VOLTAGE REGULATOR R×5RL SERIES

APPLICATION MANUAL

NOTICE

- The products and the product specifications described in this application manual are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. This application manual may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this application manual shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, computer equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire-containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this application manual.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

June 1995

R×5RL SERIES APPLICATION MANUAL CONTENTS

OUTLINE	
FEATURES	
APPLICATIONS	
BLOCK DIAGRAM ······	1
SELCTION GUIDE	2
PIN CONFIGURATION	3
PIN DESCRIPTION	3
ABSOLUTE MAXIMUM RATINGS	
ELECTRICAL CHARACTERITICS	5
ELECTRICAL CHARACTERITICS BY OUTPUT VOLTAGE	
OPERATION	
TEST CIRCUITS	
TYPICAL CHARACTERISTICS	
1) Output Voltage vs. Output Current ······	
2) Output Voltage vs. Input Voltage·····	
3) Dropout Voltage vs. Output Current ······	
4) Output Voltage vs. Temperature ······	
5) Quiescent Current vs. Input Voltage ·····	14
6) Quiescent Current vs. Temperature ······	
7) Dropout Voltage vs. Set Output Voltage ······	
8) Line Transient Response (1) ······	
9) Line Transient Response (2) ······	
TYPICAL APPLICATION	
APPLICATION CIRCUITS	
PACKAGE DIMENSIONS	
TAPING SPECIFICATIONS	19

RIGOH

VOLTAGE REGULATOR

R×5RL SERIES

OUTLINE

The R×5RL Series are voltage regulator ICs with high accuracy output voltage and ultra-low quiescent current by CMOS process. Each of these ICs consists of a voltage reference unit, an error amplifier, a driver transistor, and resistors for setting output voltage. The output voltage is fixed with high accuracy.

Three types of packages, TO-92, SOT-89 (Mini-power Mold), SOT-23-5 (Mini-mold), are available.

FEATURES

•	Ultra-low Quiescent Current	TYP 1	1 111A (R×5RL30A	$V_{IN}=5.0V$
-	Olda-iow whiescell Cultell	111.	1.144	TIVOTILLOUA.	V III — 0.0 V /

- Small Dropout Voltage ······TYP. 30mV (R×5RL50A, IOUT=1mA)
- Low Temperature-Drift Coefficient of Output VoltageTYP. ±100 ppm/°C
- Excellent Line Regulation TYP. 0.1%/V
- Output Voltage ······Stepwise setting with a step of 0.1V in the range of 2.0V to 6.0V is possible (refer to Selection Guide).
- High Accuracy Output Voltage----±2.5%
- Three Types of PackagesTO-92, SOT-89 (Mini-power Mold), SOT-23-5 (Mini-mold)

APPLICATIONS

- Power source for battery-powered equipment.
- Power source for cameras, video instruments such as camcorders, VCRs, and hand-held communication equipment.
- Precision voltage references.

BLOCK DIAGRAM

SELECTION GUIDE

The package type, the output voltage, the packing type, and the taping type of R×5RL Series can be designated at the user's request by specifying the part number as follows:

$$\begin{array}{cccc} R \times 5RL \underbrace{\times \times \times - \times \times}_{} \leftarrow Part\ Number \\ \uparrow & \uparrow \uparrow \uparrow \uparrow & \uparrow \\ a & b\ c\ d & e \end{array}$$

Code	Contents
a	Designation of Package Type: E: TO-92 H: SOT-89 (Mini-power Mold) N: SOT-23-5 (Mini-mold)
b	Setting Output Voltage (Vout): Stepwise setting with a step of 0.1V in the range of 2.0V to 6.0V is possible.
c	A
d	Designation of Packing Type: A: Taping C: Antistatic bag for TO-92 and samples
e	Designation of Taping Type: Ex. TO-92 : RF, RR, TZ SOT-89 : T1, T2 SOT-23-5 : TR, TL (refer to Taping Specifications) "TZ", "T1", and "TR" are prescribed as a standard.

For example, the product with Package Type SOT-89, Output Voltage 5.0V, Version A, and Taping Type T1 are designated by Part Number RH5RL50AA-T1.

