جمهورية العراق وزارة التربية المديرية العامة للمناهج

للصف الرابع العلمي

تأليف

أ.د. قاسم عزيز محمد أ. ضياء عبد علي تويــج أ. د. حازم لويس منصور أ.م. هدى عبد الهادي مهدي انتصار عبد الرزاق العبيدي خالدة كاطع حسان أ.م. هدى عبد الهادي مهدي صباح راهى مجيد

المشرف العلمي على الطبع: د. إسراء فريد سعيد المشرف الفني على الطبع: محمد سعدي عزيز

استناداً الى القانون يوزع مجاناً ويمنع بيعه وتداوله في الاسواق

مقدمة

عزيزي الطالبعزيزتي الطالبة

يشكل هذا الكتاب دعامة من دعائم المنهج المطور في الفيزياء والذي يعمل على تحقيق اهداف علمية وعملية تواكب التطور العلمي في تكنولوجيا المعلومات والاتصالات ،كما يحقق هذا الكتاب ربطا للحقائق والمفاهيم التي يدرسها الطالب بواقع حياته اليومية المجتمعية. ان هذا المنهج يهدف الى الموضوعات الآتية:

- توضح العلاقة بين العلم والتكنولوجيا في مجال العلوم وتأثير ها على التنمية وربطها بالحياة العملية.
- اكساب الطالب منهجية التفكير العلمي والانتقال به من التعليم المعتمد على الحفظ الى التعلم الذاتي الممتزج بالمتعة والتشويق.
- محاولة تدريب الطالب على الاستكشاف من خلال تنمية مهارات الملاحظة والتحليل والاستنتاج والتعليل .
 - اكساب الطالب المهارات الحياتية والقدرات العلمية التطبيقية .
 - تنمية مفهوم الاتجاهات الحديثة في الحفاظ على التوازن البيئي عمليا وعالميا.

يضم هذا الكتاب تسعة فصول هي (الفصل الاول - مَعلَماتُ رئيسة في الفيزياء والفصل الثاني - الخصائص الميكانيكية للمادة والفصل الثالث - الموائع الساكنة والفصل الرابع - الخصائص الحرارية للمادة والفصل الخامس - الضوء والفصل السادس - انعكاس وانكسار الضوء والفصل السابع -المرايا والفصل الثامن - العدسات الرقيقة والفصل التاسع - الكهرباء الساكنة (المستقرة). ويحتوي كل فصل على مفاهيم جديدة مثل هل تعلم، تذكر ، سؤال ، فكر بالاضافة الى مجموعة كبيرة من التدريبات والانشطة المتنوعة ليتعرف الطالب من خلالها على مدى ما تحقق من اهداف ذلك الفصل .

نسأل الله عز وجل ان تعم الفائدة من خلال هذا الكتاب، وندعوه سبحانه ان يكون ذلك أساس عملنا والذي يصب في حب وطننا والانتماء اليه والله ولي التوفيق.

نقدم الشكر والتقدير لكل من الاستاذ الدكتور محمد صالح مهدي والأختصاصي التربوي محمد حمد العجيلي لمراجعتهم العلمية للكتاب كما نقدم الشكر والتقدير لكل من المدرس سعيد مجيد العبيدي والمدرس رافد يحيى لمساهمتهم العلمية في الكتاب.

المؤلفون

الفصل الاول

1

مَعلَمات رئيسة في الفيزياء

Measurement

1-1

ترتكز العلوم بصورة عامة والفيزياء بصورة خاصة على القياس ،فالمفاهيم الفيزيائية مثل الكتله ، المسافة ، الزمن ، السرعة ، القوة ، الضغط ، المساحة ، درجة الحرارة هي كميات فيزيائية تتحدد بذكر قيمتها العددية ووحدة قياسها لبيان مقاديرها وكان ادخال القياس في التجارب عاملاً اساساً في تقدم علم الفيزياء وتطوره بسرعة .

القياس

على الرغم من اهمية حواس الانسان كدلالة للقياس إلا انها محدودة في مداها وصحتها ودقتها. فأحساسنا بالزمن تكوَّنَ لدينا من ادراكنا لما مضى ، وما نحن عليه الان ، علماً ان اجسامنا مزودة بمقياس طبيعي للتوقيت إلا وهو القلب بنبضاته المنتظمة تقريباً والمستمرة طيلة الحياة .

فاليوم هو زمن دورة الأرض الكاملة حول محورها، والسنة هي زمن دورتها الكاملة حول الشمس وتعاقب الليل والنهار وتعاقب فصول السنة تعد مقاييس طبيعية للزمن. فاحساسنا بالزمن هو نتيجة لوعينا وادراكنا لما حولنا من مادة وحركة.

ولقد تعرفت في دراستك السابقة على الابعاد والكتل لبعض من مكونات هذا الكون لتدرك عظمة الخالق في خلق هذا الكون الهائل وما يحتويه من اجسام في غاية الكبر وجسيمات في غاية الصغر.

النظام الدولي للوحدات International system of units

2-1

النظام الدولي للوحدات)SI(مختصر للعبارة الفرنسية System International Unites هو امتداد وتشذيب للنظام المتري التقليدي ويشمل سبع وحدات اساس كما موضحة في الجدول) 1(

SI_{e} جدول رقم SI_{e} وحدات النظام الدولي					
رمز الوحدة	unit	الوحدة	quantity	الكمية	
m	meter	متر	length	الطول	1
kg	kilogram	كيلوغرام	mass	الكتلة	2
S	second	ثانية	time	الزمن	3
Α	ampere	أمبير	electrical	التيار الكهربائي	4
			current		
mol	mole	مول	amount of	كمية المادة	5
			substance		
K	kelvin	كلفن	temperature	درجة الحرارة	6
cd	candela	الكانديلا	luminous	قوة الاضاءة	7
)candle () شمعة (intensity		

ونظام SI (يعد اكثر ملائمة للحياة العملية من اي نظام آخر ويعد هذا النظام عشرياً بحيث ترتبط الوحدات فيما بينها بأسس عشرية بسيطة تجعل الحسابات التي تشتمل على اي عدد منها حسابات بسيطة لا تحتاج الى جهد وان لكل كمية في هذا النظام وحدة قياس واحدة فقط ، ويمكن الحصول على اجزائها ومضاعفاتها بوضع بادئة تسبق اسم هذه الوحدة وان مضاعفات الوحدات المستعملة تكون بخطوات كل منها 10^3 لاحظ جدول البادئات رقم 10^3 (وهناك وحدات تكميلية للوحدات الاسلاس تدعى Supplementary Units المستعملة في جدول رقم 10^3 (

جدول رقم)2(الوحدات التكميلية للنظام الدولي Supplementary Units				
رمز الوحدة	Unit	الوحدة	Quantity	الكمية
rad	radian	زاوية نصف قطرية	plane angle	الزاوية المستوية
sr	steradian	زاوية نصف قطرية	solid angle	الزاوية الجسمة
		مجسمة		

الزاوية نصف القطرية . هي الزاوية المركزية المقابلة لقوس طوله يساوي نصف قطر الدائرة

. محيط الدائرة يقابل زاوية نصف قطرية)2π rad(. . محيط الدائرة يقابل زاوية نصف

$$\frac{2\pi r}{r} = 2\pi \ rad$$

$$1 rad = \frac{360^{\circ}}{2\pi} = 57.3^{\circ}$$

الزاوية المجسمة ألم كروي مساحته بقدر مربع sr نصف قطر تلك الكرة وتقدر بوحدات sr

$$\frac{4\pi r^2}{r^2} = 4\pi \text{ Sr}$$

جدول)3(بعض اجزاء ومضاعفات النظام الدولي SI بادئات)Prefixes(النظام الدولي				
		الرمز	prefix	البادئة
	1012	T	tera	تيرا
	10 ⁹	G	giga	کیکا
1Mm=10 ⁶ m	10 ⁶	M	mega	میکا
$1km=10^{3}m$	10 ³	k	kilo	كيلو
	10-2	С	centi *	سنتي
$1mA = 1 \times 10^{-3}A$	10 ⁻³	m	milli	ملي
1μ C=1×10 ⁻⁶ C	10-6	μ	micro	مايكرو
ns=10 ⁻⁹ s	10 ⁻⁹	n	nano	نانو
1PC=1×10 ⁻¹² C	10-12	P	pico	بيكو
1fm=1×10 ⁻¹⁵ m	10 ⁻¹⁵	f	femto	فيمتو

^{*} ليست من وحدات النظام الدولي

اخطاء القياس Measurement errors

3-1

معظم العلوم تعتمد على التجربة الدقيقة لتحقيق نظرياتها . لذلك فمن الضروري ايجاد وسائل دقيقة للتعامل مع القياسات واستنباط الحقائق منها وتقليل الاخطاء التجريبية . وتعتمد دقة القياسات الفيزيائية على دقة اجهزة القياس المستعملة وعلى مهارة وخبرة المجرب وظروف عمل التجربة, فعدم الدقة في القياسات يعود الى مصادر الاخطاء في القياس ومنها.

1 - اخطاء الاجهزة وادوات القياس المستعملة:

هناك الاخطاء ناتجة من عدم دقة تدريج الجهاز نتيجة لرداءة صنع الجهاز او لمعايرته غير الصحيحة، وبعضها تتغير قراءته التدريجية بسبب الظروف المحيطة بالجهاز او مع عمر الجهاز .كذلك يتوقف خطأ الجهاز او آلة القياس على دقة قراءته الصغرى)القراءة الصغرى لتدريجه (فمثلاً القراءة الصغرى للمسطرة المترية)1mm (بينما القراءة الصغرى للمايكرومتر)0.01mm (بنما القراءة الصغرى للمايكرومتر) قياس ابعاد جسم صغير بالمسطرة كبير جداً مقارنة بالخطأ الحاصل باستعمال المايكرومتر. ان تكرار الملاحظات والقياسات بالاجهزة ذات المواصفات اعلاه لا يساعدعلى تقليل الخطأ.

وعند ذكر نتيجة أي كمية مقاسة يجب ذكر حدود الخطأ فيها ، فعند قياس الطول مثلاً بآلة قياس دقتها 0.1mm (وكان طول الجسم المقاس) 0.1mm فالطول الحقيقى قد يتخذ 0.02 فالطول الحقيقى قد يتخذ 0.02

2 - اخطاء شخصية:

وهي اخطاء يرتكبها الشخص بسبب قلة خبرته بالقراءة او عند نقله المعلومات وتعتمد على معرفته بالاجهزة والاستعمال الصحيح لها . اضافة الى بعض الاخطاء الخارجة عن ارادة الشخص بسبب الظروف المحيطة به ، وهذه الاخطاء العشوائية هي الوحيدة التي يمكن معالجتها وتصحيحها بالقياسات المتكررة ، ويمكن معاملتها بسهولة بطرائق احصائية وابسطها هو ايجاد متوسطها الحسابي ، فهو خير تخمين للقيمة الحقيقية.

تذكر عزيزي الطالب ان خطأ صغير في القياس)قياس موقع على خارطة بمسطرة مثلاً (قد يؤدي الى خطأ كبير بالبعد الحقيقي.

الرسوم البيانية Graphs

4-1

تعد الرسوم البيانية من الطرائق المفضلة للحصول على المتوسط الحسابي لعدد من القراءات بصورة جيدة، ولتوضيح العلاقة بين متغيرين تجريبياً يفضل رسم تخطيط بياني، ويمكن استعمال الرسم البياني في كثير من الحالات لأستنباط علاقة رياضية تربط هذين المتغيرين، اضافة الى تحديد قيم الثوابت من الرسم البياني.

عزيزي الطالب تعلمت من درس الرياضيات كيفية رسم الخط البياني وتعلمت ايضاً شكل التخطيط البياني من المعادلة الرياضية التي تربط بين متغيرين .

لرسم تخطيطاً بيانياً يتطلب الاتي:

- 1 تحديد نقطة الاصل في موقع ملائم على الورقة البيانية)0.0(.
- رسم المحورين المتعامدين من نقطة الاصل فالمحور الافقي y(y) والمحور العمودي عليه يمثل بـ y(x) والمحور العمودي عليه يمثل بـ y لاحظ الشكل y-axis
 - 3 يتم اختيار مقياس رسم ملائم لكل احداثي على حدة او للاحداثيين معاً وحسب القراءات التي تم الحصول عليها لغرض الاستفادة من الورقة البيانية المتوفرة لديك.
 - 4 يفضل استعمال الارقام الزوجية لتدريجات مقياس الرسم

شكل (1-1)

تطبيقات في كيفية رسم الخط البياني من تجارب عملية:

سيارة تسير بانطلاق ثابت وتقطع المسافات المذكورة في الجدول الآتي بالازمان المقابلة لها . جد انطلاق السيارة ب $\frac{km}{h}$ بيانياً.

السافة	km	20	40	60	80	100
t الزمن	h	0.25	0.5	0.75	1	1.25

لرسم الخط البياني للقراءات الواردة اعلاه نتبع الخطوات الآتية :

- نحدد نقطة الاصل 0.0 على الورقة البيانية ، ومنها يتم رسم خطين متعامدين يمثلان المحورين (x,y).
 - 2. يحدد مقياس الرسم لكلا المحورين .
 - 20~km ويعد كل مربع منه يمثل المسافة d (ويعد كل مربع منه يمثل y). a

ماتحتاجه ستحده محانا على بوت تليكرام المعرف bot_

0.1 hالمحور)X(يمثل الزمن)t(ونعتبر كل مربع منه يمثل.

3. يتم تحديد كل نقطة على الورقة البيانية من معرفة احداثياتها X,Y(كما في

الشكل (1-2).

بالزمن t شبيه بمعادلة الخط

المستقيم التي يعبر عنها

شكل (2-1)

$$m=rac{\Delta y}{\Delta x}$$
 : بالمعادلة التالية

. Slope حيث ان m تمثل ميل الخط المستقيم

ويمكن الحصول عليه باخذ نقطتين على الخط المستقيم مثلاً $p_{\eta}p_{0}$ كما في الشكل p_{η} في هذا المثال يمثل ميل الخط المستقيم انطلاق السيارة \mathcal{V} ويمكن حسابه من العلاقة الآتية

$$v = \frac{d_2 - d_1}{t_2 - t_1} = m$$

$$v = \frac{80 - 40}{1 - 0.5} = \frac{40}{0.5} = 80 \text{ km/ h}$$

التغير الطردى والتغير العكسى للكميات الفيزيائية

5-1

التغير الطردي direct proportion

يقال لكمية a بأنها تتغير تغيراً مباشراً مع كمية اخرى b ، اذا أعتمدت الكميتان احداهما على الاخرى بحيث اذا تغيرت)b(فأن)a(تتغير بالنسبة نفسها.

$$\frac{a_1}{b_1} = \frac{a_2}{b_2} = \frac{a_3}{b_3} = \dots = \frac{a}{b} = constant$$

كمية ثابتة = constant

فأذا رمز للتغير بالرمز ٢ يمكن وضع هذا التغير بصورة رياضية

$$a \alpha b \Leftrightarrow a = k b$$

حيث K كمية ثابتة وهى تمثل ثابت التناسب.

يطلق على هذا التغير بالتناسب او التغير الطردي direct proportion.

مثال1

قطار يتحرك بانطلاق ثابت $\mathcal{D}($ ، وان المسافة التي يقطعها القطار)d(تتغير طردياً مع الزمن)t(الذي يستغرقه القطار لقطع تلك المسافة ، فاذا كانت المسافة المقطوعة في ساعتين)t(ما الزمن اللازم للقطار لقطع مسافة)400km(.

الحل: المسافة تتغير مع الزمن

$$d \alpha t \Leftrightarrow d = kt$$

حيث k تمثل ثابت التناسب وهنا يمثل انطلاق القطار الثابت

العلاقة توضح ان المسافة التي يقطعها القطار تساوي حاصل ضرب الزمن في كمية ثابتة)الكمية الثابتة في هذا المثال هو انطلاق القطار(

أو طريقة أخرى للحل

 $160km = k \times 2h$

$$k = \underline{\hspace{1cm}} = 80 \text{km/h}$$

$$2h$$

ولأيجاد الزمن اللازم لقطع)400km نطبق العلاقة:

$$d = k t$$

$$400 = 80t$$

$$t = \frac{400}{80} = 5h$$

$$\frac{d_1}{t_1} = \frac{d_2}{t_2}$$

$$\frac{160}{2} = \frac{400}{t_2}$$

$$t_2 = \frac{2 \times 400}{160}$$

$$t_2 = 5h$$

في بعض الاحيان تكون الكمية الفيزيائية معتمدة على اكثر من متغير كما موضح في المثال الآتي:

مثال2

يتغير حجم اسطوانة قائمة V(تبعاً لمربع نصف قطر قاعـــدتها V(بثبوت الارتفاع V(و يتغير حجم اسطوانة قائمة V(تبعاً لمربع نصف قطر القاعدة V(والارتفاع V(ونصــف قطر قاعدتها V(ونصــف قطر قاعدتها V(

الحل

$$V lpha \ r^2$$
 $) h$ البثبوت الارتفاع $V lpha \ h$ $) r$ القطر $V lpha \ h$ \Leftrightarrow $V = k \ r^2 \ h$

حيث K تمثل ثابت التناسب تجد قيمة K بالتعويض

 $6160cm^3 = k \times 14cm \times 14cm \times 10cm$

$$\therefore k = \frac{6160}{14 \times 14 \times 10} = \frac{22}{7} = \pi$$

فثابت التناسب K هو النسبة الثابتة وهذا معناه ان

حجم الاسطوانة = مساحة القاعدة 🗴 الارتفاع

$$V = \pi r^2 h$$

... 3080 cm³ = $\frac{22}{7} \times 7$ /7cm(2 ×h)

التغير العكسى Inverse proportion

يقال لكمية a انها تتغير عكسياً تبعاً لكمية اخرى b . عندما تتغير طردياً بصورة مباشرة مع مقلوب الكمية b .

ومكن كتابتها بصيغة رياضية

$$a \alpha \frac{1}{b} \iff a = k \frac{1}{b}$$
 حيث k تمثل ثابت التناسب

ولتوضيح ذلك نشتق معادلة الغاز المثالي من خلال المثال الآتي :

مثال لقد وجد عملياً ان حجم كتلة معينة من غاز V(يتغير طردياً مع درجة الحرارة المطلقة لقد وجد عملياً ان حجم كتلة معينة من غاز V(يتغير طردياً مع درجة الحرارة المطلقة absolute temperature)T($V \alpha T$ (P) يثبوت الضغط $V(\alpha T)$

وان حجم كتلة معينة من غاز V(تتغير عكسياً مع الضغط المسلط عليها)P(عند بقاء درجة الحرارة ثابتة)T(وهذا هو قانون بويل Boyl's |aw|

 $V\alpha~1/p~~(T$ بثبوت درجة الحرارة والضغط فان الحجم يتغير وفق العلاقة الآتية $V\alpha~T/p~\Leftrightarrow~V=k~T/p$

 $pV = kT = nRT \implies pV = nRT$

 $R=8.314J.mol^{-1}.k^{-1}$ حيث k هو الثابت العام للغازات R حيث R هو الثابت العام للغاز .

تذكر

- العلاقة الآتية y=2x : فان y تتغير مع x تغيراً خطياً طردياً والخط البياني المستقيم عر من نقطة الاصل .
- العلاقة الآتية y=2x+a فان y تتغير مع x تغيراً خطياً طردياً والخط البياني المستقيم $a \neq 0$ لا يمر من نقطة الاصل عندما

1

اسئلة الفصل الاول

أسئلة

اختر العبارة الصحيحة لكل مما يأتي!

1 - الزاوية نصف القطرية) radian (هي الزاوية المركزية المقابلة لقوس طوله:

a- نصف قطر الدائرة . C نصف محيط الدائرة .

. محیط الدائرة d محیط الدائرة b

2 - محيط الدائرة يقابل:

من الزوايا نصف القطرية π -c من الزوايا نصف القطرية π -a

من الزوايا نصف قطرية d واحدة -d من الزوايا نصف قطرية واحدة 2π

3 - مساحة الكرة السطحية تقابل:

 3π Sr -c π Sr -a

 4π Sr-d 2π Sr-b

4 - احدى الكميات الفيزيائية الاتية تقاس بوحدة الامبير هي.

a- فرق الجهد الكهربائي. C- التيار الكهربائي.

d- المقاومة. d- القدرة الكهربائية.

5 - الملمتر المربع يساوي:

 $10^{-4}m^2$ -c $10^{-2}m^2$ -a

 $10^{-3}m^2$ -d $10^{-6}m^2$ -b

هو: y=10 فأن مقدار x عندما y=15 هو: y=10 هو: y=10

 $\frac{16}{3}$ -c $\frac{7}{3}$ -a

3 -d 2 -b

حتاجه الإتجده مجانا على بوت تليكرام المعرف bot_

القصيل الأول

$$y = \frac{7}{3}$$
 اذا تغیرت X عکسیا مع Y فاذا کانت $X = 7$ عندما $X = 7$ فان مقدار X عندما $X = 7$ تساوی:

$$\frac{360}{\pi}^{\circ}$$
 -k

$$^{\circ}$$
 ان مقدار العدد $)5($ المرفوع للاس صفر $)5^{\circ}$ يساوي - 9

ناف
$$y=2x+5$$
 هي x,y فان $y=2x+5$ هي أ. $y=2x+5$ عن $y=2x+5$ عن $y=2x+5$ عن $y=2x+5$ عندراً $z=2x+5$ عندراً $z=2x+5$

يَ تغير تغيراً
$$y=mx$$
 هي $y=mx$ هي تربط المتغيرين $y=mx$ هي التي تربط المتغيرين $y=mx$

الخصائص الميكانيكية للمادة Mechanical properties of materials

مقدمة

ان الخواص الميكانيكية للمادة ترتبط بسلوكها وذلك عند تاثير قوى خارجية فيها ، ومن المعلوم ان للمادة ثلاث حالات هي الصلبة والسائلة والغازية ,على وفق القوى الجزيئية والطاقة الحركية للجزيئات والمسافات البينية بينها. كما توجد حالة اخرى للمادة تسمى البلازما

وان الغازات لا تحتفظ بشكلها ولا بحجمها ثابتاً عند تاثير قوى خارجية فيها ، اما المواد السائلة فتحتفظ بحجمها ثابتا بينما لا تحتفظ بشكلها . و ان تاثير القوى الخارجية في المواد الصلبة يسبب حدوث تشوه)Deformation فيها أي يحصل تغيير في شكلها ويعتمد هذا التشوه على عوامل عدة من اهمها:

- 1- مقدار القوة الخارجية المؤثرة في الجسم.
 - 2- ابعاد الجسم .
 - 3- المادة المصنوعة منها .

لدراسة الخواص الميكانيكية للمواد اهمية كبيرة لما لها من دور فعال في التطور التكنولوجي حيث يتم تصنيع مواد صناعية جديدة غير موجودة في الطبيعة كالالياف الصناعية والتي تمتاز بتحملها لاجهادات عالية بالرغم من خفة وزنها لذا فتحت الافاق لتطبيقات صناعية وانشائية واسعة مثل ألم

- 1- التطبيقات الصناعية : كصناعة علب الغاز المضغوط والاطارات وهياكل وسائط النقل خاصة هياكل واجنحة الطائرات فضلاً عن الصناعات الانشائية المختلفة والادوات الرياضية .
 - 2- التطبيقات الفضائية : كتصنيع اجزاء كثيرة من الصواريخ والمركبات الفضائية وخزانات الوقود .

مفهوم المرونة وقانون هوك

1-2

شكل (1-2)

أذا سحبت حبل من المطاط بقوة من طرفيه فأنه يقاوم المط ولكن طوله يتمدد متأثرا بالقوة. عند تركه يرجع الى طوله الاصلي وأذا علق سلك من الفولاذ من احد طرفيه وعلق في طرفه السائب ثقل فأنه يستطيل قليلا بعد فترة من الزمن فاذا زال الثقل عاد السلك الى طوله الاصلى.

و تفسير ذلك. ان السلك الذي يعلق به ثقل ما يقاوم هذه القوه الخارجية المؤثره فيه بقوه منشؤها قوى التجاذب الجزيئي بين جزيئات المادة نفسها التي تظهر نتيجة حدوث التغيير في شكل الجسم أو طوله وهذه القوى الجزيئية تحاول أعادة الجسم الى حالته الاصلية بعد زوال القوى المؤثرة الاحظ الشكل) 1-2 (. أذاكُبسَ غاز أو سائل فأنهما يقاومان تغيير حجمهما) السائل يقاوم اكثر فأذا زال الضغط عنهما رجعا الى حجمهما الاصلي.

وقد وجد العالم روبرت هوك العلاقة بين القوة المؤثرة في سلك ومقدار التغير الحصاصل في طوله) Hook's law (. ولبيان مفهوم هذه العلاقة نجري النشاط التالي :

تشاط: مفهوم المرونة

ادوات النشاط: نابض حلزوني، اثقال متساوية مقدار كل منها 0.1N، حامل حديد، مسطرة مدرجة، ورقة. الخطوات:

- رتب الادوات كما في الشكل) 2-2 (
 نعلق النابض الحلزوني شاقوليا بحامل الحديد ونؤشر
 على الحلقة الاخيرة السفلى منه على ورقة خلف
 النابض
- نعلق ثقل مقداره 0.1N ونسجل الزيادة الحاصلة في طول النابض

شكل (2-2)

شكل (2-3)

- نعلق ثقل اخر ليصير المقدار الكلي للثقل المعلق . 0.2N . نلاحظ ان الزيادة في طول النابض تصبح ضعف الزيادة السابقة لاحظ الشكل) 2-3 (.
 - نكرر العملية باستعمال اثقال عدة وبالتتابع ـ

■ ندرج القراءات التي حصلنا عليها كما موضحة في الجدول) 1 (.

الجدول (1)

القوة)N(F	الزيادة الحاصلة في الطول X10⁻²m ك
0	0
0.1	0.3
0.2	0.6
0.3	0.9
0.4	1.2

■ نرسم العلاقــة البيانيــة بين مقــدارالاثقــال والزيــادة الحاصلة في طول النابض) الاستطالة (على ورقة رســم بياني) على فرض اهمال كتلة النابض (.نحصل على علاقة خطية بيانية بين الاثقال والاستطالــة كمـا في الشكـل خطية بيانية من هذا الشكل ، ان الزيــادة الحاصلــة في طول النابض تتناسب طرديا مع قوة الشد ضمن حــدود المرونة.

أي ان :

قوة الشد = ثابت مرونة النابض 🛪 الاستطالة

 $F = k \Delta L$

حيث ان ـُـ

- . هي قوة الشد) Tensile force (التي سببت استطالة النابض \mathcal{F}
 - مقدار الاستطالة ΔL
- وتكون N/m وتكون ثابت مرونة النابض، وقيمته تمثل ميل الخط المستقيم ويقاس بوحدة i

قيمته ثابتة لاتتغير الا بتغير شكل النابض او المادة المصنوع منها.ونلاحظ من هذا النشاط ان النابض

يعود الى وضعه السابق فور زوال القوة.

وبذلك نستطيع القول ان : المرونة هي الاعاقة التي يبديها الجسم للقوة المغيرة لشكله او حجمه او طوله مع رجوعه الى وضعه السابق بعد زوال ذلك المؤثر .

ويتصف الجسم المرن بما ياتى 1

- يعود الى شكله او حجمه او طوله السابق بعد زوال تاثير القوة عنه.
- يتناسب التشوه الحاصل فيه تناسباً خطياً مع القوة المسببة له ضمن حدود المرونة.

حد المرونة:

حد المرونة. هو الحد الذي اذا اجتازته القوة المؤثرة لايعود الجسم الى ماكان عليه بعد زوال تلك القوة الذا يقال عن هذا الجسم انه حدث فيه تشوه دائمي)Permanent Deformation(.

الاجهاد والمطاوعة Stress and Strain

2-2

يعبر عن الاجهاد بانه: مقدار القوة العمودية المؤثرة في وحدة المساحة من الجسم.

فلو اثرت قوة في الجسم محدثة فيه تشوه) تغيرا في الشكل اوالحجم او كليهما (عندئذ يقال ان الجسم قد تعرض الى اجهاد ويقاس الاجهاد بوحدات N/m^2 .

تختلف الاجهادات في المواد التي تؤثر فيها القوة في الجسم وفيما يلي بعض انواع الاجهاد.

1- الاجهاد الطولي: وهو الاجهاد الذي يسبب تشوهاً في طول الجسم كما هو الحال للنابض الذي مر ذكره ُ في النشاط السابق

ويكون هذا الاجهاد على نوعين هما.

الماد الشد عوبية المشد عوبية المشد

a - اجهاد الشد Tensile stress وهو الاجهاد الذي يسبب تشوها في طول الجسم عندما تؤثر قوتا شد عمودياً في سطحين متقابلين يؤدي بالنتيجة الى زيادة في الطول)استطالة(. لاحظ الشكل) 5-2(

شكل (2-5)

b - اجهاد الكبس Compressive stress

عندما تؤثر قوتان بصورة عمودية في الجسم باتجاه الداخل فتسبب له انضغاطا)نقصان في الطول (لاحظ الشكل) 2-6(

شكل (2-6)

ويمكن تعريف الاجهاد الطولى من خلال العلاقة الرباضية الاتية!

الاجهاد الطولي =-مساحة السطح الذي تؤثر فيه القوة

2- أجهاد القص (Shear stress)

اذا وضعت يدك على كتاب موضوع على سطح منضدة خشنةودفعته بقوة مماسية لسطحه نلاحظ حدوث تشوه في شكل الكتاب لاحظ الشكل)2-7 (.

شكل (2-7)

ويمكن تعريف اجهاد القص من خلال العلاقة الرياضية الاتية.

ا جهاد القص = مساحة السطح الذي تؤثر فيه القوة

Strain المطاوعة

تعرف المطاوعة بانها مقياس لمقدار تشوه المادة)تغيرا في الشكل او الحجم (نتيجة الاجهاد الذي تعرضت له.

وان نوع المطاوعة يتوقف على نوع الاجهاد الذي يتعرض له ، وانواع المطاوعة هي.

شكل (2-8)

1- المطاوعة الطولية Longitudinal strain

عند استطالة الجسم او انضغاطه يتغير شكله من غير تغير في حجمه لاحظ الشكل)2-8(

 ΔL بمقدار الطول الاصلي المقدار الطول الاصلي

لذا تعرف المطاوعة الطولية على النحو الاتي:

$$\frac{\Delta L}{L_o} =$$

2- مطاوعة القص Shear strain

تكون استجابة الجسم عند تعرضه لاجهاد قص على شكل ازاحة جانبية لاحظ الشكل 9-2 فيتشوه شكل الجسم ولايتغير حجمه. وتقاس مطاوعة القص بمقدار الزاوية θ (التي ينحرف بها سطحا الجسم الشاقوليان المتقابلان المؤثرة فيهما القوة F(.

شكل (9-2)

شكل (10-2)

3- مطاوعة الحجم Volume strain

تنتج من تعرض الجسم باكمله الى انضغاط فان حجمه سيقل مع ثبوت شكله لاحظ الشكل)2-10(

ويمكن التعبير عنها كما يلي .

$$\frac{\Delta V}{V_{\circ}}$$
=

معامل المرونة(معامل يونك Young modulus)

3-2

ان النسبة بين الأجهاد والمطاوعة النسبية يدعى معامل المرونة او معامل يونك ويعطى بالعلاقة الاتية:

$$Y = \frac{F/A}{\Delta L/L_0}$$

حيث ان:

هى القوة المسلطة على الجسم ${\cal F}$

A مساحة المقطع العرضي

الطول الاصلي L_o

مقدار الزيادة الحاصلة في الطول ΔL

ويقاس معامل يونك) ٧ (بوحدات:

. وان النسبة)الاجهاد \ المطاوعة (صفة مميزة للمواد الصلبة N/m^2

والجدول) 2 (يمثل القيم لمعامل يونك لمواد مختلفة.

الجدول) 2 (قيم معامل يونك لمواد مختلفة

المادة
المنيوم
رصاص
نحاس
الماس
الذهب
تنكستن
فولاذ
الخرسانة
الزجاج

حتاجه ستحده محانا على بوت تليكرام المعرف bot_

مثال 0.05سلك فولاذي طوله 4m ومساحة مقطعه مامقدار الزيادة الحاصلة في $200 \times 10^9 \mathrm{N} \, / \mathrm{m}^2$ طوله اذا سحب بقوة $500 \mathrm{N}$ ؟ معامل يونك للفولاذ

$$200 \times 10^{8}N/m^{2}$$
 المحب بقوة $5000N$ عمامل بونك $Y = \frac{F/A}{\Delta L/L_{o}}$ $Y = \frac{F/A}{\Delta L/L_{o}}$ $Y = \frac{F.L_{o}}{A . \Delta L}$ $\Delta L = \frac{F.L_{o}}{Y.A}$ $\Delta L = \frac{500 \times 4}{200 \times 10^{9} \times 0.05 \times 10^{-4}}$ $\Delta L = 2 \times 10^{-3} m = 2mm$ مقدار الزيادة الحاصلة في طوله

الجدول (3)

قوة الشد)F(قوة الشد ΔL الاستطالة mm 0 2.8 6.2 2 8.7 3 12.1 4 15 5

سوال

قامت مجموعة من الطلبة بتجربة لتحديد معامل يونك لسلك من مادة معينة فحصلوا على النتائج المبينة في الجدول 3(.اذا علمت ان طول السلك)2m(ومساحةمقطعه 1.25×10⁻⁶ m² فأوجد؟

1- العلاقة البيانية بين القوة واستطالة السلك.

مقدار الزيادة الحاصلة في طوله

2- معامل يونك لمادة السلك بيانيا من ميل المستقيم.

بعض الخصائص الميكانيكية للمواد الصلبة

4-2

هناك خصائص ميكانيكية عدة ينبغي ان تؤخذ بنظر الاعتبار عند اختبار المواد الصلبة لتطبيقات العمل كالاجزاء المعدنية للمكائن او مواد البناء والادوات المنزلية و غيرها .

وفى ما يأتى بعض هذه الخصائص.

1- الليونة (Ductility): خاصية المادة التي تمتاز بقابليتها على المط والكبس واللي وكذلك السحب والطرق مثل النحاس.

2- الهشاشة Brittleness: صفة المادة التي تظهر عجزها عن تحمل الاجهاد المفاجئ فتنكسر ولا تصل الى حالة التشوه الدائمي.

لذا تعرف المواد الهشة : بانها المواد التي تنكسر مباشرة بعد اجتيازها حد المرونة مثل الزجاج ،الحديد الصلب ،الكونكريت

3- القساوة (Stiffness): خاصية المادة لمقاومة التشوه الذي يحصل في شكلها او حجمها بتاثير القوى الخارجية فيها ، وتحتاج الى اجهاد عالي لتوليد المطاوعة نفسها . كما تمتلك معامل يونك عالي المقدار مثل الفولاذ) $steel(-2x10^{11} N/m^2)$

4- المتانة (Toughness): خاصية المادة لمقاومة القوة القاطعة لها ، اي ان :

5. الصلادة hardness : هي خاصية المادة على خدش مواد اخرى أو مقاومتها للخدش .

تقاس صلادة المادة بمقارنتها بصلادة عشر مواد مرتبة في الجدول التالي من 1 الى 10 حيث أن كل مادة في الجدول تخدش المادة الاقل صلادة وتخدش المادة الاعلى منها في الترتيب

جدول لقياس الصلادة التصاعدي

1- التاك 2- الجبس 3- الكلسايت 4- الفلورايت 5- الابتايت

6- الفلسبار)سلكات الالمنيوم(7- الكوارتز 8-التوباز 9- الياقوت 10- الماس

6. العجز (الفشل)Failure

خاصية المادة الصلبة على فقدان قوة تحملها تحت تاثير اجهاد خارجي

ما الخصائص الميكانيكية التي يمتاز بها كل من المطاط والماس؟

التشوه المرن والبلاستيكى

معظم المعادن)عدا الحديد الصلب (تمتلك خواص تدعى بالليونة)Ductility (وان قابلية التشوه الدائمي تصلها بعد حد المرونة)Elastic Limit . ويعد النحاس من المعادن التي تتصف بهذه الصفة ،حيث إن السلك النحاسي ذو مساحة مقطع 1mm² يصل الى حد المرونة عندما يتعرض إلى قوة شد تبلغ 150N حيث انه لاينقطع قبل ان تصل قوة الشد المؤثرة فيه إلى ضعفها . في المنحني الموضح في الشكل 2-11 (الاستطالة لساق حديد كدالة للاجهاد. فالجزء المستقيم من الخط البياني يخضع لقانون هوك)استجابة خطية (حيث يحصل تشوه مرن . وعند تجاوز حد المرونة فان الشكل يتسطح وهذا يعنى ان اي زيادة في قوة الشد فيه تنتج زيادة اكبر نسبيا في الطول مقارنة بالزيادة الحاصلة قبل بلوغ حد المرونة) استجابة لا خطية (فاذا زادت قوة الشدعن حد المرونة تحصل زيادة دائمية في طوله لذا يقال انه حصل فيه تشوه بلاستیکی)Plastic Deformation(. علما ان اقصى طول للساق يحصل عند اعظم قوة شد يتحمله فاذا زاد عن هذا الشد سبب الانقطاع ،وهذا يتضــح في اعلى نقطة على المنحنى لاحظ الشكل) 2-11 (.

