AlphaGo

Игра в го

Цель игры - захват территории

Каждый камень должен иметь хотя бы один соседний по вертикали или горизонтали (но не по диагонали!) незанятый пункт. Захватить камень противника - лишить точек свободы.

Есть **запрещенные ходы**: например, "убийство" собственного камня.

Когда оба игрока пасуют подряд, игра заканчивается.

Оценивание:

- Одно очко за каждый из пунктов доски, окружённых камнями только его цвета
- По одному очку за каждый захваченный камень противника, либо за каждый собственный камень, который остался на доске к концу игры

Дерево исходов

Дерево содержит приблизительно **b**^d возможных последовательностей шагов

Шахматы: b = 35, d = 80

 Γ o: b = 250, d = 150

В **1997 Deep Blue**, шахматный суперкомпьютер, выиграл матч из 6 партий у чемпиона мира по шахматам Гарри Каспарова

В **2015** году **AlphaGo** выйграла матч у трёхкратного чемпиона Европы Фань Хуэя.

В **2016** году **AlphaGo** выйграла матч у Ли Седоля. Некоторые источники ставят Ли Седоля четвёртым в мире игроком на время матча

Задача: ограничить дерево

Для решения применяются различные методы сокращения пространства поиска

Альфа-бета-отсечение (alpha-beta pruning)

Оценивание ветви дерева поиска может быть досрочно прекращено, если было найдено, что для этой ветви значение оценивающей функции в любом случае хуже, чем вычисленное для предыдущей ветви

Monte Carlo tree search

Анализ наиболее многообещающих ходов

и др!

В AlphaGo используется MCTS

Примеры функций активации:

$$ullet$$
 Сигмоида $\sigma(x)=rac{1}{1+e^{-x}}$

ReLU (rectified linear unit)

$$f(x) = \max(0, x)$$

Сети, используемые в AlphaGo

Rollout network, SL policy network

Обучение с учителем

Обучались на KGS, базе ходов профессиональных игроков в го:

29.4 миллионов позиций из 160,000 игр

6 - 9 профессиональный дан (уровень мастерства, 9 - максимальный)

Оценивают распределение вероятностей доступных ходов, $p_{pi}(s)$ и $p_{sigma}(s)$

Rollout network: признаки и результаты

Feature	# of patterns	Description
Response	1	Whether move matches one or more response features
Save atari	1	Move saves stone(s) from capture
Neighbour	8	Move is 8-connected to previous move
Nakade	8192	Move matches a nakade pattern at captured stone
Response pattern	32207	Move matches 12-point diamond pattern near previous move
Non-response pattern	69338	Move matches 3×3 pattern around move

- 1. Очень быстро дает ответ
- 2. Невысокая точность: 24.2%

SL policy network: архитектура

сверточная нейронная сеть с 13 скрытыми слоями

вход: 19 x 19 x 48 (48 представлений доски размером 19 x 19)

ReLU nonlinearity

Softmax на выходные значения

SL policy network: features

Feature	# of planes	Description
Stone colour	3	Player stone / opponent stone / empty
Ones	1	A constant plane filled with 1
Turns since	8	How many turns since a move was played
Liberties	8	Number of liberties (empty adjacent points)
Capture size	8	How many opponent stones would be captured
Self-atari size	8	How many of own stones would be captured
Liberties after move	8	Number of liberties after this move is played
Ladder capture	1	Whether a move at this point is a successful ladder capture
Ladder escape	1	Whether a move at this point is a successful ladder escape
Sensibleness	1	Whether a move is legal and does not fill its own eyes
Zeros	1	A constant plane filled with 0

SL policy network

Обучающая выборка ~ 28.4 миллионов позиций

На каждом шаге:

mini-batch из m случайно выбранных объектов, пар $\{s_k, a_k\}$, m = 16

асинхронный стохастический градиентный спуск для максимизации функции правдоподобия

