Výroková logika

3. a 4. přednáška z LGR

Obsah

- Sémantika výrokové logiky
 - Splnitelná množina formulí
 - Sémantický důsledek
- Resoluční metoda
 - Universálnost resoluční metody
 - Resoluční princip
 - Resoluční tabulka

Definice

Množina formulí se nazývá *splnitelná množina formulí*, jestliže existuje aspoň jedno ohodnocení, ve kterém jsou pravdivé všechny formule z této množiny.

Poznámka

Pravdivostní ohodnocení u lze rozšířit i na množiny formulí S: u(S)=1, právě když pro všechny formule $\varphi\in S$ je $u(\varphi)=1$. Je-li $S=\{\varphi_1,\ldots,\varphi_n\}$ konečná, pak $u(S)=u(\varphi_1\wedge\ldots\wedge\varphi_n)$. Přitom u(S)=1 znamená, že S je pravdivá v ohodnocení u.

Potom lze říci, že S je splnitelná množina formulí, je-li pravdivá aspoň v jednom ohodnocení.

Poznámka

Říkáme, že S je nesplnitelná množina formulí, pokud není splnitelná, tj. v každém ohodnocení je nějaká formule z S nepravdivá.

Pojmy tautologie a kontradikce se pro množiny formulí nepoužívají.

Příklady

- Množina $S = \{a \Rightarrow b, \neg b\}$ je splnitelná, svědkem je ohodnocení u, kde u(a) = u(b) = 0.
- Množina $S = \{a \lor b, \neg a, \neg b\}$ je nesplnitelná.
- Prázdná množina formulí je splnitelná, svědkem je libovolné ohodnocení.

Definice

Řekneme, že formule φ je sémantickým důsledkem množiny formulí S, jestliže v každém ohodnocení u, v němž jsou pravdivé všechny formule z S, je pravdivá také formule φ . Značíme $S \models \varphi$.

Další značení: $\psi \models \varphi$ pro $S = \{\psi\}$, nebo $\models \varphi$ pro $S = \emptyset$.

Příklady

- $\{a, a \Rightarrow b\} \models b$
- $\{a \Rightarrow b, b\} \not\models a$

Tvrzení

 $S \models \varphi$, právě když $u(S) \le u(\varphi)$ pro všechna ohodnocení u.

Důsledky

- $\varphi \models \psi$, právě když $\varphi \Rightarrow \psi$ je tautologie.
- $\varphi \models \psi$, právě když $\varphi \models \psi$ a $\psi \models \varphi$.
- Je-li S nesplnitelná množina, pak $S \models \varphi$ pro libovolnou φ .
- $S \models \text{ff}$, právě když S nesplnitelná množina.
- Je-li φ je tautologie, pak $S \models \varphi$ pro libovolnou množinu S.
- $\models \varphi$, právě když φ je tautologie.

Věta (o sémantickém důkazu sporem)

Pro libovolnou množinu formulí S a libovolnou formuli φ platí: $S \models \varphi$, právě když $S \cup \{\neg \varphi\}$ je nesplnitelná.

Věta (sémantická o dedukci)

Pro libovolnou množinu formulí ${\cal S}$ a libovolné formule φ a ψ platí:

$$S \cup \{\varphi\} \models \psi$$
, právě když $S \models (\varphi \Rightarrow \psi)$.

K ověření sémantických vlastností formulí či vztahů mezi nimi jsme (většinou) potřebovali vyplnit tabulku pravdivostních hodnot. Ta má 2^n řádků, kde n je počet logických proměnných. Řešení pomocí tabulky má exponenciální složitost.

V následující části představíme metodu, která problémy výrokové logiky řeší rychleji, aspoň tehdy, když jsou formule relativně krátké.

Resoluční metoda

Resoluční metoda testuje, zda je množina klausulí splnitelná.

Přesto je to universální metoda na testování sémantických problémů výrokové logiky, neboť

- mnohé problémy lze převést na problém (ne)splnitelnosti
- formule lze převést na klausule se zachováním (ne)splnitelnosti

Převedení problémů na problém (ne)splnitelnosti

- ullet Formule φ je kontradikce, právě když je nesplnitelná.
- ullet Formule arphi je tautologie, právě když $\neg arphi$ je nesplnitelná.
- Sémantický důsledek $S \models \varphi$ platí, právě když $S \cup \{\neg \varphi\}$ je nesplnitelná.
- Tautologická ekvivalence $\varphi \models \psi$ platí, právě když jsou obě množiny $\{\varphi, \neg \psi\}$ a $\{\psi, \neg \varphi\}$ nesplnitelné.

Převedení formulí na klasule

- Klausule (aneb maxterm) je disjunkce literálů, nebo jeden literál, nebo ff. Literál je atomická formule nebo její negace.
- Klausule se vyskytují v konjunktivně normální formě formulí.
- Každou formuli lze převést do CNF se zachováním tautologické ekvivalence.

