1.Data_Exploration

May 11, 2025

Myopia Study: Comprehensive Analysis, Modeling and Reporting

1 Table of Contents

- 1. Initialisation
 - Importing libraries and loading the myopia dataset for analysis
 - Data Engineering
 - * Summary
- 2. Data Exploration
 - Univariate Analysis and Multivariate Visualization
 - * PCA Plot Interpretation
 - * t-SNE Plot Interpretation
 - 2.1. Statistic analysis
 - * 2.1.1. Univariate Analysis
 - * Analysis of Gender and Parental Myopia Association with Myopia Status
 - * 2.1.2. Quant values
 - Conclusion and Synthesis
- 3. Predicting Model Simplest models
 - 3.0.1. Logistic Regression
 - 3.0.2. Random Forest
 - 3.0.3. Gradient Boost
 - 3.0.4. Model Performance
- 3.1. Error Analysis: Global Findings and Recommendations
 - Overview of Error Patterns
 - * Class Imbalance and Distribution
 - * False Negatives (FN)
 - * False Positives (FP)
 - * Feature Interactions and Model Confusion
 - * Subgroup Sensitivity
 - Recommendations for Model Improvement
- 4. Global Synthesis and Recommendations
 - Key Analytical Findings
 - Major Error Patterns and Model Challenges
 - Summary Table: Issues and Actions
 - Strategic Recommendations

• Next step: Predicting modeling (see 2.Predicting_modeling.ipynb)

2 1. Initialisation

2.0.1 Importing libraries and loading the myopia dataset for analysis

```
[1]: import pandas as pd
     import numpy as np
     from sklearn.model_selection import train_test_split, cross_val_score
     from sklearn.linear_model import LogisticRegression
     import matplotlib.pyplot as plt
     from scipy import stats
     import plotly.graph_objects as go
     from sklearn.decomposition import PCA
     from sklearn.preprocessing import StandardScaler
     from sklearn.manifold import TSNE
     import seaborn as sns
     import shap
     import plotly.express as px
     from sklearn.metrics import (accuracy_score, roc_auc_score,_
      ⇔classification_report,
                                   confusion matrix, roc curve, f1 score)
     from sklearn.ensemble import RandomForestClassifier,
      \hookrightarrow HistGradientBoostingClassifier
     from sklearn.inspection import permutation_importance
     from sklearn.cluster import KMeans
```

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html from .autonotebook import tqdm as notebook_tqdm

```
[2]: df = pd.read_csv('myopia.csv', sep=';')
df
```

```
[2]:
              STUDYYEAR MYOPIC AGE
          ID
                                     GENDER
                                             SPHEQ
                                                       ΑL
                                                             ACD
                                                                    LT
                                                                          VCD \
    0
           1
                   1992
                                  6
                                          1 -0.052 21.89 3.690
                                                                 3.498
                                                                       14.70
                              1
    1
           2
                   1995
                                          1 0.608 22.38 3.702 3.392 15.29
                              0
                                  6
    2
           3
                   1991
                              0
                                  6
                                          1 1.179 22.49 3.462 3.514 15.52
    3
                   1990
                              1
                                  6
                                          1 0.525
                                                    22.20 3.862
                                                                 3.612 14.73
           4
                              0
                                  5
    4
           5
                   1995
                                          0 0.697
                                                    23.29 3.676 3.454 16.16
     . .
                                               •••
    613 614
                   1995
                              1
                                  6
                                          0 0.678 22.40 3.663 3.803 14.93
    614 615
                   1993
                              0
                                  6
                                          1 0.665 22.50 3.570 3.378 15.56
```

615	616	1995	0	6	0 1	.834 22.94	3.624	3.424	15.89
616	617	1991	0	6	1 0	.665 21.92	3.688	3.598	14.64
617	618	1994	0	6	0 0	.802 22.26	3.530	3.484	15.25
	SPORTHR	READHR	COMPHR	STUDYHR	TVHR	DIOPTERHR	MOMMY	DADMY	
0	45	8	0	0	10	34	1	1	
1	4	0	1	1	7	12	1	1	
2	14	0	2	0	10	14	0	0	
3	18	11	0	0	4	37	0	1	
4	14	0	0	0	4	4	1	0	
	•••	•••		•••		•••			
613	2	0	7	3	14	37	1	0	
614	6	0	1	0	8	10	1	1	
615	8	0	0	0	4	4	1	1	
616	12	2	1	0	15	23	0	0	
617	25	0	2	0	10	14	1	1	

[618 rows x 18 columns]

Columns: - ID: Incremental ID - Study Year: Year subject entered the study - Myopic: Myopia within the first five years of follow up - Age: Age at the first visit - Gender: Genre - SPHEQ: Spherical equivalent refraction - AL: Axial Length (mm) - ACD: Lens Thickness (mm) - SPORTHR: Time spent engaging in sports/outdoor activities (hour/week) - READHR: Time spend for pleasure (hours/week) - COMPHR: Time spend playing video/computer games or working on the computer (hours/week) - STUDYHR: Time spend reading or study for school assignments (hours/week) - TVHR: Time spend watching television (hours/week) - DIOPTERHR: Composite of near-work activities (hours/week) - MOMMY: Was the subject's mother myopic? - DADMY: Was the subject's father myopic?

[3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 618 entries, 0 to 617
Data columns (total 18 columns):

#	Column	Non-Null Count	Dtype
0	ID	618 non-null	int64
1	STUDYYEAR	618 non-null	int64
2	MYOPIC	618 non-null	int64
3	AGE	618 non-null	int64
4	GENDER	618 non-null	int64
5	SPHEQ	618 non-null	float64
6	AL	618 non-null	float64
7	ACD	618 non-null	float64
8	LT	618 non-null	float64
9	VCD	618 non-null	float64
10	SPORTHR	618 non-null	int64
11	READHR	618 non-null	int64

```
12 COMPHR
              618 non-null
                              int64
13 STUDYHR
              618 non-null
                              int64
                              int64
14
   TVHR
              618 non-null
15
   DIOPTERHR
              618 non-null
                              int64
              618 non-null
16 MOMMY
                              int64
17 DADMY
              618 non-null
                              int64
```

dtypes: float64(5), int64(13)

memory usage: 87.0 KB

[4]: df.describe(include='all')

