(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 6 November 2003 (06.11.2003)

PCT

(10) International Publication Number WO 03/090694 A2

A61K (51) International Patent Classification⁷:

(21) International Application Number: PCT/US03/13015

(22) International Filing Date: 24 April 2003 (24.04.2003)

English (25) Filing Language:

English (26) Publication Language:

(30) Priority Data:

10/131,827 24 April 2002 (24.04.2002) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US 10/131.827 (CIP) Filed on 24 April 2002 (24.04.2002)

(71) Applicant (for all designated States except US): EXPRES-SION DIAGNOSTICS, INC. [US/US]; 384 Oyster Point Boulevard, Suite No. 6, South San Francisco, CA 94080

(72) Inventors; and

(75) Inventors/Applicants (for US only): WOHLGEMUTH, Jay [US/US]; 1165 Monte Rosa Drive, Menlo Park, CA 94025 (US). FRY, Kirk [US/US]; 2604 Ross Road, Palo Alto, CA 94303 (US). WOODWARD, Robert [US/US]; 1828 Rheem Court, Pleasanton, CA 94588 (US). LY, Ngoc [US/US]; 2000 Crystal Springs Road 15-14, San Bruno, CA 94066 (US).

- (74) Agents: LITTLEFIELD, Otis, B. et al.; Morrison & Foerster LLP, 425 Market Street, San Francisco, CA 94105-2482 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK. LR. LS. LT. LU. LV. MA. MD. MG. MK. MN. MW. MX, MZ, NI, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES

(57) Abstract: Methods of diagnosing or monitoring auto immune and chronic inflammatory diseases, particularly systemic lupus erythematosis and rheumatoid arthritis, in a patient by detecting the expression level of one or more genes in a patient, are described. Diagnostic oligonucleotides for diagnosing or monitoring auto immune and chronic inflammatory diseases, particularly systemic lupus erythematosis and rheumatoid arthritis and kits or systems containing the same are also described.

METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES

Related Applications

This application claims priority to U.S. Patent Application number 10/131,827 filed April 24, 2002, which is hereby incorporated by reference in its entirety.

Field of the Invention

This application is in the field of chronic inflammatory diseases. In particular, this invention relates to methods and compositions for diagnosing or monitoring chronic inflammatory diseases.

Background of the Invention

Many of the current shortcomings in diagnosis, prognosis, risk stratification and treatment of disease can be approached through the identification of the molecular mechanisms underlying a disease and through the discovery of nucleotide sequences (or sets of nucleotide sequences) whose expression patterns predict the occurrence or progression of disease states, or predict a patient's response to a particular therapeutic intervention. In particular, identification of nucleotide sequences and sets of nucleotide sequences with such predictive value from cells and tissues that are readily accessible would be extremely valuable. For example, peripheral blood is attainable from all patients and can easily be obtained at multiple time points at low cost. This is a desirable contrast to most other cell and tissue types, which are less readily accessible, or accessible only through invasive and aversive procedures. In addition, the various cell types present in circulating blood are ideal for expression profiling experiments as the many cell types in the blood specimen can be easily separated if desired prior to analysis of gene expression. While blood provides a very attractive substrate for the study of diseases using expression profiling techniques, and for the development of diagnostic technologies and the identification of therapeutic targets, the value of expression profiling in blood samples rests on the degree to which changes in gene expression in these cell types are associated with a predisposition to, and pathogenesis and progression of a disease.

There is an extensive literature supporting the role of leukocytes, e.g., T-and B-lymphocytes, monocytes and granulocytes, including neutrophils, in a wide range of disease processes, including such broad classes as cardiovascular diseases, inflammatory, autoimmune and rheumatic diseases, infectious diseases, transplant rejection, cancer and malignancy, and endocrine diseases.

Of particular interest is the role of leukocytes and leukocyte gene expression in chronic inflammatory diseases such as Systemic Lupus Erythematosis and Rheumatoid Arthritis. Systemic lupus erythematosis (SLE) and Rheumatoid Arthritis (RA) are chonic autoimmune and inflammatory disorders characterized by dysregulation of the immune system, which causes damage to a variety of organs. These diseases clearly involve differential expression of genes in leukocytes. Diagnostic and disease monitoring tools are severly lacking for these patients and their physicians. Leukocyte expression profiling can be applied to discover expression markers for SLE and RA and apply them as patient management tools in the clinical setting. In addition, osteoarthirtis is a degenerative joint

disease that can be confused with RA. This disease also involves leukocytes and expression profiling of leukocytes associated with osteoarthritis may lead to the discovery of new diagnostic and therapeutic approaches to the disease.

SLE in particular is a chronic, usually life-long, potentially fatal autoimmune disease characterized by unpredictable exacerbations and remissions with protean clinical manifestations. SLE is notable for unpredictable exacerbations and remissions and a predilection for clinical involvement of the joints, skin, kidney, brain, serosa, lung, heart, and gastrointestinal tract. The pathologic hallmark of the disease is recurrent, widespread, and diverse vascular lesions.

SLE is not a rare disorder. Although reported at both extremes of life (e.g. diagnosed in infants and in the tenth decade of life) chiefly it affects women of child bearing age. Among children, SLE occurs three times more commonly in females than in males. In the 60% of SLE patients who experience onset of their disease between puberty and the fourth decade of life the female to male ratio is 9:1. Thereafter, the female preponderance again falls to that observed in prepubescents.

The disorder is three times more common in African American blacks than American caucasians. SLE is also more common in Asians and in China may be more common than Rheumatoid Arthritis. The ethnic group at greatest risk is African Caribbean blacks. The annual incidence of SLE ranges from six to 35 new cases per 100,000 population in relatively low-risk to high-risk groups. The prevalence of SLE in the United States is an issue of some debate. Prevalence estimates of between 250,000 to 500,000 are contradicted by a recent nationwide telephone poll suggesting a prevalence of between one and two million.

The prognosis for patients with SLE has greatly improved over the last few decades with at least 80-90% of all patients surviving ten years. Thereafter life expectancy approximates that of age matched controls. This improvement reflects the general advancements in health care (i.e. dialysis, antibiotics, antihypertensives, newer immunosuppressives with more favorable efficacy to toxicity ration) but also the specialized care available for patients with SLE.

Such specialized medical care includes care by experienced clinicians with access to state of the art diagnostic and therapeutic measures will result in improved outcomes and the most cost-effective utilization of resources. Expert care of patients with SLE leads to fewer hospitalizations secondary to uncontrolled disease exacerbation, less severe renal disease with fewer patients experiencing end stage renal disease requiring chronic dialysis, fewer episodes of avascular necrosis requiring total joint replacement, and less severe osteoporosis and fractures. In addition, more judicious use of steroids and steroid sparing agents can also reduce the severity of atherosclerosis and resulting incidence of myocardial infarctions and cerebral vascular accidents, which now complicate the natural history of SLE. Improved monitoring, diagnosis and prognosis of SLE should aid clinicians in determining appropriate care for SLE patients, including which drugs to use and at what amounts.

At a molecular level, SLE is an autoimmune disease characterized by immune dysregulation resulting in the production of antinuclear antibodies (ANA), generation of circulating immune complexes, and activation of the complement system. SLE is futher characterized by end organ damage that results from deposition of circulating autoantibodies and subsequent complement- and Fc receptor-mediated inflammation. In addition, extensive immune system abnormalities, including altered

T lymphocyte function and spontaneous apoptosis, contribute to the lymphopenia and increased susceptibility to infection that confer considerable morbidity.

The clinical features of SLE are protean and may mimic infectious mononucleosis, lymphoma, or other systemic disease. Therefore, the American College of Rheumatology developed criteria to include patients with SLE and exclude those with other disorders. These criteria are best used to insure the appropriateness of subjects for epidemiological or research studies. Although many patients do not fulfill the rigid criteria at first encounter most will when followed over periods of time.

The etiology of SLE remains unknown. A genetic predisposition, sex hormones, and environmental trigger(s) likely result in the disordered immune response that typifies the disease.

A role for genetics is suggested by the increased percentage of two histocompatibility antigens in patients with SLE, HLA-DR2 and HLA-DR3. In addition, there is an increased frequency of the extended haplotype HLA-A1, B8, DR3. The role for heredity is further supported by the concordance for this illness among monozygotic twins. The polygenic nature, however, of this genetic predisposition as well as the contribution of environmental factors is suggested by the only moderate concordance rate which is reported to be between 25 and 60%.

The origin of autoantibody production in SLE is unclear but a role has been suggested for an antigen driven process, spontaneous B-cell hyper-responsiveness, or impaired immune regulation. Regardless of the etiology of autoantibody production, SLE is associated with the impaired clearance of circulating immune complexes secondary to decreased CR1 expression, defective Fc receptor function, or deficiencies of early complement components such as C4A.

More is known about the pathogenic cellular and molecular events that are responsible for vascular lesions in SLE than the origins of autoimmunity. Disease manifestations result from recurrent vascular injury due to immune complex deposition, leukothrombosis, or thrombosis. Additionally, cytotoxic antibodies can mediate autoimmune hemolytic anemia and thrombocytopenia, while antibodies to specific cellular antigens can disrupt cellular function. An example of the latter, is the association between anti-neuronal antibodies and neuropsychiatric SLE.

The health status of a patient with SLE is related not only to disease activity, but to the damage that results from recurrent episodes of disease flare (i.e. deforming arthropathy, shrinking lung, end stage renal disease, organic mental syndrome, etc.), as well as the adverse effects of treatment (i.e. avascular necrosis of bone, infections, and precocious atherosclerosis, etc.).

The accuracy of technologies based on expression profiling for the diagnosis, prognosis, and monitoring of disease would be dramatically increased if numerous differentially expressed nucleotide sequences, each with a measure of sensitivity and specificity for a disease in question, could be identified and assayed in a concerted manner. Using the expression of multiple genes (gene sets) for diagnostic applications helps overcome assay and population variability. PCT application WO 02/057414 "LEUKOCYTE EXPRESSION PROFILING" to Wohlgemuth identifies a set of differentially expressed nucleotides.

In order to achieve this improved accuracy, the appropriate sets of nucleotide sequences once identified need to be validated against numerous samples in combination with relevant clinical data.

Summary of the Invention

In order to meet these needs, the present invention identifies genes and gene sets that have clinical utility as diagnostic tools for the management of lupus patients and patients with a variety of chronic inflammatory and autoimmune diseases. The present invention is thus directed to a method of diagnosing or monitoring chronic autoimmune or inflammatory disease in a patient. The method of the invention involves detecting in a patient expression of one or more genes such as those genes depicted in Table 2E and surrogates derived therefrom. Exemplary surrogates are provided in Table 2D. The present invention is further directed to a method of diagnosing or monitoring an autoimmune or chronic inflammatory disease in a patient by detecting the expression level of one or more genes or surrogates derived therefrom in said patient to diagnose or monitor the autoimmune or chronic inflammatory disease in the patient wherein said genes include a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:542, SEQ ID NO:542, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:552, SEQ I NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID ${\tt NO:611, SEQ~ID~NO:612, SEQ~ID~NO:613, SEQ~ID~NO:614, SEQ~ID~NO:615, SEQ~ID~NO:616, SEQ~ID~N$ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ

ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ I NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:712, SEQ ID NO:711, SEQ ID NO:712, SEQ I NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ${\tt ID\ NO:719,\ SEQ\ ID\ NO:720,\ SEQ\ ID\ NO:721,\ SEQ\ ID\ NO:722,\ SEQ\ ID\ NO:723,\ SEQ\ ID\ NO:724,}$ SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ I NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ I NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID ${\tt NO:798, SEQ\ ID\ NO:809, SEQ\ ID\ NO:800, SEQ\ ID\ NO:801, SEQ\ ID\ NO:802, SEQ\ ID\ NO:803, SEQ\ ID\ NO:803, SEQ\ ID\ NO:800, SEQ\ ID\ N$ ${\rm ID\ NO:804,\ SEQ\ ID\ NO:805,\ SEQ\ ID\ NO:806,\ SEQ\ ID\ NO:807,\ SEQ\ ID\ NO:808,\ SEQ\ ID\ NO:809,}$ SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID ${\tt NO:815, SEQ\ ID\ NO:816, SEQ\ ID\ NO:817, SEQ\ ID\ NO:818, SEQ\ ID\ NO:819, SEQ\ ID\ NO:820, SEQ\ ID\ N$ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ I NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ I NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ${\rm ID\ NO:872,\ SEQ\ ID\ NO:873,\ SEQ\ ID\ NO:874,\ SEQ\ ID\ NO:875,\ SEQ\ ID\ NO:876,\ SEQ\ ID\ NO:877,\ NO:877,\ NO:879,\ NO:$ SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894,

SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID ${\tt NO:900, SEQ\:ID\:NO:901, SEQ\:ID\:NO:902, SEQ\:ID\:NO:903, SEQ\:ID\:NO:904, SEQ\:ID\:NO:905, SEQ\:ID\:NO:900, SEQ\:ID\:N$ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ I NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

In the method of the invention, the diagnosing of monitoring may be performed by detecting the expression level of two or more genes, three or more genes, four or more genes, five or more genes, six or more genes, seven or more genes, eight or more genes, nine or more genes, ten or more genes, fifteen or more genes, twenty or more genes, thirty or more genes, fifty or more genes, one hundred or more genes, two hundred or more genes, or all five hundred and two of the genes.

The methods of the invention also includes diagnosing or monitoring auto immune and chronic inflammatory diseases in a patient by detecting the expression level of one or more genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in said patient wherein said one or more genes identified by a nucleotide sequence selected from the following group: SEQ ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:5546, SEQ ID NO:5548, SEQ ID NO:5548, SEQ ID NO:5549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:566, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:566, SEQ ID

 ${\tt ID\ NO:567, SEQ\ ID\ NO:568, SEQ\ ID\ NO:569, SEQ\ ID\ NO:570, SEQ\ ID\ NO:571, SEQ\ ID\ NO:572,}$ SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ I NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID ${\tt NO:613, SEQ\:ID\:NO:614, SEQ\:ID\:NO:615, SEQ\:ID\:NO:616, SEQ\:ID\:NO:617, SEQ\:ID\:NO:618, SEQ\:ID\:N$ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ I ${\tt NO:630, SEQ\:ID\:NO:631, SEQ\:ID\:NO:632, SEQ\:ID\:NO:633, SEQ\:ID\:NO:634, SEQ\:ID\:NO:635, SEQ\:ID\:NO:630, SEQ\:ID\:N$ ${\tt ID\ NO:636,\,SEQ\ ID\ NO:637,\,SEQ\ ID\ NO:638,\,SEQ\ ID\ NO:639,\,SEQ\ ID\ NO:640,\,SEQ\ ID\ NO:641,}$ SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ I NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ${\tt ID\ NO:653, SEQ\ ID\ NO:654, SEQ\ ID\ NO:655, SEQ\ ID\ NO:656, SEQ\ ID\ NO:657, SEQ\ ID\ NO:658,}$ SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ${\rm ID\ NO:721,\ SEQ\ ID\ NO:722,\ SEQ\ ID\ NO:723,\ SEQ\ ID\ NO:724,\ SEQ\ ID\ NO:725,\ SEQ\ ID\ NO:726,}$ SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ I NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795,

SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID ${\tt NO:801, SEQ~ID~NO:802, SEQ~ID~NO:803, SEQ~ID~NO:804, SEQ~ID~NO:805, SEQ~ID~NO:806, SEQ~ID~N$ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:913, SEQ ${\rm ID\ NO: 914, SEQ\ ID\ NO: 915, SEQ\ ID\ NO: 916, SEQ\ ID\ NO: 917, SEQ\ ID\ NO: 918, SEQ\ ID\ NO: 919,}$ SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

The methods of the invention may further include detecting the expression level of one or more additional genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in a patient, wherein said one or more additional genes identified by a nucleotide sequence selected from the following group: SEQ ID NO:504, SEQ ID NO:507, SEQ ID NO:603, SEQ ID

NO:740, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:854, SEQ ID NO:867, SEQ ID NO:912, SEQ ID NO:922, SEQ ID NO:950, SEQ ID NO:971.

In the method of the invention, the chronic inflammatory disease or autoimmune disease may be systemic lupus erythematosis (SLE), Rheumatoid Arthritis, Cholecystitis, Sjogrens Disease, CREST syndrome, Scleroderma, Ankylosing Spondylitis, Crohn's, Ulcerative Colitis, Primary Sclerosing Cholangitis, Appendicitis, Diverticulitis, Primary Biliary Sclerosis, Wegener's Granulomatosis, Polyarteritis nodosa, Whipple's Disease, Psoriasis, Microscopic Polyanngiitis, Takayasu's Disease, Kawasaki's Disease, Autoimmune hepatitis, Asthma, Churg-Strauss Disease, Beurger's Disease, Raynaud's Disease, or Cholecystitis.

In one format, expression is detecting by measuring RNA levels or protein levels from the genes. Example of detecting of such detection include measuring protein in serum, measuring cell surface proteins, measuring using a a fluorescent activated cell sorter.

In the method of the invention, RNA may be isolated from the patient prior to detecting expression of a gene such as those depicted in Table 2E. RNA levels may be detected by PCR or hybridization. The nucleotide sequence may include comprises DNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides. The hybridization methods of the present invention may include high stringency, moderate stringency, or low stringency hybridization conditions.

In the methods of the invention, the RNA may be detected by hybridization to an oligonucleotide having a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ I NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ I NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ

 ${\tt ID\ NO:624, SEQ\ ID\ NO:625, SEQ\ ID\ NO:626, SEQ\ ID\ NO:627, SEQ\ ID\ NO:628, SEQ\ ID\ NO:629,}$ SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID ${\tt NO:822, SEQ\:ID\:NO:823, SEQ\:ID\:NO:824, SEQ\:ID\:NO:825, SEQ\:ID\:NO:826, SEQ\:ID\:NO:827, SEQ\:ID\:N$ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850,

SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEO ID NO:976, SEO ID NO:977, SEO ID NO:978, SEO ID NO:979, SEO ID NO:980, SEO ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

The methods of the present invention further includes detection of proteins expressed by one or more genes with an amino acid sequence encoded by a nucleotide sequence selected from the following group SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:56, SEQ ID NO:61, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID

 ${\tt NO:62, SEQ\ ID\ NO:63, SEQ\ ID\ NO:64, SEQ\ ID\ NO:65, SEQ\ ID\ NO:66, SEQ\ ID\ NO:67, SEQ\ ID\ NO:69, SE$ NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEO ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEO ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEO ID NO:111, SEO ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEO ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEO ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEO ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEO ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEO ID NO:162, SEO ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ

ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEO ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEO ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502.

The methods of the present invention further include detection of one or more proteins expressed by one or more additional genes with an amino acid sequence encoded by a nucleotide sequence selected from the following group SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:101, SEQ ID

NO:238, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:352, SEQ ID NO:365, SEQ ID NO:410, SEQ ID NO:420, SEQ ID NO:448, SEQ ID NO:469.

The present invention is further directed to a diagnostic oligonucleotide for detecting chronic or inflammatory disease wherein the oligonucleotide has a nucleotide sequence selected from SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEO ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEO ID NO:583, SEO ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEO ID NO:617, SEO ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEO ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEO ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEO ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID

NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEQ ID NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:867, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEO ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ${\tt ID\ NO:917, SEQ\ ID\ NO:918, SEQ\ ID\ NO:919, SEQ\ ID\ NO:920, SEQ\ ID\ NO:921, SEQ\ ID\ NO:922,}$ SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ

ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:987, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:

The method of the present invention may further comprise selecting an appropriate therapy based upon the diagnosis and or monitoring. Such therapies may include administering appropriate drugs such as drugs that target alpha-interferon.

The methods of the present invention may be applied to bodily fluids from or in a patient, including peripheral blood and urine.

The present invention is further directed to a system or kit for diagnosing or monitoring chronic inflammatory or autoimmune disease in a patient comprising an isolated DNA molecule wherein the isolated DNA molecule detects expression of a gene listed in Table 2E. In the system of the invention, the DNA molecules may be synthetic DNA, genomic DNA, PNA or cDNA. The isolated DNA molecule may be immobilized on an array. Such arrays may include a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, polynucleotide array or a cDNA array, a microtiter plate, a membrane and a chip.

The present invention is further directed to a system or detecting differential gene expression. In one format, the system has one or more isolated DNA molecules wherein each isolated DNA molecule detects expression of a gene selected from the group of genes corresponding to the oligonucleotides depicted in the Sequence Listing. It is understood that the DNA sequences and oligonucleotides of the invention may have slightly different sequences than those identified herein. Such sequence variations are understood to those of ordinary skill in the art to be variations in the sequence which do not significantly affect the ability of the sequences to detect gene expression.

The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95 or 95-100% sequence identity to the sequences disclosed herein. In some embodiments, DNA molecules are less than about any of the following lengths (in bases or base pairs): 10,000; 5,000; 2500; 2000; 1500; 1250; 1000; 750; 500; 300; 250; 200; 175; 150; 125; 100; 75; 50; 25; 10. In some embodiments, DNA molecule is greater than about any of the following lengths (in bases or base pairs): 10; 15; 20; 25; 30; 40; 50; 60; 75; 100; 125; 150; 175; 200; 250; 300; 350; 400; 500; 750; 1000; 2000; 5000. Alternately, a DNA molecule can be any of a range of sizes

having an upper limit of 10,000; 5,000; 2500; 2000; 1500; 1250; 1000; 750; 500; 300; 250; 200; 175; 150; 125; 100; 75; 50; 25; or 10 and an independently selected lower limit of 10; 15; 20; 25; 30; 40; 50; 60; 75; 100; 125; 150; 175; 200; 250; 300; 350; 400; 500; 750; 1000; 2000; 5000; 7500 wherein the lower limit is less than the upper limit.

The gene expression system may be a candidate library, a diagnostic agent, a diagnostic oligonucleotide set or a diagnostic probe set. The DNA molecules may be genomic DNA, protein nucleic acid (PNA), cDNA or synthetic oligonucleotides.

In one format, the gene expression system is immobilized on an array. The array may be a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array, a cDNA array, a microfilter plate, a membrane or a chip.

Brief Description of the Sequence Listing

A brief description of the sequence listing is given below. There are 1065 entries. The Sequence Listing presents 50mer oligonucleotide sequences derived from human leukocyte, plant and viral genes. These are listed as SEQ IDs 503-1004. The 50mer sequences and the corresponding gene sequences are also listed Table 2. Most of these 50mers were designed from sequences of genes in Table 2 and the Sequence listing.

SEQ ID's 1-502 represent mRNA sequences of genes those expression was altered in persons with SLE.

SEQ ID's 2-1004 are 50 nucleotide oligonucleotides used as probes to monitor RNA expression in blood.

SEQ ID's 1005-1037 are PCR primers and probes used to monitor expression of selected genes from 1-502

SEQ ID's 1038-1065 are sequences discussed in the Examples.

Brief Description of the Figures

Figure 1: Figure 1 is a schematic flow chart illustrating an instruction set for characterization of the nucleotide sequence and/or the predicted protein sequence of novel nucleotide sequences.

Figure 2: Figure 2 shows PCR Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 3: Figure 3 describes kits useful for the practice of the invention. Figure 3A describes the contents of a kit useful for the discovery of diagnostic nucleotide sets using microarrays. Figure 3B describes the contents of a kit useful for the application of diagnostic nucleotide sets using microarrays. Figure 3C describes contents of a kit useful for the application of diagnostic nucleotide sets using real-time PCR.

Figure 4: Figure 4 depicts a graph comparing the median background subtracted expression signals for various leukocyte reference RNAs.

Figure 5: Figure 5 depicts Diagnostic genes, gene sets and diagnostic algorithms for Systemic Lupus Erythematosis are identified. **Figure 5A** shows the relative expression level of oligonucleotide and SEQ ID #16 (Sialyltransferase 4A) between Lupus and control samples is shown. The gene is

identified as having a false detection rate for differential expression from the SAM algorithm of 0.5%. Figure 5B shows the scaled ratios (non log) for Sialyltransferase (SEQ ID # 16) are given for the samples in the analysis. The average ratio of each group along with the standard deviation of the ratio is shown. The average fold change from control to Lupus is 1.48. Figure 5C shows CART gene expression models for diagnosis of SLE. For each model, the number of genes used, the relative cost with 10 fold cross validation, the SEQ ID, Locus accession number, the name and the position and values in the CART model are given. The CART values given are the expression level thresholds for classification of the sample as SLE after the node. For example, in the single gene model II, the first node of the decision tree asks if expression of gene SEQ ID NO 2 is >0.103. If yes, the sample is placed in the lupus class. Figure 5D shows the sensitivity and specificity of Model 1. The sensitivity and specificity are given for both the 2 and 3 gene models and both the training set and on cross validation. The relative cost is given for cross-validation. Figure 5E shows the CART Model I, 2 genes. The model uses 2 genes in a single node to classify samples as Lupus (Class 1) or non-Lupus (Class 2). Figure 5F shows CART Model I, 3 genes. The model uses a second node to classify all samples correctly as lupus (class 1) or non-lupus (class 2) for the training set. G2412 = SEQ ID 514, G2648 = SEQ ID 510, G1436 = SEQ ID 509.

Figure 6: Figure 6 shows endpoint testing of PCR primers. Electrophoresis and microfluidics are used to assess the product of gene specific PCR primers. Figure 6A is a β -GUS gel image. Lane 3 is the image for GUS primers. Lanes 2 and 1 correspond to the no-template control and –RT control, respectively. Figure 6B shows the electropherogram of β -GUS primers, a graphical representation of Lane 3 from the gel image. Figure 6C shows a β -Actin gel image. Lane 3 is the image for endpoint testing of actin primers. Lanes 2 and 1 correspond to the no-template control and –RT control, respectively. Figure 6D shows the electropherogram of β -Actin primers, a graphical representation of Lave 3 from the gel image.

Figure 7: Figure 7 shows the validation of differential expression of a gene discovered using microarrays using Real-time PCR. Figure 7A shows the Ct for each patient sample on multiple assays is shown along with the Ct in the R50 control RNA. Triangles represent —RT (reverse transcriptase) controls. Figure 7B shows the fold difference between the expression of Granzyme B and an Actin reference is shown for 3 samples from patients with and without CMV disease.

Figure 8: Real-time PCR control gene analysis. 11 candidate control genes were tested using real-time PCR on 6 whole blood samples (PAX) paired with 6 mononuclear samples (CPT) from the same patient. Each sample was tested twice. For each gene, the variability of the gene across the samples is shown on the vertical axis (top graph). The average Ct value for each gene is also shown (bottom graph). $2\mu g$ RNA was used for PAX samples and 0.5 μg total RNA was used for the mononuclear samples (CPT)

Brief Description of the Tables

Table 1: Samples used in array and PCR expression profiling experiments.

