Московский Физико-Технический Институт

(ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Лабораторная работа №4.3.1

Изучение дифракции света

Студент

Северилов Павел 671 группа

Цель работы: исследовать явления дифракции Френеля и Фраунгофера на щели, изучить влияние дифракции на разрешающую способность оптических инструментов.

В работе используются: оптическая скамья, ртутная лампа, монохроматор, щели с регулируемой шириной, рамка с вертикальной нитью, двойная щель, микроскоп на поперечных салазках с микрометрическим винтом, зрительная труба.

1. Дифракция Френеля на щели

Схема установки для наблюдения дифракции Френеля представлена на рис. 1. Световые лучи освещают щель S_2 и испытывают на ней дифракцию. Дифракционная картина рассматривается с помощью микроскопа M, сфокусированного на некоторую плоскость наблюдения Π .

Рис. 1: Схема установки для наблюдения дифракции Френеля

Щель S2 освещается параллельным пучком монохроматического света с помощью коллиматора, образованного объективом O_1 и щелью S_1 , находящейся в его фокусе. На щель S_1 сфокусировано изображение спектральной линии, выделенной из спектра ртутной лампы Π при помощи простого монохроматора C, в котором используется призма прямого зрения.

Распределение интенсивности света в плоскости наблюдения Π проще всего рассчитывать с помощью зон Френеля (для щели их иногда называют зонами Шустера). При освещении щели S_2 параллельным пучком лучей (плоская волна) зоны Френеля представляют собой полоски, параллельные краям щели. Результирующая амплитуда в точке наблюдения определяется суперпозицией колебаний от тех зон Френеля, которые не перекрыты створками щели. Графическое определение результирующей амплитуды производится с помощью векторной диаграммы — спирали Корню. Суммарная ширина n зон Френеля ξ_n определяется соотношением:

$$\xi_n = \sqrt{an\lambda},$$

где а – расстояние от щели до плоскости наблюдения (рис. 1), а λ – длина волны.

При уменьшении ширины S_2 сскраю растягиваются светлые полосы.

Измерим значение расстояний при изменении количества темных полос:

Таблица 1: Зависимость расстояния от количества полос

m	0	1	2	3	4	5
n		2	3	4	5	6
z, cm	74.6	73.5	73.8	74.0	74.1	74.2
$2\xi_n$, mm		0.219	0.228	0.228	0.233	0.228

Построим график зависимости $2\xi_n(n)$:

Рис. 2: График зависимости $2\xi_n(n)$

2. Дифракция Фраунгофера на щели

Картина дифракции резко упрощается, когда ширина щели становится значительно меньше ширины первой зоны Френеля.

Это условие всегда выполняется при достаточно большом расстоянии а от щели до плоскости наблюдения. Дифракционную картину, наблюдаемую в этом случае, принято называть дифракцией Фраунгофера. Исследование такой дифракционной картины заметно облегчается, потому что упрощаются фазовые соотношения.

Дифракцию Френеля и Фраунгофера можно наблюдать на одной и той же установке (рис. 1). Однако при обычных размерах установки дифракция Фраунгофера возникает только при очень узких щелях. Например, при $a\approx 20-40$ см и $\lambda\approx 5\cdot 10^{-5}$ см получаем $D\ll 0.3$ мм. Поскольку работать с такими тонкими щелями неудобно, для наблюдения дифракции Фраунгофера к схеме, изображённой на рис. 1 добавляется объектив O_2 (рис. 3).

Рис. 3: Схема установки для наблюдения дифракции Фраунгофера на щели

Дифракционная картина наблюдается здесь в фокальной плоскости объектива O_2 .

