[UFMG] Summergimurne?

Bruno Monteiro, Emanuel Silva e Bernardo Amorim

Índ	ice		1.16 SegTree Colorida	18
			1.17 SegTree Esparsa - Lazy	19
1 E	struturas	5	1.18 SegTree Esparsa - O(q) memoria	20
1.	1 BIT	5	1.19 SegTree Iterativa	21
1.	2 BIT 2D	5	1.20 SegTree Iterativa com Lazy Propagation	21
1.	3 BIT com update em range	6	1.21 SegTree PA	22
1.	4 DSU	7	1.22 SegTree Persistente	24
1.	5 Li-Chao Tree	8	1.23 Sparse Table	24
1.	6 MergeSort Tree	9	1.24 Sparse Table Disjunta	25
1.	7 Min queue - deque	10	1.25 Splay Tree	25
1.	8 Min queue - stack	11	1.26 Splay Tree Implicita	27
1.	9 Order Statistic Set	11	1.27 Split-Merge Set	29
1.	10 Range color	11	1.28 Split-Merge Set - Lazy	31
1.	11 RMQ $<$ O(n), O(1) $>$ - min queue	12	1.29 SQRT Tree	34
1.	12 SegTreap	13	1.30 Treap	35
1.	13 SegTree	14	1.31 Treap Implicita	36
1.	14 SegTree 2D Iterativa	15	1.32 Treap Persistent Implicita	37
1.	15 SegTree Beats	16	1.33 Wavelet Tree	38

2	Grafos	39		2.23 LCA com HLD	57
	2.1 AGM Direcionada	39		2.24 LCA com RMQ	58
	2.2 Algoritmo de Kuhn	40		2.25 Line Tree	59
	2.3 Bellman-Ford	41		2.26 Link-cut Tree	60
	2.4 Block-Cut Tree	41		2.27 Link-cut Tree - aresta	60
	2.5 Blossom - matching maximo em grafo geral	42		2.28 Link-cut Tree - vertice	62
	2.6 Centro de arvore	43		2.29 Max flow com lower bound nas arestas	63
	2.7 Centroid	44		2.30 MinCostMaxFlow	64
	2.8 Centroid decomposition	44		2.31 Prufer code	66
	2.9 Dijkstra	45		2.32 Sack (DSU em arvores)	66
	2.10 Dinic	45		2.33 Tarjan para SCC	67
	2.11 Dominator Tree - Kawakami	46		2.34 Topological Sort	67
	2.12 Euler Path / Euler Cycle	47		2.35 Vertex cover	68
	2.13 Euler Tour Tree	48		2.36 Virtual Tree	68
	2.14 Floyd-Warshall	51	3	Problemas	69
		51 51	3	Problemas 3.1 Algoritmo Hungaro	69
	2.14 Floyd-Warshall		3		
	2.14 Floyd-Warshall	51	3	3.1 Algoritmo Hungaro	69
	2.14 Floyd-Warshall2.15 Functional Graph2.16 Heavy-Light Decomposition - aresta	51 52	3	3.1 Algoritmo Hungaro	69 69
	2.14 Floyd-Warshall 2.15 Functional Graph 2.16 Heavy-Light Decomposition - aresta 2.17 Heavy-Light Decomposition - vertice	51 52 53	3	3.1 Algoritmo Hungaro	69 69 71
	2.14 Floyd-Warshall 2.15 Functional Graph 2.16 Heavy-Light Decomposition - aresta 2.17 Heavy-Light Decomposition - vertice 2.18 Heavy-Light Decomposition sem Update	51 52 53 54	3	3.1 Algoritmo Hungaro	69 69 71 71
	2.14 Floyd-Warshall 2.15 Functional Graph 2.16 Heavy-Light Decomposition - aresta 2.17 Heavy-Light Decomposition - vertice 2.18 Heavy-Light Decomposition sem Update 2.19 Isomorfismo de arvores	5152535455	3	3.1 Algoritmo Hungaro	69 69 71 71 72

3.9	Conectividade Dinamica	75		3.32 Shortest Addition Chain	90
3.10	Conectividade Dinamica 2	76		3.33 Simple Polygon	90
3.11	Conj. Indep. Maximo com Peso em Grafo de Intervalo	77		3.34 Sweep Direction	91
3.12	Distancia maxima entre dois pontos	78		3.35 Triangulacao de Delaunay	91
3.13	Distinct Range Query	78		3.36 Triangulos em Grafos	93
3.14	Distinct Range Query com Update	79	4	Matematica	94
3.15	Dominator Points	80	_	4.1 2-SAT	94
3.16	DP de Dominacao 3D	81		4.2 Algoritmo de Euclides estendido	95
3.17	Gray Code	82		4.3 Avaliacao de Interpolacao	95
3.18	Half-plane intersection	82		4.4 Berlekamp-Massey	95
3.19	Heap Sort	82		4.5 Binomial Distribution	96
3.20	Inversion Count	82		4.6 Deteccao de ciclo - Tortoise and Hare	96
3.21	LIS - Longest Increasing Subsequence	83		4.7 Division Trick	97
3.22	LIS2 - Longest Increasing Subsequence	83		4.8 Eliminacao Gaussiana	97
3.23	Mininum Enclosing Circle	84		4.9 Eliminacao Gaussiana Z2	98
3.24	Minkowski Sum	84		4.10 Equação Diofantina Linear	98
3.25	MO - DSU	85		4.11 Exponenciacao rapida	99
3.26	Mo - numero de distintos em range	86		4.12 Fast Walsh Hadamard Transform	99
3.27	Palindromic Factorization	87		4.13 FFT	99
3.28	Parsing de Expressao	87		4.14 Integracao Numerica - Metodo de Simpson $3/8$	100
3.29	RMQ com Divide and Conquer	88		4.15 Inverso Modular	100
3.30	Segment Intersection	89		4.16 Karatsuba	101
3.31	Sequencia de de Brujin	89		4.17 Logaritmo Discreto	101

	4.18	Miller-Rabin	102		6.8	String Hashing	114
	4.19	Pollard's Rho Alg	102		6.9	String Hashing - modulo 2^61 - 1	115
	4.20	Produto de dois long long mod m	103		6.10	Suffix Array - O(n log n)	115
	4.21	Simplex	103		6.11	Suffix Array - O(n)	116
	4.22	Teorema Chines do Resto	104		6.12	Suffix Array Dinamico	119
	4.23	Totiente	105		6.13	Trie	121
	4.24	Variacoes do crivo de Eratosthenes	105	7	Priı	mitivas	122
5	DP		107		7.1	Aritmetica Modular	122
	5.1	Convex Hull Trick (Rafael)	107		7.2	Big Integer	123
	5.2	Convex Hull Trick Dinamico	107		7.3	Complex	126
	5.3	Divide and Conquer DP	108		7.4	Matroid	127
	5.4	Longest Common Subsequence	108		7.5	Primitivas de fracao	130
	5.5	Mochila	109		7.6	Primitivas de matriz - exponenciacao	130
	5.6	SOS DP	110		7.7	Primitivas Geometricas	131
0	a. •		110		7.8	Primitivas Geometricas 3D	135
6	Stri		110		7.9	Primitivas Geometricas Inteiras	136
	6.1	Aho-corasick	110				
	6.2	Algoritmo Z	111	8	\mathbf{Ext}	ra	140
	6.3	Automato de Sufixo	111		8.1	fastIO.cpp	140
	6.4	eertree	112		8.2	vimrc	140
	6.5	KMP	112		8.3	timer.cpp	140
	6.6	Manacher	113		8.4	rand.cpp	140
	6.7	Min/max suffix/cyclic shift	114		8.5	template.cpp	140

8.6	debug.cpp	•	•	•	•	•		•	•	•	•		•		•	•		•	•	•	•	•	•	140
8.7	stress.sh .																							141
8.8	makefile .																							141
8.9	hash.sh																							141

1 Estruturas

1.1 BIT

```
// BIT de soma 1-based, v 0-based
// Para mudar o valor da posicao p para x,
// faca: poe(x - query(p, p), p)
// l_bound(x) retorna o menor p tal que
// query(1, p+1) > x (0 based!)
//
// Complexidades:
// build - O(n)
// poe - O(log(n))
// query - O(log(n))
// l_bound - O(log(n))
// d432a4
int n;
int bit[MAX];
int v[MAX];
void build() {
    bit[0] = 0;
    for (int i = 1; i <= n; i++) bit[i] = v[i - 1];</pre>
    for (int i = 1; i <= n; i++) {</pre>
        int j = i + (i & -i);
        if (j <= n) bit[j] += bit[i];</pre>
}
// soma x na posicao p
```

```
void poe(int x, int p) {
    for (; p <= n; p += p & -p) bit[p] += x;</pre>
// soma [1, p]
int pref(int p) {
    int ret = 0;
    for (; p; p -= p & -p) ret += bit[p];
    return ret;
}
// soma [a, b]
int query(int a, int b) {
    return pref(b) - pref(a - 1);
}
int l_bound(ll x) {
    int p = 0;
    for (int i = MAX2; i+1; i--) if (p + (1 << i) <= n
        and bit [p + (1 << i)] <= x) x -= bit <math>[p += (1 << i)];
    return p;
}
1.2 BIT 2D
// BIT de soma, update incrementa posicao
// Tem que construir com um vetor com todos os pontos
// que vc quer um dia atualizar (os pontos q vc vai chamar
   update)
//
// Complexidades:
// construir - O(n log(n))
// update e query - O(log^2(n))
// 6a760a
template < class T = int > struct bit2d {
    vector <T> X;
    vector < vector < T >> Y, t;
    int ub(vector<T>& v, T x) {
```

```
return upper_bound(v.begin(), v.end(), x) -
       v.begin();
bit2d(vector<pair<T, T>> v) {
    for (auto [x, y] : v) X.push_back(x);
    sort(X.begin(), X.end());
    X.erase(unique(X.begin(), X.end()), X.end());
    t.resize(X.size() + 1);
    Y.resize(t.size());
    sort(v.begin(), v.end(), [](auto a, auto b) {
        return a.second < b.second; });</pre>
    for (auto [x, y] : v) for (int i = ub(X, x); i < v)
       t.size(); i += i\&-i)
        if (!Y[i].size() or Y[i].back() != y)
           Y[i].push_back(y);
    for (int i = 0; i < t.size(); i++)</pre>
       t[i].resize(Y[i].size() + 1);
}
void update(T x, T y, T v) {
    for (int i = ub(X, x); i < t.size(); i += i&-i)</pre>
        for (int j = ub(Y[i], y); j < t[i].size(); j +=</pre>
           j\&-j) t[i][j] += v;
}
T query(T x, T y) {
   T ans = 0;
    for (int i = ub(X, x); i; i -= i&-i)
        for (int j = ub(Y[i], y); j; j -= j\&-j) ans +=
           t[i][i];
    return ans;
T query(T x1, T y1, T x2, T y2) {
    return query(x2, y2)-query(x2, y1-1)-query(x1-1,
       y2) + query(x1-1, y1-1);
}
```

};

1.3 BIT com update em range

```
// Operacoes O-based
// query(l, r) retorna a soma de v[l..r]
// update(l, r, x) soma x em v[l..r]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - 0(log(n))
// f91737
namespace bit {
    11 bit[2][MAX+2];
    int n;
    void build(int n2, int* v) {
        n = n2;
        for (int i = 1; i <= n; i++)</pre>
            bit [1] [min(n+1, i+(i\&-i))] += bit [1][i] +=
                v[i-1];
    }
    ll get(int x, int i) {
        11 \text{ ret} = 0;
        for (; i; i -= i&-i) ret += bit[x][i];
        return ret;
    }
    void add(int x, int i, ll val) {
        for (; i <= n; i += i&-i) bit[x][i] += val;</pre>
    }
    11 get2(int p) {
        return get(0, p) * p + get(1, p);
    }
    11 query(int 1, int r) {
        return get2(r+1) - get2(1);
    }
    void update(int 1, int r, ll x) {
        add(0, 1+1, x), add(0, r+2, -x);
        add(1, 1+1, -x*1), add(1, r+2, x*(r+1));
    }
};
```

1.4 **DSU**

```
// Une dois conjuntos e acha a qual conjunto um elemento
   pertence por seu id
// find e unite: O(a(n)) \sim = O(1) amortizado
// 8e197e
struct dsu {
    vector < int > id, sz;
    dsu(int n) : id(n), sz(n, 1) { iota(id.begin(),
       id.end(), 0); }
    int find(int a) { return a == id[a] ? a : id[a] =
       find(id[a]); }
    void unite(int a, int b) {
        a = find(a), b = find(b);
        if (a == b) return;
        if (sz[a] < sz[b]) swap(a, b);
        sz[a] += sz[b], id[b] = a;
};
// DSU de bipartido
// Une dois vertices e acha a qual componente um vertice
   pertence
// Informa se a componente de um vertice e bipartida
// find e unite: O(log(n))
// 118050
struct dsu {
    vector<int> id, sz, bip, c;
    dsu(int n) : id(n), sz(n, 1), bip(n, 1), c(n) {
        iota(id.begin(), id.end(), 0);
    }
    int find(int a) { return a == id[a] ? a : find(id[a]); }
```

```
int color(int a) { return a == id[a] ? c[a] : c[a] ^
       color(id[a]); }
    void unite(int a, int b) {
        bool change = color(a) == color(b);
        a = find(a), b = find(b);
        if (a == b) {
            if (change) bip[a] = 0;
            return;
        }
        if (sz[a] < sz[b]) swap(a, b);
        if (change) c[b] = 1;
        sz[a] += sz[b], id[b] = a, bip[a] &= bip[b];
   }
};
// DSU Persistente
// Persistencia parcial, ou seja, tem que ir
// incrementando o 't' no une
// find e unite: O(log(n))
// 6c63a4
struct dsu {
    vector<int> id, sz, ti;
    dsu(int n) : id(n), sz(n, 1), ti(n, -INF) {
        iota(id.begin(), id.end(), 0);
    }
    int find(int a, int t) {
        if (id[a] == a or ti[a] > t) return a;
        return find(id[a], t);
    }
    void unite(int a, int b, int t) {
        a = find(a, t), b = find(b, t);
        if (a == b) return;
        if (sz[a] < sz[b]) swap(a, b);
```

```
sz[a] += sz[b], id[b] = a, ti[b] = t;
    }
};
// DSU com rollback
//
// checkpoint(): salva o estado atual de todas as variaveis
// rollback(): retorna para o valor das variaveis para
// o ultimo checkpoint
//
// Sempre que uma variavel muda de valor, adiciona na stack
// find e unite: O(log(n))
// checkpoint: 0(1)
// rollback: O(m) em que m e o numero de vezes que alguma
// variavel mudou de valor desde o ultimo checkpoint
// c6e923
struct dsu {
    vector<int> id, sz;
    stack<stack<pair<int&, int>>> st;
    dsu(int n) : id(n), sz(n, 1) {
        iota(id.begin(), id.end(), 0), st.emplace();
    }
    void save(int &x) { st.top().emplace(x, x); }
    void checkpoint() { st.emplace(); }
    void rollback() {
        while(st.top().size()) {
            auto [end, val] = st.top().top(); st.top().pop();
            end = val;
        }
        st.pop();
    }
    int find(int a) { return a == id[a] ? a : find(id[a]); }
    void unite(int a, int b) {
        a = find(a), b = find(b);
```

```
if (a == b) return;
        if (sz[a] < sz[b]) swap(a, b);</pre>
        save(sz[a]), save(id[b]);
        sz[a] += sz[b], id[b] = a;
    }
};
```

1.5 Li-Chao Tree

```
// Adiciona retas (ax+b), e computa o minimo entre as retas
// em um dado 'x'
// Cuidado com overflow!
// Se tiver overflow, tenta comprimir o 'x' ou usar
// convex hull trick
// O(log(MA-MI)), O(n) de memoria
// 59ba68
template <11 MI = 11(-1e9), 11 MA = 11(1e9) > struct lichao {
    struct line {
        ll a, b;
        array < int, 2 > ch;
        line(ll a_{-} = 0, ll b_{-} = LINF):
            a(a_{-}), b(b_{-}), ch(\{-1, -1\}) \{\}
        ll operator ()(ll x) { return a*x + b; }
    };
    vector<line> ln;
    int ch(int p, int d) {
        if (ln[p].ch[d] == -1) {
            ln[p].ch[d] = ln.size();
            ln.emplace_back();
        return ln[p].ch[d];
    }
    lichao() { ln.emplace_back(); }
    void add(line s, ll l=MI, ll r=MA, int p=0) {
        11 m = (1+r)/2;
        bool L = s(1) < ln[p](1);
```

```
bool M = s(m) < ln[p](m);
bool R = s(r) < ln[p](r);
if (M) swap(ln[p], s), swap(ln[p].ch, s.ch);
if (s.b == LINF) return;
if (L != M) add(s, l, m-1, ch(p, 0));
else if (R != M) add(s, m+1, r, ch(p, 1));
}

ll query(int x, ll l=MI, ll r=MA, int p=0) {
    ll m = (l+r)/2, ret = ln[p](x);
    if (ret == LINF) return ret;
    if (x < m) return min(ret, query(x, l, m-1, ch(p, 0)));
    return min(ret, query(x, m+1, r, ch(p, 1)));
};</pre>
```

1.6 MergeSort Tree

```
// Se for construida sobre um array:
        count(i, j, a, b) retorna quantos
//
//
        elementos de v[i..j] pertencem a [a, b]
        report(i, j, a, b) retorna os indices dos
//
//
        elementos de v[i..j] que pertencem a [a, b]
//
        retorna o vetor ordenado
// Se for construida sobre pontos (x, y):
        count(x1, x2, y1, x2) retorna quantos pontos
//
//
        pertencem ao retangulo (x1, y1), (x2, y2)
//
        report(x1, x2, y1, y2) retorna os indices dos pontos
   que
//
        pertencem ao retangulo (x1, y1), (x2, y2)
//
        retorna os pontos ordenados lexicograficamente
        (assume x1 \le x2, y1 \le y2)
// kth(y1, y2, k) retorna o indice do ponto com k-esimo menor
// x dentre os pontos que possuem y em [y1, y2] (0 based)
// Se quiser usar para achar k-esimo valor em range,
   construir
// com ms_tree t(v, true), e chamar kth(l, r, k)
// Usa O(n log(n)) de memoria
```

```
//
// Complexidades:
// construir - O(n log(n))
// count - O(log(n))
// report - O(log(n) + k) para k indices retornados
// kth - O(log(n))
// 1cef03
template <typename T = int> struct ms_tree {
    vector<tuple<T, T, int>> v;
    vector < vector < tuple < T, T, int >>> t; // {y, idx, left}
    vector <T> vy;
    ms_tree(vector<pair<T, T>>& vv) : n(vv.size()), t(4*n),
       vy(n) {
        for (int i = 0; i < n; i++)</pre>
           v.push_back({vv[i].first, vv[i].second, i});
        sort(v.begin(), v.end());
        build(1, 0, n-1);
        for (int i = 0; i < n; i++) vy[i] =
           get <0>(t[1][i+1]);
    ms_tree(vector<T>& vv, bool inv = false) { // inv:
       inverte indice e valor
        vector<pair<T, T>> v2;
        for (int i = 0; i < vv.size(); i++)</pre>
            inv ? v2.push_back({vv[i], i}) :
                v2.push_back({i, vv[i]});
        *this = ms_tree(v2);
    }
    void build(int p, int l, int r) {
        t[p].push_back({get<0>(v[1]), get<0>(v[r]), 0}); //
           \{\min_{x, \max_{x}} 0\}
        if (1 == r) return t[p].push_back({get<1>(v[1]),
            get <2>(v[1]), 0});
        int m = (1+r)/2;
        build(2*p, 1, m), build(2*p+1, m+1, r);
        int L = 0, R = 0;
        while (t[p].size() \le r-l+1) {
            int left = get<2>(t[p].back());
```

```
if (L > m-1 \text{ or } (R+m+1 \le r \text{ and } t[2*p+1][1+R] \le
           t[2*p][1+L])) {
            t[p].push_back(t[2*p+1][1 + R++]);
            get <2>(t[p].back()) = left;
            continue;
        }
        t[p].push_back(t[2*p][1 + L++]);
        get <2 > (t[p].back()) = left+1;
    }
}
int get_l(T y) { return lower_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int get_r(T y) { return upper_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int count(T x1, T x2, T y1, T y2) {
    function < int(int, int, int) > dfs = [&](int p, int 1,
       int r) {
        if (1 == r or x2 < get<0>(t[p][0]) or
           get <1>(t[p][0]) < x1) return 0;
        if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) \le
           x2) return r-1;
        int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
        return dfs(2*p, nl, nr) + dfs(2*p+1, l-nl, r-nr);
    };
    return dfs(1, get_l(y1), get_r(y2));
vector<int> report(T x1, T x2, T y1, T y2) {
    vector<int> ret;
    function < void(int, int, int) > dfs = [&](int p, int
       1, int r) {
        if (1 == r \text{ or } x2 < get < 0 > (t[p][0]) \text{ or }
            get <1>(t[p][0]) < x1) return;
        if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) <=
           x2) {
            for (int i = 1; i < r; i++)</pre>
                ret.push_back(get<1>(t[p][i+1]));
            return;
        int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
        dfs(2*p, nl, nr), dfs(2*p+1, l-nl, r-nr);
```

```
};
        dfs(1, get_l(y1), get_r(y2));
        return ret;
   }
    int kth(T y1, T y2, int k) {
        function < int (int, int, int) > dfs = [&](int p, int l,
           int r) {
            if (k >= r-1) {
                k = r-1;
                return -1;
            }
            if (r-l == 1) return get<1>(t[p][l+1]);
            int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
            int left = dfs(2*p, nl, nr);
            if (left != -1) return left;
            return dfs(2*p+1, l-nl, r-nr);
        };
        return dfs(1, get_l(y1), get_r(y2));
   }
};
```

1.7 Min queue - deque

```
// Tudo O(1) amortizado
// c13c57

template < class T > struct minqueue {
    deque < pair < T, int >> q;

    void push(T x) {
        int ct = 1;
        while (q.size() and x < q.front().first)
            ct += q.front().second, q.pop_front();
        q.emplace_front(x, ct);
    }

    void pop() {
        if (q.back().second > 1) q.back().second--;
        else q.pop_back();
    }
    T min() { return q.back().first; }
```

```
};
```

Min queue - stack

```
// Tudo O(1) amortizado
// fe0cad
template < class T > struct minstack {
    stack<pair<T, T>> s;
    void push(T x) {
        if (!s.size()) s.push({x, x});
        else s.emplace(x, std::min(s.top().second, x));
    T top() { return s.top().first; }
    T pop() {
       T ans = s.top().first;
        s.pop();
        return ans;
    int size() { return s.size(); }
    T min() { return s.top().second; }
};
template < class T> struct minqueue {
    minstack <T> s1, s2;
    void push(T x) { s1.push(x); }
    void move() {
        if (s2.size()) return;
        while (s1.size()) {
            T x = s1.pop();
            s2.push(x);
        }
    }
    T front() { return move(), s2.top(); }
    T pop() { return move(), s2.pop(); }
    int size() { return s1.size()+s2.size(); }
    T min() {
        if (!s1.size()) return s2.min();
```

```
else if (!s2.size()) return s1.min();
        return std::min(s1.min(), s2.min());
   }
};
```

Order Statistic Set

```
// Funciona do C++11 pra cima
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
// para declarar:
ord_set < int > s;
// coisas do set normal funcionam:
for (auto i : s) cout << i << endl;</pre>
cout << s.size() << endl;</pre>
// k-esimo maior elemento O(\log|s|):
// k=0: menor elemento
cout << *s.find_by_order(k) << endl;</pre>
// quantos sao menores do que k O(log|s|):
cout << s.order_of_key(k) << endl;</pre>
// Para fazer um multiset, tem que
// usar ord_set<pair<int, int>> com o
// segundo parametro sendo algo para diferenciar
// os ementos iguais.
// s.order_of_key({k, -INF}) vai retornar o
// numero de elementos < k
1.10 Range color
```

```
// update(1, r, c) colore o range [1, r] com a cor c,
// e retorna os ranges que foram coloridos {1, r, cor}
```

```
// query(i) returna a cor da posicao i
//
// Complexidades (para q operacoes):
// update - O(log(q)) amortizado
// query - O(log(q))
// 9e9cab
template < typename T> struct color {
    set < tuple < int , int , T >> se;
    vector<tuple<int, int, T>> update(int 1, int r, T val) {
        auto it = se.upper_bound({r, INF, val});
        if (it != se.begin() and get<1>(*prev(it)) > r) {
            auto [L, R, V] = *--it;
            se.erase(it);
            se.emplace(L, r, V), se.emplace(r+1, R, V);
        }
        it = se.lower_bound({1, -INF, val});
        if (it != se.begin() and get<1>(*prev(it)) >= 1) {
            auto [L, R, V] = *--it;
            se.erase(it);
            se.emplace(L, 1-1, V), it = se.emplace(1, R,
               V).first;
        }
        vector<tuple<int, int, T>> ret;
        for (; it != se.end() and get<0>(*it) <= r; it =</pre>
           se.erase(it))
            ret.push_back(*it);
        se.emplace(1, r, val);
        return ret;
    }
    T query(int i) {
        auto it = se.upper_bound({i, INF, T()});
        if (it == se.begin() or get<1>(*--it) < i) return</pre>
           -1: // nao tem
        return get <2>(*it);
    }
};
```

1.11 RMQ $\langle O(n), O(1) \rangle$ - min queue

```
// O(n) pra buildar, query O(1)
// Se tiver varios minimos, retorna
// o de menor indice
// bab412
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] <= v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1) - __builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
            at = (at << 1) & ((1 << b) -1);
            while (at and op(i-msb(at&-at), i) == i) at ^=
                at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
                t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int index_query(int 1, int r) {
        if (r-1+1 \le b) return small(r, r-1+1);
        int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(1+b-1), op(t[n/b*j+x],
           t[n/b*j+y-(1<<j)+1]));
        return op(ans, small(r));
    T query(int 1, int r) { return v[index_query(1, r)]; }
};
```

1.12 SegTreap

```
// Muda uma posicao do plano, e faz query de operacao
// associativa e comutativa em retangulo
// Mudar ZERO e op
// Esparso nas duas coordenadas, inicialmente eh tudo ZERO
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
//
// Valores no X tem que ser de O ateh NX
// Para q operacoes, usa O(q log(NX)) de memoria, e as
// operacoes custa O(log(q) log(NX))
// 75f2d0
const int ZERO = INF;
const int op(int 1, int r) { return min(1, r); }
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        node *1, *r;
        int p;
        pair<11, 11> idx; // {y, x}
        T val, mi;
        node(ll x, ll y, T val_) : l(NULL), r(NULL),
           p(rng()),
            idx(pair(y, x)), val(val_), mi(val) {}
        void update() {
            mi = val;
            if (1) mi = op(mi, 1->mi);
            if (r) mi = op(mi, r->mi);
    };
    node* root;
    treap() { root = NULL; }
    \simtreap() {
```

```
vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->1), q.push_back(x->r);
             delete x;
        }
    }
    treap(treap&& t) : treap() { swap(root, t.root); }
    void join(node* 1, node* r, node*& i) { // assume que 1
        if (!l or !r) return void(i = 1 ? l : r);
        if (1->p > r->p) join(1->r, r, 1->r), i = 1;
        else join(1, r->1, r->1), i = r;
        i->update();
    }
    void split(node* i, node*& 1, node*& r, pair<11, 11>
       idx) {
        if (!i) return void(r = l = NULL);
        if (i-)idx < idx) split(i-)r, i-)r, r, idx), l = i;
        else split(i \rightarrow 1, l, i \rightarrow 1, idx), r = i;
        i->update();
    }
    void update(ll x, ll y, T v) {
        node *L, *M, *R;
        split(root, M, R, pair(y, x+1)), split(M, L, M,
            pair(y, x));
        if (M) M \rightarrow val = M \rightarrow mi = v;
        else M = new node(x, y, v);
        join(L, M, M), join(M, R, root);
    T query(ll ly, ll ry) {
        node *L, *M, *R;
        split(root, M, R, pair(ry, LINF)), split(M, L, M,
            pair(ly, 0));
        T ret = M ? M->mi : ZERO;
        join(L, M, M), join(M, R, root);
        return ret;
    }
};
```

```
template < typename T > struct segtreap {
    vector<treap<T>> seg;
    vector < int > ch[2];
    ll NX;
    segtreap(ll NX_) : seg(1), NX(NX_) {
       ch[0].push_back(-1), ch[1].push_back(-1); }
    int get_ch(int i, int d){
        if (ch[d][i] == -1) {
            ch[d][i] = seg.size();
            seg.emplace_back();
            ch[0].push_back(-1), ch[1].push_back(-1);
        }
        return ch[d][i];
   }
    T query(11 1x, 11 rx, 11 1y, 11 ry, int p, 11 1, 11 r) {
        if (rx < 1 or r < 1x) return ZERO;</pre>
        if (lx <= l and r <= rx) return seg[p].query(ly, ry);</pre>
        11 m = 1 + (r-1)/2;
        return op(query(lx, rx, ly, ry, get_ch(p, 0), 1, m),
                query(lx, rx, ly, ry, get_ch(p, 1), m+1, r));
    }
    T query(ll lx, ll rx, ll ly, ll ry) { return query(lx,
       rx, ly, ry, 0, 0, NX); }
    void update(ll x, ll y, T val, int p, ll l, ll r) {
        if (1 == r) return seg[p].update(x, y, val);
        11 m = 1 + (r-1)/2;
        if (x <= m) update(x, y, val, get_ch(p, 0), 1, m);</pre>
        else update(x, y, val, get_ch(p, 1), m+1, r);
        seg[p].update(x, y, val);
    void update(ll x, ll y, T val) { update(x, y, val, 0, 0,
       NX): }
};
```

1.13 SegTree

```
// Recursiva com Lazy Propagation
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Pode usar a seguinte funcao para indexar os nohs:
// f(1, r) = (1+r) | (1!=r), usando 2N de memoria
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
namespace seg {
    11 \text{ seg}[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    }
    void prop(int p, int l, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazy[p] = 0;
    }
    11 query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        int m = (1+r)/2;
        return query(a, b, 2*p, 1, m) + query(a, b, 2*p+1,
           m+1, r);
    ll update(int a, int b, int x, int p=1, int l=0, int
       r=n-1) {
```

```
prop(p, 1, r);
        if (a <= 1 and r <= b) {
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        }
        if (b < l or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
    }
};
// Se tiver uma seg de max, da pra descobrir em O(\log(n))
// o primeiro e ultimo elemento >= val numa range:
// primeira posicao >= val em [a, b] (ou -1 se nao tem)
int get_left(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_left(a, b, val, 2*p, 1, m);
    if (x != -1) return x;
    return get_left(a, b, val, 2*p+1, m+1, r);
}
// ultima posicao >= val em [a, b] (ou -1 se nao tem)
int get_right(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < 1 or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_right(a, b, val, 2*p+1, m+1, r);
    if (x != -1) return x;
    return get_right(a, b, val, 2*p, 1, m);
}
// Se tiver uma seg de soma sobre um array nao negativo v,
// descobrir em O(log(n)) o maior j tal que
   v[i]+v[i+1]+...+v[j-1] < val
```

```
int lower_bound(int i, ll& val, int p, int l, int r) {
   if (r < i) return n;
   if (i <= l and seg[p] < val) {
      val -= seg[p];
      return n;
   }
   if (l == r) return l;
   int m = (l+r)/2;
   int x = lower_bound(i, val, 2*p, l, m);
   if (x != n) return x;
   return lower_bound(i, val, 2*p+1, m+1, r);
}</pre>
```

1.14 SegTree 2D Iterativa

```
// Consultas 0-based
// Um valor inicial em (x, y) deve ser colocado em
   seg[x+n][y+n]
// Query: soma do retangulo ((x1, y1), (x2, y2))
// Update: muda o valor da posicao (x, y) para val
// Nao pergunte como que essa coisa funciona
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
//
// Se for de min/max, pode tirar os if's da 'query', e fazer
// sempre as 4 operacoes. Fica mais rapido
//
// Complexidades:
// build - O(n^2)
// query - O(log^2(n))
// update - O(log^2(n))
// 67b9e5
int seg[2*MAX][2*MAX], n;
void build() {
    for (int x = 2*n; x; x--) for (int y = 2*n; y; y--) {
```

```
if (x < n) seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         if (y < n) seg[x][y] = seg[x][2*y] + seg[x][2*y+1];
}
int query(int x1, int y1, int x2, int y2) {
    int ret = 0, y3 = y1 + n, y4 = y2 + n;
    for (x1 += n, x2 += n; x1 <= x2; ++x1 /= 2, --x2 /= 2)
         for (y1 = y3, y2 = y4; y1 \le y2; ++y1 /= 2, --y2 /=
             2) {
             if (x1\%2 == 1 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x1][y1];
             if (x1\%2 == 1 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x1][y2];
             if (x2\%2 == 0 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x2][y1];
             if (x2\%2 == 0 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x2][y2];
         }
    return ret;
}
void update(int x, int y, int val) {
    int y2 = y += n;
    for (x += n; x; x /= 2, y = y2) {
         if (x \ge n) seg[x][y] = val;
         else seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         while (y /= 2) seg[x][y] = seg[x][2*y] +
             seg[x][2*y+1];
    }
}
1.15 SegTree Beats
// \text{ query}(a, b) - \{\{\min(v[a..b]), \max(v[a..b])\}, \sup(v[a..b])\}
// updatemin(a, b, x) faz com que v[i] \leftarrow min(v[i], x),
// para i em [a, b]
// updatemax faz o mesmo com max, e updatesum soma x
// em todo mundo do intervalo [a, b]
// Complexidades:
// build - O(n)
```

```
// query - O(log(n))
// update - O(log^2 (n)) amortizado
// (se nao usar updatesum, fica log(n) amortizado)
// 41672b
#define f first
#define s second
namespace beats {
    struct node {
        int tam;
        ll sum, lazy; // lazy pra soma
        ll mi1, mi2, mi; // mi = #mi1
        ll ma1, ma2, ma; // ma = #ma1
        node(11 x = 0) {
            sum = mi1 = ma1 = x;
            mi2 = LINF, ma2 = -LINF;
            mi = ma = tam = 1;
            lazv = 0;
        }
        node(const node& 1, const node& r) {
            sum = 1.sum + r.sum, tam = 1.tam + r.tam;
            lazy = 0;
            if (1.mi1 > r.mi1) {
                mi1 = r.mi1, mi = r.mi;
                mi2 = min(1.mi1, r.mi2);
            } else if (1.mi1 < r.mi1) {</pre>
                mi1 = 1.mi1, mi = 1.mi;
                mi2 = min(r.mi1, 1.mi2);
            } else {
                mi1 = 1.mi1, mi = 1.mi+r.mi;
                mi2 = min(1.mi2, r.mi2);
            if (1.ma1 < r.ma1) {
                ma1 = r.ma1, ma = r.ma;
                ma2 = max(1.ma1, r.ma2);
            } else if (1.ma1 > r.ma1) {
                ma1 = 1.ma1, ma = 1.ma;
                ma2 = max(r.ma1, l.ma2);
            } else {
                ma1 = 1.ma1, ma = 1.ma+r.ma;
```

```
ma2 = max(1.ma2, r.ma2);
        }
    }
    void setmin(ll x) {
        if (x >= ma1) return;
        sum += (x - ma1)*ma;
        if (mi1 == ma1) mi1 = x;
        if (mi2 == ma1) mi2 = x;
        ma1 = x:
    }
    void setmax(ll x) {
        if (x <= mi1) return;</pre>
        sum += (x - mi1)*mi;
        if (ma1 == mi1) ma1 = x;
        if (ma2 == mi1) ma2 = x:
        mi1 = x:
    }
    void setsum(ll x) {
        mi1 += x, mi2 += x, ma1 += x, ma2 += x;
        sum += x*tam;
        lazv += x;
    }
};
node seg[4*MAX];
int n, *v;
node build(int p=1, int l=0, int r=n-1) {
    if (1 == r) return seg[p] = {v[1]};
    int m = (1+r)/2;
    return seg[p] = \{build(2*p, 1, m), build(2*p+1, m+1,
       r)}:
}
void build(int n2, int* v2) {
    n = n2, v = v2;
    build():
}
void prop(int p, int l, int r) {
   if (1 == r) return;
    for (int k = 0; k < 2; k++) {
        if (seg[p].lazy) seg[2*p+k].setsum(seg[p].lazy);
        seg[2*p+k].setmin(seg[p].ma1);
```

```
seg[2*p+k].setmax(seg[p].mi1);
    seg[p].lazy = 0;
}
pair < pair < 11, 11 > , 11 > query(int a, int b, int p=1, int
   1=0, int r=n-1) {
    if (b < 1 or r < a) return {{LINF, -LINF}, 0};</pre>
    if (a <= 1 and r <= b) return {{seg[p].mi1,</pre>
        seg[p].ma1}, seg[p].sum};
    prop(p, 1, r);
    int m = (1+r)/2;
    auto L = query(a, b, 2*p, 1, m), R = query(a, b,
        2*p+1, m+1, r);
    return {{min(L.f.f, R.f.f), max(L.f.s, R.f.s)},
       L.s+R.s}:
}
node updatemin(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p].ma1 <= x) return seg[p];</pre>
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].ma2 < x) {
         seg[p].setmin(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemin(a, b, x, 2*p, 1, m),
                      updatemin(a, b, x, 2*p+1, m+1, r)};
}
node updatemax(int a, int b, 11 x, int p=1, int 1=0, int
   r=n-1) {
    if (b < l \text{ or } r < a \text{ or } seg[p].mi1 >= x) return seg[p];
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].mi2 > x) {
         seg[p].setmax(x);
        return seg[p]:
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemax(a, b, x, 2*p, 1, m),
                      updatemax(a, b, x, 2*p+1, m+1, r)};
}
node updatesum(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
```

