Suites, cours, terminale STMG

1 Suites arithmétiques

1.1 Définition

Définition:

Soit r un nombre réel. On appelle suite arithmétique de raison r toute suite définie par son premier terme u_p où p est un entier naturel, et pour tout entier naturel $n \geq p$ par la relation :

Exemple:

Soit (u_n) la suite définie par $u_0 = 56$ et $u_{n+1} = u_n - 4$. (u_n) est une suite arithmétique de raison

On a $u_1 =$

 $u_2 = \dots,$

 $u_3 = \dots$

1.2 Expression en fonction de n

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite arithmétique de raison r, alors :

• si le premier terme est u_0 , alors pour tout entier n,

.....

• si le premier est u_1 , alors pour tout entier n,

.....

De manière plus générale, pour tous les entiers naturels n et p avec p < n on a :

.....

Exemple [Exprimer en fonction de n le terme général d'une suite arithmétique] :

Soit (u_n) la suite arithmétique de raison -4 et de premier terme $u_0 = 56$.

 $u_n = \dots$

On a par exemple, $u_{12} =$

ou encore $u_{15} =$

1.3 Reconnaissance

Propriété:

Soit (u_n) une suite de premier terme u_p . (u_n) est arithmétique si et seulement si il existe un nombre réel r tel que pour tout entier naturel $n \ge p$ $u_{n+1} = \dots$

Propriété:

Soit (u_n) une suite arithmétique et p et n deux entiers naturels distincts. Alors la raison r de la suite est donnée par :

Exemple [Déterminer la raison d'une suite arithmétique] :

Soit (u_n) une suite arithmétique vérifiant $u_{10} = 34$ et $u_{16} = 43$. On recherche la raison de la suite. On a $r = \dots$

Propriété:

Exemple:

La figure ci-dessous montre la représentation graphique de la suite définie par $u_n = -4 + 2n$ pour tout entier naturel n.

2

1.4 Variations

Propriété:

Soit (u_n) une suite arithmétique de raison r.

- Si r > 0, alors (u_n) est strictement croissante;
- Si r < 0, alors (u_n) est strictement décroissante.

1.5 Sommes de termes

Propriété:

Pour toute suite arithmétique (u_n) et tout entier naturel n:

$$\sum_{k=0}^{k=n} u_k = \dots$$

ou pour tout entier naturel p < n,

....

ce qui s'écrit encore :

.

Exemple [Savoir calculer la somme des premiers termes d'une suite arithmétique] :

On considère la suite arithmétique (u_n) de premier terme $u_0 = 2$ et de raison 3.

L'expression en fonction de n de u_n est $u_n = \dots$

 $u_{10} =$

On a donc $\sum_{k=0}^{k=10} u_k =$

2 Suites géométriques

2.1 Définition

Définition:

•••••

Exemple:

Soit (u_n) la suite définie par $u_1 = 3$ et $u_{n+1} = 2u_n$ pour tout entier naturel n supérieur ou égal à 1. (u_n) est une suite géométrique de raison 2. On a

 $u_2 = \dots$

 $u_3 =$

 $u_4 = \dots$

2.2 Expression en fonction de n

Propriété (expression en fonction de n):

Si $(u_n)_n$ est une suite géométrique de raison q et de premier terme :

- u_0 , alors
- u_1 , alors

De manière plus générale, si p et n sont des entiers naturels tels que p < n, on a :

.

Exemple [Exprimer en fonction de n le terme général d'une suite géométrique] :

Soit (u_n) la suite géométrique de premier terme $u_0 = 5$ et de raison q = 2.

 $u_n = \dots$

On a par exemple $u_{12} = \dots$

Propriété:

Exemple [Reconnaître si trois nombres sont les termes consécutifs d'une suite géométrique] :

On considère les nombres 6, 18 et 54.

