

ELSEVIER

Mathematics and Computers in Simulation 40 (1996) 677-679

MATHEMATICS
AND COMPUTERS
IN SIMULATION

Author index of Volume 40 (1996)

(The issue number is given in front of the page numbers.)

Adomian, G., Solving the mathematical models of neurosciences and medicine (1-2) 107-114
Anastassopoulos, V., see **Yu, P.** (5-6) 577-595
Anthopoulos, G., see **Tzafestas, S.G.** (5-6) 507-521
Bang, O., see **Rasmussen, K.O.** (3-4) 339-358
Barlach, J., see **Thomsen, J.S.** (3-4) 411-423
Bhatikar, Y., see **Wu, C.** (1-2) 23-33
Bishop, J.M., see **Mitchell, R.J.** (5-6) 549-563
Borckmans, P., see **Mazin, W.** (3-4) 371-396
Chassiakos, A.G. and **S.F. Masri**, Identification of structural systems by neural networks (5-6) 637-656
Christiansen, P.L., see **Rasmussen, K.O.** (3-4) 339-358
Cruzeiro-Hansson, L. and **V.M. Kenkre**, Comment on the phase problem in the semiclassical Langevin simulations of the Davydov system (3-4) 297-304
Dalianis, P.J., see **Tzafestas, S.G.** (5-6) 507-521
Dammann, B., see **Gilhøj, H.** (3-4) 319-337
Dauxois, T., see **Peyrard, M.** (3-4) 305-318
Dewel, G., see **Mazin, W.** (3-4) 371-396
Eilbeck, J.C. and **V.Z. Enol'skii**, Some applications of computer algebra to problems in theoretical physics (3-4) 443-452
Enol'skii, V.Z., see **Eilbeck, J.C.** (3-4) 443-452
Feudel, F., **N. Seehafer** and **O. Schmidtmann**, Bifurcation phenomena of the magnetofluid equations (3-4) 235-245
Gaididei, Y.B., see **Rasmussen, K.O.** (3-4) 339-358
Gawthrop, P.J., see **Sbarbaro, D.** (5-6) 657-663
Gilhøj, H., **M. Laradji**, **B. Dammann**, **C. Jeppesen**, **O.G. Mouritsen**, **S. Toxværd** and **M.J. Zuckermann**, Effect of vacancies and surfactants on the dynamics of ordering processes in multi-component systems (3-4) 319-337
Gonzalez-Lima, F. and **A.R. McIntosh**, Analysis of neural network interactions related to associative learning using structural equation modeling (1-2) 115-140
Grujić, L.T. and **A. Michel**, Modeling and qualitative analysis of continuous-time neural networks under pure structural variations (5-6) 523-533
Gustafson, K., Biological dynamical subsystems of hovering flight (3-4) 397-410
Hameroff, S. and **R. Penrose**, Orchestrated reduction of quantum coherence in brain microtubules: A model for consciousness (3-4) 453-480
Hesthaven, J.S., see **Juul Rasmussen, J.** (3-4) 207-221

Hunt, K.J., *see Sbarbaro, D.* (5–6) 657–663

Jensen, M.H., Simulating models of turbulence and interfaces (3–4) 193–206

Jeppesen, C., *see Gilhøj, H.* (3–4) 319–337

Jervis, B., *see Papadourakis, G.* (5–6) 623–635

Juul Rasmussen, J., **J.S. Hesthaven**, **J.P. Lynov**, **A.H. Nielsen** and **M.R. Schmidt**, Dipolar vortices in two-dimensional flows (3–4) 207–221

Juul Rasmussen, J., *see Karpman, V.I.* (3–4) 223–234

Karpman, V.I., **J.P. Lynov**, **P.K. Michelsen** and **J. Juul Rasmussen**, Modulational instability of plasma waves in two dimensions. (3–4) 223–234

Kenkre, V.M., *see Cruzeiro-Hansson, L.* (3–4) 297–304

Kessler, J.O., Consumption, supply and transport: Self-organization without direct communication (3–4) 359–370

Kollias, S., *see Kontoravdis, D.* (5–6) 597–613

Kontoravdis, D., **S. Kollias** and **A. Stafllopatis**, A two-phase connectionist approach to invariant picture interpretation (5–6) 597–613

Lamy, D., Modeling and sensitivity analysis of neural networks (5–6) 535–548

Laradji, M., *see Gilhøj, H.* (3–4) 319–337

Lazarides, N. and **M.P. Sørensen**, Gap anisotropy and tunneling currents (3–4) 271–280

Liebman, M.N., Application of neural networks to the analysis of structure and function in biologically active macromolecules (1–2) 5–22

Lin, H.-P., *see Wu, C.* (1–2) 23–33

Lynov, J.P., *see Juul Rasmussen, J.* (3–4) 207–221

Lynov, J.P., *see Karpman, V.I.* (3–4) 223–234

Mason, P.A., Establishing an imaging system to support a microscopy laboratory (1–2) 101–106

Masri, S.F., *see Chassiakos, A.G.* (5–6) 637–656

Mazin, W., **K.E. Rasmussen**, **E. Mosekilde**, **P. Borckmans** and **G. Dewel**, Pattern Formation in the bistable Gray–Scott model (3–4) 371–396

