	Notas	
	1	
Nome: RA:	2	
4ª Prova - MA 211 - Turma 28 de novembro de 2008.	3	
É proibido usar calculadora e desgrampear as folhas da prova. Respostas sem justificativas ou que não incluam os cálculos necessários não serão consideradas. BOA PROVA!	4	

1. (2,5 pontos) Seja S a parte do parabolóide $z=2-{\mathsf x}^2-{\mathsf y}^2$ que está acima do plano z=1. Calcule o fluxo do campo vetorial

$$\mathbf{F}(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^{3/2}}(x, y, z)$$

através de S.

- 2. (2,5 pontos) Seja S a parte do cone $x^2 = y^2 + z^2$ que está dentro do cilindro $x^2 + y^2 = a^2$ e no primeiro octante. Determine a área da superfície S.
- 3. (2,5 pontos)
 - (a) Determine uma representação paramétrica $r:D\subset \mathbb{R}^2\to\mathbb{R}^3$ do parabolóide elíptico $z=\frac{\chi^2}{a^2}+\frac{y^2}{b^2}$.
 - (b) Calcule a equação do plano tangente à superfície paramétrica dada na parte (a) no ponto $(-a\pi,\ 0,\ \pi^2)$.
- 4. (2,5 pontos) Calcule a integral de linha

$$\oint_C (y^2 + z^2) dx + (z^2 + x^3) dy + (y^2 + x^3) dz$$

onde C é a curva intersecção do cone $y=\sqrt{x^2+z^2}$ com a esfera $x^2+y^2+z^2=2$, orientada no sentido horário quando C é vista da origem.