Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Soil Conservation Service Field Office or Bill Weller

Water Supply Specialist Soil Conservation Service Spokane, WA 99201 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when It melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soli Conservation Service, are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Soil Conservation Service W 920 Riverside, Room 360

U. S. DEPT. OF ACRICULTURE

MATIOWAL ACRICUL. LIBRARY

CURRENT SERIAL RECORDS

BELTSVILLE MD

ZOTOS

Soii Conservation Service

United States
Department of
Agriculture

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

Wilson Scaling
Chief
Soil Conservation Service
U.S. Department of Agriculture

Prepared by
William F. Weller
Water Supply Specialist
W. 920 Riverside, Rm 360
Spokane, Washington 99201

Released by

Lynn A. Brown State Conservationist Soil Conservation Service Spokane, Washington

> atd224 W2W37

MAY 1990

GENERAL OUTLOOK

SUMMARY:

THE SNOWPACK DECREASED OVER THE ENTIRE STATE AND VARIED FROM 57% OF NORMAL IN THE BAKER RIVER BASIN TO 93% IN THE COWLITZ BASIN. APRIL PRECIPITATION WAS 103% OF NORMAL STATE WIDE, AND VARIED FROM 195% OF AVERAGE IN THE WALLA WALLA AREA TO 72% IN THE NORTH PUGET BASIN. WASHINGTON'S SNOTEL SITES ARE AVERAGING 82% OF NORMAL SNOWPACK ON MAY 1. (BY MAY 8 STATEWIDE AVERAGE WAS 78%) MAY 1 RESERVOIR STORAGE IS GOOD THROUGHOUT THE STATE, WITH RESERVOIRS IN THE YAKIMA BASIN AT 122%, UP FROM 97% OF NORMAL ON APRIL 1, AND MOST OF THE REST SHOWING OVER 100% OF AVERAGE. APRIL STREAMFLOWS VARIED FROM 107% OF NORMAL ON THE LEWIS RIVER TO 285% ON THE SIMILKAMEEN RIVER. MAY 1 FORECASTS FOR 1990 RUNOFF VARY FROM 93% OF AVERAGE IN THE CHELAN RIVER TO 58% ON MILL CREEK IN THE WALLA WALLA BASIN. APRIL TEMPERATURES WERE ABOVE NORMAL AND VARIED FROM 2 DEGREES ABOVE IN THE WHITE-GREEN BASIN TO 7 DEGREES ABOVE AVERAGE IN THE OKANOGAN BASIN. NOTE: THE TERMS "NORMAL" AND "AVERAGE" AS USED IN THIS PUBLICATION, ARE THE SAME.

SNOWPACK:

High pressure over Washington during April continued to bring dry, warm weather to the state. SNOTEL sites in Washington are showing snowpack that is 82% of average for May 1, state wide, down from 102% on April 1. Snowpack varies over the state from 93% of normal in the Cowlitz Basin to 57% in the Baker River Basin. The Yakima Basin is now at 76%, down from 98% last month. Snowpack in other basins along west slopes of the Cascade Mountains are the Skagit with 81%, down from 101%, and the White-Green Basin with 84%, down from 101%. The eastern slopes of the Cascade Mountains show the Wenatchee Basin at 80%, down from 103% of normal, and the Chelan at 92%, down from 108%. Maximum snow cover is at the Paradise Park SNOTEL, on Mt. Rainier with 74.4 inches of water content. This site would normally have 73.3 inches of water content on May 1.

PRECIPITATION:

State wide, April precipitation from National Weather Service stations was 103% of average. April precipitation varied from 195% of average in the Walla Walla Basin, to 72% in the North Puget basin. The year-to-date precipitation varied from 111% of normal in the North Puget Basin to 84% in the Okanogan - Methow Basin. SNOTEL sites in Washington showed the high elevation year-to-date precipitation values to be 99% of average, down from 100% of normal on April 1. Maximum year-to-date precipitation was at the June Lake SNOTEL site on Mt. St. Helens with 144.8 inches since October 1.

RESERVOIRS:

Reservoir storage remained good with most reservoirs at or near average for May 1. Reservoir storage in the Yakima Basin was 956,700 acre feet, 122% of normal. Storage at other reservoirs include Roosevelt at 234% of average and the Okanogan reservoirs contained 107% of May 1 normal. The power reservoirs contain the following: Coeur d'Alene Lake, 392,200 acre feet, or 124% of normal; Chelan Lake, 353,700 acre feet at 79% of average and 52% of capacity, and Ross Lake at 763,300 acre feet, 118% of average.

STREAMFLOW:

April streamflows were above average in Washington, with all reporting streams over 100%. Above normal temperatures and near normal precipitation caused all low elevation snow to melt. The Similkameen River was at 285% of April average, the highest in the state. The Lewis River at 107% the lowest. Other streamflows were the Walla Walla River 114%, the Spokane River 133%, the Columbia at the Canadian border 163% and at the Dalles 125%. Streamflow forecasts were reduced from the previous month. Forecasts for some west side streams include: Cedar River, 95%; Skagit River, 88%; and the Dungeness River, 88%. Some east side streams include the Yakima River, 77% and the Okanogan River 67%.