Samples were obtained from patients at a single medical center with appropriate IRB approval and informed consent. For each patient the primary clinical diagnosis is given according to American

College of Rheumatology criteria (SLE = Systemic Lupus Erythematosis, RA = Rheumatoid Arthritis, C = Healthy control, OA = Osteoarthritis). Dependent variables were defined for analysis from the patient clinical diagnoses. For Dx1, patients were classified as Lupus (1) or no Lupus (0). For Dx2, patients with either quiescent, uncertain or recently treated Lupus were removed from the analysis (2). PCR was done on the set of samples marked with an x.

Table 2: Gene expression markers for SLE and autoimmune disease

A: Significance analysis for Microarrays (SAM), Lupus/Autoimmune merkers. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). Results for microarry analysis of blood gene expression (Example 11) are given as the false detection rate (SAM FDR) and a direction of expression change in Lupus patients / controls (SAM Up/Down).

B. Real-time PCR gene expression analysis. Real-time PCR was used to validate and quantify expression behavior of marker genes as described in Example 11. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). The fold change between Lupus patients and controls (PCR fold) and results of an unpaired t-test (PCR p-value) are given.

C. Multiple Additive Regression Trees analysis of Microarray Data. The MART algorithm was used to identify marker genes and gene sets as described in Example 11. Each gene is identified by an oligonucleotide (SEQ ID 50 mer), Genbank accession number from VERSION (ACC), a full length (or longest known) RNA transcript (SEQ ID FL), and a unigene number VERSION (HS). The importance of the gene in the MART model (MART Importance), the error rate of the model that identified the gene (MART error) and the ratio of those 2 variables (Imp/error) are given.

D. Identification of pathways and pathway genes with hierarchical clustering. Genes are identified by close coexpression to significant genes from the microarray or PCR analysis (Hierarchical Cluster SEQ ID). This analysis identifies distinct pathways of gene expression.

Table 3: Table 3 lists some of the diseases or conditions amenable to study by leukocyte profiling. **Table 4**: Real-time PCR assay reporter and quencher dyes. Various combinations of reporter and quencher dyes are useful for real-time PCR assays. Reporter and quencher dyes work optimally in specific combinations defined by their spectra. For each reporter, appropriate choices for quencher dyes are given.

Detailed Description of the Invention

Definitions

Unless defined otherwise, all scientific and technical terms are understood to have the same meaning as commonly used in the art to which they pertain. For the purpose of the present invention, the following terms are defined below.

In the context of the invention, the term "gene expression system" refers to any system, device or means to detect gene expression and includes diagnostic agents, candidate libraries oligonucleotide, oligonucleotide sets or probe sets.

The terms "diagnostic oligonucleotide" or "diagnostic oligonucleotide set" generally refers to an oligonucleotide or to a set of two or more oligonucleotides that, when evaluated for differential expression their corresponding diagnostic genes, collectively yields predictive data. Such predictive data typically relates to diagnosis, prognosis, monitoring of therapeutic outcomes, and the like. In general, the components of a diagnostic oligonucleotide or a diagnostic oligonucleotide set are distinguished from oligonucleotide sequences that are evaluated by analysis of the DNA to directly determine the genotype of an individual as it correlates with a specified trait or phenotype, such as a disease, in that it is the pattern of expression of the components of the diagnostic oligonucleotide set, rather than mutation or polymorphism of the DNA sequence that provides predictive value. It will be understood that a particular component (or member) of a diagnostic oligonucleotide set can, in some cases, also present one or more mutations, or polymorphisms that are amenable to direct genotyping by any of a variety of well known analysis methods, e.g., Southern blotting, RFLP, AFLP, SSCP, SNP, and the like.

A "diagnostic gene" is a gene whose expression is detected by a diagnostic oligonucleotide or diagnostic oligonucleotide set.

A "disease specific target oligonucleotide sequence" is a gene or other oligonucleotide that encodes a polypeptide, most typically a protein, or a subunit of a multi-subunit protein that is a therapeutic target for a disease, or group of diseases.

A "candidate library" or a "candidate oligonucleotide library" refers to a collection of oligonucleotide sequences (or gene sequences) that by one or more criteria have an increased probability of being associated with a particular disease or group of diseases. The criteria can be, for example, a differential expression pattern in a disease state or in activated or resting leukocytes in vitro as reported in the scientific or technical literature, tissue specific expression as reported in a sequence database, differential expression in a tissue or cell type of interest, or the like. Typically, a candidate library has at least 2 members or components; more typically, the library has in excess of about 10, or about 100, or about 1000, or even more, members or components.

The term "disease criterion" is used herein to designate an indicator of a disease, such as a diagnostic factor, a prognostic factor, a factor indicated by a medical or family history, a genetic factor, or a symptom, as well as an overt or confirmed diagnosis of a disease associated with several indicators such as those selected from the above list. A disease criterian includes data describing a patient's health status, including retrospective or prospective health data, e.g. in the form of the patient's medical history, laboratory test results, diagnostic test result, clinical events, medications, lists, response(s) to treatment and risk factors, etc.

An autoimmune disorder is defined as a disease state in which a patient's immune system recognizes an antigen in that patient's organs or tissues as foreign and becomes activated. The activated immune cells can then cause damage to the inciting organ or tissue or can damage other organs or tissues. In some cases, the disorder may be caused by a dysregulation of the immune system cells, rather than by the recognition as a self-antigen as foreign. Dysregulated immune cells can secrete inflammatory cytokines that cause systemic inflammation or they can recognize self-antigens as foreign.

Examples of autoimmune diseases include: Autoimmune hepatitis, Multiple Sclerosis, Myasthenia Gravis, Type I diabetes, Rheumatoid Arthritis, Psoriasis, Systemic Lupus Erythematosis, Hashimoto's Thyroiditis, Grave's disease, Ankylosing Spondylitis Sjogrens Disease, CREST syndrome, Scleroderma and many more.

Most of the autoimmune diseases are also *chronic inflammatory diseases*. This is defined as a disease process associated with long-term (>6 months) activation of inflammatory cells (leukocytes). The chronic inflammation leads to damage of patient organs or tissues. Many diseases are chronic inflammatory disorders, but are not know to have an autoimmune basis. For example, Atherosclerosis, Congestive Heart Failure, Crohn's disease, Ulcerative Colitis, Polyarteritis nodosa, Whipple's Disease, Primary Sclerosing Cholangitis and many more.

The terms "molecular signature" or "expression profile" refers to the collection of expression values for a plurality (e.g., at least 2, but frequently about 10, about 100, about 1000, or more) of members of a candidate library. In many cases, the molecular signature represents the expression pattern for all of the nucleotide sequences in a library or array of candidate or diagnostic nucleotide sequences or genes. Alternatively, the molecular signature represents the expression pattern for one or more subsets of the candidate library. The term "oligonucleotide" refers to two or more nucleotides. Nucleotides may be DNA or RNA, naturally occurring or synthetic.

The term "healthy individual," as used herein, is relative to a specified disease or disease criterion. That is, the individual does not exhibit the specified disease criterion or is not diagnosed with the specified disease. It will be understood, that the individual in question, can, of course, exhibit symptoms, or possess various indicator factors for another disease.

Similarly, an "individual diagnosed with a disease" refers to an individual diagnosed with a specified disease (or disease criterion). Such an individual may, or may not, also exhibit a disease criterion associated with, or be diagnosed with another (related or unrelated) disease.

The term "monitoring" is used herein to describe the use of gene sets to provide useful information about an individual or an individual's health or disease status. "Monitoring" can include, determination of prognosis, risk-stratification, selection of drug therapy, assessment of ongoing drug therapy, prediction of outcomes, determining response to therapy, diagnosis of a disease or disease complication, following progression of a disease or providing any information relating to a patients health status over time, selecting patients most likely to benefit from experimental therapies with known molecular mechanisms of action, selecting patients most likely to benefit from approved drugs with known molecular mechanisms where that mechanism may be important in a small subset of a disease for which the medication may not have a label, screening a patient population to help decide on a more invasive/expensive test, for example a cascade of tests from a non-invasive blood test to a more invasive option such as biopsy, or testing to assess side effects of drugs used to treat another indication.

An "array" is a spatially or logically organized collection, e.g., of oligonucleotide sequences or nucleotide sequence products such as RNA or proteins encoded by an oligonucleotide sequence. In some embodiments, an array includes antibodies or other binding reagents specific for products of a candidate library.

When referring to a pattern of expression, a "qualitative" difference in gene expression refers to a difference that is not assigned a relative value. That is, such a difference is designated by an "all or nothing" valuation. Such an all or nothing variation can be, for example, expression above or below a threshold of detection (an on/off pattern of expression). Alternatively, a qualitative difference can refer to expression of different types of expression products, e.g., different alleles (e.g., a mutant or polymorphic allele), variants (including sequence variants as well as post-translationally modified variants), etc.

In contrast, a "quantitative" difference, when referring to a pattern of gene expression, refers to a difference in expression that can be assigned a value on a graduated scale, (e.g., a 0-5 or 1-10 scale, a + - +++ scale, a grade 1- grade 5 scale, or the like; it will be understood that the numbers selected for illustration are entirely arbitrary and in no-way are meant to be interpreted to limit the invention).

Gene Expression Systems and Methods of Detecting Gene Expression

The invention is directed to methods of detecting gene expression with a gene expression system having one or more DNA molecules wherein the one or more DNA molecules has a nucleotide sequence which detects expression of a gene corresponding to the oligonucleotides depicted in the Sequence Listing. In one format, the oligonucleotide detects expression of a gene that is differentially expressed in leukocytes. The gene expression system may be a candidate library, a diagnostic agent, a diagnostic oligonucleotide set or a diagnostic probe set. The DNA molecules may be genomic DNA, RNA, protein nucleic acid (PNA), cDNA or synthetic oligonucleotides. Following the procedures taught herein, one can identity sequences of interest for analyzing gene expression in leukocytes. Such sequences may be predictive of a disease state.

Diagnostic oligonucleotides of the invention

The invention relates to diagnostic oligonucleotides and diagnostic oligonucleotide set(s) comprising members of the leukocyte candidate library listed in Table 2 and the Sequence Listing, for which a correlation exists between the health status of an individual, and the individual's expression of RNA or protein products corresponding to the nucleotide sequence. In some instances, only one oligonucleotide is necessary for such detection. Members of a diagnostic oligonucleotide set may be identified by any means capable of detecting expression of RNA or protein products, including but not limited to differential expression screening, PCR, RT-PCR, SAGE analysis, high-throughput sequencing, microarrays, liquid or other arrays, protein-based methods (e.g., western blotting, proteomics, and other methods described herein), and data mining methods, as further described herein.

In one embodiment, a diagnostic oligonucleotide set comprises at least two oligonucleotide sequences listed in Table 2 or the Sequence Listing which are differentially expressed in leukocytes in an individual with at least one disease criterion for at least one leukocyte-implicated disease relative to the expression in individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion, as described below.

In another embodiment, a diagnostic oligonucleotide set comprises at least one oligonucleotide having an oligonucleotide sequence listed in Table 2 or the Sequence Listing which is

differentially expressed, and further wherein the differential expression/correlation has not previously been described. In some embodiments, the diagnostic oligonucleotide set is immobilized on an array.

In another embodiment, diagnostic oligonucleotides (or oligonucleotide sets) are related to the members of the leukocyte candidate library listed in Table 2 and in the Sequence Listing, for which a correlation exists between the health status (or disease criterion) of an individual. The diagnostic oligonucleotides are partially or totally contained in (or derived from) full-length gene sequences (or predicted full-length gene sequences) for the members of the candidate library listed in Table 2 and the Sequence Listing.

The diagnostic oligonucleotides may also be derived from other genes that are coexpressed with the correlated sequence or full-length gene. Genes may share expression patterns because they are regulated in the same molecular pathway. Because of the similarity of expression, behavior genes are identified as surrogates in that they can substitute for a diagnostic gene in a diagnostic gene set. Example 4 demonstrates the discovery of surrogates from the data. Surrogate oligonucleotide and surrogate oligonucleotide sets can be utilized to detect expression of surrogate genes and thereby diagnose or monitor patients with a disease.

As used herein the term "gene cluster" or "cluster" refers to a group of genes related by expression pattern. In other words, a cluster of genes is a group of genes with similar regulation across different conditions, such as a patient having a chronic autoimmune or inflammatory disease or a patient without chronic autoimmune or inflammatory disease. The expression profile for each gene in a cluster should be correlated with the expression profile of at least one other gene in that cluster. Correlation may be evaluated using a variety of statistical methods. As used herein the term "surrogate" refers to a gene with an expression profile such that it can substitute for a diagnostic gene in a diagnostic assay. Such genes are often members of the same gene cluster as the diagnostic gene. For each member of a diagnostic gene set, a set of potential surrogates can be identified through identification of genes with similar expression patterns as described below.

Many statistical analyses produce a correlation coefficient to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the correlation coefficient is greater than or equal to 0.8. In preferred embodiments, the correlation coefficient should be greater than 0.85, 0.9 or 0.95. Other statistical methods produce a measure of mutual information to describe the relatedness between two gene expression patterns. Patterns may be considered correlated if the normalized mutual information value is greater than or equal to 0.7. In preferred embodiments, the normalized mutual information value should be greater than 0.8, 0.9 or 0.95. Patterns may also be considered similar if they cluster closely upon hierarchical clustering of gene expression data (Eisen et al. 1998). Similar patterns may be those genes that are among the 1, 2, 5, 10, 20, 50 or 100 nearest neighbors in a hierarchical clustering or have a similarity score (Eisen et al. 1998) of > 0.5, 0.7, 0.8, 0.9, 0.95 or 0.99. Similar patterns may also be identified as those genes found to be surrogates in a classification tree by CART (Breiman et al. 1994). Often, but not always, members of a gene cluster have similar biological functions in addition to similar gene expression patterns.

Correlated genes, clusters and surrogates are identified for the diagnostic genes of the invention. These surrogates may be used as diagnostic genes in an assay instead of, or in addition to, the diagnostic genes for which they are surrogates.

The invention also provides diagnostic probe sets. It is understood that a probe includes any reagent capable of specifically identifying a nucleotide sequence of the diagnostic nucleotide set, including but not limited to amplified DNA, amplified RNA, cDNA, synthetic oligonucleotide, partial or full-length nucleic acid sequences. In addition, the probe may identify the protein product of a diagnostic nucleotide sequence, including, for example, antibodies and other affinity reagents.

It is also understood that each probe can correspond to one gene, or multiple probes can correspond to one gene, or both, or one probe can correspond to more than one gene.

Homologs and variants of the disclosed nucleic acid molecules may be used in the present invention. Homologs and variants of these nucleic acid molecules will possess a relatively high degree of sequence identity when aligned using standard methods. The sequences encompassed by the invention have at least 40-50, 50-60, 70-80, 80-85, 85-90, 90-95 or 95-100% sequence identity to the sequences disclosed herein.

It is understood that for expression profiling, variations in the disclosed sequences will still permit detection of gene expression. The degree of sequence identity required to detect gene expression varies depending on the length of the oligomer. For a 60 mer, (an oligonucleotide with 60 nucleotides) 6-8 random mutations or 6-8 random deletions in a 60 mer do not affect gene expression detection. Hughes, TR, et al. "Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nature Biotechnology, 19:343-347(2001). As the length of the DNA sequence is increased, the number of mutations or deletions permitted while still allowing gene expression detection is increased.

As will be appreciated by those skilled in the art, the sequences of the present invention may contain sequencing errors. That is, there may be incorrect nucleotides, frameshifts, unknown nucleotides, or other types of sequencing errors in any of the sequences; however, the correct sequences will fall within the homology and stringency definitions herein.

The minimum length of an oligonucleotide probe necessary for specific hybridization in the human genome can be estimated using two approaches. The first method uses a statistical argument that the probe will be unique in the human genome by chance. Briefly, the number of independent perfect matches (Po) expected for an oligonucleotide of length L in a genome of complexity C can be calculated from the equation (Laird CD, Chromosoma 32:378 (1971):

$$Po=(1/4)^{L} * 2C$$

In the case of mammalian genomes, $2C = \sim 3.6 \times 10^9$, and an oligonucleotide of 14-15 nucleotides is expected to be represented only once in the genome. However, the distribution of nucleotides in the coding sequence of mammalian genomes is nonrandom (Lathe, R. J. Mol. Biol. 183:1 (1985) and longer oligonucleotides may be preferred in order to in increase the specificity of hybridization. In practical terms, this works out to probes that are 19-40 nucleotides long (Sambrook J et al., infra). The second method for estimating the length of a specific probe is to use a probe long enough to hybridize under the chosen conditions and use a computer to search for that sequence or

close matches to the sequence in the human genome and choose a unique match. Probe sequences are chosen based on the desired hybridization properties as described in Chapter 11 of Sambrook et al, infra. The PRIMER3 program is useful for designing these probes (S. Rozen and H. Skaletsky 1996,1997; Primer3 code available at genome.wi.mit.edu/genome_software/other/primer3.html, the website). The sequences of these probes are then compared pair wise against a database of the human genome sequences using a program such as BLAST or MEGABLAST (Madden, T.L et al.(1996) Meth. Enzymol. 266:131-141). Since most of the human genome is now contained in the database, the number of matches will be determined. Probe sequences are chosen that are unique to the desired target sequence.

In some embodiments, a diagnostic oligonucleotide or oligonucleotide probe set is immobilized on an array. The array is optionally comprises one or more of: a chip array, a plate array, a bead array, a pin array, a membrane array, a solid surface array, a liquid array, an oligonucleotide array, a polynucleotide array or a cDNA array, a microtiter plate, a pin array, a bead array, a membrane or a chip.

In some embodiments, the leukocyte-implicated disease is selected from the diseases listed in Table 3. In other embodiments, the disease is chronic autoimmune and inflammatory diseases, systemic lupus erythematosis (SLE) and rheumatoid arthritis.

In some embodiments, diagnostic oligonucleotides of the invention are used as a diagnostic gene set in combination with genes that are know to be associated with a disease state ("known markers"). The use of the diagnostic oligonucleotides in combination with the known markers can provide information that is not obtainable through the known markers alone. The known markers include those identified by the prior art listing provided.

General Molecular Biology References

In the context of the invention, nucleic acids and/or proteins are manipulated according to well known molecular biology techniques. Detailed protocols for numerous such procedures are described in, e.g., in Ausubel et al. Current Protocols in Molecular Biology (supplemented through 2000) John Wiley & Sons, New York ("Ausubel"); Sambrook et al. Molecular Cloning - A Laboratory Manual (2nd Ed.), Vol. 1-3, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989 ("Sambrook"), and Berger and Kimmel Guide to Molecular Cloning Techniques, Methods in Enzymology volume 152 Academic Press, Inc., San Diego, CA ("Berger").

In addition to the above references, protocols for in vitro amplification techniques, such as the polymerase chain reaction (PCR), the ligase chain reaction (LCR), Q-replicase amplification, and other RNA polymerase mediated techniques (e.g., NASBA), useful e.g., for amplifying cDNA probes of the invention, are found in Mullis et al. (1987) U.S. Patent No. 4,683,202; PCR Protocols A Guide to Methods and Applications (Innis et al. eds) Academic Press Inc. San Diego, CA (1990) ("Innis"); Arnheim and Levinson (1990) C&EN 36; The Journal Of NIH Research (1991) 3:81; Kwoh et al. (1989) Proc Natl Acad Sci USA 86, 1173; Guatelli et al. (1990) Proc Natl Acad Sci USA 87:1874; Lomell et al. (1989) J Clin Chem 35:1826; Landegren et al. (1988) Science 241:1077; Van Brunt (1990) Biotechnology 8:291; Wu and Wallace (1989) Gene 4: 560; Barringer et al. (1990) Gene 89:117, and Sooknanan and Malek (1995) Biotechnology 13:563. Additional methods, useful for

cloning nucleic acids in the context of the present invention, include Wallace et al. U.S. Pat. No. 5,426,039. Improved methods of amplifying large nucleic acids by PCR are summarized in Cheng et al. (1994) Nature 369:684 and the references therein.

Certain polynucleotides of the invention, e.g., oligonucleotides can be synthesized utilizing various solid-phase strategies involving mononucleotide- and/or trinucleotide-based phosphoramidite coupling chemistry. For example, nucleic acid sequences can be synthesized by the sequential addition of activated monomers and/or trimers to an elongating polynucleotide chain. See e.g., Caruthers, M.H. et al. (1992) Meth Enzymol 211:3.

In lieu of synthesizing the desired sequences, essentially any nucleic acid can be custom ordered from any of a variety of commercial sources, such as The Midland Certified Reagent Company (mcrc@oligos.com), The Great American Gene Company (genco.com), ExpressGen, Inc. (expressgen.com), Operon Technologies, Inc. (operon.com), and many others.

Similarly, commercial sources for nucleic acid and protein microarrays are available, and include, e.g., Agilent Technologies, Palo Alto, CA and Affymetrix, Santa Clara, CA.

One area of relevance to the present invention is hybridization of oligonucleotides. Those of skill in the art differentiate hybridization conditions based upon the stringency of hybridization. For example, highly stringent conditions could include hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65° C, and washing in 0.1XSSC/0.1% SDS at 68° C. (Ausubel F. M. et al., eds., 1989, Current Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3). Moderate stringency conditions could include, e.g., washing in 0.2XSSC/0.1% SDS at 42°C. (Ausubel et al., 1989, supra).

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the DNA sequences of the present invention. Such hybridization conditions may be highly stringent or less highly stringent, as described above. In instances wherein the nucleic acid molecules are deoxyoligonucleotides ("oligos"), highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C. (for 14-base oligos), 48°C. (for 17-base oligos), 55°C. (for 20-base oligos), and 60°C. (for 23-base oligos). These nucleic acid molecules may act as target nucleotide sequence antisense molecules, useful, for example, in target nucleotide sequence regulation and/or as antisense primers in amplification reactions of target nucleotide sequence nucleic acid sequences. Further, such sequences may be used as part of ribozyme and/or triple helix sequences, also useful for target nucleotide sequence regulation. Still further, such molecules may be used as components of diagnostic methods whereby the presence of a disease-causing allele, may be detected.

Candidate library

Libraries of candidate genes that are differentially expressed in leukocytes are substrates for the identification and evaluation of diagnostic oligonucleotides and oligonucleotide sets and disease specific target nucleotide sequences.

The term leukocyte is used generically to refer to any nucleated blood cell that is not a nucleated erythrocyte. More specifically, leukocytes can be subdivided into two broad classes. The

first class includes granulocytes, including, most prevalently, neutrophils, as well as eosinophils and basophils at low frequency. The second class, the non-granular or mononuclear leukocytes, includes monocytes and lymphocytes (e.g., T cells and B cells). There is an extensive literature in the art implicating leukocytes, e.g., neutrophils, monocytes and lymphocytes in a wide variety of disease processes, including inflammatory and rheumatic diseases, neurodegenerative diseases (such as Alzheimer's dementia), cardiovascular disease, endocrine diseases, transplant rejection, malignancy and infectious diseases, and other diseases listed in Table 3. Mononuclear cells are involved in the chronic immune response, while granulocytes, which make up approximately 60% of the leukocytes, have a non-specific and stereotyped response to acute inflammatory stimuli and often have a life span of only 24 hours.

In addition to their widespread involvement and/or implication in numerous disease related processes, leukocytes are particularly attractive substrates for clinical and experimental evaluation for a variety of reasons. Most importantly, they are readily accessible at low cost from essentially every potential subject. Collection is minimally invasive and associated with little pain, disability or recovery time. Collection can be performed by minimally trained personnel (e.g., phlebotomists, medical technicians, etc.) in a variety of clinical and non-clinical settings without significant technological expenditure. Additionally, leukocytes are renewable, and thus available at multiple time points for a single subject.

Assembly of an initial candidate library

The initial candidate library was assembled from a combination of "mining" publication and sequence databases and construction of a differential expression library. Candidate oligonucleotide sequences in the library may be represented by a full-length or partial nucleic acid sequence, deoxyribonucleic acid (DNA) sequence, cDNA sequence, RNA sequence, synthetic oligonucleotides, etc. The nucleic acid sequence can be at least 19 nucleotides in length, at least 25 nucleotides, at least 40 nucleotides, at least 100 nucleotides, or larger. Alternatively, the protein product of a candidate nucleotide sequence may be represented in a candidate library using standard methods, as further described below. In selecting and validatating diagnostic oligonucleotides, an initial library of 8,031 candidate oligonucleotide sequences using nucleic acid sequences of 50 nucleotides in length was constructed as described below.

Candidate nucleotide library

We identified members of an initial candidate nucleotide library that are differentially expressed in activated leukocytes and resting leukocytes. From that initial candidate nucleotide library, a pool of 502 candidates were selected. Accordingly, the invention provides the candidate leukocyte nucleotide library comprising the nucleotide sequences listed in Table 2 and in the Sequence Listing. In another embodiment, the invention provides a candidate library comprising at least two nucleotide sequences listed in Table 2 and the Sequence Listing. In another embodiment, at least two nucleotide sequences are 18 nucleotides in length, at least 35 nucleotides, at least 40 nucleotides or at least 100 nucleotides. In some embodiments, the nucleotide sequences comprises deoxyribonucleic acid (DNA) sequence, ribonucleic acid (RNA) sequence, synthetic oligonucleotide sequence, or genomic DNA

sequence. It is understood that the nucleotide sequences may each correspond to one gene, or that several nucleotide sequences may correspond to one gene, or that a single nucleotide sequence may correspond to multiple genes.

The invention also provides probes to the candidate nucleotide library. In one embodiment of the invention, the probes comprise at least two nucleotide sequences listed in Table 2 or the Sequence Listing which are differentially expressed in leukocytes in an individual with a least one disease criterion for at least one leukocyte-related disease and in leukocytes in an individual without the at least one disease criterion, wherein expression of the two or more nucleotide sequences is correlated with at least one disease criterion. It is understood that a probe may detect either the RNA expression or protein product expression of the candidate nucleotide library. Alternatively, or in addition, a probe can detect a genotype associated with a candidate nucleotide sequence, as further described below. In another embodiment, the probes for the candidate nucleotide library are immobilized on an array.

The candidate nucleotide library of the invention is useful in identifying diagnostic nucleotide sets of the invention and is itself a diagnostic nucleotide set of the invention, as described below. The candidate nucleotide sequences may be further characterized, and may be identified as a disease target nucleotide sequence, as described below. The candidate nucleotide sequences may also be suitable for use as imaging reagents, as described below.