هل تعلم

1-بداية القطع (الكسر) يظهر في سطح المادة في المناطق ذات المتانة القليلة والتي تظهرفيها التشققات كونها تمتلك عجز في تركيبها البلورى

2-مقاومة المادة الهشة تزداد بالضغط فمثلا عند عمق 10كم في القشرة الارضية تصبح الصخور اقل احتمالاً للتكسر واكثر احتمالية لتشوه المط

3-لتجنب كسر الزجاج (او امتصاص نمو الكسر) تؤخذ صفيحتان من الزجاج مفصولتان بطبقة من مادة بولي فنايل بيوترال والتي تعمل كماصة لنمو التكسر

التشوه المرن (Elastic Deformation)

الزيادة المؤقتة الحاصلة في طول الجسم او شكله ضمن حدود المرونة فهو يخضع لقانون هوك .بحيث يعود الجسم الى وضعه الاصلى بعد زوال القوه المؤثرة.

التشوه البلاستيكي (اللدن) عد الدولة

شكل (11-2)

التشوه البلاستيكي (اللدن)(Plastic Deformation)

الزيادة الدائمة الحاصلة في طول الجسم او شكله خارج حدود المرونة بحيث لايعود الجسم الى وضعه الاصلي بعد زوال القوة المؤثرة فهولا يخضع لقانون هوك.

2

• a f

القصيل

الثائي

أسئلة س1- أختر الجواب الصحيح لكل مما يلى: 1- خاصية المادة التي تجعل النابض يستعيد طوله الاصلى بعد سحبه قليلا وتركه تسمى: b- الليونة a- الهشاشة d- المرونة -C القساوة 2-مرونة الفولاذ اكبر من مرونة المطاط بسبب : -C معامل مرونة الفولاذ صغيرة d- معامل مرونة الفولاذ كبيرة 3- ينطبق قانون هوك على المواد الصلبة في حدود 1 b- العجز الهندسي a- المتانة d- اجهاد القص -C المرونة 4-المواد التي لايمكن زيادة طولها الا باجهاد عالى وضمن حدود مرونتها تسمى مواد : b- عالية المرونة a-ھشة d- قابلة للطرق -C غير المرنة 5- عندما تؤثر قوة في جسم فان الاجهاد الطولي فيه يساوي : b- القوة العمودية المؤثرة لوحدة ألمساحة a- التغير النسبي في ابعاده d- حد المرونة -C معامل يونك 6- إجهاد القص العامل على جسم يؤثر في 1 b- عرضه a- طوله d- شكله -C ححمه 7- الإجهاد المؤثر في سلك شاقولي معلق به ثقل لايعتمد على: b- قطر السلك a- طول السلك d- تعجيل الجاذبية -C كتلة الثقل

2

امیئلهٔ الفصیل الثانی

X سلكان مصنوعان من ماده واحدة ، ولكن طول السلك X نصف طول السلك Y بينما قطره ضعف قطر السلك Y فاذا استطالا بالمقدار نفسه لذا فالقوة المؤثرة على السلك X تساوي :

9- الزيادة الحاصلة في طول الجسم او شكله خارج حدود المرونة تسمى:

d- تتناسب مع القوة المؤثرة

- تتناسب طرديا مع القوة المؤثرة -C

10- عندما تؤثر على جسم قوتا سحب متساويتان في المقدار ومتعاكسان في الاتجاه وعلى خط فعل واحد يقال ان الجسم واقع تحت تاثير .

-C المطاوعة

. ϵ وذا كانت القوة اللازمة لقطع سلك معين هي ϵ فما مقدار القوة اللازمة لقطع ϵ

a سلكين منطبقين من النوع نفسه.

b- سلكين من النوع نفسه، قطر السلك الثاني ضعف قطر السلك الاول، وايهما اكثر متانة؟

-C سلكين من النوع نفسه، طول السلك الثاني ضعف طول السلك الاول.

a.2F , b.4F , c.F.الجواب

س3 - ما العوامل التي تحدد مقدار ونوع التشوه الذي يحصل في المادة الصلبة؟

4 س 4 ما المقصود بثابت مرونة النابض ؟ وما وحدة قياسه ؟ وعلام يتوقف مقداره؟

-5س ما نوع المطاوعة النسبية والتي يعبر عنها ب

a- نسبة التغير في الطول الى الطول الاصلي .

- نسبة التغير في الحجم الى الحجم الاصلي -b

-c مقدار الزاوية التي ينحرف بها سطحا الجسم المتقابلان المؤثرة فيهما قوتان بموازاتهما .

2

رهنده الفصال الثاني

المسائل

س 1 - اثر إجهاد توتري مقداره $1.5~N/m^2~N/m^2~00$ في سلك معدني مساحة مقطعه العرضى $1.5~mm^2~00$ ما القوة المؤثرة فيه ؟

 $F=30N (/_{z}$

2mس (وقطره) وقطره) من الفولاذ طوله) من النيادة الحاصلة في طول سلك من الفولاذ طوله)

اذا علقت في نهايتــه كتلة $g=10m/s^2$ معتبراً $g=10m/s^2$ ، علماً ان معامل يونـــك للفــولاذ $\frac{N}{m^2}$ (

 $\Delta L=0.001m($ / Δ

س3- سلك نصف قطر مقطعه العرضي) 0.5mm (وطوله) 120cm (معلق شاقوليا .ما القوة العمودية اللازمة لتسليطها على طرفه السفلي كي يصبح طوله) 121.2cm (علما ان معامل يونك لمادة السلك) $1.4 \times 10^{10} N/m^2$ (؟

)F=109.9 N(/_{\text{\gamma}}

س4- سلكان متماثلان طول احدهما 125cm (والآخر) فاذا قطع السلك الاول بتاثير قوه مقدارها 1489N (ما القوه اللازمة لقطع السلك الثاني؟

)F=489 N(/_E

0.4m(ما المطاوعة النسبية له 0.05m ساق طوله) 0.125 ما 0.125

سك من البرونز طوله 0.5m ومساحة مقطعه العرضي 0.3 0.4 سحب فاستطال ملك من البرونز طوله 0.4 0.4 أحسب معامل يونك للمعدن اعتبر التعجيل الارضي 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 أحسب معامل يونك للمعدن اعتبر التعجيل الارضي ما 0.4 0.

 $Y=10^{11} N/m^2$ / ϵ

الفصل الثالث

static fluids الموائع الساكنة

سنحاول دراسة الخواص الميكانيكية للموائع في حالة السكون)أي في حالة التوازن(، وينبغي ان يكون واضحاً ان المائع عندما يكون في حالة السكون فان الجزيئات التي يتكون منها المائع تكون في حالة حركة مستمرة عشوائية دائما.

المائع Fluid

1-3

يقصد بالمائع بانه المادة التي فيها قوى التماسك ضعيفة وغير قادرة على حفظ شكل معين للمادة. لذا تتحرك الجزيئات وتاخذ المادة شكل الوعاء الذي توضع فيه ، وينطبق هذا التعريف على السوائل

والغازات. وهي سهلة الاستجابة للقوى الخارجية التي تحاول تغيير شكلها.

هل تعلم

الزئبق هو المعدن الذي يوجد في الحالة السائلة ضمن درجة حرارة الغرفة ويعد مائعاً

والموائع لها دورا حيوي في حياتنا ، فنحن نتنفسها ، ونسبح خلالها وتدور في اجسامنا في الاوردة والشرايين وتتحكم باحوالنا المناخية وتطفو السفن على سطحها وتطير فيها الطائرات وتغوص فيها الغواصات لاحظ الشكل (3-1).

شكل (1-3)

2-3 ضغط المائع

لقد درست سابقا بان ضغط المائع) سائل او غاز (هو القوة المؤثرة عمودياً في وحدة المساحات ويمكننا التعبير عن ذلك رياضياً كالأتى:

حيث انP هو الضغط وانF هو القوة المؤثرة عمودياً في المساحة A والوحدات الشائعة لقياس الضغط هي N/m^2 ويطلق على هذه الوحدة باسكال Pascal(. فاذا اثرت قوة عمودية مقدارها 1N(في مساحة مقدارها $1m^2$ فان الضغط الناتج منها يساوي 1Pa (. وهذا هو تعريف الباسكال

المساحة الأفقية A على عمق h من سطح السائل كما هو مبين في الشكل) 2-3 (. ان القوة المؤثرة عمودياً في المساحة A هي وزن عمود السائل الذي ارتفاعه h ومساحة مقطعه العرضي A ، واذا اعتبرنا السائل غير قابل للانكباس فان كثافته ρ تبقى ثابتة.

شكل (2-3)

وعليه فان وزن عمود السائل يمثل القوة العمودية المؤثرة في المساحة أي ان.

$$F = \rho ghA$$

حيث g هو التعجيل الأرضى وان ضغط السائل على عمق h هو

$$P_h = \frac{F}{A} = \frac{\rho \, ghA}{A}$$

ضغط السائل = كثافة السائل لا التعجيل الارضى لا العمق

$$P_h = \rho gh$$

واذا كان هناك ضغط على سطح السائل كالضغط الجوي ρ_o مثلا الذي يتعرض له أي سائل موجود في وعاء مفتوح لاحظ الشكل (3-3) فعندئذ يجب ان يضاف الضغط الجوي الى ضغط السائل للحصول

على الضغط الكلي p عند نقطة داخل السائل. أي ان:

الضغط الكلي = الضغط الجوي + ضغط السائل

$$P = P_0 + P_h$$

$$P=P_{o}+\rho gh$$

شكل (3-3)

تذكر

ان للسائل صفتين هما عدم قابليته للانكباس وسهولة انزلاق جزيئاته على بعضها تمكنه من تسليط قوة على جدران الوعاء الذي يحويه وكذلك قوة نحو الاعلى . لذلك فان ضغط السائل لايؤثر الى الاسفل فقط بل يؤثر في جميع الاتجاهات .

ان هذا الضغط ينتج عنه قوة مقدارها) Pa (وهذه القوة تكون نفسها في جميع الاتجاهات على عمق h من سطح السائل فمثلما تؤثر هذه القوة نحو الاسفل هناك قوة مساوية لها بالمقدار تؤثر نحو الاعلى . لاحظ الشكل) 4-3 (

شكل (3-4)

مثال

احسب الضغط المتولد من قبل الماء على غواص على عمق 20m تحت سطح الماء علما ان كثافة الماء N/m^2 بوحدة N/m^2 .

الضغط = كثافة السائل x التعجيل الارضي x العمق $P = \rho g h$ $p =) 1000 kg / m^3 (x) 9.8 m/s^2 (x) 20m($

 $p = 196000N/m^2$

قياس الضغط الجوي

3-3

افراغ — خراغ — زنيق __ زنيق __ الضغط الجوي الضغط الجوي

شكل (3-5)

سبق لنا ان عرفنا ان للهواء الجوي ضغطاً ، وهو وزن عمود الهواء المسلط عموديا على وحدة المساحة من السطح . و يقاس الضغط الجوي بجهاز المرواز (البارومتر) الذي صممه العالم تورشلي لاحظ الشكل)3-5 (. وهو انبوبة زجاج مدرجة طولها متر واحد مفتوحة من احد طرفيها تملأ تماما بالزئبق ثم تنكس فوهتها في حوض فيه زئبق .تلاحظ استقرار الزئبق في الانبوب على ارتفاع معين اعلى من مستواه في الحوض تاركا فراغا في اعلى الانبوبة.

هل تعلم

احد التطبيقات البسيطة للفيزياءفي الطب هو جهاز ضغط الدم وهو عبارة عن مانوميتر زئبقي مع بعض الاضافات بحيث يقوم الطبيب بلف الرباط حول ذراع المريض (لاحظ الشكل اعلاه)ويدفع الهواء داخل الرباط بوساطة المضخة اليدوية ومع استعمال السماعة الطبية حيث يصبح ضغط الهواء اعلى من ضغط الدم فلا تسمع نبضات القلب . يقوم الطبيب بفتح الصمام فيخرج الهواء من الرباط فتسمع نبضات القلب. ويقيس الضغط الانقباضي(systolic) الذي هو حوالي 120 مليمتر زئبق وعند توقف سماع النبضات يقيس مايسمى بالضغط الانبساطي (diastolic) الذي هو حوالي مليم____ تر زئبق (للشخص الطبيعي) ومن النتائج التي توصل اليها تورشيلي ان الضيغط الجوي يتزن مع ضغط عمود الزئبق في النقاط التي تقصع على مستوي افقي واحد وهو مستوى سطح الزئيبة في الاناء الخارجي ويعادل ارتفاع عمود من الزئبة 76 cm عند سطح البحر وبدرجة حرارة صفر سيليزي، وان طول هذا العمود يتغير بتغير ارتفاع منطقة اجراء التجربة عن مستوى سطح البحر.

مثال

ما طول عمود الماء اللازم لمعادلة الضغط الجوي حيث ارتفاع عمود الزئبق يساوي) 76cm(3 الرئبق يساوي) الماء $1000kg/m^3$ وكثافة الزئبيق تساوي $13600 \ kg/m^3$

الحل

ضغط عمود الماء = ضغط عمود الزئبق

حيث:- water = **w**

mercury = **m**)زئبق

 $\rho_m gh_m = \rho_w gh_w$

13600×9.8×0.76=1000×9.8×h_w

 $h_{_{\! W}}\!\!=\!13.6\!\!\times\!\!0.76\!\!=\!\!10.33m$ ارتفاع عمود الماء

A pascal's Principle مبدأ باسكال

4-3

شكل (3-6)

لعلك لاحظت ان السائل المحصور عندما يسلط عليه ضغط خارجي ، فان هذا الضغط ينتقل بالتساوي لكل أجزاء السائل وجدران الإناء الذي يحويه لاحظ الشكل)3-6(.وهذا ما يسمى بمبدأ باسكال ، وهو من المبادئ المهمة في ميكانيك الموائع .

من الأجه_زة التي تعمل بضغط الريت كفرامل توقيف عجلات السيارات والمكابس والمطارق والرافعات الزيتية والشكل) 7-3 (والمطارق والرافعات الزيتية والشكل) يستعمل يوضح اساس عمل الرافعة الزيتية) يستعمل الزيت لان قابلية انضغاطه قليلة جداً (فهي تتألف من مكبسين واسطوانتين مختلفتين في مساحة المقطع متصلتين بأنبوب ومملوءتين بالزيت. عندما تؤثر قوة مقدارها F_1 في المكبس الصغير الذي مساحة مقطعه A_1 فالضغط المسلط على المكبس الصغير الصغير المغير المكبس الصغير المنعط المسلط على المكبس الصغير المنعط المسلط على المحسور المحميع اجزاء السائل المحصور الى جميع اجزاء السائل المحصور الى المنها ا

$$F_{1} = P_{1}A_{1}$$
 A_{1}
 P_{1}
 A_{2}
 P_{2}
 P_{2}
 P_{2}

شكل (3-7)

هل تعلم

ان السائل المستعمل في المكابس والمطارق والرافعة الزيتية يجب ان لا ينجمد ولا يصبح لزجا جدا في درجات الحرارة الواطئة كما انه يجب ان لا يتبخر منه شئ وغير سام وليس سريع الاشتعال

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

ومن هذه العلاقة يتضح ان :

$$F_2 = \frac{A_2}{A_1} \quad F_1$$

وهذا يعني ان مقدار القوة تتحكم بها النسبة بين مساحتي $\frac{A_2}{A_1}$ المكبسين $\frac{A_2}{A_1}$ فكلما ازدادت هذه النسبة ازدادت القوة الرافعة في المكبس الكبير

مثال

الرافعة الزيتية المستعملة في محطات الغسل والتشحيم علما ان مساحة مقطع الاسطوانة الرافعة الزيتية المستعملة في محطات الغسل والتشحيم علما ان مساحة مقطع الاسطوانة الصغيرة) $2000~cm^2$ (ومساحة مقطع الاسطوانة الكبيرة) $g = 10m/s^2$ على فرض ان $g = 10m/s^2$.

الحل :

 $F_2 = mg = 3000x10 = 30000 N$

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$F_2 = F_1 x \frac{A_2}{A_1}$$

$$30000N = \frac{F_1 \times 2000 \text{cm}^2}{15 \text{cm}^2}$$

 F_1 =225N القوة المسلطة على المكبس الصغير

مبدأ ارخميدس Archimedes' Principle

5-3

من المشاهدات المألوفة في حياتنا ان بعض الأجسام تطفو في السوائل كالزورق على سطح الماء ومنها تطفو في الهواء كالبالون المعلق في الجو .ان ذلك يشير بوضوح الى وجود قوة متجهه نحو الأعلى يسلطها المائع على الأجسام الطافية او المغم ورة فيه تسمى)قوة الطفو(.

اول من اكتشف هذه الظاهرة هو العالم اليوناني ارخميدس ، وقد وضع قاعدته المشهورة التي تنص على ما يآتى :

شكل (3-8)

مبدأ ارخميدس:

اذا غمر جسم جزئيا او كليا في مائع فانه يفقد من وزنه بقدر وزن المائع المزاح .

ولمعرفة قوة الطفو، وكيف تنشأ هذه القوة؟ لنفترض ان جسم صلب مكعب الشكل غمر تماماً في مائع كثافته ρ ومعلقا بميزان حلزوني. لاحظ الشكل-8(. بما ان الجسم مغمور كلياً في المائع، فان وزن السائل المزاح) الذي يمثل قوة الطفو(يساوي حجم الجسم المغمور -hA(مضروباً في كثافة السائل الوزنية $-\rho$ -0 (.

قوة الطفو = حجم الجسم المغمور ×كثافة السائل الوزنية

 $F_B = \rho ghA$

حيث : h : هو ارتفاع الجسم

A: مساحة القاعدة للجسم

 $9.8\,m\,/\,\mathrm{s}^2$ التعجيل الأرضى ويساوي : g

.(Buoyant force) قوة الطفو $:F_{\scriptscriptstyle B}$

و المعادلة اعلاه تمثل قاعدة ارخميدس ، اذ يمثل الطرف الايسر قوة الطفو والطرف الايمن يمثل وزن المائع المزاح أي ان:

قوة الطفو على جسم مغمور في مائع = وزن المائع المزاح

وبذلك نستطيع القول ان أي جسم عندما يغمر في مائع تؤثر فيه قوتان هما .

1 - وزنه) mg (ويكون متجهاً عمودياً نحو الاسفل

. قوة الطفو $F_{_{\!B}}$ وزن المائع المزاح (تكون متجهاً عمودياً نحو الاعلى - 2

وبالاستعانة بالشكل) c-b-a()9-3 (الذي يمثل جسما وضع في سوائل مختلفة :

مما تقدم يتضح انه يمكن صياغة قاعدة ارخميدس للاجسام المغمورة في سائل كليا او جزئيا كما ياتى.

الشكار) 9-3 (

)a - 10-3 (الشكل المغمورة كليا في سائل: من ملاحظة الشكل) 3-10-3 (المغمورة كليا في سائل: من ملاحظة الشكل)

قوة الطفو للسائل = وزن السائل المزاح وزن الجسم في الهواء — وزن الجسم في السائل = وزن السائل المزاح وزن الجسم في الهواء — وزن الجسم في السائل = حجم السائل المزاح X كثافة السائل الوزنية

Weight of displaced liquid \equiv Weight in air \equiv Weight in liquid

Weight $_{in \, air}$ \equiv Volume(V) \times density(ρ) \times g \equiv V ρ g

)a()10-3)الشكل

(b - 10 - 3) الأجسام الطافية ((b - 10 - 3) الأجسام الطافية ((b - 10 - 3)

وزن الجسم الطافي في السائل = صفر

وزن الجسم الطافي في الهواء - صفر = وزن السائل المزاح

 $ho_{
m w}$ وزن الجسم الطافي $W_{
m body}(=$ حجم الجزء المغمور) V(كثافة السائل الوزنية $ho_{
m w}$

: ان وحدة الحجوم اي ان $ho_{_{
m W}}$

$$\rho_{W} = \frac{W}{V}$$

$$W_{bodv} = V x \rho_m x g$$

علما ان ـُ

الكثافة الوزنية للجسم X حجم الجسم= الكثافة الوزنية للماء X حجم الجزء الغاطس

مثال1

تذكر

جسم يزن في الهواء g=10 (ويزن 4.55N عند غمره تماماً في الماء . احسب حجم الجسم ؟ علما ان كثافة الماء تساوي g=10 وان التعجيل الارضي يساوي: g=10

الحل

وزن الجسم في الهواء — وزن الجسم في الماء = حجم الجسم X الكثافة الوزنية للماء

 $W_{in \, air}$ - $W_{in \, water}$ = $Volume(V)x \, density(\rho)x \, g$

5 - 4.55 = Vx1000x10

0.45 = 10000 V

 $V = 0.45 \times 10^{-4} \, \text{m}^3$ حجم الجسم

* اذاكانت كثافة المائع اكبر من كثافة الجسم فان الجسم يطفو على سطح المائع .

* اذا كانت كثافة الجسم اكبر من كثافة المائع فان الجسم يغطس كليا في المائع .

* اذا كانت كثافة المائع تساوي كثافة الجسم فانه سيبقى معلقا في حالة توازن داخل المائع.

مكعب من الخشب طول حرفه 10cm وكثافته الوزنية $7840~N/m^3$ يطفو في الماء . ماطول الجزء الغاطس داخل الماء ؟

الحل

h = 1نفرض ان طول الجزء الغاطس من المكعب في الماء

وزن الجسم الطافي = وزن السائل المزاح وزن الجسم الطافي = حجم الجزء المغمور X كثافة السائل الوزنية

$$W_{body} = Vx(\rho_m x g)$$

الكثافة الوزنية للجسم X حجم الجسم = الكثافة الوزنية للماء X حجم الجزء الغاطس

$$) \rho V \left(_{body} = (\rho V) _{water} \right)$$

الكثافة الوزنية للماء = الكثافة الكتلية ×التعجيل الارضي

) 9.8
$$\frac{N}{kq}$$
 (x)1000 kg/m³ (= 9800 $\frac{N}{m^3}$

$$7840x)0.1(^{3} = h x)0.1(^{2} x)9800$$
$$h = \frac{784}{9800}$$

$$h = 0.08m$$
 طول الجزء الغاطس

الشد السطحي Surface Tension

6-3

تتأثر الجزيئات الداخلية المكونة للسائل بقوى تجاذب متساوية في جميع الاتجاهات ، بينما الجزيئات التي على سطح السائل فإنها تتعرض لمحصلة قوى تجذبها نحو الاسفل) داخل السائل (الأمر الذي يجعل سطح السائل يتصرف وكأنه غشاء رقيق ومرن وفي حالة توتر دائم ويعمل على تقليص المساحة السطحية للسائل إلى اقل ما يمكن لاحظ الشكل)3-11 (.

شكل (11-3)

ويعد الشد السطحي هو السبب في حدوث بعض الظواهر الفيزيائية فمثلا طفو الابرة فوق سطح الماء وسير الحشرات على سطح السائل ، واتخاذ قطرات الماء الساقطة شــــكلاً كروياً لاحظ الشـــكل)2-12 (.

شكل (12-3)

الخاصية الشعرية Capillary property

من المشاهد المألوفة التي تعزى للشد السطحي هي ظاهرة ارتفاع او انخفاض السائل في الانابيب الزجاجية الضيقة) الشعرية (والتي تدعى بالخاصية الشعرية.

فعندما يغمر احد نهايتي انبوبة زجاجية شعرية مفتوحة الطرفين بصورة عمودية في الماء لاحظ الشكل) a - 13 - 3 (فان الماء يرتفع داخل الانبوبة الى مستوى اعلى من مستواه خارج الأنبوبة . اما في الزئبق فيحدث العكس أي ينخفض مستواه داخل الأنبوبة عن مستواه خارج الانبوبة) لاحظ الشكل . b - 13 - 3 (.

ويعزى ارتفاع الماء في داخل الانبوب الشعري الى تغلب قوة تماسك جزيئات قوة تلاصق الماء مع الزجاج على قوة تماسك جزيئات الماء مع بعضها لاحظ الشكل)3-14(. اما بالنسبة للزئبق فان قوى التماسك بين جزيئاته اكبر من قوة تلاصقها مع الزجاج.

7-3

چه ستجدو مجانا على بوت تليكراو المعرف bot_

تذكر

- ان قوى التماسك هي قوة التجاذب بين جزيئات المادة نفسها أي جزيئات من النوع نفسه (الزئبق)
- ان قوى التلاصق هي قوة التجاذب بين جزيئات مختلفة ، ويختلف مقدارها باختلاف المواد مثل التصاق الماء بالزجاج.

ان للخاصية الشعرية اهمية عملية كبيرة منها!

- 1- ارتفاع المياه الجوفية خلال مسامات التربة ودلالتها ظهور الاملاح على سطح التربة.
 - 2- ارتفاع الماء خلال جذور النباتات وسيقانها .
 - 3- ترشيح الدم في كلية الانسان.
 - 4- ارتفاع النفط المستعمل في فتائل المدافئ النفطية

الخواص الميكانيكية للموائع المتحركة

8-3

ان الموائع المتحركة لها أهمية كبيرة في حياتنا اليومية ، كما يحدث لحركة الطائرة او الغواصة في الموائع او جريان الدم في الشرايين والأوردة او جريان الماء في الأنابيب . وتتميز الموائع بقدرتها على الجريان عندما تؤثر فيها القوى حتى لو كانت صغيرة. ولوصف جريان مائع ما عند لحظة ما ،فانه يجب معرفة كثافته وضغطه وسرعة جريانه. ولتسهيل دراسة الموائع سنفترض ان المائع مثالي) Ideal fluid (الذي يتصف بما يلي :

مميزات المائع المثالي

(2)

جريانه منتظم

ويعني سرعة جريان

دقائق المائع عند

نقطة معينة تبقى

ثابتة مع النزمن في

المقدار والاتجاه.

غير قابل للانكباس

أى لا يمكن ضغطه فكتافته تبقى ثابتـــة في اثنـــــاء جريانه.

عديم اللزوجة مقياسا للاحتكاك الداخيلي في المائع عند جربانه،لـــــذلك نفترض لزوجة المائع

(3)

غیر دورانی او أي ان جــريانه غير اضـطرابی ، أى لا تتداخل خصطوط جريانه فلل تتكون فیه دوامات.

دو امي

معادلة الاستمرارية في الموائع Continuity equation in fluids

شكل) 3-15 (

عند استعمالنا لخراطيم الماء في الرش واطفاء الحرائق وغسل السيارات فاننا نلاحظ انه كلما ضاق مجرى خروج الماء نحصل على سرعة تدفق كبيرة .وهذا يعني ان سرعة جريان الماء تزداد كلما ضاقت فوهة خروجه .

يبين الشكل) ρ (مائعا مثاليا كثافته) ρ (، يجري خلال انبوب افقي مساحة مقطعه غيرمنتظمة ،

اذ تبلغ مساحة مقطعه الكبير A_1 ومساحة مقطعه الصغير . A_2

وفي حالة الجريان الانسيابي تتحقق معادلة الاستمرارية التي تنص على ان:

معدل تدفق كمية المائع من أي مقطع داخل الانبوب يبقى ثابتا.

ويمكن التعبير عن معادلة استمرارية الجريان كما يأتي :

 $[{\cal U}_1]$ مساحة المقطع الصغير $({\bf A}_1)$ ×سرعة الجريان $({\cal U}_2)$ = مساحة المقطع الكبير (${\bf A}_1)$ ×سرعة الجريان (

$$\mathbf{A}_{1}\,\mathcal{V}_{1}=\mathbf{A}_{2}\,\mathcal{V}_{2}$$

حيث ان ـُـ

 A_1 هي سرعة المائع عند المقطع \mathcal{V}_1 هي سرعة المائع عند المقطع \mathcal{V}_2

وهذه العلاقة صحيحة على طول الانبوبة الافقية . وهي تشير الى ان سرعة الانسياب في أي نقطة تتناسب عكسيا مع مساحة المقطع في تلك النقطة . أي ان السرعة تزداد كلما ضاقت انبوبة الجريان .

مثال

يجري الماء في انبوبة افقية ذات مقطعين نصف قطر المقطع الكبير $2.5\,$ cm لل قطر المقطع الكبير مقطعه الصغير الذي نصف قطره 1.5 مامقدار سرعة جريان الماء في الانبوبة الضيقة .

الحل :

$$A_{1} \mathcal{V}_{1} = A_{2} \mathcal{V}_{2}$$

$$A_{1} = \pi r_{1}^{2} \quad A_{2} = \pi r_{2}^{2}$$

$$A_{1} = \frac{22}{7} \times r_{1}^{2} \quad x_{2}^{2} = \frac{22}{7} \times r_{2}^{2} = \frac{22}{7} \times r_{$$

 $v_2 \approx 555 \ cm \ / \ s$ سرعة جريان الماء في الانبوبة الضيقة $= 5.55 \ m \ / \ s$

معادلة برنولي Bernoulli's equation

10-3

لقد وجد العالم برنولي) في عام 1738 (ان ضغط المائع يتغير بتغير سرعته وعندما اشتق المعادله التي يطلق عليها اسمه افترض ان المائع عديم اللزوجة وغير قابل للانضغاط ويجري جريانا انسيابيا كما موضح في الشكل) 8-10 ولكي نحصل على العلاقة الرياضية التي تربط بين الضغط ولكي نحصل على العلاقة الرياضية التي تربط بين الضغط 8-10 (والارتفاع) 8-10 (عن مستوى افقي معين وسرعة المائع المثالي) 8-10 (. نفترض ان مائعا في انبوب مساحة مقطعه غير منتظمة ويختلف ارتفاع اجزائه عن مستوى معين .

شكل) 16-3

فاذا كان ضغط المائع عند النقطه A_1 (هو P_1 ومساحة مقطع الانبوبه A_1 وسرعة المائع . \mathcal{U}_2 ومساحة مقطع الانبوبة A_2 وسرعة المائع عند النقطة D_2 ومساحة مقطع الانبوبة D_2 ومساعة مركز المقطع D_2 عند مستوى افقي معين هو D_2 عن نفس المستوى هو وارتفاع مركز المقطع D_2 عن نفس المستوى هو وارتفاع مركز المقطع D_2

لذلك فان معادلة برنولي يمكن كتابتها بالصيغة الاتية :

مجموع الضغط والطاقة الحركية لوحدة الحجوم والطاقة الكامنة الوضعية لوحدة الحجوم تساوي مقدارا ثابتا في النقاط جميعها على طول مجرى المائع المثالى .

$$P_1 + \frac{1}{2} \rho \mathcal{V}_1^2 + \rho g h_1 = P_2 + \frac{1}{2} \rho \mathcal{V}_2^2 + \rho g h_2$$

علما ان ho هي كثافة المائع وهي ثابتة لان المائع غير قابل للانكباس

P+
$$\frac{1}{2}$$
 ρv^2 +pgh=constant

تطبيقات معادلة برنولي

Application of equation and Bernoulli's principle

11-3

a - مقياس فنتوري

ان انبوب فنتورى هو احد ابرز التطبيقات العملية لمعادلة برنولي التي يمكن بوساطته قياس سرعة مائع

كثافته ρ ، ينساب خلال انبوب افقي مساحة مقطعه ρ ، ينساب خلال انبوب افقي مساحة مقطعه متغيرة . ويقاس فرق الضغط بين النقطتين ρ ، ρ , ρ ,

شكل) 17-3 (شكل

$$P_1 - P_2 = \rho$$
 gh

مثال / في الشكل المجاور مقياس فنتوري

فاذا كان فرق الارتفاع في فرعى المانوميتر يساوي

0.075m احسب فرق الضغط بين مقطعي

 $13600~kg \ / \ m^3$ مقياس فنتوري علما ان ho للزئبق يساوى

الحل -

$$P_1 - P_2 = \rho gh$$

=)13600kg / $m^3(x)$ 9.8 N / $kg(x)$ 0.075 $m(x)$

 $P_1 - P_2 = 9.996 \times 10^3 \, N / m^2$ فرق الضغط بين مقطعي مقياس فنتوري

b - المرذاذ Atomizer

ان المرذاذ بانواعه المختلفة يعمل على وفق قاعدة برنولي . فعند نفخ الانبوبة الافقية الموضحة في الشكل) 3-18 (يؤدي الى خروج تيار هواء امام فتحة الانبوبة العموديةالمغمور طرفها السفلي في السائل مما يؤدي الى هبوط P_0 تخفيف P_1 الضغط P_2 داخل الانبوبة.ولكن الضغط الجوي P_3 المسلط على سطح السائل اكبر $P_0 > P_1$ فيرتفع السائل في الانبوبة العمودية الى الاعلى، وعندما يصل الى الفتحة يختلط مع تيار الهواء الذي يجرى في الانبوب الافقى فيعمل على تجزئة السائل الى قطرات صغيرة جدا) رذاذ (ويستعمل المرذاذ في تطبيقات كثيرة منها مرذاذ المبيدات وصبغ السيارات وقناني العطر والمازج)كاربوريتر (في السيارة وغيرها.

مخطط أنيوب فتثوري

شكل) 18-3 (شكل

ضغط اقل في الطفو و قوة الطفو قوة الطفو قوة الطفو قوة الطفو قوة الطفو قوة الطفو قوة الخرك قوة المقاومة ودمولتها

شكل) 19-3 (شكل

c- قوة رفع الطائرة Airplane lift force

ان الشكل الانسيابي لجناح الطائرة عندتحركها الى الامام يؤدي الى جريان تيار الهواء بنمطين مختلفين على سطحي جناح الطائرة مما يجعله يسير بسرعة اكبرعلى السطح العلوي للجناح منه على السطح السفلي لهذا السبب يكون الضغط على السطح الاسفل اكبر مما عليه في السطح الاعلى مما يؤدي الى تولد فرق في الضغط بين سطحي جناح الطائرة ونشوء قوة في الاتجاه العمودي تسمى قوة الرفع . قوة في الاتجاه القوة على رفع الطائرة لاحظ الشكل) 3-19 (.

اللزوجة Viscosity

ان اللزوجة في الموائع تقابل الاحتكاك بين سطوح الاجسام الصلبة. وتظهر اللزوجة في الموائع اثناء جريانها ، فالمواد التي تنساب بسهولة كالماء مثلا يقال ان لزوجتها صغيرة. والمواد التي لاتنساب بسهولة كالعسل والدبس والعصير المركزيقال ان لزوجتها كبيرة شكل)20-3-20(.

ومن ملاحظتك للشكل)20-3-b(

شكل) 20-3a (يبين موائع مختلفة اللزوجة

نجد ان سرعة سقوط الكرات في زيوت المحركات المختلفة اللزوجة تقل بزيادة لزوجتها.

ويقصد باللزوجة هو قوة الاحتكاك بين طبقات المائع الواحد وبين طبقات المائع وجدران الانبوب الذي يحتويها . وقد وجد تجريبيا ان لزوجة المائع تعتمد على :

- 1- نوع المائع
- 2- درجة حرارته

شكل) 20-3b (يبين موائع مختلفة اللزوجة

وان لزوجة السوائل تقل بارتفاع درجة حرارتها ،اذ بارتفاع درجة حرارة السائل تزداد طاقة حركة جزيئاته،كما يعمل على اضعاف قوى التماسك بينها ، ويقلل مقاومتها لحركة جزيئات السائل وبذلك تقل اللزوجة ، اما في الغاز. فان ارتفاع درجة الحرارة يزيد من احتمالية تصادم جزيئاته معا ، مما يعني زيادة مقاومة الجزيئات لحركة بعضها ،وهذا يعني زيادة لزوجة الغاز.

