Екзаменаційний білет № 23

I. Теоретична частина

- 1. Загальна ідея побудови методів Монте-Карло.
- 2. Загальна ідея методів Монте-Карло.

Суть методу полягає в зведенні задачі до розрахунку математичного очікування. Щоб приблизно обчислити деяку скалярну величину а, необхідно знайти таку випадкову величину ξ , що $M\xi = a$, тоді обчисливши N незалежних значень ξ_1 , ξ_2 , ... , ξ_N величини ξ , можна вважати, що

$$a \approx (1/N)(\xi_1 + \xi_2 + ... + \xi_N)$$

(На підставі закону великих чисел, відповідно до якого середнє арифметичне сходиться до математичного сподівання).

Приклад 1.

Потрібно обчислити об'єм деякої обмеженої просторової фігури G. Виберемо паралелепіпед Π , що містить G, об'єм якого V_{Π} відомий. Виберемо N випадкових точок, рівномірно розподілених у Π , і позначимо через N кількість точок, що потрапили в G. Якщо N велике, то очевидно, що

$$N'/N \approx V_G/V_{\Pi}$$

звідки:

$$V_G \approx V_\Pi (N'/N).$$

У цьому прикладі випадкова величина ξ дорівнює V_Π , якщо точка потрапляє в G, і ξ дорівнює 0, якщо точка потрапляє в Π - G. Тоді їх а середнє арифметичне підпорядковане наступній рівності

$$(1/N)(\xi_1+\xi_2+...+\xi_N)=V_{\Pi}(N'/N),$$

а математичне сподівання

$$M\xi = V_G$$

Приклад 2.

Припустимо, що потрібно обчислити суму

$$S = \sum_{k=1}^{n} b_k .$$

Надамо b_k у вигляді

$$b_k = p_k \cdot f_k, \ p_k \ge 0,$$

де
$$\sum_{k=1}^{n} p_{k} = 1$$
.

Припустимо, що ξ - випадкова величина, що приймає значення k з імовірністю p_k . Виберемо М незалежних значень $k_1, k_2, ..., k_m$ і покладемо

$$S \approx S_m = \frac{1}{M} \sum_{l=1}^M f_{k_l}.$$

При досить великих M величина S_m з великою ймовірністю близька до S. Найпростішим способом отримати значення ξ_i є наступний. Припустимо, що η_1 , ... значення датчика ВЧ, рівномірно розподілені в інтервалі [0;1].

Для кожного значення η_l визначають k_l , таке, що η_l належить напівсегменту

$$\pi_{k_l} = [\sum_{i=1}^{k_l-1} p_i, \sum_{i=1}^{k_l} p_i]$$

і вважають $\xi_l = k_l$. Імовірність влучення η_l у напівсегмент π_s дорівнює p_s . Найпростіше покласти

$$p_k = \frac{1}{N},$$

тоді

$$\sum_{i=1}^{l} p_i = \frac{l}{N},$$

і врешті маємо

$$\xi_l = [\eta_l \cdot N] + 1.$$

Зрозуміло, що існує нескінченно багато випадкових величин ξ таких, що $M\xi = a$. Тому теорія методів Монте-Карло повинна дати відповіді на 2 питання:

- 1. Як вибрати зручну величину ξ для розв'язання тієї або іншої задачі?
- 2. Як знаходити значення $\xi_1, \, \xi_2, \, ..., \,$ довільної випадкової величини?
- 2. Розв'язок задачи Коши методом Эйлера.
- 3.1 Метод Ейлера

Розглянемо рівняння

$$y' = y$$

Його розв'язком є

$$y = Ce^{x}$$

Оскільки рівняння має вид

$$y'(x) = f(x, y)$$

маємо можливість обчислювати похідну інтегральної кривої в кожній із точок (x,y). Тоді грубий розв'язок ДР можна знайти в наступний спосіб. У початковий момент маємо лише одну точку (x_0, y_0)

$$y' = f(x_0, y_0)$$

Побудуємо дотичну у точці (x_0, y_0) і перейдемо вздовж неї на малу відстань h, тобто обчислимо

$$y'=f(x_1,y_1),$$

де
$$x_1 = x_0 + h$$
, $y_1 = y_0 + hy'$.

Продовжуючи цей процес для наступних точок отримаємо *ламану Ейлера*. Доведено, що якщо $\varphi(x)$ є ламана Ейлера, а $\varphi^*(x)$ – точний розв'язок рівняння (1), то

$$\lim_{h\to 0} |\varphi(x) - \varphi^*(x)| = 0$$

Найпростіші методи Рунга-Кутта можуть бути отримані з наочних міркувань.

Рівнянням прямої *L* є

$$y_{k+1} = y_k + y'_k(x_{k+1} - x_k) = y_k + h y'_k$$

але $y'_k = f(x_k, y_k)$. Отже, маємо

$$y_{k+1} = y_k + hf(x_k, y_k);$$

 $x_{k+1} = x_k + h, k = 0,1,2,...,$ (2),

це і є метод Ейлера для розв'язання задачі Коші. У відсутність похибки округлення, локальна похибка (тобто похибка на кроці) методу є $O(h^2)$. Глобальна (на інтервалі) похибка методу Ейлера становить O(h).

Приклад 1.

На відрізку [0;1] скласти таблицю значень розв'язків

рівняння

$$y' = y - \frac{2x}{y}$$

з ПУ y(0) = 1 і кроком таблиці h = 0.2.

У цьому рівнянні маємо

$$f(x, y) \equiv y - 2x/y.$$

Через те що $x_0 = 0$ і $y_0 = 1$, для y_1 маємо

$$y_1 = y_0 + h(y_0 - x_0 / y_0) = 1 + 0.2 \cdot 1 = 1.2$$
;

$$x_1 = x_0 + h = 0 + 0.2 = 0.2$$
;

$$y_2 = y_1 + h(y_1 - x_1 / y_1) = 1,3733$$
; $x_2 = x_1 + h = 0,4$ і т.д.

II. Практична частина

За допомогою узагальненої формули Сімпсона обчислити визначений інтеграл

$$\int_{2}^{10} \exp(x) * (\sin(x) + \cos(x)) / 64.0 dx$$

з точністю не гірше за 10^{-5} .