5-я лабораторная работа и курсовая работа по АиСД (3 семестр).

5-я лабораторная работа включает в себя задания нескольких типов, в зависимости от варианта.

В вариантах заданий 1-ой группы (кодирование и декодирование) на вход подаётся файл с закодированным или незакодированным содержимым. Требуется раскодировать или закодировать содержимое файла определённым алгоритмом.

В вариантах заданий 2-ой группы (БДП и хеш-таблицы) требуется:

- 1) По заданной последовательности элементов *Elem* построить структуру данных определённого типа БДП или хеш-таблицу;
- 2) Выполнить одно из следующих действий:
 - а) Для построенной структуры данных проверить, входит ли в неё элемент *е* типа *Elem,* и если входит, то в скольких экземплярах. Добавить элемент *е* в структуру данных. Предусмотреть возможность повторного выполнения с другим элементом.
 - б) Для построенной структуры данных проверить, входит ли в неё элемент *е* типа *Elem*, и если входит, то удалить элемент *е* из структуры данных (первое обнаруженное вхождение). Предусмотреть возможность повторного выполнения с другим элементом.
 - в) Записать в файл элементы построенного БДП в порядке их возрастания; вывести построенное БДП на экран в наглядном виде.
 - г) Другое действие.

Задания по курсовой работе есть 3 типов:

- "Демонстрация" визуализация структур данных, алгоритмов, действий. Демонстрация должна быть подробной и понятной (в том числе сопровождаться пояснениями), чтобы программу можно было использовать в обучении для объяснения используемой структуры данных и выполняемых с нею действий.
- "Текущий контроль" создание программы для генерации заданий с ответами к ним для проведения текущего контроля среди студентов. Задания и ответы должны выводиться в файл в удобной форме: тексты заданий должны быть готовы для передачи студентам, проходящим ТК; все задания должны касаться конкретных экземпляров структуры данных (т.е. не должны быть вопросами по теории); ответы должны позволять удобную проверку правильности выполнения заданий.
- "Исследование" генерация входных данных, использование их для измерения количественных характеристик структур данных, алгоритмов, действий, сравнение экспериментальных результатов с теоретическими. Подробнее ниже.

Студент должен выбрать один и тот же номер варианта 5-ой лабораторной работы и курсовой работы (т. е. эти варианты связаны).

Требования к отчёту по курсовой работе.

В отчёте должны быть:

- титульный лист, лист задания, аннотация, содержание;
- формальная постановка задачи;
- описание алгоритма;
- описание структур данных и функций;
- описание интерфейса пользователя для вариантов с визуализацией или текущим контролем;
- тестирование;
- исследование для вариантов с исследованием;
- программный код (в приложении);
- выводы.

В коде должны быть подробные комментарии.

Титульный лист, лист задания и программный код являются абсолютно необходимыми разделами, без которых даже не может быть начат процесс сдачи.

Отчёт по курсовой работе должен быть оформлен в соответствии с <u>шаблоном</u> оформления курсовой работы: https://etu.ru/ru/studentam/dokumenty-dlya-ucheby/

В вариантах КР с исследованием вывод промежуточных данных не является строго обязательным, но должна быть возможность убедиться в корректности алгоритмов. В вариантах КР типа «Текущий контроль» промежуточные данные выполнения сгенерированных заданий должны быть в составе сгенерированных ответов (чтобы обеспечить удобную проверку правильности выполнения заданий студентом). В вариантах с демонстрацией помимо собственно демонстрации (визуализации) следует на каждом шаге выводить текстовые объяснения того, что происходит.

Цель и содержание курсовой работы типа «исследование»

Цель: реализация и экспериментальное машинное исследование алгоритмов **кодирования (Фано-Шеннона, Хаффмана),** быстрого поиска на основе БДП или хештаблиц, сортировок.

Варианты заданий различаются заданными видами алгоритмов кодирования, бинарных деревьев поиска, хеш-таблиц, сортировок.

Исследование должно содержать:

- 1. Анализ задачи, цели, технологию проведения и план экспериментального исследования.
- 2. Генерацию представительного множества реализаций входных данных (с заданными особенностями распределения (для среднего и для худшего случаев)).
- 3. Выполнение исследуемых алгоритмов на сгенерированных наборах данных. При этом в ходе вычислительного процесса фиксируется как характеристики (например, время) работы программы, так и количество произведенных базовых операций алгоритма.
- 4. Фиксацию результатов испытаний алгоритма, накопление статистики.
- 5. Представление результатов испытаний, их интерпретацию и сопоставление с теоретическими оценками.

Ориентировочная трудоёмкость курсовой работы — 36 часов самостоятельной работы и консультаций с преподавателем.

