

CHEMICAL BONDS

Master of Science in Data Science Damiano Piovesan

2)

MATEMATICA

Atomic theory - Dalton (1808)

- Matter is of atoms
- All atoms of the same element have the same chemical properties
- In chemical reaction atoms preserve their identity
- Compounds are made of a combination of two or more atom types
- A molecule is the combination of two or more bound atoms that act as a unit

FIGURA 2.5 Alcuni elementi biatomicici, triatomici e poliatomici. Idrogeno, azoto, ossigeno e cloro sono elementi biatomici. L'ozono, O₃, è un elemento triatomico. Una forma dello zolfo, S₈, costituisce un elemento poliatomico.

Atoms abundance

Human body (%) Earth

No. atoms - Mass

(% crost mass)

Н	63.0	10.0	0.9
0	25.4	64.8	49.3
C	9.4	18.0	0.08
N	1.4	3.1	0.03
Ca	0.31	1.8	3.4
P	0.22	1.4	0.12
K	0.06	0.4	2.4
S	0.05	0.3	0.06
Cl	0.03	0.2	0.2
Na	0.03	0.1	2.7
Mg	0.01	0.04	1.9
Si	_	-	25.8
Al	_	_	7.6
Fe	_	_	4.7
Altri	0.01	_	_

Subatomic particles

	Charge	Mass (g)	Mass (amu)	Mass (amu, rounded)
Proton	+1	1.6726×10^{-24}	1.0073	1
Electron	-1	9.1094×10^{-28}	5.4858×10^{-4}	0.0005
Neutron	0	1.6749×10^{-24}	1.0087	1

1 Atomic Mass Unit (amu) = 1 Dalton

1 / 12 of the mass of the carbon-12 atom

Periodic table - Mendeleev (1860)

Periods (rows)

Groups (columns), similar properties

Main groups

- 1, 2, 13-18 (IUPAC)
- A (classic)

1 H Hydrogen 1.008 3 Li Lithium 6.94 9.0 9.0 11 Na Sodium 22.9990 24.99000 24.99000 24.99000 24.99000 24.99000 24.99000 24.99000 24.990000 24.990000 24.990000 24.9900000 24.9900000000000000000000000000000000000	e dlium on 2 2 g	Atomic Number 6 Symbol Carbon Average Atomic Mass 12.011							metals — nonmetals — metaloids —						8 O 0xygen 15.999 16 S Sulfur 32.06	9 F Fluorine 18.998 17 Cl Chlorine 35.45	2 He Helium 4.003 10 Ne Neon 20.180 18 Ar Argon 39.948
19 C C C C C C C C C C C C C C C C C C C	a	21 SC Scandium 44.956	22 Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	25 Mn Manganese 54.938	26 Fe lron 55.845	27 Co Cobalt 58.933	28 Ni Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	Ga Gallium 69.723	32 Ge Germanium 72.630	33 AS Arsenic 74.922	34 Se Selenium 78.97	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 85.468 Stroi	r	39 Y Yttrium 88.906	Zr Zr Zirconium 91.224	A1 Nb Niobium 92.906	42 Mo Molybdenu 95.95	43 TC Technetium [97]	Ru Ruthenium 101.07	45 Rh Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.710	51 Sb Antimony 121.760	53 Te Tellurium 127.60	53 lodine 126.904	54 Xe Xenon 131.293
55 Si Cs Bi Cesium 132.905 Bar 137.905	a * 57 - 70	71 Lu Lutetium 174.967	72 Hf Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Re Rhenium 186.207	76 OS 0smium 190.23	77 r ridium 192.217	78 Pt Platinum 195.084	79 Au 60ld 196.997	80 Hg Mercury 200.592	81 Tl Thallium 204.38	82 Pb Lead 207.2	Bi Bismuth 208.980	Po Polonium [209]	85 At Astatine [210]	Rn Radon [222]
87 Ri Fr Francium [223] Rad Rad [223]	a **	103 Lr Lawrenciur [262]	104 Rf Rutherfordiur [267]	Db Dubnium [270]	106 Sg Seaborgiu	Bh Bohrium [270]	108 HS Hassium [270]	109 Mt Meitnerium [278]	DS Ds Darmstadtium [281]	Rg Rg Roentgeniu [281]	Cn Cn Copernicium [285]	Nh Nh Nihonium [286]	114 Fl Flerovium [289]	MC Mc Moscovium [289]	116 LV Livermorium [293]	117 TS n Tennessine [293]	Og Oganesson [294]
*Lanthanide se	57 eries La Lanthanur 138.905	58 Ce Cerium 140.116	59 Pr Praseodymiu 140.908	60 Nd Neodymiur 144.242	Pm Promethiu [145]	62 Sm Samariun 150.36		64 Gd Gadoliniur 157.25	65 Tb Terbium 158.925	Dy Dysprosius 162.500	67 Ho Holmium 164.930	68 Er Erbium 167.259	69 Tm Thulium 168.934	70 Yb Ytterbiun 173.04			
**Actinide serie	AC Actinium [227]	90 Th Thorium 232.038	Pa Protactiniu 231.036	92 U Uranium 238.029	93 Np Neptuniur [237]	Pu Pu Plutonium [244]	95 Am Americium [243]	96 Cm Curium [247]	97 Bk Berkelium [247]	98 Cf Californiu [251]	99 Es Einsteiniu [252]	Fermium [257]	Md Md Mendeleviu [258]	No Nobelium (259)			

