Relatório do 1º projeto de Sistemas Operativos (SO)

Projeto: Monitorização de interfaces de rede em bash.

Grupo: Guilherme Dias (nº 103128)

Tomás Almeida (nº 103300)

Data de entrega: 6 de Dezembro 2021

Docentes: Nuno Lau(TP) e Guilherme Campos(P)

Índice

Introdução	3
Explicação das Opções	4
Explicação do Código	7
Testes	10
Conclusão	12
Bibliografia	13

Introdução

Este trabalho teve como objetivo desenvolvimento de um script em bash que apresenta estatísticas e dados sobre a quantidade de dados transmitidos e recebidos em interfaces de rede selecionadas, e sobre as respectivas taxas de transferência.

O trabalho teve como base o comando "netstat -ie" que nos fornece informações sobre as interfaces de rede do computador, e as estatísticas dos dados recebidos e transmitidos por essas mesmas interfaces desde o início da sessão.

Explicação das opções

O script "netifstat" tem como parâmetro obrigatório o período de tempo em que iremos visualizar os dados.

Apenas inserindo o tempo na execução do script, visualizamos então os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes).

Através de um getopts é então feito o reconhecimento das opções introduzidas ao executar o script.

Opção: -c "regex"

A opção -c requer um argumento obrigatório, sendo este uma expressão regular para filtrar as interfaces de rede a visualizar pelo nome. O programa retornará os nomes das interfaces que cumprem o padrão inserido, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes).

Caso não existam interfaces que satisfaçam a expressão regular, o programa retorna uma mensagem a dizer que não foram encontradas interfaces segundo o padrão introduzido. Caso, ao executar o script com a opção -c, não se indique o padrão, o programa retorna uma mensagem a dizer que não foi passado nenhum padrão regex.

Opção: -b "visualize in bytes"

A opção -b não tem argumentos, o programa retornará a mesma informação de quando não se seleciona nenhuma opção.

Opção: -k "visualize in kilobytes"

A opção -k não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em kilobytes).

Opção: -m "visualize in megabytes"

A opção -m não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em megabytes).

Opção: -p "select number of interfaces"

A opção -p tem como argumento obrigatório o número de interfaces que se deseja visualizar, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates. Apenas se visualizará o número de interfaces que o utilizador deu input, ou seja, se o utilizador passar "-p 2", apenas serão retornados dois interfaces (toda a informação em bytes).

Opção: -t "sort by TX"

A opção -t não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes), apresentando as interfaces por ordem decrescente do TX, desde a que tem o TX maior até à que tem o TX menor.

Opção: -r "sort by RX"

A opção -r não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes), apresentando as interfaces por ordem decrescente do RX, desde a que tem o RX maior até à que tem o RX menor.

Opção: -T "sort by TRATE"

A opção -T não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes), apresentando as interfaces por ordem decrescente do TRATE, desde a que tem o TRATE maior até à que tem o TRATE menor.

Opção: -R "sort by RRATE"

A opção -R não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes), apresentando as interfaces por ordem decrescente do RRATE, desde a que tem o RRATE maior até à que tem o RRATE menor.

Opção: -v "reverse order"

A opção -R não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), e os respectivos rates (toda a informação em bytes), apresentando as interfaces por ordem decrescente do RRATE, desde a que tem o RRATE maior até à que tem o RRATE menor.

Opção: -l "work in loop"

A opção -l não tem argumentos, o programa retornará os nomes das interfaces, os dados recebidos (RX) e transmitidos (TX), os respectivos rates, e o TXTOTAL e RXTOTAL (toda a informação em bytes).

De x em x tempo o script retornará a informação , somando sempre ao TXTOTAL e ao RXTOTAL os valores de TX e RX.

Explicação do código

No começo do script é definida a função "getRules", que será utilizada quando não é inserida nenhuma opção válida, imprimindo assim todas as opções reconhecíveis.

```
getRules(){
    echo " Invalid Option
    -c : regex
    -b : visualize in bytes
    -k : visualize in kylobytes
    -m : visualize in megabytes
    -p : select number of interfaces
    -t : sort by TX
    -r : sort by RX
    -T : sort by TRATE
    -R : sort by RRATE
    -v : reverse order
    -l : work in loop
    "
}
```

Depois da função, são declarados todos os arrays e variáveis que serão utilizados ao longo do script.

