Analysis III

Arthur Henninger

15. Oktober 2024

INHALTSVERZEICHNIS

KAPITEL I	EINFUHRUNG	SEITE2
1.1	Formeln	2
1.2	Fourierreihen und euklidische Vektorräume	3
1.3	Der Satz von Banach-Tarski	9
Kapitel 2	Das Lebesguemass	SEITE10
2.1	Dyadische Würfel und das äußere Lebesguemaß	10
2.2	Messbare Mengen	13

Kapitel 1

Einführung

1.1 Formeln

Beispiel 1.1

$$\begin{split} \int_{-\infty}^{\infty} e^{-x^2} dx &= \sqrt{\pi} \\ \left| B_r^{\mathbb{R}^2}(0) \right| &= \pi r^2 \\ \left| B_r^{\mathbb{R}^3}(0) \right| &= \frac{4}{3} \pi r^3 \\ \left| B_r^{\mathbb{R}^d}(0) \right| &= \frac{\pi^{\frac{d}{2}}}{\Gamma\left(\frac{d+2}{2}\right)} r^d. \end{split}$$

 $\begin{array}{l} \textbf{\textit{Beweis der Kugelformel:}} & \text{Archimedes: } d=3, \text{ Halbkugel: } B^+ = \left\{x \in \mathbb{R}^3 : |x| < 1, x_3 > 0\right\} \\ \text{Zylinder } Z = \left\{x \in \mathbb{R}^3 : x_1^2 + x_2^2 < 1, 0 < x_3 < 1\right\} \\ \text{Kegel } C = \left\{x \in \mathbb{R}^3 : 0 < x_3 \leq \sqrt{x_1^2 + x_2^2} \leq 1\right\} \\ \text{Es ist} \end{array}$

$$|Z|=\pi$$
 (Höhe mal Grundfläche)
 $|C|=\frac{1}{3}\pi$. (Höhe mal Grundfläche)

Wir betrachten eine Halbkugel und einen Zylinder, aus dem ein Kegel ausgeschnitten wurde. Wir untersuchen Schnitte auf Höhe x_3 in der Halbkugel. Es ist $x_1^2 + x_2^2 + x_3^2 \le 1 \implies \sqrt{x_1^2 + x_2^2} \le \sqrt{1 - x_3^2}$. Damit gilt

$$\begin{vmatrix} B_{\sqrt{1-x_3^2}}^{\mathbb{R}^2}(0) \times \{x_3\} \end{vmatrix} = \pi(1-x_3^3)$$

$$= \pi - \pi x_3^3$$

$$= \left| \left(B_1^{\mathbb{R}^2}(0) \setminus B_{x_3}^{\mathbb{R}^2}(0) \right) \times \{x_3\} \right|.$$

Nach dem Prinzip von Cavalieri (Die Volumen sind gleich, wenn die Flächen der Schnitte gleich sind.). Also gilt:

$$|B^+| = |Z \setminus C| = \pi - \frac{1}{3}\pi = \frac{2}{3\pi}.$$

Frage 1

- (1) Definition des Volumens?
- (2) Berechnung des Volumens?
- (3) Mehrdimensionale Integrale?
- (4) Was ist die Dimension einer Teilmenge?

1.2 Fourierreihen und euklidische Vektorräume

Sei H euklidischer VR: Skalarprodukt $\mathbb{K} = \mathbb{R}$, $\mathbb{K} = \mathbb{C}$ $H \times H \to \mathbb{K}$, $(x, y) \mapsto \langle x, y \rangle$ so dass immer gilt:

- i) $\langle \lambda_1 x_1 + \lambda_2 x_2, y \rangle = \lambda_1 \langle x_1, y \rangle + \lambda_2 \langle x_2, y \rangle \in \mathbb{K}$
- ii) $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- iii) $\langle x, x \rangle \ge 0$ und $\langle x, x \rangle = 0 \iff x = 0$

Norm: $||x|| = \sqrt{\langle x, x \rangle}$

Definition 1.1

Eine Folge e_n von Vektoren heißt Orthonormalsystem, falls

$$\langle e_j, e_k \rangle = \begin{cases} 1 \text{ falls } j = k \\ 0 \text{ sonst} \end{cases}$$

Satz 1.1 Besselsche Gleichung

$$\sum_{j=0}^{N} \left| \left\langle x, e_j \right\rangle \right|^2 + \left\| x - \sum_{j=0}^{N} \left\langle x, e_j \right\rangle e_j \right\|^2 = \|x\|^2.$$

