

- John Hopfield: Hopfield Networks
 Geoff Hinton: RBM, Deep models...

2

Hopfield Networks

- Introduced by the physicist, professor of chemistry and biology, John Hopfield in 1982
- Used to represent content addressable memory: given a reasonable portion of the memorized information, given a partial or corrupted portion, it can be completed by recovering other associated information (pattern completion)
- The system preserves this propery also when some components are broken (fault tolerance)
- · For instance.:
 - "H.A.Kramers and G.H.Wannier, Phys. Rev., 60, 252 (1941)"
 - Enough "and Wannier (1941)" o addirittura "Vannier (1941)"

 Attractor networks, useful to memorize fundamental memories which attract other inputs

4

Hopfield Networks

- Pattern completion characterizes a lot of our memory.
- For instance.:
- (Occluded) object recognition can also be seen as pattern completion

5

Hopfield Networks

7

Hopfield Networks

- Network of McCulloch-Pitts neurons interconnected.
- Each neuron can have two states: 1, -1.

- Given N units:
 - Each neuron is connected with all the other neurons but itself.
 - Weights are symmetrical: $w_{ij} = w_{ji}$

8

Hopfield Networks

- Network of McCulloch-Pitts neurons interconnected.
- Each neuron can have two states: 1, -1.

- Given N units:
 - Each neuron is connected with all the other neurons but itself.
 - Weights are symmetrical: $w_{ij} = w_{ji}$

Usually much bigger dimensions! This is a toy example!!!

Hopfield Networks (Withdrawal/Retrieval Phase)

 State of a network with N neurons at a given iteration= configuration of a network with N neurons at a given iteration: activations of the N neurons (1,-1).

- Input to the network: vectors of 1 and -1 of dimension N. Each neuron represents an element of the input
- Then calculate new activation of a neuron at a time, randomly chosen.
- · Until there is no change.

10

Hopfield Networks

11

Hopfield Networks. II phase: information withdrawal

- 1. Input. To the network is presented x^* : configuration +1 and -1 of length N. For each neuron $j, y_j(0) = x^*(j)$
- Iteration until convergence. Update the elements of the network in an asyncronous way by choosing a unit at random. The rule to update the elements is

$$\begin{aligned} & \lim \sum_{i=0}^{N} w_{ji} y_{i}(n) > 0 \\ y_{j}(n) &= -1 \text{ if } \sum_{i=0}^{N} w_{ji} y_{i}(n) < 0 \\ y_{j}(n-1) \text{ if } v_{j}(n) &= 0 \end{aligned}$$

- 3. Convergence. Repeat the operation until we find a stable state, s.t. for each unit j $y_i(n+1) = y_i(n)$.
- 4. Output. This stable state is the output of the network.

States= configurations of +1,-1

13

Hopfield Networks

- Given a starting state, the states through which the network goes are calculated as follows:
- The activations of the neurons are calculated in an asyncronous way: each time a
 unit is chosen, its activity is calculated by using the equations:.

• Example:

 $v_{j} = \sum_{i=0}^{N} w_{ji} y_{i}(n)$ $1 \text{ if } v_{j}(n) > 0$ $\varphi(v_{j})(n) = -1 \text{ if } v_{j}(n) < 0$ $\varphi(v_{j})(n-1) \text{ if } v_{j}(n) = 0$

Initial state [-1,-1,1].

14

Hopfield Networks

- Given a starting state, the states through which the network goes are calculated as follows:
- The activations of the neurons are calculated in an asyncronous way: each time a
 unit is chosen, its activity is calculated by using the equations:.

Example:

$v_j = \sum_{i=0}^N w_{ji} y_i(n)$
1 if $v_i(n) > 0$
$\varphi(v_j)(n) = -1 \text{ if } v_j(n) < 0$
$\varphi(v_j)(n-1) \text{ if } v_j(n) = 0$

Initial state [-1,-1,1]. If I choose 1, $v_1 = 1.4, y_1 = \phi(v_1) = 1$ and I obtain [1,-1,1]

- If I then choose 2: $v_2 = -1.3$, $y_2 = \phi(v_2) = -1$ and I obtain [1,-1,1].
- If I then choose 3, it remains at +1.
- [1, -1, 1] is a stable state of the network, since $\forall i, y_i(n+1) = y_i(n)$

[1, -1, 1] is one of the two stable states of the network (in this example). The other is [-1, 1, -1]

- The stable states act as attractors: given any state, it will converge in one of the two states.
- A convergence theorem guarantees that given a starting state the network will always arrive to a stable state: the activities cannot be changed forever.

