UNIVERSITY OF HELSINKI DEPARTMENT OF PHYSICS

BASICS OF MONTE CARLO SIMULATIONS

Exercise 2

Student: Caike Crepaldi

Professor: Flyura Djurabekova

February 2016

Note. Please use the Makefile in order to compile the programs. See all images in the figures folder.

Problem 1

Figure 1: χ^2 histograms.

LCG See program's output below for the LCG case:

İ	NUMBER OF RANDOM NUM:	
Ì		1000000
Ì	NUMBER OF BINS:	İ
İ		60
Ì	DEGREES OF FREEDOM:	ĺ
		59
	EXPECTED VALUE:	

	166	666.666	
CHI-SQUARED MEAN:			Ţ
CHI COHADED MEDIAN.		1.809	
CHI-SQUARED MEDIAN:		1.815	1
LOWER ONE-SIDED:		11010	i
İ	<	1.658	į
UPPER ONE-SIDED:		1.050	- [
	>	1.959	

We can see clearly that the LCG fails the χ^2 since even the mean, or the median, values are far from the degree of freedom (in our case 60-1).

Park-Miller

See program's output below for the PMG case:

NUMBER OF RANDOM NUM:	100000
NUMBER OF BINS:	1000000
DEGREES OF FREEDOM:	60
EXPECTED VALUE:	59
	16666.666
CHI-SQUARED MEAN:	58.533
CHI-SQUARED MEDIAN:	57.973
LOWER ONE-SIDED:	< 40.673
UPPER ONE-SIDED:	
	> 80.249

Now, we can see clearly that the PMG has much better χ^2 values, since the mean, or the median, values are close to the degree of freedom. However, its median is not k-2/3, where k is the degree of freedom. The difference between the median and its expected value (k-2/3), however, is negligible depending on the desired precision.

In order to do the one-sided tests with $\alpha = 0.05$, we need to compare our lower one-sided value with 42.339, and our upper one-sided value with 77.931. It is unfortunate but our lower one-sided value (40.673) is less than the critical value, and our upper one-sided value (80.249) is greater than the critical value. Therefore, according to the test rules, this random number generator fails both one-sided tests.

Mersenne twister

See program's output below for the MTG case:

-			+
	NUMBER OF RANDOM NUM:		i
		1000000	
İ	NUMBER OF BINS:		j
Ì		60	į
İ	DEGREES OF FREEDOM:		j
İ		59	i
i	EXPECTED VALUE:		į
İ		16666.666	Ĺ
i	CHI-SQUARED MEAN:		į
Ì		58.684	į
i	CHI-SQUARED MEDIAN:		i
i		57.784	i
i	LOWER ONE-SIDED:		i

	<	41.972	
UPPER ONE-SIDED:			
	>	78.710	
1			

As in the previous example, we can see clearly that the MTG has much better χ^2 values, since the mean, or the median, values are close to the degree of freedom. However, its median is not k-2/3, where k is the degree of freedom. The difference between the median and its expected value (k-2/3), however, is negligible depending on the desired precision.

In order to do the one-sided tests with $\alpha = 0.05$, we need to compare our lower one-sided value with 42.339, and our upper one-sided value with 77.931. It is unfortunate but our lower one-sided value (41.972) is less than the critical value, and our upper one-sided value (78.710) is greater than the critical value. Therefore, according to the test rules, this random number generator fails both one-sided tests.

Problem 2

Figure 2: LCG correlation test. We can clearly see sudden peaks.

According to the theory, the correlation values C_k fluctuates around zero with sudden peaks if the generator fails the test. Therefore, we can conclude that our LCG fails the test (you can see the peaks).

Figure 3: PMG correlation test.

According to the theory, the correlation values C_k fluctuates around zero with sudden peaks if the generator fails the test. Therefore, we can conclude that our Park-Miller generator passes the test (you can not see any peaks).

After updating our LCG with the 32-element table trick, the correlation test becomes much better, allowing our generator to pass the test (see figure 4).

Figure 4: Fixed LCG correlation test.

Problem 3

Hit-and-miss method

See histograms below. For b=10 we have a ratio of hit/miss of 99961/1000000.

Figure 5: Hit-and-miss method: b=1.

Figure 6: Hit-and-miss method: b=2.

Figure 7: Hit-and-miss method: b=5.

Figure 8: Hit-and-miss method: b=10.

Analytical-rejection method

See the p.d.f. used in this method (f(x)) and g(x) in figure 9.

Figure 9: Analytical-rejection method functions.

See the histogram for b=10 in figure 10. For b=10 we have a ratio of hit/miss of 359354/1000000. Note that this ratio is much bigger than the one seen in the hit-and-miss method.

Figure 10: Analytical-rejection method histogram for b=10.

Problem 4

See the distribution created from the RNG using the irrational number files in figure 11. It is clearly a uniform distribution.

See the Random Walker results in figure 12.

Figure 11: Uniform Distribuition.

Figure 12: Random walker paths.