Seminario II: Introducción a la Computación GPU

CONTENIDO

Introducción

Evolución CPUs-Evolución GPUs

Evolución sistemas HPC

Tecnologías GPGPU

Problemática: Programación paralela en clústers

heterogéneos

Problemática: Gestión de infraestructura

Conclusiones REFERENCIAS

Cook, S. CUDA Programming: A Deverlopers Guide to Parallel Computing with GPUs. Morgan Kaufmann-Elsevier, 2013.

La Ley de Moore

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Figura: Crecimiento en Número de Tansistores/Chip

Procesador Mononúcleo: el pasado reciente

- Rendimiento escalaba parejo a Ley de Moore
- Principales motivos:
 - Aumento frecuencia reloj
 - Mejoras/optimizaciones en arquitectura: ILP y nuevas instrucciones: MMX, SSE
 - Más memoria caché
- Mejora automática en rendimiento. Todas las aplicaciones se benefician

Procesador Mononúcleo: Fin de una Era

Figura: Rendimiento procesador mononúcleo deja atrás ley de Moore [Herb Sutter]

Procesador Mononúcleo: Multicore Crisis

Procesador Mononúcleo: Multicore Crisis

- ¿Principales razones para el frenazo?
- Dificultades físicas para seguir aumentando frecuencia de reloj en niveles de integración tan elevados:
 - Demasiado calor y difícil de disipar
 - Demasiado consumo de potencia
 - Problemas con corrientes residuales
- Límites en el ILP
 - Procesadores ya muy complejos, optimizaciones arquitectónicas más lentas

Aumento de Rendimiento: Tendencias Actuales

- Mejoras en procesadores:
 - Simultaneous multithreading (SMT). Pe. Intel HTT (Hyper-Threading Technology)
 - Multinúcleo (*multicore*)
 - Más cache
- Otras alternativas:
 - Clusters de procesadores homogéneos
 - Clusters de procesadores heterogéneos. Pe. CELL

Aumento de Rendimiento: Tendencias Actuales

- Otras alternativas:
 - Uso de hardware especializado a modo de co-procesador
 - FPGAs (Field-Programmable Gate Array)
 - GPUs (Graphics Processing Unit) ⇒ GPGPU
 - Nuevas arquitecturas innovadoras:
 - ¿Intel Larrabee?
 - AMD Fusion
 - Nuevos retos (punto vista de programador): Aprovechar concurrencia y paralelismo

Graphics Processing Unit (GPU)

- Origen: Las tarjetas gráficas de los ordenadores de los años 80
- Propósito: Acelerar por hardware el dibujado de primitivas gráficas en una pantalla, descargando al procesador de estas tareas

Graphics Processing Unit (GPU)

- Durante los 80s y primeros 90s: aceleración 2D (GUIs)
- En los 90s, las 3D cobran importancia (videojuegos)
 - Aparecen APIs OpenGL y DirectX e idea de pipeline gráfico
 - Primeras tarjetas aceleradoras 3D (no programables)
- Cada vez más fases del pipeline gráfico en tarj. Gráfica
 - Destacan dos fabricantes: Nvidia y ATI/AMD
 - Se acuña el término de GPU (GeForce 256)
 - Tarjetas gráficas programables: vertex & pixel shaders

CPUs vs. GPUs Operaciones en punto flotante por segundo

CPUs vs. GPUs Ancho de banda en transferencias de memoria

CPUs vs. GPUs: Diferencias Arquitectónicas

Figura: Diferencias en cantidad de transistores dedicados a procesamiento de datos

CPU Énfasis en

- ■Más caché
- Control de flujo

GPU Especializada en

- ■Computación intensiva
- Ejecutar mismas operaciones en paralelo sobre diferentes datos
- Interesa mucho cálculo y poco acceso a memoria

Actualmente: GPU de propósito general

- Uso de GPUs se ha generalizado:
 - Hasta hace poco: Cálculo información gráfica (render): videojuegos, 3D...
 - Ahora, además: Cálculo de propósito general
 - GPUs actuales son dispositivos masivamente paralelos: miles de hilos concurrentes
- GPGPU: General-purpose computing on graphics processing units
- Uso de GPUs como coprocesadores. Explotamos paralelismo:
 - de datos en GPUs
 - de tareas en CPUs

GPGPU: ¿Dónde aplicarla?

