

So Sistemas Operacionais

Aula 8 – Deadlock

Profa. Célia Taniwaki

Deadlock real: JK com Faria Lima

Deadlock (Impasse)

- Deadlock:
 - Processos ficam parados sem possibilidade de poderem continuar seu processamento
 - Pode ocorrer
 - Quando os processos desejam alocar recursos que não estão livres e um processo depende do outro liberar os recursos para pode usar

Recursos preemptivos e não- preemptivos

- Recursos podem ser:
 - Preemptivos podem ser retirados do processo sem prejuízos
 - Ex.: memória
 - Não-preemptivos não podem ser retirados do processo, pois causam prejuízos
 - Ex.: CD-ROM
- Deadlocks ocorrem com recursos não-preemptivos

Deadlocks - Condições de ocorrência

- Quatro condições devem ocorrer para que um deadlock exista:
 - Exclusão mútua: um recurso ou está sendo utilizado por algum processo ou está disponível
 - Posse e espera (hold and wait): processos podem solicitar acesso a outros recursos sem ter de liberar os recursos que já detém
 - Não-preempção: recursos já alocados não podem ser retirados do processo que os alocou; somente o processo que alocou o recurso pode liberá-lo
 - Espera circular: existe um ciclo de espera pela liberação de recursos entre os processos envolvidos

Grafos - Representação de Deadlock

 As situações de deadlock podem ser modeladas por grafos.

-Isso facilita a detecção, prevenção e recuperação do

deadlock

- a) Recurso R alocado ao Processo A
- b) Processo B requisita Recurso S
- c) Deadlock

Deadlock - Estratégias

- Quatro estratégias para tratar deadlock:
 - Ignorar o problema (Estratégia do Avestruz)
 - Baixa frequência de ocorrência e alto custo de implementação de prevenção ou solução
 - Unix e Windows
 - Detectar e se recuperar do problema
 - Rollback / preempção do recurso / eliminar o processo
 - Evitar dinamicamente o problema alocação cuidadosa de recursos
 - Algoritmo do banqueiro
 - Prevenir o problema por meio da não satisfação de uma das quatro condições citadas anteriormente

Quarta estratégia anterior: "Atacar" uma das 4 condições

Condição	Abordagem
Exclusão Mútua	Alocar todos os recursos usando uma fila (como um spool)
Uso e Espera	Requisitar todos os recursos inicialmente para execução – solução difícil (não se sabe inicialmente quais recursos vai precisar, pode sobrecarregar o sistema)
Não-Preempção	Retirar recursos dos processos – pode ser ruim dependendo do tipo de recurso; praticamente não implementável
Espera Circular	Ordenar numericamente os recursos e realizar solicitações em ordem numérica Permitir que o processo utilize apenas um recurso por vez

Bibliografia

- Esse material foi elaborado com base nos livros:
 - Sistemas Operacionais Modernos. Tanenbaum, Andrew. 3ed.
 Pearson.
 - Sistemas Operacionais: Conceitos e Mecanismos. Maziero, Carlos. Disponível em: http://dainf.ct.utfpr.edu.br/~maziero/doku.php/so:livro_de_sist emas_operacionais

