1 Задачи работы

Каждое из указанных чисел разложить на множители:

- 1. ро-методом Полларда.
- 2. (р-1)-методом Полларда.

В отчёте привести:

- 1. В случае результативного завершения работы программы: результат разложения.
 - 2. Для ро-метода Полларда:
- 2.0. Параметры алгоритма (использованное отображение, начальное значение (несколько, если их пришлось менять)).
- 2.1. При результативном завершении работы первые 5 и последние 5 значений a, b, HOД(a-b, n), число итераций, время работы программы, выводы (объяснение результативного завершения).
- 2.2. При работе программы более нескольких часов первые 5 и последние (на момент прерывания программы) 5 значений а, b, НОД(а b, n), число выполненных итераций, время, затраченное на их выполнение, расчетное время, оставшееся до завершения работы (через оценку сложности алгоритма), выводы (объяснение нерезультативного завершения).
 - 3. Для (р-1)-метода Полларда:
- 3.1 Базу разложения (первоначальную, измененную (если потребовалось изменение, обосновать необходимость изменения)).
 - 3.2 Значения показателей 1 і.
- 3.3 При результативном завершении работы основание а, при котором выполнено разложение (несколько, если потребовалось изменять основание).
- 3.4 При невозможности найти разложение более нескольких часов основание а, при котором выполнено разложение (несколько, если потребовалось изменять основание), число выполненных итераций (одна итерация прогон алгоритма с одним основанием а), время, затраченное на их выполнение, расчетное время, оставшееся до завершения работы (через оценку сложности алгоритма), выводы (объяснение нерезультативного завершения).

2 Теоретические сведения

Задача разложения составного числа на множители формулируется так: для данного положительного целого числа n найти его каноническое разложение $n=p_1^{\alpha_1}p_2^{\alpha_2}\dots p_s^{\alpha_s}$, где p_i – попарно различные простые числа, $\alpha_i \geq 1$.

Нетривиальные сомножители — числа р и q, удовлетворяющие следующим выражениям: n = pq, 1 , где <math>n — положительное целое число.

Пусть $B = \{p_1, p_2, ..., p_s\}$ — множество различных простых чисел. Назовем множество В базой разложения. Целое число назовем В-гладким, если все его простые делители являются элементами множества B.

2.1 Ро-метод Полларда

Вход. Число n, начальное значение c, функция f, обладающая сжимающими свойствами.

Выход. Нетривиальный делитель p числа n.

- 1. Положить $a \leftarrow c, b \leftarrow c$.
- 2. Вычислить $a \leftarrow f(a) \pmod{n}$, $b \leftarrow f(b) \pmod{n}$, $b \leftarrow f(b) \pmod{n}$.
- 3. Найти $d \leftarrow HOД$ (a − b, n).
- 4. Если 1 < d < n, то положить $p \leftarrow d$ и результат: p. При d = n результат: «Делитель не найден»; при d = 1 вернуться на шаг 2.

2.2 (р-1)-метод Полларда

Вход. Составное число n.

Выход. Нетривиальный делитель p числа n.

- 1. Выбрать базу разложения $B = \{p_1, p_2, ..., p_s\}$.
- 2. Выбрать случайное целое $a, 2 \le a \le n-2$, и вычислить $d \leftarrow \text{HOД}(a, n)$. При $d \ge 2$ положить $p \leftarrow d$ и результат: p.
- 3. Для i = 1, 2, ..., s выполнить следующие действия.
- 4. Вычислить $l \leftarrow \left[\frac{\ln n}{\ln n_i}\right]$.

- 5. Положить $a \leftarrow a^{p_i^l} \pmod{n}$.
- 6. Вычислить d ← НОД (a-1, n).
- 7. При d = 1 или d = n результат: «Делитель не найден». В противном случае положить $p \leftarrow d$ и результат: p.

3 Ход работы

3.1 Результаты работы программы

Разработанная программа была запущена для всех наборов чисел. Результаты работы программы представлены в Таблица 1-6.

