Coding of bounded solutions of equation $u_{xx} - u + \eta(x)u^3 = 0$ with periodic piecewise constant function $\eta(x)$

M. E. Lebedev, G. L. Alfimov MIET University, Zelenograd, Moscow, Russia

> Lake Bannoe March, 2021

Objective & Motivation

Our <u>objective</u> is an equation

$$u_{xx} - u + \eta(x)u^3 = 0,$$
 (1)

 $\eta(x)$ is a periodic piecewise-constant function of period $L = L_* + L_0$,

$$\eta(x) = \begin{cases} -1, & x \in [0; L_*]; \\ a^2, & x \in [L_*; L_* + L_0], \end{cases}$$

where $a \in \mathbb{R}$.

Our <u>motivation</u> is a GPE equation:

$$i\Psi_t + \Psi_{xx} + P(x)|\Psi|^2\Psi = 0,$$
 (2)

 $P(x) \in \mathbb{R}$ is a periodic function that changes its sing on the period.

Stationary states equation:

$$u_{xx} + \omega u + P(x)u^3 = 0, \quad \omega < 0.$$

We wrote a paper!

CHAOS 26,073110 (2016)

Stable dipole solitons and soliton complexes in the nonlinear Schrödinger

equation with periodically modulated nonlinearity

M. E. Lobodov, "10 (L. Alfinov, "10) and Boris A. Malomodr^{*}-24 Montage and "14498, Russia "14498 (Russia "14498) (Russia

Many localised stationary states was found (numerically).

Part I. Common sense

Phase portraits

\mathcal{P}_* mapping:

 \mathcal{P}_0 mapping:

Figure 1: Phase portrait for the equation $u_{xx} - u - u^3 = 0$.

Figure 2: Phase portrait for the equation $u_{xx} - u + u^3 = 0$.

Poincaré map $\mathcal{P}(u_0,u_0')=(u(L),u'(L)),\ u(x)$ is a solution of (1) with initial conditions $(u_0,u_0');\ \mathcal{P}=\mathcal{P}_0\mathcal{P}_*.$

Part II. Poincaré map

$\operatorname{dom}(\mathcal{P}_*) = \mathscr{U}_{L_*}^+$

Figure 3: Domain of \mathcal{P} for the parameters $(L_*, L_0, a) = (2, 1, 1)$; γ^{\pm} are separatrices for the equation $u_{xx} - u - u^3 = 0$.

Theorem 1

 $\forall L_*, \ 0 < L_* < +\infty, \ set \ \mathscr{U}_{L_*}^+ \ is \ an$ infinite curvilinear open strip, that

- (a) $\mathscr{U}_{L_*}^+$ is symmetric with respect to the origin and contains γ^+ ;
- (b) $\mathscr{U}_{L_*}^+$ is bounded by two symmetric monotonically decreasing curves (which are C^1 functions);
- (c) vertical dimension of the $\mathscr{U}_{L_*}^+$ tends to zero exponentially when $L_* \to +\infty$.

$$\mathcal{U}_{L}^{+} \equiv \operatorname{dom}(\mathcal{P}) = \operatorname{dom}(\mathcal{P}_{0}\mathcal{P}_{*})$$
$$= \operatorname{dom}(\mathcal{P}_{*}) \equiv \mathcal{U}_{L_{*}}^{+}.$$

$$\mathcal{P}_*(\mathscr{U}_L^+) = \mathscr{U}_{L_*}^-$$

Figure 4: \mathcal{P}_* -image of \mathscr{U}_L^+ for the parameters $(L_*, L_0, a) = (2, 1, 1)$.

Theorem 2

 $\forall L_*, 0 < L_* < +\infty, set \mathscr{U}_{L_*}^-$ is an infinite curvilinear open strip, that

- (a) $\mathscr{U}_{L_*}^-$ is symmetric with respect to the origin and contains γ^- ;
- (b) $\mathscr{U}_{L_*}^-$ is bounded by two symmetric monotonically increasing curves (which are C^1 functions);
- (c) vertical dimension of the $\mathscr{U}_{L_*}^$ tends to zero exponentially when $L_* \to +\infty$.

$$\mathcal{P}_*(\mathscr{U}_L^+) = I\mathscr{U}_L^+,$$

where I is a reflection with respect to the u axis on the phase plane (u, u').

$\mathcal{P}_0(\gamma_-)$

Figure 5: $\mathcal{P}_0(\gamma^-)$ (solid blue line) is an infinite spiral; yellow dots are the points of intersections $\mathcal{P}_0(\gamma^-) \cap \gamma^+$ predicted by the equation (3).

