

Global United Technology Services Co., Ltd.

Report No.: GTS201605000056E01

FCC Report (WIFI)

Applicant: Freedom Audio, Inc

740 N. Magnolia Ave. Orlando, FL32803, USA. Address of Applicant:

Equipment Under Test (EUT)

Product Name: Drifter

Model No.: DRIFTER 1.0

Trade Mark: Drifter

FCC ID: 2AICF-DRIFTER

FCC CFR Title 47 Part 15 Subpart C Section 15.247:2015 **Applicable standards:**

May 12, 2016 Date of sample receipt:

Date of Test: May 13-17, 2016

Date of report issued: May 18, 2016

PASS * Test Result:

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	May 18, 2016	Original

Prepared By:	Yang liu	Date:	May 18, 2016	
	Project Engineer			
Check By:	Andy www.	Date:	May 18, 2016	

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4	TEST	Г SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT.	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	6
6	TEST	「INSTRUMENTS LIST	7
7	TEST	Γ RESULTS AND MEASUREMENT DATA	8
		ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	12
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2		
	7.7	SPURIOUS EMISSION	
	7.7.1 7 7 2		
		Taulates Emission Memorial	
8	TEST	SETUP PHOTO	43
9	FIIT	CONSTRUCTIONAL DETAILS	45

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.4:2014 and ANSI C63.10:2013.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1)					
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 Client Information

Applicant:	Freedom Audio, Inc	
Address of Applicant:	740 N. Magnolia Ave. Orlando, FL32803, USA.	
Manufacturer:	Shenzhen Bluewon Technologies limited	
Address of Manufacture:	3 Floor(east), A building, Gongle Industrial Zone, Tiezai Road, Xixiang Town, Baoan Dist,Shenzhen city, Guangdong Province,China	

5.2 General Description of EUT

Product Name:	Drifter
Model No.:	DRIFTER 1.0
Operation Frequency:	802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral antenna
Antenna gain:	1.45dBi(declare by Applicant)
Power supply:	DC 3.7V, 8000mAh, 29.6Wh Lion battery

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

	Frequency (MHz)
Test channel	802.11b/802.11g/802.11n(HT20)
Lowest channel	2412MHz
Middle channel	2437MHz
Highest channel	2462MHz

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode (Dutycycle>98%)			
Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply				

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)
Data rate 1Mbps		6Mbps	6.5Mbps

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Emerson Network Power	USB Charger	A1299	N/A	VOC

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

Global United Technology Services Co., Ltd.

 $No.\ 301\text{-}309,\ 3/F.,\ Jinyuan\ Business\ Building,\ No.2,\ Laodong\ Industrial\ Zone,$

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6 Test Instruments list

Rad	Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 26 2016	Mar. 27 2017				
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A				
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 03 2015	Dec. 02 2016				
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016				
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 30 2015	June 29 2016				
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015	June 25 2016				
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 26 2016	Mar. 25 2017				
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 27 2016	Mar. 26 2017				
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 27 2016	Mar. 26 2017				
11	Coaxial cable	GTS	N/A	GTS210	Mar. 27 2016	Mar. 26 2017				
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 27 2016	Mar. 26 2017				
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 30 2015	June 29 2016				
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 30 2015	June 29 2016				
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015	June 25 2016				
16	Band filter	Amindeon	82346	GTS219	Mar. 27 2016	Mar. 26 2017				
17	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016				
18	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016				

Cond	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 06 2015	Sep. 05 2016				
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016				
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016				
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016				
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016				
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016				
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

Gen	General used equipment:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)				
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016				

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is integral antenna, the best case gain of the antenna is 1.45dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
	150KHz to 30MHz					
Test Frequency Range:						
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, St	· · · · · · · · · · · · · · · · · · ·				
Limit:	Frequency range (MHz)	Limit (c				
	, , ,	Quasi-peak	Average			
	0.15-0.5 0.5-5	66 to 56* 56	56 to 46* 46			
	5-30	60	50			
	* Decreases with the logarithn	n of the frequency.				
Test setup:	Reference Plane					
	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow				
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement. 					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details	;				
Test results:	Pass					
i est results:	rass					

Measurement data

Line:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. : 0056 Test mode : Wifi mode Test Engineer: Sky