Generation of Expression Patterns

RNA, DNA or protein sample procurement

Following identification or assembly of a library of differentially expressed candidate nucleotide sequences, leukocyte expression profiles corresponding to multiple members of the candidate library are obtained. Leukocyte samples from one or more subjects are obtained by standard methods. Most typically, these methods involve trans-cutaneous venous sampling of peripheral blood. While sampling of circulating leukocytes from whole blood from the peripheral vasculature is generally the simplest, least invasive, and lowest cost alternative, it will be appreciated that numerous alternative sampling procedures exist, and are favorably employed in some circumstances. No pertinent distinction exists, in fact, between leukocytes sampled from the peripheral vasculature, and those obtained, e.g., from a central line, from a central artery, or indeed from a cardiac catheter, or during a surgical procedure which accesses the central vasculature. In addition, other body fluids and tissues that are, at least in part, composed of leukocytes are also desirable leukocyte samples. For example, fluid samples obtained from the lung during bronchoscopy may be rich in leukocytes, and amenable to expression profiling in the context of the invention, e.g., for the diagnosis, prognosis, or monitoring of lung transplant rejection, inflammatory lung diseases or infectious lung disease. Fluid samples from other tissues, e.g., obtained by endoscopy of the colon, sinuses, esophagus, stomach, small bowel, pancreatic duct, biliary tree, bladder, ureter, vagina, cervix or uterus, etc., are also suitable. Samples may also be obtained other sources containing leukocytes, e.g., from urine, bile, cerebrospinal fluid, feces, gastric or intestinal secretions, semen, or solid organ or joint biopsies.

Most frequently, mixed populations of leukocytes, such as are found in whole blood are utilized in the methods of the present invention. A crude separation, e.g., of mixed leukocytes from red blood cells, and/or concentration, e.g., over a sucrose, percoll or ficoll gradient, or by other methods

known in the art, can be employed to facilitate the recovery of RNA or protein expression products at sufficient concentrations, and to reduce non-specific background. In some instances, it can be desirable to purify sub-populations of leukocytes, and methods for doing so, such as density or affinity gradients, flow cytometry, Fluorescence Activated Cell Sorting (FACS), immuno-magnetic separation, "panning," and the like, are described in the available literature and below.

Obtaining DNA, RNA and protein samples for expression profiling

A variety of techniques are available for the isolation of RNA from whole blood. Any technique that allows isolation of mRNA from cells (in the presence or absence of rRNA and tRNA) can be utilized. In brief, one method that allows reliable isolation of total RNA suitable for subsequent gene expression analysis is described as follows. Peripheral blood (either venous or arterial) is drawn from a subject, into one or more sterile, endotoxin free, tubes containing an anticoagulant (e.g., EDTA, citrate, heparin, etc.). Typically, the sample is divided into at least two portions. One portion, e.g., of 5-8 ml of whole blood is frozen and stored for future analysis, e.g., of DNA or protein. A second portion, e.g., of approximately 8 ml whole blood is processed for isolation of total RNA by any of a variety of techniques as described in, e.g, Sambook, Ausubel, below, as well as U.S. Patent Numbers: 5,728,822 and 4,843,155.

Typically, a subject sample of mononuclear leukocytes obtained from about 8 ml of whole blood, a quantity readily available from an adult human subject under most circumstances, yields 5-20 µg of total RNA. This amount is ample, e.g., for labeling and hybridization to at least two probe arrays. Labeled probes for analysis of expression patterns of nucleotides of the candidate libraries are prepared from the subject's sample of RNA using standard methods. In many cases, cDNA is synthesized from total RNA using a polyT primer and labeled, e.g., radioactive or fluorescent, nucleotides. The resulting labeled cDNA is then hybridized to probes corresponding to members of the candidate nucleotide library, and expression data is obtained for each nucleotide sequence in the library. RNA isolated from subject samples (e.g., peripheral blood leukocytes, or leukocytes obtained from other biological fluids and samples) is next used for analysis of expression patterns of nucleotides of the candidate libraries.

In some cases, however, the amount of RNA that is extracted from the leukocyte sample is limiting, and amplification of the RNA is desirable. Amplification may be accomplished by increasing the efficiency of probe labeling, or by amplifying the RNA sample prior to labeling. It is appreciated that care must be taken to select an amplification procedure that does not introduce any bias (with respect to gene expression levels) during the amplification process.

Several methods are available that increase the signal from limiting amounts of RNA, e.g. use of the Clontech (Glass Fluorescent Labeling Kit) or Stratagene (Fairplay Microarray Labeling Kit), or the Micromax kit (New England Nuclear, Inc.). Alternatively, cDNA is synthesized from RNA using a T7-polyT primer, in the absence of label, and DNA dendrimers from Genisphere (3DNA Submicro) are hybridized to the poly T sequence on the primer, or to a different "capture sequence" which is complementary to a fluorescently labeled sequence. Each 3DNA molecule has 250 fluorescent molecules and therefore can strongly label each cDNA.

Alternatively, the RNA sample is amplified prior to labeling. For example, linear amplification may be performed, as described in U.S. Patent No. 6,132,997. A T7-polyT primer is used to generate the cDNA copy of the RNA. A second DNA strand is then made to complete the substrate for amplification. The T7 promoter incorporated into the primer is used by a T7 polymerase to produce numerous antisense copies of the original RNA. Fluorescent dye labeled nucleotides are directly incorporated into the RNA. Alternatively, amino allyl labeled nucleotides are incorporated into the RNA, and then fluorescent dyes are chemically coupled to the amino allyl groups, as described in Hughes et al. 2001. Other exemplary methods for amplification are described below.

It is appreciated that the RNA isolated must contain RNA derived from leukocytes, but may also contain RNA from other cell types to a variable degree. Additionally, the isolated RNA may come from subsets of leukocytes, e.g. monocytes and/or T-lymphocytes, as described above. Such consideration of cell type used for the derivation of RNA depends on the method of expression profiling used. Subsets of leukocytes can be obtained by fluorescence activated cell sorting (FACS), microfluidics cell seperation systems or a variety of other methods. Cell sorting may be necessary for the discovery of diagnostic gene sets, for the implementation of gene sets as products or both. Cell sorting can be achieved with a variety of technologies (See Galbraith et al. 1999, Cantor et al. 1975, see also the technology of Guava Technologies, Hayward, CA).

DNA samples may be obtained for analysis of the presence of DNA mutations, single nucleotide polymorphisms (SNPs), or other polymorphisms. DNA is isolated using standard techniques, e.g. *Maniatus, supra*.

Expression of products of candidate nucleotides may also be assessed using proteomics. Protein(s) are detected in samples of patient serum or from leukocyte cellular protein. Serum is prepared by centrifugation of whole blood, using standard methods. Proteins present in the serum may have been produced from any of a variety of leukocytes and non-leukocyte cells, and may include secreted proteins from leukocytes. Alternatively, leukocytes or a desired sub-population of leukocytes are prepared as described above. Cellular protein is prepared from leukocyte samples using methods well known in the art, e.g., Trizol (Invitrogen Life Technologies, cat # 15596108; Chomczynski, P. and Sacchi, N. (1987) Anal. Biochem. 162, 156; Simms, D., Cizdziel, P.E., and Chomczynski, P. (1993) Focus® 15, 99; Chomczynski, P., Bowers-Finn, R., and Sabatini, L. (1987) J. of NIH Res. 6, 83; Chomczynski, P. (1993) Bio/Techniques 15, 532; Bracete, A.M., Fox, D.K., and Simms, D. (1998) Focus 20, 82; Sewall, A. and McRae, S. (1998) Focus 20, 36; Anal Biochem 1984 Apr;138(1):141-3, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids; Wessel D, Flugge UI. (1984) Anal Biochem. 1984 Apr;138(1):141-143.

The assay itself may be a cell sorting assay in which cells are sorted and/or counted based on cell surface expression of a protein marker. (See Cantor et al. 1975, Galbraith et al. 1999)

Obtaining expression patterns

Expression patterns, or profiles, of a plurality of nucleotides corresponding to members of the candidate library are then evaluated in one or more samples of leukocytes. Typically, the leukocytes are derived from patient peripheral blood samples, although, as indicated above, many other sample sources are also suitable. These expression patterns constitute a set of relative or absolute expression

values for some number of RNAs or protein products corresponding to the plurality of nucleotide sequences evaluated, which is referred to herein as the subject's "expression profile" for those nucleotide sequences. While expression patterns for as few as one independent member of the candidate library can be obtained, it is generally preferable to obtain expression patterns corresponding to a larger number of nucleotide sequences, e.g., about 2, about 5, about 10, about 20, about 50, about 100, about 200, about 500, or about 1000, or more. The expression pattern for each differentially expressed component member of the library provides a finite specificity and sensitivity with respect to predictive value, e.g., for diagnosis, prognosis, monitoring, and the like.

Clinical Studies, Data and Patient Groups

For the purpose of discussion, the term subject, or subject sample of leukocytes, refers to an individual regardless of health and/or disease status. A subject can be a patient, a study participant, a control subject, a screening subject, or any other class of individual from whom a leukocyte sample is obtained and assessed in the context of the invention. Accordingly, a subject can be diagnosed with a disease, can present with one or more symptom of a disease, or a predisposing factor, such as a family (genetic) or medical history (medical) factor, for a disease, or the like. Alternatively, a subject can be healthy with respect to any of the aforementioned factors or criteria. It will be appreciated that the term "healthy" as used herein, is relative to a specified disease, or disease factor, or disease criterion, as the term "healthy" cannot be defined to correspond to any absolute evaluation or status. Thus, an individual defined as healthy with reference to any specified disease or disease criterion, can in fact be diagnosed with any other one or more disease criterion.

Furthermore, while the discussion of the invention focuses, and is exemplified using human sequences and samples, the invention is equally applicable, through construction or selection of appropriate candidate libraries, to non-human animals, such as laboratory animals, e.g., mice, rats, guinea pigs, rabbits; domesticated livestock, e.g., cows, horses, goats, sheep, chicken, etc.; and companion animals, e.g., dogs, cats, etc.

Methods for obtaining expression data

Numerous methods for obtaining expression data are known, and any one or more of these techniques, singly or in combination, are suitable for determining expression profiles in the context of the present invention. For example, expression patterns can be evaluated by northern analysis, PCR, RT-PCR, Taq Man analysis, FRET detection, monitoring one or more molecular beacon, hybridization to an oligonucleotide array, hybridization to a cDNA array, hybridization to a polynucleotide array, hybridization to a liquid microarray, hybridization to a microelectric array, molecular beacons, cDNA sequencing, clone hybridization, cDNA fragment fingerprinting, serial analysis of gene expression (SAGE), subtractive hybridization, differential display and/or differential screening (see, e.g., Lockhart and Winzeler (2000) Nature 405:827-836, and references cited therein).

For example, specific PCR primers are designed to a member(s) of a candidate nucleotide library. cDNA is prepared from subject sample RNA by reverse transcription from a poly-dT oligonucleotide primer, and subjected to PCR. Double stranded cDNA may be prepared using primers suitable for reverse transcription of the PCR product, followed by amplification of the cDNA using in

vitro transcription. The product of in vitro transcription is a sense-RNA corresponding to the original member(s) of the candidate library. PCR product may be also be evaluated in a number of ways known in the art, including real-time assessment using detection of labeled primers, e.g. TaqMan or molecular beacon probes. Technology platforms suitable for analysis of PCR products include the ABI 7700, 5700, or 7000 Sequence Detection Systems (Applied Biosystems, Foster City, CA), the MJ Research Opticon (MJ Research, Waltham, MA), the Roche Light Cycler (Roche Diagnositics, Indianapolis, IN), the Stratagene MX4000 (Stratagene, La Jolla, CA), and the Bio-Rad iCycler (Bio-Rad Laboratories, Hercules, CA). Alternatively, molecular beacons are used to detect presence of a nucleic acid sequence in an unamplified RNA or cDNA sample, or following amplification of the sequence using any method, e.g. IVT (In Vitro transcription) or NASBA (nucleic acid sequence based amplification). Molecular beacons are designed with sequences complementary to member(s) of a candidate nucleotide library, and are linked to fluorescent labels. Each probe has a different fluorescent label with non-overlapping emission wavelengths. For example, expression of ten genes may be assessed using ten different sequence-specific molecular beacons.

Alternatively, or in addition, molecular beacons are used to assess expression of multiple nucleotide sequences at once. Molecular beacons with sequence complimentary to the members of a diagnostic nucleotide set are designed and linked to fluorescent labels. Each fluorescent label used must have a non-overlapping emission wavelength. For example, 10 nucleotide sequences can be assessed by hybridizing 10 sequence specific molecular beacons (each labeled with a different fluorescent molecule) to an amplified or un-amplified RNA or cDNA sample. Such an assay bypasses the need for sample labeling procedures.

Alternatively, or in addition bead arrays can be used to assess expression of multiple sequences at once (See, e.g, LabMAP 100, Luminex Corp, Austin, Texas). Alternatively, or in addition electric arrays are used to assess expression of multiple sequences, as exemplified by the e-Sensor technology of Motorola (Chicago, Ill.) or Nanochip technology of Nanogen (San Diego, CA.)

Of course, the particular method elected will be dependent on such factors as quantity of RNA recovered, practitioner preference, available reagents and equipment, detectors, and the like. Typically, however, the elected method(s) will be appropriate for processing the number of samples and probes of interest. Methods for high-throughput expression analysis are discussed below.

Alternatively, expression at the level of protein products of gene expression is performed. For example, protein expression, in a sample of leukocytes, can be evaluated by one or more method selected from among: western analysis, two-dimensional gel analysis, chromatographic separation, mass spectrometric detection, protein-fusion reporter constructs, colorimetric assays, binding to a protein array and characterization of polysomal mRNA. One particularly favorable approach involves binding of labeled protein expression products to an array of antibodies specific for members of the candidate library. Methods for producing and evaluating antibodies are widespread in the art, see, e.g., Coligan, supra; and Harlow and Lane (1989) Antibodies: A Laboratory Manual, Cold Spring Harbor Press, NY ("Harlow and Lane"). Additional details regarding a variety of immunological and immunoassay procedures adaptable to the present invention by selection of antibody reagents specific for the products of candidate nucleotide sequences can be found in, e.g., Stites and Terr (eds.)(1991)

Basic and Clinical Immunology, 7th ed., and Paul, *supra*. Another approach uses systems for performing desorption spectrometry. Commercially available systems, e.g., from Ciphergen Biosystems, Inc. (Fremont, CA) are particularly well suited to quantitative analysis of protein expression. Indeed, Protein Chip® arrays (*see*, e.g., the website, ciphergen.com) used in desorption spectrometry approaches provide arrays for detection of protein expression. Alternatively, affinity reagents, (e.g., antibodies, small molecules, etc.) are developed that recognize epitopes of the protein product. Affinity assays are used in protein array assays, e.g. to detect the presence or absence of particular proteins. Alternatively, affinity reagents are used to detect expression using the methods described above. In the case of a protein that is expressed on the cell surface of leukocytes, labeled affinity reagents are bound to populations of leukocytes, and leukocytes expressing the protein are identified and counted using fluorescent activated cell sorting (FACS).

It is appreciated that the methods of expression evaluation discussed herein, although discussed in the context of discovery of diagnostic nucleotide sets, are also applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

High Throughput Expression Assays

A number of suitable high throughput formats exist for evaluating gene expression. Typically, the term high throughput refers to a format that performs at least about 100 assays, or at least about 500 assays, or at least about 1000 assays, or at least about 10,000 assays, or more per day. When enumerating assays, either the number of samples or the number of candidate nucleotide sequences evaluated can be considered. For example, a northern analysis of, e.g., about 100 samples performed in a gridded array, e.g., a dot blot, using a single probe corresponding to a candidate nucleotide sequence can be considered a high throughput assay. More typically, however, such an assay is performed as a series of duplicate blots, each evaluated with a distinct probe corresponding to a different member of the candidate library. Alternatively, methods that simultaneously evaluate expression of about 100 or more candidate nucleotide sequences in one or more samples, or in multiple samples, are considered high throughput.

Numerous technological platforms for performing high throughput expression analysis are known. Generally, such methods involve a logical or physical array of either the subject samples, or the candidate library, or both. Common array formats include both liquid and solid phase arrays. For example, assays employing liquid phase arrays, e.g., for hybridization of nucleic acids, binding of antibodies or other receptors to ligand, etc., can be performed in multiwell, or microtiter, plates. Microtiter plates with 96, 384 or 1536 wells are widely available, and even higher numbers of wells, e.g., 3456 and 9600 can be used. In general, the choice of microtiter plates is determined by the methods and equipment, e.g., robotic handling and loading systems, used for sample preparation and analysis. Exemplary systems include, e.g., the ORCATM system from Beckman-Coulter, Inc. (Fullerton, CA) and the Zymate systems from Zymark Corporation (Hopkinton, MA).

Alternatively, a variety of solid phase arrays can favorably be employed in to determine expression patterns in the context of the invention. Exemplary formats include membrane or filter arrays (e.g., nitrocellulose, nylon), pin arrays, and bead arrays (e.g., in a liquid "slurry"). Typically,

probes corresponding to nucleic acid or protein reagents that specifically interact with (e.g., hybridize to or bind to) an expression product corresponding to a member of the candidate library are immobilized, for example by direct or indirect cross-linking, to the solid support. Essentially any solid support capable of withstanding the reagents and conditions necessary for performing the particular expression assay can be utilized. For example, functionalized glass, silicon, silicon dioxide, modified silicon, any of a variety of polymers, such as (poly)tetrafluoroethylene, (poly)vinylidenedifluoride, polystyrene, polycarbonate, or combinations thereof can all serve as the substrate for a solid phase array.

In a preferred embodiment, the array is a "chip" composed, e.g., of one of the above-specified materials. Polynucleotide probes, e.g., RNA or DNA, such as cDNA, synthetic oligonucleotides, and the like, or binding proteins such as antibodies, that specifically interact with expression products of individual components of the candidate library are affixed to the chip in a logically ordered manner, i.e., in an array. In addition, any molecule with a specific affinity for either the sense or anti-sense sequence of the marker nucleotide sequence (depending on the design of the sample labeling), can be fixed to the array surface without loss of specific affinity for the marker and can be obtained and produced for array production, for example, proteins that specifically recognize the specific nucleic acid sequence of the marker, ribozymes, peptide nucleic acids (PNA), or other chemicals or molecules with specific affinity.

Detailed discussion of methods for linking nucleic acids and proteins to a chip substrate, are found in, e.g., US Patent No. 5,143,854 "Large Scale Photolithographic Solid Phase Synthesis Of Polypeptides And Receptor Binding Screening Thereof" to Pirrung et al., issued, September 1, 1992; US Patent No. 5,837,832 "Arrays Of Nucleic Acid Probes On Biological Chips" to Chee et al., issued November 17, 1998; US Patent No. 6,087,112 "Arrays With Modified Oligonucleotide And Polynucleotide Compositions" to Dale, issued July 11, 2000; US Patent No. 5,215,882 "Method Of Immobilizing Nucleic Acid On A Solid Substrate For Use In Nucleic Acid Hybridization Assays" to Bahl et al., issued June 1, 1993; US Patent No. 5,707,807 "Molecular Indexing For Expressed Gene Analysis" to Kato, issued January 13, 1998; US Patent No. 5,807,522 "Methods For Fabricating Microarrays Of Biological Samples" to Brown et al., issued September 15, 1998; US Patent No. 5,958,342 "Jet Droplet Device" to Gamble et al., issued Sept. 28, 1999; US Patent 5,994,076 "Methods Of Assaying Differential Expression" to Chenchik et al., issued Nov. 30, 1999; US Patent No. 6,004,755 "Quantitative Microarray Hybridization Assays" to Wang, issued Dec. 21, 1999; US Patent No. 6,048,695 "Chemically Modified Nucleic Acids And Method For Coupling Nucleic Acids To Solid Support" to Bradley et al., issued April 11, 2000; US Patent No. 6,060,240 "Methods For Measuring Relative Amounts Of Nucleic Acids In A Complex Mixture And Retrieval Of Specific Sequences Therefrom" to Kamb et al., issued May 9, 2000; US Patent No. 6,090,556 "Method For Quantitatively Determining The Expression Of A Gene" to Kato, issued July 18, 2000; and US Patent 6,040,138 "Expression Monitoring By Hybridization To High Density Oligonucleotide Arrays" to Lockhart et al., issued March 21, 2000 each of which are hereby incorporated by reference in their entirety.

For example, cDNA inserts corresponding to candidate nucleotide sequences, in a standard TA cloning vector are amplified by a polymerase chain reaction for approximately 30-40 cycles. The amplified PCR products are then arrayed onto a glass support by any of a variety of well-known techniques, e.g., the VSLIPS™ technology described in US Patent No. 5,143,854. RNA, or cDNA corresponding to RNA, isolated from a subject sample of leukocytes is labeled, e.g., with a fluorescent tag, and a solution containing the RNA (or cDNA) is incubated under conditions favorable for hybridization, with the "probe" chip. Following incubation, and washing to eliminate non-specific hybridization, the labeled nucleic acid bound to the chip is detected qualitatively or quantitatively, and the resulting expression profile for the corresponding candidate nucleotide sequences is recorded. It is appreciated that the probe used for diagnostic purposes may be identical to the probe used during diagnostic nucleotide sequence discovery and validation. Alternatively, the probe sequence may be different than the sequence used in diagnostic nucleotide sequence discovery and validation. Multiple cDNAs from a nucleotide sequence that are non-overlapping or partially overlapping may also be used.

In another approach, oligonucleotides corresponding to members of a candidate nucleotide library are synthesized and spotted onto an array. Alternatively, oligonucleotides are synthesized onto the array using methods known in the art, e.g. Hughes, et al. *supra*. The oligonucleotide is designed to be complementary to any portion of the candidate nucleotide sequence. In addition, in the context of expression analysis for, e.g. diagnostic use of diagnostic nucleotide sets, an oligonucleotide can be designed to exhibit particular hybridization characteristics, or to exhibit a particular specificity and/or sensitivity, as further described below.

Hybridization signal may be amplified using methods known in the art, and as described herein, for example use of the Clontech kit (Glass Fluorescent Labeling Kit), Stratagene kit (Fairplay Microarray Labeling Kit), the Micromax kit (New England Nuclear, Inc.), the Genisphere kit (3DNA Submicro), linear amplification, e.g. as described in U.S. Patent No. 6,132,997 or described in Hughes, TR, et al., Nature Biotechnology, 19:343-347 (2001) and/or Westin et al. Nat Biotech. 18:199-204. In some cases, amplification techniques do not increase signal intensity, but allow assays to be done with small amounts of RNA.

Alternatively, fluorescently labeled cDNA are hybridized directly to the microarray using methods known in the art. For example, labeled cDNA are generated by reverse transcription using Cy3- and Cy5-conjugated deoxynucleotides, and the reaction products purified using standard methods. It is appreciated that the methods for signal amplification of expression data useful for identifying diagnostic nucleotide sets are also useful for amplification of expression data for diagnostic purposes.

Microarray expression may be detected by scanning the microarray with a variety of laser or CCD-based scanners, and extracting features with numerous software packages, for example, Imagene (Biodiscovery), Feature Extraction Software (Agilent), Scanalyze (Eisen, M. 1999. SCANALYZE User Manual; Stanford Univ., Stanford, CA. Ver 2.32.), GenePix (Axon Instruments).

In another approach, hybridization to microelectric arrays is performed, e.g. as described in Umek et al (2001) <u>J Mol Diagn.</u> 3:74-84. An affinity probe, e.g. DNA, is deposited on a metal surface. The metal surface underlying each probe is connected to a metal wire and electrical signal detection system. Unlabelled RNA or cDNA is hybridized to the array, or alternatively, RNA or cDNA sample

is amplified before hybridization, e.g. by PCR. Specific hybridization of sample RNA or cDNA results in generation of an electrical signal, which is transmitted to a detector. See Westin (2000) Nat Biotech. 18:199-204 (describing anchored multiplex amplification of a microelectronic chip array); Edman (1997) NAR 25:4907-14; Vignali (2000) J Immunol Methods 243:243-55.

In another approach, a microfluidics chip is used for RNA sample preparation and analysis. This approach increases efficiency because sample preparation and analysis are streamlined. Briefly, microfluidics may be used to sort specific leukocyte sub-populations prior to RNA preparation and analysis. Microfluidics chips are also useful for, e.g., RNA preparation, and reactions involving RNA (reverse transcription, RT-PCR). Briefly, a small volume of whole, anti-coagulated blood is loaded onto a microfluidics chip, for example chips available from Caliper (Mountain View, CA) or Nanogen (San Diego, CA.) A microfluidics chip may contain channels and reservoirs in which cells are moved and reactions are performed. Mechanical, electrical, magnetic, gravitational, centrifugal or other forces are used to move the cells and to expose them to reagents. For example, cells of whole blood are moved into a chamber containing hypotonic saline, which results in selective lysis of red blood cells after a 20-minute incubation. Next, the remaining cells (leukocytes) are moved into a wash chamber and finally, moved into a chamber containing a lysis buffer such as guanidine isothyocyanate. The leukocyte cell lysate is further processed for RNA isolation in the chip, or is then removed for further processing, for example, RNA extraction by standard methods. Alternatively, the microfluidics chip is a circular disk containing ficoll or another density reagent. The blood sample is injected into the center of the disc, the disc is rotated at a speed that generates a centrifugal force appropriate for density gradient separation of mononuclear cells, and the separated mononuclear cells are then harvested for further analysis or processing.

It is understood that the methods of expression evaluation, above, although discussed in the context of discovery of diagnostic nucleotide sets, are also applicable for expression evaluation when using diagnostic nucleotide sets for, e.g. diagnosis of diseases, as further discussed below.

Evaluation of expression patterns

Expression patterns can be evaluated by qualitative and/or quantitative measures. Certain of the above described techniques for evaluating gene expression (as RNA or protein products) yield data that are predominantly qualitative in nature. That is, the methods detect differences in expression that classify expression into distinct modes without providing significant information regarding quantitative aspects of expression. For example, a technique can be described as a qualitative technique if it detects the presence or absence of expression of a candidate nucleotide sequence, i.e., an on/off pattern of expression. Alternatively, a qualitative technique measures the presence (and/or absence) of different alleles, or variants, of a gene product.

In contrast, some methods provide data that characterize expression in a quantitative manner. That is, the methods relate expression on a numerical scale, e.g., a scale of 0-5, a scale of 1-10, a scale of +-++++, from grade 1 to grade 5, a grade from a to z, or the like. It will be understood that the numerical, and symbolic examples provided are arbitrary, and that any graduated scale (or any symbolic representation of a graduated scale) can be employed in the context of the present invention

to describe quantitative differences in nucleotide sequence expression. Typically, such methods yield information corresponding to a relative increase or decrease in expression.

Any method that yields either quantitative or qualitative expression data is suitable for evaluating expression of candidate nucleotide sequence in a subject sample of leukocytes. In some cases, e.g., when multiple methods are employed to determine expression patterns for a plurality of candidate nucleotide sequences, the recovered data, e.g., the expression profile, for the nucleotide sequences is a combination of quantitative and qualitative data.

In some applications, expression of the plurality of candidate nucleotide sequences is evaluated sequentially. This is typically the case for methods that can be characterized as low- to moderate-throughput. In contrast, as the throughput of the elected assay increases, expression for the plurality of candidate nucleotide sequences in a sample or multiple samples of leukocytes, is assayed simultaneously. Again, the methods (and throughput) are largely determined by the individual practitioner, although, typically, it is preferable to employ methods that permit rapid, e.g. automated or partially automated, preparation and detection, on a scale that is time-efficient and cost-effective.