SASIN SUMMARY OF SHON COURSE OATA HAY 1990

SNOW COURSE	ELEVATION	DATE	SHOW DEPTH	HATER CONTENT	LAST YEAR	AVERAGE 1961-85	SHOH COURSE E	LEVATION	OATE	SHON OEPTN	NATER - CONTENT	LAST YEAR	AVERAGE 1961-85
							COLOCKUM CREEK						·
PEND OREILLE RIVER BENTON WEADON	2370 4920	5/01/90 S/01/90	0 17	.0	.0 11.5	.0 15.4	TROUGH #2 PILLON	5310	5/01/90		.06	1.0	5.6
RENTON SPRING BOYER HOUNTAIN BUNCHCRASS MEADONS	5250 5000	4/25/90 4/25/90	31 30	13.2	20.2	24.8 29.2	YAKINA RIVER	4074	E 104 100				
SUNCHGRASS NONPILLO NEART LAKE TRAIL	N 5000 4800 %050	5/01/90 4/26/90 4/26/90	36 102	21.7 14.0 47.6	24.9 18.6 39.8	29.1 17.4 53.2	GLENETT PASSOZPILLOW GUNPING LAKE GUMPING LAKE (NEN)	4270 3450 3400	5/01/90 4/30/90 4/30/90	3	2.16 1.5 3.0	2.1 3.8 5.0	14.2 8.7 12.5
HOOOOO BASIN NOOOOO CREEK LOOKOUT	5900 5140	4/26/90	96 65	44.2	36.5	49.3	BUNPING RIDGE PILLON CORRAL PASS PILLON	4600	5/01/90 5/01/90		21.0S 37.0S	24.8	23.4
HELSON CAN SCHNEITZER BONL	. 3100 4800	4/30/90 5/02/90	12 27 ·	5.4 11.5	0.3 14.0	7.2 24.2	FISH LAKE PILLOW GREEN LAKE PILLOW GROUSE CANP PILLOW	3370 6000 5380	5/01/90 5/01/90 5/01/90		30.76 13.26	23.8 22.4	26.6 20.9
SCHNEITZER RIOGE KETTLE RIVER	6200	5/02/90	62	37.8	39.8	40.0	MORSE LAKE PILLOW OLALLIE E.S. PILLOW	5400 3960	5/01/90		.0S 38.26 50.6S	13.3 50.3 51.8	12.9 55.3 49.0
BARNES CREEK CAN	. 5300	4/30/90	42	18.6	17.7	20.5	BABSE RIOGE PILLON STAMPEGE PASS PILLON	4200 3860	5/01/90		29.95 45.66	25.0 44.1	33.5 38.7
BIG NNITE HTH CAN CARNI CAN	4100	4/26/90 4/27/90	28	10.8	16.1	19.9	TUNNEL AVENUE NNITE PASS ES PILLON	24S0 4500	4/26/90 5/01/90	15	6.4 20.59	7.7 14.1	14.3 24.8
FARRON CAN GRAYSTOKE LAKE CAN NONASNEE PASS CAN	. 5940	4/27/90 4/26/90 4/30/90	7 38 24	2.5 16.0 9.6	7.2 12.9 10.5	10.4 19.1 12.8	ANTAHUH CREEK						
NONASNEE PASS CAN TRAPPING CK LON CAN TRAPPING CK UP CAN	3050	4/26/90	0	.0	.0	5.6	GREEN LAKE PILLON	6000	5/01/90		13.26	22.4	20.9
COLVILLE RIVER							MILL CREEK	4980	F /04 /00				
							NIGH RIOGE PILLON LEWIB - CONLITZ RIVERS	4780	5/01/90		.05	10.2	20.8
OMAK LAKE, THIN LAKES	2700	5/01/90		0E			JUNE LAKE PILLON	3200	5/01/90		23.08	31.7	24.8
THIN LAKES SPOKANE RIVER		3,01,,0					LONE PINE PILLON PARADISE PARK PILLON	3800 5500	5/01/90 5/01/90		23.25 74.45	79.4	45.1 73.3
ABOVE BURKE	4100	5/01/90		. OE	6.8	18.6	PIGTAIL PEAK PILLON POTATO HILL PILLON BNEEP CANYON PILLON	5900 4500 4050	5/01/90 5/01/90 5/01/90		57.85 12.35 40.65	66.3 15.4 53.2	52.1 27.3 43.7
LODKOUT LOST LAKE NOSOUITO RIOGE	5140 6110 5200	4/30/90 4/30/90 S/01/90	65 109	26.6 46.9 30.3E	24.6 47.1 29.1	32.7 60.1 36.6	SPENCER NON PILLON SPIRIT LAKE PILLON	3400 3100	5/01/90		20.26	24.4	26.6
MOSOUITO PILLON SUNSET	5200 5540	5/01/90 5/01/90	,	31.0 18.6E	29.2	37.0 32.0	BURPRISE LKS PILLON NNITE PASS ES PILLON	42 5 0 4500	5/01/90 5/01/90		35.35 20.59	44.0	55.6 24.8
NEWNAN LAKE							MNITE RIVER						
OUARTZ PEAK PILLOM	4700	5/01/90		17.1	17.6		CORRAL PASS PILLOW MORSE LAKE PILLOW	6000 5400	5/01/90 5/01/90		37.0S 38.2S	36.9 50.3	38.9 55.3
OKANOGAN RIVER		4 490 404					GREEN RIVER				:		
ABEROEEN LAKE CAN- BLACKHALL PEAK CAN- BRENDA MINE CAN-		4/29/90 4/23/90 4/30/90	0 60 7	30.0 1.5	29.9	1.7 36.3 9.8	COUGAR NTW. PILLOW GRASS NOUNTAIN #2	3200 2900	5/01/90 5/03/90		4.45	16.3	13.6
BROOKNERE CAN- ENGERBY CAN-	3200 6200	4/30/90 4/30/90	4 98	1.2	38.8	5 - 1 42 - 9	LESTER CREEK LYNN LAKE	3100 4000	5/03/90 5/03/90	34 27	15.6 11.7	19.0	20.7
ESPERON CK. UP CAN- ESPERON CK. NIO CAN.		4/29/90	20	1.2	6.4	17.5 11.9 8.9	SAWNILL RIOGE STAMPEDE PASS PILLOW	4700 3860	5/03/90	56	27.4 45.65	32.0 44.1	38.7
ESPERON CK. LO CAN- FREEZEOUT CK. TRAIL GREYBACK RES CAN-	4400 3500 5120	4/29/90 4/30/90 4/30/90	1 5 17	.2 2.4 3.0	3.2 3.6 5.3	7.8	THIH CAMP CEDAR RIVER	4100	5/03/90	42	20.3	15.0	
NAMILTON NILL CAN- NARTS PASS	4890 6500	4/27/90 4/30/90	19 63	7.6 38.4	10.5 39.6	12.6 46.8	CEUM RIVER				•		
HARTS PASS PILLON ISINTOK LAKE CAN- LIGHTWING LAKE CAN-	5500	5/01/90 4/26/90 4/26/90	0 21	43.SS -1	2.0	6.3	SHOQUALNIE RIVER				-		
LIGHTHING LAKE 'CAN. LOST HORSE HTH 'CAN. NCCULLOCH CAN.	4000 6300 4200	4/30/90 5/02/90	30	8.5 8.1 .0	7.8	11.5 10.3 2.4	KRONONA MIHE OLALLIE E.S. PILLON OLNEY PASS	2400 3960 3250	5/01/90 5/01/90 5/01/90	41 14	22.1 50.65 6.9	30.7 51.8 23.6	69.0
MISSEZULA MIN CAN- MISSION CREEK CAN-	5090 5800	4/27/90	9 51	2.1	2.9	7.0 21.8	SKYKOHISH RIVER	5250	0,01,10	•	• • • • • • • • • • • • • • • • • • • •	2010	
NONASNEE PASS CAN. NT. KOBAU CAN.	4500 5900 5700	4/30/90 4/28/90 4/30/90	24	- 9.6	10.5	12.8 13.3 10.3	STAMPEDE PASS PILLOM	3860	5/01/90		45.65	44.1	36.7
NUTTOW CREEK #1 OYANA LAKE 'CAN. POSTILL LAKE CAN.	4400 4500	4/27/90	0 0 2	.0	7.5 1.2 3.3	3.1	STEVENS PASS SAND 50	4070 3700	5/01/90 4/27/90	44	37.25 18.0	34.1 19.9	41.3 31.3
RUSTY CREEK SALHON NOWS PILLON	4000 4500	4/30/90 5/01/90		.05	.0	7.4	SKAGIT RIVER						
SILVER STAR WIN CAN. SUNMERLAND RES CAN. SUNDAY SUMMIT CAN.	6000 4200 4300	4/29/90 4/26/90 4/26/90	56 1 0	23.8 .2 .0	24.8 3.3 .0	29.7 6.3 .8	BEAVER CREEK TRAIL BEAVER PASS BROWN TOP AM	2200 3680 6000	4/30/90 5/01/90 4/30/90	0 46 115	.0 21.5 56.4	.4 20.4 57.0	4.9 29.3 63.3
TROUT CREEK CAN. VASEUX CREEK CAN.	4690 4600	4/30/90	5	.6 1.0	2.4	4.8	DEVILS PARK > FREEZEOUT CK, TRAIL	5900 3500	4/30/90	87 5	41.4	39.4	46.2 7.8
NHITE ROCKS NTN CAN.	6000	4/27/90	27	10.9	15.2	22.4	NARTS PASS Harts pass Pillow	6500 6500	4/30/90 5/01/90	83	38.4 43.5S	39.6	46.8 56.7
METHON RIVER	6500	4/30/90	83	38.4	39.6	46.8	KLESILKNA CAM. LIGHTNING LAKE CAN. LYMAN LAKF PILLOK	3710 4000 5900	4/29/90 4/26/90 5/01/90	21	2.2 8.5 66.5S	3.5 7.8 61.7	8.3 11.5 67.5
MARTS PASS PILLON MUTTON CREEK #1		5/01/90 4/30/90		43.55	44.6	56.7 10.3	HEADOMS CABIN	1900	4/30/90	0	.0	.0	1.3
RUSTY CREEK SALHON MONS PILLON	4000 4500	4/30/90 5/01/90		.0 .0s	.0	7.4	RAINY FASS RAINY PASS PILLON	4780 4780	5/01/90 5/01/90	82	37.8 38.55	34.8 35.3	41.5 45.4
CNELAN LAKE BASIN							THUNOER BASIN BAKER RIVER	4200	4/30/90	41	17.8	22.6	22.8
LYMAN LAKE PILLOM MINERS RIOGE PILLON	5900 6200	5/01/90 5/01/90		66.55 5 5.55	61.7 45.5	67.5	OOCK BUTTE AN	3800	5/01/90		31.9E	47.9	70.8
PARK CK RIOGE PILLOH RAINY PASS RAINY PASS PILLOH	4600 4780 4780	5/01/90 5/01/90 5/01/90	82	35.85 37.8	42.0	39.9 41.5	EASY PASS AN JASPER PASS AN	5200 S400	5/01/90		62.4E 65.1E	58.3 67.2 65.6	99.2 93.0 78.8
RAINY PASS PILLON ENTIAT RIVER	4780	3701770		38.55	35.3	45.4	HARTEN LAKE AM HT. BLUH AM ROCKY CREEK AM	3600 5800 2100	5/01/90 5/01/90 5/01/90		31.5E 61.4E .0E	57.5 5.8	72.3 20.7
POPE RIOGE PILLOW	3540	5/01/90		.os	.0	6.7	SCHREIBERS MOH AN SF THUNOER CK AN	3400 2200	5/01/90 5/01/90		23.9E .0E	41.6	59.7 1.3
HENATCHEE RIVER							HATSON LAKES AN	4500	5/01/90		42.4E	48.3	70.7
BERHE-MILL CREEK BLENETT PASS02PILLOH	3170 4270	4/27/90 5/01/90	53	22.8 2.1S	20.5	20.8 14.2	ELWNA RIVER WURRICAME	4500	4/28/90	29	13.0	17.0	23.9
ČŇÍNÁUKUM G.S. FISM LAKE PILLOM	2500 3370	4/27/90 5/01/90		.0 30.75	.0 23.8	1.1	WORSE CREEK						
LYHAN LAKE PILLON WERRITT STEVENS PASS PILLON	5900 2140 4070	5/01/90 4/27/90 5/01/90	0	66.55 .0 37.25	61.7 .0 34.1	67.5 4.1 41.3	COX VALLEY	4500	4/29/90	57	27.4	32.6	40.6
STEVENS PASS SAND SO TROUGH #2 PILLON		4/27/90 5/01/90	44	18.0	19.9	31.3 5.6	OUNGENESS RIVER						
UPPER WHEELER PILLOW	4400	5/01/90		.05	5.7	6.8	OEER PARK	5200	4/30/90	9	4.4	7.0	21.1
SOUILCHUCK CREEK							QUILCEME RIVER	4050	5/01/90		13.25		
STEMILT CREEK							HOUNT CRAG PILLON HYNOOCHEE RIVER	4000	5, 41, 7,				
UPPER WWEELER PILLOW	4400	5/01/90		.05	5.7	8.8	CARROL PASS	3650	5/03/90	36	17.5	31.0	30.0

