Grid Computing: Processamento de Alto Desempenho em Rede

José Roberto B. Gimenez

Coordenador de TI do GridUNESP jr@unesp.br

Estrutura da apresentação

- Motivação para uso de Grid
- Discussão sobre problemas em Grid
- Situação Geral da Tecnologia Grid
- Apresentação do SPRACE
- Descrição do Projeto GridUNESP

Por que grid?

- Existência de problemas complexos
- Motivação para solução breve
 - Ninguém inicia a solução de um problema que termina na próxima vida
 - Previsões precisam ser finalizadas antes do evento ocorrer

O que limita a velocidade das máquinas?

- Limitação dos sistemas devido a componentes de hardware
 - Evolução da Tecnologia
- Limitação dos sistemas devido a elementos da natureza
 - Velocidade da luz

Tecnologia x Tempo

Tecnologia x Tempo

	Ano 1994	Ano 2008	n° de vezes	Tempo p/ dobrar
Velocidade process.	50 MHz	4 GHz	80 x	22 meses
Espaço de memória	16 MB	4 GB	250 x	18 meses
Memória em disco	300 MB	300 GB	1000 x	14 meses
Conexões LAN	10 Mb/s	1 Gb/s	1000 x	14 meses
Conexões WAN	64 Kb/s	34 Mb/s	500 x	16 meses

O Primeiro Disco Rígido

- O disco rígido já tem mais de 50 anos!
- O primeiro disco rígido foi o IBM 305 RAMAC (Random Access Method of Accounting and Control). lançado em 1956.
- Tinha uma capacidade de armazenamento de 5 MB.
- Custava cerca de USD 50,000.

modelos de disco atuais

Formatos de 3,5" e 2,5"

cabo serial e cabo paralelo

Cabo Paralelo

Cabo serial

Conectores - SAS

SERIAL ATTACHED SCSI BACKPLANE ACCEPTS SERIAL ATTACHED SCSI AND SATA DISK DRIVES

Algumas continhas...

Capacidade armazenada em uma trilha (externa) 84 mm $\times \pi \times 28.500$ b/mm = 940 KB

Taxa de transferência para esta mesma trilha 84 mm $\times \pi \times 1025/60 \times 28.500$ b/mm = 1,25 Gb/s

Velocidade da Luz

- Tempo de um ciclo de máquina para um hardware com clock de 4 GHz:
 - 250 pS (pico segundos)
- Distância percorrida por um sinal elétrico em uma trilha de circuito impresso em 250 pS:
 - 5 cm

 A solução de problemas de grande complexidade exige a associação de muitas máquinas em paralelo.

 Nove grávidas não geram uma criança em um mês.

Requisitos para Processamento em Grid

- Problema paralelizável
- Fluxos de dados independentes
- Altas taxas de transferência
- Necessidade de uma instância de gerenciamento: o middleware.

Paradoxos da TI

- Para caber mais informação os dispositivos precisam diminuir de tamanho.
- Canais seriais transferem mais informação que vias paralelas.
- Padrões: sempre existe uma imensidade deles para se escolher.
- Atrasar a decisão de se fazer uma compra resulta em uma compra melhor.

A Hierarquia de Grid

Papel do SPRACE

- Mémbro da Colaboração DØ e CMS,
- Desde março de 2004 o SPRACE (São Paulo Regional Analysis Centre) contribui na produção de Monte Carlo e reprocessamento de eventos da Colaboração DØ.
- Em agosto de 2005 ingressou no OSG (Open Science Grid). Também participa na iniciativa de grid do LHC, preparando-se para as atividades do CMS, que se iniciam este ano.
- http://hep.ift.unesp.br/SPRACE/

SPRACE

- Tier 2 do OSG / CMS
 - 240 cores (~400 kSI2K)
 - 12 TB de memória em disco
 - Totalmente dedicado às colaborações Dzero e CMS

	fase 1 (2004)	Phase 2 (2005)	Phase 3 (2006)	Phase 4 (2008-10) planned
CPUs (cores)	50	116	240	> 500
Power (kSI2K)	40	132	400	> 1,200
Memória (TB)	4	12	12	> 200 TB

O Projeto GridUNESP

- Primeiro Campus Grid universitário em andamento no Brasil.
- Objetivo: atender à necessidade de equipes de pesquisa que demandam processamento de alto desempenho.

