BIOGEOGRAPY BASED OPTIMIZATION

Pablo Huertas Arroyo 8 de junio de 2022

UNIVERSIDAD DE GRANADA

Correo: phuertas@correo.ugr.es

DNI:77033078Y

Grupo 3A, subgrupo 2

Horario: Lunes de 17:30 a 19:30

ÍNDICE

$\mathbf{\acute{I}ndice}$

1.	RESUMEN	2
	1.1. Exploración vs Explotacion	3
	1.2. Equilibrio	3
2.	ADAPTACION DEL BBO AL PROBLEMA DE LA MINIMA DIS- PERSION DIFERENCIAL 2.1. Descripción de la función objetivo	3
	2.2. Descripción de los operadores comunes	4
3.	PROPUESTA DE MEJORA DE LA METAHEURISTICA 3.1. Hibridacion con Enfriamiento Simulado	5
	3.1.1. Algoritmo de Enfriamiento Simulado	5 6
	3.2. Hibridacion con Busqueda Local	8
4.	ESTUDIO EXPERIMENTAL Y ANÁLISIS DE RESULTADOS 4 1. Tabla resumen	10 12

1. RESUMEN

El problema elegido a abordar en esta practica es el siguiente: Problema de la mínima dispersión diferencial (MDD). Es un problema de optimización combinatoria consistente en seleccionar un subconjunto M de M elementos (M en elementos (con M) de forma que se minimice la dispersión entre los elementos escogidos.

Este problema tiene diferentes aplicaciones en el campo de la optimización, como pueden ser la elección de la localización de elementos públicos, selección de grupos homogéneos, identificación de redes densas, reparto equitativo, problemas de flujo, etc

Minimize
$$Max_{i \in M} \{ \sum_{j \in M} d_{ij} \} - Min_{i \in M} \{ \sum_{j \in M} d_{ij} \}$$

Subject to $M \subset N, |M| = m$

donde:

- M es una solución al problema que consiste en un vector binario que indica los m elementos seleccionados
- \bullet d_{ij} es la distancia existente entre los elementos i y j.

Para resolver este problema se utilizarán 50 casos seleccionados con distancias reales con, n entre 25,50,75,100,125,150, y m entre 2 y 45.

La Dispersión de una Solución es la diferencia de los valores extremos, es decir, la diferencia de la sumas de las distancias de dichos puntos al resto de los puntos. Por ejemplo, si tenemos 8 puntos para colocar farmacias, y solo podemos colocar 4, ¿cuál es la forma de colocarlas, de forma que se reduzca la dispersión?

Esto es lo que realizamos en esta prácticas, donde probaremos diferentes algoritmos para resolver el problema, y los compararemos entre ellos para poder extraer nuestras propias conclusiones.

1.1. Exploración vs Explotacion

1.2. Equilibrio

Para esta práctica, he implementado 7 algoritmos distintos.

2. ADAPTACION DEL BBO AL PROBLEMA DE LA MINIMA DIS-PERSION DIFERENCIAL

Los datos se encuentran en unos ficheros .txt, donde hay una primera línea que indica el numero de elementos n y el número de elementos a seleccionar m del problema.

Luego se encuentran $n^*(n-1)/2$ líneas con el formato i,j, d_{ij} que tienen el contenido de las distancias entre los elementos.

En mi caso, para los dos algoritmos he leido estos ficheros y he almacenado los datos en una matriz distancias completa, donde la diagonal es 0, y las triangulares superiores e inferiores son simétricas entre sí.

La posición (2,3) de la matriz distancias es la distancia entre los elementos 2 y 3, que a su vez es la misma que la posición (3,2).

La **representación de la solución** es un vector de enteros, donde la posición i-ésima es el numero del elemento que esta seleccionado. Mantengo en el conjunto de datos solución en la implementación el vector binario usado en la practica anterior, para la reutilizacion de código.

Para la factorización de la función objetivo, a la hora de generar una nueva solución no es necesario volver a calcular por completo el vector de distancias para obtener la nueva dispersión. Basta con restar la distancia a cada elemento de la solución al elemento que se ha quitado de la solución actual, y sumarle la distancia del nuevo elemento a todas las demás de la solución.

Entonces, teniendo el vector de distancias actualizado, para saber la dispersión de dicho conjunto de elementos restamos la mayor distancia de dicho vector con la menor

Debido a que se requiere aleatoriedad en ambos algoritmos, ya que son probabilísticos, he usado un vector de semillas, donde en cada iteración que realiza cada algoritmo se genera una nueva semilla, y se utiliza para generar nuevas soluciónes. El valor estático de la semilla sirve para que cada vez que se ejecute el algoritmo, se obtengan las mismas Soluciónes.

También se pedía calcular el tiempo de ejecución de cada algoritmo, por lo que he usado objetos de la clase **<chrono>** para tener una alta precisión en los tiempos, y los muestro en **segundos**.

Al finalizar cada algoritmo calculo el tiempo demorado por dicho algoritmo y la dispersión de la mejor solución encontrada.

2.1. Descripción de la función objetivo

La función objetivo de este problema es la de encontrar la dispersión a partir de un vector de booleanos donde la posición i-ésima es 1 si el elemento i-ésimo está seleccionado, y 0 en caso contrario.

Para evaluar la función objetivo, se convierte internamente el vector de booleanos en una selección de elementos de números enteros.

Para ello, se recorre el vector de booleanos, y si la posición i-ésima es 1, se añade al final del vector de seleccionados el elemento i-ésimo.

Tenemos la matriz de distancias comentada anteriormente, y la selección de elementos, por lo que para evaluar la función objetivo, para cada elemento del vector de seleccionado, en la posición i-ésima del vector distancias, añadimos la distancia del elemento i-ésimo a todos los demás elementos del vector de seleccionados.

Las posiciones se corresponden 1 a 1 en los vectores de seleccionados y distancias.

Algorithm 1: Algoritmo de Evaluación de la Función Objetivo

```
Input: distancias(vector), seleccionados(vector), m(matriz distancias)

1  distancias \leftarrow 0

2  Vector Distancias \leftarrow Generar Vector Distancias()

3  Dispersion Comparacion \leftarrow Calcular dispersion (Vector Distancias)

4  Mejora \leftarrow TRUE

5  for i \in Size(seleccionados) do

6  | acomparar \leftarrow i

7  for j \in Size(seleccionados) do

8  | if seleccionados[i] \neq acomparar then

9  | distancias[i] + = m[acomparar][seleccionados[i]]
```

2.2. Descripción de los operadores comunes

Hay ciertos operadores y funciones que son comunes para los algoritmos desarrollados en esta práctica, ya que por ejemplo la generación de soluciónes aleatorias es común y varios operadores más, por lo que voy a desglosar uno a uno para entrar más en profundidad.

