

Seminar Group 6 Team 5 Revitalizing LinkedIn:

A Machine Learning Approach to Enhance User Experience and Engagement

Jiang Lei (U2121557B)
Toh Jing Qiang (U2121442H)
David Tey Bo Yuan (U2121810J)
Nagammai Senthil Kumar (U2120146L)
Fong Ye Xuan (U2120767B)

Business Problem

Current Situation of the Labour Market

Current Situation of the Job Market

- Volatile Job Market characterized by constant changes in job requirements
- ➤ 102,000 employees laid off from U.S. based tech companies in 2023 (Ruby, 2023)

Gap between Available Talents & Demand

Unemployment
rate at **3%**vs
Number of Job
vacancies at **104 500**

Job Scams

More than **3500** instances of job scams recorded in 2022, leading to a loss of more than \$58 million.

Business Problem

LinkedIn's Position in Current Market

Business Opportunity

- Many layoffs in the job market
- Increase in the number of job seekers & job vacancies
- Job seekers struggle to match their skills with changing job requirements
- Golden opportunity for LinkedIn to address the gap & boost its business

Annual Job Vacancies (MOM, 2023)

Threat

Post-Covid

Limited in-person interactions has led to shift in remote working and rise of online job searching

Online Job Searching

Provides access to a wide range of job postings online

Vulnerable to Job Scams

70.8 million cases of job scams Losses of over \$1.6 million (Zamost & Khorram, 2022)

Business Problem

Business Opportunity for LinkedIn

Security

Safeguard users

Innovation

Stand out from competitors

Effectiveness

Streamline recruitment of passive job seekers

LinkedIn

More adaptable to industry trends amidst the ever changing job market

Competitiveness (1)

Gain a competitive edge against its competitors

IntelliLink - Unified Analytical Solution

For Enhancing Security, Innovation & Effectiveness

Innovation

Effectiveness

Current Solution

Current system mainly flags out **suspicious accounts**

Currently users are encouraged to share **industry news**

Currently only active job seekers are more visible to recruiters through "open to work" feature

Gap

System may **leave** sophisticated scams **undetected**

Users must **navigate** changing job market on their **own**

70% of workforce are passive job seekers having in-demand skills

Proposed Solution

Automate detection process by **directly** flagging suspicious job postings

Offer **meaningful metrics** on the market trend

Headhunter feature to tap the untapped pool of talents - passive jobseekers

Overview of IntelliLink Security **Fraudulent Job Listing Filter** IntelliLink_® **Passive Jobseeker Industry Trend**

Innovation **Effectiveness**

Forecasting

Prediction

The Technology Behind IntelliLink

Fraudulent Job Listing Filter

Security

Industry Trend Forecasting

Innovation

Passive Jobseeker Prediction

Efficiency

Modelling Methodology

Industry Standard & Domain Driven

Data Collection

From Reputable Sources [Kaggle, SingStat, WorldBank]

Data Cleaning & Processing

Domain Driven

Data Exploration

Understand Data and Obtain Insights

Model Training & Optimization

Feature Selection, Hyperparameter Tuning, Feature Importance

Model Evaluation

Select best model based on Accuracy & Recall Score

Key Technology

Natural Language Processing

a) Dataset Introduction

Fraudulent Job Listing Prediction

Company Information

Company Profile
Has Company Logo
Industry

Job Title

Job Description

Location

Department

Salary Range

Requirements

Benefits

Telecommuting

Has Questions

Employment Type

Required Experience

Required Education

Function

Text Data

Combination of company information and job

illiorillation and joi

information

b) Word Cloud of Job Listings

Non-fraudulent Job Listing

Common words

"Full time", "bachelor's degree", "Information Technology", and "Senior"

Fraudulent Job Listing

Common words

Entry level", "data entry", "high school", "support", "project", and "design"

c) Model Comparison

Oversample Train Dataset (SMOTE)

- Incentivise model to predict minority, fraudulent cases

Count & TF-IDF Vectorization

- Make text data structured

	Random Forest (CV)	Support Vector Classifier (TV)	Logistic Regression (TV)	Multinomial Naïve Bayes Classifier (TV)
Overall Accuracy (> 85%)	26.04%	88.50%	97.26%	89.99%
False Negative Rate (< 30%)	0.0088%	69.16%	55.07%	26.43%
	Very Low Accuracy & Very Low FNR	High Accuracy & High FNR	Very High Accuracy & High FNR	High Accuracy & Fairly Low FNR

d) Multinomial Naïve Bayes Classifier with TF-IDF Vectorization - Top Fraudulent Words

