Chapter 6 Pushdown automata

Outline

- 6.0 Introduction
- **♦** 6.1 Definition of PDA
- 6.2 The Language of a PDA
- 6.3 Equivalence of PDA's and CFG's
- 6.4 Deterministic PDA's

6.0 Introduction

Basic concepts:

- CFL's may be accepted by pushdown automata (PDA's)
- A PDA is an ε -NFA with a stack.
- The stack can be read, pushed, and popped only at the top.
- Two different versions of PDA's ----
 - Accepting strings by "entering an accepting state"
 - Accepting strings by "emptying the stack"

6.0 Introduction

- Basic concepts (cont'd)
 - The original PDA is *nondeterministic*.
 - There is also a subclass of PDA's which are deterministic in nature.
 - Deterministic PDA's (DPDA's) resembles parsers for CFL's in compilers.

6.0 Introduction

Basic concepts (cont'd)

- It is interesting to know what "language constructs" which a DPDA can accept.
- The stack is *infinite* in size, so can be used as a "memory" to eliminate the weakness of "finite states" of NFA's, which cannot accept languages like $L = \{a^nb^n \mid n \ge 1\}$.

◆ 6.1.1 Informal Introduction

- Advantage of the stack --- the stack can
 "remember" an *infinite* amount of information.
- Weakness of the stack --- the stack can only be read in a first-in-last-out manner.
- Therefore, it can accept languages like $L_{wwr} = \{ww^R \mid w \text{ is in } (\mathbf{0} + \mathbf{1})^*\}$, but not languages like $L = \{a^nb^nc^n \mid n \geq 1\}$.

- ◆ 6.1.1 Informal Introduction
 - A graphic model of a PDA

◆ 6.1.1 Informal Introduction

- The input string on the "tape" can only be read.
- But operations applied to the stack is complicated;
 we may replace the top symbol by any *string* ----
 - By a single symbol
 - By a string of symbols
 - •By the empty string ε which means the top stack symbol is "popped up (eliminated)."

• 6.1.1 Informal Introduction

- **Example 6.1** Design a PDA to accept the language $L_{wwr} = \{ww^R \mid w \text{ is in } (\mathbf{0} + \mathbf{1})^*\}.$
 - •In start state q_0 , copy input symbols onto the stack.
 - At any time, *nondeterministically* guess **whether** the middle of ww^R is reached and enter q_1 , **or** continue copying input symbols.
 - •In q_1 , compare remaining input symbols with those on the stack one by one.
 - If the stack can be so emptied, then the matching of w with w^R succeeds.

♦ 6.1.2 Formal Definition

A PDA is a 7-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where

- − *Q*: a finite set of states
- \square Σ : a finite set of input symbols
- \square Γ : a finite stack alphabet
- δ : a transition function such that $\delta(q, a, X)$ is <u>a set</u> **of pairs** (p, y) where
 - $q \in Q$ (the current state)
 - $a \in \Sigma$ or $a = \varepsilon$ (an input symbol or an empty string)
 - **♦***X*∈Γ
 - $\triangleright p \in Q$ (the next state)

♦ 6.1.2 Formal Definition

(continued from last page)

- $\gamma \in \Gamma^*$ which replaces X on the top of the stack: when $\gamma = \varepsilon$, the top stack symbol is **popped up** when $\gamma = X$, the stack is unchanged when $\gamma = YZ$, X is **replaced by** Z, and Y is pushed to the top when $\gamma = \alpha Z$, X is replaced by Z and string α is pushed to the top
- $\bullet q_0$: the start state
- Z_0 : the start symbol of the stack
- $\bullet F$: the set of accepting or final states

6.1.2 Formal Definition

- **Example 6.2 (c**ont'd from Example 6.1) Designing a PDA to accept the language L_{ww}^{R} .
 - Need a start symbol Z of the stack and a 3rd state q_2 as the accepting state.
 - $\bullet P = (\{q_0, q_1, q_2\}, \{0, 1\}, \{0, 1, Z_0\}, \delta, q_0, Z_0, \{q_2\})$ such that

(initial pushing steps with Z_0 to mark stack bottom)

- 6.1.2 Formal Definition
 - Example 6.2 (cont'd)

(check if input is ε which is in L_{ww^R})

(check the string's middle)

(matching pairs)

(entering final state)13

6.1.3 A Graphic Notation for PDA's

- The transition diagram of a PDA is easier to follow.
- We use "a, X/α " on an arc from state p to q to represent that "transition $\delta(q, a, X)$ contains (p, α) "

 Example 6.3 The transition diagram of the PDA of Example 6.2 is as shown in Fig. 6.2 (see next page) (in p. 230 of the textbook).

