Incompleteness Phenomena in Mathematics: From Kurt Gödel to Harvey Friedman

Lasse Grinderslev Andersen

August 28th, 2016

1/26

Overview of this talk

- Genesis of modern rigorous mathematics
 - Logic & formal systems
 - Basic set theory
- Mathematical Incompleteness
- Reverse Mathematics (optional)
- Extremely strong case of (concrete) incompleteness

2/26

A few basic objects:

- Natural numbers: N = {0, 1, 2, 3..}
- Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3..\}$
- Rationals: $\mathbb{Q} = \{ \frac{n}{m} | n \in \mathbb{Z}, m \in \mathbb{N} \}$
- Reals: $\mathbb{R} = \mathbb{Q} \cup \{\text{The Rest}\}$

Genesis of modern rigorous mathematics

The entire concept of function was put into question:

"By about 1800 the mathematicians began to be concerned about the looseness in the concepts and proofs of the vast branches of analysis. The very concept of a function was not clear; the use of series without regard to convergence and divergence had produced paradoxes and disagreements"

- M. Kline

4/26

Generalized the notion of infinity in several ways:

a Transfinite orderings (ordinals)

5/26

Generalized the notion of infinity in several ways:

a Transfinite orderings (ordinals)

More generally, two kinds exist

Successor:
$$S(\alpha) = \alpha \cup \{\alpha\}$$
 and limit: $\lambda = \bigcup_{\alpha < \lambda} \alpha \Rightarrow On$

Generalized the notion of infinity in several ways:

a Transfinite orderings (ordinals)

More generally, two kinds exist

Successor:
$$S(\alpha) = \alpha \cup \{\alpha\}$$
 and limit: $\lambda = \bigcup_{\alpha < \lambda} \alpha \Rightarrow On$

The hierarhy goes on and on and...

$$\ldots, \omega_1, \ldots$$
 where $\omega_1 = \bigcup \alpha$, $|\alpha| = \aleph_0$

Generalized the notion of infinity in two ways:

b Different degrees of infinity (cardinals)

Countably infinite sets

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega = \aleph_0$$

Cantors Diagonal argument:

$$\begin{split} |\mathbb{N}| &< |\mathbb{R}| \\ |\mathbb{R}| &= |\mathcal{P}(\mathbb{N})| = 2^{\aleph_0} \\ |\mathcal{P}(X)| &= 2^{|X|} > |X| \end{split}$$

Cantors continuum hypothesis

$$|\mathbb{R}| = \aleph_1 \text{ or } \aleph_{\alpha+1} = 2^{\aleph_{\alpha}}$$

Generalized the notion of infinity in two ways:

b Different degrees of infinity (cardinals)

Countably infinite sets

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega = \aleph_0$$

Cantors Diagonal argument:

$$\begin{split} |\mathbb{N}| < |\mathbb{R}| \\ |\mathbb{R}| &= |\mathcal{P}(\mathbb{N})| = 2^{\aleph_0} \\ |\mathcal{P}(X)| &= 2^{|X|} > |X| \end{split}$$

Cantors continuum hypothesis

$$|\mathbb{R}|=leph_1$$
 or $leph_{lpha+1}=2^{leph_lpha}$

Generalized the notion of infinity in two ways:

b Different degrees of infinity (cardinals)

```
Input: 1 2 3 4 5 6 7 8
P_1: 0 0 0 0 0 0 0 \dots
P_2: 1 1 1 1 1 1 1 1 1 \dots
P_3:01010100...
P_4:10101011...
P_5: 1 1 0 1 0 1 1 1 1 \dots
P_6:00110110...
P_7:10001000...
P_8:10001011...
```

Countably infinite sets

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega = \aleph_0$$

Cantors Diagonal argument:

$$egin{aligned} |\mathbb{N}| < |\mathbb{R}| \ & |\mathbb{R}| = |\mathcal{P}(\mathbb{N})| = 2^{\aleph_0} \ & |\mathcal{P}(X)| = 2^{|X|} > |X| \end{aligned}$$

