Documentation of Decomposition and Closure Rules

Syeed Ibn Faiz April 30, 2011

1 Decomposition Rules

In this section, γ is an expectation prefix, possibly empty. φ, φ_1 and φ_2 are formulae of propositional partial information ionic logic and \Vdash stands for potential truth turnstile. Rules for formulae with the soft turnstile is similar.

1.1 Negation

1.1.1 -Connective

$\gamma \vDash \neg \varphi$	$\gamma \not \models \neg \varphi$	$\gamma \Vdash \neg \varphi$	$\gamma \nVdash \neg \varphi$
$\gamma \nVdash \varphi$	$\gamma \Vdash \varphi$	$\gamma ot = \varphi$	$\gamma \vDash \varphi$

$1.1.2 \sim Connective$

$\gamma \vDash \sim \varphi$	$\gamma \not\models \sim \varphi$	$\gamma \Vdash \sim \varphi$	$\gamma \not\Vdash \sim \varphi$
	1		I
$\gamma \nvDash \varphi$	$\gamma \vDash \varphi$	$\gamma \nvDash \varphi$	$\gamma \vDash \varphi$

1.1.3 \sim 'Connective

$\gamma \vDash \sim' \varphi$	γ ⊭~′ φ	$\gamma \Vdash \sim' \varphi$	γ ⊮~′ φ
$\gamma \not\Vdash \varphi$	$\gamma \Vdash \varphi$	$\gamma \nVdash \varphi$	$\gamma \Vdash \varphi$

1.2 Bottom Function

$\gamma \vDash bot(\varphi)$	
	$\gamma \nvDash bot(\varphi)$
$\gamma \Vdash \varphi$	$\gamma \models \varphi \qquad \gamma \not\Vdash \varphi$
$\gamma \nvDash \varphi$	

1.3 Conjunction

$\gamma \vDash \varphi_1 \land \varphi_2$		$\gamma \Vdash \varphi_1 \land \varphi_2$	
			$\gamma \not\Vdash \varphi_1 \land \varphi_2$
	$\gamma \not\vDash \varphi_1 \land \varphi_2$		
$\gamma \vDash \varphi_1$	$\gamma \nvDash \varphi_1 \gamma \nvDash \varphi_2$	$\gamma \Vdash \varphi_1$	$\gamma \not\Vdash \varphi_1 \gamma \not\Vdash \varphi_2$
$\gamma \vDash \varphi_2$		$\gamma \Vdash \varphi_2$	

1.4 Disjunction

	$\gamma \not\vDash \varphi_1 \lor \varphi_2$		$\gamma \nVdash \varphi_1 \vee \varphi_2$
$\gamma \vDash \varphi_1 \vee \varphi_2$	1	$\gamma \Vdash \varphi_1 \vee \varphi_2$	1
$\gamma \vDash \varphi_1 \gamma \vDash \varphi_2$	$\gamma \nvDash \varphi_1$	$\gamma \Vdash \varphi_1 \gamma \Vdash \varphi_2$	$\gamma \not\Vdash \varphi_1$
	$\gamma ot\models arphi_2$		$\gamma \nVdash \varphi_2$

1.5 Implication

	$\gamma \not\models \varphi_1 \rightarrow \varphi_2$		$\gamma \nVdash \varphi_1 \to \varphi_2$
$\gamma \vDash \varphi_1 \to \varphi_2$		$\gamma \Vdash \varphi_1 \to \varphi_2$	1
$\gamma \not\Vdash \varphi_1 \gamma \vDash \varphi_2$	$\gamma \Vdash \varphi_1$	$\gamma \nvDash \varphi_1 \gamma \Vdash \varphi_2$	$\gamma \vDash \varphi_1$
	$\gamma ot \bowtie \varphi_2$		$\gamma \not\Vdash \varphi_2$

