

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Middle con

*	
0	
2	
7	
9	
9	
4	
_	
7	
W	
∞	

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

CHEMISTRY 0620/31

Paper 3 (Extended)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 15 printed pages and 1 blank page.

BLANK PAGE

www.PapaCambridge.com

For miner's

1 This question is concerned with the following oxides.

sulfur dioxide carbon monoxide lithium oxide aluminium oxide nitrogen dioxide strontium oxide

(a)	(i)	Which of the above oxides will react with hydrochloric acid but not with aqueous sodium hydroxide?
		[1]
	(ii)	Which of the above oxides will react with aqueous sodium hydroxide but not with hydrochloric acid?
		[1]
(iii)	Which of the above oxides will react with both hydrochloric acid and aqueous sodium hydroxide?
		[1]
(iv)	Which of the above oxides will not react with hydrochloric acid or with aqueous sodium hydroxide?
		[1]
(b)		o of the oxides are responsible for acid rain. Intify the two oxides and explain their presence in the atmosphere.
		[5]

and the arrangement of the valency electrons around the negative ion.

Use x to represent an electron from an atom of oxygen. Use o to represent an electron from an atom of lithium.

www.PapaCambridge.com (c) Lithium oxide is an ionic compound. (i) Identify another ionic oxide in the list on page 3. (ii) Draw a diagram which shows the formula of lithium oxide, the charges on the ions

[2]

[Total: 12]

2 Two important greenhouse gases are methane and carbon dioxide.

www.PapaCambridge.com (a) Methane is twenty times more effective as a greenhouse gas than carbon dioxide. T methane in the atmosphere comes from both natural and industrial sources. (i) Describe two natural sources of methane.[2] (ii) Although methane can persist in the atmosphere for up to 15 years, it is eventually removed by oxidation. What are the products of this oxidation? (b) How do the processes of respiration, combustion and photosynthesis determine the percentage of carbon dioxide in the atmosphere?

[Total: 8]

		carbon anode (+)
ırbo	on ca	mixture of aluminium oxide and cryolite
		aluminium at cathode
(a)	(i)	Alumina is obtained from the main ore of aluminium. Name this ore.
		[1]
	(ii)	Explain why it is necessary to use a mixture, alumina and cryolite, rather than just alumina.
		[2]
	(iii)	Copper can be extracted by the electrolysis of an aqueous solution. Suggest why the electrolysis of an aqueous solution cannot be used to extract aluminium.
		[2]
(b)	eled	e ions which are involved in the electrolysis are Al^{3+} and O^{2-} . The products of this ctrolysis are given on the diagram. blain how they are formed. Use equations where appropriate.
		[4]

(c) The uses of a metal are determined by its properties.

(ii)

(i) Foods which are acidic can be supplied in aluminium containers.

Explain why the acid in the food does not react with the aluminium.
[1]
Explain why overhead electrical power cables are made from aluminium with a steel core.
aluminium steel core
[3]
[Total: 13]

reaction 1	$A_2(g) + B_2(g) \rightleftharpoons 2AB(g)$
reaction 2	$A_2(g) + 3B_2(g) \rightleftharpoons 2AB_3(g)$
reaction 3	$2AB_{2}(g) \rightleftharpoons 2AB(g) + B_{2}(g)$

(a)	Explain	the term	equilibrium
(~)	LAPIGILL		oquinomann

(b) The following graphs show how the percentage of products of a reversible reaction at equilibrium could vary with pressure.

For each graph, decide whether the percentage of products decreases, increases or stays the same when the pressure is increased, then match each graph to one of the above reactions and give a reason for your choice.

(i)

effect on percentage of products	
reaction	
reason	
	[3]

(ii)

effect on percentage of products	
reaction	
reason	
	[3]

(iii)

effect on percentage of products
reaction
reason
[3]

[Total: 11]

www.PapaCambridge.com

5 The rate of the reaction between iron and aqueous bromine can be investigated us apparatus shown below.

(a) A piece of iron was weighed and placed in the apparatus. It was removed at regular intervals and the clock was paused. The piece of iron was washed, dried, weighed and replaced. The clock was restarted.

This was continued until the solution was colourless.

The mass of iron was plotted against time. The graph shows the results obtained.

(1)	Suggest an explanation for the shape of the graph.
	[3]
(ii)	Predict the shape of the graph if a similar piece of iron with a much rougher surface had been used. Explain your answer.
	[2]

	(iii)	Describe how you could find out if the rate of this reaction depended on the of stirring.
		[2]
(b)		has two oxidation states +2 and +3. There are two possible equations for the redox ction between iron and bromine.
		Fe + $Br_2 \rightarrow Fe^{2+} + 2Br^-$
		$2\text{Fe} + 3\text{Br}_2 \rightarrow 2\text{Fe}^{3+} + 6\text{Br}^{-}$
	(i)	Indicate, on the first equation, the change which is oxidation. Give a reason for your choice.
		[2]
	(ii)	Which substance in the first equation is the reductant (reducing agent)?
		[1]
(c)	Des	scribe how you could test the solution to find out which ion, Fe ²⁺ or Fe ³⁺ , is present.
		[3]

[Total: 13]

For miner's

	For	
١	miner*	

6	Structural formulae	are an	essential	part of	Organic	Chemistry	

Struct	ral formulae are an essential part of Organic Chemistry.	2
(a) D	aw the structural formula of each of the following. Show all the bonds in the structure	
(1	ethanoic acid	
(ii	ethanol [1]	
	[1]	l
(b) (i	Ethanoic acid and ethanol react to form an ester. What is the name of this ester?	
	[1]	l
(ii	The same linkage is found in polyesters. Draw the structure of the polyester which can be formed from the monomers shown below.	l
	$HOOC-C_6H_4-COOH$ and $HO-CH_2-CH_2-OH$	

[3]

11)	Describe the pollution problems caused by non-biodegradable polymers.
	[O
	[2]

(c) Two macromolecules have the same amide linkage. Nylon, a synthetic polymer, has the following structure.