1050	Freq	Read	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBu₹	dBu₹	dB	dB	dBuV	dB	
1	0.406	47.99	48.21	0.11	0.11	57.73	-9.52	QP
2	0.406	35.85	36.07	0.11	0.11	47.73	-11.66	Average
2 3	0.447	47.60	47.83	0.12	0.11	56.93	-9.10	QP
	0.447	34.23	34.46	0.12	0.11	46.93	-12.47	Average
4 5 6 7	0.592	42.87	43.12	0.13	0.12	56.00	-12.88	QP
6	0.592	30.97	31.22	0.13	0.12	46.00	-14.78	Average
	1.043	44.42	44.69	0.14	0.13	56.00	-11.31	QP
8	1.043	30.45	30.72	0.14	0.13	46.00	-15.28	Average
9	2. 422	42.99	43.27	0.13	0.15	56.00	-12.73	QP
10	2.422	30.99	31.27	0.13	0.15	46.00	-14.73	Average
11	4.070	41.32	41.67	0.20	0.15	56.00	-14.33	QP
12	4.070	31.74	32.09	0.20	0.15	46.00	-13.91	Average

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 0056 Test mode : Wifi mode Test Engineer: Sky

	Freq	Kead Level	Level	Factor	Cable Loss	Limit	Over Limit	Remark
	MHz	dBuV	dBu₹	dB	dB	dBu₹	dB	
1	0.389	49.62	49.79	0.06	0.11	58.08	-8.29	QP
2	0.389	34.18	34.35	0.06	0.11	48.08	-13.73	Average
3	0.471	48.42	48.59	0.06	0.11	56.49	-7.90	QP
4 5	0.471	34.14	34.31	0.06	0.11	46.49	-12.18	Average
5	0.585	46.26	46.45	0.07	0.12	56.00	-9.55	QP
6	0.585	26.55	26.74	0.07	0.12	46.00	-19.26	Average
7	0.844	43.23	43.43	0.07	0.13	56.00	-12.57	QP
8	0.844	25.70	25.90	0.07	0.13	46.00	-20.10	Average
9	1.310	42.13	42.35	0.09	0.13	56.00	-13.65	QP
10	1.310	25.73	25.95	0.09	0.13	46.00	-20.05	Average
11	3.107	45.68	45.95	0.12	0.15	56.00	-10.05	QP
12	3, 107	29.45	29.72	0.12	0.15	46.00	-16.28	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	30dBm					
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Measurement Data

Test CH	Peak	c Output Power (Limit(dBm)	Result		
1000 011	802.11b	802.11g	802.11n(HT20)	- Limit(dBin)	rtosuit	
Lowest	7.66	7.26	7.20			
Middle	7.18	6.87	6.85	30.00	Pass	
Highest	7.03	6.81	6.54			

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03				
Limit:	>500KHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement Data

Test CH	CI	hannel Bandwidth (Limit(KHz)	Result	
1631 011	802.11b	802.11g	802.11n(HT20)	Lillit(IXI IZ)	Result
Lowest	9.969	16.544	17.662		
Middle	10.043	16.538	17.651	>500	Pass
Highest	10.262	16.506	17.590		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH	Power Spectral Density (dBm)			Limit(dBm/3kHz)	Result	
rest orr	802.11b	802.11g	802.11n(HT20)	Limit(dbin/3ki iz)	Result	
Lowest	-3.19	-4.94	-6.10		Pass	
Middle	-4.09	-5.41	-6.89	8.00		
Highest	-4.50	-5.43	-7.95			

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Test plot as follows:

Lowest channel

| Peak |

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

7.0.2 Radiated Emission N							
Test Requirement:	FCC Part15 C S		and 15.205				
Test Method:	ANSI C63.10:20						
Test Frequency Range:	All of the restrict 2500MHz) data		ested, only	the worst ba	and's (2310MHz to		
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
·		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque		imit (dBuV	/m @3m)	Value		
	Above 1	GHz	54.0 74.0	<u> </u>			
Test setup:	EUT 3m <	m lim	Antenna Horn Anter Spectrum Analyzer Amplifie	nna			
Test Procedure:	the ground at determine the 2. The EUT was antenna, white tower. 3. The antenna ground to det horizontal an measuremen 4. For each sus and then the and the rotal the maximum 5. The test-rece Specified Bail 6. If the emission the limit specified by the EUT where the test of the test of the EUT where the test of the EUT where the test of the test of the EUT where the test of the EUT where the test of the	t a 3 meter came position of the position of the set 3 meters and the position of the set 3 meters and the polarist. I pected emission antenna was turbulated and the polarist	ber. The tall highest race highest race way from the don the top. I from one noting wall of the tall highest to height of the top aximum Holl UT in peaking could be d. Otherwis re-tested of specified are some performing which it is are performing which it is a top to the tall high peaking the tall high peakin	ble was rotadiation. ne interference of a variable meter to four e of the field ne antenna a was arrange was a bette et e was a stopped and the emissione by one was a was arrange was a	remeters above the strength. Both are set to make the ed to its worst case neter to 4 meters degrees to find unction and 10dB lower than d the peak values ions that did not sing peak, quasi-		
Test Instruments:	Refer to section						
Test mode:					-		
TOST HIOGO.	Refer to section	5.3 for details					

Lowest

Measurement data:

Test mode:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:

802.11b

Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	51.73	27.59	5.38	34.01	50.69	74.00	-23.31	Horizontal
2400.00	60.77	27.58	5.39	34.01	59.73	74.00	-14.27	Horizontal
2390.00	53.42	27.59	5.38	34.01	52.38	74.00	-21.62	Vertical
2400.00	62.59	27.58	5.39	34.01	61.55	74.00	-12.45	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	38.47	27.59	5.38	34.01	37.43	54.00	-16.57	Horizontal
2400.00	46.77	27.58	5.39	34.01	45.73	54.00	-8.27	Horizontal
2390.00	40.29	27.59	5.38	34.01	39.25	54.00	-14.75	Vertical
2400.00	48.87	27.58	5.39	34.01	47.83	54.00	-6.17	Vertical
Test mode:		802.1	1b	Tes	st channel:	ŀ	Highest	
Peak value					_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.42	27.53	5.47	33.92	51.50	74.00	-22.50	Horizontal
2500.00	48.22	27.55	5.49	29.93	51.33	74.00	-22.67	Horizontal
2483.50	54.69	27.53	5.47	33.92	53.77	74.00	-20.23	Vertical

Average value:

50.75

2500.00

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.84	27.53	5.47	33.92	37.92	54.00	-16.08	Horizontal
2500.00	34.93	27.55	5.49	29.93	38.04	54.00	-15.96	Horizontal
2483.50	40.80	27.53	5.47	33.92	39.88	54.00	-14.12	Vertical
2500.00	36.81	27.55	5.49	29.93	39.92	54.00	-14.08	Vertical

29.93

53.86

74.00

-20.14

Vertical

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

27.55

802.11g

Test mode:

Report No.: GTS201605000056E01

Lowest

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.60	27.59	5.38	34.01	49.56	74.00	-24.44	Horizontal
2400.00	59.26	27.58	5.39	34.01	58.22	74.00	-15.78	Horizontal
2390.00	52.21	27.59	5.38	34.01	51.17	74.00	-22.83	Vertical
2400.00	60.77	27.58	5.39	34.01	59.73	74.00	-14.27	Vertical
Average va	lue:			•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.66	27.59	5.38	34.01	36.62	54.00	-17.38	Horizontal
2400.00	45.84	27.58	5.39	34.01	44.80	54.00	-9.20	Horizontal
2390.00	39.40	27.59	5.38	34.01	38.36	54.00	-15.64	Vertical
2400.00	47.86	27.58	5.39	34.01	46.82	54.00	-7.18	Vertical
Test mode:		802.1	802.11g		st channel:	F	lighest	
Peak value:	1							
Frequency (MHz)	Read	Antenna	Cable	Preamp		Limit Line	Over	
(IVII IZ)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	(dBuV/m)	Limit (dB)	Polarization
2483.50								Polarization Horizontal
` '	(dBuV)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
2483.50	(dBuV) 50.80	(dB/m) 27.53	(dB) 5.47	(dB) 33.92	(dBuV/m) 49.88	(dBuV/m) 74.00	(dB) -24.12	Horizontal
2483.50 2500.00	(dBuV) 50.80 46.97	(dB/m) 27.53 27.55	(dB) 5.47 5.49	(dB) 33.92 29.93	(dBuV/m) 49.88 50.08	74.00 74.00	(dB) -24.12 -23.92	Horizontal Horizontal
2483.50 2500.00 2483.50	(dBuV) 50.80 46.97 52.85 49.28	(dB/m) 27.53 27.55 27.53	(dB) 5.47 5.49 5.47	(dB) 33.92 29.93 33.92	(dBuV/m) 49.88 50.08 51.93	74.00 74.00 74.00 74.00	(dB) -24.12 -23.92 -22.07	Horizontal Horizontal Vertical
2483.50 2500.00 2483.50 2500.00	(dBuV) 50.80 46.97 52.85 49.28	(dB/m) 27.53 27.55 27.53	(dB) 5.47 5.49 5.47	(dB) 33.92 29.93 33.92	(dBuV/m) 49.88 50.08 51.93	74.00 74.00 74.00 74.00	(dB) -24.12 -23.92 -22.07	Horizontal Horizontal Vertical
2483.50 2500.00 2483.50 2500.00 Average va Frequency	(dBuV) 50.80 46.97 52.85 49.28 lue: Read Level	(dB/m) 27.53 27.55 27.53 27.55 Antenna Factor	(dB) 5.47 5.49 5.47 5.49 Cable Loss	(dB) 33.92 29.93 33.92 29.93 Preamp Factor	(dBuV/m) 49.88 50.08 51.93 52.39	(dBuV/m) 74.00 74.00 74.00 74.00 Limit Line	(dB) -24.12 -23.92 -22.07 -21.61 Over Limit	Horizontal Horizontal Vertical Vertical
2483.50 2500.00 2483.50 2500.00 Average va Frequency (MHz)	(dBuV) 50.80 46.97 52.85 49.28 lue: Read Level (dBuV)	(dB/m) 27.53 27.55 27.53 27.55 Antenna Factor (dB/m)	(dB) 5.47 5.49 5.47 5.49 Cable Loss (dB)	(dB) 33.92 29.93 33.92 29.93 Preamp Factor (dB)	(dBuV/m) 49.88 50.08 51.93 52.39 Level (dBuV/m)	74.00 74.00 74.00 74.00 Tumit Line (dBuV/m)	(dB) -24.12 -23.92 -22.07 -21.61 Over Limit (dB)	Horizontal Horizontal Vertical Vertical Polarization
2483.50 2500.00 2483.50 2500.00 Average va Frequency (MHz) 2483.50	(dBuV) 50.80 46.97 52.85 49.28 Iue: Read Level (dBuV) 37.87	(dB/m) 27.53 27.55 27.53 27.55 Antenna Factor (dB/m) 27.53	(dB) 5.47 5.49 5.47 5.49 Cable Loss (dB) 5.47	(dB) 33.92 29.93 33.92 29.93 Preamp Factor (dB) 33.92	(dBuV/m) 49.88 50.08 51.93 52.39 Level (dBuV/m) 36.95	(dBuV/m) 74.00 74.00 74.00 74.00 Limit Line (dBuV/m) 54.00	(dB) -24.12 -23.92 -22.07 -21.61 Over Limit (dB) -17.05	Horizontal Horizontal Vertical Vertical Polarization Horizontal

Test channel:

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Report No.: GTS201605000056E01

Lowest

Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.61	27.59	5.38	34.01	49.57	74.00	-24.43	Horizontal
2400.00	59.27	27.58	5.39	34.01	58.23	74.00	-15.77	Horizontal
2390.00	52.22	27.59	5.38	34.01	51.18	74.00	-22.82	Vertical
2400.00	60.79	27.58	5.39	34.01	59.75	74.00	-14.25	Vertical
Average va	lue:			•				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.67	27.59	5.38	34.01	36.63	54.00	-17.37	Horizontal
2400.00	45.85	27.58	5.39	34.01	44.81	54.00	-9.19	Horizontal
2390.00	39.41	27.59	5.38	34.01	38.37	54.00	-15.63	Vertical
2400.00	47.87	27.58	5.39	34.01	46.83	54.00	-7.17	Vertical
				•				
Test mode:		802.1	1n(HT20)	Tes	st channel:	F	lighest	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.82	27.53	5.47	33.92	49.90	74.00	-24.10	Horizontal
2500.00	46.98	27.55	5.49	29.93	50.09	74.00	-23.91	Horizontal
2483.50	52.87	27.53	5.47	33.92	51.95	74.00	-22.05	Vertical
2500.00	49.29	27.55	5.49	29.93	52.40	74.00	-21.60	Vertical
Average va	lue:	ī		r	T	·		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.88	27.53	5.47	33.92	36.96	54.00	-17.04	Horizontal
2500.00	34.18	27.55	5.49	29.93	37.29	54.00	-16.71	Horizontal
2483.50	39.73	27.53	5.47	33.92	38.81	54.00	-15.19	Vertical
2500.00	36.02	27.55	5.49	29.93	39.13	54.00	-14.87	Vertical
Remark:								

