```
spark_path <- '/usr/local/spark'</pre>
if (nchar(Sys.getenv("SPARK HOME")) < 1) {</pre>
  Sys.setenv(SPARK HOME = spark path)
library(SparkR, lib.loc = c(file.path(Sys.getenv("SPARK HOME"),
"R", "lib")))
sparkR.session(master = "yarn", sparkConfig = list
(spark.driver.memory = "1g"))
# Library definition
#library(ggplot2)
#library(dplyr)
# For the scope of this analysis, we wish to compare the
phenomenon related to parking tickets over
# three different years - 2015, 2016, 2017. All the analysis
steps mentioned below should be done
# for three different years. Each metric you derive should be
compared across the three years.
# Use the Fiscal years as per the files. You can use calendar
year if you like - you will not lose any
# marks for performing the analysis this way.
# The purpose of this case study is to conduct an exploratory
data analysis that helps you understand the data.
# Since the size of the dataset is large, your queries will take
some time to run, and you will need to identify
# the correct queries quicker. The questions given below will
quide your analysis.
# The analysis has to be performed for all the three years. Apart
from analysis asked in the questions, provide
# a comparison of the findings from three years.
# 2. Create a Spark DataFrame and examine structure
nyc_ticket_2015 <- SparkR::read.df
("/common_folder/nyc_parking/Parking_Violations_Issued_-
_Fiscal_Year_2015.csv", "CSV", header="true", inferSchema =
"true")
colnames(nyc_ticket_2015) <- gsub(" ", "_", colnames(nyc_ticket_</pre>
#nyc_ticket_2015 <- nyc_ticket_2015[ , c(1, 3:9, 14:16, 20, 22,</pre>
40)]
str(nyc_ticket_2015)
# We can infer that columns are of various data types.
# Here are all the column names from nyc ticket 2015
# Summons Number
                                  Plate ID
Registration_State
                                Plate_Type
```

```
# Issue_Date
                                    Violation_Code
Vehicle_Body_Type
                                  Vehicle Make
# Issuing_Agency
                                     Street Code1
Street_Code2
                                  Street_Code3
                                    Violation_Location
# Vehicle_Expiration_Date
Violation_Precinct
                                  Issuer_Precinct
# Issuer_Code
                                     Issuer_Command
Issuer_Squad
                                  Violation_Time
                                    Violation_County
# Time_First_Observed
Violation_In_Front_Of_Or_Opposite House_Number
# Street_Name
                                     Intersecting_Street
Date_First_Observed
                                  Law Section
# Sub_Division
                                    Violation_Legal_Code
Days_Parking_In_Effect____
                                 From_Hours_In_Effect
# To_Hours_In_Effect
                                    Vehicle_Color
Unregistered_Vehicle?
                                  Vehicle_Year
# Meter_Number
                                    Feet_From_Curb
Violation Post Code
                                  Violation Description
# No_Standing_or_Stopping_Violation Hydrant_Violation
Double_Parking_Violation
                                 Latitude
                                    Community_Board
# Longitude
Community_Council_
                                  Census_Tract
# BIN
                                    BBL
NTA
createOrReplaceTempView(nyc_ticket_2015, "SQL_nyc_ticket_2015")
# Before executing any hive-sql query from RStudio, you need to
add a jar file in RStudio
sql("ADD JAR /opt/cloudera/parcels/CDH/lib/hive/lib/hive-
hcatalog-core-1.1.0-cdh5.11.2.jar")
# Examine the data
# Find the total number of tickets for each year.
nyc_tickets_2015 <- SparkR::sql("select count(distinct</pre>
(Summons_Number)) from SQL_nyc_ticket_2015")
head(nyc_tickets_2015)
# count(DISTINCT Summons_Number)
                          10951256
# The number of tickets issued in 2015 are 10951256
# Find out the number of unique states from where the cars that
got parking tickets came from. (Hint: Use the column
'Registration State')
# There is a numeric entry in the column which should be
corrected. Replace it with the state having maximum entries.
# Give the number of unique states for each year again.
nyc_states_2015 <- SparkR::sql("select count(distinct</pre>
```

```
(Registration_State)) from SQL_nyc_ticket_2015")
head(nyc states 2015)
# count(DISTINCT Registration_State)
# The number of distinct registration state are 69.
nyc_states_grouped_2015 <- SparkR::sql("select</pre>
Registration State, count(Registration State) as Count from
SQL_nyc_ticket_2015 group by Registration_State sort by count
(Registration State) DESC")
head(arrange(nyc_states_grouped_2015, desc(nyc_states_grouped_
2015$Count)))
# Registration_State
                       Count
                    NY 9193289
# 1
# 2
                    NJ 1080414
# 3
                    PA 298877
# 4
                    CT 160361
# 5
                    FL
                        148868
# 6
                    MA 101164
# We can see that NY is the registration state with maximum
violations.
nyc states numeric 2015 <- SparkR::sql("select Registration State
from SQL nyc ticket 2015 where Registration State LIKE '%[^0-
9]%'")
head(nyc states numeric 2015)
head(arrange(nyc_states_grouped_2015, asc(nyc_states_grouped_2015
$Count)))
# We dont see any Registration State entry with numeric value.
# Some parking tickets don't have the address for violation
location on them, which is a cause for concern. Write a query to
check the number of such tickets.
# The values should not be deleted or imputed here. This is just
a check.
nyc_tickets_null_2015 <- SparkR::sql("select count</pre>
(Violation_Location) from SQL_nyc_ticket_2015 where House_Number
IS NULL or Street_Name IS NULL")
head(nyc_tickets_null_2015)
# count(Violation_Location)
# 1
                        204880
# We can infer that that there are 204880 tickets which do not
```

have House number or street name.

```
# Aggregation tasks
```

1. How often does each violation code occur? Display the frequency of the top five violation codes.

ViolationCodeFreq_2015 <- summarize(groupBy(nyc_ticket_2015,
nyc_ticket_2015\$Violation_Code), count = n(nyc_ticket_2015
\$Violation_Code))</pre>

head(arrange(ViolationCodeFreq_2015, desc(ViolationCodeFreq_2015
\$count)),5)

```
# Violation Code count
# 1 21 1630912
# 2 38 1418627
# 3 14 988469
# 4 36 839197
# 5 37 795918
```

2. How often does each 'vehicle body type' get a parking
ticket? How about the 'vehicle make'?
(Hint: find the top 5 for both)
BodyTypeFreq_2015 <- summarize(groupBy(nyc_ticket_2015,
nyc_ticket_2015\$Vehicle_Body_Type), count = n(nyc_ticket_2015
\$Vehicle_Body_Type))
head(arrange(BodyTypeFreq_2015, desc(BodyTypeFreq_2015\$count)),5)</pre>

```
# Vehicle Body Type count
# 1 SUBN 3729346
# 2 4DSD 3340014
# 3 VAN 1709091
# 4 DELV 892781
# 5 SDN 524596
```

VehicleMakeFreq_2015 <- summarize(groupBy(nyc_ticket_2015,
nyc_ticket_2015\$Vehicle_Make), count = n(nyc_ticket_2015
\$Vehicle_Make))</pre>

head(arrange(VehicleMakeFreq_2015, desc(VehicleMakeFreq_2015
\$count)),5)

```
# Vehicle Make count
# 1 FORD 1521874
# 2 TOYOT 1217087
# 3 HONDA 1102614
# 4 NISSA 908783
# 5 CHEVR 897845
```

3. A precinct is a police station that has a certain zone of the city under its command.

3.1 Find the (5 highest) frequency of tickets for each of the following:

#

3.2 'Violation Precinct' (this is the precinct of the zone where the violation occurred). Using this, can you make any insights

for parking violations in any specific areas of the city?

VehiclePrecintFreq_2015 <- summarize(groupBy(nyc_ticket_2015,
nyc_ticket_2015\$Violation_Precinct), count = n(nyc_ticket_2015
\$Violation_Precinct))</pre>

head(arrange(VehiclePrecintFreq_2015, desc(VehiclePrecintFreq_ 2015\$count)),5)

```
# Violation Precinct count
# 1 0 1799170
# 2 19 598351
# 3 18 427510
# 4 409064
# 5 1 329009
```

There are many entries which have Violation Precinct as 0 which are incorrect. Post which 19 has highest number of parking violations.

For using SQL, you need to create a temporary view

data_rated_2015_5 <- SparkR::sql("SELECT Violation_County, count
 (Violation_County) from SQL_nyc_ticket_2015 where
 Violation_Precinct = 19 group by Violation_County")
head(arrange(data_rated_2015_5, desc(count(data_rated_2015_5
\$Violation_County))))</pre>

Violation_County count(Violation_County)

#	1	NY	595515
#	2	BX	41
#	3	Q	19
#	4	K	18
#	5	R	17
#	6	<na></na>	0

We can infer that maximum parking violations are in the area of NY county.

data_rated_2015_4 <- SparkR::sql("SELECT Street_Code1, count
(Street_Code1) from SQL_nyc_ticket_2015 where Violation_Precinct
= 19 group by Street_Code1")</pre>

head(arrange(data_rated_2015_4, desc(count(data_rated_2015_4
\$Street_Code1))))

3 24890

58651

```
# 4 10010 50537
# 5 10110 31787
# 6 45590 23523
```

We can inder that Street Code 10210, 25390, 24890 and 10010 has high number of parking violations.

- # 3.3 'Issuer Precinct' (this is the precinct that issued the ticket)
- # Here you would have noticed that the dataframe has 'Violating Precinct' or 'Issuing Precinct' as '0'.
- # These are the erroneous entries. Hence, provide the record for five correct precincts.
- # (Hint: print top six entries after sorting)

data_rated_2015_6 <- SparkR::sql("SELECT Issuer_Precinct, count
(Issuer_Precinct) from SQL_nyc_ticket_2015 where Issuer_Precinct
!= 0 group by Issuer_Precinct")</pre>

head(arrange(data_rated_2015_6, desc(count(data_rated_2015_6
\$Issuer_Precinct))))

#	Issu	er_Precinct count(Issu	er_Precinct)
#	1	19	579998
#	2	18	417329
#	3	14	392922
#	4	1	318778
#	5	114	314437
#	6	13	296403

We can infer that Issuer_Precinct 19 has issued highest parking violation.

