DL 2 : Étude de la série exponentielle

Corrigé

Cet exercice est consacré à l'étude de la suite de sommes définie pour $n \in \mathbb{N}$, par : $S_n = \sum_{k=0}^n \frac{1}{k!}$.

- 1. Étude de la suite (S_n) .
 - **a)** Rappeler: ▶ la valeur de 0!
 - ▶ *l'expression, pour n* ∈ \mathbb{N} , *de* (n + 1)! *en fonction de n*! *et de n*,
 - ▶ la limite de la suite (n!)

On a 0! = 1 et $\forall n \in \mathbb{N}$: (n+1)! = (n+1)n! On a $n! \to \infty$ quand $n \to \infty$.

b) Calculer S_0 , S_1 , S_2 et S_3 . (On présentera les résultats comme un tableau de fractions irréductibles.) On a $S_0 = \frac{1}{0!} = 1$ et chaque valeur de la suite est obtenue en ajoutant un terme au précé-

dent. Il vient : $\frac{n \ 0 \ 1 \ 2 \ 3}{S_n \ 1 \ 2 \ \frac{5}{2} \ \frac{8}{3}}$

- **c)** Pour $n \ge 0$, calculer $S_{n+1} S_n$. Montrer que la suite (S_n) est croissante. Pour $n \ge 0$, calculer $S_{n+1} - S_n = \frac{1}{(n+1)!} > 0$. La suite (S_n) est donc strictement croissante.
- **2. Étude d'une suite intermédiaire** On définit la suite (S'_n) par $\forall n \ge 1$: $S'_n = S_n + \frac{1}{n \cdot n!}$.
 - **a)** Déterminer le sens de variation de la suite (S'_n) .

Pour $n \ge 1$, on a: $S'_{n+1} - S'_n = S_{n+1} - S_n + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \cdot n!}$ = $\frac{1}{(n+1)!} + \frac{1}{(n+1)(n+1)!} - \frac{1}{n \cdot n!}$

On réduit les trois fractions au même dénominateur n(n+1)(n+1)!

Ainsi: $S'_{n+1} - S'_n = \frac{n(n+1) + n - (n+1)^2}{n(n+1)(n+1)!}$ $= -\frac{1}{n(n+1)(n+1)!} < 0.$

La suite (S'_n) est donc strictement décroissante.

b) Montrer que les suites (S_n) et (S'_n) sont adjacentes.

La suite (S_n) est croissante, (S'_n) décroissante.

Pour montrer qu'elles sont adjacentes, il reste à vérifier : $\lim (S'_n - S_n) = 0$.

Or on a $\forall n \ge 1$, $S'_n - S_n = \frac{1}{n \cdot n!} \to 0$.

Ces deux suites sont donc bien adjacentes.

c) En déduire que les suites (S_n) et (S'_n) convergent vers la même limite $\ell \in \mathbb{R}$.

Montrer que pour $n \in \mathbb{N}$, on $a: S_n \leq \ell \leq S'_n$.

Deux suites adjacentes convergent vers la même limite.

C'est donc le cas de (S_n) et (S'_n) .

De plus, (S_n) est croissante, donc $\forall n \leq m$, on a $S_n \leq S_m$.

En particulier, pour $m \to +\infty$, on trouve : $S_n \le \lim(S_m) = \ell$.

On procède de même, pour $\ell \leq S'_n$.

On se propose de montrer que cette limite commune est $e = \exp(1)$.

- **3.** Pour $n \in \mathbb{N}$, on définit : $I_n = \int_0^1 \frac{(1-t)^n}{n!} \cdot e^t dt$.
 - **a)** Calculer I_0 .

On a: $I_0 = \int_0^1 e^t dt = [e^t]_0^1 = e - 1.$

b) Par une intégration par parties, calculer, pour $n \in \mathbb{N}$, la valeur de : $I_{n+1} - I_n$.

On calcule $I_{n+1} = \int_0^1 \frac{(1-t)^{n+1}}{(n+1)!} e^t dt$. en fonction de $I_n = \int_0^1 \frac{(1-t)^n}{n!} e^t dt$.

