1. Să se calculeze
$$\int_0^1 (x^2 + x) dx$$
. (5 pct.)

a)
$$\frac{1}{6}$$
; b) 1; c) $\frac{2}{3}$; d) 2; e) 3; f) $\frac{5}{6}$.

- 2. Suma soluțiilor ecuației $\sqrt{x^2-9}=4$ este: (5 pct.)
 - a) 9; b) -1; c) 5; d) 1; e) 0; f) 4.
- 3. Fie $A = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$ Calculați A^3 . (5 pct.)
 - a) $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$; b) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$; c) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; d) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$; e) $\begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$; f) $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$.
- 4. Să se rezolve ecuația $\frac{2x+1}{x+2}=1$. (5 pct.)

a)
$$x = 1$$
; b) $x = -2$; c) $x = -\frac{1}{2}$; d) $x = 2$; e) $x = \sqrt{2}$; f) $x = \sqrt[3]{2}$.

- 5. Să se rezolve ecuația $3^{x+1} = 3^{4x}$. (5 pct.)
 - a) 2; b) $\frac{1}{3}$; c) $-\frac{1}{3}$; d) -1; e) $\frac{2}{3}$; f) 0.
- 6. Câte numere naturale x verifică inegalitatea $x < \frac{9}{x}$? (5 pct.)
 - a) şase; b) două; c) patru; d) niciunul; e) unul; f) cinci.
- 7. Dacă x și y verifică sistemul $\begin{cases} 2x+y=2-3m \\ x-y=1-3m \end{cases}$, atunci x+2y este egal cu: (5 pct.)
 - a) 1; b) 0; c) 2m + 1; d) m 1; e) m; f) 2.
- 8. Să se calculeze $\lim_{x\to\infty}\frac{x^2}{x^2+1}$. (5 pct.)
 - a) nu există limita; b) 2; c) 1; d) 0; e) $\frac{1}{2}$; f) $+\infty$.
- 9. Produsul soluțiilor ecuației $2x^2 5x + 2 = 0$ este: (5 pct.)
 - a) $-\frac{5}{2}$; b) 0; c) 1; d) $\frac{5}{2}$; e) 4; f) -1.
- 10. Fie $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + 2x^2 + 3x e^x$. Să se calculeze f'(0). (5 pct.)
 - a) 3; b) 1; c) e^2 ; d) $\frac{1}{a}$; e) 0; f) 2.
- 11. Să se calculeze $(1+i)^2$. (5 pct.)
 - a) -i; b) 2i; c) 3; d) 0; e) i; f) 1.
- 12. Să se rezolve inecuația $\frac{x}{2} 1 < \frac{x}{3} + 2$. (5 pct.)
 - a) $x \ge 20$; b) x > 20; c) $x \le 18$; d) x > 24; e) x = 21; f) x < 18.
- 13. Suma rădăcinilor polinomului $X^3 3X^2 + 2X$ este: (5 pct.)
 - a) $\frac{1}{3}$; b) $\frac{1}{2}$; c) 3; d) 2; e) 0; f) 1.
- 14. Numărul punctelor de extrem ale funcției $f: \mathbb{R} \to \mathbb{R}, f(x) = \frac{x}{x^2 + 1}$ este: (5 pct.)
 - a) 4; b) 1; c) 2; d) 3; e) 5; f) 0.
- 15. Să se rezolve ecuația $\log_2 x = -1$. (5 pct.)
 - a) $x = -\frac{1}{2}$; b) x = e; c) x = 1; d) x = 0; e) x = 2; f) $x = \frac{1}{2}$.
- 16. Să se calculeze limita șirului $(a_n)_{n\in\mathbb{N}}$ definit prin $a_n = \sum_{k=0}^n \frac{k+1}{3^k}$. (5 pct.)
 - a) $\frac{7}{2}$; b) $\frac{9}{4}$; c) 2; d) $\frac{5}{2}$; e) $\frac{7}{3}$; f) 3.

- 17. Fie $f:(-\infty,1)\cup(1,\infty)\to\mathbb{R},\ f(x)=\frac{x^2+mx+1}{x-1}$. Să se determine $m\in\mathbb{R}$ astfel încât dreapta y=x+2 să fie asimptotă la graficul funcției f. (5 pct.)
 - a) $m=\sqrt{2};$ b) $m=-\sqrt{2};$ c) m=-1; d) m=1; e) m=2; f) m=0.
- 18. Să se calculeze rația r a unei progresii aritmetice cu $a_1 = 1$ și $a_4 = 7$. (5 pct.)
 - a) r=6; b) r=7; c) $r=\frac{1}{2}$; d) $r=\sqrt{2}$; e) r=-2; f) r=2.