ما نوع زيت المحرك الذي تنصح سائق السيارة باستعماله شتاءً و صيفاً ، ولماذا ؟

کل ماتحتاجه ستجده مجاناً علی بوت تلیکرام المعرف stad4al_bot@ آمیئله

3

@11311

اسئلة

س1 - اختر العبارة الصحيحة لكل مما يلي:

القصال

1 - يبين الشكل المجاور سائل مهمل اللزوجة يجري جرياناً منتظماً في انبوب مساحة مقطعه متغيرة فأن:

b- ارتفاع السائل في الانبوب y يساوي ارتفاع السائل في الانبوبx

 A_2 معدل جريان السائل في المقطع A_1 اكبر من معدل جريانه في المقطع - c

d- ارتفاع السائل في الانبوب x اكبر من ارتفاع السائل في الانبوب y .

a- تزداد سرعة المائع وضغطه

b- تقل سرعة المائع وضغطه

c- تزداد سرعة المائع ويقل ضغطه

d- تقل سرعة المائع ويزداد ضغطه

a- مبدأ ارخميدس

b- مبدأ باسكال

c- تأثير برنولي

d- معادلة استمرارية الجريان

4- يتوقف مقدار الفقدان من وزن الجسم الغاطس في سائل على:

a- كتلة الجسم

b- وزن الجسم

c شكل الجسم

d- حجم الجسم

5- يستند مبدأ برنولي على:

a- قانون حفظ الطاقة

b- مبدأ ارخميدس

-c مبدأ باسكال

d- الانابيب الشعرية

3

اسئلة الفصل الثالث

- 6- يطلق اسم الموائع على السوائل و الغازات لامتلاكها خاصية الجريان بسبب:
 - b كبر المسافات البينية
- a كبر الاحتكاك الداخلي بين جزيئاتها
- d قلة الاحتكاك الداخلي بين جزيئاتها

- حبر القوة الجزيئية
- 7- للموائع قوة ترفع الاجسام المغمورة فيها الى الاعلى تسمى:
- b قوة الجاذبية

a - قوة الطفو

d - القوة الضاغطة

- c قوة الاحتكاك
- 8- احد التطبيقات التالية لا تعتمد على تأثير برنولي:
- b الطائرة

a - الزورق الشراعي

d - المرذاذ

- c المكبس الهايدروليكي
- 9- حوض سباحة طوله 100mوعرضه 20m وارتفاع الماء فيه 5m ، فان الضغط على قاعدة الحوض تساوي:
 - 95×10⁶ N/m² b

98×10² N/m² - a

49×10³ N/m² - d

- 49×10⁶ N/m² c
- 10- عند تدفق السائل في وعاء مغلق كما في الشكل المجاور . من خلال صنبور جانبي نلاحظ ارتفاع السائل في الأواني المختلفة بالمقدار نفسه ، يمكن تفسير ذلك تبعا لـ :
 - a مبدأ ارخميدس.
 - b مبدأ باسكال.
 - c الضغط الجوي.
 - d ضغط السائل.

کل ماتحتاجه بروت على بوت تليکرام المعرف stad4al_bot@

القصل الثالث

11- من الشكل المجاور اي من العلاقات التالية صحيحة:

- $h_3 = h_1 a$
- $h_3 \rightarrow h_1 b$
- $h_3 < h_1 c$
- $h_2 \rightarrow h_1 d$

12- اذا غمر جسم وزنه mg في سائل وبقى معلقاً داخل السائل في حالة توازن فأن قوة الطفو

- **F**_B
- $F_B > mg a$
- $F_B = mg b$
- $F_B < mg c$
- $F_R = 2mg d$
- 13-عند وصف الجريان المنتظم لمائع في لحظة ما ،يتطلب معرفة:
 - a كثافته ووزنه وضغطه
 - b كثافته وسرعة جريانه فقط
 - c كثافته وحجمه وضغطه
 - d ضغطه وكثافته وسرعة جريانه
- 14- لو غمر جسم في سائل وكانت كثافة هذا الجسم اكبر من كثافة السائل ،فالجسم:
 - a يطفو على سطح السائل
 - b يغطس كلياً في السائل
 - يبقى معلقاً داخل السائل وفي حالة توازن
 - d يبقى مغمورا جزئيا داخل السائل

س2- علل ما ياتي

- 1- يمكن وضع شفرة حلاقة على سطح ماء ساكن من غير ان تغطس؟
- 2- يلتصق قميص السباحة بجسم السابح عند خروجه من الماء ولا يلتصق اذا كان مغموراً فيه؟
- 3- عند الضغط بالاصبع على السطح الداخلي لخيمة اثناء هطول المطر ينساب الماء من ذلك الموضع؟

3

أسطلة القصل الثالث

- 4- تمتص المنشفة الرطبة الماء من الجلد اسرع من المنشفة الجافة ؟
 - 5- تقعر سطوح السوائل التي تلامس جدران الاوعية الشعرية ؟
- 6- تطاير سقوف الابنية المصنوعة من صفائح الالمنيوم في الاعاصير؟
- 7- يتألم السابح الحافي من الشاطئ الخشن ويقل المه كلما تغلغل في الماء ؟

المسائل

س1- حوض لتربية الاسماك على شكل متوازي مستطيلات طوله 20m وعرضه 12m وارتفاع الماء فيه 5m، احسب:

a- الضغط على قاعدة الحوض؟

d- القوة المؤثرة على القاعدة ؟

a) 49000N/m²/₂

b)F=1176×10⁴N

س2- اذا كانت قراءة المرواز الزئبقي $75 \, \mathrm{cm}$ ، فما مقدار الضغط الجوي بوحدة الباسكال $P = 99960 \, \mathrm{Pa}$

س3- مكبس في جهاز هيدروليكي مساحة مكبسه الكبير تبلغ 50 مرة بقدر مساحة مكبسه الصغير، فاذا كانت القوة المسلطة على المكبس الكبير 6000N، احسب القوة المسلطة على المكبس الصغير؟

 $F_1 = 120N / =$

س4- شخص يكاد ان يطفومغموراً باكمله في الماء فاذا كان وزن الجسم 600N، احسب حجمه على فرض ان g=10 m/s² ؟

 $v = 0.06m^3 / =$

س 5- جسم صلب وزنة بالهواء 20N وفي الماء 15N احسب حجم الجسم؟

 $v = 5 \times 10^{-4} \text{m}^3 / \text{m}^3$

س6- يتدفق الماء عبر المقطع الكبير لانبوبة بسرعة 1.2~m/s وعندما يصل المقطع الصغير $\sqrt{5}$, احسب النسبة بين قطري المقطعين؟

الفصل الرابع

الخصائص الحرارية للمادة

1-4

Quantity of Heat and Specific Heat كمية الحرارة والحرارة الثوعية للمادة

درست سابقاً ان المادة مكونه من جزيئات وهذه الجزيئات تمتلك طاقة حركية وكذلك طاقة كامنة وان مجموع الطاقة الحركية والطاقة الكامنة لهذه الجزيئات تسمى الطاقة الداخلية لها ، لذا فعندما

جسم بدارد جسم ساطن معادلة الدخلية للهمم الساطن اكبر من فطاقة الدخلية للهمم فبدارد

نسخن الاجسام فان معدل طاقتها الداخلية تزداد بزيادة درجة حرارتها وعليه فان كمية الحرارة التي تحتاجها المادة لتسخينها ورفع درجة حرارتها مقدارا معينا يعتمد على مقدار هذا التغير فتزداد بزيادته وتقل بنقصانه لاحظ الشكل (4-1). اي ان كمية الحرارة تتناسب مع التغير في درجة حرارة المادة.

شكل) 1-4 (شكل

اذا اخذنا مقادير مختلفة من مادة معينة ,وحاولنا رفع درجة حرارتها الى نفس الدرجة واننا نحتاج الى كميات متفاوتة من الحرارة تتناسب وكتل هذه المواد ,وبما ان كتلة المادة تعتمد على عدد الجزيئات المكونه لها وبالتالي تعتمد كمية الحرارة اللازمة لزيادة الطاقة الداخلية لهذه الجزيئات على كتلة المادة ,أي ان كمية الحرارة تتناسب وكتلة المادة .

واذا اخذنا كتلا متساوية من مواد مختلفة وحاولنا رفع درجة حرارتها بالمقدار نفسه نلاحظ انها تحتاج كميات متفاوتة من الحرارة، بالرغم من تساوي كتلها ومقدار التغير في درجة حرارتها .وهذا يعود الى اختلاف نوع المادة .

فاذا اعطينا كميتين متساويتين من الحرارة لكتلتين متساويتين من مادتين مختلفتين اليس من الضروري ان ترتفع درجة حرارتيهما بالمقدار نفسه فعلى سبيل المثال اذا اخذنا وعاء من الالمنيوم يحتوي كمية من الماء لهما نفس الكتلة ووضع على مصدر حراري اللحظ بعد فترة ان الوعاء اصبح ساخنا ولايمكن لمسه بينما الماء بداخله لايزال فاترا أي ان كمية الحرارة التي اكتسبها الوعاء احدثت ارتفاعا في درجة حرارته اكثر من الارتفاع الذي احدثته الكمية نفسها من الحرارة في درجة حرارة الماء بالرغم من تساوي كتلتيهما ال

نستنتج مما سبق ان كمية الحرارة اللازمة لتسخين جسم تعتمد على:

-1 كتلة الجسم ، -2 التغير في درجة حرارته ، -3 المصنوع منها. وبالتالى يمكن حساب كمية الحرارة Q(اللازمة لرفع درجة حرارة جسم كتلته m من درجة حرارة معينة الى درجة حرارة T_2 من خلال العلاقة التالية: T_1

كمية الحرارة = كتلة الجسم× الحرارة النوعية للمادة × التغير في درجات الحرارة

 $Q = mC_p \Delta T = mC_p)T_2 - T_1($

حيث ان C_{n} هي الحرارة النوعية للمادة مقاسة عند ضغط ثابت) P(وتعرف ً بانها كمية الحرارة اللازمة لرفع درجة حرارة كتلة كيلو غرام واحد من المادة درجة سيليزية واحدة وتقاس

> ومن الجدير بالذكر ان اشارة كل من Q ، ΔT موجبة عندما تكتسب المادة طاقة حرارية من المحيط فترتفع درجة حرارتها وتكون باشارة سالبة عندما تفقد المادة طاقة حرارية الى المحيط فتنخفض درجة حرارتها.

بوحدات Joule/kg.°C

2-4

هل تعلم

كمية الحرارة تقاس بوحدات السعرة والسعرة الحرارية الواحدة تساوى **4.2**J

1 سعرة =4.2J

Heat capacity السعة الحرارية

لقد ارتبطت الحرارة النوعية برفع درجة حرارة كيلو غرام واحد من الجسم درجة سيليزية واحدة. ولكننا نطلق على كمية الحرارة اللازمة لرفع درجة حرارة الجسم بكامله درجة سيليزية واحدة بالسعة الحرارية للجسم ويمكن حسابها من العلاقة الاتية.

> كمية الحرارة = كتلة الجسم × الحرارة النوعية × التغير في درجات الحرارة كمية الحرارة = السعة الحرارية × التغير في درجات الحرارة أي ان۔

السعة الحرارية = كتلة الجسم × الحرارة النوعية

 $C = mC_n$

حيث C هي السعة الحرارية للمادة ، وتعرف السعة الحرارية لكتلة معينة من المادة بانها: كمنة الحرارة اللازمة للفع درجة حرارة الكتابة حميعها من المادة درجة سرارينة واحدة ومحدة قياس

كمية الحرارة اللازمة لرفع درجة حرارة الكتلة جميعها من المادة درجة سيليزية واحدة ووحدة قياسها هي:Joule /°C

الجدول) 1 (يوضح الحرارة النوعية لمواد مختلفة

الحرارة النوعية <u>J</u> kg. °C	المادة	الحرارة النوعية <u>J</u> kg. °C	المادة
837	زجاج	4186	ماء نقي عند 15 °C ماء
500	الفولاذ	2093	0 ⁰ Cعليد
448	الحديد	2010	بخار الماء عند 100°C
387	النحاس	1750	خشب
234	الفضة	900	الالمنيوم

تذكر

تعتمد الحرارة النوعية على نوع المادة فقط وتختلف السعة الحرارية باختلاف كتلة الجسم والحرارة النوعية لمادته

ما مقدار الطاقة الحرارية اللازمة لرفع درجة حرارة 3kg من الالمنيوم من $(25\,^\circ C)$ الى ما مقدار الطاقة الحرارة النوعية للالمنيوم $(25\,^\circ C)$

الحل

مثال 1

m = 3kgكتلة الالمنيوم

 T_1 =15 o C درجة الحرارة الابتدائية) قبل التسخين (للالمنيوم T_2 =25 o C درجة الحرارة النهائية) بعد التسخين (للالمنيوم C_{ρ} = 900 J / kg . o C

وطبقا للمعادلة :

$$Q = m C_{p} T_{2}-T_{1} ($$

$$Q = 3kg \times 900 \text{ J/kg °C} \times (25-15) (°C)$$

$$Q = 27000 \text{J} \text{ about the proof of the proof$$

ومن ملاحظتك للجدول) 1 (تجد ان الحرارة النوعية للماء اكبر منها لجميع المواد المستعملة في حياتنا اليومية . يساعدنا هذا في تفسير الكثير من الظواهر الطبيعية، وكما يفيد في العديد من التطبيقات الحياتية منها:

1 - تأثيره على المناخ) نسيم البر والبحر (لاحظ الشكل (2-4).

- 2 استعماله في عملية تبريد محرك السيارة.
- 3 تبريد الالات في المصانع باستعمال الماء.

شكل) 2-4

مثال2 ما السعة الحرارية لقطعة من الحديد كتلتها 4kg وحرارتها النوعية 448 ? 448 الحل :-

السعة الحرارية = الكتلة الحرارة النوعية $C = mC_{D}$

 $C = 4kg \times 448J/kg.$ °C = 1792 Joule / °C السعة الحرارية

هل تعلم تقاس الطاقة الحرارية بوحدات الجول، فلو احترق عود ثقاب لأنتج قرابة 2000.

سؤال

اذا كان لديك ثلاث قطع معدنية مختلفة وزودت بكمية الحرارة نفسها فارتفعت درجة حرارتها كما مبين في الشكل التالي فاي القطع لها سعة حرارية اكبر؟ فسر اجابتك؟

 $\Delta T = 5^{\circ}C$

ΔT=9°C

 $\Delta T = 3^{\circ}C$

Thermal equilibrium الاتزان الحراري

3-4

كما هو معروف ان الحرارة نوع من انواع الطاقة والطاقة لاتفنى ولاتستحدث ,فان الحرارة ايضا لاتفنى ولاتستحدث بل تنتقل من جسم الى اخر .وعلى فرض ان الجسمين معزولين حراريا عن الوسط الذي حولهما) أي لايوجد تبادل مع الوسط المحيط (لاحظ الشكل) 4-3 (وحينئذ نقول ان الجسمين في حالة اتزان حراري كذلك عند مزج سائلين معاً تنتقل الحرارة من الجسم الساخن الى الجسم البارد ويستمر التدفق الحراري حتى تتساوى درجة حرارة السائلين ويحدث اتزان حراري في النظام المعزول أي

كمية الحرارة المكتسبة = كمية الحرارة المفقودة

تكون:

Heat lost = Heat gained

شكل(4-3

ومن الجدير بالذكر ان قياس الحرارة النوعية لمادة معينة يتم باستعمال المسعر كحاوية للماء معزولة حرارياً ويتركب المسعر لاحظ الشكل) 4-4 من وعاء رقيق مصنوع من فلز جيد التوصيل للحرارة مثل النحاس ويحيط به وعاء اخر من الفلز نفسه وتفصل بينهما مادة عازلة للحرارة مثل اللباد او نشارة خشب من اجل عزل الاناء الداخلي ومحتوياته عن الوسط المحيط به حرارياً وله غطاء به فتحتان الاولى لادخال المحرار والثانية لادخال المحرك لتحريك المواد الممزوجة معاً.

شكل) 4-4 (شكل

مثال1

مكعب من الالمنيوم كتلتة)0.5kg(عند درجة حرارة $)100^{\circ}C($ وضع داخل وعاء)0.5kg(من الماء عند درجة حرارة $)20^{\circ}C($,)افترض عدم حصول ضياع للطاقة الحرارية الى المحيط () احسب درجة الحرارة النهائية)الالمنيوم والماء () عند حصول التوازن الحراري)اي تتساوى درجة حرارة الالمنيوم والماء ()

)900J/kg °C(والحرارة النوعية للماء)4200 J/kg °C والحرارة النوعية للالمنيوم)J/kg °C والحرارة النوعية للالمنيوم)

 $T_f^{\,\,\circ}C$ = نفرض ان درجة الحرارة النهائية للمجموعة $T_f^{\,\,\circ}C$) 100 $-T_f^{\,\,\,\circ}C$ فأن درجة حرارة الالمنيوم تنخفض بمقدار $T_f^{\,\,\,\circ}C$) $T_f^{\,\,\,}-20$ ($T_f^{\,\,\,}$ 0) $T_f^{\,\,\,}$ 0) نطبق المعادلة الاتية:

كمية الطاقة الحرارية التي يفقدها الالمنيوم = كمية الطاقة الحرارية التي يكتسبها الماء

Water=w , Aliminum=A $m_{_{\!W}}.C_{_{\!P\!W}})T_{_{\!f}}-20(_{_{\!W}}=m_{_{\!A}}\times C_{_{\!P\!A}})100-T_{_{\!f}}(_{_{\!A}}$ $1\times4200)T_{_{\!f}}-20(=0.5\times900\times)100-T_{_{\!f}}($ $4200T_{_{\!f}}-84000=45000-450T_{_{\!f}}$ $T_{_{\!f}}=129000/4650$ $T_{_{\!f}}=27.7\,^{\circ}C$ acceptable in the state of the state

مثال2

احسب السعة الحرارية لمسعر من النحاس فيه ماء كتلته100g بدرجة حرارة $10^{\circ}C$ أضيف إليه كمية ماء اخرى كتلتها100g بدرجة حرارة 100g فأصبحت درجة حرارة الخليط النهائية 100g؟

الحل : نفرض ان السعة الحرارية للمسعر هي C

كمية الحرارة المكتسية

كمية الحرارة التي اكتسبها الماء البارد = الكتلة الحرارة النوعية للماء لا التغير في درجات الحرارة

$$Q_{1} = mC_{p} T_{2} - T_{1}$$

$$= 0.1 \times 4200 \times 38 - 10($$

 $Q_1 = 11760 J$ كمية الحرارة التي اكتسبها الماء

كمية الحرارة التي اكتسبها المسعر=السعة الحراريةللمسعر التغير في درجات الحرارة

$$Q_2 = C (T_2 - T_1) \Rightarrow Q_2 = C (38 - 10)$$

 $Q_2 = 28 C$

كمية الحرارة المفقودة

كمية الحرارة التي فقدها الماء الساخن = الكتلة × الحرارة النوعية × التغير في درجات الحرارة

$$Q_{3} = mC_{p} \times T_{f} - T_{1}($$

$$= 0.1 \times 4200 \times 38-80($$

$$Q_{3} = -17640$$

عند الاتزان الحراري

 Q_3 (المفقودة الحرارة المكتسبة Q_3 + Q_2 + Q_3)

كمية الحرارة التي اكتسبها الماء والمسعر= كمية الحرارة التي فقدها الماء الساخن

$$Q_3 = Q_1 + Q_2$$

$$7640 = 11760 + 281$$

$$C = \frac{5880}{28}$$

$$C = 210 \text{ J/} ^{\circ}\text{C}$$

السعة الحرارية للمسعر

4-4

تاثير الحرارة على المواد

تمدد المواد بالحرارة:

عند رفع درجة حرارة المادة الصلبة او السائلة او الغازية يزداد معدل الطاقة الحركية للجزيئات فيزداد التباعد فيما بينهما فيحصل التمدد ولكن هذا التمدد يختلف باختلاف حالة المادة فتمدد الغازات يكون اكبر مما هو عليه في السوائل وتمدد السوائل اكبر مما هو عليه في الصلب اذا كانت الحرارة المكتسبة متساوية للحالات الثلاثة للمادة.

a. تمدد المواد الصلبة

التمدد يعنى زيادة في ابعاد المادة وعليه فهناك.

- تمدد طولي أي زيادة في طول الساق) التمدد في بعدواحد(
- تمدد سطحي أي زيادة في مساحة السطح)التمدد في بعدين(
 - **تمدد حجمي أي زيادة في حجم الجسم) تمدد في ثلاثة ابعاد**

التمدد الطولي

نفرض ان الطول الاصلي لجسم هو Lوبزيادة درجة الحرارة بمقدار فرض ان الطول الاصلي لجسم هو Δ وقد اثبتت التجارب ان التغير في الطول يتناسب طرديا مع التغير في درجات الحرارة والطول الأصلي ونوع المادة لاحظ الشكل Δ (. لذا يمكن كتابة معادلة التغير في الطول على النحو الأتي:

شكل) 5-4 (شكل

التغير في الطول = معامل التمدد الطولي×الطول الأصلي×مقدار التغير في درجة الحرارة

$\Delta L = \alpha L \Delta T$

حيث ان۔

الطول الجديد - الطول الاصلي ΔL

معامل التمدد الطولى ويعطى بالعلاقة التالية: α

$$\alpha = \frac{1}{L} \times \frac{\Delta L}{\Delta T}$$

وعليه يمكن تعريف معامل التمدد الطولي lpha على انه:

شكل) 6-4 (شكل

مقدار الزيادة الحاصلة في وحدة الاطوال من المادة عند تسخينها درجة سيليزية واحدة ويقاس بوحدة 1/c وهو يختلف باختلاف المواد لاحظ الجدول) 2(

الجدول (2) معامل التمدد الطولى لبعض المواد

$1/^{\circ}$ C ($lpha$ معامل التمدد الطولي	المادة
24×10 ⁻⁶	الالمنيوم
17×10 ⁻⁶	النحاس
≈12×10 ⁻⁶	الفولاذ
9×10 ⁻⁶	الزجاج
29×10 ⁻⁶	الرصاص
12×10 ⁻⁶	الاسمنت

التمدد السطحى

تزداد مساحة أي سطح عندما ترتفع درجة حرارته. وعلى هذا الاساس تزداد المساحة السطحية A بمقدار ΔA نتيجة لارتفاع درجة الحرارة بمقدار ΔT , لاحظ الشكل ΔA . لذا فان :

التغير في المساحة = معامل التمدد السطحي×المساحة الأصلية ×مقدار التغير في درجة الحرارة

$$\Delta A = \gamma A \Delta T$$

حيث ان:

المساحة الجديدة - المساحة الأصلية ΔA

يسمى الرمز γ معامل التمدد السطحي ويعطى بالعلاقة الاتية.

$$\gamma = \frac{1}{A} \times \frac{\Delta A}{\Delta T}$$

شكل) 7-4 (شكل

وعليه يمكننا تعريف معامل التمدد السطحي ٧ والذي يلفظ)كاما(على انه:

مقدار الزيادة الحاصلة في وحدة المساحة من الجسم عندما ترتفع درجة الحرارة درجة سيليزية واحدة. ويقاس بوحدات $1/^{\circ}C$ ، ليكن معلومًا ان.

lphaمعامل التمدد السطحي $\gamma=$ ضعف معامل التمدد الطولي

أي ان:

$$\gamma = 2 \alpha$$

التمدد الحجمي

تغير حجم المادة مع تغير درجة الحرارة يوصف بوساطة معامل التمدد الحجمي للمادة) β (لاحظ الشكل) β -8 (.

وهكذا يزداد حجم المادة V بمقدار ΔV نتيجة لارتفاع درجة الحرارة بمقدار ΔT ، لذا فان:

شكل) 8-4 (

التغير في الحجم = معامل التمدد الحجمي لاالحجم الاصلي لا مقدار التغير في درجة الحرارة

$\Delta V = \beta V \Delta T$

 $\Delta V = V_2 - V_1$:ديث ان

التغير بالحجم) $\Delta V($ = الحجم الجديد - الحجم الاصلي يسمى الرمز eta معامل التمدد الحجمي ويعطى بالعلاقة الاتية:

$$\beta = \frac{1}{V} \times \frac{\Delta V}{\Delta T}$$

وعليه يمكننا تعريف معامل التمدد الحجمى eta على انه مقدار الزيادة الحاصلة في وحدة الحجم من

المادة عند ارتفاع درجة حرارتها درجة سيليزية واحدة.ويقاس بوحدات $1/\circ C$

ليكن معلوماً ان:

) $\alpha(=\beta)$ التمدد الحجمي) $\beta(=\beta)$ الثنة امثال معامل التمدد الطولي

أي ان

B = 3a

تطبيقات على تمدد المواد الصلبة بالحرارة:-

لقد تمت الاستفادة من ظاهرة تمدد المواد بارتفاع درجة الحرارة وتقلصها بانخفاض درجة الحرارة في الكثير من التطبيقات العملية ومنها الضابط الاوتوماتيكي الحراري في الاجهزة الكهربائية مثل الثلاجة والمكواة والمجمدة وجهاز انذار الحريق. اذ يستعمل شريط ثنائي المعدن Bimetalic strip لاحظ الشكل) 4-9(للسيطرة على فتح وغلق الدائرة الكهربائية .

شكل) 9-4

فالمعدن ذو معامل التمدد الأكبر ينحني حول المعدن ذو معامل التمدد الأقل عند ارتفاع درجة الحرارة مسبباً فتح الدائرة الكهربائية للجهاز وعندما تنخفض درجة حرارته يرجع بصورة مستقيمة لغلق الدائرة وتشغيلها مرة ثانية . لاحظ الشكل)4-0(

شكل) 10-4 (شكل

ومن التطبيقات المهمة على ظاهرة اختلاف تمدد المواد الصلبة بالحرارة .

- الاستفادة من مادتين مختلفتين لهما معامل تمدد حراري متساوي اذ يستثمر ذلك في صناعة المصابيح الكهربائية ، اذ يمتلك زجاج المصباح معامل تمدد حراري مساوٍ لمعامل التمدد الحراري للسلك المستعمل فان السلك الحامل لخويط المصباح والمغمور طرفه الأخر في زجاج المصباح عند تمدده يتمدد الزجاج بالمقدار نفسه لمنعها من كسر قاعدة المصابيح الزجاجية لاحظ الشكل)4-11(.
- كما روعي في تصميم الانشاءات تمدد المواد بالحرارة تجنبا للمخاطر وذلك عن طريق وضع فراغات او فواصل مناسبة في الجسور وترك مسافات بين خطوط سكك الحديد شكل)12-4

شكل) 11-4 (شكل

هل تعلم

شكل) 12-4 (شكل

ان زجاج البايركس يتحمل التغيرات السريعة في درجات الحرارة دون ان ينكسر وذلك لكون معامل تمدده الطولي صغير قياساً لما هو عليه في حالة الزجاج الاعتيادي .

b. تمدد السوائل بالحرارة Thermal expantion of liquids

مثلما تتمدد المواد الصلبة بارتفاع درجة الحرارة ، فان السوائل تتمدد بها ايضاً وللتعرف على تمدد السوائل نجري النشاط الاتي:

كُشُّكُ المدد السوائل بالحرارة

الأدوات: دورق زجاج ، وعاء كبير ، انبوب زجاج رفيع الشكل مفتوح الطرفين، سدادة مطاط ينفذ منها الانبوب، ماء ملون، مصدر حراري .

الخطوات:

1- نملاً ثلاثة ارباع الوعاء تقريبا بالماء ثم نقوم بتسخينه بوساطة المصدر الحرارى.

2- نملاً الدورق بالماء الملون ثم نغلقه بوساطة السدادة كما في الشكل)a-13-4(,ونثبت علامة عند سطح الماء في الانبوب.

شكل) 13-4 (شكل

3- نضع الدورق في الوعاء ونراقب مايحدث لارتفاع الماء في الأنبوب.

عند بدء التسخين ينخفض سطح الماء قليلاً في الانبوب بسبب تمدد زجاج الدورق اولا فيزداد حجمه لذلك ينخفض مستوى الماء شكل)b-13-4(ليحل محله الفراغ الناتج عن الزيادة في حجم الدورق.وعندما تصل الحرارة عبر زجاج الدورق الى الماء يتمدد ويرتفع في الانبوب بسبب زيادة حجمه شكل)C-13-4(ولكن التمدد الحجمي للسوائل اكبر من التمدد الحجمي للمواد الصلبة للتغير نفسه في درجات الحرارة وبسبب تمدد الوعاء الذي يحوي السائل فان التمدد الذي نشاهده ونقيسه يكون اقل من التمدد الحقيقي ويسمى التمدد الظاهري.

لذلك يمكن تعريف كل من:

معامل التمدد الحجمي الظاهري $eta_{_{V}}$ (للسائل الذي في وعاءً. هو نسبة الزيادة الظاهرية في الحجم لكل درجة سليزية واحدة.

معامل التمدد الحجمي الحقيقي) eta_r (للسائل الذي في وعاءً. هو نسبة الزيادة الحقيقية في الحجم لكل درجة سليزية واحدة.

ويكون من الضروري معرفة مايلي.

 $oldsymbol{eta}_{\scriptscriptstyle V}$ معامل التمدد الحقيقي للسائل $oldsymbol{eta}_{\scriptscriptstyle T}$ معامل التمدد الحقيقي للسائل

كما ان:

معامل التمدد الحقيقي للسائل (β_{r}) = معامل التمدد الظاهري (β_{r}) + معامل التمدد الحجمي للأناء

 $\beta_r = \beta_v + 3 \alpha$

حيث ان α هو معامل التمدد الطولي للاناء

ويبين الجدول) 3 (معامل التمدد الحجمي لبعض السوائل جدول) 3

eta معامل التمدد الحجمي eta / 0 C	المادة
1.12	الكحول
9.6	البنزين
4.85	غليسرين
1.85	زئبق

فكر

عند وضع محرار زئبقي في سائل ساخن فانه ينخفض قليلا في البداية ثم يرتفع فسر ذلك؟

مثال

مُليءَ خزان بنزين السيارة حجمه 60 litter بالبنزين تماما حينما كانت درجة الحرارة

 $45^{\circ}C$ ثم تركت السيارة تحت اشعة الشمس ساعات عدة الى ان اصبحت درجة حرارة الخزان $25^{\circ}C$ احسب حجم البنزين المتوقع ان ينسكب من الخزان) اهمل تمدد الخزان(؟

الحل:

$$\beta$$
= 9.6×10⁻⁴ $\frac{1}{^{\circ}C}$ من الجدول) 3 (نجد ان معامل التمدد الحجمي للبنزين هو

$$\Delta T = T_2 - T_1$$

$$\Delta T = 45 - 25 = 20^{\circ}C$$

$$\beta = \frac{1}{V} \frac{\Delta V}{\Delta T}$$
 معامل التمدد الحجمي للبنزين ΔT

$$\Delta V = V \beta \Delta T$$

$$\Delta V = 60 \times 9.6 \times 10^{-4} \times 20$$

حجم البنزين المنسكب $\Delta V = 1.152$ Litter

C. تمدد الغازات

تمدد الغازات أكثر من تمدد السوائل واكثر من المواد الصلبة بسبب قلة القوى الجزيئية بين جزيئاتها. وتمتاز الغازات بتساوي معامل التمدد الحجمي لجميعها عند ثبوت الضغط وقد ثبت ان تمدد الاناء الحاوي على الغاز بتاثير الحرارة يكون صغيراً جداً قياسا لتمدد الغاز نفسه عندها يمكن اهمال تمدد الاناء وبهذا يعد التمدد الظاهري للغازات تمدداً حقيقياً.

تغير حالة المادة

5-4

الحرارة الكامنة للانصهار Latent heat of fusion

ان لكل مادة نقية درجة انصهار خاصة بها ، وان الانواع المختلفة من المواد تحتاج الى كميات مختلفة من الحرارة لانصهار الكتل المتساوية منها.

وتسمى كمية الحرارة اللازمة لتحويل وحدة الكتل من حالة الصلابة الى حالة السيولة و بدرجة الحسرارة نفسها) $0^{\circ}C$ وبثبوت الضغط بالحرارة الكامنة للانصهار وتقاس بوحدات J/kg

ويمكن حساب كمية الحرارة اللازمة لصهر كتلة معينة شكل) 4-4 (على وفق العلاقة التالية : من مادة معينة وعند درجة انصهارها لاحظ الشكل) 4-4 (على وفق العلاقة التالية :

كمية الحرارة اللازمة لأنصهار المادة = الكتلة 🛪 الحرارة الكامنة للانصهار

 $Q = m \times L_{f}$

حيث ان m تمثل كتلة الجسم L_{t} تمثل الحرارة الكامنة للانصهار

والجدول) 4 (يبين درجة انصهار بعض المواد وكذلك الحرارة الكامنة لانصهارها

الجدول)4(

الحرارة الكامنة للانصهارkJoule/kg	درجة الانصهار °C	المادة
335	0	جليد
321	658.7	المنيوم
175	1083	نحاس
96	1535	حديد

مثال1

 0° C بدرجة حرارة اللازمة لتحويل قطعة من الجليد كتلتها 25g بدرجة حرارة الى ماء عند درجة الحرارة نفسها .

الحل

كمية الحرارة =الكتلة ×الحرارة الكامنة للانصهار

 $Q=mL_f$

Q =)25/1000(X 335)

 $Q = 8.375 \; kJ$ كمية الحرارة اللازمة

مثال2

احسب كمية الحرارة اللازمة لتحويل 2kg من الجليد بدرجة $15^{\circ}C$ - الى ماء بدرجة حرارة $0^{\circ}C$ علما ان الحرارة النوعية للماء 4200J/kg $^{\circ}C$ والحرارة الكامنة لانصهار الجليد عند $25^{\circ}C$ هي: $335 \ kJ/kg$ والحرارة النوعية للجليد تساوي $335 \ kJ/kg$.

لرفع درجة حرارة الجليد $^{\circ}C$ - إلى $^{\circ}C$ يلزم تزويده بكمية من الحرارة مقدارها يساوى.

كمية الحرارة =الكتلة ×الحرارة النوعية للجليد ×فرق درجات الحرارة

$$Q_1 = m C_{ice} \Delta T$$
=2 x 2093x[0 -)-15(]
=2 x 2093 x 15
=30 x 2093
$$Q_4 = 62790 \text{ Joule}$$

لتحويل الجليد الى ماء عند درجة حرارة 0° يلزمنا تزويده بكمية من الحرارة مقدارها يساوي :

كمية الحرارة =الكتلة 🗷 الحرارة الكامنة لانصهارالجليد

$$Q_2 = m L_f$$
=2 x 335 kJ/kg
$$Q_2 = 670000$$
 Joule

ولرفع درجة حرارة الماء من 0° الى 25° نزوده بكمية من الحرارة مقدارها يساوى.

كمية الحرارة =الكتلة ×الحرارة النوعية للماء × فرق درجات الحرارة

$$Q_3 = m \times C_{water} \times \Delta T$$

=2 x 4200 x)25-0(
=50 x 4200
 $Q_3 = 210000$ Joule

ولحساب كميات الحرارة التي تم تزويد الجليد بها حتى اصبح ماء بدرجة حرارة 25°C يساوي:

$$Q_{total} = Q_1 + Q_2 + Q_3$$

= $62790 + 670000 + 210000$
 $Q_{total} = 942790 Joule$ كمية الحرارة الكلية

النبغر a منافقات المنافقات المنافقا

شكل) 15-4 (شكل

الحرارة الكامنة للتبخر latent heat of vaporization

لقد درست سابقا ان التبخر يحصل عند سطح السائل وباي درجة حرارة شريطة ان تكون جزيئات السائل القريبة من السطح قد اكتسبت طاقة حركية كافية تجعلها تتغلب على القوة الموجودة بينها، فتتبخر وتصبح حرة الحركة فتنطلق خارج سطح السائل على شكل بخار. لاحظ الشكل) a-15-4

أما في حالة الغليان فان جزيئات السائل جميعها)وليس فقط السطحية منها (تكتسب طاقة حركية تجعلها تتغلب على القوة الموجودة بينها ، فتتصاعد بشكل بخار لاحظ الشكل)b-15-4(

وتسمى درجة الحرارة التي تبدأ عندها المادة بالتحول من الحالة السائلة الى الحالة الغازية بدرجة حرارة الغليان. وهي من الخواص الفيزيائية المميزة للمادة ، حيث ان لكل مادة نقية درجة حرارة غليان خاصة بها عند ضغط جوى معين.

