3 Azure ML Studio

3.1 Модель логистической регрессии

Для обучения модели логистической регрессии используется блок Two-Class Logistic Regression из раздела Machine Learning. Единственный параметр, который нас будет интересовать — Random number seed. Остальные параметры остаются заданными по умолчанию.

Рис. 1: Блок логистической регрессии.

Блок Train Model все также отвечает за обучение модели. На вход подаются данные и выбранный метод машинного обучения. В параметрах данного блока необходимо выбрать столбец данных, соответствующий отклику. Для логистической регрессии это должны быть два класса 0 и 1 или -1 и 1.

После запуска модели, полученные значения коэффициентов уравнения линейной регрессии можно посмотреть в параметрах блока Train Model, пункт Visualize. Параметр Bias (смещение) соответствует коэффициенту θ_0 , а названия столбцов данных соответствующим коэффициентам $\theta_1, \ldots, \theta_p$.

Feature Weights

Feature	Weight		
chocolate	1.609		
hard	-0.686988		
Bias	-0.640604		
peanutyalmondy	0.313946		
caramel	0.222867		
bar	0.149035		
sugarpercent	0.139294		
crispedricewafer	0.0292136		
fruity	0		
nougat	0		
pluribus	0		
pricepercent	0		

Рис. 2: Параметры модели логистической регрессии.

3.2 Задача классификации

Для решения задачи классификации необходимы данные. В качестве данных могут выступать либо данные в формате CSV, либо это могут быть введенные вручную значения с помощью блока Enter Data Manually. После запуска эксперимента Run результаты классификации доступны в пункте Visualize блока Score Model.

K набору данных добавляются колонки Scored Probabilities и Scored Labels. В первой указана вероятность отнесения объекта к положительному классу, а во второй — результат бинарной классификации. Положительный класс назначается, если вероятность больше или равна 0.5.

bar	pluribus	sugarpercent	pricepercent	Υ	Scored Labels	Scored Probabilities	
1.	1 1	dia.	.lln	Li	1 1	dul.	
0	1	0.647364	0.767	0	0	0.266198	
0	0	0.418	0.325	0	1	0.584054	
0	0	0.162	0.116	0	0	0.349992	
0	1	0.604	0.755	1	0	0.36446	
0	0	0.87656	0.5654	1	1	0.748721	
0	0	0.313	0.511	0	1	0.733305	
0	1	0.174	0.011	0	1	0.729411	
1	0	0.465	0.325	1	1	0.765336	
0	1	0.313	0.255	0	0	0.354905	

Рис. 3: Результаты классификации.

4 ROC-анализ

За оценку модели отвечает блок Evaluate Model, подключаемый к Score Model, при этом, к блоку Score Model должны быть подключены тестовые данные, содержащие все предикторы и отклик. После обучения модели и запуска доступны:

• Confusion matrix (матрица ошибок):

Матрица ошибок		Верный класс		
		+	_	
Прогноз	+	TP	FP	
	_	FN	TN	

• Precision (точность) — это доля объектов, действительно являющихся положительными к тем, что названы положительными в результате классификации:

$$\mathtt{Precision} = \frac{\mathtt{TP}}{\mathtt{TP} + \mathtt{FP}}.$$

• Recall (полнота) — это доля объектов, классифицированных, как положительные, к тем, что действительно являются положительными. Также называется долей истинно положительных примеров TPR (True Positives Rate):

$$\texttt{Recall} = \frac{\texttt{TP}}{\texttt{TP} + \texttt{FN}}.$$

• AUC (площадь под кривой).

Рис. 4: Оценка модели.

Ползунок для значения **Threshold** позволяет изменять порог отсечения, тем самым влияя на результат бинарной классификации.

True Positive	False Negative	Accuracy 0.600	Precision 0.429	Threshold ** 0.39	$\overline{}$	AUC 0.840
False Positive	True Negative	Recall 0.600	F1 Score 0.500			
Positive Label	Negative Label					

Рис. 5: Изменение порога отсечения.