SPOKANE

S TAME HIVER DADIN

WATER SUPPLY OUTLOOK:

Streamflow on the Spokane River was 163% of normal for April. May 1 storage in Coeur d'Alene Lake was 392,200 acre feet; average storage in Coeur d'Alene for May 1 is 317,200 acre feet. Forecasted summer runoff for the Spokane River Basin is 76% of normal; down from 90% on April 1. This forecast is based on a snowpack 68% of average and a water year-to-date precipitation value 106% of normal. Precipitation for April was 86% of average. Maximum snow water occurred at the Lost Lake snow course with 109 inches of snow and 46.9 inches of water content, May 1 average for this site is 60.1 inches of water. The Quartz Peak SNOTEL site near Mt. Spokane had 35 inches of snow with a water content of 14.0 inches. Temperatures averaged four degrees above normal during April.

For more information contact your local Seif Conservation Service office.

SPOKANE RIVER BASIN

STREAMFLOW FORECASTS : <----- DRIER ----- FUTURE CONDITIONS ----- WETTER ----> : FORECAST POINT FORECAST : ------ CHANCE OF EXCEEDING * -----PERIOD : 90% 70% | 50% (MOST PROBABLE) | 25 YR. : (1000AF) (1000AF) ; (1000AF) (% AVG.) ; (1000AF) (1000AF) ; (1000AF) SPOKANE or Post Falls (1,2) AFR-SEF 1860 2460 2730 3000 3600 2820 APR-JUL 1800 2380 | 2640 2900 97 3480 2723 2950 97 1 3290 APR-JUL 2100 2610 SPOKANE at Long Lake (2) 3800 3045 (1000AF) RESERVOIR STORAGE WATERSHED SNOWPACK ANALYSIS

RESERVOIR	USEABLE : CAPACITY:	** USEA THIS YEAR	BLE STORA LAST YEAR	AVG.	ŀ	WATERSHED	NO. COURSES AVG'D	THIS YEAR	
COEUR D'ALENE	291.2	212.8	243.2	234.3	- - -	Spokane River	19	95	93

^{* 90%, 76%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

COLVILLE - PEND OREILLE

WATER SUPPLY OUTLOOK:

May 1 snow cover is 76% of average on the Pend Oreille and 69% on the Kettle. April streamflow was 160% of normal on the Pend Oreille River, 163% on the Columbia at the International Boundary and 152% on the Kettle River. Precipitation during April was 104% of average, bringing the water year-to-date to 88% of normal. The forecast for the Kettle River streamflow is 75% of normal and the Colville River at 76% of normal for the summer runoff period. Forecast for the Pend Oreille is 82%. Snowpack at Bunchgrass Meadow SNOTEL site was 21.7 inches of water, the average May 1 reading is 29.1. Temperatures averaged three degrees above normal for April.

For more information contact your local Soil Conservation Service Office.

				Si	TREAMFLOW	FORECASTS				
		<	- DRIER		FUTURE CO	ONDITIONS	WETTER		>	
FORECAST POINT	FORECAST					EXCEEDING *			;	
	PERIOD	90% (1000AF)	70% (1000A			PROBABLE) : (% AVG.) :	30% (1000AF)	197 (199)	% : BAF);	25 YR. (1000AF
PEND OREILLE bl Box Canyon (1,2)	APR-SEP	10500	12800	1	13800	91 :	14800	1719	76/A	15170
·	APR-JUL	956Ø	11700		12699	91	13500	1569		13900
	APR-JUN	8290	10100	}	10900	91 !	11700	1356		11960
CHAMOKANE CK nr Long Lake	MAY-AUG	3.8	6.0	i 	7.4	80	8.3	11.	.0	9.2
DOLVILLE at Kettle Falls	APR-SEP	61	93		115	83	137	16	69	139
	APR-JUL	56	85		105	82 ;	125	15	55	128
	APR-JUN	52	8Ø	3 2	98	83	117	14	14	118
ÆTTLE nr Laurier	APR-SEP	1030	1350	1	1560	82	177Ø	209	90	1997
	AFR-JUL	98Ø	1280	3	1480	82 ;	168Ø	198	8Ø	1807
	APR-JUN	880	1150	1	133Ø	82 ;	1510	178	3Ø	1622
COLUMBIA at Birchbank (1,2)	APR-SEP	41000	45700		47800	108	49900	5469	3 Ø	44390
	APR-JUL	32700	36500	1	38200	103 ;	399ØØ	4379	9 <i>9</i>	35440
	APR-JUN	23700	26599	1	27700	108 :	28900	3170	10	25650
OLUMBIA at Grand Coulee Dam (1,2)	APR-SEP	57100	64700		68200	103	71700	7939		66469
	APR-JUL	43000	54400		57300	103	60200	6669		55730
,	APR-JUN	37400	42400	1	44700	103	47000	5202	3Ø	43420
				:		!				
RESERVOIR	STORAGE	(1	1000AF)		1	WATERS	GHED SNOWPACI	K ANAL	.YSIS	
					•				TUTC VEAL	
RESERVOIR		** USEAE THIS				SHED	NO. COUR		THIS YEAR	
	3 5	YEAR	YEAR	AVG.	1		AVG'	0	LAST YR.	AVERAGE
riosevelt					-	lle River			102	
MANKS	715.0	709.6	664.2	583.∅	Pend	Oreille River	12		100	92
					: Kett	e River	11		90	84

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OKANOGAN AND METHOW

WATER SUPPLY OUTLOOK:

April streamflow on the Methow River was 178% of normal, 167% on the Okanogan River, and 285% on the Similkameen. Summer runoff for the area's small streams is expected to be below normal. May-September runoff forecasts for the Okanogan River is 67% of normal. The Similkameen River 65%, and the Methow River 80% of normal. May 1 snow cover was 59% of average on the Okanogan, down from 79% last month and 58% for the Methow Basin. April precipitation in the Okanogan-Methow was 73% of normal, with water year-to-date 84% of average. Temperatures were seven degrees above normal for the month. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 43.5 inches of water content in the pack. Storage in the Conconully Reservoirs is 17,100 acre feet, which is 73% of capacity and 107% of May 1 average.

For more information contact your local Sulf Conservation Service office.

