非交换几何选讲

曲豆豆 码字 南七技校福利社 五道口分社 2019年3月4日 第01-1稿

图: 雾气朦胧的安徽合肥大蜀山森林公园 拍摄于 2014.5.31 - 10: 44

在五道口也要红专并进、理实交融呀~

目录

1	Hoc	Hochschild 理论		
	1.1	结合代数的双模、余中心	3	
	1.2	Hochschild 同调	6	
	1.3	Hochschlid 上同调	10	
	1.4	约化 Hochschild (上) 同调	15	
	1.5	循环(上)同调	17	
	1.6	始有一如,独一之神,其名在阿尔达称为伊露维塔。	18	

第1章 Hochschild 理论

1.1 结合代数的双模、余中心

我们需要**代数拓扑、同调代数**的预备知识,并且采用同调代数的标准术语、记号,诸如链复形、上同调、导出函子等等。首先介绍基本的记号与概念。

在本课,我们给定一个特征 0 的含幺交换环 K(例如一个域),考虑含幺结合 K-代数 A(注意 A 未必是交换代数),并且 A 作为交换环 K 上的模是投射模(projective module)。A 的 K-代数结构给出如下 K-模同态:

$$\begin{array}{ccc} A \otimes_K A & \to & A \\ (a_1, a_2) & \mapsto & a_1 a_2 \end{array}$$

由 A 的结合性, $(a_1a_2)a_3 = a_1(a_2a_3)$ 对 A 中任意元素 a_1, a_2, a_3 成立.

对于含幺结合 K-代数 A,回顾 A 的**反代数** (opposite algebra) A^{op} . 反代数 A^{op} 作为 K-模与 A 完全相同,记号如下:

$$\begin{array}{ccc} \mathrm{id} : A & \to & A^\mathrm{op} \\ x & \mapsto & x^\mathrm{op} \end{array}$$

但是 A^{op} 具有与 A "相反"的乘法,具体地,对于 A^{op} 中的元素 x^{op}, y^{op} ,成立

$$x^{\mathrm{op}}y^{\mathrm{op}} := (yx)^{\mathrm{op}}$$

定义 1.1.1. 对于含幺结合 K-代数 A, 我们定义 K-代数 A^c 为

$$A^e := A \otimes_K A^{op}$$

即 $A 与 A^{op}$ 的 K- 代数张量积。

容易验证对于任何两个含幺结合 K-代数 A, B, 总有

$$(A \otimes_K B)^{\mathrm{op}} = A^{\mathrm{op}} \otimes_K B^{\mathrm{op}}$$

从而容易得到

$$(A^{\mathrm{op}})^e = (A^e)^{\mathrm{op}}$$

对于 K- 代数 A,回顾 \mathbf{Z} A- 模 (A-bimodule) 的概念如下:

定义 1.1.2. 对于 K-代数 A, 双 A-模是指如下资料:

- (1) K-模 M;
- (2) A 在 M 上的左、右 K-线性作用,

并且满足相容性: (a.m).b = a.(m.b) 对任意 $m \in M$ 以及 $a,b \in A$ 成立。

例如,A 本身自然有双 A-模结构,A 在其上的左、右作用即为左乘、右乘。再比如 K-模张量积 $A\otimes_K A$ 具有如下双 A-模结构:

$$b.(a_1 \otimes a_2) := (ba_1) \otimes a_2$$

$$(a_1 \otimes a_2).b := a_1 \otimes (a_2b)$$

其中 $a_1, a_2, b \in A$.

我们不再回顾左模、右模的概念了,也不去回顾右模与左模的平衡张量积。

性质 1.1.3. 设 M 为双 A-模,

(1) M 可自然地视为左 A^e -模:

$$(a_1 \otimes a_2^{op}).m = a_1.m.a_2$$

(2) M 可自然地视为右 A^e-模:

$$m.(a_1 \otimes a_2^{op}) = a_2.m.a_1$$

反之, 左(右) A^e -模也可视为双 A-模。

证明. 容易验证。

特别地如果 M,N 都是双 A-模,那么考虑平衡张量积 $M\otimes_{A^e}N$,它的双 A-模结构具体如下:

$$a.(m \otimes n) = (a.m) \otimes n = m \otimes (n.a)$$

$$(m \otimes n).b = m \otimes (n.b) = (b.m) \otimes n$$

对于任何 $m \in M, n \in N, a, b \in A$ 成立。

定义 1.1.4. (余中心 cocenter) 对于双 A-模 M, 称双 A-模

$$M \otimes_{A^e} A$$

为 M 的余中心 (cocenter)。

容易看出,对任意的 $m \in M$, $a \in A$,在余中心 $M \otimes_{A^e} A$ 当中,成立

$$(m.a) \otimes 1 = m \otimes (a.1) = m \otimes a = m \otimes (1.a) = (a.m) \otimes 1$$

从而 $(m.a - a.m) \otimes 1 = 0$. 事实上, M 的余中心具有如下结构:

性质 1.1.5. 对于双 A-模 M, 则有如下双 A-模同构

$$M \otimes_{A^e} A \cong M/\{(m.a-a.m)|a \in A, m \in M\}$$

证明. 考虑如下的双 A-模链复形

$$\partial_{\bullet}: A \otimes A \otimes A \to A \otimes A \to A \to 0$$

其中

$$\partial: a_1 \otimes a_2 \otimes a_3 \quad \mapsto \quad a_1 a_2 \otimes a_3 - a_1 \otimes a_2 a_3$$

$$a_1 \otimes a_2 \quad \mapsto \quad a_1 a_2$$

容易验证 $\partial^2=0$ (由 A 的结合性),从而 ∂_{\bullet} 为双 A-模链复形。并且显然 $\partial:A\otimes A\to A$ 是满同态。

