Funkcja kwadratowa

Definicja.

Funkcją kwadratową nazywamy funkcję opisaną wzorem $y = ax^2 + bx + c$, gdzie $a \neq 0$. Liczby a, b, c nazywamy współczynnikami funkcji kwadratowej.

Definicja.

Wzór $y = ax^2 + bx + c$, $(a \neq 0)$ nazywamy wzorem funkcji kwadratowej w postaci **ogólnej**.

Wykresem funkcji kwadratowej jest **parabola**, która ma jedną oś symetrii. Oś ta przecina parabolę w punkcie zwanym **wierz-chołkiem**. Wierzchołek dzieli parabolę na dwie części zwane **ramionami**.

Uwaga.

- jeśli a > 0, to ramiona skierowane w górę,
- jeśli a < 0, to ramiona skierowane w dół.

Twierdzenie.

W wyniku przesunięcia wykresu funkcji $y = ax^2$, $(a \neq 0)$ o wektor $\overrightarrow{v} = [p,q]$ otrzymujemy wykres funkcji $y = a(x-p)^2 + q$.

Definicia.

Wzór $y = a(x-p)^2 + q$, $(a \neq 0)$ nazywamy wzorem funkcji kwadratowej w postaci **kanonicznej**.

Uwaga

Wierzchołkiem paraboli z powyższej definicji jest punkt W(p,q).

Twierdzenie.

Wzór w postaci ogólnej $y=ax^2+bx+c,~(a\neq 0)$ można zawsze przekształcić do postaci kanonicznej $y=a(x-p)^2+q$ dzięki równościom:

$$p = \frac{-b}{2a}$$
, $q = \frac{-\Delta}{4a}$ (lub $q = f(p)$), gdzie $\Delta := b^2 - 4ac$.

Definicja.

Wyrażenie $\Delta := b^2 - 4ac$ nazywamy **wyróżnikiem** funkcji kwadratowej (potocznie **deltą**).

Wniosek.

Wierzchołek W paraboli ma współrzędne (x_w, y_w) , gdzie:

$$x_w = \frac{-b}{2a}, y_w = \frac{-\Delta}{4a}.$$

Twierdzenie.

Funkcja kwadratowa $y = ax^2 + bx + c$, $(a \neq 0)$:

• nie ma miejsc zerowych $\Leftrightarrow \Delta < 0$,

- ma jedno miejsce zerowe: $x_0 = \frac{-b}{2a} \Leftrightarrow \Delta = 0$,
- ma dwa miejsca zerowe: $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ oraz $x_2 = \frac{-b \sqrt{\Delta}}{2a} \Leftrightarrow \Delta > 0$.

 $Dow \acute{o}d.$

Szukamy miejsc zerowych, czyli rozwiązań równania:

$$ax^2 + bx + c = 0.$$

Przekształcamy lewą stronę:

$$a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right) \stackrel{\text{na sile}}{\underset{\text{wzór}}{=}} a\left(x^{2} + 2 \cdot x \cdot \frac{b}{2a} + \frac{b^{2}}{4a^{2}} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right) =$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a^{2}}\right] = \dots$$

Dla ułatwienia zapisu oznaczmy $\Delta = b^2 - 4ac$.

$$\dots = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right]$$

Jeśli $\Delta < 0$, to wyrażenie w nawiasie jest dodatnie, a zatem równanie nie ma rozwiązań. Załóżmy więc, że $\Delta \geqslant 0$. Wtedy:

$$a\left(x + \frac{b}{2a} - \frac{\sqrt{\Delta}}{2a}\right) \left(x + \frac{b}{2a} + \frac{\sqrt{\Delta}}{2a}\right) = 0$$

$$a\left(x + \frac{b - \sqrt{\Delta}}{2a}\right) \left(x + \frac{b + \sqrt{\Delta}}{2a}\right) = 0$$

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} \quad \forall \quad x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Ostatecznie

Ponadto, jeśli $\Delta = 0$, to $x_1 = x_2 = -\frac{b}{2a}$.

Definicja.

Wzór $y = a(x - x_1)(x - x_2)$, $(a \neq 0)$ nazywamy wzorem funkcji kwadratowej w postaci **iloczynowej**.

Aby wyznaczyć najmniejszą i największą wartość funkcji kwadratowej w przedziale domkniętym [a, b] postępujemy następująco:

Sprawdzamy, czy $x_w \in [a, b]$.

- jeśli \mathbf{tak} , to obliczamy $y_w, f(a), f(b)$. Spośród tych liczb wybieramy wartość najmniejszą i największą.
- jeśli **nie**, to obliczamy f(a), f(b). Spośród tych liczb wybieramy wartość najmniejszą i największą.

Definicja.

