Sparse Computing, Databases, and Semirings Birds of a feather flock together

Altan Haan

UC Berkeley

April 24, 2024

Outline

- What is sparsity?
- 2 One algebra to rule them all
- Optimization
- 4 Where do we go next?

Table of Contents

- What is sparsity?
- One algebra to rule them all
- Optimization
- 4 Where do we go next?

Examples of sparsity

Complete graph on 12 vertices, not sparse!

https://commons.wikimedia.org/ wiki/File:11-simplex_graph.svg

Examples of sparsity

https://sparse.tamu.edu/Norris/torso1

Examples of sparsity

name: char[32]	salary: uint32
bob	80000
alice	85000

	0	1		80000		85000		4294967296
а :	0	0	0		0	0	0	0
alice :	0	0	0	0	0	1	0	0
bob	0	0	0	1	0	0	0	0
: z z	0	0	0	0	0	0	0	0

Graph: R(src, dst) or adjacency matrix A. Find all pairs of nodes reachable via paths of length 3.

Graph: R(src, dst) or adjacency matrix A. Find all pairs of nodes reachable via paths of length 3.

relabel:
$$R_1(\mathrm{src},X_1), R_2(X_1,X_2), R_3(X_2,\mathrm{dst}),$$

$$Q = \prod_{\mathrm{src.dst}} R_1 \bowtie R_2 \bowtie R_3.$$

Graph: R(src, dst) or adjacency matrix A. Find all pairs of nodes reachable via paths of length 3.

relabel:
$$R_1(\operatorname{src}, X_1), R_2(X_1, X_2), R_3(X_2, \operatorname{dst}),$$

$$Q = \prod R_1 \bowtie R_2 \bowtie R_3.$$

Using matrix A:

$$(A^2)_{ij} = \sum_k A_{ik} A_{kj} = \#$$
 of ways i can reach j in 2 hops

$$Q_{i\ell} = (A^3)_{ij} = \sum_{j} (A^2)_{ij} A_{j\ell} = \sum_{k,j} A_{ik} A_{kj} A_{j\ell}.$$

Find min cost of all paths of length (exactly) 3 between pairs of nodes.

Edge weights: $R(\operatorname{src},\operatorname{dst},W)$, or $A_{ij}\in\mathbb{R}.$

Find min cost of all paths of length (exactly) 3 between pairs of nodes.

Edge weights: $R(\operatorname{src},\operatorname{dst},W)$, or $A_{ij}\in\mathbb{R}.$

$$Q(\mathsf{src},\mathsf{dst},W) = \gamma_{\{\mathsf{src},\mathsf{dst}\},\min(W_1 + W_2 + W_3)}(R_1 \bowtie R_2 \bowtie R_3).$$

Find min cost of all paths of length (exactly) 3 between pairs of nodes.

Edge weights: $R(\operatorname{src},\operatorname{dst},W)$, or $A_{ij}\in\mathbb{R}.$

$$Q(\mathsf{src},\mathsf{dst},W) = \gamma_{\{\mathsf{src},\mathsf{dst}\},\min(W_1 + W_2 + W_3)}(R_1 \bowtie R_2 \bowtie R_3).$$

With A,

$$Q_{ij} = \min_{j} \left(\min_{k} A_{ik} + A_{kj} \right) + A_{j\ell} = \min_{j,k} A_{ik} + A_{kj} + A_{j\ell}.$$

+ distributes over min.

Suspicious...

Table of Contents

- 1 What is sparsity?
- 2 One algebra to rule them all
- Optimization
- 4 Where do we go next?

Definition

A semiring is a tuple $(S, +, \cdot, 0, 1)$ where

- \bullet 0 is the identity for +,
- ullet 1 is the identity for \cdot ,
- ullet 0 is an annihilator for \cdot ,
- ullet + and \cdot are associative, and + is commutative,
- $\bullet \ a \cdot (b+c) = a \cdot b + a \cdot c,$
- $(b+c) \cdot a = b \cdot a + c \cdot a.$

Definition

A semiring is a tuple $(S, +, \cdot, 0, 1)$ where

- 0 is the identity for +,
- \bullet 1 is the identity for \cdot ,
- 0 is an annihilator for \cdot ,
- ullet + and \cdot are associative, and + is commutative,
- $\bullet \ a \cdot (b+c) = a \cdot b + a \cdot c,$
- $\bullet (b+c) \cdot a = b \cdot a + c \cdot a.$

Examples

- $(\mathbb{B}, \vee, \wedge, \perp, \top)$,
- $(\mathbb{N}, +, \cdot, 0, 1)$,
- $(\mathbb{R}, \min, +, \infty, 0)$.

