

Informatyka

Kodowanie liczb

Opracował: Maciej Penar

Spis treści

1. Kodowanie liczb binarnych	

1. Kodowanie liczb binarnych

1. Przeliczyć liczby na podstawy 2, 8, 10, 16:

1010(2)	10111(2)	111010(2)	11110101(2)	1011010101(2)
76(8)	66(8)	500(8)	30(8)	122(8)
103(10)	423(10)	212(10)	30(10)	366(10)
A2(16)	FF(16)	5E(16)	30(16)	80F(16)

- 2. Podać zakresy wartości 8 pozycyjnej liczby binarnej w następujących kodach binarnych:
 - a. NBC (Natural Binary Code)
 - b. ZM (Znak moduł)
 - c. U1
 - d. U2
 - e. BIAS (127)
- 3. Wybrać dowolnych 5 (lub 4) (lub 3) liczby ujemne z zakresu <-1, -127> wypisać je w systemie dziesiętnym oraz w następujących 8 pozycyjnych kodach binarnych:
 - a. ZM
 - b. U1
 - c. U2
 - d. BIAS (127)
- 4. Wyrobić sobie konstruktywną opinię na temat arytmetyki w kodowaniach NBC, ZM, U1, U2, BIAS(x)
- 5. Byte Order / Endianness. Jaka jest różnica pomiędzy Big Endian a Little Endian. Podać przykład zapisu (forma szesnastkowa) w oparciu o liczbę 1100100111011000 1111011001111010(2). Wyrobić sobie konstruktywną opinię na zalet/wad jednej formy nad drugą.
- 6. Podać wartości dziesiętne znaku, wykładnika oraz mantysy następujących liczb:
 - a. 11000001110110000000000000000000(IEEE 754) (o rly?)
 - b. 01000010110101000000000000000000000(IEEE 754)
- 7. Podać 32 bitowe kodowanie IEEE 754 liczby -25.5(10)