Groups

- Metals, solid at room temp. (except Mercury, Hg), lustrous, conduct electricity, react with halogens, group 7A (Zn + Cl → ZnCl)
- Non metals, do not coduct electricity (except graphite), tend to accept electrons
 - Halogens (group 7a), react with sodium NaX
 - Noble gas, do not react
- Metalloids (semimetals), B Boron, Si Silicon, Ge Germanium, As -Arsenic, Sb - Antimony, Te - Tellurium

Electrons

Niels Bohr (1913)

- The energy of the electron is quantized
- The ground state corresponds is at minimum energy
- Electrons are arranged into "shell" with growing energy

Atomic radius

Increasing atomic radius

Octet rule

The maximum atomic stability (lower pot. energy) is obtained taking/losing/sharing electrons with other atoms in order to reach **eighth electrons** in the **external (valence) shell**, irrespective of the number of protons (charge)

- Atoms tend to react to reach the electronic configuration of the closest noble gas
- The rules does not apply to transition metals
- Periods 1 and 2 do not form ions with charge >+2
- Atoms and the corresponding ions have completely different chemical properties

Noble	Electron
Gas	Configuration
He	$1s^{2}$
Ne	$[He]2s^2 2p^6$
Ar	[Ne]3s2 3p6
Kr	[Ar]4s2 4p6 3d10
Xe	$[Kr]5s^2 5p^6 4d^{10}$

Stable configurations

- The first period (first energetic level) can accommodate 2 electrons
- The other levels can accomodate 8 electrons
- Each level has a **S** and **P sublevels** of 2 and 6 electrons, respectively
- H and He don't have P level
- Also other atoms can have only S when considering the external (valence) shell

Valence electrons

- The most external shell
- Participate to bond formation
- Provide chemical properties of an atom

He:	1s ²
:Ne:	1s ² 2s ² 2p ⁶
: Ar:	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶
:Kr:	[Ar]4s ² 3d ¹⁰ 4p ⁶
:Xe:	[Kr]5s ² 4d ¹⁰ 5p ⁶
:Rn:	[Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁶

Bonds

Bond formation and energy transfers

- Chemical bonds are forces that hold atoms together to make compounds or molecules
- Nuclei and electrons inside a molecule feel attraction and repulsion because they are charged
- When two atoms form a bond the resulting molecule (or ion) has a lower potential energy

Bond energy

- Not all atomic combinations (molecules) are possible
- The potential energy of the molecule has to be lower than isolated atoms
- A molecule forms only if binding atoms release potential energy
- The bond energy (kJ/mol) is the energy necessary to break all atoms bonds of a mole of compound
- Higher the energy, higher the bond strength

Bond length

- The bond length is the distance between two atomic nuclei
- Increase with atom size and with the opposite of the bonding force

Bond types

- Ionic, two ions with opposite charge, metal + nonmetal (Δelettronegativity > 1.9)
- Covalent, two atoms that share one or more electron pairs, two nonmetals or nonmetal + metalloid
 - Pure (non polar), Δelettronegativity < 0.5
 - **Polar**, 0.5 < ∆elettronegativity < 1.9
 - Dative, the shared electron pair come from a single atom

Electronegativity

- Tendency of an atom to attract a shared pair of electrons (of a bonded atom)
- Affected by atomic number (group) and the distance (atom radius) of valence electrons (period) from the charged nucleus

