# Precalculus Lecture 21

#### **Todor Miley**

https://github.com/tmilev/freecalc

2020

# Outline

New Functions from Old Functions

# Outline

New Functions from Old Functions

Composing Functions with Linear Transformations

# Outline

New Functions from Old Functions

- Composing Functions with Linear Transformations
- Graphing Absolute Value of a Function

#### License to use and redistribute

These lecture slides and their LATEX source code are licensed to you under the Creative Commons license CC BY 3.0. You are free

- to Share to copy, distribute and transmit the work,
- to Remix to adapt, change, etc., the work,
- to make commercial use of the work,

as long as you reasonably acknowledge the original project.

- Latest version of the .tex sources of the slides: https://github.com/tmilev/freecalc
- Should the link be outdated/moved, search for "freecalc project".
- Creative Commons license CC BY 3.0:
   https://creativecommons.org/licenses/by/3.0/us/
   and the links therein.

$$(f+g)(x) = (f-g)(x) = (f \cdot g)(x) = (\frac{f}{g})(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = (f \cdot g)(x) = (\frac{f}{g})(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = ?$$

$$(f \cdot g)(x) =$$

$$\left(\frac{f}{g}\right)(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) =$$

$$\left(\frac{f}{g}\right)(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = ?$$

$$\left(\frac{f}{g}\right)(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$(\frac{f}{g})(x) =$$

$$(f+g)(x) = f(x) + g(x)$$

$$(f-g)(x) = f(x) - g(x)$$

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

$$\left(\frac{f}{g}\right)(x) = ?$$

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} \end{array} \quad \left| \text{ for } g(x) \neq 0 \right|.$$

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} \end{array} \qquad \left| \begin{array}{c} \text{for } g(x) \neq 0 \end{array} \right. .$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \left| \text{ for } g(x) \neq 0 \right| . \end{array}$$

Let Dom(f) denote the domain of f.

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} \end{array} \quad \left| \text{ for } g(x) \neq 0 \right|.$$

Let Dom(f) denote the domain of f.

$$Dom(f+g) = ?$$
  
 $Dom(f-g) = ?$   
 $Dom(f \cdot g) = ?$ 

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f + g, f - g,  $f \cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \left| \text{ for } g(x) \neq 0 \right| . \end{array}$$

Let Dom(f) denote the domain of f. The function f + g is defined only if both f and g are defined, and similarly for the others.

$$Dom(f+g) = ?$$

$$Dom(f-g) = ?$$
  
 $Dom(f \cdot g) = ?$ 

$$Dom(f \cdot g) = ?$$

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \left| \text{ for } g(x) \neq 0 \right| . \end{array}$$

Let  $\mathsf{Dom}(f)$  denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\begin{array}{llll} \operatorname{\mathsf{Dom}}(f+g) & = & \textbf{?} \\ \operatorname{\mathsf{Dom}}(f-g) & = & \textbf{?} \\ \operatorname{\mathsf{Dom}}(f\cdot g) & = & \textbf{?} \end{array}$$

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$${\sf Dom}(f+g)={\sf Dom}(f)\cap{\sf Dom}(g)$$
  $\cap$  stands for  ${\sf Dom}(f-g)=?$  set intersection

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let  $\mathsf{Dom}(f)$  denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$$
  $\cap$  stands for  $\mathsf{Dom}(f-g) = ?$   $\cap$  Dom $(f \cdot g) = ?$ 

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\mathsf{Dom}(f+g) = \mathsf{Dom}(f)\cap\mathsf{Dom}(g)$$
  $\cap$  stands for  $\mathsf{Dom}(f-g) = ?$  set intersection

$$\mathsf{Dom}\left(\frac{f}{g}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

```
\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap stands for \mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) set intersection \mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)
```

$$\mathsf{Dom}\left(\frac{f}{a}\right) = ?$$

Todor Miley Lecture 21 2020

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$$
  $\cap$  stands for  $\mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$  set intersection  $\mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$ 

$$\mathsf{Dom}\left(\frac{f}{a}\right) = ?$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \left| \text{ for } g(x) \neq 0 \right| . \end{array}$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

```
\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap stands for \mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) set intersection \mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)
```

$$\mathsf{Dom}\left(rac{f}{g}
ight) \quad = \quad \mathsf{Dom}(f)\cap \mathsf{Dom}(g)\cap \{x|g(x)
eq 0\}$$