2.2.1. Generación de soluciónes aleatorias

Para la generación de la primera solución aleatoria, utilizo una funcion para generar soluciónes aleatorias, donde el numero de posibles elementos a escoger es emphn y el numero que finalmente son seleccionados son emphm.

Algorithm 2: Algoritmo de Generación de soluciónes Aleatorias

 $\textbf{Input:} \ n(n\'umero \ de \ puntos) \ m(n\'umero \ de \ puntos \ a \ seleccionar), \ semilla(n\'umero \ que \ puntos) \ m(n\'umero \ de \ puntos) \ m(n\'ume$

simboliza una semilla estática)

Output: solución(vector de booleanos)

- 1 $solucin \leftarrow \emptyset$
- 2 $seleccionados \leftarrow \emptyset$
- 3 while Size(selectionados) < m do
- $seleccionados \leftarrow Numero aleatorio que no esta en seleccionados$
- $solucin \leftarrow selectionados.back$

3. PROPUESTA DE MEJORA DE LA METAHEURISTICA

aa

3.1. Hibridacion con Enfriamiento Simulado

aa

3.1.1. Algoritmo de Enfriamiento Simulado

El algoritmo de Enfriamiento Simulado (Simulated Annealing) es un algoritmo de búsqueda metaheuristica para problemas de optimización global.

El objetivo de este algoritmo es encontrar una solución optima o casi optima de un problema en un espacio de búsqueda grande.

Tiene un criterio probabilistco de aceptacion de soluciónes basado en Termodinamica.

La forma que tiene de escapar de óptimos locales, es la posibilidad de aceptar soluciónes peores con una cierta probabilidad, la cual va disminuyendo conforme se va avanzando en el algoritmo hacia una buena solución.

Tiene una filosofía de diversificar al principio e intensificar al final, es decir, al principio del algoritmo se evaluan multiples soluciónes distintas y se selecciona la mejor, y al final se intensifica la búsqueda explotandola.

El máximo de éxitos que se podrán generar como máximo en cada iteracion del algoritmo serán n.

El máximo de vecinos que se podrán generar como máximo en cada iteracion del algoritmo serán 10*n.

La constante μ tendra valor 0.3 en toda la ejecucion

La temperatura inicial se calculará como...

$$To = \frac{\mu * C(So)}{-\ln(\varphi)} \tag{1}$$

siendo $\varphi = \mu$

Beta se calculará de la forma...

$$\beta = \frac{t_i - t_f}{t_i * t_f * n} \tag{2}$$

siendo t_i la temperatura inicial, t_f la temperatura final y n el tamaño de la solución.

Al final de cada iteración se calcula la temperatura que se va a tomar como nueva, y esta se calcula de la forma...

$$t_{k1} = \frac{t_k}{1 + (\beta * t_k)} \tag{3}$$

siendo t_k la temperatura actual y k el numero de iteracion.

El número máximo de evaluaciones de la funcion objetivo del algoritmo completo serán 100000

```
Algorithm 3: Algoritmo de Enfriamiento Simulado
```

```
Input: TemperaturaInicial(temperatura inicial), TemperaturaFinal(temperatura final)
           Output: TemperaturaActual(temperatura actual)
          TemperaturaInicial \leftarrow CalcularTemperaturaInicial(\mu, \varphi, C(S_o))
   \mathbf{2} Temperatura Actual \leftarrow Temperatura Inicial
   3 TemperaturaFinal \leftarrow 10^{-3}
   4 nEnfriamientos \leftarrow 1000/n
         maxVecinos \leftarrow 10*n
   6 maxExitos \leftarrow n
   7 iteraciones \leftarrow 0
          s_o \leftarrow Calcular soluci\'on Aleatoria
10 s_{mejor} \leftarrow S_o
          \mathbf{while} \ (Temperatura Actual > Temperatura Final) \& \& (iteraciones < n Enfriamientos) \& \& (n Evaluaciones < n Enfriamientos) & (n Evaluaciones < n Evaluaciones < n Enfriamientos) & (n Evaluaciones < n Evaluacion
11
                100000) do
12
                        for i \in 1...maxVecinos && exitos < maxExitos do
13
                                     S_{Vecino} \leftarrow Generar solucin Vecina Aleatoria()
14
15
                                     evaluaciones \leftarrow evaluaciones + 1
                                     \begin{array}{l} \Delta_{dispersion} \leftarrow dispersion(S_{vecino}) - dispersion(S_{actual}) \\ Calculamos \ la \ probabilidad \ de \ que \ se \ acepte \ la \ nueva \ si \ es \ peor \ que \ la \ actual \\ probabilidad \leftarrow e^{-\Delta_{dispersion}/Temperatura Actual} \end{array}
16
17
18
                                      if (\Delta_{dispersion} < 0) or (GetRandomNumber(0,1) < probabilidad) then
19
                                                  S_{actual} \leftarrow S_{vecino}
 20
                                                  exitos \leftarrow exitos + 1
21
                                     if dispersion(S_{actual}) - dispersion(S_{mejor}) then
                                        beta \leftarrow CalcularBeta
24
                        TemperaturaActual \leftarrow CalcularTemperaturaActual(t_k, \beta, t_i, n)
25
                      iteraciones \leftarrow iteraciones + 1
26
27 return S_{mejor}
```

3.1.2. Operador de mutacion

La mutacion consiste en modificar con cierta probabilidad uno o varios genes de la poblacion (en este caso de una solución) aleatoriamente. La probabilidad de mutacion es dada por la constante probabilidad 0.1. Cuando muta un gen de un cromosoma, tenemos que encontrar otro gen del mismo cromosoma con el valor contrario, para mantener la factibilidad de la solución de dicho cromosoma. Por ejemplo, en una solución con 10 elementos donde se seleccionan 3, si se va a mutar el segundo seleccionado, tenemos que buscar uno de los 7 elementos que no esten seleccionados

de manera aleatoria y cambiar el valor de cada gen. El rango de elementos que pueden ser mutados, van desde 0 hasta el producto del numero de cromosomas por el numero de genes por cromosoma.

Si la poblacion tiene 10 cromosomas, y cada cromosoma 5 genes, si se genera para mutar el elemento 15, será el sexto gen del segundo cromosoma.