1.16 SegTree Colorida

```
// Cada posicao tem um valor e uma cor
// O construtor receve um vector de {valor, cor}
// e o numero de cores (as cores devem estar em [0, c-1])
// query(c, a, b) retorna a soma dos valores
// de todo mundo em [a, b] que tem cor c
// update(c, a, b, x) soma x em todo mundo em
// [a, b] que tem cor c
// paint(c1, c2, a, b) faz com que todo mundo
// em [a, b] que tem cor c1 passe a ter cor c2
//
// Complexidades:
// construir - O(n log(n)) espaco e tempo
// query - O(log(n))
// update - O(log(n))
// paint - O(log(n)) amortizado
// 2938e8
struct seg_color {
    struct node {
        node *1, *r;
        int cnt;
        ll val, lazy;
        node() : 1(NULL), r(NULL), cnt(0), val(0), lazy(0) {}
        void update() {
            cnt = 0, val = 0;
            for (auto i : {1, r}) if (i) {
```

```
i->prop();
            cnt += i->cnt, val += i->val;
        }
    }
    void prop() {
        if (!lazy) return;
        val += lazy*(ll)cnt;
        for (auto i : {1, r}) if (i) i->lazy += lazy;
        lazy = 0;
    }
};
int n;
vector < node *> seg;
seg_color(vector<pair<int, int>>& v, int c) :
   n(v.size()), seg(c, NULL) {
    for (int i = 0; i < n; i++)</pre>
        seg[v[i].second] = insert(seg[v[i].second], i,
           v[i].first, 0, n-1);
}
\simseg_color() {
    queue < node *> q;
    for (auto i : seg) q.push(i);
    while (q.size()) {
        auto i = q.front(); q.pop();
        if (!i) continue;
        q.push(i->1), q.push(i->r);
        delete i;
    }
}
node* insert(node* at, int idx, int val, int l, int r) {
    if (!at) at = new node();
    if (1 == r) return at->cnt = 1, at->val = val, at;
    int m = (1+r)/2;
    if (idx <= m) at->1 = insert(at->1, idx, val, 1, m);
    else at->r = insert(at->r, idx, val, m+1, r);
    return at ->update(), at;
}
ll query(node* at, int a, int b, int l, int r) {
    if (!at or b < 1 or r < a) return 0;
```

```
at->prop();
    if (a <= l and r <= b) return at->val;
    int m = (1+r)/2;
    return query(at->1, a, b, 1, m) + query(at->r, a, b,
       m+1, r);
11 query(int c, int a, int b) { return query(seg[c], a,
   b, 0, n-1); }
void update(node* at, int a, int b, int x, int l, int r)
   {
    if (!at or b < l or r < a) return;</pre>
    at->prop();
    if (a \le 1 \text{ and } r \le b) {
        at - > lazy += x;
        return void(at->prop());
    }
    int m = (1+r)/2;
    update(at->1, a, b, x, 1, m), update(at->r, a, b, x,
       m+1, r);
    at->update();
}
void update(int c, int a, int b, int x) { update(seg[c],
   a, b, x, 0, n-1); }
void paint(node*& from, node*& to, int a, int b, int l,
   int r) {
    if (to == from or !from or b < l or r < a) return;
    from ->prop();
    if (to) to->prop();
    if (a \le 1 \text{ and } r \le b) \{
        if (!to) {
            to = from;
            from = NULL;
            return;
        }
        int m = (1+r)/2;
        paint(from->1, to->1, a, b, 1, m),
           paint(from->r, to->r, a, b, m+1, r);
        to->update();
        delete from;
        from = NULL;
        return;
    }
```

```
if (!to) to = new node();
   int m = (l+r)/2;
   paint(from->l, to->l, a, b, l, m), paint(from->r,
        to->r, a, b, m+1, r);
   from->update(), to->update();
}
void paint(int c1, int c2, int a, int b) {
   paint(seg[c1], seg[c2], a, b, 0, n-1); }
};
```

1.17 SegTree Esparsa - Lazy

```
// Query: soma do range [a, b]
// Update: flipa os valores de [a, b]
// O MAX tem q ser Q log N para Q updates
//
// Complexidades:
// build - 0(1)
// query - O(log(n))
// update - 0(log(n))
// dc37e6
namespace seg {
    int seg[MAX], lazy[MAX], R[MAX], L[MAX], ptr;
    int get_l(int i){
        if (L[i] == 0) L[i] = ptr++;
        return L[i];
    }
    int get_r(int i){
        if (R[i] == 0) R[i] = ptr++;
        return R[i];
    }
    void build() { ptr = 2; }
    void prop(int p, int l, int r) {
        if (!lazy[p]) return;
        seg[p] = r-l+1 - seg[p];
        if (1 != r) lazy[get_l(p)]^=lazy[p],
           lazy[get_r(p)]^=lazy[p];
```

```
lazy[p] = 0;
    }
    int query(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, get_l(p), l, m)+query(a, b,
            get_r(p), m+1, r);
    }
    int update(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 or r < a) return seg[p];</pre>
        if (a \le 1 \text{ and } r \le b) {
             lazy[p] ^= 1;
             prop(p, 1, r);
             return seg[p];
        }
        int m = (1+r)/2;
        return seg[p] = update(a, b, get_l(p), l,
            m)+update(a, b, get_r(p), m+1, r);
};
```

1.18 SegTree Esparsa - O(q) memoria

```
// Query: min do range [a, b]
// Update: troca o valor de uma posicao
// Usa O(q) de memoria para q updates
//
// Complexidades:
// query - O(log(n))
// update - O(log(n))
// 072a21

template < typename T > struct seg {
    struct node {
```

```
node* ch[2]:
    char d;
    T v;
    T mi;
    node(int d_, T v_, T val) : d(d_), v(v_) {
        ch[0] = ch[1] = NULL;
        mi = val;
    node(node* x) : d(x->d), v(x->v), mi(x->mi) {
        ch[0] = x->ch[0], ch[1] = x->ch[1];
    void update() {
        mi = numeric_limits <T>::max();
        for (int i = 0; i < 2; i++) if (ch[i])
            mi = min(mi, ch[i]->mi);
    }
};
node* root;
char n;
seg() : root(NULL), n(0) {}
\simseg() {
    std::vector<node*> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
   }
}
char msb(T v, char l, char r) { // msb in range (l, r]
    for (char i = r; i > 1; i--) if (v>>i&1) return i;
    return -1;
}
void cut(node* at, T v, char i) {
    char d = msb(v ^a at -> v, at -> d, i);
    if (d == -1) return; // no need to split
    node* nxt = new node(at);
```

```
at -> ch[v>>d&1] = NULL;
    at -> ch[!(v>>d&1)] = nxt;
    at -> d = d;
}
node* update(node* at, T idx, T val, char i) {
    if (!at) return new node(-1, idx, val);
    cut(at, idx, i);
    if (at->d == -1) { // leaf
        at->mi = val;
        return at;
    }
    bool dir = idx>>at->d&1;
   at->ch[dir] = update(at->ch[dir], idx, val, at->d-1);
    at->update();
    return at;
}
void update(T idx, T val) {
    while (idx>>n) n++;
    root = update(root, idx, val, n-1);
}
T query(node* at, T a, T b, T l, T r, char i) {
    if (!at or b < l or r < a) return
       numeric_limits <T>::max();
    if (a <= l and r <= b) return at->mi;
    T m = 1 + (r-1)/2;
    if (at->d < i) {</pre>
        if ((at->v>>i\&1) == 0) return query(at, a, b, 1,
           m. i-1):
        else return query(at, a, b, m+1, r, i-1);
    return min(query(at->ch[0], a, b, 1, m, i-1),
       query(at->ch[1], a, b, m+1, r, i-1);
T query(T 1, T r) { return query(root, 1, r, 0,
   (1 << n) -1, n-1);
```

1.19 SegTree Iterativa

};

```
// Consultas 0-based
// Valores iniciais devem estar em (seg[n], ..., seg[2*n-1])
// Query: soma do range [a, b]
// Update: muda o valor da posicao p para x
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - 0(log(n))
// 779519
int seg[2 * MAX];
int n;
void build() {
    for (int i = n - 1; i; i--) seg[i] = seg[2*i] +
       seg[2*i+1];
}
int query(int a, int b) {
    int ret = 0;
    for (a += n, b += n; a <= b; ++a /= 2, --b /= 2) {
        if (a % 2 == 1) ret += seg[a];
        if (b \% 2 == 0) ret += seg[b];
    }
    return ret;
}
void update(int p, int x) {
    seg[p += n] = x;
    while (p /= 2) seg[p] = seg[2*p] + seg[2*p+1];
}
```

1.20 SegTree Iterativa com Lazy Propagation

```
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Para mudar, mudar as funcoes junta, poe e query
// LOG = ceil(log2(MAX))
//
```

```
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
// 6dc475
namespace seg {
    11 seg[2*MAX], lazy[2*MAX];
    int n;
    ll junta(ll a, ll b) {
        return a+b;
    }
    // soma x na posicao p de tamanho tam
    void poe(int p, ll x, int tam, bool prop=1) {
        seg[p] += x*tam;
        if (prop and p < n) lazy[p] += x;</pre>
    }
    // atualiza todos os pais da folha p
    void sobe(int p) {
        for (int tam = 2; p /= 2; tam *= 2) {
            seg[p] = junta(seg[2*p], seg[2*p+1]);
            poe(p, lazy[p], tam, 0);
        }
    }
    // propaga o caminho da raiz ate a folha p
    void prop(int p) {
        int tam = 1 << (LOG-1);</pre>
        for (int s = LOG; s; s--, tam /= 2) {
            int i = p >> s;
            if (lazy[i]) {
                poe(2*i, lazy[i], tam);
                poe(2*i+1, lazy[i], tam);
                lazy[i] = 0;
            }
        }
    }
    void build(int n2, int* v) {
```

```
n = n2:
        for (int i = 0; i < n; i++) seg[n+i] = v[i];</pre>
        for (int i = n-1; i; i--) seg[i] = junta(seg[2*i],
            seg[2*i+1]);
        for (int i = 0; i < 2*n; i++) lazy[i] = 0;
    }
    11 query(int a, int b) {
        11 \text{ ret} = 0;
        for (prop(a+=n), prop(b+=n); a \le b; ++a/=2, --b/=2)
            if (a%2 == 1) ret = junta(ret, seg[a]);
            if (b%2 == 0) ret = junta(ret, seg[b]);
        }
        return ret;
    }
    void update(int a, int b, int x) {
        int a2 = a += n, b2 = b += n, tam = 1;
        for (; a <= b; ++a/=2, --b/=2, tam *= 2) {
            if (a%2 == 1) poe(a, x, tam);
            if (b\%2 == 0) poe(b, x, tam);
        sobe(a2), sobe(b2);
    }
};
1.21 SegTree PA
// Segtree de PA
// update_set(l, r, A, R) seta [l, r] para PA(A, R),
// update_add soma PA(A, R) em [1, r]
// query(l, r) retorna a soma de [l, r]
//
// PA(A, R) eh a PA: [A+R, A+2R, A+3R, ...]
// Complexidades:
// construir - O(n)
// update_set, update_add, query - O(log(n))
// bc4746
```

```
struct seg_pa {
    struct Data {
        ll sum:
        ll set_a, set_r, add_a, add_r;
        Data() : sum(0), set_a(LINF), set_r(0), add_a(0),
           add_r(0) {}
    };
    vector < Data > seg;
    int n;
    seg_pa(int n_) {
        n = n_{\cdot};
        seg = vector < Data > (4*n);
   }
    void prop(int p, int l, int r) {
        int tam = r-l+1;
        11 &sum = seg[p].sum, &set_a = seg[p].set_a, &set_r
           = seg[p].set_r,
           &add_a = seg[p].add_a, &add_r = seg[p].add_r;
        if (set_a != LINF) {
            set_a += add_a, set_r += add_r;
            sum = set_a*tam + set_r*tam*(tam+1)/2;
            if (1 != r) {
                int m = (1+r)/2;
                seg[2*p].set_a = set_a;
                seg[2*p].set_r = set_r;
                seg[2*p].add_a = seg[2*p].add_r = 0;
                seg[2*p+1].set_a = set_a + set_r * (m-l+1);
                seg[2*p+1].set_r = set_r;
                seg[2*p+1].add_a = seg[2*p+1].add_r = 0;
            set_a = LINF, set_r = 0;
            add_a = add_r = 0;
        } else if (add_a or add_r) {
            sum += add_a*tam + add_r*tam*(tam+1)/2;
            if (1 != r) {
                int m = (1+r)/2;
```

```
seg[2*p].add_a += add_a;
            seg[2*p].add_r += add_r;
            seg[2*p+1].add_a += add_a + add_r * (m-l+1);
            seg[2*p+1].add_r += add_r;
        add_a = add_r = 0;
}
int inter(pair<int, int> a, pair<int, int> b) {
    if (a.first > b.first) swap(a, b);
    return max(0, min(a.second, b.second) - b.first + 1);
}
11 set(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r);
    if (b < 1 or r < a) return seg[p].sum;</pre>
    if (a <= 1 and r <= b) {</pre>
        seg[p].set_a = aa;
        seg[p].set_r = rr;
        prop(p, 1, r);
        return seg[p].sum;
    int m = (1+r)/2;
    int tam_l = inter({1, m}, {a, b});
    return seg[p].sum = set(a, b, aa, rr, 2*p, 1, m) +
        set(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
}
void update_set(int 1, int r, ll aa, ll rr) {
    set(1, r, aa, rr, 1, 0, n-1);
11 add(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p. l. r):
    if (b < l or r < a) return seg[p].sum;</pre>
    if (a <= 1 and r <= b) {
        seg[p].add_a += aa;
        seg[p].add_r += rr;
        prop(p, 1, r);
        return seg[p].sum;
    int m = (1+r)/2;
```

```
int tam_l = inter({l, m}, {a, b});
    return seg[p].sum = add(a, b, aa, rr, 2*p, l, m) +
        add(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
}
void update_add(int l, int r, ll aa, ll rr) {
    add(l, r, aa, rr, 1, 0, n-1);
}
ll query(int a, int b, int p, int l, int r) {
    prop(p, l, r);
    if (b < l or r < a) return 0;
    if (a <= l and r <= b) return seg[p].sum;
    int m = (l+r)/2;
    return query(a, b, 2*p, l, m) + query(a, b, 2*p+1, m+1, r);
}
ll query(int l, int r) { return query(l, r, 1, 0, n-1); }
};</pre>
```

1.22 SegTree Persistente

```
// SegTree de soma, update de somar numa posicao
//
// query(a, b, t) retorna a query de [a, b] na versao t
// update(a, x, t) faz um update v[a]+=x a partir da
// versao de t, criando uma nova versao e retornando seu id
// Por default, faz o update a partir da ultima versao
//
// build - O(n)
// query - O(log(n))
// update - O(log(n))
// 50ab73
const int MAX = 1e5+10, UPD = 1e5+10, LOG = 18;
const int MAXS = 2*MAX+UPD*LOG;
namespace perseg {
    11 seg[MAXS];
    int rt[UPD], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
```

```
ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = v[1];
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    11 query(int a, int b, int p, int 1, int r) {
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= l and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    11 query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    }
    11 update(int a, int x, int lp, int p, int l, int r) {
        if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a \ll m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p]=cnt++, m+1, r);
    }
    int update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
        return t:
    }
};
```

1.23 Sparse Table

// Resolve RMQ

```
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - 0(1)
// 7aa4c9
namespace sparse {
    int m[MAX2][MAX], n;
    void build(int n2, int* v) {
        n = n2:
        for (int i = 0; i < n; i++) m[0][i] = v[i];</pre>
        for (int j = 1; (1<<j) <= n; j++) for (int i = 0;
           i+(1<< j) <= n; i++)
            m[j][i] = min(m[j-1][i], m[j-1][i+(1<<(j-1))]);
    int query(int a, int b) {
        int j = __builtin_clz(1) - __builtin_clz(b-a+1);
        return min(m[j][a], m[j][b-(1<<j)+1]);</pre>
}
```

1.24 Sparse Table Disjunta

```
// Resolve qualquer operacao associativa
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - O(1)
// fd81ae
namespace sparse {
    int m[MAX2][2*MAX], n, v[2*MAX];
    int op(int a, int b) { return min(a, b); }
    void build(int n2, int* v2) {
        n = n2;
        for (int i = 0; i < n; i++) v[i] = v2[i];</pre>
        while (n&(n-1)) n++;
        for (int j = 0; (1<<j) < n; j++) {
```

```
int len = 1<<j;</pre>
             for (int c = len; c < n; c += 2*len) {</pre>
                 m[j][c] = v[c], m[j][c-1] = v[c-1];
                for (int i = c+1; i < c+len; i++) m[j][i] =</pre>
                    op(m[j][i-1], v[i]);
                for (int i = c-2; i >= c-len; i--) m[j][i] =
                    op(v[i], m[j][i+1]);
            }
        }
    }
    int query(int 1, int r) {
        if (1 == r) return v[1];
        int j = __builtin_clz(1) - __builtin_clz(1^r);
        return op(m[j][1], m[j][r]);
    }
}
```

1.25 Splay Tree

```
// SEMPRE QUE DESCER NA ARVORE, DAR SPLAY NO
// NODE MAIS PROFUNDO VISITADO
// Todas as operacoes sao O(log(n)) amortizado
// Se quiser colocar mais informacao no node,
// mudar em 'update'
// 4ff2b3
template < typename T > struct splaytree {
    struct node {
        node *ch[2], *p;
        int sz;
        T val;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            val = v;
        void update() {
            sz = 1;
            for (int i = 0; i < 2; i++) if (ch[i]) {</pre>
                sz += ch[i]->sz;
```

```
}
};
node* root;
splaytree() { root = NULL; }
splaytree(const splaytree& t) {
    throw logic_error("Nao copiar a splaytree!");
\simsplaytree() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x:
    }
}
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp - ch[pp - ch[1] == p] = x;
    bool d = p -> ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
}
node* splay(node* x) {
    if (!x) return x;
    root = x;
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
    return x;
}
node* insert(T v, bool lb=0) {
```

```
if (!root) return lb ? NULL : root = new node(v):
    node *x = root, *last = NULL;;
    while (1) {
        bool d = x -> val < v;
        if (!d) last = x;
        if (x->val == v) break;
        if (x->ch[d]) x = x->ch[d];
        else {
            if (lb) break;
            x - ch[d] = new node(v);
            x \rightarrow ch[d] \rightarrow p = x;
            x = x -  ch[d];
            break:
        }
    }
    splay(x);
    return lb ? splay(last) : x;
}
int size() { return root ? root->sz : 0; }
int count(T v) { return insert(v, 1) and root->val == v;
   }
node* lower_bound(T v) { return insert(v, 1); }
void erase(T v) {
    if (!count(v)) return;
    node *x = root, *1 = x -> ch[0];
    if (!1) {
        root = x - > ch[1];
        if (root) root->p = NULL;
        return delete x;
    }
    root = 1, 1->p = NULL;
    while (1->ch[1]) 1 = 1->ch[1];
    splay(1);
    1 - ch[1] = x - ch[1]:
    if (1->ch[1]) 1->ch[1]->p = 1;
    delete x:
    1->update();
}
int order_of_key(T v) {
    if (!lower_bound(v)) return root ? root->sz : 0;
    return root->ch[0] ? root->ch[0]->sz : 0;
}
```

```
node* find_by_order(int k) {
        if (k >= size()) return NULL;
        node* x = root;
        while (1) {
            if (x->ch[0] \text{ and } x->ch[0]->sz >= k+1) x =
                x - > ch[0];
            else {
                 if (x->ch[0]) k -= x->ch[0]->sz;
                if (!k) return splay(x);
                k--, x = x->ch[1];
            }
        }
    }
    T min() {
        node* x = root;
        while (x->ch[0]) x = x->ch[0]; // max -> ch[1]
        return splay(x)->val;
    }
};
```

1.26 Splay Tree Implicita

```
// vector da NASA
// Um pouco mais rapido q a treap
// O construtor a partir do vector
// eh linear, todas as outras operacoes
// custam O(log(n)) amortizado
// a3575a
template < typename T > struct splay {
    struct node {
        node *ch[2], *p;
        int sz;
        T val, sub, lazy;
        bool rev;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            sub = val = v;
            lazy = 0;
```

```
rev = false:
    }
    void prop() {
        if (lazy) {
            val += lazy, sub += lazy*sz;
            if (ch[0]) ch[0]->lazy += lazy;
            if (ch[1]) ch[1]->lazy += lazy;
        }
        if (rev) {
            swap(ch[0], ch[1]);
            if (ch[0]) ch[0]->rev ^= 1;
            if (ch[1]) ch[1]->rev ^= 1;
        }
        lazy = 0, rev = 0;
    void update() {
        sz = 1, sub = val;
        for (int i = 0; i < 2; i++) if (ch[i]) {
            ch[i]->prop();
            sz += ch[i]->sz;
            sub += ch[i]->sub;
        }
    }
};
node* root;
splay() { root = NULL; }
splay(node* x) {
    root = x;
    if (root) root->p = NULL;
splay(vector < T > v) { // O(n)}
    root = NULL;
    for (T i : v) {
        node* x = new node(i);
        x \rightarrow ch[0] = root;
        if (root) root->p = x;
        root = x;
        root ->update();
   }
}
```

```
splay(const splay& t) {
    throw logic_error("Nao copiar a splay!");
\simsplay() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp -> ch[pp -> ch[1] == p] = x;
    bool d = p \rightarrow ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
node* splaya(node* x) {
    if (!x) return x;
    root = x, x->update();
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
    return x;
}
node* find(int v) {
    if (!root) return NULL;
    node *x = root;
    int key = 0;
    while (1) {
        x->prop();
        bool d = key + size(x->ch[0]) < v;
```

```
if (\text{key} + \text{size}(x->\text{ch}[0]) != v \text{ and } x->\text{ch}[d]) {
             if (d) key += size(x->ch[0])+1;
             x = x -> ch[d];
         } else break;
    return splaya(x);
}
int size() { return root ? root->sz : 0; }
void join(splay<T>& 1) { // assume que 1 < *this</pre>
    if (!size()) swap(root, 1.root);
    if (!size() or !l.size()) return;
    node* x = 1.root;
    while (1) {
        x->prop();
        if (!x->ch[1]) break;
         x = x -> ch[1];
    }
    1.splaya(x), root->prop(), root->update();
    x - ch[1] = root, x - ch[1] - p = x;
    root = 1.root, 1.root = NULL;
    root ->update();
}
node* split(int v) { // retorna os elementos < v</pre>
    if (v <= 0) return NULL;</pre>
    if (v >= size()) {
         node* ret = root;
        root = NULL;
         ret ->update();
         return ret;
    }
    find(v);
    node*1 = root -> ch[0];
    root -> ch [0] = NULL;
    if (1) 1->p = NULL;
    root ->update();
    return 1:
}
T& operator [](int i) {
    find(i);
    return root ->val;
}
void push_back(T v) { // 0(1)
```

```
node* r = new node(v):
    r - ch[0] = root;
    if (root) root->p = r;
    root = r, root->update();
T query(int 1, int r) {
    splay <T> M(split(r+1));
    splay <T> L(M.split(1));
    T ans = M.root->sub;
    M.join(L), join(M);
    return ans;
void update(int 1, int r, T s) {
    splay<T> M(split(r+1));
    splay <T> L(M.split(1));
    M.root->lazy += s;
    M.join(L), join(M);
void reverse(int 1, int r) {
    splay <T> M(split(r+1));
    splay <T> L(M.split(1));
    M.root->rev ^= 1;
    M. join(L), join(M);
void erase(int 1, int r) {
    splay <T > M(split(r+1));
    splay <T> L(M.split(1));
    join(L);
```

1.27 Split-Merge Set

};

```
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge, que custa O(log(N)) amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
// 2d2d8a
```

```
template < typename T, bool MULTI = false, typename SIZE_T = int >
   struct sms {
    struct node {
        node *1, *r;
        SIZE_T cnt;
        node() : 1(NULL), r(NULL), cnt(0) {}
        void update() {
            cnt = 0;
            if (1) cnt += 1->cnt;
            if (r) cnt += r->cnt;
        }
    };
    node* root;
    T N;
    sms() : root(NULL), N(0) {}
    sms(T v) : sms() { while (v >= N) N = 2*N+1; }
    sms(const sms& t) : root(NULL), N(t.N) {
        for (SIZE_T i = 0; i < t.size(); i++) {</pre>
            T at = t[i];
            SIZE_T qt = t.count(at);
            insert(at, qt);
            i += qt-1;
        }
    sms(initializer_list<T> v) : sms() { for (T i : v)
       insert(i); }
    \simsms() {
        vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue:
            q.push_back(x->1), q.push_back(x->r);
            delete x:
        }
    }
    friend void swap(sms& a, sms& b) {
        swap(a.root, b.root), swap(a.N, b.N);
    }
```

```
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
    return *this;
}
SIZE_T size() const { return root ? root->cnt : 0; }
SIZE_T count(node* x) const { return x ? x->cnt : 0; }
void clear() {
    sms tmp;
    swap(*this, tmp);
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        node* nroot = new node();
        nroot ->1 = root:
       root = nroot;
       root ->update();
   }
}
node* insert(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) at = new node();
    if (1 == r) {
        at->cnt += qt;
       if (!MULTI) at->cnt = 1;
        return at;
   }
   T m = 1 + (r-1)/2;
    if (idx \le m) at->1 = insert(at->1, idx, qt, 1, m);
    else at->r = insert(at->r, idx, qt, m+1, r);
    return at ->update(), at;
void insert(T v, SIZE_T qt=1) { // insere 'qt'
   ocorrencias de 'v'
    if (qt <= 0) return erase(v, -qt);</pre>
    assert(v >= 0):
    expand(v);
    root = insert(root, v, qt, 0, N);
}
node* erase(node* at, T idx, SIZE_T qt, T l, T r) {
    if (!at) return at:
```

```
if (1 == r) at->cnt = at->cnt < qt ? 0 : at->cnt -
       qt;
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, qt, 1,
        else at->r = erase(at->r, idx, gt, m+1, r);
        at->update();
    }
    if (!at->cnt) delete at, at = NULL;
    return at;
}
void erase(T v, SIZE_T qt=1) { // remove 'qt'
   ocorrencias de 'v'
    if (v < 0 or v > N or !qt) return;
    if (qt < 0) insert(v, -qt);</pre>
    root = erase(root, v, qt, 0, N);
}
void erase_all(T v) { // remove todos os 'v'
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, numeric_limits < SIZE_T >:: max(),
       O, N);
}
SIZE_T count(node* at, T a, T b, T 1, T r) const {
    if (!at or b < 1 or r < a) return 0;
    if (a <= 1 and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
SIZE_T count(T v) const { return count(root, v, v, 0,
SIZE_T order_of_key(T v) { return count(root, 0, v-1, 0,
   N): }
SIZE_T lower_bound(T v) { return order_of_key(v); }
const T operator [](SIZE_T i) const { // i-esimo menor
   elemento
    assert(i >= 0 \text{ and } i < size());
    node* at = root;
    T 1 = 0, r = N;
```

```
while (1 < r) {
        T m = 1 + (r-1)/2;
        if (count(at->1) > i) at = at->1, r = m;
        else {
            i -= count(at->1);
            at = at ->r; l = m+1;
        }
    }
    return 1;
}
node* merge(node* 1, node* r) {
    if (!l or !r) return l ? l : r;
    if (!1->1 \text{ and } !1->r) \{ // \text{ folha} \}
        if (MULTI) 1->cnt += r->cnt;
        delete r;
        return 1;
    }
    1->1 = merge(1->1, r->1), 1->r = merge(1->r, r->r);
    1->update(), delete r;
    return 1;
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root);
    s.root = NULL;
}
node* split(node*& x, SIZE_T k) {
    if (k <= 0 or !x) return NULL;</pre>
    node* ret = new node();
    if (!x->1 \text{ and } !x->r) x->cnt -= k, ret->cnt += k;
    else {
        if (k \le count(x->1)) ret->1 = split(x->1, k);
        else {
             ret->r = split(x->r, k - count(x->1));
             swap(x->1, ret->1);
        ret->update(), x->update();
    }
    if (!x->cnt) delete x, x = NULL;
```

```
return ret;
   }
    void split(SIZE_T k, sms& s) { // pega os 'k' menores
        s.clear();
        s.root = split(root, min(k, size()));
        s.N = N;
    }
    // pega os menores que 'k'
    void split_val(T k, sms& s) { split(order_of_key(k), s);
};
1.28 Split-Merge Set - Lazy
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge e o insert_range, que custa O(log(N))
   amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
// 3828d0
template < typename T> struct sms {
    struct node {
        node *1, *r;
        int cnt;
        bool flip;
        node() : 1(NULL), r(NULL), cnt(0), flip(0) {}
        void update() {
            cnt = 0;
            if (1) cnt += 1->cnt;
```

if (r) cnt += r->cnt;

void prop(node* x, int size) {

 $x \rightarrow cnt = size - x \rightarrow cnt;$

 $x \rightarrow flip = 0;$

if (!x or !x->flip) return;

}

};

```
if (size > 1) {
        if (!x->1) x->1 = new node();
        if (!x->r) x->r = new node();
        x - > 1 - > flip ^= 1;
        x->r->flip ^= 1;
    }
}
node* root;
T N;
sms() : root(NULL), N(0) {}
sms(T v) : sms() { while (v >= N) N = 2*N+1; }
sms(sms& t) : root(NULL), N(t.N) {
    for (int i = 0; i < t.size(); i++) insert(t[i]);</pre>
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i); }
void destroy(node* r) {
    vector < node *> q = {r};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
\simsms() { destroy(root); }
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
    return *this;
}
int count(node* x, T size) {
    if (!x) return 0;
    prop(x, size);
    return x->cnt;
}
```

```
int size() { return count(root, N+1); }
void clear() {
    sms tmp;
    swap(*this, tmp);
}
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        prop(root, N+1);
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
        root ->update();
    }
}
node* insert(node* at, T idx, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (1 == r) {
        at->cnt = 1;
        return at;
    T m = 1 + (r-1)/2;
    if (idx <= m) at->1 = insert(at->1, idx, 1, m);
    else at->r = insert(at->r, idx, m+1, r);
    return at->update(), at;
}
void insert(T v) {
    assert(v >= 0);
    expand(v);
    root = insert(root, v, 0, N);
}
node* erase(node* at, T idx, T l, T r) {
    if (!at) return at;
    prop(at, r-l+1);
    if (1 == r) at->cnt = 0;
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, 1, m);
        else at->r = erase(at->r, idx, m+1, r);
        at->update();
```

```
}
    return at;
void erase(T v) {
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, 0, N);
}
int count(node* at, T a, T b, T l, T r) {
    if (!at or b < 1 or r < a) return 0;</pre>
    prop(at, r-l+1);
    if (a <= l and r <= b) return at->cnt;
    T m = 1 + (r-1)/2:
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1. r):
}
int count(T v) { return count(root, v, v, 0, N); }
int order_of_key(T v) { return count(root, 0, v-1, 0,
   N); }
int lower_bound(T v) { return order_of_key(v); }
const T operator [](int i) { // i-esimo menor elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root;
    T 1 = 0, r = N;
    while (1 < r) {
        prop(at, r-1+1);
        T m = 1 + (r-1)/2;
        if (count(at->1, m-1+1) > i) at = at->1, r = m;
        else {
            i -= count(at->1, r-m);
             at = at->r; l = m+1;
        }
    }
    return 1:
}
node* merge(node* a, node* b, T tam) {
    if (!a or !b) return a ? a : b;
    prop(a, tam), prop(b, tam);
    if (b \rightarrow cnt == tam) swap(a, b);
    if (tam == 1 \text{ or } a \rightarrow cnt == tam) {
```

```
destroy(b);
        return a;
    a - > 1 = merge(a - > 1, b - > 1, tam > > 1), a - > r = merge(a - > r,
       b->r, tam>>1);
    a->update(), delete b;
    return a;
}
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root, N+1);
    s.root = NULL;
}
node* split(node*& x, int k, T tam) {
    if (k <= 0 or !x) return NULL;</pre>
    prop(x, tam);
    node* ret = new node();
    if (tam == 1) x -> cnt = 0, ret -> cnt = 1;
    else {
        if (k \le count(x->1, tam>>1)) ret->1 =
            split(x->1, k, tam>>1);
        else {
            ret - r = split(x - r, k - count(x - r),
                tam>>1), tam>>1);
             swap(x->1, ret->1);
        ret->update(), x->update();
    }
    return ret;
}
void split(int k, sms& s) { // pega os 'k' menores
    s.clear():
    s.root = split(root, min(k, size()), N+1);
    s.N = N;
}
// pega os menores que 'k'
void split_val(T k, sms& s) { split(order_of_key(k), s);
   }
void flip(node*& at, T a, T b, T l, T r) {
```

```
if (!at) at = new node();
        else prop(at, r-l+1);
        if (a \le 1 \text{ and } r \le b) {
            at ->flip ^= 1;
            prop(at, r-l+1);
            return;
        }
        if (r < a or b < 1) return;
        T m = 1 + (r-1)/2;
        flip(at->1, a, b, 1, m), flip(at->r, a, b, m+1, r);
        at->update();
    void flip(T 1, T r) { // flipa os valores em [1, r]
        assert(1 >= 0 \text{ and } 1 <= r);
        expand(r);
        flip(root, 1, r, 0, N);
    }
    // complemento considerando que o universo eh [0, lim]
    void complement(T lim) {
        assert(lim >= 0);
        if (lim > N) expand(lim);
        flip(root, 0, lim, 0, N);
        sms tmp;
        split_val(lim+1, tmp);
        swap(*this, tmp);
    void insert_range(T 1, T r) { // insere todo os valores
       em [1, r]
        sms tmp;
        tmp.flip(l, r);
        merge(tmp);
    }
};
       SQRT Tree
1.29
// RMQ em O(log log n) com O(n log log n) pra buildar
// Funciona com qualquer operacao associativa
// Tao rapido quanto a sparse table, mas usa menos memoria
```

// (log log (1e9) < 5, entao a query eh praticamente O(1))

```
//
// build - O(n log log n)
// query - O(log log n)
// 8ff986
namespace sqrtTree {
    int n, *v;
    int pref[4][MAX], sulf[4][MAX], getl[4][MAX],
       entre[4][MAX], sz[4];
    int op(int a, int b) { return min(a, b); }
    inline int getblk(int p, int i) { return
       (i-getl[p][i])/sz[p]; }
    void build(int p, int 1, int r) {
        if (1+1 >= r) return;
        for (int i = 1; i <= r; i++) getl[p][i] = 1;
        for (int L = 1; L <= r; L += sz[p]) {</pre>
            int R = min(L+sz[p]-1, r);
            pref[p][L] = v[L], sulf[p][R] = v[R];
            for (int i = L+1; i <= R; i++) pref[p][i] =</pre>
               op(pref[p][i-1], v[i]);
            for (int i = R-1; i >= L; i--) sulf[p][i] =
                op(v[i], sulf[p][i+1]);
            build(p+1, L, R);
        }
        for (int i = 0; i <= sz[p]; i++) {</pre>
            int at = entre[p][l+i*sz[p]+i] =
               sulf[p][l+i*sz[p]];
            for (int j = i+1; j <= sz[p]; j++)</pre>
               entre[p][1+i*sz[p]+j] = at =
                    op(at, sulf[p][1+j*sz[p]]);
        }
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        for (int p = 0; p < 4; p++) sz[p] = n2 = sqrt(n2);
        build(0, 0, n-1);
    }
    int query(int 1, int r) {
        if (1+1 >= r) return 1 == r ? v[1] : op(v[1], v[r]);
        int p = 0;
        while (getblk(p, 1) == getblk(p, r)) p++;
```

1.30 Treap

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade, exceto meld
// meld custa O(log^2 n) amortizado com alta prob.,
// e permite unir duas treaps sem restricao adicional
// Na pratica, esse meld tem constante muito boa e
// o pior caso eh meio estranho de acontecer
// bd93e2
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, mi;
        node(T v) : l(NULL), r(NULL), p(rng()), sz(1),
           val(v), mi(v) {}
        void update() {
            sz = 1;
            mi = val;
            if (1) sz += 1->sz, mi = min(mi, 1->mi);
            if (r) sz += r->sz, mi = min(mi, r->mi);
    };
    node* root;
    treap() { root = NULL; }
    treap(const treap& t) {
```

```
throw logic_error("Nao copiar a treap!");
}
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
         if (!x) continue;
         q.push_back(x->1), q.push_back(x->r);
         delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
    if (!l or !r) return void(i = 1 ? l : r);
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r\rightarrow1, r\rightarrow1), i = r;
    i->update();
}
void split(node* i, node*& l, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i\rightarrow val < v) split(i\rightarrow r, i\rightarrow r, r, v), l = i;
    else split(i \rightarrow 1, l, i \rightarrow 1, v), r = i;
    i->update();
}
void split_leq(node* i, node*& l, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i->val <= v) split_leq(i->r, i->r, r, v), l = i;
    else split_leq(i \rightarrow l, l, i \rightarrow l, v), r = i;
    i->update();
}
int count(node* i, T v) {
    if (!i) return 0;
    if (i->val == v) return 1;
    if (v < i->val) return count(i->l, v);
    return count(i->r, v);
void index_split(node* i, node*& 1, node*& r, int v, int
   kev = 0) {
    if (!i) return void(r = 1 = NULL);
```

```
if (key + size(i->1) < v) index_split(i->r, i->r, r,
       v, key+size(i->1)+1), l = i;
    else index_split(i->1, 1, i->1, v, key), r = i;
    i->update();
}
int count(T v) {
    return count(root, v);
void insert(T v) {
    if (count(v)) return;
    node *L, *R;
    split(root, L, R, v);
    node* at = new node(v);
    join(L, at, L);
    join(L, R, root);
void erase(T v) {
    node *L, *M, *R;
   split_leq(root, M, R, v), split(M, L, M, v);
    if (M) delete M;
    M = NULL;
    join(L, R, root);
void meld(treap& t) { // segmented merge
    node *L = root, *R = t.root;
    root = NULL;
    while (L or R) {
        if (!L or (L and R and L->mi > R->mi))
           std::swap(L, R);
        if (!R) join(root, L, root), L = NULL;
        else if (L->mi == R->mi) {
            node* LL;
            split(L, LL, L, R->mi+1);
            delete LL:
        } else {
            node* LL;
            split(L, LL, L, R->mi);
            join(root, LL, root);
        }
    t.root = NULL;
}
```

1.31 Treap Implicita

}:

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
// 63ba4d
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, sub, lazy;
        bool rev;
        node(T v) : l(NULL), r(NULL), p(rng()), sz(1),
            val(v), sub(v), lazy(0), rev(0) {}
        void prop() {
            if (lazy) {
                 val += lazy, sub += lazy*sz;
                 if (1) 1->lazy += lazy;
                 if (r) r->lazy += lazy;
            }
            if (rev) {
                 swap(1, r);
                 if (1) 1->rev ^= 1;
                 if (r) r->rev ^= 1;
            lazy = 0, rev = 0;
        void update() {
             sz = 1, sub = val;
             if (1) 1->prop(), sz += 1->sz, sub += 1->sub;
             if (r) r\rightarrow prop(), sz += r\rightarrow sz, sub += r\rightarrow sub;
        }
    };
    node* root;
```

```
treap() { root = NULL; }
treap(const treap& t) {
    throw logic_error("Nao copiar a treap!");
}
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!l or !r) return void(i = 1 ? 1 : r);
    1->prop(), r->prop();
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r\rightarrow 1, r\rightarrow 1), i = r;
    i->update();
}
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
    if (!i) return void(r = l = NULL);
    i->prop();
    if (key + size(i->1) < v) split(i->r, i->r, r, v,
       key+size(i->1)+1), l = i;
    else split(i \rightarrow l, l, i \rightarrow l, v, key), r = i;
    i->update();
void push_back(T v) {
    node* i = new node(v);
    join(root, i, root);
T query(int 1, int r) {
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    T ans = M->sub;
```

```
join(L, M, M), join(M, R, root);
        return ans;
    }
    void update(int 1, int r, T s) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M \rightarrow lazv += s;
        join(L, M, M), join(M, R, root);
    }
    void reverse(int 1, int r) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M \rightarrow rev = 1:
        join(L, M, M), join(M, R, root);
    }
};
```

