

(12)

USAAEFA PROJECT NO. 81-07

20000728011

**IRWORTHINESS AND FLIGHT CHARACTERISTICS TEST
OF AN OH-58C CONFIGURED TO A
LIGHT COMBAT HELICOPTER (LCH)**

FINAL REPORT

ADA 112581

ARTHUR R. MARSHALL, JR.
MAJ, US ARMY
PROJECT OFFICER/PILOT

RALPH WORATSCHKE
PROJECT ENGINEER

ROBERT N. WARD
LTC, US ARMY
PROJECT PILOT

OCTOBER 1981

Reproduced From
Best Available Copy

Approved for public release; distribution unlimited.

UNITED STATES ARMY AVIATION ENGINEERING FLIGHT ACTIVITY
EDWARDS AIR FORCE BASE, CALIFORNIA

DIGITAL FILE COPY

82 03 23 032

DISCLAIMER NOTICE

The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

DISPOSITION INSTRUCTIONS

Destroy this report when it is no longer needed. Do not return it to the originator.

TRADE NAMES

The use of trade names in this report does not constitute an official endorsement or approval of the use of the commercial hardware and software.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER USAAEFA PROJECT NO. 81-07	2. GOVT ACCESSION NO. RD-A112 581	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) AIRWORTHINESS AND FLIGHT CHARACTERISTICS TEST OF AN OH-58C CONFIGURED TO A LIGHT COMBAT HELICOPTER (LCH)		5. TYPE OF REPORT & PERIOD COVERED FINAL REPORT July-September 1981
7. AUTHOR(s) ARTHUR R. MARSHALL RALPH WORATSCHKE ROBERT N. WARD		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS US ARMY AVIATION ENGINEERING FLIGHT ACTIVITY EDWARDS AIR FORCE BASE, CALIFORNIA 93523		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS EN-01-RA127-EN-EC
11. CONTROLLING OFFICE NAME AND ADDRESS US ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND ST. LOUIS, MISSOURI 63120		12. REPORT DATE OCTOBER 1981
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 99
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) OH-58C Light Combat Helicopter (LCH) OH-58 Performance and Handling Qualities		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The United States Army Aviation Engineering Flight Activity conducted a limited airworthiness and flight characteristics test of the OH-58C Light Combat Helicopter (LCH) from 22 July through 9 September 1981. The OH-58C LCH configuration increases the gross weight of the helicopter to 3425 pounds and includes one 7-tube 2.75-inch rocket pod and one 7.62mm minigun mounted externally. Performance and handling qualities were evaluated. The OH-58C LCH was tested at Edwards Air Force Base, California (elevation 2302 feet). A total of 20 flights were conducted for a total of 26.0 flight hours. As a result of the increased maximum gross weight of the OH-58C LCH, the hover ceiling was reduced. Level flight performance was degraded by the LCH configuration. No		

DD FORM 1 JAN 73 EDITION OF 1 NOV 68 IS OBSOLETE

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

significant handling qualities differences were noted when comparing test results for the OH-58C LCH to the test results of the standard OH-58C. A total of one deficiency and two shortcomings were identified. The deficiency and one shortcoming were relative to low-speed flight characteristics and were previously identified in the standard OH-58C. The remaining shortcoming was a high pilot work load which occurs due to the inadequate margin between torque required and the main transmission torque limit of the OH-58C LCH at mission gross weight conditions.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

DEPARTMENT OF THE ARMY
HQ, US ARMY AVIATION RESEARCH AND DEVELOPMENT COMMAND
4300 GOODFELLOW BOULEVARD, ST. LOUIS, MO 63120

DRDAV-D

SUBJECT: Directorate for Development and Qualification Position on the Airworthiness and Flight Characteristics Test of an OH-58C Configured to a Light Combat Helicopter (LCH), USAAEFA Project Number 81-07

SEE DISTRIBUTION

1. The purpose of this letter is to establish the Directorate for Development and Qualification position on the subject report.
2. This Directorate agrees with the subject report; however, the configuration is no longer to be utilized by operational units.
3. The deficiency cited in the report (paragraph 18) will be corrected by application of the OH-58C upgrade program. This program, currently under contract with Bell Helicopter Textron, will result in airworthiness qualification of an increased transmission rating, an improved tail rotor, and a three-axis stability and control augmentation system.
4. We agree that a reduction of the never exceed airspeed (V_{NE}) would be appropriate for operation above 3200 pounds gross weight and at a high density altitude. However, there is insufficient data available to determine a new V_{NE} . Should the OH-58C be used at higher weights and/or density altitudes, a test effort would be required to accurately determine a new V_{NE} .
5. A change will not be made to the operator's manual regarding inadvertent overtorques for two reasons. Use of the aircraft at weights above 3200 pounds has been abandoned. In addition, the aforementioned transmission uprating will significantly reduce the potential for overtorque.

FOR THE COMMANDER:

CHARLES C. CRAWFORD, JR.
Director of Development
and Qualification

TABLE OF CONTENTS

	<u>Page</u>
INTRODUCTION	
Background	1
Test Objective	1
Description	1
Test Scope	1
Test Methodology	1
RESULTS AND DISCUSSION	
General	4
Performance	4
Hover Performance	4
Level Flight Performance	4
Handling Qualities	6
Control Positions in Trimmed Forward Flight	6
Static Longitudinal Stability	6
Static Lateral-Directional Stability	6
Maneuvering Stability	7
Dynamic Stability	7
Controllability	7
Low-Speed Flight Characteristics	8
CONCLUSIONS	
General	9
Specific	9
RECOMMENDATIONS	
APPENDIXES	
A. References	11
B. Description	12
C. Instrumentation	27
D. Test Techniques and Data Analysis Methods	37
E. Test Data	42
DISTRIBUTION	

INTRODUCTION

BACKGROUND

1. The US Army was evaluating the potential of the OH-58C as a light combat helicopter (LCH). The OH-58C LCH configuration increases the gross weight of the helicopter to 3425 pounds and includes one 7-tube 2.75-inch rocket pod and one 7.62mm minigun mounted externally. The United States Army Aviation Research and Development Command (AVRADCOM) directed the United States Army Aviation Engineering Flight Activity (USAAEFA) to conduct an airworthiness and flight characteristics (A&FC) test on the OH-58C LCH (app A, ref 1).

TEST OBJECTIVE

2. The objective of this test was to obtain limited performance and handling quality data at gross weights of 3300 to 3400 pounds.

DESCRIPTION

3. The test helicopter (USA S/N 68-16870) was a standard OH-58C manufactured by Bell Helicopter Textron (BHT). Operation of the OH-58C in the LCH configuration required increasing the maximum gross weight from 3200 to 3425 pounds. Major external modifications included installation of BHT two-position landing gear, an M27E1 (7.62 minigun) armament subsystem mounted on the left side of the aircraft, and an M158A1 2.75-inch folding fin aerial rocket (FFAR) seven-tube pod mounted on the right side of the aircraft. Internal modifications included installation of additional secure voice radios, an OMEGA LTN-211 navigation system, and lighting system modifications to better accommodate night vision goggle operations. Photographs of the test aircraft are presented in appendix B. A detailed description of the standard OH-58C is contained in the operator's manual (app A, ref 2), with modifications incorporated in the LCH configuration contained in the test request (app A, ref 1), and described in Appendix B.