断言链复形 ∂_{\bullet} 为正合(exact)的。事实上, ∂_{\bullet} 到其自身的恒等链映射与零链映射是链同伦的。我们构造如下的链同伦 h_{\bullet} :

$$h: a_1 \mapsto 1 \otimes a_1$$

$$a_1 \otimes a_2 \mapsto 1 \otimes a_1 \otimes a_2$$

容易验证,对于任意的 $\varphi = a_1 \otimes a_2 \in A \otimes A$,成立

$$(\partial h + h\partial)\varphi = (\partial h + h\partial)(a_1 \otimes a_2)$$

$$= \partial(1 \otimes a_1 \otimes a_2) + h(a_1 a_2)$$

$$= a_1 \otimes a_2 - 1 \otimes a_1 a_2 + 1 \otimes a_1 a_2$$

$$= a_1 \otimes a_2 = \varphi$$

从而对于 $\varphi \in A \otimes A$, 如果 $\partial \varphi = 0$, 那么

$$\varphi = (\partial h + h\partial)\varphi = \partial(h\varphi)$$

这说明链复形 ∂_{\bullet} 在 $A \otimes A$ 处正合, 因此 ∂_{\bullet} 是正合的。

接下来,将函子 $M \otimes_{A^e}$ — 作用于链复形 ∂_{\bullet} ,得到如下的双 A-模链复形:

$$M \otimes_{A^e} \partial_{\bullet} : M \otimes A \to M \to M \otimes_{A^e} A \to 0$$

由张量函子的右正合性,上述链复形也是正合的。其中注意到双 A-模同构

$$M \otimes_{A^e} (A \otimes A \otimes A) \cong M \otimes A$$

 $m \otimes (a_1 \otimes a_2 \otimes a_3) \mapsto (a_3.m.a_1) \otimes a_2$

以及双 A-模同构

$$M \otimes_{A^e} (A \otimes A) \cong M$$

 $m \otimes (a_1 \otimes a_2) \mapsto a_2.m.a_1$

于是正合列 $M \otimes_{A^e} \partial_{\bullet}$ 的边界映射有如下具体表达式:

$$M \otimes_{A^e} \partial: M \otimes A \rightarrow M$$

 $m \otimes A \mapsto m.a - a.m$

从而由正合性, 易知

$$M \otimes_{A^e} A \cong M/\{(m.a-a.m)|a \in A, m \in M\}$$

可见,M 的余中心无非是商掉 M 当中"非交换的部分"所得到的"交换的部分",如此望文生义。例如,如果 A 为交换 K-代数,那么 A 本身作为双 A-模,其余中心为 A 本身.

1.2 Hochschild 同调

定义 1.2.1. (Hochschild 同调)

对于双 A-模 M, 以及非负整数 n, 记

$$H_n(A,M) := \operatorname{Tor}_n^{A^e}(M,A)$$

称为 M 的第 n 个 Hochschild 同调。特别地, 我们记

$$HH_n(A) := H_n(A, A)$$

由定义以及导出函子的基础知识,容易知道双 A- 模 M 的第 0 个 Hochschild 同调

$$H_0(A, M) = M \otimes_{A^e} A = M / \{(m.a - a.m) | a \in A, m \in M\}$$

正是 M 的余中心。注意 Hochschild 同调一般并不是环,仅仅能保证它是双 A-模。

具体地,由导出函子的定义,我们采用投射消解(projective resolution)来计算 Hochschild 同调。若双 A-模链复形

$$P_{\bullet} \rightarrow A := ... \rightarrow P_3 \rightarrow P_2 \rightarrow P_1 \rightarrow P_0 \rightarrow A \rightarrow 0$$

为双 A-模 A 的投射消解 (正合,并且每个 $P_i(i \ge 0)$ 作为 K-模是投射的),那么

$$H_n(A, M) \cong H_n(M \otimes_{A^e} P_{\bullet})$$

由同调代数的事实,它与投射消解 P_{\bullet} 的选取无关。

事实上 Hochschild 同调可以与空间上的微分形式类比。作为一个具体计算例子,我们考虑 $\mathbb C$ 上的 n 元 多项式代数

$$A := \mathbb{C}[x^1, x^2, ..., x^n]$$

注意到 A 作为 \mathbb{C} -代数是交换的,从而 $A = A^{op}$. 我们记

$$A^{\text{op}} = \mathbb{C}[y^1, y^2, ..., y^n]$$
 $A^e = \mathbb{C}[x^1, x^2, ..., x^n; y^1, y^2, ..., y^n]$

性质 1.2.2. 考虑 \mathbb{C} -代数 $A:=\mathbb{C}[x^1,x^2,...,x^n]$, 则其第 k 个 Hochschild 同调

$$HH_k(A) \cong A \otimes \bigwedge^k(\mathbb{C}^n)$$

是以 A 为系数的 k-形式。

证明. 我们给出 A 的投射消解, 比如众所周知的 Koszul 消解

$$\mathcal{K}_A \to A \to 0$$

具体地,引入 n 个新的独立变元 $\eta^1,\eta^2,...,\eta^n$ (视为复线性空间 \mathbb{C}^n 的一组基),考虑环

$$\mathcal{K} := \frac{A^e[\eta^1, \eta^2, ..., \eta^n]}{\{(\eta^i \eta^j + \eta^j \eta^i) | i \neq j\}} = A^e \otimes \bigwedge^*(\mathbb{C}^n)$$