Theorem 3

 \mathcal{P}_0 -image of the curve γ^- is an infinite spiral, it intersects γ^+ infinitely many times at the points $\{0\} \cup \{u_{\pm n}\}$, where

$$u_{\pm n} = \pm \frac{2a^{3/2}x_{n-1}}{\sqrt[4]{a^2 + 1}} L_0^{-1} + O(L_0); \quad (3)$$

 $L_0 \rightarrow 0$, and x_n are determined as

$$x_n = cn^{-1}\left(\frac{\sqrt{a}}{\sqrt[4]{a^2 + 1}}, k\right) + K(k)n,$$

where $k = 1/\sqrt{2}$, $n \in \mathbb{N}$.

Here $K(\cdot)$ is the complete elliptic integral of the 1st kind, cn^{-1} is an inverse elliptic cosine.

$\mathcal{P}_0(\mathscr{U}_{L_*}^-) = \mathscr{U}_L^-$

Figure 6: Three components D_{-1} , D_0 , D_{+1} (black) of the set $\mathscr{U}_L = \mathscr{U}_L^+ \cap \mathscr{U}_L^-$.

$$\mathscr{U}_L^- \equiv \mathrm{dom}(\mathcal{P}^{-1}) = \mathcal{P}_0(\mathscr{U}_{L_*}^-) = \mathcal{P}(\mathscr{U}_L^-).$$

- Both \mathcal{P} and \mathcal{P}^{-1} are defined on $\mathscr{U}_L = \mathscr{U}_L^+ \cap \mathscr{U}_L^-$.
- \mathscr{U}_L consists of infinite number of components $\mathscr{U}_L = \bigcup_{i \in S} D_i$.
- Each component except of the central one (D_0) is a curvilinear quadrangle with monotonic boarders (island).
- D_0 can be made an *island* by varying parameters (L_*, L_0, a) .

$\mathcal{P}(\mathscr{U}_L) = \bigcup_{i \in S} \mathcal{P}(D_i)$

Figure 7: \mathcal{P}_* -image of the components D_{-1} , D_0 , D_{+1} of \mathscr{U}_L .

Figure 8: \mathcal{P} -image of the components D_{-1} , D_0 , D_{+1} of \mathscr{U}_L .

$\bigcup_{i \in S} \mathcal{P}(D_i) \cap \mathscr{U}_L$

Figure 9: h-strips (yellow) as a result of intersections of $\mathcal{P}(D_i)$ and \mathcal{U}_L sets for the components D_{-1} , D_0 , D_{+1} .

$$\forall i, j, H_{i,j} = \mathcal{P}(D_i) \cap D_j \neq \varnothing.$$

- We call such sets as h-strips.
- Here h-strips consist of points where both \mathcal{P} and \mathcal{P}^{-2} are defined.
- This process can be continued, one can get points of initial condition where higher order of \mathcal{P}^{-k} are defined.
- Continuation of the process results in sets of nested h-strips.

$\bigcup_{i\in S} \mathcal{P}^{-1}(D_i) \cap \mathscr{U}_L$

Figure 10: v-strips (yellow) as a result of intersections of $\mathcal{P}^{-1}(D_i)$ and \mathcal{U}_L sets for the components D_{-1} , D_0 , D_{+1} .

$$\forall i, j, V_{i,j} = \mathcal{P}^{-1}(D_i) \cap D_j \neq \varnothing.$$

- We call such sets as *v*-strips.
- Here v-strips consist of points where both \mathcal{P}^2 and \mathcal{P}^{-1} are defined.
- This process can be continued, one can get points of initial condition where higher order of \mathcal{P}^k are defined.
- Continuation of the process results in sets of nested *v*-strips.

All together

Figure 11: v-strips (yellow) as a result of intersections of $\mathcal{P}^{-1}(D_i)$ and \mathcal{U}_L sets for the components D_{-1} , D_0 , D_{+1} .

Figure 12: Intersections of h and v-strips (yellow and green) consist of points where both \mathcal{P}^2 and \mathcal{P}^{-2} are defined.

Part III. Solutions coding

$\mathcal{O} o \mathcal{S}_{\infty}$

Orbit is a sequence of points $\{p_n\}$, that

$$\mathcal{P}(p_n) = p_{n+1}.$$

 \mathcal{O} – set of orbits of *regular* solution for the equation (1).

 $\mathcal{S}-\text{set}$ of bi-infinite sequences over the infinite alphabet

$$\{\ldots, i_{-1}, i_0, i_1, \ldots\},\$$

where each symbol corresponds to the connected component $D_i \in \mathscr{U}_L$.

It's easy to assign a *code* to the solution!

Figure 13: Sketch of an orbit of a regular solution (yellow dots) that corresponds to the code sequence $\{\ldots, -1, 0, 0, +1, \ldots\}$.

