

Matemática Discreta Solución Práctico 5

Licenciatura en Informática Ingeniería en Informática

Se proponen soluciones de ejemplo para algunos ejercicios del práctico. Las soluciones presentadas no son las únicas posibles. Pueden existir otras soluciones igualmente correctas.

Ejercicio 1

Considere la siguiente estructura \mathcal{M} con tipo de similaridad < 1,2 ; 2,2,1 ; 3 >:

$$\mathcal{M} = \langle N ; Par, Mayor ; sum, prod, cuad ; 0,1,2 \rangle$$

- N es el conjunto de los números naturales.
- ♦ Par = { $x \in N \mid x$ es múltiplo de 2 } es la relación "ser par".
- ♦ Mayor = $\{(x,y) \in NxN \mid x > y\}$ es la relación "mayor".
- sum : NxN \rightarrow N / sum (x,y) = x + y es la función suma de naturales.
- prod : NxN \rightarrow N / prod (x,y) = x * y es la función producto de naturales.
- cuad : $N \rightarrow N$ / cuad (x) = x^2 es la función cuadrado de un número natural.

Se define el siguiente alfabeto de símbolos para el tipo de similaridad presentado:

- ♦ Símbolos de Relación: P (unario), M (binario) para las relaciones Par y Mayor.
- ♦ Símbolos de Función: s (binario), p (binario), c (unario) para las funciones sum, prod y cuad.
- ♦ Símbolos de Constante: c₀, c₁, c₂ para las constantes 0, 1 y 2.

Utilizando solamente los símbolos presentados, traduzca a fórmulas bien formadas de FORM las siguientes afirmaciones sobre el universo de discurso dado por la estructura \mathcal{M} .

a) Existe algún natural que no es par.

Solución:

$$\exists x \neg P(x)$$

b) No todos los naturales son pares.

Solución:

$$\neg \forall x P(x)$$

c) No existe ningún natural que sea par e impar a la vez.

Solución:

$$\neg \exists x (P(x) \land \neg P(x))$$

d) Hay por lo menos dos naturales tales que su suma es mayor que cero.

Solución:

$$\exists x \exists y M(s(x,y), c_0)$$

e) Existen dos naturales tales que su suma es mayor que su producto.

Solución:

$$\exists x \exists y M(s(x,y), p(x,y))$$

f) No existe ningún natural impar tal que su cuadrado sea par.

Solución:

$$\neg \exists x (\neg P(x) \land P(c(x)))$$

g) El cuadrado de todo natural no es mayor que el producto del natural consigo mismo.

Solución:

$$\forall x \neg M(c(x), p(x,x))$$

h) Todo natural mayor que 0 cumple que su cuadrado también lo es.

Solución:

$$\forall x (M(x, c_0) \rightarrow M(c(x), c_0))$$

i) Todo natural mayor que 1 cumple que su cuadrado es mayor que él.

Solución:

$$\forall x (M(x, c_1) \rightarrow M(c(x), x))$$

j) La suma de dos naturales pares cualesquiera también es par.

Solución:

$$\forall x \forall y (P(x) \land P(y) \rightarrow P(s(x,y)))$$

k) Todo par de naturales impares cumple que su producto es par.

Solución:

$$\forall x \forall y (\neg P(x) \land \neg P(y) \rightarrow P(p(x,y)))$$

I) Si el cuadrado de un natural cualquiera es par y mayor que cero, entonces el natural también es par y mayor que cero.

Solución:

$$\forall x (P(c(x)) \land M(c(x), c_0) \rightarrow P(x) \land M(x, c_0))$$

Ejercicio 2

Considere el tipo de similaridad < 1,2 ; - ; 2 > junto con el siguiente alfabeto de símbolos:

- ◆ Símbolos de Relación: Q (unario), R (binario).
- ♦ Símbolos de Constante: c₁, c₂.

Sean además las siguientes fórmulas bien formadas en dicho lenguaje:

$$\alpha_{1} = \forall x \ (R(x,y) \leftrightarrow \exists y \ Q(y)) \qquad \alpha_{4} = \exists z \ (\forall y \ R(z,y) \land \neg R(y,z))$$

$$\alpha_{2} = \forall x \ \exists y \ (R(x,y) \rightarrow R(y,x)) \qquad \alpha_{5} = \forall x \ (Q(x) \rightarrow \exists x \ R(x,y))$$

$$\alpha_{3} = R(c_{1}, c_{2}) \lor \neg Q(c_{1})$$

 a) Indicar cuáles ocurrencias de variables son libres y cuáles son ligadas en cada una de las fórmulas presentadas. Señalar el cuantificador al cual están ligadas.

Solución:

$$\alpha_1 = \forall \mathbf{x} (R(\mathbf{x}, \mathbf{y}) \leftrightarrow \exists \mathbf{y} Q(\mathbf{y}))$$

La variable y en R(x,y) ocurre libre. La variable x en R(x,y) ocurre ligada al $\forall x$. La variable y en Q(y) ocurre ligada al $\exists y$.

$$\alpha_2 = \forall \mathbf{x} \exists \mathbf{y} (R(\mathbf{x}, \mathbf{y}) \to R(\mathbf{y}, \mathbf{x}))$$

No hay ocurrencias de variables libres. La variable \mathbf{x} en $(R(\mathbf{x},\mathbf{y}) \to R(\mathbf{y},\mathbf{x}))$ ocurre ligada al $\forall \mathbf{x}$. La variable \mathbf{y} en $(R(\mathbf{x},\mathbf{y}) \to R(\mathbf{y},\mathbf{x}))$ ocurre ligada al $\exists \mathbf{y}$.

$$\alpha_3 = R(c_1, c_2) \vee \neg O(c_1)$$

No hay ocurrencias de variables libres. No hay ocurrencias de variables ligadas. De hecho, no hay ocurrencia alguna de variables.

$$\alpha_4 = \exists \mathbf{z} (\forall \mathbf{y} R(\mathbf{z}, \mathbf{y}) \land \neg R(\mathbf{y}, \mathbf{z}))$$

La variable y en $\neg R(y,z)$ ocurre libre. La variable z en R(z,y) ocurre ligada al $\exists z$. La variable y en R(z,y) ocurre ligada al $\forall y$. La variable z en $\neg R(y,z)$ ocurre ligada al $\exists z$.

$$\alpha_5 = \forall \mathbf{x} (\mathbf{Q}(\mathbf{x}) \to \exists \mathbf{x} \mathbf{R}(\mathbf{x}, \mathbf{v}))$$

La variable \mathbf{y} en $R(\mathbf{x}, \mathbf{y})$ ocurre libre. La variable \mathbf{x} en $Q(\mathbf{x})$ ocurre ligada al $\forall \mathbf{x}$. La variable \mathbf{x} en $R(\mathbf{x}, \mathbf{y})$ ocurre ligada al $\exists \mathbf{x}$.

b) Determinar cuáles de las fórmulas presentadas son cerradas y cuáles son abiertas.

Solución:

Las fórmulas α_2 y α_3 son cerradas porque en ellas no hay ocurrencias de variables libres. Las restantes fórmulas son abiertas porque en ellas hay al menos una ocurrencia de variable libre.

Ejercicio 3

Considere el tipo de similaridad < 2.1 ; 2 ; -> junto con el siguiente alfabeto de símbolos:

- ◆ Símbolos de Relación: M (binario), R (unario).
- ♦ Símbolos de Función: f (binario).

Sea $\alpha \in FORM$ la siguiente fórmula bien formada en dicho lenguaje:

$$\alpha = \exists x M(x,y) \leftrightarrow \forall y (R(x) \lor M(y,x))$$

Conteste las siguientes preguntas, justificando apropiadamente sus respuestas. En cada caso, indique si es válido o no hacer la sustitución $\alpha[t/x]$ (o $\alpha[t/y]$, dependiendo de la pregunta).

Solución:

a) Sea t = f(x,y) ¿t es libre para x en α ?

t no es libre para x en α , ya que y aparece ligada en $\forall y \ (R(f(x,y) \lor M(y,f(x,y)))$, por tanto no es correcta esta sustitución.

b) Sea t = f(x,y) ¿t es libre para y en α ?

t no es libre para y en α , ya que x aparece ligada en $\exists \mathbf{x} \ \mathbf{M}(\mathbf{x}, \mathbf{f}(\mathbf{x}, \mathbf{y}))$, por tanto no es correcta esta sustitución.

c) Sea t = f(x,z) ¿t es libre para x en α ?

t es libre para x en α y es correcta la sustitución. El resultado es:

$$\exists x \; M(x,y) \leftrightarrow \forall y \; (R(f(x,z)) \lor M(y,f(x,z))$$

d) Sea t = f(x,z) ¿t es libre para y en α ?

t no es libre para y en α , ya que x aparece ligada en $\exists \mathbf{x} \mathbf{M}(\mathbf{x}, \mathbf{f}(\mathbf{x}, \mathbf{z}))$, por tanto no es correcta esta sustitución.