Cantors continuum hypothesis

$$|\mathbb{R}| = \aleph_1 \text{ or } \aleph_{\alpha+1} = 2^{\aleph_{\alpha}}$$

6/26

Generalized the notion of infinity in two ways:

b Different degrees of infinity (cardinals)

Countably infinite sets

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{Q}| = \omega = \aleph_0$$

Cantors Diagonal argument:

$$\begin{split} |\mathbb{N}| &< |\mathbb{R}| \\ |\mathbb{R}| &= |\mathcal{P}(\mathbb{N})| = 2^{\aleph_0} \\ |\mathcal{P}(X)| &= 2^{|X|} > |X| \end{split}$$

Cantors continuum hypothesis

$$|\mathbb{R}| = \aleph_1 \text{ or } \aleph_{\alpha+1} = 2^{\aleph_{\alpha}}$$

Reception of Cantors work

The reception of Cantors discoveries were mixed...

"I don't know what predominates in Cantor's theory - philosophy or theology, but I am sure that there is no mathematics there."

Leopold Kronecker

Others were more positive:

"No one shall expel us from the paradise that Cantor has created for us."

David Hilbert

Hilbert program and the formalization of mathematics

Hilbert 'wanted to battle Kronecker on is own playing field':

- Formalize (infinitary) mathematics, making it a 'game of symbols'
- A game of symbols can be described and investigated by mathematics!
- Prove consistency of mathematics by finitary methods

8/26

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

Rule I Any string ending with ${\tt I}$, you may add ${\tt U}$ at the end.

Rule II Given string Mx beginning with M, x can be duplicated: Mxx

Rule III If III occur in a string, it may be replaced by ${\tt U}$

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

Rule I Any string ending with ${\tt I}$, you may add ${\tt U}$ at the end.

Rule II Given string Mx beginning with M, x can be duplicated: Mxx

Rule III If ${\tt III}$ occur in a string, it may be replaced by ${\tt U}$

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

- Rule I Any string ending with I, you may add U at the end.
- Rule II Given string Mx beginning with M, x can be duplicated: Mxx
- Rule III If III occur in a string, it may be replaced by ${\tt U}$

The alphabet of the MU-system is {M, U, I} with rules of inference and axiom:

Rule I Any string ending with I, you may add U at the end.

Rule II Given string Mx beginning with M, x can be duplicated: Mxx

Rule III If III occur in a string, it may be replaced by U Axiom MI

> **Theorem** *MUIU* (*Notation: 'MU'-system* ⊢ *MUIU*) Proof. MI, MII, MIII, MUI, MUIU Metatheorem MU is unprovable in MUI arithmetic.

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

Rule I Any string ending with I, you may add U at the end.

Rule II Given string \mathtt{Mx} beginning with $\mathtt{M}, \ \mathtt{x}$ can be duplicated: \mathtt{Mxx}

Rule III If III occur in a string, it may be replaced by U

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

- Rule I Any string ending with ${\tt I}$, you may add ${\tt U}$ at the end.
- Rule II Given string Mx beginning with M, x can be duplicated: Mxx
- Rule III If III occur in a string, it may be replaced by U Axiom MI

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

Rule I Any string ending with \mathbb{I} , you may add \mathbb{U} at the end.

Rule II Given string Mx beginning with M, x can be duplicated: Mxx

Rule III If III occur in a string, it may be replaced by ${\tt U}$

The alphabet of the MU-system is $\{M, U, I\}$ with rules of inference and axiom:

- Rule I Any string ending with ${\tt I}$, you may add ${\tt U}$ at the end.
- Rule II Given string Mx beginning with M, x can be duplicated: Mxx
- Rule III If III occur in a string, it may be replaced by ${\tt U}$
- Axiom MI

First Order Logic

The basis of most formal system (or language): \mathcal{L}_{FOL} Logical symbols:

- Equality =
- Connectives 'or': \vee , 'and': \wedge , 'not': \neg , 'if-then': \rightarrow , 'if-and-only-if': \leftrightarrow
- Quantifiers 'for-all': ∀, 'there exists': ∃
- Variables x, y, z, ...

