NSTRUCTION MANUA

IRTS-P Precision Infrared Temperature Sensor

Revision: 9/06

Copyright © 2002-2006 Campbell Scientific, Inc. Apogee Instruments, Inc.

Warranty and Assistance

The IRTS-P PRECISION INFRARED TEMPERATURE SENSOR is warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.'s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.'s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC's shipping address is:

CAMPBELL SCIENTIFIC, INC.

RMA#____ 815 West 1800 North Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.

IRTS-P Table of Contents

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

1.	General Description	. 1
2.	Specifications	. 1
3.	Installation	. 2
4.	Wiring	.3
5.	Example Programs	. 3
6.	Maintenance	11
Fi	gures	
	3-1. IRTS-P on UT018 Crossarm	2
Ta	ables	
	5-1. Wiring for Example Programs	4

IRTS-P Precision Infrared Temperature Sensor

1. General Description

An infrared temperature sensor (IRTS) is a non-contact means of measuring the surface temperature of an object by sensing the infrared radiation given off. IRTS are widely used for measurements of leaf, canopy, and average surface temperature. With contact sensors it is difficult to avoid influencing the temperature, maintain thermal contact, and provide a spatial average.

By mounting the infrared sensor at an appropriate distance from the target, it can be used to measure an individual leaf, a canopy, or any surface of interest.

The IRTS-P is an infrared temperature sensor calibrated to output the signal for the target temperature with the same output voltage as if a Type K thermocouple were sensing the target temperature. A separate type K thermocouple is used to measure the temperature of the sensor body. The sensor body temperature is used to correct the target temperature for greater accuracy.

2. Specifications

Power Requirements None: self-powered

Accuracy ± 0.3 °C from -10° to 55°C (± 0.1 °C when

sensor body and target are at the same

temperature)

Repeatability 0.05°C from -10° to 55°C

Mass Less than 100 grams
Dimensions 6.3 cm long by 2.3 cm diameter

Response TimeLess than 1 second to changes in target

temperature

Output Signal 2, type K, twisted, shielded pair thermocouple

outputs (15 ft each), one for target

temperature, one for sensor body temperature. The sensor body temperature is used to make a

correction for target temperature.

Optics Silicon lens

Wavelength Range 6 to 14 micrometers

Field of View 3:1 field of view (at 3 meters from sensor the

FOV is a 1 meter diameter circle)

Operating Highly water resistant, designed for

Environment continuous outdoor use; temperature range:

-10° to 55°C

3. Installation

The field of view for infrared sensors is calculated based on the geometry of the sensor and lens. However, optical and atmospheric scatter and unwanted reflections from outside the field of view may influence the measurement. Under typical conditions, 80 to 90 percent of the IR signal is from the field of view and 10 to 20 percent is from the area surrounding the field of view. If the target surface is small, for example a single leaf, try to mount the sensor close enough that the surface extends beyond the field of view.

To obtain the desired view of the canopy or surface of interest, the IRTS-P is often mounted separately from a met station tower. A hole threaded for a standard tripod camera mount screw (1/4 inch diameter; 20 threads per inch) can be used to mount the sensor to a user-supplied support.

The IRTS-P can be mounted to a Campbell Scientific tripod or tower with the UT018 Crossarm (Figure 3-1.) A mounting kit (Stainless steel bolt, 2 washers, and 2 nuts PN 14475) is included with the IRTS-P that can be used to attach the sensor to the crossarm (Figure 3-2.)

FIGURE 3-1. IRTS-P on UT018 Crossarm

FIGURE 3-2. Mounting IRTS-P to UT018 Crossarm

4. Wiring

The IRTS-P has two thermocouple outputs. Each output is a pair of red and yellow wires. The pair labeled "Target" on the jacket near the wires is the output from the detector. The pair labeled "Body" is a thermocouple measuring the temperature of the sensor body. Previous versions of the sensor had a black band on the target cable to mark it. We recommend measuring the temperatures with differential voltage thermocouple measurements.

