Project Report Predictive Maintenance For TurboFan Engine Chandra Prakash Saini(160010027)

Introduction

In this project we are applying Machine learning /Data science techniques to turbofan engine data for Predictive Maintenance.

Problem definition:-

We will try to model RUL(defined in later paragraph) for a turbofan engine in this project.

The development of data-driven prognostics models requires the availability of datasets with run-to-failure trajectories. These trajectories need to be comprised of a set of time series of CM data along with the corresponding time-to-failure labels. While CM data are often available in abundance, they typically lack the corresponding time-to-failure labels due to the rarity of occurring failures in safety-critical systems and the excessive preventive maintenance.

Data availability:-

Due to the sensitive nature of failures and the potential legal implications, manufacturers and operators have been reluctant to share prognostics datasets of their assets openly. We have data provided on NASA website(link available as Ref(1).

RUL (Remaining Useful life)

The problem of predicting how long a particular industrial asset/machine is going to operate until a system failure occurs, i.e., predicting RUL, is also referred to as prognostics. Deploying successful prognostic methods in real-life applications would enable the design of intelligent maintenance strategies to determine with a sufficiently long lead time before failure when interventions need to be performed. Such maintenance strate- gies have the potential of reducing costs, machine downtime, and the risk of potentially catastrophic consequences if the systems are not maintained in time.

Importance:

Failures of safety-critical systems such as aircraft engines can cause significant economic disruptions and have potentially high social costs. The prediction of the system's failure time is therefore of great importance for maintaining the functionality of safety-

critical systems and society.

Motivation:

My primary motivation for this project is to explore more about a course (**SC640-Applied Predictive analytics**) which I did last semester. In that course we were taught about various predictive maintenance techniques/methods for engineering systems.

In that course we first learn basic statistical methods and machine learning techniques. Then move on to some system where sir explained how these methods are used in the real world. So this project makes **PyCK** useful for me to explore the course and this field.

Implementation:

We used these libraries

- 1. Pandas (for data import and process)
- 2. Seaborn and matplotlib.pyplot (for visualisation and Plotting)
- 3. Sklearn (for machine learning techniques/algorithms)

My preparation:

I did some courses on the DataCamp portal to learn about the sklearn library and more on these machine learning techniques. Which I used in this project.

And learn about the data from research papers(ref.).

Dataset (CMAPSS Data)

The data are provided as a zip-compressed text file with 26 columns of numbers, separated by spaces. Each row is a snapshot of data taken during a single operational cycle; each column is a different variable. The columns correspond to:

- 1) unit number
- 2) time, in cycles
- 3) operational setting 1
- 4) operational setting 2
- 5) operational setting 3
- 6) sensor measurement 1
- 7) sensor measurement 2

- - -

26) sensor measurement 26

#	Column	Non-Null Count	Dtype
π		Non-Nail Counc	
0	unit num	20631 non-null	int64
1	cycle_time	20631 non-null	int64
2	os1	20631 non-null	
3	os2	20631 non-null	
4	os3	20631 non-null	
5	sensor 01	20631 non-null	
6	sensor 02	20631 non-null	
7	sensor 03	20631 non-null	
8	sensor 04	20631 non-null	
9	sensor 05	20631 non-null	
10	sensor 06	20631 non-null	float64
11	sensor 07	20631 non-null	float64
12	sensor 08	20631 non-null	float64
13	sensor_09	20631 non-null	float64
14	sensor_10	20631 non-null	float64
15	sensor_11	20631 non-null	float64
16	sensor_12	20631 non-null	float64
17	sensor_13	20631 non-null	float64
18	sensor_14	20631 non-null	float64
19	sensor_15	20631 non-null	float64
20	sensor_16	20631 non-null	float64
21	sensor_17	20631 non-null	int64
22	sensor_18	20631 non-null	int64
23	sensor_19	20631 non-null	
24	sensor_20	20631 non-null	
25	sensor_21	20631 non-null	float64
26	sensor_22	0 non-null	float64
27	sensor_23	0 non-null	float64
28	_		float64
	_	0 non-null	float64
30	_		float64
	•	27), int64(4)	
memo	ry usage: 4.	9 MB	

From this data set we explored properties of the features.

When we explored the data some of the column values were constant so we removed them and we also removed null(NaN) values/entry columns.

