TRƯỜNG THCS THẠCH BÀN MÃ ĐÊ: 901

ĐỀ KIỂM TRA GIỮA KÌ I Môn: TOÁN 9

Thời gian làm bài: 90 phút Ngày kiểm tra: 03/11/2023

I. TRẮC NGHIỆM KHÁCH QUAN (2 điểm)

Hãy chọn chữ cái đứng trước câu trả lời đúng nhất rồi ghi vào bài làm.

Câu 1.(0,25) Tính $\sqrt{25a^2}$, ta được kết quả là

$$A. - 5a$$

Câu 2. (0,25) Cho a \geq 0. Tính $\sqrt{\frac{9}{4}} + \sqrt{\frac{a^2}{4}}$ ta được kết quả là

A.
$$\frac{3 + |a|}{2}$$

$$B.\frac{3+a}{4}$$

C.
$$\frac{3+a}{2}$$

D.
$$\frac{3-a}{2}$$

Câu 3. (0,25) Biểu thức $-3\sqrt{a} - \sqrt{16a}$ có kết quả là

A.
$$-\sqrt{a}$$

B.
$$13\sqrt{a}$$

C.
$$-19\sqrt{a}$$

D.
$$-7\sqrt{a}$$

Câu 4. (0,25) Cho tam giác ABC vuông tại A, biết AB = 4cm, BC = 5cm. Độ dài đường cao AH bằng

Câu 5. (0,25) Cho tam giác ABC vuông tại B. Hệ thức sai là

A.
$$\sin A = \frac{BC}{AC}$$

A.
$$\sin A = \frac{BC}{AC}$$
 B. $\cos A = \frac{AB}{AC}$ C. $\tan C = \frac{AB}{BC}$ D. $\cot C = \frac{AC}{BC}$

C.
$$\tan C = \frac{AB}{BC}$$

D.
$$\cot C = \frac{AC}{BC}$$

Câu 6. (0,25) Nếu $\sqrt{x^2} = 5$ thì *x* bằng

D.
$$\sqrt{5}$$

Câu 7. (0,25) Tính $\sqrt{(1-\sqrt{2})^2} - \sqrt{2}$ được kết quả là

A.
$$1 - \sqrt{2}$$

B.
$$\sqrt{2} - 1$$

B.
$$\sqrt{2}-1$$
 C. $2\sqrt{2}-1$

Câu 8. (0,25) Nếu $\frac{\sqrt{x}-3}{\sqrt{x}+2} = \frac{-1}{4}$ thì x bằng

D.Không tìm được giá trị của x

II. TỰ LUẬN (8 điểm)

Bài 1. (2đ) Rút gọn các biểu thức sau

a)
$$A = \sqrt{50} + 4\sqrt{32} - 3\sqrt{8}$$

b)
$$B = \sqrt{7 + 2\sqrt{10}} - \sqrt{7 - 2\sqrt{10}}$$

c)
$$C = \frac{1}{\sqrt{5} + 2} - \frac{4}{\sqrt{5} - 1}$$

Bài 2. (2,5đ) Cho hai biểu thức $A = \frac{\sqrt{x-2}}{\sqrt{x-1}}$ và $B = \frac{x-5}{x-1} - \frac{2}{\sqrt{x+1}} - \frac{4}{1-\sqrt{x}}$ (với $x \ge 0$; $x \ne 1$)

a) Tính giá trị của biểu thức A khi x = 16.

- b) Rút gọn biểu thức B.
- c) Tính các giá trị nguyên của x biểu thức $P = \frac{A}{B}$ có giá trị âm.

Bài 3. (2,5đ) Cho tam giác ABC vuông tại A có đường cao AK chia cạnh huyền BC thành hai đoạn KB = 2cm và KC = 6cm.

- a) Tính độ dài các đoạn thẳng: AK, AB.
- b) Với số liệu câu a, tính số đo \widehat{ACK} ; \widehat{KAC} .
- c) Tia phân giác của góc B cắt AC tại D. Chứng mimh rằng: $\tan \widehat{ABD} = \frac{AC}{AB + BC}$.

