Helmholtz equation with different PoU functions

March 22, 2023

1 Problem definition

Consider the one-dimensional Helmholtz equation with Dirichlet boundary condition over $\Omega = [0, 8]$

$$\begin{cases} \frac{d^2 u(x)}{dx^2} - \lambda u(x) = f(x) & x \in \Omega, \\ u(0) = c_1, & u(8) = c_2. \end{cases}$$
 (1)

Once an explicit form of u is given, c_1 , c_2 , and f can be computed.

And we use the following explicit solution to (1) in our code

$$u(x) = \sin(3\pi x + \frac{3\pi}{20})\cos(2\pi x + \frac{\pi}{10}) + 2. \tag{2}$$

For this one-dimensional problem, the commonly used PoU functions are

$$\psi_n^a(x) = \mathbb{I}_{-1 < \tilde{x} < 1},\tag{3}$$

and

$$\psi_n^b(x) = \begin{cases} \frac{1 + \sin(2\pi\tilde{x})}{2} & -\frac{5}{4} \le \tilde{x} < -\frac{3}{4}, \\ 1 & -\frac{3}{4} \le \tilde{x} < \frac{3}{4}, \\ \frac{1 - \sin(2\pi\tilde{x})}{2} & \frac{3}{4} \le \tilde{x} < \frac{5}{4}, \\ 0 & \text{otherwise.} \end{cases}$$
(4)

See Figure 1 for the visualization of ψ^a and ψ^b .

Figure 1: Visualization of $\psi^a(x)$ in (3) and $\psi^b(x)$ in (4).

2 Sample code

In our current implementation, we use Python to coding, two kinds of PoU functions are implemented in code $RFM_helm1d_PoU_psi_a_pytorch.py$ and $RFM_helm1d_PoU_psi_b_pytorch.py$ respectively.

For more specific comments, see the annotation in the codes.