[Claim 1] An anisotropic conductive adhesive material including conductive particles dispersed in thermosetting resin, wherein a 10% compressive elasticity (E) of the conductive particles and a longitudinal elasticity (E') of a protruding electrode of an electronic element to be connected by the anisotropic conductive adhesive material satisfies the following relational expression.

$$0.02 \le E/E' \le 0$$

[0017] Replacing the spherical body with a rigid plate, and the conductive particle is compressed from both sides, the following formula (iii) is approximately obtained provided that $R' \to \infty$, E \rangle E'.

$$F = (2^{1/2}/3) (S^{3/3}) (E \cdot R^{2/3})/(1-\sigma^1)$$
 (iii)

S denotes a compressive deformation amount. Provided that the K value is defined as in the formula (iv), the K value is expressed as follows in the formula (v).

$$K = E/(1-\sigma^2)$$

$$K = (3/\sqrt{2}) \cdot F \cdot S^{2/2} \cdot R^{1/2}$$

[0020] The K value universally and quantitatively denotes the hardness of the spherical body. When the K value (that is 10% compressive elasticity (E)) is used, the suitable hardness of the spherical body or the spacer (hereinafter, referred to as spacer and the like) can be quantitatively and uniquely defined.

[0021] When the numeral value of the 10% compressive elasticity (E) of the conductive particle itself is too small, the connection may probably result in failure in a connection reliability test. When the numeral value is too large, the conduction may not be obtained in the initial connection, or any circuit portion in other than the protruding electrode may be unfavorably damaged. Therefore, the numeral value is generally set to 3 to 30 Gpa.

[0025] The average particle diameter of the conductive particles can be appropriately decided depending on a bump material or a

bump height of the electronic element to be connected. In the case where a bare IC chip is flip-chip-mounted at a high density, for example, the average particle diameter is preferably set to $1-10~\mu m$.

[0034] Embodiment 1

5 pts.wt. of conductive particles in which spherical nickel particles are gold-plated (manufactured by Nihon Chemical Industrial Co., Ltd., average particle diameter = 6 μ m, 10% compressive elasticity (E) = 41.6 GPa) was evenly dispersed in a thermosetting insulating adhesive in which 50 pts.wt. of epoxy resin (EPICOAT 1009, product name, manufactured by Japan Epoxy Resins Co., Ltd.) and 45 pts.wt. of a latent curing agent (HX3721, product name, manufactured by Asahi Kasei Corporation) were mixed, so that an anisotropic conductive connection material film having the thickness of 35 μ m was obtained.

[0036] Embodiment 2

5 pts.wt. of conductive particles in which spherical benzoguanamine resin particles are gold-plated (manufactured by Nihon Chemical Industrial Co., Ltd., average particle diameter = 5 μ m, 10% compressive elasticity (E) = 4.7 GPa, E/E' = 0.048) was evenly dispersed in the thermosetting insulating adhesive prepared in the embodiment 1, so that an anisotropic conductive connection material film having the thickness of 35 μ m was obtained.

7/24

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-283637 (P2001-283637A)

(43)公開日 平成13年10月12日(2001.10.12)

(51) Int.Cl.7		識別記号	FΙ		:	f-73-h*(参考)	
H01B	1/20		H01B	1/20	D	5 F O 4 4	
	5/16			5/16		5 G 3 O 1	
H01L	21/60	3 1 1	H01L	21/60	3 1 1 S	5 G 3 O 7	

審査請求 未請求 請求項の数4 OL (全 6 頁)

(21)出願番号 特願2000-99883(P2000-99883)

(22)出願日 平成12年3月31日(2000.3.31)

704-04 (P) 108.10.28 (71)出願人 000108410

ソニーケミカル株式会社

東京都中央区日本橋室町1丁目6番3号

(72)発明者 須賀 保博

栃木県鹿沼市さつき町12-3 ソニーケミ

カル株式会社内

(72)発明者 武市 元秀

栃木県鹿沼市さつき町12-3 ソニーケミ

カル株式会社内

(74)代理人 100095588

弁理士 田治米 登 (外1名)

最終頁に続く

(54) 【発明の名称】 異方性導電接着材料及び接続方法

(57) 【要約】

【課題】 突起状電極を備えたベア! Cチップなどの電子素子と配線基板の接続パッドとを異方性導電接続する際に、突起状電極としてニッケルパンプなどの比較的硬いパンプを使用した場合であっても、金パンプやハンダバンプを使用した従来の異方性導電接続と変わらない接続信頼性を確保することが可能な異方性導電接着材料を

0. $02 \le E/E' \le 0.5$

提供する。

【解決手段】 導電性粒子を熱硬化性樹脂に分散してなる異方性導電接着材料において、導電性粒子の10%圧縮弾性率(E)と、当該異方性導電接着材料で接続すべき電子素子の突起状電極の縦弾性率(E')とが以下の関係式(1)

【数1】

(1)

を満たすようにする。

【特許請求の範囲】

【請求項1】 導電性粒子を熱硬化性樹脂に分散してなる異方性導電接着材料において、該導電性粒子の10% 圧縮弾性率(E)と、当該異方性導電接着材料で接続す

0. $02 \le E/E' \le 0.5$

を満たしていることを特徴とする異方性導電接着材料。 【請求項2】 該導電性粒子の平均粒径が1~10μm である請求項1記載の異方性導電接着材料。

【請求項3】 電子素子の突起状電極がニッケルから構成されている請求項1又は2記載の異方性導電接着材料

【請求項4】 電子素子の突起状電極と、配線基板の接続パッドとの間に、導電性粒子を熱硬化性樹脂に分散し

0. $02 \le E/E' \le 0.5$

を満たしているものを使用することを特徴とする接続方 法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、異方性導電接着材料及び接続方法に関する。

[0002]

【従来の技術】近年、突起状電極として金バンプ或いはハンダバンプを備えたベアICチップをIC搭載用基板の電極パッドに直接フリップチップ実装したり、チップサイズパッケージ(CSP)の形態に加工し実装することが行われている。このような実装の際には、ベアICチップの突起状電極とIC搭載用基板との間に、エポキシ樹脂等の熱硬化性樹脂と導電性粒子とが配合された、フィルム状、ペースト状もしくは液状の異方性導電接着材料を挟み込み、加熱加圧することが行われている。

【OOO3】ところで、金パンプの場合、材料コストが非常に高価であるという問題がある。またハンダパンプの場合、微細で均一なパンプ形成を目的として電解メッキ法により製造されるが、レジスト工程が必要であるばかりでなく、ハンダメッキを行う前に、下地金属層(Ti/Cu)を形成し、そしてパリア金属多層メッキ層(Cu/Ni/Au)を形成する等の複雑な電解メッキ工程を要するという問題もある。

【0004】そこで、材料コストが低く、比較的単純な電解メッキ工程で形成可能なニッケルパンプを使用する 40 ことが試みられている。

[0005]

