Advanced machine learning Methods in AI research

Roxana Rădulescu September 2025

Practicalities

Literature for today:

- Jurafsky & Martin: Chapter 5 (Logistic Regression, skip 5.10)
- Jurafsky & Martin: Chapter 7 (Neural Networks and Neural Language Models, skip 7.6 and 7.7)

So far

ML concepts:

- Supervised learning
- Inductive bias
- Overfitting and underfitting
- Decision boundaries
- Evaluation of supervised learning systems
- Vectors
- Distance measures

Methods

- Decision trees
- Nearest-neighbours

Today:

Logistic regression Neural networks (basics)

Features

You like to train a machine learning system to predict whether a book will become a "bestseller". You've collected a large dataset, and for each book you have the following information:

•	The author: You have 1000 unique authors in your dataset	1000
•	Has the author written a bestseller before? Yes or no	1
•	Genre: {Crime, Fantasy, Historical Fiction, Science Fiction,	5
	Thriller}	1
•	The number of pages of the book	1

Each book is one instance in your dataset. You first need to represent each book as a vector before training your machine learning model.

Each book will be represented as a [?]-dimensional vector. (Fill in the correct number.)

Representing the author

Suppose we use the first dimension to encode the author

$$A = [4, ..., ...]$$

$$\mathbf{B} = [6, ..., ...]$$

$$C = [1, ..., ...]$$

1 = Hemingway 5 = Galman

2 = Shakespeare 6 = King

3 = Kafka 7 = Grisham

4 = Austen ...

k-NN with Manhattan distance

$$\sum |a_i - b_i|$$

Representing the author

Suppose we use the first dimension to encode the author

$$A = [4, ..., ...]$$

$$\mathbf{B} = [6, ..., ...]$$

$$C = [1, ..., ...]$$

 $1 = \text{Hemingway} \quad 5 = \text{Galman}$

2 = Shakespeare 6 = King

3 = Kafka 7 = Grisham

4 = Austen ...

$$\mathbf{A} = [0,0,0,1,0,0,...,...]$$

$$\mathbf{B} = [0,0,0,0,0,1,...,..]$$

$$\mathbf{C} = [1,0,0,0,0,0,...,...]$$

Having different authors increases the Manhattan distance with 2 Same author: 0

Logistic regression

Why?

- It's very often used (also in the social sciences)
- It's a very strong baseline
- Fundamental to understanding neural networks

But let's start with linear regression first

Supervised learning

Learn a machine learning model using **labeled example instances:**

features target
$$\{ \langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Need to define **features**, characteristics of the instances that the model uses for predictions (words in a document, movie ratings, etc..)

Features for house price prediction:

- Neighborhood
- Number of bedrooms
- First floor square meters
- Number of schools within 2 km
- Police Label Safe Housing
- .

This is a **regression** problem: predict continuous output

features target
$$\{<\mathbf{x}^{\,(1)}\,,\ \mathbf{y}^{\,(1)}>,...,<\mathbf{x}^{\,(N)}\,,\ \mathbf{y}^{\,(N)}>\}$$

Goal: Predict the target using the features

Regression task:

Output is a continuous value ($y \in \mathbb{R}$)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_i^{(i)}$: the j^{th} feature of instance i

features target
$$\{, ..., \}$$

Goal: Predict the target using the features

Regression task:

Output is a continuous value ($y \in \mathbb{R}$)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_{1},...,x_{d}]$$

 $x_j^{(i)}$: the jth feature of instance i

For each feature $\mathbf{x_j}$ we learn a weight w_j , so $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given an instance, map it to a real number:

bias weights
$$y = b + w_1 x_1 + ... + w_d x_d$$

$$= b + \sum w_i x_i = b + w \cdot x$$

For example, b = 18, $w_1 = -0.5$, etc.

This is a **linear model**.

features target
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Regression task:

Output is a continuous value ($y \in \mathbb{R}$)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_i^{(i)}$: the j^{th} feature of instance i

For each feature $\mathbf{x_j}$ we learn a weight w_j , so $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given an instance, map it to a real number:

bias weights
$$y = b + w_1 x_1 + \dots + w_d x_d$$

$$= b + \sum w_i x_i = b + w \cdot x$$

For example, b = 18, $w_1 = -0.5$, etc.

This is a **linear model**.

features target
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Regression task:

Output is a continuous value ($y \in \mathbb{R}$)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_i^{(i)}$: the j^{th} feature of instance i

For each feature $\mathbf{x_j}$ we learn a weight $\mathbf{w_j}$, so $\mathbf{w} \in \mathbb{R}^d$ and $\mathbf{b} \in \mathbb{R}$. Given an instance, map it to a real number:

For example, b = 18, $w_1 = -0.5$, etc.

This is a **linear model**.

feature	w_i	x_i
number of bedrooms	30k	2
has garden	25k	0

bias term = 250k

predicted house price: 250 + 2 * 30 + 0 * 25 = 310k

Notation and implementation: bias

For each feature $\mathbf{x_j}$ we learn a weight $\mathbf{w_j}$, so $\mathbf{w} \in \mathbb{R}^d$ and $\mathbf{b} \in \mathbb{R}$. Given an instance, map it to a real number:

Notation: Sometimes the bias is included as a feature (x_0) set to 1. It then becomes:

$$y = w \cdot x$$

Notation and implementation: vectorization

For each feature $\mathbf{x_j}$ we learn a weight w_j , so $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given an instance, map it to a real number:

bias weights
$$y^{k} = b + w_{1}x_{1}^{k} + \dots + w_{d}x_{d}^{k}$$

$$= b + \sum w_{i}x_{i}^{k} = b + w \cdot x^{k}$$

Now $\frac{k}{l}$ indicates the data point. We have n data points.

