强化训练

A 组 夯实基础

1. (2024 • 广东惠州模拟)

函数
$$f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}$$
 的图象大致为 ()

1. C

解析: 由题意,
$$f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}} = \frac{4^x - 1}{4^x + 1} = \frac{4^x + 1 - 2}{4^x + 1}$$

$$= 1 - \frac{2}{4^x + 1}, \quad \text{因为} \frac{2}{4^x + 1} > 0 \text{ , } \text{所以 } f(x) = 1 - \frac{2}{4^x + 1} < 1 \text{ , }$$
从而 $f(x)$ 只在直线 $y = 1$ 的下方有图象,故选 C .

2. (2024•江西开学考试)

函数
$$f(x) = \frac{|x|}{2^x - 2^{-x}}$$
 的图象大致为 ()

2. A

解析: 观察发现 A、B 两项关于原点对称,C、D 两项关于y 轴对称,故可通过判断奇偶性排除两个选项,令 $2^x-2^{-x}\neq 0$ 可得 $2^x\neq 2^{-x}$,所以 $x\neq -x$,即 $x\neq 0$,

所以 f(x) 的定义域是 $(-\infty,0)$ $\bigcup (0,+\infty)$,

曲题意,
$$f(-x) = \frac{|-x|}{2^{-x} - 2^x} = -\frac{|x|}{2^x - 2^{-x}} = -f(x)$$
,

所以 f(x) 是奇函数, 其图象关于原点对称, 排除 $C \times D$;

选项 A、B的明显差异是 A 在 y 轴右侧的图象始终在 x 轴上方,而 B 项则在 x 轴上方、下方都有图象,故可通过判断当 x>0 时 f(x) 的正负来排除一个选项,

当x > 0时,|x| > 0,x > -x,所以 $2^x > 2^{-x}$,

从而 $2^x - 2^{-x} > 0$,故 $f(x) = \frac{|x|}{2^x - 2^{-x}} > 0$,所以在 y 轴右侧, f(x) 的图象恒在 x 轴上方,排除 B,选 A.

3. (2024 · 云南昆明模拟) (多选)

若
$$f(x) = \ln \frac{2-x}{2+x}$$
,则下列说法正确的是()

- A. f(x) 的定义域为(-2,2)
- B. f(x) 为奇函数
- C. f(x) 在定义域上是减函数
- D. f(x) 的值域为 $(0,+\infty)$
- 3. ABC

解析: A 项, 由
$$\frac{2-x}{2+x} > 0$$
 可得 $(2-x)(2+x) > 0$,

解得:
$$-2 < x < 2$$
, 所以 $f(x)$ 的定义域是 $(-2,2)$,

故 A 项正确;

B
$$\mathfrak{I}\mathfrak{I}$$
, $f(-x) = \ln \frac{2 - (-x)}{2 + (-x)} = \ln \frac{2 + x}{2 - x} = \ln \left(\frac{2 - x}{2 + x}\right)^{-1}$

$$=-\ln\frac{2-x}{2+x} = -f(x), 所以 f(x) 为奇函数, 故 B 项正确;$$

$$=-2-x \qquad 4-(2+x) \qquad (4)$$

C
$$\overline{y}$$
, $f(x) = \ln \frac{2-x}{2+x} = \ln \frac{4-(2+x)}{2+x} = \ln \left(\frac{4}{2+x}-1\right)$,

$$f(x)$$
 可看成由 $y = \ln u$ 和 $u = \frac{4}{2+x} - 1$ 复合而成,可用同增异减准则分析其单调性,

当 $x \in (-2,2)$ 时, $u = \frac{4}{2+x} - 1$ 〉, 而 $y = \ln u$ 〉, 內外层单调性相异, 所以 f(x) 在 (-2,2) 上〉, 故 C 项正确;

D项,由于
$$f(x) = \ln u$$
,所以可先由 $u = \frac{4}{x+2} - 1$ 分析 u 的取值范围,再看 $\ln u$ 的取值范围,

由
$$-2 < x < 2$$
 可得 $0 < x + 2 < 4$, 所以 $\frac{4}{x+2} > 1$,

从前
$$u = \frac{4}{x+2} - 1 > 0$$
,故 $f(x) = \ln\left(\frac{4}{x+2} - 1\right) = \ln u \in \mathbf{R}$,

所以 f(x) 的值域为 R, 故 D 项错误.

