Análisis Descriptivo de Datos Multivariados

José A. Perusquía Cortés Análisis Multivariado Semestre 2024-1

¿Qué es el análisis multivariado?

¿Qué tipo de datos nos interesan?

- El estudio de "muchas" variables correlacionadas.

- Para n variables $\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_n} \in S^p$, i.e., $\mathbf{x_i} = (x_{i1}, x_{i2}, ..., x_{ip})^T$ se tiene la notación

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{np} \end{pmatrix} \qquad \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix}$$

$$\mathbf{X} = (\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \dots, \mathbf{x}^{(p)})$$

Introducción

Problemas de interés

- Graficar/describir la estructura de los datos
- Selección de variables
- Aprendizaje supervisado, semi-supervisado y no supervisado
- Analizar correlación entre variables
- Etc...

Retos

$$-n > 1$$
, $p > 1$

$$-p > n$$

- En R generalmente representados a través de data frames

```
> str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 ...
```

- ¿Cómo podemos visualizar los datos?

Diagramas de Dispersión y de Correlación

Diagrama de Dispersión

- Graficar todas las variables contra todas las variables

- Útil para:

- Observar la relación por pares entre las variables
- Identificar el tipo de correlación por pares entre ellas

- Desventajas:

- Solo se puede analizar a las variables por pares
- Muy difícil de graficar/analizar si se tienen muchas variables

Diagrama de Dispersión

Diagrama de Correlación

- Graficar la correlación por pares de las variables

- Útil para:

Identificar el tipo y el grado de correlación por pares entre ellas

- Desventajas:

- Solo se puede analizar a las variables por pares
- Muy difícil de graficar/analizar si se tienen muchas variables

-En R:

Librería: corrplot

Diagrama de Correlación

Diagrama de Dispersión II

- ¿Qué sucede si se utiliza la información de la especie?

Diagrama de Correlación

Setosa

Versicolor

Virginia

- Gráficas de R no son muy estéticas

- Podemos explotar las bondades de ggplot2 para crear gráficas más estéticas e ilustrativas

- Para diagramas de dispersión y correlación:
 - Librería: GGally

Diagrama de Dispersión III

Diagrama de Dispersión III

Diagrama de Dispersión III

- -Técnica para graficar datos multivariados en 2D (escalados a [0,1])
- Se forma una "estrella" con p picos por cada una de las n observaciones

- Útil para:

Identificar clusters, outliers y variables "importantes"

- Desventajas:

Complicado de analizar si hay muchas observaciones y/o muchas variables

4	4	Ł	A	Δ	4	ı	4	ı	Δ	4	A
A	ı	4	Δ	4	4	4	Δ	4	4	ı	4
Δ	4	4	4	4	۵	۵	4	Δ	7	A	4
4	L	ı	Δ	4	•	ı	4	4	4	٨	ı
Δ	۵	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	\Diamond	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	4	\Leftrightarrow	\Diamond
4	\oplus	\Rightarrow	\Leftrightarrow	\Diamond	\oplus	\Diamond	\Leftrightarrow	∇	♦	\Diamond	\Leftrightarrow
\Rightarrow	\Leftrightarrow	\Diamond	❖	\Diamond	\Rightarrow						
\Leftrightarrow	\bigoplus	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow	\Leftrightarrow	\Diamond	4	\Diamond	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\$	\Leftrightarrow	\bigoplus	\Diamond	\bigoplus	\Leftrightarrow	\Diamond	\Leftrightarrow	4	\Leftrightarrow
\Rightarrow	\bigoplus	\Leftrightarrow	\Diamond	\bigoplus	\Diamond	\Diamond	\bigoplus	\Leftrightarrow	\Leftrightarrow	\Diamond	\triangle
\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\bigoplus	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow
\Diamond	\Leftrightarrow	\Leftrightarrow	\bigoplus	\bigoplus	\Leftrightarrow	\Diamond	\bigoplus	\bigoplus	\bigoplus	\Diamond	\Leftrightarrow
\bigoplus	\Diamond	\Diamond	\Leftrightarrow	\bigoplus	\Leftrightarrow						

