

采用STM8S的无刷直流电机控制系统的设计

Brushless DC Motor Control System Design Based on STM8S

■ 邓少华 孙琦 高强 王铁流 北京工业大学 电子信息与控制工程学院(北京100124)

摘要:根据无刷直流电机控制系统的特点,提出了基于STM8S处理器的无刷直流电动机控制系统。设计并实现了该控制系统的硬件电路,通过软件编程完成对转子位置的快速检测及电机调速。实验显示该系统的设计成本较低,运行平稳,调速性能良好。

关键词: 无刷直流电机; STM8S; 控制系统 DOI: 10.3969/j.issn.1005-5517.2013.1.009

引言

STM8S系列处理器,是意法半导体(ST)公司推出的超高性价比的8位单片机,具有高性能的架构、优异的抗干扰设计、灵活的低功耗模式和丰富的内嵌功能。该系列单片机采用意法半导体的自有内核,最高工作频率为24MHz,最高处理效能可达20MIPS。另外,STM8S资源丰富,具有10bit的ADC,16bit的高级

控制定时器,看门狗电路等。其中高级定时器具有4个捕获/比较通道,3个互补输出,死区控制,非常适合电机的控制。

无刷直流电机是现在最常用的无 刷电机。它具有低损耗、低噪声、结 构简单、易控制、转速高、寿命长等 特点,因此,被广泛应用于现代工业 控制等领域。

本文提出了基于STM8S的无刷直

电源 开关驱动电 BLCD STM8S微控 创器器 位置检测电路

图1 三相桥电机驱动结构图 表1 三相霍尔传感器换相表

霍尔传感器输出	相位	各开关管工作状态					
		Q1	Q2	Q3	Q4	Q5	Q6
101	1	ON	OFF	OFF	OFF	OFF	ON
100	2	ON	0FF	OFF	OFF	ON	OFF
110	3	OFF	OFF	ON	OFF	ON	OFF
010	4	OFF	OFF	ON	ON	OFF	OFF
011	5	OFF	ON	OFF	ON	OFF	OFF
001	6	OFF	ON	OFF	OFF	OFF	ON

图2 系统硬件框图

流电机控制系统,利用单片机内部的 定时器产生的PWM来控制电机的转 动和调速,可以应用在一些要求不高 和对成本比较敏感的领域。

系统工作原理

无刷直流电机的控制

无刷直流电机一般有永磁转子和 三相定子组成,通过反向极性的吸引 产生相矩来使电机转动。为了获得最 大力矩,需使定子磁场和转子磁场之 间的相角度近似为正交的。控制无刷 电机转动,首先需要判断转子的当前 位置,然后根据该位置改变电枢绕组 的通电相序,使其在气隙中产生步进 式旋转磁场,拖动永磁转子转动。

本设计使用霍尔传感器来测量转子相对于定子线圈的位置信息。位置信号由3个霍尔传感器得到,每个霍尔传感器都会产生180°脉宽的输出信号,而3个霍尔传感器的输出信号互差120°相位差。它们在每个机械转中会产生6个上升沿或者下降沿,对应着6个换相时刻。把单片机的I/O口设置为双边沿外部中断捕获功能,即可获得这6个换相时刻。再根据3个霍尔传感器的电平状态,即可获得转子准确的位置信息。然后根据位置信息,进行换相,从而带动电机的转动。

201301.indd 67 2012-12-26 9:57:13

责任编辑:万翀

图3 STM8S903K外围基本电路

图1为三相桥电机驱动结构图, 表1则显示了霍尔传感器输出电平与 换相之间的对应关系。

速度的控制

电动机的速度和扭矩取决于带电 绕组的电机所产生的磁场强度、而磁 场强度又取决于通过的电流大小。因 此、调整转子的电压或电流将改变电 机转速。

本设计通过改变加在电机上的电 压来改变电机的转速。由于单片机可 以输出脉宽可调的PWM波, 因此, 使用PWM输出来控制6个开关管的状 态,并通过改变PWM波的占空比来 调整电机的电压。