- \sharp 4. Find the violation code frequency across three precincts which have issued the most number of tickets do these precinct zones
- # have an exceptionally high frequency of certain violation codes? Are these codes common across precincts?
- # Hint: You can analyse the three precincts together using the 'union all' attribute in SQL view. In the SQL view,
- $\mbox{\tt\#}$ use the 'where' attribute to filter among three precincts and combine them using 'union all'.

data_rated_2015_7 <- SparkR::sql("</pre>

SELECT Violation_Code, count(Violation_Code) as counting from SQL_nyc_ticket_2015 where Issuer_Precinct = 19 group by Violation_Code UNION ALL

SELECT Violation_Code, count(Violation_Code) as counting from SQL_nyc_ticket_2015 where Issuer_Precinct = 18 group by Violation_Code UNION ALL

SELECT Violation_Code, count(Violation_Code) as counting from
SQL_nyc_ticket_2015 where Issuer_Precinct = 14 group by
Violation_Code")

```
head(data rated 2015 7)
```

```
# Violation_Code counting
                        2462
                31
# 2
                85
                         715
# 3
                65
                          2
# 4
                53
                        2043
# 5
                        1273
                78
# 6
                81
                          22
```

data_rated_2015_8 <- SparkR::sql("SELECT Violation_Code, count
(Violation_Code) from SQL_nyc_ticket_2015 where Issuer_Precinct =
19 group by Violation_Code")</pre>

head(arrange(data_rated_2015_8, desc(count(data_rated_2015_8
\$Violation_Code))))

```
# Violation_Code count(Violation_Code)
```

#	1	38	97154
#	2	37	85007
#	3	14	64133
#	4	21	60215
#	5	16	59675
#	6	46	46363

data_rated_2015_9 <- SparkR::sql("SELECT Violation_Code, count
(Violation_Code) from SQL_nyc_ticket_2015 where Issuer_Precinct =
18 group by Violation_Code")</pre>

head(arrange(data_rated_2015_9, desc(count(data_rated_2015_9
\$Violation_Code))))

Violation_Code count(Violation_Code)

#	Τ	14	129079
#	2	69	60618
#	3	31	32925
#	4	47	30872
#	5	42	21026
#	6	38	20013

data_rated_2015_10 <- SparkR::sql("SELECT Violation_Code, count
(Violation_Code) from SQL_nyc_ticket_2015 where Issuer_Precinct =
14 group by Violation_Code")</pre>

head(arrange(data_rated_2015_10, desc(count(data_rated_2015_10
\$Violation_Code))))

Violation_Code count(Violation_Code)

#	1	69	84895
#	2	14	81896
#	3	31	43928
#	4	42	29868
#	5	47	28814
#	6	46	10853

```
common violations in the 3 precincts.
#-----
_____
#5. You'd want to find out the properties of parking violations
across different times of the day:
#The Violation Time field is specified in a strange format. Find
a way to make this into a time
#attribute that you can use to divide into groups.
#-----
______
nyc_ticket_2015 <- nyc_ticket_2015[ , c(1, 3:9, 14:16, 20, 22,
40)]
#year-2015
nyc_ticket_2015 <- withColumn(nyc_ticket_2015, "hours",</pre>
substr(nyc_ticket_2015$Violation_Time, 1, 2))
nyc_ticket_2015 <- withColumn(nyc_ticket_2015, "Period",</pre>
substr(nyc_ticket_2015$Violation_Time, 6, 6))
nyc_ticket_2015 <- withColumn(nyc_ticket_2015, "hours_bin",</pre>
ifelse(nyc_ticket_2015$Period == "P",
nyc_ticket_2015$hours + 12,
nyc_ticket_2015$hours))
#-----
_____
#Dealing with missing values if
#-----
_____
#check of data and extract only valid data
str(nyc ticket 2015)
nrow(nyc_ticket_2015)
#11809233
nrow(where(nyc_ticket_2015, nyc_ticket_2015$hours_bin <= 24))</pre>
#11807372 -- valid data
nrow(where(nyc_ticket_2015, nyc_ticket_2015$hours_bin >24))
      -- Errouneous data
nrow(where(nyc_ticket_2015, isNull(nyc_ticket_2015$hours)))
#1715
\#((142+1715)/11809233)*100 = 0.015\% of data which is very low and
```

We can infer that violation code 14 and 69 seem to be the most

```
can be omitted for further analysis
nyc_parking_violation_time_2015 <- subset(nyc_ticket_2015,</pre>
nyc ticket 2015$hours bin <= 24)</pre>
#Creating view for running SQL queries
createOrReplaceTempView(nyc_parking_violation_time_2015,
"data_violationtime_view_2015")
#-----
_____
# 5.3 Divide 24 hours into 6 equal discrete bins of time. The
intervals you choose are at your discretion.
#For each of these groups, find the 3 most commonly occurring
violations.
# Hint: Use the CASE-WHEN in SQL view to segregate into bins. For
finding the most commonly occurring violations,
# a similar approach can be used as mention in the hint for
question 4.
#-----
  -----
# Binning into different hours and attaching data
#year-2015
bins_2015 <- SparkR::sql("SELECT Summons_Number,
Registration_State, Plate_Type, Issue_Date, Violation_Code,
Vehicle_Body_Type,
                 Vehicle_Make, Issuing_Agency,
Violation_Location, Violation_Precinct, Issuer_Precinct,
Violation_Time,
                 hours, Period, hours_bin, \
                 CASE WHEN (hours_bin >= 0 and hours_bin <=
4 ) THEN 1\
                 WHEN (hours_bin > 4 and hours_bin <= 8 )</pre>
THEN 2
                 WHEN (hours_bin > 8 and hours_bin <= 12)</pre>
THEN 3\
                 WHEN (hours_bin > 12 and hours_bin <= 16)
THEN 4\
                 WHEN (hours bin > 16 and hours bin <= 20)
THEN 5\
                 ELSE 6 END as bin number FROM
data_violationtime_view_2015")
# Attach the bin number to the original DataFrame
nyc_parking_violation_time_2015 <- withColumn(bins_2015,</pre>
"bin_number", bins_2015$bin_number)
#cross verifying structure and data
head(nyc_parking_violation_time_2015)
```

```
str(nyc_parking_violation_time_2015)
#-----
______
#Summary and obtaining to most commonly occuring violation codes
#-----
#year-2015
nyc_data_binning_2015 <- summarize(groupBy</pre>
(nyc_parking_violation_time_2015, nyc_parking_violation_time_2015
$bin number,
nyc_parking_violation_time_2015$Violation_Code),
                              count_violation_code = n
(nyc_parking_violation_time_2015$Violation_Code))
nyc data binning 2015 <- arrange(nyc data binning 2015, desc
(nyc_data_binning_2015$count_violation_code))
head(where(nyc_data_binning_2015, nyc_data_binning_2015
\pi = 1, 3)
# bin_number Violation_Code count_violation_code
# 1
          1
                   38
                                     582774
# 2
                       37
           1
                                     439650
# 3
          1
                       14
                                     339710
# bin 2
head(where(nyc_data_binning_2015, nyc_data_binning_2015
\pi = 2, 3)
# bin_number Violation_Code count_violation_code
# 1
           2
                       21
                                     526698
# 2
                                     305265
           2
                       14
# 3
           2
                       38
                                     246291
# bin 3
head(where(nyc_data_binning_2015, nyc_data_binning_2015
$bin_number == 3), 3)
# bin number Violation Code count violation code
# 1
                       21
           3
                                     1028370
# 2
           3
                       38
                                     589562
# 3
           3
                       36
                                     433328
# bin 4
head(where(nyc_data_binning_2015, nyc_data_binning_2015
\pi = 4, 3)
# bin_number Violation_Code count_violation_code
# 1
           4
                       14
```

```
# 2
                       21
                                           2
# 3
                                           2
                       46
# bin 5
head(where(nyc_data_binning_2015, nyc_data_binning_2015
\phi $bin_number == 5), 3)
# bin_number Violation_Code count_violation_code
           5
# 1
                       40
                                           4
# 2
           5
                                           3
                        20
           5
                                           2
# 3
                       51
# bin 6
head(where(nyc_data_binning_2015, nyc_data_binning_2015
\pi = 6, 3)
# bin_number Violation_Code count_violation_code
# 1
           6
                       46
                                           3
# 2
           6
                                           2
                        40
# 3
           6
                        98
#-----
_____
5.4
#Now, try another direction. For the 3 most commonly occurring
violation codes, find the most common times of day
#(in terms of the bins from the previous part)
#-----
#Year:: 2015
#Top 3 Violation codes for year-2015 are 21,38,14
data_code_binning_2015 <- summarize(groupBy(subset
(nyc_parking_violation_time_2015, nyc_parking_violation_time_2015
$Violation_Code %in% c(21,38,14)),
nyc_parking_violation_time_2015$Violation_Code,
nyc_parking_violation_time_2015$bin_number ),
                               count_in_bin = n
(nyc_parking_violation_time_2015$bin_number))
head(arrange(data_code_binning_2015, desc(data_code_binning_2015
$count_in_bin)))
# Violation_Code bin_number count_in_bin
# 1
              21
                        3
                              1028370
# 2
                        3
              38
                               589562
# 3
              38
                        1
                               582774
# 4
              2.1
                        2.
                               526698
```

```
3
1
# 6
               14
                                 339710
#Observation for Year :: 2015
# It looks like violation codes 21, 38 and 14 mostly happens in
bin 3,
        which means these codes are mostly issed between
morning 08:00 AM to 12:00PM
#6. Let's try and find some seasonality in this data
#First, divide the year into some number of seasons, and find
frequencies of tickets for each season.
#Then, find the 3 most common violations for each of these season
#-----
_____
# 6.1 First, divide the year into some number of seasons, and
find frequencies of tickets for each season.
# (Hint: Use Issue Date to segregate into seasons)
# YEAR :: 2015
#Extract month from issued date values
parsed_2015_Month <- withColumn(nyc_ticket_2015, "Date_Parsed",
to_date(nyc_ticket_2015$Issue_Date, "MM/dd/yyyy"))
parsed_2015_Month <- withColumn(parsed_2015_Month, "Month", month
(parsed_2015_Month$'Date_Parsed'))
#checking for discripencies of data
nrow(where(parsed_2015_Month, parsed_2015_Month$Month <= 12 &</pre>
parsed_2015_Month$Month >= 1))
#11809233-- This valid data
nrow(where(parsed_2015_Month, parsed_2015_Month$Month <= 0 |</pre>
parsed_2015_Month$Month > 12))
#0 No Issue with this this data 0
nrow(where(parsed_2015_Month, isNull(parsed_2015_Month$Month)))
#0 #No Issue with this this data 0
#So all the data records are valid parsed 2015 Month can be used
#Creating view for running SOL gueries
createOrReplaceTempView(parsed_2015_Month, "ParsedDate_View_
2015")
data_bins_2015 <- SparkR::sql("SELECT Month,
Violation_Description, Violation_Code, \
                       CASE WHEN (Month >=1 and Month <= 3)
THEN 1\
                       WHEN (Month > 3 and Month <= 6) THEN 2
```

