Cours de mathématiques — 2017/2018

PCSI

Page 2/88 2017 - 2018

Alphabet grec

Majuscule	Minuscule	Prononciation
	α	Alpha
	eta	Beta
Γ	γ	Gamma
Δ	δ	Delta
	ϵ	Epsilon
	ζ	Zeta
	η	Eta
Θ	θ	Theta
	ι	Iota
	κ	Kappa
Λ	λ	Lambda
	μ	Mu
	ν	Nu
Ξ	ξ	Xi
Π	π	Pi
	ho	Rho
\sum	σ	Sigma
	au	Tau
	v	Upsilon
Φ	φ	Phi
	χ	Chi
Ψ	ψ	Psi
Ω	ω	Omega

2017 - 2018 Page 3/88

Table des matières

1	Ruc	liments de logique et de théorie des ensembles 5
	1.1	Rudiments de logique
	1.2	Rudiments de théorie des ensembles
	1.3	Quantificateurs, premiers raisonnements
2	Équ	ations différentielles : quelques cas simples pour la physique
	2.1	Équations différentielles linéaires du premier ordre à coefficients constants
	2.2	Équations différentielles linéaires du second ordre à coefficients constants
3	Étu	des de fonctions 17
J	3.1	Généralités sur les fonctions
	$\frac{3.1}{3.2}$	Opérations sur les fonctions
	$\frac{3.2}{3.3}$	Tangentes et dérivées
	ა.ა	· · · · · · · · · · · · · · · · · · ·
		3.3.1 Droites du plan, pentes
		3.3.2 Tangentes, nombre dérivé, version géométrique (hors programme, non fait en cours) 22
		3.3.3 Le grand prêt : calculs pratiques de dérivées
	0.4	3.3.4 Dérivées d'ordre supérieur
	3.4	Limites
		3.4.1 Rappels de lycée
	0.5	3.4.2 Quelques méthodes pour lever une indétermination
	3.5	Études de fonctions
		3.5.1 Réduction du domaine
		3.5.2 Recherche d'asymptotes
	0.0	3.5.3 Mise en œuvre
	3.6	Application à la recherche d'inégalités
	3.7	Fonctions usuelles
		3.7.1 Fonctions puissance
		3.7.2 Cosinus et sinus hyperboliques
		3.7.3 Fonctions inverses
		3.7.3.1 Fonctions injectives, surjectives, bijectives
		3.7.3.2 Fonction réciproque d'une bijection
		3.7.3.3 Fonctions trigonométriques réciproques
4	Nor	nbres complexes et trigonométrie 49
	4.1	Définition
	4.2	Premières opérations géométriques
	4.3	Nombres complexes de module un, trigonométrie
	4.4	Arguments d'un nombre complexe non nul
		4.4.1 Définition, premières propriétés
		4.4.2 Calculs pratiques d'arguments
	4.5	Exponentielle complexe
	4.6	Résolutions d'équations complexe
		4.6.1 Second degré
		4.6.1.1 Racines carrées d'un nombre complexe : méthode algébrique
		4.6.1.2 Équations du second degré à coefficients complexes
		4.6.2 Quelques équations d'ordre n

Page 4/88 2017 – 2018

	4.7 4.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61 62 63 65 65 66
		4.8.2.2 Similitudes du plan	66
		4.8.2.3 Similitudes directes du plan	67
		4.8.2.4 Similitudes indirectes du plan	68
5	Calo	culs algébriques	71
		Les raisonnements par récurrence	71
		5.1.1 Récurrence simple	71
		5.1.2 Récurrence double	72
		5.1.3 Récurrence forte	73
	5.2	Sommes et produits :	74
		5.2.1 Définition, premiers exemples	74
		5.2.2 Sommes doubles	76
	5.3	Formule du binôme de Newton	79
6	Calc	culs de primitives :	81
	6.1	Définition, premiers exemples	81
	6.2	Méthodes directes	82
		6.2.1 Linéarisation	82
		6.2.2 Repérer des dérivées de fonctions composées	83
		6.2.3 Quelques fractions rationnelles	84
	6.3	Méthodes intégrales	86
		6.3.1 Notation intégrale	86
		6.3.2 Intégration par parties	87

2017 - 2018 Page 5/88

Chapitre 1

Rudiments de logique et de théorie des ensembles

1.1 Rudiments de logique

La logique est la grammaire des mathématiques. Elle permet d'articuler des propositions, qui sont des énoncés mathématiques supposés vrais ou faux (on écrira V ou F) à l'aide de connecteurs logiques. Le tableau suivant résume les règles d'utilisation des principaux opérateurs logiques :

P	Q	non(P)	P ou Q	P et Q	$P \Longrightarrow Q$
V	V	F	V	V	V
V	F	F	V	F	F
F	V	V	V	F	V
F	F	V	F	F	V

Remarque(s) 1 : Presque tout le contenu de ce tableau devrait vous paraître naturel, à l'exception d'un point : le ou mathématique n'est pas exclusif. Plus précisément, la proposition :

« il fait beau aujourd'hui » ou « il n'y a pas de nuages »

est une proposition vraie s'il fait beau et qu'il n'y a pas de nuages.

Les autres opérations logiques se définissent à partir de celles-ci, par exemple, l'équivalence est définie par :

$$P \Longleftrightarrow Q \stackrel{Def.}{=} (P \Longrightarrow Q) \text{ et } (Q \Longrightarrow P).$$

En particulier, une équivalence se prouve presque toujours en montrant deux implications successives, que l'on appelle implication directe $(P \Longrightarrow Q)$ et réciproque $(Q \Longrightarrow P)$. Notez qu'on peut vérifier en utilisant la table ci-dessus que l'équivalence logique correspond bien à l'égalité des valeurs de vérité des propositions.

1.2 Rudiments de théorie des ensembles

Les ensembles, quand à eux, sont le vocabulaire de base des mathématiques. On les note souvent avec des lettres majuscules : « soit E un ensemble », ou, lorsqu'ils sont particuliers, avoir leur lettre dédiée. Par exemple :

- 1. N désigne l'ensemble des entiers naturels,
- 2. Z celui des entiers relatifs,
- 3. Q celui des rationnels,
- 4. \mathbb{R} celui des réels.

Page 6/88 2017 – 2018

Un ensemble est souvent décrit par ses *éléments*; si x est un élément d'un ensemble E, on écrira $x \in E$, si ce n'est pas le cas, $x \notin E$. Par exemple :

$$2\in\mathbb{N},\quad,-3\in\mathbb{Z},\quad\frac{1}{2}\in\mathbb{Q},\quad\sqrt{2}\in\mathbb{R},\quad\sqrt{2}\notin\mathbb{Q}.$$

Si E est un ensemble fixé, on dit qu'un ensemble A est inclus ou une partie de E si tous les éléments de A sont aussi des éléments de E; on écrit alors :

$$A \subset E$$
.

Par exemple:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R}$$
.

Un autre ensemble joue un rôle particulièrement important : l'ensemble vide. Il s'agit de l'ensemble qui ne contient aucun élément, noté $\boxed{\varnothing}$.

Pour A et B deux parties d'un ensemble E, il est possible de définir des opérations sur A et B en utilisant la table suivante, pour x un élément de E:

$x \in A$	$x \in B$	$x \in E \setminus A$	$x \in A \cup B$	$x \in A \cap B$
V	V	F	V	V
V	F	F	V	F
F	V	V	V	F
F	F	V	F	F

ou, autrement dit:

$$x \in E \setminus A \iff \operatorname{non}(x \in A), \quad x \in A \cup B \iff (x \in A \text{ ou } x \in B), \quad x \in A \cap B \iff (x \in A \text{ et } x \in B).$$

On appelle ces ensembles:

- 1. $E \setminus A = \overline{A} = \mathcal{C}_A^E$, le complémentaire de A dans E,
- 2. $A \cup B$, l'union de A et B,
- 3. $A \cap B$, l'intersection de A et B.

1.3 Quantificateurs, premiers raisonnements

Pour formuler des propositions mathématiques, il est souvent utile d'utiliser des quantificateurs. Ils sont au nombre de deux :

$$\forall$$
: « pour tout », \exists : « il existe ».

Traitons un exemple ; la proposition « tout réel élevé au carré est positif » peut s'écrire :

$$\forall x \in \mathbb{R}, \quad x^2 \geqslant 0.$$

Les quantificateurs sont particulièrement agréables pour travailler avec les négations; en effet :

$$\operatorname{non}(\forall x \in E, P(x)) = \exists x \in E, \ \operatorname{non}(P(x)) \quad \text{et} \quad \operatorname{non}(\exists x \in E, P(x)) = \forall x \in E, \ \operatorname{non}(P(x)).$$

Exemple(s) 1:

2017 - 2018 Page 7/88

1.1 La proposition

« Tout réel est inférieur à 10^{99} »

est fausse! Elle s'écrit $\forall x \in \mathbb{R}, \ x \leq 10^{99}$ et sa négation : $\exists x \in \mathbb{R}, \ x > 10^{99}$ est clairement vraie en prenant $x = 10^{99} + 1$. C'est ce qu'on appelle une recherche de contre-exemple; ce type de raisonnement se résume en :

Pour prouver qu'une affirmation générale est fausse, il suffit d'en trouver un contre-exemple.

1.2 Dans une proposition logique, l'ordre des quantificateurs est primordial. Par exemple :

$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ x = y$$

est vraie; il suffit de prendre x = y mais :

$$\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x = y$$

est clairement fausse : un contre exemple est donné par y = x + 1.

Terminons cette partie par trois types de raisonnements couramment utilisés :

1. Le raisonnement par implication directe : c'est le plus simple à utiliser, pour prouver $P \Longrightarrow Q$ on suppose P vrai et on en déduit qu'alors Q aussi. Par exemple :

« Si x est positif, alors x est le carré d'un réel »

Est une proposition vraie. En effet, si x est positif, alors \sqrt{x} existe donc on peut écrire : $x=(\sqrt{x})^2$.

2. Le raisonnement par contraposée : qui se base sur la constatation suivante :

P	Q	non(P)	non(Q)	$non(Q) \Longrightarrow non(P)$	$P \Longrightarrow Q$
V	V	F	F	V	V
V	F	F	V	\mathbf{F}	F
F	V	V	F	V	V
F	F	V	V	V	V

Ou, autrement dit:

$$(P \Longrightarrow Q) \Longleftrightarrow (\operatorname{non}(Q) \Longrightarrow \operatorname{non}(P)).$$

La méthode consiste donc à supposer que Q est faux et à en déduire que P est faux. Par exemple :

« Si
$$\forall \epsilon > 0, \ x \leqslant \epsilon \text{ alors } x \leqslant 0 \text{ »}$$

est une proposition vraie. En effet, sa contraposée est :

« Si
$$x>0$$
 alors $\exists \epsilon>0,\ x>\epsilon$ » et elle est vraie car si $x>0$ alors $\epsilon=x/2>0$ et $x>x/2=\epsilon$.

3. Le raisonnement par l'absurde : qui part du principe qu'il est équivalent de dire que P est vraie et que non(P) est fausse. Vous en avez sans-doute déjà vu deux : la preuve de l'irrationalité de $\sqrt{2}$ et celle de l'infinité des nombres premiers. Voyons un autre exemple ; montrons que :

$$\exists (a,b) \in \mathbb{R} \setminus \mathbb{Q}, \quad a^b \in \mathbb{Q}$$

Supposons pour ceci par l'absurde que :

$$\forall (a,b) \in \mathbb{R} \setminus \mathbb{Q}, \quad a^b \in \mathbb{R} \setminus \mathbb{Q}$$

Alors en particulier, comme $\sqrt{2}$ est irrationnel, $\sqrt{2}^{\sqrt{2}}$ aussi. Mais alors, pour les irrationnels $a=\sqrt{2}^{\sqrt{2}}$ et $b=\sqrt{2}$, on trouve :

$$a^b = \left(\sqrt{2}^{\sqrt{2}}\right)^{\sqrt{2}} = \sqrt{2}^2 = 2 \in \mathbb{Q},$$

ce qui est absurde! La proposition est donc vraie. Notez le côté particulièrement frustrant d'une telle preuve ; il est impossible de décider qui de $a=\sqrt{2}$ et $b=\sqrt{2}$ ou $a=\sqrt{2}^{\sqrt{2}}$ et $b=\sqrt{2}$ est l'exemple ici. On sait donc qu'il existe un exemple, mais on est incapable de dire lequel...

Page 8/88 2017 – 2018

Il reste un dernier « raisonnement » : l'analyse-synthèse. Il s'agit par ce raisonnement de montrer qu'un objet ayant certaines propriétés existe. On commence (souvent au brouillon) par supposer que l'objet existe avec ses propriétés, puis on raisonne par conditions n'ecessaires jusqu'à trouver un exemple. On termine en vérifiant (sur la copie) que l'exemple trouvé a bien les bonnes propriétés (on parle de conditions suffisantes). Par exemple, si un exercice nous demande de trouver s'il existe un paramètre m tel que l'équation :

$$x^2 + m \times x + 11 = 0$$

admet une solution entière, on commence par supposer (ce qui se fait, j'insiste, au brouillon!) que m est tel quel ceci est vrai. L'équation admet alors deux solutions, x_1 et x_2 qui vérifient :

$$x_1 \times x_2 = 11$$

dont au moins l'une est un entier. Comme 11 est un nombre premier, on en déduit que $x_1 = 1$ ou 11. Supposons par exemple que $x_1 = 1$ et remplaçons dans l'équation; on trouve :

$$1 + m + 11 = 0$$

et l'on en déduit m = -12. Ceci termine l'analyse et notre travail au brouillon. Sur la copie, il s'agit seulement d'écrire :

Prenons m = -12. Alors 1 est un entier racine de l'équation $x^2 + m \times x + 11$. Il existe donc un tel paramètre m.

Notez que si l'énoncé avait demandé tous les paramètres m tels que cette équation admette une solution entière, la rédaction aurait été différente...

2017 - 2018 Page 9/88

Chapitre 2

Équations différentielles : quelques cas simples pour la physique

2.1 Équations différentielles linéaires du premier ordre à coefficients constants

Définition 2.1.1 : Soit I un intervalle et b une fonction définie sur I. Soit a un réel. On appelle équation différentielle linéaire du premier ordre à coefficients constants une expression du type :

$$y' + a \times y = b(t).$$

Une solution de cette équation différentielle est une fonction f définie et dérivable sur I qui vérifie :

$$\forall t \in I, \quad f'(t) + a \times f(t) = b(t).$$

Un problème de Cauchy du premier ordre à coefficients constants est la donnée additionnelle d'une condition initiale, c'est-à-dire de $t_0 \in I$ et de y_0 un réel; on l'écrit souvent :

$$\begin{cases} y' + a \times y = b(t) \\ y(t_0) = y_0 \end{cases}$$

Une solution du problème de Cauchy est une solution f de l'équation différentielle qui vérifie de plus $f(t_0) = y_0$.

Remarque(s) 2: 1. La fonction b est appelée second membre de l'équation différentielle.

2. Lorsqu'on travaille avec l'équation différentielle :

$$y' + a \times y = b(t),$$

on est souvent amené à travailler aussi avec l'équation différentielle :

$$y' + a \times y = 0$$

on l'appelle équation différentielle homogène associée.

- 3. Il y a deux questions à se poser systématiquement lorsqu'on travaille avec un problème de Cauchy : une solution existe-t-elle (existence)? Est-elle unique (unicité)?
- 4. En mathématiques, il est important de bien distinguer l'équation différentielle et le problème de Cauchy; souvent, un problème de Cauchy admet une unique solution (c'est ce qui semble intuitif en physique; par exemple, le mouvement doit être unique) mais une équation différentielle une infinité.

Page 10/88 2017 – 2018

Propriété(s) 2.1.1 : L'ensemble des solutions de l'équation différentielle homogène : $y' + a \times y = 0$ est :

$$S = \left\{ t \in I \mapsto C \times e^{-a \times t}, \ C \in \mathbb{R} \right\}.$$

Le problème de Cauchy associé, pour la condition initiale $y(t_0) = y_0$ admet une unique solution :

$$f: t \in I \mapsto y_0 \times e^{-a \times (t - t_0)}.$$

Démonstration : Commençons par le premier point. Appelons S l'ensemble des solutions de l'équation différentielle :

$$y' + a \times y = 0.$$

Il s'agit de montrer que les ensembles S et $S_0 = \{t \in I \mapsto C \times e^{-a \times t}, C \in \mathbb{R}\}$ sont égaux. Procédons par double inclusion :

- 1. Si $f \in S_0$ alors il existe un réel C tel que pour tout t de I, $f(t) = C \times e^{-a \times t}$. Alors $f'(t) = -a \times f(t)$ donc $f \in S$.
- 2. Si $f \in S$, alors si pour tout t de I, $g(t) = f(t) \times e^{a \times t}$, on a :

$$g'(t) = (f'(t) + a \times f(t)) \times e^{a \times t} = 0$$

Donc la fonction g est constante, c'est-à-dire qu'il existe un réel C tel que :

$$\forall t \in I, \quad f(t) \times e^{a \times t} = g(t) = C.$$

Donc
$$f(t) = C \times e^{-a \times t}, f \in S_0$$
.

Pour le deuxième point, procédons par analyse et synthèse. Si f est une solution du problème de Cauchy, c'est une solution de l'équation différentielle. Il existe donc une constante C telle que :

$$\forall t \in I, \quad f(t) = C \times e^{-a \times t}.$$

On utilise maintenant la condition initiale : $y_0 = f(t_0) = C \times e^{-a \times t_0}$ donc $f(t) = y_0 \times e^{-a \times (t-t_0)}$. Donc si il existe une solution au problème de Cauchy, c'est celle-ci. Effectuons maintenant la synthèse : si $f(t) = y_0 \times e^{-a \times (t-t_0)}$, alors $f(t_0) = y_0$ et f est solution de l'équation différentielle. La solution existe donc.

Comment passer d'une équation homogène à une équation quelconque? On peut utiliser, pour ceci, le **principe** de superposition : si f est une solution de :

$$y' + a \times y = b(t)$$

et g une solution de

$$y' + a \times y = c(t)$$

alors f + g est une solution de :

$$y' + a \times y = b(t) + c(t).$$

De ce principe, on déduit immédiatement que :

Propriété(s) 2.1.2 : S'il existe f_0 , une solution particulière de l'équation différentielle

$$y' + a \times y = b(t)$$

alors l'ensemble des solutions de cette équation différentielle est :

$$S = \{ t \in I \mapsto f_0(t) + C \times e^{-a \times t}, \quad C \in \mathbb{R} \}.$$

En particulier, la solution du problème de Cauchy est unique.

Il reste une dernière chose à régler : comment trouver cette solution particulière? Nous verrons des méthodes plus générales dans un chapitre ultérieur, mais pour le moment, nous nous contenterons de quelques cas particuliers :

2017 - 2018 Page 11/88

Forme de b	Forme de la solution particulière		
constante	constante		
$A \times e^{\lambda \times t}$	$si - a \neq \lambda, B \times e^{\lambda \times t} sinon B \times t \times e^{\lambda \times t}$		
$A \times \cos(\omega \times t) + B \times \sin(\omega \times t)$	$D \times \cos(\omega \times t) + E \times \sin(\omega \times t)$		

Exemple(s) 2:

2.1 Résolvons sur $\mathbb R$ l'équation différentielle :

$$y' + y = e^{-t}.$$

Commençons par résoudre l'équation homogène y' + y = 0. Les solutions sont :

$$S_0 = \{ t \in \mathbb{R} \mapsto C \times e^{-t}, \quad C \in \mathbb{R} \}.$$

Cherchons maintenant une solution particulière; le tableau nous dit qu'elle sera de la forme $B \times t \times e^{-t}$. Un calcul direct nous donne que cette fonction est solution de l'équation différentielle si et seulement si :

$$B \times e^{-t} = e^{-t}$$

il faut et il suffit donc que B=1, donc l'ensemble des solutions de l'équation différentielle est :

$$S = \{ t \in \mathbb{R} \mapsto (C + t) \times e^{-t}, \quad C \in \mathbb{R} \}.$$

$2.2\,$ Résolvons sur $\mathbb R$ le problème de Cauchy :

$$\begin{cases} y' + y = \cos(3t) \\ y(0) = 0 \end{cases}$$

On connaît déjà les solutions de l'équation homogène. Cherchons maintenant une solution particulière. Le tableau nous dit d'essayer $t \mapsto D \times \cos(3t) + E \times \sin(3t)$. En remplaçant dans l'équation différentielle, on trouve qu'une telle fonction est solution si et seulement si :

$$\begin{cases} 3E + D = 1 \\ -3D + E = 0 \end{cases} \iff \begin{cases} D = \frac{1}{10} \\ E = \frac{3}{10} \end{cases}$$

L'ensemble des solutions de l'équation différentielle est donc :

$$S = \left\{ t \mapsto \frac{1}{10} \times \left(\cos(3\,t) + 3\,\sin(3\,t) \right) + C \times e^{-t}, \quad C \in \mathbb{R} \right\}.$$

Résolvons maintenant le problème de Cauchy. Une solution du type :

$$t \mapsto \frac{1}{10} \times (\cos(3t) + 3\sin(3t)) + C \times e^{-t}$$

est solution du problème de Cauchy pour la condition initiale y(0) = 0 si et seulement si $\frac{1}{10} + C = 0$. La solution du problème de Cauchy est donc :

$$f: t \in \mathbb{R} \mapsto \frac{1}{10} \times (\cos(3t) + 3\sin(3t) - e^{-t}).$$

2.3 Terminons en cherchant les solutions de l'équation différentielle :

$$y' + y = \cos(3t) + e^{-t}$$
.

Pour ceci, noua allons utiliser le principe de superposition; on a déjà calculé une solution particulière de :

$$y' + y = e^{-t}$$

et une solution particulière de :

$$y' + y = \cos(3t),$$

on en déduit que l'ensemble des solutions de l'équation différentielle est :

$$S = \left\{ t \mapsto \frac{1}{10} \times (\cos(3t) + 3\sin(3t)) + (C+t) \times e^{-t}, \quad C \in \mathbb{R} \right\}.$$

Page 12/88 2017 - 2018

2.2 Équations différentielles linéaires du second ordre à coefficients constants

Définition 2.2.2 : Soit I un intervalle et b une fonction définie sur I. Soit p et q deux réels. On appelle équation différentielle linéaire du second ordre à coefficients constants une expression du type :

$$y'' + p \times y' + q \times y = b(t).$$

Une solution de cette équation différentielle est une fonction f définie et dérivable sur I, telle que f' soit aussi dérivable sur I et qui vérifie :

$$\forall t \in I, \quad f''(t) + p \times f'(t) + q \times f(t) = b(t).$$

Un problème de Cauchy du second ordre à coefficients constants est la donnée additionnelle d'une condition initiale, c'est-à-dire de $t_0 \in I$ et de (y_0, z_0) des réels; on l'écrit souvent :

$$\begin{cases} y'' + p \times y' + q \times y = b(t) \\ y(t_0) = y_0 \\ y'(t_0) = z_0 \end{cases}$$

Une solution du problème de Cauchy est une solution f de l'équation différentielle qui vérifie de plus $f(t_0) = y_0$ et $f'(t_0) = z_0$.