Варианты 5-ой лабораторной работы и курсовой работы.

Под таблицей перечислены особые требования, относящиеся к некоторым вариантам, комментарии и ссылки на источники для некоторых вариантов.

Nº	5-я лаб. работа	Курсовая работа	Особ.
вар.			треб.
1	Кодирование: Фано-Шеннона	Статическое кодирование и декодирование текстового	
		файла методами Хаффмана и Фано-Шеннона –	
		демонстрация	
2	Декодирование: статическое, коды	Статическое кодирование и декодирование текстового	
	символов хранятся в бинарном	файла методами Хаффмана и Фано-Шеннона – текущий	
	дереве	контроль	
3	Кодирование: статическое	Динамическое кодирование и декодирование по Хаффману	
	Хаффмана	– сравнительное исследование со "статическим" методом.	
4	Декодирование: статическое, коды	Кодирование и декодирование методами Хаффмана и	
	символов хранятся в хеш-таблице	Фано-Шеннона — исследование	
	без коллизий		
5	Кодирование: динамическое	Динамическое кодирование и декодирование по Хаффману	
	Хаффмана	– демонстрация	
6	Декодирование: динамическое	Динамическое кодирование и декодирование по Хаффману	
	Хаффмана	– текущий контроль	
7	БДП: случайное* БДП; действие:	Случайные БДП - вставка и исключение. Демонстрация с	**1
	1+2a	использованием графики	

8	БДП: случайное* БДП; действие:	Случайные БДП – вставка и исключение. Исследование (в	
9	1+2б БДП: случайное* БДП; действие:	среднем, в худшем случае) Случайные БДП — вставка и исключение. Вставка в корень	**1
9	1+2в	БДП. Текущий контроль	1
10	БДП: случайное* БДП с	Случайные БДП с рандомизацией. Демонстрация	
10	рандомизацией; действие: 1+2а	слу палные вдіт е рапдомизацием. детопограция	
11	БДП: случайное* БДП с	Случайные БДП с рандомизацией. Исследование (в	
	рандомизацией; действие: 1+2в	среднем, в худшем случае)	
12	БДП: Рандомизированная дерамида	Рандомизированные дерамиды поиска – вставка и	
	поиска (treap); действие: 1+2a	исключение. Демонстрация	
13	БДП: Рандомизированная дерамида	Рандомизированные дерамиды поиска – вставка и	
	поиска (treap); действие: 1+26	исключение. Исследование (в среднем, в худшем случае)	
14	БДП: Рандомизированная дерамида	Рандомизированные дерамиды поиска – вставка и	
	поиска (treap); действие: 1+2в	исключение. Текущий контроль	
15	БДП: АВЛ-дерево; действие: 1+2а	АВЛ-деревья - вставка и исключение. Демонстрация	
16	БДП: АВЛ-дерево; действие: 1+26	АВЛ-деревья - вставка и исключение. Исследование (в	
		среднем, в худшем случае)	
17	БДП: АВЛ-дерево; действие: 1+2в	АВЛ-деревья - вставка и исключение. Текущий контроль	
18	БДП: Рандомизированная дерамида	Сцепляемые очереди (упорядоченные линейные списки) на	
	поиска (treap); действие: 1+2г:	основе рандомизированных дерамид поиска — операции	
	сцепление двух дерамид	сцепления и расщепления. Демонстрация	
19	БДП: Рандомизированная дерамида	Сцепляемые очереди (упорядоченные линейные списки) на	
	поиска (treap); действие: 1+2г:	основе рандомизированных дерамид поиска – операции	
	расщепление дерамиды	сцепления и расщепления. Исследование	
20	По заданной последовательности	Сравнительное исследование сортировок бинарным	**5
	чисел построить декартово дерево;	деревом: случайным* БДП, рандомизированной	
	вывести построенное дерево на	дерамидой, декартовым деревом. Сравнение с другим	
	экран в наглядном виде.	алгоритмом сортировки.	
21	БДП: Идеально сбалансированное;	Идеально сбалансированные БДП – вставка и исключение.	
	действие: 1+2а	Демонстрация	
22	БДП: Идеально сбалансированное;	Идеально сбалансированные БДП. Исследование (в	
	действие: 1+2б	среднем, в худшем случае)	
23	Хеш-таблица: с цепочками;	Хеш-таблицы с цепочками – вставка и исключение.	**2
	действие: 1+2а	Демонстрация	
24	Хеш-таблица: с цепочками;	Хеш-таблицы с цепочками – вставка. Исследование (в	**2
	действие: 1+2б	среднем, в худшем случае)	
25	Хеш-таблица: с открытой	Хеш-таблицы с открытой адресацией – вставка и	**2
	адресацией; действие: 1+2а	исключение. Демонстрация	
26	Хеш-таблица: с открытой	Хеш-таблицы с открытой адресацией – вставка.	**2
	адресацией; действие: 1+2б	Исследование (в среднем, в худшем случае)	
	Д	ополнительные варианты.	
27	БДП: красно-чёрное дерево;	Красно-чёрные деревья— вставка. Демонстрация	
	действие: 1+2а		
28	БДП: красно-чёрное дерево;	Красно-чёрные деревья – вставка. Исследование	
	действие: 1+2в		
29	Дан массив чисел и число n (n=1, 2,	Сортировка n-арной кучей (n=1, 2, 3,), 2 варианта	**3
	3,). Предполагая, что массив	просеивания (сверху-вниз и снизу вверх). Демонстрация	
	является n-арной кучей:		
	- Вывести его в виде n-арной кучи.		
	- Получить путь от корня до листа		
	такой, что при каждом шаге вниз		
	выбирается наибольший сын.		
30	Дан массив чисел и 2 числа: n (n=1,	Сортировка n-арной кучей (n=1, 2, 3,), 2 варианта	**4