• 6.1.3 A Graphic Notation for PDA's

– Where is the nondeterminism?

- 6.1.4 Instantaneous Descriptions of a PDA
 - The *configuration* of a PDA is represented by a 3-tuple (q, w, y) where
 - $\bullet q$ is the state;
 - \bullet w is the remaining input; and
 - γ is the stack content.
 - Such a 3-tuple is called an *instantaneous description* (*ID*) of the PDA.

6.1.4 Instantaneous Descriptions of a PDA

- The change of an ID into another is called a *move*, denoted by the symbol $\frac{1}{p}$, or $\frac{1}{p}$ when P is understood.
- So, if $\delta(q, \boldsymbol{a}, X)$ contains $(p, \boldsymbol{\alpha})$, then the following is a corresponding move:

$$(q, aw, X\beta)$$
 $(p, w, \alpha\beta)$

– We use \int_{p}^{*} or \int_{p}^{*} to indicate zero or more moves.

- 6.1.4 Instantaneous Descriptions of a PDA
 - Example 6.4 (cont'd from Example 6.2) -
 - See Fig. 6.3
 - Moves for the PDA to accept input w = 1111:

$$(q_{0},1111,Z_{0})$$
 \vdash $(q_{0},111,1Z_{0})$ \vdash $(q_{0},11,11Z_{0})$ $(q_{1},11,11Z_{0})$ \vdash $(q_{1},1,1Z_{0})$ \vdash $(q_{1},1,1Z_{0})$ \vdash (q_{1},ϵ,Z_{0}) (q_{2},ϵ,Z_{0})

There are other paths entering dead ends (not shown).

- 6.1.4 Instantaneous Descriptions of a PDA
 - Theorem 6.5

If
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 is a PDA, and

$$(q, x, \alpha) \stackrel{\sharp}{\downarrow} (p, y, \beta),$$

then for any string w in Σ^* and γ in Γ^* , it is also true that

$$(q, xw, \alpha y) \mid_{p}^{*} (p, yw, \beta y).$$

- 6.1.4 Instantaneous Descriptions of a PDA
 - Theorem 6.6

If
$$P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$$
 is a PDA, and

$$(q, xw, \alpha)$$
^{*}_p $(p, yw, \beta),$

then it is also true that

$$(q, x, \alpha) \upharpoonright_{p}^{*} (p, y, \beta).$$

Some important facts:

- Two ways to define languages of PDA's: by final state and by empty stack, as mentioned before.
- It can be proved that a language *L* has a PDA that accepts it by final state *if and only if L* has a PDA that accepts it by empty stack.
- For a given PDA P, the language that P accepts by final state and by empty stack are usually different.
- In this section, we show *conversions* between the two ways of language acceptances.

◆ 6.2.1 Acceptance by Final State

— Definition:

If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA. Then L(P), the language accepted by P by final state, is

$$\{w \mid (q_0, w, Z_0) \quad (q, \varepsilon, \alpha), q \in F\}$$

for any α .

- **Example 6.7** - Proving the PDA shown in Example 6.2 indeed accepts the language $L_{ww^{R}}$ (see the detail in the textbook by yourself).

- **♦** 6.2.2 Acceptance by Empty Stack
 - Definition:

If $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is a PDA. Then N(P), the language accepted by P by empty stack, is

$$\{w \mid (q_0, w, Z_0) \quad (q, \varepsilon, \xi)\}$$
 for any q .

The set of final states *F* may be dropped to form a 6-tuple, instead of a 7-tuple, for a PDA.

