Assessment of Toronto Crime
through Exploratory Data Analysis
and Classification

Katherine Ault 501092397

INTRODUCTION & PROJECT RATIONALE

INTRODUCTION & PROJECT RATIONALE

- The potential use of predictive analytics in the field of crime analysis and forecasting first recognized in the 1990s.
- 'Pre-Emptive Policing' was recognized by Time Magazine as one of the 50 best inventions of 2011 (Grossman *et al.,* 2011).
- The availability of open crime datasets has allowed for the field of crime analysis and detection to expand; numerous studies conducted over the past decade on the application of machine learning models in crime prediction.
- ML model results used to support evidence-based decisions by law enforcement agencies such as informing choices regarding resource allocation, deployment, divisional staffing, and patrol plans.

TORONTO MAJOR CRIME INDICATORS DATASET (2014 - 2021): PRIMARY RESEARCH QUESTIONS

- Which predictive model exhibits the most potential to forecast crime in Toronto?
- Which Toronto neighbourhoods have the highest/lowest incidence of crime?
- Are there recognizable temporal and spatial trends in overall crime and MCI categories?

PROJECT APPROACH

Data types were mixed: character (14), integer (12), and numeric (4).

The dataset contained no NA values, 20,233 duplicated rows (based on event ID and offense), and 1372 entries for occurrences prior to 2014

Variable Importance 120 10

FEATURE SELECTION & SMOTE OVERSAMPLING

MCI Category	% - Before	% - After	
Assault	53	28	
Auto Theft	14	7	
Break & Enter	21	11	
Robbery	8	4	
Theft Over \$5000	4	49	

Applied Boruta feature selection method to dataset followed by stepwise regression for comparison.

Premises type, occurrence hour, latitude and longitude were the most significant features associated with the major crime indicators.

Dataset heavily imbalanced toward the Assault category.

SMOTE oversampling served to re-balance the dataset by significantly increasing the minority class and reducing the majority class.

Classifier	Accuracy	Kappa	Training Time
Random Forest	79.9%	0.692	61 min.
Decision Tree	76.2%	0.635	8 min.
k-NN	72.1%	0.578	4 hrs.
Naïve Bayes	61.6%	0.348	10 sec.
Multinomial Logistic Regression	49.2%	0.0039	3 min.

Algorithms executed twice to ensure consistency and evaluated using 10-fold cross validation.

Classifier	Accuracy	Kappa	NIR%
Random Forest	80.5%	0.697	48.1
Decision Tree	76.4%	0.637	48.0
k-NN	72.5%	0.583	49.6
Naïve Bayes	61.9%	0.356	64.8
Multinomial Logistic	49.2%	0.0038	99.4
Classification			

MCI Category	DT*	ML	NB	RF	KNN
Assault	0.689	0.016	0.557	0.734	0.622
Auto Theft	0.413	NA	NA	0.482	0.334
Break &	0.494	NA	0.254	0.553	0.439
Enter					
Robbery	0.159	NA	NA	0.268	0.252
Theft Over	0.956	0.660	0.766	0.977	0.947
\$5000					

The random forest classifier consistently outperformed all other algorithms, with decision tree and k-NN returning comparable results.

In clas	sifying	each	MCI	category,	the	random
forest	model	typic	ally	provided	the	highest
values	for eac	h perf	orma	ance metri	C.	

