Implementation of ANN in Python

Dhruv Bhargava[#], Rishi Banerjee^{*}

#SCIT Department, Manipal University Jaipur Jaipur, Rajasthan

¹dhruv.muj@gmail.com ²rishieric91@gmail.com

Abstract— This article is an implementation of a simple ANN in python and demonstrates how powerful it is.

Keywords— ANN, Python, Hidden Layers, Cost, Mean Squared Error

I. INTRODUCTION

This document demonstrates our implementation of Ann in python using numpy library and its applications in the real world

II. MODEL ARCHITECTURE

Our model consists of

- Two input parameters (which can be changed as per requirement)
- Two hidden layers with 128 neurons and a bias unit in each layer ,each neuron has sigmoid activations
- Output layer consists of 1 neuron which has a sigmoid activation
- The cost function used is mean squared error
- The network is optimized using gradient descent

III. DATASET AND TRAINING

 We generated a low variance dummy data set in order to test the capabilities of this network.

- We trained the network for 50 epochs with this dataset, using gradient descent and backpropagation
- Loss Function Used is Mean squared error.

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (f_i - y_i)^2$$

where N is the number of data points, f_i the value returned by the model and y_i the actual value for data point i.

IV. CODE

ann.py

...

```
import numpy as np
import matplotlib.pyplot as plt
self.inputLayerSize = 2
        self.outputLayerSize = 1
        self.hiddenLayerSize = 128
        self.Wl = np.random.randn(self.inputLayerSize, self.hiddenLayerSize)
        self.W2 = np.random.randn(self.hiddenLayerSize, self.hiddenLayerSize)
self.W3 = np.random.randn(self.hiddenLayerSize, self.outputLayerSize)
        self.b1 = np.random.randn(1, self.hiddenLayerSize)
        self.b2 = np.random.randn(1, self.hiddenLayerSize)
self.b3 = np.random.randn(1, self.outputLayerSize)
    def forward(self, X):
        self.z2 = np.dot(X, self.W1) + self.b1
        self.a2 = self.sigmoid(self.z2)
        self.z3 = np.dot(self.a2, self.W2) + self.b2
        self.a3 = self.sigmoid(self.z3)
        self.z4 = np.dot(self.a3, self.W3) + self.b3
        yHat = self.z4
         return yHat
    def sigmoid(self, z):
        return 1 / (1 + np.exp(-z))
    def stgmotdPrime(self, z):
        return np.exp(-z) / ((1 + np.exp(-z)) ** 2)
    def costFunction(self, X, y):
        self.yHat = self.forward(X)
        J = 0.5 * sum((y - self.yHat) ** 2)
        return J[0]
    def costFunctionPrime(self, X, y):
        self.yHat = self.forward(X)
        delta4 = -(y - self.yHat)
        dJdW3 = np.dot(self.a3.T, delta4)
        dJdb3 = np.mean(delta4, axis=0)
        delta3 = np.dot(delta4, self.W3.T) * self.sigmoidPrime(self.z3)
        dJdW2 = np.dot(self.a2.T, delta3)
        dJdb2 = np.mean(delta3, axis=0)
        delta2 = np.dot(delta3, self.W2.T) * self.sigmoidPrine(self.z2)
        dJdW1 = np.dot(X.T, delta2)
        dJdb1 = np.mean(delta2, axis=0)
        return dJdW1, dJdW2, dJdW3, dJdb1, dJdb2, dJdb3
    def gradient_descent(self, lr, dJdW1, dJdW2, dJdW3, dJdb1, dJdb2, dJdb3):
        self.W1 = self.W1 - lr * dJdW1
        self.W2 = self.W2 - lr * dJdW2
        self.W3 = self.W3 - lr * dJdW3
        self.bl = self.bl - lr * dJdb1
        self.b2 = self.b2 - lr * dJdb2
        self.b3 = self.b3 - lr * dJdb3
```

v. RESULTS

The network converges well with-in the 50 epochs and performs reasonably well

This model can however be fit to even more complex data sets and still manage to achieve reasonable accuracy over them