1.6 Interjunction

$\gamma \vDash \varphi_1 \sqcap \varphi_2$			$\gamma \nVdash \varphi_1 \sqcap \varphi_2$
	$\gamma \nvDash \varphi_1 \sqcap \varphi_2$	$\gamma \Vdash \varphi_1 \sqcap \varphi_2$	
$\gamma \vDash \varphi_1$	$\gamma \nvDash \varphi_1 \gamma \nvDash \varphi_2$	$\gamma \Vdash \varphi_1 \gamma \Vdash \varphi_2$	$\gamma \nVdash \varphi_1$
$\gamma \vDash \varphi_2$			$\gamma ot \!$

1.7 Conditional Ion

1.7.1 Generic Operator

	$\gamma \nvDash *(\varphi_1, \varphi_2)$	
$\gamma \vDash *(\varphi_1, \varphi_2)$		
$\gamma + *\varphi_1 \qquad \gamma - *\varphi_1$	$\overline{-*}\varphi_1$	
$\gamma \vDash_{soft} \varphi_2$	$ \gamma \overline{+*} \varphi_1 \qquad \nvDash_{soft} \varphi_2 $	
	$\gamma \vDash_{soft} \varphi_2$	
	$\gamma \nvDash *(\varphi_1, \varphi_2)$	
$\gamma \Vdash *(\varphi_1, \varphi_2)$		
$\gamma + \varphi_1$ $\gamma \Vdash_{soft} \varphi_2$	$\gamma + *\varphi_1$	
$\gamma ot \bowtie_{soft} \varphi_2$	$\gamma varFence_{soft} \varphi_2$	

1.7.2 Diamondsuit Operator

	$\gamma \nvDash \Diamond(\varphi_1, \varphi_2)$	
$\gamma \vDash \Diamond(\varphi_1, \varphi_2)$		
$\gamma \Vdash \varphi_1 \forall \qquad \gamma \not\Vdash \varphi_1 \forall$	$\gamma \Vdash \varphi_1 \exists$	
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash \varphi_1 \exists \qquad \nvDash_{soft} \varphi_2$	
	$\gamma \vDash_{soft} \varphi_2$	
	$\gamma \not\Vdash \diamondsuit(\varphi_1, \varphi_2)$	
$\gamma \Vdash \Diamond(\varphi_1, \varphi_2)$		
$\gamma \nvDash \varphi_1 \exists \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \Vdash \varphi_1 \forall$	
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$	

1.7.3 Heartsuit Operator

	$\gamma \nvDash \heartsuit(\varphi_1, \varphi_2)$	
$\gamma \vDash \heartsuit(\varphi_1, \varphi_2)$		
$\gamma\vDash\varphi_1\forall \qquad \gamma\nvDash\varphi_1\forall$	$\gamma \vDash \varphi_1 \exists$	
$\gamma \vDash_{soft} \varphi_2$	$ \gamma \nvDash \varphi_1 \exists $ $ \nvDash_{soft} \varphi_2 $	
	$\gamma \vDash_{soft} \varphi_2$	
	$\gamma \nvDash \heartsuit(\varphi_1, \varphi_2)$	
$\gamma \Vdash \heartsuit(\varphi_1, \varphi_2)$		
$\gamma \not\vDash \varphi_1 \exists \qquad \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \forall$	
$\gamma \nvDash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$	

1.7.4 Circle Operator

	$\gamma \nvDash \bigcirc (\varphi_1, \varphi_2)$	
$\gamma \vDash \bigcirc(\varphi_1, \varphi_2)$		
$\gamma \vDash \varphi_1 \forall \qquad \gamma \nvDash \varphi_1 \forall$	$\gamma \Vdash \varphi_1 \exists$	
$\gamma \vDash_{soft} \varphi_2$	$ \gamma \nvDash \varphi_1 \exists $ $ \nvDash_{soft} \varphi_2 $	
	$\gamma \vDash_{soft} \varphi_2$	
	$\gamma \not\Vdash \bigcirc (\varphi_1, \varphi_2)$	
$\gamma \Vdash \bigcirc (\varphi_1, \varphi_2)$		
$\gamma \nvDash \varphi_1 \exists \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \forall$	
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \not\Vdash_{soft} \varphi_2$	

