NEURAL NETWORKS

Biological neurons

Neurons are interconnected nerve cells

acting as logic gates

Signals arrive

and accumulate

If accumulation

exceeds a

threshold

an output signal is passed on

3

Artificial neurons

input signals $x_1, ... x_k$ output signal yinput signals are
weighted and
summed by the cell
the signal is passed on
using an activation function f

Directed Network

4

Artificial Neural Network (ANN)

ANN models
the relationship between
a set of input signals
and an output signal
resembling our

understanding of
how cells respond to stimuli
from sensory inputs

5

ANN Types

Single Input Layer ANN

6

ANN Types

One input, one hidden layer

8

Perceptron

Single layer ANN

receives inputs

9

Perceptron

Single layer ANN

receives inputs

combines

inputs with weights

obtain net input

10

Perceptron

Single layer ANN receives inputs

combines

inputs with weights

obtain net input

process it

11

Perceptron

Single layer ANN

receives inputs

combines

inputs with weights

obtain net input

process it

generate output

12

Perceptron

Single layer ANN

receives inputs

combines

inputs with weights

obtain net input

process it

generate output

13 Perceptron Single layer ANN receives inputs Weight update combines Error \mathbf{w}_0 Output inputs with weights Net input Threshold function function obtain net input process it generate output

14 Perceptron Single layer ANN receives inputs Weight update combines Error $\hat{\mathbf{w}}_{0}$ Output inputs with weights Net input Threshold function function obtain net input process it generate output

Perceptron

net input function
$$z = w_1 x_1 + ... + w_m x_m$$

decision function

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

Perceptron

net input function
$$z = w_0 x_0 + w_1 x_1 + ... + w_m x_m$$

$$w_0 = -\theta$$
 and $x_0 = 1$

decision function

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Perceptron

net input function
$$z = w_0 x_0 + w_1 x_1 + ... + w_m x_m = \boldsymbol{w}^T \boldsymbol{x}$$

$$w_0 = -\theta$$
 and $x_0 = 1$

decision function

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Perceptron

threshold function $\phi(z)$

$$z = \boldsymbol{w}^T \boldsymbol{x}$$

$$\phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise} \end{cases}$$

Perceptron learning rule

• Randomly initialize the weights $w_1, ..., w_k$

• For each row i = 1, ..., n

find
$$\hat{y} = \phi(z)$$

find the error $(y - \hat{y})$

update the weights
$$w_j = w_j + \Delta w_j$$

using
$$\Delta w_j = \lambda (y_i - \hat{y}_i) x_{ij}$$

for
$$j = 1, ..., p$$

Repeat N times

Perceptron learning rule

• Randomly initialize the weights $w_1, ..., w_k$

• For each row i = 1, ..., n

find
$$\hat{y} = \phi(z)$$

find the error $(y - \hat{y})$

update the weights
$$w_j = w_j + \Delta \, w_j$$
 using $\Delta \, w_j = \lambda (y_i - \hat{y}_i) \, x_{ij}$

using
$$\Delta\,w_j \;=\; \lambda(y_i - \hat{y}_i)\,x_{ij}$$

for
$$j = 1, ..., p$$

Repeat N times

Notes

Perceptron works if data is linearly separable

- Decision function = Threshold function
- iterations N = epochs

$$\hat{y} = \phi(z)$$

ADAptive Linear NEuron (Adaline)

- Another single-layer NN
- net input z is transformed using an Activation function

$$z = w_1 x_1 + \ldots + w_m x_m$$

ADAptive Linear NEuron (Adaline)

- Another single-layer NN
- net input z is transformed using an Activation function
- For Adaline Activation function is $\phi(z) = z$
- Prediction is given by threshold function

$$\hat{y} = \begin{cases} 1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

Adaline stopping condition

Minimize loss function

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \phi(z_i))^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} (y_i - z_i)^2$$

$$= \frac{1}{2} \sum_{i=1}^{n} [y_i - w_1 x_1 + \dots + w_p x_p]^2$$

quadratic and differentiable

• How to find $w_1, ..., w_k$ that minimize the loss?

Adaline stopping condition

loss function

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} [y_i - w_1 x_1 + \dots + w_p x_p]^2$$

learning algorithm

- Randomly initialize the weights $w_1, ..., w_k$
- Update the weights using gradient descent

$$w_j = w_j + \Delta w_j$$

Gradient descent

loss function

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i=1}^{n} [y_i - w_1 x_1 + \dots + w_p x_p]^2$$

gradient vector $\nabla J(w)$ is vector of partial derivatives

- Randomly initialize the weights $w_1, ..., w_k$
- Update the weights using gradient descent

$$w_j = w_j + \Delta w_j$$

• where $\Delta w = -\lambda \nabla J(w)$

Gradient descent

The partial derivatives are

$$\frac{\partial J}{\partial w_j} = -\sum_{i=1}^n (y_i - \phi(z_i)) x_{ij}$$

• The weight change for feature *j* is

$$\Delta w_j = -\lambda \frac{\partial J}{\partial w_j}$$

$$= \lambda \sum_{i=1}^n (y_i - \phi(z_i)) x_{ij}$$

Notes

 Adaline iterates until loss function is minimized (until convergence)

Logistic regression is Adaline network with activation

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

Notes

- NN layer is called Dense if all nodes are connected with neighbor layers
- NN is called Multilayer Perceptron (MLP) if all layers are dense
- NN is called Deep if the number of hidden layers is large (usually 8 or more)

Notes

- For small datasets use a small number of hidden layers otherwise risk of overfitting
- May consider increasing the number of hidden layers with the dataset size
- Fine tune number of epochs, number of layers, learning rate, etc.

38

Other Neural Networks

- Convolutional Neural Networks (convnets)
- Recurrent Neural Networks