Exercise S.I.I

Let $\{X_t\}_{t\geq 0}$ denote the number of defects along the filament. Then $\{X_t\}_{t\geq 0}$ is a CTMC, Specifically a Poisson process with rate $\lambda=2$ defects per foot.

- a) Note that X_t is the number of defects in the interval [0,t]. Thus, we seek the probability $P(X_1=0)$. Using that $X_0=0$ and the definition on p. 225-226, we get: $P(X_1-X_0=0)=P(X_1=0)=(2\cdot1)^0\cdot e^{-2\cdot1}/6!$
- b) To calculate the probability of interest, recall that non-overlapping intervals have independent increments.

 Moreover, increments over non-overlapping intervals of equal length have identical distributions. Hence,

$$P(X_2 - X_1 = 0 | X_1 - X_0 = 1) = P(X_2 - X_1 = 0)$$

$$= P(X_1 - X_0 = 0)$$

$$= e^{-2}$$