为以 A^e 为系数的外代数。

注意 K 有自然的分次:

$$\deg \eta^i = 1 \quad \deg x^i = \deg y^i = \deg 1 = 0$$

记 \mathcal{K}_l 为 \mathcal{K} 的 l 次分量 $(0 \le l \le n)$,即

$$\mathcal{K}_l = \bigoplus_{1 \leq i_1 < i_2 < ... < i_l \leq n} A^e \eta^{i_1} \wedge \eta^{i_2} \wedge ... \wedge \eta^{i_l} = A^e \otimes \bigwedge^l (\mathbb{C}^n)$$

此时 $K = \mathbb{C}$ 是域,因此 \mathcal{K} (作为 K-模,即复线性空间)的投射性显然。我们定义 Koszul 复形 (\mathcal{K}_A , ∂) 如下:

$$\mathcal{K}_A: \dots \xrightarrow{\partial} \mathcal{K}_n \xrightarrow{\partial} \mathcal{K}_{n-1} \xrightarrow{\partial} \dots \xrightarrow{\partial} \mathcal{K}_1 \xrightarrow{\partial} \mathcal{K}_0$$

其中边缘算子 ∂ (首先是 A^e -模同态) 满足

$$\partial \eta^i = x^i - y^i$$

以及与外微分相同的莱布尼茨法则:对任意 $\omega \in \mathcal{K}$,成立

$$\partial(\eta^i\wedge\omega)=\partial\eta^i\wedge\omega-\eta^i\wedge\partial\omega$$

再考虑连接映射

$$\varepsilon: \mathcal{K}_0 = A^c \to A$$
$$x^i \mapsto x^i$$
$$y^i \mapsto x^i$$

则众所周知, Koszul 复形

$$\mathcal{K}_A \xrightarrow{\varepsilon} A \to 0$$

为 A 的投射消解(证明从略)。我们以此计算 $HH^{\bullet}(A)$. 我们注意到以下两个简单事实:

其一:对任何 $1 \le l \le n$,成立双 A-模同构

$$A \otimes_{A^e} \mathcal{K}_l = A \otimes_{A^e} A^e \otimes \bigwedge^l (\mathbb{C}^n) \cong A \otimes \bigwedge^l (\mathbb{C}^n)$$

其二: 函子 $A \otimes_{A^e}$ - 作用于 Koszul 复形 \mathcal{K}_A 之后,成立

$$A \otimes_{A^e} \partial = 0$$

这是因为,对于任意 $f \in A$,在 $A \otimes_{A^e} A^e$ 当中总成立

$$f \otimes x^i = x^i f \otimes 1 = f x^i \otimes 1 = f \otimes (x^i)^{\text{op}} = f \otimes y^i$$

因此

$$f \otimes (x^i - y^i) = 0 \in A \otimes_{A^e} A^e$$

从而由 ∂ 的定义,容易看出 $A \otimes_{A^e} \partial = 0$.

综上两方面,直接计算之,

$$\begin{aligned} \mathsf{HH}_k(A) &=& H_k(A \otimes_{A^e}^L A) \\ &=& H_k(A \otimes_{A^e} \mathcal{K}_A) \\ &=& A \otimes_{A^e} \mathcal{K}_k \\ &=& A \otimes \bigwedge^k(\mathbb{C}^n) \end{aligned}$$

从而得证。

事实上对于一般的含幺结合 K-代数 A, $HH_{\bullet}(A)$ 扮演了"微分形式"的角色。这是 Hochschild 同调的一种几何解释。

对于一般的 A, A 作为双 A-模, 由一种典范的投射消解, 称之为 Bar-复形:

定义 1.2.3. (Bar-复形)

对于含幺结合 K-代数 A, 定义以下双 A-模链复形

$$\cdots \to B_2 A \xrightarrow{b} B_1 A \xrightarrow{b} B_0 A \xrightarrow{b} A \to 0$$

如下:

$$B_n A := A \otimes A^{\otimes n} \otimes A \ (n \ge 0)$$

$$b: a_0 \otimes a_1 \otimes ... \otimes a_n \mapsto \sum_{k=0}^{n-1} (-1)^k a_0 \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

称之为 Bar-复形。

首先容易验证 $b^2 = 0$,从而 $B_{\bullet}A \xrightarrow{b} A \to 0$ 确实是链复形。对于 $n \ge 1$,具体验证如下:

$$b^{2}(a_{0} \otimes a_{1} \otimes ... \otimes a_{n}) = b \left(\sum_{k=0}^{n-1} (-1)^{k} a_{0} \otimes a_{1} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n} \right)$$

$$= \sum_{k=0}^{n-1} (-1)^{k} b(a_{0} \otimes a_{1} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n})$$

$$= \sum_{k=0}^{n-1} (-1)^{k} \left[\sum_{l=0}^{k-2} (-1)^{l} a_{0} \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes a_{n} + (-1)^{k-1} a_{0} \otimes ... \otimes (a_{k-1} a_{k} a_{k+1}) \otimes ... \otimes a_{n} + (-1)^{k} a_{0} \otimes ... \otimes (a_{k} a_{k+1} a_{k+2}) \otimes ... \otimes a_{n} - \sum_{l=k+2}^{n-1} (-1)^{l} a_{0} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes a_{n} \right]$$