It is understood that the preceding discussion, while directed at the assessment of expression of the members of candidate libraries, is also applies to the assessment of the expression of members of diagnostic nucleotide sets, as further discussed below.

Genotyping

In addition to, or in conjunction with the correlation of expression profiles and clinical data, it is often desirable to correlate expression patterns with the subject's genotype at one or more genetic loci or to correlate both expression profiles and genetic loci data with clinical data. The selected loci can be, for example, chromosomal loci corresponding to one or more member of the candidate library, polymorphic alleles for marker loci, or alternative disease related loci (not contributing to the candidate library) known to be, or putatively associated with, a disease (or disease criterion). Indeed, it will be appreciated, that where a (polymorphic) allele at a locus is linked to a disease (or to a predisposition to a disease), the presence of the allele can itself be a disease criterion.

Numerous well known methods exist for evaluating the genotype of an individual, including southern analysis, restriction fragment length polymorphism (RFLP) analysis, polymerase chain reaction (PCR), amplification length polymorphism (AFLP) analysis, single stranded conformation polymorphism (SSCP) analysis, single nucleotide polymorphism (SNP) analysis (e.g., via PCR, Taqman or molecular beacons), among many other useful methods. Many such procedures are readily adaptable to high throughput and/or automated (or semi-automated) sample preparation and analysis methods. Most, can be performed on nucleic acid samples recovered via simple procedures from the same sample of leukocytes as yielded the material for expression profiling. Exemplary techniques are described in, e.g., Sambrook, and Ausubel, *supra*.

Identification of the diagnostic oligonucleotides and oligonucleotide sets of the invention

Identification of diagnostic nucleotides and nucleotide sets and disease specific target nucleotide sequence proceeds by correlating the leukocyte expression profiles with data regarding the subject's health status to produce a data set designated a "molecular signature." Examples of data

regarding a patient's health status, also termed "disease criteria(ion)", is described below and in the Section titled "selected diseases," below. Methods useful for correlation analysis are further described elsewhere in the specification.

Generally, relevant data regarding the subject's health status includes retrospective or prospective health data, e.g., in the form of the subject's medical history, as provided by the subject, physician or third party, such as, medical diagnoses, laboratory test results, diagnostic test results, clinical events, or medication lists, as further described below. Such data may include information regarding a patient's response to treatment and/or a particular medication and data regarding the presence of previously characterized "risk factors." For example, cigarette smoking and obesity are previously identified risk factors for heart disease. Further examples of health status information, including diseases and disease criteria, is described in the section titled Selected diseases, below.

Typically, the data describes prior events and evaluations (i.e., retrospective data). However, it is envisioned that data collected subsequent to the sampling (i.e., prospective data) can also be correlated with the expression profile. The tissue sampled, e.g., peripheral blood, bronchial lavage, etc., can be obtained at one or more multiple time points and subject data is considered retrospective or prospective with respect to the time of sample procurement.

Data collected at multiple time points, called "longitudinal data", is often useful, and thus, the invention encompasses the analysis of patient data collected from the same patient at different time points. Analysis of paired samples, such as samples from a patient at different times, allows identification of differences that are specifically related to the disease state since the genetic variability specific to the patient is controlled for by the comparison. Additionally, other variables that exist between patients may be controlled for in this way, for example, the presence or absence of inflammatory diseases (e.g., rheumatoid arthritis) the use of medications that may effect leukocyte gene expression, the presence or absence of co-morbid conditions, etc. Methods for analysis of paired samples are further described below. Moreover, the analysis of a pattern of expression profiles (generated by collecting multiple expression profiles) provides information relating to changes in expression level over time, and may permit the determination of a rate of change, a trajectory, or an expression curve. Two longitudinal samples may provide information on the change in expression of a gene over time, while three longitudinal samples may be necessary to determine the "trajectory" of expression of a gene. Such information may be relevant to the diagnosis of a disease. For example, the expression of a gene may vary from individual to individual, but a clinical event, for example, a heart attack, may cause the level of expression to double in each patient. In this example, clinically interesting information is gleaned from the change in expression level, as opposed to the absolute level of expression in each individual.

When a single patient sample is obtained, it may still be desirable to compare the expression profile of that sample to some reference expression profile. In this case, one can determine the change of expression between the patient's sample and a reference expression profile that is appropriate for that patient and the medical condition in question. For example, a reference expression profile can be determined for all patients without the disease criterion in question who have similar characteristics, such as age, sex, race, diagnoses etc.

Generally, small sample sizes of 10-40 samples from 10-20 individuals are used to identify a diagnostic nucleotide set. Larger sample sizes are generally necessary to validate the diagnostic nucleotide set for use in large and varied patient populations, as further described below. For example, extension of gene expression correlations to varied ethnic groups, demographic groups, nations, peoples or races may require expression correlation experiments on the population of interest.

Expression Reference Standards

Expression profiles derived from a patient (i.e., subjects diagnosed with, or exhibiting symptoms of, or exhibiting a disease criterion, or under a doctor's care for a disease) sample are compared to a control or standard expression RNA to facilitate comparison of expression profiles (e.g. of a set of candidate nucleotide sequences) from a group of patients relative to each other (i.e., from one patient in the group to other patients in the group, or to patients in another group).

The reference RNA used should have desirable features of low cost and simplicity of production on a large scale. Additionally, the reference RNA should contain measurable amounts of as many of the genes of the candidate library as possible.

For example, in one approach to identifying diagnostic nucleotide sets, expression profiles derived from patient samples are compared to a expression reference "standard." Standard expression reference can be, for example, RNA derived from resting cultured leukocytes or commercially available reference RNA, such as Universal reference RNA from Stratagene. *See* Nature, V406, 8-17-00, p. 747-752. Use of an expression reference standard is particularly useful when the expression of large numbers of nucleotide sequences is assayed, e.g. in an array, and in certain other applications, e.g. qualitative PCR, RT-PCR, etc., where it is desirable to compare a sample profile to a standard profile, and/or when large numbers of expression profiles, e.g. a patient population, are to be compared. Generally, an expression reference standard should be available in large quantities, should be a good substrate for amplification and labeling reactions, and should be capable of detecting a large percentage of candidate nucleic acids using suitable expression profiling technology.

Alternatively, or in addition, the expression profile derived from a patient sample is compared with the expression of an internal reference control gene, for example, β -actin or CD4. The relative expression of the profiled genes and the internal reference control gene (from the same individual) is obtained. An internal reference control may also be used with a reference RNA. For example, an expression profile for "gene 1" and the gene encoding CD4 can be determined in a patient sample and in a reference RNA. The expression of each gene can be expressed as the "relative" ratio of expression the gene in the patient sample compared with expression of the gene in the reference RNA. The expression ratio (sample/reference) for gene 1 may be divided by the expression ration for CD4 (sample/reference) and thus the relative expression of gene 1 to CD4 is obtained.

The invention also provides a buffy coat control RNA useful for expression profiling, and a method of using control RNA produced from a population of buffy coat cells, the white blood cell layer derived from the centrifugation of whole blood. Buffy coat contains all white blood cells, including granulocytes, mononuclear cells and platelets. The invention also provides a method of preparing control RNA from buffy coat cells for use in expression profile analysis of leukocytes. Buffy coat fractions are obtained, e.g. from a blood bank or directly from individuals, preferably from a large

number of individuals such that bias from individual samples is avoided and so that the RNA sample represents an average expression of a healthy population. Buffy coat fractions from about 50 or about 100, or more individuals are preferred. 10 ml buffy coat from each individual is used. Buffy coat samples are treated with an erthythrocyte lysis buffer, so that erthythrocytes are selectively removed. The leukocytes of the buffy coat layer are collected by centrifugation. Alternatively, the buffy cell sample can be further enriched for a particular leukocyte sub-populations, e.g. mononuclear cells, Tlymphocytes, etc. To enrich for mononuclear cells, the buffy cell pellet, above, is diluted in PBS (phosphate buffered saline) and loaded onto a non-polystyrene tube containing a polysucrose and sodium diatrizoate solution adjusted to a density of 1.077+/-0.001 g/ml. To enrich for T-lymphocytes, 45 ml of whole blood is treated with RosetteSep (Stem Cell Technologies), and incubated at room temperature for 20 minutes. The mixture is diluted with an equal volume of PBS plus 2% FBS and mixed by inversion. 30 ml of diluted mixture is layered on top of 15 ml DML medium (Stem Cell Technologies). The tube is centrifuged at 1200 x g, and the enriched cell layer at the plasma: medium interface is removed, washed with PBS + 2% FBS, and cells collected by centrifugation at 1200 x g. The cell pellet is treated with 5 ml of erythrocyte lysis buffer (EL buffer, Qiagen) for 10 minutes on ice, and enriched T-lymphoctes are collected by centrifugation.

In addition or alternatively, the buffy cells (whole buffy coat or sub-population, e.g. mononuclear fraction) can be cultured *in vitro* and subjected to stimulation with cytokines or activating chemicals such as phorbol esters or ionomycin. Such stimuli may increase expression of nucleotide sequences that are expressed in activated immune cells and might be of interest for leukocyte expression profiling experiments.

Following sub-population selection and/or further treatment, e.g. stimulation as described above, RNA is prepared using standard methods. For example, cells are pelleted and lysed with a phenol/guanidinium thiocyanate and RNA is prepared. RNA can also be isolated using a silica gelbased purification column or the column method can be used on RNA isolated by the phenol/guanidinium thiocyanate method. RNA from individual buffy coat samples can be pooled during this process, so that the resulting reference RNA represents the RNA of many individuals and individual bias is minimized or eliminated. In addition, a new batch of buffy coat reference RNA can be directly compared to the last batch to ensure similar expression pattern from one batch to another, using methods of collecting and comparing expression profiles described above/below. One or more expression reference controls are used in an experiment. For example, RNA derived from one or more of the following sources can be used as controls for an experiment: stimulated or unstimulated whole buffy coat, stimulated or unstimulated peripheral mononuclear cells, or stimulated or unstimulated T-lymphocytes.

Alternatively, the expression reference standard can be derived from any subject or class of subjects including healthy subjects or subjects diagnosed with the same or a different disease or disease criterion. Expression profiles from subjects in two or more distinct classes are compared to determine which subset of nucleotide sequences in the candidate library can best distinguish between the subject classes, as further discussed below. It will be appreciated that in the present context, the term "distinct classes" is relevant to at least one distinguishable criterion relevant to a disease of interest, a "disease

criterion." The classes can, of course, demonstrate significant overlap (or identity) with respect to other disease criteria, or with respect to disease diagnoses, prognoses, or the like. The mode of discovery involves, e.g., comparing the molecular signature of different subject classes to each other (such as patient to control, patients with a first diagnosis to patients with a second diagnosis, etc.) or by comparing the molecular signatures of a single individual taken at different time points. The invention can be applied to a broad range of diseases, disease criteria, conditions and other clinical and/or epidemiological questions, as further discussed above/below.

It is appreciated that while the present discussion pertains to the use of expression reference controls while identifying diagnostic nucleotide sets, expression reference controls are also useful during use of diagnostic nucleotide sets, e.g. use of a diagnostic nucleotide set for diagnosis of a disease, as further described below.

Analysis of expression profiles

In order to facilitate ready access, e.g., for comparison, review, recovery, and/or modification, the molecular signatures/expression profiles are typically recorded in a database. Most typically, the database is a relational database accessible by a computational device, although other formats, e.g., manually accessible indexed files of expression profiles as photographs, analogue or digital imaging readouts, spreadsheets, etc. can be used. Further details regarding preferred embodiments are provided below. Regardless of whether the expression patterns initially recorded are analog or digital in nature and/or whether they represent quantitative or qualitative differences in expression, the expression patterns, expression profiles (collective expression patterns), and molecular signatures (correlated expression patterns) are stored digitally and accessed via a database. Typically, the database is compiled and maintained at a central facility, with access being available locally and/or remotely.

As additional samples are obtained, and their expression profiles determined and correlated with relevant subject data, the ensuing molecular signatures are likewise recorded in the database. However, rather than each subsequent addition being added in an essentially passive manner in which the data from one sample has little relation to data from a second (prior or subsequent) sample, the algorithms optionally additionally query additional samples against the existing database to further refine the association between a molecular signature and disease criterion. Furthermore, the data set comprising the one (or more) molecular signatures is optionally queried against an expanding set of additional or other disease criteria. The use of the database in integrated systems and web embodiments is further described below.

Analysis of expression profile data from arrays

Expression data is analyzed using methods well known in the art, including the software packages Imagene (Biodiscovery, Marina del Rey, CA), Feature Extraction Software (Agilent, Palo Alto, CA), and Scanalyze (Stanford University). In the discussion that follows, a "feature" refers to an individual spot of DNA on an array. Each gene may be represented by more than one feature. For example, hybridized microarrays are scanned and analyzed on an Axon Instruments scanner using GenePix 3.0 software (Axon Instruments, Union City, CA). The data extracted by GenePix is used for all downstream quality control and expression evaluation. The data is derived as follows. The data for all features flagged as "not found" by the software is removed from the dataset for individual

hybridizations. The "not found" flag by GenePix indicates that the software was unable to discriminate the feature from the background. Each feature is examined to determine the value of its signal. The median pixel intensity of the background (B_n) is subtracted from the median pixel intensity of the feature (F_n) to produce the background-subtracted signal (hereinafter, "BGSS"). The BGSS is divided by the standard deviation of the background pixels to provide the signal-to-noise ratio (hereinafter, "S/N"). Features with a S/N of three or greater in both the Cy3 channel (corresponding to the sample RNA) and Cy5 channel (corresponding to the reference RNA) are used for further analysis (hereinafter denoted "useable features"). Alternatively, different S/Ns are used for selecting expression data for an analysis. For example, only expression data with signal to noise ratios > 3 might be used in an analysis. Alternatively, features with S/N values < 3 may be flagged as such and included in the analysis. Such flagged data sets include more values and may allow one to discover expression markers that would be missed otherwise. However, such data sets may have a higher variability than filtered data, which may decrease significance of findings or performance of correlation statistics.

For each usable feature (i), the expression level (e) is expressed as the logarithm of the ratio (R) of the Background Subtracted Signal (hereinafter "BGSS") for the Cy3 (sample RNA) channel divided by the BGSS for the Cy5 channel (reference RNA). This "log ratio" value is used for comparison to other experiments.

$$R_i = \frac{BGSS_{sample}}{BGSS_{reference}} \tag{0.1}$$

$$e_i = \log r_i \tag{0.2}$$

Variation in signal across hybridizations may be caused by a number of factors affecting hybridization, DNA spotting, wash conditions, and labeling efficiency.

A single reference RNA may be used with all of the experimental RNAs, permitting multiple comparisons in addition to individual comparisons. By comparing sample RNAs to the same reference, the gene expression levels from each sample are compared across arrays, permitting the use of a consistent denominator for our experimental ratios. Alternative methods of analyzing the data may involve 1) using the sample channel without normalization by the reference channel, 2) using an intensity-dependent normalization based on the reference which provides a greater correction when the signal in the reference channel is large, 3) using the data without background subtraction or subtracting an empirically derived function of the background intensity rather than the background itself.

Scaling

The data may be scaled (normalized) to control for labeling and hybridization variability within the experiment, using methods known in the art. Scaling is desirable because it facilitates the comparison of data between different experiments, patients, etc. Generally the BGSS are scaled to a factor such as the median, the mean, the trimmed mean, and percentile. Additional methods of scaling include: to scale between 0 and 1, to subtract the mean, or to subtract the median.

Scaling is also performed by comparison to expression patterns obtained using a common reference RNA, as described in greater detail above. As with other scaling methods, the reference RNA facilitates multiple comparisons of the expression data, e.g., between patients, between samples, etc. Use of a reference RNA provides a consistent denominator for experimental ratios.

In addition to the use of a reference RNA, individual expression levels may be adjusted to correct for differences in labeling efficiency between different hybridization experiments, allowing direct comparison between experiments with different overall signal intensities, for example. A scaling factor (a) may be used to adjust individual expression levels as follows. The median of the scaling factor (a), for example, BGSS, is determined for the set of all features with a S/N greater than three. Next, the BGSS_i (the BGSS for each feature "i") is divided by the median for all features (a), generating a scaled ratio. The scaled ration is used to determine the expression value for the feature (e_i), or the log ratio.

$$S_i = \frac{BGSS_i}{a} \tag{0.3}$$

$$e_i = \log\left(\frac{Cy3S_i}{Cy5S_i}\right) \tag{0.4}$$

In addition, or alternatively, control features are used to normalize the data for labeling and hybridization variability within the experiment. Control feature may be cDNA for genes from the plant, *Arabidopsis thaliana*, that are included when spotting the mini-array. Equal amounts of RNA complementary to control cDNAs are added to each of the samples before they were labeled. Using the signal from these control genes, a normalization constant (*L*) is determined according to the following formula:

$$L_{j} = \frac{\sum_{i=1}^{N} BGSS_{j,i}}{N}$$

$$\frac{\sum_{j=1}^{K} \sum_{i=1}^{N} BGSS_{j,i}}{N}$$

$$K$$

where BGSS_i is the signal for a specific feature, N is the number of A. thaliana control features, K is the number of hybridizations, and L_i is the normalization constant for each individual hybridization.

Using the formula above, the mean for all control features of a particular hybridization and dye (e.g., Cy3) is calculated. The control feature means for all Cy3 hybridizations are averaged, and the control feature mean in one hybridization divided by the average of all hybridizations to generate a normalization constant for that particular Cy3 hybridization (L_i), which is used as a in equation (0.3). The same normalization steps may be performed for Cy3 and Cy5 values.

An alternative scaling method can also be used. The log of the ratio of Green/Red is determined for all features. The median log ratio value for all features is determined. The feature values are then scaled using the following formula: Log_Scaled_Feature_Ratio = Log_Feature_Ratio - Median Log Ratio.

Many additional methods for normalization exist and can be applied to the data. In one method, the average ratio of Cy3 BGSS / Cy5 BGSS is determined for all features on an array. This ratio is then scaled to some arbitrary number, such as 1 or some other number. The ratio for each probe is then multiplied by the scaling factor required to bring the average ratio to the chosen level. This is performed for each array in an analysis. Alternatively, the ratios are normalized to the average ratio across all arrays in an analysis. Other methods of normalization include forcing the distribution of signal strengths of the various arrays into greater agreement by transforming them to match certain points (quartiles, or deciles, etc.) in a standard distribution, or in the most extreme case using the rank of the signal of each oligonucleotide relative to the other oligonucleotides on the array

If multiple features are used per gene sequence or oligonucleotide, these repeats can be used to derive an average expression value for each gene. If some of the replicate features are of poor qualitay and don't meet requirements for analysis, the remaining features can be used to represent the gene or gene sequence.

Correlation analysis

Correlation analysis is performed to determine which array probes have expression behavior that best distinguishes or serves as markers for relevant groups of samples representing a particular clinical condition. Correlation analysis, or comparison among samples representing different disease criteria (e.g., clinical conditions), is performed using standard statistical methods. Numerous algorithms are useful for correlation analysis of expression data, and the selection of algorithms depends in part on the data analysis to be performed. For example, algorithms can be used to identify the single most informative gene with expression behavior that reliably classifies samples, or to identify all the genes useful to classify samples. Alternatively, algorithms can be applied that determine which set of 2 or more genes have collective expression behavior that accurately classifies samples. The use of multiple expression markers for diagnostics may overcome the variability in expression of a gene between individuals, or overcome the variability intrinsic to the assay. Multiple expression markers may include redundant markers (surrogates), in that two or more genes or probes may provide the same information with respect to diagnosis. This may occur, for example, when two or more genes or gene probes are coordinately expressed. For diagnostic application, it may be appropriate to utilize a gene and one or more of its surrogates in the assay. This redundancy may overcome failures (technical or biological) of a single marker to distinguish samples. Alternatively, one or more surrogates may have properties that make them more suitable for assay development, such as a higher baseline level of expression, better cell specificity, a higher fold change between sample groups or more specific sequence for the design of PCR primers or complimentary probes. It will be appreciated that while the discussion above pertains to the analysis of RNA expression profiles the discussion is equally applicable to the analysis of profiles of proteins or other molecular markers.

Prior to analysis, expression profile data may be formatted or prepared for analysis using methods known in the art. For example, often the log ratio of scaled expression data for every array probe is calculated using the following formula:

log (Cy 3 BGSS/ Cy5 BGSS), where Cy 3 signal corresponds to the expression of the gene in the clinical sample, and Cy5 signal corresponds to expression of the gene in the reference RNA.

Data may be further filtered depending on the specific analysis to be done as noted below. For example, filtering may be aimed at selecting only samples with expression above a certain level, or probes with variability above a certain level between sample sets.

The following non-limiting discussion consider several statistical methods known in the art. Briefly, the t-test and ANOVA are used to identify single genes with expression differences between or among populations, respectively. Multivariate methods are used to identify a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene.

t-test

The simplest measure of a difference between two groups is the Student's t test. See, e.g., Welsh et al. (2001) Proc Natl Acad Sci USA 98:1176-81 (demonstrating the use of an unpaired Student's t-test for the discovery of differential gene expression in ovarian cancer samples and control tissue samples). The t- test assumes equal variance and normally distributed data. This test identifies the probability that there is a difference in expression of a single gene between two groups of samples. The number of samples within each group that is required to achieve statistical significance is dependent upon the variation among the samples within each group. The standard formula for a t-test is:

$$t(e_i) = \frac{\overline{e}_{i,c} - \overline{e}_{i,t}}{\sqrt{(s_{i,c}^2/n_c) + (s_{i,t}^2/n_t)}},$$
(0.5)

where \bar{e}_i is the difference between the mean expression level of gene i in groups c and t, $s_{i,c}$ is the variance of gene x in group c and $s_{i,t}$ is the variance of gene x in group t. n_c and n_t are the numbers of samples in groups c and t.

The combination of the t statistic and the degrees of freedom $[\min(n_t, n_c)-1]$ provides a p value, the probability of rejecting the null hypothesis. A p-value of ≤ 0.01 , signifying a 99 percent probability the mean expression levels are different between the two groups (a 1% chance that the mean expression levels are in fact not different and that the observed difference occurred by statistical chance), is often considered acceptable.

When performing tests on a large scale, for example, on a large dataset of about 8000 genes, a correction factor must be included to adjust for the number of individual tests being performed. The most common and simplest correction is the Bonferroni correction for multiple tests, which divides the p-value by the number of tests run. Using this test on an 8000 member dataset indicates that a p value

of \leq 0.00000125 is required to identify genes that are likely to be truly different between the two test conditions.

Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Tusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are a set of genes which are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially expressed between 2 classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM takes intoaccount the variability and large number of variables of microarrays. SAM will identity genes that are most globally differentially expressed between the classes. Thus, important genes for identifying and classifying outlier samples or patients may not be identified by SAM.

Non-Parametric Tests

Wilcoxon's signed ranks method is one example of a non-parametric test and is utilized for paired comparisons. See e.g., Sokal and Rohlf (1987) Introduction to Biostatistics 2nd edition, WH Freeman, New York. At least 6 pairs are necessary to apply this statistic. This test is useful for analysis of paired expression data (for example, a set of patients who have had samples taken before and after administration of a pharmacologic agent). The Fisher Exact Test with a threshold and the Mann-Whitney Test are other non-parametric tests that may be used

ANOVA

Differences in gene expression across multiple related groups may be assessed using an Analysis of Variance (ANOVA), a method well known in the art (Michelson and Schofield, 1996).

Multivariate analysis

Many algorithms suitable for multivariate analysis are known in the art (Katz 1999). Generally, a set of two or more genes for which expression discriminates between two disease states more specifically than expression of any single gene is identified by searching through the possible combinations of genes using a criterion for discrimination, for example the expression of gene X must increase from normal 300 percent, while the expression of genes Y and Z must decrease from normal by 75 percent. Ordinarily, the search starts with a single gene, then adds the next best fit at each step of the search. Alternatively, the search starts with all of the genes and genes that do not aid in the discrimination are eliminated step-wise.

Paired samples

Paired samples, or samples collected at different time-points from the same patient, are often useful, as described above. For example, use of paired samples permits the reduction of variation due to genetic variation among individuals. In addition, the use of paired samples has a statistical significance in that data derived from paired samples can be calculated in a different manner that recognizes the reduced variability. For example, the formula for a t-test for paired samples is:

$$t(e_x) = \frac{\overline{D}_{\bar{e}_x}}{\sqrt{\frac{\sum D^2 - (\sum D)^2 / b}{b - 1}}}$$
(0.5)

where D is the difference between each set of paired samples and b is the number of sample pairs.

 \overline{D} is the mean of the differences between the members of the pairs. In this test, only the differences between the paired samples are considered, then grouped together (as opposed to taking all possible differences between groups, as would be the case with an ordinary t-test). Additional statistical tests useful with paired data, e.g., ANOVA and Wilcoxon's signed rank test, are discussed above.

Diagnostic classification

Once a discriminating set of genes is identified, the diagnostic classifier (a mathematical function that assigns samples to diagnostic categories based on expression data) is applied to unknown sample expression levels.

Methods that can be used for this analysis include the following non-limiting list:

CLEAVER is an algorithm used for classification of useful expression profile data. See Raychaudhuri et al. (2001) <u>Trends Biotechnol</u> 19:189-193. CLEAVER uses positive training samples (e.g., expression profiles from samples known to be derived from a particular patient or sample diagnostic category, disease or disease criteria), negative training samples (e.g., expression profiles from samples known not to be derived from a particular patient or sample diagnostic category, disease or disease criteria) and test samples (e.g., expression profiles obtained from a patient), and determines whether the test sample correlates with the particular disease or disease criteria, or does not correlate with a particular disease or disease criteria. CLEAVER also generates a list of the 20 most predictive genes for classification.

Artificial neural networks (hereinafter, "ANN") can be used to recognize patterns in complex data sets and can discover expression criteria that classify samples into more than 2 groups. The use of artificial neural networks for discovery of gene expression diagnostics for cancers using expression data generated by oligonucleotide expression microarrays is demonstrated by Khan et al. (2001) Nature Med. 7:673-9. Khan found that 96 genes provided 0% error rate in classification of the tumors. The most important of these genes for classification was then determined by measuring the sensitivity of the classification to a change in expression of each gene. Hierarchical clustering using the 96 genes results in correct grouping of the cancers into diagnostic categories.

Golub uses cDNA microarrays and a distinction calculation to identify genes with expression behavior that distinguishes myeloid and lymphoid leukemias. See Golub et al. (1999) Science 286:531-7. Self organizing maps were used for new class discovery. Cross validation was done with a "leave one out" analysis. 50 genes were identified as useful markers. This was reduced to as few as 10 genes with equivalent diagnostic accuracy.

