Fondamenti di Matematica per Informatica: Schema Esercizi

Aymane Chabbaki

II semestre 2018/2019

Indice

1	Prir	ncipio di Induzione
	1.1	Cosa specificare durante lo sviluppo di un esercizio
	1.2	Esercizio 1
	1.3	Esercizio 2
	1.4	Esercizio 3
	1.5	Esercizio 4
	1.6	Esercizio 5
	1.7	Esercizio 6
2	Mas	ssimo Comune Divisore
	2.1	Esercizio 1
	2.2	Esercizio 2
	2.3	Esercizio 3
	2.4	Esercizio 4
3	Teo	rema Cinese del Resto
	3.1	Esercizio 1
	3.2	Esercizio 2
	3.3	Esercizio 3
4	Inve	ertibilità 10
	4.1	Esercizio 1
	4.2	Esercizio 2
5	Calo	colo della ϕ
	5.1	Esercizi
6	Crit	tografia RSA
	6.1	Esercizio 1
	6.2	Esercizio 2
	6.3	Esercizio 3
7	Gra	\mathbf{fi}
	7.1	Condizioni necessarie ma non sufficienti per l'esistenza di isomorfismi
	7.2	Ostruzioni all'esistenza di grafi con dato score (condizioni necessarie)
8	Ison	morfismo tra grafi
-		Esercizio 1

9	Sco	re di grafi	25
	9.1	Esercizio 1	25
	9.2	Esercizio 2	25
	9.3	Esercizio 3	25
	9.4	Esercizio 4	26
	9.5	Esercizio 5	26
	9.6	Esercizio 6	27
	9.7	Esercizio 7	27
10	Teo	rema dello score	29
	10.1	Enunciato	29
11	Teo	rema dello score: Criterio d'arresto	29
12	Teo	rema di Eulero	29
13	Oss	ervazioni:	80
	13.1	Alberi	30
	13.2	Forzatura alla sconnessione	30
	13.3	Forzatura alla connessione	30
14	Esei	rcizi Grafi	3 1
	14.1	Esercizio 1	31
	14.2	Esercizio 2	31
	14.3	Esercizio 3	32
	14.4	Esercizio 4	34
	14.5	Esercizio 5	34
	14.6	Esercizio 6	36
			37
		Esercizio 8	38

1 Principio di Induzione

1.1 Cosa specificare durante lo sviluppo di un esercizio

- Base dell'induzione
- Passo induttivo
- IPOTESI INDUTTIVA

1.2 Esercizio 1

Si dimostri per induzione su $n\in\mathbb{N}$ che $\forall\,n\!\geq\!1$ $P(n):=\left(\sum_{k=0}^n\frac{5^k}{4^k}=\frac{5^{n+1}}{4^n}-4\right)$ Soluzione:

• Osserviamo che vale n = 1 (base dell'induzione):

$$\frac{5^0}{4^0} + \frac{5^1}{4^1} = \frac{5^{1+1}}{4^1} - 4$$
$$1 + \frac{5}{4} = \frac{25}{4} - 4$$
$$\frac{9}{4} = \frac{9}{4}$$

- Dunque P(0) vera.
- $n \implies n+1$ (passo induttivo) con $n \ge 1$.
- Assumo che l'ugualianza: $\sum_{k=0}^n \frac{5^k}{4^k} = \frac{5^{n+1}}{4^n} 4 \text{ (ipotesi induttiva)} \text{ sia vera.}$
- Devo dimostare che: $\sum_{k=0}^{n+1} \frac{5^k}{4^k} = \frac{5^{(n+1)+1}}{4^{n+1}} 4$
- Vale:

$$\begin{split} \sum_{k=0}^{n+1} \frac{5^k}{4^k} &= \left(\sum_{k=0}^n \frac{5^k}{4^k}\right) + \frac{5^{n+1}}{4^{n+1}} \\ (\text{ipotesi induttiva}) &\mapsto = \left(\frac{5^{n+1}}{4^n}\right) + \frac{5^{n+1}}{4^{n+1}} \\ &= \frac{4 \cdot 5^{n+1} + 5^{n+1}}{4^{n+1}} - 4 \\ &= \frac{5 \cdot 5^{n+1}}{4^{n+1}} - 4 \\ &= \frac{5^{(n+1)+1}}{4^{n+1}} - 4 \end{split}$$

3

• Dunque, visto che $\sum_{k=0}^{n+1} \frac{5^k}{4^k} = \frac{5^{(n+1)+1}}{4^{n+1}} - 4$, abbiamo dimostrato l'ugualianza.

1.3 Esercizio 2

Si dimostri per induzione su $n \in \mathbb{N}$ che $\forall n \geq 2$ $P(n) := \left(\sum_{k=1}^{n} \frac{5}{6^k} = 1 - \frac{1}{6^n}\right)$ Soluzione:

• Osserviamo che vale n = 2 (base dell'induzione):

$$\sum_{k=1}^{2} \frac{5}{6^k} = 1 - \frac{1}{6^2}$$
$$\frac{5}{6} + \frac{5}{6^2} = 1 - \frac{1}{36}$$
$$\frac{6 * 5 + 5}{36} = \frac{36 - 1}{36}$$
$$\frac{35}{36} = \frac{35}{36}$$

- P(2) è vera.
- 1° modo:
 - $-n \ge 2, n \implies n+1$
 - Assumiamo P(n) sia verificata per qualche $n \geq 2$ (**ipotesi induttiva**).
 - Dimostriamo che P(n+1) è vera, ovvero $\sum_{k=1}^{n+1} \frac{5}{6^k} = 1 \frac{1}{6^{n+1}}$ è vera (**passo induttivo**).
 - Vale:

$$\begin{split} \sum_{k=1}^{n+1} \frac{5}{6^k} &= \left(\sum_{k=1}^n \frac{5}{6^k}\right) + \frac{5}{6^{n+1}} \\ (\text{ipotesi induttiva}) &\mapsto = \left(1 - \frac{1}{6^n}\right) + \frac{5}{6^{n+1}} \\ &= 1 - \frac{1}{6^n} + \frac{5}{6^{n+1}} \\ &= 1 - \left(\frac{1}{6^n} - \frac{5}{6^{n+1}}\right) \\ &= 1 - \left(\frac{6 - 5}{6^{n+1}}\right) \\ &= 1 - \frac{1}{6^{n+1}} \end{split}$$

- Dunque, visto che $\sum_{k=1}^{n+1} \frac{5}{6^k} = 1 \frac{1}{6^{n+1}}$, abbiamo dimostrato l'ugualianza.
- 2° modo:
 - $-n \ge 2$, $n \implies n+1$ e assumiamo che valga $\sum_{k=1}^{n} \frac{5}{6^k} = 1 \frac{1}{6^n}$ per qualche $n \ge 2$ (**ipotesi** induttiva).
 - Devo dimostrare che vale: $\sum_{k=1}^{n+1} \frac{5}{6^k} = 1 \frac{1}{6^{n+1}}$

- Vale:

$$\sum_{k=1}^{n+1} \frac{5}{6^k} = 1 - \frac{1}{6^{n+1}} \iff$$

$$\left(\sum_{k=1}^n \frac{5}{6^k}\right) + \frac{5}{6^{n+1}} = 1 - \frac{1}{6^{n+1}} \iff$$

$$1 - \frac{1}{6^n} + \frac{5}{6^{n+1}} = 1 - \frac{1}{6^{n+1}} \iff$$

$$\frac{1}{6^{n+1}} + \frac{5}{6^{n+1}} = \frac{1}{6^n} \iff$$

$$\frac{6}{6^{n+1}} = \frac{1}{6^n} \iff$$

$$\frac{1}{6^n} = \frac{1}{6^n}$$

• Osserviamo che l'ultima equazione è un'**identità** (sempre vera) e dunque, visto che le operazioni sono delle **succesioni di equivalenze**, si può affermare che anche la prima uguaglianza è soddisfatta.

1.4 Esercizio 3

Si dimostri per induzione su $n \in \mathbb{N}$ che $\forall n \geq 1$, vale $P(n) := \left(\sum_{k=0}^{n} 4 \cdot k \cdot 3^k = 3 + 3^{n+1}(2n-1)\right)$ Soluzione:

• Osserviamo che vale n = 1 (base dell'induzione):

$$\sum_{k=0}^{1} 4 \cdot k \cdot 3^{k} = 3 + 3^{1+1}(2 \cdot 1 - 1)$$
$$4 \cdot 0 \cdot 3^{0} + 4 \cdot 1 \cdot 3^{1} = 3 + 3^{2}(2 - 1)$$
$$12 = 12$$

- P(1) risulta vera.
- \bullet $n \ge 1, n \implies n+1$
- Assumiamo P(n) vera per qualche $n \ge 1$ (**ipotesi induttiva**).
- Dimostriamo che P(n+1) è vera, ovvero $\sum_{k=0}^{n+1} 4 \cdot k \cdot 3^k = 3 + 3^{(n+1)+1} (2(n+1) 1)$
- Vale:

$$\sum_{k=0}^{n+1} 4 \cdot k \cdot 3^k = \left(\sum_{k=0}^n 4 \cdot k \cdot 3^k\right) + 4(n+1) \cdot 3^{n+1}$$
 (ipotesi induttiva) $\mapsto = \left(3 + 3^{n+1} \cdot (2n-1)\right) + 4(n+1) \cdot 3^{n+1}$

$$= 3 + 3^{n+1} \cdot (2n-1+4n+4)$$

$$= 3 + 3^{n+1} \cdot (6n+3)$$

$$= 3 + 3^{n+1} \cdot 3(2n+1)$$

• Dunque, visto che $\sum_{k=0}^{n+1} 4 \cdot k \cdot 3^k = 3 + 3^{n+1} \cdot 3(2n+1) = 3 + 3^{(n+1)+1} \cdot (2(n+1)-1)$, abbiamo dimostrato l'ugualianza.

