ROBÓTICA DE COMPETICIÓN

(Siguelíneas y minisumo)

Rubén Espino San José

Javier Baliñas Rubén Espino Javier Isabel

antes de conenzar...

- Regla básica:
 - Todo es posible con Internet e iniciativa
- Una regla no escrita:
 - La ingeniería es "90% intuición, 10% ingeniería"
- Un consejo:
 - Basarse en el trabajo de los demás y evolucionarlo. Partir de cero implica invertir demasiado tiempo
- Para no desesperar:
 - La robótica no es una ciencia exacta, todo son relaciones de compromiso

OTRO DETALLE...

• Esto es un robot

• Esto no es un robot

• Este es mi gato, Batman

indice

- Hardware
- Mecánica
- Software
- Referencias bibliográficas

Harduare

- Motores
- Drivers de motores
- Baterías
- Sensores
 - de línea/suelo
 - de distancia
 - encoders
- Microcontrolador
- Comunicación inalámbrica

MOTORCS

www.pololu.com

- Velocidad
- Fuerza
- Tamaño
- Peso
- Tensión de alimentación
- Corriente que consume

DRIVERS DE MOTORES

- Tipo de transistores (bipolar, MOSFET...)
- Tensión de alimentación
- Tensión lógica de entrada
- Corriente máxima de salida en continua y en pico
- Frecuencia máxima de PWM
- Número de canales por driver

- PWM para controlar el motor con señal digital
- Aplicar una PWM de alta frecuencia equivale a aplicar el valor medio de señal de la PWM

- Baterías Lipo
- Alta capacidad de descarga
- Son peligrosas. No cortocircuitar ni golpear
- Celdas de 3,7V (llegan a 4,2V), no deben bajar de 3V
- Carga balanceada
- Relación de compromiso entre el peso de la batería (o peso total del robot) y la autonomía
 - 2200 mAh * 25 C = 55 A (en continua)
 - 2200 mAh * 50 C = 110 A (en pico)
 - 60 min / 25 C = 2 min 24 s (a corriente máxima en continua)
 - Ejemplo a 5 A: (2 min 24 s) * 55 A / 5 A = 26 min 24 s

sensores de Linea/suelo

• CNY70

• QRE1113

• QRE1114

SCASORCS DC DISTANCIA

• GP2Y0A21

• GP2Y0D340K

• Led + fototransistor

CODCRS

Ópticos

A B leads A

A leads B

• De efecto Hall

MICROCONTROLABOR

• Arduino

• STM32F0 - F4

• PIC / dsPIC

COMUNICACIÓN INGLÁMERICA

- Bluetooth HC-05
 - Configurable mediante comandos AT
 - Conectado por UART

necánsca

- Mecánica en un siguelíneas
- Mecánica en un minisumo

mecánzaaen un szauelineas

- Dimensiones del siguelíneas
- Peso y centro de masas
- Reductora de motores y diámetro de las ruedas
- Separación de sensores de línea
- Adherencia de las ruedas

mecánzaa en un szauelíneas

- Dimensiones del siguelíneas
 - Distancia entre ruedas
 - Relación de compromiso entre velocidad de respuesta y agarre en curva
 - Distancia entre el eje motriz y los sensores de línea

 Relación de compromiso entre capacidad de respuesta y anticipación a las curvas

mecánica en un siguelineas

Peso

- Demasiado pesado: mayor consumo, más lento, mayor inercia y peor respuesta
- Demasiado ligero: poco agarre en curvas
- Centro de masas
 - Demasiado adelantado: efecto péndulo en curvas
 - Demasiado atrasado: caballito en aceleraciones

mecánzaa en un Szauelineas

- Reductora de motores y diámetro de las ruedas
 - Mayor diámetro de rueda o menor reductora -> Menos fuerza y más velocidad
 - Menor diámetro de rueda o mayor reductora -> Más fuerza y menos velocidad

			6000 RPM	2 oz-in	5:1 HP 6V	5:1 HP 6V dual-shaft
6 V	high-power (HP) (same specs as 6V HPCB above)	1600 mA	3000 RPM	4 oz-in	10:1 HP 6V	10:1 HP 6V dual-shaft
			1000 RPM	9 oz-in	30:1 HP 6V	30:1 HP 6V dual-shaft
			625 RPM	15 oz-in	50:1 HP 6V	50:1 HP 6V dual-shaft
			400 RPM	22 oz-in	75:1 HP 6V	75:1 HP 6V dual-shaft
			320 RPM	30 oz-in	100:1 HP 6V	100:1 HP 6V dual-shaft
			200 RPM	40 oz-in	150:1 HP 6V	150:1 HP 6V dual-shaft
			140 RPM	50 oz-in	210:1 HP 6V	210:1 HP 6V dual-shaft
			120 RPM	60 oz-in	250:1 HP 6V	250:1 HP 6V dual-shaft
			100 RPM	70 oz-in	298:1 HP 6V	298:1 HP 6V dual-shaft
			32 RPM	125 oz-in	1000:1 HP 6V	1000:1 HP 6V dual-shaft

mecánzaa en un szauelineas

- Separación de sensores de línea
 - Depende de la altura de los sensores y la amplitud del haz del led

mecánzaa en un szauelineas

- Adherencia de las ruedas
 - Demasiado anchas o demasiados apoyos, hace perder adherencia
 - Cuanto más blandas, mayor agarre

mecánsea en un msassumo

- Distribución de motores
- Dimensiones del minisumo
- Peso y centro de masas
- Reductora de motores y diámetro de las ruedas
- Colocación de sensores de distancia
- Colocación de sensores de suelo
- Adherencia de las ruedas
- Inclinación de la pala/cuchilla

- Distribución de motores
 - ¿2 o 4 motores?