H 2.20		_															² He no data
³ Li 0.98	Be 1.57											⁵ B 2.04	6 C 2.55	⁷ N 3.04	8 0 3.44	° F 3.98	Ne no data
Na 0.93	Mg 1.31				1							13 AI 1.61	Si 1.90	P 2.19	S 2.58	¹⁷ CI 3.16	Ar no data
¹⁹ K 0.82	Ca 1.00	Sc 1.36	²² Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
Rb 0.82	Sr 0.95	³⁹ Y 1.22	⁴⁰ Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	48 Cd 1.69	In 1.78	⁵⁰ Sn 1.96	Sb 2.05	Te 2.1	⁵³ 2.66	Xe 2.6
Cs 0.79	Ba 0.89	57-71	Hf 1.3	⁷³ Ta 1.5	W 2.36	Re 1.9	0s 2.2	⁷⁷ Ir 2.2	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn no data
Fr 0.7	Ra 0.89	89-103	Rf no data	Db no data	Sg no data	Bh no data	Hs no data	Mt no data	Ds no data	Rg no data	Cn no data	Nh no data	FI no data	Mc no data	Lv no data	Ts no data	Og no data
Lov	V															ŀ	ligh

Ionic bond

- Transfer of one or more electrons from the valence shell of the atom with the lower electronegativity the other atom
- Electrostatic force between ions of opposite charge. The total charge is zero
- Ionic compounds are not molecules but have a precise stoichiometry

Ionic bond

- Negative ions get the configuration of the following noble gas
- Positive ions get the configuration of the preceding noble gas
- lonic bonds have the longest range effect
- The force has radial direction
- High energy 170 1500 kJ/mol

Ionic bond

- lons are well ordered in the compound so that they form crystals
- lonic compounds melt at high temperature, are solid at room temperature and are good conductors

Ions with a predictable charge

Covalent bond

- Two atoms share one or more electron pairs
- Electrons are used to reach the octet and belong to both atoms at the same time
- Bond energy is around 50 110 Kj/mol
 - Pure (non polar), ∆elettronegativity < 0.5
 - **Polar**, 0.5 < ∆elettronegativity < 1.9
 - Dative, the shared electron pair come from a single atom

Covalent bond types

- · Single, only one pair of electrons is shared
- Double, two pairs
- Triple, three pairs

Polar covalent bond

- Oxygen, nitrogen and sulfur electrons are usually displaced when they bind a hydrogen
- Groups -OH, -NH, -SH polarize surrounding regions
- C=O is also polar

Polar covalent and ionic bonds

- Higher the electronegativity difference between bound atoms higher the polar tendency of the bond
- With Δ-electronegativity > 1.9 the atom rip off the electron from the binding partner and form an ionic bond

Metal bond

- Valence electrons are shared between multiple nuclei
- Higher the strength, higher the number of shared electrons
- Mobility of external electrons defines the properties
 - shineness
 - electric/thermal conduction
 - malleability
 - ductility

Weak interactions (non-covalent)

Van der Waals

DIPARTIMENTO MATEMATICA

- Instantaneous or induced dipoles
- Attractive at long range
- Repulsive at short range
- Depending on fluctuations they can be
 - Temporary dipoles (London)
 - Dipole-dipole induced (Debye)
 - Permanent dipoles (Keesom)

Van der Waals

- Very weak forces (1 kj/mol)
- Thanks to London dispersion forces all compounds can become liquid (Neon -246° C)
- Geckos use toe-pads consisting of millions of thin-hairs to increase the number of VdW interactions

Hydrogen bond

- Special case of dipole-dipole but more energetic
- H get slightly positive when bound to an O,
 N, F. Then it can interact with another O, N,
- How many H-bonds a molecule of H₂O can have?
- How many ligands are bound to O?

Interaction forces

Molecular shape

- Molecular geometry is given by bond angles
- Valence Shell Electron-Pair Repulsion theory (VSEPR)
- Electron density is distributed to maximize the distance between bonds (or electron pairs)
- Depending on the number of pairs in the central nucleus
 - Two pairs → linear, 180°
 - Three pairs → equilateral triangle, 120°
 - Four pairs → tetrahedron, 109.5°

VSEPR - Free electrons pairs

- Free electron pairs have a stronger repulsion in comparison with shared pairs (occupy more space)
- Double and triple covalent bonds have same geometry of single bonds

Beryllium hydride	BeH₂	2	H ° Be °H	Н — Ве — Н	180°	180° H
Trihydridoboron (borane)	BH ₃	3	H ° B ° H H	H — B H	120°	120°
Methane	CH ₄	4	H H .° C .° H • • • H	H C H	109,5°	1095°

Ammonia	NH₃	4	H \$ N \$ H H H	H H	107,3°	H 707.3°
	H₂O	4	H ° 0 ° H	•••• О — н	105°	
	CO ₂	2	:0::0c::0:	:0=c=0:	180°	:000:
Hydrogen cyanide	HCN	2	H ° C ° ° N °	H — C ≡ N:	180°	H-0-N:

