TEST 1:

Purpose	Scenario	Expected Result	Notes
Demonstrate the	Initiation*	Power	The DGIs form a
capability of	SST 1: Supply	migrations take	group;
DGI: Modules	SST 2: Demand	place till the	corresponding
interact with	SST 3: Supply	DGIs converge.	LB modules
each other to			compute relative
produce the	-20, 10, -20 are		Normal once SC
expected result.	the initial SST		returns the global
	power levels		state. LB triggers
	respectively		power migration
			steps
			accordingly.

TEST 2:

Purpose	Scenario	Expected Result	Notes
Demonstrate the	Initiation*	Observe that	Significant
capability of LB	SST 1: Supply	SSTs 1 & 3 stop	change in
and SC modules:	SST 2: Demand	to "Supply"	computed
New Normal is	SST 3: Supply	while SST 2	Normal relative
computed based		starts to	to initial settings,
on dynamic	-20, 10, -20 are	"Supply".	forcing a change
values of SSTs	the initial SST		in Demand state
and convergence	power levels	The DGIs	of the SSTs.
of DGI power	respectively; use	converge to the	
levels is	the sliders to	new computed	
achieved.	change these	normal where no	
	power levels	more power	
	during a run	migrations are	
		possible.	
	Change to: 10, -		
	15, 15		
	respectively		

^{*} Initially, the Demand states are based relative to Normal =0 till the time SC module first returns the global state to LB and new Normal is computed.

TEST 3:

Purpose	Scenario	Expected Result	Notes
Demonstrate the	Initiation*	a) The group	The current setup
capability of	SST 1: Supply	reorganizes with	of DGI is such
DGI in case of	SST 2: Demand	the failed/killed	that, the activity
group	SST 3: Supply	node removed.	of the modules is
reconfiguration:		Power	restricted to
New group is	-20, 10, -20 are	migrations if	members in the
formed with an	the initial SST	any, from this	group. Leader of
elected leader	power levels	killed node	a group is
and power	respectively;	cease. Once it	responsible for
migrations are		comes back	initiation of SC
based on the	a) Kill DGI	online, it should	and new Normal
demand of the	process of a <u>non-</u>	be included in	computation.
nodes with in this	<u>leader</u> node (say,	the group and	
new group.	SST 3) and	power migrations	
	restart it after	from this node	
	sometime.	can be seen	
		again.	
	b) Kill DGI		
	process of a	b) A new group	
	<u>leader node</u> (say,	is formed and	
	SST 1) and	power migrations	
	restart it after	from the	
	sometime.	previous leader	
		cease. When the	
		previous leader	
		rejoins the group,	
		it involves in	
		power balancing	
		again.	

^{*} Initially, the Demand states are based relative to Normal =0 till the time SC module first returns the global state to LB and new Normal is computed.

TEST 4:

Purpose	Scenario	Expected Result	Notes
Demonstrate the	Initiation*	Isolate SST3	Currently faults
capability of	SST 1: Supply		(detected by
DGI responding	SST 2: Demand		FIDs) are
to FIDs' status in	SST 3: Supply		simulated by
case of faults:			killing a DGI
FIDs broadcast	-20, 10, -20 are		process similar
their status (open	the initial SST		to Test 3 above.
or closed) to the	power levels		
DGI to force it to	respectively;		
recognize that			
SST is	8 FIDs, each		
reconnected	send up/down to		
	leader. FIDs 2		
	and 3 send down		
	status		

^{*} Initially, the Demand states are based relative to Normal =0 till the time SC module first returns the global state to LB and new Normal is computed.