Numerical Algorithms

- Matrix multiplication
- Numerical solution of Linear System of Equations

Matrix multiplication, $C = A \times B$

Sequential Code

Assume throughout that the matrices are square ($n \times n$ matrices). The sequential code to compute **A** \times **B** :

Requires n^3 multiplications and n^3 additions

$$T_{seq} = (n^3)$$
 (Very easy to parallelize!)

Direct Implementation (P=n²)

- One PE to compute each element of $\bf C$ n^2 processors would be needed.
- Each PE holds one row of elements of A and one column of elements of B.

$$P = n^2$$

$$T_{par} = O(n)$$

Performance Improvement (P=n³)

- n processors collaborate in computing each element of ${\bf C}$ n^3 processors are needed.
- Each PE holds one element of A and one element of B.

$$P = n^3$$

$$T_{par} = O(\log n)$$

Parallel Matrix Multiplication - Summary

• P = n $T_{par} = O(n^2)$

Each instance of inner loop is independent and can be done by a separate processor.

Cost optimal since $O(n^3) = n * O(n^2)$

- $P = n^2$ $T_{par} = O(n)$ One element of C (c_{ij}) is assigned to each processor. Cost optimal since $O(n^3) = n^2 \times O(n)$
- $P = n^3$ $T_{par} = O(\log n)$ n processors compute one element of C (c_{ij}) in parallel (O(log n)) **Not cost optimal** since O(n³) < n³ * O(log n)

 $O(\log n)$ lower bound for parallel matrix multiplication.

Block Matrix Multiplication

Submatrix multiplication

(a) Matrices

$$\begin{bmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,0} & a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix} \times \begin{bmatrix} b_{0,0} & b_{0,1} & b_{0,2} & b_{0,3} \\ b_{1,0} & b_{1,1} & b_{1,2} & b_{1,3} \\ b_{2,0} & b_{2,1} & b_{2,2} & b_{2,3} \\ b_{3,0} & b_{3,1} & b_{3,2} & b_{3,3} \end{bmatrix}$$

(b) Multiplying $A_{0,0} \times B_{0,0}$ to obtain $C_{0,0}$

$$\begin{bmatrix} a_{0,0} & a_{0,1} \\ a_{1,0} & a_{1,1} \end{bmatrix} \times \begin{bmatrix} b_{0,0} & b_{0,1} \\ b_{1,0} & b_{1,1} \end{bmatrix} + \begin{bmatrix} a_{0,2} & a_{0,3} \\ a_{1,2} & a_{1,3} \end{bmatrix} \times \begin{bmatrix} b_{2,0} & b_{2,1} \\ b_{3,0} & b_{3,1} \end{bmatrix}$$

$$= \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} \end{bmatrix} + \begin{bmatrix} a_{0,2}b_{2,0} + a_{0,3}b_{3,0} & a_{0,2}b_{2,1} + a_{0,3}b_{3,1} \\ a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \end{bmatrix}$$

$$= \begin{bmatrix} a_{0,0}b_{0,0} + a_{0,1}b_{1,0} + a_{0,2}b_{2,0} + a_{0,3}b_{3,0} & a_{0,0}b_{0,1} + a_{0,1}b_{1,1} + a_{0,2}b_{2,1} + a_{0,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \\ a_{1,0}b_{0,0} + a_{1,1}b_{1,0} + a_{1,2}b_{2,0} + a_{1,3}b_{3,0} & a_{1,0}b_{0,1} + a_{1,1}b_{1,1} + a_{1,2}b_{2,1} + a_{1,3}b_{3,1} \end{bmatrix}$$

Mesh Implementations

- Cannon's algorithm
- Systolic array
- All involve using processors arranged into a **mesh** (or **torus**) and shifting elements of the arrays through the mesh.
- Partial sums are accumulated at each processor.