Korollar 1.1

$$\lim_{N\to\infty}\sum_{j=0}^N\left|\left\langle x,e_j\right\rangle\right|^2\leq \left\|x\right\|^2.$$

Beweis: Sei (e_i) ein ONS, $x \in H, N \in \mathbb{N}$. Es ist

$$x = \left(x - \sum_{j=0}^{N} \left\langle x, e_j \right\rangle e_j \right) + \sum_{j=0}^{N} \left\langle x, e_j \right\rangle e_j.$$

Es ist

$$||x||^{2} = \left\| \left(x - \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right) + \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right\|^{2}$$

$$= \left\| x - \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right\|^{2} + \left\| \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right\|^{2}$$

$$+ \left\langle x - \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j}, \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right\rangle + \left\langle \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j}, x - \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j} \right\rangle.$$

Die unteren Skalarprodukte sind 0, denn

$$\left\langle \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle e_{j}, \ldots \right\rangle = \sum_{j=0}^{N} \left\langle x, e_{j} \right\rangle \left\langle e_{j}, \ldots \right\rangle.$$

Außerdem ist

$$\left\langle x - \sum_{j=0}^{N} \left\langle x, e_j \right\rangle e_j, e_k \right\rangle = \left\langle x, e_k \right\rangle - \sum_{j=0}^{N} \left\langle x, e_j \right\rangle \left\langle e_j, e_k \right\rangle$$
$$= \left\langle x, e_k \right\rangle - \left\langle x, e_k \right\rangle$$
$$= 0.$$

Ferner ist

$$\left\| \sum_{j=0}^{N} \langle x, e_j \rangle e_j \right\|^2 = \sum_{j,k=0}^{N} \langle x, e_j \rangle \overline{\langle x, e_k \rangle} \langle e_j, e_k \rangle$$
$$= \sum_{j=0}^{N} |\langle x, e_j \rangle|^2.$$

Wir erhalten die Besselsche Gleichung durch Einsetzen dieses Resultats in die erste Gleichung.

Wir untersuchen stetige Funktionen, die aus dem Intervall [0,1] nach \mathbb{C} abbilden und 0 und 1 auf denselben Wert schicken. Sie repräsentieren damit alle periodischen Funktionen:

$$H = \{u \in C[0, 1], u(0) = u(1)\}\$$

und definieren

$$\langle u,v\rangle = \int_0^1 u \cdot \overline{v} dx.$$

Dann ist

$$||u||^2 = \langle u, u \rangle = \int_0^1 |u|^2 dx.$$

Wir definieren

$$e_j = e^{2\pi i j x}.$$

Behauptung: $(e_j)_{j\in\mathbb{N}}$ sind ONS

Beweis:

$$\begin{split} \left\langle e_j, e_k \right\rangle &= \int_0^1 e^{2\pi i j x} \overline{e^{2\pi i k x}} dx \\ &= \int_0^1 e^{2\pi i (j-k) x} dx \\ &= \begin{cases} 1 \text{ falls } j = k \\ \frac{1}{2\pi i (j-k)} \left[e^{2\pi i (j-k) x} \right]_0^1 = 0 \end{cases} \end{split}$$

Damit können wir die Besselsche Gleichung auf das ONS anwenden:

$$||u||^2 = \sum_{j=N}^M \left| \left\langle u, e^{2\pi i j x} \right\rangle \right|^2 + \left| \left| u - \sum_{j=N}^M \left\langle u, e^{2\pi i j x} \right\rangle e^{2\pi i j x} \right| \right|^2.$$

Lemma 1.1

$$\lim_{N\to\infty} \sum_{j=-N}^N \left| \left\langle f, e^{2\pi i j x} \right\rangle \right|^2 = \|f\|_H^2 \, .$$

Satz 1.2

Sei $f \in H$ also stetig auf [0,1] mit f(1)=f(0). Dann ist

$$\lim_{N\to\infty}\sum_{n=-N}^N\left\langle f,e^{2\pi inx}\right\rangle e^{2\pi inx}=f.$$

Wir definieren $a_i = \langle u, e^{2\pi i j x} \rangle$.