$$= \sum_{0 \leq k < l \leq n-2} \left(-(-1)^{k+l} + (-1)^{k+l} \right) a_{0} \otimes ... \otimes (a_{k} a_{k+1}) \otimes ... \otimes (a_{l} a_{l+1}) \otimes ... \otimes a_{n} + \sum_{0 \leq k \leq n-2} \left((-1)^{2k+1} + (-1)^{2k} \right) a_{0} \otimes ... \otimes (a_{k} a_{k+1} a_{k+2}) \otimes ... \otimes a_{n}$$

$$= 0$$

从而验证完毕。

我们可以把 $a_0 \otimes ... \otimes a_n$ 想象为直线上依次排列的 n+1 个质点,将算子 b 想象为相邻质点两两"碰撞"。

性质 1.2.4. 记号同之前, 则 Bar-复形

$$B_{\bullet}A \to A \to 0$$

是 A 的投射消解。

证明. 对任意 $n \ge 0$, $B_n A = A \otimes A^{\otimes n} \otimes A$ 是投射 K-模(这是因为由最初的假定,A 是投射 K-模,从而其张量积也投射)于是我们只需再验证该链复形是正合的。

为此,我们构造链同伦

$$h: B_{n-2}A \rightarrow B_{n-1}A \quad (n \ge 1, B_{-1}A = A)$$

 $a_0 \otimes ... \otimes a_n \mapsto 1 \otimes a_0 \otimes ... \otimes a_n$

只需验证 hb + bh = 1,之后与性质1.1.5的证明类似。 注意到对于任意 $n \ge 0$,成立

$$bh(a_0 \otimes ... \otimes a_n) = b(1 \otimes a_0 \otimes ... \otimes a_n)$$

$$= a_0 \otimes ... \otimes a_n - \sum_{k=0}^{n-1} 1 \otimes a_0 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

$$= a_0 \otimes ... \otimes a_n - 1 \otimes b(a_0 \otimes ... \otimes a_n)$$

$$= (1 - hb)a_0 \otimes ... \otimes a_n$$

因此 bh + hb = 1, 证毕。

定义 1.2.5. 设 M 为双 A-模, 定义 Hochschild 链复形

$$C_{\bullet}(A,M) := M \otimes_{A^e} B_{\bullet}A$$

$$\cdots M \otimes A^{\otimes 3} \to M \otimes A^{\otimes 2} \to M \otimes A \to M$$

方便起见, 该链复形的边缘算子仍记作 b.

则易知 M 的 Hochdchild 同调无非是 Hochschlid 链复形的同调:

$$H_n(A, M) = H_n(C_{\bullet}(A, M))$$

注意到有双 A-模同构

$$C_n(A,M) = M \otimes_{A^e} (A \otimes A^{\otimes n} \otimes A) \cong M \otimes A^{\otimes n}$$

在此同构意义下,容易验证 $C_{\bullet}(A, M)$ 的边缘算子 b 有如下显示表达:

对任意 $m \in M$,以及 $a_1, a_2, ..., a_n \in A$,成立

$$b (m \otimes (a_1 \otimes ... \otimes a_n)) = m \otimes_{A^e} (b(1 \otimes a_1 \otimes ... \otimes a_n \otimes 1))$$

$$= m \otimes_{A^e} [a_1 \otimes ... \otimes a_n \otimes 1$$

$$+ \sum_{k=1}^{n-1} (-1)^k 1 \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n \otimes 1$$

$$+ (-1)^n 1 \otimes a_1 \otimes ... \otimes a_n]$$

$$= (m.a_1) \otimes a_2 \otimes ... \otimes a_n$$

$$+ \sum_{k=1}^{n-1} (-1)^k m \otimes a_1 \otimes ... \otimes (a_k a_{k+1}) \otimes ... \otimes a_n$$

$$+ (-1)^n (a_n.m) \otimes a_1 \otimes ... \otimes a_{n-1}$$

Hochschlid 链复形的边缘算子的显式表达与 Bar-复形非常相似,从上式最右边的前两项可以看出;区别在于上式最右边的第三项。

1.3 Hochschlid 上同调

对于双 A-模 M,既然我们已经考虑余中心 $M \otimes_{A^e} A$,那么我们自然也会去考虑 $\operatorname{Hom}_{A^e}(A,M)$. 我们称双 A-模 $\operatorname{Hom}_{A^e}(A,M)$ 为 M 的导出中心 (derived center)。

性质 1.3.1. (导出中心的结构) 对于双 A-模 M, 则有双 A-模同构

$$\operatorname{Hom}_{A^e}(A, M) \cong \{ m \in M | a.m - m.a = 0 \ \forall a \in A \}$$

容易验证 $\{m \in M | a.m - m.a = 0 \ \forall a \in A\}$ 为 M 的双 A-子模。粗俗地说,该子模由"与 A 中所有元素交换"的元素构成,故谓之"中心"。

证明. 对于任意的 $\varphi \in \operatorname{Hom}_{A^e}(A, M)$ 以及 $a \in A$,则 $\varphi(a)$ 的取值由 $\varphi(1)$ 完全决定:

$$\varphi(a) = \varphi(a.1) = a.\varphi(1)$$

而另一方面,

$$\varphi(a) = \varphi(1.a) = \varphi(1).a$$

从而有 $a.\varphi(1) = \varphi(1).a.$ 于是我们可以构造如下双 A- 模同态:

$$\operatorname{Hom}_{A^e}(A, M) \rightarrow \{m \in M | a.m - m.a = 0 \ \forall a \in A\}$$

 $\varphi \mapsto \varphi(1)$

容易验证该模同态为同构。证毕。

然后我们考虑 Hom(-,M) 的导出函子,自然地去定义如下:

定义 1.3.2. (Hochschild 上同调)