[4]:		ID	STUDYYEAR	MYOPIC	AGE	GENDER	\	
[1].	count	618.000000	618.000000	618.000000	618.000000	618.000000	`	
	mean	309.500000	1992.359223	0.131068	6.299353	0.488673		
	std	178.545512	1.734507	0.337748	0.712950	0.500277		
	min	1.000000	1990.000000	0.000000	5.000000	0.000000		
	25%	155.250000	1991.000000	0.000000	6.000000	0.000000		
	50%	309.500000	1992.000000	0.000000	6.000000	0.000000		
	75%	463.750000	1994.000000	0.000000	6.000000	1.000000		
	max	618.000000	1995.000000	1.000000	9.000000	1.000000		
		SPHEQ	AL	ACD	LT	VCD	SPORTHR	\
	count	618.000000	618.000000	618.000000	618.000000	618.000000	618.000000	
	mean	0.801010	22.496780	3.578629	3.541453	15.376780	11.953074	
	std	0.625918	0.680141	0.230394	0.154519	0.664183	7.968296	
	min	-0.699000	19.900000	2.772000	2.960000	13.380000	0.000000	
	25%	0.456250	22.040000	3.424000	3.436000	14.930000	6.000000	
	50%	0.729000	22.465000	3.585000	3.542000	15.360000	10.000000	
	75%	1.034000	22.970000	3.730000	3.640000	15.840000	16.000000	
	max	4.372000	24.560000	4.250000	4.112000	17.300000	45.000000	
		READHR	COMPHR	STUDYHR	TVHR	DIOPTERHR	MOMMY	\
	count	618.000000	618.000000	618.000000	618.000000	618.000000	618.000000	
	mean	2.796117	2.105178	1.490291	8.948220	26.017799	0.506472	
	std	3.068191	3.056508	2.216207	5.719021	16.031715	0.500363	
	min	0.000000	0.000000	0.000000	0.000000	2.000000	0.000000	
	25%	0.000000	0.000000	0.000000	4.250000	15.000000	0.000000	
	50%	2.000000	1.000000	1.000000	8.000000	23.000000	1.000000	
	75%	4.000000	3.000000	2.000000	12.000000	34.000000	1.000000	
	max	20.000000	30.000000	15.000000	31.000000	101.000000	1.000000	
		D.1.D.101						
		DADMY						
	count	618.000000						
	mean	0.498382						
	std	0.500402						
	min	0.000000						
	25%	0.000000						

```
50%
              0.000000
     75%
              1.000000
              1.000000
    max
[5]: print("Shape:", df.shape)
     print(df.isnull().sum())
    Shape: (618, 18)
    ID
    STUDYYEAR
                 0
    MYOPIC
                 0
    AGE
                 0
    GENDER
                 0
    SPHEQ
                 0
    AL
                 0
    ACD
                 0
    LT
                 0
    VCD
                 0
    SPORTHR
                 0
    READHR
                 0
    COMPHR
                 0
                 0
    STUDYHR
                 0
    TVHR
    DIOPTERHR
                 0
    MOMMY
                 0
    DADMY
                 0
    dtype: int64
[6]: sns.countplot(x='MYOPIC', data=df)
     plt.title('Distribution of Myopia')
     plt.show()
     print('Class distribution (%):')
     print((df['MYOPIC'].value_counts(normalize=True) * 100).round(2))
```



```
Class distribution (%):
MYOPIC
0 86.89
1 13.11
Name: proportion, dtype: float64

⇒ Dataset imbalanced
```

2.0.2 Data Engineering

[9]:		MYOPIC	AGE	GENDER	SPHEQ	AL	ACD	LT	VCD	SPORTHR	\
	0	1	6	1	-0.052	21.89	3.690	3.498	14.70	45	
	1	0	6	1	0.608	22.38	3.702	3.392	15.29	4	
	2	0	6	1	1.179	22.49	3.462	3.514	15.52	14	
	3	1	6	1	0.525	22.20	3.862	3.612	14.73	18	
	4	0	5	0	0.697	23.29	3.676	3.454	16.16	14	
					•••		•••	•••			
	613	1	6	0	0.678	22.40	3.663	3.803	14.93	2	
	614	0	6	1	0.665	22.50	3.570	3.378	15.56	6	
	615	0	6	0	1.834	22.94	3.624	3.424	15.89	8	
	616	0	6	1	0.665	21.92	3.688	3.598	14.64	12	
	617	0	6	0	0.802	22.26	3.530	3.484	15.25	25	

	PARENTSMY	SCREENHR	CLOSEHR
0	1	10	42
1	1	8	13
2	0	12	14
3	1	4	48
4	1	4	4
	•••	•••	•••
613	1	21	40
614	1	9	10
615	1	4	4
616	0	16	25
617	1	12	14

[618 rows x 12 columns]

Summary Key features were engineered to synthesize parental myopia risk and consolidate hours spent on screens or in close-up activities. Irrelevant or redundant variables were removed, resulting in a cleaner and more interpretable dataset. This step both streamlines later modeling and enhances overall scientific clarity.

3 2. Data Exploration

The dataset is separated into numerical and categorical components to enable targeted exploratory analysis. This approach allows for tailored statistical summaries and visualizations, enhancing our understanding of both continuous variables and key risk subgroups before further modeling.

```
[10]: cat = ['MYOPIC', 'GENDER', 'PARENTSMY']
myopianum = df.drop(cat, axis=1)
myopiafact = df[cat]
```

```
[11]: myopianum.head(5)
```

```
[11]:
                                                      SPORTHR
         AGE
               SPHEQ
                          AL
                                 ACD
                                          LT
                                                 VCD
                                                                SCREENHR
                                                                           CLOSEHR
            6 -0.052
                       21.89
                              3.690
                                      3.498
                                              14.70
                                                            45
                                                                       10
                                                                                 42
      0
                                                             4
                                                                        8
      1
               0.608
                       22.38
                               3.702
                                      3.392
                                              15.29
                                                                                 13
      2
            6
               1.179
                       22.49
                              3.462
                                      3.514
                                              15.52
                                                            14
                                                                       12
                                                                                 14
                                                                        4
      3
            6
               0.525
                       22.20
                               3.862
                                      3.612
                                              14.73
                                                                                 48
                                                            18
      4
               0.697
                       23.29
                              3.676
                                      3.454
                                              16.16
                                                            14
                                                                        4
                                                                                  4
```

[12]: myopiafact.head(5)

[12]:		MYOPIC	GENDER	PARENTSMY
	0	1	1	1
	1	0	1	1
	2	0	1	0
	3	1	1	1
	4	0	0	1

3.0.1 Univariate Analysis and Multivariate Visualization

- Distribution of Continuous Features: Visualized using boxplots and histograms.
- Categorical Features Breakdown: Analyzed to understand their distribution and impact.

```
[13]: myopianum.hist(figsize=(15,10))
plt.tight_layout()
plt.show()
```



```
[14]: sns.pairplot(df, hue='MYOPIC', vars=['SPHEQ','AL', 'ACD', 'LT','VCD', \
\( \times' \text{SCREENHR}', 'SPORTHR', 'CLOSEHR']) \\
\text{plt.suptitle("Pairplot key variables", y=1.02)} \\
\text{plt.show()}
```



```
[15]: myopiafact.hist(figsize=(15,10))
plt.tight_layout()
plt.show()
```



```
[16]: X = df.drop('MYOPIC', axis=1)
y = df['MYOPIC']

group = df['PARENTSMY'].map({0: 'PARENTSMY yes', 1: 'PARENTSMY no'}))

scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

pca = PCA(n_components=2)
X_pca = pca.fit_transform(X_scaled)

plt.figure(figsize=(8,6))
sns.scatterplot(x=X_pca[:,0], y=X_pca[:,1], hue=group, style=y, palette='Set1',u=alpha=0.8)
plt.xlabel(f'PC1 ({pca.explained_variance_ratio_[0]*100:.1f}% variance)')
plt.ylabel(f'PC2 ({pca.explained_variance_ratio_[1]*100:.1f}% variance)')
plt.title("PCA : Visualisation regarding MYOPIA and parents")
plt.legend(title='Parental Myopie / Status')
plt.show()
```


PCA: Visualisation regarding MYOPIA and parents

PCA Plot Interpretation

• Dimensionality Reduction for Interpretation

The PCA plot summarizes the variation across all features into 2 principal axes. PC1 (26.2% variance) and PC2 (14.4%) together capture about 40% of the overall data structure. This reduction allows us to view complex data as a 2D scatterplot, highlighting potential clusters and patterns otherwise hidden in high dimensions.

