

ANSWERS

CHAPTER 1

- **1.1** $6 \times 10^{-3} \text{ N}$ (repulsive)
- **1.2** (a) 12 cm
 - (b) 0.2 N (attractive)
- 2.4 \times 10³⁹. This is the ratio of electric force to the gravitational force (at the same distance) between an electron and a proton.
- **1.5** Charge is not created or destroyed. It is merely transferred from one body to another.
- **1.6** Zero N
- **1.8** (a) $5.4 \times 10^6 \text{ N C}^{-1} \text{ along OB}$
 - (b) $8.1 \times 10^{-3} \text{ N along OA}$
- 1.9 Total charge is zero. Dipole moment = 7.5×10^{-8} C m along z-axis.
- **1.10** 10⁻⁴ N m
- **1.11** (a) 2×10^{12} , from wool to polythene.
 - (b) Yes, but of a negligible amount (= 2×10^{-18} kg in the example).
- **1.12** (a) $1.5 \times 10^{-2} \text{ N}$
 - (b) 0.24 N
- **1.13** Charges 1 and 2 are negative, charge 3 is positive. Particle 3 has the highest charge to mass ratio.
- **1.14** (a) $30\text{Nm}^2/\text{C}$, (b) $15\text{ Nm}^2/\text{C}$
- **1.15** Zero. The number of lines entering the cube is the same as the number of lines leaving the cube.
- **1.16** (a) $0.07 \mu C$
 - (b) No, only that the net charge inside is zero.
- 1.17 $2.2 \times 10^5 \text{ N m}^2/\text{C}$
- **1.18** $1.9 \times 10^5 \text{ N m}^2/\text{C}$
- 1.19 (a) -10^3 N m²/C; because the charge enclosed is the same in the two cases.
 - (b) -8.8 nC
- **1.20** −6.67 nC
- **1.21** (a) 1.45×10^{-3} C
 - (b) $1.6 \times 10^8 \text{ Nm}^2/\text{C}$
- **1.22** 10 μC/m
- **1.23** (a) Zero, (b) Zero, (c) 1.9 N/C