TEST SCOPE

4. The A&FC was conducted at Edwards AFB, California from 22 July through 9 September 1981, and consisted of 26.0 flight hours of which 15.2 hours were productive. The use of an OH-58C as an LCH was discontinued by the user and the A&FC was terminated before all the planned tests were completed. Flight limitations contained in the operator's manual and the airworthiness release (app A, refs 2 and 3) were observed. Test conditions are presented in table I. Center of gravity, sideslip, and airspeed limitations from the airworthiness release are presented in figures 1 through 4, appendix B.

TEST METHODOLOGY

5. Flight test techniques used are described in references 4 and 5, appendix A. Handling qualities ratings were assigned in accordance with a Handling Qualities Rating Scale (HQRS). Data were recorded utilizing an onboard magnetic tape

recording system installed and maintained by USAAEFA. Control system rigging check and aircraft weight and balance were performed by USAAEFA personnel.

Table I. Test Conditions¹

Condition	Average Gross Weight (lb)	Average Density Altitude (ft)	Trim Calibrated Airspeed (KCAS)	Remarks
Hover Performance	2920-3500	3800	zero	Tethered method skid heights: 2 ft KG/E, 50 ft OGE Rotor speed: 97 to 100 percent (344-354 rpm)
Level Flight Performance ²	2840-3420	6780-11,600	33-105	Constant referred weight (W/b) Constant referred rotor speed (N $\sqrt{\theta}$) method
Control Positions in Trimmed Forward Flight ²	2840-3420	6780-11,600	33-105	Level flight
Static Longitudinal Stability	3360-3420	6420-7140	62-66	Level flight, climb, and autorotation
Static Lateral-directional Stability	3260-3380	6880-7320	62-66	Level flight, climb, and autorotation
Maneuvering Stability	3400-3420	6740-6960	66	Left and right steady turns
Dynamic Stability and Controllability	3380-3480	3880	zero	Hover
	3260-3380	7100-7240	68	Level flight
Low-speed Flight	3300-3440	3700-3800	Sideward: 0-35 KTAS Rearward: 0-30 KTAS Forward: 0-40 KTAS	Skid height: 10 ft Mid and extreme right lateral cg

NOTES:

¹ Test conducted in ball-centered flight, LCH configuration with all doors removed and armament installed, 100 percent rotor speed (354 rpm), and mission longitudinal cg (aft), unless otherwise designated.

² Zero sideslip.

RESULTS AND DISCUSSION

GENERAL

6. Hover and level flight performance testing was conducted to determine the effects of the LCH configuration on the OH-58C. Hover performance capability was essentially unchanged from the standard OH-58C. As a result of the increased maximum gross weight of the OH-58C LCH the hover ceiling was reduced. Level flight performance was degraded by the LCH configuration. The handling qualities of the OH-58C LCH were evaluated at 3380 pounds gross weight and FS 110.8 longitudinal cg (aft) which were assumed to be mission conditions. Test results were compared with previous OH-58C test results (refs 6 and 7, app A). No significant handling qualities differences were noted when comparing test results for the OH-58C LCH to the test results of the standard OH-58C. A total of one deficiency and two shortcomings were identified. The deficiency and one shortcoming were relative to low-speed flight characteristics and were previously identified in the standard OH-58C. The remaining shortcoming was a high pilot work load which occurs due to the inadequate margin between torque required and the main transmission torque limit of the OH-58C LCH at mission gross weight conditions.

PERFORMANCE

Hover Performance

7. a. The hover performance capability of the OH-58C LCH was evaluated by determining the engine power required to hover in-ground-effect (IGE) at a 2-foot skid height and out-of-ground-effect (OGE) at a 50-foot skid height. Testing was accomplished at Edwards Air Force Base (2302-foot elevation) using the tethered hover method. Photographs of the tethered hover rig are presented in appendix C. A summary of the OGE hover performance is presented in figure 1, appendix E, and nondimensional test results are presented in figures 2 and 3.

b. The hover performance capability of the OH-58C LCH is essentially unchanged from the standard OH-58C. At the higher maximum gross weight of the OH-58C LCH (3425 lb), the OGE hover capability is limited by the main transmission limit (317 shp at 100 percent rotor speed). This means that the maximum OGE hover ceiling for the OH-58C LCH at 3425 pounds on a standard day is 3300 ft and is 950 ft on a 35°C day.

Level Flight Performance

8. Level flight performance tests were conducted to determine power required and fuel flow as a function of airspeed, gross weight, and density altitude. The constant referred gross weight and rotor speed (W/δ and $N/\sqrt{\delta}$) method was used. Data were obtained in zero sideslip stabilized level flight at incremental airspeeds ranging from 33 to 105 knots true airspeed (KTAS). Results of these tests are presented nondimensionally in figures 4 and 5 and dimensionally in figures 6 through 11, appendix E.

a. Figure A shows a comparison between the standard OH-58C with doors removed and the OH-58C in the LCH configuration. The specific conditions for this comparison are 3200 pounds gross weight, 4000 feet pressure altitude, and 35°C ($C = 0.003963$). This is the maximum takeoff gross weight for the standard OH-58C.

FIGURE A
LEVEL CRUISE PERFORMANCE COMPARISON
OH-58C USA S/N 63-16870

GROSS WEIGHT (LB)	LONGITUDINAL CG LOCATION (FS)	PRESSURE ALTITUDE (FT)	CAT (°C)	ROTOR SPEED (RPM)
5220	1100 (AFT)	4000	-35	324

NOTES: 1. ZESSI STRESSTP

2. CONFIGURATION - STD OH-58C - GUNS OFF

OH-58C LCR - GUNS OFF ARMED

but is 225 pounds less than the maximum allowable takeoff gross weight of 3425 pounds for the OH-58C LCH. Test results show that the OH-58C LCH has increased power required when compared to the standard OH-58C. For example, from figure A, at 90 KTAS, the OH-58C LCH requires an additional 32 shp. As a result of the increased shp required, the range and endurance capabilities of the OH-58C LCH will be decreased.

b. In all tests above 3200 pounds gross weight, airspeed was not power limited but rather was limited by the airworthiness release. (fig. 4, app B). One exception occurred at the highest C_T tested ($C_T = 0.005001$). In this case, V_{NE} (never exceed airspeed) could not be reached because of excessively high two/rev vibration, probably caused by blade stall. This vibration was severe enough that the pilot would not operate the aircraft at these conditions due to discomfort and fear of aircraft damage. The vibration encountered prior to V_{NG} at high density altitude conditions restrict the usable airspeed envelope.

