

Learning Tumor Growth via Follow-Up Volume Prediction for Lung Nodules

Yamin Li¹, Jiancheng Yang¹, Yi Xu¹, Jingwei Xu¹, Xiaodan Ye², Guangyu Tao², Xuegian Xie³, Guixue Liu³

¹Shanghai Jiao Tong University, ²Shanghai Chest Hospital, ³Shanghai General Hospital

Introduction

- Background
 - Follow-up serves an important role in the management of pulmonary nodules for lung cancer.
 - Accurate prediction of tumor growth could help radiologists evaluate the risk of lung nodules without pathological examination and make clinical decision for each patient.

Pulmonary nodule follow-up example of one case

Materials

- Task Formalization
 - To predict future volume of a lung nodule, given any time interval and a baseline volume.
- Dataset
 - Collect more than 300 pulmonary nodules with long-term follow-up from two cooperative hospitals.
 - Each nodule has multiple follow-up examinations, resulting in more than 700 training pairs.
 - All nodules of one patient are divided into the same subset while performing 5-fold cross-validation.

Methodology

Nodule Follow-Up Prediction Network Architecture

- Model Nodule Growth
 - WarpNet: Learn a spatial transformation to model the size variation for nodule growth.
 - TextureNet: Learn a appearance transformation to model the **texture variation** for nodule growth.
 - Temporal Encoding Module (TEM): Encode the relative time interval information in a redundant way.

Results

Quantitative Analysis

Method	PSNR	PSNR*	Dice	Sensitivity	Specificity	G-mean
Baseline (U-Net)	4.1213	29.7490	-	-	23	-
+TEM	6.0380	31.8821	-	-	-	-
WarpNet	18.0915	43.1140	0.6301	0.7656	0.9083	0.8339
+Warp Seg Loss	18.1952	43.2464	0.6474	0.8594	0.8805	0.8699
+TextureNet	18.2089	43.4904	0.6474	0.8594	0.8805	0.8699

PSNR* means PSNR inside the nodule

Qualitative Analysis

Continuous Prediction

¹U-Net with TEM as baseline method

Results