Contributions à l'amélioration des performances de décodage des turbo codes : algorithmes et architecture

Thibaud Tonnellier

6 juin 2017

- Rappels
- 2 Exemple

Thibaud Tonnellier thibaud.tonnellier@ims-bordeaux.fr

- La table de Karnaugh permet de simplifier une expression logique
- Elle fait apparaître graphiquement des factorisations possibles
- Pour ce faire, les indices doivent être codés selon le code de Gray
- Un regroupement de 2^i variables correspond à un terme comprenant n-i variables

Plan

Rappels

- 2 Exemple
 - La table considérée Regroupements

La table considérée

Plan

- Rappels
- 2 Exemple

La table considérée

Regroupements

La table considérée

ab	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	0	1	0	0
10	0	1	0	0

Regroupements

Plan

- Rappels
- 2 Exemple

La table considérée

Regroupements

On peut choisir de travailler soit sur les 1, soit sur les 0 :

ab	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	0	1	0	0
10	0	1	0	0

ab	00	01	11	10
00	0	0	0	0
01	0	1	1	1
11	0	1	0	0
10	0	1	0	0

Avec les 1

Nous obtiendrons l'union de 3 mintermes à 3 variables.

$$\sum (\prod)$$

Avec les 0

Nous obtiendrons l'intersection de 3 maxtermes à 2 variables.

$$\prod (\Sigma)$$