POKROČILEJŠIE TECHNIKY V SIP A ROZŠÍRENIA SIP PROTOKOLU

Pavel Segeč Katedra informačných sietí FRI ŽU pavel.segec@fri.uniza.sk

Čo nás čaká

- SIP a PSTN
- SIP služby
 - Presence a IM
 - Tvorba služieb
- Zabezpečenie SIP
- Peer to peer SIP

SPOLUPRÁCA SIP A PSTN (SIP PSTN INTERWORKING)

Spolupráca SIP s PSTN

- Je potrebné rešpektovať stav rozšírenia telco sietí a ich prípojok
 - PSTN (Public Switched Telephone Network),
 ISDN,
- Rozšírenie mobilných klientov GSM a 3GPP
 - Aj keď tu je možné nad dátovým prístupom realizovať SIP hovor

Prenosový reťazec v telco sieťach

- Určuje prepojenie volajúceho účastníka KZ s volaným účastníkom KZ'
- Trasa prenosu kde sa používa SS7 je medzi koncovými ústredňami A,C resp. medzi koncovou ústredňou A a tranzitnou ústrednou B, tranzitnou ústredňou B a koncovou ústredňou C
- Medzi koncovými ústredňami A,B a KZ sa využíva účastnícka signalizácia SS1

SS7

Signalizačné body v SS7 sieti

- Poznáme tri typy signalizačných bodov v SS7 sieťach
- SSP (Service Switching Point)
 - Prepínače, posielajú signalizačné správy na zostavenie a zrušenie spojenia. Tiež môžu posielať dotazy k centralizovanej databáze SCP, na určenie, ako smerovať volania napr.:(0800).

STP(Signal Transfer Point)

- Sieťová prevádzka je smerovaná pomocou STP.
- STP smeruje každú správu, podľa informácii v správe.

SCP(Service Control Point)

Databáza

Funkčné úrovne \$\$7

Aplikačný protokol inteligentnej siete
Používateľská časť ISDN
Casť pohyblivých aplikácií
Casť prenosu správ
Casť udržby, prevádzky a správ
Casť riadenia signalizačného spojenia
Aplikačná časť transakčných schopností
Ližívateľská časť transakčných schopností

Užívateľská časť pre telefónnu službu v IDN

Casť prenosu správ MTP

slúži ako transportný respektíve prenosový prostriedok medzi rôznymi typmi užívateľských častí napr.: prenos medzi telefónnemu užívateľovi k ISDN užívateľovi

Časť riadenia signalizačného spojenia **SCCP**

 dopĺňa časť prenosu správ MTP, ponúka ďalšie funkcie pre prenos signalizačných správ medzi ústredňami, aj medzi ústredňou a inými zariadeniami

Užívateľské časti UP

- Užívateľská časť obsahuje signalizačné funkcie, špecifické pre určitý typ telekomunikačnej siete.
 - ISDN UP (ISUP) pre služby ISDN
- Užívateľské časti riadia napr. výstavbu a rozpad spojenia užitočného kanála, priebeh vlastnosti služieb, ako aj prevádzkové a údržbové funkcie užitočných kanálov.

Signalizácia v PSTN - ISUP

- Súčasť protokolu SS7/C7
- Obsahuje signalizačné funkcie pre riadenie spojenia, pre realizáciu služieb rôznych funkcií, ako aj riadenie užitočných kanálov v ISDN
- Pre prenášanie signalizačných značiek má ISUP rozhranie ku bloku prenosu správ MTP, ako aj k SCCP

Pre výstavbu spojenia :

- IAM (Initial Address Message)
- SAM (Subsequent Address Message)
- ACM (Address Complete Message)
- ANM (Answer Message)

Pre rozpad spojenia :

- REL (Release Message)
- RLSD (Released Message)
- RLC (Release Complete Message)

Pre riadenie užitočných kanálov :

- BLO (Blocking Message)
- UBL (Unblocking Message)

Výstavba spojenia:

prenos správ medzi ústredňami

- 1) Pri volaniach na iný switch sa z pôvodného SSP pošle IAM(Initial adress message) volanému SSP na rezervovanie spojenia.
- Volaný SSP odpovedá ACM(adress complete message) a volajúci dostane vyzváňací tón. Ak je spojenie neúspešné, volajúcemu SSP je poslaná REL správa
- 3) Keď volaný účastník zdvihne telefón, cieľový SSP zruší vyzváňací tón a pošle ISUP answer message (ANM),k pôvodnému SSP. Ak sa ANM správa dostane k pôvodnému SSP, overí sa pripojenie a tým sa začne spoplatňovať volanie.

Rozpad spojenia:

- prenos správ medzi ústredňami

1

- Ak volajúci účastník položí telefón ako prvý, pôvodný SSP pošle ISUP release message (REL), na zrušenie spojenia.
- Ak položí ako prvý volaný účastník, jeho SSP posiela REL správu. Taktiež je to pri obsadenej linke.

· 2.)

Po prijatí REL správy, cieľový SSP odpojí vyhradený okruh a zruší spojenie a pošle naspäť ISUP release complete message RLC, ako potvrdenie k zrušeniu spojenia.
 Po prijatí RLC správy sa zruší spojenie a zruší sa spoplatňovanie hovoru.

Problém spolupráce SIP a PSTN

- SIP a PSTN používajú kompletne iné komunikačné architektúry
 - Rozdiel v signalizácii
 - Rozdiel v technológii prenosu hlasu
- Riešenie
 - Je potrebné použiť zariadenie ktoré na strane PSTN komunikuje PSTN protokolmi na strane SIP SIP-om
 - =GATEWAY
 - = Back 2 Back User Agent
- Trh ponúka dostatok riešení:
 - OpenSource
 - Asterisk, FreeSWITCH, SEMS
 - Komerčných
 - Cisco, Ericsson, Tekelec Lucent, Sonus, Vegastream, etc.
- Pozor: Brána/B2BUA musí mať PSTN konektivitu

PSTN GW != SIP Proxy

- PSTN gateway je adaptér medzi dvomi rozdielnymi technológiami
 - je bodom konverzie medzi signalizačnými a mediálnymi protokolmi (napr. ISUP na SIP)
- Z pohľadu SIP je gw ukončujúce zariadenie pre SIP relácie
 - Podobne ako IP telefón

Gateway alebo B2BUA

Spolupráca PSTN a SIP: SIP - T

- RFC 3372 SIP-T : Session Initiation Protocol for Telephones: Context and Architectures
- SIP-T identifikuje a ponúka sadu mechanizmov ako zabezpečiť spoluprácu PSTN sietí a SIP sietí (SIP – ISUP)
- Mechanizmy navrhujú že v miestach prepojenia SIP a PSTN sietí (Gateway) dôjde v signalizácii buď k
 - Prekladu alebo mapovaniu
 - RFC3398 Integrated Services Digital Network (ISDN) User Part (ISUP) to Session Initiation Protocol (SIP) Mapping
 - Alebo sa správy transparentne prenesú vo forme enkapsulácie
 - RFC3204 MIME media types for ISUP and QSIG Objects
- SIP T však identifikuje len základné okruhy spolupráce

Spolupráca SIP a PSTN – Enkapsulácia a preklad

- Enkapsulácia:
 - Niektoré ISUP správy sa enkapsulujú do tela SIP správ
 - Tak aby informácie potrebné k službe neboli stratené odmietnutím SIP žiadosti
- Preklad alebo mapovanie:
 - Mapovanie ISUP správ na SIP správy
 - Vykonáva GW
 - Potrebné špecifikovať pravidla mapovania
 - Mapovane ISUP parametrov na SIP hlavičky
 - SIP požiadavka ktorá je použitá na vytvorenie volania by mala obsahovať informáciu, ktorá umožní vhodne smerovať správu do požadovaného cieľa prezentovanom SIP serverom v SIP sieti

