MATH143C: Homework 2

Oisin Coveney

April 22, 2020

Unfinished problems: 3.1 17, 21

Exercise Set 3.1

1

A:
$$f(x) = \cos x$$

$$\begin{split} P_1(x) &= f(0)\frac{x-0.3}{-0.3} + f(0.3)\frac{x}{0.3-0} \\ P_1(0.45) &= 0.933005 \\ |Error_{P_1}| &= 0.032558 \\ P_2(x) &= f(0)\frac{(x-0.3)(x-0.9)}{(0-0.3)(0-0.9)} + f(0.3)\frac{(x-0)(x-0.9)}{(0.3-0)(0.3-0.9)} + f(0.91)\frac{(x-0)(x-0.3)}{(0.9-0)(0.9-0.3)} \\ P_2(0.45) &= 0.902455 \\ |Error_{P_2}| &= 0.002008 \end{split}$$

B:
$$f(x) = ln(x+1)$$

$$P_{1}(x) = f(0)\frac{x - 0.3}{-0.3} + f(0.3)\frac{x}{0.3 - 0}$$

$$P_{1}(0.45) = 0.393546$$

$$|Error_{P_{1}}| = 0.021983$$

$$P_{2}(x) = f(0)\frac{(x - 0.3)(x - 0.9)}{(0 - 0.3)(0 - 0.9)} + f(0.3)\frac{(x - 0)(x - 0.9)}{(0.3 - 0)(0.3 - 0.9)} + f(0.9)\frac{(x - 0)(x - 0.3)}{(0.9 - 0)(0.9 - 0.3)}$$

$$P_{2}(0.45) = 0.375392$$

$$|Error_{P_{2}}| = 0.003828$$

3B

Error for 1A:

$$R_1(\xi, x) = \frac{f^2(\xi)}{2}(x)(x - 0.3)$$

$$R_1(0.3, 0.45) = 0.045558$$

$$R_2(\xi, x) = \frac{f^3(\xi)}{3!}(x)(x - 0.3)(x - 0.9)$$

$$R_2(0.9, 0.45) = 0.012452$$

Error for 1B:

$$R_1(\xi, x) = \frac{f^2(\xi)}{2}(x)(x - 0.3)$$

$$R_1(0, 0.45) = 0.03375$$

$$R_2(\xi, x) = \frac{f^3(\xi)}{3!}(x)(x - 0.3)(x - 0.9)$$

$$R_2(0, 0.45) = 0.005063$$

Using $[x_2, x_4]$ for P_1 , and $[x_1, x_3, x_4]$ for P_2

 \mathbf{B}

$$P_1(-\frac{1}{3}) = 0.3505$$

$$P_2(-\frac{1}{3}) = 0.162944$$

$$P_3(-\frac{1}{3}) = 0.174519$$

 \mathbf{D}

$$P_1(0.9) = 0.443312$$

 $P_2(0.9) = 0.436628$
 $P_3(0.9) = 0.441985$

7

Error for 5B

$$n = 1 \rightarrow \frac{f^2(\xi)}{2!}(x)(x+0.5)$$

$$= \frac{6\xi + 8.002}{2}(x)(x+0.5)$$

$$= (3\xi + 4.001)(x)(x+0.5)$$

$$\left(\xi = 0, x = -\frac{1}{3}\right) \rightarrow = 0.222277$$

$$n = 2 \rightarrow \frac{f^3(\xi)}{3!}(x)(x+0.25)(x+0.75)$$

$$= \frac{6}{3!}(x)(x+0.25)(x+0.75)$$

$$= (x)(x+0.25)(x+0.75)$$

$$\left(\xi = 0, x = -\frac{1}{3}\right) \rightarrow = 0.011574$$

Error for 5D

$$n = 1 \to \frac{f^2(\xi)}{2!}(x - 0.7)(x - 1)$$

$$= \frac{(x - 1)(x - 0.7)(-e^{2\xi}\sin(e^{\xi} - 2) + e^{\xi}\cos(e^{\xi} - 2))}{2}$$

$$(\xi = 1, x = 0.9) \to 0.028160$$

$$n = 2 \to \frac{f^3(\xi)}{3!}(x - 0.6)(x - 0.8)(x - 1)$$

$$= \frac{(x - 1)(x - 0.8)(x - 0.6)(-e^{3\xi}\cos(e^{\xi} - 2) - 3e^{2\xi}\sin(e^{\xi} - 2) + e^{\xi}\cos(e^{\xi} - 2))}{6}$$

