UTD ID: 2021220422

Home Work 1

Discrete Structures (CS 5333)

Page 15 - Exc.30: How many rows appear in a truth table for each of these compound propositions?

a)
$$(q \rightarrow \neg p) \lor (\neg p \rightarrow \neg q)$$

b)
$$(p \lor \neg t) \land (p \lor \neg s)$$

c)
$$(p \rightarrow r) \lor (\neg s \rightarrow \neg t) \lor (\neg u \rightarrow v)$$

d)
$$(p \land r \land s) \lor (q \land t) \lor (r \land \neg t)$$

Answers:

a)
$$4 (2^2 - \text{Two variables } p \text{ and } q)$$

b)
$$8(2^3 - \text{Three variables } p, s \text{ and } t)$$

c)
$$64 (2^6 - \text{Six variables } p, r, s, t, u \text{ and } v)$$

d)
$$32(2^5 - \text{Five variables } p, q, r, s \text{ and } t)$$

Page 15 - Exc.32: Construct a truth table for each of these compound propositions.

a)
$$p \rightarrow \neg p$$

d)
$$(p \land q) \rightarrow (p \lor q)$$

e)
$$(q \rightarrow \neg p) \leftrightarrow (p \leftrightarrow q)$$

Answers:

a)

p	¬ p	$p \rightarrow \neg p$
Т	F	F
F	Т	T

d)

p	q	$p \wedge q$	$p \lor q$	$(p \land q) \to (p \lor q)$
Т	Т	Т	Т	Т
Т	F	F	Т	T
F	Т	F	Т	Т
F	F	F	F	Т

e)

p	q	$\neg p$	$q \rightarrow \neg p$	$p \leftrightarrow q$	$(q \to \neg p) \longleftrightarrow (p \longleftrightarrow q)$
Т	Т	F	F	T	F
Т	F	F	Т	F	F
F	Т	Т	Т	F	F
F	F	Т	T	T	Т

Page 15 - Exc.34: Construct a truth table for each of these compound propositions.

d)
$$\neg p \oplus \neg q$$

Answer:

p	q	$\neg p$	$\neg q$	$\neg p \oplus \neg q$
Т	Т	F	F	Т
Т	F	F	T	F
F	Т	T	F	F
F	F	T	T	T

Page 16 - Exc.30: Evaluate each of these expressions.

- **a**) 1 1000 ∧ (0 1011 ∨ 1 1011)
- **b)** (0 1111 ∧ 1 0101) ∨ 0 1000
- **c**) $(0\ 1010 \oplus 1\ 1011) \oplus 0\ 1000$
- **d**) (1 1011 v 0 1010) ∧ (1 0001 v 1 1011)

Answers:

- a) 1 1000 ∧ (0 1011 ∨ 1 1011) 1 1000 ∧ 1 1011 1 1000
- b) (0 1111 \(\Lambda \) 10101) \(\mathbf{0} \) 0 1000 \(0 \tag{101} \) \(\mathbf{0} \) 1000 \(0 \tag{1101} \)
- c) (0 1010 ⊕ 1 1011) ⊕ 0 1000 1 0001 ⊕ 0 1000 1 1001

Page 35 – Exc 24: Show that $(p \to q) \lor (p \to r)$ and $p \to (q \lor r)$ are logically equivalent.

Answer:

For $(p \to q) \lor (p \to r)$ to be false both the conditional statements must be false. Which happens when p is true and both q and r are true. For all other cases it is true.

The conditional statement $p \to (q \lor r)$ is false when p is true and $(q \lor r)$ is false which implies both q and r must be false. It is true for all other cases. Therefore both the statements are logically equivalent.

$$(p \to q) \lor (p \to r)$$

$$\equiv (\neg p \lor q) \lor (\neg p \lor r) \qquad \text{as } (p \to q \equiv \neg p \lor q)$$

$$\equiv (\neg p \lor \neg p) \lor (q \lor r) \qquad \text{Associative law}$$

$$\equiv \neg p \lor (q \lor r)$$

$$\equiv p \to (q \lor r) \qquad (\neg p \lor s \equiv p \to s) \text{ here } s = (q \lor r)$$

Page 36 - Exc.46: Construct a truth table for the logical operator *NAND*.

Answer:

p	q	p q
T	Т	F
T	F	F
F	Т	F
F	F	T

Page 36 - Exc.58: How many of the disjunctions $p \lor \neg q$, $\neg p \lor q$, $q \lor r$, $q \lor \neg r$, and $\neg q \lor \neg r$ can be made simultaneously true by an assignment of truth values to p, q, and r?

Answer: All of them as they are independent on each other.

p	q	r	¬р	¬q	¬r	p∨¬q	¬p∨q	q V r	q∨¬r	¬q∨¬r
T	Т	T	F	F	F	T	Т	Т	T	F
Т	T	F	F	F	T	Т	Т	T	T	Т

T	F	T	F	T	F	Т	F	T	F	Т
T	F	F	F	T	T	Т	F	F	T	Т
F	Т	T	T	F	F	F	Т	T	T	F
F	Т	F	T	F	Т	F	Т	T	T	Т
F	F	T	T	T	F	Т	Т	Т	F	Т
F	F	F	T	T	Т	Т	Т	F	T	Т

Page 125 - Exc.6: Suppose that $A = \{2, 4, 6\}$, $B = \{2, 6\}$, $C = \{4, 6\}$, and $D = \{4, 6, 8\}$. Determine which of these sets are subsets of which other of these sets.

