

Health after COVID-19 in Tyrol study team $\,$

2021-10-19

Contents

Tables	2
Figures	6

Tables

Table 1: Characteristic of the CovILD study cohort.

Ambulatory, Moderate, Severe: severity of acute SARS-CoV-2 infection, Test: statistical test used for the comparison between the severity strata (KW: Kruskal-Wallis), Significance: test p value corrected for multiple comparisons with Benjamini-Hochberg method.

Parameter	Ambulatory	Moderate	Severe	Test	Significance
Sex	female: 72.2% (26) male: 27.8% (10) n = 36	female: 36.8% (28) male: 63.2% (48) n = 76	female: 27.3% (9) male: 72.7% (24) n = 33	χ^2	p = 0.00098
	mean(SD) = 45.8 (14) $median(IQR) = 47.5 (37.5 - 55)$ $range = 19 - 83$ $n = 36$	mean(SD) = 61.8 (13.3) median(IQR) = 62 ($52.8 - 73$) range = $27 - 87$ n = 76	mean(SD) = 59.4 (9.61) median(IQR) = 58 ($53 - 65$) range = $44 - 79$ n = 33	KW	p = 7.2e-07
m Age	up to 50: 58.3% (21) 51 - 65: 36.1% (13) over 65: 5.56% (2) n = 36	up to 50: 17.1% (13) 51 - 65: 40.8% (31) over 65: 42.1% (32) n = 76	up to 50: 18.2% (6) 51 - 65: 57.6% (19) over 65: 24.2% (8) n = 33	χ^2	p = 4.6e-06
Smoking	never: 77.8% (28) ex: 19.4% (7) active: 2.78% (1) n = 36	never: 48.7% (37) ex: 47.4% (36) active: 3.95% (3) n = 76	never: 69.7% (23) ex: 30.3% (10) active: 0% (0) n = 33	χ^2	p = 0.013
Comorbidity present	47.2% (17) n = 36	85.5% (65) n = 76	90.9% (30) n = 33	χ^2	p = 5.2e-05
Number of comorbidities (max. 17)	mean(SD) = 1.14 (1.96) $median(IQR) = 0$ $(0 - 1.25)$ $range = 0 - 10$ $n = 36$	mean(SD) = 2.95 (2.11) median(IQR) = 3 (1 - 4) range = 0 - 9 n = 76	mean(SD) = 3.58 (2.05) median(IQR) = 3 (2 - 4) range = $0 - 8$ n = 33	KW	p = 1.8e-07
BMI class	normal: 52.8% (19) obesity: 13.9% (5) overweight: 33.3% (12) n = 36	normal: 32.9% (25) obesity: 21.1% (16) overweight: 46.1% (35) n = 76	normal: 39.4% (13) obesity: 24.2% (8) overweight: 36.4% (12) n = 33	χ^2	ns
Cardiovascular comorbidity	8.33% (3) n = 36	46.1% (35) n = 76	60.6% (20) n = 33	χ^2	p = 2e-04
Hypertension	8.33% (3) n = 36	31.6% (24) n = 76	51.5% (17) n = 33	χ^2	p = 0.014
Pulmonary comorbidity	16.7% (6) n = 36	21.1% (16) n = 76	15.2% (5) n = 33	χ^2	ns
Endocrine or metabolic comorbidity	22.2% (8) n = 36	48.7% (37) n = 76	54.5% (18) n = 33	χ^2	p = 0.014

Table 1: Characteristic of the CovILD study cohort.

Ambulatory, Moderate, Severe: severity of acute SARS-CoV-2 infection, Test: statistical test used for the comparison between the severity strata (KW: Kruskal-Wallis), Significance: test p value corrected for multiple comparisons with Benjamini-Hochberg method. *(continued)*

Parameter	Ambulatory	Moderate	Severe	Test	Significance
Hypercholesterolemia	n = 5.56% (2) n = 36	26.3% (20) n = 76	15.2% (5) n = 33	χ^2	p = 0.02
Diabetes	2.78% (1) n = 36	17.1% (13) n = 76	30.3% (10) n = 33	χ^2	ns
Malignancy	5.56% (2) n = 36	15.8% (12) n = 76	9.09% (3) n = 33	χ^2	ns
Symptomatic SARS-CoV-2 infection	97.1% (34) n = 35	98.7% (75) n = 76	100% (33) n = 33	χ^2	ns
Acute COVID-19 symptom number	mean(SD) = 5.34 (2.24) median(IQR) = 5 (4 - 7) range = $0 - 9$ n = 35	mean(SD) = 5.22 (2.08) $median(IQR) = 6$ (3.75 - 6.25) $range = 0 - 9$ $n = 76$	mean(SD) = 5.91 (1.33) median(IQR) = 6 (5 - 7) range = $4 - 9$ n = 33	KW	ns

Table 2: Characteristic of the Health after COVID-19 in Tyrol study cohorts.