Remarque(s) 3 : 1. Comme pour l'équation de degré un, on parle de second membre pour b et d'équation homogène pour :

$$y'' + p \times y' + q \times y = 0.$$

2. Il existe une quantité essentielle pour ces équations différentielles : l'équation caractéristique associée :

$$x^2 + p \times x + q = 0$$

dont on notera dans ce cours le discriminant $\delta = p^2 - 4q$.

 ${\bf Th\'{e}or\`{e}me~2.2.1:}~{\it L'ensemble~des~solutions~de~l'\'{e}quation~diff\'{e}rentielle~homog\`{e}ne:$

$$y'' + p \times y' + q \times y = 0$$

est:

$$S = \{C \times f_1 + D \times f_2, \quad (C, D) \in \mathbb{R}^2\},\$$

avec:

1. $Si \delta > 0$:

$$f_1(t) = \exp\left(\frac{-p + \sqrt{\delta}}{2} \times t\right), \quad f_2(t) = \exp\left(\frac{-p - \sqrt{\delta}}{2} \times t\right),$$

2. $Si \delta = 0$:

$$f_1(t) = \exp\left(-\frac{p}{2} \times t\right), \quad f_2(t) = t \times \exp\left(-\frac{p}{2} \times t\right),$$

3. $Si \delta < 0$:

$$f_1(t) = \cos\left(\frac{\sqrt{|\delta|}}{2} \times t\right) \times \exp\left(-\frac{p}{2} \times t\right), \quad f_2(t) = \sin\left(\frac{\sqrt{|\delta|}}{2} \times t\right) \times \exp\left(-\frac{p}{2} \times t\right).$$

De plus, le problème de Cauchy associé admet une unique solution.

2017 - 2018 Page 13/88

Démonstration: Faisons la preuve dans le premier cas. Dans le deuxième, la preuve est exactement la même et pour le troisième, elle sera exactement la même une fois qu'on saura dériver l'exponentielle complexe. Commençons par remarquer que comme :

$$f_1(t) = \exp(x_1 \times t)$$

où x_1 est une racine de l'équation

$$x^2 + p \times x + q = 0$$

alors:

$$f_1''(t) + p \times f_1'(t) + q \times f_1(t) = (x_1^2 + p \times x_1 + q) \times \exp(x_1 \times t) = 0.$$

Donc f_1 donc de même f_2 (car elle est définie par la deuxième racine de l'équation, x_2) puis par principe de superposition tout l'ensemble de fonctions $\{C \times f_1 + D \times f_2, (C, D) \in \mathbb{R}^2\}$ sont solutions de l'équation différentielle. Montrons que ce sont les seules. Si f est une solution de l'équation différentielle, posons pour tout t:

$$g(t) = f(t) \times \exp(-x_1 \times t) \iff f(t) = g(t) \times \exp(x_1 \times t).$$

Comme f est solution de l'équation différentielle, on a :

$$f''(t) + p \times f'(t) + q \times f(t) = 0 \iff ((x_1^2 + p \times x_1 + q) \times g(t) + (2x_1 + p) \times g'(t) + g''(t)) \times e^{x_1 \times t} = 0$$

on utilise une nouvelle fois que x_1 est racine de l'équation caractéristique et on en déduit que g' est solution de l'équation différentielle :

$$y' + \sqrt{\delta} \times y = 0.$$

Donc par ce qu'on a déjà vu sur les équations différentielles d'ordre un, il existe un réel A tel que :

$$g'(t) = A \times e^{-\sqrt{\delta} \times t}$$

donc comme $\delta \neq 0$, il existe une constante B telle que :

$$g(t) = -\frac{A}{\sqrt{\delta}} \times e^{-\sqrt{\delta} \times t} + B \iff f(t) = -\frac{A}{\sqrt{\delta}} \times e^{x_2 \times t} + B \times e^{x_1 \times t}.$$

La fonction f appartient donc à l'ensemble de fonctions $\{C \times f_1 + D \times f_2, (C, D) \in \mathbb{R}^2\}$.

Parlons maintenant du problème de Cauchy : une solution $C \times f_1 + D \times f_2$ est solution du problème de Cauchy si et seulement si :

$$\begin{cases} C \times f_1(t_0) + D \times f_2(t_0) = y_0 \\ C \times x_1 \times f_1(t_0) + D \times x_2 \times f_2(t_0) = z_0 \end{cases} \iff \begin{cases} D \times \sqrt{\delta} \times f_2(t_0) = y_0 \times x_1 - z_0 \\ C \times \sqrt{\delta} \times f_1(t_0) = y_0 \times x_2 - z_0 \end{cases}$$

ce qui montre, comme $\sqrt{\delta}$, $f_1(t_0)$ et $f_2(t_0)$ sont non nuls que C et D existent et sont uniques, donc la solution au problème de Cauchy aussi.

Exemple(s) 3:

3.1 L'équation différentielle :

$$y'' - y' - 6y = 0$$

a pour solutions :

$$S = \left\{ t \mapsto C \times e^{3\,t} + D \times e^{-2\,t}, \quad (C, D) \in \mathbb{R}^2 \right\}.$$

3.2 L'équation différentielle :

$$y'' + 4y' + 4y = 0$$

a pour solutions:

$$S = \left\{ t \mapsto (C \times t + D) \times e^{-2t}, \quad (C, D) \in \mathbb{R}^2 \right\}.$$

3.3 L'équation différentielle :

$$y'' + 4y' + 13y = 0$$

a pour solutions:

$$S = \left\{ t \mapsto \left(C \times \cos(3\,t) + D \times \sin(3\,t) \right) \times e^{-2\,t}, \quad (C,D) \in \mathbb{R}^2 \right\}.$$

Page 14/88 2017 - 2018

Comme pour les équations différentielles linéaires d'ordre un, on peut utiliser le principe de superposition; on en déduit :

Propriété(s) 2.2.3 : Si f_0 est une solution particulière de l'équation différentielle :

$$y'' + p \times y' + q \times y = b(t)$$

alors l'ensemble des solutions de cette équation sont :

$$S = \{ f_0 + f, \quad f \in S_0 \}$$

où S_0 est l'ensemble des solutions de l'équation différentielle homogène associée. En particulier, le problème de Cauchy associé admet une unique solution.

Terminons, comme dans la partie précédente, par quelques méthodes pour trouver des solutions particulières :

Forme de b	Forme de la solution particulière	
constante constante		
$A \times e^{\lambda \times t}$	si λ n'est pas racine, $B \times e^{\lambda \times t}$; si λ est racine simple $B \times t \times e^{\lambda \times t}$	
	sinon $B \times t^2 \times e^{\lambda \times t}$	
$A \times \cos(\omega \times t) + B \times \sin(\omega \times t)$	$D \times \cos(\omega \times t) + E \times \sin(\omega \times t)$ sauf si $p = 0$ et $q = \omega^2$:	
	$D \times t \times \cos(\omega \times t) + E \times t \times \sin(\omega \times t)$	

Exemple(s) 4:

4.1 Considérons l'équation différentielle :

$$y'' + 2y' + y = e^{-t}.$$

L'équation caractéristique x^2+2x+1 a pour racine double -1, donc l'ensemble des solutions de l'équation homogène est :

$$S_0 = \{t \mapsto (C + D \times t) \times e^{-t}, \quad (C, D) \in \mathbb{R}^2\}.$$

Recherchons maintenant une solution particulière. Comme -1 est racine double de l'équation caractéristique, il s'agit de trouver une solution du type $B \times t^2 \times e^{-t}$. En remplaçant dans l'équation, on a qu'une telle fonction est solution si et seulement si :

$$2B \times e^{-t} = e^{-t}$$

L'ensemble des solutions de l'équation différentielle est donc :

$$S = \left\{ t \mapsto \left(\frac{t^2}{2} + D \times t + C \right) \times e^{-t}, \quad (C, D) \in \mathbb{R}^2 \right\}.$$

4.2 Soit $\omega \neq \omega_0$ deux réels strictement positifs. Cherchons la solution du problème de Cauchy :

$$\begin{cases} y'' + \omega^2 \times y = \cos(\omega_0 \times t) \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$

Commençons par remarques que les solutions de l'équation homogène sont :

$$S_0 = \{t \mapsto C \times \cos(\omega \times t) + D \times \sin(\omega \times t), \quad (C, D) \in \mathbb{R}\}.$$

Cherchons une solution particulière de l'équation différentielle. Chance! Comme $\omega \neq \omega_0$, il s'agit de trouver une solution du type $A \times \cos(\omega_0 \times t) + B \times \sin(\omega_0 \times t)$. En remplaçant dans l'équation, on trouve qu'une fonction de ce type est solution si et seulement si :

$$\begin{cases} A\times (-\omega_0^2+\omega^2)=1\\ B\times (-\omega_0^2+\omega^2)=0 \end{cases} \iff \begin{cases} A=\frac{1}{\omega^2-\omega_0^2}\\ B=0 \end{cases}$$

2017 - 2018 Page 15/88

Le solutions de l'équation différentielle sont donc :

$$S = \left\{ t \mapsto \frac{\cos(\omega_0 \times t)}{\omega^2 - \omega_0^2} + C \times \cos(\omega \times t) + D \times \sin(\omega \times t), \quad (C, D) \in \mathbb{R} \right\}.$$

Cherchons maintenant la solution du problème de Cauchy. Une solution f du problème de Cauchy est une solution de l'équation différentielle, donc il existe des réels C et D tels que

$$f(t) = \frac{\cos(\omega_0 \times t)}{\omega^2 - \omega_0^2} + C \times \cos(\omega \times t) + D \times \sin(\omega \times t).$$

Utilisons maintenant les conditions initiales, qui nous donnent :

$$\begin{cases} \frac{1}{\omega^2 - \omega_0^2} + C = 1\\ D \times \omega = 0 \end{cases}$$

La solution du problème de Cauchy est donc le fonction définie sur $\mathbb R$ par :

$$f(t) = \frac{\cos(\omega_0 \times t) - \cos(\omega \times t)}{\omega^2 - \omega_0^2} + \cos(\omega \times t).$$

4.3 Cherchons les solutions de l'équation différentielle

$$y'' + y = \cos(t)$$

Les solutions de l'équation homogène sont immédiatement :

$$S_0 = \{t \mapsto C \times \cos(t) + D \times \sin(t), \quad (C, D) \in \mathbb{R}^2\}.$$

Pour trouver une solution particulière, nous sommes dans le cas où il faut chercher une solution du type $D \times t \times \cos(t) + E \times t \times \sin(t)$. En remplaçant dans l'équation différentielle, on trouve qu'une fonction de ce type est solution si et seulement si :

$$-2D \times \sin(t) - D \times t \times \cos(t) + 2E \times \cos(t) - E \times t \times \sin(t) + D \times t \times \cos(t) + E \times t \times \sin(t) = \cos(t).$$

c'est-à-dire :

$$\begin{cases} -2D = 0\\ 2E = 1 \end{cases}$$

L'ensemble des solutions de l'équation différentielle est donc :

$$S = \left\{ t \mapsto \frac{t}{2} \times \sin(t) + C \times \cos(t) + D \times \sin(t), \quad (C, D) \in \mathbb{R}^2 \right\}.$$

4.4 Enfin, si l'on cherche les solutions de l'équation différentielle :

$$y'' + y = 2 + \cos(t)$$

On peut utiliser le principe de superposition et remarquer que la fonction constante égale à 2 est solution de l'équation différentielle :

$$y'' + y = 2$$

pour conclure que l'ensemble des solutions est :

$$S = \left\{ t \mapsto 2 + \frac{t}{2} \times \sin(t) + C \times \cos(t) + D \times \sin(t), \quad (C, D) \in \mathbb{R}^2 \right\}.$$

2017 - 2018 Page 17/88

Chapitre 3

Études de fonctions

3.1 Généralités sur les fonctions

Définition 3.1.3 : Une fonction f est la donnée de deux ensembles E et F et, pour chaque $x \in E$ d'un unique élément $f(x) \in F$. On la note :

$$f: \begin{cases} E \longrightarrow F \\ x \longmapsto f(x) \end{cases}$$

- 1. On appelle E l'ensemble de définition de f,
- 2. on dit que f est à valeurs dans F,
- 3. et que f(x) est l'image de x par f.

On notera $\mathcal{F}(E,F)$ ou F^E l'ensemble des fonctions définies sur E à valeurs dans F.

Remarque(s) 4 : 1. Pour une fonction g réelle à valeurs réelle que l'on souhaite définir par une formule, il est parfois utile de chercher le domaine de définition **maximal**, c'est-à-dire :

$$\mathcal{D}_g = \{x \in \mathbb{R}, \quad g(x) \text{ existe}\}.$$

Par exemple:

- (a) la fonction la admet pour domaine de définition maximal \mathbb{R}_+^*
- (b) la fonction racine carrée admet pour domaine de définition maximal \mathbb{R}_+
- (c) si l'on souhaite définir g par la formule $g(x) = \frac{x+1}{x-1}$, le domaine de définition maximal de g est $\mathbb{R} \setminus \{1\}$.
- 2. Concernant l'ensemble F, il est souvent utile de le choisir aussi **petit** que possible, c'est-à-dire l'ensemble image :

$$f(E) = \{ f(x), \quad x \in E \}.$$

Par exemple:

- (a) La fonction exponentielle : exp : $\mathbb{R} \to \mathbb{R}$ admet pour ensemble image \mathbb{R}_+^* .
- (b) La fonction $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 8$ admet pour ensemble image $[-8, +\infty[$.
- 3. Notez que, par définition, l'image de x par f est unique. Si $y \in F$, on appelle **antécédent** de y par f un $x \in \mathbb{R}$ tel que f(x) = y. Par exemple, si $f : \mathbb{R} \to \mathbb{R}$ est définie par $f(x) = x^2$, alors :
 - (a) -1 n'a pas d'antécédent,
 - (b) 0 a un unique antécédent : 0,
 - (c) 1 admet deux antécédents : -1 et 1.

Page 18/88 2017 – 2018

Exemple(s) 5:

5.1 La fonction

$$\mathrm{Id}_E: \begin{cases} E \longrightarrow E \\ x \longmapsto x \end{cases}$$

est appelée identité de E.

5.2 Si $G \subset E$, alors :

$$\mathbb{1}_G: \begin{cases} E \longrightarrow F \\ x \longmapsto 1 \text{ si } x \in G, \quad 0 \text{ sinon} \end{cases}$$

est une fonction, appelée indicatrice de G.

5.3 Si $f: E \to F$ est une fonction et $G \subset E$ alors :

$$f_{|G}: \begin{cases} G \longrightarrow F \\ x \longmapsto f(x) \end{cases}$$

est une fonction, appelée restriction de f à G.

5.4 (Hors programme) Si $f: E \to F$ est une fonction et $G \subset f(E)$ alors:

$$f^{|G}: \begin{cases} E \longrightarrow G \\ x \longmapsto f(x) \end{cases}$$

est une fonction, appelée co-restriction de f à G.

3.2 Opérations sur les fonctions

Définition 3.2.4 : Soit $(f,g) \in \mathcal{F}(E,F)$. Supposons que $F \subset \mathbb{R}$. On définit les fonctions :

- 1. somme de f et g, notée $f + g \in \mathcal{F}(E, F)$ par : (f + g)(x) = f(x) + g(x).
- 2. produit de f et g, notée $f \times g \in \mathcal{F}(E,F)$ par : $(f \times g)(x) = f(x) \times g(x)$.
- 3. si g ne s'annule pas sur E, le quotient de f par g, noté $\frac{f}{g} \in \mathcal{F}(E,F)$ par : $\frac{f}{g}(x) = \frac{f(x)}{g(x)}$.

Exemple(s) 6:

6.1 Attention! Il est important de vérifier que la fonction g ne s'annule pas avant d'écrire un quotient. Par exemple, si $(f,g) \in \mathcal{F}(\mathbb{R},\mathbb{R})$ sont définies par f(x)=x et $g(x)=x^2-1$, le quotient $\frac{f}{g}$ n'est pas défini sur \mathbb{R} ! Son domaine de définition maximal est :

$$\mathcal{D}_{\frac{f}{q}} = \mathbb{R} \setminus \{-1, 1\}.$$

Définition 3.2.5: Soit $f \in \mathcal{F}(E,F)$ et $g \in \mathcal{F}(G,H)$ Alors si $F \subset G$, on peut définir le composition de f par g, notée $g \circ f \in \mathcal{F}(E,H)$ par :

$$g \circ f(x) = g(f(x)).$$

2017 - 2018 Page 19/88

Exemple(s) 7:

7.1 Dans la définition, l'inclusion est indispensable! Par exemple, si f est la fonction logarithme et $g \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ est définie par g(x) = x, alors $f \circ g$ n'existe pas!

7.2 Si:

$$f: \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \\ x \longmapsto \sqrt{x} \end{cases} \quad \text{et} \quad g: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto x^2 \end{cases}$$

Alors:

$$f \circ g: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R}_+ \\ x \longmapsto |x| \end{cases} \quad \text{et} \quad g \circ f: \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \\ x \longmapsto x \end{cases}$$

En particulier, $f \circ g$ et $g \circ f$ sont deux fonctions très différentes.

3.3 Tangentes et dérivées

Considérons maintenant une courbe \mathcal{C} du plan (intuitivement, quelque chose que l'on peut tracer avec un crayon). Un cas particulier nous sera celui des courbes définies par des fonctions f définies sur un intervalle I:

$$\mathcal{C} = \{(x, y), \quad y = f(x), \ x \in I\}$$

on parle alors de **graphe** de la fonction f. Une information intéressante pour tracer le graphe de la fonction f est donnée par la définition suivante :

Définition 3.3.6: Soit f une fonction à valeurs réelles définie dur un intervalle I. On dit que :

1. f est croissante sur I si:

$$\forall (x,y) \in I, \quad x \leqslant y \Longrightarrow f(x) \leqslant f(y),$$

 $2.\ f$ est décroissante sur I si :

$$\forall (x,y) \in I, \quad x \leqslant y \Longrightarrow f(x) \geqslant f(y),$$

- 3. f est monotone sur I si elle est croissante ou décroissante sur I,
- 4. f est strictement croissante sur I si :

$$\forall (x, y) \in I, \quad x < y \Longrightarrow f(x) < f(y),$$

 $5.\ f$ est strictement décroissante sur I si :

$$\forall (x, y) \in I, \quad x < y \Longrightarrow f(x) > f(y),$$

6. f est strictement monotone sur I si f est strictement croissante ou strictement décroissante sur I.

La définition suivante est aussi souvent utile :

Définition 3.3.7: Soit f une fonction à valeurs réelles définie dur un intervalle I. On dit que :

1. f est majorée si :

$$\exists M \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad f(x) \leqslant M$$

2. f est minorée si :

$$\exists m \in \mathbb{R}, \quad \forall x \in \mathbb{R}, \quad m \leqslant f(x)$$

3. f est bornée si f est majorée et minorée.

Page 20/88 2017 - 2018

Exemple(s) 8:

- 8.1 La fonction f définie sur \mathbb{R} par $f(x) = x^2$ est :
 - (a) strictement croissante sur \mathbb{R}_+ ,
 - (b) strictement décroissante sur \mathbb{R}_{-} ,
 - (c) non monotone sur \mathbb{R}
 - (d) ni majorée ni minorée sur \mathbb{R} .
- 8.2 La fonction sin et la fonction cos sont bornées sur \mathbb{R} .
- $8.3\,$ On définit la fonction partie entière pour tout réel x par :

$$|x| = k \in \mathbb{Z} \iff k \leqslant x < k+1$$

Le graphe de cette fonction est (attention, l'ordinateur ne « voit » pas bien ce qui se passe à chaque entier) :

Alors:

- (a) La fonction partie entière est croissante sur \mathbb{R} ,
- (b) elle n'est pas strictement croissante sur \mathbb{R} .

3.3.1 Droites du plan, pentes

On peut définir une droites du plan de plusieurs façons différentes :

- 1. Par un lieu géométrique :
 - (a) la droite passant par deux points distincts,
 - (b) la droite passant par un point et dirigée par un vecteur non nul,

2017 - 2018 Page 21/88

- (c) la droite parallèle à une autre passant par un point, ou perpendiculaire...
- 2. Par une équation paramétrique, qui est souvent la façon algébrique la plus simple de décrire une droite à partir d'un lieu géométrique; par exemple la droite \mathcal{D} passant par le point A = (a, b) et dirigée par le vecteur $\vec{u} = (u, v) \neq (0, 0)$ a pour équation paramétrique :

$$M \in \mathcal{D} \iff \exists t \in \mathbb{R}, \quad M = A + t.\vec{u}.$$

Ou encore:

$$M = (x, y) \in \mathcal{D} \iff \exists t \in \mathbb{R}, \quad \begin{bmatrix} x = a + t \times u \\ y = b + t \times v \end{bmatrix}.$$

3. Par une équation *cartésienne*, qui est souvent la formulation la plus simple à manier pour les calculs; si l'on reprend le cas de l'exemple précédent, comme $u \times v \neq 0$, on a :

$$M = (x, y) \in \mathcal{D} \iff \exists t \in \mathbb{R}, \quad \begin{cases} x = a + t \times u \\ y = b + t \times v \end{cases} \iff \boxed{v \times (x - a) - u \times (y - b) = 0.}$$

Remarque(s) 5 : Il est important de savoir passer d'une écriture à l'autre dans ces définitions ; par exemple si l'énoncé vous donne l'équation cartésienne $(\beta \neq 0)$:

$$\alpha \times x + \beta \times y + \gamma = 0$$

il faut savoir immédiatement dire que cette droite est dirigée par le vecteur $\vec{u} = (-\beta, \alpha)$ et passe par le point $\left(0, \frac{-\gamma}{\beta}\right)$.

Définition 3.3.8: Soit \mathcal{D} une droite du plan, que l'on suppose dirigée par un vecteur $\vec{u} = (u, v)$, $u \neq 0$. On appelle pente de la droite \mathcal{D} la valeur v/u.

Remarque(s) 6 : 1. Parfois, il est commode de quand même parler de pente d'une droite si u = 0. On dira dans ce cas que la droite à une pente infinie.

2. Il semble à priori que changer de choix de vecteur \vec{u} pourrait changer la valeur de la pente de la droite \mathcal{D} . Ce n'est pas le cas! Si \vec{v} est un autre vecteur directeur de la droite \mathcal{D} , alors $\vec{v} = \lambda . \vec{u}$ ($\lambda \neq 0$) donc $\vec{v} = (\lambda \times u, \lambda \times v)$ et

$$\frac{\lambda \times v}{\lambda \times u} = \frac{v}{u}$$

on dit que la pente est une propriété intrinsèque de la droite (et non du vecteur).

- 3. Considérons la droite d'équation $y = a \times x + b$; la pente de cette droite est alors égale à a, si l'on définit alors sur \mathbb{R} la fonction f par $f(x) = a \times x + b$, on remarque immédiatement que sur \mathbb{R} :
 - (a) f est croissante si et seulement si $a \ge 0$,
 - (b) f est décroissante si et seulement si $a \leq 0$,
 - (c) f est strictement croissante si et seulement si a > 0
 - (d) f est strictement décroissante si et seulement si a < 0

une des idées de la tangente est de généraliser ce fait aux courbes en utilisant en chaque point une droite « meilleure approximation » de la courbe.