Elements Need to Be Aligned

Each triangle represents a matrix element (or a block)

Only same-color triangles should be multiplied

Alignment of elements of A and B

$$\begin{bmatrix} A \\ 0,0 \\ B \\ 0,0 \end{bmatrix} \begin{bmatrix} A \\ 0,1 \\ B \\ 0,2 \end{bmatrix} \begin{bmatrix} A \\ 0,3 \\ B \\ 0,3 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 1,0 \\ B \\ 1,0 \end{bmatrix} \begin{bmatrix} A \\ 1,1 \\ B \\ 1,1 \end{bmatrix} \begin{bmatrix} A \\ 1,2 \\ B \\ 1,2 \end{bmatrix} \begin{bmatrix} A \\ 1,3 \\ B \\ 1,3 \end{bmatrix}$$

$$\begin{bmatrix} A \\ 2,0 \end{bmatrix} \begin{bmatrix} A \\ 2,1 \end{bmatrix} \begin{bmatrix} A \\ 2,2 \end{bmatrix} \begin{bmatrix} A \\ 2,3 \end{bmatrix}$$

$$\begin{bmatrix} A_{0,0} \\ B_{0,0} \end{bmatrix} \begin{bmatrix} A_{0,1} \\ B_{1,1} \end{bmatrix} \begin{bmatrix} A_{0,2} \\ B_{2,2} \end{bmatrix} \begin{bmatrix} A_{0,3} \\ B_{3,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{1,1} \\ B_{1,0} \end{bmatrix} \begin{bmatrix} A_{1,2} \\ B_{2,1} \end{bmatrix} \begin{bmatrix} A_{1,3} \\ B_{3,2} \end{bmatrix} \begin{bmatrix} A_{1,0} \\ B_{0,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{2,2} \\ B_{2,0} \end{bmatrix} \begin{bmatrix} A_{2,3} \\ B_{3,1} \end{bmatrix} \begin{bmatrix} A_{2,0} \\ B_{0,2} \end{bmatrix} \begin{bmatrix} A_{2,1} \\ B_{1,3} \end{bmatrix}$$

$$\begin{bmatrix} A_{3,3} \\ B \end{bmatrix} \begin{bmatrix} A_{3,0} \\ B \end{bmatrix} \begin{bmatrix} A_{3,1} \\ B \end{bmatrix} \begin{bmatrix} A_{3,2} \\ B \end{bmatrix}$$

Before

After

Alignment

A_{i*} (ith row) cycles left i positions

B_{*j} (jth column) cycles up j positions

Parallel Cannon's Algorithm

Uses a **torus** to shift the A elements (or submatrices) *left* and the B elements (or submatrices) *up* in a wraparound fashion.

- Initially processor P_{i,j} has elements a_{i,j} and b_{i,j} (0 ≤ i < n, 0 ≤ j < n).
- Elements are moved from their initial position to an "aligned" position. The complete ith row of A is shifted i places left and the complete jth column of B is shifted j places upward. This has the effect of placing the element a_{i,j+i} and the element b_{i+j,j} in processor P_{i,j}. These elements are a pair of those required in the accumulation of c_{i,j}.
- Each processor, $P_{i,j}$, multiplies its elements and accumulates the result in $c_{i,j}$
- The ith row of A is shifted one place right, and the jth column of B is shifted one place upward. This has the effect of bringing together the adjacent elements of A and B, which will also be required in the accumulation.
- Each PE (P_{i,j}) multiplies the elements brought to it and adds the result to the accumulating sum.
- The last two steps are repeated until the final result is obtained (n-1 shifts)

Time Complexity

• $P = n^2$ A, B: $n \times n$ matrices with n^2 elements each

One element of $C(c_{ij})$ is assigned to each processor. Alignment step takes O(n) steps. Therefore,

$$T_{par} = O(n)$$

Cost optimal since $O(n^3) = n^2 * O(n)$ Also, highly scalable!

Systolic Array

Solving systems of linear equations: Ax=b

Dense matrices

Direct Methods:

Gaussian Elimination – seq. time complexity O(n³) LU-Decomposition – seq. time complexity O(n³)

Sparse matrices (with good convergence properties)

Iterative Methods:

Jacobi iteration
Gauss-Seidel relaxation (not good for parallelization)
Red-Black ordering
Multigrid

Gauss Elimination

- Solve Ax = b
- Consists of two phases:
 - -Forward elimination
 - -Back substitution
- Forward Elimination reduces Ax = b to an upper triangular system Tx = b'
- Back substitution can then solve Tx = b' for x

