JUST A FEW SEEDS MORE: VALUE OF NETWORK INFORMATION FOR DIFFUSION

INTRODUCTION

- Diffusion Process:An agent is either informed or uninformed. Once an agent becomes informed, it remains informed forever after. The diffusion process considered here is one in which communication is undirected.
- Omniscient: $H(OMN, s) \ge H(OPT, s) \ge H(RAND, s)$, 'at least as well as the optimum'
- Fixing the number of seeds available to the omniscient seeding strategy, how many additional seeds are required in order for random seeding to perform as well as the omniscient?

MODEL

GOAL:

- > max $H(f,s) = \frac{1}{n} \mathbb{E}_{G \sim \mathbb{P}_n}[\mathbf{h}(G,s,f)]$, where $\mathbf{h}(G,s,f) = \mathbb{E}\left[\left|A_T(G,s,f)\right|\right]$, G: network, s: number of seeds, f: the seeding strategy, n: size of the network.
- Inhomogeneous Random Networks (IRN): there is a set of potential "types" and each agent has a specific type: $\mathbf{T}_{\kappa} = \begin{bmatrix} \kappa_{ij} \end{bmatrix}_{i}$, $\mathbf{T}_{\kappa} = \mathbf{T}_{\kappa} = \mathbf{T}_{\kappa} = \mathbf{T}_{\kappa}$
 - simple Erdős-Rényi graphs: any pair of nodes is connected with the same probability
 - networks with homophily: nodes are more intensely connected to nodes with "similar" types
 - >networks with power-law degree distribution: some individuals are connected to a large fraction of the population

MAIN THEOREM

- Idea: Under a set of conditions, the difference in expected fraction of informed individuals between the random seeding strategy with s + x seeds and the omniscient strategy with s seeds vanishes exponentially in x.
 - Theorem 1. Consider a sequence of $IRN_n(p(\kappa))$. Let s be the number of seeds, $\alpha = \lim_{n \to \infty} H(OMN, 1)$. Then,
 - if $\|\mathbf{T}_{\kappa}\| > 1/c$, random seeding catches up to the omniscient seeding at an exponential rate in the number of extra seeds, i.e., $\alpha > 0$ and for any x, $\lim_{n \to \infty} \frac{\mathbf{H}(\mathrm{RAND}, s + x)}{\mathbf{H}(\mathrm{OMN}, s)} = 1 (1 \alpha)^{s + x}$,
 - if $\|\mathbf{T}_{\kappa}\| < 1/c$, then any seeding strategy diffuses to only a vanishing fraction of the population: $\lim_{n\to\infty} \mathbf{H}(\mathrm{OMN},s) = 0$
- **Result:**

ROBUSTNESS AND LIMITATIONS

- > Variance of Random Seeding
 - Variance of Random Seeding: $\lim_{n\to\infty} \text{Var}(\mathbf{H}(\text{RAND},s)) \leq \alpha^2(1-\alpha)^s (1-(1-\alpha)^s)$ for a sequence of $\text{IRN}_n(p(\kappa))$ models.
 - > Speed of Diffusion: depends on the network structure, in general, random seeding is slower.
- **Other Diffusion Models**
 - **▶** Directed Communication **▼**
 - > Models with threshold X