提供する。

【発明が解決しようとする課題】しかしながら、ニッケ0. 02≦E/E′≦0. 5

を満たしていることを特徴とする異方性導電接着材料を

【0010】また、本発明は、電子素子の突起状電極と、配線基板の接続パッドとの間に、導電性粒子を熱硬化性樹脂に分散してなる異方性導電接着材料を挟持させ、それらを加熱加圧することにより電子素子と配線基 50

べき電子素子の突起状電極の縦弾性率(E')とが以下の関係式(1)

【数1】

(1)

てなる異方性導電接着材料を挟持させ、それらを加熱加 圧することにより電子素子と配線基板との導通を確保し ながら接続する接続方法において、異方性導電接着材料 として、導電性粒子の10%圧縮弾性率(E)と電子素 10 子の突起状電極の縦弾性率(E')とが以下の関係式 (1)

【数2】

20

30

(1)

ルバンプの硬度が金バンプやハンダバンプに比べ高いため、異方性導電接着材料中の導電性粒子がニッケルバンプにより押し潰されて塑性変形し、ベアICチップのニッケルバンプとIC搭載用基板の電極パッドとに対し安定した接触状態を保てず、接続信頼性が低下するという問題があった。

【0006】本発明は、以上の従来の技術の問題を解決するものであり、突起状電極を備えたベアICチップなどの電子素子と配線基板の接続パッドとを異方性導電接続する際に、突起状電極としてニッケルバンプなどの比較的硬いバンプを使用した場合であっても、金バンプやハンダバンプを使用した従来の異方性導電接続と変わらない接続信頼性を確保することが可能な異方性導電接着材料を提供することを目的とする。

[0007]

【課題を解決するための手段】本発明者らは、異方性導電接続時の接続信頼性が、異方性導電接着材料中の導電性粒子の10%圧縮弾性率(E)と電子素子の突起状電極の縦弾性率(E')とに密接に関係しており、しかも(E)に対する(E')の比を特定の範囲に調整することにより接続信頼性を向上させ得ることを見出し、本発明を完成させるに至った。

【0008】即ち、本発明は、導電性粒子を熱硬化性樹脂に分散してなる異方性導電接着材料において、該導電性粒子の10%圧縮弾性率(E)と、当該異方性導電接着材料で接続すべき電子素子の突起状電極の縦弾性率

(E') とが以下の関係式(1)

[0009]

【数3】

(1)

板との導通を確保しながら接続する接続方法において、 異方性導電接着材料として、導電性粒子の10%圧縮弾 性率(E)と電子素子の突起状電極の縦弾性率(E') とが上述の関係式(1)を満たしているものを使用する ことを特徴とする接続方法を提供する。

[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。 【0012】本発明の異方性導電接着材料は、導電性粒子を熱硬化性樹脂に分散してなるフィルム状、ペースト 状又は液状の接着材料であるが、導電性粒子の10%圧 縮弾性率(E)と、当該異方性導電接着剤で接続すべき

0. $02 \le E/E' \le 0.5$

を満たしていることが必要である。これは、E/E'が O. O2を下回ると、導電性粒子の復元力が小さいため に十分な接続信頼性が確保できず、O. 5を超えると導電粒子が十分に潰れず、やはりに十分な接続信頼性が確 10 保できないためである。

【0014】ここで、突起状電極の縦弾性率(E')は、JIS Z2241に準拠する試験方法で測定することができる。また、導電性粒子の10%圧縮弾性率

h=F^{2/3} [D² (1/R+1/R')] ^{1/3}
D= (3/4) [(1-
$$\sigma$$
²)/E+ (1- σ ²)/E']

ここに、h はR+R'と両球の中心間の距離の差、F は 圧縮力、E、E'は二つの弾性球の弾性率、 σ 、 σ 'は 弾性球のポアッソン比を表す。

【OO17】一方、球を剛体の板に置き換えて、かつ両 20

$$F = (2^{1/2} / 3) (S^{3/2}) (E \cdot R^{1/2}) (1 - \sigma^2)$$

ここに、Sは圧縮変形量を表す。ここでK値を式(iv)のように定義すると、K値は式(v)で表される。

$$K = E / (1 - \sigma^2)$$

 $K = (3 / \sqrt{2}) \cdot F \cdot S^{-3/2} \cdot R^{-1/2}$

【0020】このK値は球体の硬さを普遍的かつ定量的に表すものである。このK値(即ち、10%圧縮弾性率(E))を用いることにより、微球体又はスペーサー(以下、スペーサー等という)の好適な硬さを定量的、かつ一義的に表すことが可能となる。K値の具体的な測定方法については、本明細書の実施例において詳細に説明する。

【0021】なお、導電性粒子の10%圧縮弾性率

(E) 自体の数値は、小さすぎると接続信頼性試験において接続不良になる可能性が高く、大きすぎると初期接続で導通が取れない危険性や、突起状電極以外における回路部にダメージを与えてしまう危険性があるため、一般に3~30Gpaとする。また、電子素子の突起状電極の縦弾性率(E')自体の数値は、小さすぎると接続40時に導電粒子が突起状電極に滑り込み、接続不良になる危険性があり、大きすぎると接続時の圧力が高い場合には基板側の回路電極等を破壊する危険性があるので、一般に40~200Gpaとする。

【 O O 2 2 】本発明の異方性導電接着材料は、以上のような特徴を有するが、他の構成については、従来の異方 性導電接着材料と同様とすることができる。

【OO23】例えば、熱硬化性樹脂としては、エポキシ コア表面に金属メッキ被膜が形成された樹脂コア金属被 樹脂、ウレタン樹脂、不飽和ポリエステル樹脂などを挙 覆粒子や、樹脂コアの周囲にシリカなどの無機粉体をハ げることができる。また、熱硬化性樹脂は、アクリル酸 50 イブリダイゼーションにより付着させ、更に金属メッキ

電子素子の突起状電極の縦弾性率(E')とが以下の関係式(1)

[0013]

【数4】

(1)

(E) は、ラウンダウーリフシッツ理論物理学教程「弾性理論」(東京図書1972年発行)42頁に定義されるK値に対応する。このK値の意味は以下の通りである。

【0015】半径がそれぞれR、R'の二つの弾性球体を圧縮させた状態で接触させるとき、hは次式(i)及び(ii)により与えられる。

(1 - σ'²) / E'] (ii) 側から圧縮する場合、R'→∞、E) E'とすると、近 似的に次式 (iii) が得られる。

[0018]

[0016]

【数6】

 $^{\prime 2}$) $(1-\sigma^2)$ (iii)

[0019]

【数7】

(iv)

(v)

エステル残基やメタクリル酸エステル残基等の光反応性 官能基を有していてもよい。中でも、常温で固形のエポ キシ樹脂を使用することが好ましい。この場合、常温で 液状のエポキシ樹脂を併用することもできる。常温で固 形のエポキシ樹脂に対する液状のエポキシ樹脂の配合比 30 率は、フィルム状とする異方性導電接着材料に対する要 求性能に応じて適宜決定することができる。更に、以上 のような固形もしくは液状のエポキシ樹脂からなるフィ ルムの可撓性の程度をより向上させ、それにより異方性 導電接着材料のピール強度もより向上させる場合には、 それらのエポキシ樹脂に加えて更に可撓性エポキシ樹脂 を併用することが特に好ましい。この場合、本発明の異 方性導電接着材料に使用される可撓性エポキシ樹脂の含 有量は、少な過ぎる場合には可撓性エポキシ樹脂の添加 効果が十分に得られず、多過ぎる場合には耐熱性が低下 するので、好ましくは5~35重量%、より好ましくは 5~25重量%とする。