1.5 Esercizio 4

Si dimostri per induzione su $n \in \mathbb{N}$ che $\forall n \geq 3$ vale $P(n) := \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{1+n}{2n}$ Soluzione:

• Osserviamo che vale n = 3 (base dell'induzione):

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) = \frac{1+3}{2*3} \Longleftrightarrow \left(\frac{3}{4} * \frac{8}{9}\right) = \frac{4}{6} \Longleftrightarrow \frac{2}{3} = \frac{2}{3}$$

- P(3) è vera.
- $n \ge 3$, $n \implies n+1$
- Assumiamo che $\prod_{k=2}^{n} \left(1 \frac{1}{k^2}\right) = \frac{1+n}{2n}$ sia vera per qualche $n \ge 3$ (**ipotesi induttiva**).
- Proviamo che $\prod_{k=2}^{n+1} \left(1 \frac{1}{k^2}\right) = \frac{1 + (n+1)}{2(n+1)}$ (passo induttivo).
- Vale:

$$\begin{split} \prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2}\right) &= \frac{1 + (n+1)}{2(n+1)} \\ &= \left(\prod_{k=2}^n 1 - \frac{1}{k^2}\right) \cdot \left(1 - \frac{1}{(n+1)^2}\right) \\ \text{(ipotesi induttiva)} \mapsto &= \left(\frac{1+n}{2n}\right) \cdot \left(1 - \frac{1}{(n+1)^2}\right) \\ &= \frac{1+n}{2n} \cdot \frac{(n+1)^2 - 1}{(n+1)^2} \\ &= \frac{n^2 + 2n + 1 - 1}{2n(n+1)} \\ &= \frac{n(n+2)}{2n(n+1)} \\ &= \frac{n+2}{2(n+1)} \\ &= \frac{1 + (n+1)}{2(n+1)} \end{split}$$

• Dunque, visto che $\prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2}\right) = \frac{1 + (n+1)}{2(n+1)}$, abbiamo dimostrato l'ugualianza.

1.6 Esercizio 5

Si dimostri per induzione su $n \in \mathbb{N}$ che $\forall n \geq 1$ vale $P(n) := \sum_{k=1}^{n} \frac{4k^2 + 2k - 1}{(2k+1)!} = 1 - \frac{1}{(2n+1)!}$ Soluzione:

• Osserviamo che vale n = 1 (base dell'induzione):

$$\frac{4 \cdot 1^2 + 2 \cdot 1 - 1}{(2 \cdot 1 + 1)!} = 1 - \frac{1}{(2 \cdot 1 + 1)!} \Longleftrightarrow \frac{4 + 2 - 1}{3!} = 1 - \frac{1}{6} \Longleftrightarrow \frac{5}{6} = \frac{5}{6}$$

- P(1) è vera.
- $n \ge 1$, $n \implies n+1$ (passo induttivo).
- Assumiamo che $\sum_{k=1}^{n} \frac{4k^2 + 2k 1}{(2k+1)!} = 1 \frac{1}{(2n+1)!}$ sia vera per qualche $n \ge 1$ (**ipotesi induttiva**).
- Dobbiamo provare che $\sum_{k=1}^{n+1} \frac{4k^2 + 2k 1}{(2k+1)!} = 1 \frac{1}{(2(n+1)+1)!}$
- Vale:

$$\begin{split} \sum_{k=1}^n \frac{4k^2 + 2k - 1}{(2k+1)!} &= 1 - \frac{1}{(2n+1)!} \\ &= \left(\sum_{k=1}^n \frac{4k^2 + 2k - 1}{(2k+1)!}\right) + \left(\frac{4(n+1)^2 + 2(n+1) - 1}{(2(n+1)+1)!}\right) \\ \text{(ipotesi induttiva)} \mapsto &= \left(1 - \frac{1}{(2n+1)!}\right) + \left(\frac{4(n^2 + 2n+1) + 2n + 2 - 1}{(2n+3)!}\right) \\ &= 1 - \frac{1}{(2n+1)!} + \frac{4n^2 + 10n + 5}{(2n+3)!} \\ &= 1 - \frac{1}{(2n+1)!} + \frac{4n^2 + 10n + 5}{(2n+3)(2n+2)(2n+1)!} \\ &= 1 - \left[\frac{(2n+3)(2n+2) - (4n^2 + 10n + 5)}{(2n+3)(2n+2)(2n+1)!}\right] \\ &= 1 - \left[\frac{4n^2 + 10n + 6 - 4n^2 - 10n - 5}{(2n+3)(2n+2)(2n+1)!}\right] \\ &= 1 - \frac{1}{(2n+3)!} \\ &= 1 - \frac{1}{(2(n+1)+1)!} \end{split}$$

• Dunque, visto che $\sum_{k=1}^{n} \frac{4k^2 + 2k - 1}{(2k+1)!} = 1 - \frac{1}{(2n+1)!}$, abbiamo dimostrato l'ugualianza.

1.7 Esercizio 6

Si dimostri per induzione su $n \in \mathbb{N}$ che $\forall n \geq 1$ vale $P(n) := \sum_{k=1}^{n} \frac{3}{(2k+1)(2k+3)} = \frac{n}{(2n+3)}$ Soluzione:

• Osserviamo che vale n = 1 (base dell'induzione):

$$\frac{3}{(2 \cdot 1 + 1)(2 \cdot 1 + 3)} = \frac{1}{2 \cdot 1 + 3} \Longleftrightarrow \frac{3}{(2 + 1)(2 + 3)} = \frac{1}{2 + 3} \Longleftrightarrow \frac{3}{15} = \frac{1}{5} \Longleftrightarrow \frac{1}{5} = \frac{1}{5}$$

- P(1) è vera.
- $n \ge 1$, $n \implies n+1$ (passo induttivo).
- Assumiamo che $\sum_{k=1}^{n} \frac{3}{(2k+1)(2k+3)} = \frac{n}{(2n+3)}$ sia vera per qualche $n \ge 1$ (**ipotesi induttiva**).

• Dobbiamo provare che
$$\sum_{k=1}^{n+1} \frac{3}{(2k+1)(2k+3)} = \frac{n+1}{(2(n+1)+3)}$$

• Vale:

$$\frac{3}{(2k+1)(2k+3)} = \frac{n+1}{(2(n+1)+3)}$$

$$= \left(\sum_{k=1}^{n} \frac{3}{(2k+1)(2k+3)}\right) + \left(\frac{3}{(2(n+1)+1)(2(n+1)+3)}\right)$$
(ipotesi induttiva) $\mapsto = \left(\frac{n}{(2n+3)}\right) + \left(\frac{3}{(2n+3)(2n+5)}\right)$

$$= \frac{2n^2 + 5n + 3}{(2n+3)(2n+5)}$$

$$= \frac{(n+1)(2n+3)}{(2n+3)(2n+5)}$$

$$= \frac{n+1}{2n+5}$$

$$= \frac{n+1}{(2(n+1)+3)}$$

• Dunque, visto che $\sum_{k=1}^{n+1} \frac{3}{(2k+1)(2k+3)} = \frac{n+1}{(2(n+1)+3)}$, abbiamo dimostrato l'ugualianza.

2 Massimo Comune Divisore

2.1 Esercizio 1

• Calcolo del MCD tra 54 e 39 e calcolo x e y in \mathbb{Z} tc:

$$(54, 39) = x \cdot 54 + y \cdot 39$$

• Vale:

$$54 = 1 \cdot 39 + 15$$

$$39 = 2 \cdot 15 + 9$$

$$15 = 1 \cdot 9 + 6$$

$$9 = 1 \cdot 6 + 3$$

$$6 = 2 \cdot 3 + 0$$
(1)

• Ora, da (1) risaliamo i resti:

$$15 = 54 - 1 \cdot 39$$

$$9 = 39 - 2 \cdot 15$$

$$6 = 15 - 1 \cdot 9$$

$$3 = 9 - 1 \cdot 6$$

$$= 9 - 1(15 - 1 \cdot 9)$$

$$= 2 \cdot 9 - 1 \cdot 15$$

$$= 2(39 - 2 \cdot 15) - 1 \cdot 15$$

$$= 2 \cdot 39 - 5 \cdot 15$$

$$= 2 \cdot 39 - 5(54 - 1 \cdot 39)$$

$$= 7 \cdot 39 - 5 \cdot 54$$

• Dunque si ha che $(54,39) = 3 = (-5) \cdot 54 + 7 \cdot 39$

2.2 Esercizio 2

• Calcolo del MCD tra 504 e 385 e calcolo x e y in \mathbb{Z} tc:

$$(504, 385) = x \cdot 504 + y \cdot 385$$

• Vale:

$$504 = 1 \cdot 385 + 119$$

$$385 = 3 \cdot 119 + 28$$

$$119 = 4 \cdot 28 + 7$$

$$28 = 4 \cdot 7 + 0$$
(2)