				S	TREAMFLOW	FORECASTS					
		<	DRIER		FUTURE CO	ONDITIONS		WETTER	>	1	
FORECAST FOINT	FORECAST : PERIOD :		70%	} !	50% (MOST		3 9	30% (1000af)	10% (1000AF)		25 YR. (1 0 00AF)
						a days days also sale soon days sood days days					
SIMILKAMEEN R. nr Nighthawk	APR-SEP	785	995	1	1149	89	1	1280	1500		1432
0	APR-JUL	73Ø	925	1	1960	89	1	1190	1390		1333
	APR-JUN	620	785	8 0 1	900	89	1	1010	1180		1128
OKANOGAN R. nr Tonasket	APR-SEP	700	1030	1	1260	76	1	1490	182Ø		1661
	APR-JUL	635	935	1	1140	76	ì	1350	1650		1501
	AFR-JUN	530	785	2 2 2	955	76	1	1130	138Ø		1255
METHUN RIVER or Pateros	APR-SEP	625	789	1 0	889	90	1 1 6	980	1130		98Ø
	APR-JUL	589	720	1	815	90	1	910	1959		997
	APR-JUN	490	610	2 0	690	90	1	77Ø	89Ø		769
				;) 1 1				
RESER	VOIR STORAGE	(1	ØØØAF)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WA	TERS	HED SNOWPAC	K ANALYSI	S	
	USEARLE :	** USEAB	LE STORAGE	 : **	- 			NO.	 THT	 S YEAR	AS % OF
RESERVÕIR	3 1	THIS YEAR	YEAR	AVG.	1			COUR AVG	D LAS	T YR.	AVERAGE
CONCONULLY LAKE (SALMON)	10.5	8.3	8.0	8.0	1			3Ø			79
CONCONULLY RESERVOIR	13.0	8.9	6.9	7.0	! Metho	w River		4	97		79

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WENATCHEE AND CHELAN

WATER SUPPLY OUTLOOK:

SNOTEL sites in the Squilchuck-Stemilt drainage have lost their snowpack as of May 1. May 1 snowpack in the Wenatchee Basin is 80% of average down from 103% in April and 92% in the Chelan Basin down from 108%. Precipitation during April was 101% of normal in the basin and 101% from October 1 to May 1. Reservoir storage in Lake Chelan is 353,700 acre feet or 79% of May 1 average and 52% of capacity. Lyman Lake SNOTEL had the most snow water with 66.5 inches of water. Runoff for the Entiat River is forecast to be 80% of normal for the summer. Forecasts for the Chelan River are for 93%, Wenatchee River's runoff 87%, and 69% on the Squilchuck-Stemilt. Streamflow for April on the Wenatchee River and the Chelan River was 211% of normal.

For more information contact your local Soil Conservation Service office.

STREAMFLOW FORECASTS

	1	<	- DRIER		FUTURE C	ONDITIONS	WETTER	·>	1	
FORECAST POINT	FORECAST :			СН	ANCE OF	EXCEEDING *			i !	
TOTAL TOTAL	PERIOD		70%			PROBABLE) :		10%	i	25 YR.
	: 	(1000AF)	(1000AF) 	(1000AF)	(% AVG.) :	(1000AF)	(1000AF)	(1000AF)
				1		1				
CHELAN RIVER at Chelan (1)	APR-SEP	1050	1170		1220	1Ø3	1270	1390		1182
	APR-JUL	925	1020	!	1979	103	1120	1220		1040
	APR-JUN	6 5∅	78Ø	!	840	103	900	1030		815
STEHEKIN R. at Stehekin	APR-SEP	750	8Ø5	i	84Ø	100	875	930		844
	APR-JUL	63Ø	68Ø	1	710	99	740	790		714
	APR-JUN	475	510	1	535	99	560	595		541
ENTIAT RIVER or Ardenvoir	APR-SEP	156	181	1	198	85 i	215	240		233
BALLYL KTARK III. NI GELLANII	APR-JUL	149		- 1	188	85 :	205	225		221
	APR-JUN	115	133	•	- 145	85		176		171
				1		1				
NENATCHEE R. at Peshastin	APR-SEP			1	1680		1890	2200		1678
	APR-JUL	1050	133Ø	1	1520	100	1710	1990		1516
	APR-JUN	845	1070	1	1229	199	1370	1590		1216
STEMILT or Wenatchee (miners in)	MAY-SEP	53	79	i	97	79	115	141		138
ICICLE CREEK or Leavenworth	APR-SEP	235	3Ø5	i	350	96	400	470		370
	APR-JUL	215	3Ø5 28Ø	 	325		370	435		340
	APR-JUN	169		- 1	255	94	290	340		270
				1		1				
RESERVO	IR STORAGE		(1000AF)		1	WATER	RSHED SNOWPA	CK ANALYS	IS	
	USEABLE !	** USE	ABLE STORA	 GE **	·		NO.	TH	IS YEA	 R AS % OF
RESERVOIR	CAPACITY					RSHED		RSES		
	;	YEAR	YEAR	AVG.	 		AVG	'D LA	ST YR.	AVERAGE
CHELAN LAKE	676.1	235.8	200.6	212.1	Chel	lan Lake Basin	3	11	6	108
					Enti	iat River	2		14	7Ø
					Wena	atchee River	8	11	.7	197
					: Squ	ilchuck Creek	1	7	'3	100
					! Ster	milt Creek	2	: 6	57	59
					Col	ockum Creek	Ø		Ø	Ø
	;	THIS YEAR	LAST YEAR	AVG.	: WATE	lan Lake Basin iat River atchee River ilchuck Creek milt Creek	AV6 3 2 8 1	11	ST YR. 6 7 7 3	AVERAG 108 70 107 100 59

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

YAKIMA

OUTLOOK:

WATER SUPPLY The outlook for irrigation water for the summer remains fair with May 1 reservoir storage for the five major reservoirs at 956,700 acre feet, up from 717,300 acre feet on April 1, the best since 1984. April precipitation was 117% of normal and 103% for the water year-to-date. May 1 streamflow forecasts for the Yakima Basin runoff vary throughout the basin as follows: the Yakima River at Cle Elum, 81%; Naches River, 74%; the Yakima River at Parker, 77%; Ahtanum Creek, 77%, and Tieton River 77%. April streamflow on the Yakima River at Parker was 177% of normal, and 199% on the Yakima near Cle Elum. Snowpack is 76% of average on May 1, down from 98% on April 1, in the Yakima Basin based upon 14 snow courses and SNOTEL readings. Temperatures were four degrees above average for April. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U.S. Bureau of Reclamation's forecast for the total water supply available which includes adjustments for reservoir operation and irrigation return flow.

STREAMFLOW FORECASTS

	;	<	- DRIER -	F	UTURE C	ONDITIONS	WETTER	>	
FORECAST POINT	FORECAST :			CHA	NCE OF	EXCEEDING #			
	PERIOD :		70% (1000AF			PROBABLE) :	30% (1000AF)	10% ; (1000AF) ;	25 YR. (1000AF)
WANTMA DINED of Montin (1)	APR-SEP	112	121		126	93	132	139	136
YAKIMA RIVER at Martin (1)	APR-JUL	103	112		117	93 1		129	126
	APR-JUN	92	100				109	114	112
YAKIMA RIVER at Cle Elum (2)	APR-SEP	855	910	İ	950		990	1040	951
	APR-JUL	760	- 819	1	845	199:		930	846
	APR-JUN	660	705	1	735	100	765	810	735
YAKIMA RIVER nr Parker (2)	APR-SEP	1470	1700		1860		2020	2250	2075
	APR-JUL APR-JUN	132Ø 117Ø	1530 1350	1	167Ø 148Ø	90 : 90 :	1810 1610	2020 1790	1862 1643
KACHESS RIVER or Easton (1)	APR-SEP	116	124	:	130	98	136	144	133
KAGIEGO KIYEK III ERSYON (17)	APR-JUL	96	107	i	112	98	117	128	114
	APR-JUN	86		ĺ	100	98		114	102
CLE ELUM RIVER or Roslyn (1)	APR-SEP	415	440	;	460	100	480	510	459
-	APR-JUL	370	1395	1	415	199	435	465	417
	APR-JUN	315	340	1	355	191	370	395	353
BUMPING RIVER or Nile (1)	APR-SEP	103	128		139	199	150	175	139
DOIS THE NAVEL III WATER TO	APR-JUL	95	118	1	128	199	138	161	128
	APR-JUN	79	98		106	190		133	196
AMERICAN RIVER or Nile	APR-SEP	109	116	i I	121	199	126	133	121
	APR-JUL	101	103	1	112	100	117	123	112
	APR-JUN	85	90	1	94	199	98	103	94
TIETON RIVER at Tieton (1)	APR-SEP	159	183		205	84	225	250	244
	APR-JUL	125	157	1	175	84 1	193 156	220	20/8
	APR-JUN	109	126		141	84 i	100	171	168
NACHES RIVER or Naches (2)	APR-SEP	569	660	1	730	85 1	800	900	869
	APR-JUL	595	600	1	660	85	725	815	779
	APR-JUN	435	510	1	565	85 ;	620	695	667
AHTANUM CREEK nr Tampico (2)	APR-SEP	19.0	29		36				47
	APR-JUL	18.0			33	77	-		43
	APR-JUN	15.0	23	1	28	76 	33	41	37
RESERVOIF	R STORAGE		(1000AF)			WATE	RSHED SNOWPAG	CK ANALYSIS	
	USEARLE :				'				VEAD AC * CE
RESERV01R	CAPACITY:	THIS	LAST YEAR	AVG.	WATE	ERSHED	AVG	RSES	YEAR AS % OF YR. AVERAGE
KEECHELUS	157.8		118.6			ima River			98
KACHESS	239.0	170.1	115.2	187.0	i 1 Ahta	anum Creek	2	61	73
CLE ELUM	436.9	255.1	249.7	290.0	1				
BUMPING LAKE	33.7	12.3	11.4	11.0	i				