وتسمى كمية الحرارة اللازمة لتحويل وحدة الكتل من المادة من حالة السيولة الى الحالة الغازية

شكل) 4-16(

عند درجة الغليان بالحرارة الكامنة للتبخرلاحظ الشكل)4-16 (

ولكل مادة نقية درجة غليان خاصة بها. ويمكن حساب كمية الحرارة اللازمة لتحويل كتلة من سائل ما الى الحالة الغازية دون تغير درجة حرارتها بالعلاقة التالية:

كمية الحرارة اللازمة لتحويل كمية من السائل الى بخار بالدرجة نفسها = الكتلة ×الحرارة الكامنة للتبخر

 $Q = m L_v$

حيث ان

m تمثل كتلة الجسم

kJ/kg تمثل الحرارة الكامنة للتبخر وتقاس بوحدات L_{V}

والجدول 5 (يبين درجة غليان بعض المواد والحرارة الكامنة للتبخر.) 5 (الجدول 5

الحرارة الكامنة للتبخر kJ/kg	درجة الغليان °C	المادة
2260	100	الماء النقي
284	357	الزئبق
4820	2300	النحاس
6290	3000	الحديد
2360	2100	الفضة

مثال

الى بخار درجة 3kg الى بخار درجة 3kg الى بخار درجة حرارته 3kg الى بخار درجة حرارته 3kg الى بخار درجة علماً ان الحرارة النوعية للماء تساوي 3kg والحرارة الكامنة لتبخر الماء 3kg والحرارة النوعية لبخار الماء 3kg

الحل:

كمية الحرارة الكلية = كمية الحرارة اللازمة لتسخين الماء من $^{\circ}$ 20 إلى $^{\circ}$ 100 + كمية الحرارة اللازمة لتحويل الماء الى بخار عند درجة حرارة $^{\circ}$ 100 + كمية الحرارة اللازمة لرفع درجة حرارة بخار الماء من $^{\circ}$ 100 الى $^{\circ}$ 100 الماء من $^{\circ}$

$$Q_{total} = Q_1 + Q_2 + Q_3$$

$$= mc T_2-T_1(+mL_v+mc)T_3-T_2($$

$$=3\times4200\times)100-20(+3\times2260\times10^{3}+3\times2010\times)110-100($$

$$Q_{total} =) 7848300 (J)$$

طرائق انتقال الحرارة methods of heat transferes

6-4

1-التوصيل

2-الحمل

3-الاشعاع

لقد مربك في صفوف سابقة ان الحرارة تنتقل من جسم لاخر بطرائق ثلاث هي.

شكل) 17-4 (شكل

انتقال الحرارة بالتوصيل Thermal conduction

مر بك سابقا أن الحرارة تنتقل في المواد الصلبة بطريقة التوصيل ويتفاوت المعدل الزمني للطاقة الحرارية المنقولة من مادة الى اخرى حسب التركيب الداخلي للمادة وتعد الفلزات مواد جيدة التوصيل الحراري ويعود ذلك الى احتوائها على الالكترونات الحرة وتقارب ذراتها بينما تنتقل الحرارة على نحو ضعيف في المواد رديئة التوصيل مثل الخشب والمطاط وغيرها لاحظ الشكل)4-8(

شكل) 4-18 (

التوصيلية الحرارية Thermal conductivity

ان مقدار الطاقة الحرارية المنتقلة خلال جسم ما بطريقة التوصيل يعتمد على خاصية تدعى التوصيلية الحرارية للمادة فلو اخذنا حالة انسياب الطاقة الحرارية خلال ساق معدنية طولها m(L) ومساحة مقطعها العرضى m(L) معزولة عزلا حراريا عن المحيط)محاطة بمادة عازلة حرارياً عن المحيط(ويوضع احد طرفي الساق المعدني على لهب لاحظ الشكل)4-91 (والطرف الاخر يوضع في اناء فيه جريش من الثلج بدرجة $0^{\circ}C$ ويتطلب خلال عملية التسخين المحافظة على بقاء الفرق في درجات الحرارة ثابتا ومستمرا.

شكل) 4-19 (شكل

ان مقدار التغير في درجة حرارة الموصل في كل متر من طوله حينما تنتقل الحرارة عموديا على مساحة مقطعه العرضي يسمى الانحدار الحراري) Thermal gradient(.

Thermal gradient = temperature difference/length of object ΔT $\frac{\Delta T}{U} = \frac{U}{U}$ U

ومن هذا نجد انه كلما زاد الانحدار الحراري يزداد مقدار انسياب الطاقة الحرارية . ويمكن التعبير عن المعدل الزمني لانتقال الطلطاقة الحرارية وفق العلاقة الآتية لاحظ الشكل 20-4 (:

شكل) 20-4

المعدل الزمني لانتقال الطاقة الحرارية = معامل التوصيل الحراري ×مساحة المقطع العرضي×الانحدار الحراري

$$H = KA \frac{\Delta I}{L}$$

حيث ان :

H: يمثل المعدل الزمنى لانتقال الطاقة الحرارية بطريقة التوصيل وتقاس بوحدات Watt

 m^2 مساحة المقطع وتقاس بوحدات A

 ^{o}C الفرق في درجات الحرارة وتقاس بوحدات ΔT

m طول الساق)او سمكه L

 $Watt/m.^{\circ}C$ معامل التوصيل الحراري ويقاس بوحدات :K

ومن الجدير بالذكر ان المواد الصلبة المختلفة لها معاملات توصيل حرارية مختلفة ويبين الجدول) 6 معامل التوصيل الحراري التقريبي لبعض المواد الصلبة.

جدول)6(

) = (Dj == :					
)k(معامل التوصيل الحراري Watt m.°C	المادة				
210	الالمنيوم				
0.8	الزجاج				
79	الحديد				
406	الفضة				
385	النحاس الاحمر				
109	النحاس الاصفر				
46	الضولاذ				
293	الذهب				
8.7	الزئبق				
0.63	الطابوق				
0.15	الخشب				
0.025	الهواء				
0.3	السمنت				
0.61	الماء				

سوال

لماذا يستعمل رجال اطفاء الحرائق خوذة على الرأس مصنوعة من النحاس الاصفر بدلا من خوذة مصنوعة من النحاس الاحمر ؟

ساق من الحديد طوله 50cm ومساحة مقطعه $1cm^2$ وضع احد طرفيه على لهب درجة حرارته $200^{\circ}C$ ووضع طرفه الاخر في جليد مجروش $0^{\circ}C$ اذا كان الساق مغلفا بمادة عازلة علما ان معامل التوصيل الحراري للحديد يساوي $79watt/m.^{\circ}C$ ، احسب:

1-الانحدار الحراري

2-المعدل الزمنى لانسياب الطاقة الحرارية

الحل:

$$\frac{\Delta T}{I} = 1$$
الانحدار الحراري

النحدار الحراري $200-0(/50\times10^{-2}=4\times10^2$ °C/m

2. المعدل الزمنى لانتقال الطاقة الحرارية = معامل التوصيل الحراري لامساحة المقطع لاالانحدار الحراري

$$H = KA \frac{\Delta T}{L}$$

 $H = 79x)1x10^{-4}(x)200-0(/50x10^{-2}) = 3.16$ watt

مثال 2 غرفة لها نافذة زجاجية ذات طبقة واحدة فاذا كان طول النافذة 2.2m وعرضها 1.2m وسمكها 5mm وسمكها 5mm وعلى افتراض ان درجة حرارة سطح النافذة الزجاجية داخل الغرفة 20° ودرجة حرارتها من الخارج 3° احسب المعدل الزمني لأنتقال الطاقة الحرارية من الغرفة علما ان معامل التوصيل الحراري للزجاج 0.8W/m. 0.8W/m.

الحل:

المعدل الزمني لانتقال الطاقة الحرارية = معامل التوصيل الحراري×مساحة المقطع العرضي×الانحدار الحراري

$$H = KA \frac{\Delta T}{L}$$

$$H = KA T_{1} - T_{2} (/L)$$

$$H = 0.8 \times 2.2 \times 1.2 (\times) 22 - 3 (/0.005)$$

$$H = 8026 \text{ watt}$$

ومن التطبيقات على التوصيل الحراري.

1-استعمال المعادن لصناعة اواني الطبخ.

2 - استعمال مواد عازلة للمقابض في اواني الطبخ.

3 - العزل الحراري عند بناء البيوت باستعمال مواد عازلة مثل الهواء والزجاج والبوليسترين.

 L_1,L_2 (المهندسون نظام العزل الحراري لجدار مكون من طبقتين لهما سمكان مختلفان) L_1,L_2 (ودرجة حرارة سطحيهما) T_1,T_2 (لاحظ الشكل) K_1,K_2 (ودرجة حرارة سطحيهما)

شكل) 21-4

وصول هذا النظام الى حالة الاستقرار الحراري فان درجة الحرارة عند أي نقطة في الجدار، ومعدل انتقال الحرارة لن يتغير مع الزمن أي ان معدل انتقال الطاقة التي تنفذ من الطبقة الاولى هي نفسها التي تنفذ من الطبقة الاطبقة الثانية.

ومن التطبيقات العملية الاخرى على العزل الحراري هي قنينة الترموس اذ تتكون من طبقة داخلية من البلاستك وخارجية من البوليسترين، ووفق

هل تعلم

درجة حرارة السائل الموضوع فيه اتخذَ المهندسون مصطلح المقاومة الحرارية لطبقة عازلة وتحسب من خلال تقليل تسرب الحرارة على وفق المعادلة التالية:

سؤال

هذا النظام يتم الحفاظ على

اذا وضع قالب من الثلج في صندوق من الالمنيوم ووضع قالب اخر مماثل للاول في صندوق من الخشب، فأي القالبين ينصهر اولا في درجة حرارة الغرفة ؟

الحمل الحراري Transfer of heat by convection

عرفنا في طريقة التوصيل الحراري ان الطاقة الحرارية تنساب خلال المادة من غير ان يحصل انتقال لجزيئات المادة نفسها. بينما نجد في طريقة الحمل الحراري ان جزيئات المادة نفسها تتحرك وتنتقل من مكان الى اخر والحمل الحراري يحصل فقط في الموائع ولايحصل في المواد الصلبة.

ومن المألوف لدينا أن وضع مدفأة في احد جوانب الغرفة يؤدي الى تدفئة الغرفة كلها بعد مدة من الزمن وهذه الظاهرة ناجمة عن انتقال الحرارة بالحمل. لاحظ الشكل) 22-4 (

شكل) 22-4

شكل) 23-4 (شكل

وتحصل تيارات الحمل كذلك في السوائل فعند وضع ابريق معدني فيه ماء فوق مصدر حراري لاحظ الشكل) 4-23 (. فان الماء الذي في المناطق القريبة من المصدر الحراري يسخن اكثر من الماء الذي في المناطق الاخرى فيتمدد وتقل كثافته عن كثافة الماء المحيط به فيرتفع حاملا معه الطاقة الحرارية بطريقة تسمى الحمل الحراري ويحل محله ماء درجة حرارته اقل وتنتقل الحرارة في الغازات بالطريقة نفسها.

أنواع الحمل الحراري

1 -الحمل الحراري الطبيعي الحر

شكل) 24-4 (شكل

2 -الحمل الحراري الاضطراري(القسري) Forced convection

شكل (4-25) التبريد في محرك السيارة

في هذا النوع يحرض المائع على الدوران من خلال تركيب مضخه او مروحه في مجرى المائع ينشا عنها فرق في الضغط يجبر الجزيئات على الحركة ففي بعض عمليات التدفئة المركزية اما يدفع الهواء الساخن في القاعات بوساطة مروحة او يضخ الماء الساخن الى مشعات حرارية)radiators (توضع على الارض لاحظ الشكل) 4-25 (.

فكر

أي من طرائق انتقال الحرارة تستعمل في تبريد محرك السيارة وضح ذلك؟

انتقال الحرارة بالإشعاع

درست سابقا أن حرارة الشمس تنتقل وتصل الى الارض وتسخنها ونحن نعلم انه يوجد فراغ هائل بين الشمس والارض لايسمح بنقل الحرارة بطريقتي التوصيل والحمل لعدم وجود وسط مادي ناقل للحرارة ان الطريقة التي تنتقل الحرارة بها من الشمس تسمى طريقة الاشعاع. تنتقل الحرارة بالإشعاع بشكل موجات كهرومغناطيسية بسرعة الضوء نفسها وتختلف اطوالها الموجية حسب درجة حرارة الجسم المشع فهي تتراوح بين الاشعة البنفسجية والاشعة تحت الحمراء. والأجسام جميعها تشع طاقة بشكل موجات كهرومغناطيسية حتى المكعب الثلجي واجسامنا. وان مقدار الطاقة الاشعاعية المنبعثة من الاجسام يعتمد على:

1. طبيعة السطح الباعث للطاقة المشعة مثل مساحة سطحه فكلما زادت مساحة السطح ازداد مقدار الطاقة المنبعثة ، وكذلك لونه فالسطح الاسود يشع طاقة بمعدل يفوق كثيرا معدل اشعاع السطح ذي اللون الفاتح.

2. درجة الحرارة :حيث ان الاجسام تشع طاقة على شكل موجات كهرومغناطيسية يمكن رؤيتها اذا كانت درجة حرارة الاجسام مرتفعة بينما تكون الاشعاعات غير مرئية اذا كانت درجة حرارة الاجسام منخفضة.

ومن الجدير بالذكر ان المواد جيدة الاشعاع الحراري تكون جيدة الامتصاص الحراري وان مقدار الطاقة الحرارية الممتصة تختلف باختلاف مايلي.

- 1. نوع المادة
- 2 . لون المادة
- 3 . مدى صقلها

حيث ان الاجسام الفاتحة والمصقولة تمتص طاقة اشعاعية اقل من الاجسام الخشنة والقاتمة.

تطبيقات على انتقال الحرارة بطريقتي الحمل والاشعاع

شكل) 26-4 (شكل

شكل) 27-4 (شكل

التلوث الحراري

يقوم الإنسان في عصرنا الحالي بنشاطات عدة تعمل بعضها على رفع درجة حرارة البر والجو والماء مما يؤدي الى خلل في التركيبة البيئية وتسمى هذه الظاهرة بالتلوث البيئي الحراري.

مصادر التلوث الحراري

7-4

يعد التلوث الحراري معضلة صناعية على الرغم من ان الفضلات المدنية تسبب هي الاخرى تغيرا محدودا في درجات حرارة المياه المستقبلة لهذه الفضلات واهم مصادر التلوث الحراري هي:

1-مصادر توليد الطاقة الكهربائية :

تُنشأ هذه المحطات على مقربة من الموارد المائية) مثل البحار والأنهار(, لاحظ الشكل)4-28(.

وذلك لضخامة كميات المياه التي تحتاجها هذه المحطات لغرض التبريد، والمياه الداخلة الى المحطة في عمليات التبريد تكتسب طاقة حرارية كبيرة تتسبب في رفع درجة حرارة المياه الخارجة بمقدار كبير وتصرف هذه المياه الى المورد المائي الذي أخذ منه وهذا يسبب ظاهرة التلوث الحرارى لمياه المصدر المائي. وكذلك

شكل) 28-4 (شكل

محطات الطاقة النووية: إذ يتم طرح جزء من الحرارة الى الجو عن طريق المداخن وبسبب الكفاءة العالية في التوليد ولإعتبارا ت بيئية وحذرا من التسرب الى الجو يتعذر ذلك . فالجزء الأكبر من الطاقة الحرارية الناتجة من المحطات النووية تطرح الى الموارد المائية القريبة منها لاحظ الشكل) 4-29 (.

شكل) 4-29 (

2-الصناعات النفطية والمصافي :

تستعمل المصافي النفطية كميات كبيرة من المياه لغرض التبريد وفي عمليات صناعية مختلفة ، وتطرح المياه الساخنة الناتجة عن هذه العمليات الى الموارد المائية) مثل البحر أو النهر (وهذا يسبب ضررا كبيرا للاحياء المائية الدقيقة الموجودة في المياه والمياه الخارجة من هذه المصافي تحتوي كذلك على زيوت وشحوم وهذا بدوره يؤدى الى تلوث مياه المصادر بالزيت.

4

اسئلة

- س 1: اختر العبارة الصحيحة لكل مما ياتي:
- 1- حينما يبدا الماء بالتحول من حالة الى اخرى فان ، درجة حرارته:
 - a- ترتفع بمقدار درجة سيليزية واحدة.

القصيل

الارابع

- *b* تتغير باستمرار
- -C تنخفض بمقدار درجة سيليزية واحدة ثم تثبت حتى تتحول كمية الماء جميعها
 - d- تبقى ثابتة حتى تتحول كمية الماء جميعها.
- T_2 عند اتصال الجسم الأول الذي درجة حرارته T_1 مع الجسم الثاني الذي درجة حرارته T_2 والمعزولين حرارياً عن الوسط المحيط بهما فاذا كانت $T_1 > T_2$ فان انتقال الطاقة الحرارية بينهما يستمر الى ان تصبح:
 - a- درجة حرارة الجسم الثاني اقل من درجة حرارة الجسم الاول
 - b- درجة حرارة الجسم الاول اقل من درجة حرارة الجسم الثاني
 - $T_2 < T < T_1$ عندما يصبح كلاهما عند درجة الحرارة نفسها T_1 حيث -C
 - d- درجة حرارة الجسم الاول تصبح صفراً.
- اذا كان المعدل الزمني لانتقال الطاقة الحرارية من زجاج شباك الغرفة الى خارجها هو H فاذا قلت مساحة وسمك الزجاج الى النصف فان المعدل الزمني لانتقال الطاقة الحرارية يساوي.
 - 4H-a
 - 2H-b
 - H-c
 - H/2 -d
 - 4- انتقال الحرارة في الغازات يتم بواسطة.
 - a- الاشعاع فقط
 - b-الحمل فقط
 - -C الاشعاع والحمل فقط
 - d-الاشعاع والحمل والتوصيل

4

أسئلة الفصل الرابع

5.عندما يتكثف البخار ويتحول الى سائل فان:

- a- درجة حرارته ترتفع
- b- درجة حرارته تنخفض
 - C يمتص حرارة
 - d- يبعث حرارة

6. انتقال الحرارة في الفراغ يتم بوساطة:

- a- الاشعاع فقط
- b- الحمل فقط
- -C الاشعاع والحمل فقط
- d- الاشعاع والحمل والتوصيل

7. عند ثبوت كل من الكتلة ودرجة الحرارة فان كمية الحرارة لجسم تتوقف على.

- a- حجم الجسم
- b- شكل الجسم
- -C نوعية مادة الجسم
- d- كل الاحتمالات السابقة

8. عند تحول المادة من حالة السيولة الى الحالة الغازية عند درجة حرارة الغليان يلزم تزويدها بكمية من الحرارة تساوي:

- الحرارة الكامنة للتبخر x درجة الحرارة x الحرارة الكامنة للتبخر x
 - حاصل ضرب كتلة المادة imes فرق درجات الحرارة -b
 - -C كمية الحرارة الكامنة للتبخر
 - d- حاصل ضرب كتلة المادة × الحرارة الكامنة للتبخر

4

ربيت الفصل الرابيع

س 2: اجب عن الاسئلة التالية:

- أي منهما $0^{\circ}C$ ثلاث قضبان من النحاس والفولاذ والالمنيوم متساوية في الطول عند درجة حرارة $0^{\circ}C$ أي منهما سيكون اطول عند درجة حرارة $250^{\circ}C$ ؟
- 2. تضاف قضبان الفولاذ للاسمنت المسلح في الابنية لتقويته فلماذا يعد الفولاذ مناسبا لتقوية الاسمنت؟
 - 3. لماذا ينصح بعدم فتح غطاء المشع الحراري الا بعد أن يبرد محرك السيارة؟ فسر ذلك؟
 - 4. تدهن الانابيب في السخان الشمسي بطلاء اسود؟ لماذا؟
- 5.الماء الذي في كاس الالمنيوم يتجمد قبل الماء في كاس الزجاج عند وضعهما في مجمد الثلاجة؟
- 6.حينما تلمس قطعتان احدهما من حديد والاخرى من خشب عند درجة الصفر السيليزي نشعر بان الحديد ابرد من الخشب. ماسبب ذلك ؟
- 7. يصب الماء الساخن على غطاء علبة الزجاج التي تحتوي اطعمة معينة لكي نتمكن من فتحها بسهولة؟

مسائل

- 129 $J/Kg.^{\circ}C$ وحرارتها النوعية 100g ودرجة حرارتها 25°C وحرارتها النوعية الحسب.
 - a- السعة الحرارية للقطعة
 - 516 Joule درجة حرارة قطعة الذهب اذا زودت بكمية من الحرارة مقدارها -b
- a. C=12.9Joule/°C , b. T_2 =65°C / ε

4

اسطله الفصل الرابع

2-ماهي كمية الحرارة التي فقدتها كتلة 160g من بخار ماء بدرجة $100^{\circ}\mathrm{C}$ حين اصبح الماء بدرجة $20^{\circ}\mathrm{C}$ ؟

$$Q_{total} = -415360$$
 Joule /_E

10°C الماء الحرارية 0 C الماء 0 C الماء الماء الماء الحرارية 0 C الماء الماء الماء الموجود في الأناء كمية من الماء الساخن كتلتها 0 C الخليط النهائية؟

$$T_f = 56.3^{\circ}C$$
 /_©

-4 حائط من الطابوق مساحته الجانبية $10m^2$ وسمكه 15cm احسب المعدل الزمني لانتقال الطاقة الحرارية اذا كانت درجتا الحرارة الجانبية لهما $T_1 = 20^{\circ} C$, $T_2 = 10^{\circ} C$ لاحظ الشكل المجاور علماً ان معامل التوصيل الحراري للطابوق $0.63~watt \ / m.^{\circ} C$

H=420watt /₅

کل ماتحتاجه ستجده مجاناً علی بوت تلیکرام المعرف stad4a<mark>l_bot</mark>@

4

القصال الرابع

على مواقد $m_3 = 1 kg$ و $m_2 = 0.1 kg$ على مواقد -5 عند تسخين ثلاث كميات من الماء كتلتها $m_3 = 0.5 kg$ و $m_3 = 1 kg$ على مواقد حرارية متماثلة لمدة ثلاث دقائق أي الكتل ترتفع درجة حرارتها أكثر ، ولماذا ؟

6- تم تسخين ولنفس المدة كمية من الماء كتلها 0.5kg وكمية من الزيت لها نفس الكتله، اي الجسمين يسخن اكثر؟ ولماذا؟

7- ما كمية الحرارة التي تكتسبها كمية من الماء كتلتها 200 $^{\circ}$ عندما ترتفع درجة حـــــــرارتها من $^{\circ}$ 10 الى $^{\circ}$ 10 الى

Q = 50400 Joule /_{ϵ}

ما كمية الحرارة التي يفقدها جسم من النحاس كتلته5000 عندما تنخفض درجة حرارته من 75° C الى 75° C الى 75° C

Q = -9675 Joule $\sqrt{\epsilon}$

 9^- ما درجة الحرارة النهائية لكمية من الماء كتلتها 3000 ودرجة حرارتها الابتدائية $20^{\circ}\mathrm{C}$ عندما تكتسب كمية من الطاقة الحرارية مقدارها 37800J ؟

 $T = 50^{\circ}C$ /_{\(\infty\)}

10- وضعت كمية من الماء كتلتها 0.5kg ودرجة حرارته $20^{\circ}C$ في لوحة قوالب الثلج ثم ادخلت في قسم التجميد العلوي في الثلاجة, ما مقدار الطاقة الواجب ازالتها من الماء لتحويله الى مكعبات ثلجية بدرجة حرارة $5^{\circ}C$.

 $Q_{total} = -214732.5$ Joule /_c

الفصل الخامس

الضوء Light

5

1-5

طبيعة الضوء وانتشاره

جسم مستضيء شكل (1-5) جسم مضيء

يعني ان الضوء يمتلك طاقة ينقلها من الشمس الى الارض عبر الفضاء الخالي . ومن المعلوم ان الطاقة تنقل اما بوساطة الموجات او الجسيمات ، وعلى هذا الاساس تم تفسير طبيعة الضوء على وفق فرضيتين . هما النظرية الدقائقية والنظرية الموجية .

ووفق النظرية الدقائقية فأن الضوء عبارة عن سيل من الجسيمات الصغيرة جداً التي دعاها نيوتن بالدقائق) Corpuscles (المنتشرة في وسط ما .وقد فسّر بموجبها ظواهر الانعكاس والانكسار وانتشار الضوء بخطوط مستقيمة في الوسط المتجانس) الا ان تفسيره لظاهرة الانكسار كان خاطئاً (. لاحظ الشككيلين)2-5 (.

اما العالم هايجنز الذي عاصر نيوتن فقد افترض النظرية الموجية للضوء التي فسّر بموجبها ظواهر الانعكاس والانكسار والتداخل والحيود في الضوء. وكان لكل واحدة من هاتين النظريتين مؤيدون ومعارضون وقد سادت النظرية الدقائقية لأكثر من قرن لما كان يتمتع به العالم نيوتن من مكانة علمية مرموقة، على الرغم من ان اي من هاتين النظريتين وبصورة منفردة لم تستطيع تفسير جميع الظواهر البصرية تفسيراً كاملاً.

شكل (2-5)

في نهاية القرن التاسع عشر وضع العالم كلارك ماكسويل النظرية الكهرومغناطيسية وبموجبها بين ان كل شعاع ضوئى هو عبارة عن موجات كهرومغناطيسية

وبذلك عزز دور النيظرية الموجية من جيديد، ومن ملاحظة الشكل) 5 - 3 (أجد ان ترددات الطيف الكهرومغناطيسي يتضمن ترددات موجات الضوء المرئي التي اطوالها الموجية تمتد من 400nm تقريباً وهو

من ١٥٥١١١٦ تقريب وهو الكون البنفسجي الى 700nm تقريباً وهو اللون الاحمر.

 λ كن ايجاد تردد الضوء المرئي بدلالة طوله الموجي $\lambda ($ وسرعة الضوء في الفراغ على وفق العلاقة التالية.

اي ان:

 $f = \frac{\mathbf{c}}{\lambda}$

حيث ان ـُـ

) $3 \times 10^8 \, \mathrm{m/s}$ (في الفراغ = c

ג = طول الموجة

الترددf

هل تعلم

السنة الضوئية هي المسافة التي يقطعها الضوء في الفراغ بسرعة يقطعها الضوء في مدة 365 يوم $3 \times 10^8 \text{m/s}$ والتي تقدر بـحوالي 10^{13}km

ومن الجدير بالذكر ان هناك ظواهر اخرى اخفقت النظرية الكهرومغناطيسية في تفسيرها مثل ظاهرة اشعاع الجسم الاسود والظاهرة الكهروضوئية ، والتي فسرت لاحقاً من قبل العالم ماكس بلانك ظاهرة اشعاع الجسم الاسود والظاهرة الكهروضوئية ، والتي فسرت لاحقاً من قبل العالم ماكس بلانك / Max plank (اذ افترض ان الضوء لا يشع من مصدره على هيئة موجات بل على هيئة رزم محددة من الطاقة غير قابلة للتجزئة تدعى كمّات) فوتونات (. وان طاقة الكم الضوئي) الفوتون (تتناسب طردياً مع تردد اشعاعه

اي ان:

طاقة الفوتون = ثابت بلانك × تردد الاشعاع

photon energy = planck constant x frequency of radiation

E = h. f

حيث ان:

6.63خامة كم الاشعاع، f = التردد، h = ثابت بلانك ويساوي E

إحسب تردد الضوء البنفسجي الذي طوله الموجي)400nm(، علماً أن

 $c=3x10^8$ سرعة الضوء في الفراغ تساوي

مثال1

 $f = \frac{c}{\lambda}$

الحل:

$$f = \frac{3 \times 10^8}{400 \times 10^{-9}}$$

 $f = 7.5 \times 10^{14} \; Hz$ تردد الضوء البنفسجي

ما طاقة فوتون الاشعاع للضوء الاخضر الذي طوله الموجي 555nm ؟

مثال2

الحل: طاقة الفوتون = ثابت بلانك × التردد

$$E = h. f$$

$$E = \frac{hc}{\lambda}$$

 $\lambda = 555$ nm = 555x10⁻⁹m

$$E = \frac{6.63 \times 10^{-34} \times 3 \times 10^8}{555 \times 10^{-9}}$$

 $E\!\!=\!\!3.58\!\! imes\!10^{\!-19}\!J$ طاقة فوتون الأشعاع للضوء الاخضر

المصدر النقطى للضوء

2-5

ان موجات الضوء تنتقل في الوسط المتجانس في خطوط مستقيمة وباقجاه انتشار الاشعة الضوئية . فاذا صادفت هذه الموجات حاجزاً فيه فتحة دائرية قطرها d (اكبر كثيراً من طول موجة الضوء) a-4-5 فان الموجة تجتاز هذه الفتحة مستمرة على الحركة بخط مستقيم لاحظ الشكل a-4-5 (. اما اذا كان قطر فتحة الحاجز بقدر طول الموجة تقريباً لهذا الضوء d=1 (عندها ستنفذ منتشرة من الفتحة في جميع الاقجاهات لاحظ الشكل a-4-5 (. اما اذا كليان قطر فتحة الحاجز اصغر بكثير من الطول .) a-4-5 (عندئذ تعد هذه الفتحة مصدراً نقطياً للضوء لاحظ الشكل a-4-5 (عندئذ تعد هذه الفتحة مصدراً نقطياً للضوء لاحظ الشكل a-4-5 (عندئذ تعد هذه الفتحة مصدراً نقطياً للضوء لاحظ الشكل a-4-5

شكل (4-5)

مبدأ هایجنز Huygen's Principle

3-5

شكل (5-5)

إن مبدأ هايجنز هذا ينص "كل نقطة من نقاط جبهة الموجة المفترضة تعد مصدراً نقطياً لتوليد موجات ثانوية كروية تسمى المويجات والتي تنتشر بعيداً عن المصدر خلال الوسط بسرعة معينة للموجات في ذلك الوسط. وبعد انقضاء بعض الوقت يكون الموضع الجديد لجبهة الموجة هو السطح الماس للمويجات. لنتأمل موجة مستوية تتحرك عبر الفضاء الخارجي الحر لاحظ الشكل)a-5-5 عند الزمن AA'. جبهة الموجة موضحة بوساطة المستوى AA'.

على وفق مبدأ هايجنز الافتراضي كل نقطة على جبهة الموجة تعد مصدراً نقطياً ، وبالطريقة نفسها يظهر الشكل b-5-5 بناء نظرية هايجنز الافتراضى لموجة كروية .

الشكل)5-6 يظهر فيه مبدأ هايجنز موجات مستوية قادمة من بعيد نحو الشاطىء مارة من فتحات في الجدار الحاجز بهيئة موجات دائرية ذات بعدين منتشرة نحو الخارج بالجاه الساحل.

شكل (6-5)

قوة الاضاءة Luminous Intensity

4-5

لاحظنا سابقاً اختلاف المصادر الضوئية في اصدارها للضوء فالشمس تضيء اكثر مما يضيء المصباح. على سطح معين والمصباح يضيء اكثر مما تضيء الشمعة للظروف نفسها.

فلو اخذنا مصباحين متماثلين من النوع نفسه وقدرة احدهما 500 Watt والاخر 40 Watt . فالمصباح الأول يضيء اكثر من المصباح الثاني لاحظ الشكل)5-7 (. ان هذا الاختلاف يعود الى اختلاف قوة الاضاءة اي اختلاف المعدل الزمني للطاقة المنبعثة من كل مصدر من المصدرين الضوئيين وعلى هذا الاساس يمكننا القول ـ ان قوة اضاءة المصباح الاول اكثر من قوة اضاءة المصباح الثاني وتعرف قوة الاضاءة

لمصدر ضوئي بانها كمية الطاقة الضوئية) المرئية (المنبعثة من مصدر ضوئى خلال وحدة الزمن.

لتقييم تأثير الاشعة الضوئية في العين تستعمل كمية فيزيائية تسمى السيل الضوئي والذي يعرف بأنه: ذلك الجزئ من سيل الاشعاع الذي يولد احساساً ضوئياً في العين فهو مقياس لقوة إضاءة المصدر) السين فهو مقياس لقوة إضاءة المصدر)

شكل (7-5)

حتاجه ستحده محانا على بوت تليكرام المعرف bot_

ويعبر عنه وفق العلاقة الرياضية الاتية.

هل تعلم

السيل الضوئى = 4π × قوة اضاءة المصدر

حيث ان ـُـ

ان مصباح الاضاءة الكهربائي الذي قدرته 100W قوة إضاءته 139cd ويبعث عند اشتغاله سيلا ضوئيا مقداره (1750 Lm) .

> ا = تمثل قوة اضاءة المصدر النقطي مقدرة بالشمعة القياسية)cd(

ويقاس السيل الضوئي Φ بوحدة اللومن)Lm(والذى يعرف بالسيل الساقط على وحدة المساحة $1m^2$ (من سطح كروى نصف قطره متر واحد ويقع في مركزه مصدر ضوئي نقطي قوة اضاءته شمعة قياسية واحدة) Cd (لاحظ الشكل) 8-5 (.)

شكل (8-5)

شدة الاستضاءة (E) **ILLuminance**

5-5

يصعب رؤية الاجسام من حولنا في غرفة مظلمة ،ولكن عند وجود الشمعة المتقدة يمكننا ضوئها من رؤية الاجسام من حولنا ويفسر ذلك بانتشار سيل ضوئي من مصدر الضوء) الشمعة (حيث ينعكس قسماً من السيل الساقط على تلك الاجسام الى العين فيمكننا عندئذ من رؤية هذه الاجسام. فكلما كان السيل الضوئي الساقط على الاجسام المنظورة اكبر كانت رؤيتنا لهذه الاجسام اكثر وضوحا ، اي ان كمية شدة الاضاءة E(هي التي تميّز اختلاف رؤية الاجسام الذي يسببه السيل الضوئي الساقط عليها وندعوها ىشدة الاستضاءة.

فعندما يكون السيل الضوئي الساقط على السطح منتظماً عندئذ تقاس كمية شدة الاستضاءة بالسيل الضوئي الساقط عمودياً على وحدة المساحة من هذا السطح . اي أنَّ :

> السيل الضوئي شدة الاستضاءة = الساحة

حيث : =E شدة الاستضاءة وتقاس بوحدة $=Lumen/m^2$ وتسمى اللوكس =E ان ان

 $Lux = Lm / m^2$

الساحة مقدرة بــ) m^2 الساحة مقدرة بــ)

)Lm(النصوئي مقدر بـ Φ

تقاس شدة الاستضاءة E بوساطة جهاز الفوتوميتر . 9-5(واللوكسميتر . لاحظ الشكل Photometer

شكل (9-5)

قانون التربيع العكسي: Inverse Square Law

6-5

هناك طريقتان لزيادة شدة الاستضاءة على سطح ما باستعمال مصدر نقطي قوة اضاءته معلومة وهما تـ

- . زيادة السيل الضوئي $oldsymbol{\phi}$ الساقط على السطح المضاء .
- 2(نقصان المسافة بين المصدر الضوئى النقطى والسطح المضاء .

وعلى هذا الاساس فإن شدة الاستضاءة)E(تتناسب طردياً مع السيل الضوئي للمصدر وعكسياً مع مربع المسافة بين المصدر الضوئي وفق العلاقة العلاقة الاتية:

$$\mathbf{E} = \frac{\mathbf{\Phi}}{4\pi r^2}$$

- . السيل الضوئي الساقط ويكون عمودياً على المساحة $oldsymbol{\Phi}$
 - بعد المصدر الضوئي النقطي عن السطح المستضيء. r
- ان المعادلة اعلاه تتحقق فقط في حالة السقوط العمودي للضوء الصادر عن مصدر ضوئي نقطي.

نشباط:

شدة الاستضاءة لمصدر ضوئي نقطي تتناسب عكسياً مع مربع بعد المصدر عن السطح المضاء . أدوات النشاط ..

مصدر ضوئي ، حاجز فيه فتحة مربعة الشكل ، شاشة بيضاء

الخطوات ..

مربع الشكل.

نثبت الحاجز أمام المصدر الضوئي ونجعل الشاشة على بعد $r_1 = 1m$ من المصدر. فسوف يظهر على الشاشة سطحاً مضاء والذي مساحته A_1

من المصدر $r_2=2m$ من المصدر فسوف يظهر سطحٌ مضاء مربع الشكل مساحته A_2 تساوي اربع مرات بقدر A_1 اي ان شدة الاستضاءة على الشاشة قلّت الى $\frac{1}{4}$ ما كانت عليه اولاً .

• بجعل الشاشة على بعد $r_3=3m$ من المصدر فسوف نستلم على الشاشة سطحٌ مضاء مربع الشكل مساحته A_3 تساوي تسع مرات بقدر A_1 اي ان شدة الاستضاءة على الشاشة قلت الى $\frac{1}{9}$ ما كانت عليه اولاً .

الاستنتاج : بما ان السيل الضوئي $oldsymbol{\phi}$ الساقط على السطح يبقى ثابتاً $oldsymbol{constant}$ في الحالات الثلاث

$$E = \frac{\Phi}{4\pi r^2}$$

$$E\alpha \frac{1}{r^2}$$

ان شدة الاستضاءة على السطح المضاء تتناسب عكسياً مع مربع بعده عن المصدر الضوئي النقطي اي ان : اي ان :

$$E_1 = \frac{\Phi}{4\pi r_1^2}$$
 $\int E_2 = \frac{\Phi}{4\pi r_2^2}$

$$\frac{E_1}{E_2} = \frac{r_2^2}{r_1^2}$$

مثال1

وضعت شاشة بيضاء بمستوي عمودياً على الجاه سقوط اشعة ضوئية من مصدر نقطي قوة الضاءته)5cd (. احسب مقدار شدة الاستضاءة على الشاشة إذا كان بعدها عن المصدر)5m (.