Bài 4. (0,5đ)

Tàu ngầm đang ở trên mặt biển bỗng đột ngột lặn xuống theo phương tạo với mặt nước biển một góc 32⁰. Nếu tàu chuyển động theo phương lặn xuống được 300m thì nó ở độ sâu bao nhiều mét? (kết quả làm tròn đến chữ số thập phân thứ hai)

Bài 5. (0,5đ) Giải phương trình: $\sqrt{2x+5} - \sqrt{3x-5} = 2$

-----Chúc các con làm bài tốt!-----

HƯỚNG DẪN CHẨM

ĐỀ KIỂM TRA GIỮA KÌ. NĂM HỌC 2023-2024

Môn: **TOÁN 9 Mã đề: 901**

I. TNKQ: Mỗi câu trả lời đúng được 0,25 điểm

Câu	1	2	3	4	5	6	7	8
Đáp án	В	C	D	C	D	C	D	A

II. TỰ LUẬN:

L F	Bài	Đáp án					
1			2				
	a)	$A = \sqrt{50} + 4\sqrt{32} - 3\sqrt{8}$ $A = 5\sqrt{2} + 4.4\sqrt{2} - 3.2\sqrt{2}$ $A = 5\sqrt{2} + 16\sqrt{2} - 6\sqrt{2}$ $A = 15\sqrt{2}$ $B = \sqrt{7 + 2\sqrt{10}} - \sqrt{7 - 2\sqrt{10}} = \sqrt{\left(\sqrt{5} + \sqrt{2}\right)^2} - \sqrt{\left(\sqrt{5} - \sqrt{2}\right)^2}$ $B = \left \sqrt{5} + \sqrt{2}\right - \left \sqrt{5} - \sqrt{2}\right = \sqrt{5} + \sqrt{2} - \sqrt{5} + \sqrt{2}$ $B = 2\sqrt{2}$	0,75				
	c)	$C = \frac{1}{\sqrt{5} + 2} - \frac{4}{\sqrt{5} - 1} = \frac{\sqrt{5} - 2}{\left(\sqrt{5} + 2\right)\left(\sqrt{5} - 2\right)} - \frac{4\left(\sqrt{5} + 1\right)}{\left(\sqrt{5} - 1\right)\left(\sqrt{5} + 1\right)}$ $C = \frac{\sqrt{5} - 2}{5 - 4} - \frac{4\left(\sqrt{5} + 1\right)}{5 - 1} = \sqrt{5} - 2 - \left(\sqrt{5} + 1\right) = \sqrt{5} - 2 - \sqrt{5} - 1 = -3$	0,5				
2			2,5				
	1	x = 16 (Thỏa mãn) Thay $x = 16$ vào biểu thức A ta có: $A = \frac{\sqrt{16} - 2}{\sqrt{16} - 1} = \frac{4 - 2}{4 - 1} = \frac{2}{3}$	1				
		$B = \frac{x-5}{x-1} - \frac{2}{\sqrt{x}+1} - \frac{4}{1-\sqrt{x}}$ $= \frac{x-5}{(\sqrt{x}-1)(\sqrt{x}+1)} - \frac{2(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+1)} + \frac{4(\sqrt{x}+1)}{(\sqrt{x}-1)(\sqrt{x}+1)}$ $= \frac{x-5-2\sqrt{x}+2+4\sqrt{x}+4}{(\sqrt{x}-1)(\sqrt{x}+1)} = \frac{x+2\sqrt{x}+1}{(\sqrt{x}-1)(\sqrt{x}+1)}$ $= \frac{(\sqrt{x}+1)^2}{(\sqrt{x}-1)(\sqrt{x}+1)} = \frac{\sqrt{x}+1}{\sqrt{x}-1} \qquad (\text{DK: } x \ge 0; x \ne 1)$	1				