PIN CONFIGURATION

•TO-92 •SOT-89 •SOT-23-5

PIN DESCRIPTION

• TO-92

Pin No.	Symbol
1	GND
2	Vin
3	Vout

• SOT-89

Pin No.	Symbol
1	GND
2	Vin
3	Vout

• SOT-23-5

Symbol
GND
Vin
Vout
NC
NC

ABSOLUTE MAXIMUM RATINGS

 $Topt=25^{\circ}C$

Symbol	Item	Rating	Unit
Vin	Input Voltage	+12	V
Vout	Output Voltage	-0.3 to Vin +0.3	V
Iout	Output Current	150	mA
Pp1	Power Dissipation 1 (NOTE1)	300	mW
PD2	Power Dissipation 2 (NOTE2)	150	mW
Topt	Operating Temperature	- 30 to +80	°C
Tstg	Storage Temperature	– 55 to +125	°C
Tsolder	Lead Temperature (Soldering)	260°C,10s	

(NOTE 1) applied to SOT-89 and TO-92

(NOTE 2) applied to SOT-23-5

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

• $R \times 5RL20A$ Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=4.0V 10μA≤Io∪τ≤10mA	1.950	2.000	2.050	V
Iout	Output Current	VIN=4.0V	25	35		mA
$\frac{\Delta V_{\rm OUT}}{\Delta I_{\rm OUT}}$	Load Regulation	Vin=4.0V 1mA≤Iouт≤35mA		30	45	mV
VDIF	Dropout Voltage	Iout=1mA		60	90	mV
Iss	Quiescent Current	VIN=4.0V		1.0	3.0	μA
$\frac{\Delta V_{\rm OUT}}{\Delta V_{\rm IN}}$	Line Regulation	IOUT=1mA VOUT+0.5V≤VIN≤10V		0.05	0.2	%/V
Vin	Input Voltage				10	V
$\frac{\Delta V_{OUT}}{\Delta Topt}$	Output Voltage Temperature Coefficient	Iout=10mA -30°C≤Topt≤80°C		±100		ppm/°C

• $R \times 5RL30A$ Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=5.0V 10μA≤Io∪τ≤10mA	2.925	3.000	3.075	V
Iout	Output Current	VIN=5.0V	35	50		mA
$\frac{\Delta \text{Vout}}{\Delta \text{Iout}}$	Load Regulation	Vin=5.0V 1mA≤Iouт≤50mA		40	60	mV
VDIF	Dropout Voltage	Iout=1mA		40	60	mV
Iss	Quiescent Current	Vin=5.0V		1.1	3.3	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	IOUT=1mA VOUT+0.5V≤VIN≤10V		0.05	0.2	%/V
Vin	Input Voltage				10	V
$\frac{\Delta \text{Vout}}{\Delta \text{Topt}}$	Output Voltage Temperature Coefficient	Iout=10mA -30°C≤Topt≤80°C		±100		ppm/°C

• $R \times 5RL40A$ Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=6.0V 10μA≤Io∪τ≤10mA	3.900	4.000	4.100	V
Iout	Output Current	VIN=6.0V	45	65		mA
$\frac{\Delta V_{OUT}}{\Delta I_{OUT}}$	Load Regulation	Vin=6.0V 1mA≤Iout≤65mA		50	75	mV
VDIF	Dropout Voltage	Iout=1mA		25	38	mV
Iss	Quiescent Current	VIN=6.0V		1.2	3.6	μA
$\frac{\Delta V_{OUT}}{\Delta V_{IN}}$	Line Regulation	IOUT=1mA VOUT+0.5V≤VIN≤10V		0.05	0.2	%/V
Vin	Input Voltage				10	V
$\frac{\Delta V_{OUT}}{\Delta T_{opt}}$	Output Voltage Temperature Coefficient	Iout=10mA -30°C≤Topt≤80°C		±100		ppm/°C

• R \times 5RL50A $_{\mathrm{Topt}=25^{\circ}\mathrm{C}}$

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=7.0V 10μA≤Io∪τ≤10mA	4.875	5.000	5.125	v
Iout	Output Current	VIN=7.0V	55	80		mA
$\frac{\Delta \text{Vout}}{\Delta \text{Iout}}$	Load Regulation	Vin=7.0V 1mA≤Iouт≤80mA		60	90	mV
VDIF	Dropout Voltage	Iout=1mA		25	38	mV
Iss	Quiescent Current	VIN=7.0V		1.3	3.9	μA
$\Delta V_{OUT} \over \Delta V_{IN}$	Line Regulation	IOUT=1mA VOUT+0.5V≤VIN≤10V		0.05	0.2	%/V
Vin	Input Voltage				10	V
$\frac{\Delta V_{OUT}}{\Delta T_{opt}}$	Output Voltage Temperature Coefficient	Iout=10mA -30°C≤Topt≤80°C		±100		ppm/°C