Non-logical symbols:

- Relations *R*₁, *R*₂, *R*₃, . . .
- Functions f_1, f_2, f_3, \ldots

Example:

For relation '<' (larger than) we have

$$\forall x \forall y \forall z \ (x < y \land y < z \rightarrow x < z) \tag{1}$$

Peano Arithmetic

Standard axioms of arithmetic in language \mathcal{L}_{PA} with signature $0, \mathcal{S}, +, *, <$

- P1 For every $n \neq 0$ there exists a unique k s.t. n = S(k).
- P2 0 is not the successor of any n
- P3 For all n we have n + 0 = n
- P4 For all n, k we have n + S(k) = S(n + k)
- P5 For all n we have n * 0 = 0
- P6 For all n, k we have n * S(k) = n * k + n
- P7 For each formula $\phi(n)$ if $\phi(0)$ and $\phi(n) \to \phi(n+1)$ then $\forall n \phi(n)$
- P8 Axioms for the relation <...
- The structure $\mathbb{N} = (\mathbb{N}, 0', S', +', *', <')$ is a model for *PA*: $\mathbb{N} \models PA$.
- There exists uncountably many non-standard models of PA
- There exits models of PA with arbitrary uncountable cardinality

Peano Arithmetic

Standard axioms of arithmetic in language \mathcal{L}_{PA} with signature 0, S, +, *, <

P1
$$\forall n \exists ! k (n \neq 0 \land n = S(k))$$

P2
$$\neg \forall n(0 = S(n))$$

P3
$$\forall n(n+0=n)$$

P4
$$\forall n, k(n+S(k)=S(n+k))$$

P5
$$\forall n(n*0=0)$$

P6
$$\forall n, k(n * S(k) = n * k + n)$$

P7
$$(\phi(0) \land (\phi(n) \rightarrow \phi(n+1)) \rightarrow \forall n\phi(n))$$

- P8 Axioms for the relation <...
- The structure $\mathbb{N} = (\mathbb{N}, 0', S', +', *', <')$ is a model for $PA: \mathbb{N} \models PA$.
- There exists uncountably many non-standard models of PA
- There exits models of PA with arbitrary uncountable cardinality

Peano Arithmetic

Standard axioms of arithmetic in language \mathcal{L}_{PA} with signature $0, \mathcal{S}, +, *, <$

P1
$$\forall n \exists ! k (n \neq 0 \land n = S(k))$$

P2
$$\neg \forall n(0 = S(n))$$

P3
$$\forall n(n+0=n)$$

P4
$$\forall n, k(n+S(k)=S(n+k))$$

P5
$$\forall n(n*0=0)$$

P6
$$\forall n, k(n * S(k) = n * k + n)$$

P7
$$(\phi(0) \land (\phi(n) \rightarrow \phi(n+1)) \rightarrow \forall n\phi(n))$$

- P8 Axioms for the relation <...
- The structure $\mathbb{N} = (\mathbb{N}, 0', S', +', *', <')$ is a model for $PA: \mathbb{N} \models PA$.
- There exists uncountably many non-standard models of PA
- There exits models of PA with arbitrary uncountable cardinality

Zermelo-Fraenkel set theory

Zermelo-Fraenkel set theory with axiom of choice (ZFC) formulated in $\mathcal{L}_{\textit{ZFC}}$ with signature \in :

