

Distributed Algorithms 2024

About this course

Algorithms for networks

How can individual nodes in a large computer network work together towards a common goal?

Learning objectives

- Understand models of distributed computing
- Design and analyze efficient distributed algorithms
- Prove impossibility results
- Use standard graph-theoretic concepts

Practiced in exercises

Tested in the exam

Zero to research-level

- No prior knowledge on distributed systems expected
- We will reach topics close to current research by the end of the course

Good start for a Master's thesis or PhD studies

Intensive course

5 credits in 6 weeks

22 working hours/week

This is a theory course

•100% mathematics

- definitions
- theorems
- proofs ...

0% practice

- programming
- hardware
- protocols ...

Prerequisite:

Introduction to Mathematical Reasoning for Computer Scientists

Grading

To pass the course:

you need to pass the exam

For a good grade:

- you need to solve exercises
- quiz + exercises = max 96 points in total
- 80 points = grade 5/5

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7 + 8	-	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1+2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1+2	-	5 + 6	7 + 8	_	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1+2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7 + 8	-	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3+4	_	recap	9 + 10	_	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	_	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5+6	7 + 8	-	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7+8	-	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7 + 8	-	11 + 12		
Wed	10.15	Quiz deadline	Ī	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7 + 8	_	(11 + 12)		
Wed	10.15	Quiz deadline	Ī	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	_	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	_	4	6	8	10	12		

			Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Tue	16.15	Exercise deadline		1 + 2	3 + 4	5 + 6	7 + 8	9 + 10	11 + 12	
	16.15	Lecture	1 + 2	-	5 + 6	7 + 8	-	11 + 12		
Wed	10.15	Quiz deadline	1	3	5	7	9	11		
	10.15	Exercise session	1 + 2	3	5	7	9	11		
Thu	9.00	Exam								1–12
	14.15	Lecture	3 + 4	-	recap	9 + 10	-	recap		
Fri	12.15	Quiz deadline	2	4	6	8	10	12		
	12.15	Exercise session	-	4	6	8	10	12		

Distributed Algorithms 2024

Warm-up

Video 1a: introduction

Video 1b: coloring

Slow color reduction

- Algorithm idea:
 - all nodes with the largest color are active
 - active nodes pick the smallest color that is not used by their neighbors

- Consider a simpler algorithm idea:
 - all nodes pick the smallest color that is not used by their neighbors
- What would go wrong?
 - construct an example in which this algorithm fails!

Video 1b: coloring fast

Fast color reduction

- Algorithm idea:
 - find the first bit that differs in successor
 - index *i*, bit value *b*
 - new color is (i, b)

- Algorithm idea:
 - find the first bit that differs in successor
 - index *i*, bit value *b*
 - new color is (i, b)
- What would go wrong if the new color was just b?
 - construct an example in which it fails!

- Algorithm idea:
 - find the first bit that differs in successor
 - index *i*, bit value *b*
 - new color is (i, b)
- What would go wrong if the new color was just i?
 - construct an example in which it fails!

- Algorithm idea:
 - find the first bit that differs in successor
 - index *i*, bit value *b*
 - new color is (i, b)

Why does the algorithm work correctly?

• why is my new color always different from the new colors of my successor and my predecessor?

Distributed Algorithms 2024

Graph-theoretic foundations

Graphs in this course

- Defining:
 - models of distributed computing
 - what we want to solve
 - what are the assumptions
- Designing & analyzing algorithms
- Proving impossibility results
- Often: *graph* ≈ *network*, *node* ≈ *computer*

Please do not confuse

Maximal

- not a subset of another solution
- very easy to find: add greedily

Maximum

- largest possible solution
- often hard to find

Please do not confuse

Minimal

- not a superset of another solution
- very easy to find: remove greedily

Minimum

- smallest possible solution
- often hard to find

Minimum vertex cover

Minimum dominating set

Maximum independent set

Smallest set of nodes that is both an independent set and a dominating set

Largest set of nodes that is both an independent set and a dominating set

Maximum matching

Minimum edge cover

Minimum edge dominating set