4. Статистическое моделирование систем на ЭВМ

4.1 Сущность метода. Формирование квазиравномерно распределенной на (0, 1) случайной величины

Статистическое моделирование -

метод получения с помощью ЭВМ статистических данных о процессах, происходящих в моделируемой системе.

Для получения оценок характеристик моделируемой системы **S** с учетом воздействий внешней среды **E** статистические данные обрабатываются и классифицируются с использованием методов математической статистики.

Теоретическая база – предельные теоремы теории вероятностей.

Сущность метода статистического моделирования

Сущность метода –

построение некоторого моделирующего алгоритма, имитирующего процесс функционирования исследуемой системы с учетом случайных входных воздействий и воздействий внешней среды,

и реализация этого алгоритма с использованием программно-технических средств ЭВМ.

Результат статистического моделирования системы:

серия значений искомых величин или функций

статистическая обработка

сведения о поведении реального объекта или процесса в произвольные моменты времени

При достаточно большом количестве реализаций **N** результаты моделирования могут быть приняты в качестве оценок искомых характеристик процесса функционирования системы.

Две области применения метода статистического моделирования:

- 1) изучение стохастических систем;
- 2) решение детерминированных задач.

Основная идея — замена детерминированной задачи эквивалентной схемой некоторой стохастической системы, выходные характеристики которой совпадают с результатом решения детерминированной задачи. При такой замене — приближенное решение; погрешность уменьшается с увеличением числа испытаний (реализаций моделирующего алгоритма) *N*.

Примеры.

1. Функционирование стохастической системы S_R описывается соотношениями:

$$x = 1 - e^{-\lambda} - входное воздействие,$$

$$v = 1 - e^{-\varphi}$$
 — воздействие внешней среды,

 λ и ϕ — CB с известными функциями распределения.

Величина
$$y$$
 определяется как $y = \sqrt{x^2 + v^2}$.

Требуется оценить среднее значение (мат. ожидание) M[y].

Структурная схема системы:

 K_1 , K_2 — возведение в квадрат:

$$h'_{i} = (1 - e^{-\lambda i})^{2}, h''_{i} = (1 - e^{-\varphi i})^{2};$$

 \mathbf{C} – суммирование $h_i = (1 - e^{-\lambda_i})^2 + (1 - e^{-\varphi_i})^2$;

$$y_i = \sqrt{(1-e^{-\lambda_i})^2 + (1-e^{-\varphi_i})^2}$$
.

Оценка мат. ожидания:

$$\overline{y} = \frac{1}{N} \sum_{i=1}^{N} y_i ,$$

 N – число реализаций, необходимое для статистической устойчивости результатов.

Блок-схема Начало моделирующего алгоритма: Ввод *N*, f1, f2, f1, f2 – функции распределения СВ λ и φ Sy = 0I = 1..NMy = Sy/NГенерация псевдослучайной последовательности *Li* Вывод Му $xi = 1 - \exp(-Li)$ Конец Генерация псевдослучайной последовательности *Fi* $vi = 1 - \exp(-Fi)$ $|yi| = \sqrt{(xi)^2 + (vi)^2}$

2. Найти оценку площади фигуры, изображенной на чертеже.

Для определенности предполагается, что $0 \le f(\alpha) \le 1$ при $0 \le \alpha \le 1$.

Задача чисто детерминированная.

Аналитическое решение: $\text{искомая площадь равна } S = \int\limits_0^1 f(\alpha) d\alpha \, .$

Структурная схема адекватной по выходным характеристикам стохастической системы S_D :

$$\mathbf{B}_1$$
 — вычисление $h'_i = f(\mathbf{x}_i)$,

A – анализ

$$h_i = \begin{cases} 1, & \text{если } x_{i+1} \leq f(x_i), \\ 0 & \text{в противном случае,} \end{cases}$$

$$\mathbf{C}$$
 — суммирование $h' = \sum_{i=1}^{N} h_i$, Число испытаний, в

$${\sf B_2}$$
 — вычисление ${\sf S'}={\sf h'/N}$. Оценка искомой

Точка с координатами (x_{i}, x_{i+1}) лежит ниже графика?