الحل /

$$E = \frac{I}{r^2}$$

في حالة السقوط العمودي

$$E = \frac{5}{25}$$
 Lm/m², E = 0.2 Lux

مثال 2

مصباح قوة اضاءته)32cd يبعد)0.6m عن شاشة وهناك مصباح آخر من الجهة الثناشة من الشاشة يبعد عنها)1.2m فإذا تساوت شدة الاستضاءة على وجهي الشاشة. مامقدار قوة اضاءة المصباح الثاني؟

$$E_1 = E_2$$
 نا ان $E_1 = E_2$

 $\frac{I_1}{r_1^2} = \frac{I_2}{r_2^2}$

$$\frac{I_2}{I_1} = \frac{r_2^2}{r_1^2}$$

$$\frac{I_2}{32} = \frac{)1.2(^2}{)0.6(^2)}$$

$$I_2 = \frac{32 \times 1.44}{0.36}$$

$$I_2=128~cd$$
 قوة اضاءة المصباح الثاني

كل ماتح<mark>تا جو بالت</mark>جده مجاناً على بوت تليكرام المعرف stad4a<mark>l_bot</mark>@

القصال الخامس

	استله		
س1 / اختر العبارة الصحيحة لكل مما	يلي:		
1. ينتشر الضوء الصادر عن مصدر نق	طي في الفراغ :		
a- باقجاه واحد .	c بجميع الاقجاهات .		
b- باقجاهین .	d- جميع الاحتمالات السابقة .		
2. عند انتقال حزمة من الضوء بصو	رة مائلة من وسط لآخر فالكمية التي لا تتغير هي:		
a- الجاهها .	-C طولها الموجي .		
b- انطلاقها .	- ترددها .		
3. لمضاعفة شدة الاستضاءة مباشر	ة فوق سطح منضدة افقية فوقها تماماً مصباح مضيء على		
ارتفاع 1m من مركزها وذلك بجعل المح	صباح على ارتفاع :		
0.75m <i>-a</i>	0.5m <i>-C</i>		
0.707m <i>-b</i>	0.25m <i>-d</i>		
4. تقاس قوة الاضاءة بوحدة :			
.)candle (شمعة قياسية -a	.watt -c		
.Lux -b	. lumen -d		
5. تقاس شدة الاستضاءة بوحدة :			
Joule -a	Lux -C		
lumen -b	watt -d		
6. كلما ازداد بعد السطح المضاء بوس	باطة مصدر نقطي فإن شدة الاستضاءة للسطح:		
a- تقل .	. لا تتأثر · C		
<i>b</i> - تزداد .	d جميع الاحتمالات السابقة .		

المالية المالي

7. مصدر ضوئي نقطي موضوع عند مركز سطح كروي ، فلو ازداد نصف قطر تكور هذا السطح ، فان السيل الضوئي الساقط عليه من المصدر:-

a- يتناقص . C لا يتغير .

. كل الاحتمالات السابقة -b

مسائل

س1- مصباحان قوة إضاءة الاول تسعة امثال قوة إضاءة الثاني وكانت المسافة بينهما 1m. اين يجب وضع فوتومتر بين المصدرين لكي تصبح شدة الاستضاءة متساوية على جانبي الفوتومتر؟

$$X = 0.75m$$
 : ϵ

2 وضع مصباح قوة اضاءته 2 12cd على بعد 2 1.2m من فوتومتر ووضع في الجهة الثانية منه مصباح آخر على بعد 2 1.32m في أخدى السيضاءة على جانبي الفوتومتر . احسب قوة اضائة المصباح الثاني .

$$I_2 = 14.52cd$$
 : $=$

س3- مصباح مضيء يسلط عمودياً على صفحة كتاب سيلاً ضوئياً مقداره) 100πLm (ما بعد المصباح عن الكتاب؟ اذا كانت شدة إضاءته) 4Lux (.

$$f = 2.5m$$
 :

-4س مقمرة كان القمر فيها بدراً شدة الاستضاءة 0.6Lux (جد قوة إضاءة القمر في تلك الليلة، علماً ان المسافة بين الارض والقمر -3.84×10^8 m (جد قوة إضاءة القمر علماً ان المسافة بين الارض والقمر -3.84×10^8

$I = 8.84 \times 10^{16} cd$:

س5- فوتون ضوئي طول موجة اشعاعه)600nm (. ما مقدار طاقة هذا الكم علماً ان ثابت بلانك

 $h = 6.63 \times 10^{-34} \text{J.s}$

$$E = 3.315 \times 10^{-19} J$$
 :

الفصل السادس

6

انعكاس وانكسار الضوء

مقدمة في انعكاس وانكسار الضوء. Introduction to Reflection and Refraction of Light

1-6

شكل (1-6)

لو سئلنا السؤال التالي: ما سبب تكون صورة لجموعة الجبال والاشجار في الماء كما في الشكل)6-1(؟ فان جوابك سيكون ان تكوّن الصورة هو نتيجة لظاهرة انعكاس الضوء. فما الذي نقصده بانعكاس الضوء؟ وماذا يحدث عند سقوط الضوء على سطح شفاف مثلاً ؟

يقصد بانعكاس الضوء بانه ظاهرة ارتداد الضوء الساقط على سطح فاصل بين وسطين الى الوسط الذي قدم منه . فاذا سقط الضوء على سطح ما انعكس جزء منه ونفذ جزء آخر من خلال الاجسام الشفافة

شكل (2-6)

وامتص الباقي من لدن ذلك السطح، لاحظ الشكل)6-2(.
وضحنا فيما سبق وبشكل موجز ظاهرة انعكاس الضوء. فهل هذا هو سلوك الضوء دائماً عندما يسقط على السطح الفاصل بين وسطين شفافين مختلفين؟ سؤال يقتضي الاجابة عليه، كما اننا بحاجة ايضا الاجابة على السؤالين التاليين للاذا تبدو السمكة في حوض فيه ماء على عمق اقل من عمقها الحقيقي؟ ولماذا يبدو القلم مكسوراً عند وضعه في كأس علوءة بالماء؟ لاحظ الشكل)6-3(. ان السبب في ذلك هو ظاهرة انكسار الضوء ؛ ان انكسار الضوء) فماذا نعنى بانكسار الضوء ؟ ان انكسار الضوء

شكل (3-6)

هو تغير في الجّاه الشعاع الضوئي عند انتقاله بين وسطين شفافين مختلفين في الكثافة الضوئية اذا سقط بصورة مائلة على السطح الفاصل بين الوسطين. فماذا نقصد بالكثافة الضوئية؟ الكثافة الضوئية هي صفة للوسط الشفاف تعتمد عليها سرعة الضوء المار فيه ، فكلما كبرت الكثافة الضوئية للوسط الشفاف قلت سرعة الضوء فيه وبالعكس. فمثلا ان سرعة الضوء في الزجاج)نفترضها هنا $\mathcal{D}($ هي اقل من سرعته في الهواء)نفترضها هنا $\mathcal{D}($

وسبب ذلك هو ان الكثافة الضوئية للزجاج هي اكبر من الكثافة الضوئية للهواء. لاحظ شكل -6(...)

انعكاس الضوء وقانونا الانعكاس Reflection of light and the laws of Reflection

2-6

شكل (6-5)

في الفقرة السابقة تطرقنا الى ظاهرة انعكاس الضوء الاحظ الشكل) 5-6(. فما هي القوانين التي خَكمه؟ وكيف يمكننا خَقيقها عمليا؟

لتوضيح فكرة انعكاس الضوء عملياً ، نجري النشاط الآتي.

ئتاجه ستحدو محانا على بوت تا

الشياط 1: مفاهيم خاصة بانعكاس الضوع

ادوات النشاط: مصدر ضوئى ذو حزمة ضوئية متوازية (أومصدر ليزري)، مرآة مستوية ، قطعة من مادة البوليستيرين لنثبت المرآة عليها ، ورقة (أو لوح شفاف) وضعت)أو رسمت (عليها منقلة مدرجة.

الخطوات: شكل (6-6)

- نرتب ادوات النشاط كما في الشكل)6-6(.
- نسقط وبصورة مائلة حزمة رفيعة من اشعة ضـــوئية صادرة من مصدر ضوئي)او مصدر ليزري(بالجاه المرآة المستوية العمودية على الورقة فأننا سوف نلاحظ انعكاس الضوء من سطح المرآة من نقطة تسمى نقطة السقوط.
 - نرسم على الورقة عمودا من نقطة سقوط الشعاع الساقط على السطح العاكس.

هل تستطيع الأن أن تستنتج العلاقة بين الشعاع الساقط والشعاع المنعكس والعمود المقام بالنسبة للسطح العاكس؟

> $heta_1$ نحدد على الرسم زاوية السقوط $heta_1$)وهي الزاوية الخصورة بين الشعاع الساقط $heta_1$ (والعمود المقام والوية الانعكاس $heta_1$) وهي الزاوية الحصورة بين الشعاع المنعكس والعمود المقام(، ثم نقيس قيمتي زاوية

30° 25° زاوية السقوط) θ_{\perp} 40° 35° 30° 25° $heta_1$ (اوية الانعكاس) $heta_1$

السقوط وزاوية الانعكاس لهذه الحالة.

• نقوم بتغير زاوية السقوط عدة مرات ونعين قيمة زاوية الانعكاس المناظرة لها في كل حالة وندون النتائج في الجدول) 1 (.

الاستنتاج: من خلال نتائجك التي حصلت عليها من هذا النشاط لابد انك قد توصلت الى ان انعكاس الضوء هو ظاهرة ارتداد الضوء الساقط على سطح فاصل بين وسطين الى الوسط الذي قدم منه ، كما انك بالتأكيد قد توصلت الى قانوني الانعكاس ـ

القانون الاول للانعكاس

الشعاع الساقط والشعاع المنعكس و العمود المقام من نقطة السقوط تقع جميعها في مســــــتو واحد

القانون الثانى للانعكاس

جدول) 1(

35°

زاوية السقوط تساوى زاوية الانعكاس

. انكسار الضوء وقانونا الانكسار Refraction of light and the laws of refraction

3-6

شكل (7-6)

شكل (8-8)

لقد اصبح واضحاً لديك بان عملية انكسار الضوء تعنى تغيير الجاه الشعاع الضوئي عندما ينتقل بين وسطين شفافين مختلفين في الكثافة الضوئية عند سقوطه بصورة مائلة على احد السطحين وان سبب ذلك هو تغير سرعة الضوء في الوسط الشفاف الاول عنه في الوسط الشفاف الثاني، لاحظ شكل)6-7(. فكيف يكون مسار الشعاع المنكسر داخل الوسط الكاسر ؟ عندما ينتقل شعاع ضوئي ساقط بصورة مائلة من وسط شفاف اقل كثافة ضوئية كالهواء الى وسط شفاف آخر اكبر كثافة ضوئية كالزجاج، فانه ينفذ الى الوسط الآخر وينكسر مقتربا من العمود المقام على السطح الفاصل بين الوسطين كما في الشكل $\theta = 8$ اي ان زاوية السقوط $heta_1$ تكون اكبر من زاوية الانكسار $heta_2($. وعندما ينتقل شعاع ضوئى ساقط بصورة مائلة من وسط شفاف اكبر كثافة ضوئية الى وسط شفاف آخر أقل كثافة ضوئية، فانه ينفذ الى الوسط الآخر وينكسر مبتعداً عن العمود المقام على السطح الفاصل بين الوسطين كما في الشكل)6-9(. .) $\theta_{\scriptscriptstyle 2}$ (تكون اصغر من زاوية الانكسار) اي ان زاوية السقوط) ولتوضيح فكرة انكسار الضوء عملياً نجرى النشاط الآتي.

نشَاط 2: مفاهيم خاصة بانكسار الضوع

ادوات النشاط: حوض شفاف) زجاجي او بلاستيكي فيه ماء (، مصدر ضوئي) ذو طول موجي معين (، مسحوق طباشير، منقلة، ورقة. الخطوات:

• نرتب ادوات النشاط كما في الشكل)6-10(, مع ملاحظة بانه يفضل ان يكون مكان العمل ذو خلفية مظلمة.

- نسقط الشعاع الضوئي بحيث يكون عمودياً على السطح الفاصل بين الوسطين الشفافين) الهواء والماء في هذا النشاط(, ماذا تلاحظ؟ انك سوف تلاحظ بان الضوء ينفذ على استقامته وبصورة عمودية على السطح الفاصل بين الوسطين من غير ان ينحرف) او ينكسر(. اي ان الشعاع الضوئي لا ينكسر.
- " نسقط الضوء ولكن هذه المرة بصورة مائلة على السطح الفاصل فعندما تنظر اليه بصورة عمودية من احد الجوانب فانك ستلاحظ ان الضوء النافذ)اي الشعاع المنكسر (هو ليس على استقامة الضوء الساقط كما في حالة السقوط العمودي بل انه قد انحرف عن مساره)اي انكسر (لاحظ الشكلين)6-10()6-11(.
- على الورقة حدد السطح الفاصل بين الوسطين، والشعاع الساقط والشعاع المنكسر وكذلك العمود المقام على السطح الفاصل من نقطة السقوط، والان لابد انك قد لاحظت بان الشعاع الساقط والشعاع المنكسر والعمود المقام كلها تقع في مستو واحد عمودي على السطح الفاصل.

شكل (6-11)

- باستعمال المنقلة جد قيمة الزاوية الحصورة بين الشعاع الساقط والعمود المقام ، اي زاوية السقوط θ_2 (فهل θ_2) مناويتين ؟ والحقيقة الكسرة بين الشعاع المنكسر والعمود المقام ، اي زاوية الانكسار θ_2 (فهل وجدتهما متساويتين ؟ والحقيقة انك ستلاحظ بانهما غير متساويتين .
- غير عدة مرات قيمة زاوية السقوط فانك ستلاحظ تغير قيمة زاوية الانكسار المناظرة لها في كل حالة ، ثم جد جيب زاوية السقوط وجيب زاوية الانكسار المناظرة لها لكل حالة) مكنك ان ترتب هذه القيم في جدول (، فانك ستجد ان النسبة بين جيب زاوية السقوط) $\sin \theta_1$ وجيب زاوية الانكسار القيم في جميع الحالات . من خلال النشاط السابق فانك قد تعرفت الى بعض المفاهيم المتعلقة بظاهرة انكسار الضوء والتي سبق لك ان درستها والتي تنص على:

القانون الاول للانكسار

الشعاع الساقط والشعاع المنكسر والعمود المقام من نقطة السقوط على السطح الفاصل تقع جميعها في مستو واحد عمودي على السطح الفاصل بين وسطين شفافين.

القانون الثانى للانكسار

النسبة بين جيب زاوية السقوط وجيب زاوية الانكسار يساوى مقدارً ثابتاً.

لكل زاوية سقوط زاوية انكسار معينة خاصة بها بين وسطين مختلفين في الكثافة الضوئية

معامل الانكسار وقانون سنيل Index of refraction and Snell's law

4-6

لاحظنا سابقاً بأن النسبة بين جيب زاوية السقوط للشعاع الساقط في الوسط الشفاف الاول و جيب زاوية الانكسار في الوسط الشفاف الثاني هي نسبة ثابتة لهذين الوسطين .ان هذه النسبة تسمى معامل الانكسار من الوسط الشفاف الاول الى الوسط الشفاف الثاني او معامل الانكسار النسبي بين الوسطين الشفافين ويعطى حسب العلاقة الاتية.

$$_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}}$$
 (1-6)

حيث

ي السفاف الأول. الشفاف الأول. جيب زاوية السفوط للشعاع الساقط في الوسط الشفاف الأول. $\sin \, heta_1$

جيب زاوية الانكسار للشعاع المنكسر في الوسط الشفاف الثاني. $sin~ heta_{_{\mathcal{O}}}$

معامل الانكسار النسبي بين الوسطين الشفافين أو معامل الانكسار من الوسط الشفاف الاول الى الوسط الشفاف الثاني. الى الوسط الشفاف الثاني.

ان معامل الانكسار النسبي بين الوسطين الشفافين يساوي ايضاً النسبة بين سرعة الضوء في الوسط الشفاف الأول) \mathcal{U}_1 (وسرعة الضوء في الوسط الشفاف الثاني) \mathcal{U}_2 اي ان \mathcal{U}_3

$$_{1}n_{_{2}} = \frac{\mathcal{U}_{_{1}}}{\mathcal{U}_{_{2}}} \dots \dots \dots (2-6)$$

ومن المعادلتين)6-1 (و)6-2 فانه يمكن كتابة.

$$\frac{\mathcal{U}_1}{\mathcal{U}_2} = \frac{\sin \theta_1}{\sin \theta_2} \dots (3-6)$$

وباستعمال مبدأ) هايجنز()Huygens's principle والذي تعرفت عليه سابقاً فانه :

$$\frac{\sin \theta_1}{\sin \theta_2} = \frac{\lambda_1}{\lambda_2} \dots (4-6)$$

حيث :

 $\lambda_1($: طول موجة الضوء في الوسط الشفاف الأول) أو المادة الشفافة الاولى (. $\lambda_1($: طول موجة الضوء في الوسط الشفاف الثاني) أو المادة الشفافة الثانية (. $\lambda_2($ ومن المعادلتين $\lambda_2($ و $\lambda_2($ و $\lambda_2($ فانه يمكن الحصول على:

وفي حالة كون الوسط الشفاف الأول هو الفراغ ، فعند ذلك تصبح) $\mathcal{D}_1 = C$ (في معادلة) $\mathcal{D}_1 = C$ (حيث وفي حالة كون الوسط الشفاف الأول هو الفراغ وتساوي) $\mathcal{D}_1 = C$ (، وفي هذه الحالة فان معامل الانكسار) $\mathcal{D}_1 = C$ () وفي هذه الحالة فان معامل الانكسار يسمى بمعامل الانكسار المطلق) $\mathcal{D}_1 = C$ () ويعطى حسب العلاقة الاتية:

معامل الانكسار المطلق للوسط الشفافة (

سرعة الضوء في الوسط الشفاف) أو المادة الشفافة (

حيث) $\mathcal{V}($ π ثل سرعة الضوء في الوسط الشفاف المادي . اي ان معامل الانكسار المطلق للمادة الشفافة يساوي النسبة بين سرعة الضوء في الفراغ وسرعة الضوء في المادة الشفافة، ومن الجدير بالذكر أن سرعة الضوء في اي مادة) أو وسط (هي دائماً أقل من سرعته في الفراغ.

مثال1

وجد ان سرعة الضوء في وسط شفاف تساوي 1.56×10^8 \times 1.56×10^8 (. جد معامل الانكسار المطلق لهذا الوسط ، اذا علمت ان سرعة الضوء في الفراغ تساوي $\times 10^8$ \times (?

الحل: لدينا العلاقة:

سرعة الضوء في الفراغ معامل الانكسار المطلق للوسط الشفاف _ ____سرعة الضوء في الوسط الشفاف معامل الشفاف

$$n = \frac{c}{V} = \frac{3 \times 10^8}{1.56 \times 10^8} = \frac{3}{1.56}$$

معامل الانكسار المطلق n=1.92

تذكر

(n=1) معامل الانكسار المطلق للفراغ يساوي واحد

. الجدول) 2(يبين قيم معامل الانكسار المطلق لبعض المواد) غازية ، سائلة ، صلبة ($20^{\circ}\mathrm{C}$) لضوء الصوديوم ، طول موجته حوالي ((2(

مغامل الانكسار الطلق	للادة	معامل الانكسار المطلق	اللادة	معامل الانكسار المطلق	اللاة
	3- مواد صلبة 🕶		2- سوائل **		1-غازات•
1.49	البوليستيرين	1.33	川	1.00029	هواء
1.52	زجاج شبابيك اناجي)	1.36	الاسيتون	1.00025	بخار ماء
1.54	كلوريد الصوبيوم	1.46	رابع كلوريد الكاربون	1.00045	ثنائى اوكسيد الكاربون
1.92	الزركون	1.47	الكليسرين		***
2.42	الماس				

لقد تعرفت مما سبق على معامل الانكسار المطلق لمادة شفافة او وسط شفاف وكذلك على معامل الانكسار النسبي بين وسطين الانكسار النسبي بين وسطين شفافين ، فهل توجد علاقة تربط بين معامل الانكسار النسبي بين وسطين شفافين ومعاملي الانكسار المطلقين لهما ؟ وماهي تلك العلاقة ؟

من المعادلة)6-6(فانه يمكننا كتابة معامل الانكسار المطلق للوسط الشفاف الاول .

$$n_1 = \frac{c}{v_1}$$
 (7-6)

وكذلك فان معامل الانكسار المطلق للوسط الشفاف الثاني يساوي.

$$n_2 = \frac{c}{v_2}$$
 (8-6)

وبقسمة معادلة)6-8(على معادلة)6-7(نحصل على :

$$\frac{n_2}{n_1} = \frac{v_1}{v_2} \dots)9-6($$

 $^{0^{\}circ}$ C في ضغط واحد جو ودرجة حرارة

^{**} مقربة الى مرتبتين بعد الفارزة

ومن المعادلة)6-6 فانه يمكن الحصول على:

$$\frac{n_2}{n_1} = \frac{\lambda_1}{\lambda_2} \dots (10-6)$$

وكذلك من المعادلتين)6-2(و)6-9(فانه يمكننا كتابة:

$$_{1}n_{_{2}} = \frac{n_{_{2}}}{n_{_{1}}}$$
 (11-6)

اي ان معامل الانكسار النسبي من الوسط الشفاف الاول الى الوسط الشفاف الثاني يساوي النسبة بين معامل الانكسار المطلق للوسط الشفاف الاول. معامل الانكسار المطلق للوسط الشفاف الاول. وبعد استنتاجنا العلاقة السابقة اي المعادلة)6-11 (اصبح في مقدورنا الان التوصل الى أحد القوانين المهمة في فيزياء البصريات. ألا وهو قانون سنيل) Snell's law (فكيف يمكننا التوصل اليه ؟ باستعمال المعادلتين)6-1 (و)6-11 (فانه يمكننا كتابة:

$$\frac{n_2}{n_1} = \frac{\sin \theta_1}{\sin \theta_2}$$
 (12-6)

اي ان:

معامل الانكسار المطلق للوسط الشفاف الاول × جيب زاوية السقوط فيه = معامل الانكسار المطلق للوسط الشفاف الثاني × جيب زاويسة الانكسار فيه.

ان المعادلة السابقة)6-13 (تسمى بقانون سنيل. اي ان

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \dots (13-6)$$
 (قانون سنیل)

مثال2

الحل من قانون سنيل ـ

سقط شعاع ضوئى من الهواء على سطح الماء بزاوية سقوط قياسها $)^{\circ}60^{\circ}$ وكانت زاوية انكساره في الماء تساوي) ° 40.5 (. جد معامل الانكسار المطلق للماء ؟)مع العلم بان

)sin60°=0.866 sin40.5°=0.649

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

 $1 \times \sin 60^\circ = n_2 \times \sin 40.5^\circ$
 $1 \times 0.866 = n_2 \times 0.649$

$$n_2 = \frac{0.866}{0.649} = 1.33$$
 وهو معامل الانكسار المطلق للماء 0.649

الزاوية الحرجة والانعكاس الكلى الداخلي . Critical angle and the total internal reflection

5-6

اذا سقط شعاع ضوئي من وسط شفاف معامل انكساره المطلق كبير n_1 () اكثف ضوئياً (،كالزجاج مثلاً ،الى وسط شفاف آخر معامل انكساره المطلق اصغر n_{2} اقل كثافة ضوئية(،كالهواء مثلاً،

فان الشعاع المنكسر يبتعد عن العمود المقام على السطح الفاصل عند نقطة السقوط. وكلما ازدادت زاوية السقوط في الوسط الشفاف الاول) الزجاج (ازدادت زاوية الانكسار في الوسط الشفاف الثاني) الهواء (على وفق قانون سنيل، لاحظ الشكل فى) 90° (). وعندما تصبح زاوية الانكسار مساوية الى) 90° الوسط الشفاف الثاني فان زاوية السقوط في الوسط الشفاف الأول تسمى بالزاوية الحرجة، فماذا نقصد بالزاوية الحصرجة ؟

شكل (12-6)

الزاوية الحسرجة هي زاويسة السقوط في الوسط الاكثف ضوئياً والتي زاوية انكسارها قائمة) 900 في الوسط الاخر الاقل منه كثافة ضوئية وحدث الزاوية الحرجة دائماً في الوسط الشفاف الذي معامل انكساره المطلق اكبر من معامل الانكسار المطلق للوسط الشفاف الأخر عند السطح الفاصل بينهما لاحظ الشكلين 6-12 (و) 13-6 ((. فماذا يحصل لو ازدادت زاوية السقوط بحيث اصبح قياسها اكبر من قيمة الزاوية الحرجة ؟

فاذا سقط الضوء بزاوية سقوط اكبر من الزاوية الحرجة داخل الوسط الشفاف الاكثف ضوئياً) ذو معامل الانكسار المطلق الاكبر (فان الاشعة الضوئية سوف لاينفذ منها اي جزء الى الهواء)اي لاتنكسر (بل تنعكس باكملها انعكاساً كلياً داخلياً عن السطح الفاصل بين الوسطين الشفافين ، مرتدة الى الوسط الشفاف الاكثف ضوئياً الذي قدمت منه وفق قانوني الانعكاس . وتسمى هذه الظاهرة بظاهرة الانعكاس الكلي الداخلي.

شكل (13-6)

شكل (14-6)

تندكر

ان ظاهرة الانعكاس الكلي الداخلي لاتحدث الا اذا توافر الشرطان الآتيان:

1 - عندما ينتقل الضوء من وسط شفاف الى وسط شفاف آخر أقل منه كثافة ضوئية.

2 - عندما تكون زاوية السقوط في الوسط الشفاف الاكثف ضوئياً اكبر من الزاوية الحرجة الخاصة به.

وبتطبيق قانون سنيل بين الوسط الشفاف الاكثف ضوئياً ذو معامل الانكسار المطلق) n_1 والذي حدثت به الزاوية الحرجة) θ_c والوسط الشفاف الآخر الأقل كثافة ضوئية ذو معامل الانكسار المطلق) θ_c وعندما $\theta_2 = 90^\circ$ و $\theta_1 = \theta_c$ فاننا نجد) حيث ان $\theta_2 = 90^\circ$ فاننا نجد) حيث ان $\theta_2 = 90^\circ$

$$\sin \Theta_{c} = \frac{n_{2}}{n_{1}}$$
 (14-6) ($n_{2} < n_{1}$ (

وفي حالة ان يكون الهواء هو الوسط الشفاف الأقل كثافة ضوئية، اي ان n_2 وباستعمال المعادلة وفي حالة ان يكون الهواء هو الوسط الشفاف الأقل كثافة ضوئية، اي ان n_2 وباستعمال المعادلة n_2

$$n = \frac{1}{\sin \Theta_c}$$
 (15-6)

وهذا يعني ان معامل الانكسار المطلق لوسط شفاف) أومادة شفافة (يساوي مقلوب جيب الزاوية الحرجة لهذا الوسط) أو المادة الشفافة (.

لاهرة بريقه لازوايا بوالي بوالي عدة الماس

شكل (6-15)

ومن الجدير بالذكر ان الماس يدين بقدر كبير من جماله لظاهرة الانعكاس الكلي الداخلي. حيث يعزى تألق الماس وبريقه الى ان زاويته الحرجة)حوالي 24.4° (تعد من اصغر الزوايا الحرجة نسبيا لذا فان معامل انكساره المطلق) حوالي 2.42 (يعد نسبياً من اكبر معاملات الانكسار المطلقة . فالضوء الساقط على الماس والنافذ الى داخله سيعاني عدة انعكاسات كلية ليخرج بعدها الى عين الناظر مكسباً الماس ذلك البريق المتألق ، لاحظ الشكل) 6-10 (.

مثال 3 اذا علمت ان الزاوية الحرجة)41.1 (للضوء المنتقل من مادة شفافة الى الهواء. فما هو معامل الانكسار المطلق لهذه المادة؟ مع العلم بان) $0.657 = \sin 41.1$ (

الحل: لدينا العلاقة:

$$n = \frac{1}{\sin \Theta_c}$$

$$n = \frac{1}{\sin 41.1^{\circ}} = \frac{1}{0.657}$$

شكل (16-6)

شكل (17-6)

شكل (18-6)

هناك ظواهر طبيعية اخرى مكن تفسيرها حسب ظاهرة الانعكاس الكلى الداخلي نذكر منها على سبيل المثال ظاهرة السراب والتي تعرفت عليها سابقاً. كما توجد تطبيقات كثيرة في الاجهزة البصرية لظاهرة الانعكاس الكلى الداخلي نذكر منها الموشور العاكس، وهو موشور زجاجي قائم ذو زوايا *) 45 - 90 - 156*,ومن استعمالاته هي في تغيير مسار الاشعة الضوئية بزاوية)00℃(او زاوية)180℃ لاحظ الشكل)6-16(. كما يستعمل الموشور العاكس في عدد من التطبيقات البصرية نذكر منها استعماله في الناظور ذي الموشورين ، لاحظ الشكل) 6-17(، وجهاز البيريسكوب)periscope والذي عادة يستعمل في الغواصات لرؤية الاجسام فوق سطح الماء، الشكل)6-18(. كما يفضل استعمال الموشور العاكس في الاجهزة البصرية على المرآة المستوية ، لأنه اكثر عكساً للضوء وذلك لان الضوء في الموشور العاكس ينعكس انعكاساً كلياً داخلياً بنسبة مقاربة جداً الى)100%, ولكن في المرآة يحدث امتصاص للضوء الساقط عليها بنسبة معينة جعل انعكاسها أقل من الموشور العاكس،) المرآة النموذجية عادة تعكس نسبة حوالي 90% ، ولذلك فان الصورة تبدو حادة المعالم وواضحة التفاصيل واكثر سطوعاً في حالة استعمال الموشور العاكس، ومن التطبيقات المهمة الاخرى لظاهرة الانعكاس الكلي الداخلي هي الالياف البصرية)أو الالياف الضوئية(ولأهمية هذا الموضوع فأننا سوف نوضحه في الفقرة التالية.

بصريات الألياف Fiberoptics

6-6

الالياف البصرية هي الياف زجاجية او بلاستيكية دقيقة تستعمل لنقل الضوء من مكان الى آخر حسب ظاهرة الانعكاس الكلي الداخلي، شكل)6-19(، حيث يكاد لايعانى الضوء خلالها اى فقدان في الطاقة سوى كمية قليلة جداً فحسب) فمثلاً الخزمة الضوئية تستطيع ان تقطع مسافة طويلة جداً ، عده كيلومترات في بعض الحالات ، قبل ان تضيع كمية محسوسة من الضوء(، فاذا سقطت اشعة ضوئية على احدى نهايتي الليف البصرى بحيث تكون زاوية سقوطه على غلافه الداخلي اكبر من الزاوية الحرجة لمادته فانه سينعكس انعكاساً كلياً داخلياً ويبقى الشعاع داخل الليف البصرى ويخرج من طرفه الآخر حتى ولو كان الليف البصرى منحنياً. لاحظ شكل)6-20(، وينقل جزء صغير من صورة الجسم الى الطرف الآخر من الليف البصرى ، شكل)6-12(، ويكون غلاف الليف البصري ذو معامل انكسار اقل قليلاً من قلب الليف البصري وهذا يمنع هروب الضوء من الليف البصري.

شكل (19-6)

شكل (20-6)

شكل (21-6)

تطبيقات الالياف البصريـــــة

7-6

- 2 تستعمل في فحص الاجزاء الداخلية في المكائن والاجهزة الالكترونية وكذلك في فحص المفاعلات النووية.
- 5 كما تستعمل ايضاً لنقل المعلومات الضوئية والسمعية عبر الحيطات والقارات وهي محملة على اشعة الليزر، وتمتاز الالياف البصرية بانها تستطيع ان خمل عدد أكبر من المكالمات الهاتفية بالمقارنة مع الاسلاك الكهربائية، فمثلاً الطرائق الالكترونية الحديثة تسمح وعلى الاكثر حمل)32(مكالمة هاتفية في الوقت نفسه بوساطة زوج من الاسلاك النحاسية، بينما اكثر من مليون مكالمة هاتفية يمكن حملها بوساطة ليف بصري واحد، لاحظ شكل)6-24(.

شكل (22-6)

شكل (23-6)

شكل (24-6)

ئل ماتحتاجه ببرتجده مجاناً على بوت تليكرام المعرف stad4al_bot@ [مبولية]

6

الفصل الفصل المسادس

اسئلة

س1 - اختر العبارة الصحيحة لكل مما يأتي:

1 - اي من العبارات الآتية تعبر عن أحد قانونى الانعكاس.

a زاوية السقوط تساوى ضعف زاوية الانعكاس.

زاوية السقوط تساوى نصف زاوية الانعكاس. $oldsymbol{b}$

- زاوية السقوط تساوي زاوية الانعكاس.

زاوية السقوط تساوي الجذر التربيعي لزاوية الانعكاس-d

2 - سرعة الضوء في الزجاج هي.

a - اقل من سرعة الضوء في الفراغ.

b - اكبر من سرعة الضوء في الفراغ.

- C تساوي سرعة الضوء في الفراغ.

d - جميع الاحتمالات السابقة.

3 - النسبة بين جيب زاوية السقوط للشعاع الساقط في الوسط الشفاف الاول و جيب زاوية الانكسار

في الوسط الشفاف الثاني هي نسبة ثابتة لهذين الوسطين تسمى.

a - طاقة الاشعاع الضوئي.

b - زخم الاشعاع الضوئي.

- c معامل الانكسار النسبى بين الوسطين الشفافين.

d - تردد الاشعاع الضوئي.

4 - وحدة معامل الانكسار المطلق لمادة شفافة هي:

$$\frac{1}{m}$$
 - b m-a

يس له وحدات - d ليس له وحدات

كل ماتحتاج<u>ه بال</u>قجده مجاناً على بوت تليكرام المعرف stad4al_bot @

القصال المادس

س2 - اجب عن الاسئلة التالية:

- 1 ما سبب تألق الماس ؟
- 2 ايهما اكثر جودة في عكس الضوء الموشور العاكس ام المرآة المستوية ولماذا ؟
 - 3 ما قانونا الانعكاس ؟ وما قانونا الانكسار ؟
 - 4 اذكر الصيغة الرياضية لقانون سنيل موضحاً المعنى الفيزياوي لكل رمز ؟.
- 5 ماذا نقصد بالزاوية الحرجة؟ وما علاقتها بمعامل الانكسار المطلق لمادة شفافة ؟
 - 6- ما المقصود بالقول ان معامل الانكسار المطلق للماء هو) 1.33 (؟

7- في حالة أن يكون الشعاع)1 (هو الشعاع الساقط في الشكل الجاور فما هي الاشعة المنعكسة والاشعة المنكسرة من الاشعة الحمراء الاربعة الاخرى؟

مسائل

الفراغ وسرعة الضوء في الفراغ 2.42(وسرعة الضوء في الفراغ 3×10^8 وسرعة الضوء في الفراغ تساوى) 3×10^8 (، جد سرعة الضوء في الماس ؟

$$V = 1.24 \times 10^8 \text{m/s}(:_{\tau}$$

C - اذا علمت ان سرعة الضوء في أحد المواد الشفافة تساوي) $\frac{C}{1.52}$ (هي سرعة الضوء في الفراغ, فما هو معامل انكساره المطلق؟

3 - اذا كان معامل الانكسار المطلق للماء يساوي $\frac{4}{3}$ (ومعامل الانكسار المطلق لأحد انواع الزجاج يساوي $\frac{3}{2}$ (، جد مقدار الزاوية الحرجة بين هذين الوسطين ? $\frac{3}{2}$ () $\sin 62.75 = 0.889$) مع العلم بان $\sin 62.75 = 0.889$

$$\theta_c =) 62.75^{\circ} (:_{\tau}$$

كل ماتح<mark>تا هم سخده مجاناً على بوت تليكرام المعرف stad4al_bot</mark>@

6

الفصيل السادس

```
4 - سقط ضوء من الهواء على سطح الماء بزاوية سقوط قياسها ) 30^\circ ( فانعكس جزء منه وأنكسر جزء آخر. فاذا علمت ان معامل الانكسار المطلق للماء يساوي ) \frac{4}{3} ، جد:
```

a- زاوية الانعكاس ؟

b- زاوية الانكسار؟

) مع العلم بأن \$0.763 °sin49.73 (.)

$$a$$
- θ_1 =30° $\ :$

 $\frac{C}{1.31}$ - اذا كانت سرعة الضوء في الجليد تساوي) $\frac{C}{1.31}$ (. حيث) $\frac{C}{1.30}$ هي سرعة الضوء في الفراغ . جد الزاوية الحرجة للضوء المنتقل من الجليد الى الهواء.؟

$$\Theta_{c} = 49.73^{\circ}($$
 : ϵ

6 - يسقط ضوء من الهواء على مادة شفافة معامل انكسارها المطلق يساوي 0.5(وبزاوية سقوط قياسها 0.5(، جد:

a- زاوية الانكسار؟

b- طول موجة الضوء في المادة الشفافة اذا كانت طول موجته في الهواء تساوي) b00nm - طول موجة الضوء في المادة الشفافة اذا كانت طول موجته في المهواء تساوي) مع العلم بأن $\sin 30^\circ = 0.5$. $\sin 19.45^\circ = 0.333$

)
$$a-\Theta_2 = 19.45^{\circ}$$
 , $b-\lambda_2 = 400 \text{ nm}$ (: ϵ

الفصل السابع

7

المرايا Mirrors

مقدمة:

عرفت في دراستك السابقه أن الضوء ينعكس عن الأجسام الختلفة عندما يسقط عليها 'وأن انعكاسه يكون منتظما عندما يسقط على سطوح صقيلة ومنها المرايا فما هي أنواع المرايا؟وماذا تتميز كل منها؟ تصنف المرايا حسب الشكل الهندسي لسطحها العاكس وتختلف الصور التي تكونها المرآة باختلاف نوع المرآة وسندرس في هذا الفصل المرايا المستوية والكروية .