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

WALLA WALLA

WATER SUPPLY OUTLOOK:

May 1 water content at the Touchet SNOTEL site was 20.1 inches. The forecast is for 63% of average streamflow in the Walla Walla River for the coming summer, and 58% for Mill Creek. April streamflow was 114% of normal on the Walla Walla River. April precipitation was 195% of average bringing the water year-to-date precipitation to 93% of normal. There were 2.63 inches of precipitation recorded at the Walla Walla for April. Temperatures were seven degrees above average for April.

For more information contact your local Soil Conservation Service office.

WALLA WALLA RIVER BASIN

			- DRIER			FORECASTS ONDITIONS		WETTER	·>	:	
FORECAST POINT	FORECAST PERIOD	90%	70%	1	50% (MOST	PROBABLE)	;	30% (1000AF)	10%	•	
MILL CREEK at Walla Walla	APR-SEP	5.0	8.6	1	11.0	62	1	13.4	17.0		17.7
	APR-JUL	4.8	8.4	-1	10.8	61	1	13.2			17.6
	APR-JUN	4.8	8.3	1	10.7			13.1			17.3
				1			1				
GF WALLA MALLA nr Milton Freewater	APR-JUL	29	33	1	36	65	1	39	42		55
RESERVOIR	STORAGE	(1	1000AF)		 	WA	TERS	HED SNOWPAC	K ANALYSI	5 ·	
RESERVOIR	USEABLE :	** USEAE THIS	SLE STORAGE			ocucn		NO. COUR		S YEA	R AS % OF
VEDENANT		YEAR		AVG.		voi IED		AVG'		T YR.	AVERAGE
					Mill	Creek		1	44	- -	49

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

COWLITZ AND LEWIS

WATER SUPPLY OUTLOOK:

April streamflow on the Lewis River was 107% of normal and on the Cowlitz River it was 155%. May 1 snow cover for the Cowlitz-Lewis Basin is 93% of normal, down from 103% on April 1. Summer runoff forecasts for the Lewis River are 86% and for the Cowlitz River, 90%. April precipitation was 107% of normal bringing the water year-to-date precipitation to 103% of average. The Paradise Park SNOTEL has the maximum water content for the basin with 74.4 inches of water, normal May 1 water content is 73.3 inches. Temperatures were three degrees above normal for April.

For more information contact your local Soil Conservation Service office.

				5	TREAMFLOW	FORECAST:	6				
	1	\	DRIER		FUTURE CO	NDITIONS		- WETTER	>	8 2 8	
FORECAST POINT	FORECAST			{	HANCE OF E	XCEEDING	¥			1	
	PERIOD :	90% (1000AF)			50% (MOST (1800AF)				10% (1000AF)	1	25 YR. (1000AF
				1			;				
EWIS RIVER at Ariel (2)	APR-SEP	825	1030	8	1160	93	B B	1290	1490		1244
	APR-JUL	710	S8Ø	8	1999	92	8	1120	1290		1084
	APR-JUN	- 625	775	0 0 0 0	880	92	1	985	1140		958
COMLITZ R. bl Mayfield Dam (2)	APR-SEP	975	1520	8 6	1849	90	1	2160	2710		2036
·	APR-JUL	890	1330	B B	1610	90	1	1890	233Ø		1782
	APR-JUN	73Ø	1130	8 0 8	1370	90	 	1610	1960		1524
COWLITZ R. at Castle Rock (2)	APR-SEP	1450	2250	1	2649	98	1	3030	3840		2687
	AFR-JUL	1310	1969	1	2300	98	1	2640	328Ø		2343
	APR-JUN	1260	1699	8	1980	98	†	2270	2790		2015
				l l			1				
-				·			:				
RESERVOI	R STORAGE	(1	ØØØAF)			þ	IATERSHED	SNOWPACK	ANALYSIS		
PEGEDVAL	USEABLE :	** USEAB				OUED		NO.		YEAR	AS % 0
RESERVOIR	CAPACITY:	YEAR	LAST YEAR	AVG.	WATER	SHED		COURS AVG'D		YR.	AVERAG
					-:	tz River		7	94		198

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

Lewis River

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WHITE - GREEN

WATER SUPPLY OUTLOOK:

May 1 snowpack was 84% of normal on the Green River and 80% of average on the White River. April precipitation was 111% of normal, bringing the water year-to-date to 103% of average. Summer runoff is forecasted to be 90% on the Green River, and 95% of normal on the Cedar River. Water content on May 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 45.66 inches, this site has a April 1 average of 38.7 inches. Temperatures were three degrees above average for April.

or more information contact your local Scil Conservation Service office.

WHITE - GREEN RIVER BASINS

				S	TREAMFLOW	FORECASTS					
	;					INDITIONS			·	;	
FORECAST POINT	FORECAST : PERIOD :	90%	. 70%	1 5	50% (MOST	PROBABLE) (% AVG.)	1 30	3%	10%	 	25 YR. (1000AF
							:				
REEN R bl Howard Hanson Dam (2)	APR-JUL.	198	250 230			96	. ; :	27Ø	300		291 261
•	APR-JUN	178	20/5	1	225	95	1 :	245	270		236
EDAR RIVER nr Cedar Falls	APR-SEP	75	86	1	93	100		101	112		93
RESERVOIR	R STÜRAGE	(1	 1000AF)		; ;		ERSHED SI	NOWPACI	<pre>ANALYSI:</pre>	 6	
		** USEAE						NO.		S YEAR	AS % (
RESERVOIR	CAPACITY:	YEAR		AVG.	WATEF	SHED		COUR!		r yr.	AVERAG
					: White	River		3	90		95
					: Green	River		7	89		101
					i ! Cedar	River		2	64		78

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

NORTH PUGET SOUND

WATER SUPPLY OUTLOOK:

April streamflow in the Skagit River was 166% of average. Forecast for the Skagit River is 88% of normal for the spring and summer period. May 1 snow cover in the Skagit Basin is 81% of normal, and in the Baker River 57%. Jasper Pass aerial snow marker at elevation of 5400 feet, has 65.1 inches of water content; normal May 1 water content is 93 inches. May 1 reservoir storage is above average, with Ross Lake reservoir at 118% of normal and 54% of capacity. Precipitation values for April were 72% of average with a water year-to-date at 111% of normal. April temperatures were three degrees above normal.

For more information contact your local Soil Conservation Service office.

NORTH PUGET SOUND RIVER BASINS

			·	- DRIER			FÜRECASTS	WE TTER	>	1	
FORECAST POINT		PERIOD		70%	1	50% (MOST	PROBABLE) :	30% (1000af)	10%		25 YR. (1000AF)
SKAGIT RIVER at Newhatem	(2)		1420	195Ø 16ØØ 122Ø	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2100 1720 1310	93 ; 91 ; 91 ;	2250 1840 1400	246Ø 2020 1540		2264 1891 1442
	RESERVOIR	STORAGE	(1000AF)		 	WATE	RSHED SNOWPACK	(ANALYSIS	;	
RESERVOIR		USEABLE : CAPACITY:		LAST	iE **	WATER	RSHED	NO. COURS AVG'I	ES		AS % OF
ROSS		1404.1	595.8	703.9	298.0	Snoqt	Jalmie River	2	97		92
DIABLO RESERVOIR		90.6	87.5	86.6		l Skyko	omish River	3	114		124
GORGE RESERVOIR		9.8	8.2	7.6		ì	it River	13	117		101
						Baker	River	9	110		98

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OLYMPIC

WATER SUPPLY OUTLOOK:

May forecasts of runoff for streamflow in the basin are for 88% of average on the Dungeness River and 90% for the Elwah River.

