

PCT/EP04/51690

INVESTOR IN PEOPLE

The Patent Office
Concept House
Cardiff Road
Newport
South Wales
NP10 8QQ

REC'D 28 DEC 2004

WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely affects the company to certain additional company law rules.

Signed

Dated 28 July 2004

1/77

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this form)

The Patent Office

21 NOV 2003

Cardiff Road
Newport
Gwent NP9 1RH

Your reference

CM06621EC/PGS/GBRI/LCC/FRANDSEN

97B99207u?DS?

24NOV03 E954201-1 D02319

P01/7700 0.00-0327171.5

Patent application number

0327171.5

Full name, address and postcode of the or of each applicant (underline all surnames)

MOTOROLA, INC
1303 EAST ALGONQUIN ROAD,
SCHAUMBURG, ILLINOIS 60196,
U.S.A.

Patents ADP number (if you know it)

~~00284467901~~ 00615336004

If the applicant is a corporate body, give the country/state of its incorporation

U.S.A. DELAWARE

Title of the invention

A METHOD OF ESTABLISHING A COMMUNICATION LINK IN A DIGITAL COMMUNICATION SYSTEM

Name of your agent (if you have one)

DEREK J MCCORMACK

EUROPEAN INTELLECTUAL PROPERTY DEPARTMENT

MIDPOINT

ALENCON LINK

BASINGSTOKE

HAMPSHIRE RG21 7PL

UK

ADP NO. 00001180006✓

Patents ADP number (if you know it)

If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number

(if you know it)

Date of filing

(day / month / year)

If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing

(day / month / year)

Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer 'Yes' if:

- a) any applicant named in part 3 is not an inventor, or
 - b) there is an inventor who is not named as an applicant, or
 - c) any named applicant is a corporate body.
- See note (d))

YES NO

Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form.
Do not count copies of the same document

Continuation sheets of this form

Description	9
Claim(s)	5
Abstract	1
Drawing(s)	3

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

4

Request for preliminary examination and search (Patents Form 9/77)

1

Request for substantive examination (Patents Form 10/77)

1

Any other documents (please specify)

1 x FEE SHEET

11.

I/We request the grant of a patent on the basis of this application.

Signature

Date

21/11/2003

12. Name and daytime telephone number of person to contact in the United Kingdom

DEREK J MCCORMACK

Louise CRISTOFOLI

01256 790589

Warning

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

DUPLICATE

1

A METHOD OF ESTABLISHING A COMMUNICATION LINK IN A
DIGITAL COMMUNICATION SYSTEM

5

Field of the Invention

The present invention relates to communication systems, in general, and in particular, to a method of establishing a communication between communication units 10 in a digital communication system.

Background of the Invention

In digital communication systems where the voice coding is done using slow bit-rate vocoders and where a 15 part of the communication path is via an air interface, relatively long delays may be incurred. These long delays are caused by e.g. Forward Error Correction schemes, TDM multiplexing delays, and serialisation delays for low speed links. If longer delays are added 20 due to other factors such as re-routing over long-delay links, which may be SATCOM links or dial-up links, then the end user may suddenly experience long delays that can jeopardise the conversation quality or make the users to believe that the call is about to be dropped.

25 Current solutions anticipates that all links in the system operates with equal delays and operates with adding fixed delays for the call to minimise or remove loss of audio due to truncation problems. For clear communication the start of the first speech burst in a 30 simplex call is lost, which is known in the art as the "shoot" - "don't shoot" effect, where the "don't" will be lost. The duration of the truncated speech is about equal to twice the difference in one way propagation

time for long and short delay links and can be close to 600 MS.

The problem that occurs in prior art solutions is outlined in FIG. 1. For the sake of clarity 5 communication units (e.g. portable mobile radios) are not included on the figure. A first Base Station (BS) 102, a second BS 108 and a Call Processing Server (CPS) 106 are going through an initial call set-up phase 110. Eventually the CPS 106 sends out a Channel Grant 10 instruction 112 where the call request has been granted and the resources are allocated. The Channel Grant instruction 112 is sent to the involved Base Stations 102 and 108, which then will join 114 the multicast group that forms a multicast tree. The multicast tree 15 allows voice data packets to flow from the sourcing Base Station to the receiving Base Station. Because of the long delay on a link on which the first BS 102 operates multicast states are not set-up in due time by a Rendezvous Point (RP) Router 104. In turn the first 20 voice frames will be dumped 116 and this causes a problem for group calls and in particular for end-to-end encrypted calls. Group calls are typical using a direct set-up method where the voice frames floats from the source and to the destination immediately after the MS's 25 have been sent to the traffic channels. Truncation then occurs because of the voice frames are deleted in the RP router as the multicast states hasn't been set-up in due time. The end-to-end encrypted calls will also suffer because the initial encryption synchronisation is lost 30 and that will add another one or two seconds of audio loss. For radio communication systems with end-to-end encryption the synchronization information that synchronizes the decryption module in the receiving terminal with the encryption module in the transmitting 35 terminal is embedded in the audio data stream.