• Risk Profile Overlay

Data points are annotated both by myopic status (MYOPIC: 0/1) and parental myopia (PARENTSMY: yes/no), providing a clinical context.

This dual-label strategy visually explores the hypothesis that parental history (a known risk factor) may stratify children into more or less vulnerable clusters.

• Interpreting Distributions

While myopic cases (red) and controls (blue) are not clearly separable (indicating complex or non-linear feature relations), there may be subtle tendencies for points with parental myopia to congregate in selected regions, hinting at multi-factorial risk.

t-SNE: identification of risk profiles


```
[18]: data['TSNE-1'] = X_tsne[:,0]
  data['TSNE-2'] = X_tsne[:,1]

kmeans = KMeans(n_clusters=3, random_state=42)
  data['cluster'] = kmeans.fit_predict(X_tsne)
```

t-SNE + KMeans : clusters profiles


```
[19]: # Statistiques descriptives par cluster
print(data.groupby('cluster')[['MYOPIC', 'PARENTSMY']].mean())
# Nombre d'individus par cluster
```

```
print(data['cluster'].value_counts())
```

```
MYOPIC PARENTSMY
cluster
0
         0.033113
                     0.00000
1
         0.145038
                     0.996183
2
         0.185366
                     1.000000
cluster
     262
1
2
     205
0
     151
Name: count, dtype: int64
```

t-SNE Plot Interpretation

• Nonlinear Embedding for Cluster Discovery

t-SNE further condenses complex feature interactions into a 2D manifold, preserving local similarities. This can reveal groupings and structure not visible via linear methods like PCA.

• Enhanced Profiling of At-Risk Groups

Overlaying both **myopic outcome** and **parental myopia** again, t-SNE sometimes reveals local "clouds" or concentrations. If visible, these can be interpreted as multi-featured risk profiles—potential targets for clinical intervention or finer stratification.

• Cluster Identification with t-SNE

The t-SNE visualization reveals three clearly separated clusters, indicating distinct profiles in the data. Each individual is represented in a two-dimensional space based on their original features (e.g. myopia status, parental myopia, and other numeric variables). Individuals that appear close together in the t-SNE plot are more similar to each other in the original data space.

By examining the cluster composition, we can identify groups with differing risk factors—for example, clusters where most children are myopic and have myopic parents, versus clusters with low genetic risk. This segmentation enables deeper analysis of risk trajectories and can guide targeted interventions or the development of subgroup-specific predictive models.

3.1 2.1. Statistic analysis

3.1.1 2.1.1. Univariate Analysis

- Distribution of continuous features (boxplot and histogram).
- Categorical features breakdown.

```
[20]: num_cols = df.drop(cat, axis=1).columns.tolist()
    for col in num_cols:
        df[col] = pd.to_numeric(df[col], errors='coerce')

df['GENDER'] = df['GENDER'].astype('category')
    df['PARENTSMY'] = df['PARENTSMY'].astype('category')
    df['MYOPIC'] = df['MYOPIC'].astype('category')
```

```
[21]: # crosstab "MYOPIC" x "GENDER"
      print("MYOPIC x GENDER")
      print('Nb Boys : ', (df['GENDER']==0).sum())
      print('Nb Girls : ', (df['GENDER']==1).sum())
      # Chi-2 test on this crosstab
      table1 = pd.crosstab(df['MYOPIC'], df['GENDER'])
      chi2, p, dof, ex = stats.chi2_contingency(table1)
      print('p-value chi-2:', p)
      print('chi-value chi-2:', chi2)
      print('dof-value chi-2:', dof)
      print('ex-value chi-2:', ex)
      # crosstab
      table_genre = pd.crosstab(df['MYOPIC'], df['GENDER'], normalize='columns').
       →round(2)
      table_genre.index = ['No-Myopic','Myopic']
      table_genre.columns = ['Man', 'Woman']
      display(table genre)
      # crosstab "MYOPIC" x "PARENTMY"
      print("\n", "-" * 30, "\nMYOPIC x PARENTSMY")
      print('Nb Myopic Parents : ', (df['PARENTSMY']==1).sum())
      print('Nb Non Myopic Parents : ', (df['PARENTSMY']==0).sum())
      # Chi-2 test on this crosstab
      table2 = pd.crosstab(df['MYOPIC'], df['PARENTSMY'])
      chi2, p, dof, ex = stats.chi2_contingency(table2)
      print('p-value chi-2:', p)
      print('chi-value chi-2:', chi2)
      print('dof-value chi-2:', dof)
      print('ex-value chi-2:', ex)
      # Crosstab
      table Parents = pd.crosstab(df['MYOPIC'], df['PARENTSMY'], normalize='index').
       ⇒round(2)
      table Parents.index = ['No-Myopic', 'Myopic']
      table_Parents.columns = ['No', 'Yes']
      display(table_Parents)
     MYOPIC x GENDER
     Nb Boys: 316
     Nb Girls : 302
     p-value chi-2: 0.15822974722920058
     chi-value chi-2: 1.9910632919718099
     dof-value chi-2: 1
     ex-value chi-2: [[274.58252427 262.41747573]
      [ 41.41747573 39.58252427]]
                 Man Woman
     No-Myopic 0.89
                     0.85
```

```
Myopic
                0.11 0.15
     MYOPIC x PARENTSMY
     Nb Myopic Parents: 466
     Nb Non Myopic Parents: 152
     p-value chi-2: 6.556104369308498e-05
     chi-value chi-2: 15.934831626844861
     dof-value chi-2: 1
     ex-value chi-2: [[132.0776699 404.9223301]
      [ 19.9223301 61.0776699]]
                  No
                       Yes
     No-Myopic 0.27 0.73
     Myopic
                0.06 0.94
[22]: fig = go.Figure(data=[
         go.Bar(name='GENDER',
                 x=['Males','Females'],
                 y=table_genre.loc['Myopic'].values*100),
         go.Bar(name='PARENTMY',
                 x=['No Myopic Parents','At least one Myopic Parent'],
                 y=table_Parents.loc['Myopic'].values*100)
      ])
      fig.update_layout(barmode='group', yaxis_title="Percentage of Myopic(%)")
      fig.show()
```

crosstab	p value	chi2	Proportion Analysis
Myopic-Gender	0.158	1.99	p-value above 0.05. It implies that there is no statistically significant association between gender and myopia.
Myopic-Parentsmy	6.5 E-5	15.9	A highly significant p-value shows a strong association between parental myopia and child myopia. Children with at least one myopic parent are much more likely to be myopic themselves.