Definition

A schema Γ is a product of sets $A_1 \times \cdots \times A_n$. Each A_i is an attribute.

Definition

An S-relation is a function $R: \Gamma \to S$ with finite support, where S is a semiring. The support of R is the set $\{\mathbf{a} \in \Gamma \mid R(\mathbf{a}) \neq 0\}$.

Definition

A schema Γ is a product of sets $A_1 \times \cdots \times A_n$. Each A_i is an attribute.

Definition

An S-relation is a function $R: \Gamma \to S$ with finite support, where S is a semiring. The support of R is the set $\{\mathbf{a} \in \Gamma \mid R(\mathbf{a}) \neq 0\}$.

Examples

- B-relations: database tables under set semantics,
- N-relations: ... bag semantics,
- Trop⁺-relations: shortest paths,
- ullet a tensor $T \in \mathbb{R}^{d_1 \times \cdots \times d_n} \cong T : [d_1] \times \cdots \times [d_n] \to \mathbb{R}$.

S-relations were introduced by [GKT07] for provenance tracking.

S-relational algebra

Equijoin.
$$\Gamma(R_1) = \mathbf{A} \times \mathbf{A}_1$$
, $\Gamma(R_2) = \mathbf{A} \times \mathbf{A}_2$.

$$\llbracket R_1 \bowtie R_2 \rrbracket (\mathbf{a}, \mathbf{a}_1, \mathbf{a}_2) = R_1(\mathbf{a}, \mathbf{a}_1) \otimes R_2(\mathbf{a}, \mathbf{a}_2).$$

Union. Just entry-wise addition.

Projection. $\Gamma(R) = \mathbf{A} \times \mathbf{A}'$.

$$\llbracket \prod_{\mathbf{A}'} R \rrbracket(\mathbf{a}') = \bigoplus_{\mathbf{a} \in \mathbf{A}} R(\mathbf{a}, \mathbf{a}').$$

S-relational algebra

Equijoin.
$$\Gamma(R_1) = \mathbf{A} \times \mathbf{A}_1$$
, $\Gamma(R_2) = \mathbf{A} \times \mathbf{A}_2$.

$$\llbracket R_1 \bowtie R_2 \rrbracket (\mathbf{a}, \mathbf{a}_1, \mathbf{a}_2) = R_1(\mathbf{a}, \mathbf{a}_1) \otimes R_2(\mathbf{a}, \mathbf{a}_2).$$

Union. Just entry-wise addition.

Projection. $\Gamma(R) = \mathbf{A} \times \mathbf{A}'$.

$$\llbracket \prod_{\mathbf{A}'} R \rrbracket(\mathbf{a}') = \bigoplus_{\mathbf{a} \in \mathbf{A}} R(\mathbf{a}, \mathbf{a}').$$

This is well-defined because R has finite support!

Brief note on datalog over semirings

What about datalog over semirings? Relevant for iterative computations: shortest paths, BFS, betweenness centrality, PageRank, eigensolvers, ...

We need to figure out:

- Some notion of (partial) order?
- Monotonicity with respect to this order?
- Infinite Herbrand universe, how to prove termination?
- Generalization of subtraction? if we want semi-naïve.

Brief note on datalog over semirings

See the datalog° paper by Mahmoud and others [AKNP+22].

Basic takeaways:

- Separate partial order from semiring natural order: $a \sqsubseteq b \not\equiv \exists c. \ a \oplus c = b$,
- ullet Be careful about $oldsymbol{\perp}$ in poset vs 0 in semiring,
- Semiring needs certain algebraic properties (stability) for convergence,
- Semi-naïve needs + to be idempotent, poset must form complete distributive lattice.

Table of Contents

- What is sparsity?
- One algebra to rule them all
- Optimization
- 4 Where do we go next?

Approaches to optimization

Traditionally, (DB) queries and tensor programs are optimized differently.

Query optimization. High-level, fixed set of operators e.g. σ , \bowtie , \prod . E-graphs good! Opt's include: physical operator choice (nested loop, hash, merge); join reordering; aggregate push-down. Cost estimation is sophisticated. See [Gra95].

Tensor optimization. Lower-level, nested loops over variables. Variables are harder to handle, not impossible but different techniques like polyhedral analysis show up.

Factorization - thinking in terms of variables

Χ	у	Z
1	2	3
1	3	4
1	3	5
2	1	1

Table: Listing representation of R(x, y, z).

Factorization - thinking in terms of variables

Χ	у	z
1	2	3
1	3	4
1	3	5
2	1	1

Table: Listing representation of R(x, y, z).