HANDLING QUALITIES

Control Positions in Trimmed Forward Flight

9. Control positions in trimmed forward flight were evaluated during level flight performance testing at the conditions listed in table 1. Data are presented in figures 12 through 17, appendix E. Control positions in trimmed forward flight are basically unchanged from those of the standard OH-58C.

Static Longitudinal Stability

10. Collective fixed static longitudinal stability was evaluated in ball-centered flight for level flight, climbs, and autorotations at the conditions listed in table 1. Data are presented in figures 18 through 20, appendix E. Static longitudinal stability, indicated by longitudinal control position variation with airspeed, was positive for all conditions evaluated. The pitch divergence observed during climbs (ref 6, app A) were not observed during this evaluation probably because the high gross weight of the LCH precluded rates of climb over 1000 foot per minute. As evaluated, the longitudinal static stability of the OH-58C in the LCH configuration is similar to the standard OH-58C.

Static Lateral-Directional Stability

11. Static lateral-directional stability was evaluated during level flight, climbs, and autorotations using steady heading sideslips at the conditions listed in table 1. Data are presented in figures 21 through 23, appendix E. Static directional stability, indicated by variation of directional control with sideslip, was positive at all test conditions. Dihedral effect, indicated by variation of lateral control position with sideslip, was positive at all test conditions. Sideforce cues, indicated by roll attitude with sideslip, were weak but positive. The static lateral-directional characteristics of the OH-58C in the LCH configuration are similar to the standard OH-58C.

Maneuvering Stability

12. Maneuvering stability was conducted at the conditions listed in table 1, using coordinated, fixed collective, steady turns at various bank angles. Data are presented in figure 24, appendix E. Longitudinal stick force cues were light but in the correct direction for all conditions evaluated. At load factors equivalent to bank angles of 45 to 50 degrees an oscillatory feedback force was felt in the longitudinal cyclic control. However, this should not adversely impact the aircraft's mission capability. For the airspeeds evaluated, the maneuvering stability characteristics of the OH-58C in the LCH configuration is similar to the standard OH-58C.

Dynamic Stability

13. Hovering and forward flight, longitudinal, lateral and directional dynamic stability were evaluated at the conditions listed in table 1, using control pulse inputs.

a. Hover. Lateral and directional control pulses generated an essentially deadbeat aircraft response. Forward and aft longitudinal control inputs were accompanied by a divergent pitch oscillation which became uncomfortable after the first cycle. However, the motion was slow to develop, easily controlled (HQRS 3), and should not adversely impact the LCH mission capability.

b. Forward Flight. Aircraft response was well damped (1 to 2 oscillations) in all axes. The long-term response was excited by a 10-knot decrease in airspeed and was followed by two overshoots. Minimal lateral or directional control inputs were required to maintain aircraft heading and roll attitude. Forward flight dynamic stability characteristics of the OH-58C in the LCH configuration are similar to that of the standard OH-58C.

Controllability

14. Hovering and forward flight longitudinal, lateral and directional controllability tests were conducted at the conditions listed in table 1. Control fixtures were used to obtain various size inputs. Test results are presented in figures 25 through 30, appendix E.

a. Hover. (1) There was no unusual response to control inputs while hovering. Forward longitudinal inputs were accompanied by a slight right yaw; however, there was no perceptible delay in aircraft response and pitch rate was steady state within a second. As with all tail rotor configured helicopters, directional control inputs generated vertical climbs and descents. However, because of the high power required at the high gross weight of the LCH, descents could be difficult to control if inputs were made near the ground. OGE hover controllability of the OH-58C in the LCH configuration is similar to the standard OH-58C.

b. Forward Flight. Aircraft response to longitudinal, lateral, and directional step inputs was similar to that of the standard OH-58C (ref 6, App A) except there was no dig-in tendency observed during aft longitudinal inputs at the airspeed evaluated. There was no observed delay time between control input and aircraft response and the rate was steady state within a second. There was no objectionable coupling resulting from control inputs. Forward flight controllability of the OH-58C in the LCH configuration is similar to the standard OH-58C.

(2) Torque required to hover OGE will be within 5 percent of the transmission limit at mission gross weight (3400 lb) and density altitudes above 900 feet. At these conditions, pilot inputs to maintain a hover and counter the effects of wind gusts may exceed the torque limit. Pilot work load to prevent overtorques will increase and mission capability will be degraded when the combination of gross weight and ambient conditions dictate operations near the torque limits. The inadequate margin between torque required and the main transmission limit of the OH-58C LCH at mission gross weight conditions causes high pilot work load which is a shortcoming. Recommend that the following caution be placed in the operator's manual:

CAUTION

Inadvertent overtorque may occur when operating the aircraft at high gross weights.

Low-Speed Flight Characteristics

15. Low-speed flight was conducted at the conditions listed in table 1, utilizing a ground pace vehicle as a speed reference. The radar altimeter was used to maintain a constant skid height of 10 feet. The wind varied from zero to 5 knots during this evaluation. Data are presented in figures 31 through 48, appendix E.

a. Forward and rearward flight were conducted at both mid and extreme right lateral cg. Low-speed forward flight was easily accomplished (HQRS 2). Rearward flight was accomplished from zero to 30 KTAS with considerable pilot compensation required to limit pitch and yaw oscillations to 15 degrees (HQRS 5). These uncommanded pitch and yaw excursions were similar at both the mid and extreme right lateral cg. All control margins were adequate. The tendency for the OH-58C LCH to pitch and yaw excessively in rearward flight (which is essentially the same as the standard OH-58C) is a shortcoming.

b. Right sideward flight was accomplished from zero to 35 KTAS with minimal pilot compensation to control pitch, roll, and yaw excursions (HQRS 3). At the mid lateral cg all control margins were adequate. At the extreme right lateral cg condition the 10 percent directional control limit was reached at 35 KTAS. The right sideward flight characteristics of the OH-58C LCH are essentially unchanged from the standard OH-58C and are satisfactory.

c. Left sideward flight at 20 and 25 KTAS could not be satisfactorily performed due to excessive pitch, roll, and yaw excursions (HQRS 7). Continuous and simultaneous control movements of up to ± 1.0 inch longitudinally, ± 0.8 inches laterally, and ± 1.5 inches directionally were required to control the aircraft in left sideward flight at 20 and 25 KTAS. Left sideward flight at 30 and 35 KTAS required only minimal pilot compensation (HQRS 3). Within the range tested, the left sideward flight characteristics were similar at both mid and extreme right lateral cg and all control margins were adequate. The excessive pitch, roll, and yaw excursions of the OH-58C LCH in left sideward flight (which are essentially the same as the standard OH-58C) are a deficiency. Consideration should be given to installation of a stability augmentation system (SAS) to improve the overall handling qualities of the OH-58C LCH.

CONCLUSIONS

GENERAL

16. a. The handling qualities of the OH-58C LCH were not significantly changed from the standard OH-58C (para 6).
- b. Hover performance capability at the same gross weight was essentially unchanged from the standard OH-58C. Maximum OGE hover ceiling for the OH-58C LCH at 3425 pounds on a standard day was 3300 feet and was 950 feet on a 35°C day (para 7b).

