Ordinary and symbolic Rees algebras for Fermat configurations of points

Alexandra Seceleanu and Uwe Nagel

Outline

The goal for this talk is:

For a homogeneous ideal I, study

- ullet the Rees algebra of I, $\mathcal{R}=igoplus_{i>0}I^it^i$
- ullet the symbolic Rees algebra of I, $\mathcal{R}_{\mathsf{s}} = igoplus_{i > 0} I^{(i)} t^i$

Outline

The goal for this talk is:

For a homogeneous ideal I, study

- ullet the Rees algebra of I, $\mathcal{R}=igoplus_{i\geq 0}I^it^i$
- ullet the symbolic Rees algebra of I, $\mathcal{R}_{\mathsf{s}} = igoplus_{i \geq 0} I^{(i)} t^i$

Why? To understand the ordinary and symbolic powers all at once.

Fermat configuration

Definition

The Fermat configuration of $n^2 + 3$ points in \mathbb{P}^2 is the zero locus of

$$I = (x(y^{n} - z^{n}), y(z^{n} - x^{n}), z(x^{n} - y^{n})).$$

Example: n=3

The Hilbert-Burch resolution for *I* is:

$$0 \longrightarrow S(-6)^{2} \stackrel{\begin{bmatrix} x^{2} & yz \\ y^{2} & xz \\ z^{2} & xy \end{bmatrix}}{\longrightarrow} S(-4)^{3} \longrightarrow I \longrightarrow 0$$

The Hilbert-Burch resolution for *I* is:

$$0 \longrightarrow S(-6)^{2} \stackrel{\begin{bmatrix} x^{2} & yz \\ y^{2} & xz \\ z^{2} & xy \end{bmatrix}}{\longrightarrow} S(-4)^{3} \longrightarrow I \longrightarrow 0$$

The resolutions for I^2 , I^3 , I^4 are:

m	2				3				4			
betti(I ^m)				2			1				1	
	8:	6			12: 13:	10			16:	15		
	9:		6		13:		12		17:		20	
	10:				14:							6

The Hilbert-Burch resolution for *I* is:

$$0 \longrightarrow S(-6)^{2} \stackrel{\begin{bmatrix} x^{2} & yz \\ y^{2} & xz \\ z^{2} & xy \end{bmatrix}}{\longrightarrow} S(-4)^{3} \longrightarrow I \longrightarrow 0$$

The resolutions for I^2 , I^3 , I^4 are:

m	2				3				4			
betti(I ^m)		0	1	2		0	1	2		0	1	2
	8:	6			12:	10			16:	15		
	9:		6		12: 13:		12		17:		20	
	10:				14:							6

What is the pattern?

Rees algebra - equations

For S = k[x, y, z] and I an ideal with resolution

$$0 \longrightarrow S^{v} \xrightarrow{\begin{bmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{bmatrix}} S^{u} \longrightarrow I \longrightarrow 0$$

Rees algebra - equations

For S = k[x, y, z] and I an ideal with resolution

$$0 \longrightarrow S^{v} \xrightarrow{\begin{bmatrix} a_{1} & b_{1} \\ a_{2} & b_{2} \\ a_{3} & b_{3} \end{bmatrix}} S^{u} \longrightarrow I \longrightarrow 0$$

We have the diagram

$$T = S[T_1, T_2, T_3] \xrightarrow{} \mathcal{R}(I)$$

$$\downarrow \qquad \qquad \downarrow$$

$$Sym(I) = T/(a_1T_1 + a_2T_2 + a_3T_3, b_1T_1 + b_2T_2 + b_3T_3)$$

Rees algebra - aci's

Theorem (Herzog-Simis-Vasconcelos)

If I is a homogeneous almost complete intersection that is locally a complete intersection at each of its minimal associated primes, then

$$Sym(I) = \mathcal{R}(I)$$
.

Corollary

If I is a 3-generated ideal defining a reduced set of points in \mathbb{P}^2 , then

$$Sym(I) = \mathcal{R}(I)$$
.

Moreover, $\mathcal{R}(I)$ is a complete intersection, whose equations are determined by the Hilbert-Burch matrix of I.

Theorem (Nagel-S.)

