线性代数 A (A 卷答题卡)

							考	生	=	学 -	号				
	姓名	班级													
	红石	<i>5</i> 上5X	0	0	0	0	0	0	0	0	0	0	0	0	0
		1	1	1	1	1	1	1	1	1	1	1	1	1	1
		1.答题前,考生先将自己的姓名、学号填写清楚,并填涂相应的	2	2	2	2	2	2	2	2	2	2	2	2	2
		考号信息点。	3	3	3	3	3	3	3	3	3	3	3	3	3
埠		注 2.解答题必须使用黑色墨水的签字笔书写,不得用铅笔或圆珠笔	4	4	4	4	4	4	4	4	4	4	4	4	4
汾		意 作解答题:字体工整、笔迹清楚。	5	5	5	5	5	5	5	5	5	5	5	5	5
样		事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	6	6	6	6	6	6	6	6	6	6	6	6	6
例	#\$%	项 写的答题无效;在草稿纸、试题卷上答题无效。	7	7	7	7	7	7	7	7	7	7	7	7	7
		4.保持卡面清洁,不要折叠、不要弄破。	8	8	8	8	8	8	8	8	8	8	8	8	8
			9	9	9	9	9	9	9	9	9	9	9	9	9

请将选择题、填空题的答案填于此:

一、单项选择题:

(1) _____ (2) ____ (3) ____ (4) ____

二、填空题:

(1) _____ (2) ____ (3) ____ (4) ____

符号说明: $\det(A)$ 指方阵 A 的行列式; A^* 指方阵 A 的伴随矩阵; A^T 指矩阵 A 的转置矩阵; R(A) 指矩阵 A 的 秩; E 为单位矩阵。

一、单项选择题(每小题 3 分, 共 12 分)

(1) 设矩阵
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
,则_____.

(A) \boldsymbol{A} 为正交矩阵. (B) $\frac{1}{3}\boldsymbol{A}$ 为正交矩阵. (C) $\det(\boldsymbol{A}) = 1$. (D) $\boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}}$.

(2) 已知矩阵
$$\mathbf{A} = \begin{pmatrix} 2 & 8 & 0 \\ 2 & 2 & a \\ 0 & 0 & 6 \end{pmatrix}$$
相似于对角矩阵 $\begin{pmatrix} 6 & & \\ & 6 & \\ & & -2 \end{pmatrix}$,则 a 等于_____.

(A) 0. (B) 2. (C) -2. (D) 6.

(3) 设矩阵
$$\mathbf{A} = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \end{pmatrix}$$
 的伴随矩阵 \mathbf{A}^* 的秩为 1,则______.

(A) $a=b\neq 0$. (B) $a\neq b$ $\perp a+2b=0$. (C) $a+2b\neq 0$. (D) $a\neq b$ $\perp a+2b\neq 0$.

(4)
$$\mathbb{R}^{2\times 2}$$
 的子空间 $\left\{ \begin{array}{cc} \left(a+b & a \\ 0 & b \end{array} \right) \middle| a,b \in \mathbb{R} \right\}$ 的维数是______.

- (A) 1.
- (C) 3.
- (D) 4.

二、填空题(每小题 3 分, 共 12 分)

- (1) 若向量组 $\alpha_1 = (-2,3,1)^T$, $\alpha_2 = (2,t,-1)^T$, $\alpha_3 = (0,0,1)^T$ 线性相关,则常数t =_____.
- (2) 若矩阵 \boldsymbol{A} 的伴随矩阵 $\boldsymbol{A}^* = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 \\ 4 & 5 & 1 & 0 \\ 0 & 0 & 6 & 8 \end{pmatrix}$, $\mathcal{M} \det(\boldsymbol{A}) = \underline{\hspace{1cm}}$
- (3) 已知 $\alpha = (a_1, a_2, a_3)^{\mathrm{T}}$ 为3维向量, $\alpha \alpha^{\mathrm{T}} = \begin{pmatrix} 1 & -1 & 2 \\ -1 & 1 & -2 \\ 2 & -2 & 4 \end{pmatrix}$,则 $\alpha^{\mathrm{T}} \alpha = \underline{\qquad}$.
- (4) 已知 α_1 , α_2 是齐次线性方程组 Ax=0 的基础解系,则向量组 $\beta_1=\alpha_1+t_1\alpha_2$, $\beta_2=\alpha_2+t_2\alpha_1$ 也可作为 Ax=0 的基础解系的充要条件是:常数 t_1,t_2 满足条件______.

Ξ 、(12分) 设3阶方阵 A,B满足 A+B=AB,

- (1) 证明矩阵 **A-E** 可逆;
- (2) $\stackrel{\text{def}}{=} \mathbf{B} = \begin{bmatrix} 2 & 2 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ \bowtie , $\vec{x} A$.

有唯一解、无解、有无穷多解?并在有无穷多解时,求出方程组的通解.

五、(12 分)设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关, $\alpha_1,\alpha_2,\cdots,\alpha_s$, β , γ 线性相关,而且 β 与 γ 都不能由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表示。证明: $\alpha_1,\alpha_2,\cdots,\alpha_s$, β 与 $\alpha_1,\alpha_2,\cdots,\alpha_s$, γ 等价。

2

武汉大学 2020-2021 学年第一学期期末考试

线性代数 A(A 卷答题卡)

j							考	生	, i	学 -	号				
	姓名		0	0	0	0	0	0	0	0	0	0	0	0	0
均沒样侈	注 ! 错误填涂	意 作解答题:字体工整、笔迹清楚。 事 3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书	3 4 5	23456789	23456789	2 3 4 5 6 7 8 9	2 3 4 5 6 7 8 9	23456789	23456789	23456789	23456789	23456789	23456789	23456789	23456789

六、(12 分) 设 3 阶矩阵 \boldsymbol{A} 的特征值为 1, 2, -3,求方阵 $\boldsymbol{B} = \boldsymbol{A}^* - 2\boldsymbol{A} + 3\boldsymbol{E}$ 的特征值及 $\det(\boldsymbol{B}^{-1})$.

七、(13 分) 已知实二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 3x_2^2 + 3x_3^2 + 2\lambda x_2 x_3$ ($\lambda > 0$) 经过正交变换 $\mathbf{x} = \mathbf{Q}\mathbf{y}$,化为标准形 $y_1^2 + 2y_2^2 + 5y_3^2$,求实参数 λ 及正交矩阵 \mathbf{Q} 。

八、 $(8\ \ \ \ \ \)$ 设 \mathbb{R}^4 的 子 空 间 V 由 向 量 组 $\boldsymbol{\alpha}_1 = (1,1,1,3)^{\mathrm{T}}$, $\boldsymbol{\alpha}_2 = (-1,-3,5,1)^{\mathrm{T}}$, $\boldsymbol{\alpha}_3 = (3,2,-1,4)^{\mathrm{T}}$, $\boldsymbol{\alpha}_4 = (-2,-6,10,2)^{\mathrm{T}}$ 生成,求 V 的基与维数.	九、(6 分)设 A , B 均为 n 阶正定矩阵.证明:关于 λ 的方程 $\det(\lambda A - B) = 0$ 的根全大于零.
	4

ļ

!

!