

Eexam

Sticker mit SRID hier einkleben

Hinweise zur Personalisierung:

- Ihre Prüfung wird bei der Anwesenheitskontrolle durch Aufkleben eines Codes personalisiert.
- Dieser enthält lediglich eine fortlaufende Nummer, welche auch auf der Anwesenheitsliste neben dem Unterschriftenfeld vermerkt ist.
- Diese wird als Pseudonym verwendet, um eine eindeutige Zuordnung Ihrer Prüfung zu ermöglichen.

Einführung in die Theoretische Informatik

Klausur: IN0011 / Retake Datum: Mittwoch, 13. Oktober 2021

Prüfer: Prof. Dr. h.c. Javier Esparza **Uhrzeit:** 11:30 – 14:30

Bearbeitungshinweise

- Diese Klausur umfasst 16 Seiten mit insgesamt 9 Aufgaben.
 Bitte kontrollieren Sie jetzt, dass Sie eine vollständige Angabe erhalten haben.
- Die Gesamtpunktzahl in dieser Prüfung beträgt 100 Punkte.
- 45 Punkte sind hinreichend zum Bestehen.
- Sie müssen Ihre Klausur eingescannt bis 14:45 online auf TUMExam einreichen:
 - Sie müssen nur die von Ihnen bearbeiteten Seiten und das **unterschriebene** Deckblatt hochladen.
 - Achten Sie darauf, dass sowohl Ihre Lösungen als auch die Barcodes klar lesbar sind.
 - In begründeten Fällen (wie z.B. bei technischen Problemen) können Sie der Übungsleitung bis 14:45 per Email (theoleitung@in.tum.de) ihre Klausur zukommen lassen, als PDF oder SHA256-Prüfsumme.
- Sie müssen die Klausur alleine bearbeiten. Die Klausur ist open-book (Kofferklausur), allerdings dürfen Sie in keinster Weise Unterstützung von anderen Personen erhalten oder diesen geben (in Person, Chat, Foren, Diskussiongruppen, etc.). Eine solche Unterstützung wird als Unterschleif bewertet und mit den Konsequenzen, wie in der APSO beschrieben, geahndet.
- Sie dürfen jegliche Art von Literatur (auch im Internet) benutzen. Sollten Sie dabei auf Lösungsansätze stoßen, die Sie für die Klausur verwenden möchten, so müssen Sie diese Teile klar und deutlich zitieren (Literaturverweis bzw. Link). Die Lösung selber müssen Sie dennoch weiterhin selbstständig in die Klausur übertragen. Ihnen ensteht durch eine Zitation kein Nachteil.
- Sie können uns Fragen via Zulip oder E-Mail (theoleitung@in.tum.de) stellen, oder uns auf diesem Wege auf Probleme hinweisen. Inhaltliche Fragen werden wir nicht beantworten; falls Ihnen eine Aufgabenstellung mehrdeutig erscheint, notieren Sie bitte Ihre Interpretation der Aufgabe.
- Damit wir Sie während der Klausur erreichen können, behalten Sie bitte Ihr E-Mail Postfach im Blick.
- · Mit * gekennzeichnete Teilaufgaben sind ohne Kenntnis der Lösung vorheriger Teilaufgaben lösbar.
- · Sie dürfen Ergebnisse vorheriger Teilaufgaben auch dann verwenden, wenn Sie diese nicht lösen konnten.
- Es werden nur solche Ergebnisse gewertet, bei denen der Lösungsweg erkennbar ist. Alle Aufgaben sind grundsätzlich zu begründen, sofern es nicht ausdrücklich anders vermerkt ist.
- Schreiben Sie weder mit roter noch grüner Farbe.
- Ihre Lösungen müssen handschriftlich verfasst sein (digital oder auf Papier)!
- $0 \in \mathbb{N}$.