1.32 Treap Persistent Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
// fb8013
mt19937_64 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct node {
    node *1, *r;
    ll sz, val, sub;
    node(ll v) : 1(NULL), r(NULL), sz(1), val(v), sub(v) {}
    node(node* x) : l(x->l), r(x->r), sz(x->sz),
       val(x->val), sub(x->sub) {}
    void update() {
        sz = 1, sub = val;
        if (1) sz += 1->sz, sub += 1->sub;
        if (r) sz += r->sz, sub += r->sub;
        sub \%= MOD;
    }
};
```

```
ll size(node* x) { return x ? x->sz : 0; }
void update(node* x) { if (x) x->update(); }
node* copy(node* x) { return x ? new node(x) : NULL; }
node* join(node* 1, node* r) {
    if (!1 or !r) return 1 ? copy(1) : copy(r);
    node* ret;
    if (rng() % (size(l) + size(r)) < size(l)) {</pre>
        ret = copy(1);
        ret -> r = join(ret -> r, r);
    } else {
        ret = copy(r);
        ret - > 1 = join(1, ret - > 1);
    return update(ret), ret;
}
void split(node* x, node*& 1, node*& r, 11 v, 11 key = 0) {
    if (!x) return void(l = r = NULL);
    if (key + size(x->1) < v) {
        1 = copy(x);
        split(1->r, 1->r, r, v, key+size(1->1)+1);
    } else {
        r = copy(x);
        split(r->1, 1, r->1, v, key);
    update(1), update(r);
}
vector < node *> treap;
void init(const vector<ll>& v) {
    treap = {NULL};
    for (auto i : v) treap[0] = join(treap[0], new node(i));
}
1.33 Wavelet Tree
// Usa O(sigma + n log(sigma)) de memoria,
// onde sigma = MAXN - MINN
```

```
// Depois do build, o v fica ordenado
// count(i, j, x, y) retorna o numero de elementos de
// v[i, j) que pertencem a [x, y]
// kth(i, j, k) retorna o elemento que estaria
// na poscicao k-1 de v[i, j), se ele fosse ordenado
// sum(i, j, x, y) retorna a soma dos elementos de
// v[i, j) que pertencem a [x, y]
// sumk(i, j, k) retorna a soma dos k-esimos menores
// elementos de v[i, j) (sum(i, j, 1) retorna o menor)
//
// Complexidades:
// build - O(n log(sigma))
// count - O(log(sigma))
// kth - O(log(sigma))
// sum - 0(log(sigma))
// sumk - O(log(sigma))
// 782344
int n, v[MAX];
vector < int > esq[4*(MAXN-MINN)], pref[4*(MAXN-MINN)];
void build(int b = 0, int e = n, int p = 1, int l = MINN,
   int r = MAXN) {
   int m = (1+r)/2; esq[p].push_back(0);
       pref[p].push_back(0);
    for (int i = b; i < e; i++) {</pre>
        esq[p].push_back(esq[p].back()+(v[i]<=m));</pre>
        pref[p].push_back(pref[p].back()+v[i]);
    }
    if (1 == r) return;
    int m2 = stable_partition(v+b, v+e, [=](int i){return i
       <= m;}) - v;
    build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
}
int count(int i, int j, int x, int y, int p = 1, int l =
   MINN, int r = MAXN) {
   if (y < 1 \text{ or } r < x) \text{ return } 0;
   if (x <= 1 and r <= y) return j-i;</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei, j-ej,
       x, y, 2*p+1, m+1, r);
```

```
}
int kth(int i, int j, int k, int p=1, int l = MINN, int r =
   MAXN) {
    if (1 == r) return 1;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return kth(ei, ej, k, 2*p, 1, m);
    return kth(i-ei, j-ej, k-(ej-ei), 2*p+1, m+1, r);
}
int sum(int i, int j, int x, int y, int p = 1, int l = MINN,
   int r = MAXN) {
    if (y < 1 \text{ or } r < x) \text{ return } 0;
    if (x <= 1 and r <= y) return pref[p][j]-pref[p][i];</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return sum(ei, ej, x, y, 2*p, 1, m) + sum(i-ei, j-ej, x,
       y, 2*p+1, m+1, r);
}
int sumk(int i, int j, int k, int p = 1, int l = MINN, int r
   = MAXN) {
    if (1 == r) return 1*k;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return sumk(ei, ej, k, 2*p, 1, m);</pre>
    return pref[2*p][ej]-pref[2*p][ei]+sumk(i-ei, j-ej,
       k-(ej-ei), 2*p+1, m+1, r);
}
```

2 Grafos

2.1 AGM Directionada

```
// Fala o menor custo para selecionar arestas tal que
// o vertice 'r' alcance todos
// Se nao tem como, retorna LINF
//
// O(m log(n))
// dc345b
```

```
struct node {
    pair<ll, int> val;
    ll lazy;
    node *1, *r;
    node() {}
    node(pair<int, int> v) : val(v), lazy(0), l(NULL),
       r(NULL) {}
    void prop() {
        val.first += lazy;
        if (1) 1->lazy += lazy;
        if (r) r->lazy += lazy;
        lazy = 0;
   }
};
void merge(node*& a, node* b) {
    if (!a) swap(a, b);
    if (!b) return;
    a->prop(), b->prop();
    if (a->val > b->val) swap(a, b);
    merge(rand()%2 ? a->1 : a->r, b);
}
pair<11, int> pop(node*& R) {
    R->prop();
    auto ret = R->val;
    node* tmp = R;
    merge(R->1, R->r);
    R = R -> 1;
    if (R) R->lazy -= ret.first;
    delete tmp;
    return ret;
void apaga(node* R) { if (R) apaga(R->1), apaga(R->r),
   delete R: }
11 dmst(int n, int r, vector<pair<int, int>, int>>& ar)
    vector < int > p(n); iota(p.begin(), p.end(), 0);
    function < int(int) > find = [&](int k) { return
       p[k] == k?k:p[k] = find(p[k]); };
    vector < node *> h(n);
    for (auto e : ar) merge(h[e.first.second], new
```

```
node({e.second, e.first.first}));
vector < int > pai(n, -1), path(n);
pai[r] = r;
11 \text{ ans} = 0;
for (int i = 0; i < n; i++) { // vai conectando todo
    int u = i, at = 0;
    while (pai[u] == -1) {
        if (!h[u]) { // nao tem
            for (auto i : h) apaga(i);
            return LINF;
        }
        path[at++] = u, pai[u] = i;
        auto [mi, v] = pop(h[u]);
        ans += mi;
        if (pai[u = find(v)] == i) { // ciclo
            while (find(v = path[--at]) != u)
                merge(h[u], h[v]), h[v] = NULL,
                   p[find(v)] = u;
            pai[u] = -1;
        }
    }
}
for (auto i : h) apaga(i);
return ans;
```

2.2 Algoritmo de Kuhn

}

```
// Computa matching maximo em grafo bipartido
// 'n' e 'm' sao quantos vertices tem em cada particao
// chamar add(i, j) para add aresta entre o cara i
// da particao A, e o cara j da particao B
// (entao i < n, j < m)
// Para recuperar o matching, basta olhar 'ma' e 'mb'
// recover() recupera o min vertex cover como um par de
// {caras da particao A, caras da particao B}
//</pre>
```

```
// O(|V| * |E|)
// Na pratica, parece rodar tao rapido quanto o Dinic
// 67ebb9
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct kuhn {
    int n, m;
    vector < vector < int >> g;
    vector < int > vis, ma, mb;
    kuhn(int n_{-}, int m_{-}) : n(n_{-}), m(m_{-}), g(n),
        vis(n+m), ma(n, -1), mb(m, -1) {}
    void add(int a, int b) { g[a].push_back(b); }
    bool dfs(int i) {
        vis[i] = 1;
        for (int j : g[i]) if (!vis[n+j]) {
            vis[n+j] = 1;
            if (mb[j] == -1 or dfs(mb[j])) {
                ma[i] = j, mb[j] = i;
                return true;
            }
        }
        return false;
    }
    int matching() {
        int ret = 0, aum = 1;
        for (auto& i : g) shuffle(i.begin(), i.end(), rng);
        while (aum) {
            for (int j = 0; j < m; j++) vis[n+j] = 0;
            aum = 0:
            for (int i = 0; i < n; i++)</pre>
                if (ma[i] == -1 and dfs(i)) ret++, aum = 1;
        }
        return ret;
    pair < vector < int >, vector < int >> recover() {
        matching();
        for (int i = 0; i < n+m; i++) vis[i] = 0;
```

```
for (int i = 0; i < n; i++) if (ma[i] == -1) dfs(i);
  vector < int > ca, cb;
  for (int i = 0; i < n; i++) if (!vis[i])
      ca.push_back(i);
  for (int i = 0; i < m; i++) if (vis[n+i])
      cb.push_back(i);
  return {ca, cb};
}
</pre>
```

2.3 Bellman-Ford

```
// Calcula a menor distancia
// entre a e todos os vertices e
// detecta ciclo negativo
// Retorna 1 se ha ciclo negativo
// Nao precisa representar o grafo,
// soh armazenar as arestas
// O(nm)
// 03059b
int n, m;
int d[MAX];
vector<pair<int, int>> ar; // vetor de arestas
vector<int> w;
                          // peso das arestas
bool bellman_ford(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0;
    for (int i = 0; i <= n; i++)</pre>
        for (int j = 0; j < m; j++) {</pre>
            if (d[ar[j].second] > d[ar[j].first] + w[j]) {
                if (i == n) return 1;
                d[ar[j].second] = d[ar[j].first] + w[j];
            }
        }
```

```
return 0;
}
```

2.4 Block-Cut Tree

```
// Cria a block-cut tree, uma arvore com os blocos
// e os pontos de articulação
// Blocos sao componentes 2-vertice-conexos maximais
// Uma 2-coloracao da arvore eh tal que uma cor sao
// os blocos, e a outra cor sao os pontos de art.
// Funciona para grafo nao conexo
//
// art[i] responde o numero de novas componentes conexas
// criadas apos a remocao de i do grafo g
// Se art[i] >= 1, i eh ponto de articulação
// Para todo i <= blocks.size()</pre>
// blocks[i] eh uma componente 2-vertce-conexa maximal
// edgblocks[i] sao as arestas do bloco i
// tree[i] eh um vertice da arvore que corresponde ao bloco i
// pos[i] responde a qual vertice da arvore vertice i
   pertence
// Arvore tem no maximo 2n vertices
// O(n+m)
// 056fa2
struct block_cut_tree {
    vector < vector < int >> g, blocks, tree;
    vector < vector < pair < int , int >>> edgblocks;
    stack<int> s;
    stack<pair<int, int>> s2;
    vector<int> id, art, pos;
    block_cut_tree(vector<vector<int>> g_) : g(g_) {
        int n = g.size();
        id.resize(n, -1), art.resize(n), pos.resize(n);
        build();
    }
```

```
int dfs(int i, int& t, int p = -1) {
    int lo = id[i] = t++;
    s.push(i);
    if (p != -1) s2.emplace(i, p);
    for (int j : g[i]) if (j != p and id[j] != -1)
       s2.emplace(i, j);
    for (int j : g[i]) if (j != p) {
        if (id[j] == -1) {
            int val = dfs(j, t, i);
            lo = min(lo, val);
            if (val >= id[i]) {
                art[i]++;
                blocks.emplace_back(1, i);
                while (blocks.back().back() != j)
                    blocks.back().push_back(s.top()),
                        s.pop();
                edgblocks.emplace_back(1, s2.top()),
                    s2.pop();
                while (edgblocks.back().back() !=
                    pair(j, i))
                    edgblocks.back().push_back(s2.top()),
                        s2.pop();
            // if (val > id[i]) aresta i-j eh ponte
        else lo = min(lo, id[j]);
    }
    if (p == -1 and art[i]) art[i]--;
    return lo:
}
void build() {
    int t = 0;
    for (int i = 0; i < g.size(); i++) if (id[i] == -1)</pre>
       dfs(i, t, -1);
```

2.5 Blossom - matching maximo em grafo geral

```
// O(n^3)
// Se for bipartido, nao precisa da funcao
// 'contract', e roda em O(nm)
// 4426a4
vector < int > g[MAX];
int match[MAX]; // match[i] = com quem i esta matchzado ou -1
int n, pai[MAX], base[MAX], vis[MAX];
queue < int > q;
void contract(int u, int v, bool first = 1) {
    static vector < bool > bloss;
    static int 1;
    if (first) {
        bloss = vector < bool > (n, 0);
        vector < bool > teve(n, 0);
        int k = u; l = v;
        while (1) {
            teve[k = base[k]] = 1;
            if (match[k] == -1) break;
            k = pai[match[k]];
        while (!teve[l = base[l]]) l = pai[match[l]];
    }
    while (base[u] != 1) {
```

```
bloss[base[u]] = bloss[base[match[u]]] = 1:
        pai[u] = v;
        v = match[u];
        u = pai[match[u]];
    if (!first) return;
    contract(v, u, 0);
    for (int i = 0; i < n; i++) if (bloss[base[i]]) {</pre>
        base[i] = 1;
        if (!vis[i]) q.push(i);
        vis[i] = 1;
    }
}
int getpath(int s) {
    for (int i = 0; i < n; i++) base[i] = i, pai[i] = -1,
       vis[i] = 0:
    vis[s] = 1; q = queue < int > (); q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i : g[u]) {
            if (base[i] == base[u] or match[u] == i)
               continue:
            if (i == s or (match[i] != -1 and pai[match[i]]
                ! = -1)
                contract(u, i);
            else if (pai[i] == -1) {
                pai[i] = u;
                if (match[i] == -1) return i;
                i = match[i];
                vis[i] = 1; q.push(i);
            }
        }
    }
    return -1;
}
int blossom() {
    int ans = 0;
    memset(match, -1, sizeof(match));
    for (int i = 0; i < n; i++) if (match[i] == -1)</pre>
        for (int j : g[i]) if (match[j] == -1) {
```

```
match[i] = i:
            match[j] = i;
            ans++;
            break;
   for (int i = 0; i < n; i++) if (match[i] == -1) {
        int j = getpath(i);
        if (j == -1) continue;
        ans++;
        while (j != -1) {
            int p = pai[j], pp = match[p];
            match[p] = j;
            match[i] = p;
            j = pp;
        }
    }
    return ans;
}
2.6 Centro de arvore
// Retorna o diametro e o(s) centro(s) da arvore
// Uma arvore tem sempre um ou dois centros e estes estao no
   meio do diametro
//
// O(n)
// cladeb
vector < int > g[MAX];
int d[MAX], par[MAX];
pair<int, vector<int>> center() {
    int f, df;
    function < void(int) > dfs = [&] (int v) {
        if (d[v] > df) f = v, df = d[v];
        for (int u : g[v]) if (u != par[v])
            d[u] = d[v] + 1, par[u] = v, dfs(u);
```

};

f = df = par[0] = -1, d[0] = 0;

```
dfs(0);
int root = f;
f = df = par[root] = -1, d[root] = 0;
dfs(root);

vector < int > c;
while (f != -1) {
    if (d[f] == df/2 or d[f] == (df+1)/2) c.push_back(f);
    f = par[f];
}

return {df, c};
}
```

2.7 Centroid

```
// Computa os 2 centroids da arvore
//
// O(n)
// e16075
int n, subsize[MAX];
vector < int > g[MAX];
void dfs(int k, int p=-1) {
    subsize[k] = 1;
    for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
    for (int i : g[k]) if (i != p) if (subsize[i] > size/2)
        return centroid(i, k, size);
    return k;
}
pair < int , int > centroids(int k=0) {
```

2.8 Centroid decomposition

```
// decomp(0, k) computa numero de caminhos com 'k' arestas
// Mudar depois do comentario
//
// O(n log(n))
// fe2541
vector < int > g[MAX];
int sz[MAX], rem[MAX];
void dfs(vector<int>& path, int i, int l=-1, int d=0) {
    path.push_back(d);
    for (int j : g[i]) if (j != l and !rem[j]) dfs(path, j,
       i, d+1);
}
int dfs_sz(int i, int l=-1) {
    sz[i] = 1;
    for (int j : g[i]) if (j != l and !rem[j]) sz[i] +=
       dfs_sz(j, i);
    return sz[i]:
}
int centroid(int i, int l, int size) {
    for (int j : g[i]) if (j != l and !rem[j] and sz[j] >
       size / 2)
        return centroid(j, i, size);
    return i;
}
ll decomp(int i, int k) {
    int c = centroid(i, i, dfs_sz(i));
```

```
rem[c] = 1;
    // gasta O(n) aqui - dfs sem ir pros caras removidos
    11 \text{ ans} = 0;
    vector<int> cnt(sz[i]);
    cnt[0] = 1;
    for (int j : g[c]) if (!rem[j]) {
        vector < int > path;
        dfs(path, j);
        for (int d : path) if (0 \le k-d-1 \text{ and } k-d-1 \le sz[i])
             ans += cnt[k-d-1];
        for (int d : path) cnt[d+1]++;
    }
    for (int j : g[c]) if (!rem[j]) ans += decomp(j, k);
    rem[c] = 0:
    return ans;
}
```

2.9 Dijkstra

```
// encontra menor distancia de x
// para todos os vertices
// se ao final do algoritmo d[i] = LINF,
// entao x nao alcanca i
//
// O(m log(n))
// 695ac4

ll d[MAX];
vector<pair<int, int>> g[MAX]; // {vizinho, peso}

int n;

void dijkstra(int v) {
   for (int i = 0; i < n; i++) d[i] = LINF;
   d[v] = 0;
   priority_queue<pair<ll, int>> pq;
   pq.emplace(0, v);
```

```
while (pq.size()) {
        auto [ndist, u] = pq.top(); pq.pop();
        if (-ndist > d[u]) continue;
        for (auto [idx, w] : g[u]) if (d[idx] > d[u] + w) {
            d[idx] = d[u] + w;
            pq.emplace(-d[idx], idx);
        }
    }
2.10 Dinic
// O(min(m * max_flow, n^2 m))
// Grafo com capacidades 1 -> O(sqrt(n)*m)
// 2bf9c4
struct dinic {
    const bool scaling = false; // com scaling -> O(nm
       log(MAXCAP)),
    int lim;
                                // com constante alta
    struct edge {
        int to, cap, rev, flow; // para, capacidade, id da
           reversa. fluxo
        bool res; // se a aresta eh residual
        edge(int to_, int cap_, int rev_, bool res_)
            : to(to_), cap(cap_), rev(rev_), flow(0),
               res(res ) {}
    }:
    vector < vector < edge >> g;
    vector<int> lev, beg;
    11 F:
    dinic(int n) : g(n), F(0) {}
    void add(int a, int b, int c) { // de a pra b com cap. c
        g[a].push_back(edge(b, c, g[b].size(), false));
        g[b].push_back(edge(a, 0, g[a].size()-1, true));
```

}

bool bfs(int s, int t) {

```
lev = vector\langle int \rangle(g.size(), -1); lev[s] = 0;
    beg = vector<int>(g.size(), 0);
    queue < int > q; q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (auto& i : g[u]) {
            if (lev[i.to] != -1 or (i.flow == i.cap))
                continue:
            if (scaling and i.cap - i.flow < lim)</pre>
                continue;
            lev[i.to] = lev[u] + 1;
            q.push(i.to);
        }
    return lev[t] != -1;
int dfs(int v, int s, int f = INF){
    if (!f or v == s) return f;
    for (int& i = beg[v]; i < g[v].size(); i++) {</pre>
        auto& e = g[v][i];
        if (lev[e.to] != lev[v] + 1) continue;
        int foi = dfs(e.to, s, min(f, e.cap - e.flow));
        if (!foi) continue;
        e.flow += foi, g[e.to][e.rev].flow -= foi;
        return foi;
    }
    return 0;
11 max_flow(int s, int t) {
    for (lim = scaling ? (1<<30) : 1; lim; lim /= 2)</pre>
        while (bfs(s, t)) while (int ff = dfs(s, t)) F
           += ff:
    return F;
}
vector<pair<int, int> > get_cut(int s, int t) {
    max_flow(s, t);
    vector<pair<int, int> > cut;
    vector<int> vis(g.size(), 0), st = {s};
    vis[s] = 1;
    while (st.size()) {
        int u = st.back(); st.pop_back();
        for (auto e : g[u]) if (!vis[e.to] and e.flow <</pre>
```

2.11 Dominator Tree - Kawakami

```
// Se vira pra usar ai
//
// build - O(n)
// dominates - O(1)
// c80920
int n;
namespace d_tree {
    vector < int > g[MAX];
    // The dominator tree
    vector < int > tree [MAX];
    int dfs_l[MAX], dfs_r[MAX];
    // Auxiliary data
    vector < int > rg[MAX], bucket[MAX];
    int idom[MAX], sdom[MAX], prv[MAX], pre[MAX];
    int ancestor[MAX], label[MAX];
    vector<int> preorder;
    void dfs(int v) {
        static int t = 0;
        pre[v] = ++t;
        sdom[v] = label[v] = v;
        preorder.push_back(v);
        for (int nxt: g[v]) {
```

```
if (sdom[nxt] == -1) {
            prv[nxt] = v;
            dfs(nxt);
        rg[nxt].push_back(v);
    }
}
int eval(int v) {
    if (ancestor[v] == -1) return v;
    if (ancestor[ancestor[v]] == -1) return label[v];
    int u = eval(ancestor[v]);
    if (pre[sdom[u]] < pre[sdom[label[v]]]) label[v] = u;</pre>
    ancestor[v] = ancestor[u];
    return label[v];
}
void dfs2(int v) {
    static int t = 0;
    dfs_1[v] = t++;
    for (int nxt: tree[v]) dfs2(nxt);
    dfs_r[v] = t++;
}
void build(int s) {
    for (int i = 0; i < n; i++) {
        sdom[i] = pre[i] = ancestor[i] = -1;
        rg[i].clear();
        tree[i].clear();
        bucket[i].clear();
    preorder.clear();
    dfs(s):
    if (preorder.size() == 1) return;
    for (int i = int(preorder.size()) - 1; i >= 1; i--) {
        int w = preorder[i];
        for (int v: rg[w]) {
            int u = eval(v);
            if (pre[sdom[u]] < pre[sdom[w]]) sdom[w] =</pre>
               sdom[u];
        }
        bucket[sdom[w]].push_back(w);
        ancestor[w] = prv[w];
        for (int v: bucket[prv[w]]) {
            int u = eval(v);
```

```
idom[v] = (u == v) ? sdom[v] : u;
}
bucket[prv[w]].clear();
}
for (int i = 1; i < preorder.size(); i++) {
    int w = preorder[i];
    if (idom[w] != sdom[w]) idom[w] = idom[idom[w]];
    tree[idom[w]].push_back(w);
}
idom[s] = sdom[s] = -1;
dfs2(s);
}

// Whether every path from s to v passes through u
bool dominates(int u, int v) {
    if (pre[v] == -1) return 1; // vacuously true
    return dfs_l[u] <= dfs_l[v] && dfs_r[v] <= dfs_r[u];
}
};</pre>
```

2.12 Euler Path / Euler Cycle

```
// Para declarar: 'euler < true > E(n); ' se quiser
// direcionado e com 'n' vertices
// As funcoes retornam um par com um booleano
// indicando se possui o cycle/path que voce pediu,
// e um vector de {vertice, id da aresta para chegar no
    vertice}
// Se for get_path, na primeira posicao o id vai ser -1
// get_path(src) tenta achar um caminho ou ciclo euleriano
// comecando no vertice 'src'.
// Se achar um ciclo, o primeiro e ultimo vertice serao
// Se for um P3, um possiveo retorno seria [0, 1, 2, 0]
// get_cycle() acha um ciclo euleriano se o grafo for
// Se for um P3, um possivel retorno seria [0, 1, 2]
// (vertie inicial nao repete)
//
// O(n+m)
```

```
template < bool directed = false > struct euler {
    int n;
    vector < vector < pair < int , int >>> g;
    vector < int > used;
    euler(int n_) : n(n_), g(n) {}
    void add(int a, int b) {
        int at = used.size();
        used.push_back(0);
        g[a].emplace_back(b, at);
        if (!directed) g[b].emplace_back(a, at);
#warning chamar para o src certo!
    pair < bool, vector < pair < int, int >>> get_path(int src) {
        if (!used.size()) return {true, {}};
        vector < int > beg(n, 0);
        for (int& i : used) i = 0;
        // {{vertice, anterior}, label}
        vector<pair<int, int>, int>> ret, st = {{src,
           -1}, -1}};
        while (st.size()) {
            int at = st.back().first.first;
            int& it = beg[at];
            while (it < g[at].size() and</pre>
               used[g[at][it].second]) it++;
            if (it == g[at].size()) {
                if (ret.size() and ret.back().first.second
                    l = at)
                    return {false, {}};
                ret.push_back(st.back()), st.pop_back();
            } else {
                st.push_back({{g[at][it].first, at},
                    g[at][it].second));
                used[g[at][it].second] = 1;
            }
        if (ret.size() != used.size()+1) return {false, {}};
        vector<pair<int, int>> ans;
        for (auto i : ret) ans.emplace_back(i.first.first,
           i.second):
```

// 7113df

```
reverse(ans.begin(), ans.end());
return {true, ans};
}

pair<bool, vector<pair<int, int>>> get_cycle() {
    if (!used.size()) return {true, {}};
    int src = 0;
    while (!g[src].size()) src++;
    auto ans = get_path(src);
    if (!ans.first or ans.second[0].first !=
        ans.second.back().first)
        return {false, {}};
    ans.second[0].second = ans.second.back().second;
    ans.second.pop_back();
    return ans;
}
};
```

2.13 Euler Tour Tree

```
// Mantem uma floresta enraizada dinamicamente
// e permite queries/updates em sub-arvore
//
// Chamar ETT E(n, v), passando n = numero de vertices
// e v = vector com os valores de cada vertice (se for vazio,
// constroi tudo com 0
//
// link(v, u) cria uma aresta de v pra u, de forma que u se
// o pai de v (eh preciso que v seja raiz anteriormente)
// cut(v) corta a resta de v para o pai
// query(v) retorna a soma dos valores da sub-arvore de v
// update(v, val) soma val em todos os vertices da
   sub-arvore de v
// update_v(v, val) muda o valor do vertice v para val
// is_in_subtree(v, u) responde se o vertice u esta na
   sub-arvore de v
// Tudo O(log(n)) com alta probabilidade
// c97d63
```

```
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct ETT {
    // treap
    struct node {
        node *1, *r, *p;
        int pr, sz;
        T val, sub, lazy;
        int id;
        bool f; // se eh o 'first'
        int qt_f; // numero de firsts na subarvore
        node(int id_, T v, bool f_ = 0) : l(NULL), r(NULL),
           p(NULL), pr(rng()),
            sz(1), val(v), sub(v), lazy(), id(id_), f(f_),
                qt_f(f_) {}
        void prop() {
            if (lazy != T()) {
                if (f) val += lazy;
                 sub += lazy*sz;
                if (1) 1->lazy += lazy;
                 if (r) r->lazy += lazy;
            lazy = T();
        }
        void update() {
            sz = 1, sub = val, qt_f = f;
            if (1) 1 - prop(), sz += 1 - prop(), sz += 1 - prop(),
                qt_f += l->qt_f;
            if (r) r\rightarrow prop(), sz += r\rightarrow sz, sub += r\rightarrow sub,
                qt_f += r->qt_f;
        }
    };
    node* root;
    int size(node* x) { return x ? x->sz : 0; }
    void join(node* 1, node* r, node*& i) { // assume que 1
       < r
        if (!l or !r) return void(i = 1 ? 1 : r);
        1->prop(), r->prop();
        if (1->pr > r->pr) join(1->r, r, 1->r), 1->r->p = i
```

```
= 1:
    else join(1, r \rightarrow 1, r \rightarrow 1), r \rightarrow 1 \rightarrow p = i = r;
    i->update();
}
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
    if (!i) return void(r = l = NULL);
    i->prop();
    if (key + size(i->1) < v) {
         split(i->r, i->r, r, v, key+size(i->l)+1), l = i;
        if (r) r -> p = NULL;
        if (i->r) i->r->p = i;
    } else {
         split(i->1, 1, i->1, v, key), r = i;
        if (1) 1->p = NULL;
        if (i->1) i->1->p = i;
    }
    i->update();
}
int get_idx(node* i) {
    int ret = size(i->1);
    for (; i->p; i = i->p) {
        node* pai = i->p;
        if (i != pai->l) ret += size(pai->l) + 1;
    }
    return ret;
}
node* get_min(node* i) {
    if (!i) return NULL;
    return i->l ? get_min(i->l) : i;
}
node* get_max(node* i) {
    if (!i) return NULL;
    return i->r ? get_max(i->r) : i;
}
// fim da treap
vector < node *> first, last;
ETT(int n, vector<T> v = {}) : root(NULL), first(n),
   last(n) {
    if (!v.size()) v = vector < T > (n);
```

```
for (int i = 0; i < n; i++) {</pre>
        first[i] = last[i] = new node(i, v[i], 1);
        join(root, first[i], root);
    }
}
ETT(const ETT& t) { throw logic_error("Nao copiar a
   ETT!"); }
\simETT() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
pair < int , int > get_range(int i) {
    return {get_idx(first[i]), get_idx(last[i])};
void link(int v, int u) { // 'v' tem que ser raiz
    auto [lv, rv] = get_range(v);
    int ru = get_idx(last[u]);
    node* V;
    node *L, *M, *R;
    split(root, M, R, rv+1), split(M, L, M, lv);
    V = M;
    join(L, R, root);
    split(root, L, R, ru+1);
    join(L, V, L);
    join(L, last[u] = new node(u, T() /* elemento neutro
       */). L):
    join(L, R, root);
void cut(int v) {
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    node *LL = get_max(L), *RR = get_min(R);
```

```
if (LL and RR and LL->id == RR->id) { // remove
        duplicata
         if (last[RR->id] == RR) last[RR->id] = LL;
         node *A, *B;
         split(R, A, B, 1);
         delete A;
         R = B;
    join(L, R, root);
    join(root, M, root);
}
T query(int v) {
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    T ans = M->sub;
    join(L, M, M), join(M, R, root);
    return ans;
}
void update(int v, T val) { // soma val em todo mundo da
   subarvore
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    M->lazy += val;
    join(L, M, M), join(M, R, root);
}
void update_v(int v, T val) { // muda o valor de v pra
    int l = get_idx(first[v]);
    node *L, *M, *R;
    split(root, M, R, 1+1), split(M, L, M, 1);
    M \rightarrow val = M \rightarrow sub = val;
    join(L, M, M), join(M, R, root);
}
bool is_in_subtree(int v, int u) { // se u ta na subtree
   de v
    auto [lv, rv] = get_range(v);
    auto [lu, ru] = get_range(u);
    return lv <= lu and ru <= rv;
}
```

```
void print(node* i) {
    if (!i) return;
    print(i->1);
    cout << i->id+1 << " ";
    print(i->r);
}
void print() { print(root); cout << endl; }
};</pre>
```

2.14 Floyd-Warshall

```
// encontra o menor caminho entre todo
// par de vertices e detecta ciclo negativo
// returna 1 sse ha ciclo negativo
// d[i][i] deve ser 0
// para i != j, d[i][j] deve ser w se ha uma aresta
// (i, j) de peso w, INF caso contrario
//
// O(n^3)
// ea05be
int n;
int d[MAX][MAX];
bool floyd_warshall() {
    for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)</pre>
    for (int j = 0; j < n; j++)
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    for (int i = 0; i < n; i++)</pre>
        if (d[i][i] < 0) return 1;</pre>
    return 0;
}
```

2.15 Functional Graph

```
// rt[i] fala o ID da raiz associada ao vertice i
// d[i] fala a profundidade (0 sse ta no ciclo)
// pos[i] fala a posicao de i no array que eh a concat. dos
   ciclos
// build(f, val) recebe a funcao f e o custo de ir de
// i para f[i] (por default, val = f)
// f_k(i, k) fala onde i vai parar se seguir k arestas
// path(i, k) fala o custo (soma) seguir k arestas a partir
   de i
// Se quiser outra operacao, da pra alterar facil o codigo
// Codigo um pouco louco, tenho que admitir
// build - O(n)
// f_k - O(log(min(n, k)))
// path - O(log(min(n, k)))
// 51fabe
namespace func_graph {
    int n;
    int f[MAX], vis[MAX], d[MAX];
    int p[MAX], pp[MAX], rt[MAX], pos[MAX];
    int sz[MAX], comp;
    vector < vector < int >> ciclo;
    11 val[MAX], jmp[MAX], seg[2*MAX];
    11 op(11 a, 11 b) { return a+b; }; // mudar a operacao
       aqui
    void dfs(int i, int t = 2) {
        vis[i] = t;
        if (vis[f[i]] \ge 2) \{ // comeca ciclo - f[i] eh o
           rep.
            d[i] = 0, rt[i] = comp;
            sz[comp] = t - vis[f[i]] + 1;
            p[i] = pp[i] = i, jmp[i] = val[i];
            ciclo.emplace_back();
            ciclo.back().push_back(i);
        } else {
            if (!vis[f[i]]) dfs(f[i], t+1);
            rt[i] = rt[f[i]];
            if (sz[comp]+1) { // to no ciclo
                d[i] = 0;
                p[i] = pp[i] = i, jmp[i] = val[i];
```

```
ciclo.back().push_back(i);
        } else { // nao to no ciclo
            d[i] = d[f[i]]+1, p[i] = f[i];
            pp[i] = 2*d[pp[f[i]]] ==
               d[pp[pp[f[i]]]+d[f[i]] ? pp[pp[f[i]]] :
               f[i];
            jmp[i] = pp[i] == f[i] ? val[i] : op(val[i],
               op(jmp[f[i]], jmp[pp[f[i]]]));
        }
    }
    if (f[ciclo[rt[i]][0]] == i) comp++; // fim do ciclo
    vis[i] = 1;
}
void build(vector<int> f_, vector<int> val_ = {}) {
    n = f_size(), comp = 0;
    if (!val_.size()) val_ = f_;
    for (int i = 0; i < n; i++)</pre>
       f[i] = f_{i}, val[i] = val_{i}, vis[i] = 0,
           sz[i] = -1;
    ciclo.clear();
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
    int t = 0;
    for (auto& c : ciclo) {
       reverse(c.begin(), c.end());
        for (int j : c) {
            pos[j] = t;
            seg[n+t] = val[j];
            t++;
        }
    for (int i = n-1; i; i--) seg[i] = op(seg[2*i],
       seg[2*i+1]);
}
int f_k(int i, ll k) {
    while (d[i] and k) {
        int big = d[i] - d[pp[i]];
        if (big <= k) k -= big, i = pp[i];</pre>
        else k--, i = p[i];
   }
    if (!k) return i;
```

```
return ciclo[rt[i]][(pos[i] - pos[ciclo[rt[i]][0]] +
           k) % sz[rt[i]]];
    }
    11 path(int i, ll k) {
        auto query = [&](int 1, int r) {
            11 q = 0;
            for (1 += n, r += n; 1 <= r; ++1/=2, --r/=2) {
                if (1\%2 == 1) q = op(q, seg[1]);
                if (r\%2 == 0) q = op(q, seg[r]);
            return q;
        };
        11 \text{ ret} = 0;
        while (d[i] and k) {
            int big = d[i] - d[pp[i]];
            if (big <= k) k -= big, ret = op(ret, jmp[i]), i</pre>
               = pp[i];
            else k--, ret = op(ret, val[i]), i = p[i];
        }
        if (!k) return ret;
        int first = pos[ciclo[rt[i]][0]], last =
           pos[ciclo[rt[i]].back()];
        // k/sz[rt[i]] voltas completas
        if (k/sz[rt[i]]) ret = op(ret, k/sz[rt[i]] *
           query(first, last));
        k %= sz[rt[i]];
        if (!k) return ret;
        int l = pos[i], r = first + (pos[i] - first + k - 1)
           % sz[rt[i]];
        if (1 <= r) return op(ret, query(1, r));</pre>
        return op(ret, op(query(1, last), query(first, r)));
   }
}
2.16 Heavy-Light Decomposition - aresta
```

```
// SegTree de soma
// query / update de soma das arestas
```

```
//
// Complexidades:
// build - O(n)
// \text{ query_path - O(log^2 (n))}
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
// 3e2b4b
namespace seg { ... }
namespace hld {
    vector < pair < int , int > > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.first != p) {
            auto [u, w] = i;
            sobe[u] = w; pai[u] = k;
            h[u] = (i == g[k][0] ? h[k] : u);
            build_hld(u, k, f); sz[k] += sz[u];
            if (sz[u] > sz[g[k][0].first] or g[k][0].first
                == g)
                 swap(i, g[k][0]);
        }
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        seg::build(t, v);
    11 query_path(int a, int b) {
        if (a == b) return 0;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return seg::query(pos[b]+1,
            pos[a]);
```

