

№931 Топологический анализ данных в исследовании сложных сетей

Выполнил(а):

Забродина Татьяна Николаевна

MCMT213

Научный руководитель: Вальба О.В., доцент ДПМ, к.ф.-м.н



# Актуальность

- Топологический анализ данных (TDA) современный подход статистического анализа данных;
- применение TDA к анализу сложных сетей позволит выявить «скрытую» топологию данных, трудно устанавливаемую стандартными структурными методами.



#### Цель

исследование применимости методов топологического анализа данных к сложным сетям

#### Задачи

- разработка алгоритмов вычисления и анализа топологических характеристик для сетевых данных
  - моделирование различных сценариев изменения сетей
  - анализ сетевых данных сеть свободных ассоциаций



## Подробнее о TDA



#### Правила:

- Все грани симплекса лежат внутри симплициального комплекса.
- 2. Склеивание симплексов происходит по общим граням симплексов.

# Симплициальный комплекс:

0-симплекс: a, b, c, d

1-симплекс: E, F, G, I, H

2-симплекс: abc, acd

Числа Бетти: 1, 2, 0, ...





Пример фильтрации



#### Разложение по k-core

**k-core (k-ядро)** графа G – максимальный связный подграф G, в котором все вершины имеют степень по меньшей мере k.



1-core

$$k = 1, f(k) = 1$$



2-core

$$k = 2$$
,  $f(k) = 9/15$ 



3-core

$$k = 3$$
,  $f(k) = 4/15$ 



# Удаление и добавление ребер



## Рандомизация с сохранением степеней вершин

Взвешенный граф: веса ребер сохраняются



Условия:

- 1) нет петель;
- 2) нет мультиребер;
- 3) сохраняются степени вершин.



Московский институт электроники и математики имени А. Н. Тихонова

# Семантические сети



#### Описание данных

Взвешенный направленный граф на 5019 вершин и 63625 ребра



Взвешенный **не**направленный граф на 5019 вершин и 55242 ребра

Распределение весов



Пример из сети свободных





#### Рандомизация и числа Бетти



фильтрация
Вьеториса-Рипса
(G[веса] < порог
порог : 0 -> 1)

- граф без изменений

обратная фильтрация Вьеториса-Рипса (G[веса] > порог порог : 1 -> 0)



## Удаление ребер и числа Бетти



меньше ребер, быстрее завершается формирование пустот

фильтрация
Вьеториса-Рипса
(G[веса] < порог
порог : 0 -> 1)

- граф без изменений

обратная фильтрация Вьеториса-Рипса (G[веса] > порог порог : 1 -> 0)



## Добавление ребер и числа Бетти



Топологический анализ данных в исследовании сложных сетей

#### удаление ребер

22

# k-core и возмущения сети

обратная фильтрация Вьеториса-Рипса (G[веса] > порог порог : 1 -> 0)

изначальный граф ..... макс процент изменений

#### рандомизация









## Кликовые кластеры





k-clique

Рандомизация







## Сравнение двух семантических сетей



Пороговое значение веса

0.8

0.4

0.2

5019 вершин

12217 вершин







#### 5 010 ворини

5 019 вершин 55 242 ребер

**сеть для сравнения:** 12 217 вершин 352 403 ребер



#### нормировка на количество вершин







обратная фильтрация Вьеториса-Рипса (G[веса] > порог порог : 1 -> 0)

## Итоги и выводы

- 1. адаптация методов топологического анализа для исследования сложных сетей;
- 2. анализ топологических характеристик сетей различной природы;
- 3. анализ устойчивости топологий сетей к различным изменениям в сети.



Коньков Сергей sikonkov@edu.hse.ru

Забродина Татьяна tnzabrodina@edu.hse.ru

Ригвава Владимир vgrigvava@miem.hse.ru