Revelations of a Biological Abacus

1. Preamble

Over the past few years, a number of world-class scientists have reported the discovery of numerical patterns in the universal genetic code. Thus, from France (Boulay), Russia (Gusev and Petroukhov), Kazakhstan (shCherbak), Serbia (Rakocevic) and Algeria (Negadi) - none of whom can be assumed to espouse the Judeo-Christian cause - we hear of the reality of what must be widely regarded as *interesting news*. However, such news, when interpreted in the light of what has already been established in the pages of this site as hard fact, threatens to lead to some uninvited and serious consequences - not least, in man's understanding of who and what he is.

This page focuses attention exclusively on the work of **Vladimir shCherbak**, as documented in his paper *Arithmetic inside the universal genetic code**. However, before these significant findings can be offered to the eye of the general reader, it is necessary that certain relevant and generally accepted technicalities be briefly introduced and explained. Following this, all that remains is to allow the numbers to speak for themselves.

*Biosystems Vol.70, Issue 3, August 2003, pp187-209

2. Introduction

2.1 - The Amino Acids

Central to the chemical processes that occur to maintain the life of living organisms are the 20 *amino acids* (Table 1). They are the basic raw materials from which *proteins* are synthesised - these being substances that perform the essential structural and functional roles required in all living things. The amino acids, in turn, derive from the coded instructions contained in the organism's DNA (deoxyribonucleic acid) and RNA (ribonucleic acid). Each of these instructions (known as a *codon*) takes the form of an ordered string of 3 letters drawn from a *genetic alphabet* of just 4 characters, viz T, C, A and G (for DNA) and U, C, A and G (for RNA). Clearly, there exists only 64 unique arrangements of each of these (Table 2).

Amino Aci	d	TODIA		Ī		ECON		-4	ĺ
Name	Abb'n	DNA	Г		TTT	C	A	G	-
Alanine	Ala					TCT TCC TCA TCG	TAT TAC TAA TAG	TGT TGC TGA TGG	0
Arginine	Arg				CTT CTC	ССТ	CAT	CGT	1
Asparagine	Asn		FIRST BASE	С	CTA	CCC	CAC	CGC CGA CGG	0 4
Aspartic acid	Asp				CTG	CCG	CAG		
Cysteine	Cys		FIRS	A	ATT	ACC	AAC	AGT AGC	TOA
Glutamic acid	Glu		7		ATA ATG	ACA ACG	AAA AAG	AGA AGG	ć
Glutamine	Gln				GTT	GCT GCC	GAT	GGT GGC	Ţ
Glycine	Gly			G	GTC GTA GTG	GCA GCG	GAC GAA GAG	GGA	A
Histidine	His	RNA			919	GCG	GAG	999	-
Isoleucine	Ile					ECON			
Leucine	Leu			UUU	UCU	UAU	UGU	L	
Lysine	Lys		U	UUC	UCC	UAC	UGC	C	
Methionine	Met				ŭŭĜ	ŭčĜ	ŬÂĜ		A
Phenylalanine	Phe		ш		CUU	CCU	CAU	CGU CGC	L
Proline	Pro		BAS	С	CUA	CCA	CAA	CGA	C A
Serine	Ser		FIRST BASE		AUU	ACU	AAU	AGU	100
Threonine	Thr		FIF	A	AUC	ACC	AAC AAA	AGC AGA	L
Tryptophan	Trp		-		AUG	ACG	AAG	AGG	G
Tyrosine	Tyr			G	GUU GUC	GCU GCC	GAU GAC	GGU	C
Valine	Val			-	GUA GUG	GCA	GAA GAG	GGA GGG	Č
Table 1			_	O		Tab			

2.2 - Their Composition

The chemical elements involved in the structure of amino acids are tabulated below together with the numbers of protons and neutrons in their nuclei - the latter relating specifically to the most common isotope of each (Table 3). Of course, these elements, as they occur naturally, will be *mixtures* of isotopes, and it is important that we realise what the term 'common isotope' implies in this context (Table 4).

