Wissenschaftliches Rechnen - Großübung 5.1

Themen: Komplexe Zahlen, Diskrete Fourier-Transformation

Ugo & Gabriel

17. Januar 2023

Aufgabe 1: Komplexe Zahlen

1. Wie viele Lösungen hat die Gleichung $z^3=-27$ in den reellen sowie in den komplexen Zahlen? Welche sind dies?

- Lösung

Im Reellen eine (z = -3), im Komplexen drei

- a) $z_1 = -3$
- b) $z_2 = 3e^{i\pi/3}$
- c) $z_3 = 3e^{-i\pi/3}$

– Lösung Ende ––––

2. Geben Sie die Lösungen aus Aufgabe 1.1 in kartesischer Parametrisierung, in Polarkoordinaten sowie als Matrix an.

— Lösung -

- a) Kartesisch: -3 + 0i, $\frac{3}{2} + \frac{3\sqrt{3}}{2}i$, $\frac{3}{2} \frac{3\sqrt{3}}{2}i$
- b) Polarkoordianten: $3e^{i\pi}$, $3e^{-i\pi/3}$, $3e^{-i\pi/3}$
- c) Matrix: $\begin{bmatrix} -3 & 0 \\ 0 & -3 \end{bmatrix}$, $\begin{bmatrix} \frac{3}{2} & -\frac{3\sqrt{3}}{2} \\ \frac{3\sqrt{3}}{2} & \frac{3}{2} \end{bmatrix}$, $\begin{bmatrix} \frac{3}{2} & \frac{3\sqrt{3}}{2} \\ -\frac{3\sqrt{3}}{2} & \frac{3}{2} \end{bmatrix}$

— Lösung Ende -

3. Geben Sie die Vorteile und Nachteile der jeweiligen Darstellungen an.

- Lösung -

- a) Kartesisch: Vorteil: Koordinaten in gaußschen Zahlenebene direkt ablesbar. Addition leicht durchführbar. Nachteil: Multiplikation nicht leicht durchführbar.
- b) Polarkoordianten: Vorteil: Multiplikation leicht durchführbar, Nachteil: Addition nicht leicht durchführbar, Mehrdeutigkeit der Koordinaten.
- c) Matrix: Vorteil: Multiplikation entspricht Matrixmultiplikation, Addition entspricht Matrix Addition. Nachteil: Aufwand genauso groß wie in Kartesischen Koordinaten.

- Lösung Ende –

4. Zeigen Sie, dass das Standard-Skalarprodukt zweier komplexer Vektoren $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ nicht durch $\mathbf{u}^\mathsf{T}\mathbf{v}$ definiert werden kann. Wie ist es stattdessen definiert?

Lösung

Ein Skalarprodukt muss positiv definit sein, d.h. $\langle \mathbf{x}, \mathbf{x} \rangle > 0$ sofern $\mathbf{x} \neq \mathbf{0}$. Das gilt nicht für $\mathbf{u}^\mathsf{T} \mathbf{v}$. Beispiel: $\mathbf{x} = \begin{bmatrix} i \\ i \end{bmatrix}$, dann gilt $\mathbf{x}^\mathsf{T} \mathbf{x} = \begin{bmatrix} i & i \end{bmatrix} \begin{bmatrix} i \\ i \end{bmatrix} = (-1) + (-1) = -2 < 0$.

Daher ist das Standard-Skalarprodukt definiert als $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^\mathsf{T} \overline{\mathbf{v}} = \overline{\mathbf{u}}^\mathsf{T} \mathbf{v}$.

Lösung Ende -

5. Zeigen Sie, dass Polynome mit reellen Koeffizienten nur eine gerade Anzahl an komplexen Nullstellen (imaginärer Anteil ungleich 0) besitzen können (Tipp: Zeige, dass wenn $z \in \mathbb{C}$ eine Nullstelle von p ist, dann ist auch die komplex konjugierte $\overline{z} \in \mathbb{C}$ eine Nullstelle von p).

Lösung –

Zunächst machen wir uns klar, dass $\overline{a+b}=\overline{a}+\overline{b}$, sowie $\overline{z^n}=\overline{z}^n$. Gerade letzteres ist auch hilfreich für das Verständnis der DFT.