Sea t = f(y,z) it es libre para x en α ?

t no es libre para x en α , ya que y aparece ligada en $\forall y (R(f(y,z)) \vee M(y,f(y,z)),$ por tanto no es correcta esta sustitución.

Sea t = f(y,z) ¿t es libre para y en α ? f)

t es libre para y en α y es correcta la sustitución. El resultado es:

$$\exists x M(x, \mathbf{f}(y,z)) \leftrightarrow \forall y (R(x)) \vee M(y,x))$$

Ejercicio 4

Considere la siguiente estructura \mathcal{M} con tipo de similaridad < 1,1,2 ; - ; 3 >:

 $\mathcal{M} = \langle Z; \text{ Positivo, Negativo, Mayor }; -; 1,2,3 \rangle$ donde:

- Z es el conjunto de los números enteros.
- Positivo = $\{ x \in \mathbb{Z} \mid x > 0 \}$ es la relación "ser positivo".
- Negativo = $\{ x \in \mathbb{Z} \mid x < 0 \}$ es la relación "ser negativo".
- Mayor = $\{(x,y) \in Z \times Z \mid x > y \}$ es la relación "mayor".

Se define el siguiente alfabeto de símbolos para el tipo de similaridad presentado:

- Símbolos de Relación: P (unario), N (unario), M (binario) para las relaciones Positivo, Negativo y Mayor.
- Símbolos de Constante: **c**₁, **c**₂, **c**₃ para las constantes 1, 2 y 3.

Demuestre o refute cada una de las siguientes afirmaciones, justificando su respuesta en todos los casos en forma detallada:

a)
$$\mathcal{M} \models \exists x (P(x) \land N(x))$$

Afirmación INCORRECTA

Solución:

$$\begin{split} \mathcal{M} &\models \exists x \; (P(x) \land N(x)) \\ v^{\mathcal{M}} \; (\exists x \; (P(x) \land N(x))) = 1 \\ & \Leftrightarrow \qquad \text{(por definición de $v^{\mathcal{M}}$, caso \exists)} \\ \text{Existe algún $a \in Z$ tal que $v^{\mathcal{M}}$} \; (P(a) \land N(a)) = 1 \\ \text{Existe algún $a \in Z$ tal que $v^{\mathcal{M}}$} \; (P(a)) = 1 \; y \; v^{\mathcal{M}} \; (N(a)) = 1 \\ \text{Existe algún $a \in Z$ tal que $a > 0$ y $a < 0$.} \end{split}$$

Esto es falso en los enteros ya que no existe ningún entero que sea positivo y negativo en forma simultánea.

b)
$$\mathcal{M} \models \exists x \exists y (P(x) \land N(y))$$

Afirmación CORRECTA

Solución:

Esto es cierto en los enteros ya que existe al menos un entero positivo (por ejemplo, el 2) y también existe al menos uno negativo (por ejemplo, el -2).

c) $\mathcal{M} \models \forall x (P(x) \lor N(x))$

Afirmación INCORRECTA

Solución:

$$\begin{split} \mathcal{M} &\models \forall x \ (P(x) \lor N(x)) \\ \mathcal{v}^{\mathcal{M}} \left(\forall x \ (P(x) \lor N(x)) \right) = 1 \\ \end{aligned} &\Leftrightarrow \qquad \text{(por definición de $\nu^{\mathcal{M}}$, caso \forall)} \\ \text{Para todo $a \in Z$, $\nu^{\mathcal{M}} \ (P(a) \lor N(a)) = 1$} &\Leftrightarrow \qquad \text{(por definición de $\nu^{\mathcal{M}}$, caso \vee)} \\ \text{Para todo $a \in Z$, $\nu^{\mathcal{M}} \ (P(a)) = 1$ o $\nu^{\mathcal{M}} \ (N(a)) = 1$} &\Leftrightarrow \qquad \text{(por definición de $\nu^{\mathcal{M}}$, caso 2)} \\ \text{Para todo $a \in Z$, $a > 0$ o $a < 0$.} \end{aligned}$$

