

Trajectory Optimization with Optimization-Based Dynamics

Taylor Howell¹, Simon Le Cleac'h¹, Sumeet Singh³, Pete Florence³, Zachary Manchester², Vikas Sindhwani³ ¹Stanford University, ²Carnegie Mellon University, ³Google

key ideas

dynamics as constrained optimization problem

 $x_{t+1} \in z^*(\theta) = \underset{z \in \mathcal{K} \mid c(z;\theta) = 0}{\arg \min} \ell(z; \theta)$

derivatives via implicit-function theorem

 $z \in \mathcal{K}, \ \nu \in \mathcal{K}^*,$

 $=f_t(x_t,u_t)$

abstract

We present a framework for **bi-level trajectory optimization** in which a system's dynamics are encoded as the solution to a constrained optimization problem and smooth gradients of this lower-level problem are passed to an upper-level trajectory optimizer. This optimization-based dynamics representation enables constraint handling, additional variables, and non-smooth behavior to be abstracted away from the upper-level optimizer, and allows classical unconstrained optimizers to synthesize trajectories for more complex systems. We provide a path-following method for efficient evaluation of constrained dynamics and utilize the implicit-function theorem to compute smooth gradients of this representation. We demonstrate the framework by modeling systems from locomotion, aerospace, and manipulation domains including: acrobot with joint limits, cart-pole subject to Coulomb friction, Raibert hopper, rocket landing with thrust limits, and planar-push task with optimization-based dynamics and then optimize trajectories using iterative LQR.

https://github.com/thowell/optimization_dynamics https://arxiv.org/abs/2109.04928

algorithm

Algorithm 1 Differentiable Path-Following Method

	C
1: procedure PathFollowing (z, θ)	
2:	Parameters: $\beta = 0.5, \gamma = 0.1,$
3:	$\epsilon_{\mu} = 10^{-4}, \epsilon_{r} = 10^{-8}$
4:	Initialize : $\lambda = 0, \nu \in \mathcal{K}^*, \mu = 1.0, w_{\mu} = \{\}$
5:	$ar{r} = r(w; heta, \mu)$
6:	Until $\mu < \epsilon_{\mu}$ do
7:	$\Delta w = (\Delta z, \Delta \lambda, \Delta \nu) = (\partial r/\partial w)^{-1} \bar{r}$
8:	$\alpha \leftarrow 1$
9:	Until $z - \alpha \Delta z \in \mathcal{K}$, $\nu - \alpha \Delta \nu \in \mathcal{K}^*$ do
10:	$\alpha \leftarrow \beta \alpha$
11:	$\bar{r}_+ = r(w - \alpha \Delta w; \theta, \mu)$
12:	Until $\ ar{r}_+\ <\ ar{r}\ $ do
13:	$\alpha \leftarrow \beta \alpha$
14:	$\bar{r}_+ = r(w - \alpha \Delta w; \theta, \mu)$
15:	$w \leftarrow w - \alpha \Delta w$
16:	$\bar{r} \leftarrow \bar{r}_+$
17:	If $\ ar{r}\ <\epsilon_r$ do
18:	$w_{\mu} \leftarrow w_{\mu} \cup w$
19:	$\mu \leftarrow \gamma \mu$
20:	$\partial w/\partial \theta \leftarrow \mathrm{IFT}(w_{\mu}, \theta)$
21:	Return $w, \partial w/\partial \theta$
22: e i	nd procedure

examples