Hierarchical and non-hierarchical clustering methods are also useful for identifying groups of genes that correlate with a subset of clinical samples such as those with and without Lupus. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell

lymphomas based on gene expression profile data. See Alizadeh et al. (2000) Nature 403:503-11. Alizadeh used hierarchical clustering as the primary tool to distinguish different types of diffuse B-cell lymphomas based on gene expression profile data. A cDNA array carrying 17856 probes was used for these experiments, 96 samples were assessed on 128 arrays, and a set of 380 genes was identified as being useful for sample classification.

Perou demonstrates the use of hierarchical clustering for the molecular classification of breast tumor samples based on expression profile data. See Perou et al. (2000) <u>Nature</u> 406:747-52. In this work, a cDNA array carrying 8102 gene probes was used. 1753 of these genes were found to have high variation between breast tumors and were used for the analysis.

Hastie describes the use of gene shaving for discovery of expression markers. Hastie et al. (2000) Genome Biol. 1(2):RESEARCH 0003.1-0003.21. The gene shaving algorithm identifies sets of genes with similar or coherent expression patterns, but large variation across conditions (RNA samples, sample classes, patient classes). In this manner, genes with a tight expression pattern within a diagnostic group, but also with high variability across the diagnoses are grouped together. The algorithm takes advantage of both characteristics in one grouping step. For example, gene shaving can identify useful marker genes with co-regulated expression. Sets of useful marker genes can be reduced to a smaller set, with each gene providing some non-redundant value in classification. This algorithm was used on the data set described in Alizadeh et al., supra, and the set of 380 informative gene markers was reduced to 234.

Supervised harvesting of expression trees (Hastie 2001) identifies genes or clusters that best distinguish one class from all the others on the data set. The method is used to identify the genes/clusters that can best separate one class versus all the others for datasets that include two or more classes or all classes from each other. This algorithm can be used for discovery or testing of a diagnostic gene set.

CART is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. See examples 10 and 16 for further description of its use in classification analysis and examples of its usefulness in discovering and implementing a diagnostic gene set. CART identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification.

Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tibshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

Once a set of genes and expression criteria for those genes have been established for classification, cross validation is done. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples.

Clinical data are gathered for every patient sample used for expression analysis. Clinical variables can be quantitative or non-quantitative. A clinical variable that is quantitative can be used as a variable for significance or classification analysis. Non-quantitative clinical variables, such as the sex of the patient, can also be used in a significance analysis or classification analysis with some statistical tool. It is appreciated that the most useful diagnostic gene set for a condition may be optimal when considered along with one or more predictive clinical variables. Clinical data can also be used as supervising vectors for a correlation analysis. That is to say that the clinical data associated with each sample can be used to divide the samples into meaningful diagnostic categories for analysis. For example, samples can be divided into 2 or more groups based on the presence or absence of some diagnostic criterion (a). In addition, clinical data can be utilized to select patients for a correlation analysis or to exclude them based on some undesirable characteristic, such as an ongoing infection, a medicine or some other issue. Clincial data can also be used to assess the pre-test probability of an outcome. For example, patients who are female are much more likely to be diagnosed as having systemic lupus erythematosis than patients who are male.

Once a set of genes are identified that classify samples with acceptable accuracy. These genes are validated as a set using new samples that were not used to discover the gene set. These samples can be taken from frozen archieves from the discovery clinical study or can be taken from new patients prospectively. Validation using a "test set" of samples can be done using expression profiling of the gene set with microarrays or using real-time PCR for each gene on the test set samples. Alternatively, a different expression profiling technology can be used.

Validation and accuracy of diagnostic nucleotide sets

Prior to widespread application of the diagnostic probe sets of the invention the predictive value of the probe set is validated. When the diagnostic probe set is discovered by microarray based expression analysis, the differential expression of the member genes may be validated by a less variable and more quantitive and accurate technology such as real time PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the

amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of C_T (threshold cycle) or C_P (crossing point). This measurement ($C_T=C_P$) is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring C_T , a lower C_T value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly.

Several fluorescence methodologies are available to measure amplification product in real-time PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNA-binding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the importance of primer design and selection. Other detection chemistries can also been used, such as ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher dye Taqman chemistry, for example scorpions.

Real-time PCR validation can be done as described in Example 8.

Typically, the oligonucleotide sequence of each probe is confirmed, e.g. by DNA sequencing using an oligonucleotide-specific primer. Partial sequence obtained is generally sufficient to confirm the identity of the oligonucleotide probe. Alternatively, a complementary polynucleotide is fluorescently labeled and hybridized to the array, or to a different array containing a resynthesized version of the oligo nucleotide probe, and detection of the correct probe is confirmed.

Typically, validation is performed by statistically evaluating the accuracy of the correspondence between the molecular signature for a diagnostic probe set and a selected indicator. For example, the expression differential for a nucleotide sequence between two subject classes can be expressed as a simple ratio of relative expression. The expression of the nucleotide sequence in subjects with selected indicator can be compared to the expression of that nucleotide sequence in subjects without the indicator, as described in the following equations.

 $\sum E_x ai/N = E_x A$ the average expression of nucleotide sequence x in the members of group A;

 $\sum E_x bi/M = E_x B$ the average expression of nucleotide sequence x in the members of group B;

 $E_xA/ExB = \Delta E_xAB$ the average differential expression of nucleotide sequence x between groups A

and B:

where Σ indicates a sum; Ex is the expression of nucleotide sequence x relative to a standard; ai are the individual members of group A, group A has N members; bi are the individual members of group B, group B has M members.

Individual components of a diagnostic probe set each have a defined sensitivity and specificity for distinguishing between subject groups. Such individual nucleotide sequences can be employed in concert as a diagnostic probe set to increase the sensitivity and specificity of the evaluation. The database of molecular signatures is queried by algorithms to identify the set of nucleotide sequences (i.e., corresponding to members of the probe set) with the highest average differential expression between subject groups. Typically, as the number of nucleotide sequences in the diagnostic probe set increases, so does the predictive value, that is, the sensitivity and specificity of the probe set. When the probe sets are defined they may be used for diagnosis and patient monitoring as discussed below. The diagnostic sensitivity and specificity of the probe sets for the defined use can be determined for a given probe set with specified expression levels as demonstrated above. By altering the expression threshold required for the use of each nucleotide sequence as a diagnostic, the sensitivity and specificity of the probe set can be altered by the practitioner. For example, by lowering the magnitude of the expression differential threshold for each nucleotide sequence in the set, the sensitivity of the test will increase, but the specificity will decrease. As is apparent from the foregoing discussion, sensitivity and specificity are inversely related and the predictive accuracy of the probe set is continuous and dependent on the expression threshold set for each nucleotide sequence. Although sensitivity and specificity tend to have an inverse relationship when expression thresholds are altered, both parameters can be increased as nucleotide sequences with predictive value are added to the diagnostic nucleotide set. In addition a single or a few markers may not be reliable expression markers across a population of patients. This is because of the variability in expression and measurement of expression that exists between measurements, individuals and individuals over time. Inclusion of a large number of candidate nucleotide sequences or large numbers of nucleotide sequences in a diagnostic nucleotide set allows for this variability as not all nucleotide sequences need to meet a threshold for diagnosis. Generally, more markers are better than a single marker. If many markers are used to make a diagnosis, the likelihood that all expression markers will not meet some thresholds based upon random variability is low and thus the test will give fewer false negatives. Surrogate markers are useful for these purposes. These are markers or genes that are coordinately expressed. Surrogate markers essential provide redundant infomation, but this redundancy can improve accuracy by decreasing errors due to assay variability.

It is appreciated that the desired diagnostic sensitivity and specificity of the diagnostic nucleotide set may vary depending on the intended use of the set. For example, in certain uses, high specificity and high sensitivity are desired. For example, a diagnostic nucleotide set for predicting which patient population may experience side effects may require high sensitivity so as to avoid treating such patients. In other settings, high sensitivity is desired, while reduced specificity may be tolerated. For example, in the case of a beneficial treatment with few side effects, it may be important to identify as many patients as possible (high sensitivity) who will respond to the drug, and treatment of some patients who will not respond is tolerated. In other settings, high specificity is desired and reduced sensitivity may be tolerated. For example, when identifying patients for an early-phase clinical trial, it is important to identify patients who may respond to the particular treatment. Lower sensitivity is tolerated in this setting as it merely results in reduced patients who enroll in the study or requires that more patients are screened for enrollment.

To discover and validate a gene set that can be applied to accurately diagnose or classify patients across the country or around the world, it is necessary to ensure that the gene set was developed and validated using samples that represent the types of patients that will be encountered in the clinical setting. For example, diverse ethnicity, drug usage and clinical practice patterns must all be represented in the discovery and validation to ensure that the test works on this variety of patients.

Immune Monitoring

Leukocyte gene expression can be used to monitor the immune system. Immune monitoring examines both the level of gene expression for a set of genes in a given cell type and for genes which are expressed in a cell type selective manner gene expression monitoring will also detect the presence or absence of new cell types, progenitor cells, differentiation of cells and the like. Gene expression patterns may be associated with activation or the resting state of cells of the immune system that are responsible for or responsive to a disease state. For example, in the process of lupus and other autoimmune diseases, cells of the immune system are activated by self-antigens. Genes and gene sets that monitor and diagnose this process are providing a measure of the level and type of activation of the immune system. Genes and gene sets that are useful in monitoring the immune system may be useful for diagnosis and monitoring of all diseases that involve the immune system. Some examples are rheumatoid arthritis, lupus, inflammatory bowel diseases, multiple sclerosis, HIV/AIDS, and viral, bacterial and fungal infection. All disorders and diseases disclosed herein are contemplated. Genes and gene sets that monitor immune activation are useful for monitoring response to immunosuppressive drug therapy, which is used to decrease immune activation. Genes are found to correlate with immune activation by correlation of expression patterns to the known presence of immune activation or quiescence in a sample as determined by some other test.

Selected Diseases

In principle, individual oligonucleotides and diagnostic oligonucleotide sets of the invention may be developed and applied to essentially any disease, or disease criterion, as long as at least one subset of oligonucleotide sequences is differentially expressed in samples derived from one or more individuals with a disease criteria or disease and one or more individuals without the disease criteria or disease, wherein the individual may be the same individual sampled at different points in time, or the individuals may be different individuals (or populations of individuals). For example, the subset of oligonucleotide sequences may be differentially expressed in the sampled tissues of subjects with the disease or disease criterion (e.g., a patient with a disease or disease criteria) as compared to subjects without the disease or disease criterion (e.g., patients without a disease (control patients)).

Alternatively, or in addition, the subset of oligonucleotide sequence(s) may be differentially expressed in different samples taken from the same patient, e.g at different points in time, at different disease stages, before and after a treatment, in the presence or absence of a risk factor, etc.

Expression profiles corresponding to oligonucleotides and sets of oligonucleotide sequences that correlate not with a diagnosis, but rather with a particular aspect of a disease can also be used to identify the diagnostic oligonucleotide sets and disease specific target oligonucleotide sequences of the invention. For example, such an aspect, or disease criterion, can relate to a subject's medical or family

history, e.g., occurance of an autoimmune disease, childhood illness, cause of death of a parent or other relative, prior surgery or other intervention, medications, laboratory values and results of diagnostic testing (radiology, pathology, etc.), symptoms (including onset and/or duration of symptoms), etc. Alternatively, the disease criterion can relate to a diagnosis, e.g., chronic inflammatory disease such as lupus, rheumatoid arthritis, osteoarthritis, or prognosis (e.g., prediction of future diagnoses, events or complications), e.g., renal failure from lupus, joint replacement surgery for rheumatoid arthritis, rheumatoid arthritis or systemic lupus erythematosis disease activity or the like. In other cases, the disease criterion corresponds to a therapeutic outcome, e.g., response to a medication, response to a surgery or physical therapy for a joint. Alternatively, the disease criteria correspond with previously identified or classic risk factors and may correspond to prognosis or future disease diagnosis. As indicated above, a disease criterion can also correspond to genotype for one or more loci. Disease criteria (including patient data) may be collected (and compared) from the same patient at different points in time, from different patients, between patients with a disease (criterion) and patients respresenting a control population, etc. Longitudinal data, i.e., data collected at different time points from an individual (or group of individuals) may be used for comparisons of samples obtained from an individual (group of individuals) at different points in time, to permit identification of differences specifically related to the disease state, and to obtain information relating to the change in expression over time, including a rate of change or trajectory of expression over time. The usefulness of longitudinal data is further discussed in the section titled "Identification of diagnostic nucleotide sets of the invention".

It is further understood that diagnostic oligonucleotides and oligonucleotide sets may be developed for use in diagnosing conditions for which there is no present means of diagnosis. For example, in rheumatoid arthritis, joint destruction is often well under way before a patient experience symptoms of the condition. A diagnostic nucleotide or nucleotide set may be developed that diagnoses rheumatic joint destruction at an earlier stage than would be possible using present means of diagnosis, which rely in part on the presentation of symptoms by a patient. Diagnostic nucleotide sets may also be developed to replace or augment current diagnostic procedures. For example, the use of a diagnostic nucleotide or nucleotide set to diagnose lupus may replace or supplement the current diagnostic tests and strategies.

It is understood that the following discussion of diseases is exemplary and non-limiting, and further that the general criteria discussed above, e.g. use of family medical history, are generally applicable to the specific diseases discussed below.

In addition to leukocytes, as described throughout, the general method is applicable to oligonucleotide sequences that are differentially expressed in any subject tissue or cell type, by the collection and assessment of samples of that tissue or cell type. However, in many cases, collection of such samples presents significant technical or medical problems given the current state of the art.

Systemic Lupus Erythematosis (SLE)

SLE is a chronic, systemic inflammatory disease characterized by dysregulation of the immune system, which effects up to 2 million patients in the US. Symptoms of SLE include rashes, joint pain, abnormal blood counts, renal dysfunction and damage, infections, CNS disorders, arthralgias

and autoimmunity. Patients may also have early onset atherosclerosis. The diagnosis of SLE is difficult to make with certainty using current diagnostic tests and algorithms. Antibody tests can be specific for the disease, but often lack sensitivity. Clinical diagnosis may lack both high sensisivity and specificity. SLE is a disease that clearly involves differential gene expression in leukocytes compared to patients without the disease.

Diagnostic oligonucleotides and oligonucleotide sets are identified and validated for use in diagnosis and monitoring of SLE activity and progression. Disease criteria correspond to clinical data, e.g. symptom rash, joint pain, malaise, rashes, blood counts (white and red), tests of renal function e.g. creatinine, blood urea nitrogen (hereinafter, "bun") creative clearance, data obtained from laboratory tests, including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine and any medication levels, the need for pain medications, cumulative doses or immunosuppressive therapy, symptoms or any manifestation of carotid atherosclerosis (e.g. ultrasound diagnosis or any other manifestations of the disease), data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies (e.g., renal, CNS), information on pharmacological therapy and treatment changes, clinical diagnoses of disease "flare", hospitalizations, death, response to medications, quantitative joint exams, results from health assessment questionnaires (HAOs), and other clinical measures of patient symptoms and disability. In addition, disease criteria correspond to the clinical score known as SLEDAI (Bombadier C, Gladman DD, Urowitz MB, Caron D. Chang CH and the Committee on Prognosis Studies in SLE: Derivation of the SLEDAI for Lupus Patients. Arthritis Rheum 35:630-640, 1992.). Diagnostic nucleotide sets may be useful for diagnosis of SLE, monitoring disease progression including progressive renal dysfunction, carotid atherosclerosis and CNS dysfunction, and predicting occurrence of side-effects, for example.

Rheumatoid Arthritis

Rheumatoid arthritis (RA) effects about two million patients in the US and is a chronic and debilitating inflammatory arthritis, particularly involving pain and destruction of the joints. RA often goes undiagnosed because patients may have no pain, but the disease is actively destroying the joint. Other patients are known to have RA, and are treated to alleviate symptoms, but the rate of progression of joint destruction can't easily be monitored. Drug therapy is available, but the most effective medicines are toxic (e.g., steroids, methotrexate) and thus need to be used with caution. A new class of medications (TNF blockers) is very effective, but the drugs are expensive, have side effects, and not all patients respond. Side-effects are common and include immune suppression, toxicity to organ systems, allergy and metabolic disturbances.

Diagnostic oligonucleotides and oligonucleotide sets of the invention are developed and validated for use in diagnosis and treatment of RA. Disease criteria correspond to disease symptoms (e.g., joint pain, joint swelling and joint stiffness and any of the American College for Rheumatology criteria for the diagnosis of RA, see Arnett et al (1988) <u>Arthr. Rheum.</u> 31:315-24), progression of joint destruction (e.g. as measured by serial hand radiographs, assessment of joint function and mobility), surgery, need for medication, additional diagnoses of inflammatory and non-inflammatory conditions, and clinical laboratory measurements including complete blood counts with differentials, CRP, ESR,

ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine, death, hospitalization and disability due to joint destruction. In addition, or alternatively, disease criteria correspond to response to drug therapy and presence or absence of side-effects or measures of improvement exemplified by the American College of Rheumatology "20%" and "50%" response/improvement rates. See Felson et al (1995) <u>Arthr Rheum</u> 38:531-37. Diagnostic nucleotide sets are identified that monitor and predict disease progression including flaring (acute worsening of disease accompanied by joint pain or other symptoms), response to drug treatment and likelihood of side-effects.

In addition to peripheral leukocytes, surgical specimens of rheumatoid joints can be used for leukocyte expression profiling experiments. Members of diagnostic nucleotide sets are candidates for leukocyte target nucleotide sequences, e.g. as a candidate drug target for rheumatoid arthritis. Synovial specimens can be used for expression profiling or cells derived and sorted from that tissue (such as subsets of leukocytes) can be used. Cells can be separated by fluorescence activated cell sorting or magnetic affinity reagent techniques or some other technique. Synovial specimens and blood can be obtained from the same patient and gene expression can be compared between these 2 sample types.

Osteoarthritis

20-40 million patients in the US have osteoarthritis. Patient groups are heterogeneous, with a subset of patients having earlier onset, more aggressive joint damage, involving more inflammation (leukocyte infiltration). Leukocyte diagnostics can be used to distinguish osteoarthritis from rheumatoid arthritis and other differntial diagnoses, define likelihood and degree of response to NSAID therapy (non-steroidal anti-inflammatory drugs) or other anti-inflammatory therapies. Rate of progression of joint damage can also be assessed. Diagnostic nucleotide sets may be developed for use in selection and titration of treatment therapies. Disease criteria correspond to response to therapy, and disease progression using certain therapies, response to medications, need for joint surgery, joint pain and disability.

In addition to peripheral leukocytes, surgical specimens of osteoarthritic joints can be used for leukocyte expression profiling experiments. Diagnostic oligonucleotides and diagnostic oligonucleotide sets are candidates for leukocyte target nucleotide sequences, e.g. as a candidate drug target for osteoarthritis. Synovial specimens can be used for expression profiling or cells derived and sorted from that tissue (such as subsets of leukocytes) can be used. Cells can be separated by fluorescence activated cell sorting or magnetic affinity reagent techniques or some other technique. Synovial specimens and blood can be obtained from the same patient and gene expression can be compared between these 2 sample types.

In another example, diagnostic nucleotide sets are developed and validated for use in diagnosis and therapy of peri-prosthetic osteolysis. In this disease, a prosthetic joint such as a knee or hip is found to loosen over time and requires repeat surgery. Loosening may occur in some patients due to an inflammatory response incited by the foreign material of the prosthesis. Disease criteria include joint loosening, radiographic evidence of peri-prosthetic osteolysis, need for repeat surgery, response to pharmacological therapy, and/or histological (from biopsy or surgery) or biochemical (markers of bone metabolism such as alkaline phosphatase) evidence of osteolysis. Tissues used for

expression profiling can include peripheral leukocytes or leukocyte subsets, periprosthetic tissue, or synovial fluid. In addition, gene sets can be discovered using an *in vitro* model of the disease in which immune cells are exposed to prosthesis materials such as cement or titanium.

Pharmacogenomics

Pharmocogenomics is the study of the individual propensity to respond to a particular drug therapy (combination of therapies). In this context, response can mean whether a particular drug will work on a particular patient, e.g. some patients respond to one drug but not to another drug. One example of this would be prediction of a patient's response to drugs that target IFNs. Response can also refer to the likelihood of successful treatment or the assessment of progress in treatment. Titration of drug therapy to a particular patient is also included in this description, e.g. different patients can respond to different doses of a given medication. This aspect may be important when drugs with side-effects or interactions with other drug therapies are contemplated.

Diagnostic oligonucleotides and oligonucleotide sets are developed and validated for use in assessing whether a patient will respond to a particular therapy and/or monitoring response of a patient to drug therapy (therapies). Disease criteria correspond to presence or absence of clinical symptoms or clinical endpoints, presence of side-effects or interaction with other drug(s). The diagnostic nucleotide set may further comprise nucleotide sequences that are targets of drug treatment or markers of active disease.

Diagnostic oligonucleotides and oligonucleotide sets are developed and validated for use in assessing whether a patient has a particular drug toxicity or toxicity due to an environmental, work-related or other agent. Such exposures of the patient may also be related to biological or biochemical agents used in warfare. Diagnostic oligonucleotides and oligonucleotide sets may allow early diagnosis of a toxicity or exposure or may monitor the severity and course of toxic responses.

Methods of using diagnostic oligonucleotides and oligonucleotide sets.

The invention also provide methods of using the diagnostic oligonucleotides and oligonucleotide sets to: diagnose or monitor disease; assess severity of disease; predict future occurrence of disease; predict future complications of disease; determine disease prognosis; evaluate the patient's risk, or "stratify" a group of patients; assess response to current drug therapy; assess response to current non-pharmacological therapy; determine the most appropriate medication or treatment for the patient; predict whether a patient is likely to respond to a particular drug; and determine most appropriate additional diagnostic testing for the patient, among other clinically and epidemiologically relevant applications.

The oligonucleotides and oligonucleotide sets of the invention can be utilized for a variety of purposes by physicians, healthcare workers, hospitals, laboratories, patients, companies and other institutions. As indicated previously, essentially any disease, condition, or status for which at least one nucleotide sequence is differentially expressed in leukocyte populations (or sub-populations) can be evaluated, e.g., diagnosed, monitored, etc. using the diagnostic nucleotide sets and methods of the invention. In addition to assessing health status at an individual level, the diagnostic nucleotide sets of

the present invention are suitable for evaluating subjects at a "population level," e.g., for epidemiological studies, or for population screening for a condition or disease.

Collection and preparation of sample

RNA, protein and/or DNA are prepared using methods well-known in the art, as further described herein. It is appreciated that subject samples collected for use in the methods of the invention are generally collected in a clinical setting, where delays may be introduced before RNA samples are prepared from the subject samples of whole blood, e.g. the blood sample may not be promptly delivered to the clinical lab for further processing. Further delay may be introduced in the clinical lab setting where multiple samples are generally being processed at any given time. For this reason, methods that feature lengthy incubations of intact leukocytes at room temperature are not preferred, because the expression profile of the leukocytes may change during this extended time period. For example, RNA can be isolated from whole blood using a phenol/guanidine isothiocyanate reagent or another direct whole-blood lysis method, as described in, e.g., U.S. Patent Nos. 5,346,994 and 4,843,155. This method may be less preferred under certain circumstances because the large majority of the RNA recovered from whole blood RNA extraction comes from erythrocytes since these cells outnumber leukocytes 1000:1. Care must be taken to ensure that the presence of erythrocyte RNA and protein does not introduce bias in the RNA expression profile data or lead to inadequate sensitivity or specificity of probes.

Alternatively, intact leukocytes may be collected from whole blood using a lysis buffer that selectively lyses erythrocytes, but not leukocytes, as described, e.g., in (U.S. Patent Nos. 5,973,137, and 6,020,186). Intact leukocytes are then collected by centrifugation, and leukocyte RNA is isolated using standard protocols, as described herein. However, this method does not allow isolation of subpopulations of leukocytes, e.g. mononuclear cells, which may be desired. In addition, the expression profile may change during the lengthy incubation in lysis buffer, especially in a busy clinical lab where large numbers of samples are being prepared at any given time.

Alternatively, specific leukocyte cell types can be separated using density gradient reagents (Boyum, A, 1968.). For example, mononuclear cells may be separated from whole blood using density gradient centrifugation, as described, e.g., in U.S. Patents Nos. 4190535, 4350593, 4751001, 4818418, and 5053134. Blood is drawn directly into a tube containing an anticoagulant and a density reagent (such as Ficoll or Percoll). Centrifugation of this tube results in separation of blood into an erythrocyte and granulocyte layer, a mononuclear cell suspension, and a plasma layer. The mononuclear cell layer is easily removed and the cells can be collected by centrifugation, lysed, and frozen. Frozen samples are stable until RNA can be isolated. Density centrifugation, however, must be conducted at room temperature, and if processing is unduly lengthy, such as in a busy clinical lab, the expression profile may change.

Alternatively, cells can be separated using fluorescence activated cell sorting (FACS) or some other technique, which divides cells into subsets based on gene or protein expression. This may be desirable to enrich the sample for cells of interest, but it may also introduce cell manipulations and time delays, which result in alteration of gene expression profiles (Cantor et al. 1975; Galbraith et al. 1999).

The quality and quantity of each clinical RNA sample is desirably checked before amplification and labeling for array hybridization, using methods known in the art. For example, one microliter of each sample may be analyzed on a Bioanalyzer (Agilent 2100 Palo Alto, CA. USA) using an RNA 6000 nano LabChip (Caliper, Mountain View, CA. USA). Degraded RNA is identified by the reduction of the 28S to 18S ribosomal RNA ratio and/or the presence of large quantities of RNA in the 25-100 nucleotide range.

It is appreciated that the RNA sample for use with a diagnostic oligonucleotide or oligonucleotide set may be produced from the same or a different cell population, sub-population and/or cell type as used to identify the diagnostic nucleotide set. For example, a diagnostic oligonucleotide or oligonucleotide set identified using RNA extracted from mononuclear cells may be suitable for analysis of RNA extracted from whole blood or mononuclear cells, depending on the particular characteristics of the members of the diagnostic nucleotide set. Generally, diagnostic oligonucleotides or oligonucleotide sets must be tested and validated when used with RNA derived from a different cell population, sub-population or cell type than that used when obtaining the diagnostic gene set. Factors such as the cell-specific gene expression of diagnostic nucleotide set members, redundancy of the information provided by members of the diagnostic nucleotide set, expression level of the member of the diagnostic nucleotide set, and cell-specific alteration of expression of a member of the diagnostic nucleotide set will contribute to the usefullness of a different RNA source than that used when identifying the members of the diagnostic nucleotide set. It is appreciated that it may be desirable to assay RNA derived from whole blood, obviating the need to isolate particular cell types from the blood.

Rapid method of RNA extraction suitable for production in a clinical setting of high quality RNA for expression profiling

In a clinical setting, obtaining high quality RNA preparations suitable for expression profiling, from a desired population of leukocytes poses certain technical challenges, including: the lack of capacity for rapid, high-throughput sample processing in the clinical setting, and the possibility that delay in processing (in a busy lab or in the clinical setting) may adversely affect RNA quality, e.g. by a permitting the expression profile of certain nucleotide sequences to shift. Also, use of toxic and expensive reagents, such as phenol, may be disfavored in the clinical setting due to the added expense associated with shipping and handling such reagents.

