photobiologyFilters Version 0.3.2 Catalogue of filters

Pedro J. Aphalo

November 21, 2015

Contents

library(photobiologygg)

1	Introduction	1
2	Dummy filters 2.1 Perfectly clear filter	2
3	3.1 Cellulose diacetate	2 6 7 0 3
4	4.1 Plexiglas 1 4.2 Polycarbonate 1 4.3 Polyestyrene 1 4.4 Polyester 1	5 .8 .9 .9
5 6	5.2 Schott band-pass filters	1 21 31 2
1	Introduction	
	<pre>ary(ggplot2) ary(photobiologyFilters)</pre>	

```
options(photobiology.plot.annotations = c("boxes", "labels", "colour.guide", "title"))
```

2 Dummy filters

2.1 Perfectly clear filter

plot(clear.spct)

3 Plastic films

3.1 Cellulose diacetate

```
plot(acetate.115um.new.spct)
plot(acetate.250um.new.spct)
plot(acetate.480um.new.spct)
```



```
plot(acetate.ageing0.spct)
plot(acetate.ageing30.spct)
plot(acetate.ageing60.spct)
plot(acetate.ageing60.spct)
plot(acetate.ageing100.spct)
plot(acetate.ageing180.spct)
plot(acetate.ageing300.spct)
```


3.2 Polyester

plot(polyester.new.spct)

3.3 Polythene

```
plot(polythene.new.spct)
plot(polythene.used.spct)
```


3.4 Rosco theatrical filters

```
plot(clear.00.new.spct)
plot(uv.226.new.spct)
plot(uv.226.used.spct)
plot(canary.yellow.new.spct)
plot(canary.yellow.used.spct)
plot(moss.green.new.spct)
plot(moss.green.used.spct)
plot(rose.pink.new.spct)
plot(neon.pink.used.spct)
```


3.5 Lee theatrical filters

```
plot(Lee_101_Yellow.spct)
plot(Lee_105_Orange.spct)
plot(Lee_119_Dark_Blue.spct)
plot(Lee_199_Regal_Blue.spct)
plot(Lee_210_0.6ND.spct)
plot(Lee_298_0.15ND.spct)
plot(Lee_299_1.2ND.spct)
```


$3.6 \quad \hbox{Commercial greenhouse films from BPI Agri Visqueen}$

```
plot(solatrol.new.spct)
plot(luminance.new.spct)
```


4 Plastic sheets

4.1 Plexiglas

```
plot(PLX2458_GT.spct)
plot(PLX0A000_XT.spct)
plot(PLX0A570_GT.spct)
plot(PLX0F00_GT.spct)
plot(PLX0F00_GT.spct)
```



```
plot(PLX1C33_GT.spct)
plot(PLX2C04_GT.spct)
plot(PLX3C01_GT.spct)
plot(PLX5C01_GT.spct)
```


4.2 Polycarbonate

4.3 Polyestyrene

plot(PS.spct)

4.4 Polyester

plot(Pet_G.spct)

4.5 Polyvinilchloride

5 Optical glass filters

5.1 Schott long-pass filters

```
plot(gg395.spct)
plot(gg400.spct)
plot(gg435.spct)
plot(gg455.spct)
plot(gg475.spct)
plot(gg495.spct)
```


plot(bg25.spct)
plot(bg3.spct)
plot(bg7.spct)

plot(kg2.spct)
plot(kg3.spct)
plot(kg5.spct)


```
plot(n_wg280.spct)
plot(n_wg295.spct)
plot(n_wg305.spct)
plot(n_wg320.spct)
```



```
plot(og515.spct)
plot(og550.spct)
plot(og570.spct)
plot(og590.spct)
```



```
plot(rg715.spct)
plot(rg780.spct)
plot(rg830.spct)
plot(rg850.spct)
plot(rg9.spct)
```


5.2 Schott band-pass filters

```
plot(ug1.spct)
plot(ug5.spct)
plot(ug11.spct)
```


Petri dishes

1000

```
plot(Petri_dish_PS_101.spct)
plot(Petri_dish_PS_109.spct)
plot(Petri_dish_glass.spct)
```

2000 3000 Wavelength (nm)

5000

4000