Eleme	ent	Nucleons					
Name	Symbol	Protons	Neutrons	Total			
Hydrogen	Н	1	0	1			
Carbon	С	6	6	12			
Nitrogen	N	7	7	14			
Oxygen	0	8	8	16			
Sulphur	S	16	16	32			

Table 3

The elements of amino acids with their idealised atomic masses

Element	Approx Atomic Mass of most common isotope	Atomic Mass natural isotope mixture
Н	1	1.008
С	12	12.011
N	14	14.007
О	16	15.999
S	32	32.066

Table 4

The elements as they are found to occur naturally

Clearly, the whole-number totals of nucleons recorded in Table 3 appear well-justified and, based upon these figures, the masses of the amino acid molecules may now be computed. However, before proceeding to do that, it is necessary that we consider an important structural feature of amino acids.

2.3 - Standard Block and Side Chain

It transpires that 19 of the amino acids comply with the generic formula:

Here, the lower component represents the so-called $standard\ block$ - designated **B**. The variety in amino acid characteristics derives entirely from **R** - the unique $side\ chain$. The one exception to this general rule is Proline which has one less hydrogen bonded to the nitrogen of its standard block. Thus, applying the data of Table 3 to the elements of the standard block, we deduce the molecular masses to be

2+14+12+1+12+32+1=74 (for all amino acids excluding Proline), and 73 for Proline.

2.4 - The Portent

Let us immediately observe that these are interesting figures - and for the following reasons:

- **2.4.1** The juxtaposition of 19, 74 (=2x37) and 73 will already be familiar to those acquainted with the pages of this site. Genesis 1:1 as originally delivered in Hebrew has the numerical value 2701, or 37x73; and the sum of its two final words, translated "and the earth", has the value 703, or 19x37. Further, both 2701 and 703 are *coordinated* triangular numbers. [Further details here
- **2.4.2** But the factors themselves are also related figurate numbers (Figure 1).

2.4.3 - 74 and 73 are each the penultimate term of a *decimal* sequence specified by the rule: S(r) - the rth term - is formed as the sum of the cubes of the digits of S(r-1) - the term immediately preceding. The ultimate term in respect of 74 is 407 (value of the 6th word of the Bible's first verse); and of 73, 370 (a cyclic rotation of 703 - the sum of words 6 and 7).* It should not pass unnoticed that 74, 407 and 370 are multiples of the unique *trifigurate* number 37; and that 73 is its decimal digit reflection. One further observation: the sum of 407 and 370 is 777, or 3x7x37.

* There are just 4 natural numbers, base 10, that equal the sum of the cubes of their respective digits. Along with 407 and 370, we have 371 (duration, in days, of the Noahic Flood) and 153 (the miraculous catch of fishes described in John 21:11). Remarkably, the last is the terminal value of any sequence (as described) that begins with a multiple of 3.

Since shCherbak's findings take us further along this route in which the prime number 37 dominates - but only when Proline is harmonised with the other 19 amino acids by transferring one hydrogen from R to B - in the circumstances, we believe this adjustment to be fully justified.

2.5 - The Molecular Masses - We are now in a position to evaluate the molecular masses (or nucleon counts) of the 20 amino acids. Here are the details:

Amino Ac	id	Emp	pirical	Con	nposi	tion	N	ucleons	
Allillo Ac	.iu	С	Н	N	0	S	Protons	Neutrons	Total
Alanine	[Ala]	3	7	1	2	0	48	41	89
Arginine	[Arg]	6	14	4	2	0	94	80	174
Asparagine	[Asn]	4	8	2	3	0	70	62	132
Aspartic acid	[Asp]	4	7	1	4	0	70	63	133
Cysteine	[Cys]	3	7	1	2	1	64	57	121
Glutamic acid	[Glu]	5	9	1	4	0	78	69	147
Glutamine	[Gln]	5	10	2	3	0	78	68	146
Glycine	[Gly]	2	5	1	2	0	40	35	75
Histidine	[His]	6	9	3	2	0	82	73	155
Isoleucine	[Ile]	6	13	1	2	0	72	59	131
Leucine	[Leu]	6	13	1	2	0	72	59	131
Lysine	[Lys]	6	14	2	2	0	80	66	146
Methionine	[Met]	5	11	1	2	1	80	69	149
Phenylalanine	[Phe]	9	11	1	2	0	88	77	165
Proline	[Pro]	5	9	1	2	0	62	53	115
Serine	[Ser]	3	7	1	3	0	56	49	105
Threonine	[Thr]	4	9	1	3	0	64	55	119
Tryptophan	[Trp]	11	12	2	2	0	108	96	204
Tyrosine	[Tyr]	9	11	1	3	0	96	85	181
Valine	[Val]	5	11	1	2	0	64	53	117