المرآة المستوية plane Mirror

1-7

المرآة المستوية هي سطح مستو صقيل ينعكس عنه الضوء انعكاسا منتظما ، وإن صناعة المرآة الجيدة

ليس بالأمر اليسير فسطح المرآة لابد وأن يكون على درجة عالية من النعومة وامتصاصه للضوء يكون قليلا جدا وهذا يتوفر في المعادن.

تصنع المرآة المستوية التي تستعمل في حياتنا اليومية من لوح زجاجي مصقول صقلا جيدا يطلى احد وجهيه بأحد مركبات الفضة او الالمنيوم ويعتبر هو السطح العاكس وتعتمد جودة المرآة على نوعية الزجاج أو المعدن المستعمل وعلى درجة صقله لاحظ الشكل) 1-7(

شكل (1-7)

الصور المتكونة في المرايا المستوية Images Formed by a plane Mirrors

2-7

قف أمام المرآة المستوية ولاحظ صورتك فيها ؟ أين تقع؟ ما شكلها ؟ ماحجمها ؟ لاحظ حركة الصورة عندما تقترب من المرآة أو تبتعد عنها؟ كذلك حرك يدك

اليمنى؟ لاحظ الشكل)7-2(لاشك انك سترى صورتك معتدلة وليست مقلوبة ومن دون إن يحدث لها تصغير أو تكبير.أي نفس حجمها وبعد الصورة عن المرآة مساويا لبعدك عنها كما لو كانت صورتك موجودة خلف المرآة

شكل (2-7)

شكل (3-7)

شكل (4-7)

شكل (7-5)

وتكون الصورة خيالية)تقديرية (وليست حقيقية أي لايمكن استلامها على حاجز، تقترب إذا اقتربنا من المراة وتبتعد إذا ابتعدنا عن المراة وإذا حركت يدك اليمنى ترى أن اليد اليسرى للصورة هي التي تتحرك أي معكوسة الجوانب لاحظ الشكل)7-2(

كذلك إذا وضعت كتابة مثلا أمام المرآة المستوية ستجد إن الكتابة في الصورة معكوسة ولهذا السبب فأن كلمة إسعاف التي تكتب على مقدمة سيارات) إسعاف (لكشب عسوحهم بتك فالعسياا ا ليراها سائق السيارة التي أمامها في مرآة سيارته معتدلة ويفسح له الطريق لاحظ الشكل7-4. يمكن حديد موقع الصورة في المرآة المستوية ray diagram بأستعمال مخطط الاشعة والقانون الذي يحدد كيفية تشكيل الصور في المرآة هو قانونا الانعكاس. لاحظ الشكل)7-5(يبين مصدرا نقطياً ضوئياً على شكل نقطة عند)0(وعلى بعد)U(أمام المرآة المستوية وتسقط الأشعة من المصدر بزاوية معينة مع العمود على المرآة وهي زاوية السقوط ثم ينعكس عن سطح المرآة بزاوية مساوية لزاوية السقوط تسمى زاوية الانعكاس .وتستمر الأشعة المنعكسة متفرقة ولكنها تبدو وكأنها منبعثة من النقطة I خلف المرآة وتسمى النقطة I صورة للمصدر عند النقطة $O(e^{2})$ خديد مكان صورة المصدر النقطى من نقطة تلاقى امتدادات الاشعة المنعكسة عن سطح المراة عند I(النقطة

فكر

ما صفات الصورة المتكونة للفراشة) لاحظ الشكل الجاور (عندما تكون امام المراة المستوية؟ وكم تبعد صورة راس الفراشة عنها اذا كان بعد راسها عن سطح المراة يساوي)50cm(

3-7

تعدد الصور في المرايا المتزاوية

جد في صالونات الحلاقة لقص الشعر مرآتين مستويتين متقابلتين أحداهما أمامك والأخرى خلفك وعندما جلس على كرسي الحلاق تشاهد صورا لا متناهية لجسمك حيث ترى صورا أمامية تتبعها صوراً خلفية وهكذا أي ترى الجزء الخلفي من رأسك . يا ترى هل هناك علاقة بين عدد الصور المتكونة في المرآتين والزاوية التي تصنعها أحداهما مع الأخرى؟ قد يساعدك هذا النشاط على الإجابة عن هذا السؤال.

كَشُكِ 1 عدد الصور المتكونة لجسم في مرآتين بينهما زاوية.

ادوات النشاط: مرآتين مستويتين. شمعة متقدة ، منقلة

الخطوات:

- ثبت المرآتين على سطح أفقى بحيث يكون سطحاهما العاكسين متزاويين لاحظ الشكل)7-6(.
 - ضع شمعة متقدة بينهما
 - انظر إلى المرآتين كم صورة ترى للشمعة ؟
 - نقيس الزاوية بين المرآتين لقياسات مختلفة .
 90° . 60° . 30°(
 - لاحظ عدد الصور المتكونة وسجل ملاحظاتك .

نستنتج من هذا النشاط ان عدد الصور المتكونة للشمعة المتقدة يتغير بتغيير قياس الزاوية بين المراتين حسب المعادلة الاتية.

$$^{\circ}$$
 عدد الصور المتكونة = $^{\circ}$ الزاوية بين المرآتين

$$n = (\frac{360^{\circ}}{\theta}) - 1$$

حيث ان :

n يمثل عدد الصور

هي الزاوية بين المرآتين θ

مثال

وضع جسم بين مرآتين مستويتين الزاوية بينهما $)^{\circ}24^{\circ}$. ما عدد

الصور المتكونة للجسم ؟

1-)
$$\frac{360°}{\text{عدد الصور المتكونة}}$$
 (-1 الزاوية بين المرآتين

$$n = (\frac{360^{\circ}}{\theta}) - 1$$

$$n = 15 - 1$$

عدد الصور 14 = n

4-7

المرايا الكروية Spherical Mirrors

شكل (7-7)

شكل (8-7)

شكل (9-7)

شكل (7-10)

هل شاهدت صورة وجهك في ملعقة طعام ، من سطحها الداخلي أوالخارجي ماذا تلاحظ ؟ إن سطح الملعقة الداخلي والخارجي كلها تعمل عمل سطح عاكس غير مستو. لاحظ الشكل)7-7(

المرايا الكروية وهي المرايا التي يكون فيها السطح العاكس هو جزءاً من سطح كرة مجوفة . فاذا كان السطح العاكس هو السطح الداخلي سميت مرآة مقعرة CONCAVE Mirror لاحظ الشكل)8-7(واذا كان السطح العاكس هو السطح الخارجي سميت مراة محدبة CONVEX mirror

وللتعرف على كيفية تكون الصور في هذين النوعين من المرايا الكروية يجب أن نتعرف إلى المفاهيم التالية المتعلقة بها لاحظ الشكلين)7-9()7-10(:

1-مركز تكور المرآة) c(.هو مركز الكرة الذي اقتطع منها سطح المرآة

2-قطب المرآة)V(:هو النقطة التي تتوسط سطح المرآة الكروية

3-الحور الاساس للمرآة. هو الخط الواصل بين مركز تكور المرآة وقطبها

4- نصف قطر تكور المرآة R () وهو نصف قطر الكرة التي اقتطع منه سطح المرآة

5- بؤرة المراة) F (: هي نقطة واقعة على الحجور الاساس للمرآة والناتجة عن التقاء الاشعة المنعكسة عن سطح المراة) او امتداداتها (والساقطة اصلاً بصورة موازية للمحور الاساس لاحظ الشكل)7-10(.

6-البعد البؤري f (: هو البعد بين قطب المرآة وبؤرتها، $f=\frac{1}{2}$ (.) $f=\frac{1}{2}$

ولغرض تحديد رسم الصورة المتكونة من المراة الكروية نأخذ بنظر الاعتبار!

1-الشعاع الضوئي الموازي للمحور الأساسي للمرآة المقعرة ينعكس مارا ببؤرتها الحقيقية لاحظ الشكل)7-11 (إما الشعاع الموازي للمحور الأساسي للمرآة المحديدة فينعكس بحيث امتداده يمر ببؤرتها التقديرية لاحظ الشكل)7-10 (.

2-الشعاع الضوئي) او امتداده (المارفي بؤرة المرآة ينعكس موازيا لحوله الاساسي لاحظ شكل)7-12 (.

3-الشعاع المار بمركز تكور المرآة المقعرة يرتد على نفسه بعد الانعكاس

والشعاع الذي يتجه نحو مركز تكور المرآة الحدبة ينعكس على نفسه

شكل (11-7)

شكل (12-7)

شكل (13-7)

كُشُـــاكُـ 2: تكون الصور في المرايا المقعرة

أيضا لاحظ شكل)7-13(.

ادوا ت النشاط: مراة مقعرة . حامل مراة . شمعة . قطعة كارتون بيضاء (شاشة) الخطوات :

شكل (7-14)

■ كرر الخطوات السابقة مرات عدة وفي كل مرة غير بعد الشمعة عن المراة .

نستنتج من هذا النشاط انه يمكن جميع الاشعة الصادرة من لهب الشمعة على الحاجز، كما لاحظنا ان الجسم والصورة يقعان في جهة واحدة بالنسبة للمرآة المقعرة مثل هذا النوع من الصور التي تنتج عن جميع الاشعة المنعكسة على حاجز تسمى صورة حقيقية اما الصورة التي تنتج من امتدادات الاشعة المنعكسة تدعى الصورة الخيالية.

فکر

هل تختلف صفات الصورة المتكونة في المرآة المقعرة عن صفات الصورة المتكونة في المرآة المستوية ؟

5-7

خصائص الصور المتكونة في المرآة المقعرة:

1- اذا كان بعد الجسم عن المراة يزيد عن ضعف بعدها البؤري) 2f (فأن صورة الجسم تقع بين البؤرة ومركز التكور و تكون حقيقية ومقلوبة ومصغرة لاحظ الشكل)15-7(

شكل (15-7)

Learner C E

شكل (7-16)

2- إذا كان الجسم في مركز التكور) اي على بعد ضعف البعد البؤري فصورة الجسم تكون حقيقية ومقلوبة تقع في مركز التكور ولها طول الجسم نفسه وفي الموقع نفسه لاحظ الشكل)16-7(

3-إذا كان الجسم بين البؤرة ومركز التكور فأن الصورة المتكونة تقع خلف مركز التكور وتكون حقيقية ، مقلوبة ومكبرة لاحظ الشكل)7-7(

شكل (17-7)

4-إذا كان الجسم يقع على بعد يساوي البعد البؤري للمراة فأن الاشعة تنعكس متوازية لاحظ الشكل)7-18(

شكل (7-18)

فكر ماهي صفات الصورة المتكونة في المرآة المقعرة لجسم يقع في اللانهاية.

5-إذا كان الجسم يقع على بعد اقل من البعد البؤري للمراة فأن صورة الجسم تكون خيالية ومعتدلة ومكبرة وتقع خلف المرأة. لاحظ الشكل)7-19(

شكل (7-19)

6-7

خصائص الصورة المتكونة في المرآة المحدبة:

إذا أسقطنا شعاعا ضوئيا من جسم مضئ بشكل مواز للمحور الاساس فأنه سينعكس بحيث أن امتداده سيمر بالبؤرة وإذا أسقطنا شعاعا آخر من رأس الجسم متجها نحو البؤرة فسينعكس موازيا للمحور الاساس لاحظ الشعب كل 20-7(. أن المرآة المحدبة تفرق الأشعة الضوئية الساقطة عليها ولذلك يطلق عليها اسم المرآة المفرقة. هل يعني ذلك أن الصورة التي تكونها المرآة المحدبة تقديرية أم حقيقية؟ للإجابة على هذا السؤال نجرى هذا النشاط:

شكل (20-7)

تُشْكِلُكُ 3 الصورة المتكونة في المرآة المحدبة

ادوات النشاط: مرآة محدبة ، حامل المرآة، شمعة، حاجز

الخطوات:

- امسك المرآة بيدك وانظر الى سطحها العاكس ماذا ترى؟ ماصفات الصورة التي تراها ؟ هل هي معتدلة أم مقلوبة أم مكبرة ام مصغرة ؟
- قرب المرآة منك حينا وابعدها حينا آخر لاحظ الصورة ؟ لاحظ الشـــكل)21-7 سـجل ملاحــظاتك
- ضع المرآة على الحامل ثم أوقد الشمعة وضعها أمام
 المرآة ومقابل سطحها العاكس

شكل (21-7)

حتاجه ستحده محانا على بوت تليكرام المعرف bot.

- حاول أن تكون صورة للشمعة على الحاجز هل تنجح في ذلك؟
- انظر في المرآة ماذا تلاحظ؟هل صورة الشمعة التي تراها حقيقية أم خيالية)تقديرية(؟ وأين تقع ؟ وما صفاتها؟

لذلك نستطيع القول انه مهما كان بعد الجسم عن المرآة فان صفات الصورة هي خيالية ، معتدلة مصغرة.

الزيغ الكروى:

للحصول على صورة واضحة غير مشوهة للجسم في المراة الكروية فأن كل حزمة ضوئية صادرة من نقاط الجسم يجب ان تنعكس عن سطح المراة متجمعة في نقطة واحدة مكونة صورة مناظرة للنقطة التي صدرت عنها 'وهذا في الحقيقة لايمكن بسبب تكون صور عديدة للنقطة المضيئة وعلى ابعاد مختلفة من المراة ويسمى هذا بالزيغ الكروى هو عدم جمع الاشعة المنعكسة عن سطح مرآة كروية في نقطة واحدة . فالاشعة الموازية للمحور الاساس والقريبة منه تمر هي او امتداداتها بعد انعكاسها في البؤرة . اما الاشعة المتوازية الساقطة على سطح المراة الكروية والبعيدة عن القطب فأنها او امتدادتها تمر بعد الانعكاس في أقرب نقطة الى قطب المرآة من بؤرتها لاحظ الشكل .)22-7(

للتخلص من الزيغ الكروى تصنع المراة المقعرة بشكل قطع مكافئ ذات بؤرة نقطية ويفضل استعمال مرايا كروية صغيرة الوجه لاحظ الشكل)7-23(كما في عاكسات الضوء وفي التلسكوبات الفلكية العاكسة.

شكل (7-22)

شكل (7-23)

المعادلة العامة للمرايا الكروية General Equation of spherical mirrors

7-7

بعد ان عرفت كيفية رسم الصور المتكونة في المرايا الكروية)الحدبة والمقعرة(الابد انك لاحظت أن موقع الصورة يتغير بتغير موقع الجسم .ومن هنا نستطيع أن نستنتج علاقة رياضية تربط بعد الجسم ببعد الصورة عن المراة وهذا يـُمكننا من استنتاج صفات صورته المتكونة .ان العلاقة الرياضية هذه تسمى

ماتحتاجه ستجده مجانا على بوت تليكرام المعرف bot_

القانون العام للمرايا لاحظ الشكل /7-24 وهي كالتالي:

$$\frac{1}{1} + \frac{1}{1} + \frac{1}{1}$$
 البعد البؤري للمرآة $\frac{1}{1}$ بعد الصورة عن المرآة

حيث أن ـُـ

f: البعد البؤرى للمرآة

U: تمثل بعد الجسم عن قطب المرآة

ت مثل بعد الصورة عن قطب المرآة . V

شكل (7-24) وعند تطبيق القانون العام للمرايا يجب مراعاة الاشارات في الخالات التالية:

- 1 يكون بعد الجسم)u(موجبا اذا كان الجسم حقيقيا امام المرآة وسالبا اذا كان الجسم خيالياً) تقديرياً (خلف المرآة.) في نظام مكون من عدسة ومرآة كروية (.
- 2- يكون بعد الصورة)٧/ موجباً اذا كانت الصورة حقيقية وسالباً اذا كانت الصورة خيالية)تقديرية(
 - 3 يكون البعد البؤرى f(موجباً اذا كانت المراة مقعرة ، وسلطاباً اذا كانت المراة محدبة.

قانون التكبير في المرايا

8-7

تسمى النسببة بين طول الصبورة المتكونة في المرايا الكروية الى طول الجسبم بالتكبير ويرمز له M كما انها تساوي نسبة بعد الصورة الى بعد الجسم عن المراة) magnification(

$$\frac{\partial V(a)}{\partial U(a)} = -\frac{\partial V(a)}{\partial U(a)} = -\frac{\partial V(a)}{\partial U(a)}$$
 التكبير = $\frac{\partial V(a)}{\partial U(a)}$ التكبير = $\frac{\partial V(a)}{\partial U(a)}$

$$M = \frac{h'}{h} = -\frac{v}{u}$$

حيث أن ـُـ

h' طول الصورة

h: طول الجسم

M: التكبير الطولي

عند تطبيق قانون التكبير يجب ملاحظة مايلى:

1- طول الصورة تكون اشارته موجبة بالصورة المعتدلة)نحو الاعلى (وتكون اشارته سالبة للصورة المقلوبة)نحو الاسفل(.

2- طول الجسم تكون اشارته موجبة للجسم المعتدل)نحو الاعلى (وتكون اشارته سالبة للجسم المقلوب)نحو الاسفل (.

3- تكون اشارة التكبير سالبة عندما تكون الصورة حقيقية مقلوبة بالنسبة للجسم.

4- تكون اشارة التكبير موجبة عندما تكون الصورة خيالية معتدلة بالنسبة للجسم.

كما أن مقدار التكبير يعكس لنا مدى تكبير الصورة او تصغيرها وكماياتي.

ه- فأذا كان التكبير M>1 فأن الصورة تكون مكبرة بالنسبة للجسم.

فأذا كان التكبير M < 1 فأن الصورة تكون مصغرةبالنسبة للجسم.

فأذا كان التكبير M=1 فأن الصورة تكون مساوية للجسم.

d- يكون التكبير اشارته موجبة للصورة المعتدلة)نحو الاعلى (وتكون اشارته سالبة للصورة المقلوبة الحقيقية)نحو الاسفل (.

مثال1

مراة مقعرة بعدها البؤري)20cm(جد موضع الصورة المتكونة وصفاتها ومقدار التكبير المنافع على بعد)30cm المرآة .

الحل:

بما ان المر آة مقعرة فأن f تعوض باشارة موجبة

$$\frac{1}{20} = \frac{1}{30} + \frac{1}{v}$$

$$\frac{1}{V} = \frac{3.2}{60} = \frac{1}{60}$$

$$V = 60cm$$
 الصورة حقيقية مقلوبة وعلى الصورة حقيقية مركز التكور.

$$M = -\frac{60}{30}$$

ما أن
$$M=2$$
 فهذا يعني ان الصورة مكبرة مرتين .

مثال2

مراة مقعرة بعدها البؤري)15cm (أين يجب أن يوضع جسم أمامها حتى تتكون له صورة:

1 - حقيقية مكبرة ثلاث مرات

2 - تقديرية مكبرة ثلاث مرات

الحل:

$$M = -\frac{v}{u} = \frac{h'}{h}$$

1- بما أن الصورة مكبرة ثلاث مرات فان

$$-\frac{v}{u}=\frac{3}{1}$$

$$v = -3u$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{15} = \frac{1}{u} + \frac{1}{3u}$$

$$\frac{1}{15} = \frac{3+1}{3u}$$

$$u = 20cm$$

$$v = 20 \times 3 = 60cm$$

2- بما أن الصورة تقديرية فيكون طولها باشارة موجبة

$$-\frac{v}{u}=\frac{3}{1}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{15} = \frac{1}{u} + \frac{1}{-3u}$$

$$\frac{1}{15} = \frac{+3 - 1}{3u}$$

$$\frac{1}{5} = \frac{2}{u}$$

$$u = 10cm$$
 عن المرآة

$$V = -3 \times 10 = -30$$
الصورة تقديرية معتدلة ومكبرة

مرآة محدبة نصف قطر تكورها)8cm وضع أمامها جسم على بعد)6cm من

قطبها جد بعد الصورة المتكونة ؟ وكذلك قوة التكبير؟

الحل:

مثال3

$$f = \frac{1}{2}R$$

$$= \frac{1}{2} \times 8$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$-\frac{1}{4} = \frac{1}{6} + \frac{1}{\sqrt{2}}$$

بما أن المرآة محدبة فان البعد البؤري يكون سالباً

$$\frac{1}{v} = \frac{1}{4} - \frac{1}{6}$$

$$\frac{1}{v} = \frac{-3.2}{12}$$

$$\frac{1}{v} = \frac{-5}{12}$$

$$V = -\frac{12}{5}$$

$$V = -2.4cm$$

$$M = -\frac{V}{U}$$

$$M = -\frac{-2.4}{6}$$

$$M = + 0.4$$
 التكبير

الاشارة الموجبة تعنى ان الصورة خيالية)تقديرية(

تطبيقات على المرايا

9-7

شكل (25-7)

للمرايا على اختلاف أنواعها)المستوية والكروية (فوائد عدة في حياتنا:

1 - تطبيقات المرايا المستوية:

لها استعمالات عديدة حيث توجد في جميع أرجاء المنزل لتزيين البيوت والصالات وكذلك للاستعمالات الشخصية في غرف النوم وفي الحمام وغيرها . لاحظ الشكل)7-55(المرآة في المنزل.

2- تستعمل المرآتان المتزاويتان للحصول على صور متعددة و تستثمر هذه الظاهرة في الزخزفة والحال التجارية لاحظ الشــــكل)7-26(.

شكل (26-7)

شكل (27-7)

3- وفي المرآة الأمامية لسائق السيارة الموجودة امام السائق لرؤية خلف السائق عند قيادة السيارة لاحظ شكل)7-7(. مراة القيادة المستوية امام السائق وفي بعض الاحيان تسمى العين الثالثة للسائق.

2-تطبيقات المراة المقعرة:

1- لتكبير الصور حيث يستعمل اطباء الأسنان المراة
 المقعرة التي تعطى صورة مكبرة لاسنان المريض

لتساعدهم على رؤية الاسنان بصورة واضحة المعالم والتفاصيل. لاحظ الشكل)28-7(

شكل (7-28)

شكل (29-7)

2- تستعمل في مصابيح السيارة الامامية حيث يوضع مصدر الضوء في بؤرة القطع المكافىء وتسقط الأشعة الضوئيةعلى سطحها فتنعكس عنها متوازية فتضئ إلى مسافات بعيدة أمام السيارة لاحظ الشكل)7-29(

3-جَميع الطاقة الشمسية واستعمال المراة المقعرة لتركيز أشعة الشمس في بؤرتها واستعمال الطاقة لإغراض التدفئة والطبخ وهذا يسمى الطباخ الشمسي لاحظ الشكل 30-7

شكل (7-30)

هل تعلم

ان الاطباق اللاقطة (الستلايت) التي نضعها على منازلنا تعمل عمل مرآة كبيرة تعكس موجات البث الفضائي وتركزه على وحدة الاستقبال والذي يسمى (LNB)

3- تطبيقات المراة

المحدية:

اما المراة المحدية فهي تسمى مراة القيادة حيث توجد على جانبي السائق لتعطي صورا مصغرة ومعتدلة وتعطي مجال رؤيا اوسع واشمل على الجانبين لاحظ الشكل)7-18(

شكل (7-31)

وتستعمل في السوق التجارية لمراقبة حركة المتسوقين في اثناء التسوق لاحظ الشكل)7-32 (.

شكل (32-7)

المعللة : عام القصال القصال المعاريع القصال المعاريع القصال المعاريع القصال المعاريع المعاري

اسئلة

س1: اختر العبارة الصحيحة لكل ما يلي:

1-الصورة الخيالية:

a - تكون معتدلة بالنسبة للجسم b - تكون مقلوبة للجسم

- يكن اسقاطها على حاجز d - تقع امام المرآة - C

2-المراة المقعرة تظهر صورة معتدلة للجسم عندما يكون بعده عنها:

البعد البؤرى لها -b اقل من البعد البؤرى f(لها - a

- ضعف البعد البؤري - d بعيدة جدا عن المرآة - C

3-عدد الصور المتكونة في المرايا المستوية المتقابلة :

180 - b 30 - a

0 - d لانهائية - C

4-الحور الاساس لمراة كروية هو المستقيم المار:

a - مركز تكور المراة واية نقطة اخرى b - مركز تكور المراة وقطبها

ببؤرة المراة واي نقطة على سطحها -C

5: اذا نظرت في مرأة وكانت صورتك مكبرة تكون المراة :

a - مقعرة - C - مستوية

محدبة d - محدبة - d

کل ماتح<mark>تاجه سِتِج</mark>ده مجاناً علی بوت تلیکرام المعرف stad4al_bot ®

7

استله الفصال السابع

6: نصف قطر تكور المراة الكروية يساوى:

a - نصف البعد البؤري - C - ثلاثة اضعاف البعد البؤري

ضعف البعد البؤري - d - ضعف البعد البؤري - b

7: صفات الصورة المتكونة في المرآة الحدبة هي:

حقيقية ومعتدلة ومصغرة C حقيقية ومكبرة ومقلوبة -a

خيالية ومعتدلة ومصغرة d - خيالية ومقلوبة ومكبرة b

8: مراة كروية بعدها البؤري 15cm فيكون نصف قطر تكورها يساوي:

60cm - c 15cm - a

30cm - d 7.5cm - b

9: مسطرة طولها 10cm وضعت بصورة عمودية امام مراة مقعرة بعدها البؤري)+50 cm وضعت بصورة عمودية امام مراة مقعرة بعدها البؤري)+50 cm وضعت بصورة المتكونة :

3cm - c معتدلة 3cm - a

10cm - d معتدلة 10cm - b

س2 : يقترح احدهم ان نضع مراة مقعرة على جانبي السيارة بدلا من المراة المحدبة ؟ هل ترى اقتراحه صحيحا ؟ ولماذا ؟

س3 وقف احمد امام مراة مستوية مرتديا قميصا رياضيا كتب عليه رقم 81 . ماذا تقرا صورة الرقم 81 ؟

س4: الشكل التالي يمثل صورة ساعة وضعت امام مرآة مستوية فما الوقت الذي تشير البه الساعة ؟

س5 للذا لاتتكون صورة لجسم موضوع في بؤرة مراة مقعرة ؟

7

ريبت الفصال السابع

س 6 : ماهي البؤرة الحقيقية وماهي البؤرة التقديرية ؟

س7: ميزبين المراة الحدبة والمراة المقعرة من حيث السطح العاكس وصفات الصور المتكونة في كل منهما .

س8: بين بالرسم موقع صورة جسم يقع على بعد أكبر من نصف قطر تكور:

b - مراة محدية

a - مراة مقعرة

المسائل

س1- تكونت صورة معتدلة باستعمال مراة مقعرة نصف قطر تقعرها 36cm، فاذا كانت قوة

U= 12 cm ∶ ₹

التكبير = 3 , احسب موضع الجسم بالنسبة للمرآة؟

 20° مراتان مستويتان الزاوية بينهما 120° ، احسب عدد الصور المتكون في المرآتين

n= 2 ∶ ₹

س3- وضع جسم على بعد 4cmمن مراة فتكونت له صورة تقديرية ومكبرة 3 مرات ، ما نوع المرآة وما

ج: مرآة مقعرة f= +6 cm

بعدها البؤرى ؟

س4- وضع جسم امام مراة مقعرة بعدها البؤري 12cm ، فتكونت له صورة حقيقية مكبرة اربع مرات،

جد بعد الجسم عن المراة وكذلك بعد صورته عنها) اعتبر ان الجسم عمودي على الحور الرئيس للمرآة(؟

U=15 cm : ₹

V= 60 cm

س5- وضع جسم طوله 4cm امام مراة محدبة نصف قطر تكورها 20cm ، فاذا كان بعد الجسم عن

المراة 40cm. جد نوع الصورة المتكونة وطولها ووضح اجابتك بالرسم؟

h = 0.8cm طولها معتدلة ومصغرة طولها

الفصيل الثامن

8

العدسات الرقيقة

العدسات الرقيقة Thin Lenses

1-8

علمت من دراستك السابقة ان العدسات هي أجسام شفافة ، محددة بسطحين كرويين أو سطح كروي وآخر مستوي وهي مصنوعة عادة من الزجاج)أو مواد لدنة شفافة (في تطبيقات الضوء المرئي ، وتصنع من الكوارتز Quartz لاستعمالات الأشعة فوق البنفسجية)far infrared ray (والجرمانيوم)

في هذا الفصل تقتصر دراستنا على العدسات الرقيقة ، حيث يكون سمك مادة العدسة صغيراً مقارنة ببعدها البؤري.

والعدسات نوعان:

1-عدسة محدبة Convex Lens أو تسمى عدسة لامة Converging Lens ويكون وسطها اكثر سمكا من حافتها ،و تعمل على جميع الأشعة الساقطة عليها بعد نفوذها من العدسة عندما

يكون معامل إنكسار مادة العدسة أكبر من معامل إنكسار الوسط المتواجدة فيه ، وتوجد على انواع عدة ، كما في الشكل)8-1(:-

a b c

Bi Convex محدبة الوجهين -a

b- مقعرة – محدبة Convex-Concave

Convex - Plano مستوية - محدبة - C

شكل (8-1)

2-عدسة مقعرة Concave Lens) تسمى عدسة مفرقة Diverging Lens (ويكون وسطها اقل سمكا من حافتها، و تعمل على تفريق الأشعة الضوئية الساقطة عليها بعد نفوذها من العدسة ، وتوجد على انواع عدة ، كما في الشكل) 2-8(:-

a- مقعرة الوجهين) Double-concave (مقعرة الوجهين) Convex – Concave (محدبة - مقعرة) Plano - Concave (مستوية – مقعرة)

شكل (2-8)

تنككر

تعمل العدسة اللامة عمل موشورين بقاعدة واحدة مشتركة تقع عند المركز البصري، تعمل العدسة المفرقة عمل موشورين يلتقى رأسيهما عند المركز البصري.

بعض المفاهيم الاساسيةفي العدسات

2-8

تعلمت في دراستك السابقة بعض المصطلحات العامة في العدسات، سنتطرق إليها ثانية لأهميتها في تحديد مواقع الصور المتكونة بالعدسات وفيما ياتي بعض منها. .

1- المركز البصري: (Optical Center)

هي نقطة عند مركز العدسة إذا مر خلالها شعاعاً ضوئياً ينفذ على إستقامته من غير إنحراف والسبب هو ان جانبي العدسة عند المركز البصري متوازيان تقريباً لاحظ الشكل) 8-3 (، أي ان الشعاع النافذ ينزاح قليلاً عن مساره الأصلى مقدار مكن إهماله بسبب كون العدسة رقيقة.

شكل (8-3)

2- المحور الأساس Principle Axies

هو المستقيم المار في المركز البصري للعدسة وبؤرتيها لاحظ الشكل)8-3 (

3- البؤرة :(Focus)F

هي نقطة تقع على الحور الاساس للعدسة ، تتصف بأن اي شعاع صادر منها او متجه نحوها يسير بعد الانكسار موازياً للمحور الاساس ، لاحظ الشكل)8-4(

شكل (8-4)

4-البعد البؤري للعدسة : (Focal Length) f

البعد بين موقع البؤرة والمركز البصري للعدسة لاحظ الشكل)8-3(.

5- المحور الثانوي: Secondary Axis

المستقيم المار في المركز البصري للعدسة يسمى المحور الثانوي لاحظ الشكل)8-5(. عند معرفة البعد البؤري لعدسه رقيقة . يمكن رسم مخططاً بسيطاً لجسم موضوع على مسافة محددة من العدسة) أكبر او اصغر او مساوياً الى بعدها البؤري (.

نستنتج منه جميع المعلومات المطلوبة عن الصورة من حيث انها) معتدلة او مقلوبة ، مكبرة او مصغرة و مسغرة و حقيقية او خيالية (يمكن تمثيل الجسم) المضيء (المراد تحديد صورته بسهم عمودي على الحجور الاساس للعدسة رأسه يمثل رأس الجسم تنبعث من اية نقطة من نقاطه) رأس السهم مثلا (عددا لا حصر له من الاشعة الضوئية الى جميع الاتجاهات وان عددا منها يمر خلال العدسة ، ولتحديد صورة جسمٍ ما يمكن الاستفادة من ثلاث مسارات للأشعة الضوئية الصادرة من الجسم، أثنان منها كافية لإيجاد موقع الصورة وهى :

1- الشعاع)1 (المنبعث من رأس السهم) الجسم (موازيا للمحور الاساس للعدسة بعد انكساره خلال

)6-8 (المحكل)6-8 العدسة ينفذ منها مارا بالبؤرة)6-8 في الجهة الثانية من العدسة (المحكل)6-8

- 2- الشعاع)3(المار خلال بؤرة العدسة F ينفذ من العدسة موازيا لحورها الاساس.
- 3- الشعاع)2(الموجه نحو المركز البصري للعدسة ينفذ على استقامته دون انحراف.

حيث ان ـُـ

- F البؤرة الابتدائية.
- F' البؤرة الثانوية.

لرسم صورة جسم يقع على بعد اكبر من ضعف بعدها البؤري نرسم شعاعين صادرين) $1(e_0)^2(e_0)^2(e_0)$ رمن رسم صورة جسم يقع على بعد اكبر من ضعف بعدها البؤري أن الشعاع الشعاع الضوئي $1(e_0)^2(e_0)^2(e_0)$ والشعاع الاخر $1(e_0)^2(e_0)^2(e_0)$ والشعاع الاخر $1(e_0)^2(e_0)^2(e_0)$ مارا بالبؤرة $1(e_0)^2(e_0)^2(e_0)$ والشعاع الاخر $1(e_0)^2(e_0)^2(e_0)$ مارا في مركز العدسة البصري فأنه ينفذ على استقامته $1(e_0)^2(e_0)^2(e_0)$

شكل (8-7)

ان نقطة التقاء الشعاعين 2(e) النافذين من العدسة مثل صورة رأس الجسم ، ومن المكن بسهوله خديد صفاتها :

- 1- مقلوبة:
- 2- مصغرة :
- 3- حقيقية:) real (لأنها تكونت من تلاقي الاشعة نفسها في الجهة الاخرى للعدسة ويمكن استلامها على حاجز.
 - 4- واقعة بين البؤرة وضعف البعد البؤري للعدسة.

الصور المتكونة لجسم خلال عدسة لامة

3-8

a - عندما يكون الجسم واقعا بين بؤرة العدسة وضعف بعدها البؤري لاحظ الشكل)8-8 عندما يكون الجسم

1- صفات الصورة المتكونه

- 1- حقيقية) Real (. 2- مقلوبة) Inverted (. 3- تقع على الجهة الاخرى من العدسة .
 - 4- مكبرة.
 - . 9-8والمركز البصري للعدسة اللامة لاحظ الشكل) والمركز البصري للعدسة اللامة الشكل) و -b

صفات الصورة المتكونة:

- 1- تقديرية) Virtual (.
- 2- معتدلة) Upright (و Dright .
- 3-اكبر من الجسم وعلى الجهه نفسها من الجسم وخلفه.