1.7.5 Spadesuit Operator

	$\gamma \nvDash \spadesuit(\varphi_1, \varphi_2)$
$\gamma \vDash \spadesuit(\varphi_1, \varphi_2)$	
$\gamma \Vdash \varphi_1 \exists \qquad \gamma \not \Vdash \varphi_1 \forall$	$\gamma \Vdash \varphi_1 \exists$
$\gamma \vDash_{soft} \varphi_2$	$\gamma ot \succeq_{soft} \varphi_2$
	$\gamma \not\Vdash \spadesuit(\varphi_1, \varphi_2)$
$\gamma \Vdash \spadesuit(\varphi_1, \varphi_2)$	
$\gamma \not\Vdash \varphi_1 \forall \qquad \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \Vdash \varphi_1 \exists$
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$

1.7.6 Clubsuit Operator

	$\gamma \nvDash \clubsuit(\varphi_1, \varphi_2)$
$\gamma \vDash \clubsuit(\varphi_1, \varphi_2)$	
$\gamma \vDash \varphi_1 \exists \qquad \gamma \nvDash \varphi_1 \forall$	$\gamma \vDash \varphi_1 \exists$
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$
	$\gamma \not\Vdash \clubsuit(\varphi_1, \varphi_2)$
$\gamma \Vdash \clubsuit(\varphi_1, \varphi_2)$	
$\gamma \nvDash \varphi_1 \forall \qquad \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \exists$
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$

1.7.7 Blackfly Operator

	$\gamma \nvDash \bullet (\varphi_1, \varphi_2)$	
$\gamma \vDash \bullet(\varphi_1, \varphi_2)$		
$\gamma \vDash \varphi_1 \exists \qquad \gamma \nvDash \varphi_1 \forall$	$\gamma \Vdash \varphi_1 \exists$	
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash \varphi_1 \forall \qquad \qquad \nvDash_{soft} \varphi_2$	
	$\gamma \vDash_{soft} \varphi_2$	
	$\gamma \not \Vdash \bullet(\varphi_1, \varphi_2)$	
$\gamma \Vdash \bullet(\varphi_1, \varphi_2)$		
$\gamma \nvDash \varphi_1 \forall \qquad \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \exists$	
$\gamma \not\vdash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$	

1.7.8 Spadesuit-twin Operator

	$\gamma \nvDash \triangle(\varphi_1, \varphi_2)$
$\gamma \vDash \triangle(\varphi_1, \varphi_2)$	
$\gamma \Vdash \varphi_1 \forall \qquad \gamma \nvDash \varphi_1 \exists$	$\gamma \Vdash \varphi_1 \forall$
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$
	$\gamma \not\Vdash \triangle(\varphi_1, \varphi_2)$
$\gamma \Vdash \triangle(\varphi_1, \varphi_2)$	
$\gamma \nvDash \varphi_1 \exists \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \Vdash \varphi_1 \forall$
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$

1.7.9 Clubsuit-twin Operator

	$\gamma \nvDash \nabla(\varphi_1, \varphi_2)$
$\gamma \vDash \nabla(\varphi_1, \varphi_2)$	I
$\gamma \vDash \varphi_1 \forall \qquad \gamma \nvDash \varphi_1 \exists$	$\gamma \vDash \varphi_1 \forall$
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash_{soft} \varphi_2$
	$\gamma \not \Vdash \nabla(\varphi_1, \varphi_2)$
$\gamma \Vdash \nabla(\varphi_1, \varphi_2)$	
$\gamma \nvDash \varphi_1 \exists \qquad \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \forall$
$\gamma \not\vdash_{soft} \varphi_2$	$\gamma \not\Vdash_{soft} \varphi_2$

