МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. Баумана

Кафедра «Систем обработки информации и управления»

ОТЧЕТ

Домашнее задание по курсу "Методы машинного обучения"

Москва - 2020

ИСПОЛНИТЕЛЬ: Горбовцова К.М. ФИО					
группа ИУ5-24М					
			подпись		
11 -		II 	2020 г.		
ПРЕПОДАВАТ	Ē	ЕЛЬ:			
			ФИО		
			подпись		
II -		II 	2020 г.		

Проект по анализу данных

Горбовцова Ксения ИУ5-24М

```
In [0]: import pandas as pd
        import matplotlib.pyplot as plt
        import numpy as np
        import seaborn as sns
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/ testing.py :19: FutureWarning: pandas.util.testing is deprecated. Use the funct ions in the public API at pandas.testing instead.

import pandas.util.testing as tm

В качестве набора данных будем использовать датасет с платформы Kaggle (insurance) Описание данных:

- 1) Age возраст
- 2) bmi индекс массы тела (рассчитывается как отношение массы к квадрату роста человека)
- 3) Дети количество детей (которые должны быть покрыты страховкой)
- 4) Курение Является ли человек курильщиком или нет
- 5) Sex пол человека (женский/мужской)
- 6) Region округ, в котором живет человек
- 7) Charges стоимость медицинской страховки

Будем решать задачу регрессии, предсказывая стоимость страховки в зависимости от других факторов

Посмотрим, что представлено в данных

In [0]: from google.colab import drive
 drive.mount('/MMO')

th?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.goog leusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&r esponse_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fa uth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20 https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20ht tps%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly (https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6b n6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_u ri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly)

Go to this URL in a browser: https://accounts.google.com/o/oauth2/au

Enter your authorization code:
.....

Mounted at /MMO

In [0]: data=pd.read_csv("/MMO/My Drive/insurance.csv")

In [0]: data.shape

Out[4]: (1338, 7)

In [0]: data.head()

Out[5]:

	age	sex	bmi	children	smoker	region	charges
0	19	female	27.900	0	yes	southwest	16884.92400
1	18	male	33.770	1	no	southeast	1725.55230
2	28	male	33.000	3	no	southeast	4449.46200
3	33	male	22.705	0	no	northwest	21984.47061
4	32	male	28.880	0	no	northwest	3866.85520

In [0]: data.describe()

Out[6]:

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000	63770.428010

In [0]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 7 columns):

#	Column	Non-N	Null Count	Dtype
0	age	1338	non-null	int64
1	sex	1338	non-null	object
2	bmi	1338	non-null	float64
3	children	1338	non-null	int64
4	smoker	1338	non-null	object
5	region	1338	non-null	object
6	charges	1338	non-null	float64
dtype	es: float6	4(2),	int64(2),	object(3)

memory usage: 73.3+ KB

В датасете нет пропущенных значений, поэтому шаг с восстановлением данных и удалением пропускаем

Проверим корреляцию между признаками