转速的测试

通过霍尔传感器连接单片机的输 入引脚、可以准确测量电机的转速。 由于电机每60°电角度就会产生一次 换相,通过设置引脚为外部中断输入 功能, 用定时器计算两次中断之间的 时间间隔, 即可算出电机的转速。计 算公式为: RPM=60/(6*△T*磁极对 数)。其中, △T为换一次相所花的时 间秒数。

硬件设计

本控制系统由STM8S微控制器、 电源电路、开关驱动电路、位置检测 电路等组成,系统结构框图如图2所 示。

微控制器

图4 开关驱动电路

本设计采用的微控制器为意法 半导体公司的STM8S系列单片机中的 STM8S903K单片机,该款单片机是 意法半导体公司专门针对电机领域推 出的一款高性价比的单片机。该款 单片机性能优异,最高工作频率为 24MHz, 最高处理效能可达20MIPS。 该款单片机拥有一个16位的高级控制 定时器,该定时器具有4路比较/捕获 通道,可以输出4路互补PWM输出, 还有死区和刹车控制, 非常适合电机 控制。该单片机还有一个16位通用定 时器,一个8位基本定时器,基本满 足控制需求。此外,该单片机还有一 个10位的ADC,拥有七个多功能外

图6 软件流程图

图5 电源电路

部输入通道和一个内部通道。另外, 该单片机含有其他一些常用外设,如 SPI、UART、看门狗等。该单片机基 本电路如图3所示。

位置检测电路

本控制系统采用霍尔传感器来检 测BLCD转子的位置、该方案硬件电 路简单,精确度高。本设计把三个霍 尔传感器与STM8S903的外部管脚相 连,并设置为双边沿外部中断捕获模 式。电路如图3所示。

开关驱动电路

该电路主要由六个大功率场效 应管P75NF75组成,该场效应管耐压 75V, 最大电流75A, 满足电机工作要 求。由三极管组成的隔离电路,能够 有效地防止大电流反馈到控制电路, 烧坏控制芯片。电路如图4所示。

电源电路

本控制系统采用24V直流供电, 通过LM317和7805分别获得15V和5V 电压。其中24V给电机供电, 15V给开 关驱动电路供电, 而5V则给单片机及 其他芯片供电。如图5所示。

软件设计

系统程序由硬件初始化、位置检 测、换相及速度调节等组成。硬件初 始化主要是设置STM8S903的系统时 钟, I/O端口, 定时器, 以及中断控 制。位置检测主要是通

过读取与三个霍尔传感 下转56

■ **50** 電子産品世界 2013.1 www.eepw.com.cn

责任编辑:万翀

图7 程序流程图

模块(RS232 Uart 1), 其结构如图6所 示。

软件平台的开发

在完成硬件平台的开发, 生成 网表和比特流之后, 转入软件平台的 开发。使用EDK提供的SDK(Software Development Kit)工具来完成软件的设 计, 软件部分程序的编写可以采用C 语言实现,并可调用SDK提供的大量 库函数, 简化编程。程序流程图如图 7所示。

在完成程序初始化后, 首先判断

自然采光是否满足办公照明要求,满 足则不打开人工照明; 如果不满足则 再判断办公室是否有人,有人则打开 人工照明, 无人则延时30秒, 如果依 然无人则关闭人工照明, 如果延时期 间有人进入则打开照明。增加延时的 目的是为了在人员频繁进出时, 防止 照明反复开关,避免缩短灯管寿命以 及额外的浪费。

系统调试

在MicroBlaze设计中调试通常可 以采用ChipScope核进行逻辑分析。 也可以在系统配置时加入串口模块 RS232、利用串口设备进行串口打印 输出,可以直观地将程序调试结果和 中间运行结果反映给用户。在调试过 程中, 通过模拟改变各传感器的状 态,观察继电器的开合情况和串口数 据输出。经过多次实验表明,该系统 完全达到设计要求。

