

Last Year Engineering

18BTIT732-Professional Elective – II: Blockchain Technology

Class - L.Y. (SEM-I)

Unit - V Blockchain Application Development

AY 2023-2024 **SEM-I**

Unit-V Syllabus

- Hyperledger Fabric- Architecture, Identities and Policies,
 Membership and Access Control, Channels, Transaction
 Validation,
- Writing smart contract using Hyperledger Fabric, Writing smart contracts using Ethereum,
- Overview of Ripple and Corda

Hyperledger

- Open source enterprise-grade permissioned distributed ledger technology (DLT) platform
- Collaborative blockchain effort hosted by Linux Foundation
- Mission
 - Create enterprise grade, open source distributed ledger
 - Frameworks

MIT School of Computing

Department of Computer Science & Engineering

Distributed Ledgers

Java-based Ethereum client

Permissionable smart contract machine (EVM) Enterprise-grade DLT with privacy support

Decentralized identity

Mobile application focus

Permissioned & permissionless support; EVM transaction family

Libraries

Domain-Specific

Hyperledger Fabric

- Permissioned distributed ledger framework with smart contracts
- Members of a Fabric network enroll through a Membership Service Provider
- A group of participants can create a channel (shared ledger)
- Copies of the channel ledger present only with channel participants
- Each ledger contains world state and transaction log
- Transactions are used to update state
- Smart contracts (called chaincode) are written in Go
- Pluggable consensus mechanism
- Client SDKs available in Node.js and Java
 - Querying ledger for transactions or blocks
 - Installing chaincode in peer nodes
 - Creating transactions calling chaincode functions

Ledger

Ledger has two types

- World state which holds current transactions
- Transaction state which holds history of transactions

Ledger

World State

Blockchain

В	Blockchain
B1	Block
НЗ	Block header
D1	Block data
T5	Transaction
M3	Block metadata
H1 H2	H2 is chained to H1

Peers

N	Blockchain network
Р	Peer node
S	Smart contract (aka chaincode)
L	Ledger

Hyperledger Fabric components

- Fabric CA
- Membership Service provider
- Client
- Peer
- Orderer
- Channel
- Chaincode

Fabric CA

Registration of identity or connects to LDAP as the user registry

Issuance of enrollments certificate

Certificate renewal and revocation

Certificates are x509 standards

Consist of both server and client components

Peer

- Peer is place where the ledger and the blockchain data is stored
- One peer may be part of multiple channels
- Every single channel inside the peer
- It endorse and update the ledger
- You can create backup of the ledger from the peer

Types of Peer or Node

Endorser Peer

- Validation the transaction
- Execute the chaincode but does not update the ledger
- Approve and Disapproved transactions

Anchor Peer

- When channel is created anchor peer will also create
- Broadcast the blocks to other peers in the organization

Orderer Peer

- Central communication channel
- Include transaction into blocks

Orderer service

- Ordering service is actually the heart of the consensus algorithm and the heart of Hyperledger fabric
- Provide the order of operations
- Before committing anything to ledger it must pass through the ordering service
- It is responsible for verification, security, policy, verification etc.
- Include the transaction into blocks
- Create the block and deliver to other peers
- Ordering service uses following algorithm
 - Solo
 - Kafka
 - RAFT

Channels

- Channel is private "subnet" of communication between two or more specific networks members
- A channel is defined by members (org), anchor peer per member, the shared ledger, chaincode application and ordering service
- Each peer that joins a channel has its own identity given by MSP(membership service provider)
- Channels are completed isolated
- They have different ledger, different height of blocks, policies and stories rules
- Never exchange data
- Outside of channel organization or peer not able to access
- You can make access policies
- Every single peer or party inside a channel must agree another other parties or peer

Chaincode

- A chaincode typically handles business logic agreed to by members of the network, So, it similar to smart contract
- All your business logic is inside chaincode
- It's written in Go, NodeJS or JAVA
- Chaincode may installed on every channel and peer
- Policy must be provided

MSP (Membership Service Provider)

- Abstract away all cryptographic mechanisms and protocols behind issuing certificates, Validating certificates, and user authentication
- Local MSP
 - Defined on file system of the node or user to which they reply
 - Only one msp per node
- Channel MSP
 - This will be available for all the nodes in channel

Application-Peer Interaction

- Ledger queries involve only first three steps
- Ledger updates involve all five steps
- Application needs to send proposed updates to several peers

Transaction Flow of Hyperledger fabric

Transaction Flow of Hyperledger fabric

Chaincode Lifecycle

Package

Install

QueryInstalled

Approve

Check Readineess

Commit

QueryCommit