SPECIFIC

17. The vibrations encountered prior to V_{NE} at high density altitude conditions restrict the usable airspeed envelope (para 8b).

Deficiency

18. The excessive pitch, roll, and yaw excursions of the OH-58C LCH in left sideward flight (which are essentially the same as the standard OH-58C) are a deficiency (para 15c).

Shortcomings

19. a. The inadequate margin between torque required and the main transmission torque limit of the OH-58C LCH at mission gross weight conditions causes high pilot work load which is a shortcoming (para 14b(2)).
- b. The tendency for the OH-58C LCH to pitch and yaw excessively in rearward flight (which is essentially the same as the standard OH-58C) is a shortcoming (para 15a).

RECOMMENDATIONS

18. Correct the deficiency listed in paragraph 18.
19. Correct the shortcomings listed in paragraphs 19a and 19b.
20. The following caution should be placed in the operator's manual (para 19b(2)):

CAUTION

Inadvertent overtorque may occur when operating the aircraft at high gross weights.

21. Consideration should be given to installation of a stability augmentation system (SAS) to improve the overall handling qualities of the OH-58C LCH (para 15c).

APPENDIX A. REFERENCES

1. Letter, AVRADCOM, DRDAV-DI, 30 April 1981, subject: Airworthiness and Flight Characteristics Test of OH-58C Configured to a Light Combat Helicopter (LCH).
2. Technical Manual, TM 55-1520-235-10, *Operator's Manual, Army Model OH-58C Helicopter*, 7 April 1978, with changes 1 through 6, and 8 through 21.
3. Letter, AVRADCOM, DRDAV-DI, 14 July 1981, subject: Airworthiness Release for Flight Operation of the JOH-58C Aircraft in the Light Combat Helicopter (LCH) Configuration, with Revision 1, 23 July 1981.
4. Pamphlet, Army Materiel Command, AMCP 706-204, "Engineering Design Handbook, Helicopter Performance Testing", 1 August 1974.
5. Flight Test Manual, Naval Air Test Center, FTM No. 101, *Stability and Control*, 10 June 1968.
6. Final Report, USAAEFA, Project No. 76-11-2, *Airworthiness and Flight Characteristics Evaluation, OH-58C Interim Scout Helicopter*, April 1979.
7. Letter, USAAEFA, DAVTE-TI, 22 May 1981, subject: Letter Report, Preliminary Airworthiness Evaluation of OH-58C Expanded Gross Weight and Lateral CG Envelope, USAAEFA Project No. 80-21.

APPENDIX B. DESCRIPTION

GENERAL

1. The OH-58C Light Combat Helicopter (LCH) is a modification of the standard OH-58C Scout helicopter. Primary modifications include provisions for rapid air transportability, addition of 7.62mm minigun and 2.75-inch folding fin aerial rocket (FFAR) armament subsystems, installation of an OMEGA navigation system, and lighting system modifications to better accommodate night vision goggles. Photographs 1 through 3 show the OH-58C LCH.
2. Overall aircraft dimensions and general configuration of the OH-58C LCH are unchanged from the standard OH-58C. Maximum takeoff gross weight of the LCH is 3425 pounds compared to 3200 pounds for the standard OH-58C. A general description of the standard OH-58C including operating procedures and limitations is presented in the operator's manual (ref 2, app A). Specific changes incorporated in the LCH configuration will be discussed in the following paragraphs.

CREW STATION

3. Numerous equipment changes were made to the instrument panel, console, and controls. The following equipment was added:
 - a. OMEGA LTN-211 navigation control panel.
 - b. Crosstrack indicator for OMEGA.
 - c. Second KY-28 secure control panel for FM radio no. 2.
 - d. Third KY-28 secure control panel for UHF radio.
 - e. M27E1 armament control panel.
 - f. Rocket armament control panel.
 - g. Rocket fire function on pilot and copilot cyclic grips.
4. The following equipment was deleted:
 - a. AN/ARN-89 (ADF) control panel.
 - b. Course deviation indicator (CDI).
 - c. AN/ARN-123 CONUS navigation receiver control panel.
 - d. CONUS RMI BRG pointer switch and marker beacon light.
 - e. Sweep second hand clock.

The instrument panel is shown in photograph 4.

Photo 1. OH-58C Light Combat Helicopter

Photo 2. OH-58C Light Combat Helicopter

Photo 3. OH-58C Light Combat Helicopter

Photo 4. OH-58C Light Combat Helicopter Instrument Panel

LIGHTING

5. In order to better accommodate night vision goggles (NVG) and formation flight operations, the lower anticolision light was removed and the following equipment was added:

- a. External catseye position lights and shields with switch function tied to existing position lights switch DIM position.
- b. External formation lights with switch and dimmer on instrument panel.
- c. Masking added to white position light on tail of aircraft.
- d. Filters and masking added on the three M27El armament control panel lighted legends.
- e. Filter added on APR-39 indicator light.
- f. Filter added on cockpit utility light.

ARMAMENT SYSTEM

6. The M158Al subsystem, a 2.75-inch FFAR pod with seven launch tubes, was mounted on the right side of the aircraft. The M27El subsystem with M134 machine gun assembly consisting of a six barrel 7.62 millimeter gun, detlinking feeder, flash suppressors, electric gun drive and ram air breech cooling was mounted on the left side of the aircraft. The M70El helicopter reflex sight is not a part of this configuration. Photographs of the armament system are presented in photographs 5 and 6.

RAPID AIR TRANSPORTABILITY

7. In order to allow rapid air transportability the following modifications were incorporated:

- a. Installation of the two-position landing gear, Bell Helicopter Drawing Number SKT JB-111580 with EO-206 HAB-209, utilizing either the 206-HAB-024-101 (straight) or 206-HAB-089-101 (curved) forward cross tube assembly.
- b. Modification of the vertical fin for air transporability, Bell Helicopter Drawing Number SKRB112180.
- c. Brackets adired for attachment of hardware for securing folded main rotor blades.
- d. The UHF antenna was relocated on the nose of the aircraft. Photographs of the two-position landing gear and UHF antenna are presented in photographs 7 and 8.

Photo 5. 208-inch F/A/R Ammunition System

Photo 6. M27E1 (7.62 mm gun) Armament System

Photo 7. Relocated UHF Antenna and External Night Vision Goggle Light

Photo 8. Two position Landing Gear (Extended Position)

ELECTRICAL AND AVIONICS

8. The helicopter is equipped with a solid state 250VA inverter powered from the nonessential 28 VDC, protected by the INV PWR circuit breaker and manually controlled by the INV switch. The inverter delivers 115 VAC, 400 Hz to the AC bus to power the AN/ASN-43, the AC fail relay, and the OMEGA system. This new inverter is mounted in the left hand equipment bay. A new equipment shelf has been added in the left hand equipment bay. It is raised 10 inches off the floor and the receiver unit for the OMEGA, the KY-28 for the AN/ARC-114 number 2 and the 250 VA inverter are mounted on it. The battery has been moved 17 inches nearer the door where the AN/ARN-89 receiver unit was. A photograph of the left hand equipment bay is presented in photograph 9.