Tvrzení

Nechť $\varphi \models \varphi_{\mathit{CNF}} = c_1 \wedge c_2 \wedge \ldots \wedge c_n$, kde c_1, \ldots, c_n jsou klausule, $n \geq 0$. Formule φ je pravdivá v ohodnocení u, právě když množina klausulí $\{c_1, \ldots, c_n\}$ je pravdivá v ohodnocení u.

Převedení formulí na klasule

- ullet Formuli φ převedeme do CNF a rozsekáme na klausule.
- Klausule upravíme tak, aby obsahovaly každou logickou proměnnou nejvýše jednou. Tautologie vypustíme (neovlivní odpověď na otázku splnitelnosti).
- Klausální tvar Kl(S) pro množinu S je množina všech klausulí vzniklých aplikací předchozích dvou kroků na každou formuli z množiny S.
- ullet Pokud se S skládala pouze z tautologií, tak je $\mathrm{Kl}(S)$ prázdná.

Převedení formulí na klasule

 Klausální tvar Kl(S) pro danou množinu S není určen jednoznačně, protože konjunktivní normální forma pro formuli není určena jednoznačně.

Tvrzení

Množina formulí S a množina klausulí $\mathrm{Kl}(S)$ jsou pravdivé ve stejných ohodnoceních.

Důsledek

Množina formulí S je splnitelná, právě když je množina klausulí $\mathrm{Kl}(S)$ splnitelná.

Jak funguje resoluční metoda?

Resoluční metoda testuje, zda je množina klausulí splnitelná.

Resoluční metoda vyrábí resolventy (generace resolvent) z dvojic klausulí. Resolventy jsou sémantické důsledky těchto dvojic. Pokud vznikne resolventa ff, tak původní množina klausulí musela

být nesplnitelná.

Definice

Nechť klausule α , β obsahují komplementární literály, např. x, $\neg x$. Pak jejich *resolventa* přes x je klausule, která obsahuje všechny literály z α a β (každý pouze jednou) kromě dvojice x, $\neg x$. Značíme $\mathrm{res}_x(\alpha,\beta)$.

Příklady

- $\operatorname{res}_{x}(x \vee y \vee z, \neg x \vee y \vee w) = y \vee z \vee w$
- $\operatorname{res}_{x}(x \vee y, \neg x \vee \neg y \vee z) = y \vee \neg y \vee z \not\models \operatorname{tt} \vee z \not\models \operatorname{tt}$
- $res_x(x, \neg x) = ff$, prázdná resolventa je false.

Tvrzení

Nechť klausule α , β obsahují komplementární literály x, $\neg x$. Pak $\{\alpha, \beta\} \models \operatorname{res}_x(\alpha, \beta)$.

Tvrzení

Nechť S je množina klauzulí a $\operatorname{res}(\alpha,\beta)$ resolventa nějaké dvojice klauzulí z S mající komplementární literály, pak množiny S a $S \cup \{\operatorname{res}(\alpha,\beta)\}$ jsou pravdivé ve stejných ohodnoceních.

Definice

Nechť S je množina klauzulí. Označme

$$R(S) = S \cup \{v\check{s}echny resolventy dvojic z S\}.$$

Položme

$$R^0(S) = S$$

 $R^{i+1}(S) = R(R^i(S)) \text{ pro } i \in \mathbb{N}$
 $R^*(S) = \bigcup \{R^i(S) | i \geq 0\}.$

Poznámka

Pokud je množina logických proměnných konečná, pak se proces vyrábění resolvent po konečném počtu kroků zastaví, tj. existuje $m \in \mathbb{N}$ tak, že $R^*(S) = R^m(S)$.

Věta (Resoluční princip)

Konečná množina klauzulí S je splnitelná, právě když $R^*(S)$ neobsahuje f.

Přímá implikace plyne z faktu, že S a $R^*(S)$ jsou pravdivé ve stejných ohodnoceních. Zpětnou implikaci pro konečnou S dokážeme později pomocí resoluční tabulky.

Příklad

 $M = \{z \Rightarrow (x \lor y), x \Leftrightarrow y, \neg x \land (y \lor z)\}$ je splnitelná, právě když $S = \mathrm{Kl}(M) = \{\neg z \lor x \lor y, \neg x \lor y, \neg y \lor x, \neg x, y \lor z\}$ je splnitelná.

Ve stromě resolvent pro S najdeme tyto resolventy:

$$res_{x}(\neg z \lor x \lor y, \neg x) = \neg z \lor y$$

$$res_{x}(\neg y \lor x, \neg x) = \neg y$$

$$res_{z}(\neg z \lor y, y \lor z) = y$$

$$res_{y}(\neg y, y) = ff$$

Podle resolučního principu je množina S nesplnitelná (tudíž i M).

Pozn.: $R^*(S) = R^3(S)$ obsahuje celkem 17 klausulí a lze najít nejméně tři různé zamítací stromy resolvent.

Universálnost resoluční metody Resoluční princip Resoluční tabulka

Resoluční tabulka

Ukážeme rychlejší algoritmus na vyrábění resolvent, který sice nevyrobí celou $R^*(S)$, ale případnou resolventu f nemine. Dokážeme, že vyrobíme-li všechny resolventy přes proměnnou x, tak můžeme klausule s proměnnou x vypustit, aniž bychom porušili splnitelnost/nesplnitelnost celé množiny. Postupně snížíme počet proměnných až k nule a buď zůstane resolventa f, nebo ne.