Analysis of Gender and Parental Myopia Association with Myopia Status Gender and Myopia: No statistically significant association was found between gender and myopia incidence (p > 0.05).

Boys and girls have similar rates of myopia in this population.

Parental Myopia:

A strong and highly significant association was found between having at least one myopic parent and being myopic (p < 0.001).

Children with myopic parents are much more likely to develop myopia themselves.

Implications:

Gender does not appear to be a risk factor for myopia in this dataset.

Parental (hereditary) myopia should be prioritized when assessing a child's risk for developing myopia.

3.1.2 2.1.2. Quant values

Col	NonMyopic BoxPlot	Myopic Boxplot	Test-T	Conclusion
SPORTHR	q1 6, median 10, q3 16	q1 3, median 8, q3 15	p-value = 0.0145	$\begin{array}{c} \text{Myopia} \Rightarrow \text{less} \\ \text{sport} \end{array}$
SPHEQ	q1 0.545, median 0.791, q3 1.097	q1 -0.0735, median 0.234, q3 0.507	p-value = 0.0000	$\begin{array}{c} \text{Myopia} \Rightarrow \text{lower} \\ \text{SPHEQ} \end{array}$

Statistical Comparison of Myopic and Non-Myopic Groups

```
[24]: corr = myopianum.corr()
  plt.figure(figsize=(10,8))
  sns.heatmap(corr, annot=True, cmap="coolwarm")
  plt.show()
```


Col	Correlation
VCD - AL	Postive correlation
VCD - LT	Negative correlation
AL - LT	Negative correlation
ACD - LT	Negative correlation
SPHEQ-AL	Negative correlation
SPHEQ-ACD	Negative correlation
SPHEQ-VCD	Negative correlation

Correlation between all features of the dataset

3.2 Conclusion and Synthesis

• Strongest Associations:

- The variable SPHEQ (spherical equivalent) shows a highly significant difference between myopic and non-myopic groups, making it the best discriminator for myopia in this dataset.
- ACD (anterior chamber depth) also shows a significant difference between the groups.

• Physical Activity:

- Myopic individuals tend to spend slightly less time practicing sports (**SPORTHR**). This difference is statistically significant but the effect size is modest.

• Screen Time and Near-Work:

 No statistically significant differences between myopic and non-myopic individuals for screen time (SCREENHR) or near-work (CLOSEHR).

• Correlations:

- **SPHEQ** shows strong correlation with biometric eye measures, particularly **AL** (axial length) and **VCD** (vitreous chamber depth).
- Other activity-related or demographic variables show only weak or no correlation with myopia status.

• Practical Implications:

- Promoting physical activity may provide some protective effect against myopia, but the impact is relatively small according to this dataset.
- Screen time and near-work do not appear to be major factors here, though findings may vary with different populations and study designs.
- Ocular biometric measures remain the strongest predictors or indicators for myopia diagnosis in the data.

4 3. Predicting Model - Simplest models

```
[25]: df['MYOPIC'] = df['MYOPIC'].astype(int)
[26]: x = df.drop(['MYOPIC'], axis=1)
      x['GENDER'] = x['GENDER'].astype(int)
      x['PARENTSMY'] = x['PARENTSMY'].astype(int)
      y = df['MYOPIC'].astype(int)
[27]: def eval_model(model, X_train, y_train, X_test, y_test, seuil=0.27,__

name='model', cv=5):
          model.fit(X_train, y_train)
          y_pred_proba = model.predict_proba(X_test)[:, 1]
          y_pred_label = (y_pred_proba > seuil).astype(int)
          print(f"\n===== {name} =====")
          print("Accuracy:", accuracy_score(y_test, y_pred_label))
          print("AUC:", roc_auc_score(y_test, y_pred_proba))
          print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_label))
          print(classification_report(y_test, y_pred_label))
          # ROC
          fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
          plt.plot(fpr, tpr, label=f"{name} (AUC={roc auc score(y test, y pred proba):
```

```
plt.plot([0, 1], [0, 1], 'k--', alpha=0.4)
    plt.xlabel('FPR')
    plt.ylabel('TPR')
    plt.title('ROC Curve')
    plt.legend()
    plt.show()
    # Cross-validated ROC-AUC
    cv_scores = cross_val_score(model, X_train, y_train, cv=cv,_

scoring='roc_auc')
    print(f"Mean ROC-AUC (cross-validation): {np.mean(cv_scores):.3f}")
    ## Analysis
    test_results = X_test.copy()
    test_results['y_true'] = y_test
    test_results['y_pred'] = y_pred_label
    test_results['proba_pred'] = y_pred_proba
    return test_results, model
def analyse_erreurs(test_results):
    fn = test_results[(test_results['y_true'] == 1) & (test_results['y_pred']_
 ⇒== 0)]
    fp = test_results[(test_results['y_true'] == 0) & (test_results['y_pred']_u
 == 1)]
    print("FALSE NEGATIVES (should have been detected!):")
    display(fn.head())
    print("FALSE POSITIVES (true non-myopics, false alarm):")
    display(fp.head())
    return fn, fp
def eval_by_group(X, y_true, y_pred, group_col):
    groups = X[group_col].unique()
    for grp in groups:
        idx = X[group_col] == grp
        print(f''\setminus n--- \{group\_col\} = \{grp\} ---'')
        print(classification_report(y_true[idx], y_pred[idx]))
```

```
axes = axes.flatten()
   for i, feature in enumerate(features):
        sns.boxplot(
            data=pd.concat([df.assign(Groupe=nom) for nom, df in comparaison.
 →items()]),
            x="Groupe", y=feature, ax=axes[i], showmeans=True)
        axes[i].set title(feature)
   for j in range(i + 1, len(axes)):
        fig.delaxes(axes[j])
   plt.tight_layout()
   plt.show()
def plot_parallel_coordinates(selected, features, y_col="true_label", title=""):
   temp = selected[features + [y_col]].copy()
   temp[y_col] = temp[y_col].astype(str)
   plt.figure(figsize=(12, 5))
   pd.plotting.parallel_coordinates(temp, y_col, colormap=plt.cm.Set1)
   plt.title(title)
   plt.show()
def analyse false (tn, tp):
    comparaison_FN = {
        'False Negatives': fn_lr,
        'True Positives': tp
   }
    comparaison_FP = {
        'False Positives': fp_lr,
        'True Negatives': tn
   print("\nStatistiques descriptives - FN vs TP")
   display(stats_descriptives(comparaison_FN, features)['False Negatives'])
   display(stats_descriptives(comparaison_FN, features)['True Positives'])
   print("\nStatistiques descriptives - FP vs TN")
   display(stats_descriptives(comparaison_FP, features)['False Positives'])
   display(stats_descriptives(comparaison_FP, features)['True Negatives'])
   print("\nComparaison visuelle FN/TP")
   plot_boxplots(comparaison_FN, features)
   print("\nComparaison visuelle FP/TN")
   plot_boxplots(comparaison_FP, features)
   fn_lr['true_label'] = 'False Negative'
   tp['true_label'] = 'True Positive'
   fp_lr['true_label'] = 'False Positive'
   tn['true_label'] = 'True Negative'
   print("FN/TP Parallèles")
```

```
[30]: features = ["SPHEQ", "SPORTHR", "PARENTSMY", "ACD", "AL"]
```