【0024】本発明において使用する導電性粒子としては、従来より異方性導電接着材料において用いられているような材料の中から前述の式(1)を満たすように適宜選択して使用することができる。例えば、半田粒子、ニッケル粒子などの金属粒子や、スチレン樹脂等の樹脂コア表面に金属メッキ被膜が形成された樹脂コア金属被覆粒子や、樹脂コアの周囲にシリカなどの無機粉体をハイブリダイゼーションにより付着させ、更に金属メッキ

20

被膜で被覆した複合粒子を使用することができる。

【0025】導電性粒子の平均粒子径は、接続対象となる電子素子のバンプ材料やパンプ高さ等に応じて適宜決定することができるが、ベアICチップを高密度でフリップチップ実装する場合等には1~10μmの大きさとすることが好ましい。

【0026】導電性微粒子の配合量は、接続対象となる電子素子のバンプ面積や配線基板の接続パッド面積等に応じて適宜決定することができるが、少なすぎると上下の電極間に導電粒子が挟み込まれず、導通不良となり、多すぎると導電粒子の凝集により隣接する電極間でのショートの原因となるので、通常、本発明の異方性導電接着材料の樹脂固形分100重量部に対し3~30重量部とすることが好ましい。

【 O O 2 7 】本発明の異方性導電接着材料には、必要に応じて、従来の異方性導電接着材料に配合されている公知の添加剤、例えば、イソシアネート系架橋剤、エポキシシラン化合物などのカップリング剤、エポキシ変性シリコーン樹脂、あるいはフェノキシ樹脂等の熱硬化性の絶縁性樹脂を添加することができる。

【 O O 2 8 】本発明の異方性導電接着材料は、上述した 熱硬化性樹脂と導電性粒子とを必要に応じてトルエンな どの溶媒中で均一に混合することにより調製することが できる。液状あるいはペースト状のまま使用してもよ く、あるいは成膜して熱硬化性異方性導電接着フィルム として使用することもできる。

【0029】本発明の異方性導電接着材料は、電子素子の突起状電極と、配線基板の接続パッドとの間に、導電性粒子を熱硬化性樹脂に分散してなる異方性導電接着材料を挟持させ、それらを加熱加圧することにより電子素 30子と配線基板との導通を確保しながら接続する異方性導電接続方法に好ましく適用することができる。

【0030】ここで電子素子は、突起状電極を有する素子が対象となる。例えば、ベアICチップ、LSIチップ等が挙げられる。突起状電極としては、金パンプ、ハンダパンプなどを例示できるが、中でも硬度が高いが相対的に材料コストの低いニッケルパンプを好ましく使用することできる。

[0031]

【実施例】以下、本発明を以下の実験例により具体的に 40 説明する。

【0032】なお、導電性粒子の10%圧縮弾性率 (E)(即ち、K値)は、以下に説明するように測定し

【0033】(導電性粒子の10%圧縮弾性率(E)(K値)の測定方法)

平滑表面を有する鋼板の上の導電性粒子を散布し、その中から1個の導電性粒子を選択する。次に、粉体圧縮試験機(PCT-200型、島津製作所製)を用いて、ダイヤモンド製の直径50μmの円柱の平滑な端面で導電 50

性粒子を圧縮する(試験荷重=0.0098N(10g) rf); 圧縮速度(定負荷速度圧縮方式) $=2.6\times1$ $0^{-3}N(0.27g)$ rf)/秒; 測定温度=20%)。この際、圧縮荷重を電磁力として電気的に検出し圧縮変位を作動トランスによる変位として電気的に検出し、図 1(a) に示す圧縮変位一荷重の関係を求める。この図から導電性粒子の 10%圧縮変形における荷重値と圧縮変位をそれぞれ求め、これらの値と式(v)から図 1

(b) に示すように、圧縮歪みだけでなくK値(10% 圧縮弾性率(E)) を求める。但し、圧縮歪みは圧縮変 位を導電性粒子の粒子径で割った値を%で表したもので ある。

【0034】 実施例 1

エポキシ樹脂(エピコート1009、油化シェルエポキシ(株)製)50重量部と潜在性硬化剤(H X 3 7 2 1、旭化成(株)製)45重量部とを混合した熱硬化性 絶縁性接着剤中に、球状のニッケル粒子に金メッキを施した導電性粒子(日本化学工業(株)製、平均粒子径6 μ m、10%圧縮弾性率(E)=41.6GPa)5重量部を均一に分散させたものを成膜することにより35 μ m厚の異方性導電接着フィルムを作製した。

【0035】この異方性導電接着フィルムを半導体チップ(バンプ材質=Ni、バンプ高さ= 20μ m、バンプ 面積= 10000μ m²、縦弾性率(E')=98GPa、E/E'=0.42、外形6.3mm \square)とガラスエポキシ基板(配線材質=Cu、Ni/Auメッキ、配線厚み 18μ m)との間に挟み、 180° C、147N(15kgf)、20secの条件下で熱プレスすることにより両者を接続した。得られた接続体の1端子あたりの初期導通抵抗は $5\sim10$ m Ω であり、良好な接続状態であった。また、接続体に対して100時間のプレッシャークッカーテスト(PCT)(121° C、0.213Mpa(2.1atm)、飽和湿度環境)を行ったが、PCT後の導通抵抗値と初期導通抵抗値との間に大きな変動はなかった。

【0036】実施例2

実施例 1 で調製した熱硬化性絶縁性接着剤中に、球状のベンゾグアナミン樹脂の粒子に金メッキを施した導電粒子(日本化学工業(株)製、平均粒子径 5μ m、10% 圧縮弾性率 5μ m = 5μ

【0037】実施例3

実施例 1 で調製した熱硬化性絶縁性接着剤中に、球状のベンゾグアナミン樹脂をシリカで被覆し、更にその外側に金メッキを施して得られた導電性粒子(日本化学工業(株)製、平均粒子径 $7 \mu m$ 、10%圧縮弾性率(E)=21.6G Pa、E/E/=0.22)5重量部を均一に分散させたものを成膜することにより35 μm 厚の異方性導電接着フィルムを作製した。この異方性導電接着フィルムを使用して実施例 1 と同様に半導体チップとガラスエポキシ基板とを接続して接続体を得た。得られ 10 た接続体の 1 端子あたりの初期導通抵抗は5~10 $m\Omega$ であり、良好な接続状態であった。また、接続体に対して100時間のプレッシャークッカーテスト(PCT)(121 $^{\circ}$ C、0.213 $^{\circ}$ M $^{\circ}$ PC T後の導通抵抗値と初期導通抵抗値と初間に大きな変動はなかった。

