BACS2042 Research Methods Data Analysis

Threats to Internal Validity

History

Sequencing effect

Threats to External Validity

	•	
Threats (External)		
1. Other subjects	we cannot assume that animal can be substitute for any other (human) in all situations.	
2. Other times	would the same experiment conducted at another time (e.g. after 20 years) produce the same results?	V
3. Other settings	how the phenomenon observed in one laboratory can be related to a similar phenomenon observed in another laboratory or in the real world?	

Investigating differences: T-Test

Independent Variable	Dependent Variable
1 (2 levels)	1
Gender (M & F)	Hours of sleep

"Is there a significant difference of sleeping hours between boys and girls in this class?"

Male	Hours of sleep
Student A	12
Student B	10
Student C	11
Student D	9
μ_m	10.5

Female	Hours of sleep
Student W	6
Student X	7
Student Y	8
Student Z	9
μ_f	7.5

Investigating differences: T-Test

$$H_0$$
: $\mu_m = \mu_f$

Group Statistics						
gender N Mean Std. Deviation Mean						
hour	M	4	10.50	1.291	.645	
	F	4	7.50	1.291	.645	

Reject null hypothesis

There is a significant difference of sleeping hours between the boys and girls in this class

Investigating differences: ANOVA

Independent Variable	Dependent Variable
1 (>2 levels) (cat)	1 (continuous data)
Program (RSF, RST, REI)	Hours of sleep

"Is there a significant difference in sleeping hours among the students of <u>different prog?</u>"

RSF

RSF	Hours of sleep
Student A	7
Student B	8
Student C	9
Student D	6

RST	Hours of sleep
Student a	7
Student b	8
Student c	9
Student d	7

Ris sis	CO)	Massic Co.
	REI	

REI	Hours of sleep
Student W	6
Student X	7
Student Y	8
Student Z	9

9

Investigating differences: ANOVA

 H_0 : $\mu_{RSF} = \mu_{RST} = \mu_{REI}$

Descriptives								
hour								
					95% Confiden Me	ice Interval for ean		
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
REI	4	7.50	1.291	.645	5.45	9.55	6	9
RSF	4	7.75	.957	.479	6.23	9.27	7	9
RST	4	7.50	1.291	.645	5.45	9.55	6	9
Total	12	7.58	1.084	.313	6.89	8.27	6	9

hour			•
Levene			
Statistic	df1	df2	Sig.

.300

Test of Homogeneity of Variances

hour Ac	ccept n	anova Ull l	hypoth	esis	į.
	Squares	df	Mean Square	F	Sig.
Between Groups	.167	2	.083	.059	.943
Within Groups	12.750	9	1.417		***************************************
Total	12.917	11			

Investigating differences: 2-wayANOVA

Independent Variable	Dependent Variable
2 (cat.)	1 (continuous data)
Gender (M & F)	Hours of sleep
Program (RSF, RST, REI)	

 H_0 : $\mu_m = \mu_f$

 H_0 : $\mu_{RSF} = \mu_{RST} = \mu_{REI}$

H_0 : There's no interaction between the factors

Dependent Variable:	hour				
Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	27.667ª	5	5.533	33.200	.000
Intercept	533.333	1	533.333	3200.000	.000
Program	.667	2	.333	2.000	.216
Gender	27.000	1	27.000	162.000	.000
Program * Gender	.000	2		.000	1.000
Error	1.000	6	.167		
Total	562.000	12			
Corrected Total	28.667	11			

Investigating relationship: Correlation

Investigating relationship: Correlation

Independent Variable	Dependent Variable
Hours of sleep	Final Score

	Correlatio	ns	
		score	hour
score	Pearson Correlation	1	893
	Sig. (2-tailed)		.000
	N	12	12
hour	Pearson Correlation	893**	1
	Sig. (2-tailed)	.000	
	N	12	12

Investigating relationship: Regression

"What is the individual and combined power of diploma CGPA and MUET result in predicting CGPA in bachelor?"

Diploma

CGPA	
3.75 - 4.0	
3.5 - 3.74	
3.0 - 3.49	
2.5 - 2.99	
2.0 - 2.49	
< 2.0	

MUET

Test Component	Maximum Score	Obtained Score
LISTENING	45	14
SPEAKING	45	28
READING	120	51
WRITING	90	55
AGGREGATED SCORE	300	148
BAND ACHIEVED	3	

predict

Investigating relationship: Regression

Coefficientsa

		Unstandardized Coefficients		Standardized Coefficients			C	orrelations Collinearity Statis		Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	.116	.133		.874	.403					
	muet band	.011	.028	.029	.412	.689	.930	.129	.011	.136	7.375
	diploma cgpa	.965	.070	.970	13.755	.000	.997	.975	.357	.136	7.375

Bachelor CGPA = 0.116 + 0.11(MUET) + 0.965(Dip. CGPA)

Chi-Square

Investigate if 2 categorical variables are related

 H_0 : Program is independent of r/ship status

	pr	ogram * st	atus Crosstal	bulation	
Count					
			status		
		single	in relationship	complicated	Total
program	RSF	2	1	1	4
	RST	1	2	1	4
	REI	1	2	1	4
	RSD	2	0	2	4
	RIT	1	2	1	4
	RIS	2	1	1	4
Total		9	8	7	24

CH	ni-Square Te	sts	
	Value	df	Asymptotic Significance (2-sided)
Pearson Chi-Square	4.214 ^a	10	.937
Likelihood Ratio	5.349	10	.867
Linear-by-Linear Association	.000	1	1.000
N of Valid Cases	24		

Accept null hypothesis

No association was found between program and r/ship status.