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \left| \text{ for } g(x) \neq 0 \right| . \end{array}$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

```
\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap stands for \mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) set intersection \mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)
```

$$\mathsf{Dom}\left(\frac{f}{g}\right) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap \{x | g(x) \neq 0\}$$

right expr. stands for set where  $g(x) \neq 0$ 

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

```
\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap stands for \mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) set intersection \mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)
```

$$\mathsf{Dom}\left(\frac{f}{g}\right) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap \{x | g(x) \neq 0\}$$
 right expr. stands for set where  $g(x) \neq 0$ 

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let  $\mathsf{Dom}(f)$  denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

$$\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$$
  $\cap$  stands for  $\mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$  set intersection  $\mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)$ 

$$\operatorname{Dom}\left(\frac{f}{g}\right) = \operatorname{Dom}(f) \cap \operatorname{Dom}(g) \cap \{x | g(x) \neq 0\}$$
 right e stands

right expr. stands for set where  $g(x) \neq 0$ 

Two functions f and g can be combined to form new functions f+g, f-g,  $f\cdot g$ , and  $\frac{f}{g}$ :

$$\begin{array}{rcl} (f+g)(x) & = & f(x)+g(x) \\ (f-g)(x) & = & f(x)-g(x) \\ (f\cdot g)(x) & = & f(x)\cdot g(x) \\ \left(\frac{f}{g}\right)(x) & = & \frac{f(x)}{g(x)} & \Big| \text{ for } g(x) \neq 0 \end{array}.$$

Let Dom(f) denote the domain of f. The function f+g is defined only if both f and g are defined, and similarly for the others. Therefore

```
\mathsf{Dom}(f+g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap stands for \mathsf{Dom}(f-g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) set intersection \mathsf{Dom}(f \cdot g) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g)
```

$$\mathsf{Dom}\left(\frac{f}{g}\right) = \mathsf{Dom}(f) \cap \mathsf{Dom}(g) \cap \{x | g(x) \neq 0\} \quad | \begin{array}{c} \mathsf{right \ expr.} \\ \mathsf{stands \ for \ set} \\ \mathsf{where} \ g(x) \neq 0 \end{array}$$

## Definition (Composition of f and g)

If f and g are two functions, then the composition of f and g is written  $f \circ g$  and is defined by the formula

$$(f\circ g)(x)=f(g(x)).$$

Imagine f and g as machines taking some input and producing some output. Then  $f \circ g$  corresponds to attaching both machines end-to-end so that the output of g becomes the input of f.



2020

## Definition (Composition of *f* and *g*)

If f and g are two functions, then the composition of f and g is written  $f \circ g$  and is defined by the formula

$$(f\circ g)(x)=f(g(x)).$$

Imagine f and g as machines taking some input and producing some output. Then  $f \circ g$  corresponds to attaching both machines end-to-end so that the output of g becomes the input of f.



The domain of  $f \circ g$  is the set of all numbers x in the domain of g such that g(x) is in the domain of f. If the domain of f is A and the domain of g is B, we write this as

$$\{x \in B | g(x) \in A\}.$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

Find  $f \circ g$ ,  $g \circ f$ ,  $g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(f \circ g)(x)$ 

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(f \circ g)(x) = f(g(x))$ 

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x})$ 

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3 - x}$ .  $(f \circ g)(x) = f(g(x)) = f(\sqrt{3 - x}) = \sqrt{\sqrt{3 - x}}$ 

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x}) = \sqrt{\sqrt{3-x}}$ 

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x}) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$ 

$$(f \circ g)(x) = f(g(x)) = f\left(\sqrt{3-x}\right) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$
Domain:

$$(f \circ g)(x) = f(g(x)) = f\left(\sqrt{3-x}\right) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$
Domain:

$$3-x \geq 0$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x}) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$
Domain:

$$\begin{array}{cccc} 3-x & \geq & 0 \\ -x & \geq & -3 \end{array}$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(f \circ g)(x) = f(g(x)) = f\left(\sqrt{3-x}\right) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$
Domain:

$$\begin{array}{cccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3
\end{array}$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt{3-x}) = \sqrt{\sqrt{3-x}} = \sqrt[4]{3-x}$$
Domain:

$$\begin{array}{rcl}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3 \\
x & \in & ?
\end{array}$$

