Solutions to Munkres' Topology

By:

Dustin Smith

Contents

1	Set Theory and Logic	5
	1.1 Fundamental Concepts	5
2	Topological Spaces and Continuous Functions	7
	2.1 Topological Spaces	7
	2.2 Basis for a Topology	

1 Set Theory and Logic

Skipped for now

1.1 Fundamental Concepts

2 Topological Spaces and Continuous Functions

2.1 Topological Spaces

2.2 Basis for a Topology

1. Let X be a topological space; let A be a subset of X. Suppose that for each $x \in A$ there is an open set U contianing x such that $U \subset A$. Show A is open in X.

For each x in A, there exists an open set U_x such that $x \in U_x \subset A$. Then $\bigcup_{x \in A} U_x \subseteq A$. Since U_x is an open set containing all $x \in A$, $A = \bigcup_{x \in A} U_x$; that is, A is the arbitrary union of a collection of open set so A is open in X.

2. Consider the nine topologies on the set $X = \{a, b, c\}$ indicated in examaple 1 of chapter 2 section 2.1. Compare them; that is, for each pair of topologies, determine whether they are comparable, and if so, which is finer.

Let $X = \{a, b, c\}$. Next, let's index the nine topologies.

$$\begin{split} \mathfrak{T}_1 = \{\varnothing, X\} & \qquad \mathfrak{T}_2 = \{\varnothing, \{a\}, \{a, b\}, X\} & \qquad \mathfrak{T}_3 = \{\varnothing, \{b\}, \{a, b\}, \{b, c\}, X\} \\ \mathfrak{T}_4 = \{\varnothing, \{b\}, X\} & \qquad \mathfrak{T}_5 = \{\varnothing, \{a\}, \{b, c\}, X\} & \qquad \mathfrak{T}_6 = \{\varnothing, \{b\}, \{c\}, \{a, b\}, \{b, c\}, X\} \\ \mathfrak{T}_7 = \{\varnothing, \{a, b\}, X\} & \qquad \mathfrak{T}_8 = \{\varnothing, \{a\}, \{b\}, \{a, b\}, X\} & \qquad \mathfrak{T}_9 = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a, c\}, X\} \end{split}$$

A topology \mathfrak{T}_i is comparable with \mathfrak{T}_j for $i \neq j$ if either $\mathfrak{T}_i \supset \mathfrak{T}_j$ or $\mathfrak{T}_i \subset \mathfrak{T}_j$. Now $\mathfrak{T}_1 \subset \mathfrak{T}_j$ for $i \in [2,9]$. Therefore, \mathfrak{T}_1 is coarser than \mathfrak{T}_i so \mathfrak{T}_i is finer than \mathfrak{T}_1 . We will next look at \mathfrak{T}_9 . For $i \in [1,8]$, $\mathfrak{T}_i \subset \mathfrak{T}_9$. Therefore, \mathfrak{T}_9 is finer than \mathfrak{T}_i for $i \in [1,8]$. \mathfrak{T}_2 is comparable with \mathfrak{T}_7 and \mathfrak{T}_8 For \mathfrak{T}_8 , $\mathfrak{T}_2 \subset \mathfrak{T}_8$ so \mathfrak{T}_8 is finer than \mathfrak{T}_2 , but $\mathfrak{T}_7 \subset \mathfrak{T}_2$ so \mathfrak{T}_2 is finer than \mathfrak{T}_7 . \mathfrak{T}_3 is comparable with \mathfrak{T}_4 , \mathfrak{T}_6 , and \mathfrak{T}_7 . For i = 4,7, $\mathfrak{T}_i \subset \mathfrak{T}_3$ so \mathfrak{T}_3 is finer than \mathfrak{T}_i for i = 4,7, but $\mathfrak{T}_3 \subset \mathfrak{T}_6$ so \mathfrak{T}_6 is finer \mathfrak{T}_3 . \mathfrak{T}_4 is comparable to \mathfrak{T}_6 and \mathfrak{T}_8 and $\mathfrak{T}_4 \subset \mathfrak{T}_6$ for i = 6,8 so \mathfrak{T}_i is finer than \mathfrak{T}_4 . \mathfrak{T}_5 and \mathfrak{T}_6 are only comparable to \mathfrak{T}_9 and we have already determined the comparability of \mathfrak{T}_9 . \mathfrak{T}_7 is comparable to \mathfrak{T}_8 and $\mathfrak{T}_7 \subset \mathfrak{T}_8$ so \mathfrak{T}_8 is finer than \mathfrak{T}_7 . \mathfrak{T}_8 has been compared with all possible topologies by now.

3. Show that the collection \mathfrak{T}_c given in example 4 of chapter 2 section 2.1 is a topology on the set X. Is the collection

$$\mathfrak{I}_{\infty} = \{U \mid X - U \text{ is infinite or empty or all of } X\}$$

a topology on X?

Example 4 states: Let X be a set; let \mathcal{T}_c be the collection of all subsets U of X such that X - U is either countable or is all of X. Then \mathcal{T}_c is a topology on X.

