Transverse field Ising model spectrum

Shuang Liang*

 $Institute\ of\ Physics,\ Chinese\ Academy\ of\ Sciences$

(Dated: October 26, 2021)

Abstract

We calculate $\chi''(\omega)/\omega$ spectrum by interpolating the $G(i\omega_n)$ data obtained by cmpo method using Nevalinna analytical continuation algorithm.

CONTENTS

I. The Ising chain in a transverse field	2
II. Quantum critical point	3
A. Sum rule check	4
III. Paramagnetic phase	

^{*} sliang@iphy.ac.cn

I. THE ISING CHAIN IN A TRANSVERSE FIELD

Hamiltonian:

$$H = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - \Gamma \sum_i \sigma_i^x = -J \sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - Jg \sum_i \sigma_i^x$$
 (1)

where σ_i^{α} , $\alpha = x, y, z$ are Pauli matrices, $\langle ... \rangle$ stands for nearest neighbor, $g = \Gamma/J$ and we set J = 1.0.

At finite temperature, the local two time correlation $\chi(\tau)$ is defined as:

$$\chi(\tau) = \langle \sigma_i^z(\tau) \sigma_i^z(0) \rangle \tag{2}$$

We callimit ourselves to $\tau \in [0, \beta]$ by the boundary conditions in τ .

Its Fourier transform is:

$$\chi(i\omega_n) = \int_o^\beta d\tau \chi(\tau) e^{i\omega_n \tau} \tag{3}$$

Let $\chi(\omega) = \chi(i\omega_n \to \omega + i0^+)$, define $\chi''(\omega) = 2\text{Im}\chi(\omega)$, it related to the structure factor $S(\omega)$ via:

$$S(\omega) = \frac{\chi''(\omega)}{1 - e^{-\beta\omega}} \tag{4}$$

then $\chi''(\omega)$ has the following sum rule:

$$\int_{-\infty}^{\infty} d\omega \frac{\chi''(\omega)}{\omega} = \chi(T) = -G(i\omega_n = 0)$$
 (5)

II. QUANTUM CRITICAL POINT

FIG. 1. The solid line is the semi-classical theoretical results. The orange dash line is the numerical results obtain by Zi-Long Li; the green dash line is the Nevalinna analytical continuation results. n = 5 means we use the first 5 Mausubara frequencies data, start from $i\omega_1$, which is the best fit.

FIG. 2.

FIG. 3. $\chi''(\omega)/\omega$ at different temperatures. $\chi''(\omega)/\omega$ should diverge at T=0.

FIG. 4. $\chi''(\omega)/\omega$ obtained from fitting different number of data points.

A. Sum rule check

sum rule check: $g = 1.0, n = 5$				
	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$-2\pi G(i\omega_0)$	31.00523	52.35123	71.05310	88.18143
cmpo	30.98179	52.51833	71.00934	87.75747

III. PARAMAGNETIC PHASE

FIG. 5.

sum rule check: $g = 1.5, n = 5$				
	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$-2\pi G(i\omega_0)$	6.51806	6.51806	6.51806	6.51806
cmpo	6.41328	6.41328	7.84681	4.75610

sum rule check: $g = 2.0, n = 5$				
	$\beta = 10$	$\beta = 20$	$\beta = 30$	$\beta = 40$
$-2\pi G(i\omega_0)$	3.89954	3.89954	3.89954	3.89954
cmpo	3.81870	3.76048	2.99155	3.29656

FIG. 6.