Find  $f\circ g,g\circ f,g\circ g$  and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ .  $(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$  Domain:  $3-x\geq 0\\ -x\geq -3\\ x\leq 3\\ x\in (-\infty,3].$ 

Find 
$$f\circ g, \underline{g\circ f}, g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0 \\ -x \geq -3 \\ x \leq 3 \\ x \in (-\infty,3].$$
  $(g\circ f)(x)$ 

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x\geq 0\\ -x\geq -3\\ x\leq 3\\ x\in (-\infty,3].$$
 
$$(g\circ f)(x)=g(f(x))$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0$$
 
$$-x \geq -3$$
 
$$x \leq 3$$
 
$$x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x\geq 0\\ -x\geq -3\\ x\leq 3\\ x\in (-\infty,3].$$
  $(g\circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$ 

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x\geq 0\\ -x\geq -3\\ x\leq 3\\ x\in (-\infty,3].$$
  $(g\circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$ 

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0$$
 
$$-x \geq -3$$
 
$$x \leq 3$$
 
$$x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain:

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0$$
 
$$-x \geq -3$$
 
$$x \leq 3$$
 
$$x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x \geq 0$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x\geq 0$$
 
$$-x\geq -3$$
 
$$x\leq 3$$
 
$$x\in (-\infty,3].$$
 
$$(g\circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x\geq 0$$
 
$$3-\sqrt{x}\geq 0$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x\geq 0\\ -x\geq -3\\ x\leq 3\\ x\in (-\infty,3].$$
 
$$(g\circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x\geq 0\\ 3-\sqrt{x}\geq 0\\ -\sqrt{x}\geq -3$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0 \\ -x \geq -3 \\ x \leq 3 \\ x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x \geq 0 \\ 3-\sqrt{x} \geq 0 \\ 3-\sqrt{x} \geq 3$$
 
$$\sqrt{x} \leq 3$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0 \\ -x \geq -3 \\ x \leq 3 \\ x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x \geq 0 \\ 3-\sqrt{x} \geq 0 \\ -\sqrt{x} \geq -3 \\ \sqrt{x} \leq 3 \\ x \leq 9$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ .

$$(f\circ g)(x)=f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
Domain:
$$3-x\geq 0$$

$$-x\geq -3$$

$$x\leq 3$$

$$x\in (-\infty,3].$$

$$(g\circ f)(x)=g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
Domain:
$$x\geq 0$$

$$3-\sqrt{x}\geq 0$$

$$-\sqrt{x}\geq -3$$

$$\sqrt{x}\leq 3$$

$$x\leq 9$$

$$x\in ?$$

Find 
$$f\circ g,g\circ f,g\circ g$$
 and their domains, where  $f(x)=\sqrt{x}$  and  $g(x)=\sqrt{3-x}$ . 
$$(f\circ g)(x) = f(g(x))=f\left(\sqrt{3-x}\right)=\sqrt{\sqrt{3-x}}=\sqrt[4]{3-x}$$
 Domain: 
$$3-x \geq 0 \\ -x \geq -3 \\ x \leq 3 \\ x \in (-\infty,3].$$
 
$$(g\circ f)(x) = g(f(x))=g(\sqrt{x})=\sqrt{3-\sqrt{x}}$$
 Domain: 
$$x \geq 0 \\ 3-\sqrt{x} \geq 0 \\ -\sqrt{x} \geq -3 \\ \sqrt{x} \leq 3 \\ x \leq 9 \\ x \in [0,9]$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .  $(g \circ g)(x) = g(g(x))$ 

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x})$$

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$
  
Domain:

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$3-x \geq 0$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{cccc} 3-x & \geq & 0 \\ -x & \geq & -3 \end{array}$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{cccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3
\end{array}$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{rcccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3 \\
3 - \sqrt{3 - x} & \geq & 0
\end{array}$$

$$3-\sqrt{3-x} \stackrel{=}{\geq} 0$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{cccc} 3-x & \geq & 0 \\ -x & \geq & -3 \end{array}$$

$$\begin{array}{cccc}
x & = & 3 \\
3 - \sqrt{3 - x} & \geq & 0 \\
- \sqrt{3 - x} & \geq & -3
\end{array}$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{rcccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3 \\
3 - \sqrt{3 - x} & \geq & 0 \\
- \sqrt{3 - x} & \geq & -3 \\
\sqrt{3 - x} & \leq & 3
\end{array}$$

$$3-\sqrt{3-x} \geq 0$$

$$\sqrt{3-x}$$
  $\stackrel{=}{<}$  3

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{cccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3
\end{array}$$

$$\begin{array}{rcl}
-x & \geq & -3 \\
x & \leq & 3 \\
3 - \sqrt{3 - x} & \geq & 0 \\
-\sqrt{3 - x} & \geq & -3 \\
\sqrt{3 - x} & \leq & 3 \\
3 - x & \leq & 9
\end{array}$$

$$-\sqrt{3-x} \geq -3$$

$$\sqrt{3}-x \leq 3$$

$$3-x \leq 9$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$\begin{array}{cccc} 3-x & \geq & 0 \\ -x & \geq & -3 \end{array}$$

$$3-\sqrt{3-x} \stackrel{-}{\geq} 0$$

$$\begin{array}{rccc}
-x & \geq & -3 \\
x & \leq & 3 \\
3 - \sqrt{3 - x} & \geq & 0 \\
-\sqrt{3 - x} & \geq & -3 \\
\sqrt{3 - x} & \leq & 3 \\
3 - x & \leq & 9 \\
-x & \leq & 6
\end{array}$$

$$3-x < 9$$

$$-x \leq 6$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

$$3-x \geq 0$$

$$-x \geq -3$$

$$x \leq 3$$

$$3-\sqrt{3-x} \geq 0$$

$$-\sqrt{3-x} \geq -3$$

$$\sqrt{3-x} \leq 3$$

$$3-x \leq 9$$

$$-x \leq 6$$

$$3-\sqrt{3-x} \geq 0$$

$$\sqrt{3-x} \geq -3$$

$$3-x < 9$$

$$\begin{array}{cccc}
-x & \leq & 6 \\
x & > & -6
\end{array}$$

$$x \geq -\epsilon$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$(g \circ g)(x) = g(g(x)) = g(\sqrt{3-x}) = \sqrt{3-\sqrt{3-x}}$$

Domain:

$$\begin{array}{cccc}
3 - x & \geq & 0 \\
- x & \geq & -3 \\
x & \leq & 3
\end{array}$$

$$3-\sqrt{3-x} \geq 0$$

$$\begin{array}{rcl}
-x & \geq & -3 \\
x & \leq & 3 \\
3 - \sqrt{3 - x} & \geq & 0 \\
-\sqrt{3 - x} & \geq & -3 \\
\sqrt{3 - x} & \leq & 3 \\
3 - x & \leq & 9 \\
-x & \leq & 6
\end{array}$$

$$3-x < 0$$

$$-x \leq 6$$

$$x \geq -6$$
 $x \in ?$ 

$$x \in \mathcal{T}$$

Find  $f \circ g, g \circ f, g \circ g$  and their domains, where  $f(x) = \sqrt{x}$  and  $g(x) = \sqrt{3-x}$ .