• Ora, da (2) risaliamo i resti:

$$119 = 504 - 1 \cdot 385$$

$$28 = 385 - 3 \cdot 119$$

$$7 = 119 - 4 \cdot 28$$

$$= 119 - 4(385 - 3 \cdot 119)$$

$$= 13 \cdot 119 - 4 \cdot 385$$

$$= 13(504 - 1 \cdot 385) - 4 \cdot 385$$

$$= 13 \cdot 504 - 17 \cdot 385$$

• Dunque si ha che $(504, 385) = 7 = 13 \cdot 504 + (-17) \cdot 385$

2.3 Esercizio 3

• Calcolo del MCD tra 48 e 28 e calcolo x e y in \mathbb{Z} tc:

$$(48, 28) = x \cdot 48 + y \cdot 28$$

• Vale:

$$48 = 1 \cdot 28 + 20$$

$$28 = 1 \cdot 20 + 8$$

$$20 = 2 \cdot 8 + 4$$

$$8 = 2 \cdot 4 + 0$$
(3)

• Ora, da (3) risaliamo i resti:

$$20 = 48 - 1 \cdot 28$$

$$8 = 28 - 1 \cdot 20$$

$$4 = 20 - 2 \cdot 8$$

$$= 20 - 2 \cdot (28 - 1 \cdot 20)$$

$$= 3 \cdot 20 - 2 \cdot 28$$

$$= 3 \cdot (48 - 1 \cdot 28) - 2 \cdot 28$$

$$= 3 \cdot 48 - 5 \cdot 28$$

• Dunque si ha che $(48, 28) = 4 = 3 \cdot 48 + (-5) \cdot 28$

2.4 Esercizio 4

• Calcolo del MCD tra 52 e 28 e calcolo x e y in \mathbb{Z} tc:

$$(52,28) = x \cdot 52 + y \cdot 28$$

• Vale:

$$52 = 1 \cdot 28 + 24$$

$$28 = 1 \cdot 24 + 4$$

$$24 = 6 \cdot 4 + 0$$
(4)

• Ora, da (4) risaliamo i resti:

$$24 = 52 - 1 \cdot 28$$

$$4 = 28 - 1 \cdot 24$$

$$= 28 - 1 \cdot (52 - 1 \cdot 28)$$

$$= 2 \cdot 28 - 1 \cdot 52$$

• Dunque si ha che $(52,28) = 4 = 2 \cdot 28 + (-1) \cdot 52$

3 Teorema Cinese del Resto

3.1 Esercizio 1

• Si determinino tutte le soluzioni di:

$$\begin{cases} x \equiv 33 \pmod{77} \\ x \equiv -2 \pmod{56} \end{cases}$$

- Soluzione:
 - 1. Compatibilità:
 - Grazie al Teorema Cinese del Resto, il sistema è compatibile, ovvero il suo insieme Sol delle soluzioni non è vuoto, se e soltanto se (77, 56) | 33 − (−2), ovvero (77, 56) | 35
 - Vale:

$$77 = \mathbf{7} \cdot 11$$
$$56 = 2^3 \cdot \mathbf{7}$$

- (77, 56) = 7 | 35 è valido, quindi $Sol \neq \emptyset$ e vale:

$$(77,56) \cdot 5 = 33 - (-2)$$
 (1)

- 2. Algoritmo di Euclide:
 - Calcolo di una soluzione \mathbf{c} del sistema, via algoritmo di Euclide.
 - Eseguiamo l' **algoritmo di Euclide** per (77, 56):

$$77 = 1 \cdot 56 + 21$$

$$56 = 2 \cdot 21 + 14$$

$$21 = 1 \cdot 14 + 7$$

$$14 = 2 \cdot 7 + 0$$

- Risialiamo i resti e calcoliamo x e y:

$$21 = 77 - 1 \cdot 56$$

$$14 = 56 - 2 \cdot 21$$

$$7 = 21 - 1 \cdot 14$$

$$= 21 - 1(56 - 2 \cdot 21)$$

$$= 3 \cdot 21 - 1 \cdot 56$$

$$= 3(77 - 1 \cdot 56) - 1 \cdot 56$$

$$= 3 \cdot 77 - 4 \cdot 56$$

- Dunque $(77,56) = 7 = 3 \cdot 77 4 \cdot 56$ (2)
- Dalla (1) e dalla (2) segue che:

$$5(3 \cdot 77 - 4 \cdot 56) = 33 - (-2)$$
$$15 \cdot 77 + (-20) \cdot 56 = 33 - (-2)$$
$$33 + (-15) \cdot 77 = -2 + (-20) \cdot 56$$

$$-c := -1122 = -1122 \in Sol$$

3. Soluzione Completa:

- Grazie al Teorema Cinese del Resto, vale:

$$-\ Sol = [-1122]_{[77,56]}$$

- Vale:
$$[77, 56] = \frac{77 \cdot 56}{(77, 56)} = 11 \cdot 56 = 616$$

- Dunque:

$$Sol = [-1122]_{616} = [110]_{616} \subset \mathbb{Z}$$

= $[110]_{616} = (110 + 616 \cdot k \in \mathbb{Z})$

3.2 Esercizio 2

• Risolvere:

$$(S) = \begin{cases} x \equiv 112 \pmod{72} \\ x \equiv 4 \pmod{330} \end{cases}$$

• Soluzione:

- Osservo che $112 = 40 \pmod{72}$. Dunque il sistema (S) è equivalente al seguente:

$$\begin{cases} x \equiv 40 \pmod{72} \\ x \equiv 4 \pmod{330} \end{cases}$$

1. Compatibilità

* Ricordiamo che, grazie al Teorema Cinese del Resto, il sistema S è compatibile $(Sol(S) \neq \varnothing) \iff (72,330) \mid 40-4 \iff (72,330) \mid 36$

* Vale:

$$72 = 2^3 \cdot 3^2$$
$$330 = 2 \cdot 3 \cdot 5 \cdot 11$$

$$\implies (72,330) = 2 \cdot 3 = 6$$

* $(72,330) \mid 36 \iff 6 \mid 36$ (visto che 6 divide 36, il sistema (S) è compatibile).

* Dunque: $40 - 4 = 6 \cdot 6 = 6(72, 330)$ (1)

2. Euclide

* Vale:

$$330 = 4 \cdot 72 + 42$$

$$72 = 1 \cdot 42 + 30$$

$$42 = 1 \cdot 30 + 12$$

$$30 = 2 \cdot 12 + 6$$

$$12 = 2 \cdot 6 + 0$$

* Ora risaliamo i resti:

$$42 = 330 - 4 \cdot 72$$

$$30 = 72 - 1 \cdot 42$$

$$12 = 42 - 1 \cdot 30$$

$$6 = 30 - 2 \cdot 12$$

$$= 30 - 2(42 - 1 \cdot 30)$$

$$= 3 \cdot 30 - 2 \cdot 42$$

$$= 3(72 - 1 \cdot 42) - 2 \cdot 42$$

$$= 3 \cdot 72 - 5 \cdot 42$$

$$= 3 \cdot 72 - 5(330 - 4 \cdot 72)$$

$$= 23 \cdot 72 - 5 \cdot 330$$

- * Dunque $(72,330) = (-5) \cdot 330 + 23 \cdot 72$ (2)
- 3. Calcolo della soluzione c
 - * Dalla (1) e (2), segue:

$$40 - 4 = 6((-5) \cdot 330 + 23 \cdot 72)$$
$$40 - 4 = (-30) \cdot 330 + (138) \cdot 72$$

* Ovvero:

$$40 + (-138) \cdot 72 = 4 + (-30) \cdot 330$$
$$-9896 = -9896$$

$$\implies c := -9896 \in Sol(S)$$

- 4. Soluzione Completa (calcolo del Sol(S))
 - * Grazie al Teorema Cinese del Resto si ha:

$$Sol(S) = [-9896]_{[72,330]} \subset \mathbb{Z}$$

- * Segue che $[72, 330] = \frac{72 \cdot 330}{(72, 330)} = \frac{72 \cdot 330}{6} = 3960$
- * Dunque:

$$Sol(S) = [-9896]_{[3960]} = [1984]_{[3960]}$$

= $\{1984 + 3960 \cdot k \in \mathbb{Z} \mid k \in \mathbb{Z} \}$

3.3 Esercizio 3

• Determinare tutte le soluzioni di:

$$(S) = \begin{cases} x \equiv -7 \pmod{21} \\ x \equiv 41 \pmod{81} \end{cases}$$

e dire se esiste una soluzione divisibile per 14.