Vectorization

$$\begin{bmatrix} x_1^1 & \cdots & x_d^1 \\ \vdots & \ddots & \vdots \\ x_1^n & \cdots & x_d^n \end{bmatrix} \begin{bmatrix} w_1 \\ \cdots \\ w_d \end{bmatrix} + b$$

Example:

house1:
$$250 + 2 * 30 + 0 * 25 = 310k$$

house2: $250 + 3 * 30 + 1 * 25 = 365k$

$$\begin{bmatrix} 2 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 30 \\ 25 \end{bmatrix} + 250$$

For each feature x_j we learn a weight w_j

$$y = b + w_1 x_1 + ... + w_d x_d$$

Optimization

Find parameters (w, b) so that the predictions for the *training* data are as close as possible to the known output.

Loss function:
$$\frac{1}{2}\sum_{y}(\hat{y} - y)^2$$

The predicted y The true y

features target
$$\{, ..., \}$$

Goal: Predict the target using the features

Regression task:

Output is a continuous value ($y \in \mathbb{R}$)

Notation:

Each instance $x^{(i)}$ has d features: $[x_1,...,x_d]$

 $x_i^{(i)}$: the j^{th} feature of instance i

Classification

jkady2682352523@aol.com:

how are you today
this is amazing website
there are many kinds of
phone, camera, laptop,
television.....
the price is lower than any other website
the shipping is free

contact: www.cart-looooo00.com

Spam or not?

features target
$$\{, ..., \}$$

Goal: Predict the target using the features

Classification task:

Output is discrete. Our focus: binary classification: $y \in \{0,1\}$ (e.g. 1 = spam)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_j^{(i)}$: the j^{th} feature of instance i

Logistic regression

For each feature $\mathbf{x_j}$ we learn a weight w_j , so $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given an instance, map it to a real number:

bias weights
$$z = b + w_1 x_1 + ... + w_d x_d$$

$$= b + \sum w_i x_i = b + w \cdot x$$

Classification output is 0 or 1, but z can be <0 or >1. Transform it to a probability (range 0 to 1) using the sigmoid (also called logistic function). $p = \frac{1}{1 + e^{-2}}$

features target
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Classification task:

Output is discrete. Our focus: binary classification: $y \in \{0,1\}$ (e.g. 1 = spam)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_j^{(i)}$: the j^{th} feature of instance i

Modeling the output

Logistic regression output:

We want: $o \le output \le 1$.

$$p(y = 1|\mathbf{x}) = \sigma(b + w \cdot \mathbf{x})$$
$$= \frac{1}{1 + e^{-(b + w \cdot \mathbf{x})}}$$

$$p(y = 0 | \mathbf{x}) = 1 - \sigma(b + w \cdot \mathbf{x})$$

sigmoid function

$$\sigma(\mathbf{z}) = \frac{1}{1 + e^{-\mathbf{z}}}$$

Where does the sigmoid function come from?

From probability to odds

р	p/(1-p)
0.001	0.001001
0.5	1
0.999	999

Where does the sigmoid function come from?

From probability to odds

р	p/(1-p)	Log(p/(1-p))
0.001	0.001001	-6.906755
0.5	1	0
0.999	999	6.906755

Logit function

$$z = \log\left(\frac{p}{1-p}\right)$$

So:

$$e^z = \frac{p}{1-p}$$

Sigmoid (or logistic) function

$$p = \frac{1}{1 + e^{-z}}$$

Aside: why not use the sign function?

sigmoid function

The sign function is not differentiable!

Interpretation of the output

- Model outputs probabilities
 - This gives us much more information than just o or 1.
 - For example, P(y=1|x) = 0.90 tells us that the model is very confident. Compare to e.g. when the output P(y=1|x) = 0.51
- Probability can be used for predicting a class.
 - For example, predict 1 when $P(y=1|x) \ge 0.5$

Question: What happens to precision and recall when we increase the threshold (e.g. to 0.80?)

Interpretation of the output

- Model outputs probabilities
 - This gives us much more information than just o or 1.
 - For example, P(y=1|x) = 0.90 tells us that the model is very confident. Compare to e.g. when the output P(y=1|x) = 0.51
- Probability can be used for predicting a class.
 - For example, predict 1 when $P(y=1|x) \ge 0.5$

Question: What happens to precision and recall when we increase the threshold (e.g. to 0.80?)

Decision boundary

Linear classification rule!

(the classification decision is based on a linear combination of the features)

Decision boundaries

$$b = 0.37$$

 $w_1 = 0.35$
 $w_2 = 2.41$

Logistic regression is a linear classifier!

Question: Are decision trees linear classifiers? Are nearest-neighbor models linear classifiers?

Decision boundaries

b = 0.37 $w_1 = 0.35$ $w_2 = 2.41$ Logistic regression is a linear classifier!

Question: Are decision trees linear classifiers? Are nearest-neighbor models linear classifiers?

Both are not linear classifiers

Linearly separable?

