P425/1 S.6 PURE MATHEMATICS BELIEF TEST 1 TIME: 1 Hour		
1.	Given that the line $y = mx + c$ is a tangent to the circle $(x - a)^2 + (y - b)^2 = r^2$. Show that $(1 + m^2)r^2 = (c - b + am)^2$	05 marks
2.	Prove that $tan^{-1}\left(\frac{x}{x+y}\right) + tan^{-1}\left(\frac{y}{2x+y}\right) = \frac{\pi}{4}$	05 marks
3.	Sketch the curve $y = \frac{2x^2 - 9x - 18}{x^2 - x - 2}$ showing clearly the asymptotes and turning points.	12 marks
4.	Show that $1 + i\sqrt{2}$ is a root of the polynomial $x^4 + x^2 + 2x + 6$, hence, find the other roots of the equation $x^4 + x^2 + 2x + 6 = 0$	05 marks
5.	Given that points $A(2, 13, -5)$, $B(3, y, -3)$ and $C(6, -7, m)$ are collinear, find m and y .	05 marks
6.	(a) If the roots of the equation $x^2 + 2ax + b^2 = 0$ are $\alpha_1 and \beta_1$ and the roots of the equation $x^2 + 2cx + d^2 = 0$ are $\alpha_2 and \beta_2$, Prove that if $\alpha_1 \alpha_2 + \beta_1 \beta_2 = 0$, then $b^2 d^2 = a^2 d^2 + b^2 c^2$. (b) Prove that $\binom{n}{r} + \binom{n}{r-1} = \binom{n+1}{r}$	12 marks
	END.	

CHECK NOTE:

- ➤ Read through the question well and identify the correct approach required.
- > Apply the right concept
- ➤ Use the right/correct steps
- ➤ A good handwriting and neat presentation should be emphasized.
- ➤ Think about time. Most times candidates fail to complete the paper due failure to manage time. Give each number its worthy duration.
- ➤ A distinction draws you much closer to an A.