

https://github.com/Freddy-2021/dsc-phase-2-project-v2-3

Overview

For this project, I will use multiple linear regression modeling to analyze house sales in King County, in Washington state.

Business Problem

The goal of this project is to to provide advice to homeowners about how home renovations may increase the value of their homes, and by what amount. The information for this project is derived from data comprised of the different characteristics of over 20,000 homes in King County, which is located in Washington State. I will use this information gain a better understanding about how different remodels, or renovations to the homes listed, impact their price.

Data Understanding

The data comes from the King County House Sales dataset, in the form of a 'csv' file. The file will be converted into a pandas dataframe. It contains information about the different characteristics of the homes in the King County area,including the number of bedrooms, building grades, square footage, and price. King County is located in Washington State, and has a size of approximately 2300 square miles, per the U.S Census Bureau:

kc_house_data.csv

I will be giving this dataframe a brief overview of its different characteristics, with a view toward using its columns as variables in a regression model. These include:

- dataframe shape: the number of rows and columns in the dataframe
- any missing/null values
- continuous variables
- categorical variables
- binary variables
- zero inflated variables
- outliers

Since the goal is to try to gain insights, as to how much a particular upgrade or remodel can the impact the price of a house, as opposed to predicting home prices, I will be placing an emphasis on choosing features with the least explanatory overlap. To that end, for instance, I would favor a feature such as a bedroom, or a bathroom over square footage.

The following includes dataframe information, as well as plots and histograms describing the data:

<class 'pandas.core.frame.DataFrame'>
Int64Index: 21597 entries, 15279 to 7245
Data columns (total 20 columns):

Data	columns (total	20 columns):	
#	Column	Non-Null Count	Dtype
0	date	21597 non-null	object
1	price	21597 non-null	float64
2	bedrooms	21597 non-null	int64
3	bathrooms	21597 non-null	float64
4	sqft_living	21597 non-null	int64
5	sqft_lot	21597 non-null	int64
6	floors	21597 non-null	float64
7	waterfront	19221 non-null	object
8	view	21534 non-null	object
9	condition	21597 non-null	object
10	grade	21597 non-null	object
11	sqft_above	21597 non-null	int64
12	sqft_basement	21597 non-null	object
13	<pre>yr_built</pre>	21597 non-null	int64
14	<pre>yr_renovated</pre>	17755 non-null	float64
15	zipcode	21597 non-null	int64
16	lat	21597 non-null	float64
17	long	21597 non-null	float64
18	sqft_living15	21597 non-null	int64
19	sqft_lot15	21597 non-null	int64
dtype	es: float64(6),	int64(8), object	:(6)
memory usage: 3.5+ MB			

Above is information about the dataframe (after 'id' column was dropped).

T TOOD 2003 2000 4003 5000 6000 0 2000000 400000 600000 800000 03 53 64 56 50

Above are the histograms of the distributions of the different features.

Above are scatter plots of the change of the different features, relative to the price.

Data Understanding Take-aways So Far:

- 1. There appear to be six categorical variables:
- bedrooms
- bathrooms

- floors
- view
- condition
- grade
- 2. There is atleast one binary variable: waterfront
- 3. There appear to be several potential zero inflated variables: sqft_lot sqft_basement yr_renovated sqft_lot15
- 4. There are also several right-skewed distributions, that may be normalized by a log transformation
- 5. Sqft_living appears to have the strongest correlation with price. Sqft_above and bathrooms, also appear to have a pretty strong linear relationship with price.
- 6. Since the relationship between the ordinal variables (grade,condition, bathrooms,bedrooms) are not repectively monotonic, some of the results given by the regression model may appear non-sensical.
- 7. The descriptive analysis, as well as the visualizations show that there are outliers. I will begin by removing these.