1.7.10 Butterfly Operator

	$\gamma \nvDash \bowtie (\varphi_1, \varphi_2)$		
$\gamma \vDash \bowtie (\varphi_1, \varphi_2)$			
$\gamma \vDash \varphi_1 \forall \qquad \gamma \not \Vdash \varphi_1 \exists$	$\gamma \Vdash \varphi_1 \forall$		
$\gamma \vDash_{soft} \varphi_2$	$\gamma \nvDash \varphi_1 \exists \qquad \qquad \nvDash_{soft} \varphi_2$		
	$\gamma \vDash_{soft} \varphi_2$		
	$\gamma \not\Vdash\bowtie (\varphi_1, \varphi_2)$		
$\gamma \Vdash \bowtie (\varphi_1, \varphi_2)$			
$\gamma \nvDash \varphi_1 \exists \qquad \gamma \Vdash_{soft} \varphi_2$	$\gamma \vDash \varphi_1 \forall$		
$\gamma \not\Vdash_{soft} \varphi_2$	$\gamma \not\Vdash_{soft} \varphi_2$		

1.8 No Good Formula

1.8.1 Universal Ions

$\gamma \vDash$	$\gamma \nvDash$	$\gamma \Vdash$		γ ⊯	
$\Diamond(\varphi, False)$	$\Diamond(\varphi,False)$	$\diamondsuit(\varphi,False)$		$\Diamond(\varphi, False)$	
$\gamma\nVdash\varphi\forall$	$\gamma \Vdash \varphi \exists$	$\gamma \nVdash \varphi \exists$		$\gamma \Vdash \varphi \forall$	
$\gamma \vDash$	γ ⊭	$\gamma \Vdash$		γ ⊯	
$\heartsuit(\varphi, False)$	$\heartsuit(\varphi, False)$	$\heartsuit(\varphi, False)$		$\heartsuit(\varphi, False)$	
$\gamma \not\models \varphi \forall$	$\gamma \vDash \varphi \exists$	$\gamma ot = \varphi \exists$		$\gamma \vDash \varphi \forall$	
$\gamma \vDash$	γ ⊭	$\gamma \Vdash$		γ ⊯	
$\bigcirc(\varphi,False)$	$\bigcirc(\varphi,False)$	$\bigcirc(\varphi,False)$)	$\bigcirc(\varphi,False)$	
$\gamma \nVdash \varphi \forall$	$\gamma \Vdash \varphi \exists$	$\gamma ot = \varphi \exists$		$\gamma \vDash \varphi \forall$	

1.8.2 Universal-existential Ions

$\gamma \vDash$	γ⊭	$\gamma \Vdash$	γ ⊯
$\triangle(\varphi, False)$	$\triangle(\varphi, False)$	$\triangle(\varphi,False)$	$\triangle(\varphi, False)$
$\gamma \nVdash \varphi \exists$	$\gamma \Vdash \varphi \forall$	$\gamma \nVdash \varphi \exists$	$\gamma \Vdash \varphi \forall$
$\gamma \vDash$	γ ⊭	$\gamma \Vdash$	γ ⊯
$\nabla(\varphi, False)$	$\nabla(\varphi, False)$	$\nabla(\varphi, False)$	$\nabla(\varphi, False)$
$\gamma \not\models \varphi \exists$	$\gamma \vDash \varphi \forall$	$\gamma ot \models \varphi \exists$	$\gamma \vDash \varphi \forall$
$\gamma \vDash \bowtie$	$\gamma \nvDash \bowtie$	$\gamma \Vdash \bowtie$	γ ⊮∞
$(\varphi, False)$	$(\varphi, False)$	$(\varphi, False)$	$(\varphi, False)$
$\gamma \nVdash \varphi \exists$	$\gamma \Vdash \varphi \forall$	$\gamma \nvDash \varphi \exists$	$\gamma \vDash \varphi \forall$