Test: statistical test used for the comparison between the severity strata (U: Mann-Whitney U test), Significance: test p value corrected for multiple comparisons with Benjamini-Hochberg method.

Parameter	Austria	Italy	Test	Significance
	$\begin{aligned} & mean(SD) = 182 \ (61.8) \\ & median(IQR) = 182 \ (131 \\ & - 217) \\ & range = 90 - 400 \\ & n = 526 \end{aligned}$	mean(SD) = 180 (87.7) median(IQR) = 136 (118 - 271) range = 90 - 387 n = 485	U	p = 0.00022
Observation time	up to 100 days: 7.41% (39) 100 - 180 days: 41.8% (220) more than 180 days: 50.8% (267) n = 526	up to 100 days: 10.9% (53) 100 - 180 days: 57.3% (278) more than 180 days: 31.8% (154) n = 485	χ^2	p = 6.8e-09
Sex	female: 65.6% (345) male: 34.4% (181) n = 526	female: 69.1% (335) male: 30.9% (150) n = 485	χ^2	ns
	mean(SD) = $43.3 (13.4)$ median(IQR) = $43.5 (32 - 53)$ range = $17 - 80$ n = 526	mean(SD) = 44.6 (13.3) median(IQR) = 45 (34 - 55) range = $18 - 95$ n = 485	U	ns
Age	young: 22.2% (117) middle-aged: 73.4% (386) elderly: 4.37% (23) n = 526	young: 18.8% (91) middle-aged: 77.1% (374) elderly: 4.12% (20) n = 485	χ^2	ns
Smoking	never: 59.9% (315) former: 31.6% (166) active: 8.56% (45) n = 526	never: 66.4% (322) former: 23.3% (113) active: 10.3% (50) n = 485	χ^2	p = 0.013
Comorbidity absent	50% (263) n = 526	57.5% (279) n = 485	χ^2	p = 0.02
Number of comorbidities (max. 25)	mean(SD) = 0.926 (1.67) median(IQR) = 1 (0 - 1) range = 0 - 24 n = 526	mean(SD) = $0.68 (0.999)$ median(IQR) = $0 (0 - 1)$ range = $0 - 6$ n = 485	U	p = 0.0046
BMI class	normal: 55.4% (289) overweigth: 27.6% (144) obesity: 17% (89) n = 522	normal: 66.2% (315) overweigth: 25.4% (121) obesity: 8.4% (40) n = 476	χ^2	p = 5.4e-05
Cardiovascular comorbidity	2.09% (11) n = 526	3.09% (15) n = 485	χ^2	ns
Hypertension	11% (58) n = 526	8.25% (40) n = 485	χ^2	ns
Pulmonary comorbidity	3.8% (20) n = 526	2.47% (12) n = 485	χ^2	ns

Table 2: Characteristic of the Health after COVID-19 in Tyrol study cohorts.

Test: statistical test used for the comparison between the severity strata (U: Mann-Whitney U test), Significance: test p value corrected for multiple comparisons with Benjamini-Hochberg method. (continued)

Parameter	Austria	Italy	Test	Significance
Hay fever/allergy	18.8% (99) n = 526	11.3% (55) n = 485	χ^2	p = 0.0013
Diabetes	1.52% (8) n = 526	0.619% (3) n = 485	χ^2	ns
Malignancy	1.9% (10) n = 526	3.71% (18) n = 485	χ^2	ns
Symptomatic SARS-CoV-2 infection	91.1% (479) n = 526	88.2% (427) n = 484	χ^2	ns
Acute COVID-19 symptom number	mean(SD) = 13.2 (7.71) median(IQR) = 13 (8 - 18) range = 0 - 42 n = 526	mean(SD) = 13.2 (8.24) median(IQR) = 13 (7 - 19) range = 0 - 38 n = 484	U	ns
	1Q: 26.8% (141) 2Q: 28.1% (148) 3Q: 20.3% (107) 4Q: 24.7% (130) n = 526	1Q: 25.6% (124) 2Q: 26.2% (127) 3Q: 26% (126) 4Q: 22.1% (107) n = 484	χ^2	ns

Figures

Figure 1: CONSORT flow diagrams for the CoVILD and HACT study cohorts.