A useful method for RNA isolation for leukocyte expression profiling would allow the isolation of monocyte and lymphocyte RNA in a timely manner, while preserving the expression profiles of the cells, and allowing inexpensive production of reproducible high-quality RNA samples. Accordingly, the invention provides a method of adding inhibitor(s) of RNA transcription and/or inhibitor(s) of protein synthesis, such that the expression profile is "frozen" and RNA degradation is reduced. A desired leukocyte population or sub-population is then isolated, and the sample may be frozen or lysed before further processing to extract the RNA. Blood is drawn from subject population and exposed to ActinomycinD (to a final concentration of 10 ug/ml) to inhibit transcription, and cycloheximide (to a final concentration of 10 ug/ml) to inhibit protein synthesis. The inhibitor(s) can be injected into the blood collection tube in liquid form as soon as the blood is drawn, or the tube can

be manufactured to contain either lyophilized inhibitors or inhibitors that are in solution with the anticoagulant. At this point, the blood sample can be stored at room temperature until the desired leukocyte population or sub-population is isolated, as described elsewhere. RNA is isolated using standard methods, e.g., as described above, or a cell pellet or extract can be frozen until further processing of RNA is convenient.

The invention also provides a method of using a low-temperature density gradient for separation of a desired leukocyte sample. In another embodiment, the invention provides the combination of use of a low-temperature density gradient and the use of transcriptional and/or protein synthesis inhibitor(s). A desired leukocyte population is separated using a density gradient solution for cell separation that maintains the required density and viscosity for cell separation at 0-4□C. Blood is drawn into a tube containing this solution and may be refrigerated before and during processing as the low temperatures slow cellular processes and minimize expression profile changes. Leukocytes are separated, and RNA is isolated using standard methods. Alternately, a cell pellet or extract is frozen until further processing of RNA is convenient. Care must be taken to avoid rewarming the sample during further processing steps.

Alternatively, the invention provides a method of using low-temperature density gradient separation, combined with the use of actinomycin A and cyclohexamide, as described above.

Assessing expression for diagnostics

Expression profiles for the oligonucleotides or the set of diagnostic oligonucleotide sequences in a subject sample can be evaluated by any technique that determines the expression of each component oligonucleotide sequence. Methods suitable for expression analysis are known in the art, and numerous examples are discussed in the Sections titled "Methods of obtaining expression data" and "high throughput expression Assays", above.

In many cases, evaluation of expression profiles is most efficiently, and cost effectively, performed by analyzing RNA expression. Alternatively, the proteins encoded by each component of the diagnostic nucleotide set are detected for diagnostic purposes by any technique capable of determining protein expression, e.g., as described above. Expression profiles can be assessed in subject leukocyte sample using the same or different techniques as those used to identify and validate the diagnostic oligonucleotide or oligonucleotide set. For example, a diagnostic nucleotide set identified as a subset of sequences on a cDNA microarray can be utilized for diagnostic (or prognostic, or monitoring, etc.) purposes on the same array from which they were identified. Alternatively, the diagnostic nucleotide sets for a given disease or condition can be organized onto a dedicated sub-array for the indicated purpose. It is important to note that if diagnostic nucleotide sets are discovered using one technology, e.g. RNA expression profiling, but applied as a diagnostic using another technology, e.g. protein expression profiling, the nucleotide (or gene, or protein) sets must generally be validated for diagnostic purposes with the new technology. In addition, it is appreciated that diagnostic nucleotide sets that are developed for one use, e.g. to diagnose a particular disease, may later be found to be useful for a different application, e.g. to predict the likelihood that the particular disease will occur. Generally, the diagnostic nucleotide set will need to be validated for use in the second circumstance. As discussed herein, the sequence of diagnostic nucleotide set members may be

amplified from RNA or cDNA using methods known in the art providing specific amplification of the nucleotide sequences.

General Protein Methods

Protein products of the nucleotide sequences of the invention may include proteins that represent functionally equivalent gene products. Such an equivalent gene product may contain deletions, additions or substitutions of amino acid residues within the amino acid sequence encoded by the nucleotide sequences described, above, but which result in a silent change, thus producing a functionally equivalent nucleotide sequence product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.

For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Functionally equivalent", as utilized herein, refers to a protein capable of exhibiting a substantially similar in vivo activity as the endogenous gene products encoded by the nucleotides described herein.

The gene products (protein products of the nucleotide sequences) may be produced by recombinant DNA technology using techniques well known in the art. Methods which are well known to those skilled in the art can be used to construct expression vectors containing novel nucleotide sequence protein coding sequences and appropriate transcriptional/translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques and in vivo recombination/genetic recombination. See, for example, the techniques described in Sambrook et al., 1989, supra, and Ausubel et al., 1989, supra. Alternatively, RNA capable of encoding novel nucleotide sequence protein sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in "Oligonucleotide Synthesis", 1984, Gait, M. J. ed., IRL Press, Oxford, which is incorporated by reference herein in its entirety.

A variety of host-expression vector systems may be utilized to express the nucleotide sequence coding sequences of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, exhibit the protein encoded by the nucleotide sequence of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing nucleotide sequence protein coding sequences; yeast (e.g. Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing the nucleotide sequence protein coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing the nucleotide sequence protein coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing nucleotide sequence protein

coding sequences; or mammalian cell systems (e.g. COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5 K promoter).

In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the nucleotide sequence protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791;), in which the nucleotide sequence protein coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503;-5509); and the likes of pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione Stransferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target nucleotide sequence protein can be released from the GST moiety. Other systems useful in the invention include use of the FLAG epitope or the 6-HIS systems.

In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign nucleotide sequences. The virus grows in Spodoptera frugiperda cells. The nucleotide sequence coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of nucleotide sequence coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted nucleotide sequence is expressed. (E.g., see Smith et al., 1983, J. Virol. 46: 584; Smith, U.S. Pat. No. 4,215,051;).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the nucleotide sequence coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric nucleotide sequence may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing nucleotide sequence encoded protein in infected hosts. (E.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659;). Specific initiation signals may also be required for efficient translation of inserted nucleotide sequence coding sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an entire nucleotide sequence, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of the

nucleotide sequence coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., 1987, Methods in Enzymol. 153:516-544;).

In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the product of the nucleotide sequence in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, etc.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the nucleotide sequence encoded protein may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express nucleotide sequence encoded protein. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the nucleotide sequence encoded protein.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223;), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026;), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817;) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527;); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072;); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1;); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30: 147; 147) genes.

An alternative fusion protein system allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88: 8972-8976). In this system, the nucleotide sequence of interest is subcloned into a vaccinia recombination plasmid such that the nucleotide sequence's open reading frame is translationally fused to an aminoterminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni.sup.2 +-nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

Where recombinant DNA technology is used to produce the protein encoded by the nucleotide sequence for such assay systems, it may be advantageous to engineer fusion proteins that can facilitate labeling, immobilization and/or detection.

Antibodies

Indirect labeling involves the use of a protein, such as a labeled antibody, which specifically binds to the protein encoded by the nucleotide sequence. Such antibodies include but are not limited to polyclonal, monoclonal, chimeric, single chain, Fab fragments and fragments produced by an Fab expression library.

The invention also provides for antibodies to the protein encoded by the nucleotide sequences. Described herein are methods for the production of antibodies capable of specifically recognizing one or more nucleotide sequence epitopes. Such antibodies may include, but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')2 fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above. Such antibodies may be used, for example, in the detection of a nucleotide sequence in a biological sample, or, alternatively, as a method for the inhibition of abnormal gene activity, for example, the inhibition of a disease target nucleotide sequence, as further described below. Thus, such antibodies may be utilized as part of cardiovascular or other disease treatment method, and/or may be used as part of diagnostic techniques whereby patients may be tested for abnormal levels of nucleotide sequence encoded proteins, or for the presence of abnormal forms of the such proteins.

For the production of antibodies to a nucleotide sequence, various host animals may be immunized by injection with a protein encoded by the nucleotide sequence, or a portion thereof. Such host animals may include but are not limited to rabbits, mice, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanin, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum.

Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of animals immunized with an antigen, such as gene product, or an antigenic functional derivative thereof. For the production of polyclonal antibodies, host animals such as those described above, may be immunized by injection with gene product supplemented with adjuvants as also described above.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, may be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to the hybridoma technique of Kohler and Milstein, (1975, Nature 256:495-497; and U.S. Pat. No. 4,376,110), the human B-cell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96). Such antibodies may be of any immunoglobulin class including IgG, IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma producing the mAb of this invention may be cultivated in vitro or in vivo.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region.

Alternatively, techniques described for the production of single chain antibodies (U.S. Pat. No. 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce nucleotide sequence-single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques For example, such fragments include but are not limited to: the F(ab')2 fragments which can be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Disease specific target oligonucleotide sequences

The invention also provides disease specific target oligonucleotide sequences, and sets of disease specific target oligonucleotide sequences. The diagnostic oligonucleotide sets, subsets thereof, novel oligonucleotide sequences, and individual members of the diagnostic oligonucleotide sets identified as described above are also disease specific target oligonucleotide sequences. In particular, individual oligonucleotide sequences that are differentially regulated or have predictive value that is strongly correlated with a disease or disease criterion are especially favorable as disease specific target oligonucleotide sequences. Sets of genes that are co-regulated may also be identified as disease specific target oligonucleotide sets. Such oligonucleotide sequences and/or oligonucleotide sequence products are targets for modulation by a variety of agents and techniques. For example, disease specific target oligonucleotide sequences (or the products of such oligonucleotide sequences, or sets of disease specific target oligonucleotide sequences) can be inhibited or activated by, e.g., target specific monoclonal antibodies or small molecule inhibitors, or delivery of the oligonucleotide sequence or

gene product of the oligonucleotide sequence to patients. Also, sets of genes can be inhibited or activated by a variety of agents and techniques. The specific usefulness of the target oligonucleotide sequence(s) depends on the subject groups from which they were discovered, and the disease or disease criterion with which they correlate.

Identification of nucleotide sequence involved in leukocyte adhesion

The invention also encompasses a method of identifying nucleotide sequences involved in leukocyte adhesion. The interaction between the endothelial cell and leukocyte is a fundamental mechanism of all inflammatory disorders, including the diseases listed in Table 3. For example, the first visible abnormality in atherosclerosis is the adhesion to the endothelium and diapedesis of mononuclear cells (e.g., T-cell and monocyte). Insults to the endothelium (for example, cytokines, tobacco, diabetes, hypertension and many more) lead to endothelial cell activation. The endothelium then expresses adhesion molecules, which have counter receptors on mononuclear cells. Once the leukocyte receptors have bound the endothelial adhesion molecules, they stick to the endothelium, roll a short distance, stop and transmigrate across the endothelium. A similar set of events occurs in both acute and chronic inflammation. When the leukocyte binds the endothelial adhesion molecule, or to soluble cytokines secreted by endothelial or other cells, a program of gene expression is activated in the leukocyte. This program of expression leads to leukocyte rolling, firm adhesion and transmigration into the vessel wall or tissue parenchyma. Inhibition of this process is highly desirable goal in antiinflammatory drug development. In addition, leukocyte nucleotide sequences and epithelial cell nucleotide sequences, that are differentially expressed during this process may be disease-specific target nucleotide sequences.

Human endothelial cells, e.g. derived from human coronary arteries, human aorta, human pulmonary artery, human umbilical vein or microvascular endothelial cells, are cultured as a confluent monolayer, using standard methods. Some of the endothelial cells are then exposed to cytokines or another activating stimuli such as oxidized LDL, hyperglycemia, shear stress, or hypoxia (Moser et al. 1992). Some endothelial cells are not exposed to such stimuli and serve as controls. For example, the endothelial cell monolayer is incubated with culture medium containing 5 U/ml of human recombinant IL-1alpha or 10 ng/ml TNF (tumor necrosis factor), for a period of minutes to overnight. The culture medium composition is changed or the flask is sealed to induce hypoxia. In addition, tissue culture plate is rotated to induce sheer stress.

Human T-cells and/or monocytes are cultured in tissue culture flasks or plates, with LGM-3 media from Clonetics. Cells are incubated at 37 degree C, 5% CO2 and 95% humidity. These leukocytes are exposed to the activated or control endothelial layer by adding a suspension of leukocytes on to the endothelial cell monolayer. The endothelial cell monolayer is cultured on a tissue culture treated plate/ flask or on a microporous membrane. After a variable duration of exposures, the endothelial cells and leukocytes are harvested separately by treating all cells with trypsin and then sorting the endothelial cells from the leukocytes by magnetic affinity reagents to an endothelial cell specific marker such as PECAM-1 (Stem Cell Technologies). RNA is extracted from the isolated cells by standard techniques. Leukocyte RNA is labeled as described above, and hybridized to leukocyte candidate nucleotide library. Epithelial cell RNA is also labeled and hybridized to the leukocyte

candidate nucleotide library. Alternatively, the epithelial cell RNA is hybridized to a epithelial cell candidate nucleotide library, prepared according to the methods described for leukocyte candidate libraries, above.

Hybridization to candidate nucleotide libraries will reveal nucleotide sequences that are upregulated or down-regulated in leukocyte and/or epithelial cells undergoing adhesion. The
differentially regulated nucleotide sequences are further characterized, e.g. by isolating and sequencing
the full-length sequence, analysis of the DNA and predicted protein sequence, and functional
characterization of the protein product of the nucleotide sequence, as described above. Further
characterization may result in the identification of leukocyte adhesion specific target nucleotide
sequences, which may be candidate targets for regulation of the inflammatory process. Small molecule
or antibody inhibitors can be developed to inhibit the target nucleotide sequence function. Such
inhibitors are tested for their ability to inhibit leukocyte adhesion in the in vitro test described above.

Integrated systems

Integrated systems for the collection and analysis of expression profiles, and molecular signatures, as well as for the compilation, storage and access of the databases of the invention, typically include a digital computer with software including an instruction set for sequence searching and analysis, and, optionally, high-throughput liquid control software, image analysis software, data interpretation software, a robotic control armature for transferring solutions from a source to a destination (such as a detection device) operably linked to the digital computer, an input device (e.g., a computer keyboard) for entering subject data to the digital computer, or to control analysis operations or high throughput sample transfer by the robotic control armature. Optionally, the integrated system further comprises an image scanner for digitizing label signals from labeled assay components, e.g., labeled nucleic acid hybridized to a candidate library microarray. The image scanner can interface with image analysis software to provide a measurement of the presence or intensity of the hybridized label, i.e., indicative of an on/off expression pattern or an increase or decrease in expression.

Readily available computational hardware resources using standard operating systems are fully adequate, e.g., a PC (Intel x86 or Pentium chip- compatible DOS,TM OS2,TM WINDOWS,TM WINDOWS95,TM WINDOWS95,TM WINDOWS98,TM LINUX, or even Macintosh, Sun or PCs will suffice) for use in the integrated systems of the invention. Current art in software technology is similarly adequate (i.e., there are a multitude of mature programming languages and source code suppliers) for design, e.g., of an upgradeable open-architecture object-oriented heuristic algorithm, or instruction set for expression analysis, as described herein. For example, software for aligning or otherwise manipulating molecular signatures can be constructed by one of skill using a standard programming language such as Visual basic, Fortran, Basic, Java, or the like, according to the methods herein.

Various methods and algorithms, including genetic algorithms and neural networks, can be used to perform the data collection, correlation, and storage functions, as well as other desirable functions, as described herein. In addition, digital or analog systems such as digital or analog computer systems can control a variety of other functions such as the display and/or control of input and output files.

For example, standard desktop applications such as word processing software (e.g., Corel WordPerfectTM or Microsoft WordTM) and database software (e.g., spreadsheet software such as Corel Quattro ProTM, Microsoft ExcelTM, or database programs such as Microsoft AccessTM or ParadoxTM) can be adapted to the present invention by inputting one or more character string corresponding, e.g., to an expression pattern or profile, subject medical or historical data, molecular signature, or the like, into the software which is loaded into the memory of a digital system, and carrying out the operations indicated in an instruction set. For example, systems can include the foregoing software having the appropriate character string information, e.g., used in conjunction with a user interface in conjunction with a standard operating system such as a Windows, Macintosh or LINUX system. For example, an instruction set for manipulating strings of characters, either by programming the required operations into the applications or with the required operations performed manually by a user (or both). For example, specialized sequence alignment programs such as PILEUP or BLAST can also be incorporated into the systems of the invention, e.g., for alignment of nucleic acids or proteins (or corresponding character strings).

Software for performing the statistical methods required for the invention, e.g., to determine correlations between expression profiles and subsets of members of the diagnostic nucleotide libraries, such as programmed embodiments of the statistical methods described above, are also included in the computer systems of the invention. Alternatively, programming elements for performing such methods as principle component analysis (PCA) or least squares analysis can also be included in the digital system to identify relationships between data. Exemplary software for such methods is provided by Partek, Inc., St. Peter, Mo; at the web site partek.com.

Any controller or computer optionally includes a monitor which can include, e.g., a flat panel display (e.g., active matrix liquid crystal display, liquid crystal display), a cathode ray tube ("CRT") display, or another display system which serves as a user interface, e.g., to output predictive data. Computer circuitry, including numerous integrated circuit chips, such as a microprocessor, memory, interface circuits, and the like, is often placed in a casing or box which optionally also includes a hard disk drive, a floppy disk drive, a high capacity removable drive such as a writeable CD-ROM, and other common peripheral elements.

Inputting devices such as a keyboard, mouse, or touch sensitive screen, optionally provide for input from a user and for user selection, e.g., of sequences or data sets to be compared or otherwise manipulated in the relevant computer system. The computer typically includes appropriate software for receiving user instructions, either in the form of user input into a set parameter or data fields (e.g., to input relevant subject data), or in the form of preprogrammed instructions, e.g., preprogrammed for a variety of different specific operations. The software then converts these instructions to appropriate language for instructing the system to carry out any desired operation.

The integrated system may also be embodied within the circuitry of an application specific integrated circuit (ASIC) or programmable logic device (PLD). In such a case, the invention is embodied in a computer readable descriptor language that can be used to create an ASIC or PLD. The integrated system can also be embodied within the circuitry or logic processors of a variety of other digital apparatus, such as PDAs, laptop computer systems, displays, image editing equipment, etc.

The digital system can comprise a learning component where expression profiles, and relevant subject data are compiled and monitored in conjunction with physical assays, and where correlations, e.g., molecular signatures with predictive value for a disease, are established or refined. Successful and unsuccessful combinations are optionally documented in a database to provide justification/preferences for user-base or digital system based selection of diagnostic nucleotide sets with high predictive accuracy for a specified disease or condition.

The integrated systems can also include an automated workstation. For example, such a workstation can prepare and analyze leukocyte RNA samples by performing a sequence of events including: preparing RNA from a human blood sample; labeling the RNA with an isotopic or non-isotopic label; hybridizing the labeled RNA to at least one array comprising all or part of the candidate library; and detecting the hybridization pattern. The hybridization pattern is digitized and recorded in the appropriate database.

Automated RNA preparation tool

The invention also includes an automated RNA preparation tool for the preparation of mononuclear cells from whole blood samples, and preparation of RNA from the mononuclear cells. In a preferred embodiment, the use of the RNA preparation tool is fully automated, so that the cell separation and RNA isolation would require no human manipulations. Full automation is advantageous because it minimizes delay, and standardizes sample preparation across different laboratories. This standardization increases the reproducibility of the results.

The processes performed by the RNA preparation tool of the invention are as follows. A primary component of the device is a centrifuge. Tubes of whole blood containing a density gradient solution, transcription/translation inhibitors, and a gel barrier that separates erythrocytes from mononuclear cells and serum after centrifugation are placed in the centrifuge. The barrier is permeable to erythrocytes and granulocytes during centrifugation, but does not allow mononuclear cells to pass through (or the barrier substance has a density such that mononuclear cells remain above the level of the barrier during the centrifugation). After centrifugation, the erythrocytes and granulocytes are trapped beneath the barrier, facilitating isolation of the mononuclear cell and serum layers. A mechanical arm removes the tube and inverts it to mix the mononuclear cell layer and the serum. The arm next pours the supernatant into a fresh tube, while the erythrocytes and granulocytes remained below the barrier. Alternatively, a needle is used to aspirate the supernatant and transfer it to a fresh tube. The mechanical arms of the device opens and closes lids, dispenses PBS to aid in the collection of the mononuclear cells by centrifugation, and moves the tubes in and out of the centrifuge. Following centrifugation, the supernatant is poured off or removed by a vacuum device, leaving an isolated mononuclear cell pellet. Purification of the RNA from the cells is performed automatically, with lysis buffer and other purification solutions automatically dispensed and removed before and after centrifugation steps. The result is a purified RNA solution. In another embodiment, RNA isolation is performed using a column or filter method. In yet another embodiment, the invention includes an onboard homogenizer for use in cell lysis.

Other automated systems

Automated and/or semi-automated methods for solid and liquid phase high-throughput sample preparation and evaluation are available, and supported by commercially available devices. For example, robotic devices for preparation of nucleic acids from bacterial colonies, e.g., to facilitate production and characterization of the candidate library include, for example, an automated colony picker (e.g., the Q-bot, Genetix, U.K.) capable of identifying, sampling, and inoculating up to 10,000/4 hrs different clones into 96 well microtiter dishes. Alternatively, or in addition, robotic systems for liquid handling are available from a variety of sources, e.g., automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Beckman Coulter, Inc. (Fullerton, CA)) which mimic the manual operations performed by a scientist. Any of the above devices are suitable for use with the present invention, e.g., for high-throughput analysis of library components or subject leukocyte samples. The nature and implementation of modifications to these devices (if any) so that they can operate as discussed herein will be apparent to persons skilled in the relevant art.

High throughput screening systems that automate entire procedures, e.g., sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the relevant assay are commercially available. (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. Similarly, arrays and array readers are available, e.g., from Affymetrix, PE Biosystems, and others.

The manufacturers of such systems provide detailed protocols the various high throughput. Thus, for example, Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

A variety of commercially available peripheral equipment, including, e.g., optical and fluorescent detectors, optical and fluorescent microscopes, plate readers, CCD arrays, phosphorimagers, scintillation counters, phototubes, photodiodes, and the like, and software is available for digitizing, storing and analyzing a digitized video or digitized optical or other assay results, e.g., using PC (Intel x86 or pentium chip- compatible DOSTM, OS2TM WINDOWSTM, WINDOWS NTTM or WINDOWS95TM based machines), MACINTOSHTM, or UNIX based (e.g., SUNTM work station) computers.

Embodiment in a web site.

The methods described above can be implemented in a localized or distributed computing environment. For example, if a localized computing environment is used, an array comprising a candidate nucleotide library, or diagnostic nucleotide set, is configured in proximity to a detector, which is, in turn, linked to a computational device equipped with user input and output features.

In a distributed environment, the methods can be implemented on a single computer with multiple processors or, alternatively, on multiple computers. The computers can be linked, e.g. through a shared bus, but more commonly, the computer(s) are nodes on a network. The network can be

generalized or dedicated, at a local level or distributed over a wide geographic area. In certain embodiments, the computers are components of an intra-net or an internet.

The predictive data corresponding to subject molecular signatures (e.g., expression profiles, and related diagnostic, prognostic, or monitoring results) can be shared by a variety of parties. In particular, such information can be utilized by the subject, the subject's health care practitioner or provider, a company or other institution, or a scientist. An individual subject's data, a subset of the database or the entire database recorded in a computer readable medium can be accessed directly by a user by any method of communication, including, but not limited to, the internet. With appropriate computational devices, integrated systems, communications networks, users at remote locations, as well as users located in proximity to, e.g., at the same physical facility, the database can access the recorded information. Optionally, access to the database can be controlled using unique alphanumeric passwords that provide access to a subset of the data. Such provisions can be used, e.g., to ensure privacy, anonymity, etc.

Typically, a client (e.g., a patient, practitioner, provider, scientist, or the like) executes a Web browser and is linked to a server computer executing a Web server. The Web browser is, for example, a program such as IBM's Web Explorer, Internet explorer, NetScape or Mosaic, or the like. The Web server is typically, but not necessarily, a program such as IBM's HTTP Daemon or other WWW daemon (e.g., LINUX-based forms of the program). The client computer is bi-directionally coupled with the server computer over a line or via a wireless system. In turn, the server computer is bi-directionally coupled with a website (server hosting the website) providing access to software implementing the methods of this invention.

A user of a client connected to the Intranet or Internet may cause the client to request resources that are part of the web site(s) hosting the application(s) providing an implementation of the methods described herein. Server program(s) then process the request to return the specified resources (assuming they are currently available). A standard naming convention has been adopted, known as a Uniform Resource Locator ("URL"). This convention encompasses several types of location names, presently including subclasses such as Hypertext Transport Protocol ("http"), File Transport Protocol ("ftp"), gopher, and Wide Area Information Service ("WAIS"). When a resource is downloaded, it may include the URLs of additional resources. Thus, the user of the client can easily learn of the existence of new resources that he or she had not specifically requested.

Methods of implementing Intranet and/or Intranet embodiments of computational and/or data access processes are well known to those of skill in the art and are documented, e.g., in ACM Press, pp. 383-392; ISO-ANSI, Working Draft, "Information Technology-Database Language SQL", Jim Melton, Editor, International Organization for Standardization and American National Standards Institute, Jul. 1992; ISO Working Draft, "Database Language SQL-Part 2:Foundation (SQL/Foundation)", CD9075-2:199.chi.SQL, Sep. 11, 1997; and Cluer et al. (1992) A General Framework for the Optimization of Object-Oriented Queries, Proc SIGMOD International Conference on Management of Data, San Diego, California, Jun. 2-5, 1992, SIGMOD Record, vol. 21, Issue 2, Jun., 1992; Stonebraker, M., Editor;. Other resources are available, e.g., from Microsoft, IBM, Sun and other software development companies.

Using the tools described above, users of the reagents, methods and database as discovery or diagnostic tools can query a centrally located database with expression and subject data. Each submission of data adds to the sum of expression and subject information in the database. As data is added, a new correlation statistical analysis is automatically run that incorporates the added clinical and expression data. Accordingly, the predictive accuracy and the types of correlations of the recorded molecular signatures increases as the database grows.

For example, subjects, such as patients, can access the results of the expression analysis of their leukocyte samples and any accrued knowledge regarding the likelihood of the patient's belonging to any specified diagnostic (or prognostic, or monitoring, or risk group), i.e., their expression profiles, and/or molecular signatures. Optionally, subjects can add to the predictive accuracy of the database by providing additional information to the database regarding diagnoses, test results, clinical or other related events that have occurred since the time of the expression profiling. Such information can be provided to the database via any form of communication, including, but not limited to, the internet. Such data can be used to continually define (and redefine) diagnostic groups. For example, if 1000 patients submit data regarding the occurrence of myocardial infarction over the 5 years since their expression profiling, and 300 of these patients report that they have experienced a myocardial infarction and 700 report that they have not, then the 300 patients define a new "group A." As the algorithm is used to continually query and revise the database, a new diagnostic nucleotide set that differentiates groups A and B (i.e., with and without myocardial infarction within a five year period) is identified. This newly defined nucleotide set is then be used (in the manner described above) as a test that predicts the occurrence of myocardial infarction over a five-year period. While submission directly by the patient is exemplified above, any individual with access and authority to submit the relevant data e.g., the patient's physician, a laboratory technician, a health care or study administrator, or the like, can do so.

