DIGITAL LOGIC CIRCUITS

Digital logic circuits

electronic circuits that handle information encoded in binary form (deal with signals that have only two values, **0** and **1**)

Digital computers, watches, controllers, telephones, cameras, ...

BINARY NUMBER SYSTEM

Numberin whatever base

Decimal value of the given number

1,998 = $1 \times 10^3 + 9 \times 10^2 + 9 \times 10^1 + 8 \times 10^0 = 1,000 + 900 + 90 + 8 =$ **1,998** Decimal:

Binary:

11111001110 =
$$1x2^{10} + 1x2^9 + 1x2^8 + 1x2^7 + 1x2^6 + 1x2^3 + 1x2^2 + 1x2^1 = 1,024 + 512 + 258 + 128 + 64 + 8 + 4 + 2 = 1,998$$

Powers of 2

N	2^N	Comments
0	1	
1	2	
2	4	
3	8	
4	16	
5	32	
6	64	
7	128	
8	256	
9	512	
10	1,024	"Kilo" as 2 ¹⁰ is the closest power of 2 to 1,000 (decimal)
11	2,048	
15	32,768	2 ¹⁵ Hz often used as clock crystal frequency in digital watches
20	1,048,576	"Mega" as 2^{20} is the closest power of 2 to 1,000,000 (decimal)
30	1,073,741,824	"Giga" as 2 ³⁰ is the closest power of 2 to 1,000,000,000(decimal)

[©] Emil M. Petriu

Negative Powers of 2

N <0	2^N
-1 -2 -3 -4 -5 -6 -7 -8 -9 -10	$2^{-1} = 0.5$ $2^{-2} = 0.25$ $2^{-3} = 0.125$ $2^{-4} = 0.0625$ $2^{-5} = 0.03125$ $2^{-6} = 0.015625$ $2^{-7} = 0.0078125$ $2^{-8} = 0.00390625$ $2^{-9} = 0.001953125$ $2^{-10} = 0.0009765625$

Binary numbers less than 1

Binary	Decimal value
0.101101	$= 1x2^{-1} + 1x2^{-3} + 1x2^{-4} + 1x2^{-6} = 0.703125$

Binary	Decimal	Hexadecimal
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	8
1001	9	9
1010	10	\mathbf{A}
1011	11	В
1100	12	C
1101	13	D
1110	14	${f E}$
1111	15	${f F}$

LOGIC OPERATIONS AND TRUTH TABLES

Digital logic circuits handle data encoded in binary form, i.e. signals that have only two values, **0** and **1**.

- Binary logic dealing with "true" and "false" comes in handy to describe the behaviour of these circuits: **0** is usually associated with "**false**" and **1** with "**true**."
- Quite complex digital logic circuits (e.g. entire computers) can be built using a few *types of basic circuits* called **gates**, each performing a single elementary logic operation : *NOT*, *AND*, *OR*, *NAND*, *NOR*, etc..
- <u>Boole's binary algebra</u> is used as a formal / mathematical tool to describe and design complex binary logic circuits.

A	В	A · B	AND
0 0 1 1	0 1 0 1	0 0 0 1	A B

A	В	A + B
0	0	0
$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1	1
1	0	1
1	1	1
1		I

OR

... more GATES

A	В	$\overline{\mathbf{A} \cdot \mathbf{B}}$
0	0	1
$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	1	1
1	0	1
1	1	0

NAND

В	A + B
0	1
1	0
0	0
1	0
	0 1 0

NOR

... and more GATES

A	В	$\mathbf{A} \oplus \mathbf{B}$
0	0	0
$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	1	1
1	0	1
1	1	0
l		