Precipitation for April was 82% of average, with Quillayute receiving 5.51 inches. The basin water year-to-date precipitation accumulation is 99% of normal. May 1 snowpack in the Olympic Basin was 67% of average, down from 94% of normal on April 1. The Mount Craig SNOTEL near Quilcene had a May 1 snow water content of 13.2 inches of water, down from 22.7 inches on April 1. Temperatures were three degrees above normal for April.

For more information contact your local Soil Conservation Service office.

OLYMPIC PENINSULA RIVER BASINS

					STREAMFLOW	FURECASTS					
	1	⟨	DRIER		FUTURE C	DNDITIONS		WETTER	·>	- }	
FORECAST POINT	FORECAST :				CHANCE OF I	EXCEEDING *					
1 GREEKST 1 GZM1	PERIOD :	90%	70%	ł	50% (MOST	PROBABLE) (% AVG.)	1 3	30%	10%	i	25 YR. (1000AF)
DUNGENESS RIVER or Sequim	APR-SEP	110	125	1	135	85			160		159
	APR-JUL APR-JUN	89 66	1Ø1 75	1	1Ø9 81			117 87	130		129 97
				- 1			i	Ų,	_ /0		71
ELWHA RIVER or Port Angeles	APR-SEP	395	45 ∌ 365	1	485			520			553
	APR-JUL	325	365	; !	395	87	i !	425	465		454
				1			;				
					1						
RESERV	OIR STORAGE	(1	ØØØAF)		1	ГАЖ	TERSHED S	SNOWP'AC	K ANALYS	IS	
	USEABLE :							NO.		IS YI	EAR AS % OF
RESERVOIR	CAPACITY:	THIS YEAR		AVG	: WATE	RSHED		COUR AVG'		ST Y	R. AVERAGE
						a River		1	1Ø	 9	94
					l Morse	: Creek		1	10	8	97
					; Dunge	eness River		1	113	3	87
					l Ouite	ene River		Ø		Ø	Ø
					1			-			
					Wynod	chee River		1	7	Ø	112
					i						

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

CONSERVE YOUR IRRIGATION WATER

Can irrigators use less water and get good yields? We think so. With energy costs on an upward spiral and water shortages likely, we offer these water saving ideas to irrigators.

Consider ditch lining or gated pipe. This will reduce the 10-90% loss which occurs in earth ditches.

Keep ditches clean and free from weeds, sediment or other debris, which can slow water velocity, affect delivery rate, and increase evaporation.

Make sure head gates, drop structures, and pipe inlets are operational. A washed out structure is water lost.

Inspect ditch banks for rodent damage. Rodent holes cause leakage or failures.

Make sure sprinkler nozzles are not worn or leaky. Check pipe connections nd valves to prevent leaks.

Operate sprinklers at recommended pressure to effectively use available water.

Maintain your pump at peak efficiency to save energy.

BETTER WATER MANAGEMENT

Better water management may require more labor. It may require changing a head of water in the middle of the night. But it will be worth it. You should:

Measure your water to determine how much is applied.

Consider alternate row irrigation for crops planted in furrows.

Plan short runs. Match stream size and velocity to soil intake rate and capacity.

Catch and reuse tail water where possible.

Under irrigate the lower end of the field to stretch your water.

When water is short, consider eliminating that last irrigation.

Soil Conservation Service personnel can:

Help plan and design new irrigation systems or evaluate existing ones. Provide technical assistance for land leveling, pipeline installation, and other practices.

KNOW YOUR SOILS

Soil absorbs irrigation water at a given rate. This varies with each soil type. Some crops require more water than others. Check soil moisture by spade, probe, or moisture meter. Or use the "feel" method.

WHEN IRRIGATION IS NEEDED SOIL WILL FEEL AND ACT THIS WAY

Soil Texture	A handful of soil will
Coarse	Tend to stick together slightly, but will not form a ball
Medium	Be crumbly, but will form a ball
Fine	be pliable, and will form a ball.

If you have a conservation plan on your farm, or if the soil is your area has been mapped, the Soil Conservation Service can crosscheck soil type and irrigation data and provide you with the water holding capacity of your soil for a given crop.

RANCHING TIPS FOR WATER-SHORT YEARS

Forage production on range and dry pasture depends entirely on natural While overgrazing does moisture. damage to perennial plants during a season of normal moisture, it is more severe during a drought year. It reduces plant vigor, stops root and leaf growth, reduces cover, and invites accelerated erosion. Once erosion begins, it gets worse each year, further forage reducing plant vigor and production. This process difficult to reverse.

Rather than risk permanent damage to grazing resources start planning a strategy early. For example:

- reduce livestock numbers to

balance with forage supply

- cull herds more than normal

- sell calves and lambs early
 determine forage needs and buy
needed supplements early

- grow small grains or sorghums for hay or pasture (these use less water than conventional forage crops)
- defer planting perennial pasture, hay or range seedings until a year with more favorable water outlook
- keep spring developments, stock tanks, float valves and pipeline in good working order so water is not wasted
- use evaporation retardant on ponds and tanks
 - prepare for hauling stock water
- give spring development high priority (even mediocre springs will be helpful)
- check with local SCS and ASCS offices to learn if cost-share programs are available to help with spring developments or other water conservation practices
- don't overgraze or otherwise disturb streambank vegetation (it will help prevent erosion, reduce sediment, and provide food and cover for wildlife)

Remember, if a unit must be abused, well-established seedings can tolerate overgrazing better than native range.

Wildlife will suffer during a drought as much or more than domestic livestock. The wildlife that share your land is a valuable natural resource.

To help wildlife:

- include features at stock water developments which will allow small animals and birds safe access to water (these are usually not expensive and are easily installed)

- fence ponds and springs and install collector pipes to deliver water to a tank or trough. This will improve water quality and quantity for livestock, as well as provide lush vegetation for small animals and birds.

Other places for information or assistance:

- check with local ASCS office for possible special practices or cost-sharing that might assist with irrigation on your farm or ranch this year.
- maintain contact with Farmers Home Administration for special local programs available.
- maintain contact with the local Cooperative Extension Service office for agricultural and marketing conditions.

If you belong to an irrigation district, contact irrigation officials throughout the season to learn about current water availability and water supply forecasts.

For more information concerning your crop, and soil and water conditions, contact the local Conservation District Office.

Basin Outlook Reports

and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

Local Soil Conservation Service Field Office or Bill Weller

Water Supply Specialist Soil Conservation Service Spokane, WA 99201 (509) 353-2341

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soll moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soil Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It Includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthy or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthy and daily data are used to project snowmeit runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

All programs and services of the USDA Soil Conservation Service, are offered on a nondiscriminatory basis, without regard to race, color, national origin, religion, sex, age, marital status, or handicap.

Spokane, Washington 59201-1080 W 920 Riverside, Room 560

Soil Conservation Service

United States Department of Agriculture

Basin Outlook Reports

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

Wilson Scaling
Chief
Soil Conservation Service
U.S. Department of Agriculture

Prepared by

William F. Weller Water Supply Specialist W. 920 Riverside, Rm 360 Spokane, Washington 99201 Released by

Lynn A. Brown
State Conservationist
Soil Conservation Service
Spokane, Washington

422QTs 7EW2W•

ERRATA SHEET

MAY,1990

WATER SUPPLY OUTLOOK REPORT

FOR

WASHINGTON

SORRY FOR ANY INCONVENIENCE THIS MAY HAVE CASUED YOU.