Preprocessing Data

In this section, I will deal with incorrect data types, as well as missing, or 'zero-inflated' data. I will also create the categorical 'dummy' columns, as well as perform transformations on continuous data if necessary. I also created two 'preprocessed' dataframes, one that is scaled, and one that is not. Once I have all my final features, I will create another model with the identical set of features that are not scaled. It makes for an easier interpretation of the individual variables.**

The following is a description of the scaled dataframe after the preprocessing was completed:

```
In [30]: X data preproc cmplt scaled.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 21428 entries, 15279 to 7245
         Data columns (total 71 columns):
               Column
                                   Non-Null Count Dtype
         --- -----
                                   -----
              view EXCELLENT
                                   21428 non-null uint8
          0
          1 view FAIR
                                   21428 non-null uint8
          2 view GOOD
                                   21428 non-null uint8
          3 view_NONE
                                 21428 non-null uint8
                                 21428 non-null uint8
           4 view_missing
                                 21428 non-null uint8
             cond Fair
           5
           6 cond Good
                                 21428 non-null uint8
          7 cond_Poor 21428 non-null uint8
8 cond_Very Good 21428 non-null uint8
               grd 11 Excellent
                                   21428 non-null uint8
          10 grd_12 Luxury 21428 non-null uint8
11 grd_13 Mansion 21428 non-null uint8
12 grd_3 Poor 21428 non-null uint8
13 grd_13 Poor 21428 non-null uint8
                                 21428 non-null uint8
          13 grd 4 Low
          14 grd 5 Fair 21428 non-null uint8
          15 grd 6 Low Average 21428 non-null uint8
          16 grd_7 Average 21428 non-null uint8
          17 grd_8 Good
18 grd_9 Better
19 wtrfrnt_YES
                                   21428 non-null uint8
                                 21428 non-null uint8
                                   21428 non-null uint8
          20 wtrfrnt_missing 21428 non-null uint8
          21 bdrm_2
22 bdrm_3
                                   21428 non-null uint8
                                 21428 non-null uint8
          23 bdrm 4
24 bdrm 5
25 bdrm 6
26 bdrm 7
                                 21428 non-null uint8
21428 non-null uint8
                                 21428 non-null uint8
                                 21428 non-null uint8
                                21428 non-null uint8
21428 non-null uint8
21428 non-null uint8
21428 non-null uint8
21428 non-null uint8
          27 bdrm_8
28 bdrm_9
          29 bdrm__10
           30 bdrm 11
          31 bdrm_33
                                21428 non-null uint8
21428 non-null uint8
          32 bthrm 0.75
          33 bthrm 1.0
                                  21428 non-null uint8
          34 bthrm 1.25
                                  21428 non-null uint8
          35 bthrm 1.5
                                  21428 non-null uint8
          36 bthrm 1.75
                                 21428 non-null uint8
          37 bthrm 2.0
                                 21428 non-null uint8
          38 bthrm__2.25
                                  21428 non-null uint8
           39 bthrm 2.5
                                 21428 non-null uint8
                                 21428 non-null uint8
           40 bthrm 2.75
           41 bthrm 3.0
                                 21428 non-null uint8
           42 bthrm 3.25
                                 21428 non-null uint8
           43 bthrm__3.5
                                  21428 non-null uint8
                                 21428 non-null uint8
           44 bthrm 3.75
           45 bthrm 4.0
                                  21428 non-null uint8
                                  21428 non-null uint8
          46 bthrm 4.25
```

```
47 bthrm 4.5
                     21428 non-null
                                    uint8
48 bthrm 4.75
                     21428 non-null
                                    uint8
          5.0
49
   bthrm
                     21428 non-null uint8
50 bthrm 5.25
                     21428 non-null uint8
51 bthrm 5.5
                     21428 non-null
                                    uint8
52 bthrm 5.75
                     21428 non-null
                                    uint8
   bthrm 6.0
                     21428 non-null
                                    uint8
53
54 bthrm 6.25
                     21428 non-null
                                    uint8
55 bthrm 6.5
                     21428 non-null uint8
                     21428 non-null
56 bthrm 6.75
                                    uint8
57 bthrm 7.5
                     21428 non-null
                                    uint8
58 bthrm 7.75
                     21428 non-null uint8
59 bthrm 8.0
                     21428 non-null uint8
60 flr 1.5
                     21428 non-null uint8
61 flr_2.0
                     21428 non-null uint8
62 flr 2.5
                     21428 non-null uint8
63 flr_3.0
                     21428 non-null uint8
64 flr 3.5
                     21428 non-null uint8
65 lat
                     21428 non-null float64
                     21428 non-null float64
66 log_sqft_living
68 log_sqft_lot
67 log sqft above
                     21428 non-null float64
                     21428 non-null float64
69 log_sqft_living15 21428 non-null float64
70 log sqft lot15
                     21428 non-null float64
```

dtypes: float64(6), uint8(65)

memory usage: 2.5 MB

Feature Selection

In this section I created the following three baseline models:

- 1. The feature with the highest correlation to the dependent variable (price)
- 2. The dataframe with all the features, as well as 'dummy' features, log transormations
- 3. In this dataframe I have dropped some 'generalized' features with high explanatory overlap.

