线性代数期末练习答案

一、选择题(本题共7小题,每题3分,共21分)

- 1. 下列选项中是五阶行列式 $\left|a_{ij}\right|$ $(i,j=1,2,\cdots 5)$ 中一项的是 (D)

- (A) $a_{12}a_{31}a_{23}a_{45}a_{34}$ (B) $-a_{31}a_{22}a_{43}a_{14}a_{55}$ (C) $-a_{13}a_{21}a_{34}a_{42}a_{51}$ (D) $a_{12}a_{21}a_{55}a_{43}a_{34}$
- 2. 行列式 $\begin{vmatrix} a_1 & 0 & 0 & a_2 \\ 0 & a_3 & a_4 & 0 \\ 0 & a_5 & a_6 & 0 \end{vmatrix}$ 中元素 a_7 的代数余子式为(B)
- (A) $a_2a_3a_6 a_2a_4a_5$ (B) $a_2a_4a_5 a_2a_3a_6$ (C) $a_1a_3a_6 a_2a_4a_5$ (D) $a_3a_6a_8 a_4a_5a_8$

- 3. 设A, B均为n阶矩阵,下列关系一定成立的是(D)

- (A) $(AB)^2 = A^2B^2$ (B) $(AB)^T = A^TB^T$ (C) |A + B| = |A| + |B| (D) |AB| = |BA|
- 4. 设A,B,C均为n阶矩阵,I为单位矩阵,且ABC=I,则下列矩阵乘积一定等于I的是 (C)
- (A) ACB
- (B) BAC
- (C) *CAB*
- (D) *CBA*
- 5. 若 6×5 矩阵 A 的秩为 r(A)=3,对应的齐次线性方程组为 Ax=0,则其基础解系中解向量个数为 (A)
- (A) 2个
- (C) 5 个
- 6. 已知 $\lambda_0 = 2$ 是可逆矩阵 A 的一个特征值,则矩阵 $\left(\frac{1}{3}A^2\right)^{-1}$ 必有一个特征值为 (B)
- (A) $\frac{4}{2}$

- (B) $\frac{3}{4}$ (C) $-\frac{4}{3}$ (D) $-\frac{4}{3}$
- 7. 若二次型 $f = 5x_1^2 + 5x_2^2 + cx_3^2 2x_1x_2 + 6x_1x_3 6x_2x_3$ 的秩为 2,则 c 等于(B)
- (A) 4

(B) 3

- (C) 2
- (D) 1

二、填空题(本题共7小题,每题3分,共21分)

- 1. 设 2 阶行列式 $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = m$,则 $\begin{vmatrix} a_{12} & 2a_{11} + 4a_{12} \\ a_{22} & 2a_{21} + 4a_{22} \end{vmatrix} = \underline{-2m}$.

3. 已知
$$AP = PB$$
, 其中矩阵 $P = \begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, 则 $A = \underbrace{\qquad \qquad 1}_{3} \begin{pmatrix} 5 & 2 \\ 1 & 4 \end{pmatrix}$ ______.

4. 设
$$A$$
 为 3 阶方阵,且 $|A| = 2$,则 $\left(\frac{1}{3}A\right)^{-1} - 3A^* = \underline{\qquad -27/2}$ _____.

5. 若
$$n$$
阶矩阵 A 满足方程 $A^2-A-2I=0$,其中 I 是单位矩阵,则 $(A+2I)^{-1}=\frac{1}{4}(3I-A)$

6. 已知向量
$$\alpha = (-2,4,t)^T$$
与 $\beta = (2,-2,3)^T$ 正交,则 $t = \underline{\qquad 4}$

7. 已知
$$f = x_1^2 + 3x_2^2 + 2x_3^2 + 2x_1x_3 + 2\lambda x_2x_3$$
为正定二次型,则 λ 的取值范围为 $\sqrt{3} < \lambda < \sqrt{3}$.

$$\Xi$$
. (8分) 计算行列式 $D = \begin{vmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 1 \\ 1 & 2 & 3 & 4 \end{vmatrix}$.

四. $(10 \, \beta)$ 已知向量组 $\alpha_1 = (1,-1,2,4)^T, \alpha_2 = (0,3,1,2)^T, \alpha_3 = (3,0,7,14)^T, \alpha_4 = (2,1,5,6)^T$ 和 $\alpha_5 = (1,-1,2,0)^T$,求该向量组的极大线性无关组,并将其余向量用极大线性无关组线性表出.

解:

 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$

$$= \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ -1 & 3 & 0 & 1 & -1 \\ 2 & 1 & 7 & 5 & 2 \\ 4 & 2 & 14 & 6 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 3 & 3 & 3 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 2 & 2 & -2 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & -4 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 0 & -1 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \dots (6\%)$$

通过观察发现可取 $\alpha_1,\alpha_2,\alpha_4$ 为一个极大线性无关组 $(2\,\beta)$,

且
$$\alpha_3 = 3\alpha_1 + \alpha_2, \alpha_5 = -\alpha_1 - \alpha_2 + \alpha_4$$
 (2分)

极大无线性无关组也可以是 $\alpha_1, \alpha_2, \alpha_5$ 或 $\alpha_1, \alpha_3, \alpha_4$ 或 $\alpha_1, \alpha_3, \alpha_5$ 。

五. (10 分)线性方程组 $\begin{cases} x_1+x_2+\lambda x_3=4\\ -x_1+\lambda x_2+x_3=\lambda^2 \text{ , 其中 }\lambda 是参数. 问: 当 <math>\lambda$ 取何值时,方程组无解?有唯 $x_1-x_2+2x_3=-4$

一解?有无穷多解?当有无穷多解时,求出其全部解.

