The Faddeev-LeVerrier algorithm

The Faddeev-LeVerrier algorithm may be used to determine the inverse, determinant, and characteristic polynomial of an $n \times n$ matrix. The algorithm terminates in n steps, where each step involves a single matrix multiplication and only integer division. It works like magic!

Faddeev-LeVerrier algorithm

1 given an $n \times n$ matrix A

 $c_n := 1$ $3 N \leftarrow 0$ 4 for $k \in (n-1, ..., 1, 0)$ $5 \mid N \leftarrow N + c_{k+1} \mathbb{I}$ $c_k \coloneqq \frac{1}{k-n}\operatorname{tr}(AN)$ 7 return $8 \mid A^{-1} = -N/c_0$

9 $\det(A) = (-1)^n c_0$ 10 $\chi(\lambda) = \sum_{k=0}^n c_k \lambda^k$

Also refer to a Julia implementation.

Derivation Start with the characteristic polynomial of A.

$$\chi(\lambda) = \det(\lambda \mathbb{I} - A) = \sum_{k=0}^{n} c_k \lambda^k$$

Useful fact.

The adjunct of a matrix, adj(A), satisfies $det(A)\mathbb{I} = A adj(A)$. If A is $n \times n$, then $\det(A)$, and hence the entries of A $\operatorname{adj}(A)$, are degree n polynomials

in the entries of A. Hence, the entries of adj(A) are degree n-1 polynomials. The entries of $N(\lambda) := \operatorname{adj}(\lambda \mathbb{I} - A)$ are λ -polynomials of order n-1, so $N(\lambda) = \sum_{k=0}^{n-1} N_k \lambda^k$

where N_k are matrices. From $\det(\lambda \mathbb{I} - A)\mathbb{I} = (\lambda \mathbb{I} - A)N(\lambda)$, $\det(\lambda \mathbb{I} - A)\mathbb{I} = (\lambda \mathbb{I} - A) \sum_{k=0}^{n-1} N_k \lambda^k$

$$=-AN_0+\sum_{k=1}^{n-1}(N_{k-1}-AN_k)\lambda^k+N_{n-1}\lambda^n$$
 Equating coefficients of λ with $\chi(\lambda)\mathbb{I}$, we obtain:

 $c_0 \mathbb{I} = -AN_0$

$$c_k\mathbb{I}=N_{k-1}-AN_k$$

$$c_n\mathbb{I}=N_{n-1}$$
 To remember these, just write $c_k\mathbb{I}=N_{k-1}-AN_k$ for all $0\le k\le n$ with the understanding

that N_k vanishes outside the range $0 \le k \le n-1$. Equivalently, $N_k = N_{k+1} - c_{k+1} \mathbb{I}$

gives a descending recurrence relation for
$$N_k$$
 in terms of the coefficients c_k .

Finding c_k in terms of A and N_k

This stroke of genious is due to (Hou, 1998).

Useful fact: Laplace transform of derivative. $\mathcal{L}\{f'(t)\}(s) = \int_{0}^{\infty} f'(t)e^{-st} dt$

$$= f(t)e^{-st}\big|_{t=0}^{\infty} + s \int_0^{\infty} f(t)e^{-st} dt$$
$$= -f(0) + s\mathcal{L}\{f(t)\}(s)$$

 $\frac{\mathrm{d}e^{At}}{\mathrm{d}t} = Ae^{At}$

Consider

and perform the Laplace transform to obtain
$$-\mathbb{I} + s\mathcal{L}\big\{e^{At}\big\} = A\mathcal{L}\big\{e^{At}\big\}$$

and finally take the trace: $s\operatorname{tr}\mathcal{L}\{e^{At}\}-n=\operatorname{tr}(A\mathcal{L}\{e^{At}\})$

Useful fact: the trace of a matrix exponential in terms of eigenvalues.
If
$$\lambda_i$$
 are the eigenvalues of A then $\operatorname{tr}(A) = \sum_i \lambda_i$. Also, A can be put in Jordan normal

(1)

(2)

form $A = PJP^{-1}$ where J is triangular with diag $(J) = (\lambda_1, ..., \lambda_n)$. Since it is triangular, diag $(J^k) = (\lambda_1^k, ..., \lambda_n^k)$.

