КОНЦЕПЦИЯ НЕОГРАНИЧЕННОГО ПАРАЛЛЕЛИЗМА

Концепция неограниченного параллелизма – это способ понимания, конструктивный принцип построения параллельных алгоритмов, в основе которого лежит предположение, что алгоритм реализуется на параллельной вычислительной системе, не накладывающей на него никаких ограничений. Считается, что процессоров может быть сколь угодно много, они работают а синхронном режиме, имеют общую память, любые передачи информации осуществляются мгновенно и без конфликтов.

Основная цель – получение алгоритмов минимальной высоты, так как в такой модели вычислений высота определяет время реализации алгоритма.

Утверждение. Пусть на вычислительной системе, состоящей из s процессоров с пиковой производительностью π , реализуется некоторый алгоритм. Пусть высота параллельной формы, соответствующей реализации алгоритма, равна m и всего s алгоритме выполняется N операций. Тогда максимально возможное ускорение системы равно $\frac{N}{m}$.

Доказательство. Воспользуемся формулой для выражения ускорения системы через загруженности процессоров: $R = \sum_{i=1}^s p_i$. Предположим, что за время T реализации алгоритма i-й процессор выполнил N_i операций. По определению $p_i = \frac{N_i/\pi}{T}$. Если процессоров достаточно, то операции одного яруса параллельной формы система может выполнить за время, равное или большее времени $\frac{1}{\pi}$ выполнения одной операции; время T выполнения всех ярусов больше или равно $\frac{m}{T}$. Тогда

$$R = \sum_{i=1}^{N} \frac{N_i/\pi}{T} = \frac{N}{\pi T} = \frac{m/\pi}{T} \cdot \frac{N}{m} \le \frac{N}{m}$$

при любом числе процессоров.

Пример 1 (процесс сдваивания).

Рассмотрим параллельные формы двух алгоритмов вычисления произведения $a_1 \cdot a_2 \cdot ... \cdot a_N$. Пусть N=8.

1. Обычная схема.

Apyc 1:
$$a_1 \cdot a_2$$
Apyc 2: $(a_1a_2) \cdot a_3$ Apyc 3: $(a_1a_2a_3) \cdot a_4$ Apyc 4: $(a_1a_2a_3a_4) \cdot a_5$ Apyc 5: $(a_1a_2a_3a_4a_5) \cdot a_6$ Apyc 6: $(a_1a_2a_3a_4a_5a_6) \cdot a_7$ Apyc 7: $(a_1a_2a_3a_4a_5a_6a_7) \cdot a_8$

 $^{^{1}}$ Под процессором понимается одно вычислительное ядро.

Изобразим граф алгоритма:

В общем случае высота алгоритма равна N-1, ширина алгоритма равна 1.

2. Процесс сдваивания.

Apyc 1: $a_1 \cdot a_2 = a_3 \cdot a_4 = a_5 \cdot a_6 = a_7 \cdot a_8$

Ярус 2: $(a_1a_2) \cdot (a_3a_4)$ $(a_5a_6) \cdot (a_7a_8)$

Ярус 3: $(a_1a_2a_3a_4) \cdot (a_5a_6a_7a_8)$

В общем случае высота алгоритма равна $\lceil \log_2 N \rceil$, ширина равна $\lceil N/2 \rceil$.

Отметим, что рассмотренные алгоритмы математически эквивалентны, но имеют разные вычислительные свойства, в том числе и разные параллельные свойства.

Утверждение. Пусть с помощью операций, имеющих не более p аргументов, вычисляется значение некоторого выражения, существенным образом зависящего от N переменных. Тогда высота алгоритма, позволяющего вычислить это выражение, не меньше $\log_n N$.

Действительно, рассмотрим параллельную форму алгоритма вычисления выражения. Пусть на нулевом ярусе расположены операции, соответствующие вводу значений входных переменных, на ярусе T расположена операция, вычисляющая конечный результат; T — высота параллельной формы. Так как любая операция имеет не более p аргументов, то на ярусе T-1 находится не более p операций, на ярусе T-2 — не более p^2 операций. На нулевом ярусе находится не более p^T операций. Так как $p^T \geq N$, то $T \geq \log_p N$.