On a et donc les trois nombres sont des termes consécutifs d'une suite géométrique de raison

2.3 Sommes de termes

Propriété:

Si (u_n) est une suite géométrique de raison q et de premier terme u_0 , alors :

• si $q \neq 1$,

$$\sum_{k=0}^{k=n} u_k = u_0 + u_1 + \ldots + u_n = \ldots$$

ou

.....

• si q = 1, $\sum_{k=0}^{k=n} u_k = u_0 + u_1 + \dots + u_n = \dots$

Exemple [Savoir calculer les premiers termes d'une suite géométrique] :

On considère la suite géométrique (u_n) de premier terme $u_0 = 100$ et de raison 1,02. On a $\sum_{k=0}^{k=10} u_k = \dots$

2.4 Variations

Propriété:

Soit (u_n) une suite géométrique de premier terme strictement positif et de raison q > 0.

- Si, alors (u_n) est strictement;
- Si, alors (u_n) est strictement

3 Moyenne arithmétique et moyenne géométrique

Définition:

Soit a et b deux réels.

Propriété:

- Trois nombres a, b et c avec $a \le b \le c$ suivent une progression arithmétique si et seulement si b est la moyenne de a et c.
- Trois nombres a, b et c avec $a \le b \le c$ suivent une progression géométrique si et seulement si b est la moyenne de a et c.

Exemples [reconnaître si trois nombres suivent une progression arithmétique ou géométrique] :

•	On considère les nombres	34, 45 et 56.	On a	donc les	s trois	nombres	suivent	une
	progression	de raison						

•	On considère le	es nombres	6, x et 54.	On suppose	que les	trois no	ombres s	suivent u	ne progres	ssion
	géométrique.									

On a $x =$	et les	trois	${\rm nombres}$	suivent	une	progression	 de	raison

4 Application aux taux d'évolution

Propriété:

Un capital C_0 est placé pendant n années au taux annuel de t % avec intérêts composés. Alors, au bout de n années, le capital disponible C_n est :

.

Définition:

- C_n est appelé par le capital C_0 au pendant n années au taux de t %.
- C_0 est appelé de C_n . On a
- Deux taux correspondants à des périodes de placement différentes sont dits lorsque, à intérêts composés, ils donnent la même valeur acquise du capital au bout du même temps de placement.

Exemple:

Définition et propriété :

On considère un capital de valeur actuelle C_0 qui subit deux évolutions successives de taux t_1 et t_2 . On note C_1 et C_2 les valeurs acquises après la première et la deuxième augmentation.

Alors:

- la valeur du capital après la première évolution est $C_1 = \dots$;
- le coefficient multiplicateur moyen correspondant est égal à la moyenne géométrique des coefficients multiplicateurs appliqués, c'est à dire :

et le *taux moyen* appliqué est :

...

Exemples:

• Un capital C_0 de 5000 euros placé à intérêts composés a une valeur acquise C_2 égale à 5600 euros après 2 ans.

Alors la valeur C_1 acquise au bout d'un an est $C_1 = \dots$

• Le prix d'un produit augmente de 5% puis de 9%. Alors le coefficient multiplicateur moyen est et le taux moyen est soit d'augmentation.

5 Algorithmique

Exemples d'algorithme de calcul de sommes :

• On considère la suite (u_n) définie par $u_n = n^2$ pour tout entier naturel n.

```
\begin{array}{l} def \ sommesTermes(n): \\ S = \ldots \\ for \ k \ in \ range(0,n+1): \\ S = \ldots \\ return \ \ldots \end{array}
```

La variable k est appelée La variable S est appelée

• On considère la suite (u_n) définie par $u_1 = 8$ et $u_{n+1} = 3u_n - 2$ pour tout entier naturel n non nul.

```
\begin{array}{l} \text{def sommesTermes(n):} \\ u = \dots \\ S = \dots \\ \text{for k in range(2,n+1):} \\ u = \dots \\ S = \dots \\ \text{return} \end{array}
```