对于双 A-模 M, 以及 $n \ge 0$, 定义 M 的第 n 个 Hochschild 上同调

$$H^n(A, M) = \operatorname{Ext}_{A^e}^n(A, M)$$

特别地, 我们记

$$H^n(A) = \operatorname{Ext}_{A^e}^n(A, A)$$

由定义知,M 的第 0 个 Hochschild 上同调为 $Hom_{A^e}(A,M)$,是 M 的导出中心。回顾 Bar-复形,我 们考虑如下的 Hochschild 上链复形

$$C^{\bullet}(A, M) = \operatorname{Hom}_{A^{\varrho}}(B_{\bullet}A, M)$$

该上链复形的微分算子 ∂ 由 Bar-复形 $B_{\bullet}A$ 的边缘算子 b 所诱导。则 M 的 Hochschild 上同调满足

$$H^n(A, M) = H^n(C^{\bullet}(A, M), \partial) = H^n(\operatorname{Hom}_{A^e}(B_{\bullet}A, M), \partial)$$

注意有自然的双 A-模同构

$$C^n(A, M) = \operatorname{Hom}_{A^e}(A \otimes A^{\otimes n} \otimes A, M) \cong \operatorname{Hom}(A^{\otimes n}, M)$$

(即取值于 M 的 n 重 K-线性映射)于是对于任意的 $\varphi \in C^n(A,M) = \operatorname{Hom}(A^{\otimes n},M)$,容易知道 $\partial \varphi \in \operatorname{Hom}(A^{\otimes n+1},M)$ 具有如下显式表达: 对任意 $a_0,a_1,...,a_m \in A$,

$$\begin{array}{lcl} \partial \varphi(a_0,a_1,...,a_n) & = & a_0.\varphi(a_1,a_2,...,a_n) \\ & & -\sum_{k=0}^{n-1} (-1)^k \varphi(a_0,...;(a_k a_{k+1});...,a_n) \\ & & & -(-1)^n \varphi(a_0,a_1,...,a_{n-1}).a_n \end{array}$$

接下来讨论 Hochschild 上同调的几何意义。我们已经知道第 0 个 Hochschild 上同调为 M 的导出中心;现在我们看 $H^1(A,M)$,我们将发现它是 A 的取值于 M 的外导子。

回顾导子 (derivation) 的概念如下:

定义 1.3.3. (导子) 对于双 A-模 M, K-线性映射

$$D: A \rightarrow M$$

称为 A 的取值于 M 的导子 (derivation), 如果对任意的 $a_1, a_2 \in A$, 成立

$$D(a_1a_2) = D(a_1).a_2 + a_1.D(a_2)$$

对于 $m \in M$ 我们定义

$$ad_m : A \rightarrow M$$

 $a \mapsto [m, a] := m.a - a.m$

则容易验证 ad_m 为 A 的取值于 M 的导子,称形如这样的导子为**内导子**(inner derivation)。 我们记

$$\operatorname{Der}(A,M) := \{D : A \to M | D$$
为导子 $\}$

$$\operatorname{Inn}(A,M) := \{\operatorname{ad}_m | m \in M\} \subseteq \operatorname{Der}(A,M)$$

注意 Inn(A, M) 与 Der(A, M) 都有显然的 K-模结构,且前者是后者的 K-子模。

性质 1.3.4. $(HH^1(A, M))$ 的结构) 对于双 A-模 M, 成立

$$HH^1(A, M) \cong \frac{Der(A, M)}{Inn(A, M)}$$

我们称上式右边的集合当中的元素为 A 的取值于 M 的外导子 (outer derivation)。

证明. 只需考虑 Hochschild 上链复形

$$C^0(A,M) \xrightarrow{\partial^0} C^1(A,M) \xrightarrow{\partial^1} C^2(A,M) \to \cdots$$

我们只需具体计算之。对于 $\varphi \in C^1(A,M) \cong \operatorname{Hom}(A,M)$,则 $\partial^1 \varphi \in C^2(A,M) \cong \operatorname{Hom}(A^{\otimes 2},M)$ 满足: 对任意 $a_1,a_2 \in A$,成立

$$\partial^1 \varphi(a_1, a_2) = a_1 \cdot \varphi(a_2) - \varphi(a_1 a_2) + \varphi(a_1) \cdot a_2$$

可见 $\varphi \in \ker \partial^1$ 当且仅当 $\varphi \in \operatorname{Der}(A, M)$. 也就是说 $\ker \partial^1 = \operatorname{Der}(A, M)$. 另一方面,对于 $m \in C^0(A, M) \cong M$,以及 $a \in A$,成立

$$(\partial^0 m)(a) = a.m - m.a = -\operatorname{ad}_m(a)$$

因此 $\ker \partial^0 \cong \operatorname{Inn}(A, M)$. 从而

$$\mathrm{HH}^1(A,M) = \frac{\ker \partial^1}{\mathrm{Im}\,\partial^0} \cong \frac{\mathrm{Der}(A,M)}{\mathrm{Inn}(A,M)}$$

