CS 5003: Parameterized Algorithms

Lectures 28-31

Krithika Ramaswamy

IIT Palakkad

Crown Lemma

Crown Lemma: Let G be a graph without isolated vertices and with at least 3k + 1 vertices. Then, there is a polynomial time algorithm that either finds a matching of size k + 1 in G, or finds a crown decomposition of G.

Towards a Generalization of Crown Lemma

- * Pefinition: In a bipartite graph with bipartition (A, B), a set M of edges is called a 2-expansion from A to B if
 - * Every vertex of A is incident with exactly 2 edges of M
 - * M saturates exactly 2|A| vertices in B

2-Expansion Lemma

2-Expansion Lemma: Let G be a bipartite graph with bipartition (A, B) s.t |B| > 2 |A| and there are no isolated vertices in B. Then, there exists non-empty sets $X \subseteq A$ and $Y \subseteq B$ such that X has a 2-expansion into Y and $N(Y) \subseteq X$. Further, the sets X and Y can be found in $O(m \ n^{1/2})$ time.

Feedback Vertex Set

Assume graph is a multigraph

Reduction Rule 1: Delete isolated vertices

Reduction Rule 2: Pelete degree-1 vertices

Reduction Rule 3: If there is a loop at a vertex v, delete v from the graph and

reduce the parameter by 1

Reduction Rule 5: Short circuit degree-2 vertices

Claim: If min deg >= 3 and max deg <= d and G has an FVS <= k then n < (d+1)k and m < 2dk.

Suppose X is FVS <=k and let Y=G-X

$$3|Y| \le \sum_{v \in Y} deg(v) = \sum_{v \in Y} |N(v) \cap X| + \sum_{v \in Y} |N(v) \cap Y| \le E(X, Y) + 2(|Y| - 1)$$

$$< E(X, Y) + 2|Y|$$

$$\le d|X| + 2|Y|$$

Goal: Reduce max degree to <= 10k to get quadratic kernel

Definition: A v-flower with r petals is a set of r cycles that pairwise intersect only at v

Flower Lemma: There is a polynomial time algorithm that given a graph G and a

vertex v without a self-loop, satisfies one of the following:

- * Peclares (G,k) is a no-instance of Feedback Vertex Set
- * Returns a v-flower with (k+1) petals
- * Finds FVS not containing v of size <= 3k

Note: If algorithm selects option

Reduction Rule 6: If there is a v-flower with k+1 petals, then delete v and reduce the parameter by 1

Suppose v has degree >10k and Flower Lemma returns FVS S not containing v of size
 3k

- v has deg >10k
- * If there are > 2k double edges incident on it, apply Reduction Rule 6
- * Otherwise, there are <= 2k double edges incident on v
- * There are <= 4k edges between v and S

* There are <=r edges between v and T_i s

: there are >6k edges between v and Tis. In particular, r>6k

xi is just any leaf to Ti

- No vertex in D is isolated as each T_i has a deg <= 1 vertex x_i which has deg >= 3 in G. Even if x_i is adj to y_i it has >= 1 nbr in S
- IDI>6k and ISI<=3k i.e., IDI >2ISI
 - * There are non-empty sets $D' \subseteq D$ and $S' \subseteq S$ s.t
 - * S' has a 2-expansion into D' and no vertex in D' has a neighbour outside S'

S

Reduction Rule 7: Add double edges between v and every vertex in S'. Delete edges between D' to v.