Page 22/88 2017 - 2018

3.3.2 Tangentes, nombre dérivé, version géométrique (hors programme, non fait en cours)

Et j'ose dire que c'est ceci le problème le plus utile et le plus général, non seulement que je sache, mais même que j'aie jamais désiré de savoir en géométrie. (Descartes, sur la tangente d'une courbe en un point)

La définition suivante est, pour une fois, **à ne pas retenir** : elle montre la difficulté qu'il existe à définir une tangente de façon géométrique :

Définition 3.3.9: (Descartes) Soit M un point de la courbe C. On dit que C admet une tangente au point M si il existe un cercle de centre A différent de M dont l'intersection avec C est réduite à M. Une tangente à C au point M est alors la droite passant par M orthogonale à la droite (AM).

Remarque(s) 7: 1. Notez qu'à priori, rien ne dit que la tangente en un point d'une courbe est unique; parfois, c'est même faux :

2. Il est même possible qu'une courbe n'admette pas en un point de tangente; ici, il est impossible de tracer un cercle qui n'intersecte la courbe qu'en le point (0,0):

2017 - 2018 Page 23/88

- 3. Il est cependant important de connaître certains résultats :
 - (a) Dans la cas d'un point M appartenant à une droite \mathcal{D} , il n'y a qu'une seule droite tangente T à \mathcal{D} au point M: la droite \mathcal{D} elle-même!

(b) Dans le cas d'un cercle \mathcal{C} de centre O la tangente T du cercle \mathcal{C} au point M est unique; c'est la droite perpendiculaire à (OM) qui passe par M.

Page 24/88 2017 – 2018

La méthode géométrique donnée par la définition est particulièrement mauvaise pour faire des calculs. Heureusement, il existe une meilleure méthode méthode pour certaines courbe. Tout part de la remarque suivante : elle est unique, pour connaître la tangente en un point M d'une courbe, il suffit d'en connaître la pente, puisqu'on en connaît déjà un point : M.

Définition 3.3.10 : Soit $f: I =]a, b[\to \mathbb{R}$ une application. On dit que f est dérivable en $x \in I$ si la courbe $\mathcal{C} = \{(x,y), y = f(x), x \in I\}$ admet en (x,f(x)) une unique tangente de pente finie. On note alors f'(x) la pente de cette tangente.

Si f est dérivable en tout point de I, on dit que f est dérivable sur I et on note f' et on appelle fonction dérivée de f la fonction définie sur I qui à x associe f'(x).

Exemple(s) 9:

9.1 On commence à s'approcher de ce que vous connaissez : la fonction f'! Ce qu'il faut retenir de ce paragraphe est la chose suivante : il n'est absolument pas évident, à priori, que donnée une fonction, cette fonction soit dérivable; on a par exemple montré que les fonctions :

$$f_1: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \mapsto |x| \end{cases}$$
 et $f_1: \begin{cases} \mathbb{R} \longrightarrow \mathbb{R} \\ x \mapsto \begin{cases} x \times \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0 & \text{sinon} \end{cases}$

ne sont pas dérivables en 0.

9.2 Cependant, on sait déjà calculer un type de fonction dérivée; si f est définie par, pour tout $x \in \mathbb{R}$ par

$$f(x) = a \times x + b$$

alors f'(x) = a, puisque la tangente d'une droite est la droite elle-même!

3.3.3 Le grand prêt : calculs pratiques de dérivées

Pour réussir à utiliser quand-même la notion de dérivée, nous allons temporairement emprunter les résultats d'une centaine d'années de recherche mathématique; l'idée est d'utiliser une définition analytique de la dérivée :

2017 - 2018 Page 25/88

Définition 3.3.11 : Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$. Soit $x_0 \in I$. On dit que f est dérivable en x_0 si :

 $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$

existe. On la note alors $f'(x_0)$. On dit que f est dérivable sur I si elle est dérivable en tout $x_0 \in I$.

Remarque(s) 8 : 1. D'où vient cette idée? On peut faire un dessin pour essayer de l'expliquer. Si une droite passe par (x, f(x)) et $(x_0, f(x_0))$, alors elle a pour pente :

$$\frac{f(x) - f(x_0)}{x - x_0},$$

l'idée est d'ensuite faire tendre x vers x_0 :

2. Notez que par définition, si elle existe, l'équation de la tangente à la courbe y = f(x) au point (a, f(a)) est donnée par :

$$y = f'(a) \times (x - a) + f(a).$$

3. Rappelez vous que toutes les fonctions ne sont pas dérivables, même avec cette définition. Par exemple, la fonction définie sur \mathbb{R} par $x \mapsto |x|$ n'est pas dérivable en 0.

On a le tableau suivant des dérivations des fonctions usuelles sur $\mathbb R$:

f(x)	f'(x)	dérivable sur
$x^n, (n \in \mathbb{N})$	$n \times x^{n-1}$	\mathbb{R}
$x^{-n}, (n \in \mathbb{N}^*)$	$(-n) \times x^{-n-1}$	\mathbb{R}^*
$\sin(x)$	$\cos(x)$	\mathbb{R}
$\cos(x)$	$-\sin(x)$	\mathbb{R}
$\ln(x)$	$\frac{1}{x}$	\mathbb{R}_+^*
e^x	e^x	\mathbb{R}

Exemple(s) 10:

10.1 Dans tous les exemples précédents, le domaine de dérivabilité est le même que celui de définition. Mais la fonction :

$$f: x \longmapsto \sqrt{x}$$

est définie sur \mathbb{R}_+ et n'est dérivable que sur $\mathbb{R}_+^*\,!$

Page 26/88 2017 - 2018

Propriété(s) 3.3.4 : Soit f et g deux fonctions à valeurs dans \mathbb{R} , dérivables sur I et $k \in \mathbb{R}$, alors

- 1. f + g est dérivable sur I et (f + g)' = f' + g'.
- 2. k.f est dérivable sur I et (k.f)' = k.f'.
- 3. $f \times g$ est dérivable sur I et

$$f' \times g' = f' \times g + f \times g'.$$

4. Si g ne s'annule pas sur I alors f/g est dérivable sur I et :

$$\boxed{\left(\frac{f}{g}\right)' = \frac{f' \times g - g' \times f}{g^2}}$$

5. Si $h: J \supset f(I) \to \mathbb{R}$, est dérivable sur J, alors $h \circ f$ est dérivable sur I et

$$(h \circ f)' = (h' \circ f) \times f'.$$

Exemple(s) 11:

11.1 Par soucis de cohérence, on peut vérifier qu'avec les autres formules, on peut retrouver la formule de dérivation d'un quotient; on montre d'abord avec la formule de dérivation des composées et celle de $x\mapsto \frac{1}{x}$ que la dérivée de $\frac{1}{g}$ est $-\frac{g'}{g^2}$, puis on utilise la formule de dérivation des produits pour obtenir :

$$\left(\frac{f}{g}\right)' = \left(f \times \frac{1}{g}\right)' = \frac{f'}{g} - \frac{f \times g'}{g^2} = \frac{f' \times g - g' \times f}{g^2}.$$

11.2 On définit, pour α un réel quelconque la fonction puissance α par, pour tout $x \in \mathbb{R}_+^*$:

$$x^{\alpha} = \exp(\alpha \times \ln(x)).$$

Alors, cette fonction est dérivable sur son domaine de définition, de dérivée :

$$\alpha \times \frac{1}{x} \times \exp(\alpha \times \ln(x)) = \alpha \times x^{\alpha - 1}.$$

11.3 On définit la fonction tangente par :

$$\tan(x) = \frac{\sin(x)}{\cos(x)}$$

Son domaine de définition maximal est :

$$\mathcal{D} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \times \pi, \ k \in \mathbb{R} \right\},\,$$

et l'on peut calculer sa dérivée en tout x de son ensemble de définition :

$$\tan'(x) = \frac{\cos^2(x) + \sin^2(x)}{\cos^2(x)} = \frac{1}{\cos^2(x)} = 1 + \tan^2(x).$$

11.4 Un exercice de calcul de dérivée commence souvent par la détermination du domaine de dérivation. Par exemple, si l'on cherche à calculer la dérivée de :

$$f: x \mapsto \sqrt{x^2 - 1}$$

l'ensemble de définition maximal de cette fonction est $]-\infty,-1]\cup[1,+\infty[$ mais son ensemble de dérivation est seulement $]-\infty,-1[\cup]1,+\infty[$! Pour tout x de ce domaine, on a alors :

$$f'(x) = \frac{x}{\sqrt{x^2 - 1}}.$$

2017 - 2018 Page 27/88

Et tant qu'on est à faire des prêts, en voici un dernier, essentiel :

Propriété(s) 3.3.5 : Soit $f: I \to \mathbb{R}$, dérivable sur I, un intervalle de \mathbb{R} . On a :

 $f' \ge 0 \iff f \text{ croissante}$ $f' \le 0 \iff f \text{ décroissante}$ $f' > 0 \implies f \text{ strictement croissante}$ $f' < 0 \implies f \text{ strictement décroissante}$

Remarque(s) 9: 1. Grâce aux deux premières affirmations, on en déduit :

$$f' = 0 \iff f \text{ constante}$$

- 2. Il est possible de relâcher légèrement les hypothèses pour obtenir une monotonie stricte; il suffit que la dérivée soit strictement positive, sauf en un nombre fini de points. C'est par exemple pratique de s'en souvenir pour montrer qu $x \mapsto x^n$, n impair est strictement croissante sur \mathbb{R} .
- 3. Notez qu'il n'y a pas de réciproque dans les deux dernières implications, il est même possible qu'une fonction soit strictement croissante alors que sa dérivée s'annule une infinité de fois, comme le montre la fonction définie sur $\mathbb R$ par :

$$x \mapsto x - \cos(x)$$
.

3.3.4 Dérivées d'ordre supérieur

Page 28/88 2017 – 2018

Définition 3.3.12 : 1. Si f est dérivable et si f' est dérivable, on dit que f est deux fois dérivable. On note f'' la dérivée seconde de f (la dérivée de f').

- 2. De manière itérative, si $n \in \mathbb{N}$, $n \geq 2$, on dit que f est n fois dérivable si f est n-1-fois dérivable et si la dérivée (n-1)-ième, notée $f^{(n-1)}$ est dérivable. On note $f^{(n)}$ sa dérivée n-ième.
- 3. Une fonction n fois dérivable pour tout entier n est dite infiniment dérivable (ou de classe C^{∞}).

On a les propriétés immédiates suivantes :

Propriété(s) 3.3.6 : Si f et g sont des fonctions n fois dérivables sur un intervalle I à valeurs dans \mathbb{R} , si $k \in \mathbb{R}$ et si h est n fois dérivable sur un intervalle $J \supset f(I)$, alors

- 1. f + g est n fois dérivable,
- 2. k.f est n fois dérivable,
- 3. $f \times g$ est n fois dérivable,
- 4. si g ne s'annule pas sur I, $\frac{f}{g}$ est n fois dérivable,
- 5. $h \circ f$ est n fois dérivable.

Exemple(s) 12:

12.1 Les fonctions usuelles (données par leur expression en x) suivantes sont de classe \mathcal{C}^{∞} sur le domaine de dérivation donné.

$$\frac{1}{x} \quad \text{sur} \quad \mathbb{R}^*$$

$$e^x, \sin(x), \cos(x), \quad \text{sur} \quad \mathbb{R}$$

$$\ln(x) \quad \text{sur} \quad \mathbb{R}^*_+$$

$$\tan(x) \quad \text{sur} \quad \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$$

3.4 Limites

Pour compléter un tableau de variations, on a besoin de calculer des limites.

3.4.1 Rappels de lycée

Dans ce paragraphe, on notera $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$. Commençons par quelques exemples à connaître :

$$\frac{1}{x} \xrightarrow[x \to \pm \infty]{} 0$$

$$\frac{1}{x} \xrightarrow[x \to 0^{+}]{} +\infty$$

$$\frac{1}{x} \xrightarrow[x \to 0^{-}]{} -\infty$$

$$\forall \alpha > 0, x^{\alpha} \xrightarrow[x \to +\infty]{} +\infty$$

$$\ln(x) \xrightarrow[x \to +\infty]{} +\infty$$

$$\ln(x) \xrightarrow[x \to 0^{+}]{} -\infty$$

$$e^{x} \xrightarrow[x \to +\infty]{} +\infty$$

$$e^{x} \xrightarrow[x \to +\infty]{} 0$$

2017 - 2018 Page 29/88

Exemple(s) 13:

13.1 Notez qu'à priori, il est tout à fait possible qu'une fonction n'admette pas de limite en un point. Par exemple, ni la fonction sinus ni la fonction cosinus n'admet de limite en $+\infty$.

Propriété(s) 3.4.7 : 1. Si f et g définies sur I admettent des limites (resp. limites à gauche, limites à droite) λ et μ réelles en $a \in \overline{\mathbb{R}}$, alors f + g admet la limite (resp. limite à gauche, limite à droite) $\lambda + \mu$ en a.

Il est encore possible de conclure dans certains cas lorsque λ et μ sont dans $\overline{\mathbb{R}}$, avec les règles suivantes :

$$\forall x \in \mathbb{R}, \qquad \langle x + \infty \rangle = \langle \infty + x \rangle = \langle + \infty + \infty \rangle = +\infty,$$
$$\langle x - \infty \rangle = \langle -\infty + x \rangle = \langle -\infty - \infty \rangle = -\infty,$$

En revanche, il est impossible de conclure de manière générale (on parle de forme indéterminée) pour les cas :

$$\ll +\infty -\infty$$
 » et $\ll -\infty +\infty$ ».

2. Si f et g définies sur I admettent des limites (resp. limites à gauche, limites à droite) λ et μ réelles en $a \in \mathbb{R}$, alors $f \times g$ admet la limite (resp. limite à gauche, limite à droite) $\lambda \times \mu$ en a.

Il est encore possible de conclure dans certains cas lorsque les limites sont dans $\overline{\mathbb{R}}$, avec les règles suivantes :

$$\begin{aligned} \forall x > 0, & \qquad & \ll x \times + \infty \ \rangle = \ \ll + \infty \times x \ \rangle = \ \ll + \infty \times + \infty \ \rangle \\ & = \ \ll - \infty \times - \infty \ \rangle = + \infty \\ \forall x < 0, & \qquad & \ll x \times + \infty \ \rangle = \ \ll + \infty \times x \ \rangle = \ \ll + \infty \times - \infty \ \rangle \\ & = \ \ll - \infty \times + \infty \ \rangle = - \infty \end{aligned}$$

En revanche, il est impossible de conclure de manière générale (on parle de forme indétermin'ee) pour les cas :

$$\langle \langle 0 \times (+\infty) \rangle \rangle$$
 et $\langle \langle 0 \times (-\infty) \rangle \rangle$.

3. Si f admet une limite (resp. limite à gauche, limite à droite) $\lambda \in \mathbb{R}$ en $a \in \mathbb{R}$, si g est définie au voisinage de λ et admet une limite $\mu \in \mathbb{R}$ en λ , alors $g \circ f(x)$ admet la limite (resp. limite à gauche, limite à droite) μ en a.

Exemple(s) 14:

14.1 La fonction définie par $f(x) = x^2 - x$ vérifie :

$$f(x) = x^2 \times \left(1 - \frac{1}{x}\right).$$

Elle admet donc pour limite $+\infty$ en $+\infty$.

- 14.2 La fonction définie sur \mathbb{R}^* par $g(x) = \exp\left(-\frac{1}{x^2}\right)$ admet pour limite 0 en $+\infty$ et comme limite 1 en 0^+ et 0^- .
- 14.3 À partir des limites de la fonction $\frac{1}{x}$ et des limites de produit et d'une composition, on en déduit facilement la limite d'un quotient $\frac{f}{g}$ si g ne s'annule pas au voisinage de a (en ligne, les limites de f, en colonnes celles de g):

Page 30/88 2017 – 2018

	$\lambda \in \mathbb{R}_+^*$	$\lambda \in \mathbb{R}_{-}^{*}$	$+\infty$	$-\infty$	0
$\mu \in \mathbb{R}_+^*$	$\frac{\lambda}{\mu}$	$\frac{\lambda}{\mu}$	$+\infty$	$-\infty$	0
$\mu \in \mathbb{R}_{-}^{*}$	$\frac{\lambda}{\mu}$	$\frac{\lambda}{\mu}$	$-\infty$	$+\infty$	0
$\pm \infty$	0	0	FI	FI	0
0+	$+\infty$	$-\infty$	$+\infty$	$-\infty$	FI
0+	$-\infty$	$+\infty$	$-\infty$	$+\infty$	FI

14.4 La fonction définie sur \mathbb{R}_+^* par :

$$h(x) = \frac{1 + \frac{1}{x}}{\ln(x)}$$

admet pour limite 0 en $+\infty$.

3.4.2 Quelques méthodes pour lever une indétermination

Donnons ici quelques méthodes utiles pour lever une indétermination lorsqu'on recherche une limite. Commençons par quelques rappels de lycée :

1. La factorisation : il est parfois utile de factoriser les expressions avec lesquelles on travaille. Par exemple :

$$\frac{x^2 - 4}{x - 2} = x + 2$$

donc la fonction définie par cette expression admet pour limite 4 en 2.

2. La multiplication par une « quantité conjuguée », qui consiste essentiellement à se débarrasser de racines dans l'expression grâce à l'identité remarquable $(a - b) \times (a + b) = a^2 - b^2$. Par exemple, pour x > 1:

$$\sqrt{x^2 - 1} - x = \frac{x^2 - 1 - x^2}{\sqrt{x^2 - 1} + x} = \frac{-1}{\sqrt{x^2 - 1} + x} \xrightarrow{x \to +\infty} 0$$

Une nouveauté est l'utilisation du taux d'accroissement ; parfois, la connaissance de la dérivée permet de conclure en utilisant :

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0).$$

Par exemple:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Une autre nouveauté est l'utilisation des «croissances comparées» : tout commence par la remarque géométrique suivante : le graphe de la fonction exponentielle est « au-dessus » de sa tangente en 0 :

2017 - 2018 Page 31/88

En termes quantifiés:

$$\forall x \in \mathbb{R}, \quad e^x \geqslant 1 + x.$$

On en déduit que :

$$\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}_+^*, \quad \frac{e^x}{x^n} = e^{x/2} \times \left(\frac{e^{x/2}n}{x}\right)^n \geqslant \left(\frac{1}{x} + \frac{1}{2n}\right)^n \times e^{x/2}$$

Donc, comme le côté droit de l'inégalité tend vers $+\infty$:

$$\forall n \in \mathbb{N}, \lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty.$$

De cette limite, on en déduit :

Propriété(s) 3.4.8 : Pour tous réels strictement positifs a et b, on a :

$$\lim_{x \to +\infty} \frac{\mathrm{e}^{a \times x}}{x^b} = +\infty \quad (1), \quad \lim_{x \to -\infty} |x|^b \times \mathrm{e}^{a \times x} = 0 \quad (2),$$

$$\lim_{x\to +\infty}\frac{(\ln(x))^b}{x^a}=0\quad (3),\quad \lim_{x\to 0^+}x^a\times \left|\ln(x)\right|^b=0\quad (4).$$

 $D\acute{e}monstration:$ IL s'agit essentiellement à chaque fois d'effectuer le bon changement de variables. On pose : $y=a\times x$ dans le premier cas, $y=-a\times x$ dans le deuxième, $y=a\times \ln(x)$ dans le troisième et $y=-a\times \ln(x)$ dans le dernier. Développons le premier cas. Il s'agit après changement de variables de déterminer la limite lorsque y tend vers $+\infty$ de

$$a^b \times \frac{e^y}{y^b} \geqslant a^b \times \frac{e^y}{y^n}$$

où $y\geqslant 1$ et n est un entier supérieur à b. Il reste à utiliser ce qu'on vient de prouver pour conclure.

Page 32/88 2017 – 2018

Exemple(s) 15:

15.1 On a:

$$\lim_{x \to 0^+} \frac{\ln(x)^2}{e^x} = +\infty \quad \lim_{x \to +\infty} \frac{\ln(x)^2}{e^x} = \lim_{x \to +\infty} \frac{\ln(x)^2}{x} \times x \times e^{-x} = 0$$

15.2 On a:

$$\lim_{x\to +\infty}\frac{\sqrt{x}}{e^x-1}=\lim_{x\to +\infty}\sqrt{x}\times e^{-x}\times\frac{1}{1-e^{-x}}=0$$

15.3 On a:

$$\frac{x^2 + x + \ln(x)}{3\ln(x)} = \frac{1}{3} \left(1 + \frac{x^2}{\ln(x)} + \frac{x}{\ln(x)} \right)$$

Donc cette quantité admet pour limite $\frac{1}{3}$ en 0^+ et $+\infty$ en $+\infty$.

3.5 Études de fonctions

3.5.1 Réduction du domaine

Définition 3.5.13 : Soit f une fonction à valeurs réelles définie sur I. On dit que :

- 1. f est p-périodique $si: \forall x \in I, \quad f(x+p) = f(x),$
- 2. si I est symétrique par rapport à 0 (c'est-à-dire si pour tout x de $I, -x \in I$) :
 - $(a) \ f \ est \ impaire \ si : \forall x \in I, \quad f(-x) = -f(x)$
 - (b) f est paire $si: \forall x \in I, \quad f(-x) = f(x).$

Exemple(s) 16:

- 16.1 La fonction sinus est impaire, $2\,\pi\text{-périodique}$
- 16.2 la fonction cosinus est paire, $2\,\pi\text{-p\'eriodique}.$
- 16.3 la fonction tangente est impaire, π -périodique

Faisons maintenant quelques remarques géométriques :

Remarque(s) 10 : 1. Si $a \in \mathbb{R}$, le graphe de la fonction $g: x \mapsto f(x) + a$ est le translaté du graphe de la fonction de f de vecteur (0, a):

2017 - 2018 Page 33/88

2. Si $a \in \mathbb{R}$, le graphe de la fonction $g: x \mapsto f(x+a)$ est le translaté du graphe de la fonction de f de vecteur (-a,0):

3. Si $a \in \mathbb{R}$, le graphe de la fonction $g: x \mapsto f(a-x)$ est la symétrie du graphe de la fonction de f par rapport à la droite $x=\frac{a}{2}$:

Page 34/88 2017 - 2018

4. Si $a \in \mathbb{R}$, le graphe de la fonction $g: x \mapsto a \times f(x)$ est l'affinité du graphe de f par rapport à l'axe O_x de rapport a (c'est-à-dire, la distance à l'axe O_x de tout point du graphe est multiplié par a)

5. Si $a \in \mathbb{R}^*$, le graphe de la fonction $g: x \mapsto f(a \times x)$ est l'affinité du graphe de f par rapport à l'axe O_y de rapport $\frac{1}{a}$ (c'est-à-dire, la distance à l'axe O_y de tout point du graphe est multiplié par $\frac{1}{a}$)

2017 - 2018 Page 35/88

De ces remarques, on en déduit la méthode suivante pour réduire le domaine d'étude d'une fonction :

- 1. Si une fonction est p-périodique, il suffit de l'étudier sur une période (c'est-à-dire sur une intervalle de longueur p) pour en déduire son graphe entier par translations (remarque 2),
- 2. si une fonction est impaire ou paire, il suffit de l'étudier sur le partie positive de son ensemble de définition, pour en déduire son graphe complet par symétrie orthogonale par rapport à O_y (dans le cas pair, par la remarque 3) ou centrale par rapport à O (dans le cas impair, par les remarques 3 et 4).
- 3. Plus généralement, il est possible d'utiliser ces remarques pour réduire le domaine en utilisant toute symétrie de la fonction. Par exemple, comme

$$\sin(x) = \sin(\pi - x)$$

il suffit d'étudier la fonction sinus sur $\left[0,\frac{\pi}{2}\right]$ pour en connaître le graphe...