размер шага α=0.03, каждые 80 миллионов шагов уменьшается вдвое

$$\Delta \sigma = \frac{\alpha}{m} \sum_{k=1}^{m} \frac{\partial \log p_{\sigma}(a^{k}|s^{k})}{\partial \sigma}$$

SL policy network: результаты

- 1. Большая точность: 57.0 % на тестовой выборке (~ 1 миллион позиций)
- 2. Выиграла 11% игр у Расһі
- 3. Значительно медленнее, чем rollout network

RL-network - обучение с подкреплением

Инициализируется с весами SL-network $\rho = \sigma$

Каждая итерация состоит из n матчей, играемых параллельно, между policy network pp и противником, случайно выбранным из пула значений весов на предыдущих итерациях, ρ = ρ⁻

Каждые 500 итераций текущее значение р добавляется в пул противников

Каждый матч играется до завершения на шаге T^i , $z_t = \pm r(s_t) = \pm 1$

$$\Delta \rho = \frac{\alpha}{n} \sum_{i=1}^{n} \sum_{t=1}^{T^i} \frac{\partial \log p_{\rho}(a_t^i | s_t^i)}{\partial \rho} (z_t^i - v(s_t^i))$$

RL policy

10,000 mini-batch по 128 игр

Обучение заняло один день

Результаты:

Против SL-policy: выйграно 80% матчей

Против Pachi, самой сильной open-source программы: 85% матчей

Reinforcement learning of value networks

Value function:
$$v^p(s) = \mathbb{E}[z_t | s_t = s, \ a_{t...T} \sim p]$$

 ${
m z}_{
m t}$ - награда (+1 за победу, -1 за проигрыш)

 s_{t} - состояние доски в момент времени t

p – стратегия для ходов $a_{t...T}$

Задача: найти оптимальную value function.

Будем использовать лучшую стратегию: RL policy network p_{ρ} .

Reinforcement learning of value networks

Будем приближать value function $v_{\theta}(s)$ с помощью нейронной сети (с весами θ) с такой же структурой, как у SL policy network, только ответом будет одно предсказание, вместо распределения вероятностей.

Настроим веса θ , используя стохастический градиентный спуск для минимизации MSE:

$$\min_{\theta}(z-\nu_{\theta}(s))^2$$

$$\Delta\theta \propto \frac{\partial \nu_{\theta}(s)}{\partial \theta} (z - \nu_{\theta}(s))$$

Monte Carlo Tree Search (MCTS)

Monte Carlo Tree Search (MCTS)

Каждый узел (s, a) – (состояние доски, ход) хранит:

- action value Q(s, a)
- количество посещений N(s,a)
- априорная вероятность P(s, a)

Selection: в каждом узле выбираем ход

$$a_t = \underset{a}{\operatorname{argmax}} (Q(s_t, a) + u(s_t, a))$$
$$u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

Monte Carlo Tree Search (MCTS)

Expansion: при достижении листа применяем SL policy network для предсказания узла s_L

Evaluation:

Оценка
$$s_L$$
: $V(s_L) = (1 - \lambda) v_{\theta}(s_L) + \lambda z_L$

1. value network $v_{\theta}(s_L)$

2. fast rollout policy p_{π}

Васкир:
$$N(s,a) = \sum_{i=1}^n 1(s,a,i)$$
 $1(s,a,i)$ - индикатор того, что посетили узел (s, a) на $Q(s,a) = \frac{1}{N(s,a)} \sum_{i=1}^n 1(s,a,i) V(s_L^i)$ і-ой симуляции

После окончания поиска алгоритм выбирает ход с наибольшим N(s,a)

Список литературы

- Mastering the game of Go with deep neural networks and tree search (<u>http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html</u>) (можно открыть с помощью <u>http://sci-hub.io/</u>)
- BETTER COMPUTER GO PLAYER WITH NEURAL NETWORK AND LONG-TERM PREDICTION (https://arxiv.org/pdf/1511.06410v3.pdf)