B组 强化能力

4. (2024 • 四川模拟)

函数 $f(x) = \frac{2^x - 1}{2^x + 1} \cdot (x^3 - 3x)$ 的图象大致是()

4. A

解法 1: 观察发现 $A \times B$ 关于 y 轴对称, $C \times D$ 关于原点对称,故可通过判断奇偶性排除两个选项,

曲题意,
$$f(-x) = \frac{2^{-x}-1}{2^{-x}+1} \cdot [(-x)^3 - 3(-x)]$$

$$=\frac{1-2^{x}}{1+2^{x}}\cdot(-x^{3}+3x)=\frac{2^{x}-1}{2^{x}+1}\cdot(x^{3}-3x)=f(x),$$

所以 f(x) 为偶函数, 其图象关于 y 轴对称, 排除 $C \times D$;

对比 A、B 两项可发现它们与 x 轴的交点个数不同,故可尝试分析方程 f(x)=0 的解的个数,再排除一个选项,

所以 $2^x - 1 = 0$ 或 $x^3 - 3x = 0$,

由 $2^x - 1 = 0$ 可得 $2^x = 1$,解得: x = 0,

由 $x^3 - 3x = 0$ 可得 $x(x^2 - 3) = 0$, 所以 x = 0 或 $\pm \sqrt{3}$,

所以方程 f(x) = 0 共有 x = 0, $x = \pm \sqrt{3}$ 三个解,

即 f(x) 的图象与 x 轴共有 3 个交点,排除 B,选 A.

解法 2: 排除 C、D 两项的过程同解法 1, 对于 A、B 两项,观察发现它们在原点附近函数值的正负不同,故也可据此分析,排除一个选项,

当x>0且x趋近于0时, $2^x-1>0$, $2^x+1>0$,

 $x^3 - 3x = x(x^2 - 3) < 0$,所以 f(x) < 0,排除 B,故选 A,

若理解极限思想困难,也可取接近0的x代入解析式来看,

例如,不妨考虑 x = 0.01 的情形,

$$f(0.01) = \frac{2^{0.01} - 1}{2^{0.01} + 1} \times (0.01^3 - 3 \times 0.01) < 0.$$

5. (2024 • 全国模拟)

函数
$$f(x) = \log_{2024}(\sqrt{x^2 + 1} - x) + e$$
,则 $f(\log_2 \pi) +$

$$f(\log_{0.5} \pi) = ()$$

B.
$$2\pi$$

5. D

解析: 观察发现解析式中 $\log_{2024}(\sqrt{x^2+1}-x)$ 这部分为奇函数,故这是"奇函数+常数"模型,我们看看所求式是否为 $f(x_0)+f(-x_0)$ 这种结构,

设
$$g(x) = \log_{2024}(\sqrt{x^2 + 1} - x)$$
 , 则 $g(x)$ 为奇函数,

$$\coprod f(x) = g(x) + e ,$$

$$\mathbb{X} \log_{0.5} \pi = \log_{2^{-1}} \pi = \frac{1}{-1} \log_2 \pi = -\log_2 \pi$$
,

所以
$$f(\log_2 \pi) + f(\log_{0.5} \pi) = f(\log_2 \pi) + f(-\log_2 \pi)$$

$$= g(\log_2 \pi) + e + g(-\log_2 \pi) + e = 2e$$
.

6. (2024 • 四川成都模拟)

函数
$$g(x) = \frac{e^x - e^{-x}}{2} + \ln \frac{2 - x}{2 + x} + 2$$
,若 $g(a) = 6$,则 $g(-a) =$ _____.

