CIV-E4080 Material Modelling in Civil Engineering D

Period V, 2024

Concrete (brittle-like)Damage

Contents

- 1. Damage variable and Effective stress
- 2. Multiaxial damage criteria
- 3. Plasticity coupled with damage
- 4. Damage for Ductile Metals Abaqus example

Damage variable and Effective stress

- S is the area of a section of the volume element identified by its normal \vec{n} .
- \tilde{S} is the effective area of resistance ($\tilde{S} < S$).
- S_D is the total area of the defect traces $(S_D = S \tilde{S})$.
- $D_n = S_D/S$ is the mechanical measure of local damage relative to the direction \vec{n} .
- Hypothesis of isotropy: $D_n = D \quad \forall \vec{n}$.

Damaged element.

Damage variable and Effective stress

Effective stress ($\tilde{\sigma}$) is the stress calculated over the section which effectively resists the forces. In 1D, $\tilde{\sigma} = \sigma/(1-D)$.

Principle of strain-equivalence
 It is assumed that the deformation
 behaviour of the material is only affected
 by damage in the form of effective stress:

any deformation behaviour, whether uniaxial or multiaxial, of a damaged material is represented by the constitutive laws of the virgin material in which the usual stress is replaced by the effective stress.

Multiaxial damage criteria

- In 1D, the damage threshold (in terms of stress) defines the range of resistance of the material: $-\sigma_D < \sigma < \sigma_D \rightarrow \dot{D} = 0$.
- In 3D, this concept is generalized by a damage threshold (yield) surface: In terms of stress, $f_D(\sigma, D) = 0$. In terms of strain, $f_D(\varepsilon, D) = 0$.

The elastic energy density release rate criterion

• The equivalent damage stress σ^* is defined by stating that this energy in a multiaxial state is equal to that in an equivalent uniaxial state defined by σ^* :

$$\sigma^* = \sigma_{eq} \sqrt{\frac{2}{3}(1+\nu) + 3(1-2\nu) \left(\frac{\sigma_H}{\sigma_{eq}}\right)^2}.$$

Multiaxial damage criteria

Representation of the criterion of elastic energy density release rate:
 (a) 2D biaxial loading, and (b) uniaxial loading-torsion.

Multiaxial damage criteria

Three invariants criterion

Within the framework of isotropy, a more general form consists in expressing the damage criterion in terms of the 3 basic stress invariants:

$$\chi(\boldsymbol{\sigma}) = \alpha J_0(\boldsymbol{\sigma}) + \beta I_1(\boldsymbol{\sigma}) + (1 - \alpha - \beta) J_2(\boldsymbol{\sigma}'),$$

where α and β are phenomenological coefficients.

Influence of hydrostatic stress ($\alpha = 0$)

Influence of max. principal stress ($\beta = 0.1$)

Multiaxial damage criteria

Nonsymmetric criterion in terms of strain

The criterion has been developed for concrete, which has the property of being considerably more resistant to damage in compression than in tension. This suggests the idea of introducing a criterion dependent on the positive part of the principal strains ε_1 , ε_2 , and ε_3 : σ_2/σ_0

$$\varepsilon^* = \sqrt{\langle \varepsilon_1 \rangle^2 + \langle \varepsilon_2 \rangle^2 + \langle \varepsilon_3 \rangle^2}$$

with

$$\langle \varepsilon_i \rangle = \varepsilon_i, \quad \text{if} \quad \varepsilon_i > 0,$$

 $\langle \varepsilon_i \rangle = 0, \quad \text{if} \quad \varepsilon_i \leq 0.$

$$\langle \varepsilon_i \rangle = 0, \quad \text{if} \quad \varepsilon_i < 0.$$

Damage for Ductile Metals – Abaqus example

• Engineering Stress-Strain $(\sigma - \varepsilon)$ curve

Stress [MPa]	Strain [mm/mm]	
0.000	0.000	
397.840	0.002	
715.954	0.004	
945.788	0.005	
1073.135	0.008	
1142.644	0.011	
1192.365	0.018	
1211.645	0.029	
1230.000	0.046	
1240.000	0.060	
1250.000	0.072	
1255.000	0.084	
1200.000	0.091	
1045.000	0.092	
250.000	0.093	

Damage for Ductile Metals – Abaqus example

• True Stress-Strain $(\sigma_t$ - $\varepsilon_t)$ curve

True stress:

$$\sigma_t = \sigma(1+\varepsilon)$$

True strain:

$$\varepsilon_t = \ln(1 + \varepsilon)$$

Damage for Ductile Metals – Abaqus example

• True Stress-Strain $(\sigma_t$ - $\varepsilon_t)$ curve

Young's modulus:

Yield stress:

Ultimate stress:

Damage for Ductile Metals – Abaqus example

• True Stress-Strain $(\sigma_t$ - $\varepsilon_t)$ curve

Young's modulus:

E = 198255 MPa

Yield stress (0.2% offset):

 $\sigma_y = 1040 \text{ MPa}$

Ultimate stress:

 $\sigma_u = 1360 \text{ MPa}$

Damage for Ductile Metals – Abaqus example

• True Stress-Plastic Strain $(\sigma_t - \varepsilon_t^p)$ curve

Conversion:

?