Число испытаний, в которых
$$x_{i+1} \le f(x_i)$$

Блок-схема моделирующего Начало алгоритма: Bвод N, fSh = 0*I* = 1..*N* S = Sh/NГенерация псевдослучайной последовательности хі Вывод Ѕ hi = f(xi)Конец Генерация псевдослучайной последовательности *хі1* нет hi > xi1

Sh = Sh + 1

При статистическом моделировании

- большое число операций → большая доля машинного времени расходуются на действия со случайными числами;
- результаты моделирования существенно зависят от качества исходных (базовых)
 последовательностей случайных чисел.

Наличие простых и экономных способов формирования последовательностей случайных чисел требуемого качества во многом определяет возможность практического использования этого метода.

Доказано:

СВ, обладающие практически любым законом распределения, можно конструировать с помощью равномерно распределенных на (0, 1) случайных чисел.

Для равномерного в интервале (0, 1) распределения:

$$f(x) = \begin{cases} 1, & \text{при } 0 < x < 1, \\ 0 & \text{при } x \notin (0,1), \end{cases}$$

$$F(x) = \begin{cases} 0, & \text{при } x \le 0, \\ x, & \text{при } 0 < x < 1, \\ 1, & \text{при } x \ge 1. \end{cases}$$

$$M(X) = \frac{1}{2}, \quad \sigma(X) = \frac{1}{2\sqrt{3}}.$$

Пусть **Z** – дискретная СВ, принимающая только два возможных значения:

Z	0	1	
p	1/2	1/2	

Бесконечную последовательность Z_1, Z_2, \dots можно рассматривать как двоичные знаки некоторого числа $\boldsymbol{\xi}$, равного

$$\xi = z_1 \cdot 2^{-1} + z_2 \cdot 2^{-2} + \dots + z_n \cdot 2^{-n} + \dots$$
 (*)

Ясно, что

$$\xi < 1 \cdot 2^{-1} + 1 \cdot 2^{-2} + \dots + 1 \cdot 2^{-n} + \dots = 1,$$

т. е. случайное число *ξ* принадлежит интервалу (0, 1).

При этом:

$$P(0 < \xi < 1/2) = P(z_1 = 0) = 1/2;$$

$$P(0 < \xi < 1/4) = P(z_1 = 0) \cdot P(z_2 = 0) = 1/2 \cdot 1/2 = 1/4;$$

$$P\left(\xi \in \left(0, \frac{1}{2^n}\right)\right) = P(z_1 = 0) \cdot \ldots \cdot P(z_n = 0) = \frac{1}{2^n}.$$

Обобщим:

$$P\left(\xi\in\left(0,\,rac{k}{2^n}
ight)
ight)=rac{1}{2^n}\cdot k$$
 . Комбинация первых n двоичных знаков в сумме (*) совпадает с

Комбинация первых n двоичных знаков в сумме (*) совпадает с одним из k возможных вариантов (соответствуют двоичной записи чисел $0, 1, 2, \ldots, k-1$)

Тогда

$$P\left(\xi \in \left(\frac{k}{2^n}, \frac{k+1}{2^n}\right)\right) = P\left(\xi \in \left(0, \frac{k+1}{2^n}\right)\right) - P\left(\xi \in \left(0, \frac{k}{2^n}\right)\right) = \frac{k+1}{2^n} - \frac{k}{2^n} = \frac{1}{2^n}$$

для любых \mathbf{n} , $\mathbf{k} = 0, 1, ..., \mathbf{n} - 1$.

Итог:

вероятность попадания ξ в любой интервал вида $\left(\frac{k}{2^n}, \frac{k+1}{2^n}\right)$ совпадает с длиной этого интервала, равной $1/2^n$

§ – равномерно распределенная СВ.