4.0.1 3.0.1. Logistic Regression

```
[31]: # Logistic Regression
     print("="*30, 'Logistic Regression', "="*30)
     lr = LogisticRegression(solver='liblinear', max_iter=10000,__
      ⇔class_weight='balanced')
     test_results_lr, model_lr = eval_model(
         lr, X_train, y_train, X_test, y_test, name='Logistic Regression', seuil=0.31
     fn_lr, fp_lr = analyse_erreurs(test_results_lr)
     eval_by_group(X_test, test_results_lr['y_true'], test_results_lr['y_pred'],_u

¬group_col='PARENTSMY')
     tn = test_results_lr[(test_results_lr['y_true']==0) &__
      tp = test_results_lr[(test_results_lr['y_true']==1) &_
      analyse_false(tn, tp)
     # Feature importance
     plt.figure(figsize=(8, 5))
     coefs = pd.Series(model_lr.coef_[0], index=X_train.columns)
     coefs_sorted = coefs.abs().sort_values()
     explainer = shap.Explainer(model_lr, X_train)
     shap_values = explainer(X_test)
     # Affichage (beeswarm ou bar: importance feature, etc.)
     shap.summary_plot(shap_values, X_test, plot_type="bar")
     shap.summary_plot(shap_values, X_test) # beeswarm
```

----- Logistic Regression

==== Logistic Regression =====

Accuracy: 0.7311827956989247

AUC: 0.8497942386831275

Confusion Matrix:

[[116 46] [4 20]]

	precision	recall	f1-score	support
0	0.97	0.72	0.82	162
1	0.30	0.83	0.44	24
accuracy			0.73	186
macro avg	0.63	0.77	0.63	186
weighted avg	0.88	0.73	0.77	186

Mean ROC-AUC (cross-validation): 0.884 FALSE NEGATIVES (should have been detected!):

AGE GENDER SPHEQ AL ACD LT VCD SPORTHR PARENTSMY \
77 6 0 0.665 23.24 3.690 3.498 16.05 8 1

215	6		1	0.695	23.54	3.	845	3.403	16.30	4	0	
281	7		0	0.261	23.32	3.	665	3.388	16.26	32	1	
369	6		1	0.668	22.11	3.	410	3.570	15.13	18	1	
	SCRE	ENHR	CL	OSEHR	y_true	У_	pred	proba	_pred			
77		20		78	1	• –	0	_	49340			
215		22		31	1		0	0.1	98744			
281		18		92	1		0		80016			
369		16		32	1		0		99161			
	F. POS		s (on-myopi	cs.						
1 11110				or do in								
	AGE	GEND)ER	SPHEQ			ACD	LT	VCD	SPORTHR	PARENTSMY	\
98	6		1	0.290	23.50	3.	786	3.584	16.13	7	1	
59	6		1	0.596	22.45	3.	488	3.710	15.25	5	1	
375	6		0	0.519	22.35	3.	902	3.468	14.98	21	1	
355	6		0	0.500	22.64	3.	532	3.498	15.61	9	1	
535	6		1	0.378	21.83	3.	464	3.896	14.47	8	1	
	SCRE	ENHR	CL	OSEHR	y_true	У_	pred	proba	_pred			
98		16		34	0	• –	1	0.7	96691			
59		10		22	0		1	0.5	96455			
375		10		41	0		1		18594			
355		14		34	0		1		31677			
535		8		48	0		1		28417			
					·		_					
	PAREN	TSMY	= 1									
	1 1110211			cision	reca	11	f1-	score	suppor	·t		
			PTO	0101011	1000			00010	Duppor			
		0		0.96	0.	66		0.79	11	6		
		1		0.32		86		0.46		21		
		-		0.02	0.	00		0.10	_			
	accur	acv						0.69	13	37		
	acro	•		0.64	0	76		0.62	13			
	hted	_		0.86		69		0.74	13			
Mera	,ii ceu	avg		0.00	0.	03		0.74	10	, ,		
	PAREN	TSMV	= 0									
	- 1110111			cision	reca	11	f1-	score	suppor	·t.		
			Pro	CIBION	1000			50010	Buppor	U		
		0		0.97	0	85		0.91	Δ	:6		
		1		0.22		67		0.33		3		
		1		0.22	0.	ΟI		0.00		J		
	accur	acv						0.84	1	.9		
		-		0.60	0	76		0.62		:9		
	acro	_								:9 :9		
метв	hted	avg		0.93	0.	84		0.87	4	:0		

Statistiques descriptives - FN vs TP

	mean	std	min	25%	50%	75%	, max
SPHEQ	0.57225	0.207938	0.261	0.56400	0.6665	0.67475	0.695
SPORTHR	15.50000	12.476645	4.000	7.00000	13.0000	21.50000	32.000
PARENTSMY	0.75000	0.500000	0.000	0.75000	1.0000	1.00000	1.000
ACD	3.65250	0.180208	3.410	3.60125	3.6775	3.72875	3.845
AL	23.05250	0.641008	22.110	22.95750	23.2800	23.37500	23.540
	mean	std	min	25%	50%	75%	max
SPHEQ	0.24080	0.300165	-0.467	0.14775	0.2535	0.4650	0.677
SPORTHR	9.15000	6.343459	0.000	4.75000	8.5000	12.7500	22.000
PARENTSMY	0.90000	0.307794	0.000	1.00000	1.0000	1.0000	1.000
ACD	3.58185	0.190826	3.198	3.48150	3.6370	3.6825	3.970
AL	22.58900	0.634996	21.380	22.36000	22.5850	22.9825	23.860

Statistiques descriptives - FP vs ${\tt TN}$

	mean	std	min	25%	50%	75	5% max
SPHEQ	0.440435	0.266337	-0.158	0.26525	0.4175	0.6672	0.944
SPORTHR	10.565217	8.344398	0.000	5.00000	9.0000	13.7500	00 40.000
PARENTSMY	0.847826	0.363158	0.000	1.00000	1.0000	1.0000	1.000
ACD	3.612739	0.210382	3.210	3.48800	3.6110	3.7360	00 4.114
AL	22.495217	0.684835	21.080	22.01000	22.4450	22.8975	50 24.240
	mean	std	min	25%	50%	75%	max
SPHEQ	1.061845	0.621170	0.231	0.69450	0.934	1.190	4.228
SPORTHR	13.051724	7.957326	0.000	7.00000	11.500	20.000	41.000
PARENTSMY	0.663793	0.474460	0.000	0.00000	1.000	1.000	1.000
ACD	3.524931	0.248699	2.904	3.37225	3.504	3.676	4.250
AL	22.520431	0.705830	19.900	22.06000	22.495	22.990	24.030

Comparaison visuelle FN/TP

Comparaison visuelle FP/TN

FN/TP Parallèles

 $\label{lem:condition} $$ \sqrt{\frac{13}{07}}4 \% fd4613 yv4 ymtvk0_b00000 gn/T/ipykernel_50456/3293880108.py:5 2: Setting With Copy Warning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-versus-a-copy

