Rachunek prawdopodobieństwa

MWS, wykład 1

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 16 marca 2021

Przestrzeń probabilistyczna

- $ightharpoonup \Omega = \{\omega_1, \omega_2, ...\}$ przestrzeń zdarzeń elementarnych,
- ω_i zdarzenia elementarne
- lacktriangle $A\subset\Omega$ zdarzenie (losowe) interpretacja: dowolny podzbiór Ω

Przykład 1: Eksperyment polegający na dwukrotnym rzucie monetą

- $ightharpoonup \Omega = \{oo, or, ro, rr\}$
- ightharpoonup zdarzenie "pierwszy wypadnie orzeł": $A = \{oo, or\}$

Przykład 2: Wybieramy się na pocztę. Interesuje nas czas oczekiwania w kolejce:

- ightharpoonup zdarzenie "nie dłużej niż 5 minut": $A = \{t : 0 \leqslant t \leqslant 5min\}$

Prawdopodobieństwo

Definicja

Prawdopodobieństwo, to funkcja \mathbb{P} przyporządkowująca zdarzeniom liczby rzeczywiste w taki sposób, że:

- 1. $\mathbb{P}(A) \geqslant 0$ dla każdego zdarzenia A,
- 2. $\mathbb{P}(\Omega) = 1$,
- 3. Dla każdych rozłącznych zdarzeń A_1 , A_2 , A_3 , ...

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i).$$

Przykład: Niech
$$\mathbb{P}(\{oo\}) = \mathbb{P}(\{or\}) = \mathbb{P}(\{ro\}) = \mathbb{P}(\{rr\}) = \frac{1}{4}$$
 ad 2 $\mathbb{P}(\{oo, or, ro, rr\}) = 1$ ad 3 np. $\mathbb{P}(\{oo, or\}) = \mathbb{P}(\{oo\}) + \mathbb{P}(\{or\}) = \frac{1}{2}$

Własności prawdopodobieństwa

- $ightharpoonup \mathbb{P}(\emptyset) = 0$,
- $ightharpoonup A \subset B \to \mathbb{P}(A) \leqslant \mathbb{P}(B),$
- $ightharpoonup 0 \leqslant \mathbb{P}(A) \leqslant 1.$
- ▶ $\mathbb{P}(A^C) = 1 \mathbb{P}(A)$, (A^C oznacza dopełnienie)

Przykład cd.

ad 2 np.
$$A = \{oo\}$$
, $B = \{oo, ro\}$
ad 3 np. $A = \{oo\} \Rightarrow A^C = \{ro, or, rr\}$

Niezależność zdarzeń

Definicja

Zdarzenia A i B są niezależne, jeśli

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

Definicja

Zdarzenia A_i , $i \in I$ są niezależne, jeśli dla każdego skończonego podzbioru $J \subset I$:

$$\mathbb{P}\left(\bigcap_{i\in J}A_i\right)=\prod_{i\in J}\mathbb{P}(A_i).$$

Przykład lotniczy

N=100 żołnierzy strzela do samolotu (każdy z nich trafia z p-stwem $p=\frac{1}{100}$). Jakie jest p-stwo, że co najmniej jeden trafi?

 $\mathbb{P}(\mathsf{kt\acute{o}ry\acute{s}}\;\mathsf{trafi}) = 1 - \mathbb{P}(\mathsf{\dot{z}aden}\;\mathsf{nie}\;\mathsf{trafi}) = 1 - (1-\mathfrak{p})^{\mathsf{N}} = \mathsf{0.63}$

Zmienne losowe i ich dystrybuanty

Zmienna losowa to funkcja

$$X: \Omega \to E \subset \mathbb{R}$$
.

Jej dystrybuanta:

$$F_X \colon \mathbb{R} \to [0,1], \qquad F_X(x) = \mathbb{P}(X \leqslant x).$$

Duże litery — zmienne losowe, małe litery — ich wartości.

Przykład: Zdefiniujmy zmienną losową: $X(\{oo\})=0$, $X(\{or\})=1$, $X(\{ro\})=2$, $X(\{rr\})=3$ wtedy dystrybuanta spełnia: $F_X(0)=\frac{1}{4}$, $F_X(1)=\frac{1}{2}$, $F_X(2)=\frac{3}{4}$, $F_X(3)=1$

Własności dystrybuant

Każda dystrybuanta F(x) jest funkcją

- niemalejącą,
- ightharpoonup dażącą do 0 dla $x \to -\infty$,
- ightharpoonup dążącą do 1 dla $x \to +\infty$,
- prawostronnie ciągłą,
- posiadającą lewostronne granice,
- różniczkowalną prawie wszędzie.

Dyskretne zmienne losowe

Definicja

$$X: \Omega \to E \subset \mathbb{R}$$
.

X jest dyskretną zmienną losową, jeśli zbiór E jest co najwyżej przeliczalny ($E = \{x_1, x_2, ..., x_N\}$ lub $E = \{x_1, x_2, ...\}$).

Funkcja prawdopodobieństwa zmiennej losowej X:

$$f_X \colon E \to \mathbb{R}, \qquad f_X(x) = \mathbb{P}(X = x).$$

$$F_X(x) = \mathbb{P}(X \leqslant x) = \sum_{x_i \leqslant x} f_X(x_i).$$

Przykłady dyskretnych zmiennych losowych

Rozkład Bernoulliego

X ma rozkład Bernoulliego (ewent. dwupunktowy) z parametrem p, $X \sim \text{Bern}(p)$, jeśli

$$X: \Omega \rightarrow \{0, 1\}$$

tzn. zmienna losowa może przyjąć tylko dwie wartości, oraz

$$\mathbb{P}\left(X=1\right)=p,\qquad \mathbb{P}\left(X=0\right)=1-p.$$

Przykłady dyskretnych zmiennych losowych

Rozkład dwumianowym

X ma rozkład dwumianowy (ang. binomial) z parametrami n, p, $X \sim \mathsf{Binom}(n,p)$, jeśli

$$X: \Omega \rightarrow \{0, 1, \dots, n\}$$

oraz

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}.$$

Suma n niezależnych zmiennych o rozkładzie Bern(p) ma rozkład Binom(n, p).

Binom(n,p) opisuje liczbę sukcesów w tzw. schemacie Bernoulliego (n niezależnych prób; w każdej próbie tylko dwie możliwości - sukces /porażka; ich prawdopodobieństwa takie same w każdej próbie).

Przykład

Rzucamy 10 razy kostką.

Jakie jest prawdopodobieństwo, że jedynka wypadnie dokładnie 4 razy?

Choć kostka ma 6 ścian, można ograniczyć się tyko do dwóch możliwości:

sukces wypadła jedynka (p=1/6) porażka wypadła inna liczba oczek (p=5/6)

Jest to więc schemat Bernoulliego.

$$\mathbb{P}(X=4) = \binom{10}{4} \left(\frac{1}{6}\right)^4 \left(\frac{5}{6}\right)^6 = 0.054$$

Przykłady dyskretnych zmiennych losowych

Rozkład Poissona

X ma rozkład Poissona z parametrem λ , $X \sim Pois(\lambda)$, jeśli

$$X: \Omega \to \{0, 1, 2, ...\}$$

oraz

$$\mathbb{P}(X = k) = \frac{\lambda^k}{k!} e^{-\lambda}.$$

Rozkład Poissona z parametrem λ można otrzymać

- ▶ "przechodząc do granicy" $(n \to \infty)$ z rozkładem dwumianowym Binom(n,p) w taki sposób, by $np = \lambda$.
- analizując liczbę niezależnych zdarzeń w danym przedziale czasu.

 \mathbb{P} (X=k) jest prawdopodobieństwem tego, że liczba ta wynosi k jeśli oczekiwana liczba zdarzeń w tym przedziale jest równa λ .

Ciągłe zmienne losowe

Definicja

Zmienna losowa $X\colon \Omega \to E \subset \mathbb{R}$ jest zmienną ciągłą jeśli istnieje funkcja gęstości prawdopodobieństwa $f_X\colon E \to \mathbb{R}$ taka, że

- ightharpoonup $f_X(x) \geqslant 0$,

$$F_X(x) = \int_{-\infty}^x f_X(x_1) dx_1.$$

Dla wszystkich punktów $x \in \mathbb{R}$, w których F_X jest różniczkowalna zachodzi równość

$$f_X(x) = F'_X(x)$$
.

Przykłady ciągłych zmiennych losowych

Rozkład jednostajny

X ma rozkład jednostajny (ang. uniform) na przedziale $[\mathfrak{a},\mathfrak{b}],$ $X\sim \mathsf{Unif}([\mathfrak{a},\mathfrak{b}]),$ jeśli

 $X: \Omega \to [\mathfrak{a}, \mathfrak{b}]$

oraz

$$f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{jeśli } x \in [a, b], \\ 0, & \text{jeśli } x \notin [a, b]. \end{cases}$$

Przykłady ciągłych zmiennych losowych

Rozkład wykładniczy

X ma rozkład wykładniczy (ang. exponential) z parametrem λ , $X \sim \mathsf{Exp}(\lambda)$, jeśli

$$X\colon \Omega \to \mathbb{R}$$

oraz

$$f_X(x) = \begin{cases} \lambda e^{-\lambda x} & x \geqslant 0, \\ 0 & x < 0. \end{cases}$$

Przykłady ciągłych zmiennych losowych

Rozkład normalny (Gaussa)

X ma rozkład normalny z parametrami μ , σ^2 , $X \sim N(\mu, \sigma^2)$, jeśli

$$X \colon \Omega \to \mathbb{R}$$

oraz

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$

Funkcję gęstości oraz dystrybuantę zmiennej o rozkładzie N(0,1) oznacza się, odpowiednio, literami ϕ oraz Φ , a kwantyl rzędu p— \mathbf{z}_p .

Regula trzech sigm (regula 68-95-99.7)

Odwrotna dystrybuanta (funkcja kwantylowa)

Jeśli X jest zmienną losową o dystrybuancie F, to odwrotną dystrybuanta tej zmiennej nazywamy funkcję

$$F^{-1}: [0,1] \to \mathbb{R}, \quad F^{-1}(q) = \inf\{x \colon F(x) \geqslant q\}.$$

Innymi słowy

$$F^{-1}(p) \leqslant x$$
 wtedy i tylko wtedy gdy $p \leqslant F(x)$.

 $F^{-1}(\frac{1}{4})$ pierwszy (dolny) kwartyl rozkładu, $F^{-1}(\frac{1}{2})$ mediana rozkładu, $F^{-1}(\frac{3}{4})$ trzeci (górny) kwartyl.

Zmienne wielowymiarowe

Zmienna wielowymiarowa, to zmienna postaci:

$$X = (X_1, \dots, X_k) : \Omega \to E \subset \mathbb{R}^k, \quad k > 1.$$

Podobnie jak w przypadku jednowymiarowym definiujemy funkcje prawdopodobieństwa (dla zm. dyskretnych) i funkcje gęstości prawdopodobieństwa (dla zm. ciągłych).

Rozkłady łączne i brzegowe

Zmienne dyskretne

Jeśli $X=(X_1,\ldots,X_N)$ jest N-wymiarową dyskretną zmienną losową, to łączną funkcją prawdopodobieństwa nazywamy funkcję:

$$f_X: (x_1, ..., x_N) \mapsto \mathbb{P} (X = (x_1, ..., x_N)) =$$

= $\mathbb{P}(X_1 = x_1, ..., X_N = x_N).$

Brzegowe funkcje prawdopodobieństwa to funkcje prawdopodobieństwa określone zależnościami:

$$\begin{split} f_{X_i}(x_i) &= \mathbb{P}\left(X_i = x_i\right) = \\ &= \sum_{y_1} \cdots \sum_{y_{i-1}} \sum_{y_{i+1}} \cdots \sum_{y_N} f_X(y_1, \dots, y_{i-1}, x_i, y_{i+1}, \dots, y_N). \end{split}$$

Podobnie definiuje się dystrybuanty łączne i brzegowe.

Przykłady rozkładów wielowymiarowych

Rozkład normalny

$$X = (X_1, \dots, X_n)$$
 ma rozkład normalny z parametrami

$$\mu = (\mu_1, \dots, \mu_n), \quad \Sigma = (\sigma_{ij})_{i,j=1,\dots,n}$$

(Σ macierz nieujemnie określona), $X \sim N(\mu, \Sigma),$ jeśli

$$X:\Omega \to \mathbb{R}^n$$

oraz dla
$$x = (x_1, \ldots, x_n)$$

$$f_X(x) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)\Sigma^{-1}(x-\mu)^T}.$$

Niezależność zmiennych losowych

Niech X_1, \ldots, X_N zmienne losowe z łączną funkcją prawdopodobieństwa (lub gęstości prawdopodobieństwa) f. Wówczas zmienne te są niezależne, jeśli

$$f(x_1,\ldots,x_N) = \prod_{i=1}^N f_{X_i}(x_i), \quad \forall x_1,\ldots,x_N.$$

Równanie powyższe pozwala znacznie uprościć obliczenia w przypadku niezależnych zmiennych losowych.

Wielowymiarowy rozkład normalny dla niezależnych zmiennych:

$$f(x_1, ..., x_N) = \prod_{i=1}^{N} f_{\text{norm}}(x_i) = \frac{1}{(2\pi\sigma^2)^{N/2}} e^{-\frac{1}{2\sigma^2} \sum_{i} (x_i - \mu)^2}$$

Próba losowa

Definicja

Jeśli X_1, \ldots, X_N są niezależnymi zmiennymi losowymi o tym samym rozkładzie, to wektor (X_1, \ldots, X_N) nazywamy próbą losową rozmiaru N z tego rozkładu.

Jeśli X_1,\ldots,X_N próba losowa i X_i zadane dystrybuantą F lub funkcją (gęstości) prawdopodobieństwa f, to piszemy także

$$X_1, \ldots, X_N \sim F \text{ lub } X_1, \ldots, X_N \sim f$$

(Próba losowa z rozkładu F).

Przekształcenia zmiennych losowych

Zmienne dyskretne

- X dyskretna zmienna losowa,
- ightharpoonup h: $\mathbb{R} \to \mathbb{R}$
- ▶ Jaki rozkład ma zmienna losowa Y = h(X)?

$$f_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(X \in h^{-1}(y)).$$

$$\begin{split} & \mathsf{Przyk} \mathsf{Iad} \colon Y = e^X \\ & \mathsf{f}_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(e^X = y) = \mathbb{P}(X = \mathsf{In}(y)) = \mathsf{f}_X(\mathsf{In}(y)) \\ & (\mathsf{dIa}\ y > 0). \end{split}$$

Przekształcenia zmiennych losowych

Zmienne ciągłe

X ciągła zmienna losowa, $h\colon \mathbb{R} \to \mathbb{R}$. Jaki rozkład ma zmienna losowa Y = h(X)?

Zaczynamy od dystrybuanty!

$$F_{Y}(y) = \mathbb{P}(Y \leqslant y) = \mathbb{P}(X \in \{x \colon h(x) \leqslant y\}) = \int_{\{x \colon h(x) \leqslant y\}} f_{X}(x) dx,$$

Potem, w razie potrzeby, wyznaczamy funkcję gęstości prawd.

$$f_Y(y) = F_Y^{\prime}(y).$$

Przekształcenia zmiennych losowych

Zmienne ciągłe — przykład

$$X \sim N(\mu, \sigma^2), \quad Y = e^X.$$

$$f_Y(y) \stackrel{\text{left}}{=} \frac{1}{y\sqrt{2\pi\sigma^2}} e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}.$$

Rozkład zadany powyższą funkcją gęstości nazywamy rozkładem logarytmicznie normalnym z parametrami μ , σ^2 (Y ~ In N(μ , σ^2)).

Dwa ciekawe i użyteczne fakty

Fakt

X ciągła zmienna losowa o dystrybuancie F. Wówczas

$$Z = F(X) \sim Unif([0, 1]).$$

Fakt

 $U \sim \textit{Unif}([0,1])$ i $F \colon \mathbb{R} \to [0,1]$ prawostronnie ciągła funkcja niemalejąca spełniająca warunki

$$\lim_{t\to +\infty} F(t) = 1, \qquad \lim_{t\to -\infty} F(t) = 0,$$

to zmienna $X = F^{-1}(U)$ opisana jest dystrybuantą F.

Wartość oczekiwana

Wartość oczekiwana zmiennej losowej X, to liczba

$$\mu_X = \mathbb{E}(X) = \begin{cases} \sum_x x f(x), & \text{jeśli } X \text{ dyskr.} \\ \int x f(x) dx, & \text{jeśli } X \text{ ciągła} \end{cases}$$

Wartość oczekiwana istnieje wtw, gdy (odpowiednio dla zm. dyskretnej i ciągłej)

$$\sum_{x} |x| f(x) < \infty, \quad \int |x| f(x) dx < \infty.$$

Wartość oczekiwana — przykłady

$$X \sim \mathsf{Bern}(\mathfrak{p}) \quad \stackrel{\$}{\Rightarrow} \quad \mathbb{E}(X) = \mathfrak{p}.$$
 (rozkład Cauchy'ego): $f_X(x) = \frac{1}{\pi(1+x^2)} \stackrel{\$}{\Rightarrow} \mathbb{E}(X)$ nie istnieje!

Wartość oczekiwana funkcji zmiennej losowej

$$Y = h(X), \quad \mathbb{E}(Y) = ?$$

 $\mathbb{E}(Y) = \int h(x) f_X(x) dx,$

(podobnie w przypadku dyskretnym).