343470

5

14

```
/
                   WHEN (Month > 6 and Month <= 9) THEN 3
                   WHEN (Month > 9 and Month <= 12) THEN 4
                   ELSE 0 END as bin_number FROM
ParsedDate View 2015")
# Attach the bin number to the original DataFrame
nyc_parking_ParsedDate_2015 <- withColumn(data_bins_2015,</pre>
"bin_number", data_bins_2015$bin_number)
#-----
_____
#grouping and summarising Viloation in bins
#-----
_____
# For year:: 2015
data_ParsedDate_2015 <- summarize(groupBy(nyc_parking_ParsedDate_</pre>
2015 ,
                                 nyc_parking_ParsedDate_
2015$bin_number),
                          count_in_bin = n
(nyc_parking_ParsedDate_2015$bin_number))
#arranging the records in descending order
head(arrange(data_ParsedDate_2015, desc(data_ParsedDate_2015
$count_in_bin)))
# bin_number count_in_bin
         2
# 1
             3268456
# 2
          1
               3089975
          3
# 3
               2911162
# 4
          4
               2539640
#Observation: Maximum count in bin 2 which is for 4-6(April -
June) of the year
#### So Season Septermber-decmeber has maximum Tickets.
# 6.2 Then, find the three most common violations for each of
these seasons.
# (Hint: A similar approach can be used as mention in the hint
for question 4.)
#-----
_____
#grouping and summarising data to obtain the viloation code count
#Then, find the 3 most common violations for each of these 4
```

```
seasons.
data ParsedDate code2015 <- summarize(groupBy
(nyc_parking_ParsedDate_2015 ,
nyc_parking_ParsedDate_2015$bin_number,nyc_parking_ParsedDate_
2015$violation_code ),
                                      count of code = n
(nyc_parking_ParsedDate_2015$violation_code))
data_ParsedDate_code2015 <- arrange(data_ParsedDate_code2015,
desc(data_ParsedDate_code2015$count_of_code))
# bin 1
head(where(data_ParsedDate_code2015, data_ParsedDate_code2015
\pi = 1,3
# bin_number violation_code count_of_code
# 1
             1
                           38
# 2
             1
                           21
                                      370713
# 3
             1
                           14
                                      271353
     # SO Season-1 (Jan-March) have vialotation code 38, 21, 14
     # bin 2
     head(where(data_ParsedDate_code2015,
data_ParsedDate_code2015$bin_number == 2),3)
     # bin_number violation_code count_of_code
     # 1
                  2
                                21
                                           471586
     # 2
                  2
                                38
                                           346719
     # 3
                  2
                                14
                                           262602
     # So Season-2 (Apr-June) have vialotation code 21, 38, 14
     # bin 3
     head(where(data ParsedDate code2015,
data_ParsedDate_code2015$bin_number == 3),3)
     # bin_number violation_code count_of_code
     # 1
                  3
                                21
                                           412078
                  3
     # 2
                                38
                                           352481
                  3
     # 3
                                14
                                           240742
     # So Season-3 (July-Sept) have vialotation code 21, 38, 14
     # bin 4
     head(where(data_ParsedDate_code2015,
data_ParsedDate_code2015$bin_number == 4),3)
     # bin_number violation_code count_of_code
     # 1
                  4
                                21
                                           376535
                  4
     # 2
                                38
                                           300003
     # 3
                  4
                                14
                                           213772
```

SO Season-4 (Oct-Dec) have vialotation code 14, 21, 38

#-----_____ #7. The fines collected from all the parking violation constitute a revenue source for the NYC police #department. #Let's take an example of estimating that for the 3 most commonly occurring codes. #-----#year-2015 data_violation_count_2015 <- summarize(groupBy</pre> (nyc_parking_ParsedDate_2015, nyc_parking_ParsedDate_2015 \$violation_code), count_violation_code = n(nyc_parking_ParsedDate_2015\$violation_code)) head(arrange(data_violation_count_2015, desc (data violation count 2015\$count violation code))) # violation_code count_violation_code # 1 21 1630912 # 2 38 1418627 # 3 14 988469 # 4 36 839197 # 5 37 795918 # 6 7 719753 #Observation :: for 3 most commonly occurring codes. # Violation code 21 (occurance - 1630912), # Viloation code 38 (occurance - 1418627), # viloation code 14 (occurance - 988469) are the most commonly occuring for year 2015

#Not Let' search the internet

https://wwwl.nyc.gov/site/finance/vehicles/services-violation-codes.page for NYC parking violation code fines.

#You will find a website (on the nyc.gov URL) that lists these fines.

#They're divided into 2 categories,

1) one for the highest-density locations of the city,

```
2) other for the rest of the city.(Manhattan 96th St & below
v/s All other Area
                             #For simplicity, take an
average of the two.
#-----
______
#-----
_____
                             #Reading fine amount dataset
required for question-7 calcaultion.
                             # Assumptions made about the
fine - total 98 violation codes used for analysis
                             # for violation code 4 other
areas fine is zero. Average not used here.
                             # for violation code 6 average
taken on 1st chance and second chance.
                             # violation code 99 not
included as the fine amount would vary
                             # parking_fine_amount_2015 <-</pre>
read.df("s3://data-science-buket1/casestudy/fine_amount.csv",
source = "csv",
inferSchema = "true", header = "true")
                             # As per 3.3
                             # We can infer that
Issuer_Precinct 19 has issued highest parking violation.
                             # Fine is taken from
https://wwwl.nyc.gov/site/finance/vehicles/services-violation-
codes.page
                             # (We take average of the fine
both both Area for simplicty
                          (in USD )
    # Violation Code Violation Count Fine_per_Viloation_code
    Total_fine_Viloation_Code
    # 14 275108
                  115
                     31637420
    # 16 59675 95
                 5669125
    # 21 60215 55
                 3311825
    # 31 76853 115 8838095
    # 37 8500755
                4675385
```

```
# 46 57216 115
                 6579840
    # 47 59686 115 6863890
    # 69 145513
                 65 9458345
                              #Observation:
                              ### Total Fine COllected
                              # 31637420 fine collected with
Vilation code 14 in 2015 and ranks top most Fine collected
                              #For violation code 99 fine
amount varies, so not included
                               nrow(where(nyc_ticket_2015,
nyc ticket 2015$violation code == 99))
                               #joining parking data with
fine amount data obtained from NYC government site.
                               parking_fineamnt_data_2015
<- join(nyc ticket 2015, parking fine amount,
                               nyc_ticket_2015
$violation code == parking fine amount$violation code,
"left outer")
# parking fineamnt data 2015 <- summarize(groupBy</pre>
(parking_fineamnt_data_2015, parking_fineamnt_data_2015
$`violation code`),
# Total_Fines_Collected = sum(parking_fineamnt_data_2017
$fine amount))
#head(arrange(parking_fineamnt_data_2015, desc
(parking fineamnt data 2015$Total Fines Collected)))
nyc_ticket_2016 <- SparkR::read.df</pre>
("/common_folder/nyc_parking/Parking_Violations_Issued_-
_Fiscal_Year_2016.csv", "CSV", header="true", inferSchema =
"true")
    colnames(nyc_ticket_2016) <- gsub(" ", "_", colnames</pre>
(nyc ticket 2016))
    #nyc_ticket_2016 <- nyc_ticket_2016[ , c(1, 3:9, 14:16, 20,</pre>
22, 40)]
```

50 5858350

2799170

38 117167

42 5089455

```
str(nyc_ticket_2016)
     # We can infer that columns are of various data types.
     # Here are all the column names from nyc_ticket_2016
     # Summons Number
                                         Plate ID
Registration_State
                                  Plate_Type
     # Issue_Date
                                         Violation Code
Vehicle_Body_Type
                                  Vehicle_Make
     # Issuing_Agency
                                         Street_Code1
                                  Street_Code3
Street Code2
     # Vehicle_Expiration_Date
                                         Violation_Location
Violation Precinct
                                  Issuer_Precinct
     # Issuer_Code
                                         Issuer_Command
Issuer_Squad
                                  Violation_Time
     # Time_First_Observed
                                         Violation_County
Violation_In_Front_Of_Or_Opposite House_Number
     # Street_Name
                                         Intersecting_Street
Date First Observed
                                 Law Section
     # Sub_Division
                                         Violation_Legal_Code
Days_Parking_In_Effect___
                                From_Hours_In_Effect
     # To_Hours_In_Effect
                                         Vehicle_Color
Unregistered_Vehicle?
                                 Vehicle_Year
     # Meter Number
                                         Feet From Curb
Violation_Post_Code
                                 Violation_Description
     # No_Standing_or_Stopping_Violation Hydrant_Violation
Double_Parking_Violation
                                 Latitude
     # Longitude
                                         Community Board
Community Council
                                  Census Tract
     # BIN
                                         BBL
NTA
     createOrReplaceTempView(nyc_ticket_2016, "SQL_nyc_ticket_
2016")
     # Before executing any hive-sql query from RStudio, you need
to add a jar file in RStudio
     sql("ADD JAR /opt/cloudera/parcels/CDH/lib/hive/lib/hive-
hcatalog-core-1.1.0-cdh5.11.2.jar")
     # Examine the data
     # Find the total number of tickets for each year.
     nyc_tickets_2016 <- SparkR::sql("select count(distinct</pre>
(Summons_Number)) from SQL_nyc_ticket_2016")
    head(nyc_tickets_2016)
     # count(DISTINCT Summons_Number)
                               10626899
     # The number of tickets issued in 2016 are 10626899
     # Find out the number of unique states from where the cars
that got parking tickets came from. (Hint: Use the column
```

'Registration State')

There is a numeric entry in the column which should be corrected. Replace it with the state having maximum entries.