Начальные данные:

$$f_1 = 12.5 \text{ cm}$$

 $f_2 = 13.8 \text{ cm}$

$$b = 0.265 \text{ mm}$$

Таблица 2: Координаты дифракционных минимумов

	m	-4	-3	-2	-1	1	2	3	4
x_n	$_{i}$, MM	0.64	0.92	1.18	1.52	2.08	2.38	2.64	2.94

Построим график зависимости $x_m(m)$:

Рис. 4: Зависимость $x_m(m)$

Рассчитаем ширину щели b: $\lambda = 5.4 \cdot 10^{-4}$ мм

$$b = \frac{f_2 \lambda}{k} = 0.260 \text{ MM}$$

При уменьшении ширины щели S_2 картинка растягивается по оси X

3. Дифракция Фраунгофера на двух щелях

Рис. 5: Схема установки для наблюдения дифракции Фраунгофера на двух щелях

Для наблюдения дифракции Фраунгофера на двух щелях в установке (рис. 3) следует заменить щель S_2 экраном Э с двумя щелями (рис. 5). При этом для оценки влияния ширины входной щели на чёткость ди- фракционной картины вместо входной щели S_1

следует поставить щель с микрометрическим винтом. Два дифракционных изображения входной щели, одно из которых образовано лучами, прошедшими через левую, а другое — через правую щели, накладываются друг на друга.

Если входная щель достаточно узка, то дифракционная картина в плоскости П (рис. 3) подобна той, что получалась при дифракции на одной щели (рис. 5), однако теперь вся картина испещрена рядом дополнительных узких полос. Наличие этих полос объясняется суперпозицией световых волн, приходящих в плоскость наблюдения через разные щели экрана Э.

1. Определим координаты x_1, x_2 самых удаленных друг от друга темных полос внутри первого максимума, а также координату центра максимума:

$$x_1 = 0.92 \text{ mm}$$

$$x_2 = 2.12 \text{ mm}$$

Всего в первом максимуме обнаружено n=5 светлых полос, поэтому расстояние между ними равно:

$$\delta x = \frac{x_2 - x_1}{n} = \frac{1.2}{17} = 0.07 \text{ MM}$$

Теперь можно найти расстояние между щелями:

$$d = \frac{f_2 \lambda}{\delta x} = 1.1 \text{ mm}$$

2. Исследуем влияние пространственной когерентности на видность картины.

$$b_0 = \frac{f_1 \lambda}{d} = 61.4 \text{ MKM}$$

Экспериментально:

$$b_{0 ext{>kch}} = 103 \text{ MKM}$$

4. Влияние дифракции на разрешающую способность оптического инструмента

Установка, представленная на рис. 6, позволяет исследовать влияние дифракции на разрешающую способность оптических инструментов. Как уже было выяснено, линзы O_1 и O_2 в отсутствие щели S_2 создают в плоскости Π изображение щели S_1 , и это изображение рассматривается в микроскоп M. Таким образом, нашу установку можно рассматривать как оптический инструмент, предназначенный для получения изображения предмета. При этом коллиматор (щель S_1 и объектив O_1) является моделью далёкого предмета, а объектив O_2 и микроскоп M составляют зрительную трубу, наведённую на этот предмет.

Если перед объективом O_2 зрительной трубы расположить щель S_2 , то изображение объекта будет искажено дифракцией на щели S_2 . Чем меньше ширина D_0 этой щели, тем сильнее искажение. Качественной характеристикой этих искажений может служить минимальное

угловое расстояние ϕ_{min} между объектами (источниками), которые ещё воспринимаются как раздельные.

Рис. 6: Схема установки для исследования разрешающей способности оптического инструмента

- 1. Не меняя положения линз и микроскопа, вместо щели S поставили двойную щель и, перемещая ее вдоль оси, получили в поле зрения микроскопа симметричное изображение двойного источника.
- 2. При помощи микроскопа измерим расстояние между щелями:

$$d=0.57~\mathrm{mm}$$

- 3. Поставим между линзами щель S_2 и подберем ее ширину так, чтобы изображение обеих щелей почти сливалось, но все-таки воспринималось отдельно: $b_0=0.141~{\rm MM}$
- 4. Найдем ширину b_0 щели S_2 , при которой пропадают различия между изображениями двух щелей, с помощью формулы:

$$b_0 = \frac{f_1 \lambda}{d} = 0.118 \text{ MM}$$

5. Вывод

Исследовали явления дифракции Френеля и Фраунгофера на щели, посчитали ширину щели теоретически и экспериментально. В первых двух пунктах теоретические и экспериментальные значения достаточно хорошо совпали. В остальных экспериментах расхождения получились большими – в первую очередь связано с нечеткой картиной, которую получили и не удалось улучшить.