Suppose G' has FVS W of <=k. Then, v is in W or S' is in W

- Case: v is in W
 - * G-v = G'-v and W is FVS of G too
- * Case: S' is in W
 - * Any cycle in G passing through T_i in D' also passes through a vertex in S'

Suppose G has FVS W of <=k. Then, G has <=k FVS that either has v or S'

Claim: If G has <=k FVS, then G has <=k FVS that either has v or S'

- * Any FVS Z not containing v has at least IS'l vertices
- * If Z does not contain some x_i from S', then Z contains a vertex q_i from $V(T_{i1}) \cup V(T_{i2})$
- * For example,
 - * Suppose x_1 and x_3 are not in Z
 - * Then, q_1 (from $V(T_1) \cup V(T_2)$) and q_3 ($V(T_3) \cup V(T_4)$) are in Z
 - * Replace q_1 and q_3 by x_1 and x_3 to get Z'
 - * If G-Z' is not a forest, then there is a cycle C containing say q₁
 - * C must have a vertex from S' $(\Rightarrow \Leftarrow)$

neighbourhood of D' is in S' and therefore vertex in Ti cannot be

Suppose 6 has FVS W of <=k. Then, v is in W or S' is in W

- * Case: v is in W
 - * G-v = G'-v and W is FVS of G' too
- * Case: S' is in W
 - * Any cycle in G-W implies a double edge between v and a vertex in $T_i (\Rightarrow \Leftarrow)$

Reduction Rule 7: Add double edges between v and every vertex in S'. Delete edges between D' to v.

- * Reduction Rule 7 can be applied <= m times
 - * No. of single edges incident on v dec
- In polynomial time, either we will find a v-flower with k+1 petals, or the deg of v becomes <= 10k or we will determine that (G,k) is a no-instance</p>

Feedback Vertex Set - Quadratic Kernel

- * Reduction Rule 1: Delete isolated vertices
- * Reduction Rule 2: Pelete degree-1 vertices
- * Reduction Rule 3: If there is a loop at a vertex v, delete v and reduce param by 1
- * Reduction Rule 4: If there is an edge with multiplicity > 2, reduce it to 2
- * Reduction Rule 5: Short-circuit degree 2 vertices
- * Reduction Rule 6: If v is a vertex of degree >10k and there is a v-flower with k+1 petals, delete v and reduce param by 1
- * If v has degree >10k and has > 2k double edges, then apply Reduction Rule 6
- * If v has degree >10k and Flower Lemma returns a FVS S of <=3k vertices s.t $v \notin S$
 - * Use 2-expansion lemma to find $S' \subseteq S$ s.t if G has <=k FVS, then G has <=k FVS that either has v or S'
 - * Reduction Rule 7: Add double edges between v and every vertex in S' and delete edges from D' to v where D' is the set of vertices in G-($S\cup\{v\}$) saturated by the 2-expansion
- * When none of the reductions rules are applicable, every vertex has degree <= 10k
 - * $n=0(k^2)$ and $m=0(k^2)$

Flower Lemma: There is a polynomial time algorithm that given a graph G and a vertex v without a self-loop, satisfies one of the following:

- Peclares (Gk) is a no-instance of Feedback Vertex Set
- * Returns a v-flower with (k+1) petals
- Finds FVS not containing v of size <= 3k</p>

- * Let Z be a 2-approximation FVS of G
- * If IZI > 2k, then declare that (G,k) is a no-instance of Feedback Vertex Set
- * Otherwise, |Z|<=2k
- * If v is not in Z, then Z is the required FVS
- * Otherwise, v is in Z

Neighbours of v

- * | (ca(3,7)=1)
- * |ca(14,16)=14
- * |ca(16,9)=9
- * |ca(9,11)=8
- *
- * Find least common ancestor of every pair of neighbours of v

- * lca(14,16)=14 is the deepest
- * Add 14-16 path to P
- * Add 14 to Y
- Pelete subtree rooted at 14

- * lca(9,11)=8 is the deepest
- * Add 9-8-11 path to P
- * Add 8 to Y
- * Pelete subtree rooted at 8

- * lca(3,7)=1 is the deepest
- * Add 7-2-1-3 path to P
- * Add 1 to Y
- Pelete subtree rooted at 1

- * $P = \{7-2-1-3, 9-8-11, 14-16\}$
- * Y = {1, 8, 14}

Z

TI

T₂

. . . .

