Primeiro Relatório de Lab de Circuitos

Henrique da Silva hpsilva@proton.me

15 de agosto de 2022

Sumário

1 Introdução

	1.2	Obtendo $R_4 \ldots \ldots \ldots$,					
	1.3	Resultados preliminares	•					
2	Des	crição da prática						
3	Res	sultados						
	3.1	Medições do sistema conhecido						
		3.1.1 Resistores						
		3.1.2 Fontes de tensao						

Medições do sistema desconhecido.

1.1 A ponte de Wheatstone

1 Introdução

Neste relatório, vamos discutir a ponte de Wheatstone e um método experimental para obter uma Resistencia desconhecida a partir de um circuito ja conhecido

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estão em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

1.1 A ponte de Wheatstone

Esta tem como função principal determinar uma resistência desconhecida R_4 a partir de três resistências e uma corrente previamente conhecidas, que vamos chamar aqui de V_{cc} e R_1 , R_2 , e R_3 .

1.2 Obtendo R_4

Para obter essa resistência desconhecida, o que faremos é inicialmente determinar as tensões V_a e V_b em função das resistências e da tensão Vcc. E a partir dessas determinar uma expressão para R_4

4 Conclusão

paralelos teremos:

$$V_{a} = \frac{R_{3}}{R_{1} + R_{3}} V_{cc}$$

$$V_{b} = \frac{R_{4}}{R_{2} + R_{4}} V_{cc}$$
(1)

Daí tiramos que o nosso V_{ab} sendo este V_a V_b será:

$$V_{ab} = V_a - V_b = \left(\frac{R_3}{R_1 + R_3} - \frac{R_4}{R_2 + R_4}\right) V_{cc} \quad (2)$$

Resolvendo isolando o R_4 teremos:

$$R_4 = \frac{R2(R3(V_{cc} - V_{ab}) - R_1 V_{ab})}{R_1(V_{cc} + V_{ab}) + R_3 V_{ab}}$$
(3)

Com isso conseguimos facilmente isolar nossa resistência desconhecida R_4 a partir de valores conhecidos do sistema

1.3 Resultados preliminares

Inicialmente montarei o sistema no simulador de circuitos online Falstad. Clique aqui para acessar

Para o exemplo preliminar com o seguintes valores iniciais:

$$V_{cc}=10V$$
 , $R_1=15k\Omega$, $R_2=47k\Omega,$ $R_3=22k\Omega$ e $R_4=10k\Omega$

Resolvendo em python (clique aqui para acessar) as equações (1) e (2) teremos o seguinte valores para V_a V_b e V_{ab} :

$$V_a = 5.946V$$
$$V_b = 1.754V$$
$$V_{ab} = 4.191V$$

Descrição da prática 2

Nesta prática montei o circuito descrito em (1.1).

Coletei medições deste sistema com todos resistores conhecidos, e apos, com um desconhecido.

Montando o sistema e equações e lem- Fiz uma analise comparando os resultados brando da soma de resistores em série e em experimentais com os resultados experimentais.

3 Resultados

3.1 Medições do sistema conhecido

Abaixo estão os valores experimentais dos elementos do sistema.

Resistores

$$\begin{array}{ccc} R_1 & \rightarrow & 14.907 \, m\Omega \\ R_2 & \rightarrow & 21.930 \, m\Omega \\ R_3 & \rightarrow & 48.600 \, m\Omega \\ R_4 & \rightarrow & 9.835 \, m\Omega \end{array}$$

3.1.2 Fontes de tensao

Abaixo estão os valores experimentais das fontes de tensão, e o modulo da diferença d entre os valores experimentais e os esperados teóricos.

V_{cc}	\rightarrow	10.000V	\rightarrow	0V
V_a	\rightarrow	5.945V	\rightarrow	0.001V
V_b	\rightarrow	1.681V	\rightarrow	0.073V
V_{ab}	\rightarrow	4.262V	\rightarrow	0.071V

3.2Medições do sistema desconhecido

Abaixo estao os V_{cc} e o V_{ab} experimentais, o modulo da diferença d entre o V_{ab} experimental e o teórico, e o R_4 conseguido a partir das medições experimentais.

$$\overline{R_4} = 66.478 \, m\Omega \tag{4}$$

Creio que meu d deu 0 porque para consegui-lo eu preciso do R_4 que inicialmente é desconhecido. Então eu o calculo de acordo com (3). E (3) utiliza meu V_{ab} experimental e resistências que foram obtidas

experimentalmente. Logo quando re-calculo o V_{ab} com o agora conhecido valor de R_4 , este fica atrelado ao V_{ab} experimental.

A alternativa seria utilizar resistências teóricas e V_{cc} teóricos. Mas acho que isso não faz sentido porque o objetido do experimento em si é obter o R_4 , entao a priori, eu não teria um valor teórico para o R_4

4 Conclusão

Utilizando um circuito de *Wheatstone* posso medir pequenas alterações de V_{ab} para descobrir uma resistência desconhecida com bastante precisão.

Esse sistema é bastante robusto para diferentes valores de tensões de fonte. E tambem é significantemente resistente a erros aleatórios de medição.