Sei nun
$$p(z)=a_n\ z^n\ +\ \dots\ +\ a_1\ z\ +\ a_0=0$$
, dann gilt
$$p(\overline{z})=a_n\ \overline{z}^n\ +\ \dots\ +\ a_1\ \overline{z}\ +\ a_0$$

$$=a_n\ \overline{z}^n\ +\ \dots\ +\ a_1\ \overline{z}\ +\ a_0$$

$$=\overline{a_n\ z^n}\ +\ \dots\ +\ \overline{a_1\ z}\ +\ \overline{a_0}$$

$$=\overline{a_n\ z^n}\ +\ \dots\ +\ a_1\ z\ +\ a_0$$

$$=\overline{p(z)}=\overline{0}=0$$

- Lösung Ende –

6. Geben Sie alle 5. Einheitswurzeln, also die Lösungen der Gleichung $z^5=1$, an.

— Lösung ——

1, $e^{\frac{2}{5}\pi i}$, $e^{\frac{4}{5}\pi i}$, $e^{\frac{6}{5}\pi i}$, $e^{\frac{8}{5}\pi i}$

Lösung Ende –

- 7. Geben Sie jeweils eine Funktion $f_i:\mathbb{R}\to\mathbb{C}$ an, die sich in der gaußschen Zahlenebene mit konstanter Geschwindigkeit entlang des Einheitskreises um den Ursprung dreht, wobei f(0)=1 sowie f(1)=1 und
 - a) die Funktion sich im Intervall [0,1] einmal mal gegen den Uhrzeigersinn um den Ursprung dreht. $f_1(t)=e^{2\pi it}$
 - b) die Funktion sich im Intervall [0,1] einmal mal im Uhrzeigersinn um den Ursprung dreht. $f_2(t)=e^{-2\pi it}$
 - c) die Funktion sich im Intervall [0,1] vier mal gegen den Uhrzeigersinn um den Ursprung dreht. $f_3(t)=e^{8\pi it}$
 - d) die Funktion sich im Intervall [0,1] zwei mal gegen den Uhrzeigersinn um den Ursprung dreht. $f_4(t)=e^{4\pi it}$
 - e) die Funktion sich im Intervall [0,1] zwei mal im Uhrzeigersinn um den Ursprung dreht. $f_5(t)=e^{-4\pi it}$
 - f) die Funktion sich im Intervall [0,1] kein mal um den Ursprung dreht. $f_6(t)=1$

Aufgabe 2: Diskrete Fourier-Transformation

1. Diskretisieren Sie die Funktionen aus Aufgabe 1.7, indem Sie 5 äquidistante Samples an den Stellen $0, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ wählen, und stellen Sie diese als Vektor dar.

c)
$$\begin{bmatrix} 1 & \omega_5^4 & \omega_5^8 & \omega_5^{12} & \omega_5^{16} \end{bmatrix}^\mathsf{T}$$

d)
$$\begin{bmatrix} 1 & \omega_5^2 & \omega_5^4 & \omega_5^6 & \omega_5^8 \end{bmatrix}^\mathsf{T}$$

e)
$$\begin{bmatrix} 1 & \omega_5^{-2} & \omega_5^{-4} & \omega_5^{-6} & \omega_5^{-8} \end{bmatrix}^\mathsf{T}$$

f)
$$[1 \ 1 \ 1 \ 1 \ 1]^T$$

Lösung Ende

2. Konstruieren Sie, mit den aus der letzten Aufgabe gefundenen Vektoren, die DFT Matrix Ω_5 , indem sie die Vektor sortieren und normieren.

Spaltenreihenfolge: f), a), d), e), b) oder c). Normierungsfaktor für alle Vektoren $\frac{1}{\sqrt{5}}$ Lösung Ende

3. Zeigen Sie, dass man die Spalten der Inversen der DFT-Matrix, also $\overline{\Omega_n}^{\mathsf{T}} = \overline{\Omega_n}$, durch umsortieren der Spalten von Ω_n erhalten kann.

_____ Lösung -

Da ${f 1}={f \overline 1}$ bleibt die erste Spalte an der gleichen Stelle. Für die anderen Spalten machen wir uns klar, dass $\omega_n^{n-l}=\overline{\omega_n^l}$ und somit Spalte n-i in Ω_n gleich der komplex konjugierten der Spalte i ist, wenn wir mit 0 die Indizierung beginnen. Somit können alle anderen Spalten um Index $\frac{n}{2}$ gespiegelt getauscht werden.

Ausführlicher siehe im Skript Abschnitt "Die DFT Matrix und die diskrete Fouriertransformationßowie Gleichung 7.17.