4	4	Ł	A	Δ	4	ı	4	ı	A	4	A
L	ı	4	7	4	4	4	Δ	4	4	١	4
4	4	4	Δ	4	٨	۵	4	Δ	4	4	4
4	L	ı	۵	4	٠	ı	4	4	4	Δ	
Δ	4	\Leftrightarrow	\oplus	\oplus	Φ	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	4	\Leftrightarrow	\Rightarrow
4	\oplus	Φ	\Leftrightarrow	Φ	\oplus	\Leftrightarrow	\Leftrightarrow	∇	♦	\Leftrightarrow	\Leftrightarrow
\Diamond	\Leftrightarrow	\Diamond	\Diamond	\Leftrightarrow	\Diamond						
\Leftrightarrow	\oplus	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	4	\Leftrightarrow	\Leftrightarrow
\Leftrightarrow	\Leftrightarrow	\$	\Leftrightarrow	\bigoplus	\Diamond	\bigoplus	\Leftrightarrow	\Diamond	\bigoplus	4	\Leftrightarrow
\Diamond	\bigoplus	\Leftrightarrow	\Diamond	\bigoplus	\Diamond	\Diamond	\bigoplus	\Leftrightarrow	\Leftrightarrow	\bigcirc	\triangle
\bigoplus	\Diamond	\Leftrightarrow	\Diamond	\bigoplus	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow	\Diamond	\Leftrightarrow
\Diamond	\Leftrightarrow	\Leftrightarrow	\bigoplus	\bigoplus	\Leftrightarrow	\diamondsuit	\bigoplus	\Diamond	\bigoplus	\Diamond	\Leftrightarrow
\bigoplus	\Diamond	\Diamond	\bigoplus	\bigoplus	\Leftrightarrow						

- Técnica similar a las estrellas para graficar datos multivariados (escalados a $\left[0,1\right]$)
- Desarrollado por Chernoff, Herman (1973). **The use of Faces to Represent Points in K-Dimensional Space Graphically**
- Útil para:

Identificar rápidamente clusters, outliers y variables importantes

- Desventajas:

Limitado a $p \le 18$

El orden de las variables importa

- En R: Librería Teaching Demos

<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u></u>	<u>_</u>
<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>
<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>
<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u> </u>	<u></u>
(O_O)	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>	<u>_</u>	<u></u>	<u></u>	<u></u>	<u></u>
(O_O)	(<u> </u>	<u></u>	(<u> </u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>		<u></u>	(<u> </u>	(<u> </u>	<u></u>
<u></u>	<u></u>	<u></u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	<u></u>	<u></u>	(<u> </u>	<u></u>
(<u> </u>	(<u> </u>	<u></u>	(<u> </u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	(<u> </u>
(O_)	(O_O)		0_0	(<u> </u>	(<u> </u>	<u></u>	0	<u></u>	<u></u>	(I)	(O_O)	<u></u>
0_0	0,0	<u></u>	0_0	<u></u>	(<u> </u>	<u></u>	0_0	(<u> </u>	<u></u>	<u></u>	(<u> </u>	(<u> </u>
0,0	(<u> </u>	(O_)	0_0	(O)	(O_O)	(O_O)	0	<u></u>	<u></u>	(I)	0	<u></u>
	(O_O)											

<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u></u>	<u>_</u>
<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u>_</u>	<u>_</u>							
<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>
<u></u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u>_</u>	<u></u>	<u></u>
(O_O)	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>	<u></u>
(O_O)	(<u> </u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	(<u> </u>	<u></u>
<u></u>	<u></u>	<u></u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	<u></u>	<u></u>	(<u> </u>	<u></u>
(<u> </u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>	(<u> </u>	<u></u>
(O_)	(O_O)		0_0	(<u> </u>	0_0	<u></u>	0	<u></u>	<u></u>	(I)	(O_O)	<u></u>
0_0	0,0	<u></u>	0_0	<u></u>	(<u> </u>	<u></u>	(<u> </u>	(<u> </u>	<u></u>	<u></u>	(<u> </u>	<u></u>
0,0	(<u> </u>	(O_)	0	(O)	0,0	(O_O)	0	(<u> </u>	0	0	0	<u></u>
	(O_O)											