FP/TN Parallèles

4.0.2 3.0.2. Random Forest

```
[32]: # Random Forest
     print("="*30, 'Random Forest', "="*30)
     rf = RandomForestClassifier(n_estimators=100, class_weight='balanced', u

max_depth=10)
     test_results_rf, model_rf = eval_model(
        rf, X_train, y_train, X_test, y_test, name='Random Forest', seuil=0.5
     )
     fn_rf, fp_rf = analyse_erreurs(test_results_rf)
     eval_by_group(X_test, test_results_rf['y_true'], test_results_rf['y_pred'],__
     tn = test_results_rf[(test_results_rf['y_true']==0) &__
     tp = test_results_rf[(test_results_rf['y_true']==1) &__
      analyse_false(tn, tp)
     # Feature importance
```

```
plt.figure(figsize=(8, 5))
feat_imp = pd.Series(model_rf.feature_importances_, index=X_train.columns)
feat_imp.sort_values(ascending=True).plot(kind='barh')
plt.title("Var importances (Random Forest)")
plt.show()
# SHAP VALUES
import shap
explainer = shap.TreeExplainer(model_rf)
shap_values = explainer.shap_values(X_test)
print("shap_values type:", type(shap_values))
if isinstance(shap_values, list):
    print("shape[0]:", np.array(shap_values[0]).shape)
    if len(shap_values) > 1:
       print("shape[1]:", np.array(shap_values[1]).shape)
else:
    print("shap_values:", np.array(shap_values).shape)
print("X_test:", X_test.shape)
if isinstance(shap_values, list) and len(shap_values) == 2 and np.
 →array(shap_values[1]).shape == X_test.shape:
    shap.summary_plot(shap_values[1], X_test, plot_type="bar")
else:
    shap.summary_plot(shap_values, X_test, plot_type="bar")
```

```
===== Random Forest =====
Accuracy: 0.8548387096774194
AUC: 0.7975823045267489
Confusion Matrix:
 ΓΓ158
         41
 Γ 23
        1]]
                         recall f1-score
              precision
                                               support
           0
                   0.87
                             0.98
                                       0.92
                                                   162
                   0.20
           1
                             0.04
                                       0.07
                                                    24
                                        0.85
                                                   186
    accuracy
                   0.54
                             0.51
                                       0.50
                                                   186
  macro avg
                             0.85
weighted avg
                   0.79
                                       0.81
                                                   186
```


Mean ROC-AUC (cross-validation): 0.851 FALSE NEGATIVES (should have been detected!):

	AGE	GENDE	ER	SPHEQ	AL	ACD	LT	VCD	SPORTHR	PARENTSMY	\
493	6		1	0.477	21.41	3.530	3.822	14.06	3	0	
172	8		1	0.461	23.24	3.636	3.598	16.01	6	1	
579	6		0	0.246	22.56	3.970	3.452	15.14	5	1	
188	6		1	0.183	22.53	3.638	3.498	15.40	20	1	
77	6		0	0.665	23.24	3.690	3.498	16.05	8	1	
	SCRE	ENHR	CL	OSEHR	y_true	y_pred	proba	_pred			
493		12		24	1	0	0.0	69294			
172		11		83	1	0	0.0	87966			
579		8		56	1	0	0.4	85459			
188		6		19	1	0	0.3	77968			
77		20		78	1	0	0.0	79385			

FALSE POSITIVES (true non-myopics, false alarm):

	AGE	GENDER	SPHEQ	AL	ACD	LT	VCD	SPORTHR	PARENTSMY	\
447	6	1	0.058	21.86	3.476	3.378	15.01	12	1	
485	6	1	-0.158	22.55	3.434	3.654	15.46	12	1	

22	6			22.16							0	1
394	5	0 ().153	22.82	3.8	348	3.598	15.3	37	1	5	1
	SCREENHR	CLOS	SEHR	y_true	y_r	ored	proba	a_pred	l			
447	10		30	•	v – 1		0.5	-				
485	13		18	0		1	0.5	510401	-			
22	6		22	0		1	0.5	32694	<u> </u>			
394	9		23	0		1	0.5	510916	5			
	PARENTSMY	= 1 -										
		preci	ision	reca	11	f1-s	score	supp	ort			
	0			0.					116			
	1		0.20	0.	05		0.08		21			
	accuracy						0.82		137			
	acro avg											
weig	hted avg		0.75	0.	82		0.78		137			
	PARENTSMY	= 0 -										
		preci	ision	reca	.11	f1-s	score	supp	ort			
		_										
	0		0.94	1.	00		0.97		46			
	1		0.00	0.	00		0.00		3			
	accuracy						0.94					
	acro avg								49			
weig	hted avg		0.88	0.	94		0.91		49			

Statistiques descriptives - FN vs TP

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

	mea	n	std	min	25	% 50	0%	75%	max
SPHEQ	0.5722	5 0	.207938	0.261	0.5640	0.666	35 O.6	37475	0.695
SPORTHR	15.5000	0 12	.476645	4.000	7.0000	13.000	00 21.5	50000	32.000
PARENTSMY	0.7500	0 0	.500000	0.000	0.7500	1.000	00 1.0	00000	1.000
ACD	3.6525	0 0	.180208	3.410	3.6012	5 3.677	75 3.7	72875	3.845
AL	23.0525	0 0	.641008	22.110	22.9575	23.280	00 23.3	37500	23.540
	mean	std	min	25%	50%	75%	max		
SPHEQ	-0.078	NaN	-0.078	-0.078	-0.078	-0.078	-0.078		
SPORTHR	10.000	NaN	10.000	10.000	10.000	10.000	10.000		
PARENTSMY	1.000	NaN	1.000	1.000	1.000	1.000	1.000		
ACD	3.690	NaN	3.690	3.690	3.690	3.690	3.690		
AL	23.260	NaN	23.260	23.260	23.260	23.260	23.260		

Statistiques descriptives - FP vs TN

	mean	std	min	25%	, 50%	75%	max
SPHEQ	0.440435	0.266337	-0.158	0.26525	0.4175	0.66725	0.944
SPORTHR	10.565217	8.344398	0.000	5.00000	9.0000	13.75000	40.000
PARENTSMY	0.847826	0.363158	0.000	1.00000	1.0000	1.00000	1.000
ACD	3.612739	0.210382	3.210	3.48800	3.6110	3.73600	4.114
AL	22.495217	0.684835	21.080	22.01000	22.4450	22.89750	24.240
	moon	std	min	25%	50%	75%	m 0.37
	mean	sta	111 111	25%	30%	15%	max
SPHEQ	0.905392	0.605715	0 001				
	0.00002	0.605/15	0.024	0.571	0.7745	1.06525	4.228
SPORTHR	12.348101	8.219076	0.024	0.571 7.000	0.7745 10.0000		4.228 41.000
SPORTHR PARENTSMY							
	12.348101	8.219076	0.000	7.000	10.0000	18.00000	41.000

