CS 216 Homework 1

Zachary DeStefano, 15247592

Due Date: April 9

Problem 4

Problem 4a

The variable x will be assigned to an array that is the numbers 1 through 5 arranged in a random order.

Problem 4b

The variable a will be assigned to an array that is the numbers 1 through 10 arranged in chronological order. The variable b will end up being assigned an array that is the numbers 1, 4, 7, 10 because it is the first number and then every third number after that.

Problem 4c

The variable f will be assigned to an array that is the numbers 1501 to 2000 in chronological order. The variable g will be assigned to the indices of f where the entries are greater than 1850 which is 351 to 500. The variable h will then be assigned an array that is the numbers 1851 to 2000.

Problem 4d

The variables x will be assigned to a vector of 10 entries where each entry has value 22. The variable y will be assigned the sum of the entries which will be 220.

Problem 4e

The variable a will be assigned an array that is the numbers 1 to 1000 in chronological order. The variable b will be assigned a vector that is the numbers 1 to 1000 in reverse order.

Problem 5

Figure 1: Original Image from the Internet

Figure 2: Modified 100 by 100 image

Figure 3: Modified 100 by 100 image in grayscale

Here is the initialization code:

```
A = rgb2gray(imread('modifiedImageProb5.jpg'));
A = im2double(A);
imwrite(A,'blackWhiteImage.jpg','JPEG');
```

Problem 5a

Figure 4: Plot of Intensity Values

Here is the code used to get the plot:

```
singleVectorA = A(:);
sortedValuesA = sort(singleVectorA);
figure
plot(sortedValuesA);
xlabel('Entry Number in Sorted Vector');
ylabel('Intensity Value');
title('Problem 5, Part A plot of sorted intensity values');
```

Problem 5b

Figure 5: Histogram of Intensities with 32 bins

Here is the code used to get the plot:

```
figure
hist(singleVectorA, 32);
xlabel('Intensity Bin');
ylabel('Number of Occurances');
title('Problem 5, Part B histogram of intensities');
```

Problem 5c

Figure 6: Binary Image using 0.65 as the threshold

Here is the code used to get the image:

```
threshold = 0.65;
binaryA = zeros(size(A));
```

```
binaryA(A > threshold) = 1;
imwrite(binaryA,'partCimage.jpg','JPEG');
```

Problem 5d

Figure 7: Bottom Right Quadrant of A

Here is the code used to get the image:

```
sizeA = size(A);
sizeAhoriz = sizeA(1);
sizeAvert = sizeA(2);
bottomRightA = A(sizeAhoriz/2:sizeAhoriz,sizeAvert/2:sizeAvert);
imwrite(bottomRightA,'partDimage.jpg','JPEG');
```

Problem 5e

Figure 8: New image with mean subtracted

Here is the code used to get the image:

```
meanBrightness = mean(singleVectorA);
meanSubtractedA = A-meanBrightness;
meanSubtractedA( meanSubtractedA < 0) = 0;
imwrite(meanSubtractedA,'partEimage.jpg','JPEG');</pre>
```

Problem 5f

```
function [ result ] = diceRoll_partF()
%DICEROLL_PARTF Summary of this function goes here
%    Detailed explanation goes here
result = floor(rand(1)*6) + 1;
end
```

Problem 5g

```
y = [1:6];
z = reshape(y,3,2);
```

Problem 5h

Result is that x = 0 and [r, c] = [95, 99]. Code to accomplish it is the following

```
x = min(singleVectorA);
[r,c] = find(A==x,1);
```

Problem 5i

The result is 5 unique values. Here is the code that was used:

```
v = [1 8 8 2 1 3 9 8];
sizeUniqueV = size(unique(v));
numUnique = sizeUniqueV(2);
```

Problem 5 Compiled Code

Here is the entire script used for problem 5, except for part F which was a separate function. This just puts all the code pieces from the previous sections together:

```
A = rgb2gray(imread('modifiedImageProb5.jpg'));
A = im2double(A);
imwrite(A,'blackWhiteImage.jpg','JPEG');
%Part A
singleVectorA = A(:);
sortedValuesA = sort(singleVectorA);
figure
plot(sortedValuesA);
xlabel('Entry Number in Sorted Vector');
ylabel('Intensity Value');
title('Problem 5, Part A plot of sorted intensity values');
%Part B
figure
hist(singleVectorA, 32);
xlabel('Intensity Bin');
ylabel('Number of Occurances');
title('Problem 5, Part B histogram of intensities');
%Part C
threshold = 0.65;
binaryA = zeros(size(A));
binaryA(A > threshold) = 1;
imwrite(binaryA,'partCimage.jpg','JPEG');
%Part D
sizeA = size(A);
sizeAhoriz = sizeA(1);
sizeAvert = sizeA(2);
bottomRightA = A(sizeAhoriz/2:sizeAhoriz,sizeAvert/2:sizeAvert);
imwrite(bottomRightA,'partDimage.jpg','JPEG');
%Part E
meanBrightness = mean(singleVectorA);
```

```
meanSubtractedA = A-meanBrightness;
meanSubtractedA( meanSubtractedA < 0) = 0;
imwrite(meanSubtractedA,'partEimage.jpg','JPEG');

%diceRoll_partF.m is part F

%Part G
y = [1:6];
z = reshape(y,3,2);

%Part H
x = min(singleVectorA);
[r,c] = find(A==x,1);

%Part I
v = [1 8 8 2 1 3 9 8];
sizeUniqueV = size(unique(v));
numUnique = sizeUniqueV(2);</pre>
```