Algorithm 4: Operador de Mutación

```
Input: p(poblacion), prob(probabilidad)
Output: pnueva(poblacion generada)

1 rango mutacion \leftarrow p.NumeroDeCromosomas() \cdot p.NumeroDeGenesPorCromosoma()

2 for i \in Size(p) do

3 | if GenerarNumeroAleatorioEntre(0,1) < prob then

4 | Genero aleatoriamente un elemento en el rango de mutacion

5 | posicion \leftarrow GenerarNumeroAleatorioEntre(0, rango)

6 | Para el elemento de la posicion generada, busco otro gen del mismo cromosoma con el valor contrario

7 | posicion2 \leftarrow Gen del mismo cromosoma aleatorio con valor contrario

8 | Swap(posicion, posicion2)
```

En la ejecucion del algoritmo se realizan 10 iteraciones y cada BL como máximo hara **10000** evaluaciones o no mejore la solución en todo el entorno. El valor usado para el numero de genes a mutar de la solución es t=0.3

3.2. Hibridacion con Busqueda Local

3.2.1. Busqueda Local

Este algoritmo es un tipo de algoritmos de busqueda por trayectorias simples. En este algoritmo, se empieza con una solución inicial completa y aleatoria, es decir, una Solución con M elementos que no se repiten entre sí. El orden de estos elementos no es relevante.

La idea es tras haber generado una completa Solución aleatoria válida, generar el **vecindario completo** de la Solución actual, **desordenarlo aleatoriamente**, y recorrerlo comparando en cada iteración si se mejora la Dispersión.

Si se mejora la Dispersión, se selecciona dicha Solución como Solución actual y se vuelve a generar el vecindario. Este proceso se hace hasta que no se mejore la Dispersión con todo el vecindario generado o hasta que se hayan hecho 100000 evaluaciones de la funcion objetivo. Es decir, comprobar 100000 veces si se mejora la Dispersión.

Como vemos este algoritmo se parece a Greedy en que ambos cuando encuentran una Solución mejor que la anterior la seleccionan, y no se espera en este caso a recorrer todo el vecindario para encontrar una mejor Solución. Es por eso que este algoritmo se llama Busqueda Local de **Primero el mejor**

La generación de la primera Solución aleatoria se hace con un bucle que va generando numeros aleatorios entre 0 y n-1, de forma que si no se ha añadido aún a la Solución, lo añade. Este proceso se repite hasta que el numero de elementos de la Solución sea igual a M

Para la generación de vecinos, uso un vector de tuplas, que contienen el elemento que se va a intercambiar y el elemento que se va a intercambiar y va a entrar a la Solución provisional.

Por ejemplo, si tengo M=6 y N=3, Solución provisional=(1,3,5), y genero el vecindario de esta Solución, este será el vector de tuplas

(1,0), (1,2), (1,4), (3,0), (3,2), (3,4), (5,0), (5,2), (5,4).

Entonces, desordena este vector aleatoriamente y se va intercambiando la posicion primera de la tupla que se encuentra en la Solución por la segunda posicion de la tupla que no se encuentra en la Solución

La factorización es la misma que en el algoritmo greedy, cuando se intercambia un elemento de la Solución por otro, en el vector distancias a cada elemento se le resta la distancia con el elemento que se elimina, y se le suma la distancia con el elemento que se añade, ademas de añadir en la posicion del elemento añadido la distancia con todos los demas de la Solución.

PSEUDOCÓDIGO DEL ALGORITMO DE BUSQUEDA LOCAL

Algorithm 5: Algoritmo de búsqueda local

```
v \leftarrow 0, w \leftarrow 0
 \mathbf{z} \ S \leftarrow D
 з T \leftarrow \emptyset
    solucin \leftarrow \emptyset
 5 Elementos restantes \leftarrow V
    DispersionComparacion \leftarrow \emptyset
    Distancias \leftarrow \emptyset
    Dispersion \leftarrow \emptyset
 9 Copiasolucin \leftarrow \emptyset
    CopiaDistancia \leftarrow \emptyset
    Vecindario \leftarrow \emptyset
    while solucin < M do
          Vamos generando elementos aleatorios y los introducimos a la solución
13
         Elemento a introducir \leftarrow Generar Elemento A leatorio (Elementos \ restantes) \\ Elementos restantes \leftarrow Elementos restantes - Elemento a introducir
14
15
16
         solucin \leftarrow solucin \cup Elementoaintroducir
17 Ya tenemos una solución completa y válida de tamaño M
    El conjunto de elementos restantes solo contiene
18
    los elementos que no están en la solución
20 Vector Distancias \leftarrow Generar Vector Distancias()
\textbf{21} \quad Dispersion Comparacion \leftarrow Calcular dispersion (Vector Distancias)
22 Mejora ← TRUE
    while Mejora == TRUE \ \&\&\ iteraciones \le 100000 \ \mathbf{do}
23
         Generamos un vecindario completo de la solución actual
24
          y lo mezclamos aleatoriamente
25
26
         Vecindario \leftarrow GenerarVecindario(solución)
27
         Vecindario \leftarrow Desordenar(Vecindario)
28
          Actualizamos las variables antes de recorrer el vecindario
         Copiasolucin \leftarrow solucin
29
         Mejora \leftarrow \textbf{FALSE}
30
         dispersion comparacion \leftarrow Dispersion
31
32
         for i \in Size(Vecindario) \&\&mejora == FALSE do
               Recorremos el vecindario
               Copia solucin \leftarrow Sustituir Punto(vecindario[i])
34
               CopiaDistancias \leftarrow GenerarVectorDistancias(Copiasolución)
35
              dispersion comparacion \leftarrow Calcular dispersion (Copia Distancias)
36
37
         {\bf if} \ dispersion \ comparation \ < dispersion \ {\bf then}
               Ŝi la dispersion es mejor, actualizamos la solución
38
               dispersion \leftarrow dispersion \ comparacion
39
               solucin \leftarrow Copiasolución
40
               Mejora \leftarrow \hat{\mathbf{TRUE}}
42
               Vector Distancias \leftarrow Copia Distancias
43
              Restantes \leftarrow Calcular Restantes (solución)
44
45
               Si la dispersion no es mejor, no actualizamos la solución,
               y volvemos al estado anterior
46
               Copiasolucin \leftarrow solucin
47
               CopiDistancias \leftarrow VectorDistancias
48
         Iteraciones \leftarrow Iteraciones + 1
49
50 Devolvemos la solución
51 Return solución
```

4. ESTUDIO EXPERIMENTAL Y ANÁLISIS DE RESULTADOS

En ambos algoritmos hemos usado el mismo vector de semillas, que en cada iteración que ejecuta el programa el algoritmo, se coge la posicion i-esima del vector de semillas.

El vector semillas es (1,2,3,4,5) Por lo tanto en la primera iteración se define la semilla como Random::Seed(1), y asi sucesivamente.

Para comparar los resultados entre los dos algoritmos implementados en esta práctica, he hecho una tabla donde se muestran, para cada algoritmo, el tiempo medio y la dispersion media conseguida entre las 5 iteraciones conseguido con cada uno de los ficheros de datos.