Przykład:

$$\mathbb{E}(X^2) = \int x^2 f_X(x) dx,$$

Wartość oczekiwana — własności

 X_1, \ldots, X_n zmienne los. (niekoniecznie niezależne)

$$\mathbb{E}(\alpha_1 X_1 + \dots + \alpha_n X_n) = \alpha_1 \mathbb{E}(X_1) + \dots + \alpha_n \mathbb{E}(X_n).$$

Jeśli X_1, \ldots, X_n niezależne, to

$$\mathbb{E}(X_1X_2\dots X_n)=\mathbb{E}(X_1)\mathbb{E}(X_2)\dots \mathbb{E}(X_n).$$

Wariancja

Wariancją zmiennej losowej X nazywamy liczbę

$$\mathbb{V}X = \sigma_X^2 = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}(X - \mu_X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$

Odchyleniem standardowym zmiennej losowej X nazywamy liczbę

$$\sigma_X = \sqrt{\mathbb{V}X}.$$

Wariancja – własności

$$\mathbb{V}(aX + b) = a^2 \mathbb{V} X, (\mathfrak{D}) \quad \forall a, b \in \mathbb{R}.$$

Jeśli X_1, \ldots, X_n niezależne zm. los. oraz a_1, \ldots, a_n pewne stałe, to

$$\mathbb{V}(\alpha_1X_1+\dots+\alpha_nX_n)=\alpha_1^2\mathbb{V}X_1+\dots+\alpha_n^2\mathbb{V}X_n.$$

Wariancja i średnia z próby

Średnią z próby losowej X_1, \ldots, X_n nazywamy zmienną losową

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Wariancją z próby losowej X_1, \ldots, X_n nazywamy zmienną losową

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2.$$

Jeśli próba jest z rozkładu o wartości oczekiwanej μ i wariancji σ^2 ($\mathbb{E}(X_i)=\mu$ i $\mathbb{V}X_i=\sigma^2$), to

$$\mathbb{E}\overline{X}_n = \mu$$
, $\mathbb{V}\overline{X}_n = \frac{\sigma^2}{n}$, $\mathbb{E}S_n^2 = \sigma^2$.

Kowariancja

Kowariancją zmiennych losowych X i Y nazywamy liczbę

$$\mathbb{C}(X,Y) = \mathbb{E}\left((X - \mu_X)(Y - \mu_Y)\right) = \mathbb{E}XY - \mathbb{E}X\mathbb{E}Y.$$

Współczynnikiem korelacji tych zmiennych nazywamy liczbę

$$\rho_{X,Y} = \rho(X,Y) = \frac{\mathbb{C}(X,Y)}{\sigma_X \sigma_Y}, \qquad -1 \leqslant \rho_{X,Y} \leqslant 1.$$

Kowariancja – własności

$$\begin{split} \mathbb{C}(X,X) &= \mathbb{V}X, () \\ \mathbb{V}(X+Y) &= \mathbb{V}X + \mathbb{V}Y + 2\mathbb{C}(X,Y), \\ \mathbb{V}(X-Y) &= \mathbb{V}X + \mathbb{V}Y - 2\mathbb{C}(X,Y), \\ \\ \mathbb{V}\left(\sum_{i} (\alpha_{i}X_{i})\right) &= \sum_{i} \alpha_{i}^{2}\mathbb{V}X_{i} + 2\sum_{i < i} \alpha_{i}\alpha_{j}\mathbb{C}(X_{i},X_{j}). \end{split}$$

Jeśli X, Y niezależne, to $\mathbb{C}(X,Y)=0$.

Jeśli $Y = \alpha X + b$, to $\rho_{X,Y} = \operatorname{sgn} \alpha$.

Zbieżność zmiennych losowych

Co można powiedzieć o granicznym zachowaniu ciągu zmiennych losowych

 $X_1, X_2, ...?$

Rodzaje zbieżności

$$X, X_1, X_2, \ldots$$
 zm. los. o dystrybuantach F, F_1, F_2, \ldots

Definicja

Ciąg X_n zbiega do X według prawdopodobieństwa, $X_n \stackrel{\mathbb{P}}{ o} X$, jeśli

$$\mathbb{P}\left(|X_n - X| > \varepsilon\right) \xrightarrow{n \to \infty} 0 \qquad \forall \varepsilon > 0.$$

Ciąg X_n zbiega do X według rozkładu, $X_n \stackrel{d}{\to} X$, jeśli

$$\lim_{n\to\infty}F_n(t)=F(t)$$

dla każdego punktu t, w którym F jest ciągłe.

Jeśli $X_n \xrightarrow{\mathbb{P}} X$, to również $X_n \xrightarrow{d} X!$ (implikacja w drugą stronę nie zachodzi).

Twierdzenie ((słabe) Prawo Wielkich Liczb (PWL))

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o tym samym rozkładzie i skończonej wartości oczekiwanej ($|\mathbb{E}X_1| < \infty$), to

$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n} \xrightarrow{\mathbb{P}} \mathbb{E} X_1.$$

Uwaga: zmienna losowa zbiega do wartości deterministycznej.

Twierdzenie (Centralne twierdzenie graniczne (CTG))

Jeśli X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o tym samym rozkładzie, $\mathbb{E} X_1 = \mu, \ \mathbb{V} X_1 = \sigma^2$, to

$$\sqrt{n}\left(\overline{X}_n - \mu\right) \xrightarrow{d} N(0, \sigma^2).$$

Równoważnie

$$\begin{split} &\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma} \xrightarrow{d} N(0,1), \\ &\frac{\overline{X}_{n}-\mathbb{E}\overline{X}_{n}}{\sqrt{\mathbb{V}\overline{X}_{n}}} \xrightarrow{d} N(0,1), \end{split}$$

Przy założeniach CTG także

$$\frac{\sqrt{n}\left(\overline{X}_n - \mu\right)}{S_n} \xrightarrow{d} N(0,1),$$

MWS, wykład 2

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 16 marca 2021

Przykład

 x_i to wynik i-tego pomiaru pewnej nieznanej wielkości x (pomiary obarczone są pewnym losowym błędem).

- Jak oszacować wartość x?
- Jak oszacować parametry błędu pomiaru (np. wariancję)?
- Jak oszacować prawdopodobieństwo, że następny pomiar da wynik większy niż dotychczasowe?
- ▶ itd.

Potrzebny model,

np. $X_i \sim N(x, \sigma^2)$ o pewnych parametrach $x i \sigma^2$,

- X_i to niezależne zmienne losowe,
- \triangleright x_i to ich realizacje, czyli
- \triangleright x_1, \ldots, x_n to próba losowa z rozkładu $N(x, \sigma^2)$.

Parametryczna rodzina rozkładów

W modelu parametrycznym mamy do czynienia z rodziną rozkładów

$$\mathcal{F} = \{ F_{\theta}(x) \colon \theta \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k,$$

gdzie

$$\boldsymbol{\theta} = (\theta_1, \dots, \theta_k)$$

to parametr (rozkładu).

Zamiast dystrybuant F_{θ} będziemy też rozważać funkcje prawdopodobieństwa lub funkcje gęstości prawdopodobieństwa f_{θ} .

Czasami będziemy stosowali oznaczenia typu:

$$F(x; \theta), f(x; \theta), \dots$$

Próba losowa

Będziemy dalej zakładać, że mamy do dyspozycji próbę losową

$$X_1, \ldots, X_n$$

(ciąg niezależnych zmiennych o tym samym rozkładzie) z pewnego rozkładu F_{θ} należącego do rodziny parametrycznej

$$\mathcal{F} = \{ F_{\theta}(x) : \theta \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k.$$

Uwagi:

- wartość parametru θ nie jest znana, ale
- ightharpoonup zmienne X_1, \ldots, X_n odpowiadają tej samej wartości θ .

Typowe zagadnienia

Typowymi zagadnieniami rozważanymi w kontekście modeli parametrycznych są:

 wyznaczenie, na podstawie obserwacji (próby): X₁,..., X_n, nieznanego parametru θ, tzn. wyznaczenie takiej funkcji (estymatora)

$$\hat{\theta} = \hat{\theta}(X_1, \dots, X_n),$$

która w jakimś sensie (w jakim?) przybliża (jak dobrze?) θ (teoria estymacji).

sprawdzenie, na postawie obserwacji: X₁,..., X_n, czy θ
 spełnia (z jakim prawdopodobieństwem?) pewne warunki, np.

$$\theta = \theta_1$$
, $\theta > \theta_1$, $\theta \neq \theta_1$

(testowanie hipotez statystycznych, teoria detekcji).

Model parametryczny — przykłady

Rodzina rozkładów Bernoulliego

$$\mathcal{F} = \{f_p(x) \colon p \in [0, 1]\} \qquad (\theta = p).$$

$$f_p(x) = \begin{cases} p & x = 1, \\ 1 - p & x = 0. \end{cases}$$

Próba losowa X_1, \ldots, X_N z rozkładu z rodziny $\mathcal F$ może modelować N niezależnych rzutów tą samą monetą, o której nie wiemy jak bardzo jest niesymetryczna.

Model parametryczny — przykłady

Rodzina rozkładów Poissona

$$\begin{split} \mathcal{F} &= \{ f_{\lambda}(x) \colon \lambda > 0 \} \qquad (\theta = \lambda). \\ f_{\lambda}(x) &= \frac{\lambda^{x}}{x!} e^{-\lambda}, \qquad x \in \mathbb{N} = \{ 0, 1, 2, \ldots \}. \end{split}$$

Rodzina rozkładów normalnych

$$\begin{split} \mathfrak{F} &= \left\{ f_{(\mu,\sigma^2)}(x) \colon \mu \in \mathbb{R}, \, \sigma^2 > 0 \right\} \quad \theta = (\mu,\sigma^2). \\ f_{(\mu,\sigma^2)}(x) &= \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \end{split}$$

Rodzina rozkładów gamma

$$f_{\alpha,\beta}(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}, \qquad x > 0, \ \alpha, \beta > 0,$$

gdzie

$$\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du, \qquad \alpha > 0.$$

$$\Gamma(x+1)=x\Gamma(x)\quad x>0, \quad \Gamma(1)=1, \quad \Gamma(n+1)=n! \quad n\in {\rm I\! N}.$$

Dla $\alpha=1$ otrzymujemy rozkład $\operatorname{Exp}(\frac{1}{\beta}).$

Uwaga! Czasami zamiast parametru skali β używa się parametru $\frac{1}{\beta}$.

Rozkład Gamma — przykłady

Rozkład beta

$$f_{\alpha,\beta}(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \qquad x \in [0,1], \ \alpha,\beta > 0$$

Niedokładność wyznaczenia θ

Źródła błędu:

- typowy błąd estymacji wynikający z losowego charakteru modelu;
- 2. błąd określenia modelu (przyjęty model nie pasuje idealnie do opisywanej rzeczywistości)

Wniosek: Jest dopuszczalne, aby model nie odzwierciedlał "idealnie" badanego zjawiska.

Np. wzrost ludzi możemy modelować rozkładem normalnym z parametrami $\theta=(\mu,\sigma)$.

Uwagi

Czasami zamiast parametru

$$\theta = (\theta_1, \dots, \theta_k)$$

zainteresowani jesteśmy pewną funkcją $T(\theta)$ tego parametru. Przykład: załóżmy, że czas życia X osobników pewnej populacji (ludzi, zwierząt, czy urządzeń elektronicznych) modelujemy rozkładem $Gamma(\alpha, \beta)$, gdzie

$$\theta = (\alpha, \beta) \in \Theta \subset \mathbb{R}^2$$
.

Możemy być zainteresowani średnią długością życia. Ta średnia długość życia jest równa:

$$\mathbb{E}X \stackrel{\text{\tiny \otimes}}{=} \alpha\beta = \mathsf{T}(\alpha,\beta) = \mathsf{T}(\theta).$$

Przykład wprowadzający

Rozważmy rodzinę

$$\left\{N(\mu,\sigma^2)\colon \mu\in\mathbb{R},\;\sigma>0\right\},\qquad \theta=(\mu,\sigma^2).$$

oraz n-elementową próbę $X_1,\ldots,X_n\sim N(\mu,\sigma^2)$. Chcemy na podstawie tej próby wyznaczyć nieznane $\mu,\,\sigma.$

Zgodnie z prawem wielkich liczb mamy

- 1. $\overline{X}_n \xrightarrow{\mathbb{P}} \mathbb{E} X_1 = \mu$
- 2. $\overline{(X^2)}_n = \frac{X_1^2 + \dots + X_n^2}{n} \xrightarrow{\mathbb{P}} \mathbb{E} X_1^2 = \mathbb{V}(X_1) + (\mathbb{E} X_1)^2 = \sigma^2 + \mu^2.$

Za estymatory parametrów μ , σ możemy zatem przyjąć, odpowiednio,

$$\hat{\mu} = \overline{X}_n, \qquad \hat{\sigma} = \sqrt{\overline{(X^2)}_n - (\overline{X}_n)^2}.$$

Momenty

Definicja

Momentem k-tego rzędu zmiennej losowej X nazywamy liczbę

$$\mu_k = \mathbb{E} X^k$$
.

Definicja

Momentem k-tego rzędu z próby X_1, \ldots, X_n nazywamy zmienną losową

$$\mathfrak{m}_k = \frac{1}{n} \sum_{i=1}^n X_i^k = \overline{(X^k)}_n.$$

Definicja

Estymator metody momentów dla parametru $\theta=(\theta_1,\ldots,\theta_k)\in\mathbb{R}^k$ i próby losowej X_1,\ldots,X_n , to taka statystyka (funkcja próby, a więc zmienna losowa!) $\hat{\theta}=\hat{\theta}(X_1,\ldots,X_n)$, która "podstawiona w miejsce parametru θ " daje wybrane momenty rozkładu równe odpowiednim momentom z próby (np. $\mu_1=m_1,\ \mu_2=m_2$ i $\mu_4=m_4$).

Najczęściej w powyższej definicji przez "wybrane" rozumie się pierwsze kolejne k momenty pozwalające wyznaczyć estymator parametru.

Próba losowa X_1, \ldots, X_n — estymator $\hat{\theta}(X_1, \ldots, X_n)$ (zmienna losowa).

Wartości próby x_1, \ldots, x_n — wartość estymatora $\hat{\theta}(x_1, \ldots, x_n)$ (liczba, wektor liczbowy).

Algorytm metody momentów

krok 1 Przedstaw momenty niskich rzędów jako funkcje poszukiwanych parametrów $\theta_1,...,\theta_k$

$$(\mu_1,\ldots,\mu_k)=g(\theta_1,\ldots,\theta_k)$$

krok 2 Odwróć funkcje z poprzedniego kroku, aby wyrazić poszukiwane parametry $\theta_1, ..., \theta_k$ jako funkcje momentów.

$$(\theta_1,\ldots,\theta_k)=g^{-1}(\mu_1,\ldots,\mu_k)$$

krok 3 W wyrażeniach z poprzedniego punktu w miejsce momentów wstaw momenty z próby

$$\left(\hat{\theta}_1, \dots, \hat{\theta}_k\right) = g^{-1}(m_1, \dots, m_k)$$

Przykład 1

$$X_1, \ldots, X_n \sim \mathsf{Bern}(p)$$
.

Jaką postać ma estymator m. m. parametru p?

(krok 1 i 2) Wartość oczekiwana:

$$\mu_1 = \mathbb{E}X = \mathfrak{p}$$

Wartość oczekiwana z próby:

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i.$$

(krok 3) Zatem estymatorem m. m. parametru p jest

$$\hat{p} = m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X}_n.$$

Przykład 2

$$X_1, \ldots, X_n \sim \mathsf{Pois}(\lambda)$$
.

Jaką postać ma estymator m. m. parametru λ ?

$$\lambda = \mu_1$$
.

Zatem estymatorem m. m. parametru λ jest średnia z próby:

$$\hat{\lambda}=m_1.$$

Przykład 2a (Bortkiewicz, 1898)

Analizowana była liczba zgonów od kopnięcia konia dla 10 korpusów pruskiej kawalerii w przeciągu 20-letniego okresu (mamy 200 "korpuso-lat").

liczba zgonów/rok	liczba "korpuso-lat"		
0	109		
1	65		
2	22		
3	3		
4	1		

Próbujemy "dopasować" rozkład $Pois(\lambda)$.

$$\hat{\lambda} = (109 \times 0 + 65 \times 1 + 22 \times 2 + 3 \times 3 + 1 \times 4)/200 = 0.61$$

Przykład 2a (Bortkiewicz, 1898) — podsumowanie

	zgonów/rok (k)	"korpuso-lat"	częstość	$\mathbb{P}_{\hat{\lambda}}(\mathbf{k})$	$\mathbb{P}_{\hat{\lambda}}(\mathbf{k}) \cdot 200$
_	0	109	0.545	0.543	109
	1	65	0.325	0.331	66
	2	22	0.110	0.101	20
	3	3	0.015	0.021	4
	4	1	0.005	0.003	1

Funkcja generująca momenty

Definicja

Funkcją generująca momenty dla zmiennej X o pewnym rozkładzie lub po prostu funkcją generującą momenty dla tego rozkładu nazywamy funkcję określoną zależnością

$$M(t) = \mathbb{E}e^{tX}, \qquad t \in \mathbb{R}.$$

Twierdzenie

Jeśli funkcja generująca momenty M(t) dla zmiennej X jest dobrze określona w pewnym otoczeniu zera, to

- M jednoznacznie określa rozkład zmiennej X,
- $\mu_k = M^{(k)}(0).$

Funkcja generująca momenty

Rozkład normalny

$$X \sim N(\mu, \sigma^2)$$
.

$$M(t) = \mathbb{E}e^{tX} = \int_{-\infty}^{+\infty} e^{tx} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = e^{t\mu + \sigma^2 t^2/2}.$$

$$\mathbb{E}X = \mu$$
, $\mathbb{E}X^2 = \mu^2 + \sigma^2$, $\mathbb{E}X^3 \stackrel{\text{leg}}{=} \mu^3 + 3\mu\sigma^2$, $\mathbb{E}X^4 \stackrel{\text{leg}}{=} \mu^4 + 6\mu^2\sigma^2 + 3\sigma^4$.