Способ формирования равномерно распределенной на (0, 1) CB:

взять бесконечную последовательность независимых СВ \mathbf{Z}_i и считать их двоичными знаками некоторого числа $\boldsymbol{\xi}$.

На цифровой ВМ для представления числа — только k двоичных разрядов \implies сумма (*) заменяется конечной суммой k слагаемых. Количество различных чисел, получаемых таким способом, равно 2^k .

Вместо непрерывной совокупности случайных чисел с равномерным распределением — дискретная совокупность 2^k чисел с одинаковой вероятностью появления любого из них.

Такое распределение называется квазиравномерным.

СВ **ξ**, имеющая квазиравномерное распределение на (0, 1), принимает значения

$$x_i = \frac{i}{2^k - 1}, \quad i = 0, 1, 2, \dots, 2^k - 1$$

2^k-1, а не 2^k, чтобы в число значений *x_i* можно было включить и 0, и 1, а интервалы между ними были одинаковы

с вероятностями

$$p_k = 1/2^k$$

Числовые характеристики:

$$M(\xi) = \sum_{i=0}^{2^{k}-1} \frac{i}{2^{k}-1} \cdot \frac{1}{2^{k}} = \frac{1}{2^{k} (2^{k}-1)} \sum_{i=0}^{2^{k}-1} i = \sum_{i=0}^{n} i = \frac{n(n+1)}{2},$$

$$= \frac{(2^{k}-1) \cdot 2^{k}}{2 \cdot 2^{k} (2^{k}-1)} = \frac{1}{2},$$

$$\sum_{i=0}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$

$$D(\xi) = \sum_{i=0}^{2^{k}-1} \left(\frac{i}{2^{k}-1}\right)^{2} \cdot \frac{1}{2^{k}} - \frac{1}{4} = \frac{1}{2^{k} \left(2^{k}-1\right)^{2}} \sum_{i=0}^{2^{k}-1} i^{2} - \frac{1}{4}$$

$$= \frac{1}{2^{k} \left(2^{k}-1\right)^{2}} \cdot \frac{\left(2^{k}-1\right) \cdot 2^{k} \left(2^{k+1}-1\right)}{6} - \frac{1}{4} = \frac{1}{12} \cdot \frac{2^{k}+1}{2^{k}-1},$$

$$\sigma(\xi) = \frac{1}{2\sqrt{3}} \sqrt{\frac{2^k+1}{2^k-1}}$$

При
$$k \to \infty$$
 $\sigma(\xi) \to \frac{1}{2\sqrt{3}} = \sigma_X \approx 0.28868;$

для малых k разница между $\sigma(\xi)$ и σ_X может оказаться существенной.

k	2	3	5	10	15
$\sigma(\xi)$	0,3727	0,3274	0,2979	0,2889	0,2887
$\frac{\sigma(\xi)}{\sigma_X}$	1,290	1,140	1,030	1,001	1,000

Основные способы генерации квазиравномерных случайных чисел:

- □ аппаратный (физический),
- алгоритмический (программный),
- табличный (файловый).

Аппаратный способ

Случайные числа вырабатываются специальной электронной приставкой — *генератором* (*датчиком*) случайных чисел (одно из внешних устройств ЭВМ).

Дополнительные вычислительные операции не требуются; необходима только операция обращения к датчику.

Физический эффект (источник «случайности») в основе таких генераторов –

- шумы в электронных и полупроводниковых приборах,
- явления распада радиоактивных элементов и т. д.

Для получения *к*-разрядного двоичного случайного числа, имеющего квазиравномерный закон распределения, необходимо:

появление каждом из \mathbf{k} разрядов числа \mathbf{Z} , принимающего значения $\mathbf{z}_1 = 0$ и $\mathbf{z}_2 = 1$ с вероятностями $\mathbf{p}_1 = \mathbf{p}_2 = 1/2$.

Пример: генератор шума.

На выходе – сигнал, амплитуда которого изменяется во времени случайным образом;

этот сигнал пропускается через ограничитель уровня; с помощью электронного счетчика подсчитывается количество импульсов сигнала, превышающих заданный уровень;

если в момент снятия показания счетчик дает четное число, то в соответствующем разряде — 0, если нечетное число, то 1.

