

Filtrage & Annotation

Mathieu Charles - INRAE

Workflow

Workflow - Filtrage et Annotation

Filtres des variants

- De nombreux filtres peuvent être appliqués sur le VCF
 - → type de variants à garder (SNVs seulement, Indels...)
 - → région d'intérêt
 - → seuils arbitraires : profondeur, génotype (0/1, 1/1), ratio allélique...

- Filtres difficilement transposables entre analyse :
 - → dépendent de la **question biologique**
 - → dépendent des outils utilisés

 GATK Bests Practices: recommendations selon des métriques spécifiques à GATK, différentes pour les SNVs des Indels

SelectVariants et Hard filtering

```
# Préparation d'un nouveau répertoire de résultats
$ mkdir -p ~/tp variant/filter and annot/logs
$ cd ~/tp variant/filter and annot
# Extraction des SNVs dans un fichier séparé pour GATK
$ sbatch -J GATK SNP -o logs/GATK SNP.out -e logs/GATK SNP.err --mem=8G --wrap=" \
    gatk SelectVariants --java-options '-Xmx8G' \
    -R ~/tp variant/genome/Bos taurus.UMD3.1.dna.toplevel.6.fa \
    -V ~/tp variant/GATK/vcf/pool GATK.vcf \
    --select-type SNP -0 pool GATK.SNP.vcf"
# Extraction des SNVs dans un fichier séparé pour Varscan
$ sbatch -J Varscan SNP -o logs/Varscan SNP.out -e logs/Varscan SNP.err --mem=8G
--wrap="gatk SelectVariants --java-options '-Xmx8G' \
    -R ~/tp variant/genome/Bos taurus.UMD3.1.dna.toplevel.6.fa \
    -V ~/tp variant/Varscan/pool Varscan dict.vcf \
    --select-type SNP -0 pool Varscan.SNP.vcf"
```

SelectVariants et Hard filtering

- QD QualByDepth : Score QUAL / AD [profondeur allélique]
- **FS** FisherStrand : Score estimant un éventuel biais de brin
- **SOR** StrandOddsRatio:
- MQ MappingQuality : Qualité de mapping moyenne sur l'ensemble du read
- MQRankSum : Teste un biais de différence de qualité de mapping entre allèles
- ReadPosRankSum : Teste un biais de position des allèles le long du read

HowTo: Apply hard filters to a call set

doc GATK

<u>I am unable to use VQSR (recalibration) to filter variants</u>

how to understand and improve upon the generic hard filtering recommendations.

SelectVariants et Hard filtering

```
# Filtrage des SNVs selon les filtres recommandés par GATK
$ sbatch -J GATK SNP filter -o logs/GATK SNP filter.out -e logs/GATK SNP filter.err
--mem=8G --wrap="gatk VariantFiltration --java-options '-Xmx8G' \
  -R ~/tp variant/genome/Bos taurus.UMD3.1.dna.toplevel.6.fa \
  -V pool GATK.SNP.vcf -O pool GATK.SNP.prefilt.vcf \
  -filter 'QD < 2.0' --filter-name 'QD2' -filter 'SOR > 3.0' --filter-name 'SOR3' \
  -filter 'FS > 60.0' --filter-name 'FS60' -filter 'MQ < 40.0' --filter-name 'MQ40'
  -filter 'MQRankSum < -12.5' --filter-name 'MQRankSum-12.5' \
  -filter 'ReadPosRankSum < -8.0' --filter-name 'ReadPosRankSum-8'"</pre>
# Sélection des variants passant ce filtre
$ sbatch -J GATK SNP PASS -o logs/GATK SNP PASS.out -e logs/GATK SNP PASS.err
--mem=8G --wrap="gatk SelectVariants --java-options '-Xmx8G' \
    -R ~/tp variant/genome/Bos taurus.UMD3.1.dna.toplevel.6.fa \
    -V pool GATK.SNP.prefilt.vcf \
    --exclude-filtered \
    -0 pool GATK.SNP.filtered.vcf"
```

Intersection des résultats des variant callers

```
# Intersection des variants obtenus avec Varscan et avec GATK post filtering
# Compression et indexation des fichiers vcfs
$ bgzip -c pool GATK.SNP.filtered.vcf > pool GATK.SNP.filtered.vcf.gz
$ tabix -p vcf pool GATK.SNP.filtered.vcf.gz
$ bgzip -c pool Varscan.SNP.vcf > pool Varscan.SNP.vcf.gz
$ tabix -p vcf pool Varscan.SNP.vcf.gz
$ sbatch -J GATK varscan isec -o logs/GATK varscan isec.out \
    -e logs/GATK varscan isec.err --mem=8G --wrap=" \
    bcftools isec -f PASS -n +2 -w 1 -0 v \
    pool GATK.SNP.filtered.vcf.gz pool Varscan.SNP.vcf.gz \
    > GATK varscan inter.vcf "
```

Annotation des variants

- Ajout d'informations biologiques pertinentes aux variants :
 - → Est-ce que mes variants sont connus ?
 - → Où se positionnent mes variants?
 - → Quel est l'effet d'une mutation sur le CDS qui le contient ?

