Modelo posibilista: Objetivos

- Intentamos representar la imprecisión del lenguaje
- Los expertos expresan su conocimiento como apreciaciones cualitativas
- Dos elementos:
 - Variables definidas sobre un dominio (Universo del discurso)
 - Conjuntos de términos cualitativos sobre las variables (etiquetas lingüísticas)
- Por ejemplo: "La temperatura es alta"

Conjuntos difusos

- Una etiqueta lingüística no representa un conjunto en el sentido clásico
- Dependiendo del valor concreto, la creencia en la pertenecia al conjunto varía (difícil determinar la frontera)
- Los conjuntos difusos representan la pertenencia como un valor continuo
- Podemos usar ese concepto para modelar la imprecisión del lenguaje

Conjuntos difusos/Lógica difusa

- La lógica posibilista se basa en la teoría de los conjuntos difusos (lógica difusa)
- Una etiqueta lingüística se identifica con un conjunto difuso
- Los conjuntos difusos se definen a partir de su función característica $(\mu_A : \mathcal{U} \longrightarrow [0,1])$
- Cada conjunto difuso relaciona un valor de un dominio con un grado de pertenencia a traves de la función de posibilidad $(\pi_A : \mathcal{U} \longrightarrow [0,1])$
- En la práctica consideraremos que $\mu_A = \pi_A$

Hechos difusos

- El conocimiento sobre el dominio lo expresaremos mediante hechos difusos
- Siendo X la variable en un dominio $\mathcal U$ y A un conjunto difuso definido sobre $\mathcal U$, podremos decir [X es A]
- Por ejemplo: [La temperatura es agradable], [La temperatura es fría]

Conectivas difusas

- complejas utilizaremos las conectivas de la lógica difusa
- Éstas son una extensión contínua de las conectivas de la lógica clásica
- Combinarán los valores de posibilidad de los hechos para dar el valor de posibilidad de la combinación
- Utilizaremos tres conectivas: conjunción, disyunción y negación

Para poder combinar hechos difusos y crear expresiones más

Conjunción Difusa: T-norma

La función que calcula la conjunción se denomina T-norma, se define como $T(x,y):[0,1]\times[0,1]\to[0,1]$ y ha de satisfacer las propiedades:

- Conmutativa, T(a,b) = T(b,a)
- ② Asociativa, T(a, T(b, c)) = T(T(a, b), c)
- T(0, a) = 0
- (1, a) = a
- **③** Es una función creciente, $T(a,b) \leq T(c,d)$ si $a \leq c$ y $b \leq d$

Por ejemplo

- T(x,y) = m(x,y)
- $T(x,y) = x \cdot y$
- $T(x, y) = \max(0, x + y 1)$

Disyunción Difusa

La función que calcula la disyunción se denomina T-conorma, se define como $T(x,y):[0,1]\times[0,1]\to[0,1]$ y ha de satisfacer las propiedades:

- Conmutativa, S(a, b) = S(b, a)
- ② Asociativa, S(a, S(b, c)) = S(S(a, b), c)
- (0, a) = a
- (1, a) = 1
- ullet Es una función creciente, $S(a,b) \leq S(c,d)$ si $a \leq c$ y $b \leq d$

Por ejemplo:

- $S(x,y) = \max(x,y)$
- $S(x, y) = x + y x \cdot y$
- S(x, y) = m(x + y, 1)

Negación Difusa

La función que permite negar una función de posibilidad es denominada negación fuerte y se define como $N(x):[0,1] \to [0,1]$ y ha de satisfacer las propiedades:

- **1** N((N(a)) = a
- Es una función decreciente, $N(a) \ge N(b)$ si $a \le b$

Ejemplos de funciones que cumplen estas propiedades son:

- N(x) = 1 x
- $N(x) = \sqrt{1 x^2}$
- $N_t(x) = \frac{1-x}{1+t+x}$ t > 1

Combinación difusa

- El resultado de la combinación de hechos difusos es un nuevo conjunto difuso
- Las caracterísiticas de este conjunto dependerán de si la combinación es de hechos que pertenecen al mismo universo de discurso.
- Si todos los hechos pertenecen al mismo universo el nuevo conjunto difuso será una función característica en una dimensión

$$\pi_{A\otimes B}(\mathcal{U}) = f(\pi_A(\mathcal{U}), \pi_B(\mathcal{U}))$$

 Si los hechos pertenecen a diferentes universos la función característica tendrá tantas dimensiones como universos diferentes tengan los hechos

$$\pi_{A\otimes B}(\mathcal{U},\mathcal{V})=f(\pi_A(\mathcal{U}),\pi_B(\mathcal{V}))$$

Hechos difusos de un mismo dominio

25

30

Hechos difusos de un mismo dominio

Hechos difusos de diferentes dominios

Hechos difusos de diferentes dominios

Hechos difusos de diferentes dominios

Inferencia en lógica difusa

- Debemos incluir la implicación como operador de combinación
- Debemos definir la semántica/funcionamiento de la implicación
- Dos escenarios:
 - <u>Razonamiento con datos difusos</u> (definir la función de combinación para la implicación, regla del *modus ponens*)
 - Razonamiento con datos precisos (definir como calcular la posibilidad del antecedente y del consecuente)

