Project 2: CORDIC

Author: Jason Yuan

Student ID: A69042479

Github Repo: https://github.com/jas0xf/pp4fpgas-project2

Q1

(a) — Floating-point CORDIC (vectoring mode), rotations = 10...20

ROTATIONS	CLOCK PERIOD (NS)	LATENCY (CYCLES)	INTERVAL (CYCLES)	THROUGHPUT (MHZ)	BRAM_18K	DSP	FF	LUT	RMSE(R)	RMSE(THETA)
10	7.29	194	195	0.703	0	10	1752	2929	0.000000800	0.001373779960
12	7.29	220	221	0.621	0	10	1752	2929	0.00000065	0.000274910999
14	7.29	246	247	0.555	0	10	1752	2929	0.000000129	0.000081368569
16	7.29	272	273	0.502	0	10	1754	2931	0.000000129	0.000017025930
18	7.29	298	299	0.459	0	10	1754	2929	0.00000129	0.000004583768
20	7.29	324	325	0.422	0	10	1754	2929	0.00000129	0.000000372390

(c) At what number of rotations does the accuracy stop noticeably improving in the plot?

From the plots, RMSE(r) stops noticeably improving at ~14 rotations (it plateaus around $\approx 1.29 \times 10^{-7}$ thereafter). RMSE(θ) does not show a clear plateau up to 20 rotations

 $\mathbf{Q}\mathbf{2}$

(a)

VARIABLES	INTERGER BITS
X	3
у	3
r	2
theta	3

 $K \ converges \ to \ 1.647, \ r \le sqroot(2), \ so \ maximum \ x,y \le 1.647 \ * 1.414$

 $r \le sqroot(2), r \le 1.414$

theta $\in [-\pi, \pi)$

cum_theta:

 $\sum arctan(2^-i)\approx 1.7433$

 $cum_theta \in [-\pi - 1.7433, \, \pi + 1.7433) \approx \pm 4.885$

but we can constraint cum_theta's range in the for loop to keep it within $[-\pi,\pi)$

(b) - ap_fixed sweep (total bits = 8, 12, 16, 20, 24, 32)

Table

TOTAL BITS	CLOCK PERIOD (NS)	LATENCY (CYCLES)	INTERVAL (CYCLES)	THROUGHPUT (MHZ)	BRAM_18K	DSP	FF	LUT	RMSE(R)	RMSE(THETA)
8	7.073	45	46	3.074	0	0	123	528	1.349954e- 01	2.476855e-02
12	6.163	45	46	3.527	0	3	186	501	1.990143e- 02	7.838610e-03
16	6.792	46	47	3.133	0	3	264	682	1.664304e- 03	8.657080e-04
20	6.814	46	47	3.122	0	3	332	793	1.607916e- 04	4.470670e-05
24	6.918	46	47	3.076	0	6	398	976	1.144594e- 05	6.520730e-06
32	7.160	66	67	2.085	0	12	1025	1257	4.515860e- 08	6.172185e-07

Plots

(c) — Tables quantization sweep (W = 4, 8, 12, 16, 20, 32)

Table.

TABLE BITS (W)	CLOCK PERIOD (NS)	LATENCY (CYCLES)	INTERVAL (CYCLES)	THROUGHPUT (MHZ)	BRAM_18K	DSP	FF	LUT	RMSE(R)	RMSE(THETA)
4	7.168	45	46	3.033	0	1	229	639	4.499e- 03	1.806e-01
8	7.168	45	46	3.033	0	3	253	658	9.437e- 04	1.123e-02
12	7.168	45	46	3.033	0	3	277	677	9.437e- 04	2.056e-03
16	7.168	45	46	3.033	0	3	301	697	9.437e- 04	1.163e-03
20	7.168	45	46	3.033	0	3	325	725	9.437e- 04	1.791e-03
32	7.168	65	66	2.114	0	5	680	902	9.437e- 04	2.033e-03

Plot

(a) — Add/Shift CORDIC

TOTAL BITS	CLOCK PERIOD (NS)	LATENCY (CYCLES)	INTERVAL (CYCLES)	THROUGHPUT (MHZ)	BRAM_18K	DSP	FF	LUT	RMSE(R)	RMSE(THETA)
8	6.518	46	47	3.264	0	0	150	526	2.269e- 01	3.772e-01
12	7.208	45	46	3.016	0	1	178	551	1.297e- 02	3.099e-02
16	7.168	45	46	3.033	0	1	257	700	5.884e- 04	1.749e-03
20	5.860	46	47	3.631	0	1	314	822	8.365e- 05	1.520e-04
24	6.540	46	47	3.253	0	2	368	968	6.530e- 06	1.544e-04
32	6.912	47	48	3.014	0	4	673	1328	4.516e- 08	1.540e-04

(b) Plots

Q4

(a) LUT Table Size & Input/Output datatype:

Entries (address space): LUT index is concat(x_bits, y_bits) \rightarrow address width = wx + wy \rightarrow

#entries =

$$2^{(W_x + W_y)} \tag{1}$$

Data width per entry:

store **both outputs**: **data bits/entry** = $wr + w\theta$

Total LUT bits:

$$Mem_bits = 2^{(W_x + W_y)} \cdot (W_r + W_\theta)$$
 (2)

(the code in CORDIC LUT just serializes 2D array into 1D array)

(b) Resource usage, throughput, latency, and error vs total bits

For 7- and 8-bit, only runtime RMSE was available (synthesis not completed), so resource/latency/throughput are N/A.

BITS	LUT	FF	DSP	BRAM18K	II	LATENCY (CYCLES)	THROUGHPUT (MSPS)	RMSE(R)	RMSE(Θ)
4	122	11	0	2	3	2	58.40	0.07276	1.02194
5	124	13	0	2	3	2	56.08	0.03879	0.74169
6	128	15	0	4	3	2	55.91	0.02338	0.53166
7	_	_	_	_	_	_	-	0.02309	0.05105
8	_	_	_	_	_	_	_	0.02309	0.05105

(c) Resource utilization vs total bits

[Only 4–6 bit points appear (no 7/8 synth).]

(d) RMSE vs total bits

(e) Advantages and disadvantages of CORDIC vs LUT

Advantages (CORDIC): precision improves with additional iterations rather than exponentially growing table size

Disadvantages (CORDIC): iterative nature creates a throughput—area trade-off (higher throughput needs deeper pipelining/unrolling), fixed-point micro-rotations accumulate quantization error that improves only as bit-width/iterations increase, and careful scaling/range handling is required; by contrast, a LUT can deliver one-cycle results if sufficient BRAM/ports are available for the target resolution.