Probability and Statistics

Tutorial 5

Q1: Consider 2 Random Variables X and Y whose joint distribution is given by:

$$p_{XY}(x,y) = \frac{1}{2^{x+y}}$$

for $x, y = 1, 2, 3, \dots$

- Find the marginal distribution of X and Y. Are X and Y independent?
- Find $\mathbb{P}(X^2 + Y \le 10)$

Q2: Let X and Y be two independent N(0,1) random variables, and define:

$$Z = 1 + X + XY^2$$

$$W = 1 + X$$

Find Cov(Z, W).

Q3: Let X and Y be jointly continuous random variables with joint PDF

$$f_{X,Y}(x,y) = \begin{cases} 6e^{-(2x+3y)}, & x,y \ge 0, \\ 0, & \text{otherwise.} \end{cases}$$

- (1) Are X and Y independent?
- (2) Find $\mathbb{E}[Y \mid X > 2]$.

Q4: A producer produces b items with probability p and nothing with probability 1-p. A consumer attempts to take $T \sim \text{Exponential}(\lambda)$ items. The actual number of items consumed is

$$C = \begin{cases} 0, & \text{if the producer produces nothing,} \\ \min(T, b), & \text{if the producer produces } b \text{ items.} \end{cases}$$

- (a) Derive the distribution of C (identify its discrete and continuous parts).
- (b) Compute the expected number of items consumed, $\mathbb{E}[C]$.

Q5: Let X and Y be two independent Uniform(0,1) random variables, and define:

$$Z = \frac{X}{Y}$$

1

- (a) Find CDF of Z.
- (b) Find PDF of Z.

Q6: Consider two random variables X and Y with joint PMF given below

(a) Find $\mathbb{P}(X \leq 2, Y \leq 4)$.

- (b) Find the marginal PMFs of X and Y.
- (c) Find $\mathbb{P}(Y=2|X=1)$.
- (d) Are X and Y independent?

	Y		
	Y=2	Y=4	Y = 5
X = 1	$\frac{1}{12}$	$\frac{1}{24}$	$\frac{1}{24}$
X=2	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{8}$
X = 3	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$

- Q7: Let X and Y be two independent Uniform(0,2) random variables. Find $\mathbb{P}(\{XY < 1\})$.
- Q8: Let X and Y be random variables that have the joint pdf

$$f_{X,Y}(x,y) = x + y$$
 for $0 \le x \le 1, 0 \le y \le 1$

What is $\mathbb{P}(X > Y | X < 1/2)$?