McIntosh, A.R., *see Gonzalez-Lima, F.* (1–2) 115–140

Michel, A., *see Grujić, L.T.* (5–6) 523–533

Micheloyannis, S., *see Papadourakis, G.* (5–6) 623–635

Michelsen, P.K., *see Karpman, V.I.* (3–4) 223–234

Mikiten, T.M., Intuition-based computing: A new kind of ‘virtual reality’ (1–2) 141–147

Minchinton, P.R., *see Mitchell, R.J.* (5–6) 549–563

Mitchell, R.J., **J.M. Bishop** and **P.R. Minchinton**, Optimising memory usage in *n*-tuple neural networks (5–6) 549–563

Mosekilde, E., *see Mazin, W.* (3–4) 371–396

Mosekilde, E., *see Rasmussen, J.* (3–4) 247–270

Mosekilde, E., *see Thomsen, J.S.* (3–4) 411–423

Mosekilde, L., *see Thomsen, J.S.* (3–4) 411–423

Mouritsen, O.G., *see Gilhøj, H.* (3–4) 319–337

Nielsen, A.H., *see Juul Rasmussen, J.* (3–4) 207–221

Papadourakis, G., **M. Vourkas**, **S. Micheloyannis** and **B. Jervis**, Use of artificial neural networks for clinical diagnosis (5–6) 623–635

Penrose, R., *see Hameroff, S.* (3–4) 453–486

Peyrard, M. and **T. Dauxois**, DNA melting: A phase transition in one dimension (3–4) 305–318

Rasmussen, J., **E. Mosekilde** and **C.H. Reick**, Bifurcations in two coupled Rössler systems (3–4) 247–270

Rasmussen, K.E., *see Mazin, W.* (3–4) 371–396

Rasmussen, K.Ø., Y.B. Gaididei, O. Bang and P.L. Christiansen, Nonlinear and stochastic modelling of energy transfer in Schreibe aggregates (3–4) 339–358

Reick, C.H., Linear response functions of chaotic systems and equilibrium moments (3–4) 281–295

Reick, C.H., see **Rasmussen, J.** (3–4) 247–270

Robnik, M., The energy level statistics of Hamiltonian systems between integrability and chaos: The semiclassical limit (3–4) 159–179

Sbarbaro, D., K.J. Hunt and P.J. Gawthrop, Designing nonlinear controllers using connectionist networks (5–6) 657–663

Schmidt, M.R., see **Juul Rasmussen, J.** (3–4) 207–221

Schmidtmann, O., see **Feudel, F.** (3–4) 235–245

Scordilis, M.S., A neuronal formant synthesizer (5–6) 615–622

Scott, A., The hierarchical emergence of consciousness (3–4) 481–489

Seehafer, N., see **Feudel, F.** (3–4) 235–245

Sept, D., see **Tuszyński, J.A.** (3–4) 425–442

Shivakumar, S., see **Wu, C.** (1–2) 23– 33

Silver, D., see **Zabusky, J.** (3–4) 181–191

Softky, W., McCulloch–Pitts strikes back: A biophysical interpretation of cortical neurons as sub-millisecond binary devices (1–2) 71– 79

Søgaard, C.H., see **Thomsen, J.S.** (3–4) 411–423

Sørensen, M.P., see **Lazarides, N.** (3–4) 271–280

Stafylopatis, A., see **Kontoravdis, D.** (5–6) 597–613

Stamou, G.B., see **Tzafestas, S.G.** (5–6) 565–576

Thomas, E. and R.E. Wyatt, A computational model of spindle oscillations (1–2) 35– 69

Thomsen, J.S., L. Mosekilde, J. Barlach, C.H. Søgaard and E. Mosekilde, Computerized determination of 3-D connectivity density in human iliac crest bone biopsies (3–4) 411–423

Toxværd, S., see **Gilhoj, H.** (3–4) 319–337

Travis, B.J., A computational model of one pathway in the cat subcortical auditory system (1–2) 81– 99

Trpisova, B., see **Tuszynski, J.A.** (3–4) 425–442

Tuszynski, J.A., D. Sept and B. Trpisova, The cell's microtubules: Growth dynamics, ordering of dipoles and modes of energy propagation (3–4) 425–442

Tzafestas, S.G. and G.B. Stamou, An improved neural network for fuzzy reasoning implementation (5–6) 565–576

Tzafestas, S.G., P.J. Dalianis and G. Anthopoulos, On the overtraining phenomenon of backpropagation neural networks (5–6) 507–521

Veldurti, S., see **Wu, C.** (1–2) 23– 33

Venetsanopoulos, A.N., see **Yu, P.** (5–6) 577–595

Vourkas, M., see **Papadourakis, G.** (5–6) 623–635

Wu, C., S. Shivakumar, H.-P. Lin, S. Veldurti and Y. Bhatikar, Neural networks for molecular sequence classification (1–2) 23– 33

Wyatt, R.E., see **Thomas, E.** (1–2) 35– 69

Yu, P., V. Anastassopoulos and A.N. Venetsanopoulos, Pattern recognition based on morphological shape analysis and neural networks (5–6) 577–595

Zabusky, J. and D. Silver, Visiometrics and modeling in computational fluid dynamics (3–4) 181–191

Zuckermann, M.J., see **Gilhøj, H.** (3–4) 319–337