解析: 观察发现解析式中的 $\frac{e^x-e^{-x}}{2}$ 和 $\ln\frac{2-x}{2+x}$ 都是奇函数,故这是"奇函数+常数"模型,

设
$$f(x) = \frac{e^x - e^{-x}}{2} + \ln \frac{2 - x}{2 + x}$$
,则 $f(x)$ 为奇函数,

且
$$g(x) = f(x) + 2$$
, 所以 $g(a) + g(-a) =$

$$f(a) + 2 + f(-a) + 2 = f(a) + f(-a) + 4 = 4$$
,

故
$$g(-a) = 4 - g(a) = 4 - 6 = -2$$
.

7. (2024 • 四川成都开学考试)

若函数 $f(x)=1-\frac{a}{2^x+1}$ 是定义在 **R** 上的奇函数.

- (1) 求实数 a 的值, 并判断函数 f(x) 的单调性;
- (2) 若对任意的实数 $x \in [-2,3]$, 不等式 $f(k \cdot 4^x) + f(1-2^{x+1}) \ge 0$ 恒成立, 求实数 k 的取值范围.

7. **解**: (1) 因为 f(x) 是定义在 **R**上的奇函数,所以 f(0) =

$$1 - \frac{a}{2^0 + 1} = 1 - \frac{a}{2} = 0$$
, 解得: $a = 2$,

此时
$$f(x) = 1 - \frac{2}{2^x + 1} = \frac{2^x + 1 - 2}{2^x + 1} = \frac{2^x - 1}{2^x + 1}$$

所以
$$f(-x) = \frac{2^{-x}-1}{2^{-x}+1} = \frac{1-2^x}{1+2^x} = -\frac{2^x-1}{2^x+1} = -f(x)$$
,

满足 f(x) 为奇函数, 故 a=2,

(由 $f(x) = 1 - \frac{2}{2^x + 1}$ 可发现当 x 增大时, $\frac{2}{2^x + 1}$ 减小,所以 f(x) 增大,故 f(x) \nearrow ,下面我们用单调性定义来证明)

$$=\frac{2}{2^{x_2}+1}-\frac{2}{2^{x_1}+1}=\frac{2(2^{x_1}+1-2^{x_2}-1)}{(2^{x_2}+1)(2^{x_1}+1)}=\frac{2(2^{x_1}-2^{x_2})}{(2^{x_2}+1)(2^{x_1}+1)}$$

因为 $x_1 < x_2$, 所以 $2^{x_1} < 2^{x_2}$, 故 $2^{x_1} - 2^{x_2} < 0$,

又 $(2^{x_2}+1)(2^{x_1}+1)>0$,所以 $f(x_1)-f(x_2)<0$,

从而 $f(x_1) < f(x_2)$, 故 f(x) 在 **R** 上单调递增.

(2) (在奇函数中,看到 $f(\cdots)+f(\cdots)\geq 0$,想到移项后利用奇偶性将其化为 $f(\cdots)\geq f(\cdots)$,再用单调性处理)

$$f(k \cdot 4^x) + f(1 - 2^{x+1}) \ge 0 \Leftrightarrow f(k \cdot 4^x) \ge -f(1 - 2^{x+1})$$

$$\Leftrightarrow f(k \cdot 4^x) \ge f(2^{x+1} - 1)$$
 ①,

又 f(x) 在 **R** 上 \nearrow , 所以不等式①等价于 $k \cdot 4^x \ge 2^{x+1} - 1$,

(观察发现两端同除以4*可将k分离出来,故先分离)

所以
$$k \ge \frac{2^{x+1}-1}{4^x}$$
, $\frac{2^{x+1}-1}{4^x} = \frac{2 \times 2^x - 1}{(2^x)^2} = \frac{2}{2^x} - \frac{1}{(2^x)^2}$,

$$\diamondsuit$$
 $t = \frac{1}{2^x}$,则当 $x \in [-2,3]$ 时, $t \in \left[\frac{1}{8},4\right]$,

$$\coprod \frac{2^{x+1}-1}{4^x} = 2t-t^2 = -(t-1)^2+1,$$

所以当
$$t=1$$
时, $\frac{2^{x+1}-1}{4^x}$ 取得最大值 1,

因为
$$k \ge \frac{2^{x+1}-1}{4^x}$$
 在 $x \in [-2,3]$ 时恒成立,所以 $k \ge 1$,

故实数 k 的取值范围是 $[1,+\infty)$.