Aufgabe 1 Reguläre und kontextfreie Sprachen (13 Punkte)

Für die folgenden Fragen ist eine Begründung nur erforderlich, wenn explizit danach gefragt wird. Die Länge eines regulären Ausdrucks über dem Alphabet Σ ist die Länge der üblichen Repräsentation über dem Alphabet $\Sigma \cup \{(,),*,|,\epsilon,\emptyset\}$.

0 1 2	a)* Geben Sie Sprachen $A, B \subseteq \{a, b\}^*$ mit $A \neq B$ und $ AB < A B $ an.
- LJ	
0 1 2	b)* Geben Sie einen regulären Ausdruck r für die Sprache $\{w \in \{0,1\}^* : w _1 \le 3\}$ an, mit $ r \le 25$.
2	
0 1 2 3	c)* Geben Sie eine kontextfreie Grammatik G für die Sprache $\{a^{12}\}$ an. G muss in Chomsky-Normalform sein und höchstens 5 Produktionen haben. Beachten Sie, dass z.B. $S \to SS \mid \varepsilon$ zwei Produktionen sind.
0 1 2 3	d)* Gibt es eine kontextfreie Grammatik <i>G</i> , sodass jeder PDA für <i>L</i> (<i>G</i>), der über Finalzustände akzeptiert, mindestens 2 Zustände hat? Falls ja, geben Sie ein solches <i>G</i> an und begründen kurz, dass es die geforderte Eigeschaft erfüllt. Falls nein, begründen Sie kurz, wieso dies unmöglich ist.
0 1 2 3	e)* Sei $S \subset \mathbb{N}$ endlich mit $S \neq \emptyset$. Geben Sie den minimalen DFA für $L := \{a^n : n \in S\}$ über dem Alphabet $\Sigma := \{a\}$ formal an.
3	

Aufgabe 2 Potenzkonstruktion (10 Punkte)

Berechnen Sie mit Hilfe der Potenzmengenkonstruktion einen DFA für den folgenden NFA.

Achtung: Falls Sie die Klausur ausgedruckt haben oder digital bearbeiten, schreiben Sie bitte direkt in die folgende Vorlage. Falls Sie auf dem Template arbeiten, das Sie vor Klausurbeginn ausgedruckt haben, ordnen Sie die Zustände bitte trotzdem so wie in der Vorlage an.

Hinweis: Sie müssen nur den erreichbaren Teil des Automaten berechnen!

(0)

({2,3})

 $\left(\left\{1,2,4\right\}\right)$

Aufgabe 3 Minimierung (12 Punkte)

0	
1	
2	
3	
4	
5	
6	

a)* Minimieren Sie den folgenden DFA mit dem erweiterten Minimierungsalgorithmus aus der Übungsaufgabe Ü4.4(b) (siehe https://teaching.model.in.tum.de/2021ss/theo/ex/ue04-solution.pdf?key=o25mcGBZ) und zeichnen Sie den minimierten DFA.

Füllen Sie dazu die Tabelle aus und geben Sie für jedes Paar an Zuständen (q, r), das sie "markieren", ein **kürzestes** Wort w an, das sie unterscheidet (d.h. von $\delta(q, w)$, $\delta(r, w)$ ist genau einer akzeptierend).

Aufgabe 4 Äquivalenzklassen (11 Punkte)

a)* Der unten gezeichnete DFA M ist der kanonische Minimalautomat für den regulären Ausdruck $r := ba \mid aa^*b$ über dem Alphabet $\Sigma := \{a, b\}$. Beschriften Sie jeden Zustand mit der entsprechenden Äquivalenzklasse von L(r), indem Sie einen regulären Ausdruck für die Äquivalenzklasse angeben.

Beachten Sie, dass im minimalen DFA die Äquivalenzklasse eines Zustandes genau die Wörter enthält, die diesen Zustand vom Startzustand aus erreichen. Zum Beispiel hat Zustand 1 die Äquivalenzklasse $\{\varepsilon\}$, und wurde dementsprechend mit ϵ beschriftet.