Beweis: Nach der Besselschen Gleichung gilt dann:

$$\left\| u - \sum_{j=-N}^{N} a_j e^{2\pi i j x} \right\|^2 = \|u\|^2 - \sum_{j=-N}^{N} |a_j|^2$$

$$\to 0 \quad (N \to \infty).$$

Bemerkung 1.1

H ist nicht vollständig (da beispielswese eine Funktionenfolge stetiger Funktionen gegen eine nicht stetige Funktion konvergieren kann)

Frage 2

Sei $(a_n)_{n\in\mathbb{Z}}$ eine quadratsummierbare Folge, sei also

$$\sum_{j=-\infty}^{\infty} \left| a_j \right|^2 < \infty.$$

Ist dann

$$\implies f_N := \sum_{j=-N}^N a_j e^{2\pi i j x}.$$

Zwar ist sie in H eine Cauchyfolge, aber H ist nicht vollständig, wie wir sehen werden.

Wir definieren für $f \in H$ den Fourierkoeffizienten:

$$a_n = \int_0^1 f(x)e^{-2\pi i nx} dx = \langle f, e_n \rangle$$

und die Fourierreihe

$$\sum_{n=-\infty}^{\infty} a_n e^{2\pi i n x}.$$

Beweis des Lemmas: Wir betrachten den Dirichlet-Kern und formen ihn mithilfe der geometrischen Summe $(\sum_{k=0}^{n} x^k = \frac{x^{n+1}-1}{x-1})$ um:

$$D_k(x) := \sum_{n=-k}^k e^{2\pi i n x}$$

$$= e^{-2\pi i k x} \sum_{n=0}^{2k} (e^{2\pi i x})^n$$

$$= e^{-2\pi i k x} \frac{e^{2\pi i (2k+1)x} - 1}{e^{2\pi i x} - 1}$$

$$= \frac{e^{2\pi i (k+1)x} - e^{-2\pi i k x}}{e^{2\pi i x} - 1} \cdot \frac{e^{-\pi i x}}{e^{-\pi i x}}$$

$$= \frac{e^{\pi i x (2k+2) - \pi i x} - e^{-2\pi i x k - \pi i x}}{e^{\pi i x} - e^{-\pi i x}}$$

$$= \frac{e^{(2k+1)\pi i x} - e^{-(2k+1)\pi i x}}{e^{\pi i x} - e^{-\pi i x}}.$$

Damit ist

$$\sum_{n=-k}^{k} \langle f, e^{2\pi i n x} \rangle e^{2\pi i n x} = \sum_{n=-k}^{k} \int_{0}^{1} e^{2\pi i n (x-y)} f(y) dy$$
$$= \int_{0}^{1} D_{k}(x-y) f(y) dy.$$

Wir betrachten Fejérkern und formen ihn um:

$$\begin{split} F_N(x) &:= \frac{1}{N} \sum_{k=0}^{N-1} D_k(x) \\ &= \frac{1}{N} \frac{1}{e^{i\pi x} - e^{-i\pi x}} \sum_{k=0}^{N-1} (e^{(2k+1)\pi ix} - e^{-(2k+1)\pi ix}) \\ &= \frac{1}{N} \frac{1}{e^{i\pi x} - e^{-i\pi x}} \left(e^{\pi ix} \frac{e^{2N\pi ix} - 1}{e^{2\pi ix} - 1} - e^{-\pi ix} \frac{e^{2N\pi ix} - 1}{e^{-2\pi ix} - 1} \right) \\ &= \frac{1}{N} \frac{e^{2N\pi ix} - 2 + e^{-2N\pi ix}}{(e^{\pi ix} - e^{-\pi ix})^2} \\ &= \frac{1}{N} \left(\frac{\sin(N\pi x)}{\sin(\pi x)} \right)^2. \end{split}$$

Der letzte Schritt folgt aus

$$e^{i\theta} - e^{-i\theta} = \cos(\theta) + i\sin(\theta) - (\cos(-\theta) + i\sin(-\theta))$$

= $\cos(\theta) + i\sin(\theta) - \cos(\theta) - (-1) \cdot i\sin(\theta)$
= $2i\sin(\theta)$

und

$$e^{2N\pi ix} - 2 + e^{-2N\pi ix} = (e^{N\pi ix})^2 - 2 \cdot e^{N\pi x} e^{-N\pi ix} + (e^{-N\pi ix})^2$$
$$= (e^{N\pi ix} - e^{-N\pi ix})^2.$$

