

第六章

数值微积分(5-6)

第五节 复化求积公式

第六节 龙贝格Remberg算法

第5节 复化求积公式

▶ 5.1 复化求积的背景

高次插值有Runge 现象, 高阶Newton-Cotes公式会出现数值不稳定, 低阶Newton-Cotes公式有时又不能满足精度要求. 解决这个矛盾的办法是将积分区间[a, b]分成若干小区间, 在每个小区间上用低阶求积公式计算, 然后将它们加起来, 这就是复化求积方法.

▶ 5.2 复化梯形公式

被积函数f(x)用分段线性插值函数代替

将区间
$$[a,b]$$
进行 n 等分 $h=\frac{b-a}{n}$, 记 $x_k=a+kh$ $(k=0,1,\cdots,n)$,

在每个 $[x_k, x_{k+1}]$ 上用梯形公式

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x)dx \approx \sum_{k=0}^{n-1} \frac{h}{2} [f(x_{k}) + f(x_{k+1})]$$
$$= \frac{h}{2} \left[f(a) + f(b) + 2 \sum_{k=1}^{n-1} f(x_{k}) \right] = T_{n}$$

如果 $f(x) \in C^{(2)}[a,b]$,其截断误差为

$$R_{T}(f) = \int_{a}^{b} f(x)dx - \frac{h}{2} \left[f(a) + f(b) + \sum_{k=1}^{n-1} f(x_{k}) \right]$$

$$= \sum_{k=0}^{n-1} \left[-\frac{h^{3}}{12} f''(\xi_{k}) \right] = -\frac{h^{2}}{12} (b - a) \frac{\sum_{k=1}^{n} f''(\xi_{k})}{n} = -\frac{h^{2}}{12} (b - a) f''(\xi)$$

▶ 5.3 复化辛普森公式

将区间
$$[a,b]$$
进行 $2n$ 等分 $h=\frac{b-a}{2n}$,记 $x_k=a+kh$ $(k=0,1,\cdots,2n)$,

[
$$x_{2k}$$
, x_{2k+2}] \perp , $\int_{x_{2k}}^{x_{2k+2}} f(x) dx \approx \frac{h}{3} [f(x_{2k}) + 4f(x_{2k+1}) + f(x_{2k+2})]$

$$x_{2k}$$
 x_{2k+1} x_{2k+2} x_0 x_1 x_2 x_3 x_4 x_{2n-2} x_{2n}

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(a) + 4 \sum_{k=0}^{n-1} f(x_{2k+1}) + 2 \sum_{k=0}^{n-2} f(x_{2k+2}) + f(b)] = S_{n}$$

截断误差:
$$R[f] = -\frac{b-a}{180}h^4f^{(4)}(\xi) = -\frac{(b-a)^5}{2880\cdot n^4}f^{(4)}(\xi)$$

▶ 5.4 复化柯特斯公式

将区间
$$[a,b]$$
进行 $4n$ 等分 $h=\frac{b-a}{4n}$, 记 $x_k=a+kh$ $(k=0,1,\cdots,n)$,

$$\int_{a}^{b} f(x)dx \approx C_{n} = \frac{4h}{90} \left[7f(a) + 32 \sum_{k=0}^{n-1} f(x_{4k+1}) + 12 \sum_{k=0}^{n-1} f(x_{4k+2}) + 32 \sum_{k=0}^{n-1} f(x_{4k+3}) + 14 \sum_{k=1}^{n-2} f(x_{4k+4}) + 7f(b) \right]$$

截断误差为:
$$R_4^{(n)} = R_4[f] = -\frac{2(b-a)}{945}h^6f^{(6)}(\eta), \eta \in (a,b)$$

例1 用复化梯形和复化辛普森公式及下表计算积分 $I = \int_0^1 \frac{\sin x}{x} dx$.

