Chapter 1: Curves

Author: Meng-Gen Tsai Email: plover@gmail.com

Section 1-1: Introduction

Classical differential geometry: the study of local properties of curves and surfaces.

Global differential geometry: the study of the influence of the local properties on the behavior of the entire curve and surface.

No exercises.

Section 1-2: Parametrized Curves

Exercise 1-2.1. Find a parametrized curve $\alpha(t)$ whose trace is the circle $x^2 + y^2 = 1$ such that $\alpha(t)$ runs clockwise around the circle with $\alpha(0) = (0, 1)$.

Proof. $\alpha(t) = (\sin t, \cos t), t \in \mathbb{R}. \square$

Exercise 1-2.2. Let $\alpha(t)$ be a parametrized curve which does not pass through the origin. If $\alpha(t_0)$ is the point of the trace of α closest to the origin and $\alpha'(t_0) \neq 0$, show that the position vector $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$.

Proof. Let $f(t) = |\alpha(t)|^2 = \alpha(t) \cdot \alpha(t)$. f(t) is differentiable and f(t) has a local minimum at a point $t = t_0 \in I$. So $f'(t_0) = 0$. [Theorem 5.8 in W. Rudin, Principles of Mathematical Analysis, 3rd edition.] Since

$$f'(t) = 2\alpha(t) \cdot \alpha'(t),$$

 $f'(t_0) = 2\alpha(t_0) \cdot \alpha'(t_0) = 0$, or $\alpha(t_0) \cdot \alpha'(t_0) = 0$. Since $\alpha(t_0) \neq 0$ and $\alpha'(t_0) \neq 0$, $\alpha(t_0)$ is orthogonal to $\alpha'(t_0)$. \square

Exercise 1-2.3. A parametrized curve $\alpha(t)$ has a property that its second derivative $\alpha''(t)$ is identically zero. What can be said about α ?

 $\alpha(t)$ is a straight line.

Proof. Since $\alpha''(t)$ is identically zero, $\alpha'(t) = a$ is a constant. [Theorem 5.11 in W. Rudin, Principles of Mathematical Analysis, 3rd edition.] Define

 $f(t) = \alpha(t) - at$ (on I). Since $f'(t) = \alpha'(t) - a = 0$, $f(t) = \alpha(t) - at = b$ is a constant again. Therefore, $\alpha(t) = at + b$, which is a straight line (on I). \square

Exercise 1-2.4. Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve and let $v \in \mathbb{R}^3$ be a fixed vector. Assume that $\alpha'(t)$ is orthogonal to v for all $t \in I$ and that $\alpha(0)$ is orthogonal to v. Prove that $\alpha(t)$ is orthogonal to v for all $t \in I$.

Need to assume that $\alpha(t) \neq 0$ for all $t \in I$.

Proof. Given any $t \neq 0 \in I$. (Nothing to do at t = 0.) Define $f: I \to \mathbb{R}$ by $f(t) = \alpha(t) \cdot v$. By the mean value theorem, there exists a point ξ between 0 and t such that

$$f(t) - f(0) = f'(\xi)(t - 0),$$

where $f'(t) = \alpha'(t) \cdot v + \alpha(t) \cdot v' = \alpha'(t) \cdot v$. Note that f(0) = 0 since $\alpha(0)$ is orthogonal to v, and $f'(\xi) = 0$ since $\alpha'(t)$ is orthogonal to v. So the identity is reduced to

$$f(t) = 0,$$

or $\alpha(t) \cdot v = 0$, or $\alpha(t)$ is orthogonal to v. \square

Exercise 1-2.5. Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve, with $\alpha'(t) \neq 0$ for all $t \in I$. Show that $|\alpha(t)|$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

The same trick in Exercise 1-2.2.

Proof. It is equivalent to show that $|\alpha(t)|^2$ is a nonzero constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$. Let

$$f(t) = |\alpha(t)|^2 = \alpha(t) \cdot \alpha(t).$$

Notice that $\alpha'(t) \neq 0$, and thus

 $|\alpha(t)|$ is a nonzero constant $\iff f(t) = |\alpha(t)|^2$ is a nonzero constant $\iff f'(t) = 0$ and f(t) is a nonzero constant $\iff \alpha(t) \cdot \alpha'(t) = 0$ and $\alpha(t)$ is a nonzero constant $\iff \alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

Section 1-3: Regular Curves; Arc Length

Exercise 1-3.1. Show that the tangent lines to the regular parametrized curve $\alpha(t) = (3t, 3t^2, 2t^3)$ make a constant angle with the line y = 0, z = x.