XOR

A	В	$\overline{\mathbf{A} \oplus \mathbf{B}}$
0	0	1
0	1	0
1	0	0
1	1	1

EQU or XNOR

GATES ... with more inputs

EXAMPLES OF GATES WITH THREE INPUTS

A	В	С	A·B·C	A+B+C	A·B·C	A+B+C
0	0	0	0	0	1	1
0	0	1	0	1	1	0
0	1	0	0	1	1	0
0	1	1	0	1	1	0
1	0	0	0	1	1	0
1	0	1	0	1	1	0
1	1	0	0	1	1	0
1	1	1	1	1	0	0

$$\begin{array}{c|c}
\mathbf{A} & \\
\mathbf{B} & \\
\mathbf{C} & \\
\end{array}$$

$$NAND \qquad \mathbf{F} = \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C}$$

$$\begin{array}{c|c}
A \\
B \\
C
\end{array}
NOR$$

$$\begin{array}{c}
F = \overline{A + B + C} \\
\end{array}$$

Logic Gate Array that Produces an Arbitrarily Chosen Output

AND rules

$$\mathbf{A} \cdot \mathbf{A} = \mathbf{A}$$

$$\mathbf{A} \cdot \mathbf{A} = \mathbf{0}$$

$$\mathbf{0} \cdot \mathbf{A} = \mathbf{0}$$

$$1 \cdot A = A$$

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

$$\mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$$

$$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{A} + \mathbf{B}$$

"Proof":

A B C	A· (B+C)	A·B+A·C
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	0	0
1 0 0	0	0
1 0 1	1	1
1 1 0	1	1
1 1 1	1	1

OR rules

$$A + A = A$$

$$A + A = 1$$

$$0 + A = A$$

$$1 + A = 1$$

$$A + B = B + A$$

$$A + (B + C) = (A + B) + C$$

$$A + B \cdot C = (A + B) \cdot (A + C) <$$

 $\mathbf{A} + \mathbf{B} = \mathbf{A} \cdot \mathbf{B}$

A B C	A + B•C	$(A+B)\cdot (A+C)$
0 0 0	0	0
0 0 1	0	0
0 1 0	0	0
0 1 1	1	1
1 0 0	1	1
1 0 1	1	1
1 1 0	1	1
1 1 1	1	1

DeMorgan's Theorem

Simplifying logic functions using Boolean algebra rules

Simplifying logic functions using Boolean algebra rules ... continued

$$F = \overline{A}B\overline{C} + \overline{A}BC + \overline{A}BC + ABC$$

$$F = (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}C + ABC)$$

$$F = \overline{A}(B\overline{C} + BC) + A(\overline{B}C + BC)$$

$$F = \overline{AB}(\underbrace{\overline{C} + C}) + AC(\underbrace{\overline{B} + B})$$

Simplifying logic functions using Karnaugh maps

Karnaugh map => graphical representation of a truth table for a logic function.

Each line in the truth table corresponds to a square in the Karnaugh map.

The Karnaugh map squares are labeled so that horizontally or vertically adjacent squares differ only in one variable. (Each square in the top row is considered to be adjacent to a corresponding square in the bottom row. Each square in the left most column is considered to be adjacent to a corresponding square in the right most column.)

Karnaugh map

	A	В	C	F
$\overline{(0)}$	0	0	0	•••
(1)	0	0	1	•••
(2)	0	1	0	•••
(3)	0	1	1	•••
(4)	1	0	0	•••
(5)	1	0	1	•••
(6)	1	1	0	•••
(7)	1	1	1	•••

Simplifying logic functions of 4 variables using Karnaugh maps

	A	В	C	D	F
(0)	0	0	0	0	•••
(1)	0	0	0	1	•••
(2)	0	0	1	0	
(3)	0	0	1	1	
(4)	0	1	0	0	•••
(5)	0	1	0	1	•••
(6)	0	1	1	0	•••
(7)	0	1	1	1	•••
(8)	1	0	0	0	•••
(9)	1	0	0	1	•••
(10)	1	0	1	0	•••
(11)	1	0	1	1	•••
(12)	1	1	0	0	•••
(13)	1	1	0	1	
(14)	1	1	1	0	•••
(15)	1	1	1	1	•••

AB				
CD	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

Simplifying logic functions using Karnaugh maps ... looping

The logic expressions for an output can be simplified by properly combining squares (**looping**) in the Karnaugh maps which contain **1**s.

Looping a pair of adjacent 1s eliminates the variable that appears in both direct and complemented form.