Continuing with the third baseline model, I repeatedly remove features with p-values over.05, and features with high multi-colinearity. The following is the final model before I begin to confirm the assumptions of linear regression. At this point there are actually two models, that are identical except one has the 'lat' feature and one does not. This is because at this point I am not sure if I should remove the 'lat' feature in order to lower the Jarque Bera score.

Model with 'lat' feature:

Dep. Variable:	price	R-squared:	0.656
Model:	OLS	Adj. R-squared:	0.656
Method:	Least Squares	F-statistic:	907.4
Date:	Mon, 31 Jan 2022	Prob (F-statistic):	0.00
Time:	10:30:33	Log-Likelihood:	-5196.8
No. Observations:	21428	AIC:	1.049e+04
Df Residuals:	21382	BIC:	1.085e+04
Df Model:	45		
Covariance Type:	nonrobust		

Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	12.8777	0.007	1789.974	0.000	12.864	12.892
view_EXCELLENT	0.4491	0.022	20.731	0.000	0.407	0.492
view_FAIR	0.2748	0.017	15.958	0.000	0.241	0.309
view_GOOD	0.3290	0.014	23.187	0.000	0.301	0.357
cond_Fair	-0.1126	0.024	-4.674	0.000	-0.160	-0.065
cond_Good	0.0935	0.005	18.122	0.000	0.083	0.104
cond_Very Good	0.1801	0.008	22.008	0.000	0.164	0.196
grd_11 Excellent	0.5794	0.018	33.051	0.000	0.545	0.614
grd_12 Luxury	0.7869	0.035	22.248	0.000	0.718	0.856
grd_13 Mansion	1.1282	0.096	11.765	0.000	0.940	1.316
grd_4 Low	-0.5897	0.060	-9.868	0.000	-0.707	-0.473
grd_5 Fair	-0.4066	0.021	-19.716	0.000	-0.447	-0.366
grd_6 Low Average	-0.2241	0.008	-27.016	0.000	-0.240	-0.208
grd_8 Good	0.1112	0.005	20.630	0.000	0.101	0.122
grd_9 Better	0.3141	0.008	41.622	0.000	0.299	0.329
wtrfrnt_YES	0.4002	0.031	12.714	0.000	0.339	0.462
bdrm_2	0.0261	0.007	3.594	0.000	0.012	0.040
bdrm_4	0.0760	0.005	14.613	0.000	0.066	0.086
bdrm_5	0.0922	0.009	10.324	0.000	0.075	0.110
bdrm_6	0.0434	0.020	2.197	0.028	0.005	0.082
bthrm_1.0	-0.2089	0.009	-23.280	0.000	-0.227	-0.191
bthrm_1.5	-0.1609	0.010	-16.041	0.000	-0.181	-0.141
bthrm1.75	-0.0880	0.008	-10.821	0.000	-0.104	-0.072
bthrm2.0	-0.0753	0.009	-8.343	0.000	-0.093	-0.058
bthrm2.25	-0.0343	0.008	-4.161	0.000	-0.050	-0.018
bthrm2.75	0.0756	0.010	7.418	0.000	0.056	0.096

