Stabla odluke

- Upotreba u klasifikaciji ili regresiji
- Obuka
 - Izbor obeležja
 - Izbor skupa pitanja
 - Kombinovanje obeležja
 - Izbor kriterijuma za podelu čvora
 - Izbor kriterijuma za određivanje veličine stabla
- Računarska kompleksnost
- Prednosti i mane
- Ansambalsko učenje na primeru stabala odluke

Stabla odluke

 Metoda ranog nadgledanog učenja koja se može koristiti i za klasifikaciju i za regresiju

Primer formiranog klasifikacionog stabla za predviđanje da li je pacijent visokog rizika od srčanog udara

- formiranje stabla predstavlja **obuku**
- obučava se na bazi
 pacijenata za koje je
 poznato da li su u
 narednih godinu dana
 dana imali srčani udar

U opštem slučaju ova klasifikacija ne mora biti binarna

Stabla odluke

- Obeležja u stablu odluke mogu biti numerička, ali i kategorička
 (da li uzorak pripada određenoj klasi tih klasa može biti i više od 2)
- Proces obuke zasniva se na izboru pitanja koja u datom momentu na "najlogičniji" način dele skup uzoraka koji se posmatra
 - Svako pitanje deli skup posmatranih uzoraka na dva podskupa, zavisno od odgovora (DA/NE)

Obuka stabla odluke

- Za obuku je potrebno prvo ustanoviti standardan skup pitanja:
 - Za svako numeričko obeležje definisati relevantan skup pitanja na osnovu određenih pragova vrednosti npr. ako pacijenti u bazi za obuku imaju vrednosti godišta između 18 i 90, standardan skup pitanja za ovo obeležje bio bi (npr.):
 - Da li je pacijent stariji od 18.5 godina?
 - Da li je pacijent stariji od 19.5 godina?

...

- Da li je pacijent stariji od 89.5 godina?
- Za svako kategoričko obeležje definisati skup pitanja koji se zasniva na mogućim particijama u skupu kategorija npr, ukoliko postoje kategorije A, B, C i D, standardan skup pitanja za ovo obeležje mogao bi biti:
 - Da li je kategorija A?
 Da li je kategorija A ili B?
 - Da li je kategorija B?
 Da li je kategorija A ili C?
 - Da li je kategorija C? Da li je kategorija A ili D?
 - Da li je kategorija D?

(Pitanje "da li je kategorija C ili D?" nije potrebno jer postoji pitanje "da li je A ili B?")

U osnovnoj verziji standardnog skupa nema kombinovanja obeležja

Obuka stabla odluke

 Prvi korak obuke je odrediti pitanje koje će rastaviti početni skup uzoraka (korenski čvor stabla) na dva što "čistija" podskupa (čvora-potomka)

Da li je minimalni sistolički pritisak u inicijalnom periodu od 24 sata iznad 91?

Da li je pacijent ženskog pola?

- Od ova dva pitanja mnogo korisnije je prvo jer deli uzorke tako da su u čvorovima-potomcima zastupljeni u velikoj meri pripadnici iste klase
- U svakom koraku identifikuje se pitanje koje prema određenoj objektivnoj meri uspešnosti podele najuspešnije deli čvor na dva potomka i formiraju se odgovarajući čvorovi potomci, a zatim se postupak rekurzivno nastavlja

Geometrijska interpretacija obuke

 Obuka zapravo predstavlja podelu prostora na višedimenzionalne pravougaonike (ako su sve promenljive numeričke)

- U naprednijim varijantama, gde je dozvoljeno kombinovanje pojedinih obeležja, linije razgraničenja ne moraju biti paralelne osama x_i
 - □ Bolje se uočavaju veze između obeležja, dobija se kompaktnije stablo
 - Međutim, u tom slučaju skup pitanja koja treba razmotriti drastično raste,
 što usporava ionako računarski zahtevnu obuku

Pitanja na koja treba dati odgovor

- Kako definisati objektivnu meru uspešnosti podele?
 - Usvajaju se mere koje se zasnivaju na proceni smanjenja ukupne nečistoće čvorova potomaka u odnosu na nečistoću čvora čijom su podelom nastali
- Kada prestati s podelama na manje čvorove?
 - Ako se ne prestane na vreme doći će do natprilagođenja
 - Treba prestati kada broj pripadnika čvora padne ispod određenog praga, ili (još bolje), razgranati stablo do samog kraja, a zatim izvršiti "potkresivanje" (eng. pruning) spajanjem najsličnijih čvorova
 - Optimalna veličina stabla može se odrediti procenom na nezavisnom skupu, ali se u praksi češće radi unakrsna validacija
- Kako dodeliti klase (ili izlazne vrednosti) terminalnim čvorovima
 - Prema većinskom principu (a u slučaju regresionih stabala svakom terminalnom čvoru dodeljuje se izlazna vrednost koja je jednaka proseku ili medijanu izlaznih vrednosti uzoraka koji se u tom čvoru našli)