	A	В	C	F
(0)	0	0	0	0
(1)	0	0	1	0
(2)	0	1	0	1
(3)	0	1	1	1
(4)	1	0	0	0
(5)	1	0	1	1
(6)	1	1	0	0
(7)	1	1	1	1

Simplifying logic functions using Karnaugh maps ... more looping

	A	В	C	D	F
(0)	0	0	0	0	1
(1)	0	0	0	1	0
(2)	0	0	1	0	1
(3)	0	0	1	1	0
(4)	0	1	0	0	0
(5)	0	1	0	1	1
(6)	0	1	1	0	0
(7)	0	1	1	1	1
(8)	1	0	0	0	0
(9)	1	0	0	1	0
(10)	1	0	1	0	0
(11)	1	0	1	1	0
(12)	1	1	0	0	1
(13)	1	1	0	1	1
(14)	1	1	1	0	1
(15)	1	1	1	1	1

Looping a *quad* of adjacent **1**s eliminates the two variables that appears in both direct and complemented form.

DeMorgan's Theorem

Equivalent Gate Symbols

NAND gate implementation of the "sum-of-product" logic functions

NAND gates are faster than ANDs and ORs in most technologies

ADDING BINARY NUMBERS

Adding two bits:

$$\begin{array}{ccc}
0+ & 0+ \\
0 & 1 \\
\hline
0 & 1
\end{array}$$

The binary number 10 is equivalent to the decimal 2

Sum

Carry

Truth table

Inp A	uts B	Outp Carry	
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$Sum = A + B$$

$$Carry = A \cdot B$$

Adding multi-bit numbers:

Full Adder

Bits of the same rank of the two numbers

1 🛕	Inputs		Outp	
A	B	CI	CO	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

A B	S				
CI	00 01 11 10				
0	0	1	0	1	
1	1	0	1	0	

$$S = A \cdot B \cdot CI + A \cdot B \cdot CI + A \cdot B \cdot CI + A \cdot B \cdot CI$$

$$C = A \cdot B + B \cdot CI + A \cdot CI$$

HEX-TO-7 SEGMENT DECODER

This examples illustrates how a practical problem is analyzed in order to generate truth tables, and then how truth table-defined functions are mapped on Karnaugh maps.

	B3 B2 B1 B0	"machine"
(0)	0 0 0 0	representation the user see representation
(1)	0 0 0 1	of the hex hex digits
(2)	0 0 1 0	digits
(3)	0 0 1 1	S5 S4 S3
(4)	0 1 0 0	
(5)	0 1 0 1	
(6)	0 1 1 0	Binary or
(7)	0 1 1 1	such a sig
(8)	1 0 0 0	S7 S6 S5 S4 S3 S2 S1 (in the 7-s
(<mark>9</mark>)	1 0 0 1	is on (you
(A)	1 0 1 0	7 SEGMENT signal is segment
(B)	1 0 1 1	HEX see it).
(C)	1 1 0 0	
(D)	1 1 0 1	
(E)	1 1 1 0	
(F)	1 1 1 1	B3 B2 B1 B0 The four-bit representation of the hex digits

7-segment display to allow the user see the natural representation of the hex digits.

Binary outputs; when such a signal is = 1 then the corresponding segment in the 7-segment display is on (you see it), when the signal is = 0 then the segment is off (you can't see it).

The four-bit representation of the hex digits

"Natural" (i.e.as humans write) representation of the "hex" digits.

We are developing ad-hoc"binary-hex logic" expressions used just for our convenience in the problem analysis process. Each expression will enumerate only those hex digits when the specific display-segment is "on":

$$S1 = 0+2+3+5+6+7+8+9+A+C+E+F$$

 $S2 = 0+1+2+3+4+7+8+9+A+D$

© Emil M. Petriu

♦ <u>Hex-to-7 segment</u>

	В3	B2	B1	B0
(0)	0	0	0	0
(1)	0	0	0	1
(2)	0	0	1	0
(3)	0	0	1	1
(4)	0	1	0	0
<i>(</i> 5 <i>)</i>	0	1	0	1
(6)	0	1	1	0
(7)	0	1	1	1
(8)	1	0	0	0
(9)	1	0	0	1
(A)	1	0	1	0
(B)	1	0	1	1
(C)	1	1	0	0
(D)	1	1	0	1
(E)	1	1	1	0
(F)	1	1	1	1

As we are using ad-hoc "binary-hex logic" equations, (i.e. binary S... outputs as functions of hex variables) it will useful in this case to have hex-labeled Karnaugh map, instead of the usual 2-D (i.e. two dimensional) binary labeled K maps. This will allow for a more convenient mapping of the "binary-hex" logic equations onto the K-maps.