IVI				11	16uuy-202	1/usc-phase	-z-project-
	bthrm_3.0	0.1147	0.012	9.328	0.000	0.091	0.139
	bthrm3.25	0.2693	0.014	19.554	0.000	0.242	0.296
	bthrm_3.5	0.2830	0.013	22.360	0.000	0.258	0.308
	bthrm3.75	0.4121	0.026	15.811	0.000	0.361	0.463
	bthrm4.0	0.4193	0.028	15.008	0.000	0.365	0.474
	bthrm4.25	0.5334	0.036	14.814	0.000	0.463	0.604
	bthrm4.5	0.4171	0.033	12.751	0.000	0.353	0.481
	bthrm4.75	0.5971	0.066	9.108	0.000	0.469	0.726
	bthrm5.0	0.4942	0.068	7.216	0.000	0.360	0.628
	bthrm5.25	0.5476	0.087	6.324	0.000	0.378	0.717
	bthrm5.5	0.6505	0.100	6.476	0.000	0.454	0.847
	bthrm6.0	0.7073	0.130	5.456	0.000	0.453	0.961
	bthrm6.25	0.5680	0.224	2.534	0.011	0.129	1.007
	bthrm7.75	0.9592	0.324	2.957	0.003	0.323	1.595
	bthrm8.0	0.5088	0.225	2.261	0.024	0.068	0.950
	flr_1.5	0.1560	0.008	19.960	0.000	0.141	0.171
	flr2.0	0.0954	0.006	16.180	0.000	0.084	0.107
	flr2.5	0.3229	0.025	12.884	0.000	0.274	0.372
	lat	0.2210	0.002	101.018	0.000	0.217	0.225
	log_sqft_lot	0.0531	0.002	23.346	0.000	0.049	0.058

1.280	Durbin-Watson:	762.776	Omnibus:
1154.282	Jarque-Bera (JB):	0.000	Prob(Omnibus):
2.24e-251	Prob(JB):	0.345	Skew:
196	Cond. No.	3.903	Kurtosis:

Model without 'lat' feature:

Dep. Variable:		price	R-sc	quared:	0.4	192
Model:	OLS		Adj. R-squared:		0.491	
Method:	Least Squares		F-statistic:		471.2	
Date:	Mon, 31 Ja	an 2022	Prob (F-sta	atistic):	0	.00
Time:	1	0:30:33	Log-Like	lihood:	-937	7.2
No. Observations:		21428		AIC:	1.884e	+04
Df Residuals:		21383		BIC:	1.920e	+04
Df Model:		44				
Covariance Type:	no	nrobust				
	coef	std err	t	P> t	[0.025	0.975]
const	12.8555	0.009	1470.896	0.000	12.838	12.873
view EXCELLENT	0.4772	0.026	18.126	0.000	0.426	0.529
view FAIR	0.2881	0.021	13.767	0.000	0.247	0.329
view_GOOD	0.2952	0.017	17.125	0.000	0.261	0.329
cond Fair	-0.1385	0.029	-4.731	0.000	-0.196	-0.081
cond_Good	0.0679	0.006	10.843	0.000	0.056	0.080
cond_Very Good	0.1855	0.010	18.645	0.000	0.166	0.205
grd_11 Excellent	0.6795	0.021	31.946	0.000	0.638	0.721
grd_12 Luxury	0.8945	0.043	20.816	0.000	0.810	0.979
grd_13 Mansion	1.2653	0.117	10.857	0.000	1.037	1.494
grd_4 Low	-0.6990	0.073	-9.625	0.000	-0.841	-0.557
grd_5 Fair	-0.5281	0.025	-21.104	0.000	-0.577	-0.479
grd_6 Low Average	-0.2971	0.010	-29.581	0.000	-0.317	-0.277
grd_8 Good	0.1364	0.007	20.843	0.000	0.124	0.149
grd_9 Better	0.3794	0.009	41.519	0.000	0.362	0.397
wtrfrnt_YES	0.3448	0.038	9.015	0.000	0.270	0.420
bdrm_2	0.0854	0.009	9.694	0.000	0.068	0.103
bdrm_4	0.0815	0.006	12.890	0.000	0.069	0.094
bdrm_5	0.1095	0.011	10.091	0.000	0.088	0.131
bdrm_6	0.0714	0.024	2.978	0.003	0.024	0.118
bthrm_1.0	-0.1755	0.011	-16.098	0.000	-0.197	-0.154
bthrm1.5	-0.1466	0.012	-12.030	0.000	-0.170	-0.123
bthrm1.75	-0.0585	0.010	-5.919	0.000	-0.078	-0.039
bthrm2.0	-0.0630	0.011	-5.748	0.000	-0.084	-0.042
bthrm2.25	-0.0030	0.010	-0.301	0.763	-0.023	0.017
bthrm2.75	0.1064	0.012	8.590	0.000	0.082	0.131