Logistic regression: Example

feature	w_i	x_i
Is the advertisement shown at the top of the page? (1=yes, 0 = no)	0.40	1
Click through rate of the user (01)	0.90	0.1
Click through rate of previous showings of the advertisements (other users) (01)	1.2	0.2
Capitalized text? (1=yes, 0=no)	0.5	1

Will the user click on the advertisement?

b=-1

Logistic regression: Example

feature	w_i	x_i
Is the advertisement shown at the top of the page? (1=yes, o = no)	0.40	1
Click through rate of the user (01)	0.90	0.1
Click through rate of previous showings of the advertisements (other users) (01)	1.2	0.2
Capitalized text? (1=yes, 0=no)	0.5	1

Will the user click on the advertisement?

$$z = -1 + 0.40 * 1 + 0.90 * 0.1 + 1.2 * 0.2 + 0.5 * 1 = 0.23$$

Logistic regression: Example

feature	w_i	x_i
Is the advertisement shown at the top of the page? (1=yes, o = no)	0.40	1
Click through rate of the user (01)	0.90	0.1
Click through rate of previous showings of the advertisements (other users) (01)	1.2	0.2
Capitalized text? (1=yes, 0=no)	0.5	1

Will the user click on the advertisement?

$$z = -1 + 0.40 * 1 + 0.90 * 0.1 + 1.2 * 0.2 + 0.5 * 1 = 0.23$$

$$p = \frac{1}{1 + e^{-z}} = 0.557$$
 Yes!

Logistic regression

For each feature $\mathbf{x_j}$ we learn a weight $\mathbf{w_j}$, so $\mathbf{w} \in \mathbb{R}^d$ and $\mathbf{b} \in \mathbb{R}$. Given an instance, map it to a real number:

bias weights
$$z = b + w_1 x_1 + \dots + w_d x_d$$

$$= b + \sum w_i x_i = b + w \cdot x$$

$$p(y = 1|x) = \frac{1}{1 + e^{-z}}$$

features target
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Classification task:

Output is discrete. Our focus: binary classification: $y \in \{0,1\}$ (e.g. 1 = spam)

Notation:

Each instance $x^{(i)}$ has d features:

$$[x_1, ..., x_d]$$

 $x_j^{(i)}$: the j^{th} feature of instance i

Logistic regression

For each feature $\mathbf{x_j}$ we learn a weight w_j , so $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$. Given an instance, map it to a real number:

$$z = b + w_1 x_1 + \dots + w_d x_d$$

$$= b + \sum w_i x_i = b + w \cdot x$$

$$p(y = 1|x) = \frac{1}{1 + e^{-z}}$$
 How do we learn the

Needed: (1) Loss function and (2) Optimization algorithm

weights w and b?

features target
$$\{\langle x^{(1)}, y^{(1)} \rangle, ..., \langle x^{(N)}, y^{(N)} \rangle \}$$

Goal: Predict the target using the features

Classification task:

Output is discrete. Our focus: binary classification: $y \in \{0,1\}$ (e.g. 1 = spam)

Notation:

Each instance $\mathbf{x}^{(i)}$ has d features:

$$[x_{1, ..., x_{d}}]$$

 $x_i^{(i)}$: the j^{th} feature of instance i

Learning the parameters

Loss function

We want to learn parameters ($\theta = w, b$) that maximize the probability of the true labels (y) in the training data (x).

```
if y=1: P(y=1|x; \theta) = \hat{y}
if y=0: P(y=0|x; \theta) = 1 - P(y=1|x; \theta) = 1 - \hat{y}
```

Notation:

y = true label $\hat{y} = \text{classifier output}$ $= P(y=1 \mid x; \theta)$ $= \sigma(w \cdot x + b)$

We want to learn parameters ($\theta = w, b$) that maximize the probability of the true labels (y) in the training data (x).

if y=1:
$$P(y=1|x; \theta) = \hat{y}$$

if y=0: $P(y=0|x; \theta) = 1 - P(y=1|x; \theta) = 1 - \hat{y}$

Trick, combine this into one equation!

$$p(y|x; \theta) = \hat{y}^{y}(1-\hat{y})^{1-y}$$
 $y=1 \quad y=0$

Notation:

y = true label $\hat{y} = \text{classifier output}$ $= P(y=1 \mid x; \theta)$ $= \sigma(w \cdot x + b)$

$$p(y|x; \theta) = \hat{y}^{y}(1-\hat{y})^{1-y}$$

Log transformation (a monotone transformation: parameters that maximize $p(y|x, \theta)$ will also maximize $log p(y|x; \theta)$)

$$\log p(y|x; \boldsymbol{\theta}) = y \log \hat{y} + (1-y) \log (1-\hat{y})$$

Notation:

```
y = true label

\hat{y} =classifier output

= P (y=1 | x; \theta)

= \sigma(w \cdot x + b)
```

$$log(a^b) = b log(a)$$

 $log(ab) = log(a) + log(b)$

$$p(y|x; \theta) = \hat{y}^{y}(1-\hat{y})^{1-y}$$

Log transformation (a monotone transformation: parameters that maximize $p(y|x, \theta)$ will also maximize $log p(y|x; \theta)$)

$$\log p(y|x; \boldsymbol{\theta}) = y \log \hat{y} + (1-y) \log (1-\hat{y})$$

Notation:

```
y = true label

\hat{y} =classifier output

= P (y=1 | x; \theta)

= \sigma(w \cdot x + b)
```

```
log(a^b) = b log(a)
log(ab) = log(a) + log(b)
```

Turning it into a loss function (we want to minimize this): flip the sign!

Cross-entropy loss = $L(\hat{y}, y)$ "How much does the = $-\log p(y|x; \theta)$ classifier output differ from = $-(y \log \hat{y} + (1-y) \log (1-\hat{y}))$ the correct output?"

