INSTRUCTIONS: 4-bit single cycle CPU

This CPU uses fixed length instructions. This CPU also has two types of instruction formats: R-type and I-type. In R-type instructions both operands come from registers. In I-type instructions, the first operand comes from a register and the second will be contained within the instruction.

R-Type

Name	Bits	Description
OpCode	15 - 12	Determines what operation should be performed
С	11 - 8	The destination register. The C in Reg _c = Reg _A OP Reg _B
А	7 - 4	The first source register. The A in Reg _C = Reg _A OP Reg _B
В	3 - 0	The second source register. The B in Reg _c = Reg _A OP Reg _B

I-Type

Name	Bits	Description
OpCode	15 - 12	Determines what operation should be performed
С	11 - 8	The destination register. The C in Reg _c = Reg _A OP Imm
А	7 - 4	The first source register. The A in Reg _c = Reg _A OP Imm
Immediat e	3 - 0	The second source register. The Imm in Reg _c = Reg _A OP Imm

Instructions

Operation	Encoding (The value in the OpCodeField)	Description
STOP	0000	The CPU ceases execution
NOP	0001	Do nothing
LOAD	0010	Reg _c = Immediate
MOVE	0011	Reg _c = Reg _A

ANDR	0100	$Reg_C = Reg_A AND Reg_B$
ANDI	0101	Reg _C = Reg _A AND Immediate
ORR	0110	Reg _C = Reg _A OR Reg _B
ORI	0111	Reg _C = Reg _A OR Immediate
XORR	1000	Reg _C = Reg _A XOR Reg _B
XORI	1001	Reg _C = Reg _A XOR Immediate
NOT	1010	Reg _C = NOT Reg _A
NEGATE	1011	Reg _c = -Reg _A
ADDR	1100	Reg _C = Reg _A + Reg _B
ADDI	1101	$Reg_C = Reg_A + Immediate$
7.001		
SUBR	1110	$Reg_C = Reg_A - Reg_B$
SUBI	1111	$Reg_C = Reg_A - Immediate$

Inputs

Pin	Size (in bits)	Explanation
Instruction	16	The instruction located at instruction_Address
ClkIn	1	The Clock. Connect this to the clock ports of your registers and flip-flops. Do nothing else with this.

Outputs

Pin S	Size (in bits)	Explanation
-------	----------------	-------------

Instruction_Add ress_Out	5	The address of the instruction you want to execute
Reg0-15	4	The values in the register file. This has already been connected.

Restrictions

For the CPU, I only could use:

- All of the components under Wiring
- All of the components under Gates **EXCEPT** for Controlled Buffer, Controlled Inverter, PLA
- All of the components under Plexers
- All of the components under Arithmetic
- All of the components under Memory EXCEPT for RAM, ROM, and Random Generator