Table 5

The empirical compositions and nucleon counts of the amino acids

The separation of the B and R nucleons completes the picture, thus:

Amino Acid	Gly	Ala	Ser	Pro	Val	Thr	Cys	Leu	Ile	Asn
St'd Block (B)	74	74	74	73+1 =74	74	74	74	74	74	74
Side Chain (R)	1	15	31	42-1 =41	43	45	47	57	57	58
Total Nucleons	75	89	105	115	117	119	121	131	131	132
Amino Acid	Asp	Gln	Lys	Glu	Met	His	Phe	Arg	Tyr	Trp
St'd Block (B)	74	74	74	74	74	74	74	74	74	74
Side Chain (R)	59	72	72	73	75	81	91	100	107	130
Total Nucleons	133	146	146	147	149	155	165	174	181	204

3. The Genetic Code

The genetic code can be expressed in terms of either DNA codons or RNA codons. Here are the details, as they may be found in any standard textbook on the subject:

	т	С	A	G SI	COND	BAS	SE U	С	A	G	1
т	TTT Phe TTC Phe TTA Leu TTG Leu	TCT Ser TCC Ser TCA Ser TCG Ser	TAT Tyr TAC Tyr TAA Stop TAG Stop	TGT Cys TGC Cys TGA Stop TGG Trp	T C A G	U	UUU Phe UUC Phe UUA Leu UUG Leu	UCU Ser UCC Ser UCA Ser UCG Ser	UAU Tyr UAC Tyr UAA Stop UAG Stop	UGU Cys UGC Cys UGA Stop UGG Trp	U C A G
c	CTT Leu CTC Leu CTA Leu CTG Leu	CCT Pro CCC Pro CCA Pro CCG Pro	CAT His CAC His CAA Gln CAG Gln	CGT Arg CGC Arg CGA Arg CGG Arg	T C A G	С	CUU Leu CUC Leu CUA Leu CUG Leu	CCU Pro CCC Pro CCA Pro CCG Pro	CAU His CAC His CAA GIn CAG GIn	CGU Arg CGC Arg CGA Arg CGG Arg	U C A G
A	ATT Ile ATC Ile ATA Ile ATG Met	ACT Thr ACC Thr ACA Thr ACG Thr	AAT Asn AAC Asn AAA Lys AAG Lys	AGT Ser AGC Ser AGA Arg AGG Arg	T C A G	A	AUU Ile AUC Ile AUA Ile AUG Met	ACU Thr ACC Thr ACA Thr ACG Thr	AAU Asn AAC Asn AAA Lys AAG Lys	AGU Ser AGC Ser AGA Arg AGG Arg	U C A G
G	GTT Val GTC Val GTA Val GTG Val	GCT Ala GCC Ala GCA Ala GCG Ala	GAT Asp GAC Asp GAA Glu GAG Glu	GGT Gly GGC Gly GGA Gly GGG Gly	T C A G	G	GUU Val GUC Val GUA Val GUG Val	GCU Ala GCC Ala GCA Ala GCG Ala	GAU Asp GAC Asp GAA Glu GAG Glu	GGU Gly GGC Gly GGA Gly GGG Gly	UC AG
Table 7											

Observe that the only difference between these tables is that the thymidine (T) of DNA is replaced by the uridine (U) of RNA. Both incorporate 'Stop' instructions (which contribute nothing to the nucleon count); 'Start' is represented by the codons ATG and AUG, respectively, and is associated with the production of the amino acid

Methionine. Our chief interest in these matters concerns the amino acids and their related codons. Consequently, the order in which the (codon)-(amino acid) relationships are presented may vary, at the discretion of those who work in this area. For reasons which will become obvious, shCherbak has chosen to use an RNA arrangement of his own.

4. shCherbak's Patterns

4.1 - The First Pattern - Here we see the 16 x 4-codon cells divided into two identical interlocking areas based on the observation that 8 (coloured orange) contain codons, all of which code for same amino acid, and the remainder (coloured blue) that do not.

The respective counts of nucleons for orange and blue areas are summarised below.