Notation:

y = true label $\hat{y} = \text{classifier output}$ $= P(y=1 \mid x; \theta)$ $= \sigma(w \cdot x + b)$

Cross-entropy loss =
$$L(\hat{y}, y)$$

= $-\log p(y|x; \theta)$

"How much does the classifier output differ from the correct output?"

$$= - (y log \hat{y} + (1-y) log (1-\hat{y}))$$

when y = 1: $L(\hat{y}, y) = - \log \hat{y}$

x	p(x)	q(x)	s(x)
Α	0.1	0.2	0.6
В	0.8	0.6	0.1
С	0.1	0.2	0.3

How to compare two probability distributions?

$$H(p,q) = -\sum p(x)\log(q(x))$$

$$H(p,q) = -0.1 * ln(0.2) - 0.8 * ln(0.6) - 0.1 * ln(0.2) = 0.731$$

$$H(s,q) = 1.50$$

when calculating the loss, in practice both base 2 and base e (ln) is used

$$H(p,q) = -\sum_{x} p(x) \log(q(x))$$

$$H(p,q) = -0.1 * ln(0.2) - 0.8 * ln(0.6) - 0.1 * ln(0.2) = 0.731$$

$$H(s,q) = 1.50$$

How to compare two probability distributions?

Class	True label	Classifier A
Α	0	0.1
В	1	0.8
С	0	0.1

$$H(p,q) = -\sum p(x)\log(q(x))$$

$loss\ classifier\ A$

$$-1 * ln(0.8) = 0.223$$

Class	True label	Classifier A	Classifier B
Α	0	0.1	0.8
В	1	0.8	0.1
С	0	0.1	0.1

$$H(p,q) = -\sum p(x)\log(q(x))$$

loss classifier A

$$-1 * ln(0.8) = 0.223$$

loss classifier B

$$-1 * ln(0.1) = 2.303$$

```
Recall: \hat{y} = classifier output y = true label
```

We want to find the parameters $\theta = w$, b that minimize the loss for the whole dataset with N examples:

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Let's start simple! Let w be a scalar.

Move in the reverse direction from the slope of the loss function

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$
next step current step learning rate slope

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Let's start simple! Let w be a scalar.

Move in the reverse direction from the slope of the loss function

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$
next step current step learning rate slope

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Let's start simple! Let w be a scalar.

Move in the reverse direction from the slope of the loss function

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$
next step current step learning rate slope

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Let's start simple! Let w be a scalar.

Move in the reverse direction from the slope of the loss function

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} L(\widehat{y}^{(i)}, y^{(i)}; \boldsymbol{\theta})$$

Let's start simple! Let w be a scalar.

Move in the reverse direction from the slope of the loss function

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$
next step current step learning rate slope

[J&M, chapter 5, Fig 5.4]

Gradient is a multi-variable generalization of the slope!

Gradient descent example

$$w^{t+1} = w^t - \eta \frac{d}{dw} f(x; w)$$

next step current step learning rate slope

Let's start at
$$x_0 = 4$$
, learning rate = 0.25

$$x_1 = 4 - 0.25 * (2 * (4 + 3)) = 0.5$$

Converges to -3!

$$y = (x + 3)^2$$

 $dy = 2 * (x + 3)$

- -1.25
- -2.125
- -2.5625
- -2.78125
- -2.890625
- -2.9453125
- -2.97265625
- -2.986328125
- -2.9931640625

Gradient descent: learning rate

When it is too **large**, gradient descent can even lead to increased training error.

When it is too **small**, training is slow and optimization might get stuck.

Usually start with a higher learning rate and decrease it over time.

Gradient descent: learning rate

When it is too **large**, gradient descent can even lead to increased training error.

When it is too **small**, training is slow and optimization might get stuck

Usually start with a higher learning rate and decrease it over time.

Goal: Find the parameters $\theta = w$, b that minimizes this loss

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum L(\widehat{y}, y; \boldsymbol{\theta})$$

Gradient is a multi-variable generalization of the slope.

$$\nabla_{\boldsymbol{\theta}} \perp (\hat{y}, y; \boldsymbol{\theta}) = \begin{bmatrix} \frac{\partial}{\partial w_1} & \perp (\hat{y}, y; \boldsymbol{\theta}) \\ \frac{\partial}{\partial w_2} & \perp (\hat{y}, y; \boldsymbol{\theta}) \\ \dots & \dots \end{bmatrix}$$

$$\theta^{t+1} = \theta^t - \eta \nabla_{\boldsymbol{\theta}} L(\hat{y}, y; \boldsymbol{\theta})$$

Gradient logistic regression

```
Cross-entropy loss = L(\hat{y}, y)

= -\log p(y|x; \theta)

= -(y \log \hat{y} + (1-y) \log (1-\hat{y}))

\frac{\partial L(\hat{y}, y)}{\partial w_{i}} = (\hat{y} - y) x_{j} = (\sigma(b + w \cdot x) - y) x_{j}
```

Recall:

```
An alternative is mini-batch training:
Compute average loss over a mini-batch of m
```

examples

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
           x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(n)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(n)}
\theta \leftarrow 0
repeat til done # see caption
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                                # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                                # What is our estimated output \hat{y}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)})
                                               # How far off is \hat{\mathbf{y}}^{(i)}) from the true output \mathbf{y}^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                                # Go the other way instead
return \theta
```

```
An alternative is mini-batch training:
Compute average loss over a mini-batch of m examples
```