				STF	REAMFLOW	FORECASTS				
	}		- DRIER	F	FUTURE CO	SMOITIONS	WETTER		!	
FORECAST POINT	FORECAST ! PERIOD !	90%	70%	1 50	X (MOST	EXCEEDING * PROBABLE) (% AUG.)	30%	10%		25 YR. (1000AF)
SPOMANE or Post Falls (1,2)	MAY-SEF JUL-YAM	875 815	1300 1220		1490 1400	76 75	1680 1580	2110 1990		1957 1859
SPOKANE at Long Lake (2)	JUL-YAM	1150	1420		1610	77	1800	2070		2097
RESERVO	IR STORAGE	(:	1000AF)		 	WATERS	HED SNOWPAC	K AWALYSIS		
RESERVOIR	USEABLE CAFACITY!	KK USEAR THIS	ELE STORAG LAST	E **		 RSHED	 ₩O. COUR		YEAR	AS % OF
	!	YEAR	YEAR	AVG.	! !		AUG'	D LAST	Y8.	AVERAGE
COEUR O'ALENE	291.2	392.2	391.2	317.2	I Spok:	зпе River	12	92		ó8

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be affected by upstream water management.

STREAMFLOW FORECASTS 1 K----- DRIER ----- FUTURE CONDITIONS ----- WETTER ----- 1 FORECAST POINT 30% 10% 25 YR. | (1000AF) (1000AF) | (1000AF) (% AVG.) | (1000AF) (1000AF) I (1000AF) MAY-SEP PEND OREILLE bl Box Canyon (1,2) MAY-JUL MUL-YAM 97.99 MAY-AUG 4.0 8,8 CHAMOKANE CK or Long Lake ò • 8 10.8 13.6 JUL-AUG 3.0 3.3 3.4 3.5 3.8 3.7 COLVILLE at Kettle Falls MAY-SEP ge 62 JUL-YAM 2.7 MUL-YAM 1030 MAY-SEP KETTLE nr Laurier MAY-JUI MUL-YAK MAY-SEF COLUMBIA at Birchbank (1,2) MAY-JU! 1.05 MUL-YAM COLUMBIA at Grand Coulee Dam (1,2) MAY-SEP MAY-JUL MUL-YAM

		RESERVOIR STORAGE		(1000AF)	1	WATERSHED	SNOWFACK AN	ALYSIS	
70 70 70 70 70 70 70 10 10 10 10 10 10 10 10 10 10 10 10 10	RESERVOIR	USEABLE I CAFACITYI !	⊀≭ USE THIS YEAR	EABLE STOF LAST YEAR	RAGE **	WATERSHED	NO. COURSES AVG'D	THIS YEA	R AS % OF AVERACE
ROOSEVELT		5232.0	3066.8	1619.5	1310.0	Colville River	0	û	0
BANKS		715.0	685.5	576.2	435.0	Pend Oreille River	11	9 5	75
						Kettle River	7	<u>60</u>	96

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

MENATCHEE - CHELAN RIVER BASINS

					STREAMFLOW	FORECASTS				
		! <	DRIER		FUTURE C	ONDITIONS		WETTER		
FORECAST POINT	FORECAST PERIOD	 90% (1000AF)	70% (1000AF)	!	50% (MOST	EXCEEDING * PROBABLE; (% AVG.)	1	30% (1000AF)	10% (1000NF)	25 YR: (1000AF)
CHELAN RIVER at Chelan (1)	MAY-SEP HAY-JUL MAY-JUN	815 710 535	925 810 610		1000 845 655	93 93 93		1050 920 700	1180 1020 780	1075 931 707
STEHEKIN R. at Stehekin	WAY-JUK WAY-JUC WAY-SEF	660 545 405	705 585 430		735 610 450	95 95 95		745 635 470	810 675 495	775 645 473
ENTIAT RIVER or Ardenvoir	HAY-SEF JUL-YAK MUL-YAM	142 129 103	161 146 117		174 158 126	80 81 91		187 170 135	205 187 14°	217 195 155
WENATCHEE R. at Peshastin	MAY-JUL MAY-JUL MAY-JUN	800 735 570	1090 995 770		1290 1170 905	87 88 88		1490 1350 1040	1780 1600 1240	1469 1327 1027
STEMILT or Wenatchee (miners in)	MAY-SEF	50	77		95	69		113	140	138
ICICLE CREEK or Leavenworth	APR-SEP APR-JUL APR-JUN	210 194 152	280 260 205		330 305 240	89 90 89		380 350 275	450 415 330	370 340 270
COLUMBIA R. bl Rock Island Dam (2)	MAY-SEP MUL-YAM MUL-YAM	57000 46600 34900	61200 50100 37500		64100 52500 39300	99 97 97		67000 54900 41100	71200 58400 43700	65060 53860 40550

	RESERVOIR STORAGE		(1000AF)	1 !	WATERSHEE) SNOWPACK AN	JLYSIS	
RESERVOIR	USEABLE I CAPACITY!	∷K≭ USE THIS YEAR	EABLE STOR LAST YEAR	AGE ** 1	WATERSHED	NO. COURSES AVG'D		R AS % OF
CHELAN LAKE	676.1	353.7	255.0	448.8	Chelan Lake Basin	3	101	92
				!	Entist River	1	0	0
				!	Wenstchee River	0	109	83
				1	Squilchuck Craek	0	0	0 ,
				!	Stemilt Creek	1	ō	0
				; } 1	Colockum Creek	1	0	,

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OKANOGAN - METHOW RIVER BASINS

To 4

STREAMFLOW FORECASTS

			DRIER	FUTURE CO	SWOITIOMS	WETTER	!	
FORECAST POINT	FORECAST PERIOD	90% (1000AF)	70% (1000AF)	CHANCE OF E ! 30% (MOST ! (1000AF)	PROBABLE) (% AVG.)	30% (1000AF)	10% } /1900AF)	25 (8 (1000AF)
SIMILKAMEEN R. or Nighthawh	PS-YAM JUL-YAM MUL-YAM	610 550 465	765 695 585	875 795 670	65 64 64	985 895 755	1140 1040 875	1345 1246 1942
OKANOGAN R. nr Tomosket	MAY-JUN MAY-JUL MAY-JUN	7°0 695 560	930 820 670	1030 910 740	67 67 66	1130 1000 810	1270 1130 	1527 1367 1103
METHOW RIVER or Pateros	MAY-SEP MAY-JUL MAY-JUN	505 460 380	635 575 480	720 655 545	80 70	905 735 817	935 850 710	868 834 98

	RESERVOIR STORAGE	/1000AF	, [WATERSHE	D SHOUPACK AN	ALYSIS	
RESERVOIR	USEABLE CAPACITY 1	** USEABLE ST THIS LAST YEAR YEAR	1. Jug. 1	WATERSHED	MO. COURSES AVOID		AR AS I OF
CONCONULLY LAKE (SALMON)	10.5	8.5 8.1	8.0	Okumogan Siver	29	83	50
CONCONULLY FESERVOIR	13.0	8.6 8.1	8.0	Hethow River	4	83	58

x 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

WALLA WALLA RIVER BASIN

				ST	REAMFLOW	FORECASTS				
			- ORIER		FUTURE CO	SMOITIGHS	WETTE	R	1	
FORECAST FOINT	FORECAST PERIOD	 90% (1000AF)	70%	1 5	0% (MDST	EXCEEDING * PROBABLE) (% AVG.)	30%	10%	 	25 YP. (1000AF)
SF WALLA WALLA or Milton Freewater	JUL-YAM	17.0	21		23	59	25	29		30
COLUMBIA R. at The Oalles (2)	MAY-SEP MAY-JUL MAY-JUN	64300 53200 41400	71200 58900 45800		75800 62900 48800	85 85 85	80400 66700 51800	87300 72400 56200		88790 74070 57430
RESERVOIA	STORAGE	. (1000AF)		 ! !	HATER	SHED SNOWPA	CK ANALYSI	- 	
PEOPLEMATE.	USEABLE		ELE STORAG	E **		neurn				AS % OF
RESERVOIR	CAPACITY	I THIS I YEAR	LAST YEAR	AVG.		RSHED	AVG	11000	T YR.	AVERAGE
					1 Mill	Creek	1	0		0

^{★ 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

 ^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.
 (2) - The value is natural flow - actual flow may be affected by upstream water management.