3.5.2 Recherche d'asymptotes

Définition 3.5.14: Soit f une fonction à valeurs réelle. Soit x_0 , a et b trois réels. On dit que :

1. f admet une asymptote horizontale d'équation y = a si:

$$\lim_{x \to +\infty} f(x) = a$$

2. f admet une asymptote verticale d'équation $x = x_0$ en x_0 si :

$$\lim_{x \to x_0} f(x) = \pm \infty$$

3. f admet une asymptote oblique d'équation $y = a \times x + b$ si:

$$\lim_{x \to +\infty} (f(x) - a \times x - b) = 0$$

Page 36/88 2017 – 2018

Remarque(s) 11: 1. Il est relativement facile de trouver une asymptote horizontale ou verticale. Mais comment faire pour en trouver une oblique?

- (a) On recherche une éventuelle limite en $+\infty$ de f(x). Si cette limite existe et est infinie alors :
- (b) on recherche une éventuelle limite en $+\infty$ de $\frac{f(x)}{x}$. Si cette limite existe et est finie, notons-la a et :
- (c) on recherche une éventuelle limite en $+\infty$ de $f(x) a \times x$. Si cette limite existe et est finie, notons-la b: la droite d'équation $y = a \times x + b$ est une asymptote oblique de la courbe de f.

Exemple(s) 17:

- 17.1 La fonction $a(x) = \frac{1}{x}$ admet en 0^+ et en 0^- une tangente verticale.
- 17.2 La fonction définie pour $x \ge -1$ par :

$$f(x) = \frac{5 + 7x + 4x^2}{2(x+1)}$$

admet pour asymptote oblique la droite d'équation $y = 2x + \frac{3}{2}$.

- 17.3 La fonction $g(x) = \cos(x)$ n'admet pas d'asymptote en $+\infty$.
- 17.4 La fonction $h(x) = \ln(x)$ n'admet pas d'asymptote en $+\infty$.

3.5.3 Mise en œuvre

Une étude de fonctions utilise toutes mes méthodes que l'on a vues jusqu'à maintenant. En résumé :

- 1. On détermine l'ensemble de définition
- 2. on cherche à réduire au maximum l'ensemble d'étude en utilisant les symétries de la fonction.
- 3. on détermine l'ensemble de dérivation, et on calcule la dérivée sur cet ensemble
- 4. on étudie le signe de la dérivée ; et on utilise le lien entre signe de la dérivée et croissance/décroissance
- 5. on étudie les points particuliers: en chaque point, on détermine une éventuelle limite, tangente ou asymptote
- 6. on trace le graphe de la fonction.

Traitons quelques exemples :

1. La fonction tangente est définie sur $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \times \pi, \quad k \in \mathbb{Z} \right\}$ et dérivable sur le même ensemble. Comme elle est π -périodique et impaire, il suffit de l'étudier sur $[0, \frac{\pi}{2}[$. On a :

$$\forall x \in [0, \frac{\pi}{2}[, \tan'(x) = 1 + \tan^2(x) > 0]$$

on étudie les points extrémaux : en 0, la courbe admet pour tangente y=x et en $\frac{\pi}{2}$, la fonction admet pour limite $+\infty$ donc elle y a une tangente verticale. On en déduit le graphe :

2017 - 2018 Page 37/88

2. La fonction définie par l'expression

$$f(x) = \frac{x^3}{x^2 - 1}$$

admet pour domaine de définition et de dérivabilité l'ensemble $\mathbb{R} \setminus \{-1,1\}$. Elle est impaire, il suffit donc de l'étudier sur $[0,1[\cup]1,+\infty[$. Calculons sa dérivée :

$$f'(x) = \frac{x^2 \times (x^2 - 3)}{(x - 1)^2 \times (x + 1)^2}$$

La dérivée est du signe de $x^2 - 3$, donc positive pour x supérieur à $\sqrt{3}$ et négative sinon. Faisons le tableau de variations :

En 0 et en $\sqrt{3}$ la dérivée s'annule, en 1, on a une asymptote verticale à droite et à gauche. Reste à étudier une éventuelle asymptote oblique en $+\infty$:

- (a) $\frac{f(x)}{x}$ admet pour limite 1 en $+\infty$
- (b) $f(x) x = \frac{x}{x^2 1}$ admet pour limite 0 en $+\infty$

la courbe de f admet donc pour asymptote oblique la droite d'équation y=x en $+\infty$. On en déduit le graphe :

Page 38/88 2017 – 2018

3.6 Application à la recherche d'inégalités

L'étude de fonctions permet également de prouver des inégalités. Commençons par un peu de vocabulaire :

Définition 3.6.15 : Soit f une fonction à valeurs réelles définie sur un intervalle I. On dit que :

1. M est un majorant de f sur I si :

$$\forall x \in I, \quad f(x) \leqslant M$$

2. m est un minorant de f sur I si :

$$\forall x \in I, \quad f(x) \leqslant m$$

- 3. M_0 est un maximum de f sur I si c'est un majorant de f et si il existe $x_0 \in I$ tel que $f(x_0) = M_0$
- 4. m_0 est un minimum de f sur I si c'est un minorant de f et si il existe $x_0 \in I$ tel que $f(x_0) = m_0$

Remarque(s) 12: 1. Notez que presque toujours les majorants (et les minorants) d'une fonction f ne sont pas uniques. Le fonction cosinus admet par exemple tout réel supérieur à 1 comme majorant.

- 2. Il est aussi possible qu'une fonction n'admette ni majorant ni minorant; la fonction définie sur \mathbb{R} par f(x) = x n'a ni majorant ni minorant sur \mathbb{R} .
- 3. Par contre, si une fonction admet un maximum (ou un minimum), celui-ci est unique : nommons M-1 et M_2 deux éventuels maximum de f sur I alors par définition il existe x_1 et x_2 tels que $f(x_1) = M_1$ et $f(x_2) = M_2$ donc comme ce sont des majorants :

$$M_1 = f(x_1) \leqslant M_2$$
 et $M_2 = f(x_2) \leqslant M_1$

donc $M_1 = M_2$.

4. Il est très facile de repérer graphiquement un majorant ou un minorant si l'on connaît le graphe d'une fonction. Par exemple :

2017 - 2018 Page 39/88

5. Il arrive très souvent qu'une fonction admette un majorant mais pas de maximum. Par exemple, la fonction

$$f(x) = \frac{1}{x}$$

définie sur \mathbb{R}_+^* admet pour majorant 0 mais n'a pas de maximum.

La recherche de majorants ou de maximum d'une fonction s'effectue souvent par une étude de fonction. Par exemple, si l'on considère la fonction traitée dans la partie précédente :

$$f(x) = \frac{x^3}{x^2 - 1}$$

alors cette fonction admet sur] $-\infty$, 1[

- 1. pour majorants tous les réels de l'intervalle $[\frac{\sqrt{3}\times 3}{2},+\infty[$
- 2. pour maximum $\frac{\sqrt{3}\times 3}{2}$.

Mais on peut aller plus loin : si l'on cherche à montrer que :

$$\forall x \in I, \quad f(x) \leqslant g(x)$$

alors il suffit de montrer que 0 est un majorant de f-g (ou un minorant de g-f) à l'aide d'une étude de fonction. Voici quelques exemples essentiels :

Exemple(s) 18:

18.1 Commençons par prouver que :

$$\forall x \in \mathbb{R}, \quad e^x \geqslant x + 1$$

c'est l'inégalité géométrique que l'on a utilisée lors des théorèmes de comparaison. On pose :

$$f(x) = e^x - (x - 1)$$

Alors $f'(x) = e^x - 1$ donc f est décroissante sur \mathbb{R}_- et croissante sur \mathbb{R}_+ . On en déduit que f admet un minimum en 0, c'est-à-dire l'inégalité recherchée.

18.2 La fonction logarithme vérifie aussi une inégalité géométrique du même type :

$$\forall x \in \mathbb{R}_+^*, \quad \ln(x) \leqslant x - 1$$

on dit que la fonction logarithme est « en dessous » de sa tangente en 1.

Page 40/88 2017 – 2018

En effet, si :

$$f(x) = \ln(x) - x + 1$$

Alors $f'(x) = \frac{1}{x} - 1$ donc f est croissante sur]0,1[et décroissante sur $]1,+\infty[$. Elle admet donc un maximum en 1, ce qui montre l'inégalité recherchée.

18.3 Pour la fonction sinus, il est important de retenir que l'inégalité suivante, qui se montre de la même façon que les autres, n'est vraie que pour les réels positifs :

$$\forall x \in \mathbb{R}_+, \quad \sin(x) \leqslant x$$

2017 - 2018 Page 41/88

18.4 Enfin, pour la fonction cosinus, l'inégalité suivante se montre à l'aide de celle du sinus :

$$\forall x \in \mathbb{R}, \quad \cos(x) \geqslant 1 - \frac{x^2}{2}$$

3.7 Fonctions usuelles

3.7.1 Fonctions puissance

Rappelons que, si α est un réel et x un réel strictement positif, on a posé :

$$x^{\alpha} = \exp\left(\alpha \times \ln(x)\right)$$

Mais nous connaissons d'autres façons de définir une puissance, par exemple, si n est un entier naturel non nul :

$$x^n = x \times x \times \cdots \times x$$
 (*n* fois).

Bien entendu, ces deux formules coïncident si x>0. La différence essentielle entre elles est l'ensemble de définition, dans le premier cas, le formule n'a de sens que si x>0 dans le deuxième, toujours. Pour ce qui concerne les entiers naturels (et aussi relatifs), la définition par multiplication (ou division) est donc bien plus générale. Que se passe-t-il en 0^+ si $\alpha \in \mathbb{R} \setminus \mathbb{Z}$? Un rapide calcul de limites donne :

$$\lim_{x\to 0^+} x^\alpha = \begin{cases} 0 & \text{si } \alpha>0\\ +\infty & \text{si } \alpha<0. \end{cases}$$

Pour cette raison, on étend la définition de ces fonctions puissances en 0 en posant, si $\alpha > 0$, $0^{\alpha} = 0$. Résumons ; la fonction $x \mapsto x^{\alpha}$ est définie :

- 1. sur \mathbb{R} si $\alpha \in \mathbb{N}$
- 2. sur \mathbb{R}^* si $\alpha \in \mathbb{Z} \setminus \mathbb{N}$
- 3. sur \mathbb{R}_+^* et étendue en 0 si $\alpha \in \mathbb{R}_+ \setminus \mathbb{Z}$

Page 42/88 2017 – 2018

4. sur
$$\mathbb{R}_+^*$$
 si $\alpha \in \mathbb{R}_- \setminus \mathbb{Z}$

Rappelons maintenant quelques formules utiles : si α et β sont des réels quelconques et pour tout x tel que ceci ait du sens, on a :

$$(x \times y)^{\alpha} = x^{\alpha} \times y^{\alpha}, \quad x^{\alpha+\beta} = x^{\alpha} \times x^{\beta}, \quad (x^{\alpha})^{\beta} = x^{\alpha \times \beta}.$$

Si l'on s'intéresse à leur domaine de dérivabilité, les théorèmes généraux nous donnent que ces fonctions sont dérivables sur leur ensemble de définition, sauf éventuellement dans la cas où $\alpha \in \mathbb{R}_+ \setminus \mathbb{N}$, pour lequel le point x = 0 reste à étudier. Écrivons le taux d'accroissement pour x > 0:

$$\frac{x^{\alpha} - 0}{x - 0} = x^{\alpha - 1} \underset{x \to 0^{+}}{\longrightarrow} \begin{cases} 0 & \text{si } \alpha < 1 \\ +\infty & \text{si } \alpha > 1 \end{cases}$$

Récapitulons. Les fonctions puissances sont donc dérivables sur leur domaine de définition, sauf si $\alpha \in \mathbb{R}_+ \setminus \mathbb{N}$ et $\alpha < 1$ et alors $x \mapsto x^{\alpha}$

n'est dérivable que sur
$$\mathbb{R}_+^*$$
.

Terminons par une étude de fonctions. Pour x>0, la fonction $x\mapsto x^{\alpha}$ admet pour dérivée :

$$\alpha \times x^{\alpha-1}$$

on en déduit (dans le cas $\alpha \in \mathbb{R} \setminus \mathbb{Z}$) les formes de graphes suivantes (si $\alpha > 0$ puis $\alpha < 0$)

3.7.2 Cosinus et sinus hyperboliques

Les fonctions cosinus et sinus hyperboliques sont définies pour tout réel x par :

$$\cosh(x) = \frac{e^x + e^{-x}}{2} \quad \sinh(x) = \frac{e^x - e^{-x}}{2}.$$

Elles vérifient certaines identités semblables à celles des fonctions sinus et cosinus. La plus importante est sans-doute :

$$\forall x \in \mathbb{R}, \quad \cosh^2(x) - \sinh^2(x) = 1.$$

Elles sont de plus dérivables sur $\mathbb R$ et vérifient :

$$\forall x \in \mathbb{R}, \quad \sinh'(x) = \cosh(x), \quad \cosh'(x) = \sinh(x).$$

On en déduit les graphes :

2017 - 2018 Page 43/88

3.7.3 Fonctions inverses

3.7.3.1 Fonctions injectives, surjectives, bijectives

Définition 3.7.16 : Soit f une fonction définie sur I à valeurs dans J. On dit que :

1. f est injective si chaque antécédent est unique, c'est-à-dire si :

$$\forall (x,y) \in I^2, \quad f(x) = f(y) \Longrightarrow x = y.$$

2. f est surjective si tout élément de J admet un antécédent par f c'est-à-dire si :

$$\forall y \in J, \quad \exists x \in I, \quad f(x) = y.$$

3. f est bijective si elle est à la fois injective et surjective.

Remarque(s) 13 : 1. Il est parfois énoncé directement la définition de la bijectivité d'une fonction de la façon suivante : tout élément de J admet un unique antécédent par f ou :

$$\forall y \in J, \exists ! x \in I, \quad f(x) = y$$

où le quantificateur $\exists !$ signifie « il existe un unique ».

Exemple(s) 19:

- 19.1 Un exemple essentiel de fonction injective est une fonction strictement monotone (il suffit de prendre la contraposée de sa définition). Rappelons que pour montrer qu'une fonction est strictement monotone, il suffit d'examiner sa dérivée si elle existe.
- 19.2 Il est facile de, à partir d'une fonction, en construire une surjective. Il suffit pour ceci de considérer la (co-)restriction de cette fonction à son image. Plus généralement, une fonction $f:I\to J$ est surjective si et seulement si

$$f(I) = J$$

Page 44/88 2017 – 2018

On en déduit la méthode suivante lorsqu'on cherche à construire une fonction bijective à partir d'une fonction réelle à valeurs réelles dérivable.

- 1. On cherche un intervalle le plus grand possible sur lequel sa dérivée est strictement positive ou négative (sauf éventuellement en un nombre fini de points). On restreint le fonction à cet intervalle.
- 2. On calcule l'image de cet intervalle et on (co-)restreint la fonction à cette image.

Exemple(s) 20:

20.1 La fonction sinus n'est pas bijective. Une étude de fonctions nous montre cependant qu'elle est strictement croissante sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et que son image une fois restreinte à cet intervalle est [-1, 1]. On en déduit que la fonction :

$$f: \begin{cases} \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1] \\ x \longmapsto \sin(x) \end{cases}$$

est bijective.

20.2 La fonction cosinus n'est pas bijective. Une étude de fonctions nous montre cependant qu'elle est strictement décroissante sur $[0, \pi]$ et que son image une fois restreinte à cet intervalle est [-1, 1]. On en déduit que la fonction :

$$g: \begin{cases} [0,\pi] \longrightarrow [-1,1] \\ x \longmapsto \cos(x) \end{cases}$$

est bijective.

20.3 La fonction tangente n'est pas bijective, mais elle est strictement croissante (et définie!) sur $]-\frac{\pi}{2},\frac{\pi}{2}[$. Son image une fois restreinte à cet intervalle est \mathbb{R} . On en déduit que la fonction :

$$h: \begin{cases} \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \\ x \longmapsto \tan(x) \end{cases}$$

est bijective.

3.7.3.2 Fonction réciproque d'une bijection

À partir d'une fonction bijective, on peut construire sa fonction réciproque :

Définition 3.7.17: Soit $f: I \to J$ une fonction bijective. On appelle fonction réciproque de f et on note f^{-1} la fonction définie par :

$$f^{-1}: \begin{cases} J \longrightarrow I \\ y \longmapsto x, \ f(x) = y. \end{cases}$$

Remarque(s) 14: 1. Notez qu'il est indispensable que f soit bijective pour que cette définition ait du sens. L'élément x existe car f est surjective et il est unique car f est injective.

2. On remarque que, par définition, si une fonction f est bijective alors f^{-1} existe et vérifie :

$$f \circ f^{-1} = \operatorname{Id}_{I}, \quad f^{-1} \circ f = \operatorname{Id}_{I}.$$

Exemple(s) 21:

21.1 La fonction réciproque de l'exponentielle est le logarithme, celle du logarithme l'exponentielle.

2017 - 2018 Page 45/88

21.2 La fonction réciproque de la racine carrée est la fonction :

$$f \begin{cases} \mathbb{R}_+ \longrightarrow \mathbb{R}_+ \\ x \longmapsto x^2. \end{cases}$$

Pour le fonctions réelles à valeurs réelles, il est très facile de tracer le graphe d'une fonction réciproque f^{-1} à partir ce celui de f. Il s'agit de la symétrie orthogonale du graphe de f par rapport à la droite d'équation y=x en effet, si f(x)=y:

$$(y, f^{-1}(y)) = (f(x), x).$$

Terminons cette partie en parlant de la dérivée d'une fonction réciproque. On a :

Théorème 3.7.2 : Soit $f: I \to J$ continue et bijective sur I. On suppose que f est dérivable en x et que $f'(x) \neq 0$. Alors f^{-1} est dérivable en y = f(x) et :

$$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}.$$

Remarque(s) 15: Il existe de nombreuses façons de retenir ce théorème, plus ou moins mathématiques;

1. un physicien aimera sans-doute

$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$

2. un mathématicien retrouvera facilement la formule en dérivant la formule $f(f^{-1}(y)) = y$ grâce à la formule de dérivation des fonctions composées,

aucune de ces astuces ne peut remplacer la connaissance du théorème et de ses hypothèses.

Page 46/88 2017 – 2018

3.7.3.3 Fonctions trigonométriques réciproques

Rappelons que les trois fonctions suivantes sont bijectives :

$$f: \begin{cases} \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \longrightarrow [-1, 1] \\ x \longmapsto \sin(x) \end{cases}; \quad g: \begin{cases} \left[0, \pi\right] \longrightarrow [-1, 1] \\ x \longmapsto \cos(x) \end{cases}; \quad h: \begin{cases} \left]-\frac{\pi}{2}, \frac{\pi}{2}\right[\longrightarrow \mathbb{R} \\ x \longmapsto \tan(x) \end{cases}$$

On définit les fonctions trigonométriques réciproques par :

$$\arcsin = f^{-1}: \begin{cases} [-1,1] \longrightarrow \left[-\frac{\pi}{2},\frac{\pi}{2}\right] \\ x \longmapsto \arcsin(x) \end{cases} ; \arccos = g^{-1}: \begin{cases} [-1,1] \longrightarrow [0,\pi] \\ x \longmapsto \arccos(x) \end{cases} ; \arctan = h^{-1}: \begin{cases} \mathbb{R} \longrightarrow \left]-\frac{\pi}{2},\frac{\pi}{2}\right[\\ x \longmapsto \arctan(x) \end{cases}$$

Le point le plus important pour ces fonctions concerne leurs ensembles de définition. En particulier, les formules suivantes sont **fausses** en dehors des ensembles sur lesquelles elles sont énoncées :

$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \quad \arcsin(\sin(x)) = x, \quad \forall x \in [0, \pi], \quad \arccos(\cos(x)) = x.$$

Le théorème de dérivation des fonctions réciproques (et un peu de trigonométrie) donnent :

Propriété(s) 3.7.9 : 1. La fonction \arctan est dérivable $\operatorname{sur} \mathbb{R}$, de dérivée :

$$\arctan'(x) = \frac{1}{1+x^2}.$$

2. Les fonctions arcsin et arccos sont dérivables sur]-1,1[et vérifient :

$$\arcsin'(x) = \frac{1}{\sqrt{1 - x^2}} \quad \arccos'(x) = \frac{-1}{\sqrt{1 - x^2}}.$$

Terminons par les graphes de ces fonctions qui sont obtenus par symétrie de ceux des fonctions sinus et cosinus pour arcsin et arccos :

et par symétrie de celle de tangente pour arctan :

2017 - 2018 Page 47/88

notez qu'en particulier

$$\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \quad \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}.$$

2017 - 2018 Page 49/88

Chapitre 4

Nombres complexes et trigonométrie

4.1 Définition

Définition 4.1.18: On considère l'ensemble des points du plan, que l'on note

$$\mathbb{C} \stackrel{Not.}{=} \{ (x, y), \ x \in \mathbb{R}, \ y \in \mathbb{R} \},\$$

sur lequel on définit deux lois (ou opérations) notées + et \times par, pour tous réels a, b, c et d :

$$(a,b)+(c,d) = (a+c,b+d)$$

$$(a,b)\times(c,d) = (a\times c - b\times d, a\times d + b\times c).$$

Notation(s): Si z = (a, b) est un élément de \mathbb{C} , on le notera :

$$z \stackrel{Not.}{=} a + bi$$

Et on dira que a+bi est l'affixe de ce complexe. On appellera de plus a la partie réelle du complexe z et b sa partie imaginaire. On les notera :

$$a = \operatorname{Re}(z), \quad b = \operatorname{Im}(z).$$

On verra dans la suite l'ensemble des réels comme le sous ensemble des complexes donc la partie imaginaire est nulle ; en particulier :

$$0 = 0 + 0i$$
, $1 = 1 + 0i$.

Tout ceci se résume très bien sur une dessin...

Page 50/88 2017 – 2018

Il est important de remarquer qu'il est possible de faire les calculs dans $\mathbb C$ de la même façon que dans les réels :

Proposition 4.1.1 : Soit z_1 , z_2 et z_3 trois éléments de \mathbb{C} (dans la suite, on notera $z_1, z_2, z_3 \in \mathbb{C}$ ou $(z_1, z_2, z_3) \in \mathbb{C}^3$) alors :

- 1. $(z_1+z_2)+z_3=z_1+(z_2+z_3),\ z_1\times(z_2\times z_3)=(z_1\times z_2)\times z_3$ associativité de la somme et du produit,
- 2. $z_1 + z_2 = z_2 + z_1$, $z_1 \times z_2 = z_2 \times z_1$ commutativité de la somme et du produit,
- 3. $z_1 \times (z_2 + z_3) = z_1 \times z_2 + z_1 \times z_3$, distributivité du produit sur la somme,
- 4. $z_1 + 0 = z_1$, $z_1 \times 1 = z_1$ 0 est un élément neutre pour la somme et 1 pour le produit,

Remarque(s) 16: Heureusement pour nous, il existe une astuce qui permet de retenir extrêmement facilement tous ces résultats; avec la notation z = a + bi, tout se passe comme si il suffisait de se souvenir de la règle de calcul supplémentaire

$$i^2 = -1$$

puis d'utiliser les règles de calcul usuelles. Notez bien que i n'est pas un réel mais juste une notation pour (0,1)!