Figura 1: Tablas de resultados de Greedy y BL

Media Desv:	76,5595103744	Media Desv:	55,10878940233
Media Tiempo:	0,008761569604	Media Tiempo:	0,017145496976

(a) Desviacion y tiempo de Greedy (b) Desviacion y tiempo de BL

Figura 2: Desviaciones y tiempos de Greedy y BL

Observando los datos de las tablas, podemos observar que el algoritmo greedy tiene un tiempo menor que busqueda local, mientras que tiene una mayor desviacion, lo que quiere decir que sus resultados de dispersiones son peores.

¿Por qué Greedy tiene tiempos menores?

El algoritmo greedy es más eficiente respecto a lo que tiempo se refiere, ya que :

- Generacion de primera solución El algoritmo greedy solo tiene que generar dos elementos aleatorios a introducir en la primera solución, mientras que el algoritmo de busqueda local tiene que generar aleatoriamente una solución completa.
- Generacion de vecindario El algoritmo de Busqueda Local tiene que generar el vecindario completo, lo que requiere un coste de O(X*Y), siendo X el numero de elementos de la solución, e Y el número de elementos restantes. Ya que el conjunto de solución junto a los restantes son los N elementos, este paso tiene un coste de O(N), lo que supone una diferencia de tiempo con respecto a Greedy
- Evaluación de función objetivo En este caso, los dos algoritmos se conforman de forma muy parecida, ya que se realiza una factorización en el cálculo del Vector de Distancias en ambos, por lo que no se pueden extraer conclusiones de aquí.
- Actualización de la solución constante El algoritmo Greedy actualiza sí o sí la solución al final de cada iteracion, ya que aunque ninguno mejore la dispersion, se escoge el que menos la empeore. Si el algorimo de Busqueda Local no encuentra ningun vecino que mejore la dispersion, termina su ejecución.

Aunque estas diferencias no sean muy significativas, a la hora de evaluar muchas ejecuciones de estos algoritmos, encontramos como se acentúa más la diferencia.

¿Por qué BL tiene menor media de Desviación?

El algoritmo de Busqueda Local tiene una menor media de desviacion que el algoritmo Greedy, es decir, que las dispersiones obtenidas de media con el algoritmo de Busqueda Local son menores(y por consiguiente, mejores) que las obtenidas por el algoritmo Greedy. La desviacion se calcula como la media de las desviaciones, en porcentaje, del valor obtenido por cada metodo en cada instancia respecto al mejor valor conocido para ese caso.

$$Desviacion = 100 * \sum_{i=1}^{n} \frac{ValorAlgoritmo_{i} - MejorValor_{i}}{ValorAlgoritmo_{i}}$$
(4)

Por lo tanto, tenemos unos datos de referencia, que contienen el mejor coste obtenido para cada instancia del problema. El algoritmo de Busqueda Local obtiene mejores dispersiones de media que Greedy, y esto es gracias a que este algoritmo tiene mas probabilidad de encontrar mejores soluciónes.

Al generar el vecindario completo se asegura que si no se encuentran mejores dispersiones, no las selecciona, al contrario que Greedy, que aunque ninguno mejore la dispersion añade a la solución el que menos la empeore.

Esto evita que el algoritmo de Busqueda Local vaya hacia soluciónes peores(mínimos locales), y siempre se asegure que cuando actualiza la solución es para una mejor dispersion.

En cambio, Greedy acepta soluciónes peores a la actual, y esto puede hacer que caiga en mínimos locales, y al siempre añadir elementos a la solución, no poder salir de ellos.

Figura 3: Gráfica que muestra el comportamiento de una búsqueda de una solución

4.1. Tabla resumen

Algoritmo	Desviación media	Tiempo (en segundos)
Greedy	76,5595103744	0,008761569604
BL	55,10878940233	0,017145496976
AGG-Uniforme	40,0088991109	7,463298200000
AGG-Posición	45,4862646141	3,312911800000
AGE-Uniforme	55,9744088626	9,524131200000
AGE-Posición	54,5438597140	5,062808200000
AM-(10,1.0)	-0,0978477902	35,944350200000
AM-(10,0.1)	14,6659436747	6,939745800000
AM-(10,0.1mej)	32,5667149186	5,862021000000

Tabla 1: Tabla de medias de desviaciones y tiempos de los algoritmos

Observando la tabla, podemos ver que el algoritmo que mejores tiempo consigue es el memetico donde cada 10 iteraciones se realiza una busqueda local completa por cada cromosoma de la poblacion actual, es por eso que tiene los tiempos mas altos. Esto tiene sentido ya que cada 10 iteraciones todas los cromosomas de la poblacion mejoran con dicho algoritmo, por lo que no va a quedarse estancado en optimos locales, escapando muy rapido de ellos.

Vemos una mejora evidente en el algoritmo genetico de esquema generacional frente al del esquema estacionario, esto se debe a que el esquema estacionario no mejora con tanta rapidez como lo hace el generacional, ya que como mucho en cada iteracion podrá mejorar 2 soluciónes, mientras que el generacional puede mejorar hasta n-1 soluciónes, siendo n el numero de cromosomas de la poblacion, ya que es un algoritmo elitista, que nunca pierde la mejor solución de la poblacion actual antes de ser reemplazada por la siguiente.

Las diferencias entre el AGE-Uniforme y el AGE-Posición no son significativas por el fitness obtenido, pero si por el tiempo de ejecucion, ya que el operador de cruce

basado en posicion requiere mucho menos tiempo que el uniforme. Esto se debe a que el uniforme en muchas ocasiones, llama al operador de reparación, que tiene un coste bastante alto, y además solo se obtiene un hijo con los dos padres, mientras que en el basado en posicion, se obtienen dos hijos de dos padres lo que acelera bastante el proceso. Estas diferencias son aplicables igualmente en el esquema generacional, aunque la probabilidad de cruce sea 0.7 en vez de 1

Respecto a los algoritmos memeticos, el algoritmo ganador respecto a fitness como he comentado anteriormente es el de la primera variante, ya que al aplicar una busqueda local sobre todos los cromosomas, nunca se queda estancado en la mejora de soluciónes. El de la segunda variante, que aplica la busqueda local sobre un 10% aleatorio de los cromosomas de la poblaicon, es el segundo mejor que hemos conseguido respecto a fitness, pero es un poco peor respecto a tiempo que la ultima variante. Este buen fitness conseguido se debe a la aleatoriedad de los cromosomas seleccionados para la busqueda local, ya que los cromosomas que se seleccionan aleatoriamente pueden estar en máximos locales, por lo que gracias a la busqueda local, se pueden mejorar dichas soluciónes.