Hex-to-7 segment

Mapping the ad-hoc "binary-hex logic" equations onto Karnaugh maps:

B3 B2				
B1 B0	00	01	11	10
00	0	4	C	8
01	1	5	D	9
11	3	7	F	B
10	2	6	E	A

$$\mathbf{S1} = 0+2 +3+5+6+7+8+9+A+C+E+F$$

 $\mathbf{S2} = 0+1+2+3+4+7+8+9+A+D$
 $\mathbf{S3} = 0+1+3+4+5+6+7+8+9+A+B+D$

$$S4 = 0+2+3+5+6+8+9+B+C+D+E$$

B3 B2	S1			
B1 B0	00	01	11	10
00	1	0	1	1
01	0	1	0	1
11	1	1	1	0
10	1	1	1	1

B	3 B2	$\mathbf{S3}$					
B1 B0		00	01	11	10		
F	00	1	1	0	1		
	01	1	1	1	1		
)	11	1	1	0	1		
	10	0	1	0	1		

B3 B2	S2				
B1 B0	00 01 11 10				
00	1	1	0	1	
01	1	0	1	1	
11	1	1	0	0	
10	1	0	0	1	

B3 B2	S4			
B1 B0	00	01	11	10
00	1	0	1	1
01	0	1	1	1
11	1	0	0	1
10	1	1	1	0

B3 B2				
B1 B0	00	01	11	10
00	0	4	C	8
01	1	5	D	9
11	3	7	F	B
10	2	6	E	A

B3 B2			S5)
B1 B0	00	01	11	10
00	1	0	1	1
01	0	0	1	0
11	0	0	1	1
10	1	1	1	1

B3 B2	S6			
B1 B0	00	01	11	10
00	1	1	1	1
01	0	1	0	1
11	0	0	1	1
10	0	1	1	1

S5 = 0+2+6+8+A+B+C+D+E+F
$\mathbf{S6} = 0 + 4 + 5 + 6 + 8 + 9 + \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{E} + \mathbf{F}$
S7 = 2+3+4+5+6+8+9+A+B+D+E+F

SYSTEMS of LOGIC FUNCTIONS > 2- bit Comparator

	$\mathbf{A_1}$	$\mathbf{A_0}$	B ₁	\mathbf{B}_{0}	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$
(0)	0	0	0	0	1	0	0
(1)	0	0	0	1	0	0	1
(2)	0	0	1	0	0	0	1
(3)	0	0	1	1	0	0	1
(4)	0	1	0	0	0	1	0
(5)	0	1	0	1	1	0	0
<i>(6)</i>	0	1	1	0	0	0	1
<i>(7)</i>	0	1	1	1	0	0	1
(8)	1	0	0	0	0	1	0
(9)	1	0	0	1	0	1	0
(10)	1	0	1	0	1	0	0
(11)	1	0	1	1	0	0	1
(12)	1	1	0	0	0	1	0
(13)	1	1	0	1	0	1	0
(14)	1	1	1	0	0	1	0
(15)	1	1	1	1	1	0	0

Compare two 2-bit numbers:

A=B
$$\Rightarrow$$
 F₁ = Σ (0,5,10,15)

A>B
$$\Rightarrow$$
 F₂ = Σ (4,8,9,12,13,14)

A**\Rightarrow F₃ =
$$\Sigma$$
 (1,2,3,6,7,11)**

A=B
$$\implies$$
 F₁ = Σ (0,5,10,15)

$\underbrace{\mathbf{A_1}}_{\mathbf{A_0}} \mathbf{A_0}$				
$B_1 B_0$	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