فكر

ماهي صفات الصورة المتكونة من خلال عدسة لامة لجسم يقع على بعد:

- 1- في اللانهاية.
- 2- ابعد من بعدها البؤري.
- 3- بين البؤرة وضعف بعدها البؤري.
 - 4- في البؤرة.

4-8 الصور المتكونة لجسم خلال عدسة مفرقة

شكل (8-10)

أن صفات الصورة المتكونة في حالة العدسة المفرقة (المقعرة) لاحظ الشكل (8-10) و مهما كان موقع الجسم لهذا النوع من العدسات هي:-

- 1- تقديرية .
- 2- معتدلة.
- 3- أصغر من الجسم.
- 4- على الجهة نفسها من الجسم وأمامه.

كَشُــاط 3: تعيين البعد البؤري لعدسة لامة بصورة تقريبية وسريعة

أدوات النشاط: عدسة لامة، حاجز

1- خارج الختبر:

وذلك بتوجيه العدسة إلى قرص الشمس وإستلام صورته على حاجز)جدار أو ورقة(. مع تغيير موقع العدسة العدسة حتى نحصل على اوضح صورة على الحاجز لنقطة شديدة الاضاءة وهي تمثل موقع البؤرة للعدسة بإعتبار ان الأشعة القادمة من الشمس موازية لحورها الأساسي، فالمسافة بين العدسة والبؤرة، تمثل البعد البؤرى للعدسة بصورة تقريبية.

2- داخل الختبر:

وذلك بتوجيه العدسة اللامة نحو جسم بعيد كشجرة أو عمود كهرباء من خلال شباك الختبر وإستلام صورته على حاجز أو ورقة ، غيِّر من بُعد العدسة عن الحاجز حتى قصل على أوضح صورة للجسم البعيد. فالمسافة بين العدسة والحاجز تمثل البعد البؤري التقريبي للعدسة ، على إعتبار ان الشجرة ، أو عمود الكهرباء جسم بعيد ، فالأشعة القادمة منه تكون موازية لحور العدسة الأساسي فتتجمع بعد نفاذها خلال العدسة في بؤرة العدسة.

5-8

شكل (8-11)

عند وضع جسم أمام عدسة لامة بصورة عمودية على محورها الأساسي وعلى بعد)U(من مركزها البصري ستظهر صورة حقيقية مصغرة مقلوبة واقعة على بعد)V(من مركزها البصري وفي الجهة الاخرى من العدسة. لاحظ الشكل)B-11(و العلاقة التي تربط بين بعد الجسم)U(عن العدسة

)f(عن العدسة والبعد البؤرى للعدسة)V(

$$\frac{1}{\int V(J)} + \frac{1}{\int U(J)} + \frac{1}{\int U(J)} = \frac{1}{\int J(J)}$$
 البعد البؤري $\int J(J) = \frac{1}{J}$

ومن الجدير بالدكر أن هذا الفانون هو الفانون العام للمرايا والعدسا اما قانون التكبير) M (في العدسات فيعطى بالعلاقة الاتية :

$$M = \frac{h}{h} = \frac{v}{u}$$

ويطبق القانون العام للعدسات سواء كانت العدسة محدبة او مقعرة مع مراعاة اشارة كل كمية عندما ينتقل الضوء الساقط على العدسة من اليسار الى اليمين وكما يلي:

1. يكون بعد الجسم)U(موجباً اذا كان الجسم حقيقياً واقعاً على يسار العدسة وباشارة سالبة اذا كان الجسم واقعاً على يمينها.

2. يكون بعد الصورة V موجباً اذا كانت الصورة حقيقية واقعة على يمين العدسة وباشارة سالبة اذا كانت الصورة خيالية واقعة على يسارها .

3. يكون البعد البؤري f(موجباً للعدسة اللامة)العدسة محدبة (وباشارة سالبة للعدسة المفرقة)العدسة مقعرة (.

4. طول الجسم يكون باشارة موجبة للجسم المعتدل)نحو الاعلى (وباشارة سالبة للجسم المقلوب)نحو الاسفل (.

5. طول الصورة يكون باشارة موجبة للصورة المعتدلة)نحو الاعلى(وباشارة سالبة للصورة المقلوبة)نحو الاسفل(.

اما بالنسبة لاشارة التكبير) M(فعندما تكون:

1. موجبة : تكون الصورة تقديرية)خيالية (معتدلة بالنسبة للجسم.

2. سالبة : تكون الصورة حقيقية مقلوبة بالنسبة للجسم.

وتدلنا قيمة التكبير على ما ياتي.

اذا كان M>1 . فان الصورة تكون مكبرة بالنسبة للجسم -a

اذا كان M < 1 ، فان الصورة تكون مصغرة بالنسبة للجسم -b

اذا كان M=1 . فان الصورة تكون مساوية للجسم -C

ان النسبة بين مساحتي الصورة والجسم تساوي النسبة بين مربع بعديهما عن المركز البصري للعدسة

مساحة الصورة عن العدسة

مساحة الجسم عن العدسة

$$\frac{A^2}{A} = \frac{V^2}{u^2}$$

M = -0.5 ما معنى التكبير : M = 1 و M = 1

فکر

ای ان ـ

مثال1

عدسة لامة بعدها البؤري 10cm كونت صوراً لأجسام تبعد عن العدسة بالابعاد.

u=30cm

u=10cm

u=5cm

من احدى جهتى العدسة، جد بعد الصورة وصفاتها في كل حالة وكذلك التكبير.

الحلأ بتطبيق معادلة العدسات الرقيقة

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

a- عندما يكون الجسم على بعد 30cm من العدسة

$$\frac{1}{10} = \frac{1}{30} + \frac{1}{v}$$

$$\frac{1}{V} = \frac{1}{V} = \frac{1$$

الإشارة الموجبة لبعد الصورة تعني ان الصورة واقعة في الجهة الثانية على يمين العدسة و تكون حقيقية

$$M = - \frac{V}{U} = - \frac{15}{30} = -0.5$$

الإشارة السالبة للتكبير تعني ان الصورة مقلوبة، وتكون مصغرة لان التكبير اقل من واحد

عندما يكون بعد الجسم U بقدر البعد البؤري للعدسة) 10cm(. يعني ان الجسم واقع في بؤرة -b العدسة فالصورة تقع في اللانهاية infinity .

c-عندما يكون الجسم على بعد 5cm . وبتطبيق معادلة العدسات الرقيقة

$$\frac{1}{10} = \frac{1}{5} + \frac{1}{v}$$

$$\frac{1}{v} = \frac{1}{10} - \frac{1}{5} = \frac{1-2}{10} = -\frac{1}{10}$$

 $V = -10 \ cm$ الإشارة السالبة لبعد الصورة تعني ان الصورة تقديرية

$$M = -\frac{v}{u} = -\frac{-10}{5} = +2$$

ان الإشارة الموجبة للتكبير تعني ان الصورة معتدلة ورقم)2 (يعني ان الصورة مكبرة .

مثال2

وضع جسم على بعد 12cm أمام عدسة مفرقة بعدها البؤري 6cm . ما صفات الصورة المتكونة وضع جسم البؤري للعدسة المفرقة f=-6cm وبتطبيق قانون العدسات الرقيقة

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

با ان العدسة مفرقة فأنf يكون باشارة سالبة

$$\frac{1}{-6} = \frac{1}{12} + \frac{1}{v} \Rightarrow \frac{1}{v} = -\frac{1}{6} - \frac{1}{12} = -\frac{1}{4}$$

V=-4~cm الإشارة السالبة لـV=-4~cm المشارة السالبة لـV=-4~cm

$$M = -\frac{V}{U} = -\frac{-4}{12} = \frac{1}{3}$$

التكبير الموجب يعني ان الصورة معتدلة تقديرية. وطولها يساوي 1/3 طول الجسم

نظام مكون من مجموعة عدسات رقيقة Combination of thin lenses

ان الكثير من الاجهزة البصرية ختوي على عدستين رقيقتين او اكثر. يبين الشكل 3-12-8 (نظاما مكون من عدستين محدبتين. وضع جسم امام العدسة الاولى وعلى بعد انكسار الضوء في العدستين؟ ابتداءاً بعد انكسار الضوء في العدستين؟ ابتداءاً والعدسة الثانية كانها غير موجودة . وبعد قديد موقع الصورة التي كونتها العدسة الاولى الشكل 3-12-8 (نعتبره جسما للعدسة الثانية ثم نجد موقع الصورة التي العدسة الثانية ثم نجد موقع الصورة النهائية انظر الشكل 3-12-8 (يكن معاملة المنظومة بالعلاقة الاتية :

شكل (8-12) نظام مكون من عدستين

) M_2 (التكبير الكلي) M_1 (العدسة الاولى M_1 التكبير العدسة الثانية) التكبير الكلي)

$$M_{Total} = M_1 \times M_2$$

لقد وجد ان البعد البؤري للنظام f في هذه الحالة يرتبط مع البعدين البؤريين لعدستيه f_1 , f_2 بالعلاقة الاتية:

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2}$$

حيث d تمثل البعد بين المركز البصرى للعدستين

اما الحالة الخاصة التي تكون فيها العدستين متلامستين) متلاصقتين (مع بعضهما) d=zero (مع بعضهما) فالعلاقة التي تربط البعدين البؤريين لعدستين من عدستين متلامستين مع البعدين البؤريين لعدستيه فالعلاقة التية:- f_2 . f_3

$$\frac{1}{\int_{f_2}\left(\int_{f_2}f_2\left(\int_{f_2}f_2\left(\int_{f_3}f_3\left(\int$$

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

قدرة العدسة lens power

6-8

يستعمل فاحصو البصر) optometrists (واطباء العيون)ophthamologists (وحدة الدايوبتر)Diopter (لقياس قدرة عدسة العين . وهي مقلوب البعد البؤري للعدسة ، مقاساً بالامتار

lens power)
$$p = \frac{1}{f \text{ meter } f}$$

فالعدسة اللامة ذات البعد البؤري 20 cm فان قدرة العدسة لهذه الحالة خسب كالاتى :

$$P = \frac{1}{f} = \frac{1}{0.2} = +5 D$$

بينما العدسة المفرقة ذات البعد البؤري 25cm فأن قدرة العدسة لهذه الحالة خسب كالاتي.

$$P = \frac{1}{f} = \frac{1}{-0.25} = -4D$$

وبتطبيق المعادلة العامة للعدسات ومعرفة نصفي قطري العدسة R_2 و R_2 ومعامل انكسار مادتها وبتطبيق المعادلة العدسات: n(

قدرة العدسة p(=) معامل الانكسار -1 { } ______ نصف قطر العدسة الاولى - في الثانية الثانية الثانية الثانية المعامل العدسة الثانية المعامل العدسة الأولى - في المعامل العدسة الثانية المعامل العدسة المعامل العدسة الثانية المعامل العدسة المعامل العدسة المعامل العدسة المعامل العدسة المعامل العدسة المعامل العدسة المعامل الم

$$P = (n-1)(\frac{1}{R_1} - \frac{1}{R_2})$$

مثال3

نظام مكون من عدستين محدبتين البعد البؤري للاولى 10cm والثانية 5cm والبعد بينهما 40cm . وضع جسم على بعد 15cm يسار العدسة الاولى جد موقع الصورة النهائية المتكونة وتكبيرها .

$$\frac{1}{f_{1}} = \frac{1}{u_{1}} + \frac{1}{v_{1}}$$

$$\frac{1}{10} = \frac{1}{15} + \frac{1}{v_{1}} \Rightarrow v_{1} = 30cm$$

$$M_1 = -v_1 / u_1$$

$$M_1 = -30 / 15 = -2$$

 $u_2=40-30=10cm$ الن الصورة المتكونة في العدسة الاولى حقيقية وتكونت امام (يسار) العدسة $u_2=40-30=10cm$

$$\frac{1}{f_2} = \frac{1}{u_2} + \frac{1}{v_2}$$

$$\frac{1}{5} = \frac{1}{10} + \frac{1}{v_2}$$

$$\Rightarrow v_2 = 10cm$$

$$M_2 = -v_2 / u_2$$

 $M_2 = -10 / 10 = -1$

$$M = M_1 \times M_2 \Rightarrow M = -2 \times -1 = +2$$

الاشارة الموجبة تعني ان الصورة معتدلة

7-8

spherical aberration الزيغ الكروي

من العيوب الشائعة في العدسات هو ان الحزمة الضوئية الساقطة على احد وجهي العدسة بصورة موازية لحورها الاساسى لا تتجمع في نقطة واحدة.

شكل (8-13)

فالاشعة الساقطة بصورة موازية للمحور الاساس وبعيدة عنه تنكسرمتجمعة في نقطة اقرب الى العدسة) البؤرة (من مثيلتها الاشعة القريبة من محورها الاساس لاحظ الشكل)8-13 فالاشعة المارة خلال النقاط القريبة من مركز العدسة تكون صورها ابعد عن العدسة) $_{2}$ (من صور الاشعة المارة خلال النقاط القريبة من حافة العدسة) $_{1}$ (وبذلك تكون الصور المتكونة

في مثل هذه العدسات غير محددة المعالم والتفاصيل. وهذا العيب في العدسات يسمى الزيغ الكروي والذي يعرف على انه احد عيوب العدسات الناتج من عدم ججمع الاشعة الضوئية الساقطة بصورة موازية للمحور الاساس والمنكسرة عن العدسة في بؤرة واحدة .ويمكن تقليل الزيغ الكروي باستعمال حاجز يوضع امام حافة العدسة لمنع الاشعة البعيدة عن الحور الاساس من النفوذ خلال العدسة، كما يمكن استعمال عدسة محدبة مستوية للغرض نفسه لذلك استعمات العدسات العدسات العدسة .

الزيغ اللوني : Chromatic Aberration

8-8

شكل (8-14)

شكل (15-8)

لقد تعلمت من دراستك السابقة ان الضوء الابيض الساقط على وجه موشور زجاجي يتحلل الي مجموعة من الالوان بسبب اختلاف معامل انكسار مادة الموشور مع الاطوال الموجية الختلفة لمكونات الضوء الابيض، حيث سينفذ اللون البنفسجي معانيا الانحراف الاكبر نحو قاعدة الموشور لقصرطول موجته ، بينما يكون اللون الاحمر اقل انحرافا لكبر طوله الموجى. اما بقية الالوان فتقع اطوالها الموجية بين هذين اللونين من الضوء المرئى لاحظ الشكل 14-8(.وما ان العدسة اللامة يمكن اعتبارها مكونة من عدد من المواشير قواعدها متجهة نحو مركز العدسة فالاشعة الضوئية المارة خلال عدسة لامة تنكسر خلال العدسة بزوايا مختلفة تبعا للاطوال الموجية، وعند نفوذها خلال العدسة تلاحظ ان اللون البنفسجي يلاقي الجور الاساس للعدسة في نقطة اقرب الى العدسة من بقية الالوان لاحظ الشكل)8-15(, اما اللون الاحمر فانه يلاقي الحور

الاساس في نقطة ابعد عن العدسة من بقية الالوان يطلق على هذا الاختلاف في مواقع الالوان على الحور الاساس بالزيغ اللوني.

يكن ازالة الزيغ اللوني، بتركيب عدسة لا لونية)achromatic lens (لامة مصنوعة من زجاج الكراون ربالة الزيغ اللوني، بتركيب عدسة لا لونية) دات قدرة موجبة اكبر (وتلصق على عدسة مفرقة مقعرة الوجهين) (f_1) دات قدرة موجبة اكبر (وتلصق على عدسة مفرقة مقعرة الوجهين)

او مقعرة - مستوية بعدها البؤري f_2 ومصنوعة من زجــــاج الفلنت flint glass أذات قدرة سالبة اصغر (والشكل الكلي للعدسة المركبة هو عدسة محدبة - مقعرة او محدبة - مستوية لاحظ الشكل 8-6 (والتفريق) التشتيت (dispersion النانج من احدهما يلغي الاخر عند النفاذ خارج العدسة وتتجمع الالوان في نقطة واحدة تقريباً ولحساب البعد البؤري لهذه العدسة المركبة f نطبق العلاقة الاتية:

شكل (8-16)

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$$

9-8

تطبيقات على العدسات

1- لمعالجة عيوب البصر

عزيزي الطالب تعلمت في دراستك السابقة بان العين جهاز بصري مهم لاستقبال الضوء الصادر من الاجسام المضاءة الحيطة بنا وبذلك يمكننا رؤية هذه الاجسام. فالعين السليمة ترى الاجسام المضيئة والمضاءة بصورة واضحة اذا كانت على مسافة ابعد من ضعف البعد البؤري لعدسة العين ونتيجة لذلك تتكون على الشبكية صورة حقيقية مقلوبة واصغر من الجسم. واذا ما عجزت العين عن رؤية الاجسام القريبة او البعيدة فانها مصابة باحد عيوب البصر) الرؤيا (defects of vision والتي امكن معالجتها

باستعمال النظارات الطبية .

a- قصر البصر

myopia) nearsightedness (

عدم استطاعة العين رؤية الاجسام البعيدة بوضوح) تتكون صورها امام الشبكية (وتعالج باستعمال العدسات المفرقة لاحظ الشكل) 8-17 (.

شكل (8-17)

hyperopia)far sightedness (طول البصر -b

عدم استطاعة العين رؤية الاجسام القريبة بوضوح) تتكون صورها خلف الشبكية (وتعالج باستعمال العدسات اللامة لاحظ الشكل) 8-81 (.

شكل (18-8)

القزحية

عدسة العين

الضوء

-c الاستكماتزم: Astigmatism

فرما يكون التحدب اكبر بالمقطع الافقي كما هو عليه في المقطع الشاقولي، فمجموعة الخطوط الافقية والشاقولية لاتتجمع في البؤرة بالتزامن.

مكن الكشف عن هذا العيب من خلال النظر الى مجموعة من الخطوط السوداء فالعين السليمة ترى

ويصحح هذا العيب باستعمال عدسات السطوانية)Cylindrical Lenses وهي مقطع من السطوانة يكون وجهها الاخر مسطح لاحظ الشكل) 20-8 (.

شكل (20-8)

2. في اجهزة التصوير (الالات التصوير)

الة التصوير camera عبارة عن صندوق صغير في مقدمته عدسة لامة او مجموعة عدسات تعمل عمل عدسة لامة وفي جدارها الخلفي من الداخل يوضع الفلم الحساس للضوء) الذي يماثل شبكية العين(لاحظ الشكل) 8-21 (. ولألة التصوير فتحة امام العدسة) diaphragm (يمكن التحكم بسعتها والسماح لكميات مختلفة من الضوء بالدخول الى الالة كما يمكن التحكم ببعد

شكل (21-8)

العدسة عن الفلم لتكوين صورة حقيقية مقلوبة واضحة على الفلم ما دام الجسم على مسافة اكبر من ضعف البعد البؤري لعدسة الآلة والصورة دائما مصغرة ، وللحصول على صورة مكبرة للحشرات الصغيرة مثلاً. نقوم بتقريب عدسة لامة بحيث يكون موقع الحشرة بين بؤرة العدسة وضعف بعدها البؤري.

3. الالات البصرية optical instruments

وهي على نوعينً

A- الالات البصرية المكبرة للاجسام.

تستعمل لتكوين صورة مكبرة للجسم ومنها:

1-الجهر البسيط) العدسة المكبرة (lasimple magnifier

عدسة لامة قصيرة البعد البؤري تستعمل لتكوين صورة تقديرية معتدلة مكبرة للاجسام الصغيرة ويتم ذلك بوضعها ضمن البعد البؤري للعدسة لاحظ الشكل) 22-8(.

شكل (22-8)

2-الجهر المركب compound microscope

يستعمل الجهر المركب لرؤية الاجسام الدقيقة التي لا يمكن رؤيتها بالعين الججردة كالجراثيم والبكتيريا او شرائح صغيرة من انسجة الاوراق والسيقان النباتية والانسجة. يتكون من عدستين، عدسة شيئية Objective lens ذات بعد بؤري قصير، يوضع الجسم الصغير المراد فحصه)تكبيره (على مسافة اكبر قليلامن بعدها البؤري للحصول على صورة حقيقية، مكبرة مقلوبة ومن عدسة اخرى يتم النظر من خلالها يطلق عليها بالعدسة العينية Oyepiece ذات بعد بؤري مناسب اطول من البعد البؤري للشيئية بحيث

ماتحتاجه ستحده محانا على بوت تليكرام المعرف bot_

يكون موقع الصورة المتكونة بالعدسة الشيئية ضمن بعدها البؤري للحصول على صورة مكبرة تقديرية

شكل (8-23)

معتدلة للصورة الاولى التي تكونت بالعدسة الشيئية لاحظ الشكل) 8-23 (.مكن خريك كل من هاتين العدستين على انفراد الى الاعلى والاسفل بوساطة مسمار محوري نستعمل مرآة مقعرة لتركيز الضوء على الجسم المراد تكبيره لاحظ الشكل) 8-24 (.وقد تم تطوير

هذه الاجهزة بزيادة تكبيرها باضافة عدسات شيئية عدة للجهاز يمكن اختيار أي منها. كما يمكن ربطها بكاميرا رقمية لغرض عرض صورها على الشاشة.

اضافة الى ذلك هنالك اجهزة عرض مختلفة) يتم خلالها عرض الصور على شاشة بعيدة(مثل:

شكل (24-8)

a- عارضة الصور الشفافة

b عارضة الصور المعتمة) Epidiascope

وتستعمل لعرض صورة موجودة على ورقة من اوراق الكتاب او أي صورة اخرى لتكبير صورتها على شاشة أو جدار وملاحظة تفاصيلها بدقة لعدد كبير من الحاضرين.

C عارض فوق الراس) over head projector

d- اجهزة عرض الصور المتحركة) ماكنة السينما(

الصورة تكون مقلوبة ،مكبرة،حقيقية دائما لمثل هذه الاجهزة. وان الجسم يقع بين البؤرة وضعف البعد البؤرى

هنالك اجهزة عرض حديثة تربط مع الحاسبات لعرض ما موجود على شاشاتها على الجمهور ويطلق على الجمهور ويطلق على الفكرة نفسها.

Telescope اجهزة الرصد للاجسام البعيدة -B

تستعمل لرؤية الاجسام البعيدة وللرقابة العسكرية وفي حلبات السباق للخيول.

اضافة الى رصد حركات الاجرام السماوية وهي على انواع منها:-

التلسكوب) المرقاب (الكاسر -a refracting telescope

لهذا المنظار مجموعتين من العدسات اللامة. شيئية واسعة السطح ذات بعد بؤري طويل تسمح لاكبر كمية من الضوء الصادر عن الجسم المرصود بالدخول الى المنظار، والعينية صغيرة المساحة وقصيرة البعد البؤري .الصورة

شكل (25-8)

النهائية المتكونة لهذه الاجسام بالجهاز مكبرة تقديرية معتدلة نسبة الى الصورة المتكونة خلال الشيئية. واستعمل لرصد الكواكب ويسمى بالمنظار الفلكي، لاحظ الشكل) 8-25 (.

شكل (26-8)

b- منظار غاليلو

متاز هذا المنظار عن المنظار الفلكي بان الصورة التي يكونها معتدلة بالنسبة للجسم الاصلى وبقصر طوله

reflecting telescope التلسكوب العاكس -C

وهو من اكبر المناظير في العالم حيث تستعمل مرآة مقعرة عوضا عن العدسة الشيئية لتجميع الضوء فشدة الضوء المنعكس عن سطح المرآة اكبر من شدة الضوء المار خلال العدسة لاحظ الشكل) 8-26 (.

اسئلة القصل الثامن

اسئلة

- س 1 اختر العبارة الصحيحة لكل ما ياتى:
- 1- البعد البؤرى لعدسة رقيقة لا يعتمد على:
 - a- معامل انكسار مادة العدسة.
 - b- معامل انكسار الوسط الحيط بالعدسة.
 - -C نصفى قطرى تكور العدسة.
 - d- قطر العدسة.
- 2- للحصول على صورة حقيقية مقلوبة اكبر من الجسم بعدسة لامة 'يجب وضع الجسم على مسافة من العدسة.
 - a- اكبر من ضعف بعدها البؤري.
 - b- بين البؤرة وضعف البعد البؤري.
 - -C اقل من بعدها البؤري.
 - d- بقدر ضعف بعدها البؤري.
- 3- للحصول على صورة معتدلة تقديرية اكبر من الجسم باستعمال عدسة لامة يجب وضع الجسم على مسافة من العدسة.
 - a- بقدر بعدها البؤري.
 - بقدر ضعف بعدها البؤري. b
 - -C اقل من بعدها البؤري.
 - d- اكثر من ضعف بعدها البؤري.
 - 4- للحصول على صورة معتدلة تقديرية مكبرة يجب استعمال :
 - a- عدسة مفرقة)مقعرة الوجهين(.
 - b- عدسة مفرقة) مقعرة مستوية (.
 - -C عدسة لامة يوضع الجسم ضمن بعدها البؤري.
 - d- عدسة لامة يوضع الجسم على مسافة اكبر من بعدها البؤري.

ىل ماتح<mark>تا چەشتېجد</mark>ە مجاناً على بوت تليكرام المعرف stad4al_bot@

- 5- للحصول على صورة مصغرة تقديرية يجب استعمال عدسة مفرقة يوضع الجسم على بعد:
 - a- اقل من بعدها البؤري.
 - b- على أي بعد كان من العدسة.
 - c- اكثر من بعدها البؤري.
 - d- بقدر ضعف بعدها البؤري.
 - 6- جسم يقع على مسافة لا نهائية من عدسة لامة فتكونت له صورة.
 - a- حقيقية.
 - b- تقديرية.
 - C- معتدلة.
 - d- اكبر من الجسم.
- f=15cm عدسة لامة ذات بعد بؤري f=15cm بعد الصورة المتكونة لجسم في هذه العدسة يعتمد على:
 - a- بعد الجسم عن هذه العدسة.
 - b- ارتفاع الجسم.
 - -C كون الجسم معتدلاً ام مقلوباً.
 - d- كل الاحتمالات السابقة.
- 8- عدسة مفرقة بعدها البؤري 10cm وضع جسم على بعد 40cm منها فأن موقع صورة الجسم ستكون على بعد.
 - +16 cm-a
 - 10cm-b
 - +20 cm -c
 - 8cm -d
 - 9- وضع جسم على بعد 40cm من عدسة لامة بعدها البؤري 20cm فتكونت له صورة على بعد:
 - . 30 cm -a
 - . 20 cm -b
 - . 15 cm -c
 - . 40 cm -d

رست القصل الثامن

8

- 10- اذا كان تكبير عدسة لامة هو)3- (فهذا يعنى ان صفات الصورة تكون
 - a تقديرية ، معتدلة ،طولها ثلاثة امثال طول الجسم.
 - b تقديرية ، مقلوبة، طولها ثلاثة امثال طول الجسم.
 - حقيقية ، مقلوبة،طولها ثلاثة امثال طول الجسم.
 - d حقيقية ، مقلوبة،طولها ثلث طول الجسم.
- 11-عدسة مفرقة وضع جسم امامها عند جانبها الايسر على بعد 80cm فتكونت له صورة تقديرية مصغرة معتدلة وعلى بعد 16cm من العدسة وعند الجانب الايسر للعدسة ايضا. فأن قدرة العدسة تساوى:
 - **-** 5D a
 - 4D b
 - 2D c
 - -1.25 D d
 - س 2 علل ما يأتى:
 - a- البعد البؤري لعدسة يختلف باختلاف لون الضوء الساقط عليها.
 - b- تغير البعد البؤري للعدسة اللامة عند نقلها من الهواء الى الماء.
 - الاشعة الضوئية التي تمر بالمركز البصري للعدسات الرقيقة تنفذ من العدسة بنفس الاجّاه.
 - س3- ما سبب الزيغ اللوني في العدسات ؟ وكيف يعالج؟
 - س4- ما سبب الزيغ الكروي في العدسات؟ وكيف يعالج؟

الفصال الثامن

مسائل

1- وضع جسم امام عدسة مفرقة بعدها البؤري)12cm فتكونت له صورة طولها ثلث طول الجسم. ما بعد الجسم عن العدسة وما بعد صورته.

u = 24 cm $v = -8 \text{ cm} :_{\overline{c}}$

2- عدسة مكبرة)عدسة لامة (بعدها البؤري 15cm على اي بعد يوضع جسم عنها للحصول على صورة معتدلة ومكبرة ثلاث مرات.

 $u = 10cm :_{\overline{c}}$

1.5m فاذا كان ارتفاع الصورة على صورة على حاجز يبعد 6m فاذا كان ارتفاع الصورة 5m وكان ارتفاع السلايد 5cm ما البعد البؤرى لعدسة العارض؟

 $f = 19.4cm :_{\Xi}$

4- قلم رصاص طوله 10cm وضع على بعد 70cm الى يسار عدسة بعدها البؤري 50cm+ جد صفات الصورة المتكونة:

ج: $\dot{\mathbf{h}} = -25cm$ طول الصورة \mathbf{h} حقيقية، مكبرة، مقلوبة بالنسبة للجسم (

الفصيل التاسع

9

الكهرباء الساكنة (المستقرة) Electrostatic

الشحنة الكهربائية

1-9

سبق وأن درسنا في المرحلة السابقة موضوع الشحنات الكهربائية الساكنة وطرائق الشحن بالكهربائية الساكنة ولاحظنا وجود نوعين من الشحنات الكهربائية) شحنات موجبة وشحنات سالبة (. فعند تقريب جسم مشحون ومعزول بشحنة كهربائية من جسم آخر مشحون بالكهربائية ومعزول تظهر قوة كهربائية متبادلة بين الجسمين إذ تكون هذه القوة تنافراً في حالة تشابه نوعا الشحنتين وتجاذباً في حالة إختلافهما بنوع الشحنة.

تتميز الشحنات الكهربائية بالخصائص الاتية!

- 1- الشحنات الختلفة بالنوع تجذب كل منها الاخرى والشحنات المتشابهة تتنافر بعضها مع البعض الاخر.
 - 2- الشحنة الكهربائية محفوظة.
- 3- ان اصغر قيمة للشحنة الكهربائية هي شحنة الالكترون, وان أي جسم مشحون تكون شحنته مضاعفات لشحنة الالكترون اي ان الشحنة الكهربائية مكممة ، اي انها تساوي اعداد صحيحة من شحنة الالكترون وتعطى الشحنة الكهربائية الكلية بالعلاقة التالية.

الشحنة الكهربائية الكلية (Q)= عدد صحيح موجب (n) × شحنة الالكترون (e)

هل تعلم

Q=ne

حيث ان ـُـ

- .)n=1,2,3,4,..... عثل عدد صحيح موجب)n=1,2,3,4,....
 - e:- شحنة الالكترون وتساوى 1.6×10⁻¹⁹C.

اكتشف حديثا وجود ست انواع من الجسيمات داخل النواة تسمى كواركات(Quarks) ثلاثة منها تمتلك شحنة تساوي $\frac{2}{3}$ من شحنة البروتون والثلاثة الاخرى تمتلك شحنة تساوي $\frac{1}{3}$ - من شحنة البروتون.

قانون کولوم Coulomb's law

2-9

شكل (1-9)

تمكن العالم تشارلز كولوم من صياغة قانوناً تجريبياً يوصف قوة التجاذب والتنافر بين جسمين مشحونين باستعمال ميزان الالتواء الذي ابتكره بنفسه اذ يحتوي على كرتين مشحونتين لاحظ الشكل) 1-1 (. وإن التجاذب او التنافر يسبب لي في خيط التعليق ومقدار الزاوية التي يدور بها الخيط يبين مقدار القوة الكهربائية سواء أكانت تجاذباً أم تنافراً .

وقد أوضحت تجارب كولوم ان القوة الكهربائية) F (المتبادلة بين شحنتين كهربائيتين نقطيتين ساكنتين تتناسب طرديا مع حاصل ضرب الشحنتين وعكسيا مع مربع البعد بينهما.

 $q_2 \cdot q_1$ فاذا كانت الشحنتان الكهربائيتان النقطيتان هما

والبعد بينهما هو r لاحظ الشكل) g g (. فان القوة الكهربائية المتبادلة بينهما تعطى بالعلاقة الاتمة:

$$\frac{\int q_2\left(x\right)q_1\left(x\right)}{x\left(x\right)} = \frac{1 + x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right)}{x\left(x\right)} = \frac{x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right)}{x\left(x\right)} = \frac{x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right)}{x\left(x\right)} = \frac{x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right)}{x\left(x\right)} = \frac{x\left(x\right)}{x\left(x\right)} + \frac{x\left(x\right$$

 $F = K q_1 q_2 / r^2$

شكل (2-9)

نص قانون كولوم

تتناسب القوة الكهربائية المتبادلة بين شحنتين نقطيتين تناسباً طردياً مع مقدار كل من الشحنتين وعكسياً مع مربع البعد بينهما.

اذ كانت q_2 , q_1 مقاسة بالكولوم و R_2 مقاسة بالمتر فان مقدار الثابت R_2 تعتمد قيمته على نوع الوسط الموضوعة فيه الشحنتين ويقاس بوحدات R_2 R_3 ومقداره في حالة كون الوسط فراغا يساوى:

 $K = 9 \times 10^9 \text{ Nm}^2/\text{C}^2$

ويمكن كتابة الثابت K بالعلاقة التالية:

$$K = 1/4\pi\epsilon_0$$

حيث ان الثابت ϵ_0) الحرف الاغريقي ابسيلون (يمثل سيماحية الفيراغ او الهواء وقيمته $8.85 \times 10^{-12} \, \mathrm{C}^2 / N.m^2$

اذا كان الوسط مادة عازلة غير الهواء سماحيته € فان القوة الكهربائية المتبادلة بين الشحنتين ستكون اقل مقدارا.

مثال1

الحل/

بتطبيق قانون كولوم

$$F=K q_1 q_2 / r^2$$

= 9×10^9 . $N.m^2/C^2 \times) + 2 \times 10^{-6}C) \times (+5 \times 10^{-6}C)$ $\} / (0.9 m)^2 = 1/9N$. \Rightarrow 1 i) i) \Rightarrow 1 i) \Rightarrow 2 ii) \Rightarrow 1 ii) \Rightarrow 2 iii) \Rightarrow 3 ii) \Rightarrow 3 ii) \Rightarrow 4 ii) \Rightarrow 6 iii) \Rightarrow 6 iii) \Rightarrow 6 iii) \Rightarrow 7 iii) \Rightarrow 8 iii) \Rightarrow 8 iii) \Rightarrow 9 iii) \Rightarrow 1 iii) \Rightarrow 9 iii) \Rightarrow 1 iii) 1 ii) 1 iii) 1

$$\overrightarrow{F}_{12}=-\overrightarrow{F}_{21}$$
وعليه ، فأن \overrightarrow{F}_{12} في الجّاه يعاكس

ان القوة بين الشحنتين النقطيتين هي قوة تنافر لانهما مشحونتين بنفس الشحنة وهي الشحنة الموجبة

مثال2

في الشكل الجاور ثلاث شحنات نقطية كهربائية موضوعة على استقامة واحدة . احسب مقدار محصلة القوى المؤثرة في الشحنة السالبة

من ملاحظتنا للشكل اعلاه نجد ان الشحنة السالبة تنجذب نحو q_1 بقوه \overline{F}_1 والشحنة السالبة تنجذب نحو \overline{F}_2 بقوة \overline{F}_2 ونحسب هاتين القوتين بتطبيق قانون كولوم على النحو الاتي:

$$F = K q_1 q_2 / r^2$$

$$F_1 = 9 \times 10^9 \times +4 \times 10^{-6} (\times) -5 \times 10^{-6} (\%) / 2(^2)$$
 $= -0.0450 \text{ N}$
 $= -0.0450 \text{ N}$

$$F_2 = -0.0169N$$
 قوة جّاذب نحو اليمين

 F_R وبما ان هاتين القوتين في الجاهين متعاكسين فان القوة الخصلة هي

$$F_R = F_1 - F_2$$

= -0.0450 -)-0.0169 (
= -0.045 + 0.0169

$$F_R = -0.0281 \text{ N}$$

القوة الحصلة تكون نحو اليسار و بالجاه القوة الاكبر

التوصيل الكهربائي

3-9

تنقسم المواد حسب قابليتها للتوصيل الكهربائي الى موصلات وعوازل و أشباه موصلات.