```
return seg::query(pos[h[a]], pos[a]) +
           query_path(pai[h[a]], b);
    void update_path(int a, int b, int x) {
        if (a == b) return;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return (void)seg::update(pos[b]+1,
           pos[a], x);
        seg::update(pos[h[a]], pos[a], x);
           update_path(pai[h[a]], b, x);
   }
    11 query_subtree(int a) {
        if (sz[a] == 1) return 0;
        return seg::query(pos[a]+1, pos[a]+sz[a]-1);
    }
    void update_subtree(int a, int x) {
        if (sz[a] == 1) return;
        seg::update(pos[a]+1, pos[a]+sz[a]-1, x);
    }
    int lca(int a, int b) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
        return h[a] == h[b] ? b : lca(pai[h[a]], b);
    }
}
```

Heavy-Light Decomposition - vertice

```
// SegTree de soma
// query / update de soma dos vertices
// Complexidades:
// build - O(n)
// query_path - O(log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
// f22b7a
namespace seg { ... }
```

```
namespace hld {
    vector < int > g[MAX];
    int pos[MAX], sz[MAX];
    int peso[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = peso[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i != p) {
            pai[i] = k;
           h[i] = (i == g[k][0] ? h[k] : i);
            build_hld(i, k, f); sz[k] += sz[i];
            if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
               g[k][0]);
        }
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
    void build(int root = 0) {
        t = 0;
        build_hld(root);
        seg::build(t, v);
    11 query_path(int a, int b) {
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] == h[b]) return seg::query(pos[b], pos[a]);
        return seg::query(pos[h[a]], pos[a]) +
           query_path(pai[h[a]], b);
    void update_path(int a, int b, int x) {
        if (pos[a] < pos[b]) swap(a, b);
        if (h[a] == h[b]) return (void)seg::update(pos[b],
           pos[a], x);
        seg::update(pos[h[a]], pos[a], x);
           update_path(pai[h[a]], b, x);
    }
    11 query_subtree(int a) {
        return seg::query(pos[a], pos[a]+sz[a]-1);
    }
```

```
void update_subtree(int a, int x) {
    seg::update(pos[a], pos[a]+sz[a]-1, x);
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}</pre>
```

2.18 Heavy-Light Decomposition sem Update

```
// query de min do caminho
//
// Complexidades:
// build - O(n)
// query_path - O(log(n))
// ee6991
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    int men[MAX], seg[2*MAX];
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.first != p) {
            sobe[i.first] = i.second; pai[i.first] = k;
            h[i.first] = (i == g[k][0] ? h[k] : i.first);
            men[i.first] = (i == g[k][0] ? min(men[k],
               i.second) : i.second);
            build_hld(i.first, k, f); sz[k] += sz[i.first];
            if (sz[i.first] > sz[g[k][0].first] or
               g[k][0].first == p)
                swap(i, g[k][0]);
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
```

```
void build(int root = 0) {
        t = 0;
        build_hld(root);
        for (int i = 0; i < t; i++) seg[i+t] = v[i];</pre>
        for (int i = t-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    }
    int query_path(int a, int b) {
        if (a == b) return INF;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] != h[b]) return min(men[a],
           query_path(pai[h[a]], b));
        int ans = INF, x = pos[b]+1+t, y = pos[a]+t;
        for (; x \le y; ++x/=2, --y/=2) ans = min({ans,
           seg[x], seg[y]});
        return ans;
    }
};
```

2.19 Isomorfismo de arvores

```
// thash() retorna o hash da arvore (usando centroids como
    vertices especiais).
// Duas arvores sao isomorfas sse seu hash eh o mesmo
//
// O(|V|.log(|V|))
// 8fb6bb

map<vector<int>, int> mphash;

struct tree {
    int n;
    vector<vector<int>> g;
    vector<int> sz, cs;

    tree(int n_) : n(n_), g(n_), sz(n_) {}

    void dfs_centroid(int v, int p) {
        sz[v] = 1;
```

```
bool cent = true:
        for (int u : g[v]) if (u != p) {
            dfs_centroid(u, v), sz[v] += sz[u];
            if(sz[u] > n/2) cent = false;
        if (cent and n - sz[v] <= n/2) cs.push_back(v);</pre>
    }
    int fhash(int v, int p) {
        vector < int > h;
        for (int u : g[v]) if (u != p) h.push_back(fhash(u,
           v));
        sort(h.begin(), h.end());
        if (!mphash.count(h)) mphash[h] = mphash.size();
        return mphash[h];
    }
    11 thash() {
        cs.clear():
        dfs_centroid(0, -1);
        if (cs.size() == 1) return fhash(cs[0], -1);
        11 h1 = fhash(cs[0], cs[1]), h2 = fhash(cs[1],
           cs[0]);
        return (min(h1, h2) << 30) + max(h1, h2);
   }
};
```

2.20 Kosaraju

```
// O(n + m)
// a4f310

int n;
vector<int> g[MAX];
vector<int> gi[MAX]; // grafo invertido
int vis[MAX];
stack<int> S;
int comp[MAX]; // componente conexo de cada vertice

void dfs(int k) {
   vis[k] = 1;
   for (int i = 0; i < (int) g[k].size(); i++)</pre>
```

```
if (!vis[g[k][i]]) dfs(g[k][i]);
    S.push(k);
}
void scc(int k, int c) {
    vis[k] = 1;
    comp[k] = c;
    for (int i = 0; i < (int) gi[k].size(); i++)</pre>
        if (!vis[gi[k][i]]) scc(gi[k][i], c);
}
void kosaraju() {
    for (int i = 0; i < n; i++) vis[i] = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
    for (int i = 0; i < n; i++) vis[i] = 0;
    while (S.size()) {
        int u = S.top();
        S.pop();
        if (!vis[u]) scc(u, u);
    }
}
```

2.21 Kruskal

```
// Gera e retorna uma AGM e seu custo total a partir do
   vetor de arestas (edg)
// do grafo
//
// O(m log(m) + m a(m))
// 864875

vector<tuple<int, int, int>> edg; // {peso,[x,y]}

// DSU em O(a(n))
void dsu_build();
int find(int a);
void unite(int a, int b);
```

```
pair<11, vector<tuple<int, int, int>>> kruskal(int n) {
    dsu_build(n);
    sort(edg.begin(), edg.end());
    11 cost = 0;
    vector<tuple<int, int, int>> mst;
   for (auto [w,x,y] : edg) if (find(x) != find(y)) {
        mst.emplace_back(w, x, y);
        cost += w;
        unite(x,y);
    }
    return {cost, mst};
}
2.22 LCA com binary lifting
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// MAX2 = ceil(log(MAX))
//
// Complexidades:
// build - O(n log(n))
// lca - O(log(n))
vector < vector < int > > g(MAX);
int n, p;
int pai[MAX2][MAX];
int in[MAX], out[MAX];
void dfs(int k) {
    in[k] = p++;
   for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (in[g[k][i]] == -1) {
            pai[0][g[k][i]] = k;
            dfs(g[k][i]);
    out[k] = p++;
}
void build(int raiz) {
```

```
for (int i = 0; i < n; i++) pai[0][i] = i;</pre>
    p = 0, memset(in, -1, sizeof in);
    dfs(raiz);
    // pd dos pais
    for (int k = 1; k < MAX2; k++) for (int i = 0; i < n;
        pai[k][i] = pai[k - 1][pai[k - 1][i]];
}
bool anc(int a, int b) { // se a eh ancestral de b
    return in[a] <= in[b] and out[a] >= out[b];
}
int lca(int a, int b) {
    if (anc(a, b)) return a;
    if (anc(b, a)) return b;
    // sobe a
    for (int k = MAX2 - 1; k >= 0; k--)
        if (!anc(pai[k][a], b)) a = pai[k][a];
    return pai[0][a];
}
// Alternativamente:
// 'binary lifting' gastando O(n) de memoria
// Da pra add folhas e fazer queries online
// 3 vezes o tempo do binary lifting normal
//
// build - O(n)
// kth, lca, dist - O(log(n))
int d[MAX], p[MAX], pp[MAX];
void set_root(int i) { p[i] = pp[i] = i, d[i] = 0; }
void add_leaf(int i, int u) {
    p[i] = u, d[i] = d[u]+1;
    pp[i] = 2*d[pp[u]] == d[pp[pp[u]]]+d[u] ? pp[pp[u]] : u;
}
```

```
int kth(int i. int k) {
   int dd = max(0, d[i]-k);
    while (d[i] > dd) i = d[pp[i]] >= dd ? pp[i] : p[i];
    return i;
}
int lca(int a, int b) {
   if (d[a] < d[b]) swap(a, b);
    while (d[a] > d[b]) a = d[pp[a]] >= d[b] ? pp[a] : p[a];
    while (a != b) {
        if (pp[a] != pp[b]) a = pp[a], b = pp[b];
        else a = p[a], b = p[b];
   }
   return a;
}
int dist(int a, int b) { return d[a]+d[b]-2*d[lca(a,b)]; }
vector < int > g[MAX];
void build(int i, int pai=-1) {
   if (pai == -1) set_root(i);
   for (int j : g[i]) if (j != pai) {
        add_leaf(j, i);
       build(j, i);
   }
}
2.23 LCA com HLD
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Para buildar pasta chamar build(root)
// anc(a, b) responde se 'a' eh ancestral de 'b'
// Complexidades:
```

// build - O(n)

// anc - 0(1) // fb22c1

// lca - O(log(n))

```
vector < int > g[MAX];
int pos[MAX], h[MAX], sz[MAX];
int pai[MAX], t;
void build(int k, int p = -1, int f = 1) {
    pos[k] = t++; sz[k] = 1;
    for (int& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
           g[k][0]);
    if (p*f == -1) t = 0, h[k] = k, build(k, -1, 0);
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);</pre>
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}
bool anc(int a, int b) {
    return pos[a] <= pos[b] and pos[b] <= pos[a]+sz[a]-1;</pre>
}
2.24 LCA com RMQ
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// dist(a, b) retorna a distancia entre a e b
// Complexidades:
// build - O(n)
// lca - 0(1)
```

// dist - O(1)

template < typename T > struct rmq {

// 22cde8

```
vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
            at = (at << 1) & ((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        for (int i = 0; i < n/b; i++) t[i] =
           b*i+b-1-msb(mask[b*i+b-1]);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
                t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    T query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {</pre>
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
                t[n/b*j+y-(1<<j)+1]));
        }
        return ans:
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq < int > RMQ;
```

```
void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    }
    void build(int n, int root) {
        t = 0;
        dfs(root);
        RMQ = rmq < int > (vector < int > (dep, dep+2*n-1));
    }
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    }
    int dist(int a, int b) {
        return dep[pos[a]] + dep[pos[b]] - 2*dep[pos[lca(a,
           b)]];
}
```

2.25 Line Tree

```
// Reduz min-query em arvore para RMQ
// Se o grafo nao for uma arvore, as queries
// sao sobre a arvore geradora maxima
// Queries de minimo
//
// build - O(n log(n))
// query - O(log(n))
// b1f418

int n;

namespace linetree {
   int id[MAX], seg[2*MAX], pos[MAX];
   vector<int> v[MAX], val[MAX];
   vector<pair<int, pair<int, int> > > ar;
```

```
void add(int a, int b, int p) { ar.push_back({p, {a,
   b}}); }
void build() {
    sort(ar.rbegin(), ar.rend());
    for (int i = 0; i < n; i++) id[i] = i, v[i] = {i},</pre>
       val[i].clear();
    for (auto i : ar) {
        int a = id[i.second.first], b =
           id[i.second.second];
        if (a == b) continue;
        if (v[a].size() < v[b].size()) swap(a, b);</pre>
        for (auto j : v[b]) id[j] = a, v[a].push_back(j);
        val[a].push_back(i.first);
        for (auto j : val[b]) val[a].push_back(j);
        v[b].clear(), val[b].clear();
    }
    vector < int > vv;
    for (int i = 0; i < n; i++) for (int j = 0; j <
       v[i].size(); j++) {
        pos[v[i][j]] = vv.size();
        if (j + 1 < v[i].size()) vv.push_back(val[i][j]);</pre>
        else vv.push_back(0);
    for (int i = n; i < 2*n; i++) seg[i] = vv[i-n];
    for (int i = n-1; i; i--) seg[i] = min(seg[2*i],
       seg[2*i+1]);
}
int query(int a, int b) {
    if (id[a] != id[b]) return 0; // nao estao conectados
    a = pos[a], b = pos[b];
    if (a > b) swap(a, b);
    b--;
    int ans = INF:
    for (a += n, b += n; a \le b; ++a/=2, --b/=2) ans =
       min({ans, seg[a], seg[b]});
    return ans:
}
```

};

2.26 Link-cut Tree

```
// Link-cut tree padrao
//
// Todas as operacoes sao O(log(n)) amortizado
// e4e663
namespace lct {
    struct node {
        int p, ch[2];
        node() \{ p = ch[0] = ch[1] = -1; \}
    };
    node t[MAX];
    bool is_root(int x) {
        return t[x].p == -1 or (t[t[x].p].ch[0] != x and
           t[t[x].p].ch[1] != x);
    }
    void rotate(int x) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
        bool d = t[p].ch[0] == x;
        t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
        if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
        t[x].p = pp, t[p].p = x;
    }
    void splay(int x) {
        while (!is_root(x)) {
            int p = t[x].p, pp = t[p].p;
            if (!is_root(p)) rotate((t[pp].ch[0] ==
               p)^{(t[p].ch[0]} == x) ? x : p);
            rotate(x);
        }
    }
    int access(int v) {
        int last = -1;
        for (int w = v; w+1; last = w, splay(v), w = t[v].p)
            splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
        return last;
    }
    int find_root(int v) {
```

```
access(v);
    while (t[v].ch[0]+1) v = t[v].ch[0];
    return splay(v), v;
}

void link(int v, int w) { // v deve ser raiz
    access(v);
    t[v].p = w;
}

void cut(int v) { // remove aresta de v pro pai
    access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
}
int lca(int v, int w) {
    return access(v), access(w);
}
```

2.27 Link-cut Tree - aresta

```
// Valores nas arestas
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nas arestas do caminho v--w
// Todas as operacoes sao O(log(n)) amortizado
// 9ce48f
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz, ar;
        ll lazy;
        node() {}
        node(int v, int ar_) :
        p(-1), val(v), sub(v), rev(0), sz(ar_), ar(ar_),
           lazy(0) {
            ch[0] = ch[1] = -1;
        }
```

```
};
node t[2*MAX]; // MAXN + MAXQ
map<pair<int, int>, int> aresta;
int sz;
void prop(int x) {
    if (t[x].lazy) {
       if (t[x].ar) t[x].val += t[x].lazy;
        t[x].sub += t[x].lazy*t[x].sz;
        if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
           t[x].lazy;
        if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
           t[x].lazy;
    }
    if (t[x].rev) {
        swap(t[x].ch[0], t[x].ch[1]);
        if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
        if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
    t[x].lazy = 0, t[x].rev = 0;
void update(int x) {
    t[x].sz = t[x].ar, t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
        prop(t[x].ch[i]);
        t[x].sz += t[t[x].ch[i]].sz;
        t[x].sub += t[t[x].ch[i]].sub;
    }
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
```

```
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w=0, int ar=0) { t[v] =
   node(w, ar); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
11 query(int v, int w) {
    rootify(w), access(v);
    return t[v].sub;
}
void update(int v, int w, int x) {
    rootify(w), access(v);
    t[v].lazy += x;
}
```

```
void link_(int v, int w) {
    rootify(w);
    t[w].p = v;
void link(int v, int w, int x) { // v--w com peso x
    int id = MAX + sz++;
    aresta[make_pair(v, w)] = id;
    make_tree(id, x, 1);
    link_(v, id), link_(id, w);
void cut_(int v, int w) {
   rootify(w), access(v);
   t[v].ch[0] = t[t[v].ch[0]].p = -1;
void cut(int v, int w) {
    int id = aresta[make_pair(v, w)];
    cut_(v, id), cut_(id, w);
int lca(int v, int w) {
    access(v);
    return access(w);
```

2.28 Link-cut Tree - vertice

}

```
// Valores nos vertices
// make_tree(v, w) cria uma nova arvore com um
// vertice soh com valor 'w'
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nos vertices do caminho v--w
//
// Todas as operacoes sao O(log(n)) amortizado
// f9f489

namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
```

```
bool rev:
    int sz;
    ll lazy;
    node() {}
    node(int v) : p(-1), val(v), sub(v), rev(0), sz(1),
       lazv(0) {
        ch[0] = ch[1] = -1;
   }
};
node t[MAX];
void prop(int x) {
    if (t[x].lazy) {
        t[x].val += t[x].lazy, t[x].sub +=
           t[x].lazy*t[x].sz;
        if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
           t[x].lazy;
        if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
           t[x].lazy;
    }
    if (t[x].rev) {
        swap(t[x].ch[0], t[x].ch[1]);
        if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
        if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
    t[x].lazy = 0, t[x].rev = 0;
void update(int x) {
    t[x].sz = 1, t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
        prop(t[x].ch[i]);
        t[x].sz += t[t[x].ch[i]].sz;
        t[x].sub += t[t[x].ch[i]].sub;
    }
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
```

```
if (!is\_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
       if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0]} == x) ? x : p);
        rotate(x):
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
       t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
}
void make_tree(int v, int w) { t[v] = node(w); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
bool connected(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
11 query(int v, int w) {
    rootify(w), access(v);
    return t[v].sub;
```

```
}
    void update(int v, int w, int x) {
        rootify(w), access(v);
        t[v].lazy += x;
    }
    void link(int v, int w) {
        rootify(w);
        t[w].p = v;
    }
    void cut(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
    int lca(int v, int w) {
        access(v):
        return access(w);
   }
}
```

2.29 Max flow com lower bound nas arestas

```
// add(a, b, l, r):
// adiciona aresta de a pra b, onde precisa passar f de
   fluxo, 1 <= f <= r
// add(a, b, c):
// adiciona aresta de a pra b com capacidade c
//
// Mesma complexidade do Dinic
// 3f0b15
struct lb_max_flow : dinic {
    vector < int > d;
    lb_max_flow(int n) : dinic(n + 2), d(n, 0) {}
    void add(int a, int b, int 1, int r) {
        d[a] -= 1;
        d[b] += 1;
        dinic::add(a, b, r - 1);
    }
    void add(int a, int b, int c) {
        dinic::add(a, b, c);
```

```
bool has_circulation() {
        int n = d.size();
        11 cost = 0;
        for (int i = 0; i < n; i++) {</pre>
            if (d[i] > 0) {
                 cost += d[i];
                 dinic::add(n, i, d[i]);
            } else if (d[i] < 0) {</pre>
                 dinic::add(i, n+1, -d[i]);
            }
        }
        return (max_flow(n, n+1) == cost);
    bool has_flow(int src, int snk) {
        dinic::add(snk, src, INF);
        return has_circulation();
};
```

2.30 MinCostMaxFlow

```
bool res: // se eh reversa
    T cost; // custo da unidade de fluxo
    edge(): to(0), rev(0), flow(0), cap(0), cost(0),
       res(false) {}
    edge(int to_, int rev_, int flow_, int cap_, T
       cost_, bool res_)
        : to(to_), rev(rev_), flow(flow_), cap(cap_),
           res(res_), cost(cost_) {}
};
vector < vector < edge >> g;
vector<int> par_idx, par;
T inf:
vector < T > dist;
mcmf(int n) : g(n), par_idx(n), par(n),
   inf(numeric_limits <T>::max()/3) {}
void add(int u, int v, int w, T cost) { // de u pra v
   com cap w e custo cost
    edge a = edge(v, g[v].size(), 0, w, cost, false);
    edge b = edge(u, g[u].size(), 0, 0, -cost, true);
    g[u].push_back(a);
    g[v].push_back(b);
}
vector<T> spfa(int s) { // nao precisa se nao tiver
   custo negativo
    deque < int > q;
    vector < bool > is_inside(g.size(), 0);
    dist = vector <T>(g.size(), inf);
    dist[s] = 0;
    q.push_back(s);
    is_inside[s] = true;
    while (!q.empty()) {
        int v = q.front();
        q.pop_front();
        is_inside[v] = false;
```

```
for (int i = 0; i < g[v].size(); i++) {</pre>
             auto [to, rev, flow, cap, res, cost] =
                g[v][i];
             if (flow < cap and dist[v] + cost <</pre>
                dist[to]) {
                 dist[to] = dist[v] + cost;
                 if (is_inside[to]) continue;
                 if (!q.empty() and dist[to] >
                    dist[q.front()]) q.push_back(to);
                 else q.push_front(to);
                 is_inside[to] = true;
            }
        }
    }
    return dist;
}
bool dijkstra(int s, int t, vector < T > & pot) {
    priority_queue < pair < T, int > , vector < pair < T, int >> ,
       greater<>> q;
    dist = vector<T>(g.size(), inf);
    dist[s] = 0;
    q.emplace(0, s);
    while (q.size()) {
        auto [d, v] = q.top();
        q.pop();
        if (dist[v] < d) continue;</pre>
        for (int i = 0; i < g[v].size(); i++) {</pre>
             auto [to, rev, flow, cap, res, cost] =
                g[v][i];
            cost += pot[v] - pot[to];
             if (flow < cap and dist[v] + cost <</pre>
                dist[to]) {
                 dist[to] = dist[v] + cost;
                 q.emplace(dist[to], to);
                 par_idx[to] = i, par[to] = v;
            }
        }
    return dist[t] < inf;</pre>
```

```
pair < int , T > min_cost_flow(int s, int t, int flow = INF)
    vector <T> pot(g.size(), 0);
    pot = spfa(s); // mudar algoritmo de caminho minimo
    int f = 0;
    T ret = 0;
    while (f < flow and dijkstra(s, t, pot)) {</pre>
        for (int i = 0; i < g.size(); i++)</pre>
             if (dist[i] < inf) pot[i] += dist[i];</pre>
        int mn_flow = flow - f, u = t;
        while (u != s){
            mn_flow = min(mn_flow,
                 g[par[u]][par_idx[u]].cap -
                    g[par[u]][par_idx[u]].flow);
            u = par[u];
        }
        ret += pot[t] * mn_flow;
        u = t;
        while (u != s) {
            g[par[u]][par_idx[u]].flow += mn_flow;
            g[u][g[par[u]][par_idx[u]].rev].flow -=
                mn_flow;
            u = par[u];
        }
        f += mn_flow;
    }
    return make_pair(f, ret);
}
// Opcional: retorna as arestas originais por onde passa
   flow = cap
vector<pair<int,int>> recover() {
    vector < pair < int , int >> used;
    for (int i = 0; i < g.size(); i++) for (edge e :
       g[i])
```

2.31 Prufer code

```
// Traduz de lista de arestas para prufer code
// e vice-versa
// Os vertices tem label de 0 a n-1
// Todo array com n-2 posicoes e valores de
// O a n-1 sao prufer codes validos
//
// O(n)
// d3b324
vector<int> to_prufer(vector<pair<int, int>> tree) {
    int n = tree.size()+1;
    vector < int > d(n, 0);
    vector < vector < int >> g(n);
    for (auto [a, b] : tree) d[a]++, d[b]++,
        g[a].push_back(b), g[b].push_back(a);
    vector < int > pai(n, -1);
    queue < int > q; q.push(n-1);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int v : g[u]) if (v != pai[u])
            pai[v] = u, q.push(v);
    }
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<int> ret;
    for (int i = 0; i < n-2; i++) {
        int y = pai[x];
        ret.push_back(y);
        if (-d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
            d.begin();
    }
```

```
return ret:
}
// 765413
vector<pair<int, int>> from_prufer(vector<int> p) {
    int n = p.size()+2;
    vector < int > d(n, 1);
    for (int i : p) d[i]++;
    p.push_back(n-1);
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<pair<int, int>> ret;
    for (int y : p) {
        ret.push_back({x, y});
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
           d.begin();
    }
    return ret;
}
2.32 Sack (DSU em arvores)
// Responde queries de todas as sub-arvores
// offline
//
// O(n log(n))
// bb361f
int sz[MAX], cor[MAX], cnt[MAX];
vector < int > g[MAX];
void build(int k, int d=0) {
    sz[k] = 1;
    for (auto& i : g[k]) {
        build(i, d+1); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
    }
}
```

```
void compute(int k, int x, bool dont=1) {
   cnt[cor[k]] += x;
   for (int i = dont; i < g[k].size(); i++)
        compute(g[k][i], x, 0);
}

void solve(int k, bool keep=0) {
   for (int i = int(g[k].size())-1; i >= 0; i--)
        solve(g[k][i], !i);
   compute(k, 1);

   // agora cnt[i] tem quantas vezes a cor
   // i aparece na sub-arvore do k

   if (!keep) compute(k, -1, 0);
}
```

2.33 Tarjan para SCC

```
// O(n + m)
// 573bfa
vector < int > g[MAX];
stack<int> s;
int vis[MAX], comp[MAX];
int id[MAX];
// se quiser comprimir ciclo ou achar ponte em grafo nao
   direcionado.
// colocar um if na dfs para nao voltar pro pai da DFS tree
int dfs(int i, int& t) {
    int lo = id[i] = t++;
    s.push(i);
    vis[i] = 2;
    for (int j : g[i]) {
        if (!vis[j]) lo = min(lo, dfs(j, t));
        else if (vis[j] == 2) lo = min(lo, id[j]);
    }
```

2.34 Topological Sort

```
// Retorna uma ordenacaoo topologica de g
// Se g nao for DAG retorna um vetor vazio
//
// O(n + m)
// bdc95e
vector < int > g[MAX];
vector<int> topo_sort(int n) {
    vector < int > ret(n, -1), vis(n,0);
    int pos = n-1, dag = 1;
    function < void(int) > dfs = [&](int v) {
        vis[v] = 1;
        for (auto u : g[v]) {
            if (vis[u] == 1) dag = 0;
            else if (!vis[u]) dfs(u);
        ret[pos--] = v, vis[v] = 2;
    };
```

```
for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);
if (!dag) ret.clear();
return ret;
}</pre>
```

2.35 Vertex cover

```
// Encontra o tamanho do vertex cover minimo
// Da pra alterar facil pra achar os vertices
// Parece rodar com < 2 s pra N = 90
// 0(n * 1.38^n)
// 9c5024
namespace cover {
    const int MAX = 96;
    vector < int > g[MAX];
    bitset < MAX > bs[MAX];
    int n;
    void add(int i, int j) {
        if (i == j) return;
        n = max({n, i+1, j+1});
        bs[i][j] = bs[j][i] = 1;
    }
    int rec(bitset < MAX > m) {
        int ans = 0;
        for (int x = 0; x < n; x++) if (m[x]) {
            bitset < MAX > comp;
            function < void(int) > dfs = [&](int i) {
                 comp[i] = 1, m[i] = 0;
                for (int j : g[i]) if (m[j]) dfs(j);
            };
            dfs(x);
            int ma, deg = -1, cyc = 1;
            for (int i = 0; i < n; i++) if (comp[i]) {</pre>
```

```
int d = (bs[i]&comp).count();
                if (d <= 1) cvc = 0;
                if (d > deg) deg = d, ma = i;
            if (deg <= 2) { // caminho ou ciclo</pre>
                ans += (comp.count() + cyc) / 2;
                continue;
            comp[ma] = 0;
            // ou ta no cover, ou nao ta no cover
            ans += min(1 + rec(comp), deg + rec(comp & \sim
               bs[ma]));
        return ans;
    }
    int solve() {
        bitset < MAX > m;
        for (int i = 0; i < n; i++) {</pre>
            m[i] = 1;
            for (int j = 0; j < n; j++)
                if (bs[i][j]) g[i].push_back(j);
        return rec(m);
    }
}
2.36 Virtual Tree
// Comprime uma arvore dado um conjunto S de vertices, de
  forma que
// o conjunto de vertices da arvore comprimida contenha S e
// minimal e fechado sobre a operacao de LCA
// Se |S| = k, a arvore comprimida tem O(k) vertices
// O(k log(k))
```

// 402aff

vector < int > virt[MAX];

3 Problemas

3.1 Algoritmo Hungaro

```
// Resolve o problema de assignment (matriz n x n)
// Colocar os valores da matriz em 'a' (pode < 0)
// assignment() retorna um par com o valor do
// assignment minimo, e a coluna escolhida por cada linha
//
// O(n^3)
// 64c53e

template < typename T > struct hungarian {
   int n;
   vector < vector < T >> a;
   vector < T > u, v;
   vector < int > p, way;
   T inf;

hungarian(int n_) : n(n_), u(n+1), v(n+1), p(n+1),
   way(n+1) {
```

```
a = vector < vector < T >> (n, vector < T > (n));
        inf = numeric_limits <T>::max();
    }
    pair <T, vector <int>> assignment() {
        for (int i = 1; i <= n; i++) {
            p[0] = i;
            int j0 = 0;
             vector <T> minv(n+1, inf);
             vector<int> used(n+1, 0);
             do {
                 used[j0] = true;
                 int i0 = p[j0], j1 = -1;
                 T delta = inf;
                 for (int j = 1; j <= n; j++) if (!used[j]) {
                     T cur = a[i0-1][j-1] - u[i0] - v[j];
                     if (cur < minv[j]) minv[j] = cur, way[j]</pre>
                         = i0;
                     if (minv[j] < delta) delta = minv[j], j1</pre>
                         = j;
                 for (int j = 0; j <= n; j++)
                     if (used[j]) u[p[j]] += delta, v[j] -=
                         delta;
                     else minv[j] -= delta;
                 j0 = j1;
            } while (p[j0] != 0);
             do {
                 int j1 = way[j0];
                 p[j0] = p[j1];
                 j0 = j1;
            } while (j0);
        vector < int > ans(n);
        for (int j = 1; j \le n; j++) ans[p[j]-1] = j-1;
        return make_pair(-v[0], ans);
    }
};
```

3.2 Algoritmo MO - queries em caminhos de arvore

```
// Problema que resolve: https://www.spoj.com/problems/COT2/
//
// Complexidade sendo c = O(update) e SQ = sqrt(n):
// O((n + q) * sqrt(n) * c)
// 395329
const int MAX = 40010, SQ = 400;
vector < int > g[MAX];
namespace LCA { ... }
int in[MAX], out[MAX], vtx[2 * MAX];
bool on[MAX];
int dif, freq[MAX];
vector < int > w;
void dfs(int v, int p, int &t) {
    vtx[t] = v, in[v] = t++;
    for (int u : g[v]) if (u != p) {
        dfs(u, v, t);
    vtx[t] = v, out[v] = t++;
}
void update(int p) { // faca alteracoes aqui
    int v = vtx[p];
    if (not on[v]) { // insere vtx v
        dif += (freq[w[v]] == 0);
        freq[w[v]]++;
    else { // retira o vertice v
        dif -= (freq[w[v]] == 1);
        freq[w[v]]--;
    on[v] = not on[v];
}
vector<tuple<int, int, int>> build_queries(const
   vector < pair < int , int >> & q) {
    LCA::build(0);
```

```
vector<tuple<int, int, int>> ret;
    for (auto [1, r] : q){
        if (in[r] < in[l]) swap(l, r);</pre>
        int p = LCA::lca(1, r);
        int init = (p == 1) ? in[1] : out[1];
        ret.emplace_back(init, in[r], in[p]);
    }
    return ret;
}
vector<int> mo_tree(const vector<pair<int, int>>& vq){
    int t = 0;
    dfs(0, -1, t);
    auto q = build_queries(vq);
    vector < int > ord(q.size());
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&] (int 1, int r) {
        int bl = get<0>(q[1]) / SQ, br = <math>get<0>(q[r]) / SQ;
        if (bl != br) return bl < br;</pre>
        else if (bl % 2 == 1) return get<1>(q[1]) <</pre>
            get <1>(q[r]);
        else return get<1>(q[1]) > get<1>(q[r]);
    });
    memset(freq, 0, sizeof freq);
    dif = 0;
    vector<int> ret(q.size());
    int 1 = 0, r = -1;
    for (int i : ord) {
        auto [ql, qr, qp] = q[i];
        while (r < qr) update(++r);</pre>
        while (1 > q1) update (--1);
        while (1 < q1) update(1++);</pre>
        while (r > qr) update(r--);
        if (qp < 1 \text{ or } qp > r)  { // se LCA estah entre as
            pontas
            update(qp);
            ret[i] = dif;
```

```
update(qp);
}
else ret[i] = dif;
}
return ret;
}
```

3.3 Angle Range Intersection

```
// Computa intersecao de angulos
// Os angulos (arcos) precisam ter comprimeiro < pi
// (caso contrario a intersecao eh estranha)
// Tudo 0(1)
// 5e1c85
struct angle_range {
    static constexpr ld ALL = 1e9, NIL = -1e9;
    ld 1, r;
    angle_range() : 1(ALL), r(ALL) {}
    angle_range(ld l_, ld r_) : l(l_), r(r_) \{ fix(l), \}
       fix(r); }
    void fix(ld& theta) {
        if (theta == ALL or theta == NIL) return;
        if (theta > 2*pi) theta -= 2*pi;
        if (theta < 0) theta += 2*pi;</pre>
    bool empty() { return l == NIL; }
    bool contains(ld q) {
        fix(q);
        if (1 == ALL) return true;
        if (1 == NIL) return false;
        if (1 < r) return 1 < q and q < r;
        return q > 1 or q < r;</pre>
    friend angle_range operator &(angle_range p, angle_range
       a) {
        if (p.1 == ALL or q.1 == NIL) return q;
        if (q.1 == ALL or p.1 == NIL) return p;
```

3.4 Area da Uniao de Retangulos

```
// O(n log(n))
// bea565
namespace seg {
    pair < int , ll > seg[4*MAX];
    ll lazy[4*MAX], *v;
    int n;
    pair<int, ll> merge(pair<int, ll> l, pair<int, ll> r){
        if (1.second == r.second) return {1.first+r.first,
           1.second}:
        else if (1.second < r.second) return 1;</pre>
        else return r;
   }
    pair<int, ll> build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = {1, v[1]};
        int m = (1+r)/2;
        return seg[p] = merge(build(2*p, 1, m), build(2*p+1,
           m+1, r));
    }
    void build(int n2, 11* v2) {
        n = n2, v = v2;
        build();
```

```
}
    void prop(int p, int l, int r) {
        seg[p].second += lazy[p];
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazy[p];
        lazv[p] = 0;
    pair < int, ll > query (int a, int b, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return {0, LINF};</pre>
        int m = (1+r)/2:
        return merge(query(a, b, 2*p, 1, m), query(a, b,
            2*p+1, m+1, r));
    pair < int , ll > update (int a, int b, int x, int p=1, int
       1=0, int r=n-1) {
        prop(p, 1, r);
        if (a \le 1 \text{ and } r \le b) \{
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = merge(update(a, b, x, 2*p, 1, m),
                update(a, b, x, 2*p+1, m+1, r));
};
11 seg_vec[MAX];
11 area_sq(vector<pair<int, int>, pair<int, int>>> &sq){
    vector<pair<int, int>, pair<int, int>>> up;
    for (auto it : sq){
        int x1, y1, x2, y2;
        tie(x1, y1) = it.first;
        tie(x2, y2) = it.second;
        up.push_back({{x1+1, 1}, {y1, y2}});
        up.push_back(\{\{x2+1, -1\}, \{y1, y2\}\}\});
    }
```

```
sort(up.begin(), up.end());
memset(seg_vec, 0, sizeof seg_vec);
11 H_MAX = MAX;
seg::build(H_MAX-1, seg_vec);
auto it = up.begin();
11 \text{ ans} = 0;
while (it != up.end()){
    ll L = (*it).first.first;
    while (it != up.end() && (*it).first.first == L){
        int x, inc, y1, y2;
        tie(x, inc) = it->first;
        tie(y1, y2) = it -> second;
        seg::update(y1+1, y2, inc);
        it++:
    if (it == up.end()) break;
    11 R = (*it).first.first;
    11 W = R-L;
    auto jt = seg::query(0, H_MAX-1);
    11 H = H_MAX - 1;
    if (jt.second == 0) H -= jt.first;
    ans += W*H:
}
return ans;
```

3.5 Area Maxima de Histograma

```
// Assume que todas as barras tem largura 1,
// e altura dada no vetor v
//
// O(n)
// e43846

ll area(vector<int> v) {
    ll ret = 0;
    stack<int> s;
    // valores iniciais pra dar tudo certo
    v.insert(v.begin(), -1);
```

}

```
v.insert(v.end(), -1);
s.push(0);

for(int i = 0; i < (int) v.size(); i++) {
    while (v[s.top()] > v[i]) {
        ll h = v[s.top()]; s.pop();
        ret = max(ret, h * (i - s.top() - 1));
    }
    s.push(i);
}

return ret;
}
```

3.6 Binomial modular

```
// Computa C(n, k) mod m em O(m + log(m) log(n))
// = O(rapido)
// 3d8155
11 divi[MAX];
ll expo(ll a, ll b, ll m) {
    if (!b) return 1;
    ll ans = expo(a*a\%m, b/2, m);
    if (b\%2) ans *= a;
    return ans%m;
}
11 inv(ll a, ll b){
    return 1<a ? b - inv(b%a,a)*b/a : 1;
}
ll gcde(ll a, ll b, ll& x, ll& y) {
    if (!a) {
        x = 0;
        y = 1;
        return b;
```

```
11 X. Y:
    ll g = gcde(b \% a, a, X, Y);
    x = Y - (b / a) * X;
    v = X;
    return g;
struct crt {
    ll a, m;
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        11 x, y;
        ll g = gcde(m, C.m, x, y);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        11 ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
};
pair<11, 11> divide_show(11 n, int p, int k, int pak) {
    if (n == 0) return {0, 1};
    11 blocos = n/pak, falta = n%pak;
    ll periodo = divi[pak], resto = divi[falta];
    ll r = expo(periodo, blocos, pak)*resto%pak;
    auto rec = divide_show(n/p, p, k, pak);
    ll y = n/p + rec.first;
    r = r*rec.second % pak;
    return {v, r};
}
11 solve_pak(ll n, ll x, int p, int k, int pak) {
    divi[0] = 1;
    for (int i = 1; i <= pak; i++) {</pre>
        divi[i] = divi[i-1];
        if (i%p) divi[i] = divi[i] * i % pak;
    }
```

```
auto dn = divide_show(n, p, k, pak), dx = divide_show(x,
       p, k, pak),
         dnx = divide_show(n-x, p, k, pak);
    ll y = dn.first-dx.first-dnx.first, r =
        (dn.second*inv(dx.second, pak)%pak)*inv(dnx.second,
           pak)%pak;
    return expo(p, y, pak) * r % pak;
}
ll solve(ll n, ll x, int mod) {
    vector<pair<int, int>> f;
    int mod2 = mod;
    for (int i = 2; i*i \le mod2; i++) if (mod2\%i==0) {
        int c = 0;
        while (mod2\%i==0) mod2 /= i, c++;
        f.push_back({i, c});
    }
    if (mod2 > 1) f.push_back({mod2, 1});
    crt ans(0, 1);
    for (int i = 0; i < f.size(); i++) {</pre>
        int pak = 1;
        for (int j = 0; j < f[i].second; j++) pak *=
           f[i].first;
        ans = ans * crt(solve_pak(n, x, f[i].first,
           f[i].second, pak), pak);
    return ans.a;
}
```

3.7 Closest pair of points

