Langages et Automates

TD1

Exercice 1 : Généralités

- 1. Compter les occurrences des lettres a et b dans les mots suivants : a^3cbbca , aabgjdd, titi, babc.
- 2. Donner l'ensemble des couples (u, v) tels que $u \cdot v = abaac$.
- 3. Un mot u est un facteur d'un mot v si u apparaît à l'intérieur de v : v s'écrit $w_1 \cdot u \cdot w_2$ pour certains mots w_1 et w_2 . Un mot u est un sous-mot d'un mot v si on peut obtenir u à partir de v par 'effacement' de certaines lettres (pas forcément consécutives) de v. Le nombre d'occurrences d'un facteur (resp. sous-mot) u dans le mot v est le nombre de façons de voir u comme facteur (resp. sous-mot) de v. Donner le nombre d'occurrences du facteur aba dans le mot v = ababab. Donner le nombre d'occurrences du sous-mot aba dans le même mot v.

Exercice 2 : Opérations sur les langages

```
1. Calculer \mathcal{L} \cdot \mathcal{M} pour les ensembles suivants :
```

```
 \mathcal{L} = \{a, ab, bb\} \text{ et } \mathcal{M} = \{\varepsilon, b, a^2\}; 
\mathcal{L} = \emptyset \text{ et } \mathcal{M} = \{a, ba, bb\}; 
\mathcal{L} = \{\varepsilon\} \text{ et } \mathcal{M} = \{a, ba, bb\}; 
\mathcal{L} = \{aa, ab, ba\} \text{ et } \mathcal{M} = A^*.
```

- 2. Montrer que le produit est une opération distributive par rapport à l'union, c'està-dire que, pour tous langages \mathcal{L} , \mathcal{M} et \mathcal{N} , on a : $\mathcal{L} \cdot (\mathcal{M} \cup \mathcal{N}) = (\mathcal{L} \cdot \mathcal{M}) \cup (\mathcal{L} \cdot \mathcal{N})$. Montrer que le produit n'est pas distributif par rapport à l'intersection.
- 3. Parmi les égalités suivantes, lesquelles sont correctes (prouvez ou donnez un contreexemple)?

```
 \begin{split} & - \mathcal{M}^* = \mathcal{M}^* \cdot \mathcal{M}^* \\ & - \mathcal{M}^* = (\mathcal{M} \cdot \mathcal{M})^* \\ & - \mathcal{M}^* = \mathcal{M} \cdot \mathcal{M}^* \\ & - \mathcal{M}^* = (\mathcal{M}^*)^* \\ & - \mathcal{M} \cdot (\mathcal{N} \cdot \mathcal{M})^* = (\mathcal{M} \cdot \mathcal{N})^* \cdot \mathcal{M} \\ & - (\mathcal{M} \cup \mathcal{N})^* = \mathcal{M}^* \cup \mathcal{N}^* \\ & - (\mathcal{M} \cap \mathcal{N})^* = \mathcal{M}^* \cap \mathcal{N}^* \\ & - (\mathcal{M} \cup \mathcal{N})^* = (\mathcal{M}^* \cdot \mathcal{N}^*)^* \\ & - (\mathcal{M} \cup \mathcal{N})^* = (\mathcal{M}^* \cdot \mathcal{N})^* \cdot \mathcal{M}^* \end{split}
```

Exercice 3: Conjugaison

Deux mots u et v sont dits *conjugués* s'il existe deux mots w_1 et w_2 tels que $u = w_1 \cdot w_2$ et $v = w_2 \cdot w_1$. En d'autres termes, v s'obtient à partir de u par permutation cyclique de ses lettres.

- 1. Montrer que la conjugaison est une relation d'équivalence, c'est-à-dire :
 - tout mot u est conjugué à lui-même;
 - si u est conjugué à v, alors v est conjugué à u;
 - si u est conjugué à v et v est conjugué à w, alors u est conjugué à w.
- 2. Montrer que u et v sont conjugués si et seulement s'il existe un mot w tel que $u \cdot w = w \cdot v$.

Exercice 4: Résiduels

Soient $\mathcal{L} \subseteq A^*$ un langage et $u \in A^*$ un mot. On appelle résiduel du langage \mathcal{L} (à gauche) par rapport à u, et on note $u^{-1} \cdot \mathcal{L}$, le langage :

$$u^{-1} \cdot \mathcal{L} = \{ v \in A^* \mid u \cdot v \in \mathcal{L} \}.$$

Autrement dit, $u^{-1} \cdot \mathcal{L}$ est l'ensemble des mots de \mathcal{L} commençant par u, auxquels on a retiré ce préfixe u.

- 1. Soit $\mathcal{L} = \{janvier, fevrier, mars, avril, mai, juin, juillet\}$. Calculer les résiduels $jan^{-1} \cdot \mathcal{L}, ier^{-1} \cdot \mathcal{L}, jui^{-1} \cdot \mathcal{L}, juin^{-1} \cdot \mathcal{L}$
- 2. Calculer les résiduels du langage $\mathcal{L} = \{\varepsilon, abb, baaba\}$ par rapport aux mots a, b, ab, ba et bb.
- 3. Calculer, pour tous les mots u de A^* , le résiduel de \mathcal{L} par rapport au mot u dans les exemples suivants (avec $A = \{a, b\}$):
 - $-\operatorname{si} \mathcal{L} = \{a^p b^q \mid p, q \geqslant 0\};$
 - $\sin \mathcal{L} = \{a^n b^n \mid n \geqslant 0\}.$
- 4. Soit \mathcal{L} un langage. Montrer que $\varepsilon^{-1} \cdot \mathcal{L} = \mathcal{L}$ et que, pour tous mots u et v dans A^* , $(uv)^{-1} \cdot \mathcal{L} = v^{-1} \cdot (u^{-1} \cdot \mathcal{L})$.
 - Jusqu'à la fin de l'exercice \mathcal{L} désigne mainte tant le langage défini par l'expression rationnelle $(ab)^*(a+b)$.
- 5. Calculez des expressions rationnelles pour les langages $a^{-1} \cdot \mathcal{L}$ et $b^{-1} \cdot \mathcal{L}$.
- 6. Calculez ensuite $w^{-1} \cdot \mathcal{L}$ pour les mots w de deux lettres : aa, ab, ba et bb.
- 7. Les résiduels $w^{-1} \cdot \mathcal{L}$ obtenus pour des mots w de longueur quelconque sont-ils différents de ceux déjà calculés?

Exercice 5: Expressions Rationnelles

Donner des expressions rationnelles décrivant les langages ci-dessous :

- $L_1 = \{u \in A^* : \text{toute occurrence de } b \text{ est immédiatement suivie de deux occurrences de } a\},$
- $L_2 = \{u \in A^* : u \text{ ne contient pas deux } a \text{ successifs}\},$
- $L_3 = \{u \in A^* : \text{le nombre d'occurrences de } a \text{ dans } u \text{ est pair}\},$
- $L_4 = \{u \in A^* : \text{les blocs de } a \text{ dans } u \text{ sont alternativement de longueur paire et impaire}\}.$