				•	•	
bthrm_3.0	0.1549	0.015	10.370	0.000	0.126	0.184
bthrm3.25	0.3453	0.017	20.659	0.000	0.313	0.378
bthrm3.5	0.3433	0.015	22.340	0.000	0.313	0.373
bthrm3.75	0.5125	0.032	16.194	0.000	0.451	0.575
bthrm4.0	0.5075	0.034	14.953	0.000	0.441	0.574
bthrm4.25	0.6076	0.044	13.889	0.000	0.522	0.693
bthrm4.5	0.5026	0.040	12.644	0.000	0.425	0.581
bthrm4.75	0.7081	0.080	8.888	0.000	0.552	0.864
bthrm5.0	0.4961	0.083	5.959	0.000	0.333	0.659
bthrm5.25	0.5802	0.105	5.513	0.000	0.374	0.787
bthrm5.5	0.7151	0.122	5.858	0.000	0.476	0.954
bthrm6.0	0.7434	0.158	4.718	0.000	0.435	1.052
bthrm6.25	0.6886	0.272	2.528	0.011	0.155	1.223
bthrm7.75	1.0014	0.394	2.540	0.011	0.229	1.774
bthrm8.0	0.6557	0.274	2.397	0.017	0.120	1.192
flr1.5	0.2014	0.009	21.242	0.000	0.183	0.220
flr2.0	0.0458	0.007	6.412	0.000	0.032	0.060
flr2.5	0.2985	0.030	9.802	0.000	0.239	0.358
log_sqft_lot	0.0192	0.003	7.008	0.000	0.014	0.025
Omnibus: 150	.455 D	urbin-Wa	tson:	0.932		
Prob(Omnibus):	.000 Jar	que-Bera	(JB): 15	55.406		
Skew: 0	.194	Prob	(JB): 1.7	'9e-34		
Kuntania.	150	0		100		

Kurtosis: 3.153 Cond. No. 196.

Assumptions of Multiple Linear Regression

In this section I had to remove some rows in order to satisfy the assumptions of homoscedasticity, and normality of the residuals. This is the final model after all the assumptions were satisfied:

Dep. Variable:	price	R-squared:	0.653
Model:	OLS	Adj. R-squared:	0.652
Method:	Least Squares	F-statistic:	943.7
Date:	Mon, 31 Jan 2022	Prob (F-statistic):	0.00
Time:	10:30:36	Log-Likelihood:	-2586.6
No. Observations:	20590	AIC:	5257.
Df Residuals:	20548	BIC:	5590.
Df Model:	41		
Covariance Type:	nonrobust		
	coef std err	t P>ltl	[0.025

	coef	std err	t	P> t	[0.025	0.975]
const	12.8553	0.007	1971.557	0.000	12.843	12.868
view_EXCELLENT	0.4225	0.021	20.154	0.000	0.381	0.464
view_FAIR	0.2550	0.016	16.168	0.000	0.224	0.286
view_GOOD	0.3205	0.013	24.471	0.000	0.295	0.346
cond_Fair	-0.0772	0.023	-3.305	0.001	-0.123	-0.031
cond_Good	0.0855	0.005	18.244	0.000	0.076	0.095
cond_Very Good	0.1658	0.007	22.293	0.000	0.151	0.180
grd_11 Excellent	0.5802	0.017	34.108	0.000	0.547	0.614
grd_12 Luxury	0.7530	0.039	19.542	0.000	0.677	0.828
grd_13 Mansion	1.1681	0.275	4.248	0.000	0.629	1.707
grd_4 Low	-0.3119	0.071	-4.385	0.000	-0.451	-0.172
grd_5 Fair	-0.2908	0.021	-13.877	0.000	-0.332	-0.250
grd_6 Low Average	-0.1990	0.008	-26.198	0.000	-0.214	-0.184
grd_8 Good	0.1329	0.005	27.317	0.000	0.123	0.142
grd_9 Better	0.3420	0.007	49.922	0.000	0.329	0.355
wtrfrnt_YES	0.3045	0.033	9.291	0.000	0.240	0.369
bdrm_2	0.0343	0.007	5.178	0.000	0.021	0.047
bdrm_4	0.0758	0.005	16.135	0.000	0.067	0.085
bdrm_5	0.0854	0.008	10.476	0.000	0.069	0.101
bdrm_6	0.0496	0.018	2.731	0.006	0.014	0.085
bthrm_1.0	-0.1775	0.008	-21.764	0.000	-0.194	-0.162
bthrm1.5	-0.1482	0.009	-16.336	0.000	-0.166	-0.130
bthrm1.75	-0.0742	0.007	-10.116	0.000	-0.089	-0.060
bthrm2.0	-0.0651	0.008	-8.016	0.000	-0.081	-0.049

