Exploiting Local and Global Patch Rarities for Saliency Detection

Ali Borji USC, Laurent Itti USC CVPR 2012

Bora Çelikkale

General Idea

Saliency Model based on local and global salient points

Feature Integration Theory (1980 by Anne Treisman and Garry Gelade)

When perceiving a stimuli:

Features (color, intensity..) are registered early, automatically and in parallel,

Objects are identified seperately at a later stage of processing

Guided Search Model (1989 by Wolfe JM, Cave KR, Franzel SL)

Information from top-down and bottom-up processing of the stimulus is used to create a ranking of items in order of their attentional priority

Saliency-Based Visual Attention for Rapid Scene Analysis

Compute saliency for simple features: color, intensity, orientation

Laurent Itti, Christof Koch, Ernst Niebur PAMI 1998

Motion feature for saliency (2003)

Texture contrast (2002), Curvedness (2009)

Probabilistic Models

Graph Based Visual Saliency (Torralba – 2006)

Graph Algorithms and a dissimilarity measure

Saliency Using Natural Statistics (SUN) (Zhang – 2008)

Combine top-down and bottom-up info for real world object search

Saliency as Maximizing Classification Accuracy (Gao & Vasconcelos – 2003)

Measure mutual information between features

Saliency in Frequency Domain

Spectral Residual Approach (Hou & Zhang – 2007)

Relating extracted spectral residual features in the spectral domain

Multiresolution Spatiotemporal Saliency Detection Model (Gou– 2010)

Incorporating Phase spectrum of the Quaternion Fourier Transform (PQFT)

Image Representation

Dictionary of 200 basis functions – from natural images

$$\boldsymbol{\alpha}^*(\mathbf{x}, \mathbf{D}) = \operatorname*{arg\,min}_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} ||\mathbf{x} - \mathbf{D}\boldsymbol{\alpha}||_2^2 + \lambda_1 ||\boldsymbol{\alpha}||_1$$

Local Saliency

$$S_l^c(\mathbf{p}_i) = \frac{1}{L} \sum_{j=1}^{L} W_{ij}^{-1} D_{ij}^c$$

Avarage weighted dissimilarity

W_{ij}: Euclidean distance of patches D_{ii}: Euclidean distance of coeff vectors

Further patches have less influence

Global Saliency

$$S_g^c(\mathbf{p}_i) = P(\mathbf{p}_i)^{-1} = \left(\prod_{j=1}^n P(\alpha_{ij})\right)^{-1}$$

Inverse of probability of patch over scene

 α_{ij} : coeff j of patch i

 $P(\alpha_{ij})$: probability density function

Combined Saliency

AUC (Area Under Curve) Metric

Positive Set: human selected saliency points

Negative Set: uniform random chosen points

shuffled AUC: all human fixations – positive set

Saliency Map: binary classifier

ROC Curve: threshold over map and plot true positive rate vs false positive rate

toran i	AIM	GBVS	SRM	ICL	Itti	Judd	PQFT	SDSR	SUN	Surprise	Local	Global	LG	Gauss	IO
Dataset						XX. (1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	\$60.				S_l	S_g	S_{lg}		
TORONTO	0.67	0.647	0.685	0.691	0.61	0.68	0.657	0.687	0.66	0.605	0.691	0.69	0.696	0.50	0.73
Optimal σ	0.01	0.02	0.05	0.01	0.07	0.03	0.04	0.05	0.03	0.06	0.04	0.03	0.03	-	-
MIT	0.664	0.637	0.65	0.666	0.61	0.658	0.65	0.646	0.649	0.62	0.653	0.676	0.678	0.50	0.75
Optimal σ	0.02	0.02	0.05	0.03	0.06	0.02	0.04	0.05	0.04	0.05	0.04	0.04	0.03	_	_
KOOTSTRA	0.575	0.563	0.576	0.589	0.57	0.587	0.57	0.59	0.55	0.566	0.591	0.578	0.593	0.50	0.62
Optimal σ	0.01	0.01	0.04	0.01	0.07	0.02	0.03	0.03	0.02	0.07	0.03	0.02	0.03	-	-
NUSEF	0.623	0.595	0.62	0.614	0.56	0.61	0.60	0.60	0.60	0.58	0.583	0.627	0.632	0.49	0.66
Optimal σ	0.04	0.01	0.06	0.03	0.09	0.03	0.05	0.04	0.04	0.06	0.05	0.04	0.05	2	-

Dataset		RGB			Lab		RGB + Lab			
	S_l	S_g	S_{lg}	S_l	S_g	S_{lg}	S_l	S_g	S_{lg}	
TORONTO	0.646	0.647	0.653	0.670	0.660	0.660	0.678	0.668	0.683	
MIT	0.627	0.639	0.640	0.646	0.644	0.651	0.658	0.663	0.667	
KOOTSTRA	0.574	0.572	0.578	0.572	0.555	0.570	0.589	0.573	0.591	
NUSEF	0.599	0.610	0.610	0.556	0.596	0.592	0.569	0.614	0.616	

Thank You