2021-XE-'14-26'

EE24BTECH11009-Mokshith

- 4) Let f(x) be a non-negative continuous function of real variable x. If the area under the curve y = f(x) from x = 0 to x = a is $\frac{a^2}{2} + \frac{\pi}{2} \sin a + \frac{\pi}{2} \cos a - \frac{\pi}{2}$, then the value of $f(\frac{\pi}{2})$ is _____(round off to one decimal place).
- 5) If the numerical approximation of the value of the integral $\int_0^4 2^{\alpha x} dx$ using the Trapezoidal rule with two sub intervals is 9, then the value of the real constant α is (round off to one decimal place).
- 6) Let the transformation $y(x) = e^x v(x)$ reduce the ordinary differential equation

$$x\frac{d^2y}{dx^2} + 2(1-x)\frac{dy}{dx} + (x-2)y = 0; \quad x > 0$$

to

$$\alpha x \frac{d^2 v}{dx^2} + \beta \frac{dv}{dx} + \gamma v = 0,$$

where α , β , γ are real constants. Then, the arithmetic mean of α , β , γ is (round off to three decimal places).

- 7) A person, who speaks the truth 3 out of 4 times, throws a fair dice with six faces and informs that the outcome is 5. The probability that the outcome is really 5 (round off to three decimal places).
- 8) Let $f(x, y) = x^4 + y^4 2x^2 + 4xy 2y^2 + \alpha$ be a real valued function. Then, which one of the following statements is TRUE for all α ?
 - a) (0,0) is not a stationary point of f
 - b) f has a local maxima at (0,0)
 - c) f has a local minima at (0,0)
 - d) f has a saddle point at (0,0)
- 9) Let $u(x, y) = (x^2 y^2)v(x, y)$ be such that both u(x, y) and v(x, y) satisfy the Laplace equation in a domain Ω of the xy-plane. Then, which one of the following is TRUE in Ω ?

 - a) $x \frac{\partial v}{\partial x} y \frac{\partial v}{\partial y} = 0$ b) $x \frac{\partial v}{\partial x} + y \frac{\partial v}{\partial y} = 0$ c) $x \frac{\partial v}{\partial y} y \frac{\partial v}{\partial x} = 0$ d) $x \frac{\partial v}{\partial y} + y \frac{\partial v}{\partial x} = 0$
- 10) Let I denote the identity matrix of order 7, and A be a 7×7 real matrix having characteristic polynomial $C_A(\lambda) = \lambda^2 (\lambda - 1)^{\alpha} (\lambda + 2)^{\beta}$, where α and β are positive integers. If A is diagonalizable and rank(A) = rank(A + 2I), then rank(A - I) is (in integer).
- 11) Let C_1 be the line segment from (0,1) to $(\frac{4}{5},\frac{3}{5})$, and let C_2 be the arc of the circle

 $x^2 + y^2 = 1$ from (0, 1) to $(\frac{4}{5}, \frac{3}{5})$. If

$$\alpha = \int_{C_1} \left(\frac{2x}{y} i + \frac{1 - x^2}{y^2} j \right) \cdot dr \text{ and } \beta = \int_{C_2} \left(\frac{2x}{y} i + \frac{1 - x^2}{y^2} j \right) \cdot dr,$$

where r = xi + yj, then the value of $\alpha^2 + \beta^2$ is _____(round off to two decimal places).

FLUID MECHANICS (XE-B)

- 1) The general relationship between shear stress, τ , and the velocity gradient (du/dy) for a fluid is given by $\tau = k (du/dy)^n$, where k is a constant with appropriate units. The fluid is Newtonian if
 - a) n > 1
 - b) n < 1
 - c) n = 1
 - d) n = 0
- 2) Which one of the following options is TRUE?
 - a) Pathlines and streaklines are the same in an unsteady flow, and streamlines are tangential to the local fluid velocity at a point.
 - b) Streamlines are perpendicular to the local fluid velocity at a point, and streamlines and streaklines are the same in a steady flow.
 - c) Pathlines and streaklines are the same in an unsteady flow, and streamlines and streaklines are the same in a steady flow.
 - d) Streamlines are tangential to the local fluid velocity at a point, and streamlines and streaklines are the same in a steady flow.
- 3) If $P_m = 1.2Pa$ and $P_{out} = 1.0Pa$ are the average pressures at inlet and outlet respectively for a fully-developed flow inside a channel having a height of 50cm, then the absolute value of average shear stress (inPa) acting on the walls of the channel of length 5 m is
 - a) 0.005
 - b) 0.02
 - c) 0.01
 - d) 0.05
- 4) Consider the fully-developed flow of a Newtonian fluid (density ρ ; viscosity μ) through a smooth pipe of diameter D and length L. The average velocity of the flow is V. If the length of the pipe is doubled, keeping V, D, ρ, μ constant, the friction factor
 - a) increases by two times
 - b) remains the same
 - c) decreases by two times
 - d) increases by four times
- 5) The absolute value of pressure difference between the inside and outside of a spherical soap bubble of radius, R, and surface tension, γ , is:
 - a) $\frac{2\gamma}{R}$

- b) $\frac{\gamma}{R}$ c) $\frac{\gamma}{2R}$ d) $\frac{4\gamma}{R}$