- Pairing/Union If we have x, y we also have $\{x, y\}$ and $x \cup y$.
 - Empty set There exist an empty set \emptyset .
 - Infinity There exist a set x s.t. $\emptyset \in x$ and $\forall y \in x(y \cup \{x\})$.
- Extensionabilty Two sets with the same elements are equal.
 - Foundation No set is an element of itself and no infinite descending chains $...x_3 \in x_2 \in x_1 \in x_0$ exist.
 - Powerset For all sets x exists a corresponding set $\mathcal{P}(x)$ of subsets of x.
 - Separation For all sets a and formulas $\phi(x)$ there exists a set $y = \{z \in a | \phi(z)\}.$
- Replacement If F is a function and x is a set, then F''(x) is a set $(F''(x) = \{y | \forall z \in x (y = F(z))\}.$
 - choice For any set of sets x there exists a function that takes an element a of x as input and outputs a $z \in a$

Standard model of ZFC

Models of ZFC are structures $V = (V, \in)$. Construction of a universe of sets by transfinite recursion along *On*

$$egin{aligned} V_0 &= \emptyset \ V_{lpha+1} &= \mathcal{P}(V_lpha) \ V_\lambda &= igcup_{lpha < \lambda} V_lpha \end{aligned}$$

A couple of remarks:

- $V_{2\omega} \models Z$, i.e. all axioms except replacement and choice
- There exist a countable model of ZFC!
- If κ is an *inaccessible* cardinal, $V_{\kappa} \models ZFC$.

Standard model of ZFC

Models of ZFC are structures $V = (V, \in)$. Construction of a universe of sets by transfinite recursion along *On*

$$egin{aligned} V_0 &= \emptyset \ V_{lpha+1} &= \mathcal{P}(V_lpha) \ V_\lambda &= igcup_{lpha < \lambda} V_lpha \end{aligned}$$

A couple of remarks:

- $V_{2\omega} \models Z$, i.e. all axioms except replacement and choice
- There exist a countable model of ZFC!
- If κ is an *inaccessible* cardinal, $V_{\kappa} \models ZFC$.

Inaccessible cardinals

Definition

A cardinal κ is inaccessible if

- 1 $\kappa > \aleph_0$
- 2 For any cardinal $\lambda < \kappa$ we have $2^{\lambda} < \kappa$
- 3 For any union λ of $<\kappa$ ordinals, each which is $<\kappa$ we have $\lambda<\kappa$ (Assuming choice)
- i.e. even larger than \beth_ω in the hierarhy given by

$$egin{aligned} \beth_0 &= leph_0 \ \beth_{lpha+1} &= 2^{\beth_lpha} \ \beth_\lambda &= igcup_{lpha < \lambda} \beth_lpha \ ext{ (where λ a limit ordnial)} \end{aligned}$$

many inaccessible cardinals have been discovered, one larger than the other.

Inaccessible cardinals

Definition

A cardinal κ is inaccessible if

- 1 $\kappa > \aleph_0$
- 2 For any cardinal $\lambda < \kappa$ we have $2^{\lambda} < \kappa$
- 3 For any union λ of $<\kappa$ ordinals, each which is $<\kappa$ we have $\lambda<\kappa$ (Assuming choice)
- i.e. even larger than \beth_ω in the hierarhy given by

$$egin{aligned} \beth_0 &= leph_0 \ \beth_{lpha+1} &= 2^{\beth_lpha} \ \beth_\lambda &= igcup_{lpha < \lambda} \beth_lpha \ ext{ (where λ a limit ordnial)} \end{aligned}$$

many inaccessible cardinals have been discovered, one larger than the other.

Gödels first incompleteness theorem (for PA)

There exist a sentence σ where $\mathbb{N} \models \sigma$ but $PA \nvdash \sigma$ (if PA is consistent)

Gödels first incompleteness theorem (for ZFC)

There exists sentences σ where $V \models \sigma$ but $ZFC \nvdash \sigma$ (if ZFC is consistent)

Gödels first incompleteness theorem

For any r.e. theory T strong enough to prove 'basic properties' of natural numbers, there exists sentences σ where $M \models \sigma$ but $T \nvdash \sigma$ (if T is consistent)

Gödels first incompleteness theorem (for *PA*)