- Dimensiones del minisumo
 - Distancia entre ruedas
 - Pocas opciones... Robot de 10 cm de ancho máximo
 - Distancia entre el eje motriz y la pala/cuchilla
 - Pocas opciones... Robot de 10 cm de largo máximo

- Peso
 - El máximo posible, 500 gr
- Centro de masas
 - Cuanto más bajo, mejor
 - Hacia las ruedas para ganar agarre
 - Hacia la cuña para pasarla por debajo del contrario

mecánsea en un msassumo

- Reductora de motores y diámetro de las ruedas
 - Mayor diámetro de rueda o menor reductora -> Menos fuerza y más velocidad
 - Menor diámetro de rueda o mayor reductora -> Más fuerza y menos velocidad

Speed (rpm)	Voltage							
Gear ratio	5	6	7.4	11.1	14.8	18.5	22.2	
11.1 :1	709	850	1049	1573	2097	2622	3146	
22.2 :1	354	425	524	786	1049	1311	1573	
33.3 :1	236	283	350	524	699	874	1049	
50 :1	157	189	233	349	466	582	698	
83.3 :1	94	113	140	210	279	349	419	
100 :1	79	94	116	175	233	291	349	
200 :1	39	47	58	87	116	146	175	
300 :1	26	31	39	58	78	97	116	
600 :1	13	16	19	29	39	49	58	

Torque (kg-cm)			V	oltage			
Gear ratio	5	6	7.4	11.1	14.8	18.5	22.2
11.1 :1	0.35	0.42	0.52	0.77	1.03	1.29	1.55
22.2 :1	0.70	0.84	1.03	1.55	2.07	2.58	3.10
33.3 :1	1.05	1.26	1.55	2.32	3.10	3.87	4.65
50 :1	1.57	1.89	2.33	3.49	4.65	5.82	6.98
83.3 :1	2.62	3.14	3.88	5.81	7.75	9.69	11.63
100 :1	3.14	3.77	4.65	6.98	9.30	11.63	13.96
200 :1	6.29	7.54	9.30	13.96	18.61	23.26	27.91
300 :1	9.43	11.32	13.96	20.93	27.91	34.89	41.87
600 :1	18.86	22.63	27.91	41.87	55.82	69.78	83.74

- Colocación de sensores de distancia
 - Cuanto más espacio cubran, más posibilidades habrá de ver al oponente

- Colocación de sensores de suelo
 - Dos delante para controlar el borde al avanzar
 - Uno o dos detrás opcionales

- Adherencia de las ruedas
 - Demasiado anchas o demasiados apoyos, hace perder adherencia
 - Cuanto más blandas, mayor agarre

mecánsea en un msassumo

- Inclinación de la pala/cuchilla
 - Demasiado inclinada, puede dañar el tatami
 - Poco inclinada, fácil de evadir. El contrario pasaría su pala por debajo de nuestro robot

50FTUGRE

- Algoritmos para seguimiento de líneas o paredes
- ¿Qué es un PID?
- Aplicaciones prácticas de un PID

aLaorimos para seaummento de Lineas o paredes

- PID
- Control borroso
- Filtros de partículas
- Algoritmos genéticos

•

doué es un prop

- Proporcional
 - Detecta el error de posición
- Integral
 - Detecta el error acumulado
- Derivativo
 - Detecta la variación del error de posición

aplicación práctica de Uni Pid

- Proporcional = posición posición_central
- Integral = integral + proporcional
 - Saturar integral para no hacer inestable el algoritmo
- Derivativo = proporcional proporcional_anterior
 - Actualizar proporcional_anterior = proporcional
- Error = kp * proporcional + ki * integral + kd * derivativo

REFERENCIAS

• GitHub

- Javier Baliñas: supernudo
 - TFC
- Rubén Espino: Resaj
- Javier Isabel: JavierIH
- Puma Pride: puma-pride
- EuRobotics Engineering: eurobotics

- Facebook
 - @pumaprideteam
- Twitter
 - Javier Baliñas: @supernudo
 - Rubén Espino: @RugidoDePuma
 - Javier Isabel: @JavierIH

RESUMIEMBO EM 4 IES...

- Para hacer un robot de competición, hace falta:
 - Internet
 - Investigación
 - Intuición
 - Iniciativa

GRACIAS POR VUESTRA ATENCIÓN ©