- El orden importa

- Transformación ad hoc para graficar datos multivariados en el plano cartesiano o en coordenadas polares
- Desarrollado por Andrews, D.F. (1972). Plots of High-Dimensional Data.
- Cada punto $\mathbf{x} = (x_1, ..., x_p)$ es mapeado a

$$f_{\mathbf{x}}(t) = \frac{x_1}{\sqrt{2}} + x_2 \sin(t) + x_3 \cos(t) + x_4 \sin(2t) + x_5 \cos(2t) + \dots, \qquad -\pi < t < \pi$$

-(Algunas) Propiedades útiles:

Preserva medias, i.e.,
$$f_{\bar{x}}(t) = \frac{1}{n} \sum_{i=1}^{n} f_{x_i}(t)$$

Preserva distancias, i.e.,
$$||f_{\mathbf{x}}(t) - f_{\mathbf{y}}(t)||_{L_2} = \int_{-\pi}^{\pi} [f_{\mathbf{x}}(t) - f_{\mathbf{y}}(t)]^2 dt = \pi ||\mathbf{x} - \mathbf{y}||^2$$

-Ventajas

- No hay restricciones en el número de variables ni de observaciones.
- Detección de outliers y clusters
- No requiere datos escalados

- Desventajas

- El orden de las variables importa
- Mayor peso a las primeras variables.

- El orden importa

-Otros posibles mapeos

Andrews, 1972

$$f_{\mathbf{x}}(t) = x_1 \sin(n_1 t) + x_2 \cos(n_1 t) + x_3 \sin(n_2 t) + x_4 \cos(n_2 t) + \cdots, \qquad n_i \in \mathbb{N} \quad ; \quad -\pi \le t \le \pi$$

$$f_{\mathbf{x}}(t) = x_1 \sin(2t) + x_2 \cos(2t) + x_3 \sin(4t) + x_4 \cos(4t) + \cdots, \qquad 0 \le t \le \pi$$

• Khattree, R. & Naik, D. (2002). **Andrews plots for multivariate data: some new suggestions and applications.**

$$f_{\mathbf{x}}(t) = \frac{1}{\sqrt{2}} \left[x_1 + x_2(\sin(t) + \cos(t)) + x_3(\sin(t) - \cos(t)) + x_4(\sin(2t) + \cos(2t)) + \dots \right] \qquad ; \quad -\pi \le t \le \pi$$

- En R: Librería pracma implementa la función definida por Khattree pero con $0 \le t \le 2\pi$

Andrews' Curves

Estadísticas Descriptivas

- Para la matriz ${f X}$ podemos obtener la media muestral para cada variable ${f x}^{(j)}$

$$\bar{x}_j = \frac{1}{n} \sum_{i=1}^n x_{ij}$$

- Para obtener el vector de medias

$$\bar{\mathbf{x}} = (\bar{x}_1, \dots, \bar{x}_p)$$

- Formalmente, definimos al vector de medias como

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

-Proposición

La media muestral de una matriz de datos X está dada por

$$\bar{\mathbf{x}} = \frac{1}{n} \mathbf{X}^T \mathbf{1}_n$$

donde

$$\mathbf{1}_n \equiv (1, 1, ..., 1)^T$$
.