- Importante desarrollo y popularización en entornos HPC últimos 3 años
 - sobre todo tecnología CUDA de Nvidia
- Comienza también a cobrar importancia fuera de HPC
- Aplicaciones típicas: las más data parallel
 - Informática biomédica: análisis de imágenes. . .
 - Codificación/decodificación de vídeo
 - Simulaciones físicas: fluídos, astrofísica. . .

GPGPU: Límitaciones

- ¿Inconvenientes?
 - Solo buen aprovechamiento paralelismo de datos
 - Cuello de botella: transferencias CPU

 GPU
 - Difíciles de programar para lograr eficiencia elevada
 - Necesarios (de momento) drivers cerrados de fabricantes

GPGPU: Modelo de Programación

- Stream processing
 - Paradigma clásico años 80
 - Relacionado con concepto SIMD (Single Instruction, Multiple Data)
- Idea
 - Conjunto de datos: stream
 - Operaciones a aplicar: kernel
 - Se aplica kernel a cada elemento en stream
 - Concurrencia: explotación paralelismo de datos

GPGPU: Modelo de Trabajo

Figura: Stream processing se ajusta a modelo GPGPU

Evolución sistemas HPC Arquitecturas clásicas HPC

Figura: Sistema de memoria distribuída

Figura: Sistema de memoria compartida

Sistemas Multiprocesador-Multinúcleo (Última Década) Clusters homogéneos (Beowulf cluster)

Figura: Cluster homogéneo con nodos multiprocesador y procesadores multinúcleo

Sistemas Heterogéneos CPUs-GPUs para HPC Escenario Habitual en la Actualidad

Figura: Cluster híbrido con GPUs y procesadores multinúcleo

Tecnologías GPGPU: Brook, BrookGPU y Brook+

- Brook: Lenguaje de programación, extensión de ANSI C, que incorpora ideas del paradigma Stream processing
- BrookGPU
 - Proyecto GPGPU del grupo de gráficos de Univ. Standford basado en leng. Brook (2004, licencia libre: BSD y GPL)
 - Permite explotar GPUs de Nvidia, ATI o Intel como coprocesadores altamente paralelos (data parallel)
 - Múltiples backends: CPU, DirectX, OpenGL...
- Brook+
 - Implementación de AMD/ATI basada en BrookGPU
 - Competidor de CUDA en sus inicios, nunca alcanzó el grado de madurez de la tecnología de Nvidia

Tecnologías GPGPU: Brook+

- Mantuvo licencia libre de BrookGPU, buscando ser un estándar abierto
- Incluido en la Stream SDK de AMD, no fue la primera tecnología GPGPU de ATI: Close to Metal (CTM) y AMD FireStream
- Multiplataforma: múltiples backends
 - Predeterminado: CAL, capa de abstracción GPU AMD/ATI
- Buen desarrollo inicial, pero no llegó a ofrecer el 'acabado' y madurez de CUDA
 - Más díficil de programar (todavía)
 - Menos flexibilidad
 - Menos documentación y herramientas de desarrollo
- Última versión: 1.4.1 (2009). Abandonado en favor de OpenCL

CUDA: Compute Unified Device Architecture

- Solución GPGPU de Nvidia
 - Anunciada a finales 2006. 1a versión en 2007.
 - Actualmente CUDA 4.0 (junio 2011)
 - Trending topic en HPC últimos 3 años
- Framework completo, madurando cada nueva versión:
 - Driver tarjeta gráfica (cerrado: freeware)
 - CUDA Toolkit (cerrado): herramientas para programar tarjetas
 - CUDA SDK (no tan cerrada, pero no libre)
 - Bibliotecas de cálculo (cerradas)
 - Mucha y buena documentación

CUDA: Compute Unified Device Architecture

- Driver tarjeta gráfica (cerrado: freeware)
 - expone arquitectura GPGPU de la GPU
 - pensada para ser explotada con modelo de programación tipo Stream processing
- CUDA Toolkit (cerrado): herramientas para programar tarjetas
 - C for CUDA: C con algunas extensiones
 - runtime library: API gestión GPU desde CPU
 - CUDA driver API: API debajo de runtime. También accesible desde capa aplicación. Ofrece más flexibilidad y control que runtime
 - Herramientas depuración y profiling

CUDA: Compute Unified Device Architecture

- CUDA SDK (no tan cerrada, pero no libre)
 - Ejemplos y pruebas de concepto
- Bibliotecas de cálculo (cerradas)
 - Construidas por encima de runtime library
 - cuBLAS, cuFFT...
- Mucha y buena documentación
 - Guías de programación, de referencia, de buenas prácticas...