- **♦** 6.2.2 Acceptance by Empty Stack
 - Example 6.8

The PDA of Example 6.2 may be modified to accept $L_{ww^{R}}$ by empty stack:

simply change the original transition

$$IIII\delta(q_1, \varepsilon, Z_0) = \{(q_2, Z_0)\}$$
to be
$$\delta(q_1, \varepsilon, Z_0) = \{(q_2, \varepsilon)\}.$$

(just eliminate Z_0)

- 6.2.3 From Empty Stack to Final State
 - Theorem 6.9 (1/3)

If
$$L = N(P_N)$$
 for some PDA $P_N = (Q, \Sigma, \Gamma,$

 δ_{N} , q_0 , Z_0), then there is a PDA P_F = such that $L = L(P_F)$.

Proof. The idea is to use Fig. 6.4 below.

Fig. 6.4 P_F simulating P_N and accepts if P_N empties its stack

- **◆ 6.2.3 From Empty Stack to Final State**
 - Theorem 6.9 (2/3)

```
If L = N(P_N) for some PDA P_N = (Q, \Sigma, \Gamma, \delta_N, q_0, Z_0), then there is a PDA P_F = such that L = L(P_F).
```

Proof. (cont'd)

Define $P_F = (Q \cup \{p_0, p_f\}, \Sigma, \Gamma \cup \{X_0\}, \delta_F, p_0, X_0, \{p_f\})$ where δ_F is such that

- For all $q \in Q$, $a \in \Sigma$ or $a = \varepsilon$, and $Y \in \Gamma$, $\delta_F(q, a, Y)$ contains all the pairs in $\delta_N(q, a, Y)$.
- $\delta_{\epsilon}(q, \varepsilon, X_0)$ contains $(p_{\epsilon}, \varepsilon)$ for every state q in Q.

- 6.2.3 From Empty Stack to Final State
 - Theorem 6.9 (3/3)

If
$$L = N(P_N)$$
 for some PDA $P_N = (Q, \Sigma, \Gamma,$

- δ_N , q_0 , Z_0), then there is a PDA P_F = such that $L = L(P_F)$.

 Proof. (cont'd)
 - It can be proved that W is in $L(P_F)$ if and only if w is in $N(P_N)$ (see the textbook).

- 6.2.3 From Empty Stack to Final State
 - Example 6.10 Design a PDA which accepts the if/else errors by empty stack.
 - ◆ Let *i* represents **if**; *e* represents **else**.
 - ◆The PDA is designed in such a way that

if the number of *else* (#*else*) > the number of *if* (#*if*), then the stack will be emptied.

- ◆ 6.2.3 From Empty Stack to Final State
 - Example 6.10 (cont'd)
 - ◆ A PDA *by empty stack* for this is as follows:

$$P_{N} = (\{q\}, \{i, e\}, \{Z\}, \delta_{N}, q, Z) \stackrel{e, Z/\epsilon}{}$$

when an "if" is seen, push a "Z";

when an "else" is seen, pop a "Z";

start

i, Z/ZZ

when (#else) > (#if + 1), the stack is emptied and the input sting is accepted.

• For example, for input string w = iee, the moves are:

$$(q, iee, Z) \mid -(q, ee, ZZ) \mid -(q, e, Z) \mid -(q, \epsilon, \epsilon) \text{ accept } !$$

$$(how about w = eei?)$$

- **◆** 6.2.3 From Empty Stack to Final State
 - Example 6.10 (cont'd)
 - ◆ A PDA *by final state* as follows:

$$P_F = (\{p, q, r\}, \{i, e\}, \{Z, X_0\}, \delta_F, p, X_0, \{r\})$$

$$e, Z/\epsilon$$

$$i, Z/ZZ$$

$$e, X_0/ZX_0$$

$$e, X_0/ZX_0$$

$$e, X_0/\xi$$

$$r$$

Fig. 6.6

For input w = iee, the moves are: $(p, iee, X_0)^{-}(q, iee, ZX_0)^{-}(q, ee, ZZX_0)^{-}(q, e, ZX_0)^{-}(q, \epsilon, X_0)^{-}(r, \epsilon, \epsilon)$ accept **30**

- 6.2.4 From Final State to Empty Stack
 - Theorem 6.11

Let *L* be $L(P_F)$ for some PDA $P_F = (Q, \Sigma, \Gamma,$

 δ_F , q_0 , Z_0 , F). Then there is a PDA P_N such that $L = N(P_N)$.

