GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2021)

Semester - V

Course Title: Chemistry of Intermediates and Dyestuffs

(Course Code: 4352802)

Diploma program in which this course is offered	Semester in which offered
Textile Processing Technology	5 th Semester

1. RATIONALE

Diploma graduates are required to use different kinds of colours with materials called intermediates and dyes in variety of Textile processing. They should be aware of of color theory, and structure, properties of dyes and other intermediates, which pertains to Chemistry of these products. This course has been designed to provide basic principle and chemistry of basic chemicals, synthesis of dye intermediates and various dyes with their properties. Students shall understand the fundamentals aspects of colour, relation between colour and chemical constitution of dyes. It provides technical knowhow for colouration and printing of different textiles. Student will able to solve problems during dyestuffs, application as well as its marketing. Students will find this course useful in non-textile fields too.

2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competency,

 Apply knowledge of color theory, chemical composition, structure, properties of dyes and other intermediates and their synthesis for textile processing.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with the identified competency are to be developed in the student for the achievement of the following COs:

- a) Explain chemistry of natural and synthetic dyestuffs.
- b) Explain different colour theories for preparing and identifying colour.
- c) Explain synthesis of different intermediates.
- d) Describe synthesis of different dyestuffs based on their constitution.
- e) Describe synthesis of different dyestuffs based on their application.

4. TEACHING AND EXAMINATION SCHEME

Teachi	ing Scl	heme	Total Credits	Examination Scheme					
(In	Hour	s)	(L+T+P/2)	Theory Marks Practical Marks		Theory Marks		Marks	Total
L	Т	Р	С	CA	ESE	CA	ESE	Marks	
3	0	0	3	30*	70			100	

(*): Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of Cos and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain Uos required for the attainment of the Cos.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P – Practical; C – Credit, CA – Continuous Assessment; ESE – End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES

S.	Practical Outcomes (PrOs)	Unit	Approx. Hrs.
No.		No.	Require
	Not Applicable		

6. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

S. No.	Equipment Name with Broad Specifications	PrO. No.
	Not Applicable	

7. AFFECTIVE DOMAIN OUTCOMES

The following *sample* Affective Domain Outcomes (ADOs) are embedded in many of the above mentioned Cos. More could be added to fulfil the development of this competency.

- a) Work as a leader/a team member.
- b) Practice good housekeeping
- c) Maintain records of each synthesis.
- d) Follow ethical practices.

The ADOs are best developed through the laboratory/field based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below:

- i. 'Valuing Level' in 1st year
- ii. 'Organization Level' in 2nd year.
- iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY

The major underpinning theory is given below based on the higher level Uos of *Revised Bloom's taxonomy* that are formulated for development of the Cos and competency. If required, more such higher level Uos could be included by the course teacher to focus on attainment of Cos and competency.

Unit	Unit Outcomes (Uos)	Topics and Sub-topics		
	(4 to 6 Uos at different levels)	·		
Unit – I	1a. Explain natural colouring	1.1 Natural colouring matters		
	matters.	1.1.1 Heena		
Introduction	1b. Explain synthetic colouring	1.1.2 Turmeric		
to Dyestuff	matters.	1.1.3 Kesar		
Chemistry	1c. Describe applications of dyes	1.1.4 Alizarine from roots of madder		
	other than textiles.	1.1.5 Logwood		
	1d. Differentiate natural and	1.1.6 Tyrian purple		
	synthetic coluring matters.	1.2 Synthetic Dyes: Milestones		
		1.2.1 Diazotisation		
		1.2.2 Direct dye: Congo red		
		1.2.3 Synthesis of Indigo		
		1.2.4 Disperse dye		
		1.2.5 Fluorescent brighteners		
		1.2.6 Pigment		
		1.3 Non textile uses of dyes		
Unit – II	2a. Explain various effects for	2.1 Bathochromic, Hypsochromic,		
	colour constitution.	Hyperochromic and Hypochromic		
Colour and	2b. Differentiate between	effects		
Chemical	auxochrome, chromospheres	2.2 Auxochrome, chromogen,		
Constitution	and chromogen.	chromophore of colour chemistry,		
	2c. Distinguish between colour	colour and chemical constitutions.		
	and chemical constitution.	2.3 Theories to explain relation between		
	2d. Explain Different theories to	colour and chemical constitutions:		
	explain relation between	2.3.1 Witt's theory		
	colour and chemical	2.3.2 Armstrong theory		
	constitution.			
Unit – III	3a. Discuss primaries,	3.1 Primary, Intermediate, and Unit		
	intermediates and unit process	process		
Intermediates	3b. Explain Distillation of coal tar	3.2 Distillation of coal tar		
	3c. Describe synthesis of various	3.3 Preparation of the following		
	intermediates	Intermediates:		
		3.3.1 J – acid		
		3.3.2 H – acid		
		3.3.3 Koch acid		
		3.3.4 Gamma acid		
Linit IV	4a. Distinguish the classes of	3.3.5 Bon acid		
Unit – IV	4a. Distinguish the classes of	4.1 Nitro dyes		
Synthesis of	dyestuffs according to their	4.1.1 Picric acid		
Synthesis of	constitution	4.1.2 Naphthol yellow – S		