Test channel:

802.11n(HT20)

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

Test plot as follows:

Test mode:

802.11b

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Test mode:

802.11g

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

Highest channel

30MHz~10GHz

Peak Search

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

802.11n(HT20)

Lowest channel

30MHz~10GHz

10GHz~25GHz

Copyright 2000-2012 Agilent Technolog

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:20	13							
Test Frequency Range:	30MHz to 25GHz	<u>,</u>							
Test site:	Measurement Dis	stance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	Above IGHZ	RMS	3MHz	Average					
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Value				
	30MHz-88	MHz	40.0	0	Quasi-peak				
	88MHz-216	6MHz	43.5	50	Quasi-peak				
	216MHz-96	0MHz	46.0	0	Quasi-peak				
	960MHz-1	GHz	54.0	0	Quasi-peak				
	Above 16	211-	54.0	0	Average				
	Above 10	Above 1GHz 74.00							
	Ground Plane Above 1GHz Tum Table Above 1GHz	4m	Antenna Horn Ante Spectrum Analyzer	nna					
Test Procedure:	1. The EUT was	placed on the	top of a rot	ating table ((0.8m for below				

	1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
49.88	43.65	15.26	0.77	30.00	29.68	40.00	-10.32	Vertical
197.89	51.36	12.57	1.83	29.21	36.55	43.50	-6.95	Vertical
207.85	54.75	12.80	1.89	29.28	40.16	43.50	-3.34	Vertical
210.79	54.79	12.90	1.90	29.30	40.29	43.50	-3.21	Vertical
222.17	53.25	13.25	1.97	29.41	39.06	46.00	-6.94	Vertical
239.99	46.79	14.09	2.07	29.56	33.39	46.00	-12.61	Vertical
49.88	38.09	15.26	0.77	30.00	24.12	40.00	-15.88	Horizontal
116.95	47.79	13.00	1.34	29.59	32.54	43.50	-10.96	Horizontal
126.77	48.79	11.41	1.41	29.53	32.08	43.50	-11.42	Horizontal
206.40	54.22	12.77	1.88	29.27	39.60	43.50	-3.90	Horizontal
212.27	52.99	12.93	1.91	29.32	38.51	43.50	-4.99	Horizontal
564.64	39.02	19.83	3.58	29.30	33.13	46.00	-12.87	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.08	31.79	8.62	32.10	48.39	74.00	-25.61	Vertical
7236.00	34.08	36.19	11.68	31.97	49.98	74.00	-24.02	Vertical
9648.00	32.62	38.07	14.16	31.56	53.29	74.00	-20.71	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.78	31.79	8.62	32.10	47.09	74.00	-26.91	Horizontal
7236.00	33.85	36.19	11.68	31.97	49.75	74.00	-24.25	Horizontal
9648.00	32.20	38.07	14.16	31.56	52.87	74.00	-21.13	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:		•	•			•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.18	31.79	8.62	32.10	37.49	54.00	-16.51	Vertical
7236.00	22.95	36.19	11.68	31.97	38.85	54.00	-15.15	Vertical
9648.00	22.97	38.07	14.16	31.56	43.64	54.00	-10.36	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.33	31.79	8.62	32.10	36.64	54.00	-17.36	Horizontal
7236.00	22.43	36.19	11.68	31.97	38.33	54.00	-15.67	Horizontal
9648.00	21.95	38.07	14.16	31.56	42.62	54.00	-11.38	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Te	est channel:	Mid	dle	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Factor (dB)	. I Level	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.17	31.85	8.66	32.12	47.56	74.00	-26.44	Vertical
7311.00	34.18	36.37	11.71	31.91	50.35	74.00	-23.65	Vertical
9748.00	33.65	38.27	14.25	31.56	54.61	74.00	-19.39	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.68	31.85	8.66	32.12	48.07	74.00	-25.93	Horizontal
7311.00	32.83	36.37	11.71	31.91	49.00	74.00	-25.00	Horizontal
9748.00	33.55	38.27	14.25	31.56	54.51	74.00	-19.49	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)		Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.04	31.85	8.66	32.12	38.43	54.00	-15.57	Vertical
