

(12) Offenlegungsschrift
(11) DE 3316233 A1

(51) Int. Cl. 3:
F04F 5/42

(21) Aktenzeichen: P 33 16 233.6
(22) Anmeldetag: 4. 5. 83
(43) Offenlegungstag: 8. 11. 84

(71) Anmelder:
Schladofsky, Leopold, Dipl.-Ing.(FH), 5910 Kreuztal,
DE

(72) Erfinder:
gleich Anmelder

DOC

(54) Vakuum-Saugpumpe

Nach dem Prinzip einer Injektordüse arbeitende Vakuum-Saugpumpe weist zumindest einen seitlichen Druckluft-Anschlußstutzen (3) auf, der in eine ringförmige Druckluftkammer (2) eines inneren Düsenkörpers (1) mündet. Ferner sind eine den inneren Düsenkörper (1) umgebende und von einem Gehäuse (10) eingeschlossene ringförmige Ansaugkammer (12) sowie ein sich durch die Druckluftkammer (2) koaxial erstreckendes Ansaugrohr (4) vorgesehen. In ein Misch- bzw. Abzugrohr (14) münden die ringförmige Ansaugkammer (12), das Ansaugrohr (4) und die Druckluftkammer (2) koaxial ein. Das Ansaugrohr (4) ist mit Gewinde (5) im Düsenkörper (1) axial verstellbar und bestimmt mit seinem konisch ausgebildeten inneren Ende (6) die Öffnungsweite eines zwischen dem konischen Ende (6) und einer Bohrung (8) des Düsenkörpers (1) gebildeten Ringspaltes (7) für die Druckluft.

DE 3316233 A1

DE 3316233 A1

PATENTANWALT
Dipl.-Ing. ROLF PURCKHAUER

Friedrich-Ebert-Str. 27
Postfach 100928
D- 5900 Siegen 1
Telefon (0271) 331970
Telegramm Anschrift: Putschub, Siegen

83 342 Kü/u

- 3. MAI 1983.

Leopold Schlafosky

VNR: 106836

Patentansprüche

1 (1) Nach dem Prinzip einer Injektordüse arbeitende Vakuum-Saugpumpe, gekennzeichnet durch folgende Merkmale:

- a) zumindest ein seitlicher Druckluft-Anschlußstutzen (3), der in eine ringförmige Druckluftkammer (2) eines inneren Düsenkörpers (1) mündet;
- b) eine den inneren Düsenkörper (1) umgebende und von einem Gehäuse (10) eingeschlossene ringförmige Ansaugkammer (12);
- c) ein sich durch die Druckluftkammer (2) koaxial erstreckendes Ansaugrohr (4) und
- d) ein Misch- bzw. Abzugrohr (14), in welches die ringförmige Ansaugkammer (12), das Ansaugrohr (4) und die Druckluftkammer (2) koaxial einmünden.

2. Vakuum-Saugpumpe nach Anspruch 1, dadurch gekennzeichnet, daß das Ansaugrohr (4) mit Gewinde (5) im Düsenkörper (1) axial verstellbar ist und mit seinem konisch ausgebildeten inneren Ende (6) die Öffnungsweite eines zwischen dem konischen Ende (6) und einer Bohrung (8) des Düsenkörpers (1) gebildeten Ringspaltes (7) für die Druckluft bestimmt.

3. Vakuum-Saugpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die ringförmige Ansaugkammer (12) über einen zwischen einem Außenkonus (15) des Düsenkörpers (1) und einem Innenkonus (16) einer Einschraubhülse (17) gebildeten, mit der Einschraubhülse (17) in seiner Öffnungsweite einstellbaren kegelstumpfförmigen Ringkanal (13) mit dem an der Einschraubhülse (17) befestigten Misch- bzw. Luftabzugrohr (14) verbunden ist.