Dves Based on	4b. Describe synthesis of Nitro,	4.2 Nitroso dyes		
Constitution	Nitroso dyes	4.2.1 Gambine Y		
	4c. Explain steps for synthesizing	4.3 Azo dyes		
	Azo dyes, diphenylmethane and	4.3.1 Monoazo: Metanil yellow		
	triphenylmethane dyes	4.3.2 Diazo : Naphthol blue black 6B		
	4d. Describe synthesis of Xanthene	4.3.3 Triazo: Direct deep		
	and Thiazine dyes	4.4 Diphenylmethane dyes		
	,	4.4.1 Auramin G		
		4.5 Triphenylmethane dyes		
		4.5.1 Malachite green		
		4.5.2 Crystal violet		
		4.5.3 Aurin		
		4.5.4 Rosaniline		
		4.6 Xanthene dyes		
		4.6.1 Rhodamine B		
		4.7 Thiazine dyes		
		4.7.1 Methylene blue		
Unit- V	5a. Distinguish the classes of	5.1 Acid dyes: Orange II		
	dyestuffs according to their	5.2 Basic dyes : Methyl violet		
Synthesis of	application	5.3 Direct cotton dyes: Congo red		
Dyes Based on	5b. Describe synthesis of Acid and	5.4 Azoic dyes: Fast blue B-base and		
Application	Basic dyes	coupling component Naphthol AS		
	5c. Explain steps for synthesizing	5.5 Mordant dyes: Eriochrome Black A		
	Direct and Azoic dyes	5.6 Vat dyes : Indanthrene brown RRD		
	5d. Describe synthesis of Mordant,	5.7 Reactive dyes: Procion red, Procion		
	Vat and Reactive dyes	blue HB		

9. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

Unit		Tooching	Distribution of Theory Marks				
No.	Unit Title	Teaching Hours	R	U	Α	Total	
NO.		Hours	Level	Level	Level	Marks	
I	Introduction to Dyestuff Chemistry	04	04	04	02	10	
П	Colour and Chemical Constitution	06	04	04	02	10	
Ш	Intermediates	08	02	04	08	14	
IV	Synthesis of Dyes Based on	12	04	04	10	18	
IV	Constitution						
V	Synthesis of Dyes Based on	12	04	04	10	18	
V	Application						
	Total	42	18	20	32	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

<u>Note</u>: This specification table provides general guidelines to assist student for their learning and to teachers to teach and question paper designers/setters to formulate test items/questions assess the attainment of the Uos. The actual distribution of marks at

different taxonomy levels (of R, U and A) in the question paper may vary slightly from above table.

10. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course: Students should conduct following activities in group and prepare reports of about 5 pages for each activity, also collect/record physical evidences for their (student's) portfolio which will be useful for their placement interviews:

- Literature survey of natural and synthetic colouring matters.
- Collection and Study of various samples dyes with natural colouring matters.
- Visit to dyestuff manufacturing industries to study their processing technologies and prepare reports.
- Group discussion on recent innovation in dyestuff manufacturing technology.
- Seminar/Quiz/Presentation on recent developments in dyestuffs manufacturing.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course:

- a) Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b) Guide student(s) in undertaking micro-projects.
- c) 'L' in section No. 4 means different types of teaching methods that are to be employed by teachers to develop the outcomes.
- d) About **20%** of the topics/sub-topics which are relatively simpler or descriptive in nature is to be given to the students for **self-learning**, but to be assessed using different assessment methods.
- e) With respect to **section No.10**, teachers need to ensure to create opportunities and provisions for **co-curricular activities**.
- f) Encourage students to refer different websites for having a deeper understanding of the subject.
- g) Assign unit wise assignment to group of 4 to 5 students.
- h) Use of video, animations, to explain concepts, facts and application related to printing.