Top Fraudulent Words

Ranking	Words
1	Jacksonville job description administrative
2	Restaurant manager awarded
3	Office manager pl
4	Portland sales need
5	Philadelphia administrative 21
6	Welcome require full
7	Referral director product
8	Tampa seek individual
9	Market us md
10	Even faster full

e) Classification Example 1

Job Listing 1 Company: Food52

Title: Marketing Intern

Location: US, NY, New York **Department:** Marketing

Salary: -

Company Profile:

We're Food52, and we've created a groundbreaking and award-winning cooking site.

Description:

Reproducing and/or repackaging existing Food52 content for a number of partner sites, such as Huffington Post, Yahoo, Buzzfeed, and more in their various content management systems. Researching blogs and websites for the Provisions by Food52 Affiliate Program...

Not Fraudulent

Automatically Flags Suspicious
Job Listings

2

Provides Insights on Fraudulent Listings

- To make informed decision

Collect feedback from employee

- To verify classification result
- Enhance model for future prediction

e) Classification Example 2

Job Listing 2 Company: ???

Title: ADMINISTRATIVE & OFFICE ASSISTANT

Location: US, TX, Houston **Department:** Unknown

Salary: -

Company Profile: -

Description:

An exciting growth opportunity for an assistant, who will assist in the daily operations (customer service, office assistant, administrative tasks). Ability to multitask, prioritize and work on a very dynamic and changing environment. Excellent communication skills, written and oral. Attitude to Solve problems, work INDEPENDENTLY and minimum supervision.

Fraudulent

Provides Insights on Fraudulent Listings

To make informed decision

Collect feedback from employee

- To verify classification result
- Enhance model for future prediction

e) Classification Example 2

Job Listing 2 Company: ???

Title: ADMINISTRATIVE & OFFICE ASSISTANT

Location: US, TX, Houston **Department: Unknown**

Salary: -

Company Profile: -

Description:

Welcome. This is an **exciting** growth opportunity for an assistant, who will assist in the daily operations (customer service, office assistant, administrative tasks). **Entry level** role perfect for **high school** students. Attitude to Solve problems, work INDEPENDENTLY and **minimum** supervision. Multiple interesting **projects** to choose from.

Confirm

OR

Ignore

Fraudulent

- To make informed decision

Collect feedback from employee

- To verify classification result
- Enhance model for future prediction

2. Innovating with Industry Demand Forecasting Key Technology

Time Series Forecasting

a) Dataset Overview

01 Job Vacancy Singapore Collected from Government Website **Time Range** 2006 April – 2022 July by guarter Industry 43 industries **Job Vacancy**

02

Industry **Skill** Demand Dataset

Global Context

Collected from WorldBank

Time Range

2015 - 2019 by year

Industry

70 industries

Skill Rank

b) Development of Analytics Tool on Job Vacancy Dataset

	ARIMA	Holt-Winters	Taylor Expansion
RMSE	382.84	1485.79	452.39
MAPE	0.2107	2.6021	0.2499
MDA	0.6366	0.4536	0.6341
Decision	NOT chosen due to invalid assumption	NOT chosen due to worst performance	Chosen due to interpretability & good performance
	Forecasts from ARIMA(1,1,0)		

Forecasted Plot

c) Model Evaluation

Assumptions & Interpretability

ARIMA

Assumes stationary underlying process e.g., effect of COVID-19 resulting in the coefficients estimated by the ARIMA model irrelevant by fitting on past data

Taylor Expansion

Flexible & interpretable, allow users to incorporate external factors

e.g., changes in government policies or natural disaster

Example

1. Context: Cloud services industry experienced a **boom** in the last year

- 2. Model predicts next year will have a similar boom, thus more job vacancies are expected
- 3. External information: Investment in start-ups been drying up due to a slowdown in technological breakthroughs
- 4. User can update his prior belief if he thinks that the underlying model assumption that the trend will continue is invalidated by external information

d) Project Job Vacancy Demand to Skill Demand

Exclusive Insights Sharing

 Publish reports on the most in-demand skills for different industries

Skill development

- Develop relevant training courses on Linked Leaning
- Seize business opportunities

Market Analysis

 Used by companies to inform their hiring and training strategies

3. Enhancing Effectiveness through Passive Jobseeker Identification Key Technology

Machine Learning Classification

a) Dataset Introduction

Job Seeker Prediction - willingness of changing jobs

Gender
City Code
City Development Index

Education History

Enrolled University

No enrollment/ part-time/ full-time

Major Discipline

Arts/ Business/ Humanities/ STEM

Level of Education

Highest level of education attainment

Employment History

Total Training Hours

Years of experience

Relevant Experience

Last New Job

No. of years between previous and current job

Company Size

Company Type

b) Model Comparison

Hyperparameter Tuning

- Looking for best performer

Reduced Features (8)

- Adapt to incomplete user profiles in business context.