16

Hopfield Networks

- In general, finding a stable state is a non deterministic process. In case of networks with several units, it can require several iterations.
- Exercise: Find a stable state of the network starting from [1, 1, -1].

$$v_{j} = \sum_{i=0}^{N} w_{ji} y_{i}(n)$$

$$1 \text{ if } v_{j}(n) > 0$$

$$\varphi(v_{j})(n) = -1 \text{ if } v_{j}(n) < 0$$

$$\varphi(v_{j})(n-1) \text{ if } v_{j}(n) = 0$$

17

Hopfield Networks

- In general, finding a stable state is a non deterministic process. In case of networks with several units, it can require several iterations.
- Exercise: Find a stable state of the network starting from [1, 1, -1].

$v_j = \sum_{i=0}^N w_{ji} y_i(n)$	
$1 \text{ if } v_j(n) > 0$	
$\varphi(v_j)(n) = -1 \text{ if } v_j(n) < 0$	
$\varphi(v_j)(n-1)$ if $v_j(n) = 0$	0

- Solution:
 If I update 1 first: [-1,1,-1]
 If I update 3 first: [1,1,1]

- In general, finding a stable state is a non deterministic process. In case of networks with several units, it can require several iterations.
- Exercise: Find a stable state of the network starting from [1, 1, -1].

 $1 \text{ if } v_j(n) > 0$ $-1 \text{ if } v_j(n) < 0$ $\varphi(v_j)(n-1)$ if $v_j(n)=0$

- Solution:

 If I update 1 first: [-1,1,-1]
- If I update 3 first: [1,1,1]

19

Hopfield Networks (Storage Phase)

- Hopfield Networks are used to memorize information
- We want the memorized information to work as attractors, stable states towards which move the other states
- If we memorize images, we want:
 - The corresponding images to be stable states: if we show them to the network, this does not move
 - If we present to the network a corrupted version of the image, this converges towards the memorized image.

20

Hopfield Networks

- The problem is how to make the information we want to memorize, its fundamental memories, stable states.
- The states are stable thanks to weights.
- For instance [1,-1,1]

Hopfield	Networl	S
----------	---------	----------

•Given M fundamental memories, $f_1..f_{M}\,$ vectors of dimension N, we memorize them by letting:

• For each fundamental memory the product between the ith and the jth element

•If they have the same sign, $f_k(i) \bullet f_k(j) > 0$ this contributes to strengthening \mathbf{w}_{ji} . If they have different sign, this contributes to weakening \mathbf{w}_{ji} .

22

Hopfield Networks

- Given a set of fundamental memories, we must find adequate weights.
- The learning algorithm is based on Hebb's principle:
 - Strengthen the connections between units with the same activation
 - Weaken the connections between units with opposite activation

23

Hopfield Networks

- Given a set of fundamental memories, we must find adequate weights.
- The learning algorithm is based on Hebb's principle:
 - $\,-\,$ Strengthen the connections between units with the same activation
 - Weaken the connections between units with opposite activation
 - Hebb's principle has a neurobiological counterpart: in the synapses between units which are often active at the same time are strengthened, while synapses between neurons which are not simultaneously active are weakened.

Hebb's Principle

Neurons that fire together wire together

25

Hopfield Networks

- WARNING: Following the tradition, we have seen the withdrawal phase before the storage phase.
- However, chronologically they come in the opposite order: First: storage of the fundamental memories. Then, withdrawal!

26

Hopfield Networks. I phase: storage

 Esercise: apply the rule so that [1,-1,1] e [-1,1,-1] are stable states: these are fundamental memories to be memorized.

$$W_{ji} = \frac{1}{M} \sum_{k=1}^{M} f_k(i) \bullet f_k(j) \text{ se } j \neq i$$

Hopfield Networks. I phase: storage

• Solution. If we want two fundamental memories: [1,-1,1] and [-1,1,-1]

$$w_{ji} = \frac{1}{M} \sum f_k(i) \bullet f_k(j) \text{ if } j \neq i$$

$$w_{21} = w_{12} = \frac{1}{2} \sum_{k=1}^{2} f_k(1) \bullet f_k(2) = \frac{1}{2} (1 \bullet (-1) + -1 \bullet (1)) = -1$$

$$w_{23} = w_{32} = \frac{1}{2} \sum_{k=1}^{2} f_k(2) \bullet f_k(3) = \frac{1}{2} \bullet (1 \bullet (-1) + (-1) \bullet 1) = -1$$

$$w_{31} = w_{13} = \frac{1}{2} \sum_{k=1}^{2} f_k(1) \bullet f_k(3) = \frac{1}{2} (1 \bullet 1 + (-1) \bullet (-1)) = 1$$

28

Hopfield Networks. Convergence Theorem

 Convergence Theorem: Given any initial state, the network converges to a stable state.

