Lycée Qualifiant :
Charif EL Idrissi

Devoir surveillé N°2 1bac.sc.exp

Prof : Mouad ZILLOU Année Scolaire: 2020/2021

Exercice 01

Soit (u_n) une suite arithmétique telle que $u_0 = 4$ $u_2 = 0$

- **01.5** 1) Déterminer la raison de la suite (u_n) .
- **01.5** 2) Exprimer u_n en fonction de n
- 01 3) Calculer la somme suivante $S = u_0 + u_6 + \dots + u_{10}$.

Exercice 02

Soit (u_n) une suite numérique définie par : $\begin{cases} u_0 = \frac{1}{2} \\ (\forall n \in \mathbb{N}); u_{n+1} = \frac{u_n}{3 - 2u_n} \end{cases}$

- $\mathbf{01}$ 1) a- Calculer u_1 et u_2 .
- **b** Montrer que $(\forall n \in \mathbb{N}); 0 < u_n < 1$
- **01.5** 2) a) Montrer que pour tout *n* de N : $u_{n+1} u_n = \frac{2u_n(u_n 1)}{3 2u_n}$
- 01.5 b- Montrer que la suite (u_n) est décroissante.
 - 3) on considère la suite (v_n) définie par : $(\forall n \in \mathbb{N})$; $v_n = \frac{u_n}{u_n 1}$
- 1.5 a) Montrer que (v_n) est une suite géométrique de raison $q = \frac{1}{3}$ puis calculer v_0
- b) Exprimer v_n en fonction de n
- 1.5 c) Déduire que : $(\forall n \in \mathbb{N}); u_n = \frac{1}{1+3^n}$
 - 4) on pose $(\forall n \in \mathbb{N}^*)$; $S_n = v_0 + v_1 + \dots + v_{n-1}$
- **1.5** Montrer que : $(\forall n \in \mathbb{N}^*)$; $S_n = \frac{-3}{2} \left(1 \left(\frac{1}{3} \right)^n \right)$.

Exercice 03

01

1.25

Soit $(\boldsymbol{u_n})$ une suite numérique définie par : $\begin{cases} \boldsymbol{u_0} = 1 \\ (\forall \boldsymbol{n} \in \mathbb{N}); \boldsymbol{u_{n+1}} = \sqrt{2 + \boldsymbol{u_n}^2} \end{cases}$ et on pose $(\forall \boldsymbol{n} \in \mathbb{N}); \boldsymbol{w_n} = \boldsymbol{u_n}^2$

- 1) Calculer u_1 et u_2 et w_0
- 2) Montrer que (w_n) est une suite arithmétique de raison r=2
- 1.25 3) Exprimer w_n puis déduire u_n en fonction de n.