- Soluzione:
 - 1. Compatibilità
 - Ricordiamo che, grazie al Teorema Cinese del Resto, il sistema S è compatibile $(Sol(S) \neq \emptyset)$ $\iff (21,81) | 41 (-7) \iff (21,81) | 48$

- Vale:

$$21 = 3 \cdot 7$$
$$81 = 3^4$$

$$\implies (21, 81) = 3$$

- $-(21,81) \mid 48 \iff 3 \mid 48 = 3 \cdot 16$ (visto che 3 divide 36, il sistema (S) è compatibile).
- Dunque: $41 (-7) = 16 \cdot (21, 81)$ (1)
- 2. Calcolo di una soluzione:
 - Applico l'algoritmo di Euclide a 21 e 81:

$$81 = 3 \cdot 21 + 18$$
$$21 = 1 \cdot 18 + 3$$
$$18 = 6 \cdot 3 + 0$$

- Ora risaliamo i resti:

$$18 = 81 - 3 \cdot 21$$

$$3 = 21 - 1 \cdot 42$$

$$= 21 - (81 - 3 \cdot 21)$$

$$= 4 \cdot 21 - 81$$

- Dunque $(21, 81) = 3 = 4 \cdot 21 81$ (2)
- Dalla (1) e dalla (2) segue che:

$$41 - (-7) = 16 \cdot (21, 81)$$

$$41 - (-7) = 16(4 \cdot 21 - 81)$$

$$= 64 \cdot 21 - 16 \cdot 81$$

$$41 + 16 \cdot 16 \cdot 81 = -7 + 64 \cdot 21$$

$$1337 = 1337$$

- $-\ c:=1337\in Sol$
- 3. Calcolo della soluzione generale (calcolo del Sol(S))
 - Grazie al Teorema Cinese del Resto si ha:

$$Sol(S) = [1337]_{[21,81]} \subset \mathbb{Z}$$

- Segue che $[21, 81] = \frac{21 \cdot 81}{(21, 81)} = \frac{21 \cdot 81}{3} = 567$
- Dunque:

$$Sol(S) = [1337]_{[567]} = [203]_{[567]}$$

= $\{203 + 567 \cdot k \in \mathbb{Z} \mid k \in \mathbb{Z}\}$

- Esiste un $x \in Sol(S)$ tale che 14 | x?
 - 1. Metodo 1:
 - Grazie al teorema cinese del resto, l'esistenza di $x \in Sol(S)$ tale che 14 | x è equivalente alla compatibilità del seguente sistema:

$$\begin{cases} x \equiv 203 \pmod{567} \\ x \equiv 0 \pmod{14} \end{cases}$$

- Tale sistema è compatibile se e soltanto se:

$$(567, 14) \mid 203 - 0 \iff 7 \mid 203$$

- Visto che 7 | 203 è vero, il sistema risulta compatibile, quindi ammette soluzione.
- Dunque esiste una soluzione divisibile per 14.
- 2. Metodo 2:

$$-x = 203 + k \cdot 567$$

$$\begin{split} [203+k\cdot 567]_{14} &= [203]_{14} + [k]_{14}\cdot [567]_{14} \\ &= [203]_{14} + [k]_{14}\cdot [7]_{14} \\ &= [7+k\cdot 7]_{14} \\ &= [14]_{14} \quad \text{con } k=1 \\ &= [0]_{14} \end{split}$$

- Si ne esiste almeno una e corriponde, ad esempio, a k=1.

4 Invertibilità

4.1 Esercizio 1

- 1. $[12]_{30}$ è invertibile? Cioè $[12]_{30} \in (\mathbb{Z}/n\mathbb{Z})^*$
 - n = 30, a = 12
 - $(12,30) = 6 \neq 1 \implies \nexists [x]_{30} tc : [12]_{30} * [x]_{30} = [1]_{30}$
- 2. $[11]_{30}$ è invertibile? Cio
è $[11]_{30} \in \left({}^{\mathbb{Z}}/_{n\mathbb{Z}} \right)^*$
 - n = 30, b = 11
 - $(11,30) = 1 \implies \exists [11]_{30}^{-1} \in (\mathbb{Z}/n\mathbb{Z})^*$
 - Applichiamo Euclide:

$$30 = 2 \cdot 11 + 8$$

$$11 = 1 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

• Risaliamo i resti:

$$8 = 30 - 2 \cdot 11$$

$$3 = 11 - 1 \cdot 8$$

$$2 = 8 - 2 \cdot 3$$

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1(8 - 2 \cdot 3)$$

$$= 3 \cdot 3 - 1 \cdot 8$$

$$= 3(11 - 1 \cdot 8) - 1 \cdot 8$$

$$= 3 \cdot 11 - 4 \cdot 8$$

$$= 3 \cdot 11 - 4(30 - 2 \cdot 11)$$

$$= 11 \cdot 11 - 4 \cdot 30$$

• Dunque:

$$1 = (11) \cdot 11 + (-4) \cdot 30$$
$$[1]_{30} = [11]_{30} \cdot [11]_{30} + [-4]_{30} \cdot [30]_{30}$$

• Passando a (mod 30) si ha che:

$$[1]_{30} = [11]_{30} \cdot [11]_{30}$$

• $[11]_{30}^{-1} = [11]_{30}$

4.2 Esercizio 2

- 1. $[48]_{20}$ è invertibile? Cioè $[48]_{20} \in (\mathbb{Z}/n\mathbb{Z})^*$
 - n = 20, b = 48
 - $\bullet \ (48,20) = 4 \neq 1 \implies \nexists [x]_{20} \ tc : [48]_{20} \ast [x]_{20} = [1]_{20}$
- 2. $[3]_{20}$ è invertibile? Cio
è $[3]_{20}\in \left({}^{\mathbb{Z}}/n_{\mathbb{Z}}\right)^*$
 - n = 20, a = 3
 - $(3,20) = 1 \implies \exists [3]_{20}^{-1} \in (\mathbb{Z}/n\mathbb{Z})^*$
 - Applichiamo Euclide:

$$20 = 6 * 3 + 2$$
$$3 = 2 * 1 + 1$$
$$2 = 2 \cdot 1 + 0$$

• Risaliamo i resti:

$$2 = 20 - 6 \cdot 3$$

$$1 = 3 - 2 \cdot 1$$

$$= 3 - (20 - 6 \cdot 3)$$

$$= 7 \cdot 3 - 20$$

• Dunque:

$$\begin{split} 1 &= (7) \cdot 3 + (-1) \cdot 20 \\ [1]_{20} &= [3]_{20} \cdot [7]_{20} + [-1]_{20} \cdot [20]_{20} \end{split}$$

• Passando a (mod 20) si ha che:

$$[1]_{20} = [3]_{20} \cdot [7]_{20}$$

• $[3]_{20}^{-1} = [7]_{20}$

5 Calcolo della ϕ

5.1 Esercizi

1.
$$\phi(21) = \phi(3 \cdot 7) = (3-1)(7-1) = 12$$

2.
$$\phi(35) = \phi(5 \cdot 7) = (5-1)(7-1) = 24$$

3.
$$\phi(10) = \phi(2 \cdot 5) = (2-1)(5-1) = 4$$

4.
$$\phi(16) = \phi(2^4) = 2^4 - 2^3 = 8$$

5.
$$\phi(81) = \phi(3^4) = 3^4 - 3^3 = 54$$

6.
$$\phi(24) = \phi(2^3 \cdot 3) = \phi(2^3) \cdot \phi(3) = (2^3 - 2^2)(3 - 1) = 8$$

7.
$$\phi(108) = \phi(2^2 \cdot 3^3) = \phi(2^2) \cdot \phi(3^3) = (2^2 - 2^1)(3^3 - 3^2) = 36$$

6 Crittografia RSA

6.1 Esercizio 1

• Risolvere: $x^7 \equiv 2 \pmod{35}$

• Soluzione:

1. Applicabilità del Teorema della crittografia RSA

Dobbiamo verificare che:

(a) (2,35) = 1 (questo è vero in quanto 2 è un numero primo e 35 non è un numero pari)

(b) $(7, \phi(35)) = 1$

*
$$\phi(35) = \phi(5) \cdot \phi(7) = (5-1)(7-1) = 24$$

* Vale che $(7, \phi(35)) = (7, 24) = 1$ (in quanto 7 è un numero primo che non divide 24)

- Grazie al Teorema fondamentale della crittografia RSA vale:

$$Sol = [2^d]_{35} \subset \mathbb{Z}$$
$$= \{2^d + k \cdot 35 \in \mathbb{Z} \mid k \in \mathbb{Z}\}\$$

* Dove
$$d > 0, d \in [7]_{\phi(n)}^{-1} = [7]_{\phi(35)}^{-1} = [7]_{24}^{-1}$$

2. Calcolo della soluzione d $(d > 0, d \in [7]_{24}^{-1})$

- Calcoliamo $\left[7\right]_{24}^{-1}$ via Euclide:

$$24 = 3 \cdot 7 + 3$$
$$7 = 2 \cdot 3 + 1$$
$$3 = 3 \cdot 1 + 0$$

- Risaliamo i resti:

$$3 = 24 - 3 \cdot 7$$

$$1 = 7 - 2 \cdot 3$$

$$= 7 - 2(24 - 3 \cdot 7)$$

$$= 7 \cdot 7 - 2 \cdot 24$$

- Dunque:

$$\begin{aligned} 1 &= 7 \cdot 7 + (-2) \cdot 24 \\ [1]_{24} &= [7]_{24} \cdot [7]_{24} + [-2]_{24} \cdot [24]_{24} \end{aligned}$$