Especially in the very beginning of encrypted audio data stream repeated synchronization information replaces voice information so as to ensure that the decryption module is synchronized when encrypted voice data starts coming through. Also, every second, synchronization information is placed into the audio data stream so as to allow so called late entry. The late entry occurs in the following situation. When two secure systems are communicating, the two parties need to be in exactly the same vector state in the crypto algorithm. Most secure systems therefore send this vector as the first data. However if the receiving party misses this vector (the receiving radio could be switch off) then it would never be able to decrypt the remaining part of the message.

Therefore the crypto vector is sent in small parts interleaved into the data. This enables the radio to regain the crypto synchronization even if it had lost the first part.

As in the prior art solutions the truncation removes this synchronization burst in the beginning of the data stream the terminals connected to sites will always perform late entry, which may add said one or two seconds of additional truncation.

Prior art solutions provide no special means to cope with situations where one party of the call operates on a long delay link and the other party on a short delay link. This results in said truncation. The performance with respect to call setup and voice delay is as good as it can be for the low delay links.

In duplex connection truncation is not a problem. Long voice delay due to e.g. a satellite link will, however, cause problems in conversation, as the total one way delay may be 600ms. And this exceeds 400 ms limit, which is considered as a limit for successful

duplex conversation. In networks where have a mix of short and long delay links the users in a duplex call will not know that they communicate over a long delay connection rather than a short delay connection before 5 they actually experience conversation difficulties that require special conversation discipline. In that situation the efficiency of duplex communication is lost for the first part of the call.

10 Summary of the Invention

There is a need for a method for use in a digital communication system, which alleviate or overcome the disadvantages of the prior art.

15 According to a first aspect of the present invention there is provided a method of establishing a communication between at least two communication units in a digital communication system as claimed in claim 1.

20 According to a second aspect of the present invention there is provided a communication system as claimed in claim 23.

According to a third aspect of the present 25 invention there is provided a communication unit as claimed in claim 24.

The present invention beneficially allows for consistent performance of calls with end-to-end 30 encryption regardless of link delay. As the delay is measured during the call a delay used for adjusting the communication system is dynamically changed and this guarantees that the delay value is optimized and the quality of call and conversation is maintained on 35 highest possible level. Further, in duplex calls with

excessively long delay the users are notified about the long delay so that special conversation discipline can be applied from the beginning of the call.

5 Brief description of the drawings

The present invention will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:

10

FIG. 1 is a message sequence chart illustrating a method of establishing connection in a digital communication system known in the art,

15

FIG. 2 is a diagram illustrating a communication system in accordance with one embodiment of the present invention,

20

FIG. 3 is a message sequence chart illustrating a method of establishing connection in a digital communication system in accordance with one embodiment of the present invention.

25

Description of an embodiment of the invention

The term "multicast group" herein below refers to a group of Internet Protocol end-points operating in a point to multipoint fashion.

30

The term "multicast tree" herein below refers to a structure comprising a number of nodes tied together with a common knowledge of each other forming a network. The structure is a tree structure where the Rendezvous Point is the root. Special IP packets known as multicast

packets are floating through this tree in a point to multipoint fashion.

Referring to FIG. 2 and FIG. 3 one embodiment of a
5 method of establishing communication in a digital wireless communication system 200 according to the present invention is shown. When two communication units 202 and 208 are trying to establish a communication link, wherein a first communication unit 202 operates on
10 a long delay link 204 and a second communication unit 208 operates on a short delay link 206, then to avoid a risk of losing first audio data packets, transmission 118 of audio data blocks is delayed 302 on the short delay link's site.