Esto es <u>falso</u> en los enteros ya que existe un entero que no cumple ninguna de las dos propiedades (el 0), ya que no es cierto que 0 > 0 y tampoco es cierto que 0 < 0.

d) $\mathcal{M} \models \forall x \exists y M(y,x)$

Afirmación CORRECTA

Solución:

 $\begin{array}{lll} \mathcal{M} \models \forall x \, \exists y \, M(y,x) & \Leftrightarrow & \text{(por def. de modelo)} \\ v^{\mathcal{M}} \, (\forall x \, \exists y \, M(y,x)) = 1 & \Leftrightarrow & \text{(por definición de } v^{\mathcal{M}}, \, \text{caso } \forall) \\ \text{Para todo } a \in Z, \, v^{\mathcal{M}} \, (\exists y \, M(y,a)) = 1 & \Leftrightarrow & \text{(por definición de } v^{\mathcal{M}}, \, \text{caso } \exists) \\ \text{Para todo } a \in Z, \, \text{existe } b \in Z \, \text{tal que } v^{\mathcal{M}} \, (M(b,a)) = 1 & \Leftrightarrow & \text{(por definición de } v^{\mathcal{M}}, \, \text{caso } 2) \\ \text{Para todo } a \in Z, \, \text{existe } b \in Z \, \text{tal que b > a.} \end{array}$

Esto es <u>cierto</u> en los enteros ya que para todo entero a siempre existe otro entero b mayor que él (por ejemplo: b = a + 1).

e) $\mathcal{M} \models \forall x \forall y (M(x,y) \leftrightarrow P(x) \land N(y))$

Afirmación INCORRECTA

Solución:

$$\begin{split} \mathcal{M} &\models \forall x \ \forall y \ (M(x,y) \leftrightarrow P(x) \land N(y)) \\ \mathcal{V}^{\mathcal{M}} \left(\forall x \ \forall y \ (M(x,y) \leftrightarrow P(x) \land N(y)) \right) = 1 \\ \text{Para todo } a,b \in Z, \ \mathcal{V}^{\mathcal{M}} \left(M(a,b) \leftrightarrow P(a) \land N(b) \right) = 1 \\ \text{Para todo } a,b \in Z, \ \mathcal{V}^{\mathcal{M}} \left(M(a,b) \right) = 1 \ \text{si } y \ \text{solo si} \ \mathcal{V}^{\mathcal{M}} \left(P(a) \land N(b) \right) = 1 \\ \text{Para todo } a,b \in Z, \ \mathcal{V}^{\mathcal{M}} \left(M(a,b) \right) = 1 \ \text{si } y \ \text{solo si} \ \mathcal{V}^{\mathcal{M}} \left(P(a) \right) = 1 \ y \ \mathcal{V}^{\mathcal{M}} \left(N(b) \right) = 1 \\ \text{Para todo } a,b \in Z, \ \mathcal{V}^{\mathcal{M}} \left(M(a,b) \right) = 1 \ \text{si } y \ \text{solo si} \ \mathcal{V}^{\mathcal{M}} \left(P(a) \right) = 1 \ y \ \mathcal{V}^{\mathcal{M}} \left(N(b) \right) = 1 \\ \text{Para todo } a,b \in Z, \ a > b \ \text{si } y \ \text{solo si} \ a > 0 \ y \ b < 0. \\ \end{split}$$

Esto es <u>falso</u> en los enteros ya que, dados dos enteros a y b tales que a > b, no es obligatorio que a > 0 y b < 0. Por ejemplo, para a = 5 y b = 3, se cumple que a > b pero sin embargo b <u>no</u> es menor que cero.

Ejercicio 5

Considere el tipo de similaridad < 1,2; -; 1 > y símbolos de relación **A** (unario), **B** (binario) y símbolo de constante \mathbf{c}_1 . Para cada una de las siguientes afirmaciones, determine si es correcta o no. En caso afirmativo, demuestre que la afirmación se cumple para cualquier estructura. En caso negativo, presente una estructura concreta que sirva como contraejemplo y justifique apropiadamente.

a)
$$\models \forall x (A(x) \rightarrow A(x)).$$

Afirmación CORRECTA

Solución:

Sea $\mathcal M$ una estructura cualquiera con universo U.