Give the number of unique states for each year again.

nyc_states_2016 <- SparkR::sql("select count(distinct
(Registration_State)) from SQL_nyc_ticket_2016")
 head(nyc_states_2016)</pre>

- # count(DISTINCT Registration_State)
 # 1
- # The number of distinct registration state are 68.

nyc_states_grouped_2016 <- SparkR::sql("select
Registration_State, count(Registration_State) as Count from
SQL_nyc_ticket_2016 group by Registration_State sort by count
(Registration_State) DESC")</pre>

head(arrange(nyc_states_grouped_2016, desc
(nyc_states_grouped_2016\$Count)))

# Registration_S	tate	Count
#1	NY	8260189
#2	NJ	968839
#3	PA	259177
#4	CT	145153
#5	${ t FL}$	138647
#6	MA	99115

We can see that NY is the registration state with maximum violations.

```
nyc_states_numeric_2016 <- SparkR::sql("select
Registration_State from SQL_nyc_ticket_2016 where
Registration_State LIKE '%[^0-9]%'")
   head(nyc states numeric 2016)</pre>
```

head(arrange(nyc_states_grouped_2016, asc
(nyc_states_grouped_2016\$Count)))

#	Registration_State	Count
#1	NT	2
#2	YT	5
#3	MX	11
#4	FO	13
#5	SK	18
#6	MB	32

Some parking tickets don't have the address for violation location on them, which is a cause for concern. Write a query to check the number of such tickets.

The values should not be deleted or imputed here. This is

just a check.

nyc_tickets_null_2016 <- SparkR::sql("select count
(Violation_Location) from SQL_nyc_ticket_2016 where House_Number
IS NULL or Street_Name IS NULL")</pre>

head(nyc_tickets_null_2016)

- # count(Violation_Location)
- # 1 174570
- # We can infer that that there are 174570 tickets which do not have House number or street name.
 - # Aggregation tasks
- # 1. How often does each violation code occur? Display the frequency of the top five violation codes.

ViolationCodeFreq_2016 <- summarize(groupBy(nyc_ticket_2016,
nyc_ticket_2016\$Violation_Code), count = n(nyc_ticket_2016
\$Violation Code))</pre>

head(arrange(ViolationCodeFreq_2016, desc(ViolationCodeFreq_ 2016\$count)),5)

```
# Violation_Code count
#1 21 1531587
#2 36 1253512
#3 38 1143696
#4 14 875614
#5 37 686610
```

- # 2. How often does each 'vehicle body type' get a parking ticket? How about the 'vehicle make'?
 - # (Hint: find the top 5 for both)

BodyTypeFreq_2016 <- summarize(groupBy(nyc_ticket_2016, nyc_ticket_2016\$Vehicle_Body_Type), count = n(nyc_ticket_2016 \$Vehicle Body Type))

head(arrange(BodyTypeFreq_2016, desc(BodyTypeFreq_2016
\$count)),5)

```
# Vehicle_Body_Type count
#1 SUBN 3466037
#2 4DSD 2992107
#3 VAN 1518303
#4 DELV 755282
#5 SDN 424043
```

VehicleMakeFreq_2016 <- summarize(groupBy(nyc_ticket_2016,
nyc_ticket_2016\$Vehicle_Make), count = n(nyc_ticket_2016
\$Vehicle_Make))</pre>

head(arrange(VehicleMakeFreq_2016, desc(VehicleMakeFreq_2016
\$count)),5)

```
# Vehicle_Make count
#1 FORD 1324774
#2 TOYOT 1154790
#3 HONDA 1014074
#4 NISSA 834833
#5 CHEVR 759663
```

3. A precinct is a police station that has a certain zone of the city under its command.

#

3.1 Find the (5 highest) frequency of tickets for each of the following:

#

3.2 'Violation Precinct' (this is the precinct of the zone where the violation occurred). Using this, can you make any insights

for parking violations in any specific areas of the city?

VehiclePrecintFreq_2016 <- summarize(groupBy(nyc_ticket_
2016, nyc_ticket_2016\$Violation_Precinct), count = n(nyc_ticket_
2016\$Violation_Precinct))</pre>

head(arrange(VehiclePrecintFreq_2016, desc
(VehiclePrecintFreq_2016\$count)),5)

#	Violation_Precinct	count
#1	0	1868655
#2	19	554465
#3	18	331704
#4	14	324467
#5	1	303850

There are many entries which have Violation Precinct as 0 which are incorrect. Post which 19 has highest number of parking violations.

For using SQL, you need to create a temporary view

data_rated_2016_5 <- SparkR::sql("SELECT Violation_County,
count(Violation_County) from SQL_nyc_ticket_2016 where
Violation_Precinct = 19 group by Violation_County")</pre>

head(arrange(data_rated_2016_5, desc(count(data_rated_2016_5
\$Violation_County))))

#	Violation_County	<pre>count(Violation_County)</pre>
#1	NY	550758
#2	R	19
#3	Q	17
#4	K	11
#5	BX	10
#6	<na></na>	0

We can infer that maximum parking violations are in the area of NY county.

data_rated_2016_4 <- SparkR::sql("SELECT Street_Code1, count
(Street_Code1) from SQL_nyc_ticket_2016 where Violation_Precinct
= 19 group by Street_Code1")</pre>

head(arrange(data_rated_2016_4, desc(count(data_rated_2016_4
\$Street_Code1))))

```
# Street Code1 count(Street Code1)
#1
          10210
                              79238
#2
         25390
                             62236
#
        24890
                            53738
#4
         10010
                             42117
#5
         10110
                              34436
          45590
                              20997
#6
```

We can inder that Street Code 10210, 25390, 24890 and 10010 has high number of parking violations.

3.3 'Issuer Precinct' (this is the precinct that issued
the ticket)

Here you would have noticed that the dataframe has 'Violating Precinct' or 'Issuing Precinct' as '0'.

These are the erroneous entries. Hence, provide the record for five correct precincts.

(Hint: print top six entries after sorting)

data_rated_2016_6 <- SparkR::sql("SELECT Issuer_Precinct,
count(Issuer_Precinct) from SQL_nyc_ticket_2016 where
Issuer_Precinct != 0 group by Issuer_Precinct")</pre>

head(arrange(data_rated_2016_6, desc(count(data_rated_2016_6
\$Issuer_Precinct))))

#	Issuer_Precinct	<pre>count(Issuer_Precinct)</pre>
#1	19	540569
#2	18	323132
#3	14	315311
#4	1	295013
#5	114	286924
#6	13	282635

We can infer that Issuer_Precinct 19 has issued highest parking violation.

4. Find the violation code frequency across three precincts which have issued the most number of tickets - do these precinct zones

have an exceptionally high frequency of certain violation codes? Are these codes common across precincts?

Hint: You can analyse the three precincts together using the 'union all' attribute in SOL view. In the SOL view,

use the 'where' attribute to filter among three precincts

and combine them using 'union all'.

data_rated_2016_7 <- SparkR::sql("</pre>

SELECT Violation_Code, count(Violation_Code) as counting from SQL_nyc_ticket_2016 where

Issuer_Precinct = 19 group by Violation_Code UNION ALL

SELECT Violation_Code, count(Violation_Code) as counting from SQL_nyc_ticket_2016 where Issuer_Precinct = 18 group by Violation_Code UNION ALL

SELECT Violation_Code,

count(Violation_Code) as counting from SQL_nyc_ticket_2016 where Issuer_Precinct = 14 group by Violation_Code")

head(data_rated_2016_7)

#	Violation_Code	counting
#1	31	2533
#2	85	843
#3	65	1
#4	53	1367
#5	78	810
#6	81	25

data_rated_2016_8 <- SparkR::sql("SELECT Violation_Code,
count(Violation_Code) from SQL_nyc_ticket_2016 where
Issuer_Precinct = 19 group by Violation_Code")</pre>

head(arrange(data_rated_2016_8, desc(count(data_rated_2016_8
\$Violation_Code))))

#	Violation_Code	<pre>count(Violation_Code)</pre>
#1	38	77183
#2	37	75641
#3	46	73016
#4	14	61742
#5	21	58719
#6	16	52354

data_rated_2016_9 <- SparkR::sql("SELECT Violation_Code,
count(Violation_Code) from SQL_nyc_ticket_2016 where
Issuer_Precinct = 18 group by Violation_Code")</pre>

head(arrange(data_rated_2016_9, desc(count(data_rated_2016_9
\$Violation_Code))))

#	Violation_Code	<pre>count(Violation_Code)</pre>
#1	14	99857
#2	69	47881
#3	47	24009
#4	31	22809
#5	42	17678
#6	46	14674

data_rated_2016_10 <- SparkR::sql("SELECT Violation_Code,

```
Issuer Precinct = 14 group by Violation Code")
    head(arrange(data_rated_2016_10, desc(count(data_rated_2016_
10$Violation_Code))))
    # Violation_Code count(Violation_Code)
                69
                               84895
    # 2
                14
                               81896
    # 3
                31
                               43928
    # 4
                42
                               29868
    # 5
                47
                               28814
    # 6
                46
                               10853
    # We can infer that violation code 14 and 69 seem to be the
most common violations in the 3 precincts.
#-----
_____
    #5. You'd want to find out the properties of parking
violations across different times of the day:
    #The Violation Time field is specified in a strange format.
Find a way to make this into a time
    #attribute that you can use to divide into groups.
#-----
_____
    nyc_ticket_2016 <- nyc_ticket_2016[ , c(1, 3:9, 14:16, 20,</pre>
22, 40)]
    #year-2016
    nyc_ticket_2016 <- withColumn(nyc_ticket_2016, "hours",</pre>
substr(nyc_ticket_2016$Violation_Time, 1, 2))
    nyc_ticket_2016 <- withColumn(nyc_ticket_2016, "Period",</pre>
substr(nyc_ticket_2016$Violation_Time, 6, 6))
    nyc_ticket_2016 <- withColumn(nyc_ticket_2016, "hours_bin",
ifelse(nyc_ticket_2016$Period == "P",
nyc ticket 2016$hours + 12,
nyc_ticket_2016$hours))
#-----
   ------
    #Dealing with missing values if
```

