

Machine Learning Fundamentals

Practical Machine Learning (with R)

UC Berkeley Fall 2015

Topics

Administrativa

- Applied Predicative Modeling, Max Kuhn
- The Art of R Programming, Norm Matloff
- Elements of Statistical Learning, Hastie, Friedman, Tibshirani

Review Q&A

Assignments and Grading

REVIEW

EXPECTATIONS

- You have installed R and Rstudio
- olf you are new to **R**, you will have checked out one of the resources and have started becoming familiar with syntax and functions.

ontrol, you will have investigated git/github and/or sourcetree

Review

- Class Objective → Practice of ML
- Advantages of R (popularity, community, extensibility)
- Elite Coding
 - Follow Established Design Patterns
 - Adopt Standards
 - Use Version Control → git(hub) / sourcetree
- Set-up R / Rstudio

Data Science Venn Diagram

Ref. http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram

USEFUL R PACKAGES

ML Framework: caret (Classification and Regression Training)

Pipe operators: magrittr, pipeR, backpipe (shiny)

Tables: data.tables, dplyr

⇒ Visualization: ggvis, ggplot2

Reporting: knitr, rmarkdown

R Resources

ONLINE

- (META)CRAN
 - Packages
 - Task Views
- Stackoverflow.com
- r-bloggers.com
- Advanced R Programming
- Github

Offline

The Art of R Programming

Norm Matloff

ISBN-13: 858-2592222227

ISBN-10: 1593273843

R in Action: Data Analysis and Graphics with R

Robert Kabacoff

ISBN-13: 978-1617291388

ISBN-10: 1617291382

COURSE WEBSITE

https://github.com/CSX460

GIT / GITHUB / SOURCE TREE

Workflow

- clone
- branch
- (work)
- add
- commit (early and often)
 - tag
- push
- Also checkout, status, log

ADMINISTRATIVE

GRADING

GRADES

- Exams and Quizzes (20%)
- Class Participation and Exercises (30%)
- ⇒ Project (50%)
 - Identify problem you want to tackle
 - Frame the problem
 - Build Features
 - Review linear model and cart
 - Build Model
 - Deploy
- Attendance is Mandatory

HIGH DIMENSIONAL SPACES

EXAMPLE OF ML ALGORITHM(S)

- Spam Filter
- handwriting recognition (svm)
- Traffic engineering (lights)
- Weather prediction
- Sentiment analysis (social media)
- Netflix Recommender
- Fraud detection (Visa)
- Imaging processing
- Intrution detection
- Self-driving cars

What is machine learning?

A formal process for building a model

What is a model?

a function that estimates a response associated with (a set of) known predictors

$$\widehat{y} = f(\overrightarrow{x})$$

What is machine learning?

A formal process of building a model

How do we find f?

WHAT ARE THE PROPERTIES OF f

- Should be easy to evaluate
- Takes a one or more values of inputs
- Yields a single output value for each input

Output, \hat{y} , should be "close" to observed values, y:

$$\widehat{y} \sim y$$

How good is the model?

MEASUREMENTS FOR ERROR FOR MODEL

WHAT ARE THE PROPERTIES OF f

- Should be easy to evaluate
- Takes a one or more values of inputs
- Yields a single output value for each input
- Can measure the error
- Output, \hat{y} , should be "close" to observed values, y: $\hat{y} \sim y$

What else

The number of functions available?

3 REQUIREMENT FOR ALGORITHM

- A method for evaluating how well the algorithm performs (ERRORS)
- → A restricted class of function (MODEL)
- A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

LINEAR REGRESSION

- ⇒ Errors: Minimize Squared Error
- Model:

$$\hat{y} = \beta_0 + \sum_{i=1}^p \beta_i x_i$$

$$\hat{y} = \beta_0 + \boldsymbol{x}^T \boldsymbol{\beta}$$

OPTIMIZATION TECHNIQUES

Direct Solution

Recursive Goal Seeking

MORE THAN LEARNING

Making a practical model entails more than learning...

What are the other requirements?

Comprehensive ML Process

Problem

Write a function to calculate the RMSE,

Write a function to calculate the MAE

MACHINE LEARNING EXAMPLE

AppliedPredictiveModelling::FuelEconomy

APPENDIX

Given a vector of numbers (x), write a function (f) that returns a vector of numbers containing the product of every other number excluding the current index.

Example:

```
> x <- c(1, 5, 2, 8)
> f(x)
[1] 80 16 40 10
# 5*2*8, 1*2*8, 1*5*8, 1*2*5
```

Solution

Given a vector of numbers (x) write a function (f) that returns a vector of numbers containing the product of every other integer excluding the current index.

Example:

```
> x <- c(1, 5, 2, 8)
> f(x)
[1] 80 16 40 10
# 5*2*8, 1*2*8, 1*5*8, 1*2*5
```

Solution:

f <- function(x) prod(x) / x

- Introduction to R, setting up the ML developers environment
 - Installing R
 - Installing R Studio
 - Installing packages from CRAN,
 Bioconductor and Github
 - Exercises

- Fundamentals of Machine Learning
 - Machine learning overview
 - Regression and classification
 - Supervised, unsupervised, and semisupervised
 - Algorithm types and requirements
 - Exercises

- Linear Regression
 - OLS Regression
 - Data partitioning
 - Model evaluation and tuning
 - Exercises

- Logistic Regression
 - Logistic Regression
 - Exercises

- Advanced Techniques: Partitioning Methods
 - CART/Regression Trees
 - Clustering
 - K Nearest Neighbors
 - Exercises

- Advanced Techniques: Partitioning Methods
 - CART/Regression Trees
 - Clustering
 - K Nearest Neighbors
 - Exercises

- Advanced Techniques
 - Bagging
 - Bagged Trees / Random Forests
 - Exercises

- Advanced Techniques: Boosting
 - Boosting
 - Neural Networks
 - Support Vector Machines
 - Exercises

- Deployment
 - Diving into the data lake
 - Optimization
 - Delivery and Production

- Final Lecture
 - Exercises
 - Exam