$$g(x) = \sqrt{3} - x$$
.  $(g \circ g)(x) = g(g(x)) = g(\sqrt{3} - x) = \sqrt{3} - \sqrt{3} - x$  Domain:  $3 - x \ge 0$   $-x \ge -3$   $x \le 3$   $3 - \sqrt{3} - x \ge 0$   $-\sqrt{3} - x \ge 0$   $-\sqrt{3} - x \ge 3$   $\sqrt{3} - x \le 3$ 

$$\begin{array}{cccc}
3 - \sqrt{3 - x} & \geq & 0 \\
-\sqrt{3 - x} & \geq & -3 \\
\sqrt{3 - x} & < & 3
\end{array}$$

$$\begin{array}{rcl}
3 - x & \leq & 9 \\
- x & \leq & 6
\end{array}$$

$$x \geq -6$$

$$x \in [-6,3].$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$f(x) = \frac{2x - 1}{\frac{x + 2}{5x - 7}}$$

$$x \neq -2$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$

$$x \neq \frac{7}{5}$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x))$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$

$$x \neq \frac{7}{5}$$

$$(f\circ g)(x)=f(g(x))=f\left(\frac{2x+3}{5x-7}\right)$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$

$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$f(x) = \frac{2x - 1}{\frac{x + 2}{5x - 7}}$$
$$g(x) = \frac{2x - 3}{5x - 7}$$

$$x \neq -2$$

$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$g(x) = \frac{x+2}{2x+3}$$
$$g(x) = \frac{5x-7}{5x-7}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} - \frac{5x-7}{5x-7}}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}}$$

$$g(x) = \frac{2x+3}{5x-7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$g(x) = \frac{2x+3}{5x-7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} - \frac{5x-7}{5x-7}}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{2x+3} + \frac{2(5x-7)}{2x-3}}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$g(x) = \frac{x+2}{2x+3}$$
$$g(x) = \frac{2x+3}{5x-7}$$
$$(f \circ g)(x) = f(g(x)) = f(f(x))$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}}$$

$$g(x) = \frac{x+2}{2x+3}$$
$$g(x) = \frac{2x+3}{5x-7}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}}$$

$$f(x) = \frac{2x - 1}{x + 2}$$
$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}}$$

$$f(x) = \frac{1}{x+2}$$

$$g(x) = \frac{2x+3}{5x-7}$$

$$x \neq -2$$
$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$2(2x + 3) = 5x - 7 = \frac{4x + 6 - (5x - 7)}{4x + 6 - (5x - 7)}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{-\left(\frac{5x-7}{5x-7}\right)}{\frac{2x+3}{5x-7} + 2}$$
$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{5x-7}{5x-7}} = \frac{-x+13}{12x-11}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$2(2x + 3) = 5x - 7 \qquad 4x + 6 - (5x - 7)$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{5x-7}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}} = \frac{-x+13}{12x-11} \mid x \neq ?$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$\begin{vmatrix} \frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7} - \frac{2x+3}{5x-7} + 2 \end{vmatrix}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}} = \frac{-x+13}{12x-11} \begin{vmatrix} x \neq \frac{11}{12}, \frac{7}{5} \end{vmatrix}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{5x-7}{5x-7}\right) = \frac{\frac{2x+3}{5x-7} + 2}{\frac{2x+3}{5x-7} - \frac{5x-7}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}} = \frac{-x+13}{12x-11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$x \neq -2$$

$$x \neq \frac{7}{5}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}} = \frac{-x+13}{12x-11} \mid \mathbf{x} \neq \frac{11}{12}, \frac{7}{5}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x))$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right)$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

Give simplified f-las for  $f \circ g$ ,  $f \circ f$ ,  $g \circ f$ ,  $g \circ g$ . Find the implied domains.

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= ?$$

Todor Milev Lecture 21 2020

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 2}$$

$$f(x) = \frac{x}{x+2}$$

$$g(x) = \frac{2x+3}{5x-7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x+3}{5x-7}\right) = \frac{2\left(\frac{2x+3}{5x-7}\right) - 1}{\frac{2x+3}{5x-7} + 2}$$

$$= \frac{\frac{2(2x+3)}{5x-7} - \frac{5x-7}{5x-7}}{\frac{2x+3}{5x-7} + \frac{2(5x-7)}{5x-7}} = \frac{\frac{4x+6-(5x-7)}{5x-7}}{\frac{2x+3+(10x-14)}{5x-7}} = \frac{-x+13}{12x-11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x-1}{x+2}\right) = \frac{2\left(\frac{2x-1}{x+2}\right) - 1}{\frac{2x-1}{x+2} + 2}$$

$$= \frac{3x-4}{4x+3}$$

$$| \quad x \neq \frac{?}{5}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 3}$$

$$| \quad x \neq -2, -\frac{3}{4} = \frac{3x - 4}{4x - 3}$$

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 3}$$

$$x \neq -2, -\frac{3}{4}$$

$$f(x) = \frac{2x - 1}{\frac{x + 2}{5}}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 3}$$

$$| \quad x \neq -2, -\frac{3}{4} = \frac{3x - 4}{4x - 3}$$

Give simplified f-las for  $f \circ g$ ,  $f \circ f$ ,  $g \circ f$ ,  $g \circ g$ . Find the implied domains.