count(Violation_Code) from SQL_nyc_ticket_2016 where

```
#-----
______
    #check of data and extract only valid data
    str(nyc_ticket_2016)
    nrow(nyc_ticket_2016)
    #10626899
    nrow(where(nyc_ticket_2016, nyc_ticket_2016$hours_bin <=</pre>
24))
    #10622402 -- valid data
    nrow(where(nyc_ticket_2016, nyc_ticket_2016$hours_bin >24))
           -- Errouneous data
    nrow(where(nyc_ticket_2016, isNull(nyc_ticket_2016$hours)))
    #4280
    \#((216+4280)/11809233)*100 = 0.016% of data which is very
low and can be omitted for further analysis
    nyc_parking_violation_time_2016 <- subset(nyc_ticket_2016,</pre>
nyc_ticket_2016$hours_bin <= 24)</pre>
    #Creating view for running SQL queries
    createOrReplaceTempView(nyc_parking_violation_time_2016,
"data_violationtime_view_2016")
#-----
_____
    # 5.3 Divide 24 hours into 6 equal discrete bins 2016 of
time. The intervals you choose are at your discretion.
    #For each of these groups, find the 3 most commonly
occurring violations.
    # Hint: Use the CASE-WHEN in SQL view to segregate into
bins_2016. For finding the most commonly occurring violations,
    # a similar approach can be used as mention in the hint for
question 4.
#-----
_____
    # Binning into different hours and attaching data
    #year-2016
    bins_2016 <- SparkR::sql("SELECT Summons_Number,
Registration_State, Plate_Type, Issue_Date, Violation_Code,
Vehicle_Body_Type,
                        Vehicle_Make, Issuing_Agency,
Violation_Location, Violation_Precinct, Issuer_Precinct,
Violation_Time,
                        hours, Period, hours_bin, \
```

```
CASE WHEN (hours_bin >= 0 and
hours bin <= 4 ) THEN 1\
                          WHEN (hours bin > 4 and hours bin
<= 8 ) THEN 2\
                          WHEN (hours bin > 8 and hours bin
<= 12) THEN 3\
                          WHEN (hours_bin > 12 and hours_bin
<= 16) THEN 4\
                          WHEN (hours_bin > 16 and hours_bin
<= 20) THEN 5\
                          ELSE 6 END as bin_number FROM
data violationtime view 2016")
    # Attach the bin number to the original DataFrame
    nyc_parking_violation_time_2016 <- withColumn(bins_2016,</pre>
"bin_number", bins_2016$bin_number)
    #cross verifying structure and data
    head(nyc_parking_violation_time_2016)
    str(nyc_parking_violation_time_2016)
#-----
    #Summary and obtaining to most commonly occuring violation
codes
#-----
_____
    #year-2016
    nyc_data_binning_2016 <- summarize(groupBy</pre>
(nyc_parking_violation_time_2016, nyc_parking_violation_time_2016
$bin number,
nyc_parking_violation_time_2016$Violation_Code),
                                   count_violation_code = n
(nyc_parking_violation_time_2016$Violation_Code))
    nyc_data_binning_2016 <- arrange(nyc_data_binning_2016, desc</pre>
(nyc_data_binning_2016$count_violation_code))
    # bin 1
    head(where(nyc_data_binning_2016, nyc_data_binning_2016
\phi = 1, 3)
    # bin_number Violation_Code count_violation_code
    #1
              1
                           38
                                          463948
    #2
              1
                           36
                                          406670
    #3
              1
                           37
                                          377856
```

bin 2

```
head(where(nyc_data_binning_2016, nyc_data_binning_2016
\pi = 2, 3)
    # bin_number Violation_Code count_violation_code
    #1
                            21
               2
    #2
                            14
                                            280889
               2
                            36
    #3
                                            206156
    # bin 3
    head(where(nyc_data_binning_2016, nyc_data_binning_2016
$bin_number == 3), 3)
    # bin_number Violation_Code count_violation_code
    #1
                            21
               3
                                            955706
    #2
               3
                            36
                                            640685
    #3
               3
                            38
                                            483001
    # bin 4
    head(where(nyc data binning 2016, nyc data binning 2016
\pi = 4, 3)
    # bin_number Violation_Code count_violation_code
    #1
                            46
               4
                            40
                                                 3
    #2
                            99
                                                 1
    #3
    # bin 5
    head(where(nyc_data_binning_2016, nyc_data_binning_2016
\pi = 5, 3)
    # bin_number Violation_Code count_violation_code
    #1
               5
                            21
                                                 3
               5
                                                 2
                            19
    #2
                            70
                                                 1
    #3
    # bin 6
    head(where(nyc_data_binning_2016, nyc_data_binning_2016
\pi = 6, 3)
    # bin_number Violation_Code count_violation_code
    #1
                            46
               6
    #2
               6
                            20
                                                 2
    #3
               6
                            98
                                                 2
#-----
    #Now, try another direction. For the 3 most commonly
occurring violation codes, find the most common times of day
    #(in terms of the bins_2016 from the previous part)
```

#Year:: 2016

#Top 3 Violation codes for year-2016 are 21,36,38

data_code_binning_2016 <- summarize(groupBy(subset
(nyc_parking_violation_time_2016, nyc_parking_violation_time_2016
\$Violation_Code %in% c(21,36,38)),</pre>

nyc_parking_violation_time_2016\$Violation_Code,

nyc_parking_violation_time_2016\$bin_number),

count in bin = n

(nyc_parking_violation_time_2016\$bin_number))

head(arrange(data_code_binning_2016, desc(data_code_binning_
2016\$count_in_bin)))

#	Violation_Code	bin_number	count_in_bin
#1	21	3	955706
#2	36	3	640685
#3	21	2	502136
#4	38	3	483001
#5	38	1	463948
#6	36	1	406670

#Observation for Year :: 2016

It looks like violation codes 21, 36 and 38 mostly happens in bin 3,

which means these codes are mostly issed between morning 08:00 AM to 12:00PM

#6. Let's try and find some seasonality in this data
#First, divide the year into some number of seasons, and
find frequencies of tickets for each season.

#Then, find the 3 most common violations for each of these season

#-----

YEAR :: 2016

#Extract month from issued date values

parsed_2016_Month <- withColumn(nyc_ticket_2016,</pre>

"Date_Parsed", to_date(nyc_ticket_2016\$Issue_Date, "MM/dd/yyyy"))
 parsed_2016_Month <- withColumn(parsed_2016_Month, "Month",
month(parsed_2016_Month\$'Date_Parsed'))

^{# 6.1} First, divide the year into some number of seasons, and find frequencies of tickets for each season.

^{# (}Hint: Use Issue Date to segregate into seasons)

```
#checking for discripencies of data
    nrow(where(parsed 2016 Month, parsed 2016 Month$Month <= 12</pre>
& parsed_2016_Month$Month >= 1))
    #10626899-- This valid data
    nrow(where(parsed_2016_Month, parsed_2016_Month$Month <= 0 |</pre>
parsed_2016_Month$Month > 12))
    #0 No Issue with this this data 0
    nrow(where(parsed_2016_Month, isNull(parsed_2016_Month)
$Month)))
    #0 #No Issue with this this data 0
    #So all the data records are valid parsed_2016_Month can be
used as
    #Creating view for running SQL gueries
    createOrReplaceTempView(parsed_2016_Month, "ParsedDate_View_
2016")
    data_bins_2016 <- SparkR::sql("SELECT Month,</pre>
Violation_Description, Violation_Code, \
                              CASE WHEN (Month >=1 and
Month <= 3) THEN 1∖
                              WHEN (Month > 3 and Month <=
6) THEN 2\
                              WHEN (Month > 6 and Month <=
9) THEN 3\
                              WHEN (Month > 9 and Month <=
12) THEN 4\
                              ELSE 0 END as bin_number FROM
ParsedDate View 2016")
    # Attach the bin number to the original DataFrame
    nyc_parking_ParsedDate_2016 <- withColumn(data_bins_2016,</pre>
"bin_number", data_bins_2016$bin_number)
#-----
  -----
    #grouping and summarising Viloation in bins_2016
#-----
_____
    # For year:: 2016
    data_ParsedDate_2016 <- summarize(groupBy</pre>
(nyc_parking_ParsedDate_2016 ,
nyc_parking_ParsedDate_2016$bin_number),
                                 count_in_bin = n
```

```
(nyc_parking_ParsedDate_2016$bin_number))
    #arranging the records in descending order
    head(arrange(data_ParsedDate_2016, desc(data_ParsedDate_2016
$count_in_bin)))
    # bin_number count_in_bin
    #1 4 2801028
             3
                    2728663
    #2
              1
    #3
                    2671331
    #4
                    2425877
    #Observation: Maximum count in bin 4 which is for 10-12(Oct
-JDec) of the year
    #### So Season Septermber-decmeber has maximum Tickets.
    # 6.2 Then, find the three most common violations for each
of these seasons.
    # (Hint: A similar approach can be used as mention in the
hint for question 4.)
#-----
    .____
    #grouping and summarising data to obtain the viloation code
    #Then, find the 3 most common violations for each of these 4
seasons.
_____
    data_ParsedDate_code2016 <- summarize(groupBy</pre>
(nyc_parking_ParsedDate_2016 ,
nyc_parking_ParsedDate_2016$bin_number,nyc_parking_ParsedDate_
2016$violation_code ),
                                      count_of_code = n
(nyc parking ParsedDate 2016$violation code))
    data_ParsedDate_code2016 <- arrange
(data_ParsedDate_code2016, desc(data_ParsedDate_code2016
$count_of_code))
    # bin 1
    head(where(data_ParsedDate_code2016,
data_ParsedDate_code2016$bin_number == 1),3)
    # bin_number violation_code count_of_code
    #1
              1
                           21
    #2
              1
                           36
                                   341787
```

```
38
                                  308999
    #3
              1
    # SO Season-1 (Jan-March) have vialotation code 21, 36, 38
    head(where(data_ParsedDate_code2016,
data_ParsedDate_code2016$bin_number == 2),3)
       bin_number violation_code count_of_code
                                  348473
    #1
              2
                         21
              2
                         36
    #2
                                  294015
              2
                                  254909
    #3
                         38
    # So Season-2 (Apr-June) have vialotation code 21, 36, 38,
    # bin 3
    head(where(data_ParsedDate_code2016,
data_ParsedDate_code2016$bin_number == 3),3)
        bin number violation code count of code
    #1
                         21
                                  403720
    #2
              3
                         38
                                  305360
              3
                                  234943
    #3
                         14
    # So Season-3 (July-Sept) have vialotation code 21, 38, 14
    # bin 4
    head(where(data_ParsedDate_code2016,
data_ParsedDate_code2016$bin_number == 4),3)
        bin number violation code count of code
    #1
                         36
                                  433966
              4
              4
    #2
                         21
                                  429750
              4
                         38
                                  274428
    #3
    # SO Season-4 (Oct-Dec) have vialotation code 36,21,38
#-----
______
    #7. The fines collected from all the parking violation
constitute a revenue source for the NYC police
    #department.
    #Let's take an example of estimating that for the 3 most
commonly occurring codes.
#-----
_____
_____
    #year-2016
```

data_violation_count_2016 <- summarize(groupBy</pre>

(nyc_parking_ParsedDate_2016, nyc_parking_ParsedDate_2016
\$violation code),

count_violation_code

= n(nyc_parking_ParsedDate_2016\$violation_code))

head(arrange(data_violation_count_2016, desc
(data_violation_count_2016\$count_violation_code)))