10 4. Vakuum-Saugpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der oder die Druckluft-Anschlußstutzen (3) über eine die ringförmige Ansaugkammer (12) überbrückende, mit dem Düsenkörper (1) und dem Gehäuse (10) verschweißte Distanzbeschleunigungsbuchse (20) mit der Druckluftkammer (2) verbunden ist bzw. sind.

15 5. Vakuum-Saugpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß auf dem aus dem Düsenkörper (1) herausragenden Gewinde (5) des Ansaugrohres (4) eine Kontermutter (9) vorgesehen ist.

20 6. Vakuum-Saugpumpe nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Gehäuse (10) am saugseitigen Ende ein Außengewinde (24) aufweist.

25 7. Vakuum-Saugpumpe nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß am Düsenkörper (1) innerhalb der ringförmigen Ansaugkammer (12) in axialer Richtung verlaufende Zentrierrippen (11) vorgesehen sind.

- 3. MAI 1983

83 342 Kü/uLeopold Schladofsky, Am Pfantstiel 7, 5910 Kreuztal 3VNR: 106836Vakuum-Saugpumpe

Die Erfindung bezieht sich auf eine nach dem Prinzip einer Injektordüse arbeitende Vakuum-Saugpumpe.

Vakuum-Saugeinrichtungen, wie beispielsweise Industrie-
sauger für Schmutz in Form von Gasen, Flüssigkeiten, Staub
und/oder anderen Feststoffen, benötigen relativ viel Energie,
z.B. sehr starke Elektromotoren für Gebläse, d.h. deren Kon-
struktion ist aufwendig und voluminös

Der Erfindung liegt die Aufgabe zugrunde, eine Vakuum-
Saugpumpe zu schaffen, die nur wenig Energie und Raum bean-
sprucht, eine enorm hohe und bei Einschaltung sofort zur
Verfügung stehende Saugleistung mit großem Durchsatz er-
bringt und vielseitig verwendbar ist.

Diese Aufgabe wird erfindungsgemäß durch die Kennzeich-
nungmerkmale des Patentanspruchs 1 gelöst. Zweckmäßige Wei-
terbildungen der Erfindung sind den Unteransprüchen zu ent-
nehmen.

Die erfindungsgemäße Vakuum-Saugpumpe ist überall dort an-
wendbar, wo ein starkes dynamisches bzw. statisches Vakuum (über 6000 mm
WS) mit großer Durchsatzmenge und hoher Fördergeschwindigkeit
benötigt wird. Infolge der doppelten Ansaugwege kann die er-
findungsgemäße Vakuum-Saugpumpe auch zum Mischen verschiedener
Medien verwendet werden, so daß auf diese Weise Werkstoffe
mit besonderen Eigenschaften erzeugt werden können, da durch

Impulsaustausch zwischen der zugeführten Druckluft und den angesaugten Medien eine innige Vermischung dieser Medien stattfindet. Zum Betrieb der Vakuum-Saugpumpe genügt ein Druckluftanschluß zwischen 4 und 6 bar. Bei 5 Versuchen ist eine Saugleistung bis zu 8500 mm WS erzielt worden.

In der Zeichnung ist ein Ausführungsbeispiel der erfindungsgemäßen Vakuum-Saugpumpe im Längsschnitt dar- 10 gestellt.

In einem Düsenkörper 1 befindet sich eine ringförmige Druckluftkammer 2, in die ein Druckluft-Anschlußstutzen 3 mündet. Koaxial durch die Druckluftkammer 2 erstreckt sich 15 ein Ansaugrohr 4, das mit einem Gewinde 5 im Düsenkörper 1 axial verstellbar ist und mit seinem konisch ausgebildeten inneren Ende 6 die Öffnungsweite eines Ringpaltes 7 be- stimmt, der zwischen dem konischen Ende 6 und einer Bohrung 8 des Düsenkörpers 1 gebildet ist. Das Ansaugrohr 4 kann 20 nach Einstellung des Ringpaltes 7 mit einer Mutter 9 gekon- tert werden.