9. The OH-58C Light Combat Helicopter is equipped with two AN/ARC-114 VHF-FM radios, an AN/ARC-115 VHF-AM radios, an AN/ARC-164 UHF-AM radio, three TSEC/KY-28 voice security devices for the two AN/ARC-114's and the AN/ARC-164, an AN/ASN-43 gyromagnetic compass set, an AN/APN-209 radar altimeter, an AN/APR-39 radar warning set, the AN/APX-100 transponder set with Kit-1A, an OMEGA navigation set, and two C-6533/ARC communication system control devices. Also in this configuration, the following have been removed: The AN/ARN-89 ADF control head, along with the AN/ARN-123 CONUS navigation receiver and one C-6533/ARC interphone receiver. It should be noted that the FM homing function does not exist in the LCH configuration.

10. An OMEGA cross-track indicator has been added to the instrument panel. This indicator displays continuous cross track (left or right of the course) information. This indicator has five index markings. The center position indicates a null condition. The next is for 2.25 nautical miles and the last is for 4.5 nautical miles. The indicator needle will move left when the aircraft position is right of course. If the needle moves right, actual aircraft position is left of course.

11. The electrical disconnects for the vulnerability reduction directional anti-torque system have been disabled by physically disconnecting their electrical connectors and stowing them, in place, so they will not bind with the existing control wire/rod.

ADDITIONAL MODIFICATIONS

12. To accommodate the armament system the rear seats were removed. All doors and the tail rotor drive shaft cover were also removed.

AIRWORTHINESS RELEASE OPERATING LIMITATIONS

13. The airspeed limits, sideslip limits, and longitudinal and lateral cg limits from the AVRADCOM Airworthiness Release are presented in figures 1 through 4.

Photo 9. Left-hand Equipment Bay with Additional Shelf and OMEGA Processor

FIGURE 1
AIRBORNE RELEASE GROSS WEIGHT - LONGITUDINAL
CENTER-OF-GRAVITY ENVELOPE
ON 38C ECH

FIGURE 2
AIRWORTHINESS RELEASE GROSS WEIGHT
LATERAL CENTER-OF-GRAVITY ENVELOPE
CH-502 LCN

APPENDIX C. INSTRUMENTATION

1. The test instrumentation system was designed, calibrated, installed, and maintained by USAAEFA. Digital and analog data were obtained from calibrated instrumentation and were recorded on magnetic tape and/or displayed in the cockpit. The instrumentation system consisted of various transducers, signal conditioning units, a ten-bit PCM encoder, and the Ampex AR 700 tape recorder. Time correlation was accomplished with a pilot/engineer event switch and onboard recorded and displayed Inter-Range Instrumentation Group (IRIG) B time. Various specialized test indicators displayed data to the pilot and engineer continuously during the flight. A boom with the following sensors was mounted on the nose of the aircraft: swiveling pitot-static head, sideslip vane, and angle-of-attack vane. Photographs 1 through 4 show the instrumentation installation. Boom airspeed system calibration is shown in figures 1 through 3. The engine torquemeter calibration is shown in figure 4.

2. The following parameters were displayed on calibrated instruments in the cockpit:

- Airspeed (boom)
- Airspeed (ship's system)
- Altitude (boom)
- Rotor speed
- Engine torque
- Fuel flow rate
- Fuel used (totalizer)
- Outside air temperature
- Normal acceleration
- Angle of sideslip
- Tether cable tension
- Tether cable angle
- Time of day
- Record counter

3. The following parameters were recorded on magnetic tape:

- Time code
- Run number
- Pilot/engineer event
- Fuel used
- Airspeed (boom)
- Altitude (boom)
- Main rotor speed
- Outside air temperature
- Angle of sideslip
- Angle of attack
- Engine torque
- Turbine outlet temperature
- Gas producer speed
- Fuel flow rate
- Control positions
 - Longitudinal
 - Lateral
 - Directional
 - Collective

Aircraft attitudes and rates

Pitch
Roll
Yaw

Tether cable tension

Tether cable angles

Longitudinal
Lateral

Aircraft center-of-gravity accelerations

Longitudinal
Lateral
Normal

Pilot seat accelerations

Longitudinal
Lateral
Vertical

Photo 1. Instrument Panel with Calibrated Instruments Installed

Photo 2. Left Side of Instrumentation Package

Photo 3. Right Side of Instrumentation Package

Photo 4. Tethered Hover Rig

FIGURE I
BOOM SYSTEM AIRSPEED CALIBRATION IN LEVEL FLIGHT
OH-58C USA S/N 68-16870

FIGURE 2
BOOM SYSTEM AIRSPEED CALIBRATION IN CLIMBING FLIGHT
OH-58C USA S/N 68-16870

FIGURE 3
BOOM SYSTEM AIRSPEED CALIBRATION IN AUTOROTATION
OH-58C USA S/N 68-16870

Avg GROSS WEIGHT (LB)	Avg CG LOCATION LONG (FS) LAT (SL)	Avg DENSITY ALTITUDE (FT)	Avg OAT (° C)	Avg ROTOR SPEED (RPM)
3280	108.5(MID) 0.9(RT)	7300	25.0	354

NOTES: 1. TRAILING BOMB METHOD
2. LCH CONFIGURATION

APPENDIX D. TEST TECHNIQUES AND DATA ANALYSIS METHODS

PERFORMANCE

1. The helicopter performance test data were generalized by use of nondimensional coefficients and were such that the effects of compressibility and blade stall were not separated and defined. The following nondimensional coefficients were used to generalize the hover and level flight test results obtained during this flight test program.

a. Coefficient of power (C_p):

$$C_p = \frac{SHP(550)}{\rho A(\Omega R)^3} \quad (1)$$

b. Coefficient of thrust (C_T):

$$C_T = \frac{\text{Thrust}}{\rho A(\Omega R)^2} \quad (2)$$

c. Advance ratio (μ):

$$\mu = \frac{1.6878 V_T}{\Omega R} \quad (3)$$

d. Advancing tip Mach number (M_{tip}):

$$M_{tip} = \frac{1.6878 V_T + (\Omega R)}{a} \quad (4)$$

Where:

SHP = Engine output shaft horsepower

550 = Conversion factor (ft-lb/sec/shp)

ρ = Air density (slug/ft³)

A = Main rotor disc area (ft²) = 980.56

Ω = Main rotor angular velocity (radian/sec) = 37.07 (at 354 rpm)

R = Main rotor radius (ft) = 17.667

Thrust = Gross weight (lb) during free flight in which there is no acceleration or velocity component in the vertical direction. Tether load must be added in the case of tethered hover.

