#### Séries d'exercices 4ème inf nombres complexes

#### maths au lycee ali arir

Site Web: http://maths-akir.midiblogs.com/

#### EXERCICE N°1

1°)Déterminer la forme algébrique de chacun des nombres complexes suivants :

$$z_0 = 3i + \frac{1}{i} - 2 \text{ , } z_1 = \left(1 + i\right)^2 \text{ , } z_2 = \left(1 - 2i\right)^2 \text{ , } z_3 = \frac{1}{3 + 2i} \text{ , } z_4 = \frac{1 + 2i}{2 - 3i} \text{ .}$$

2°)Déterminer le module de chacun des nombres complexes suivants :

$$z_0 = 3i - 2 \; , \; z_1 = \left(2 + i\right)^2 \; , \; z_2 = \frac{1}{5 + 2i} \; , \; z_3 = \frac{2 - i}{i + 3} \; , \; z_4 = \left(\frac{1 + i}{2 - i}\right)^2$$

# EXERCICE N°2

Soit z = 1 - 2i et z' = -1 + 3i

Déterminer l'écriture cartésienne de chacun des nombres complexes suivants :  $Z_0 = z \times z'$ ,  $Z_0 = z \times z'$ 

$$Z_2=z^2 imes\overline{z'}$$
 ,  $Z_3=rac{z-3}{\overline{z'}+2i}$ 

### EXERCICE N°3

z désigne un nombre complexe différent de 2 i.

Le plan complexe P est rapporté au repère orthonormal direct  $[O, \vec{u}, \vec{v}]$  (unité graphique: 3 cm). On désigne par A le point d'affixe 2 i. A tout point M du plan, distinct de A, d'affixe z, on associe le point M', d'affixe z' définie  $par z' = \frac{z + 2i}{z - 2i}$ 



3°) Soit un complexe z distinct de 2 i, on pose : 
$$z = x + i y$$
 et  $z' = x' + i y'$ , avec  $x, y, x'$  et  $y'$  réels.

Démontrer que : 
$$x' = \frac{x^2 + y^2 - 4}{x^2 + (y - 2)^2}$$
 et  $y' = \frac{4x}{x^2 + (y - 2)^2}$ 

4°) Déterminer et représenter les ensembles de points M d'affixe z tels que :

- a) z' est réel
- b) z' est de module 1

#### **EXERCICE N°4**

Soit 
$$Z = \frac{z+1}{z-2i}$$
 avec  $z = x + iy$  où  $x, y \in R$ 

1°)Exprimer la partie réelle et la partie imaginaire de Z en fonction de x et y .

2°)Déterminer l'ensemble des points M, images de z, tels que Z soit un réel.

3°) Déterminer l'ensemble des points M, images de z , tels que Z soit imaginaire pur.

# EXERCICE N°5

#### **EXERCICE N°6**

Soit a, b et c trois nombres complexes de modules sont égaux à 1 et tel que: a + b + c = 1. Calculer  $\frac{1}{a} + \frac{1}{b} + \frac{1}{a}$ 

# EXERCICE Nº7

Dans le plan complexe P rapporté à un repère orthonormé  $\left(O; \overrightarrow{e_1}, \overrightarrow{e_2}\right)$  on considère les points A , B et C

d'affixes respectives  $z_A = 1 + i$ ,  $z_B = 3 + i$  et  $z_C = 1 - 2i$ .

1°) Placer les points A , B et C

2°)Calculer 
$$|z_A - z_B|$$
,  $|z_A - z_C|$  et  $|z_B - z_C|$ .

3°)En déduire la nature du triangle ABC.

4°)Déterminer l'affixe de point D tel que ABDC soit un rectangle.



## **EXERCICE** N°8

Soit z un nombre complexe tel que z = x + iy avec  $x, y \in R$ 

- 1°) Déterminer le plan complexe, l'ensemble E des points M d'affixe z tel que  $z^2$  est un réel.
- 2°) Déterminer le plan complexe, l'ensemble F des points M d'affixe z tel que |z|=1.

#### EXERCICE N°3

- $1°) D\'eterminer \ les \ racines \ carr\'es \ des \ nombres \ complexes \ suivants$
- $a)z_0 = -3$  ,  $b)z_1 = 3 + 4i$  ,  $c)z_2 = i$
- $2^{\circ}$ ) Résoudre alors dans C les équation suivantes :

a) 
$$z^2 + z + 1 = 0$$
,  $b) z^2 - \sqrt{3}z - i = 0$ ,  $c) iz^2 + (1 + i)z + \frac{1}{4} = 0$ 

## EXERCICE N°9

Résoudre le système suivant :  $\begin{cases} 3z_1 - iz_2 = -i \\ 2iz_1 + z_2 = i \end{cases}$ 

# EXERCICE N°10

- A tout complexe z on associe le complexe :  $P(z) = 2z^2 + z + 5\bar{z}$ .
- 1°) Calculer P(1 + i).
- 2°) Démontrer que si z = x + iy avec  $x \in R$  et  $y \in R$

alors l'équation P(z) = 0 équivaut au système :  $\begin{cases} x(x+3) - y^2 = 0\\ (x-1)y = 0 \end{cases}$ 

 $3^{\circ}$ ) En déduire la résolution dans C de l'équation P(z) = 0.

# EXERCICE N°11

On considère l'équation (E) :  $z^2 + z + 1 + i = 0$ 

On note par  $z_1$  et  $z_2$  les racines de (E).