结束语

本文介绍了一种办公室照明节 能控制系统。相比其他设计方案, 本设计根据办公室自然采光特点将 人工照明进行分组控制,采用光敏 电阻测光,反射式红外传感器测算 办公室内人数。另外,本设计采用 了Xilinx公司提供的嵌入式软核处理 器MicroBlaze作为控制器核心, 具有 设计过程灵活, 易于功能扩展的特 点。后继的工作中,可以充分利用 Spartan-6芯片丰富的管脚和资源,将 控制对象由一个办公室扩展为多个, 并增加更多附加功能。EW

- [1] 王宇韬.阐述如何实现办公空间的照明节能设计[J].安徽建筑
- [2] 敖弟维.基于红外传感器的智能教室照明控制[J].装备制造技术 [3] 晏勇.基于热释电传感器楼宇智能照明控制系统[J].电子产品世界
- [4] GB50034-2004.建筑照明设计标准[S].2004
- 赛灵思公司.简单MicroBlaze微处理器的理念[J].今日电子
- ,2010,(s) [6] LogiCORE IP MicroBlaze Micro Controller System[Z]. Xilinx Inc., 2012 [7] MicroBlaze Processor Reference Guide Embedded Development Kit EDK 12.1[Z].Xilinx Inc., 2012

上接50 器相连的I/O口的电平 状态来获得转子的位

置信息。换相则是根据获得的位置信 息对电机进行换相。同时、设置ADC 每隔一定时间读取给定的速度,并 转化成相应占空比的PWM波对电机 进行调速。系统软件流程图如图6所 示。

实验结果及分析

本控制系统的部分测试结果如 图8所示。图7表示的是电机转动时6 个MOS管的输入波形情况。如图8所 示,位于同一相的上下两臂的输入波 形为互补波,可以防止上下两臂同时 导通、对电机造成损坏。而另外一相 的下臂则为常开信号。这样可以通 过改变上臂的PWM占空比来进行调

图7 MOS管的输入波形

速。实验证明, 本控制系统能很好地 控制电机的换相与调速, 性能良好。

总结

使用STM8S903开发无刷电机控 制系统, 代码精简, 控制系统可靠。 经过长时间实际测量证明, 系统相 关器件的选型设计是稳定的。目前 STM8S与51单片机价格相差不多,但 是性能却比51单片机好很多。因此, 从芯片设计和系统设计上, 该无刷电 机产品有一定的推广价值。EW

参考文献:

- [1] 周渡海等,ARM LPC2101的无刷直流电机控制方案[J],单片机 与嵌入式系统应用,2007.(10)
- [2] 张琛.直流无刷电动机原理及应用[M].北京:机械工业出版社 .2004
- ,2004 [3] 彭刚,基于ARM Cortex-M3的STM32系列嵌入式微控制器应用实践[M].北京:电子工业出版社,2011 [4] 王晨阳,张玘,熊九龙,基于DSP的无刷直流电机控制系统设计[J].
- [4] 赵亮,刘星桥,韩彬,等.基于DSP的无刷直流电机模糊控制系统的 设计[1] 由力由子技术 2009 43 (5):40-4:
- [5] 娄柯基于ARM的无位置传感器无刷直流电机控制器设计[J].电器开关,2010,(4):29-30

56 電子產品世界 2013.1 www.eepw.com.cn

201301.indd 74 2012-12-26 9:57:15

采用STM8S的无刷直流电机控制系统的设计

作者: 邓少华, 孙琦, 高强, 王铁流

作者单位: 北京工业大学电子信息与控制工程学院北京100124

刊名: 电子产品世界

英文刊名: Electronic Engineering & Product World

年,卷(期): 2013(1)

本文链接: http://d.g. wanfangdata.com.cn/Periodical_dzcpsj201301025.aspx

