(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 14 avril 2005 (14.04.2005)

PCT

(10) Numéro de publication internationale WO 2005/034386 A1

- (51) Classification internationale des brevets⁷: H04B 7/06, H04L 1/06
- (21) Numéro de la demande internationale :

PCT/FR2004/002444

(22) Date de dépôt international :

27 septembre 2004 (27.09.2004)

(25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

0311647

3 octobre 2003 (03.10.2003) FR

- (71) Déposant (pour tous les États désignés sauf US) : FRANCE TELECOM [FR/FR]; 6, Place d'Alleray, F-75015 Paris (FR).
- (72) Inventeurs: et
- (75) Inventeurs/Déposants (pour US seulement): LE NIR, Vincent [FR/FR]; 59, Boulevard de Strasbourg, F-35000 Rennes (FR). HELARD, Maryline [FR/FR]; 5, rue Charles Demange, F-35700 Rennes (FR).
- (74) Mandataire: VIDON, Patrice; Cabinet Vidon, 16B, rue de Jouanet, BP 90333, F-35703 Rennes Cédex (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB,

[Suite sur la page suivante]

(54) Title: METHOD FOR THE MULTI-ANTENNAE EMISSION OF A SIGNAL BY UNITARY SPACE-TIME CODES, RE-CEIVING METHOD, AND CORRESPONDING SIGNAL

(54) Titre: PROCEDE D'EMISSION MULTI-ANTENNES D'UN SIGNAL PAR CODES ESPACE-TEMPS EN BLOC, PRO-CEDE DE RECEPTION ET SIGNAL CORRESPONDANT

- 1 ... CONSTRUCTION OF NT SUB-VECTORS OF SIZE N/NT FROM
- VECTOR X

 2 ... MULTIPLICATION OF EACH OF THE NT SUB-VECTORS BY A SUB-MATRIX OF SIZE (NATT)XN OBTAINED FROM A MAIN MATRIX OF SIZE NXN
- 3 ... EMISSION OF EACH OF THE CODED SUB-VECTORS TO EACH OF
- 3... EMISSION OF EACH OF THE CODES SUB-VECTORS TO EACH THE NT ANTENNAE.
 7... TRANSMISSION CHANNEL OF EACH ANTENNA.
 CORRESPONDING TO THE SUM OF THE DIFFERENT SIGNAL.
 EMITTED BY EACH EMISSION ANTENNA ALLOCATED BY THE TRANSMISSION CHANNEL THEREOF

 5 ... EQUALISATION ASSOCIATED WITH THE INVERTED DECODING OF THE
- RECOMBINED EMISSION MATRIX 6 ... MAXIMUM LIKELIHOOD DECODING

(57) Abstract: The invention relates to a method for emitting a signal formed by successive vectors that each comprise N symbols to emit, using at least two emission antennae. According to the invention, a distinct sub-matrix is associated with each antenna, said sub-matrices being obtained by cutting a unitary square matrix, and each of said antennae emits sub-vectors that are obtained by cutting said vectors and are respectively multiplied by the sub-matrices in such a way as to form, as seen from a receptor, a unique combined signal that is representative of the multiplication of the vectors by the unitary matrix.

(57) Abrégé: L'invention concerne un procédé d'émission d'un signal formé de vecteurs successifs comprenant chacun N symboles à émettre, et mettant en œuvre au moins deux antennes d'émission. Selon l'invention, on associe à chacune desdites antennes une sous-matrice distincte, lesdites sous-matrices étant obtenues par découpage d'une matrice carrée unitaire, et chacune desdites antennes émet des sous-vecteurs, obtenus par découpage desdits vecteurs, multipliés respectivement par lesdites sous-matrices, de façon à former, vu d'un récepteur, un signal combiné unique représentatif de la multiplication desdits vecteurs par ladite matrice unitaire.

WO 2005/034386 A1

1 CONT BINDEN IN COURS THEN BOOK COURT BIND IN THE STORE THAT BOOK HIS COIN BIND BIND THE TOTAL COURT

GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Publiée:

- avec rapport de recherche internationale
- avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT. WO 2005/034386 PCT/FR2004/002444

Procédé d'émission multi-antennes d'un signal par codes espace-temps en bloc, procédé de réception et signal correspondant.

1. Domaine de l'invention

5

10

15

20

25

30

Le domaine de l'invention est celui des communications numériques sans fil. Plus précisément, l'invention concerne l'émission/réception d'un signal mettant en œuvre un nouveau type de code espace-temps en bloc dans le cadre d'un système multi-antennes de type MIMO (« Multiple Input Multiple Output » pour « Entrées Multiples Sorties Multiples ») ou MISO (« Multiple Input Single Output » pour « Entrées Multiples Sortie Unique»).

L'invention s'applique ainsi particulièrement aux systèmes de transmission mettant en œuvre une pluralité d'antennes (au moins deux) à l'émission et/ou à la réception. L'invention est donc bien adaptée aux récepteurs pour codes espace-temps non-orthogonaux à Nt antennes d'émission et Nr antennes de réception.

L'invention trouve des applications dans le domaine des radiocommunications, notamment pour les systèmes de troisième, quatrième générations et suivantes.

2. Solutions de l'art antérieur

On connaît déjà plusieurs systèmes d'émission/réception comprenant plusieurs antennes d'émission et utilisant des codes espace-temps. Les premiers systèmes proposés utilisaient tous des codes espace-temps en blocs orthogonaux.