Tr

- * $P = \{7-2-1-3, 9-8-11, 14-16\}$
- * $Y = \{1, 8, 14\}$
- * If IPI >k, then there is a v-flower with k+1 petals

* IYI = IPI <= k and S= $(Z \cup Y) \setminus \{v\}$ is the required FVS of size <= 3k as no component of G-S has two neighbours of v

Matching and Vertex Cover in Bipartite Graphs

König's Theorem: For a bipartite graph, Max Mat = Min VC

Hall's Theorem: Let G be a bipartite graph with bipartition (A, B). Then, G has a matching saturating A if and only if IN(X)I >= IXI for all $X \subseteq A$.

Hopcroft-Karp Algorithm: Let G be a bipartite graph with bipartition (A, B).

- * Then, a max mat and a min vc of G can be obtained in $O(m n^{1/2})$ time.
- * Further, in $O(m n^{1/2})$ time, we can either find a matching saturating A or an inclusion-minimal set $X \subseteq A$ such that IN(X)I < IXI.

Kőnig's Theorem

For a bipartite graph, IMax Matl = IMin VCl

- * Let M be a maximum matching of G(A,B)
- * Let D be a digraph obtained from G by orienting edges of G as follows:
 - * If edge $\{a,b\}$ with $a \in A$ and $b \in B$ is in M, direct $\{a,b\}$ as $\{b,a\}$
 - * If edge $\{a,b\}$ with $a \in A$ and $b \in B$ is not in M, direct $\{a,b\}$ as $\{a,b\}$
- * There is no M-alternating path in D from a free vertex in A to a free vertex in B
- * If IMI=IAI then A is a min vertex cover
- * L = set of vertices reachable from a free vertex in A

Claim: $(A \setminus L) \cup (B \cap L)$ is a min vertex cover of G

Kőnig's Theorem

Claim: $S = (A \setminus L) \cup (B \cap L)$ is a min vertex cover of G

- * If $\{a,b\} \in M$ with $b \in B \setminus L$ and $a \in A \cap L$
 - * $(b,a) \in E(D)$
 - * b is the only in-nbr of $a \in L$
 - * ∴ b ∈ L
- * If $\{a,b\} \notin M$
 - * $(a,b) \in E(D)$
 - * $\therefore b \in L \text{ as } a \in L$
- * No vertex $a' \in A \setminus L$ is free by defin of L
- * No vertex $b' \in B \cap L$ is free
 - * o/w, M-alternating path from a free vertex in A to b as $b \in L$
- * No edge $\{a',b'\}$ with $a' \in A \setminus L$ and $b' \in B \cap L$ is in M
 - * o/w, $(b',a') \in E(D)$ and $a' \in L$
- |S| = |M|

Hall's Theorem

Let G be a bipartite graph with bipartition (A, B). Then, G has a matching saturating A if and only if |N(X)| >= |X| for all $X \subseteq A$.

Sufficiency: Induction on IAI

- * Base: |A|=1
- * Induction Step: Let $a \in A$ and b be one of its neighbours
- * If $|N(X)\setminus\{b\}| >= |X| \text{ for all } X \subseteq A\setminus\{a\}$
 - * By induction hypothesis, there is a matching M saturating $A\setminus\{a\}$ in $G-\{a,b\}$
 - * Then, $M \cup \{\{a,b\}\}\$ is a matching saturating A in G
- * Otherwise, $IN(X)\setminus\{b\}$ < IXI for some $X\subseteq A\setminus\{a\}$
 - * As |N(X)| >= |X|, it follows that |N(X)| = |X|
 - * By induction hypothesis there is a matching M saturating X in G(X, N(X))
 - * For any $Y \subseteq A\setminus X$, $|N(Y)\setminus N(X)| >= |N(Y \cup X)| |N(X)| >= |Y| + |X| |N(X)| = |Y|$
 - * By induction hypothesis there is a matching M' saturating $A\setminus X$ in $G(A\setminus X, B\setminus N(X))$
 - * $M \cup M'$ is a matching saturating A

Hopcroft-Karp Algorithm

Let G be a bipartite graph with bipartition (A, B).