4.2 Premières opérations géométriques

Par sa nature géométrique l'ensemble des complexes $\mathbb C$ est muni de diverses opérations géométriques :

Définition 4.2.19 : Soit z = a + bi un complexe. Alors :

- 1. La distance de z à 0 est notée |z| et appelée module de z ; par le théorème de Pythagore $|z| = \sqrt{a^2 + b^2}$.
- 2. La symétrie centrale par rapport à 0 de z est notée -z; clairement, -z = -a bi.
- 3. La symétrie orthogonale par rapport à l'axe des réels de z est appelée conjugaison complexe de z et est notée \bar{z} ; clairement, $\bar{z} = a bi$.

2017 - 2018 Page 51/88

Remarque(s) 17: 1. Bien-entendu, la définition de -z ne tient pas au hasard. En plus de son sens géométrique, on remarque facilement que :

$$z + (-z) = 0$$

on dit que z admet un inverse pour +.

2. On remarque facilement que si z est un complexe alors :

$$|z| = 0 \iff z = 0.$$

3. De même, un rapide calcul donne :

$$z = \bar{z} \iff z \in \mathbb{R}.$$

La propriété suivante permet de faire le lien entre calculs et géométrie :

Proposition 4.2.2: Soit $z_1, z_2 \in \mathbb{C}^2$. On a:

- 1. $-(z_1+z_2)=-z_1-z_2, \ \overline{z_1\times z_2}=\bar{z}_1\times \bar{z}_2$ (compatibilité avec les opérations)
- 2. $z_1 \times \bar{z}_1 = |z_1|^2$

Remarque(s) 18: La deuxième formule nous donne en particulier l'existence et une méthode pour calculer l'inverse (pour \times) d'un complexe non nul. En effet, si z est un complexe différent de zéro (on notera dans la suite $z \in \mathbb{C}^*$) alors :

$$z \times \left(\frac{1}{|z|^2} \times \bar{z}\right) = 1$$

cette égalité nous incite alors à noter :

$$\frac{1}{z} \stackrel{Not.}{=} \frac{1}{|z|^2} \times \bar{z}.$$

Exemple(s) 22:

$$22.1 \ \frac{1+2i}{1+i} = \frac{3}{2} + \frac{1}{2}i.$$

Proposition 4.2.3: Soit z et z' deux complexes. Alors:

- 1. $|z \times z'| = |z| \times |z'|$.
- 2. $(si \ z' \neq 0) \ \frac{|z|}{|z'|} = \left| \frac{z}{z'} \right|$.
- 3. $|z + z'| \le |z| + |z'|$ (première inégalité triangulaire)
- 4. |z+z'|=|z|+|z'| si et seulement si z et z' sont alignés, de même sens (c'est-à-dire qu'il existe un réel positif a tel que $z=a\times z'$ ou $a\times z=z'$).
- 5. $||z| |z'|| \le |z z'|$ (deuxième inégalité triangulaire)

Le module nous donne également une façon commode de décrire les cercles et disques du plan; en effet si M_0 a pour affixe z_0 et r est un réel strictement positif, alors :

1. Le cercle de centre M_0 et de rayon r est l'ensemble des points :

$$\mathcal{C}(M_0, r) = \{ z \in \mathbb{C}, \quad |z - z_0| = r \}$$

2. Le disque de centre M_0 et de rayon r est l'ensemble des points :

$$\mathcal{D}(M_0, r) = \{ z \in \mathbb{C}, \quad |z - z_0| \leqslant r \}.$$

Page 52/88 2017 - 2018

4.3 Nombres complexes de module un, trigonométrie

Parmi les nombres complexes, ceux de module un jouent un rôle particulier. On note :

$$\boxed{\mathbb{U} = \{z \in \mathbb{C}, \ |z| = 1\}.}$$

Il s'agit du cercle centré en 0 et de rayon 1. On peut paramétrer les points M de ce cercle par l'angle direct entre les vecteurs \overrightarrow{OA} et \overrightarrow{OM} , où O=(0,0) et A=(1,0) (notez qu'il est possible de définir cet angle par la longueur de l'arc de cercle reliant A à M en sens direct). Si θ désigne cet angle, alors $M=(\cos(\theta),\sin(\theta))$.

Commençons par remarquer que, par définition,

$$\cos^2(x) + \sin^2(x) = 1.$$

De cette formule, on déduit les valeurs particulières :

$\mid \theta$	$\cos(\theta)$	$\sin(\theta)$
0	1	0
$\begin{array}{c c} \frac{\pi}{6} \\ \frac{\pi}{4} \\ \frac{\pi}{3} \\ \frac{\pi}{2} \end{array}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{3}}{2} \\ 0 \end{array} $	$\begin{array}{c} \frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} \\ \frac{1}{2} \\ 1 \end{array}$

Les formules suivantes s'obtiennent immédiatement en faisant un dessin :

Propriété(s) 4.3.10 : 1. $\cos(\theta + 2\pi) = \cos(\theta), \sin(\theta + 2\pi) = \sin(\theta),$

- 2. $cos(-\theta) = cos(\theta), sin(-\theta) = sin(\theta),$
- 3. $\sin(\theta + \pi) = -\sin(\theta)$, $\cos(\theta + \pi) = -\cos(\theta)$,
- 4. $cos(\pi \theta) = -cos(\theta), sin(\pi \theta) = sin(\theta),$
- 5. $\cos\left(\frac{\pi}{2} \theta\right) = \sin(\theta), \sin\left(\frac{\pi}{2} \theta\right) = \cos(\theta),$
- 6. $\cos\left(\frac{\pi}{2} + \theta\right) = -\sin(\theta), \sin\left(\frac{\pi}{2} + \theta\right) = \cos(\theta).$

2017 - 2018 Page 53/88

Il est par contre nécessaire de faire un peu plus de géométrie pour obtenir les deux formules suivantes :

Proposition 4.3.4 : Pour tous réels θ et θ' , on a :

- 1. $\cos(\theta + \theta') = \cos(\theta) \times \cos(\theta') \sin(\theta) \times \sin(\theta')$,
- 2. $\sin(\theta + \theta') = \sin(\theta) \times \cos(\theta') + \cos(\theta) \times \sin(\theta')$.

Démonstration: Notons $M_{\theta} = (\cos(\theta), \sin(\theta))$ et comme d'habitude O = (0, 0). Alors

$$\overrightarrow{OM_{\theta+\theta'}} = \cos(\theta').\overrightarrow{OM_{\theta}} + \sin(\theta').\overrightarrow{OM_{\theta+\frac{\pi}{2}}}.$$

Il suffit alors d'utiliser le point 6 de la propriété précédente et de prendre des coordonnées pour conclure.

Ces deux formules essentielles sont heureusement extrêmement faciles à apprendre grâce aux nombres complexes. On note, pour θ un réel :

$$e^{i\theta} \stackrel{Not.}{=} \cos(\theta) + \sin(\theta) i.$$

Alors les deux formules précédentes se résument en :

$$\forall (\theta, \theta') \in \mathbb{R}^2, \quad e^{i(\theta+\theta')} = e^{i\theta} \times e^{i\theta'}.$$

Notez qu'on peut aussi passer de cette exponentielle complexe aux fonctions qui la définissent grâce aux formules d'Euler:

$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}, \quad \sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}.$$

Exemple(s) 23:

23.1 Examinons, pour θ un réel, le complexe $1 \pm e^{i\theta}$. On a :

(a)
$$1 + e^{i\theta} = 2e^{i\frac{\theta}{2}} \times \left(\frac{e^{-i\frac{\theta}{2}} + e^{i\frac{\theta}{2}}}{2}\right) = 2e^{i\frac{\theta}{2}} \times \cos\left(\frac{\theta}{2}\right).$$

En particulier, ce complexe est de module $2 \mid \cos\left(\frac{\theta}{2}\right) \mid$.

$$\text{(b)} \ \ 1 - e^{i\,\theta} = 2\,i\,e^{i\,\frac{\theta}{2}} \times \left(\frac{e^{i\,\frac{\theta}{2}} - e^{-i\,\frac{\theta}{2}}}{2\,i} \right) = 2\,i\,e^{i\,\frac{\theta}{2}} \times \sin\left(\frac{\theta}{2}\right).$$

En particulier, ce complexe est de module $2 | \sin(\frac{\theta}{2})|$.

De ces formules s'en déduisent toutes les suivantes :

Propriété(s) 4.3.11 : $1. \sin(a-b) = \sin a \times \cos b - \cos a \times \sin b$

- 2. $\cos(a-b) = \cos a \times \cos b + \sin a \times \sin b$
- 3. $\cos(2a) = \cos^2 a \sin^2 a = 2\cos^2 a 1 = 1 2\sin^2 a$,
- 4. $\sin(2a) = 2\sin a \times \cos a$,
- 5. $\cos a \times \cos b = \frac{1}{2} (\cos(a-b) + \cos(a+b)),$
- 6. $\sin a \times \sin b = \frac{1}{2} (\cos(a-b) \cos(a+b)),$
- 7. $\cos a \times \sin b = \frac{1}{2} (\sin(a+b) \sin(a-b)),$
- 8. $\cos p + \cos q = 2\cos\left(\frac{p+q}{2}\right) \times \cos\left(\frac{p-q}{2}\right)$,
- 9. $\cos p \cos q = -2\sin\left(\frac{p+q}{2}\right) \times \sin\left(\frac{p-q}{2}\right)$,
- 10. $\sin p + \sin q = 2\sin\left(\frac{p+q}{2}\right) \times \cos\left(\frac{p-q}{2}\right)$,
- 11. $\sin p \sin q = 2\cos\left(\frac{p+q}{2}\right) \times \sin\left(\frac{p-q}{2}\right)$.

Page 54/88 2017 – 2018

Exemple(s) 24:

24.1 Calculons $\cos\left(\frac{\pi}{12}\right)$. On remarque que :

$$\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$$

donc:

$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{3} - \frac{\pi}{4}\right) = \cos\left(\frac{\pi}{3}\right) \times \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{3}\right) \times \sin\left(\frac{\pi}{4}\right)$$

on en déduit :

$$\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2}}{4} \times (1 + \sqrt{3}).$$

24.2 Calculons $\cos\left(\frac{\pi}{8}\right)$. On a :

$$\cos(2a) = 2\cos^2(a) - 1$$

donc en appliquant en $a=\frac{\pi}{8}$:

$$\frac{\sqrt{2}}{2} = \cos\left(\frac{\pi}{4}\right) = 2\cos^2\left(\frac{\pi}{8}\right) - 1$$

On en déduit, après avoir remarqué que comme $\frac{\pi}{8} \in [0, \pi]$, $\cos(\frac{\pi}{8}) \ge 0$,

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{\sqrt{2}+2}}{2}.$$

Terminons par une dernière fonction trigonométrique, la fonction tangente, qui doit son nom au petit dessin suivant :

Commençons immédiatement par remarquer que, contrairement aux fonctions sinus et cosinus, la fonction tangente n'est pas définie pour tout réel θ , ce qui peut se voir géométriquement, ou simplement en cherchant les points d'annulation de la fonction cosinus. L'ensemble de définition de la fonction tangente est :

$$\mathcal{D} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \times \pi, \ k \in \mathbb{Z} \right\}.$$

2017 - 2018 Page 55/88

La formule nous donne immédiatement les valeurs particulières suivantes :

$$\tan(0) = 0$$
, $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$, $\tan\left(\frac{\pi}{4}\right) = 1$, $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$.

Les formules trigonométriques à connaı̂tre pour la fonction tangente sont au nombre de deux :

Propriété(s) 4.3.12 : Soit $(a, b) \in \mathcal{D}^2$. On a :

- 1. si $a + b \in \mathcal{D}$, alors $\tan(a + b) = \frac{\tan a + \tan b}{1 \tan a \times \tan b}$,
- 2. si $a b \in \mathcal{D}$, alors $\tan(a b) = \frac{\tan a \tan b}{1 + \tan a \times \tan b}$

4.4 Arguments d'un nombre complexe non nul

4.4.1 Définition, premières propriétés

Il n'existe une autre façon de décrire un point du plan que de donner ses coordonnées, c'est ce qu'on appelle les coordonnées polaires ou encore en termes de nombres complexes le module et l'argument. Faisons un dessin.

Pour un complexe non nul $z=a+i\,b$, on note $\rho=|z|\in\mathbb{R}^*$ et on rappelle qu'il s'agit du module du complexe z. On désigne également par θ et on appelle argument du complexe z un angle direct entre l'axe des abscisses et le vecteur \overrightarrow{OM} , M=(a,b). Notez que cet angle existe car le vecteur \overrightarrow{OM} est non nul, mais qu'il est loin d'être unique! En effet, si θ est un tel angle, toute valeur du type $\theta+2\,k\times\pi,\ k\in\mathbb{Z}$ conviendra aussi. Pour rendre ce problème moins douloureux, on introduit la définition :

Définition 4.4.20 : Soit θ et θ' deux réels. On dira que θ et θ' sont égaux ou congruents modulo 2π si il existe un entier relatif k tel que :

$$\theta' = \theta + 2 \, k \times \pi$$

et on écrira alors :

$$\theta' \equiv \theta \mod 2 \pi$$
.

On peut alors dire que l'argument θ du complexe z est bien défini **modulo** 2π . Voici quelques règles de calcul à connaître :

Propriété(s) 4.4.13 : Soit θ , θ' , θ'' et θ''' des réels. Alors :

1. Propriétés de relation d'équivalence :

Page 56/88 2017 – 2018

- (a) $\theta \equiv \theta \mod 2\pi$ (réflexivité),
- (b) $\theta \equiv \theta' \mod 2\pi \iff \theta' \equiv \theta \mod 2\pi$ (symétrie),
- (c) si $\theta \equiv \theta' \mod 2\pi$ et $\theta' \equiv \theta'' \mod 2\pi$ alors $\theta \equiv \theta'' \mod 2\pi$ (transitivité),
- 2. Compatibilité avec la somme :
 - (a) si $\theta \equiv \theta' \mod 2\pi$ et $\theta'' \equiv \theta''' \mod 2\pi$ alors $\theta + \theta'' \equiv \theta' + \theta''' \mod 2\pi$
 - (b) si $\theta \equiv \theta' \mod 2\pi$ et $\theta'' \equiv \theta''' \mod 2\pi$ alors $\theta \theta'' \equiv \theta' \theta''' \mod 2\pi$

Remarque(s) 19: Notez qu'il est faux de penser que cette relation est compatible avec le produit; par exemple:

$$0 \equiv 2 \pi \mod 2 \pi$$
 et $\frac{1}{2} \equiv \frac{1}{2} \mod 2 \pi$,

mais:

$$0 \not\equiv \pi \bmod 2\pi$$
.

Un peu de trigonométrie nous permet de voir que :

$$M = (\rho \times \cos(\theta), \rho \times \sin(\theta)),$$

autrement dit, en termes de nombres complexes :

$$z = \rho \times e^{i\,\theta}.$$

Faisons le lien avec l'amplitude et la phase d'un signal. Il existe deux façons équivalentes de décrire un signal sur \mathbb{R} :

$$a \times \cos(t) + b \times \sin(t)$$
 et $A \times \cos(t - \varphi)$.

Pour passer d'une expression à l'autre, il faut et il suffit de résoudre le système d'équations

$$\begin{cases} a = A \times \cos(\varphi) \\ b = A \times \sin(\varphi) \end{cases}$$

Autrement dit, d'un point de vue complexe, A est le module du complexe $a+i\,b$ et s'il est non nul, φ un argument de ce complexe.

4.4.2 Calculs pratiques d'arguments

La dernière formule du paragraphe précédent nous permet de passer de l'argument et du module d'un complexe non nul à son affixe. Passer d'une affixe à un module et un argument se fait à l'aide des fonctions trigonométriques inverses. Supposons que x est la partie réelle de z et y sa partie imaginaire. Alors rappelons que :

$$\rho = \sqrt{x^2 + y^2}$$

pour retrouver θ , on utilise que :

$$\cos(\theta) = \frac{x}{\rho} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \sin(\theta) = \frac{y}{\rho} = \frac{y}{\sqrt{x^2 + y^2}} \quad \text{et} \quad \tan(\theta) = \frac{y}{x}.$$

La dernière formule n'étant valable que si $x \neq 0$. Pour savoir si il est légitime d'utiliser les formules d'inversion, il faut déterminer dans quel quadrant du cercle trigonométrique se situe l'angle θ recherché. On a quatre cas, déterminés par les signes de x et de y:

2017 - 2018 Page 57/88

On a déduit donc les possibilités suivantes, dans chaque cas, un argument θ est donné par une des formules (à choisir en fonction du contexte) :

1. Si $x \ge 0$ et $y \ge 0$:

$$\theta = \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \quad \theta = \arcsin\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \quad \theta = \arctan\left(\frac{y}{x}\right)$$

la dernière formule n'étant valable que si $x \neq 0$

2. Si $x \leq 0$ et $y \geq 0$:

$$\theta = \arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \quad \theta = \pi - \arcsin\left(\frac{y}{\sqrt{x^2 + y^2}}\right), \quad \theta = \pi + \arctan\left(\frac{y}{x}\right)$$

la dernière formule n'étant valable que si $x \neq 0$

3. Si $x \leq 0$ et $y \leq 0$:

$$\theta = -\arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \quad \theta = -\pi - \arcsin\left(\frac{y}{\sqrt{x^2 + y^2}}\right), \quad \theta = -\pi + \arctan\left(\frac{y}{x}\right)$$

la dernière formule n'étant valable que si $x \neq 0$

4. Si $x \geqslant 0$ et $y \leqslant 0$:

$$\theta = -\arccos\left(\frac{x}{\sqrt{x^2 + y^2}}\right), \quad \theta = \arcsin\left(\frac{y}{\sqrt{x^2 + y^2}}\right), \quad \theta = \arctan\left(\frac{y}{x}\right)$$

la dernière formule n'étant valable que si $x \neq 0$

C'est souvent (pour des raisons de facilité de calculs) les formules qui utilisent la fonction arc-tangente qui sont utilisées en pratique, résumons-les : l'argument $\theta \in]-\pi,\pi]$ du complexe z=x+yi est donné par :

$$\theta = \begin{cases} \arctan(\frac{y}{x}) & x > 0\\ \arctan(\frac{y}{x}) + \pi & y \ge 0 , x < 0\\ \arctan(\frac{y}{x}) - \pi & y < 0 , x < 0\\ \frac{\pi}{2} & y > 0 , x = 0\\ -\frac{\pi}{2} & y < 0 , x = 0 \end{cases}$$

Page 58/88 2017 – 2018

Exemple(s) 25:

25.1 Un argument de z = -4 - 10i est :

$$\theta = \arctan\left(\frac{5}{2}\right) - \pi$$

4.5 Exponentielle complexe

Définition 4.5.21 : (Exponentielle complexe.) Soit z = a + bi un nombre complexe. On appelle exponentielle du complexe z et on note e^z ou $\exp(z)$ le complexe :

$$e^z \stackrel{Def.}{=} e^a \times e^{ib}$$
.

Remarquer que cette définition « prolonge » l'exponentielle réelle à \mathbb{C} . La fonction exponentielle jouit de presque les mêmes propriétés que l'exponentielle réelle. Les voici résumées :

Propriété(s) 4.5.14 : Soit z et z' deux nombres complexes. Alors :

- 1. $e^z \times e^{z'} = e^{z+z'}$
- 2. $e^z \neq 0$ et $\frac{1}{e^z} = e^{-z}$
- 3. $e^z = e^{z'}$ si et seulement si $\operatorname{Re}(z) = \operatorname{Re}(z')$ et $\operatorname{Im}(z) = \operatorname{Im}(z') \mod 2\pi$.

Remarque(s) 20: 1. En particulier, si θ est un argument de z et θ' un argument de z', alors:

- (a) $\theta + \theta'$ est un argument de $z \times z'$
- (b) si $z' \neq 0$, $\theta \theta'$ est un argument de $\frac{z}{z'}$.
- 2. Il faut faire particulièrement attention, s'il existe une exponentielle complexe, le notion de logarithme complexe est totalement hors programme (et beaucoup plus difficile); en particulier, retenez que d'écrire $\log(z)$ pour z un complexe n'a absolument aucun sens!

4.6 Résolutions d'équations complexe

L'ensemble des nombres complexes est le bon ensemble pour résoudre des équations. Traitons plusieurs exemples.

4.6.1 Second degré

4.6.1.1 Racines carrées d'un nombre complexe : méthode algébrique

Supposons que nous cherchions, pour un complexe $z=a+b\,i$ un complexe δ appelé racine carrée de $z^{\,1}$ vérifiant :

$$\delta^2 = a + b i$$

L'idée de la méthode algébrique est de raisonner en résolvant astucieusement un système :

1. Il est totalement interdit d'utiliser la notation $\sqrt{\delta}$ pour un complexe (sauf si c'est un réel positif)!

2017 - 2018 Page 59/88

1. On écrit $\delta = x + y\,i$ et on dit qu'il si et seulement si :

$$x^{2} - y^{2} + 2x \times yi = \delta^{2} = a + bi$$

ou encore:

$$\begin{cases} x^2 - y^2 = a \\ 2x \times y = b \end{cases}$$

2. Malheureusement ces équations sont en général difficiles à résoudre... il existe heureusement une astuce : l'équation $\delta^2=a+b\,i$ implique aussi l'égalité des modules : $x^2+y^2=|\delta^2|=|a+b\,i|=\sqrt{a^2+b^2}$; on en déduit le système :

$$\begin{cases} x^{2} - y^{2} = a \\ x^{2} + y^{2} = \sqrt{a^{2} + b^{2}} \\ 2x \times y = b \end{cases}$$

3. On résout le système : les deux premières lignes donnent x^2 et y^2 ce qui détermine x et y au signe près, signe que l'on détermine avec la dernière équation.

Exemple(s) 26:

26.1 Parfois, les racines carrées sont « évidentes » : les racines carrées de -1 dont :

$$\delta_1 = i$$
 et $\delta_2 = -i$

26.2 Les racines complexes de z = i sont :

$$\delta_1 = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i = e^{i\frac{\pi}{4}}$$
 et $\delta_2 = -\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i = -e^{i\frac{\pi}{4}}$

elles peuvent se retrouver facilement en constatant que $i = e^{i\frac{\pi}{2}}$.

