Análise Amortizada (Cap. 17 CLRS)

Prof. Luiz Chaimowicz

Análise Amortizada

- Útil quando se tem uma sequência de operações sobre alguma estrutura de dados, sendo algumas "caras" e outras "baratas"
- Em uma análise de complexidade simples, a operação cara pode elevar erroneamente o custo do pior caso
- Com a análise amortizada é possível mostrar que o custo amortizado da operação é menor, quando consideradas todas as operações

Análise Amortizada

- A análise amortizada não é a análise do caso medio que, como vimos, envolve a análise de probabilidades sobre diferentes entradas
- A análise amortizada é a análise do pior caso, mas considerando que em uma sequência de operações os custos diferentes se compensam

Análise Amortizada

- 3 Métodos principais:
 - Análise Agregada
 - Método Contábil (accounting)
 - Método do Potencial

Análise Agregada

- Na análise agregada mostra-se que uma sequência de *n* operações tem o custo *T(n)*
- No pior caso, o custo médio (ou amortizado) de cada operação é T(n)/n
- Nessa análise o custo amortizado de todas as operações é igual, mesmo sendo o custo real diferente

Exemplo: operações sobre uma Pilha

- Operações comuns, custo O(1):
 - Push(S,x): empilha o item x na pilha S
 - Pop(S): desempliha o top da pilha S
- Nova Operação
 - Multipop(S,k): desempilha k itens da pilha
 - Custo: min(n,k), para n itens na pilha O(n)

Multipop(S,k)
while not Vazia(S) and K>0
pop(S)
k=k-1

Exemplo: operações sobre uma Pilha

- Considerando todas as operações possíveis, no pior caso, qual o custo de n operações sobre a Pilha?
- Multipop é O(n): $n.O(n) = O(n^2)$. Correto?
- Correto, mas esse pior caso não é firme!
- Usando a análise agregada, pode-se obter um limite mais firme, considerando que as outras operações "compensam" essa.

Exemplo: operações sobre uma Pilha

- Apesar de uma operação multipop ser O(n), uma sequência qualquer de operações push, pop e multipop em uma pilha vazia é O(n)
 - Só podemos desempilhar um item que foi empilhado. Portanto para n operações, temos no máximo n itens: O(n).
- Fazendo-se a análise agregada, o custo "médio" de cada operação é O(n)/n = O(1)

Exemplo: Contador Binário

A	k-1 3 2 1 0
5 4 3 2 1 0	
00000	
000001	INCREMENT (A,k)
000010	$1 i \leftarrow 0$
000011	2 enquanto $i < k$ e $A[i] = 1$
000100	3 faça $A[i] \leftarrow 0$
000101	4 $i \leftarrow i+1$
0 0 0 1 1 0	5 se $i < k$
000111	6 então $A[i] \leftarrow 1$
001000	
001001	Custo: número de bits invertidos = O(k)

Exemplo: Contador Binário

- n chamadas do procedimento increment
 n.O(k) = O(n.k).
- Mas quando se analisa a sequência de operações, observa-se que o custo total é menor:
 - A[0] é invertido n vezes
 - A[1] é invertido n/2 vezes
 - A[2] é invertido n/4 vezes ...

$$\sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n = O(n)$$

Custo amortizado por operação é O(n) / n = O(1)

Método Contábil

- No método contábil atribui-se um custo fictício (amortizado) a cada operação, que pode ser maior ou menor que o custo real
 - ĉ_i: custo amortizado da operação i
 - c_i: real da operação i
- Em uma sequência de n operações a $\sum_{i=1}^n \hat{c}_i \ge \sum_{i=1}^n c_i$ seguinte condição deve ser satisfeita:
- A estrutura de dados armazena o "saldo" das operações, que ajuda a "pagar" operações mais caras

Exemplo: pilha

	Custo Real	Custo Amortizado
Push	1	2
Pop	1	0
Multipop	min(n,k)	0

- Cada operação push deixa um "crédito" de 1 que será usado pela operação pop ou multipop.
- Começando com uma pilha vazia, a condição $\sum_{i=1}^n \widehat{c}_i \geq \sum_{i=1}^n c_i \text{ \'e satisfeita}$

Exemplo: Pilha

- Para qualquer sequência de n operações Push,
 Pop e Multipop o custo amortizado total é menor que 2n = O(n)
- Como o custo amortizado é um limite superior do custo real, considerando-se n operações, temos que o custo real das operações também é O(n)

Método Potencial

- Define-se uma função que representa a "Energia Potencial" acumulada na estrutura
- Seja c_i uma operação e Di o estado da estrutura após a aplicação de c_i em D_{i-1}
- A função ϕ representa o potencial
- Definimos o custo amortizado de uma operação como o custo real acrescido da mudança de potencial

$$\widehat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) .$$

Método Potencial

• Para uma sequência de n operações:

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}))$$
$$= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}).$$

• Definindo um potencial Φ tal que $\Phi(D_n) \ge \Phi(D_o)$, temos que o custo amortizado vai ser um limite superior para o custo real

Exemplo: Pilha

- Vamos definir uma função potencial tal que ϕ seja o número de itens na pilha. Logo
 - $-\Phi(D_0)=0$
 - $-\Phi(D_i) \ge 0$, para todo *i* pois o número de elementos da pilha nunca é negativo
- Portanto o custo amortizado é um limite superior para o custo real

Exemplo: Pilha

Analisando o custo amortizado de cada operação:

- <u>Push</u>: a diferença de potencial causada pela operação em uma pilha com s elementos é Φ(D_i) Φ(D_{i-1}) = (s + 1) s = 1
 O custo da operação é portanto:
- <u>Pop</u>: fazendo um raciocínio similar $\Phi(D_i) \Phi(D_{i-1}) = (s-1) s = -1$ $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1}) = 1 1 = 0$

 $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = 1 + 1 = 2$

Exemplo: Pilha

• <u>Multipop</u>: a operação multipop em uma pilha com s items remove k' = min(s,k) items da pilha. Logo a diferença de potencial é $\Phi(D_i) - \Phi(D_{i-1}) = -k'$

O custo da operação é portanto:

$$\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}) = k' - k' = 0$$

 Logo, o custo amortizado das 3 operações é O(1)

Exemplo Pilha

- Em uma sequência de n operações quaisquer sobre a pilha, temos que o custo total amortizado é n.O(1) = O(n)
- Como o custo amortizado é um limite superior para o custo real, temos que o custo real também é O(n).