SIP-T: Možné situácie spolupráce

- SIP ↔ PSTN (SS7 ISUP, Q931)
 - Preklad
- PSTN (SS7 ISUP, Q931) ↔ SIP
 - Preklad alebo enkapsulácia
- PSTN ↔ SIP ↔ PSTN
 - Premostenie
 - Preklad alebo enkapsulácia
- $IP \leftrightarrow IP$
 - "Čisté" SIP
- Pozn.
 - ISDN User Part signalizácia v PSTN medzi telco ústredňami

Príklad: SIP ↔ PSTN (RFC 3666)

$SIP \leftrightarrow PSTN$

Alice	Pro	ку 1	NGV	V 1	Switch B
 INVITE F1		 		 	
100 F2		 		 	
-		INVITE F3 		 	į
		 100 F4 <		İ	į
į		 183 F7		 ACM F6 <	
		<		İ	i
	Way	 RTP Media			
<========		 I	-	<======= ANM F	
i		200 F10		-	
200 F11		<		 -	1
< ACK F12		 		 	
-	>	ACK F13			į
	Way	RTP Media ========	i	Both Way Vo	
BYE F14					
	>	BYE F15			1
		 200 F16	-	 	
200 F17		<		REL F1	В
<		 		RLC F1	> 9
i				<	
1		l		l	1

In this scenario, Alice (sip:alice@a.example.com) is a SIP phone or other SIP-enabled device. Bob is reachable via the PSTN at global telephone number +19725552222. Alice places a call to Bob through a Proxy Server (Proxy 1) and a Network Gateway (NGW 1).

Bob answers the call then Alice disconnects the call. Signaling between NGW 1 and Bob's telephone switch is ANSI ISUP.

$SIP \leftrightarrow PSTN$

$SIP \leftrightarrow PSTN$

Early media session

- Early Media and Ringing Tone Generation in the Session Initiation Protocol (SIP), RFC 3960 (2004)
- EM sa odkazuje na situáciu, kedy je media tok založený skôr, ako bola prijatá finálna správa od volaného
 - T.j. ešte finálne nepotvrdil ochotu zúčastniť sa spojenia
- Typický príklad práve SIP PSTN, kedy je SIP účastníkovi prenášané zvonenie z PSTN
 - Ešte volaný nezdvihol
- RFC3261 (základná špec.) obsahuje slabšiu podporu na EM
 - Umožňuje niesť SDP v správe 183 Session progress
 - Media vlastnosti GW v tomto prípade

Early media

- Ale...informačné (provisional) správy v SIP-e nie sú potvrdzované
 - Nie je zaručená spoľahlivosť ich doručenia!!!
- Rozšírenie RFC 3261 o spoľahlivý prenos 1xx správ
 - RFC 3262 Reliability of Provisional Responses in the Session Initiation Protocol (SIP)
- RFC 3262
 - Definuje novú metódu na potvrdzovanie príjmu 1xx správ
 - Provisional Response ACKnowledgement (PRACK)
 - Definuje nový tag (param) "100rel"
 - Ak INVITE obsahuje 100rel, 1xx správa sa musí preniesť spoľahlivo

RFC3262

 RFC 3262, The UAS MUST send any non-100 provisional response reliably if the initial request contained a Require header field with the option tag 100rel. If the UAS is unwilling to do so, it MUST reject the initial request with a 420 (Bad Extension) and include an Unsupported header field containing the option tag 100rel.

Integrácia SIP a PSTN nie je jednoduchá

- Ako preložiť identitu pepe@sipxecs.local na tel. číslo
 - Aké bude číslo zobrazené v PSTN (Caller ID (CLID))
- Čo s núdzovými volaniami? (emergency)
- Nemôžeme ako SIP provider mať gateway na každého telco pstn providera vo svete (na Slovensku)
 - Ak máme viac gw ako nájsť ten správny?
 - DNS?
- Ako prenášať DTMF
 - Pozor na komprimačné kodeky
 - Máme rozšírenie RTP (RFC2833)
- Čo s dvojkrokovou voľbou
- Čo s "overlap dialing" (RFC3578)
 - Doba čakania medzi stlačením číselnej voľby
 - Poslať čísla individuálne alebo čakať na všetky?
- Apod....

P-Asserted-Indentity

- RFC3325 Private Extensions to the Session Initiation Protocol (SIP) for Asserted Identity within Trusted Networks
- Ak proxy server vie mapovanie
 - Súčasť používateľského profilu
 - Vloží ho do správy

SIP dizajn

- SIP bol navrhnutý aby:
 - bol ľahko integrovateľný a použiteľný s existujúcimi a aj budúcimi IETF protokolmi
 - bol jednoduchý a dobre škálovateľný
 - poskytoval mobilitu užívateľom
 - umožňoval jednoduchú rozšíriteľnosť protokolu
 - ponúkal možnosti na jednoduchý návrh a implementáciu nových služieb

Škálovateľnosť

- Dosiahnutá distribuovanou architektúrou, kde:
 - funkcie serverov ako proxy, registrovanie, presmerovanie, lokalizácia môžu byť distribuované na rôzne fyzické servery
 - distribuovaný charakter umožňuje pridávať nové funkcie bez ovplyvňovania ostatných komponentov
 - aplikačné servery, vývoj logiky služieb, lokalizačné databázové servery, 3rd party call control a pod.

Jednoduchosť

- Textovo založený
 - Jednoduchá implementácia
 - Ľahšie odlaďovanie chýb
- Využívanie princípov už existujúcich protokolov ako SMTP, HTTP
 - Napomáha k integrácii služieb ponúkaných cez tieto protokoly
 - Chápanie činnosti na základe poznania HTTP
 - Výkonnostných problémov serverov a pod.

Rozšíriteľnosť

- RFC3261 základná špecifikácia
- Podpora nových služieb a špecializovaných aplikácií => rozšírenie zákl. špecifikácie (so zachovaním spätnej kompatibility)
- Rozšírenie
 - Definovaním novej metódy
 - SUBSCRIBE, NOTIFY pre event notification
 - Definovaním novej hlavičky (hlavičiek)
 - Definovaním nových typov aplikačných objektov nesených v tele SIP správy
 - MIME types for ISUP, QSIG

OBOZNÁMENIE O UDALOSTI (EVENT NOTIFICATION)

Informácia o udalostiach (Event notification)

- Rozšírenie SIP protokolu o možnosť nechať sa informovať (Notify) o určitých udalostiach (Events) keď nastanú
- Definované v RFC 3265
 - Session Initiation Protocol (SIP)-Specific Event Notification
 - Poskytuje framework aby SIP uzol mohol žiadať druhú stranu o oznámenie o nastaní udalosti
- Použitie
 - Počasie, zmena kurzu apod.
 - Nastanie určitej želanej udalosti (napr. logy)
 - Bežnejšie Statusy dostupnosti (Presence)
- Rozšírenie definuje za týmto účelom nové:
 - Metódy SUBSCRIBE a NOTIFY
 - Odpovede 202 Accepted, 489 Bad event
 - A nové hlavičky
 - Event, allow-events, subscription-state

SIP metódy – SUBSCRIBE and NOTIFY

Správa SUBSCRIBE

- Používateľ požaduje informáciu o udalosti teraz, a v okamihu keď znovu nastane
- Expires=0 na odhlásenie (unsubscribe)
- Spracovávaná ako INVITE

Správa NOTIFY

- Správa je odoslaná príjemcovi ako indikácia nastania udalosti (zmeny v stave) na odber ktorej sa nahlásil
- Príklady aplikácii
 - Presence
 - Indikácia čakajúceho voicemailu