El ultimo como vemos obtiene el peor resultado respecto a fitness de los 3 algoritmos memeticos, y esto se debe a que al aplicarse la busqueda local sobre el 10 % de mejores soluciónes, muchas veces la búsqueda local se queda estancada en dichas soluciónes porque en el entorno no se encuentra mejora, entonces al aplicarse esa busqueda sobre las mejores no se mejora tanto como la anterior variante, que aleatoriamente es probable que cada x iteraciones seleccione cromosomas que se encuentran estancados, mientras que esta variante no, siempre va a coger a los mejores y por el elitismo del esquema generacional, es probable que se aplica muchas veces a los mismos cromosomas.

Algo	ritmo Generacional Cru	ice Posicion	
Caso	Coste medio obtenido	Desv	Tiempo(s)
GKD-b_1_n25_m2		0,00	4 2020 4
GKD-b_1_n25_m2	0	0,00	1,29204 1,22937
GKD-b_2_n25_m2		0,00	
GKD-b_3_n25_m2 GKD-b_4_n25_m2	0		1,29984
	0	0,00	1,58829
GKD-b_5_n25_m2		0,00	1,42524
GKD-b_6_n25_m7	27,2722	53,37	1,31301
GKD-b_7_n25_m7	22,6883	37,86	1,27461
GKD-b_8_n25_m7	24,9729	32,88	1,5447
GKD-b_9_n25_m7	19,9912	14,62	1,2667
GKD-b_10_n25_m7	30,2731	23,15	1,45371
GKD-b_11_n50_m5	7,44909	74,14	2,59923
GKD-b_12_n50_m5	5,65465	62,49	2,08003
GKD-b_13_n50_m5	9,15487	74,20	2,61647
GKD-b_14_n50_m5	13,7464	87,90	1,86196
GKD-b_15_n50_m5	9,843	71,01	2,2693
GKD-b_16_n50_m15	72,3568	40,92	3,1282
GKD-b_17_n50_m15	48,1076	0,00	2,22071
GKD-b_18_n50_m15	64,1659	32,68	2,32059
GKD-b_19_n50_m15	72,0802	35,61	2,40613
GKD-b_20_n50_m15	75,2435	36,59	3,12248
GKD-b_21_n100_m10	30,5304	54,69	2,68214
GKD-b_22_n100_m10	23,8794	42,78	3,63799
GKD-b_23_n100_m10	32,7316	53,12	2,58214
GKD-b_24_n100_m10	30,1696	71,36	2,61942
GKD-b_25_n100_m10	27,0688	36,46	2,47838
GKD-b 26 n100 m30	357,588	52,81	4,25805
GKD-b 27 n100 m30	296,27	57,10	3,52556
GKD-b 28 n100 m30	307,177	65,37	3,46504
GKD-b 29 n100 m30	210,471	34,69	4,97631
GKD-b 30 n100 m30	303,905	58,05	3,51115
GKD-b_31_n125_m12	28,7025	59,08	3,4585
GKD-b 32 n125 m12	49,1306	61,76	3,41972
GKD-b_33_n125_m12	38,5249	51,90	3,89056
GKD-b_34_n125_m12	43,5066	55,21	4,53728
GKD-b_35_n125_m12	46,4377	61,00	4,42925
GKD-b_36_n125_m37	308,568	49,63	6,76584
GKD-b_37_n125_m37	292,751	32,06	4,97138
GKD-b_38_n125_m37	489,401	61,59	4,65267
GKD-b_38_1125_1137 GKD-b 39 n125 m37	388,36	56,59	5,76321
GKD-b_39_1125_1137 GKD-b_40_n125_m37		49,40	
GKD-b_40_1123_1137 GKD-b 41 n150 m15	352,16 45,1672	48,31	4,74698 3,63887
GKD-b_41_n150_m15 GKD-b_42_n150_m15		53,94	
GKD-b_42_n150_m15 GKD-b_43_n150_m15	58,1567 38,7663		3,35883
GKD-b_43_n150_m15 GKD-b_44_n150_m15		30,99	3,28631
GKD-b_44_n150_m15 GKD-b_45_n150_m15	70,8633	63,40	4,24379
GKD-b_45_n150_m15 GKD-b_46_n150_m45	57,136	51,39	3,18887
	599,277	62,00	5,89684
GKD-b_47_n150_m45	494,274	53,75	7,09553
GKD-b_48_n150_m45	380,679	40,44	5,82675
GKD-b_49_n150_m45	649,107	65,12	5,68422
GKD-b_50_n150_m45	671,298	62,93	4,7414

Media Desv: 45,4862646141 Media Tiempo: 3,312911800000

Figura 4: Desviaciones y tiempos de Algoritmo Genetico Generacional con Cruce Basado en Posicion

Algoritmo Generacional Cruce Uniforme				
Caso	Coste medio obtenido	Desv	Tiempo(s)	
GKD-b_1_n25_m2	0	0,00	1,13781	
GKD-b_2_n25_m2	0	0,00	1,17559	
GKD-b_3_n25_m2	0	0,00	1,24084	
GKD-b_4_n25_m2	0	0,00	1,21566	
GKD-b_5_n25_m2	0	0,00	1,17558	
GKD-b_6_n25_m7	23,9673	46,94	1,15027	
GKD-b_7_n25_m7	53,9403	73,86	5,42681	
GKD-b_8_n25_m7	26,1598	35,93	1,05756	
GKD-b_9_n25_m7	38,2793	55,41	1,15215	
GKD-b_10_n25_m7	46,454	49,92	5,78582	
GKD-b_11_n50_m5	10,2306	81,17	3,89298	
GKD-b_12_n50_m5	1,41402		5,9073	
GKD-b_13_n50_m5	0,19514		5,48951	
GKD-b_14_n50_m5	12,4015		2,21683	
GKD-b_15_n50_m5	8,94943		1,60966	
GKD-b_16_n50_m15	96,9125		3,01695	
GKD-b_17_n50_m15	19,3126		34,1734	
GKD-b 18 n50 m15	125,096		2,34721	
GKD-b_19_n50_m15	91,8608		2,74763	
GKD-b 20 n50 m15	97,2504		2,40503	
GKD-b_21_n100_m10	21,1639		2,43629	
GKD-b_22_n100_m10	23,1014		25,7476	
GKD-b_23_n100_m10	35,1113		3,10414	
GKD-b_24_n100_m10	13,0992		28,3542	
GKD-b 25_n100_m10	141,301	87,83	35,6458	
GKD-b_26_n100_m30	285,536		4,46756	
GKD-b_27_n100_m30	213,914		4,48864	
GKD-b_28_n100_m30	244,587	56,51	4,53394	
GKD-b_29_n100_m30	214,755	36,00	4,34235	
GKD-b_25_n100_m30	188,153		4,36377	
GKD-b_31_n125_m12	55,3014		4,34317	
GKD-b_32_n125_m12	40,1096		3,25636	
GKD-b_32_n125_m12	270.594		57,7285	
GKD-b_33_n125_m12	35,8875		3,99922	
GKD-b_35_n125_m12	33,8321		3,42254	
GKD-b_36_n125_m37	253,127		6,62717	
GKD-b_37_n125_m37	373,656		6,25037	
GKD-b_38_n125_m37	315,38		8,7993	
GKD-b_38_n125_m37	302,782		5,87947	
GKD-b_33_1125_1137 GKD-b 40 n125 m37				
GKD-b_40_1125_1137 GKD-b 41 n150 m15	314,139 46,769		7,07518	
			3,47348	
GKD-b_42_n150_m15 GKD-b_43_n150_m15	49,7234		3,63142	
GKD-b_43_n150_m15 GKD-b_44_n150_m15	62,861		3,57339	
GKD-b_44_n150_m15 GKD-b 45 n150 m15	64,0132 50,391	59,48 44,88	3,2906 4,39318	
GKD-b_45_n150_m15 GKD-b_46_n150_m45				
GKD-b_46_n150_m45 GKD-b 47 n150 m45	313,033	27,24	8,73294	
GKD-b_47_n150_m45 GKD-b 48 n150 m45	292,366		9,96125	
	386,291	41,30	8,72237	
GKD-b_49_n150_m45	475,762		8,56159	
GKD-b_50_n150_m45	420,746	40,85	9,63653	

