Test Data Set Availability with Test Results

- 1. Data Set downloaded from Kaggle:
 - 1.1. Link: https://www.kaggle.com/ntnu-testimon/paysim1
- 2. Data Set Screenshots:
 - 2.1.

2.2.

3. Test Results after running the Executable code:

3.1. Data Set Rows

3.2. Data Types

```
C→ step
                       int64
                      object
   type
                     float64
   amount
   nameOrig
                      object
   OldBalanceOrig
                     float64
                     float64
   NewBalanceOrig
   nameDest
                      object
   OldBalanceDest
                     float64
   NewBalanceDest
                     float64
   isFraud
                     float64
    isFlaggedFraud
                     float64
   dtype: object
```

3.3. Fraud occurring transaction types

```
The types of fraudulent transactions are ['TRANSFER', 'CASH_OUT']

The number of fraudulent TRANSFERs = 88

The number of fraudulent CASH_OUTs = 93
```

3.4. Column datatypes after labelling the fraud variables

```
<class 'pandas.core.frame.DataFrame'>
   Int64Index: 130786 entries, 2 to 301098
   Data columns (total 7 columns):
   step
                    130786 non-null int64
   type
                    130786 non-null int64
   amount
                   130786 non-null float64
   OldBalanceOrig 130786 non-null float64
   NewBalanceOrig 130786 non-null float64
   OldBalanceDest
                    130786 non-null float64
   NewBalanceDest
                    130786 non-null float64
   dtypes: float64(5), int64(2)
   memory usage: 8.0 MB
```

3.5. Data Pattern Analysis - Both the old and new balance in the recipient's account were zero, but transferred amount was not zero

```
The percentage of 'fraudulent' transactions where both the old and new balance in the recipient's account were zero, but the transacted amount was not zero: 39.7790%

The percentage of 'genuine' transactions where both the old and new balance in the recipient's account were zero, but the transacted amount was not zero: 0.4073%
```

3.6. Data pattern analysis - Both the old and new balance in the sender's account were zero, but transferred amount was not zero

```
The percentage of 'fraudulent' transactions where both the old and new balance in the sender's account were zero, but the transacted amount was not zero: 5.5249%

The percentage of 'genuine' transactions where both the old and new balance in the sender's account were zero, but the transacted amount was not zero: 48.6053%
```

3.7. Data after explanatory variable labelling

C+		step	type	amount	OldBalanceOrig	NewBalanceOrig	OldBalanceDest	NewBalanceDest
	2	1	0	181.00	181.0	0.0	-2.0	-2.00
	3	1	1	181.00	181.0	0.0	21182.0	0.00
	15	1	1	229133.94	15325.0	0.0	5083.0	51513.44
	19	1	0	215310.30	705.0	0.0	22425.0	0.00
	24	1	0	311685.89	10835.0	0.0	6267.0	2719172.89

3.8. Feature engineering result

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 130786 entries, 2 to 301098
Data columns (total 9 columns):
                 130786 non-null int64
step
                 130786 non-null int64
type
                 130786 non-null float64
amount
OldBalanceOrig
                 130786 non-null float64
NewBalanceOrig
                 130786 non-null float64
OldBalanceDest
                 130786 non-null float64
                 130786 non-null float64
NewBalanceDest
ErrorBalanceOrig 130786 non-null float64
ErrorBalanceDest
                   130786 non-null float64
dtypes: float64(7), int64(2)
memory usage: 10.0 MB
```

3.9. Dispersion over time visualization

3.10. Dispersion over amount

3.11. Dispersion over error in balance in destination accounts

3.12. Separating out genuine from fraudulent transactions

3.13. Genuine and fraudulent transactions

3.14. Data skewness value

```
[30] 1 print('skew = {}'.format( len(Xfraud) / float(len(X)) ))

[> skew = 0.001383940177083174
```

3.15. AUPRC value

```
[32] 1 # Long computation in this
2 weights = (Y == 0).sum() /
3 clf = XGBClassifier(max_dep
4 probabilities = clf.fit(tra
5 print('AUPRC = {0:.6f}'.for

□→ AUPRC = 1.000000
```

3.16. Confusion Matrix

3.17. Precision-recall values

3.18. Mean of Precision-recall

```
[37] 1 from sklearn.metrics import f1_score
2 f1_score(trainY, Y_predict)

[> 0.5945945945945945
```

3.19. Underfit model handling with Bias-variance tradeoff

4.