

A.P. SHAH INSTITUTE OF TECHNOLOGY Department of Computer Science and Engineering Data Science

Semester: ONE-WAY ANOVA.

Subject: Statistics for ATDS Academic Year: 20 28 20 24.

To assess the significance of possible variation in Performance in a certain test between the convent Schools of acity, a common test was given to a number of students taken at random from the fifth class of the 3 schools concerned the results given below.

A	В	C
9	13	14
11	12	13
13	10	17
9	15	7
8	5	9

Solution.

Ho: There is no different Ha= Ha= Me.

Hi: There is difference.

A	8	C
9	13	4
11	12	(3
13	10	17
9	15	7
8	5	9
50	55	60

Source of Variance	Sum of Squares	DOF	Mean Squar	F
Between the sample	SSC =lo	910W Pr=C-1 =3-1-2	MSC=854,	MSC
Within the			= 11.5	-0.43
	-	colour	0.9	-

$$\overline{X}_{c} = \frac{60}{5} = 12$$
 $\overline{X} = \overline{X}_{A} + \overline{X}_{B} + \overline{X}_{c} = \frac{10 + 11 + 12}{3} = \frac{33}{3} = \frac{11 - \overline{X}}{3}$

Subject Incharge: Prof. Sarala Mary Page No._

Department of CSE-Data Science | APSIT

PARSHWANATH CHARITABLE TRUST?

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Semester:

1

Subject: Statistics for AIDS

Academic Year: 20 2 8 20 24 .

Calculati	on of SSC:			L'ANSMA	A CHARLE
$(\overline{X}_A - \overline{\overline{X}})$	$(\overline{X}_{A}-\overline{X})^{2}$	(XB-X)	(XB-X)2	(Xe-X)	(X-X)
(10-11)=4	1	(11-11)=0	0	(12-11)=1	1
(10-11)=-1	4	(11-11)=0	0	(12-11)=1	1
(10-11)=-1	1	(11-11):0	0	(12-11)-1	1
(10-11)=-1	1	(11-11)=0	0	(12-11) -1	1
(10-11):-1	1	(11-11)=0	0	A A	1
251 X - K) -	2		The second second second	110 110 - 1	_

$$SS(\frac{1}{2} \leq (\overline{X}_{A} - \overline{\overline{X}})^{2} + \leq (\overline{X}_{B} - \overline{\overline{X}})^{2} + \leq (\overline{X}_{C} - \overline{\overline{X}})^{2}$$

Calculation of SSE

(A-X)	(A-XA)2	(B-XB)	(B-XB)2	(C-Xc)	((-Xc)2
9-10=-1 0-10=1 13-10=3 9-10=1 8-10=2	1 9 1	13-11 = 2 12-11 = 1 10-11 = -1 15-11 = 4 5-11 = 6	1 1 16 26	14-12=2 13-12=+1 17-12=5 4-12=-5 9-12=-3	25
≤(x-X	Je 16.	£#8	58	1	64

= 16+58+64 =138

Colculated F value = 0.485

Tabulated value F . 3.89.

0.435 4 8.89.

The Null Sypothesis is accepted

Subject Incharge: Prof. Sarala Mary Page No. 3

Department of CSE-Data Science | APSIT

ARSHWANLER CHARITABLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Department of Computer Science and Engineering Data Science

Example 2: One way Anlova:

The three samples below have been obtained from normal populations with equal variances. Test the hypothesis that the sample means are equal.

A	В	C
8	8	14
10	6	10
7	U	12
14	8	12
11	8	115
16	13	12

Solution:

В	C
8	14
6	10
li 🚃	12
8	12
8	15
13	12
54	78
	8 13

$$\overline{X}_{A} = \frac{66}{6} = 41$$
, $\overline{X}_{B} = \frac{54}{6} = 9$, $\overline{X}_{C} = \frac{78}{6} = 13$, \overline

PARSONALARIE DAMPARLE TRUST'S

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester			Subject : _	Chatistics	for	ATDS AC	ademic Year: 2023-2034 .
Source & Variation			Deg	ee of		Mean Square	T MSC,
Betweent Rample William the samp	\$5E		7 - 5-1 · 7 - 18 - 2	-C.		MSC = SSX = 48/2 = 24 MSE = SS E/4 = 124/5 -8:	2 24 827
(1) (xx-x) -1 =0 -1 =0 -1 =0 -1 =0	(XA-X)°	9-11 9-11 9-11 9-11		4 4 4 4)2	3-11 = 2 3-11 = 2 3-11 = 2 3-11 = 2	(Xc-X)
1-11 = 0	0	9-11	2	4		13-11=2	24
≤(x̄-x̄)= z (i	スーヌ:)2+:	ECYB.	叉)+ = (Xc - \(\bar{x}) \(- \)

A.P. SHAH INSTITUTE OF TECHNOLOGY

Semester:

Subject: Statistice for AIDS

Academic Year: 2093 - 2029 .

Salculat	ion of se	€:			1 2
(A-X)	(A-XA)2		(B-XB)2	(C-Xc)	(C-Xc)2.
8-11=-3	9	8-9=-1	1	17-18-4	16
0-11=-1	1	6-9=-3	9	10-18=-3	9
-11 = -4	16	11-9=2	4	12-13=-1)
	9	8-9 = -1	1	12-13 =-1	1
-11=3				15-13 =2	4
1-11=0	0	8-9-1		12-13 =-1	1
6-11-5	25	13-9 = 4	32		32
	60		0 d		

$$\leq (X-\overline{X})^2 = \leq (A-\overline{X}_A)^2 + \leq (B-\overline{X}_B)^2 + \leq ((-\overline{X}_C)^2$$

Calculated F value = 2.90 Tabulated F value, Fo. 05 = 3.68

The null hypothesis is accepted. Hence there is no significance difference between the means. The means die equal.