	1		
		$P = \frac{A}{B} = \frac{\sqrt{x} - 2}{\sqrt{x} - 1} : \frac{\sqrt{x} + 1}{\sqrt{x} - 1} = \frac{\sqrt{x} - 2}{\sqrt{x} + 1}$	
		VW 1 VW 1	
	3	Có $\sqrt{x} + 1 > 0$ nên $P < 0 \Leftrightarrow \sqrt{x} - 2 < 0 \Leftrightarrow \sqrt{x} < 2 \Leftrightarrow x < 4$	
		Kết hợp ĐKXĐ $x \ge 0; x \ne 1$ và x là số nguyên	0,5
		$\Rightarrow P < 0 \text{ khi } x \in \{0, 2, 3\}.$	0,5
3			2,5
	1	Tính được $AK = 2\sqrt{3}$ cm, $AB = 4$ cm	1
	2	Tính $\widehat{ACK} = 30^{\circ}; \widehat{KAC} = 60^{\circ}$	0,75
		ΔABD vuông tại A ta có:	
		$\tan \widehat{ABD} = \frac{AD}{AB} (1) \text{ (tỉ số lượng giác)}$	
		$\frac{\tan ABD - \frac{1}{AB}}{AB} \text{(1) (if so fuong grac)} \qquad \qquad \textbf{6cm}$	
		Ta lại có: BD là phân giác trong của ΔABC	
	3	Nên $\frac{AD}{DC} = \frac{AB}{BC}$ (Tính chất đường phân giác)	
		$\Rightarrow \frac{AD}{AB} = \frac{DC}{BC} = \frac{AD + DC}{AB + BC} = \frac{AC}{AB + BC} (2)$	0,75
		$T\mathring{\mathbf{u}}(1) \overset{\wedge}{\mathbf{v}}(2) \Rightarrow \tan \widehat{ABD} = \frac{AC}{AB + BC}$	
4		Độ sâu của tầu ngầm là:	0,5
		$300.Sin32^{\circ} \approx 158,98 (m)$ $\downarrow Di\acute{a} = \frac{1}{2} \stackrel{?}{=} \frac{1}{2} \frac{1}{2} \stackrel{?}{=} \frac{1}{2} \frac{1}{2} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{=} \frac{1}{2} \stackrel{?}{=} \frac{1}{2} \frac{1}$,
		+ Biến đổi phương trình đã cho trở thành phương trình tương đương $\sqrt{2x+5} = \sqrt{3x-5} + 2$ (1)	
		_	
		Với $x \ge \frac{5}{3}$ thì hai vế của (1) đều dương, ta bình phương 2 vế của (1)	
		Ta được: $2x + 5 = 3x - 5 + 4\sqrt{3x - 5} + 4$	
		$\Leftrightarrow 4\sqrt{3x-5} = 6-x (2)$	
		Phương trình (2) có nghiệm khi: $6-x \ge 0 \Leftrightarrow x \le 6$	
5		+ Khi đó hai vế của (2) không âm, ta bình phương hai vế của (2) được	0,25
		$16(3x - 5) = 36 - 12x + x^2$	0,23
		$\Leftrightarrow x^2 - 60x + 116 = 0$	
		$\Leftrightarrow (x-2)(x-58) = 0$	
		$\Leftrightarrow \begin{cases} x = 2 & (t/m) \\ x = 58 & (loai) \end{cases}$	
		x = 58 (loại)	0,25
		Vậy tập nghiệm của phương trình là {2}.	

Học sinh làm cách khác đúng cho điểm tương đương.

BGH DUYỆT TỔ TRƯỞNG NHÓM TRƯỞNG NGƯỜI RA ĐỀ

Đào Thị Thanh Loan Nguyễn Thị Phương Nguyễn Hồng Ngọc

TRƯỜNG THCS THẠCH BÀN **MÃ ĐÊ 902**

ĐỂ KIỂM TRA GIỮA KÌ I Môn **TOÁN 9**

Thời gian làm bài 90 phút Ngày kiểm tra 03/11/2023

I. TRẮC NGHIỆM KHÁCH QUAN (2 điểm)

Hãy chọn chữ cái đứng trước câu trả lời đúng nhất rồi ghi vào bài làm.

Câu 1.(0,25đ) Tính $\sqrt{36a^2}$, kết quả là

Câu 2. (0,25đ) Cho a < 0. Tính $\sqrt{\frac{25}{9}} + \sqrt{\frac{25a^2}{9}}$ kết quả là

A.
$$\frac{5}{3} \cdot \frac{5a}{3}$$

B.
$$\frac{5-5a}{3}$$

C.
$$\frac{5+5a}{3}$$

D.
$$\frac{5a-5}{3}$$

Câu 3. (0,25đ) Biểu thức $5\sqrt{a} - \sqrt{9a}$ kết quả là

B.
$$4\sqrt{a}$$

C.
$$-4\sqrt{a}$$

D.
$$2\sqrt{a}$$

Câu 4. (0,25d) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 3 cm, AC = 4 cm. Độ dài đoạn thẳng CH bằng

Câu 5. (0,25đ) Cho tam giác ABC vuông tại A. Hệ thức nào sau đây sai?