Media Desv: 40,0088991109 Media Tiempo: 7,463298200000

Figura 5: Desviaciones y tiempos de Algoritmo Genetico Generacional con Cruce Uniforme

Algorit	mo Generacional	Estacionario P	osicion
Caso	Coste medio	Desv	Tiempo(s)
	obtenido		
GKD-b_1_n25_m	0	0,00	2,19455
GKD-b_2_n25_m	0	0,00	2,46809
GKD-b_3_n25_m	0	0,00	2,18506
GKD-b_4_n25_m	0	0,00	2,51318
GKD-b_5_n25_m	0	0,00	2,28503
GKD-b_6_n25_m	20,3955	37,64	2,88895
GKD-b_7_n25_m	28,9062	51,23	2,65469
GKD-b_8_n25_m	31,5014	46,79	2,62135
GKD-b_9_n25_m	29,2807	41,70	2,65865
GKD-b_10_n25_	26,8843	13,46	2,69581
GKD-b_11_n50_	11,8397	83,73	3,73719
GKD-b_12_n50_	8,44707	74,89	3,82263
GKD-b_13_n50_	10,7425	78,01	4,51812
GKD-b_14_n50_	10,5282	84,20	3,8063
GKD-b_15_n50_	2,94375	2,13	4,25966
GKD-b_16_n50_	129,594	67,02	4,77252
GKD-b_17_n50_	64,6073	25,54	4,33776
GKD-b_18_n50_	102,807	57,98	4,36899
GKD-b_19_n50_	92,0281	49,57	4,26829
GKD-b_20_n50_	84,7451	43,70	4,53975
GKD-b_21_n100	36,1919	61,78	4,86002
GKD-b_22_n100	50,7113	73,05	6,06697
GKD-b_23_n100	40,0372	61,67	4,43894
GKD-b_24_n100	43,915	80,32	4,52709
GKD-b_25_n100	43,9993	60,91	4,3495
GKD-b_26_n100	398,337	57,64	5,69297
GKD-b_27_n100	392,754	67,64	5,36053
GKD-b_28_n100	304,877	65,11	5,35588
GKD-b_29_n100	413,374	66,75	5,58292
GKD-b_30_n100	364,212	65,00	6,3832
GKD-b_31_n125	45,9693	74,45	5,88754
GKD-b_32_n125	67,3469	72,10	6,01124
GKD-b_33_n125	46,6047	60,24	6,56328
GKD-b_34_n125	61,459	68,29	5,84596
GKD-b_35_n125	70,599	74,34	6,90021
GKD-b_36_n125	371,99	58,22	7,28885
GKD-b_37_n125		68,67	8,41454
GKD-b_38_n125	574,123	67,26	7,38416
GKD-b_39_n125	514,417	67,23	8,00534
GKD-b_40_n125	473,679	62,38	8,31196
GKD-b_41_n150	51,515	54,68	5,30314
GKD-b_42_n150	95,3161	71,89	5,11484
GKD-b_43_n150	100,201	73,30	5,79904
GKD-b_44_n150	95,4316	72,82	5,96662
GKD-b_45_n150	82,0678	66,16	5,38967
GKD-b_46_n150	577,659	60,57	7,52263
GKD-b_47_n150		53,41	6,86753
GKD-b_48_n150	518,612	56,28	7,02272
GKD-b_49_n150	629,565	64,04	6,73044
Modia Doggi	679,926	63,40	6,59611

Media Desv: 54,5438597140 Media 5,062808200000

Tiempo:

Figura 6: Desviaciones y tiempos de Algoritmo Genetico Estacionario con Cruce Basado en Posicion

Algori	tmo Generacional E	stacionario Un	iforme
Caso	Coste medio	Desv	Tiempo(s)
	obtenido		
GKD-b_1_n25_m		0,00	4,12507
GKD-b_2_n25_m	0	0,00	4,40917
GKD-b_3_n25_m	0	0,00	4,13849
GKD-b_4_n25_m	0	0,00	4,23267
GKD-b_5_n25_m	0	0,00	4,35989
GKD-b_6_n25_m	32,4313	60,78	4,95066
GKD-b_7_n25_m	26,7614	47,32	5,25469
GKD-b_8_n25_m	22,2701	24,74	4,90711
GKD-b_9_n25_m		41,70	5,24524
GKD-b_10_n25_	30,2731	23,15	5,15884
GKD-b_11_n50_	7,80036	75,31	7,68975
GKD-b_12_n50_	5,12149	37,76	7,94563
GKD-b_13_n50_	11,2391	78,98	7,33929
GKD-b_14_n50_	10,5282	84,20	7,26938
GKD-b_15_n50_	16,1091	82,29	7,80707
GKD-b_16_n50_	76,9332	44,44	8,55234
GKD-b_17_n50_	133,835	64,05	8,13868
GKD-b_18_n50_	121,818	64,54	8,66692
GKD-b_19_n50_	141,531	67,21	8,04705
GKD-b_20_n50_	109,921	56,59	9,01952
GKD-b_21_n100	49,8307	72,24	9,45472
GKD-b_22_n100	38,6766	64,67	10,0716
GKD-b_23_n100	43,9008	65,05	8,61634
GKD-b_24_n100	50,8456	83,01	9,67722
GKD-b_25_n100		53,87	9,34306
GKD-b_26_n100	464,791	63,70	11,1289
GKD-b_27_n100	317,522	59,97	10,4637
GKD-b_28_n100	376,596	71,75	10,8001
GKD-b_29_n100		56,86	10,5541
GKD-b_30_n100		63,33	10,3946
GKD-b_31_n125	64,1745	81,70	11,4083
GKD-b_32_n125	56,9464	67,01	11,4802
GKD-b_33_n125	49,6298	62,66	11,6137
GKD-b_34_n125	67,1758	70,99	11,2684
GKD-b_35_n125	63,3535	71,41	11,3743
GKD-b_36_n125	397,282	60,88	14,557
GKD-b_37_n125			15,0059
GKD-b_38_n125	444,676	57,73	14,1932
GKD-b_39_n125	122/100	60,12	14,8948
GKD-b_40_n125	390,617	54,38	14,7682
GKD-b_41_n150		62,45	9,9877
GKD-b_42_n150	123,194	78,25	10,3234
GKD-b_43_n150	102,814	73,98	10,4682
GKD-b_44_n150	63,6524	59,25	10,1271
GKD-b_45_n150		68,07	9,35756
GKD-b_46_n150		68,62	13,1913
GKD-b_47_n150		50,19	13,4575
GKD-b_48_n150	567,176	60,02	14,4823
GKD-b_49_n150		59,15	13,8588
GKD-b_50_n150	574,385	56,67	12,6269