Damage for Ductile Metals – Abaqus example

• True Stress-Plastic Strain $(\sigma_t - \varepsilon_t^p)$ curve

Conversion:

$$\varepsilon_t^p = \varepsilon_t - \frac{\sigma_t}{E}$$

Damage for Ductile Metals – Abaqus example

Fracture Strain

Damage for Ductile Metals – Abaqus example

True Stress-Plastic Displacement curve

 $a = 81 \, \text{mm}$

Damage for Ductile Metals – Abaqus example

Extrapolate undamaged curve

Damage for Ductile Metals – Abaqus example

Extrapolate damaged curve

Damage for Ductile Metals – Abaqus example

• Determine u^{pl} by using linear function (with reduced slope) which intersects with reduced stress

$$\sigma = (1 - d) \cdot \overline{\sigma}$$

$$d = -1 \cdot \left(\frac{\sigma}{\overline{\sigma}} - 1\right)$$

$$d = -1 \cdot \left(\frac{1308 \, MPa}{\overline{1360 \, MPa}} - 1\right)$$

$$d = 0.04$$

Damage for Ductile Metals – Abaqus example

• Determine u^{pl} by using linear function (with reduced slope) which intersects with reduced stress

$$\sigma = (1 - d) \cdot \overline{\sigma}$$

$$d = -1 \cdot \left(\frac{\sigma}{\overline{\sigma}} - 1\right)$$

$$d = -1 \cdot \left(\frac{1141 \, MPa}{1360 \, MPa} - 1\right)$$

$$d = 0.16$$

Damage for Ductile Metals – Abaqus example

• Determine u^{pl} by using linear function (with reduced slope) which intersects with reduced stress

$$\sigma = (1 - d) \cdot \overline{\sigma}$$

$$d = -1 \cdot \left(\frac{\sigma}{\overline{\sigma}} - 1\right)$$

$$d = -1 \cdot \left(\frac{237 MPa}{1360 MPa} - 1\right)$$

$$d = 0.80$$

Damage for Ductile Metals – Abaqus example

• Determine u^{pl} by using linear function (with reduced slope) which intersects with reduced stress

$$\sigma = (1 - d) \cdot \overline{\sigma}$$

$$d = -1 \cdot \left(\frac{\sigma}{\overline{\sigma}} - 1\right)$$

$$d = -1 \cdot \left(\frac{13.6 \ MPa}{\overline{1360 \ MPa}} - 1\right)$$

$$d = 0.99$$

Damage for Ductile Metals – Abaqus example

• Plot u^{pl} vs D (tabular)

Damage for Ductile Metals – Abaqus example

- Experiment vs simulation
- Experimental True Stress Curve
- —— Numerical Simulation ABAQUS Dynamic, Explicit Mesh = 5 mm Linear Damage Evolution
- Numerical Simulation ABAQUS Dynamic, Explicit Mesh = 0.5 mm Linear Damage Evolution

Damage for Ductile Metals – Abaqus example

- Experiment vs simulation
- Experimental True Stress Curve
- Numerical Simulation ABAQUS Dynamic, Explicit Mesh = 5 mm Tabular Damage Evolution

■ Numerical Simulation – ABAQUS – Dynamic, Explicit – Mesh = 0.5 mm – Tabular Damage Evolution

Damage for Ductile Metals – Abaqus example

- Experiment vs simulation
 - Experimental True Stress Curve

Numerical Simulation – ABAQUS – Dynamic, Explicit – Mesh = 0.5 mm – Linear Damage Evolution

Numerical Simulation – ABAQUS – Dynamic, Explicit – Mesh = 0.5 mm – Tabular Damage Evolution

Plastic Displacement seems to be too large!

Damage for Ductile Metals – Abaqus example

Rearrangement

Plastic Displacement is usually estimated based on Damage Initiation Point (d = 0)

For a smaller Plastic Displacement a slightly damaged point can be used d = 0.05 (5%)instead of d=0

In our example we use the point for d=0.04 $(0.04 \sim 0.05)$

 $= 0.674 \ mm = 0.486 \ mm + 0.188 \ mm$

= 0.486 mm

Damage for Ductile Metals – Abaqus example

Rearrangement

Note: The Fracture Strain (0.0735) is not changed!

		Damage	
Plastic Disp		Variable	
	0.000		0
	0.117		0.16
	0.185		0.8
	0.188		0.99

Damage for Ductile Metals – Abaqus example

- Experiment vs simulation
- Experimental True Stress Curve
- ── Numerical Simulation ABAQUS Dynamic, Explicit Mesh = 0.5 mm Linear Damage Evolution
- Numerical Simulation ABAQUS Dynamic, Explicit Mesh = 0.5 mm Tabular Damage Evolution

Damage for Ductile Metals – Abaqus example

von Mises stress distribution