Пример 2 (умножение матрицы на вектор; перемножение матриц).

Рассмотрим задачу умножения матрицы A порядка N на N-мерный вектор $b: c_i = \sum\limits_{j=1}^N a_{ij}b_j$. На первом шаге можно вычислить N^2 произведений $a_{ij}b_j$. Далее, используя процесс сдваивания, за $\lceil \log_2 N \rceil$ шагов можно вычислить N сумм, определяющих координаты вектора c. Высота алгоритма имеет порядок $\log_2 N$, ширина алгоритма равна N^2 .

Задачу перемножения двух матриц порядка N можно рассматривать как задачу вычисления N произведений одной матрицы на вектор. Если все эти произведения вычислять по описанному алгоритму, то получим алгоритм

с высотой порядка $\log_2 N$ и шириной N^3 .

 Π ример 3 (процесс рекуррентного сдваивания; решение треугольной системы).

Пусть заданы матрицы A_{ij} , $1 \leqslant i \leqslant s$, $1 \leqslant j \leqslant r$, векторы $b_1,...,b_s$ и векторы $x_0, x_{-1}, ..., x_{-r+1}$ порядка n. Требуется вычислить векторы x_i , $1 \leqslant i \leqslant s$, с помощью рекуррентных соотношений

$$x_i = A_{i1}x_{i-1} + \dots + A_{ir}x_{i-r} + b_i, \tag{1}$$

или, в более подробной записи,

На основе такого типа рекуррентных соотношений построены многие численные методы линейной алгебры, математической физики и анализа.

Пусть, например, $r=1,\,A_{i1}=B,\,$ все векторы $b_1,...,b_s$ равны. Получим метод простой итерации решения систем линейных алгебраических уравнений:

$$x_i = Bx_{i-1} + b.$$

Пусть теперь $s=N,\,r=i,\,n=1,\,x_0=0,\,A_{ij}=-a_{i\,\,i-j}\,\,(i>j,\,$ другие случаи при $r=i,\,x_0=0$ не рассматриваются). Получим соотношения

для решения системы линейных алгебраических уравнений

$$\begin{cases} x_1 = b_1, \\ a_{21}x_1 + x_2 = b_2, \\ a_{31}x_1 + a_{32}x_2 + x_3 = b_3, \\ \dots \\ a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN-1}x_{N-1} + x_N = b_N \end{cases}$$

$$(3)$$

с треугольной матрицей, у которой диагональные элементы равны единице.

Используя рассмотренный алгоритм умножения матрицы на вектор, можно вычислить вектор x_i , задаваемый соотношением (1), примерно за $\log_2 n + \log_2 r = \log_2 n r$ шагов при наличии порядка $n^2 r$ процессоров. Для

вычисления всех x_i получим параллельный алгоритм высоты $s \log_2 nr$. Оказывается, вычислить векторы $x_i, 1 \leqslant i \leqslant s$, можно за меньшее (примерно $\log_2 s \cdot \log_2 nr$) число шагов.

Запишем рекуррентные соотношения (1) в избыточном виде через матрицы и векторы высшего порядка:

$$\begin{pmatrix} x_i \\ x_{i-1} \\ \dots \\ x_{i-r+1} \\ 1 \end{pmatrix} = \begin{pmatrix} A_{i1} & \dots & A_{ir-1} & A_{ir} & b_i \\ E & \dots & 0 & 0 & 0 \\ \dots & \dots & \dots & \dots \\ 0 & \dots & E & 0 & 0 \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{i-1} \\ x_{i-2} \\ \dots \\ x_{i-r} \\ 1 \end{pmatrix}, r \neq 1.$$

Обозначим матрицу через Q_i , вектор в левой части через y_i . Тогда

$$y_i = Q_i y_{i-1} = \dots = Q_i Q_{i-1} \dots Q_1 y_0, \quad 1 \leqslant i \leqslant s.$$