Entity

- Subscriber
 - Ten čo žiada o notifikáciu
- Notifier
 - Ten čo oznamuje

Subscribe - Notify Call flow

SIP presence a instant messaging

- SIP má rozšírenia pre tento typ služieb
- SIP for Instant Messaging and Presence Leveraging Extensions (SIMPLE)
 - Je to súbor protokolov poskytujúcich želanú funkcionalitu
- Rozširuje sa jeho implementácia medzi výrobcami a prepojenie na iné platformy
- Poskytuje
 - Zasielanie správ cez Instant Messaging
 - Presence
 - Dostupnosť a prianie zúčastniť sa komunikácie s indikovaním stavu
 - Historicky Online a Offline
 - Môže indikovať aj možnosti komunikácie
 - Len hlas, len video, len text apod.
 - Notifikácia o zmenách stavu
 - A tzv. buddy lists
 - Zoznamy známych, ktoré majú možnosť zakladať tel. hovor

INSTANT MESSAGING

RFC pokrývajúce SIP SIMPLE

- SIMPLE je štandardizované IETF dokumentmi:
 - RFC 3856 jadro SIMPLE
 - RFC 32žť udalosť "presence", definované správy SUBSCRIBE a NOTIFY
 - RFC 3903 definovaná správa PUBLISH
 - RFC 3857 udalosť "presence.watcher info"
 - RFC 3428 IM rozšírenie pre SIP, definovaná správa MESSAGE
 - RFC 4975 MSRP protokol

Zasielanie správ - Messaging

- Pre SIP existujú dva režimy
 - Page mode
 - Používa SIP metódu MESSAGE definovanú v RFC 3428
 - Session mode
 - Používa nový textovo orientovaný porotokol Message Session Relay Protocol definovaný v <u>RFC 4975</u>, <u>RFC</u>

Page mode messaging

- RFC 3428 Session Initiation Protocol (SIP) Extension for Instant Messaging (r. 2002)
- Instant Messaging
 - Je definované ako zasielanie zvyčajne krátkych textových správ temer v reálnom čase (tak aby používatelia mali pocit interaktivity)
 - Za týmto účelom rozširuje SIP o novú metódu Message
 - Často využívaná spolu s presence a buddy zoznamom
- Implementácia vychádza z odporúčaní pre IM a presence, definovaných v
 - RFC2778 A Model for Presence and Instant Messaging
 - RFC2779 Instant Messaging / Presence Protocol Requirements

SIP metóda - MESSAGE

- Metóda nesie textový obsah vo forme MIME tela
 - Text/html
- Používa štandardné MIME hlavičky na identifikáciu obsahu
- Metóda nevytvára dialóg
 - Môže byť nesená v kontexte nejakého vytvoreného dialógu
 - Je skrátka odoslaná
 - Môže byť potvrdená 200 OK
 - Nesmie obsahovať Contact pole
 - Správa môže byť zdvojená (Fork)

MESSAGE sip:pepe@sipxecs.local SIP/2.0

Via: SIP/2.0/TCP 192.168.1.101:17248;branch=z9hG4bK-d8754z-

c4095e424c50d34f-1---d8754z-;rport

Max-Forwards: 70

To: "pepe" < sip:pepe@sipxecs.local>

From: "jojo"<sip:jojo@sipxecs.local>;tag=e60b1200

Call-ID: ZmU5NzFiMGFhMDA5ZmI2MmNkYjNiNGM2YTU2MmY0MTU.

CSeq: 1 MESSAGE

Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY,

MESSAGE, SUBSCRIBE, INFO

Content-Type: text/html

User-Agent: eyeBeam release 1102q stamp 51814

Content-Length: 67

ahoj

pepe

SIP/2.0 200 OK

Record-Route: <sip:158.193.139.96:5060;lr;sipXecs-

rs=%2Aauth%7E.%2Afrom%7EZTYwYjEyMDA%60%2125cf3879737219d2eb7dc7

af218faf75;x-sipX-done>

Via: SIP/2.0/TCP 192.168.1.101:17248;branch=z9hG4bK-d8754z-

c4095e424c50d34f-1---d8754z-;rport=52715;received=85.248.45.154

To: "pepe" < sip:pepe@sipxecs.local>; tag=a5558122

From: "jojo"<sip:jojo@sipxecs.local>;tag=e60b1200

Call-Id: ZmU5NzFiMGFhMDA5ZmI2MmNkYjNiNGM2YTU2MmY0MTU.

Cseq: 1 MESSAGE

User-Agent: eyeBeam release 1102q stamp 51814

Content-Length: 0

Date: Tue, 19 Oct 2010 17:31:17 GMT

Session mode messaging

- Používa Message Session Relay Protocol (MSRP)
 - RFC 4975 The Message Session Relay Protocol (MSRP)
- MSRP je textový, spojovo orientovaný protokol pre messaging
 - MSRP je použitý na transport IM textoviek v štýle ako RTP na prenos médií
 - Avšak môže prenášať aj binárny obsah
 - Umožňuje priamu peer to peer komunikáciu
 - Poskytuje zvýšenú bezpečnosť
 - Nie je zamýšľaný ako samostatný protokol
 - Musí využívať funkcionality nejakého Randezvous protokolu (SIP/SDP)
 - A teda podpora MSRP v UA ako aj parametre spojenia založené pomocou SIP/SDP

MSRP – založenie spojenia

INVITE sip:bob@biloxi.example.com SIP/2.0 To: <sip:bob@biloxi.example.com> From:

<sip:alice@atlanta.example.com>;tag=786

Call-ID: 3413an89KU

Content-Type: application/sdp

c=IN IP4 atlanta.example.com m=message 7654 TCP/MSRP * a=accept-types:text/plain a=path:msrp://atlanta.example.com:7654/ jshA7weztas;tcp

<sip:alice@atlanta.example.com>;tag=786

Call-ID: 3413an89KU

MSRP

- UA s podporu MSRP pošle SIP INVITE
 - Ktorá obsahuje SDP media atribút MSRP
- Volaný UA s podporou MSRP akceptuje spojenie a pošle svoj popis MSRP spojenie v SDP
 - Ten obsahuje MSRP URL
- MSRP definuje dva typy správ
 - SEND requests
 - Použité na odoslanie kompletnej správy
 - alebo jej časti (chunk)
 - Ak je správe veľmi veľká
 - REPORT requests
 - Reportuje status of predchádzajúcej správy
 - Alebo reportuje počet bytov vo vnútri správy

Ďalšia MSRP komunikácia cez SEND a REPORT

```
MSRP a786hjs2 SEND
To-Path: msrp://biloxi.example.com:12763/kjhd37s2s20w2a;tcp
From-Path: msrp://atlanta.example.com:7654/jshA7weztas;tcp
Message-ID: 87652491
Byte-Range: 1-25/25
Success-Report: yes
Failure-Report: no
Content-Type: text/plain

Hey Bob, are you there?
-----a786hjs2$
```

```
MSRP dkei38sd REPORT
To-Path: msrp://atlanta.example.com:7654/jshA7weztas;tcp
From-Path: msrp://biloxi.example.com:12763/kjhd37s2s20w2a;tcp
Message-ID: 87652491
Byte-Range: 1-25/25
Status: 000 200 OK
-----a786hjs2$
```


SIP PRESENCE

SIP Presence

- Presence = Dostupnosť a prianie zúčastniť sa komunikácie s indikovaním stavu
 - Historicky Online a Offline
 - Môže indikovať aj možnosti komunikácie
 - Len hlas, len video, len text apod.
- Definovaná v
 - RFC3856 A Presence Event Package for the Session Initiation Protocol (SIP)
 - Definuje Presence systém, ktorý akceptuje, ukladá a distribuuje presence informácie žiadateľom o ne
 - Využíva na to SIP platformu ako je definovaná v RFC 3261
 - RFC3903 SIP Event State Publication
 - Ktorý definuje konkrétny spôsob publikovania presence stavov definovaných v RFC 3856
 - Definuje metódu PUBLISH

SIP Presence

- SIP Presence využíva event notification framework pre SIP definovaný v RFC3265
 - Za účelom nahlasovania presence stavov žiadateľom
 - Subscribe / Notify model
 - End to end model
- Ako aj základ definovaný pre IM platformy všeobecne vyplývajúce z:
 - RFC 2778 Model for Presence and Instant Messaging
 - Definuje IMP terminológiu, entity, a základné služby
 - Presence služba
 - služba poskytujúca prijímanie, ukladanie a distribúciu informácií, ktorým sa hovorí presence informácie. (Open/close)
 - Instant Messaging služba
 - služba slúţiaca na prijímanie a doručovanie rýchlych správ (instant messages) do schránok (instant inbox).
 - RFC 2779 Instant Messaging / Presence Protocol Requirements
 - Definuje požiadavky na budúce IMP protokoly
 - RFC3862 Common Presence and Instant Messaging (CPIM): Message Format
 - Definuje MIME typy pre presence/messaging
 - RFC 3863 Presence Information Data Format (PIDF)
 - Specify the Common Profile for Presence (CPP) Presence Information Data Format (PIDF) as a common presence data format for CPP-compliant Presence protocols, and also defines a new media type "application/pidf+xml" to represent the XML MIME entity for PIDF.

