wherein R_1 , R_2 , R_3 , R_4 and R_5 are independent from each other, selected from the group consisting of a hydrogen atom, a hydroxyl group, an alkoxy group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms and a hydroxy alkyloxy group having two or three carbon atoms, and R_1 and R_2 , or R_2 and R_3 , optionally, form a methylene dioxy group, and R_4 and R_5 , and R_1 or R_3 which do not form the methylene dioxy group are defined as above;

 R_6 , R_7 , R_8 , R_9 and R_{10} are independent from each other, a hydrogen atom or an alkyl group with 1 to 3 carbon atoms; and optionally, two of R_6 , R_7 , R_8 , R_9 and R_{10} may combine to form an alkylene group with 1 to 5 carbon atoms, and R_6 , R_7 , R_8 , R_9 and R_{10} which do not form the alkylene group with 1 to 5 carbon atoms are defined as above;

R₁₁ is selected from the group consisting of a hydrogen atom, a benzyl group, a p-hydroxy benzyl group, a cyclohexyl methyl group, a phenyl group, a cyclohexyl group, a phenyl ethyl group and a cyclohexyl ethyl group;

 R_{12} is selected from the group consisting of a hydrogen atom and an alkyl group with 1 to 3 carbon atoms; and

 R_{13} is selected from the group consisting of alkyl groups with 1 to 4 carbon atoms; with the proviso that the following are excluded:

where R₆, R₇, R₈, R₉ and R₁₀ are a hydrogen atom at the same time,