

CLAIMS

1. Method for reception of a signal implementing a modulation with multiple carriers and with multiple access by division of spread codes, of the type comprising a demodulation stage by application of a mathematical transform from the temporal domain to the frequency domain, an equalisation stage of the transformed signal and a de-spreading stage of the equalised signal, characterised in that said equalisation stage takes into account, for each of the components of said transformed signal, disturbances affecting the carrier carrying said component and at least one other of said carriers and at least some of said spread codes.
- 5 2. Reception method according to claim 1, characterised in that said equalisation stage implements an equalisation matrix carrying equalisation coefficients representative of the transmission channel, at least certain of the coefficients other than the coefficients of the diagonal of the matrix sometimes being non nil.
- 10 3. Reception method according to claim 2, characterised in that the coefficients of said weighting matrix are determined according to the Wiener filtering technique applied globally over the received signal as a whole, taking into account the de-spreading functions.
- 15 4. Reception method according to claim 3, characterised in that said weighting matrix is written

$$G = H \cdot \left(H \cdot C \cdot A \cdot C^T \cdot H^* + \frac{\sigma_N^2}{E_s} \cdot I \right)^{-1} \quad (14)$$

with: H = matrix representative of the transmission channel;

C = matrix of the spread codes;

$A = \{a_{jj}\}$: diagonal matrix with a_{jj} non nil if the user j is active;

σ_N^2 = noise variance affecting each sub-carrier;

E_s = mean power of received signals;

I = the identity matrix.

5. Reception method according to claim 4, characterised in that the estimated quantity σ_N^2/E_s is compared to a threshold value, and replaced by said threshold value when it is lower than the latter.

6. Reception method according to claim 4, characterised in that one implements an alternative detection method when the estimated quantity σ_N^2/E_s is lower than a predetermined threshold value.

7. Reception method according to any one of claims 3 to 5, characterised in that said weighting matrix is determined with the aid of an iterative procedure implementing a gradient algorithm.

8. Reception method according to any one of claims 1 to 7, of the type implementing a multi-user detection technique, according to which the different spread codes of the multiple users are known from the receiver, characterised in that the same equalisation technique is also used in a stage for annulment of multiple access interference.

9. Reception method according to claim 8, characterised in that said interference annulment stage is iterative, and comprises at least two successive equalisation steps.

10. Reception method according to one or the other of claims 8 and 9, characterised in that it implements:

- an initial stage producing an estimate of multi-user interference;
 - a subtraction stage of said estimate of multi-user interference from the received signal;
- 5 - an equalisation stage on the corrected signal thus obtained.
11. Equalisation method implemented in the reception method according to any one of claims 1 to 10.
12. Reception device implementing the method
10 according to any one of claims 1 to 11.