#	violation_code	count_violation_code
#1	21	1531587
#2	36	1253512
#3	38	1143696
#4	14	875614
#5	37	686610
#6	20	611013

#Observation :: for 3 most commonly occurring codes.

- # Violation code 21 (occurance 1531587),
- # Viloation code 36 (occurance 1253512),
- # viloation code 38 (occurance 1143696) are the most commonly occuring for year 2016

#Not Let' search the internet

https://wwwl.nyc.gov/site/finance/vehicles/services-violation-codes.page for NYC parking violation code fines.

#You will find a website (on the nyc.gov URL) that lists these fines.

#They're divided into 2 categories,

- # 1) one for the highest-density locations of the city,
- # 2) other for the rest of the city.(Manhattan 96th St & below v/s All other Area

#For simplicity, take an average of the two.

₩-	 															
11																
ш																
11																

#Reading fine amount dataset required for question-7 calcaultion.

Assumptions made about the fine - total 98 violation codes used for analysis

for violation code 4 other areas fine is zero. Average not used here.

for violation code 6 average taken on 1st chance and second chance.

violation code 99 not included as the fine amount would

```
_____
    # parking_fine_amount_2016 <- read.df("s3://data-science-</pre>
buket1/casestudy/fine_amount.csv", source = "csv",
                                   inferSchema = "true", header
= "true")
    # As per 3.3
    # We can infer that Issuer_Precinct 19 has issued highest
parking violation.
    # Fine is taken from
https://wwwl.nyc.gov/site/finance/vehicles/services-violation-
codes.page
    # (We take average of the fine both both Area for simplicty
(in USD )
    #Violation_Code Fine_per_Viloation_code
     Total_fine_Viloation_Code
    #38
                               50
     3859150
    #37
                               55
     4160255
    #46
                               115
     10084350
                               115
    #14
     18583885
                               55
    #21
     9528750
                               95
    #16
     4973630
    #69
                               62
     8046174
    #47
                               115
     4009130
    #31
                               115
     13289170
    #42
                               55
     972290
    #Observation:
    ### Total Fine COllected
     #18583885 fine collected with Violation_code 14 in 2016 and
ranks top most Fine collected
```

```
nyc ticket 2017 <- SparkR::read.df
("/common_folder/nyc_parking/Parking_Violations_Issued_-
_Fiscal_Year_2017.csv", "CSV", header="true", inferSchema =
"true")
colnames(nyc_ticket_2017) <- gsub(" ", "_", colnames(nyc_ticket_</pre>
2017))
str(nyc_ticket_2017)
# We can infer that columns are of various data types.
# Remove unwanted columns
#nyc_ticket_2017 <- nyc_ticket_2017[ , c(1, 3:9, 14:16, 20, 22,</pre>
40)]
# For using SQL, you need to create a temporary view
createOrReplaceTempView(nyc ticket 2017, "SQL nyc ticket 2017")
# Before executing any hive-sql query from RStudio, you need to
add a jar file in RStudio
sql("ADD JAR /opt/cloudera/parcels/CDH/lib/hive/lib/hive-
hcatalog-core-1.1.0-cdh5.11.2.jar")
# Examine the data
# Find the total number of tickets for each year.
nyc_tickets_2017 <- SparkR::sql("select count(distinct</pre>
(Summons_Number)) from SQL_nyc_ticket_2017")
head(nyc_tickets_2017)
# count(DISTINCT Summons_Number)
# 1
                          10803028
# The number of tickets issued in 2017 are 10803028
# Find out the number of unique states from where the cars that
got parking tickets came from. (Hint: Use the column
'Registration State')
# There is a numeric entry in the column which should be
corrected. Replace it with the state having maximum entries.
# Give the number of unique states for each year again.
nyc_states_2017 <- SparkR::sql("select count(distinct</pre>
(Registration_State)) from SQL_nyc_ticket_2017")
head(nyc_states_2017)
# count(DISTINCT Registration_State)
# 1
                                   67
# The number of distinct registration state are 67.
```

```
nyc states grouped 2017 <- SparkR::sql("select
Registration_State, count(Registration_State) as Count from
SQL_nyc_ticket_2017 group by Registration_State sort by count
(Registration State) DESC")
head(arrange(nyc_states_grouped_2017, desc(nyc_states_grouped_
2017$Count)))
# Registration_State
                       Count
# 1
                    NY 8481061
# 2
                    NJ
                       925965
# 3
                    PA
                       285419
# 4
                        144556
                    FL
# 5
                    CT
                        141088
# 6
                        85547
                    MΑ
# We can see that NY is the registration state with maximum
violations.
nyc_states_numeric_2017 <- SparkR::sql("select Registration_State</pre>
from SQL_nyc_ticket_2017 where Registration_State LIKE '%[^0-
9]%'")
head(nyc_states_numeric_2017)
head(arrange(nyc_states_grouped_2017, asc(nyc_states_grouped_2017
$Count)))
# We dont see any Registration State entry with numeric value.
# Some parking tickets don't have the address for violation
location on them, which is a cause for concern. Write a query to
check the number of such tickets.
# The values should not be deleted or imputed here. This is just
a check.
nyc_tickets_null_2017 <- SparkR::sql("select count</pre>
(Violation Location) from SQL nyc ticket 2017 where House Number
IS NULL or Street_Name IS NULL")
head(nyc_tickets_null_2017)
# count(Violation_Location)
# 1
                       225065
# We can infer that that there are 225065 tickets which do not
have House number or street name.
```

```
# Aggregation tasks
```

ш

1. How often does each violation code occur? Display the frequency of the top five violation codes.

ViolationCodeFreq_2017 <- summarize(groupBy(nyc_ticket_2017,</pre>

```
nyc_ticket_2017$Violation_Code), count = n(nyc_ticket_2017
$Violation Code))
```

head(arrange(ViolationCodeFreq_2017, desc(ViolationCodeFreq_ 2017\$count)),5)

```
# Violation_Code count
#1 21 1528588
#2 36 1400614
#3 38 1062304
#4 14 893498
#5 20 618593
```

2. How often does each 'vehicle body type' get a parking ticket? How about the 'vehicle make'?

(Hint: find the top 5 for both)

BodyTypeFreq_2017 <- summarize(groupBy(nyc_ticket_2017,
nyc_ticket_2017\$Vehicle_Body_Type), count = n(nyc_ticket_2017
\$Vehicle_Body_Type))</pre>

head(arrange(BodyTypeFreq_2017, desc(BodyTypeFreq_2017
\$count)),5)

```
# Vehicle_Body_Type count
#1 SUBN 3719802
#2 4DSD 3082020
#3 VAN 1411970
#4 DELV 687330
#5 SDN 438191
```

VehicleMakeFreq_2017 <- summarize(groupBy(nyc_ticket_2017, nyc_ticket_2017\$Vehicle_Make), count = n(nyc_ticket_2017 \$Vehicle_Make))

head(arrange(VehicleMakeFreq_2017, desc(VehicleMakeFreq_2017
\$count)),5)

```
# Vehicle_Make count
#1 FORD 1280958
#2 TOYOT 1211451
#3 HONDA 1079238
#4 NISSA 918590
#5 CHEVR 714655
```

3. A precinct is a police station that has a certain zone of the city under its command.

3.1 Find the (5 highest) frequency of tickets for each of the following:

3.2 'Violation Precinct' (this is the precinct of the zone where the violation occurred). Using this, can you make any insights

for parking violations in any specific areas of the city?

VehiclePrecintFreq_2017 <- summarize(groupBy(nyc_ticket_2017, nyc_ticket_2017\$Violation_Precinct), count = n(nyc_ticket_2017 \$Violation_Precinct))

head(arrange(VehiclePrecintFreq_2017, desc(VehiclePrecintFreq_ 2017\$count)),5)

```
# Violation_Precinct count
#1 0 2072400
#2 19 535671
#3 14 352450
#4 1 331810
#5 18 306920
```

There are many entries which have Violation Precinct as 0 which are incorrect. Post which 19 has highest number of parking violations.

data_rated_2017_5 <- SparkR::sql("SELECT Violation_County,
count(Violation_County) from SQL_nyc_ticket_2017 where
Violation_Precinct = 19 group by Violation_County sort by
Violation_County DESC")</pre>

head(data_rated_2017_5)

```
# Violation_County count(Violation_County)
# 1
                   K
                                           16
# 2
                                            6
                   Q
# 3
                                           16
                  BX
# 4
                <NA>
                                            0
# 5
                  R
                                           14
                                       532980
                  NY
```

We can infer that maximum parking violations are in the area of K county.

data_rated_2017_4 <- SparkR::sql("SELECT Street_Code1, count
(Street_Code1) from SQL_nyc_ticket_2017 where Violation_Precinct
= 19 group by Street_Code1")</pre>

head(arrange(data_rated_2017_4, desc(count(data_rated_2017_4
\$Street_Code1))))

#	Street_Code1	<pre>count(Street_Code1)</pre>
#1	10210	73909
#2	25390	60768
#3	24890	48092
#4	10010	45845
#5	10110	35885
#6	45590	22694

We can inder that Street Code 10210, 25390, 24890 and 10010 has high number of parking violations.