Proof. $\alpha'(t) = (3, 6t, 6t^2)$. The line y = 0, z = x is $\beta(t) = (1, 0, 1)$. The cosine of the angle θ between these to curves is

$$\cos \theta = \frac{(3, 6t, 6t^2) \cdot (1, 0, 1)}{|(3, 6t, 6t^2)||(1, 0, 1)|}$$

$$= \frac{3 + 6t^2}{\sqrt{3^2 + (6t)^2 + (6t^2)^2} \sqrt{2}}$$

$$= \frac{3 + 6t^2}{\sqrt{9 + 36t^2 + 36t^4} \sqrt{2}}$$

$$= \frac{3 + 6t^2}{\sqrt{(3 + 6t^2)^2} \sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}.$$

(Notice $3+6t^2>0$ for all $t\in\mathbb{R}$.) That is, the angle between α' and β is a constant $(=\pi/4)$. \square

Exercise 1-3.2. A circular disk of radius 1 in the plane xy rolls without slipping along the x axis. The figure described by a point of the circumference of of the disk is called a cycloid (Figure 1-7 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces).

- (a) Obtain a parametrized curve $\alpha : \mathbb{R} \to \mathbb{R}^2$ the trace of which is the cycloid and determine its singular points.
- (b) Compute the arc length of the cycloid corresponding to a complete rotation of the disk.

Proof of (a).

(1) Since

$$\begin{cases} x = t - \sin t \\ y = 1 - \cos t, \end{cases}$$

we define $\alpha(t) = (t - \sin t, 1 - \cos t)$.

(2) $\alpha'(t) = (1 - \cos t, \sin t)$. $\alpha'(t) = 0$ if and only if $t = 2n\pi$ where $n \in \mathbb{Z}$. That is, all singular points are $\alpha(2n\pi) = (2n\pi, 0)$ where $n \in \mathbb{Z}$.

 $Proof\ of\ (b).$ The arc length of the cycloid corresponding to a complete rotation of the disk is

$$\begin{split} \int_0^{2\pi} |\alpha'(t)| dt &= \int_0^{2\pi} \sqrt{(1 - \cos t)^2 + (\sin t)^2} dt \\ &= \int_0^{2\pi} \sqrt{2} \sqrt{1 - \cos t} dt \\ &= \int_0^{2\pi} 2 \sin \frac{t}{2} dt \\ &= \left[-4 \cos \frac{t}{2} \right]_{t=0}^{t=2\pi} \\ &= 8. \end{split}$$

Supplement. The cycloid is not an algebraic curve.

Exercise 1-3.4. Let $\alpha:(0,\pi)\to\mathbb{R}^2$ be given by

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2}\right),$$

where t is the angle that the y axis makes with the vector $\alpha(t)$. The trace of α is called the **tractrix**. (Figure 1-9 in Mantredo P. do Carmo, Differential Geometry of Curves and Surfaces). Show that

- (a) α is a differentiable parametrized curve, regular except at $t = \frac{\pi}{2}$.
- (b) The length of the segment of the tangent of the tractrix between the point of tangency and the y axis is constantly equal to 1.

Proof of (a).

$$\alpha'(t) = \left(\cos t, -\sin t + \frac{1}{\tan\frac{t}{2}} \frac{1}{\cos^2\frac{t}{2}} \frac{1}{2}\right)$$
$$= \left(\cos t, -\sin t + \frac{1}{2\sin\frac{t}{2}\cos\frac{t}{2}}\right)$$
$$= \left(\cos t, \frac{\cos^2 t}{\sin t}\right)$$

exists. And $\alpha'(t) = 0$ if and only if $t = \frac{\pi}{2}$. That is, there is an unique singular point at $t = \frac{\pi}{2}$. \square

Proof of (b). The the tangent line of the tractrix through the regular point t is parametrized by $\beta : \mathbb{R} \to \mathbb{R}^2$ which is defined by

$$\begin{split} \beta(u) &= u\alpha'(t) + \alpha(t) \\ &= \left(u\cos t + \sin t, u\frac{\cos^2 t}{\sin t} + \cos t + \log\tan\frac{t}{2}\right). \end{split}$$

By construction, this tangent line $\beta(u)$ meets the tractrix at u=0, and meets the y-axis when $u\cos t + \sin t = 0$ or $u=-\tan t$. So the length of the segment is

$$|\beta(0) - \beta(-\tan t)| = \sqrt{(-\tan t \cos t)^2 + \left(-\tan t \frac{\cos^2 t}{\sin t}\right)^2}$$
$$= \sqrt{(\sin t)^2 + (\cos t)^2}$$
$$= 1.$$

Exercise 1-3.10. (Straight Lines as Shortest.) Let $\alpha: I \to \mathbb{R}^3$ be a parametrized curve. Let $[a,b] \subseteq I$ and set $\alpha(a) = p$, $\alpha(b) = q$.