$$(\xi = 1, x = 0.9) \to 0.013832$$

9

$$y = 4.25$$

10

$$f(x) = \sqrt{x - x^2}$$

$$P_2(x) = y_0 \frac{(x - x_1)(x - x_2)}{(x_0 - x_2)(x_0 - x_1)} + y_1 \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} + y_2 \frac{(x - x_0)(x - x_2)}{(x_2 - x_0)(x_0 - x_1)}$$
Given: $x_0 = 0, x_2 = 1, x = 0.5$:
$$f(0.5) = \sqrt{0.25} = \pm 0.5$$

$$P_2(x) = 0 \frac{(0.5 - x_1)(0.5 - 1)}{(0 - 1)(0 - x_1)} + \left(\sqrt{x_1 - x_1^2}\right) \frac{(0.5 - 0)(0.5 - 1)}{(x_1 - 0)(x_1 - 1)} + 0 \frac{(0.5 - 0)(0.5 - 1)}{(1 - 0)(0 - x_1)}$$

$$= \left(\sqrt{x_1 - x_1^2}\right) \frac{-0.25}{x_1^2 - x_1} = \frac{-0.25}{\sqrt{x_1 - x_1^2}}$$

Solving for $f(0.5) - P_2(0.5) = -0.25$:

$$\pm 0.5 - \frac{-0.25}{\sqrt{x_1 - x_1^2}} = -0.25$$

$$\frac{-0.25}{\sqrt{x_1 - x_1^2}} = \{0.75, -0.25\}$$

$$-\frac{1}{\sqrt{x_1 - x_1^2}} = \{3, -1\}$$

$$\left\{\frac{1}{9}, 1\right\} = x_1 - x_1^2$$

$$\text{Using } \frac{1}{9} : x_1 = \{0.127322003750035, 0.872677996249965\}$$

$$\text{Using } 1 : x_1 = \left\{\frac{1}{2} - \frac{\sqrt{3}i}{2}, \frac{1}{2} + \frac{\sqrt{3}i}{2}\right\}$$

The largest real value between (0,1) for $x_1 = 0.872678$

13D

$$P_{3}(x) = \frac{1.216316x (x - 1) (x - 0.5)}{0.25 (0.25 - 1) (0.25 - 0.5)} + \frac{1.357008x (x - 1) (x - 0.25)}{0.5 (0.5 - 1) (0.5 - 0.25)}$$

$$+ \frac{1.381773x (x - 0.5) (x - 0.25)}{1 (1 - 0.5) (1 - 0.25)} + \frac{1.0 (x - 1) (x - 0.5) (x - 0.25)}{(-1) (-0.5) (0.25)}$$

$$= 25.948083x (x - 1) (x - 0.5) - 21.712130x (x - 1) (x - 0.25)$$

$$+ 3.684729x (x - 0.5) (x - 0.25) - 8.0 (x - 1) (x - 0.5) (x - 0.25)$$

$$R_{3}(x) = \frac{f^{4}(\xi)}{4!} (x - 1) (x - 0.5) (x - 0.25) (x)$$

$$= \frac{\sin(\xi) + \cos(\xi)}{24} (x - 1) (x - 0.5) (x - 0.25) (x)$$

$$(\xi = \frac{\pi}{4}, x = 0.8316) \rightarrow = 0.001591$$

17

19

Interpolating polynomial

Estimates

1. 1950: 192539

2. 1975: 215525

3. 2014: 306214

4. 2020: 266165

The estimated 1950 from the interpolating polynomial was off by more than 40%, while the 2014 figure was off by approximately 3%. I would be skeptical about the estimates that I found in the interpolating polynomial.

Exercise Set 3.2

1B

$$f(x) = -1.333333x \left(-2.0 \left(-x-0.75\right) \left(1.43875x+0.694625\right) - 2.0 \left(0.18825x+0.069375\right) \left(x+0.25\right)\right) \\ -1.333333 \left(-x-0.75\right) \left(-2.0x \left(1.43875x+0.694625\right) - 2.0 \left(-x-0.5\right) \left(3.06425x+1.101\right)\right) \\ f\left(-\frac{1}{3}\right) = 0.174519$$

