3112. Minimum Time to Visit Disappearing Nodes

Description

There is an undirected graph of n nodes. You are given a 2D array edges, where edges[i] = [u i, v i, length i] describes an edge between node u i and node v i with a traversal time of length i units.

Additionally, you are given an array disappear, where disappear[i] denotes the time when the node i disappears from the graph and you won't be able to visit it.

Notice that the graph might be disconnected and might contain multiple edges.

Return the array answer, with answer[i] denoting the **minimum** units of time required to reach node i from node 0. If node i is **unreachable** from node 0 then answer[i] is -1.

Example 1:

Input: n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,1,5]

Output: [0,-1,4]

Explanation:

We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.

- For node 0, we don't need any time as it is our starting point.
- For node 1, we need at least 2 units of time to traverse [edges[0]]. Unfortunately, it disappears at that moment, so we won't be able to visit it.
- For node 2, we need at least 4 units of time to traverse <code>edges[2]</code>.

Example 2:

Input: n = 3, edges = [[0,1,2],[1,2,1],[0,2,4]], disappear = [1,3,5]

Output: [0,2,3]

Explanation:

We are starting our journey from node 0, and our goal is to find the minimum time required to reach each node before it disappears.

- For node 0, we don't need any time as it is the starting point.
- For node 1, we need at least 2 units of time to traverse edges[0].
- For node 2, we need at least 3 units of time to traverse <code>edges[0]</code> and <code>edges[1]</code>.

Example 3:

Input: n = 2, edges = [[0,1,1]], disappear = [1,1]

Output: [0,-1]

Explanation:

Exactly when we reach node 1, it disappears.

Constraints:

- 1 <= n <= 5 * 10 ⁴
- 0 <= edges.length <= 10 ⁵
- edges[i] == [u i , v i , length i]
- $0 \leftarrow u_i, v_i \leftarrow n-1$
- 1 <= length $_{\rm i}$ <= 10 $^{\rm 5}$
- disappear.length == n
- 1 <= disappear[i] <= 10 ⁵