Property of Expectation and Variance

If
$$E(X_i)$$
 finite, $E(\Sigma a_i X_i) = \Sigma a_i E(X_i)$
If $X_1 \dots X_n$ independent, $E(\Pi X_i) = \Pi E(X_i)$

If $X_1 \cdots X_n$ independent and have finite means: $Var(\Xi X_i) = \Xi Var(X_i)$

Moment Generating Function

For RV X,
$$\psi(t) = \mathbb{E}(e^{tX})$$

$$= \mathbb{E}(1+tX+\frac{(tX)}{2!}+\cdots)$$
And, $\psi_{1}^{(n)}(v) = \mathbb{E}(X^{n})$
Note, the derivative is wit t, not X.

Sketch proof:
$$\zeta^{(n)}(0) = \left[\frac{d^n}{dt^n} \mathbb{E}(e^{tX})\right]_{t=0} = \mathbb{E}\left[\left(\frac{d^n}{dt^n} e^{tX}\right)_{t=0}\right] = \mathbb{E}\left[\left(\frac{d^n}{dt^n} e^{tX}\right)_{t=0}\right]$$

MGF under linear transformation:

Let X be RV having MGF 4(). let Y=aX+b.

for every t st. 4(at) < 00.

MGF of Y, Y2, satisfy 42(t) = et 4(at)

• $\mathcal{N}(0.1)$: $\psi(t) = e^{\frac{t}{2}t^2}$, $\mathcal{N}(\mu, 6^2)$: $\psi(t) = e^{\mu t} e^{\frac{t}{2}s^2t^2}$

Mat of sum of RV: For RV XI ... Xn, MGF 4, ... 4n, let Y=Xi+ ... +Xn for every t s.t. $\psi_i(t) < \infty$ MGF of y, 4 satisfy: $4(t) = \frac{n}{11} 4_i(t)$ Probability Integral Theorem Let X have cof $F(\cdot)$, let Y = F(X), We say transformation $X \rightarrow Y$ is probability integral transformation. pdf of Y: uniform on [0,1] Inverse Sampling: Given $X' \cap Cdf F(\cdot)$, to sample X, get $Y \cap U[0,1)$. Let Z = F'(Y), $Z \cap X$.

Vistribution of a Monotonic Function of RV (a,b) can be ∞ Let X be RV with poly for, for which Pr(a<Xb)=1. Let Y = Y(X), r is differentiable and 1-to-1 for (a,b). Let (x, b) be image of (a,b) under r.

Then, pdf of Y is: $r \text{ increasiny: add} + decreasiny: add} - g(y) = \begin{cases} f(r(y))(r')(y) & y \in (x, \beta) \\ 0 & o / w \end{cases}$

Covariana Let X, Y be RV with finite means, E(x)=Hx, F(y)=Hy, $COV(X,Y) = \mathbb{E}[(X-Hx)(Y-Hy)].$ If $6x^2$, $6y^2 < \infty$, $Cov(X,Y) = \mathbb{H}(XY) - \mathbb{H}(X)\mathbb{H}(Y)$. cov(X,Y+3) = cov(X,Y) + cov(X,Z)And, Var(X+Y) = Var(X) + Var(Y) + 2 cov(X, Y)Correlation: $P(X,Y) = \frac{Cov(X,Y)}{G_X G_Y}$ Variance-covariance Matrix (Covariance Matrix) For RV XIXn, Var(X;)<0, covariance metrix K: Kij = cov(Xi, Xj) Cross-covariance Matrix K_{XY} : $K_{XY}(i,j) = Cov(X_i, Y_j)$. $Cov(X,X) = \mathbb{E}(XX^T) - \mathbb{E}(X) \mathbb{E}(X)^T$