Funkcja generująca momenty

Rozkład gamma

$$X \sim \mathsf{Gamma}(\alpha, \beta)$$
.

$$\begin{split} f_{\alpha,\beta}(x) &= \frac{1}{\beta^{\alpha}\Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, \qquad x > 0, \ \alpha, \beta > 0. \\ &\Gamma(\alpha) = \int_0^{\infty} u^{\alpha-1} e^{-u} du, \qquad \alpha > 0. \\ &M(t) = (1-\beta t)^{-\alpha}, \qquad t < \frac{1}{\beta}. \\ &u_1 = \alpha\beta, \qquad u_2 = \alpha(\alpha+1)\beta^2. \end{split}$$

Przykład 3

$$X_1,\dots,X_n \sim \mathsf{Gamma}(\alpha,\beta).$$

$$\mu_1 = \alpha\beta, \qquad \mu_2 = \alpha(\alpha+1)\beta^2.$$

Wyznaczamy parametry w funkcji momentów:

$$\mu_2 = \mu_1^2 + \mu_1 \beta \implies \beta = \frac{\mu_2 - \mu_1^2}{\mu_1}, \qquad \alpha = \frac{\mu_1}{\beta} = \frac{\mu_1^2}{\mu_2 - \mu_1^2}.$$

Estymatorami m. m. parametrów α , β są

$$\hat{\alpha} = \frac{m_1^2}{m_2 - m_1^2}, \qquad \hat{\beta} = \frac{m_2 - m_1^2}{m_1}.$$

Właściwości estymatorów metody momentów Zgodność

Zmieniając liczność próby $n=1,2,\ldots$ dostajemy ciąg estymatorów:

$$\hat{\theta}_{(1)}, \hat{\theta}_{(2)}, \ldots, \hat{\theta}_{(n)}, \ldots$$

Twierdzenie

Estymator m. m. dla parametru θ jest zgodny, tzn.

$$\hat{\theta}_{(n)} \xrightarrow[n \to \infty]{\mathbb{P}} \theta.$$

Właściwości estymatorów metody momentów

Asymptotyczna normalność

Twierdzenie

Estymator m. m. dla parametru θ jest asymptotycznie normalny. W przypadku skalarnego parametru ($\theta = \theta_1$) oznacza to

$$\sqrt{n}\left(\hat{\theta}_{(n)} - \theta\right) \xrightarrow[n \to \infty]{d} N(0, \sigma^2),$$

gdzie

$$\sigma^2 = \frac{g_2(\theta) - g_1^2(\theta)}{(g_1'(\theta))^2} = \frac{\mu_2(\theta) - \mu_1^2(\theta)}{\left(\frac{\partial \mu_1(\theta)}{\partial \theta}\right)^2}.$$

Uwaga: wyrażenie w liczniku opisuje wariancję rozkładu X wyrażoną przez θ .

Przykład

Rozkład wykładniczy $\mathsf{Exp}(\lambda)$ ma fgp

$$f(x) = \lambda e^{-\lambda x}$$

Przyjmijmy, że mamy próbę losową z tego rozkładu:

$$X_1, \ldots, X_n \sim \mathsf{Exp}(\lambda).$$

Wartość oczekiwana jest równa

$$\mathbb{E}(\mathbf{x}) = 1/\lambda$$
,

 \blacktriangleright wiec estymator parametru λ wg. metody momentów to

$$\hat{\lambda} = \frac{1}{m_1} = \frac{1}{\frac{1}{n} \sum_{i=1}^n X_i}$$

parametr σ² z twierdzenia o asymptotycznej zbieżności do rozkładu normalnego jest równy:

$$\sigma^2 = \frac{\lambda^{-2}}{(-\lambda^{-2})^2} = \lambda^2(\mathbb{Q})$$

Co oznacza zbieżność $\hat{\lambda}_n \xrightarrow[n \to \infty]{\mathbb{P}} \lambda$?

$$\begin{split} \mathcal{F} = &\{\mathsf{Exp}(\lambda) \colon \lambda > 0\} \\ \hat{\lambda}_n = 1/\overline{X}_n \\ \mathsf{np.} \ \lambda = 2, \ \forall_{\varepsilon} \mathbb{P}(|\hat{\lambda}_n - 2| > \varepsilon) \xrightarrow{n \to \infty} 0, \ \mathsf{we\acute{z}my} \ \mathsf{np.} \ \varepsilon_0 = 0.01 \\ \mathbb{P}(|\hat{\lambda}_{10} - 2| > \varepsilon_0) \approx 0.99, \\ \mathbb{P}(|\hat{\lambda}_{100} - 2| > \varepsilon_0) \approx 0.96, \\ \mathbb{P}(|\hat{\lambda}_{1000} - 2| > \varepsilon_0) \approx 0.87, \\ \mathbb{P}(|\hat{\lambda}_{10000} - 2| > \varepsilon_0) \approx 0.62, \\ \mathbb{P}(|\hat{\lambda}_{100000} - 2| > \varepsilon_0) \approx 0.11, \\ \mathbb{P}(|\hat{\lambda}_{200000} - 2| > \varepsilon_0) \approx 0.03. \end{split}$$

Co oznacza zbieżność $\sqrt{n}\left(\hat{\lambda}_n - \lambda\right) \xrightarrow[n \to \infty]{d} N(0, \lambda^2)$?

Oznacza punktową zbieżność dystrybuant F_n zmiennych $Y_n = \sqrt{n} \left(\hat{\lambda}_n - \lambda \right)$ do dystrybuanty F rozkładu $N(0,\lambda^2)$, t.j.

$$\forall t \in \mathbb{R} \qquad F_n(t) \xrightarrow{n \to \infty} F(t).$$

Co oznacza zbieżność $\sqrt{n}\left(\hat{\lambda}_n - \lambda\right) \xrightarrow[n \to \infty]{d} N(0, \lambda^2)$?

Estymatory największej wiarygodności

MWS, wykład 3

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 23 marca 2021

Model parametryczny i momenty

Definicja

Model parametryczny:

$$\mathcal{F} = \{ f_{\theta}(x) \colon \theta \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k,$$

gdzie $\theta=(\theta_1,\ldots,\theta_k)$ to parametr (rozkładu). Zamiast funkcji gęstości można rozważać dystrybuanty lub funkcje prawdopodobieństwa.

Funkcja wiarygodności

$$\mathcal{F} = \{ f_{\theta}(x) \colon \theta \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k,$$

 X_1, \ldots, X_n próba losowa (niezależne zmienne losowe o tym samym rozkładzie) z rozkładu odpowiadającemu pewnej nieznanej wartości θ .

Definicja (Funkcja wiarygodności)

Funkcja wiarygodności \mathcal{L}_n to funkcja określona formułą

$$\mathcal{L}_{n}(x_{1},...,x_{n};\theta) = f_{\theta}(x_{1}) \times \cdots \times f_{\theta}(x_{n}).$$

- Ogólniej: łączna funkcja gęstości prawdopodobieństwa
- ightharpoonup Skrócone oznaczenie: $\mathcal{L}_{\mathbf{n}}(\theta)$
- ightharpoonup Logarytmiczna funkcja wiarygodności ℓ_n to

$$\ell_n(\theta) = \ell_n(x_1, \dots, x_n; \theta) = \ln(\mathcal{L}_n(\theta)).$$

Estymator największej wiarygodności

Definicja

Estymator największej wiarygodności $\hat{\theta}_n$ parametru θ to taka wartość parametru θ , dla której funkcja wiarygodności przyjmuje maksimum, czyli

$$\boldsymbol{\hat{\theta}}_n = \text{arg} \max_{\boldsymbol{\theta}} \mathcal{L}_n(X_1, \dots, X_n; \ \boldsymbol{\theta}).$$

- Interpretacja: taki parametr θ, który prowadzi do największego p-stwa otrzymanych wyników pomiaru.
- Estymator NW jest zmienną losową (jak każdy estymator)
- Równoważnie:

$$\hat{\theta}_n = \arg\max_{\alpha} \ell_n(X_1, \dots, X_n; \ \theta).$$

Przykład: estymator n. w. dla rozkładu Bern(p)

Zadanie: Rzucono n razy monetą. Znaleźć estymator N.W. p-stwa wypadnięcia orła.

- Tworzymy zmienną losową X. Zdarzeniu "orzeł" przypisujemy 1, a zdarzeniu "reszka" przypisujemy 0. Zmienna ta ma rozkład Bernoulliego.
- Przypomnienie: X ma rozkład Bernoulliego z parametrem p, X ~ Bern(p), jeśli zmienna losowa może przyjąć tylko dwie wartości, oraz

$$f_{p}(1) = p, \qquad f_{p}(0) = 1 - p.$$

► Rodzina rozkładów Bernoulliego z nieznanym parametrem

$$\mathcal{F} = \{ f_{\mathfrak{p}}(x) \colon \mathfrak{p} \in [0, 1] \}$$

Przykład: estymator n. w. dla rozkładu Bern(p)

Wyznaczenie estymatora:

1. Wyznaczamy funkcję wiarygodności (nieznany parametr to p)

$$\mathcal{L}_{\mathbf{n}}(\mathbf{p}) = f_{\mathbf{p}}(X_1) \times \cdots \times f_{\mathbf{p}}(X_n) = \mathbf{p}^{L_1}(1-\mathbf{p})^{L_0}$$

gdzie L_1 to liczba 1, a L_0 to liczba 0, $L_1 + L_0 = n$.

2. Szukamy maksimum tej funkcji ze względu na p

$$\ell_n(p) = L_1 \ln p + L_0 \ln (1-p).$$

$$0 = \frac{d\ell_n(p)}{dp} = \frac{L_1}{p} - \frac{L_0}{1-p}.$$

3. Wynik to:

$$\hat{p}_n \stackrel{\text{left}}{=} \frac{L_1}{L_0 + L_1} = \frac{X_1 + \dots + X_n}{n} = \overline{X}_n = m_1.$$

Przykład: Estymator n. w. dla rozkładu $N(\mu, \sigma^2)$

$$\begin{split} \mathfrak{F} &= \left\{ f_{\mu,\sigma^2}(x) \colon (\mu,\sigma^2) \in \mathbb{R} \times (0,\infty) \right\}, \\ f_{\mu,\sigma^2}(x) &= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}. \end{split}$$

Logarytmiczna funkcja wiarygodności

$$\begin{split} \ell_n(\mu,\sigma^2) &= -n \ln \sqrt{2\pi} - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n (X_i - \mu)^2. \\ &\frac{\partial \ell_n(\mu,\sigma^2)}{\partial \mu} = 0 \implies \hat{\mu} = \overline{X}_n. \\ &\frac{\partial \ell_n(\mu,\sigma^2)}{\partial \sigma^2} = 0 \implies \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X}_n)^2. \end{split}$$

Estymator n. w. dla rozkładu Unif($[0, \theta]$)

$$\mathcal{F} = \{f_{\theta}(x) \colon \theta > 0\}, \quad f_{\theta}(x) = \begin{cases} \frac{1}{\theta} & \text{dla } x \in [0, \theta] \\ 0 & \text{w p.p.} \end{cases}$$

Funkcja wiarygodności (funkcja 1 to indykator zbioru)

$$\mathcal{L}_{n}(\theta) = \frac{1}{\theta^{n}} \mathbb{1}_{[0,\theta]} \bigg(\max(X_{1}, \dots, X_{n}) \bigg).$$

$$\hat{\theta}_{n} = \max(X_{1}, \dots, X_{n})$$

Uwaga: Metoda momentów daje w tym wypadku

$$\hat{\theta}_n = 2\overline{X}_n$$
.

Estymator n. w. dla rozkładu Γ

$$\begin{split} \mathfrak{F} &= \left\{ f_{\alpha,\beta}(x) \colon (\alpha,\beta) \in (0,\infty) \times (0,\infty) \right\}, \\ f_{\alpha,\beta}(x) &= \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha-1} e^{-x/\beta}, \\ \Gamma(\alpha) &= \int_{0}^{\infty} u^{\alpha-1} e^{-u} du, \qquad \alpha > 0. \end{split}$$

Logarytmiczna funkcja wiarygodności:

$$\begin{split} \ell_n(\alpha,\beta) &= (\alpha-1) \sum_{k=1}^n \ln X_k - \sum_{k=1}^n X_k/\beta - n\alpha \ln \beta - n \ln \Gamma(\alpha). \\ &\frac{\partial \ell_n}{\partial \beta} = 0 \implies \hat{\beta} = \frac{\overline{X}_n}{\hat{\alpha}}. \\ &\frac{\partial \ell_n}{\partial \alpha} = 0 \implies \overline{(\ln X)}_n - \ln \overline{X}_n = \frac{\Gamma'(\hat{\alpha})}{\Gamma(\hat{\alpha})} - \ln \hat{\alpha}. \end{split}$$

Powyższe równanie rozwiązuje się numerycznie . . .

Definicja

Obciążenie estymatora $\hat{\theta}_n$ parametru θ to wielkość

$$\mathbb{E}\hat{\theta} - \theta$$
.

Estymator $\hat{\theta}_n$ parametru θ nazywany jest estymatorem nieobciążonym, jeśli jego obciążenie jest zerowe, czyli

$$\mathbb{E}\hat{\theta} = \theta.$$

Przykład: $\mathcal{F} = \{ Unif([0, \theta]) : \theta > 0 \}$

Estymator (parametru θ) m. m. jest nieobciążony:

$$\mathbb{E}\hat{\theta}_{n} = \mathbb{E}\left(2\overline{X}_{n}\right) = \frac{2}{n}\mathbb{E}(X_{1} + \dots + X_{n}) = \frac{2}{n}n\frac{\theta}{2} = \theta.$$

Estymator (parametru θ) n.w. jest obciążony:

$$\mathbb{E}\hat{\theta}_n = \mathbb{E}\left(\max(X_1,\ldots,X_n)\right) < \theta.$$

Czy to znaczy, że estymator m. m. jest w tym wypadku lepszy?

Własności estymatorów n. w.

Twierdzenie

Estymator n. w. dla parametru θ (pod pewnymi założeniami co do regularności modelu) jest

zgodny, tzn.

$$\hat{\theta}_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$
,

asymptotycznie normalny, tzn. (przypadek skalarnego parametru)

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow[n \to \infty]{d} N(0, \sigma_{MLE}^2),$$

- **ekwiwariantny**, tzn. jeśli $\hat{\theta}_n$ jest estymatorem n. w. dla θ , to $g(\hat{\theta}_n)$ jest estymatorem n. w. dla $g(\theta)$.
- asymptotycznie optymalny (asymptotycznie efektywny)

Zajmiemy się teraz wyznaczaniem σ_{MLF}^2 .

Funkcja informacji Fishera

$$\mathcal{F} = \{ f_{\theta}(x) \colon \theta \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k,$$

 X_{θ} zmienna losowa o rozkładzie zadanym fun. gęst. $f_{\theta}(x)$.

Definicja (Funkcja informacji Fishera)

Funkcją informacji Fishera (informacją Fishera) dla rodziny $\mathcal F$ ze skalarnym (k=1) parametrem θ nazywamy odwzorowanie

$$\Theta\ni\theta\mapsto I(\theta)=\mathbb{E}\left(\ell'(\theta)\right)^2=\mathbb{E}\left(\frac{\partial\ln f_\theta(X_\theta)}{\partial\theta}\right)^2=\mathbb{E}\left(\frac{f_\theta'(X_\theta)}{f_\theta(X_\theta)}\right)^2.$$

Uwaga:

W przypadku wektorowego parametru θ (k>1) $I(\theta)$ jest macierzą o i, j-tym elemencie będącym funkcją określonym przez

$$\mathbb{E}\left(\frac{\partial \ell(\theta)}{\partial \theta_i} \frac{\partial \ell(\theta)}{\partial \theta_i}\right).$$

Fakt

Przy pewnych założeniach

$$\mathbb{E}\left(\ell''(\theta)\right) = \mathbb{E}\left(\frac{\partial^2 \ln f_{\theta}(X_{\theta})}{\partial \theta^2}\right) = -I(\theta).$$

Dowód $\mathbb{E}(\ell''(\theta)) = -I(\theta)$.

$$\ell'(\theta) = \frac{f_\theta'(X_\theta)}{f_\theta(X_\theta)}, \quad \ell''(\theta) = \frac{f_\theta''(X_\theta)}{f_\theta(X_\theta)} - \frac{(f_\theta'(X_\theta))^2}{f_\theta^2(X_\theta)}, \quad ' = \frac{\eth}{\eth\theta}.$$

$$\int f_{\theta}(x)dx = 1 \implies \int \frac{\partial^{k} f_{\theta}(x)}{\partial \theta^{k}} dx = 0 \implies \int f_{\theta}''(x)dx = 0.$$

$$\mathbb{E}\left(\ell''(\theta)\right) = \int \left(\frac{f_{\theta}''(x)}{f_{\theta}(x)} - \frac{(f_{\theta}'(x))^2}{f_{\theta}^2(x)}\right) f_{\theta}(x) dx$$
$$= 0 - \mathbb{E}\left(\ell'(\theta)^2\right) = -I(\theta).$$

Twierdzenie o zbieżności estymatorów n. w.

Twierdzenie (Asymptotyczna normalność est. n. w.)

Jeśli $\hat{\theta}_n$ jest estymatorem n. w., to

$$\sqrt{n}\left(\hat{\theta}_n - \theta\right) \xrightarrow[n \to \infty]{d} N\left(0, \frac{1}{I(\theta)}\right).$$

Równoważnie:

$$\sqrt{nI(\theta)}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{d} N(0, 1).$$

Co więcej

$$\sqrt{nI(\hat{\theta})}(\hat{\theta}_n - \theta) \xrightarrow[n \to \infty]{d} N(0, 1).$$

Więc σ_{MLF}^2 to odwrotność informacji Fishera.

Przykład: Rozkład Bern(p)

Funkcja gęstości prawdopodobieństwa

$$\begin{split} f_p(x) &= p \mathbb{1}_{\{1\}}(x) + (1-p) \mathbb{1}_{\{0\}}(x) = p^x (1-p)^{1-x}. \\ \ell'(p) &= (x \ln p + (1-x) \ln (1-p))' = \frac{x}{p} - \frac{1-x}{1-p}. \\ \ell''(p) &= -\frac{x}{p^2} - \frac{1-x}{(1-p)^2}. \\ I(p) &= -\mathbb{E}\ell''(p) = \frac{\mathbb{E}X}{p^2} + \frac{1-\mathbb{E}X}{(1-p)^2} = \frac{1}{p} + \frac{1}{1-p} = \frac{1}{p(1-p)}. \end{split}$$

Przykład: Rozkład $Exp(\lambda)$

Funkcja gęstości prawdopodobieństwa

$$\begin{split} f_\lambda(x) &= \lambda e^{-\lambda x} \quad \text{dla } x \geqslant 0. \\ \ell(\lambda) &= \ln \lambda - \lambda x, \qquad \ell''(\lambda) = -\frac{1}{\lambda^2}. \\ I(\lambda) &= -\mathbb{E}\left(-\frac{1}{\lambda^2}\right) = \frac{1}{\lambda^2}. \end{split}$$

Przykład: Rozkład Pois(λ)

Funkcja gęstości prawdopodobieństwa

$$f_{\lambda}(x) = \frac{\lambda^{x}}{x!} e^{-\lambda} \qquad x = 0, 1, \dots$$

$$\ell(\lambda) = x \ln \lambda - \lambda - \ln x!, \qquad \ell''(\lambda) = -\frac{x}{\lambda^{2}}.$$

$$I(\lambda) = -\mathbb{E}\left(-\frac{X}{\lambda^{2}}\right) = \frac{\lambda}{\lambda^{2}} = \frac{1}{\lambda}.$$

Nierówność Crámera-Rao

Niech X_1,\ldots,X_n próba losowa (zmienne niezależne o tym samym rozkładzie odpowiadającym nieznanej wartości parametru θ), $S=S(X_1,\ldots,X_n)$ statystyka oraz

$$m(\theta) = \mathbb{E} S(X_1, \dots, X_n).$$

Twierdzenie (Crámera-Rao)

$$V(S) \geqslant \frac{(\mathfrak{m}'(\theta))^2}{\mathfrak{n}I(\theta)},$$

przy czym równość wtw, gdy

$$S(X_1,\ldots,X_n)=m(\theta)+t(\theta)\ell_n'(X_1,\ldots,X_n;\theta),$$

dla pewnej funkcji $t(\theta)$.

