Reinforcement Learning, Tutorial 05

Philipp Kratzer

Machine Learning and Robotics Lab

University of Stuttgart Germany

May 27th, 2020

Outline

•0

- 1. Announcements
- 2. Solutions Discussion

Announcements

- Next week no lecture/tutorials
- Next lecture on June 9th
- ▶ Next exercise sheet will be published on June 9th
- Register for the exam (campus)

Outline

- 1. Announcements
- 2. Solutions Discussion

1a

Task: Random Walk Example: What happened on the first episode? Why was only the estimate for this one state changed? By exactly how much was it changed (assuming $\alpha = 0.1$)?

1a

Task: Random Walk Example: What happened on the first episode? Why was only the estimate for this one state changed? By exactly how much was it changed (assuming $\alpha = 0.1$)?

- 1. Must have ended left
- 2. For other states td error was 0
- 3. TD-update after the last transition:

$$V(A) \leftarrow V(A) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

= 0.5 + 0.1 \left[0 + \gamma \cdot 0 - 0.5 \right]
= 0.5 + 0.1 \left(-0.5 \right)
= 0.45

2a

Task: Implement sarsa

2_b

Task: Implement Q-learning

2c

Task: non-slippery

sarsa

sarsa prefers the safer way

q-learning

Announcements

- ► Next week no lecture/tutorials
- ► Next lecture on June 9th
- Next exercise sheet will be published on June 9th