CUDA Compute Unified Device Architecture

Figura: Arquitectura CUDA

CUDA Idea clave 1: Muchos hilos de ejecución concurrentes

- Creación y gestión de hilos muy 'barata'
- Hilos se organizan en bloques (block). Dentro de un bloque:
 - Ejecución tipo SIMD: SIMT
 - Posibilidad de sincronizar hilos
 - Acceso a una memoria compartida de alta velocidad
 - Hilos de un bloque pueden cooperar entre sí
- Bloques independientes entre sí en cuanto a ejecución
 - Pueden ejecutarse en paralelo y en cualquier orden
 - Garantiza escalabilidad
- Bloques se organizan en una rejilla (*Grid*)
 - Rejilla: total de hilos que ejecutan un kernel en GPU

CUDA Escalabilidad automática (monoGPU)

Figura: Ejecución en bloques independientes permite escalabilidad

CUDA Jerarquía de hilos: bloques y rejilla

Figura: Rejilla de bloques con hilos que ejecutarán kernel en GPU

CUDA Idea clave 2: Jerarquía de memoria

- Varios tipos de memoria disponibles para los hilos
 - Registros
 - Memoria local (local memory)
 - Memoria compartida (shared memory)
 - Memoria global (global memory)
- Además, dos tipos de memoria 'de solo lectura'
 - Memoria de constantes (constant memory)
 - Memoria de texturas (texture memory)
- Uso eficiente de jerarquía de memoria fundamental para buen rendimiento ejecución del kernel

CUDA: Jerarquía de Memoria

Figura: Principales espacios de memoria disponibles para hilos GPU

CUDA Idea clave 3: Arquitectura de la GPU que nos expone CUDA

- Una GPU CUDA consta de multiprocesadores (Stream Multiprocessor o SM)
- Los bloques de hilos se asignan a los SM para su ejecución
- Los hilos de los bloques asignados a un SM comparten sus recursos
- Los hilos se ejecutan en los núcleos computacionales

Figura: SM Fermi

CUDA: Modelo de Ejecución de CUDA

- GPU actúa como coprocesador de CPU
- CPU se encarga de
 - partes secuenciales
 - partes task parallel: POSIX threads (pthreads), OpenMP, Intel TBB, MPI
- GPU(s) ejecuta(n) partes data parallel
 - CPU transfiere datos a GPU
 - CPU lanza kernel en GPU
 - CPU recoge resultados de GPU
- Cuello de botella: transferencias
 - Maximizar cálculo Minimizar transf.
 - Solapar comunicación y computación

CUDA: Modelo de ejecución de CUDA

CUDA: Programación en CUDA

- Paralelizar una aplicación no es fácil (ni en CPU ni GPU)
 - Detectar regiones paralelizables y paradigmas más adecuados
 - Tener en cuenta el hardware objetivo/disponible
- Programar en CUDA un kernel sencillo y ejecutarlo es relativamente sencillo
- Explotar toda la potencia de una o varias GPUs CUDA en el sistema requiere gran conocimiento de la plataforma CUDA y mucho esfuerzo
- Existen soluciones 'por encima' de CUDA, como pe.
 HMPPWorkbench (cerrado)
 - Funciona con pragmas, al estilo OpenMP
 - Nos abstrae de complejidad de CUDA, indicando regiones para ser ejecutadas en GPU

CUDA: Conclusiones

- CUDA ha madurado mucho desde su primera versión:
 - Mejores herramientas de desarrollo
 - Incorporando novedades en arquitectura GPUs de Nvidia
- Principales inconvenientes:
- Solución totalmente cerrada (aunque gratis parte software)
 - Dependencia tecnológica: nuestro código queda ligado al fabricante
- Dependencia de las distintas generaciones de tarjetas Nvidia
 - Algunas características importantes para eficiencia solo disponibles en tarjetas muy caras
 - Para aprovechar novedades en nuevas versiones puede ser necesario bastante trabajo de migración
- No es una solución integral para sistemas heterogéneos
 - Solo aprovechamiento de GPGPU
- Obtener buen rendimiento requiere un gran esfuerzo de programación