(a) Show that, for any constant vector v, |v| = 1,

$$(q-p) \cdot v = \int_a^b \alpha'(t) \cdot v dt \le \int_a^b |\alpha'(t)| dt.$$

(b) Set

$$v = \frac{q - p}{|q - p|}$$

and show that

$$|\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| dt;$$

that is, the curve of shortest length from $\alpha(a)$ to $\alpha(b)$ is the straight line joining these points.

Assume $p \neq q$ (otherwise $v = \frac{q-p}{|q-p|}$ is meaningless).

Proof of (a). Let $f(t) = \alpha(t) \cdot v$ defined on I. By the fundamental theorem of calculus,

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

Since $f'(t) = \alpha'(t) \cdot v$,

$$(\alpha(b) - \alpha(a)) \cdot v = \int_a^b \alpha'(t) \cdot v dt.$$

Therefore,

$$(q - p) \cdot v = \int_{a}^{b} \alpha'(t) \cdot v dt$$

$$\leq \int_{a}^{b} |\alpha'(t) \cdot v| dt$$

$$\leq \int_{a}^{b} |\alpha'(t)| |v| dt$$

$$= \int_{a}^{b} |\alpha'(t)| dt.$$

Proof of (b). $|v| = \frac{|q-p|}{|q-p|} = 1$. So,

$$(q-p) \cdot \frac{q-p}{|q-p|} \le \int_a^b |\alpha'(t)| dt,$$

 $|q-p| \le \int_a^b |\alpha'(t)| dt.$

Section 1-4: The Vector Product in \mathbb{R}^3

Exercise 1-4.13. Let $u(t) = (u_1(t), u_2(t), u_3(t))$ and $v(t) = (v_1(t), v_2(t), v_3(t))$ be differentiable maps from the interval (a, b) into \mathbb{R}^3 . If the derivatives u'(t) and v'(t) satisfy the conditions

$$u'(t) = au(t) + bv(t), v'(t) = cu(t) - av(t),$$

where a, b, and c are constants, show that $u(t) \wedge v(t)$ is a constant vector.

Proof. Since

$$\frac{d}{dt}(u(t) \wedge v(t)) = u'(t) \wedge v(t) + u(t) \wedge v'(t)$$

$$= (au(t) + bv(t)) \wedge v(t) + u(t) \wedge (cu(t) - av(t))$$

$$= au(t) \wedge v(t) + u(t) \wedge (-av(t))$$

$$= a(u(t) \wedge v(t)) + (-a)(u(t) \wedge v(t))$$

$$= (0, 0, 0),$$

 $u(t) \wedge v(t)$ is a constant vector. \square

Section 1-5: The Local Theory of Curves Parametrized by Arc Length

Exercise 1-5.2. Show that the torsion τ of α is given by

$$\tau(s) = -\frac{\alpha'(s) \wedge \alpha''(s) \cdot \alpha'''(s)}{|\kappa(s)|^2}.$$

Proof.

(1) Take inner product n(s) to the definition of torsion $\tau(s)n(s)=b'(s)$, we have

$$\tau(s) = b'(s) \cdot n(s).$$

Since $b'(s) = t(s) \wedge n'(s)$, we have to compute n'(s) first.

(2) Compute n'(s).

$$n'(s) = \frac{d}{ds} \left(\frac{\alpha''(s)}{\kappa(s)} \right) = \frac{\alpha'''(s)}{\kappa(s)} - \frac{\alpha''(s)\kappa'(s)}{\kappa(s)^2}.$$

(3) By (1)(2),

$$\tau(s) = b'(s) \cdot n(s)$$

$$= (t(s) \wedge n'(s)) \cdot n(s)$$

$$= \left(\alpha'(s) \wedge \left(\frac{\alpha'''(s)}{\kappa(s)} - \frac{\alpha''(s)\kappa'(s)}{\kappa(s)^2}\right)\right) \cdot \frac{\alpha''(s)}{\kappa(s)}$$

$$= \left(\alpha'(s) \wedge \frac{\alpha'''(s)}{\kappa(s)}\right) \cdot \frac{\alpha''(s)}{\kappa(s)}$$

$$= \frac{\alpha'(s) \wedge \alpha'''(s) \cdot \alpha''(s)}{|\kappa(s)|^2},$$

or

$$\tau(s) = \frac{\alpha'(s) \wedge \alpha'''(s) \cdot \alpha''(s)}{\alpha''(s)^2}.$$

Section 1-6: The Local Canonical Form

Section 1-7: Global Properties of Plane Curves