Ainsi, Alamouti, dans "A Simple Transmit Diversity Technique for Wireless Communications", IEEE J. Sel. Areas Comm., 1998, 16, (8), pp. 1451-1458, a présenté le premier système utilisant un code espace-temps en blocs orthogonal à rendement de 1 (où le rendement est défini comme le rapport entre le nombre N de symboles émis et le nombre L de temps symboles pendant lequel ils sont émis), pour deux antennes d'émission.

Tarokh et al. ("Space-time block codes from orthogonal designs", IEEE Trans. on Information Theory, 1999, 45, (5), pp. 1456-1467) ont ensuite généralisé les codes espace-temps en blocs orthogonaux aux systèmes comprenant

trois ou quatre antennes d'émission. Cependant, les rendements R=N/L obtenus n'étaient que de 1/2 ou 3/4.

Les travaux suivants ont conduit à envisager l'utilisation de codes espacetemps en blocs non-orthogonaux. Ainsi Jafarkhani ("A quasi-Orthogonal Space-Time Block Code", IEEE Trans. Comm., 2001, 49, (1), pp1-4) et Tirkonnen et al. ("Minimal non-orthogonality rate one space-time block code for 3+ Tx antennas", ISSSTA, 2000, pp 429-432) ont trouvé des codes espace-temps en blocs non orthogonaux pour un système de quatre antennes, présentant un rendement de 1.

Par la suite, Damen et al. ("Diagonal Algebraic Space-Time Block Codes", IEEE Trans. Inf. Theory, 2002, 48, (3), pp 628-626) ont envisagé d'utiliser des codes espace-temps non-orthogonaux, basés sur une construction d'Hadamard et d'autres rotations avec un nombre d'antennes d'émission égal à la taille de la matrice de code.

Xin et al., dans "Time Constellation-Rotating Codes Maximizing Diversity and Coding Gains", GLOBECOM, San Antonio, 2001, pp 455-459, ont ensuite présenté d'autres codes espace-temps basés sur des rotations.

3. Inconvénients de l'art antérieur

5

10

15

20

25

Un inconvénient des codes espace-temps orthogonaux d'Alamouti ou Tarokh est qu'ils nécessitent que les canaux soient constants sur une durée L, correspondant au nombre de temps-symboles pendant lequel les symboles sont émis.

De tels codes imposent donc de fortes contraintes sur le système d'émission/réception, et ne permettent pas d'exploiter la diversité du canal.

Un inconvénient des codes espace-temps non-orthgonaux, proposés par Jafarkhani, Tirkonnen, Damen ou Xin est qu'ils nécessitent que le canal soit constant sur une durée L=Nt, où Nt est le nombre d'antennes à l'émission. Ceci est particulièrement vrai pour les codes de Damen et de Xin.

En d'autres termes, un inconvénient majeur de tous les codes espace-temps proposés dans la littérature est qu'ils imposent de se placer dans le cas d'un canal

15

20

25

30

quasi-statique, ce qui est particulièrement restrictif, et ne permet pas d'exploiter la diversité du canal.

En outre, les codes de Jafarkhani et Tirkonnen imposent un décodage à Maximum de Vraisemblance (MV ou ML pour "Maximum Likelihood"), qui présente une complexité s'accroissant de manière exponentielle avec l'ordre de la modulation et la taille du code.

Enfin, un autre inconvénient des codes espace-temps algébrique de Damen, qui reposent sur une construction d'Hadamard, est qu'ils doivent être émis suivant une forme matricielle particulière. Ils ne permettent donc pas de réaliser un choix de codage souple, suivant les variations du canal.

4. Objectifs de l'invention

L'invention a notamment pour objectif de pallier ces inconvénients de l'art antérieur.

Plus précisément, un objectif de l'invention est de fournir une technique d'émission d'un signal mettant en œuvre des codes espace-temps présentant des performances accrues par rapport aux codes espace-temps de l'art antérieur.

Un autre objectif de l'invention est de mettre en œuvre une telle technique qui n'impose aucune condition particulière quant à la non-variation du canal sur une durée finie ou un nombre de durées symbole donné.

L'invention a encore pour objectif de fournir une telle technique qui soit adaptée aux systèmes multi-antennes de type MIMO et MISO. Plus particulièrement, l'invention a pour objectif de fournir une telle technique qui permette un rendement de codage constant égal à 1, quel que soit le nombre d'antennes.

L'invention a également pour objectif de mettre en œuvre une telle technique qui présente des performances en taux d'erreur binaire obtenues à haut rapport signal à bruit supérieures à celles des techniques de l'art antérieur.

Encore un objectif de l'invention est de fournir une telle technique qui soit facilement adaptable à différentes configurations, telles qu'à une augmentation du nombre d'antennes ou de la taille du code utilisé.

10

15

20

25

30

Un autre objectif de l'invention est de mettre en œuvre une telle technique qui permette de mieux exploiter la diversité de canal que les techniques de l'art antérieur, et qui permette de réaliser un codage souple.

5. Caractéristiques essentielles de l'invention

Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints à l'aide d'un procédé d'émission d'un signal formé de vecteurs successifs comprenant chacun N symboles à émettre, et mettant en œuvre au moins deux antennes d'émission.