Probaremos que $\mathcal{M} \models \forall x (A(x) \rightarrow A(x)).$

$$\mathcal{M} \models \forall x (A(x) \rightarrow A(x))$$
 \Leftrightarrow (por def. de modelo)

$$v^{\mathcal{M}}(\forall x (A(x) \to A(x))) = 1$$
 \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso \forall)

Para todo
$$a \in U$$
, $v^{\mathcal{M}}(A(a) \to A(a)) = 1$ \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso \to)

Para todo $a \in U$, max $\{1 - v^{\mathcal{M}}(A(a)), v^{\mathcal{M}}(A(a))\} = 1$.

Esto es <u>cierto</u> en cualquier universo ya que max $\{1 - v^{\mathcal{M}}(A(a)), v^{\mathcal{M}}(A(a))\} = 1$ sin importar cuál sea el valor concreto de $v^{\mathcal{M}}(A(a))$.

b)
$$\exists x A(x) \models \forall x A(x)$$
.

Afirmación INCORRECTA

Solución:

Hay al menos una estructura para la cual <u>no</u> se cumple la definición de consecuencia lógica. Por ejemplo, $\mathcal{M} = \langle Z \rangle$; Positivo, Mayor; –; 1 > es tal que $\mathcal{M} \mid = \exists x \, A(x)$ pero sin embargo $\mathcal{M} \not \models \forall x \, A(x)$ lo cual probamos a continuación:

$$\mathcal{M} \models \exists x \, A(x)$$
 \Leftrightarrow (por def. de modelo)

$$v^{\mathcal{M}}(\exists x A(x)) = 1$$
 \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso \exists)

Existe algún $a \in \mathbb{Z}$ tal que $v^{\mathcal{M}}(A(a)) = 1$ \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso 2)

Existe algún $a \in Z$ tal que a > 0. Esto es **cierto** en Z ya que, por ejemplo, 1 > 0.

$$\mathcal{M} \models \forall x A(x)$$
 \Leftrightarrow (por def. de modelo)

$$v^{\mathcal{M}}(\forall x A(x)) = 1$$
 \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso \forall)

Para todo $a \in Z$ se cumple que $v^{\mathcal{M}}(A(a)) = 1$ \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso 2)

Para todo $a \in Z$ se cumple que a es positivo. Esto es <u>falso</u> en Z ya que, por ejemplo, -1 <u>no</u> es > 0.

c) $\models \forall x B(x,x)$.

Afirmación INCORRECTA

Solución:

Hay al menos una estructura para la cual <u>no</u> se cumple la definición de tautología. Por ejemplo, $\mathcal{M} = \langle Z ;$ Positivo, Mayor; -; 1 > es tal que $\mathcal{M} \not\models \forall x \ B(x,x)$ lo cual probamos a continuación:

$$\mathcal{M} \models \forall x \ B(x,x)$$
 \Leftrightarrow (por definición de modelo)

$$v^{\mathcal{M}}(\forall x \ B(x,x)) = 1$$
 \Leftrightarrow (por definición $v^{\mathcal{M}}$, caso \forall)

Para todo natural $a \in \mathbb{Z}$ se cumple que $v^{\mathcal{M}}(B(a,a)) = 1$ \Leftrightarrow (por definición $v^{\mathcal{M}}$, caso 2)

Para todo natural $a \in \mathbb{Z}$ se cumple que a > a. Esto es <u>falso</u> en los enteros, ya que ningún natural es mayor que sí mismo.

d) $\forall x \exists y B(y,x) \models \exists y \forall x B(y,x).$

Afirmación INCORRECTA

Solución:

Hay al menos una estructura para la cual no se cumple la definición de consecuencia lógica. Por ejemplo, $\mathcal{M} = \langle Z \rangle$; Positivo, Mayor; –; 1 > es tal que $\mathcal{M} \models \forall x \exists y \ B(y,x)$ pero sin embargo $\mathcal{M} \not\models \exists y \ \forall x \ B(y,x)$ lo cual probamos a continuación:

Para todo $a \in \mathbb{Z}$, existe algún $b \in \mathbb{Z}$ tal que, b > a. Esto es <u>cierto</u> en los enteros, ya que para cualquier entero a siempre existe otro entero b que es mayor que él (por ejemplo, b = a + 1).

$$\mathcal{M} \models \exists y \forall x \, B(y,x) \qquad \Leftrightarrow \qquad \text{(por definición de modelo)}$$

$$v^{\mathcal{M}} \, (\exists y \forall x \, B(y,x)) = 1 \qquad \Leftrightarrow \qquad \text{(por definición } v^{\mathcal{M}}, \, \text{caso } \exists)$$

$$\text{Existe algún } b \in Z \, \text{tal que } v^{\mathcal{M}} \, (\forall x \, B(b,x)) = 1 \qquad \Leftrightarrow \qquad \text{(por definición } v^{\mathcal{M}}, \, \text{caso } \forall)$$

$$\text{Existe algún } b \in Z \, \text{tal que para todo } a \in Z, \, v^{\mathcal{M}} \, (B(b,a)) = 1 \qquad \Leftrightarrow \qquad \text{(por definición } v^{\mathcal{M}}, \, \text{caso } 2)$$

Existe algún $b \in Z$ tal que para todo $a \in Z$, b > a. Esto es <u>falso</u> en los enteros, ya que no existe ningún entero que sea mayor que todos los demás enteros.

e)
$$\models \forall x (A(x) \land \neg A(x)).$$

Afirmación INCORRECTA

Solución:

Hay al menos una estructura para la cual no se cumple la definición de tautología. Por ejemplo, $\mathcal{M} = \langle Z \rangle$; Positivo, Mayor ; – ; 1 > es tal que $\mathcal{M} \not\models \forall x (A(x) \land \neg A(x))$ lo cual probamos a continuación:

$$\mathcal{M} \models \forall x \left(A(x) \land \neg A(x) \right) \qquad \Leftrightarrow \qquad \text{(por def. de modelo)}$$

$$v^{\mathcal{M}} \left(\forall x \left(A(x) \land \neg A(x) \right) \right) = 1 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \text{ caso } \forall \text{)}$$

$$\text{Para todo } a \in Z, \ v^{\mathcal{M}} \left(A(a) \land \neg A(a) \right) = 1 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \text{ caso } \land \text{)}$$

$$\text{Para todo } a \in Z, \ v^{\mathcal{M}} \left(A(a) \right) = 1 \ y \ v^{\mathcal{M}} \left(\neg A(a) \right) = 1 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \text{ caso } \neg \text{)}$$

$$\text{Para todo } a \in Z, \ v^{\mathcal{M}} \left(A(a) \right) = 1 \ y \ v^{\mathcal{M}} \left(A(a) \right) = 0 \qquad \Leftrightarrow \qquad \text{(por definición de } v^{\mathcal{M}}, \text{ caso } 2 \text{)}$$

Para todo $a \in Z$, a es positivo y a <u>no</u> es positivo. Esto es <u>falso</u> en los enteros, ya que no es cierto que todo natural sea positivo y no positivo al mismo tiempo. Por ejemplo, para a = 3, se cumple <u>solamente</u> que es positivo.

f)
$$\forall x A(x) \models A(c_1)$$
.

Afirmación CORRECTA

Solución:

Sea \mathcal{M} una estructura cualquiera con universo U tal que $\mathcal{M} \models \forall x \ A(x)$. Probaremos que $\mathcal{M} \models A(\mathbf{c}_1)$.

$$\mathcal{M} \models \forall x \ A(x)$$
 \Leftrightarrow (por def. de modelo) $v^{\mathcal{M}}(\forall x \ A(x)) = 1$ \Leftrightarrow (por definición de $v^{\mathcal{M}}$, caso \forall)

Para todo $a \in U$, $v^{\mathcal{M}}(A(a)) = 1$. Dado que esto se cumple para todos los elementos del universo, en particular se cumple para $\mathbf{c_1}$. Concluimos entonces que $v^{\mathcal{M}}(A(\mathbf{c_1})) = 1$ y luego, por definición de modelo, se tiene que $\mathcal{M} \models A(\mathbf{c_1})$.