Der Düsenkörper 1 ist von einem Gehäuse 10 mit Abstand umgeben, wobei der Abstand im wesentlichen durch Zentrier- 25 rippen 11 festgelegt ist, von denen eine in der Zeichnung sichtbar ist. Dadurch wird ein zweiter Ansaugweg geschaffen; nämlich eine ringförmige Ansaugkammer 12, die über einen kegelstumpfförmigen Ringkanal 13 mit einem Misch- bzw. Luft- abzugrohr 14 verbunden ist. Der kegelstumpfförmige Ringkanal 30 13 wird zwischen einem Außenkonus 15 des Düsenkörpers 1 und einem Innenkonus 16 einer im Gehäuse 10 sitzenden Einschraub- hülse 17 gebildet, und seine Öffnungsweite kann durch die entsprechend mehr oder weniger eingeschraubte Einschraub- 35 hülse 17 eingestellt werden. Das Misch- bzw. Luftabzugrohr 14 sitzt in einer abgesetzten Bohrung 18 der Einschraubhülse 17 und ist mit dieser bei 19 verschweißt.

Der Druckluft-Anschlußstutzen 3 ist über eine Distanz-
buchse 20 mit der Druckluftkammer 2 verbunden, was aus Mon-
tagegründen notwendig ist. Die Distanzbuchse 20 wird zu-
nächst bei 21 mit dem Düsenkörper 1 verschweißt und wird nach
5 dem Einschieben derselben in das Gehäuse 10 mit diesem dann
bei 22 verschweißt. Der Druckluft-Anschlußstutzen 3 wird
dann in die Distanzbuchse 20 eingeschoben und bei 23 mit
dem Gehäuse 10 verschweißt. Anstelle eines einzigen Druck-
luft-Anschlußstutzens 3, wie dargestellt, können auch meh-
10 rere, z.B. zwei oder drei, Druckluft-Anschlußstutzen 3 vor-
gesehen werden, die dann die Zentrierrippen 11 ersetzen bzw.
entbehrlich machen können.

Beide Ansaugwege, nämlich das Ansaugrohr 5 und die ring-
15 förmige Ansaugkammer 12, können saugseitig gemeinsam wirken.
Für den entsprechenden Anschluß ist am saugseitigen Ende das
Gehäuse 10 mit einem Außengewinde 24 versehen. Mit einem
entsprechenden, sowohl mit dem Gehäuse 10 als auch mit dem
Ansaugrohr 5 verbindbaren Adapter (nicht dargestellt) können
20 die Ansaugwege getrennt angeschlossen werden, was insbeson-
dere dann der Fall ist, wenn die als Injektordüse arbeitende
Vakuum-Saugpumpe zum Mischen verschiedener Medien (Flüssig-
keit/Gas, Flüssigkeit/Feststoffe oder Gas/Feststoffe) ver-
wendet wird.

25 Die Einstellung des optimalen Durchsatzes erfolgt für
den jeweiligen Anwendungsfall der Vakuum-Saugpumpe in der
Regel einmal druckseitig durch entsprechende Einstellung des
Ringspaltes 7 für die Druckluft und saugseitig durch ent-
sprechende Einstellung der Öffnungsweite des kegelstumpf-
30 förmigen Ringkanals 13. Dabei wird durch Messungen auf der
Saugseite der optimale Durchsatz bei gemeinsam wirkenden
Saugwegen bzw. das Mischungsverhältnis bei getrennten Saug-
wegen ermittelt. Nach Einstellung der richtigen Einschraub-
35 tiefe der Einschraubhülse 17 kann diese bei 25 mit dem Ge-
häuse 10 verschweißt oder mit einem nicht dargestellten Ge-
windering gekontert werden.

6.
- Leersseite -

Nummer:
Int. Cl. 3:
Anmeldetag:
Offenlegungstag:

33 16 233
F 04 F 5/42
4. Mai 1983
8. November 1984

