# **KKMC**

## CEEX $\sigma$ and $A_{\mathrm{FB}}$ , energy cut-off study

 $dar{d} 
ightarrow \mu^- \mu^+$ , at 189GeV. Energy cut:  $v < v_{
m max}$ ,  $v = 1 - M_{far{f}}^2/s$ .

Scattering angle for  $A_{\rm FB}$  is  $\theta=\theta^{\bullet}$ . No cut in  $\theta^{\bullet}$ . E-W corr. in  $\mathcal{KK}$  according to DIZET 6.x.

EEX3 is  $\mathcal{O}(\alpha^3)_{\mathrm{LL}}$  EEX3 matrix element without ISR $\otimes$ FSR interf.

 $\mathcal{KK}$ sem is semianalytical part of  $\mathcal{KK}$ . (Angle  $\theta$  is from Phys. Rev. **D41**, 1425 (1990).)

| $v_{ m max}$ | KKsem Refer.                    | $\mathcal{O}(lpha^3)_{ m EEX3}$ | $\mathcal{O}(\alpha^2)_{\text{CEEX}} \text{ intOFF}$ | $\mathcal{O}(lpha^2)_{	ext{CEEX}}$ |
|--------------|---------------------------------|---------------------------------|------------------------------------------------------|------------------------------------|
|              | $\sigma(v_{ m max}) \; [ m pb]$ |                                 |                                                      |                                    |
| 0.01         | $0.9145 \pm 0.0000$             | $0.9150 \pm 0.0004$             | $0.9150 \pm 0.0004$                                  | $0.9323 \pm 0.0004$                |
| 0.10         | $1.0805 \pm 0.0000$             | $1.0807 \pm 0.0004$             | $1.0808 \pm 0.0004$                                  | $1.0920 \pm 0.0004$                |
| 0.30         | $1.1612 \pm 0.0000$             | $1.1615 \pm 0.0004$             | $1.1616 \pm 0.0004$                                  | $1.1691 \pm 0.0004$                |
| 0.50         | $1.1974 \pm 0.0000$             | $1.1977 \pm 0.0004$             | $1.1981 \pm 0.0004$                                  | $1.2036 \pm 0.0004$                |
| 0.70         | $1.2310 \pm 0.0000$             | $1.2312 \pm 0.0004$             | $1.2317 \pm 0.0004$                                  | $1.2357 \pm 0.0004$                |
| 0.90         | $1.6104 \pm 0.0000$             | $1.6128 \pm 0.0003$             | $1.6114 \pm 0.0004$                                  | $1.6148 \pm 0.0004$                |
| 0.99         | $1.6218 \pm 0.0000$             | $1.6254 \pm 0.0003$             | $1.6244 \pm 0.0004$                                  | $1.6277 \pm 0.0004$                |
|              | $A_{ m FB}(v_{ m max})$         |                                 |                                                      |                                    |
| 0.01         | $0.5883 \pm 0.0000$             | $0.5883 \pm 0.0005$             | $0.5883 \pm 0.0005$                                  | $0.6033 \pm 0.0005$                |
| 0.10         | $0.5882 \pm 0.0000$             | $0.5881 \pm 0.0004$             | $0.5881 \pm 0.0004$                                  | $0.5966 \pm 0.0004$                |
| 0.30         | $0.5879 \pm 0.0000$             | $0.5879 \pm 0.0004$             | $0.5879 \pm 0.0004$                                  | $0.5932 \pm 0.0004$                |
| 0.50         | $0.5875 \pm 0.0000$             | $0.5874 \pm 0.0004$             | $0.5875 \pm 0.0004$                                  | $0.5912 \pm 0.0004$                |
| 0.70         | $0.5848 \pm 0.0000$             | $0.5845 \pm 0.0004$             | $0.5846 \pm 0.0004$                                  | $0.5868 \pm 0.0004$                |
| 0.90         | $0.4736 \pm 0.0000$             | $0.4722 \pm 0.0003$             | $0.4728 \pm 0.0003$                                  | $0.4748 \pm 0.0003$                |
| 0.99         | $0.4710 \pm 0.0000$             | $0.4691 \pm 0.0003$             | $0.4697 \pm 0.0003$                                  | $0.4716 \pm 0.0003$                |

**KKMC** 

#### Total cross section $\sigma$ , energy cut-off stydy

The same as in the table. No cut in  $\theta^{\bullet}$ . Ref.  $\sigma_{\rm ref}$  = semianalytical of  $\mathcal{KK}$ sem.





#### Charge asymmetry $A_{\rm FB}$ , energy cut-off study

The same as in the table. No cut in  $\theta^{\bullet}$ . Reference  $A_{\mathrm{FB}}^{\mathrm{ref}}$  = semianalytical  $\mathcal{KK}$ sem.



**KKMC** 

### **Physical Precision of CEEX ISR**

The difference between second and first order CEEX results for at 189GeV.

The energy cut is on s'/s, where  $s'=m_{f\bar{f}}^2$ . Scattering angle is  $\theta=\theta^{\bullet}$ .

[Angle  $\theta^{\bullet}$  is defined in Phys. Rev. **D41**, 1425 (1990)]