- Passando a (mod 24) si ha che:

$$[1]_{24} = [7]_{24} \cdot [7]_{24}$$

$$- [7]_{24}^{-1} = [7]_{24}$$
, con $d = 7$

• Segue che:

$$Sol = [2^d]_{35} = [2^7]_{35}$$

$$= [2^5]_{35} \cdot [2^2]_{35}$$

$$= [32]_{35} \cdot [4]_{35}$$

$$= [-3]_{35} \cdot [4]_{35}$$

$$= [-12]_{35}$$

$$= [23]_{35}$$

• Quindi:

$$Sol = [23]_{35}$$

= $\{23 + k \cdot 35 \in \mathbb{Z} \mid k \in \mathbb{Z}\}\$

18

6.2 Esercizio 2

- Determinare tutte le soluzioni di $x^9 \equiv 49 \pmod{60}$ e se ne determini la massima soluzione negativa.
- Soluzione:

1. Applicabilità del Teorema della crittografia RSA

- Dobbiamo verificare che:
 - (a) (49,60) = 1 (questo è vero in quanto non ci sono primi comuni)
 - (b) $(9, \phi(60)) = 1$

*
$$\phi(60) = \phi(2^2) \cdot \phi(3) \cdot \phi(5) = (2^2 - 2^1)(3 - 1)(5 - 1) = 16$$

- * Vale che $(9, \phi(60)) = (9, 16) = 1$ (in quanto non ci sono primi comuni)
- Grazie al Teorema fondamentale della crittografia RSA vale:

$$Sol = [49^d]_{60} \subset \mathbb{Z}$$

 $d > 0, d \in [9]_{d(60)}^{-1} = [9]_{16}^{-1}$

2. Calcolo di Sol:

– Prima calcolo $d > 0, d \in [9]_{16}^{-1}$ per mezzo dell'algoritmo di Euclide:

$$16 = 1 \cdot 9 + 7$$

$$9 = 1 \cdot 7 + 2$$

$$7 = 3 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

- Risaliamo i resti:

$$7 = 16 - 1 \cdot 9$$

$$2 = 9 - 1 \cdot 7$$

$$1 = 7 - 3 \cdot 2$$

$$= 7 - 3 \cdot 9$$

$$= 4 \cdot 7 - 3 \cdot 9$$

$$= 4(16 - 1 \cdot 9) - 3 \cdot 9$$

$$= 4 \cdot 16 - 7 \cdot 9$$

- Dunque:

$$\begin{aligned} 1 &= 4 \cdot 16 + (-7) \cdot 9 \\ [1]_{16} &= [4]_{16} \cdot [16]_{16} + [-7]_{16} \cdot [9]_{16} \end{aligned}$$

- Passando a (mod 16) si ha che:

$$[1]_{16} = [-7]_{16} \cdot [9]_{16}$$

• Dunque: $[9]_{16}^{-1} = [9]_{16}$ con d = 9 e:

$$Sol = [49]_{60}^9 = [7^2]_{60}^9 = [7^{18}]_{60} \subset \mathbb{Z}$$

• Dopo aver studiato l'orbita segue che:

$$Sol = \begin{bmatrix} 7^{(4*4+2)} \end{bmatrix}_{60}$$

$$= \begin{bmatrix} 7^4 \end{bmatrix}_{60}^4 \cdot \begin{bmatrix} 7 \end{bmatrix}_{60}^2$$

$$= \begin{bmatrix} 1 \end{bmatrix}_{60}^4 \cdot \begin{bmatrix} 7^2 \end{bmatrix}_{60}$$

$$= \begin{bmatrix} 1 \end{bmatrix}_{60}^4 \cdot \begin{bmatrix} 49 \end{bmatrix}_{60}$$

$$= \begin{bmatrix} 49 \end{bmatrix}_{60}$$

• Quindi:

$$Sol = [49]_{60}$$

= $\{49 + k \cdot 60 \in \mathbb{Z} | k \in \mathbb{Z} \}$

• La massima soluzione negativa è: -11 (data da 49 - 60).

6.3 Esercizio 3

- Determinare tutte le soluzioni di $x^5 \equiv 49 \pmod{171}$ e se ne determini la massima soluzione negativa.
- Soluzione:

1. Applicabilità del Teorema della crittografia RSA

- Dobbiamo verificare che:
 - (a) (49,171) = 1 (vero in quanto nella fattorizzazione di 41 e 171 non sono presenti numeri primi comuni).
 - (b) $(5, \phi(171)) = 1$ * $\phi(60) = \phi(3^2) \cdot \phi(19) = (3^2 - 3^1)(18) = 108$
 - * Vale che $(5, \phi(171)) = (5, 108) = 1$ (visto che 5 è un numero primo e non divide 108)
- Possiamo dunque applicare il teorema fondamentale della crittografia RSA, ottenendo:

$$Sol = [49^d]_{171} \subset \mathbb{Z}$$
$$d > 0, d \in [5]_{\phi(171)}^{-1} = [5]_{108}^{-1}$$

2. Calcolo del Sol:

- Applichiamo l'algoritmo di Euclide a (108, 5):

$$108 = 21 \cdot 5 + 3$$

$$5 = 1 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

- Risaliamo i resti:

$$3 = 108 - 21 \cdot 5$$

$$2 = 5 - 1 \cdot 3$$

$$1 = 3 - 1 \cdot 2$$

$$= 3 - 1(5 - 1 \cdot 3)$$

$$= 2 \cdot 3 - 1 \cdot 5$$

$$= 2(108 - 21 \cdot 5) - 1 \cdot 5$$

$$= 2 \cdot 108 - 43 \cdot 5$$

- Dunque:

$$\begin{aligned} 1 &= 2 \cdot 108 + (-43) \cdot 5 \\ [1]_{108} &= [2]_{108} \cdot [108]_{108} + [-43]_{108} \cdot [5]_{108} \end{aligned}$$

- Passando a (mod 108) si ha che:

$$[1]_{108} = [-43]_{108} \cdot [5]_{108}$$

– Dunque: $[5]_{108}^{-1} = [-43 + 108]_{108} = [65]_{108}$ con d = 65 e:

$$Sol = [49]_{171}^{65} = \left[7^{2}\right]_{171}^{65} = \left[7^{130}\right]_{171} \subset \mathbb{Z}$$

- Dopo aver studiato l'orbita segue che:

$$\begin{split} Sol &= \left[7^{130}\right]_{171} \\ &= \left[7^{(3\cdot43+1)}\right]_{171} \\ &= \left[\left(7^3\right)^{43}\cdot7^1\right]_{171} \\ &= \left[7^3\right]_{171}^{43}\cdot\left[7^1\right]_{171} \\ &= \left[1\right]_{171}^{43}\cdot\left[7\right]_{171} \\ &= \left[1^{43}\right]_{171}\cdot\left[7\right]_{171} \\ &= \left[1\right]_{171}\cdot\left[7\right]_{171} \\ &= \left[7\right]_{171} \end{split}$$

- Quindi:

$$\begin{aligned} Sol &= \left[7 \right]_{171} \\ &= \left\{ 7 + k \cdot 171 \in \mathbb{Z} | k \in \mathbb{Z} \right\} \end{aligned}$$

- Esiste un $k \in Sol$ tale che la somma del numero ottenuto faccia 12 ($\exists k \geq 0 \ tc$. la somma delle cifre del numero $\{7+171 \cdot k\}$ faccia 12)?
 - Se esistesse, il numero sarebbe mutiplo di 3:

$$[0]_3 = [7 + k \cdot 171]_3 = [7]_3 + [171]_3 \cdot [k]_3 = [1]_3 + [0]_3 \cdot [k]_3 = [1]_3$$

- Qualunque essa sia la soluzione della mia conguenza, se viene divisa per 3, ottengo sempre un resto di 1.
- Dunque, non può esserci una soluzione divisibile per 3 la cui somma delle cifre faccia 12.

7 Grafi

7.1 Condizioni necessarie ma non sufficienti per l'esistenza di isomorfismi

- Alcune condizioni necessarie (ma non sufficienti) per l'esistenza di isomorfismi, ovvero se G e G' sono grafi finiti ed isomorfi allora:
 - 1. |V(G)| = |V(G')|
 - 2. |E(G)| = |E(G')|
 - 3. score(G) = score(G') in forma canonica
 - 4. #c.c di G = #c.c di G'
 - 5. G 2-connesso \iff G' 2-connesso
 - 6. G hamiltoniano $\iff G'$ hamiltoniano
 - 7. $\#(\{3,\ldots n\}\text{-cicli di }G)=\#(\{3,\ldots n\}\text{-cicli di }G')$
- Queste condizioni vengono utilizzate per escludere a priori grafi che non sono isomorfi.
- Basta che una di queste condizioni necessarie venga a mancare affinchè i grafi non siano isomorfi.
- Bisogna ricordare però che queste condizioni sono **necessarie ma non sufficienti** per l'esistenza di isomorfismi, dunque se 2 grafi passano tutte le verifiche (basta arrivare fino alla costruzione n. 6), **nulla si può dire** e per verificare se i grafi sono isomorfi bisogna passare a verifica diretta.
- Quando si passa a verifica diretta di un isomorfismo è prassi gestire prima i vertici con grado massimo (minimo) o che compaiono una sola volta, così da ridurre i casi da gestire.

