Pendolo fisico

Giosué Aiello, Domenico Fenili, Francesco Sermi

14 Novembre 2023

Indice

1	Scopo dell'esperienza	3
2	Cenni teorici	3
3	Apparato sperimentale e strumenti	4
4	Descrizione delle misure	4
5	Analisi dei dati	4

1 Scopo dell'esperienza

Lo scopo di questa esperienza è quello di misurare il periodo di un pendolo fisico in funzione della distanza del perno di rotazione dal centro di massa.

2 Cenni teorici

Figura 1: Schema del nostro apparato sperimentale

Un oggetto fissato ad un punto di sospensione P (che dista d dal centro di massa) e soggetto alla gravità costituisce un pendolo fisico. Se questo corpo viene spostato di un angolo θ dalla sua posizione di equilibrio, il momento torcente della forza di gravità (rispetto al punto di sospensione P) vale:

$$\tau = -mqd\sin\theta\tag{1}$$

che, per $\theta << 10^{\circ} - 15^{\circ}$ possiamo esprimere $sin(\theta)$ utilizzando la formula di espansione in serie di Taylor al primo ordine:

$$\sin \theta = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \theta^{2n+1} = \theta + o(\theta^3) \approx \theta$$

Pertanto possiamo riscrivere il momento torcente della forza di gravità come:

$$\tau = -mgd\theta$$

E per la seconda equazione cardinale si ha che:

$$\tau = \frac{dL}{dt} \tag{2}$$

e sapendo che il momento angolare di un pendolo fisico risulta essere pari a $L=I\omega$ e $\omega=\frac{d\theta}{dt}$ si ha che:

$$\tau = \frac{dL}{dt} = I\frac{d}{dt}\left(\frac{d\theta}{dt}\right) = I\frac{d^2\theta}{dt^2}$$

Combinando la (1) e la (2):

$$I\frac{d^2\theta}{dt^2} = -mgd\theta \implies \frac{d^2\theta}{dt^2} + \frac{mgd}{I}\theta = 0$$
 (3)

Siamo dinanzi ad un'equazione differenziale di secondo ordine a coefficienti costanti omogenea di un moto armonico con pulsazione e periodo di oscillazione dati da:

$$\omega_0 = \sqrt{\frac{mgd}{I}} \quad T_0 = 2\pi \sqrt{\frac{I}{mgd}}$$

Utilizzando il teorema degli assi paralleli, possiamo concludere che il momento di inerzia dell'oggetto fisico risulta essere:

$$I = I_{cm} + md^2 = \frac{ml^2}{12} + md^2$$

Possiamo quindi riscrivere la formula nella seguente maniera:

$$T(d) = \sqrt{\frac{m(l^2 + d^2)}{mgd}} = \sqrt{\frac{\frac{l^2}{12} + d^2}{gd}}$$
 (4)

3 Apparato sperimentale e strumenti

- Strumenti
 - Metro a nastro, risoluzione 0.1cm;
 - Calibro ventesimale, risoluzione 0.05mm;
 - Cronometro, risoluzione 0.01s
- Materiali
 - Asta metallica forata;
 - Un supporto di sospensione;

4 Descrizione delle misure

-Completare

5 Analisi dei dati

Numero	$\tau(s)$	d(cm)
prova	± 0.01	± 0.1
1	16.09	
2	15.90	
3	15.73	
4	15.93	95.0
5	15.89	
6	15.67	
7	16.00	

Numero	τ (s)	d (cm)
prova	± 0.01	± 0.1
1	15.31	
2	15.42	
3	15.30	
4	15.56	85.0
5	15.29	
6	15.50	
7	15.53	

Numero	τ (s)	d (cm)
prova	± 0.01	± 0.1
1	15.75	
2	15.66	
3	15.73	
4	15.61	75.0
5	15.67	
6	15.80	
7	15.67	