Результаты исследований: при достаточно большом количестве импульсов вероятности появления 0 и 1 близки к 1/2

Параллельное соединение **k** одноразрядных датчиков случайных чисел – **k**-разрядный датчик.

Должен вырабатывать случайные числа с частотой, соответствующей быстродействию машины.

Недостатки аппаратного способа:

- использование электронных приборов для генерации случайных чисел замедляет процедуру имитационного моделирования;
- электронный прибор активизируется случайным образом невозможно по желанию воспроизвести одну и ту же последовательность случайных чисел.

Для отладки имитационной модели часто требуется дублирование одной и той же последовательности

Алгоритмический способ

Псевдослучайные числа генерируются в ВМ по специальным программам.

Такие числа не являются истинно случайными, т. к. могут быть определены заранее.

Программы для генерации случайных чисел также называют *генераторами* (датчиками) случайных чисел.

Требования к генератору:

- формируемая последовательность чисел должна иметь заданную статистическую структуру (например, быть последовательностью независимых СВ с квазиравномерным распределением);
- количество машинных операций, затрачиваемых на формирование одного числа, должно быть небольшим.

Наибольшее применение нашли алгоритмы вида $X_{i+1} = \Phi(X_i)$

(рекуррентные соотношения первого порядка), для которых начальное число X_0 и постоянные параметры заданы.

• Метод срединных квадратов

(исторически – одна из первых процедур).

Пусть X_0 — некоторое k-разрядное двоичное число — считается первым в последовательности псевдослучайных чисел;

возведем его в квадрат и рассмотрим k средних разрядов X_0^2 как новое k-разрядное двоичное число X_1 ;

возведем в квадрат X_1 и k средних разрядов X_1^2 будем считать числом X_2 и т. д.

Недостатки:

- возможность появления в последовательности X_i повторяющихся групп чисел,
- возможность вырождения процесса (во всех разрядах нули).

Следствие: несмотря на небольшое количество машинных операций, данная процедура редко используется на практике.

• Линейные конгруэнтные датчики.

Наиболее широко известный алгоритм.

Пусть заданы:

$$m > 0$$
 — модуль,
 X_0 , $0 \le X_0 < m$ — начальное значение,
 a , c , $0 \le a < m$, $0 \le c < m$ — параметры.

Построим последовательность неотрицательных целых чисел, не превосходящих *m*:

Остаток от деления на m

$$X_{i+1} = (aX_i + c) \mod \overline{m}, \quad i = 0, 1, 2, ...$$

Линейная конгруэнтная последовательность

Последовательность псевдослучайных чисел, имеющих квазиравномерное на [0, 1] распределение:

$$U_i = X_i/m$$
.

В силу детерминированности метода получаются воспроизводимые последовательности

Конгруэнтная последовательность всегда содержит циклы (периоды).

<u>Пример</u>:

$$m{X_0} = 11, \ m{a} = 9, \ m{c} = 5, \ m{m} = 12.$$
 $m{X_1} = (11 \cdot 9 + 5) \ m{mod} \ 12 = 8, \ m{U_1} = 8/12 = 0,66667,$
 $m{X_2} = (8 \cdot 9 + 5) \ m{mod} \ 12 = 5, \ m{U_2} = 5/12 = 0,41667,$
 $m{X_3} = (5 \cdot 9 + 5) \ m{mod} \ 12 = 2, \ m{U_3} = 2/12 = 0,16667,$
 $m{X_4} = (2 \cdot 9 + 5) \ m{mod} \ 12 = 11, \ m{U_4} = 11/12 = 0,91667,$
 $m{X_5} = (11 \cdot 9 + 5) \ m{mod} \ 12 = 8, \ m{U_5} = 8/12 = 0,66667.$
далее числа повторяются.

Длина периода не может быть больше *m*!