7.2 Ostruzioni all'esistenza di grafi con dato score (condizioni necessarie)

- 1. Ostruzione 1:
 - Se G è un grafo finito con score $d = (d_1, \ldots, d_n)$ con $d_1 \le d_2 \le \ldots, \le d_n$, allora:

$$d_n \le n-1$$

OSTRUZIONE 2:

• Se G è un grafo finito con score $d = (d_1, \ldots, d_n)$, per il lemma delle strette di mano, il numero di vertici di G di grado dispari deve essere pari.

OSTRUZIONE 3:

• Se $d=(d_1,d_2,\ldots,d_{n-k+1},d_{n-k+2},\ldots,d_{n-1},d_n)=(d_1,d_2,\ldots,d_{n-k},\underbrace{n-1,\ldots,n-1}_{k\text{-volte}})$ fosse lo score di un grafo G, allora:

$$k \leq d_1$$

OSTRUZIONE 4:

• Sia G un grafo finito con score canonico $d = (d_1, \ldots, d_{n-1}, d_n)$ e siano $u, v \in V(G)$ tale che:

$$deg_G(u) = d_n - 1$$
$$deg_G(v) = d_n$$

• Allora:

$$|\{w \in V(G) \setminus \{u, v\} | deg_G(w) \ge 2\}| \ge d_{n-1} + d_n - n$$

8 Isomorfismo tra grafi

8.1 Esercizio 1

• Stabilire l'esistenza o meno di isomorfismi tra i seguenti grafi:

- Alcune condizioni necessarie:
 - 1. $|V(G_{25})| = |V(G_{26})| = |V(G_{27})| = 7$ (NULLA SI PUÒ DIRE)
 - 2. $|E(G)| = |E(G')| = |EV(G_{27})| = 12$ (Nulla si può dire)
 - 3. Score:

$$\begin{array}{l} score(G_{25}) = (3,3,3,3,3,3,6) \\ score(G_{26}) = (3,3,3,3,3,3,6) \\ score(G_{27}) = (3,3,3,3,3,3,6) \end{array} \} \ \text{NULLA SI PUÒ DIRE}$$

- 4. G_{25} , G_{26} e G_{27} sono connessi.
- 5. G_{25} è 2-connesso in quanto hamiltoniano, essendo $\{a,b,c,d,e,f,g,a\}$ un suo ciclo hamiltoniano. G_{26} non è 2-connesso in quanto $G_{26}-g'$ è un grafo con $2\,c.c$ G_{27} non è 2-connesso in quanto $G_{27}-g''$ è un grafo con $2\,c.c$

Dunque:

$$G_{25} \not\simeq G_{26}$$
$$G_{25} \not\simeq G_{27}$$

- 6. G_{26} e G_{27} non sono 2-connessi e dunque neanche hamiltoniani (NULLA SI PUÒ DIRE).
- 7. Calcolare $\#(\{3,\ldots n\}\text{-cicli di }G)$ in generale è complicato e non porta a niente.

- Le costruzioni passano tutte le verifiche dunque NULLA SI PUÒ DIRE. Si passa a verifica diretta dell'isomorfismo tra G_{26} e G_{27} :
 - Costruiamo un isomorfimo $f: G_{26} \longrightarrow G_{27}$

$$V_{26} \xrightarrow{f} V_{27}$$

$$a' \longmapsto a''$$

$$b' \longmapsto b''$$

$$c' \longmapsto c''$$

$$d' \longmapsto d''$$

$$e' \longmapsto e''$$

$$f' \longmapsto f''$$

$$g' \longmapsto g''$$

- Osservo che f è **iniettiva** (i vertici elencati nella colonna di destra sono a 2 a 2 distinti).
- Inoltre f è surgettiva (nella colonna a destra compaiono tutti i vertici di G_{27}
- Dunque f è una **bigezione**.
- Verifico se si tratta di un **morfismo** con f^{-1} morfismo:

$$E(G_{26}) \xrightarrow{f'} \left(\frac{V(G_{27})}{2}\right)$$

$$\{a',e'\} \longmapsto \{f'',c''\} \in E(G_{27})$$

$$\{a',g'\} \longmapsto \{f'',g''\} \in E(G_{27})$$

$$\{a',c'\} \longmapsto \{f'',b''\} \in E(G_{27})$$

$$\{e',g'\} \longmapsto \{c'',g''\} \in E(G_{27})$$

$$\{e',c'\} \longmapsto \{c'',b''\} \in E(G_{27})$$

$$\{c',g'\} \longmapsto \{b'',g''\} \in E(G_{27})$$

$$\{f',d'\} \longmapsto \{a'',d''\} \in E(G_{27})$$

$$\{f',b'\} \longmapsto \{a'',e''\} \in E(G_{27})$$

$$\{f',g'\} \longmapsto \{e'',g''\} \in E(G_{27})$$

$$\{b',g'\} \longmapsto \{e'',g''\} \in E(G_{27})$$

- Se avessi trovato un lato che non appartiene a $E(G_{27})$ avrei dovuto rifare tutto, cambiando la funzione f che ho definito in precedenza.
- Poichè i 2-sottoinsiemi di $V(G_{27})$ che compaiono nella colonna di destra sono lati di G_{27} , segue che f è un morfismo.
- Poichè nella colonna di destra compaiono tutti i lati di G_{27} , f è un isomorfismo.
- In conclusione: $G_{26} \simeq G_{27}$

9 Score di grafi

9.1 Esercizio 1

• Dire se d = (1, 1, 2, 4, 5, 6, 7) è lo score di un grafo.

$$n = 7$$
$$d_n = 7$$

$$d_n \le n - 1 \Longleftrightarrow 7 \le 7 - 1$$
$$\iff 7 \le 6$$

ullet La prima ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

9.2 Esercizio 2

• Dire se d = (1, 1, 1, 1, 5, 6, 7, 8) è lo score di un grafo.

$$n=8$$

$$d_n = 8$$

$$d_n \le n - 1 \Longleftrightarrow 8 \le 8 - 1$$
$$\iff 8 \le 7$$

• La prima ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

9.3 Esercizio 3

- Dire se d = (0, 1, 2, 4, 4, 4, 4, 8, 8, 9) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 10 e il grado massimo di uno dei suoi vertici è $d_n = 9$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 9 \le 10 - 1$$
$$\Longleftrightarrow 9 < 9$$

- La prima ostruzione è valida, ma nulla si può dire.
- Supponiamo che d sia uno score di un grafo, allora anche d' = (1, 2, 4, 4, 4, 4, 8, 8, 9) sarebbe lo score di un grado (quello precedente con il vertice isolato rimosso).
- Allora vale:

$$d_n \le n - 1 \Longleftrightarrow 9 \le 9 - 1$$
$$\iff 9 \le 8$$

ullet La prima ostruzione non è rispettata, dunque non esiste alcun grafo con score d', dunque neanche con d.

9.4 Esercizio 4

- Dire se d = (1, 1, 1, 2, 2, 3, 4, 5, 5, 7) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 10 e il grado massimo di uno dei suoi vertici è $d_n = 7$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 7 \le 10 - 1$$
$$\iff 7 < 9$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 3$$

 $|V(G) \text{ dispari }| = 7$

• Il lemma delle strette di mano (ostruzione n.2) non è rispettato, dunque non esiste alcun grafo con score d.

9.5 Esercizio 5

- Dire se d = (1, 2, 3, 4, 5, 6, 7, 8, 8) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 9 e il grado massimo di uno dei suoi vertici è $d_n = 8$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 8 \le 9 - 1$$
$$\iff 8 \le 8$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 4$$

 $|V(G) \text{ dispari }| = 4$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- Siamo nelle ipotesi della terza ostruzione, cioè lo score termina con termini che valgono n-1, ma deve valere anche $k < d_1$, cioè il numero di termini che valgono n-1 deve essere minore del primo termine dello score.
- Vale:

$$k < d_1$$
$$2 < 1$$

 \bullet La terza ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

9.6 Esercizio 6

- Dire se d = (2, 2, 3, 3, 3, 3, 3, 4, 4, 11, 11, 11) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 12 e il grado massimo di uno dei suoi vertici è $d_n = 12$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 11 \le 12 - 1$$
$$\Longleftrightarrow 11 \le 11$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 4$$

 $|V(G) \text{ dispari }| = 8$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- Siamo nelle ipotesi della terza ostruzione, cioè lo score termina con termini che valgono n-1, ma deve vale anche $k < d_1$, cioè il numero di termini che valgono n-1 deve essere minore del primo termine dello score.
- Vale:

$$k < d_1$$
$$3 < 2$$

 \bullet La terza ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

9.7 Esercizio 7

- Dire se d = (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 12, 13) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 14 e il grado massimo di uno dei suoi vertici è $d_n = 13$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 13 \le 14 - 1$$
$$\iff 13 \le 13$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$\begin{split} |V(G) \text{ pari }| &= 10 \\ |V(G) \text{ dispari }| &= 4 \end{split}$$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- Non siamo nelle ipotesi della terza ostruzione, perchè lo score termina con un solo termine che vale n-1, dunque visto che "ex falso quodlibet", cioè "dal falso segue qualsiasi cosa", la terza ostruzione è rispettata.

- Verifichiamo la quarta ostruzione, cioè "il numero di entrate di d (eccetto le ultime due) maggiori o uguali a 2" deve essere maggiore di $d_{n-1}+d_n-n$
- Dunque:

$$|(2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 12, 13)| \ge 12 + 13 - 14$$

 $10 \ge 11$

 \bullet La quarta ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

10 Teorema dello score

10.1 Enunciato

- Sia $n \geq 2$ e sia $d = (d_1, d_2, \dots, d_n) \in \mathbb{N}^n$ tale che $0 \leq d_1 \leq \dots \leq d_n \leq n-1$
- Definiamo il seguente vettore $d'=(d_1',d_2',\ldots,d_{n-1}')\in\mathbb{N}^{n-1}$

$$d_i' := \begin{cases} d_i & i < n - d_n \\ d_i - 1 & i \ge n - d_n \end{cases}$$

- Allora d è lo score di un grafo se e soltanto se lo è d'.
- Se tutto degenera e va a 0, allora d' è lo score di un grafo, e di conseguenza anche d è lo score di un grafo.
- Per semplicità nei calcoli, quando le entrate dell' i-esimo score sono tutte minori o uguali a 2 ci si può fermare.

11 Teorema dello score: Criterio d'arresto

- Sia $d = (d_1, \dots, d_n) \in \mathbb{N}$ tale che $0 \le d_1 \le \dots \le d_n \le 2$.
- ullet Supponiamo che d soddisfi il lemma delle strette di mano, cioè il numero di volte che compare 1 è pari.
- Allora valgono:
 - 1. Non compare 1:
 - $-d = (0,0,0,\ldots,0)$ è lo score di un grafo con vertici isolati.
 - $-d=(0,0,0,\ldots,2)$ non è lo score di un grafo; l'ultimo vertice prevede due lati ma tutti gli altri vertici sono isolati.
 - $-d = (0,0,0,\ldots,2,2)$ non è lo score di un grafo.
 - $-d = (0,0,0,\ldots,\underbrace{2,2,\ldots,2}_{m\text{-volte}})$ è lo score di un grafo.
 - 2. Supponiamo che 1 compaia 2k + 2 volte per qualche k > 0:

$$d = (\underbrace{0, \dots, 0}_{n}, \underbrace{1, 1, \dots, 1}_{2k+2}, \underbrace{2, 2, \dots, 2}_{m})$$

12 Teorema di Eulero

ENUNCIATO:

- Sia T = (V, E) un grafo **finito**, ovvero |V| è finita.
- Le seguenti affermazioni sono equivalenti:
 - -Tè un albero.
 - T è connesso e vale la seguente formula di Eulero:

$$|V| - 1 = |E| = \frac{1}{2} \sum_{v \in V} deg_T(v)$$

13 Osservazioni:

13.1 Alberi

• Sia $d = (d_1, d_2, \dots, d_n) \in \mathbb{N}^n$ tale che $1 \le d_1 \le d_2 \le \dots \le d_n$ tale che:

$$n - 1 = \frac{1}{2} \sum_{i=1}^{n} d_i$$

allora esiste almeno un albero con tale score.

 \bullet Se un grafo G ammette almeno un albero di copertura, allora G è connesso.

13.2 Forzatura alla sconnessione

• Se G = (V, E) è un grafo finito tale che |E| < |V| - 1, allora G è sconnesso.

• Sia $d = (d_1, d_2, \dots, d_n) \in \mathbb{N}^n$ tale:

$$\frac{1}{2} \left(\sum_{i=1}^{n} d_i \right) < n - 1$$

allora **ogni** grafo (se esiste) con score d è **sconnesso**.

13.3 Forzatura alla connessione

• Sia G = (V, E) un grafo finito con score $d = (d_1, \ldots, d_n)$ in forma canonica. Se $d_1, d_2, \geq n - d_n - 1$, allora tutti i grafi con score d sono connessi.

• Sia $d = (d_1, \ldots, d_n) \in \mathbb{N}^n$ tale che:

$$-d_1 \le d_2 \le \dots \le d_n$$

$$-d_1 \ge n - d_n - 1$$

• Allora ogni grado (se esiste) con score d è **connesso**.

Se la disugualianza per la connessione (o per la sconnessione) non funziona, cioè risulta falsa, allora nulla si può dire in merito alla connessione di un grafo con tale score.

14 Esercizi Grafi

14.1 Esercizio 1

- Dire se d = (2, 2, 3, 3, 3, 3, 4, 4, 11, 11, 11) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n:=|V(G)|=12 e il grado massimo di uno dei suoi vertici è $d_n=11$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 11 \le 12 - 1$$
$$\iff 11 \le 11$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 4$$

 $|V(G) \text{ dispari }| = 8$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- Siamo nelle ipotesi della terza ostruzione, cioè lo score termina con termini che valgono n-1, ma deve valere anche $k < d_1$, cioè il numero di termini che valgono n-1 deve essere minore del primo termine dello score.
- Vale:

$$k < d_1$$
$$3 < 2$$

 \bullet La terza ostruzione non è rispettata, dunque non esiste alcun grafo con score d.

14.2 Esercizio 2

- Dire se d = (2, 2, 2, 2, 3, 3, 5, 5, 8, 8) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 10 e il grado massimo di uno dei suoi vertici è $d_n = 8$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 8 \le 10 - 1$$
$$\iff 8 \le 9$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 6$$

 $|V(G) \text{ dispari }| = 4$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- La terza ostruzione è verificata.

- Verifichiamo la quarta ostruzione, cioè "il numero di entrate di d (eccetto le ultime due) maggiori o uguali a 2" deve essere maggiore di $d_{n-1} + d_n n$
- Dunque:

$$|(2,2,2,2,3,3,5,5,8,8)| \ge 8+8-10$$

$$8 \ge 6$$

- La quarta ostruzione è rispettata, ma nulla si può dire.
- Le ostruzioni non forniscono informazioni, applico quindi il teorema dello score:

Score	Dati
d = (2, 2, 2, 2, 3, 3, 5, 5, 8, 8)	n = 10
	$d_n = 8 \le 10 - 1$
d' = (2, 1, 1, 1, 2, 2, 4, 4, 7)	n = 9
=(1,1,1,2,2,2,4,4,7)	$d_n = 7 \le 9 - 1$
d'' = (1, 0, 0, 1, 1, 1, 3, 3)	n = 8
=(0,0,1,1,1,1,3,3)	$d_n = 3 \le 8 - 1$
d''' = (0, 0, 1, 1, 0, 0, 2)	Entrata minari a uguali a 2
=(0,0,0,0,1,1,2)	Entrate minori o uguali a 2

• Poichè d''' è lo score del seguente grafo G''':

• Dunque, grazie al teorema dello score anche d è lo score di un grafo G (**DA FARE GRAFO**):

14.3 Esercizio 3

- Dire se d = (2, 2, 2, 2, 3, 3, 5, 6) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 9 e il grado massimo di uno dei suoi vertici è $d_n = 6$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 6 \le 9 - 1$$
$$\iff 6 \le 8$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 5$$

 $|V(G) \text{ dispari }| = 4$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- La terza ostruzione è verificata, in quanto lo score termina con 6 e non con n-1=9-1=8
- Verifichiamo la quarta ostruzione, cioè "il numero di entrate di d (eccetto le ultime due) maggiori o uguali a 2" deve essere maggiore di $d_{n-1} + d_n n$
- Dunque:

$$|(2,2,2,2,3,3,5,6)| \ge 5+6-9$$

$$7 \ge 2$$

- La quarta ostruzione è rispettata, ma nulla si può dire.
- Le ostruzioni non forniscono informazioni, applico quindi il teorema dello score:

Score	Dati
d = (2, 2, 2, 2, 3, 3, 5, 6)	n = 9
$\omega = (2, 2, 2, 2, 0, 0, 0, 0)$	$d_n = 6 \le 9 - 1$
d' = (2, 2, 1, 1, 2, 2, 2, 4)	n = 8
=(1,1,2,2,2,2,2,4)	$d_n = 4 \le 8 - 1$
d'' = (1, 1, 2, 1, 1, 1, 1)	Entrete mineri e ucueli e 2
=(1,1,1,1,1,1,2)	Entrate minori o uguali a 2

• Poichè d'' è lo score del seguente grafo G'':

- ullet Dunque, grazie al teorema dello score anche d è lo score di un grafo G.
- Costruiamo un grafo (procedura a ritroso) con score d utilizzando il teorema dello score: (DA FARE GRAFO)

14.4 Esercizio 4

- Dire se d = (3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 13, 13, 13, 13) è lo score di un grafo.
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n := |V(G)| = 14 e il grado massimo di uno dei suoi vertici è $d_n = 13$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 13 \le 14 - 1$$
$$\iff 13 \le 13$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G) \text{ pari }| = 6$$

 $|V(G) \text{ dispari }| = 8$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- Se d fosse lo score di un grado, per la terza ostruzione sarebbero previsti 4 vertici di grado 13 = n 1 (dove n = 14 è il numero di vertici) che dovrebbero essere collegati a tutti gli altri vertici.
- Dunque il grado minimo previsto dovrebbe essere maggiore o uguale a 4, che è assurdo visto che il grado minimo dello score d è 3.
- La terza ostruzione non è rispettata, dunque non esiste un grafo con score d.