On fait une intégration par parties sur I_{n+1} . Les fonctions u et v définies ci-contre sont bien de classe \mathscr{C}^1 sur [0;1].

$$\begin{cases} u(t) = \frac{(1-t)^{n+1}}{(n+1)!} & \longrightarrow \\ v'(t) = e^t & v(t) = e^t. \end{cases} \begin{cases} u'(t) = -\frac{(1-t)^n}{n!} \\ v(t) = e^t. \end{cases}$$

Il vient donc : $I_{n+1} = \left[\frac{(1-t)^{n+1}}{(n+1)!} e^t \right]_0^1 - \int_0^1 - \frac{(1-t)^n}{n!} e^t dt = -\frac{1}{(n+1)!} + I_n$

On a donc trouvé : $I_{n+1} - I_n = \frac{1}{(n+1)!}$.

c) En déduire que la suite $(S_n + I_n)$ est constante.

Quelle est sa valeur?

Montrons que la suite $(S_n + I_n)$ est constante.

Pour $n \in \mathbb{N}$, on a: $(S_{n+1} + I_{n+1}) - (S_n + I_n) = (S_{n+1} - S_n) + (I_{n+1} - I_n) = \frac{1}{(n+1)!} - \frac{1}{(n+1)!} = 0.$

La suite est bien constante, et est égale à son premier terme : $S_0 + I_0 = 1 + e - 1 = e$.

- **4.** Pour $n \in \mathbb{N}$, on pose: $J_n = \int_0^1 (1-t)^n dt$.
 - **a)** Pour $n \in \mathbb{N}$, calculer l'intégrale J_n .

Pour $n \in \mathbb{N}$, on trouve: $J_n = \int_0^1 (1-t)^n dt = \left[-\frac{(1-t)^{n+1}}{n+1} \right]_0^1 = \frac{1}{n+1}$.

b) Montrer, pour $n \in \mathbb{N}$ l'encadrement : $J_n \leq n! \cdot I_n \leq e \cdot J_n$.

On encadre pour $t \in [0; 1]$, par croissance de l'exponentielle : $1 \le e^t \le e$.

Il vient donc $\int_0^1 (1-t)^n dt \le \int_0^1 (1-t)^n e^t dt \le \int_0^1 (1-t)^n e dt$, soit $J_n \le n! \cdot I_n \le e \cdot I_n$.

c) En déduire que $\lim_{n\to\infty} I_n = 0$, puis que $\ell = e$.

(c'est-à-dire que: $\sum_{k=0}^{+\infty} \frac{1}{k!} = \lim_{n \to \infty} S_n = e.$)

On a $J_n = \frac{1}{n+1} \to 0$.

L'encadrement vérifie les hypothèses de la convergence par encadrement. (gendarmes)

Il vient donc : $\lim n! \cdot I_n = 0$, donc *a fortiori* $\lim I_n = 0$.

On trouve donc: $\lim(S_n) = \lim(e - I_n) = e$.

5. Un encadrement plus fin, et un équivalent

a) Montrer que pour $t \in \mathbb{R}$, on $a: (1-t) \cdot e^t - 1 \le 0$.

En déduire le signe, pour $n \ge 1$, de $n! \cdot I_n - J_{n-1}$.

- ▶ **Inégalité sur** $t \in \mathbb{R}$: Par convexité de l'exponentielle, on a : $e^{-t} \ge 1 t$. (tangente en 0). Il vient donc bien : $(1-t) \cdot e^t \le 1$. (On peut aussi étudier les variations de $t \mapsto (1-t) \cdot e^t$)
- ► Inégalité sur les intégrales

On trouve: $n! \cdot I_n - J_{n-1} = \int_0^1 \left[(1-t)^n \cdot e^t - (1-t)^{n-1} \right] dt$. $= \int_0^1 (1-t)^{n-1} \left[(1-t) \cdot e^t - 1 \right] dt \le 0$

b) En déduire l'inégalité : $I_n \leq \frac{1}{n \cdot n!}$

On a bien trouvé : $n! \cdot I_n \le J_{n-1} = \frac{1}{n}$.

c) Grâce à **4.b**), déduire pour $n \ge 1$, l'encadrement : $\frac{1}{(n+1)!} \le I_n \le \frac{1}{n \cdot n!}$. On a bien trouvé ces deux inégalités.

d) Déduire enfin l'équivalent : $I_n \sim \frac{1}{(n+1)!}$.

Grâce à l'encadrement : $1 \le (n+1)! \cdot I_n \frac{n+1}{n}$, on trouve bien $\lim_{n \to \infty} (n+1)! \cdot I_n = 1$.

Ainsi, il vient bien : $I_n \sim \frac{1}{(n+1)!}$