```
auto cmp_y = [&](const pt &1, const pt &r) {
    if (1.y != r.y) return 1.y < r.y;</pre>
    return 1.x < r.x;</pre>
};
set < pt, decltype(cmp_y) > s(cmp_y);
int 1 = 0, r = -1;
11 d2_min = numeric_limits < ll >:: max();
pt pl, pr;
const int magic = 5;
while (r+1 < n) {
    auto it = s.insert(v[++r]).first;
    int cnt = magic/2;
    while (cnt-- and it != s.begin()) it--;
    cnt = 0;
    while (cnt++ < magic and it != s.end()) {</pre>
         if (!((*it) == v[r])) {
             11 d2 = dist2(*it, v[r]);
             if (d2_min > d2) {
                 d2_min = d2;
                 pl = *it;
                 pr = v[r];
        }
         it++;
    while (1 < r \text{ and } sq(v[1].x-v[r].x) > d2_min)
        s.erase(v[1++]);
}
return {pl, pr};
```

3.8 Coloração de Grafo de Intervalo

```
// Colore os intervalos com o numero minimo
// de cores de tal forma que dois intervalos
// que se interceptam tem cores diferentes
// As cores vao de 1 ate n
//
// O(n log(n))
// 83a32d
```

```
vector<int> coloring(vector<pair<int, int>>& v) {
    int n = v.size();
    vector<pair<int, pair<int, int>>> ev;
    for (int i = 0; i < n; i++) {</pre>
        ev.push_back({v[i].first, {1, i}});
        ev.push_back({v[i].second, {0, i}});
    sort(ev.begin(), ev.end());
    vector < int > ans(n), avl(n);
    for (int i = 0; i < n; i++) avl.push_back(n-i);</pre>
    for (auto i : ev) {
        if (i.second.first == 1) {
            ans[i.second.second] = avl.back();
            avl.pop_back();
        } else avl.push_back(ans[i.second.second]);
    }
    return ans;
}
```

3.9 Conectividade Dinamica

```
// Offline com Divide and Conquer e
// DSU com rollback
// O(n log^2(n))
// 043d93

typedef pair<int, int> T;

namespace data {
   int n, ans;
   int p[MAX], sz[MAX];
   stack<int> S;

void build(int n2) {
      n = n2;
      for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
      ans = n;
   }
   int find(int k) {</pre>
```

```
while (p[k] != k) k = p[k];
        return k;
    }
    void add(T x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() {
        return ans;
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
   }
};
int ponta[MAX]; // outra ponta do intervalo ou -1 se for
   query
int ans[MAX], n, q;
T qu[MAX];
void solve(int l = 0, int r = q-1) {
    if (1 >= r) {
        ans[1] = data::query(); // agora a estrutura ta certa
        return;
    }
    int m = (1+r)/2, qnt = 1;
    for (int i = m+1; i <= r; i++) if (ponta[i]+1 and
       ponta[i] < 1)
       data::add(qu[i]), qnt++;
    solve(1, m);
    while (--qnt) data::rollback();
    for (int i = 1; i <= m; i++) if (ponta[i]+1 and ponta[i]</pre>
```

```
> r)
    data::add(qu[i]), qnt++;
solve(m+1, r);
while (qnt--) data::rollback();
}
```

3.10 Conectividade Dinamica 2

```
// Offline com link-cut trees
// O(n log(n))
// d38e4e
namespace lct {
    struct node {
        int p, ch[2];
        int val, sub;
        bool rev;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0) { ch[0]}
           = ch[1] = -1; }
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<pair<int, int>, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].rev = 0;
    }
    void update(int x) {
        t[x].sub = t[x].val;
        for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
            prop(t[x].ch[i]);
            t[x].sub = min(t[x].sub, t[t[x].ch[i]].sub);
        }
```

```
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
       t[v].p)
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w=INF) { t[v] = node(w); }
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
int query(int v, int w) {
```

```
rootify(w), access(v);
        return t[v].sub;
    void link_(int v, int w) {
        rootify(w);
        t[w].p = v;
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x);
        link_(v, id), link_(id, w);
    }
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
    }
    void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
}
void dyn_conn() {
    int n, q; cin >> n >> q;
    vector <int > p(2*q, -1); // outra ponta do intervalo
    for (int i = 0; i < n; i++) lct::make_tree(i);</pre>
    vector < pair < int , int >> qu(q);
    map < pair < int , int > , int > m;
    for (int i = 0; i < q; i++) {</pre>
        char c; cin >> c;
        if (c == '?') continue;
        int a, b; cin >> a >> b; a--, b--;
        if (a > b) swap(a, b);
        qu[i] = \{a, b\};
        if (c == '+') {
            p[i] = i+q, p[i+q] = i;
            m[make_pair(a, b)] = i;
        } else {
            int j = m[make_pair(a, b)];
            p[i] = j, p[j] = i;
        }
```

```
}
    int ans = n;
    for (int i = 0; i < q; i++) {
        if (p[i] == -1) {
            cout << ans << endl; // numero de comp conexos</pre>
            continue;
        int a = qu[i].first, b = qu[i].second;
        if (p[i] > i) { // +
            if (lct::conn(a, b)) {
                int mi = lct::query(a, b);
                if (p[i] < mi) {</pre>
                    p[p[i]] = p[i];
                     continue;
                lct::cut(qu[p[mi]].first, qu[p[mi]].second),
                    ans++:
                p[mi] = mi;
            lct::link(a, b, p[i]), ans--;
        } else if (p[i] != i) lct::cut(a, b), ans++; // -
    }
}
```

3.11 Conj. Indep. Maximo com Peso em Grafo de Intervalo

```
// Retorna os indices ordenados dos intervalos selecionados
// Se tiver empate, retorna o que minimiza o comprimento
    total
//
// O(n log(n))
// c4dbe2

vector<int> ind_set(vector<tuple<int, int, int>>& v) {
    vector<tuple<int, int, int>> w;
    for (int i = 0; i < v.size(); i++) {
        w.push_back(tuple(get<0>(v[i]), 0, i));
        w.push_back(tuple(get<1>(v[i]), 1, i));
}
```

```
sort(w.begin(), w.end());
vector < int > nxt(v.size());
vector<pair<ll, int>> dp(v.size());
int last = -1;
for (auto [fim, t, i] : w) {
    if (t == 0) {
        nxt[i] = last;
        continue;
    }
    dp[i] = \{0, 0\};
    if (last != -1) dp[i] = max(dp[i], dp[last]);
    pair<11, int> pega = {get<2>(v[i]), -(get<1>(v[i]) -
       get < 0 > (v[i]) + 1);
    if (nxt[i] != -1) pega.first += dp[nxt[i]].first,
       pega.second += dp[nxt[i]].second;
    if (pega > dp[i]) dp[i] = pega;
    else nxt[i] = last;
    last = i;
pair<11, int > ans = \{0, 0\};
int idx = -1;
for (int i = 0; i < v.size(); i++) if (dp[i] > ans) ans
   = dp[i], idx = i;
vector < int > ret;
while (idx != -1) {
    if (get < 2 > (v[idx]) > 0 and
        (nxt[idx] == -1 or get<1>(v[nxt[idx]]) <</pre>
           get <0>(v[idx]))) ret.push_back(idx);
    idx = nxt[idx];
sort(ret.begin(), ret.end());
return ret;
```

3.12 Distancia maxima entre dois pontos

```
\label{eq:continuous_problem} \begin{picture}(100,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,
```

}

```
// Quadrado da Distancia Euclidiana (precisa copiar
   convex_hull, ccw e pt)
// bdace4
11 max_dist2(vector<pt> v) {
    v = convex_hull(v);
   if (v.size() <= 2) return dist2(v[0], v[1%v.size()]);</pre>
    11 \text{ ans} = 0;
   int n = v.size(), j = 0;
    for (int i = 0; i < n; i++) {
        while (!ccw(v[(i+1)%n]-v[i], pt(0, 0),
           v[(j+1)\%n]-v[j])) j = (j+1)\%n;
        ans = \max(\{ans, dist2(v[i], v[j]), dist2(v[(i+1)%n],
           v[i])});
    }
    return ans;
}
// Distancia de Manhattan
template < typename T> T max_dist_manhattan(vector < pair < T, T>>
    T min_sum, max_sum, min_dif, max_dif;
    min_sum = max_sum = v[0].first + v[0].second;
    min_dif = max_dif = v[0].first - v[0].second;
    for (auto [x, y] : v) {
        min_sum = min(min_sum, x+y);
        max_sum = max(max_sum, x+y);
        min_dif = min(min_dif, x-y);
        max_dif = max(max_dif, x-y);
    }
    return max(max_sum - min_sum, max_dif - min_dif);
}
3.13 Distinct Range Query
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
// 5c7aa1
namespace perseg { };
```

```
int qt[MAX];
void build(vector<int>& v) {
    int n = v.size();
    perseg::build(n);
    map<int, int> last;
    int at = 0;
    for (int i = 0; i < n; i++) {</pre>
        if (last.count(v[i])) {
            perseg::update(last[v[i]], -1);
            at++;
        }
        perseg::update(i, 1);
        qt[i] = ++at;
        last[v[i]] = i;
}
int query(int 1, int r) {
    return perseg::query(l, r, qt[r]);
}
```

3.14 Distinct Range Query com Update

```
// build - O(n log(n))
// query - O(log^2(n))
// update - O(log^2(n))
// 2306f3

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag, tree_order_statistics_node_update>;

int v[MAX], n, nxt[MAX], prv[MAX];
map<int, set<int> > ocor;
```

```
namespace bit {
    ord_set<pair<int, int>> bit[MAX];
    void build() {
        for (int i = 1; i <= n; i++)</pre>
            bit[i].insert({nxt[i-1], i-1});
        for (int i = 1; i <= n; i++) {</pre>
            int j = i + (i\&-i);
            if (j <= n) for (auto x : bit[i])</pre>
                bit[j].insert(x);
        }
    }
    int pref(int p, int x) {
        int ret = 0;
        for (; p; p -= p\&-p) ret += bit[p].order_of_key({x,}
            -INF }):
        return ret;
    }
    int query(int 1, int r, int x) {
        return pref(r+1, x) - pref(l, x);
    }
    void update(int p, int x) {
        int p2 = p;
        for (p++; p \le n; p += p\&-p) {
             bit[p].erase({nxt[p2], p2});
             bit[p].insert({x, p2});
        }
    }
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = INF;</pre>
    for (int i = 0; i < n; i++) prv[i] = -INF;</pre>
    vector<pair<int, int>> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n; i++) {</pre>
        if (i and t[i].first == t[i-1].first)
             prv[t[i].second] = t[i-1].second;
        if (i+1 < n \text{ and } t[i].first == t[i+1].first)
             nxt[t[i].second] = t[i+1].second;
    }
```

```
for (int i = 0; i < n; i++) ocor[v[i]].insert(i);</pre>
    bit::build();
}
void muda(int p, int x) {
    bit::update(p, x);
    nxt[p] = x;
}
int query(int a, int b) {
    return b-a+1 - bit::query(a, b, b+1);
}
void update(int p, int x) { // mudar valor na pos. p para x
    if (prv[p] > -INF) muda(prv[p], nxt[p]);
    if (nxt[p] < INF) prv[nxt[p]] = prv[p];</pre>
    ocor[v[p]].erase(p);
    if (!ocor[x].size()) {
        muda(p, INF);
        prv[p] = -INF;
    } else if (*ocor[x].rbegin() < p) {</pre>
        int i = *ocor[x].rbegin();
        prv[p] = i;
        muda(p, INF);
        muda(i, p);
    } else {
        int i = *ocor[x].lower_bound(p);
        if (prv[i] > -INF) {
            muda(prv[i], p);
            prv[p] = prv[i];
        } else prv[p] = -INF;
        prv[i] = p;
        muda(p, i);
    v[p] = x; ocor[x].insert(p);
}
```

3.15 Dominator Points

```
// Se um ponto A tem ambas as coordenadas >= B, dizemos
// que A domina B
// is_dominated(p) fala se existe algum ponto no conjunto
// que domina p
// insert(p) insere p no conjunto
// (se p for dominado por alguem, nao vai inserir)
// o multiset 'quina' guarda informacao sobre os pontos
// nao dominados por um elemento do conjunto que nao dominam
// outro ponto nao dominado por um elemento do conjunto
// No caso, armazena os valores de x+y esses pontos
//
// Complexidades:
// is_dominated - O(log(n))
// insert - O(log(n)) amortizado
// query - 0(1)
// 09ffdc
struct dominator_points {
    set < pair < int , int >> se;
    multiset < int > quina;
    bool is_dominated(pair<int, int> p) {
        auto it = se.lower_bound(p);
        if (it == se.end()) return 0;
        return it->second >= p.second;
    }
    void mid(pair<int, int> a, pair<int, int> b, bool rem) {
        pair < int , int > m = {a.first+1, b.second+1};
        int val = m.first + m.second;
        if (!rem) quina.insert(val);
        else quina.erase(quina.find(val));
    bool insert(pair<int, int> p) {
        if (is_dominated(p)) return 0;
        auto it = se.lower_bound(p);
        if (it != se.begin() and it != se.end())
            mid(*prev(it), *it, 1);
        while (it != se.begin()) {
            it--;
            if (it->second > p.second) break;
```

```
if (it != se.begin()) mid(*prev(it), *it, 1);
    it = se.erase(it);
}
it = se.insert(p).first;
if (it != se.begin()) mid(*prev(it), *it, 0);
if (next(it) != se.end()) mid(*it, *next(it), 0);
return 1;
}
int query() {
    if (!quina.size()) return INF;
    return *quina.begin();
};
```

3.16 DP de Dominação 3D

```
// Computa para todo ponto i,
// dp[i] = 1 + max_{j dominado por i} dp[j]
// em que ser dominado eh ter as 3 coordenadas menores
// Da pra adaptar facil para outras dps
//
// O(n log^2 n), O(n) de memoria
// 7c8896
void lis2d(vector<vector<tuple<int, int, int>>>& v,
   vector < int > & dp, int 1, int r) {
    if (1 == r) {
        for (int i = 0; i < v[1].size(); i++) {</pre>
            int ii = get <2>(v[1][i]);
            dp[ii] = max(dp[ii], 1);
        }
        return;
    }
    int m = (1+r)/2;
    lis2d(v, dp, l, m);
    vector<tuple<int, int, int>> vv[2];
    vector < int > Z;
    for (int i = 1; i <= r; i++) for (auto it : v[i]) {</pre>
        vv[i > m].push_back(it);
```

```
Z.push_back(get<1>(it));
    }
    sort(vv[0].begin(), vv[0].end());
    sort(vv[1].begin(), vv[1].end());
    sort(Z.begin(), Z.end());
    auto get_z = [&](int z) { return lower_bound(Z.begin(),
       Z.end(), z) - Z.begin(); };
    vector < int > bit(Z.size());
    int i = 0;
    for (auto [y, z, id] : vv[1]) {
        while (i < vv[0].size() and get<0>(vv[0][i]) < y) {</pre>
            auto [y2, z2, id2] = vv[0][i++];
            for (int p = get_z(z2)+1; p <= Z.size(); p +=
                p&-p)
                bit[p-1] = max(bit[p-1], dp[id2]);
        }
        int q = 0;
        for (int p = get_z(z); p; p -= p\&-p) q = max(q,
           bit[p-1]);
        dp[id] = max(dp[id], q + 1);
    }
    lis2d(v, dp, m+1, r);
}
vector<int> solve(vector<tuple<int, int, int>> v) {
    int n = v.size();
    vector<tuple<int, int, int, int>> vv;
    for (int i = 0; i < n; i++) {</pre>
        auto [x, y, z] = v[i];
        vv.emplace_back(x, y, z, i);
    sort(vv.begin(), vv.end());
    vector < vector < tuple < int , int , int >>> V;
    for (int i = 0; i < n; i++) {</pre>
        int j = i;
        V.emplace_back();
        while (j < n and get <0 > (vv[j]) == get <0 > (vv[i])) {
            auto [x, y, z, id] = vv[j++];
            V.back().emplace_back(y, z, id);
        }
```

```
i = j-1;
}
vector<int> dp(n);
lis2d(V, dp, 0, V.size()-1);
return dp;
}
```

3.17 Gray Code

```
// Gera uma permutacao de 0 a 2^n-1, de forma que
// duas posicoes adjacentes diferem em exatamente 1 bit
//
// 0(2^n)
// 840df4

vector<int> gray_code(int n) {
    vector<int> ret(1<<n);
    for (int i = 0; i < (1<<n); i++) ret[i] = i^(i>>1);
    return ret;
}
```

3.18 Half-plane intersection

```
// Cada half-plane eh identificado por uma reta e a regiao
    ccw a ela
//
// O(n log n)
// f56e1c

vector<pt> hp_intersection(vector<line> &v) {
    deque<pt> dq = {{INF, INF}, {-INF, INF}, {-INF, -INF},
        {INF, -INF}};

#warning considerar trocar por compare_angle
    sort(v.begin(), v.end(), [&](line r, line s) { return
        angle(r.q-r.p) < angle(s.q-s.p); });

for(int i = 0; i < v.size() and dq.size() > 1; i++) {
```

```
pt p1 = dq.front(), p2 = dq.back();
        while (dq.size() and !ccw(v[i].p, v[i].q, dq.back()))
            p1 = dq.back(), dq.pop_back();
        while (dq.size() and !ccw(v[i].p, v[i].q,
           dq.front()))
            p2 = dq.front(), dq.pop_front();
        if (!dq.size()) break;
        if (p1 == dq.front() and p2 == dq.back()) continue;
        dq.push_back(inter(v[i], line(dq.back(), p1)));
        dq.push_front(inter(v[i], line(dq.front(), p2)));
        if (dq.size() > 1 and dq.back() == dq.front())
           dq.pop_back();
    return vector < pt > (dq.begin(), dq.end());
}
3.19 Heap Sort
// O(n log n)
// 385e91
void down(vector<int>& v, int n, int i) {
    while ((i = 2*i+1) < n) {
        if (i+1 < n and v[i] < v[i+1]) i++;</pre>
        if (v[i] < v[(i-1)/2]) break;
        swap(v[i], v[(i-1)/2]);
    }
void heap_sort(vector<int>& v) {
    int n = v.size();
    for (int i = n/2-1; i \ge 0; i--) down(v, n, i);
    for (int i = n-1; i > 0; i--)
        swap(v[0], v[i]), down(v, i, 0);
}
```

3.20 Inversion Count

```
// Computa o numero de inversoes para transformar
// l em r (se nao tem como, retorna -1)
// O(n log(n))
// eef01f
template < typename T > 11 inv_count(vector < T > 1, vector < T > r =
   {}) {
    if (!r.size()) {
        r = 1;
        sort(r.begin(), r.end());
    int n = 1.size();
    vector < int > v(n), bit(n);
    vector<pair<T, int>> w;
    for (int i = 0; i < n; i++) w.push_back({r[i], i+1});</pre>
    sort(w.begin(), w.end());
    for (int i = 0; i < n; i++) {</pre>
        auto it = lower_bound(w.begin(), w.end(),
            make_pair(l[i], 0));
        if (it == w.end() or it->first != l[i]) return -1;
            // nao da
        v[i] = it -> second;
        it->second = -1;
    }
    11 \text{ ans} = 0;
    for (int i = n-1; i \ge 0; i--) {
        for (int j = v[i]-1; j; j -= j\&-j) ans += bit[j];
        for (int j = v[i]; j < n; j += j\&-j) bit[j]++;
    }
    return ans;
}
```

3.21 LIS - Longest Increasing Subsequence

```
// Calcula e retorna uma LIS
//
// O(n.log(n))
// 4749e8
```

```
template < typename T > vector <T > lis(vector <T > & v) {
    int n = v.size(), m = -1;
    vector <T> d(n+1, INF);
    vector < int > l(n);
    d[0] = -INF;
    for (int i = 0; i < n; i++) {</pre>
        // Para non-decreasing use upper_bound()
        int t = lower_bound(d.begin(), d.end(), v[i]) -
           d.begin();
        d[t] = v[i], l[i] = t, m = max(m, t);
    }
    int p = n;
    vector <T> ret;
    while (p--) if (l[p] == m) {
        ret.push_back(v[p]);
        m - - ;
    }
    reverse(ret.begin(),ret.end());
    return ret;
}
      LIS2 - Longest Increasing Subsequence
// Calcula o tamanho da LIS
//
// O(n log(n))
// 402def
template < typename T > int lis(vector < T > &v) {
    vector <T> ans;
    for (T t : v){
        // Para non-decreasing use upper_bound()
        auto it = lower_bound(ans.begin(), ans.end(), t);
```

if (it == ans.end()) ans.push_back(t);

else *it = t;

}

```
return ans.size():
}
```

Mininum Enclosing Circle 3.23

```
// O(n) com alta probabilidade
// b0a6ba
const double EPS = 1e-12;
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct pt {
    double x, y;
    pt(double x_{=} = 0, double y_{=} = 0) : x(x_{=}), y(y_{=}) {}
    pt operator + (const pt& p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt& p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (double c) const { return pt(x*c, y*c); }
    pt operator / (double c) const { return pt(x/c, y/c); }
};
double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
double dist(pt p, pt q) { return sqrt(dot(p-q, p-q)); }
pt center(pt p, pt q, pt r) {
    pt a = p-r, b = q-r;
   pt c = pt(dot(a, p+r)/2, dot(b, q+r)/2);
    return pt(cross(c, pt(a.y, b.y)), cross(pt(a.x, b.x),
       c)) / cross(a, b);
}
struct circle {
    pt cen;
    double r;
    circle(pt cen_, double r_) : cen(cen_), r(r_) {}
    circle(pt a, pt b, pt c) {
        cen = center(a, b, c);
```

```
r = dist(cen. a):
    bool inside(pt p) { return dist(p, cen) < r+EPS; }</pre>
};
circle minCirc(vector<pt> v) {
    shuffle(v.begin(), v.end(), rng);
    circle ret = circle(pt(0, 0), 0);
    for (int i = 0; i < v.size(); i++) if</pre>
       (!ret.inside(v[i])) {
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!ret.inside(v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for (int k = 0; k < j; k++) if
                (!ret.inside(v[k]))
                ret = circle(v[i], v[j], v[k]);
        }
    }
    return ret;
}
3.24 Minkowski Sum
```

```
// Computa A+B = \{a+b : a \setminus in A, b \setminus in B\}, em que
// A e B sao poligonos convexos
// A+B eh um poligono convexo com no max |A|+|B| pontos
//
// O(|A|+|B|)
// d7cca8
vector<pt> minkowski(vector<pt> p, vector<pt> q) {
    auto fix = [](vector < pt > & P) {
        rotate(P.begin(), min_element(P.begin(), P.end()),
            P.end());
        P.push_back(P[0]), P.push_back(P[1]);
    fix(p), fix(q);
    vector < pt > ret;
    int i = 0, j = 0;
    while (i < p.size()-2 or j < q.size()-2) {</pre>
```

```
ret.push_back(p[i] + q[j]);
        auto c = ((p[i+1] - p[i]) ^ (q[j+1] - q[j]));
        if (c >= 0) i = min<int>(i+1, p.size()-2);
        if (c <= 0) j = min<int>(j+1, q.size()-2);
    return ret;
}
// 2f5dd2
ld dist_convex(vector<pt> p, vector<pt> q) {
    for (pt& i : p) i = i * -1;
    auto s = minkowski(p, q);
    if (inpol(s, pt(0, 0))) return 0;
    return 1;
    ld ans = DINF;
    for (int i = 0; i < s.size(); i++) ans = min(ans,</pre>
            disttoseg(pt(0, 0), line(s[(i+1)%s.size()],
               s[i]))):
    return ans;
}
```

3.25 MO - DSU

```
// Dado uma lista de arestas de um grafo, responde
// para cada query(l, r), quantos componentes conexos
// o grafo tem se soh considerar as arestas l, l+1, ..., r
// Da pra adaptar pra usar MO com qualquer estrutura
    rollbackavel
//
// O(m sqrt(q) log(n))
// f98540

struct dsu {
    int n, ans;
    vector<int> p, sz;
    stack<int> S;

    dsu(int n_) : n(n_), ans(n), p(n), sz(n) {
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
    }
}</pre>
```

```
int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(pair<int, int> x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() { return ans; }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
   }
};
int n;
vector<pair<int, int>> ar; // vetor com as arestas
vector<int> MO(vector<pair<int, int>> &q) {
    int SQ = ar.size() / sqrt(q.size()) + 1;
   int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
           q[l].first < q[r].first;
        return q[1].second < q[r].second;</pre>
    }):
    vector < int > ret(m);
    for (int i = 0; i < m; i++) {
        dsu D(n);
        int fim = q[ord[i]].first/SQ*SQ + SQ - 1;
```

```
int last_r = fim;
        int j = i-1;
        while (j+1 < m and q[ord[j+1]].first / SQ ==</pre>
            q[ord[i]].first / SQ) {
             auto [1, r] = q[ord[++j]];
            if (1 / SQ == r / SQ) {
                 dsu D2(n);
                 for (int k = 1; k <= r; k++) D2.add(ar[k]);</pre>
                 ret[ord[j]] = D2.query();
                 continue;
            }
             while (last_r < r) D.add(ar[++last_r]);</pre>
            for (int k = 1; k <= fim; k++) D.add(ar[k]);</pre>
            ret[ord[j]] = D.query();
            for (int k = 1; k <= fim; k++) D.rollback();</pre>
        }
        i = j;
    return ret;
}
```

3.26 Mo - numero de distintos em range

```
// Para ter o bound abaixo, escolher
// SQ = n / sqrt(q)
//
// O(n * sqrt(q))
// fa02fe

const int MAX = 3e4+10;
const int SQ = sqrt(MAX);
int v[MAX];
int ans, freq[MAX];
inline void insert(int p) {
```

```
int o = v[p];
    freq[o]++;
    ans += (freq[o] == 1);
}
inline void erase(int p) {
   int o = v[p];
    ans -= (freq[o] == 1);
    freq[o]--;
}
inline ll hilbert(int x, int y) {
    static int N = (1 << 20);
   int rx, ry, s;
   11 d = 0;
    for (s = N/2; s>0; s /= 2) {
        rx = (x \& s) > 0;
        ry = (y \& s) > 0;
        d += s * 11(s) * ((3 * rx) ^ ry);
        if (ry == 0) {
            if (rx == 1) {
                x = N-1 - x;
                y = N-1 - y;
            swap(x, y);
        }
    }
    return d;
}
#define HILBERT true
vector<int> MO(vector<pair<int, int>> &q) {
    ans = 0;
   int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
#if HILBERT
    vector < ll> h(m);
   for (int i = 0; i < m; i++) h[i] = hilbert(q[i].first,</pre>
       q[i].second);
    sort(ord.begin(), ord.end(), [&](int 1, int r) { return
       h[1] < h[r]; \});
```

```
#else
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
            q[l].first < q[r].first;</pre>
        if ((q[1].first / SQ) % 2) return q[1].second >
            q[r].second;
        return q[1].second < q[r].second;</pre>
    });
#endif
    vector < int > ret(m);
    int 1 = 0, r = -1;
    for (int i : ord) {
        int ql, qr;
        tie(ql, qr) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);</pre>
        while (r > qr) erase(r--);
        ret[i] = ans;
    return ret;
}
```

3.27 Palindromic Factorization

```
// Precisa da eertree
// Computa o numero de formas de particionar cada
// prefixo da string em strings palindromicas
//
// O(n log n), considerando alfabeto O(1)
// 9e6e22

struct eertree { ... };

11 factorization(string s) {
   int n = s.size(), sz = 2;
   eertree PT(n);
   vector<int> diff(n+2), slink(n+2), sans(n+2), dp(n+1);
   dp[0] = 1;
```

```
for (int i = 1; i <= n; i++) {</pre>
        PT.add(s[i-1]);
        if (PT.size()+2 > sz) {
            diff[sz] = PT.len[sz] - PT.len[PT.link[sz]];
            if (diff[sz] == diff[PT.link[sz]])
                slink[sz] = slink[PT.link[sz]];
            else slink[sz] = PT.link[sz];
            sz++;
        }
        for (int v = PT.last; PT.len[v] > 0; v = slink[v]) {
            sans[v] = dp[i - (PT.len[slink[v]] + diff[v])];
            if (diff[v] == diff[PT.link[v]])
                sans[v] = (sans[v] + sans[PT.link[v]]) % MOD;
            dp[i] = (dp[i] + sans[v]) % MOD;
        }
    }
    return dp[n];
}
3.28 Parsing de Expressao
// Operacoes associativas a esquerda por default
// Para mudar isso, colocar em r_assoc
// Operacoes com maior prioridade sao feitas primeiro
//
// 68921b
bool blank(char c) {
    return c == ' ':
}
bool is_unary(char c) {
    return c == '+' or c == '-';
}
bool is_op(char c) {
    if (is_unary(c)) return true;
    return c == '*' or c == '/' or c == '+' or c == '-';
}
```

```
bool r_assoc(char op) {
    // operator unario - deve ser assoc. a direita
    return op < 0;</pre>
}
int priority(char op) {
    // operator unario - deve ter precedencia maior
    if (op < 0) return INF;</pre>
    if (op == '*' or op == '/') return 2;
    if (op == '+' or op == '-') return 1;
    return -1:
}
void process_op(stack<int>& st, stack<int>& op) {
    char o = op.top(); op.pop();
    if (o < 0) {
        o *= -1:
        int 1 = st.top(); st.pop();
        if (o == '+') st.push(1);
        if (o == '-') st.push(-1);
    } else {
        int r = st.top(); st.pop();
        int 1 = st.top(); st.pop();
        if (o == '*') st.push(1 * r);
        if (o == '/') st.push(1 / r);
        if (o == '+') st.push(1 + r);
        if (o == '-') st.push(1 - r);
}
int eval(string& s) {
    stack<int> st, op;
    bool un = true:
    for (int i = 0; i < s.size(); i++) {</pre>
        if (blank(s[i])) continue;
        if (s[i] == '(') {
            op.push('(');
            un = true;
        } else if (s[i] == ')') {
            while (op.top() != '(') process_op(st, op);
```

```
op.pop();
            un = false;
        } else if (is_op(s[i])) {
            char o = s[i];
            if (un and is_unary(o)) o *= -1;
            while (op.size() and (
                        (!r_assoc(o) and priority(op.top())
                            >= priority(o)) or
                        (r_assoc(o) and priority(op.top()) >
                            priority(o))))
                process_op(st, op);
            op.push(o);
            un = true;
        } else {
            int val = 0:
            while (i < s.size() and isalnum(s[i]))</pre>
                val = val * 10 + s[i++] - '0';
            i--;
            st.push(val);
            un = false;
        }
    }
    while (op.size()) process_op(st, op);
    return st.top();
}
      RMQ com Divide and Conquer
3.29
// Responde todas as queries em
// O(n log(n))
// 5a6ebd
typedef pair<pair<int, int>, int> iii;
#define f first
#define s second
int n, q, v[MAX];
iii qu[MAX];
int ans[MAX], pref[MAX], sulf[MAX];
```

```
void solve(int l=0, int r=n-1, int ql=0, int qr=q-1) {
    if (l > r or ql > qr) return;
    int m = (1+r)/2;
    int qL = partition(qu+ql, qu+qr+1, [=](iii x){return
       x.f.s < m; ) - qu;
    int qR = partition(qu+qL, qu+qr+1, [=](iii x){return
       x.f.f <= m; }) - qu;
    pref[m] = sulf[m] = v[m];
    for (int i = m-1; i >= 1; i--) pref[i] = min(v[i],
       pref[i+1]);
    for (int i = m+1; i <= r; i++) sulf[i] = min(v[i],</pre>
       sulf[i-1]):
    for (int i = qL; i < qR; i++)
        ans[qu[i].s] = min(pref[qu[i].f.f], sulf[qu[i].f.s]);
    solve(l, m-1, ql, qL-1), solve(m+1, r, qR, qr);
}
```

3.30 Segment Intersection

```
auto intersects = [&](pair<line, int> a, pair<line, int>
    return interseg(a.first, b.first);
};
vector<pair<pt, pair<int, int>>> w;
for (int i = 0; i < v.size(); i++) {</pre>
    if (v[i].q < v[i].p) swap(v[i].p, v[i].q);</pre>
    w.push_back({v[i].p, {0, i}});
    w.push_back({v[i].q, {1, i}});
}
sort(w.begin(), w.end());
set < pair < line, int >> se;
for (auto i : w) {
    line at = v[i.second.second];
    if (i.second.first == 0) {
        auto nxt = se.lower_bound({at, i.second.second});
        if (nxt != se.end() and intersects(*nxt, {at,
           i.second.second})) return 1;
        if (nxt != se.begin() and intersects(*(--nxt),
           {at, i.second.second})) return 1;
        se.insert({at, i.second.second});
    } else {
        auto nxt = se.upper_bound({at,
           i.second.second)), cur = nxt, prev = --cur;
        if (nxt != se.end() and prev != se.begin()
            and intersects(*nxt, *(--prev))) return 1;
        se.erase(cur);
    }
}
return 0;
```

3.31 Sequencia de de Brujin

```
// Se passar sem o terceiro parametro, gera um vetor com
  valores
// em [0, k) de tamanho k^n de forma que todos os subarrays
  ciclicos
// de tamanho n ocorrem exatamente uma vez
// Se passar com um limite lim, gera o menor vetor com
```

```
valores
// em [0, k) que possui lim subarrays de tamanho n distintos
// (assume que lim <= k^n)</pre>
//
// Linear no tamanho da resposta
// 19720c
vector<int> de_brujin(int n, int k, int lim = INF) {
    if (k == 1) return vector<int>(lim == INF ? 1 : n, 0);
    vector < int > 1 = \{0\}, ret; // 1 eh lyndon word
    while (true) {
        if (1.size() == 0) {
            if (lim == INF) break;
            1.push_back(0);
        }
        if (n % 1.size() == 0) for (int i : 1) {
            ret.push_back(i);
            if (ret.size() == n+lim-1) return ret;
        }
        int p = 1.size();
        while (1.size() < n) 1.push_back(1[1.size()%p]);</pre>
        while (l.size() and l.back() == k-1) l.pop_back();
        if (1.size()) 1.back()++;
    return ret;
}
```

3.32 Shortest Addition Chain

```
// Computa o menor numero de adicoes para construir
// cada valor, comecando com 1 (e podendo salvar variaveis)
// Retorna um par com a dp e o pai na arvore
// A arvore eh tao que o taminho da raiz (1) ate x
// contem os valores que devem ser criados para gerar x
// A profundidade de x na arvore eh dp[x]
// DP funciona para ateh 300, mas a arvore soh funciona
// para ateh 148
//
// 84fcff
```

```
// recuperacao certa soh ateh 148 (erra para 149, 233, 298)
pair < vector < int > , vector < int >> addition_chain() {
    int MAX = 301;
    vector < int > dp(MAX), p(MAX);
    for (int n = 2; n < MAX; n++) {
        pair < int , int > val = {INF , -1};
        for (int i = 1; i < n; i++) for (int j = i; j; j = i
            if (j == n-i) val = min(val, pair(dp[i]+1, i));
        tie(dp[n], p[n]) = val;
        if (n == 9) p[n] = 8;
        if (n == 149 \text{ or } n == 233) \text{ dp}[n] --;
    }
    return {dp, p};
3.33 Simple Polygon
// Verifica se um poligono com n pontos eh simples
// O(n log n)
// c724a4
bool operator < (const line& a, const line& b) { //</pre>
   comparador pro sweepline
    if (a.p == b.p) return ccw(a.p, a.q, b.q);
    if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x)
```

auto intersects = [&](pair<line, int> a, pair<line, int>

(b.second+1)%v.size() == a.second) return false;

if ((a.second+1)%v.size() == b.second or

return interseg(a.first, b.first);

return ccw(a.p, a.q, b.p);

return ccw(a.p, b.q, b.p);

bool simple(vector<pt> v) {

vector < line > seg;

b) {

};

}

```
vector<pair<pt, pair<int, int>>> w;
for (int i = 0; i < v.size(); i++) {</pre>
   pt at = v[i], nxt = v[(i+1)%v.size()];
    if (nxt < at) swap(at, nxt);</pre>
    seg.push_back(line(at, nxt));
   w.push_back({at, {0, i}});
   w.push_back({nxt, {1, i}});
   // casos degenerados estranhos
   if (isinseg(v[(i+2)%v.size()], line(at, nxt)))
       return 0:
   if (isinseg(v[(i+v.size()-1)%v.size()], line(at,
       nxt))) return 0;
}
sort(w.begin(), w.end());
set < pair < line , int >> se;
for (auto i : w) {
    line at = seg[i.second.second];
    if (i.second.first == 0) {
        auto nxt = se.lower_bound({at, i.second.second});
        if (nxt != se.end() and intersects(*nxt, {at,
           i.second.second})) return 0;
        if (nxt != se.begin() and intersects(*(--nxt),
           {at, i.second.second})) return 0;
        se.insert({at, i.second.second});
   } else {
        auto nxt = se.upper_bound({at,
           i.second.second)), cur = nxt, prev = --cur;
        if (nxt != se.end() and prev != se.begin()
            and intersects(*nxt, *(--prev))) return 0;
        se.erase(cur):
   }
return 1;
```

3.34 Sweep Direction

}

```
// Passa por todas as ordenacoes dos pontos definitas por
   "direcoes"
// Assume que nao existem pontos coincidentes
```