Proof. The idea is to use Fig. 6.7 below (in final states of P_F , pop up the remaining symbols in the stack).

Fig. 6.7 P_N simulating P_F and empties its stack when and only when P_N enters an accepting state.

Equivalences to be proved:

- 1) CFL's defined by CFG's
- 2) Languages accepted by final state by some PDA
- 3) Languages accepted by empty stack by some PDA

Equivalence of 2) and 3) above have been proved.

♦ 6.3.1 From Grammars to PDA's

- Given a CFG G = (V, T, Q, S), construct a PDA P that accepts L(G) by empty stack in the following way:
- − $P = (\{q\}, T, V \cup T, \delta, q, S)$ where the transition function δ is defined by:
 - lack for each nonterminal A,

 $\overline{\Box \delta(q, \varepsilon, A)} = \{(q, \beta) \mid A \to \beta \text{ is a production of } G\};$

• for each terminal a, $\delta(q, a, a) = \{(q, \varepsilon)\}$.

- ♦ 6.3.1 From Grammars to PDA's
 - **Theorem 6.13**

If PDA P is constructed from CFG G by the construction above, then N(P) = L(G).

Proof. See the textbook.

- ♦ 6.3.1 From Grammars to PDA's
 - Example 6.12 Construct a PDA from the expression grammar of Fig. 5.2:

$$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1;$$

 $E \rightarrow I \mid E*E \mid E+E \mid (E).$

The transition function for the PDA is as follows:

- a) $\delta(q, \varepsilon, I) = \{(q, a), (q, b), (q, Ia), (q, Ib), (q, I0), (q, I1)\}$
- b) $\delta(q, \varepsilon, E) = \{(q, I), (q, E+E), (q, E*E), (q, (E))\}$
- c) $\delta(q, d, d) = \{(q, \epsilon)\}$ where d may any of the terminals a, b, 0, 1, (,), +, *.

- ♦ 6.3.2 From PDA's to Grammars
 - Theorem 6.14

Let $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0)$ be a PDA. Then there is a context-free grammar G such that L(G) = N(P).

Proof. Construct G = (V, T, P, S) where the set of nonterminals consists of:

- \diamond the special symbol *S* as the start symbol;
- all symbols of the form [pXq] where p and q are states in Q and X is a stack symbol in Γ .

- 6.3.2 From PDA's to Grammars
 - **Theorem 6.14**

Proof. (cont'd)

The productions of *G* are as follows.

- (a) For all states p, G has the production $S \rightarrow [q_0 Z_0 p]$.
- (b) Let $\delta(q, a, X)$ contain the pair $(r, Y_1Y_2 \dots Y_k)$, where
 - -a is either a symbol in Σ or $a = \varepsilon$;
 - -k can be any number, including 0, in which case the pair is (r, ε) .

Then for all lists of states $r_1, r_2, ..., r_k$, G has the production

$$[qXr_k] \rightarrow a[rY_1r_1][r_1Y_2r_2]...[r_kY_kr_k].$$

- ◆ 6.3.2 From PDA's to Grammars
 - **Example 6.15** --- Convert the PDA of Example 6.10 (below) to a grammar. $e, Z/\epsilon$

Nonterminals include only two symbols, S and [qZq]. Productions:

- 1. $S \rightarrow [qZq]$ (for the start symbol S);
- 2. $[qZq] \rightarrow i[qZq][qZq]$ (from $(q, ZZ) \in \delta_N(q, i, Z)$)
- 3. $[qZq] \rightarrow e$ (from $(q, \varepsilon) \in \delta_N(q, e, Z)$)

- 6.3.2 From PDA's to Grammars
 - Example 6.15 --- (cont'd)