特别地, 当 M = A 时,

$$\mathrm{HH}^1(A) = \mathrm{Der}(A,A)/\mathrm{Inn}(A,A)$$

注意到 Der(A,A) 上面还有更多的结构: 对于 $\forall D_1, D_2 \in Der(A,A)$, 定义

$$[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1 : A \to A$$

容易验证 $[D_1,D_2]$ 仍然为 A 的导子,并且 [-,-] 为 Der(A,A) 上的李括号(Lie bracket)。 另外容易验证

$$[Der(A, A), Inn(A, A)] \subseteq Inn(A, A)$$

具体地,对于 $D \in Der(A, A)$ 以及 $m \in M$,成立

$$[D, \operatorname{ad}_m] = \operatorname{ad}_{D(m)}$$

也就是说 Inn(A,A) 是 Der(A,A) 的理想。于是 [-,-] 诱导了 $HH^1(A) = \frac{Der(A,A)}{Inn(A,A)}$ 上的李括号结构. 如果 A 是交换 K-代数,则 Inn(A,A) = 0。于是

$$HH^1(A) \cong Der(A, A)$$

可被认为是"切向量场"(此时 A 被认为是"函数环")。

我们再去考虑 $HH^2(A, M)$. 对于任意的

$$\varphi \in C^2(A, M) = \operatorname{Hom}(A^{\otimes 2}, M)$$

则对 $a_0, a_1, a_2 \in A$,成立

$$\partial \varphi(a_0, a_1, a_2) = a_0 \cdot \varphi(a_1, a_2) - \varphi(a_0 a_1, a_2) + \varphi(a_0, a_1 a_2) - \varphi(a_0, a_1) \cdot a_2$$

引理 1.3.5. 对于双 A-模 M, 以及 $\varphi \in C^2(A,M) = \text{Hom}(A^{\otimes 2},M)$, 我们令

$$\hat{A} := A \oplus M$$

并赋以如下的 K-代数结构: 对于任意 $a_1, a_2 \in A$ 以及 $m_1, m_2 \in M$,规定 \hat{A} 的乘法 $\hat{\bullet}_o$ 为

$$(a_1 \oplus m_1) \hat{\bullet}_{\varphi}(a_2 \oplus m_2) := a_1 a_2 \oplus [a_1.m_2 + m_1.a_2 + \varphi(a_1, a_2)]$$

那么 $(\hat{A}, \hat{\bullet}_{\varphi})$ 为结合代数, 当且仅当 $\partial \varphi = 0$.

证明. 这是简单的计算验证。对于任意的 $a_0, a_1, a_2 \in A$ 以及 $m_0, m_1, m_2 \in M$,直接计算之,

$$[(a_0 \oplus m_0) \hat{\bullet}_{\varphi}(a_1 \oplus m_1)] \hat{\bullet}_{\varphi}(a_2 \oplus m_2)$$

$$= a_0 a_1 a_2 \oplus [a_0 a_1 . m_2 + a_0 . m_1 . a_2 + m_0 . a_1 a_2 + \varphi(a_0, a_1) . a_2 + \varphi(a_0 a_1, a_2)]$$

以及

$$(a_0 \oplus m_0) \hat{\bullet}_{\varphi} [(a_1 \oplus m_1) \hat{\bullet}_{\varphi} (a_2 \oplus m_2)]$$

$$= a_0 a_1 a_2 \oplus [a_0 a_1 . m_2 + a_0 . m_1 . a_2 + m_0 . a_1 a_2 + a_0 . \varphi(a_1, a_2) + \varphi(a_0, a_1 a_2)]$$

因此 $\hat{\bullet}_{\omega}$ 满足结合性, 当且仅当

$$\varphi(a_0, a_1).a_2 + \varphi(a_0a_1, a_2) = a_0.\varphi(a_1, a_2) + \varphi(a_0, a_1a_2)$$

而此式等价于 $\partial \varphi = 0$.

注意到在 \hat{A} 当中,对任意的 $m_1, m_2 \in M$,以及任意 $\varphi \in C^2(A, M)$,总有 $m_1 \hat{\bullet}_{\varphi} m_2 = 0$. 于是我们不妨将 " $A \oplus M$ " 当中的 "M" 理解为 "一阶小量"。我们考虑 $\varphi = 0$ 时 $\hat{A}_0 := A \oplus M$ 的代数结构

$$(a_1 \oplus m_1) \bullet (a_2 \oplus m_2) := a_1 a_2 \oplus (a_1.m_2 + m_1.a_2)$$

显然 (\hat{A}_0, \bullet) 为结合代数。若 $\partial \varphi = 0$,则结合代数 $(\hat{A}, \hat{\bullet}_{\varphi})$ 为 (\hat{A}_0, \bullet) 的**一阶形变**,而 φ 为其"形变参数"。 从而 M 的第 2 个 Hochschild 上同调

$$H^2(A,M) \cong \frac{\{\varphi | (\hat{A}, \hat{\bullet}_{\varphi})$$
是结合代数}{\operatorname{Im}(\partial : C^1(A,M) \to C^2(A,M))}

商掉的东西(Im d)为形如以下的一类特殊的一阶形变:

$$\varphi_f : A \otimes A \rightarrow M$$

$$a_1 \otimes a_2 \mapsto a_1.f(a_2) + f(a_1).a_2 - f(a_1a_2)$$

其中 $f \in C^1(A, M) = \text{Hom}(A, M)$, $\varphi_f = \partial f$.