		FIRST BASE						
		Α	G	U	С			
	Α	AAU Asn AAC Asn AAA Lys AAG Lys	GAU Asp GAC Asp GAA Glu GAG Glu	UAU Tyr UAC Tyr UAA Stop UAG Stop	CAU His CAC His CAA GIn CAG GIn			
BASE	G	AGU Ser AGC Ser AGA Arg AGG Arg	GGU GIY GGC GIY GGA GIY GGG GIY	UGU Cys UGC Cys UGA Stop UGG Trp	CGU Arg CGC Arg CGA Arg CGG Arg			
SECOND	U	AUU Ile AUC Ile AUA Ile AUG Met	GUU Val GUC Val GUA Val GUG Val	UUU Phe UUC Phe UUA Leu UUG Leu	CUU Leu CUC Leu CUA Leu CUG Leu			
	С	ACU Thr ACC Thr ACA Thr ACG Thr	GCU Ala GCC Ala GCA Ala GCG Ala	UCU Ser UCC Ser UCA Ser UCG Ser	CCU Pro CCC Pro CCA Pro CCG Pro			

shCherbak's First Pattern

(b)

(a)

Codon	Amino Acid	R	В	Total Nucleons
GG(U,C,A,G)	Gly	1	74	75
CG(U,C,A,G)	Arg	100	74	174
GU(U,C,A,G)	Val	43	74	117
CU(U,C,A,G)	Leu	57	74	131
AC(U,C,A,G)	Thr	45	74	119
GC(U,C,A,G)	Ala	15	74	89
UC(U,C,A,G)	Ser	31	74	105
CC(U,C,A,G)	Pro	41	74	115

-	_		F 4 14
100 100		0.0	S1
200 100	 94		

Codon	Amino Acid	R	В	Total Nucleons
AA(U,C)	Asn	58	74	132
AA(A,G)	Lys	72	74	146
GA(U,C)	Asp	59	74	133
GA(A,G)	Glu	73	74	147
UA(U,C)	Tyr	107	74	181
UA(A,G)	Stop	0	0	0
CA(U,C)	His	81	74	155
CA(A,G)	Gln	72	74	146
AG(U,C)	Ser	31	74	105
AG(A,G)	Arg	100	74	174
UG(U,C)	Cys	47	74	121
UG(A)	Stop	0	0	0
UG(G)	Trp	130	74	204
AU(U,C,A)	Ile	57	74	131
AU(G)	Met	75	74	149
UU(U,C)	Phe	91	74	165
UU(A,G)	Leu	57	74	131

Observe that (a) yields the {R,B,(R+B} sequence {333,592,925}, or {9x37,16x37,25x37} in which the mulipliers of 37 are the squares associated with the classical pythagorean example. Of course, if all 4 codons producing the same amino acid are taken into account, these figures are quadrupled to produce {1332,2368,3700}. Remarkably, these same figures are found together on the breastplate of the high priest (the details may be found here).

With respect to (b): we observe an even division of the total of nucleons between R and B. It is remarkable that there should be this exact balance between the contributions from standard blocks and side-chains, and that the balance should again be a multiple of 37.

4.2 - The Second Pattern - It has been established that the 64 RNA codons (the 3-letter codes) divide into 2 groups - those that begin with A or G, and those that begin with C or U. These groups are referred to as *the Purines* (coloured blue in the following table) and *the Pyrimidines* (coloured orange), respectively.

			FIRST	BASE	
		Å	G	U	С
	Α	AAU Asn AAC Asn AAA Lys AAG Lys	GAU Asp GAC Asp GAA Glu GAG Glu	UAU Tyr UAC Tyr UAA Stop UAG Stop	CAU His CAC His CAA GIn CAG GIn
BASE	G	AGU Ser AGC Ser AGA Arg AGG Arg	GGU Gly GGC Gly GGA Gly GGG Gly	UGU Cys UGC Cys UGA Stop UGG Trp	CGU Arg CGC Arg CGA Arg CGG Arg
SECOND BASE	υ	AUU Ile AUC Ile AUA Ile AUG Met	GUU Val GUC Val GUA Val GUG Val	UUU Phe UUC Phe UUA Leu UUG Leu	CUU Leu CUC Leu CUA Leu CUG Leu
	С	ACU Thr ACC Thr ACA Thr ACG Thr	GCU Ala GCC Ala GCA Ala GCG Ala	UCU Ser UCC Ser UCA Ser UCG Ser	CCU Pro CCC Pro CCA Pro CCG Pro

shCherbak's Second Pattern

	Lower	-	Service Services		
5E E	he	D		m.	AC
4.50 (4)	115		P 1 10	181	

Codon	Amino Acid	R	В	Total Nucleons
AA(U,C)	Asn	58	74	132
AA(A,G)	Lys	72	74	146
GA(U,C)	Asp	59	74	133
GA(A,G)	Glu	73	74	147
AG(U,C)	Ser	31	74	105
AG(A,G)	Arg	100	74	174
GG(U,C,A,G)	Gly	1	74	75
AU(U,C,A)	Ile	57	74	131
AU(G)	Met	75	74	149
GU(U,C,A,G)	Val	43	74	117
AC(U,C,A,G)	Thr	45	74	119
GC(U,C,A,G)	Ala	15	74	89

