1) Comider
$$V = \{0\}$$
 (2000 space)

Let $B = ()$ (empty list $/\emptyset$)

Span $(B) = \{0\} = V$
 B is also linearly independent J

Uniqueness:

Consider any $W \in V \setminus B$: $\{0\} \subseteq W = \}$ W is not language independent.

Examply independent.

 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2\}$

Let $B = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$

Consider $B' = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$

Consider $B' = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$

Consider $B' = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, v_2, \dots, v_n\} \in P^n : n \geq 2$
 $A = \{v_1, \dots,$

Let $V = \{x \in \mathcal{F}_2^1\}$ - one dimensional space over Fz = {o, 1} with the would ops mod 2 If B = (w) is a basis of V = 0=) + w = U, w ≠ 0 : w ∈ spom(B) (= 1 =1 w= 20, 20 = =2 Becoure 05 40 => 2 40 => 1 = 1 So, W = 00 This means, B is an unique basis for V. Lo, the only vedor spaces which have one unique basis one {3}- the zero space and a one-dim. victor space our Fz, Since IF 1=1. Otherine, we can create different baris by either rescaling or combining elements of another bairs.