12. SUGGESTED MICRO-PROJECTS

Only one micro-project is planned to be undertaken by a student that needs to be assigned to him/her in the beginning of the semester. In the first four semesters, the micro-project are group-based (group of 3 to 5). However, **in the fifth and sixth semesters**, the number of students in the group should **not exceed three**.

The micro-project could be industry application based, internet-based, workshop-based, laboratory-based or field-based. Each micro-project should encompass two or more Cos which are in fact, an integration of PrOs, Uos and ADOs. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. The duration of the micro-project should be about **14**-

16 (fourteen to sixteen) student engagement hours during the course. The students ought to submit micro-project by the end of the semester to develop the industry-oriented Cos.

A suggestive list of micro-projects is given here. This has to match the competency and the Cos. Similar micro-projects could be added by the concerned course teacher:

- a) Safety data sheet: Visit intermediate manufacturing units' and collect material safety data sheet (MSDS) of various intermediates.
- b) **Sample collection:** Visit market shops and collect the samples in which textile dyes are used as their non-textile application.
- c) Natural dyed sample collection: Visit textile dyeing industries/market shops who are using natural colouring matters as dyestuffs, and collect at least 20 to 30 various dyed samples.
- d) **Colour theories:** Prepare a short video for explaining various colour theories and their relation with chemical constitution.
- e) **Intermediate:** Prepare a short video film for explaining the synthesis of intermediate used for dye manufacturing.
- f) **Dyes:** Prepare a short video film and presentation for explaining the synthesis of dyestuffs on the bases of their constitutions and applications.

13. SUGGESTED LEARNING RESOURCES

S. No.	Title of Book	Author	Publication with place, year and ISBN
	Synthetic Dyes	G. R. Chatwal	Himalaya Publishing House,
1			Mumbai – 400004
		3.6.0.37.1	ISBN: 9788184882209
	A Textbook of Synthetic	M. S. Yadav	Anmol Publications Pvt Ltd, New
2	Dyes	O. D. Tyagi	Delhi
			ISBN: 9788170413493
	Chemistry of Dyes and	Dr V. A. Shenai	Sevak Pulications, Mumbai –
3	Principles of Dyeing		400031
	Vol - II		
	Synthetic Organic	O. P Agarwal	Krishan Prakashan, Meerut,
4	Chemistry		Uttar Pradesh – 250001
			ISBN: 9788182831773
	Unit processes in	P. H. Groggins	Mc Graw-Hill Ltd.,
5	Organic Synthesis		New Delhi.
			ISBN: 9780074621431
6	Chemistry of Synthetic	K.	Academic Press, New York, USA
0	dyes Vol – I to VII	VenkatRaman,	ISBN: 978-0124145405

14. SOFTWARE/LEARNING WEBSITES

- a) https://nptel.ac.in
- b) www.youtube.com
- c) www.dyes-pigments.com
- d) https://textilechemrose.blogspot.com
- e) www.textilelearner.net
- f) www.textiletutorials.com
- g) www.textilefashionstudy.com

15. PO-COMPETENCY-CO MAPPING

Semester III	Chemistry of Intermediates and Dyes – 4352803						
	Pos						
Competency & Course Outcomes	PO 1 Basic & Discipline specific knowledge	PO 2 Problem Analysis	PO 3 Design/ development of solutions	PO 4 Engineering Tools, Experimentation &Testing	PO 5 Engineering practices for society, sustainability & environment	PO 6 Project Management	PO 7 Life-long learning
Competency	Use knowle sustainabili	_	rills to conduct	processing of denin	ns & garments a	and improving q	uality &
Course Outcomes CO a) Explain chemistry of natural and synthetic dyestuffs	3	3		+	3	2	2
CO b) Explain different colour theories for preparing and identifying colour	3	3		-	3	2	3
CO c) Explain synthesis of different intermediates	3	3	2		3	2	2
CO d) Describe synthesis of different dyestuffs based on their constitution	3	3	2		3	2	2
CO e)Describe synthesis of different dyestuffs based on their application	3	3	2		3	2	2

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

GTU Resource Persons

S. No.	Name and Designation	Institute	Contact No.	Email
1)	Mr. C. R. Madhu Lecturer	R. C. Technical Institute, Sola, Ahmedabad	9879889712	crm4chemistry@gmail.com
2)	Mr. D. D. Vyas Lecturer	Dr. S. & S. S. Ghandhy College of Engg. & Tech., Surat	9879479424	ddvyas4edu@gmail.com