1 Formas Canónicas

1.1 Valores y Vectores Propios

En lo que sigue de este capitulo, $U,\ V,\ W$ denotarán \mathbb{K} -espacios vectoriales de dimensión finita y \mathbb{K} denotará los cuerpos \mathbb{R} o \mathbb{C} , salvo mención especifica distinta.

Definición 1.1. Dada una transformación lineal $T: V \to V$, un número $\lambda \in \mathbb{K}$ se llama valor propio o autovalor de T, si existe un vector $v \in V$, $v \neq 0$, tal que $T(v) = \lambda v$. Este vector se llama vector propio o autovector de T correspondiente al autovalor λ .

Llamaremos valor propio y vector propio de una matriz A, al valor propio y vector propio correspondiente de la transformación lineal L_A , respectivamente.

Los autovectores de T y A_T , en general, se hallan en espacios vectoriales distintos y no tienen que ser iguales. En cambio los autovalores que se hallan en el mismo cuerpo \mathbb{K} , por lo que cabe la pregunta: ¿son estos iguales o distintos? Una elegante respuesta a esta interrogante se da en las siguientes proposiciones.

Sea $\{v_1,\ldots,v_n\}$ una base de V y A_T la matriz asociada a la transformación lineal $T\colon V\to V$ en esta base. A cada vector $v\in V$, $v=\sum\limits_{j=1}^n x_jv_j$, le asociamos su vector de coordenadas $x_v=(x_1,\ldots,x_n)\in\mathbb{K}$. Con estas notaciones tenemos el siguiente resultado.

Proposición 1.1. La función $\psi:V\to\mathbb{K}^{n\times 1}$, definida por $\psi(v)=x_v$, es un isomorfismo y satisface

$$\psi(T(v)) = A_T(x_v)$$

.

Demostración. Es inmediato que ψ es una transformación lineal, además es un isomorfismo, pues lleva la base v_i de V en la base canónica e_i de $\mathbb{K}^{n\times n}$.

Por otro lado

$$\psi(T(v_j)) = \psi(\sum_{i=1}^n a_{ij}v_i) = (a_{1j}, a_{2j}, \dots, a_{nj}) = A_T(e_j)$$

de donde

$$\psi(T(v_j)) = \psi(\sum_{j=1}^{n} x_j T(v_j)) = \sum_{j=1}^{n} x_j \psi(T(v_j))$$

$$\psi(T(v_j)) = \sum_{x_j}^{n} A_T(e_j) = A_T(x_1, \dots, x_n)^t$$

$$\psi(T(v_j)) = A_T(x_v)$$

Esto concluye la prueba de la proposición.

Proposición 1.2. Una transformación lineal $T: V \to V$ y su matriz asociada A_T tienen los mismos autovalores.

Demostraci'on. Sea λ un autovalor de T y $v\in V$ un autovector correspondiente a $\lambda,$ entonces

$$A_T(x_v) = \psi(T_v)$$

$$A_T(x_v) = \psi(\lambda v) = \lambda \psi(v)$$

$$A_T(x_v) = \lambda x_v$$

Esto prueba que λ es un autovalor de A_T .

Recíprocamente, sea λ un autovalor de A_T y $x \in \mathbb{K}^{n \times 1}$ un correspondiente autovector. Existe entonces un vector $v \in V$ tal que $\psi(v) = x$ (pues ψ es un isomorfismo), de donde

$$\psi(T_v) = A_T x$$

$$= \lambda x = \lambda \psi(v)$$

$$= \psi(\lambda v)$$

Siendo ψ inyectiva, resulta $T(v)=\lambda v$. Como $v\neq 0,\ \lambda$ es un autovalor de T. Esto prueba la proposición.

Proposición 1.3. Una transformación lineal $T:V\to V$ y su matriz asociada A_T tienen los mismos autovalores.

Demostraci'on. Sea λ un autovalor de T y $v\in V$ un autovector correspondiente a $\lambda,$ entonces

$$\begin{aligned} A_T(x_v) &= \psi(T(v)) & \text{(por la proposición)} \\ &= \psi(\lambda v) = \lambda \psi(v) \\ &= \lambda x_v \end{aligned}$$

Esto prueba que λ es un autovector de A_T .

Recíprocamente, sea λ un autovalor de A_T y $x \in \mathbb{K}^n$ un correspondiente autovector. Existe entonces un vector $v \in V$ tal que $\psi(v) = x(\text{pues } \psi \text{ es un isomorfismo})$, de donde

$$\psi(T(v)) = \psi(T(v))$$
 (por la proposición)
= $\psi(\lambda v) = \lambda \psi(v)$
= $\lambda(x_v)$

siendo ψ inyectiva, resulta $T(v) = \lambda v$. Como $v \neq 0$, λ es autovalor de T.

Corolario 1.1. Si $A, P \in \mathbb{K}^{n \times n}$ y P es inversible, entonces A y $P^{-1}AP$ tienen los mismos autovalores.

Demostración. Es suficiente observar que A y $P^{-1}AP$ son matrices asociadas a una misma transformación lineal.

La existencia de de autovalores de una transformación lineal depende del cuerpo $\mathbb K$ y de la dimensión del espacio vectorial, como se muestra en el siguiente ejemplo.

Ejemplo 1.1. La transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (-y, x) no posee autovalores en \mathbb{R} .

En efecto, supongamos que $\lambda\in\mathbb{R}$ es un autovalor de T y $v=(a,b)\neq 0$ un correspondiente autovector. Por definición

$$(-b,a) = T(a,b) = \lambda(a,b)$$

ecuación que no posee solución en \mathbb{R} .

2 Tiangulación de Matrices. El Teorema de Cayley-Hamilton

Definición. Diremos que una matriz $A \in \mathbb{K}^{n \times n}$ es **triangulable** si es semejante a una matriz triangular(superior). Una transformación lineal $T: V \to V$ es **triangulable** si existe una base de V en la que la matriz asociada a T es triangular.

Una proposición importante sobre la estructura de una matriz es la siguiente.

Proposición 2.1. Sea $\mathbb{K} = \mathbb{C}$. Toda transformación lineal $T: V \to V$ es triangulable.

Demostración. Esta demostración se hará por inducción sobre $n=\dim V$. Si n>1, suponemos que la proposición es valida para todo espacio vectorial de dimensión n-1. Consideremos la transformación lineal $T^{\triangledown}\colon V^*\to V^*$, definida por $T^{\triangledown}(f)=f\circ T$, para $f\in V^*$.

Sea $\lambda \in \mathbb{C}$ un autovalor de T^{\triangledown} y $g \in V^*$ un correspondiente autovector, esto es

$$T^{\nabla} = \lambda g, \ g \neq 0.$$

El subespacio de V

$$S = \{ v \in V/g(v) = 0 \}$$

tiene dimensión n-1 y es invariante por $T(T(s)\subset S)$. Por hipótesis inductiva, S posee una base $\{v_1,\ldots,v_n\}$ en la que T se escribe como

$$T(v_1) = \lambda_1 v_1$$

$$T(v_2) = a_{12}v_1 + \lambda_2 v_2$$

$$\vdots$$

$$T(v_{n-1}) = a_{1,n-1}v_1 + \dots + \lambda_{n-1}v_{n-1}$$

Si a los vectores v_1, \ldots, v_n agregamos un vector v_n a fin de completar una base de V, con la expresión

$$T(v_n) = a_{1n}v_1, ..., \lambda v_n$$

la matriz asociada a T, en la base $\{v_1, \ldots, v_n\}$ es triangular superior.