Selon l'invention, on associe à chacune desdites antennes une sous-matrice distincte, lesdites sous-matrices étant obtenues par découpage d'une matrice carrée unitaire, et chacune desdites antennes émet des sous-vecteurs, obtenus par découpage desdits vecteurs, multipliés respectivement par lesdites sous-matrices, de façon à former, vu d'un récepteur, un signal combiné unique représentatif de la multiplication desdits vecteurs par ladite matrice unitaire.

Ainsi, l'invention repose sur une approche tout à fait nouvelle et inventive de l'émission d'un signal mettant en œuvre un code espace-temps dans un système multi-antennes. La technique de l'invention est particulièrement avantageuse puisqu'elle n'impose aucune condition sur le canal : le codage proposé ne nécessite pas, contrairement aux techniques de l'art antérieur, que le canal soit constant sur la durée du code.

La construction particulière des codes espace-temps proposée par l'invention est totalement nouvelle, et repose sur une construction matricielle orthogonale ou unitaire pour chaque antenne. En effet, l'utilisation de ces matrices permet une séparation des signaux émis par chaque antenne.

Selon l'invention, et par rapport aux techniques de l'art antérieur, les contraintes systèmes sont donc moins limitées et la diversité de canal peut être mieux exploitée. Les performances en taux d'erreurs binaires obtenues à haut rapport signal à bruit sont supérieures à celles données par la littérature.

En outre, l'extension du procédé de l'invention a un nombre plus grand d'antennes est très facile, car elle peut être directement obtenue grâce à la matrice

10

15

20

25

30

orthogonale ou unitaire de base. Quel que soit le nombre d'antennes utilisé, le rendement de codage reste constant.

Avantageusement, un tel procédé d'émission mettant en œuvre Nt antennes, chacune desdites sous-matrices a une taille de (N/Nt) x N.

Le procédé de l'invention est en effet facilement adaptable à différentes configurations, et notamment à une augmentation du nombre Nt d'antennes. Les différentes matrices de taille (N/Nt) x N sont obtenues à partir d'une matrice principale de taille N x N qu'on découpe en Nt matrices différentes.

Préférentiellement, N/Nt est supérieur ou égal à 2.

De façon avantageuse, ladite matrice unitaire est pleine. En d'autres termes, chacun des éléments de la matrice est non-nul.

De manière préférentielle, ladite matrice unitaire appartient au groupe comprenant :

- les matrices réelles d'Hadamard;
- les matrices complexes d'Hadamard;
- les matrices de Fourier;
- les matrices de rotation réelles ;
- les matrices de rotation complexes.

Ces différentes matrices n'ont pas de rapport les unes avec les autres mais présentent toutes comme caractéristique commune d'être, soit orthogonale s'il s'agit d'une matrice réelle, soit unitaire s'il s'agit d'une matrice complexe.

Selon une première variante avantageuse de l'invention, un tel procédé met en œuvre deux antennes d'émission, et lesdites sous-matrices valent [1 1] et [1 - 1].

Selon une deuxième variante avantageuse de l'invention, un tel procédé met en œuvre deux antennes d'émission, et lesdites sous-matrices valent $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \text{ et } \frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}.$

Dans ce mode de réalisation préférentiel de l'invention, on utilise donc, pour chaque utilisateur, plusieurs codes; en d'autres termes, pour chaque utilisateur, chaque sous-matrice a au moins deux lignes.

10

15

20

25

30

Selon une troisième variante avantageuse de l'invention, un tel procédé met en œuvre quatre antennes d'émission, et lesdites sous-matrices valent [1 1 1], [1 -1 1-1], [1 1-1 -1] et [1 -1 -1 1].

L'invention concerne aussi un procédé de réception d'un signal émis selon le procédé d'émission décrit précédemment, mettant en œuvre au moins une antenne de réception, qui reçoit ledit signal combiné unique sur chacune desdites antennes de réception, et qui décode ledit signal combiné unique à l'aide d'une matrice de décodage correspondant à une matrice transposée conjuguée de ladite matrice unitaire.

Préférentiellement, on applique un décodage à maximum de vraisemblance aux données issues de la multiplication par ladite matrice transposée conjuguée.

On peut également utiliser d'autres décodeurs moins complexes, et réaliser ainsi un décodage par sphère ou un décodage par décomposition QR par exemple. On rappelle que toute matrice hermitienne peut en effet être décomposée sous la forme QR, où Q est une matrice unitaire et R une matrice triangulaire supérieure. Une telle décomposition QR présente une complexité en O³, donc moindre que le décodage à maximum de vraisemblance qui présente une complexité en O^L.

L'invention concerne encore un signal émis selon le procédé d'émission décrit précédemment, correspondant à la combinaison des contributions de chacune desdites antennes d'émission, une sous-matrice distincte étant associée à chacune desdites antennes, lesdites sous-matrices étant obtenues par découpage d'une matrice carrée unitaire. Chacune desdites antennes émet des sous-vecteurs, obtenus par découpage desdits vecteurs, multipliés respectivement par lesdites sous-matrices. Un tel signal forme, vu d'un récepteur, un signal combiné unique représentatif de la multiplication desdits vecteurs par ladite matrice unitaire.

