Project Goals and Use Cases

Project: Biomedical LLM Information Extraction Tool

Version: 0.1

Author: Elena Jolkver

Date: 25.07.2025

1. Introduction

This document outlines the goals, intended users, and primary use cases for the Biomedical LLM Information Extraction Tool, a Streamlit-based application for extracting and summarizing key information from ClinicalTrials.gov documents using Large Language Models (LLMs).

2. Project Goals

1. Automate Key Information Extraction:

- Enable efficient and accurate extraction of key structured components from unstructured clinical trial data (e.g., PICO: Population, Intervention, Comparator, Outcomes) to reduce manual effort.

2. Facilitate Biomedical Literature Review:

 Provide concise, machine-generated summaries and relevant metadata from clinical trial documents to accelerate the literature review process for researchers and clinicians.

3. User-Friendly Interface:

 Offer a simple, intuitive web-based tool requiring no coding experience, targeting domain experts (not just data scientists).

4. Security & Privacy:

- Allow for local/private deployment (including via Docker), ensuring sensitive unpublished data does not leave the organization's environment.

5. Extensibility:

- Build a modular backend that supports further customization (e.g., new extraction types, translation, Question Answering) and integration with downstream workflows.

3. Target Users & Stakeholders

- Clinical Researchers

o For rapid review and structuring of clinical trials relevant to their field.

- Medical Affairs & Regulatory Teams

 To support due diligence, preparation of regulatory submissions, and competitive intelligence.

- Healthcare Data Scientists/Bioinformaticians

 For pre-processing clinical trial data in machine learning or meta-study pipelines.

- Pharmaceutical/Biotech Organizations

 Interested in automating the review and summary of public/private clinical studies for R&D decision-making.

Educators and Trainers

 For demonstration of automated information extraction techniques in bioinformatics and clinical research education.

4. Primary Use Cases

Below are listed primary use cases for version v0.1.

4.1 Rapid Clinical Trial Screening

Description:

- A researcher uploads a batch of ClinicalTrials.gov XML files or exported summaries.

Outcome:

- Tool extracts structured PICO elements and summary tables to quickly assess study relevance for a systematic review.

4.2 Automated Literature Summarization

Description:

 A medical affairs professional needs quick, structured summaries of recent published trials on a target disease.

Outcome:

- Tool ingests texts or abstracts and returns concise, LLM-generated key point summaries.

4.3 Private On-Premise Extraction

Description:

- A pharmaceutical company processes proprietary clinical trial documents.

Outcome:

- Tool is deployed via Docker for use within internal secure networks, ensuring no data leaves the company.

4.4 Custom Integration for NLP Workflows

Description:

- A data scientist wants to integrate the extraction logic as a component in a larger pipeline.

Outcome:

- Tool's backend can be called programmatically or via API, and the modular architecture supports future automation or integration.

5. Scope and Limitations

Current Scope:

 Extraction/summarization from English-language ClinicalTrials.gov data using opensource LLMs; local user upload via Streamlit UI; prototype stage.

Not in Scope (for v0.1):

- Real-time processing of very large datasets or full databases.
- Handling of non-English languages.
- Production-level multi-user authentication or detailed audit logging.

6. Success Criteria

- End-users can successfully upload and process at least 10 clinical trial files and receive interpretable, structured outputs.
- Extraction quality is comparable to or better than manual efforts in sample tasks.
- Tool can be deployed locally (including via Docker) with minimal configuration.

7. Future Directions (Optional)

- Expand to support PubMed or other literature sources.
- Add feedback/correction mechanisms to improve model output quality.
- Implement advanced QA (question answering) and user interaction features.
- Support multi-language and multi-modal data.

8. References

- ClinicalTrials.gov
- HuggingFace Transformers documentation
- Streamlit documentation