Achtung: Es genügt nicht, einen Repräsentanten der Äquivalenzklasse zu notieren!

Hinweis: Sie können direkt in die Aufgabenstellung schreiben.

b)* Sei $\Sigma := \{a, b, c\}$ und $L := \{a^n c b^m : n > 7m \land n, m \in \mathbb{N}\}$. Beweisen Sie, dass \equiv_L unendliche viele Äquivalenz-klassen hat, indem Sie eine unendliche Folge an Wörten $w_0, w_1, w_2, ... \in \Sigma^*$ identifizieren, für die $w_i \not\equiv_L w_j$ für alle $i \neq j$ gilt.

Anmerkung: Aus dem Satz von Myhill-Nerode folgt dann, dass L nicht regulär ist.

Aufgabe 5 CFG Konstruktion (10 Punkte)

a)* Sei $\Sigma := \{a, b, c\}$. Wir betrachten folgende Grammatik G :	П
$egin{aligned} S ightarrow XX \ X ightarrow YS \mid a \mid b \mid c \ Y ightarrow a \end{aligned}$	Ħ
Konstruieren Sie eine kontextfreie Grammatik H mit $L(H) = L(G) \cap \Sigma^4$. Ihre Grammatik H darf höchstens 15 Produktionen haben. Hinweis: Die Variablen der Musterlösung kommen aus der Menge $\{S_1,, S_4, X_1,, X_4, Y_1,, Y_4, \}$.	
ninwers. Die Variabien der Musteriosung kommen aus der Menge {51,, 54, 71,, 74, 71,, 74, }.	
b)* Sei $G = (V, \Sigma, P, S)$ eine beliebige kontextfreien Grammatik in Chomsky-Normalform (CNF) und $n \in \mathbb{N}$. Geben Sie eine kontextfreie Grammatik $H = (V', \Sigma, P', S')$ an, sodass $L(H) = L(G) \cap \Sigma^n$ und $ P' \leq n^2 P $. Zeigen Sie	
außerdem, dass $ P' \le n^2 P $ gilt.	H
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	
außerdem, dass $ P' \leq n^2 P $ gilt.	

Aufgabe 6 Entscheidbarkeit und Komplexität (10 Punkte)

Entscheiden Sie, ob die folgenden Aussagen jeweils wahr sind, **unter der Annahme P** \neq **NP**. Falls ja, geben Sie eine *kurze* Begründung an, falls nein, ein Gegenbeispiel.

Achtung: Wenn die Aussage falsch ist, müssen Sie ein konkretes Gegenbeispiel angeben, eine Begründung genügt nicht.

0	a)* Sei $L \subseteq \{0,1\}^*$ entscheidbar. Dann ist $L' := \{w \in \{0,1\}^* : L(M_w) = L\}$ unendlich.
2	
0	b)* Seien $L_1, L_2,$ entscheidbar. Dann ist $L' := \bigcup_{n=1}^{\infty} L_i$ entscheidbar.
2	
0	c)* Für jedes unendliche $L \subseteq \{0,1\}^*$ ist die Menge $A := \{L(M) \subseteq L : M \text{ ist TM}\}$ abzählbar.
2	
0	d)* Jede Sprache in NP ist unendlich.
2	
0	e)* Für jede Sprache $L \in NP$ gibt es eine Sprache $L' \in P$ und ein Polynom p , sodass $w \in L$ gilt, gdw. es ein u mit $w#u \in L'$ und $ u \leq p(w)$ gibt.
2	

Aufgabe 7 Reduktion (12 Punkte)