Inferencia con datos precisos

Se utilizan dos modelos

- Modelo de inferencia de Mamdani: El consecuente de la regla es un hecho difuso, el resultado será la aplicación del valor de posibilidad del antecedente al consecuente
- Modelo de inferencia de Sugeno: El consecuente de la regla es una función lineal de los valores de posibilidad de los antecedentes, el valor de la función es el resultado del consecuente

Modelo de inferencia de Mamdani

- Evaluación de los antecedentes: Cálculo para todas las reglas del valor de posibilidad de los valores precisos en el antecedente y su combinación.
- **Evaluación de los consecuentes:** Cada consecuente se ponderará según el valor de posibilidad de su antecedente.
- Combinación de las conclusiones: Las conclusiones se combinarán en un conjunto difuso que representa la conclusión conjunta
- Obtención del valor preciso (Nitidificación): Se calcula el valor preciso correspondiente a la etiqueta obtenida (por ejemplo el centro de gravedad del conjunto)

$$CDG(f(x)) = \frac{\int_{a}^{b} f(x) \cdot x dx}{\int_{a}^{b} f(x) dx}$$

Inferencia Difusa: Ejemplo (1)

Supongamos que tenemos dos variables de entrada E1 y E2 y una variable de salida S que pueden tomar valores en los conjuntos siguientes de etiquetas lingüísticas:

- E1={bajo,medio,alto}
- E2={nada,algo,normal,mucho}
- S={cerrar,abrir}

Inferencia Difusa: Ejemplo (2)

Estas etiquetas están descritas mediante los siguientes conjuntos difusos

Inferencia Difusa: Ejemplo (3)

Supongamos que tenemos el siguiente conjunto de reglas:

- R1. si ([E1=medio] o [E1=alto]) y [E2=mucho] entonces [S=cerrar]
- R2. \underline{si} [E1=alto] y [E2=normal] entonces [S=cerrar]
- R3. \underline{si} [E1=bajo] y no([E2=mucho]) entonces [S=abrir]
- R4. \underline{si} ([E1=bajo] o [E1=medio]) y [E2=algo] $\underline{entonces}$ [S=abrir]

Las funciones de combinación son el mínimo para la conjunción, máximo para la disyunción y 1-x para la negación y los valores concretos que tenemos para las variables E1 y E2 son 17.5 y 6.5 respectivamente.

Inferencia Difusa: Ejemplo (4)

Si trasladamos esos valores a los conjuntos difusos de las variables E1 y E2 obtenemos los siguientes valores de posibilidad

Inferencia Difusa: Ejemplo (5)

Si evaluamos la regla R1 tendríamos:

[E1=medio] = 0.75, [E1=alto] = 0, [E2=mucho] = 0.5
$$\Rightarrow$$
 min(max(0.75,0),0.5) = 0.5 Por lo que tenemos 0.5 \cdot [S=cerrar]

Si evaluamos la regla R2 tendríamos:

[E1=alto] = 0, [E2=normal] = 0.5
$$\Rightarrow$$
 min(0,0.5) = 0
Por lo que tenemos 0 · [S=cerrar]

• Si evaluamos la regla R3 tendríamos:

[E1=bajo] = 0.125, [E1=mucho] = 0.5,
$$\Rightarrow$$
 min(0.125,1-0.5) = 0.125 Por lo que tenemos 0.125 · [S=abrir]

Si evaluamos la regla R4 tendríamos:

[E1=bajo] = 0.125, [E1=medio] = 0.75, [E2=algo] = 0
$$\Rightarrow$$
 min(max(0.125,0.75),0) = 0 Por lo que tenemos 0 \cdot [S=abrir]

Inferencia Difusa: Ejemplo (6)

La etiqueta resultante de la combinación de las conclusiones sería:

Inferencia Difusa: Ejemplo (7)

Ahora debemos hallar el centro de gravedad de la etiqueta, ésta se puede describir mediante la función:

$$f(x) = \begin{cases} 0.5 & x \in [0 - 75] \\ (100 - x)/50 & x \in (75 - 93,75] \\ 0.125 & x \in (93,75 - 100] \end{cases}$$

Inferencia Difusa: Ejemplo (8)

Por lo que podemos calcular el CDG como:

$$\frac{\int\limits_{0}^{75} 0.5 \cdot x \cdot dx + \int\limits_{75}^{93,75} (100 - x)/50 \cdot x \cdot dx + \int\limits_{93,75}^{175} 0.125 \cdot x \cdot dx}{\int\limits_{0}^{75} 0.5 \cdot dx + \int\limits_{75}^{93,75} (100 - x)/50 \cdot dx + \int\limits_{93,75}^{175} 0.125 \cdot dx} =$$

$$\frac{0.25 \cdot x^{2}|_{0}^{75} + (x^{2} - x^{3}/150)|_{75}^{93,75} + 0.0625 \cdot x^{2}|_{93,75}^{175}}{0.5 \cdot x|_{0}^{75} + (2 \cdot x - x^{2}/100)|_{75}^{93,75} + 0.125 \cdot x|_{93,75}^{175}} =$$

$$\frac{(0,25 \cdot 75^2 - 0) + ((93,75^2 - 93,75^3/150) - (75^2 - 75^3/150)) + (0,0625 \cdot 175^2 - 0,0625 \cdot 93,75^2/100)}{(0,5 \cdot 75 - 0) + ((2 \cdot 93,75 - 93,75^2/100) - (2 \cdot 75 - 75^2/100)) + (0,125 \cdot 175 - 0,125 \cdot 93,75)}{\frac{3254,39}{53,53}} = 60,79$$