6. Liste des figures

D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante d'un mode de réalisation préférentiel, donné à titre de simple exemple illustratif et non limitatif, et des dessins annexés, parmi lesquels :

15

20

25

- la figure 1 présente un organigramme des différentes étapes mises en œuvre en émission et en réception pour un signal codé au moyen des codes espace-temps de l'invention;
- la figure 2 illustre un système à deux antennes mettant en œuvre un code espace-temps de matrice 2x2 selon l'invention;
- la figure 3 illustre un système à deux antennes similaire à celui de la figure 2 mais qui met en œuvre un code espace-temps de matrice 4x4;
- la figure 4 décrit un système à quatre antennes qui met en œuvre un code espace-temps de matrice 4x4;
- 10 la figure 5 présente les performances comparées des différents codes espace-temps à rendement de 1, de l'art antérieur et de la présente invention, pour deux antennes d'émission et une antenne de réception;
 - la figure 6 illustre les performances comparées des différents codes espacetemps à rendement de 1, de l'art antérieur et de la présente invention, pour quatre antennes d'émission et une antenne de réception.

7. Description d'un mode de réalisation de l'invention

Le principe général de l'invention repose sur un nouveau type de code espace-temps pour un système multi-antennes. La construction particulière de ces codes repose sur une construction matricielle orthogonale ou unitaire pour chaque antenne d'émission, l'utilisation de ces matrices permettant une séparation des signaux émis par chaque antenne.

On présente, en relation avec la figure 1, les différentes étapes mises en œuvre lors de l'émission et de la réception d'un signal selon l'invention.

Au codage, on considère X un vecteur de taille N contenant les N symboles à émettre. On considère également un système comprenant un nombre Nt d'antennes d'émission. La conception des nouveaux codes espace-temps proposés par l'invention est la suivante :

Au cours d'une première étape 1, on divise le vecteur X contenant les symboles à émettre en Nt sous-vecteurs de taille N/Nt.

WO 2005/034386 PCT/FR2004/002444 8

On multiplie ensuite 2 chacun des sous-vecteurs de taille N/Nt par une matrice différente de taille (N/Nt)xN. Ces matrices sont obtenues à partir d'une matrice réelle d'Hadamard, d'une matrice complexe d'Hadamard ou de Fourier, ainsi que de toute matrice de rotation réelle ou complexe. Bien que n'ayant pas de rapport les unes avec les autres, ces différentes matrices ont des caractéristiques communes. En effet, chacune de ces matrices est, soit orthogonale si c'est une matrice réelle, soit unitaire si c'est une matrice complexe.

De plus, chacune de ces matrices doit être pleine, c'est-à-dire que chacun de ses éléments doit être non nul. Ainsi, les différentes matrice de taille (N/Nt)xN sont obtenues à partir d'une matrice principale de taille NxN qu'on coupe en Nt matrices différentes.

10

15

20

25

30

On émet ensuite 3 les différents sous-vecteurs codés sur chacune des Nt antennes. Pour chaque temps symbole, chacun des canaux de transmission existant entre les différentes antennes d'émission et de réception affecte 7 le signal transmis.

Le signal reçu par chaque antenne de réception au cours de l'étape référencée 4 correspond à la somme des différents signaux émis par chaque antenne, affectés par leur propre canal à un instant donné.

Au décodage, on effectue une étape d'égalisation 5 associée au décodage inverse de la matrice d'émission re-combinée. Cette matrice est la matrice transposée conjuguée de la matrice d'émission de taille NxN. Les éléments de cette matrice transposée conjuguée sont les filtres d'égalisation des canaux entre les antennes d'émission et de réception pendant la durée du code N.

On effectue alors un décodage 6 à maximum de vraisemblance. Le décodeur utilisé peut également être moins complexe, de façon à réaliser par exemple un décodage par sphère, ou un décodage par décomposition QR. Cette étape de décodage 6 se fait en calculant la distance euclidienne entre le signal reçu au cours de l'étape 4 et tous les signaux que l'on aurait pu transmettre à partir des antennes d'émission. Ainsi, on reforme un signal fictif sans bruit que l'on aurait pu recevoir et on le compare directement au signal reçu réel qui a été bruité lors de

son passage 7 dans le canal de transmission. Ce décodage demande donc un effort d'adaptation par rapport au codage effectué et il sera différent pour chaque codeur espace-temps utilisé. Dans le cas du décodage à maximum de vraisemblance, si M correspond à l'alphabet de la modulation et N est la taille de la matrice utilisée, il faut faire une recherche exhaustive du signal émis en faisant M^N comparaisons, ce qui est coûteux en terme de complexité, d'où l'intérêt d'utiliser d'autres méthodes de décodage moins complexes.

5

10

15

20

25

Les différentes étapes de l'organigramme de la figure 1 sont illustrées au moyen de l'exemple ci-dessous.

On choisit un vecteur X de taille 10, ainsi qu'un nombre d'antennes Nt=2.

Au cours de l'étape référencée 1, on divise le vecteur X en Nt sousvecteurs de taille N/Nt, de façon à obtenir 2 sous-vecteurs de taille 5.

Au cours de l'étape référencée 2, on multiplie chacun des sous-vecteurs de taille 5 par une matrice différente. Une matrice connue de taille 10x10 est la matrice de Fourier. On divise cette matrice de taille 10x10 en deux matrices de taille 5x10. On multiplie donc chacun des sous-vecteurs de taille 5 par une des deux matrices 5x10. Après cette opération, les deux sous-vecteurs correspondant aux deux antennes correspondent au code espace-temps utilisé pour l'émission.

