Response to Epsen's "Games with zero-knowledge signaling"

Ryan Muldoon
Department of Philosophy
University of Pennsylvania

Outline

- Cryptography and Steganography
- Repeated Games of Incomplete Information
- Applications of these new games
- Some limitations
- Potential future directions

Cryptography and Steganography

- Cryptography and Steganography study the strategic hiding and revealing of information
- Cryptography obscures the message, while Steganography hides that there even is a message
- Senders want content of messages to be revealed only to those that they choose

Zero-knowledge proofs

- 3 conditions: Soundness, Completeness, Zero-Knowledge
- Soundness: If the statement is false, a cheating prover can't convince a verifier that it is true
- Completeness: If the statement is true, a verifier will be convinced
- Zero-knowledge: A cheating verifier can't learn any information beyond that the message is true
- Cave example

Connections to Game Theory

- Zero-knowledge proofs are interactive proof systems, so designed for multiple parties
- Both cryptography and steganography trade in strategic information revelation
- Repeated games where there is the possibility of private information have a need for methods of revealing it or demonstrating possession
- In games in which players have types or statuses, and strategies are dependent on the status of the other player, a way of reliably conveying the information would be valuable

Repeated games of incomplete information

- AMS studied games with secret information
- The analysis was meant to provide an understanding of how and when such information should be revealed so as to be maximally beneficial to the knowledgeable player
- AMS noted that most strategic interactions are ongoing, not just one-shot
- In these 2-player, positive sum games, players may not know their own or the other player's payoffs

Epsen's contribution

- Rather than looking at revelation of information, Epsen looks at games in which possession of information is revealed
- So the existence of secret information is no longer secret, but it remains concealed
- Class of games: repeated games where player 1 is either informed or uninformed, player 2 is uninformed of the actual game, but has a belief of how likely it is that player 1 knows the game. Perfect information about what the terminal node of the game was.
- Using the history of the terminal nodes allows us to construct a zero-knowledge proof of player 1's status

Applications of these games

- Hobbes' Foole: can leverage private knowledge of which game is being played to take advantage of other agents
- Markets
 - Efficient Market Hypothesis leads to No-Trade Theorem
 - Introduction of "noise traders"
 - Rational traders hide themselves as noise traders to avoid No-Trade conclusion

First (minor) difficulty

- Conceptual question: In our example game, was there an intentional proof?
 - The Prover isn't trying to prove anything, just wants to keep Verifier in the dark about the game payoffs
 - Within this class of games, behavior seems to be driven purely by Prover's interest in keeping Verifier ignorant
 - Verifier's proof of Prover's status doesn't affect Verifier's gameplay

Other small difficulty

- In conclusion, Epsen notes that extensions to social networks might offer cases where players can only learn of a player's status by playing with them
- This isn't the case for most network arrangements, as long as we keep the assumption of perfect information of histories
- This can be confounded if the distribution of informed players is not random, or if there is not perfect information of histories

Main contribution

 The particular result that Epsen has is not the most important part of his work – it is the conceptual move of drawing from the extensive literature in cryptography and trying to generate cryptographic results within the confines of a game, not relying on external features (like winking in a poker game)

Extensions

- Zero-knowledge proofs were designed for authentication systems. Any games in which collective action is in everyone's interest but is risky to undertake should benefit from means of authentication
- However, a more fruitful approach might be to follow Ahn, Hopper and Langford 2006 and leverage covert two-party computation.
- covert two-party computation allows both parties to collaborate iff they are both willing, but neither party is aware of the attempt at computation unless it is successful
- Minimally, many communication protocols can be hidden in moves of a game