	5/26/03)
0	Let \hat{H} be Hermitian ($\langle m \hat{H} n\rangle = \langle n \hat{H}^{\dagger} m\rangle = \langle n H m\rangle$)	
	and 10> a normalized (<010>=1) vector.	
	Then the Lanczos recursion is defined as follows:	
	$ (b_1 11) = (\hat{H} - a_0) 10 \rangle$	(1)
	residual	
	$b_{n+1} n+1\rangle = (\hat{H}-a_n) n\rangle - b_n n-1\rangle \qquad (n=1,2,,N-1)$	(2)
	residual tridiagonalizing.	
	constrained force	
, v	where	
	$Q_n \equiv \langle n \hat{H} n\rangle \qquad (n=0,1,,N)$	(3)
	is the diagonal Hamiltonian element, and	
	$b_n \equiv \langle n - 11 \hat{H} n \rangle \qquad (n = 1, 2,, N)$	(4)
	is determined to normalized In> each time a new	
	In) is obtained by Eq.(2). The arbitrary phase in	
	determined such that by is real.	
	0 1 2 n-1 n	
	0 a ₀ b ₁	

0 a_0 b_1 1 b_1 a_1 b_2 2 b_2 a_2 b_3 ...

N-1 b_{n-1} a_{n-1} b_n b_n a_n

(21 x (1):

$$b_1 \langle 211 \rangle = \langle 21\hat{H}10 \rangle - a_0 \langle 210 \rangle$$

$$0$$

$$0$$

$$0$$

$$0$$

(Inductive Step)

Assume the inductive hypothesis (7) \$ (8) for n.

Now consider n+1.

 $(n-1) \times (2)$

$$b_{n+1} < n-1 \mid n+1 > = \langle n-1 \mid \widehat{H} \mid n > - \alpha_n < n-1 \mid n > - b_n < n-1 \mid n-1 > = 0$$

$$\therefore \langle n-1 \mid n+1 \rangle = 0$$

 $\langle n | \times (z)$

$$b_{n+1} \langle n|n+1 \rangle = \langle n|\hat{H}|n \rangle - a_n \langle n|n \rangle - b_n \langle n|n-1 \rangle = 0$$

$$\therefore \langle n|n+1 \rangle = 0$$

 $\langle n+11 \times (2)$

$$b_{m+1} < n+1 | n+1 > = < n+1 | \widehat{H} | n > - Q_n < n+1 | n > - b_n < n+1 | n-1 >$$

$$= b_{m+1}^* = b_{m+1}^* = b_{m+1}^*$$

$$(n+1) | n+1 > = 1$$

 $\langle m-8| \times (2) \quad (822)$

$$b_{n+1} < n-S(n+1) = (n-S(H)n) - a_n < n-S(n) - b_n < n-S(n-1) = 0$$

 $a_n < n-S(n+1) = 0$ by the inductive $a_n < n-S(n-1) = 0$
 $a_n < n-S(n+1) = 0$ by the inductive $a_n < n-S(n-1) = 0$

Let n = n+1-8 (822) in Eq.(2):

$$b_{n+2-8} | n+2-8 \rangle = (\hat{H} - Q_{n+1-8}) | n+1-8 \rangle - b_{n+1-8} | n-8 \rangle$$

$$\langle n+1| \times (40) \rangle$$

$$b_{n+2-8} < n+1!n+2-8 > = < n+1! \hat{H} | n+1-8 > - Q_{n+1-8} < n+1!n+1-8 > - b_{n+1-8} < n+1!n-8 >$$

$$\therefore < n+1-8! \hat{H} | n+1 > = \emptyset \quad \text{for } \forall 8 \ge 2$$

Thus the inductive hypotheses, (7) & (8), one T for n+1.

The propositions, (7) & (8), one T for Yn.

0	(Lanczos algorithm)
	Given 10> (<010> = 1)
	$b_0 = 0$, $1-1 > = 0$ // Non-existance of constrained force @ $j = 0$
	for $j = 0$ to $N-1$
	$a_j \leftarrow \langle j \hat{H} j \rangle$
	$r \leftarrow (\hat{H}-a_j) j\rangle - b_j j-1\rangle$
	bj+1 ← 11r11
	$ j+1\rangle \leftarrow r/b_{j+1}$
<u> 16 00 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</u>	endfor
	$a_N \leftarrow \langle ni\hat{H}in \rangle$
-	