7311.00	22.50	36.37	11.71	31.91	38.67	54.00	-15.33	Vertical
9748.00	22.91	38.27	14.25	31.56	43.87	54.00	-10.13	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.80	31.85	8.66	32.12	38.19	54.00	-15.81	Horizontal
7311.00	21.92	36.37	11.71	31.91	38.09	54.00	-15.91	Horizontal
9748.00	23.26	38.27	14.25	31.56	44.22	54.00	-9.78	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:	802.11b		Test channel:		Highest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.57	31.90	8.70	32.15	53.02	74.00	-20.98	Vertical
7386.00	34.77	36.49	11.76	31.83	51.19	74.00	-22.81	Vertical
9848.00	36.89	38.62	14.31	31.77	58.05	74.00	-15.95	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.92	31.90	8.70	32.15	52.37	74.00	-21.63	Horizontal
7386.00	33.69	36.49	11.76	31.83	50.11	74.00	-23.89	Horizontal
9848.00	33.07	38.62	14.31	31.77	54.23	74.00	-19.77	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.51	31.90	8.70	32.15	43.96	54.00	-10.04	Vertical
7386.00	24.69	36.49	11.76	31.83	41.11	54.00	-12.89	Vertical
9848.00	25.40	38.62	14.31	31.77	46.56	54.00	-7.44	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.30	31.90	8.70	32.15	42.75	54.00	-11.25	Horizontal
7386.00	23.09	36.49	11.76	31.83	39.51	54.00	-14.49	Horizontal
9848.00	22.33	38.62	14.31	31.77	43.49	54.00	-10.51	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.70	31.79	8.62	32.10	48.01	74.00	-25.99	Vertical
7236.00	33.84	36.19	11.68	31.97	49.74	74.00	-24.26	Vertical
9648.00	32.44	38.07	14.16	31.56	53.11	74.00	-20.89	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.46	31.79	8.62	32.10	46.77	74.00	-27.23	Horizontal
7236.00	33.64	36.19	11.68	31.97	49.54	74.00	-24.46	Horizontal
9648.00	32.04	38.07	14.16	31.56	52.71	74.00	-21.29	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val				,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	28.83	31.79	8.62	32.10	37.14	54.00	-16.86	Vertical
7236.00	22.72	36.19	11.68	31.97	38.62	54.00	-15.38	Vertical
9648.00	22.80	38.07	14.16	31.56	43.47	54.00	-10.53	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.03	31.79	8.62	32.10	36.34	54.00	-17.66	Horizontal
7236.00	22.23	36.19	11.68	31.97	38.13	54.00	-15.87	Horizontal
9648.00	21.80	38.07	14.16	31.56	42.47	54.00	-11.53	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Tes	t channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	38.86	31.85	8.66	32.12	47.25	74.00	-26.75	Vertical
7311.00	33.98	36.37	11.71	31.91	50.15	74.00	-23.85	Vertical
9748.00	33.51	38.27	14.25	31.56	54.47	74.00	-19.53	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.41	31.85	8.66	32.12	47.80	74.00	-26.20	Horizontal
7311.00	32.66	36.37	11.71	31.91	48.83	74.00	-25.17	Horizontal
9748.00	33.42	38.27	14.25	31.56	54.38	74.00	-19.62	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.75	31.85	8.66	32.12	38.14	54.00	-15.86	Vertical
7311.00	22.30	36.37	11.71	31.91	38.47	54.00	-15.53	Vertical
9748.00	22.77	38.27	14.25	31.56	43.73	54.00	-10.27	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.55	31.85	8.66	32.12	37.94	54.00	-16.06	Horizontal
7311.00	21.75	36.37	11.71	31.91	37.92	54.00	-16.08	Horizontal
9748.00	23.14	38.27	14.25	31.56	44.10	54.00	-9.90	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.03	31.90	8.70	32.15	52.48	74.00	-21.52	Vertical
7386.00	34.43	36.49	11.76	31.83	50.85	74.00	-23.15	Vertical
9848.00	36.64	38.62	14.31	31.77	57.80	74.00	-16.20	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.47	31.90	8.70	32.15	51.92	74.00	-22.08	Horizontal
