Algorithmique et bioinformatique

Projet : Assemblage de fragments d'ADN

Université de Mons

UMONS

Année académique 2020 - 2021

Plan

- Séquençage de génomes
- 2 Assemblage de fragments
 - Le problème
 - Complications
 - Modèles formels
 - Algorithmes
 - Heuristiques
- Assemblage en pratique?
 - Recherche des chevauchements
 - Ordonner les fragments
 - Alignement et consensus
- Bibliographie

Séquençage de génomes

Comment organiser le séquençage de très longues molécules?

On dispose d'un processus bio-chimique aléatoire capable d'extraire des petits fragments des molécules d'ADN

- Longueur des fragments : ≈ 500pb;
- Les positions sont inconnues, ainsi que l'orientation;
- Erreurs de séquençage;
- Processus aléatoire;

→ Problème extrêmement complexe!

La suite du travail repose sur des méthodes informatiques : utilisation des chevauchements approximatifs pour construire un contig("super-séquence")

Séquençage de génomes

Le problème

Le problème d'assemblage de fragments

Etant donné une collection de fragments de quelques centaines de paires de bases, il faut construire la séquence cible

ACCGT \Longrightarrow ACCGT
CGTGC CGTGC
TTAC TTAC
TACCGT
TTACCGTGC

Consensus

Complications

Erreurs

- Erreurs de séquençage;
- Erreurs dans le mécanisme de fragmentation et de clonage.
 - ⇒ Substitutions et indels (gaps) : 5%

Complications

Orientation inconnue

Les fragments sont orientés $5' \rightarrow 3'$ mais sur n'importe quel brin.

Considérer les fragments complémentaires et inversés également!

⇒ un fragment sera présent soit tel quel, soit complémenté et inversé (pas les 2).

Complications

Manque de couverture

Mécanisme de fragmentation aléatoire \rightarrow certaines positions risquent de ne pas être couvertes.

Etc ...

Modèles formels

Aucun modèle n'est pleinement satisfaisant!

Plus courte "super-chaîne" commune

INPUT : Collection \mathscr{F} de fragments

OUTPUT : **Plus courte** chaîne S telle que $\forall f \in \mathscr{F} : f$ facteur de S

Exemple: $\mathscr{F} = \{ \texttt{ACT}, \texttt{CTA}, \texttt{AGT} \} \Rightarrow \mathcal{S} = \texttt{ACTAGT}$

INCONVENIENTS:

- Ne permet pas les erreurs
- Les orientations des fragments doivent être connues

Modèles formels

- Couverture irrégulière
- Liaison manquante : aucune suite de fragments chevauchants ne lie le début de X' à la fin de X'

Problème NP-Complet ⇒ approximations Bonne base de travail pour le reste

Algorithmes

Sans erreur, orientation connue Représentation des chevauchements

Def : **Overlap Multigraph** $\mathscr{OM}(\mathscr{F})$: graphe orienté pondéré

- sommets : les fragments $f \in \mathscr{F}$
- arc de $f \in \mathscr{F}$ à $g \in \mathscr{F}$ de poids $t \geq 0$ si suff(f,t) = pref(g,t) et $f \neq g$

Algorithme

Exemple: a = TACGA b = ACCC c = CTAAAGd = GACA

Tout chemin décrit un alignement entre des fragments

Un chemin Hamiltonien décrit une super-chaîne

Algorithmes

Soient:

- P un chemin de $\mathcal{OM}(\mathcal{F})$
- $A \subseteq \mathscr{F}$ les fragments correspondant à P
- S(P) la super-chaîne dérivée de P

On a
$$||A|| = |S(P)| + w(P)$$
 avec $||A|| = \sum_{a \in A} |a|$ et $w(P)$ le poids de P .

Si on ne considère que les chemins Hamiltoniens, minimiser |S(P)| revient à maximiser w(P)

1. Algorithme d'approximation : *Greedy*

On cherche à maximiser les chevauchements \Longrightarrow pour chaque paire de nœuds de $\mathscr{OM}(\mathscr{F})$, on ne conserve que l'arc de poids maximal.

$$\Longrightarrow \mathscr{OG}(\mathscr{F})$$
 : Overlap Graph

On ajoute progressivement les arcs de poids maximaux jusqu'à ce que le chemin contienne tous les nœuds

- Il faut empêcher la formation de cycles;
- On peut "entrer" dans un nœud au plus une fois; et
- On peut "sortir" d'un nœud au plus une fois.

