krailabsp

October 16, 2023

```
[]:
    \#\#\mathrm{Q1} A Correlation Matrix 1st One
[]: import numpy as np
     import pandas as pd
     #1A
     df={
         "array1": [15,17,22,16,45,52,62,77,11,98],
         "array2": [11,15,20,31,48,51,71,89,91,100],
         "array3": [104,100,89,81,76,66,69,43,17,11]
     }
     data = pd.DataFrame(df)
     data.corr()
     #print(data.corr);
[]:
               array1
                         array2
                                    array3
     array1 1.000000 0.696285 -0.567446
     array2 0.696285 1.000000 -0.949262
     array3 -0.567446 -0.949262 1.000000
[]: import numpy as np
     import pandas as pd
     # Q.1 B) Plot the Correlation
     data = pd.read_csv("/content/iris.csv")
     print(data)
     x = data.drop('variety',axis=1)
     corr_mat = x.corr()
     import seaborn as sns
     sns.heatmap(corr_mat,annot=True,cmap='coolwarm',linewidths=5)
         sepal.length sepal.width petal.length petal.width
                                                                   variety
                  5.1
                                3.5
                                              1.4
                                                            0.2
    0
                                                                    Setosa
    1
                  4.9
                                3.0
                                              1.4
                                                            0.2
                                                                    Setosa
                                              1.3
                  4.7
                                3.2
                                                            0.2
    2
                                                                    Setosa
```

3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
	•••	•••		•••	
145	6.7	3.0	5.2	2.3	Virginica
146	6.3	2.5	5.0	1.9	Virginica
147	6.5	3.0	5.2	2.0	Virginica
148	6.2	3.4	5.4	2.3	Virginica
149	5.9	3.0	5.1	1.8	Virginica

[150 rows x 5 columns]

[]: <Axes: >

$\#\#\mathrm{Q2}$ Linear Regression

```
[4]: import pandas as pd
    #import os os.getcwd()
    df=pd.read_csv('/content/Salary_Data.csv')
    df.shape #gives count of no of rows,columns
    df.columns #gives names of columns
    x=df['YearsExperience'].values
    y=df['Salary'].values
```

```
import matplotlib.pyplot as plt
plt.xlabel('Experience')
plt.ylabel('Salary')
plt.scatter(x,y)

from sklearn.linear_model import LinearRegression
obj=LinearRegression() #it gives object of class LR
x=x.reshape(-1,1)
x
obj.fit(x,y) #it provides inp and op columns to model for fitting of data
obj.predict(x) #it predicts
y_pred=obj.predict(x)
print(y_pred)
```

```
[ 36187.15875227 38077.15121656 39967.14368085 44692.12484158 46582.11730587 53197.09093089 54142.08716303 56032.07962732 56032.07962732 60757.06078805 62647.05325234 63592.04948449 63592.04948449 64537.04571663 68317.03064522 72097.0155738 73987.00803809 75877.00050238 81546.97789525 82491.9741274 90051.94398456 92886.932681 100446.90253816 103281.8912346 108006.87239533 110841.86109176 115566.84225249 116511.83848464 123126.81210966 125016.80457395]
```


##Q3 Logestic Regression

```
[11]: import pandas as pd
      df=pd.read_csv('/content/banknotes.csv')
      import seaborn as sns
      sns.pairplot(df,hue='Class')
      x=df.drop('Class',axis=1)
      y=df['Class']
      x.shape
      from sklearn.model_selection import train_test_split
      x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.
       ⇔25)
      x_train.head()
      x_train.shape
      from sklearn.linear_model import LogisticRegression
      classifier=LogisticRegression()
      classifier.fit(x_train,y_train)
      x_test.shape
      y_pred=classifier.predict(x_test)
      set(y)
      y.value_counts()
      result=pd.DataFrame({
      'Actual':y_test,
      'Predicted':y_pred
      })
      result
```

[11]:		Actual	Predicted
	1023	1	1
	642	0	0
	1196	1	1
	31	0	0
	253	0	0
		•••	•••
	866	1	1
	361	0	0
	703	0	0

```
328 0 0
530 0 0
```

[343 rows x 2 columns]

$\#\#\mathrm{Q4}$ Random Forest

```
[13]: import pandas as pd
  #dataimport

df=pd.read_csv('/content/Social_Network_Ads.csv')

df.shape # count = no of rows and colms
  #import

x=df[['Age','EstimatedSalary']]
y=df['Purchased']
```

```
import seaborn as sns
sns.jointplot(x='Age',y='EstimatedSalary',hue='Purchased',data=df)
sns.countplot(x=y)
y.value_counts()
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,random_state=0,test_size=0.
→25)
x_train.shape
x_test.shape
from sklearn.ensemble import RandomForestClassifier
obj=RandomForestClassifier(random_state=0,n_estimators=10)
#Train the algorithm with data
obj.fit(x_train,y_train)
#Predications
y_pred=obj.predict(x_test)
#Combine the data
result=pd.DataFrame({
    'Actual':y_test,
    'Predicted':y_pred
})
result
new1=[[34,123000]]
new2=[[25,48900]]
obj.predict(new1)
obj.predict(new2)
from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
obj.estimators_[0]
plt.figure(figsize=(16,12))
plot_tree(obj.estimators_[8],fontsize=7,feature_names=['age','sal'],
         class_names=['No','Yes'],filled=True,rounded=True);
obj.feature_importances_
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

[13]: array([0.48777687, 0.51222313])

$\#\#\mathrm{Q5}\ \mathrm{KNN}$

```
[14]: # Import necessary libraries
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score

data = pd.read_csv("/content/banknotes.csv")
X=data.drop('Class',axis=1)
y=data['Class']

# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,u_random_state=42)

# Initialize the KNN classifier
```

```
k = 3  # You can change the value of k
knn = KNeighborsClassifier(n_neighbors=k)

# Train the KNN classifier on the training data
knn.fit(X_train, y_train)

# Make predictions on the test data
y_pred = knn.predict(X_test)

# Calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy: {accuracy * 100:.2f}%')
```

Accuracy: 100.00%