RF: MCI Category	Sensitivity	Specificity	Accuracy	Precision	F1-Score
Assault	0.659	0.928	79.3%	0.829	0.734
Auto Theft	0.551	0.955	75.3%	0.428	0.482
Break & Enter	0.598	0.939	76.9%	0.515	0.553
Robbery	0.497	0.962	73.0%	0.183	0.268
Theft Over \$5000	0.988	0.968	97.9%	0.967	0.977
DT: MCI Category	Sensitivity	Specificity	Accuracy	Precision	F1 Score
Assault	0.627	0.902	76.5%	0.765	0.689
Auto Theft	0.454	0.950	70.2%	0.378	0.413
Break & Enter	0.524	0.933	72.9%	0.468	0.494
Robbery	0.285	0.959	62.1%	0.110	0.159
Theft Over \$5000	0.965	0.950	95.8%	0.948	0.956
	0.000	0.000	00.070	0.0 10	0.000
kNN: MCI Category	Sensitivity				F1 Score
	Sensitivity				
kNN: MCI Category	Sensitivity 0.622	Specificity	Accuracy	Precision	F1 Score
kNN: MCI Category Assault	Sensitivity 0.622 0.350	Specificity 0.855	Accuracy 73.9%	Precision 0.622	F1 Score 0.622
kNN: MCI Category Assault Auto Theft	Sensitivity 0.622 0.350 0.432	Specificity 0.855 0.946	73.9% 64.8%	Precision 0.622 0.319	F1 Score 0.622 0.334
kNN: MCI Category Assault Auto Theft Break & Enter	0.622 0.350 0.432 0.256	Specificity 0.855 0.946 0.929	73.9% 64.8% 68.1%	0.622 0.319 0.446	F1 Score 0.622 0.334 0.439
kNN: MCI Category Assault Auto Theft Break & Enter Robbery	0.622 0.350 0.432 0.256	0.855 0.946 0.929 0.965	73.9% 64.8% 68.1% 61.0%	0.622 0.319 0.446 0.249 0.951	0.622 0.334 0.439 0.252
kNN: MCI Category Assault Auto Theft Break & Enter Robbery Theft Over \$5000	Sensitivity 0.622 0.350 0.432 0.256 0.943	0.855 0.946 0.929 0.965 0.953	73.9% 64.8% 68.1% 61.0% 94.8%	0.622 0.319 0.446 0.249 0.951	F1 Score 0.622 0.334 0.439 0.252 0.947
kNN: MCI Category Assault Auto Theft Break & Enter Robbery Theft Over \$5000	Sensitivity	0.855 0.946 0.929 0.965 0.953 Specificity	73.9% 64.8% 68.1% 61.0% 94.8%	0.622 0.319 0.446 0.249 0.951	F1 Score 0.622 0.334 0.439 0.252 0.947 F1 Score
kNN: MCI Category Assault Auto Theft Break & Enter Robbery Theft Over \$5000 NB: MCI Category Assault	Sensitivity 0.622 0.350 0.432 0.256 0.943 Sensitivity 0.528	0.855 0.946 0.929 0.965 0.953 Specificity 0.836	7 Accuracy 73.9% 64.8% 68.1% 61.0% 94.8% Accuracy 68.2%	0.622 0.319 0.446 0.249 0.951 Precision 0.590	F1 Score 0.622 0.334 0.439 0.252 0.947 F1 Score 0.557

MLR: MCI Category	Sensitivity	Specificity	Accuracy	Precision	F1 Score
Assault	0.404	0.723	56.4%	0.008	0.016
Auto Theft	0.00	0.925	46.2%	0.00	NA
Break & Enter	NA	0.887	NA	NA	NA
Robbery	NA	0.955	NA	NA	NA
Theft Over \$5000	0.493	0.727	61.0%	0.997	0.660

0.842

75.8%

0.888

0.766

Theft Over \$5000

0.673

- Lambton-Baby Point and Maple Leaf neighbourhoods had the lowest incidence of crime and the Waterfront Communities, and the Church-Yonge Corridor the highest.
- Assault was the most prevalent of the MCI categories followed by break and enter, auto theft, robbery, and theft over \$5000; assault was also the highest MCI category per neighbourhood.
- The random forest model outperformed decision tree, k-NN, Naïve Bayes, and multivariate logistic classifiers, demonstrating the most potential for use as a crime forecasting tool.
- Those MCI categories with the highest proportions (i.e., Assault and Theft Over \$5000) were most often correctly classified compared to Auto Theft, Break & Enter, and Robbery which were either poorly classified or not classified at all.

The majority classes were predicted with the highest accuracy - consider combining some crime categories to produce general classes such as property crime or crimes against person which could serve to increase general model performance and predictive capability for minority classes.

Consider introducing some of the higher ranking 'tentative' independent variables to see how they influence model performance.

Compare performance results using upsampled, down sampled, and original imbalanced data to those returned using SMOTE oversampled data.

Models should be re-developed through the adjustment or addition of hyperparameters, and comparative performance be evaluated to determine whether this optimization significantly influenced classification results.

Investigate whether a Gradient Boost classifier outperforms the random forest model.

Conduct cluster analysis to further detect patterns in the data.