1.6878 = Conversion factor (ft/sec/knot)

V_T = True airspeed (knot)

a = Speed of sound (ft/sec) = $1116.45\sqrt{\theta}$

$\theta = (T + 273.15)/288.15$

T = Ambient air temperature (°C)

For a rotor speed of 354 rpm, the following constants were used:

$$A = 980.56 \text{ ft}^2$$

$$\Omega R = 654.93 \text{ ft/sec}$$

$$A(\Omega R)^2 = 420594463.5 \text{ ft}^4/\text{sec}^2$$

$$A(\Omega R)^3 = 2.7544598083 \times 10^{11} \text{ ft}^5/\text{sec}^3$$

Shaft Horsepower Required

2. The engine output shaft torque was determined from the engine manufacturer's torque system. The relationship of measured torque pressure (psi) to engine output shaft torque (in-lb) as determined in the engine test cell calibration is shown in figure 4, appendix C. The output shp was determined from the engine output shaft torque and rotational speed by the following equation:

$$\text{SHP} = \frac{2\pi \times N_p \times Q}{33,000} \quad (5)$$

Where:

N_p = Engine output shaft rotational speed (rpm)

Q = Engine output shaft torque (ft-lb)

33,000 = Conversion factor (ft-lb/min/shp)

HOVER PERFORMANCE

3. Hover performance data were gathered during 2-foot and 50-foot tethered hovering flight. Power was varied between data points from the minimum required to maintain tension in the tether cable, to the maximum power available. Cable tension was measured and added to the aircraft gross weight to determine thrust (required in equation 2). To further increase the range of C_T and C_P , main rotor speed was varied from approximately 97 to 100 percent.

Level Flight Performance and Specific Range

4. Level flight performance data were reduced using equations 1, 2 and 3. Each speed power was flown at a predetermined constant C_T by maintaining a constant referred gross weight (W/δ) and referred rotor speed ($N/\sqrt{\theta}$). A constant W/δ was maintained by increasing ambient pressure ratio (δ) as the aircraft gross weight decreased due to fuel burnoff. Rotor speed was also varied to maintain a constant $N/\sqrt{\theta}$ as the ambient air temperature varied.

5. Test-day (measured) level flight power was corrected to standard-day conditions (average for the flight) by assuming that the test-day dimensionless parameters C_{P_1} , C_{T_1} , and μ_1 are identical to C_{P_s} , C_{T_s} , and μ_s , respectively.

From equation 1, the following relationship can be derived:

$$\text{SHP}_s = \text{SHP}_t \left(\frac{\rho_s}{\rho_t} \right) \quad (6)$$

Where:

Subscript t = test day
Subscript s = standard day

6. Test specific range was calculated using level flight performance data and the measured fuel flow.

$$SR = \frac{V_T}{W_f} \quad (7)$$

Where:

SR = Specific range (nautical air miles per pound of fuel)
 V_T = True airspeed (knot)
 W_f = Fuel flow (lb/hr)

HANDLING QUALITIES

7. Stability and control data were collected and evaluated using standard test methods as described in reference 5, appendix A. Definitions of deficiencies and shortcomings used during this test are shown below.

a. Deficiency. A defect or malfunction discovered during the life cycle of an item of equipment that constitutes a safety hazard to personnel; will result in serious damage to the equipment if operation is continued; or indicates improper design or other cause of failure of an item or part, which seriously impairs the equipment's operational capability.

b. Shortcoming. An imperfection or malfunction occurring during the life cycle of equipment which must be reported and which should be corrected to increase efficiency and to render the equipment completely serviceable. It will not cause an immediate breakdown, jeopardize safe operation, or materially reduce the usability of the material or end product.

AIRSPED CALIBRATION

8. The boom pitot-static system was calibrated by using the trailing bomb method to determine the airspeed position error. Calibrated airspeed (V_{cal}) was obtained by correcting indicated airspeed (V_i) using instrument (ΔV_{ic}) and position (ΔV_{pc}) error corrections.

$$V_{cal} = V_i + \Delta V_{ic} + \Delta V_{pc} \quad (8)$$

9. True airspeed (V_t) was calculated from the calibrated airspeed and density ratio.

$$V_t = \frac{V_c}{\sqrt{\sigma}} \quad (9)$$

Where:

σ = Density ratio ($\frac{\rho}{\rho_0}$) where ρ_0 is the density at sea level on a standard day.

WEIGHT AND BALANCE

10. Prior to testing, the aircraft gross weight and center-of-gravity (cg) location were determined by using calibrated scales. The aircraft was weighed with full fuel in the light combat helicopter configuration with instrumentation on board. The aircraft weight was 2921 pounds with a longitudinal cg location at FS 113.59 and a lateral cg location at BL 0.72.

HANDLING QUALITIES RATING SCALE

11. The Handling Qualities Rating Scale (HQRS) presented in figure 1 was used to augment pilot comments relative to handling qualities and work load.

Figure 1. Handling Qualities Rating Scale

APPENDIX E. TEST DATA

INDEX

<u>Figure</u>	<u>Figure Number</u>
Hover Performance	1 through 3
Level Flight Performance	4 through 11
Control Positions in Trimmed Forward Flight	12 through 17
Collective-Fixed Static Longitudinal Stability	18 through 20
Static Lateral-Directional Stability	21 through 23
Maneuvering Stability	24
Controllability	25 through 30
Low-Speed Flight	31 through 48

FIG 2C-2
HOVER PERFORMANCE SUMMARY
ON-GROUND USA 1/18 68-16270
OUT-OF-GROUND EFFECT
INTERMEDIATE RATED POWER

NOTES: 1. MAIN ROTOR SPEED = 354 RPM
2. SKID WEIGHT = 50 POUND
3. SHD BASED ON DISABIL REPORT
NO 25-11-21 FIGURE 102
4. LIGHT CONFIGURATION

FIGURE 2
UNIDIMENSIONAL HOVER PERFORMANCE

OH-58C USA SW 68-16870

SATD HEIGHT = 2 FEET

MOTOR SYM	SPEED (RPM)	DENSITY ALTITUDE (FT)	SAT (°C)
0	348	3420	20.0
20	352	3420	20.0

- NOTES: 1. TETHERED HOVER TECHNIQUE
 2. WINDS LESS THAN 3 KNOTS.
 3. VERTICAL HEIGHT FROM BOTTOM OF
 SKID TO CENTER OF ROTOR HUB =
 9.33 FEET
 4. LCM CONFIGURATION

FIGURE 3
MONOMOTOR HUEY PERFORMANCE
ON EGC USA C/N 68-16378
SKID HEIGHT = 50 FEET

FIGURE 4
NONDIMENSIONAL LEVEL FLIGHT PERFORMANCE
OH-SAC USA S/N 69-16870

NOTES: 1. LCH CONFIGURATION
 2. ZERO SIDESLIP
 3. AFS LONGITUDINAL CG = (FS) 310.4 (AFT)
 4. AFS $N_R/\sqrt{S} = 346.0$
 5. CURVES DERIVED FROM FIGS. 6 THROUGH 11