The Pyrimidines

Codon	Amino Acid	R	В	Total Nucleons
UA(U,C)	Tyr	107	74	181
UA(A,G)	Stop	0	0	0
CA(U,C)	His	81	74	155
CA(A,G)	Gln	72	74	146
UG(U,C)	Cys	47	74	121
UG(A)	Stop	0	0	0
UG(G)	Trp	130	74	204
CG(U,C,A,G)	Arg	100	74	174
UU(U,C)	Phe	91	74	165
UU(A,G)	Leu	57	74	131
CU(U,C,A,G)	Leu	57	74	131
UC(U,C,A,G)	Ser	31	74	105
CC(U,C,A,G)	Pro	41	74	115

Tables S2

Observe that for the pyrimidines we again have a perfect balance between R and B. Both groups yield further multiples of 37.

4.3 - The Third Pattern - Here we examine two symmetrical divisions of the genetic code. The first, involving the amalgamation of the two central columns; the second, the amalgamation of the two

central rows.

Division 1

		FIRST BASE					
		Α	G	U	С		
Ī	А	AAU Asn AAC Asn AAA Lys AAG Lys	GAU Asp GAC Asp GAA Glu GAG Glu	UAU Tyr UAC Tyr UAA Stop UAG Stop	CAU His CAC His CAA Gln CAG Gln		
BASE	G	AGU Ser AGC Ser AGA Arg AGG Arg	GGU GIY GGC GIY GGA GIY GGG GIY	UGU Cys UGC Cys UGA Stop UGG Trp	CGU Arg CGC Arg CGA Arg CGG Arg		
SECOND BASE	U	AUU Ile AUC Ile AUA Ile AUG Met	GUU Val GUC Val GUA Val GUG Val	UUU Phe UUC Phe UUA Leu UUG Leu	CUU Leu CUC Leu CUA Leu CUG Leu		
	С	ACU Thr ACC Thr ACA Thr ACG Thr	GCU Ala GCC Ala GCA Ala GCG Ala	UCU Ser UCC Ser UCA Ser UCG Ser	GCU Pro GCC Pro GCA Pro GCG Pro		

shCherbak's Third Pattern (1)

Amino Acid	R	В	Total Nucleons
Asn	58	74	132
Lys	72	74	146
His	81	74	155
Gln	72	74	146
Ser	31	74	105
Arg	100	74	174
Arg	100	74	174
Ile	57	74	131
Met	75	74	149
Leu	57	74	131
Thr	45	74	119
Pro	41	74	115
	Acid Asn Lys His Gln Ser Arg Arg Ile Met Leu Thr	Acid K Asn 58 Lys 72 His 81 Gln 72 Ser 31 Arg 100 Arg 100 Ile 57 Met 75 Leu 57 Thr 45	Acid R B Asn 58 74 Lys 72 74 His 81 74 Gln 72 74 Ser 31 74 Arg 100 74 Arg 100 74 Ile 57 74 Met 75 74 Leu 57 74 Thr 45 74

Codon	Amino Acid	R	В	Total Nucleons
GA(U,C)	Asp	59	74	133
GA(A,G)	Glu	73	74	147
UA(U,C)	Tyr	107	74	181
UA(A,G)	Stop	0	0	0
GG(U,C,A,G)	Gly	1	74	75
UG(U,C)	Cys	47	74	121
UG(A)	Stop	0	0	0
UG(G)	Trp	130	74	204
GU(U,C,A,G)	Val	43	74	117
UU(U,C)	Phe	91	74	165
UU(A,G)	Leu	57	74	131
GC(U,C,A,G)	Ala	15	74	89
UC(U,C,A,G)		31	74	105

Tables S3(1)

Observe that for the blue group, the total number of nucleons in the radical (R) component of the amino acids is 789; and for the orange group, 654. The total represented in this category is therefore 1443, or 39x37.

