Water use and WUE at elevated CO_2 : a model-data intercomparison.

Martin De Kauwe, Belinda Medlyn et al.

Department of Biological Sciences Macquarie University mdekauwe@gmail.com

October 24, 2012

Free-air concentration enrichment (FACE) experiment

► Two temperate forest sites:

Oak Ridge, Tennessee

Duke, North Carolina

- \sim 40 % step increase in CO₂.
- $ightharpoonup \sim 10$ years of measurements.
- ▶ 11 models of varying complexity . . .

Theory

Most models link $A-g_s$ using a Ball-Berry/Leuning type g_s model. Equation can be rearranged (Medlyn g_s model shown):

$$WUE = \frac{A}{E} = \frac{C_a}{g_1 \sqrt{VPD}} = \frac{GPP}{T}$$

▶ If g_1 and VPD do not change with CO_2 treatment . . . then most models should predict WUE \propto Ca. This prediction is independent of [LAI], PAR and N.

► We can use this **"simple model"** to test the predictions by the other models!!

Do the models predict WUE \propto CO₂? – DUKE

Do the models predict WUE \propto CO₂? – ORNL

$CO_2 \propto A / g_s$?

- ► CLM4 + DAYCENT decouple $A-g_s$.
- ▶ EALCO and O-CN have different A/g_s responses to CO₂ than "standard" \mathbb{R} BB-type models.

Unsupported by site data: meta-analysis, slope C.I. = (0.9, 1.07).

Impact of boundary layer - $E \propto g_s$?

- ▶ E is only $\propto g_s$ when the canopy is well-coupled to the atmosphere.
- ▶ g_a (GDAY and SDGVM), g_b (TECO) or g_a and g_b (CABLE, CLM4, EALCO, ED2, ISAM, OC-N).
- Different (wrong) leaf width parameterisations.
 - ▶ ISAM and TECO vs. CABLE at ORNL.

$A-g_s$ /WUE: CABLE vs. GDAY

- ▶ Similar A/g_s responses from the 2 models.
- Different WUE responses due to canopy/leaf coupling.

Other things . . .

During drought ...

- ▶ WUE is not \propto CO₂ in models that assume a stomatal limitation (modify slope) (e.g. CABLE, GDAY, OC-N).
- WUE response increases in LPJ-GUESS.
- ► WUE unaffected by CO₂ in models that limit photosynthetic capacity (e.g. CLM4, ED2).

Interception:

- Wet fraction of canopy used to satisfy demand.
- ► Large inter-model variability in the fraction of intercepted water, at Duke 2–15 %.
- Change in LAI due to CO2 becomes an issue...
- ▶ C_i vs. C_a , R_d , simulation time-step, CABLE's sheltering factor . . . [all small effects].

Overall annual responses? – DUKE

Overall annual responses? – ORNL

Conclusions

- ▶ Effective framework to analyse modelled responses to CO₂.
- Models that deviated most from Ball–Berry style $A-g_s$ models were unsupported by the data.
- ► The "more complex" models matched the observations best at the well—coupled site, but performed poorly at the deciduous site.
- Large uncertainty in observed "WUE" estimates at Duke.
- ► How "typical/scalable" are the responses at the two sites?

 A number of site-specific issues (drought, storms, rooting depth, etc).

Thanks!

K. Crous, M. Dietze, D. Ellsworth, P. Hanson, T. Hickler, A. Jain, H. S. Kim, Y. Luo, R. Norby, R. Oren, W. Parton, C. Prentice, P. E. Thornton, A. Walker, S. Wang, Y-P. Wang, D. Warlind, J. Warren, E. Weng and S. Zaehle.