FIGURE 6
NONDIMENSIONAL LEVEL FLIGHT PERFORMANCE
04-SAC USA S/N 68-16270

NOTES:- 1. MACH 0.75 CONFIGURATION

2. ZERO SIDESLIP

3. AVG LONGITUDINAL CG = 7.5% MAC (AFT)

4. AVG L/D_{max} = 34.0

5. CHARTS DERIVED FROM FIGS. 6 THROUGH 11

FIGURE 8
LEVEL FLIGHT PERFORMANCE
OM-58C USA S/N 62-15870

FIGURE 11
LEVEL FLIGHT PERFORMANCE
ON 320 USA S/N 68-16870

FIGURE 12
CONTROL POSITIONS IN TRIMMED FORWARD FLIGHT
OH-58C USA S/N 68-16870

FIGURE 13

CONTROL POSITIONS IN TRIMMED FORWARD FLIGHT
OH-58C USA S/N 68-16870

FIGURE 14
CONTROL POSITIONS IN TRIMMED FORWARD FLIGHT
OH-58C USA SVN 68-16870

Avg Gross Weight (LB)	Avg EG Location (Long (FS) (Lat (BL))	Avg Density Altitude (FT)	Avg OAT (°C)	Avg Rotor Speed (RPM)	Avg C _T	Avg Flight Condition
2960	110.5 (AFT) 0.7 (RT)	9320	16.0	346	0.004096	LEVEL

NOTES: 1. ZERO SIDESLIP
2. LCH CONFIGURATION

FIGURE 15
CONTROL POSITIONS IN TRIMMED FORWARD FLIGHT
CH-58C USA S/N 68-16820

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (FS)	Avg DENSITY (LB)	Avg DAT (FT)	Avg ROTOR SPEED (RPM)	Avg C _L FLIGHT CONDITION
3429	109.7 (AFT)	0.9 (RT)	8080	24.5	352 0.004415 LEVEL

NOTES: 1. ZERO SIDESLIP.
2. LCH CONFIGURATION.

FIGURE 16

CONTACT POSITIONS IN TRIMMED FORWARD FLIGHT
OH-SBC USA S/N 68-16370

Avg GROSS WEIGHT (LB)	Avg CS LOCATION (FS)	Avg DENSITY (SL)	Avg CAT (FT)	Avg ROTOR SPEED (RPM)	Avg FLIGHT C ₁ CONDITION
3320	109.5 (AFT)	1.0 (RT)	10180	18.0	348 0.004677 LEVEL

NOTES: 1. ZERO SIDESLIP
2. LCH CONFIGURATION

FIGURE 1
CONTROL POSITIONS IN TRIMMED FORMING FLIGHT
CH-46C USA S/N 64-16878

FIGURE 18
COLLECTIVE-FIXED STATIC LONGITUDINAL STABILITY
OH-58C USA S/N 68-16870

Avg. Elev. Flight (ft)	Avg. CG Location (LNG (FS) (LAT (BL))	Avg. Density (ft)	Avg. CAT (°C)	Avg. Rotor Speed (RPM)	Flight Condition
3420	109.7 (AFT) 0.9 (RT)	7140	20.5	354	LEVEL

NOTES:
1. SHADeD SYMBOLS DENOTE TRIM
2. LCH CONFIGURATION

FIGURE 19
COLLECTIVE-FIXED STATIC LONGITUDINAL STABILITY
OH-58C USA S/N 68-16870

FIGURE 20
COLLECTIVE-FIXED STATIC LONGITUDINAL STABILITY
OH-58C USA S/N 68-16870

FIGURE 21
STATIC LATERAL-DIRECTIONAL STABILITY
OH-58C USA S/N 68-16870

FIGURE 22

STATIC LATERAL-DIRECTIONAL STABILITY

OH-58C USA S/N 68-16970

Avg GROSS WEIGHT (LB)	Avg EG LOCATION LONG (FS) LAT (BL)	Avg ELEVITY ALTITUDE (FT)	Avg ROTAT. ROT. (°C)	Avg SPEED (RPM)	Avg AIRSPEED (KTS)
3300	109.7 (AFT) 8.9 (RFT)	7320	20.0	354	66

NOTES: 1. CLIMBING FLIGHT
 2. SHADeD SYMBOLS DENOTE TRIM
 3. EACH CONFIGURATION

FIGURE 25

WAVE SWEEPING STABILITY

28-542 100-328 66-16870

AVG STW GROSS WEIGHT (LB)	AVG AC LOCATION EPMR (IN)	AVG DESFET (IN)	AVG ALTITUDE (FTA)	AVG SPEED (FPM)	AVG CALIBRATED ROT. (RPS)	FLIGHT CONDITION
O 3420	110.9 (ACT) 103.9 (RT)	0.9 (RT)	6760	23.5	354	66
D 3408	100.8 (ACT) 103.9 (RT)	0.9 (RT)	6960	23.0	354	66

NOTE: LCH CONFIGURATION

卷之三

FOR FURTHER INFORMATION CONTACT THE STATE OF ALASKA'S STATEMENT

W-82 UG3 34 9-1970

TIME	DATE	TIME	DATE	TIME	DATE
GROSS	LOCATION	DEPTH	DATE	ROUTE	CAUGHT
WEIGHT	(KG)	(M)	(MM)	(CODE)	AT
(LB)					
SPR	SPR	SPR	SPR	SPR	SPR

卷之三

FIGURE 25

EXTERNAL CONTROL RESPONSE AND SENSITIVITY
OH-58C USA S/N 68-16870

FIGURE 20
ELECTRICAL CONTROL RESPONSE AND SENSITIVITY

DE 500 USA 5/M 08-1970

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (IN)	Avg DENSITY (LB) 100.6 (AVG)	Avg ALTITUDE (FT) 110 (AVG)	Avg OAT (°C) 7200	Avg SUDOR (PSI) 24.0	Avg CALIBRATION SPEED (KTS) 354	Avg ACCELERATION (G) 6.7
--------------------------------	----------------------------	---------------------------------------	--------------------------------------	----------------------------	-------------------------------	---	-----------------------------------

NOTE: 1. IN COLD CONFIGURATION

FIGURE 21
LOW SPEED PITCHED AND REVERSED FLIGHT
FM 58C USA 51N 62-14870

FIGURE 32
LOW-SPEED FORWARD AND REARWARD FLIGHT
ON-BOARD USA 5/R 68-16870

FIGURE 34
SIDEWARD FLIGHT
CH-58C USA S/N 68-16870

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (FT)	Avg DENSITY (LB) (FT)	Avg CAT	Avg ROTOR SPEED (RPM)	SkiD HEIGHT
3440	710.0 (AFT)	2.5 (RT)	3700	23.0	334 10 FEET

