Tutorial 3: Simple recommender system and clustering

1. (a) Euclidean distances:

	Guardian	Times	Telegraph	Independent	Steve
Guardian					$\sqrt{23}$
Times	$\sqrt{13}$				$\sqrt{6}$
Telegraph	$\sqrt{41}$	$\sqrt{8}$			$\sqrt{10}$
Independent	$\sqrt{12}$	$\sqrt{5}$	$\sqrt{17}$		$\sqrt{7}$

Closest pair: Independent/Times Furthest pair: Guardian/Telegraph

Closest to Steve: Times

(b) We can use the following to convert the Euclidean distance (a measure of dissimilarity) to a measure of similarity:

$$sim(\mathbf{x}, \mathbf{y}) = \frac{1}{1 + r_2(\mathbf{x}, \mathbf{y})}.$$

This ad hoc measure of similarity is just one possible choice. The good points are that distance of 0 has similarity 1, and distance of infinity has similarity 0. Bad points are that it is does not normalize for mean or variance (i.e., does not take account of a critic who gives consistently higher ratings). Another possible measure, that has been used in practice, is the Pearson correlation.

We can use the similarity to estimate the score $sc_u(z)$ for item z for a new user u, by summing over the set of C critics:

$$\mathrm{sc}_u(z) = \frac{1}{\sum_{c=1}^{C} \mathrm{sim}(\mathbf{x}_u, \mathbf{x}_c)} \sum_{c=1}^{C} \mathrm{sim}(\mathbf{x}_u, \mathbf{x}_c) \cdot \mathrm{sc}_c(z).$$

Putting all the things we need to compute in a table:

		Mary Goes First		Well		Three Women	
	Similarity	Score	Sim.Score	Score	Sim.Score	Score	Sim.Score
Guardian	0.17	6	1.02	2	0.34	4	0.68
Times	0.29	6	1.74	6	1.74	8	2.32
Telegraph	0.24	6	1.44	2	0.48	9	2.16
Independent	0.27	3	0.81	3	0.81	6	1.62
Sum	0.97		5.01		3.37		6.78
Est. Score			5.16		3.47		6.99

So the recommendation would be *Three Women* with an estimated rating of about 7.

(c) Distance from Che:

Slumdog Millionaire
$$\sqrt{36} = 6$$

Sex Drive $\sqrt{12} \approx 3.5$
The Reader $\sqrt{30} \approx 5.5$

So on this limited recommender system, Sex Drive would be recommended as the closest to Che. Is this a good recommendation? You might like to discuss the limitations of the system in the light of this recommendation: limited number of movies; limited number of raters; only taking into account ratings (not genre, etc.)

(d) To get a feel for correlations plot a couple on the board: try Independent vs Telegraph and Independent vs Guardian. Although Independent has a smaller Euclidean distance to Guardian than to Telegraph, it is better correlated with Telegraph than Guardian. One reason for this is that Telegraph has a much higher mean score (6.5) than Independent (4.75).

To compute the Pearson correlation coefficient:

$$\rho_{xy} = \frac{1}{N-1} \sum_{n=1}^{N} \frac{(x_n - m_x)}{s_x} \cdot \frac{(y_n - m_y)}{s_y},$$

where m_x and m_y are the sample means and s_x and s_y are the sample standard deviations:

$$m_{x} = \frac{1}{N} \sum_{n=1}^{N} x_{n}$$

$$s_{x} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_{n} - m_{x})^{2}}.$$
(1)

$$s_x = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} (x_n - m_x)^2}.$$
 (2)

It's a little bit tedious to do this by hand, better to write a small program to do it (or to use a library call in Matlab or R). There are ways to compute the sd more efficiently, you might like to discuss better ways to do it.

```
def corr(x,y):
 nx = len(x)
 ny = len(y)
 if nx != ny:
      return 0
 if nx == 0:
      return 0
 N = float(nx)
  # compute mean of each vector
  meanx = sum(x) / N
 meany = sum(y) / N
  # compute standard deviation of each vector
  sdx = math.sqrt(sum([(a-meanx)*(a-meanx) for a in x])/(N-1))
  sdy = math.sqrt(sum([(a-meany)*(a-meany) for a in y])/(N-1))
  # normalise vector elements to zero mean and unit variance
  normx = \lceil (a-meanx)/sdx \text{ for a in } x \rceil
 normy = [(a-meany)/sdy for a in y]
  # return the Pearson correlation coefficient
 return sum([normx[i]*normy[i] for i in range(nx)])/(N-1)
```

Simple python function to compute Pearson correlation

The computed correlations are given below:

	Guardian	Times	Telegraph	Independent
Guardian	1	0.77	0.42	0.65
Times	0.77	1	0.90	0.90
Telegraph	0.42	0.90	1	0.87
Independent	0.65	0.90	0.87	1

The largest correlations (similarities) are between Telegraph and Times, and between Independent and Times.