Для числа $n_1=13611195493017228143$ при помощи Ро-метода Полларда был успешно найден делитель p=2978456527. Использовалось отображение $f(x)=x^2+5$ и начальное значение c=1.

Время работы программы: 0.23500657081604004 с, число итераций: 32508. Таблица 1 – Результаты работы программы для числа n1

i	a	b	d
1	1	1	1
2	6	41	1
3	41	2842601	1
4	1686	10861542182831571302	1
5	2842601	111405573951963106	1
32504	8040085432563274102	6601940779760971423	1
32505	216314951270981850	7737930714978469926	1
32506	6877377558007139165	2185002310513441404	1
32507	2365514650370259930	8014394833696004580	1
32508	2365514650370259930	11661310219253604802	2978456527

Для числа $n_2=577481594046145019923902459952027954091$ при помощи Ро-метода Полларда не был найден делитель. Использовалось отображение $f(x)=x^2+5$ и начальное значение c=1.

Время работы программы: 3600.0193858146667 с, число итераций: 236571971. Длительность одной итерации составляла $t_0=1.5217438357541802e-05$ с, поэтому расчётное время выполнения программы: $t_o*\sqrt[4]{n}=4902126754.715017*t_0=74597.81171073222$ c=20.0 ч 43.0 м 17.81171073221776 с .

Таблица 2 – Результаты работы программы для числа n2

i	a	b	d
1	1	1	1
2	6	41	1
3	41	2842601	1
4	1686	65292548139267514768382441	1
5	2842601	21405000562461409119131696946	1
		9017447925	
236571	54412378559470536917234928322	57596976567305990330108083582	1
967	8803960025	0860087470	
236571	11837634322664178442161343135	12709566950477275780992807369	1
968	3835471516	0689555236	
236571	11837634322664178442161343135	23261621750585822505092511639	1
969	3835471516	1586620603	
236571	31989135541410523840961044094	39482576433226309845909805636	1
970	3509489112	5635223022	
236571	30241569204681784247355228519	50107917049143220426767391498	1
971	8704977229	7875208431	

Для числа $n_3 =$

52708421589587837513689840073082141026946344837367894019458 307620476572669600009 при помощи Ро-метода Полларда не был найден делитель. Использовалось отображение $f(x)=x^2+5$ и начальное значение c=1.

Время работы программы: 3600.019764661789 с, число итераций:

113996191. Длительность одной итерации составляла $t_0 =$

3.1580175908349335e-05с, поэтому расчётное время выполнения программы:

$$t_o*\sqrt[4]{n}=~8.520596565431583e+19*t_0=2690819383804065.5~c=85325322.0$$
 лет 338.0 дней 2.0 ч 27.0 м 45.5 с.

Таблица 3 – Результаты работы программы для числа n3

i	a	b	d
1	1	1	1
2	6	41	1
3	41	2842601	1
4	1686	65292548139267514768382441	1
5	2842601	4008697475454097602160503953364	1
		5590259412286076279686049944824	
		66391913907064583	
113	2196498578775139019365934002579	2171512137630532090119901538873	1
996	3869011543865322932928447451078	9402761439342015149243729928313	
187	270048098092212923	483282240173083991	
113	4260638204593532582059723836589	1910666172320357970499896817463	1
996	2899570803717702394888717056346	7105792950729151848907631148687	
188	734234147288182677	747736203413160050	
113	1758286792673280400861708506833	4086480417306488334633393485578	1
996	4360743701333310053703299264217	0848036009650123824543491952323	
189	540618569954906923	316391830016947605	
113	3225347378207540490977866386401	3014991812999194752781873512407	1
996	4912275793072000645154171393208	1440868820604287536230201999128	
190	520920698092048940	207117585718476225	
113	2196735211341056714445447698603	3230371678786785501239385757632	1
996	3738820756720352159624459500616	6232937651076316399708252681718	
191	191835668666825204	930769183106209299	

Для числа $n_1=13611195493017228143$ при помощи (p-1)-метода Полларда был успешно найден делитель p=4569882209. Была использована база, состоящая из 63277 простых чисел от 3 и далее по порядку.