Dann ergibt sich mit $\theta = N\pi x$ und $\theta = \pi x$ durch Kürzen mit 2i der letzte Term. Wir stellen folgende Eigenschaften fest:

(1) $F_N(x) \ge 0$

(2)
$$\int_0^1 F_N(x)dx = \int_0^1 D_N(x)dx = 1$$
, denn

$$\begin{split} \int_{0}^{1} D_{N}(x) dx &= \int_{0}^{1} \sum_{n=-N}^{N} e^{2\pi i n x} dx \\ &= \sum_{n=-N}^{N} \int_{0}^{1} e^{2\pi i n x} dx \\ &= \sum_{n=1}^{N} \int_{0}^{1} e^{2\pi i n x} + e^{-2\pi i n x} dx + \int_{0}^{1} e^{2\pi i \cdot 0 \cdot x} dx \\ &= \sum_{n=1}^{N} \int_{0}^{1} 2 \cos(2\pi n x) dx + \int_{0}^{1} e^{2\pi i \cdot 0 \cdot x} dx \\ &= \int_{0}^{1} e^{2\pi i \cdot 0 \cdot x} dx \qquad \text{(erster Term fällt wegen ganzer Periode weg)} \\ &= \int_{0}^{1} 1 dx \\ &= 1 \end{split}$$

und

$$\int_{0}^{1} F_{N}(x)dx = \int_{0}^{1} \frac{1}{N} \sum_{k=0}^{N-1} D_{k}(x)$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \int_{0}^{1} D_{k}(x)$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} 1$$

$$= 1.$$

(3)
$$F_N(x+1)=F_N(x),$$
 denn $(\sin(\theta))^2=(\pm\sin(\theta+n\pi))^2=(\sin(\theta+n\pi))^2$

(4) Für
$$0 < x < 1$$
 gilt $|F_N(x)| \le \frac{1}{N(\sin(\pi x))^2}$, denn $\sin(N\pi x)^2 \le 1$

Für $f \in H$ ist aufgrund der Definition

$$f_{N}(x) := \int_{0}^{1} F_{N}(x - y) f(y) dy$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \int_{0}^{1} D_{k}(x - y) f(y) dy$$

$$= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \left\langle f, e^{2\pi i n x} \right\rangle e^{2\pi i n x}$$

$$= \frac{1}{N} \sum_{n=-N}^{N} (N - |n|) \left\langle f, e^{2\pi i n x} \right\rangle e^{2\pi i n x}$$

$$= \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N} \right) \left\langle f, e^{2\pi i n x} \right\rangle e^{2\pi i n x}.$$
(Abzählen)

Das Abzählen sorgt dafür, dass wie die Summe mit n=0 genau N mal zählen, die für n=1,-1 genau N-1 mal zählen und so weiter.

Nun ist

$$\int_0^1 |f_N|^2 dy = \sum_{n=-N}^N \left(1 - \frac{|n|}{N}\right)^2 \left| \left\langle f, e^{2\pi i n x} \right\rangle \right|^2$$

$$\leq \sum_{n=-N}^N \left| \left\langle f, e^{2\pi i n x} \right\rangle \right|^2.$$

Wir zeigen nun:

$$f \in H \implies \int_0^1 F_N(x-y)f(y)dy \to f(x) \quad (N \to \infty)$$
 gleichmäßig in x .

Zunächst ist dabei

$$\int F_N(x-y)f(y)dy - f(x) = \int F_N(x-y)(f(y)-f(x))dx.$$

Sei nun $\varepsilon > 0$. Aufgrund der Stetigkeit von f gibt es dann $\delta > 0$, so dass $|f(x) - f(y)| < \frac{\varepsilon}{4}$ für $|x - y| < \delta$. Sei $x \in [0, 1]$. Wir zerlegen

$$\int_{0}^{1} F_{N}(x - y) f(y) dy - f(x)$$

$$= \int_{0}^{1} F_{N}(x - y) (f(y) - f(x)) dy$$

$$= \int_{\delta < |x - y| < 1 - \delta}^{1} F_{N}(x - y) (f(y) - f(x)) dy + \int_{|x - y| < \delta}^{1} \dots dy + \int_{|x - y| > 1 - \delta}^{1} \dots dy.$$