If I is a 3-generated ideal defining a reduced set of points in \mathbb{P}^2 , then

• the resolution of $\mathcal{R}(I)$ is

$$0 \rightarrow \textit{T}(-3\textit{d},-2) \rightarrow \textit{T}(-\textit{d}-\textit{d}_1,-1) \oplus \textit{T}(-\textit{d}-\textit{d}_2,-1) \rightarrow \textit{T} \rightarrow \mathcal{R}(\textit{I}) \rightarrow 0$$

Theorem (Nagel-S.)

If I is a 3-generated ideal defining a reduced set of points in \mathbb{P}^2 , then

• the resolution of $\mathcal{R}(I)$ is

$$0 \rightarrow \textit{T}(-3\textit{d},-2) \rightarrow \textit{T}(-\textit{d}-\textit{d}_1,-1) \oplus \textit{T}(-\textit{d}-\textit{d}_2,-1) \rightarrow \textit{T} \rightarrow \mathcal{R}(\textit{I}) \rightarrow 0$$

• the resolution of I^m when $m \ge 2$ is

$$0 \to \mathit{Sym}_{m-2}T(-3d) \to \mathit{Sym}_{m-1}T(-d-d_1) \oplus \mathit{Sym}_{m-1}T(-d-d_2) \to \\ \to \mathit{Sym}_mT \to \mathit{I}^m \to 0$$

Theorem (Nagel-S.)

If I is a 3-generated ideal defining a reduced set of points in \mathbb{P}^2 , then

• the resolution of $\mathcal{R}(I)$ is

$$0 \rightarrow \textit{T}(-3\textit{d},-2) \rightarrow \textit{T}(-\textit{d}-\textit{d}_1,-1) \oplus \textit{T}(-\textit{d}-\textit{d}_2,-1) \rightarrow \textit{T} \rightarrow \mathcal{R}(\textit{I}) \rightarrow 0$$

• the resolution of I^m when $m \ge 2$ is

$$0 \to \mathit{Sym}_{m-2} T(-3d) \to \mathit{Sym}_{m-1} T(-d-d_1) \oplus \mathit{Sym}_{m-1} T(-d-d_2) \to$$
$$\to \mathit{Sym}_m T \to I^m \to 0$$

• the regularity of I^m when $m \ge 2$ is

$$reg(I^m) = (m+1)d - 2 = md + (d-2).$$

Symbolic powers

Definition

The *n*-th **symbolic power** $I^{(n)}$ of an ideal $I \subset R$ of the form

$$I = I(p_1) \cap I(p_2) \cap \ldots \cap I(p_s)$$

is defined as

$$I^{(m)} = I(p_1)^m \cap I(p_2)^m \cap \ldots \cap I(p_s)^m.$$

Recall that the symbolic Rees algebra of I is

$$\mathcal{R}_{\mathsf{s}}(I) = \bigoplus_{i \geq 1} I^{(i)} t^i.$$

Main problem: $\mathcal{R}_s(I)$ is often not finitely generated.

Finite generation of the symbolic Rees algebra

Theorem (Nagel-S.)

If I is the ideal defining the Fermat configuration of $n^2 + 3$ points then

$$I^{(nk)} = \left(I^{(n)}\right)^k$$
 for all $k \ge 1$.

Consequences:

- $\mathcal{R}_s(I^{(n)}) = \mathcal{R}(I^{(n)})$, thus $\mathcal{R}_s(I^{(n)})$ is finitely generated
- $\mathcal{R}_{s}(I)$ is a finitely-generated $\mathcal{R}_{s}(I^{(n)})$ -module, thus $\mathcal{R}_{s}(I)$ is Noetherian.

Regularity for symbolic powers

Theorem (Nagel-S.)

If I is the ideal defining the Fermat configuration of $n^2 + 3$ points then

$$reg(I^{(m)}) = m(n+1) \text{ for } m \gg 0.$$

In general, we only know $reg(I^{(m)})$ is periodic-linear whenever $\mathcal{R}_s(I)$ is finitely generated by Cutkoski-Herzog-Trung.

Regularity for symbolic powers

Theorem (Nagel-S.)

If I is the ideal defining the Fermat configuration of $n^2 + 3$ points then

$$reg(I^{(m)}) = m(n+1) \text{ for } m \gg 0.$$

In general, we only know $reg(I^{(m)})$ is periodic-linear whenever $\mathcal{R}_s(I)$ is finitely generated by Cutkoski-Herzog-Trung.

Thank you!