Przypomnienie: wariancja S to $\mathbb{V}(S) = \mathbb{E}(S - \mathfrak{m}(\theta))^2$.

Efektywność estymatorów

Definicja

Niech $S = S(X_1, ..., X_n)$ będzie statystyką oraz $\mathfrak{m}(\theta) = \mathbb{E}S$. S nazywamy efektywnym estymatorem wielkości $\mathfrak{m}(\theta)$, jeśli

$$\mathbb{E}(S - m(\theta))^2 = \frac{(m'(\theta))^2}{nI(\theta)},$$

tzn. w nierówności Crámera-Rao zachodzi równość.

Pokazaliśmy, że S jest estymatorem efektywnym $m(\theta)$ wtw, gdy istnieje funkcja $t(\theta)$ taka, że

$$S(X_1, \dots, X_n) = m(\theta) + t(\theta) \ell'_n(X_1, \dots, X_n; \theta).$$

Estymator efektywny wielkości $m(\theta)$ nie musi istnieć!

Asymptotyczna efektywność estymatorów n. w.

Niech $\hat{\theta}$ będzie nieobciążonym ($\mathbb{E}\hat{\theta}=\theta$) estymatorem największej wiarygodności.

Nierówność Crámera-Rao ma w tym przypadku postać:

$$\mathbb{V}(\hat{\theta}) \geqslant \frac{1}{\mathsf{nI}(\theta)}$$

Estymatora efektywny to taki, który spełnia:

$$V(\hat{\theta}) = \frac{1}{nI(\theta)}$$

► Wiemy również, że

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow[n \to \infty]{d} N\left(0, \frac{1}{I(\theta)}\right).$$

Wariancja lewej strony to $\mathbb{V}(\sqrt{n}(\hat{\theta}-\theta))=n\mathbb{V}(\hat{\theta})$ więc

$$nV(\hat{\theta}) \rightarrow \frac{1}{I(\theta)}$$
.

Ta własność estym. n.w. to asymptotyczna efektywności.

Rodziny wykładnicze

Definicja

Rodzina rozkładów $\mathcal{F}=\{f_{\theta}(x)\colon \theta\in\Theta\subset\mathbb{R}\}$ nazywana jest rodziną wykładniczą, jeśli funkcja gęstości prawdopodobieństwa (funkcja prawdopodobieństwa w przypadku dyskretnym) daje się przedstawić w postaci

$$f_{\theta}(x) = a(\theta)b(x)e^{c(\theta)d(x)}.$$

Wykładnicze rodziny rozkładów tworzą tworzą np. rozkłady: Gaussa, Poissona, Bernoulliego, dwumianowy, wielomianowy, wykładniczy, gamma,...

$$f_{\theta}(x) = a(\theta)b(x)e^{c(\theta)d(x)}.$$

Fakt

Dla wykładniczej rodziny rozkładów statystyka

$$S = \frac{1}{n} \sum_{i=1}^{n} d(X_i)$$

jest efektywnym estymatorem wielkości

$$m(\theta) = \mathbb{E}S = -\frac{\alpha'(\theta)}{\alpha(\theta)c'(\theta)}.$$

 $f_{\theta}(x) = a(\theta)b(x)e^{c(\theta)d(x)}.$ Chcemy pokazać, że $S = \frac{1}{n}\sum_{i=1}^n d(X_i)$ jest efektywnym estymatorem $m(\theta) = \mathbb{E}S = -\frac{a'(\theta)}{a(\theta)c'(\theta)}.$

Musimy pokazać:

$$\mathbb{E} S \stackrel{(\bigstar)}{=} -\frac{\alpha'(\theta)}{\alpha(\theta)c'(\theta)} = \mathfrak{m}(\theta) \text{ oraz } S = \mathfrak{m}(\theta) + \mathfrak{t}(\theta)\ell_n'(\theta).$$

$$\ell'(x;\theta) = \frac{\partial}{\partial \theta} \left(\ln \alpha(\theta) + \ln b(x) + c(\theta) d(x) \right) = \frac{\alpha'(\theta)}{\alpha(\theta)} + c'(\theta) d(x).$$

Stąd
$$\ell_n'(\theta) = n \frac{\alpha'(\theta)}{\alpha(\theta)} + c'(\theta) \sum_{i=1}^n d(X_i)$$
, czyli

$$S(X_1,\ldots,X_n) = \frac{1}{n} \sum_{i=1}^n d(X_i) = \frac{1}{nc'(\theta)} \ell'_n(X_1,\ldots,X_n;\theta) - \frac{\alpha'(\theta)}{\alpha(\theta)c'(\theta)}.$$

$$(\bigstar)$$
 dostajemy dzięki $\mathbb{E}\ell_n'=0$

Rodziny wykładnicze nieco ogólniej

Rodzina

$$\mathfrak{F} = \left\{ f_{\theta}(x) \colon \theta \in \Theta \subset \mathbb{R}^{k} \right\}$$
$$\theta = (\theta_{1}, \dots, \theta_{k})$$

jest nazywana wykładniczą rodziną rozkładów jeśli

$$f_{\theta}(x) = a(\theta)b(x)e^{\sum_{i=1}^k c_i(\theta_i)d_i(x)}.$$

W tym kontekście dostajemy zestaw estymatorów efektywnych

$$S_{i} = \frac{1}{n} \sum_{i=1}^{k} d_{i}(X), \qquad \mathbb{E}S_{i} = -\frac{\frac{\partial \alpha}{\partial \theta_{i}}}{\alpha(\theta) \frac{\partial c_{i}}{\partial \theta_{i}}}.$$

Przykład efektywnego estymatora

Rozważmy rodzinę rozkładów Poissona:

$$f_{\lambda}(x) = \frac{\lambda^{x}}{x!} e^{-\lambda}, \quad x = 0, 1, \dots$$

$$f_{\lambda}(x) = \underbrace{e^{-\lambda}}_{a(\lambda)} \underbrace{\frac{1}{x!}}_{b(x)} \exp(\underbrace{\ln \lambda}_{c(\lambda)} \underbrace{x}_{d(x)}).$$

$$S = \frac{1}{n} \sum_{i=1}^{n} d(X_{i}) = \overline{X}_{n}$$

jest zatem estymatorem efektywnym wielkości

$$m(\lambda) = \mathbb{E}S = -\frac{\alpha'(\lambda)}{\alpha(\lambda)c'(\lambda)} = \frac{-(-e^{-\lambda})}{e^{-\lambda}(1/\lambda)} = \lambda.$$

Modele i wnioskowanie statystyczne Wprowadzenie do R

Konrad Jędrzejewski

ISE PW

24 października 2012

Informacje ogólne

- R jest pakietem (środowiskiem) przeznaczonym do zaawansowanych obliczeń statystycznych.
- Licencja GNU GPL całkowicie bezpłatny.
- Źródła: http://www.r-project.org.
- CRAN (Comprehensive R Archive Network).
- Platformy: Windows, Linux, Unix, MacOS.
- Język R jest językiem interpretowanym, a nie kompilowanym.
- R Commander.

Środowisko

Konsola

```
- >
- +
```

- Rozróżnialność małych wielkich liter
- Mechanizm "strzałek" poprzednie komendy
- Pomoc
 - help(nazwa),
 - ?nazwa
 - apropos(nazwa)
 - ??nazwa

Środowisko

- Funkcje wywołanie.
 - nazwa(arg1, arg2, arg3 = wartość)
 - -x = 1:100; y = rnorm(100); plot(x, y, type = "l")
 - args(legend)
 - example(legend)
- # komentarz
- Przydatne funkcje
 - Is(), objects()
 - rm()
 - print("napis")
 - print(dane)

Środowisko - pakiety

- Pakiety
 - library() –lista pakietów zainstalowanych
 - search() lista pakietów załadowanych
- Załadowanie pakietu
 - library(nazwa_pakietu)
 - require(nazwa_pakietu)
- Usunięcie pakietu (z pamięci)
 - detach(package:nazwa_pakietu)

Własne skrypty, funkcje

- Katalog roboczy
 - getwd(), setwd("nazwa_katalogu")
 - dir(), list.files()
- Uruchamianie własnych skryptów
 - source("nazwa_skryptu")
- Dołączanie własnych funkcji
 - source("nazwa_pliku")
 - Is()
 - "funkcja1_z_nazwa_pliku" "funkcja2_z_nazwa_pliku"
 - rm("funkcja1_z_nazwa_pliku")

Wczytywanie i zapisywanie danych

- Pobieranie z plików:
 - dane = scan('c:/plik.txt')
 - dane = read.table('plik.txt', header = T)
 - dane = read.csv('Zeszyt1.csv', sep =";" header = T, dec = ',')
 - names(dane), rownames(dane), dimnames(dane)
 - write(x, 'plik.txt')
 - write.table(dane, file = 'plik.txt'), write.csv()
- Edycja/zmiana danych
 - edit(dane), fix(dane)
- Pobieranie z pakietów
 - data(uspop, package = 'datasets')

Typy danych

- Numeryczny
 - -2.345
 - 3.5e-15
- Znakowy
 - 'a', "abc", \n, \t
- Zespolony
 - x = 3 + 4i

Mod(x), Arg(x), Re(x), Im(x)

- Logiczny
 - TRUE\T, FALSE\F

Struktury danych

- Wektor
- Tablica/macierz
- Faktor (factor)
- Lista
- Ramka (dataframe)

Wektor

Tworzenie

```
- x = c(1,2,3,4), x <- c(1,2,3,4)

- x = c("bdb","db","dst","bdb")

- x = c(TRUE,FALSE,TRUE,FALSE); y = c(T,F,T,F)
```

- Indeksowanie wektorów
 - -x[3]
 - -x[2:4]
 - -x[c(2,5,8)]
- Operacje arytmetyczne

Generowanie wektorów

```
- x = 1:100
   - x = 100:1
• seq()
   -x = seq(0, 5, by = 0.25)
   - x = seq(0, 5, length = 10)
• rep()
   -x = rep(c(1,2,3), 4)
   -x = rep(c(1,2,3), each = 4)
```

Tablica

 Tablica (array) jest wektorem zawierającym dodatkowe dane określające uporządkowanie elementów w tablicy.

• dim()

- x = 1:20
- $\dim(x) = c(4,5)$
- attributes(x)
- dimnames(x) = list(letters[1:4],LETTERS[1:5])

Tablica

- matrix()matrix(1:20, 4, 5)
- array()array(1:20,c(4,5))
- rbind(), cbind()
 - x = rbind(1:3,4:6); y = cbind(1:3,4:6)
- Mnożenie macierzy
 - -z = x%*%y
- Indeksowanie
 - -x[2,3], x[1:3,1:2], x[2,], x[,3]

Faktor (factor)

- Faktor (factor) jest strukturą przechowującą oprócz szeregu danych informacje o powtórzeniach takich samych wartości oraz zbiorze unikalnych wartości.
- factor()
 - faktor = **factor**(c(2,3,4), levels=1:5)
 - punkty = factor(c(95,56,74,80,52,99,35,74))
 - oceny = factor(c("bdb","dst","db","dst","bdb","ndst","db"))
- levels()
 - levels(oceny)
- table()
 - table(oceny)

Lista

- Lista (list) jest uporządkowanym zbiorem elementów różnego typu.
 - Lista = list("Jan","Kowalski",1990,"Warszawa","TRUE")
 - Lista = list(imie="Jan",nazwisko="Kowalski",rok_ur=1990,zam= "Warszawa",stud="TRUE")
- Wybór z listy
 - Lista\$nazwisko
 - Lista[2][1]
- Dodawanie
 - Lista\$imie[2] = "Jakub"; Lista\$nazwisko[2] = "Nowak"; ...
 - Lista2 = list(imie=c("Jan","Piotr"),nazwisko=c("Kowalski", "Nowak"),rok_ur=c(1991,1995),zam=c("Warszawa","Poznan"), stud=c(T,F))

Ramka

- Ramka (dataframe) jest macierzą, w której poszczególne kolumny mogą zawierać wartości różnego typu.
- Tworzenie
 - ramka = data.frame(LETTERS[1:6], seq(10,60, by = 10), seq(10,60, by = 10) > 35)
 - names(ramka) = c("Litera","Punkty"," Punkty > 35")
- Wybór z ramki
 - ramka[3,]; ramka[,2]
 - ramka\$Punkty
 - ramka\$Litera[2]
 - ramka\$"Punkty > 35"

Generowanie liczb losowych

- sample()
 - sample(1:6, 4, replace = T)
- Rozkłady zmiennych binom, geom, hyper, pois, norm, unif, exp, chisq, f, t, beta, gamma
- Przedrostki: r, d, p, q
 - x = rnorm(100, mean = 2, sd = 3)
 - dnorm(0, mean = 0, sd = 1); dunif(0.4, min=0, max=2)
 - pnorm(0, mean = 0, sd = 1); punif(0.4, min=0, max=2)
 - qnorm(0.95, mean = 0, sd = 1); qunif(0.4, min=0, max=2)
- Podstawowe funkcje
 - mean(), sd(), var(), median(), quantile()

Wykresy

- Podstawowe funkcje
 - plot(),
 - plot(x,y, xlab = "opis x", ylab ="opis y", main = "tytul")
 - kolejne dane na wykresie points(), lines()
 - hist(rnorm(1000))
 - pie(1:6, labels = LETTERS[1:6])
 - grid(), title(), legend()
- Zarządzanie oknami
 - dev.new(), x11(), dev.off(), dev.cur(), dev.set(nr_device)

Wykresy

Zapisywanie

Programowanie w R

- Instrukcja warunkowa
- Petle
- Skrypty
- Funkcje

Instrukcja warunkowa

- if(warunek) wyrażenie
- if(warunek) wyrażenie1 else wyrażenie2
- ifelse(warunek, a, b)
- switch(zmienna, wartosc1 = akcja1, wartosc2 = akcja2, ...)
- Operatory logiczne: &, |, !, xor(x,y), ==, !=, <, >, <=,
 isTRUE(x), &&, ||.

Petle

- for(licznik in start:koniec) wyrażenie
- while(warunek) wyrażenie
- repeat wyrażenie
- break
- next
- Przykłady

Skrypty

```
source("nazwa_skryptu.R")
Przykład
  Skrypt1.R
   x = 1:100
   y = x^2
   plot(x, y, type="l")
   grid()
```

> source("Skrypt1.R")

Funkcje

- nazwa_funkcji = function(arg1, arg2, arg3 = wartość)
 {ciało funkcji}
- Zwracane wartości ostatnia linia
- return()
- Przeciążanie funkcji
- stop()
- warning()

Przedziały ufności

MWS, wykład 5

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 13 kwietnia 2021

Przedziały ufności

Przedziały ufności

 X_1,\dots,X_n próba losowa odp. pewnej (nieznanej) wartości parametru $\theta\in\Theta.$

Definicja

Przedziałem ufności na poziomie ufności γ dla parametru θ nazywamy przedział $\left[A(X_1,\ldots,X_n),B(X_1,\ldots,X_n)\right]$, dla którego zachodzi nierówność

$$\mathbb{P}\left(\theta \in \left[A(X_1,\ldots,X_n),B(X_1,\ldots,X_n)\right]\right) \geqslant \gamma.$$

Uwagi:

- w praktyce zazwyczaj chodzi o równość
- przedział ten jest losowy (tak samo jak estymator punktowy)
- ightharpoonup poziom ufności wyraża się często przez 1-lpha zamiast γ

Sposoby wyznaczania przedziałów ufności

..czyli spis treści wykładu

Przedziały ufności dla estymatora można wyznaczać:

- W sposób dokładny wykorzystując znajomość analitycznej postaci rozkładu estymatora,
 - trzeba ją najpierw wyznaczyć, a to bywa trudne
- W sposób przybliżony wykorzystując graniczny (normalny) rozkład estymatora,
 - ▶ już łatwiej, choć nieco mniej dokładnie
- W sposób przybliżony przez symulacje (tzw. bootstrap)
 - jeszcze łatwiej.

Przykład wykorzystania rozkładu granicznego

Liczba zgonów od kopnięcia konia dla 10 korpusów pruskiej kawalerii zebrana z 20-letniego okresu (mamy 200 "korpuso-lat").

