1. In general conducting media, plane TEM wave parameters γ and η satisfy

$$\gamma \eta = j\omega \mu \text{ and } \frac{\gamma}{\eta} = \sigma + j\omega \epsilon,$$

as well as

$$\mu = \frac{\gamma\eta}{j\omega}, \ \sigma = \operatorname{Re}\{\frac{\gamma}{\eta}\}, \ \epsilon = \frac{1}{\omega}\operatorname{Im}\{\frac{\gamma}{\eta}\}.$$

Using these relations, for a plane wave propagating in a non-magnetic material ($\mu = \mu_o$) with

$$\mathbf{H} = \hat{x} \, 25e^{-z} \cos(8\pi \cdot 10^6 t - \sqrt{3}z - \frac{\pi}{3}) \, \frac{A}{m},$$

Determine:

- a) The propagation constant γ and intrinsic impedance η ,
- b) The permittivity ϵ and conductivity σ ,
- c) Phasor $\tilde{\mathbf{H}}$,
- d) The corresponding phasor $\tilde{\mathbf{E}}$,
- e) Time-averaged Poynting vector $\langle \mathbf{E} \times \mathbf{H} \rangle$,
- f) The time averaged power dissipated in cubic volume bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, z = 1, all in meters.
- 2. A plane TEM wave propagating in a material medium has an electric field phasor

$$\tilde{\mathbf{E}} = 4e^{-(0.0001 + j0.2)z} \hat{x} \frac{V}{m}.$$

Clearly, $\gamma = \alpha + j\beta = 0.0001 + j0.2$ 1/m, with $\alpha \ll \beta$.

When $\alpha \ll \beta$ is true, then all the wave parameters η , β , v_p , and λ expressed in terms of μ , ϵ , ω , and f are identical to those for a perfect dielectric except that the attenuation constant α is not 0 but it equals $\frac{\sigma}{2}\sqrt{\frac{\mu}{\epsilon}}$.

If $\mu=4\mu_o$ and $v_p=10^8$ m/s, determine:

- a) the frequency f of the wave in Hertz,
- b) the wavelength λ of the wave,
- c) the dielectric constant $\epsilon_r = \frac{\epsilon}{\epsilon_o}$ of the medium,
- d) the conductivity σ of the medium,
- e) the location z where the peak amplitude of the electric field is 1/e of the value at z=0,
- f) the magnetic field intensity phasor $\tilde{\mathbf{H}}(z)$.
- 3. Consider plane TEM wave propagation in a homogeneous material medium with $\mu = \mu_o$, $\epsilon = 81\epsilon_o$, and $\sigma = 4$ S/m appropriate for sea water:
 - a) Calculate the numerical values of the propagation constant $\gamma \equiv \alpha + j\beta$, wavelength $\lambda = \frac{2\pi}{\beta}$, penetration depth $\delta = \frac{1}{\alpha}$, and intrinsic impedance η if the wave frequency 5 kHz use approximations appropriate for the given $\frac{\sigma}{\omega \epsilon}$.

- b) Repeat (a) if $f = \frac{\omega}{2\pi} = 5$ GHz.
- c) A submarine submerged in the ocean wants to receive an electromagnetic signal from a ship located at the surface. If the ship is transmitting at 20 kHz, how close by must the submarine be located in order to receive at least 0.1% of the signal amplitude at the surface?
- 4. A TEM wave is propagating through a good conductor, with time-domain electric and magnetic fields given by:

$$\mathbf{E}(y,t) = 100\sqrt{2}e^{-10\pi y}\sin(4\pi \times 10^8 t - \beta y + \phi)\hat{z} \text{ V/m}$$

$$\mathbf{H}(y,t) = 50e^{-10\pi y}\sin(4\pi \times 10^8 t - \beta y - \frac{\pi}{3})\hat{h} \text{ A/m}$$

- a) What is the complex propagation constant γ ?
- b) What is the magnitude and direction of the phase velocity $\mathbf{v}_{\mathbf{p}}$ of the wave?
- c) What is \tilde{h} , the direction of the magnetic intensity field?
- d) What is the complex impedance η of the material?
- e) What is the phase ϕ of the electric field?
- 5. A plane wave field

$$\mathbf{H} = 2\sin(\omega t + \beta x)\hat{y} - 2\cos(\omega t + \beta x)\hat{z}\frac{\mathbf{A}}{\mathbf{m}}$$

is propagating in vacuum in $-\hat{x}$ direction and is incident on x = 0 plane which happens to be the boundary of a perfect dielectric having permittivity $2.25\epsilon_o$ and permeability μ_o in the region x < 0.

- a) What are the reflection and transmission coefficients $\Gamma = \frac{\eta_2 \eta_1}{\eta_2 + \eta_1}$ and $\tau = 1 + \Gamma$ for the described interface?
- b) Write the phasor expressions for the incident, reflected and transmitted **E** fields, using the reflection and transmission coefficients found above.
- c) Write the phasor expressions for the incident, reflected, and transmitted **H** fields in A/m units.
- d) What are $\langle \mathbf{S_i} \rangle$, $\langle \mathbf{S_r} \rangle$, and $\langle \mathbf{S_t} \rangle$, the time-average power per unit area transported by the incident, reflected, and transmitted waves, respectively, in W/m² units? Are the values compatible with the conservation of energy? Explain.
- e) What are the polarizations of the incident, reflected, and transmitted wave fields?
- f) What is the reflectance $|\Gamma|^2$ expressed in dB units? What would be the physical significance of reflectance? **Hint:** think of it as a fraction.