Álgebra Moderna Tarea 2.1

Tomás Ricardo Basile Álvarez 316617194

10 de octubre de 2020

- a) Sean G un grupo, H, K subgrupos de G. Probar que $H \cup K$ es un grupo si y sólo si $H \subset K$ ó $K \subset H$
 - \Rightarrow) Suponemos que $H \cup K$ es un grupo y queremos probar que $H \subset K$ ó $K \subset H$. Probaremos mejor la contrapuesta de esta proposición, es decir probar que: Si $H \not\subset K$ y $K \not\subset H$, entonces $H \cup K$ no es un grupo.

Como $H \not\subset K$, entonces existe una $h \in H$ tal que $h \not\in K$ Como $K \not\subset H$, entonces existe una $k \in K$ tal que $k \not\in H$.

Notamos entonces que ambos elementos h, k están en $H \cup K$. Sin embargo probaremos que su producto hk no está en $H \cup K$, lo que prueba que este conjunto no es cerrado bajo el producto y por tanto no es un grupo. Para esto, probaré que $hk \notin H$ y que $hk \notin K$:

- o $hk \notin H$) Suponemos que $hk \in H$. Como $h \in H$ y como H es grupo entonces, $h^{-1} \in H$ y luego, el producto $h^{-1}(hk) \in H \Rightarrow k \in H$. Lo que es una contradicción a cómo se definió k, por lo que $hk \notin H$
- o $hk \notin K$) Suponemos que $hk \in K$. Como $k \in K$ y como K es grupo entonces, $k^{-1} \in K$ y luego, el producto $(hk)k^{-1} \in K \Rightarrow h \in K$. Lo que es una contradicción a cómo se definió h, por lo que $hk \notin K$

Por lo que $hk \notin H$ y $hk \notin K$, entonces, $hk \notin H \cup K$.

Que como $h, k \in H \cup K$, el hecho de que $hk \notin H \cup K$ muestra que el producto no es cerrado en este conjunto y por tanto no es un grupo.

Con esto se termina de probar la contrapuesta del teorema.

 \Leftarrow) Digamos que $H \subset K$ ó que $K \subset H$.

Si $H \subset K$, se tiene que $H \cup K = K$ y como K es un grupo, entonces $H \cup K = K$ es un grupo.

Si $K \subset H$, se tiene que $H \cup K = H$ y como H es un grupo, entonces $H \cup K = H$

es un grupo.

- b) Sea $H = \langle x \rangle$. Suponga que $|x| = \infty$, entonces $H = \langle x^a \rangle$ si y sólo si $a = \pm 1$
 - \Rightarrow) Como $\langle x \rangle = H$, entonces $x^1 = x \in H$.

Y como $H = \langle x^a \rangle$, entonces, todo elemento de H se ve como $(x^a)^b$ para un entero b. En particular, el elemento $x \in H$ se ve así. Es decir $x = (x^a)^b$ para enteros a, b.

Entonces $x = (x^a)^b = x^{ab}$ y si multiplicamos por x^{-1} ambos lados, obtenemos que $e = x^{ab-1}$.

Pero como x es de orden infinito, la única potencia de x que es igual a e es el entero 0, entonces ab-1=0.

Y por lo tanto, ab=1. Las únicas soluciones a esto son a=b=1 y a=b=-1 y por tanto $a=\pm 1$

 \Leftarrow) Hay que probar que si $a=\pm 1$, entonces $H=\langle x^a\rangle$. Si a=1, entonces $\langle x^a\rangle=\langle x\rangle$, lo que es igual a H por como se define H.

Si a=-1, entonces $\langle x^a \rangle = \langle x^{-1} \rangle$. Este conjunto $\langle x^{-1} \rangle$ es igual a $\langle x \rangle$, porque para cada $a^n \in \langle a \rangle$, $(n \in \mathbb{Z})$, tenemos a $(a^{-1})^{-n} \in \langle a^{-1} \rangle$ (porque $-n \in \mathbb{Z}$).

Entonces, el conjunto de todas las potencias enteras de a es igual al conjunto de todas las potencias enteras de a^{-1} . Y por tanto $H = \langle x \rangle = \langle x^{-1} \rangle$

c) Encuentra todos los subgrupos de \mathbb{Z}_{45} , da un generador para cada uno y describe las contenciones entre ellos.