After these our remaining data is presented with describe function of Pandas library.

	unit	_num	cycle_ti	me	os1	c	sensor_	02	sensor_03	sensor_04	sensor_06	sensor_07	sensor_08
count	20631.0	00000	20631.0000	000 20631.00	0000	20631.0000	000 20631.0000	000 2	20631.000000	20631.000000	20631.000000	20631.000000	20631.000000
mean	51.5	06568	108.8078	362 -0.00	0009	0.0000	002 642.6809	934	1590.523119	1408.933782	21.609803	553.367711	2388.096652
std	29.2	27633	68.8809	990 0.00	2187	0.0002	293 0.5000	053	6.131150	9.000605	0.001389	0.885092	0.070985
min	1.0	00000	1.0000	-0.00	8700	-0.0006	641.2100	000	1571.040000	1382.250000	21.600000	549.850000	2387.900000
25%	26.0	00000	52.0000	-0.00	1500	-0.0002	200 642.3250	000	1586.260000	1402.360000	21.610000	552.810000	2388.050000
50%	52.0	00000	104.0000	0.00	0000	0.0000	000 642.6400	000	1590.100000	1408.040000	21.610000	553.440000	2388.090000
75 %	77.0	00000	156.0000	0.00	1500	0.0003	643.0000	000	1594.380000	1414.555000	21.610000	554.010000	2388.140000
max	100.0	00000	362.0000	0.00	8700	0.0006	644.5300	000	1616.910000	1441.490000	21.610000	556.060000	2388.560000
sen	sor_09	ser	nsor_11	sensor_12	se	ensor_13	sensor_14	s	sensor_15	sensor_17	sensor_20	sensor_21	RUL
sen 20631.				sensor_12 0631.000000		ensor_13	sensor_14 20631.000000			sensor_17 20631.000000	sensor_20 20631.000000	sensor_21 20631.000000	RUL 20631.000000
20631.		20631.			2063								
20631.0 9065.2	000000	20631. 47	.000000 2	0631.000000	2063	1.000000	20631.000000		31.000000	20631.000000	20631.000000	20631.000000	20631.000000
20631.0 9065.2 22.0	000000	20631. 47	.000000 2 .541168	0631.000000 521.413470	2063	1.000000	20631.000000		31.000000 : 8.442146	20631.000000	20631.000000	20631.000000	20631.000000 107.807862
20631.0 9065.2 22.0 9021.7	000000 242941 082880	20631. 47 0. 46.	000000 2 .541168 267087	0631.000000 521.413470 0.737553	2063 238 238	1.000000 8.096152 0.071919	20631.000000 8143.752722 19.076176		31.000000 : 8.442146 0.037505	20631.000000 393.210654 1.548763	20631.000000 38.816271 0.180746	20631.000000 23.289705 0.108251	20631.000000 107.807862 68.880990
20631.0 9065.2 22.0 9021.7 9053.	0000000 242941 082880 730000	20631. 47 0. 46. 47.	000000 2 .541168 267087 850000	0631.000000 521.413470 0.737553 518.690000	2063 238 238 238	1.000000 8.096152 0.071919 7.880000	20631.000000 8143.752722 19.076176 8099.940000		31.000000 : 8.442146 0.037505 8.324900	20631.000000 393.210654 1.548763 388.000000	20631.000000 38.816271 0.180746 38.140000	20631.000000 23.289705 0.108251 22.894200	20631.000000 107.807862 68.880990 0.000000
20631.0 9065.2 22.0 9021.7 9053.0 9060.0	000000 242941 082880 730000	20631. 47 0. 46. 47. 47.	000000 2 541168 267087 850000 350000	0631.000000 521.413470 0.737553 518.690000 520.960000	2063 238 238 238 238	1.000000 8.096152 0.071919 7.880000 8.040000	20631.000000 8143.752722 19.076176 8099.940000 8133.245000		31.000000 : 8.442146 0.037505 8.324900 8.414900	20631.000000 393.210654 1.548763 388.000000 392.000000	20631.000000 38.816271 0.180746 38.140000 38.700000	20631.000000 23.289705 0.108251 22.894200 23.221800	20631.000000 107.807862 68.880990 0.000000 51.000000

Further We plot heatmap of this data using Seaborn library's heatmap function.