First, we need to determine if $X, \emptyset \in \mathcal{T}_c$. We have that $X - X = \emptyset$, and since \emptyset is finite, \emptyset is countable so $X - X = \emptyset \in \mathcal{T}_c$. Now, $X - \emptyset = X$ which is all of X so $X - \emptyset = X \in \mathcal{T}_c$. Let $\{U_\alpha\}$ be an indexed family of nonempty elements in \mathcal{T}_c . Then

$$X - \bigcup_{\alpha} U_{\alpha} = \bigcap_{\alpha} (X - U_{\alpha})$$

By definition of the problem, U_{α} is such that $X-U_{\alpha}$ is either countable or all of X. Since $X-U_{\alpha}$ is countable, $\bigcap_{\alpha} (X-U_{\alpha})$. Therefore $\bigcup_{\alpha} U_{\alpha} \in \mathcal{T}_{c}$. Now, let's take a finite intersections of elements of \mathcal{T}_{c} . Then

$$X - \bigcap_{i=1}^{n} U_i = \bigcup_{i=1}^{n} (X - U_i)$$

Agian, we have that $X-U_i$ is countable and the finite union of countable sets is countable so $\bigcap_1^n U_i \in \mathfrak{T}_c$ and \mathfrak{T}_c is a topology on X. For the second part, let $X=\mathbb{R}$. Let $U_1=\mathbb{R}\setminus\{x\}$ where x can be any real number you choose. Then $X-U_1=\{x\}$ which is a single element and is hence finite. Therefore, \mathfrak{T}_∞ is not a topology on X.

- Since, for each α , \mathcal{T}_{α} is a topology, $X, \varnothing \in \mathcal{T}_{\alpha}$ so $X, \varnothing \in \mathcal{T}_{\alpha}$. Let $U_n \in \mathcal{T}_{\alpha}$ be basis elements of $\bigcap \mathcal{T}_{\alpha}$. Then U_n , for each α , exists in \mathcal{T}_{α} . Therefore, U_n is a basis element for each \mathcal{T}_{α} . $\bigcap_{1}^{k} U_i$ is the finite intersection of basis elements of \mathcal{T}_{α} ; thus, $\bigcap_{1}^{k} U_i \in \mathcal{T}_{\alpha}$. Let's consider the arbitrary intersection of U_n . For each α , U_n exist in \mathcal{T}_{α} . Then $\bigcup U_n \in \mathcal{T}_{\alpha}$. Hence $\bigcap \mathcal{T}_{\alpha}$ is a topology on X.
 - For the union, let $X = \{a, b, c\}$ and $\mathfrak{T}_{\alpha} = \{\mathfrak{T}_1, \mathfrak{T}_2\}$ where $\mathfrak{T}_1 = \{\varnothing, \{a\}, X\}$ and $\mathfrak{T}_2 = \{\varnothing, \{b\}, X\}$. Then $\bigcup \mathfrak{T}_{\alpha} = \{\varnothing, \{a\}, \{b\}, X\}$. Now the union of elements in \mathfrak{T}_{α} must be in \mathfrak{T}_{α} . However, $\{a\} \cup \{b\} = \{a, b\} \notin \mathfrak{T}_{\alpha}$. Hence, the union is not a topology on X.
 - (b) Let $\{\mathcal{T}_{\alpha}\}$ be a family of topologies on X. Show that there is a unique smallest topology on X containing all the collections \mathcal{T}_{α} , and a unique largest topology contained in all \mathcal{T}_{α} .
 - (c) If $X = \{a, b, c\}$, let

$$\mathfrak{T}_1 = \{\varnothing, X, \{\alpha\}, \{\alpha, b\}\}$$
 and $\mathfrak{T}_2 = \{\varnothing, X, \{\alpha\}, \{b, c\}\}.$

Find the smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 , and the largest topology containing \mathcal{T}_1 and \mathcal{T}_2 .

The smallest topology containing \mathcal{T}_1 and \mathcal{T}_2 is $\mathcal{T}_s = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and the largest is $\mathcal{T}_1 = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}, X\}$.

5. Show that if A is a basis for a topology on X, then the topology generated by A equals the intersection of all topologies on X that contain A. Prove the same if A is a subbasis.

Let \mathcal{T} be the be the topology generated by \mathcal{A} and let $\{\mathcal{T}_{\alpha}\}$ be the family of topologies that contain \mathcal{A} . Since $\mathcal{A} \subset \cap \mathcal{T}_{\alpha}$ and $\mathcal{A} \subset \mathcal{T}$, we have that $\cap \mathcal{T}_{\alpha} \subset \mathcal{T}$. Let U be an open set in \mathcal{A} . Then $\cup U \in \mathcal{T}_{\alpha}$ for all α but \mathcal{T}_{α} contains \mathcal{A} so $\mathcal{T} \subset \cap \mathcal{T}_{\alpha}$. Therefore, $\mathcal{T} = \cap \mathcal{T}_{\alpha}$.

6. Show that the topologies on \mathbb{R}_{ℓ} and \mathbb{R}_{K} are not comparable.

The lower limit topology, \mathbb{R}_{ℓ} , is $[a,b) = \{x \mid a \le x < b\}$ and K-topology, \mathbb{R}_{K} , is the collection of all open intervals (a,b) along with all sets of the form (a,b) - K where $K = \{1/n \mid n \in \mathbb{Z}^+\}$.

7. Consider the following topologies on \mathbb{R} :

 \mathfrak{T}_1 = the standard topology,

 \mathfrak{I}_2 = the topology of \mathbb{R}_K ,

 T_3 = the finite complement topology,

 T_4 = the upper limit topology, having all sets (a, b] as a basis,

 \mathfrak{I}_5 = the topology having all sets $(-\infty, \mathfrak{a}) = \{x \mid x < \mathfrak{a}\}$ as a basis.

Determine, for each of these topologies, which of the others it contains.

8. (a) Apply Lemma 13.2 to show that the countable collection

$$\mathcal{B} = \{(a,b) \mid a < b, a,b \in \mathbb{Q}\}\$$

is a basis that generates the standard topology on \mathbb{R} .

(b) Show that the collection

$$\mathcal{C} = \{ [a, b) \mid a < b, a, b \in \mathbb{Q} \}$$

is a basis that generates a topology different from the lower limit topology on \mathbb{R} .