Au cours de l'étape référencée 3, on émet les 2 différents sous-vecteurs codés sur chacune des 2 antennes d'émission.

Après propagation via le canal de transmission 7, et réception 4, on effectue au décodage une étape d'égalisation 5 associée au décodage inverse de la matrice d'émission re-combinée. Cette matrice est la matrice transposée conjuguée de la matrice de Fourier 10x10 d'émission.

Lors d'une étape référencée 6, on effectue alors un décodage à maximum de vraisemblance, ou un décodage moins complexe du type décodage par sphère, ou décodage par décomposition QR. Avec un décodage à maximum de vraisemblance, si M correspond à l'alphabet de la modulation, il faudra faire une recherche exhaustive du signal émis en faisant M¹⁰ comparaisons.

On présente désormais, en relation avec la figure 2, un mode de réalisation de l'invention dans le cas d'un système d'émission à deux antennes 10, 11, dans lequel on utilise des codes espace-temps de matrice 2x2.

Cette figure 2 illustre le système d'émission de l'invention avec des séquences de code d'Hadamard par antenne de longueur 2. Ce code a un rendement de codage de 1/2 ou un rendement de code espace-temps de 1 si on considère le rendement R égal au nombre de symboles N sur le nombre de temps symboles L pendant lesquels ils sont émis.

5

10

15

20

25

Sur la figure 2, x_1 , x_2 représentent les symboles à transmettre. h_1 , h_2 , h_3 , h_4 sont par exemple des canaux de propagation plats de Rayleigh, associés aux deux antennes d'émission 10, 11. y_1 et y_2 sont les symboles égalisés récupérés lors de l'étape référencée 5 de la figure 1.

Après multiplication du sous-vecteur $[x_1]$ par la sous-matrice $[1 \ 1]$ associée à l'antenne d'émission 10, cette dernière émet le sous-vecteur $[x_1 \ x_1]$. De même, l'antenne d'émission 11 émet le sous-vecteur $[x_1 \ x_2]$, obtenu par multiplication de $[x_2]$ par la sous-matrice $[1 \ -1]$.

En considérant un entrelacement adapté et une décorrélation entre les antennes, le canal varie tous les temps symboles. A la réception, on reçoit sur l'antenne de réception 12 la contribution de la première antenne 10 ainsi que de la deuxième antenne 11 affectée par le canal correspondant, qui s'écrit sous forme matricielle $\begin{bmatrix} h_1x_1 + h_2x_2 & h_3x_1 - h_4x_2 \end{bmatrix}$. Une étape de décodage et d'égalisation consiste ensuite à appliquer la matrice $\begin{bmatrix} h_1^* & h_2^* \\ h_3^* & -h_4^* \end{bmatrix}$ transconjuguée de la matrice unitaire d'émission, tout en effectuant une égalisation. On considère par conséquent les différents canaux ayant contribué à l'étape de transmission. Un décodage ML (ou à Maximum de Vraisemblance) peut ensuite être effectué, qui va rechercher le mot qui a été le plus probablement envoyé. Pour ce faire, on calcule la métrique $\min \left(\sum_{i=1}^2 |y_i - \hat{y}_i|^2 \right)$ présentée sur la figure 2 pour tous les vecteurs (\hat{x}_1, \hat{x}_2) possibles, afin de déterminer le mot de code émis le plus probable.

10

15

25

La figure 3 présente un système d'émission à deux antennes 10, 11 similaire à celui de la figure 2, dans lequel on utilise des codes espace-temps à matrice 4x4.

Dans le système de la figure 3, on utilise plus précisément des séquences de code d'Hadamard par antenne de longueur 4. On peut imaginer augmenter la taille des matrices d'Hadamard et ainsi obtenir des codes de longueur L pour deux antennes.

A nouveau, x_1 , x_2 , x_3 , x_4 sont les symboles à transmettre. h_1 , h_2 , h_3 , h_4 , h_5 , h_6 , h_7 , h_8 sont les canaux de propagation plats de Rayleigh associés aux deux antennes d'émission 10, 11, les indices impairs se référant à la première antenne d'émission 10, et les indices pairs à la seconde antenne 11. y_1 , y_2 , y_3 , y_4 sont les symboles égalisés récupérés sur l'antenne de réception 12 à l'issue de l'étape 5 de la figure 1.

L'antenne d'émission 10 émet le sous-vecteur obtenu par multiplication du sous-vecteur $\begin{bmatrix} x_1 & x_2 \end{bmatrix}$ par la sous-matrice $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$. De même, l'antenne d'émission 11 émet le sous-vecteur, obtenu par multiplication de $\begin{bmatrix} x_3 & x_4 \end{bmatrix}$ par la sous-matrice $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$.

