Bayesian Learning for Partially-Observed Dynamical Systems Randal Douc and Sylvain Le Corff

Tutorial 2: Maximum likelihood.

randal.douc@telecom-sudparis.eu sylvain.le_corff@telecom-sudparis.eu

CHAPTER 2. MAXIMUM LIKELIHOOD ESTIMATION

EXERCICE 1 Let $p \in \mathbb{N}^*$ and consider the AR(p) model, $X_t = \sum_{i=1}^p \phi_i X_{t-i} + \sigma Z_t$, where $\{Z_t, t \in \mathbb{N}\}$ is a strong white Gaussian noise. The unknown parameter is $\theta = (\phi_1, \dots, \phi_p, \sigma^2)$ and Θ is a compact subset of $\mathbb{R}^p \times \mathbb{R}_+$.

- 1. Write for all $n \ge p$ the conditional log-likelihood of the observations $\ln q^{\theta}(X_{p:n}|X_{0:p-1})$.
- 2. Prove that the maximum likelihood estimator of the regression coefficients explicitly as follows:

$$\begin{pmatrix} \hat{\phi}_{n,1} \\ \hat{\phi}_{n,2} \\ \vdots \\ \hat{\phi}_{n,p} \end{pmatrix} = \hat{\Gamma}_n^{-1} \begin{pmatrix} n^{-1} \sum_{t=p}^n X_t X_{t-1} \\ n^{-1} \sum_{t=p}^n X_t X_{t-2} \\ \vdots \\ n^{-1} \sum_{t=p}^n X_t X_{t-p} \end{pmatrix}$$
(1)

where $\hat{\Gamma}_n$ is the $(p \times p)$ empirical covariance matrix for which the i, j-th element is defined by $\hat{\Gamma}_n(i,j) = n^{-1} \sum_{t=p}^n X_{t-i} X_{t-j}$.

3. Prove that the maximum likelihood estimator for the innovation variance is given by :

$$\hat{\sigma}_n^2 = \frac{1}{n-p+1} \sum_{t=p}^n \left(X_t - \sum_{j=1}^p \hat{\phi}_{n,j} X_{t-j} \right)^2 . \tag{2}$$

4. Assume that $(\phi_1,\phi_2,\ldots,\phi_p)\in\mathbb{R}^p$ is such that $\phi(z)=1-\sum_{j=1}^p\phi_jz^j\neq 0$ for $|z|\leqslant 1$. Set

$$\ln q^{\theta}(x_{0:p-1},x_p) = -\frac{1}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\left(x_p - \sum_{j=1}^p \phi_j x_{p-j}\right)^2.$$

Compute the Fisher information matrix $\mathcal{J}(\theta) \stackrel{\text{def}}{=} -\mathbb{E}^{\theta} \left[\nabla^2 \ln q^{\theta}(X_{0:p-1}; X_p) \right]$.

EXERCICE 2 In the case where we are interested in estimating unknown parameters $\theta \in \mathbb{R}^m$ characterizing a model with missing data, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) can be used when the joint distribution of the missing data X and the observed data Y is explicit. For all $\theta \in \mathbb{R}^m$, let p_θ be the probability density function of (X,Y) when the model is parameterized by θ with respect to a given reference measure μ . The EM algorithm aims at computing iteratively an approximation of the maximum likelihood estimator which maximizes the observed data loglikelihood:

$$\ell(\theta; Y) = \log p_{\theta}(Y) = \log \int p_{\theta}(x, Y) \mu(\mathrm{d}x)$$
.

As this quantity cannot be computed explicitly in general cases, the EM algorithm finds the maximum likelihood estimator by iteratively maximizing the expected complete data loglikelihood. Start with an inital value $\theta^{(0)}$ and let $\theta^{(t)}$ be the estimate at the t-th iteration for $t \geqslant 0$, then the next iteration of EM is decomposed into two steps.

1. **E step**. Compute the expectation of the complete data loglikelihood, with respect to the conditional distribution of the missing data given the observed data parameterized by $\theta^{(t)}$:

$$Q(\theta, \theta^{(t)}) = \mathbb{E}_{\theta^{(t)}} [\log p_{\theta}(X, Y) | Y]$$
.