Annotation des variants

- Annotation structurale :
 - → Mon variant se trouve-t-il dans un intron, un exon?
- Annotation fonctionnelle :
 - → Informations sur la région ? Exemple : CDS codant pour une protéine
- Impacts potentiels:
 - → Dans le cas d'un CDS, protéine produite tronquée, allongée, décalée... ou silencieuse (redondance du code génétique)

Annotation des variants

 Nécessité d'avoir des bases de données associées aux organismes étudiés (Ensembl, Refseq...)

- Exemples d'outils/algorithmes :
 - → SnpEff
 - \rightarrow VEP
 - → Annovar
 - → SIFT, POLYPHEN2, CADD...

SnpEff

```
# Création de la base de données SnpEff
$ module load snpeff/4.3.1t
$ snpEff -version
                 # affiche la version (v4.3t)
$ echo BosTaurus.genome >> snpeff.config # <genome name>.genome
$ mkdir -p BosTaurus
$ cp ~/tp variant/genome/Bos taurus.UMD3.1.dna.toplevel.6.fa BosTaurus/sequences.fa
$ cp ~/tp variant/genome/Bos taurus.UMD3.1.93.chromosome.6.gff3 BosTaurus/genes.gff
$ echo -e "BosTaurus\nSnpEff4.3t" > BosTaurus.db
$ sbatch -J snpeffBuild -o logs/snpeffBuild.out -e logs/snpeffBuild.err --mem=8G \
--wrap="snpEff build -c snpeff.config -gff3 -v BosTaurus -dataDir ."
```

```
# Annotation avec notre base de données
$ sbatch -J snpeffAnnot -o logs/snpeffAnnot.out -e logs/snpeffAnnot.err --mem=8G \
--wrap="snpEff eff -c snpeff.config -dataDir . BosTaurus -s snpeff_res.html \
GATK_varscan_inter.vcf > GATK_varscan_inter.annot.vcf"
```

SnpSift

```
$ module load snpsift/4.3.1t
$ SnpSift filter -h  # affiche l'aide (v 4.3t)

# Garder les variants codant qui ne sont pas des synonymes :
$ sbatch -J snpsift1 -o logs/snpsift1.out -e logs/snpsift1.err --mem=8G --wrap=" \
cat GATK_varscan_inter.annot.vcf | SnpSift filter -Xmx8G \
\"(ANN[*].EFFECT != 'synonymous_variant') && (ANN[*].BIOTYPE = 'protein_coding')\" \
> GATK_varscan_inter.annot.coding.nosyn.vcf"
```

```
# Sélectionner notre variant d'intérêt parmi les variants hétérozygotes ayant un
impact (missense)
$ sbatch -J snpsift2 -o logs/snpsift2.out -e logs/snpsift2.err --mem=8G --wrap=" \
    cat GATK_varscan_inter.annot.coding.nosyn.vcf | SnpSift filter -Xmx8G \
    \"ANN[*].EFFECT = 'missense_variant' & isHet( GEN[2] ) & isVariant( GEN[2] ) \
    & isRef( GEN[0] ) & isRef( GEN[1] ) \" \
    > GATK_varscan_inter.annot.coding.nosyn.filtered.vcf"
```

Variant d'intérêt

- Quelle type de mutation est impliquée dans notre phénotype d'intérêt pour l'individu SRR1262731 ?
- Quel est son génotype ? Sur quel gène se situe-elle ?
- Qu'en est-il pour les autres individus?

- \rightarrow Le variant est **hétérozygote ALT (0/1)** pour l'individu SRR1262731, il comporte une mutation de type SNP (A \rightarrow C) située sur le gène **ABCG2**, en position **38027010 du chromosome 6**.
- → Pour les deux autres individus, ils ne comportent pas cette mutation : il sont homozygote référence (GT: 0/0).

Zinder *et al.*, 2005

^{*} need specific index