There exist a sentence σ where $\mathbb{N} \models \sigma$ but $PA \nvdash \sigma$ (if PA is consistent)

Gödels first incompleteness theorem (for ZFC)

There exists sentences σ where $V \models \sigma$ but $ZFC \nvdash \sigma$ (if ZFC is consistent)

Gödels first incompleteness theorem

For any r.e. theory T strong enough to prove 'basic properties' of natural numbers, there exists sentences σ where $M \models \sigma$ but $T \nvdash \sigma$ (if T is consistent)

Gödels first incompleteness theorem (for PA)

There exist a sentence σ where $\mathbb{N} \models \sigma$ but $PA \nvdash \sigma$ (if PA is consistent

Gödels first incompleteness theorem (for ZFC)

There exists sentences σ where $V \models \sigma$ but $ZFC \nvdash \sigma$ (if ZFC is consistent)

Gödels first incompleteness theorem

For any r.e. theory T strong enough to prove 'basic properties' of natural numbers, there exists sentences σ where $M \models \sigma$ but $T \nvdash \sigma$ (if T is consistent)

Gödels first incompleteness theorem (for PA)

There exist a sentence σ where $\mathbb{N} \models \sigma$ but $PA \nvdash \sigma$ (if PA is consistent)

Gödels first incompleteness theorem (for ZFC)

There exists sentences σ where $V \models \sigma$ but $ZFC \nvdash \sigma$ (if ZFC is consistent)

Gödels first incompleteness theorem

For any r.e. theory T strong enough to prove 'basic properties' of natural numbers, there exists sentences σ where $M \models \sigma$ but $T \nvdash \sigma$ (if T is consistent)

Proof outline:

- \bullet Reduce the mechanical workings of the formal system into arithmetic on $\mathbb{N}.$
- i.e. assign unique numbers to formulas and sequences of formulas etc.
- Construct troll sentence σ expressing ' σ cannot be proved in T'.

A couple of incompleteness examples

ullet The Gödel sentence σ of his first incompleteness theorem

- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

A couple of incompleteness examples

- ullet The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

- The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

- ullet The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

- The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

- ullet The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

- ullet The Gödel sentence σ of his first incompleteness theorem
- In every (consistent) system T we have Con(T) incomplete in T (Gödels 2. incompleteness theorem, destroyed Hilberts program)
- In every (consistent) system T there exists diophantine equations incomplete in T
- Gentzen proved that $PRA + \epsilon_0 \vdash Con(PA)$ thus $PRA + \epsilon_0$ independent of PA
- Gödel and P. Cohen proved that GCH and axiom of choice is independent of ZFC
- ullet There exists a ordinal κ that is inaccesable is independent of ZFC
- Paris and Harrington proved that (a strong) finite ramsey theorem is independent of PA ← (using non-standard models) first non-foundational result

Harvey Friedman: Reverse mathematics

Friedman was one of the founders of 'Reverse Mathematics' in the 1970s. The basic idea was:

- Forward Mathematics (= usual math): Theorems are deduced from axioms.
- Reverse Mathematics: Deduce the axioms from the theorem.
- A formal system proved equivalent to a theorem cannot be proved in a weaker subsystem: Independence!
- Classically a hierarchy of subsystems of second order arithmetic Z_2 have been used (second order = two variables: $n \in \mathbb{N}$ and $X \in \mathcal{P}(\mathbb{N})$)

Subsystems of reverse mathematics

Definition (Arithmetical Hierarchy)

- 1 ϕ/ψ is a Σ_0^0/Π_0^0 -formula iff every quantifier is bounded
- **2** For $k \in \omega$, ϕ is a Σ_k^0 -formula (resp. Π_k^0 -formula) if it is of the form

$$\exists n_1 \forall n_2 \exists n_3 \cdots n_k \ \psi \ \text{(respectively } \forall n_1 \exists n_2 \forall n_3 \cdots n_k \ \phi)$$

where ϕ/ψ is as above. If η, σ is Σ^0_{ν} , Π^0_{ν} and

$$\eta \leftrightarrow \sigma$$

they are Δ_k^0 formulas.