【0038】比較例1

実施例 1 で調製した熱硬化性絶縁性接着剤中に、球状のポリスチレン樹脂に金メッキを施した導電性粒子(日本化学工業(株)製、平均粒子径 $5\,\mu$ m、 $1\,0$ %圧縮弾性 20率(E)= 1.5 G P a、 E/E'=0.0 15)5 重量部を均一に分散させたものを成膜することにより 3 5 μ m厚の異方性導電接着フィルムを作製した。この異方性導電接着フィルムを使用して実施例 1 と同様に半導体チップとガラスエポキシ基板とを接続したところ、電極間に挟まれた導電性粒子は押し潰された状態(即ち、導電粒子が破壊した状態)となったが、得られた接続体の1端子あたりの初期導通抵抗は $5\sim10$ m Ω であった。しかし、接続体に対して 10 O 時間のプレッシャークッカーテスト(PCT)(121 $\mathbb C$ 、0.213 M p a 30

(2. 1 a t m)、飽和湿度環境)を行ったところ、P C T後の導通抵抗は初期導通抵抗値から大きく上昇して おり、接続信頼性が大きく低下した。

【0039】比較例2

実施例 1 にて作製した異方性導電接着フィルムを半導体チップ(バンプ材質=Au、パンプ高さ=20 μ m、パンプ面積=10000 μ m²、縦弾性率(E')=7 6.4 GPa、E/E'=0.54、外形6.3 mm \square)とガラスエポキシ基板(配線材質=Cu、Ni/Auメッキ、配線厚み18 μ m)との間に挟み、180 $^{\circ}$ C、147N(15kgf)、20secの条件下で熱プレスすることにより両者を接続した。得られた接続体の1端子あたりの初期導通抵抗は5~10m Ω であり、良好な接続状態であった。しかし、接続体に対して100時間のプレッシャークッカーテスト(PCT)(121 $^{\circ}$ C、0.213Mpa(2.1atm)、飽和湿度環境)を行ったところ、PCT後の導通抵抗は初期導通抵抗値から大きく上昇しており、接続信頼性が大きく低下した。

[0040]

【発明の効果】本発明の異方性導電接着材料によれば、 突起状電極を備えたベアICチップなどの電子素子と配 線基板の接続パッドとを異方性導電接続する際に、突起 状電極としてニッケルパンプなどの比較的硬いパンプを 使用した場合であっても、金パンプやハンダパンプを使 用した従来の異方性導電接続と変わらない接続信頼性を 確保することができる。

【図面の簡単な説明】

【図1】荷重と圧縮変位との関係図(同図(a))及び 30 圧縮歪みとK値との関係図(同図(b))である。

フロントページの続き

Fターム(参考) 5F044 KK01 LL09 QQ03

5G301 DA02 DA10 DA29 DA53 DA57

DA59 DD03

40

5G307 HA02 HB03 HB06 HC01

[Claim 1] An anisotropic conductive adhesive film including conductive particles dispersed in an insulating adhesive, wherein a difference between a smaller linear expansion coefficient in linear expansion coefficients of a plurality of objects to be adhered by the insulating adhesive and a linear expansion coefficient of the anisotropic conductive adhesive film stays within $35 \times 10^{-6} \cdot \text{K}^{-1}$.

[0024] A preferable example of the insulating adhesive resin 6 is such an adhesive resin having a post-curing elastic modulus larger than that of rubber particles 8 described later. The preferable elastic modulus of the insulating adhesive resin 6 is 5×10^8 to 1×10^9 Pa.

[0025] When the elastic modulus of the insulating adhesive resin 6 is smaller than 5×10^8 Pa, heat resistance in order to assure the reliability is unfavorably deteriorated. The elastic modulus of the insulating adhesive resin 6 larger than 1×10^9 Pa is advantageous in that an internal stress generated in the insulating adhesive resin 6 cannot be reduced to a desirable level.

[0026] A glass transition temperature (Tg) of the insulating adhesive resin 6 is preferably 100 to 200°C, and more preferably 120 to 190°C.

[0027] When the glass transition temperature of the insulating adhesive resin 6 is lower than 100°C, the heat resistance of the anisotropic conductive adhesive film 1 is unfavorably deteriorated. When the glass transition temperature of the insulating adhesive resin 6 is higher than 200°C, it becomes difficult to reduce the internal stress generated the insulating adhesive resin 6 to a desirable level.

[0057] It is conventionally known that an internal stress (δ) generated on an adhesive interface of the anisotropic conductive adhesive film can be calculated by the following formula (1). [0058]

[Formula 1]

 δ stress

E elastic modulus of adhesive

σ1 linear expansion coefficient of adhesive

σ2 linear expansion coefficient of object to be adhered

Tg glass transition temperature of adhesive

[0078] "Temperature cycle test"

A copper (Cu) pattern having the width of 18 μ m and the pitch of 150 μ m was formed, and a glass – epoxy substrate (thickness of 0.6 mm) which is nickel-gold (Ni – Au) plated and a silicon chip (linear expansion coefficient = 3×10^{-6} · K⁻¹) having the size of 6.3 in which bumps each having the vertical and horizontal lengths of 110 μ m \square and the height of 20 are formed were thermally bonded to a surface of the pattern under such conditions as 180°C, 20 seconds, and pressure of 250 kgf/cm². A sample thereby obtained was subjected to a temperature cycle test.

[Table 1]

SiO₂ particle (weight %) rubber particle

difference between linear expansion coefficients peeling strength

temperature resistant cycle properties

conduction resistance

judgment

comparative example

embodiment

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-40418 (P2000-40418A)

(43)公開日 平成12年2月8日(2000.2.8)

(51) Int.Cl. ⁷		識別記号	FΙ			テーマコード(参考)
H01B	1/20		H01B	1/20	D	4 J 0 0 4
C 0 9 J	7/02		C 0 9 J	7/02	Z	5 G 3 O 1

審査請求 未請求 請求項の数6 OL (全 8 頁)

(21)出願番号	特顧平10-206000	(71)出願人	000108410			
			ソニーケミカル株式会社			
(22)出願日	平成10年7月22日(1998.7.22)		東京都中央区日本橋室町1丁目6番3号			
(/	, , , , , , , , , , , , , , , , , , , ,	(72)発明者	武市 元秀			
			栃木県鹿沼市さつき町12-3 ソニーケミ			
			カル株式会社第2工場内			
		(72)発明者	斉藤 雅男			
			栃木県鹿沼市さつき町12-3 ソニーケミ			
			力ル株式会社第2工場内			
		(74)代理人				
			弁理士 石島 茂男 (外1名)			
			7, 22			
			最終頁に続く			

(54) 【発明の名称】 異方導電性接着フィルム

(57) 【要約】

【課題】熱圧着時における内部応力を低減しうる異方導 電性接着フィルムを提供する。

【解決手段】本発明の異方導電性接着フィルム1は、絶 縁性接着剤樹脂6中に導電粒子7を分散してなる異方導 電性接着フィルムであって、上記絶縁性接着剤樹脂6の 線膨張係数と被着体のうちの小さい方の線膨張係数との 差が、35×10-6・K-1以内であることを特徴とす る。絶縁性接着剤樹脂6中には、無機粒子9が20~7 0 重量%混入されている。また、絶縁性接着剤樹脂6中 には、ゴム系の弾性粒子8が1~20 重量%分散され ている。