A.
$$\sin B = \frac{AC}{BC}$$
 B. $\cos B = \frac{AB}{BC}$ C. $\tan C = \frac{AB}{BC}$

B.
$$\cos B = \frac{AB}{BC}$$

C.
$$\tan C = \frac{AB}{BC}$$

D.
$$\cot C = \frac{AC}{AB}$$

Câu 6. (0,25đ) Với $x \ge 0$, nếu $\sqrt{x} - 1 = 2$ thì x bằng

Câu 7. (0,25đ) Tính $\sqrt{(2-\sqrt{3})^2}$ được kết quả là

A.
$$\sqrt{3} - 2$$

A.
$$\sqrt{3} - 2$$
 B. $\pm (2 - \sqrt{3})$ C. $-2 - \sqrt{3}$

C.
$$-2 - \sqrt{3}$$

D.
$$2 - \sqrt{3}$$

Câu 8. (0,25đ) Với $x \ge 0$, nếu $\frac{\sqrt{x}-2}{\sqrt{x}+1} = \frac{1}{2}$ thì x bằng

D. Không tìm được giá trị của
$$x$$

II. TỰ LUẬN (8 điểm)

Bài 1. (2đ) Rút gọn các biểu thức sau:

a)
$$A = 3\sqrt{5} + 4\sqrt{20} - 2\sqrt{45}$$

b)
$$B = \sqrt{7 + 4\sqrt{3}} - \sqrt{7 - 4\sqrt{3}}$$

c)
$$C = \frac{2}{3 - \sqrt{5}} - \frac{1}{3 + \sqrt{5}}$$

Bài 2. (2,5đ) Cho hai biểu thức:

A =
$$\frac{\sqrt{x} + 5}{\sqrt{x}}$$
 và B = $\frac{1}{\sqrt{x} + 2} + \frac{\sqrt{x}}{2 - \sqrt{x}} - \frac{2x - \sqrt{x} + 2}{x - 4}$ (với $x > 0, x \ne 4$)

- a) Tính giá trị của biểu thức A khi x = 9.
- b) Rút gọn biểu thức B.
- c) Tìm tất cả các giá trị nguyên của x để biểu thức P = A.B có giá trị nguyên.

Bài 3. (2,5 \mathbf{d}) Cho tam giác ABC vuông tại A, đường cao AH.

- a) Cho AB = 9 cm, AC = 12 cm. Tính độ dài các đoạn thẳng BH, AH.
- b) Với số liệu câu a, tính số đo \widehat{ACH} ; \widehat{HAC} (số đo góc làm tròn đến độ).
- c) Gọi E,D lần lượt là hình chiếu vuông góc của H trên AB,AC.

Chứng minh AE = AD. tan B.

Bài 4. (0,5đ)

Một cột cờ có bóng trên mặt đất dài 8 m. Tia nắng mặt trời tạo với mặt đất một góc bằng 50°. Hãy tính chiều cao của cột cờ đó.

(Kết quả làm tròn đến chữ số thập phân thứ nhất)