• R×5RL60A

 $Topt=25^{\circ}C$

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	Vin=8.0V 10μA≤Io∪τ≤10mA	5.850	6.000	6.150	V
Iout	Output Current	VIN=8.0V	55	80		mA
$\Delta V_{\rm OUT} \over \Delta I_{\rm OUT}$	Load Regulation	Vin=8.0V 1mA≤Iout≤80mA		60	90	mV
VDIF	Dropout Voltage	Iout=1mA		25	38	mV
Iss	Quiescent Current	VIN=8.0V		1.3	3.9	μA
$\Delta V_{\rm OUT} \over \Delta V_{\rm IN}$	Line Regulation	IOUT=1mA VOUT+0.5V≤VIN≤10V		0.05	0.2	%/V
Vin	Input Voltage				10	V
$\frac{\Delta V_{OUT}}{\Delta T_{opt}}$	Output Voltage Temperature Coefficient	Iout=10mA -30°C≤Topt≤80°C		±100		ppm/°C

ELECTRICAL CHARACTEISTICS BY OUTPUT VOLTAGE

	Output Voltage				OutputCurrent			Load Regulation			Dropout Voltage		
Part Number	Vout(V)				Ιουτ(mA)			Δ Vουτ(mV)			VDIF (mV)		
	Conditions	MIN.	TYP.	MAX.	Conditions	MIN.	TYP.	Conditions	TYP.	MAX.	Conditions	TYP.	MAX.
R×5RL20A		1.950	2.000	2.050									
R×5RL21A		2.048	2.100	2.152				VIN-				00	00
R×5RL22A		2.145	2.200	2.255				Vout				60	90
R×5RL23A		2.243	2.300	2.357				=2.0V					
R×5RL24A		2.340	2.400	2.460		25	35		30	45			
R×5RL25A		2.438	2.500	2.562				1mA≤				50	75
R×5RL26A		2.535	2.600	2.665				IOUT				90	19
R×5RL27A		2.633	2.700	2.767				≤35mA					
R×5RL28A		2.730	2.800	2.870									
R×5RL29A		2.828	2.900	2.972								40	20
R×5RL30A		2.925	3.000	3.075	1 1						1	40	60
R×5RL31A		3.023	3.100	3.177				17					
R×5RL32A		3.120	3.200	3.280				VIN-					
R×5RL33A		3.218	3.300	3.382				Vout				0.5	
R×5RL34A		3.315	3.400	3.485		05		=2.0V	40	20		35	53
R×5RL35A		3.413	3.500	3.587		35	50		40	60			
R×5RL36A	Vin-	3.510	3.600	3.690				1mA≤					
R×5RL37A	Vout	3.608	3.700	3.792				IOUT				0.0	
R×5RL38A	=2.0V	3.705	3.800	3.895	VIN- VOUT			≤50mA			IOUT	30	45
R×5RL39A		3.803	3.900	3.997									
R×5RL40A		3.900	4.000	4.100	=2.0V						=1mA		
R×5RL41A	10μA≤	3.998	4.100	4.202									
R×5RL42A	Iout	4.095	4.200	4.305				VIN-					
R×5RL43A	≤10mA	4.193	4.300	4.407				Vout					
R×5RL44A		4.290	4.400	4.510		45	65	=2.0V	50	70			
R×5RL45A		4.388	4.500	4.612	1			1mA≤					
R×5RL46A		4.485	4.600	4.715				IOUT					
R×5RL47A		4.583	4.700	4.817				≤65mA					
R×5RL48A	-	4.680	4.800	4.920							-	25	38
R×5RL49A		4.778	4.900	5.022									
R×5RL50A		4.875	5.000	5.125									
R×5RL51A		4.973	5.100	5.227									
R×5RL52A		5.070	5.200	5.330				VIN-					
R×5RL53A		5.168	5.300	5.432				Vout					
R×5RL54A		5.265	5.400	5.535				=2.0V					
R×5RL55A		5.363	5.500	5.637		55	80		60	90			
R×5RL56A		5.460	5.600	5.740				1mA≤					
R×5RL57A		5.558	5.700	5.842				IOUT					
R×5RL58A		5.655	5.800	5.945				≤80mA					
R×5RL59A		5.753	5.900	6.047									

 $Topt=25^{\circ}C$

Ouio	acont Cu	rront	Line	e Regula	tion	Input Voltage Output Voltage Tempco.			
Quiescent Current				ut/∆Vin(%		VIN(V)	ΔVουτ/ΔT(ppm/°C)		
Iss(µA) Conditions TYP. MAX.			Conditions	TYP.	MAX.	MAX.	Conditions TYP.		
-									
VIN VOUT =2.0V	1.0	3.0		0.05	0.2	10	IOUT =10mA -30°C≤ Topt 80°C	±100	
	1.1	3.3	IOUT =1mA						
	1.2	3.6	Vout+ 0.5V≤ Vin≤ ≤10V						
	1.3	3.9							

OPERATION

Output Voltage Vout divided at the node between Registers R1 and R2 is compared with Reference Voltage by Error Amplifier, so that a constant voltage is output.