```
//
// O(n^2 \log n)
// 6bb68d
void sweep_direction(vector<pt> v) {
    int n = v.size();
    sort(v.begin(), v.end(), [](pt a, pt b) {
        if (a.x != b.x) return a.x < b.x;
        return a.y > b.y;
    });
    vector < int > at(n);
    iota(at.begin(), at.end(), 0);
    vector < pair < int , int >> swapp;
    for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++)
        swapp.push_back({i, j}), swapp.push_back({j, i});
    sort(swapp.begin(), swapp.end(), [&](auto a, auto b) {
        pt A = rotate90(v[a.first] - v[a.second]);
        pt B = rotate90(v[b.first] - v[b.second]);
        if (quad(A) == quad(B) and !sarea2(pt(0, 0), A, B))
           return a < b;</pre>
        return compare_angle(A, B);
    });
    for (auto par : swapp) {
        assert(abs(at[par.first] - at[par.second]) == 1);
        int 1 = min(at[par.first], at[par.second]),
            r = n-1 - max(at[par.first], at[par.second]);
        // l e r sao quantos caras tem de cada lado do par
           de pontos
        // (cada par eh visitado duas vezes)
        swap(v[at[par.first]], v[at[par.second]]);
        swap(at[par.first], at[par.second]);
   }
}
```

3.35 Triangulação de Delaunay

```
// Computa a triangulacao de Delaunay, o dual
// do diagrama de Voronoi (a menos de casos degenerados)
// Retorna um grafo indexado pelos indices dos pontos, e as
```

```
arestas
// sao as arestas da triangulação
// As arestas partindo de um vertice ja vem ordenadas por
// ou seja, se o vertice v nao esta no convex hull, (v, v_i,
   v_{1} = \{i+1\}
// eh um triangulo da triangulacao, em que v_i eh o i-esimo
// Usa o alg d&c, precisa representar MAX_COOR^4, por isso
   int128
// pra aguentar valores ateh 1e9
//
// Propriedades:
// 1 - 0 grafo tem no max 3n-6 arestas
// 2 - Para todo triangulo, a circunf. que passa pelos 3
      nao contem estritamente nenhum ponto
// 3 - A MST euclidiana eh subgrafo desse grafo
// 4 - Cada ponto eh vizinho do ponto mais proximo dele
// O(n log n)
// 83ebab
typedef struct QuadEdge* Q;
struct QuadEdge {
    int id;
    pt o;
    Q rot, nxt;
    bool used;
    QuadEdge(int id_ = -1, pt o_ = pt(INF, INF)) :
        id(id_), o(o_), rot(nullptr), nxt(nullptr),
           used(false) {}
    Q rev() const { return rot->rot; }
    Q next() const { return nxt; }
    Q prev() const { return rot->next()->rot; }
    pt dest() const { return rev()->o; }
};
Q edge(pt from, pt to, int id_from, int id_to) {
    Q e1 = new QuadEdge(id_from, from);
```

```
Q e2 = new QuadEdge(id_to, to);
   Q e3 = new QuadEdge;
   Q e4 = new QuadEdge;
   tie(e1->rot, e2->rot, e3->rot, e4->rot) = \{e3, e4, e2,
       e1}:
   e3};
   return e1;
}
void splice(Q a, Q b) {
   swap(a->nxt->rot->nxt, b->nxt->rot->nxt);
    swap(a->nxt, b->nxt);
}
void del_edge(Q& e, Q ne) { // delete e and assign e <- ne</pre>
    splice(e, e->prev());
   splice(e->rev(), e->rev()->prev());
   delete e->rev()->rot, delete e->rev();
   delete e->rot; delete e;
   e = ne;
}
Q conn(Q a, Q b) {
   Q = edge(a->dest(), b->o, a->rev()->id, b->id);
   splice(e, a->rev()->prev());
   splice(e->rev(), b);
   return e;
}
bool in_c(pt a, pt b, pt c, pt p) { // p ta na circunf. (a,
   b, c) ?
   _{-}int128 p2 = p*p, A = a*a - p2, B = b*b - p2, C = c*c -
       p2;
   return sarea2(p, a, b) * C + sarea2(p, b, c) * A +
       sarea2(p, c, a) * B > 0;
}
pair < Q, Q > build_tr(vector < pt > & p, int 1, int r) {
   if (r-1+1 <= 3) {
       Q a = edge(p[1], p[1+1], 1, 1+1), b = edge(p[1+1],
          p[r], l+1, r);
```

```
if (r-1+1 == 2) return {a, a->rev()};
        splice(a->rev(), b);
        11 ar = sarea2(p[1], p[1+1], p[r]);
        Q c = ar ? conn(b, a) : 0;
        if (ar >= 0) return {a, b->rev()};
        return {c->rev(), c};
    int m = (1+r)/2;
    auto [la, ra] = build_tr(p, 1, m);
    auto [lb, rb] = build_tr(p, m+1, r);
    while (true) {
        if (ccw(lb->o, ra->o, ra->dest())) ra =
           ra->rev()->prev();
        else if (ccw(lb->o, ra->o, lb->dest())) lb =
           lb->rev()->next();
        else break;
    }
    Q b = conn(lb -> rev(), ra);
    auto valid = [&](Q e) { return ccw(e->dest(), b->dest(),
       b -> o); };
    if (ra->o == la->o) la = b->rev();
    if (1b->o == rb->o) rb = b;
    while (true) {
        Q L = b \rightarrow rev() \rightarrow next();
        if (valid(L)) while (in_c(b->dest(), b->o,
           L->dest(), L->next()->dest()))
            del_edge(L, L->next());
        Q R = b - > prev();
        if (valid(R)) while (in_c(b->dest(), b->o,
           R->dest(), R->prev()->dest()))
            del_edge(R, R->prev());
        if (!valid(L) and !valid(R)) break;
        if (!valid(L) or (valid(R) and in_c(L->dest(), L->o,
           R->o, R->dest()))
            b = conn(R, b->rev());
        else b = conn(b->rev(), L->rev());
    }
    return {la, rb};
}
vector < vector < int >> delaunay(vector < pt > v) {
    int n = v.size();
```

```
auto tmp = v;
    vector < int > idx(n);
    iota(idx.begin(), idx.end(), 0);
    sort(idx.begin(), idx.end(), [&](int 1, int r) { return
       v[1] < v[r]; \});
    for (int i = 0; i < n; i++) v[i] = tmp[idx[i]];</pre>
    assert(unique(v.begin(), v.end()) == v.end());
    vector < vector < int >> g(n);
    bool col = true;
    for (int i = 2; i < n; i++) if (sarea2(v[i], v[i-1],</pre>
       v[i-2])) col = false;
    if (col) {
        for (int i = 1; i < n; i++)
            g[idx[i-1]].push_back(idx[i]),
                g[idx[i]].push_back(idx[i-1]);
        return g;
    }
    Q e = build_tr(v, 0, n-1).first;
    vector < Q > edg = {e};
    for (int i = 0; i < edg.size(); e = edg[i++]) {</pre>
        for (Q at = e; !at->used; at = at->next()) {
            at->used = true;
            g[idx[at->id]].push_back(idx[at->rev()->id]);
            edg.push_back(at->rev());
        }
    }
    return g;
}
```

3.36 Triangulos em Grafos

```
// get_triangles(i) encontra todos os triangulos ijk no grafo
// Custo nas arestas
// retorna {custo do triangulo, {j, k}}
//
// O(m sqrt(m) log(n)) se chamar para todos os vertices
// fladbc
vector<pair<int, int>> g[MAX]; // {para, peso}
```

```
#warning o 'g' deve estar ordenado
vector<pair<int, pair<int, int>>> get_triangles(int i) {
    vector<pair<int, pair<int, int>>> tri;
    for (pair<int, int> j : g[i]) {
        int a = i, b = j.first;
        if (g[a].size() > g[b].size()) swap(a, b);
        for (pair<int, int> c : g[a]) if (c.first != b and
           c.first > j.first) {
            auto it = lower_bound(g[b].begin(), g[b].end(),
               make_pair(c.first, -INF));
            if (it == g[b].end() or it->first != c.first)
               continue;
            tri.push_back({j.second+c.second+it->second, {a
               == i ? b : a, c.first}});
        }
    return tri;
}
```

4 Matematica

4.1 2-SAT

```
// solve() retorna um par, o first fala se eh possivel
// atribuir, o second fala se cada variavel eh verdadeira
//
// O(|V|+|E|) = O(#variaveis + #restricoes)
// ef6b3b

struct sat {
   int n, tot;
   vector<vector<int>> g;
   vector<int>> vis, comp, id, ans;
   stack<int> s;

   sat() {}
   sat(int n_) : n(n_), tot(n), g(2*n) {}

int dfs(int i, int& t) {
```

```
int lo = id[i] = t++;
    s.push(i), vis[i] = 2;
    for (int j : g[i]) {
        if (!vis[j]) lo = min(lo, dfs(j, t));
        else if (vis[j] == 2) lo = min(lo, id[j]);
    if (lo == id[i]) while (1) {
        int u = s.top(); s.pop();
        vis[u] = 1, comp[u] = i;
        if ((u>>1) < n \text{ and } ans[u>>1] == -1) ans[u>>1] = ~
            u&1:
        if (u == i) break;
    }
    return lo;
}
void add_impl(int x, int y) { // x -> y = !x ou y
    x = x >= 0 ? 2*x : -2*x-1;
    y = y >= 0 ? 2*y : -2*y-1;
    g[x].push_back(y);
    g[y^1].push_back(x^1);
}
void add_cl(int x, int y) { // x ou y
    add_impl(\sim x, y);
}
void add_xor(int x, int y) { // x xor y
    add_cl(x, y), add_cl(\simx, \simy);
void add_eq(int x, int y) { // x = y
    add_xor(\simx, y);
void add_true(int x) { // x = T
    add_impl(\sim x, x);
}
void at_most_one(vector<int> v) { // no max um verdadeiro
    g.resize(2*(tot+v.size()));
    for (int i = 0; i < v.size(); i++) {</pre>
        add_impl(tot+i, \simv[i]);
        if (i) {
            add_impl(tot+i, tot+i-1);
            add_impl(v[i], tot+i-1);
```

4.2 Algoritmo de Euclides estendido

```
// Acha x e y tal que ax + by = mdc(a, b) (nao eh unico)
// Assume a, b >= 0
//
// O(log(min(a, b)))
// 35411d

tuple<ll, ll, ll> ext_gcd(ll a, ll b) {
   if (!a) return {b, 0, 1};
   auto [g, x, y] = ext_gcd(b%a, a);
   return {g, y - b/a*x, x};
}
```

4.3 Avaliação de Interpolação

```
// Dado 'n' pontos (i, y[i]), i \in [0, n),
// avalia o polinomio de grau n-1 que passa
// por esses pontos em 'x'
// Tudo modular, precisa do mint
//
// O(n)
```

```
// 4fe929
mint evaluate_interpolation(int x, vector<mint> y) {
    int n = y.size();
    vector < mint > sulf(n+1, 1), fat(n, 1), ifat(n);
    for (int i = n-1; i >= 0; i--) sulf[i] = sulf[i+1] * (x
    for (int i = 1; i < n; i++) fat[i] = fat[i-1] * i;</pre>
    ifat[n-1] = 1/fat[n-1];
    for (int i = n-2; i >= 0; i--) ifat[i] = ifat[i+1] * (i
    mint pref = 1, ans = 0;
    for (int i = 0; i < n; pref *= (x - i++)) {
        mint num = pref * sulf[i+1];
        mint den = ifat[i] * ifat[n-1 - i];
        if ((n-1 - i)\%2) den *= -1;
        ans += y[i] * num * den;
    }
    return ans;
}
    Berlekamp-Massey
// guess_kth(s, k) chuta o k-esimo (0-based) termo
// de uma recorrencia linear que gera s
// Para uma rec. lin. de ordem x, se passar 2x termos
// vai gerar a certa
// O(n^2 log k), em que n = |s|
// 8644e3
```

template < typename T> T evaluate(vector < T> c, vector < T> s, 11

int n = c.size();

assert(c.size() <= s.size());

```
auto mul = [&](const vector<T> &a, const vector<T> &b) {
        vector<T> ret(a.size() + b.size() - 1);
        for (int i = 0; i < a.size(); i++) for (int j = 0; j
            < b.size(); j++)
            ret[i+j] += a[i] * b[j];
        for (int i = ret.size()-1; i >= n; i--) for (int j =
           n-1; j >= 0; j--)
            ret[i-j-1] += ret[i] * c[j];
        ret.resize(min<int>(ret.size(), n));
        return ret;
    };
    vector < T > a = n == 1 ? vector < T > ({c[0]}) : vector < T > ({0,
       1)), x = \{1\};
    while (k) {
        if (k\&1) x = mul(x, a);
        a = mul(a, a), k >>= 1;
    x.resize(n);
    T ret = 0;
    for (int i = 0; i < n; i++) ret += x[i] * s[i];</pre>
    return ret;
}
template < typename T > vector < T > berlekamp_massey(vector < T > s)
    int n = s.size(), l = 0, m = 1;
    vector <T> b(n), c(n);
    T ld = b[0] = c[0] = 1;
    for (int i = 0; i < n; i++, m++) {
        T d = s[i];
        for (int j = 1; j <= 1; j++) d += c[j] * s[i-j];</pre>
        if (d == 0) continue;
        vector <T> temp = c;
        T coef = d / ld;
        for (int j = m; j < n; j++) c[j] -= coef * b[j-m];
        if (2 * 1 \le i) 1 = i + 1 - 1, b = temp, 1d = d, m = i
           0;
    c.resize(1 + 1);
    c.erase(c.begin());
```

```
for (T& x : c) x = -x;
  return c;
}

template < typename T > T guess_kth(const vector < T > & s, ll k) {
  auto c = berlekamp_massey(s);
  return evaluate(c, s, k);
}
```

4.5 Binomial Distribution

4.6 Deteccao de ciclo - Tortoise and Hare

```
// Linear no tanto que tem que andar pra ciclar,
// O(1) de memoria
// Retorna um par com o tanto que tem que andar
// do f0 ate o inicio do ciclo e o tam do ciclo
// 899f20

pair<11, ll> find_cycle() {
    ll tort = f(f0);
```

```
ll hare = f(f(f0));
11 t = 0;
while (tort != hare) {
    tort = f(tort):
    hare = f(f(hare));
    t++;
}
11 st = 0;
tort = f0;
while (tort != hare) {
    tort = f(tort);
    hare = f(hare);
    st++:
}
ll len = 1;
hare = f(tort);
while (tort != hare) {
    hare = f(hare);
    len++;
}
return {st, len};
```

4.7 Division Trick

}

```
// Gera o conjunto n/i, pra todo i, em O(sqrt(n))
// copiei do github do tfg50

for(int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / l);
    // n / i has the same value for l <= i <= r
}</pre>
```

4.8 Eliminacao Gaussiana

```
// Resolve sistema linear
// Retornar um par com o numero de solucoes
```

```
// e alguma solucao, caso exista
// O(n^2 * m)
// 1d10b5
template < typename T>
pair < int , vector < T >> gauss (vector < vector < T >> a , vector < T > b)
    const double eps = 1e-6;
    int n = a.size(), m = a[0].size();
    for (int i = 0; i < n; i++) a[i].push_back(b[i]);</pre>
    vector<int> where(m, -1);
    for (int col = 0, row = 0; col < m and row < n; col++) {
        int sel = row:
        for (int i=row; i < n; ++i)</pre>
             if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
        if (abs(a[sel][col]) < eps) continue;</pre>
        for (int i = col; i <= m; i++)</pre>
             swap(a[sel][i], a[row][i]);
        where [col] = row;
        for (int i = 0; i < n; i++) if (i != row) {
            T c = a[i][col] / a[row][col];
            for (int j = col; j <= m; j++)</pre>
                 a[i][i] -= a[row][i] * c;
        }
        row++;
    }
    vector <T> ans(m, 0);
    for (int i = 0; i < m; i++) if (where[i] != -1)</pre>
        ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i = 0; i < n; i++) {
        T sum = 0:
        for (int j = 0; j < m; j++)
             sum += ans[j] * a[i][j];
        if (abs(sum - a[i][m]) > eps)
            return pair(0, vector<T>());
    }
    for (int i = 0; i < m; i++) if (where[i] == -1)</pre>
```

```
return pair(INF, ans);
return pair(1, ans);
}
```

4.9 Eliminacao Gaussiana Z2

```
// D eh dimensao do espaco vetorial
// add(v) - adiciona o vetor v na base (retorna se ele jah
   pertencia ao span da base)
// coord(v) - retorna as coordenadas (c) de v na base atual
   (basis^T.c = v)
// recover(v) - retorna as coordenadas de v nos vetores na
   ordem em que foram inseridos
// coord(v).first e recover(v).first - se v pertence ao span
//
// Complexidade:
// add, coord, recover: O(D^2 / 64)
// d0a4b3
template < int D> struct Gauss_z2 {
    bitset <D> basis[D], keep[D];
    int rk, in;
    vector < int > id;
    Gauss_z2 () : rk(0), in(-1), id(D, -1) {};
    bool add(bitset <D> v) {
        in++;
        bitset <D> k:
        for (int i = D - 1; i >= 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], k ^= keep[i];
            else {
                k[i] = true, id[i] = in, keep[i] = k;
                basis[i] = v, rk++;
                return true;
            }
        }
        return false;
    pair < bool, bitset < D >> coord(bitset < D > v) {
```

```
bitset <D> c:
        for (int i = D - 1; i >= 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], c[i] = true;
            else return {false, bitset <D>()};
        return {true, c};
    }
    pair < bool, vector < int >> recover(bitset < D > v) {
        auto [span, bc] = coord(v);
        if (not span) return {false, {}};
        bitset < D > aux;
        for (int i = D - 1; i >= 0; i--) if (bc[i]) aux ^=
           keep[i];
        vector<int> oc;
        for (int i = D - 1; i >= 0; i--) if (aux[i])
           oc.push_back(id[i]);
        return {true, oc};
    }
};
```

4.10 Equação Diofantina Linear

```
// Encontra o numero de solucoes de a*x + b*y = c,
// em que x \in [lx, rx] e y \in [ly, ry]
// Usar o comentario para recuperar as solucoes
// (note que o b ao final eh b/gcd(a, b))
// Cuidado com overflow! Tem que caber o quadrado dos valores
//
// O(log(min(a, b)))
// 2e8259

template < typename T > tuple < ll, T, T > ext_gcd(ll a, ll b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd < T > (b%a, a);
    return {g, y - b/a*x, x};
}

// numero de solucoes de a*[lx, rx] + b*[ly, ry] = c
template < typename T = ll > // usar __int128 se for ate 1e18
ll diophantine(ll a, ll b, ll c, ll lx, ll rx, ll ly, ll ry)
```

```
{
    if (lx > rx or ly > ry) return 0;
    if (a == 0 \text{ and } b == 0) \text{ return } c ? 0 :
       (rx-lx+1)*(ry-ly+1);
    auto [g, x, y] = ext_gcd < T > (abs(a), abs(b));
    if (c % g != 0) return 0;
    if (a == 0) return (rx-lx+1)*(ly <= c/b and c/b <= ry);
    if (b == 0) return (ry-ly+1)*(lx <= c/a and c/a <= rx);
    x *= a/abs(a) * c/g, y *= b/abs(b) * c/g, a /= g, b /= g;
    auto shift = [\&](T qt) \{ x += qt*b, y -= qt*a; \};
    auto test = [&](T& k, ll mi, ll ma, ll coef, int t) {
        shift((mi - k)*t / coef);
        if (k < mi) shift(coef > 0 ? t : -t);
        if (k > ma) return pair<T, T>(rx+2, rx+1);
        T x1 = x;
        shift((ma - k)*t / coef);
        if (k > ma) shift(coef > 0 ? -t : t);
        return pair<T, T>(x1, x);
    };
    auto [11, r1] = test(x, lx, rx, b, 1);
    auto [12, r2] = test(y, ly, ry, a, -1);
    if (12 > r2) swap(12, r2);
    T l = max(11, 12), r = min(r1, r2);
    if (1 > r) return 0;
    ll k = (r-1) / abs(b) + 1;
    return k; // solucoes: x = 1 + [0, k)*|b|
}
4.11 Exponenciacao rapida
// (x^y mod m) em O(log(y))
ll pow(ll x, ll y, ll m) { // iterativo
    ll ret = 1;
    while (v) {
```

if (y & 1) ret = (ret * x) % m;

y >>= 1;

x = (x * x) % m;

```
return ret;
}

ll pow(ll x, ll y, ll m) { // recursivo
    if (!y) return 1;
    ll ans = pow(x*x%m, y/2, m);
    return y%2 ? x*ans%m : ans;
}
```

4.12 Fast Walsh Hadamard Transform

```
// FWHT<'|'>(f) eh SOS DP
// FWHT<'&'>(f) eh soma de superset DP
// Se chamar com ^, usar tamanho potencia de 2!!
//
// O(n log(n))
// ffb1d0
template < char op, bool inv = false, class T> vector < T>
   FWHT(vector<T> f) {
   int n = f.size();
   for (int k = 0; (n-1) >> k; k++) for (int i = 0; i < n;
       i++) if (i>>k&1) {
        int j = i^{(1 << k)};
        if (op == '\^') f[j] += f[i], f[i] = f[j] - 2*f[i];
        if (op == ', ') f[i] += (inv ? -1 : 1) * f[j];
        if (op == '&') f[j] += (inv ? -1 : 1) * f[i];
    }
    if (op == '^', and inv) for (auto& i : f) i /= n;
    return f;
```

4.13 FFT

```
// chamar com vector < cplx > para FFT, ou vector < mint > para NTT
//
// O(n log(n))
```

```
// 32e29f
```

```
template < typename T > void fft(vector < T > &a, bool f, int N,
   vector < int > &rev) {
    for (int i = 0; i < N; i++)</pre>
        if (i < rev[i])</pre>
             swap(a[i], a[rev[i]]);
    int 1, r, m;
    vector <T> roots(N):
    for (int n = 2; n \le N; n *= 2) {
        T \text{ root} = T::rt(f, n, N);
        roots[0] = 1;
        for (int i = 1; i < n/2; i++)
             roots[i] = roots[i-1]*root;
        for (int pos = 0; pos < N; pos += n) {
             1 = pos+0, r = pos+n/2, m = 0;
             while (m < n/2) {
                 auto t = roots[m]*a[r];
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
                 l++; r++; m++;
             }
        }
    if (f) {
        auto invN = T(1)/N;
        for(int i = 0; i < N; i++) a[i] = a[i]*invN;
}
template < typename T > vector < T > convolution(vector < T > &a,
   vector <T> &b) {
    vector <T> l(a.begin(), a.end());
    vector <T> r(b.begin(), b.end());
    int ln = l.size(), rn = r.size();
    int N = ln+rn-1;
    int n = 1, log_n = 0;
    while (n \le N) \{ n \le 1; \log_n + +; \}
    vector < int > rev(n);
    for (int i = 0; i < n; ++i){
        rev[i] = 0;
        for (int j = 0; j < log_n; ++j)</pre>
```

4.14 Integração Numerica - Metodo de Simpson 3/8

4.15 Inverso Modular

```
// Computa o inverso de a modulo b
// Se b eh primo, basta fazer
// a^(b-2)

ll inv(ll a, ll b) {
   return a > 1 ? b - inv(b%a, a)*b/a : 1;
}

// computa o inverso modular de 1..MAX-1 modulo um primo
```

4.16 Karatsuba

```
// Os pragmas podem ajudar
// Para n \sim 2e5, roda em < 1 s
// O(n^1.58)
// 8065d6
//#pragma GCC optimize("Ofast")
//#pragma GCC target ("avx,avx2")
template < typename T > void kar(T* a, T* b, int n, T* r, T*
   tmp) {
    if (n <= 64) {
        for (int i = 0; i < n; i++) for (int j = 0; j < n;
            r[i+j] += a[i] * b[j];
        return;
    }
    int mid = n/2;
    T * atmp = tmp, *btmp = tmp+mid, *E = tmp+n;
    memset(E, 0, sizeof(E[0])*n);
    for (int i = 0; i < mid; i++) {</pre>
        atmp[i] = a[i] + a[i+mid];
        btmp[i] = b[i] + b[i+mid];
    }
    kar(atmp, btmp, mid, E, tmp+2*n);
    kar(a, b, mid, r, tmp+2*n);
    kar(a+mid, b+mid, mid, r+n, tmp+2*n);
    for (int i = 0; i < mid; i++) {</pre>
        T \text{ temp} = r[i+mid];
        r[i+mid] += E[i] - r[i] - r[i+2*mid];
        r[i+2*mid] += E[i+mid] - temp - r[i+3*mid];
    }
}
```

```
template < typename T > vector < T > karatsuba (vector < T > a,
    vector < T > b) {
    int n = max(a.size(), b.size());
    while (n&(n-1)) n++;
    a.resize(n), b.resize(n);
    vector < T > ret(2*n), tmp(4*n);
    kar(&a[0], &b[0], n, &ret[0], &tmp[0]);
    return ret;
}
```

4.17 Logaritmo Discreto

```
// Resolve logaritmo discreto com o algoritmo baby step
   giant step
// Encontra o menor x tal que a^x = b (mod m)
// Se nao tem, retorna -1
//
// O(sqrt(m) * log(sqrt(m))
// 739fa8
int dlog(int b, int a, int m) {
    if (a == 0) return b ? -1 : 1; // caso nao definido
    a \%= m, b \%= m;
    int k = 1, shift = 0;
    while (1) {
       int g = gcd(a, m);
        if (g == 1) break;
        if (b == k) return shift;
        if (b % g) return -1;
        b \neq g, m \neq g, shift++;
        k = (11) k * a / g % m;
    }
    int sq = sqrt(m)+1, giant = 1;
    for (int i = 0; i < sq; i++) giant = (11) giant * a % m;
    vector < pair < int , int >> baby;
    for (int i = 0, cur = b; i \le sq; i++) {
```

```
baby.emplace_back(cur, i);
    cur = (11) cur * a % m;
}
sort(baby.begin(), baby.end());

for (int j = 1, cur = k; j <= sq; j++) {
    cur = (11) cur * giant % m;
    auto it = lower_bound(baby.begin(), baby.end(),
        pair(cur, INF));
    if (it != baby.begin() and (--it)->first == cur)
        return sq * j - it->second + shift;
}

return -1;
}
```

4.18 Miller-Rabin

```
// Testa se n eh primo, n <= 3 * 10^18
// O(log(n)), considerando multiplicacao
// e exponenciacao constantes
// 4ebecc
11 mul(ll a, ll b, ll m) {
    ll ret = a*b - ll((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;</pre>
}
11 pow(ll x, ll y, ll m) {
    if (!y) return 1;
    11 ans = pow(mul(x, x, m), y/2, m);
    return y%2 ? mul(x, ans, m) : ans;
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;
    if (n % 2 == 0) return 0;
    ll r = \__builtin\_ctzll(n - 1), d = n >> r;
```

4.19 Pollard's Rho Alg

```
// Usa o algoritmo de deteccao de ciclo de Floyd
// com uma otimizacao na qual o gcd eh acumulado
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
//
// Complexidades (considerando mul constante):
// rho - esperado O(n^{(1/4)}) no pior caso
// fact - esperado menos que O(n^{(1/4)} \log(n)) no pior caso
// b00653
11 mul(ll a, ll b, ll m) {
    11 \text{ ret} = a*b - 11((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;</pre>
}
11 pow(11 x, 11 y, 11 m) {
    if (!y) return 1;
    ll ans = pow(mul(x, x, m), y/2, m);
    return y%2 ? mul(x, ans, m) : ans;
```

```
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;</pre>
    if (n % 2 == 0) return 0;
    ll r = \_builtin\_ctzll(n - 1), d = n >> r;
    for (int a: {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
        11 x = pow(a, d, n);
        if (x == 1 \text{ or } x == n - 1 \text{ or a } \% n == 0) continue;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) break;
        }
        if (x != n - 1) return 0;
    return 1;
}
ll rho(ll n) {
    if (n == 1 or prime(n)) return n;
    auto f = [n](11 x) \{return mul(x, x, n) + 1;\};
    11 x = 0, y = 0, t = 30, prd = 2, x0 = 1, q;
    while (t \% 40 != 0 or gcd(prd, n) == 1) {
        if (x==y) x = ++x0, y = f(x);
        q = mul(prd, abs(x-y), n);
        if (q != 0) prd = q;
        x = f(x), y = f(f(y)), t++;
    }
    return gcd(prd, n);
}
vector<ll> fact(ll n) {
    if (n == 1) return {};
    if (prime(n)) return {n};
    11 d = rho(n);
    vector < ll > l = fact(d), r = fact(n / d);
    1.insert(1.end(), r.begin(), r.end());
```

```
return 1:
}
4.20 Produto de dois long long mod m
// 0(1)
// 260e72
ll mul(ll a, ll b, ll m) { // a*b % m
    11 \text{ ret} = a*b - 11((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;</pre>
}
4.21 Simplex
// Maximiza c^T x s.t. Ax \le b, x \ge 0
// O(2^n), porem executa em O(n^3) no caso medio
// 3a08e5
const double eps = 1e-7;
namespace Simplex {
    vector < vector < double >> T;
    int n, m;
    vector<int> X, Y;
    void pivot(int x, int y) {
        swap(X[y], Y[x-1]);
        for (int i = 0; i <= m; i++) if (i != y) T[x][i] /=
           T[x][y];
        T[x][y] = 1/T[x][y];
        for (int i = 0; i <= n; i++) if (i != x and
           abs(T[i][y]) > eps) {
            for (int j = 0; j <= m; j++) if (j != y) T[i][j]
                -= T[i][y] * T[x][j];
            T[i][y] = -T[i][y] * T[x][y];
        }
```

```
}
// Retorna o par (valor maximo, vetor solucao)
pair < double , vector < double >> simplex(
        vector < vector < double >> A, vector < double >> b,
           vector < double > c) {
    n = b.size(), m = c.size();
    T = vector(n + 1, vector < double > (m + 1));
    X = vector < int > (m):
   Y = vector < int > (n);
    for (int i = 0; i < m; i++) X[i] = i;</pre>
    for (int i = 0; i < n; i++) Y[i] = i+m;
    for (int i = 0; i < m; i++) T[0][i] = -c[i];</pre>
    for (int i = 0; i < n; i++) {</pre>
        for (int j = 0; j < m; j++) T[i+1][j] = A[i][j];
        T[i+1][m] = b[i];
    }
    while (true) {
        int x = -1, y = -1;
        double mn = -eps;
        for (int i = 1; i <= n; i++) if (T[i][m] < mn)
           mn = T[i][m], x = i;
        if (x < 0) break;
        for (int i = 0; i < m; i++) if (T[x][i] < -eps)
           { y = i; break; }
        if (y < 0) return {-1e18, {}}; // sem solucao</pre>
           para Ax <= b
        pivot(x, y);
    while (true) {
        int x = -1, y = -1;
        double mn = -eps;
        for (int i = 0; i < m; i++) if (T[0][i] < mn) mn
           = T[0][i], y = i;
        if (y < 0) break;
        mn = 1e200;
        for (int i = 1; i \le n; i++) if (T[i][y] > eps
            and T[i][m] / T[i][y] < mn)</pre>
            mn = T[i][m] / T[i][y], x = i;
        if (x < 0) return {1e18, {}}; // c^T x eh
```

```
ilimitado
    pivot(x, y);
}

vector<double> r(m);
for(int i = 0; i < n; i++) if (Y[i] < m) r[Y[i]] =
    T[i+1][m];
return {T[0][m], r};
}</pre>
```

4.22 Teorema Chines do Resto

```
// Combina equacoes modulares lineares: x = a (mod m)
// O m final eh o lcm dos m's, e a resposta eh unica mod o
   1 cm
// Os m nao precisam ser coprimos
// Se nao tiver solucao, o 'a' vai ser -1
// c775b2
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b\%a, a);
    return \{g, y - b/a*x, x\};
}
struct crt {
    ll a, m;
    crt() : a(0), m(1) {}
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        auto [g, x, y] = ext\_gcd(m, C.m);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
};
```

4.23 Totiente

```
// O(sqrt(n))
// faeca3

int tot(int n){
   int ret = n;

   for (int i = 2; i*i <= n; i++) if (n % i == 0) {
      while (n % i == 0) n /= i;
      ret -= ret / i;
   }
   if (n > 1) ret -= ret / n;

return ret;
}
```

4.24 Variações do crivo de Eratosthenes

```
// "O" crivo
// Encontra maior divisor primo
// Um numero eh primo sse divi[x] == x
// fact fatora um numero <= lim
// A fatoracao sai ordenada
//
// crivo - O(n log(log(n)))
// fact - O(log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++) if (divi[i] == 1)</pre>
        for (int j = i; j <= lim; j += i) divi[j] = i;</pre>
}
void fact(vector<int>& v, int n) {
    if (n != divi[n]) fact(v, n/divi[n]);
```

```
v.push_back(divi[n]);
}
// Crivo linear
// Mesma coisa que o de cima, mas tambem
// calcula a lista de primos
// O(n)
int divi[MAX];
vector<int> primes;
void crivo(int lim) {
    divi[1] = 1:
    for (int i = 2; i <= lim; i++) {</pre>
        if (divi[i] == 0) divi[i] = i, primes.push_back(i);
        for (int j : primes) {
            if (j > divi[i] or i*j > lim) break;
            divi[i*j] = j;
        }
    }
// Crivo de divisores
// Encontra numero de divisores
// ou soma dos divisores
// O(n log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++)</pre>
        for (int j = i; j <= lim; j += i) {</pre>
            // para numero de divisores
            divi[j]++;
            // para soma dos divisores
            divi[j] += i;
```

```
}
}
// Crivo de totiente
// Encontra o valor da funcao
// totiente de Euler
// O(n log(log(n)))
int tot[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) tot[i] = i;</pre>
    for (int i = 2; i <= lim; i++) if (tot[i] == i)</pre>
        for (int j = i; j <= lim; j += i)</pre>
            tot[i] -= tot[i] / i;
}
// Crivo de funcao de mobius
//
// O(n log(log(n)))
char meb[MAX];
void crivo(int lim) {
    for (int i = 2; i <= lim; i++) meb[i] = 2;</pre>
    meb[1] = 1;
    for (int i = 2; i <= lim; i++) if (meb[i] == 2)</pre>
        for (int j = i; j <= lim; j += i) if (meb[j]) {</pre>
            if (meb[j] == 2) meb[j] = 1;
            meb[j] *= j/i\%i ? -1 : 0;
        }
}
// Crivo linear de funcao multiplicativa
// Computa f(i) para todo 1 <= i <= n, sendo f
// uma funcao multiplicativa (se gcd(a,b) = 1,
// entao f(a*b) = f(a)*f(b)
// f_prime tem que computar f de um primo, e
```

```
// add_prime tem que computar f(p^(k+1)) dado f(p^k) e p
// Se quiser computar f(p^k) dado p \in k, usar os comentarios
// O(n)
vector<int> primes;
int f[MAX], pot[MAX];
//int expo[MAX];
void sieve(int lim) {
    // Funcoes para soma dos divisores:
    auto f_prime = [](int p) { return p+1; };
    auto add_prime = [](int fpak, int p) { return fpak*p+1;
       };
    //auto f_pak = [](int p, int k) {};
    f[1] = 1;
    for (int i = 2; i <= lim; i++) {</pre>
        if (!pot[i]) {
            primes.push_back(i);
            f[i] = f_prime(i), pot[i] = i;
            //\expo[i] = 1;
        for (int p : primes) {
            if (i*p > lim) break;
            if (i%p == 0) {
                f[i*p] = f[i / pot[i]] *
                    add_prime(f[pot[i]], p);
                // se for descomentar, tirar a linha de cima
                   tambem
                //f[i*p] = f[i / pot[i]] * f_pak(p,
                    expo[i]+1);
                //\exp[i*p] = \exp[i]+1;
                pot[i*p] = pot[i] * p;
                break:
            } else {
                f[i*p] = f[i] * f[p];
                pot[i*p] = p;
                //\exp[i*p] = 1;
            }
       }
    }
```

}

5 DP

5.1 Convex Hull Trick (Rafael)

```
// adds tem que serem feitos em ordem de slope
// queries tem que ser feitas em ordem de x
//
// linear
// 30323e
struct CHT {
    int it;
    vector<ll> a, b;
    CHT():it(0){}
    ll eval(int i, ll x){
        return a[i]*x + b[i];
    bool useless(){
        int sz = a.size();
        int r = sz-1, m = sz-2, 1 = sz-3;
        return (b[1] - b[r])*(a[m] - a[1]) <
            (b[1] - b[m])*(a[r] - a[1]);
    }
    void add(ll A, ll B){
        a.push_back(A); b.push_back(B);
        while (!a.empty()){
            if ((a.size() < 3) || !useless()) break;</pre>
            a.erase(a.end() - 2);
            b.erase(b.end() - 2);
        }
    }
    ll get(ll x){
        it = min(it, int(a.size()) - 1);
        while (it+1 < a.size()){</pre>
            if (eval(it+1, x) > eval(it, x)) it++;
            else break;
        }
```

```
return eval(it, x);
};
```

5.2 Convex Hull Trick Dinamico

```
// para double, use LINF = 1/.0, div(a, b) = a/b
// update(x) atualiza o ponto de intersecao da reta x
// overlap(x) verifica se a reta x sobrepoe a proxima
// add(a, b) adiciona reta da forma ax + b
// query(x) computa maximo de ax + b para entre as retas
// O(log(n)) amortizado por insercao
// O(log(n)) por query
// 978376
struct Line {
    mutable 11 a, b, p;
    bool operator < (const Line& o) const { return a < o.a; }</pre>
    bool operator<(ll x) const { return p < x; }</pre>
};
struct dynamic_hull : multiset < Line, less <>> {
    11 div(ll a, ll b) {
        return a / b - ((a ^ b) < 0 and a % b);
    }
    void update(iterator x) {
        if (next(x) == end()) x -> p = LINF;
        else if (x->a == next(x)->a) x->p = x->b >=
           next(x)->b ? LINF : -LINF;
        else x - p = div(next(x) - b - x - b, x - a -
           next(x)->a);
    }
    bool overlap(iterator x) {
        update(x);
        if (next(x) == end()) return 0;
        if (x->a == next(x)->a) return x->b >= next(x)->b;
        return x - p >= next(x) - p;
```

```
void add(ll a, ll b) {
    auto x = insert({a, b, 0});
    while (overlap(x)) erase(next(x)), update(x);
    if (x != begin() and !overlap(prev(x))) x = prev(x),
        update(x);
    while (x != begin() and overlap(prev(x)))
        x = prev(x), erase(next(x)), update(x);
}

ll query(ll x) {
    assert(!empty());
    auto l = *lower_bound(x);
    return l.a * x + l.b;
}
};
```

5.3 Divide and Conquer DP

```
// Particiona o array em k subarrays
// minimizando o somatorio das queries
//
// O(k n log n), assumindo quer query(l, r) eh O(1)
// 4efe6b