NOTES: 1. I DENOTES EXTREME TRAVEL FROM
TRIM DURING ATTEMPTED STABILIZED POINT

2. ECM CONFIGURATION

TOTAL COLLECTIVE CONTROL TRAVEL = 10.0 INCHES

TOTAL LONGITUDINAL CONTROL TRAVEL = 12.1 INCHES

TOTAL LATERAL CONTROL TRAVEL = 11.1 INCHES

TOTAL DIRECTIONAL CONTROL TRAVEL = 5.7 INCHES

FIGURE 35
CONTROL POSITIONS AT VARIOUS RELATIVE WIND AZIMUTHS
OH-68C USA S/N 68-16870

FIGURE 36
CONTROL POSITIONS AT VARIOUS RELATIVE WIND SPEEDS

ON-SITE USA S/N 85-14678

Avg WEIGHT (LB)	Avg LONG. (PS)	Avg DENSITY (SL)	Avg ALTITUDE (FT)	Avg GAT (°C)	Avg ROTOR SPEED (RPM)	Avg TRIM RATESPEED (KTS)
3200	110.0 (NET)	2.6(NT)	4140	27.0	364	36

NOTES: 1. LOW CONFIGURATION
2. SWING HEIGHT - 10 FEET

FIGURE 32
CONTROL POSITIONS AT VARIOUS RELATIVE WIND SPEEDS
40-586 RSW S/N 66-18870

FIGURE 38
CONTROL POSITIONS AT VARIOUS RELATIVE WIND AZIMUTHS
OH-58C USA S/N 68-16870

Avg Gross Weight (LB)	Avg CG Location (FS)	Avg CG Location (BL)	Avg Density (FT)	Avg OAT (°C)	Avg Rotor Speed (RPM)	True Airspeed (KTS)
3360	109.6 (AFT)	0.9 (RT)	3640	22.5	354	15

NOTES: 1. LCH CONFIGURATION
2. SKID HEIGHT = 10 FEET

FIGURE 39
CONTROL POSITIONS AT VARIOUS RELATIVE WIND DIRECTIONS
OH-58C USA S/N 68-16870

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (FS) 109.6 (AFT)	Avg LONG (BL) 0.9 (RT)	Avg LAT (FT) 3640	Avg DENSITY (OAT) 22.5	Avg ROTOR SPEED (RPM) 354	Avg TRUE AIRSPEED (KTS) 20
3360						

NOTES: 1. LCH CONFIGURATION
2. SKID HEIGHT = 10 FEET

FIGURE 40
CONTROL POSITIONS AT VARIOUS MILITARY ALTITUDES
ON-SOC USA S/N 68-16870

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (LONG. (FS) LAT. (BL))	Avg DENSITY (FT)	Avg OAT (°C)	Avg ROTSP (RPM)	TRUE SPEED (KTS)
3360	109.6 (AFT) 0.9 (BT)	3640	22.5	354	25

NOTES: 1. LCH CONFIGURATION
2. SKID HEIGHT = 10 FEET

FIGURE A3
CONTROL POSITIONS AT VARIOUS ALTITUDES
ON-SITE USA S/N 68-15850

Avg GROSS WEIGHT (LB)	Avg CG LOCATION (CRG (FS))	Avg LAT (BLT)	Avg DENSITY (FT)	Avg ALTITUDE (FT)	Avg ROTOR SPEED (RPM)	Avg TRUE AIRSPEED (KTS)
3420	110.0 (AFT)	2.6 (RT)	1.140	27.0	354	5

NOTES: 1. LCH CONFIGURATION
2. SKID HEIGHT = 10 FEET

FIGURE 44
CONTROL POSITIONS AT VARIOUS RELATIVE WIND AZIMUTHS
OH-58C USA S/N 68-16870

FIGURE 45
CONTROL POSITIONS AT VARIOUS ANGLES OF PITCH
ON-58C USA S/N 68-36870

Avg GROSS WEIGHT (LB)	Avg Cr. LOCATION LONG (FS) LAT (TL)	Avg DENSITY (FT)	Avg ALTITUDE (FT)	Avg OAT (°C)	Avg ROT. SPEED (RPM)	Avg TRUE AIRSPEED (KTS)
3420	110.0 (AFT) 2.6 (RT)		4140	27.0	354	15.

NOTES: 1. LCH CONFIGURATION
2. TAIL HEIGHT = 10 FEET

FIGURE 14
CENTRAL POSITIONS AT VARIOUS RELATIVE WIND SPEEDS
 ON-SITE USA C/N 68-15870

ANG. GROSS WEIGHT (LB)	ANG. OF LOCATION LONG (FS) LAT (BL)	ANG. DENSITY ALTITUDE (FT)	ANG. ROT. MOTR (deg)	TRUE AIRSPEED (KTS)
3420	110.0 (WFT) 2.4 (PT)	4140	27.0	354

NOTES: 1. LOW CONFIGURATION
 2. SKID HEIGHT = 10 FEET

DISTRIBUTION LIST

Deputy Chief of Staff for Logistics (DALO-SMM)	1
Deputy Chief of Staff for Operations (DAMO-RQ)	1
Deputy Chief of Staff for Personnel (DAPE-KRS)	1
Deputy Chief of Staff for Research Development and Acquisition (DAMA-PPM-T, DAMA-RA, DAMA-WSA)	3
Comptroller of the Army (DACA-EA)	1
US Army Materiel Development and Readiness Command (DRCDE-DH, DRCQA-E, DRCRE-I, DRCDE-RT)	4
US Army Training and Doctrine Command (ATTG-U, ATCD-T, ATCD-ET, ATCD-B)	4
US Army Aviation, Research and Development Command (DRDAV-DI, DRDAV-EE, DRDAV-EG)	10
US Army Test and Evaluation Command (DRSTS-CT, DRSTS-AD)	2
US Army Troop Support and Aviation Materiel Readiness Command (DRSTS-Q)	1
US Army Logistics Evaluation Agency (DALO-LEI)	1
US Army Materiel Systems Analysis Agency (DRXSY-R, DRXSY-MP)	2
US Army Operational Test and Evaluation Agency (CSTE-POD)	1
US Army Armor Center (ATZK-CD-TE)	1
US Army Aviation Center (ATZQ-D-T, ATZQ-TSM-A, ATZQ-TSM-S ATZQ-TSM-U)	3
US Army Combined Arms Center (ATZLCA-DM)	1
US Army Infantry Center (ATSH-TSM-BH)	1
US Army Safety Center (IGAR-TA, IGAR-Library)	2
US Army Research and Technology Laboratories (DAVDL-AS/DAVDL-POM)	1
US Army Research and Technology Laboratories/Applied Technology Laboratory (DAVDL-ATL-D, DAVDL-Library)	2

US Army Research and Technology Laboratories/Aeromechanics	
Laboratory (DAVDL-ATL-D)	1
US Army Research and Technology Laboratories/Propulsion	
Laboratory (DAVDL-PL-D)	1
Defense Technical Information Center (DDR)	12
US Military Academy (MADN-F)	1
MTMC-TEA (MTT-TRC/Steve Hola)	1