$$:= I_{1}$$

$$:= I_{2}$$

$$:= I_{3}$$

$$(da \int F_{N} = 1)$$

Das erste Integral ist durch

$$|I_1| \le \frac{1}{N} \frac{1}{\sin(\pi \delta)^2} \int_0^1 |f(y)| \, dy + |f(x)| \le \frac{2}{N} \|f\|_{\sup} \frac{1}{\sin(\pi \delta)^2}.$$

beschränkt. Für das zweite und dritte Integral stellen wir fest

$$\left| \int_{|x-y|<\delta} F_N(x-y)(f(y)-f(x))dx \right| \le \frac{\varepsilon}{4} \int_0^1 F_N(y)dy = \frac{\varepsilon}{4}$$

und

$$\left| \int F_N(x-y)f(y)dy - f(x) \right| \le \frac{\varepsilon}{2} + \frac{1}{N} \left\| f \right\|_{\sup} \sin^{-2}(\pi\delta) < \varepsilon$$

für große N. Sei nun $f \in H$ und $\varepsilon > 0$. Dann gibt es N_0 , sodass

$$\left| \int F_N(x-y)f(y)dy - f(x) \right| < \varepsilon$$

für $N \geq N_0$ und daher $f_N \to f$ gleichmäßig und auch

$$\int_0^1 \left| \int_0^1 F_N(x - y) f(y) dy \right|^2 dx \to \int_0^1 |f(x)|^2 dx.$$

Mit den Umformungen zu f_N schließen wir

$$\begin{split} \|f\|^2 &\geq \sum_{n=-N}^N |\langle f, e_n \rangle|^2 \\ &\geq \sum_{n=-N}^N \left(1 - \frac{|n|}{N}\right)^2 |\langle f, e_n \rangle|^2 \\ &= \left\| \int_0^1 f_N(x - y) f(y) dy \right\|^2 \to |f|^2 \,. \end{split}$$

1.3 Der Satz von Banach-Tarski

Gewünschte Eigenschaften eines Volumens

- (1) $A \subset \mathbb{R}^d$, $|A| \in [0, \infty]$
- (2) $A \cap B = \emptyset \implies |A \cup B| = |A| + |B|$
- (3) Invariant unter einer Kongruenzabbildung (Verschiebung, Drehung, Spiegelung)
- (4) $|(0,1)^d| = 1$ (Normierung)

Satz 1.3 Banach-Tarski

Es existieren paarweise disjunkte Mengen $A_j \subset \mathbb{R}^3$, $j=1,\ldots,6$ und Kongruenzabbildugnen φ_j , $j=1,\ldots,6$, sodass

(i)

$$B_1(0) = \bigcup_{j=1}^6 A_j.$$

(ii)

$$B_1(-2e_1) \cup B_1(2e_1) = \bigcup_{j=1}^{6} \varphi_j(A_j).$$

Bemerkung 1.2

Wir werden den Beweis nicht führen, wollen jedoch anmerken, dass er das Auswahlaxiom verwendet.

Konsequenz: Wir können nicht jeder Teilmenge des \mathbb{R}^d ein Volumen mit den gewünschten Eigenschaften zuordnen. Durch Verzicht auf das Auswahlaxiom könnten wir doch jeder Teilmenge ein Volumen zuordnen, haben aber dann andere Probleme.

Kapitel 2

Das Lebesguemaß

2.1 Dyadische Würfel und das äußere Lebesguemaß

Definition 2.1: Dyadische Würfel

Wir definieren $Q_{j,k}, j \in \mathbb{Z}^d, k \in \mathbb{Z}$ wie folgt:

$$Q_{jk} = \left\{ x \in \mathbb{R}^d \middle| 2^k j_m \le x_m < 2^k (j_m + 1), 1 \le m \le d \right\}.$$

 Q_{jk} ist ein Würfel mit Kantenlänge 2^k und Ecke $2^k \cdot j.$

Eigenschaften:

- (i) $Q_{jk} \cap Q_{j'k'} \neq \{\} \implies Q_{jk} \subset Q_{j'k'} \text{ oder } Q_{j'k'} \subset Q_{jk}$
- (ii) Jede offene Menge ist disjunkte Vereinigung von dyadischen Würfeln, deren Kantenlänge kleiner als die Distanz zum Komplement (bzw. Rand) ist.
- (iii) Das Volumen definieren wir als $\left|Q_{jk}\right|=2^{k\cdot d}$

