Übungsserie 10

Abgabe: gemäss Angaben Dozent

Fassen Sie Ihre Lösungen zusammen in die ZIP-Datei Name_Vorname_Gruppe_S10.zip. Laden Sie dieses File vor der nächsten Übungsstunde nächste Woche auf OLAT hoch. Die einzelnen m-Files müssen ausführbar sein und in den Kommentarzeilen (beginnen mit %) soll bei Funktionen ein Beispiel eines funktionierenden Aufrufs angegeben werden. Verspätete Abgaben können nicht mehr berücksichtigt werden.

Aufgabe 1 (40 Minuten):

Zu den folgenden Stützpunkten soll die natürliche kubische Splinefunktion bestimmt werden, d.h. bestimmen Sie die Koeffizienten a_i, b_i, c_i, d_i der kubischen Polynome S_i für i = 0, 1, 2 und geben Sie die $S_i(x)$ explizit an.

Scannen Sie ihre manuelle Lösung in die Datei Name_Vorname_Gruppe_S10_Aufg1.pdf.

Aufgabe 2 (80 Minuten):

Implementieren Sie den Algorithmus zur Berechnung der natürlichen kubischen Splinefunktion S(x) gemäss Skript in der Funktion $[yy] = Name_Vorname_Gruppe_S10_Aufg2(x,y,xx)$. Dabei ist x der Vektor mit den (n+1) gegebenen Stützstellen (aufsteigend sortiert) und y der analoge Vektor mit den bekannten Stützwerten. Der Vektor xx definiert die Werte, für die yy = S(xx) berechnet werden soll. Dabei müssen die Werte von xx innerhalb des Intervals $[x_0,x_n]$ liegen. Ihre Funktion soll zusätzlich S(x) für die durch xx definierten Werte grafisch darstellen. Überprüfen Sie Ihre Funktion anhand Aufgabe 1.

Bemerkung: falls Sie herausfinden wollen, welche Elemente des Vektors xx im Interval $[x_i, x_{i+1}]$ liegen, gibt Ihnen die MATLAB Funktion find (siehe help) die entsprechenden Indizes von xx aus, z.B. $r = find(x(i) \le xx \le xx \le x(i+1))$.

Aufgabe 3 (20 Minuten):

Erstellen Sie ein Skript Name_Vorname_Gruppe_S10_Aufg3.m, welches Ihnen die folgende Aufgaben löst:

• Testen Sie Ihre Funktion aus Aufgabe 2 an der Zeitreihe der Bevölkerungszahl (in Mio.) der USA:

	t	1900	1910	1920	1930	1940	1950	1960	1970	1980	1990	2000
ſ	p(t)	75.995	91.972	105.711	123.203	131.669	150.697	179.323	203.212	226.505	249.633	281.422

- Benutzen Sie die MATLAB-Funktionen
 - spline

um diese Messreihe durch eine Splinefunktion zu interpolieren und vergleichen Sie das Resultat grafisch.

- Benutzen Sie die Funktion
 - polyfit

um die Messdaten durch ein Polynom 10. Grades zu interpolieren. Verschieben Sie dazu die Zeitreihe von 1900 zum Jahr 0, bevor Sie polyfit anwenden. Vergleichen Sie das Resultat grafisch.