Presence model podľa RFC2778

Principal

- Používateľ
- Interaguje so systémom cez
 UA

- Definuje dvoch klientov
- Presentity
 - Poskytuje presence údaje na uskladnenie presence službe
 - Entita popísaná Presence informáciou
 - Je identifikovaná Presence URI

Watcher

- Prijíma presence údaje od presence služby
- Fetcher
 - Požaduje od PS aktuálnu hodnotu presence info pre danú Presentity
- Subscriber
 - Požaduje notifikáciu o zmenách presence info pre danú Presentity

SIP Presence

- Dva modely riešenia presence
 - End-to-end (RFC 3856)
 - Starší, menej flexibilný
 - Presence info je vymieňané priamo medzi UA
 - Koľko odoberateľov toľko notifikácií
 - Agent-based (centralizovaný) (RFC 3903)
 - Využíva Presence server, na ktorý sa UA registrujú
 - Nahlásia stav
 - Vyžiadajú si info o stave iných UA

SIP Presence entity podľa RFC3856

- Presence user agent (PUA):
 - Pracuje s presence dátami pre danú presentity
 - Tlačí dáta do presence systému
 - Registruje nové kontakty a pod.
 - t. j. SIP UA, ktorý chce publikovať svoj stav dostupnosti
- Presence Agent (PA)
 - Je SIP UA, ktorý dokáže prijímať SUBCRIBE a generovať notifikácie pri zmene stavu
 - PA je vždy adresovateľný s SIP URI ktorá jedinečne identifikuje the presentity
 - i.e., <u>sip:joe@example.com</u>
- Presence server (PS):
 - entita vyskytujúca sa len v centrálnom modeli zodpovedná za centrálnu správu Presence dát

SIP presence SUBSCRIBE / NOTIFY (End to end model)


```
SUBSCRIBE sip:pepe@sipxecs.local SIP/2.0
Via: SIP/2.0/TCP 192.168.10.223:41760;
                                                                 Identita presentity
branch=z9hG4bK-d8754z-fc07ae138070df2b-1---d8754z-;rport
Max-Forwards: 70
Contact: <sip:jojo@158.193.152.64:30878;transport=TCP>
To: "pepe" < sip:pepe@sipxecs.local>
                                                                                        Proxy
From: "jojo"<sip:jojo@sipxecs.local>;
tag=f0066821
{\tt Call-ID: MWM5NDc0NTQzZDg0ZmQwOWM3MWQ2OWIxOTQ3ZTkzMTQ.}
CSeq: 1 SUBSCRIBE
Subject:
                                                                        jojo@sipx
                                                                                                     pepe@sip
Expires: 300
                                                                        ecs.local
                                                                                                     xecs.local
Accept: multipart/related, application/rlmi+xml, application/pidf+xml
Allow: INVITE, ACK, CANCEL, OPTIONS, BYE, REFER, NOTIFY, MESSAGE,
                                                                                    SUBSCRIBE
SUBSCRIBE, INFO
User-Agent: eyeBeam release 1102q
                                                                                   202 Accepted
Event: presence
Content-Length: 0
                                                                                       ACK
NOTIFY sip:jojo@158.193.152.64:30878;transport=TCP SIP/2.0
Via: SIP/2.0/TCP 158.193.139.96:5060; branch=z9hG4bK-XX-76a2H7J516hM
                                                                                      NOTIFY
nQcqCdVbZr9qqA
Via: SIP/2.0/UDP 192.168.10.108:9562;branch=z9hG4bK-d8754z-1c434001
                                                                                      200 OK
bd27df39-1---d8754z-;rport=38535;received=158.193.152.64
Max-Forwards: 20
Contact: <sip:pepe@158.193.152.64:40288;rinstance=4af652a1e818aa63;</pre>
transport=TCP;sipXecs-CallDest=INT>
                                                                                      NOTIFY
To: "jojo" < sip:jojo@sipxecs.local >; tag=f0066821
From: "pepe" < sip:pepe@sipxecs.local>; tag=632bed49
                                                                                      200 OK
Call-Id: MWM5NDc0NTQzZDq0ZmQwOWM3MWQ2OWIxOTQ3ZTkzMTQ.
Cseq: 2 NOTIFY
User-Agent: eyeBeam release 1102q stamp 51814
Subscription-State pending; expires=300
                                                                                      NOTIFY
Event: presence
Content-Length: 0
Date: Thu, 21 Oct 2010 10:22:15 GMT
                                                                                      200 OK

    event notification package name
```

SIP presence SUBSCRIBE / NOTIFY (End to end model)

•Stav je pending, lebo ten ktorého žiadate má právo sa rozhodnúť akceptovať Vašu žiadosť na jeho monitorovanie

- Ak sa stav nemení, opakuje sa nahlasovanie v pravidelných intervaloch
- Ak sa zmení stav, prebehne hneď nahlásenie peer-ovy

watcher

presentity

ojo@sipx ecs.local

pepe@sip xecs.local

Telo správ SUBSCRIBE a NOTIFY

SUBSCRIBE

- Zvyčajne neobsahuje telo
 - ale môže ho mať
- V hlavičke naznačuje aký formát presence akceptuje
 - Accept: multipart/related, application/rlmi+xml, application/pidf+xml

NOTIFY

- Môže obsahovať telo
- Ak obsahuje, tak:
 - rlmi
 - Presence Information Data Format (PIDF)

Notify s XML

```
NOTIFY sip: jojo@158.193.152.64:30878; transport=TCP SIP/2.0
Via: SIP/2.0/UDP 192.168.10.108:9562;branch=z9hG4bK-d8754z-146aa906904fdd13-1---d8754z-;rport
Max-Forwards: 70
Route: <sip:158.193.139.96:5060; lr; sipXecs-rs=%2Aauth%7E.%2Afrom%7EZjAwNjY4MjE%60%2133126a02a9b02
ec605790a4c97001f3b>
Contact: <sip:pepe@158.193.152.64:40288;rinstance=4af652a1e818aa63;transport=TCP;
sipXecs-CallDest=INT>
To: "jojo" < sip:jojo@sipxecs.local>; tag=f0066821
From: "pepe" < sip:pepe@sipxecs.local>; tag=632bed49
Call-ID: MWM5NDc0NTQzZDq0ZmQwOWM3MWQ2OWIxOTQ3ZTkzMTQ.
CSeq: 3 NOTIFY
Content-Type: application/pidf+xml
User-Agent: eyeBeam rel 1102q stamp 51814
Subscription-State active; expires=274
Event: presence
Content-Length: 421
<?xml version='1.0' encoding='UTF-8'?>
          cence
          xmlns='urn:ietf:params:xml:ns:pidf'
          xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'
          xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'
          xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'
          entity='sip:pepe@sipxecs.local'>
          <tuple id='t445cd011'>
                    <status><basic>open</basic>
          </status></tuple>
          <dm:person id='p2f5b0137'>
          <rpid:activities><rpid:unknown/>
          </rpid:activities></dm:person>
```

RFC 3863 - Presence Information Data Format (PIDF)