Конкретный выбор параметров X_0 , a, c и m – решающий фактор, определяющий статистические качества генератора случайных чисел и длину цикла полученной последовательности.

Для практических целей неприемлемыми являются значения $\mathbf{a} = 1$ и $\mathbf{a} = 0$

далее предполагается *a* ≥ 2.

Факторы, определяющие выбор модуля:

- **т** должно быть достаточно большим;
- значения ($aX_i + c$) mod m должны вычисляться быстро.

Рекомендация.

Пусть **w** – длина машинного слова

 $w = 2^e$, e — разрядность процессора.

Тогда целесообразен выбор

$$m = w \pm 1$$
.

Выбор множителя а.

Основное (но не единственное) требование – обеспечение максимальной длины периода.

Теорема (о максимальном периоде линейного конгруэнтного датчика с $c \neq 0$).

Линейная конгруэнтная последовательность, определенная числами **m**, **a**, **c** и **X**₀, имеет период длиной **m** тогда и только тогда, когда не имеют общих

1) числа *с* и *m* взаимно простые; делителей (кроме 1)

- 2) число b = a 1 кратно p для каждого простого p, являющегося делителем m;
- 3) число **b** кратно 4, если **m** кратно 4.

• Мультипликативные линейные конгруэнтные датчики.

Частный случай линейных конгруэнтных датчиков при *c* = 0. Широко используются на практике.

В этом случае последовательность X_i имеет вид

$$X_{i+1} = (aX_i) \mod m$$
, $i = 0, 1, 2, ...$

Характерно:

- процесс генерации происходит быстрее;
- значение, равное нулю, не может быть получено;
- максимальный период не может быть достигнут (следствие теоремы).

Пусть **a** и **m** – взаимно простые числа; для некоторого λ выполняется $a^{\lambda} \mod m = 1$.

Наименьшее значение **λ**, удовлетворяющее этому условию, называется *порядком числа* **а** *по модулю* **m**.

Пример.

$$3^1 \mod 5 = 3$$
,

$$3^2 \mod 5 = 4$$
,

$$3^3 \mod 5 = 2$$
,

$$3^4 \mod 5 = 1.$$

порядок числа 3 по модулю 5 равен 4

Все значения **a**, имеющие одинаковый максимально возможный порядок **λ**(**m**), называются примитивными элементами по модулю **m**.

Для больших значений $m = p^e$,

где \boldsymbol{p} – простое число, \boldsymbol{e} – целое,

примитивные элементы должны определяться с помощью компьютерных программ на основании следующей теоремы.

Теорема (о примитивных элементах по модулю p^e).

Для каждого целого **е** и простого числа **р**:

число \boldsymbol{a} является примитивным элементом по модулю $\boldsymbol{p^e}$ тогда и только тогда, когда

```
а нечетно, p^e = 2;
```

a
$$mod 4 = 3$$
, $p^e = 4$;

a mod
$$8 = 3, 5, 7, p^e = 8;$$

$$a \mod 8 = 3, 5, p = 2, e > 3;$$

$$a \mod p \neq 0$$
, $a^{(p-1)/q} \mod p \neq 1$, $p > 2$, $e = 1$,

$$q$$
 – все простые делители числа p – 1;

a mod
$$p \ne 0$$
, $a^{p-1} \mod p^2 \ne 1$, $a^{(p-1)/q} \mod p \ne 1$,

$$p > 2$$
, $e > 1$, $q -$ все простые делители числа

$$p-1$$

Теорема (о максимальном периоде для мультипликативных линейных конгруэнтных датчиков).

Максимальный период мультипликативного линейного конгруэнтного датчика с параметрами m, a, c = 0, X_0 равен $\lambda(m)$. Он достигается, если коэффициент a является примитивным элементом по модулю m, а числа X_0 и m являются взаимно простыми.

Прикладное значение имеют два случая выбора *т*:

1) $m = 2^e$;

в этом случае *m*–1 – наибольшее целое число, представимое в компьютере;

можно показать, что максимальная длина периода будет равна *m*/4;

m = p (простое число);
 может достигаться период, равный m-1.