- 1°)Déterminer les racines carrés de nombre complexe : b = -3 z
- 2°) Résoudre alors dans C l'équation (E).
- 3°) Ecrire sous forme trigonométrique et exponentielle  $z_1$  et  $z_2$
- 4°) Soit z un nombre complexe : z = x + iy où  $(x, y) \in \mathbb{R}^2$  et  $Z = \frac{z z_1}{z z_2}$

## Soit M d'affixe z

- a) Ecrire Z sous forme cartésienne
- b) Déterminer l'ensemble des points M tel que Z est un réel.
- c) Déterminer l'ensemble des points M tel que Z est imaginaire pur.
- 5°) On considère l'équation (E') :  $z^3 + (1+i)z^2 + z + 1 i = 0$ 
  - a) Vérifier que i est une racine de l'équation (E').
  - b) Déterminer a et b tel que  $z^3 + (1-i)z^2 + z + 1 i = (z-i)(z^2 + az + b)$
  - c) Résoudre alors dans C l'équation (E')

# EXERCICE N°12

Soit 
$$P(z) = z^3 - 2(\sqrt{3} + 1)z^2 + 4(1 + i\sqrt{3})z - 8i$$
.

- 1°) Calculer P(1/Fi).
- 2°) Démontrer que P(z) admet une unique racine imaginaire pure que l'on déterminera.
- 3°) Déterminer les réels a, b et c tels que :  $P(z) = (z 2i)(az^2 + bz + c)$  pour tout complexe z.
- 4°) Résoudre dans C l'équation :  $z^2 2\sqrt{3}z + 4 = 0$ .
- En déduire les solutions de l'équation P(z) = 0 dans C.
- 5°) Soient A, B, C les points d'affixes respectives  $z_A = \sqrt{3} i$ ,  $z_B = \overline{z_A}$  et  $z_C = 2i$ .
- a) Faire une figure. Démontrer que A, B et C sont sur un même cercle de centre O.
- b) Calculer  $z_B z_A$  et  $z_B z_C$ , en déduire que le quadrilatère OABC est un losange.

# EXERCICE N°13

On considère le polynôme P défini sur C par :  $P(z) = z^4 + 2z^3 + 6z^2 + 8z + 8$ .

1°) Justifier que :  $P(\bar{z}) = \overline{P(z)}$ .



En déduire que si z<sub>0</sub> est une racine de P, alors son conjugué est aussi une racine de P.

- $2^{\circ}$ ) a) Résoudre l'équation P(z) = 0 sachant qu'elle admet deux racines imaginaires pures.
- b) Déterminer la forme trigonométrique de chacune des solutions de l'équation précédente.
- 3°) Soient  $M_1$ ,  $M_2$ ,  $M_3$  et  $M_4$  les points d'affixes respectives -2i, 2i, -1+i et -1-i.
- a) Placer les points  $M_1$ ,  $M_2$ ,  $M_3$  et  $M_4$  dans le plan complexe et démontrer que  $M_1M_2M_3M_4$  est un trapèze isocèle.
- b) Démontrer que les points M<sub>1</sub>, M<sub>2</sub>, M<sub>3</sub> et M<sub>4</sub> appartiennent à un même cercle de centre A d'affixe 1 dont on précisera le rayon.

#### **EXERCICE Nº14**

On considère l'équation (E):  $z^3 + (2-2i)z^2 + (5-4i)z - 10i = 0$ . 1°)Montrer que (E) admet un solution imaginaire pure. 2°)Résoudre alors (E) dans C.

# **EXERCICE N°15**

Résoudre dans C l'équation :  $z^3 + (2-3i)z^2 - (7+i)z + 17i - 2 = 0$ , sachant qu'elle admet une Facine réelle.

#### EXERCICE N°16

1°)Résoudre danc C l'équation :  $Z^2 - 2Z - 3 = 0$ 

2°) Résoudre danc C l'équations : 
$$z + \frac{1}{z} = -1$$
 et  $z + \frac{1}{z} = 3$ 

3°)  
On considère l'équation (E) : 
$$z^4 - 2z^3 - z^2 - 2z + 1 = 0$$
 .

a)Vérifier que (E) est équivalente au système : 
$$\begin{cases} Z = z + \frac{1}{z} \\ Z^2 - 2Z - 3 = 0 \end{cases}$$

b)En déduire la résolution de (E)dans C.

# EXERCICE N°17 (BAC)

#### Partie A:

On considère dans  $C: f(z) = z^3 + az^2 + bz + c$  où a > b et c sont des réels.

1°)a)Montrer que si 
$$f(2)=0$$
 et  $f(1-i)=0$  alors a, b'et c vérifient le système : (S): 
$$\begin{cases} 4a+2b+c+8=0\\ b+c-2=0\\ 2a+b+2=0 \end{cases}$$

b)Résoudre dans  $R^3$  le système (S)

2°) Dans la suite on prend  $f(z) = z^3 + 6z - 4$ .

a) Vérifier que pout tout nombre complexe z , on a :  $f(z) = (z-2)(z^2-2z+2)$ .

b)Résoudre dans C l'équation f(z) = 0.

#### Partie B:

Le plan complexe P rapporté à un repère orthonormé O;  $e_1$ ,  $e_2$  on considère les points A et B d'affixes

respectives 2 et 1 i. 1°)Montrer que le triangle OAB est rectangle en B.

2°)Soit C le symétrique de B par rapport à l'axe des abscisses.

Montrer que OABC est un carré.

