

Rodrigo Hernández Zavala

08 de marzo de 2025

Ing. Mecatrónica

22310215

Funcionamiento, Recomendaciones y Posibles mejoras de la practica 1

Visión Artificial

Carga y Visualización de Imágenes en OpenCV

Explicación

OpenCV permite cargar imágenes en diferentes formatos:

• Escala de grises: cv2.IMREAD_GRAYSCALE

• Color (BGR): cv2.IMREAD_COLOR

Sin cambios: cv2.IMREAD_UNCHANGED

Una vez cargada, la imagen puede mostrarse con cv2.imshow(), pero OpenCV usa el formato **BGR** en lugar de **RGB**.

Recomendaciones y Observaciones

-Siempre verifica si la imagen se cargó correctamente:

```
if img is None:
```

```
print("Error: No se pudo cargar la imagen.")
exit()
```

-Para mostrar imágenes con **Matplotlib**, convierte de BGR a RGB con:

```
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
plt.imshow(img_rgb)
plt.show()
```

Diferencia entre BGR y RGB

Explicación

- OpenCV usa **BGR** (Blue-Green-Red) como formato por defecto.
- Otras herramientas como Matplotlib, PIL y muchas APIs gráficas usan RGB (Red-Green-Blue).
- Un píxel rojo en RGB es (255, 0, 0), pero en BGR es (0, 0, 255).

Recomendaciones y Observaciones

- -Si trabajas solo con OpenCV, no necesitas convertir el formato.
- -Si vas a usar Matplotlib u otras bibliotecas gráficas, usa la conversión:

img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)

Percepción del Color en Visión Artificial

Explicación

La visión humana interpreta los colores basándose en tres componentes:

- Matiz (Hue): Tipo de color (rojo, verde, azul, etc.).
- Saturación (Saturation): Intensidad o pureza del color.
- Brillo (Brightness o Value): Cantidad de luz reflejada.

Recomendaciones y Observaciones

Para **segmentación de colores**, se recomienda convertir la imagen a **HSV** en lugar de usar BGR o RGB, ya que el matiz es más fácil de diferenciar.

img_hsv = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2HSV)

Percepción Humana y Procesamiento de Imágenes

Explicación

- **Percepción Acromática:** Detección de tonos de gris en baja iluminación (visión nocturna).
- Sensibilidad Luminosa: Adaptación del ojo a diferentes niveles de luz.
- Contraste: Diferencia de brillo entre un objeto y su fondo.

Recomendaciones y Observaciones

-Para mejorar el contraste en imágenes digitales, usa **ecualización de histograma** con OpenCV:

img_eq = cv2.equalizeHist(img_gray)

-Si trabajas con imágenes en escala de grises, recuerda que los valores van de **0** (negro) a **255** (blanco).

Concepto	Explicación	Recomendaciones
Carga de	OpenCV usa cv2.imread()	Siempre verifica que la imagen se
imágenes	con diferentes modos	haya cargado correctamente.
	(color, escala de grises,	
	etc.).	
BGR vs. RGB	OpenCV usa BGR , mientras	Convierte con cv2.cvtColor(img,
	que Matplotlib usa RGB .	cv2.COLOR_BGR2RGB) si usas
		Matplotlib.
Matiz y	Definen el tipo y la	Usa el espacio de color HSV para
Saturación	intensidad del color.	segmentación de colores.
Percepción	El ojo se adapta a la luz y el	Usa ecualización de histograma
luminosa	contraste.	para mejorar imágenes con bajo
		contraste.

Conclusión

- -OpenCV es una herramienta poderosa para la visión artificial, pero es importante conocer cómo maneja los colores y la iluminación.
- **-El formato BGR vs. RGB es clave** cuando trabajamos con otras bibliotecas de visualización como Matplotlib.
- **-El ojo humano tiene diferentes mecanismos de percepción**, y conocerlos ayuda a mejorar el procesamiento digital de imágenes en sistemas de visión artificial.