7386.00	33.40	36.49	11.76	31.83	49.82	74.00	-24.18	Horizontal
9848.00	32.84	38.62	14.31	31.77	54.00	74.00	-20.00	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.01	31.90	8.70	32.15	43.46	54.00	-10.54	Vertical
7386.00	24.36	36.49	11.76	31.83	40.78	54.00	-13.22	Vertical
9848.00	25.16	38.62	14.31	31.77	46.32	54.00	-7.68	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	33.88	31.90	8.70	32.15	42.33	54.00	-11.67	Horizontal
7386.00	22.80	36.49	11.76	31.83	39.22	54.00	-14.78	Horizontal
9848.00	22.12	38.62	14.31	31.77	43.28	54.00	-10.72	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.46	31.79	8.62	32.10	48.77	74.00	-25.23	Vertical
7236.00	34.32	36.19	11.68	31.97	50.22	74.00	-23.78	Vertical
9648.00	32.79	38.07	14.16	31.56	53.46	74.00	-20.54	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.10	31.79	8.62	32.10	47.41	74.00	-26.59	Horizontal
7236.00	34.06	36.19	11.68	31.97	49.96	74.00	-24.04	Horizontal
9648.00	32.36	38.07	14.16	31.56	53.03	74.00	-20.97	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val				,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.53	31.79	8.62	32.10	37.84	54.00	-16.16	Vertical
7236.00	23.19	36.19	11.68	31.97	39.09	54.00	-14.91	Vertical
9648.00	23.13	38.07	14.16	31.56	43.80	54.00	-10.20	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.63	31.79	8.62	32.10	36.94	54.00	-17.06	Horizontal
7236.00	22.64	36.19	11.68	31.97	38.54	54.00	-15.46	Horizontal
9648.00	22.11	38.07	14.16	31.56	42.78	54.00	-11.22	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.49	31.85	8.66	32.12	47.88	74.00	-26.12	Vertical
7311.00	34.38	36.37	11.71	31.91	50.55	74.00	-23.45	Vertical
9748.00	33.79	38.27	14.25	31.56	54.75	74.00	-19.25	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.94	31.85	8.66	32.12	48.33	74.00	-25.67	Horizontal
7311.00	33.01	36.37	11.71	31.91	49.18	74.00	-24.82	Horizontal
9748.00	33.68	38.27	14.25	31.56	54.64	74.00	-19.36	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.33	31.85	8.66	32.12	38.72	54.00	-15.28	Vertical
7311.00	22.69	36.37	11.71	31.91	38.86	54.00	-15.14	Vertical
9748.00	23.05	38.27	14.25	31.56	44.01	54.00	-9.99	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.05	31.85	8.66	32.12	38.44	54.00	-15.56	Horizontal
7311.00	22.09	36.37	11.71	31.91	38.26	54.00	-15.74	Horizontal
9748.00	23.39	38.27	14.25	31.56	44.35	54.00	-9.65	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Highe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	45.12	31.90	8.70	32.15	53.57	74.00	-20.43	Vertical
7386.00	35.11	36.49	11.76	31.83	51.53	74.00	-22.47	Vertical
9848.00	37.14	38.62	14.31	31.77	58.30	74.00	-15.70	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	44.38	31.90	8.70	32.15	52.83	74.00	-21.17	Horizontal
7386.00	34.00	36.49	11.76	31.83	50.42	74.00	-23.58	Horizontal
9848.00	33.30	38.62	14.31	31.77	54.46	74.00	-19.54	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val				,				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	36.01	31.90	8.70	32.15	44.46	54.00	-9.54	Vertical
7386.00	25.03	36.49	11.76	31.83	41.45	54.00	-12.55	Vertical
9848.00	25.63	38.62	14.31	31.77	46.79	54.00	-7.21	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.74	31.90	8.70	32.15	43.19	54.00	-10.81	Horizontal
7386.00	23.38	36.49	11.76	31.83	39.80	54.00	-14.20	Horizontal
9848.00	22.55	38.62	14.31	31.77	43.71	54.00	-10.29	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Page 53 of 56

Project No.: GTS201605000056

Page 55 of 56

-----End-----