解将积分区间[0,1]划分为8等份, 复化梯形

$$T_8 = \frac{1/8}{2} \left[f(0) + f(1) + 2 \sum_{k=1}^{7} f(\frac{k}{8}) \right] = 0.945609$$

将区间[0,1]划分为4等份,复化辛普森法

$$S_4 = \frac{1/4}{6} [f(0) + 4 \sum_{k=0}^{3} f(\frac{2k+1}{8}) + 2 \sum_{k=1}^{3} f(\frac{k}{4}) + f(1)]$$

= 0.9460832

真实值 I = 0.9460831

♥ X			
x	f(x)		
0	1		
1/8	0.9973978		
1/4	0.9896158		
3/8	0.9767267		
1/2	0.9588510		
5/8	0.9361556		
3/4	0.9088516		
7/8	0.8771925		
1	0.8414709		

例2 分别用复化梯形公式与复化辛普森公式计算积分 $I = \int_0^1 e^x dx$ 的近似值,要求其截断误差小于等于 $\frac{1}{2} \times 10^{-4}$,问各需取多少个节点?

解: $f(x) = e^x$, $f''(x) = f^{(4)}(x) = e^x$

在区间[0,1]上, $max|f''(x)| = max|f^{(4)}(x)| = e$

用复化梯形公式求积时,有 $|R_N[f]| \le \frac{e}{12}h^2 \le \frac{1}{2} \times 10^{-4}$

由此得 $h \leq 0.0149$, 则 $N = \frac{1}{h} > 67.6$, 需取N + 1 = 69个节点。

用复化辛普森公式,有 $|R_N[f]| \le \frac{e}{180}(h)^4 \le \frac{1}{2} \times 10^{-4}$

由此得 $h = \frac{1-0}{2N} \le 0.2399$,则N > 2.0842,需取个2N + 1 = 7节点。

第6节 龙贝格(Lemberg)积分

▶ 6.1 变步长积分法

变步长的梯形法 在区间[a,b]上取n+1个等距节点,记 $h=\frac{b-a}{n}$ 由复化梯形公式,得

$$T_n = \frac{h}{2} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})]$$
 (1)

若精度不够, 把各个小区间再对分, 插进节点 $x_{k+\frac{1}{2}} = \frac{x_k + x_{k+1}}{2}$ 再由复化梯形公式得

$$T_{2n} = \frac{h}{4} \sum_{k=0}^{n-1} [f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1})]$$
 (2)

$$T_n = \frac{h}{2} \sum_{k=0}^{n-1} [f(x_k) + f(x_{k+1})] \quad T_{2n} = \frac{h}{4} \sum_{k=0}^{n-1} [f(x_k) + 2f(x_{k+\frac{1}{2}}) + f(x_{k+1})]$$

记
$$H_n = h \sum_{k=0}^{n-1} f(x_{k+\frac{1}{2}})$$
, 则得递推公式: $T_{2n} = \frac{1}{2} (T_n + H_n)$

误差估计:

$$\frac{I-T_n}{h^2} = -\frac{1}{12} \sum_{k=0}^{n-1} h f''(\xi) \xrightarrow{n \to +\infty} -\frac{1}{12} \int_a^b f''(x) \, dx = -\frac{1}{12} [f'(b) - f'(a)]$$

同理可知
$$\frac{I-T_{2n}}{(h/2)^2} \xrightarrow{n \to +\infty} -\frac{1}{12} \int_a^b f''(x) dx = -\frac{1}{12} [f'(b) - f'(a)]$$

故
$$\frac{I-T_n}{I-T_{2n}} \approx 4$$
, 即 $I \approx T_{2n} + \frac{1}{3}(T_{2n} - T_n) = \frac{4}{3}T_{2n} - \frac{1}{3}T_n$.