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} & \mathbf{b}_{1} \\ 0 & \mathbf{a}_{22}' & \mathbf{a}_{23}' & \mathbf{b}_{2}' \\ 0 & 0 & \mathbf{a}_{33}'' & \mathbf{b}_{3}'' \end{bmatrix}$$

$$x_3 = \frac{b_3''}{a_{33}''}$$
 $x_2 = \frac{b_2' - a_{23}' x_3}{a_{22}'}$

$$x_1 = \frac{b_1 - a_{13}x_3 - a_{12}x_2}{a_{11}}$$

Forward Elimination

Back Substitution

Gauss Elimination

- Solve Ax = b
- Consists of two phases:
 - -Forward elimination
 - -Back substitution
- Forward Elimination reduces Ax = b to an upper triangular system Tx = b'
- Back substitution can then solve Tx = b' for x

Forward Elimination

$$x_{3} = \frac{b_{3}^{"}}{a_{33}^{"}} \quad x_{2} = \frac{b_{2}^{'} - a_{23}^{'} x_{3}}{a_{22}^{'}}$$

$$x_{1} = \frac{b_{1} - a_{13} x_{3} - a_{12} x_{2}}{a_{11}}$$

Back Substitution

Forward Elimination

$$x_1 - x_2 + x_3 = 6$$

$$3x_1 + 4x_2 + 2x_3 = 9$$

$$2x_1 + x_2 + x_3 = 7$$

$$x_1 - x_2 + x_3 = 6$$

$$0 + 7x_2 - x_3 = -9$$

$$0 + 3x_2 - x_3 = -5$$

$$x_1 - x_2 + x_3 = 6$$

 $0 - 7x_2 - x_3 = -9$
 $0 - (4/7)x_3 = -(8/7)$

Solve using BACK SUBSTITUTION:
$$x_3 = 2$$
 $x_2 = -1$ $x_1 = 3$

Forward Elimination

M U

$$4x_{0} +6x_{1} +2x_{2} -2x_{3} = 8$$

$$-3x_{1} +4x_{2} -1x_{3} = 0$$

$$1x_{2} +1x_{3} = 9$$

$$3x_{3} = 6$$

Operation count in Forward Elimination

TOTAL

29

TOTAL # of Operations for FORWARD ELIMINATION:

$$2n^{2} + 2(n-1)^{2} + \dots + 2*(2)^{2} + 2*(1)^{2} = 2\sum_{i=1}^{n} i^{2}$$

$$= 2\frac{n(n+1)(2n+1)}{6}$$

$$= O(n^{3})$$

Back Substitution

(* Pseudocode *)

```
for i \leftarrow n-1 down to 1 do
        /* calculate x_i */
        x[i] \leftarrow b[i]/a[i,i]
        /* substitute in the equations above */
        for j \leftarrow 0 to i - 1 do
                 b[i] \leftarrow b[i] - x[i] \times a[i,i]
        endfor
endfor
```


PARTIAL PIVOTING

If $a_{i,i}$ is zero or close to zero, we will not be able to compute the quantity $-a_{i,i}/a_{i,i}$

Procedure must be modified into so-called *partial pivoting* by **swap**ping the i^{th} row with the row below it that has the **largest** absolute element in the i^{th} column of any of the rows below the i^{th} row (if there is one).

(Reordering equations will not affect the system.)

SEQUENTIAL CODE

Without partial pivoting:

The time complexity: $T_{seq} = O(n^3)$

Computing the Determinant

Given an upper triangular system of equations

$$D=t_{00}\ t_{11}...\ t_{n-1,n-1}$$

$$\boldsymbol{D} = \begin{vmatrix} \boldsymbol{t}_{00} & \boldsymbol{t}_{01} & \lambda & \boldsymbol{t}_{0,n-1} \\ 0 & \boldsymbol{t}_{11} & \lambda & \boldsymbol{t}_{1,n-1} \\ 6 & 6 & 6 & 6 \\ 0 & 0 & \lambda & \boldsymbol{t}_{n-1,n-1} \end{vmatrix}$$

If *pivoting* is used then

$$D = t_{00} t_{11} \dots t_{n-1,n-1} (-1)^p$$
 where p is the number of times the rows are pivoted

Singular systems

- When two equations are identical, we would loose one degree of freedom n-1 equations for n unknowns \square infinitely many solutions
- This is difficult to find out for large sets of equations.

 The fact that the **determinant** of a singular system is **zero** can be used and tested after the elimination stage.

PARALLEL IMPLEMENTATION

Time Complexity Analysis (P = n)

Communication

(n-1) broadcasts performed sequentially - i^{th} broadcast contains (n-i) elements.

Total Time: $T_{par} = O(n^2)$ (How?)

