SUMMARY: Steps of ANOVA F Test for Comparing Population Means of Several Groups

- Assumptions: Independent random samples (either from random sampling or a randomized experiment), normal population distributions with equal standard deviations
- 2. Hypotheses: H_0 : $\mu_1 = \mu_2 = \cdots = \mu_g$ (Equal population means for g groups), H_a : at least two of the population means are unequal.
- 3. Test statistic: $F = \frac{\text{Between-groups variability}}{\text{Within-groups variability}}$

F sampling distribution has $df_1=g-1$, $df_2=N-g=$ total sample size - number of groups

- **4. P-value:** Right-tail probability of above observed F value

SUMMARY: Confidence Interval Comparing Means

For two groups i and j, with sample means \overline{y}_i and \overline{y}_j having sample sizes n_i and n_{j_i} the 95% confidence interval for $\mu_i = \mu_i$ is

$$\overline{y}_i - \overline{y}_j \pm t_{.025} s \sqrt{\frac{1}{n_i} + \frac{1}{n_i}}$$

The *t*-score from the *t* table has df = N - g = total sample size - # groups.

SUMMARY: F Test Statistics in Two-Way ANOVA

For testing the main effect for a factor, the test statistic is the ratio of mean squares,

$$F = \frac{\text{MS for the factor}}{\text{MS error}}.$$

The MS for the factor is a variance estimate based on between-groups variation for that factor. The MS error is a within-groups variance estimate that is always unbiased.