- * Then, a max mat and a min vc of G can be obtained in $O(m n^{1/2})$ time.
- * Further, in $O(m n^{1/2})$ time, we can either find a matching saturating A or an inclusion-minimal set $X \subseteq A$ such that IN(X)I < IXI.

Finding Minimal Hall Set

- * Suppose M is a maximum matching of G(A,B) such that IMI < IAI
- * Let A= $\{a_1, a_2, a_3, \ldots, a_r\}$ and let $X_1=\{a_1\}$ where a_1 is a vertex not saturated by M
 - * Every vertex in $N(a_1)$ is saturated by M
- For i=1 to r-1
 - * If IN(Xi)I < IXiI, Return Xi
 - * $X_{i+1} = X_i \cup M$ -partners(N(X_i)) (Note: $|X_{i+1}| > |X_i|$)
- Return X_r

Extended Hall's Theorem

Let G be a bipartite graph with bipartition (A, B). Then, there is a 2-expansion of A into B iff |N(X)| >= 2|X| for all $X \subseteq A$.

Sufficiency:

- * To G(A,B), add a copy of A to get bipartite graph G'(A',B)
- * If G'(A',B) has a matching saturating A', then this matching corresponds to a 2-exp of A into B
- * Otherwise, by Hall's theorem, $|N_G(X)| < |X|$ for some $X \subseteq A'$
 - * w.l.o.g assume X has both copies or no copy of a vertex of A
 - * $|N_{G}(X)| = |N_{G}(X \cap A)| = |N_{G}(X \cap A)| > 2|X \cap A| = |X|$ (a contradiction)

2-Expansion Lemma

Let G be a bipartite graph with bipartition (A, B) s.t |B| >= 2 |A| and there are no isolated vertices in B. Then, there exists non-empty sets $X \subseteq A$ and $Y \subseteq B$ such that X has a 2-exp into Y and $N(Y) \subseteq X$. Further, the sets X and Y can be found in $O(m \ n^{1/2})$ time.

- * If A has a 2-expansion M into B, then X=A and $Y=V(M)\cap B$
 - * Clearly, $N(Y) \subseteq X$
- * Otherwise, by Extended Hall's theorem, $|N_G(X)| < 2|X|$ for some $X \subset A$
- * Let G'(A',B') denote the graph obtained from G by deleting X and $N_G(X)$
- * $|B'| = |B| |N_G(X)| > |B| 2|X| > = 2|A| 2|X| = 2|A'|$
- In G, no vertex in B' has a neighbour in X. So, B' has no isolated vertices in G'
- * By induction hypothesis, there exists non-empty sets $X' \subseteq A'$ and $Y' \subseteq B'$ such that X' has a 2-exp into Y' and $N_{G'}(Y') \subseteq X'$
- * As $N_{\mathcal{G}}(Y') = N_{\mathcal{G}}(Y')$, it follows that $N_{\mathcal{G}}(Y') \subseteq X'$

Ex: Runtime analysis

q-Expansion Lemma

Definition: In a bipartite graph with bipartition (A, B), a set M of edges is called a q-expansion from A to B if

- * Every vertex of A is incident with exactly q edges of M
- * M saturates exactly qlAl vertices in B

Extended Hall's Theorem: Let G be a bipartite graph with bipartition (A, B). Then, there is a q-expansion of A into B iff |N(X)| >= q|X| for all $X \subseteq A$.

q-Expansion Lemma: Let q be a positive integer and let G be a bipartite graph with bipartition (A, B) such that |B| > q |A| and there are no isolated vertices in B. Then, there exists non-empty sets $X \subseteq A$ and $Y \subseteq B$ such that X has a q-expansion into Y and $N(Y) \subseteq X$. Further, the sets X and Y can be found in $O(m n^{1/2})$ time