隠れ変数を持つ確率モデルの情報幾何

藤平燎

大阪大学理学研究科数学専攻

統計サマーセミナー 2018 8月5日~8日

- 1 微分幾何学
- 2 情報幾何学
- 3 隠れ変数を含むモデル

S を多様体とし、関数、曲線はすべて C^{∞} 級とする、S 上の関数

全体の集合を $C^{\infty}(S)$ とする.

 $X: C^{\infty}(S) \to C^{\infty}(S)$ が微分作用素であるとは,

線形性 $X(a\varphi + b\psi) = aX(\varphi) + bX(\psi)$

Leipniz 則 $X(\varphi\psi) = \varphi X(\psi) + X(\varphi)\psi$

をみたすことをいう. $C^{\infty}(S)$ 上の微分作用素を S 上のベクトル

場という. S 上のベクトル場全体を $\mathcal{X}(S)$ とする.

各 $p \in S$ で、接ベクトル $X_p : C^{\infty}(S) \to \mathbb{R}$ を

$$X_p(\varphi) = (X\varphi)(p)$$

で定義する. p における椄ベクトル全体の集合を T_pS と書き, p における S の接空間という. T_pS は線形空間である.

 $g: \mathcal{X}(S) \times \mathcal{X}(S) \to C^{\infty}(S)$ が Riemann 計量とは、各

$$g:\mathcal{X}(S) imes\mathcal{X}(S) o C^\infty(S)$$
 が Riemann 計量とは、各 $p\in S$ で、 $a_n(X_n,Y_n)=a(X,Y)(n)$

 $p \in S \mathcal{C}$. $q_n(X_n, Y_n) = q(X, Y)(p)$

によって定まる $g_p: T_pS \times T_pS \to \mathbb{R}$ が T_pS 上の内積となっ

ていることをいう.

Riemann 計量を定めると, S 上の曲線に対して, 直交が定義される. S 上の曲線 $\alpha: (-\varepsilon, \varepsilon) \to S$ に対し, $t \in (-\varepsilon, \varepsilon)$ におけ

る。
$$\dot{\alpha}$$
 との面線は、 $(-\epsilon,\epsilon)$ から、 $\dot{\epsilon}$ と、 $(-\epsilon,\epsilon)$ にありる接べクトル $\dot{\alpha}_t \in T_{\alpha_t}S$ を

$$\dot{lpha}_t(arphi) = rac{\mathsf{d}(arphi \circ lpha)}{\mathsf{d}t}(t)$$

で定める. $lpha_0=eta_0=p$ なる 2 曲線 lpha と eta が p で g に関して直交するとは,

$$g_p(\dot{lpha}_0,\dot{eta}_0)=0$$

となっていることをいう.

$$abla: \mathcal{X}(S) imes \mathcal{X}(S) o \mathcal{X}(S)$$
 がアフィン接続であるとは,

$$abla: \mathcal{X}(S) imes\mathcal{X}(S) o\mathcal{X}(S)$$
 がアフィン接続であるとは、 $abla_X(Y+Z)=
abla_XY+
abla_XZ$

 $\nabla_X(\varphi Y) = (X\varphi)Y + \varphi\nabla_X Y$

$$\nabla_X(Y+Z) = \nabla_XY + \nabla_XZ$$
$$\nabla_{X+Y}Z = \nabla_XZ + \nabla_YZ$$

 $\nabla_{\varphi X} Y = \varphi \nabla_X Y$

をみたすことをいう.

アフィン接続を定めると、S 上のベクトル場に対して、平行が定義される。 曲線 α が与えられたとき、 α 上の各 α_t に $\dot{\alpha}_t$ を対応させることで、曲線に沿ったベクトル場 $\dot{\alpha}$ が定義できる。ベクトル場 $X \in \mathcal{X}(S)$ がアフィン接続 ∇ に関して、曲線 α に沿って平行とは、

$$\nabla_{\dot{\alpha}}X=0$$

となっていることをいう. また,

$$\nabla_{\dot{\alpha}}\dot{\alpha}=0$$

をみたす曲線 α を ∇ に関する測地線という.