5. Example Programs

The datalogger program to measure the IRTS-P measures the thermocouple outputs to obtain the IRTS-P sensor body temperature and the apparent (uncorrected) temperature of the target.

The thermocouple temperature requires the temperature of the terminals to which the thermocouples are connected. The panel temperature is used as the reference for the CR23X, CR1000, and CR5000. The module temperature is not an accurate measurement of the CR10X panel temperature; a CR10XTCR is required to measure the reference temperature.

After measuring the thermocouple outputs, the sensor body temperature is used to calculate correction coefficients that are then used to correct the target temperature.

All three example programs measure the sensor once a second and output average values once an hour. The actual channels and outputs intervals need to be adjusted for the actual installation and application.

The equations implemented in the program are (Bugbee et.al. 1996)

Corrected Target Temperature, CTT = ATT - SECwere ATT = Apparent Target Temperature, and Sensor Error Correction, $SEC = (0.25/P_{SR})((ATT - H_{SR})^2 - K_{SR})$;

$$P_{SB} = 49.9092 + 0.59237 \cdot SB + 0.00558 \cdot SB^2$$

$$H_{SB} = 4.2828 + 0.4248 \cdot SB - 0.00077 \cdot SB^2$$

$$K_{SB} = 52.0705 - 5.3816 \cdot SB + 0.387 \cdot SB^2$$
 and SB = Sensor Body Temperature

The three example programs measure the sensor once a second and output average sensor and target temperatures once an hour. In an actual installation the measurement and output intervals, and channels used may be changed to accommodate the other measurements and outputs.

TABLE 5-1. Wiring for Example Programs					
Sensor/Lead	Description	CR10X	CR23X	CR1000	
CR10XTCR	Reference Temp:		Not Used	Not Used	
Black	Excitation	E3			
Red	Signal	SE1			
Clear	Ground	AG			
IRTS-P – Target/Black Band	Detector Temp				
Yellow	TC +	2H	1H	1H	
Red	TC -	2L	1L	1L	
IRTS-P – Body/No Band	Sensor Temp				
Yellow	TC +	3H	2H	2H	
Red	TC -	3L	2L	2L	
Bare wire	Shield	G	÷	÷	

