1) Sia dato questo

$$\max -2x_1 - 5x_2$$

$$-4x_1 + 5x_2 \le 0$$

$$2x_1 - x_2 \le 0$$

$$x_2 \ge -10 \Rightarrow -x_2 \le 10$$

$$-2x_1 - 5x_2 \le 60$$

$$x_1, x_2 \le 0$$

o Trasformiamo in forma aumentata

$$\min 2x_1 + 5x_2 - 4x_1 + 5x_2 + x_3 = 0$$

$$2x_1 - 2x_2 + x_4 = 0$$

$$-x_2 + x_5 = 10$$

$$-2x_1 - 5x_2 + x_6 = 60$$

$$x_1, x_2 \ge 0$$

O Siccome abbiamo scambiato \leq in \geq scambiamo tutti i simboli E li scambiamo solo dei coefficenti x_1, x_2

$$\min -2x_1 - 5x_2 +4x_1 - 5x_2 + x_3 = 0 -2x_1 + 2x_2 + x_4 = 0 x_2 + x_5 = 10 2x_1 + 5x_2 + x_6 = 60 x_1, x_2 \ge 0$$

o Soluzioni amissibili di partenza:

$$x_3 = x_4 = 0$$

 $x_5 = 10$
 $x_6 = 60$

o Facciamo i tableau

T=0	X1	X2	Х3	X4	X5	Х6	Ris
Z	-2	-5	0	0	0	0	0
Х3	4	-5	1	0	0	0	0
X4	-2	1	0	1	0	0	0
X5	0	1	0	0	1	0	10
Х6	2	5	0	0	0	1	60

Notiamo che i nostir costi non sono tutti >=0, quindi scegliamo la variabile entrante

Prendiamo il più piccolo, x2=5

Quindi x2 entra in base.

Per scegliere quale esce dobbiamo fare il rapporto tra il termine noto ed il coefficente della variabile

Ris3 = 0/-5 -> No

Ris4 = 0/1 = 0 -> Il minimo

Ris5 = 10/1 = 10

Ris6 = 60/5 = 12

Quindi entra x2 ed esce x4

Dobbiamo far apparire 0100 nella colonna x2 seguente, e per farlo moltiplichiamo le righe

T=1	X1	X2	Х3	X4	X5	X6	Ris
Z	-12	0	0	5	0	0	0
Х3	-6	0	1	5	0	0	0
X2	-2	1	0	1	0	0	0
X5	2	0	0	-1	1	0	10
Х6	12	0	0	-5	0	1	60

Abbiamo ancora un qualcosa minore di 0 nella riga Z

Scegliamo quindi x1=-12 da entrare in base

Calcoliamo i rapporti

X3 = 0/-6 -> no

X2 = 0/-2 -> no

X5 = 10/2 = 5

X6 = 60/12 = 5

Sono uguali e quindi faccio una scelta casuale

T=2	X1	X2	Х3	X4	X5	Х6	Ris
Z	0	0	0	-1	6	0	60
Х3	0	0	1	2	3	0	0
X2	0	1	0	0	1	0	0
X1	1	0	0	-1/2	1/2	0	5
Х6	0	0	0	1	-6	1	0

Entra x4, esce x6

T=3	X1	X2	Х3	X4	X5	X6	Ris
Z	0	0	0	0	0	1	60

Х3	0	0	1	0	15	-2	30
X2	0	1	0	0	1	0	10
X1	1	0	0	0	-5/2	1/2	5
X4	0	0	0	1	-6	1	0

Le nostre variabili fuori base sono x5, x6

Risolutato: (0, 1)

Siccome x5=0 noi abbiamo soluzione multipla

Per scoprire le altre soluzioni:

Entra in base x6

$$Min(\frac{30}{15}, \frac{10}{1}) = 2$$
Esce di base x3

T=4	X1	X2	Х3	X4	X5	X6	Ris
Z	0	0	0	0	0	1	60
Х3	0	0	1/15	0	1	-2/15	2
X2	0	1	-1/15	0	0	2/1	8
X1	1	0	1/6	0	0	1/6	10
X4	0	0	6/15	1	0	3/15	12

2 risultati:

$$\begin{pmatrix} 10 \\ 8 \\ 0 \\ 12 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 10 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Per ottenere tutti i risultati:

$$\lambda * \begin{pmatrix} 10 \\ 8 \\ 0 \\ 12 \\ 2 \end{pmatrix} + (1 - \lambda) * \begin{pmatrix} 5 \\ 10 \\ 30 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

 $\lambda \in [0,1]$

Qui noi abbiamo 1 segmento e questi sono 2 nostri 2 estremi Lambda ci permette di passare dal segmento