1.8.3 Existential-universal Ions

$\gamma \vDash$	γ⊭		$\gamma \Vdash$		γ ⊯	
$\spadesuit(\varphi, False)$	$\spadesuit(\varphi,False)$		$\spadesuit(\varphi, False)$		$\spadesuit(\varphi, False)$	
$\gamma \nVdash \varphi \forall$	$\gamma \Vdash \varphi \exists$		$\gamma \nVdash \varphi \forall$		$\gamma \Vdash \varphi \exists$	
$\gamma \vDash$	γ ⊭		$\gamma \Vdash$		γ ⊯	
$\clubsuit(\varphi, False)$	$\clubsuit(\varphi,False)$		$\clubsuit(\varphi,False)$		$\clubsuit(\varphi, False)$	
$\gamma \nvDash \varphi \forall$	$\gamma \vDash \varphi \exists$		$\gamma \not\vDash \varphi \forall$		$\gamma \vDash \varphi \exists$	
$\gamma \vDash \bullet(\varphi, False$	$(\varphi, False) \gamma \nvDash \bullet (\varphi, False)$	e)	$\gamma \Vdash \bullet(\varphi, Fals$	e)	$\gamma \not\Vdash \bullet (\varphi, False$	2)
$\gamma \nVdash \varphi \forall$	$\gamma \Vdash \varphi \exists$		$\gamma \not\vDash \varphi \forall$		$\gamma \vDash \varphi \exists$	

1.9 Canonical Justification

$\gamma \tau \varphi \exists$	$\gamma \tau \varphi \forall$
$j\gamma auarphi$	$J\gamma auarphi$

where j is the first interpretation symbol that has not been used so far in the tableau and J is an interpretation variable that can bind to every interpretation symbol that has occurred at the same rank in the current branch of the tableau.

2 Closure Rules

In this section, γ, γ_1 and γ_2 are expectation prefixes and p is a propositional variable.

2.1 Generalized from classical Beth method

$\gamma \vDash p$	$\gamma \Vdash p$	$\gamma \vDash p$
$\gamma \nvDash p$	$\gamma \nVdash p$	$\gamma \nVdash p$
$\gamma \vDash_{soft} p$	$\gamma \Vdash_{soft} p$	$\gamma \vDash_{soft} p$
$\gamma \nvDash_{soft} p$	$\gamma \nvDash_{soft} p$	$\gamma \nvDash_{soft} p$

2.2 Justification knowledge extends Kernel knowledge

$\gamma_1 \vDash p$	$\gamma_1 \vDash p$	$\gamma_1 \not\Vdash p$	$\gamma_1 \not \Vdash p$
$\gamma_2\gamma_1\not\Vdash p$	$\gamma_2\gamma_1 \nvDash p$	$\gamma_2\gamma_1 \Vdash p$	$\gamma_2\gamma_1 \vDash p$
$\models \varphi$	⊮ φ	$\models \varphi$	¥ φ
$-*\varphi$	$+*\varphi$	$\overline{+*}\varphi$	$\overline{-*}\varphi$

where $\varphi \in \mathcal{F}_{\mathcal{O}}$ and *is the generic ionic operator.

2.3 Soft knowledge extends Kernel knowledge

$\gamma_1 \vDash p$	$\gamma_1 \vDash p$	$\gamma_1 \not\Vdash p$	$\gamma_1 \nVdash p$
$\gamma_2 \gamma_1 \nvDash_{soft} p$	$\gamma_2\gamma_1 \nvDash_{soft} p$	$\gamma_2 \gamma_1 \Vdash_{soft} p$	$\gamma_2 \gamma_1 \vDash_{soft} p$

2.4 Justification knowledge closure properties

+ * a	$+*(a \wedge b)$	$-*(a \rightarrow b)$	$\overline{+*}(a \to b)$	$-*(a \rightarrow b)$
-*a	-*b	$\overline{-*}b$	+*b	+*b

where a, b are propositional formulae and \ast is the generic ionic operator.

2.5 Trivial Cases

$\not\Vdash bot(\varphi)$	$\not\vdash True$	$\not\Vdash True$	$\models False$	$\vdash False$
(,,				