If we replace [qZq] by a simple symbol A, then the productions become

1.
$$S \rightarrow A$$

$$2. A \rightarrow iAA$$

$$3. A \rightarrow e$$

Obviously, these productions can be simplified to be

1.
$$S \rightarrow iSS$$

$$2. S \rightarrow e$$

And the grammar may be written simply as

$$G = (\{S\}, \{i, e\}, \{S \rightarrow iSS \mid e\}, S)$$

6.4.1 Definition of a Deterministic PDA

- Intuitively, a PDA is deterministic if there is never a choice of moves (including ε -moves) in any situation.
- Formally, a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ is said to be deterministic (a DPDA) if and only if the following two conditions are met:
 - ♦ $\delta(q, a, X)$ has at most one element for any $q \in Q$, $a \in \Sigma$ or $a = \varepsilon$, and $X \in \Gamma$. (" 一定要有")
 - If $\delta(q, a, X)$ is nonempty for some $a \in \Sigma$, then $\delta(q, \epsilon, X)$ must be empty. ("不能多於一個")

- ◆ 6.4.1 Definition of a DPDA
 - **Example 6.16**
 - ◆ There is no DPDA for $L_{ww^{R}}$ of Example 6.2.
 - ◆ But there is a DPDA for a modified version of L_{ww^R} as follows, which is not an RL (proved later):

$$L_{wew^R} = \{wcw^R \mid w \in L((\mathbf{0} + \mathbf{1})^*)\}.$$

- To recognize wcw^R , just store 0's & 1's in stack until center marker c is seen. Then, match the remaining input w^R with the stack content (w).
- ◆ The PDA can so be designed to be deterministic by searching the center marker without trying matching all the time nondeterministically .

◆ 6.4.1 Definition of a DPDA

- **Example 6.16** (cont'd) A desired DPDA is as follows. $0, Z_0/0Z_0$ (The difference is just the blue c.) $1, Z_0/1Z_0$

◆ 6.4.2 Regular Languages and DPDA's

 The DPDA's accepts a class of languages that is between the RL's and the CFL's, as proved in the following.

- **Theorem 6.17**

If L is an RL, then L = L(P) for some DPDA P (accepting by final state).

Proof. Easy. Just use a DPDA to simulate a DFA as follows. If DFA $A = (Q, \Sigma, \delta_A, q_0, F)$ accepts L, then construct DPDA $P = (Q, \Sigma, \{Z_0\}, \delta_P, q_0, Z_0, F)$ where δ_P is such that $\delta_P(q, a, Z_0) = \{(p, Z_0)\}$ for all states p and q in Q such that $\delta_A(q, a) = p$.

- ♦ 6.4.2 Regular Languages and DPDA's
 - The language-recognizing capability of the *DPDA by empty stack* is *rather limited*.
 - **Theorem 6.19**
 - A language L is N(P) for some DPDA P if and only if L has the **prefix property** and L is L(P') for some DPDA P' (for proof, do exercise 6.4.3).
 - A language *L* is said to have the prefix property if there are no two different strings *x* and *y* in *L* such that *x* is a prefix of *y*.

(For examples of such languages, see Example 6.18)₄₄

• 6.4.3 DPDA's and CFL's

- DPDA's can be used to accept non-RL's, for example, L_{wcw^R} mentioned before.
 - It can be proved by the pumping lemma that L_{wcw^R} is not an RL (see the textbook, pp. 254~255).
- On the other hand, DPDA's *by final state* cannot accept certain CFL's, for example, L_{ww}^{R} .
 - It can be proved that L_{ww^R} cannot be accepted by a DPDA by final state (see an informal proof in the textbook, p. 255).

- 6.4.3 DPDA's and CFL's
 - Conclusion:

The languages accepted by DPDA's by final state properly include RL's, but are properly included in CFL's.

- 6.4.4 DPDA's and Ambiguous Grammars
 - **Theorem 6.20**

If L = N(P) (accepting by empty stack) for some DPDA P, then L has an unambiguous CFG.

Proof. See the textbook.

– Theorem 6.21

If L = L(P) for some DPDA P (accepting by final state), then L has an unambiguous CFG.

Proof. See the textbook.