26.3 Cherchons les racines carrées complexes de $z=-4-10\,i$. Le complexe $\delta=x+y\,i$ est une racine carrée de z si et seulement si :

$$\begin{cases} x^2 - y^2 = -4\\ x^2 + y^2 = 2\sqrt{29}\\ 2x \times y = -10 \end{cases}$$

On en déduit, par addition puis soustraction des deux premières lignes que :

$$x^2 = -2 + \sqrt{29}$$
 et $y^2 = 2 + \sqrt{29}$

d'où

$$x^2 = \pm \sqrt{-2 + \sqrt{29}}$$
 et $y = \pm \sqrt{2 + \sqrt{29}}$

mais par la troisième ligne du système d'équations, x et y sont de signes opposés donc les deux racines carrées recherchées sont :

$$\delta_1 = \sqrt{\sqrt{29} - 2} - \sqrt{\sqrt{29} + 2} \ i \quad \text{et} \quad \delta_2 = -\sqrt{\sqrt{29} - 2} + \sqrt{\sqrt{29} + 2} \ i.$$

4.6.1.2 Équations du second degré à coefficients complexes

Soit $(a, b, c) \in \mathbb{C}^3$, $a \neq 0$, on peut toujours écrire, pour $z \in \mathbb{C}$:

$$a \times z^2 + b \times z + c = a \times \left(z + \frac{b}{2a}\right)^2 + \frac{4a \times c - b^2}{4a}.$$

Il vient alors, pour l'équation à l'inconnue complexe $z: a \times z^2 + b \times z + c = 0$.

Page 60/88 2017 – 2018

1. Si $\Delta = b^2 - 4a \times c = 0$ (Δ s'appelle le discriminant de l'équation), alors l'équation possède une unique solution :

$$z_0 = -\frac{b}{2a}$$
 (dite solution double),

et l'équation s'écrit :

$$a \times \left(z + \frac{b}{2a}\right)^2 = 0.$$

2. Si $\Delta \neq 0$, l'équation possède deux solutions distinctes

(si
$$\delta \in \mathbb{C}$$
 est une récine cérrée de Δ) $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$.

Et l'équation s'écrit :

$$a \times (z - z_1) \times (z - z_2) = 0.$$

Remarque(s) 21: 1. En développant l'expression ci-dessus, on voit que :

$$a \times (z - z_1) \times (z - z_2) = a \times z^2 - (z_1 + z_2) \times z + z_1 \times z_2 = a \times z^2 + b \times z + c$$

donc

$$z_1 + z_2 = -\frac{b}{a}$$
 et $z_1 \times z_2 = \frac{c}{a}$.

Lorsque la solution est double les relations sont encore exactes (avec $z_1 = z_2 = z_0$).

2. Si a, b et c sont dans \mathbb{R} et $\Delta < 0$, on peut prendre

$$\delta = i \times \sqrt{-\Delta} \text{ et } - \delta = \overline{\delta},$$

et l'on retrouve les formules :

$$z_1 = \frac{-b + i\sqrt{|\Delta|}}{2a}$$
 et $z_2 = \frac{-b - i\sqrt{|\Delta|}}{2a}$

En particulier, $z_1 = \bar{z}_2$.

3. De manière générale, si α est solution de $a \times z^2 + b \times z + c = 0$, alors

$$\overline{\alpha}$$
 est solution de $\overline{a} \times z^2 + \overline{b} \times z + \overline{c} = 0$.

Exemple(s) 27:

27.1 Les racines de l'équation :

$$z^2 + z + 1 = 0$$

sont

$$z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i = \exp\left(\frac{2 i \pi}{3}\right)$$
 et $z_2 = z_1^2$

on notera:

$$j \stackrel{Not.}{=} z_1 = -\frac{1}{2} + \frac{\sqrt{3}}{2} i = \exp\left(\frac{2 i \pi}{3}\right).$$

27.2 Résolvons l'équation :

$$z^2 + (-1 - 3i) \times z + 3i - 4 = 0$$

Son discriminant vaut :

$$\Delta = (-1 - 3i)^2 - 4(3i - 4) = 8 - 6i.$$

2017 - 2018 Page 61/88

Cherchons ses racines carrées par la méthode du paragraphe précédent. Le complexe $\delta=x+y\,i$ est racine carrée de Δ si et seulement si :

$$\begin{cases} x^2 - y^2 = 8 \\ x^2 + y^2 = 10 \\ 2x \times y = -6 \end{cases}$$

Les deux premières équations donnent :

$$x = \pm 3$$
 et $y = \pm 1$

mais par la troisième équation, x et y sont de signes opposés, donc les racines carrées de Δ sont :

$$\delta_1 = 3 - i$$
 et $\delta_2 = -3 + i$.

On en déduit que les racines de l'équation sont :

$$z_1 = \frac{-(-1-3i)+\delta_1}{2} = 2+i$$
 et $z_1 = \frac{-(-1-3i)+\delta_2}{2} = -1+2i$.

4.6.2 Quelques équations d'ordre n.

4.6.2.1 Racines de l'unité

On appelle $unit\acute{e}$ le complexe identifié à 1. Le problème qui va nous intéresser est le suivant : étant donné $n \in \mathbb{N}^*$, résoudre l'équation :

$$z^n = 1.$$

Les solutions complexes de cette équation s'appellent $racines \ n$ -ième de l'unité. Calculons-les. Supposons $n \in \mathbb{N}^*$ fixé :

1. Si $z^n=1$, alors $z\in\mathbb{U}$. En effet, $z\neq 0$, il possède un argument noté θ . On a alors :

$$z^n = (|z| \times e^{i \times \theta})^n = |z|^n \times e^{i \times n \times \theta} = 1.$$

En prenant les modules, on obtient :

$$|z|^n = 1$$
, or $|z| > 0$ donc $|z| = 1$.

2. Il y a exactement n racines n-ième de l'unité. En effet, si z est solution de $z^n = 1$, alors on a :

$$n \times \theta - 0 \in 2\pi \mathbb{Z}$$
, soit $\exists k \in \mathbb{Z}, \ \theta = \frac{2k \times \pi}{n}$.

Mais, la fonction $x\mapsto e^{i\times x}$ est 2π -périodique, il reste donc les solutions :

$$\forall k \in [0, n-1], \ z_k = \exp\left(i \times \frac{2k \times \pi}{n}\right).$$

3. On note:

$$\mathbb{U}_n = \left\{ \exp\left(i \times \frac{2k \times \pi}{n}\right), \ k \in [\![0,n-1]\!] \right\},$$

c'est l'ensemble des racines n-ième de l'unité cherché.

Ces ensembles de solutions se représentent très bien sur un dessin, les voici pour n = 5, 6, 7:

Page 62/88 2017 – 2018

Algébriquement, on trouve facilement :

Exemple(s) 28:

28.1

$$\mathbb{U}_1 = \{1\}, \ \mathbb{U}_2 = \{1, -1\}, \ \mathbb{U}_3 = \{1, j, j^2\} \text{ et } \mathbb{U}_4 = \{1, i, -1, -i\},$$

où l'on rappelle que :

$$j = \exp\left(i \times \frac{2\pi}{3}\right).$$

On a donc : $j^3 = 1$, $\bar{j} = j^2$, $1 + j + j^2 = 0$.

4.6.2.2 Racines n-ième d'un complexe.

Soit maintenant l'équation

$$z^n = a$$
, où $a \in \mathbb{C}^*$, $n \in \mathbb{N}^*$.

(a=0est facile). Soit $\delta\in\mathbb{C},$ tel que $\delta^n=a$ (une solution), alors

$$\{z \in \mathbb{C}, \ z^n = a\} = \delta \times \mathbb{U}_n.$$

Comment trouver δ ?

Si
$$a = |a| \times e^{i \times \theta}$$
, $\theta \in \mathbb{R}$, on peut prendre $\delta = \sqrt[n]{|a|} \times \exp\left(i \times \frac{\theta}{n}\right)$.

Finalement:

$$\{z \in \mathbb{C}, \ z^n = a\} = \left\{ \sqrt[n]{|a|} \times \exp\left(i \times \frac{\theta + 2k \times \pi}{n}\right), \ k \in [0, n - 1] \right\}.$$

Exemple(s) 29:

29.1 Résolvons l'équation :

$$z^3 = i$$
.

On remarque que $i=e^{i\,\frac{\pi}{2}}.$ On a donc :

$$S = \left\{\exp\left(i\left(\frac{\pi}{6} + k \times \frac{2\,\pi}{3}\right)\right), \quad k \in \llbracket 0, 2\rrbracket\right\} = \{e^{i\,\frac{\pi}{6}}, e^{i\,\frac{5\,\pi}{6}}, e^{i\,\frac{9\,\pi}{6}}\}.$$

Il est ici possible d'exprimer ces trois complexes à l'aide de racines (c'est un coup de chance...) :

$$S = \left\{ \frac{\sqrt{3}}{2} + \frac{1}{2}i, -\frac{\sqrt{3}}{2} + \frac{1}{2}i, -i \right\}.$$

29.2 Résolvons l'équation :

$$z^4 = -16i$$

On remarque que $-16i = 2^4 e^{i\frac{3\pi}{2}}$. Les solutions sont donc :

$$S = \left\{ 2 \times \exp\left(i \left(\frac{3 i \pi}{8} + k \times \frac{\pi}{2}\right)\right), \quad k \in [0, 3] \right\} = \left\{ 2 \times e^{\frac{3 i \pi}{8}}, 2 \times e^{\frac{7 i \pi}{8}}, 2 \times e^{\frac{11 i \pi}{8}}, 2 \times e^{\frac{15 i \pi}{8}} \right\}.$$

Remarque(s) 22 : En particulier, cette méthode nous donne une autre façon de calculer les racines carrées d'un complexe z. On peut :

2017 - 2018 Page 63/88

a Écrire le complexe z sous forme exponentielle :

$$z = |z| \times e^{i \theta}$$

b En déduire que les racines carrées de z sont :

$$\delta_1 = \sqrt{|z|} \times e^{i\frac{\theta}{2}} \quad \delta_2 = -\delta_1.$$

Traitons quelques exemples:

1. Parfois, ça se passe bien : les racines carrées de $1+i=\sqrt{2}\times e^{i\,\pi/4}$ sont :

$$\delta_1 = 2^{\frac{1}{4}} \times e^{\frac{\pi}{8}i}, \quad \delta_2 = -\delta_1$$

2. Parfois, la méthode algébrique est mieux adaptée : cherchons de cette façon les racines carrées de :

$$z = -4 - 10i$$
.

Alors, comme nous l'avions remarqué, un argument de z est :

$$\theta = \arctan\left(\frac{5}{2}\right) - \pi$$

et son module vaut clairement : $|z| = \sqrt{116}$. Les racines carrées de z sont donc :

$$\delta_1 = (116)^{\frac{1}{4}} \times \exp\left(\left(\frac{\arctan\left(\frac{5}{2}\right)}{2} - \frac{\pi}{2}\right)i\right), \quad \delta_2 = -\delta_1.$$

4.7 Fonctions réelles à valeurs complexes

Définition 4.7.22 : Soit f une fonction définie sur un intervalle I à valeurs dans \mathbb{C} . On dit que f est dérivable si les fonctions :

$$\operatorname{Re}(f): \begin{cases} I \longrightarrow \mathbb{R} \\ x \mapsto \operatorname{Re}(f(x)) \end{cases} \quad \text{et} \quad \operatorname{Im}(f): \begin{cases} I \longrightarrow \mathbb{R} \\ x \mapsto \operatorname{Im}(f(x)) \end{cases}$$

sont dérivables sur I. On note alors :

$$\forall x \in I, \quad f'(x) = \text{Re}(f)'(x) + \text{Im}(f)'(x) i.$$

Remarque(s) 23 : 1. Bien entendu, cette définition s'énonce de même pour les autres notions de régularité que nous avons étudiées (ou nous étudierons) : continuité, dérivable n fois...

2. Notez bien que **nous n'avons pas** (parce que c'est autrement plus compliqué) parlé de fonctions complexes à valeurs complexes. La fonction considérée ici est réelle à valeurs complexe.

Exemple(s) 30:

Page 64/88 2017 – 2018

30.1 Soit $\lambda \in \mathbb{C}$. L'exemple le plus utile est sans-doute la fonction définie sur \mathbb{R} par :

$$f(t) = \exp(\lambda \times t)$$
.

Si l'on écrit $\lambda = a + bi$ alors :

$$\operatorname{Re}(f)(t) = e^{a \times t} \times \cos(b \times t)$$
 et $\operatorname{Im}(f)(t) = e^{a \times t} \times \sin(b \times t)$.

Ces deux fonctions sont dérivables sur $\mathbb R$ et :

$$\operatorname{Re}(f)'(t) = a \times e^{a \times t} \times \cos(b \times t) - b \times e^{a \times t} \times \sin(b \times t)$$

$$\operatorname{Im}(f)'(t) = a \times e^{a \times t} \times \sin(b \times t) + b \times e^{a \times t} \times \cos(b \times t).$$

On en déduit que f est dérivable sur \mathbb{R} et que :

$$f'(t) = e^{a \times t} \times (a \times \cos(b \times t) - b \times \sin(b \times t) + (a \times \sin(b \times t) + b \times \cos(b \times t)) i)$$
$$= (a + b i) \times e^{a \times t} \times (\cos(b \times t) + \sin(b \times t) i) = \lambda \times e^{\lambda \times t}.$$

On retrouve alors (ou pouvait s'y attendre!) pour $\lambda \in \mathbb{C}$:

La dérivée de
$$f(t) = e^{\lambda \times t}$$
 est $f'(t) = \lambda \times e^{\lambda \times t}$.

30.2 Plus généralement et presque par le même calcul, si φ est une fonction dérivable sur un intervalle I à valeurs dans \mathbb{C} , alors la fonction définie sur I par

$$f(t) = \exp(\varphi(t))$$

est dérivable sur I et :

$$\forall t \in I, \quad f'(t) = \varphi'(t) \times \exp(\varphi(t)).$$

Enfin, on retrouve les propriétés classiques de dérivabilité des fonctions réelles à valeurs réelles :

Propriété(s) 4.7.15 : Soit u et v deux fonctions dérivables sur I à valeurs dans \mathbb{C} et $a \in \mathbb{C}$. Alors :

- 1. $a \times u$ est dérivable sur I de dérivée $a \times u'$
- 2. u + v est dérivable sur I, de dérivée u' + v'
- 3. $u \times v$ est dérivable sur I, de dérivée $u' \times v + u \times v'$
- 4. si v ne s'annule pas sur I, $\frac{u}{v}$ est dérivable sur I, de dérivée :

$$\frac{u' \times v - v' \times u}{v^2}.$$

Démonstration : Nous nous contenterons de montrer les deux points les plus difficile, les troisièmes et quatrièmes. Écrivons

$$u = a + bi \quad v = c + di.$$

Alors:

$$u \times v = a \times c - b \times d + (a \times d + b \times c) i$$

par le théorèmes généraux sur les fonctions réelles, cette fonction est donc dérivable sur I, de dérivée :

$$(u \times v)' = a' \times c + a \times c' - b' \times d - b \times d' + (a' \times d + a \times d' + b' \times c + b \times c') i$$

$$= (a' + b'i) \times (c + di) + (a + bi) \times (c' + d'i) = u' \times v + u \times v'.$$

Déduisons-en 3. Il suffit de remarquer que, par la méthode de la quantité conjuguée

$$\frac{1}{v} = \frac{c - di}{c^2 + d^2}$$

2017 - 2018 Page 65/88

donc par les théorèmes généraux sur les fonctions réelles, $\frac{1}{v}$ puis $\frac{u}{v}$ est dérivable sur I. Mais ce serait inutilement compliqué d'utiliser cette formule pour calculer la dérivée. On a, si v ne s'annule pas sur I:

$$u = \frac{u}{v} \times v$$

donc par la formule 3 :

$$u' = \left(\frac{u}{v}\right)' \times v + \frac{u}{v} \times v'$$

et l'on en déduit la formule recherchée.

Exemple(s) 31:

31.1 Il est parfois utile de « passer par les complexes » pour obtenir des solutions réelles des équations différentielles. Par exemple, pour trouver une solution particulière de :

$$y'' + 2y = e^{t} \times \cos(t) = \frac{1}{2} \left(e^{(1+i)t} + e^{(1-i)t} \right)$$

On peut utiliser le principe de superposition. Une solution particulière de :

$$y'' + 2y = \frac{1}{2} e^{(1+i)t}$$

est : $f_0(t) = \frac{1-i}{8} e^{(1+i)t}$ et une solution particulière de :

$$y'' + 2y = \frac{1}{2} e^{(1-i)t}$$

est : $f_1(t) = \frac{1+i}{8} e^{(1-i)t}$. On en déduit la solution particulière de l'équation différentielle initiale :

$$f_2(t) = f_0(t) + f_1(t) = \frac{e^t}{4} (\cos(t) + \sin(t)).$$

4.8 Opérations sur les complexes et géométrie plane.

4.8.1 Affixes et géométrie du plan

Soit M d'affixe z et M' d'affixe z'. Alors :

- 1. le vecteur $\overline{M'M}$ a pour affixe z-z'
- 2. la distance M'M vaut |z-z'|

Soit A, B et C d'affixes respectives a, b et c deux à deux distinctes. Alors :

1. un angle orienté entre \overrightarrow{AB} et \overrightarrow{AC} est donné par un argument du complexe

$$\frac{c-a}{b-a}$$
.

2. $\langle \overrightarrow{AB}, \overrightarrow{AC} \rangle = \text{Re}((c-a) \times \overline{b-a}).$

Il est en particulier facile de vérifier l'alignement ou l'orthogonalité en termes d'affixes :

1. Les points d'affixes a, b et c sont alignés si et seulement si :

$$\exists \lambda \in \mathbb{R}, \quad (a-b) = \lambda . (a-c) \quad \text{ou} \quad \lambda . (a-b) = a-c.$$

En particulier, si les points d'affixes a b et c sont deux à deux distincts, il sont alignés si et seulement si :

$$\operatorname{Im}\left(\frac{c-a}{b-a}\right) = 0$$

2. Si a, b et c sont les affixes de points A, B et C deux à deux distincts alors \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux si et seulement si :

$$\operatorname{Re}\left(\frac{c-a}{b-a}\right) = 0$$

Page 66/88 2017 - 2018

4.8.2 Quelques exemples de transformations du plan

4.8.2.1 Transformations du plan, premiers exemples

Définition 4.8.23 : Une transformation du plan est une bijection du plan vers lui-même.

Toutes les application suivantes sont des transformations du plan :

Exemple(s) 32:

32.1 Soit $b \in \mathbb{C}$, alors la fonction

$$z \mapsto z + b$$

est une translation de vecteur \overrightarrow{OB} où B est le point du plan d'affixe b.

32.2 Soit $k \in \mathbb{R}_{+}^{*}$. Alors la fonction :

$$z \mapsto k \times (z - b) + b$$

est une homothétie de centre d'affixe b et de rapport k

32.3 Soit θ un réel. Alors la fonction :

$$z \mapsto e^{i\theta} \times (z-b) + b$$

est la rotation de centre d'affixe b et d'angle θ .

4.8.2.2 Similitudes du plan

Il existe de nombreuses autres transformations du plan, mais ce sont les exemples venus de la géométrie qui nous intéresseront particulièrement :

Définition 4.8.24: Une similitude du plan est une transformation qui conserve les angles non orientés.

Exemple(s) 33:

- 33.1 Tous les exemples considérés au paragraphe précédent sont des similitudes.
- 33.2 Toutes les symétries orthogonales et centrales sont des similitudes.

Propriété(s) 4.8.16: Une similitude du plan conserve les rapports de distances.

Démonstration: Après translation, rotation et éventuellement symétrie (il y a exactement deux cas : tous les angles du triangle image ont même orientation ou orientation opposée), la situation géométrique devient

2017 - 2018 Page 67/88

et l'on obtient ainsi le résultat par le théorème de Thalès.

En particulier, lors de la preuve, nous avons montré qu'une similitude conserve les angles orientés ou transforment tous les angles orientés en leurs opposés. Traitons les deux cas.

4.8.2.3 Similitudes directes du plan

Définition 4.8.25 : Soit f une transformation du plan. On dit que f est une similitude directe du plan si elle préserve les angles orientés (donc aussi les rapports de distance). En termes d'affixes, pour tous trois points du plan deux à deux distincts d'affixes respectives z, z' et z'' :

$$\frac{f(z') - f(z)}{f(z'') - f(z)} = \frac{z' - z}{z'' - z}$$

Remarque(s) 24: 1. Dans les exemples du paragraphe précédent, tous sont des similitudes directes.

2. Rappelons que l'application

$$z\mapsto \bar{z}$$

est une transformation du plan : la symétrie orthogonale par rapport à l'axe O_x . Ce n'est pas une similitude directe.

Propriété(s) 4.8.17 : Une transformation du plan f est une similitude directe si et seulement si il existe a un complexe non nul et b un complexe tels que :

$$\forall z \in \mathbb{C}, \quad f(z) = a \times z + b.$$

Page 68/88 2017 – 2018

 $D\'{e}monstration$: La réciproque est un calcul direct. Soit f une similitude directe. Alors pour tout z différent de 0 et 1, on a :

$$\frac{f(z) - f(0)}{f(1) - f(0)} = \frac{z - 0}{1 - 0} = z.$$

On en déduit :

$$f(z) = z \times (f(1) - f(0)) + f(0)$$

et il reste à remarquer que cette formule est aussi vraie pour z=0 et z=1 et que comme f est injective, $a=f(1)-f(0)\neq 0$.

En pratique, c'est souvent de cette façon qu'est donnée une similitude directe dans les énoncés. Pour reconnaître ce qu'elle représente géométriquement, on procède de la façon suivante :

- 1. On recherche un éventuel **point fixe**, c'est-à-dire, on résout l'équation : f(z) = z.
- 2. Si $a \neq 1$, on trouve $z_0 = \frac{b}{1-a}$ comme point fixe et

$$f(z) = a \times (z - z_0) + z_0$$

si l'on écrit $a = \rho \times e^{i\theta}$, la similitude directe f est donc la composée d'une rotation de centre d'affixe z_0 et d'angle θ et d'une homothétie de centre d'affixe z_0 et de rapport ρ .

3. Si a = 1, il s'agit de la translation de vecteur d'affixe b.

Exemple(s) 34:

34.1 La transformation donnée par la formule :

$$f(z) = (1+i) \times z + 1$$

est la composée de la rotation de centre d'affixe i et d'angle $\frac{\pi}{2}$ et de l'homothétie de centre d'affixe i et de rapport $\sqrt{2}$.

4.8.2.4 Similitudes indirectes du plan

Définition 4.8.26 : Soit f une transformation du plan. On dit que f est une similitude indirecte du plan si elle transforme tous les angles orientés en leurs opposés (et donc préserve aussi les rapports de distance). En termes d'affixes, pour tous trois points du plan deux à deux distincts d'affixes respectives z, z' et z'' :

$$\frac{f(z') - f(z)}{f(z'') - f(z)} = \overline{\left(\frac{z' - z}{z'' - z}\right)}$$

Exemple(s) 35:

35.1 La transformation:

$$z \mapsto e^{i\theta} \times \bar{z}$$

est une similitude indirecte, c'est la symétrie orthogonale par rapport à la droite d'équation

$$\sin\left(\frac{\theta}{2}\right) \times x - \cos\left(\frac{\theta}{2}\right) \times y = 0.$$

35.2 Plus généralement, la transformation

$$z \mapsto e^{i\,\theta} \times \overline{z-b} + b$$

est une similitude indirecte, c'est la symétrie orthogonale par rapport à la droite passant par le point d'affixe b et faisant un angle de $\theta/2$ avec l'axe O_x .

