NeuroElectro.org: a window to the world's intrinsic electrophysiology data

http://neuroelectro.org

The goal of the NeuroElectro Project is to extract information about the intrinsic electrophysiological properties of diverse neuron types from the neuroscience literature and place it into a centralized database for widespread comparison, reuse, and reanalysis.

Database population

Visualization

968 curated articles from ~100 neuron types recorded under control conditions (as of 2016)

Neuron search

"layer 2-3 fastspiking cell"

32 hits from 19
articles

Methodology-based normalization

REST API for Applications

URL Request -> JSON containing a statistical summary of a neuron's ephys properties

Documentation: http://neuroelectro.org/api/docs/

Used to create data-driven tests for model development and validation


```
import sciunit
from neuronunit import neuroelectro
from neuronunit.tests import InputResistanceTest,RestingPotentialTest
neuron = {'nlex_id': 'nifext_50'} # Layer V pyramidal cell
my_tests = []
for cls in (InputResistanceTest,RestingPotentialTest):
    observation = cls.neuroelectro_summary_observation(neuron)
    my_tests.append(cls(observation))
my_test_suite = sciunit.TestSuite("vm_suite",my_tests
my_test_suite.judge(my_model)
```

How do academic lineage, experimental conditions, and gene expression determine reported physiological properties?

Hippocampome.org: An openaccess knowledge base of neuronal type properties for the rodent hippocampus

http://hippocampome.org

Hippocampome.org is a resource that combines approximately 21,000 pieces of experimental evidence about neuron types in the rodent hippocampus into a unified database. Analyzing these data has revealed about 10,500 different neuron properties and has identified over one hundred different neuron types.

Neuron Term Portal Initial **Neuron Term - Selector** soma **Definition** Resource The portion of a neuron that includes the nucleus, but **Neurolex** excludes cell projections such as axons & dendrites. **CRISP** The cell body of a neuron. The portion of a cell bearing surface projections such Gene as axons, dendrites, cilia, or flagella that includes the Ontology nucleus, but excludes all cell projections.

Allen Mouse Brain Atlas data

- Focus on principal cell layers of DG, CA3, CA2, CA1.
- · Mouse in situ hybridization data.
- Increases the biomarker pieces of knowledge (PoK) from ~1100 to more than ~6800.

Acetylcholinesterase (Ache) is expressed in CA3c Pyramidal cells and not expressed in DG Granule cells.

Interactive connectivity navigator

Forthcoming additions Biomolecular marker inferences

- Relational expression inferences supplement direct expression evidence.
- Contrapositive inferences.

Firing pattern phenotypes

9 firing pattern elements.

Modeling firing patterns

Firing patterns simulated using Izhikevich models (IEEE Trans Neural Netw 14:1569-1572 (2003)).

New neuron types

- Splitting of CA1 Pyramidal cells into Superficial and Deep types.
- Inclusion of Adult-Born Immature Granule cells.

CA1 anatomy and model

An interactive anatomical database, graphical representation and full scale model of hippocampal area CA1

Estimation of cell numbers:

http://mariannebezaire.com/gagraphic/myQA.html

Graphical description of model:

http://mariannebezaire.com/ca1_graphic/mymodel.html

Model code:

http://mariannebezaire.com/models/ca1/

http://mariannebezaire.com/qagraphic/myQA.html

- Each box represents a calculation towards cell number estimates, from Bezaire & Soltesz, 2013.
- The green & yellow references can be clicked to show details:
- Under development is the ability to edit assumptions or data and then recalculate estimates

Coexpression of nNOS/NPY with COUP-TFII, in S. Pyramidale

Expression of COUP-TFII nuclear receptor in restricted GABAergic neuronal populations in the adult rat hippocampus.

See Supplemental Table 2, section "Testing for putative ivy cells. Immunoreaction with antibodies to: NPY/nNOS/COUP-TFII" in article.

Bezaire & Soltesz 2013

nNOS+/NPY+ cells are always ivy or neurogliaform cells

Quantitative Assessment of CA1 Local Circuits: Knowledge Base for Interneuron-Pyramidal Cell Connectivity

Quote: "All nNOS+/NPY+ cells are either ivy cells or neurogliaform cells"

See assumption #7 in Table 2 of article.

Interneuron	Fraction (%)	Total	Layer			
			Oriens	Pyramidale	Radiatum	Lac.Mol.
Neurogliaform Family	32.2	12390	980	5410	3030	2970
lvy	22.9	8810	980	5410	2420	0
Neurogliaform	9.3	3580	0	0	610	2970
SOM expressing	9.3	3580	3580	0	0	0
O-LM	4.3	1640	1640	0	0	0
Double proj.	2.0	760	760	0	0	0
CB- septal proj.	0.5	190	190	0	0	0
Oriens-retrohipp.	1.7	640	640	0	0	0
Other SOM+ cells	0.9	350	350	0	0	0
PV expressing	23.9	9210	2200	6460	550	0
PV+ Basket	14.4	5530	1320	3870	330	0
Bistratified	5.7	2210	530	1550	130	0
Axo-axonic	3.8	1470	350	1030	90	0
CCK expressing	14.0	5400	1150	1080	1970	1200
CCK+ Basket	9.4	3610	790	950	1170	710
ADI	1.0	400	0	0	400	0
SCA	1.0	400	0	0	400	0
PPA	1.3	490	0	0	0	490

Welcome to the ca1 model!

http://mariannebezaire.com/ca1_graphic/mymodel.html

IonChannelGenealogy

https://icg.neurotheory.ox.ac.uk

The ICG database provides a comprehensive and quantitative assay of ion channel models currently available in the neuroscientific modeling community, all browsable in interactive visualizations.

Mapping the function of neuronal ion channels in model and experiment

William F Podlaski, Alexander Seeholzer, Lukas N Groschner, Gero Miesenböck, Rajnish Ranjan, Tim P Vogels

The ICG website

(1) Browse database through four interactive views:

(2) Compare ion channel metadata and kinetics side by side:

For more details on methods and analyses, refer to our publication in eLife!

Current and future work

Maintenance of database with new models
 & collection of experimental traces

 Generalisation of the database and visualisation software

- Addition of models in other programming languages & channel types
- Integration with existing resources (ModelDB, NeuroML, etc.)
- Extension to combinations of ion channel models, morphology, and other neuroscience datasets

 Continued support thanks to funding from the BBSRC

