Lecture 13 – Midterm Review DSC 10, Fall 2023

Announcements

- The Midterm Exam is **this Monday during lecture**. See **this post on Ed** for lots of details, including what is covered, what to bring, and how to study.
- Homework 3 is due tomorrow at 11:59PM.
 - Finish Homework 3 before the exam, since the material on it is all in scope for the exam.
- The Midterm Project is due on **Saturday 11/4 at 11:59PM**. Only one partner needs to submit.
- Quiz 2 and Homework 2 scores have been released. Along with them, we've released a Grade Report on Gradescope, which summarizes your scores in the class so far. See <u>this post on Ed</u> for details.

Agenda

- We'll work through selected problems from the Spring 2023 Midterm.
- We won't write any code, since you can't run code during the exam. Instead, we'll try to think like the computer ourselves.
- These annotated slides will be posted after lecture is over.
- Try the problems with us!

Access the exam here. Make sure to read the data info sheet at the top before starting.

Problem 4.1

Consider the following block of code.

```
A = survey.shape[0]
B = survey.groupby(["Unread Emails", "IG Followers"]).count().shape[0]
```

Suppose the expression A == B evaluates to True. Given this fact, what can we conclude?

- There are no two students in the class with the same number of unread emails.
- There are no two students in the class with the same number of Instagram followers.
- There are no two students in the class with the same number of Instagram followers, and there are no two students in the class with the same number of unread emails.
- There are no two students in the class with both the same number of unread emails and the same number of Instagram followers.

Problem 4.2

We'd like to find the mean number of Instagram followers of all students in DSC 10. One correct way to do so is given below.

```
mean_1 = survey.get("IG Followers").mean()
```

Another two **possible** ways to do this are given below.

```
# Possible method 1.
  mean_2 = survey.groupby("Section").mean().get("IG Followers").mean()
  # Possible method 2.
  X = survey.groupby("Section").sum().get("IG Followers").sum()
  Y = survey.groupby("Section").count().get("IG Followers").sum()
  mean_3 = X / Y
                                                              Is mean_3 equal to mean_1?
Is mean_2 equal to mean_1?
                                                                  Yes.
    Yes.
                                                                  Yes, if both sections have the same number of
   Yes, if both sections have the same number of
                                                                  students, otherwise maybe.
    students, otherwise maybe.
                                                                  Yes, if both sections have the same number of
    Yes, if both sections have the same number of
                                                                  students, otherwise no.
    students, otherwise no.
                                                                  O No.
    O No.
```

Teresa flips the coin 21 times and sees 13 heads and 8 tails. She stores this information in a DataFrame named teresa that has 21 rows and 2 columns, such that:

- The "flips" column contains "Heads" 13 times and "Tails" 8 times.
- The "Wolftown" column contains "Teresa" 21 times.

Then, Sophia flips the coin 11 times and sees 4 heads and 7 tails. She stores this information in a DataFrame named sophia that has 11 rows and 2 columns, such that:

- The "flips" column contains "Heads" 4 times and "Tails" 7 times.
- The "Makai" column contains "Sophia" 11 times.

Problem 5.1

How many rows are in the following DataFrame? Give your answer as an integer.

Hint: The answer is less than 200.

$$13x4 - 57$$
 $8x7 = 56$
 -108

Problem 5.2

Let A be your answer to the previous part. Now, suppose that:

- teresa contains an additional row, whose "flips" value is "Total" and whose "Wolftown" value is 21.
- sophia contains an additional row, whose "flips" value is "Total" and whose "Makai" value is 11.

Suppose we again merge teresa and sophia on the "flips" column. In terms of A, how many rows are in the new merged DataFrame?

- $\bigcirc A + 2$
- $\bigcirc A + 4$
- $\bigcirc A + 231$

Problem 6

The histogram below displays the distribution of the number of Instagram followers each student has, measured in 100s. That is, if a student is represented in the first bin, they have between 0 and 200 Instagram followers.

Problem 6.1

How many students in DSC 10 have between 200 and 800 Instagram followers? Give your answer as an integer.

Problem 6.2

Suppose the height of a bar in the above histogram is h. How many students are represented in the corresponding bin, in terms of h?

Hint: Just as in the first subpart, you'll need to use the assumption from the start of the problem.

- $\bigcirc 20 \cdot h$
- \bigcirc 100 \cdot h
- \bigcirc 200 \cdot h
- \bigcirc 400 \cdot h
- $0800 \cdot h$

Problem 7

The four most common majors among students in DSC 10 this quarter are "MA30" (Mathematics - Computer Science), "EN30" (Business Economics), "EN25" (Economics), and "CG35" (Cognitive Science with a Specialization in Machine Learning and Neural Computation). We'll call these four majors "popular majors".

There are 80 students in DSC 10 with a popular major. The distribution of popular majors is given in the bar chart below.

Problem 7.1

Fill in the blank below so that the expression outputs the bar chart above.

Problem 7.2

Suppose we select **two** students in popular majors at random with replacement. What is the probability that both have "EN" in their major code? Give your answer in the form of a simplified fraction.

EN majors: 25+15=

Problem 7.3

Suppose we select **two** students in popular majors at random with replacement. What is the probability that we select one "CG35" major and one "MA30" major (in any order)?

- $\frac{1}{2}$
- $\frac{3}{4}$
- $\bigcirc \frac{3}{9}$
- $\bigcirc \frac{3}{16}$
- $\bigcirc \frac{3}{3}$
- $\bigcirc \frac{3}{64}$

Problem 7.4

Suppose we select k students in popular majors at random with replacement. What is the probability that we select at least one "CG35" major?

- $\bigcirc \frac{7}{8}$
- $\frac{7^k}{8^k}$
- $\bigcirc \frac{1}{7^k}$
- $\bigcirc \frac{1}{8^k}$
- $\bigcirc \frac{8^k-7^k}{7^k}$
- $\bigcirc \frac{8^k-7}{8^k}$

Problem 8

prob_all_unique = __(d)__

We'd like to select three students at random from the entire class to win extra credit (not really). When doing so, we want to guarantee that the same student cannot be selected twice, since it wouldn't really be fair to give a student double extra credit.

Fill in the blanks below so that prob all unique is an estimate of the probability that all three students selected are in different majors.

Hint: The function np.unique, when called on an array, returns an array with just one copy of each unique element in the input. For example, if vals contains the values 1, 2, 2, 3, 3, 4, np.unique(vals) contains the values 1, 2, 3, 4.

```
Problem 8.1
unique_majors = np.array([])
                                                                      What goes in blank (a)?
for i in np.arange(10000):
                                                                         replace=True
    group = np.random.choice(survey.get("Major"), 3, __(a)__)
                                                                         Preplace=False
    __(b)__ = np.append(unique_majors, len(__(c)__))
```

Problem 8.4

What could go in blank (d)? Select all that apply. At least one option is correct; blank answers will receive no credit.

```
(unique_majors > 2).mean()
□ (unique_majors.sum() > 2).mean()
np.count_nonzero(unique_majors > 2).sum() / len(unique_majors > 2)
1 - np.count_nonzero(unique_majors != 3).mean()
\square unique_majors.mean() - 3 == 0
```