

SEQUENCE LISTING

<110>Takeda Chemical Industries, Ltd.

<120>Novel Protein And Its Use

<130>2569WOOP

5 <150>JP 10-323199

<151>1998-11-13

<150>JP 10-346925

<151>1998-12-07

<160>8

10 <210>1

<211>1466

<212>DNA

<213>Mouse

<400>1

15 AGACATCACA AGATGGCCTA CCCTCCTGTA CTTGTTCCCTA CTCAACACGC CTTTCATATA 60

ATGATAGAGG ACCCAGGACC ACCCCCACCT TCCCCATTAC TAGGTTGAA GCCATTGCAG 120

CTGTTAGAAG TGAAAGCAAG GGGAAAGATT GGTTGTGTCT GGAAAGCCCA GTTGCTCAAT 180

GAATATGTGG CTGTCAAAAT ATTTCCAATA CAGGACAAAC AGTCCTGGCA GAATGAATAT 240

GAAGTCTATA GTCTACCTGG AATGAAGCAT GAGAACATAC TACAGTTCAT TGGTGCAGAG 300

20 AAAAGAGGCA CCAGTGTGGA TGTGGACCTG TGGCTAATCA CAGCATTCA TGAAAAGGGC 360

TCACTGTCAG ACTTTCTTAA GGCTAATGTG GTCTCTTGGA ATGAACTTG TCATATTGCA 420

GAAACCATGG CTAGAGGATT GGCATATTAA CATGAGGATA TACCTGGCTT AAAAGATGGC 480

CACAAGCCTG CAATCTCTCA CAGGGACATC AAAAGTAAAA ATGTGCTGTT GAAAAACAAT 540

CTGACAGCTT GCATTGCTGA CTTTGGGTTG GCCTTAAAGT TCGAGGCTGG CAAGTCTGCA 600

25 GGTGACACCC ATGGGCAGGT TGGTACCCGG AGGTATATGG CTCCAGAGGT GTTGGAGGGT 660

GCTATAAACT TCCAAAGGGA CGCATTCTG AGGATAGATA TGTACGCCAT GGGATTAGTC 720

CTATGGGAAT TGGCTTCTCG TTGCACTGCT GCAGATGGAC CCGTAGATGA GTACATGTTA 780

CCATTGAGG AAGAAATTGG CCAGCATCCA TCTCTTGAAG ATATGCAGGA AGTTGTTGTG 840

CATAAAAAAA AGAGGCCTGT TTTAAGAGAT TATTGGCAGA AACATGCAGG AATGGCAATG 900

	CTCTGTGAAA CGATAGAAGA ATGTTGGGAT CATGATGCAG AAGCCAGGTT ATCAGCTGGA	960
	TGTGTAGGTG AAAGAATTAC TCAGATGCAA AGACTAACAA ATATCATTAC TACAGAGGAC	1020
	ATTGTAACAG TGGTCACAAT GGTGACAAAT GTTGACTTTC CTCCCAAAGA ATCTAGTCTA	1080
	TGATGGTGGC ACCGTCTGTA CACACTGAGG ACTGGGACTC TGAACTGGAG CTGCTAAGCT	1140
5	AAGGAAAGTG CTTAGTTGAT TTTCTGTGTG AAATGAGTAG GATGCCCTCA GGACATGTAC	1200
	GCAAGCAGCC CCTTGTGGAA AGCATGGATC TGGGAGATGG ATCTGGGAAA CTTACTGCAT	1260
	CGTCTGCAGC ACAGATATGA AGAGGAGTCT AAGGGAAAAG CTGCAAACGT TAAAGAACTT	1320
	CTGAAAATGT ACTCGAAGAA TGTGGCCCTC TCCAAATCAA GGATCTTTG GACCTGGCTA	1380
	ATCAAGTATT TGCAAAACTG ACATCAGATT TCTTAATGTC TGTCAGAAGA CACTAATTCC	1440
10	TTAAATGAAC TACTGCTATT TTTTTT	1466
	<210>2	
	<211>1391	
	<212>DNA	
	<213>Mouse	
15	<400>2	
	TCGCCGCCAC GACGCCGCCA GCACCTCCGA GCGACTGACC GACCTCCACG CGCGTCCCGA	60
	ACACACTGCC ACCGCCGCCG CCGCCGCGCG CGCTCGCGCC GCACTCCCTC GCACGTCACC	120
	ACGTGCGCTG CCGCCAACGC CTCCCAGCCG CTTCCGGCTC TGATGCCCTGA GCGAATCACA	180
	GGCGAGCTCC CGGGAAAGATC CCGCTCTGAG GCTCCGCCCC CGGACAGGGC CCCGCCACC	240
20	TCATAGCTCT TTCCCTCAGC CGCCCCCTCC TTCCCTCTCG GCTCAACTAG GTCAGCGCAA	300
	GGTGATCCCG GAGAGGGGG CGGCAGGGGAC CGCTCCTCCT GTTACTTATC GAGCGCGCGC	360
	TCCCTCCCGA GCCTCACACC CTCGCTTCGC CCTTTTTTT CCAGTGTCCA GGAAGTGGTT	420
	CCCTCCTTCC TCTTCCACCT GCCCTACCTT CTCCAGAGAT CCGACGTGGC GATTAGAGTT	480
	CTCAGCGTCA CACTGACTTC TAGGCAACTA GCCTAGACTG GAGCTGGTGT TTGTGGAAC	540
25	CCCGCGGCAG TAGTTGAGCA TCAGGCTCTT ACCTTGGAGG TGGAGGGGTG AGAAGAATAG	600
	AGGAAGAAGG GATAAGTCAG AGGAGGGCCT GAACAACTAG CCCCTCTATT GGCCTGCTTT	660
	GGGTGAGCAT TCAGTGAGTG TGTAAAAAA AAAAAGGGA GGGAAAACAA AAGACCTCAG	720
	GAGCAGTTT GTGTTGCTGT GTCTGGCTTC AAGAAGAAAA TTCTAGACAT TTATGCCGGC	780
	AAGACCAAAG CTCAGCTAAG ACTACTTCTC CCAAGAAGAT AATTGTATCA GAGGATGGGT	840