Factorization - thinking in terms of variables

As sets,

$$R = \{1\} \times (\{2\} \times \{3\} \\ \cup \{3\} \times (\{4\} \\ \cup \{5\})) \\ \cup \{2\} \times \{1\} \times \{1\}.$$

Distributivity again! \times distributes over \cup .

Factorization

Factorization is not new in sparse computing.

- adjacency list
- compressed sparse row/column (CSR/CSC) format
- \bullet ELL format (row \to fixed # of nonzero cols) bounded degree graph

Assume M=A=B, but this query is valid in general.

$$C = \sum_{i,j,k} M(i,j) \cdot A(j,k) \cdot B(i,k).$$

Typical DB: binary join plan, e.g.

$$C = \mathsf{COUNT}\ (M \bowtie A) \bowtie B.$$

Assume M=A=B, but this query is valid in general.

$$C = \sum_{i,j,k} M(i,j) \cdot A(j,k) \cdot B(i,k).$$

Typical DB: binary join plan, e.g.

$$C = \mathsf{COUNT}\ (M \bowtie A) \bowtie B.$$

All binary plans take worst-case $\Omega(N^2)$ time, where N is the # of edges.

Exercise: prove that $C = O(N^{1.5})$.

What if we tried to write dense tensor algebra code? C = 0

Now let's try to make it sparse.

Intuition: the loop body expression is only nonzero when all inputs have values for the given i,j,k.

Now let's try to make it sparse.

Intuition: the loop body expression is only nonzero when all inputs have values for the given i,j,k.

Important: if $i_0 \notin M.i \cap B.i$, then don't iterate over any tuples $(i_0, j, k)!$ M.j and B.k depend on the current value of i.

```
# M: i -> j -> value
# A: j -> k -> value
# B: i -> k -> value
C = 0
for i in M:
    M_j = M[i]; B_k = B[i]?
    for j in M_j:
        A_k = A[j]?
        for k in B_k:
        A_k[k]?
        C += M[i][j] * A[j][k] * B[i][k]
```

```
# M: i -> j -> value
# A: j -> k -> value
# B: i -> k -> value
C = 0
for i in M:
    M_j = M[i]; B_k = B[i]?
    for j in M_j:
        A_k = A[j]?
    for k in B_k:
        A_k[k]?
        C += M[i][j] * A[j][k] * B[i][k]
```

If we make sure to iterate over the smaller set in every intersection, we obtain the worst-case optimal runtime $O(N^{1.5})$. This is the Generic Join algorithm [NRR13].

Lots of exciting research in last decade from DB theory folks:

- Factorized Database (FDB) research: Dan Olteanu's group [OZ12]
- Functional Aggregate Queries (FAQ): RelationalAl folks [KNR23]

Table of Contents

- 1 What is sparsity?
- 2 One algebra to rule them all
- Optimization
- Where do we go next?

Where do we go next?

In no particular order,

- Bring high-level query planning and low-level loop optimization closer together. Build a unified optimizer. See Free Join [WWS23], SQDLite [SSS23] for initial steps.
- Figure out how to efficiently **parallelize** factorized joins. Build/exploit factorized statistics? Fine-grained parallelism? Need to handle skew.
- Support more "exotic" tensor programs. Allow affine arithmetic on variables. How does this affect optimality guarantees? How do we optimize this?

Thank you!

Questions?

References I

- Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy Wang, Convergence of datalog over (pre-) semirings, Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems (New York, NY, USA), PODS '22, Association for Computing Machinery, 2022, p. 105–117.
- Todd J. Green, Grigoris Karvounarakis, and Val Tannen, *Provenance semirings*, Proceedings of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (New York, NY, USA), PODS '07, Association for Computing Machinery, 2007, p. 31–40.
- Goetz Graefe, *The cascades framework for query optimization.*, IEEE Data(base) Engineering Bulletin **18** (1995), 19–29.
- Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra, Faq: Questions asked frequently, 2023.

References II

- Hung Q. Ngo, Christopher Re, and Atri Rudra, *Skew strikes back:* New developments in the theory of join algorithms, 2013.
- Dan Olteanu and Jakub Závodný, Factorised representations of query results: size bounds and readability, Proceedings of the 15th International Conference on Database Theory (New York, NY, USA), ICDT '12, Association for Computing Machinery, 2012, p. 285–298.
- Maximilian Schleich, Amir Shaikhha, and Dan Suciu, *Optimizing tensor programs on flexible storage*, Proc. ACM Manag. Data **1** (2023), no. 1.
- Yisu Remy Wang, Max Willsey, and Dan Suciu, Free join: Unifying worst-case optimal and traditional joins, Proc. ACM Manag. Data 1 (2023), no. 2.