Answer:

B and C are subsets of A

C is also a subset of D.

Page 152 – Exc.2: Determine whether f is a function from \mathbf{Z} to \mathbf{R} if

$$\mathbf{a}$$
) $f(n) = \pm n$.

b)
$$f(n) = \sqrt{(n^2 - 1)}$$

c)
$$f(n) = 1/(n2 - 4)$$
.

Answers:

- a) f is a function from **Z** to **R**.
- b) f is not a function from **Z** to **R**. It is not defined when n = 0.
- c) f is not a function from **Z** to **R**. It is not defined when n = 2.

Page 53 - Exc.14: Determine the truth value of each of these statements if the domain consists of all real numbers.

a)
$$\exists x(x3 = -1)$$

b)
$$\exists x(x4 < x2)$$

$$\mathbf{c)} \ \forall x((-x)2 = x2)$$

d)
$$\forall x(2x > x)$$

Answers:

- a) True
- b) True
- c) False
- d) False

Page 53 – **Exc.18:** Suppose that the domain of the propositional function P(x) consists of the integers -2, -1, 0, 1, and 2. Write out each of these propositions using disjunctions, conjunctions, and negations.

- c) $\exists x \neg P(x)$
- **d**) $\forall x \neg P(x)$
- **f**) $\neg \forall x P(x)$

Answers:

- c) $\neg P(-2) \lor \neg P(-1) \lor \neg P(0) \lor \neg P(1) \lor \neg P(2)$
- d) $\neg P(-2) \land \neg P(-1) \land \neg P(0) \land \neg P(1) \land \neg P(2)$
- f) $\neg (P(-2) \land P(-1) \land P(0) \land P(1) \land P(2))$

Page 55 - Exc.36: Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all real numbers.

- **a)** $\forall x(x^2 \neq x)$
- **b)** $\forall x(x2 \neq 2)$
- c) $\forall x(|x| > 0)$

Answers:

- a) x = 1
- b) $x = \sqrt{2}$
- c) x = 0

Page 56 - Exc. 50: Show that $\forall x P(x) \lor \forall x Q(x)$ and $\forall x (P(x) \lor Q(x))$ are not logically equivalent.

Answer:

If we can show that for a value x the truth values of the two statements are different then they are not logically equivalent.

For example if a is in the domain, such that $\exists x P(a)$ is true, $\exists x Q(a)$ is true and P(a) V Q(a) is true always. Then $\forall x (P(x) \lor Q(x))$ is true and $\forall x P(x) \lor \forall x Q(x)$ is false.

Therefore $\forall x P(x) \lor \forall x Q(x)$ and $\forall x (P(x) \lor Q(x))$ are not logically equivalent.

Page 67 - Exc.32: Express the negations of each of these statements so that all negation symbols immediately precede predicates.

- **a)** $\exists z \forall y \forall x T (x, y, z)$
- c) $\exists x \exists y (Q(x, y) \leftrightarrow Q(y, x))$

Answers:

- a) $\forall z \exists y \exists x \neg T(x, y, z)$
- b) $\forall x \forall y (Q(x, y) \oplus Q(y, x))$

Page 68 - Exc.40: Find a counterexample, if possible, to these universally quantified statements, where the domain for all variables consists of all integers.

- **a**) $\forall x \exists y (x = 1/y)$
- **b**) $\forall x \exists y (y2 x < 100)$
- c) $\forall x \forall y (x2 = y3)$

Answers:

- a) x = 3. $\forall x \exists y (x = 1/y)$ this to be true, For every x there should be a y such that (x = 1/y) is true. If x = 3 then there is no y in integers that can make this statement (x = 1/y) true.
- b) y = 0, x = 100. If x < -100 then what ever the y value be, the result is greater than 100.
- c) x = 1, y = 1. For $\forall x \forall y (x^2 \neq y^3)$ to be true $(x^2 \neq y^3)$ should be true for every pair x, y.

Page 68 - Exc.42: Use quantifiers to express the distributive laws of multiplication over addition for real numbers.

Answer:

The distributive law of multiplication over addition says that if x, y and z are any numbers.

x(y+z) = xy + xz. It is true for all x,y and z. Therefore it can be expressed as

$$\forall x \forall y \forall z (x (y + z)) = \forall x \forall y \forall (xy + xz).$$

Page 68 - Exc.48: Show that $\forall x P(x) \lor \forall x Q(x)$ and $\forall x \forall y (P(x) \lor Q(y))$, where all quantifiers have the same nonempty domain, are logically equivalent. (The new variable y is used to combine the quantifications correctly.)

Answer:

Suppose $\forall x P(x) \lor \forall x Q(x)$ is true, then either P(x) is true $\forall x \text{ or } Q(y)$ is true $\forall y$. In the former case $P(x) \lor Q(y)$ is true $\forall x$. so $\forall x \forall y (P(x) \lor Q(y))$. In the latter case, Q(y) is true for all y, so $P(x) \lor Q(y)$ is true for all y and consequently $\forall x \forall y (P(x) \lor Q(y))$ is true. Conversely suppose that second proposition is true. If P(x) is true for all x, then the first proposition is true. If not, P(x) is false for some x then there exists y such that Q(y) is true. It follows that the first proposition must hold.