YAKIMA RIVER BASIN

				STE	REAMFLOW	FORECASTS			
	1	.'	- DRIEF -	F	FUTURE OF	MDITIOMS	WETTEP	!	
FORECAST FOIPT						EXCEEDING *		!	
						PROBABLE) (% AVG.)		10% (1000AF)	25 YR. (1000AF)
YAKIMA PIVER at Mortin (1)	MAY-SEP	80	0 2		97	бо	102	114	100
	JUL-YAM MUL-YAM	75 63	85 72		0g 76		8¢	105 g <i>8</i>	100 85
YAKIMA RIVER at Cle Elum (2)	MAY-SEP MAY-JUL MAY-JUN	535 455 380	595 510 425		835 545 455	81 80 80	675 580 485	735 635 530	786 692 570
YAKIMA RIVER on Parker (2)	MAY-JUL MAY-JUL MAY-JUN	985 875 740	1170 1040 880		1300 1150 975	77 78 78	1430 1260 1070	1620 1430 1210	1682 1469 1250
KACHESS RIVER or Easton (1)	MAY-SEF	70	83		89	82	95	108	108
	JUL-YAM MUL-YAM	58 50	69 60		74 64	83 83	79 68	90 78	89 77
CLE ELUM RIVER or Roslvo (1)	MAY-SEP MAY-JUL	270 245	310 285		330 300	84 85	350 315	390 355	3 ° 3
	MUL-YAK	200	230		245	85	260	560	289
BUMPING RIVER or Nile (1)	MAY-SEP MAY-JUL	92 75	<u> </u>		106 97	86 97	113 104	130 119	123 112
	MUL-YAM	ó1	73		78	87	83	95	90
AMERICAN RIVER or Nile	MAY-SEP MAY-JUL	78 71 50	86 78		91 83	8 5 86	96 88	104 95 77	107 97 79
TIETON RIVER at Tieton (1)	MUL-YAM	119	149		68 163	86 77	72 177	205	213
12000 12120 30 12000 127	JUL-YAM MUL-YAM	102 78	127		138 106	78 78	149 115	174 134	177 136
NACHES RIVER on Naches (2)	MAY-SEP	440	500		540	74	580	640	726
	JUL-YAM MUL-YAM	395 325	450 370		485 400	75 75	520 430	575 475	645 533
AHTANUM CREEK or Tampico (2)	MAY-SEP JUL-YAM MUL-YAM	22 19.0 16.0	27 24 19.0		30 27 22	77 77 76	33 30 25	39 35 28	39 35 29
		10.0	1,.0			, o			
RESERVI	DIR STORAGE	((1000AF)		\$. 5.	WATER	SHED SNOWPAC	CK ANALYSIS	
RESERVOIR	USEABLE CAPACITY!		ELE STORA		! ! ! WATE!	eghen	NO.	_	YEAR AS % OF
TECENTOLIN .			YEAR	AVG.	1		AUG	D LAST	YR. AVERAGE
KEECHELUS	157.8	147.1	148.5	119.0		ma River	15	91	77
KACHESS	230.0	217.5	155.6	197.0	1	num Creek	1	59	63
CLE ELUM	436.9	385.1	352.1	308.0	1				
EUMPING LAKE		20.7	20.5	15.0	ł				
RIMROCK	108.0	186.3	161.2	144-0	i.				

^{* 90% 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

)

The average is computed for the 1961-1985 base period.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels. (2) - The value is natural flow - actual flow may be effected by opstream water management.

CONLITY - LEWIS RIVER BASINS

STREAMFLOW FORECASTS I K----- DRIER ----- FUTURE CONDITIONS ----- WETTER -----FORECAST I ----- CHANCE OF EXCEEDING * ------FORECAST POINT | 90% 70% | 50% (MOST PROBABLE) | 30% | (1000AF) (1000AF) | (1000AF) (% AVE.) | (1000AF) PERIOD 10% 25 YR. (1000AF) (1000AF) (1000AF) | MAY-SEP 680 765 8á 850 980 LEWIS RIVER at Ariel (2) 732 MAY-JUL 435 540 610 83 785 MAY-JUN 450 510 606 365 655 90 COWLITZ R. bl Mayfield Dam (2) MAY-SEP 670 1130 1450 1770 2230 1604 88 MAY-JUL 535 925 1190 1460 1850 1350 MUL-YAM 745 960 1170 1490 1092 93 COWLITZ R. at Castle Rock (2) MAY-SEP 905 1500 1900 2300 2900 2050 1540 MAY-JUL 710 1200 90 1880 2370 1706 MUL-YAM 570 970 1240 90 1510 1910 1378 RESERVOIR STORAGE (1000AF) WATERSHED SHOWFACK AMALYSIS USEABLE | ** USEABLE STORAGE ** | NO. THIS YEAR AS % OF CAPACITY! THIS LAST COURSES I YEAR YEAR AUC!D f Cowlitz River

Lewis River

78

^{4 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

WHITE - GREEN RIVER BASINS

				51	REAMFLOW	FORECASTS	3				
			DRIER		FUTURE CO	SMOITIONS		- WETTER		!	
FORECAST POINT	PERIOD	90% 90% (1000AF)	70%	1 5	10% (MOST	PROBABLE)	1	30%	10%		25 YR. (1000AF)
GREEN R bl Howard Hanson Dam (2)	MAY-JUL	128	146			90 89 89			220 188 162		207 177 153
CEDAR RIVER or Cedor Falls		51	65 58 47		70 62 51	° 5 ° 5 ° 4		75 67 55	83 73 60		74 66 54
RESERVOIR	STORAGE	(1	000AF)		 		HATERSHED	SNOWFAC	CK ANALYS	 [S	
DE OCCUPATO.		** USEAE							TH:		
RESERVOIR		THIS YEAR		AVG.		KSHED			D LAS	ST YF.	AVERAGE
					! White	e River		3	8		80
					Gree	n River		3	10:	2	84
					l Ceda	r Fiver		0		9	0

x 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

The average is computed for the 1961-1985 base period.

Contractor of

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

OLYMPIC FENINSULA RIVER BASINS

STREAMFLOW FORECASTS

FORECAST POINT	FORECAST FERIOD	1	70% (1000AF)	CHANCE OF	ONDITIONS EXCEEDING * FROEABLE; (% AVG.)	 I	30% (10000F)	10% (1000AF)	25 YR. (1000AF)
DUNCENESS RIVER or Sequia	MAY-SEP MAY-JUL MUL-YAM	97 77 68	111 88 77	120 95 84	89 87 87		129 102 91	143 113 100	137 109 97
ELWHA RIVER or Port Angeles	MAY-SEP MAY-JUL.	330 265	375 300	405 325	90 . 90		435 350	480 385	451 363

	RESERVOIR STORAGE	(1000AF)	 	WATERSHED	SNOWPACK AN	ALYSIS	
RESERVOIR	USEABLE I CAPACITYI I	** USEABLE STO THIS LAST YEAR YEAR	RAGE ** AUG.	WATERSHED	NO. COURSES NO.		R AS % OF AVERAGE
			1	Elwho River	1	76	54
			i	Morse Creek	1	84	67
			1	Dungeness River	1	63	21
			1	Quilcene River	0	0	0
			1	Wynoochee River	1	56	58

x 90%, 70%, 30%, and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

					ST	REAMFLOW	FORECASTS					
		1	<	DRIER		FUTURE C	CNCITIONS		WETTEP		-> 1 1	
FORECAST POINT		FORECAST PERIOD	90% (1000AF)	70%	1 5	io% (MOST	EXCEEDING » FROBABLE) (% AVG.)	1		10%		25 YR. (1000AF
SKAGIT RIVER at Newhales	(2)	MAY-AUG MAY-JUL	1510 1400 1250 1100	1700 1570 1400 1230		1820 1690 1500 1320	88 89 89		1940 1810 1600 1410	2136 1986 1756 1546	0	2062 1919 1689 1485
	RESERVOIR	STORAGE	(<u>1</u>	.000AF)		1. 1. 1	 NA	TERSHE	D SNOWPAG	CK ANAL	 YSIS	
RESERVOIR		CAPACITY	IXX USEAE THIS YEAR	LAST	SE XX	I WATE	RSHED		ЖО. COUF AVG	RSES		 AS % O
ROSS		1404.1	763.3	645.9	644.4	l Snog	uslmie Rive	r	1		98	 73
DIABLO RESERVOIR			NO REPORT	г		l Skyk	omish River		3		103	91
GORGE RESERVOIR		9.8	8.0	7.7		l Skag	it River		13		101	81
			·			t Bake	r River		Ģ		81	57

^{* 90%, 70%, 20%,} and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural flow - actual flow may be affected by upstream water management.

		ν.	