Protein, a natural macromolecule, has the following structure.

How are they differen	t?	
		[2]

[Total: 10]

	2
Some	hydroxides, nitrates and carbonates decompose when heated. Name a metal hydroxide which does not decompose when heated.
(a) (i)	Name a metal hydroxide which does not decompose when heated.
	[1]
(ii)	Write the equation for the thermal decomposition of copper(II) hydroxide.
	[2]
(iii)	Suggest why these two hydroxides behave differently.
	[1]
(b) (i)	Metal nitrates, except those of the Group 1 metals, form three products when heated. Name the products formed when zinc nitrate is heated.
	[2]
(ii)	Write the equation for the thermal decomposition of potassium nitrate.
	[2]
	nere are three possible equations for the thermal decomposition of sodium drogencarbonate.
21	$NaHCO_3(s) \rightarrow Na_2O(s) + 2CO_2(g) + H_2O(g)$ equation 1
N	$aHCO_3(s) \rightarrow NaOH(s) + CO_2(g)$ equation 2
21	$NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$ equation 3
	ne following experiment was carried out to determine which one of the above is the rrect equation.

A known mass of sodium hydrogencarbonate was heated for ten minutes. It was then allowed to cool and weighed.

Results

7

Mass of sodium hydrogencarbonate = 3.36 g Mass of the residue = 2.12g

Calculation

$$M_r$$
 for NaHCO₃ = 84 g; M_r for Na₂O = 62 g; M_r for NaOH = 40 g M_r for Na₂CO₃ = 106 g

(ii)	If residue is Na ₂ O, number of moles of Na ₂ O =
	If residue is NaOH, number of moles of NaOH =
	If residue is Na_2CO_3 , number of moles of $Na_2CO_3 = \dots$ [2]
(iii)	Use the number of moles calculated in (i) and (ii) to decide which one of the three equations is correct. Explain your choice.
	(5)
	[2]
	[Total: 13]

For miner's

The Periodic Table of the Elements **DATA SHEET**

	0	Helium	Neon 10 Neon 40 Argon 18 Argon	84 K rypton 36	131 Xe Xenon	Radon 86		175 Lu Lutetium
	II/		19 Fluorine 9 35.5 C.1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb Ytterbium
	5		16 Oxygen 8 32 32 Sulfur 16	79 Se Selenium 34	128 Te Tellurium	Po Polonium 84		169 Tm Thullum
	>		Nirogen 7 31 31 Phosphorus 15	75 As Arsenic	122 Sb Antimony 51	209 Bi Bismuth 83		167 Er Erbium
	2		Carbon 6 Carbon 8 Silicon 14	73 Ge Germanium 32	Sn Tin 50	207 Pb Lead		165 Ho
	=		11 BB Boron 27 A1 Aluminium 13	70 Ga Gallium	115 In Indium	204 T 1 Thallium		162 Dy Dysprosium
				65 Zn Zinc 30	Cd Cadmium 48	Hg Mercury 80		159 Tb Terbium
				64 Cu Copper	108 Ag Silver 47	197 Au Gold		157 Gd Gadolinium
Group				59 X Nickel 28	Pd Palladium Palladium	195 Pt Platinum 78		152 Eu Europium
Ğ				59 Co Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Samarium
		T Hydrogen		56 Fe Iron	Ruthenium	190 OS Osmium 76		Pm Promethium
				Mn Manganese	Tc Technetium 43	186 Re Rhenium 75		144 Na Neodymium
				Chromium	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium
				51 V Vanadium 23	Nobium 41	181 Ta Tanatum		140 Ce
				48 T Titanium	91 Zr Zirconium	178 # Hafnium 72		
				45 Sc Scandium 21	89 × Yttrium 39	139 La Lanthanum 57 *	227 AC Actinium 89	series eries
	=		Berylium 4 24 Mag Magnesium 12	40 Ca Calcium	Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 Lithium 3 23 Na Sodium 11	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Francium 87	*58-71 L€

anoid series	140	141	144		150	152	157	159	162	165	167	169	173	175	
Octobrios	Ce	P	ž	Pm	Sm	Ш	ဝီ	₽ L	۵	운	ш	Ę	Υp	Γα	
	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70	Lutetium 71	
a = relative atomic mass	232		238												
X = atomic symbol	드	Ра	-	dN	Pu	Am	S	쑮	ర	Es	F	Md	å	ځ	22
b = proton (atomic) number	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrendum 103	W.
														•	00
	The v	olume of	one mole	The volume of one mole of any gas is $24\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).	s is 24 dr	n³ at rooı	n tempera	ature and	pressure	; (r.t.p.).					0
														Co	1
													1	M	\
													1	STI	Ship
												1	90	-	
													C	\	
												2	1		
													1		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.