Theorem (3.2.8b). Let f be the function defined by $f(x) = 3x^5 + (\log x)^4$. f(x) is $\mathcal{O}(x^5)$.

Proof. Let g be the function defined by $g(x) = x^5$. If $x \ge 2$, then

$$f(x) = 3x^5 + (\log x)^4 \le 3x^5 + 4x \le 3x^5 + x^5 = 4x^5.$$

Therefore $|f(x)| \le 4|g(x)|$, for all x > 2, and f(x) is $\mathcal{O}(x^5)$ with constant witnesses C = 4, and k = 2.