```
In [0]: corr = data.corr(method="pearson")
```

In [0]: corr

Out[9]:

	age	bmi	children	charges
age	1.000000	0.109272	0.042469	0.299008
bmi	0.109272	1.000000	0.012759	0.198341
children	0.042469	0.012759	1.000000	0.067998
charges	0.299008	0.198341	0.067998	1.000000

Построим тепловую карту корреляции для более наглядного представления

In [0]: sns.heatmap(corr, square=True, vmin=-0.2, vmax=0.8,cmap="YlGnBu",annot:

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f05cf657400>

Графы Sex, Region и smoker не являются числовыми, поэтому они не включены в корреляционную матрицу. Признаки Sex и Smoker - бинарные, поэтому можно произвести кодировку бинарных признаков

In [0]: from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

le.fit(data.sex)

data['sex'] = le.transform(data.sex)

le.fit(data.region)

data['region'] = le.transform(data.region)

le.fit(data.smoker)

data['smoker'] = le.transform(data.smoker)

data

Out[11]:

	age	sex	bmi	children	smoker	region	charges
0	19	0	27.900	0	1	3	16884.92400
1	18	1	33.770	1	0	2	1725.55230
2	28	1	33.000	3	0	2	4449.46200
3	33	1	22.705	0	0	1	21984.47061
4	32	1	28.880	0	0	1	3866.85520
1333	50	1	30.970	3	0	1	10600.54830
1334	18	0	31.920	0	0	0	2205.98080
1335	18	0	36.850	0	0	2	1629.83350
1336	21	0	25.800	0	0	3	2007.94500
1337	61	0	29.070	0	1	1	29141.36030

1338 rows × 7 columns

In [0]: corr = data.corr(method="pearson") corr

Out[12]:

	age	sex	bmi	children	smoker	region	charges
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.299008
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.057292
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.198341
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.067998
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.787251
region	0.002127	0.004588	0.157566	0.016569	-0.002181	1.000000	-0.006208
charges	0.299008	0.057292	0.198341	0.067998	0.787251	-0.006208	1.000000

In [0]: sns.heatmap(corr, square=True, vmin=-0.2, vmax=0.8,cmap="YlGnBu",annot

Out[13]: <matplotlib.axes._subplots.AxesSubplot at 0x7f05ca8f9b00>

Построим графики, чтобы понять структуру данных

In [0]: sns.pairplot(data)

Out[14]: <seaborn.axisgrid.PairGrid at 0x7f05dab01208>

Судя по корреляционной матрице мы можем решать задачу регрессии для предсказания стоимости страховки. При этом пол и регион проживания являются абсолютно не значимыми данными, поэтому ими можно пренебречь

In [0]: data = data.drop(['sex', 'region'], axis=1)
 data

Out[15]:

	age	bmi	children	smoker	charges
0	19	27.900	0	1	16884.92400
1	18	33.770	1	0	1725.55230
2	28	33.000	3	0	4449.46200
3	33	22.705	0	0	21984.47061
4	32	28.880	0	0	3866.85520
1333	50	30.970	3	0	10600.54830
1334	18	31.920	0	0	2205.98080
1335	18	36.850	0	0	1629.83350
1336	21	25.800	0	0	2007.94500
1337	61	29.070	0	1	29141.36030

1338 rows × 5 columns

Метрики качества

В качестве метрик качества мы будет использовать среднюю квадратичную ошибку, среднюю абсолютную ошибку и коэффициент детерминации

Средняя квадратичная ошибка - измеряет среднее из квадратов ошибок, то есть, средний квадрата разность между оцененным ценности и то, что оценивается.

Средняя абсолютная ошибка - мера разности между двумя непрерывными переменными.

Коэффициент детерминации - статистическая мера согласия, с помощью которой можно определить, насколько уравнение регрессии соответствует реальным данным.

```
In [0]: from sklearn.metrics import mean_absolute_error, mean_squared_error, r:
In [0]: target = data['charges']
data = data.drop(['charges'], axis=1)
```

Модели

В качестве моделей регрессии выберем модель Ridge, KneighborsRegressor и ансамблевую модель GradientBoostingRegressor

Ridge - модель реализует регрессионную модель, где функция потерь - это линейная функция наименьших квадратов, а регуляризация задается I2-нормой.

KneighborsRegressor - регрессия на основе k-ближайших соседей, прогнозируется локальной интерполяцией целей, связанных с ближайшими соседями в обучающем наборе.

GradientBoostingRegressor - строит аддитивную модель поэтапно; это позволяет оптимизировать произвольные дифференцируемые функции потерь. На каждом этапе дерево регрессии соответствует отрицательному градиенту заданной функции потерь.

```
In [0]: from sklearn.linear_model import Ridge
    from sklearn.neighbors import KNeighborsRegressor
    from sklearn.ensemble import GradientBoostingRegressor
    from sklearn import preprocessing
```

Проведем нормализацию данных

```
In [0]: data = preprocessing.scale(data)
```

Формирование обучающей и тестовой выборки

разделим выборку в пропорции 1:4

Базовое решение для всех моделей

```
In [0]: def quality(test, predicted):
    print(" Метрики качества:")
    print(" Средняя квадратичная ошибка: "+ str(mean_squared_error
    print(" Средняя абсолютная ошибка: "+ str(mean_absolute_error()
    print(" Коэффициент детерминации: "+str(r2_score(test, predicted));
```

