Question 1

Please look at the code

Question 2

Based on the 9*9 graph, I think the best one is Euclidean with Complete, since this one have the best compression.

Question 3

Note: I created a table with 9*9 grid, if you want to look at the Pictures clearly, Please zoom in the whole PDF. Also, the title of those

pictures are abbreviated in its parameters.

Question 4

k	Kmeans	HAC
2	9. 92904325703	9. 95085590959
5	9. 44031602578	9. 8329327602
10	8. 74400365965	9.31725996918
25	7. 73391017964	8. 4213973504
50	6. 92284623547	7. 7536915939

75	6. 2828072282	7. 29576132651
100	5. 83930075723	6.89471295027
200	4. 78724694719	5. 77561829302

Question 5

Based on the graph that I plotted, I would recommend using K-Means with cluster = 25. On the graph, when the k reaches to 25, the slope has a dramatic change, but after that, the slope is getting small. So, I would choose k = 25. For elbow, it's also a good choice of k for k = 25 because the improvement it produces is low and the run time is high.