注: 若要使得
$$|I-T_{2n}|<\varepsilon$$
,只要 $\frac{1}{3}|T_{2n}-T_n|<\varepsilon$ 即可。

对于Simpson公式, 则有

$$I \approx S_{2n} + \frac{1}{4^2 - 1}(S_{2n} - S_n) = \frac{16}{15}S_{2n} - \frac{1}{15}S_n$$

注:若要使得 $|I-S_{2n}|<arepsilon$,只要 $rac{1}{15}|S_{2n}-S_n|<arepsilon$ 即可。

对于Cotes公式,则有

$$I \approx C_{2n} + \frac{1}{4^3 - 1}(C_{2n} - C_n) = \frac{64}{63}C_{2n} - \frac{1}{63}C_n$$

注:若要使得 $|I-C_{2n}|<arepsilon$,只要 $\frac{1}{63}|C_{2n}-C_n|<arepsilon$ 即可。

例 若要求用辛普森方法计算积分= $\int_0^1 \frac{\sin x}{x} dx$ 的近似值,使误差不超过 0.5×10^{-6} 。(I = 0.94608315)

解可先算出
$$S_1 = \frac{1}{6} \left(\frac{\sin 0}{0} + \frac{4 \sin(0.5)}{0.5} + \frac{\sin 1}{1} \right) = 0.94614588$$
,

将区间分半(即二等分),并计算 $S_2 = 0.94608693$

$$S_2 = \frac{1}{12} \left(\frac{\sin 0}{0} + \frac{4 \sin(0.25)}{0.25} + \frac{2 \sin(0.5)}{0.5} + \frac{4 \sin(0.75)}{0.75} + \frac{\sin 1}{1} \right),$$

将区间分半(即四等分),并计算 $S_4 = 0.94608331$,

$$S_4 = \frac{1}{24} \left(\frac{\sin 0}{0} + \frac{4 \sin(0.125)}{0.125} + \frac{2 \sin(0.25)}{0.25} + \frac{4 \sin(0.375)}{0.375} + \frac{2 \sin(0.5)}{0.5} + \frac{4 \sin(0.625)}{0.625} + \frac{2 \sin(0.75)}{0.75} + \frac{4 \sin(0.875)}{0.875} + \frac{\sin 1}{1} \right),$$

$$|I - S_4| = 0.16 \times 10^{-6} < 0.5 \times 10^{-6}$$
 因此 S_4 满足要求。

↑ ルスサ大学 HEFEI UNIVERSITY OF TECHNOLOGY

例3: 计算椭圆 $\frac{x^2}{4} + y^2 = 1$ 的周长,使结果具有5位有效数字.

解: $\diamondsuit x = 2\cos\theta$, $y = \sin\theta$

$$l = \int_{L} ds = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{4 \sin^{2} \theta + \cos^{2} \theta} d\theta = 4 \int_{0}^{\frac{\pi}{2}} \sqrt{3 \sin^{2} \theta + 1} d\theta$$

令 $I = \int_0^{\frac{\pi}{2}} \sqrt{3 \sin^2 \theta + 1} d\theta$, 利用变步长梯形公式计算, $f = \sqrt{1 + 3 \sin^2 \theta}$

$$T_1 = \frac{\pi}{4}(1+2) = 2.3561945, \quad T_2 = \frac{1}{2}T_1 + \frac{\pi}{4}f(\frac{\pi}{4}) = 2.4192078,$$

$$T_4 = \frac{1}{2}T_2 + \frac{\pi}{8}\left(f\left(\frac{\pi}{8}\right) + f\left(\frac{3\pi}{8}\right)\right) = 2.42210310,$$

$$T_8 = \frac{1}{2}T_4 + \frac{\pi}{16}(f(\frac{\pi}{16}) + f(\frac{3\pi}{16}) + f(\frac{5\pi}{16}) + f(\frac{7\pi}{16})) = 2.42211206$$

$$\frac{1}{3}|T_8-T_4|=0.299\times 10^{-7}<0.5\times 10^{1-6}$$
 故有6位有效数字。

 $l \approx 4T_8 \approx 9.6884$

利用变步长Simpson公式计算 $\int_0^{\frac{\pi}{2}} \sqrt{3 \sin^2 \theta + 1} d\theta$

$$S_1 = \frac{\pi}{12}(f(0) + 4f(\frac{\pi}{4}) + f(\frac{\pi}{2})) = 2.4411628,$$