- # 3.3 'Issuer Precinct' (this is the precinct that issued the ticket)
- # Here you would have noticed that the dataframe has 'Violating Precinct' or 'Issuing Precinct' as '0'.
- # These are the erroneous entries. Hence, provide the record for five correct precincts.
 - # (Hint: print top six entries after sorting)

data_rated_2017_6 <- SparkR::sql("SELECT Issuer_Precinct, count
(Issuer_Precinct) from SQL_nyc_ticket_2017 where Issuer_Precinct
!= 0 group by Issuer Precinct")</pre>

head(arrange(data_rated_2017_6, desc(count(data_rated_2017_6
\$Issuer_Precinct))))

#	Issuer_Precinct	count(Issuer_Precinct)
#1	19	521513
#2	14	344977
#3	1	321170
#4	18	296553
#5	114	289950
#6	13	240833

- # We can infer that Issuer_Precinct 19 has issued highest parking violation.
- # 4. Find the violation code frequency across three precincts which have issued the most number of tickets do these precinct zones
- # have an exceptionally high frequency of certain violation codes? Are these codes common across precincts?
- # Hint: You can analyse the three precincts together using the 'union all' attribute in SQL view. In the SQL view,
- # use the 'where' attribute to filter among three precincts and combine them using 'union all'.

data_rated_2017_8<- SparkR::sql("SELECT Violation_Code, count
(Violation_Code) as counting from SQL_nyc_ticket_2017 where
Issuer_Precinct = 19 group by Violation_Code")</pre>

head(arrange(data_rated_2017_8, desc(sum(data_rated_2017_8
\$Violation_Code))))

#	Violation_Code	counting
#1	46	86390
#2	38	72344
#3	37	72437
#4	21	54700
#5	71	15107
#6	40	21513

```
data rated 2017 9 <- SparkR::sql("SELECT Violation Code, count
(Violation_Code) as counting from SQL_nyc_ticket_2017 where
Issuer_Precinct = 14 group by Violation_Code")
 head(arrange(data_rated_2017_9, desc(sum(data_rated_2017_9)
$Violation_Code))))
  # Violation_Code counting
  #1
               69 58026
               47
  #2
                     30540
              31 39857
14 73837
84 11111
42 20663
  #3
  #4
  #5
  #6
  data rated 2017 10 <- SparkR::sql("SELECT Violation Code, count
(Violation_Code) as counting from SQL_nyc_ticket_2017 where
Issuer_Precinct = 1 group by Violation_Code")
  head(arrange(data_rated_2017_10, desc(sum(data_rated_2017_10
$Violation_Code))))
  # Violation_Code counting
  #1
               46
                     22534
               14
  #2
                     73522

    14
    73522

    69
    11165

  #3
              38 16989
16 38937
20 27841
  #4
  #5
  #6
  #
______
#5. You'd want to find out the properties of parking violations
across different times of the day:
#The Violation Time field is specified in a strange format. Find
a way to make this into a time
#attribute that you can use to divide into groups.
#-----
______
#year-2017
nyc_ticket_2017 <- withColumn(nyc_ticket_2017, "hours",</pre>
substr(nyc_ticket_2017$Violation_Time, 1, 2))
```

nyc_ticket_2017 <- withColumn(nyc_ticket_2017, "Period",</pre>

substr(nyc_ticket_2017\$Violation_Time, 6, 6))

```
nyc_ticket_2017 <- withColumn(nyc_ticket_2017, "hours_bin",</pre>
ifelse(nyc ticket 2017$Period == "P",
nyc_ticket_2017$hours + 12,
nyc_ticket_2017$hours))
#-----
______
#Dealing with missing values if
#-----
_____
#check of data and extract only valid data
str(nyc ticket 2017)
nrow(nyc_ticket_2017)
#10803028
nrow(where(nyc_ticket_2017, nyc_ticket_2017$hours_bin <= 24))</pre>
#10802865 -- valid data
nrow(where(nyc_ticket_2017, nyc_ticket_2017$hours_bin >24))
     --|Errouneous data
nrow(where(nyc_ticket_2017, isNull(nyc_ticket_2017$hours)))
\#((99+63)/10803028)*100 = 0.001499666% of data which is very low
and can be omitted for further analysis
nyc_parking_violation_time_2017 <- subset(nyc_ticket_2017,</pre>
nyc_ticket_2017$hours_bin <= 24)</pre>
#Creating view for running SQL queries
createOrReplaceTempView(nyc_parking_violation_time_2017,
"data violationtime view 2017")
#-----
______
# 5.3 Divide 24 hours into 6 equal discrete bins of time. The
intervals you choose are at your discretion.
#For each of these groups, find the 3 most commonly occurring
violations.
# Hint: Use the CASE-WHEN in SQL view to segregate into bins. For
finding the most commonly occurring violations,
# a similar approach can be used as mention in the hint for
question 4.
#------
______
```

```
# Binning into different hours and attaching data
#year-2017
bins_2017 <- SparkR::sql("SELECT Summons_Number,
Registration_State, Plate_Type, Issue_Date, Violation_Code,
Vehicle_Body_Type,
                 Vehicle_Make, Issuing_Agency,
Violation_Location, Violation_Precinct, Issuer_Precinct,
Violation Time,
                 hours, Period, hours_bin, \
                 CASE WHEN (hours bin >= 0 and hours bin <=
4 ) THEN 1\
                 WHEN (hours_bin > 4 and hours_bin <= 8 )</pre>
THEN 2\
                 WHEN (hours_bin > 8 and hours_bin <= 12)</pre>
THEN 3\
                 WHEN (hours bin > 12 and hours bin <= 16)
THEN 4\
                 WHEN (hours_bin > 16 and hours_bin <= 20)</pre>
THEN 5
                 ELSE 6 END as bin_number FROM
data_violationtime_view_2017")
# Attach the bin number to the original DataFrame
nyc_parking_violation_time_2017 <- withColumn(bins_2017,
"bin_number", bins_2017$bin_number)
#cross verifying structure and data
head(nyc_parking_violation_time_2017)
str(nyc_parking_violation_time_2017)
#------
_____
#Summary and obtaining to most commonly occuring violation codes
#-----
______
#year-2017
nyc_data_binning_2017 <- summarize(groupBy</pre>
(nyc_parking_violation_time_2017, nyc_parking_violation_time_2017
$bin_number,
nyc_parking_violation_time_2017$Violation_Code ),
                              count_violation_code = n
(nyc_parking_violation_time_2017$Violation_Code))
nyc_data_binning_2017 <- arrange(nyc_data_binning_2017, desc
(nyc_data_binning_2017$count_violation_code))
# bin 1
head(where(nyc_data_binning_2017, nyc_data_binning_2017
```

```
$bin_number == 1), 3)
# bin number Violation Code count violation code
#1
            1
                          38
                                            454135
#2
            1
                          36
                                            394403
            1
#3
                          37
                                            339854
# bin 2
head(where(nyc_data_binning_2017, nyc_data_binning_2017
\pi = 2, 3)
# bin_number Violation Code count_violation_code
#1
                          21
                                            498762
#2
            2
                          14
                                            286449
#3
            2
                          20
                                            183214
# bin 3
head(where(nyc data binning 2017, nyc data binning 2017
$bin_number == 3), 3)
# bin_number Violation Code count_violation_code
#1
            3
                          21
                                            950249
            3
#2
                          36
                                            826311
            3
                          38
                                            431596
#3
# bin 4
head(where(nyc_data_binning_2017, nyc_data_binning_2017
\sin number == 4, 3)
# bin_number Violation Code count_violation_code
#1
            4
                          46
                                                 4
            4
                                                 4
#2
                          21
#3
            4
                          40
                                                 3
# bin 5
head(where(nyc_data_binning_2017, nyc_data_binning_2017
\pi = 5, 3)
# bin_number Violation Code count_violation_code
#1
            5
                          78
                                                 2
#2
            5
                          98
            5
                          40
                                                 1
#3
# bin 6
head(where(nyc_data_binning_2017, nyc_data_binning_2017
\pi = 6, 3)
# bin_number Violation Code count_violation_code
#1
            6
                          14
                                                 1
                          78
                                                 1
#2
            6
                                                 1
#3
            6
                          40
```

```
______
#Now, try another direction. For the 3 most commonly occurring
violation codes, find the most common times of day
#(in terms of the bins from the previous part)
#-----
_____
#Year:: 2017
#Top 3 Violation codes for year-2017 are 21,36,28
data_code_binning_2017 <- summarize(groupBy(subset
(nyc_parking_violation_time_2017, nyc_parking_violation_time_2017
$Violation_Code %in% c(21,36,38)),
nyc_parking_violation_time_2017$Violation_Code,
nyc_parking_violation_time_2017$bin_number ),
                            count in bin = n
(nyc_parking_violation_time_2017$bin_number))
head(arrange(data_code_binning_2017, desc(data_code_binning_2017
$count_in_bin)))
# Violation Code bin_number count_in_bin
           21
#1
                    3
                          826311
#2
           36
                    2
1
                          498762
454135
#3
           21
           38
#4
                    3
#5
           38
                          431596
#6
           36
                          394403
#Observation for Year :: 2017
# It looks like violation codes 21 and 36 mostly happens in bin
      which means these codes are mostly issed between
morning 08:00 AM to 12:00PM
# violation code 38 happens largely in bin 4 which is from
12:00PM to 04:00PM
#-----
_____
#6. Let's try and find some seasonality in this data
#First, divide the year into some number of seasons, and find
frequencies of tickets for each season.
#Then, find the 3 most common violations for each of these season
#-----
```