فالمواد العازلة تكون فيها الالكترونات على ارتباط وثيق بنوى ذراتها ولاتستطيع الحركة بحرية داخل المادة. فلو قربنا جسماً مشحوناً من مادة عازلة فلا تتولد عليها شحنة محتثة. من امثلة المواد العازلة المطاط. الزجاج. المايكا. الحرير الجاف. والماء المقطر وغيرها. اما المواد الموصلة فسلوكها مختلف تماما . فلو قربنا جسماً مشحوناً من مادة موصلة فان الكترونات التكافؤ الموجودة في الجزء الخارجي لذرات الموصل)وهي الكترونات ضعيفة الارتباط بنوى ذراتها (ستتاثر بشحنة الجسم المشحون المقرب اليها .لذا فانها ستؤثر على الالكترونات وخركها داخل المادة الموصلة ناقلة الكهربائية خلالها أي تسمح بمرور الشحنات الكهربائية خلالها في الحال . وتعتبر المعادن من اجود المواد ايصالاً للكهربائية وعلى رئسها الفضة يليهِ النحاس فالالمنيوم اما اشباه الموصلات فهي تلك المواد التي لها خواص وسطية بين الموصلات والعوازل من حيث قابليتها في التوصيل الكهربائي ومن اشهرها السليكون) Si(والجرمانيوم) @ ولهذين العنصرين اهمية خاصة في التكنولوجيا لأستعمالها في تصنيع الترانزستورات والثنائيات البلورية والخلايا الشمسية .

توزيع الشحنات الكهربائية على سطوح الموصلات

4-9

لمعرفة كيفية توزيع الشحنات الكهربائية على السطوح الخارجية للموصلات نجري النشاط الآتي.

توزيع الشحنات الكهربائية على السطوح الخارجية للموصلات.

تشاط:

ادوات النشاط:

شبكه معدنية على حاملين عازلين ، قطع ورقية صغيرة ، مصدرللشحنات الكهربائية المستقرة ،

الخطوات:

- "نلصق احد طرفي كل وريقة بالشبكة و يبقى طرفها الاخر سائبا و يتم ذلك من الجهتين.
- نشحن الشبكة بشحنة معينة فتبتعد النهايات السائبة للوريقات عن الشبكة بالتنافر من كلا الجهتين) لاحظ الشكل 3-9 a).
- التي الشبكة المعدنية بحيث يكون سطحها مقوسا)كما في الشكل-6-3 (نلاحظ تنافر الوريقات التي على السطح الخارجي للشبكة وبقاء الوريقات على السطح الداخلي بدون تنافر .

شكل (9-3)

نستنتج من هذا النشاط ان الشحنات الكهربائية تستقر على السطوح الخارجية للموصلات المشحونة والمعزولة بسبب تنافر هذه الشحنات عند وضعها في داخل الجسم الموصل لأنها من النوع نفسه لاحظ الشكل) 4-9 (.

شكل (9-4)

كثافة الشحنه الكهربائية:-

مقدار الشحنة الكهربائية لوحدة المساحة من سطح الموصل

المشحون والمعزول. وخسب كثافة الشحنه على السطح المعدني الكروي كالاتي.

مقدار الشحنة الموجودة على سطح الموصل

كثافة الشحنة =

المساحة السطحية للموصل

Charge density (
$$\sigma$$
(= σ area (A (

$$\sigma = \frac{q}{A}$$

 $\frac{C}{m^2}$ عرف الشحنة σ حرف المناع المناع المناع ويقاس بوحدة σ حرف المناع المناع وحدات الكولوم. σ

 m^2 المساحة السطحية للموصل الكروي المشحون والمعزول وتقاس بوحدات A

تذكر

ان الشحنات الكهربائية تتركز على الرؤوس المدببة من سطح الموصلات المشحونة والمعزولة بكثافة شحنة اكبر.

The Electric Field المجال الكهربائي

5-9

درست سابقا ان الجال الكهربائي لشحنة كهربائية هو الحيز الحيط بالشحنة الكهربائية والذي يظهر فيه تاثير القوة الكهربائية على شحنة اختبارية موجبحة موضوعة في اي نقطحة من الجال. لاحصظ الشكل) 9-5 (

شكل (9-5)

والجال الكهربائي كمية متجهة ويكون الجاهها بالجاه محصلة القوة الكهربائية التي تؤثر في الشحنة الاختبارية ، ويكون موجباً عندما يصدر عن شحنة موجبة والجال يكون سالباً اذا صدر عن شحنة سالبةٍ . والجال الكهربائي عثل بخطوط تسمى خطوط القوة الكهربائية او خطوط الجال الكهربائي . ويعرف خط الجال الكهربائي بأنه ـ المسار الذي تسلكه شحنة اختبارية موجبة حرة الحركة عند و ضعها في الجال.

وتتصف خطوط الجال الكهربائي بما يأتي.

شكل (9-6)

1 - تنبع من الشحنة الموجبة وبصورة عمودية على السطح المشحون وتتجه نحو الشحنة السالبة عمودياً على السطح المشحون بالشحنة السالبة لاحظ الشكل) 9-6 (

2 - المماس لخط القوة في اية نقطة يمثل الجاه المحربائي في تلك الخال الكهربائي في تلك النقطة شكل)7-9(

تين b - الجال الكهربائي لشحنتين متماثلتين شكل (7-9)

a- الجال الكهربائي لشحنتين مختلفتين

3 - خطوط القوة الكهربائية لاتتقاطع مع بعضها البعض بل تتنافر وتتوتر لتأخذ أقصر طول ممكن لها . لاحظ الشكل) 8-9 (.

شكل (9-8)

ويمكن ان نعرف الجال الكهربائي كمياً عند نقطة ما بانه : مقدار القوة الكهربائية التي يؤثر بها الجال في شحنة موضوعة في تلك النقطة مقسوماً على مقدار الشحنة اي ان:

$$\mathsf{E} = \frac{\mathsf{F}}{q'}$$

حىث.

$$Newton$$
 بوحدة الجال الكهربائي مقاساً بوحدة E

F القوة المؤثرة مقاسة بوحدة) Newton

 $\mu C($ ومن اجزائها المایکروکولوم)Coloumb(ومن اجزائها المایکروکولوم)PC(.

وعندما يكون الجال الكهربائي ناشئاً عن شحنة نقطية)q(، فان القوة)F(المؤثرة في شحنة الاختبار)q(تعطى بالعلاقة الأتية:

$$F = K \frac{q \times q'}{r^2}$$

قانون كولوم

$$E = \frac{F}{q}$$

وبما أن الجال الكهربائي:

$$E = \frac{K q}{r^2}$$

حيث.

غنها الكهربائي الناشيء عن الشحنة النقطية عند نقطة تبعد مسافة)r(عنها : E

q : الشحنة النقطية المسببة للمجال الكهربائي

٢: بعد النقطة عن الشحنة النقطية

$$9 \times 10^9 \frac{Nm^2}{C^2}$$
 ثابت ویساو*ي* : *K*

المجال الكهربائي المنتظم وغير المنتظم:

الجال الكهربائي المنتظم : هو الجال الثابت المقدار والاجّاه عند كل نقطة من نقاطه وخطوط القوة الكهربائي المنتظم عند شحن الكهربائية فيه تكون متوازية ومنتظمة الكثافة . ويمكن الحصول على الجال الكهربائي المنتظم عند شحن لوحين متوازيين واسعين بشحنتين متساويتين ومختلفتين بالنوع ،

+q +q -q -q ان خطوط الجال الكهربائي في المنطقة بين اللوحين متوازية ، والابعاد بينهما متساوية) باهمال تأثير الحافات المقوسة (. وهذا يعني ان للمجال المقدار نفسه وكذلك الاتجاه نفسه عند جميع النقاط لاحظ الشكل) 9-9 (.

شكل (9-9)

اما الجال الكهربائي غير المنتظم .

فهو ذلك الجال الذي يتغير مقداره بين نقطة واخرى . مثل الجال المتولد عن شحنة نقطية او حول كره موصلة مشحونة لاحظ الشكل) 9-10 (اذ يقل مقدار الجال كلما ابتعدنا عنها ، بسبب نقصان كثافة خطوط القوة الكهربائية

شكل (10-9)

مثال1

صفيحتان متوازيتان مشحونتان بشحنتين متساويتين في المقدار ومختلفتين في النوع وضعت شحنة مقدارها $2 \times 10^{-6} \, \mathrm{C}$ عند النقطة a الشكل الجاور (بين اللوحين فتأثرت بقوة كهربائية مقدارها a a في الجاه خطوط الجال

2- احسب مقدار الجال الكهربائي عند النقطة)a(؟

b- إذا انتقلت الشحنة الى النقطة b d . ما مقدار القوة المؤثرة فيها؟ الحل/

1- بما أن القوة الكهربائية بالجاه الجال فان الشحنة النقطية موجبة.

$$E=rac{F}{q^{'}}$$
 الجال الكهربائي $=rac{1}{q^{'}}$ الجال الكهربائي الشحنة المتأثرة بالجال

$$E = \frac{6 \times 10^{-4}}{2 \times 10^{-6}} = 3 \times 10^2 \frac{\text{Newton}}{\text{Coloumb}}$$

b(تتأثر بالقوة نفسها مقداراً b النقطة) b النقطة) E اي في الجّاه الجال E اي في الجاه الجال E اي في الجاه الجال الكهربائي بين الصفيحتين منتظم

مثال2

كرة موصله مشحونة مقدار شحنتها (100 pC ونصف قطرها) 1cm

احسب :

1- الجال الكهربائي في نقطة تبعد)50cm عن مركزها .

2- الجال الكهربائي على سطحها.

3- الجال الكهربائي في نقطة داخل الكرة

الحل :

$$1PC = 1x10^{-12}C$$

 $100PC = 100 \times 10^{-12}C$
 $= 10^{-10}C$

بما ان الجال الكهربائي غير منتظم نستعمل العلاقة لاتية :-

$$E= K q/r^{2}$$
= $9 \times 10^{9} N.m^{2} / C^{2} \times 10^{-10} (/) 50 \times 10^{-2} m(^{2})$
= $3.6 N/C$

$$r=1cm=0.01m$$
 : عند سطح الكرة فان $E=K$ q/r^2 $= 9 \times 10^9$ $N.m^2/C^2 \times)10^{-10})C/(1 \times 10^{-2}m)^2$ $= 9000 N/C$

3 - ان الجال الكهريائي داخل الكرة الموصلة يساوي صفراً لانه خالي من الشحنات اذ تظهر الشحنات
 على سطح الكرة الخارجي اي ان :

E=0

مثال3

)2m(في الشكل الجاور شحنتان نقطيتان مقدار كل منهما $+1\mu$ (والبعد بينهما

 $q_1 = +1 \mu C$ $q_2 = +1 \mu C$

احسب مقدار الجال الكهربائي في نقطه من $q_2 = +1 \mu \ C$ نقاط الخط الواصل بين الشحنتين بحيث 0.5m(عن الشحنة الأولى وتبعد 0.5m(عن الشحنة الثانية 0.5m(

الحل:

بما ان المطلوب هو ايجاد الجال الكهربائي عند النقطة)a(فاننا نفترض وجود

$$E=K q/r^2$$

$$E_1 = 9 \times 10^9 \times 1 \times 10^{-6} / 0.5(^2)$$

$$E_1 = 36 \times 10^3 \, \text{N/C}$$
 والجال الكهربائي الناشيء عن الشحنة والمحتنة الجال الكهربائي الناشيء عن الشحنة

$$E_2 = 9 \times 10^9 \times 1 \times 10^6 /)1.5(^2$$

$$E_2^{}=4 imes10^3~{
m N}\,/{
m C}$$
 الجال الكهربائي الناشيء عن الشحنة $q_2^{}$

با ان الجّاه الجّاه الجّاه الجّاه الجّال الكهربائي الكهربائي الككهربائي الاكبر بائي الاكبر الكهربائي الاكبر جا ان الجّاه الجال الكهربائي الاكبر

$$E_{R}$$
) محصلة الجال الكهربائي ($=E_{1}$ - E_{2} = 36 $imes10^{3}$ - 4 $imes10^{3}$

$$E_R = 32 \times 10^3 \frac{N}{C}$$

The Electric Flux الفيض الكهربائي

6-9

يتوقف الجال الكهربائية المارة من تلك المنطقة معينة على كثافة خطوط القوة الكهربائية المارة من تلك المنطقة فتزداد بزيادتها ولذلك تعد كثافة خطوط القوة الكهربائية مقياساً للمجال الكهربائي. إن عدد خطوط القوة الكهربائية التي تقطع السطح عمودياً يدعى بالفيض الكهربائي ويرمز له بالرمز الاغريقي (Φ) . من ملاحظتنا للشكل (-11) بحد ان مقدار الفيض الكهربائي يزداد بزيادة عدد خطوط القوة الكهربائية التي تخترق السطح (A) عمودياً، وكذلك بزيادة مقدار مساحة السطح المخترق.

شكل (11-9)

وبذلك مكن استنتاج العلاقة بين الفيض الكهربائي والجال الكهربائي كما يأتي.

الفيض الكهربائي $\Phi(=$ الجال الكهربائي العمودي E_{\perp} χ مساحة السطح الخترق

 $\Phi = \mathbf{E}_{\perp} \mathbf{A}$

مثال1

احسب مقدارالفيض الكهربائي خلال كرة موصلة مشحونة ومعزولة نصف قطرها متر)+1 $\mu C($ واحد و على سطحها شحنة مقدارها

$$E=k q/r^2$$

$$=9\times10^{9}$$
x) 1×10^{-6} / 1^{2} (

$$E = 9 \times 10^3 \text{ N/C}$$

مقدار الجال الكهربائي في نقطة من سطح الكرة

(A) الفيض الكهربائي العمودي (\mathbf{E}_{\perp}) المحاربائي العمودي ($\mathbf{\Phi}$) الفيض الكهربائي العمودي ($\mathbf{\Phi}$) الفيض الكهربائي العمودي ($\mathbf{\Phi}$) الفيض الكهربائي العمودي ($\mathbf{\Phi}$)

$$\Phi = E_{\perp}A$$

$$= 9 \times 10^3 \times 4 \times 3.14 \times 1^2$$

$$\Phi = 1.13 \times 10^5 \ N.m^2 \ / \ C$$
مقدار الفيض الكهربائي

شحنة كهربائية مقدارها ^{-6}C وضعت في مجال كهربائي منتظم يبدي قوة مقدارها

8×10-2N، ماهو مقدار الجال الكهربائي؟

الحل:

مثال2/

$$E=\frac{F}{q^{/}}$$

$$E = \frac{8 \times 10^{-2} \,\text{N}}{2 \times 10^{-6} \,\text{C}}$$

$$E=4\times10^4\frac{N}{C}$$
مقدار المجال الكهربائي C

Electric Potential الجهد الكهربائي

شكل (12-9)

لو فرضنا وجود شحنة كهربائية موجبة γ_A على بعد γ_A من شحنة اختبارية موجبة γ_A من الشحنة الاختبارية الموجبة γ_A تكون متأثرة بالجال الكهربائي للشحنة γ_A حسب قانون كولوم بالالجاه بعيدا عن γ_A كما في الشكل (9-12) وان هذه الشحنة تمتلك طاقة كامنة كهربائية معينة.

واذا خركت الشحنة الاختبارية) q (قريباً من الشحنة) q (وعلى بعد r_B الاحظ الشكل (13-9) وعلى بعد (13-9) وبأنجاه معاكس لانجاه الجال الكهربائي فأن ذلك يتطلب انجاز شغل للتغلب على قوة التنافر ، فيتحول هذا الشغل ايضاً الى طاقة كامنة كهربائية ، عندها سيكون مقدار الطاقة الكامنه في نقطة B اكبر من مقدار الطاقة الكامنة في النقطة A بمقدار الشغل المبذول ووفقاً لذلك يمكن تعريف الجهد الكهربائي بانه الطاقة الكامنة الكهربائية لوحدة الشحنة الطاقة الكامنة الكهربائية لوحدة الشحنة ألطاقة الكامنة الكهربائية لوحدة الشحنة ألمنة الكهربائية لوحدة الشحنة ألمنة الكامنة الكهربائية لوحدة الشحنة ألمنة الكامنة الكهربائية لوحدة الشحنة ألمنة الكامنة الكامنة الكهربائية لوحدة الشحنة ألمنة الكهربائية لوحدة الشحنة ألمنة الكامنة الكامنة الكهربائية لوحدة الشحنة ألمنة الكامنة الكامنة الكهربائية لوحدة الشحنة ألمنا المنا المنا الكهربائية الكامنة ألمنا المنا الكهربائية المنا المنا الكهربائية الكه

شكل (13-9)

في نقطة داخل الجال الكهربائي وهو كمية غير الجاهية. أي ان:

 $\frac{V}{V}=rac{|V|}{|V|}=rac{|V|}{|V|}$ الشغل الجهد الكهربائية |V|الشغل الجهد الكهربائية |V|

$$V$$
) volt (= $\frac{w$) joule(q) coloumb (

، ماتحتاجه ستجده مجانا على بوت تليكرام المعرف bot_

ولحساب الجهد الكهربائي على بعد ٢ من مركز كرة معزولة ومشحونة بشحنة q نطبق العلاقة الأتية.

حيث

) الهواء (
$$9 \times 10^9 \; \frac{Nm^2}{C^2}$$
 للهواء ($6 \times 10^9 \; 10^9$

ويقاس الجهد الكهربائي بوحدات VOlt . ويكون الجهد موجباً اذا تولد من شحنة موجبة ويكون سالباً اذا تولد من شحنة سالبة

فرق الجهد الكهربائي Potential difference

8-9

إن فرق الجهد بين جهدى النقطتين) A (.) B داخل الجال الكهربائي لاحظ الشكل (9-14) هو الفرق في الطاقة الكامنة الكهربائية لوحدة الشحنة بين هاتين النقطتين ، وهو مقدار الشغل اللازم لنقل الشحنة الكهربائية الموجبة من احدى النقطتين الى الاخرى مقسوماً على مقدار تلك الشحنة .

شكل (9-14)

فرق الجهد الكهربائي = الجهد عند B - الجهد عند A

$$V_{AB} = V_{B} - V_{A} = \frac{W_{AB}}{q}$$

ومنها:

الشغل = فرق الجهد × الشحنة المنقولة

$$W_{AB} = q V_{AB}$$

العلاقة بين المجال الكهربائي وانحدار الجهد

لقد بينا أن ـُـ

$$V_{AB} = \frac{W_{AB}}{q}$$

وعند التعويض عن الشغل W_{AB} بما يساويها وفي مجال كهربائي منتظم

$$W_{AB} = F x$$

ومنها نحصل على

$$V_{AB} = \frac{Fx}{q}$$

$$\frac{V_{AB}}{X} = \frac{F}{q}$$

$$\frac{\text{Volt}}{\text{meter}}$$
 ان المقدار $\frac{V_{AB}}{X}$ يسمى انحدار الجهد ويقاس بوحدات

ای ان

المجال الكهربائي = انحدار الجهد

$$E = \frac{V_{AB}}{X}$$

تندكر

- القوة الكهربائية المؤثرة في شحنة كهربائية موجبة تشير الى الاتجاه الذي عنده تكون الطاقة الكامنة واطئة لاحظ الشكل (a).
 - المجال الكهربائي يكون دامًا باتجاه الجهد الواطىء لاحظ الشكل (a,b).

هل تعلم

ان اختبار الاجهاد الذي يستعمل في فحص مرضى القلب يتم من خلال حساب العلاقة بين فرق الجهد بين قطبين معدنيين كدالة للزمن . وهذا الاختبار يظهر ما اذا كان القلب يعمل بصورة طبيعية أم لا.

ماتحتاحه ستحده محانا على بوت تليكرام المعرف bot_

سطح تساوى الجهد Equipotential Surface

9-9

سطح تساوي الجهد هو ذلك السطح الذي تكون نقاط سطحه جميعاً بنفس قيمة الجهد الكهربائي اي ان فرق الجهد بين اى نقطتين من نقاطه يساوى صفراً .

وأهم خواص سطوح تساوي الجهد هي:

1 - لاتتقاطع بعضها مع البعض الآخر لاحظ الشكل) 9-15(2 - خطوط القوة الكهربائية تكون عمودية على سطوح تساوى

3 - تتقارب سطوح تساوى الجهد فيما بينها في المناطق التي يكون الجال الكهربائي E (فيها كبيراً فتزداد كثافة خطوط القوة الكهربائية ايضاً ولهذا السبب فأن سطوح تساوي الجهد تتقارب قرب النهايات المدببة للاجسام المشحونة المعزولة.

شكل (15-9)

الشكل) 9-16 (يبين سطوح تساوي الجهد) وقد رسمت بشكل خطوط متقطعة (وخطوط القوة الكهربائية المرسومة بشكل خطوط مستمرة لشكلين مختلفين في الجالات الكهربائية . فعندما يكون الجال ناشئا عن شحنة نقطية كما في)a(تكون سطوح تساوى الجهد كروية الشكل ومتحدة المركز . أما في حالة الجال المنتظم)كالذي ينشأ بين لوحين متوازيين (كما في الشكل)b(فتكون سطوح تساوى الجهد مستوية ومتوازية .

مثال1

 $20\mu C$ كرة معدنية معزولة نصف قطرها 5cmعليها شحنه مقدارها

جد الجهد الكهربائي في نقطة :-

1- على سطحها

2- على بعد)15 cm من سطحها

 $q = 20 \mu C = 20 \times 10^{-6} C$

الحل:-

V = Kq/r

-1

 $V_1 =$ $9 \times 10^9 \times 20 \times 10^{-6}$ { / 0.05

 $V_1 = 36 \times 10^{5} \text{ volt}$

وهو جهد جميع نقاطها

 $V_2 =$ $9 \times 10^9 \times 20 \times 10^6$ {/)0.05+ 0.15(-2

 $V_{2} = 9 \times 10^{5} \text{ Volt}$ الجهد على بعد) 15 cm(من سطحها

مثال2

الشكل الجاور يبين سطحان متوازيان من سطوح تساوي الجهد جهد احدهما)5V-(وجهد

الآخر 3V(والبعد بينهما 4m(احسب الجال الكهربائي بينهما .

الحل:-

بما ان الجال الكهربائي منتظم بين السطحين فان خطوط الجال ستكون متوازية وعمودية على كلا السطحين لذلك فأن:

اي ان۔

الجال الكهربائي = انحدار الجهد

$$E=\frac{\Delta V}{X}$$

$$E = \frac{V_2 - V_1}{X}$$

$$E = \frac{8}{4} \Leftrightarrow E = 2 \frac{V}{m}$$

مقدار الجال الكهربائي

مثال3

النقطه A تبعد) 30cm (عن مركز كرة نصف قطرها) 1cm (مشحونة بشحنة B عن مركز كرة نصف قطرها) (2×10^{-9}) ونقطه B تبعد (2×10^{-9}) عن مركز الكرة نفسها. احسب الشغل اللازم لنقل شحنة مقدارها (2×10^{-9}) من نقطة (2×10^{-9}) الى نقطة (2×10^{-9})

V=k q/r

حيث q تمثل الشحنة المولدة للمجال

$$V_{\rm A} = 9 \times 10^9 \times 2 \times 10^{-9} / 0.3 = 60 \; {
m Volt}$$
 الجهد عند النقطة A

$$V_{\rm B} = 9 \times 10^9 \times 2 \times 10^{-9} / 0.9 = 20 \text{ volt}$$
 الجهد عند النقطة

$$B$$
 , A (فرق الجهد بين النقطة B - الجهد عند النقطة B - فرق الجهد عند النقطة

$$V_{AB} = V_A - V_B = 60 - 20 = 40 \text{ volt}$$

الشغل = فرق الجهد × الشحنة

$$W_{AB} = q V_{AB}$$

$$W_{AB} = 1 \times 10^{-6} \times 40 = 40 \times 10^{-6}$$
 Joule

الجهد الكهربائي للارض:

يعد الجهد الكهربائي للأرض صفرا. وهذا لا يعني ان الارض خالية من الشحنات الكهربائية وانما لان سطحها كبير جدا الى حد لايسمح لأية شحنة تعطى لها او تؤخذ منها ان تغير من جهدها اذ تعد خزانا كبيرا للشحنات الموجبة والسالبة.

فالموصلات المشحونة بشحنة موجبة وبعيد عن المؤثرات الكهربائية يكون جهدها موجبا فإذا وصلت بالارض انتقلت اليها شحنات سالبة من الارض فتعادلها ويصبح جهدها صفر كجهد الارض أما إذا كان الموصل سالب الشحنة فان جهده يكون سالب فاذا وصل بالارض انتقلت الشحنات السالبة من الموصل الى الارض ويصبح جهده صفرا مثل جهد الأرض.

عمل الرؤوس المسننة في تفريغ الشحنات الكهربائية

شكل (17-9)

إن كثافة الشحنة تتناسب عكسيا مع نصف قطر الموصل لذا ستكون كثافة الشحنة في الرؤوس المدببة كبيرة جدا. فتتفرغ الكهرباء منها إلى الجوعن طريق الايونات الحرة الموجودة دائما في الهواء بسب الجال الكهربائي العالي الذي يسبب تأين الهواء الحيط بهذا الطرف المصدب لاحظ الشكل (9-17). الذي يقوم بجذب دقائق الهواء المتعادلة أو المشحونة بشحنة مخالفة فتتعادل الشحنات ثم تكتسب شحنة مماثلة لشحنة الطرف المدبب فتتنافر معه . ويتم بذلك تفريغ الشحنة الكهربائية منه إلى الجو.

الكهرباء الجوية

هناك العديد من الظواهر الكهربائية المرئية تظهر في مناطق من الكرة الارضية منها الشفق القطبي والزوابع الرعدية والبرق والصواعق . وسنتناول في دراستنا بعض هذه الظواهر مثل البرق والرعد في الجو المطر لاحظ الشكل (9-18)

بصورة خاصة تصبح السحب محملة بالكهرباء وتكون شحنتها موجبة في الطبقات العليا وسالبة في الطبقات السفلي من الغيمة

شكل (18-9)

فاذا حصل تفريغ) على شكل ضربات متقاربة (بين الاجزاء الختلفة من السحابة الواحدة او بين سحابتين مختلفتين فتسمى) برقا (وهو لايستمر اكثر من 1/1000 من الثانية ويحصل بمعدل) 100 (ومضة في الثانية الواحدة تقريبا . وبقدرة $4x10^9$ kilowatts وقد يصل طول الشرارة الى عدة كيلومترات وبقطر) 15cm - 10cm (ما وبقطر) 15cm - 10cm ويعطى ضوءا وهاجا .

ان هذا الارتفاع المفاجيء في درجة الحرارة يعمل على تمديد الهواء بشكل مفاجيء ايضا مولدا صوتا يتكرر صداه بين الغيوم فيسمى)رعدا(.

الصاعقة: إذا حصل تفريغ كهربائي بين السحابة المشحونة واي جسم يحمل شحنه مخالفة لها على سطح الأرض فيسمى عندئذ صاعقة التي معدل زمن حدوثها يسموي عددئذ كالحظ الشكل (9-19).

شكل (9-9)

مانعة الصواعق:

تستعمل لحماية الدور والمنشات من التفريغ الكهربائي الجوي. فهي تعمل على تفريغ الشحنة الكهربائية نحو الأرض ببطء وعملها يتوقف على فعل الأسنة فهي تتركب من موصل احد طرفيه مثبت في ارض رطبة وطرفه الآخر يعلو فوق سطح البناية حيث يكون مدببا. فاذا كان الجو مشحونا بالشحنات السالبة تتولد على سطح الأرض شحنات موجبة تنتقل الى الرأس المدبب لمانعة الصواعق ثم تندفع مبتعدة عنه محدثة تفريغاً تدريجياً بفعل فرق الجهد بين الأرض والجو الحيط بالرأس المدبب وبذلك يقل خطر التفريغ الخارجي لاحظ الشكل) 9 - 20(.

هل تعلم

يبدو للعين المجردة بانه يحصل تفريغا واحدا للبرق الا ان الحقيقة هي حصول عدد من الضربات المتعاقبة السريعة تسلك المسار نفسه في الهواء.

شكل (9-20)

تطبيقات على الكهربائية الساكنة

1. المرشحات الكهروستاتيكية Electrostatic Filters

تقوم الكثير من المعامل والمصانع باطلاق غازات محملة بدقائق صغيرة على شكل سحابة من

شكل (21-9)

الدخان مما يؤدي الى تلوث الهواء .وقد استعملت اجهزة المرشحات الكهروستاتيكية في تنقية البيئة من ذلك يبين الشكل)9-21 (عمل المرشح الكهروستاتيكي حيث يحتوي المرشح على اسلاك فلزية رفيعة مشحونة بشحنة سالبة وتعمل على شحن دقائق الدخان بشحنة سالبة عند مرور الغازات الملوثة عبر المرشح ، فتنجذب دقائق الدخان بالواح فلزية موجبة الشحنة وبأستعمال مطرقة ميكانيكية سيتم هز هذه الالواح لتجميع الدقائق في الاسفل .

2. جهاز الاستنساخ الضوئيPhotocopier

يعد جهاز تصوير الوثائق من التطبيقات المهمة على الكهربائية الساكنة .يبين الشكل)9-22(الخطوات الرئيسية التي تتم داخل جهاز تصوير الوثائق .

شكل (9-22)

9

القصل الثاسع

اسئلة

- س1- اختر الجواب الصحيح فيما يلي:
- 1- كثافة الشحنة الكهربائية لموصل معزول مشحون فية نتوءات تكون.
 - a- أكبر مايكن عند رؤوسه المدببة.
 - b- أقل ما يمكن عند رؤوسه المدببة.
 - -C متساوية في كل نقاطه.
 - d- كل الاحتمالات السابقة.
 - 2- في حالة الجال الكهربائي المنتظم يكون:
 - a- الجال فيه متغير المقدار في جميع نقاطه .
 - b- الجال فيه ثابت المقدار والاتجاه في جميع نقاطه.
 - -c الجال فيه ثابت الاججاه في جميع نقاطه.
 - d- الجال فيه متغير المقدار والاجّاه في جميع نقاطه.
- 3-الجهد الكهربائي لنقاط بين لوحين متوازيين مشحونين بشحنتين مختلفتين ومتساويين.
 - a- موجباً دائماً .
 - b- سالياً دائماً
 - -C موجباً أو سالباً .
 - d- ربا موجباً وربا سالباً أو صفراً.
 - 4- إذا وضعت شحنة كهربائية طليقة في مجال كهربائي فانها تتحرك.
 - a- باجّاه الجال دائماً .
 - -b بعكس الجاه الجال دائماً
 - -c باجّاه الجال إذا كانت موجبة وبعكسه إذا كانت سالبة.
 - d- عمودية على الجال .

الفصال التاسع

- 5-كرة موصلة مشحونة ومعزولة جهد احدى نقاط سطحها فولطاً واحداً. فأن الجهد في مركزها .
 - a- فولطاً واحداً .
 - b- صفراً
 - -C اقل من فولط واحد واكبر من الصفر.
 - d- أكبر من فولط واحد.
- س2- ضع علامة) $\mathcal{N}($ على العبارة الصحيحة وعلامة) $\mathcal{N}($ على العبارة الخاطئة مع تصحيح الخطأ أن وجد دون أن تغير ما قته خط:-
- 1- قوة التجاذب أو التنافر الكهربائي بين جسمين مشحونين أكبر من قوة الجذب التثاقلي بين كتلتيهما.
 - 2- يجذب الالكترون بروتون النواة في الذرة بقوة _ أقل من القوة التي يجذب بها البروتون للالكترون.
 - 3- جميع نقاط الكرة الموصلة المشحونة تكون بالجهد نفسه.
 - 4- أشباه الموصلات تكون دائماً موصلة جيدة للكهربائية.
 - 5- قانون كولوم ينطبق على الشحنات الكهربائية المتساوية فقط.
 - 6- قانون كولوم ينطبق على الشحنات الكهربائية كبيرة الحجم.
 - 7- تتوزع الشحنة الكهربائية على سطح موصل منتظم بصورة متجانسة
 - 8- سطح الكرة الموصلة المشحونة المعزولة هو سطح تساوي جهد.
 - 9- تكون خطوط القوة الكهربائية متوازية في الجال الكهربائي المنتظم.
 - 10- يكن شحن الكرة الارضية بشحنة كهربائية موجبة.

کل ماتحتاجه ستجده مجاناً علی بوت تلیکرام المعرف stad4al_bot@ المعلنة

المتقلية القصبال التناسيع

11- لايمكن لخطوط القوة الكهربائية أن تتقاطع.

12- إذا وضعت شحنة كهربائية معينة في مجال كهربائي منتظم فان القوة الكهربائية التي تؤثر عليها

تكون ثابتة المقدار والانجاه.

س3- هل يمكن تقاطع خطان من خطوط القوى الكهربائية ؟ ولماذا؟

س4- كيف تفسر تساوي الجهد لجميع نقاط الموصل المشحون والمعزول؟

5- علل عدم وجود مجال کهربائي داخل کرة معدنية مشحونة ومعزولة 5

س6- اذا كان جهد نقطة معينة صفراً فهل من الضروري أن يكون الجال الكهربائي صفراً ؟

س7- ايهما اكبر، جهد نقطة داخل كرة معدنية مشحونة أم جهد نقطة على سطحها؟ ولماذا؟

س8- ما الصاعقة ؟ وما مانعة الصواعق؟ وكيف تعمل لحماية الابنية والمنشأت؟

9س ما البرق وكيف يحصل

س10- لماذا نرى البرق قبل سماع صوت الرعد الناتج عنه؟

س11- الجال الكهربائي داخل كرة معدنية مجوفة مشحونة ومعزولة يساوي صفراً. فهل هذا يعني أن الجهد داخل الكرة يساوي صفراً؟

مسائل

س1 - ما مقدار قوة التنافر بين شحنتين نقطيتين متساويتين ' مقدار كل منهما $\mu C($ وعلى بعد)10~cm(

F=0.9N / ϵ

س2- وضعت الشحنتان النقطيتان) μC (على خط مستقيم تفصلهما مسافة متر وضعت الشحنتان النقطية الثالثة حتى تصبح محصلة القوى المؤثرة عليها من قبل الشحنتين صفراً ؟

x=25cm / ϵ

 q_1 عن الشحنة النقطية والشحنة الشحنة بعد الشحنة النقطية

9

القصل التاسع

س3- اذا كان فرق الجهد بين نقطتين B,A فما الشغل اللازم لنقل

a- بروتون (q = +e) من A الى a

Bائی A انی (q=-e) من A انی b

 $a - W_{AB} = -9.6 \times 10^{-18} J($ $b - W_{AB} = +9.6 \times 10^{-18} J($ $/_{C}$

سطحان متوازيان من سطوح تساوي الجهد، جهد النقطة a(فيه يساوي 10V وجهد النقطة -4 فيه يساوي -2V(والبعد بينهما -2V(أحسب الجال الكهربائي بين النقطتين -2V(

E= 3000N/C /~

B(عن مركز كرة مشحونة بشحنه مقدارها)A(تبعد)0.5m(عن مركز كرة مشحونة بشحنه مقدارها)B(عن مركز هذه الكرة احسب الشغل اللازم لنقل شحنة مقدارها $)2\mu$ (من نقطة)A(

 $W=)16 \times 10^{-6} J (/_{\odot})$

الشغل الموجب يكافئ الطاقة المنقولة الى الجسم المشحون.

س6- وضعت شحنة مقدارها) $6\mu C$ على بعد 0.2m على بعد 0.9m عن الشحنة الأولى. الشغل المبذول لتحريك الشحنة الثانية لتصبح على بعد 0.9m عن الشحنة الأولى.

 $W=)+0.075J(/_{c})$

الشغل الموجب يكافئ الطاقة المنقولة الى الشحنة.

	المحتويات	
3		مقدمة
4	معلمات رئيسة في الفيزياء	الفصل الاول
15	الخصائص الميكانيكية للمادة	الفصل الثاني
28	الموائع الساكنة	الفصل الثالث
52	الخصائص الحرارية للمادة	الفصل الرابع
84	الضوء	الفصل الخامس
95	انعكاس وانكسار الضوء	الفصل السادس
114	المرايا	الفصل السابع
133	العدسات الرقيقة	الفصل الثامن
156	الكهرباء الساكنة (المستقرة)	الفصل التاسع

ارشادات بيئية

- * بيئة نظيفة تعنى حياة افضل
- * عندما تكون للبيئة اولوية ... البيئة تدوم
- * الماء شريان الحياة فحافظ عليه من التلوث
- * حماية البيئة مسؤولية الجميع فلنعمل لحمايتها
 - * بالتشجير تصبح بيئتك ابهى
 - * لنعمل من اجل بيئة افضل ووطن اجمل
- * ان اقتلعت شجرة او نبتة مضطراً فازرع غيرها
 - * حافظ على بيئتك لتنعم بحياة افضل
 - * بيئة الانسان مرآة لوعيه
 - * لنعمل معاً ... من اجل عراق خال من التلوث
 - * يد بيد من اجل وطن اجمل
 - * بيئتك حياتك ... فساهم من اجل جعلها مشرقة
 - * البيئة السليمة تبدأ بك
 - * من اجل الحياة على الارض انقذوا أنهار ها