Wyznaczanie przedziału uf. z wykorzystaniem rozkładu granicznego

$$\hat{\lambda} = (109 \times 0 + 65 \times 1 + 22 \times 2 + 3 \times 3 + 1 \times 4)/200 = 0.61$$

$$\sqrt{n}(\hat{\lambda} - \lambda) \approx N(0, 1/I(\hat{\lambda})) = N(0, \underline{\hat{\lambda}}) = \sqrt{\hat{\lambda}}N(0, 1)$$

Przedział ufności dla λ na poziomie ufności $\gamma=1-\alpha$ można zatem przybliżyć jako

$$\begin{split} \left[\hat{\lambda} - z_{(1+\gamma)/2} \sqrt{\hat{\lambda}/n}, \ \hat{\lambda} + z_{(1+\gamma)/2} \sqrt{\hat{\lambda}/n}\right] \\ &= \left[\hat{\lambda} - z_{1-\frac{\alpha}{2}} \sqrt{\hat{\lambda}/n}, \ \hat{\lambda} + z_{1-\frac{\alpha}{2}} \sqrt{\hat{\lambda}/n}\right] \overset{\gamma=0.95}{\approx} [0.50, \ 0.72]. \end{split}$$

Bootstrap parametryczny

- Mamy do dyspozycji próbę, na podstawie której estymujemy parametr rozkładu θ̂. Chcemy zbadać jakie są własności (np. wariancja, kwantyle, rozkład) tego estymatora lub innej statystyki.
- Nie dysponując dodatkowymi danymi próbujemy wykorzystać to co mamy (bootstrapping).
- W przypadku modelu parametrycznego generujemy wiele losowych prób (liczności takiej jak oryginalna próba), dla każdej z nich wyznaczamy wartość badanej statystyki i badamy rozkład/wariancję/kwantyle/itp. tych wartości.
- Żeby wygenerować próby musimy znać parametr θ rozkładu!
- Zamiast θ wykorzystujemy (istota bootstrapu parametrycznego) estymatę θ̂ uzyskaną na podstawie oryginalnych danych.

Wyznaczania przedziału uf. metodą bootstrapu parametrycznego

 $\hat{\lambda} = 0.61$ $[y_n \cdot y_n] = \text{sample}([x_n, y_n])$

 $Pois(\hat{\lambda})$

- Generujemy $N\gg 1$ zestawów po n=200 liczb z rozkładu
- Dla każdego zestawu wyliczamy wartość estymatora.
- \triangleright Wyznaczamy przedział ufności [A, B] (na poziomie ufności γ) tak, aby obejmował $\gamma \times N$ spośród wyznaczonych N wartości estymatora.
- ightharpoonup Dla $\gamma=0.95$, N = 1000, $\hat{\lambda}=0.61$ w wyniku symulacji otrzymujemy $[A, B] \approx [0.45, 0.77].$

Bootstrap nieparametryczny

- Mamy do dyspozycji próbę, na podstawie której wyznaczamy pewną statystkę T. Chcemy zbadać jakie są własności tej statystyki.
- W przypadku braku modelu parametrycznego generujemy wiele losowych prób (liczności takiej jak oryginalna próba) "z tego samego rozkładu co wyjściowa próba". Dla każdej wygenerowanej próby wyznaczamy wartość statystyki T, a następnie badamy rozkład/wariancję/kwantyle/itp. tych wartości.
- Żeby wygenerować próby musimy znać rozkład!
- Nie dysponując dodatkowymi danymi próbujemy wykorzystać to co mamy (bootstrapping).
- Generujemy kolejne realizacje próby poprzez przepróbkowanie (losowanie z powtórzeniami) posiadanej jednej próby.
- Odpowiada to przyjęciu za nieznany rozkład rozkładu o dystrybuancie równej dystrybuancie (empirycznej) uzyskanej z wyjściowej próby.

Przedziały ufności dla parametrów rozkładu Gaussa

Rozkład Normalny (Gaussa) — przypomnienie

X ma rozkład normalny (Gaussa) z parametrami μ , σ , $X \simeq N(\mu, \sigma^2)$, jeśli

$$f_X(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \qquad x \in \mathbb{R}.$$

- Funkcję gęstości oraz dystrybuantę zmiennej o rozkładzie
 N(0,1) oznacza się czasem odpowiednio, literami φ oraz Φ.
- Nwantyl rzędu lpha dla rozkładu N(0,1) oznacza się zazwyczaj przez z_{lpha} .

$$Y=\frac{x-\mu}{6}\sim N(\theta_{/1})^{Von(ax)=a^2Von(x)}$$

Estymacja μ gdy σ^2 znane

$$\begin{split} X_k = & \underbrace{\mu} + \underbrace{\varepsilon_k}, \qquad k = 1, \dots, n, \\ \varepsilon_1, \dots, \varepsilon_n \text{ niezależne zmienne losowe } & \sim N(0, \sigma^2). \end{split}$$

- X_k mogą modelować pomiary badanej wielkości μ, gdzie błąd pomiaru (np. związany z przyrządem) ma rozkład $N(0, \sigma^2)$.
- Mamy do czynienia z rodziną (parametryczną):

$$\mathfrak{F} = \left\{ rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{e}^{-rac{(x-\mu)^2}{2\sigma^2}} \colon \mu \in \mathbb{R}
ight\}, \quad \underline{\sigma^2 \; \mathrm{ustalone}}.$$

- Jest to rodzina wykładnicza
 X̄_n jest efektywnym estymatorem μ.
 - Jest on nieobciążony i ma rozkład normalny,
 - jego wariancja, to

$$\mathbb{V}(\overline{X}_n) = \frac{1}{nI(\mu)} = \frac{\sigma^2}{n}.$$

Przedziały ufności dla μ gdy σ^2 znane

Estymator μ ma postać

ma on rozkład

Przedziałem ufności dla
$$\mu$$
 na poziomie ufności $\gamma=1-\alpha$ jest zatem (\circledS)

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}, \, \overline{X} + \frac{\sigma}{\sqrt{n}} z_{1-\alpha/2}\right].$$

$$Variable Waga: 1 - \alpha/2 = (1+\gamma)/2.$$

$$Variable Y < Z_{4/2} = 1$$

Estymacja σ^2 , znane μ

Dysponujemy próbą losową

$$X_k = \mu + \varepsilon_k, \qquad k = 1, \dots, n, \quad \varepsilon_1, \dots, \varepsilon_n \text{ niezależne } \sim N(0, \sigma^2).$$

- np. X_k mogą modelować pomiary znanej wielkości (wzorca) μ , gdzie błąd pomiaru (np. związany z przyrządem) ma rozkład $N(0, \sigma^2)$.
- Mamy do czynienia z rodziną (parametryczną):

$$\mathfrak{F} = \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(\varkappa-\mu)^2}{2\sigma^2}} \colon \sigma^2 > 0 \right\}, \quad \mu \text{ znane}.$$

- 🕨 Jest to rodzina wykładnicza 🗞.
- ightharpoonup Efektywnym estymatorem parametru σ^2 jest

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

▶ jego wariancja to

$$V(\hat{\sigma}^2) = 1/(nI(\sigma^2)) = 2\sigma^4/n.$$

Rozkład χ^2

Definicia

Niech X_1, \ldots, X_n niezależne zmienne losowe o rozkładzie N(0, 1). Rozkładem χ^2 o $\mathfrak n$ stopniach swobody (rozkładem $\chi^2_\mathfrak n$) nazywamy rozkład zmiennej losowej

$$X_1^2 + \cdots + X_n^2.$$

Jaką funkcję gęstości ma rozkłąd χ_1^2 ?

$$f_{2}(x_{1}+x_{2}) = f_{3}(x_{1}), f_{3}(x_{2})$$

$$f_{3}(x_{1}+x_{2}) = f_{3}(x_{1}), f_{3}(x_{2})$$

$$f_{3}(x_{1}+x_{2}) = f_{3}(x_{1}), f_{3}(x_{2})$$

Funkcja gęstości prawdopodobieństwa rozkładu χ_1^2

Niech $X^2 \sim \chi_1^2$.

X2 54 -14 EX & Th Można obliczyć dystrybuantę tego rozkładu:

$$\begin{aligned} F_{X^2}(x) &= \mathbb{P}(X^2 \leqslant x) = \int_{-\sqrt{x}}^{+\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt. \\ &\blacktriangleright \text{ FGP ma więc postac:} \end{aligned}$$

$$f_{X^2}(x) = \frac{d}{dx} F_{X^2}(x) = \dots = \frac{1}{\sqrt{2\pi}} x^{\frac{1}{2} - 1} e^{-\frac{x}{2}}.$$

- ightharpoonup Rozkład χ_1^2 jest zatem równy rozkładowi Gamma z parametrami $\alpha = \frac{1}{2}$, $\beta = 2$, czyli Gamma $(\frac{1}{2}, 2)$.
- ▶ Jaką funkcję gęstości ma rozkład χ_n^2 ?
 - Pokażemy, że

$$\chi_n^2 = \mathsf{Gamma}\left(\frac{n}{2}, 2\right)$$
.

Suma niezależnych rozkładów Gamma(·, β)

▶ Jeśli Y ~ Gamma(α , β), to

$$M_Y(t) = \mathbb{E} e^{tY} = \left(\frac{1}{1-\beta t}\right)^{\alpha}.$$

▶ Dla niezależnych zmiennych losowych $Y_k \sim \text{Gamma}(\alpha_k, \beta)$ mamy:

$$\mathbb{E} \exp \left(t \sum_{i=1}^{n} Y_i \right) \stackrel{\text{\tiny a}}{=} \left(\frac{1}{1 - \beta t} \right)^{\sum_{i=1}^{n} \alpha_i}.$$

- ► Stąd $Y_1 + \cdots + Y_n \sim \mathsf{Gamma}(\alpha_1 + \cdots + \alpha_n, \beta)$.
- W szczególności $\chi_n^2 = \mathsf{Gamma}\left(\frac{n}{2}, 2\right)$.

Rozkład χ^2 — wykresy funkcji gęstości

Przedziały ufności dla σ^2 (μ znane)

$$X_k \sim N(\mu, \sigma^2)$$
 niezależne, μ znane.

Estymator wariancji $σ^2$:

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \mu)^2.$$

- więc $\frac{n\hat{\sigma}^2}{\sigma^2}$ ma rozkład χ_n^2 (bo $\frac{n\hat{\sigma}^2}{\sigma^2} = \sum_{i=1}^n (\frac{X_i \mu}{\sigma^4})^2$.)
- lacktriangle Przedziałem ufności dla σ^2 na poziomie ufności γ jest zatem

$$\left[\frac{n\hat{\sigma^2}}{F_{v^2}^{-1}(1-b)}, \frac{n\hat{\sigma^2}}{F_{v^2}^{-1}(a)}\right], \quad a, b \geqslant 0, \ a+b=1-\gamma.$$

Można wziąć np. $a = b = (1 - \gamma)/2$.

Estymacja σ^2 , nieznane μ i σ^2

$$X_k = \mu + \varepsilon_k, \qquad k = 1, \dots, n, \quad \varepsilon_1, \dots, \varepsilon_n \text{ niezależne } \sim N(0, \sigma^2).$$

- ▶ np. X_k mogą modelować pomiary nieznanej wielkości (wzorca) μ , gdzie błąd pomiaru (np. związany z przyrządem) ma rozkład $N(0, \sigma^2)$ z nieznanych odchyleniem standardowym σ .
- Mamy do czynienia z rodziną (parametryczną):

$$\mathfrak{F} = \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \colon \mu \in \mathbb{R}, \ \sigma^2 > 0 \right\}$$

Estymator

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{k=1}^{n} (X_k - \overline{X}_n)^2$$

 $(\overline{X}_n \text{ zamiast } \mu)$ nie jest już estymatorem nieobciążonym.

 Nieobciążonym (patrz 1 wykład) i asymptotycznie efektywnym estymatorem parametru σ² jest za to

$$S_n^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2.$$

Rozkład estymatora S²

$$S^2 = rac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2, \qquad X_k \sim N(\mu, \sigma^2) \; \text{niezależne}.$$

- Pokażemy, że $U = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$
 - W tym celu wprowadzimy nową zmienną W i wykorzystamy funkcję tworzącą momenty

$$W = \sum_{k=1}^{n} \left(\frac{X_k - \mu}{\sigma} \right)^2 \stackrel{\text{\tiny a}}{=} \underbrace{\frac{1}{\sigma^2} \sum_{k=1}^{n} \left(X_k - \overline{X}_n \right)^2}_{U} + \underbrace{\left(\frac{\overline{X}_n - \mu}{\sigma / \sqrt{n}} \right)^2}_{V}.$$

• Mamy $W \sim \chi_{\rm n}^2$, $V \sim \chi_{\rm 1}^2$ oraz

$$M_{\rm U}(t) = \frac{M_{\rm W}(t)}{M_{\rm V}(t)} = \left(\frac{1}{1-2t}\right)^{(n-1)/2}.$$

$$S^2 = \frac{1}{n-1} \sum_{k=1}^n (X_k - \overline{X}_n)^2, \qquad X_k \sim N(\mu, \sigma^2) \text{ niezależne}.$$

- ► Wiemy już, że $\frac{(n-1)S^2}{\sigma^2}$ ~ Gamma $\left(\frac{n-1}{2}, 2\right) = \chi_{n-1}^2$.
- Przedziałem ufności dla σ^2 na poziomie ufności γ jest zatem (\otimes)

$$\left[\frac{(n-1)S^2}{F_{\chi_{n-1}^-}^{-1}(1-b)},\,\frac{(n-1)S^2}{F_{\chi_{n-1}^-}^{-1}(a)}\right],\quad a,b\geqslant 0,\;a+b=1-\gamma.$$

Można wziąć np. $a = b = (1 - \gamma)/2$.

Przedziały ufności dla μ , gdy σ^2 nieznane

$$X_k \sim N(\mu,\sigma^2)$$
 niezależne.

Estymator μ ma postać

tor
$$\mu$$
 ma postac
$$\hat{\mu} = \overline{X}_n \sim N(\mu \sqrt{\frac{\sigma^2}{n}}) \text{ czyli } \frac{\sqrt{n}(\hat{\mu} - \mu)}{\sqrt{\sigma^2}} \sim N(0, 1).$$

- ► Nie znamy σ²!
- Możemy za to rozważyć zmienną

$$t_{n-1} = \frac{\sqrt{n}(\hat{\mu} - \mu)}{\sqrt{S^2}}.$$

- ► Rozkład tej zmiennej nazywany jest rozkładem Studenta (t-Studenta) o n-1 stopniach swobody.
- lacktriangle Przedziałem ufności dla μ na poziomie ufności γ jest zatem (lacktriangle)

$$\left[\overline{X}_n - \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right), \overline{X}_n + \frac{S}{\sqrt{n}}F_{t_{n-1}}^{-1}\left(\frac{1+\gamma}{2}\right)\right].$$

Rozkład t-Studenta — wykresy funkcji gęstości

Estymacja Bayesowska

MWS, wykład 6

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 20 kwietnia 2021

Czym właściwie jest prawdopodobieństwo

- prawdopodobieństwo obiektywne nazywane także prawdopodobieństwem w sensie częstościowym.
 - Jeśli prawdopodobieństwo (częstościowe) wyrzucenia orła pewną monetą wynosi ¹/₂, to

$$\lim_{n\to\infty}\frac{\text{liczba orłów w pierwszych } n \text{ rzutach}}{n}=\frac{1}{2}.$$

- prawdopodobieństwo subiektywne nazywane także prawdopodobieństwem w sensie bayesowskim.
 - W tym sensie prowadzący przedmiot może stwierdzić, że np. student A zaliczy przedmiot MWS z prawdopodobieństwem 80%, a student B z prawdopodobieństwem 99% Studenci A i B mogą oceniać te prawdopodobieństwa inaczej. Co więcej prawdopodobieństwa te mogą się zmieniać wraz z czasem (napływ nowych informacji).

Prawdopodobieństwo Bayesowskie

Prawdopodobieństwo Bayesowskie spełnia wszystkie aksjomaty prawdopodobieństwa:

- $ightharpoonup \mathbb{P}(A) \geqslant 0$ dla każdego zdarzenia A,
- $ightharpoonup \mathbb{P}(\Omega) = 1$,
- Dla każdych rozłącznych zdarzeń A₁, A₂, A₃, ...

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_{i}\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_{i}).$$

Prawdopodobieństwo warunkowe

W podejściu Bayesowskim kluczową rolę gra prawdopodobieństwo warunkowe:

- $ightharpoonup \mathbb{P}(A)$, to nasze przekonanie, że prawdziwe jest A. W szczególnych przypadkach można interpretować $\mathbb{P}(A)$ jako prawdopodobieństwo a priori (przed wykonaniem eksperymentu/pomiaru).
- $ightharpoonup \mathbb{P}(A|B)$, to nasze przekonanie, że prawdziwe jest A pod warunkiem, że zachodzi B. Można je interpretować jako prawdopodobieństwo a posteriori (po wykonaniu eksperymentu/pomiaru, którego wynik opisywany jest przez B. $\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}.$$

Przykład 1

Mamy do dyspozycji 3 monety:

- 1. monetę orzeł-reszka (O/R),
- 2. monetę orzeł-orzeł (O/O),
- 3. monetę reszka-reszka (R/R).

Losowo wybieramy monetę i rzucamy nią dostając orła. Jakie jest prawdopodobieństwo tego, że z drugiej strony jest też orzeł?

Przykład 1

Mamy do dyspozycji 3 monety:

- 1. monetę orzeł-reszka (O/R),
- 2. monetę orzeł-orzeł (O/O),
- 3. monetę reszka-reszka (R/R).

Losowo wybieramy monetę i rzucamy nią dostając orła. Jakie jest prawdopodobieństwo tego, że z drugiej strony jest też orzeł?

$$\frac{2}{3}$$
 (\otimes)

Przykład 2

W pewnej zabawie mamy do wyboru 3 drzwi. Za jednymi z nich stoi samochód, który wygramy wybierając te drzwi. Za pozostałymi stoją kozy. Wybieramy jedne z drzwi (nie zaglądamy za nie), a następnie prowadzący zabawę otwiera jedne z pozostałych drzwi ukazując kozę. Następnie zadaje pytanie, czy zmieniamy nasz wybór. Zmienić wybór/ nie zmienić / wszystko jedno?

Przykład 2

W pewnej zabawie mamy do wyboru 3 drzwi. Za jednymi z nich stoi samochód, który wygramy wybierając te drzwi. Za pozostałymi stoją kozy. Wybieramy jedne z drzwi (nie zaglądamy za nie), a następnie prowadzący zabawę otwiera jedne z pozostałych drzwi ukazując kozę. Następnie zadaje pytanie, czy zmieniamy nasz wybór. Zmienić wybór/ nie zmienić / wszystko jedno?

Zmienić wybór! (wygramy z prawd. $\frac{2}{3}$; gdy nie zmienimy mamy szanse $\frac{1}{3}$.).