A la réception, on reçoit sur l'antenne de réception 12 la contribution de la première antenne 10 ainsi que de la deuxième antenne 11 affectée par le canal correspondant ($\begin{bmatrix} r_1 & r_2 & r_3 & r_4 \end{bmatrix}$). Une étape de décodage et d'égalisation du signal

20 reçu consiste ensuite à appliquer la matrice $\begin{bmatrix} h_1^* & h_1^* & h_2^* & h_2^* \\ h_3^* & -h_3^* & h_4^* & -h_4^* \\ h_5^* & h_5^* & -h_6^* & -h_6^* \\ h_7^* & -h_7^* & -h_8^* & h_8^* \end{bmatrix}$

transconjuguée de la matrice unitaire d'émission, tout en effectuant une égalisation.

On calcule ensuite la métrique $\min \left(\sum_{i=1}^{4} \left| y_i - \hat{y}_i \right|^2 \right)$ présentée sur la figure 3 pour tous les vecteurs $(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4)$ possibles afin d'avoir le mot de code émis le plus probable.

Le système de l'invention n'est pas limité en termes de nombre d'antennes d'émission. Ainsi qu'illustré sur la figure 4, il est possible de créer des codes espace-temps à 4 antennes d'émission 10, 11, 13 et 14 avec une taille de matrice minimum L=4.

Sur la figure 4, x_1 , x_2 , x_3 , x_4 sont les symboles à transmettre. h_1 , h_2 , h_3 , h_4 , h_5 , h_6 , h_7 , h_8 , h_9 , h_{10} , h_{11} , h_{12} , h_{13} , h_{14} , h_{15} , h_{16} sont les canaux de propagation plats de Rayleigh, associés à chacune des quatre antennes 10, 11, 13 et 14 ainsi qu'illustré sur la figure 4. y_1 , y_2 , y_3 , y_4 sont les symboles égalisés après réception par l'antenne de réception 12. On calcule ensuite la métrique $\min \left(\sum_{i=1}^4 \left|y_i - \hat{y}_i\right|^2\right)$ illustrée en figure 4

5

10

15

20

25

pour tous les vecteurs $(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4)$ possibles, afin de déterminer le mot de code émis le plus probable.

Le principe d'émission des sous-vecteurs par chacune des antennes d'émission est similaire à celui présenté précédemment en relation avec les figures 10, 11, 13 et 14 et, par souci de simplification, ne sera donc pas décrit ici plus en détail.

On notera que, dans les exemples illustrés précédemment en relation avec les figures 2 à 4, les codes espace-temps considérés ont été créés en utilisant de simples matrices d'Hadamard. Il est cependant possible d'utiliser toute matrice unitaire, Hadamard complexe ou Fourier. Plus généralement, toute matrice unitaire peut être utilisée dans le système d'émission de l'invention.

On présente désormais, en relation avec les figures 5 et 6, les performances obtenues, selon l'invention, en effectuant le décodage des codes espace-temps avec un décodeur ML (ou à Maximum de Vraisemblance).

La figure 5 illustre les performances comparées de différents codes espacetemps à rendement de 1 pour 2 antennes d'émission et une antenne de réception, dans le cadre d'une modulation QPSK. Plus précisément, la figure 5 présente les performances des codes espace-temps de l'invention pour une taille de matrice de codage L=2, L=4 et L=8, ainsi que celles du code d'Alamouti. WO 2005/034386 PCT/FR2004/002444

Comme le montre la figure 5, les performances des codes de l'invention sont bonnes à fort rapport signal sur bruit, lorsque la taille de matrice de codage L augmente. En effet, pour 2 antennes d'émission et 1 antenne de réception, lorsqu'on prend une matrice de codage L=8, les performances des codes de l'invention dépassent les performances de la courbe de référence du codage d'Alamouti ("A Simple Transmit Diversity Technique for Wireless Communications", IEEE J. Sel. Areas Comm., 1998, 16, (8), pp. 1451-1458) pour un rapport Eb/N0>10 dB.

5

10

15

20

25

30

Plus précisément, on peut se rendre compte que, plus la taille de la matrice des codes augmente, plus les symboles sont détectés avec un ordre de diversité de canal important. Cela se traduit par la pente des courbes de performances de la figure 5 : plus la pente est accentuée et plus l'ordre de diversité de canal augmente, pour atteindre asymptotiquement une loi gaussienne, illustrée par la courbe AWGN de la figure 5.

Ces résultats montrent que des décodages moins complexes que le décodage à maximum de vraisemblance peuvent être mis en œuvre selon l'invention, tout en conservant des performances satisfaisantes par rapport aux techniques de l'art antérieur.

On peut ainsi faire appel à un décodage QR correspondant à un DFE (en anglais "Digital Feedback Equalizer" ou "égaliseur numérique à retour de décision") ou utiliser un décodage de Viterbi. Une autre solution peut-être d'utiliser un "Annulateur d'interférence". En effet, si M est la taille de l'alphabet et que L est la taille de la matrice des codes, un décodeur à maximum de vraisemblance doit exhaustivement comparer M^L mots de codes, ce qui est particulièrement complexe à implémenter.

La figure 6 illustre les performances comparées de différents codes espacetemps à rendement de 1 pour 4 antennes d'émission et une antenne de réception, dans le cadre d'une modulation QPSK. Plus précisément, la figure 6 présente les performances des codes espace-temps de l'invention pour une taille de matrice de codage L=4 et L=8 et une modulation de type QPSK, ainsi que celles du code G4 de Tarokh pour une modulation 16QAM. La courbe AWGN de la figure 6 représente une loi gaussienne associée à un bruit blanc.