```
models = [Ridge(), KNeighborsRegressor(), GradientBoostingRegressor()]
In [0]:
        models
Out[26]: [Ridge(alpha=1.0, copy X=True, fit intercept=True, max iter=None,
               normalize=False, random state=None, solver='auto', tol=0.001)
         KNeighborsRegressor(algorithm='auto', leaf size=30, metric='minkows
        ki',
                            metric params=None, n jobs=None, n neighbors=5,
        p=2,
                            weights='uniform'),
         GradientBoostingRegressor(alpha=0.9, ccp alpha=0.0, criterion='frie
        dman mse',
                                  init=None, learning rate=0.1, loss='ls',
        max depth=3,
                                  max features=None, max leaf nodes=None,
                                  min impurity decrease=0.0, min impurity s
        plit=None,
                                  min samples leaf=1, min samples split=2,
                                  min weight fraction leaf=0.0, n estimator
        s=100,
                                  n iter no change=None, presort='deprecate
        d',
                                  random state=None, subsample=1.0, tol=0.0
        001,
                                  validation fraction=0.1, verbose=0, warm
        start=False)]
In [0]: | for model in models:
            print("======="")
            print("Обучение модели "+type(model). name )
            model.fit(X train, y_train)
            predicted = model.predict(X test)
            plt.figure(figsize=(4, 4))
            plt.scatter(y test,predicted)
            plt.title(type(model).__name__)
            plt.xlabel('Actual value of Charges')
            plt.ylabel('Predicted values of charges')
            plt.tight layout()
            quality(y_test, predicted)
         _____
        Обучение модели Ridge
          Метрики качества:
             Средняя квадратичная ошибка: 35654890.04844849
             Средняя абсолютная ошибка: 4037.9531143137806
             Коэффициент детерминации: 0.7611552968853786
           Обучение модели KNeighborsRegressor
          Метрики качества:
             Средняя квадратичная ошибка: 21908660.31691201
             Средняя абсолютная ошибка: 2590.3437283716416
```

Коэффициент детерминации: 0.853238434842414

Обучение модели GradientBoostingRegressor Метрики качества:

Средняя квадратичная ошибка: 18553165.947733704 Средняя абсолютная ошибка: 2380.7973660628872 Коэффициент детерминации: 0.8757161947042497

Подбор гиперпараметров моделей

```
In [0]: from sklearn.model_selection import GridSearchCV
    from sklearn.model_selection import cross_val_score, cross_validate
```

Подбор гиперпараметров для модели Ridge

```
In [0]: alphas = np.array([1,0.1,0.01,0.001,0.0001,0])
        ridge = Ridge()
        grid = GridSearchCV(estimator=ridge, param grid=dict(alpha=alphas))
        grid.fit(X train, y train)
        print(grid)
        print(grid.best score )
        print(grid.best_estimator_)
        GridSearchCV(cv=None, error score=nan,
                     estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=T
        rue,
                                     max iter=None, normalize=False, random
        state=None,
                                     solver='auto', tol=0.001),
                     iid='deprecated', n_jobs=None,
                     param grid={'alpha': array([1.e+00, 1.e-01, 1.e-02, 1.e
        -03, 1.e-04, 0.e+00])},
                     pre dispatch='2*n jobs', refit=True, return train score
        =False,
                     scoring=None, verbose=0)
        0.7419894521514655
        Ridge(alpha=1.0, copy X=True, fit intercept=True, max iter=None,
              normalize=False, random state=None, solver='auto', tol=0.001)
```

Подбор параметров для KNeighborsRegressor

```
In [0]: grid params = {
             'n neighbors': [3, 5, 11, 19],
            'weights': ['uniform', 'distance'],
             'metric': ['euclidean', 'manhattan']
        }
        grid = GridSearchCV(KNeighborsRegressor(), grid params, verbose=1, cv=
        grid.fit(X train, y train)
        print(grid)
        print(grid.best score )
        print(grid.best estimator )
        Fitting 3 folds for each of 16 candidates, totalling 48 fits
        [Parallel(n jobs=-1)]: Using backend LokyBackend with 2 concurrent w
        orkers.
        GridSearchCV(cv=3, error score=nan,
                     estimator=KNeighborsRegressor(algorithm='auto', leaf si
        ze=30,
                                                    metric='minkowski',
                                                    metric params=None, n job
        s=None,
                                                    n_neighbors=5, p=2,
                                                    weights='uniform'),
                     iid='deprecated', n jobs=-1,
                     param grid={'metric': ['euclidean', 'manhattan'],
                                  'n neighbors': [3, 5, 11, 19],
                                  'weights': ['uniform', 'distance']},
                     pre_dispatch='2*n_jobs', refit=True, return_train_score
        =False,
                     scoring=None, verbose=1)
        0.8280660614342764
        KNeighborsRegressor(algorithm='auto', leaf size=30, metric='euclidea
        n',
                            metric params=None, n jobs=None, n neighbors=19,
        p=2,
                            weights='uniform')
        [Parallel(n_jobs=-1)]: Done 48 out of 48 | elapsed: 1.5s finish
        ed
```

Подбор параметров для GradientBoostingRegressor

grid.fit(X_train, y_train)