 ∇ の曲率 $R: \mathcal{X}(S) \times \mathcal{X}(S) \times \mathcal{X}(S) \to \mathcal{X}(S)$ と振率 $T: \mathcal{X}(S) \times \mathcal{X}(S) \to \mathcal{X}(S)$ を

$$T: \mathcal{X}(S) \times \mathcal{X}(S) \to \mathcal{X}(S)$$
 &

 $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$ で定義し、曲率と捩率がともに恒等的に 0 のとき、S は ∇ に関して平坦であるという。S の部分多様体 M に対して、M が ∇ に関して自己平行であるとは、任意のベクトル場 $X,Y \in \mathcal{X}(M)$ に対して、 $\nabla_X Y \in \mathcal{X}(M)$ となることをいう。

 $R(X, Y, Z) = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$

 ∇^0 が Riemann 多様体 (S,g) の Levi-Civita 接続であるとは,

$$\nabla_X^0 Y - \nabla_Y^0 X - [X, Y] = 0$$

 $Xg(Y, Z) = g(\nabla_X^0 Y, Z) + g(Y, \nabla_X^0 Z)$

をみたすことをいう. Riemann 幾何学でアフィン接続といえば、

通常は Levi-Civita 接続のことを指す.

- 1 微分幾何学
- 2 情報幾何学
- 3 隠れ変数を含むモデル

ここでは、確率分布は有限集合上の分布のみを扱う、 2 を有限集合

ここでは、唯平分布は有限集合工の分布のみを扱う。
$$\mathcal X$$
 を有限集合として、 $\mathcal X$ 上の確率分布全体の集合を、

として、 \mathcal{X} 上の確率分布全体の集合を、 $S := \left\{ p: \mathcal{X} o (0,1) \, \middle| \, \sum_{x \in \mathcal{X}} p(x) = 1
ight\}$

とする. S はユークリッド空間の開部分集合なので. 多様体である.

$$E_p$$
 は p に関する期待値を表すとする.

で Riemann 計量を定める. これを Fisher 計量という.

 $g_p(X_p, Y_p) := E_p[(X \log p)(Y \log p)]$

$$abla^0$$
 を Levi-Civita 接続として,

$$g_p(\nabla_X^e Y, Z)$$

$$= g_p(\nabla_X^0 Y, Z) - \frac{1}{2} E_p[(X \log p)(Y \log p)(Z \log p)]$$

によって定まるアフィン接続
$$abla^e$$
 を指数型接続といい,

$$g_p(\nabla_X^m Y, Z)$$

$$= g_p(\nabla_X^0 Y, Z) + \frac{1}{2} E_p[(X \log p)(Y \log p)(Z \log p)]$$

によって定まるアフィン接続 ∇^m を混合型接続という.

 $K < \sharp \mathcal{X}$ とする. 関数 $C : \mathcal{X} \to \mathbb{R}$ と $F : \mathcal{X} \to \mathbb{R}^K$ が与えられたとき. パラメータ $\theta \in \Theta \subset \mathbb{R}^K$ を用いて.

$$p_{\theta}(x) = \exp(C(x) + \theta^T F(x) - \psi(\theta))$$

で表される分布族 $\{p_{\theta} \mid \theta \in \Theta\}$ を, 指数型分布族という. ここで.

$$\psi(\theta) = \log \left(\sum_{x \in \mathcal{X}} \exp(C(x) + \theta^T F(x)) \right)$$

S の部分多様体 M が ∇^e -自己平行であることと, M が指数型分布族であることは同値である.

 $q_0, q_1, \ldots, q_K \in S$ が与えられたとき、パラメータ $n \in \mathcal{H} \subset \mathbb{R}^K$ を用いて、

$$p_{\eta}(x) = \left(1 - \sum\limits_{k=1}^{K} \eta_k
ight)q_0(x) + \sum\limits_{k=1}^{K} \eta_k q_k(x)$$

で表される分布族 $\{p_{\eta} \mid \eta \in \mathcal{H}\}$ を,混合型分布族という.S の部分多様体 M が ∇^m -自己平行であることと,M が混合型分布族であることは同値である.

 $p, q \in S$ に対して.

$$\mathsf{KL}[p\|q] := \sum_{x \in \mathcal{X}} p(x) \log rac{p(x)}{q(x)}$$

を p から q への Kullback-Leibler ダイバージェンスという. Kullback-Leibler ダイバージェンスは対称ではないが,三角不 当式

$$\mathsf{KL}[p||q] + \mathsf{KL}[q||r] > \mathsf{KL}[p||r]$$

が成り立ち, p と q を結ぶ ∇^m -測地線と q と r を結ぶ ∇^e -測地線が q で直交しているときに限り, Pythagoras の定理

$$\mathsf{KL}[p||q] + \mathsf{KL}[q||r] = \mathsf{KL}[p||r]$$

が成り立つ.