As will be apparent from the above examples, transmission of information via the internet (or via an intranet) is optionally bi-directional. That is, for example, data regarding expression profiles, subject data, and the like are transmitted via a communication system to the database, while information regarding molecular signatures, predictive analysis, and the like, are transmitted from the database to the user. For example, using appropriate configurations of an integrated system including a microarray comprising a diagnostic nucleotide set, a detector linked to a computational device can directly transmit (locally or from a remote workstation at great distance, e.g., hundreds or thousands of miles distant from the database) expression profiles and a corresponding individual identifier to a central database for analysis according to the methods of the invention. According to, e.g., the algorithms described above, the individual identifier is assigned to one or more diagnostic (or prognostic, or monitoring, etc.) categories. The results of this classification are then relayed back, via, e.g., the same mode of communication, to a recipient at the same or different internet (or intranet) address.

Kits

1

The present invention is optionally provided to a user as a kit. Typically, a kit contains one or more diagnostic nucleotide sets of the invention. Alternatively, the kit contains the candidate

nucleotide library of the invention. Most often, the kit contains a diagnostic nucleotide probe set, or other subset of a candidate library, (e.g., as a cDNA, oligonucleotide or antibody microarray or reagents for performing an assay on a diagnostic gene set using any expression profiling technology), packaged in a suitable container. The kit may further comprise, one or more additional reagents, e.g., substrates, labels, primers, for labeling expression products, tubes and/or other accessories, reagents for collecting blood samples, buffers, e.g., erythrocyte lysis buffer, leukocyte lysis buffer, hybridization chambers, cover slips, etc., as well as a software package, e.g., including the statistical methods of the invention, e.g., as described above, and a password and/or account number for accessing the compiled database. The kit optionally further comprises an instruction set or user manual detailing preferred the kit may include contents useful for the discovery of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and RNAse free blood collection tubes. The kit may also include alcohol swabs, tourniquet, blood collection set, and/or PBS (phosphate buffer saline; needed when method of example 8 is used to derived mononuclear RNA). The kit may also include cell lysis buffer. The kit may include RNA isolation kit, substrates for labeling of RNA (may vary for various expression profiling techniques). The kit may also include materials for fluorescence microarray expression profiling, including one or more of the following: reverse transcriptase and 10x RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides, optionally 100mM each, RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase ribonucleotides, in vitro transcription buffer, and/or Cy3 and Cy5 labeled ribonucleotides. The kit may also include microarrays containing candidate gene libraries, cover slips for slides, and/or hybridization chambers. The kit may further include software package for identification of diagnostic gene set from data, that contains statistical methods, and/or allows alteration in desired sensitivity and specificity of gene set. The software may further facilitate access to and data analysis by centrally a located database server. The software may further include a password and account number to access central database server. In addition, the kit may include a kit user manual.

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using microarrays. The kit may include sterile, endotoxin and/or RNAse free blood collection tubes. The kit may also include, alcohol swabs, tourniquet, and/or a blood collection set. The kit may further include PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA), cell lysis buffer, and/or an RNA isolation kit. In addition, the kit may include substrates for labeling of RNA (may vary for various expression profiling techniques). For fluorescence microarray expression profiling, components may include reverse transcriptase and 10x RT buffer, T7(dT)24 primer (primer with T7 promoter at 5' end), DTT, deoxynucleotides (optionally 100mM each), RNAse inhibitor, second strand cDNA buffer, DNA polymerase, Rnase H, T7 RNA polymerase, ribonucleotides, in vitro transcription buffer, and/or Cy3 and Cy5 labeled ribonucleotides. The kit may further include microarrays containing candidate gene libraries. The kit may also include cover slips for slides, and/or hybridization chambers. The kit may include a software package for identification of diagnostic gene set from data. The software package may contain statistical methods, allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data

analysis by centrally located database server. The software package may include a password and account number to access central database server. In addition, the kit may include a kit user manual.

In another embodiment, the kit may include contents useful for the application of diagnostic nucleotide sets using real-time PCR. This kit may include terile, endotoxin and/or RNAse free blood collection tubes. The kit may further include alcohol swabs, tourniquet, and/or a blood collection set. The kit may also include PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA). In addition, the kit may include cell lysis buffer and/or an RNA isolation kit. The kit may laso include substrates for real time RT-PCR, which may vary for various real-time PCR techniques, including poly dT primers, random hexamer primers, reverse Transcriptase and RT buffer, DTT, deoxynucleotides 100 mM, RNase H, primer pairs for diagnostic and control gene set, 10x PCR reaction buffer, and/or Taq DNA polymerase. The kit may also include fluorescent probes for diagnostic and control gene set (alternatively, fluorescent dye that binds to only double stranded DNA). The kit may further include reaction tubes with or without barcode for sample tracking, 96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate. The kit may also include a software package for identification of diagnostic gene set from data, and /or statistical methods. The software package may allow alteration in desired sensitivity and specificity of gene set, and/or facilitate access to and data analysis by centrally located database server. The kit may include a password and account number to access central database server. Finally, the kit may include a kit user manual.

This invention will be better understood by reference to the following non-limiting Examples:

Examples:

- Example 1: Preparation of RNA from mononuclear cells for expression profiling
- Example 2: Preparation of Universal Control RNA for use in leukocyte expression profiling
- Example 3: Identification of diagnostic oligonucleotide sets for use in diagnosis of rheumatoid arthritis.
- Example 4: Identification of diagnostic oligonucleotide sets for diagnosis of Systemic Lupus
- Erythematosis
- Example 5: Design of oligonucleotide probes.
- Example 6: Production of an array of 8,000 spotted 50 mer oligonucleotides.
- Example 7: Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray
- Example 8: Real-time PCR validation of array expression results
- Example 9: Correlation and Classification Analysis
- Example 10: Assay sample preparation
- Example 11: Identification and validation of gene expression markers for diagnosis and monitoring of lupus and autoimmune diseases.

Examples

Example 1: Preparation of RNA from mononuclear cells for expression profiling

Blood was isolated from the subject for leukocyte expression profiling using the following methods:

Two tubes were drawn per patient. Blood was drawn from either a standard peripheral venous blood draw or directly from a large-bore intra-arterial or intravenous catheter inserted in the femoral artery, femoral vein, subclavian vein or internal jugular vein. Care was taken to avoid sample contamination with heparin from the intravascular catheters, as heparin can interfere with subsequent RNA reactions.

For each tube, 8 ml of whole blood was drawn into a tube (CPT, Becton-Dickinson order #362753) containing the anticoagulant Citrate, 25°C density gradient solution (e.g. Ficoll, Percoll) and a polyester gel barrier that upon centrifugation was permeable to RBCs and granulocytes but not to mononuclear cells. The tube was inverted several times to mix the blood with the anticoagulant. The tubes were centrifuged at 1750xg in a swing-out rotor at room temperature for 20 minutes. The tubes were removed from the centrifuge and inverted 5-10 times to mix the plasma with the mononuclear cells, while trapping the RBCs and the granulocytes beneath the gel barrier. The plasma/mononuclear cell mix was decanted into a 15ml tube and 5ml of phosphate-buffered saline (PBS) is added. The 15ml tubes were spun for 5 minutes at 1750xg to pellet the cells. The supernatant was discarded and 1.8 ml of RLT lysis buffer is added to the mononuclear cell pellet. The buffer and cells were pipetted up and down to ensure complete lysis of the pellet. The cell lysate was frozen and stored until it is convenient to proceed with isolation of total RNA.

Total RNA was purified from the lysed mononuclear cells using the Qiagen Rneasy Miniprep kit, as directed by the manufacturer (10/99 version) for total RNA isolation, including homogenization (Qiashredder columns) and on-column DNase treatment. The purified RNA was eluted in 50ul of water.

Some samples were prepared by a different protocol, as follows:

Two 8 ml blood samples were drawn from a peripheral vein into a tube (CPT, Becton-Dickinson order #362753) containing anticoagulant (Citrate), 25°C density gradient solution (Ficoll) and a polyester gel barrier that upon centrifugation is permeable to RBCs and granulocytes but not to mononuclear cells. The mononuclear cells and plasma remained above the barrier while the RBCs and granulocytes were trapped below. The tube was inverted several times to mix the blood with the anticoagulant, and the tubes were subjected to centrifugation at 1750xg in a swing-out rotor at room temperature for 20 min. The tubes were removed from the centrifuge, and the clear plasma layer above the cloudy mononuclear cell layer was aspirated and discarded. The cloudy mononuclear cell layer was aspirated, with care taken to rinse all of the mononuclear cells from the surface of the gel barrier with PBS (phosphate buffered saline). Approximately 2 mls of mononuclear cell suspension was transferred to a 2ml microcentrifuge tube, and centrifuged for 3min. at 16,000 rpm in a microcentrifuge to pellet the cells. The supernatant was discarded and 1.8 ml of RLT lysis buffer (Qiagen) were added to the mononuclear cell pellet, which lysed the cells and inactivated Rnases. The cells and lysis buffer were

pipetted up and down to ensure complete lysis of the pellet. Cell lysate was frozen and stored until it was convenient to proceed with isolation of total RNA.

RNA samples were isolated from 8 mL of whole blood. Yields ranged from 2 μ g to 20 μ g total RNA for 8mL blood. A260/A280 spectrophotometric ratios were between 1.6 and 2.0, indicating purity of sample. 2ul of each sample were run on an agarose gel in the presence of ethidium bromide. No degradation of the RNA sample and no DNA contamination were visible.

In some cases, specific subsets of mononuclear cells were isolated from peripheral blood of human subjects. When this was done, the StemSep cell separation kits (manual version 6.0.0) were used from StemCell Technologies (Vancouver, Canada). This same protocol can be applied to the isolation of T cells, CD4 T cells, CD8 T cells, B cells, monocytes, NK cells and other cells. Isolation of cell types using negative selection with antibodies may be desirable to avoid activation of target cells by antibodies.

Example 2: Preparation of Universal Control RNA for use in leukocyte expression profiling

Control RNA was prepared using total RNA from Buffy coats and/or total RNA from enriched mononuclear cells isolated from Buffy coats, both with and without stimulation with ionomycin and PMA. The following control RNAs were prepared:

Control 1: Buffy Coat Total RNA

Control 2: Mononuclear cell Total RNA

Control 3: Stimulated buffy coat Total RNA

Control 4: Stimulated mononuclear Total RNA

Control 5: 50% Buffy coat Total RNA / 50% Stimulated buffy coat Total RNA

Control 6: 50% Mononuclear cell Total RNA / 50% Stimulated Mononuclear Total RNA.

Some samples were prepared using the following protocol: Buffy coats from 38 individuals were obtained from Stanford Blood Center. Each buffy coat is derived from ~350 mL whole blood from one individual. 10 ml buffy coat was removed from the bag, and placed into a 50 ml tube. 40 ml of Buffer EL (Qiagen) was added, the tube was mixed and placed on ice for 15 minutes, then cells were pelleted by centrifugation at 2000xg for 10 minutes at 4°C. The supernatant was decanted and the cell pellet was re-suspended in 10 ml of Qiagen Buffer EL. The tube was then centrifuged at 2000xg for 10 minutes at 4°C. The cell pellet was then re-suspended in 20 ml TRIZOL (GibcoBRL) per Buffy coat sample, the mixture was shredded using a rotary homogenizer, and the lysate was then frozen at — 80°C prior to proceeding to RNA isolation.

Other control RNAs were prepared from enriched mononuclear cells prepared from Buffy coats. Buffy coats from Stanford Blood Center were obtained, as described above. 10 ml buffy coat was added to a 50 ml polypropylene tube, and 10 ml of phosphate buffer saline (PBS) was added to each tube. A polysucrose (5.7 g/dL) and sodium diatrizoate (9.0 g/dL) solution at a 1.077 +/-0.0001 g/ml density solution of equal volume to diluted sample was prepared (Histopaque 1077, Sigma cat. no 1077-1). This and all subsequent steps were performed at room temperature. 15 ml of diluted buffy coat/PBS was layered on top of 15 ml of the histopaque solution in a 50 ml tube. The tube was centrifuged at 400xg for 30 minutes at room temperature. After centrifugation, the upper layer of the solution to within 0.5 cm of the opaque interface containing the mononuclear cells was discarded. The

opaque interface was transferred into a clean centrifuge tube. An equal volume of PBS was added to each tube and centrifuged at 350xg for 10 minutes at room temperature. The supernatant was discarded. 5 ml of Buffer EL (Qiagen) was used to resuspend the remaining cell pellet and the tube was centrifuged at 2000xg for 10 minutes at room temperature. The supernatant was discarded. The pellet was resuspended in 20 ml of TRIZOL (GibcoBRL) for each individual buffy coat that was processed. The sample was homogenized using a rotary homogenizer and frozen at -80C until RNA was isolated.

RNA was isolated from frozen lysed Buffy coat samples as follows: frozen samples were thawed, and 4 ml of chloroform was added to each buffy coat sample. The sample was mixed by vortexing and centrifuged at 2000xg for 5 minutes. The aqueous layer was moved to new tube and then repurified by using the RNeasy Maxi RNA clean up kit, according to the manufacturer's instruction (Qiagen, PN 75162). The yield, purity and integrity were assessed by spectrophotometer and gel electrophoresis.

Some samples were prepared by a different protocol, as follows. The further use of RNA prepared using this protocol is described in Example 7.

50 whole blood samples were randomly selected from consented blood donors at the Stanford Medical School Blood Center. Each buffy coat sample was produced from ~350 mL of an individual's donated blood. The whole blood sample was centrifuged at ~4,400 x g for 8 minutes at room temperature, resulting in three distinct layers: a top layer of plasma, a second layer of buffy coat, and a third layer of red blood cells. 25 ml of the buffy coat fraction was obtained and diluted with an equal volume of PBS (phosphate buffered saline). 30 ml of diluted buffy coat was layered onto 15 ml of sodium diatrizoate solution adjusted to a density of 1.077+/-0.001 g/ml (Histopaque 1077, Sigma) in a 50mL plastic tube. The tube was spun at 800 g for 10 minutes at room temperature. The plasma layer was removed to the 30 ml mark on the tube, and the mononuclear cell layer removed into a new tube and washed with an equal volume of PBS, and collected by centrifugation at 2000 g for 10 minutes at room temperature. The cell pellet was resuspended in 10 ml of Buffer EL (Qiagen) by vortexing and incubated on ice for 10 minutes to remove any remaining erthythrocytes. The mononuclear cells were spun at 2000 g for 10 minutes at 4 degrees Celsius. The cell pellet was lysed in 25 ml of a phenol/guanidinium thiocyanate solution (TRIZOL Reagent, Invitrogen). The sample was homogenized using a PowerGene 5 rotary homogenizer (Fisher Scientific) and Omini disposable generator probes (Fisher Scientific). The Trizol lysate was frozen at -80 degrees C until the next step.

The samples were thawed out and incubated at room temperature for 5 minutes. 5 ml chloroform was added to each sample, mixed by vortexing, and incubated at room temperature for 3 minutes. The aqueous layers were transferred to new 50 ml tubes. The aqueous layer containing total RNA was further purified using the Qiagen RNeasy Maxi kit (PN 75162), per the manufacturer's protocol (October 1999). The columns were eluted twice with 1 ml Rnase-free water, with a minute incubation before each spin. Quantity and quality of RNA was assessed using standard methods. Generally, RNA was isolated from batches of 10 buffy coats at a time, with an average yield per buffy coat of 870 µg, and an estimated total yield of 43.5 mg total RNA with a 260/280 ratio of 1.56 and a 28S/18S ratio of 1.78.

Quality of the RNA was tested using the Agilent 2100 Bioanalyzer using RNA 6000 microfluidics chips. Analysis of the electrophorgrams from the Bioanalyzer for five different batches demonstrated the reproducibility in quality between the batches.

Total RNA from all five batches were combined and mixed in a 50 ml tube, then aliquoted as follows: 2×10 ml aliquots in 15 ml tubes, and the rest in 100 μ l aliquots in 1.5 ml microcentrifuge tubes. The aliquots gave highly reproducible results with respect to RNA purity, size and integrity. The RNA was stored at -80° C.

Test hybridization of Reference RNA.

When compared with BC38 and Stimulated mononuclear reference samples, the R50 performed as well, if not better than the other reference samples as shown in Figure 4.

In an analysis of hybridizations, where the R50 targets were fluorescently labeled with Cy-5 using methods described herein and the amplified and labeled aRNA was hybridized (as in example 7) to the olignoucleotide array described in example 6. The R50 detected 97.3% of probes with a Signal to Noise ratio (S/N) of greater than three and 99.9 % of probes with S/N greater one.

Example 3: Identification of diagnostic oligonucleotides and oligonucleotide sets for use in monitoring treatment and/or progression of Rheumatoid arthritis

Rheumatoid arthritis (hereinafter, "RA") is a chronic and debilitating inflammatory arthritis. The diagnosis of RA is made by clinical criteria and radiographs. A new class of medication, TNF blockers, are effective, but the drugs are expensive, have side effects and not all patients respond to treatment. In addition, relief of disease symptoms does not always correlate with inhibition of joint destruction. For these reasons, an alternative mechanism for the titration of therapy is needed.

An observational study was conducted in which a cohort of patients meeting American College of Rheumatology (hereinafter "ARC") criteria for the diagnosis of RA was identified. Arnett et al. (1988) Arthritis Rheum 31:315-24. Patients gave informed consent and a peripheral blood mononuclear cell RNA sample was obtained by the methods as described herein. When available, RNA samples were also obtained from surgical specimens of bone or synovium from effected joints, and synovial fluid. Also, T-cells were isolated from the peripheral blood for some patients for expression analysis. This was done using the protocol given in Example 1.

From each patient, the following clinical information was obtained if available: Demographic information; information relating to the ACR criteria for RA; presence or absence of additional diagnoses of inflammatory and non-inflammatory conditions; data from laboratory test, including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine and any medication levels; data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies; information on pharmacological therapy and treatment changes; clinical diagnoses of disease "flare"; hospitalizations; quantitative joint exams; results from health assessment questionnaires (HAQs); other clinical measures of patient symptoms and disability; physical examination results and radiographic data assessing joint involvement, synovial thickening, bone loss and erosion and joint space narrowing and deformity. In some cases, data includes pathological evaluation of synovial memebranes and joint tissues from RA and control patients. Pathology scoring

systems were used to determine disease category, inflammation, type of inflammatory infiltrate, cellular and makeup of the synovial inflammation.

For some specimens of synovium, mononuclear cells or subsets of mononuclear cells (such as T cells) can be isolated for expression profiling. The relative number of lyphocyte subsets for some specimens can be determined by fluorescence activated cell sorting. Examples are determination of the CD4/CD8 T-cell ratio for a specimen. This information can be used as a variable to correlate to other outcomes or as an outcome for correlation analysis.

From these data, measures of improvement in RA are derived as exemplified by the ACR 20% and 50% response/improvement rates (Felson et al. 1996). Measures of disease activity over some period of time is derived from these data as are measures of disease progression. Serial radiography of effected joints is used for objective determination of progression (e.g., joint space narrowing, periarticular osteoporosis, synovial thickening). Disease activity is determined from the clinical scores, medical history, physical exam, lab studies, surgical and pathological findings.

The collected clinical data (disease criteria) is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Examples of useful and interesting patient distinctions that can be made on the basis of collected clinical data are listed here:

Samples from patients during a clinically diagnosed RA flare versus samples from these same or different patients while they are asymptomatic.

Samples from patients who subsequently have high measures of disease activity versus samples from those same or different patients who have low subsequent disease activity.

Samples from patients who subsequently have high measures of disease progression versus samples from those same or different patients who have low subsequent disease progression.

Samples from patients who subsequently respond to a given medication or treatment regimen versus samples from those same or different patients who subsequently do not respond to a given medication or treatment regimen (for example, TNF pathway blocking medications).

Samples from patients with a diagnosis of osteoarthritis versus patients with rheumatoid arthritis.

Samples from patients with tissue biopsy results showing a high degree of inflammation versus samples from patients with lesser degrees of histological evidence of inflammation on biopsy.

Expression profiles correlating with progression of RA are identified. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures, that have predictive value for the progression of RA.

Diagnostic nucleotide set(s) are identified which predict respond to TNF blockade. Patients are profiled before and during treatment with these medications. Patients are followed for relief of symptoms, side effects and progression of joint destruction, e.g., as measured by hand radiographs. Expression profiles correlating with response to TNF blockade are identified. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures that have predictive value for response to TNF blockade.

Example 4: Identification of diagnostic oligonucleotide and oligonucleotide sets for diagnosis of Systemic Lupus Erythematosis

SLE is a chronic, systemic inflammatory disease characterized by dysregulation of the immune system. Clinical manifestations affect every organ system and include skin rash, renal dysfunction, CNS disorders, arthralgias and hematologic abnormalities. SLE clinical manifestations tend to both recur intermittently (or "flare") and progress over time, leading to permanent end-organ damage.

An observational study was conducted in which a cohort of patients meeting American College of Rheumatology (hereinafter "ACR") criteria for the diagnosis of SLE were identified. See Tan et al. (1982) <u>Arthritis Rheum</u> 25:1271-7. Patients gave informed consent and a peripheral blood mononuclear cell RNA sample or a peripheral T cell sample was obtained by the methods as described in example 1.

From each patient, the following clinical information was obtained if available: Demographic information, ACR criteria for SLE, additional diagnoses of inflammatory and non-inflammatory conditions, data from laboratory testing including complete blood counts with differentials, CRP, ESR, ANA, Serum IL6, Soluble CD40 ligand, LDL, HDL, Anti-DNA antibodies, rheumatoid factor, C3, C4, serum creatinine (and other measures of renal dysfunction), medication levels, data from surgical procedures such as gross operative findings and pathological evaluation of resected tissues and biopsies (e.g., renal, CNS), information on pharmacological therapy and treatment changes, clinical diagnoses of disease "flare", hospitalizations, quantitative joint exams, results from health assessment questionnaires (HAQs), SLEDAIs (a clinical score for SLE activity that assess many clinical variables; Bombadier C, Gladman DD, Urowitz MB, Caron D, Chang CH and the Committee on Prognosis Studies in SLE: Derivation of the SLEDAI for Lupus Patients. Arthritis Rheum 35:630-640, 1992), other clinical measures of patient symptoms and disability, physical examination results and carotid ultrasonography.

The collected clinical data (disease criteria) is used to define patient or sample groups for correlation of expression data. Patient groups are identified for comparison, for example, a patient group that possesses a useful or interesting clinical distinction, verses a patient group that does not possess the distinction. Measures of disease activity in SLE are derived from the clinical data described above to divide patients (and patient samples) into groups with higher and lower disease activity over some period of time or at any one point in time. Such data are SLEDAI scores and other clinical scores, levels of inflammatory markers or complement, number of hospitalizations, medication use and changes, biopsy results and data measuring progression of end-organ damage or end-organ damage, including progressive renal failure, carotid atherosclerosis, and CNS dysfunction.

Expression profiles correlating with progression of SLE are identified, including expression profiles corresponding to end-organ damage and progression of end-organ damage. Expression profiles are identified predicting disease progression or disease "flare", response to treatment or likelihood of response to treatment, predict likelihood of "low" or "high" disease measures (optionally described using the SLEDAI score), and presence or likelihood of developing premature carotid

atherosclerosis. Subsets of the candidate library (or a previously identified diagnostic nucleotide set) are identified, according to the above procedures that have predictive value for the progression of SLE.

Further examples of useful and interesting patient distinctions that can be made on the basis of collected clinical data are listed here. Samples can be grouped and groups are compared to discover diagnostic gene sets:

- 1. Samples from patients during a clinically diagnosed SLE flare versus samples from these same or different patients while they are asymptomatic or while they have a documented infection.
- 2. Samples from patients who subsequently have high measures of disease activity versus samples from those same or different patients who have low subsequent disease activity.
- 3. Samples from patients who subsequently have high measures of disease progression versus samples from those same or different patients who have low subsequent disease progression.
- 4. Samples from patients who subsequently respond to a given medication or treatment regimen versus samples from those same or different patients who subsequently do not respond to a given medication or treatment regimen.
- 5. Samples from patients with premature carotid atherosclerosis on ultrasonography versus patients with SLE without premature atherosclerosis.

Identification of a diagnostic oligonucleotide or oligonucleotide set for diagnosis of lupus

Mononuclear RNA samples were collected from patients with SLE and patients with Rheumatoid or Osteoarthritis (RA and OA) or controls using the protocol described in example 1. The patient diagnoses were determined using standard diagnostic algorithms such as those that are employed by the American College of Rheumatology (see example See Tan et al. (1982) <u>Arthritis</u> Rheum 25:1271-7; Arnett et al. (1988) <u>Arthritis Rheum</u> 31:315-24).

32 samples were included in the analysis. 15 samples were derived from patients with a clinical diagnosis of SLE and the remainder were derived from patients with RA (9), OA (4) and subjects without known disease (4) who served as controls. Samples from patients with SLE or RA were classified as "Active" or "Controlled" (with respect to disease activity) by the patient's physician based on objective and subjective criteria, such as patient history, physical exam and lab studies. An attempt was made to match SLE patients and controls with respect to important variables such as medication use, sex, age and secondary diagnoses.

After preparation of RNA (example 1), amplification, labeling, hybridization, scanning, feature extraction and data processing were done as described in Example 7 using the oligonucleotide microarrays described in Example 6. The resulting log ratio of expression of Cy3 (patient sample)/ Cy5 (R50 reference RNA) was used for analysis.

Initially, significance analysis for microarrays (SAM, Tusher 2001, Example 9) was used to discover that were differentially expressed between 7 of the Lupus samples and 17 control samples. 1 gene was identified that was expressed at a higher level in the lupus patients than in all controls. This gene had a 0.5% false detection rate using SAM. This means that there is statistically, a 99.5% chance that the gene is truly differentially expressed between the Lupus and control samples. This gene was oligonucleotide and SEQ ID # 518. The oligonucleotide:

GCCTCTTGCTTGGCGTGATAACCCTGTCATCTTCCCAAAGCTCATTTATG detects a specific human gene: sialyltransferase (SIAT4A), Unigene: Hs.301698

Locus: NM_003033, GI: 4506950. Expression ratios for the gene are given for each sample in Figure 5A-B. The average fold change in expression between SLE and controls was 1.48.