2017 - 2018 Page 69/88

Avec la même preuve que dans le cas des similitudes directes, on a :

Propriété(s) 4.8.18 : Une transformation du plan f est une similitude directe si et seulement si il existe a un complexe non nul et b un complexe tels que :

$$\forall z \in \mathbb{C}, \quad f(z) = a \times \bar{z} + b.$$

Comme pour les similitudes directes, c'est souvent de cette façon que sont données les similitudes indirectes dans les exercices. Voici comment reconnaître ce qu'elles représentent géométriquement :

1. On recherche d'éventuels points fixes, c'est-à-dire les z tels que f(z) = z. Un tel z est solution de l'équation :

$$(1 - |a|^2) \times z = b + a \times \bar{b}.$$

2. Si |a|=1 et b=0 alors si $a=e^{i\theta}$, f est la symétrie orthogonale par rapport à la droite d'équation

$$\sin\left(\frac{\theta}{2}\right) \times x - \cos\left(\frac{\theta}{2}\right) \times y = 0.$$

3. Si |a|=1 et $b\neq 0$ alors si $a=e^{i\,\theta},\,f$ est la composée de la translation de vecteur d'affixe b et de la symétrie orthogonale par rapport à la droite d'équation

$$\sin\left(\frac{\theta}{2}\right) \times x - \cos\left(\frac{\theta}{2}\right) \times y = 0.$$

4. Si $|a| \neq 1$ alors f admet un unique point fixe :

$$z_0 = \frac{b + a \times \bar{b}}{1 - |a|^2}$$

et l'on peut réécrire $f(z) = z_0 + a \times \overline{z - z_0}$. Donc si l'on note M le point d'affixe z_0 et $a = \rho \times e^{i\theta}$, f est la composée de la symétrie par rapport à la droite passant par M et faisant un angle $\theta/2$ avec l'axe O_x et d'une homothétie de centre M et de rapport ρ .

2017 - 2018 Page 71/88

Chapitre 5

Calculs algébriques

5.1 Les raisonnements par récurrence

Commençons en parlant d'un raisonnement essentiel en mathématiques : les raisonnements par récurrence.

5.1.1 Récurrence simple

Le raisonnement par récurrence simple est basé sur le principe suivant. Considérons une proposition P(n) dont on veut montrer la véracité pour tout entier naturel n. Alors il suffit de :

- 1. La montrer pour n=0 (on parle d'initialisation de la récurrence) (notez qu'on pourrait aussi commencer en un entier k quelconque mais qu'alors la propriété ne serait prouvée que pour $n \ge k$)
- 2. De montrer que si pour un entier naturel N, P(N) est vraie, alors P(N+1) aussi (on parle d'hérédité de la récurrence)

Exemple(s) 36:

36.1 Montrons que (inégalité de Bernoulli) :

$$\forall x \ge -1, \forall n \in \mathbb{N}, \quad (1+x)^n \ge 1 + n \times x.$$

Pour ceci, on pose:

$$\mathcal{P}(n): \forall x \geqslant -1, \quad (1+x)^n \geqslant 1+n \times x.$$

(a) Initialisation: prenons n = 0. Alors, pour $x \ge -1$:

$$(1+x)^0 = 1 \ge 1 = 1 + 0 \times x.$$

(b) Hérédité : supposons, pour N un entier naturel fixé, que $\mathcal{P}(N)$ est vraie et montrons $\mathcal{P}(N+1)$. Soit x un réel plus grand que -1. On a :

$$(1+x)^N \geqslant 1+N \times x$$
 (hypothèse de récurrence) et $1+x\geqslant 0$ $(x\geqslant -1).$

Ceci nous donne, en multipliant la première inégalité par le réel positif 1 + x:

$$(1+x)^{N+1} \ge (1+N\times x) \times (1+x) = 1 + (N+1)\times x + N\times x^2 \ge 1 + (N+1)\times x \quad (x^2 \ge 0).$$

Concluons : par principe de récurrence, la propriété est donc vraie pour tout n; donc :

$$\forall x \geqslant -1, \forall n \in \mathbb{N}, \quad (1+x)^n \geqslant 1 + n \times x.$$

Page 72/88 2017 – 2018

36.2 Il est possible d'initialiser une récurrence pour un entier différent de 0; par exemple, montrons que toute somme supérieure à 12 peut être payée seulement avec des pièces de 4 et de 5 :

$$\forall n \geqslant 12, \exists (a,b) \in \mathbb{N}^2, \quad 12 = 4 \times a + 5 \times b$$

- (a) Initialisation: prenons n = 12. Alors $12 = 4 \times 3$.
- (b) $H\'{e}r\'{e}dit\'{e}$: supposons, pour N un entier naturel fixé supérieur à 12, la propriété soit vraie, c'est-à-dire qu'il existe deux entiers naturels a et b tels que :

$$N = 4 \times a + 5 \times b$$

Il y a alors deux cas:

i. Si $a \neq 0$ alors :

$$N + 1 = 4 \times (a - 1) + 5 \times (b + 1)$$

ii. Si a=0 alors, comme $N \ge 12$, $b \ge 3$ donc :

$$N+1 = 5 \times b + 1 = 5 \times (b-3) + 4 \times 4$$

Concluons : par principe de récurrence, le propriété est donc vraie pour tout $n\geqslant 12$.

- 36.3 Traitons maintenant un exemple de mauvaise utilisation : montrons (ce qui est évidemment faux!) que n points du plan sont toujours alignés.
 - (a) C'est clairement vrai pour n = 0, 1 et 2
 - (b) Si je considère N+1 points, notés A_0, A_1, \ldots, A_N alors par hypothèse de récurrence $A_0, A_1, \ldots, A_{N-1}$ sont alignés et A_1, \ldots, A_N aussi donc A_0, A_1, \ldots, A_N sont sur la même droite : celle qui passe par A_1, \ldots, A_{N-1} ; ils sont alignés!

Sauriez-vous trouver l'erreur?

5.1.2 Récurrence double

Le raisonnement par récurrence double est une conséquence immédiate du raisonnement par récurrence simple ; son principe est le suivant : pour montrer que P(n) est vraie pour tout n, il suffit de montrer que :

- 1. P(0) et P(1) sont vrais (initialisation)
- 2. et que si, pour tout entier N, la véracité de P(N) et P(N+1) entraı̂ne celle de P(N+2) (hérédité)

Exemple(s) 37:

37.1 Soit x un réel tel que $x + 1/x \in \mathbb{Z}$. Montrons que :

$$\forall n \in \mathbb{N}, \quad x^n + \frac{1}{x^n} \in \mathbb{Z}.$$

- (a) initialisation: le résultat est vrai pour n=0 car $2\in\mathbb{Z}$ et pour n=1 par hypothèse
- (b) $h\acute{e}r\acute{e}dit\acute{e}$: supposons le résultat vrai pour N et pour N+1. Alors :

$$\left(x^{N+1} + \frac{1}{x^{N+1}}\right) \times \left(x + \frac{1}{x}\right) = x^{N+2} + \frac{1}{x^{N+2}} + x^N + \frac{1}{x^N}$$

donc par hypothèse de récurrence :

$$x^{N+2} + \frac{1}{x^{N+2}} = \left(x^{N+1} + \frac{1}{x^{N+1}}\right) \times \left(x + \frac{1}{x}\right) - x^N + \frac{1}{x^N} \in \mathbb{Z}.$$

On conclut alors que la propriété est vraie pour tout n par principe de récurrence double.

2017 - 2018 Page 73/88

37.2 On considère la suite de Fibonacci définie par :

$$u_0 = 0, \ u_1 = 1, \quad u_{n+2} = u_{n+1} + u_n.$$

On pose:

$$\varphi = \frac{1+\sqrt{5}}{2}, \quad \psi = \frac{1-\sqrt{5}}{2}.$$

Montrons que :

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{\sqrt{5}} \times (\varphi^n - \psi^n).$$

- (a) initialisation: le résultat est vrai pour n = 0 et pour n = 1 (faites le calcul!)
- (b) $h\acute{e}r\acute{e}dit\acute{e}$: supposons le résultat vrai pour N et pour N+1. Alors (hypothèse de récurrence):

$$u_N = \frac{1}{\sqrt{5}} \times (\varphi^N - \psi^N)$$
 et $u_{N+1} = \frac{1}{\sqrt{5}} \times (\varphi^{N+1} - \psi^{N+1})$.

On en déduit :

$$u_{N+2} = u_{N+1} + u_N = \frac{1}{\sqrt{5}} \times (\varphi^N \times (1+\varphi) - \psi^N \times (1+\psi))$$

mais $1 + \varphi = \varphi^2$ et $1 + \psi = \psi^2$ (faites le calcul!) donc :

$$u_{N+2} = u_{N+1} + u_N = \frac{1}{\sqrt{5}} \times (\varphi^{N+2} - \psi^{N+2})$$

et on conclut : par principe de récurrence double, la propriété est donc vraie pour tout n c'est-à-dire :

$$\forall n \in \mathbb{N}, \quad u_n = \frac{1}{\sqrt{5}} \times (\varphi^n - \psi^n).$$

Notez que si la vérification de la formule est assez facile ici, il serait intéressant de trouver d'où vient l'idée de celle-ci...

5.1.3 Récurrence forte

Le raisonnement par récurrence forte, quand à lui, repose sur le principe que, pour montrer P(n) pour tout n, il suffit de :

- 1. Montrer P(0) (initialisation)
- 2. Montrer que si, pour tout entier N, la propriété est vraie pour tout entier k inférieur à N, alors elle l'est aussi pour N+1 (hérédité)

Exemple(s) 38:

- 38.1 Montrons que tout entier naturel supérieur à 2 admet un diviseur premier.
 - (a) initialisation: si n=2 alors 2 est un nombre premier qui divise 2
 - (b) $h\acute{e}r\acute{e}dit\acute{e}:$ soit N un entier naturel et supposons que pour tout entier k inférieur ou égal à N, k admette un diviseur premier. Alors, soit N+1 est un nombre premier et c'est terminé, soit il s'écrit comme produit de deux entiers naturels strictement inférieurs différents de $1:N+1=n_1\times n_2,$ $1< n_1< N+1,$ $1< n_2< N+1$ et alors par hypothèse de récurrence appliquée à n_1 , il est divisible par un nombre premier donc N+1 aussi.
- 38.2 Montrons d'une autre façon que :

$$\forall n \geqslant 12, \exists (a,b) \in \mathbb{N}^2, \quad n = 4 \times a + 5 \times b.$$

(a) initialisation : on a :

$$12 = 4 \times 3$$
, $13 = 4 \times 2 + 5$, $14 = 4 + 5 \times 2$, $15 = 5 \times 3$

Page 74/88 2017 – 2018

(b) $h\acute{e}r\acute{e}dit\acute{e}$: soit $N \geqslant 16$ un entier naturel et supposons que pour tout entier k inférieur ou égal à N et supérieur à 12, la propriété soit vraie. C'est en particulier vrai pour $N-4\geqslant 12$:

$$\exists (a,b) \in \mathbb{N}^2, \quad N-4=4 \times a+5 \times b$$

 $donc: N = 4 \times (a+1) + 5 \times b.$

La propriété est donc vraie pour tout $n \ge 12$ par principe de récurrence forte.

5.2 Sommes et produits :

5.2.1 Définition, premiers exemples

Soit $(E_i)_{i\in I}$ une famille d'ensemble. On appelle produit cartésien de cette famille l'ensemble :

$$\prod_{i \in I} E_i \stackrel{Not.}{=} \left\{ x: \ I \to \bigcup_{i \in I} E_i, \ \forall i \in I, \quad x(i) \in E_i \right\}.$$

Un élément de ce produit cartésien est appelé famille et sera noté $(x_i)_{i\in I}$. Si $E_i = E$ pour tout i, on notera plus simplement cet ensemble E^I . Un cas particulier qui nous intéressera sera celui où $I = \mathbb{N}$ et E_i est l'ensemble des réels (resp. des complexes). On parlera dans ce cas de suite réelle (resp. complexe), que l'on notera $(x_n)_{n\in\mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ (ou $\mathbb{C}^{\mathbb{N}}$).

Définition 5.2.27 : Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels ou de complexes. On définit, pour tout entier n:

$$\sum_{k=0}^{n} x_k \quad \text{et} \quad \prod_{k=0}^{n} x_k$$

par les formules de récurrence :

$$\sum_{k=0}^{0} x_k = x_0, \quad \sum_{k=0}^{n+1} x_k = \sum_{k=0}^{n} x_k + x_{n+1} \quad \text{et} \quad \prod_{k=0}^{0} x_k = x_0, \quad \prod_{k=0}^{n+1} x_k = \left(\sum_{k=0}^{n} x_k\right) \times x_{n+1}.$$

Remarque(s) 25: 1. Il est parfois aisé, pour bien se représenter les sommes et les produits, de noter :

$$\sum_{k=0}^{n} x_k = x_0 + x_1 + \dots + x_n \quad \text{et} \quad \prod_{k=0}^{n} x_k = x_0 \times x_1 \times \dots \times x_n.$$

Attention cependant! Ces notations utilisant des pointillés sont très dangereuses et peuvent faire faire des erreurs (pensez à la récurrence fausse du paragraphe précédent)...

2. Soit I un ensemble fini non vide à n éléments. Numérotons ses éléments par les entiers compris entre 0 et n-1, c'est-à-dire :

$$I = \{i_0, i_1, \dots, i_{n-1}\}.$$

Alors on définit, pour $(x_i)_{i\in I}$ une famille de réels ou de complexes indexés par I

$$\sum_{i \in I} x_i = \sum_{k=0}^{n-1} x_{i_k}, \quad \text{et} \quad \prod_{i \in I} x_i = \prod_{k=0}^{n-1} x_{i_k}.$$

Notez que cette définition ne dépend pas de l'ordre employé dans la numérotation de I.

2017 - 2018 Page 75/88

3. Par la définition précédente, si I = [k, k+n], où k et n sont deux entiers naturels, on a :

$$\sum_{i=k}^{k+n} x_i \overset{Not.}{=} \sum_{i \in \llbracket k, k+n \rrbracket} x_i = \sum_{i=0}^n x_{i-k}$$

c'est ce qu'on appelle un changement d'indices; il en existe d'autres...

Traitons quelques exemples :

Exemple(s) 39:

39.1 On pose, pour $n \in \mathbb{N}^*$:

$$n! = \prod_{k=1}^{n} k$$
 et $0! = 1$.

39.2 Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique. Alors :

$$\sum_{k=0}^{n} u_k = \frac{u_0 + u_n}{2} \times (n+1)$$

En effet, comme la suite est arithmétique on remarque facilement que pour tout $0 \le k \le n$: $u_k + u_{n-k} = u_0 + u_n$ donc en effectuant le changement d'indices $k \leftrightarrow n - k$:

$$2 \times \sum_{k=0}^{n} u_k = \sum_{k=0}^{n} u_k + \sum_{k=0}^{n} u_{n-k} = \sum_{k=0}^{n} (u_0 + u_n) = (n+1) \times (u_0 + u_n)$$

39.3 En particulier (somme arithmétique):

$$\sum_{k=0}^{n} k = \frac{n \times (n+1)}{2}.$$

39.4 Soit $a \in \mathbb{C}$, $a \neq 1$. On a (somme géométrique) :

$$\left| \sum_{k=0}^{n} a^k = \frac{1 - a^{n+1}}{1 - a} \right|.$$

En effet:

$$(1-a) \times \sum_{k=0}^{n} a^{k} = \sum_{k=0}^{n} a^{k} - \sum_{k=0}^{n} a^{k+1} = \sum_{k=0}^{n} a^{k} - \sum_{k=1}^{n+1} a^{k} = a^{0} - a^{n+1} = 1 - a^{n+1}.$$

39.5 On en déduit immédiatement que si $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $r\neq 1$ alors :

$$\sum_{k=0}^{n} v_k = \frac{r^{n+1} - 1}{r - 1} \times v_0.$$

39.6 En particulier, si $\zeta \in \mathbb{U}_n$ alors :

$$\sum_{k=0}^{n-1} \zeta^k = 0.$$

39.7 Soit $n \in \mathbb{N}^*$ et $(a, b) \in \mathbb{C}^2$. On a (formule de Bernoulli) :

$$a^{n} - b^{n} = (a - b) \times \sum_{k=0}^{n-1} a^{k} \times b^{n-1-k}.$$

En effet:

$$(a-b)\times \sum_{k=0}^{n-1}a^k\times b^{n-1-k} = \sum_{k=0}^{n-1}a^{k+1}\times b^{n-1-k} - \sum_{k=0}^{n-1}a^k\times b^{n-k} = \sum_{k=1}^na^k\times b^{n-k} - \sum_{k=0}^{n-1}a^k\times b^{n-k} = a^n - b^n.$$

Page 76/88 2017 – 2018

39.8 Il existe un type de somme particulièrement facile à calculer : les sommes dites télescopiques : si $(v_n)_{n\in\mathbb{N}}$ est une suite, alors :

$$\sum_{k=0}^{n} (v_{k+1} - v_k) = v_{n+1} - v_0.$$

Par exemple, on a:

$$\sum_{k=1}^{n} \frac{1}{k \times (k+1)} = \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{n+1}.$$

39.9 Les sommes télescopiques ont aussi leur tenant pour les produits; si $(v_n)_{n\in\mathbb{N}}$ est une suite de complexes non nuls, alors :

$$\prod_{k=0}^{n} \frac{v_{k+1}}{v_k} = \frac{v_{n+1}}{v_0}.$$

Par exemple, on a:

$$\prod_{k=1}^{n} \left(1 + \frac{1}{k} \right) = \prod_{k=1}^{n} \frac{k+1}{k} = n+1.$$

39.10 La notation indicielle de la somme est particulièrement adaptée au produit de sommes : en effet (il suffit , pour s'en rappeler, de se souvenir de la distributivité du produit sur la somme) :

$$\left(\sum_{i \in I} x_i\right) \times \left(\sum_{j \in J} y_j\right) = \sum_{(i,j) \in I \times J} x_i \times y_j.$$

5.2.2 Sommes doubles

Le dernier exemple nous suggère naturellement d'étudier les sommes dites doubles. Le cas le plus simple est le suivant :

$$\sum_{(i,j)\in [\![0,n]\!]\times [\![0,m]\!]}a_{i,j}.$$

Il exista alors deux façons d'effectuer la somme, par lignes, ou par colonnes :

2017 - 2018 Page 77/88

Ce qui donne, en utilisant ces deux numérotations : :

$$\sum_{i=0}^{n} \sum_{j=0}^{m} a_{i,j} = \sum_{(i,j) \in [\![0,n]\!] \times [\![0,m]\!]} a_{i,j} = \sum_{j=0}^{n} \sum_{i=0}^{m} a_{i,j}.$$

Exemple(s) 40:

 $40.1\,$ On a :

$$\sum_{(i,j) \in [\![0,n]\!] \times [\![0,m]\!]} (i+j) = \sum_{i=0}^n \sum_{j=0}^m (i+j) = \sum_{i=0}^n (m+1) \times \left(i + \frac{m}{2}\right) = \frac{(n+1) \times (m+1) \times (n+m)}{2}.$$

40.2 On a:

$$\sum_{(i,j)\in [\![0,n]\!]\times [\![0,m]\!]} i\times j = \left(\sum_{i=0}^n i\right)\times \left(\sum_{j=0}^m j\right) = \frac{n\times m\times (n+1)\times (m+1)}{4}.$$

Un autre type de sommes doubles que l'on rencontre souvent est dit « triangulaire » :

$$\sum_{\substack{j\leqslant i\\(i,j)\in \llbracket 0,n\rrbracket\times \llbracket 0,m\rrbracket}}a_{i,j}$$

Page 78/88 2017 - 2018

On peut alors, comme pour le cas des sommes précédentes, procéder par lignes ou par colonnes (par convention, la dernière somme est nulle si j > n) :

$$\sum_{i=1}^{n} \sum_{j=1}^{\max(i,m)} a_{i,j} = \sum_{\substack{j \leqslant i \\ (i,j) \in [\![0,n]\!] \times [\![0,m]\!]}} a_{i,j} = \sum_{j=1}^{m} \sum_{i=j}^{n} a_{i,j}$$

Souvent, m=n dans une telle somme et la formule se simplifie alors :

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a_{i,j} = \sum_{\substack{j \leqslant i \\ (i,j) \in [0,n]^2}} a_{i,j} = \sum_{j=1}^{n} \sum_{i=j}^{n} a_{i,j}.$$

Exemple(s) 41:

2017 - 2018 Page 79/88

41.1 Parfois, intervertir une somme triangulaire facilite grandement les calculs:

$$\sum_{i=1}^{n} \sum_{j=i}^{n} \frac{1}{j} = \sum_{j=1}^{n} \sum_{i=1}^{j} \frac{1}{j} = \sum_{j=1}^{n} 1 = n.$$

41.2 Parfois, une somme triangulaire apparaît naturellement lors d'un calcul :

$$\sum_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \min(i,j) = \sum_{\substack{j \leqslant i \\ (i,j) \in [\![0,n]\!]^2}} j + \sum_{\substack{i < j \\ (i,j) \in [\![0,n]\!]^2}} i = \sum_{j=1}^n \sum_{i=j}^n j + \sum_{i=1}^n \sum_{j=i+1}^n i$$

$$= \sum_{i=1}^n (n-j+1) \times j + \sum_{i=1}^n (n-i) \times i = (2\,n+1) \times \frac{n \times (n+1)}{2} - \frac{n \times (n+1) \times (2\,n+1)}{3} = \frac{n \times (n+1) \times (2\,n+1)}{6}.$$

5.3 Formule du binôme de Newton

Terminons cette partie par la formule du binôme de Newton. Commençons par rappeler que les coefficients binomiaux sont définis par, pour $p \le n$ deux entiers naturels :

$$\binom{n}{p} = \frac{n!}{p! \times (n-p)!}.$$

Notez que, souvent, si p > n, on dira que $\binom{n}{p} = 0$. Retenir la formule de définition est très importante, mais il existe une méthode pour calculer ces coefficients : le *triangle de Pascal*, dont la justification est donnée par la formule éponyme, pour k et n des entiers strictement positifs (faites le calcul!) :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

cette formule, couplée à la remarque que $\binom{n}{n}=\binom{n}{0}=1$ permet de calculer les coefficients binomiaux ligne par ligne (et c'est exactement ce dont on aura besoin pour la formule du binôme de Newton) :

Théorème 5.3.3 (Formule du binôme de Newton) : $Soit (a,b) \in \mathbb{C}^2$ et $n \in \mathbb{N}$. Alors :

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k \times b^{n-k}.$$

 $D\acute{e}monstration:$ Soit $(a,b)\in\mathbb{C}^2$. Montrons la formule par récurrence sur n.