TGGATCAGTA CAGGTGGTTT GAGGAGACGC TGACAGAGGA CCATGGAAAG GTGGGAGAGG 900
 ACGCGCGGCT CCTGGGCTTC CTCTGAGCTC AGCTCCAGGC ACCACAAGGC CACATAAGGA 960
 GGGTGAGGTC CCTGGAGTGG ACTACATTTC CATAACCGTT GAGGAGTTA TGGAATTGGA 1020
 GAAAAGTGGT GCTCTCCTAG AAAGCGGGAC CTATGAAGAC AACTACTACG GTACCCCCGAA 1080
 5 GCCTCCAGCT GAACCAGCAC CATTATTAAA TGTAACAGAC CAGATACTTC CGGGAGCTAC 1140
 TCCAAGTGCT GAGGGGAAGC GGAAAAGAAA TAAGTCAGTG ACCAACATGG AGAAAGCAAG 1200
 TATAGAGCCT CCAGAGGAGG AAGAAGAAGA AAGGCCTGTA GTCAATGGAA ACGGCGTGGT 1260
 CATAACCCCCA GAATCCAGTG AACATGAAGA CAAAAGTGCA GGTGCCTCAG GGGAGACACC 1320
 CTCCCAGCCT TACCCTGCAC CCGTGTACAG CCAGCCCGAA GAGCTCAAGG ACCAGATGGA 1380
 10 10 CGATACAAAG C 1391
 <210>3
 <211>1431
 <212>DNA
 <213>Mouse
 15 15 <400>3
 CAGTTGAAGG GAACGTTCCCT CAGCACCAACC CTCAAAAAGA GCAACATGGG CTTTGGGTTT 60
 ACCATAATTG GTGGAGACGA GCCGGATGAG TTTCTACAGG TGAAAAGTGT GATCCCGGAT 120
 GGGCCTGCCG CACAGGATGG GAAAATGGAG ACAGGTGATG TCATTGTCTA TATTAATGAA 180
 GTTTGTGTCC TTGGACACAC TCATGCAGAT GTTGTCAAAC TTTTCCAGTC TGTTCCCTATT 240
 20 20 GGTCAAGAGTG TCAACTTGGT GTTGTGTCGT GGCTACCCCT TGCCCTTGA CCCTGAAGAT 300
 CCTGCTAACCA GCATGGTGCC ACCCCTTGCA ATAATGGAGA GGCCACCTCC GGTGATGGTC 360
 AATGGAAGAC ATAACATATGA AACATACTTG GAATACATTTC CTCGGACCTC ACAGTCGGTC 420
 CCAGATATTA CAGACCGGCC ACCTCATTCT TTGCACTCCA TGCCAGCTGA CGGCCAGCTA 480
 GATGGCACGT ATCCACCAACC CGTCCATGAC GACAATGTGT CTATGGCTTC GTCTGGAGCC 540
 25 25 ACTCAAGCTG AACTTATGAC CTTAACCAATT GTGAAAGGTG CCCAGGGATT TGGCTTTACT 600
 ATTGCCGACA GTCCCACGGG ACAGCGGGTG AAACAAATCC TTGACATTCA GGGATGCCCT 660
 GGGCTGTGTG AAGGAGACCT CATTGTTGAG ATCAACCAAC AGAATGTACA GAACCTGAGC 720
 CATACAGAAG TAGTGGATAT ACTTAAGGAC TGCCCCGTTG GAAGTGAGAC TTCTTTAAC 780
 ATCCATCGAG GAGGTTCTT TTCTCCATGG AAAACTCCAA AGCCTATGAT GGACCGATGG 840

GAGAACCAAG GCAGTCCACA AACAAAGTTA TCTGCTCCGG CCGTCCCACA GAACCTGCC 900
 TTCCCACCTG CCCTTCACAG GAGCTCCTT CCTGATTCAA CAGAGGCCTT TGACCCACGG 960
 AAGCCTGACC CATATGAGCT CTACGAGAAA TCGAGAGCCA TTTATGAAAG TAGGCAACAA 1020
 GTGCCACCCA GGACCAGTTT TCGAATGGAT TCCTCTGGTC CAGATTATAA GGAACGGAT 1080
 5 GTTCACCTTC GGAGGATGGA GTCTGGATT GGCTTAGAA TCCTGGGGG AGATGAACCT 1140
 GGACAGCCTA TTTGATCGG AGCCGTCATT GCCATGGGCT CAGCTGACAG AGACGGCCGT 1200
 CTACACCCAG GAGATGAGCT TGTCTATGTC GATGGGATCC CAGTGGCTGG CAAGACCCAC 1260
 CGCTATGTCA TCGACCTCAT GCACCACGCG GCCCGCAATG GGCAGGTTAA CCTCACTGTG 1320
 AGAAGAAAGG TGCTATGTGG AGGGGAGCCC TGCCCAGAGA ATGGGAGGAG TCCAGGCTCT 1380
 10 GTATCAACTC ACCACAGCTC TCCGCGCAGT GACTATGCCA CCTACTCCAA C 1431
 <210>4
 <211>1085
 <212>DNA
 <213>Mouse
 15 <400>4
 ACCATAACTG TGCCCCATAA AATTGGACGA ATCATTGATG GGAGCCCTGC AGATCGCTGT 60
 GCCAAACTCA AAGTGGCGA CCGTATCTTA GCAGTCAACG GCCAGTCTAT CATCAACATG 120
 CCTCACGCTG ACATTGTGAA GCTCATCAAG GACGCCGGTC TCAGTGTAC CCTTCGCATC 180
 ATTCCCTCAGG AGGAGCTCAA CAGCCCAACA TCAGCACCCA GTTCAGAGAA ACAGAGCCCC 240
 20 ATGGCCCAGC AGCACAGCCC TCTGGCCCAG CAGAGTCCTC TGGCCCAGCC AAGCCCCGCC 300
 ACCCCCAACA GCCCAGTCGC ACAGCCAGCT CCTCCCCAAC CTCTCCAGCT GCAAGGACAC 360
 GAAAATAGTT ACAGGTCAGA AGTTAAAGCG AGGCAAGATG TGAAGCCAGA CATCCGGCAG 420
 CCTCCCTTCA CAGACTACAG GCAGCCCCCG CTGGACTACA GGCAGCCCC GGGAGGAGAC 480
 TACTCACAGC CCCCCACCTT GGACTACAGG CAGCACTCTC CAGACACCAG GCAGTACCC 540
 25 CTGTCAGACT ACAGGCAGCC ACAGGATTGATTATTCA CTGTGGACAT GGAGAAAGGA 600
 GCCAAAGGAT TTGGATTCA CATTGTGGA GGAAGGGAAT ACAAGATGGA TCTGTATGTG 660
 TTGAGATTGG CAGAGGATGG GCCAGCCATA AGGAACGGCA GGATGAGGGT AGGAGATCAG 720
 ATCATTGAAA TAAATGGGA AAGCACACGA GACATGACCC ACGCCAGAGC AATAGAACTC 780
 ATCAAGTCTG GAGGAAGAAG AGTGCGGCTG CTGCTGAAGA GAGGCACGGG GCAGGTCCCG 840