Thus formula-complexity increases with k and this is the arithmetical hierarchy.

Subsystems of reverse mathematics

All subsystems are embedded in \mathbb{Z}_2 :

Definition

- (i) The axioms from PA excluding induction
- (ii) The induction axiom:

$$\forall X \ (0 \in X \land \forall x \ (n \in X \rightarrow n+1 \in X)) \rightarrow \forall n \ (n \in X)$$

(iii) The comprehension axiom:

$$\exists X \forall n \ (n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ is a \mathbb{Z}_2 -formula in which X does not occur free.

!!: Problematic standard semantics: $X \in \mathcal{P}(\mathbb{N})$

This strong statement can be gradually weakened giving the base systems

Subsystems of reverse mathematics: RCA₀

The standard base theory for reverse mathematics

Definition (RCA₀)

- (i) The basic (PA) axioms ((i) from before)
- (ii) Σ_1^0 -induction:

$$(\phi(0) \land \forall n \ (\phi(n) \rightarrow \phi(n+1))) \rightarrow \forall n \ \phi(n)$$

where $\phi(n)$ is Σ_1^0 .

(ii) The scheme of Δ_1^0 -comprehension, that is:

$$\forall n (\phi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n (n \in X \leftrightarrow \phi(n))$$

where $\phi(n)$ is a Σ_1^0 -formula, $\psi(n)$ is a Π_1^0 -formula $\psi(n)$.

*RCA*⁰ proves in itself various results, e.g.

- Picard-Lindelöf theorem
- The intermediate value theorem on continuous real functions
- The existence of an algebraic closure for a countable field (but not its uniqueness)

Subsystems of reverse mathematics: RCA₀

The standard base theory for reverse mathematics

Definition (RCA₀)

- (i) The basic (PA) axioms ((i) from before)
- (ii) Σ_1^0 -induction:

$$(\phi(0) \land \forall n \ (\phi(n) \rightarrow \phi(n+1))) \rightarrow \forall n \ \phi(n)$$

where $\phi(n)$ is Σ_1^0 .

(ii) The scheme of Δ_1^0 -comprehension, that is:

$$\forall n (\phi(n) \leftrightarrow \psi(n)) \rightarrow \exists X \forall n (n \in X \leftrightarrow \phi(n))$$

where $\phi(n)$ is a Σ_1^0 -formula, $\psi(n)$ is a Π_1^0 -formula $\psi(n)$.

*RCA*⁰ proves in itself various results, e.g.

- Picard-Lindelöf theorem
- The intermediate value theorem on continuous real functions
- The existence of an algebraic closure for a countable field (but not its uniqueness)

Subsystems of reverse mathematics: WKL₀

Definition (WKL₀)

- (i) The axioms of RCA₀.
- (ii) Weak König's Lemma: Every infinite binary subtree has an infinite path.

Examples of theorems that WKL_0 is provably equivalent to (over RCA_0)

- Gödel's completeness theorem
- Every countable commutative ring has a prime ideal
- A continuous real function on the closed unit interval is Riemann integrable
- Peano's theorem on the existence of ODEs

Subsystems of reverse mathematics: WKL₀

Definition (WKL₀)

- (i) The axioms of RCA₀.
- (ii) Weak König's Lemma: Every infinite binary subtree has an infinite path.

Examples of theorems that WKL_0 is provably equivalent to (over RCA_0)

- Gödel's completeness theorem
 - Every countable commutative ring has a prime ideal
 - A continuous real function on the closed unit interval is Riemann integrable
 - Peano's theorem on the existence of ODEs

Subsystems of reverse mathematics: ACA₀

Definition (ACA₀)

- (i) RCA₀ + full second order induction
- (ii) The arithmetical comprehension scheme, that is:

$$\exists X \forall n \ (n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ in an arithmetical formula.

