

Grupo Disciplinar de Controlo (ADEEA) TF – TESTE FINAL

Controlo de Sistemas

Ref.a: LRTF01

Data: 19-dezembro-2019

ENUNCIADO

I - PARTE TEÓRICA

Considere dois sistemas de 1^a ordem (FT1 e FT2), em que as suas respostas temporais $y_1(t)$ e $y_2(t)$, foram obtidas com um escalão de posição na entrada de cada sistema (Figura 1):

Modelo de estado de um circuito elétrico (duplo compensador de atraso de fase simples com efeito de carga), com $R_1=R_2=R$ e $C_1=C_2=C$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{RC} & \frac{1}{RC} \\ \frac{1}{RC} & -\frac{1}{RC} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{RC} \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

FIGURA 2

- (2,0) 1 Com base nas respostas temporais apresentadas na Figura 1, determine as funções de Transferência (FT1 e FT2). Desenhe o Mapa polo-zero dos 2 sistemas (FT1 e FT2) no mesmo diagrama.
- (4,0) 2 Com base no Modelo de Estado apresentado na Fig.2, obtenha a função de transferência na forma literal e na forma numérica, considerando: R=1kΩ e C=5mF.

II - PARTE PRÁTICA

Considere o seguinte sistema hidráulico com 3 tanques interativos, com entrada em q_1 e saída em q_4 :

- (4,0) 3 Determine o Modelo de Estado do sistema de nível (Figura 3), considerando como variáveis de estado $x_1 = h_1$, $x_2 = h_2$, $x_3 = h_3$.
- (2,0) 4 Desenhar o diagrama de blocos inicial do sistema da Figura 3 (utilizar as equações iniciais).

Grupo Disciplinar de Controlo (ADEEA) **TF – TESTE FINAL**Controlo de Sistemas

Ref.^a: LRTF01

Data: 19-dezembro-2019

Figura 4

- (2,0) 5 Determine o erro forçado do sistema da Figura 4, para uma entrada do tipo escalão de posição.
- (4,0) 6 Analise a estabilidade do sistema da Figura 4, a partir do critério de estabilidade do Diagrama do Lugar Geométrico das Raízes (*Root-Locus*).

(2,0) 7 – Com base no Diagrama de amplitude e de fase, referentes a uma FTCA (Figura 5), determine graficamente a margem de ganho e a margem de fase. Conclua sobre a estabilidade. Nota: (Marcar G_m e P_m diretamente no enunciado)

NOTAS FINAIS - Para a resolução da prova atenda às seguintes notas:

- 1 Deverá apresentar todas as justificações a cálculos realizados.
- 2 O enunciado é entregue juntamente com ou sem a folha de prova.

Nome				Aluno nº	
Turma	Semestre	Classificação	() O Professor	
			FIM		

Estabilidade: DLGR (Root-Locus)

Tabela com as Regras de Construção do DLGR (RL K > 0 e CRL K < 0)

Table 8-1 Rules of Construction of Root Loci

1. $K=0$ points	The $K = 0$ points on the complete root loci are at the poles of $G(s)H(s)$. (The poles include those at infinity.)
2. $K = \pm \infty$ points	The $K = \pm \infty$ points on the complete root loci are at the zeros of $G(s)H(s)$. (The zeros include those at infinity.)
 Number of separate root loci 	The total number of root loci is equal to the order of the equation $F(s) = 0$.
Symmetry of root loci	The complete root loci of systems with rational transfer functions with constant coefficients are symmetrical with respect to the real axis of the splane.
 Asymptotes of root loci as s → ∞ 	For large values of s , the root loci $(K > 0)$ are asymptotic to straight lines with angles given by
	$\theta_k = \frac{(2k+1)\pi}{n-m}$
	and for the complementary root loci ($K < 0$)
	$\theta_k = \frac{2k\pi}{n-m}$
	where $k = 0, 1, 2, \ldots, n - m - 1$.
 Intersection of the asymptotes (centroids) 	 (a) The intersection of the asymptotes lies only on the real axis in the s-plane. (b) The point of intersection of the asymptotes on the real axis is given by (for all values of K)
	$\sigma_1 = \frac{\sum \text{ real parts of}}{\text{poles of } G(s)H(s)} = \frac{\sum \text{ real parts of}}{\text{zeros of } G(s)H(s)}$
7. Root loci on the real axis	On a given section on the real axis in the s-plane, root loci are found for $K \ge 0$ in the section only if the total number of real poles and real zeros of $G(s)H(s)$ to the right of the section is odd. If the total number of real poles and zeros to the right of a given section is even, complementary root loci $(K \le 0)$ are found in the section.
Angles of departure and arrival	The angle of departure of the root locus $(K \ge 0)$ from a pole or the angle of arrival at a zero of $G(s)H(s)$ can be determined by assuming a point s_1 that is on the root locus associated with the pole, or zero, and which is very close to the pole, or zero,

and applying the equation

$$\frac{|G(s_1)H(s_1)|}{|G(s_1)H(s_1)|} = \sum_{i=1}^{m} \frac{|s_1 + z_i|}{|s_1 + z_i|} - \sum_{j=1}^{n} \frac{|s_1 + p_j|}{|s_1 + z_j|}$$
$$= (2k+1)\pi \qquad k = 0, \pm 1, \pm 2, \dots$$

The angle of departure or arrival of a complementary root locus is determined from

$$\frac{[G(s_1)H(s_1)]}{[G(s_1)H(s_1)]} = \sum_{i=1}^{m} \frac{[s_1 + z_i]}{[s_1 + z_i]} - \sum_{j=1}^{n} \frac{[s_1 + p_j]}{[s_1 + z_j]}$$
$$= 2k\pi \qquad k = 0, \pm 1, \pm 2, \dots$$

- Intersection of the root loci with the imaginary axis
- Breakaway points (saddle points)
- 11. Calculation of the values of K on the root loci

The values of ω and K at the crossing points of the root loci on the imaginary axis of the s-plane may be obtained by use of the Routh-Hurwitz criterion. The Bode plot of G(s)H(s) may also be used.

The breakaway points on the complete root loci are determined by finding the roots of dK/ds = 0, or dG(s)H(s)/ds = 0. These are necessary conditions only. Alternatively, the breakaway points are determined from a tabulation using the coefficients of the characteristic equations F(s) = 0 and F'(s) = 0. The conditions are necessary and sufficient,

The absolute value of K at any point s_1 on the complete root loci is determined from the equation

$$|K| = \frac{1}{|G(s_1)H(s_1)|}$$
product of lengths of vectors drawn
$$= \frac{\text{from the poles of } G(s)H(s) \text{ to } s_1}{\text{product of lengths of vectors drawn}}$$
from the zeros of $G(s)H(s)$ to s_1

(Tabela usada nas aulas)

Adaptado do livro :

Automatic Control Systems,
Benjamim C. Kuo , 3rd Edition (1975)