Seat No.:	
No.	

GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER - V (NEW) EXAMINATION - WINTER 2015

Subject Code: 2150703 Date:17/12/ 2015

Subject Name: Analysis and Design of Algorithms

Time: 10:30am to 1:00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define following terms

07

- (i) Quantifier
- (ii) Algorithm
- (iii) Big 'Oh' Notation

- (iv) Big 'Omega' Notation
- (v) 'Theta' Notation
- (b) Explain an algorithm for Selection Sort Algorithm. Derive its best case, worst case and average case time complexity.
- Q.2 (a) Write the Prim's Algorithm to find out Minimum Spanning Tree. Apply the same 07 and find MST for the graph given below.

(b) What is recurrence? Solve recurrence equation T(n) = T(n-1) + n using forward substitution and backward substitution method.

OR

- (b) Sort the given elements with Heap Sort Method: 20, 50, 30, 75, 90, 60, 25, 10, 40. **07**
- Q.3 (a) Write Huffman code algorithm and Generate Huffman code for following

07

Letters	Α	В	С	D	Е
Frequency	24	12	10	8	8

(b) Write an algorithm for quick sort and derive best case, worst case using divide and conquer technique also trace given data (3,1,4,5,9,2,6,5)

07

OR

Q.3 (a) Write equation for Chained matrix multiplication using Dynamic programming. 07 Find out optimal sequence for multiplication: A1 $[5 \times 4]$, A2 $[4 \times 6]$, A3 $[6 \times 2]$, and A4 $[2 \times 7]$. Also give the optimal parenthesization of matrices.

(b) Using greedy algorithm find an optimal schedule for following jobs with n=6. Profits: (P1,P2,P3,P4,P5,P6) = (20, 15, 10, 7, 5, 3)

Deadline: (d1,d2,d3,d4,d5,d6) = (3, 1, 1, 3, 1, 3)

07

Q.4	(a)	(a) Explain Depth First Traversal Method for Graph with algorithm with example.				
	(b)	Explain how to find out Longest Common Subsequence of two strings using	07			
		Dynamic Programming method. Find any one Longest Common Subsequence of				
		given two strings using Dynamic Programming.				
		X=abbacdcba				
		Y=bcdbbcaac				
		OR				
Q.4	(a)	Explain Breath First Traversal Method for Graph with algorithm with example.	07			
	(b)	Solve Making Change problem using Dynamic Programming. (Denominations: d1=1, d2=4, d3=6). Give your answer for making change of Rs. 9.	07			
Q.5	(a)	Explain Backtracking Method. What is N-Queens Problem? Give solution of 4-Queens Problem using Backtracking Method.	07			
	(b)	What is Finite Automata? Explain use of finite automata for string matching with suitable example.	07			
		OR				
Q.5	(a)	Define P, NP, NP complete and NP-Hard problems. Give examples of each.	07			
	(b)	Give and explain Rabin-Carp string matching algorithm with example.	07			