De seguida é feita a verificação da introdução do parâmetro "tempo" (time), e o registo na variável "NINTERFACES" o número de interfaces de rede disponíveis.

Se não se verificar a existência da variável tempo, será imprimido no terminal uma mensagem de erro e o programa terminará assim.

```
if ! [[ ${@: -1} =~ $re ]] ; then
    echo "error: No time input" >&2; exit 1
elif [[ ${@: -1} =~ $re ]] && [[ ${@: -2} =~ $p ]] ; then
    echo "error: No time input" >&2; exit 1

else
    time=(${@: -1});
fi

NINTERFACES=$(netstat -i | awk '{print $NF}' | wc -w)-1
NINTERFACES=$(($NINTERFACES - 1)) # numero de interfaces no pc retornadas pelo comando netstat
```

Depois disto é recolhido o TX e o RX de cada interface antes e depois de um "sleep \$time". É calculado e colocado em arrays os nomes, o TX(TX final - TX inicial) e o RX(RX final - RX inicial), e o TRATE ((TX final - TX inicial)/time) e RRATE ((RX final - RX inicial)/time) de cada interface, em bytes. Para obter a informação em kilobytes ou em megabytes foi usado o mesmo método, apenas se utilizou as variáveis "kb" e "mb" para passar os dados de bytes para kilobytes ou megabytes, respectivamente.

É dentro do "getopts" que é realizada a maioria do código. Dependendo da opção introduzida será realizado o cálculo das variáveis de modo diferente, como já foi explicado anteriormente. Em cada opção é realizado o print da tabela formatada, e depois o print dos dados que se querem disponibilizar.

Nas opções de "sort" (-t, -r, -T, -R), usando como exemplo a opção -t, é criado um array onde se colocam as variáveis do array que contém os valores de TX(arrayTXFB), por ordem decrescente, e depois comparando com os valores do "array TXFB", será realizado o print ou não.

Este processo é semelhante para todas as outras opções de "sort".

Na opção de "loop" (-l) é calculada toda a informação em bytes sempre que o ciclo while é iterado, apenas adicionando o campo "TTOTAL" e "RTOTAL", que é a soma dos TX e RX de cada interface ao seu respectivo total, sempre que é realizado um novo loop.

Dificuldade maior: Não conseguimos fazer com que fosse possível introduzir mais do que uma opção de forma funcional.

Testes

Os testes que realizamos ao script foram baseados na execução do programa várias vezes, correndo por vezes no background um speedtest do wifi (de modo a obter valores mais altos nos parâmetros.), alterando as opções introduzidas e tentando verificar se o output era o esperado.

Realizamos estes mesmos testes na sala das aulas práticas (4.1.01), encontrando alguns erros no código que não davam problemas nos nossos computadores, nomeadamente nos "sorts" e na opção de "loop".

