CSC373 Worksheet 4 Solution

August 4, 2020

1. • Calculating out-degree

Let G = (V, E) be a directed graph. Let $[v_1, ..., v_n]$ be a list of vertices in graph G.

I need to calculate the outdegree of every vertex using adjacency list.

We know that in addition to counting each v_i in adjacency list where i = 1, ..., n, we are also counting $|Adj[v_i]|$ edges.

Since there are |V| = n many vertices, we can write that the total count is $|V| + \sum_{i=1}^{n} |Adj[v_i]| = |V| + |E|$, which is $\mathcal{O}(|V| + |E|)$.

• Calculating In-degree

The outdegree of a vertex is indegree of another vertex.

Using this fact, we can conclude the running time of computing indegree of every vertax is $\mathcal{O}(|V| + |E|)$.

Notes:

• Vertex

- Is a fundamental unit of which graphs are formed
- Also means node

• Adjacency-list Representation

- Associates each vertax in a graph with the collection of its neighbouring vertices or edges
- Is represented by Adj[v]
 - * Means all vertices that are neighbour to vertex v
 - * In a directed graph, Adj[v] are all out-degree vertices of vertax v
 - * |Adj[v]| means the total number of outdegree of vertax v

• Directed graph

 Is a graph that is made up of a set of vertices connected by edges, where the edges have a direction associated with them

• Out-degrees

- For a directed graph G = (V(G), E(G)) and a vertex $x_1 \in V(G)$, the Out-Degree of x_1 refers to the number of arcs incident from x_1 . That is, the number of arcs directed away from the vertex x_1 .

• In-degrees

- For a directed graph G = (V(G), E(G)) and a vertex $x_1 \in V(G)$, the In-Degree of x_1 refers to the number of arcs incident to x_1 . That is, the number of arcs directed <u>towards</u> the vertex x_1 .

• Computing the outdegree of every vertex using adjacency list

$$(v_1 + v_2) + (e_1 + e_2 + e_3)$$

3)

$$(v_1 + v_2 + v_3) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

3)

$$(v_1 + v_2 + v_3) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

4)

$$(v_1 + v_2 + v_3 + v_4) + (e_1 + e_2 + e_3 + e_4 + e_5)$$

4)

 $(v_1 + v_2 + v_3 + v_4) + (e_1 + e_2 + e_3 + e_4 + e_5)$

6)

So it has $\mathcal{O}(V+E)$

• Computing the outdegree of every vertex using adjacency list

The outdegree of a vertex is indegree of another vertex.

Using this fact, we can conclude the running time of computing indegree of every vertax is $\mathcal{O}(V+E)$.

2. • Computing G^T from G in Adjacency List


```
COMPUTE-G-TRANSPOSE-ADJ-MATRIX(Adj,V)

Let Adj' be a new adjacency list containing keys v_i...v_n

for i = 1 to |V|

for every vertax w in Adj[v_i]

Insert(Adj'[w], v_i)

return Adj'
```

• Computing G^T from G in Adjacency-Matrix


```
COMPUTE-G-TRANSPOSE-ADJ-MATRIX(A,V)

Let A'[1..|V|, 1..|V|] be a new adjacency matrix

for i = 1 to |V|

for j = 1 to |V|

A'[j,i] = A[i,j]

return A'
```

Correct Solution:

• Computing G^T from G in Adjacency List


```
COMPUTE-G-TRANSPOSE-ADJ-MATRIX(Adj,V)

Let Adj' be a new adjacency list containing keys v_i...v_n

for i = 1 to |V|

for every vertax w in Adj[v_i]

Insert(Adj'[w], v_i)

return Adj'
```

The running time is $\mathcal{O}(|V| + |E|)$

 \bullet Computing G^T from G in Adjacency-Matrix

Finding Runtime of Algorithm

return d

Since the graph iterates $\sum_{i=1}^{n} Adj[v_i] = |E|$ times for each $v_i \in V$, the algorithm iterates total of $|V| \cdot |E|$ times, which is $\mathcal{O}(|V||E|)$.

Notes:

9

• Breadth First Search

- Is an algorithm for searching or traversing a graph
- Is one of the simplest algorithm

• Largest of All Shortest Path Distance

- Means the shortest distance between two furthest apart nodes

OR

References

1) McGill University, 308-360 Tutorial, link

4. <u>Notes:</u>

- Depth First Search
 - Searches deeper in the graph whenever possible