Soit $L \subset Z$ une droite twistorielle de l'espace Z des twisteurs d'une variété hyperkahlérienne M de dimension 2n. Soit $O \in L$.

0.1. Le fibré normal. Le fibré normal de L dans Z, noté N s'identifie à $\mathcal{O}(1) \otimes \mathbb{C}^{2n}$, ses sections globales forment donc un \mathbb{C} -ev de dimension 4n qui s'identifie naturellement aux polynômes de degré 1 à coefficients dans \mathbb{C}^{2n} .

(1)
$$H^0(L,N) \simeq H^0(\mathbb{P}^1,\mathcal{O}(1)) \otimes \mathbb{C}^{2n} \simeq \mathbb{C}[\zeta]^1 \otimes \mathbb{C}^{2n}$$

Modulo cette identification, une section globale s de cet espace est donc donnée par

(2)
$$s(\zeta) = a + \zeta a' \qquad a, a' \in \mathbb{C}^{2n}$$

On construit une base $\beta = (\alpha_i, \alpha_i')$ de cet espace de la manière suivante :

- $\alpha_1, \dots, \alpha_{2n}$ des sections globales qui évalués en O forment la base canonique de \mathbb{C}^{2n} . C'està-dire $\alpha_i(\zeta) = a_i = (\delta_i^j)_j \in \mathbb{C}^{2n}$.
- $\alpha'_1, \dots, \alpha'_{2n}$ des sections globales qui s'annulent en O tandis que leurs dérivées forment la base canonique de \mathbb{C}^{2n} . C'est-à-dire $\alpha'_i(\zeta) = \zeta a'_i = (\zeta \delta^i_i)_i \in \mathbb{C}^{2n}$.

On désignera par $t \in \mathbb{C}^{4n}$ une section de $H^0(L, N)$ vue dans la base β , au besoin on notera $t = (\tau, \tau') \in \mathbb{C}^{2n} \oplus \mathbb{C}^{2n}$ les composantes sur α et α' .

On notera en majuscule les polynômes homogènes en t.

Si une fonction h_i est définie sur W_i (resp. U_i , V_i) on note $h_i(z, w)$ au lieu de $h_i(z_i, w_i)$ (resp. $h_i(z)$ au lieu de $h_i(z_i)$ et $h_i(w)$ au lieu de $h_i(w_i)$)

- 0.2. **But.** On cherche à construire $\varphi_i(z,t)$ telle que
 - (i) convergence $\|\cdot\|_{\infty}$
- (ii) $[\varphi_i(z,t)]_1 = \sum_s t_s \beta_s(z_i)$
- (iii) Respecte les changements de carte (ou se recolle)

(3)
$$\varphi_i(g_{ik}(z,\varphi),t) = f_{ik}(z,\varphi)$$

- (iv) Condition de domination
- (v) Conditions ponctuelle et angulaire

(4a)
$$[\varphi_0(0,t)]^m = [\varphi_0(0,t)]^1 = \sum_{s=1}^{2n} \tau_s \alpha_s(0) = \tau$$

(4b)

$$\left[\frac{\partial\varphi_0}{\partial z}(0,t)\right]^m = \left[\frac{\partial\varphi_0}{\partial z}(0,t)\right]^1 = \sum_{s=1}^{2n}\tau_s'\frac{\partial\alpha_s'}{\partial z}(0) = \tau'$$

Des fonctions $\varphi_i(z,t)$ satisfaisant (ii), (iii),et (v) sont appelées solutions formelles. Elles seront définies comme série formelle en t à coefficients holomorphes en z. Sous les hypothèses supplémentaires (i), et (iv), ces séries convergent sur un petit polydisque en t et donnent lieu à une famille de déformations de L dans Z.

Pour obtenir la propriété (iii) on essayera de l'obtenir à tous les ordres

$$[\varphi_i(g_{ik}(z,\varphi),t)]_m = [f_{ik}(z,\varphi)]_m$$

ce qui équivaut à demander

(6)
$$[\varphi_i^m(g_{ik}(z,\varphi^m),t)]_m = [f_{ik}(z,\varphi^m)]_m$$

Ainsi il semble possible d'obtenir φ par récurrence sur m.

0.3. Preuve d'existence de déformation. On raisonne par récurrence : on définit φ^1 par l'équation (ii), il est clair par définition que φ_1 satisfait (6) pour m=1.