IVI				Г	reddy-202	1/dsc-pnase	-2-project-v	′ -
	bthrm2.25	-0.0408	0.007	-5.484	0.000	-0.055	-0.026	
	bthrm2.75	0.0765	0.009	8.331	0.000	0.058	0.094	
	bthrm_3.0	0.1013	0.011	9.071	0.000	0.079	0.123	
	bthrm3.25	0.2245	0.013	17.537	0.000	0.199	0.250	
	bthrm_3.5	0.2534	0.012	21.774	0.000	0.231	0.276	
	bthrm3.75	0.3793	0.025	15.397	0.000	0.331	0.428	
	bthrm4.0	0.3416	0.027	12.566	0.000	0.288	0.395	
	bthrm4.25	0.4654	0.037	12.443	0.000	0.392	0.539	
	bthrm4.5	0.3499	0.031	11.147	0.000	0.288	0.411	
	bthrm4.75	0.2176	0.092	2.357	0.018	0.037	0.398	
	bthrm_5.0	0.2973	0.074	4.002	0.000	0.152	0.443	
	bthrm5.25	0.4710	0.092	5.112	0.000	0.290	0.652	
	bthrm_5.5	0.5602	0.138	4.060	0.000	0.290	0.831	
	flr_1.5	0.1595	0.007	22.606	0.000	0.146	0.173	
	flr2.0	0.0864	0.005	16.151	0.000	0.076	0.097	
	flr2.5	0.2707	0.024	11.314	0.000	0.224	0.318	
	lat	0.2084	0.002	105.639	0.000	0.205	0.212	
	log_sqft_lot	0.0472	0.002	23.018	0.000	0.043	0.051	
	Omnibus: 64	.244 D u	ırbin-Wat	son:	0.005			
Prob	b(Omnibus): 0	.000 Jarq	ue-Bera	(JB): 64	4.770			
	Skew: 0	.136	Prob	(JB): 8.62	2e-15			
	V. mtaaia. 0	040	0	N.	101			

Kurtosis: 3.042 Cond. No. 181.

Renovation and Remodel Recommendations

Baseline model:

'const': 1 'lat': 47.56

'view': 'AVERAGE' (default)

'condition': 'AVERAGE' (default)
'grade': '10 Very Good' (default)

'waterfront': 'NO' (default)
'bedrooms': 1 (default)

'bathrooms': 0.5 (default)

'floors': 1 (default)
'log_sqft_lot': 9

'price': 12.855537576059533 aprox.: 382903.231151

1. Adding a Second Floor:

The following is the price predicted by the model when the baseline model is changed from 1 floor, to 2 floors. The result is the power to which Euler's number (e) should be raised, in order to derive the price:

- model_final_no_scale.predict(house_features)[0]
- : 12.941941308413988

In this case, we have a log-level regression, where the dependent variable 'price', is log transformed, and the independent variable 'flr__2.0' is not. It takes the following form:

 $\ln y = b0 + b1(x) + E$

where b0 is the constant, b1 is the slope coefficient, and E is the error term. We can calculate the change in price, based on the change in x with the following formula:

 $%(change in y) = 100 * ((e^b1) - 1)$

Based on this formula, with b1 = 0.0864, the change in y would be equal to 9.02423%. If we multiply 382,903.231151 by 1.0902423, we get 417,457.299407. If we compare this to the price predicted by the model in terms of an exponent,e^12.941941308413988 = 417458.872072. The log-level interpretation matches the predicted value with a precision of 99.99962328%.

