MATHEMATICAL METHODS - III (2017) TUTORIAL 2

Problem 1. Consider Problems 1-5 of Tutorial 1. All these problems are fixed point iterations and have the form

$$x_0 = a$$
$$x_n = F(x_{n-1})$$

Answer the following questions for each of these problems. When the initial value is not given take a=1.

- (1) Identify the function F that is being iterated.
- (2) Each of these schemes is derived to solve a particular fixed point problem. What is it? Identify the problem (equation) that is being solved.
- (3) Plot y = F(x) and y = x on the same plot and illustrate the first few iterates graphically.
- (4) Does the scheme converge?
- (5) Find F'(x) and discuss the applicability of the Theorem (Week 3) to prove the convergence.

Problem 2. Consider the sequence given by $x_0 = 1$ and $x_{n+1} = 1 + \frac{1}{x_n}$. We showed that this sequence converge and computed its limit. Using a similar idea, write down a iterative scheme to find the value of $\sqrt{2}$. You need to verify the convergence, its limit and in the case it does not directly compute $\sqrt{2}$, how you can use the proposed scheme to estimate $\sqrt{2}$.

Problem 3. Suppose the Bisection method is used to find a solution to $x - \sin(x) - \frac{1}{2} = 0$.

- (1) Which of the following intervals can be used to initiate the Bisection Algorithm.
 - (a) $[-\pi, 0]$

(b) [0,1]

(d) $[0, \frac{\pi}{4}]$ (e) None of the above.

- (c) $[0, \pi]$
- (2) When you apply the Bisection Algorithm once, what is the resulting interval, approximation of the root and the error, respectively.
 - mation of the root and the error, respectively.

 (a) $interval = [-\frac{\pi}{2}, 0]$, $approximated \ root = -\frac{\pi}{4} \ and \ Error \leq \frac{\pi}{4}$ (b) $interval = [0, \frac{\pi}{2}]$, $approximated \ root = \frac{\pi}{4} \ and \ Error \leq \frac{\pi}{4}$ (c) $interval = [0, \frac{1}{2}]$, $approximated \ root = -\frac{1}{4} \ and \ Error \leq \frac{1}{4}$ (d) $interval = [0, \frac{\pi}{8}]$, $approximated \ root = \frac{\pi}{16} \ and \ Error \leq \frac{\pi}{16}$
- (3) Taking the initial guess in the first part to be the 0-th iterate, how many iterates do you need to guarantee that the error is less than 10^{-2} .
 - (a) 6

(c) 8

(e) None of the above.

(b) 7

(d) 9

Problem 4. Suppose you want to use the Bisection method, with the initial interval [0, 3], to find a solution to an equation f(x) = 0. Taking the initial guess as the 0-th iterate, find the smallest number of iterates that need to guarantee that the error is less than 10^{-2} .

(1) 6(2) 7 (3) 8(4) 11 (5) None of the above.

Problem 5.

- (1) Show that the function $f(x) = \cos(x) x$ has a zero in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
- (2) Use the Bisection algorithm with three iterates to estimate a root.
- (3) What can you say about the error after n iterates.
- (4) Find the number of iterates required to achieve an accuracy of 10^{-3} .

Problem 6.

- (1) Draw the graph of $y = \cos(x)$ for $x \in [-\pi, \pi]$.
- (2) Also draw the graph of y = x on the same plot.
- (3) Draw a cob-web to explain the first few iterations of the fixed point problem $x = \cos(x)$, with your choice of an initial guess.
- (4) Compare your answer with the answer to the previous problem. Which method converge faster?

Problem 7. Use Newton Rapson to find a solution to the following.

 $(1) x^3 + x^2 - 1 = 0$

 $(2) \cos(x) - x = 0$

(3) $10x = e^{-x}$ (4) $x = 1 + 0.5\sin(x)$

Problem 8. Set up Newton's scheme of iteration to find the square root of a positive number N. Using it, approximate $\sqrt{12}$. What is the error involved in your estimate?

Problem 9. Find an approximate solution, with error bounds, to $x^3 - 9x + 1 = 0$ in [2, 4], using

(1) bisection method,

(2) fixed point iteration and

(3) Newton Rapson.

Problem 10. Use an iterative method to determine a solution to the following equations.

(1) $10x = e^{-x}$

(2) $x = 1 + 0.5\sin(x)$

Problem 11. Find the limit of the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_1=1$ and $x_{n+1}=\frac{1}{2}\left(\frac{1}{ax_n}+x_n\right)$.

(1) $\frac{1}{\sqrt{a}}$

(2) a (3) \sqrt{a}

(4) limit does not exist

(5) none of the above

Problem 12. Find the limit of the sequence $(x_n)_{n\in\mathbb{N}}$, where $x_1=1$ and $x_{n+1}=\frac{1}{2}\left(\frac{3}{x_n^2}+x_n\right)$.

 $(1) \sqrt[3]{3}$

(5) none of the above

(3) $\frac{1}{\sqrt{3}}$ (4) limit does not exist

Problem 13. Show that the n^{th} partial sums of the series $\sum_{k=1}^{\infty} \frac{1}{k^2}$ forms a Cauchy sequence. Hence, conclude that the series converge.