2. **M step**. Determine $\theta^{(t+1)}$ by maximizing the function Q:

$$\theta^{(t+1)} \in \operatorname{argmax}_{\theta} Q(\theta, \theta^{(t)})$$
.

1. Prove the following crucial property motivates the EM algorithm. For all $\theta, \theta^{(t)}$,

$$\ell(Y; \boldsymbol{\theta}) - \ell(Y; \boldsymbol{\theta}^{(t)}) \geqslant Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{(t)}) - Q(\boldsymbol{\theta}^{(t)}, \boldsymbol{\theta}^{(t)})$$
.

In the following, $X=(X_1,\ldots,X_n)$ and $Y=(Y_1,\ldots,Y_n)$ where $(X_i)_{0\leqslant i\leqslant n}$ is a Markov chain taking values in $\{1,\ldots,r\}$ with transition matrix $Q=(q_{i,j})_{1\leqslant i,j\leqslant r}$ and, for all $1\leqslant k\leqslant n$, the conditional distribution of Y_k given the σ -field generated by $(X_{1:n},Y_{1:k-1})$ is a Gaussian distribution with mean $\mu_{X_k}\in\mathbb{R}$ and variance $\vartheta_{X_k}\in\mathbb{R}^*_+$. In this case, the unknown parameter $\theta=(\mu_{1:k},\vartheta_{1:k},Q)$

- 1. Write the complete data loglikelihood $\theta \mapsto \log p_{\theta}(X_{1:n}, Y_{1:n}|X_0)$.
- 2. Let $\theta^{(t)}$ be the current parameter estimate. Compute $\theta \mapsto Q(\theta, \theta^{(t)})$ using $\mathbb{P}_{\theta^{(t)}}(X_k = i | Y_{1:n})$ and $\mathbb{P}_{\theta^{(t)}}(X_{k-1} = i, X_k = j | Y_{1:n})$ for all $1 \leqslant i, j \leqslant r$.
- 3. Compute $\theta^{(t+1)}$.

EXERCICE 3 Assume that the observations $\{Y_t, t \in \mathbb{Z}\}$ are a strict-sense stationary ergodic process associated to

$$\mathbb{P}\left[\left.Y_{t}\in A\right|\mathcal{F}_{t-1}\right]=Q^{\star}(X_{t-1},A)=\int_{A}q^{\star}(X_{t-1},y)\mu(\mathrm{d}y)\;,\quad\text{for any }A\in\mathcal{B}(\mathsf{Y})\;,$$

$$X_{t}=f_{Y}^{\theta^{\star}}(X_{t-1})\;,\quad t\in\mathbb{Z}\;.$$

The observations are used to fit the following observation-driven model

$$\begin{split} &\mathbb{P}\left[\left.Y_{t}\in A\right|\mathcal{F}_{t-1}\right] = Q(X_{t-1},A)\;,\quad \text{for any } A\in\mathcal{B}(\mathsf{Y})\;,\\ &X_{t} = f_{Y_{t}}^{\theta}(X_{t-1})\;,\quad (t,\theta)\in\mathbb{Z}\times\Theta\;. \end{split}$$

where $Q(x,\cdot)$ is assumed to belong to the class of exponential family distributions. More precisely, we assume that for all $(x,y)\in \mathsf{X}\times\mathsf{Y},\ q(x,y)=\exp(xy-A(x))h(y)$ for some twice differentiable function $A:\mathsf{X}\to\mathbb{R}$ and some measurable function $h:\mathsf{Y}\to\mathbb{R}^+.$

- 1. Prove that for all x, $\int Q(x^\star,\mathrm{d}y) \frac{\partial^2 \ln q(x,y)}{\partial x^2} \leqslant 0$, and show that A is convex.
- 2. Deduce the maximum of $x \mapsto \int Q^*(x, dy) \ln q(x, y)$.
- 3. Apply the consistency result for observation driven models in the case of a log-linear Poisson autoregression model where

$$q(x,y) = \exp(xy - e^x)/y!$$
,

i.e. provide an assumption on Q^* to obtain consistency of the Quasi Maximum Likelihood Estimators.