$$S_2 = \frac{\pi}{24} (f(0) + 4f(\frac{\pi}{8}) + 2f(\frac{\pi}{4}) + 4f(\frac{3\pi}{8}) + f(\frac{\pi}{2})) = 2.4228305$$

$$S_4 = \frac{\pi}{48} \left[f(0) + 4f(\frac{\pi}{16}) + 2f(\frac{\pi}{8}) + 4f(\frac{3\pi}{16}) + 2f(\frac{\pi}{4}) + 4f(\frac{5\pi}{16}) + 2f(\frac{3\pi}{8}) + 4f(\frac{7\pi}{16}) + f(\frac{\pi}{2}) \right]$$

= 2.4221150

$$\frac{1}{15}|S_4-S_2|=0.477\times 10^{-4}<0.5\times 10^{1-5}$$
,故有5位有效数字。

 $l = 4I \approx 4 \times 2.42211 \approx 9.6884$

▶ 6.2 龙贝格(Lemberg)积分

设
$$T_1 = \frac{b-a}{2} (f(a) + f(b)), T_2 = \frac{b-a}{4} (f(a) + 2f(\frac{a+b}{2}) + b)$$

$$\frac{4}{3}T_2 - \frac{1}{3}T_1 = \frac{b-a}{3} (f(a) + 2f(\frac{a+b}{2}) + f(b)) - \frac{b-a}{6} (f(a) + f(b))$$

$$= \frac{b-a}{6} (f(a) + 4f(\frac{a+b}{2}) + f(b)) = S_1$$

从而可推得
$$S_{2^k} = \frac{4}{3}T_{2^{k+1}} - \frac{1}{3}T_{2^k}, k = 0, 1, 2, \dots$$

设
$$S_1 = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

$$S_2 = \frac{b-a}{12} \left(f(a) + 4f\left(\frac{3a+b}{4}\right) + 2f\left(\frac{a+b}{2}\right) + 4f\left(\frac{a+3b}{4}\right) + f(b) \right)$$

$$\frac{16}{15} S_2 - \frac{1}{15} S_1 = \frac{b-a}{45} \left(4f(a) + 16f\left(\frac{3a+b}{4}\right) + 8f\left(\frac{a+b}{2}\right) + 16f\left(\frac{a+3b}{4}\right) + 4f(b) \right)$$

$$-\frac{b-a}{90} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

$$= \frac{b-a}{90} \left(7f(a) + 32f\left(\frac{3a+b}{4}\right) + 12f\left(\frac{a+b}{2}\right) + 32f\left(\frac{a+3b}{4}\right) + 7f(b) \right) = C_2$$

从而可推得
$$C_{2^k} = \frac{4}{3}S_{2^{k+1}} - \frac{1}{3}S_{2^k}, k = 0, 1, 2, \cdots$$

记号
$$R_{2^k} = \frac{64}{63}C_{2^{k+1}} - \frac{1}{63}C_{2^k}, k = 0, 1, 2, \cdots$$

定义 将区间[a,b]进行2 k ($k = 0, 1, 2, \cdots$)等分, T_{2^k} , S_{2^k} , C_{2^k} 分别表示第k次等分时,进行的梯形积分公式,辛普森公式,柯特斯公式,则称下表定义的积分算法为龙贝格算法:

k	梯形	辛普森	柯斯特	龙贝格
0	T_{2^0}			
1	T_{2^1}	S_{2^0}		
2	T_{2^2}	S ₂ 1	C_{2^0}	
3	T_{2^3}	S_{2^2}	C_{2^1}	R_{2^0}
:	÷	:	:	:

