Solutions Excercise 2

Maksimov, Dmitrii dmitrii.maksimov@fau.de Ilia, Dudnik ilia.dudnik@fau.de

December 5, 2021

Exercise 1

(a) Consider the subset $M = \{v_1, v_2, v_3, v_4, v_5\} \in \mathbb{R}^5$ with:

$$v_1 = (1, 0, 0, 0, 0)^T$$

$$v_2 = (0, 1, 1, 0, 0)^T$$

$$v_3 = (0, 1, 1, 2, 0)^T$$

$$v_4 = (0, 0, 0, 0, 1)^T$$

$$v_5 = (1, 2, 2, 2, 1)^T$$

(i) the dimension of lin(M)

The dimension of lin(M) is the maximum number of linearly independent vectors in M:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 2 & 2 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow dim(lin(M)) = 4$$

(ii) the affine rank of M

affrang(M) is the cardinality of the largest affinely independent subset of M:

$$\begin{bmatrix} -1 & 1 & 1 & 0 & 0 \\ -1 & 1 & 1 & 2 & 0 \\ -1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 2 & 2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \Rightarrow affrang(M) = 4$$

(iii) the dimension of aff(M)

$$dim(aff(M)) = affrang(M) = 4$$

(b) From linear independence follows affine independence. Show: The converse does not hold.

1

Let $v_1 = (2,0)^T$, $v_2 = (1,0)$, $v_3 = (1,1)$. They are affinely independent, since: $v_2 - v_1$ and $v_3 - v_1$ are linearly independent. However, $v_1 = 2v_2 \Rightarrow v_1$, v_2 and v_3 are affinely independent, but not linearly independent.

(c) Show: if $x_1, ..., x_k, x_k + 1 \in \mathbb{R}^n$, $n \ge k$, are affinely independent, then $x_1 = x_{k+1}, ..., x_k - x_{k+1}$ are lineraly independent

Consider some $\lambda_1, \dots, \lambda_k$, such that:

$$\sum_{i=1}^k \lambda_i(x_i - x_{k+1}) = 0.$$

In accordance with affinely independence: $\sum_{i=1}^{k+1} \lambda_i = 0$. Also,

$$\sum_{i=1}^{k+1} \lambda_i x_i = \sum_{i=1}^k \lambda_i (x_i - x_{k+1}) + \sum_{i=1}^{k+1} \lambda_i x_{k+1}.$$

Hence, $\sum_{i=1}^{k+1} \lambda_i x_i = 0 \Longrightarrow \lambda_i = 0 \forall i$

Exercise 2

Solve the following optimization problem using branch-and-bound and sketch the branch-andbound tree:

$$\max \quad 4x_{1} - x_{2}$$
s.t.
$$7x_{1} - 2x_{2} \le 14$$

$$x_{2} \le 3$$

$$2x_{1} - 2x_{2} \le 3$$

$$x_{1}, x_{2} \ge 0$$

$$x_{1}, x_{2} \in \mathbb{Z}$$

For the LP relaxation

max
$$4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1, x_2 \ge 0$

has optimal solution at (2.9,3) with Z=8.4. Then we consider two cases: $x_1\geq 3$ and $x_1\leq 2$.

1.
$$x_1 \ge 3$$

The linear programming relaxation

$$\max \quad 4x_1 - x_2$$
s.t.
$$7x_1 - 2x_2 \le 14$$

$$x_2 \le 3$$

$$2x_1 - 2x_2 \le 3$$

$$x_2 \ge 0$$

$$x_1 \ge 3$$

has no feasible solution. Hence, the IP has no feasible solution either.

2.
$$x_1 \le 2$$

The linear programming relaxation

max
$$4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

has optimal solution at (2, 0.5) with Z=7.5. Then we consider two cases: $x_2 \ge 1$ and $x_2 \le 0$.

2.1. $x_2 \ge 1$

The linear programming relaxation

max
$$4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1 \le 2$
 $x_2 \ge 1$
 $x_1 \ge 0$

has optimal solution at (2, 1) with Z = 7.0. This is the optimal solution of the IP as well. Currently, the best value of Z for the original IP is Z = 7.

2.2. $x_2 \le 0$

The linear programming relaxation

max
$$4x_1 - x_2$$

s.t. $7x_1 - 2x_2 \le 14$
 $x_2 \le 0$
 $2x_1 - 2x_2 \le 3$
 $x_1 \le 2$
 $x_1, x_2 \ge 0$

has optimal solution at (1.5, 0) with Z=6. Then we consider two cases: $x_1 \ge 2$ and $x_1 \le 1$.

2.2.1.
$$x_1 \ge 2$$

The linear programming relaxation

$$\max \quad 4x_{1} - x_{2}$$
s.t. $7x_{1} - 2x_{2} \le 14$

$$x_{2} \le 0$$

$$2x_{1} - 2x_{2} \le 3$$

$$x_{1} \le 2$$

$$x_{2} \ge 0$$

$$x_{1} \ge 2$$

has no feasible solution. Hence, the IP has no feasible solution either.

2.2.2.
$$x_1 \le 1$$

The linear programming relaxation

$$\max \quad 4x_{1} - x_{2}$$
s.t.
$$7x_{1} - 2x_{2} \le 14$$

$$x_{2} \le 0$$

$$2x_{1} - 2x_{2} \le 3$$

$$x_{1} \le 1$$

$$x_{1}, x_{2} \ge 0$$

has optimal solution at (1,0) with Z=4.0. This is the optimal solution of the IP as well. Currently, the best value of Z for the original IP is Z=7.

Therefore, the solution (2, 1) with Z = 7 is the optimal solution.

Exercise 3

Solve the following optimization problem using the simplex algorithm.

max
$$3x_1 + 2x_2 + 4x_3$$

s.t. $x_1 + x_2 + 2x_3 \le 4$
 $2x_1 + 3x_2 \le 5$
 $x_1, x_2, x_3 \ge 0$

Let slack variables (s_1, s_2) be introduced in each of the restrictions of \leq type, to convert them into equalities, resulting the system of linear equations:

$$x_1 + x_2 + 2x_3 + s_1 = 4$$

 $2x_1 + 3x_2 + s_2 = 5.$

Matching the objective function to zero:

$$z - 3x_1 - 2x_2 - 4x_3 - 0s_1 - 0s_2 = 0$$

Simplex tableau method:

	x_1	x_2	x_3	s_1	s_2	
$\overline{s_1}$	1	1	2*	1	0	4
s_2	2	3	0	0	1	5
z	-3	-2	-4	0	0	0
x_3	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	$\frac{1}{2}$	2
s_2	2^{\star}	3	0	0	1	5
\overline{z}	-1	0	0	2	0	8
x_3	0	$\frac{1}{2}$	$-\frac{1}{4}$	1	$\frac{1}{2}$	3 4 5
x_1	1	$\frac{\overline{3}}{2}$	0	0	$\frac{1}{2}$ $\frac{1}{2}$	$\frac{5}{2}$
\overline{z}	0	$\frac{2}{\frac{3}{2}}$	0	2	0	$\frac{\frac{1}{2}}{\frac{21}{2}}$

Hence, (2.5, 0, 0.75) with z = 10.5 is the optimal solution.