確率モデル $M=\{p_{\theta}\mid \theta\in\Theta\}$ と、未知の分布に従う独立な確率変数列の実現値 $x_1,\ldots,x_N\in\mathcal{X}$ が与えられたとき、

$$\hat{ heta}_{ extsf{N}} := rg\max_{ heta} \prod_{n=1}^{ extsf{N}} p_{ heta}(x_n)$$

を最尤推定量という.

経験分布 \hat{p}_N を,

$$\widehat{p}_{N}(x) = \frac{1}{N} \sum_{n=1}^{N} \delta(x - x_{n})$$

で定義すると,

$$\hat{\theta}_N = \arg\min_{\hat{p}} \mathsf{KL}[\hat{p}_N \| p_{\theta}]$$

が成り立つ.

 \hat{p}_N を通る ∇^m -測地線が p_{θ^*} で M と直交しているとする. このとき, 任意の θ に対し, Pythagoras の定理

$$\mathsf{KL}[\widehat{p}_N \| p_{\theta^*}] + \mathsf{KL}[p_{\theta^*} \| p_{\theta}] = \mathsf{KL}[\widehat{p}_N \| p_{\theta}]$$

が成り立つので,

$$\mathsf{KL}[\widehat{p}_N \| p_{\theta^*}] < \mathsf{KL}[\widehat{p}_N \| p_{\theta}]$$

よって.

$$heta^* = \mathop{\mathrm{arg \; min \; KL}} [\widehat{p}_N \| p_{ heta}] = \widehat{\theta}_N$$

であるから、最尤推定は経験分布から確率モデルへの ∇^m -直交射 影に他ならない。特に、確率モデルが指数型ならば、最尤推定は一意的である。

- 1 微分幾何学
- 2 情報幾何学
- 3 隠れ変数を含むモデル

 $\mathcal{X}=\mathcal{Y}\times\mathcal{Z}$ として、 $\mathcal{X},\mathcal{Y},\mathcal{Z}$ 上の確率分布全体をそれぞれ $S^{\mathcal{X}},S^{\mathcal{Y}},S^{\mathcal{Z}}$ とする.指数型分布族 $M=\{p_{\theta}\in S^{\mathcal{X}}\mid \theta\in\Theta\}$ と、未知の分布に従う独立な確率変数列 $\{x_n=(y_n,z_n)\}_{n=1}^N$ の

と,未知の分布に従う独立な確率変数列 $\{x_n=(y_n,z_n)\}_{n=1}^N$ の一部 $\{y_n\}_{n=1}^N$ が与えられたとする. $\{z_n\}_{n=1}^N$ を隠れ変数という.経験分布を.

$$\widehat{q}_N(x) = \frac{1}{N} \sum_{n=1}^{N} \delta(y - y_n)$$

として.

$$D := \left\{ p \in S^{\mathcal{X}} \mid \sum_{z \in \mathcal{Z}} p(y, z) = \widehat{q}_{N}(y) \right\}$$

とする. D は $abla^m$ -自己平行で, D の各点は $\widehat{q}_N(y)r(z|y)$ と表せる.

$$heta_{t+1} = \mathop{\mathsf{arg}} \min \mathsf{KL}[\widehat{q}_{\mathsf{N}}(y) r_{ heta_t}(z|y) \| p_{ heta}(y,z)]$$

に従ってパラメータを更新するアルゴリズムを EM アルゴリズムという

$$\widehat{q}_N(y)r_{ heta_t}(z|y) = rgmin_{p \in D} \mathsf{KL}[p\|p_{ heta_t}]$$

より, EM アルゴリズムは M から D への ∇^e -射影と D から M への ∇^m -射影を交互に繰り返していることがわかる.

$$D = \{\hat{q}_N(y)r_n(z|y) \mid \eta \in \mathcal{H}\}\$$

として.

$$\eta_{t+1} = rg \min_{\eta} \mathsf{KL}[\widehat{q}_{\mathcal{N}}(y) r_{\eta}(z|y) \| p_{ heta_t}(y,z)]$$

$$heta_{t+1} = rg \min_{\scriptscriptstylearOmega} \mathsf{KL}[\widehat{q}_{\scriptscriptstylearN}(y) r_{\eta_{t+1}}(z|y) \| p_{ heta}(y,z)]$$

でパラメータを更新するアルゴリズムを一般化 EM アルゴリズムという. 各 η に対して, $r_{\eta}(z|y)$ が条件付き独立となるようにパラメータを決める事が多い.

複雑な分布を独立分布で近似することを平均場近似という. 平均場近似は ∇^e -自己平行部分多様体への ∇^e -射影なので, 一般に一意に定まらない.