```
function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns \theta
     # where: L is the loss function
             f is a function parameterized by \theta
           x is the set of training inputs x^{(1)}, x^{(2)}, ..., x^{(n)}
             y is the set of training outputs (labels) y^{(1)}, y^{(2)}, ..., y^{(n)}
\theta \leftarrow 0
repeat til done # see caption
   For each training tuple (x^{(i)}, y^{(i)}) (in random order)
      1. Optional (for reporting):
                                                # How are we doing on this tuple?
         Compute \hat{y}^{(i)} = f(x^{(i)}; \theta)
                                                # What is our estimated output \hat{y}?
         Compute the loss L(\hat{y}^{(i)}, y^{(i)})
                                                # How far off is \hat{\mathbf{y}}^{(i)}) from the true output \mathbf{y}^{(i)}?
      2. g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})
                                                # How should we move \theta to maximize loss?
      3. \theta \leftarrow \theta - \eta g
                                                # Go the other way instead
return \theta
```

Regularization

To prevent overfitting, a regularization term R(w) can be added. Recall, we want to find the parameters $\theta = w$, b that minimizes the loss. We now add a regularization term $(R(\theta))$

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum L(\widehat{y}, y; \boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$loss \qquad model complexity$$

RECAP!

The L2 norm:

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum a_i^2}$$

The L1 norm:

$$\|\boldsymbol{a}\|_1 = \sum_{|a_i|}$$

Regularization

To prevent overfitting, a regularization term R(w) can be added. Recall, we want to find the parameters $\theta = w$, b that minimizes the loss. We now add a regularization term $(R(\theta))$

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum L(\widehat{y}, y; \boldsymbol{\theta}) + \lambda R(\boldsymbol{\theta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\log s \qquad \text{model complexity}$$

RECAP!

The L2 norm:

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum a_i^2}$$

The L1 norm:

$$\|\boldsymbol{a}\|_1 = \sum_{|a_i|}$$

L2 regularization (or, ridge regularization): $R(\theta) = \|\theta\|_2^2 = \sum \theta_i^2$ (the square of the L2 norm of the weight values)

$$\boldsymbol{\theta} = [0.1, 0.25, 0.05], R(\boldsymbol{\theta}) = 0.1^2 + 0.25^2 + 0.05^2 = 0.075$$

Regularization

To prevent overfitting, a regularization term R(w) can be added. Recall, we want to find the parameters $\theta = w$, b that minimizes the loss. We now add a regularization term $(R(\theta))$

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum L\left(\widehat{\boldsymbol{y}}, \boldsymbol{y}; \boldsymbol{\theta}\right) + \lambda R\left(\boldsymbol{\theta}\right)$$

$$\underset{\text{loss}}{\text{loss}} \qquad \text{model complexity}$$

RECAP!

The L2 norm:

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum a_i^2}$$

The L1 norm:

$$\|\boldsymbol{a}\|_1 = \sum_{|a_i|}$$

L2 regularization (or, ridge regularization): $R(\theta) = \|\theta\|_2^2 = \sum \theta_i^2$ (the square of the L2 norm of the weight values)

L1 regularization (or, lasso regularization): $R(\theta) = \|\theta\|_1 = \sum |\theta_i|$

Regularization: We can't set the regularization

parameter A by looking at the training error, why?

To prevent overfitting, a regularization term R(w) can be added. Recall, we want to find the parameters $\theta = w$, b that minimizes the loss. We now add a regularization term $(R(\boldsymbol{\theta}))$

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} \mathbb{L}(\widehat{y}, y; \boldsymbol{\theta}) + \lambda \mathbb{R}(\boldsymbol{\theta})$$

$$\underset{loss}{\uparrow}$$

$$\underset{loss}{\downarrow}$$

$$\underset{model complexity}{\uparrow}$$

RECAP!

The L2 norm:

$$\|\boldsymbol{a}\|_2 = \sqrt{\sum a_i^2}$$

The L1 norm:

$$\|\boldsymbol{a}\|_1 = \sum_{|a_i|}$$

L2 regularization (or, ridge regularization): $R(\theta) = \|\theta\|_2^2 = \sum \theta_i^2$ (the square of the L2 norm of the weight values)

L1 regularization (or, lasso regularization): $R(\theta) = \|\theta\|_1 = \sum |\theta_i|$

Multiclass classification

Binary classification (0 vs 1): The sigmoid. $\sigma(z) = \frac{1}{1+e^{-z}}$

Multiclass classification

Binary classification (0 vs 1): The sigmoid. $\sigma(z) = \frac{1}{1+e^{-z}}$

Multiclass classification: We use *one-hot encoding* to encode the right category, e.g. [0, 1,0]

The **softmax** is a generalization of the sigmoid to *k* classes.

$$softmax(z_{i}) = \frac{e^{z_{i}}}{\sum_{j=1}^{k} e^{z_{j}}}$$
