CSP2023模拟赛

题目名称	简单计数	机房惨案	石头游戏	递增路径
题目类型	传统型	传统型	传统型	传统型
可执行文件名	count	network	stone	increase
输入文件名	count .in	network.in	stone.in	increase.in
输出文件名	count.out	network.out	stone.out	increase.out
每个测试点时限	1.0 秒	2.0 秒	1.0 秒	1.0 秒
内存限	512 MiB	512 MiB	512 MiB	512 MiB
子任务/测试点数目	20	3	10	10
是否等分	是	否	是	是

提交源文件程序名

编译选项

对于C++语言	-lm -O2 -std=c++17

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回类型必须是int,程序正常结束时返回值必须是0。
- 3. 选手提交的程序代码文件请在个人目录下以及子文件夹内各放一份。
- 4. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 5. 选手提交的程序源文件必须不大于100KB。
- 6. 程序可使用的栈空间内存限制于题目的内存限制一直。
- 7. 使用std::deque等STL容器时,请注意其内存空间消耗。
- 8. 评测时采用的机器配置为 AMD Ryzen 7 5800H with Radeon Graphics,内存16GiB。上述时限以此配置为准。
- 9. 评测在Windows 10下进行,使用LemonLine进行评测。

简单计数 (count)

【题目描述】

请计算有多少长为n的正整数序列c满足以下条件。

- $\forall 1 \leq i \leq n, c_i \in [1, m]$.
- 对于数字 x ,不能在 c 中某一段连续出现超过 a_x 次。

两种方案不同, 当且仅当某个位置上的值不同。

【输入格式】

第一行两个正整数 n, m 。

第二行 m 个正整数, 第 i 个表示 a_i 。

【输出格式】

输出一个非负整数,表示答案对998244353 取模后的结果。

【输入输出样例1】

count.in	count.out
3 3 1 2 3	21

【数据规模与约定】

- 对于 10% 的数据, $n, m \leq 5$;
- 对于 30% 的数据, $n, m \leq 50$;
- 对于 50% 的数据, $n, m \leq 500$;
- 对于 70% 的数据, $n, m \leq 5000$;

对于所有测试数据,保证 $a_i \leq n \leq 5000, m \leq 10^5$ 。

机房惨案 (network)

【题目描述】

在机房中共有 n 台电脑,编号为 $1,2,\dots,n$,由 n-1 条网线连成一个连通块。现在 你是一个 JCer ,由于你太巨了,机房里所有的电脑你都能进入并访问。

定义 ${
m JC}$ 某台电脑的难度为这台电脑的编号。现在你会到机房 q 次。每次到机房时,你都会干下面两件事之一:

- 1. 把编号为x的电脑JC掉。
- 2. 从某一台电脑 x 开始,通过网线形成的路径逐个访问**所有**被你 JC 了的电脑。因为 JC 也是要被发现的,所以你在从 x 开始访问某一台被你 JC 了的电脑时,一定会沿着它们在树上的最短路径进行访问。在此过程中,你会记录所有这些路径上的电脑的难度值,无论这些电脑是否被 JC 过。因为你很懒,所以你只想知道这些电脑中**最小**的难度值。

现在, 你需要对于每个事件 2, 输出最小的难度值。

【输入格式】

第一行两个正整数 n, q。

接下来 n-1 行,每行两个正整数 u,v,代表 (u,v) 之间有一条网线。

接下来q行,每行格式形如下面两种之一:

- 1. JC x, 代表你把编号为 x 的电脑 JC 掉了。
- 2. Query x, 代表你从编号为 x 的电脑访问**所有**被你 JC 了的电脑。

数据保证第一次为 JC。不保证一台电脑仅被 JC 一次。

【输出格式】

输出 q 行,对于每个 Query,输出一行一个正整数表示答案。

【输入输出样例1】

network.in	network.out	
5 9		
13		
53		
2 4		
43	3	
JC 4	4	
Query 5	2	
Query 4	1	
JC 2	1	
Query 5	1	
JC 1		
Query 5		
Query 1		
Query 4		

【数据规模与约定】

本题采用**捆绑测试**。

- Subtask 1 (25 pts): $1 \le n, q \le 4000$
- Subtask 2 (15 pts): 保证给出的是一条链
- Subtask 3 (60 pts): $1 \le n, q \le 10^6$

对于所有测试数据,保证 $1 \leq n, q \leq 10^6, 1 \leq u, v, x \leq n, u \neq v$ 。

本题输入输出量较大, 请选手选择更为高效的输入输出方式。

石头游戏 (stone)

【题目描述】

miya 玩起了游戏!

- n 堆石头排成一排,初始的时候,第 i 堆有 a_i 个石头。
- miya 每次可以选择第 i 堆石头满足该堆石头**恰好**有 i 个石头,然后拿走所有的石头,并且将 $1\sim i-1$ 的石头数目都 +1。
- 最后剩下的石头就是 miya 的得分, miya 希望得分越小越好。

给定 n,k,表示初始所有 $a_i \in [0.k]$,求出所有情况下 miya 的得分之和 $\mod 10^9 + 7$ 。

【输入格式】

第一行两个正整数 n, k。

【输出格式】

一行一个数表示答案。

【输入输出样例1】

stone.in	stone.out
5 1	64

【数据规模与约定】

对于所有测试数据,保证 $n \leq 100, 1 \leq k \leq n$ 。

测试点编号	$n,k \leq$
$1\sim 3$	6
$4\sim 5$	20
$6\sim7$	40
$8\sim 10$	100

递增路径 (increase)

【题目描述】

有一张 n 个点 m 条边的无向图,每条边有一个 $1\sim m$ 之间的整数边权,且边权互不相同。Alice 和 Bob 在上面玩一个游戏。

首先规定一个起点 s, 起点上有一个棋子, 接下来 Alice 和 Bob 轮流操作 (Alice 先手):

• 若当前棋子在点 u 上,则选择一条与 u 相邻的边 (u,v),需要满足如果这不是第一次操作,则该边的边权必须大于上一次操作所选择的边的边权,然后把棋子移动到 v 上。如果无法操作,则游戏结束。

Alice 希望游戏进行的轮数尽量多,而 Bob 希望游戏进行的轮数尽量少。对于每个 $s=1,2,\ldots,n$ 求出,若双方都采用最优策略,游戏会进行多少轮。

【输入格式】

第一行:两个整数 n, m。

接下来 m 行: 每行三个整数 u, v, w 表示一条连接 u, v 的边, 边权为 w。

【输出格式】

一行 n 个整数,分别表示以每个点作为起点的答案。

【输入输出样例1】

increase.in	increase.out
46	
312	
231	
415	3322
143	
2 1 6	
1 3 4	

【输入输出样例2】

increase.in	increase.out
6 12	
532	
454	
417	
428	
363	
6 6 10	423333
116	
5 2 11	
369	
4 2 12	
465	
3 4 1	

【数据规模与约定】

- 对于前 20% 的测试数据,满足 $n, m \leq 20$ 。
- 对于前 50% 的测试数据,满足 $n,m \leq 5000$ 。

对于所有测试数据,保证 $1 \leq n \leq 2 \times 10^5, 1 \leq m \leq 5 \times 10^5, 1 \leq u,v \leq n, 1 \leq w \leq m$ 。