8. (2024 • 浙江杭州期末)

已知函数 $f(x) = \frac{a^{2x} + t}{a^x} (a > 0 \perp a \neq 1)$ 是奇函数.

- (1) 求 t 的值;
- (2) 若0 < a < 1, 对 $\forall x \in [0,1]$ 有 $f(2x^2 kx k) <$

f(1) 恒成立, 求实数 k 的取值范围.

8. **解**: (1) **解法** 1: 由题意, f(x) 的定义域是 **R**,

因为 f(x) 是奇函数,所以 $f(0) = \frac{a^0 + t}{a^0} = 1 + t = 0$,

解得:
$$t=-1$$
, 此时 $f(x)=\frac{a^{2x}-1}{a^x}=a^x-\frac{1}{a^x}=a^x-a^{-x}$,

所以
$$f(-x) = a^{-x} - a^x = -f(x)$$
,

满足 f(x) 为奇函数, 故 t = -1.

解法 2: (已知奇偶性求参,也可考虑用定义处理)

因为
$$f(x)$$
 为奇函数,所以 $f(-x) + f(x) = \frac{a^{-2x} + t}{a^{-x}} + \frac{a^{2x} + t}{a^{x}}$

$$=\frac{1+t\cdot a^{2x}}{a^x}+\frac{a^{2x}+t}{a^x}=\frac{(1+t)(a^{2x}+1)}{a^x}=0, \text{ if } t=-1.$$

(2) (看到 $f(\cdots) < f(\cdots)$, 想到用单调性处理,于是我们先用定义判断 f(x) 的单调性)

$$= a^{x_1} - a^{x_2} + \frac{1}{a^{x_2}} - \frac{1}{a^{x_1}} = a^{x_1} - a^{x_2} + \frac{a^{x_1} - a^{x_2}}{a^{x_2} \cdot a^{x_1}}$$

$$= (a^{x_1} - a^{x_2}) \left(1 + \frac{1}{a^{x_2} \cdot a^{x_1}} \right) = (a^{x_1} - a^{x_2}) \left(1 + \frac{1}{a^{x_2 + x_1}} \right),$$

因为0 < a < 1, $x_1 < x_2$, 所以 $a^{x_1} > a^{x_2}$, 故 $a^{x_1} - a^{x_2} > 0$,

又因为
$$1+\frac{1}{a^{x_2+x_1}}>0$$
, 所以 $f(x_1)-f(x_2)>0$,

从而 $f(x_1) > f(x_2)$, 故 f(x) 在 **R** 上单调递减,

所以
$$f(2x^2 - kx - k) < f(1) \Leftrightarrow 2x^2 - kx - k > 1$$
 ①,

(观察发现不等式①中的 k 容易分离, 故先将其分离)

当 $x \in [0,1]$ 时,不等式① $\Leftrightarrow k(x+1) < 2x^2 - 1 \Leftrightarrow k < \frac{2x^2 - 1}{x+1}$,

$$\frac{2x^2-1}{x+1} = \frac{2(m-1)^2-1}{m} = \frac{2m^2-4m+1}{m} = 2m + \frac{1}{m} - 4,$$

如图,由双勾函数性质, $y=2m+\frac{1}{m}$ 在[1,2]上 \nearrow ,

所以当m=1时, $2m+\frac{1}{m}$ 取得最小值 3,

此时
$$2m + \frac{1}{m} - 4$$
 取得最小值 -1 , 所以 $\left(\frac{2x^2 - 1}{x + 1}\right)_{min} = -1$,

因为 $k < \frac{2x^2 - 1}{x + 1}$ 在 $x \in [0,1]$ 时恒成立,所以k < -1,

故实数 k 的取值范围是 $(-\infty, -1)$.

