Preračun normnenega pretoka plina v dejanskega:

$$Q_d = \frac{Q_n}{f_R} [m^3/h]$$

$$f_r = \frac{T_0}{T_N} \cdot \frac{\frac{P_{atm}}{1000} + P_d}{P_0} []$$

$$P_{atm} = 1016 - (0.12 \cdot H_{pvp})$$

Q_d dejanski pretok [m3/h] -- izračunani

 Q_N normni pretok [Nm3/h] (pri T_0 in P_0) -- podamo

 T_0 normna temperatura [K] (273.15 K = 0°C)

 T_N računska temperatura [K]

- meritev zunaj ==> T_N = 279.15 K = 6°C - meritev znotraj ==> T_N = 288.15 K = 15°C

 P_0 normni tlak [bar] (1013.25 mbar = 1.01325 bar)

P_{atm} povprečni atmosferski tlak[mbar] -- izračunani

H_{PVP}..... povprečna nadmorska višina [m] -- podamo