Advanced Caching Techniques

Patterson

Review of Cache Basics

Assummed you already know answers to the following:-

- Why do we need caches and what's their goal?
- •What's the basic idea of a cache and why does it work?
- •How do we find something in a cache?
- •What happens on a cache miss?
- •What happens on a cache write?

(Revise from your Digital Electronics and Computer Organization Course material of last semester)

Review contd......Tuning Basic Cache Parameters: Size, Associativity, Block width

- Size:
- Must be large enough to fit working set (temporal locality)
- If too big, then hit time degrades
- Associativity
- Need large to avoid conflicts, but 4-8 way is as good as FA
- If too big, then hit time degrades
- Block
- Need large to exploit spatial locality & reduce tag overhead
- If too large, few blocks higher misses & miss penalty

Types of Misses (the 3 Cs)

- Compulsory or cold misses
- First access to an address within a program(Misses even with an infinite sized cache)
- Capacity misses
- Misses because cache not large enough to fit working set
 (Block replaced from cache and later accessed again)
- Conflict misses
- Misses due to associativity(in set-associative or direct E.g. two addresses map to same block in direct mapped cache)

Improving Cache Performance

- Goal: reduce the Average Memory Access Time
- —AvMemAccessTime = Hit Time + Miss Rate * Miss Penalty
- Approaches
- -Reduce Hit Time
- -Reduce Miss Penalty
- -Reduce Miss Rate

Understanding Cache Performance

-Average memory access time

AvMemAccessTime = Hit Time + Miss Rate * Miss Penalty

- What is MissRate?
 - Number of cache miss/Total number of memory reference
- What is Miss Penalty?
 - Memory access time /seconds per clock tick
 - =memory access time given in number of clocks

Reducing Miss Rate

- Techniques we have seen so far
- -1. Larger caches
- Reduces capacity misses
- 2. Higher associativity
- Reduces conflict misses
- 3. Larger block sizes
- Reduces cold misses

Reducing Miss Rate

4.Using Victim Cache

 A small fully associative cache added between cache and its refill path. This victim cache contains only recent discarded lines from cache because of miss. This reduces conflict misses

5.Hardware Prefetching

 of next instruction along with the required instruction and keeping it in a buffer. Overlaps execution and prefetching of data as well.

Reducing Miss Rate contd..

- 6. Compiler controlled Prefetch
 - Compiler inserts prefetch instructions to request data before they are needed
 - Register prefetch loads value into register
 - Cache prefetch loads data into cache
 - —Cache continues to supply instruction and data to processor while waiting for prefetched data to come- called Nonblocking cache or lockup-free cache

Reducing Miss Rate

- 7. Compiler Optimization
 - Rearrange code lines without affecting correctness but reducing miss rate

Reducing Miss Penalty

(Accessing memory in less number of clocks ticks)

1. Give priority to read misses over writes

- Store writes in Write Buffers
- After younger loads(reads) memory written back from buffers.(Extra hardware required)

2.Sub-block replacement

- If large blocks are used in cache, miss penalty increases(time to transfer block from memory).
- By adding a valid bit to units smaller than the block called sub-block- only a sub-block need to be transferred on a miss. (Extra hardware needed)

Reducing Miss Penalty

(Accessing memory in less number of clocks ticks)

3. Early start and critical word first

- CPU needs one word at a time, first word is sent to
 CPU starting it, then the rest of the block is loaded to
 cache
- Two strategies:-
 - 1) Early start as soon a requested word of block arrives,
 send it to CPU and let CPU continue execution
 - 2) Critical Word First (also called wrapped fetch or requested word first)- request the missed word first from memory and send it to CPU and CPU continue execution while filling up the rest of the words of the block.(useful when block-size is very large

Reducing Miss Penalty (Accessing memory in less number of clocks ticks)

• 4. Non Blocking Caches:-

 In pipelined machines CPU continues to fetch instructions from instruction cache while waiting for data cache to return the missing data or allowing to access next data which is a hit after one miss (hit under one miss)

(very complex cache circuit)

Reducing Miss Penalty (Accessing memory in less number of clocks ticks)

5. Second Level Caches:-

- AverageMemory access time =Hit timeL1+Miss rate L1 x Miss Panalty L1
- Miss Panalty L1 = Hit time L2 + Miss rate L2 x Miss penalty L2
- AverageMemory access time =Hit timeL1+Miss rate L1 x (Hit time L2 + Miss rate L2 x Miss penalty L2)

Note that only a fraction of memory access that leave CPU go all the way to memory

Definitions:

- Local miss rate misses in this cache divided by the total number of memory accesses to this cache (Miss rateL2)
- Global miss rate—misses in this cache divided by the total number of memory accesses generated by the CPU (Miss RateL1 x Miss RateL2)