5

10

15

La différence entre le code espace-temps de l'invention avec L=4 et le code G4 de Tarokh ("Space-time block codes from orthogonal designs", IEEE Trans. on Information Theory, 1999, 45, (5), pp. 1456-1467) utilisant une modulation de type 16 QAM ("Quadrature amplitude Modulation", en français "modulation d'amplitude en quadrature") est faible et on peut prévoir un gain assez conséquent lorsque L va augmenter. On voit ainsi un gain assez important quand L=8. Les deux courbes sont parallèles car ces deux codes obtiennent le même ordre de diversité qui est de 4. La différence vient d'une interférence un peu plus grande dans le cas du code de l'invention pour L=4. Cependant, pour L=8 et plus, on peut d'ores et déjà dire que les performances des codes de l'invention seront meilleures que celles du code G4 de Tarokh.

On rappelle que la technique de l'invention peut s'appliquer à tout système multi-antennes, qu'il soit de type MIMO ou de type MISO. Les modulations de type OFDM et les systèmes MC-CDMA sont particulièrement bien adaptés au système proposé par l'invention.

REVENDICATIONS

- 1. Procédé d'émission d'un signal formé de vecteurs successifs comprenant chacun N symboles à émettre, et mettant en œuvre au moins deux antennes d'émission,
- caractérisé en ce qu'on associe à chacune desdites antennes une sous-matrice distincte, lesdites sous-matrices étant obtenues par découpage d'une matrice carrée unitaire, et en ce que chacune desdites antennes émet des sous-vecteurs, obtenus par découpage desdits vecteurs, multipliés respectivement par lesdites sous-matrices,
- de façon à former, vu d'un récepteur, un signal combiné unique représentatif de la multiplication desdits vecteurs par ladite matrice unitaire.
 - 2. Procédé d'émission selon la revendication 1, mettant en œuvre Nt antennes, caractérisé en ce que chacune desdites sous-matrices a une taille de (N/Nt) x N.
- 15 3. Procédé d'émission selon la revendication 2, caractérisé en ce que N/Nt est supérieur ou égal à 2.
 - 4. Procédé d'émission selon l'une quelconque des revendications 1 à 3, caractérisé en ce que ladite matrice unitaire est pleine.
 - 5. Procédé d'émission selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ladite matrice unitaire appartient au groupe comprenant :
 - les matrices réelles d'Hadamard;
 - les matrices complexes d'Hadamard;
 - les matrices de Fourier;
 - les matrices de rotation réelles ;
- 25 les matrices de rotation complexes.
 - 6. Procédé d'émission selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il met en œuvre deux antennes d'émission, et en ce que lesdites sous-matrices valent [1 1] et [1 -1].
- 7. Procédé d'émission selon l'une quelconque des revendications 1 à 5, 30 caractérisé en ce qu'il met en œuvre deux antennes d'émission, et en ce que

lesdites sous-matrices valent
$$\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix}$$
 et $\frac{1}{\sqrt{2}}\begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$.

- 8. Procédé d'émission selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il met en œuvre quatre antennes d'émission, et en ce que lesdites sous-matrices valent [1 1 1 1], [1 -1 1 -1], [1 1 -1 -1] et [1 -1 -1 1].
- 9. Procédé de réception d'un signal émis selon le procédé d'émission de l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il met en œuvre au moins une antenne de réception, en ce qu'il reçoit ledit signal combiné unique sur chacune desdites antennes de réception, et en ce qu'il décode ledit signal combiné unique à l'aide d'une matrice de décodage correspondant à une matrice transposée conjuguée de ladite matrice unitaire.
 - 10. Procédé de réception selon la revendication 9, caractérisé en ce qu'on applique un décodage à maximum de vraisemblance aux données issues de la multiplication par ladite matrice transposée conjuguée.
- 11. Signal émis selon le procédé d'émission de l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il correspond à la combinaison des contributions de chacune desdites antennes d'émission, une sous-matrice distincte étant associée à chacune desdites antennes, lesdites sous-matrices étant obtenues par découpage d'une matrice carrée unitaire, et en ce que chacune desdites antennes émet des sous-vecteurs, obtenus par découpage desdits vecteurs, multipliés respectivement par lesdites sous-matrices, et en ce qu'il forme, vu d'un récepteur, un signal combiné unique représentatif de

la multiplication desdits vecteurs par ladite matrice unitaire.

1/5

Fig. 1

$$\begin{array}{c} 10 \\ \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \end{bmatrix} \\ \begin{bmatrix} h_1 \\ h_3 \\ h_5 \\ h_7 \end{bmatrix} \\ \begin{bmatrix} x_1 & x_2 \end{bmatrix} \\ \\ \begin{bmatrix} x_1 & x_2 \end{bmatrix} \\ \\ \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} \\ \begin{bmatrix} h_2 \\ h_4 \\ h_6 \\ h_8 \end{bmatrix} \\ \begin{bmatrix} h_2 \\ h_4 \\ h_6 \\ h_8 \end{bmatrix} \\ \\ \begin{bmatrix} x_1 & x_2 \end{bmatrix} \\ \\ \begin{bmatrix} x_1 & x_2 & x_4 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & x_4 & x_4 & x_5 & x$$