本発明の異方導電性接着フィルムの一例

【特許請求の範囲】

【請求項1】絶縁性接着剤中に導電粒子を分散してなる 異方導電性接着フィルムであって、

上記絶縁性接着剤によって接着される複数の被着体のうち、その線膨張係数の小さい方と当該異方導電性接着フィルムとの線膨張係数の差が、35×10-6・K-1以内であることを特徴とする異方導電性接着フィルム。

【請求項2】絶縁性接着剤中に無機粒子を混入してなることを特徴とする請求項1記載の異方導電性接着フィルム。

【請求項3】無機粒子の添加量が、20~70重量%であることを特徴とする請求項2記載の異方導電性接着フィルム。

【請求項4】無機粒子の平均粒径が、導電粒子の平均粒径の1/2以下であることを特徴とする請求項2又は3のいずれか1項記載の異方導電性接着フィルム。

【請求項5】絶縁性接着剤中に、ゴム系の弾性粒子が分散されていることを特徴とする請求項1乃至4のいずれか1項記載の異方導電性接着フィルム。

【請求項6】絶縁性接着剤中へのゴム系の弾性粒子の添 20 加量が、1~20重量%であることを特徴とする請求項 5 記載の異方導電性接着フィルム。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、例えば、液晶表示 装置(LCD)と回路基板との間の電気的な接続に用い られる異方導電性接着フィルムに関する。

[0002]

【従来の技術】従来より、例えば、液晶表示装置と集積回路基板等を接続する手段として、異方導電性接着フィ 30ルムが用いられている。この異方導電性接着フィルムは、例えば、TCP(Tape Carrieer Package)やICチップの接続電極と、LCDパネルのガラス基板上に形成されたITO(Indium Tin Oxide)電極とを接続する場合を始めとして、種々の端子間を接着するとともに電気的に接続する場合に用いられている。

【0003】従来、異方導電性接着フィルムの絶縁性接着剤(パインダー)としては、例えば、エポキシ樹脂、フェノキシ樹脂等の熱硬化性樹脂を所定の割合で配合したものが広く用いられている。

[0004]

【発明が解決しようとする課題】しかしながら、従来の 異方導電性接着フィルムにあっては、熱圧着時におい て、異方導電性接着フィルムと被着体との物性の相違に よって熱的及び機械的負荷が加わり、これによって異方 導電性接着フィルムに熱応力及び残留応力が発生すると いう問題があった。

【0005】従来、このような異方導電性接着フィルムの内部応力を低減するためには、エポキシ樹脂やフェノキシ樹脂の配合量を変えることにより行っていたが、こ 50

の方法では熱圧着時の内部応力を十分に低減させること ができず、導通信頼性を向上させることが困難であっ た。

【0006】他方、近年、ICチップを直接ガラス基板上に実装するCOG(Chip On Glass)が進展しているが、このCOG方式においては、ICチップが大型化する一方で、ICチップを実装するガラス基板の厚さが薄くなりつつある。

【0007】その結果、従来の異方導電性接着フィルム 10 にあっては、ICチップをガラス基板上に実装する際に 上述した内部応力によってガラス基板に反りが発生する ことがあり、このためガラス基板において表示部と実装 部との間隔を十分に確保しなければならず、また、ガラ ス基板に反りが生じない程度の十分な剛性を確保しうる 厚さにしなければならないという問題があった。

【0008】本発明は、このような従来の技術の課題を解決するためになされたもので、熱圧着の際の内部応力を低減しうる異方導電性接着フィルムを提供することを目的とする。

[0009]

【課題を解決するための手段】本発明者等は、上記目的を達成するために鋭意研究を重ねた結果、異方導電性接着フィルムのバインダーの線膨張係数を I Cチップ等の被着体の線膨張係数に対して近づけることによって当該バインダーに生ずる内部応力を低減しうることを見い出し、本発明を完成するに至った。

【0010】かかる知見に基づいてなされた請求項1記載の発明は、絶縁性接着剤中に導電粒子を分散してなる異方導電性接着フィルムであって、上記絶縁性接着剤によって接着される複数の被着体のうち、その線膨張係数の小さい方と当該異方導電性接着フィルムとの線膨張係数の差が、35×10-6・K-1以内であることを特徴とする。

【0011】請求項1記載の発明によれば、熱圧着の際において、被着体の伸びと絶縁性接着剤の伸びとがほぼ等しくなり、その結果、絶縁性接着剤に生ずる内部応力を従来技術の場合に比べて小さくすることが可能になる。

【 O O 1 2 】また、請求項2記載の発明は、請求項1記 40 載の発明において、絶縁性接着剤中に無機粒子を混入してなることを特徴とする。

【0013】さらに、請求項3記載の発明は、請求項2記載の発明において、無機粒子の添加量が、20~70重量%であることを特徴とする。

【0014】請求項2又は3記載の発明によれば、絶縁性接着剤の線膨張係数を容易に低下させることができ、これにより絶縁性接着剤の線膨張係数と被着体の線膨張係数との差を容易に35×10⁻⁶・K⁻¹以内とすることが可能になる。

【0015】さらにまた、請求項4記載の発明は、請求

10

50

項2又は3のいずれか1項記載の発明において、無機粒子の平均粒径が、導電粒子の平均粒径の1/2以下であることを特徴とする。

【 O O 1 6 】請求項 4 記載の発明によれば、導電粒子と接続電極間の確実な電気的な接続を確保することが可能になる。

【OO17】一方、請求項5記載の発明は、請求項1乃至4のいずれか1項記載の発明において、絶縁性接着剤中に、ゴム系の弾性粒子が分散されていることを特徴とする。

【 O O 1 8】また、請求項6記載の発明は、請求項5記載の発明において、絶縁性接着剤中へのゴム系の弾性粒子の添加量が、1~20重量%であることを特徴とする。

【 O O 1 9】請求項5又は6記載の発明によれば、熱圧 着時に絶縁性接着剤に外力が加わった場合に、この応力 吸収粒子が大きく弾性変形することによって絶縁性接着 剤の被着体との界面部分に生ずる熱応力及び残留応力が 吸収されるため、絶縁性接着剤樹脂の弾性率の上昇を防 ぐことができる。

[0020]

【発明の実施の形態】以下、本発明に係る異方導電性接着フィルムの実施の形態を図面を参照して詳細に説明する。図1(a)~(c)は、本発明に係る異方導電性接着フィルムの好ましい実施の形態を示すもので、図1(a)は、熱圧着前の状態を示す構成図、図1(b)は、熱圧着後の状態を示す構成図、図1(c)は、図1(b)の一点鎖線Aで示す部分の作用を示す説明図である。

