

Overview

Train a neural network to classify emotions from static images

- Models:
 - Convolutional Neural Network
 - Support Vector Machine

Binary Emotion Classification

Seven Emotions

Data Preprocessing

Initially: 37,422 Images, from the following data-sets:

- Static Facial Emotions in the Wild
- Japanese Female Facial Expression
- Facial Expression Recognition

Doubling our data:

Copy and distort the images to bring the total number of images to 74,822

CNN Model

Validation Curves for CNN Classifying Happy vs Disgust

Accuracy Classifying Disgust vs. Other Emotions

Accuracy Classifying Happiness vs. Other Emotions

Support Vector Machines and Principal Component Analysis

- Gaussian and Quadratic Kernels
- The first 10 PC's explain well over 90% of the variation in each image
- Used as features to reduce dimensions of inputs to SVM Classifier
- Achieved 94.4% accuracy for binary classification

10 PCs: 98.57%

Speed of SVM and PCA

Tools

learn

Future Work

Experiment with different image preprocessing techniques

Initialize CNN parameter weights differently

Compete in this year's Emotion Detection in the Wild Competition

Team Information

Jacob Pollard

jtpollard@usfca.edu, www.linkedin.com/in/jtpollard

Alex Romriell

asromriell@usfca.edu, www.linkedin.com/in/alexromriell

David Wen

<u>djwen@usfca.edu</u>, <u>www.linkedin.com/in/davidjeffwen</u>