- Definuje všeobecný formát dát pre presence protokoly
 - Nielen SIP SIMPLE

Prvky správy:

- URL zdroja presence informácie
- "tuples" údajov, može ich byť aj viac
 - ID
 - Stav (Open/close)
 - Kontakt (vol.)
 - Priorita kon.
 Adresy (vol,)
 - Čas (vol.)
 - Komentára (voliteľné)
- poznámka

SIP presence podľa RFC3903

- Definuje rozšírenie k event notification SIP frameworku pre nahlasovanie presence stavov
 - RFC umožňuje UA nahlasovať (publikovať) svoj stav na entitu (Presence server), ktorá je zodpovedná na distribuovanie tejto informácie záujemcom podľa rfc3856
- RFC definuje
 - novú metódu PUBLISH
 - Novú odpoveď 412 Conditional Request Failed,
 - Nové hlavičky SIP-Etag, SIP-If-Match
- Agent based model

Metóda PUBLISH

- Je použitá na nahlásenie presence stavu entite, ktorá je zodpovedná za zbieranie presence údajov
 - Presence Agent (Presence Server)

Výmena správ pre agent based model

Agent based model

- Hlavička udalosti presence.winfo
 - Watcher info
 - Umožňuje Presence serveru zistiť od klienta, kto môže sledovať jeho stav
 - Pomocou hlavičky "subscription-state" sa rozlišuje, či má odoberateľ (watcher) povolené vidieť presence informáciu.
 - Jej hodnota bude "pending",
 - až pokiaľ zdroj presence informácie (presentity) autorizuje odoberateľa.
 - Vtedy sa jej hodnota zmení na "active".

SIMPLE s XCAP

- Prístupové pravidlá je možné umiestniť na XCAP server
 - Presence rules
- ako aj definovať Buddy list
 - resource list

SIMPLE s XCAP

Pridanie kontaktu

3PCC

- Označenie riešenia pre iniciovanie a spracovanie hovoru treťou stranou (third party)
 - Pomocou tzv. 3pcc kontroléra
- 3PCC kontrolér vyzýva na spojenie ďalšie strany
 - Pracuje hlavne so signalizáciou
 - Z pohľadu danej strany kontrolér vystupuje ako SIP peer
 - Snaží sa získať SDP popis relácie, ktorú peerom v ich mene zamení
 - Musí reagovať na situácie oboch peerov
 - Nehlásia sa, oneskorenie a pod
- RFC 3275 Best Current Practices for Third Party Call Control (3pcc) in the Session Initiation Protocol (SIP)

Príklad 3PCC spojenia pri službe click2call

Služby v štýle PBX

- Väčšinu služieb
 pobočkových ústredni je
 možné v SIP-e realizovať,
 či už na strane servera(S),
 alebo na strane klienta (C)
 - Unconditional call forwarding (S)
 - Abbreviated dialing (C or S)
 - Screening (S)
 - Distinctive ringing (C or S)
 - Call distribution (S)

- Call transfer (C: REFER)
- Conferencing (C or S)
- Call-hold (C: re-INVITE)
- Call-waiting (C)
- Redial (C or C+S)
- Follow-me (forking) S
- Caller-ID (built-in)
- DND (C or S)
- Call Forwarding Busy

Príklad: Call transfer použitím REFER

- A komunikuje s B a rozhodne sa preniesť hovor na C
- Pošle na B správu REFER s odkazom na C
- Ten založí spojenie na C
- Eventuálne je A oboznámené o úspešnosti prenosu (NOTIFY)
- RFC 5589 Session Initiation Protocol (SIP) Call Control Transfer

Metóda REFER

- Definovaná v RFC 3515 The Session Initiation Protocol (SIP) Refer Method
- Metóda ktorá odkazuje príjemcu na zdroj (identifikovaný Request URI) poskytnutom v správe
 - A indikuje, že príjemca môže nadviazať spojenie na takto poskytnutý kontakt
 - Vhodné pre mnoho druhov služieb a aplikácii, napr. tu spomínaný call transfer
- Metóda je zároveň žiadosť o nahlásenie udalosti referencovania (event subscription)
- Používa novú hlavičku Refer-To

Refer-To: sip:alice@atlanta.example.com

 Odpoveďou, pokiaľ nie je chyba (3xx, 4xx, 5xx) je 202 Accepted

A iné príklady iPBX služieb

http://www.tech-invite.com/Ti-sip-service-1.html

SIP Service Examples: 01. Call Hold

Top Prev Next Start	Reader's guide
01. Call Hold	11. 3-Way Conference: 3rd Party Joins
02. Consultation Hold	12. Single Line Extension
03. Music On Hold	13. Find-Me
04. Transfer: Unattended	14. Call Management (Incoming Call Screening)
05. Transfer: Attended	15. Call Management (Outgoing Call Screening)
06. Transfer: Instant Messaging	16. Call Park
07. Call Forwarding Unconditional	17. Call Pickup
08. Call Forwarding Busy	18. Automatic Redial
09. Call Forwarding No Answer	19. Click to Dial
10. 3-Way Conference: 3rd Party is Added	

http://www.cisco.com/en/US/docs/voice_ip_comm/cuipph/7960g_7940g/sip/7_5/english/administration/guide/sipaxb75.html

PROGRAMOVANIE SIP SLUŽIEB (PROGRAMMING SIP SERVICES)

Tvorba SIP služieb

- Umožňuje rýchly návrh, vývoj a implementáciu nových služieb
- "Klasické" telefónne služby
- Nové služby:
 - Konvergované služby
 - Mix internetových a telefónnych služieb
 - Instatnt messaging, presence (ICQ like), click2dial, event notification (mail, sms apod.), voicemail, Call forking, Call waiting, Find me/Follow me
 - A pod.

VoIP tvorba služieb

- Z hľadiska realizácie služby
 - USER SITE
 - Na koncových zariadeniach
 - SERVER SITE
 - Na strane servera
 - SERVER/USER SITE
 - Vyžaduje podporu na strane servera aj koncového zariadenia
 - Mix prvých dvoch

VoIP tvorba služieb – User site

Výhody

- Je možné aby si sami koncoví užívatelia programovali funkcie danej služby bez potreby zásahu zo strany operátora
- Nevyhnutná podpora na strane koncových zariadení
- Problém s kompatibilitou pri použití rôznych zariadení

VoIP tvorba služieb – User site

Nevýhody

- Multi-endpoint interaction services
 - Problémy ak je nevyhnutná spolupráca viacerých koncových zariadení (napr. Problém ak by hovor malo presmerovať na inú lokáciu koncové zariadenie a nie sieť
- Continuous services
 - Problém s nepretržitou prevádzkou ak je služba realizovaná na koncovom zariadení (napr. Zabezpečenie napájania je zvyčajne lepšie poriešené na serveri než na telefóne.
- High resource services
 - Problém so zabezpečením dostatočného výpočtového výkonu v koncových zariadeniach (napríklad by bol problém vybaviť koncové zariadenia dostatočným výkonom na to aby mohli na nich byť realizované napr. text-to-speech služby)
- Update services problem
 - Pri zmene protokolu alebo funkcionality by museli byť updatované všetky koncové zariadenia využívajúce danú službu
- Service configuration
 - Nastavenie pokročilých služieb priamo na koncovom zariadení vyžaduje špeciálne nastavenia na koncovom zariadení
- Duplication of services
 - Nevyhnutné rôzne implementácie služieb pre rozličné koncové zariadenia je zo strany operátora neprijateľné, implementácia služieb na serveri umožní využitie jednej služby rôznymi typmi zariadení

VoIP tvorba služieb – Server site

Výhody

- Centrálne spravované služby
- Vyšší výpočtový potenciál servera oproti koncovým zariadeniam
- Odpadajú problémy s kompatibilitou

Nevýhody

Pozor na záťaž, verifikáciu správnosti kódov a pod

Preferovaná cesta

VoIP tvorba služieb – Server/User site

Výhody

- Zdedené sú od obidvoch predchádzajúcich riešení
- Možnosť vytvárať služby ktoré by nebolo možné USER alebo SERVER site architektúrou realizovať

Nevýhody

- Relatívne najvyššie náklady
- Zdedené značné množstvo nevýhod od samostatných architektúr (SERVER, USER)

Tvorba služieb - prístupy

- Využitím základných SIP mechanizmov
 - Týka sa User aj Server site
- Definovaním nových rozšírení SIP protokolu
 - Hlavičky, SIP správy
 - Týka sa User aj Server site
- Použitím dedikovaných programovacích nástrojov
 - SIP-CPL, SIP-CGI, SIP servlets, JAVA, JAVA applets, JAIN APIs, Parlay)
 - Veľmi podobné programovaniu web služieb!!!
 - Server site

Programovanie služieb na strane servera - princíp

- Logika riadi činnosť SIP servera
 - Napr. podľa času volania, adresy, subjektu a pod.
- Logika = program v ľubovoľnom jazyku

Tvorba služieb – kto?