 Объединение нескольких мультипликативных линейных конгруэнтных датчиков.

Метод объединения дает возможность достигать очень длинных периодов.

Базируется на двух теоремах.

Теорема (о сумме дискретных случайных величин, одна из которых имеет квазиравномерное распределение).

Пусть $X_1, X_2, ..., X_k$ — независимые случайные величины, которые могут принимать только целочисленные значения;

 X_1 имеет квазиравномерное распределение вероятностей

$$P(X_1 = n) = 1/d, n = 0,1, ..., d-1.$$

Тогда случайная величина

$$X = \left(\sum_{j=1}^{k} X_j\right) \bmod d$$

имеет такое же распределение.

Теорема (о периоде семейства датчиков).

Пусть датчик j, j = 1, 2, ..., k, с периодом p_j генерирует последовательность чисел

$$x^{(j)}_{0}, x^{(j)}_{1}, \ldots, x^{(j)}_{p_{j}-1}$$

Рассмотрим последовательности

$$X_i = \{ x^{(1)}_i, x^{(2)}_i, \dots, x^{(k)}_i \}, i = 0, 1, \dots$$

Их период p равен наименьшему общему кратному чисел p_1, p_2, \dots, p_k

Если модули отдельных мультипликативных линейных конгруэнтных датчиков \boldsymbol{m}_j являются простыми числами, то $\boldsymbol{p}_i = \boldsymbol{m}_i - 1, \ \boldsymbol{j} = 1, 2, \dots, \boldsymbol{k}.$

числа \boldsymbol{p}_i являются четными.

Поэтому

$$p \leq \frac{\prod_{j=1}^{k} (m_j - 1)}{2^{k-1}}. \tag{**}$$

Равенство достигается, если величины $(m_j - 1)/2$ не имеют общих делителей.

Теорему о сумме дискретных случайных величин можно использовать для построения последовательности случайных чисел с периодом (**):

$$z_{i} = \left(\sum_{j=1}^{k} (-1)^{j-1} x_{i}^{(j)}\right) \mod(m_{1} - 1),$$

$$z_{i} \in \{0, 1, \dots, m_{1} - 2\},$$

$$u_{i} = \begin{cases} \frac{z_{i}}{m_{1}}, & z_{i} > 0, \\ \frac{(m_{1} - 1)}{m_{1}}, & z_{i} = 0, \end{cases}$$

$$0 < u_{i} < 1.$$

Оценка качества сгенерированной последовательности

Достижение максимально возможного периода — не единственная цель при моделировании случайных чисел.

Важно: формируемая последовательность чисел должна быть последовательностью независимых СВ с квазиравномерным распределением.

Последовательность действий в случае использования мультипликативных датчиков:

- 1) выбор модуля **т**;
- выбор коэффициента a, обеспечивающего максимальный период в соответствии с теоремой о примитивных элементах по модулю pe;
- 3) программирование датчиков, заданных параметрами a, m и c = 0;
- 4) исследование статистической структуры полученных последовательностей чисел с помощью статистических критериев.

Статистические проверки последовательностей псевдослучайных чисел

 Проверка сгенерированной последовательности на согласование с теоретическим законом распределения.

Необходима при любом методе получения псевдослучайных чисел.

Для этого используются статистические критерии согласия.

Наиболее известный -

критерий **х**² (критерий Пирсона).

Пусть имеется выборка из *п* независимых наблюдений над случайной величиной *X*.

Составим группированный статистический ряд:

Интервалы	(x_0, x_1)	$(\boldsymbol{x_1}, \boldsymbol{x_2})$	•••	$(\boldsymbol{x}_{k-1}, \boldsymbol{x}_k)$
Частоты п ₁		n ₂	•••	n _k

 $m{n_i}$ — число значений СВ $m{X}$, принадлежащих интервалу $(m{x_{i-1}}, \, m{x_i}), \, \, m{i} = 1, \, 2, \, \dots, \, m{k} \, \, ($ эмпирические частоты), $\sum_{i=1}^k n_i \, = \, m{n}$.