我们考察一个 Hochschild 上同调的具体算例。

性质 **1.3.6.** 若 $A = \mathbb{C}[x^1,...,x^n]$ 为 \mathbb{C} 上的 n 元多项式环,则

$$\operatorname{HH}^k(A) \cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n), A\right)$$

证明. 对于这个特例,采用 Koszul 复形计算更佳简便。有关记号同性质1.2.2的证明过程. 考虑 Koszul 复形

$$\mathcal{K}_A: \cdots \xrightarrow{\partial} A^e \otimes \bigwedge^{k+1}(\mathbb{C}^n) \xrightarrow{\partial} A^e \otimes \bigwedge^k(\mathbb{C}^n) \xrightarrow{\partial} A^e \otimes \bigwedge^{k-1}(\mathbb{C}^n) \xrightarrow{\partial} \cdots$$

然后将函子 $Hom_{A^e}(-,A)$ 作用于之上。注意到有 \mathbb{C} -线性同构

$$\operatorname{Hom}_{A^{e}}\left(A^{e} \otimes \bigwedge^{k}(\mathbb{C}^{n}), A\right)$$

$$\cong \operatorname{Hom}\left(\bigwedge^{k}(\mathbb{C}^{n}), \operatorname{Hom}_{A^{e}}(A^{e}, A)\right)$$

$$\cong \operatorname{Hom}\left(\bigwedge^{k}(\mathbb{C}^{n}), A\right)$$

此外再注意到,上链复形 $\operatorname{Hom}_{A^e}(\mathcal{K}_A,A)$ 的微分算子 $d:=\operatorname{Hom}_{A^e}(\partial,A)=0$. 这是因为对于 $\varphi\in\operatorname{Hom}_{A^e}\left(A^e\otimes \bigwedge^k(\mathbb{C}^n),A\right)$, $\omega\in \bigwedge^{k+1}(\mathbb{C}^n)$ 以及 $f\in A^e$,成立

$$d\varphi(f\otimes\omega)=\varphi(\partial(f\otimes\omega))$$

回顾 Koszul 复形边缘算子运算规则

$$\partial: \eta^i \mapsto x^i - y^i \in A^e$$

又由于 φ 为 A^e -模同态,从而对于任意 $\tilde{\omega} \in \bigwedge^k(\mathbb{C}^n)$,成立

$$\varphi(x^i\otimes\tilde{\omega})=x^i.\varphi(1\otimes\tilde{\omega})=\varphi(1\otimes\tilde{\omega}).x^i=\varphi((x^i)^{\mathrm{op}}\otimes\tilde{\omega})=\varphi(y^i\otimes\tilde{\omega})$$

也就是说 $\varphi((x^i-y^i)\otimes\tilde{\omega})=0$. 由此可见 d=0. 综上可知

$$\operatorname{HH}^k(A) \cong \operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n), A\right)$$

注意到 $\operatorname{Hom}\left(\bigwedge^k(\mathbb{C}^n),A\right)$ 之中的元素形如

$$\sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{i_1 \ldots i_k} \partial_{i_1} \wedge \ldots \wedge \partial_{i_k}$$

回顾 $HH_{\bullet}(A)$ 中的元素可被认为是"微分形式",可见 $HH^{\bullet}(A)$ 中的元素则是"多重切向量场"。

1.4 约化 Hochschild(上)同调

定义 1.4.1. (约化 *Bar-*复形) (*reduced Bar-complex*) 对于 *K-*代数 *A*,则视 *K* 为 *A* 的 *K-*子模,并且令 *K-*模

$$\overline{A} := A/K$$

我们定义如下的约化 Bar-复形 ($\overline{B} \cdot A, b$):

$$\overline{B}_n A := A \otimes \overline{A}^{\otimes n} \otimes A \quad \forall i \geq 0$$

边缘算子 $b: \overline{B}_n A \to \overline{B}_{n-1} A$ 如下定义:

$$b\left(a_0\otimes(\overline{a_1}\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}\right) := (a_0a_1)\otimes(\overline{a_2}\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}$$

$$+ \sum_{i=1}^{n-1}(-1)^ia_0\otimes(\overline{a_1}\otimes\cdots(\overline{a_ia_{i+1}})\otimes\cdots\otimes\overline{a_n})\otimes a_{n+1}$$

$$+ (-1)^na_0\otimes(\overline{a_1}\otimes\cdots\otimes\overline{a_{n-1}})\otimes(a_na_{n+1})$$

注意到 $\overline{B}_{\bullet}A$ 是 $B_{\bullet}A$ 的商模:

$$\overline{B}_n A = \frac{B_n A}{\{a_0 \otimes (a_1 \otimes \cdots \otimes a_{i-1} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_n) \otimes a_{n+1}\}}$$

check "b" is well defined.

$$b(a_0 \otimes ... \otimes a_{i-1} \otimes 1 \otimes a_{i+1} \otimes ... \otimes a_{n+1}) = ... + (...)$$

So,... well defined.

resolution: $\bar{B}_{\bullet}A \to A \to 0$,

Reduced Hochschild Chain complex

$$\bar{C}_{ullet}(A,M):=M\otimes_{A^e}\bar{B}_{ullet}A=M\otimes\bar{A}^{ullet}$$

$$H_{\bullet}(\bar{C}_{\bullet}(A,M)) = H_{\bullet}(A,M)$$

Reduced Hochschild cochain complex

$$\bar{C}^{\bullet}(A, M) = \operatorname{Hom}(\bar{A}^{\bullet}, M)$$

Another way to understand $B_{\bullet}A, \bar{B}_{\bullet}A$

定义 1.4.2. A differential graded algebra

$$A:=\bigoplus_{n\in\mathbb{Z}}A_n$$

$$A_n \cdot : A_m \mapsto A_{n+m}$$

with

$$d: A \rightarrow A$$

 $derivation, d^2 = 0, d: A_n \rightarrow A_{n+1}$

$$d(\alpha\beta) = (d\alpha)\beta + (-1)^{|\alpha|}\alpha(d\beta)$$

性质 1.4.3. the bar resolution $[B_{\bullet} \to A] \cong A * K[\epsilon]$ (free product), and $b = \partial_{\epsilon}$

"proof".