- Koncovým používateľom ("Untrusted"):
 - Call Processing Language (CPL)
 - Jazyk na báze XML
 - Iné jazyky na báze XML (VoiceXML)
- Poskytovateľom (vlastníkom SIP servera) ("Trusted"):
 - SIP Servlety, SIP Common Gateway Interface (CGI),
 JAIN SIP, Proprietary API, PARLAY, SIP Lite, SOAP
- Tretou stranou ("Trusted"):
 - Nástroje ako poskytovateľ

CPL

- Jazyk založený na XML
 - RFC 3880 Call Processing Language (CPL): A Language for User Control of Internet Telephony Services
- Skriptovací jazyk popisujúci Call Control
 - Používateľ môže definovať akcie, ktoré budú spracované sign.
 Serverom (SIP proxy) pri spracovávaní hovoru
 - Skript je jednoduchý (lightweight), bez podpory slučiek (cyklov)
 - Aby nedošlo k "ohrozeniu" servera
- CPL
 - Nie je viazaný na konkrétny signalizačný protokol
 - Má jednoduchú syntax, je rozšíriteľný, vhodný pre GUI
 - Vhodný pre vývoj služieb Untrusted používateľmi
 - Koncový používatelia

CPL

- CPL skript definuje rozhodovací strom, ktorého akcie môžu byť buď signalizačné (proxy, redirect, reject) alebo nesignalizačné (mail, log)
- Princíp
 - Vytvoríme službu v GUI
 - Napr. CPLEd
 - Uploadne sa cez REGISTER správu na server (Proxy or AS)
 - Alebo inak (FTP, HTTP, ...)
 - Spustenie a vyvolanie je dané nastaním definovanej udalosti
 - Smer správ
 - Incoming resp. Ougoing call
 - Príjem INVITE a pod.
 - SIP URI, časové údaje apod.

Štruktúra CPL

- CPL je tvorený stromom
 - Má uzly a linky
 - Každé odpovedá CPL "tag-u"
- Uzly (Nodes)
 - Špecifikujú akcie alebo rozhodnutia, ktoré sa majú vykonať
 - Signaling actions
 - Proxy, redirect, reject
 - Decisions
 - address-switch, string-switch, time-switch, priority-switch
- Linky (Links)
 - Špecifikujú výsledky akcií
 - Alebo ktoré rozhodnutie sa má vykonať
- CPL obsahuje subrutiny, kde každá je tiež strom
 - Incoming strom akcii vyvolaný pre prichádzajúce hovory
 - Outgoing strom akcii vyvolaný pre odchádzajúce hovory

```
<?xml version="1.0" ?>
   <!DOCTYPE cpl PUBLIC "-//IETF//DTD</pre>
     RFCxxxx CPL 1.0//EN" "cpl.dtd">
   <cpl>
     <subaction id="voicemail">
        SOME STUFF HERE
     </subaction>
     <subaction id="email">
        SOME STUFF HERE
     </subaction>
     <incoming>
        SOME STUFF HERE
     </incoming>
     <outgoing>
        SOME STUFF HERE
     </outgoing>
   </cpl>
```

```
<?xml version="1.0" ?>
   <!DOCTYPE cpl PUBLIC "-//IETF//DTD RFCxxxx CPL 1.0//EN" "cpl.dtd">
<cpl>
    <subaction id="voicemail">
                                                           Definuje
       <location url="sip:jones@voicemail.example.com">
         <redirect />
                                                           subrutinu
       </location>
     </subaction>
    <incoming>
       <location url="sip:jones@phone.example.com">
         cproxy timeout="8">
           <busy>
             <sub ref="voicemail"/>
           </busy>
           <noanswer>
             <address-switch field="origin">
               <address is="sip:boss@example.com">
                 <location url="tel:+19175551212">    />
                 </location>
               </address>
               <otherwise>
                 <sub ref="voicemail" />
               </otherwise>
             </address-switch>
           </noanswer>
                                           CPL skript
         </proxy>
       </location>
     </incoming>
 </cpl>
```

CPL GUI - CPLEd

SIP CGI

- RFC 3050 Common Gateway Interface for SIP
- Sip CGI je veľmi podobné HTTP CGI
 - resp. adopcia HTTP CGI pre SIP
 - Na rozdiel od HTTP je stavový (podporuje dialog control)
 - Pomocou "Cookie"
- Nezávislé od jazyka
 - Skript môže byť naprogramovaný v ľubovoľnom jazyku
 - Perl, Tcl, C, C++, ...
- SIP správy predáva CGI programu SIP server cez
 - premenné SIP CGI prostredia
 - Systémový vstup (stdin) a výstup (stdout)
- CGI je flexibilný
 - Ale prináša mnoho otázok
 - Problém s overiteľnosťou CGI programov
 - Bezpečnosť, dôveryhodnosť, odolnosť voči chybám, záťaž servera pri vykonávaní apod.
 - Zlý or chybný skript môže vyťažiť server na 100%

SIP CGI princíp

- 1. SIP správa dorazí na SIP proxy
- SIP server pred volaním skriptu nastaví SIP CGI premenné
 - Obsahujú temer celu SIP hlavičku
 - Okrem "citlivých údajov"
 - Telo SIP správy predané cez stdin
- 3. CGI skript vykoná požadované akcie
- A inštruuje SIP Server čo má robiť ako následok poskytovania SIP CGI služby

SIP CGI I/O

- Script input:
 - SIP CGI environment variable (metavariables)
 - AUTH_TYPE, CONTENT_LENGTH, REQUEST_URI, etc.
 - a SIP telo cez stdin
- Script output
 - Sada správ skladajúca sa z action lines, CGI polí hlavičiek, a SIP hlavičiek poslaných cez stdout
- Action lines
 - Generuj odpoveď
 - status line
 - Proxuj:
 - CGI-PROXY-REQUEST <dest-url> <sip-version>
 - Additional header fields may be followed they will be merged with the original request.
 - Forwardni odpoveď
 - CGI-FORWARD-RESPONSE <token> <sipversion>
 - Nastav cookie pre ďalšie nasledujúce správy v transakcii
 - CGI-SET-COOKIE <token> <sip-version>
 - Urči nasledujúce volanie CGI skriptu pre ďalšiu správu v transakcii
 - CGI-AGAIN ("yes" | "no") <sipversion>

SIP Servlet API

- Čo je Servlet
 - A Java program that runs as part of a network service, typically an HTTP server and responds to requests from clients" [sun]
 - Myslelo sa pôvodne hlavne HTTP
- SIP Servlet je podobný HTTP servletom
 - Definovaný v JSR 289 Expert Group, JSR-000289
 SIP Servlet 1.1 Final Release, 2008
 - Je pomerne dobre podporovaný

SIP servlet API

- SIP Servlet API:
 - Špecifikácia vyvinutá za účelom štandardizácie vývoja SIP služieb a za účelom urýchlenia procesu vývoja a nasadzovania SIP služieb
- Obsahuje
 - SIP Servlet container
 - SIP servlet

