Discrete Structures cs2023

Tutorial III

University of Khartoum

Determine whether each of these arguments is valid. If an argument is correct, what rule of inference is being used? If it is not, what logical error occurs?

a. If n is a real number such that n > 1, then $n^2 > 1$.

Suppose that $n^2 > 1$.

Therefore, n > 1.

b. If n is a real number with n > 3, then $n^2 > 9$.

Suppose that $n^2 \le 9$.

Therefore, $n \leq 3$.

c. If n is a real number with n > 2, then $n^2 > 4$.

Suppose that $n \leq 2$.

Therefore, $n^2 \leq 4$.

Solution

a. If n is a real number such that n > 1, then $n^2 > 1$.

Suppose that $n^2 > 1$.

Therefore, n > 1.

Let p represents n > 1 and q represents $n^2 > 1$

The argument is in the form

$$p \rightarrow q$$

q

$$\therefore p$$

Which is invalid (the fallacy of affirming the conclusion)

Solution

b. If n is a real number with n > 3, then $n^2 > 9$.

Suppose that $n^2 \le 9$.

Therefore, $n \leq 3$.

Let p represents n > 3 and q represents $n^2 > 9$

The argument is in the form

$$p \rightarrow q$$

$$\neg q$$

$$\therefore \neg p$$

Which is valid(Modus Tollens)

Solution

c. If n is a real number with n > 2, then $n^2 > 4$.

Suppose that $n \leq 2$.

Therefore $n^2 \leq 4$.

Let p represents n > 2 and q represents $n^2 > 4$

The argument is in the form

$$p \rightarrow q$$

$$\neg p$$

$$\therefore \neg q$$

Which is invalid(the fallacy of denying the hypothesis)

Show that the additive inverse, or negative, of an even number is an even number using a direct proof.

Proof

Let n be any even number then:

$$\exists k \in \mathbb{Z}, n = 2k$$

The additive inverse of n is -n which is -2k = 2(-k) and is also an even number by definition of even numbers.

Use a direct proof to show that the product of two odd numbers is odd.

Proof

Let m, n be any two odd numbers such then:

$$\exists k \in \mathbb{Z}, m = 2k + 1$$

 $\exists l \in \mathbb{Z}, n = 2l + 1$

Now mn = (2k+1)(2l+1) = 4kl + 2k + 2l + 1 = 2(2kl + k + l) + 1 is also an odd number by definition of odd numbers.

Use a proof by contradiction to prove that the sum of an irrational number and a rational number is irrational.

Proof

Assume that x is a rational number, y is an irrational number, and their sum is rational.

That means $x = \frac{a}{b}$ for some integers $a, b \neq 0$.

y cannot be written as the division of two integers,

And the sum $x + y = \frac{k}{l}$ for some integers $k, l \neq 0$.

Solving the last equation for *y* gives:

$$y = \frac{k}{l} - x$$
$$y = \frac{k}{l} - \frac{a}{b} = \frac{kb - al}{bl}$$

Which contradicts that y cannot be written as the division of two integers.

Therefore, that the sum of an irrational number and a rational number is irrational.

University of Khartoum

Find a counterexample to the statement that every positive integer can be written as the sum of the squares of three integers.

Solution

$$1 = 0^{2} + 0^{2} + 1^{2}$$

$$2 = 0^{2} + 1^{2} + 1^{2}$$

$$3 = 1^{2} + 1^{2} + 1^{2}$$

$$4 = 0^{2} + 0^{2} + 2^{2}$$

$$5 = 0^{2} + 1^{2} + 2^{2}$$

$$6 = 1^{2} + 1^{2} + 2^{2}$$

$$7 = 0 + 0 + 7$$

$$7 = 0 + 1 + 6$$

$$7 = 0 + 2 + 5$$

$$7 = 0 + 3 + 4$$

$$7 = 1 + 1 + 5$$

$$7 = 1 + 2 + 4$$

$$7 = 1 + 3 + 3$$

$$7 = 2 + 2 + 3$$

7 is a counter example!

Assignment III

- 1. Use a proof by contraposition to show that if $x + y \ge 2$, where x and y are real numbers, then $x \ge 1$ or $y \ge 1$.
- 2. Prove that these four statements about the integer *n* are equivalent:
- (i) n^2 is odd, (ii) 1 n is even, (iii) n^3 is odd, (iv) $n^2 + 1$ is even.
- 3. Show that if you pick three socks from a drawer containing just blue socks and black socks, you must get either a pair of blue socks or a pair of black socks.

Assignment III

- The submission deadline is: Saturday, June 29th 2024, 23:59:59 GMT+2.
- Upload a clearly captured photocopy of your answer-sheet to: https://forms.gle/zKwBG7oeinWdncw4A
- In cases of cheating, the student will suspect themselves to strict cheating penalties.