Antenna Types and Optimal Frequency Ranges for 500kHz to 1.7GHz Spectrum

This comprehensive technical reference catalogs antenna technologies across the 500kHz to 1.7GHz frequency spectrum, providing optimal operating ranges, performance characteristics, and application guidelines for each antenna type.

The research reveals that antenna selection fundamentally depends on three primary factors: operating frequency, required radiation pattern, and physical constraints. Lower frequencies demand larger antenna structures due to wavelength scaling, while higher frequencies enable more compact designs with higher gain potential. (Wikipedia) Each antenna technology represents an engineering compromise between size, gain, bandwidth, and cost.

Comprehensive Antenna Technology Matrix

Low Frequency Antennas (500kHz - 30MHz)

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications	Advantag
Vertical Monopole (Mast Radiator)	535kHz - 1.7MHz	5.19 dBi (λ/4) 8 dBi (5/8λ)	Omnidirectional azimuth Maximum radiation horizontal Null at zenith	AM broadcast stations br>Navigation beacons	construct coverage wave propagat Requires ground sy height lim vulnerabi
T- Antenna	500kHz - 1.5MHz	3-6 dB over equivalent vertical	Omnidirectional br>Vertically polarized	Early AM broadcast broadcast radio transmission	Advantage than shore efficient of antennas Requires structures (<100Hz) matching
Umbrella Antenna	10kHz - 1.7MHz (VLF/LF/MF) (HandWiki)	~3.52 dBi (HandWiki)	Omnidirectional br>Excellent ground wave (HandWiki)	VLF military communications br>LF/MF broadcasting br>Submarine communications (HandWiki)	Advantage electrical single ma power ca sinyle ma power ca sinyle ma power ca at wire er
HF Dipoles	3-30MHz	2.15 dBi (λ/2) (Wikipedia) Alba (λ)	Broadside maximum Figure-8 pattern (Wikipedia) Omnidirectional if vertical	Amateur radio br>Shortwave broadcasting br>Point-to- point HF	Advantage construction pattern, e matching Fixed free significar depender
HF Verticals	3-30MHz	5.19 dBi (λ/4) 8 dBi	Omnidirectional azimuth br>Low angle	Amateur radio DX Mobile	Advantag coverage

Antenna Type	Optimal Frequency Range	Gain (5/8λ)	Radiation Pattern radiation br>Null overhead	Typical Applications HF br>Maritime communications	compact footprint< Extensive required, i
					nearby ob
Long Wire/End- Fed	1.8-30MHz	-3 to +6 dBi br>Varies with frequency	Non-resonant: Variable br>Multiple lobes at higher frequencies	Amateur radio br>SWL/emergency comms br>Portable operations	Advantag installatio operation efficient< Pattern un impedance tuner
Rhombic	3-30MHz	6-8 dBd typical	Highly directional Fixed direction br>Narrow beamwidth	Point-to-point HF br>International broadcasting communications	Advantag non-critical power capability Enormous fixed direct efficiency

VHF Antennas (30-300MHz)

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications
Circularly Polarized FM	87.5-108MHz (Antennas +2)	7-13 dBi	Circular polarization br>Omnidirectional or directional	FM broadcast stations <br< th=""></br<>
FM Broadcast Bays	88-108MHz (Antennas +2)	1-3 dBi/bay 5-15 dBi arrays	60-120° horizontal orizontal vertical	Commercial FM broadcas
VHF Yagi	30- 300MHz >144- 148MHz typical (Bander) (Amazon)	6-13 dBi br>(3-11 elements)	Directional br>30-60° beamwidth br>F/B: 15-25dB	Amateur radio Public safety Point-to-point
Collinear Arrays	30-300MHz	3-10 dBd dSdb/doubling Wikipedia Wikipedia	Omnidirectional horizontal br>Compressed vertical Wikipedia Wikipedia	Repeater sites br>Base stations br>Public safety Repeater Builder L3Harris
Ground Plane	30-300MHz	0 dBd (unity) 2-3 dBi (RadioReference.com) (TIARA)	Omnidirectional br>Low angle radiation	Mobile/base stations RFI Americas) br>Marine
J-Pole	30-300MHz	2.1-2.6 dBi	Omnidirectional br>Slight asymmetry	Amateur radio Simple stations

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications
Discone	25-300MHz typical Wikipedia +2	~2 dBi unity gain (Wikipedia)	Omnidirectional br>Low angle radiation	Scanner antennas br>Wide monitoring (Electronics Not
Log- Periodic	3:1 to 10:1 bandwidth	6-10 dBi	Directional br>60-90° beamwidth br>F/B: 15-25dB (Wikipedia)	EMC testing tomms (The EMC Shop) (V

UHF Antennas (300MHz - 1.7GHz)

