Example 9

(AMC) Distinct points A and B are on a semicircle with diameter MN and center C. The point P is on CN and $\angle CAP = \angle CBP = 10^{\circ}$. If $MA = 40^{\circ}$, then BN equals

- (A) 10°
- (B) 15°
- (C) 20°
- (D) 25°
- (E) 30°

Solution: (C).

Method 1:

In $\triangle ACP$ and $\triangle BCP$ we have (in the order given) the condition angle-side-side.

Since these triangles are not congruent ($\angle CPA \neq \angle CPB$), we must have that $\angle CPA$ and $\angle CPB$ are supplementary.

From
$$\triangle ACP$$
 we compute $\angle CPA = 180^\circ - 10^\circ - (180^\circ - 40^\circ) = 30^\circ.$ Thus $\angle CPB = 150^\circ$ and $BN = \angle PCB = 180^\circ - 10^\circ - 150^\circ = 20^\circ.$ Method 2: $\angle CPA = 30^\circ (\operatorname{arc} AC)$ $\angle CBA = 30^\circ (\operatorname{arc} AC)$ $\angle CAB = \angle CBA (\operatorname{arc} BC = \operatorname{arc} AC)$

 $\angle PAB = 30^{\circ} - 10^{\circ} = 20^{\circ}.$ $\angle BCP = \angle PAB = 20^{\circ} \text{ (same arc } PB \text{)}.$