Media Desv: 55,9744088626 Media 9,524131200000 Tiempo:

Figura 7: Desviaciones y tiempos de Algoritmo Genetico Estacionario con Cruce Uniforme

GKD-b_2_n25_m 0 0,00 1 GKD-b_3_n25_m 0 0,00 1 GKD-b_4_n25_m 0 0,00 1 GKD-b_5_n25_m 0 0,00 1 GKD-b_6_n25_m 12,718 0,00 2 GKD-b_7_n25_m 14,0988 0,00 2 GKD-b_8_n25_m 16,7612 0,00 2 GKD-b_9_n25_m 17,0692 0,00 2 GKD-b_10_n25_ 23,2652 0,00 2 GKD-b_11_n50_ 1,9261 0,00 3	32844 1,3617 30336 29996 30408
GKD-b_2_n25_m 0 0,00 6 GKD-b_3_n25_m 0 0,00 1, GKD-b_4_n25_m 0 0,00 1, GKD-b_5_n25_m 0 0,00 1, GKD-b_6_n25_m 12,718 0,00 2, GKD-b_7_n25_m 14,0988 0,00 2, GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	1,3617 30336 29996
GKD-b_3_n25_rr 0 0,000 1, GKD-b_4_n25_rr 0 0,000 1, GKD-b_5_n25_rr 0 0,000 1, GKD-b_6_n25_rr 0 0,000 2, GKD-b_7_n25_rr 14,0988 0,00 2, GKD-b_8_n25_rr 16,7612 0,00 2, GKD-b_9_n25_rr 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	30336 29996
GKD-b_4_n25_m 0 0,00 1, GKD-b_5_n25_m 0 0,00 1, GKD-b_6_n25_m 12,718 0,00 2, GKD-b_7_n25_m 14,0988 0,00 2, GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	29996
GKD-b_5_n25_m 0 0,00 1, GKD-b_6_n25_m 12,718 0,00 2, GKD-b_7_n25_m 14,0988 0,00 2, GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	
GKD-b_6_n25_m 12,718 0,00 2, GKD-b_7_n25_m 14,0988 0,00 2, GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	30,408
GKD-b_7_n25_m 14,0988 0,00 2, GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	30400
GKD-b_8_n25_m 16,7612 0,00 2, GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	31741
GKD-b_9_n25_m 17,0692 0,00 2, GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	19363
GKD-b_10_n25_ 23,2652 0,00 2, GKD-b_11_n50_ 1,9261 0,00 3	28797
GKD-b_11_n50_ 1,9261 0,00 3	17895
	22972
GKD-b 12 n50 2.0513 -2.11 3.	,47111
	30546
GKD-b_13_n50_ 2,36231 0,00 3,	52936
	31325
	50102
GKD-b_16_n50_ 42,7458 0,00 9	9,0142
GKD-b_17_n50_ 48,1076 0,00 9,	08336
GKD-b_18_n50_ 43,1961 0,00 8,	53952
GKD-b_19_n50_ 46,4125 0,00 8,	94903
GKD-b_20_n50_ 47,7151 0,00 9,	68906
	1,8858
GKD-b_22_n100 17,3662 21,32 12	2,2146
	1,9184
GKD-b_24_n100 16,5994 47,95 1	1,6897
	2,9156
	3,8407
GKD-b_27_n100 124,171 -2,36 5	50,019
GKD-b_28_n100 139,692 23,85 47	7,6641
GKD-b_29_n100 140,612 2,25 49	9,5729
GKD-b_30_n100 131,215 2,85 46	6,4946
GKD-b_31_n125 15,0836 16,02 20),8442
GKD-b_32_n125 19,4661 3,48 18	3,1636
GKD-b_33_n125 14,3142 -21,96 19	9,2059
GKD-b_34_n125 21,3846 8,87 18	3,3228
GKD-b_35_n125 14,6778 -16,60 20	0,6903
GKD-b_36_n125 148,066 -4,98 82	2,1922
	2,7595
GKD-b_38_n125 186,573 -0,75 86	3,3751
GKD-b_39_n125 171,359 1,62 8	0,1109
GKD-b_40_n125 176,972 -0,69 8	6,1119
GKD-b_41_n150 24,7014 4,72 28	3,6842
GKD-b_42_n150 24,4634 -7,73 30	0,1066
GKD-b_43_n150 20,8233 -19,11 3	1,0408
GKD-b_44_n150 20,8166 -16,01 3	1,9829
GKD-b_45_n150 24,7032 -9,66 3	1,7786
GKD-b_46_n150 208,037 -9,48 14	15,891
GKD-b_47_n150 223,16 -2,44 15	51,028
GKD-b_48_n150 180,001 -25,97	147
	50,445
GKD-b_50_n150 243,47 -2,21 15	51,068

Media Desv: -0,0978477902 Media 35,944350200000

Tiempo:

Figura 8: Desviaciones y tiempos de Algoritmo Memetico AM-(10,1.0)