Temos aqui então exemplo dos testes:

```
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -b 10
NETIF TX RX TRATE RRATE
 NETIF
 enp7s0
              0
                           0
                                        0
                                                      0
 lo
              2229
                           2229
                                        222
                                                      222
              15123
 wlp0s20f
                           19827
                                         1512
                                                      1982
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -v 10
NETIF
                                                     RRATE
                                        TRATE
             993
                                                     137
wlp0s20f
                           1371
                                        99
             2085
                          2085
                                        208
                                                     208
enp7s0
                                        0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -k 10
NETIF
             TX
                          RX
                                        TRATE
                                                     RRATE
enp7s0
             0
                           0
                                                     0
                                        0
             70
lo
                           70
wlp0s20f
             3032
                           656158
                                        303
                                                     65615
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -m 10
                                                      RRATE
NETIF
             TX
                           RX
                                        TRATE
enp7s0
             0
                           0
                                        0
                                                      0
                                        0
                                                      0
lo
             0
                           0
                                        0
                                                      62
wlp0s20f
                           622
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -c "wl.*" 10
                        RX
                                                RRATE
NETIF
                                    TRATE
wlp0s20f
            4093
                        2491
                                    409
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/S0Project1$
```

```
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -p 2 10
                                                RRATE
NETIF
                                     TRATE
            ΤX
            0
                        0
enp7s0
                                     0
                                                 0
            4077
                        4077
                                                 407
                                     407
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
                                      GO:~/GitHub/SOProject1$ ./netifstatFinal.sh -t 10
         guidias-Legion
 quidia
                                      TRATE
                                                   RRATE
NETIF
             TΧ
                         RX
wlp0s20f
             81669
                          16667
                                      8166
                                                   1666
lo
             4077
                         4077
                                      407
                                                   407
enp7s0
             0
                         0
                                      0
                                                   0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -r 10
NETIF
            ΤX
                        RX
                                     TRATE
                                                 RRATE
wlp0s20f
            118592
                        4248571
                                     11859
                                                 424857
            5039
                        5039
                                     503
                                                 503
lo
            0
                        0
enp7s0
                                     0
                                                 0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/S0Project1$
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -T 10
522 241 0
NETIF
                         RX
                                      TRATE
                                                   RRATE
             ΤX
wlp0s20f
             5229
                         1824
                                                   182
                                      522
             2417
                         2417
                                      241
                                                   241
lo
enp7s0
             0
                         0
                                      0
                                                   0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$ ./netifstatFinal.sh -R 10
NETIF
                         RX
                                      TRATE
                                                   RRATE
lo
             2437
                         2437
                                      243
                                                   243
             1457
                                      145
                                                   187
wlp0s20f
                         1871
             0
                                                   0
enp7s0
                         0
                                      0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
guidias@guidias-Legion-Y540-15IRH-P
                                     G0:~/GitHub/SOProject1$ ./netifstatFinal.sh -R 10
             TX
2437
NETIF
                         RX
                                      TRATE
                                                   RRATE
                                                   243
                         2437
                                      243
lo
wlp0s20f
             1457
                         1871
                                      145
                                                   187
enp7s0
             0
                         0
                                      0
                                                   0
guidias@guidias-Legion-Y540-15IRH-PG0:~/GitHub/SOProject1$
```

guidias@gu	idias-Legion	- Y540-15IRH- I	PGO:~/GitHub,	/ SOProject1 \$ RRATE 0 208 455	./netifstati	Final.sh -l 10
NETIF	TX	RX	TRATE		TXTOT	RXTOT
enp7s0	0	0	0		0	0
lo	2085	2085	208		2085	2085
wlp0s20f	3028	4557	302		3028	4557
enp7s0	0	0	0	0	0	0
lo	3137	3137	313	313	5222	5222
wlp0s20f	29566	26091	2956	2609	32594	30648
enp7s0	0	0	0	0	0	0
lo	2085	2085	208	208	7307	7307
wlp0s20f	1402	2733	140	273	33996	33381
enp7s0	0	0	0	0	0	0
lo	2085	2085	208	208	9392	9392
wlp0s20f	12302	3180	1230	318	46298	36561
enp7s0	0	0	0	0	0	0
lo	5171	5171	517	517	14563	14563
wlp0s20f	98667	57537	9866	5753	144965	94098

Conclusão

A realização deste trabalho deu-nos a conhecer melhor o funcionamento do "awk" e do comando "netstat".

Ficamos a perceber melhor o funcionamento da bash e todos os meandros de escrever um script em bash.

Reconhecemos que através de scripts em bash podemos obter variadas informações relevantes sobre o funcionamento do sistema operativo.

Bibliografia

https://www.cyberciti.biz/faq/bash-scripting-using-awk/

https://docs.oracle.com/cd/E19504-01/802-5753/6i9g71m3i/index.html

https://stackoverflow.com/questions/16483119/an-example -of-how-to-use-getopts-in-bash