- Lösung Ende

4. Im Skipt wird gezeigt, dass die DFT-Matrix unitär (komplexe Analogie zu orthogonal) ist, indem gezeigt wird, dass $\overline{\Omega_n}^\mathsf{T}\Omega_n=\mathbf{I}$. Warum reicht es im Komplexen nicht Ω_n nur zu transponieren um Unitarität zu zeigen, sondern muss zusätzlich noch komplex konjugiert werden $(\overline{\Omega_n}^\mathsf{T})$?

Lösung -

Um Unitarität zu zeigen muss das Skalarprodukt gebildet werden. Das Skalarprodukt zweier komplexer Vektoren $x,y\in\mathbb{C}^n$ ist definiert als $x^\mathsf{T}\overline{y}=\overline{x}^\mathsf{T}y$. (Siehe Aufgabe 1.4)

———— Lösung Ende ————

5. Zeigen Sie, dass Ω_n und $\overline{\Omega_n}$ symmetrisch sind.

—— Lösung ———

 $(\mathbf{\Omega}_n)_{ij} = \omega_n^{ij} = (\Omega_n)_{ji}.$

6. Gegeben ein reeles Signal $\mathbf{s} \in \mathbb{R}^n$ sowie seine Fourier-Transformierte $\mathbf{\Omega}_n \mathbf{s} = \hat{\mathbf{s}} \in \mathbb{C}^n$, interpretiert als diskrete Funktion an den Stützstellen $(0,\ldots,n-1)$. Zeigen Sie, dass $\hat{\mathbf{s}}$ achsensymetrisch im Realteil, sowie punktsymetrisch im Imaginärteil ist, wenn man den ersten Eintrag ignoriert und als Ursprung $(\frac{n}{2},0)$ wählt.

Wir müssen zeigen, das $\operatorname{Re}(\hat{\mathbf{s}}_l) = \operatorname{Re}(\hat{\mathbf{s}}_{n-l})$ und $-\operatorname{Im}(\hat{\mathbf{s}}_l) = \operatorname{Im}(\hat{\mathbf{s}}_{n-l})$, wobei unsere Indizes bei 0 beginnen. Das bedeutet wir wollen $\overline{(\mathbf{\Omega}_n \mathbf{s})_l} = \hat{\bar{\mathbf{s}}}_l = \hat{\mathbf{s}}_{n-l} = (\mathbf{\Omega}_n \mathbf{s})_{n-l}$ zeigen.

Es gilt

$$(\mathbf{\Omega}_n \mathbf{s})_l = \begin{bmatrix} 1 & \omega_n^l & l\omega_n^{2l} & \dots & \omega_n^{(n-1)l} \end{bmatrix} \mathbf{s},$$

sowie

$$(\mathbf{\Omega}_n \mathbf{s})_{n-l} = \begin{bmatrix} 1 & \omega_n^{n-l} & \omega_n^{2(n-l)} & \dots & \omega_n^{2(n-1)(n-l)} \end{bmatrix} \mathbf{s}.$$

Da $\omega_n^{n-l}=\overline{l\omega_n^l},\ z^{lk}=(z^l)^k$ sowie $\overline{z^n}=\overline{z}^n$, gilt

$$(\mathbf{\Omega}_n \mathbf{s})_{n-l} = \begin{bmatrix} \overline{1} & \overline{\omega_n^l} & \overline{\omega_n^{2l}} & \dots & \overline{\omega_n^{2(n-1)l}} \end{bmatrix} \mathbf{s}.$$

Da ${f s}$ nur reele Einträge besitzt, gilt ${f s}=\overline{{f s}}$, also auch

$$(\mathbf{\Omega}_{n}\mathbf{s})_{n-l} = \begin{bmatrix} \overline{1} & \overline{\omega_{n}^{l}} & \overline{l\omega_{n}^{2l}} & \dots & \overline{l\omega_{n}^{2(n-1)l}} \end{bmatrix} \overline{\mathbf{s}}$$
$$= \begin{bmatrix} 1 & l\omega_{n}^{l} & l\omega_{n}^{2l} & \dots & l\omega_{n}^{(n-1)l} \end{bmatrix} \mathbf{s} = \overline{(\mathbf{\Omega}_{n}\mathbf{s})_{l}}.$$

Lösung Ende

7. Zeigen Sie, dass auch die Rückrichtung der Aussage der letzten Aufgabe gilt, wenn der erste Eintrag des transformierten Signals reell ist. Das bedeutet, wenn das transformierte Signal s achsensymetrisch im Realteil sowie punktsymetrisch im Imaginärteil ist, dann ist das Ursprungssignal reell.