Cross Validation

- Ensure Consistency & Stability

	Support Vector Machine	Logistic Regression	Classification & Regression Trees	Extreme Gradient Boosting	Random Forest
Overall Accuracy (> 90%)	79.95%	86.56%	90.08%	91.44%	91.14%
False Negative Rate	21.19%	12.37%	18.17%	17.32%	16.47%
Recall	78.81%	87.63%	81.83%	82.68%	83.53%
	Worst FNR Lowest Accuracy & Lowest Recall	Best FNR Low Accuracy & Highest Recall	Poor FNR High Accuracy & Fair Recall	Poor FNR Highest Accuracy & Fair Recall	Fair FNR High Accuracy & Fair Recall

c) Selected Model Evaluation - random forest on 8-feature dataset

Analytic Insights

Stable performance with low standard deviation across different folds

Best Performer on both **initial** and **selected** dataset

Expected to perform well on **unseen** data when **trainset size increases**

Business Implication

Recruiter can confidentially count on the model's prediction of job seekers who are most likely to accept their job offers

Despite incomplete profile information, the model can robustly predict whether he/she is a potential jobseeker

To gather more data, recruiters be prompted to select whether the predicted user is a genuine jobseeker, to feedback model

d) What user profile information should be prioritized for collection?

- 1 Geographical Data
 - <u>City development index</u>
 (Most significant predictor)
- 2 Education Experience
 - Enrolled university type
 - Education level

3 Employment History

- Previous work experience
- Current company size
- Type of company
- Hours of training
- Time elapsed since last job change

Decision:

- Incorporate a dynamically updated dataset for mapping location to development index
- Remind users of updating their locations

Decision:

- Ensure the accuracy of users' educational profiles
 - Detect overlapping timeline
 & mismatched information.
 - Provide supporting educational documentation if necessary

Decision:

- Verify job experiences through company email
- Monitor for suspicious activity or inconsistencies in employment history

e) Prediction Example

Profile 1

Gender: Male

Location: New York City

Enrolled university type

Education level

Previous work experience

Current company size

Type of company

Hours of training

Time elapsed since last job change

Jobseeker Score

Background Information

Full-time

Graduate

14 years

500-999

Private Limited

148

1 year

98% (Recommended to Recruiter)

Profile 2

Gender: Female Location: Portland

Background Information

Part time

Graduate

19 years

5000-9999

Private Limited

141

> 4 years

54% (In the rec list, but not in the front page)

Jiang Lei

3. Enhancing Effectiveness through Passive Jobseeker Identification

e) Prediction Example

Gender: Male

Location: New York City

Enrolled university type

Education level

Previous work experience

Current company size

Type of company

Hours of training

Time elapsed since last job change

Jobseeker Score

Background Information

Full-time

Graduate

14 years

500-999

Private Limited

148

1 year

98% (Recommended to Recruiter)

1

Recommendation Priority

- Recommend profiles for recruiters with prediction probability **>0.95**
- Sort recommendation by probability

2

Reveal Details for Recruiter

- To make informed decision combined with recruiter's experience
- Tailored offer: an experienced individual who has recently started a new job and may be seeking improved compensation packages

Collect feedback from recruiter to verify prediction result

- "May I have more details about this position" -> genuine jobseeker
- No / Negative response -> wrongly prediction
- Feedback to model for enhancements

How will IntelliLink achieve the goals outlined in LinkedIn's Opportunity Statement?