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7} + \frac{2(5x - 7)}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x-1}{x+2}\right) = \frac{2\left(\frac{2x-1}{x+2}\right) - 1}{\frac{2x-1}{x+2} + 2}$$
$$= \frac{3x-4}{4x+3}$$
$$(g \circ f)(x) = ?$$

 $x \neq ?$ 

 $x \neq -2, -\frac{3}{4}$ 

$$(g \circ g)(x) = ?$$

 $x \neq ?$ 

Give simplified f-las for  $f \circ g$ ,  $f \circ f$ ,  $g \circ f$ ,  $g \circ g$ . Find the implied domains.

$$f(x) = \frac{2x - 1}{x + 2}$$

$$g(x) = \frac{2x + 3}{5x - 7}$$

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{2x + 3}{5x - 7}\right) = \frac{2\left(\frac{2x + 3}{5x - 7}\right) - 1}{\frac{2x + 3}{5x - 7} + 2}$$

$$= \frac{\frac{2(2x + 3)}{5x - 7} - \frac{5x - 7}{5x - 7}}{\frac{2x + 3}{5x - 7}} = \frac{\frac{4x + 6 - (5x - 7)}{5x - 7}}{\frac{2x + 3 + (10x - 14)}{5x - 7}} = \frac{-x + 13}{12x - 11} \quad | \quad x \neq \frac{11}{12}, \frac{7}{5}$$

$$(f \circ f)(x) = f(f(x)) = f\left(\frac{2x - 1}{x + 2}\right) = \frac{2\left(\frac{2x - 1}{x + 2}\right) - 1}{\frac{2x - 1}{x + 2} + 2}$$

$$= \frac{3x - 4}{4x + 3}$$

$$(g \circ f)(x) = \frac{3x - 4}{3x - 19}$$

$$(g \circ g)(x) = \frac{19x - 15}{3x - 19}$$

$$(g \circ g)(x) = \frac{19x - 15}{2x - 15}$$

$$(g \circ g)(x) = \frac{19x - 15}{2x - 15}$$

$$(g \circ g)(x) = \frac{19x - 15}{2x - 14}$$



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?





- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

f(x) + c Shift the graph of f(x) c units up. f(x) - c f(x - c)



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up. Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$ 



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up. Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$ 



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down. Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down. Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up.  $f(x) - c$  Shift the graph of  $f(x)$   $c$  units down.  $f(x - c)$  Shift the graph of  $f(x)$ ?



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
  
 $f(x) - c$ 

Shift the graph of f(x) c units up.

Shift the graph of f(x) c units down. Shift the graph of f(x) c units right.

$$f(x +$$

Todor Milev



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
 Shift the graph of  $f(x)$   $c$  units up. Shift the graph of  $f(x)$   $c$  units down. Shift the graph of  $f(x)$   $c$  units right  $f(x + c)$  Shift the graph of  $f(x)$   $c$  units left.



- What happens to the graph if we add/subtract a positive constant c in the equation of a function f?
- What happens if we add or subtract c from x before applying the function f?

$$f(x) + c$$
  
 $f(x) - c$ 

Shift the graph of f(x) c units up. Shift the graph of f(x) c units down.

f(x-c) Shift the graph of f(x) c units right.

f(x+c) Shift the graph of f(x) c units left.