Input vector $z = [z_{1}, z_{2}, ...z_{k}] \rightarrow [softmax(z_{1}), softmax(z_{2}), ..., softmax(z_{k})]$

$$[3, 5, -1] \rightarrow [0.1189, 0.8789, 0.0022]$$

Comparison with decision trees & nearest neighbors

Features:

- Decision trees: only a small number of features is used
- K-nearest neighbor: all features are used with equal weight
- Logistic regression: all features are used, but some features are more important than others.

Decision boundaries:

- K-nearest neighbors and decision trees can have non-linear decision boundaries
- Logistic regression results in a linear decision boundary

Graphical view on logistic regression

Graphical view on logistic regression

Note: Bias are omitted from both figures

Neural networks

Neural networks

Have been around for a *long time*:

- McCulloch-Pitts neuron (McCulloch and Pitts, 1943)
- Perceptron (Rosenblatt 1958)
- LeNet-5 (LeCun et al. 1998): convolutional network for digit recognition
- •

Now:

- Better optimization methods
- New non-linear functions (ReLU)
- More hidden layers ('deep learning')
- Better hardware (CPUs, GPUs, TPUs,..)

A simple neural network

output layer

hidden layer

input layer

- Layers between input and output: hidden layers
- Node connections are weighted Input values are propagated along the node connections
- The activation value of a node depends on the value of nodes of incoming connections and the connection weight

A simple neural network

output layer

hidden layer

input layer

- - Layers between input and output: hidden layers
 - Node connections are **weighted** Input values are propagated along the node connections
 - The **activation value** of a node depends on the value of nodes of incoming connections and the connection weight

words, pixels, ...

Building blocks of neural nets: units

$$z = b + w_1 x_1 + \dots + w_d x_d$$
$$= b + \sum w_i x_i = b + w \cdot x$$

Neural units apply a **non-linear activation function** f to \mathbf{z} , resulting in an **activation** value

$$a = f(z)$$

Building blocks of neural nets: units

$$z = b + w_1 x_1 + \dots + w_d x_d$$
$$= b + \sum w_i x_i = b + w \cdot x$$

Neural units apply a **non-linear activation function** f to \mathbf{z} , resulting in an **activation** value

 $a = f(\mathbf{z})$

Usually used for output layer (binary classification)

sigmoid

This should look familiar! (logistic regression)

Building blocks of neural nets: units

$$z = b + w_1 x_1 + \dots + w_d x_d$$
$$= b + \sum w_i x_i = b + w \cdot x$$

Neural units apply a **non-linear activation function** f to \mathbf{z} , resulting in an **activation** value

$$a = f(z)$$

$$tanh$$

$$f(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$$

Usually used for hidden layers

Building blocks of neural nets: units

$$z = b + w_1 x_1 + \dots + w_d x_d$$
$$= b + \sum w_i x_i = b + w \cdot x$$

Neural units apply a **non-linear activation function** f to \mathbf{z} , resulting in an **activation** value

$$a = f(z)$$

Usually used for hidden layers (often 'default' choice)

Rectified linear unit (ReLU)

$$f(\mathbf{z}) = \max(\mathbf{z}, 0)$$

Logistic Regression

Logistic regression:

$$p(y = 1|x) = \frac{1}{1 + e^{-z}}$$
 with $z = b + w \cdot x$

Logistic regression is just a neural network with **no** hidden layers and a sigmoid activation function!

Linearly separable?

We need **non-linear** activation functions to model more complex decision boundaries!

(A network with multiple layers but only linear activation functions still results in a linear decision boundary!)

XOR example

x1	x2	у	
0	0	0	
0	1	0	
1	0	0	
1	1	1	
AND			

x1	x2	у	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
OR			

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	0
	XOR	

Perceptron (no non-linear activation) 0, if $w \cdot x + b \le 0$ 1, if $w \cdot x + b > 0$

XOR example

x1	x2	у
0	0	0
0	1	0
1	0	0
1	1	1
	AND	

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	1
	OR	

x1	x2	у
0	0	0
0	1	1
1	0	1
1	1	0
	XOR	

XOR: not linearly separable!

[J&M, Fig. 7.5]

XOR network

x1	x2	h1	h2	у
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

[J&M, Fig. 7.6, based on Goodfellow et al. 2016]

The units are ReLU units (max(o,x))

XOR network

x1	x2	h1	h2	у
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

$$h1 = max(0, 0*1 + 0 * 1 + 1 * 0) = 0$$

 $h2 = max(0, 0*1 + 0 * 1 + 1 * -1) = 0$

[J&M, Fig. 7.6, based on Goodfellow et al. 2016]

The units are ReLU units (max(o,z))

XOR network: Learning representations

x1	x2	h1	h2	у
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

a) The original x space

b) The new *h* space

Question: Is the new *h* space linearly separable?

[J&M, Fig. 7.7, based on Goodfellow et al. 2016]

XOR network: Learning representations

x1	x2	h1	h2	у
0	0	0	0	0
0	1	1	0	1