Время работы программы: 4.033313751220703 с, число итераций: 63277. Таблица 4 – Результаты работы программы для числа n1

i	B[i]	1	a	d
1	3	40.0	3687749254297312991	1
2	5	27.0	8692880039870333589	1
3	7	22.0	5691559321014900988	1
4	11	18.0	1615089452164815405	1
5	13	18.0	9319623394481832626	1
63273	788947	3.0	1043905493486501487	1
63274	788959	3.0	3410672726039318558	1
63275	788971	3.0	12381063393251996094	1
63276	788993	3.0	9504370413971455350	1
63277	788999	3.0	8802506059902891931	4569882209

Для числа $n_1=577481594046145019923902459952027954091$ при помощи (p-1)-метода Полларда был успешно найден делитель p=13063260683520389893. Была использована база, состоящая из 3081 простых чисел от 3 и далее по порядку.

Время работы программы: 4.033313751220703 с, число итераций: 63277. Таблица 5 – Результаты работы программы для числа n2

i	B[i]	1	a	d
1	3	81.0	191050789305901844563329713287875840628	1
2	5	55.0	93518126388959089978511856520248925432	1
3	7	45.0	298587173235620183211554128957687409771	1
4	11	37.0	298587173235620183211554128957687409771	1
5	13	34.0	391376160859571964510084716196235300065	1

3077	27941	8.0	185555627603715760590209540073299147711	1
3078	27943	8.0	468524795562505022733624210661168465195	1
3079	27947	8.0	391705780648624445024545993955485664740	1
3080	27953	8.0	158964764778163763233368679450088225377	1
3081	27961	8.0	426946945315885514696486201517688752861	130632606
				835203898
				93

Для числа $n_3 =$

52708421589587837513689840073082141026946344837367894019458 307620476572669600009 при помощи (р-1)-метода Полларда не был найден делитель. Была использована база, состоящая из 13347952 простых чисел от 3 и далее по порядку.

Время работы программы: 3600.0539615154266 с, число итераций: 13347952. Длительность одной итерации составляла $t_0=0.000269708338890897$ с, поэтому расчётное время выполнения программы: $t_o*(B*\ln B*(\ln n)^2)=7379499494401.028*t_0=1990312550.4811158$ c=63.0 лет 41.0 дней 0.0 ч 35.0 м 50.48111581802368 с.

Таблица 6 – Результаты работы программы для числа n3

i	B[i]	1	a	d
1	3	167.0	28736456788329733128524573051367718394041538	1
			800898032302154605922007124250306872	
2	5	114.0	48916792648447425777043166681892373564001863	1
			372258864610117619159832354807133960	
3	7	94.0	48916792648447425777043166681892373564001863	1
			372258864610117619159832354807133960	
4	11	76.0	28666136978879204330377772189319096691397256	1
			740890366622584212156058172856412499	
5	13	71.0	47752977649077434201800276953171120422210988	1

			283528247783766285167856632183357908	
13347	24358	9.0	47752977649077434201800276953171120422210988	1
948	1449		283528247783766285167856632183357908	
13347	24358	9.0	38334809395607709558466748608776899675244366	1
949	1449		831539663139346623481109075004986876	
13347	24358	9.0	15759866025848500481624223568852278914075916	1
950	1473		9338127309544749221075088400652882	
13347	24358	9.0	12868596477417269448619706286319967592631685	1
951	1483		583232050940150973082806960109596253	
13347	24358	9.0	15653295895228838303554466166102380654264424	1
952	1543		848918835931082946838360302902204612	

4 Выводы

В ходе выполнения лабораторной работы были реализованы два алгоритма разложения числа на нетривиальные множители. Ро-метод Полларда дал результаты только для первого числа. Этот алгоритм менее эффективен, чем (р-1)-метод Полларда. Второй метод дал результаты для двух чисел, а также этот алгоритм конечен и в большей степени зависит от мощности базы разложения (которая определяет число итераций цикла).