Definice

Říkáme, že množiny formulí M a N jsou *ekvisplnitelné*, když jsou buď obě splnitelné, anebo obě nesplnitelné.

Universálnost resoluční metody Resoluční princip Resoluční tabulka

Resoluční tabulka

Předpokládejme, že množina logických proměnných je konečná a že obsahuje x, $A = \{x, \dots\}$, |A| = n.

Předpokládejme dále, že *S* je množina klausulí nad *A* (tudíž také konečná), které jsou v základním tvaru, tj. v žádné klausuli se neopakují stejné logické proměnné. Tautologie jsme vypustili, a kdykoliv vznikne resolventa, která je tautologií, tak ji vypustíme.

Tvrzení

Množiny $S \cup \{tt\}$ a S jsou pravdivé ve stejných ohodnoceních.

Resoluční tabulka

Rozdělme množinu S na tři části:

- S₀ všechny klauzule z S, které neobsahují logickou proměnnou x
- ullet S_x všechny klauzule z S, které obsahují pozitivní literál x
- $S_{\neg x}$ všechny klauzule z S, které obsahují negativní literál $\neg x$

 $S=S_0\cup S_{x}\cup S_{\neg x}$ a tyto podmnožiny jsou navzájem disjunktní vzhledem k našim předpokladům.

Označme dále

 R_x - všechny resolventy přes x dvojic klausulí z S, kromě těch, které jsou tautologiemi

Universálnost resoluční metody Resoluční princip Resoluční tabulka

Resoluční tabulka

Tvrzení

Množiny S a $S_0 \cup R_x$ jsou ekvisplnitelné, tj. S je splnitelná, právě když $S_0 \cup R_x$ je splnitelná.

Poznámka k důkazu

Z každého ohodnocení u, které dosvědčuje splnitelnost množiny $S_0 \cup R_x$, lze šikovnou změnou hodnoty u(x) udělat svědka splnitelnosti pro množinu S. Množina S má obecně méně svědků splnitelnosti.

Resoluční tabulka

Algoritmus

Označme nyní logické proměnné $A = \{x_1, x_2, \dots, x_n\}$. Nechť S je množina klausulí nad A v základním tvaru.

Předchozí fakt aplikujeme postupně přes proměnné x_1 až x_n , tj. v i—tém kroku přidáme všechny resolventy přes x_i (bez tautologií) a vypustíme všechny klausule s proměnnou x_i . Získáme množinu klausulí S_{i+1} nad proměnnými $\{x_{i+1}, \ldots, x_n\}$ ekvisplnitelnou s S.

Po n krocích získáme množinu klausulí $S_{n+1} = S'$ bez logických proměnných, která je ekvisplnitelná s původní S. Buď je $S' = \{ff\}$, tehdy je původní S nesplnitelná, anebo je $S' = \emptyset$, tehdy je původní S splnitelná.

Resoluční tabulka

Algoritmus

- input S
- for i = 1 to n do
 - rozlož $S = S_0 \cup S_{x_i} \cup S_{\neg x_i}$
 - spočti R_{x_i}
 - $S \leftarrow S_0 \cup R_{x_i}$ enddo
- if $S = \{ff\}$

then output "S je nesplnitelná" else output "S je splnitelná"

Universálnost resoluční metody Resoluční princip Resoluční tabulka

Resoluční tabulka

Poznámka

Pro splnitelnou množinu *S* umožňuje resoluční tabulka také najít svědka splnitelnosti. Návod, jak ho najít, nám dává konstrukce použitá v důkazu předchozího tvrzení:

Vezmeme svědka splnitelnosti množiny $S'=\emptyset$, kterým je jakékoliv ohodnocení u. Vhodnou změnou hodnoty $u(x_n)$ získáme svědka splnitelnosti množiny S_n . Z něj vhodnou změnou hodnoty $u(x_{n-1})$ vyrobíme svědka splnitelnosti pro S_{n-1} . Takto postupně předefinujeme všechny hodnoty od $u(x_n)$ po $u(x_1)$, až získáme ohodnocení, ve kterém je původní množina S pravdivá.

Resoluční tabulka

splnitelnost dosvědčuje.

Příklad

Rozhodněte, zda je množina klausulí $S = \{x \vee y \vee w, x \vee \neg y, y \vee z \vee \neg w, \neg x \vee y \vee \neg z, z \vee w\}$ splnitelná. Pokud ano, nalezněte ohodnocení, které tuto

Sémantický důsledek a resoluční metoda

Literatura

- J. Velebil: Velmi jemný úvod do matematické logiky.
 Kapitola 2.3 a 4.1.
 ftp://math.feld.cvut.cz/pub/velebil/y01mlo/logika.pdf
- M. Demlová, B. Pondělíček: Matematická logika, ČVUT Praha, 1997. Kapitoly 6 a 10.