Bài 5. (0,5đ) Giải phương trình $x^2 - 1 = 2\sqrt{2x + 1}$

-----Chúc các con làm bài tốt!-----

HƯỚNG DẪN CHẨM ĐỀ KIỂM TRA GIỮA KÌ I. NĂM HỌC 2023-2024

Môn TOÁN 9 Mã đề 902

I. TNKQ Mỗi câu trả lời đúng được 0,25 điểm

Câu	1	2	3	4	5	6	7	8
Đáp án	В	В	D	A	C	В	D	В

II. TỰ LUẬN

	Bài	Đáp án	Điểm	
1			2	
	a)	$A = 3\sqrt{5} + 4\sqrt{20} - 2\sqrt{45} = 3\sqrt{5} + 8\sqrt{5} - 6\sqrt{5} = 5\sqrt{5}$	0,75	
	b)	$B = \sqrt{7 + 4\sqrt{3}} - \sqrt{7 - 4\sqrt{3}} = \sqrt{(2 + \sqrt{3})^2} - \sqrt{(2 - \sqrt{3})^2}$ $= 2 + \sqrt{3} - 2 - \sqrt{3} = 2 + \sqrt{3} - 2 + \sqrt{3} = 2\sqrt{3}$	0,75	
	c)	$C = \frac{2}{3 - \sqrt{5}} - \frac{1}{3 + \sqrt{5}} = \frac{2(3 + \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})} - \frac{1(3 - \sqrt{5})}{(3 - \sqrt{5})(3 + \sqrt{5})}$ $= \frac{6 + 2\sqrt{5} - 3 + \sqrt{5}}{4} = \frac{3 + 3\sqrt{5}}{4}$	0,5	
2			2,5	
	a	Thay $x = 9$ (TMĐK) vào biểu thức A ta có $A = \frac{\sqrt{9} + 5}{\sqrt{9}} = \frac{8}{3}$ Vậy $A = \frac{8}{3}$ tại $x = 9$.	1	
	ь	$B = \frac{1}{\sqrt{x} + 2} + \frac{\sqrt{x}}{2 - \sqrt{x}} + \frac{2x - \sqrt{x} + 2}{x - 4}$ $B = \frac{1}{\sqrt{x} + 2} - \frac{\sqrt{x}}{\sqrt{x} - 2} + \frac{2x - \sqrt{x} + 2}{x - 4}$ $B = \frac{\sqrt{x} - 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)} - \frac{\sqrt{x}(\sqrt{x} + 2)}{(\sqrt{x} + 2)(\sqrt{x} - 2)} + \frac{2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)}$ $B = \frac{\sqrt{x} - 2 - x - 2\sqrt{x} + 2x - \sqrt{x} + 2}{(\sqrt{x} + 2)(\sqrt{x} - 2)}$ $B = \frac{x - 2\sqrt{x}}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}(\sqrt{x} - 2)}{(\sqrt{x} + 2)(\sqrt{x} - 2)} = \frac{\sqrt{x}}{\sqrt{x} + 2}$	1	
	С	$P = A.B$ $P = \frac{\sqrt{x} + 5}{\sqrt{x}} \cdot \frac{\sqrt{x}}{\sqrt{x} + 2} = \frac{\sqrt{x} + 5}{\sqrt{x} + 2} = 1 + \frac{3}{\sqrt{x} + 2} \qquad (x > 0, x \neq 4)$	0,5	

		*TH1 $x \in \mathbb{Z}, \sqrt{x} \notin \mathbb{Z}$	
		$\Rightarrow \sqrt{x} + 2 \text{ là số vô tỉ}$	
		\Rightarrow P vô tỉ (loại)	
		*TH2 $x \in \mathbb{Z}, \sqrt{x} \in \mathbb{Z}$	
		$\hat{\mathrm{D}}$ ể $P \in \mathbb{Z}$	
		$\Leftrightarrow 1 + \frac{3}{\sqrt{x} + 2} \in \mathbb{Z} \Leftrightarrow \frac{3}{\sqrt{x} + 2} \in \mathbb{Z} \Leftrightarrow \sqrt{x} + 2 \in U'(3) = \{\pm 1; \pm 3\}$	
		Tim được $x = 1$ (tmđk)	
		Vậy với $x = 1$ thì P có giá trị nguyên	
3			2,5
		A	
		D	
	a		
	a		1
		B C	
		В Н	
		Tính được BH = 5.4 cm, AH = 7.2 cm	
	b	Tính $\widehat{ACH} \approx 37^{\circ}; \widehat{HAC} \approx 53^{\circ}$	0,75
		Chứng minh được $AE.AB = AD.AC$	
	c	$\triangle ABC$ vuông tại A tan $B = \frac{AC}{AB}$	0,75
		$\Rightarrow AE = AD. \tan B$	
4		Chiều cao của cột cờ là	0,5
		$h = 8. \tan 50^{\circ} \approx 9.5 \ (m)$	
		+Điều kiện $x \ge \frac{-1}{2}$	
		+Biến đổi phương trình đã cho trở thành phương trình tương đương	
		$(x+1)^2 = (\sqrt{2x+1}+1)^2$	
		$\left[\sqrt{2x+1}+1-x+1\right]$ $\left[\sqrt{2x+1}-x\right]$	
		$\Leftrightarrow \begin{bmatrix} \sqrt{2x+1} + 1 = x+1 \\ \sqrt{2x+1} + 1 = -x-1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} \sqrt{2x+1} = x \\ x + \sqrt{2x+1} + 2 = 0 \end{bmatrix}$	
5			0,5
		$\frac{\text{Lap ruan}}{\sqrt{2x+1}} \Rightarrow x + \sqrt{2x+1} + 2 > 0 \forall x$	
		·	
		$\Leftrightarrow \begin{cases} x \ge 0 \\ 2x + 1 = x^2 \end{cases}$	
		$\Leftrightarrow x = 1 + \sqrt{2} \text{ (tmdk)}$	
		+Kết luận $S = \left\{1 + \sqrt{2}\right\}$.	
	1		<u> </u>