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications
UHF Yagi	300- 500MHz 4700- 470MHz 470- 860MHz ResearchGate +2	9-20 dBi (ResearchGate) (Wikipedia)	Directional br>75° beamwidth br>F/B: 20dB (Antennaskit)	Point-to-point br>TV reception br>Amateur UHF (ResearchGate) (Tesswave)
Panel/Sector	698- 960MHz 470- 700MHz antennas +2	8.7-17.8 dBd (antennas +2)	60°, 90°, 120° sectors br>Adjustable tilt (antennas +2)	Cellular base stations br>Public safety firstNet (antennas) Antennas
Patch Antennas	617MHz-2.7GHz POYNTING	6-10 dBi	Hemispherical Broad pattern (MobileMark)	Mobile devices devices (ResearchGate) (MobileMark)
Helical	300- 520MHz >400- 900MHz (TACO Antenna +3)	9-13.5 dBic (tacoantenna) (Wikipedia)	Circular polarization br>35-37° beamwidth (TutorialsPoint) (Wikipedia)	Satellite comms systems br>Wireless audio (TutorialsPoint) (Wikipedia)
Slot Antennas	300MHz-24GHz (Wikipedia +2)	3dB/doubling	Omnidirectional br>Similar to dipole (Wikipedia) (Wikipedia)	TV broadcasting br>Radar systems br>Base stations (Wikipedia) (Wikipedia)
Corner Reflector	335- 512MHz UHF bands Wikipedia +2	10-15 dB Wikipedia Wikipedia	Directional beamwidth br>F/B: 20-30dB (Wikipedia)	Point-to-point br>TV reception br>Public safety (Wikipedia) (Wikipedia)
Parabolic Dish	1-1.7GHz typical (Wikipedia)	15+ dBd (TutorialsPoint) (Wikipedia)	Very narrow beam br>Proportional to D/λ (Wikipedia)	Microwave links Satellite Radio astronomy (Wikipedia) (Wikipedia)

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications
Collinear UHF	380-806MHz (TutorialsPoint +2)	3-15 dBd (TutorialsPoint +2)	360° horizontal br>38° vertical typical Protel Antennas +2	Repeater sites br>Cellular towers br>Public safety (L3Harris+2)

Specialized and Wideband Antennas

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications	Adva
Magnetic Loop	500kHz-14MHz	Low (negative dBi)	Bidirectional nulls Figure-8 pattern	AM reception br>Direction finding br>Low noise RX	Advainulls, comp
Ferrite Loop	500kHz-1.7MHz Electronics Notes Cosmoferrites	Low but enhanced by µ	Bidirectional br>Sharp nulls (Electronics Notes)	AM radios br>Portable receivers (Wikipedia) (Electronics Notes)	comp Wikip frequences temper
LPDA	10:1+ bandwidth	5.9-14.97 dBi Antennaexperts Wikipedia	Directional br>Consistent pattern (Wikipedia)	TV reception br>EMI testing br>Broadband 	Advai wideb perfor for given
Spiral	30:1 bandwidth >1- 18GHz typical	-8 to 0 dBiL	Circular polarization Broad pattern	Military aircraft br>GPS Direction finding	Advai circul Wikip D
Beverage	500kHz-30MHz	-20 to -10 dBi	Unidirectional Very low angle	Longwave DX Shortwave listening	signa Wikip Requi negat Wikip
Rubber Duck	100-500MHz (Wikipedia)	Less than λ/4 whip Wikipedia	Omnidirectional br>High angle radiation Wikipedia	Handheld radios br>Portable devices Wikipedia	Advar dama (Wikip D

Antenna Type	Optimal Frequency Range	Gain	Radiation Pattern	Typical Applications	Advant efficier
Fractal	Multiband inherent	Varies with design	Application dependent	Cellular/5G loT devices Multiband systems	Advant single Wikipe complete the complete th

Key Technical Specifications Summary

Impedance characteristics across the spectrum show standard values of 50Ω for most commercial/amateur applications and 75Ω for broadcast systems. Wikipedia Matching networks are critical for narrowband antennas, especially at lower frequencies where radiation resistance can be less than 1Ω . Kg3v Ham Radio Blog Practical Antennas

Polarization selection depends heavily on application: vertical polarization dominates mobile communications due to vehicle mounting constraints, while horizontal polarization is preferred for weak signal work due to lower noise. (Tesswave) Circular polarization serves satellite communications and applications requiring orientation independence. (Wikipedia +3)

Physical scaling with wavelength creates fundamental constraints: a quarter-wave vertical at 1MHz stands 234 feet tall, while the same electrical length at 1GHz measures just 3 inches. (KB9VBR Antennas)
This 1000:1 size ratio drives dramatically different construction techniques and deployment strategies across the spectrum. (Wikipedia)

Efficiency factors vary significantly: AM broadcast verticals achieve 60-95% efficiency with proper ground systems, while electrically small antennas may operate below 10% efficiency. However, at lower frequencies where atmospheric noise dominates, antenna efficiency becomes less critical than pattern control and noise rejection. Wikipedia Wikipedia

Bandwidth characteristics range from the extremely narrow (umbrella antennas with <100Hz bandwidth) to ultra-wideband (spiral and discone antennas exceeding 10:1 frequency ratios). Wikipedia +3

Narrowband antennas generally offer higher gain and efficiency, while wideband designs sacrifice peak performance for frequency agility. Wikipedia)

Environmental deployment considerations show urban environments favor lower-gain antennas with MIMO capability to combat multipath, while rural deployments benefit from high-gain directional antennas for extended coverage. ResearchGate Ground effects critically impact performance below 30MHz, Wikipedia Wikipedia while pattern distortion from nearby structures becomes dominant at VHF/UHF. Wikipedia

Conclusion

This comprehensive matrix reveals that optimal antenna selection requires balancing multiple competing factors: frequency coverage, gain requirements, physical constraints, and deployment environment. While no single antenna technology excels across all parameters, understanding each type's strengths enables informed selection for specific applications. The data demonstrates that antenna engineering remains fundamentally about managing trade-offs - there is no universal "best" antenna, only the most appropriate choice for each unique combination of requirements.

(A.H. Systems +5)