- 一、单选题(共15小题,每题4分,共计60分)
- 1、一列简谐波沿x 轴负向传播,t 时刻波形如图,关于 质点 A、B 的运动,下列说法正确的是

- A t 时刻质点 A 的速度沿 v 轴负向;
- B t 时刻质点 B 的速度沿 y 轴正向;
- C t 时刻质点 $A \times B$ 的加速度速度沿 V 轴负向:
- D t 时刻质点 $A \times B$ 的加速度速度沿 V 轴正向.
- 2、一列平面简谐波在弹性介质中传播,介质质元从平衡位置到最大位移处的过程中,以 下说法正确的是
 - A 它的势能转换为动能:
 - B 它的动能转换为势能:
 - C 它从邻近质元获得能量, 其能量逐渐增加;
 - D 它向邻近质元释放能量,其能量逐渐减小
- 3、一列平面简谐波的波速为 u,频率为 v , 沿着 x 轴负向传播, 在 x 轴的正坐标上有两 点 x_1 和 x_2 , t 时刻的相位分别为 φ , 和 φ , 如果 $x_1 < x_2$,则以下表述正确的是

A
$$x_1$$
处质点超前于 x_2 处质点 ; **B** $\varphi_1 - \varphi_2 = \frac{2\pi v}{u}(x_1 - x_2)$;

C
$$\varphi_1 - \varphi_2 = \frac{v}{u}(x_1 - x_2)$$
 ; D $\varphi_1 - \varphi_2 = \frac{2\pi v}{u}(x_2 - x_1)$

- 4、关于机械波,以下说法错误的是
 - A 波动过程是能量传播过程:
 - B 波动过程中,质点围绕自身平衡位置在振动;
 - C 横波只能在固体中传播;
 - D 波动过程中,波速是质点振动的速度
- 5、已知氢气摩尔质量为 2g/mol, 氦气的摩尔质量为 4g/mol. 质量与温度均相同的氢气和 氦气的内能之比为
 - A 5:3 ; B 2:1 ; C 1:1 ; D 10:3
- 6、关于温度与压强,下列说法错误的是
 - A 分子定向运动动能越大,温度越高;
 - B 温度是大量分子无规则热运动激烈程度的量度;
 - C 分子的平均平动动能越大, 单位体积中的分子数越多, 压强越大;
 - D 少量分子没有温度意义.
- 7、在温度相同的情况下,氢气与氧气的最概然速率之比为

A 1:4 ; B 1:16 ; C 4:1 ; D 16:1

- 8、某一房间内的气体可视为理想气体,在压强不变的情况下,若温度增加为原来的2倍, 气体分子数变为原来的
 - A 0.5 倍; B 2 倍; C 4 倍;
- D 1倍
- 9、1 摩尔温度为 $127^{\circ}C$ 的氦气与 1 摩尔温度为 $-33^{\circ}C$ 的氧气混合,设混合过程中没有

能量损失,混合后的温度为

A 300K:

B 27K: C 0K:

D 320K

10、在温度为T的平衡态下,氧气分子的平均平动 动能和平均动能分别为

A $\frac{3}{2}kT = \frac{3}{2}kT$; **B** $\frac{3}{2}kT = \frac{5}{2}kT$;

C
$$\frac{3}{2}RT = \frac{5}{2}RT$$
; D $\frac{3}{2}RT = \frac{3}{2}RT$

11、气体经历如图所示的一个循环过程,在这个循环中,

气体从外界吸收的净热量为

A 300J ; B 900J ; C -900J ; D 不能确定

12、一卡诺热机,低温热源的温度为 $27^{\circ}C$,高温热源的温度为 $227^{\circ}C$,其效率为

A 60%

B 12%

C 40%

D 88%

13、一瓶氦气和一瓶氦气密度相同,分子平均平动动能相同,而且它们都处于平衡状态, 则下列几种情况正确的是

- A 温度相同、压强相同:
- B 温度相同,但氦气的压强大于氦气的压强;
- C 温度、压强都不相同;
- D 温度相同,但氦气的压强小于氮气的压强

14、温度为 100℃、压强为 1atm 的 2mol 刚性双原子分子理想气体, 经历绝热过程温度 降为40℃,则该过程中气体对外所做的功为

A -90R

B 90R

C -300R D 300R

15、压强为 10^5 Pa, 体积 10^{-3} m 的氮气,在等温过程中体积膨胀为原来的 2 倍,在该过程 中气体吸收的热量为

A 250 ln 2

B $100R \ln \frac{1}{2}$ **C** $100 \ln \frac{1}{2}$

D 100 ln 2

得分

二、填空题(共5小题,每题4分,共计20分)

1、一机械波的波函数为 $y = A\cos(Bt + Cx)$, 其波速为

- 2、一机械波的波函数为 $y=3\cos(4\pi t-\frac{\pi}{2}x+\pi)$, $x_2=12m$ 处质点超前于 $x_1=10m$ 处质点的相位为
- 3、一瓶子以速率 ν 匀速运动,装有质量为 m、体积为 V 的刚性单原子分子理想气体。若瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,热平衡后该气体的压强增加了______.
- 4、如图为氧气经历的循环过程,其中在 bc 过程中气体对外 所做的功为______.
- 5、1mol 某种理想气体在增加相同温度的情况下,经历等体过程所吸收的热量,是其经历等压过程所吸收热量的 $\frac{3}{5}$ 倍,

得分

则该气体的摩尔热容比 // =

三、计算题(共2小题,每题10分,共计20分)

1、一平面简谐波沿 x 轴负向传播,周期为 4.0s,已知 t=0s 时刻的波形图,试写出该波的波函数.

2、如图所示, 1mol 氮气所经历的循环过程, 其中 ab 为等温线, 温度为 400K, 求: (1)ca、ab、bc 过程中气体从外界吸收的热量分别为多少?(已知: ln2=0.7; R=8.3J/mol.K

(2) 循环效率.