11 dp[MAX][2];

void solve(int k, int l, int r, int lk, int rk) {
    if (l > r) return;
    int m = (l+r)/2, p = -1;
    auto& ans = dp[m][k&1] = LINF;
    for (int i = max(m, lk); i <= rk; i++) {
        int at = dp[i+1][~k&1] + query(m, i);
        if (at < ans) ans = at, p = i;
    }
    solve(k, l, m-1, lk, p), solve(k, m+1, r, p, rk);
}

11 DC(int n, int k) {</pre>
```

```
dp[n][0] = dp[n][1] = 0;
for (int i = 0; i < n; i++) dp[i][0] = LINF;
for (int i = 1; i <= k; i++) solve(i, 0, n-i, 0, n-i);
return dp[0][k&1];
}</pre>
```

5.4 Longest Common Subsequence

```
// Computa a LCS entre dois arrays usando
// o algoritmo de Hirschberg para recuperar
// O(n*m), O(n+m) de memoria
// 337bb3
int lcs_s[MAX], lcs_t[MAX];
int dp[2][MAX];
// dp[0][j] = max lcs(s[li...ri], t[lj, lj+j])
void dp_top(int li, int ri, int lj, int rj) {
    memset(dp[0], 0, (rj-lj+1)*sizeof(dp[0][0]));
    for (int i = li; i <= ri; i++) {</pre>
        for (int j = rj; j >= lj; j--)
            dp[0][j-1j] = max(dp[0][j-1j],
            (lcs_s[i] == lcs_t[j]) + (j > 1j ? dp[0][j-1 -
               1j] : 0));
        for (int j = lj+1; j <= rj; j++)</pre>
            dp[0][i - 1i] = max(dp[0][i - 1i], dp[0][i-1]
               -li]);
    }
}
// dp[1][j] = max lcs(s[li...ri], t[lj+j, rj])
void dp_bottom(int li, int ri, int lj, int rj) {
    memset(dp[1], 0, (rj-lj+1)*sizeof(dp[1][0]));
    for (int i = ri; i >= li; i--) {
        for (int j = lj; j <= rj; j++)</pre>
            dp[1][j - 1j] = max(dp[1][j - 1j],
            (lcs_s[i] == lcs_t[j]) + (j < rj ? dp[1][j+1 -
               lj] : 0));
        for (int j = rj-1; j >= lj; j--)
```

```
dp[1][j-1j] = max(dp[1][j-1j], dp[1][j+1-
                lj]);
}
void solve(vector<int>& ans, int li, int ri, int lj, int rj)
    if (li == ri){
        for (int j = lj; j <= rj; j++)</pre>
            if (lcs_s[li] == lcs_t[j]){
                 ans.push_back(lcs_t[j]);
                 break;
            }
        return;
    }
    if (lj == rj){
        for (int i = li; i <= ri; i++){</pre>
            if (lcs_s[i] == lcs_t[lj]){
                 ans.push_back(lcs_s[i]);
                 break:
            }
        }
        return;
    int mi = (li+ri)/2;
    dp_top(li, mi, lj, rj), dp_bottom(mi+1, ri, lj, rj);
    int j_{-} = 0, mx = -1;
    for (int j = lj-1; j <= rj; j++) {</pre>
        int val = 0;
        if (i >= li) val += dp[0][i - li];
        if (j < rj) val += dp[1][j+1 - lj];</pre>
        if (val >= mx) mx = val, j_ = j;
    if (mx == -1) return;
    solve (ans, li, mi, lj, j_), solve (ans, mi+1, ri, j_+1,
       rj);
}
vector<int> lcs(const vector<int>& s, const vector<int>& t) {
```

```
for (int i = 0; i < s.size(); i++) lcs_s[i] = s[i];</pre>
    for (int i = 0; i < t.size(); i++) lcs_t[i] = t[i];</pre>
    vector<int> ans;
    solve(ans, 0, s.size()-1, 0, t.size()-1);
    return ans;
}
5.5 Mochila
// Resolve mochila, recuperando a resposta
// O(n * cap), O(n + cap) de memoria
// 400885
int v[MAX], w[MAX]; // valor e peso
int dp[2][MAX_CAP];
// DP usando os itens [1, r], com capacidade = cap
void get_dp(int x, int 1, int r, int cap) {
    memset(dp[x], 0, (cap+1)*sizeof(dp[x][0]));
    for (int i = 1; i \le r; i++) for (int j = cap; j \ge 0;
       i--)
       if (j - w[i] >= 0) dp[x][j] = max(dp[x][j], v[i] +
           dp[x][j - w[i]]);
}
void solve(vector<int>& ans, int 1, int r, int cap) {
    if (1 == r) {
        if (w[1] <= cap) ans.push_back(1);</pre>
        return;
    }
    int m = (1+r)/2;
    get_dp(0, 1, m, cap), get_dp(1, m+1, r, cap);
    int left_cap = -1, opt = -INF;
    for (int j = 0; j <= cap; j++)</pre>
        if (int at = dp[0][j] + dp[1][cap - j]; at > opt)
```

opt = at, left_cap = j;

left_cap);

solve(ans, 1, m, left_cap), solve(ans, m+1, r, cap -

```
vector < int > knapsack(int n, int cap) {
    vector < int > ans;
    solve(ans, 0, n-1, cap);
    return ans;
}
    SOS DP
// O(n 2^n)
// soma de sub-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1<<N) == f.size());
    for (int i = 0; i < N; i++) for (int mask = 0; mask <
       (1 << N); mask++)
        if (mask>>i&1) f[mask] += f[mask^(1<<ii)];</pre>
    return f;
}
// soma de super-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1<<N) == f.size());
    for (int i = 0; i < N; i++) for (int mask = 0; mask <</pre>
       (1 << N); mask++)
        if (\sim mask >> i\&1) f[mask] += f[mask^(1<<ii)];
    return f;
}
    Strings
```

6.1 Aho-corasick

```
// query retorna o somatorio do numero de matches de
// todas as stringuinhas na stringona
// insert - O(|s| * log(SIGMA))
// build - O(n * SIGMA), onde n = somatorio dos tamanhos das
   strings
// query - O(|s|)
// a30d6e
namespace aho {
    map < char , int > to[MAX];
    int link[MAX], idx, term[MAX], exit[MAX], sobe[MAX];
    void insert(string& s) {
        int at = 0:
        for (char c : s) {
            auto it = to[at].find(c):
            if (it == to[at].end()) at = to[at][c] = ++idx;
            else at = it->second;
        term[at]++, sobe[at]++;
    }
#warning nao esquece de chamar build() depois de inserir
    void build() {
        queue < int > q;
        q.push(0);
        link[0] = exit[0] = -1;
        while (q.size()) {
            int i = q.front(); q.pop();
            for (auto [c, j] : to[i]) {
                int 1 = link[i];
                while (l != -1 \text{ and } !to[l].count(c)) l =
                    link[1];
                link[j] = 1 == -1 ? 0 : to[1][c];
                exit[j] = term[link[j]] ? link[j] :
                    exit[link[j]];
                if (exit[j]+1) sobe[j] += sobe[exit[j]];
                q.push(j);
            }
        }
    }
    int query(string& s) {
```

```
int at = 0, ans = 0;
for (char c : s){
    while (at != -1 and !to[at].count(c)) at =
        link[at];
    at = at == -1 ? 0 : to[at][c];
    ans += sobe[at];
}
return ans;
}
```

6.2 Algoritmo Z

```
// Complexidades:
// z - O(|s|)
// \text{ match - } O(|s| + |p|)
// 74a9e1
vector < int > get_z(string s) {
    int n = s.size();
    vector<int> z(n, 0);
    int 1 = 0, r = 0;
    for (int i = 1; i < n; i++) {</pre>
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]])
            z[i]++;
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
}
```

6.3 Automato de Sufixo

```
// Automato que aceita os sufixos de uma string
// Todas as funcoes sao lineares
// c37a72
```

```
namespace sam {
    int cur, sz, len[2*MAX], link[2*MAX], acc[2*MAX];
    int nxt[2*MAX][26];
    void add(int c) {
        int at = cur;
        len[sz] = len[cur]+1, cur = sz++;
        while (at != -1 and !nxt[at][c]) nxt[at][c] = cur,
           at = link[at]:
        if (at == -1) { link[cur] = 0; return; }
        int q = nxt[at][c];
        if (len[q] == len[at]+1) { link[cur] = q; return; }
        int qq = sz++;
        len[qq] = len[at]+1, link[qq] = link[q];
        for (int i = 0; i < 26; i++) nxt[qq][i] = nxt[q][i];
        while (at !=-1 and nxt[at][c] == q) nxt[at][c] =
           qq, at = link[at];
        link[cur] = link[q] = qq;
   }
    void build(string& s) {
        cur = 0, sz = 0, len[0] = 0, link[0] = -1, sz++;
        for (auto i : s) add(i-'a');
        int at = cur;
        while (at) acc[at] = 1, at = link[at];
   }
    // coisas que da pra fazer:
   11 distinct_substrings() {
        11 \text{ ans} = 0;
        for (int i = 1; i < sz; i++) ans += len[i] -
           len[link[i]];
        return ans;
   }
    string longest_common_substring(string& S, string& T) {
        build(S):
        int at = 0, 1 = 0, ans = 0, pos = -1;
        for (int i = 0; i < T.size(); i++) {</pre>
            while (at and !nxt[at][T[i]-'a']) at = link[at],
               1 = len[at];
            if (nxt[at][T[i]-'a']) at = nxt[at][T[i]-'a'],
               1++:
```

```
else at = 0, 1 = 0;
            if (1 > ans) ans = 1, pos = i;
        return T.substr(pos-ans+1, ans);
    }
    11 dp[2*MAX];
    11 paths(int i) {
        auto& x = dp[i];
        if (x) return x;
        x = 1;
        for (int j = 0; j < 26; j++) if (nxt[i][j]) x +=
           paths(nxt[i][j]);
        return x;
    void kth_substring(int k, int at=0) { // k=1 : menor
       substring lexicog.
        for (int i = 0; i < 26; i++) if (k and nxt[at][i]) {</pre>
            if (paths(nxt[at][i]) >= k) {
                cout << char('a'+i);</pre>
                kth_substring(k-1, nxt[at][i]);
                return:
            }
            k -= paths(nxt[at][i]);
        }
    }
};
6.4 eertree
// Constroi a eertree, caractere a caractere
// Inicializar com a quantidade de caracteres maxima
// size() retorna a quantidade de substrings pal. distintas
// depois de chamar propagate(), cada substring palindromica
// ocorre qt[i] vezes. O propagate() retorna o numero de
// substrings pal. com repeticao
// O(n) amortizado, considerando alfabeto O(1)
```

// a2e693

struct eertree {

```
vector < vector < int >> t;
    int n, last, sz;
    vector < int > s, len, link, qt;
    eertree(int N) {
        t = vector(N+2, vector(26, int()));
        s = len = link = qt = vector < int > (N+2);
        s[0] = -1;
        link[0] = 1, len[0] = 0, link[1] = 1, len[1] = -1;
        sz = 2, last = 0, n = 1;
    }
    void add(char c) {
        s[n++] = c -= 'a';
        while (s[n-len[last]-2] != c) last = link[last];
        if (!t[last][c]) {
            int prev = link[last];
            while (s[n-len[prev]-2] != c) prev = link[prev];
            link[sz] = t[prev][c];
            len[sz] = len[last]+2;
            t[last][c] = sz++;
        }
        qt[last = t[last][c]]++;
    }
    int size() { return sz-2; }
    ll propagate() {
        11 \text{ ret} = 0;
        for (int i = n; i > 1; i--) {
            qt[link[i]] += qt[i];
            ret += qt[i];
        return ret;
   }
};
6.5 KMP
// mathcing(s, t) retorna os indices das ocorrencias
// de s em t
```

// autKMP constroi o automato do KMP

```
//
// Complexidades:
// pi - O(n)
// match - 0(n + m)
// construir o automato - O(|sigma|*n)
// n = |padrao| e m = |texto|
// f50359
template < typename T > vector < int > pi(T s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {</pre>
        while (j and s[j] != s[i]) j = p[j-1];
        if (s[j] == s[i]) j++;
        p[i] = j;
    }
    return p;
}
// c82524
template < typename T > vector < int > matching(T& s, T& t) {
    vector < int > p = pi(s), match;
    for (int i = 0, j = 0; i < t.size(); i++) {</pre>
        while (j \text{ and } s[j] != t[i]) j = p[j-1];
        if (s[j] == t[i]) j++;
        if (j == s.size()) match.push_back(i-j+1), j =
            p[j-1];
    return match;
}
// 79bd9e
struct KMPaut : vector<vector<int>> {
    KMPaut(){}
    KMPaut (string& s) : vector < vector < int >> (26,
       vector < int > (s.size()+1)) {
        vector<int> p = pi(s);
        auto& aut = *this;
        aut[s[0]-'a'][0] = 1;
        for (char c = 0; c < 26; c++)
             for (int i = 1; i <= s.size(); i++)</pre>
                 aut[c][i] = s[i] - 'a' == c ? i+1 :
                     aut[c][p[i-1]];
```

```
};
```

6.6 Manacher

```
// manacher recebe um vetor de T e retorna o vetor com
   tamanho dos palindromos
// ret[2*i] = tamanho do maior palindromo centrado em i
// \text{ ret}[2*i+1] = \text{tamanho maior palindromo centrado em i e i+1}
//
// Complexidades:
// manacher - O(n)
// palindrome - <0(n), 0(1)>
// pal_end - O(n)
// ebb184
template < typename T > vector < int > manacher(const T& s) {
    int 1 = 0, r = -1, n = s.size();
    vector \langle int \rangle d1(n), d2(n);
    for (int i = 0; i < n; i++) {</pre>
        int k = i > r ? 1 : min(d1[l+r-i], r-i);
        while (i+k < n \&\& i-k >= 0 \&\& s[i+k] == s[i-k]) k++;
        d1[i] = k--;
        if (i+k > r) l = i-k, r = i+k;
    }
    1 = 0, r = -1;
    for (int i = 0; i < n; i++) {
        int k = i > r ? 0 : min(d2[1+r-i+1], r-i+1); k++;
        while (i+k \le n \&\& i-k \ge 0 \&\& s[i+k-1] == s[i-k])
            k++:
        d2[i] = --k;
        if (i+k-1 > r) l = i-k, r = i+k-1;
    }
    vector < int > ret(2*n-1);
    for (int i = 0; i < n; i++) ret[2*i] = 2*d1[i]-1;</pre>
    for (int i = 0; i < n-1; i++) ret[2*i+1] = 2*d2[i+1];
    return ret;
}
// 60c6f5
```

```
// verifica se a string s[i..j] eh palindromo
template < typename T> struct palindrome {
    vector < int > man;
    palindrome(const T& s) : man(manacher(s)) {}
    bool query(int i, int j) {
        return man[i+j] >= j-i+1;
};
// 8bd4d5
// tamanho do maior palindromo que termina em cada posicao
template < typename T > vector < int > pal_end(const T& s) {
    vector < int > ret(s.size());
    palindrome <T> p(s);
    ret[0] = 1;
    for (int i = 1; i < s.size(); i++) {</pre>
        ret[i] = min(ret[i-1]+2, i+1);
        while (!p.query(i-ret[i]+1, i)) ret[i]--;
    return ret;
}
```

6.7 Min/max suffix/cyclic shift

```
// Computa o indice do menor/maior sufixo/cyclic shift
// da string, lexicograficamente
//
// O(n)
// af0367

template < typename T > int max_suffix(T s, bool mi = false) {
    s.push_back(*min_element(s.begin(), s.end())-1);
    int ans = 0;
    for (int i = 1; i < s.size(); i++) {
        int j = 0;
        while (ans+j < i and s[i+j] == s[ans+j]) j++;
        if (s[i+j] > s[ans+j]) {
            if (!mi or i != s.size()-2) ans = i;
        } else if (j) i += j-1;
```

```
}
    return ans;
template < typename T > int min_suffix(T s) {
   for (auto& i : s) i *= -1;
    s.push_back(*max_element(s.begin(), s.end())+1);
    return max_suffix(s, true);
}
template < typename T> int max_cyclic_shift(T s) {
    int n = s.size();
    for (int i = 0; i < n; i++) s.push_back(s[i]);</pre>
    return max_suffix(s);
}
template < typename T> int min_cyclic_shift(T s) {
    for (auto& i : s) i *= -1;
    return max_cyclic_shift(s);
}
     String Hashing
```

```
// Complexidades:
// construtor - O(|s|)
// operator() - O(1)
//
// 7b7cb6

mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r) {
    uniform_int_distribution<int> uid(1, r);
    return uid(rng);
}

template<int MOD> struct str_hash {
    static int P;
    vector<1l> h, p;
```

6.9 String Hashing - modulo 2⁶¹ - 1

```
// Quase duas vezes mais lento
//
// Complexidades:
// build - O(|s|)
// operator() - 0(1)
//
// d3c0f0
const 11 MOD = (111<<61) - 1;</pre>
ll mulmod(ll a, ll b) {
    const static 11 LOWER = (111<<30) - 1, GET31 = (111<<31)</pre>
    11 \ 11 = a\&LOWER, h1 = a>>30, 12 = b\&LOWER, h2 = b>>30;
    11 m = 11*h2 + 12*h1, h = h1*h2;
    ll ans = 11*12 + (h>>1) + ((h&1)<<60) + (m>>31) +
       ((m\&GET31) << 30) + 1;
    ans = (ans\&MOD) + (ans>>61), ans = (ans\&MOD) + (ans>>61);
    return ans - 1;
}
mt19937 64
   rng(chrono::steady_clock::now().time_since_epoch().count())
ll uniform(ll l, ll r) {
```

```
uniform_int_distribution < ll > uid(l, r);
    return uid(rng);
}
struct str_hash {
    static 11 P;
    vector<ll> h, p;
    str_hash(string s) : h(s.size()), p(s.size()) {
        p[0] = 1, h[0] = s[0];
        for (int i = 1; i < s.size(); i++)</pre>
            p[i] = mulmod(p[i - 1], P), h[i] = (mulmod(h[i -
                1], P) + s[i])%MOD;
    }
    11 operator()(int 1, int r) { // retorna hash s[1...r]
        ll hash = h[r] - (l ? mulmod(h[l - 1], p[r - l + 1])
           : 0):
        return hash < 0 ? hash + MOD : hash;</pre>
    }
};
11 str_hash::P = uniform(256, MOD - 1); // 1 > | sigma |
6.10 Suffix Array - O(n log n)
// kasai recebe o suffix array e calcula lcp[i],
// o lcp entre s[sa[i],...,n-1] e s[sa[i+1],..,n-1]
//
// Complexidades:
// suffix_array - O(n log(n))
// kasai - O(n)
// d3a6ce
vector<int> suffix_array(string s) {
    s += "$";
    int n = s.size(), N = max(n, 260);
    vector < int > sa(n), ra(n);
    for(int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];</pre>
    for(int k = 0; k < n; k ? k *= 2 : k++) {
        vector < int > nsa(sa), nra(n), cnt(N);
```

```
for (int i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n,
            cnt[ra[i]]++;
        for(int i = 1; i < N; i++) cnt[i] += cnt[i-1];</pre>
        for(int i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] =
            nsa[i];
        for(int i = 1, r = 0; i < n; i++) nra[sa[i]] = r +=</pre>
           ra[sa[i]] !=
            ra[sa[i-1]] or ra[(sa[i]+k)%n] !=
                ra[(sa[i-1]+k)%n];
        ra = nra:
        if (ra[sa[n-1]] == n-1) break;
    }
    return vector < int > (sa.begin()+1, sa.end());
}
vector<int> kasai(string s, vector<int> sa) {
    int n = s.size(), k = 0;
    vector < int > ra(n), lcp(n);
    for (int i = 0; i < n; i++) ra[sa[i]] = i;</pre>
    for (int i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        int j = sa[ra[i]+1];
        while (i+k < n and j+k < n and s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
    }
    return lcp;
}
6.11 Suffix Array - O(n)
// Rapidao
// Computa o suffix array em 'sa', o rank em 'rnk'
// e o lcp em 'lcp'
// query(i, j) retorna o LCP entre s[i..n-1] e s[j..n-1]
// Complexidades
// O(n) para construir
```

// query - O(1)

```
// bab412
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] <= v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1) - __builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
             at = (at << 1) & ((1 << b) -1);
             while (at and op(i-msb(at&-at), i) == i) at ^=
                at&-at;
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);</pre>
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
                t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int index_query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(l+b-1), op(t[n/b*j+x],
           t[n/b*j+y-(1<<j)+1]));
        return op(ans, small(r));
    }
    T query(int 1, int r) { return v[index_query(1, r)]; }
};
struct suffix_array {
    string s;
    int n;
    vector < int > sa, cnt, rnk, lcp;
```

```
rmq<int> RMQ;
bool cmp(int a1, int b1, int a2, int b2, int a3=0, int
   b3=0) {
    return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3
       < b3);
template < typename T> void radix(int* fr, int* to, T* r,
   int N, int k) {
    cnt = vector < int > (k+1, 0);
    for (int i = 0; i < N; i++) cnt[r[fr[i]]]++;</pre>
    for (int i = 1; i <= k; i++) cnt[i] += cnt[i-1];
    for (int i = N-1; i+1; i--) to[--cnt[r[fr[i]]]] =
       fr[i];
void rec(vector<int>& v, int k) {
    auto &tmp = rnk, &m0 = lcp;
    int N = v.size()-3, sz = (N+2)/3, sz2 = sz+N/3;
    vector < int > R(sz2+3);
    for (int i = 1, j = 0; j < sz2; i += i%3) R[j++] = i;
    radix(&R[0], &tmp[0], &v[0]+2, sz2, k);
    radix(&tmp[0], &R[0], &v[0]+1, sz2, k);
    radix(&R[0], &tmp[0], &v[0]+0, sz2, k);
    int dif = 0;
    int 10 = -1, 11 = -1, 12 = -1;
    for (int i = 0; i < sz2; i++) {</pre>
        if (v[tmp[i]] != 10 or v[tmp[i]+1] != 11 or
           v[tmp[i]+2] != 12)
            10 = v[tmp[i]], 11 = v[tmp[i]+1], 12 =
               v[tmp[i]+2], dif++;
        if (tmp[i]%3 == 1) R[tmp[i]/3] = dif;
        else R[tmp[i]/3+sz] = dif;
    }
    if (dif < sz2) {</pre>
        rec(R, dif);
        for (int i = 0; i < sz2; i++) R[sa[i]] = i+1;</pre>
    } else for (int i = 0; i < sz2; i++) sa[R[i]-1] = i;
    for (int i = 0, j = 0; j < sz2; i++) if (sa[i] < sz)
```

```
tmp[j++] = 3*sa[i];
    radix(&tmp[0], &m0[0], &v[0], sz, k);
    for (int i = 0; i < sz2; i++)</pre>
        sa[i] = sa[i] < sz ? 3*sa[i]+1 : 3*(sa[i]-sz)+2;
    int at = sz2+sz-1, p = sz-1, p2 = sz2-1;
    while (p \ge 0 \text{ and } p2 \ge 0) {
        if ((sa[p2]%3==1 and cmp(v[m0[p]], v[sa[p2]],
            R[m0[p]/3],
            R[sa[p2]/3+sz])) or (sa[p2]%3==2 and
                cmp(v[m0[p]], v[sa[p2]],
            v[m0[p]+1], v[sa[p2]+1], R[m0[p]/3+sz],
                R[sa[p2]/3+1]))
            sa[at--] = sa[p2--];
        else sa[at--] = m0[p--];
    while (p >= 0) sa[at--] = m0[p--];
    if (N\%3==1) for (int i = 0; i < N; i++) sa[i] =
       sa[i+1];
}
suffix_array(const string& s_) : s(s_), n(s.size()),
   sa(n+3),
        cnt(n+1), rnk(n), lcp(n-1) {
    vector < int > v(n+3);
    for (int i = 0; i < n; i++) v[i] = i;
    radix(&v[0], &rnk[0], &s[0], n, 256);
    int dif = 1;
    for (int i = 0; i < n; i++)</pre>
        v[rnk[i]] = dif += (i and s[rnk[i]] !=
            s[rnk[i-1]]);
    if (n \ge 2) rec(v, dif);
    sa.resize(n);
    for (int i = 0; i < n; i++) rnk[sa[i]] = i;</pre>
    for (int i = 0, k = 0; i < n; i++, k -= !!k) {
        if (rnk[i] == n-1) {
            k = 0;
             continue;
        int j = sa[rnk[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k])
```

```
k++:
        lcp[rnk[i]] = k;
    RMQ = rmq < int > (lcp);
}
// hash ateh aqui (sem o RMQ): 1ff700
int query(int i, int j) {
    if (i == j) return n-i;
    i = rnk[i], j = rnk[j];
    return RMQ.query(min(i, j), max(i, j)-1);
pair<int, int> next(int L, int R, int i, char c) {
    int 1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n \text{ or } s[i+sa[m]] < c) l = m+1;
        else r = m;
    if (1 == R+1 \text{ or } s[i+sa[1]] > c) \text{ return } \{-1, -1\};
    L = 1;
    1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n \text{ or } s[i+sa[m]] <= c) l = m+1;
        else r = m;
    R = 1-1;
    return {L, R};
// quantas vezes 't' ocorre em 's' - O(|t| log n)
int count_substr(string& t) {
    int L = 0, R = n-1;
    for (int i = 0; i < t.size(); i++) {</pre>
        tie(L, R) = next(L, R, i, t[i]);
        if (L == -1) return 0;
    }
    return R-L+1;
}
// exemplo de f que resolve o problema
```

```
//
   https://codeforces.com/edu/course/2/lesson/2/5/practice/com
ll f(ll k) { return k*(k+1)/2; }
11 dfs(int L, int R, int p) { // dfs na suffix tree
   chamado em pre ordem
    int ext = L != R ? RMQ.query(L, R-1) : n - sa[L];
    // Tem 'ext - p' substrings diferentes que ocorrem
       'R-L+1' vezes
    // O LCP de todas elas eh 'ext'
    ll ans = (ext-p)*f(R-L+1);
    // L eh terminal, e folha sse L == R
    if (sa[L]+ext == n) L++;
    /* se for um SA de varias strings separadas como
       s#t$u&, usar no lugar do if de cima
       (separadores < 'a', diferentes e inclusive no
    while (L \leq R && (sa[L]+ext == n || s[sa[L]+ext] \leq
      'a')) {
       L++;
    } */
    while (L <= R) {
        int idx = L != R ? RMQ.index_query(L, R-1) : -1;
        if (idx == -1 or lcp[idx] != ext) idx = R;
        ans += dfs(L, idx, ext);
        L = idx+1;
    return ans;
}
// sum over substrings: computa, para toda substring t
   distinta de s.
// \sum f(# ocorrencias de t em s) - 0 (n)
11 sos() { return dfs(0, n-1, 0); }
```

};

6.12 Suffix Array Dinamico

```
// Mantem o suffix array, lcp e rank de uma string,
// premitindo push_front e pop_front
// O operador [i] return um par com sa[i] e lcp[i]
// lcp[i] tem o lcp entre sa[i] e sa[i-1] (lcp[0] = 0)
//
// Complexidades:
// Construir sobre uma string de tamanho n: O(n log n)
// push_front e pop_front: O(log n) amortizado
// 4c2a2e
struct dyn_sa {
    struct node {
        int sa, lcp;
        node *1, *r, *p;
        int sz, mi;
        node(int sa_, int lcp_, node* p_) : sa(sa_),
           lcp(lcp_),
            1(NULL), r(NULL), p(p_), sz(1), mi(lcp) {}
        void update() {
            sz = 1, mi = lcp;
            if (1) sz += 1->sz, mi = min(mi, 1->mi);
            if (r) sz += r->sz, mi = min(mi, r->mi);
        }
    };
    node* root;
    vector<1l> tag; // tag of a suffix (reversed id)
    string s; // reversed
    dyn_sa() : root(NULL) {}
    dyn_sa(string s_) : dyn_sa() {
        reverse(s_.begin(), s_.end());
        for (char c : s_) push_front(c);
    \sim dvn_sa() {
        vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->1), q.push_back(x->r);
```

```
delete x:
   }
}
int size(node* x) { return x ? x->sz : 0; }
int mirror(int i) { return s.size()-1 - i; }
bool cmp(int i, int j) {
    if (s[i] != s[j]) return s[i] < s[j];</pre>
    if (i == 0 or j == 0) return i < j;
    return tag[i-1] < tag[j-1];</pre>
}
void fix_path(node* x) { while (x) x->update(), x =
   x - p;  }
void flatten(vector < node * > & v, node * x) {
    if (!x) return:
    flatten(v, x->1);
    v.push_back(x);
    flatten(v, x->r);
}
void build(vector < node *> & v, node * & x, node * p, int L,
   int R, 11 1, 11 r) {
   if (L > R) return void(x = NULL);
    int M = (L+R)/2;
    11 m = (1+r)/2;
    x = v[M];
    x - p = p;
    tag[x->sa] = m;
    build(v, x - > 1, x, L, M - 1, 1, m - 1), build(v, x - > r, x,
       M+1, R, m+1, r);
    x->update();
void fix(node*& x, node* p, ll l, ll r) {
    if (3*max(size(x->1), size(x->r)) \le 2*size(x))
       return x->update();
    vector < node *> v:
    flatten(v. x):
    build(v, x, p, 0, v.size()-1, 1, r);
}
node* next(node* x) {
    if (x->r) {
        x = x - > r;
        while (x->1) x = x->1;
```

```
return x:
    }
    while (x->p \text{ and } x->p->r == x) x = x->p;
    return x->p;
}
node* prev(node* x) {
    if (x->1) {
        x = x - > 1;
        while (x->r) x = x->r;
        return x;
    }
    while (x->p \text{ and } x->p->1 == x) x = x->p;
    return x->p;
}
int get_lcp(node* x, node* y) {
    if (!x or !y) return 0; // change defaut value here
    if (s[x->sa] != s[y->sa]) return 0;
    if (x->sa == 0 \text{ or } y->sa == 0) \text{ return } 1;
    return 1 + query(mirror(x->sa-1), mirror(y->sa-1));
}
void add_suf(node*& x, node* p, int id, ll l, ll r) {
    if (!x) {
        x = new node(id, 0, p);
        node *prv = prev(x), *nxt = next(x);
        int lcp_cur = get_lcp(prv, x), lcp_nxt =
            get_lcp(x, nxt);
        if (nxt) nxt->lcp = lcp_nxt, fix_path(nxt);
        x->lcp = lcp_cur;
        tag[id] = (1+r)/2;
        x->update();
        return;
    }
    if (cmp(id, x->sa)) add_suf(x->1, x, id, 1,
       tag[x->sa]-1);
    else add_suf(x->r, x, id, tag[x->sa]+1, r);
    fix(x, p, 1, r);
void push_front(char c) {
    s += c;
    tag.push_back(-1);
    add_suf(root, NULL, s.size() - 1, 0, 1e18);
```

```
}
void rem_suf(node*& x, int id) {
    if (x->sa != id) {
         if (tag[id] < tag[x->sa]) return rem_suf(x->1,
            id):
         return rem_suf(x->r, id);
    node* nxt = next(x);
    if (nxt) nxt \rightarrow lcp = min(nxt \rightarrow lcp, x \rightarrow lcp),
        fix_path(nxt);
    node *p = x->p, *tmp = x;
    if (!x->1 \text{ or } !x->r) {
         x = x->1 ? x->1 : x->r;
         if (x) x->p = p;
    } else {
         for (tmp = x->1, p = x; tmp->r; tmp = tmp->r) p
            = tmp;
         x->sa = tmp->sa, x->lcp = tmp->lcp;
         if (tmp->1) tmp->1->p = p;
         if (p->1 == tmp) p->1 = tmp->1;
         else p->r = tmp->1;
    fix_path(p);
    delete tmp;
}
void pop_front() {
    if (!s.size()) return;
    s.pop_back();
    rem_suf(root, s.size());
    tag.pop_back();
}
int query(node* x, ll l, ll r, ll a, ll b) {
    if (!x \text{ or } tag[x->sa] == -1 \text{ or } r < a \text{ or } b < 1) \text{ return}
        s.size():
    if (a <= 1 and r <= b) return x->mi;
    int ans = s.size();
    if (a \le tag[x->sa] \text{ and } tag[x->sa] \le b) ans =
        min(ans, x->lcp);
    ans = min(ans, query(x->1, 1, tag[x->sa]-1, a, b));
```

```
ans = min(ans, query(x->r, tag[x->sa]+1, r, a, b));
        return ans;
    }
    int query(int i, int j) { // lcp(s[i..], s[j..])
        if (i == j) return s.size() - i;
        ll a = tag[mirror(i)], b = tag[mirror(j)];
        int ret = query(root, 0, 1e18, min(a, b)+1, max(a, b)
            b));
        return ret;
    }
    // optional: get rank[i], sa[i] and lcp[i]
    int rank(int i) {
        i = mirror(i):
        node* x = root;
        int ret = 0;
        while (x) {
            if (tag[x->sa] < tag[i]) {</pre>
                 ret += size(x->1)+1;
                 x = x - > r;
             } else x = x -> 1;
        }
        return ret;
    pair<int, int> operator[](int i) {
        node* x = root;
        while (1) {
            if (i < size(x->1)) x = x->1;
             else {
                 i \rightarrow size(x\rightarrow 1);
                 if (!i) return {mirror(x->sa), x->lcp};
                 i--, x = x->r;
        }
    }
};
6.13 Trie
// trie T() constroi uma trie para o alfabeto das letras
   minusculas
```

```
// T.insert(s) - O(|s|*sigma)
// T.erase(s) - O(|s|)
// T.find(s) retorna a posicao, 0 se nao achar - O(|s|)
// T.count_pref(s) numero de strings que possuem s como
   prefixo - O(|s|)
//
// Nao funciona para string vazia
// 979609
struct trie {
    vector < vector < int >> to;
    vector<int> end, pref;
    int sigma; char norm;
    trie(int sigma_=26, char norm_='a') : sigma(sigma_),
       norm(norm_) {
        to = {vector < int > (sigma)};
        end = \{0\}, pref = \{0\};
    }
    void insert(string s) {
        int x = 0;
        for(auto c : s) {
            int &nxt = to[x][c-norm];
            if(!nxt) {
                nxt = to.size();
                to.push_back(vector<int>(sigma));
                end.push_back(0), pref.push_back(0);
            }
            x = nxt, pref[x]++;
        }
        end[x]++;
    }
    void erase(string s) {
        int x = 0;
        for(char c : s) {
            int &nxt = to[x][c-norm];
            x = nxt, pref[x] --;
            if(!pref[x]) nxt = 0;
        }
        end[x]--;
```

// trie T(tamanho do alfabeto, menor caracter) tambem pode

ser usado

```
}
int find(string s) {
    int x = 0;
    for(auto c : s) {
        x = to[x][c-norm];
        if(!x) return 0;
    }
    return x;
}
int count_pref(string s) {
    return pref[find(s)];
}
};
```

7 Primitivas

7.1 Aritmetica Modular

```
// O mod tem q ser primo
// 291da6
template < int p> struct mod_int {
    ll pow(ll b, ll e) {
        if (e == 0) return 1;
        ll r = pow(b*b%p, e/2);
        if (e\%2 == 1) r = (r*b)\%p;
        return r;
    }
    11 inv(11 b) { return pow(b, p-2); }
    using m = mod_int;
    int v;
    mod_int() : v(0) {}
    mod_int(ll v_) {
        v = v_{-};
        if (v >= p or v <= -p) v %= p;
        if (v < 0) v += p;
    }
    m& operator+=(const m &a) {
```

```
v += a.v:
    if (v >= p) v -= p;
    return *this;
}
m& operator -= (const m &a) {
    v \rightarrow a.v;
    if (v < 0) v += p;
    return *this;
}
m& operator*=(const m &a) {
    v = v * 11(a.v) % p;
    return *this;
}
m& operator/=(const m &a) {
    v = v * inv(a.v) % p;
    return *this;
}
m operator-(){ return m(-v); }
m& operator^=(11 e) {
    if (e < 0){
        v = inv(v);
        e = -e;
    v = pow(v, e\%(p-1));
    return *this;
}
bool operator == (const m &a) { return v == a.v; }
bool operator!=(const m &a) { return v != a.v; }
friend istream &operator>>(istream &in, m& a) {
    11 val; in >> val;
    a = m(val);
    return in;
}
friend ostream &operator << (ostream &out, m a) {</pre>
    return out << a.v;</pre>
friend m operator+(m a, m b) { return a+=b; }
friend m operator-(m a, m b) { return a-=b; }
friend m operator*(m a, m b) { return a*=b; }
friend m operator/(m a, m b) { return a/=b; }
friend m operator^(m a, ll e) { return a^=e; }
```

```
static m rt(bool f, int n, int N){
        if (p == 998244353) {
            m r(102292); // an element of order N
            int ord = (1 << 23);
            while (ord != N){
                r = r*r;
                ord /= 2;
            }
            if (f) r = r^{(-1)};
            return r^(N/n);
        }
        return -1;
    }
};
typedef mod_int<(int)1e9+7> mint;
7.2 Big Integer
// Complexidades: (para n digitos)
// Soma, subtracao, comparacao - O(n)
// Multiplicacao - O(n log(n))
// Divisao, resto - O(n^2)
struct bint {
    static const int BASE = 1e9;
    vector < int > v;
    bool neg;
    bint() : neg(0) {}
    bint(int val) : bint() { *this = val; }
    bint(long long val) : bint() { *this = val; }
    void trim() {
        while (v.size() and v.back() == 0) v.pop_back();
        if (!v.size()) neg = 0;
    }
    // converter de/para string | cin/cout
```

```
bint(const char* s) : bint() { from_string(string(s)); }
bint(const string& s) : bint() { from_string(s); }
void from_string(const string& s) {
    v.clear(), neg = 0;
    int ini = 0;
    while (ini < s.size() and (s[ini] == '-' or s[ini]</pre>
       == '+' or s[ini] == '0'))
        if (s[ini++] == '-') neg = 1;
    for (int i = s.size()-1; i >= ini; i -= 9) {
        int at = 0;
        for (int j = max(ini, i - 8); j <= i; j++) at =</pre>
           10*at + (s[j]-'0');
        v.push_back(at);
    if (!v.size()) neg = 0;
}
string to_string() const {
    if (!v.size()) return "0";
    string ret;
    if (neg) ret += '-';
    for (int i = v.size()-1; i >= 0; i--) {
        string at = ::to_string(v[i]);
        int add = 9 - at.size();
        if (i+1 < v.size()) for (int j = 0; j < add;</pre>
           j++) ret += '0';
        ret += at;
    return ret;
}
friend istream& operator>>(istream& in, bint& val) {
    string s; in >> s;
    val = s;
    return in;
friend ostream& operator << (ostream& out, const bint&</pre>
   val) {
    string s = val.to_string();
    out << s;
    return out;
// operators
```

