Linguaggi liberi da contesto

- --dagli anni 1960's usate per parser
- --recentemente DTD in XML

Il linguaggio dei palindromi $L_{pal}\{w \mid w = w^R\}$

Per alfabeto {0,1} contiene 0110, 11011, epsilon ma non contiene 011 o 1010

L_{pal} non è regolare, usiamo il pumping lemma

Pumping Lemma: per ogni linguaggio regolare L, esiste una costante n (che dipende da L) e tale che per ogni w in L t.c. |w|>=n allora w=xyz t.c. (i) y non è epsilon, (ii) |xy| <=n (iii) per ogni k>=0, xy^kz è in L

$w = 0^{n}10^{n}$

w=xyz e dato che |xy|<=n e y non è epsilon, y contiene alcuni 0 e quindi $xy^0z = xz$ non può essere in L_{pal} perché contiene meno 0 a sinistra del solo 1 rispetto agli n che sono a destra

per definire il linguaggio L_{pal} possiamo usare una definizione ricorsiva

Base: 0 e 1 sono in L_{pal}

Induzione: se w è in L_{pal} , allora 0w0 e 1w1 sono

in L_{pal}

una grammatica libera dal contesto (contextfree) è una notazione formale per esprimere tali definizioni ricorsive

consiste di variabili, terminali e produzioni

Per L_{pal}

- 1. P -> epsilon
- 2. P-> 0
- 3. P-> 1
- 4. $P \rightarrow 0 P 0$
- 5. P-> 1 P 1
- 1-3 sono la base, mentre 4 e 5 sono la parte induttiva della grammatica

la usiamo per generare L_{pal}

Definizione di grammatica libera da contesto

- 1. insieme finito di simboli terminali che formano le stringhe del linguaggio (per L_{pal} 0 e 1)
- insieme finito di variabili (anche nonterminali); ogni variabile genera un linguaggio (per L_{pal} c'è solo la variabile P)
- 3. un simbolo iniziale che genera il linguaggio da definire (in L_{pal})
- 4. un insieme finito di produzioni o regole della forma testa-> corpo

dove, la testa è una variabile e il corpo è una stringa (anche vuota) di terminali e variabili

G_{pal} = ({P},{0,1},A,P) dove A contiene le 5 produzioni viste prima esempio: vogliamo una grammatica per espressioni tipo, a+b*a1*(b1+aa0)

le operazioni sono * e + e gli operandi sono identificatori che iniziano per a o b e continuano con {a,b,0,1}*

Servono 2 variabili, E che genera le espressioni e I che genera gli identificatori.

Il linguaggio generato da I è regolare (a+b)(a+b+0+1)*

I->a

I->b

I->la

I->Ib I -> I0 I ->I1

Le produzioni per E sono:

- E-> 1
- E-> E+E
- E-> E*E
- $E \rightarrow (E)$

La grammatica è:

G=({E,I}, {a,b,0,1,*,+,(,)}, P, E)

dove P contiene le produzioni per I e per E

notazione compatta : E-> I | E+E | E*E | (E)

Derivazioni per mezzo di una grammatica

Una CFG serve per stabilire se determinate stringhe appartengono al linguaggio di una data variabile

2 strade:

- --dal corpo alla testa : inferenza ricorsiva
- --dalla testa al corpo : derivazione

inferenza ricorsiva di a*(a+b00)

	stringa	V	Prod	stringhe usate
(i)	а	1	5	_
(ii)	b	1	6	_
(iii)	b0	I	9	(ii)
(iv)	b00	I	9	(iii)
(v)	а	E	1	(i)
(vi)	b00	E	1	(iv)
(vii)	a + b00	E	2	(v), (vi)
(viii)	(a +b00)	E	4	(vii)
(ix)	a * (a+b00)	Е	3	(v),(viii)

derivazione

relazione => sia G=(V,T,P,S) e sia α A β dove α e β in (V u $T)^*$ ed A in V sia $A->\gamma$ in P, allora α A β => α γ β

=>* è la chiusura riflessiva e transitiva di =>

significa zero o più passi di =>

base: per qualsiasi stringa $\alpha =>^* \alpha$ Induzione: $\alpha =>^* \beta$ e $\beta => \gamma$, allora $\alpha =>^* \gamma$

oppure

 $\alpha =>^* \beta$ significa che esiste un n>=1 e $\gamma 1$, $\gamma 2,..., \gamma n$ t.c.

--
$$\alpha$$
= γ 1, β = γ n

--per ogni i in [1..n-1], $\gamma i => \gamma i+1$

esempio: derivazione di a*(a+b00)

ordini diversi per ottenere la stessa stringa

e produzioni diverse danno stringhe diverse

leftmost derivation e rightmost

si sceglie sempre la variabile più a sinistra/destra =>lm =>rm

Notazioni:

- --a, b sono terminali
- --A,B,.. sono variabili
- --w, z,.. sono stringhe di terminali
- --X, Y sono o terminali o variabili
- -- α , β ,...sono stringhe di terminali e variabili

la derivazione di a*(a+b00) che abbiamo visto è lm

esiste anche una derivazione rm di a*(a+b00)

Definizione: linguaggio di una grammatica Dato G=(V,T,P,S), L(G) ={ w in T* | S =>* w }

Teorema $L(G_{pal})$ è l'insieme delle palindrome su $\{0,1\}$

Dimostrazione: w in $L(G_{pal})$ se e solo se è palindromo.

(se <=) supponiamo che w sia palindroma. Mostriamo per induzione su |w| che w in

L(G_{pal}).

Base: |w|=0 o 1. Se $w=\varepsilon$, allora w in $L(G_{pal})$, se w=0/1 lo stesso.

Induzione: supponiamo che |w|=n >= 2. Poichè $w=w^R$, deve iniziare e finire con lo stesso simbolo, quindi w=0w'0 o 1w'1 e w' deve essere palindromo,

ma essendo |w'| < n, per ipotesi induttiva, w' è in $L(G_{pal})$ e quindi, viste le produzioni P->0P0|1P1 di G_{pal} anche w lo è.

(solo se =>) se w in $L(G_{pal})$ allora è palindromo. Induzione sulla lunghezza della derivazione. Base: 1 sola produzione, $w=\epsilon$ o 0 o 1, sono palindromi Induzione: supponiamo che w sia generata in n+1 passi, e che l'enunciato sia vero per tutte le stringhe generate in n passi. Una tale derivazione deve iniziare con $P => 0P0 \mid 1P1 e poi 0x0 \mid 1x1$ =W

ma allora P=>*x in n passi e quindi per ipotesi induttiva, x è palindroma per cui anche 0x0 e 1x1 lo sono.

forme sentenziali: data G=(V,T,P,S) $S=>^*\alpha$ allora è una forma sentenziale può avere terminali e variabili se $S=>rm^*\alpha$ allora è una forma sentenziale destra

in modo simile se $S = > lm* \alpha$ forma sentenziale sinistra

esistono forme sentenziali che non sono né destra né sinistra

- esercizi 5.1.1 trovare grammatiche per:
- a) $\{0^n1^n \mid n>=1\}$
- b) $\{a^ib^jc^k \mid i = j \circ j = k\}$
- c) ! l'insieme di tutte le stringhe in {a,b}* t.c. non siano ww
- d) !! l'insieme di tutte le stringhe in {a,b}* con un numero doppio di b rispetto agli a

esercizio 5.1.2

esercizio 5.1.4