From this we can see some of the features are highly correlated with each other. We calculated the high correlated columns (|corr| > 0.8) which are mentioned below

```
[('sensor_04', 'sensor_11', 0.8301356963159815),
('sensor_04', 'sensor_12', -0.815590516105214),
('sensor_07', 'sensor_11', -0.8228050249957691),
('sensor_07', 'sensor_12', 0.812712601325414),
('sensor_08', 'sensor_13', 0.8260843322333569),
('sensor_09', 'sensor_14', 0.9631566003059776),
('sensor_11', 'sensor_12', -0.8468835930051095)]
```

Removed some of the features based on these correlations and some plotting of the data. ["os1","os2","sensor_07","sensor_12","sensor_09",]

Now we are ready with our data to perform machine learning techniques.

Regression analysis:

In this we will try to model RUL from the available data. Our main objective is to minimize the RMSE score.

Applied algorithms:

- 1. KNearest Neighbor(knn)
- 2. SVM(svm)
- 3. Lasso regression(lasso)
- 4. Random forest regression(rf)

Result/score of these algorithms:

We are considering RMSE(lower better) as our performance score:

Random forest gives us the best performance here.

	knn	svm	lasso	rf
MAE	24.175830	23.721424	30.240944	11.219696
MSE	1174.304721	1228.091970	1520.815819	287.413009
RMSE	34.268130	35.044143	38.997639	16.953260
R2_score	0.743623	0.731880	0.667971	0.937251

(other values)

Classification analysis:

Now we want to know if the engine is ready to use or not. So we consider if (RUL <30) RUL is low then it is not safe to use that engine. We will classify these low RUL engines from better RUL engines.

Applied algorithms:

- 1. KNearest Neighbor Classifier(knn)
- 2. LogisticRegression(Ir)
- 3. Radial Basis Function SVM(svm)
- 4. RandomForestClassifier(rf)

Accuracy is our prefer performance parameter here

LogisticRegression gives best performance.

(other scores)

Result/score of these algorithms:

	knn	lr	svm	rf
Accuracy Score	0.963005	0.959935	0.964943	0.962197
Precision Score	0.900571	0.875551	0.904654	0.881579
Recall Score	0.847312	0.854839	0.856989	0.864516
F1 Score	0.873130	0.865071	0.880177	0.872964
Auc Score	0.915386	0.916678	0.920510	0.921992

Confusion_matrix for these algorithms: SVM:

KNeighborsClassifier

RandomForest

LogisticRegression

Unseen data performance

Now using these models to predict the RUL for new unseen data.

Regression analysis:

Result/score of these algorithms:

We are considering RMSE(lower better) as our performance score:

SVM gives us the best performance here but in training we got best performance from random forest.

Other parameters scores:

	knn	rf	lasso	svm
MAE	44.536367	44.726059	45.397228	39.120883
MSE	3411.669644	3539.254016	3350.586909	2624.295740
RMSE	58.409500	59.491630	57.884254	51.227880
R2_score	-0.212000	-0.257324	-0.190300	0.067716

Classification analysis:

Accuracy is our prefer performance parameter here

LogisticRegression gives best performance.(same as training)

	knn	lr	svm	rf
Accuracy Score	0.802764	0.793601	0.803070	0.802917
Precision Score	0.726953	0.666109	0.739210	0.712531
Recall Score	0.267097	0.256774	0.259677	0.280645
F1 Score	0.390658	0.370664	0.384340	0.402685
Auc Score	0.617992	0.608429	0.615633	0.622766

Confusion_matrix for these algorithms:

1. SVM

2. Knn

3. RandomForest

4. LogisticRegression

Conclusion:

Applied these techniques to model the RUL of turbofan engines got some interesting results.

We got classification results close to 80% accuracy.

As we can see when we apply our model to unseen data performance decreases which can be due to less data because we are using only 100 engines data to train.

So if we increase our training data we may get better results.

Future work:

Will apply more algorithms/methods on this data to improve performance. (Xgboost,Neural network etc.)

References:

- 1.https://ti.arc.nasa.gov/c/13/ (data link)
- 2. A. Saxena and K. Goebel (2008). "PHM08 Challenge Data Set", NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA 3. A. Saxena, K. Goebel, D. Simon, and N. Eklund, "Damage Propagation Modeling for Aircraft Engine Run-to-Failure Simulation", in the Proceedings of the 1st International Conference on Prognostics and Health Management (PHM08), Denver CO, Oct 2008.
- 3.Performance Benchmarking and Analysis of Prognostic Methods for CMAPSS Datasets "Emmanuel Ramasso and Abhinav Saxena"