Computation

After row i is broadcast, each processor P_j will compute its multiplier, and operate upon n-j+2 elements of its row. Ignoring the computation of the multiplier, there are (n-j+2) multiplications and (n-j+2) subtractions.

Total Time: $T_{par} = O(n^2)$

Therefore,

$$T_{par} = O(n^2)$$

Efficiency will be relatively low because all the processors before the processor holding row *i* do not participate in the computation again.

Strip Partitioning

Poor processor allocation!

Processors do not participate in computation after their last row is processed.

Cyclic-Striped Partitioning

An alternative which equalizes the processor workload

Jacobi Iterative Method (Sequential)

Iterative methods provide an alternative to the elimination methods.

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \mathbf{a}_{13} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \mathbf{a}_{23} \\ \mathbf{a}_{31} & \mathbf{a}_{32} & \mathbf{a}_{33} \end{bmatrix} \qquad \mathbf{D} = \begin{bmatrix} \mathbf{a}_{11} & 0 & 0 \\ 0 & \mathbf{a}_{22} & 0 \\ 0 & 0 & \mathbf{a}_{33} \end{bmatrix}$$

$$[D+(A-D)]x=b$$
 \Rightarrow $Dx=b-(A-D)x$ \Rightarrow $x=D^{-1}[b-(A-D)x]$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{new} = \begin{bmatrix} 1/a_{11} & 0 & 0 \\ 0 & 1/a_{22} & 0 \\ 0 & 0 & 1/a_{33} \end{bmatrix} * \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} 0 & a_{12} & a_{13} \\ a_{21} & 0 & a_{23} \\ a_{31} & a_{32} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}_{old}$$

$$x_1^k = \frac{b_1 - a_{12}x_2^{k-1} - a_{13}x_3^{k-1}}{a_{11}} \quad x_2^k = \frac{b_2 - a_{21}x_1^{k-1} - a_{23}x_3^{k-1}}{a_{22}} \quad x_3^k = \frac{b_3 - a_{31}x_1^{k-1} - a_{32}x_2^{k-1}}{a_{33}}$$

Choose an initial guess (i.e. all zeros) and Iterate until the equality is satisfied. No guarantee for convergence! Each iteration takes O(n²) time!

Gauss-Seidel Method (Sequential)

- The *Gauss-Seidel* method is a commonly used *iterative method*.
- It is same as **Jacobi technique** except with one important difference: A newly computed x value (say x_k) is substituted in the subsequent equations (equations k+1, k+2, ..., n) in the same iteration.

Example: Consider the 3x3 system below:

$$x_{1}^{new} = \frac{b_{1} - a_{12}x_{2}^{old} - a_{13}x_{3}^{old}}{a_{11}}$$

$$x_{2}^{new} = \frac{b_{2} - a_{21}x_{1}^{new} - a_{23}x_{3}^{old}}{a_{22}}$$

$$x_{3}^{new} = \frac{b_{3} - a_{31}x_{1}^{new} - a_{32}x_{2}^{new}}{a_{33}}$$

$$\{X\}_{old} \leftarrow \{X\}_{new}$$

- First, choose initial guesses for the x's.
- A simple way to obtain initial guesses is to assume that they are all zero.
- Compute **new x**₁ using the previous iteration values.
- New x_1 is substituted in the equations to calculate x_2 and x_3
- The process is repeated for x_2, x_3, \dots

Convergence Criterion for Gauss-Seidel Method

• Iterations are repeated until the convergence criterion is satisfied:

$$\left|\varepsilon_{a,i}\right| = \left|\frac{x_i^j - x_i^{j-1}}{x_i^j}\right| 100\% \ \sqrt{\varepsilon_s}$$
 For all *i*, where *j* and *j-1* are the *current* and *previous* iterations.

- As any other iterative method, the **Gauss-Seidel** method has problems:
 - It may not converge or it converges very slowly.
- If the coefficient matrix A is **Diagonally Dominant** Gauss-Seidel is guaranteed to converge. For each equation i:

Diagonally Dominant

$$|a_{ii}| \mid \exists \sum_{\substack{j=1 \ i \neq i}}^{n} |a_{i,j}|$$

• Note that this is not a necessary condition, i.e. the system *may* still have a chance to converge even if A is not diagonally dominant.

Time Complexity: Each iteration takes O(n²)

Finite Difference Method

Red-Black Ordering

First, **black** points computed simultaneously. Next, red points computed simultaneously.