Jobseeker

Recruiter

Business Implementation

1: Safeguard Users from Job Scam

- Auto-detected fraudulent listings were sent to the admin for prompt review
- Suspicious keywords highlighted for easy identification
- If an account has three flagged posts, it will be suspended.
- **Retrain** the model on misclassified 04 listings

Rigorously improve model's capability to effectively combat the ceaseless influx of iob scams

Business Implementation

2: Provide Exclusive Industry Insights & Tailored Skill Training

Provide insight into future skill demand

- Market understanding for jobseekers
- Adaptive recruitment strategies for recruiters

Offer relevant training courses

- Remain resilient in an ever-evolving industry by constant upskilling
- Enhance course attractiveness & introduce new courses

Optimize Forecasting Model

 Collect employer feedback to supplement forecasting model (e.g., skill demand accuracy, pre-planning effectiveness).

Business Implementation

3: Premium Head-Hunting Service

- Premium Head-Hunting feature for **Recruiter**
- Recommend potential job seekers identified by model, **sorted** by predicted probability.
- Provide **insights** on reasons for a candidate's job change willingness.
- Understand the candidate's motivations and provide a more tailored offer
- Negative & Proactive candidates will be feedbacked to model for enhancement - After reach out, the recruiter checks if candidate seeks job change and feedback to system

Expected Business Outcomes

Address common recruiting pain points

- Secure 58 million companies &
 57% of job seekers from scams
- Bridge talent gap by offering indemand upskilling courses.

02

Enhance LinkedIn's Work Efficiency

- Automate detection of suspicious job postings
- Ensure efficiency despite a surge in listings, seekers, and recruiters.

03

Boost Revenue Stream

Headhunting premium feature (new)

- Improve the success rate of hiring highly qualified candidates
- Increase Recruiter Lite subscription rates

LinkedIn Learning

- Increase course enrolment by tapping into a large untapped user base
- Expand business by providing more relevant courses based on forecasted in-demand skills
- Partner with employers.

Limitations and Concerns

- Individuals from certain background **more** likely to be **visible** to recruiters.
- Only **certain** types of scams identified

Mitigating Strategies

- Constantly collect & update data
- Ensuring dataset is **diverse** & **representative**
- Monitor & gather user feedback regularly

Limitations and Concerns

Privacy Concerns

Example

- Individuals from certain background **more** likely to be **visible** to recruiters.
- Only **certain** types of scams identified

- Vast amount of user data collected to predict if the user is a job seeker
- Risk of data leakage

Mitigating Strategies

- Constantly collect & update data
- Ensuring dataset is **diverse** & **representative**
- Monitor & gather user feedback regularly

- Only collect **necessary data**
- Ensure **transparency** in data collection

Limitations and Concerns

Limitations

Privacy Concerns

Example

- Individuals from certain background more likely to be visible to recruiters.
- Only **certain** types of scams identified

- Vast amount of user data collected to predict if the user is a job seeker
- Risk of data leakage

- Users entering **incorrect** information
- Users **failing** to **update** their profiles

Mitigating Strategies

- Constantly collect & update data
- Ensuring dataset is **diverse** & **representative**
- Monitor & gather user feedback regularly
 - Only collect necessary data
 - Ensure **transparency** in data collection

- Provide more detailed instructions for user input
- Outlier detection to filter potentially inaccurate information

How can our models be further improved?

Enhancing Model Accuracy

Prediction Model	Enhancements
Fraudulent Job Listing Filter	 Utilise additional predictor variables Hyperparameter tuning to maximise models' capabilities Alternative word embedding technique - Word2Vec
Industry Trend Forecasting	 Increase number of data sources Utilise more sophisticated time series models
Passive Jobseeker Prediction	 Take advantage of LinkedIn's extensive user database Incorporate more pertinent and useful data to provide greater transparency in prediction

Future Improvements

Further Considerations

Localising Data to LinkedIn

- Retrain the machine learning models using LinkedInspecific data
- Description 2 Enhances the models' prediction accuracy
- Results are more **reliable** and **applicable** to LinkedIn's context

Improving Users' Trust

- Machine Learning models are "black boxes"
- Users may find it difficult to trust the predictions
- Implement a **model**interpreter, such as **SHAP**(SHapley Additive explanation)

Detecting and Removing Fake Profiles and Information

- O1 Presence of fake profiles and inaccurate information
- Detection can mitigate impact of false or misleading data
- Ensure that IntelliLink's models perform accurately and reliably
- 04 Maintain LinkedIn's **credibility**

Ending Remarks

- + Advantages
- + Enhancements

Machine Learning Models

Fraudulent
Job Listing Filter

Industry Trend Forecasting

Passive Jobseeker Prediction

Enhanced Recruiting Experience

Increased Business
Profits

Improved Efficiency

Strengthened Recruitment Security