3/5

Fig. 4

Fig. 5

5/5

Fig. 6

INTERNATIONAL SEARCH REPORT

Internal Application No PCT/FR2004/002444

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04B7/06 H04L1/06 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) HO4B H04L IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, INSPEC, COMPENDEX C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ° Citation of document, with indication, where appropriate, of the relevant passages EP 1 009 124 A (LUCENT TECHNOLOGIES INC) 1,9,11 Α 14 June 2000 (2000-06-14) abstract page 3, paragraph 19 - page 4, paragraph 1,9,11 US 2002/163892 A1 (HOCHWALD BERTRAND M ET Α AL) 7 November 2002 (2002-11-07) abstract figures 6,7 1,9,11 DE 101 15 261 A (SIEMENS AG) Α 17 October 2002 (2002-10-17) abstract claim 1 Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to Involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 01/03/2005 21 February 2005 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Yang, Y Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

nation on patent family members

Interplonal Application No PCT/FR2004/002444

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
EP 1009124	A	14-06-2000	US CA DE DE EP JP JP	6363121 B1 2287759 A1 69904284 D1 69904284 T2 1009124 A2 3604981 B2 2000232385 A	07-06-2000 16-01-2003 28-08-2003 14-06-2000
US 2002163892	A1	07-11-2002	US EP JP	6724842 B1 1069723 A2 2001094489 A	
DE 10115261	A	17-10-2002	DE WO EP US	10115261 A1 02080437 A1 1374467 A1 2004179467 A1	10-10-2002 02-01-2004

RAPPORT DE RECHERCHE INTERNATIONALE

Den e Internationale No PCT/FR2004/002444

		PCT/FR2	004/002444
A. CLASSE CIB 7	MENT DE L'OBJET DE LA DEMANDE H04B7/06 H04L1/06		
O-to- to store	unification into mallocale des hypotets (OID) ou à la fals cata, la classification	ation antiquals at la CID	
	ssification internationale des brevets (CIB) ou à la fois seton la classifica LES SUR LESQUELS LA RECHERCHE A PORTE	TIOU HATIONAIS EL IA CIB	
Documentat	ion minimale consultée (système de classification suivi des symboles d	e classement)	
CIB 7	HO4B HO4L		
Documentat	lion consultée autre que la documentation minimale dans la mesure où	ces documents relèvent des domain	es sur lesquels a porté la recherche
Base de dor	nnées électronique consultée au cours de la recherche internationale (n	om de la base de données, et si réa	lisable, termes de recherche utilisés)
EPO-In	ternal, INSPEC, COMPENDEX		
C. DOCUM	ENTS CONSIDERES COMME PERTINENTS		
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication c	les passages pertinents	no. des revendications visées
А	EP 1 009 124 A (LUCENT TECHNOLOGIE 14 juin 2000 (2000-06-14) abrégé page 3, alinéa 19 - page 4, alinéa	1,9,11	
A	US 2002/163892 A1 (HOCHWALD BERTRA AL) 7 novembre 2002 (2002-11-07) abrégé figures 6,7	1,9,11	
Α	DE 101 15 261 A (SIEMENS AG) 17 octobre 2002 (2002-10-17) abrégé revendication 1		1,9,11
Voir	la suite du cadre C pour la fin de la liste des documents	χ Les documents de familles de	e brevets sont indiqués en annexe
A docume	s spéciales de documents cités: "T ent définissant l'état général de la technique, non léré comme particulièrement pertinent	document ultérieur publié après la date de priorité et n'appartenena technique pertinent, mais cité po ou la théorie constituant la base	int pas à l'état de la ur comprendre le principe
"E" docume	ant antériour, mais nublié à la date de dénêt international	document particulièrement pertine	ent; l'inven tion revendiquée ne peut
"L" docume	ent pouvant jeter un doute sur une revendication de	inventive par rapport au docume	
autre	citation on bont nue taison speciale (felle dinucidaee)	document particulièrement pertine ne peut être considérée comme	impliquant une activité inventive
une ex	ent se référant à une divulgation orale, à un usage, à xposition ou tous autres moyens	lorsque le document est associé documents de même nature, cet	a un ou plusteurs autres te combinaison étant évidente
	ent publié avant la date de dépôt international, mals rieurement à la date de priorité revendiquée *8	pour une personne du métier document qui fait partie de la mêr	ne famille de brevets
Date à laqu	elle la recherche internationale a été effectivement achevée	Date d'expédition du présent rapp	port de recherche internationale
2	1 février 2005	01/03/2005	
Nom et adre	esse postale de l'administration chargée de la recherche internationale	Fonctionnaire autorisé	
	Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk		
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Yang, Y	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relat

embres de familles de brevets

Der le Internationale No PCT/FR2004/002444

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)	Date de publication
EP 1009124	A	14-06-2000	US CA DE DE EP JP JP	6363121 B1 2287759 A1 69904284 D1 69904284 T2 1009124 A2 3604981 B2 2000232385 A	26-03-2002 07-06-2000 16-01-2003 28-08-2003 14-06-2000 22-12-2004 22-08-2000
US 2002163892	A1	07-11-2002	US EP JP	6724842 B1 1069723 A2 2001094489 A	20-04-2004 17-01-2001 06-04-2001
DE 10115261	A	17-10-2002	DE WO EP US	10115261 A1 02080437 A1 1374467 A1 2004179467 A1	17-10-2002 10-10-2002 02-01-2004 16-09-2004