SIP Servlet API

- Servlet spracováva žiadosti klientov
- Servlet je riadený servlet kontajnerom (servlet engine)
 - Riadi jeho životný cyklus,
 SIP Stavy, bezpečnosť, fault tolerance, škálovateľnosť
 - Prostredníctvom kontajnera riadi SIP server SIP servlety
- Logika = java aplikácia tvorená jedným or viac servletmi

SIP Servlet kontajner

- Je (súčasť) SIP AS alebo SIP Proxy
 - Poskytuje sieťové komunikačné funkcionality
 - Komunikuje cez SIP so SIP sieťou
 - Otvára, ruší transport. porty
- Riadi životný cyklus servletu
 - Rozhoduje, ktorý servlet vyvolať a kedy
 - Na základe výskytu definovanej udalosti
 - Napr. Príchod SIP správy
 - Kedy Servlet ukončiť
- So servletom komunikuje cez objekty
- Skrýva nízko úrovňové detaily SIP protokolu

SIP servlety

- SIP servlety sú časti java kódu umiestnené v a riadené servlet kontajnerom
 - Sú podobné HTTP servletom
- Na rozdiel od HTTP servletov, ktoré môžu odpovedať len HTTP odpoveďami, SIP servlety môžu
 - Môžu odpovedať SIP správou typu odpoveď
 - Môžu správy proxovať
 - Môžu vytvoriť aj nové SIP správy
- Servlety sú
 - zoskupené do aplikácii web archive (".war"), sip archive (".sar")
 - Nasadené s "deployment descriptor" ("web.xml" for HTTP, "sip.xml" for SIP)

SIP Servlety*

^{*} Simon Pietro Romano - Corso di Applicazioni Telematiche - 2008-2009

Služba Univerzitná infolinka

- Integrácia Web SIP
 - iniciovanie hovoru z Web stránky (študentom) a nadviazanie volania Študent - Tútor
 - tútorovi nastaviť si čas pre telefonické konzultácie "prichádzajúce" z Web-u
 - riešenie stavu "Tútor je nedostupný"
 - notifikácia študenta službou keď je tútor dostupný (spätné pozvanie študenta do tel. hovoru, resp. zaslanie e-mailu)

Infoline služba

SIP Servlet API –Infoline služba

JAIN API - JAVA API for Integrated Networks

- JAIN Je technológia zameraná na rýchly vývoj služieb v komunikačných sieťach pomocou štandardizovaných rozhraní
 - s dôrazom na prenositeľnosť
 - Write Once Run Anywhere
 - a konvergenciu komunikačných sietí
 - Ponúka vývojové prostredie pre vývoj služieb nezávislých od sieťového prostredia, kde budú nasadzované
 - Rozhrania pre služby nasadzované naprieč paketovými a circuit switching sieťami
 - IP, ATM, Wireless
- Ako Java API môže používať aj iné java vývojové platformy

JAIN API

- JAIN oddeľuje
 - vrstvu pre vývoj služieb
 - vrstvu závislú od typu siete alebo transportnej infraštruktúry
- Preto JAIN definuje dve vrstvy
 - Protocol layer
 - Obsahuje Api pre sieťové technológie
 - SS7 APIs
 - » TCAP, ISUP, INAP, MAP
 - IP APIs
 - » MGCP, SIP, H.323, MEGACO
 - Application layer
 - Vrstva pre návrh, programovanie a nasadzovanie služieb
 - Tvorba služby: JSCE JAIN Service Creation Environments
 - Riadenie služby: JCC Java Call Control
 - Beh služby: JSLEE JAIN Service Logic Execution Environment

JAIN API pre SIP

- JAIN™ SIP API (JSR 32) :
 - je to nizkoúrovňové Java API
 - Pracuje so signalizačným protokolom
 - Vyžaduje dobré znalosti SIP
- Umožňuje tvorbu
 - Služieb
 - SIP entít (UA, SIP proxy, redirect, reistrar)
- Podporuje Stateless aj statefull správanie

JAIN SIP API entity

Stack

- Manažuje tvorbu Providerov
- Má pridelenú IP adresu a tr. port

Provider

- Riadi výmenu SIP správ s inými SIP cez SIP protokol
- Je vlastný pre každú proprietátnu implementáciu stacku
 - Poskytuje SIP API aby listener mohol pristupovať k funkcionalitám SIP stacku

Listener

- Sa registruje na providera
- Poskytuje službu (je aplikácia)
- Listener komunikuje s providerom cez SIP

Programovanie SIP služieb - zhrnutie

- Pri programovaní SIP Služieb si treba uvedomiť:
 - Príliš výkonné programovacie prostredie (tzv. "low sandbox factor") umožňuje programátorovi "zničiť" službu alebo server
 - "High sandbox factor"
 - Programovateľnosť je obmedzená z dôvodu bezpečnosti
 - Treba zvážiť faktory, ktoré rôzne technológie prinášajú
- Sandbox factor high
 - CPL, ktoré umožňuje nasadzovať služby bez "ohrozenia"
 - Použitie koncovými používateľmi
- Sandbox factor medium
 - JAIN a SIP Servlety
 - Zabezpečenie riešené vo forme kontajnera
 - Použitie profesionálmi
- Sandbox factor low
 - SIP CGI. Poskytuje neobmedzený prístup k systémovým zdrojom
 - Použitie profesionálmi

PEER TO PEER SIP

A raz skončíme tu ...

- NÁSLEDUJE ZOZNAM RFC PRE SIP

SIP štandardy

http://www.packetizer.com/ipmc/sip/standards.html

Core SIP Documents

- RFC 2543 SIP: Session Initiation Protocol (obsolete)
- RFC 3261 SIP: Session Initiation Protocol
- Reliability of Provisional Responses
- RFC 3263 Locating SIP Servers
- RFC 3264 An Offer/Answer Model with the Session Description Protocol (SDP)
- RFC 3265 SIP-Specific Event Notification

SDP-Related Documents

RFC 2327	Session Description Protocol (SDP) (obsolete: see RFC 4566)
RFC 3266	Support of IPv6 in SDP
RFC 3388	Grouping Media Lines in SDP
RFC 3407	Session Description Protocol (SDP) Simple Capability Declaration
RFC 3556	SDP Bandwidth Modifiers for RTCP Bandwidth
RFC 3605	Real Time Control Protocol (RTCP) attribute in Session Description Protocol (SDP)
RFC 3890	A Transport Independent Bandwidth Modifier
RFC 4091	An Alternative NAT Semantics for SDP
RFC 4145	TCP-Based Media Transport in the SDP
RFC 4566	Session Description Protocol (SDP)
RFC 4567	Key Management Extensions for SDP and RTSP
RFC 4568	SDP Security Descriptions for Media Streams
RFC 4570	SDP Source Filters
RFC 4572	Connection-Oriented Media Transport over TLS in SDP
RFC 4574	SDP Label Attribute
RFC 4756	FEC Grouping Semantics in SDP
RFC 5027	Security Preconditions for SDP
RFC 5432	QoS Mechanism Selection in SDP
RFC 5547	SDP Offer/Answer Mechanism to Enable File Transfer
RFC 5576	Source-Specific Media Attributes in SDP

SIP Standards Track Documents (Options, Extensions, etc.)