1	0	1	0	1
1	1	2	1	0

a) The original x space

b) The new *h* space

Question: Is the new *h* space linearly separable?

[J&M, Fig. 7.7, based on Goodfellow et al. 2016]

Learning representations

Previously (logistic regression, decision trees, etc...): Features were manually specified.

Deep neural networks:

Input are usually low level features (characters, words) or pixels). Neural networks can automatically learn useful representations of the input at different levels of abstraction.

Language:

Lower layers usually capture syntactic information, higher layers capture semantic information

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

https://deeplearningworkshopn ips2010.files.wordpress.com/2 010/09/nips10-workshoptutorial-final.pdf

Feed forward network

A feed-forward network:

- A multilayer network
- Units are connected but no cycles

Also sometimes called: multi-layer perceptrons (or MLPs)

http://www.deeplearningbook.org/contents/mlp.html

Feed forward network

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{bmatrix}$$

в
$$\in \mathbb{R}^{2\times 3}$$

$$\mathbf{H} \in \mathbb{R}^{mxn}$$

$$B_{12} = 2$$

$$\mathbf{Ba} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 2 * 0 + 3 * 1 \\ 4 * 2 + 5 * 0 + 6 * 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \end{bmatrix}$$

Vectors:

$$\mathbf{a} = [2, 0, 1]$$

 $\mathbf{a} \in \mathbb{R}^3$

$$\mathbf{c} = [c_1, \ldots, c_d]$$

 $\mathbf{c} \in \mathbb{R}^d$

- The Matrix Cookbook
- Books/lectures by Gilbert Strang
- Python: numpy

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\mathbf{B} \in \mathbb{R}^{2 \times 3}$$

$$B_{12} = 2$$

$$\mathbf{H} = \begin{bmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{bmatrix}$$

$$\mathbf{H} \in \mathbb{R}^{m \times n}$$

$$\mathbf{Ba} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 2 * 0 + 3 * 1 \\ 4 * 2 + 5 * 0 + 6 * 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \end{bmatrix}$$

Vectors:

$$\mathbf{a} = [2, 0, 1]$$

 $\mathbf{a} \in \mathbb{R}^3$

$$\mathbf{c} = [c_1, \ldots, c_d]$$

 $\mathbf{c} \in \mathbb{R}^d$

- The Matrix Cookbook
- Books/lectures by Gilbert Strang
- Python: numpy

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{bmatrix}$$

$$\mathbf{B} \in \mathbb{R}^{2X3}$$

$$\mathbf{H} \in \mathbb{R}^{m \times n}$$

$$B_{12} = 2$$

$$\mathbf{Ba} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 2 * 0 + 3 * 1 \\ 4 * 2 + 5 * 0 + 6 * 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \end{bmatrix}$$

$$\mathbf{a} = [2, 0, 1]$$

Vectors:

$$\mathbf{a} = [2, 0, 1]$$

 $\mathbf{a} \in \mathbb{R}^3$
 $\mathbf{c} = [c_1, ..., c_d]$
 $\mathbf{c} \in \mathbb{R}^d$

- The Matrix Cookbook
- Books/lectures by Gilbert Strang
- Python: numpy

$$\mathbf{B} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} H_{11} & \cdots & H_{1n} \\ \vdots & \ddots & \vdots \\ H_{m1} & \cdots & H_{mn} \end{bmatrix}$$

$$\mathbf{B} \in \mathbb{R}^{2X3}$$

$$\mathbf{H} \in \mathbb{R}^{m \times n}$$

$$B_{12} = 2$$

$$\mathbf{Ba} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 * 2 + 2 * 0 + 3 * 1 \\ 4 * 2 + 5 * 0 + 6 * 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 14 \end{bmatrix}$$

Vectors:

$$\mathbf{a} = [2, 0, 1]$$

 $\mathbf{a} \in \mathbb{R}^3$

$$\mathbf{c} = [c_1, \ldots, c_d]$$

 $\mathbf{c} \in \mathbb{R}^d$

- The Matrix Cookbook
- Books/lectures by Gilbert Strang
- Python: numpy

$$x \in \mathbb{R}^{n0}$$
 $b \in \mathbb{R}^{n1}$ $W \in \mathbb{R}^{n1 \times n0}$ $h \in \mathbb{R}^{n1}$

Recall: one single hidden unit:

$$h = g(b + w \cdot x)$$

For an entire hidden layer:

$$h_1 = g(b_1 + W_{11}x_1 + ... + W_{1n_0}x_{n_0})$$
 $h_2 = g(b_2 + W_{21}x_1 + ... + W_{2n_0}x_{n_0})$

Etc..

 W_{ij} the weight of the connection between h_i and x_j

Using matrix operations:

$$h = g(b + Wx)$$

e.g. sigmoid or ReLU 90

$$x \in \mathbb{R}^{n0}$$
 $b \in \mathbb{R}^{n1}$
 $W \in \mathbb{R}^{n1 \times n0}$ $h \in \mathbb{R}^{n1}$

Recall: one single hidden unit:

$$h = g(b + w \cdot x)$$

For an entire hidden layer:

$$h_1 = g(b_1 + W_{11}x_1 + ... + W_{1n_0}x_{n_0})$$
 $h_2 = g(b_2 + W_{21}x_1 + ... + W_{2n_0}x_{n_0})$
 $Etc..$
 W_{ij} the weight of the connection between h_i and x_j

Using matrix operations:

$$h = g(b + Wx)$$

e.g. sigmoid or ReLU 91

$$h = g(b + Wx)$$

 $z = Uh$
 $y = softmax(z)$

$$v \in \mathbb{R}^{n0}$$
 $b \in \mathbb{R}^{n1}$ $U \in \mathbb{R}^{n2 \times n1}$ $v \in \mathbb{R}^{n1 \times n0}$ $v \in \mathbb{R}^{n1}$

$$h = g(b + Wx)$$

$$z = Uh$$

$$y = softmax(z)$$

"Just logistic regression on features (or representations) learned in h"

$$x \in \mathbb{R}^{n0}$$
 $b \in \mathbb{R}^{n1}$ $U \in \mathbb{R}^{n2 \times n1}$ $h \in \mathbb{R}^{n1}$

Feed forward network: example