 \mathbf{A}

$$f(x) = 3^{x}$$

$$(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}) = (-2, -1, 0, 1, 2)$$

$$P(\sqrt{3}) = 6.780246$$

$$f(\sqrt{3}) = 6.704992$$
Error (Part C) = 6.780246 - 6.704992 = 0.075254

 \mathbf{B}

$$f(x) = \sqrt{x}$$

$$(x_0, x_1, x_2, x_3, x_4) = (0, 1, 2, 4, 5)$$

$$P(\sqrt{3}) = 1.330337$$

$$f(\sqrt{3}) = 1.316074$$
Error (Part C) = 1.330337 - 1.316074 = 0.014263

5

$$P_2 = 4.0$$

 $P_{1,2} = 3.2$
 $P_{0,1,2} = 3.08$

12

$$x = [0.3, 0.4, 0.5, 0.6]$$

$$y = x - e^{-x} = [-0.440818, -0.27032, -0.106531, 0.051188]$$

$$f^{-1}(0) = 0.567143$$

3.3

1B

$$\begin{split} P_1 &= -0.1769446 + 1.9069687(x - 0.6) \\ P_1(0.9) &= 0.395146 \\ P_2 &= -0.1769446 + 1.9069687(x - 0.6) + 0.959224(x - 0.7)(x - 0.6) \\ P_2(0.9) &= 0.452700 \\ P_3 &= -0.1769446 + 1.9069687(x - 0.6) + 0.959224(x - 0.7)(x - 0.6) + (-1.785741)(x - 0.8)(x - 0.7)(x - 0.6) \\ P_3(0.9) &= 0.441985 \end{split}$$

3B

Using x_1, x_2 for P_1 , and x_1, x_2, x_3 for P_2

$$P_1 = 2.905876x - 0.574574$$

$$P_1(0.25) = 0.151895$$

$$P_2 = 2.905876x - 2.438209(x - 0.2)(x - 0.1) - 0.574574$$

$$P_2(0.25) = 0.133608$$

$$P_3 = 3.365129x - 0.473152(x - 0.3)(x - 0.2)(x - 0.1) - 2.296264(x - 0.2)(x - 0.1) - 0.957012$$

$$P_3(0.25) = -0.132775$$

5B

Using x_1, x_2 for P_1 , and x_1, x_2, x_3 for P_2

$$P_{1} = 2.905876x - 0.574574$$

$$P_{1}(0.25) = 0.151895$$

$$P_{2} = 2.905876x - 2.296264(x - 0.3)(x - 0.2) - 0.865162$$

$$P_{2}(0.25) = -0.132952$$

$$P_{3} = 2.418235x - 0.473152(x - 0.4)(x - 0.3)(x - 0.2) - 2.438209(x - 0.4)(x - 0.3) - 0.718869$$

$$P_{3}(0.25) = -0.132775$$

8

 \mathbf{A}

 \mathbf{B}

$$P_5(x) = 0.014159x(x-1)(x-0.6)(x-0.3)(x-0.1) + 0.063016x(x-0.6)(x-0.3)$$
$$(x-0.1) + 0.215x(x-0.3)(x-0.1) + 0.5725x(x-0.1) + 1.0517x - 6.0$$

16

$$f[x_0, x_1] = 5.0$$

 $f[x_0] = 1.0$
 $f[x_1] = 3.0$

18

 \mathbf{A}

$$P_4(0.75) = 72.86 \rightarrow 1 \text{ minute}, 12.86 \text{ seconds}$$

The actual time was 1:13, so this estimate is extremely close.

 \mathbf{B}

$$\frac{d}{dx}P_4(1.25) = 89.72 \frac{\text{seconds}}{\text{mile}} \approx 40.12 \text{ miles per hour}$$

	X	P(x)	Q(x)	Actual
0	-2.0	-1	-1	-1
1	-1.0	3	3	3
2	0.0	1	1	1
3	1.0	-1	-1	-1
4	2.0	3	3	3

P(x) and Q(x) are the same function - when you reduce the two equations they are equivalent. Thus, P(x) does not violate the uniqueness property of interpolating polynomials.

21

$$f[x_2] = a_2 (-x_0 + x_2) (-x_1 + x_2) + f[x_0] + f[x_1] (-x_0 + x_2)$$

$$-f[x_0] - f[x_1] (-x_0 + x_2) + f[x_2] = a_2 (-x_0 + x_2) (-x_1 + x_2)$$

$$\frac{-f[x_0] - f[x_1] (-x_0 + x_2) + f[x_2]}{(-x_0 + x_2) (-x_1 + x_2)} = a_2$$

$$-\frac{f[x_1]}{-x_1 + x_2} + \frac{-f[x_0] + f[x_2]}{(-x_0 + x_2) (-x_1 + x_2)} = a_2$$

$$f[x_0, x_1, x_2] = a_2$$

22

$$f(x) = P_{n+1}(x) = P_n(x) + f[x_0, x_1, ..., x_n, x](x - x_0)(x - x_1)...(x - x_n)$$
 Substituting $f(x)$:

$$P_n(x) + \frac{f^{n+1}(\xi)}{(n+1)!}(x - x_0)(x - x_1)...(x - x_n) = P_n(x) + f[x_0, x_1, ..., x_n, x](x - x_0)(x - x_1)...(x - x_n)$$

$$\frac{f^{n+1}(\xi)}{(n+1)!} = f[x_0, x_1, ..., x_n, x]$$

Exercise Set 8.3

1A / 3A

$$(x_0, x_1, x_2) = \left(-\frac{3}{\sqrt{2}}, 0, \frac{3}{\sqrt{2}}\right)$$

$$P_3(x) = 0.532042x (x + 0.866025) + 0.66901x + 1.0$$

$$f(x) - P(x) = \frac{e^{\xi}}{3!} * \frac{1}{2^2} = 0.1132617$$

Exercise Set 3.4

1C

$$P_5(x) = -0.024751 + 0.751(x + 0.5) + 2.751(x + 0.5)^2 + (x + 0.25)(x + 0.5)^2 - 7.105427 * 10^{-15}(x + 0.25)^2(x + 0.5)^2 + 2.131628 * 10^{-14}x(x + 0.25)^2(x + 0.5)^2$$

5

A / **B**

$$H_2(x) = 0.29552 + 0.95534(x - 0.3) + -0.142(x - 0.3)^2 + -1.05(x - 0.32)(x - 0.3)^2 + 20.77778(x - 0.32)^2(x - 0.3)^2 + -436.29630(x - 0.35)(x - 0.32)^2(x - 0.3)^2$$

$$H_2(0.34) = 0.33349$$

$$\sin 0.34 = 0.33349$$

$$R_2(0.34) = 0.000003$$

With 5 digit rounding, the error bound exceeds the actual error of 0.

 \mathbf{C}

$$H_7(x) = 0.29552 + 0.95534(x - 0.3) + -0.142(x - 0.3)^2 + -1.05(x - 0.32)(x - 0.3)^2$$

$$- 32.77778(x - 0.32)^2(x - 0.3)^2 + 17574.07407(x - 0.33)(x - 0.32)^2(x - 0.3)^2$$

$$- 744814.81482(x - 0.33)^2(x - 0.32)^2(x - 0.3)^2 + 29455555.55570(x - 0.35)(x - 0.33)^2(x - 0.32)^2(x - 0.3)^2$$

$$H_7(0.34) = 0.33349$$

$$\sin 0.34 = 0.33349$$

$$R_7(0.34) = 3.75264 * 10^{-19}$$

9

$$H_9(x) = 75x + -0.031111x^2 (x - 3)^2 + -0.006444x^2 (x - 5) (x - 3)^2 + 0.002264x^2 (x - 5)^2 (x - 3)^2 -0.000913x^2 (x - 8) (x - 5)^2 (x - 3)^2 + 0.000131x^2 (x - 8)^2 (x - 5)^2 (x - 3)^2 -2.022363*10^{-5}x^2 (x - 13) (x - 8)^2 (x - 5)^2 (x - 3)^2$$

$$H_9(10) = 742.50$$

$$H_9'(10) = 48.38$$

The car surpasses 55 miles per hour at approximately 5.65147 seconds.

The given divided difference table provides the coefficients to write the Hermite polynomial using the Newton's Divided Difference form of the interpolating polynomial.

$$a_0 = f[z_0] = f(x_0)$$

$$a_1 = f[z_0, z_1] = f'(x_0)$$

$$a_2 = f[z_0, z_1, z_2] = \frac{f[z_1, z_2](x - z_0) - f[z_0, z_1](x - z_2)}{z_2 - z_1}$$

$$a_3 = f[z_0, z_1, z_2, z_3] = \frac{f[z_1, z_2, z_3](x - z_0) - f[z_0, z_1, z_2](x - z_3)}{z_3 - z_0}$$

Using these coefficients:

$$H_3(x) = f[z_0] + f[z_0, z_1](x - x_0) + f[z_0, z_1, z_2](x - x_0)^2 + f[z_0, z_1, z_2, z_3](x - x_0)^2 (x - x_1)$$

Exercise Set 3.5

3C

i	a	b	c	d
0	-0.02475000	1.03237500	-0.00000000	6.50200000
1	0.33493750	2.25150000	4.87650000	-6.50200000

11

$$3x^{2} - 2 = -b - 2c(x - 1) - 3d(x - 1)^{2}$$
$$6x = -2c - 6d(x - 1)$$
$$d = -1$$
$$c = -3$$
$$b = -1$$

15

17