	2, 3,) и х. Проверить, является ли	просеивания (сверху-вниз и снизу вверх). Исследование	
	массив n-арной кучей, и если да, то,	(сравнить варианты просеивания, найти оптимальное n)	
	заменив корень на х, выполнить его		
	просеивание сверху вниз.		
31	Дан массив пар типа «число – бит».	Сортировка слабой кучей. Демонстрация	
	Предполагая, что этот массив		
	представляет слабую кучу, вывести		
	её на экран в наглядном виде.		
32	Дан массив чисел. Проверить, что он	Сортировка слабой кучей. Сравнительное исследование с	**5
	представляет слабую кучу.	другим алгоритмом сортировки.	
33	Дан массив чисел. Предполагая, что	Плавная сортировка. Демонстрация	
	этот массив представляет кучу		
	леонардовых куч, вывести её на		
	экран в наглядном виде.		
34	Дан массив чисел. Проверить, что он	Плавная сортировка. Сравнительное исследование с другим	**5
	представляет кучу леонардовых куч.	алгоритмом сортировки.	
	Вывести рекурсивное разложение		
	массива на леонардовы		
	подмассивы.		

^{*} Слово «случайное» входит в название структуры данных (а не означает возможность выбора БДП любого типа).

Особые требования к некоторым вариантам:

- **1 БДП должно быть реализовано на базе указателей, если в ЛРЗ был в-вариант; БДП должно быть реализовано на базе массива, если в ЛРЗ был д-вариант.
- **2 Этот вариант запрещён тем, у кого 29-ый вариант ЛР4, в котором была реализована хештаблица соответствующего типа (если была реализована хештаблица другого типа, то вариант разрешён).
- **3 Если в ЛР4 был вариант 13 (пирамидальная сортировка), то использование графики в демонстрации обязательно.
- **4 Если в ЛР4 был вариант 13 (пирамидальная сортировка), то исследование должно быть расширенным.
- **5 Сравнивать следует с алгоритмом сортировки, реализованным или частично реализованным в ЛР4. Если в ЛР4 был вариант 29, то сравнивать с любым алгоритмом сортировки, можно с библиотечной сортировкой.

Ссылки и комментарии.

- 20) Под декартовым деревом понимается бинарное дерево, являющееся пирамидой по значениям узлов и являющееся БДП по индексам узлов из исходного массива. (https://habr.com/ru/company/edison/blog/505744/) Сортировку после построения декартова дерева можно продолжать по-разному:
- a) С реализацией приоритетной очереди, в которую будут добавляться поддеревья (https://ru.qaz.wiki/wiki/Cartesian_tree#Application_in_sorting) (в таком случае потребуется реализовать приоритетную очередь).
- б) С восстановлением декартова дерева (https://habr.com/ru/company/edison/blog/505744/).
- в) С восстановлением пирамиды через просеивание (подобно тому, как это выполняется в пирамидальной сортировке).

В курсовой работе в качестве сортировки декартовым деревом можно реализовать любой из этих способов.

26, 27) https://ru.wikipedia.org/wiki/Красно-чёрное дерево

28, 29) https://habr.com/ru/company/edison/blog/509330/, https://habr.com/ru/company/edison/blog/509330/, https://habr.com/ru/company/edison/blog/509330/, https://habr.com/ru/company/edison/blog/495420/

30, 31) https://habr.com/ru/company/edison/blog/499786/

32, 33) https://habr.com/ru/company/edison/blog/496852/