Problemy z właściwym szacowaniem prawdopodobieństw warunkowych Przykład (Eddy, 1982)

Przed 100 lekarzami postawiono następujący problem dotyczący analizowania wyników mammograficznych badań przesiewowych:

- W przypadku braku pewnych dodatkowych informacji, prawdopodobieństwo, że kobieta (w odp. wieku i kondycji) ma raka piersi wynosi 1%.
- Jeśli pacjentka ma raka piersi, to prawdopodobieństwo, że radiolog na podstawie badania postawi właściwą diagnozę wynosi 80%.
- Jeśli pacjentka ma zmiany nienowotworowe, to prawdopodobieństwo, że radiolog zdiagnozuje raka wynosi 10%.

Jakie jest prawdopodobieństwo, że pacjentka z pozytywnym wynikiem mammografii ma istotnie raka piersi?

Problemy z właściwym szacowaniem prawdopodobieństw warunkowych Przykład (Eddy, 1982)

Przed 100 lekarzami postawiono następujący problem dotyczący analizowania wyników mammograficznych badań przesiewowych:

- W przypadku braku pewnych dodatkowych informacji, prawdopodobieństwo, że kobieta (w odp. wieku i kondycji) ma raka piersi wynosi 1%.
- Jeśli pacjentka ma raka piersi, to prawdopodobieństwo, że radiolog na podstawie badania postawi właściwą diagnozę wynosi 80%.
- Jeśli pacjentka ma zmiany nienowotworowe, to prawdopodobieństwo, że radiolog zdiagnozuje raka wynosi 10%.

Jakie jest prawdopodobieństwo, że pacjentka z pozytywnym wynikiem mammografii ma istotnie raka piersi?

- ▶ 95 na 100 lekarzy oszacowało to prawdopodobieństwo na około 75%.
- ► Wynosi ono jednak tylko 7.5%

Twierdzenie (Reguła Bayesa)

Jeśli A jest pewnym zdarzeniem oraz rozłączne zdarzenia B_1, \ldots, B_n o niezerowym prawdopodobieństwie pokrywają całą przestrzeń probabilistyczną Ω ($\bigcup_{i=1}^n B_i = \Omega$), to

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(A|B_j)\mathbb{P}(B_j)}{\sum_{i=1}^n \mathbb{P}(A|B_i)\mathbb{P}(B_i)}.$$

Model

Parametryczny model:

$$\mathcal{F} = \{ f_{\mathfrak{p}}(x) \colon \mathfrak{p} \in \Theta \}, \qquad \Theta \subset \mathbb{R}^k,$$

- z parametrem $p = (p_1, \dots, p_k)$
 - ➤ Zamiast funkcji gęstości można rozważać funkcje prawdopodobieństwa lub dystrybuanty.
- W podejściu bayesowskim zakładamy, że parametr p jest zmienną losową o pewnym rozkładzie zadanym np. funkcją prawdopodobieństwa:
 - prawdopodobieństwa:

 a priori $f_{prior} = f_P \colon \Theta \to \mathbb{R}, \quad p \mapsto f(p)$

wynikającą z naszej wiedzy i doświadczenia,

a posteriori

$$f_{\text{post}} = f_{\text{post}} \colon \Theta \times \mathbb{R}^n \to \mathbb{R}, \quad (p, x_1, \dots, x_n) \mapsto f_{\text{post}}(p, x_1, \dots, x_n)$$

wynikającą z rozkładu a priori oraz zaobserwowanej próby

$$X = (X_1, \ldots, X_n).$$

Konstrukcja rozkładu a posteriori

$$\begin{array}{c} \text{Model parametryczny } \mathcal{F} = \{f_p(x) \colon p \in \Theta\}. \\ \text{Zgodnie z regułą Bayesa} \end{array} \\ \\ \underline{f_{\mathsf{post}}(p,x)} = f_{\mathsf{P}|X}(p,x) = \frac{f_{\mathsf{X}|\mathsf{P}}(x,p)f_{\mathsf{P}}(p)}{\text{"}} = \frac{f_p(x)f_{\mathsf{P}}(p)}{\int_{\Theta} f_p(x)f_{\mathsf{P}\mathsf{rior}}(p)dp} \\ \\ = \frac{f_p(x)f_{\mathsf{prior}}(p)}{\int_{\Theta} f_p(x)f_{\mathsf{prior}}(p)dp}, \end{array}$$

gdzie

$$f_p(x) = f_p(x_1)f_p(x_2)\dots f_p(x_n) = \mathcal{L}_n(x_1,\dots,x_n;p)$$

gęstość a posteriori x fun. wiarygodności x gęst. a priori.

Przykład Bayesowskiego podejścia do problemu

Spotykamy znajomego, który proponuje nam zakład oparty na rzutach monetą.

- Prawdopodobieństwo p wypadnięcia orła to parametr modelu.
- ► Chcemy oszacować p przed zakładem.
- W zależności od sytuacji możemy zakładać różne rozkłady a priori.

Jeśli chcemy być "obiektywni" możemy założyć rozkład jednostajny.

Wiedząc, że monety są zazwyczaj symetryczne można zakładać rozkład skupiony wokół wartości $p=\frac{1}{2}$.

Znając monetę (np. będąc świadkiem innych zakładów z wykorzystaniem tej samej monety), można zakładać rozkład:

Znając "przewrotność" właściciela monety można też zakładać rozkład bimodalny.

Eksperyment

Rzucamy "próbnie" 10 razy monetą i notujemy 3 orły.

Rozkład a posteriori — podsumowanie

Rozkład a posteriori — podsumowanie (c.d.)

A gdybyśmy rzucili 20 razy uzyskując 6 orłów.

rozkład a posteriori

Rozkład a posteriori — podsumowanie (c.d.)

A gdybyśmy rzucili 40 razy uzyskując 12 orłów.

rozkład a posteriori

Rozkład a posteriori — podsumowanie (c.d.)

A gdybyśmy rzucili 100 razy uzyskując 30 orłów.

rozkład a posteriori

- ▶ Model parametryczny $\mathcal{F} = \{f_p(x) : p \in \Theta\}.$
- Mając rozkład a priori parametru p (funkcja gęstości $f_{prior}(p)$), parametryczny model oraz próbę $X = (X_1, \ldots, X_n)$ możemy wyznaczyć rozkład a posteriori parametru (funkcję gęstości $f_{post}(p,x)$):

$$f_{\text{post}}(p,x) = \frac{\mathcal{L}_{\pi}(x;p) f_{\text{prior}}(p)}{\int_{\Theta} \mathcal{L}_{\pi}(x;p) f_{\text{prior}}(p) dp}.$$

Definicia

Bayesowskim estymatorem \hat{p} parametru p nazywamy wartość oczekiwaną tego parametru wyliczoną za pomocą rozkładu a posteriori:

$$\hat{p} = \int_{\Theta} p f_{post}(p) dp.$$

Czasami zamiast wartości oczekiwanej wg rozkładu a posteriori, definiuje się estymator bayesowski p̂ jako dominantę (inaczej wartość modalną lub modę) rozkładu a posteriori, czyli wartość parametru p, dla której funkcja gęstości f_{post} przyjmuje wartość maksymalną.

Fakt

Niezależnie od wyboru (jednej z dwóch) definicji estymatora bayesowskiego, dla dużych prób (asymptotycznie) ma on te same własności co estymator największej wiarygodności.

Niezwykle użyteczne rozkłady — przypomnienie

- rozkład normalny $N(\mu, \sigma^2)$ (nośnik \mathbb{R}),
- rozkład gamma Gamma (α, β) (nośnik $[0, +\infty)$),
- rozkład beta Beta (α, β) (nośnik [0, 1]).

Rozkład gamma — przypomnienie

$$f_X(x) = \frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-x/\beta}, \quad \mathbb{E}X = \alpha\beta, \, \mathbb{V}X = \alpha\beta^2$$

Rozkład beta — przypomnienie

$$\begin{split} f_X(x) &= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ \alpha, \beta > 0 \\ \mathbb{E} X &= \frac{\alpha}{\alpha+\beta}, \mathbb{V} X = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}. \end{split}$$

rozkład beta

Rozkład sprzężony dla modelu parametrycznego $\mathcal{F} = \{f_{\mathfrak{p}}(x) \colon \mathfrak{p} \in \Theta\}$, to taki rozkład (typ rozkładu) X, że przy rozkładzie a priori typu X dostaje się rozkład a posteriori również typu X (być może z innymi parametrami). Przykłady:

	-	Ī			
	model	par.	r. sprz.	par. a priori	parametry rozkł. a posteriori
>	Bern	р	Beta	α, β	$\alpha + \sum_{i=1}^{n} x_i, \ \beta + n - \sum_{i=1}^{n} x_i$
	Pois	λ	Γ	α, β	$\alpha + \sum_{i=1}^{n} x_i, \frac{\beta}{n\beta + 1}$
	N	μ	N	μ_0 , σ_0^2	$\frac{\frac{\mu_0\sigma_0^{-2}+\sigma^{-2}\sum_{i=1}^nx_i}{\sigma_0^{-2}+n\sigma^{-2}},(\sigma_0^{-2}+n\sigma^{-2})^{-1}$
	N	σ^2	Γ^{-1}	α, β	$\alpha + n/2$, $\beta + \sum_{i=1}^{n} (x_i - \mu)^2/2$
	Exp	λ	Γ	α, β	$\alpha+n$, $\frac{\beta}{1+\beta\sum_{i=1}^n x_i}$

Xv-, Xn mod estym. Malcopisqé Lymbe estrymacji.

a) $\hat{\Theta}$ * estym. puntoura

b) [\hat{A} \hat{B} \hat{B} + estym. prehistoura.

c) fap pararet. $\hat{\Theta}$ $\hat{\Theta}_{NL} = \text{argmax} f(x_1, --, x_2; \Theta)$ a) Jak «włożyó dodathous woedig (sposa eksprym.) b) Mahsynn. jahlen met tego..... = aly max f(0 | x1..., xy | 0) - form 5 v = ary max (onst. horling portion of prince of mining a mini 1,5 fap a postaioni for a prioni

Hipotezy statystyczne i ich weryfikacja

MWS, wykład 7

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 28 kwietnia 2021

Hipotezy

Hipotezy statystyczne są hipotezami dotyczącymi rozkładów prawdopodobieństwa.

Wyróżniamy:

- hipotezy proste mówiące, że pewna zmienna ma określony (jednoznacznie) rozkład. Np. moneta jest symetryczna (zmienna opisująca ilość orłów w $\mathfrak n$ rzutach ma rozkład Binom $(\mathfrak n,\frac12)$),
- hipotezy złożone nie określają jednoznacznie rozkładu prawdopodobieństwa (np. rozkład normalny z nieznaną wariancją) lub nie określają go w ogóle (np. jakiś rozkład nie będący Bern(½)).

Testowanie hipotez w ujęciu Neymana-Pearsona

Mamy do czynienia z dwoma hipotezami:

- H₀ hipotezą zerową, czyli hipotezą, którą w pewnym sensie poddajemy weryfikacji,
- H₁ hipotezą alternatywną, czyli taką, o której zakładamy, że zachodzi, jeśli hipoteza zerowa okaże się nieprawdziwa.

Definicja

Odrzucenie hipotezy H_0 , gdy jest ona prawdziwa nazywamy błędem I rodzaju. Prawdopodobieństwo popełnienia takiego błędu na podstawie pewnego testu nazywane jest poziomem istotności tego testu i oznaczane najczęściej symbolem α .

Definicja

Przyjęcie hipotezy H_0 , gdy w rzeczywistości nie jest ona prawdziwa nazywamy błędem II rodzaju. Prawdopodobieństwo popełnienia takiego błędu na podstawie pewnego testu oznaczane jest najczęściej symbolem β . Wielkość $1-\beta$ nazywana jest mocą testu.

Czym mniejszy poziom istotności testu (α) i czym większa moc tego testu $(1-\beta)$ tym lepiej.

Przykład

Obiekt obserwowany w systemie radarowym może podlegać testowi z hipotezami:

H₀ — obiekt jest pociskiem odrzutowym, H₁ — obiekt jest pasażerskim odrzutowcem.

- ► Błąd I rodzaju polega na zignorowaniu zagrożenia (potraktowanie pocisku jako odrzutowca),
- ► Błąd II rodzaju polega na fałszywym alarmie (mogącym się zakończyć zestrzeleniem samolotu pasażerskiego).

Przykład

Pewien test medyczny ma określić czy pacjent cierpi na schorzenie X:

H₁ — tak, cierpi (pozytywny wynik testu),

 H_0 — nie (negatywny wynik testu).

- Błąd I rodzaju polega na "fałszywym alarmie" (podjęcie niepotrzebnego leczenia mogącego mieć negatywne skutki uboczne),
- Błąd II rodzaju polega na zignorowaniu zagrożenia (nie podjęcie terapii gdy jest ona potrzebna).

Definicja

Statystyka decyzyjna (ew. testowa) to statystyka (funkcja próby), na podstawie której weryfikujemy hipotezę. Obszar krytyczny testu, to obszar wartości tej statystyki, który prowadzi do odrzucenia hipotezy zerowej.

Przykład 2 prostych hipotez

W pudełku znajdują się dwie monety: symetryczna oraz taka, że prawdopodobieństwo wypadnięcia orła wynosi 0.7. Wyciągamy losowo jedną monetę, rzucamy nią 10 razy, notujemy co "wypadło" i na na tej podstawie chcemy weryfikować

 H_0 : wylosowaliśmy monetę symetryczną wobec

 H_1 : wylosowaliśmy tę drugą monetę.

Obie hipotezy są proste. Liczba orłów opisana jest rozkładem Binom(10, 0.5) lub Binom(10, 0.7).

Billotti (10, 0.5) lub Billotti (10, 0.7).												
							6					
p = .5	0010	.0098	.0439	1172	2051	2461	2051	1172	.0439	.0098	.0010	
p = .7	.0000	0001	0014	.0090	.0368	.1029	.2001	.2668	.2335	.1211	.0282	

Kontynuacja przykładu

**	-	_	_	-		-	-	-	-	-	
$\mathbb{P}\left(X = k p = .5\right)$.0010	.0098	.0439	1172	.2051	2461	2051	1172	.0439	.0098	.001
$\mathbb{P}\left(X = k p = .7\right)$.0000	.0001	0014	.0090	.0368	1029	2001	.2668	.2335	1211	.028
-				,	or and		1 2				

6

Za statystykę decyzyjną weźmy iloraz wiarygodności

$$R = \tfrac{P(X|H_1)}{P(X|H_0)}.$$

χ.	0		_	3	4	5	U	,	o	9	10
R(x)	0.006	0.014	0.033	0.077	0.18	0.42	0.98	2.3	5.3	12.4	28.9
Okreś	lamy c	bszar	krytyc	zny ja	ko {R:	R >	c} (c	to t	zw. v	wartos	ść

krytyczna).

- lacktriangle Biorąc c=30 nie popełnimy błędu I rodzaju.
- ightharpoonup Biorąc c=0 nie popełnimy błędu II rodzaju.
- ▶ Biorąc c=1 (odrzucamy H_0 jeśli wypadło > 6 orłów) popełnimy błąd I rodzaju z prawd. 0.17, a II rodzaju z prawd. 0.35.
- Biorąc c=10 (odrzucamy H_0 jeśli >8 orłów) popełnimy błąd I rodzaju z prawd. 0.01, a II rodzaju z prawd. 0.85.

Testy najmocniejsze

Lemat (Neymana-Pearsona)

Niech H_0 oraz H_1 będą hipotezami prostymi oraz niech dany będzie test oparty na ilorazie wiarygodności (tzn. test odrzucający hipotezę H_0 gdy iloraz wiarygodności jest większy niż pewna stała c) na pewnym poziomie istotności α . Wówczas jest to test o największej mocy spośród wszystkich testów na poziomach istotności nie przekraczających α .

Przykład

Niech X_1, \ldots, X_n będą niezależne o rozkładzie normalnym ze znaną wariancją σ^2 oraz

$$H_0$$
: $\mu = \mu_0$
 H_1 : $\mu = \mu_1$.

Test oparty na ilorazie wiarygodności, to test oparty na średniej \overline{X}_n z próby.

Kontynuacja przykładu z monetą

	0										
R(x)	0.006	0.014	0.033	0.077	0.18	0.42	0.98	2.3	5.3	12.4	28.9

- W związku z dyskretnością zbioru wartości ilorazu wiarygodności, zadając obszary krytyczne postaci {R > c}, można otrzymać dyskretną liczbę "osiągalnych" poziomów istotności.
- Np. test z obszarem krytycznym $\{R>30\}$ będzie miał zerowy poziom istotności (taki sam poziom dla $\{R>\frac{\mathbb{P}(10|H_1)}{\mathbb{P}(10|H_0)}\}$);
- ▶ test z obszarem krytycznym $\{R>28\}$ będzie miał poziom istotności $\alpha\approx 0.001$ (taki sam poziom dla $\{R>\frac{\mathbb{P}(9|H_1)}{\mathbb{P}(9|H_0)}\}$);
- ▶ test z obszarem krytycznym $\{R>10\}$ będzie miał poziom istotności $\alpha\approx 0.011$ (taki sam poziom dla $\{R>\frac{\mathbb{P}(8|H_1)}{\mathbb{P}(8|H_0)}\}$);
- Czy można skonstruować test na poziomie istotności np. $\alpha = 0.005$?

Testy randomizowane

Test randomizowany to test, który w zależności od wartości statystyki decyzyjnej:

- odrzuca hipotezę zerową (obszar krytyczny),
- nie odrzuca hipotezy zerowej (obszar akceptacji),
- odrzuca hipotezę zerową losowo z zadanym prawdopodobieństwem (na "granicy obszarów").

Kontynuacja przykładu z monetą

Skonstruujemy test (randomizowany) z poziomem istotności $\alpha \approx 0.005$.

$$\begin{cases} \text{odrzucamy } H_0 & \text{jeśli } R > \frac{\mathbb{P}(9|H_1)}{\mathbb{P}(9|H_0)}, \\ \text{nie odrzucamy } H_0 & \text{jeśli } R < \frac{\mathbb{P}(9|H_1)}{\mathbb{P}(9|H_0)}, \\ \text{odrzucamy } H_0 \text{ z pr. } p_* & \text{jeśli } R = \frac{\mathbb{P}(9|H_1)}{\mathbb{P}(9|H_0)}. \end{cases}$$

$$0.005 = \alpha = \mathbb{P}(10|H_0) + \mathbb{P}(9|H_0)p_* \approx 0.001 + p_*0.0098 \Rightarrow p_* \approx 0.4.$$

Lemat Neymana-Pearsona wymaga aby obie hipotezy H_0 i H_1 były proste.