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^2 + 6x + 10$$

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^2 + 6x + 10 = (x^2 + 6x + ?) + 10 - ?$$

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^2 + 6x + 10$$
  
=  $(x^2 + 6x + 9) + 10 - 9$ 

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^2 + 6x + 10$$
  
=  $(x^2 + 6x + 9) + 10 - 9$   
=  $(x+3)^2 + 1$ 

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

$$= (x + 3)^{2} + 1$$

$$= (x - (-3))^{2} + 1$$

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

$$= (x + 3)^{2} + 1$$

$$= (x - (-3))^{2} + 1$$

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

$$= (x + 3)^{2} + 1$$

$$= (x - (-3))^{2} + 1$$

Relative to the graph of  $f(x) = x^2$ , draw a graph of  $f(x) = x^2 + 6x + 10$ . Assume the graph of  $f(x) = x^2$  given.



$$f(x) = x^{2} + 6x + 10$$

$$= (x^{2} + 6x + 9) + 10 - 9$$

$$= (x + 3)^{2} + 1$$

$$= (x - (-3))^{2} + 1$$



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x by -1 before applying f?



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x by -1 before applying f?



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x by -1 before applying f?

Stretch the graph of f(x) vertically by a factor of c.



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x by -1 before applying f?

$$cf(x)$$

$$\frac{1}{c}f(x)$$

$$-f(x)$$

$$f(-x)$$

Stretch the graph of f(x) vertically by a factor of c.

Compress the graph of f(x) vertically by a factor of c.



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by −1?
- What happens if we multiply x by −1 before applying f?

cf(x)  $\frac{1}{c}f(x)$  -f(x)

Stretch the graph of f(x) vertically by a factor of c. Compress the graph of f(x) vertically by a factor of c. Reflect the graph of f(x) in the x-axis.

f(-x)

Todor Milev Lecture 21 2020



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x
   by −1 before applying f?

cf(x)  $\frac{1}{c}f(x)$  -f(x)

Stretch the graph of f(x) vertically by a factor of c.

Compress the graph of f(x) vertically by a factor of c.

Reflect the graph of f(x) in the x-axis.

Reflect the graph of f(x) in the *y*-axis.



- What happens if we multiply or divide by a constant c > 1 in the equation of a function f?
- What happens if we multiply f by -1?
- What happens if we multiply x by −1 before applying f?

| cf(x)             | Stretch the graph of $f(x)$ vertically by a factor of $c$ .  |
|-------------------|--------------------------------------------------------------|
| $\frac{1}{c}f(x)$ | Compress the graph of $f(x)$ vertically by a factor of $c$ . |
| -f(x)             | Reflect the graph of $f(x)$ in the x-axis.                   |
| f(-x)             | Reflect the graph of $f(x)$ in the y-axis.                   |



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

```
\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}
```



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?





- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

```
\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}
```



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

$$\begin{array}{c|c}
f(cx) & ? \\
f\left(\frac{1}{c}x\right)
\end{array}$$



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?





- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?





- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?

f(cx) Compress the graph of f(x) horizontally by a factor of c.  $f\left(\frac{1}{c}x\right)$ 



- What happens if we multiply x by const. c > 1 before applying f?
- What happens if we divide x by const. c > 1 before applying f?
- f(cx) Compress the graph of f(x) horizontally by a factor of c.  $f\left(\frac{1}{c}x\right)$  Stretch the graph of f(x) horizontally by a factor of c.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the x-axis remains the same; the part below the x-axis is reflected about the x-axis.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

## Example

Draw the graph of the function  $f(x) = |x^2 - 1|$ .



$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

## Example

Draw the graph of the function  $f(x) = |x^2 - 1|$ .



• Draw the graph of  $f(x) = x^2 - 1$ .

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

## Example

Draw the graph of the function  $f(x) = |x^2 - 1|$ .



- Draw the graph of  $f(x) = x^2 1$ .
- Identify the part(s) below the x-axis.

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0 \\ -f(x) & \text{if } f(x) < 0 \end{cases}$$

This tells us how to draw the graph of y = |f(x)|: the part of the graph above the *x*-axis remains the same; the part below the *x*-axis is reflected about the *x*-axis.

## Example

Draw the graph of the function  $f(x) = |x^2 - 1|$ .



- Draw the graph of  $f(x) = x^2 1$ .
- Identify the part(s) below the *x*-axis.
- Flip those parts over the *x*-axis.