– Lösung ———

Das gegeben das Signal $\hat{\mathbf{s}} \in \mathbb{C}^n$, wie in der Aufgabe beschrieben, lässt sich wie folgt formalisieren:

$$\hat{\mathbf{s}}_0 \in \mathbb{R}$$
 sowie $\hat{\mathbf{s}}_k = \overline{\hat{\mathbf{s}}_{n-k}}$ für alle $k \in [1, n-1]$.

Wenn n ungerade ist, gilt für alle Einträge s_i

$$\mathbf{s}_{j} = \hat{\mathbf{s}}_{0} + \sum_{k=1}^{(n-1)} \hat{\mathbf{s}}_{k} \omega_{n}^{jk}$$

$$= \hat{\mathbf{s}}_{0} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_{k} \omega_{n}^{jk} + \sum_{k=(n-1)/2+1}^{(n-1)} \hat{\mathbf{s}}_{k} \omega_{n}^{jk}$$

$$= \hat{\mathbf{s}}_{0} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_{k} \omega_{n}^{jk} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_{n-k} \omega_{n}^{j(n-k)}$$

$$= \hat{\mathbf{s}}_{0} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_{k} \omega_{n}^{jk} + \hat{\mathbf{s}}_{n-k} \omega_{n}^{j(n-k)}$$

$$= \hat{\mathbf{s}}_{0} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_{k} \omega_{n}^{jk} + \hat{\mathbf{s}}_{k} \overline{\omega_{n}^{jk}}.$$

Betrachten wir nun nur die Rechnung $\hat{\mathbf{s}}_k \omega_n^{jk} + \overline{\hat{\mathbf{s}}_k} \overline{\omega_n^{jk}}$ und machen uns klar, dass $\overline{a}\overline{b} = \overline{a}\overline{b}$. Es gilt also

$$\begin{split} \hat{\mathbf{s}}_{k}\omega_{n}^{jk} + \overline{\hat{\mathbf{s}}_{k}} \, \overline{\omega_{n}^{jk}} &= \hat{\mathbf{s}}_{k}\omega_{n}^{jk} + \overline{\hat{\mathbf{s}}_{k}}\omega_{n}^{jk} \\ &= \overline{\hat{\mathbf{s}}_{k}\omega_{n}^{jk}} + \hat{\mathbf{s}}_{k}\omega_{n}^{jk} \\ &= \hat{\mathbf{s}}_{k}\omega_{n}^{jk} + \overline{\hat{\mathbf{s}}_{k}}\omega_{n}^{jk} = \overline{\hat{\mathbf{s}}_{k}}\omega_{n}^{jk} + \overline{\hat{\mathbf{s}}_{k}} \, \overline{\omega_{n}^{jk}}. \end{split}$$

Somit ist der Term in der Summe gleich seiner komplex konjugierten. Dies kann nur gelten, wenn der imaginäre Anteil 0 ist. Somit ist jeder Term in der Summe reel.

Für den Fall, dass n gerade ist, gilt das gleiche, es kommt nur zusätzlich noch die mittlere Frequenz als Summand dazu:

$$\hat{\mathbf{s}}_0 + \hat{\mathbf{s}}_{n/2}\omega_n^{jn/2} + \sum_{k=1}^{(n-1)/2} \hat{\mathbf{s}}_k\omega_n^{jk} + \overline{\hat{\mathbf{s}}_k}\overline{\omega_n^{jk}}.$$

Da $\omega_n^{jn/2}=\pm 1\in\mathbb{R}$ sowie $\hat{\mathbf{s}}_{n/2}=\overline{\hat{\mathbf{s}}_{n/2}}\in\mathbb{R}$, sind auch in diesem Fall alle Summanden Element der reelen Zahlen. Somit ist auch die Summe reel.

Lösung Ende

8. Gegeben die komplexen Stützstellen 1, $e^{\frac{1}{6}2\pi i}$, $e^{\frac{2}{6}2\pi i}$, $e^{\frac{3}{6}2\pi i}$, $e^{\frac{4}{6}2\pi i}$ und $e^{\frac{5}{6}2\pi i}$. Konstruieren Sie die zugehörige Vandermonde-Matrix sowie die zugehörigen Lagrange-Basispolynome.

Lösung — Lösung — Das ist einfach Ω_n (Vandermonde-Matrix) sowie $\overline{\Omega_n}^{\mathsf{T}}=\overline{\Omega_n}$ (Lagrange-Basis). — Lösung Ende —