29

Hopfield Networks. Convergence Theorem

- Convergence Theorem: Given any state of the network, the network converges to a stable state.
 - $-\,$ Given N units, there are $\,2^{N}$ possibile states of the network
 - To each of these states is associated an Energy value
 - We prove that each change of state of the network leads to a lowering of the Energy
 - There is a moment in which there is no reacheable state with lower Energy.

Hopfield Networks. Convergence Theorem

- Energy function E = $-\frac{1}{2}\sum_{i}\sum_{j}w_{ij}y_{i}y_{j}$
- The energy E measures the propension of the network to change state (opposite of the harmony): ENERGY IS BAD!
- We prove that each change in state diminishes E
- Roughly speaking, Harmony increases with the number of positive w_{ij}y,y_j (where y, and y, have the same sign and w_{ij} is positive or they have opposite sign, and w_{ij} is negative). Higher harmony= less propension to change state. Lower harmony= more propension to change

31

Hopfield Networks. Convergence Theorem

- Energy function E = $-\frac{1}{2}\sum_{i}\sum_{j}w_{ij}y_{i}y_{j}$
- Each product $w_{ij}y_{jj}$ is positive if y_i and y_j have the same sign and w_{ij} is positive or they have opposite sign, and w_{ij} is negative.
- Example:

Roughly speaking: The activations enforce each other: Energy Low: Low predisposition to change!

32

Hopfield Networks. Convergence Theorem

- Energy function E = $-\frac{1}{2}\sum_{i}\sum_{j}w_{ij}y_{i}y_{j}$
- Each product $w_{ij}y_{ij}$ is negative if y_i and y_j have the same sign and w_{ij} is negative or they have opposite sign, and w_{ij} is positive.
- Intuitively:

Hopfield Networks. Convergence Theorem

- Consider how E changes with the change of the activation of the kth unit.
- E and E' denote energy before and after the change of y

$$E = -\frac{1}{2} \sum_{i} \sum_{j} w_{ij} y_{i} y_{j} = -\frac{1}{2} \left(\sum_{i \neq k} \sum_{j \neq k} w_{ij} y_{i} y_{j} + \frac{2}{2} \sum_{j \neq k} w_{ij} y_{k} y_{j} \right)$$

$$E' = -\frac{1}{2} \left(\sum_{i \neq k} \sum_{j \neq k} w_{ij} y_{i} y_{j} + \frac{2}{2} \sum_{j \neq k} w_{ij} y_{k}^{'} y_{j} \right)$$

$$E = -\frac{1}{2} \left(\sum_{i \neq k} \sum_{j \neq k} w_{ij} y_{i} y_{j} + \frac{2}{2} \sum_{j \neq k} w_{ij} y_{k}^{'} y_{j} \right)$$

34

Hopfield Networks. Convergence Theorem

This is
$$v_k!$$

$$E - E' = -\sum_{j} w_{kj} y_j (y_k - y_k')$$

At each change E lowers. Since the states are finite, at a given point we get to a state that does not change: a stable state

35

Hopfield Networks. Qualities

- They complete partial patterns
- · They generalize: given an input similar to what has been memorized, they recover the corresponding information
- They are fault tolerant: if some synapses get broken (brain damage) the output is still reasonable
- They allow the extraction of prototypes: if the network learns several similar informations, it creates their prototype and this is the explicitely presented state.
- · The learning rule is Hebb like, which is biologically plausible and there is evidence that it exists in the brain
- The networks can account for context effects: we remember better what is learned if we are put in the same context

Hopfield Networks. Example

37

Hopfield Networks. Drawbacks

- Unfortunately, not all the stable states are fundamental memories memorized during storage. There are spurious states:
 - The opposite of a stable state is a stable state
 - Combinations of stable states are stable states
- Not all the fundamental memories are stable states
- Storage capacity with few errors given N units = $0.14\ N$

38

Hopfield Networks. Drawbacks

- · Limited storage capacity
- Errors
- In the brain synapses are not symmetrical
- In the brain there are no stable states but states transitorily stable, which
 evolve in successive states. There are extensions of Hopfield networks that
 learn sequences of states.

1	\sim
~	ч
J	J

Hybrid models

- Some reserachers today (e.g., G. Kreiman) use hybrid models:
- Standard convolutional poor at pattern completion
- Ex: convolutional + Hopfield for pattern completion