GRAPH THEORY ASSIGNMENT 2

- 1. The complementary graph \overline{G} of a simple graph G has the same vertices as G. Two (2) vertices are adjacent in \overline{G} if and only if (iff) they are not adjacent in G. find the ff.
 - i. \overline{Kn}
 - ii. $\overline{Km,n}$
 - iii. \overline{Cn}
 - iv. \overline{Qn}

Solution

- i. The graph with n vertices and no edges.
- ii. The disjoint union of Km and Kn
- iii. The graph with vertices (v1, v2, v3, ...Vn) with an edge between Vi and Vj unless $i \equiv j \pm 1 \pmod{n}$
- iv. The graph whose vertices are represented by bit strings of length n with an edge between two vertices if the associated bit strings differ in more than one bit.
- 2. In a variant of a mesh network for interconnecting n = m² processors, processor P(i, j) is connected to the four processors P((i ± 1) mod m, j) and P(i, (j ± 1) mod m), so that connections wrap around the edges of the mesh. Draw this variant of the mesh network for 16 processors.

3. Show that every pair of processors in a mesh network of $n = m^2$ processors can communicate using $O(\sqrt{n}) = O(m)$ hops between directly connected processors.

We can connect P(i,j) and P(k,l) by using |i-k| hops to connect P(i,j) and P(k,j) and |j-i| hops to connect P(k,j) and P(k,l). Hence, the total number of hops required to connect P(i,j) and P(k,l) does not exceed |i-k|+|j-l|. This is less than or equal to m+m=2m, which is O(m).

4. Determine whether graph G and H are isomorphic.

1. Number of edges in G = 10Number of vertices in G = 8

Number of edges in H = 10Number of vertices in H = 8

Number of degree G	Number of degree H
Deg(a) = 2	deg(s) = 3
Deg(b) = 3	deg(t) = 2
Deg(c) = 2	deg(u) = 2
Deg(d) = 3	deg(v) = 3
Deg(e) = 2	deg(w) = 3
Deg(f) = 3	deg(x) = 2
Deg(g) = 2	deg(y) = 2
Deg(h) = 3	deg(z) = 3

G and H have the same number of edges and vertices and the same degree sequence of 3,3,3,3,2,2,2 but since the deg(a) = 2 does not correspond to any other vertex of degree 2 in H. Vertex a is adjacent to b of deg(b) = 3 and d of deg(d) = 3 but there is no vertex in H with the same similarities.

So therefore G and H is not isomorphic.

5. Draw the graph with adjacency matrix.

$$\begin{bmatrix}
1 & 2 & 0 & 1 \\
2 & 0 & 3 & 0 \\
0 & 3 & 1 & 1 \\
1 & 0 & 1 & 0
\end{bmatrix}$$

Represent each of these graphs with an adjacency matrix. **6.**

- a) K_4
- **b)** $K_{1,4}$ **c)** $K_{2,3}$ **e)** W_4 **f)** Q_3
- d) C₄

Draw the graph for each of them before you find the adjacency matrix.

a)
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

a)
$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix}
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 0
 \end{bmatrix}$$

e)
$$\begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\begin{array}{c} \textbf{d)} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{bmatrix} & \begin{array}{c} \textbf{e)} \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \\ \end{bmatrix} & \begin{array}{c} \textbf{f)} \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ \end{bmatrix}$$

 Show that the vertices of a bipartite graph with two or more vertices can be ordered so that its adjacency matrix has the form

$$\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix},$$

where the four entries shown are rectangular blocks.

Draw a bipartite graph with two or more vertices and find the adjacency matrix.

- 8. The devil's pair for a purported isomorphism test is a pair of nonisomorphic graphs that the test fails to show are not isomorphic.
 - Find the devil's pair for the test that checks the sequence of degrees of vertices in the two graphs to make sure they agree.

$$Deg(u6) = 3 deg(v6)$$

$$Deg(u7) = 1$$
 $deg(v7) = 1$

$$Deg(u8) = 1$$
 $deg(v8) = 1$

3

Draw the graph for Q4.

Solution

$$n = 4 => Q4$$

Number of bit strings = n = 4

Number of vertices =
$$2^n = 2^4 = 16$$

	Bit string
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