GAGTATGGAA TGGTACCTTC CAGCCTCTCC ATGTGCATGA AAAGTGACAA GCATGGGTCC 900
 CCATATTCT ACTTACTGGG CCACCCCTAAA GACACGACGA ACCCCCACGCC TGGAGTGCTG 960
 CCGCTGCCGC CGCCCCAGGC CTGCCGGAAG TAGGCGTCTC CCTCGAAGAC ATCCTCTCTC 1020
 CATTCTCTCC ATCACATCCA GCCCCACCCCT CCGACCCTTC CCACCAGATA GGCCCAGACC 1080

5 CAACT 1085
 <210>5
 <211>1161
 <212>PRT
 <213>Mouse

10 <400>5
 Gly Asp Ala Asp Arg Gly Pro Trp Lys Gly Gly Arg Gly Arg Ala Ala
 1 5 10 15
 Pro Gly Leu Pro Leu Ser Ser Ala Pro Gly Thr Thr Arg Pro His Lys
 20 25 30
 15 Glu Gly Glu Val Pro Gly Val Asp Tyr Ile Phe Ile Thr Val Glu Glu
 35 40 45
 Phe Met Glu Leu Glu Lys Ser Gly Ala Leu Leu Glu Ser Gly Thr Tyr
 50 55 60
 Glu Asp Asn Tyr Tyr Gly Thr Pro lys Pro Pro Ala Glu Pro Ala Pro
 20 65 70 75 80
 Leu Leu Asn Val Thr Asp Gln Ile Leu Pro Gly Ala Thr Pro Ser Ala
 85 90 95
 Glu Gly Lys Arg Lys Arg Asn Lys Ser Val Thr Asn Met Glu Lys Ala
 100 105 110
 25 Ser Ile Glu Pro Pro Glu Glu Glu Glu Arg Pro Val Val Asn
 115 120 125
 Gly Asn Gly Val Val Ile Thr Pro Glu Ser Ser Glu His Glu Asp Lys
 130 135 140
 Ser Ala Gly Ala Ser Gly Glu Thr Pro Ser Gln Pro Tyr Pro Ala Pro

145	150	155	160
Val Tyr Ser Gln Pro Glu Glu Leu Lys Asp Gln Met Asp Asp Thr Lys			
165	170	175	
Pro Thr Lys Pro Glu Glu Asn Glu Asp Ser Asp Pro Leu Pro Asp Asn			
5	180	185	190
Trp Glu Met Ala Tyr Thr Glu Lys Gly Glu Val Tyr Phe Ile Asp His			
195	200	205	
Asn Thr Lys Thr Thr Ser Trp Leu Asp Pro Arg Leu Ala Lys Lys Ala			
210	215	220	
10	Lys Pro Pro Glu Glu Cys Lys Glu Asn Glu Leu Pro Tyr Gly Trp Glu		
225	230	235	240
Lys Ile Asp Asp Pro Ile Tyr Gly Thr Tyr Tyr Val Asp His Ile Asn			
	245	250	255
Arg Arg Thr Gln Phe Glu Asn Pro Val Leu Glu Ala Lys arg Lys Leu			
15	260	265	270
Gln Gln His Asn Met Pro His Thr Glu Leu Gly Ala Lys Pro Leu Gln			
	275	280	285
Ala Pro Gly Phe Arg Glu Lys Pro Leu Phe Thr Arg Asp Ala Ser Gln			
	290	295	300
20	Leu Lys Gly Thr Phe Leu Ser Thr Thr Leu Lys Lys Ser Asn Met Gly		
	305	310	315
Phe Gly Phe Thr Ile Ile Gly Gly Asp Glu Pro Asp Glu Phe Leu Gln			
	325	330	335
Val Lys Ser Val Ile Pro Asp Gly Pro Ala Ala Gln Asp Gly Lys Met			
25	340	345	350
Glu Thr Gly Asp Val Ile Val Tyr Ile Asn Glu Val Cys Val Leu Gly			
	355	360	365
His Thr His Ala Asp Val Val Lys Leu Phe Gln Ser Val Pro Ile Gly			
	370	375	380

Gln Ser Val Asn Leu Val Leu Cys Arg Gly Tyr Pro Leu Pro Phe Asp
 385 390 395 400
 Pro Glu Asp Pro Ala Asn Ser Met Val Pro Pro Leu Ala Ile Met Glu
 405 410 415
 5 Arg Pro Pro Pro Val Met Val Asn Gly Arg His Asn Tyr Glu Thr Tyr
 420 425 430
 Leu Glu Tyr Ile Ser Arg Thr Ser Gln Ser Val Pro Asp Ile Thr Asp
 435 440 445
 Arg Pro Pro His Ser Leu his Ser Met Pro Ala Asp Gly Gln Leu Asp
 10 450 455 460
 Gly Thr Tyr Pro Pro Pro Val His Asp Asp Asn Val Ser Met Ala Ser
 465 470 475 480
 Ser Gly Ala Thr Gln Ala Glu Leu Met Thr Leu Thr Ile Val Lys Gly
 485 490 495
 15 Ala Gln Gly Phe Gly Phe Thr Ile Ala Asp Ser Pro Thr Gly Gln Arg
 500 505 510
 Val Lys Gln Ile Leu Asp Ile Gln Gly Cys Pro Gly Leu Cys Glu Gly
 515 520 525
 Asp Leu Ile Val Glu Ile Asn Gln Gln Asn Val Gln Asn Leu Ser His
 20 530 535 540
 Thr Glu Val Val Asp Ile Leu Lys Asp Cys Pro Val Gly Ser Glu Thr
 545 550 555 560
 Ser Leu Ile Ile His Arg Gly Gly Phe Phe Ser Pro Trp Lys Thr Pro
 565 570 575
 25 Lys Pro Met Met Asp Arg Trp Glu Asn Gln Gly Ser Pro Gln Thr Ser
 580 585 590
 Leu Ser Ala Pro Ala Val Pro Gln Asn Leu Pro Phe Pro Pro Ala Leu
 595 600 605
 His Arg Ser Ser Phe Pro Asp Ser Thr Glu Ala Phe Asp Pro Arg Lys