Solutions and their codes

Figure 14: Solution of the code $\{\ldots,0,0,+1,0,0,\ldots\}$.

Figure 15: Solution of the code $\{..., 0, +1, +3, +1, 0, ...\}$.

Solutions and their codes

Figure 16: Solution of the code $\{\ldots,0,0,-3,0,0,\ldots\}$.

Figure 17: Solution of the code $\{..., 0, +1, +2, -1, 0, ...\}$.

$\mathcal{S}_{\infty} \to \mathcal{O}$?

By code $\{\ldots, i_{-1}, i_0, i_1, \ldots\}$ find initial conditions for the equation (1) whose orbit visit components of \mathscr{U}_L in a right order $(X \xrightarrow{\mathcal{P}} Y = \mathcal{P}(X) \cap Y)$.

$$D_{i_0} \supseteq H_{i_0} = D_{i_0}; \qquad D_{i_0} \supseteq V_{i_0} = D_{i_0};$$

$$D_{i_0} \supseteq H_{i_{-1},i_0} = D_{i_{-1}} \xrightarrow{\mathcal{P}} D_{i_0}; \qquad D_{i_0} \supseteq V_{i_1,i_0} = D_{i_1} \xrightarrow{\mathcal{P}^{-1}} D_{i_0};$$

$$D_{i_0} \supseteq H_{i_{-2},i_{-1},i_0} = D_{i_{-2}} \xrightarrow{\mathcal{P}} D_{i_{-1}} \xrightarrow{\mathcal{P}} D_{i_0}; \qquad D_{i_0} \supseteq V_{i_2,i_1,i_0} = D_{i_2} \xrightarrow{\mathcal{P}^{-1}} D_{i_1} \xrightarrow{\mathcal{P}^{-1}} D_{i_0};$$

Nested h-strips $\{H_n\}$: $\cdots \subseteq H_{i_{-2},i_{-1},i_0} \subseteq H_{i_{-1},i_0} \subseteq H_{i_0} = D_{i_0}. \qquad \cdots \subseteq V_{i_2,i_1,i_0} \subseteq V_{i_1,i_0} \subseteq V_{i_0} = D_{i_0}$

 $\{H_n\} \xrightarrow{n \to \infty} h?$

$$=D_{i_0}.$$

$$_{0}=D_{i_{0}}$$

Nested
$$v$$
-strips $\{V_n\}$:

$$v_n$$
.

$$\{V_n\} \xrightarrow{n \to \infty} v?$$

Initial conditions in D_{i_0} should belongs to the intersection $h \cap v$.

Part IV. Uniqueness

What is $h \cap v$?

Theorem 4

Let

- all $\{H_n\}$ have monotone increasing / decreasing borders which are graphs of γ -Lipschitz functions, and $\rho(H_{n+1}) \leq (1/\mu)\rho(H_n)$, $\mu > 1$;
- all $\{V_n\}$ have monotone decreasing / increasing borders which are graphs of γ -Lipschitz functions, and $\rho(V_{n+1}) \leq (1/\nu)\rho(V_n)$, $\nu > 1$;

then the intersection $h \cap v$ consists of just one point!

Here $\rho(\cdot)$ is a vertical (for H_n) or horizontal (for V_n) width of the strips.

$D\mathcal{P}_p, D\mathcal{P}_p^{-1}$

 $D\mathcal{P}_p$ – linearisation of the map \mathcal{P} at the point p; $D\mathcal{P}_p^{-1}$ – its inverse.

If linear operators $D\mathcal{P}_p$, $D\mathcal{P}_p^{-1}$ satisfy some restrictions then the conditions of the above mentioned theorem are valid!

Figure 18: $H_{i,j}$ (yellow) and $V_{i,j}$ (green) are the points of interest.

Theorem about h-strips mapping

Theorem 5 (About h-strips mapping)

Let Poincaré map \mathcal{P} and its inverse \mathcal{P}^{-1} are defined on an island set $\bigcup_{i \in S} D_i$, where S – set of indices, $\forall i, j \in S$ set $V_{j,i} = \mathcal{P}^{-1}D_j \cap D_i$ is non-empty, \mathcal{P} is defined on the closure $\overline{V_{j,i}}$, and one the following conditions held:

- (1) borders α_i^{\pm} of an island D_i are increasing curves, $\forall p \in \overline{V_{j,i}}$ signs of the operator $\mathcal{DP}_p = (a_{mn})$ have exactly one of the following configurations:
 - $(a) \begin{pmatrix} + + + \\ + + \end{pmatrix}, \quad (b) \begin{pmatrix} - \\ - \end{pmatrix}, \quad (c) \begin{pmatrix} + + + \\ - \end{pmatrix}, \quad (d) \begin{pmatrix} - \\ + + \end{pmatrix};$ borders α_i^{\pm} of D_i are increasing for (a), (b), and decreasing for (c), (d);
 - borders α_j^{\pm} of D_j are increasing for (a), (b), and decreasing for (c), (d) (2) borders α_j^{\pm} of an island D_j are decreasing curves. $\forall n \in \overline{V_j}$ since of the
- (2) borders α_i^{\pm} of an island D_i are decreasing curves, $\forall p \in \overline{V_{j,i}}$ signs of the operator $\mathcal{DP}_p = (a_{mn})$ have exactly one of the following configurations:

$$(a) \begin{pmatrix} + - \\ - + \end{pmatrix}, \quad (b) \begin{pmatrix} - + \\ + - \end{pmatrix}, \quad (c) \begin{pmatrix} + - \\ + - \end{pmatrix}, \quad (d) \begin{pmatrix} - + \\ - + \end{pmatrix};$$

borders α_j^{\pm} of D_j are decreasing for (a), (b), and increasing for (c), (d); and moreover $\exists \mu > 1$ such that $\forall p \in \overline{V_{j,i}}$, $|a_{11}| \geq \mu$, then for any monotone h-strip $H \in D_i$, $\forall j \in S$, $\mathcal{P}H \cap D_j = \widetilde{H}_j$ is also a monotone h-strip, and $\rho(\widetilde{H}_j) \leq (1/\mu)\rho(H)$.

Theorem about v-strips mapping

Theorem 6 (About v-strips mapping)

Let Poincaré map \mathcal{P} and its inverse \mathcal{P}^{-1} are defined on an island set $\bigcup_{i \in S} D_i$, where S – set of indices, $\forall i, j \in S$ set $H_{i,j} = \mathcal{P}D_i \cap D_j$ is non-empty, \mathcal{P}^{-1} is defined on the closure $\overline{H_{i,j}}$, and one the following conditions held:

- (1) borders β_i^{\pm} of an island D_i are increasing curves, $\forall p \in \overline{H_{i,j}}$ signs of the operator $D\mathcal{P}_0^{-1} = (b_{mn})$ have exactly one of the following configurations: $(a) \begin{pmatrix} + + + \\ + + \end{pmatrix}, \quad (b) \begin{pmatrix} - \\ \end{pmatrix}, \quad (c) \begin{pmatrix} + + \\ + \end{pmatrix}, \quad (d) \begin{pmatrix} - \\ + + \end{pmatrix};$
 - borders β_i^{\pm} of D_i are increasing for (a), (b), and decreasing for (c), (d);
- (2) borders β_i^{\pm} of an island D_i are decreasing curves, $\forall p \in \overline{H_{i,j}}$ signs of the operator $\mathcal{DP}_0^{-1} = (b_{mn})$ have exactly one of the following configurations:
 - $(a) \begin{pmatrix} + \\ + \end{pmatrix}, \quad (b) \begin{pmatrix} + \\ + \end{pmatrix}, \quad (c) \begin{pmatrix} + \\ + \end{pmatrix}, \quad (d) \begin{pmatrix} + \\ + \end{pmatrix};$

borders β_j^{\pm} of D_j are decreasing for (a), (b), and increasing for (c), (d); and moreover $\exists \nu > 1$ such that $\forall p \in \overline{H_{i,j}}$, $|b_{22}| \geq \nu$, then for any monotone

and moreover $\exists \nu > 1$ such that $\forall p \in H_{i,j}$, $|b_{22}| \geq \nu$, then for any monotone v-strip $V \in D_j$, $\forall i \in S$, $\mathcal{P}^{-1}V \cap D_i = \widetilde{V}_i$ is also a monotone v-nonoca, and $\rho(\widetilde{V}_i) \leq (1/\nu)\rho(V)$.

Proof in an asymptotic limit

Denote by S(b), $b \in \mathbb{R}$, a set of solutions for equation (1) such that |u(x)| < b on the whole real axis \mathbb{R} .

Denote by Ω_n the set of bi-infinite sequences $\{\ldots, i_{-1}, i_0, i_1, \ldots\}$ where i_k , $k = 0, \pm 1, \ldots$, is an integer, $-n \le i_k \le n$.

Theorem 7

 $\forall N \text{ there exists a pair } (\widetilde{L}_*,\widetilde{L}_0) \text{ such that for any pair } (L_*,L_0),\ L_*>\widetilde{L}_* \text{ and } 0 < L_0 < \widetilde{L}_0, \text{ there exist a sequence } b_0 < b_1 < \ldots < b_N, \text{ and a homeomorphism } T \text{ such that } T\mathcal{S}(b_n) = \Omega_n,\ n=0,1,\ldots,N.$

Thanks for your attention!