 $\mathbf{F_1} = 1$ when both numbers, A and B, are equal which happens when all their bits of the same order are identical, i.e. $A_0 = B_0$ *AND* $A_1 = B_1$

$$F_1 = \overline{(A_0 \oplus B_0)} \bullet \overline{(A_1 \oplus B_1)}$$

$$A < B \implies F_3 = \Sigma (1,2,3,6,7,11)$$

$$A_1 A_0$$

$$B_1 B_0 \qquad 00 \quad 01 \quad 11 \quad 10$$

$$00 \quad 0 \quad 4 \quad 12 \quad 8$$

$$01 \quad 1 \quad 5 \quad 13 \quad 9$$

$$11 \quad 3 \quad 7 \quad 15 \quad 11$$

$$10 \quad 2 \quad 6 \quad 14 \quad 10$$

$$F_3 = A_0 B_1 B_0 + A_1 B_1 + A_1 A_0 B_0$$

A>B
$$\Rightarrow$$
 $F_2 = \Sigma (4,8,9,12,13,14)$

$A>B \implies F_2 = \Sigma (4,8,9,12,13,14)$	B_1B_0	00	01	11	10
	00	0	4	12	8
A1A0	01	1	5	13	9
B_1B_0 00 01 11 10	11	3	7	15	11

00	0	1	1	1
01	0	0	1	1
11	0	0	0	0
10	0	0	1	0

\mathbf{F}_{2}	$\overline{F_1 + F_3}$	
12-		

10

A1A0	$\overline{\mathbf{F_1}+\mathbf{F_3}}$								
B_1B_0	00	01	11	10					
00	1	0	0	0					
01	1	1	0	0					
11	1	1	1	1					
10	1	1	0	1					

A_1	A0		$\overline{\mathbf{F_1}}$								
B ₁ F	30	00	01	11	10						
	00	1	0	0	0						
	01	0	1	0	0						
	11	0	0	1	0						
	10	0	0	0	1						

A_1A_0			$\mathbf{F_3}$	\
B_1B_0	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	0	1
10	1	1	0	0

$$F_1 = (\overline{A_0 \oplus B_0}) \bullet \overline{(A_1 \oplus B_1)}$$

$$F_2 = \overline{F_1 + F_3}$$

$$F_3 = A_0B_1B_0 + A_1B_1 + \overline{A_1}A_0B_0$$

	A	В	C	F ₀	\mathbf{F}_1	\mathbf{F}_2	F ₃	F_4	\mathbf{F}_{5}	\mathbf{F}_{6}	\mathbf{F}_{7}
(0)	0	0	0	1	0	0	0	0	0	0	0
(1)	0	0	1	0	1	0	0	0	0	0	0
(2)	0	1	0	0	0	1	0	0	0	0	0
(3)	0	1	1	0	0	0	1	0	0	0	0
(4)	1	0	0	0	0	0	0	1	0	0	0
<i>(5)</i>	1	0	1	0	0	0	0	0	1	0	0
(6)	1	1	0	0	0	0	0	0	0	1	0
(7)	1	1	1	0	0	0	0	0	0	0	1

3-to-8 Decoder (74 138)

	A	В	C	Ē	$\overline{\overline{F}}_0$	$\overline{\overline{F}}_1$	\overline{F}_2	\overline{F}_3	$\overline{\mathbf{F}}_{4}$	\mathbf{F}_{5}	\mathbf{F}_{6}	_ F ₇
(x)	X	X	X	1	1	1	1	1	1	1	1	1
<i>(0)</i>	0	0	0	0	0	1	1	1	1	1	1	1
<i>(1)</i>	0	0	1	0	1	0	1	1	1	1	1	1
(<mark>2</mark>)	0	1	0	0	1	1	0	1	1	1	1	1
<i>(3)</i>	0	1	1	0	1	1	1	0	1	1	1	1
<i>(</i> 4 <i>)</i>	1	0	0	0	1	1	1	1	0	1	1	1
<i>(</i> 5 <i>)</i>	1	0	1	0	1	1	1	1	1	0	1	1
(6)	1	1	0	0	1	1	1	1	1	1	0	1
<i>(</i> 7 <i>)</i>	1	1	1	0	1	1	1	1	1	1	1	0

BCD-TO-7 SEGMENT DECODER

_					
	В3	B2	B1	B0	
(0)	0	0	0	0	•
(1)	0	0	0	1	
(2)	0	0	1	0	
(3)	0	0	1	1	
(4)	0	1	0	0	
<i>(</i> 5 <i>)</i>	0	1	0	1	
(6)	0	1	1	0	
(7)	0	1	1	1	
(8)	1	0	0	0	
(9)	1	0	0	1	
(x)	1	0	1	0	1
(x)	1	0	1	1	
(x)	1	1	0	0	
(x)	1	1	0	1	
(x)	1	1	1	0	
(x)	1	1	1	1	_
					•