解:系数矩阵行列式为
$$|A|=\begin{vmatrix} 1 & 1 & \lambda \\ -1 & \lambda & 1 \\ 1 & -1 & 2 \end{vmatrix} = -(\lambda+1)(\lambda-4)$$
 (3分)

当|A|≠0时,即 λ ≠-1且 λ ≠4,有唯一解 (2分)

当
$$\lambda = -1$$
时, $\overline{A} = \begin{pmatrix} 1 & 1 & -1 & 4 \\ -1 & -1 & 1 & 1 \\ 1 & -1 & 2 & -4 \end{pmatrix} \underbrace{r_2 + r_1, r_3 - r_1}_{2} \begin{pmatrix} 1 & 1 & -1 & 4 \\ 0 & 0 & 0 & 5 \\ 0 & -2 & 3 & -8 \end{pmatrix}$ 无解 (1分)

$$\begin{tabular}{l} \begin{tabular}{l} \begin{tab$$

方程组有无穷多解, (2分) 其解为 $x_1 = -3k$, $x_2 = 4 - k$, $x_3 = k$, 其中k为任意常数 (2分)

或者
$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 0 \end{pmatrix} + k \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$$

六. (8 分) 设 3 阶矩阵 A 满足 |A-I|=0, |A+2I|=0, |2A+3I|=0, 其中 I 为 3 阶单位矩阵,

若 $\varphi(A) = A^2 - A + 2I$, 求 $\varphi(A)$ 的特征值及 $\varphi(A)$ 的行列式.

解:
$$\lambda_1 = 1$$
, $\lambda_2 = -2$, $\lambda_3 = -\frac{3}{2}$, ... (3 分)

因此, $\varphi(A)$ 的特征值为 $\lambda_1=2$, $\lambda_2=8$, $\lambda_2=\frac{23}{4}$,... (3分)

 $\varphi(A)$ 的行列式为 92 ... (2 分)

七. (14 分)已知实二次型 $f(x_1,x_2,x_3)=x_1^2+4x_2^2+4x_3^2-4x_1x_2+4x_1x_3-8x_2x_3$,求正交变换 x=Qy,将二次型转化为标准形.

可得 $\lambda_1 = \lambda_2 = 0, \lambda_3 = 9$ (2分)

由 $(\lambda_i I - A)x = 0$ 可求出 0 相应的特征向量

$$\lambda I - A = \begin{pmatrix} -1 & 2 & -2 \\ 2 & -4 & 4 \\ -2 & 4 & -4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, 特征向量为 $\xi_1 = (2,1,0)^T, \xi_2 = (-2,0,1)^T \dots (2 \%)$$$

做正交化,再作单位化得 $e_1 = \frac{1}{\sqrt{5}}(2,1,0)^T, e_2 = \frac{1}{3\sqrt{5}}(-2,4,5)^T$ (2分)

再由 $(\lambda_i I - A)x = 0$ 可求出 9 相应的特征向量

$$\lambda I - A = \begin{pmatrix} 8 & 2 & -2 \\ 2 & 5 & 4 \\ -2 & 4 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 4 & 1 & -1 \\ 2 & 5 & 4 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & -9 & -9 \\ 2 & 5 & 4 \\ 0 & 1 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 2 & 5 & 4 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 0 & 0 \\ 2 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix}$$

特征向量为 $\xi_3 = (1,-2,2)^T$,再作单位化可得 $e_3 = \frac{1}{3}(1,-2,2)^T$ (4分)

令
$$Q = (e_1, e_2, e_3)$$
,则正交变换 $x = Qy$, 二次型化为标准形 $f(x_1, x_2, x_3) = 9y_3^2$ (2分)

八. (8 分) 已知向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ (n>1) 线性无关,且 $\beta=\alpha_1+\alpha_2+\cdots+\alpha_n$,证明:向量 $\beta-\alpha_1$, $\beta-\alpha_2,\cdots\beta-\alpha_n$ 线性无关.

证明:

$$k_1(\beta - \alpha_1) + k_2(\beta - \alpha_2) \cdots + k_s(\beta - \alpha_n) = 0$$

$$\Rightarrow (k_2 + \cdots + k_n)\alpha_1 + (k_1 + k_3 + \cdots + k_n)\alpha_2 + \cdots + (k_1 + \cdots + k_{n-1})\alpha_n = 0 \cdots (2 \%)$$

则由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关可得如下方程组

$$\begin{cases} k_2 + k_3 \cdots + k_n = 0 \\ k_1 + k_3 \cdots + k_n = 0 \\ \cdots \\ k_1 + k_2 \cdots + k_{n-1} = 0 \end{cases}, \dots (2 分) 其系数行列式 \begin{vmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \cdots & 0 \end{vmatrix}_n = (-1)^{n-1}(n-1) \neq 0 \dots (2 分)$$

因此,方程组只有 0 解,也即向量 $\beta-\alpha_1$, $\beta-\alpha_2$, \cdots $\beta-\alpha_n$ 线性无关(2 分)