【0021】図1に示すように、本発明の異方導電性接 30 着フィルム1は、例えばLCDパネル2のITO電極3 とLSIチップ(被着体)4のバンプ5とを接続する際に用いられるもので、フィルム状の絶縁性接着剤樹脂(絶縁性接着剤)6中に導電粒子7が分散されて構成される。

【0022】この場合、絶縁性接着剤樹脂6としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂を主成分として、カップリング剤、硬化剤等を含む 40ものなどを用いることができる。

【0023】ここで、絶縁性接着剤樹脂6の厚さは、接 統後の導通信頼性の確保及び製造工程における作業性の 観点から、10~100μmとすることが好ましい。

【0024】また、絶縁性接着剤樹脂6は、硬化後の弾性率が、後述するゴム粒子8の弾性率より大きいものを用いるとよい。好ましい絶縁性接着剤樹脂6の弾性率は、 $5\times10^8\sim1\times10^9$ Paである。

【OO25】絶縁性接着剤樹脂6の弾性率が5×108 Paより小さいと、信頼性を確保するための耐熱性が劣 るという不都合があり、1×10⁹Paより大きいと、絶 緑性接着剤樹脂6の内部応力を十分に小さくすることが できないという不都合がある。

【0026】また、絶縁性接着剤樹脂6のガラス転移温度(Tg)は、100~200℃であることが好ましく、さらに好ましくは120~190℃である。

【0027】絶縁性接着剤樹脂6のガラス転移温度が100℃より小さいと、異方導電性接着フィルム1の耐熱性が低下するという不都合があり、200℃より大きいと、絶縁性接着剤樹脂6に生ずる内部応力を十分に小さくすることが困難になるという不都合がある。

【 O O 2 8 】一方、導電粒子 7 としては、例えば、ニッケル、金、銅等の金属粒子や、樹脂粒子に金めっき等を施したものを用いることができる。

【0029】ここで、導電粒子7の平均粒径は、導通信 頼性の確保の観点から、1~10μmとすることが好ま しい。

【0030】また、絶縁性接着剤樹脂6中への導電粒子7の分散量は、導通信頼性の確保の観点から、3~25 20 重量%とすることが好ましい。

【0031】さらに、図示はしないが、この異方導電性接着フィルム1は、剥離用の例えばポリエチレンテレフタレート(PET)フィルム上に形成され、また、異方導電性接着フィルム1の表面はカバーフィルムによって覆われている。

【0032】一方、本発明においては、絶縁性接着剤樹脂 6 と、被着体のうち線膨張係数が小さい方であるLS I チップ4 との間の線膨張係数の差が、 35×10^{-6} ・ K^{-1} 以内となるように構成されている。

【0033】この場合、LSIチップ4との間の線膨張係数の差を $35 \times 10^{-6} \cdot K^{-1}$ 以内とするためには、例えば絶縁性接着剤樹脂 6中に所定量の無機粒子9を混入するとよい。

【0034】ここで、好ましい無機粒子9としては、例えば、酸化アルミニウム(Al2O3)、二酸化ケイ素(SiO2)、酸化マグネシウム(MgO)、窒化ケイ素(Si3N4)、窒化ホウ素(BN)、窒化アルミニウム(AlN)、水酸化アルミニウム(Al(OH)3)等からなるものがあげられる。

0 【0035】また、絶縁性接着剤中への無機粒子9の添加量は、20~70重量%であることが好ましく、さらに好ましくは30~60重量%である。

【0036】絶縁性接着剤中への無機粒子9の添加量が20重量%より小さいと、被着体であるLSIチップ4との間の線膨張係数の差を35×10-6・K-1以内とすることが困難になり、70重量%より大きいと、フィルムになりにくくなるという不都合がある。

【0037】さらに、導電粒子7と接続電極間の電気的な接続の確保の観点からは、無機粒子9の平均粒径は、 導電粒子7の平均粒径の1/2以下であることが好まし い。

【0038】好ましい無機粒子9の平均粒径は、0.2 \sim 2.0 μ mであり、さらに好ましくは0.5 \sim 1.0 μ mである。

【0039】無機粒子9の平均粒径が 0.2μ mより小さいと、絶縁性接着剤樹脂6への分散性が低下するという不都合があり、 2.0μ mより大きいと、導電粒子7と接続電極間の電気的な接続が低下するおそれがあるという不都合がある。

【0040】また、本発明においてさらに絶縁性接着剤 10 樹脂6の内部応力を低下させるためには、絶縁性接着剤 樹脂6中にゴム系の弾性粒子(以下「ゴム粒子」とい う。)8を所定量添加するとよい。

【0041】ここで、絶縁性接着剤樹脂6中へのゴム粒子8の添加量は、1~20重量%であることが好ましく、さらに好ましくは2~15重量%である。

【0042】絶縁性接着剤中へのゴム粒子8の添加量が 一に分散しにくくなるとい 1重量%より小さいと、絶縁性接着剤樹脂6に生ずる内 【0053】他方、ゴム粒 部応力を十分に小さくすることができず、20重量%よ より大きいと、導電粒子7 り大きいと、粘度が上昇してフィルムになりにくくなる 20 が低下するおそれがある。 という不都合がある。 【0054】本発明の異方

【0043】ここで、ゴム粒子8としては、その弾性率が硬化後の絶縁性接着剤樹脂6の弾性率より小さいものを用いるとよい。

【0044】好ましいゴム粒子8の弾性率は、 $1 \times 10^{7} \sim 5 \times 10^{8}$ Paであり、さらに好ましくは、 $5 \times 10^{7} \sim 1 \times 10^{8}$ Paである。

【0045】ゴム粒子8の弾性率が1×107より小さいと、接続信頼性が低下するという不都合があり、5×108Paより大きいと、絶縁性接着剤樹脂6の内部応力 30を十分に小さくすることができないという不都合がある

【0046】また、ゴム粒子8のガラス転移温度は、一 100~50℃であることが好ましく、さらに好ましく は-80~25℃である。

【0047】ゴム粒子8のガラス転移温度が-100℃より低いと、異方導電性接着フィルム1の耐熱性が低下するという不都合があり、50℃より高いと、絶縁性接着剤樹脂6に生ずる内部応力を十分に小さくすることが困難になるという不都合がある。

【0048】このようなゴム粒子8としては、例えば、 架橋ポリブタジエンゴム、カルボン酸変性アクリロニト リルーブタジエンゴム、アクリルポリマーゴム、シリコ ーンゴムからなるものがあげられる。

【0049】さらに、ゴム粒子8としては、核材に架橋ポリブタジエンゴムやアクリルゴムを用い、この核材の表面をアクリレート樹脂によって被覆したものを使用することもできる。

【0050】また、導電粒子7と接続電極間の電気的な接続を十分に確保するためには、ゴム粒子8の平均粒径は、導電粒子7の平均粒径より小さいことが好ましい。

【0051】好ましいゴム粒子8の平均粒径は、30~500nmであり、さらに好ましくは50~300nmである。

【0052】絶縁性接着剤樹脂6の内部応力を小さくするためには添加するゴム粒子8の粒径が小さくその表面積が大きい方が望ましいが、ゴム粒子8の平均粒径が30nmより小さいと、絶縁性接着剤樹脂6中において均一に分散しにくくなるという不都合がある。