Jeśli H_1 jest hipotezą złożoną (można ją traktować jako składającą się z wielu hipotez prostych) oraz pewien test jest najmocniejszy (spełnia założenia lematu N-P) dla dowolnej prostej hipotezy alternatywnej z H_1 (tzn. będącej składową oryginalnej hipotezy H_1), to taki test nazywamy testem jednostajnie najmocniejszym.

Przykład

Niech X_1,\ldots,X_n będą niezależne o rozkładzie normalnym ze znaną wariancją σ^2 oraz

$$\begin{array}{ll} H_0\colon \mu=\mu_0 \\ \\ H_1\colon \mu>\mu_0 \end{array} \quad \mbox{hipoteza jednostronna}. \label{eq:hamiltonian}$$

Test oparty na ilorazie wiarygodności (obszar krytyczny postaci $\{\overline{X}_n>x_0\}$ jest testem jednostajnie najmocniejszym. Male ten sam test w przypadku hipotezy (dwustronnej) $H_1\colon \mu\neq \mu_0$ testem jednostajnie najmocniejszym już nie jest. Niech T będzie statystyką decyzyjną oraz niech obszar krytyczny testu na poziomie istotności α będzie postaci

$$\{T > t_0\},\$$

gdzie t_0 dobrane tak by $\mathbb{P}(T > t_0 | H_0) = \alpha$.

Definicja

p-wartością dla zaobserwowanej próby nazywamy minimalną wartość poziomu istotności α , dla której hipoteza zerowa byłaby odrzucona.

p-wartość można interpretować jako prawdopodobieństwo, pod warunkiem H_0 , uzyskania wartość statystyki testowej tak samo lub bardziej "ekstremalnej" niż wartość wyznaczona dla zaobserwowanej próby.

Przykład: weryfikacja zdolności nadprzyrodzonych

Osoba twierdząca, że ma nadprzyrodzone zdolności proszona jest o rozpoznanie jednego z 4 kolorów 20 losowo (bez zwracania) wyciągniętych kart (z 52-kartowej talii). T — liczba poprawnie odgadniętych kart.

H₀: osoba zgaduje,

H₁: osoba ma szósty zmysł.

- ► H_0 jest prosta (T ma wówczas rozkład Binom(20, $\frac{1}{4}$)), a
- ► H₁ złożona.
- ightharpoonup Załóżmy, że osoba trafnie odgadła kolory 9 kart. Hipoteza zerowa zostałaby odrzucona np. przy poziomie istotności lpha=0.05, a nie zostałaby odrzucona dla lpha=0.01.
- ▶ p-wartością dla wyniku tego eksperymentu jest 0.041 ($\mathbb{P}(T \ge 9|H_0) \approx 0.041$).
- ► (dla 10 odgadnietych kart p-wartość wynosiłaby 0.014.)

Uogólniony iloraz wiarygodności

Niech $H_0\colon \theta\in\Omega_0$, $H_1\colon \theta\in\Omega_1$ oraz $\Omega=\Omega_0\cup\Omega_1$. Uogólniony iloraz wiarygodności dany jest formułą

$$\Lambda^* = \frac{\max_{\theta \in \Omega_1} \mathcal{L}(\theta)}{\max_{\theta \in \Omega_0} \mathcal{L}(\theta)}.$$

Duże wartości Λ^* "dyskredytują" hipotezę H_0 . Często wygodniej jest posługiwać się ilorazem

$$\Lambda = \frac{\max_{\theta \in \Omega} \mathcal{L}(\theta)}{\max_{\theta \in \Omega_0} \mathcal{L}(\theta)}.$$

($\Lambda=\max(\Lambda^*,1)$). Obszar krytyczny testu opartego o u.i.w. jest postaci $\{\Lambda>\lambda_0\}$, gdzie λ_0 dobierana tak, by zapewnić zadany poziom istotności.

Przykład

Rodzina rozkładów $N(\mu,\sigma^2)$ ze znaną σ^2 oraz hipotezy

$$H_0\colon \mu=\mu_0 \quad \text{ wobec } \quad H_1\colon \mu\neq \mu_0.$$

$$\Omega_0 = \{\mu_0\}, \quad \Omega_1 = \{\mu \colon \mu \neq \mu_0\}\,, \quad \Omega = \mathbb{R}.$$

$$\Lambda \stackrel{\text{\tiny less}}{=} \exp \left(\frac{1}{2\sigma^2} (\sum_{i=1}^n (X_i - \mu_0)^2 - \sum_{i=1}^n (X_i - \overline{X})^2) \right).$$

Duże wartości Λ odpowiadają dużym wartościom

$$2\ln\Lambda\stackrel{\text{\tiny }}{=} n(\overline{X}-\mu_0)^2/\sigma^2.$$

Jeśli hipoteza H_0 jest prawdziwa, to rozkład $2\ln \Lambda$ jest χ_1^2 . Dla zadanego poziomu istotności α możemy zdefiniować obszar krytyczny:

$$(\overline{X} - \mu_0)^2 > \frac{\sigma^2}{n} F_{\chi_1^2}^{-1} (1 - \alpha).$$

Równoważnie

$$|\overline{X} - \mu_0| \stackrel{\$}{>} \frac{\sigma}{\sqrt{n}} \Phi^{-1} (1 - \frac{\alpha}{2}).$$

Badanie zgodności rozkładów

MWS, wykład 8

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 18 maja 2021

Istota problemu

Dysponujemy próbą X_1, \ldots, X_n i chcemy sprawdzić czy pochodzi ona z danego rozkładu,

- inaczej: zbadać czy rozkład próby jest zgodny z danym rozkładem;
- ten hipotetyczny rozkład może być określony np. funkcją gęstości prawdopodobieństwa lub dystrybuantą.

Często o rozkładzie, z którym chcemy sprawdzić zgodność danych, wiemy tylko, że należy do pewnej rodziny (np. rozkładów normalnych), a nie znamy wartości parametrów. Wówczas:

- najpierw estymujemy parametry rozkładu (np. średnią i wariancję),
- następnie badamy zgodność danych (próby) z rozkładem o wyestymowanych parametrach.

Przypadek 1

Hipotetyczny rozkład jest dyskretny

Przykład wiodący

W poniższej tabeli przedstawione są liczby pojazdów skręcających na pewnym skrzyżowaniu w prawo w przeciągu 300 3-minutowych przedziałów czasu. Będziemy badali zgodność tych danych z rozkładem Poissona.

S	0	1	2	3	4	5	6
L	14	30	36	68	43	30	14
S	7	8	9	10	11	12	13+
L	14	10	6	4	1	1	0

- ► S to Liczba "skrętów" w przeciągu 3 minut.
- L to liczba 3-minutowych przedziałów z zadaną liczbą "skrętów".

$$\hat{\lambda} = \frac{0 \times 14 + 1 \times 30 + \dots + 12 \times 1}{14 + 30 + \dots + 1} \approx 3.9$$

Wynik estymacji parametru λ

W kierunku testu zgodności χ^2

Rozważmy problem losowego rozmieszczenia n kul w r koszykach, przy założeniu, że prawdopodobieństwo umieszczenia kuli w i-tym koszyku jest równe p_i.

Niech X_k oznacza numer koszyka, do którego wpadła k-ta kula.

$$\mathbb{P}\left(X_k=\mathfrak{i}\right)=\mathfrak{p}_{\mathfrak{i}}, \qquad \mathfrak{p}_1+\mathfrak{p}_2+\cdots+\mathfrak{p}_r=1.$$

Niech v_i oznacza liczbę kul, które wpadły do i-tego koszyka.

$$\mathbb{E}\nu_i = np_i$$
.

Chcemy zbadać jakiego odstępstwa zmiennych ν_i od ich wartości średnich np_i możemy się spodziewać.

Twierdzenie Pearsona

n kul, r koszyków, $p_{\mathfrak{i}}=\mathbb{P}(X=\mathfrak{i}),~\nu_{\mathfrak{i}}$ — liczba kul w $\mathfrak{i}\text{-tym}$ koszyku.

Chcemy zbadać jakiego odstępstwa zmiennych ν_i od ich wartości średnich np_i możemy się spodziewać.

Twierdzenie (Pearsona)

Rozkład zmiennej losowej

$$T = \sum_{i=1}^{r} \frac{(\nu_i - np_i)^2}{np_i}$$

zbiega do rozkładu χ^2 z (r-1) stopniami swobody (χ^2_{r-1}) .

Rozkład graniczny zmiennych ν_i

 v_i (ustalone i) można potraktować jako sumę n niezależnych zmiennych o rozkładzie Bernoulliego z prawdopodobieństwem sukcesu p_i .

Zatem

$$\mathbb{V}\nu_{\mathfrak{i}}=\mathfrak{n}(\mathfrak{p}_{\mathfrak{i}}-\mathfrak{p}_{\mathfrak{i}}^{2})=\mathfrak{n}\mathfrak{p}_{\mathfrak{i}}(1-\mathfrak{p}_{\mathfrak{i}}).$$

W szczególności na mocy centralnego twierdzenia granicznego

$$\frac{\nu_{\mathfrak{i}}-np_{\mathfrak{i}}}{\sqrt{np_{\mathfrak{i}}(1-p_{\mathfrak{i}})}} \to N(0,1).$$

Innymi słowy

$$\frac{\nu_i - np_i}{\sqrt{np_i}} \to N(0, 1 - p_i).$$

Test zgodności rozkładu

Rozważamy próbę X_1, \ldots, X_n niezależnych zmiennych losowych o tym samym, dyskretnym rozkładzie.

Oznaczmy przez B_1, \ldots, B_r zbiór wartości jakie mogą przyjmować zmienne X oraz przez p_1, \ldots, p_r prawdopodobieństwa przyjmowania poszczególnych wartości.

Chcemy zbadać, czy próba X_1, \ldots, X_n odpowiada wartościom pewnych ustalonych prawdopodobieństw p_1^*, \ldots, p_r^* , czyli czy zachodzi hipoteza:

 $\begin{aligned} &H_0: p_1 = p_1^*, \dots, p_r = p_r^* \\ &\text{wobec hipotezy alternatywnej} \end{aligned}$

 H_1 : przynajmniej dla jednego i jest $\mathfrak{p}_i
eq \mathfrak{p}_i^*$.

 $H_0: p_1 = p_1^*, \dots, p_r = p_r^*$

 H_1 : przynajmniej dla jednego i jest $p_i \neq p_i^*$

Za statystykę decyzyjną przyjmujemy

$$T = \sum_{i=1}^r \frac{(\nu_i - np_i^*)^2}{np_i^*}.$$

Jeśli rzeczywiście $p_i = p_i^*$, i = 1, ..., r, to na mocy tw. Pearsona

$$T \stackrel{d}{\to} \chi^2_{r-1}.$$

Gdyby natomiast pewne $p_i \neq p_i^*$, to

$$\frac{\nu_i - np_i^*}{\sqrt{np_i^*}} \stackrel{\triangleq}{=} \sqrt{\frac{p_i}{p_i^*}} \frac{\nu_i - np_i}{\sqrt{np_i}} + \sqrt{n} \frac{p_i - p_i^*}{\sqrt{p_i^*}}.$$

Zatem wystarczy aby jedno $p_i \neq p_i^*$ aby $T \xrightarrow{n \to \infty} \infty$.

Test zgodności rozkładu χ^2

 $H_0: \mathfrak{p}_1 = \mathfrak{p}_1^*, \ldots, \mathfrak{p}_r = \mathfrak{p}_r^*$

 H_1 : przynajmniej dla jednego i jest $\mathfrak{p}_i \neq \mathfrak{p}_i^*$.

Za statystykę decyzyjną przyjmujemy

$$T = \sum_{i=1}^r \frac{(\nu_i - np_i^*)^2}{np_i^*}.$$

Reguła decyzyjna w teście zgodności χ^2 :

$$\begin{cases} H_0\colon T\leqslant c,\\ H_1\colon T>c \end{cases}.$$

Stałą c dobieramy tak, by zapewnić określony poziom istotności α testu. Dla dużych prób można szacować:

$$c \approx F_{\chi^2_{r-1}}^{-1}(1-\alpha).$$

Kontynuacja przykładu z pojazdami

Mamy r=14 "koszyków" (0 skrętów, 1 skręt, ..., co najmniej 13 skrętów). Chcemy sprawdzić, czy prawdopodobieństwa "wpadnięcia" n=300 "kul" do poszczególnych "koszyków" są równe:

$$\textbf{p}_{0}^{*} = \frac{3.9^{0}}{0!e^{3.9}}, \textbf{p}_{1}^{*} = \frac{3.9^{1}}{1!e^{3.9}}, \dots, \textbf{p}_{12}^{*} = \frac{3.9^{12}}{12!e^{3.9}}, \textbf{p}_{13+}^{*} = 1 - p_{0} - \dots - p_{12}.$$

Wyznaczamy wartość krytyczną testu dla lpha=0.05:

$$T \sim \chi_{13}^2$$
, $c = F_{\chi_{13}^2}^{-1} (1 - 0.05) \approx 22.4$.

Wartość statystyki T dla naszych danych: $T \approx 32.6 > c$. Przy wybranym poziomie istotności hipotezę o tym, że rozkład jest Pois(3.9) należy odrzucić! p-wartość dla danego testu jest równa ≈ 0.002 !

Kontynuacja przykładu z pojazdami

Jaką hipotezę sprawdzaliśmy?

Taką, że zaobserwowane liczby skrętów odpowiadają rozkładowi Pois(3.9).

Jak sprawdzić, czy te liczby odpowiadają rozkładowi Pois (λ) dla jakiegokolwiek λ ?

Test zgodności χ^2 dla hipotezy złożonej

Fakt

Jeśli w wyjściowej sytuacji z kulami rozważymy hipotezę H_0 : każde p_i jest równe $p_i(\theta)$, dla wspólnego $\theta \in \Theta$ wobec hipotezy alternatywnej H_1 przeciwnej do H_0 , i jeżeli $\hat{\theta}$ jest estymatorem największej wiarygodności

$$\textit{tzn. } \hat{\theta} = \text{arg} \max_{\theta \in \Theta} p_1(\theta)^{\nu_1} \dots p_r(\theta)^{\nu_r},$$

to

$$T = \sum_{i=1}^{r} \frac{(\nu_i - np_i(\hat{\theta}))^2}{np_i(\hat{\theta})} \xrightarrow[n \to \infty]{d} \chi_{r-s-1}^2,$$

gdzie s to wymiar przestrzeni parametrów Θ.

Kontynuacja przykładu z pojazdami

Test na poziomie istotności dla hipotezy zerowej: dane "układają się" według pewnego rozkładu Poissona wobec hipotezy alternatywnej: dane nie układają się wg żadnego rozkładu Poissona wyglada podobnie do poprzednio skonstruowanego, gdyż stosowaliśmy go do estymatora największej wiarygodności. Różnice: $\lambda \in (0, \infty) = \Theta$, zatem $s = \dim \Theta = 1$, rozkład graniczny statystyki T jest zatem rozkładem χ^2 o 12 (a nie 13) stopniach swobody. p-wartość dla nowego testu wynosi $\approx 0.001!$ Średnio raz na tysiąc (!) razy 300-elementowa próba z <mark>rozkładu</mark> Poissona bedzie tak "słabo" lub jeszcze "gorzej" zgodna z rozkładem Poissona niż rozważane w przykładzie dane.

Przypadek 2

Hipotetyczny rozkład jest ciągły

Jak sprawdzać zgodność rozkładu dla ciągłych rozkładów

Rozważmy problem polegający na sprawdzeniu, czy dana próba losowa X_1,\ldots,X_n "pochodzi" z rozkładu ciągłego (np. normalnego $N(\mu,\sigma^2)$ o zadanych parametrach) zadanego pewną dystrybuantą F.

Rozwiązanie 1 - dyskretyzacja rozkładu

Podzielić zbiór wartości, które mogą przyjmować zmienne X, na skończoną liczbę przedziałów. Na podstawie danego (ciągłego) rozkładu wyznaczyć prawdopodobieństwa "wpadnięcia" do każdego z przedziałów. Policzyć ile ze zmiennych X wpada do każdego z przedziałów i przeprowadzić test zgodności χ^2 .

Rozwiązanie 2 - test Kołomorgowa-Smirnowa

W stronę testu Kołmogorowa-Smirnowa

Definicja

Dystrybuanta empiryczna dla próby X_1, \ldots, X_n to dystrybuanta F_n określona wzorem:

$$F_n(t) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}(X_i \leqslant t),$$

gdzie (funkcja charakterystyczna, indykator zbioru)

$$\mathbb{1}(X_i \leqslant t) = \begin{cases} 1 & \text{ jeśli } X_i \leqslant t, \\ 0 & \text{ jeśli } X_i > t \end{cases}$$

 X_1, \ldots, X_n próba los. z rozkładu o dystrybuancie F.

Fakt

$$\sup_{t\in\mathbb{R}}|F_n(t)-F(t)|\xrightarrow{n\to\infty}0.$$

Twierdzenie

Rozkład zmiennej losowej

$$\sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

nie zależy od dystrybuanty F (tzn. dla każdej dystrybuanty ciągłego rozkładu i niezależnej próby X_1, \ldots, X_n pochodzącej z tego rozkładu, powyższa zmienna ma taki sam rozkład).

 X_1, \ldots, X_n próba los. z rozkładu o dystrybuancie F.

Twierdzenie

Niech
$$D_n = \sqrt{n} \, \text{sup}_{t \in \mathbb{R}} \, |F_n(t) - F(t)|.$$
 Wtedy

$$\mathbb{P}(D_n\leqslant t)\xrightarrow{n\to\infty} H(t)=1+2\sum_{i=1}^{\infty}(-1)^ie^{-2i^2t^2}.$$

(H(t) to dystrybuanta rozkładu Kołmogorowa-Smirnowa).

Test Kołmogorowa-Smirnowa

 X_1, \ldots, X_n próba losowa.

