Übungen zu Funktionentheorie 1

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner

Blatt 5

Abgabe auf Moodle bis zum 29. Mai

Jede Aufgabe ist vier Punkte wert. Sei D eine offene Teilmenge von \mathbb{C} .

19. Aufgabe: Seien α , β stetige, stückweise differenzierbare Abbildungen $[0,1] \to D$. Diese sind homotop mit festen Randpunkten, wenn es ein stetiges $H:[0,1]^2 \to D$ gibt mit $H(0,t)=\alpha(t)$ und $H(1,t)=\beta(t)$ sowie $H(s,0)=\alpha(0)=\beta(0)$ und $H(s,1)=\alpha(1)=\beta(1)$ für alle $0 \le s,t \le 1$. Zeigen Sie, dass dann für jede in D holomorphe Funktion $f:D\to\mathbb{C}$ gilt

$$\int_{\alpha} f(z) dz = \int_{\beta} f(z) dz.$$

20. Aufgabe: Sei $f: D \to \mathbb{C}$ holomorph und $\zeta \in D$ fest. Zeigen Sie: Die Funktion

$$g: D \to \mathbb{C}$$
 , $g(z) = \begin{cases} \frac{f(z) - f(\zeta)}{z - \zeta} & z \neq \zeta \\ f'(\zeta) & z = \zeta \end{cases}$

ist holomorph. Hinweis: Riemannscher Hebbarkeitssatz.

21. Aufgabe: Sei $f: \mathbb{C} \to \mathbb{C}$ holomorph mit $f(z) \in \mathbb{R}$ für alle $z \in \mathbb{C}$ mit $|z| = \sqrt{2}$. Zeigen Sie $f(0) \in \mathbb{R}$. Hinweis: Cauchy-Integralformel.

22. Aufgabe: Sei $P(z) = \sum_{n=1}^{\infty} a_n z^n$ eine Potenzreihe mit komplexen a_n , die in einer offenen Kreisscheibe $U \subseteq \mathbb{C}$ konvergiert. Zeigen Sie, dass P(z) in U holomorph ist mit holomorpher Ableitung

$$P'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} .$$

Hinweis: Gleichmäßige Konvergenz. Hier vereinbaren wir formal $0^0 = 1$.