

### **Description**

The VSM90N14 uses advanced trench technology and design to provide excellent  $R_{DS(ON)}$  with low gate charge. It can be used in a wide variety of applications.

#### **General Features**

- $V_{DS} = 140V, I_D = 90A$  $R_{DS(ON)} < 13m\Omega @ V_{GS} = 10V (Typ:10.5m\Omega)$
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Good stability and uniformity with high E<sub>AS</sub>
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

### **Application**

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply





Schematic Diagram

## **Package Marking and Ordering Information**

| Device Marking | Device   | Device Package | Reel Size | Tape width | Quantity |
|----------------|----------|----------------|-----------|------------|----------|
| VSM90N14-TC    | VSM90N14 | TO-220C        | -         | -          | -        |

## Absolute Maximum Ratings (T<sub>C</sub>=25 ℃ unless otherwise noted)

| Parameter                                       | Symbol                | Limit | Unit |  |
|-------------------------------------------------|-----------------------|-------|------|--|
| Drain-Source Voltage                            | V <sub>DS</sub>       | 140   | V    |  |
| Gate-Source Voltage                             | V <sub>G</sub> s      | ±20   | V    |  |
| Drain Current-Continuous                        | I <sub>D</sub>        | 90    | А    |  |
| Drain Current-Continuous(T <sub>C</sub> =100°C) | I <sub>D</sub> (100℃) | 63    | Α    |  |
| Pulsed Drain Current                            | I <sub>DM</sub>       | 260   | Α    |  |
| Maximum Power Dissipation                       | P <sub>D</sub>        | 310   | W    |  |
| Derating factor                                 |                       | 2.07  | W/℃  |  |
| Single pulse avalanche energy (Note 5)          | E <sub>AS</sub>       | 1701  | mJ   |  |





Shenzhen VSEEI Semiconductor Co., Ltd

| Operating Junction and Storage Temperature Range        | $T_J, T_STG$ | -55 To 175 | $^{\circ}\mathbb{C}$ |  |
|---------------------------------------------------------|--------------|------------|----------------------|--|
| Thermal Characteristic                                  |              |            |                      |  |
| Thermal Resistance,Junction-to-Case <sup>(Note 2)</sup> | ReJC         | 0.48       | °C/W                 |  |

### **Electrical Characteristics (T<sub>C</sub>=25°Cunless otherwise noted)**

| Parameter                          | Symbol              | Condition                                                            | Min | Тур  | Max  | Unit |
|------------------------------------|---------------------|----------------------------------------------------------------------|-----|------|------|------|
| Off Characteristics                | •                   |                                                                      |     |      |      |      |
| Drain-Source Breakdown Voltage     | BV <sub>DSS</sub>   | V <sub>GS</sub> =0V I <sub>D</sub> =250µA                            | 140 | -    | -    | V    |
| Zero Gate Voltage Drain Current    | I <sub>DSS</sub>    | V <sub>DS</sub> =140V,V <sub>GS</sub> =0V                            | -   | -    | 1    | μA   |
| Gate-Body Leakage Current          | I <sub>GSS</sub>    | V <sub>GS</sub> =±20V,V <sub>DS</sub> =0V                            | -   | -    | ±100 | nA   |
| On Characteristics (Note 3)        | -                   |                                                                      |     |      |      | •    |
| Gate Threshold Voltage             | $V_{GS(th)}$        | $V_{DS}=V_{GS}$ , $I_{D}=250\mu A$                                   | 2   | 3    | 4    | V    |
| Drain-Source On-State Resistance   | R <sub>DS(ON)</sub> | V <sub>GS</sub> =10V, I <sub>D</sub> =30A                            | -   | 10.5 | 13   | mΩ   |
| Forward Transconductance           | <b>G</b> FS         | V <sub>DS</sub> =15V,I <sub>D</sub> =40A                             | 120 | -    | -    | S    |
| Dynamic Characteristics (Note4)    | •                   |                                                                      | l.  |      |      |      |
| Input Capacitance                  | C <sub>lss</sub>    | \/ F0\/\/ 0\/                                                        | -   | 8000 | -    | PF   |
| Output Capacitance                 | C <sub>oss</sub>    | V <sub>DS</sub> =50V,V <sub>GS</sub> =0V,                            | -   | 463  | -    | PF   |
| Reverse Transfer Capacitance       | $C_{rss}$           | F=1.0MHz                                                             | -   | 352  | -    | PF   |
| Switching Characteristics (Note 4) | •                   |                                                                      |     |      |      |      |
| Turn-on Delay Time                 | t <sub>d(on)</sub>  |                                                                      | -   | 40   | -    | nS   |
| Turn-on Rise Time                  | t <sub>r</sub>      | VDD=50V,ID=2A,RL=15Ω,                                                | -   | 38   | -    | nS   |
| Turn-Off Delay Time                | t <sub>d(off)</sub> | RG=2.5Ω,VGS=10V                                                      | -   | 140  | -    | nS   |
| Turn-Off Fall Time                 | t <sub>f</sub>      |                                                                      | -   | 60   | -    | nS   |
| Total Gate Charge                  | Qg                  |                                                                      | -   | 160  | -    | nC   |
| Gate-Source Charge                 | Q <sub>gs</sub>     | ID=30A,VDD=50V,VGS=10V                                               | -   | 31   | -    | nC   |
| Gate-Drain Charge                  | $Q_{gd}$            |                                                                      | -   | 64   | -    | nC   |
| Drain-Source Diode Characteristics | -                   |                                                                      |     |      |      | •    |
| Diode Forward Voltage (Note 3)     | V <sub>SD</sub>     | V <sub>GS</sub> =0V,I <sub>S</sub> =40A                              | -   | 0.82 | 1.2  | V    |
| Diode Forward Current (Note 2)     | Is                  |                                                                      | -   | -    | 90   | Α    |
| Reverse Recovery Time              | t <sub>rr</sub>     | TJ = 25°C, IF = 40A                                                  | -   | 42   | -    | nS   |
| Reverse Recovery Charge            | Qrr                 | di/dt = 100A/µs <sup>(Note3)</sup>                                   | -   | 69   | -    | nC   |
| Forward Turn-On Time               | t <sub>on</sub>     | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |     |      |      |      |

#### Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 4. Guaranteed by design, not subject to production
- 5. E\_AS condition : Tj=25  $^{\circ}\text{C}$  ,V\_DD=50V,V\_G=10V,L=0.5mH,Rg=25 $\Omega$



## **Test Circuit**

# 1) E<sub>AS</sub> test Circuit



## 2) Gate charge test Circuit



## 3) Switch Time Test Circuit





## **Typical Electrical and Thermal Characteristics (Curves)**



**Figure 1 Output Characteristics** 



**Figure 2 Transfer Characteristics** 



Figure 3 Rdson- Drain Current



Figure 4 Rdson-JunctionTemperature



Figure 5 Gate Charge



Figure 6 Source- Drain Diode Forward





Figure 7 Capacitance vs Vds



Figure 9 Power De-rating



Figure 8 Safe Operation Area



Figure 10 V<sub>GS(th)</sub> vs Junction Temperature



Figure 11 Normalized Maximum Transient Thermal Impedance