Examples of theorems that ACA_0 is provably equivalent to (over RCA_0)

- Königs lemma
- Bolzano-Weierstrass theorem
- Every countable commutative ring has a maximal ideal.

Subsystems of reverse mathematics: ACA₀

Definition (ACA₀)

- (i) RCA₀ + full second order induction
- (ii) The arithmetical comprehension scheme, that is:

$$\exists X \forall n \ (n \in X \leftrightarrow \varphi(n))$$

where $\varphi(n)$ in an arithmetical formula.

Examples of theorems that ACA_0 is provably equivalent to (over RCA_0)

- Königs lemma
- Bolzano-Weierstrass theorem
- Every countable commutative ring has a maximal ideal.

Subsystems of reverse mathematics: ATR₀

Definition (ATR₀)

- (i) ACA₀
- (iii) Transfinite recursion of $\theta(n, X)$ along any countable well-ordering where $\theta(n, X)$ is an arithmetical formula with (at least) one free number and set variable n, X.

Examples of theorems that ATR_0 is provably equivalent to (over RCA_0)

- Any two countable well orderings are comparable.
- Ulm's theorem for countable reduced Abelian groups.
- Various classical results from descriptive set theory

Subsystems of reverse mathematics: *ATR*₀

Definition (ATR₀)

- (i) ACA₀
- (iii) Transfinite recursion of $\theta(n, X)$ along any countable well-ordering where $\theta(n, X)$ is an arithmetical formula with (at least) one free number and set variable n, X.

Examples of theorems that ATR₀ is provably equivalent to (over RCA₀)

- Any two countable well orderings are comparable.
- Ulm's theorem for countable reduced Abelian groups.
- Various classical results from descriptive set theory

Theorem (Invariant Maximal Clique Theorem)

Every order invariant graph G = (V, E) on $\mathbb{Q}[0, n]^k$ has an upper Z^+ order invariant maximal clique.

Theorem (Invariant Maximal Clique Theorem)

Every order invariant graph G = (V, E) on $\mathbb{Q}[0, n]^k$ has an upper Z^+ order invariant maximal clique.

Definition (Order invariant graph)

G as above is an order invariant graph iff for all order equivalent $x,y\in\mathbb{Q}[0,n]^{2k}$ we have $x\in E\to y\in E\ (\subseteq\mathbb{Q}[0,n]^{2k})$

Definition (Order equivalence)

 $x,y \in \mathbb{Q}[0,n]^{2k}$ are order euqivalent if for all $1 \leq i,j \leq 2k$, $x_i < x_j \leftrightarrow y_i < y_j$

Theorem (Invariant Maximal Clique Theorem)

Every order invariant graph G = (V, E) on $\mathbb{Q}[0, n]^k$ has an upper Z^+ order invariant maximal clique.

Definition (Upper Z^+ Order invariant graph)

G as above is an order invariant graph iff for all upper Z^+ order equivalent $x,y\in\mathbb{Q}[0,n]^{2k}$ we have $x\in E\to y\in E$

Definition (Upper Z⁺ Order equivalence)

 $x, y \in \mathbb{Q}[0, n]^{2k}$ are upper Z^+ order equivalent iff they are order equivalent and for all i, if $x_i \neq y_i$ then $x_j \geq x_i$, $x_j \geq y_i$, $y_j \geq x_i$ and $y_j \geq y_i$ lies in Z^+

Theorem (Invariant Maximal Clique Theorem)

Every order invariant graph G = (V, E) on $\mathbb{Q}[0, n]^k$ has an upper Z^+ order invariant maximal clique.

Theorem

 $Con(SRP) + ACA' \vdash IMCT$ and $IMCT + ACA' \vdash Con(SRP)$

here SRP = ZFC+ 'there exists extremely large cardinals' and $ACA_0 < ACA' < ATR_0$.

24 / 26

Thank you for your attention

Thanks and dedication to Mette E. Larsen for slides, suggestions and neverending formalist trolling! :-)