14.5 Esercizio 5

- Dire se d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4)
- Supponiamo che esista un grafo finito G con score(G) = d
- Allora n:=|V(G)|=13 e il grado massimo di uno dei suoi vertici è $d_n=4$
- Deve valere:

$$d_n \le n - 1 \Longleftrightarrow 4 \le 13 - 1$$
$$\iff 4 \le 12$$

- La prima ostruzione è valida, ma nulla si può dire.
- Per il lemma delle strette di mano, il numero di vertici dispari deve essere pari:

$$|V(G)$$
 pari $|=3$
 $|V(G)$ dispari $|=10$

- La seconda ostruzione è rispettata, ma nulla si può dire.
- La terza ostruzione è verificata, in quanto non è possibile controllarla.
- Verifichiamo la quarta ostruzione, cioè "il numero di entrate di d (eccetto le ultime due) maggiori o uguali a 2" deve essere maggiore di $d_{n-1} + d_n n$
- Dunque:

$$|(1,1,1,1,1,1,1,1,1,4,4,4)| \ge 4+4-13 \iff 2 \ge -5$$

- La quarta ostruzione è rispettata, ma nulla si può dire.
- Le ostruzioni non forniscono informazioni, applico quindi il **teorema dello score** a d_2 :

Score	Dati
d = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4)	n = 13
	$d_n = 4 \le 13 - 1$
d' = (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 3, 3)	n = 12
= (0,0,1,1,1,1,1,1,1,1,3,3)	$d_n = 3 \le 12 - 1$
d'' = (0, 0, 1, 1, 1, 1, 1, 0, 0, 2)	Entrate minori o uguali a 2
= (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2)	Entrate innorro uguan a 2

• Poichè d'' è lo score del seguente grafo G''':

- Grazie al teorema dello score anche d_2 è lo score di un grafo G_2 .
- \bullet Costruiamo un grafo (procedura a ritroso) con score d utilizzando il teorema dello score:

$$d_2 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4)$$

$$d'_2 = (0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3)$$

$$d''_2 = (0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2)$$

14.6 Esercizio 6

- Quale dei seguenti vettori è lo score di un albero?
 - 1. $d_1 = (0, 1, 1, 3, 3, 3, 3, 4, 4)$
 - 2. $d_2 = (1, 2, 2, 2, 3, 3, 4, 4, 5)$
 - 3. $d_3 = (2, 2, 2, 2, 3, 3, 3, 4, 4, 7)$
 - 4. $d_4 = (1, 1, 1, 1, 1, 2, 2, 3, 4)$
- Soluzione:
 - 1. d_1 non è uno score di un albero, in quanto, sarebbe presente un **vertice isolato** e dunque il grafo con tale score risulterebbe sconnesso.
 - 2. d_2 non è lo score di un albero, in quanto, un grafo con score d_2 avrebbe 9 vertici e se fosse un albero dovrebbero essere presenti almeno 2 foglie (vertici di grado 1).
 - Inoltre usando la formula di Eulero si ha:

$$n = 9$$

$$|E| = \frac{1}{2}(1 + 2 + 2 + 2 + 3 + 3 + 4 + 4 + 5)$$

$$= \frac{1}{2}(26)$$

$$= 13$$

- Deve valere:

$$n-1=|E| \Longleftrightarrow 9-1=13 \Longleftrightarrow 8=13$$

- Visto che quest' ultima affermazione è falsa, la formula di Eulero non è soddisfatta e dunque non esiste un albero con score d_2 .
- 3. d_3 non è uno score di un albero per assenza di foglie.
- 4. Verifichiamo la formula di Eulero per d_4 :

$$-n = 9$$

$$-|E| = \frac{1}{2}(1, 1, 1, 1, 1, 2, 2, 3, 4) = \frac{1}{2}(16) = 8$$

$$n-1=|E| \Longleftrightarrow 9-1=8 \Longleftrightarrow 8=8$$

- Osservo che d_4 non ha entrate nulle (vertici isoltati) e che vale la formula di Eulero; dunque l'albero con score d_4 può essere costruito nel seguente modo:

5. Verifichiamo la formula di Eulero per d_5 :

$$- n = 21$$

$$n-1=|E| \iff 21-1=20 \iff 20=20$$

-Osservo che d_{5} non ha entrate nulle (vertici isoltati) e che vale la formula di Eulero; dunque l'albero con score d_5 può essere costruito nel seguente modo:

14.7 Esercizio 7

• Dise se esite un grafo connesso con il seguente score:

1.
$$d_1 = (1, 1, 1, 1, 1, 1, 2, 2)$$

$$\frac{1}{2} \left(\sum_{i=1}^{n} d_{1i} \right) < n - 1$$

$$\frac{1}{2} \left(6 \cdot 1 + 2 + 2 \right) < 8 - 1$$

$$\frac{1}{2} \left(10 \right) < 7$$

$$\frac{1}{2}(10) < 7$$

- -Tutti i grafi che hanno d_1 come score sono sconnessi, dunque non esiste un grafo connesso con score d_1 .
- 2. $d_2 = (1, 1, 2, 2, 2)$
 - Vale:

$$\frac{1}{2} \left(\sum_{i=1}^{n} d_{2i} \right) < n - 1$$

$$\frac{1}{2} \left(2 \cdot 1 + 3 \cdot 2 \right) < 5 - 1$$

$$\frac{1}{2} \left(8 \right) < 4$$

- Nulla si può dire, la condizione (necessaria ma non sufficiente) non è verificata.

14.8 Esercizio 8

- $d_1 = (2, 3, 4, 4, 5, 5, 5, 6, 7, 7)$
- $d_2 = (1, 2, 3, 3, 3, 3, 4, 8, 8, 9)$
- \bullet Esiste un grafo con score d_1 e/o d_2 . Se esiste, costruirlo con il Teorema dello score.
- Costruire inoltre un grafo con tale score tale che:
 - Sia hamiltoniano.
 - Sia connesso.
 - Sia un albero.
- Studiamo d_1 :
 - Sono previsti n=10 vertici.
 - Ostruzione 1: $7 \le 9$, NPSD
 - Ostruzione 2: LSM 6 è pari, NPSD
 - Ostruzione 3: ∅, NPSD
 - Ostruzione 4: $8 \ge 4$, NPSD
 - Tutte le istruzioni sono verificate, dunque passo all'applicazione del teorema dello score a d_1 :

Score	Dati
d = (2, 3, 4, 4, 5, 5, 5, 6, 7, 7)	n = 10
	$d_n = 7 \le 10 - 1$
d' = (2, 3, 3, 3, 4, 4, 4, 5, 6)	n = 9
	$d_n = 6 \le 9 - 1$
d'' = (2, 3, 2, 2, 3, 3, 3, 4)	n = 8
=(2,2,2,3,3,3,3,4)	$d_n = 4 \le 8 - 1$
d''' = (2, 2, 2, 2, 2, 2, 2)	Entrate minori o uguali a 2

- Poichè d''' è lo score del seguente grafo G''':
- Grazie al teorema dello score, anche d_1 è lo score di un grafo G_1 .
- Applichiamo la costruzione "a ritroso" implicata dal teorema dello score: (DA FARE GRAFO)

- Il grafo G_1 ha score d_1 .
- Osserviamo che: $(v_{10}, v_9, v_8, v_7, v_1, v_2, v_3, v_4, v_5, v_8, v_9, v_{10})$ è un ciclo hamiltoniano del grafo G_1 che abbiamo appena costruito. Dunque G_1 è un grafo hamiltoniano con score d_1 .
- Osservo che:
 - * $d_1 = (D_1, \dots, D_n) \text{ con } (D_1 \le D_2 \le \dots \le D_n)$
 - * $D_1 \ge n D_n 1$ cioè $2 \ge 10 7 1 \implies 2 \ge 2$
 - * Osservo che il grado minimo previsto 2 è maggiore o uguale a 10-7-1; dunque ogni grafo con score d_1 è connesso.
- Non esiste un albero con score d_1 per assenza di foglie $(n = 10 \ge 2)$.

• Studiamo d_2 :

- Sono previsti n = 10 vertici.

- Ostruzione 1: $9 \le 9$, NPSD

- Ostruzione 2: LSM 6 è pari, NPSD

- Ostruzione 3: Ø, NPSD

- Ostruzione 4: $7 \ge 7$, NPSD

- Tutte le istruzioni sono verificate, dunque passo all'applicazione del teorema dello score a d_1 :

Score	Dati
d = (1, 2, 3, 3, 3, 3, 4, 8, 8, 9)	$n = 10$ $d_n = 9 \le 10 - 1$
d' = (0, 1, 2, 2, 2, 2, 3, 7, 7)	$n = 9$ $d_n = 7 \le 9 - 1$
d'' = (0, 0, 1, 1, 1, 1, 2, 6)	$n = 8$ $d_n = 6 \le 8 - 1$
d''' = (0, -1, 0, 0, 0, 0, 1)	Entrata negativa.

- $-\ d^{\prime\prime\prime}$ non è lo score di un grafo avendo una componente negativa.
- Grazie al teorema dello score, anche d_2 non è lo score di un grafo.