Examenul de bacalaureat national 2016 Proba E. d) Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore. A. MECANICA

Varianta 10

Se consideră accelerația gravitațională $g = 10 \,\mathrm{m/s}^2$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, vectorul accelerație medie este definit prin expresia:
- **a.** $\vec{a}_m = \Delta \vec{v} \cdot \Delta t$
- **b.** $\vec{a}_m = \frac{\Delta \vec{v}}{\Delta t}$ **c.** $\vec{a}_m = \frac{\vec{v}}{\Delta t}$
- (3p)
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimată prin raportul $\frac{m \cdot a \cdot d}{\Delta t}$ este:
- a. J

- d. W (3p)
- 3. Un automobil, cu masa m=1t, frânează de la viteza iniţială $v_1=36\,\mathrm{km/h}$, până la viteza finală $v_2 = 5$ m/s. Variaţia energiei cinetice a automobilului, în acest proces, este:
- **a.** -37500 J
- **b.** -635,5 J
- **c.** 0 J
- **d.** 37500 J
- (3p)

(3p)

- 4. Cablul unei macarale este alcătuit din 3 fire din oțel împletite, având fiecare modulul de elasticitate $E = 14 \cdot 10^{10} \, \text{N/m}^2$, lungimea iniţială $\ell_0 = 7 \, \text{m}$ şi secţiunea transversală $S_0 = 5 \, \text{cm}^2$. Constanta elastică a cablului este:
- **a.** $1,4 \cdot 10^{-7} \text{ N/m}$
- **b.** $1.4 \cdot 10^7 \,\text{N/m}$ **c.** $3 \cdot 10^7 \,\text{N/m}$ **d.** $3 \cdot 10^{11} \,\text{N/m}$
- 5. Un corp este ridicat uniform de-a lungul unui plan înclinat care formează unghiul α cu orizontala. Coeficientul de frecare la alunecare dintre corp și planul înclinat fiind μ , randamentul planului înclinat poate fi exprimat prin relația:
- $\frac{1}{1 + \mu \cdot ctg\alpha}$
- c. $\frac{\cos \alpha}{1 + \mu \cdot \sin \alpha}$ d. $\frac{tg\alpha}{\mu + tg\alpha}$
 - (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

O săniuță cu masa m = 5 kg este tractată pe o suprafață orizontală sub acțiunea unei forțe de tracțiune F_t , paralelă cu suprafața în intervalul de timp $t \in (0s; 40s)$. Coeficientul de

frecare la alunecare este $\mu = 0.25$, iar viteza saniei variază în timp conform graficului alăturat.

- a. Determinați accelerația saniei în primele 10 s ale mișcării.
- b. Determinați distanța totală parcursă de sanie în intervalul de timp $t \in (0s; 50s)$.
- **c.** Calculați valoarea forței de tracțiune în intervalul de timp $t \in (10s; 40s)$.
- d. În ultimele 10s ale mişcării forța de tracțiune formează cu orizontala unghiul $\alpha = 53^{\circ} (\sin \alpha = 0.8)$, deasupra acesteia, ca în figura alăturată. Calculați valoarea forței de tracțiune în intervalul de timp $t \in (40s;50s)$.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un elev aflat într-un turn, la înălțimea $h = 20 \,\mathrm{m}$ față de sol, aruncă vertical în sus, cu viteza $v_0 = 10 \,\mathrm{m/s}$, un corp de dimensiuni mici, având masa $m = 0.2 \,\mathrm{kg}$. Se neglijează interacțiunea corpului cu aerul, iar energia potențială gravitațională a sistemului corp-Pământ se consideră nulă la nivelul solului. Calculați:

- a. energia cinetică a corpului în momentul aruncării acestuia;
- b. lucrul mecanic efectuat de greutatea corpului din momentul aruncării acestuia și până la atingerea solului;
- **c.** energia potențială gravitațională în momentul în care viteza corpului are valoarea $v_1 = 20 \text{m/s}$;
- **d.** variația impulsului corpului din momentul aruncării și până la atingerea vitezei v_1 .

Examenul de bacalaureat naţional 2016 Proba E. d)

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Varianta 10

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \, \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

- 1. Într-un cilindru prevăzut cu un piston mobil este închisă o cantitate de gaz ideal izolat adiabatic de mediul exterior. Se poate afirma că, în decursul unei destinderi:
- a. gazul primeşte căldură
- b. gazul cedează căldură mediului exterior
- c. gazul nu schimbă căldură cu mediul exterior
- d. energia internă a gazului nu se modifică.

