ADAMAS UNIVERSITY PURBUE EXCELLENCE	ADAMAS UNIVERSITY END SEMESTER EXAMINATION (Academic Session: 2020 – 21)		
Name of the Program:	B. TECH	Semester:	II
Paper Title:	Electrical & Electronics Technology	Paper Code:	GEE11001
Maximum Marks:	50	Time Duration:	3 Hrs
Total No. of Questions:	17	Total No of Pages:	03
(Any other information for the student may be mentioned here)	 At top sheet, clearly mention Name, Univ. Roll No., Enrolment No., Paper Name & Code, Date of Exam. All parts of a Question should be answered consecutively. Each Answer should start from a fresh page. Assumptions made if any, should be stated clearly at the beginning of your answer. 		

	Group A		
	Answer All the Questions (5 x $1 = 5$) What is the current through the diode?		
1	$ \begin{array}{c c} & D_1 \\ \hline & D_2 \\ \hline & IDEAL_DIODE \\ \hline & V_1 \\ \hline & T & 12 V \end{array} $ $ \begin{array}{c c} & R_1 \\ \hline & 12 & K\Omega \end{array} $	R	CO4
	a) 1 mA b) 0.975 mA c) 0.942 mA d) 0.5 mA		
2	The active region of a BJT the emitter junction is inbias and collector junction is inbias. a) Forward, Reverse b) Forward, Forward c) Reverse, Forward d) Reverse, Reverse	R	CO5
3	Find the decimal equivalent of hex number 1A53. a) 6793 b) 6739 c) 6973 d) 6379	R	CO6
4	Power factor of electric bulb is a) Unity b) Lagging c) Leading d) Zero	R	CO3
5	The active power drawn by a capacitor a) 0	R	CO1
	Group B		
6 a)	Answer All the Questions (5 x 2 = 10) Why does a pure semiconductor behave like an insulator at absolute zero temperature?		CO4
<u></u>	(OR)		001
6 b)	Define the following: a) Power factor, b) Quality factor.	R	CO3

7 a)	In a BJT, the emitter current (I _E) is 12 mA. If I _E is 1.02 times of the collector current, then find the base current.	R	CO5
	(OR)		
7 b)	Transform the sinusoid to phasor: V= -4 sin (30t -400).	A	CO3
8 a)	Compare between BJT & FET.	U	CO5
	(OR)		
8 b)	Define the following: i) Active Power. ii) Reactive Power.	U	CO2
9 a)	Convert numbers: i) $(53.625)_{10} = (?)_2$, ii) $(A3B)_{16} = (?)_{10}$	R	CO6
	(OR)		
9 b)	Draw the phasor diagram of R-L-C series circuit when XL>XC	E	CO2
10 a)	Determine the collector current (I_C) and V_{CE} for the given circuit as shown in figure. (Consider V_{BE} =0.7V for a Silicon Transistor)	E	CO5
10 b)	(OR) A single 50 Hz motor takes 100 A at 0.85 p.f lagging from a 240 V supply. Calculate the (i) active and reactive components of the current and (ii) the power taken from the supply.	E	CO2
	Group C		
	Answer All the Questions $(7 \times 5 = 35)$		
11 a)	 i) Explain the phenomenon of diffusion of current carriers in a semiconductor. ii) Write Einstein's relation between mobility & diffusivity. 	U	CO4
	(OR)		
11 b)	Find the node voltages V1 and V2 in the circuit	A	CO1
12 a)	Analyze the current components of PNP in Bipolar Junction Transistor.	AN	CO5

12 b)	Find the Thevenin's equivalent circuit for the following circuit. R1 68 \(\Omega \) R2 100 \(\Omega \) R3 VTH 120 \(\Omega \) B	AN	CO1
13 a)	i) Design and implement EX-OR gate using NAND gate. ii) Determine the hole concentration of a silicon crystal having donor concentration of 2.4*10 ²⁴ /m ³ , when intrinsic carrier concentration is 1.6*10 ¹⁸ /m ³ ? Find the ratio of electron and hole concentration.	C, E	CO6 & CO4
	(OR)		1
13 b)	A certain current source has the values $I=4 \mu A$ and $R=1.2 \ M\Omega$. Determine the values for an equivalent voltage source.	An	CO1
14 a)	 i) What is Fermi level? Show that the Fermi level is at the centre of forbidden gap in an intrinsic semiconductor. ii) Determine the current in a p-n junction, considering it at T=300 K, in which I_S=10⁻¹⁴ A and n = 1. Find the diode current for V_D = 0.7 v and V_D = -0.7 v 	E	CO4
	(OR)		
14 b)	What is resonance? Derive expression of resonance frequency for series R-L-C circuit.	U	CO2
15 a)	i) Draw schematically the structure of n channel JFET and explain the operation briefly.ii) Why Silicon type transistors are more often used than Germanium type?	U, R	CO5, CO4
	(OR)		1
15 b)	Prove that the energy stored in the inductor is, W = 1/2 L i^2 (where, 'L' is the capacitance and 'i' is the current through inductor)	E	CO2
16 a)	i) How you measure resistance value using colour code and power rating of a resistor?ii) Briefly explain the three regions that are present in the drain characteristics of JFET?	R, U	CO6
	(OR)		
16 b)	Write a short note on maximum power transfer theorem.	R	CO1
17 a)	i) What is Fermi level? Show that the Fermi level is at the centre of forbidden gap in an intrinsic semiconductor.ii) Why transistor is called current controlled device?	R	CO5
	(OR)		
17 b)	Draw the phasor diagram of the following circuits. (i) Series RL circuit and (ii) Parallel RLC circuit	U	CO3