1. initialisation : si n = 0, on a :

$$(a+b)^0 = 1$$
 $\sum_{k=0}^{0} {0 \choose k} a^k \times b^{0-k} = {0 \choose 0} a^0 \times b^{0-0} = 1.$

2. $h\acute{e}r\acute{e}dit\acute{e}$: supposons que, pour N un entier naturel fixé :

$$(a+b)^N = \sum_{k=0}^N \binom{N}{k} a^k \times b^{N-k}.$$

Page 80/88 2017 – 2018

Alors:

$$(a+b)^{N+1} = (a+b) \times \left(\sum_{k=0}^{N} \binom{N}{k} a^k \times b^{N-k}\right) = \sum_{k=0}^{N} \binom{N}{k} a^{k+1} \times b^{N-k} + \sum_{k=0}^{N} \binom{N}{k} a^k \times b^{N+1-k}.$$

Donc, en effectuant le changement de variables $k^\prime=k+1$ dans la première somme :

$$(a+b)^{N+1} = \sum_{k'=1}^{N+1} \binom{N}{k'-1} a^{k'} \times b^{N+1-k'} + \sum_{k=0}^{N} \binom{N}{k} a^k \times b^{N+1-k}$$
$$= a^{N+1} + b^{N+1} + \sum_{k=0}^{N} \left(\binom{N}{k} + \binom{N}{k-1} \right) a^k \times b^{N+1-k}.$$

Il suffit alors d'utiliser la formule du triangle de Pascal pour conclure

Exemple(s) 42:

42.1 On a:

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}.$$

Voyons maintenant quelques applications; il est possible, grâce au binôme de Newton et aux formules d'Euler d'obtenir des formules de trigonométrie :

1. Soit $n \in \mathbb{N}$ et $\theta \in \mathbb{R}$. La formule de Moivre :

$$\cos(n \times \theta) + \sin(n \times \theta) i = e^{i n \times \theta} = (\cos(\theta) + \sin(\theta) i)^n$$

permet, en développant l'expression de droite grâce au binôme de Newton, d'exprimer $\cos(n \times \theta)$ et $\sin(n \times \theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$. Par exemple :

$$(\cos(\theta) + \sin(\theta) i)^5 = \cos^5(\theta) + 5 i \cos^4(\theta) \times \sin(\theta) - 10 \cos^3(\theta) \times \sin^2(\theta) - 10 i \cos^2(\theta) \times \sin^3(\theta) + 5 \cos(\theta) \times \sin^4(\theta) + i \sin^5(\theta)$$

On en déduit :

$$\begin{cases} \cos(5\,\theta) = \cos^5(\theta) - 10\,\cos^3(\theta) \times \sin^2(\theta) + 5\,\cos(\theta) \times \sin^4(\theta) \\ \sin(5\,\theta) = 5\,\cos^4(\theta) \times \sin(\theta) - 10\,\cos^2(\theta) \times \sin^3(\theta) + \sin^5(\theta). \end{cases}$$

Remarquez que grâce à la formule $\cos^2(\theta) + \sin^2(\theta) = 1$, il est possible pour ces formules (et c'est toujours les cas pour le cosinus) d'exprimer le cosinus uniquement à l'aide de cosinus et le sinus seulement à l'aide de sinus :

$$\begin{cases} \cos(5\,\theta) = 16\,\cos^5(\theta) - 20\,\cos^3(\theta) + 5\,\cos(\theta) \\ \sin(5\,\theta) = 16\,\sin^5(\theta) - 20\,\sin^3(\theta) + 5\,\sin(\theta). \end{cases}$$

2. Inversement, on peut **linéariser** les puissances de cosinus et de sinus, c'est-à-dire les exprimer à l'aide de cosinus et sinus sans puissances; par exemple :

$$\cos(\theta)^4 = \left(\frac{e^{i\,\theta} + e^{-i\,\theta}}{2}\right)^4 = \frac{1}{8}\left(\frac{e^{i\,4\,\theta} + e^{-i\,4\,\theta}}{2} + 4\frac{e^{i\,2\,\theta} + e^{-i\,2\,\theta}}{2} + 3\right) = \frac{1}{8}\left(\cos(4\,\theta) + 4\cos(2\,\theta) + 3\right),$$

$$\sin(\theta)^4 = \left(\frac{e^{i\,\theta} - e^{-i\,\theta}}{2\,i}\right)^4 = \frac{1}{8}\left(\frac{e^{i\,4\,\theta} + e^{-i\,4\,\theta}}{2} - 4\,\frac{e^{i\,2\,\theta} + e^{-i\,2\,\theta}}{2} + 3\right) = \frac{1}{8}\left(\cos(4\,\theta) - 4\,\cos(2\,\theta) + 3\right).$$

2017 - 2018 Page 81/88

Chapitre 6

Calculs de primitives :

6.1 Définition, premiers exemples

Définition 6.1.28 : Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). On appelle primitive de f une fonction $F: I \to \mathbb{K}$ dérivable sur I telle que :

$$\forall x \in I, \quad F'(x) = f(x).$$

Remarque(s) 26: 1. Une fonction f n'admet jamais une seule primitive, en effet, si F est un primitive de f alors pour toute constante $k \in \mathbb{K}$, la fonction F + k est aussi une primitive de f.

- 2. Réciproquement, si F et G sont deux primitives de f, alors (F-G)'=0 donc comme I est un intervalle, il existe une constante k telle que : F=G+k sur I.
- 3. Les deux précédentes remarques se résument à : si F est une primitive de f alors l'ensemble des primitives de f est :

$$\begin{cases}
F + k, & k \in \mathbb{K} \\
\end{cases}.$$

4. Il est possible que certains énoncés demandent de trouver des primitives sur une réunion d'intervalles E; dans ce cas, il s'agit de chercher une primitive sur chaque intervalle. Attention cependant! Dans ce cas, l'ensemble des primitives est différent que si il s'agissait d'un intervalle; par exemple, l'ensemble des primitives de $\frac{1}{x}$ sur \mathbb{R}^* est :

$$\left\{ x \mapsto \begin{cases} \ln(x) + k_1 & \text{si } x \in \mathbb{R}_+^* \\ \ln(-x) + k_2 & \text{si } x \in \mathbb{R}_-^* \end{cases} , \quad (k_1, k_2) \in \mathbb{R}^2 \right\}$$

Exemple(s) 43:

43.1 On a des primitives célèbres à bien connaître (F désigne une primitive de f sur chaque intervalle où la fonction f est définie) :

f(x)	F(x)
$x^{\alpha} \ (\alpha \neq -1)$	$x^{\alpha+1}/(\alpha+1)$
1/x	$\ln(x)$

La première formule est fondamentale, elle contient de nombreuses primitives connues, par exemple, on peut en déduire que sur chaque intervalle de \mathbb{R}^* , si $n \neq 1$, une primitive de $f(x) = 1/x^n$ est :

$$F(x) = \frac{1}{1-n} \times \frac{1}{x^{n-1}}.$$

Page 82/88 2017 – 2018

De même, sur \mathbb{R}_+^* , une primitive de la fonction $f(x) = \sqrt{x}$ est :

$$F(x) = \frac{2}{3} \times x^{3/2}.$$

43.2 Les même formules sont vraies avec un décalage : si a est une constante, une primitive de f sur chaque intervalle où la fonction f est définie est :

f(x)	F(x)
$(x+a)^{\alpha} \ (\alpha \neq -1)$	$(x+a)^{\alpha+1}/(\alpha+1)$
1/(x+a)	$\ln(x+a)$

Propriété(s) 6.1.19 : Soit F une primitive de f et G une primitive de g sur un intervalle I et $k \in \mathbb{K}$. Alors :

- 1. F + G est une primitive de f + g
- 2. $k \times F$ est une primitive de $k \times f$.

Exemple(s) 44:

44.1 Une primitive sur chaque intervalle de \mathbb{R}^* de la fonction :

$$f(x) = \frac{1}{x^7} - \frac{1}{x^5} + \frac{1}{x^3} - \frac{1}{x}$$

est la fonction:

$$F(x) = -\frac{1}{6x^6} + \frac{1}{4x^4} - \frac{1}{2x^2} - \ln(|x|).$$

44.2 Cherchons une primitive sur chaque intervalle de $\mathbb{R} \setminus \{-1,1\}$ de la fonction :

$$f(x) = \frac{1}{x^2 - 1}$$

Écrite comme ceci, il est difficile de trouver une primitive de f. Pour simplifier, il est possible de décomposer cette fraction en éléments simples :

$$f(x) = \frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1}$$

et l'on en déduit une primitive de f:

$$F(x) = \frac{1}{2}\ln(|x-1|) - \frac{1}{2}\ln(|x+1|).$$

Nous reviendrons ultérieurement sur cette idée de décomposition.

6.2 Méthodes directes

6.2.1 Linéarisation

Commençons par remarquer que les fonctions suivantes f ont pour primitives F sur \mathbb{R} :

f(x)	F(x)
$e^{\lambda \times x} \ (\lambda \in \mathbb{K}^*)$	$e^{\lambda \times x}/\lambda$
$\cos(\omega \times x) \ (\omega \in \mathbb{R}^*)$	$\sin(\omega \times x)/\omega$
$\sin(\omega \times x) \ (\omega \in \mathbb{R}^*)$	$-\cos(\omega \times x)/\omega$
$\cosh(\omega \times x) \ (\omega \in \mathbb{R}^*)$	$\sinh(\omega \times x)/\omega$
$\sinh(\omega \times x) \ (\omega \in \mathbb{R}^*)$	$\cosh(\omega \times x)/\omega$

2017 - 2018 Page 83/88

Il est alors possible, à partir de ces formules, d'obtenir une primitive de n'importe quelle somme ou produit de ces fonctions. La méthode est la suivante :

- 1. On linéarise l'expression grâce que formules d'Euler ou la définition,
- 2. on trouve une primitive de la fonction linéarisée grâce aux formules que l'on vient de voir et éventuellement on travaille un peu pour faire apparaître des fonctions réelles.

Exemple(s) 45:

45.1 Rappelons-nous que par linéarisation :

$$\cos(x)^4 = \frac{1}{8}(\cos(4x) + 4\cos(2x) + 3),$$

une primitive sur \mathbb{R} de la fonction définie sur \mathbb{R} par $f(x) = \cos(x)^4$ est donc :

$$F(x) = \frac{1}{32}\sin(4x) + \frac{1}{4}\sin(2x) + \frac{3}{8}x.$$

- 45.2 Considérons maintenant la fonction définie sur \mathbb{R} par $f(x) = \cos(x) \times e^x$: on commence en linéarisant :
 - (a) $f(x) = \cos(x) \times e^x = \frac{1}{2} \left(e^{(1+i)x} + e^{(1-i)x} \right)$
 - (b) une primitive de f sur $\mathbb R$ est donc la fonction F définie par :

$$F(x) = \frac{1}{2(1+i)} e^{(1+i)x} + \frac{1}{2(1-i)} e^{(1-i)x} = e^x \times \frac{\sin(x) + \cos(x)}{2}.$$

45.3 Avec la même méthode, on peut montrer qu'une primitive de la fonction définie sur \mathbb{R} par $f(x) = \cosh(x) \times \cos(x)$ est la fonction F définie par :

$$F(x) = \frac{1}{2} (\sin(x) \times \cosh(x) + \cos(x) \times \sinh(x)).$$

6.2.2 Repérer des dérivées de fonctions composées

Cette méthode permet parfois de résoudre très facilement des exercices qui seraient sinon très techniques.

Propriété(s) 6.2.20 : Soit I et J deux intervalles de \mathbb{R} , $u:I\to J$ et $v:J\to\mathbb{R}$ deux fonction dérivables sur leur ensemble de définition. Alors une primitive de la fonction définie sur I par :

$$f(x) = u'(x) \times v'(u(x))$$

est la fonction définie sur I par :

$$F(x) = v(u(x)).$$

Exemple(s) 46:

46.1 Deux cas particulier que nous utiliserons fréquemment sont donnés par :

$$(u^{\alpha})' = \alpha \times u' \times u^{\alpha - 1}, \quad \ln(|u|)' = \frac{u'}{u}.$$

Page 84/88 2017 – 2018

46.2 Une primitive de la fonction définie sur \mathbb{R} par :

$$f(x) = \cos^3(x) \times \sin^6(x) = \cos(x) \times \sin^6(x) - \cos(x) \times \sin^8(x)$$

est la fonction définie sur \mathbb{R} par :

$$F(x) = \frac{(\sin(x))^7}{7} - \frac{(\sin(x))^9}{9}.$$

Plus généralement, si l'on cherche une primitive d'une fonction définie sur \mathbb{R} par $f(x) = \cos^i(x) \times \sin^j(x)$ alors, en utilisant la formule $\cos^2(x) + \sin^2(x) = 1$:

- (a) si i est impair, on reconnaît la dérivée d'une fonction polynomiale en $\sin(x)$
- (b) si j est impair, on reconnaît la dérivée d'une fonction polynomiale en cos(x)

Il ne faut donc surtout pas linéariser lorsqu'on cherche une primitive d'une telle fonction!

46.3 Une primitive de la fonction définie sur \mathbb{R} par :

$$f(x) = \frac{x}{x^2 + 1} = \frac{1}{2} \frac{2x}{x^2 + 1}$$

est la fonction définie sur \mathbb{R} par : $F(x) = \frac{1}{2} \ln(1+x^2)$. Plus généralement, il est bon de remarquer qu'une primitive de la fonction définie sur par :

$$f(x) = \frac{2a \times x + b}{ax^2 + bx + c}$$

est sur tout intervalle de son ensemble de définition la fonction :

$$F(x) = \ln(|a x^2 + b x + c|).$$

46.4 Une primitive de la fonction définie sur $\mathbb R$ par :

$$f(x) = \frac{x}{(x^2 + 1)^2}$$

est le fonction définie sur \mathbb{R} par :

$$F(x) = -\frac{1}{2(1+x^2)}.$$

46.5 Une primitive de la fonction tangente :

$$f(x) = \tan(x) = \frac{\sin(x)}{\cos(x)}$$

est, sur tout intervalle de son ensemble de définition :

$$F(x) = -\ln(|\cos(x)|).$$

6.2.3 Quelques fractions rationnelles

Commençons cette partie en rappelant la primitive :

f(x)	F(x)
$1/(1+x^2)$	$\arctan(x)$

Nous allons dans la suite utiliser cette primitive, en plus de certaines autres primitives que nous avons rencontrées pour calculer des primitives de :

$$f(x) = \frac{1}{x^2 + a \times x + b}$$

Suivant le signe du discriminant $\Delta = a^2 - 4b$, il y a deux cas :

2017 - 2018 Page 85/88

1. Si $\Delta > 0$, l'équation $x^2 + a \times x + b = 0$ a deux racines distinctes : x_1 et x_2 et l'on peut écrire :

$$x^{2} + a \times x + b = (x - x_{1}) \times (x - x_{2}).$$

il est alors possible d'écrire la **décomposition en éléments simples :** (à savoir retrouver sur les exemples et non à apprendre par cœur)

$$\frac{1}{x^2 + a \times x + b} = \frac{1}{(x - x_1) \times (x - x_2)} = \frac{\frac{1}{x_1 - x_2}}{x - x_1} + \frac{\frac{1}{x_2 - x_1}}{x - x_2}$$

On en déduit qu'une primitive de f est :

$$F(x) = \frac{1}{x_1 - x_2} \times (\ln(|x - x_1|) - \ln(|x - x_2|)).$$

2. Si $\Delta = 0$ l'équation admet une racine double x_1 et l'on peut écrire :

$$\frac{1}{x^2 + a \times x + b} = \frac{1}{(x - x_1)^2}$$

il s'agit alors de reconnaître la dérivée d'une fonction composée. On en déduit la primitive :

$$F(x) = -\frac{1}{x - x_1}.$$

3. Enfin, si $\Delta < 0$, il faut travailler un peu pour se ramener à la dérivée d'une fonction composée; on a :

$$f(x) = \frac{1}{\left(x + \frac{a}{2}\right)^2 + \frac{-\Delta}{4}} = \frac{2}{\sqrt{-\Delta}} \times \frac{\frac{2}{\sqrt{-\Delta}}}{\left(\frac{2}{\sqrt{-\Delta}}x + \frac{a}{\sqrt{-\Delta}}\right)^2 + 1}$$

On en déduit la primitive :

$$F(x) = \frac{2}{\sqrt{-\Delta}} \times \arctan\left(\frac{2}{\sqrt{-\Delta}}x + \frac{a}{\sqrt{-\Delta}}\right).$$

Encore une fois, c'est la méthode plus que le résultat qu'il faut retenir ici.

Traitons quelques exemples:

Exemple(s) 47:

47.1 Une primitive de la fonction :

$$f(x) = \frac{1}{x^2 - 3x + 2} = \frac{1}{(x - 1) \times (x - 2)} = \frac{1}{x - 2} - \frac{1}{x - 1}$$

est la fonction:

$$F(x) = \ln(|x - 2|) - \ln(|x - 1|).$$

47.2 Il faut faire bien attention à se ramener à ce qu'on sait faire s'il y a une constante au numérateur ou devant le x^2 au dénominateur :

$$f(x) = \frac{2}{3x^2 + 6x + 3} = \frac{2}{3} \frac{1}{x^2 + 2x + 1} = \frac{2}{3} \frac{1}{(x+1)^2}.$$

La fonction f admet donc pour primitive le fonction :

$$F(x) = -\frac{2}{3} \, \frac{1}{x+1}.$$

Page 86/88 2017 – 2018

47.3 Enfin, une primitive de :

$$f(x) = \frac{1}{x^2 + x + 1} = \frac{1}{\left(x + \frac{1}{2}\right)^2 + \frac{3}{4}} = \frac{2}{\sqrt{3}} \frac{\frac{2}{\sqrt{3}}}{\left(\frac{2}{\sqrt{3}}x + \frac{1}{\sqrt{3}}\right)^2 + 1}$$

est la fonction:

$$F(x) = \frac{2}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right).$$

On peut prolonger la méthode un peu; il est possible en utilisant les résultats des deux paragraphes précédents de calculer une primitive d'une fonction du type :

$$f(x) = \frac{cx+d}{x^2 + ax + b}.$$

Il faut d'abord faire apparaître la dérivée du dénominateur au numérateur :

$$f(x) = \frac{c x + d}{x^2 + a x + b} = \frac{c}{2} \times \frac{2 x + a}{x^2 + a x + b} + \left(d - \frac{a \times c}{2}\right) \times \frac{1}{x^2 + a x + b}.$$

Puis de remarquer que l'on sait calculer une primitive des deux fonctions; la première est un logarithme, la deuxième grâce à la méthode que l'on vient de voir.

Exemple(s) 48:

48.1 Une primitive de la fonction :

$$f(x) = \frac{x+1}{x^2+1} = \frac{1}{2} \frac{2x}{x^2+1} + \frac{1}{x^2+1}$$

est la fonction

$$F(x) = \frac{1}{2} \ln(x^2 + 1) + \arctan(x).$$

48.2 Une primitive de la fonction :

$$f(x) = \frac{x+1}{x^2+x+1} = \frac{1}{2} \frac{2x+1}{x^2+x+1} + \frac{1}{2} \frac{1}{x^2+x+1}$$

est la fonction:

$$F(x) = \frac{1}{2} \ln(x^2 + x + 1) + \frac{1}{\sqrt{3}} \arctan\left(\frac{2x+1}{\sqrt{3}}\right).$$

6.3 Méthodes intégrales

6.3.1 Notation intégrale

Dans la suite du paragraphe, on admettra que, sur un intervalle I, toute fonction continue admet une primitive.

Définition 6.3.29 : Soit f une fonction continue sur un intervalle I. Pour tour $c \in I$, on note pour tout x de l'intervalle I :

$$F(x) = \int_{c}^{x} f(t) \, \mathrm{d}t$$

l'unique primitive de f qui s'annule en c.

2017 - 2018 Page 87/88

Remarque(s) 27: 1. Nous verrons dans un paragraphe futur que (ce qui est très loin d'être évident) cette notation est reliée à un calcul d'aire; plus précisément, la quantité : $\int_c^d f(t) dt$ désigne, si $c \leq d$ sont deux réels de l'intervalle I l'aire (orientée) comprise entre l'axe O_x et la courbe de f.

- 2. Une telle primitive est bien-sûr dérivable, mais il y a plus, comme f est continue, sa dérivée est continue. On appelle une telle fonction une fonction de classe \mathcal{C}^1 .
- 3. Le réel c importe peu si l'on cherche à calculer **une** primitive : changer c en un autre réel de l'intervalle revient à ajouter une constante à la primitive que nous sommes en train de calculer.
- 4. Si a et b sont deux réels d'un intervalle I et F est un primitive quelconque de f alors;

$$\int_{a}^{b} f(t) dt = [F(t)]_{t=a}^{t=b} = F(b) - F(a).$$

La propriété suivante est une conséquence immédiate de la compatibilité des primitives avec la somme et le produit par une constante.

Propriété(s) 6.3.21 : Soit f et g deux fonctions continues sur l'intervalle I. Soit k une constante alors, pour tous réels a et b de I,

$$\int_{a}^{b} (f(t) + g(t)) dt = \int_{a}^{b} f(t) dt + \int_{a}^{b} g(t) dt.$$
$$\int_{a}^{b} k \times f(t) dt = k \times \int_{a}^{b} f(t) dt.$$

6.3.2 Intégration par parties

Proposition 6.3.5 : Soit u et v deux fonctions de classe C^1 sur un intervalle I. Alors, pour tous réels a et b de l'intervalle I :

$$\int_{a}^{b} u'(t) \times v(t) \, dt = [u(t) \times v(t)]_{t=a}^{t=b} - \int_{a}^{b} u(t) \times v'(t) \, dt.$$

Démonstration: Il s'agit d'une application directe de la formule $u' \times v = (u \times v)' - u \times v'$.

Exemple(s) 49:

49.1 Calculons une primitive de la fonction logarithme par intégration par parties :

$$\int_{c}^{x} \ln(t) dt = [t \times \ln(t)]_{t=c}^{t=x} - \int_{c}^{x} 1 dt = x \times \ln(x) - x + C.$$

une primitive de la fonction logarithme est donc la fonction :

$$F(x) = x \times \ln(x) - x.$$

49.2 Calculons une primitive de la fonction arc-tangente par intégration par parties :

$$\int_{c}^{x} \arctan(t) dt = [t \times \arctan(t)]_{t=c}^{t=x} - \int_{c}^{x} \frac{t}{1+t^{2}} dt = x \times \arctan(x) - \frac{1}{2} \ln(1+x^{2}) + C.$$

Une primitive de la fonction arc-tangente est donc la fonction :

$$F(x) = x \times \arctan(x) - \frac{1}{2}\ln(1+x^2).$$

Page 88/88 2017 – 2018

49.3 Une primitive de la fonction arc-sinus sur] -1,1[se calcule aussi par intégration par parties :

$$\int_{c}^{x} \arcsin(t) dt = \left[t \times \arcsin(t)\right]_{t=c}^{t=x} - \int_{c}^{x} \frac{t}{\sqrt{1-t^{t}}} dt = x \times \arcsin(x) + \sqrt{1-x^{2}} + C$$

Une primitive sur]-1,1[de la fonction arc-sinus est donc la fonction :

$$F(x) = x \times \arcsin(x) + \sqrt{1 - x^2}.$$

49.4 Enfin, il est possible de faire plusieurs intégrations par parties de suite; par exemple, si l'on cherche à calculer une primitive de la fonction définie sur $\mathbb R$ par $f(x)=x^2\times e^x$:

$$\int_{c}^{x} t^{2} \times e^{t} dt = \left[t^{2} \times e^{t}\right]_{t=c}^{t=x} - \int_{c}^{x} 2 t \times e^{t} dt = \left[t^{2} \times e^{t}\right]_{t=c}^{t=x} - \left[2 t \times e^{t}\right]_{t=c}^{t=x} + \int_{c}^{x} 2 e^{t} dt = (x^{2} - 2x + 2) \times e^{x} + C.$$