In dieser Aufgabe betrachten wir reguläre Ausdrücke über einem Alphabet $\Sigma = \{a_1,, a_n\}$, für $n \in \mathbb{N}$. Die Länge $ r $ eines regulären Ausdrucks r ist die Länge der üblichen Repräsentation über dem Alphabet $\Sigma \cup \{(,), *, , \epsilon, \emptyset\}$. Z.B. hat der Ausdruck $(a_1 a_2)^*$ Länge 6. Wir verwenden r^k als Makro für die k -fache Konkatenation von r . Beachten Sie, dass $ r^k = k r $, so hat etwa der Ausdruck $(a_1 a_2)^{10}$ Länge 50, nicht Länge 7.
a)* Ein Wort $w \in \Sigma^*$ ist eine <i>Permutation</i> von Σ genau dann, wenn es eine Bijektion $f: \{1,, n\} \to \{1,, n\}$ gibt, mit $w = a_{f(1)}a_{f(2)}a_{f(n)}$. Für $n = 3$ wären z.B. $a_3a_1a_2$ und $a_1a_2a_3$ Permutationen, aber $a_2a_3a_3$, $a_3a_1a_2a_1$, und a_2a_1 nicht.
Geben Sie (für beliebiges n) einen regulären Ausdruck r_{kP} über Σ an, sodass $L(r)$ genau die Wörter enthält, die keine Permutationen sind, und r_{kP} Länge polynomiell in n hat. Sie können Σ als Makro für $(a_1 \mid a_2 \mid \mid a_n)$ verwenden (das Makro hat Länge $2n+1$) und $\bigcup_{i \in M} r_i$ anstelle von $r_{a_1} \mid \mid r_{a_k}$ schreiben, für eine beliebige Menge $M = \{a_1,, a_k\}$.
b)* Wir betrachten das Nicht-Universalitätsproblem für reguläre Ausdrücke, was wir als RE-NONUNI bezeichnen. Es ist folgendermaßen definiert:
Eingabe: Ein regulärer Ausdruck r über $\Sigma = \{a_1,, a_n\}$. Ausgabe: Ist $L(r) \neq \Sigma^*$?
Außerdem betrachten wir HAMILTON, also die Frage, ob ein Graph einen Hamilton-Kreis besitzt (siehe Folie 353). Zeigen Sie HAMILTON \leq_p RE-NONUNI, indem Sie eine entsprechende Reduktionsfunktion beschreiben und argumentieren, dass diese die notwendigen Bedingungen erfüllt. Hinweis: Sie können Teilaufgabe a) verwenden und dürfen ohne Beweis annehmen, dass r_{kP} in polynomieller Zeit konstruiert werden kann.

Lösungbox Aufgabe 7 (fortlaufend)

Aufgabe 8 Die Sandwich-Sprache (12 Punkte)

Sei $A := \{a^n b^n \{a, b\}^* \text{ mit } A \subseteq$: <i>n</i> ∈ ℕ}, <i>B</i> := { <i>L</i> ⊆ <i>B</i> gibt.	$w\in\{a,b\}^*$: $ w $	$y _a = w _b$. Bewe	eisen Sie, dass e	es keine regulär	e Sprache

Aufgabe 9	ResidualspRAcher	(10 Punkte)
-----------	------------------	-------------

Sei $\Sigma := \{0, 1, \$\}$. Für eine beliebige Sprache $L \subseteq \Sigma^*$ und ein Wort $w \in \Sigma^*$ bezeichnen wir $L^w := \{u \in \Sigma^* : wu \in L\}$ als die *Residualsprache bezüglich* w von L. Anschaulich gesprochen enthält L^w also alle Wörter in L, die mit w beginnen, aber jeweils ohne das führende w.

Wir schreiben RA := $\{L(M_w) \subseteq \Sigma^* : w \in \{0,1\}^*\}$ für die Menge der rekursiv aufzählbaren / semi-entscheidbaren Sprachen über dem Alphabet Σ .

b)* Sei <i>H</i> := {	$\{w\$x: w \in \{0,1\}^*, x \in \{0,1\}^$	$\in L(M_w)$ das (allger	meine) Halteproble	em. Zeigen Sie: $\{\mathcal{H}\}$	$\mathcal{C}^w:w\in\Sigma^*\}=R^{P}$

Sie nicht, ungü	ür Lösungen. Mark Itige Lösungen zu	streichen.		-