	610	615	620	
	Pro Asp Pro Tyr Glu Leu Tyr Glu Lys Ser Arg Ala Ile Tyr Glu Ser			
625	630	635	640	
	Arg Gln Gln Val Pro Pro Arg Thr Ser Phe Arg Met Asp Ser Ser Gly			
5	645	650	655	
	Pro Asp Tyr Lys Glu Leu Asp Val His Leu Arg Arg Met Glu Ser Gly			
	660	665	670	
	Phe Gly Phe Arg Ile Leu Gly Gly Asp Glu Pro Gly Gln Pro Ile Leu			
	675	680	685	
10	Ile Gly Ala Val Ile Ala Met Gly Ser Ala Asp Arg Asp Gly Arg Leu			
	690	695	700	
	His Pro Gly Asp Glu Leu Val Tyr Val Asp Gly Ile Pro Val Ala Gly			
	705	710	715	720
	Lys Thr His Arg Tyr Val Ile Asp Leu Met His His Ala Ala Arg Asn			
15	725	730	735	
	Gly Gln Val Asn Leu Thr Val Arg Arg Lys Val Leu Cys Gly Gly Glu			
	740	745	750	
	Pro Cys Pro Glu Asn Gly Arg Ser Pro Gly Ser Val Ser Thr His His			
	755	760	765	
20	Ser Ser Pro Arg Ser Asp Tyr Ala Thr Tyr Ser Asn Ser Asn His Ala			
	770	775	780	
	Ala Pro Ser Ser Asn Ala Ser Pro Pro Glu Gly Phe Ala Ser His Ser			
	785	790	795	800
	Leu Gln Thr Ser Asp Val Val Ile His Arg Lys Glu Asn Glu Gly Phe			
25	805	810	815	
	Gly Phe Val Ile Ile Ser Ser Leu Asn Arg Pro Glu Ser Gly Ala Thr			
	820	825	830	
	Ile Thr Val Pro His Lys Ile Gly Arg Ile Ile Asp Gly Ser Pro Ala			
	835	840	845	

Asp Arg Cys Ala Lys Leu Lys Val Gly Asp Arg Ile Leu Ala Val Asn
 850 855. 860
 Gly Gln Ser Ile Ile Asn Met Pro His Ala Asp Ile Val Lys Leu Ile
 865 870 875 880
 5 Lys Asp Ala Gly Leu Ser Val Thr Leu Arg Ile Ile Pro Gln Glu Glu
 885 890 895
 Leu Asn Ser Pro Thr Ser Ala Pro Ser Ser Glu Lys Gln Ser Pro Met
 900 905 910
 Ala Gln Gln His Ser Pro Leu Ala Gln Gln Ser Pro Leu Ala Gln Pro
 10 915 920 925
 Ser Pro Ala Thr Pro Asn Ser Pro Val Ala Gln Pro Ala Pro Pro Gln
 930 935 940
 Pro Leu Gln Leu Gln Gly His Glu Asn Ser Tyr Arg Ser Glu Val Lys
 945 950 955 960
 15 Ala Arg Gln Asp Val Lys Pro Asp Ile Arg Gln Pro Pro Phe Thr Asp
 965 970 975
 Tyr Arg Gln Pro Pro Leu Asp Tyr Arg Gln Pro Pro Gly Gly Asp Tyr
 980 985 990
 Ser Gln Pro Pro Pro Leu Asp Tyr Arg Gln His Ser Pro Asp Tyr Arg
 20 995 1000 1005
 Gln Tyr Pro Leu Ser Asp Tyr Arg Gln Pro Gln Asp Phe Asp Tyr Phe
 1010 1015 1020
 Thr Val Asp Met Glu Lys Gly Ala Lys Gly Phe Gly Phe Ser Ile Arg
 1025 1030 1035 1040
 25 Gly Gly Arg Glu Tyr Lys Met Asp Leu Tyr Val Leu Arg Leu Ala Glu
 1045 1050 1055
 Asp Gly Pro Ala Ile Arg Asn Gly Arg Met Arg Val Gly Asp Gln Ile
 1060 1065 1070
 Ile Glu Ile Asn Gly Glu Ser Thr Arg Asp Met Thr His Ala Arg Ala

10/19

1075 1080 1085
Ile Glu Leu Ile Lys Ser Gly Gly Arg Arg Val Arg Leu Leu Leu Lys
1090 1095 1100
Arg Gly Thr Gly Gln Val Pro Glu Tyr Gly Met Val Pro Ser Ser Leu
5 1105 1110 1115 1120
Ser Met Cys Met Lys Ser Asp Lys His Gly Ser Pro Tyr Phe Tyr Leu
1125 1130 1135
Leu Gly His Pro Lys Asp Thr Thr Asn Pro Thr Pro Gly Val Leu Pro
1140 1145 1150
10 Leu Pro Pro Pro Gln Ala Cys Arg Lys
1155 1160 1161
<210>6
<211>1112
<212>PRT
15 <213>Mouse
<400>6
Met Glu Leu Glu Lys Ser Gly Ala Leu Leu Glu Ser Gly Thr Tyr Glu
5 10 15
Asp Asn Tyr Tyr Gly Thr Pro lys Pro Pro Ala Glu Pro Ala Pro Leu
20 20 25 30
Leu Asn Val Thr Asp Gln Ile Leu Pro Gly Ala Thr Pro Ser Ala Glu
35 40 45
Gly Lys Arg Lys Arg Asn Lys Ser Val Thr Asn Met Glu Lys Ala Ser
50 55 60
25 Ile Glu Pro Pro Glu Glu Glu Glu Arg Pro Val Val Asn Gly
65 70 75 80
Asn Gly Val Val Ile Thr Pro Glu Ser Ser Glu His Glu Asp Lys Ser
85 90 95
Ala Gly Ala Ser Gly Glu Thr Pro Ser Gln Pro Tyr Pro Ala Pro Val