CR10X Example Program

```
;{CR10X}
*Table 1 Program
 01: 1
                  Execution Interval (seconds)
;Measure CR10XTCR Reference Temperature
1: Temp (107) (P11)
  1: 1
                  Reps
  2:
     1
                  SE Channel
  3: 3
                  Excite all reps w/E3
                  Loc [ RefTemp ]
  4: 1
  5: 1.0
                  Mult
     0.0
  6:
                  Offset
;Measure IRt/c apparent target temperature
```

```
2: Thermocouple Temp (DIFF) (P14)
  1:
     1
                  Reps
  2:
     21
                  2.5 mV 60 Hz Rejection Range
 3:
     2
                 DIFF Channel
 4:
     3
                  Type K (Chromel-Alumel)
  5:
     1
                  Ref Temp (Deg. C) Loc [ RefTemp ]
     2
                  Loc [ AppTargT ]
 6:
                  Mult
 7:
     1.0
     0.0
                 Offset
 8:
;Measure Sensor Body Temp
3: Thermocouple Temp (DIFF) (P14)
 1:
     1
                  Reps
     21
                  2.5 mV 60 Hz Rejection Range
 2:
 3:
     3
                 DIFF Channel
                  Type K (Chromel-Alumel)
 4:
     3
 5:
     1
                  Ref Temp (Deg. C) Loc [ RefTemp ]
     3
                 Loc [ SenBodyT ]
 6:
 7:
     1.0
                 Mult
 8:
     0.0
                 Offset
;Calculate P, H, & K Coefficients
4: Polynomial (P55)
  1: 1
                  Reps
 2:
     3
                 X Loc [ SenBodyT ]
  3:
     4
                 F(X) Loc [ Psb
 4:
     49.9092
                 C0
 5:
     0.59237
                 C1
     0.00558
                 C2
 6:
 7:
     0.0
                  C3
 8:
     0.0
                  C4
 9:
     0.0
                 C5
5: Polynomial (P55)
 1: 1
                  Reps
 2:
     3
                 X Loc [ SenBodyT ]
 3:
     5
                 F(X) Loc [ Hsb
     4.2828
 4:
                  C0
 5:
     0.4248
                 C1
     -0.00077
 6:
                 C2
 7: 0.0
                  C3
 8: 0.0
                  C4
                 C5
 9:0.0
6: Polynomial (P55)
 1: 1
 2:
     3
                  X Loc [ SenBodyT ]
     6
 3:
                 F(X) Loc [ Ksb
     52.0705
 4:
                 C0
 5:
     -5.3816
                 C1
     0.387
                  C2
 6:
                  C3
 7:
     0.0
                  C4
 8:
     0.0
 9:
     0.0
                  C5
```

```
;Calculate correction factor (SEC)
7: Z=1/X (P42); {1/Psb}
                 X Loc [ Psb
 1: 4
                                ]
 2: 4
                 Z Loc [ Psb
                                ]
8: Z=X*F (P37); {.25/Psb}
 1: 4
                 X Loc [ Psb
                                1
 2: 0.25
                 F
 3: 4
                 Z Loc [ Psb
                                1
9: Z=X-Y (P35); {ATT - Hsb}
                 X Loc [ AppTargT ]
 2: 5
                 Y Loc [ Hsb
 3: 5
                 Z Loc [ Hsb
10: Z=X*Y (P36); {ATT - Hsb}^2
                 X Loc [ Hsb
 1: 5
                 Y Loc [ Hsb
 2: 5
                                1
 3: 5
                 Z Loc [ Hsb
11: Z=X-Y (P35); {subtract Ksb}
                 X Loc [ Hsb
 1: 5
 2: 6
                 Y Loc [ Ksb
 3: 6
                 Z Loc [ Ksb
12: Z=X*Y (P36); {calculate SEC}
                 X Loc [ Psb
 1: 4
 2:
     6
                 Y Loc [ Ksb
 3: 7
                 Z Loc [ SEC
                                1
;Calculate corrected target temperature (CTT)
13: Z=X-Y(P35);
 1: 2
                 X Loc [ AppTargT ]
 2: 7
                 Y Loc [ SEC
                                 1
 3: 8
                 Z Loc [ CTT
14: If time is (P92)
 1: 0
                 Minutes (Seconds --) into a
 2: 60
                 Interval (same units as above)
 3: 10
                 Set Output Flag High (Flag 0)
15: Real Time (P77)
 1: 1220
                  Year, Day, Hour/Minute (midnight = 2400)
16: Average (P71)
 1: 3
 2: 1
                 Loc [ RefTemp ]
17: Average (P71)
 1: 1
                 Reps
 2: 8
                 Loc [ CTT
                              ]
```

```
*Table 2 Program
 02: 0.0000
                 Execution Interval (seconds)
*Table 3 Subroutines
End Program
-Input Locations-
1 RefTemp 121
2 AppTargT 121
3 SenBodyT 131
4 Psb
        133
5 Hsb
        143
        122
6 Ksb
7 SEC
         111
8 CTT
         101
```