Figure 1. CONSORT flow diagrams for the CoVILD and HACT study cohorts.

Figure 2: Second order kinetic modeling of symptom recovery course in the HACT study.

Figure 2. Second order kinetic modeling of symptom recovery course in the HACT study.

Symptom frequency during acute COVID-19 and recovery in the Austria and Italy HACT cohorts (0, 7, 14, 28 and 90 days post symptom onset) were modeled with mixed-effect logistic regression (**Supplementary Table S2**). Significance of the first and second order model terms was determined by step-wise likelihood ratio test (LRT). P values were corrected for multiple comparisons with Benjamini-Hochberg method. N number of complete observations is provided under the plots in (**B**). Dim.: diminished, imp.: impaired.

- (A) Significance of the first and second order model term in LRT test. Points represent single symptoms, color codes for significance (gray: non-significant). Top 10 symptoms with the most significant second order terms as candidate long-term persistent features are labeled with their names.
- (B) Median recovery times for top 10 symptoms with the most significant second order terms as candidate long-term persistent features. Whiskers represent interquartile ranges.

Figure 3: Actual and predicted frequency of self-reported hyposmia in course of COVID-19 recovery.

Figure 3. Actual and predicted frequency of self-reported hyposmia in course of COVID-19 recovery.

Frequency of self-reported hyposmia during acute COVID-19 and recovery in the HACT study (**A**, 0, 7, 14, 28 and 90 days post symptom onset) and severity subsets of the CovILD cohorts (**B**, acute COVID: 0, 60-, 100 and 180-day follow-up visits) was modeled with mixed-effect logistic regression (**Supplementary Table S2**). Points and solid lines represent the actual frequencies. The model predictions are displayed as dashed lines. The ranges of complete observations per time point are shown under the plots.

Figure 4: Co-occurrence of self-reported hyposmia and other symptoms in course of COVID-19 recovery.

Figure 4. Co-occurrence of self-reported hyposmia and other symptoms in course of COVID-19

recovery.

Cosine similarity coefficients between hyposmia and other self-reported symptoms of COVID-19 in the HACT ($\bf A$, 44 symptoms in total, Austria: n=526, Italy: 485) and COVILD study ($\bf B$, 9 symptoms, ambulatory: n=36, moderate: n=76, severe COVID-19: 33) were calculated for the indicated time points (**Supplementary Table S3**) and presented in radial plots. Each bar represents a single symptom. Bar length and color code for the value of Cosine similarity coefficient. Dashed lines represent cosine similarity coefficient of 0.5.

Figure 5: Long-term COVID-19 recovery phenotypes in the HACT study.

Figure 5. Long-term COVID-19 recovery phenotypes in the HACT study.

HACT participants with COVID-19 symptoms present for at least three months post clinical onset (Austria: n = 208, Italy: n = 164) were clustered in respect to manifestations present in at least 25% of the cohort for 28 days or longer with a combined algorithm employing self-organizing map (4 × 4 hexagonal units, Jaccard distance) and hierarchical clustering (Ward D2 algorithm, Euclidean distance). Numbers of individuals assigned to particular clusters are presented under the plot in (A). Imp.: impaired.

- (A) Presence of the features used for cluster definition in the participants assigned to the 'non-specific', 'hyposmia' and 'neuro/fatigue' subset.
- (B) Frequency of self-reported hyposmia, taste disorders and tiredness at day in the participant subsets. Statistical significance of the frequency differences was assessed with χ^2 test corrected for multiple comparisons with Benjamini-Hochberg method. P values are presented in the plot captions.

Figure 6: Risk factors for long-term persistent self-reported post-COVID-19 hyposmia.

Figure 6. Risk factors for long-term persistent self-reported post-COVID-19 hyposmia.

Association of candidate risk factors (**Supplementary Table S1**) with long-term persistent self-reported hyposmia in the CovILD (**A**, hyposmia declared at the 100-day follow-up visit) and HACT cohorts (**B**, self-reported hyposmia present for at least three months post clinical onset) was investigated with univariable logistic regression (**Suppmenetary Table S4**). For the HACT cohorts, the models were weighted for age and sex distribution in the general COVID-19 convalescent populations and included stratified the observation time variable as a confounder. Significance of model estimates (odds ratio, OR) was determined by Wald Z test corrected for multiple comparisons with Benjamini-Hochberg method. OR estimate values with 95% confidence intervals for significant and nearly significant (adjusted p < 0.1) co-variates are presented as points and whiskers in the Forest plots. The ranges of complete observations per time point are shown under the plots.