NAME

CUTEST_udimse – CUTEst tool to determine the number of nonzeros required to store the sparse Hessian matrix in finite element format.

SYNOPSIS

CALL CUTEST_udimse(data, status, ne, he_val_ne, he_row_ne)

DESCRIPTION

The CUTEST_udimse subroutine determine the number of nonzeros required to store the Hessian matrix of the objective function of the problem decoded from a SIF file by the script *sifdecode* at the point X. This Hessian matrix is stored as a sparse matrix in finite element format

$$H = \sum_{e=1}^{ne} H_{e},$$

where each square symmetric element H_{-i} involves a small subset of the rows of the Hessian matrix.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to the simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable.

ARGUMENTS

The arguments of CUTEST_udimse are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

ne [out] - integer

the number of "finite-elements" used,

he_val_ne [out] - integer

the dimension of the array needed to store the real values of the Hessian, taking all the elements into account (i.e. the dimension of the array HE_val).

he row ne [out] - integer

the dimension of the array needed to store the integer values of the Hessian (i.e. the dimension of the array HE row).

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

cutest_cdimse(3M), sifdecode(1).

NAME

CUTEST_udimse – CUTEst tool to determine the number of nonzeros required to store the sparse Hessian matrix in finite element format.

SYNOPSIS

CALL CUTEST_udimse(data, status, ne, he_val_ne, he_row_ne)

DESCRIPTION

The CUTEST_udimse subroutine determine the number of nonzeros required to store the Hessian matrix of the objective function of the problem decoded from a SIF file by the script *sifdecode* at the point X. This Hessian matrix is stored as a sparse matrix in finite element format

$$H = \sum_{e=1}^{ne} H_{e},$$

where each square symmetric element H_{-i} involves a small subset of the rows of the Hessian matrix.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to the simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable.

ARGUMENTS

The arguments of CUTEST_udimse are as follows

data [inout] - CUTEST_data_type derived type problem-specific private data,

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

ne [out] - integer

the number of "finite-elements" used,

he_val_ne [out] - integer

the dimension of the array needed to store the real values of the Hessian, taking all the elements into account (i.e. the dimension of the array HE_val).

he row ne [out] - integer

the dimension of the array needed to store the integer values of the Hessian (i.e. the dimension of the array HE row).

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited,

N.I.M. Gould, D. Orban and Ph.L. Toint,

ACM TOMS, 29:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

cutest_cdimse(3M), sifdecode(1).