C 组 拓展提升

9. (2024 • 全国模拟) (多选)

已知函数 $f(x) = \log_2(\sqrt{x^2 + 1} - kx)$,其中 $k \in \mathbb{R}$,则 f(x) 的大致图象可能是(

9. ABD

解析: 选项的图象要么关于原点对称,要么关于y 轴对称,所以只需考虑 f(x) 有奇偶性的情形,由所给解析式能联想到的有奇偶性的函数不外乎 $y = \log_2 \sqrt{x^2 + 1}$, $y = \log_2 (\sqrt{x^2 + 1} \pm x)$,故分别考虑 k = 0 和 ± 1 的情况即可,

$$\stackrel{\text{def}}{=} k = 0 \text{ B}^{\dagger}, \quad f(x) = \log_2 \sqrt{x^2 + 1}, \quad f(-x) = \log_2 \sqrt{(-x)^2 + 1}$$

$$=\log_{2}\sqrt{x^{2}+1}=f(x)$$
, 所以 $f(x)$ 为偶函数,

且当 $x \in [0,+\infty)$ 时,若x增大,则 $\sqrt{x^2+1}$ 增大,

所以 $\log_2 \sqrt{x^2 + 1}$ 增大,故 f(x) 在 $[0,+\infty)$ 上 \nearrow ,

此时 f(x) 的大致图象是 D 项;

当 k = -1 时, $f(x) = \log_2(\sqrt{x^2 + 1} + x)$, 由本节内容提要第 5 点, f(x) 的图象大致是 B 项,

当 k=1 时, $f(x)=\log_2(\sqrt{x^2+1}-x)$, 由本节内容提要第 6 点, f(x) 的图象大致是 A 项,

当 k 取除 0, ± 1 外的其它值时, f(x) 是非奇非偶函数,图象与选项不符,所以选 ABD.

10. (2024 • 湖南邵阳模拟)

若
$$f(x) = \log_{2024}(\sqrt{x^2 + 1} - x) + 1$$
,则关于 x 的不等式 $f(2x - 1) + f(3x^2) > 2$ 的解集是_____.

10.
$$\left(-1,\frac{1}{3}\right)$$

解析: 观察发现 $\log_{ma}(\sqrt{x^2+1}-x)$ 为奇函数, 可考虑把这部分孤立出来, 构造函数分析,

令 $g(x) = f(x) - 1 = \log_{2004}(\sqrt{x^2 + 1} - x)$,则 g(x) 为奇函数,且由本节内容提要第 6 点, g(x) 在 **R** 上 \searrow ,

$$f(2x-1) + f(3x^2) > 2 \Leftrightarrow [f(2x-1)-1] + [f(3x^2)-1] > 0$$

$$\Leftrightarrow g(2x-1)+g(3x^2)>0 \Leftrightarrow g(2x-1)>-g(3x^2)$$

$$\Leftrightarrow g(2x-1) > g(-3x^2) \Leftrightarrow 2x-1 < -3x^2$$

$$\Leftrightarrow 3x^2 + 2x - 1 = (3x - 1)(x + 1) < 0$$
, 解得: $-1 < x < \frac{1}{3}$,

所以不等式
$$f(2x-1)+f(3x^2)>2$$
 的解集是 $\left(-1,\frac{1}{3}\right)$.