CR23X Example Program

```
;{CR23X}
*Table 1 Program
  01: 1
                  Execution Interval (seconds)
;Measure Panel Reference Temperature
1: Panel Temperature (P17)
                  Loc [ RefTemp ]
  1: 1
;Measure IRt/c apparent target temperature
2: Thermocouple Temp (DIFF) (P14)
  1: 1
                  Reps
  2:
     21
                  10 mV, 60 Hz Reject, Slow Range
  3:
     1
                  DIFF Channel
     3
                  Type K (Chromel-Alumel)
  4:
  5:
     1
                  Ref Temp (Deg. C) Loc [ RefTemp ]
  6:
     2
                  Loc [ AppTargT ]
  7:
     1.0
                  Mult
     0.0
                  Offset
;Measure Sensor Body Temp
3: Thermocouple Temp (DIFF) (P14)
  1: 1
                  Reps
  2:
     21
                  10 mV, 60 Hz Reject, Slow Range
  3:
     2
                  DIFF Channel
     3
                  Type K (Chromel-Alumel)
  4:
  5:
                  Ref Temp (Deg. C) Loc [ RefTemp ]
     1
  6:
     3
                  Loc [ SenBodyT ]
  7:
     1.0
                  Mult
                  Offset
  8:
     0.0
```

```
;Calculate P, H, & K Coefficients
4: Polynomial (P55)
 1: 1
                 Reps
 2: 3
                 X Loc [ SenBodyT ]
  3: 4
                 F(X) Loc [ Psb
  4: 49.9092
                 C0
  5: 0.59237
                 C1
 6: 0.00558
                 C2
 7: 0.0
                 C3
                 C4
 8: 0.0
 9: 0.0
                 C5
5: Polynomial (P55)
 1: 1
                 Reps
 2: 3
                 X Loc [ SenBodyT ]
  3: 5
                 F(X) Loc [ Hsb
  4: 4.2828
                 C0
  5: 0.4248
                 C1
 6: -0.00077
                 C2
 7: 0.0
                 C3
                 C4
 8: 0.0
 9: 0.0
                 C5
6: Polynomial (P55)
 1: 1
                 Reps
 2: 3
                 X Loc [ SenBodyT ]
  3: 6
                 F(X) Loc [ Ksb
  4: 52.0705
                 C0
  5: -5.3816
                 C1
 6: 0.387
                 C2
 7: 0.0
                 C3
                 C4
 8: 0.0
                 C5
 9: 0.0
;Calculate correction factor (SEC)
7: Z=1/X (P42); {1/Psb}
 1: 4
                 X Loc [ Psb
                              ]
                 Z Loc [ Psb
                              ]
8: Z=X*F(P37); {.25/Psb}
 1: 4
                 X Loc [ Psb
                              1
 2: 0.25
                 F
 3: 4
                 Z Loc [ Psb
                              1
9: Z=X-Y (P35); {ATT - Hsb}
 1: 2
                 X Loc [ AppTargT ]
 2: 5
                 Y Loc [ Hsb
                               ]
 3: 5
                 Z Loc [ Hsb
10: Z=X*Y (P36); {ATT - Hsb}^2
                 X Loc [ Hsb
 1: 5
 2: 5
                 Y Loc [ Hsb
                               ]
 3: 5
                 Z Loc [ Hsb
                              ]
```

```
11: Z=X-Y (P35); {subtract Ksb}
  1:
     5
                  X Loc [ Hsb
                                 ]
  2:
     6
                  Y Loc [ Ksb
                                 1
  3: 6
                  Z Loc [ Ksb
                                ]
12: Z=X*Y (P36); {calculate SEC}
                  X Loc [ Psb
  1: 4
                                ]
  2:
                  Y Loc [ Ksb
     6
                                 ]
  3:
     7
                  Z Loc [ SEC
                                 ]
;Calculate corrected target temperature (CTT)
13: Z=X-Y (P35);
  1: 2
                  X Loc [ AppTargT ]
 2: 7
                  Y Loc [ SEC
                                 ]
  3: 8
                  Z Loc [ CTT
                                 ]
14: If time is (P92)
  1: 0
                  Minutes (Seconds --) into a
  2:
     60
                  Interval (same units as above)
  3:
     10
                  Set Output Flag High (Flag 0)
15: Real Time (P77)
 1: 1220
                  Year, Day, Hour/Minute (midnight = 2400)
16: Average (P71)
  1: 3
                  Reps
  2:
     1
                  Loc [ RefTemp ]
17: Average (P71)
                  Reps
  1: 1
  2: 8
                  Loc [ CTT
                               ]
*Table 2 Program
  02: 0.0000
                  Execution Interval (seconds)
*Table 3 Subroutines
End Program
-Input Locations-
1 RefTemp 131
2 AppTargT 121
3 SenBodyT 131
        133
4 Psb
5 Hsb
         143
         122
6 Ksb
7 SEC
         1 1 1
8 CTT
         1 1 1
```

