

Riconoscimento di dispositivi di protezione individuale in ambito industriale tramite infrastruttura cloud

Corso di Laurea Magistrale in Ingegneria Informatica

Rei Zoto (Matricola: 258017)

December 5, 2024

Table of Contents

1 Introduzione

- ► Introduzione
- Panoramica
- Implementazione
- Risultati
- Conclusion

- Problemi
 - costi diretti
 - costi indiretti
 - impatto sulla società
- Soluzioni
 - Prevenzione: valutazione dei rischi, idoneità del lavoratore, formazione
 - Dispositivi di sicurezza individuale (DPI)
 - Sistemi automatici al posto di controlli manuali

INAIL: Statistiche sugli infortuni

1 Introduzione

• Totale infortuni nella manifattura anno 2022: 13,9%

Totale infortuni divisi per genere

Infortuni per categoria

OSHA-EU: Impatto sulla produttività nazionale

1 Introduzione

Paese		Finlandia	Germania	Paesi Bassi	Italia	Polonia	
Numero di casi		131 867	2 262 031	323 544	1 907 504	1 156 394	
Costi diretti	In Mio EUR	484	10 914	2 137	8 491	1 882	
Costi diretti, % rispetto al totale		8	10	9	8	4	
Costi indiretti	In Mio EUR	4 362	70 658	6 468	58 961	19 588	
Costi indiretti, % rispetto al totale		72	66	69	56	45	
Costi immateriali	In Mio EUR	1 196	25 557	5 147	37 392	22 311	
Costi immateriali, % rispetto al totale		20	24	22	36	51	
Onere economico complessivo	In Mio EUR	6 042	107 129	23 751	104 844	43 781	
Percentuale rispetto al PIL		2,9	3,5	3,5	6,3	10,2	

Approccio bottom-up

	Mio EUR	% rispet to al PIL	Mio EUR	% rispet to al PIL	Mio EUR	% rispet to al PIL	Mio EUR	% rispett o al PIL	Mio EUR	% rispett o al PIL
					STI					
			Approccio	basato	sul capita	le uman	0			
Valore minimo	24 597	0,8	1 419	0,7	13 530	0,8	5 290	0,8	2 692	0
Media	55 429	1,8	3 106	1,5	31 475	1,9	11 879	1,7	6 929	1
Mediana	39 712	1,3	2 291	1,1	23 865	1,4	8 708	1,3	4 656	1
Massimo	138 404	4,5	7 393	3,5	69 671	4,2	30 114	4,4	17 037	4
Approccio WTP										
Valore minimo	32 324	1,1	1 637	8,0	20 929	1,3	3 276	0,5	5 118	1
Media	66 251	2,2	5 814	2,8	42 895	2,6	14 613	2.1	9 676	2
Mediana (*)	66 251	2,2	4 335	2,1	42 895	2,6	13 953	2,0	8 863	2
Massimo	100 177	3,3	17 453	8,3	64 861	3,9	30 767	4,5	15 861	3
Approccio /SLY/VOLY										
Valore minimo	60 609	2,0	4 214	2,0	52 304	3,2	9 649	1,4	12 790	3
Media	191 939	6,3	9 345	4,5	133 789	8,1	38 016	5,6	43 836	10
Mediana	166 943	5,5	8 633	4,1	126 876	7,7	33 248	4,9	31 026	7
Massimo	420 489	13,8	19 425	9,3	256 120	15,5	77 016	11,3	119 149	27

Approccio top-down

Scopo del lavoro:

- Implementazione di un sistema integrato con il cloud per la rilevazione di dispositivi di sicurezza
- Modelli pronti all'uso forniti da provider cloud

Motivazioni personali:

- Interesse sistemi IoT e deep learning
- Scelta della tesi durante lo studio di sistemi operativi, virtualizzazione ed estensione dei concetti al cloud.

Table of Contents

2 Panoramica

- ▶ Introduzione
- **▶** Panoramica
- Implementazione
- Risultati
- Conclusion

- Quantità di dati disponibili provenienti dai dispositivi connessi alla rete
- · Avanzamenti deep learning
- Cloud computing: potenza di calcolo ed integrazione di modelli e dati nell'ecosistema industriale
- Investimenti (cita i ritorni economici previsti dallo studio, ma anche l'hype attuale su ai)

- Utilizzo modelli di deep learning per task di computer vision
- Dominio di applicazione: object detection
- Modello utilizzato: Amazon Rekognition

Lavori Correlati

2 Panoramica

B. Balakreshnan and Others, "Ppe compliance detection using artificial intelligence in learning factories"

Figure: 1. Yousif and Others, "Safety 4.0: Harnessing computer vision for advanced industrial protection"

- Risposta al problema con un sistema near real-time.
- Posizionamento della soluzione rispetto agli approcci precedenti

Motivazioni:

- Mancanza di benchmark specifici per dispositivi di sicurezza.
- L'approccio near real-time è conservativo a causa di:
 - Tempi di risposta del modello non veloci (servizio pensato per tutti gli utenti AWS, tipicamente 5 fps).
 - Latenza intrinseca per la comunicazione con il cloud e problemi di connettività.

Tecnologie Utilizzate

2 Panoramica

Apache Flink

Table of Contents

3 Implementazione

- ▶ Introduzione
- Panoramica
- ► Implementazione
- ▶ Risultati
- **▶** Conclusion

Use Case

3 Implementazione

• Scenario

- Uno o più operatori entrano all'interno di una certa area di sicurezza e si trovano in prossimità di un macchinario attivo
- Una telecamera sul soffitto ed una frontale monitorano l'area di sicurezza
- La zona è definita da un insieme di ancore dotate di sensori che rilevano i tag indossati dai lavoratori.
- Il sistema genera allarme e spegne il macchinario
 - Almeno uno degli operatori non possiede i dispositivi di sicurezza
 - Almeno uno degli operatori non è abilitato ad agire sulla macchina

Ingestion e Preprocessing

3 Implementazione

Big Data Processing

3 Implementazione

Table of Contents4 Risultati

- ▶ Introduzione
- Panoramica
- Implementazione
- ► Risultati
- ▶ Conclusion

Funzionalità Raggiunte:

- Rilevazioni near real-time nei 5 test case
- Dettagli funzionali e metriche

Funzionalità Raggiunte:

- Rilevazioni near real-time nei 5 use case.
- Dettagli funzionali e metriche.

- Discussione delle limitazioni dell'approccio.
- L'azienda ha deciso di passare a una soluzione edge su mio consiglio, estensione di questo progetto.
- Consapevolezza delle differenze rispetto ai lavori accademici più complessi.

Table of Contents 5 Conclusioni

- Panoramica
- Implementazione
- Risultati
- **▶** Conclusioni

Conclusioni e Sviluppi futuri 5 Conclusioni

J Cornelasionii

- Riepilogo dei punti chiave.
- Potenziali miglioramenti ed estensioni future.

Q&A

Grazie per l'attenzione Domande?