Проверяется гипотеза:

СВ **X** имеет заданный («теоретический») закон распределения.

Обозначим:

 p_i — вероятность попадания СВ X в интервал (x_{i-1} , x_i), вычисленная в соответствии с теоретическим законом распределения.

 np_i – «теоретические» частоты попадания СВ X в интервал (x_{i-1}, x_i) .

В соответствии с критерием Пирсона, степень расхождения между **n**_i и **np**_i (эмпирическими и теоретическими частотами) оценивается величиной

$$\chi^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}.$$

При неограниченном увеличении *п* закон распределения этой СВ приближается к распределению χ^2 с *r* степенями свободы, где *r* определяется так: *k* минус число условий (связей), накладываемых на эмпирические частоты.

В число связей входят:

$$\sum_{i=1}^{k} \frac{n_i}{n} = 1,$$
 Это условие накладывается всегда

а также (возможно) выражения для оценок параметров теоретического закона распределения, получаемых по данным выборки.

Для корректного применения критерия Пирсона необходимо

- иметь достаточно большое число наблюдений *n*,
- обеспечить выполнение условия $n_i > 5 \div 10$ для всех i = 1, 2, ..., k.

В случае необходимости можно объединить некоторые интервалы

Алгоритм проверки.

По данным выборки определить значение *х²_{набл}*.
 Для организации вычислений удобно использовать таблицу

Интервалы	(x_0, x_1)	(x_1, x_2)	 $(\boldsymbol{x_{k-1}}, \boldsymbol{x_k})$		
Эмпирические частоты п _i	<i>n</i> ₁	n ₂	 n_k	Х ² набл	
Теоретические частоты <i>пр</i> _і	np ₁	np ₂	 np _k		
$\frac{(n_i - np_i)^2}{np_i}$	$\frac{(n_1 - np_1)^2}{np_1}$	$\frac{(n_2 - np_2)^2}{np_2}$	 $\frac{(n_k - np_k)^2}{np_k}$	$\sum_{i=1}^{k} \frac{(n_i - np_i)^2}{np_i}$	

- Выбрать уровень значимости α или доверительную вероятность 1-α и определить критическое значение χ²_{κρ} (по таблице или средствами MS Excel).
- Если

$$\chi^2_{\text{набл}} < \chi^2_{\kappa p}$$
,

то считается, что данные наблюдений не противоречат гипотезе о предполагаемом законе распределения;

в противном случае следует отвергнуть гипотезу, как противоречащую данным выборки.

Пример.

При m = 97, a = 29, $X_0 = 1$ сгенерирована последовательность из 500 псевдослучайных чисел.

Группированный статистический ряд:

(x_{i-1}, x_i)	(0; 0,1)	(0,1; 0,2)	(0,2; 0,3)	(0,3; 0,4)	(0,4; 0,5)	(0,5; 0,6)	(0,6; 0,7)	(0,7; 0,8)	(0,8; 0,9)	(0,9; 1)
n _i	48	54	52	48	51	53	46	52	51	45

Гипотеза:

СВ **X** имеет равномерное на (0, 1) распределение.

Для равномерного на (0, 1) распределения при любом i, i = 1, 2, ..., 10

$$p_i = P(X \in (x_{i-1}, x_i)) = 0.1.$$

При $\mathbf{n} = 500$ $\mathbf{n}\mathbf{p}_i = 50$ для всех i = 1, 2, ..., 10.

$$\chi^2_{\text{набл}} = \sum_{i=1}^{10} \frac{(n_i - np_i)^2}{np_i} = 1,68.$$

Выберем уровень значимости $\alpha = 0.05$ (доверительная вероятность $1-\alpha = 0.95$).

