Ames Housing Dataset Predictions

Shawn Mitchell DSI6 Project 2

Project Summary

Executive Summary:

Using the Ames housing dataset, a predictive linear regression model can be built to predict housing prices with reasonable accuracy. Lasso and ridge regularization methods are compared, with ridge performing the best.

Data Science Problem:

Is there are predictive relationship between the housing data features and the sale price?

Initial Data Cleaning

- 1. Missing values
- 2. Clearly invalid values
- 3. Skewed data
- 4. Polynomial feature creation

Correlations:

Td

Id	11 S010	0.9/3/4/
Garage Cars	Garage Area	0.893442
Gr Liv Area	TotRms AbvGrd	0.813333
Total Bsmt SF	1st Flr SF	0.808351
Overall Qual	SalePrice	0.800207
Gr Liv Area	SalePrice	0.697038
Bedroom AbvGr	TotRms AbvGrd	0.655439
Garage Area	SalePrice	0.649897
Garage Cars	SalePrice	0.647781
BsmtFin SF 1	Bsmt Full Bath	0.645697
2nd Flr SF	Gr Liv Area	0.639092
Total Bsmt SF	SalePrice	0.629303
Year Built	Year Remod/Add	0.629116
1st Flr SF	SalePrice	0.618486
Gr Liv Area	Full Bath	0.617323

Vr Sold

0 975747

Skewed Data

Skewed Data

Skewed Data

Anomaly Detection

Using the Python library Luminol, we can see severity and frequency of outliers.

This ties in with skew of the data.

81: \$502,000

1964: \$592,000

```
81 3.643837953182729
138 3.929253129580728
151 3.8483737983628776
800 3.3408359469855355
823 3.9108297854559715
934 3.1633298399031986
1035 3.142850818270162
1117 3.12307370103948
1158 3.2025367338440125
1164 3.5908811587745473
1227 3.4036904502417373
1592 3.7126386455134353
1671 4.364757432424422
1692 4.164759332144492
1796 4.305198440600173
1964 4.1959486162680415
```

Final Data Cleaning

- 1. Basic model testing
- 2. Data exploration
- 3. Feature scaling
- 4. Categorical data replacement

CV score: 0.4504400150770924 OLS train score: 0.8828247297577045 OLS test score: 0.8553666103256446 Ridge CV score: 0.540515742558779 Ridge train score: 0.881427528636412 Ridge test score: 0.8582167558632919 Lasso CV score: 0.46687235158856916 Lasso train score: 0.7246841933887087 Lasso test score: 0.761818700889986 Elastic CV score: 0.2802235297909192 Elastic train score: 0.28236210689675145 Elastic test score: 0.3062522505257077

Correlations

'Garage Cars Gr Liv Area' (Polynomial)

Correlation

'Enclosed Porch'

Categorical Pricing Ranges

Categorical Pricing Ranges

Hyperparameter Tuning

Ridge alphas: (0.1, 0.5, 1, 5, 10, 30, 50, 100)

Hyperparameter Tuning

Lasso alphas: (0.1, 0.5, 1, 5, 10, 30, 50, 100)

LassoCV vs RidgeCV


```
lasso.score(X_train, y_train)

0.9258427607264067

lasso.score(X_test, y_test)

0.9422364411570168
```

cross val score(lasso, X, y, cv=5).mean()

0.8628983746467658

LassoCV vs RidgeCV


```
ridge.score(X_train, y_train)

0.910739092910603

ridge.score(X_test, y_test)

0.9362450831112175

cross_val_score(ridge, X, y, cv=5).mean()

0.862544403884988
```

Final Production Model - RidgeCV

Kaggle score: 24,000

Further improvement?

- 1. Feature removal
- 2. Polynomial feature review
- 3. Review of missing data decisions
- 4. Investigate improving high value home prices, without compromising low to mid value home predictions