

FIG. 4: (Color online) The conductivity of the superconductors for $\epsilon = 0$, 0.1, 0.5 and 0.99 with $m^2 L_{AdS}^2 = 0$, -1 and -2. The solid (blue) line represents the real part of the conductivity, $Re(\sigma)$, and dashed (red) line is the imaginary part of the conductivity, $Im(\sigma)$.

FIG. 5: (Color online) The ratio ω_g/T_c as a function of the balance parameter with fixed values $m^2L_{AdS}^2$.

In Fig. 4 we plot the frequency dependent conductivity obtained by solving the Maxwell equation numerically for $\epsilon = 0$, 0.1, 0.5 and 0.99 with $m^2 L_{AdS}^2 = 0$, -1 and -2. We find a gap in the conductivity with the gap frequency ω_g . For the same value of $m^2 L_{AdS}^2$, the gap frequency ω_g decreases with the increase of the constant ϵ . In each plot, the real part of the conductivity, Re[σ], approaches to a limit when the frequency grows. The limit for the case $\epsilon = 0$ is one, but general it increases as ϵ increases. The imaginary part of conductivity Im[σ] becomes zero when $\omega \to \infty$, but it goes to