RFC 2976	The SIP INFO Method		
RFC 2848	Extensions for IP Access to Telephone Call		
Services	•		
RFC 3050	CGI for SIP		
RFC 3311	UPDATE Method		
RFC 3312 SIP	Integration of Resource Management and		
RFC 3313 Authori			
RFC 3319	DHCPv6 Options for SIP Servers		
RFC 3323	A Privacy Mechanism for SIP		
RFC 3324	Short Term Requirements for Network		
Asserte	Asserted Identity		
RFC 3325 Identity	Private Extensions to SIP for Asserted within Trusted Networks		
RFC 3326	The Reason Header Field		
RFC 3327	Extension Header Field for Registering Non-		
Adjacent Contacts			
RFC 3329	Security Mechanism Agreement		
RFC 3361	DHCP-for-IPv4 Option for SIP Servers		

SIP for Telephones (SIP-T): Context and ctures
ISUP to SIP Mapping
SIP Extension for Instant Messaging
Private Header Extensions for 3GPP
The Session Initiation Protocol (SIP) Refer
d
Mapping ISUP Overlapped Signalling to SIP
Extension to SIP for Symmetric Response
,
Extension Header Field for Service Route
ery During Registration
SIP Event Package for Registrations
Indicating User Agent Capabilities in SIP
Caller Preferences for SIP
Message Summary and Message Waiting
on Event Package
Presence Event Package
A Watcher Information Event Template-
<u>.</u>
"Replaces" Header
Referred-By Mechanism
SIP Authenticated Identity Body (AIB)

SIP Informational RFCs and BCP Documents

RFC 3911	SIP "Join" Header	RFC 5196
RFC 3903	Event State Publication	Info
RFC 3959	Early Session Disposition Type	RFC 5263
RFC 3960	Early Media and Ringing Tone Generation	Info
RFC 4028	Session Timers in the Session Initiation Protocol (SIP)	RFC 5264
RFC 4235	An INVITE-Initiated Dialog Event Package for SIP	RFC 5373
RFC 4244	Extension for Request History Information	RFC 5478 Nam
RFC 4320	Actions Addressing Identified Issues with the SIP Non-	
INVITE Tra	ansaction	RFC 5509 DNS
RFC 4411	Extending the SIP Reason Header for Preemption	RFC 5552
Events		RFC 5589
RFC 4412	Communications Resource Priority for SIP	RFC 5627
RFC 4474	Enhancements for Authenticated Identity	URIS
RFC 4483	nent in SIP A Mechanism for Content Indirection in SIP	RFC 5628
RFC 4483		RFC 5629
Subscripti	Suppression of SIP REFER Method Implicit	RFC 5630
RFC 4575	SIP Event Package for Conference State	RFC 5631
RFC 4662	SIP Event Notification Extension for Resource Lists	RFC 5658
RFC 4730	Event Package for KPML	
RFC 4780	MIB for SIP	
RFC 4904	Representing Trunk Groups in tel/sip URIs	
RFC 4916	Connected Identity in SIP	
RFC 4967	Dial String Parameter for the SIP URI	
RFC 4975	Message Session Relay Protocol (MSRP)	
RFC 4976	Relay Extension for MSRP	
RFC 5079	Rejecting Anonymous Requests in SIP	
	, , ,	

5196 SIP User Agent Capability Extension to Presence Information Data Format (PIDF) SIP Extension for Partial Notification of Presence 5263 Information 5264 **Publication of Partial Presence Information** Requesting Answering Modes for SIP 5373 5478 IANA Registration of new SIP Resource-Priority Namespaces IANA Registration Instant Messaging and Presence 5509 **DNS SRV RRs for SIP** 5552 SIP Interface to VoiceXML Media Services 5589 SIP Call Control - Transfer Obtaining and Using Globally Routable User Agent 5627 URIs (GRUUs) in SIP Registration Event Package Extension for SIP GRUUs 5628 A Framework for Application Interaction in SIP 5629 5630 The Use of the SIPS URI Scheme in SIP 5631 SIP Session Mobility

Addressing Record-Route Issues in SIP

SIP Informational RFCs and BCP Documents

RFC 3087	Control of Service Context using SIP Request-URI	RFC 4458	SIP URIs for Applications such as Voicemail and	
RFC 3351	User Requirements for SIP in Support of Speech/Hearing	Interactive Voice Response (IVR)		
Impaired RFC 3603		RFC 4475	SIP Torture Test Messages	
	RFC 3603 Private SIP Proxy-to-Proxy Extensions for PacketCable Distributed Call Signaling		Trait-Based Authorization Requirements for SIP	
RFC 3665	SIP Basic Call Flow Examples	RFC 4504	SIP Telephony Device Requirements and	
RFC 3702	Authentication, Authorization, and Accounting Requirements	Configuration		
for SIP		RFC 4538	Request Authorization through Dialog Identification	
RFC 3824	Using E.164 numbers with SIP	in SIP	request ruthorization through blands ruthreation	
RFC 3968	IANA Registry for SIP Header Field			
RFC 3969	IANA Registry for SIP URI	RFC 4596	Guidelines for Usage of the SIP Caller Preferences	
RFC 3976	Interworking SIP and IN Applications	Extensi	on	
RFC 4117	Transcoding Services Invocation using 3PCC	RFC 4579	SIP Call Control - Conferencing for User Agents	
RFC 4123	SIP-H.323 Interworking Requirements	RFC 4964	The P-Answer-State Header Extension to SIP	
RFC 4168	SCTP as a transport for SIP	RFC 5002	SIP P-Profile-Key Private Header (P-Header)	
RFC 4189	Requirements for End-to-Middle Security for SIP		·	
RFC 4240	Basic Network Media Services with SIP	RFC 5009	Private Header (P-Header) Extension to SIP for	
RFC 4245 High-Level Requirements for Tightly Coupled SIP Conferencing Authori		zation of Early Media		
RFC 4317	SDP Offer/Answer Examples	RFC 5039	SIP and Spam	
RFC 4321	Problems Identified Associated with the SIP Non-INVITE	RFC 5057	Multiple Dialog Usages in SIP	
	Transaction		SIP Torture Test Messages for IPv6	
RFC 4353	A Framework for Conferencing with SIP	RFC 5118 RFC 5194	Framework for Real-Time Text using SIP	
RFC 4354	SIP Event Package and Data Format for Push-to-Talk over		-	
Cellular (PoC) Service		RFC 5411	A Hitchhiker's Guide to SIP	
RFC 4453	Requirements for Consent-Based Communications in the SIP	RFC 5479	Requirements and Analysis of Media Security	
RFC 4457	SIP P-User-Database Private-Header (P-Header)	Management Protocols		
		RFC 5502	SIP P-Served-User Private-Header (P-Header) for	

the 3GPP Core Network

SIP-Related Documents

RFC 3219	Telephony Routing over IP (TRIP) (tutorial)
RFC 3320	Signalling Compression
RFC 3321	Signalling Compression - Extended Operations
RFC 3322	Signalling Compression - Requirements and Assumptions
RFC 3486	Compressing the Session Initiation Protocol (SIP)
RFC 3485	SIP and SDP Static Dictionary for Signaling Compression
RFC 5503 Archited	Private SIP Proxy-to-Proxy Extensions for Supporting the PacketCable Distributed Call Signaling cture (obsolete, see RFC 5503)
RFC 3725	Best Current Practices for 3PCC in SIP
RFC 3764	enumservice registration for SIP Addresses-of-Record
RFC 4077	A Negative Acknowledgement Mechanism for Signaling Compression
RFC 4083	3GPP Release 5 Requirements on SIP
RFC 4092	Using SDP Alternative NAT Semantics in SIP
RFC 4465	Signaling Compression (SigComp) Torture Tests
RFC 4497	Interworking between the SIP and QSIG
RFC 4740	Diameter SIP Application
RFC 5049	Applying Signaling Compression to SIP
RFC 5112	The Presence-Specific Static Dictionary for Signaling Compression
RFC 5115	TRIP attribute for Resource Priority
RFC 5503	Private SIP Proxy-to-Proxy Extensions for Supporting the PacketCable Distributed Call Signaling
Archite	cture

Alebo v ...

- SIPKnowledge eBook
 SIP IMS Specifications For Dummies
 - http://www.sipknowledge.com/SIP IMS Specific ations For Dummies.pdf
- Tekelec SIP Pocket Guide
 - Exclusive reference guide for Session Initiation Protocol professionals)
 - http://www.tekelec.com/resourcecenter/?docID=734