Comparaison visuelle FN/TP

Comparaison visuelle FP/TN

FN/TP Parallèles

 $\label{lem:condition} $$ \sqrt{\gamma_14\psi_14613\psi_4\psi_5000000gn/T/ipykernel_50456/3293880108.py:5. Setting With Copy Warning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

FP/TN Parallèles

shap_values type: <class 'numpy.ndarray'>

shap_values: (186, 11, 2)

X_test: (186, 11)

<Figure size 640x480 with 0 Axes>

4.0.3 3.0.3. Gradient Boost

```
[33]: # GradientBoosting
     print("="*30, 'GradientBoosting', "="*30)
     hgb = HistGradientBoostingClassifier(class_weight='balanced', max_iter=100)
     test_results_hgb, model_hgb = eval_model(
         hgb, X_train, y_train, X_test, y_test, name='GradientBoosting', seuil=0.5
     )
     fn_hgb, fp_hgb = analyse_erreurs(test_results_hgb)
     eval_by_group(X_test, test_results_hgb['y_true'], test_results_hgb['y_pred'],

¬group_col='PARENTSMY')
     tn = test_results_hgb[(test_results_hgb['y_true']==0) &__
      tp = test_results_hgb[(test_results_hgb['y_true']==1) &__
      analyse_false(tn, tp)
     # Feature importance
     plt.figure(figsize=(8, 5))
     result = permutation_importance(model_hgb, X_train, y_train, n_repeats=10,_
      ⇒random_state=42, n_jobs=-1)
     # SHAP VALUES
     explainer = shap.TreeExplainer(model_hgb)
     shap_values = explainer.shap_values(X_test)
     print("shap_values type:", type(shap_values))
     if isinstance(shap_values, list):
         print("shape[0]:", np.array(shap_values[0]).shape)
         if len(shap values) > 1:
             print("shape[1]:", np.array(shap_values[1]).shape)
     else:
         print("shap_values:", np.array(shap_values).shape)
     print("X_test:", X_test.shape)
     if isinstance(shap_values, list) and len(shap_values) == 2 and np.
       →array(shap_values[1]).shape == X_test.shape:
         shap.summary_plot(shap_values[1], X_test, plot_type="bar")
         shap.summary_plot(shap_values[1], X_test)
     else:
         # Certains cas (classification One-vs-Rest, régression, etc.)
         shap.summary_plot(shap_values, X_test, plot_type="bar")
         shap.summary_plot(shap_values, X_test)
```

==== GradientBoosting ===== Accuracy: 0.8655913978494624

AUC: 0.7518004115226338

Confusion Matrix:

[[154 8] [17 7]]

	precision	recall	f1-score	support
0	0.90	0.95	0.92	162
1	0.47	0.29	0.36	24
accuracy			0.87	186
macro avg	0.68	0.62	0.64	186
weighted avg	0.84	0.87	0.85	186

Mean ROC-AUC (cross-validation): 0.819 FALSE NEGATIVES (should have been detected!):

AGE GENDER SPHEQ AL ACD LT VCD SPORTHR PARENTSMY \

493 172	6 8).477).461			530 636	3.822 3.598	14.0 16.0		3	0	
188	6).183			638	3.498	15.4		20	1	
77	6			0.665			690	3.498	16.0		8	1	
558	7		0 (.248	22.39	٥.	665	3.333	15.4	U	10	1	
	SCREE		CLOS		y_true	У_	pred	_	-				
493		12		24	1		0		000257				
172		11		83	1		0	0.0	001101				
188		6		19	1		0	0.4	183317				
77		20		78	1		0	0.0	05794				
558		8		17	1		0	0.0	62198				
FALS	E POSI	TIVES	S (tr	rue no	on-myop:	ics,	fal	se alaı	cm):				
	AGE	GENDI	ER S	SPHEQ	AL		ACD	LT	VC	D	SPORTHR	PARENTSMY	\
355	6		0 (.500	22.64	3.	532	3.498	15.6	1	9	1	
50	5		0 (.265	21.98	3.	532	3.466	14.9	8	6	1	
246	6		1 (.569	22.91	3.	662	3.478	15.7	7	16	1	
331	6		1 (308	22.86	3.	612	3.468	15.7	8	10	1	
321	6		1 (.503	22.40	3.	676	3.726	15.0	0	5	1	
	~ ~		~- ~-				_	_	_				
	SCREE		CLOS		y_true	У_	_	proba	_				
355		14		34	0		1		748273				
50		3		12	0		1		522698				
246		6		22	0		1		745671				
331		6		21	0		1	0.8	366190				
321		5		45	0		1	0.6	506872				
	DADENT	CMV -	_ 1										
	PARENT				roo	.11	£1_	acoro	aunn	024			
		j	preci	sion	reca	1 11	11-	score	supp	Ort	•		
		0		0.89		.93		0.91		116	;		
		1		0.47	0	.33		0.39		21			
	accura	cv						0.84		137			
	acro a	•		0.68	0	. 63		0.65		137			
	hted a	_		0.82		.84		0.83		137			
	PARENT	SMY =	= 0 -										
		1	preci	sion	reca	all	f1-	score	supp	ort			
		0		0 04	1	.00		0.97		46			
				() 94				0.01		IU	•		
				0.94									
		1		0.00		.00		0.00		3			
	accura	1									}		

weighted avg 0.88 0.94 0.91 49

Statistiques descriptives - FN vs TP

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

/Library/Frameworks/Python.framework/Versions/3.11/lib/python3.11/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:

Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

	mean	std	min	25%	50%	75	% max
SPHEQ	0.57225	0.207938	0.261	0.56400	0.6665	0.6747	5 0.695
SPORTHR	15.50000	12.476645	4.000	7.00000	13.0000	21.5000	0 32.000
PARENTSMY	0.75000	0.500000	0.000	0.75000	1.0000	1.0000	0 1.000
ACD	3.65250	0.180208	3.410	3.60125	3.6775	3.7287	5 3.845
AL	23.05250	0.641008	22.110	22.95750	23.2800	23.3750	0 23.540
	mean	std	min	25%	50%	75%	max
SPHEQ	0.040429	0.348470	-0.467	-0.2085	0.204	0.230	0.503
SPORTHR	9.000000	7.571878	1.000	4.0000	6.000	13.000 2	2.000
PARENTSMY	1.000000	0.000000	1.000	1.0000	1.000	1.000	1.000
ACD	3.657143	0.209411	3.342	3.5420	3.690	3.757	3.970
AL	22.912857	0.520471	22.270	22.6100	22.840	23.100 2	3.860

Statistiques descriptives - FP vs TN

	mean	std	min	25%	50%	75%	max
SPHEQ	0.440435	0.266337	-0.158	0.26525	0.4175	0.66725	0.944
SPORTHR	10.565217	8.344398	0.000	5.00000	9.0000	13.75000	40.000
PARENTSMY	0.847826	0.363158	0.000	1.00000	1.0000	1.00000	1.000
ACD	3.612739	0.210382	3.210	3.48800	3.6110	3.73600	4.114
AL	22.495217	0.684835	21.080	22.01000	22.4450	22.89750	24.240
	mean	std	min	25%	50%	75%	max
SPHEQ	0.915974	0.610069	0.024	0.59425	0.7835	1.08475	4.228
SPORTHR	12.467532	8.278777	0.000	7.00000	10.0000	19.50000	41.000