Therefore, $\operatorname{tr}(A^k) = \operatorname{tr}(PJ^kP^{-1}) = \operatorname{tr}(J^kP^{-1}P) = \operatorname{tr}(J^k) = \sum_{i=1}^n \lambda_i^k$.

Consequently, $\operatorname{tr}(e^{At}) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \operatorname{tr}(A^k) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \sum_{i=1}^n \lambda_i^k = \sum_{i=1}^n e^{\lambda_i t}$ We now compute the terms in Equation 1.

 $\mathcal{L}\left\{e^{At}\right\} = \int_{a}^{\infty} e^{(A-s\mathbb{I})t} \, \mathrm{d}t = (A-s\mathbb{I})^{-1} e^{(A-s\mathbb{I})t} \bigg|_{a}^{\infty} = (s\mathbb{I}-A)^{-1}$

Caution. I'm uncomfortable with these integrals. Why should $\lim_{t\to\infty} e^{(A-s\mathbb{I})t}$ converge?

Note that from
$$\chi(\lambda) = \det(\lambda \mathbb{I} - A) = (\lambda \mathbb{I} - A)N(\lambda)$$
 we have

 $(\lambda \mathbb{I} - A)^{-1} = \frac{N(\lambda)}{\gamma(\lambda)}$

 $\operatorname{tr} \mathcal{L} \{e^{At}\} = \int_0^\infty \operatorname{tr} e^{(A-s\mathbb{I})t} \, \mathrm{d}t = \sum_{i=1}^n \int_0^\infty e^{(\lambda_i-s)t} \, \mathrm{d}t = \sum_{i=1}^n \frac{1}{s-\lambda_i}$

Recall that the roots of the characteristic polynomial of A are its eigenvalues, so $\chi(s) =$

Substituting Equation 2 and Equation 3 into Equation 1, we have

Let $(\lambda_1, ..., \lambda_n)$ be the eigenvalues of A. Then $A - s\mathbb{I}$ has eigenvalues $\lambda_i - s$.

$$\operatorname{tr} \mathcal{L}\left\{e^{At}\right\} = \sum_{i=1}^{n} \frac{\mathrm{d}}{\mathrm{d}s} \ln(s - \lambda_i) = \frac{\mathrm{d}}{\mathrm{d}s} \ln\left(\prod_{i=1}^{n} (s - \lambda_i)\right) = \frac{\mathrm{d}}{\mathrm{d}s} \ln\chi(s) = \frac{\chi'(s)}{\chi(s)} \tag{3}$$

 $\sum_{k=1}^{n} (k-n)c_k s^k = \sum_{k=1}^{n-1} \operatorname{tr}(AN_k)s^k$

 $s\chi'(s) - n\chi(s) = tr(AN(\lambda))$

 $= \det(-A) + \dots + \operatorname{tr}(-A)\lambda^{n-1} + \lambda^n$

$$)^n \det(A), \quad c_{n-1} =$$

Useful fact.

Visual summary

the matrix according to:

 $\prod_{i=1}^n (s-\lambda_i).$

$c_0 = (-1)^n \det(A), \quad c_{n-1} = -\operatorname{tr}(A), \quad c_n = 1$

which, expanding and equating powers of λ ,

for all $0 \le k \le n$ where we define $N_n = 0$.

$\det(\lambda \mathbb{I} - A) = \sum_{k=0}^{n} c_k \lambda^k \quad c_k \mathbb{I} = N_{k-1} - A N_k \quad c_k = \frac{\operatorname{tr}(A N_k)}{k-n} \qquad \mathcal{L}\{e^{At}\} = (s\mathbb{I} - A)^{-1}$ equate coefficients $\inf_{c_0, \ldots, c_n} c_0, \ldots, c_n \quad s \operatorname{tr}\mathcal{L}\{e^{At}\} - n = \operatorname{tr}(A\mathcal{L}\{e^{At}\})$

$N(\lambda) = \sum_{k=0}^{n-1} N_k \lambda^k$

1137/S003614459732076X

References Hou, S.-H. (1998). Classroom Note: A Simple Proof of the Leverrier-Faddeev Characteristic Polynomial Algorithm. SIAM Rev., 40(3), 706-709. https://doi.org/10.

 $\operatorname{tr} \mathcal{L} \left\{ rac{\mathrm{d} e^{At}}{\mathrm{d} t}
ight\}$