Math 29: Computability Theory

Spring 2024

 ${\bf PSET}\ 5 - -05/12/2024$

Prof. Miller Student: Amittai Siavava

Problem 1.

Show that if C is a computable set, then $C \leq_m X$ for any set X which is nonempty and has nonempty complement.

Let C be a computable set and X be a set which is nonempty and has nonempty complement. Since X is nonempty and has nonempty complement, there is some $x \in X$ and some $y \notin X$. Define the function f by

$$f(n) = \begin{cases} x & \text{if } n \in C, \\ y & \text{if } n \notin C. \end{cases}$$

Since C is computable, there is some Turing machine φ_e which computes χ_C , hence given any input n, φ_e can determine whether $n \in C$ or $n \notin C$. Therefore, f is computable. We claim that $C \leq_m X$ via f. To see this, note that $n \in C$ if and only if $f(n) = x \in X$, and $n \notin C$ if and only if $f(n) = y \notin X$. Thus, $n \in C$ if and only if $f(n) \in X$, which shows that $C \leq_m X$.

Problem 2.

Let B be an infinite c.e. set. Is there an immune set I such that $B \leq_1 I$? Justify your answer.

No, there is no immune set I such that $B \leq_1 I$.

Suppose for the sake of contradiction that there is an immune set I such that $B \leq_1 I$, with $f_I : \omega \to \omega$ being an computable, injective function that witnesses the reduction. Since B is c.e., there exists a total, computable, injective function $f_B : \omega \to \omega$ such that $B = \mathbf{range}(() f_B)$ (we proved this result in a previous assignment).

Consider the composition $f := f_B \circ f_I$.

- **1.** Since both f_B and f_I are injective, so is f.
- **2.** Since f_B is total and computable, and f_I is total and computable, so is f.
- **3.** Since range $(f_B) = B$ and f_I is injective from B to I;

$$\mathbf{range}(f) = f_I(\mathbf{range}(f_B))f_I(B) = I$$

Thus, I is the range of f, which implies that I is c.e., hence not immune. This contradicts the fact that I is immune. Therefore, the assumption that such an I exists must be wrong.

Notation wise, given a set S, we denote by f(S) to be the image of S under f:

$$f(S) = \{ f(n) \mid n \in S \}.$$

Problem 3.

Are there uncountably many Turing degrees? Justify your answer.

Yes, there are uncountably many Turing degrees.

For any set A, there are countably many sets B such that $B \equiv_T A$ since for each B, $\chi_A = \Phi_e^B$ for some $e \in \omega$, and there are countably many such e. Thus, each Turing degree contains countably many sets, yet there are $2^{|\omega|} = 2^{\aleph_0}$ subsets of ω . Since 2^{\aleph_0} is uncountable, and each Turing degree can only contain countably many sets, there must be uncountably many Turing degrees.

Problem 4.

 $A \oplus B$, "A join B", is defined as

$$A \oplus B = \{2x \mid x \in A\} \cup \{2x + 1 \mid x \in B\}.$$

Prove that the Turing degree of $A \oplus B$ is a least upper bound of the Turing degrees of A and B. In other words, show that it computes both A and B, and that any C which computes both A and B also computes $A \oplus B$.

Let $A, B \subseteq \omega$ be sets. We will show that $A \oplus B$ is the least upper bound of A and B.

1. We claim that $A \oplus B$ computes A and B.

Let $x \in A$. Then $2x \in A \oplus B$. Let $y \in B$. Then $2y + 1 \in A \oplus B$. Thus, $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$. Specifically, we can compute χ_A and χ_B as follows:

Let φ_e be the machine that computes $\chi_{A \oplus B}$.

(i) To compute $\chi_A(x)$, Define Φ_k^B to be the oracle machine that, given x, simulates $\varphi_e(2x)$ and returns the result. If $2x \in A \oplus B$, then $x \in A$. Otherwise, $x \notin A$. In other words, we compute

$$\chi_A(x) = \Phi_k^B(x) = \varphi_e(2x).$$

(ii) To compute $\chi_B(x)$, Define Φ_ℓ^B to be the oracle machine that, given x, simulates $\varphi_e(2x+1)$ and returns the result. If $2x+1 \in A \oplus B$, then $x \in B$. Otherwise, $x \notin B$. In other words, we compute

$$\chi_B(x) = \Phi_\ell^B(x) = \varphi_e(2x+1).$$

Thus, $A \leq_T A \oplus B$ and $B \leq_T A \oplus B$.

2. We claim that any set C which computes both A and B also computes $A \oplus B$.

Let C be a set such that $A \leq_T C$ and $B \leq_T C$. We will show that $A \oplus B \leq_T C$. Let $x \in A \oplus B$. By definition of $A \oplus B$, for every $x \in A \oplus B$, either x = 2y for some $y \in A$ or x = 2z + 1 for some $z \in B$.

- (i) Suppose x = 2y for some $y \in A$. Since $A \leq_T C$, C can compute y. Thus, C can compute 2y = x.
- (ii) Suppose x=2z+1 for some $z\in B$. Since $B\leq_T C$, C can compute z. Thus, C can compute 2z+1=x.

Therefore, C can compute all $x \in A \oplus B$, hence $A \oplus B \leq_T C$.

Problem 5.

Given a countable sequence of sets $\{A_i\}_{i\in\omega}$, define the infinite join $A=\bigoplus_{i\in\omega}A_i$ by

$$A = \{\langle i, n \rangle \mid n \in A_i\}.$$

Prove that there are sequences $\{A_i\}_{i\in\omega}$ and $\{B_i\}_{i\in\omega}$ such that $A_i \equiv_T B_i$ for all i but $A \not\equiv_T B$. In other words, this operation is defined on sets, but not on degrees (unlike the finite joins).

 $\mathit{Hint: make\ A\ computable\ but\ B\ not\ computable.}$

For each $i \in \omega$, let

$$A_i = \{i\}$$

and

$$B_i = \{e \mid e = i \text{ and } \varphi_i(i) \downarrow \}$$

First, we show that each $A_i \equiv_T B_i$.

1. $A_i \leq_T B_i$. Note that each A_i is computable, since it is a singleton set containing i. Thus, for any A_i and B_i , we can define $\Phi_e^{B_i}$ to be an oracle machine that, given n, ignores B_i and computes χ_A as follows:

$$\chi_{A_i}(n) = \begin{cases} 1 & \text{if } n = i, \\ 0 & \text{otherwise.} \end{cases}$$

2. $B_i \leq_T A_i$. Define $\Phi_e^{A_i}$ to be an oracle machine that, given n, first checks if $n \in A_i$ then simulates $\varphi_n(n)$ and checks if it converges.

$$\chi_{B_i}(n) = \begin{cases} 1 & \text{if } n \in A_i \land \varphi_n(n) \downarrow \\ 0 & \text{otherwise.} \end{cases}$$

Next, we show that $A \not\equiv_T B$.

Let

$$A = \{ \langle i, n \rangle \mid n \in A_i \} = \{ \langle i, i \rangle \mid i \in \omega \}$$

and

$$B = \{\langle i, n \rangle \mid n \in B_i\} = \{\langle i, i \rangle \mid \varphi_i(i) \downarrow\} = \{\langle i, i \rangle \mid i \in K\}.$$

A is computable since it is a set of all pairs of the form $\langle i,i \rangle$. Given a pair $\langle i,n \rangle$, we can computably check if n=i. However, B is not computable since it is the set of all pairs $\langle i,i \rangle$ such that $\varphi_i(i)$ converges, which is equivalent to the halting problem. Thus, $A \not\equiv_T B$.