	100	105	110
	Tyr Ser Gln Pro Glu Glu Leu Lys Asp Gln Met Asp Asp Thr Lys Pro		
	115	120	125
	Thr Lys Pro Glu Glu Asn Glu Asp Ser Asp Pro Leu Pro Asp Asn Trp		
5	130	135	140
	Glu Met Ala Tyr Thr Glu Lys Gly Glu Val Tyr Phe Ile Asp His Asn		
	145	150	155
	Thr Lys Thr Thr Ser Trp Leu Asp Pro Arg Leu Ala Lys Lys Ala Lys		
	165	170	175
10	Pro Pro Glu Glu Cys Lys Glu Asn Glu Leu Pro Tyr Gly Trp Glu Lys		
	180	185	190
	Ile Asp Asp Pro Ile Tyr Gly Thr Tyr Tyr Val Asp His Ile Asn Arg		
	195	200	205
	Arg Thr Gln Phe Glu Asn Pro Val Leu Glu Ala Lys arg Lys Leu Gln		
15	210	215	220
	Gln His Asn Met Pro His Thr Glu Leu Gly Ala Lys Pro Leu Gln Ala		
	225	230	235
	Pro Gly Phe Arg Glu Lys Pro Leu Phe Thr Arg Asp Ala Ser Gln Leu		
	245	250	255
20	Lys Gly Thr Phe Leu Ser Thr Thr Leu Lys Lys Ser Asn Met Gly Phe		
	260	265	270
	Gly Phe Thr Ile Ile Gly Gly Asp Glu Pro Asp Glu Phe Leu Gln Val		
	275	280	285
	Lys Ser Val Ile Pro Asp Gly Pro Ala Ala Gln Asp Gly Lys Met Glu		
25	290	295	300
	Thr Gly Asp Val Ile Val Tyr Ile Asn Glu Val Cys Val Leu Gly His		
	305	310	315
	Thr His Ala Asp Val Val Lys Leu Phe Gln Ser Val Pro Ile Gly Gln		
	325	330	335

Ser Val Asn Leu Val Leu Cys Arg Gly Tyr Pro Leu Pro Phe Asp Pro
 340 345 350
 Glu Asp Pro Ala Asn Ser Met Val Pro Pro Leu Ala Ile Met Glu Arg
 355 360 365
 5 Pro Pro Pro Val Met Val Asn Gly Arg His Asn Tyr Glu Thr Tyr Leu
 370 375 380
 Glu Tyr Ile Ser Arg Thr Ser Gln Ser Val Pro Asp Ile Thr Asp Arg
 385 390 395 400
 Pro Pro His Ser Leu his Ser Met Pro Ala Asp Gly Gln Leu Asp Gly
 10 405 410 415
 Thr Tyr Pro Pro Pro Val His Asp Asp Asn Val Ser Met Ala Ser Ser
 420 425 430
 Gly Ala Thr Gln Ala Glu Leu Met Thr Leu Thr Ile Val Lys Gly Ala
 435 440 445
 15 Gln Gly Phe Gly Phe Thr Ile Ala Asp Ser Pro Thr Gly Gln Arg Val
 450 455 460
 Lys Gln Ile Leu Asp Ile Gln Gly Cys Pro Gly Leu Cys Glu Gly Asp
 465 470 475 480
 Leu Ile Val Glu Ile Asn Gln Gln Asn Val Gln Asn Leu Ser His Thr
 20 485 490 495
 Glu Val Val Asp Ile Leu Lys Asp Cys Pro Val Gly Ser Glu Thr Ser
 500 505 510
 Leu Ile Ile His Arg Gly Gly Phe Phe Ser Pro Trp Lys Thr Pro Lys
 515 520 525
 25 Pro Met Met Asp Arg Trp Glu Asn Gln Gly Ser Pro Gln Thr Ser Leu
 530 535 540
 Ser Ala Pro Ala Val Pro Gln Asn Leu Pro Phe Pro Pro Ala Leu His
 545 550 555 560
 Arg Ser Ser Phe Pro Asp Ser Thr Glu Ala Phe Asp Pro Arg Lys Pro

	565	570	575
Asp Pro Tyr Glu Leu Tyr Glu Lys Ser Arg Ala Ile Tyr Glu Ser Arg			
	580	585	590
Gln Gln Val Pro Pro Arg Thr Ser Phe Arg Met Asp Ser Ser Gly Pro			
	595	600	605
Asp Tyr Lys Glu Leu Asp Val His Leu Arg Arg Met Glu Ser Gly Phe			
	610	615	620
Gly Phe Arg Ile Leu Gly Gly Asp Glu Pro Gly Gln Pro Ile Leu Ile			
	625	630	635
			640
10 Gly Ala Val Ile Ala Met Gly Ser Ala Asp Arg Asp Gly Arg Leu His			
	645	650	655
Pro Gly Asp Glu Leu Val Tyr Val Asp Gly Ile Pro Val Ala Gly Lys			
	660	665	670
Thr His Arg Tyr Val Ile Asp Leu Met His His Ala Ala Arg Asn Gly			
	675	680	685
Gln Val Asn Leu Thr Val Arg Arg Lys Val Leu Cys Gly Gly Glu Pro			
	690	695	700
Cys Pro Glu Asn Gly Arg Ser Pro Gly Ser Val Ser Thr His His Ser			
	705	710	715
			720
20 Ser Pro Arg Ser Asp Tyr Ala Thr Tyr Ser Asn Ser Asn His Ala Ala			
	725	730	735
Pro Ser Ser Asn Ala Ser Pro Pro Glu Gly Phe Ala Ser His Ser Leu			
	740	745	750
Gln Thr Ser Asp Val Val Ile His Arg Lys Glu Asn Glu Gly Phe Gly			
	755	760	765
Phe Val Ile Ile Ser Ser Leu Asn Arg Pro Glu Ser Gly Ala Thr Ile			
	770	775	780
Thr Val Pro His Lys Ile Gly Arg Ile Ile Asp Gly Ser Pro Ala Asp			
	785	790	795
			800