Lemma 2.1

Ist Q_{jk} endliche disjunkte Vereinigung

$$Q_{jk} = \bigcup_{k=1}^{N} Q_{j_n k_n}$$

so ist

$$\left|Q_{jk}\right| = \sum_{n} \left|Q_{j_n k_n}\right|.$$

Beweis: Wir unterscheiden folgende Fälle:

1. Fall:

$$Q_{jk} = \bigcup_{n} Q_{j_nk'}$$

disjunkte Vereinigung von Würfeln gleicher Kantenlänge. Es gibt genau $(2^{k-k'})^d$

$$\implies \sum_n \left| Q_{j_nk'} \right| = (2^{k-k'})^d \cdot 2^{k'd} = 2^{kd} = \left| Q_{jk} \right|.$$

2. Fall:

$$Q_{jk} = \bigcup_{n} Q_{j_n k_n} \text{ mit } k' = \min_{n} k_n$$

Zerlege $Q_{j_n k_n}$ zweilam, Fall 1 tritt ein: $\left|Q_{jk}\right| = \sum \left|Q_{j_n k_n}\right|$

Definition 2.2

Sei $A \subset \mathbb{R}^d$. Wir nennen eine Folge dyadischer Q_{jk} eine Überdeckung von A, falls

$$A\subset\bigcup_nQ_{j_nk_n}.$$

Wir definieren das äußere Lebesguemaß von A durch

$$m_*^d(A) = \inf \left\{ \left. \sum_n \left| Q_{j_n k_n} \right| \right| A \subset \bigcup_n Q_{j_n k_n} \right\}.$$

Eigenschaften:

- (1) Monotonie: $A \subset B \implies m_*^d(A) \le m_*^d(B)$
- (2) Subadditivität:

$$m_*^d(A \cup B) \le m_*^d(A) + m_*^d(B).$$

Wenn A und B einen positiven Abstand haben, dann gilt

$$m_*^d(A \cup B) = m_*^d(A) + m_*^d(B).$$

Es gilt immer

$$m_*^d\left(\bigcup A_n\right) \leq \sum_n m_*^d(A_n).$$

(3) Für jede beschränkte Menge A gilt

$$m_*^d(A) < \infty$$
.

Beweis: (1) Jede Überdeckung von B überdeckt A.

(2)

$$A \subset \bigcup_{n=1}^{\infty} Q_{j_n k_n}, B \subset \bigcup_{n=1}^{\infty} Q_{j_n k_n} \implies A \cup B \subset \bigcup_{n=1}^{\infty} Q_{j_n k_n} \cup \bigcup_{n=1}^{\infty} Q_{j_n' k_n'}$$

$$\implies m_d^*(A \cup B) \leq \sum_{n=1}^{\infty} |j_n k_n| + \sum_{n=1}^{\infty} |Q_{j_n' k_n'}|$$

$$\operatorname{und} m_*^d(A \cup B) \leq m_*^d(A) + m_*^d(B).$$

Abstand von A,B>0: genügt. Würfel mit Kanenlänge < $\frac{1}{2\sqrt{d}}\cdot$ Abstand. $A=\bigcup_{n=1}^{\infty}A_n$ genauso wie im ersten Fall

(3) Jede beschärnkte Menge liegt in der Vereinigung von 2^d dyadischen Würfeln.

Satz 2.2

Für jede disjunkte Vereinigung

$$\bigcup_{n} Q_{j_n k_n}$$

gilt

$$m_*\left(\bigcup_n Q_{j_nk_n}\right) = \sum_n |Q_{j_nk_n}|.$$

Beweis: Wir wissen

$$m_*^d \left(\bigcup_n Q_{j_n k_n} \right) \le \sum_n |Q_{j_n k_n}|$$

nach Definition. Zu zeigen:

$$m_*^d \left(\bigcup_n Q_{j_n k_n} \right) \ge \sum_n |Q_{j_n k_n}|.$$

1. Fall: Ein Würfel Q_{jk} , $m^*(Q_{jk}) = 2^{kd}$. Für endliche Überdeckung: Lemma 2.1

$$Q_{jk} \subset \bigcup_n Q_{j_n k_n}$$
 ohne Einschränkgung: $Q_{jk} = \bigcup_n Q_{j_n n_k}$ disjunkt .