Primero vamos a enlistar los subgrupos cíclicos de \mathbb{Z}_{45} , es decir, los que están generados por un solo elemento.

Antes de empezar, notamos que podemos parar de escribir el conjunto cuando llegamos a $\overline{0}$, porque a partir de ahí se empiezan a repetir los elementos.

Por esto, notamos que si $m \in \{1, ..., 45\}$, entonces, $\langle \overline{m} \rangle$ serán todos los múltiplos de m y como dijimos antes, la cadena de múltiplos se empezará a repetir cuando lleguemos a $\overline{0}$, es decir, cuando alcancemos un múltiplo de 45.

El primer múltiplo de 45 que alcanzaremos se dará cuando nos encontremos en el mínimo común múltiplo de m y 45 (que denotamos por [m,45])

Por lo que la cantidad de elementos de $\langle \overline{m} \rangle$ (denotada por $|\langle \overline{m} \rangle|$) es igual a la cantidad de múltiplos de m que hay hasta llegar a [m,45], es decir, es igual a $\frac{[m,45]}{m}$.

Pero si (m, 45) denota al máximo común divisor de m y 45, sabemos que se tiene la relación : $(m, 45)[m, 45] = 45 \cdot m$, y por lo tanto, $\frac{[m, 45]}{m} = \frac{45}{(45, m)}$.

Juntando esto, tenemos que la cantidad de elementos $|\langle \overline{m} \rangle| = \frac{[m,45]}{m} = \frac{45}{(45,m)}$

Por otro lado, probaremos que se cumple que $\langle \overline{m} \rangle = \langle \overline{(45,m)} \rangle$.

Primero vemos que estos dos conjuntos tienen la misma cantidad de elementos, pues $\langle \overline{m} \rangle$ tiene $\frac{45}{(45,m)}$ elementos.

Mientras que $\langle \overline{(45,m)} \rangle$ tiene $\frac{45}{(45,(45,m))}$ elementos. Pero como (45,m) divide a 45 por definición, entonces el máximo común divisor entre 45 y (45,m) es (45,m) por lo que (45,(45,m))=(45,m) y la cantidad de elementos de $\langle \overline{(45,m)} \rangle$ es entonces sencillamente $\frac{45}{(45,m)}$.

Ahora, sea $km \in \langle \overline{m} \rangle$ (con $k \in \mathbb{Z}$). Y como (45, m) divide a m, podemos encontrar un entero i tal que m = (45, m)i. Por tanto, km = k(45, m)i, lo cual es un elemento de $\langle \overline{(45, m)} \rangle$ porque es un múltiplo de (45, m).

Entonces, $\langle \overline{m} \rangle \subset \langle (45, m) \rangle$. Y como probamos que tienen la misma cantidad de elementos, estos conjuntos son necesariamente iguales.

Luego, si tenemos un $m \in \{1, 2, ..., 45\}$, ya sabremos que $\langle \overline{m} \rangle = \langle \overline{(45, m)} \rangle$ y nos podemos ahorrar el trabajo de calcular $\langle \overline{m} \rangle$ si es que ya calculamos $\langle \overline{(45, m)} \rangle$

Con esto, notamos en particular que si un elemento m es coprimo con 45, entonces (45, m) = 1 y se tiene que $\langle \overline{m} \rangle = \langle \overline{1} \rangle = \mathbb{Z}_{45}$

Usaremos esta proposición para calcular varios generados a la vez. Para esto, agruparemos a los cíclicos en todos los que tienen el mismo MCD con 45.

