Continuous random variables (Section 13)

1. Explain why $f(x) = 1 + x - x^2$, $x \in [1, 2]$, cannot be a probability density function of any random variable.

2. Explain why f(x) = 1/4, $x \in [1, 4]$, cannot be a probability density function of any random variable.

3. Find the value of the constant a so that f(x) = ax(1-x), $0 \le x \le 1$, satisfies the properties of the probability density function.

4. Check that the function $f(x) = \frac{1}{2\sqrt{x}}$, $0 < x \le 1$, can be a probability density function. Find its mean.

5. (a) The function $f(x)=0.5-0.125x,\,0\leq x\leq 4,$ is a probability density function of a random variable X. Find $P(2\leq X\leq 3).$

(b) The function $f(x)=6x(1-x), 0 \le x \le 1$, is a probability density function of a random variable X. Find $P(0.2 \le X \le 0.5)$.

- **6.** In each case:
- (i) Check that f(x) satisfies properties (1) and (2) in Definition 36.
- (ii) X be a continuous random variable whose probability density function is f(x). Find the expected value μ of X.
- (iii) Find the probability $P(X \leq \mu)$.
- (a) $f(x) = 4x^3$, $0 \le x \le 1$

(b)
$$f(x) = \frac{3}{4}x(2-x), 0 \le x \le 2$$

7. Consider the continuous random variable X given by the probability density function f(x) = 0.3 + 0.2 x, $0 \le x \le 2$. Find $P(0.5 \le X \le 2)$. Find the probability that the values of X are at least one standard deviation above the mean.