$$[B_{\bullet}A \to A] \mapsto A * K[\varepsilon]$$

$$a_0 \otimes ... \otimes a_n \mapsto a_0 \varepsilon a_1 \varepsilon ... a_{n-1} \varepsilon a_n$$

this is bijective.

$$\partial_{\varepsilon}: a_0 \varepsilon a_1 \varepsilon ... a_{n-1} \varepsilon a_n \mapsto a_0 a_1 \varepsilon - a_0 \varepsilon a_1 a_2 ...$$

• • •

check \square

Similarly, reduced Bar-complex

$$[\bar{B}_{\bullet}A \to A] \cong A * K[\varepsilon]/\varepsilon^2$$

例子 1.4.4. (Group (co)homology)

Let G be a group, $M \in Rep(G)$ is a left module, then we obtain a complex

$$M \xrightarrow{\delta} C^1(G, M) \xrightarrow{\delta} C^2(G, M) \xrightarrow{\delta} \dots$$

where

$$C^{n}(G, M) := \operatorname{Hom}(G^{n}, M) = \{f : G^{n} \to M\}$$

the differential δ s.t.

$$\delta(m)(g) = g.m - m$$

$$(\delta f)(g_0, g_1, ..., g_n) = g_0 f(g_1, ..., g_n) - f(g_0 g_1, g_2, ...) + ... + f(g_0, ..., g_{n-1}g_n) \pm f(g_0, ..., g_{n-1})$$

check $\delta^2 = 0$, this cohomology

$$H^{\bullet}(C^{\bullet}(G,M),\delta) = H^{\bullet}(G,M)$$

group homology

Let A = K[G] group algebra with right A-action.then

$$H^{\bullet}(G,M) \cong H^{\bullet}(K[G],M)$$

hochschild cohomology.

例子 1.4.5. (Lie algebra (co)homology)

 \mathfrak{g} :Lie algebra, M is a \mathfrak{g} -module. consider $A:=\mathcal{U}(\mathfrak{g})$ universal enveloping algebra, M is a left A-module, with

$$H_{\bullet}(\mathcal{U}(\mathfrak{g}), M) = H^{Lie}_{\bullet}(\mathfrak{g}, M)$$

1.5 循环(上)同调

 $HH_{\bullet}(A) \rightsquigarrow noncommutative differential forms.$

$$B \leftarrow --$$
 de rham

cyclic group action

$$C_{\bullet}(A,A) = C_{\bullet}(A) = A \otimes A$$

$$C_n(A) = A^{\otimes n+1}$$

we consider the $\mathbb{Z}/(n+1)\mathbb{Z}$ acting on C_nA ,

$$\lambda: C_n(A) \to C_n(A)$$

$$a_0 \otimes a_1 \otimes ... \otimes a_n \mapsto (-1)^n a_n \otimes a_0 \otimes ... \otimes a_{n-1}$$

then λ is generator,

$$\lambda^{n+1} = (-1)^{n(n+1)} = 1$$

Let

$$C^{\lambda}_{\bullet}(A) := C_{\bullet}(A)/(1-\lambda)$$

cyclic co-invariant.

性质 1.5.1. Hochschild differential $b(on\ C_{\bullet}(A))$ induces a differential on $C_{\bullet}(A)/(1-\lambda)$

证明. Let us define

$$b': C_{\bullet}(A) \to C_{\bullet-1}(A)$$

$$b'(a_0 \otimes ... \otimes a_n) = a_0 a_1 \otimes a_2 \otimes ... \pm ... \pm a_0 \otimes a_1 \otimes ... \otimes a_{n-1} a_n$$

 $((C_{\bullet}(A),b')=(B_{\bullet}A\to A))$

claim that

$$(1 - \lambda)b' = b(1 - \lambda)$$

$$[b, \lambda] = (1 - \lambda)(b - b')$$

In particular, $b: \operatorname{Im}(1-\lambda) \mapsto \operatorname{Im}(1-\lambda)$ "proof":

so, b acts on $C^{\lambda}_{\bullet}(A) = C_{\bullet}(A)/(1-\lambda)$, called **Connes' complex**

 $H^{\lambda}_{\bullet}(A) = H_{\bullet}(C^{\lambda}_{\bullet}(A), b)$

Introduce

$$\mathcal{N}: C_n(A) \to C_n(A)$$

性质 1.5.2.

$$b'\mathcal{N} = Nb$$

we have an exact sequence

定义 1.5.3. the cyclic bi-complex $CC_{\bullet}(A)$

Let $Tot(CC_{\bullet}(A))$ be the total complex of $CC_{\bullet}(A)$ with a natural map of complexs

$$\operatorname{Tot}(CC_{\bullet}(A)) \to C^{\lambda}_{\bullet}(A)$$

is a quasi-isomorphism.

$$HC_{\bullet}(A) := H_{\bullet}(\operatorname{Tot}(CC_{\bullet}(A))) \cong H_{\bullet}^{\lambda}(A)$$

Intuitively, we can delete "exact sequence" and get rid of 蓝色框框,

1.6 始有一如,独一之神,其名在阿尔达称为伊露维塔。

术语索引

```
Bar-复形, 8
cocenter 余中心, 4
```

derivation 导子, 12 derived center 导出中心, 10

exact 正合, 5

Hochschild 同调, 6 Hochschild 上同调, 11 Hochschild 上链复形, 11 Hochschild 链复形, 10

inner derivation 内导子, 12

Lie bracket 李括号, 13

opposite algebra 反代数, 3 outer derivation 外导子, 12

projective module 投射模, 3 projective resolution 投射消解, 6

reduced Bar-complex 约化 Bar-复形, 15