2. Upgrading Building Grade to 'grd 11 Excellent':

The following is the price predicted by the model when the baseline model is changed from grade 10 to grade 11. The result is the power to which Euler's number (e) should be raised, in order to derive the price:

13.43576963632787

In this case, we have a log-level regression, where the dependent variable 'price', is log transformed, and the independent variable 'grd_11 Excellent' is not. It takes the following form:

 $\ln y = b0 + b1(x) + E$

where b0 is the constant, b1 is the slope coefficient, and E is the error term. We can calculate the change in price, based on the change in x with the following formula:

 $%(change in y) = 100 * ((e^b1) - 1)$

Based on this formula, with b1 = 0.5802, the change in y would be equal to 78.639567%. If we multiply 382,903.231151 by 1.78639567, we get 684,016.674157. If we compare this to the price predicted by the model in terms of an exponent, $e^13.43576963632787 = 684,038.60586$. The log-level interpretation matches the predicted value with a precision of 99.996793791%.

3. Upgrading to Four Bedrooms:

The following is the price predicted by the model when the baseline model is changed from 1 bedroom to 4 bedrooms. The result is the power to which Euler's number (e) should be raised, in order to derive the price:

12.931293218903669

In this case, we have a log-level regression, where the dependent variable 'price', is log transformed, and the independent variable 'bdrm__4' is not. It takes the following form:

 $\ln y = b0 + b1(x) + E$

where b0 is the constant, b1 is the slope coefficient, and E is the error term. We can calculate the change in price, based on the change in x with the following formula:

 $%(change in y) = 100 * ((e^b1) - 1)$

Based on this formula, with b1 = 0.0758, the change in y would be equal to 7.87468%. If we multiply 382,903.231151 by 1.0787468, we get 413,055.635314. If we compare this to the price predicted by the model in terms of an exponent, e^12.931293218903669 = 413,037.31498. The log-level interpretation matches the predicted value with a precision of 99.995564681%.

Project Conclusion: Main Take-aways

- 1. It is critical to have some understanding of the subject matter one is dealing with, in order to be able to select features, more effectively, and root out non-sensical results.
- 2. If the ordinal data in one's data set does not have a monotonic relationship, one may wind up with non-sensical results. For example, recommending a downgrade from 'grd_10 Very Good' to 'grd_9 Better', in order to increase the price of the home.
- 3. High multi-colinearity between features, may lead to unexpected results. For example, one may have two features that are highly correlated, where both have positive Pearson correlations, but one has a negative regression coefficient.
- 4. The features with the higher Perason correlation coefficient, do not necessarily have a higher regression coefficient. I found this particularly in the 'dummy' variables. I think this may have something to do with these variables not having an equal number of occurences, since only one can be chosen at a time, for each row of data.
- 5. I understand that the distribution of the residuals do not necessarily have to be perfectly normal, but I am not clear as to what is defined as 'normal enough'.
- 6. I may have been able to further improve the R-squared score by adding 'sqft_bsmnt' as a binary variable.
- 7. I originally planned to associate the zip codes with their corresponding average household incomes (per the U.S census bureau), then binning by income groups, and creating interactions, but ultimately decicded against it because it generated too many columns, and didn't lend itself to learning.
- 8. Log transforming the dependent variable can help approximate a normal residual distribution.
- 9. Remove rows with outliers in the dependent variable can help approximate a normal residual distribution.

For More Information

Please review my full analysis in my Jupyter Notebook or mypresentation. For any additional questions, please contact **Freddy Abrahamson at fred0421@hotmail.com**,

Repository Structure

- README.md	<- The top-level README
for reviewers of this project	
— student.ipynb	<- Narrative
documentation of analysis in Jupyter notebook	
<pre>Phase_2_Project_Presentation.pdf</pre>	<- PDF version of project
presentation	
├── CONTRIBUTING.md	<- Contributing to
Learn.co Curriculum	
— LICENSE.md	<- Learn.co Educational
Content License	
└─ images	<- Images used for this
project	

Releases

No releases published Create a new release

Packages

No packages published Publish your first package

Languages

Jupyter Notebook 100.0%