Học sinh làm cách khác đúng cho điểm tương đương.

BGH DUYỆT TỔ TRƯỞNG NHÓM TRƯỞNG NGƯỜI RA ĐỀ

Đào Thị Thanh Loan Nguyễn Thị Phương Nguyễn Huyền Phương

TRƯỜNG THCS THẠCH BÀN

ĐỀ KIỂM TRA ĐÁNH GIÁ GIỮA KÌ I Môn: **TOÁN 9**

MÃ ĐÈ: 903

Thời gian làm bài: 90 phút Ngày kiểm tra: 3/11/2023

I. TRẮC NGHIỆM KHÁCH QUAN (2 điểm)

Hãy chọn chữ cái đứng trước câu trả lời đúng nhất rồi ghi vào bài làm.

Câu 1.(0,25đ) Tính $\sqrt{81a^2}$, kết quả là:

D.
$$9|a|$$

Câu 2. (0,25đ) Cho a < 0. Tính $\sqrt{\frac{16}{49}} + \sqrt{\frac{16a^2}{49}}$ kết quả là:

A.
$$\frac{4a-4}{7}$$

B.
$$\frac{4+4a}{7}$$
 C. $\frac{4-4a}{7}$

C.
$$\frac{4-4a}{7}$$

D.
$$\frac{4}{7} \cdot \frac{4a}{7}$$

Câu 3. (0,25đ) Biểu thức $-5\sqrt{a} + \sqrt{25a}$ kết quả là:

C.
$$-4\sqrt{a}$$

D.
$$2\sqrt{a}$$

Câu 4. (0,25đ) Cho tam giác ABC vuông tại A, biết AB = 6 cm, AC = 8 cm. Độ dài đường cao AH bằng:

D.
$$4\sqrt{3}$$
 cm

Câu 5. (0,25đ) Cho tam giác ABC vuông tại A. Trong các hệ thức sau, hệ thức sai là:

A.
$$\sin B = \frac{AC}{AB}$$

B.
$$\cos B = \frac{AB}{BC}$$

A.
$$\sin B = \frac{AC}{AB}$$
 B. $\cos B = \frac{AB}{BC}$ C. $\tan C = \frac{AB}{AC}$

D.
$$\cot C = \frac{AC}{AB}$$

Câu 6. (0,25đ) Với $x \ge 0$, nếu $\sqrt{x} + 1 = 6$ thì x bằng:

Câu 7. (0,25đ) Tính $\sqrt{(1-\sqrt{3})^2}$ được kết quả là:

A.
$$\sqrt{3} - 1$$

B.
$$\pm (1-\sqrt{3})$$
 C. $-1-\sqrt{3}$

C.
$$-1 - \sqrt{3}$$

D.
$$1 - \sqrt{3}$$

Câu 8. (0,25đ) Với $x \ge 0$, nếu $\frac{\sqrt{x}-2}{\sqrt{x}+1} = \frac{7}{10}$ thì x bằng:

D. Không tìm được giá trị của
$$x$$

II. TỰ LUẬN (8 điểm)

Bài 1. (2đ) Rút gọn các biểu thức sau

a)
$$A = 5\sqrt{3} + 2\sqrt{12} - 7\sqrt{48}$$

b)
$$B = \sqrt{9 + 2\sqrt{14}} - \sqrt{9 - 2\sqrt{14}}$$

c)
$$C = \frac{3 - \sqrt{3}}{\sqrt{3} - 1} - \frac{2 - \sqrt{2}}{1 - \sqrt{2}}$$

Bài 2. (2,5đ) Cho hai biểu thức

A =
$$\frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$
 và B = $\left(\frac{15 - \sqrt{x}}{x - 25} + \frac{2}{\sqrt{x} + 5}\right)$: $\frac{\sqrt{x} + 1}{\sqrt{x} - 5}$ (với $x \ge 0, x \ne 25$)

- a) Tính giá trị của biểu thức A khi x = 9.
- b) Rút gọn biểu thức B.
- c) Tìm tất cả các giá trị nguyên của x để biểu thức P = B A có giá trị nguyên.