- Observaciones

$$\mathbf{1}_n^T \mathbf{1}_n = n$$

$$\mathbf{1}_{n}\mathbf{1}_{p}^{T}=\mathbf{J}_{n\times p}$$

Media Muestral

- En **R**:

- summary()

- apply()

- colMeans()

- by() - para la media muestral por grupos

- Varianza de $\mathbf{x}^{(j)}$

$$s_j^2 = s_{jj} = \frac{1}{n-1} \sum_{i=1}^n (x_{ij} - \bar{x}_j)^2$$

- Covarianza entre $\mathbf{x}^{(j)}$ y $\mathbf{x}^{(k)}$

$$s_{jk} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{ij} - \bar{x}_j)(x_{ik} - \bar{x}_k)$$

- Y así, la matriz de varianza y covarianza

$$\mathbf{S} = \begin{pmatrix} s_{11} & s_{12} & \cdots & s_{1p} \\ s_{21} & s_{22} & \cdots & s_{2p} \\ \vdots & \vdots & & \vdots \\ s_{p1} & s_{p2} & \cdots & s_{pp} \end{pmatrix}$$

- Formalmente definimos a S como

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \bar{\mathbf{x}})(\mathbf{x}_i - \bar{\mathbf{x}})^T$$

- Considerando $\mathbf{w}_i = \mathbf{x}_i - \bar{\mathbf{x}}$

$$\mathbf{S} = \frac{1}{n-1} \sum_{i=1}^{n} \mathbf{w}_{i} \mathbf{w}_{i}^{T}$$

- Podemos pensar a \mathbf{w}_i como observaciones de una "nueva" matriz de datos \mathbf{W}

- Observación

$$\mathbf{W} = \mathbf{X} - \begin{pmatrix} \bar{\mathbf{x}}^T \\ \bar{\mathbf{x}}^T \\ \vdots \\ \bar{\mathbf{x}}^T \end{pmatrix}$$

$$= \mathbf{X} - \mathbf{1}_n \bar{\mathbf{x}}^T$$

$$= \mathbf{X} - \mathbf{1}_n \left[\frac{1}{n} \mathbf{X}^T \mathbf{1}_n \right]^T$$

$$= \mathbf{X} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \mathbf{X}$$

$$= \left(\mathbf{I}_{n \times n} - \frac{1}{n} \mathbf{1}_n \mathbf{1}_n^T \right) \mathbf{X}$$

$$= \mathbf{H}_n \mathbf{X}$$

-Definición

A la matriz \mathbf{H}_n se le conoce como matriz de centrado

-Proposición

- i. \mathbf{H}_n es simétrica
- ii. \mathbf{H}_n es idempotente
- iii. $W = H_n X$ tiene como media muestral al vector de ceros

iv.
$$\mathbf{S} = \frac{1}{n-1} \mathbf{X}^T \mathbf{H}_n \mathbf{X}$$

-Proposición

Sea $\bf S$ una matriz cuadrada tal que $\bf S = {\bf A}^T {\bf A}$, donde ${\bf A}_{n \times p}$ entonces

- i. S es simétrica
- ii. S es semidefinida positiva, i.e., $\forall \alpha \in \mathbb{R}^p$ se cumple $\alpha^T \mathbf{S} \alpha \geq 0$

-Proposición

La matriz de varianza y covarianza muestral es semidefina positiva

- En **R**:
 - var ()
 - COV()
 - sweep() para construir la matriz W
 - by() para la varianza/covarianza muestral por grupos

Correlación muestral

- Finalmente, la correlación entre $\mathbf{x}^{(j)}$ y $\mathbf{x}^{(k)}$

$$r_{jk} = \frac{s_{jk}}{s_j s_k}, \qquad s_j = \sqrt{s_{jj}}$$

- La matriz de correlación dada por

$$\mathbf{R} = \begin{pmatrix} 1 & r_{12} & \cdots & r_{1p} \\ r_{21} & 1 & \cdots & r_{2p} \\ \vdots & \vdots & & \vdots \\ r_{p1} & r_{p2} & \cdots & 1 \end{pmatrix}$$

Correlación muestral

- Otra representación útil

$$\mathbf{R} = \mathbf{D}^{-1} \mathbf{S} \mathbf{D}^{-1}$$

$$\mathbf{D} = \begin{pmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & s_p \end{pmatrix}$$

-Proposición

Sea R la matriz de correlación muestral entonces

- i. R es simétrica.
- ii. R es semidefinida positiva.

Correlación muestral

- En **R**:

- cor ()

- by() - para la correlación muestral por grupos