CR1000 Example Program

```
'CR1000
Dim SB, Psb, Hsb, Ksb, SenEC
Public PTemp_C, ATT_C, CTT_C
DataTable(IRTS-P,True,-1)
   DataInterval(0.60,Min.0)
   Average(1,ATT_C,IEEE4,0)
   Average(1,CTT_C,IEEE4,0)
EndTable
BeginProg
Scan(1,Sec,1,0)
    'Wiring Panel Temperature measurement PTemp_C:
   PanelTemp(PTemp_C,_60Hz)
    'IRTS-P Precision Infrared Temperature Sensor measurements ATT C and CTT C:
    'Measure apparent target temperature with IRTS-P.
   TCDiff(ATT_C,1,mV2_5C,1,TypeK,PTemp_C,True,0,_60Hz,1,0)
    'Measure IRTS-P sensor body temperature.
   TCDiff(SB,1,mV2_5C,2,TypeK,PTemp_C,True,0,_60Hz,1,0)
    'Calculate Psb, Hsb, & Ksb coefficients.
   Psb=49.9092+(0.59237*SB)-(0.00558*SB^2)
   Hsb=4.2828+(0.4248*SB)-(0.00077*SB^2)
   Ksb=52.0705-(5.3816*SB)+(0.387*SB^2)
    'Calculate correction factor.
   SenEC=(0.25/Psb)*((ATT_C-Hsb)^2-Ksb)
    'Calculate corrected target temperature.
   CTT C=ATT C-SenEC
   CallTable(IRTS-P)
NextScan
EndProg
```

CR5000 Example Program

```
Public RefT, TargetCorrT, TC(2), SensorCorr, Psb, Hsb, Ksb
Alias TC(1) = TargetApparentT
Alias TC(2) = SensorBodyT
DataTable (AllDat,1,-1)
   DataInterval (0.60.Min.10)
   Average (1,RefT,FP2,0)
   Average (2,TC(),IEEE4,0)
   Average (1,TargetCorrT,IEEE4,0)
EndTable
BeginProg
   Scan (1,Sec,3,0)
        PanelTemp (RefT,250)
        TCDiff (TC(),2,mV20C,1,TypeK,RefT,True,0,_60Hz,1.0,0)
        Psb = 49.9092 + 0.59237 * SensorBodyT - 0.00558 * SensorBodyT^2
        Hsb = 4.2828 + 0.4248 * SensorBodyT - 0.00077 * SensorBodyT^2
        Ksb = 52.0705 - 5.3816 * SensorBodyT + 0.387 * SensorBodyT^2
        SensorCorr = (0.25/Psb) * ((TargetApparentT - Hsb)^2 - Ksb)
        TargetCorrT = TargetApparentT - SensorCorr
        CallTable Alldat
   NextScan
EndProg
```

6. Maintenance

As with any optical sensor, it is important to keep the lens and view clean. Otherwise the sensor will be measuring the temperature of the obstruction instead of the surface of interest.

Clean the lens gently with a moistened cotton swab. Distilled water or alcohol works well for most dust/dirt. Salt deposits dissolve better in a weak acid solution (~0.1 molar).

Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)

815 West 1800 North Logan, Utah 84321 UNITED STATES www.campbellsci.com info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)

PO Box 2450 Somerset West 7129 SOUTH AFRICA www.csafrica.co.za cleroux@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)

PO Box 444 Thuringowa Central QLD 4812 AUSTRALIA www.campbellsci.com.au info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)

Rua Luisa Crapsi Orsi, 15 Butantã CEP: 005543-000 São Paulo SP BRAZIL www.campbellsci.com.br suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)

11564 - 149th Street NW Edmonton, Alberta T5M 1W7 CANADA www.campbellsci.ca dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)

Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)

Miniparc du Verger - Bat. H 1, rue de Terre Neuve - Les Ulis 91967 COURTABOEUF CEDEX FRANCE www.campbellsci.fr campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.

Psg. Font 14, local 8 08013 Barcelona SPAIN www.campbellsci.es info@campbellsci.es