Bài 3. (2,5d) Cho tam giác ABC vuông tại A, đường cao AH.

- a) Cho AB = 3 cm, AC = 4cm. Tính độ dài các đoạn thẳng HC, AH.
- b) Với số liệu câu a, tính số đo \widehat{BAH} ; \widehat{CAH} (số đo góc làm tròn đến độ).
- c) Gọi E, D lần lượt là hình chiếu vuông góc của H trên AB, AC.

Chứng minh $AD.AC - AE.EB = HD^2$.

Bài 4. (0,5đ)

Một cây tre thẳng đứng bị gãy gập sau một cơn bão. Ngọn cây vừa chạm đất và cách gốc cây 4,5m. Phần bị gãy tạo với phương thẳng đứng một góc 35⁰. Hỏi điểm gãy cách gốc cây bao nhiều m? (Kết quả làm tròn đến chữ số thập phân thứ hai)

Bài 5. (0,5đ) Giải phương trình $2(x+1)\sqrt{x} + \sqrt{3(2x^3+5x^2+4x+1)} = 5x^3-3x^2+8$

-----Chúc các con làm bài tốt!-----

HƯỚNG DẪN CHẨM ĐỀ KIỂM TRA ĐÁNH GIÁ GIỮA KÌ I. NĂM HỌC 2023-2024 Môn: **TOÁN 9**

Mã đề: 903

I. TNKQ: Mỗi câu trả lời đúng được 0,25 điểm

Câu	1	2	3	4	5	6	7	8
Đáp án	D	C	A	В	A	D	A	C

II TII LIIÂN.

	Bài	JUẬN: Đáp án	Điểm
1			2
	a)	$A = 5\sqrt{3} + 2\sqrt{12} - 7\sqrt{48} = 5\sqrt{3} + 4\sqrt{3} - 28\sqrt{3} = -19\sqrt{3}$	0,75
	b)	$B = \sqrt{9 + 2\sqrt{14}} - \sqrt{9 - 2\sqrt{14}} = \sqrt{\left(\sqrt{7} + \sqrt{2}\right)^2} - \sqrt{\left(\sqrt{7} - \sqrt{2}\right)^2}$ $= \left \sqrt{7} + \sqrt{2}\right - \left \sqrt{7} - \sqrt{2}\right = \sqrt{7} + \sqrt{2} - \sqrt{7} + \sqrt{2} = 2\sqrt{2}$	0,75
	c)	$C = \frac{3 - \sqrt{3}}{\sqrt{3} - 1} - \frac{2 - \sqrt{2}}{1 - \sqrt{2}} = \frac{\sqrt{3}(\sqrt{3} - 1)}{\sqrt{3} - 1} - \frac{\sqrt{2}(\sqrt{2} - 1)}{1 - \sqrt{2}}$ $= \sqrt{3} + \sqrt{2}$	0,5
2		2	2,5
	a	Thay $x = 9$ (TMĐK) vào biểu thức A ta có: $A = \frac{1 - \sqrt{9}}{1 + \sqrt{9}} = \frac{-1}{2}$ Vậy $A = \frac{-1}{2}$ tại $x = 9$.	1
	b	$B = \left(\frac{15 - \sqrt{x}}{x - 25} + \frac{2}{\sqrt{x} + 5}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} - 5}$ $B = \left(\frac{15 - \sqrt{x}}{(\sqrt{x} + 5)(\sqrt{x} - 5)} + \frac{2(\sqrt{x} - 5)}{(\sqrt{x} + 5)(\sqrt{x} - 5)}\right) : \frac{\sqrt{x} + 1}{\sqrt{x} - 5}$ $B = \frac{15 - \sqrt{x} + 2\sqrt{x} - 10}{(\sqrt{x} + 5)(\sqrt{x} - 5)} \cdot \frac{\sqrt{x} - 5}{\sqrt{x} + 1}$ $B = \frac{\sqrt{x} + 5}{(\sqrt{x} + 5)(\sqrt{x} - 5)} \cdot \frac{\sqrt{x} - 5}{\sqrt{x} + 1}$ $B = \frac{1}{\sqrt{x} + 1}$ $P = B - A$	1
	c	$P = B - A$ $P = \frac{1}{\sqrt{x} + 1} - \frac{1 - \sqrt{x}}{1 + \sqrt{x}} = \frac{\sqrt{x}}{\sqrt{x} + 1} = 1 - \frac{1}{\sqrt{x} + 1}$ *TH1: $x \in \mathbb{Z}, \sqrt{x} \notin \mathbb{Z}$	0,5