Podela čvora u slučaju klasifikacije

- Mera nečistoće čvora je izmešanost pripadnika raznih klasa u istom čvoru
- Ako ima K klasa, meru nečistoće čvora t treba uvesti kao funkciju koja zavisi od P(1|t), P(2|t),... P(K|t)) i pri tom:
 - ima minimum jednak 0 kada je jedna od njih jednaka 1

- Konkretno, kao mera nečistoće često se koriste:
 - Ginijev indeks diverziteta $i(t) = \sum_{i \neq j} P(i \mid t) P(j \mid t) = 1 \sum_{j} P^{2}(j \mid t)$

□ Entropija $i(t) = -\sum_{j} P(j|t) \log P(j|t)$

ali izbor mere iznenađujuće malo utiče na tačnost formiranog stabla!

- Uspešnost podele ogleda se u smanjenju nečistoće
- Ako je pre podele čvor imao meru nečistoće i(t), a posle podele $p_L i(t_L) + p_R i(t_R)$, pri čemu $p_L + p_R = 1$, bira se pitanje koje maksimizuje smanjenje nečistoće

Računarska kompleksnost

- Obuka je generalno vrlo složena jer za svako moguće pitanje treba izračunati smanjenje nečistoće do kog bi odgovarajuća podela dovela
- Šta ako u čvoru ima veoma velik broj uzoraka?
 - Ne mora se optimalna podela čvora naći na osnovu svih uzoraka, već na osnovu slučajnog podskupa određene veličine
 - Kad se optimalno pitanje nađe, ceo čvor se podeli po tom kriterijumu
- Ako se dozvoli kombinovanje obeležja, kompleksnost obuke se dodatno povećava, ali čak i u tom slučaju postoje efikasni algoritmi za nalaženje potencijalno najkorisnijih kombinacija

- Primera radi, ako su varijable kategoričke, bilo bi zanimljivo pitati i npr. "Da li A ili (B i ne C)"
- Obeležja se mogu formirati ili kombinovati i ručno, na osnovu ekspertskog znanja
- Uprkos složenosti obuke, stabla odluke su ekstremno brza u fazi eksploatacije (kao klasifikatori ili regresori)

Prednosti i mane stabala odluke

- Jednostavnost u osnovnoj verziji algoritma treba specificirati samo :
 - Obeležja (time je automatski definisan skup pitanja)
 - Kriterijum za podelu čvora
 - Kriterijum za izbor veličine stabla
- Dobijeni klasifikator/regresor je:
 - Nezavisan od tipa podataka
 - Kompaktan i brz
 - Vrlo lak za interpretaciju
 - Invarijantan na monotonu transformaciju bilo koje koordinate
 - Veoma robustan na besmislena obeležja ili besmislena pitanja
 - Besmisleno pitanje verovatno nikada neće biti identifikovano kao najuspešnije, pa je situacija ista kao i da ono ne postoji
 - Veoma robustan na uzorke koji značajno odstupaju od populacije
- Međutim, dolazi do fragmentacije podataka, što je značajan nedostatak
 - □ Podaci koji završe u nekom podstablu postaju nevidljivi i irelevantni za ostatak stabla

Slučajna šuma

- Skup stabala odluke kreiranih na podskupovima polaznog skupa za obuku (primer ansambalskog učenja, čija je ideja da odluku zajednički donese veći broj jednostavnijih klasifikatora ili regresora)
 - Konačna odluka se, kao i u slučaju pojedinačnog stabla odluke, donosi:
 - većinski, u slučaju klasifikacije
 - računanjem prosečne vrednosti (ili medijana) izlaza, u slučaju regresije
 - Ovo je naročito efikasno ako je skup za obuku veoma velik
 - Podskupovi za obuku kreiraju se pomoću bootstrap metode, i obično svaki podskup na kraju sadrži oko 2/3 jedinstvenih uzoraka iz polaznog skupa za obuku (sa ponavljanjem), a neviđeni uzorci čine preostalih oko 1/3
 - Nije dozvoljeno svim stablima da koriste sva obeležja već samo nasumično odabrani podskup polaznih obeležja (s ciljem da se stabla dekorelišu)
- Slučajna šuma predstavlja primer tzv. bagging (eng. bootstrap aggregation) pristupa, a postoje i boosting pristupi, kod kojih se stabla formiraju jedno za drugim, pri čemu svako stablo nastoji da ispravi greške prethodnih