B3 B2				
B1 B0	00	01	11	10
00	0	4	х	8
01	1	5	X	9
11	3	7	X	x
10	2	6	X	x

"Don't Care" states/situations. As it is expected that these states are never going to occur, then we may just as well use them as fill-in "1s" in a Karnaugh map if this helps to make larger loopings

♦ BCD-to-7 segment

ſ					1
	В3	B2	B1	B0	
(0)	0	0	0	0	
(1)	0	0	0	1	
(2)	0	0	1	0	
<i>(</i> 3 <i>)</i>	0	0	1	1	
<i>(</i> 4 <i>)</i>	0	1	0	0	
<i>(</i> 5 <i>)</i>	0	1	0	1	
(6)	0	1	1	0	
<i>(</i> 7 <i>)</i>	0	1	1	1	
(8)	1	0	0	0	
(9)	1	0	0	1	
(x)	1	0	1	0	
(x)	1	0	1	1	
(x)	1	1	0	0	
(x)	1	1	0	1	
(x)	1	1	1	0	
(x)	1	1	1	1	

$$S1 = 0+2+3+5+6+7+8+9$$
 $S5 = 0+2+6+8$ $S2 = 0+1+2+3+4+7+8+9$ $S6 = 0+4+5+6+8+9$ $S7 = 2+3+4+5+6+8+9$

S4 = 0 + 2 + 3 + 5 + 6 + 8 + 9

$$\mathbf{S1} = 0 + 2 + 3 + 5 \\ + 6 + 7 + 8 + 9$$

B3 B2			51	1	
B1 B0	00	01	11	10	
00	1/	0	X	1	
01	0	1	X	1	
11	1	1	X	X	
10	1	1	X	X	
					ı

$$S1 = \boxed{B3} + \boxed{B2B0} + \boxed{B1}$$

$$+ \boxed{B2B1} + \boxed{B2B0}$$

$$\mathbf{S2} = 0 + 1 + 2 + 3 \\ + 4 + 7 + 8 + 9$$

$$S2 = \boxed{B3 + \boxed{B2} + \boxed{B1B0} + \boxed{B1B0}}$$

♦ BCD-to-7 segment

$$S3 = 0+1+3+4+5+6+7+8+9$$

$$S3 = \overline{B3} + \overline{B1B0} + \overline{\overline{B1}} + \overline{B2}$$

S4 = 0+2+3+5+6+8+9

$$S4 = \overline{B3} + (\overline{B2B0}) + \overline{B2B1} + \overline{B2B1B0} + \overline{B1B0}$$

$$S5 = 0 + 2 + 6 + 8$$

$$S5 = \overline{B2B0} + \overline{B1B0}$$

$$S6 = 0 + 4 + 5 + 6 + 8 + 9$$

S7 = 2+3+4+5+6+8+9

$$\mathbf{S7} = \boxed{\mathbf{B3}} + \boxed{\overline{\mathbf{B2B1}}} + \boxed{\overline{\mathbf{B1B0}}}$$

$$\mathbf{S6} = \boxed{\mathbf{B3}} + \left(\overline{\mathbf{B1B0}}\right) + \left(\overline{\mathbf{B1B2}}\right) + \left(\overline{\mathbf{B2B0}}\right)$$

MEMORY ELEMENTS: LATCHES AND FLIP-FLOPS

I1	I2	F
0	0	1
0	1	1
1	0	1
1	1	0

$\overline{\mathbf{S}}$	$\overline{\mathbf{R}}$	Q	$\overline{\mathbf{Q}}$	
0	0	1	1	Weird state Set state Reset state Hold state
0	1	1	0	
1	0	0	1	
1	1	Q	Q	

$\rightarrow D$ (Transparent) Latch

Enable D	\overline{S} \overline{R}	Q \bar{Q}		$\overline{\mathbf{S}}$	R	Q	$\bar{\mathbf{Q}}$
0 0	1 1	$Q \overline{Q}$	×	0	0	1	1
0 1	1 1	$Q \bar{Q}$		0	1	1	0
1 0	1 0	0 1		1	0	0	$\frac{1}{2}$
1 1	0 1	1 0		1	1	Q	Q
			1				