		$\Rightarrow \sqrt{x} + 1$ là số vô tỉ	
		$\Rightarrow P \text{ vô tỉ (loại)}$	
		*TH2: $x \in \mathbb{Z}, \sqrt{x} \in \mathbb{Z}$	
		$ ilde{ ilde{ ilde{ ilde{P}}} \in \mathbb{Z}$	
		$\Leftrightarrow 1 - \frac{1}{\sqrt{x} + 1} \in \mathbb{Z} \Leftrightarrow \frac{1}{\sqrt{x} + 1} \in \mathbb{Z} \Leftrightarrow \sqrt{x} + 1 \in U'(1) = \{\pm 1\}$	
		Tìm được $x = 0$ (tmđk)	
		Vậy với $x = 0$ thì P có giá trị nguyên	
3			2,5
	a		1
		Tính được $HC = 3.2$ cm, $AH = 2.4$ cm	
	b	Tính $\widehat{BAH} \approx 37^{\circ}; \widehat{CAH} \approx 53^{\circ}$	0,75
		Chứng minh được $AE.EB = EH^2$, $AD.AC = AH^2$	
	c	Áp dụng định lý Py-ta-go cho \triangle AEH có $AH^2 - EH^2 = AE^2$ AEHD là hình chữ nhật nên AE = HD	0,75
		$\Rightarrow AD.AC - AE.EB = HD^2$	
4		Điểm gãy cách gốc cây là: $h = 4.5$: tan $35^{\circ} \approx 6.43(m)$	0,5
		· /	
5		$2(x+1)\sqrt{x} + \sqrt{3(2x^3 + 5x^2 + 4x + 1)} = 5x^3 - 3x^2 + 8$ $\text{Diều kiện: } x \ge 0. \text{ Với } x \ge 0, \text{ ta có}$ $(1) <=> 2(x+1)\sqrt{x} + \sqrt{3(x+1)^2(2x+1)} = (x+1)(5x^2 - 8x + 8)$ $<=> 2(x+1)\sqrt{x} + (x+1)\sqrt{3(2x+1)} - (x+1)(5x^2 - 8x + 8) = 0(Do x + 1 \ge 1 > 0)$ $<=> \begin{bmatrix} x+1 = 0(2) \\ 2\sqrt{x} + \sqrt{3(2x+1)} - (5x^2 - 8x + 8) = 0(3) \end{bmatrix}$ Ta có $(2) \Leftrightarrow x = -1$ (loại) Giải phương trình (3) : Áp dụng bất đẳng thức Côsi cho hai số không âm, ta có: $2\sqrt{x} \le x + 1$ $\sqrt{3(2x+1)} \le \frac{3+2x+1}{2} = x + 2$ $=> VT(3) \le x + 1 + x + 2 - (5x^2 - 8x + 8) = -5x^2 + 10x - 5 = -5(x-1)^2 \le 0$ Dấu bằng xảy ra $\Leftrightarrow x = 1$. Vậy $(3) \Leftrightarrow x = 1$ (thỏa mãn) Vậy tập nghiệm của phương trình đã cho là $S = \{1\}$	0,5

Học sinh làm cách khác đúng cho điểm tương đương.

BGH DUYỆT TỔ TRƯỞNG NHÓM TRƯỞNG NGƯỜI RA ĐỀ

Đào Thị Thanh Loan Nguyễn Thị Phương Nguyễn Minh Quân