- $\bullet \ \langle \overline{0} \rangle = \{ \overline{0} \}$
- Los coprimos con 45: (todos estos generados son iguales a \mathbb{Z}_{45} por lo mencionado antes) $\langle \overline{1} \rangle = \langle \overline{2} \rangle = \langle \overline{4} \rangle = \langle \overline{7} \rangle = \langle \overline{8} \rangle = \langle \overline{11} \rangle = \langle \overline{13} \rangle = \langle \overline{14} \rangle = \langle \overline{16} \rangle = \langle \overline{17} \rangle = \langle \overline{19} \rangle = \langle \overline{23} \rangle = \langle \overline{26} \rangle = \langle \overline{28} \rangle = \langle \overline{29} \rangle = \langle \overline{31} \rangle = \langle \overline{32} \rangle = \langle \overline{34} \rangle = \langle \overline{37} \rangle = \langle \overline{38} \rangle = \langle \overline{41} \rangle = \langle \overline{43} \rangle = \langle \overline{44} \rangle = \mathbb{Z}_{45}$
- m tal que (m,45) = 3: cualquiera de estos $\langle \overline{m} \rangle$ son iguales a $\langle \overline{(m,45)} \rangle = \langle \overline{3} \rangle$ por lo mencionado antes, entonces: $\langle \overline{3} \rangle = \langle \overline{6} \rangle = \langle \overline{12} \rangle = \langle \overline{21} \rangle = \langle \overline{24} \rangle = \langle \overline{33} \rangle = \langle \overline{39} \rangle = \langle \overline{42} \rangle = \overline{3}, \overline{6}, \overline{9}, \overline{12}, ..., \overline{45} = \overline{0} \}$
- m tal que (m,45) = 5: $\langle \overline{5} \rangle = \langle \overline{10} \rangle = \langle \overline{20} \rangle = \langle \overline{25} \rangle = \langle \overline{35} \rangle = \langle \overline{40} \rangle = \overline{5}, \overline{10}, \overline{15}, ..., \overline{45} = \overline{0} \}$
- m tal que (m,45) = 9: $\langle \overline{9} \rangle = \langle \overline{18} \rangle = \langle \overline{27} \rangle = \langle \overline{36} \rangle$ = $\{\overline{9}, \overline{18}, \overline{27}, ..., \overline{35}, \overline{45} = \overline{0}\}$

• m tal que (m,45) = 15:
$$\langle \overline{15} \rangle = \langle \overline{30} \rangle$$

= $\{\overline{15}, \overline{30}, \overline{45} = \overline{0}\}$

Luego, los únicos subgrupos propios cíclicos de \mathbb{Z}_{45} son \mathbb{Z}_{45} , $\langle 3 \rangle$, $\langle 5 \rangle$, $\langle 9 \rangle$, $\langle 15 \rangle$.

Pero además, resulta que todos los subgrupos de \mathbb{Z}_{45} son cíclicos. Para probar esto, digamos que $H \leq \mathbb{Z}_{45}$ es un subgrupo.

Por el principio del buen orden, hay un entero mínimo $\overline{m} \in H$. Y sea ahora $\overline{p} \in H$. Probaremos que $\overline{p} \in \langle \overline{m} \rangle$.

Por el algoritmo de la división, existe $q \in \mathbb{Z}$ y $0 \le r < m$ tal que p = qm + r. Enotnces, r = p - qm, pero como $\overline{m} \in H$, entonces $\overline{qm} \in H$ y por tanto $p - qm \in H$. Lo que implica que \overline{r} es un elemento de H, pero $0 \le r < m$ y el entero más chiquito en H era m, por lo que se debe de tener que r = 0. Por lo tanto, $p = qm \in \langle \overline{m} \rangle$ y así, todos los elementos de H son generados por m y $H = \langle \overline{m} \rangle$.

Entonces, los grupos cíclicos que encontramos arriba son en realidad todos los que tiene \mathbb{Z}_{45}

Y además, las contenciones que tienen se pueden ver fácilmente y se resumen en el siguiente diagrama (en el que una línea indica que el grupo de arriba está contenido en el de abajo)

d) Probar que el subgrupo de S_4 generado por $(1\ 2)\ \mathbf{y}\ (1\ 3)(2\ 4)$ es isomorfo a $D_{2(4)}$

Primero que nada, llamemos H a el conjunto en cuestión $\langle (1\ 2), (1\ 3)(2\ 4) \rangle$.

Consideramos ahora $\langle (1\ 2), (1\ 3\ 2\ 4) \rangle$ y veremos que es igual a H.

Para esto, notamos que se puede conseguir el elemento $(1\ 3\ 2\ 4)$ a partir de $(1\ 2), (1\ 3)(2\ 4)$ como sigue: $(1\ 2)(1\ 3)(2\ 4) = (1\ 3\ 2\ 4) \in H$.

También notamos que $(1\ 3)(2\ 4)$ se puede escribir a partir de $\{(1\ 2), (1\ 3\ 2\ 4)\}$ como sigue $(1\ 3)(2\ 4) = (1\ 2)(1\ 3\ 2\ 4)$.