Enable	D	Q	$ar{f Q}$
0	X	Q	\overline{Q}
1	0	0	1
1	1	1	0

When the Enable input is =1 (i.e. TRUE or HIGH) the information present at the D input is stored in the latch and will "appear as it is" at the Q output (=> it is like that there is a "transparent" path from the D input to the Q output)

Enable D	$\overline{\mathbf{S}}$ $\overline{\mathbf{R}}$	$Q \bar{Q}$
0 0	1 1	$Q \overline{Q}$
0 1	1 1	$Q \bar{Q}$
1 0	1 0	0 1
1 1	0 1	1 0

\diamond Synchronous D Flip-Flop

Connection diagram of the **7474 Dual Positive-Edge-Triggered D Flip-Flops** with Preset and Clear.

 \rightarrow 4-Bit Synchronous Counter using D Flip-Flops

DECIMAL STATE	BINARY STATE OF THE COUNTER			FLIP FLOP INPUTS (for the next state)				
Q	Q3	Q2	Q1	Q0	D3	D2	D1	D0
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	0
2	0	0	1	0	0	0	1	1
3	0	0	1	1	0	1	0	0
4	0	1	0	0	0	1	0	1
5	0	1	0	1	0	1	1	0
6	0	1	1	0	0	1	1	1
7	0	1	1	1	1	0	0	0
8	1	0	0	0	1	0	0	1
9	1	0	0	1	1	0	1	0
10	1	0	1	0	1	0	1	1
11	1	0	1	1	1	1	0	0
12	1	1	0	0	1	1	0	1
13	1	1	0	1	1	1	1	0
14	1	1	1	0	1	1	1	1
15	1	1	1	1	0	0	0	0
0	0	0	0	0				

Synchronous 4-bit Counter

Using D flip-flops has the distinct advantage of a straightforward definition of the flip-flop inputs: the current state of these inputs is the next state of the counter. The logic equations for all four flip-flop inputs D3, D2,

Q3 Q2 Q1 Q0	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

D1, and **D0** are derived from this truth table as functions of the current states of the counter's flip-flops: Q3, Q2, Q1, and Q0. Karnaugh maps can be used to simplify these equations.

Q3 Q2	D3				
Q1 Q0	00	01	11	10	
00	0	0	1	1	
01	0	0	1	1	
11	0	1	0	1	
10	0	0	1	1	

Q3 Q2	D2				
Q1 Q0	00	01	11	10	
00	0	1	1	0	
01	0	1	1	0	
11	1	0	0	1	
10	0	1	1	0	

Q3 Q2	D1			
Q1 Q0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	0	0	0	0
10	1	1	1	1

Q3 Q2	D0				
Q1 Q0	00	01	11	10	
00	1	1	1	1	
01	0	0	0	0	
11	0	0	0	0	
10	1	1	1	1	

Synchronous 4-bit Counter

$$\mathbf{D3} = \mathbf{Q3} \cdot \mathbf{Q2} + \mathbf{Q3} \cdot \mathbf{Q1} + \mathbf{Q3} \cdot \mathbf{Q0} + \mathbf{Q3} \cdot \mathbf{Q2} \mathbf{Q1} \cdot \mathbf{Q0}$$

Synchronous 4-bit Counter

$$\mathbf{D0} = \overline{\mathbf{Q0}}$$

$$\mathbf{D1} = \overline{\mathbf{Q1}} \cdot \mathbf{Q0} + \mathbf{Q1} \cdot \overline{\mathbf{Q0}}$$

$$\mathbf{D2} = \mathbf{Q2} \cdot \overline{\mathbf{Q0}} + \mathbf{Q2} \cdot \overline{\mathbf{Q1}} + \overline{\mathbf{Q2}} \cdot \mathbf{Q1} \cdot \mathbf{Q0}$$

$$\mathbf{D3} = \mathbf{Q3} \cdot \overline{\mathbf{Q2}} + \mathbf{Q3} \cdot \overline{\mathbf{Q1}} + \mathbf{Q3} \cdot \overline{\mathbf{Q0}}$$

$$+ \overline{\mathbf{Q3}} \cdot \mathbf{Q2} \cdot \mathbf{Q1} \cdot \mathbf{Q0}$$