Arg Cys Ala Lys Leu Lys Val Gly Asp Arg Ile Leu Ala Val Asn Gly
 805 810 815
 Gln Ser Ile Ile Asn Met Pro His Ala Asp Ile Val Lys Leu Ile Lys
 820 825 830
 5 Asp Ala Gly Leu Ser Val Thr Leu Arg Ile Ile Pro Gln Glu Glu Leu
 835 840 845
 Asn Ser Pro Thr Ser Ala Pro Ser Ser Glu Lys Gln Ser Pro Met Ala
 850 855 860
 Gln Gln His Ser Pro Leu Ala Gln Gln Ser Pro Leu Ala Gln Pro Ser
 10 865 870 875 880
 Pro Ala Thr Pro Asn Ser Pro Val Ala Gln Pro Ala Pro Pro Gln Pro
 885 890 895
 Leu Gln Leu Gln Gly His Glu Asn Ser Tyr Arg Ser Glu Val Lys Ala
 900 905 910
 15 Arg Gln Asp Val Lys Pro Asp Ile Arg Gln Pro Pro Phe Thr Asp Tyr
 915 920 925
 Arg Gln Pro Pro Leu Asp Tyr Arg Gln Pro Pro Gly Gly Asp Tyr Ser
 930 935 940
 Gln Pro Pro Pro Leu Asp Tyr Arg Gln His Ser Pro Asp Tyr Arg Gln
 20 945 950 955 960
 Tyr Pro Leu Ser Asp Tyr Arg Gln Pro Gln Asp Phe Asp Tyr Phe Thr
 965 970 975
 Val Asp Met Glu Lys Gly Ala Lys Gly Phe Gly Phe Ser Ile Arg Gly
 980 985 990
 25 Gly Arg Glu Tyr Lys Met Asp Leu Tyr Val Leu Arg Leu Ala Glu Asp
 995 1000 1005
 Gly Pro Ala Ile Arg Asn Gly Arg Met Arg Val Gly Asp Gln Ile Ile
 1010 1015 1020
 Glu Ile Asn Gly Glu Ser Thr Arg Asp Met Thr His Ala Arg Ala Ile

	1025	1030	1035	1040
	Glu Leu Ile Lys Ser Gly Gly Arg Arg Val Arg Leu Leu Leu Lys Arg			
	1045		1050	1055
	Gly Thr Gly Gln Val Pro Glu Tyr Gly Met Val Pro Ser Ser Leu Ser			
5	1060	1065		1070
	Met Cys Met Lys Ser Asp Lys His Gly Ser Pro Tyr Phe Tyr Leu Leu			
	1075	1080	1085	
	Gly His Pro Lys Asp Thr Thr Asn Pro Thr Pro Gly Val Leu Pro Leu			
	1090	1095	1100	
10	Pro Pro Pro Gln Ala Cys Arg Lys			
	1105	1110	1112	
	<210>7			
	<211>3483			
	<212>DNA			
15	<213>Mouse			
	<400>7			
	GGAGACGCTG ACAGAGGACC ATGGAAAGGT GGGAGAGGAC GCGCGGCTCC TGGGCTTCCT 60			
	CTGAGCTCAG CTCCAGGCAC CACAAGGCCA CATAAGGAGG GTGAGGTCCC TGGAGTGGAC 120			
	TACATTTCA TAACCGTTGA GGAGTTATG GAATTGGAGA AAAGTGGTGC TCTCCTAGAA 180			
20	AGCGGGACCT ATGAAGACAA CTACTACGGT ACCCCGAAGC CTCCAGCTGA ACCAGCACCA 240			
	TTATTAAATG TAACAGACCA GATACTTCCG GGAGCTACTC CAAGTGCTGA GGGGAAGCGG 300			
	AAAAGAAATA AGTCAGTGAC CAACATGGAG AAAGCAAGTA TAGAGCCTCC AGAGGAGGAA 360			
	GAAGAAGAAA GGCCTGTAGT CAATGGAAAC GGCCTGGTCA TAACCCCAGA ATCCAGTGAA 420			
	CATGAAGACA AAAGTGCAGG TGCCTCAGGG GAGACACCCT CCCAGCCTTA CCCTGCACCC 480			
25	GTGTACAGCC AGCCCGAAGA GCTCAAGGAC CAGATGGACG ATACAAAGCC AACAAAGCCT 540			
	GAGGAGAACG AGGACTCTGA TCCATTGCCT GATAACTGGG AAATGGCCTA CACAGAGAAG 600			
	GGGGAAGTCT ACTTCATTGA CCATAACACA AAGACAACAT CATGGCTGGA TCCCGCAGTT 660			
	GCGAAAAAGG CTAAACCTCC AGAAGAGTGC AAAGAAAATG AGCTTCCATA TGGCTGGAA 720			
	AAAATCGATG ATCCTATATA TGGCACTTAC TATGTTGACC ACATAAATAG AAGAACACAG 780			

TTTGAAAACC CTGTCCTGGA AGCAAAAAGG AAGCTACAGC AACATAACAT GCCCCACACA 840
 GAACTTGGAG CAAAGCCCC GCAGGCCCA GGTTCGAG AAAAGCCACT CTTCACCCGG 900
 GATGCATCCC AGTTGAAGGG AACGTTCCCTC AGCACCAACCC TCAAAAAGAG CAACATGGGC 960
 TTTGGGTTTA CCATAATTGG TGGAGACGAG CCGGATGAGT TTCTACAGGT GAAAAGTGTG 1020
 5 ATCCCGGATG GGCCTGCCGC ACAGGATGGG AAAATGGAGA CAGGTGATGT CATTGTCTAT 1080
 ATTAATGAAG TTTGTGTCCT TGGACACACT CATGCAGATG TTGTCAAAC TTTCCAGTCT 1140
 GTTCCTATTG GTCAGAGTGT CAACTGGTG TTGTGTCGTG GCTACCCCTT GCCCTTGAC 1200
 CCTGAAGATC CTGCTAACAG CATGGTGCCA CCCCTGCAA TAATGGAGAG GCCACCTCCG 1260
 GTGATGGTCA ATGGAAGACA TAACTATGAA ACATACTTGG AATACATTTC TCGGACCTCA 1320
 10 CAGTCGGTCC CAGATATTAC AGACCGGCCA CCTCATTCTT TGCACTCCAT GCCAGCTGAC 1380
 GGCCAGCTAG ATGGCACGTA TCCACCACCC GTCCATGACG ACAATGTGTC TATGGCTTCG 1440
 TCTGGAGCCA CTCAAGCTGA ACTTATGACC TTAACCATTG TGAAAGGTGC CCAGGGATT 1500
 GGCTTTACTA TTGCCGACAG TCCCACGGGA CAGCGGGTGA AACAAATCCT TGACATTCA 1560
 GGATGCCCTG GGCTGTGTGA AGGAGACCTC ATTGTTGAGA TCAACCAACA GAATGTACAG 1620
 15 AACCTGAGCC ATACAGAACT AGTGGATATA CTTAAGGACT GCCCCGTTGG AAGTGAGACT 1680
 TCTTTAATCA TCCATCGAGG AGGTTTCTTT TCTCCATGGA AAACCTCAA GCCTATGATG 1740
 GACCGATGGG AGAACCAAGG CAGTCCACAA ACAAGTTAT CTGCTCCGGC CGTCCCACAG 1800
 AACCTGCCCT TCCCACCTGC CCTTCACAGG AGCTCCTTC CTGATTCAAC AGAGGCCTT 1860
 GACCCACGGA AGCCTGACCC ATATGAGCTC TACGAGAAAT CGAGAGCCAT TTATGAAAGT 1920
 20 AGGCAACAAG TGCCACCCAG GACCAGTTT CGAATGGATT CCTCTGGTCC AGATTATAAG 1980
 GAACTGGATG TTCACCTTCG GAGGATGGAG TCTGGATTG GCTTTAGAAT CCTTGGGGGA 2040
 GATGAACCTG GACAGCTAT TTTGATCGGA GCCGTCATTG CCATGGGCTC AGCTGACAGA 2100
 GACGGCCGTC TACACCCAGG AGATGAGCTT GTCTATGTCG ATGGGATCCC AGTGGCTGGC 2160
 AAGACCCACC GCTATGTCAT CGACCTCATG CACCACGCGG CCCGCAATGG GCAGGTTAAC 2220
 25 CTCACTGTGA GAAGAAAGGT GCTATGTGGA GGGGAGCCCT GCCCAGAGAA TGGGAGGAGT 2280
 CCAGGCTCTG TATCAACTCA CCACAGCTCT CCGCGCAGTG ACTATGCCAC CTACTCCAAC 2340
 AGCAACCACG CCGCCCCCAG CAGCAATGCC TCACCTCCTG AAGGCTTGC CTCACACAGC 2400
 TTGCAGACCA GTGATGTGGT CATTCAACCGC AAAGAAAACG AAGGGTTGG CTTCGTCATC 2460
 ATCAGCTCTC TGAACAGGCC TGAGTCTGGA GCCACCATAA CTGTGCCCA TAAAATTGGA 2520