Division 2

		FIRST BASE						
		Α	G	U	С			
	Α	AAU Asn AAC Asn AAA Lys AAG Lys	GAU Asp GAC Asp GAA Glu GAG Glu	UAU Tyr UAC Tyr UAA Stop UAG Stop	CAU His CAC His CAA GIn CAG GIn			
BASE	G	AGU Ser AGC Ser AGA Arg AGG Arg	GGU GIY GGC GIY GGA GIY GGG GIY	UGU Cys UGC Cys UGA Stop UGG Trp	CGU Arg CGC Arg CGA Arg CGG Arg			
SECOND BASE	U	AUU Ile AUC Ile AUA Ile AUG Met	GUU Val GUC Val GUA Val GUG Val	UUU Phe UUC Phe UUA Leu UUG Leu	CUU Leu CUC Leu CUA Leu CUG Leu			
	С	ACU Thr ACC Thr ACA Thr ACG Thr	GCU Ala GCC Ala GCA Ala GCG Ala	UCU Ser UCC Ser UCA Ser UCG Ser	CCU Pro CCC Pro CCA Pro CCG Pro			

shCherbak's Third Pattern (2)

Codon	Amino Acid	R	В	Total Nucleons
AA(U,C)	Asn	58	74	132
AA(A,G)	Lys	72	74	146
GA(U,C)	Asp	59	74	133
GA(A,G)	Glu	73	74	147
UA(U,C)	Tyr	107	74	181
UA(A,G)	Stop	0	0	0
CA(U,C)	His	81	74	155
CA(A,G)	Gln	72	74	146
AC(U,C,A,G)	Thr	45	74	119
GC(U,C,A,G)	Ala	15	74	89
UC(U,C,A,G)	Ser	31	74	105
CC(U,C,A,G)	Pro	41	74	115

Codon	Amino Acid	R	В	Total Nucleons
AG(U,C)	Ser	31	74	105
AG(A,G)	Arg	100	74	174
GG(U,C,A,G)	Gly	1	74	75
UG(U,C)	Cys	47	74	121
UG(A)	Stop	0	0	0
UG(G)	Trp	130	74	204
CG(U,C,A,G)	Arg	100	74	174
AU(U,C,A)	Ile	57	74	131
AU(G)	Met	75	74	149
GU(U,C,A,G)	Val	43	74	117
UU(U,C)	Phe	91	74	165
UU(A,G)	Leu	57	74	131
CU(U,C,A,G)	Leu	57	74	131

Tables S3(2)

Here, we see the results of the earlier analysis duplicated. Once more a perfect symmetry is displayed again involving multiples of 37.

4.4 - The Fourth Pattern - Here we identify and colour code those codons whose triplets include two identical letters. Thus, those codons highlighted in blue each incorporate a pair of Us; those in yellow, a pair of Gs... and so on.

			FIRST BASE					
		Α	G	U	С			
		AAU Asn	GAU Asp	UAU Tyr	CAU His			
	Α	AAC Asn	GAC Asp	UAC Tyr	CAC His			
	^	AAA Lys	GAA Glu	UAA Stop	CAA GIn			
		AAG Lys	GAG Glu	UAG Stop	CAG GIn			
		AGU Ser	GGU Gly	UGU Cys	CGU Arg			
ш	G	AGC Ser	GGC Gly	UGC Cys	CGC Arg			
S V	G	AGA Arg	GGA Gly	UGA Stop	CGA Arg			
0 8		AGG Arg	GGG Gly	UGG Trp	CGG Arg			
SECOND BASE		AUU Ile	GUU Val	UUU Phe	CUU Leu			
H	U	AUC Ile	GUC Val	UUC Phe	CUC Leu			
s	0	AUA Ile	GUA Val	UUA Leu	CUA Leu			
		AUG Met	GUG Val	UUG Leu	CUG Leu			
		ACU Thr	GCU Ala	UCU Ser	CCU Pro			
	С	ACC Thr	GCC Ala	UCC Ser	CCC Pro			
	C	ACA Thr	GCA Ala	UCA Ser	CCA Pro			
		ACG Thr	GCG Ala	UCG Ser	CCG Pro			

shCherbak's Fourth Pattern

Codon	Amino Acid	R	В	Total Nucleons
AAU	Asn	58	74	132
AAC	Asn	58	74	132
AAG	Lys	72	74	146
GAA	Glu	73	74	147
UAA	Stop	0	0	0
CAA	Gln	72	74	146
AGA	Arg	100	74	174
AUA	Ile	57	74	131
ACA	Thr	45	74	119