(3p)

- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia căldurii specifice a unei substanțe este:
- **b.** $\frac{Q}{V \cdot \Delta T}$
- (3p)
- 3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii fizice exprimate prin produsul $v C_v \Delta T$ este:
- a mol

c. K

- d. °C
- (3p)
- 4. Un motor termic ideal funcționează după un ciclu Carnot. Temperatura sursei calde este 400 K, iar temperatura sursei reci 300 K. Randamentul motorului termic este egal cu:
- **a.** 10 %
- **b.** 25 %
- **c.** 50%
- **d.** 75%
- (3p)
- 5. În figura alăturată este reprezentată dependența presiunii unei cantități date de gaz ideal de volumul ocupat de acesta. Presiunea gazului în starea de echilibru termodinamic B este egală cu:
- **a.** 4 · 10⁵ Pa
- **b.** 6 · 10⁵ Pa
- **c.** 8 · 10⁵ Pa

d. 16·10⁵ Pa. (3p) II. Rezolvati următoarea problemă:

Într-o butelie se află o cantitate v_{O_2} = 1 mol de oxigen $(\mu_{O_2}$ = 32 g/mol). În starea iniţială 1 gazul se află la presiunea $p_1 = 10^5$ Pa și temperatura $t_1 = 27^{\circ}$ C. Gazul este încălzit până în starea 2 în care $T_2 = 2T_1$. O altă butelie, având acelaşi volum ca şi prima, conţine o masă m_{He} = 12 g de heliu, $(\mu_{He}$ = 4 g/mol) aflat la temperatura T_2 . După încălzirea oxigenului, cele două butelii sunt puse în legătură prin intermediul unui tub de volum neglijabil. Ambele gaze pot fi considerate ideale. Determinați:

- a. presiunea oxigenului în starea 2;
- b. numărul de atomi de heliu din cea de-a doua butelie înainte ca aceasta să fie pusă în legătură cu prima butelie:
- c. presiunea amestecului obținut după punerea în legătură a celor două butelii;
- d. masa molară a amestecului obţinut.

III. Rezolvaţi următoarea problemă:

O cantitate v = 1 mol de gaz ideal monoatomic $(C_V = 1,5R)$ evoluează după ciclul termodinamic reprezentat în coordonate p-T în graficul alăturat. Se cunoaște

- b. Calculati lucrul mecanic total schimbat de gaz cu mediul exterior în decursul
- c. Determinati căldura cedată de gaz mediului exterior în decursul unui ciclu.
- d. Determinați randamentul unui motor termic ce ar funcționa după ciclul descris.

(15 puncte)

(15 puncte) *∱p* [10⁵Pa] 3 *T* [K] 300 900

Examenul de bacalaureat naţional 2016 Proba E. d)

Proba scrisă la FIZICĂ

- Filiera teoretică profilul real, Filiera vocaţională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Varianta 10

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Sensul convenţional al curentului electric într-un circuit simplu este:
- a. de la borna "-" la borna "+" în circuitul exterior
 b. de la borna "-" la borna "+" în circuitul interior
 c. de la borna "+" la borna "-" în circuitul interior

- d. același cu sensul deplasării electronilor în circuit.

(3p)

- 2. O baterie este alcătuită prin gruparea în paralel a trei generatoare electrice identice. Tensiunea electromotoare a unui generator are valoarea $E = 12 \,\mathrm{V}$, iar rezistența interioară a acestuia $r = 3 \,\Omega$. Tensiunea electromotoare și rezistența interioară a bateriei au valorile:
- **a.** 12 V; 1Ω
- **b**. 12 V; 3Ω
- **c**. 3 V; 1Ω
- **d.** $3V; 3\Omega$

(3p)

3. Unitatea de măsură în S.I. a rezistivității electrice poate fi scrisă sub forma:

a.
$$J \cdot m^{-2} \cdot A^{-2} \cdot s^2$$

b.
$$J \cdot m^2 \cdot A^{-1} \cdot s$$

d.
$$J \cdot m \cdot A^{-2} \cdot s^{-1}$$

(3p)

4. O generator disipă pe un rezistor de rezistență electrică R puterea maximă pe care o poate transmite circuitului exterior. Între rezistența interioară r a sursei și rezistența electrică R există relația:

a.
$$R = 4r$$

b.
$$R = 2r$$

c.
$$R = r$$

d.
$$R = 0.5r$$

(3p)

5. În figura alăturată sunt reprezentate grafic caracteristicile curent-tensiune pentru trei rezistoare diferite. Între valorile rezistențelor electrice ale celor trei rezistoare există relaţia:

b.
$$R_2 < R_1 < R_3$$

c.
$$R_3 < R_2 < R_1$$

d.
$$R_1 < R_3 < R_2$$

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit electric. Tensiunea electromotoare a bateriei este E = 50 V, iar rezistența interioară a acesteia este $r = 5 \Omega$. Tensiunea dintre punctele A şi B este $U_{AB} = 30 \text{ V}$, iar intensitatea curentului indicat de ampermetrul ideal $(R_A \cong 0 \Omega)$ este I = 2 A. Cunoscând că $R_3 = 20 \Omega$ determinați:

- a. tensiunea la bornele bateriei;
- **b.** rezistenţa electrică a rezistorului R_1 ;
- **c.** rezistenţa electrică a rezistorului R_2 ;
- **d.** indicația unui ampermetru având rezistența interioară $R_A = 10 \Omega$ conectat în locul ampermetrului ideal.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Două rezistoare, cu rezistențele electrice R_1 și R_2 , sunt conectate în serie la bornele unui generator electric cu tensiunea electromotoare $E=12\,\mathrm{V}$ și rezistență interioară nenulă. În intervalul de timp $\Delta t=2\,\mathrm{min}$ energia disipată în cele două rezistoare este W = 1,44 kJ, distribuindu-se astfel: o fracțiune f = 25% în rezistorul R_1 , iar restul în rezistorul R_2 . Tensiunea la bornele rezistorului R_1 are valoarea U_1 = 1,5 V .

