Факултет по математика и информатика, СУ "Св. Климент Охридски"

ПРОЕКТ

ПО

Диференциални уравнения и приложения спец. Софтуерно инженерство, 2 курс, летен семестър, учебна година 2019/2020

Тема № 24

XX.	.XX.XXX	Γ.
гр.	София	

Изготвил: XXXXXX	XXXXX
група Х. ф.н. λ	(XXXXX

Оценка:			
---------	--	--	--

СЪДЪРЖАНИЕ

- 1. Тема (задание) на проекта
- 2. Решение на задачата
- 2.1. Теоритична част
- 2.2. MatLab код и получени в командния прозорец резултати при изпълнението му
- 2.3. Графики (включително от анимация)

1. Тема (задание) на проекта.

Тема СИ20-П-24. Дадено е уравнението

$$y' = x(y+2)sin(x^2-1).$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави (slope field) на това уравнение в правоъгълник Π , съдържащ точката (0,1). Решете символно задачата на Коши за даденото уравнвние с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на решението на получената задача на Коши.

2. Решение на задачата

- 2.1. Теоритична част
 - Уравнение на допирателната към интегралната крива

$$y' = x(y+2)sin(x^2-1) = f(x,y); y(\xi) = \eta.$$

Нека $\varphi(x)$ е решение на задачата на Коши. Неговата интегрална крива L е: $\begin{cases} x = x \\ y = \varphi(x) \end{cases}$. Тангентният вектор към L в т. (ξ, η) е:

$$\tau(\xi,\eta) = (\xi,\varphi'(\xi)); \quad \varphi'(\xi) = f(\xi,\varphi(\xi)) \Rightarrow \tau(\xi,\eta) = \left(\xi,f(\xi,\eta)\right).$$

 $y'(\xi) = f(\xi, \eta)$. От друга страна знаем, че

 $tg\phi=rac{y-\eta}{x-\xi}\Rightarrow y=\eta+(x-\xi)f(\xi,\eta)$. Полученото уравнение на тангентата/допирателната е :

$$y = \eta + (x - \xi)\xi(\eta + 2)sin(\xi^2 - 1).$$

 Метод за построяване на поле от прави на изходното уравнение

Нека имаме произволна права с ъглов коефициент $tg \varphi = \frac{y-\eta}{x-\xi}$.

В случаят
$$tg \varphi = \frac{BC}{AB}$$
; Нека $AB = 2\epsilon$ и $AC = 2\delta$. $AC^2 = AB^2 + BC^2$

$$4\delta^2 = 4\epsilon^2 + BC$$
. $y' = x(y+2)sin(x^2-1) = f(x,y)$

$$y'(\xi,\eta) = f(\xi,\eta); \quad BC = 2\epsilon \cdot f(\xi,\eta) \Rightarrow \epsilon = \frac{\delta}{\sqrt{1 + f^2(\xi,\eta)}} > 0.$$

$$y' = (\xi - \epsilon - \xi)f(\xi, \eta) + \eta; \quad y^+ = (\xi + \epsilon - \xi)f(\xi, \eta) + \eta.$$

Искаме да използваме отсечки, части от съответната допирателна през всяка точка $(x,y) \in \mathbb{R}^2$ от дефиниционната област на f(x,y). Получените отсечки образуват фамилия от допирателни за изходното уравнение, т.е. поле от прави.

За целта:

- 1) Избираме $\delta > 0$
- 2) За всяка точка (x_k, y_m) изчисляваме ϵ и чертаем тосечка, свързваща точките $(x_k \epsilon, y_n \epsilon f(x_k, y_m))$ и $(x_k + \epsilon, y_m + \epsilon f(x_k, y_m))$.
- 2.2. MatLab код и получени в командния прозорец резултати при изпълнението му:

```
function plotSlope24
      clc; clf
      x=-5:0.3:5;
      y=-5:0.3:4;
      axis([-5,5,-5,4])
           function z=ff(x,y)
                  x=x.*(y+2).*sin(x.*x-1);
            end
      hold on
      delta=0.1;
      for k=1:length(x)
           for m=1:length(y)
                  plot(x(k),y(m), 'k')
                  eps=delta/(sqrt(ff(x(k),y(m)).^2+1));
                  plot([x(k)-eps,x(k)+eps],[y(m)-eps*ff(x(k),y(m)),y(m)
+eps*ff(x(k),t(m))]
            end
      end
      [x0,y0]=ginput(1);
      diff_eq=dsolve('Dy=x*(y+2)*sin(x*x-1)','y(x0)=y0','x');
      x=-5:0.01:5;
      plot(x,eval(diff_eq),'r')
end
```

2.3. Графики

