IB10	$02- m úkol~4,~p m cute{r} m iklad~1- m cute{r} m e m cute{s}en m i$	Odevzdání: 26.10.2015	
Vypr Skup	racoval(a): pina:	UČO:	
1. [2 abece	$[\mathbf{body}]$ Dokažte, nebo vyvraťte, že následujíc du Σ .	í tvrzení jsou platná pro libovolnou	
a)	$K\subseteq \Sigma^*$ je konečný a $L\subseteq \Sigma^*$ je libovolný \implies	$\operatorname{co-}(K\cap L)$ je regulární.	
	$L_1, L_2 \subseteq \Sigma^*$ jsou regulární \implies jazyk $\{w \mid w \text{ regulární.} \}$	patří právě do jednoho z L_1, L_2 } je	
c)	$L\subseteq \Sigma^*$ je regulární, $n\geq 0 \implies \mathrm{jazyk}\ \{w\mid w\in S^*\}$	$\{ L, w \ge n \}$ je regulární.	
	d) $L \subseteq \Sigma^*$ je regulární \Longrightarrow jazyk $\{sort(w) \mid w \in L\}$ je regulární (kde $sort(w)$ je slovo vzniklé seřazením písmen ve slově w , např. $sort(acabc) = aabcc$).		
čeních zovat)	d budete potřebovat, můžete v celém příkladu v n byly ukázány některé neregulární jazyky (jejic). V důkazu můžete rovněž použít znalosti o uza ce prezentované na přednášce.	h neregularitu nemusíte znovu doka-	
a)	Tvrzení platí.		
	$D\mathring{u}kaz$. Nechť K je libovolný konečný jazyk a $K\cap L$ je konečný. Jelikož $K\cap L$ je konečný, ta regulárních jazyků na doplněk plyne, že i co-(k je i regulární a z uzavřenosti třídy	
b)	Tvrzení platí.		
	$D\mathring{u}kaz$. Jazyk $L=\{w\mid w \text{ patří právě do jedno}(L_1\cup L_2)\setminus (L_1\cap L_2)$. Jelikož je třída regulární a tak je i L regulární.		
c)	Tvrzení platí.		
	D ůkaz. Mějme jazyk $R = \{w \mid w \in \Sigma^*, w \geq n\}$ vyplývá z uzavřenosti třídy regulárních jazyků můžeme jazyk $\{w \mid w \in L, w \geq n\}$ vyjádřit jal jazyků uzavřená na operace \cap , tak je i jazyk $\{a, b, b, c\}$	na operace mocnina a iterace. Pak ko $L\cap R$. Jelikož je třída regulárních	
d)	Tvrzení neplatí.		
	$D\mathring{u}kaz$. Dokážeme protipříkladem. Mějme regu \mathbb{N} , pak jazyk $\{sort(w) \mid w \in L\} = \{w \mid w = v$ íme, že není regulární.		