Linhas de Pesquisa

- Física de Altas Energias
- Biologia Computacional
- Química Quântica
- Fluidodinâmica Computacional
- Genômica
- Supercondutividade
- Geologia
- Segurança de Redes

Filosofia do GridUNESP

- Clusters
 - Um Cluster Central
 - 7 Cluster Periféricos
- Baseado em tecnologia CISC X86
- Componentes de mercado (commodities)
- Rede Infiniband (10 Gbb/s full-duplex)
- Processadores com 4 núcleos (quad-core)
- Interfaces SAS e SATA e FC (3 4 Gb/s)

Unesp – Universidade Estadual Paulista

- Presente em 23 cidades do Estado de São Paulo.
- Cerca de 40 campi universitários
- Perfil apropriado para Grid Computing
- Distribuição balanceada de recursos
- Acesso estratégico aos avanços em TI

Localização dos Clusters

unespNET – Versão Atual – 2006/2007

Rede KyaTera

Equipe de Coordenação

- Sergio F. Novaes (Coordenador Geral)
- Ney Lemke (Coordenador Científico)
- Eduardo M. Gregores (Coordenador Técnico)
- José Roberto B. Gimenez (Coord. de TI)

GridUnesp - Hardware

Cluster Central

Clusters periféricos

7 X

	Cluster central	Clusters periféricos	Total
CPUs (cores)	2,048	896	2,944
Power (kSI2K)	6,100	2,600	8,700
Storage (TB)	150	92	242

Cluster Central - Características

- 256 work nodes dual quad-core Intel Xeon (E5440 Harpertown 2.83GHz, 12MB L2 Cache), 16 GB mem
- 4 head nodes: quad quad-core Intel Xeon (E5440 Harpertown 2.83GHz, 12MB L2 Cache), 32 GB mem
- 4 hybrid data servers (Sun Fire X4500), 24 TB each
- Storage area network (fibre-channel 4 Gbps), 36 TB
- Local area network: 10 x Cisco Catalyst 2960
- High speed interconnect: Cisco SFS 7024D 4 x DDR InfiniBand server switch (288 ports)
- Out-of-band management network
- 2 console/admin workstations (Sun Ultra 24)

Cluster Central – Esquema de Conexões

Clusters Periféricos

- 16 nós: dual quad-core Intel Xeon processors (E5440 Harpertown 2.83GHz, 12MB L2 Cache), 16 GB mem
- 2 head-nodes: dual quad-core Intel Xeon processors (E5440 Harpertown 2.83GHz, 12MB L2 Cache), 16 GB mem
- SAN: (fibre-channel 4 Gbps), 12 TB
- LAN: GigabitEthernet (Cisco Catalyst 2960)

Treinamento

Sala de Treinamento

 20 estações SUN - processadores Intel Core 2 quad (Q6600 Kentsfield 2.40 GHz, 4MB L2 Cache), 02 GB mem, 19" monitor de LCD

Cluster de Desenvolvimento

- 4 servers dual quad-core Intel Xeon (E5335 2.00GHz, 12MB L2 Cache), 08 GB mem (32 cores)
- 1 head-node dual quad-core Intel Xeon (E5335 2.00GHz, 12MB L2 Cache), 08 GB mem (8 cores)
- Rede Infiniband: Switch Cisco SFS 7000D 4 x DDR 24 portas

Instalações do GridUNESP

Mais informações

- http://unesp.br/gridunesp
- http://www.sprace.org.br
- http://www.sprace.org.br/twiki/bin/view/Main/Gridunesp