correo:				@		fecha://		
1	2	3	4a	4b	5a	5b	6	

1) Dos recipientes **A** y **B**, adiabáticos, están conectados por dos varillas metálicas del mismo largo L=1m, y de la misma sección "S", de coeficiente de conducción termica λ_1 =3 W/m°C y λ_2 =2 W/m°C, permitiendo la transmisión de calor por conducción (despreciar efectos convectivos) unicamente por la superficie transversal "S" de las varillas (aisladas lateralmente). El recipiente A contiene una enorme

cantidad (infinita) de vapor de agua y agua líquida en equilibrio térmico, el recipiente **B** contiene una enorme cantidad (infinita) de hielo y agua líquida en equilibrio térmico. Se funden **10 g** de hielo cada **2 horas**. *Encontrar la sección* **S**

2) El gráfico P-V muestra el ciclo termodinámico de una cantidad de gas ideal diatómico ($C_V = 5/2 R$; $C_P = 7/2 R$) que evoluciona según los estados ABCDA, donde las evoluciones BC y DA son adiabáticas, AB isobara y CD isocora. La variación de energía interna $U_{CD} = U_D - U_C = -600 \text{ J.}$ "Hallar el trabajo de ciclo".

Datos: $P_A = P_B = 200 \text{KPa}$; $V_A = 3\ell$; $V_B = 5\ell$

3)Una máquina de carnot trabaja entre dos focos térmicos, T_F = 0 °C y T_C = 100°C. <u>"Recibe"</u> trabajo de un motor eléctrico ideal. La máquina "absorbe calor del foco frio" a razón de 273 KJ por ciclo. Si se completa un

ciclo cada 5 segundos, "ENCONTRAR LA POTENCIA DEL MOTOR".

4) Una configuración de cargas se encuentra en un sistema bidimensional y esta formada por una varilla de largo 2L, cargada con densidad lineal λ_0 =?????, homogénea, ubicada sobre el eje X, con centro en el origen y una carga puntual $Q = -3\mu C$. El flujo eléctrico " Φ_E " a través de una superficie gaussiana esférica de radio 3L con centro en la carga Q es $\Phi_{\rm E}$ = -113 x 10³ (N·m²)/C.

a) Hallar el trabajo necesario para transportar cuasiestaticamente una carga $\mathbf{q}_0 = 2 \,\mu\text{C}$ del punto A al punto B. Fundamentar "CLARAMENTE" si el trabajo "lo realiza" la fuerza de origen eléctrico o una fuerza exterior. b) Determinar el **vector Fuerza** de origen electrostático sobre la carga **q**₀ en el **"punto C"**. datos: $\vec{r_A} = (2L, 0)$; $\vec{r_B} = (-2L, 0)$; $\vec{r_C} = (0, 3L)$; $\vec{r_O} = (3L, 0)$; L=1m;

- 5) En un espacio tridimensional se encuentra un plano infinito cargado con densidad superficial σ en C/m^2 , homogénea, ubicado en el plano XY (Z=0) y una carga puntual $\mathbf{Q} = \mathbf{1} \mu \mathbf{C}$, de masa $\mathbf{m}_{\mathbf{Q}} = \mathbf{9} \mathbf{x} \mathbf{10}^{-4} \, \mathbf{K} \mathbf{g}$ ubicada en $\vec{r_o} = (0,0, H)$. La carga **Q** se encuentra en reposo, bajo la acción de un fuerza de origen electrostático y de un campo gravitatorio $\vec{q} = -10 \text{ m/s}^2 \text{ } \vec{k}$. Determinar :
- a) La diferencia de potencial $\Delta V = V_A V_B$. $\vec{r_A} = (H, 0, H)$; $\vec{r_B} = (2H, 0, H)$.
- b) El módulo del vector campo eléctrico en el punto A. datos: **H** = **1m**.
- 6) Un capacitor de placas paralelas en vacío, con separación entre placas $d=8,85\mu m$ y área $A=1m^2$, se carga con una fuente de tensión de **100 volt**. Luego, se desconecta de la fuente, y se reduce la separación a la mitad. Por último, se rellena la mitad del espacio interplaca con un dieléctrico ε_r = **6**. Hallar los módulos de **E**, **D**, **P** en la zona con dieléctrico y en el vacío, entre las placas.