Смысл такой избыточной записи заключается в том, что все y_1, \ldots, y_s ,

а значит и все
$$x_1, \dots, x_s$$
, можно вычислять одновременно. Если, например, $r=1,\,s=3,\,$ то $Q_i=\begin{pmatrix}A_{i1}&b_i\\0&1\end{pmatrix},\,y_i=\begin{pmatrix}x_i\\1\end{pmatrix},$ $y_1=\begin{pmatrix}A_{11}&b_1\\0&1\end{pmatrix}\begin{pmatrix}x_0\\1\end{pmatrix},$ $y_2=\begin{pmatrix}A_{21}&b_2\\0&1\end{pmatrix}y_1=\begin{pmatrix}A_{21}&b_2\\0&1\end{pmatrix}\begin{pmatrix}A_{11}&b_1\\0&1\end{pmatrix}\begin{pmatrix}x_0\\1\end{pmatrix},$ $y_3=\begin{pmatrix}A_{31}&b_3\\0&1\end{pmatrix}\begin{pmatrix}A_{21}&b_2\\0&1\end{pmatrix}\begin{pmatrix}A_{11}&b_1\\0&1\end{pmatrix}\begin{pmatrix}x_0\\1\end{pmatrix}.$

Видно, что y_1, y_2, y_3 , т.е. $\begin{pmatrix} x_1 \\ 1 \end{pmatrix}, \begin{pmatrix} x_2 \\ 1 \end{pmatrix}, \begin{pmatrix} x_3 \\ 1 \end{pmatrix}$, можно вычислять одновременно.

Матрицы Q_i и векторы y_i имеют порядок nr+1. Согласно алгоритму сдваивания, любое из произведений $Q_iQ_{i-1}\dots Q_1y_0$ можно вычислить за $\lceil \log_2(s+1) \rceil$ макроопераций умножения двух матриц порядка nr+1. Все макрооперации во всех s произведениях можно вычислять одновременно. Используя рассмотренный параллельный алгоритм для умножения двух матриц, получим параллельный алгоритм для вычислить всех векторов x_1,\ldots,x_s , который имеет высоту порядка $\log_2 s \cdot \log_2 nr$ и ширину порядка $(nr)^3s^2$. Этот алгоритм получил название процесс рекуррентного сдваивания,

С помощью процесса рекуррентного сдваивания можно решить систему линейных алгебраических уравнений с треугольной $N \times N$ матрицей примерно за $\log_2^2 N$ шагов, задействовав порядка N^5 процессоров. Действительно, за один параллельный шаг, используя около $N^2/2$ процессоров, можно сделать равными 1 все диагональные элементы матрицы, разделив их на соответствующие коэффициенты. Затем следует решить систему (3) с помощью соотношений (2); напомним, $n=1,\,r=i,\,s=N.$

В случае метода простой итерации (r=1) s итераций можно выполнить за $\log_2 s \cdot \log_2 n$ шагов на $n^3 s^2$ процессорах.

Пример 4 (вычисление обратной матрицы [1]). Пусть A – квадратная матрица порядка N. Можно вычислить A^{-1} за $O(\log_2^2 N)$ шагов на N^4 процессорах).

Получение алгоритмов минимальной высоты — задача не простая (примеры 1 и 2 — исключение). На сегодняшний день достижения в рамках концепции неограниченного параллелизма представляют набор достижений в области численных методов.

На практике алгоритмы небольшой высоты не нашли применения:

- они требуют чрезмерно большого числа процессоров,
- требуют очень много памяти,
- приводят к сложным коммуникационным связям между вычислительными узлами,
 - процессоры загружены крайне слабо.

Единственным исключением являются алгоритмы сдваивания для многократного применения ассоциативных операций, например, сложения и умножения чисел, матриц.

Тем не менее, концепция неограниченного параллелизма очень полезна для знакомства с параллельными вычислениями, для лучшего понимания некоторых понятий и проблем параллельных вычислений.

Литература

- 1. Воеводин В. В., Воеводин Вл. В. Параллельные вычисления. СПб.: БХВ-Петербург, $2002.-608~\mathrm{c}.$
- 2. Воеводин В. В. Вычислительная математика и структура алгоритмов. Москва: Изд-во МГУ, 2006. 112 с. http://parallel.ru/info/parallel/voevodin/