Algorithme : Greedy

```
Entrées : \mathcal{OG}(\mathcal{F}), n
   Sortie: Chemin hamiltonien de \mathcal{OG}(\mathcal{F})
1 pour i \leftarrow 1 à n faire
        in[i] \leftarrow 0; out[i] \leftarrow 0
        MAKESET (i)
4 Tri des arcs par poids décroissants
   pour chaque arc(f,g) dans cet ordre faire
         si (in[g] = 0 et out[f] = 0 et FINDSET (f) \neq FINDSET (g) ) alors
6
              SELECT (f,g)
 7
              in[g] \leftarrow 1; out[f] \leftarrow 1
 8
              UNION (FINDSET (f), FINDSET (g))
 9
         si il ne reste qu'un seul ensemble alors
10
              sortir de la boucle
11
12 retourner (arcs choisis)
```

Avec:

- MAKESET(i): initialise l'ensemble {i}
- FINDSET(f): retourne l'ensemble contenant f
- UNION(E_1, E_2): fusionne les 2 ensembles E_1 et E_2
- SELECT(f,g): choisit arc(f,g)

Exemple:

2. Tri topologique

S'applique dans le cas de graphes acycliques. Pas vu ici.

3 étapes :

rechercher les chevauchements approximatifs;

→ Alignement semi-global

construire l'alignement;

→ Greedy + gérer les gaps

calculer la séquence consensus.

→ Vote de majorité

1. Recherche des chevauchements

Considérer toutes les paires de fragments et leurs complémentaires.

⇒ Alignement semi-global par programmation dynamique

Remarque : Considération des 8 cas d'alignement $(f,g), (g,f), (\overline{f},g), \ldots$

			A	T	С	G	G	С	A	T	T	С	A	G	T
	+ 	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Α		0	1	-1	-1	-1	-1	-1	1	-1	-1	-1	1	-1	-1
Τ		0	-1	2	0	-2	-2	-2	-1	2	0	-2	-1	0	0
Τ		0	-1	0	1	-1	-3	-3	-3	0	3	1	-1	-2	1
Α		0	1	-1	-1	0	-2	-4	-2	-2	1	2	2	0	-1
G		0	-1	0	-2	0	1	-1	-3	-3	-1	0	1	3	1
Α		0	1	-1	-1	-2	-1	0	0	-2	-3	-2	1	1	2
С		0	-1	0	0	-2	-3	0	-1	-1	-3	-2	-1	0	0
С		0	-1	-2	1	-1	-3	-2	-1	-2	-2	-2	-3	-2	-1
Α		0	1	-1	-1	0	-2	-4	-1	-2	-3	-3	-1	-3	-3
T		0	-1	2	0	-2	-1	-3	-3	0	-1	-3	-3	-2	-2
G		0	-1	0	1	1	-1	-2	-4	-2	-1	-2	-4	-2	-3
С		0	-1	-2	1	0	0	0	-2	-4	-3	0	-2	-4	-3
G		0	-1	-2	-1	2	1	-1	-1	-3	-5	-2	-1	-1	-3
G		0	-1	-2	-3	0	3	1	-1	-2	-4	-4	-3	0	-2
С		0	-1	-2	-1	-2	1	4	2	0	-2	-3	-5	-2	-1

ATTAGACCATGCGGC

AT CGGCATTCAGT

2. Ordonner les fragments (greedy ou tri topologique)

Les sommets du graphe : $\mathscr{DF}=\mathscr{F}\cup\overline{\mathscr{F}}$ avec $\overline{\mathscr{F}}=\{\overline{f}|f\in\mathscr{F}\}$

Si un fragment apparaît dans le chemin, son complémentaire ne peut plus être choisi!

Remarques:

 Des fragments peuvent être inclus à d'autres. Adaptez le comportement de l'algorithme greedy à ce cas particulier.

Remarques (suite):

 le complémentaire inversé d'un "bon chemin" est également un "bon chemin" :

$$f_1 o f_2 o \dots f_k$$
 et $\overline{f_k} o \overline{f_{k-1}} o \dots \overline{f_1}$

Une multitude de solutions sont valides si plusieurs contigs.
 Il s'agit là d'un problème de liaison.

3. Alignement et consensus

Réaliser l'alignement obtenu et calculer la séquence consensus.

Bibliographie