TEST CIRCUITS

FIG. 2 Test Circuit

FIG. 3 Quiescent Current Test Circuit

FIG. 4 Line Transient Response Test Circuit

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Output Current

2) Output Voltage vs. Input Voltage

R×5RL

3) Dropout Voltage vs. Output Curret

4) Output Voltage vs.Temperature

Temperature Topt(°C)

Output Voltage Vour(V)

5) Quiescent Current vs. Input Voltage

6) Quiescent Current vs. Temperature

8) Line Transient Response (1)

9) Line Transient Response (2)

TYPICAL APPLICATION

In R×5RL Series, a constant voltage can be obtained without using Capacitors C1 and C2. However, when the wire connected to Vin is long, use Capacitor C1. Output noise can be reduced by using Capacitor C2.

Insert Capacitors C1 and C2 with the capacitance of $0.1\mu F$ to $2.0\mu F$ between Input/Output Pins and GND Pin with minimum wiring.

APPLICATION CIRCUITS

VOLTAGE BOOST CIRCUIT

The output voltage can be obtained by the following formula:

$$Vout=Vreg^{*1} \cdot (1+R2/R1) + Iss R \cdot 2$$

Since the quiescent current of R×5RE Series is so small that the resistances of R1 and R2 can be set as large as several hundreds $k\Omega$ and therefore the supply current of "Voltage Boost Circuit" itself can be reduced.

Furthermore, since R×5RL Series are operated by a constant voltage, the supply current of "Voltage Boost Circuit" is not substantially affected by the input voltage.

• DUAL POWER SUPPLY CIRCUIT

As shown in the circuit diagram, a dual power supply circuit can be constructed by using two $R\times5RL$ Series.

This circuit diagram shows a dual power supply circuit with an output of 3V and an output of 5V. When the minimum output current of IC2 is larger than Iss of IC1, Resistor R is unnecessary. Diode D is a protection diode for the case where Vout2 becomes larger than Vout1.

• CURRENT BOOST CIRCUIT

Output current of 60mA or more can be obtained by the current boost circuit constructed as shown in this circuit diagram.

• CURRENT BOOST CIRCUIT WITH OVERCURRENT LIMIT CIRCUIT

A circuit for protecting Tr.1 from the destruction caused by output short-circuit or overcurrent is shown in this circuit diagram.

When the voltage reduction caused by the current (\leftrightarrows IOUT) which flows through R2 reaches Vbe2 of Tr.2 by additionally providing the current boost circuit with Tr.2 and R2, Tr.2 is turned ON and the base current of Tr.1 is increased, so that the output current is limited.

 $\label{lem:current} \mbox{Current Limit Circuit is obtained} \\ \mbox{as follows}:$

IOUT = Vbe2/R2

• CURRENT SOURCE

A current source with the structure as shown in this circuit diagram can be used. Output Current Iout is obtained as follows:

$$IOUT = Vreg^{*1}/R + Iss$$

Take care that Output Current Iout does not exceed its allowable current.

*1) Vreg : Set Output Voltage of R×5RL Series.

PACKAGE DIMENSIONS (Unit: mm)

· TO-92

- SOT-89

- SOT-23-5

TAPING SPECIFICATIONS (Unit: mm)

- TO-92

- SOT-89

(Note) When taping is performed, the pins of TO-92 are subjected to a particularforming.

(Note) TZ type tape is not in the form of a reel, but is packed in a zigzag state in a box.

Therefore, the tape can be used as either an RF type tape or an RR type tape, depending upon the pulling out direction (B or F).

- SOT-23-5

RICOH COMPANY, LTD. ELECTRONIC DEVICES DIVISION

HEADQUARTERS
13-1, Himemuro-cho, Ikeda City, Osaka 563-8501, JAPAN
Phone 81-727-53-1111 Fax 81-727-53-6011
YOKOHAMA OFFICE (International Sales)
3-2-3, Shin-Yokohama, Kohoku-ku, Yokohama City, Kanagawa 222-8530, JAPAN
Phone 81-45-477-1697 Fax 81-45-477-1694 · 1695
http://www.ricoh.co.jp/LSI/english/

RICOH CORPORATION **ELECTRONIC DEVICES DIVISION**

SAN JOSE OFFICE3001 Orchard Parkway, San Jose, CA 95134-2088, U.S.A.
Phone 1-408-432-8800 Fax 1-408-432-8375