11. (2024 • 全国模拟)

已知函数
$$f(x) = \frac{2}{e^x + 1} - x - 2$$
, 若 $f(m^2) + f(m - 2)$

+2>0,则实数 m 的取值范围是 ()

A.
$$(-2,1)$$

B.
$$(-1,2)$$

D.
$$(2,4)$$

11. A

解析: 看到 $\frac{2}{e^x+1}$, 想到可按 $\frac{e^x-1}{e^x+1} = \frac{e^x+1-2}{e^x+1} = 1 - \frac{2}{e^x+1}$ 与奇函数 $y = \frac{e^x-1}{e^x+1}$ 联系起来,故先按此凑形式,

$$f(x) = \frac{2}{e^x + 1} - x - 2 = \left(\frac{2}{e^x + 1} - 1\right) - x - 1 = \frac{1 - e^x}{e^x + 1} - x - 1$$

因为
$$g(-x) = \frac{1 - e^{-x}}{e^{-x} + 1} - (-x) = \frac{e^x - 1}{1 + e^x} + x = -g(x)$$
,

所以 g(x) 为奇函数,

观察要解的不等式,我们发现可将其化为 $g(\cdots)>g(\cdots)$ 的形式,再用单调性处理,故先判断单调性,

由本节内容提要第 3 点可知, $y = \frac{e^x - 1}{e^x + 1}$ 在 **R** 上 \nearrow ,

所以
$$y = \frac{1 - e^x}{e^x + 1}$$
 在 **R** 上 \(\sqrt{,} \) 又 $y = -x$ 在 **R** 上也 \(\sqrt{,}

所以
$$g(x) = \frac{1 - e^x}{e^x + 1} - x$$
 在 R 上 \(\sigma\),

$$f(m^2) + f(m-2) + 2 > 0 \Leftrightarrow [f(m^2) + 1] + [f(m-2) + 1] > 0$$

$$\Leftrightarrow g(m^2) + g(m-2) > 0 \Leftrightarrow g(m^2) > -g(m-2)$$

$$\Leftrightarrow g(m^2) > g(2-m) \Leftrightarrow m^2 < 2-m \Leftrightarrow m^2+m-2 < 0$$
,

解得: -2 < m < 1, 所以实数 m 的取值范围是 (-2,1).

12. (2024 • 浙江杭州期末) (多选)

已知函数 $f(x) = \ln(\sqrt{x^2 + 1} + x) + x + 1$,则下列说法正确的是()

A.
$$f(\lg 3) + f(\lg \frac{1}{3}) = 2$$

- B. 函数 f(x) 的图象关于点 (0,1) 对称
- C. 对定义域内的任意两个不相等的实数 x_1 , x_2 ,

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} < 0$$
恒成立

D. 若实数 a, b 满足 f(a) + f(b) > 2, 则 a + b > 0

12. ABD

解析: A 项, 观察发现解析式中 $\ln(\sqrt{x^2+1}+x)+x$ 这部分为奇函数, 故这是"奇函数+常数"模型,

设
$$g(x) = \ln(\sqrt{x^2 + 1} + x) + x$$
 , 则 $g(x)$ 为奇函数,

且
$$f(x) = g(x) + 1$$
, 因为 $\lg \frac{1}{3} = \lg 3^{-1} = -\lg 3$,

所以
$$f(\lg 3) + f(\lg \frac{1}{3}) = f(\lg 3) + f(-\lg 3)$$

$$= g(\lg 3) + 1 + g(-\lg 3) + 1 = g(\lg 3) + g(-\lg 3) + 2 = 2$$
,

故 A 项正确;

B项, g(x) 为奇函数, 其图象关于原点对称,

又 f(x) = g(x) + 1, 所以将 g(x) 上移 1 个单位, 即得 f(x) 的图象, 从而 f(x) 的图象关于点 (0,1) 对称, 故 B 项正确;

 \mathbf{C} 项, 此选项的意思是 f(x) 在 \mathbf{R} 上 \mathbf{L} ,于是我们来分析 f(x) 的单调性,可拆成两部分来看,

由本节内容提要第 5 点, $y = \ln(\sqrt{x^2 + 1} + x)$ 在 **R** 上 \nearrow ,

又 y=x+1 在 **R** 上也 \nearrow ,所以 $f(x)=\ln(\sqrt{x^2+1}+x)+x+1$ 在 **R** 上 \nearrow ,故 C 项错误;