099324625 0544522

CGAATCATTG ATGGGAGCCC TGCAGATCGC TGTGCCAAC TCAAAGTGGG CGACCGTATC 2580
 TTAGCAGTCA ACGGCCAGTC TATCATCAAC ATGCCTCACG CTGACATTGT GAAGCTCATC 2640
 AAGGACGCCG GTCTCAGTGT CACCCTTCGC ATCATTCCCTC AGGAGGAGCT CAACAGCCCC 2700
 ACATCAGCAC CCAGTTCAGA GAAACAGAGC CCCATGGCCC AGCAGCACAG CCCTCTGGCC 2760
 5 CAGCAGAGTC CTCTGGCCC GCCAAGCCCC GCCACCCCCA ACAGCCCCAGT CGCACAGCCA 2820
 GCTCCTCCCC AACCTCTCCA GCTGCAAGGA CACGAAAATA GTTACAGGTC AGAAGTTAAA 2880
 GCGAGGCAAG ATGTGAAGCC AGACATCCGG CAGCCTCCCT TCACAGACTA CAGGCAGCCC 2940
 CCGCTGGACT ACAGGCAGCC CCCGGGAGGA GACTACTCAC AGCCCCCACC CTGGACTAC 3000
 AGGCAGCACT CTCCAGACAC CAGGCAGTAC CCTCTGTCAG ACTACAGGCA GCCACAGGAT 3060
 10 TTTGATTATT TCACTGTGGA CATGGAGAAA GGAGCCAAAG GATTGGATT CAGCATTCTG 3120
 GGAGGAAGGG AATACAAGAT GGATCTGTAT GTGTTGAGAT TGGCAGAGGA TGGGCCAGCC 3180
 ATAAGGAACG GCAGGATGAG GGTAGGAGAT CAGATCATTG AAATAATGG GGAAAGCACA 3240
 CGAGACATGA CCCACGCCAG AGCAATAGAA CTCATCAAGT CTGGAGGAAG AAGAGTGCAG 3300
 CTGCTGCTGA AGAGAGGCAC GGGGCAGGTC CCGGAGTATG GAATGGTACC TTCCAGCCTC 3360
 15 TCCATGTGCA TGAAAAGTGA CAAGCATGGG TCCCCATATT TCTACTTACT GGGCCACCCCT 3420
 AAAGACACGA CGAACCCCCAC GCCTGGAGTG CTGCCGCTGC CGCCGCCCA GGCCTGCCGG 3480
 AAG 3483
 <210>8
 <211>3336
 20 <212>DNA
 <213>Mouse
 <400>8
 ATGGAATTGG AGAAAAGTGG TGCTCTCCTA GAAAGCGGGA CCTATGAAGA CAACTACTAC 60
 GGTACCCCGA AGCCTCCAGC TGAACCAGCA CCATTATTAA ATGTAACAGA CCAGATACTT 120
 25 CCGGGAGCTA CTCCAAGTGC TGAGGGGAAG CGGAAAAGAA ATAAGTCAGT GACCAACATG 180
 GAGAAAGCAA GTATAGAGCC TCCAGAGGAG GAAGAAGAAG AAAGGCCGT AGTCAATGGA 240
 AACGGCGTGG TCATAACCCC AGAATCCAGT GAACATGAAG ACAAAAGTGC AGGTGCCTCA 300
 GGGGAGACAC CCTCCCCAGCC TTACCCCTGCA CCCGTGTACA GCCAGCCCCGA AGAGCTCAAG 360
 GACCAGATGG ACGATACAAA GCCAACAAAG CCTGAGGAGA ACGAGGACTC TGATCCATTG 420