6.1 First, divide the year into some number of seasons, and

```
find frequencies of tickets for each season.
# (Hint: Use Issue Date to segregate into seasons)
# YEAR :: 2017
#Extract month from issued date values
parsed_2017_Month <- withColumn(nyc_ticket_2017, "Date_Parsed",</pre>
to_date(nyc_ticket_2017$Issue_Date, "MM/dd/yyyy"))
parsed_2017_Month <- withColumn(parsed_2017_Month, "Month", month
(parsed_2017_Month$Date_Parsed))
#checking for discripencies of data
nrow(where(parsed_2017_Month, parsed_2017_Month$Month <= 12 &</pre>
parsed_2017_Month$Month >= 1))
#10803028-- This valid data
nrow(where(parsed_2017_Month, parsed_2017_Month$Month <= 0 |</pre>
parsed_2017_Month$Month > 12))
#0 No Issue with this this data 0
nrow(where(parsed_2017_Month, isNull(parsed_2017_Month$Month)))
#0 #No Issue with this this data 0
#So all the data records are valid parsed_2017_Month can be used
#Creating view for running SOL gueries
createOrReplaceTempView(parsed_2017_Month, "ParsedDate_View_
2017")
data bins 2017 <- SparkR::sql("SELECT Month,
Violation_Description, Violation_Code, \
                      CASE WHEN (Month >=1 and Month <= 3)
THEN 1\
                      WHEN (Month > 3 and Month <= 6) THEN 2
                      WHEN (Month > 6 and Month <= 9) THEN 3
                      WHEN (Month > 9 and Month <= 12) THEN 4
                      ELSE 0 END as bin_number FROM
ParsedDate_View_2017")
# Attach the bin number to the original DataFrame
nyc_parking_ParsedDate_2017 <- withColumn(data_bins_2017,</pre>
"bin_number", data_bins_2017$bin_number)
#-----
    ._____
#grouping and summarising Viloation in bins
#-----
```

```
# For year:: 2017
data ParsedDate 2017 <- summarize(groupBy(nyc parking ParsedDate
2017 ,
                                     nyc_parking_ParsedDate_
2017$bin number),
                              count_in_bin = n
(nyc_parking_ParsedDate_2017$bin_number))
#arranging the records in descending order
head(arrange(data_ParsedDate_2017, desc(data_ParsedDate_2017
$count_in_bin)))
# bin_number count_in_bin
     2 3018840
#1
         1
                2671332
#2
          4
#3
                2648920
          3
#4
                2463936
#Observation: Maximum count in bin 2 which is for 4-6(April -
June) of the year
#### So Season Septermber-decmeber has maximum Tickets.
# 6.2 Then, find the three most common violations for each of
these seasons.
# (Hint: A similar approach can be used as mention in the hint
for question 4.)
#-----
_____
#grouping and summarising data to obtain the viloation code count
#Then, find the 3 most common violations for each of these 4
seasons.
_____
data_ParsedDate_code2017 <- summarize(groupBy</pre>
(nyc_parking_ParsedDate_2017 ,
nyc_parking_ParsedDate_2017$bin_number,nyc_parking_ParsedDate_
2017$violation_code),
                                 count_of_code = n
(nyc_parking_ParsedDate_2017$violation_code))
data_ParsedDate_code2017 <- arrange(data_ParsedDate_code2017,</pre>
desc(data_ParsedDate_code2017$count_of_code))
# bin 1
head(where(data ParsedDate code2017, data ParsedDate code2017
ship = 10,3
    # bin_number violation code count_of_code
```

```
#1
                                21
                                          374202
     #2
                 1
                                36
                                          348240
     #3
                                38
                                          287017
     # SO Season-1 (Jan-March) have vialotation code 21, 36, 38
     # bin 2
     head(where(data_ParsedDate_code2017,
data_ParsedDate_code2017$bin_number == 2),3)
     # bin_number violation code count_of_code
     #1
                                21
                                          421184
     #2
                 2
                                36
                                          369902
     #3
                 2
                                38
                                          266909
     # So Season-2 (Apr-June) have vialotation code 21, 36, 38
     # bin 3
     head(where(data_ParsedDate_code2017,
data_ParsedDate_code2017$bin_number == 3),3)
     # bin_number violation code count_of_code
     #1
                 3
                               21
                                          385774
                 3
                                38
     #2
                                          244985
                 3
                                          239879
     #3
                                36
     # So Season-3 (July-Sept) have vialotation code 21, 38, 36
     # bin 4
     head(where(data_ParsedDate_code2017,
data_ParsedDate_code2017$bin_number == 4),3)
     # bin_number violation code count_of_code
     #1
                 4
                               36
                                          442593
     #2
                 4
                                21
                                          347428
                 4
                                38
     #3
                                          263393
     # SO Season-4 (Oct-Dec) have vialotation code 36, 21, 38
     #7. The fines collected from all the parking violation
constitute a revenue source for the NYC police
     #department.
     # Let's take an example of estimating that for the 3 most
commonly occurring codes.
```

```
#year-2017
    data_violation_count_2017 <- summarize(groupBy</pre>
(nyc_parking_ParsedDate_2017, nyc_parking_ParsedDate_2017
$violation_code),
                                        count_violation_code
= n(nyc parking ParsedDate 2017$violation code))
    head(arrange(data_violation_count_2017, desc
(data_violation_count_2017$count_violation_code)))
    # violation code count_violation_code
    #1
                  21
                                 1528588
    #2
                  36
                                 1400614
    #3
                  38
                                1062304
    #4
                  14
                                 893498
    #5
                  20
                                 618593
                  46
                                  600012
    #6
    #Observation :: for 3 most commonly occurring codes.
    # Violation code 21 (occurance - 1528588),
    # Viloation code 36 (occurance - 1400614),
    # viloation code 38 (occurance - 1062304) are the most
commonly occuring for year 2017
    #Not Let' search the internet
https://wwwl.nyc.gov/site/finance/vehicles/services-violation-
codes.page for NYC parking violation code fines.
    #You will find a website (on the nyc.gov URL) that lists
these fines.
    #They're divided into 2 categories,
# 1) one for the highest-density locations of the city,
# 2) other for the rest of the city.(Manhattan 96th St & below
v/s All other Area
                                #For simplicity, take an
average of the two.
#-----
_____
                                #Reading fine amount dataset
required for question-7 calcaultion.
                                # Assumptions made about the
```

for violation code 4 other

fine - total 98 violation codes used for analysis

areas fine is zero. Average not used here.

for violation code 6 average taken on 1st chance and second chance.

violation code 99 not

included as the fine amount would vary

#-----_____

parking_fine_amount <-</pre> read.df("s3://data-science-buket1/casestudy/fine_amount.csv", source = "csv",

inferSchema = "true", header = "true")

As per 3.3

We can infer that

Issuer_Precinct 19 has issued highest parking violation.

Fine is taken from

https://wwwl.nyc.gov/site/finance/vehicles/services-violationcodes.page

(We take average of the fine both both Area for simplicty (in USD)

Violation_Code

Viloation_Count Fine_per_Viloation_code

Total_fine_Viloation_Code

108924	115	#	46
	12526260	#	38
89333	50 4466650		
72437	55 3984035	#	37
54700	55 3008500	#	21
15107	65	#	71
21513	981955 115	#	40
69191	2473995 65	#	69
09191	4497415	#	47

```
30540
                3512100
                                  # 31
     39857
                     115
                4583555
                                  # 14
     147359
                          115
                     16946285
                                  # 84
     11111
                     65
                722215
                                  # 42
     20663
                     55
                1136465
                                  # 16
     38937
                     95
                3699015
                                  # 20
     27841
                     62
                1726142
                                  #Observation:
                                  ### Total Fine COllected
                                  # 16946285 fine collected with
Vilation_code 14 in 2017 and ranks top most Fine collected
                                  #For violation code 99 fine
amount varies, so not included
                                  nrow(where(nyc_ticket_2017,
nyc_ticket_2017$violation_code == 99))
                                  # There are 3316 violation
codes with code 99.
                                  #joining parking data with
fine amount data obtained from NYC government site.
                                  #parking_fineamnt_data_2017 <-</pre>
join(nyc_ticket_2017, parking_fine_amount,
                                  #nyc_ticket_2017$`violation
code` == parking_fine_amount$violation_code, "left_outer")
#parking_fineamnt_data_2017 <- summarize(groupBy</pre>
(parking_fineamnt_data_2017, parking_fineamnt_data_2017
$`violation code`),
#Total_Fines_Collected = sum(parking_fineamnt_data_2017
$fine_amount))
#head(arrange(parking_fineamnt_data_2017, desc
(parking_fineamnt_data_2017$Total_Fines_Collected)))
```

115

```
#### Comparisiton between 2015, 2016 and 2017 ##############
    # Number of tickets between various years
    # 2015 - 10951256
    # 2016 - 10626899
    # 2017 - 10803028
    # We can see that number of tickets are showing a reducing
trend
    # The number of distinct registration state
    # 2015 - 69
    # 2016 - 68
    # 2017 - 67
    # Tickets which do not have House number or street name
    # 2015 - 204880
    # 2016 - 174570
    # 2017 - 225065
    # Top3 violation codes across the year
    # 2015 - 21, 38, 14
    # 2016 - 21, 36, 38
    # 2017 - 21, 36, 38
    # Violations codes 21 and 38 remain the top codes of
violation across the years.
    # Top 2 BodyTypeFreq which gets parking tickets
    # 2015 - SUBN, 4DSD
    # 2016 - SUBN, 4DSD
     # 2017 - SUBN, 4DSD
    # SUBN and 4DSD remain the top 2 body type vehicles which
get the most number of partking tickets.
    # Top2 VehicleMake which get parking tickets
    # 2015 - FORD, TOYOTA
    # 2016 - FORD, TOYOTA
    # 2017 - FORD, TOYOTA
    # Ford and Toyota remain the top2 vehicles that get most
parking tickets.
    # Violation Precinct 19 is the most common precint from
which cars get tickets and issue pricent 19 is the most common
pricent that issues tickets.
     # The most number of violations done are between 8am to 12
noon for all 3 years
    # In 2015, maximum tickets were issued in April-June.
     # In 2016, maximum tickets were issued in Oct-Dec
```

In 2017, maximum tickets were issued in April-June.

#

- # 31637420 fine collected with Vilation_code 14 in 2015 and ranks top most Fine collected.
- # 18583885 fine collected with Violation_code 14 in 2016
 and ranks top most Fine collected.
- # 16946285 fine collected with Vilation_code 14 in 2017 and ranks top most Fine collected.
 - # Collection of fine with violatin code 14 is reducing.

sparkR.stop()