Supposons que l'on ait construit φ^m satisfaisant les conditions formelles (ii), et (6),et (v) à l'ordre m. Alors on souhaite ajouter à φ^m un polynôme homogène Φ_{m+1} de degré m+1 pour que $\varphi^{m+1} = \varphi^m + \Phi_{m+1}$ satisfasse (6),et (v) à l'ordre m+1.

Par hypothèse de récurrence, la relation de recollement (6), est satisfaite à l'ordre m, ainsi

(7)
$$\varphi_i^m(g_{ik}(z,\varphi^m),t) - f_{ik}(z,\varphi^m)$$

est une série formelle en t de valuation au moins m+1. Soit donc $\Psi_{m+1}(=\Psi_{ik,m+1})$ la partie homogène de degré m+1. Kodaira l'appelle Obstruction d'ordre m+1.

On a la relation suivante (à l'ordre m+1):

(8)
$$\Psi_{ik}(z_k) = \Psi_{ij}(z_j) + \frac{\partial f_{ij}}{\partial w}(z_j)\Psi_{jk}(z_k)$$

que l'on notera abusivement

(9)
$$\Psi_{ik} = \Psi_{ij} + \frac{\partial f_{ij}}{\partial w} \Psi_{jk}$$

ou $z\in U_i\cap U_j\cap U_k$ est considéré comme $z_i,\,z_j$ ou z_k suivant le besoin. Et ils sont reliés par les changements de carte de V, c'est-à-dire :

$$(10) z_i = f_{ik}(z_k, 0) \dots$$

Ainsi Ψ est une section de $H^1(L,N)$ en z à coefficients dans les polynômes homogènes de degré m+1 en t. Par hypothèse, $H^1=0$ dont Ψ est le 1-cobord d'une 0-cochaine $\tilde{\Phi}=(\tilde{\Phi}_{i,m+1}(z_i,t))_i$ à coefficients dans les polynômes homogènes de degré m+1 en t.

(11)
$$\Psi_{ik} = \frac{\partial f_{ik}}{\partial w} \tilde{\Phi}_k - \tilde{\Phi}_i$$

Deux telles cochaînes Ψ diffèrent d'une section globale de N à coefficients dans les polynômes homogènes en t de degré $m+1: H^0(L,N)\otimes \mathbb{C}[t]_{m+1}$.

Que veut-on imposer à $\tilde{\Phi}_i$? On ne demande qu'à $\tilde{\Phi}_0$ de satisfaire certaines conditions (car toutes nos hypothèses sont dans la carte "0") : les conditions pour que φ^{m+1} satisfasse (4a) et (4b).

On peut simplement imposer les mêmes contraintes à $\tilde{\Phi}_0$ que l'on peut imposer à une section de $H^0(L,N)$: Fixons un choix de $\tilde{\Phi}_0$, alors

• $\tilde{\Phi}_0(0,t)$ est un polynôme homogène en t de degré m+1 à coefficients dans \mathbb{C}^{2n} vu comme N_0 la fibre de N au dessus de $z_0 = 0$.

1

• $\partial_z \tilde{\Phi}_0(0,t)$ est un un polynôme homogène en t de degré m+1 à coefficients dans \mathbb{C}^{2n} vu comme $T_0 N_0$ le tangent en 0 à la fibre de N au dessus de $z_0 = 0$.

Par les remarques du début, il existe une unique section U_t globale de N sur L à coefficients homogènes de degré m+1 en t telle que

(12a)
$$U_t(0) = \tilde{\Phi}_0(0,t)$$

(12b)
$$\partial_z U_t(0) = \partial_z \tilde{\Phi}_0(0, t)$$

En prenant dès lors $\Phi := \tilde{\Phi} - U_t$; Le polynôme homogène de degré m+1 en t à coefficient 0-cochaines Φ satisfait toujours (11).

Ainsi $\varphi^{m+1} = \varphi^m - \Phi$ est un polynôme de degré m+1 en t à coefficients dans les fonctions holomorphes en z. Il satisfait toujours (ii), car il n'a été modifié qu'à l'ordre $m+1 \geq 2$ en t. De plus un calcul rapide permet de voir que

(13)
$$\varphi_i^{m+1}(g_{ik}(z,\varphi^{m+1}),t) - f_{ik}(z,\varphi^{m+1})$$
$$= \varphi_i^m(g_{ik}(z,\varphi^m),t) - f_{ik}(z,\varphi^m) - \Phi_{ik,m+1}$$
$$+ o(t^{m+1})$$

qui est donc une série formelle en t de valuation au moins m+2. Ainsi φ^{m+1} satisfait (6) à l'ordre m+1. Reste à vérifier la condition (v).

0.4. Convergence.