,	Algoritmo Generacio	nal Memetico 2	2
Caso	Coste medio	Desv	Tiempo(s)
	obtenido		- 10 11 P 0 (0)
GKD-b_1_n25_m	0	0,00	1,14341
GKD-b_2_n25_m	0	0,00	1,15823
GKD-b_3_n25_m	0	0,00	1,14026
GKD-b_4_n25_m	0	0,00	1,17427
GKD-b_5_n25_m	0	0,00	1,14608
GKD-b_6_n25_m	13,4793	5,65	1,30756
GKD-b_7_n25_m	14,0988	0,00	1,28479
GKD-b_8_n25_m	16,7612	0,00	1,33771
GKD-b_9_n25_m	25,0145	31,76	1,29223
GKD-b_10_n25_	23,2652	0,00	1,27562
GKD-b_11_n50_	3,67407	47,58	2,05506
GKD-b_12_n50_	4,70656	54,93	1,95467
GKD-b_13_n50_	3,08164	23,34	1,9569
GKD-b_14_n50_	5,64178	70,52	1,86373
GKD-b_15_n50_	3,22012	11,40	1,9638
GKD-b_16_n50_	42,7458	0,00	3,02482
GKD-b_17_n50_	48,1076	0,00	2,77017
GKD-b_18_n50_	52,0761	17,05	2,86423
GKD-b_19_n50_	46,8501	0,93	2,84456
GKD-b_20_n50_	55,8	14,49	2,87682
GKD-b_21_n100	13,2385	-4,48	3,47362
GKD-b_22_n100	19,4482	29,74	3,69176
GKD-b_23_n100	17,9843	14,67	3,55749
GKD-b_24_n100	17,4087	50,37	3,58294
GKD-b_25_n100	24,6188	30,13	3,48452
GKD-b_26_n100	173,351	2,67	9,00499
GKD-b_27_n100	151,358	16,03	8,92843
GKD-b_28_n100	202,121	47,37	8,46329
GKD-b_29_n100	147,681	6,93	9,65493
GKD-b_30_n100	150,358	15,22	9,20863
GKD-b_31_n125	18,9635	38,06	5,54492
GKD-b_32_n125 GKD-b_33_n125	20,7943	9,64	5,00968
	22,3013	16,90	5,09123
GKD-b_34_n125 GKD-b_35_n125	26,5147	26,50	5,21903
GKD-b_35_n125	19,5094	7,16 22,39	5,23479 15,0379
GKD-b_30_n125	200,266 219,35	9,33	14,175
GKD-b_38_n125	281,456	33,22	16,2351
GKD-b_39_n125	211,269	20,20	15,1548
GKD-b_35_n125	230,611	22,73	14,6141
GKD-b 41 n150	32,9218	29,09	6,63424
GKD-b_42_n150	30,0814	10,94	6,45382
GKD-b 43 n150	24,8378	-7,72	6,48469
GKD-b_43_n150	23,3418	-11,11	6,73589
GKD-b_45_n150	24,7283	-12,31	6,49018
GKD-b 46 n150	234,155	2,74	24,8468
GKD-b_47_n150	305,749	25,23	21,2904
GKD-b_48_n150	251,407	9,81	21,0616
GKD-b_49_n150	211,439	-7,08	23,8873
GKD-b_50_n150	252,116	1,29	22,3003
	202,110	-,	£E,0000

Media Desv: 14,6659436747 Media 6,939745800000 Tiempo: 19

Figura 9: Desviaciones y tiempos de Algoritmo Memetico $AM\hbox{-}(10,0.1)$

A	lgoritmo Generac	ional Memetico	3
Caso	Coste medio	Desv	Tiempo(s)
	obtenido	2507	Trempo(s)
GKD-b_1_n25_m	0	0,00	1,18727
GKD-b_2_n25_m	0	0,00	1,19125
GKD-b_3_n25_m	0	0,00	1,18243
GKD-b 4 n25 m	0	0,00	1,16339
GKD-b_5_n25_m	0	0,00	1,16443
GKD-b 6 n25 m	20,3955	37,64	1,27123
GKD-b_7_n25_m	19,6091	28,10	1,28701
GKD-b_8_n25_m	21,8265	23,21	1,35612
GKD-b_9_n25_m	29,2807	41,70	1,28386
GKD-b_10_n25	26,238	11,33	1,30411
GKD-b 11 n50	5,21583	63,07	2,12512
GKD-b 12 n50	6,70799	68,38	1,92817
GKD-b_13_n50_	12,8654	81,64	1,92322
GKD-b 14 n50	6,50866	74,45	1,95766
GKD-b_15_n50_	9,88369	71,13	1,92653
GKD-b_16_n50	75,4985	43,38	2,92204
GKD-b 17 n50	61,7735	22,12	2,72803
GKD-b_18_n50_	64,9047	33,45	2,69616
GKD-b_19_n50_	82,8634	43,99	2,716
GKD-b 20 n50	82,0733	41,86	2,72719
GKD-b_21_n100	29,108	52,48	3,24772
GKD-b 22 n100	22,4415	39,11	3,31844
GKD-b_23_n100	28,1138	45,42	3,23292
GKD-b_24_n100	19,5417	55,78	3,26115
GKD-b_25_n100	25,4063	32,30	3,33184
GKD-b_26_n100	159,192	-5,99	7,55917
GKD-b_27_n100	221,25	42,55	7,42219
GKD-b_28_n100	202,934	47,58	7,45951
GKD-b_29_n100	159,705	13,93	7,96243
GKD-b_30_n100	186,968	31,82	7,31181
GKD-b_31_n125	23,6826	50,41	4,72974
GKD-b_32_n125	31,5137	40,38	4,68643
GKD-b_33_n125	31,4656	41,11	4,71503
GKD-b_34_n125	23,1404	15,78	4,5444
GKD-b_35_n125	21,5231	15,85	4,62413
GKD-b_36_n125	223,046	30,31	11,8952
GKD-b_37_n125	248,371	19,92	12,1549
GKD-b_38_n125	252,923	25,68	12,4745
GKD-b_39_n125	213,393	21,00	12,1285
GKD-b_40_n125	254,552	30,00	11,9807
GKD-b_41_n150	52,2652	55,33	5,57958
GKD-b_42_n150	39,4701	32,13	5,74599
GKD-b_43_n150		9,20	5,73632
GKD-b_44_n150	44,7291	42,02	5,41781
GKD-b_45_n150	36,4511	23,81	5,84002
GKD-b_46_n150		11,34	18,9079
GKD-b_47_n150	326,516	29,99	18,1002
GKD-b_48_n150	406,299	44,19	16,9506
GKD-b_49_n150	315,659	28,27	18,2037
GKD-b_50_n150	315,764	21,19	18,537

 Media Desv:
 32,5667149186

 Media
 5,862021000000

 Tiempo:
 20

Figura 10: Desviaciones y tiempos de Algoritmo Memetico AM-(10,0.1mej)