

Einführung in die Algebra

Aufarbeitung der Übungsaufgaben

Tobias Wedemeier

13. November 2014 gelesen von Prof. Dr. Kramer

Inhaltsverzeichnis

1	Aussagen aus den Übungen							
	1.1	Zettel 1	1					
		1.1.1 Aufage 1.2	1					
		1.1.2 Aufgabe 1.4	1					
	1.2	Zettel 2	1					
		1.2.1 Aufgabe 2.1	1					
		1.2.2 Aufgabe 2.3						
	1.3	Zettel 3	2					
ΑŁ	Abbildungsverzeichnis							

Inhaltsverzeichnis

1 Aussagen aus den Übungen

1.1 Zettel 1

1.1.1 Aufage 1.2

Sei G eine Gruppe. A,B Untergruppen von G.

 $Z_{\mathbb{Z}}$: Wenn $A \cup B$ eine Untergruppe ist, dann gilt: $A \subseteq B$ oder $b \subseteq A$.

Beweis:

Annahme: $A \not\subseteq B$. Also ex. ein $a \in A \setminus B$ und $b \in B$ beliebig. Betrachte $ab \in A \cup B$, da AB Untergruppe. Also ist $ab \in A$ oder $ab \in B$.

Sei $ab \in B$ und $b^{-1} \in B$, da B Untergruppe, folgt, dass $abb^{-1} = a \in B$. $x \notin Annahme$.

Also $ab \in A$ und $a^{-1} \in A$, da A Untergruppe, folgt, dass $a^{-1}ab = b \in A$. Da b beliebig war, folgt $B \subseteq A$.

1.1.2 Aufgabe 1.4

Gruppe $G.\ A,B$ Untergruppen.Wir definieren $AB := \{ab \mid a \in A, b \in B\}.$

- (i) Die Menge AB ist im allgemeinen keine Untergruppe.
- (ii) Wenn weiter gilt AB=BA, dann ist AB eine Untergruppe.

Beweise klar! (√)

1.2 Zettel 2

1.2.1 Aufgabe 2.1

Eine Gruppe G hat **Exponent** k, wenn für jedes Gruppenelement $g \in G$ gilt: $g^k = e$. G Gruppen mit Exponent 2 sind abelsch.

Beweis:

 $\overline{\text{Aus } g^2} = e \text{ folgt } g = g^{-1} \ \forall g \in G. \ a, b \in G \text{ beliebig}$

$$ab = (ab)^{-1} \stackrel{\mathsf{G}}{=} {}^{\mathsf{Gruppe}} b^{-1}a^{-1} = ba$$

Anmerkung: Gruppen mit Exponenten 3 sind im allgemeinen nicht abelsch.

1.2.2 Aufgabe 2.3

Menge X und Sym(X). Der <u>Träger einer Permutation</u> $\sigma \in Sym(X)$ ist definiert wie folgt: $\sup(\sigma) := \{x \in X \mid \sigma(x) \neq x\}$.

- (i) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ für $\rho, \sigma \in Sym(X)$ gilt, dann folgt $\rho \circ \sigma = \sigma \circ \rho$.
- (ii) Wenn $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$ und $\rho \circ \sigma = \operatorname{id}$ für $\sigma, \rho \in Sym(X)$ gilt, dann folgt $\rho = \sigma = \operatorname{id}$.

Beweis:

$$\text{(i) Es gilt: } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right. \\ \text{oder } \sigma \circ \rho = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right.$$

 $\mathsf{Da}\ \mathrm{supp}(\rho)\cap\mathrm{supp}(\sigma)=\emptyset$ gilt und somit x nicht von beiden Permutationen verändert wird. Da Permutationen bijektiv nach Definition sind, ist dies wohldefiniert.

$$\text{(ii) Nach (i) gilt, dass } \rho \circ \sigma = \left\{ \begin{array}{ll} x, & \text{wenn } x \notin \operatorname{supp}(\rho), \ \operatorname{supp}(\sigma) \\ \rho(x), & \text{wenn } x \in \operatorname{supp}(\rho) \\ \sigma(x), & \text{wenn } x \in \operatorname{supp}(\sigma) \end{array} \right.$$
 gilt.

Also muss $\rho(x)=x$ gelten, da $\rho\circ\sigma$ gilt, analog $\sigma(x)=x$. Also folgt $\rho=\sigma=\mathrm{id}$.

1.3 Zettel 3

Abbildungsverzeichnis

Abbildungsverzeichnis