Optional discussion:

In the above expression for the sample correlation coefficient, we use an unbiased estimator for the variance (which is still biased for the standard deviation): divide by (N-1) rather than by N:

$$s_{N-1}^2 = \frac{1}{N-1} \sum_{n=1}^{N} (x_n - m)^2$$
.

You might like to discuss this expression, informally. The following, taken from David MacKay's book Information Theory, Inference, and Learning Algorithms (see http:// www.inference.phy.cam.ac.uk/mackay/itila/book.html), gives an intuitive explanation for why s_{M}^{2} gives an under-estimate of the true variance. Let the true mean be represented by μ and the true variance be represented by σ^2 :

- i. The data points that we observe come from a distribution centred on the true mean μ , with dispersion σ^2 .
- ii. The sample mean *m* is in unlikely to equal the true mean (particularly if the sample size is small).
- iii. The sample mean is that point m which minimizes the sum of squared deviations of the data points from m.
- iv. Any other value for the sample mean (including μ) will have a larger value of the sum-squared deviation than m.
- v. Since the sample variance is estimated as the average sum-squared deviation from the sample mean, s_N^2 will be smaller than the average sum-squared deviation from the true mean.
- 2. (a) For simplicity's sake, we can assume that the samples are normalised in advance so that $m_x = m_y = 0$.

$$s_{x} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} x_{n}^{2}}, \quad s_{y} = \sqrt{\frac{1}{N-1} \sum_{n=1}^{N} y_{n}^{2}}$$

$$r = \frac{1}{N-1} \sum_{n=1}^{N} \frac{x_{n}}{s_{x}} \frac{y_{n}}{s_{y}} = \frac{1}{N-1} \frac{1}{s_{x} s_{y}} \sum_{n=1}^{N} x_{n} y_{n} = \frac{1}{\sqrt{\sum_{n=1}^{N} x_{n}^{2}} \sqrt{\sum_{n=1}^{N} y_{n}^{2}}} \sum_{n=1}^{N} x_{n} y_{n}$$

$$= \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

where $\mathbf{x} \cdot \mathbf{y}$ is the dot product between \mathbf{x} and \mathbf{y} .

Since $\mathbf{x} \cdot \mathbf{v} = ||\mathbf{x}|| ||\mathbf{v}|| \cos(\theta)$, where θ is the angle between the two vectors, $-1 \le r \le 1$.

- (b) Good examples can be found in the Wikipedia's page: http://en.wikipedia.org/ wiki/Pearson_product-moment_correlation_coefficient
- 3. Best to do this by plotting points on a graph.

Iter 1:

- (1, 1): (1, 1) (4, 4) (5, 1) (7, 1)
- (7, 10): (7, 4) (7, 10)

Cluster centres re-estimated to (17/4, 7/4) and (7, 7)

Iter 2:

- (17/4, 7/4): (1, 1) (4, 4) (5, 1) (7, 1)
- (7,7): (7,4) (7,10)

Iter 3 does not change the centres. Converged.

4. Boundary between clusters 1 and 2 is midline between (0,0) and (0,4) which is y=2

Boundary between clusters 1 and 3 is midline between (0,0) and (4,2) which is y = -2x + 5 (points on line e.g. (2,1)(3,-1)(1,3))

Boundary between clusters 2 and 3 is midline between (0,4) and (4,2) which is y = 2x - 1 (points on line e.g. (2,3) (3,5) (1,1))

These intersect at (3/2, 2) and the boundaries are given by:

- y = 2 when x < 3/2
- y = -2x + 5 when x > 3/2

Tutorial 3 / Learning and Data Tutorial - Solutions

• y = 2x - 1 when x > 3/2

Sketch the Voronoi tessellation — key point is intersection at (3/2, 2) and division into 3 regions