Параметры теоретического распределения не оценивались по данным выборки → количество связей равно 1,

число степеней свободы r = 10 - 1 = 9.

$$\chi^2_{\kappa p}(9;0,05) = 16,919.$$

Функция *MS Excel* XИ2ОБР с аргументами 0,05 и 9

$$\chi^2$$
_{набл} $< \chi^2$ _{кр}

нет оснований отвергнуть гипотезу о равномерном законе распределения.

Замечание.

Слишком малое значение величины $\chi^2_{набл}$ может свидетельствовать о «неслучайности» рассматриваемой последовательности.

Так, вероятность появления $\chi^2_{набл}$, не превышающего значения, полученного в рассмотренном примере, составляет менее 0,1 (по таблицам критических точек распределения χ^2).

Это означает: в результате испытания такое значение может появиться менее чем в 1% случаев.

• Для выявления неслучайных зависимостей между соседними элементами последовательности разработан *спектральный критерий*.

Пусть мультипликативный линейный датчик генерирует последовательность псевдослучайных чисел U_i , i = 1, 2, ...,

Пары (U_i , U_{i+1}), i = 1, 2, ..., m—1, можно рассматривать как координаты точек плоскости. Существуют семейства прямых, проходящих через эти точки. Максимальное расстояние между прямыми одного и того же семейства d_2 — мера «равномерности» полученной решетки.

Если расстояния между соседними прямыми примерно равны для всех семейств, то полученную решетку можно считать равномерной.

В этом случае
$$d_2 \approx m^{-\frac{1}{2}}.$$

Для решетки с неравномерным распределением

$$d_2 >> m^{-\frac{1}{2}}.$$

Пример.

Рассеяние пар точек (U_i , U_{i+1}) при различных значениях m и a.

Для наборов из t чисел $(U_i, U_{i+1}, ..., U_{i+t-1})$ соответствующие точки принадлежат семействам гиперплоскостей.

 d_t – наибольшее расстояние между гиперплоскостями.

Для равномерно распределенных точек

$$d_t \approx m^{-\frac{1}{t}},$$

в случае неравномерной решетки

$$d_t >> m^{-\frac{1}{t}}.$$

Показано, что минимально возможный период решетки ограничен снизу:

$$d_t \geq d_t^* = c_t \cdot m^{-\frac{1}{t}},$$

 $\boldsymbol{c_t}$ – константа для данного \boldsymbol{t} ,

$$c_2 = (4/3)^{-1/4}, \quad c_3 = 2^{-1/6}, \quad c_4 = 2^{-1/4},$$

 $c_5 = 2^{-3/10}, \quad c_6 = (64/3)^{-1/12}, \quad c_7 = 2^{-3/7}, \quad c_8 = 2^{-1/2}.$

Кнут Д. Искусство программирования. Т. 2.

Эффективный компьютерный алгоритм определения значений $d_t(m, a)$ для заданных параметров m и a мультипликативного линейного датчика приведен в книге

Д. Кнут. Искусство программирования. Т. 2.

Применение спектрального критерия:

- для заданных значений *m* и *a* мультипликативного линейного датчика определяются значения *d_t*(*m*, *a*) для *t* = 2, 3, ..., 6;
- определяется значение

$$S_t(m,a) = \frac{d_t^*(m)}{d_t(m,a)};$$

датчик считается приемлемым, если величина
 S₁(m, a) не превышает критического значения.

Примеры приемлемых значений модуля *m* и коэффициента *a* для датчиков, ориентированных на 32-битную целочисленную арифметику.

m	а
2 147 483 647	39 373
2 147 483 563	40 014
2 147 483 399	40 692
2 147 482 811	41 546
2 147 482 801	42 024
2 147 482 739	45 742

т – простые числа, близкие к максимальному целому, представимому 32 битами

Результаты исследований П. Лекюйе.

3. Брандт. Анализ данных. Статистические и вычислительные методы для научных работников и инженеров.

Случайные числа с квазиравномерным на (0, 1) распределением – исходный материал для получения случайных объектов более сложной природы:

- случайных величин с произвольным законом распределения;
- многомерных случайных векторов;
- случайных процессов.