```
print(grid)
print(grid.best score )
print(grid.best estimator )
GridSearchCV(cv=2, error score=nan,
             estimator=GradientBoostingRegressor(alpha=0.9, ccp alph
a=0.0,
                                                  criterion='friedman
mse',
                                                  init=None, learning
rate=0.1,
                                                  loss='ls', max dept
h=3,
                                                  max features=None,
                                                  max leaf nodes=None
                                                  min impurity decrea
se=0.0,
                                                  min impurity split=
None,
                                                  min samples leaf=1,
                                                  min samples split=2
                                                  min weight_fraction
leaf=0.0,
                                                  n estimators=100,
                                                  n iter n...e,
                                                  presort='deprecated
                                                  random state=None,
                                                  subsample=1.0, tol=
0.0001,
                                                  validation fraction
=0.1,
                                                  verbose=0, warm sta
rt=False),
             iid='deprecated', n jobs=-1,
             param_grid={'learning_rate': [0.01, 0.02, 0.03],
                          'max_depth': [4, 6, 8],
                          'n estimators': [100, 500, 1000],
                          'subsample': [0.9, 0.5, 0.2]},
             pre dispatch='2*n jobs', refit=True, return train score
=False,
             scoring=None, verbose=0)
0.8453144606561919
GradientBoostingRegressor(alpha=0.9, ccp alpha=0.0, criterion='fried
man mse',
                          init=None, learning rate=0.03, loss='ls',
max depth=4,
                          max features=None, max leaf nodes=None,
                          min_impurity_decrease=0.0, min_impurity_sp
```

```
lit=None,
                                min samples leaf=1, min samples split=2,
                                min weight fraction leaf=0.0, n estimators
       =100,
                                n iter no change=None, presort='deprecated
                                random state=None, subsample=0.9, tol=0.00
       01,
                                validation fraction=0.1, verbose=0, warm s
       tart=False)
In [0]: models = [Ridge(alpha=1),
                 KNeighborsRegressor(algorithm='auto', leaf size=30, metric='1
                           metric params=None, n jobs=None, n neighbors=11, p:
                           weights='distance'),
                 GradientBoostingRegressor(alpha=0.9, ccp alpha=0.0, criterio
                                 init=None, learning rate=0.03, loss='ls', max
                                max features=None, max leaf nodes=None,
                                min impurity decrease=0.0, min impurity spli-
                                min samples leaf=1, min samples split=2,
                                min weight fraction leaf=0.0, n estimators=1
                                 n iter no change=None, presort='deprecated',
                                 random state=None, subsample=0.9, tol=0.0001
                                 validation fraction=0.1, verbose=0, warm star
        for model in models:
           print("======="")
           print("Обучение модели "+type(model).__name__)
           model.fit(X train, y train)
           predicted = model.predict(X test)
           plt.figure(figsize=(4, 4))
           plt.scatter(y test,predicted)
           plt.title(type(model). name )
           plt.xlabel('Actual value of Charges')
           plt.ylabel('Predicted values of charges')
           plt.tight layout()
           quality(y test, predicted)
           _____
       Обучение модели Ridge
         Метрики качества:
            Средняя квадратичная ошибка: 35654890.04844849
            Средняя абсолютная ошибка: 4037.9531143137806
            Коэффициент детерминации: 0.7611552968853786
         -----
       Обучение модели KNeighborsRegressor
         Метрики качества:
            Средняя квадратичная ошибка: 24095253.54764786
            Средняя абсолютная ошибка: 2681.8263500793846
```

Обучение модели GradientBoostingRegressor Метрики качества:

Коэффициент детерминации: 0.8385909009328186

Средняя квадратичная ошибка: 18682840.31084518 Средняя абсолютная ошибка: 2499.8129984146167 Коэффициент детерминации: 0.874847533078401

_

П	~~ ~~~~				6,,,,,,,,,,
ЛУЧШ	еи оказа	иась мод	цель і ра	адиентного	оустинга

In [0]:		