Con lo que los elementos de $\{(1\ 2), (1\ 3\ 2\ 4)\}$ se pueden conseguir a partir de los de $\{(1\ 2), (1\ 3)(2\ 4)\}$ y viceversa. Y entonces sus generados son iguales. Por esto, a partir de ahora veremos a H más bien como $\langle\{(1\ 2), (1\ 3\ 2\ 4)\}\rangle$

Ahora bien, $D_{2(4)}$ está definido por ser un conjunto generado por los elementos r y s y cumplir las relaciones generadoras: r es de orden 4, s es de orden 2 y $sr = r^{-1}s$.

Probaré que $H=\langle\{(1\ 2),(1\ 3\ 2\ 4)\}\rangle$ también está generado por dos elementos que cumplen esas relaciones:

• (1 3 2 4) es de orden 4:

```
 \circ (1\ 3\ 2\ 4)^2 = (1\ 3\ 2\ 4)(1\ 3\ 2\ 4) = (1\ 2)(3\ 4)   \circ (1\ 3\ 2\ 4)^3 = (1\ 3\ 2\ 4)^2(1\ 3\ 2\ 4) = (1\ 2)(3\ 4)(1\ 3\ 2\ 4) = (1\ 4\ 2\ 3)   \circ (1\ 3\ 2\ 4)^4 = (1\ 3\ 2\ 4)^3(1\ 3\ 2\ 4) = (1\ 4\ 2\ 3)(1\ 3\ 2\ 4) = (1)(2)(3)(4) = \text{neutro}   \text{de } S_3
```

- (1 2) es de orden 2: Evidentemente $(1 \ 2)^2 = (1)(2)$
- $(1\ 2)(1\ 3\ 2\ 4) = (1\ 3\ 2\ 4)^{-1}(1\ 2)$ Primero calculamos el lado izquierdo: $(1\ 2)(1\ 3\ 2\ 4) = (1\ 3)(2\ 4)$

Calculamos ahora $(1\ 3\ 2\ 4)^{-1}$ Como $(1\ 3\ 2\ 4)$ manda el 1 al 3, el 3 al 2, el 2 al 4 y el 4 al 1. Su inverso manda el 1 al 4, el 4 al 2, el 2 al 3 y el 3 al 1, es decir, vale $(1\ 4\ 2\ 3)$ Ahora hacemos el producto del lado derecho de lo que queremos probar: $(1\ 3\ 2\ 4)^{-1}(1\ 2) = (1\ 4\ 2\ 3)(1\ 2) = (1\ 3)(2\ 4)$

Vemos que ambos lados son iguales.

Entonces, H tiene las mismas propiedades generadoras que $D_{2(4)}$ pero sus elementos tienen distinto nombre. Simplemente r en $D_{2(4)}$ corresponde a (1 3 2 4) en H y s en $D_{2(4)}$ corresponde a (1 2). Luego, ambos grupos se forman al hacer el generado y ambos tienen las mismas relaciones generadoras. Por lo que son el mismo grupo, pero con diferente nombre de elementos. Es decir, son isomorfos.

e) Prueba que si $A \subset B \subset G$ donde G es grupo, $\langle A \rangle \leq \langle b \rangle$. Muestra un ejemplo donde $A \subsetneq B$ pero $\langle A \rangle = \langle B \rangle$.

Como vimos en las notas, $\langle A \rangle$ es el conjunto de todas las palabras en A y $\langle B \rangle$ es el conjunto de todas las palabras en B. Pero como $A \subset B$, toda palabra de A es una palabra de B (porque los elementos que forman la palabra de A están en A y por tanto, están en B).

Luego, $\langle A \rangle \subset \langle B \rangle$

Para el ejemplo mencionado, usamos $G = (\mathbb{Z}, +)$ y sea $A = \{2\}$, $B = \{2, 4\}$

Entonces, $\langle A \rangle$ es el conjunto de todas las palabras formadas por 2 y -2, que nos dará todos los múltiplos de 2.

Por otro lado, $\langle B \rangle$ son todas las palabras en B, que se consiguen haciendo sumas de 2, -2, 4, -4. Es fácil ver que esto nos dará nuevamente a todos los múltiplos de 2. Por lo tanto, $\langle A \rangle = \langle B \rangle$.