$$S_{2^{k-1}} = \frac{4}{3} T_{2^k} - \frac{1}{3} T_{2^{k-1}}$$

$$C_{2^{k-2}} = \frac{16}{15} S_{2^{k-1}} - \frac{1}{15} S_{2^{k-2}}$$

$$R_{2^{k-3}} = \frac{64}{63} C_{2^{k-2}} - \frac{1}{63} C_{2^{k-3}}$$

例4 用龙贝格方法计算积分 $\int_1^2 e^{1/x} dx$ 的近似值。

解: 计算如下表

k	T_{2^k}	$=\frac{\mathbf{S}_{2^{k-1}}}{3}T_{2^k}-\frac{1}{3}T_{2^{k-1}}$	$= \frac{C_{2^{k-2}}}{15} S_{2^{k-1}} - \frac{1}{15} S_{2^{k-2}}$	$= \frac{R_{2^{k-3}}}{63} C_{2^{k-2}} - \frac{1}{63} C_{2^{k-3}}$
0	2.183501550			
1	2.065617795	2.026323210		
2	2.031892868	2.020651226	2.020273094	
3	2.023049868	2.020102201	2.020065599	2.020062306
4	2.020808583	2.020058773	2.020058773	2.020058665

$$\begin{split} S_{2^{k-1}} &= \frac{4}{3} T_{2^k} - \frac{1}{3} T_{2^{k-1}} & C_{2^{k-2}} &= \frac{16}{15} S_{2^{k-1}} - \frac{1}{15} S_{2^{k-2}} \\ R_{2^{k-3}} &= \frac{64}{63} C_{2^{k-2}} - \frac{1}{63} C_{2^{k-3}} & \end{split}$$

为了更好的描述龙贝格算法,记号 $T_{2^k} = T_{2^k}^0$, $S_{2^k} = T_{2^k}^1$,

$$C_{2^k} = T_{2^k}^2, R_{2^k} = T_{2^k}^3, \cdots, T_{2^k}^m, \cdots$$
,从而有

$$T_{2^{k-1}}^1 = \frac{4}{3}T_{2^k}^0 - \frac{1}{3}T_{2^{k-1}}^0, \quad T_{2^{k-2}}^2 = \frac{16}{15}T_{2^{k-1}}^1 - \frac{1}{15}T_{2^{k-2}}^1,$$

$$\cdots$$
, $T_{2^{k-m}}^m = \frac{4^m}{4^{m-1}}T_{2^{k-m+1}}^{m-1} - \frac{1}{4^{m-1}}T_{2^{k-m}}^{m-1}, \cdots$

例5 对区间[0,1]进行5次等分,计算积分 $\int_0^1 x^{3/2} dx$ 的近似值。

$$\mathbf{P}: T_{2^{k-m}}^m = \frac{4^m}{4^{m-1}} T_{2^{k-m+1}}^{m-1} - \frac{1}{4^{m-1}} T_{2^{k-m}}^{m-1}, \qquad T_2^5 = \frac{1024}{1023} T_4^2 - \frac{1}{1023} T_2^2 = 0.400002$$

$$T_2^5 = \frac{1024}{1023}T_4^2 - \frac{1}{1023}T_2^2 = 0.400002$$

k	2^k	$T_{2^k}^0$	$T^1_{2^{k-1}}$	$T_{2^{k-2}}^2$	$T_{2^{k-3}}^{3}$	$T_{2^{k-4}}^4$	$T_{2^{k-5}}^{5}$
0	1	0.500000					
1	2	0.426777	0.402369				
2	4	0.407018	0.400432	0.400302			
3	8	0.401812	0.400077	0.400054	0.400050		
4	16	0.400463	0.400014	0.400009	0.400008	0.400008	
5	32	0.400118	0.400002	0.400002	0.400002	0.400002	0.400002

$$T_4^1 = \frac{4}{3}T_8^0 - \frac{1}{3}T_4^0 = 0.400077$$

$$T_4^1 = \frac{4}{3}T_8^0 - \frac{1}{3}T_4^0 = 0.400077$$
 $T_2^3 = \frac{64}{63}T_4^2 - \frac{1}{63}T_2^2 = 0.400008$