D 项, 由 f(x) = g(x) + 1 可得 g(x) = f(x) - 1, 结合 f(x) 在 R 上 \nearrow 可得 g(x) 在 R 上 \nearrow ,

$$f(a) + f(b) > 2 \Leftrightarrow [f(a) - 1] + [f(b) - 1] > 0$$

 $\Leftrightarrow g(a) + g(b) > 0 \Leftrightarrow g(a) > -g(b) \Leftrightarrow g(a) > g(-b)$,

所以a > -b,从而a + b > 0,故D项正确.

13. (2024 • 广东汕头模拟)

已知函数 $f(x) = 2^x + a \cdot 2^{-x}$ 为奇函数.

- (1) 求 a 的值;
- (2) 判断 f(x) 在 $(-\infty, +\infty)$ 上的单调性, 并用定义证明;
- (3) 设 $F(x) = 2^{2x} + 2^{-2x} 2f(x)$, 求F(x)在[0,1]上的最小值.

13. 解: (1) 因为 f(x) 为奇函数,且定义域为 R,

所以
$$f(0) = 2^0 + a \cdot 2^0 = 1 + a = 0$$
, 解得: $a = -1$,

此时
$$f(x) = 2^x - 2^{-x}$$
, 所以 $f(-x) = 2^{-x} - 2^x = -f(x)$,

满足 f(x) 为奇函数, 故 a = -1.

(2) 函数 f(x) 在 $(-\infty, +\infty)$ 上单调递增,证明如下:

$$\overset{\text{in}}{\nabla} x_1 < x_2$$
, $f(x_1) - f(x_2) = 2^{x_1} - 2^{-x_1} - (2^{x_2} - 2^{-x_2})$

$$=2^{x_1}-2^{x_2}-\frac{1}{2^{x_1}}+\frac{1}{2^{x_2}}=2^{x_1}-2^{x_2}-\frac{2^{x_2}-2^{x_1}}{2^{x_1}\cdot 2^{x_2}}$$

$$= (2^{x_1} - 2^{x_2}) \left(1 + \frac{1}{2^{x_1 + x_2}} \right) \ \, \textcircled{1},$$

因为 $x_1 < x_2$,所以 $2^{x_1} < 2^{x_2}$,故 $2^{x_1} - 2^{x_2} < 0$,

又 $1+\frac{1}{2^{x_1+x_2}}>0$,所以结合①可得 $f(x_1)-f(x_2)<0$,

从而 $f(x_1) < f(x_2)$, 故 f(x) 在 R 上单调递增.

(3) 由题意, $F(x) = 2^{2x} + 2^{-2x} - 2(2^x - 2^{-x})$ ②,

(F(x)) 的解析式较复杂,怎样求其最值?观察 $2^{2x} + 2^{-2x}$ 和 $2^x - 2^{-x}$ 两部分的指数可发现它们有平方关系,故考虑将 $2^x - 2^{-x}$ 换元成 t,简化 F(x) 的解析式后再看)

 $=2^{2x}+2^{-2x}-2$, 所以 $2^{2x}+2^{-2x}=t^2+2$,

代入②得 $F(x) = t^2 + 2 - 2t = (t-1)^2 + 1$,

(求F(x) 的最值还差t 的范围,注意到t=f(x),第(2)问已得到f(x) 的单调性,故可直接求t 的范围)

 $t = 2^{x} - 2^{-x} = f(x)$,由(2)得f(x)在[0,1]上单调递增,

$$\overrightarrow{\text{mi}} f(0) = 2^{0} - 2^{0} = 0$$
, $f(1) = 2^{1} - 2^{-1} = \frac{3}{2}$, $\overrightarrow{\text{mf}} \bowtie t \in \left[0, \frac{3}{2}\right]$,

又 $F(x) = (t-1)^2 + 1$, 所以当 t = 1 时, F(x) 取得最小值 1.

一数。高中数学一本通