【0053】他方、ゴム粒子8の平均粒径が500nm より大きいと、導電粒子7と接続電極間の電気的な接続 が低下するおそれがある。

【0054】本発明の異方導電性接着フィルム1を作成するには、まず、所定のエポキシ樹脂等を溶解させた溶液に、無機粒子9、ゴム粒子8、硬化剤等を所定量加えて混合し、溶剤に分散させた導電粒子7をこの溶液に加えて混合してバインダーペーストを調製する。

【0055】このパインダーペーストを例えばポリエステルフィルム等の剥離フィルム上にコーティングし、乾燥後、カバーフィルムをラミネートして異方導電性接着フィルム1を得る。

【0056】本発明の異方導電性接着フィルム1を用いて電極間の接続を行う場合には、図1(a)(b)に示すように、例えばLCDパネル2側に異方導電性接着フィルム1を貼付し、LSIチップ4の位置合わせ(仮接続)を行った後に、所定の温度及び圧力で熱圧着を行い、LSIチップ4のパンプ5とLCDパネル2の電極3とを電気的に接続させた状態で絶縁性接着剤樹脂6を硬化させる。

【0057】ところで、一般に、異方導電性接着フィルムの接着界面に発生する内部応力σは、次の式(1)によって算出しうることが知られている。

[0058]

【数1】

$$\sigma = \int_{25}^{Tg} E (\alpha 1 - \alpha 2) d t$$
= E (\alpha 1 - \alpha 2) (Tg - 25) d t \dots (1)

- σ 応力
- E 接着剤弾性率
- α 1 接着剤線膨張係数
- α 2 被着体線膨張係数

Tg 接着剤ガラス転移温度

【0059】上述したように、本発明の異方導電性接着フィルム1においては、例えば絶縁性接着剤樹脂6中に無機粒子9を混入することによって絶縁性接着剤樹脂6全体の線膨張係数を低下させたことから、図1 (c)及び式(1)から明らかなように、熱圧着の際において、LSIチップ4のひずみ ε 1と絶縁性接着剤樹脂6のひずみ ε 2とがほぼ等しくなり、その結果、絶縁性接着剤樹脂6に生ずる内部応力 σ を従来技術の場合に比べて小さくすることが可能になる。

【0060】さらに、絶縁性接着剤樹脂6中に絶縁性接着剤樹脂6より弾性率の小さいゴム粒子8を分散すれば、熱圧着の際にゴム粒子8が大きく弾性変形することによって絶縁性接着剤樹脂6の被着体との界面部分に生ずる熱応力及び残留応力が吸収されるため、絶縁性接着剤樹脂6の弾性率Eの上昇を防ぐことができる。

【0061】このように本発明によれば、熱圧着の際の内部応力を小さくすることができることから、異方導電性接着フィルム1の導通信頼性を向上させることができるとともに、被着体として薄いガラス基板を用いた場合 30であっても、反りの発生を回避することができる。

【0062】なお、上述の実施の形態においては、接続用のパンプを有する被着体を接続する場合を例にとって説明したが、本発明はこれに限られず、接続用のパンプを有しない被着体を接続する場合にも適用しうるものである。

[0063]

【実施例】以下、本発明に係る異方導電性接着フィルム の実施例を比較例とともに詳細に説明する。

【実施例1】まず、フェノキシ樹脂(東都化成社製 Y 40 P 5 O) 5 O 重量部、エポキシ樹脂(油化シェル社製 8 2 8) 6 O 重量部、イミダゾール系硬化剤(旭化成社 製H X 3 9 4 1 H P) 7 O 重量部、シランカップリング 剤(日本ユニカー社製 A 1 8 7) 3.2 重量部、無機 粒子として平均粒径 1 μ mの S i O 2 粒子(龍森社製二酸 化ケイ素)123.2 重量部(4 O 重量%)を、溶剤トルエンに溶解して固形分5 O %の絶縁性接着剤樹脂、すなわち、パインダー溶液を調製する。

【 O O 6 4 】 そして、このパインダー溶液 1 O O 重量部 に、導電粒子として、平均粒径 5. O μ m のジビニルペ 50 ンゼン粒子にニッケルー金めっきを施したものを7重量部(12.3重量%)加えてバインダーペーストとする。

【0065】さらに、このバインダーペーストを剝離用のPETフィルム上に乾燥後の厚みが40μmになるようにコーティングし、異方導電性接着フィルムを得る。この異方導電性接着フィルムを幅7.0mmのスリット状に切断し、実施例1のサンプルとした。

20 【0066】 [実施例2] SiO2粒子として平均粒径が O. 2μmのものを用い、ゴム粒子として平均粒径18 Onmの架橋ポリブタジエン粒子(レジプス化成社製 RKB1003)3重量%を加えた以外は実施例1と同様の方法によって異方導電性接着フィルムのサンプルを作成した。

【0067】 [実施例3] 架橋ポリブタジエン粒子として平均粒径が500nmのものを用い、その添加量を3 重量%とした以外は実施例2と同様の方法によって異方 導電性接着フィルムのサンプルを作成した。

「0068】〔実施例4〕架橋ポリブタジエン粒子として平均粒径が180nmのものを用い、その添加量を10重量%とした以外は実施例2と同様の方法によって異方導電性接着フィルムのサンプルを作成した。

【0069】〔比較例1〕SiO2粒子及びゴム粒子を添加せずにパインダー溶液を調製した以外は実施例1と同様の方法によって異方導電性接着フィルムのサンプルを作成した。

【0070】 〔比較例2〕 粒径5 μ mのSiO2粒子の添加量を50重量%とし、ゴム粒子を添加せずにバインダー溶液を調製した以外は実施例1と同様の方法によって異方導電性接着フィルムのサンプルを作成した。

【0071】 〔比較例3〕 SiO2粒子として平均粒径が 0. 2μ mのものを 10重量%添加し、ゴム粒子を添加 せずにパインダー溶液を調製した以外は実施例 2 と同様 の方法によって異方導電性接着フィルムのサンプルを作成した。

【0072】 〔比較例4〕 SiO2粒子を添加せず、平均 粒径が180nmのゴム粒子を2重量%添加した以外は 実施例1と同様の方法によって異方導電性接着フィルム のサンプルを作成した。 【0073】〔比較例5〕SiO2粒子を添加せず、平均 粒径が180nmのゴム粒子を12重量%添加した以外 は実施例1と同様の方法によって異方導電性接着フィル ムのサンプルを作成した。

【0074】<線膨張係数の測定>JIS K 719 7に規定された方法により、上記実施例及び比較例の異 方導電性接着フィルム並びに後述するシリコンチップの 線膨張係数を測定した。これにより得られた実施例及び 比較例の異方導電性接着フィルムとシリコンチップとの 線膨張係数の差を表1に示す。