- a. puterea disipată pe circuitul exterior;
- **b.** valoarea rezistenței electrice a rezistorului R_1 ;
- c. rezistența electrică echivalentă a grupării rezistoarelor;
- d. randamentul de transfer al energiei de la sursă la cele două rezistoare.

Examenul de bacalaureat national 2016 Proba E. d)

Proba scrisă la FIZICĂ

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDUCINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

D. OPTICA Varianta 10

Se consideră: viteza luminii în vid $c = 3 \cdot 10^8 \, \text{m/s}$, constanta Planck $h = 6.6 \cdot 10^{-34} \, \text{J} \cdot \text{s}$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)

1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură a mărimii fizice exprimate prin produsul $h \cdot (v - c \cdot \lambda_0^{-1})$ este:

(3p)

2. În graficul alăturat este reprezentată dependența sinusului unghiului de refracție $(\sin r)$ de sinusul unghiului de incidență $(\sin i)$ la trecerea luminii $\frac{5}{2}$ dintr-un mediu optic transparent 1 într-un mediu optic transparent 2. Valoarea indicelui de refracție relativ al mediului 2 față de mediul 1 este:

3. O radiaţie electromagnetică cu frecvenţa $v = 10^{15} \text{Hz}$ iradiază suprafaţa unui metal. Dacă energia cinetică a fotoelectronilor extraşi este $E_c = 1,5\,\text{eV}$, iar 1 eV = 1,6·10⁻¹⁹ J, atunci lucrul mecanic de extracţie specific metalului este aproximativ egal cu:

a. $1.5 \cdot 10^{-19}$ J

- **b.** $2.4 \cdot 10^{-19} \text{ J}$
- **c.** $4.2 \cdot 10^{-19}$ J
- **d.** $6.6 \cdot 10^{-19} \text{ J}$
- 4. Un obiect este așezat în fața unui sistem optic format din trei lentile subțiri alipite. Relația corectă între mărirea liniară transversală β dată de sistemul de lentile și măririle liniare transversale β_1 , β_2 și β_3 date de fiecare dintre cele trei lentile este:

- **a.** $\beta = \beta_1 + \beta_2 + \beta_3$ **b.** $\beta = \beta_1 \cdot \beta_2 \cdot \beta_3$ **c.** $\beta = \frac{\beta_1 + \beta_2 + \beta_3}{3}$ **d.** $\beta = \sqrt[3]{\beta_1 \cdot \beta_2 \cdot \beta_3}$
 - (3p)
- 5. Un obiect este așezat în fața unui sistem optic, perpendicular pe axa optică principală. Mărirea liniară transversală este $\beta = -2$. Imaginea este:
- a. dreaptă si de două ori mai mică decât obiectul
- b. dreaptă și de două ori mai mare decât obiectul
- c. răsturnată și de două ori mai mică decât obiectul
- d. răsturnată si de două ori mai mare decât obiectul.

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

- O lentilă subțire divergentă (L_1) are modulul distanței focale $|f_1| = 20 \,\mathrm{cm}$. La distanța de 60 cm în fața ei se aşază, perpendicular pe axa optică principală, un obiect luminos cu înălţimea de 4cm.
- **a.** Realizați un desen în care să evidențiați construcția grafică a imaginii prin lentila L_1 .
- b. Calculați înălțimea imaginii.
- ${f c.}$ Se formează un sistem optic centrat alipind primei lentile (L_1) o altă lentilă subțire, convergentă (L_2) , având convergența $C_2 = 2 \, \mathrm{m}^{\text{-1}}$. Determinați convergența echivalentă a sistemului optic format.
- ${f d}.$ Se depărtează una de alta cele două lentile L_1 și L_2 până când se constată că orice rază care intră în sistemul optic paralel cu axa optică principală, iese din sistem tot paralel cu axa optică principală. Calculați distanța dintre lentile.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un dispozitiv Young are distanţa între cele doua fante $2\ell = 2 \, \text{mm}$, iar distanţa de la planul fantelor la un ecran așezat paralel cu planul fantelor este D = 80 cm. Se iluminează fantele cu radiație monocromatică cu $\lambda = 625$ nm provenită de la o sursă plasată pe axa de simetrie a sistemului.

- a. Calculați valoarea interfranjei.
- **b.** Ecranul se poziționează la distanța D' = 240 cm față de planul fantelor. Calculați variația relativă a interfranjei.
- **c.** Se umple spaţiul dintre fante şi ecran cu apă. Indicele de refracție al apei este $n_a = \frac{4}{3}$. Calculați valoarea vitezei luminii în apă.
- d. Distanta dintre planul fantelor si ecran rămâne cea stabilită la punctul b. Calculati valoarea interfranjei după introducerea apei în spațiul dintre fante și ecran.