Математическая статистика.

Андрей Тищенко @AndrewTGk 2024/2025

Лекция 10 января

Преамбула

Статистика. Мнения о появлении этого слова:

- 1. Статистиками в Германии назывались люди, собирающие данные о населении и передающие их государству.
- 2. В определённый день в Венеции народ выстраивался для выплаты налогов (строго фиксированных, в зависимости от рода действий). Государство собирало данные обо всём населении. Это происходило до появления статистиков в Германии, поэтому мы будем считать, что статистика пошла из Венеции.

Задача статистики— по результатам наблюдений построить вероятностную модель наблюдаемой случайной величины.

Основные определения

Определение

Однородной выборкой объёма n называется случайный вектор $X=(X_1,\ldots,\ X_n)$, компоненты которого являются независимыми и одинаково распределёнными. Элементы вектора X называются элементами выборки.

Определение

Если элементы выборки имеют распределение $F_{\xi}(x)$, то говорят, что выборка соответствует распределению $F_{\xi}(x)$ или порождена случайной величиной ξ с распределением $F_{\xi}(x)$.

Определение

Детерминированный вектор $x=(x_1,\ldots,x_n)$, компоненты которого x_i являются реализациями соответствующих случайных величин X_i ($i=\overline{1,n}$), называется реализацией выборки.

Уточнение

Если X — однородная выборка объёма n, то его реализацией будет вектор x, каждый элемент x_i которого является значением соответствующей ему случайной величины (элемента выборки) X_i .

Определение

Выборочным пространством называется множество всех возможных реализаций выборки $X = (X_1, \ldots, X_n)$.

Пример

У вектора $X=(X_1,\ldots,\ X_{10})$ каждый элемент X_i которой порождён случайной величиной $\xi \sim U(0,\ 1),$ выборочным пространством является \mathbb{R}^{10} (так как X_i может принять любое значение на \mathbb{R})

Определение

Пусть реализация выборки упорядочена по возрастанию:

$$x_{(1)} \leqslant x_{(2)} \leqslant \cdots \leqslant x_{(n)}$$

Где $x_{(i)} - i$ -ый по возрастанию элемент.

Обозначим $X_{(k)}$ случайную величину, реализация которой при каждой реализации x выборки X принимает значение $x_{(k)}$. Тогда последовательность $X_{(1)}, \ldots, X_{(n)}$ называется вариационным рядом выборки.

Определение

Случайная величина $X_{(k)}$ называется k-ой порядковой статистикой выборки.

Определение

Случайные величины $X_{(1)},\ X_{(n)}$ называются <u>эстремальными порядковыми статистиками</u>.

Определение

Порядковая статистика $X_{([n\cdot p])}$ называется выборочной квантилью уровня p, где $p\in[0,\ 1]$

Определение

Пусть каждый элемент выборки X объёма и имеет распределение $F_{\xi}(x)$. Эмпирической функцией распределения такой выборки называется

$$\hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x)$$

I — индикаторная функция. $I = \begin{cases} 1, & \text{если аргумент верен} \\ 0, & \text{иначе} \end{cases}$

Пусть x_1, \ldots, x_n — реализация выборки X_1, \ldots, X_n

Свойства
$$\hat{F}_n(x)$$

1.
$$\forall x \in \mathbb{R} \quad E\hat{F}_n(x) = E\left(\frac{1}{n}\sum_{k=1}^n I(X_k \leqslant x)\right) = \frac{1}{n}\sum_{k=1}^n EI(X_k \leqslant x) = P(X_1 \leqslant x) = F_{\xi}(x)$$

2. По усиленному закону больших чисел (УЗБЧ)

$$\forall x \in \mathbb{R} \quad \hat{F}_n(x) = \frac{1}{n} \sum_{k=1}^n I(X_k \leqslant x) \xrightarrow[n \to \infty]{\text{II. H.}} EI(X_k \leqslant x) = F_{\xi}(x)$$

Гистограмма

Разбить $\mathbb R$ на (m+2) непересекающихся интервала. Рассматриваются $x_{(1)},\dots,\ x_{(n)}$

Размах выборки $r=x_{(n)}-x_{(1)}$ $\Delta=\frac{r}{m}$ — ширина интервала. $h_k=\frac{\nu_k}{\Delta},\ k=\overline{1,\ k},$ где ν_k — количество попаданий на интервал.