Codon	Amino Acid	R	В	Total Nucleons
GAG	Glu	73	74	147
AGG	Arg	100	74	174
GGU	Gly	1	74	75
GGC	Gly	1	74	75
GGA	Gly	1	74	75
UGG	Trp	130	74	204
CGG	Arg	100	74	174
GUG	Val	43	74	117
GCG	Ala	15	74	89
Nucleon	Sums:	464	666	5

Codon	Amino Acid	R	В	Total Nucleons
UAU	Tyr	107	74	181
UGU	Cys	47	74	121
AUU	Ile	57	74	131
GUU	Val	43	74	117
UUC	Phe	91	74	165
UUA	Leu	57	74	131
UUG	Leu	57	74	131
CUU	Leu	57	74	131
ucu	Ser	31	74	105

Codon	Amino Acid	R	В	Total Nucleons
CAC	His	81	74	155
CGC	Arg	100	74	174
CUC	Leu	57	74	131
ACC	Thr	45	74	119
GCC	Ala	15	74	89
UCC	Ser	31	74	105
CCU	Pro	41	74	115
CCA	Pro	41	74	115
CCG	Pro	41	74	115

Tables S4

Observe the following:

The repunits 666 and 999 are a significant feature; again, each a multiple of 37 and directly involved in the Genesis 1:1 geometries.

4.5 - The Fifth Pattern - Switching here from an RNA to a DNA context, shCherbak focuses attention, (i) on the amino acids that arise from codons with 3 identical bases, viz TTT, AAA, GGG and CCC - appropriately, pairing T with A and G with C; and again, (ii) on all those that arise from codons with 3 unique bases. Here are the details:

Tri	plets of Ide	entical B	ases				
	91; B = 74 72; B = 74	GGG G CCC P	ATT 100 III	; B = 74 ; B = 74			
Clockwise Codons Un		Triplets of Unique Bases		AntiClockwise Codons			
TCA Ser R = 31; B = 74 CAT His R = 81; B = 74 ATC Ile R = 57; B = 74	, ',	T A C		R = 10	; B = 74 7; B = 74 ; B = 74		
GCT Ala R = 15; B = 74 CTG Leu R = 57; B = 74 TGC Cys R = 47; B = 74	, G	G T C		R = 43	0; B = 74 ; B = 74 ; B = 74		
TGA Stop R = 0; B = 0 GAT Asp R = 59; B = 74 ATG Met R = 75; B = 74	1 A	T A G		0 R = 0	; B = 74 ; B = 0 ; B = 74		
CAG Gln R = 72; B = 74 AGC Ser R = 31; B = 74 GCA Ala R = 15; B = 74	, ,		ACG Thr CGA Arg GAC Asp	R = 10	; B = 74 0; B = 74 ; B = 74		
shCl	nerbak's	Fifth F	attern				
	Nucleo	n Totals					
R	В	R		В			
703	962	70	3	962			
	Tabl	es S5					

Again, a perfect balance is observed, together with significant multiples of 37.

5. Conclusions

A reading of the Abstract to Vladimir shCherbak's paper *Arithmetic inside the universal genetic code* (it may be found here) reveals that he believes these numerical patterns - based on what he refers to as 'the criterion of divisibility by 037' - created themselves - along with 'a primordial version of the genetic code and genetic texts'. Further, he detects a 'base 10' number system underpinning all this; and even suggests that 'possibly a zero was invented and used by this mechanism'.

Such highly imaginative thinking is quickly brought to earth when it is realised that there are more points of contact between the genetic code, the Hebrew of the Bible's first verse, the breastplate of the High Priest (Ex.28:15-21) and the Name and Title of our Creator - the Lord Jesus Christ - than can fairly be accounted for by chance.

The facts presented on this site, when combined with those now revealed to us by shCherbak, constitute invincible evidence of the truth of the Judeo-Christian Scriptures, and of the Being and Sovereignty of their Divine Author.

Craig Paardekooper BSc

Vernon Jenkins MSc

2007-03-21

http://www.freewebs.com/genetics37

www.otherbiblecode.com