A regression analysis of the Strategic Subject Algorithm

E. Sargent, esargent at hmc dot edu

November, 2019

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

History of the SSA

- Developed at the Illinois Institute of Technology in 2013, in cooperation with the Chicago Police Department.
- Ranked hundreds of thousands of Chicagoans based on their estimated likelihood of involvement in a shooting, as either as a victim or a perpetrator [1].
- Discontinued in 2019 in favor of the Crime Reduction Victimization Model (CVRM).

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Previous reporting on the SSA

- Chicago Sun Times, 2017
 - FOIA request, legal battle, release of 2017 version of Strategic Subject List (SSL)
- New York Times, 2017
 - linear regression on SSL scores
 - score mostly ($R^2 = 89\%$) reflects a person's age
- Upturn, 2017
 - linear regression on SSL scores
 - discussion of the customs notification program

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

The SSL

- Most recent version: Dec. 7, 2017
- 398,684 subjects
- 53 fields
 - 8 predictor fields, which the CPD claims are the only fields used in computing the SSL Score
 - 44 other fields including variables like race, sex, and geographical location, and SSL Score itself

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Predictors and their distributions

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Predictors and their distributions

- Unknown distribution (many outliers)
- Possibly computed from missing data

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Location

 lat/long of most recent arrest for only 224,235 subjects, or 56.24% of the total.

Sex and race

Between-group differences are slight, but statistically significant

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Modeling SSL score

• best-performing model: xgboost

Model	RMSE	Cross-validated
OLS (age only)	19.55	No
OLS	12.97	No
OLS w/ polynomial features (deg \leq 3)	12.48	No
Random Forests	12.47	Yes
XGBoost	12.38	No

Modeling SSL score (cont.)

Age is by far the most important feature

Modeling SSL score (cont.)

 Narcotic arrests, the second principal component of a principal component decomposition of the predictors, is not an input to the CVRM.

- Introduction
 - History of the SSA
 - Previous reporting on the SSA
- Exploratory Data Analysis
 - The SSL
 - Predictors and their distributions
 - The predictor TREND IN CRIMINAL ACTIVITY
 - Location, race, and gender
- Models
 - Modeling SSL score
 - Modeling TREND

Modeling TREND

- Per [4], "the 'trend' variable is the slope of a line obtained by a least-squares fit to the individuals numbers of arrests each year for the past four years."
- Data to compute this is missing
- Two approximations with our incomplete data:
 - 0 substitution
 - slope substitution

Modeling TREND (cont.)

Model	Substitution	RMSE	Cross-validated
Random model	n/a	0.5726	No
OLS	0	0.32786	No
OLS	slope	0.3135	No
OLS w/ polynomial features	0	0.2895	No
OLS w/ polynomial features	slope	0.2843	No
Random forests	0	0.2832	Yes
Random forests	slope	0.2848	Yes

For Further Reading I

J. Asher and R. Arthur, "Inside the Algorithm That Tries to Predict Gun Violence in Chicago." New York Times, 13 June 2017; https://www.nytimes.com/2017/06/13/upshot/what-an-algorithmreveals-about-life-on-chicagos-high-risk-list.html

B. Posadas, "How strategic is Chicagos 'Strategic Subjects List'? Upturn investigates." Medium, 22 June 2017; https://medium.com/equal-future/how-strategic-is-chicagos-strategicsubjects-list-upturn-investigates-9e5b4b235a7c

Chicago Data Portal, 7 December 2017; https://data.cityofchicago.org/Public-Safety/Strategic-Subject-List/4aki-r3np

For Further Reading II

- "Crime and Victimization Risk Model (CVRM)." Illinois Insitute of Technology, n.d.;
 - https://home.chicagopolice.org/wp-content/uploads/2019/01/FACT-SHEET-Crime-and-Victimization-Risk-Model-1.pdf
- "SUBJECT ASSESSMENT AND INFORMATION DASHBOARD (SAID)." Chicago Police Department, 09 January 2019. http://directives.chicagopolice.org/directives/data/a7a57b85-155e9f4b-50c15-5e9f-7742e3ac8b0ab2d3.html?hl=true
- "Crime in Chicago: Explore your community." Chicago Tribune, 01 April 2019. https://www.chicagotribune.com/news/ct-crime-in-chicago-20171114-storygallery.html
- "Gun Charge in Illinois FAQs." Robert J. Callahan: Chicago Criminal Defense Attorney, n.d.; https://www.defenselawyersite.com/gun-charge-in-illinois-faqs/

For Further Reading III

M. Dumke and F. Main, "A look inside the watch list Chicago police fought to keep secret." Chicago Sun Times, 18 May 2017. https://chicago.suntimes.com/2017/5/18/18386116/a-look-inside-the-watch-list-chicago-police-fought-to-keep-secret