```
x = [1, 2, 3]

h1 = g(0 * 1 + 1 * 2 + 1 * 3) = g(5)
h2 = g(-3 * 1 + 0.5 * 2 + 0 * 3) = g(-2)

Using ReLU activation functions:
h = [h1, h2] = [ReLU(5), ReLU(-2)] = [5, 0]
```

Recall:

ReLU(x) = max(x, 0)

Feed forward network: example


```
x = [1, 2, 3]
h1 = g(0 * 1 + 1 * 2 + 1 * 3) = g(5)
h2 = g(-3 * 1 + 0.5 * 2 + 0 * 3) = g(-2)
Using ReLU activation functions:
h = [h1, h2] = [ReLU(5), ReLU(-2)] = [5, 0]
```

Using matrix multiplications:

Recall:
ReLU(x) =
$$max(x, 0)$$

$$W = \begin{bmatrix} 0 & 1 & 1 \\ -3 & 0.5 & 0 \end{bmatrix}$$

$$Wx = [5, -2]$$

$$h = ReLU(Wx) = [5, 0]$$

Feed forward network: text classification example with hand-built features

Figure 7.10 Feedforward network sentiment analysis using traditional hand-built features of the input text.

Feed forward network: text classification example with embeddings

Feedforward sentiment analysis using a pooled embedding of the input words.

Training a feed forward network

Same ingredients as for logistic regression:

- Loss function
- Optimization algorithm

Training a feed forward network

Same ingredients as for logistic regression:

- Loss function
- Optimization algorithm

```
Cross-entropy loss = L(\hat{y}, y)

(seen before) = -log p(y|x; \theta)
```

Training a feed forward network

Same ingredients as for logistic regression:

- Loss function
- Optimization algorithm

Similar idea, but calculating the gradient is a bit more complicated than for logistic regression...

Feed forward network: back propagation

Intuitively, the (derivative of the) error for a node is distributed among previous nodes according to the weights

(you don't need to know the details of back propagation for this class)

[J&M, Fig. 7.8]

Preventing overfitting

Model complexity

Preventing overfitting

Model complexity

Regularization

Logistic regression:

hyper parameter

L2 regularization

$$R(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2^2 = \sum \boldsymbol{\theta}_i^2$$

L1 regularization

$$\mathbf{R}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_{1} = \sum |\boldsymbol{\theta}_{i}|$$

Regularization

Logistic regression:

$$\widehat{\boldsymbol{\theta}} = \arg\min_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i} \mathbb{L}(\widehat{y}, y; \boldsymbol{\theta}) + \lambda \mathbb{R}(\boldsymbol{\theta})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \uparrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \downarrow$$

$$\downarrow$$

hyper parameter

L2 regularization

$$R(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_2^2 = \sum \boldsymbol{\theta}_i^2$$

L1 regularization

$$\mathbf{R}(\boldsymbol{\theta}) = \|\boldsymbol{\theta}\|_1 = \sum |\boldsymbol{\theta}_i|$$

Same idea for neural networks, but now for matrices:

$$R(W) = ||W||_F^2 = \sum_i \sum_j W_{ij}^2$$

L2 regularization, for historic purposes this is called the (squared) Frobenius norm

$$R(W) = ||W||_1 = \sum_i \sum_i |W_{ii}|$$

L1 regularization

Hyperparameters

- Number of hidden layers
- Size of hidden layers at each layer
- Learning rate
- Batch size
- Regularization parameters
- Activation functions
- and so on

Lots of 'tricks' to train neural networks!

See also: https://karpathy.github.io/2019/04/25/recipe/ (A Recipe for Training Neural Networks Apr 25, 2019)

Beyond feed forward networks

supervised learning

supervised learning

for each task we train

a new model from scratch

Learning representations

Deep neural networks:

Input are usually low level features (characters, words) or pixels). Neural networks can automatically learn useful representations of the input at different levels of abstraction.

Language:

Lower layers usually capture syntactic information, higher layers capture semantic information

Feature representation

3rd layer "Objects"

2nd layer "Object parts"

1st layer "Edges"

Pixels

https://deeplearningworkshopn ips2010.files.wordpress.com/2 010/09/nips10-workshoptutorial-final.pdf

Transfer learning

Train a model on a large dataset (e.g. Imagenet). Retrain part of the model for a task with less data.

[Image from Kermany et al., Cell 2018]

Pre-train: Train a model on a huge amount of unlabelled data (books, Wikipedia, Twitter, etc.)

pre-train then fine-tune

Pre-train: Train a model on a huge amount of unlabelled data (books, Wikipedia, Twitter, etc.)

Fine-tune: Take the model and update it for your task. Benefit: *you don't need a lot of labelled training data!*

Pre-train: Train a model on a huge amount of unlabelled data (books, Wikipedia, Twitter, etc.)

Fine-tune: Take the model and update it for your task. Benefit: you don't need a lot of labelled training data!

pre-train → in-context learning

Review: I loved this movie Label: positive

Review: Horrible plot Label: negative

Review: Wasted my evening Label:

Pre-train: Train a model on a huge amount of unlabelled data (books, Wikipedia, Twitter, etc.)

Neural networks: pros and cons

- Can learn complex nonlinear hypotheses
- Various types of architectures (e.g. for sequential series, adversarial networks).

Neural networks: pros and cons

- Can learn complex nonlinear hypotheses
- Various types of architectures (e.g. for sequential series, adversarial networks).

- More difficult to interpret (but this is an active area of research!)
- Requires lots of data to train (but ways to mitigate this are for example transfer learning)
- Training neural networks is sometimes seen as 'black magic', many tricks involved!
- Deep neural networks can be *very* computationally expensive

Quiz

I posted a short quiz (optional) on Brightspace for you to practice with the material.

I also posted additional exercises on Brightspace (pdf).

You should know

- What linear regression is
- What a loss function is
- What logistic regression is (e.g. sigmoid, decision boundary, cross-entropy, gradient descent for logistic regression, regularization, vectorization)
- The main idea of neural networks (the types of activation functions, their relation to logistic regression, strengths compared to classifiers like logistic regression, ways to prevent overfitting)

Libraries

- Keras https://keras.io/ (friendly wrapper around TensorFlow, PyTorch)
- PyTorch https://pytorch.org/
- TensorFlow https://www.tensorflow.org