15

In operation a first Base Station (BS) 102 and a second BS 108 and a Call Processing Server (CPS) 106 are going through an initial call set-up phase 110. Eventually the CPS 106 sends out a Channel Grant
20 instruction 112 where the call request has been granted and a traffic channel and a Rendezvous Point (RP) router are allocated. The Channel Grant instruction 112 is sent to the involved Base Stations 102 and 108, which then join 114 the multicast group that forms a multicast
25 tree. When the multicast tree is created the second BS starts transmitting 118 the audio data blocks to the multicast tree. The step of transmitting 118 the audio data blocks is delayed 302 by a time, which is approximately equal to twice a difference between the
30 value of the one way propagation time on the long delay link 204 and one way propagation time on the short delay link 206. The step of transmitting 118 is delayed in a first speech item. A speech item is defined as a collection of voice frames from a Push To Talk (PTT)
35 request to a PTT release, where both PTT request and PTT

release is coming from the sourcing communication unit. Thus is defined as the voice frames that originates from one communication unit and which boundaries are when the user starts to speak by pressing PTT and stops speaking 5 by releasing PTT.

In one embodiment the one way propagation times on the short delay link 206 and on the long delay link 204 are predefined and provided by the first BS 102 and the 10 second BS 108. In this solution the CPS 106 maintains a table with these propagation times, which can be measured by the Base Stations and then updated in the table. The measuring of the propagation time can be performed even when the Base Stations are not involved 15 in a call.

In another embodiment the propagation times are measured by a network infrastructure. The measurements can be done by the CPS 106 or the Base Stations 102, 20 108, a Base Station Controller, a Rendezvous Point (RP) router 104 or other network devices. One method that can be used for such measuring is a pinging procedure.

Once the required value of the delay 302 is known 25 there are several possible implementations of introducing said delay.

In one embodiment said step of transmitting 118 of the audio data blocks is delayed 302 by delaying sending 30 the Grant Channel instruction to the second BS 108.

In another embodiment said step of transmitting 118 of the audio data blocks is delayed by buffering the audio data blocks in the second BS 108.

In yet another embodiment said step of transmitting 118 of the audio data blocks is delayed by buffering the audio data blocks in the RP router 104.

5 In yet another embodiment said step of transmitting 118 of the audio data blocks is delayed by buffering the audio data blocks in the CPS 106.

10 Alternatively said step of transmitting 118 of the audio data blocks is delayed by buffering the audio data blocks in the second communication unit 208.

15 In modern communication systems the communication units are mobile and adapted to change their geographical location while still maintaining the call.
When one of said communication units 202 or 208 changes its geographical location it can happen that it also switches to another Base Station. In such situation the propagation time of the link on which the new Base Station operates may differ from the previous one. By
20 measuring the propagation time, during the call, the delay 302 can be dynamically adjusted to the new conditions.

25 In addition to applying the delay 302 users of the communication units 202 and 208 are notified by said communication units that they operates on a connection with long propagation times, which cause long delays. This notification helps the user to apply a special conversation discipline. The network infrastructure
30 informs the communication units 202 and 208 that they operate on long propagation time connection and in turn the communication units informs their users in form of visual or audio signal.

In solutions, where the communication between the first communication unit 202 and the second communication unit 208 are secured by an end-to-end encryption said delaying 302 of the transmission of the 5 audio data blocks ensures that synchronization data blocks are not lost. In result it is not necessary to perform "late entry". The synchronization data blocks in end-to-end encryption replace corresponding amount of the audio data blocks at the beginning of data stream.

10

In one embodiment said first communication unit 202 and said second communication unit may operate in different communication systems.

15

It is worth to note that the solution can be applied to simplex calls as well as to duplex calls, to group calls and to calls using a direct set-up.

Claims

1. A method of establishing a communication between at least two communication units (202, 208) in a digital communication system (200), wherein a first communication unit (202) operates on a long delay link and a second communication unit (208) operates on a short delay link, **characterized in that** transmission (118) of audio data blocks is delayed (302) on the short delay link's site.

10

2. The method according to claim 1 comprising the steps:

- 15 a) initiating a call set-up phase (110) between a first Base Station (BS) (102) and a second BS (108) and a Call Processing Server (CPS) (106), wherein the first BS (102) operates on the long delay link and the second BS (108) operates on the short delay link;
- 20 b) sending by the CPS (106) a Channel Grant instruction (112) to the first BS (102) and to the second BS (108);
- 25 c) joining (114) by the first BS and the second BS a multicast group;
- d) creating a multicast tree;
- e) transmitting (118) the audio data blocks to the multicast tree.