F pewna ustalona dystrybuanta rozkładu ciągłego.

 H_0 : zmienne X_1, \ldots, X_n pochodzą z rozkładu o dystryb. F,

 H_1 : zmienne X_1, \ldots, X_n nie pochodzą z rozkładu o dystryb. F.

Statystyka decyzyjna:
$$D_n = \sqrt{n} \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|.$$

$$\label{eq:Regular decyzyjna: } \text{Regula decyzyjna: } \begin{cases} H_0 \colon D_n \leqslant c, \\ H_1 \colon D_n > c \end{cases}.$$

Stałą c dobiera się tak, by zapewnić określony poziom istotności α testu (na podstawie rozkładu D_n lub rozkładu granicznego Kołmogorowa-Smirnowa).

R: funkcja ks.test

Przykład

Rozkład t-Studenta dla $\mathfrak n$ stopni swobody zbliża się do rozkładu N(0,1) gdy liczba stopni swobody rośnie.

Czy ks.test da się "nabrać", że dane z rozkładu Studenta są gaussowskie?

Najpierw dla liczby stopni swobody równej 4.

Interpretacja p-wartości: Wybrać H_1 (x nie są gaussowskie) można nawet dla poziomu istotności (p-stwo błędnego wyboru H_1) 0.0008. Czyli można śmiało wybrać H_1 .

Przykład, c.d.

Teraz dla liczby stopni swobody równej 20.

Tym razem:

- ightharpoonup D = 0.025 mniejsze, więc dystrybuanta empiryczna jest bliżej dystrybuanty rozkładu normalnego
- **p**-wartość = 0.54 wskazuje na H_0 , tzn. dystrybuanta empiryczna x nie odbiega **istotnie** od dystrybuanty rozkładu normalnego.

Testy normalności

Istnieje wiele testów służących badaniu normalności rozkładu (H₀):

- test D'Agostino na skośność (rozkład normalny ma zerową skośność; duża wartość skośności z próby świadczy na niekorzyść H₀),
- test Anscombe-Glynn-a na kurtozę (rozkład normalny ma kurtozę równą 3; duża odległość kurtozy z próby od tej wartości świadczy na niekorzyść H₀),
- test Jarque-Bera (kombinacja testów skośności i kurtozy),
- test Shapiro-Wilka (oparty na statystykach pozycyjnych).

W pakiecie R dostępne są funkcje: agostino.test(), kurtosis.test(), jarque.test() (biblioteka moments) oraz shapiro.test().

Porównywanie prób

MWS, wykład 9

Rafał Rytel-Andrianik na podstawie slajdów Marka Rupniewskiego

Instytut Systemów Elektronicznych Politechnika Warszawska

wersja: 26 maja 2021

Sformułowanie problemu

- Mamy do dyspozycji dwie próby X_1, \ldots, X_n oraz Y_1, \ldots, Y_m .
- Każda próba jest potencjalnie z innego rozkładu.
- Chcemy sprawdzić, czy wartości średnie tych dwóch rozkładów są równe.

Przykład

Dwie metody A i B były użyte do wyznaczenia całkowitego ciepła potrzebnego do ogrzania i stopienia lodu od temperatury $-72\,^{\circ}\mathrm{C}$ do wody o temperaturze 0 $^{\circ}\mathrm{C}$.

Wyniki w [cal/g]

Α	79.98	80.04	80.02	80.04	80.03	80.03	80.04	79.97	80.05	80.03	80.02	80.00	80.02
В	80.02	79.94	79.98	79.97	79.97	80.03	79.95	79.97					

wykres pudełkowy

Metody oparte na rozkładzie normalnym

Metody oparte na rozkładzie normalnym

Jeśli próba X_1,\ldots,X_n jest z rozkładu $N(\mu_X,\sigma^2)$, a niezależna od niej próba Y_1,\ldots,Y_m jest z rozkładu $N(\mu_Y,\sigma^2)$ (ta sama wariancja), to

$$\overline{X} - \overline{Y} \sim \mathsf{N}\left(\mu_X - \mu_Y\text{, } \sigma^2(n^{-1} + m^{-1})\right).$$

Zazwyczaj wariancja nie jest dana i trzeba ją estymować z próby:

$$s^2 = \frac{(n-1)s_X^2 + (m-1)s_Y^2}{m+n-2}, \quad s_X^2 = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n-1}, \\ s_Y^2 = \frac{\sum_{i=1}^m (X_i - \overline{Y})^2}{m-1}.$$

Zmienna losowa

$$t = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{s\sqrt{n^{-1} + m^{-1}}}$$

ma rozkład t-Studenta z m + n - 2 stopniami swobody.

Postać testu

Dwie niezależne próby X_1,\ldots,X_n oraz Y_1,\ldots,Y_m z rozkładów, odpowiednio, $N(\mu_X,\sigma^2)$ oraz $N(\mu_Y,\sigma^2)$ (μ_X,μ_Y,σ^2 nieznane). Wyznaczamy wartość statystyki decyzyjnej,

$$T = \frac{\overline{X} - \overline{Y}}{s\sqrt{n^{-1} + m^{-1}}}.$$

Dla testu dwustronnego ($H_0: \mu_X = \mu_Y$ wobec $H_1: \mu_X \neq \mu_Y$) i poziomu istotności α obszar krytyczny testu jest postaci

$$|T|>c, \qquad c=F_{\mathfrak{t}_{\mathfrak{m}+\mathfrak{n}-2}}^{-1}\left(1-\frac{\alpha}{2}\right).$$

Dla testu jednostronnego $(H_1: \mu_X > \mu_Y)$ obszar krytyczny:

$$T > c$$
, $c = F_{t_{m+n-2}}^{-1} (1 - \alpha)$.

Przykład — kontynuacja

$$\overline{X}=80.02,\quad \overline{Y}=79.98,\quad s_X=0.024,\quad s_Y=0.031$$

$$s=\sqrt{\frac{12s_X^2+7s_Y^2}{19}},\quad s=0.027.$$

$$T=3.33$$

Dla poziomu istotności $\alpha = 0.01$:

- c = 2.861
- ightharpoonup |T|>c więc są podstawy aby przyjąć H_1 (tzn. średnie nie są równe).

(p-wartość dla dwustronnego testu mniejsza niż 0.01.)

Ale kto powiedział, że wariancje rozkładów X-ów i Y-ów są takie same?

Próby niezależne o nieznanych i być może różnych wariancjach

$$\begin{split} X_i \sim \mathsf{N}(\mu_X, \sigma_X^2), i &= 1, \dots, n, \quad Y_j \sim \mathsf{N}(\mu_Y, \sigma_Y^2), j = 1, \dots, m. \\ T &= \frac{\overline{X} - \overline{Y}}{s}, \quad \mathsf{gdzie} \quad s^2 = \mathsf{Var}(\overline{X} - \overline{Y}) = \frac{s_X^2}{n} + \frac{s_Y^2}{m} \end{split}$$

Statystyka decyzyjna T ma rozkład zbliżony do rozkładu t-studenta z liczbą stopni swobody

$$d \approx \frac{(s^2)^2}{\frac{(s_X^2/\pi)^2}{n-1} + \frac{(s_Y^2/\pi)^2}{m-1}}$$

(po zaokrągleniu do liczby naturalnej).

Dla testu dwustronnego $(H_0: \mu_X = \mu_Y \text{ wobec } H_1: \mu_X \neq \mu_Y)$ i poziomu istotności α obszar krytyczny testu jest postaci

$$|T| > c$$
, $c = F_{t,a}^{-1} \left(1 - \frac{\alpha}{2}\right)$.

W pakiecie R do przeprowadzania testu równości średnich dla rozkładów normalnych służy funkcja t.test().

8/28

Przykład — kontynuacja

$$\overline{X} = 80.02$$
, $\overline{Y} = 79.98$, $s_X = 0.024$, $s_Y = 0.031$ $s^2 = \frac{s_X^2}{13} + \frac{s_Y^2}{8} = 0.00017$, $T = 3.25$.

Liczba stopni swobody: d = round(12.03) = 12. Dla poziomu istotności $\alpha = 0.01$:

- c = 3.05
- Ponownie |T| > c, więc również bez zakładania równości wariancji są podstawy aby odrzucić H_0 (równość średnich).

Przykład obliczeń w R

```
Parametry funkcji t.test:
t.test(x, y = NULL,
       alternative = c("two.sided", "less", "greater"),
       mu = 0, paired = FALSE, var.equal = FALSE,
       conf.level = 0.95, \ldots)
Przykład użycia:
> a=c(79.98,80.04,80.02,80.04,80.03,80.03,80.04,
+ 79.97.80.05.80.03.80.02.80.00.80.02):
> b=c(80.02.79.94.79.98.79.97.79.97.80.03.79.95.79.97):
> t.test(a.b)
Welch Two Sample t-test
data: a and b
t = 3.2499, df = 12.027, p-value = 0.006939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.01385526 0.07018320
sample estimates:
mean of x mean of y
 80.02077 79.97875
```

Uwagi o mocy testu porównującego średnie

Moc testu $(H_0: \mu_X = \mu_Y \text{ wobec } H_1: \mu_X \neq \mu_Y)$ zależy od

- Póżnicy między średnimi $\Delta = |\mu_X \mu_Y|$ (większa różnica większa moc),
- Poziomu istotności testu α (większy poziom istotności większa moc),
- ► Wariancji prób $σ^2$ (mniejsza wariancja większa moc),
- ▶ Rozmiarów prób n, m (większe rozmiary większa moc).

Jak szacować moc testu

Załóżmy, że σ , α oraz Δ są dane oraz, że n=m.

$$\mathbb{V}(\overline{X} - \overline{Y}) \stackrel{\text{left}}{=} \frac{2\sigma^2}{n}.$$

Statystyka decyzyjna:

$$Z = \frac{\overline{X} - \overline{Y}}{\sigma \sqrt{2/n}}.$$

Obszar krytyczny testu: $|Z|>c=\Phi^{-1}(1-\frac{\alpha}{2}).$ Moc testu w przypadku $\mu_X-\mu_Y=\Delta$:

$$\mathbb{P}(\frac{|\overline{X}-\overline{Y}|}{\sigma\sqrt{2/n}}>c_{\alpha})\overset{\text{\tiny left}}{=}1-\Phi\left(c_{\alpha}-\frac{\Delta}{\sigma}\sqrt{\frac{n}{2}}\right)+\Phi\left(-c_{\alpha}-\frac{\Delta}{\sigma}\sqrt{\frac{n}{2}}\right).$$

Przykład: m = n = 18, $\sigma = 5$, $\alpha = 0.05$

Podobnie, jeśli chcemy dla $\Delta=1$ wykryć różnicę między wartościami średnimi z prawdopodobieństwem 0.9, to

$$\Phi(1.96 - \frac{\Delta}{\sigma}\sqrt{\frac{n}{2}}) \approx 0.1 \Rightarrow n \approx 525.$$

Porównywanie prób "sparowanych" — wstęp

Będziemy rozważać próbę złożoną z par

$$(X_1,Y_1),\ldots,(X_n,Y_n)$$

gdzie niezależne są: X_i od X_j ; X_i od Y_j ; oraz Y_i od Y_j dla $i \neq j$. Nie zakłada się natomiast niezależności X_i od Y_i .

Jaki zysk daje parowanie?

Niech

$$\mathbb{E} X_{\mathfrak{i}} = \mu_X \text{, } \mathbb{V} X_{\mathfrak{i}} = \sigma_X^2 \text{, } \mathbb{E} Y_{\mathfrak{i}} = \mu_Y \text{, } \mathbb{V} Y_{\mathfrak{i}} = \sigma_Y^2 \text{, } \mathbb{C}(X,Y) = \sigma_{XY}$$

oraz niech $D_{\underline{i}} = \underline{X}_i - Y_i$.

Wtedy $\overline{\mathrm{D}} = \overline{\mathrm{X}} - \overline{\mathrm{Y}}$ więc

$$\mathbb{E}\,\overline{D} = \mu_X - \mu_Y, \quad \mathbb{V}\,\overline{D} = (\sigma_X^2 + \sigma_Y^2 - \textcolor{red}{2\sigma_{XY}})/n.$$

Gdyby korelacji między X_i a Y_i nie było, to

$$V\overline{D} = (\sigma_X^2 + \sigma_Y^2)/n.$$

Test t-Studenta dla par

Jeśli rozkład różnic jest rozkładem normalnym $N(\mu_D,\sigma_D^2)$ (μ_D oraz σ_D^2 nieznane), to zmienna losowa

$$t = \frac{\overline{D} - \mu_D}{s_D/\sqrt{n}}$$

ma rozkład t-Studenta z ${\mathfrak n}-1$ stopniami swobody.

Test dla hipotezy alternatywnej dwustronnej $\mu_D \neq 0$ ma obszar krytyczny

$$|\overline{D}\sqrt{n}/s_{D}| > c$$
,

gdzie

$$c = F_{t_{n-1}}^{-1}(1 - \frac{\alpha}{2}).$$

Przykład

W tabeli procentowy udział płytek krwi, które uległy złączeniu w odpowiedzi na odp. stymulację przed i po wypaleniu papierosa przez 11 osób.

przed	_	-							-		-
ро	27	29	37	56	46	82	57	80	61	59	43

Czy udział płytek, które uległy agregacji się zwiększył?

Przykład — wykres pudełkowy

Przykład — test bez parowania

```
> t.test(po,przed)
              Welch Two Sample t-test
data: po and przed
t = 1.4164, df = 19.516, p-value = 0.1724
alternative hypothesis: true difference in means is
                        not equal to 0
95 percent confidence interval:
 -4.880458 25.425913
sample estimates:
mean of x mean of y
 52.45455 42.18182
```

Przykład — parowanie

przed											-
ро	27	29	37	56	46	82	57	80	61	59	43
różnica	2	4	10	12	16	15	4	27	9	-1	15

$$\overline{D}\approx$$
 10.27, $s_D\approx$ 4.27.

Dla $\alpha = 0.01$, wartość krytyczna testu c = 3.17.

Przykład — obliczenia w pakiecie R

Test z parowaniem

```
> t.test(po,przed,paired=TRUE)
              Paired t-test
data: po and przed
t = 4.2716, df = 10, p-value = 0.001633
alternative hypothesis: true difference in means is
                        not equal to 0
95 percent confidence interval:
  4.91431 15.63114
sample estimates:
mean of the differences
               10.27273
```

Testy nieparametryczne

czyli bez zakładania konkretnego rozkładu elementów próby

Test Manna-Whitneya (test sumy rang Wilcoxona)

 $X_1, ..., X_n$ próba z pewnego rozkładu F_X ,

 $Y_1, ..., Y_m$ tzw. próba kontrolna, niezależna od powyższej,

z pewnego rozkładu F_{Y} .

Chcemy badać, czy (w odpowiednim sensie) wartości X i Y są na podobnym poziomie (z tego samego rozkładu).

Np. X_i poziom białych krwinek po kuracji badanym lekiem, a Y_j poziom tych krwinek w grupie kontrolnej (nie poddawanej kuracji). Hipoteza zerowa:

$$H_0$$
: $F_X = F_Y$.

Hipoteza alternatywna jednostronna:

$$H_1$$
: $\mathbb{P}(X > Y) > \mathbb{P}(X < Y)$

lub dwustronna

$$H_1: \mathbb{P}(X > Y) \neq \mathbb{P}(X < Y).$$

Idea testu Manna-Whitneya (-Wilcoxona)

- 1. szeregujemy elementy X_i , Y_i w kolejności rosnącej,
- 2. sumujemy rangi elementów Y_j (ich numery w uszeregowanym w poprzednim punkcie ciągu),
- "zbyt mała" lub "zbyt duża" wartość powyższej sumy skłania do odrzucenia hipotezy zerowej (wobec hipotezy alternatywnej dwustronnej).

Przykład

Przykład: $X_1=1(1)$, $X_2=3(2)$, $Y_1=6(4)$, $Y_2=4(3)$ (w nawiasach rangi). Suma rang próby kontrolnej: R=4+3=7.

Czy to dostatecznie mało/dużo do odrzucenia hipotezy zerowej?

Gdy zachodzi H_0 to rangi przypisane próbie kontrolnej są z równym prawdopodobieństwem równe $(\mathfrak{u}, \mathfrak{v})$ dla każdego $1 \leqslant \mathfrak{u} < \mathfrak{v} \leqslant \mathfrak{m} + \mathfrak{n}.$

$$\mathbb{P}(R \geqslant 7) = \frac{1}{6}.$$

Rozkład sumy rang (R) jest stablicowany dla wielu możliwych n i m. W pakiecie R do przeprowadzania testu Manna-Whitneya-Wilcoxona służy funkcja wilcox.test().

Wilcoxon rank sum test with continuity correction

data: a and b
W = 89, p-value = 0.007497
alternative hypothesis: tr

alternative hypothesis: true location shift is not equal to ${\tt 0}$

Warning message:

In wilcox.test.default(a, b) : cannot compute exact p-value with ties

Test Wilcoxona dla par

W przypadku, gdy nie mamy podstaw do zakładania, że różnice między wartościami w każdej parze mają rozkład normalny możemy wykorzystać test Wilcoxona:

- 1. Sortujemy n par według rosnących modułów różnic (między wartościami pary),
- 2. Nadajemy każdej parze rangę równą pozycji modułu różnicy w uporządkowanym ciągu,
- 3. Parom o ujemnej różnicy zmieniamy rangi na przeciwne $(x\mapsto -x)$,
- 4. Obliczamy statystykę W_{+} równą sumie dodatnich rang,
- 5. "Zbyt małe" lub "zbyt duże" wartości W_+ świadczą na niekorzyść hipotezy zerowej ($F_X = F_Y$).

$$\mathbb{E}W_{+} = \frac{n(n+1)}{4}$$
, $\mathbb{V}W_{+} = \frac{n(n+1)(2n+1)}{24}$.

Przykład (koncentracja płytek krwi)

Obliczenia w R

```
> wilcox.test(przed,po,paired=TRUE)
Wilcoxon signed rank test with continuity correction

data: przed and po
V = 1, p-value = 0.005056
alternative hypothesis: true location shift is not equal to 0
Warning message:
In wilcox.test.default(przed, po, paired = TRUE) :
    cannot compute exact p-value with ties
```