【 O O 7 5 】 <評価結果>次に、上記実施例及び比較例 を用い、以下の条件でピール強度の測定及び温度サイクル試験並びに導通抵抗の評価を行った。

【0076】 [ピール強度] ITO (Indium Tin Oxide) 膜を蒸着によって形成したガラス基板 (厚さ 1 mm) と、幅 $12 \mu m$ 、ピッチ $100 \mu m$ の銅(Cu)パターンを形成しパターン表面にニッケルー金(Ni-Au) めっきを施したポリイミド基板 (厚さ $25 \mu m$) とを、温度 180 %、時間 20 %、圧力 30 % 人で熱圧着によって接続した。

【0077】そして、上記熱圧着したサンプルに対し、 引張速度50mm/minで上記パターンと水平方向に 引っ張り、その時の強度を引張試験機(オリエンテック 社製)で測定した。その結果を表1に示す。 【0078】 [温度サイクル試験] 幅18 μ m、ピッチ150 μ mの銅(Cu)パターンを形成しパターン表面にニッケルー金(Ni-Au)めっきを施したガラスーエポキシ基板(厚さ0.6mm)と、縦横の長さ110 μ m口、高さ20のめっきパンプを形成したサイズ6.3mm口のシリコンチップ(線膨張係数= 3×10^{-6} ・K-1)とを、温度180 $^{\circ}$ C、時間20秒、圧力250kg f/cm²の条件で熱圧着し、得られたサンプルについて温度サイクル試験を行った。

10 【 O O 7 9 】この場合、温度サイクルは、-25℃/3 O分、125℃/3 O分を1サイクルとして、デイジーテェーンでつないだ評価パターンの抵抗をリアルタイムで記録し、50%の抵抗上昇が確認された回数を測定した。その結果を表1に示す。

【0080】 [導通抵抗] ピール強度測定の際に、隣接する2つの端子間の抵抗を4端子法で測定し、抵抗測定が問題なく行えるか否かで端子間の接続が良好に行われているか否かを判断した。また、温度サイクル試験の際に、デイジーテェーンでつないだ評価パターンにおいて抵抗測定を問題なく行えるか否かで端部間の接続が良好に行われているか否かを判断した。これらの結果を表1に示す。

【0081】 【表1】

表 1. 実施例及び比較例の評価結果

20

	S i O 2粒子 (重量%)	ゴム粒子 (重量%)	線膨張係数の 差 (× 10 ⁶ K ¹)		耐温度 サイクル性	導通 抵抗	判定
比較例1		_	50	350	24	0	×
比較例 2	40 (5 μ m)		28	220	_	×	×
実施例 1	40(1μm)	_	28	240	760	0	0
比較例3	10 (0. 2 μ m)	-	47	310	17	0	×
実施例 2	40 (0. 2 μ m)	3 (180nm)	28	710	930	0	0
実施例 3	40 (0. 2 μ m)	3 (500nm)	28	520	340	0	0
実施例 4	40 (0. 2 μ m)	10 (180nm)	28	950	1320	0	0
比較例 4	_	2 (180nm)	50	800	_	0	×
比較例 5	-	12 (180nm)	50	1480	_	0	×

(注)SiO2粒子及びゴム粒子のかっこ内の数値は平均粒径

【0082】表1に示すように、SiO2粒子を40重量%添加した実施例1は、シリコンチップとの線膨張係数の差が35より小さく、ピール強度、耐温度サイクル性ともに良好であり、また導通抵抗も問題なかった。

【0083】さらに、SiO2粒子に加えてゴム粒子を添加した実施例2、実施例3及び実施例4についても、シリコンチップとの線膨張係数の差が35より小さく、ピール強度、耐温度サイクル性ともに良好であり、また導

通抵抗も問題なかった。

【0084】一方、SiO2粒子及びゴム粒子を添加しない比較例1は、シリコンチップとの線膨張係数の差が35より大きくなり、耐温度サイクル性が良くなかった。

【0085】また、粒径の大きな(5μm) SiO2粒子を添加した比較例2は、シリコンチップとの線膨張係数の差が35より小さかったが、ピール強度測定の際に電極間の導通不良が発生した。

【0086】さらに、SiO2粒子を添加したがその添加量が少ない(10重量%)比較例3は、シリコンチップ 10との線膨張係数の差が35より大きくなり、耐温度サイクル性が良くなかった。

【0087】一方、SiO2粒子を添加せずゴム粒子のみを添加した比較例4及び比較例5についても、シリコンチップとの線膨張係数の差が35以内にならなかった。 【0088】

【発明の効果】以上述べたように本発明によれば、熱圧 着の際の絶縁性接着剤の内部応力を小さくすることがで き、これにより異方導電性接着フィルムの導通信頼性を 向上させることができる。また、本発明によれば、薄い 20 ガラス基板等の被着体に対して反りの生じない異方導電 性接着フィルムを提供することができる。

【図面の簡単な説明】

【図1】図1 (a) ~ (c) は、本発明に係る異方導電性接着フィルムの好ましい実施の形態を示すもので、図1 (a) は、熱圧着前の状態を示す構成図、図1 (b) は、熱圧着後の状態を示す構成図、図1 (c) は、図1 (b) の一点鎖線Aで示す部分の作用を示す説明図である。

0 【符号の説明】

- 1 異方導電性接着フィルム
- 2 LCDパネル
- 3 ITO電極
- 4 LSIチップ(被着体)
- 5 バンプ
- 6 絶緣性接着剤樹脂(絶緣性接着剤)
- 7 導電粒子
- 8 ゴム系の弾性粒子
- 9 無機粒子

【図1】

本発明の異方導電性接着フィルムの一例

【手続補正書】

【提出日】平成10年7月28日(1998.7.2 8)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】 0024

【補正方法】変更

【補正内容】

【 O O 2 4 】 また、絶縁性接着剤樹脂 6 は、硬化後の弾性率が、後述するゴム粒子 8 の弾性率より大きいものを 10 用いるとよい。好ましい絶縁性接着剤樹脂 6 の弾性率は、 5 × 1 O 8 ~ 1 × 1 O 10 P a である。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0025

【補正方法】変更

【補正内容】

【0025】絶縁性接着剤樹脂6の弾性率が 5×10^8 Paより小さいと、信頼性を確保するための耐熱性が劣るという不都合があり、 1×10^{10} Paより大きいと、絶縁性接着剤樹脂6の内部応力を十分に小さくすることができないという不都合がある。

【手続補正3】

【補正対象書類名】明細書

【補正対象項目名】0066

【補正方法】変更

【補正内容】

【 0066 】 [実施例 2] SiO2 粒子として平均粒径が 0.2μ mのものを用い、ゴム粒子として平均粒径 180 n mの架橋ポリブタジエン粒子(レジナス化成社製 R K B 1003) 3 重量%を加えた以外は実施例 1 と同様の方法によって異方導電性接着フィルムのサンプルを作成した。

フロントページの続き

(72) 発明者 阿久津 恭志

栃木県鹿沼市さつき町12-3 ソニーケミカル株式会社第2工場内

F ターム(参考) 4J004 AA05 AA07 AA10 AA11 AA13 AA19 AB05 CA06 CC02 FA05 5G301 DA05 DA10 DA29 DA32 DA42 DA57 DD03 DD08