Zu zeigen: $|Q_{jk}| \leq \sum_n |Q_{j_n k_n}|$

$$\implies m_*^d(Q_{jk}) = \inf \left\{ \sum \ldots \right\}.$$

Sei $m \in \mathbb{Z}_{>1}$.

$$\begin{split} \tilde{Q}_{jk} &= \left\{ x | 2^k j_l \leq x_l \leq 2^k (j_l + 1 - 2^{-m}) \right\} \text{ abgeschlossen, beschränkt} \implies \text{kompakt} \\ Q_{j_n,k_n} &\subset Q_{j_nk_n}^m = \left\{ x | 2^{k_n} (j_{n,l} - 2^{-m}) < x_l < 2^{k_n} (j_{n,l} + 1) \right\} \text{ offen} \end{split}$$

Es gilt

$$\implies \tilde{Q}_{jl} \subset Q_{jl} \subset \bigcup_n Q_{j_n,k_n} \subset \bigcup_n Q^m_{j_n,k_n}.$$

Die kompakte Menge \hat{Q}_{jl} wird also durch offene Mengen überdeckt. Folglich gibt es eine endliche Teilüberdeckung:

$$\Longrightarrow \exists N: \tilde{Q}_{jl} \subseteq \bigcup_{n=1}^N Q_{j_n,k_n}^m.$$

Nach Lemma 2.1 kleinste Kantenlänge. zählen.

Für
$$\tilde{Q}_{j,k}: (2^m - 1)^d 2^{(k-m)d} \le (2^m + 1)^d \sum_{n=0}^N 2^{(k_n - m)d}$$

$$|Q_{jk}| \le \left(\frac{1 + 2^{-m}}{1 - 2^{-m}}\right)^d \sum_{n=1}^\infty |Q_{j_n k_n}|$$

$$\le \left(\frac{1 + 2^{-m}}{1 - 2^{-n}}\right)^d m_*^d (Q_{j_n}) \, \forall m \ge 1, \implies |Q_{j_n}| \le m^* (Q_{j_n}).$$

Die letzten Schritte ergeben sich, indem das Infimum über alle Zerlegungen betrachtet wird. Die Ungleichung gilt damit für jede Überdeckung.

2. Fall:

$$\bigcup_{n}Q_{j_{n}k_{n}}.$$

Es folgt für $N \in \mathbb{N}$

$$\sum_{n=1}^{N} |Q_{j_n k_n}| = m_*^d \left(\bigcup_{n=1}^{N} Q_{j_n k_n} \right)$$

$$\leq m_*^d \left(\bigcup_{n=1}^{\infty} Q_{j_n k_n} \right)$$

$$\leq \sum_{n=1}^{\infty} m_*^d (Q_{j_n k_n})$$

$$= \sum_{n=1}^{\infty} |Q_{j_n k_n}|.$$
(1. Fall)

Wir haben den ersten Fall auf endlich viele disjunkte Würfel angewendet, da das Argument für einen Würfel auch diesen Fall abdeckt. Schließlich gilt

$$N \to \infty \implies m_*^d \left(\bigcup_{n=1}^\infty Q_{j_n k_n} \right) = \sum_{n=1}^\infty |Q_{j_n k_n}|.$$

2.2 Messbare Mengen

Definition 2.3

Wir nennen $A \subset \mathbb{R}^d$ messbar, falls für alle $\varepsilon > 0$ eine offene Menge U existiert mit $A \subseteq U$ und $m^*(U \setminus A) < \varepsilon$.

Eigenschaften:

1) Offene Mengen sind messbar, da

$$m_*^d(\{\}) = 0.$$

2) Nullmengen:

$$m_*^d(A) = 0 \implies A \text{ messbar.}$$

Denn: Falls

$$\begin{split} m_*^d(A) &= 0, \, \varepsilon > 0 \implies \exists Q_{j_n k_n} \text{ mit } A \subset \bigcup Q_{j_n k_n}, \sum \left| Q_{j_n k_n} \right| < 2^{-d} \varepsilon. \\ \tilde{Q}_{j_n k_n} &= \left\{ x | 2^{k_n} (j_{n,l} - 1) < x_l < 2^{k_n} (j_{n,l} + 1) \right\} \\ &\implies A \subset \bigcup \tilde{Q}_{j_n k_n}, \, m_*^d (\tilde{Q}_{j_n k_n}) \leq 2^d \left| Q_{j_n k_n} \right| \\ m_*^d \left(\bigcup \tilde{Q}_{j_n k_n} \right) < \varepsilon. \end{split}$$