PARENTSMY 0.701299 0.459182 0.000 0.00000 1.0000 1.00000 1.000 ACD 3.548377 0.246314 2.904 3.38700 3.5240 3.69000 4.250 AL 22.518117 0.710661 19.900 22.04000 22.4750 23.01000 24.240

Comparaison visuelle FN/TP

Comparaison visuelle FP/TN

FN/TP Parallèles

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
2: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
3: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5 4: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/var/folders/13/07j4wbfd4613yv4ymtvk0_b00000gn/T/ipykernel_50456/3293880108.py:5
5: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

FP/TN Parallèles

shap_values type: <class 'numpy.ndarray'>

shap_values: (186, 11)

X_test: (186, 11)

4.0.4 3.0.4. Model Performance

- The best model performance in terms of AUC is achieved with **Logistic Regression** (Mean ROC-AUC 0.88) compared to **Random Forest** (0.83) and **Gradient Boosting** (0.81).
- All models suffer from lower recall on the minority class (label=1), indicating difficulty in detecting positive cases (likely those at higher risk). For example, recall for y=1 is 0.83 (Logistic Regression), 0.04 (Random Forest), and 0.29 (Gradient Boosting).

4.1 3.1. Error Analysis: Global Findings and Recommendations

4.1.1 Overview of Error Patterns

Class ImbalanceandDistribution

- The dataset is imbalanced, with the non-myopic class (~85%) much larger than the myopic class (~15%). This imbalance contributes to more frequent false negatives (missed myopia cases) and poor recall for myopia detection.
- Metrics such as recall for the "myopic" class are notably low, especially in Random Forest and Gradient Boost models.

False Negatives (FN)

• Who are the false negatives?

False negatives are often individuals with feature values and profiles similar to non-myopes, especially for SPHEQ, SPORTHR, and PARENTSMY.

• Key Patterns:

- Many FNs do not have myopic parents, or their SPHEQ values are not at the extremes, making them harder to distinguish from non-myopes.
- Lower levels of sport (SPORTHR) are associated with myopes, but this feature alone is not always discriminative, contributing to missed cases.

False Positives (FP)

• Who are the false positives?

FPs are often individuals who have risk factor profiles resembling myopes (e.g., low SPHEQ or myopic parents) but are ultimately diagnosed as non-myopic.

• Key Patterns:

- FPs are more frequent among those who have at least one myopic parent, showing that parental myopia is a strong but not exclusive determinant.
- Some border or intermediate SPHEQ/ACD/AL values are not fully captured by the model logic, leading to confusion.

Feature Interactions and Model Confusion

• SPHEQ dominates:

Errors often arise when SPHEQ is near the decision boundary, especially if other variables (like PARENTSMY or SPORTHR) also take ambiguous/intermediate values.

• Multicollinearity/correlation:

High correlations among ocular biometrics (SPHEQ, AL, ACD, VCD, LT) may make it harder for models to separate overlapping cases, especially with moderate or typical values.

Subgroup Sensitivity

• Gender:

No significant effect was found with gender, but recall remains lower for the minority class when stratified by gender, suggesting possible small sample bias or noise.

• Parental myopia:

Strongly increases risk, but not all children of myopic parents are myopic, leading to FPs in high-risk groups.

4.1.2 Recommendations for Model Improvement

Issue	Observations & Impact	Recommendations/Plan
Class imbalance	Low recall for myopia, many FNs	Use class weights, resampling (SMOTE), and focus on recall as a target metric

Issue	Observations & Impact	Recommendations/Plan
Feature dominance & ambiguity	Errors when SPHEQ is in intermediate range; weak additional cues	Engineer new interaction features (e.g., SPHEQ x SPORTHR), use nonlinear transformations (e.g., SPHEQ ³ , SPORTHR ²)
Correlated features	Multicollinearity between metrics	Principal Component Analysis (PCA) or feature selection to reduce redundancy
Risk factor overlap	FP in high parent-myopia \rightarrow not all children are myopic	Consider interaction terms; possible separate models for high-risk subgroups (Parentsmy == 1)
Subgroup underperformance	Some gender-class underperformance, dataset noise	Review model fairness, possibly oversample or stratify lower-represented groups for training

5 4. Global SynthesisandRecommendations

5.1 Key Analytical Findings

• SPHEQ and Ocular Features Drive Prediction:

The spherical equivalent (SPHEQ) is the primary variable distinguishing myopia, but other biometrics (AL, ACD, VCD) show strong correlations and may overlap in predictive power.

• Physical Activity Shows Small Effect:

Myopic individuals have slightly less physical activity (SPORTHR), though benefit from intervention may be limited.

• Family Risk Important, but Not Absolute:

Parental myopia elevates risk, but risk overlap means not all at-risk children develop myopia.

• No Robust Gender or Screen Time Effect:

Neither gender nor self-reported screen/near-work time showed significant effects in this dataset.

5.2 Major Error PatternsandModel Challenges

Error Type	Diagnostic Insight	Recommendations
False Negatives	Missed myopia cases are often borderline or "low-risk" by standard metrics.	Focus on recall, tune thresholds, craft new
False Positives	Mainly among "high-risk" (e.g., parental myopia) but actually non-myopic.	feature interactions. Stratify high-risk, adjust for profile overlap.

Error Type	Diagnostic Insight	Recommendations
Feature Overlap	SPHEQ dominates but is ambiguous near clinical cutoffs with weak secondary cues.	Add nonlinearity, test flexible boundaries, engineer new features.
Redundancy	Ocular biometrics highly correlated, which may blur discrimination.	Use PCA or select key features to simplify model.
Class Imbalance	Myopes underrepresented, hurting minority-class performance.	Resample, reweight, and use recall as a main metric.
Subgroup Variability	Some fairness concerns across gender and risk subgroups.	Test for bias; consider stratified sampling or models.

5.3 Summary Table: IssuesandActions

Issue	Next Steps
Low recall for myopia	Weigh/oversample positives, optimize recall
	threshold, engineer new features
Frequent FPs in "high-risk"	Profile and adjust for subgroups with overlapping
	features
Feature ambiguity	Nonlinear models, new interactions between risk
g ţ	factors
Multicollinearity	Feature reduction, aggregation, or PCA
Class imbalance	Resample, reweight, select models by recall
Subgroup/model fairness	Continue fairness audits and mitigate bias if detected

5.4 Strategic Recommendations

1. Maximize Sensitivity for Myopia:

Adopt class weighting, SMOTE, and threshold tuning to raise recall for minority class.

2. Advance Feature Engineering:

Create and test interaction and nonlinear features (e.g., SPHEQ \times SPORTHR, PARENTSMY \times SPHEQ).

3. Reduce Predictor Redundancy:

Apply PCA or careful selection to focus on key, independent variables.

4. Balance Interpretability & Performance:

Prefer regularized logistic or shallow ensemble methods for transparent yet strong results.

5. Monitor Model Fairness:

Regularly evaluate performance across subgroups; address any notable gaps.