```
friend bint abs(bint val) {
    val.neg = 0;
    return val;
friend bint operator-(bint val) {
    if (val != 0) val.neg ^= 1;
    return val;
bint& operator=(const bint& val) { v = val.v, neg =
   val.neg; return *this; }
bint& operator=(long long val) {
    v.clear(), neg = 0;
    if (val < 0) neg = 1, val *= -1;
    for (; val; val /= BASE) v.push_back(val % BASE);
    return *this;
int cmp(const bint& r) const { // menor: -1 | igual: 0 |
   maior: 1
    if (neg != r.neg) return neg ? -1 : 1;
    if (v.size() != r.v.size()) {
        int ret = v.size() < r.v.size() ? -1 : 1;</pre>
        return neg ? -ret : ret;
    for (int i = int(v.size())-1; i >= 0; i--) {
        if (v[i] != r.v[i]) {
            int ret = v[i] < r.v[i] ? -1 : 1;</pre>
            return neg ? -ret : ret;
    }
    return 0;
friend bool operator < (const bint& 1, const bint& r) {
   return 1.cmp(r) == -1; }
friend bool operator > (const bint& 1, const bint& r) {
   return 1.cmp(r) == 1; }
friend bool operator <= (const bint& 1, const bint& r) {</pre>
   return 1.cmp(r) <= 0; }</pre>
friend bool operator >= (const bint& 1, const bint& r) {
   return 1.cmp(r) >= 0;}
friend bool operator == (const bint& 1, const bint& r) {
   return 1.cmp(r) == 0; }
friend bool operator!=(const bint& 1, const bint& r) {
```

```
return 1.cmp(r) != 0; }
bint& operator +=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this -= -r;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {
        if (i == v.size()) v.push_back(0);
        v[i] += c + (i < r.v.size() ? r.v[i] : 0);
       if ((c = v[i] >= BASE)) v[i] -= BASE;
    return *this;
}
friend bint operator+(bint a, const bint& b) { return a
   += b: }
bint& operator -=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this += -r;
    if ((!neg and *this < r) or (neg and r < *this)) {</pre>
        *this = r - *this;
        neg ^= 1;
        return *this;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {</pre>
        v[i] = c + (i < r.v.size() ? r.v[i] : 0);
        if ((c = v[i] < 0)) v[i] += BASE;</pre>
    trim();
    return *this;
friend bint operator-(bint a, const bint& b) { return a
   -= b; }
// operators de * / %
bint& operator *=(int val) {
    if (val < 0) val *= -1, neg ^= 1;
    for (int i = 0, c = 0; i < v.size() or c; i++) {
        if (i == v.size()) v.push_back(0);
        long long at = (long long) v[i] * val + c;
        v[i] = at % BASE;
        c = at / BASE;
    trim();
```

```
return *this;
friend bint operator *(bint a, int b) { return a *= b; }
friend bint operator *(int a, bint b) { return b *= a; }
using cplx = complex < double >;
void fft(vector < cplx > & a, bool f, int N, vector < int > &
   rev) const {
    for (int i = 0; i < N; i++) if (i < rev[i])</pre>
       swap(a[i], a[rev[i]]);
    vector < cplx > roots(N);
    for (int n = 2; n <= N; n *= 2) {</pre>
        const static double PI = acos(-1);
        for (int i = 0; i < n/2; i++) {
             double alpha = (2*PI*i)/n;
            if (f) alpha = -alpha;
            roots[i] = cplx(cos(alpha), sin(alpha));
        }
        for (int pos = 0; pos < N; pos += n)
            for (int l = pos, r = pos+n/2, m = 0; m <
                n/2; 1++, r++, m++) {
                 auto t = roots[m]*a[r];
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
            }
    }
    if (!f) return;
    auto invN = cplx(1)/cplx(N);
    for (int i = 0; i < N; i++) a[i] *= invN;</pre>
}
vector < long long > convolution (const vector < int > & a,
   const vector < int > % b) const {
    vector < cplx > l(a.begin(), a.end()), r(b.begin(),
       b.end());
    int ln = l.size(), rn = r.size(), N = ln+rn+1, n =
       1, \log_n = 0;
    while (n <= N) n <<= 1, log_n++;</pre>
    vector < int > rev(n);
    for (int i = 0; i < n; i++) {</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; j++) if (i>>j&1)
            rev[i] = 1 << (log_n-1-j);
    }
```

```
l.resize(n), r.resize(n);
    fft(l, false, n, rev), fft(r, false, n, rev);
    for (int i = 0; i < n; i++) l[i] *= r[i];
    fft(1, true, n, rev);
    vector<long long> ret;
    for (auto& i : 1) ret.push_back(round(i.real()));
    return ret;
}
vector < int > convert_base (const vector < int > & a, int from,
   int to) const {
    static vector < long long > pot(10, 1);
    if (pot[1] == 1) for (int i = 1; i < 10; i++) pot[i]</pre>
       = 10*pot[i-1];
    vector < int > ret;
    long long at = 0;
    int digits = 0;
    for (int i : a) {
        at += i * pot[digits];
        digits += from;
        while (digits >= to) {
            ret.push_back(at % pot[to]);
            at /= pot[to];
            digits -= to;
        }
    }
    ret.push_back(at);
    while (ret.size() and ret.back() == 0)
       ret.pop_back();
    return ret;
}
bint operator*(const bint& r) const { // O(n log(n))
    bint ret;
    ret.neg = neg ^ r.neg;
    auto conv = convolution(convert_base(v, 9, 4),
       convert_base(r.v, 9, 4));
    long long c = 0;
    for (auto i : conv) {
        long long at = i+c;
        ret.v.push_back(at % 10000);
        c = at / 10000;
    for (; c; c /= 10000) ret.v.push_back(c%10000);
```

```
ret.v = convert base(ret.v, 4, 9):
   if (!ret.v.size()) ret.neg = 0;
    return ret;
bint& operator*=(const bint& r) { return *this = *this *
   r; };
bint& operator/=(int val) {
    if (val < 0) neg ^= 1, val *= -1;</pre>
    for (int i = int(v.size())-1, c = 0; i >= 0; i--) {
        long long at = v[i] + c * (long long) BASE;
        v[i] = at / val;
        c = at % val;
    }
    trim();
    return *this;
friend bint operator/(bint a, int b) { return a /= b; }
int operator %=(int val) {
    if (val < 0) val *= -1;
    long long at = 0;
    for (int i = int(v.size())-1; i >= 0; i--)
        at = (BASE * at + v[i]) % val;
    if (neg) at *= -1;
    return at;
}
friend int operator%(bint a, int b) { return a %= b; }
friend pair < bint, bint > divmod(const bint& a_, const
   bint& b_{-}) { // O(n^2)
    if (a_ == 0) return {0, 0};
    int norm = BASE / (b_.v.back() + 1);
    bint a = abs(a_) * norm;
    bint b = abs(b_) * norm;
    bint q, r;
    for (int i = a.v.size() - 1; i >= 0; i--) {
        r *= BASE, r += a.v[i];
        long long upper = b.v.size() < r.v.size() ?</pre>
           r.v[b.v.size()] : 0:
        int lower = b.v.size() - 1 < r.v.size() ?</pre>
           r.v[b.v.size() - 1] : 0;
        int d = (upper * BASE + lower) / b.v.back();
        r \rightarrow b*d;
        while (r < 0) r += b, d--; // roda O(1) vezes
```

```
q.v.push_back(d);
}
reverse(q.v.begin(), q.v.end());
q.neg = a_.neg ^ b_.neg;
r.neg = a_.neg;
q.trim(), r.trim();
return {q, r / norm};
}
bint operator/(const bint& val) { return divmod(*this, val).first; }
bint& operator/=(const bint& val) { return *this = *this / val; }
bint operator%(const bint& val) { return divmod(*this, val).second; }
bint& operator%=(const bint& val) { return *this = *this % val; }
};
```

7.3 Complex

```
struct cplx{
    double r, i;
    cplx(complex < double > c):r(c.real()), i(c.imag()){}
    cplx() : r(0), i(0){}
    cplx(double r_{-}, double i_{-} = 0):r(r_{-}), i(i_{-})
    double abs(){ return hypot(r, i); }
    double abs2(){ return r*r + i*i; }
    cplx inv() { return cplx(r/abs2(), i/abs2()); }
    cplx& operator += (cplx a) {
        r += a.r; i += a.i;
        return *this;
    }
    cplx& operator -=(cplx a){
        r -= a.r; i -= a.i;
        return *this;
    }
    cplx& operator*=(cplx a){
        double r_ = r*a.r - i*a.i;
        double i_ = r*a.i + i*a.r;
```

```
r = r_{\cdot};
    i = i_{-};
    return *this;
cplx conj(){
    return cplx(r, -i);
cplx& operator/=(cplx a){
    auto a_ = a.inv();
    return (*this)*=a_;
cplx operator - () { return cplx(-r, -i); }
cplx& operator = (double e){
    return *this = pow(complex < double > (r, i), e);
friend ostream &operator<<(ostream &out, cplx a){</pre>
    return out << a.r << " + " << a.i << "i";
friend cplx operator+(cplx a, cplx b){ return a+=b; }
friend cplx operator-(cplx a, cplx b){ return a-=b; }
friend cplx operator*(cplx a, cplx b){ return a*=b; }
friend cplx operator/(cplx a, cplx b){ return a/=b; }
friend cplx operator^(cplx a, double e){ return a^=e; }
//fft
static int fft_len(int N){
    int n = 1, log_n = 0;
    while (n <= N) { n <<= 1; log_n++; }
    return log_n;
static cplx rt(bool f, int n, int N){
    const static double PI = acos(-1);
    double alpha = (2*PI)/n;
    if (f) alpha = -alpha;
    return cplx(cos(alpha), sin(alpha));
}
```

7.4 Matroid

};

```
// Matroids de Grafo e Particao
// De modo geral, toda Matroid contem um build() linear
// e uma funcao constante oracle()
// oracle(i) responde se o conjunto continua independente
// apos adicao do elemento i
// oracle(i, j) responde se o conjunto continua indepente
// apos trocar o elemento i pelo elemento j
//
// Intersecao sem peso O(n^2*r)
// em que n eh o tamanho do conjunto e r eh o tamanho da
   resposta
// Matroid Grafica
// Matroid das florestas de um grafo
// Um conjunto de arestas eh independente se formam uma
   floresta
//
// build() : O(n)
// oracle() : O(1)
// 691847
struct graphic_matroid {
    int n, m, t;
    vector < array < int, 2>> edges;
    vector < vector < int >> g;
    vector < int > comp, in, out;
    graphic_matroid(int n_, vector<array<int, 2>> edges_) :
       n(n_), m(edges_.size()), edges(edges_), g(n),
       comp(n), in(n), out(n) {}
    void dfs(int u) {
        in[u] = t++;
        for (auto v : g[u]) if (in[v] == -1)
            comp[v] = comp[u], dfs(v);
        out[u] = t;
    }
    void build(vector<int> I) {
        t = 0:
        for (int u = 0; u < n; u++) g[u].clear(), in[u] = -1;
        for (int e : I) {
            auto [u, v] = edges[e];
            g[u].push_back(v), g[v].push_back(u);
        }
```

```
for (int u = 0; u < n; u++) if (in[u] == -1)
            comp[u] = u, dfs(u);
    bool is_ancestor(int u, int v) {
        return in[u] <= in[v] and in[v] < out[u];</pre>
    bool oracle(int e) {
        return comp[edges[e][0]] != comp[edges[e][1]];
    }
    bool oracle(int e, int f) {
        if (oracle(f)) return true;
        int u = edges[e][in[edges[e][0]] < in[edges[e][1]]];</pre>
        return is_ancestor(u, edges[f][0]) != is_ancestor(u,
           edges[f][1]);
    }
}:
// Matroid de particao ou cores
// Um conjunto eh independente se a quantidade de elementos
// de cada cor nao excede a capacidade da cor
// Quando todas as capacidades sao 1, um conjunto eh
   independente
// se todas as suas cores sao distintas
//
// build() : O(n)
// oracle() : 0(1)
// caa72a
struct partition_matroid {
    vector<int> cap, color, d;
    partition_matroid(vector<int> cap_, vector<int> color_)
        : cap(cap_), color(color_), d(cap.size()) {}
    void build(vector<int> I) {
        fill(d.begin(), d.end(), 0);
        for (int u : I) d[color[u]]++;
    bool oracle(int u) {
        return d[color[u]] < cap[color[u]];</pre>
    }
    bool oracle(int u, int v) {
        return color[u] == color[v] or oracle(v);
    }
```

```
}:
// Intersecao de matroid sem pesos
// Dadas duas matroids M1 e M2 definidas sobre o mesmo
// conjunto I, retorna o maior subconjunto de I
// que eh independente tanto para M1 quanto para M2
// O(r^2*n)
// 899f94
// Matroid "pesada" deve ser a M2
template < typename Matroid1, typename Matroid2 >
vector<int> matroid_intersection(int n, Matroid1 M1,
   Matroid2 M2) {
    vector < bool > b(n):
    vector < int > I[2];
    bool converged = false;
    while (!converged) {
        I[0].clear(), I[1].clear();
        for (int u = 0; u < n; u++) I[b[u]].push_back(u);
        M1.build(I[1]), M2.build(I[1]);
        vector < bool > target(n), pushed(n);
        queue < int > q;
        for (int u : I[0]) {
            target[u] = M2.oracle(u);
            if (M1.oracle(u)) pushed[u] = true, q.push(u);
        vector < int > p(n, -1);
        converged = true;
        while (q.size()) {
            int u = q.front(); q.pop();
            if (target[u]) {
                converged = false;
                for (int v = u; v != -1; v = p[v]) b[v] =
                   !b[v]:
                break;
            for (int v : I[!b[u]]) if (!pushed[v]) {
                if ((b[u] and M1.oracle(u, v)) or (b[v] and
                   M2.oracle(v, u)))
                    p[v] = u, pushed[v] = true, q.push(v);
```

```
}
    return I[1];
}
// Intersecao de matroid com pesos
// Dadas duas matroids M1 e M2 e uma funcao de pesos w,
   todas definidas sobre
// um conjunto I retorna o maior subconjunto de I
   (desempatado pelo menor peso)
// que eh independente tanto para M1 quanto para M2
// A resposta eh construida incrementando o tamanho conjunto
   T de 1 em 1
// Se nao tiver custo negativo, nao precisa de SPFA
// O(r^3*n) com SPFA
// O(r^2*n*log(n)) com Dijkstra e potencial
// 3a09d1
template < typename T, typename Matroid1, typename Matroid2>
vector < int > weighted_matroid_intersection(int n, vector < T >
   w, Matroid1 M1, Matroid2 M2) {
    vector < bool > b(n), target(n), is_inside(n);
    vector < int > I[2], from(n);
    vector < pair < T, int >> d(n);
    auto check_edge = [&](int u, int v) {
        return (b[u] and M1.oracle(u, v)) or (b[v] and
           M2.oracle(v, u));
    };
    while (true) {
        I[0].clear(), I[1].clear();
        for (int u = 0; u < n; u++) I[b[u]].push_back(u);
        // I[1] contem o conjunto de tamanho I[1].size() de
           menor peso
        M1.build(I[1]), M2.build(I[1]);
        for (int u = 0; u < n; u++) {
            target[u] = false, is_inside[u] = false, from[u]
               = -1;
            d[u] = {numeric_limits <T>::max(), INF};
        }
        deque <T> q;
```

```
sort(I[0].begin(), I[0].end(), [&](int i, int j){
       return w[i] < w[j]; });</pre>
    for (int u : I[0]) {
        target[u] = M2.oracle(u);
        if (M1.oracle(u)) {
            if (is_inside[u]) continue;
            d[u] = \{w[u], 0\};
            if (!q.empty() and d[u] > d[q.front()])
                q.push_back(u);
            else q.push_front(u);
            is_inside[u] = true;
        }
    }
    while (q.size()) {
        int u = q.front(); q.pop_front();
        is_inside[u] = false;
        for (int v : I[!b[u]]) if (check_edge(u, v)) {
            pair <T, int > nd(d[u].first + w[v],
                d[u].second + 1);
            if (nd < d[v]) {</pre>
                from[v] = u, d[v] = nd;
                if (is_inside[v]) continue;
                if (q.size() and d[v] > d[q.front()])
                    q.push_back(v);
                else q.push_front(v);
                 is_inside[v] = true;
            }
        }
    pair < T, int > mini = pair(numeric_limits < T > :: max(),
       INF);
    int targ = -1;
    for (int u : I[0]) if (target[u] and d[u] < mini)</pre>
        mini = d[u], targ = u;
    if (targ != -1) for (int u = targ; u != -1; u =
       from[u])
        b[u] = !b[u], w[u] *= -1;
    else break;
}
return I[1];
```

}

7.5 Primitivas de fração

```
// Funciona com o Big Int
// a626d1
template < typename T = int > struct frac {
    T num, den;
    template < class U > frac(U num_ = 0, U den_ = 1) :
       num(num_), den(den_) {
        assert(den != 0):
        if (den < 0) num *= -1, den *= -1;
        T g = gcd(abs(num), den);
        num /= g, den /= g;
    friend bool operator < (const frac& 1, const frac& r) {</pre>
        return l.num * r.den < r.num * l.den;</pre>
    friend frac operator+(const frac& 1, const frac& r) {
        return {1.num*r.den + 1.den*r.num, 1.den*r.den};
    friend frac operator-(const frac& 1, const frac& r) {
        return {1.num*r.den - 1.den*r.num, 1.den*r.den};
    friend frac operator*(const frac& 1, const frac& r) {
        return {1.num*r.num, 1.den*r.den};
    friend frac operator/(const frac& 1, const frac& r) {
        return {1.num*r.den, 1.den*r.num};
    friend ostream& operator << (ostream& out, frac f) {</pre>
        out << f.num << ',' << f.den;
        return out;
};
```

7.6 Primitivas de matriz - exponenciacao

```
// d05c24
```

```
#define MODULAR false
template < typename T> struct matrix : vector < vector < T>> {
    int n, m;
    void print() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) cout <<</pre>
                (*this)[i][j] << " ";
            cout << endl;</pre>
        }
    }
    matrix(int n_, int m_, bool ident = false) :
             vector < vector < T >> (n_, vector < T > (m_, 0)), n(n_),
                m(m) {
        if (ident) {
             assert(n == m):
            for (int i = 0; i < n; i++) (*this)[i][i] = 1;
        }
    }
    matrix(const vector < vector < T >> & c) :
       vector < vector < T >> (c),
        n(c.size()), m(c[0].size()) {}
    matrix(const initializer_list<initializer_list<T>>& c) {
        vector < vector < T >> val;
        for (auto& i : c) val.push_back(i);
        *this = matrix(val);
    }
    matrix<T> operator*(matrix<T>& r) {
        assert(m == r.n);
        matrix <T> M(n, r.m);
        for (int i = 0; i < n; i++) for (int k = 0; k < m;
           k++)
            for (int j = 0; j < r.m; j++) {
                 T \text{ add} = (*this)[i][k] * r[k][i];
#if MODULAR
#warning Usar matrix<11> e soh colocar valores em [0, MOD)
   na matriz!
                 M[i][i] += add%MOD;
                 if (M[i][j] >= MOD) M[i][j] -= MOD;
#else
```

```
M[i][i] += add:
#endif
        return M;
    matrix<T> operator^(ll e){
        matrix<T> M(n, n, true), at = *this;
        while (e) {
            if (e\&1) M = M*at;
           e >>= 1;
            at = at*at;
        }
        return M;
    void apply_transform(matrix M, ll e){
        auto& v = *this;
        while (e) {
            if (e\&1) v = M*v;
           e >>= 1;
            M = M * M;
       }
};
```

7.7 Primitivas Geometricas

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;

#define sq(x) ((x)*(x))

bool eq(ld a, ld b) {
   return abs(a - b) <= eps;
}

// a8b7d6
struct pt { // ponto
   ld x, y;</pre>
```

```
pt(1d x_{-} = 0, 1d y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;</pre>
        if (!eq(y, p.y)) return y < p.y;</pre>
        return 0;
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y);
    }
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const ld c) const { return pt(x*c , y*c
    pt operator / (const ld c) const { return pt(x/c , y/c
       ): }
    ld operator * (const pt p) const { return x*p.x + y*p.y;
    ld operator ^ (const pt p) const { return x*p.y - y*p.x;
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
};
// 7ab617
struct line { // reta
    pt p, q;
   line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
    }
};
// PONTO & VETOR
// c684fb
ld dist(pt p, pt q) { // distancia
   return hypot(p.y - q.y, p.x - q.x);
}
```

```
// 80f2b6
ld dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
// cf7f33
ld norm(pt v) { // norma do vetor
    return dist(pt(0, 0), v);
}
// 404df7
ld angle(pt v) { // angulo do vetor com o eixo x
    ld ang = atan2(v.y, v.x);
    if (ang < 0) ang += 2*pi;</pre>
    return ang;
}
// 1b1d4a
ld sarea(pt p, pt q, pt r) { // area com sinal
    return ((q-p)^(r-q))/2;
}
// 98c42f
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return eq(sarea(p, q, r), 0);
}
// 85d09d
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea(p, q, r) > eps;
}
// 41a7b4
pt rotate(pt p, ld th) { // rotaciona o ponto th radianos
    return pt(p.x * cos(th) - p.y * sin(th),
            p.x * sin(th) + p.y * cos(th));
}
// e4ad5e
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.y, p.x);
```

```
}
// RETA
// 0fb984
bool isvert(line r) { // se r eh vertical
   return eq(r.p.x, r.q.x);
// 726d68
bool isinseg(pt p, line r) { // se p pertence ao seg de r
   pt a = r.p - p, b = r.q - p;
   return eq((a \hat{b}), 0) and (a * b) < eps;
}
// a0a30b
ld get_t(pt v, line r) { // retorna t tal que t*v pertence a
   reta r
   return (r.p^r.q) / ((r.p-r.q)^v);
// 2329fe
pt proj(pt p, line r) { // projecao do ponto p na reta r
   if (r.p == r.q) return r.p;
   r.q = r.q - r.p; p = p - r.p;
   pt proj = r.q * ((p*r.q) / (r.q*r.q));
   return proj + r.p;
}
// 111fd2
pt inter(line r, line s) { // r inter s
    if (eq((r.p - r.q) ^ (s.p - s.q), 0)) return pt(DINF,
       DINF):
    r.q = r.q - r.p, s.p = s.p - r.p, s.q = s.q - r.p;
   return r.q * get_t(r.q, s) + r.p;
}
// 35998c
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
   if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
```

```
return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
// 1b72e1
ld disttoline(pt p, line r) { // distancia do ponto a reta
    return 2 * abs(sarea(p, r.p, r.q)) / dist(r.p, r.q);
}
// 3679c0
ld disttoseg(pt p, line r) { // distancia do ponto ao seg
    if ((r.q - r.p)*(p - r.p) < 0) return dist(r.p, p);
    if ((r.p - r.q)*(p - r.q) < 0) return dist(r.q, p);
    return disttoline(p, r);
}
// 222358
ld distseg(line a, line b) { // distancia entre seg
    if (interseg(a, b)) return 0;
    ld ret = DINF;
    ret = min(ret, disttoseg(a.p, b));
    ret = min(ret, disttoseg(a.q, b));
    ret = min(ret, disttoseg(b.p, a));
    ret = min(ret, disttoseg(b.q, a));
    return ret;
}
// POLIGONO
// corta poligono com a reta r deixando os pontos p tal que
// ccw(r.p, r.q, p)
// 2538f9
vector<pt> cut_polygon(vector<pt> v, line r) { // O(n)
    vector<pt> ret;
    for (int j = 0; j < v.size(); j++) {</pre>
        if (ccw(r.p, r.q, v[j])) ret.push_back(v[j]);
        if (v.size() == 1) continue;
        line s(v[j], v[(j+1)\%v.size()]);
        pt p = inter(r, s);
```

```
if (isinseg(p, s)) ret.push_back(p);
    }
    ret.erase(unique(ret.begin(), ret.end()), ret.end());
    if (ret.size() > 1 and ret.back() == ret[0])
       ret.pop_back();
    return ret;
}
// distancia entre os retangulos a e b (lados paralelos aos
   eixos)
// assume que ta representado (inferior esquerdo, superior
// 630253
ld dist_rect(pair<pt, pt> a, pair<pt, pt> b) {
   ld hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -
       b.second.x:
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.v;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.v;
   return dist(pt(0, 0), pt(hor, vert));
}
// 5df9cf
ld polarea(vector<pt> v) { // area do poligono
   ld ret = 0;
   for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret):
}
// se o ponto ta dentro do poligono: retorna 0 se ta fora,
// 1 se ta no interior e 2 se ta na borda
// a6423f
int inpol(vector < pt > & v, pt p) { // O(n)
    int qt = 0;
   for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)%v.size();
        if (eq(p.y, v[i].y) and eq(p.y, v[j].y)) {
```

```
if ((v[i]-p)*(v[j]-p) < eps) return 2;
            continue;
        }
        bool baixo = v[i].y+eps < p.y;</pre>
        if (baixo == (v[j].y+eps < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (eq(t, 0)) return 2;
        if (baixo == (t > eps)) qt += baixo ? 1 : -1;
    }
    return qt != 0;
}
// c58350
bool interpol(vector<pt> v1, vector<pt> v2) { // se dois
   poligonos se intersectam - O(n*m)
    int n = v1.size(), m = v2.size();
    for (int i = 0; i < n; i++) if (inpol(v2, v1[i])) return
       1;
    for (int i = 0; i < n; i++) if (inpol(v1, v2[i])) return
    for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
        if (interseg(line(v1[i], v1[(i+1)%n]), line(v2[j],
           v2[(j+1)%m]))) return 1;
    return 0;
}
// 12559f
ld distpol(vector<pt> v1, vector<pt> v2) { // distancia
   entre poligonos
    if (interpol(v1, v2)) return 0;
    ld ret = DINF;
    for (int i = 0; i < v1.size(); i++) for (int j = 0; j <
       v2.size(); j++)
        ret = min(ret, distseg(line(v1[i], v1[(i + 1) %
           v1.size()]),
                    line(v2[j], v2[(j + 1) % v2.size()])));
    return ret;
}
// 32623c
```

```
vector<pt> convex_hull(vector<pt> v) { // convex hull - 0(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector<pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (1.size() > 1 and !ccw(1[1.size()-2],
           1.back(), v[i]))
            1.pop_back();
        1.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 and !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1;
}
// 2dcbc9
struct convex_pol {
    vector < pt > pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(\log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) 1 = m+1;
            else r = m;
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (l == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
    }
};
```

```
// CIRCUNFERENCIA
// a125e4
pt getcenter(pt a, pt b, pt c) { // centro da circunf dado 3
   pontos
    b = (a + b) / 2;
    c = (a + c) / 2;
    return inter(line(b, b + rotate90(a - b)),
            line(c, c + rotate90(a - c)));
}
// cd80c0
vector<pt> circ_line_inter(pt a, pt b, pt c, ld r) { //
   intersecao da circunf (c, r) e reta ab
    vector<pt> ret;
    b = b-a, a = a-c;
    1d A = b*b;
    1d B = a*b;
    1d C = a*a - r*r;
    1d D = B*B - A*C;
    if (D < -eps) return ret;</pre>
    ret.push_back(c+a+b*(-B+sqrt(D+eps))/A);
    if (D > eps) ret.push_back(c+a+b*(-B-sqrt(D))/A);
    return ret;
}
// fb11d8
vector<pt> circ_inter(pt a, pt b, ld r, ld R) { //
   intersecao da circunf (a, r) e (b, R)
    vector <pt> ret;
    1d d = dist(a, b);
    if (d > r+R or d+min(r, R) < max(r, R)) return ret;</pre>
    1d x = (d*d-R*R+r*r)/(2*d);
    1d y = sqrt(r*r-x*x);
    pt v = (b-a)/d;
    ret.push_back(a+v*x + rotate90(v)*y);
    if (y > 0) ret.push_back(a+v*x - rotate90(v)*y);
    return ret;
}
// 3a44fb
bool operator <(const line& a, const line& b) { //</pre>
```

```
comparador pra reta
   // assume que as retas tem p < q</pre>
   pt v1 = a.q - a.p, v2 = b.q - b.p;
    if (!eq(angle(v1), angle(v2))) return angle(v1) <</pre>
       angle(v2);
   return ccw(a.p, a.q, b.p); // mesmo angulo
bool operator ==(const line& a, const line& b) {
    return !(a < b) and !(b < a);</pre>
}
// comparador pro set pra fazer sweep line com segmentos
// 36729f
struct cmp_sweepline {
    bool operator () (const line& a, const line& b) const {
        // assume que os segmentos tem p < q
        if (a.p == b.p) return ccw(a.p, a.q, b.q);
        if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or
           a.p.x+eps < b.p.x)
            return ccw(a.p, a.q, b.p);
        return ccw(a.p, b.q, b.p);
   }
};
// comparador pro set pra fazer sweep angle com segmentos
// f778aa
pt dir;
struct cmp_sweepangle {
    bool operator () (const line& a, const line& b) const {
        return get_t(dir, a) + eps < get_t(dir, b);</pre>
   }
};
```

7.8 Primitivas Geometricas 3D

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
```

```
#define sq(x) ((x)*(x))
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, y, z;
    pt(1d x_{-} = 0, 1d y_{-} = 0, 1d z_{-} = 0) : x(x_{-}), y(y_{-}),
       z(z_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;
        if (!eq(z, p.z)) return z < p.z;
        return 0:
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y) and eq(z, p.z);
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y, z+p.z); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y, z-p.z); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       , z*c ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       , z/c ); }
    ld operator * (const pt p) const { return x*p.x + y*p.y
       + z*p.z; }
    pt operator ^ (const pt p) const { return pt(y*p.z -
       z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); }
};
// converte de coordenadas polares para cartesianas
// (angulos devem estar em radianos)
// phi eh o angulo com o eixo z (cima) theta eh o angulo de
   rotacao ao redor de z
pt convert(ld rho, ld th, ld phi) {
    return pt(sin(phi) * cos(th), sin(phi) * sin(th),
       cos(phi)) * rho;
}
```

```
// distancia
ld dist(pt a, pt b) {
    return sqrt(sq(a.x-b.x) + sq(a.y-b.y) + sq(a.z-b.z));
}

// rotaciona p ao redor do eixo u por um angulo a
pt rotate(pt p, pt u, ld a) {
    u = u / dist(u, pt());
    return u * (u * p) + (u ^ p ^ u) * cos(a) + (u ^ p) *
        sin(a);
}
```

7.9 Primitivas Geometricas Inteiras

```
#define sq(x) ((x)*(11)(x))
// 840720
struct pt { // ponto
    int x, y;
    pt(int x_{-} = 0, int y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (x != p.x) return x < p.x;
        return y < p.y;</pre>
    bool operator == (const pt p) const {
        return x == p.x and y == p.y;
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const int c) const { return pt(x*c, y*c);
    11 operator * (const pt p) const { return x*(11)p.x +
       v*(ll)p.v; }
    11 operator ^ (const pt p) const { return x*(11)p.y -
       y*(11)p.x; }
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
```

```
}:
// 7ab617
struct line { // reta
    pt p, q;
    line() {}
   line(pt p_, pt q_) : p(p_), q(q_) {}
   friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
};
// PONTO & VETOR
// 51563e
11 dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
// bf431d
ll sarea2(pt p, pt q, pt r) { // 2 * area com sinal
    return (q-p)^(r-q);
}
// a082d3
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return sarea2(p, q, r) == 0;
}
// 42bb09
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea2(p, q, r) > 0;
}
// fcf924
int quad(pt p) { // quadrante de um ponto
    return (p.x<0)^3*(p.y<0);
}
// 77187b
bool compare_angle(pt p, pt q) { // retorna se ang(p) <</pre>
   ang(q)
```

```
if (quad(p) != quad(q)) return quad(p) < quad(q);</pre>
   return ccw(q, pt(0, 0), p);
}
// e4ad5e
pt rotate90(pt p) { // rotaciona 90 graus
   return pt(-p.y, p.x);
// RETA
// c9f07f
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    pt a = r.p - p, b = r.q - p;
   return (a ^ b) == 0 and (a * b) <= 0;
}
// 35998c
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
   if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
// dd8702
int segpoints(line r) { // numero de pontos inteiros no
   segmento
   return 1 + \_gcd(abs(r.p.x - r.q.x), abs(r.p.y - r.q.y));
}
// d273be
double get_t(pt v, line r) { // retorna t tal que t*v
   pertence a reta r
   return (r.p^r.q) / (double) ((r.p-r.q)^v);
}
// POLIGONO
// quadrado da distancia entre os retangulos a e b (lados
```

```
paralelos aos eixos)
// assume que ta representado (inferior esquerdo, superior
   direito)
// e13018
11 dist2_rect(pair<pt, pt> a, pair<pt, pt> b) {
    int hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -</pre>
       b.second.x:
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.y;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.y;
    return sq(hor) + sq(vert);
}
// d5f693
11 polarea2(vector<pt> v) { // 2 * area do poligono
    11 \text{ ret} = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea2(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret);
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
// afd587
int inpol(vector<pt>& v, pt p) \{ // O(n) \}
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)%v.size();
        if (p.y == v[i].y \text{ and } p.y == v[j].y) {
            if ((v[i]-p)*(v[j]-p) <= 0) return 2;</pre>
             continue;
        bool baixo = v[i].y < p.y;</pre>
        if (baixo == (v[j].y < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (!t) return 2;
        if (baixo == (t > 0)) qt += baixo ? 1 : -1;
    }
```

```
return at != 0:
}
// 32623c
vector<pt> convex_hull(vector<pt> v) { // convex hull - 0(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector<pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (l.size() > 1 and !ccw(l[l.size()-2],
           1.back(), v[i]))
            1.pop_back();
        1.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 \text{ and } !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1;
}
// af2d96
11 interior_points(vector<pt> v) { // pontos inteiros dentro
   de um poligono simples
   11 b = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        b += segpoints(line(v[i], v[(i+1)\%v.size()])) - 1;
    return (polarea2(v) - b) / 2 + 1;
// 2dcbc9
struct convex_pol {
    vector < pt > pol;
    convex_pol(vector < pt > v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(\log(n))
```

```
if (pol.size() == 1) return p == pol[0];
        int l = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) 1 = m+1;
            else r = m;
        }
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (l == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
};
// dca598
bool operator <(const line& a, const line& b) { //</pre>
   comparador pra reta
   // assume que as retas tem p < q</pre>
    pt v1 = a.q - a.p, v2 = b.q - b.p;
    bool b1 = compare_angle(v1, v2), b2 = compare_angle(v2,
       v1);
    if (b1 or b2) return b1;
    return ccw(a.p, a.q, b.p); // mesmo angulo
}
bool operator ==(const line& a, const line& b) {
    return !(a < b) and !(b < a);</pre>
}
// comparador pro set pra fazer sweep line com segmentos
// 6774df
struct cmp_sweepline {
    bool operator () (const line& a, const line& b) const {
        // assume que os segmentos tem p < q
        if (a.p == b.p) return ccw(a.p, a.q, b.q);
        if (a.p.x != a.q.x and (b.p.x == b.q.x or a.p.x <</pre>
           b.p.x))
            return ccw(a.p, a.q, b.p);
        return ccw(a.p, b.q, b.p);
    }
};
// comparador pro set pra fazer sweep angle com segmentos
// 1ee7f5
```

```
pt dir;
struct cmp_sweepangle {
    bool operator () (const line& a, const line& b) const {
        return get_t(dir, a) < get_t(dir, b);
    }
};</pre>
```

8 Extra

8.1 fastIO.cpp

```
int read_int() {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (1) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    if (ch == '-') minus = true;
    else result = ch-'0';
    while (1) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result *10 + (ch - '0');
    if (minus) return -result;
    else return result;
}
```

8.2 vimrc

```
set ts=4 si ai sw=4 number mouse=a syntax on
```

8.3 timer.cpp

```
// timer T; T() -> retorna o tempo em ms desde que declarou
using namespace chrono;
struct timer : high_resolution_clock {
    const time_point start;
    timer(): start(now()) {}
```

```
int operator()() {
        return duration_cast < milliseconds > (now() -
           start).count();
    }
};
8.4 rand.cpp
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r){
    uniform_int_distribution < int > uid(1, r);
    return uid(rng);
}
8.5 template.cpp
#include <bits/stdc++.h>
using namespace std;
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
typedef long long 11;
const int INF = 0x3f3f3f3f;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f11;
int main() { _
    exit(0);
}
```

8.6 debug.cpp

```
void debug_out(string s, int line) { cerr << endl; }
template < typename H, typename... T>
void debug_out(string s, int line, H h, T... t) {
    if (s[0] != ',') cerr << "Line(" << line << ") ";
    do { cerr << s[0]; s = s.substr(1);
    } while (s.size() and s[0] != ',');
    cerr << " = " << h;
    debug_out(s, line, t...);
}
#ifdef DEBUG
#define debug(...) debug_out(#__VA_ARGS__, __LINE__,
    __VA_ARGS__)
#else
#define debug(...)
#endif</pre>
```

8.7 stress.sh

```
P=a
make ${P} ${P}2 gen || exit 1
for ((i = 1; ; i++)) do
    ./gen $i > in
    ./${P} < in > out
    ./${P}2 < in > out2
    if (! cmp -s out out2) then
        echo "--> entrada:"
        cat in
        echo "--> saida1:"
        cat out
        echo "--> saida2:"
        cat out2
        break;
    fi
    echo $i
done
```

8.8 makefile

```
CXX = g++
CXXFLAGS = -fsanitize=address, undefined
    -fno-omit-frame-pointer -g -Wall -Wshadow -std=c++17
    -Wno-unused-result -Wno-sign-compare -Wno-char-subscripts
#-fuse-ld=gold
```

8.9 hash.sh

```
# Para usar (hash das linhas [11, 12]):
# ./hash.sh arquivo.cpp 11 12
sed -n $2','$3' p' $1 | sed '/^#w/d' | cpp -dD -P
    -fpreprocessed | tr -d '[:space:]' | md5sum | cut -c-6
```