Równanie typu $ax^4 + bx^2 + c = 0$, $(a \neq 0)$ nazywamy równaniem **dwukwadratowym**. Równanie takie łatwo sprowadzić do równania kwadratowego przez podstawienie $x^2 = t$.

¹W przypadku jednego miejsca zerowego przyjmuje on postać $y = a(x - x_0)^2$.

Uwaga.

Ujemny wyróżnik nie świadczy o tym, że nierówność kwadratowa nie ma rozwiązań.

np.

$$x^2 + 1 \geqslant 0, \qquad a > 0$$

$$\Delta = 0 - 4 \cdot 1 = -4 < 0$$

brak miejsc zerowych

zatem $x \in \mathbb{R}$

Twierdzenie (wzory Viete'a).

Jeśli x_1, x_2 są miejscami zerowymi² funkcji $y = ax^2 + bx + c$, $(a \neq 0)$, to

$$x_1 + x_2 = \frac{-b}{a}, \qquad x_1 \cdot x_2 = \frac{c}{a}.$$

Dowód.

Zapiszmy wzór funkcji w postaci iloczynowej:

$$y = a(x - x_1)(x - x_2).$$

Wymnażając otrzymujemy:

$$a(x^{2} - x_{2}x - x_{1}x + x_{1}x_{2}) = ax^{2} - a(x_{1} + x_{2})x + ax_{1}x_{2}.$$

Porównując z postacią ogólna mamy:

$$-a(x_1+x_2)=b \quad \wedge \quad ax_1x_2=c.$$

Stad

$$x_1 + x_2 = \frac{-b}{a} \quad \land \quad x_1 x_2 = \frac{c}{a}.$$

(ĆW) Udowodnić wzory Viete'a stosując wzory na pierwiastki.

Uwaga.

Twierdzenie jest też prawdziwe dla $x_1 = x_2$. Należy je jednak dobrze interpretować³.

I. Metoda analizy starożytnych

Polega ona na tym, że przekształcamy wyjściowe równanie w taki sposób, aby spełniało dwa warunki:

- 1) nowe równanie było łatwiejsze do rozwiązania,
- 2) wszystkie rozwiązania równanie wyjściowego były też rozwiązaniami nowego równania.

Równanie wyjściowe i równanie końcowe mogą nie być równoważne, tzn. równanie otrzymane na końcu może mieć rozwiązania, które nie są rozwiązaniami równania wyjściowego (tzw. **pierwiastki obce**). Aby je wyeliminować należy każde z otrzymanych rozwiązań sprawdzić przez podstawienie do równania wyjściowego. Sprawdzenie poprawności rozwiązania jest elementem koniecznym w rozwiązywaniu równań tą metodą.

²Miejsca zerowe są często nazywane **pierwiastkami**.

 $^{^3}$ W tej sytuacji jest jedno miejsce, które można oznaczyć przez x_0 . Wzory przyjmują wtedy postać: $2x_0 = \frac{-b}{a}$ oraz $x_0^2 = \frac{c}{a}$.

II. Metoda równań równoważnych

Polega ona na tym, że przekształcamy wyjściowe równanie w taki sposób, aby każde kolejno otrzymane równanie miało taki sam zbiór rozwiązań, jak równanie je poprzedzające.

Przykład.

$$\sqrt{x-1} = 3 - x$$

Sposób I (metoda analizy starożytnych)

Podnosimy równanie stronami do kwadratu:

$$x - 1 = (3 - x)^{2}$$

$$x - 1 = 9 - 6x + x^{2}$$

$$x^{2} - 7x + 10 = 0$$

$$\Delta = 9, \sqrt{\Delta} = 3, \quad x_{1} = \frac{7 - 3}{2} = 2, \ x_{2} = \frac{7 + 3}{2} = 5$$

Sprawdzamy, czy nie ma pierwiastków obcych:

- dla x = 2: $L = \sqrt{2-1} = 1$, P = 3-2 = 1 ok.
- dla x = 5: $L = \sqrt{5-1} = 2$, P = 3-5 = -2, $L \neq P$.

Zatem x = 2.

Sposób II (metoda równań równoważnych)

zał:
$$x - 1 \ge 0 \implies x \ge 1 \implies D = [1, +\infty)$$

Rozważmy dwa przypadki:

I. 3 - x < 0

Wtedy $L \ge 0$, P < 0 Sprzeczność.

II. $3 - x \ge 0 \ (x \le 3)$

Wtedy podnosimy równanie stronami do kwadratu

$$x - 1 = (3 - x)^{2}$$

$$x - 1 = 9 - 6x + x^{2}$$

$$x^{2} - 7x + 10 = 0$$

$$\Delta = 9, \sqrt{\Delta} = 3, \quad x_{1} = \frac{7 - 3}{2} = 2, \ x_{2} = \frac{7 + 3}{2} = 5 \notin I$$

Uwzględniając dziedzinę: x = 2.