06_02_storage technologies

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - RAM
 - Disks

Types of Random-Access Memory(RAM)

Random Access Memory. RAM.

- Random Access?
- SRAM static RAM
- DRAM dynamic RAM

SRAM

- Fast
- Expensive
- Used in cache memory (on and off chip)
- How much? A few MB
- More transistors/circuit
- Stable. Retain value as long as there's power
- No need for refresh

DRAM

- Used in main memory, graphics framebuffer
- "Stores each bit as a charge on a capacitor"
- Sensitive to disturbance (elec. noise, radiation)
 - Use as digital cam sensor
- Leakage:
 - Needs to be refreshed every 10-100 ms
 - How? Just read value and write it again
- Slower than SRAM
- Cheaper than SRAM

SRAM vs DRAM

39	transistors per bit		needs refresh?	cost	where?
SRAM	6	1x	n●	100x	cache mem•ry
:					(on or off chip)
DRAM	1	10x	yes	1x	main mem•ry,
5					graphics framebuffers

volatile vs. non-volatile storage

- volatile value lost on power off
- non-volatile
 - Hard disk
 - "ROMs", "PROMs", "firmware"
 - Solid state disks

Memory Hierarchy

- Overview. Asymmetry.
- The details:
 - RAM
 - Disks

What's Inside A Disk Drive?

Disk Geometry

- Disks consist of platters, each with two surfaces.
- Each surface consists of concentric rings called tracks.
- Each track consists of sectors separated by gaps.

Disk Geometry (Muliple-Platter View)

Aligned tracks form a cylinder.

The capacity of a disk is given by the following formula:

$$Disk capacity = \frac{\text{\# bytes}}{\text{sector}} \times \frac{\text{average \# sectors}}{\text{track}} \times \frac{\text{\# tracks}}{\text{surface}} \times \frac{\text{\# surfaces}}{\text{platter}} \times \frac{\text{\# platters}}{\text{disk}}$$

For example, suppose we have a disk with 5 platters, 512 bytes per sector, 20,000 tracks per surface, and an average of 300 sectors per track. Then the capacity of the disk is:

Disk capacity =
$$\frac{512 \text{ bytes}}{\text{sector}} \times \frac{300 \text{ sectors}}{\text{track}} \times \frac{20,000 \text{ tracks}}{\text{surface}} \times \frac{2 \text{ surfaces}}{\text{platter}} \times \frac{5 \text{ platters}}{\text{disk}}$$

= 30,720,000,000 bytes
= 30.72 GB.

Notice that manufacturers express disk capacity in units of gigabytes (GB), where $1 \text{ GB} = 10^9 \text{ bytes}$.

Disk Operation (Single-Platter View)

Disk Operation (Multi-Platter View)

spin

Rotation rate these days: 5400, 7200 RPM

from the book ...

- equivalent of Sears Tower on its side:
 - 1 inch above the surface of the Earth
 - each orbit takes 8 seconds

- Speck of dust equivalent to a boulder
- Head crash

Logical Disk Blocks

- Modern disks present a simpler abstract view of the complex sector geometry:
 - The set of available sectors is modeled as a sequence of b-sized logical blocks (0, 1, 2, ...)
- Mapping between logical blocks and actual (physical) sectors
 - Maintained by hardware/firmware device called disk controller.
 - Converts requests for logical blocks into (surface,track,sector) triples.
- Allows controller to set aside spare cylinders for each zone.
 - Accounts for the difference in "formatted capacity" and "maximum capacity".

Geometry attribute	Value
Platters	4
Surfaces (read/write heads)	8
Surface diameter	3.5 in.
Sector size	512 bytes
Zones	15
Cylinders	50,864
Recording density (max)	628,000 bits/in.
Track density	85,000 tracks/in.
Areal density (max)	53.4 Gbits/sq. in.
Formatted capacity	146.8 GB

Figure 6.13 Seagate Cheetah 15K.4 geometry

15,000 RPM
2 ms
4 ms
58–96 MB/s

Figure 6.13 Seagate Cheetah 15K.4 geometry and performance. Source: www.seagate.com.

Zone number	Sectors per track	Cylinders per zone	Logical blocks per zone
(outer) 0	864	3201	22,076,928
1	844	3200	21,559,136
2	816	3400	22,149,504
3	806	3100	19,943,664
4	795	3100	19,671,480
5	768	3400	20,852,736
6	768	3450	21,159,936
7	725	3650	21,135,200
8	704	3700	20,804,608
9	672	3700	19,858,944
10	640	3700	18,913,280
11	603	3700	17,819,856
12	576	3707	17,054,208
13	528	3060	12,900,096
(inner) 14		_	_

Figure 6.14 Seagate Cheetah 15K.4 zone map. Source: DIXtrac automatic disk drive characterization tool [92]. Data for zone 14 not available.

I/O Bus

Reading a Disk Sector (1)

Reading a Disk Sector (2)

Reading a Disk Sector (3)

Solid State Disks (SSDs)

- Pages: 512KB to 4KB, Blocks: 32 to 128 pages
- Data read/written in units of pages.
- Page can be written only after its block has been erased
- A block wears out after 100,000 repeated writes.

SSD Performance Characteristics

Reads		Writes		
Sequential read throughput	250 MB/s	Sequential write throughput	170 MB/s	
Random read throughput	$140~\mathrm{MB/s}$	Random write throughput	$14 \mathrm{MB/s}$	
Random read access time	$30 \mu \mathrm{s}$	Random write access time	$300~\mu \mathrm{s}$	

Figure 6.16 Performance characteristics of a typical solid state disk. Source: Intel X25-E SATA solid state drive product manual.

- Why are random writes so slow?
 - Erasing a block is slow (around 1 ms)
 - Write to a page triggers a copy of all useful pages in the block
 - Find an used block (new block) and erase it
 - Write the page into the new block
 - Copy other pages from old block to the new block

SSD Tradeoffs vs Rotating Disks

- Advantages
 - No moving parts → faster, less power, more rugged
- Disadvantages
 - Have the potential to wear out
 - Mitigated by "wear leveling logic" in flash translation layer
 - E.g. Intel X25 guarantees 1 petabyte (1015 bytes) of random writes before they wear out
 - In 2010, about 100 times more expensive per byte
- Applications
 - MP3 players, smart phones, laptops
 - Beginning to appear in desktops and servers

The CPU-Memory Gap

The gap widens between DRAM, disk, and CPU speeds.