30 3. The method according to claim 1 or claim 2, wherein a value of the delay (302) added on the short delay link is approximately equal to twice a difference between the value of the one way propagation time on the long delay link and one way propagation time on the short delay link.

4. The method according to claim 3, wherein the one way propagation times on the short delay link and on the long delay link are predefined and provided by the first BS (102) and the second BS (108).

5

5. The method according to claim 3, wherein the one way propagation times on the short delay link and on the long delay link are measured by a network infrastructure.

10

6. The method according to claim 5, wherein the one way propagation times on the short delay link and the long delay link are measured by the CPS (106).

15

7. The method according to any one of claims 2 to 6, wherein said step of transmitting (118) of the audio data blocks is delayed (302) by delaying sending the Grant Channel instruction to the second BS (108).

20

8. The method according to any one of claims 2 to 6, wherein said step of transmitting (118) of the audio data blocks is delayed by buffering the audio data blocks in the second BS (108).

25

9. The method according to any one of claims 2 to 6, wherein said step of transmitting (118) of the audio data blocks is delayed by buffering the audio data blocks in a Rendezvous Point (RP) router (104).

30

10. The method according to any one of claims 1 to 6, wherein said step of transmitting (118) of the audio data blocks is delayed by buffering the audio data blocks in the second communication unit (208).

11. The method according to any one of claims 1 to 6, wherein said step of transmitting (118) of the audio data blocks is delayed by buffering the audio data blocks in the CPS (106).

5

12. The method according to claim 5 or claim 6, wherein a pinging procedure is used for the measuring.

10 13. The method according to any one of claims 1 to 3 or claim 5 or claim 6, wherein the delay (302) dynamically varies, while any one of the communication units switch to another link with different one way propagation time.

15 14. The method according to any one of preceding claims, wherein the first communication unit (202) and the second communication unit (208) notify their users that they operate on a connection with a long delay.

20 15. The method according to claim 14 wherein for said notification an audio or visual signal is used.

25 16. The method according to any one of preceding claims, wherein the communication between the first communication unit (202) and the second communication unit (208) is a simplex communication.

17. The method according to any one of preceding claims, wherein the communication between the first communication unit (202) and the second communication unit (208) is a duplex communication.

30 35 18. The method according to any one of preceding claims, wherein the communication between the first communication unit (202) and the second communication unit (208) is secured by an end-to-end encryption.

19. The method according to claim 18, wherein
synchronization data blocks replace a corresponding
amount of the audio data blocks at a beginning of data
5 stream.

20. The method according to any one of preceding
claims, wherein the communication between the at least
two communication units is a call using a direct set-up
10 method.

21. The method according to any one of preceding
claims, wherein said step of transmitting (118) of the
audio data blocks is delayed in a first speech item.
15

22. The method according to any one of preceding
claims, wherein said first communication unit (202) and
said second communication unit (208) operate in
different communication systems.
20

23. A digital communication system (200) adapted to
operate according to the method defined in claims 1 to
22.

25 24. A communication unit adapted to operate according
to the method defined in claims 1 to 22.

25. The communication unit according to claim 23,
wherein the communication unit is a TETRA radio or an
30 ASTRO/APCO 25 radio or an IDEN radio, a GSM radio, a
GSM-R radio or any digital radio system utilizing a low
rate vocoder.

26. A method of establishing a communication between at
35 least two communication units in a digital communication

system substantially as hereinbefore described with reference to FIG. 1 and FIG. 2 of the accompanying drawings.

Abstract

5

A METHOD OF ESTABLISHING A COMMUNICATION LINK IN A
DIGITAL COMMUNICATION SYSTEM

A method of establishing a communication between at least two communication units (202, 208) in a digital communication system (200), wherein a first 10 communication unit (202) operates on a long delay link and a second communication unit (208) operates on a short delay link, wherein transmission (118) of audio data blocks is delayed (302) on the short delay link's site.

15

FIG. 3 to accompany the Abstract

1/3

PRIOR ART**FIG. 1**

2/3

200

FIG. 2

3/3

FIG. 3

PCT/EP2004/051690

b