1}{2} - \frac{1+i}{2\sqrt{2}}\right) \mid 1 \rangle$$

 $H |0\rangle = |+\rangle$ $H |1\rangle = |-\rangle$

Composing unitary operations

Compositions of unitary operations are represented by matrix multiplication (similar to the probabilistic setting).

Example: square root of NOT

Applying a Hadamard operation, followed by the phase operation S, followed by another Hadamard operation yields this operation:

$$HSH = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}$$

Applying this unitary operation twice yields a NOT operation:

$$\left(\text{HSH}\right)^2 = \begin{pmatrix} \frac{1+i}{2} & \frac{1-i}{2} \\ \frac{1-i}{2} & \frac{1+i}{2} \end{pmatrix}^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$