- \bullet Insofern gewisse Rechengesetze gelten ist (V,+,*) ein K-Vektorraum
 - $(\mathrm{V},+,^*)=$ eine Menge V zusammen mit Addition und Multiplikation
 - $-V \neq \{\}$
- $(\mathbb{R}n, +, *)$ ist ein \mathbb{R} -VR
- $M(m \times n; K) = Km \times n$ ist ein K-VR

Rechengesetze

- axiomatisch vorgegeben
- herkömmliche Rechengesetze bezüglich Additiion und Multiplikation mit Skalar
- Addition
 - Kommutativität

$$*$$
 $a+b=b+a$

Assoziativität

$$* a + (b+c) = (a+b) + c$$

- Neutrales Element
 - * $\vec{0}$ Nullvektor

$$* \vec{v} + \vec{0} = \vec{0} + \vec{v} = \vec{v}$$

- Inverse Element bzgl. Addition
 - * $-\vec{a}$

$$* \vec{a} + (-\vec{a}) = \vec{0}$$

- Multiplikation
 - Kommutativität

*
$$\lambda(\mu \vec{a}) = (\lambda \mu) \vec{a}$$

- Neutralität

*
$$1 \in K: 1 * \vec{a} = \vec{a}$$

- Distributivgesetze
 - $-\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$
 - $\vec{a}(\lambda + \mu) = \lambda \vec{a} + \mu \vec{a}$

[[Vektor]]