CCTGATAACT GGGAAATGGC CTACACAGAG AAGGGGGAAG TCTACTTCAT TGACCATAAC 480
 ACAAAGACAA CATCATGGCT GGATCCCGA CTTGCGAAAA AGGCTAAACC TCCAGAAGAG 540
 TGCAAAGAAA ATGAGCTTCC ATATGGCTGG GAAAAAAATCG ATGATCCTAT ATATGGCACT 600
 TACTATGTTG ACCACATAAA TAGAAGAACCA CAGTTGAAA ACCCTGTCCT GGAAGCAAAA 660
 5 AGGAAGCTAC AGCAACATAA CATGCCAAC ACAGAACTTG GAGCAAAGCC CCTGCAGGCC 720
 CCAGGTTCC GAGAAAAGCC ACTCTTCACC CGGGATGCAT CCCAGTTGAA GGGAACGTT 780
 CTCAGCACCA CCCTCAAAAA GAGCAACATG GGCTTGGGT TTACCATATAAT TGGTGGAGAC 840
 GAGCCGGATG AGTTTCTACA GGTGAAAAGT GTGATCCCGG ATGGGCCTGC CGCACAGGAT 900
 GGGAAAATGG AGACAGGTGA TGTCAATTGTC TATATTAAATG AAGTTGTGT CCTTGGACAC 960
 10 ACTCATGCAG ATGTTGTCAA ACTTTCCAG TCTGTTCTA TTGGTCAGAG TGTCAACTTG 1020
 GTGTTGTGTC GTGGCTACCC TTTGCCCTT GACCCTGAAG ATCCTGCTAA CAGCATGGTG 1080
 CCACCCCTTG CAATAATGGA GAGGCCACCT CCGGTGATGG TCAATGGAAG ACATAACTAT 1140
 GAAACATACT TGGAATACAT TTCTCGGACC TCACAGTCGG TCCCAGATAT TACAGACCGG 1200
 CCACCTCATT CTTTGCACTC CATGCCAGCT GACGCCAGC TAGATGGCAC GTATCCACCA 1260
 15 CCCGTCCATG ACGACAATGT GTCTATGGCT TCGTCTGGAG CCACTCAAGC TGAACTTATG 1320
 ACCTTAACCA TTGTGAAAGG TGCCCAGGGA TTTGGCTTTA CTATTGCCGA CAGTCCCACG 1380
 GGACAGCGGG TGAAACAAAT CCTTGACATT CAGGGATGCC CTGGGCTGTG TGAAGGAGAC 1440
 CTCATTGTTG AGATCAACCA ACAGAAATGTA CAGAACCTGA GCCATACAGA AGTAGTGGAT 1500
 ATACTTAAGG ACTGCCCGT TGGAAGTGAG ACTTCTTAA TCATCCATCG AGGAGGTTTC 1560
 20 TTTTCTCCAT GGAAAACCTCC AAAGCCTATG ATGGACCGAT GGGAGAACCA AGGCAGTCCA 1620
 CAAACAAGTT TATCTGCTCC GGCGTCCC CAGAACCTGC CCTTCCCACC TGCCCTTCAC 1680
 AGGAGCTCCT TTCCTGATTC AACAGAGGCC TTTGACCCAC GGAAGCCTGA CCCATATGAG 1740
 CTCTACGAGA AATCGAGAGC CATTATGAA AGTAGGCAAC AAGTGCCACC CAGGACCACT 1800
 TTTCGAATGG ATTCCCTCTGG TCCAGATTAT AAGGAACCTGG ATGTTCACCT TCGGAGGATG 1860
 25 GAGTCTGGAT TTGGCTTAG AATCCTTGGG GGAGATGAAC CTGGACAGCC TATTTGATC 1920
 GGAGCCGTCA TTGCCATGGG CTCAGCTGAC AGAGACGGCC GTCTACACCC AGGAGATGAG 1980
 CTTGTCTATG TCGATGGGAT CCCAGTGGCT GGCAAGACCC ACCGCTATGT CATCGACCTC 2040
 ATGCACCACG CGGCCGCAA TGGCAGGTT AACCTCACTG TGAGAAGAAA GGTGCTATGT 2100
 GGAGGGGAGC CCTGCCAGA GAATGGGAGG AGTCCAGGCT CTGTATCAAC TCACCACAGC 2160

TCTCCGCGCA GTGACTATGC CACCTACTCC AACAGCAACC ACGCCGCCCC CAGCAGCAAT 2220
GCCTCACCTC CTGAAGGCTT TGCCTCACAC AGCTTGCAGA CCAGTGATGT GGTCATTAC 2280
CGCAAAGAAA ACGAAGGGTT TGGCTTCGTC ATCATCAGCT CTCTGAACAG GCCTGAGTCT 2340
GGAGCCACCA TAACTGTGCC CCATAAAATT GGACGAATCA TTGATGGGA GCCCTGCAGAT 2400
5 CGCTGTGCCA AACTCAAAGT GGGCGACCGT ATCTTAGCAG TCAACGGCCA GTCTATCATH 2460
AACATGCCTC ACGCTGACAT TGTGAAGCTC ATCAAGGACG CCGGTCTCAG TGTCAACCCT 2520
CGCATCATTC CTCAGGAGGA GCTCAACAGC CCAACATCAG CACCCAGTTC AGAGAAACAG 2580
AGCCCCATGG CCCAGCAGCA CAGCCCTCTG GCCCAGCAGA GTCCTCTGGC CCAGCCAAGC 2640
CCCGCCACCC CCAACAGCCC AGTCGCACAG CCAGCTCCTC CCCAACCTCT CCAGCTGCAA 2700
10 GGACACGAAA ATAGTTACAG GTCAGAAGTT AAAGCGAGGC AAGATGTGAA GCCAGACATC 2760
CGGCAGCCTC CCTTCACAGA CTACAGGCAG CCCCCGCTGG ACTACAGGCA GCCCCCGGG 2820
GGAGACTACT CACAGCCCC ACCCTTGGAC TACAGGCAGC ACTCTCCAGA CACCAGGCAG 2880
TACCCCTCTGT CAGACTACAG GCAGCCACAG GATTTGATT ATTCACTGT GGACATGGAG 2940
AAAGGAGCCA AAGGATTGG ATTCAAGCATT CGTGGAGGAA GGGAAATACAA GATGGATCTG 3000
15 TATGTGTTGA GATTGGCAGA GGATGGGCCA GCCATAAGGA ACGGCAGGAT GAGGGTAGGA 3060
GATCAGATCA TTGAAATAAA TGGGGAAAGC ACACGAGACA TGACCCACGC CAGAGCAATA 3120
GAACTCATCA AGTCTGGAGG AAGAAGAGTG CGGCTGCTGC TGAAGAGAGG CACGGGGCAG 3180
GTCCCGGAGT ATGGAATGGT ACCTTCCAGC CTCTCCATGT GCATGAAAAG TGACAAGCAT 3240
GGGTCCCCAT ATTTCTACTT ACTGGGCCAC CCTAAAGACA CGACGAACCC CACGCCTGGA 3300
20 GTGCTGCCGC TGCCGCCGCC CCAGGCCTGC CGGAAG 3336