1a. Solve: 1 - P[n + 1] = (1 - P[n])*(1 - p) with P[1] = p for P[n]. $P[n]=1 - (1 - p)^n$ which is the pmf of geometric distribution.

1b. Solve -F'(x) = -f0 * (1 - F(x)), F(0) = = 0. F(x) = 1 - exp(-f0 x) which is the cdf of the exponential distribution.

1c. sigma^2

2. x = sqrt(3*u - floor(3*u)) + floor(3*u), u drawn from U[0,1]; maximize f(x)/g(x) = (3/2)*(x - floor(x)) to obtain a C so that 1/C is maximized. Thus the acceptance probability is 1/C = 2/3. If v is drawn from U[0,1] accept x generated as above if v less than or equal to (x - floor(x)).

3. a^n, a^n mod m

4.

(i) Assuming that the two counters operate independently of each other determine the expected number of waiting customers and their mean waiting time at each counter.

	Commercial	Personal	
λ	6/h	12/h	
μ	12/h	24/h	
$\rho = \frac{\lambda}{\mu}$	0.5	0.5	
$L_q = \frac{\rho^2}{1-\rho}$	0.5	0.5	Answer.
$W_q = \frac{\rho}{\mu(1-\rho)}$	5 min	2.5 min	Answer.

(ii) What is the effect of operating the two queues as a two-server queue with arrival rate 18/h and service rate 18/h? What conclusion can you draw from this operation?

		Two-server queue	
-	λ	18/h	
	μ	18/h	
	Number of servers (s)	2	
	$\rho = \frac{\lambda}{s\mu}$	0.5	
	$\alpha = \frac{\chi}{\mu}$	1	
	$p_0 = \left[\sum_{0}^{1} \frac{\alpha^r}{r!} + \frac{\alpha^2}{2(1-\rho)}\right]^{-1}$	0.33	
	$L_q = \frac{\rho \alpha^2 p_0}{2(1-\rho)^2}$	0.33	Answer.
\longrightarrow	$W_q = \frac{\alpha^2 p_0}{(2) 2\mu(1-\rho)^2}$	1.33 min	Answer.

Conclusion: The two-server queue operation is more efficient than the two single-server operations.

5. |x/a - 1| is sufficiently small

6.

$$x=\frac{\lambda}{1-10\%}=5.556/hr$$

At the repair station:
$$w = \frac{1}{\mu(1-\rho^2)} = \frac{1}{3(1-(\frac{5.556}{22)(3)})^2)} = 2.34 hr$$

At the inspection station: $w = \frac{1}{8(1 - \frac{5.556}{9})} = 0.41hr$

The maximum arrival rate the system can handle without adding personnel is: $\lambda = (2)(3)(90\%) = 5.4/hr$ because the utilization at the repair stations are much higher than that at the inspection station, which indicates the repair stations are the bottleneck of the system.

8.(a)
$$F(y) = 0$$
, $y < -1/2$; $F(y) = (2/3)*(y+1/2)^(3/2)$, y in $[-\frac{1}{2}, \frac{1}{2})$; $F(y) = y + \frac{1}{6} - (\frac{2}{3})*(y-\frac{1}{2})^(\frac{3}{2})$, y in $[\frac{1}{2}, \frac{3}{2})$; $F(y) = 1$, $y > \frac{3}{2}$ (b) $Cov = 0$; apply $E(XY) = E(E(XY|X) = E(X E(Y|X)) = 0$ [odd function].

9.
$$7*(m-1)/144 + 2*(m-2)/48 = (13*m-19)/144$$