When a larger data set was used, 15 SLE samples were compared to 17 controls. Using SAM, genes were identified as significantly differentially expressed between Lupus and controls. Supervised harvesting classification (X-Mine, Brisbane, CA) and CART (Salford Systems, San Diego CA) were also used on the same data to determine which set of genes best distinguish SLE from control samples (Example 9).

CART was used to build a decision tree for classification of samples as lupus or not lupus using the gene expression data from the arrays. The analysis identitifies sets of genes that can be used together to accurately identify samples derived from lupus patients. The set of genes and the identified threshold expression levels for the decision tree are referred to as "models". Multiple models for diagnosis of Lupus were derived by using different settings and parameters for the CART algorithm and using different sets of genes in the analysis. When using CART, it may be desirable to limit the number of independent variables. In the case of the genes on the arrays, a subset of ~8000 can be selected for analysis in CART based on significant differential expression discovered by using SAM or some other algorithm.

Model I was based on a data set consisting of thirty-two samples (fifteen SLE and seventeen non-SLE). These samples were used to derive the model and are referred to a the "training set'. Model I used the expression values for twenty-nine genes, which were found to be most significant in differentiating SLE and non-SLE samples in the analysis using SAM described above. SLE samples were designated as Class 1 and non-SLE samples were designated as Class 2. For this analysis, the following settings were used in the MODEL SETUP (CART, Salford Systems, San Diego, CA.). In the Model settings, the tree type selected for the analysis was classification. In the Categorical settings, the default values were used. In the Testing settings, V-fold cross-validation was selected with a value of 10. In the Select Cases settings, the default values were used. In the Best Tree settings, the default values were used. In the Combine settings, the default values were used. In the Method settings, Symmetric Gini was selected as the type of classification tree and Linear combinations for splitting was also selected. The default values were used for the linear combinations. In the Advance Settings, the default values were used. In the Priors settings, Equal was selected as the priors for Class. In the penalty settings, the default values were used.

From this analysis, CART built two models, a two-gene model and a three-gene model (Figures 5C-E). The sensitivity and specificity for the identification of lupus in the training set samples of the two genes model were 100% and 94%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the two-gene model were 100% and 88%, respectively, with a relative cost of 0.118. The sensitivity and specificity for the training set of the three genes model were 100% and 100%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the three genes model were 93% and 94%, respectively, with a relative cost of 0.125.

Model II was based on a data set consisted of thirty-two samples, fifteen SLE and seventeen non-SLE (training set) and six thousand forty-four genes with expression values for at least 80% of the samples. The MODEL SETUP for the analysis of this data set was the same as for the analysis above, except for the following correction. In the Method settings, Linear combination for splitting was unchecked after the analysis yielded no classification tree. The change in the linear combination setting resulted in the following.

The sensitivity and specificity for the training set of the one gene model were 87% and 82%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the one gene model were 80% and 59%, respectively, with a relative cost of 0.612. The sensitivity and specificity for the training set of the three genes model were 100% and 88%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the three genes model were 67% and 65%, respectively, with a relative cost of 0.686. The sensitivity and specificity for the training set of the five genes model were 100% and 94%, respectively. The sensitivity and specificity for the 10-fold cross validation set of the five genes model were 67% and 59%, respectively, with a relative cost of 0.745. Results and models are summarized in Figure 5 C and F.

Those genes that were found to be useful for classification are noted in Table 2.

These genes can be used alone or in association with other genes or variables to build a diagnostic gene set or a classification algorithm. These genes can be used in association with known gene markers for lupus (such as those identified in the prior art) to provide a diagnostic algorithm.

Primers for real-time PCR validation were designed for some of the genes as described in Example 8 and are listed in Table 2B.

Surrogates for some of the most useful genes were identified. Surrogates can be used in addition to or in place of a diagnostic gene in a method of detecting lupus or in diagnostic gene set. For genes that were splitters in CART, surrogates were identified and reported by the software. In these cases, the best available surrogates are listed. For other genes, hierarchical clustering of the data was performed with default settings (x-miner, X-mine, Brisbane, CA) and members of gene expression clusters were noted. A cluster was selected that included the gene of interest and the members of that cluster were recorded in Table 2D.

Example 5- Design of oligonucleotide probes

By way of example, this section describes the design of four oligonucleotide probes using Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). The major steps in the process are given first.

1) Obtain best possible sequence of mRNA from GenBank. If a full-length sequence reference sequence is not available, a partial sequence is used, with preference for the 3' end over the 5' end. When the sequence is known to represent the antisense strand, the reverse complement of the sequence is used for probe design. For sequences represented in the subtracted leukocyte expression library that have no significant match in GenBank at the time of probe design, our sequence is used.

2) Mask low complexity regions and repetitive elements in the sequence using an algorithm such as RepeatMasker.

- 3) Use probe design software, such as Array Designer, version 1.1, to select a sequence of 50 residues with specified physical and chemical properties. The 50 residues nearest the 3' end constitute a search frame. The residues it contains are tested for suitability. If they don't meet the specified criteria, the search frame is moved one residue closer to the 5' end, and the 50 residues it now contains are tested. The process is repeated until a suitable 50-mer is found.
- 4) If no such 50-mer occurs in the sequence, the physical and chemical criteria are adjusted until a suitable 50-mer is found.
- 5) Compare the probe to dbEST, the UniGene cluster set, and the assembled human genome using the BLASTn search tool at NCBI to obtain the pertinent identifying information and to verify that the probe does not have significant similarity to more than one known gene.

Clone 40H12

Clone 40H12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number NM_002310, a 'curated RefSeq project' sequence, see Pruitt et al. (2000) Trends Genet. 16:44-47, encoding leukemia inhibitory factor receptor (LIFR) mRNA with a reported E value of zero. An E value of zero indicates there is, for all practical purposes, no chance that the similarity was random based on the length of the sequence and the composition and size of the database. This sequence, cataloged by accession number NM_002310, is much longer than the sequence of clone 40H12 and has a poly-A tail. This indicated that the sequence cataloged by accession number NM_002310 is the sense strand and a more complete representation of the mRNA than the sequence of clone 40H12, especially at the 3' end. Accession number "NM_002310" was included in a text file of accession numbers representing sense strand mRNAs, and sequences for the sense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 40H12 is outlined:

CTCTCTCCCAGAACGTGTCTCTGCTGCAAGGCACCGGGCCCTTTCGCTCTGCAGAACTGCACTTGCAAGA $\tt CTGCATTGCACAGATGATGTATTTACGTATGTTTGAAACGACCATCCTGGATGGTGGACAATAAAAGA$ ATGAGGACTGCTTCAAATTTCCAGTGGCTGTTATCAACATTTATTCTTCTATATCTAATGAATCAAGTAA ${\tt TGTTATCAGTTGGAGAAAACCAGTATTAAAATTCCAGCTCTTTCACATGGTGATTATGAAATAACAATAA}$ ATTCTCTACATGATTTTTGGAAGTTCTACAAGTAAATTCACACTAAATGAACAAAACGTTTCCTTAATTCC AGATACTCCAGAGATCTTGAATTTGTCTGCTGATTTCTCAACCTCTACATTATACCTAAAGTGGAACGAC ${\tt AGGGGTTCAGTTTTTCCACACCGCTCAAATGTTATCTGGGAAATTAAAGTTCTACGTAAAGAGAGTATGG}$ AGCTCGTAAAATTAGTGACCCACAACACACTCTGAATGGCAAAGATACACTTCATCACTGGAGTTGGGC $\tt CTCAGATATGCCCTTGGAATGTGCCATTCATTTTGTGGAAATTAGATGCTACATTGACAATCTTCATTTT$ ${\tt AGGTTTTTCCTCAAGATAAAGTGATACTTGTAGGCTCAGACATAACATTTTGTTGTGTGAGTCAAGAAAA}$ ${\tt AGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGGGAAAATGTTGCAATC}$ ${\tt AAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACAACCGAAGATAACATAT}$ ${\tt TTGGAACCGTTATTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAATTGTGAGACACATGATTT}$

ACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAAGCACCTACAAACGAAAGCT ATCAATTATTATTTCAAATGCTTCCAAATCAAGAAATATATAATTTTTACTTTGAATGCTCACAATCCGCT GGGTCGATCACAATCAACAATTTTAGTTAATATAACTGAAAAAGTTTATCCCCATACTCCTACTTCATTC AAAGTGAAGGATATTAATTCAACAGCTGTTAAACTTTCTTGGCATTTACCAGGCAACTTTGCAAAGATTA ATTTTTTATGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAGCAGCGGAATGTCACAATCAAAGG AGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCATACACTCTATATACTTTTCGGATT CGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAATAAAAAACAACATTTAACAACAGAAG CCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCTGATGGAAAAAATTTAATAATCTATTG GAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCCTACAATGTATCGTGTTCATCAGATGAG GAAACACAGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAAGCAGAGATACGACTTGATAAGAATGACT ACATCATCAGCGTAGTGGCTAAAAATTCTGTGGGCTCATCACCACCTTCCAAAATAGCGAGTATGGAAAT TCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATGGGAAAGGGGATTCTCCTCACCTGGCATTAC ACTGGAGAAAAGTTCCCTCAAACAGCACTGAAACTGTAATAGAATCTGATGAGTTTCGACCAGGTATAAG ATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGATATCAATTATTACGCTCCATGATTGGATATATA GAAGAATTGGCTCCCATTGTTGCACCAAATTTTACTGTTGAGGATACTTCTGCAGATTCGATATTAGTAA ${\tt AATGGGAAGACATTCCTGTGGAAGAACTTAGAGGCTTTTTAAGAGGATATTTGTTTTACTTTGGAAAAGG}$ AGAAAGAGACACATCTAAGATGAGGGTTTTAGAATCAGGTCGTTCTGACATAAAAGTTAAGAATATTACT GACATATCCCAGAAGACACTGAGAATTGCTGATCTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAG ${\tt AATTATTGCCATTCTCATCCCAGTGGCAGTGGCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTAT}$ AGTTTCAAAAGAGTGTCTGTGAGGGAAGCAGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAA TAATGTTGAGGTTCTGGAAACTCGATCAGCATTTCCTAAAATAGAAGATACAGAAATAATTTCCCCAGTA GCTGAGCGTCCTGAAGATCGCTCTGATGCAGAGCCTGAAAACCATGTGGTTGTGTCCTATTGTCCACCCA TCATTGAGGAAGAAATACCAAACCCAGCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGA TGTTCAGTCGATGTATCAGCCTCAAGCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCA GGCTATAAGCCACAGATGCACCTCCCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGACTTAG ATAAAACTGCGGGTTACAGACCTCAGGCCAATGTAAATACATGGAATTTAGTGTCTCCAGACTCTCCTAG ATCCATAGACAGCAACAGTGAGATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTG ATTCCTCCTAAAGATGAAGACTCTCCTAAATCTAATGGAGGAGGGTGGTCCTTTACAAACTTTTTTCAGA ATGTTAAGTTACACTGAAAGTTCATGTGCTTTTAATGTAGTCTAAAAGCCAAAGTATAGTGACTCAGAAT $\tt CCTCAATCCACAAAACTCAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCT$ TCAAGAAGCATTTCAAGGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTC TGTTCTGTTGTTGTGGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAG AAAATGTCCAAGTAACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACA GATTTTAAAACTTCTAAGATTATTCTCCTCTATCCACAGCATTCACAAAAATTAATATAATTTTTAATGT ${\tt AGTGACAGCGATTTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCA}$ AACAGTTGTCTCAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAATCATAATCATGTT GTTGGTTGCCCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAATCATTTTA TTTTGTGATACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACT TACTATGTGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTT CCTCCTGAGGAGACCATGCCGTTGAGCTTGGCTACCCAGGCAGTGGTGATCTTTGACACCTTCTGGTGGA TGTTCCTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATA AAACTAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACT CCTTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGG ${f AAAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCC}{f CTCAGGTTGCCTATGTATTTTAC}$ ${ t TTTTTTGGTTGGTTGTTTTTTTTTATCATCTGAGATTCTGTAATGTATTTGCAAATAATGGATCAATT$ AATTTTTTTTGAAGCTCATATTGTATCTTTTTAAAAACCATGTTGTGGAAAAAAGCCAGAGTGACAAGTG ACAAAATCTATTTAGGAACTCTGTGTATGAATCCTGATTTTAACTGCTAGGATTCAGCTAAATTTCTGAG (SEO ID NO:1039)

The FASTA file, including the sequence of NM_002310, was masked using the RepeatMasker web interface (Smit, AFA & Green, P RepeatMasker at genome.washington.edu/RM/RepeatMasker.html, Smit and Green). Specifically, during masking, the following types of sequences were replaced with "N's": SINE/MIR & LINE/L2, LINE/L1, LTR/MaLR, LTR/Retroviral, Alu, and other low informational content sequences such as simple repeats. Below is the sequence following masking:

GACTGCATTGCACAGATGATGGATATTTACGTATGTTTGAAACGACCATCCTGGATGGTGGACAATAAA AGAATGAGGACTGCTTCAAATTTCCAGTGGCTGTTATCAACATTTATTCTTCTATATCTAATGAATCAA TGTTCTTGGAAAGCACCCTCTGGAACAGGCCGTGGTACTGATTATGAAGTTTGCATTGAAAACAGGTCC ${\tt CGTTCTTGTTATCAGTTGGAGAAAACCAGTATTAAAATTCCAGCTCTTTCACATGGTGATTATGAAATA}$ ACAATAAATTCTCTACATGATTTTTGGAAGTTCTACAAGTAAATTCACACTAAATGAACAAAACGTTTCC TTAATTCCAGATACTCCAGAGATCTTGAATTTGTCTGCTGATTTCTCAACCTCTACATTATACCTAAAG $\tt TGGAACGACAGGGGTTCAGTTTTTCCACACCGCTCAAATGTTATCTGGGAAATTAAAGTTCTACGTAAA$ GAGAGTATGGAGCTCGTAAAATTAGTGACCCACAACACACTCTGAATGGCAAAGATACACTTCATCAC AATCTTCATTTTTCTGGTCTCGAAGAGTGGAGTGACTGGAGCCCTGTGAAGAACATTTCTTGGATACCT GATTCTCAGACTAAGGTTTTTCCTCAAGATAAAGTGATACTTGTAGGCTCAGACATAACATTTTGTTGT GTGAGTCAAGAAAAGTGTTATCAGCACTGATTGGCCATACAAACTGCCCCTTGATCCATCTTGATGGG GAAAATGTTGCAATCAAGATTCGTAATATTTCTGTTTCTGCAAGTAGTGGAACAAATGTAGTTTTTACA ACCGAAGATAACATATTTGGAACCGTTATTTTTGCTGGATATCCACCAGATACTCCTCAACAACTGAAT TGTGAGACACATGATTTAAAAGAAATTATATGTAGTTGGAATCCAGGAAGGGTGACAGCGTTGGTGGGC CCACGTGCTACAAGCTACACTTTAGTTGAAAGTTTTTCAGGAAAATATGTTAGACTTAAAAGAGCTGAA GCACCTACAAACGAAAGCTATCAATTATTATTTCAAATGCTTCCAAATCAAGAAATATATAATTTTACT ${\tt TTGAATGCTCACAATCCGCTGGGTCGATCACAATCAACAATTTTAGTTAATATAACTGAAAAAGTTTAT}$ $\tt CCAGGCAACTTTGCAAAGATTAATTTTTTTTTGTGAAATTGAAATTAAGAAATCTAATTCAGTACAAGAG$ ${\tt CAGCGGAATGTCACAATCAAAGGAGTAGAAAATTCAAGTTATCTTGTTGCTCTGGACAAGTTAAATCCA}$ TACACTCTATATACTTTTCGGATTCGTTGTTCTACTGAAACTTTCTGGAAATGGAGCAAATGGAGCAAT AAAAACAACATTTAACAACAGAAGCCAGTCCTTCAAAGGGGCCTGATACTTGGAGAGAGTGGAGTTCT GATGGAAAAATTTAATAATCTATTGGAAGCCTTTACCCATTAATGAAGCTAATGGAAAAATACTTTCC TACAATGTATCGTGTTCATCAGATGAGGAAACACAGTCCCTTTCTGAAATCCCTGATCCTCAGCACAAA GCAGAGATACGACTTGATAAGAATGACTACATCATCAGCGTAGTGGCTAAAAAATTCTGTGGGCTCATCA CCACCTTCCAAAATAGCGAGTATGGAAATTCCAAATGATGATCTCAAAATAGAACAAGTTGTTGGGATG ${\tt GGAAAGGGGATTCTCCTCACCTGGCATTACGACCCCAACATGACTTGCGACTACGTCATTAAGTGGTGT}$ AACTCGTCTCGGTCGGAACCATGCCTTATGGACTGGAGAAAAGTTCCCTCAAACAGCACTGAAACTGTA ATAGAATCTGATGAGTTTCGACCAGGTATAAGATATAATTTTTTCCTGTATGGATGCAGAAATCAAGGA TATCAATTATTACGCTCCATGATTGGATATATAGAAGAATTGGCTCCCATTGTTGCACCAAATTTTACT

GTTGAGGATACTTCTGCAGATTCGATATTAGTAAAATGGGAAGACATTCCTGTGGAAGAACTTAGAGGC ${f TTTTTAAGAGGATATTTGTTTTACTTTGGAAAAGGAGAAAGAGACACATCTAAGATGAGGGTTTTAGAA$ TCAGGTCGTTCTGACATAAAAGTTAAGAATATTACTGACATATCCCAGAAGACACTGAGAATTGCTGAT CTTCAAGGTAAAACAAGTTACCACCTGGTCTTGCGAGCCTATACAGATGGTGGAGTGGGCCCGGAGAAG GCTGTCATTGTTGGAGTGGTGACAAGTATCCTTTGCTATCGGAAACGAGAATGGATTAAAGAAACCTTC TACCCTGATATTCCAAATCCAGAAAACTGTAAAGCATTACAGTTTCAAAAGAGTGTCTGTGAGGGAAGC AGTGCTCTTAAAACATTGGAAATGAATCCTTGTACCCCAAATAATGTTGAGGTTCTGGAAACTCGATCA GCATTTCCTAAAATAGAAGATACAGAAATAATTTCCCCAGTAGCTGAGCGTCCTGAAGATCGCTCTGAT GCAGAGCCTGAAAACCATGTGGTTGTGTCCTATTGTCCACCCATCATTGAGGAAGAAATACCAAACCCA GCCGCAGATGAAGCTGGAGGGACTGCACAGGTTATTTACATTGATGTTCAGTCGATGTATCAGCCTCAA GCAAAACCAGAAGAAGAACAAGAAAATGACCCTGTAGGAGGGGCAGGCTATAAGCCACAGATGCACCTC CCCATTAATTCTACTGTGGAAGATATAGCTGCAGAAGAGGACTTAGATAAAACTGCGGGTTACAGACCT CAGGCCAATGTAAATACATGGAATTTAGTGTCTCCAGACTCTCCTAGATCCATAGACAGCAACAGTGAG ATTGTCTCATTTGGAAGTCCATGCTCCATTAATTCCCGACAATTTTTGATTCCTCCTAAAGATGAAGAC TCTCCTAAATCTAATGGAGGAGGGTGGTCCTTTACAAACTTTTTTCAGAACAAACCAAACGATTAACAG TGTCACCGTGTCACTTCAGTCAGCCATCTCAATAAGCTCTTACTGCTAGTGTTGCTACATCAGCACTGG GCATTCTTGGAGGGATCCTGTGAAGTATTGTTAGGAGGTGAACTTCACTACATGTTAAGTTACACTGAA AGTTCATGTGCTTTTAATGTAGTCTAAAAGCCAAAGTATAGTGACTCAGAATCCTCAATCCACAAAACT CAAGATTGGGAGCTCTTTGTGATCAAGCCAAAGAATTCTCATGTACTCTACCTTCAAGAAGCATTTCAA GGCTAATACCTACTTGTACGTACATGTAAAACAAATCCCGCCGCAACTGTTTTCTGTTCTGTTTGT GGTTTTCTCATATGTATACTTGGTGGAATTGTAAGTGGATTTGCAGGCCAGGGAGAAAATGTCCAAGTA ACAGGTGAAGTTTATTTGCCTGACGTTTACTCCTTTCTAGATGAAAACCAAGCACAGATTTTAAAACTT TTAGTGTTTTGTTTGATAAAGTATGCTTATTTCTGTGCCTACTGTATAATGGTTATCAAACAGTTGTCT ${\tt CAGGGGTACAAACTTTGAAAACAAGTGTGACACTGACCAGCCCAAAT} \overline{{\tt CATAATCATGTTTTCTTGCTGTT}}$ CCTAATATTTAAAATTTACACTTCTAAGACTAGAGACCCACATTTTTTAAAAATCATTTTATTTTGTGA TACAGTGACAGCTTTATATGAGCAAATTCAATATTATTCATAAGCATGTAATTCCAGTGACTTACTATG TGAGATGACTACTAAGCAATATCTAGCAGCGTTAGTTCCATATAGTTCTGATTGGATTTCGTTCCTCCT GAGGAGACCATGCCGTTGAGCTTGGCTACCCAGGCAGTGGTGATCTTTGACACCTTCTGGTGGATGTTC CTCCCACTCATGAGTCTTTTCATCATGCCACATTATCTGATCCAGTCCTCACATTTTTAAATATAAAAC TAAAGAGAGAATGCTTCTTACAGGAACAGTTACCCAAGGGCTGTTTCTTAGTAACTGTCATAAACTGAT TTCAGCACAGCATCCTCTGCCCACCCTTGTTTCTCATAAGCGATGTCTGGAGTGATTGTGGTTCTTGGA AAAGCAGAAGGAAAAACTAAAAAGTGTATCTTGTATTTTCCCTGCCCTCAGGTTGCCTATGTATTTTAC TTTTTTTTGGTTGGTTGTTTTTTTTTTTATCATCTGAGATTCTGTAATGTATTTGCAAATAATGGATCAA ${ t TTAATTTTTTTGAAGCTCATATTGTATCTTTTTAAAAACCATGTTGTGGAAAAAAGCCAGAGTGACAA$ GTGACAAAATCTATTTAGGAACTCTGTGTATGAATCCTGATTTTAACTGCTAGGATTCAGCTAAATTTC

The length of this sequence was determined using batch, automated computational methods and the sequence, as sense strand, its length, and the desired location of the probe sequence near the 3' end of the mRNA was submitted to Array Designer Ver 1.1 (Premier Biosoft International, Palo Alto, CA). Search quality was set at 100%, number of best probes set at 1, length range set at 50 base pairs, Target Tm set at 75 C. degrees plus or minus 5 degrees, Hairpin max deltaG at 6.0 -kcal/mol., Self dimmer max deltaG at 6.0 -kcal/mol, Run/repeat (dinucleotide) max length set at 5, and Probe site minimum overlap set at 1. When none of the 49 possible probes met the criteria, the probe site would be moved 50 base pairs closer to the 5' end of the sequence and resubmitted to Array Designer for analysis. When no possible probes met the criteria, the variation on melting temperature was raised to plus and minus 8 degrees and the number of identical basepairs in a run increased to 6 so that a probe sequence was produced.

In the sequence above, using the criteria noted above, Array Designer Ver 1.1 designed a probe with the following sequence oligonucleotide SEQ ID NO:1041 and is indicated by underlining in the sequence above. It has a melting temperature of 68.4 degrees Celsius and a max run of 6 nucleotides and represents one of the cases where the criteria for probe design in Array Designer Ver 1.1 were relaxed in order to obtain an oligonucleotide near the 3' end of the mRNA (Low melting temperature was allowed).

Clone 463D12

Clone 463D12 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. The sequence matched accession number AI184553, an EST sequence with the definition line "qd60a05.x1 Soares_testis_NHT Homo sapiens cDNA clone IMAGE:1733840 3' similar to gb:M29550 PROTEIN PHOSPHATASE 2B CATALYTIC SUBUNIT 1 (HUMAN);, mRNA sequence." The E value of the alignment was 1.00×10^{-118} . The GenBank sequence begins with a poly-T region, suggesting that it is the antisense strand, read 5' to 3'. The beginning of this sequence is complementary to the 3' end of the mRNA sense strand. The accession number for this sequence was included in a text file of accession numbers representing antisense sequences. Sequences for antisense strand mRNAs were obtained by uploading a text file containing desired accession numbers as an Entrez search query using the Batch Entrez web interface and saving the results locally as a FASTA file. The following sequence was obtained, and the region of alignment of clone 463D12 is outlined:

TTTTTTTTTTTTTTTTTTTAAATAGCATTTATTTTCTCTCAAAAAGCCTATTATGTACTAACAAGTGTTCC
TCTAAATTAGAAAGGCATCACTACTAAAATTTTATACATATTTTTTATATAAGAGAAGGAATATTGGGT
TACAATCTGAATTTCTCTTTATGATTTCTCTTAAAGTATAGAACAGCTATTAAAATGACTAATATTGCT
AAAATGAAGGCTACTAAATTTCCCCAAGAATTTCGGTGGAATGCCCAAAAATGGTGTTAAGATATGCAG

The FASTA file, including the sequence of AA184553, was then masked using the RepeatMasker web interface, as shown below. The region of alignment of clone 463D12 is outlined.

The sequence was submitted to Array Designer as described above, however, the desired location of the probe was indicated at base pair 50 and if no probe met the criteria, moved in the 3' direction. The complementary sequence from Array Designer was used, because the original sequence was antisense. The oligonucleotide designed by Array Designer has the following sequence oligonucleotide SEQ ID NO:1044 and is complementary to the underlined sequence above. The probe has a melting temperature of 72.7 degrees centigrade and a max run of 4 nucleotides.

Clone 72D4

Clone 72D4 was sequenced and compared to the nr, dbEST, and UniGene databases at NCBI using the BLAST search tool. No significant matches were found in any of these databases. When compared to the human genome draft, significant alignments were found to three consecutive regions of the reference sequence NT_008060, as depicted below, suggesting that the insert contains three spliced exons of an unidentified gene.

Residue numbers on Matching residue

clone 72D4 sequence	numbers on NT_008060
1 – 198	478646 – 478843
197 – 489	479876 – 480168
491 – 585	489271 - 489365

Because the reference sequence contains introns and may represent either the coding or noncoding strand for this gene, BioCardia's own sequence file was used to design the oligonucleotide. Two complementary probes were designed to ensure that the sense strand was represented. The sequence of the insert in clone 72D4 is shown below, with the three putative exons outlined.

CAGGTCACACAGCACATCAGTGGCTACATGTGAGCTCAGACCTGGGTCTG
CTGCTGTCTGTCTTCCCAATATCCATGACCTTGACTGATGCAGGTGTCTAG
GGATACGTCCATCCCCGTCCTGCTGGAGCCCAGAGCACGGAAGCCTGGCC
CTCCGAGGAGACAGAAGGGAGTGTCGGACACCATGACGAGAGCTTGGCA
GAATAAATAACTTCTTTAAACAATTTTACGGCATGAAGAAATCTGGACCA
GTTTATTAAATGGGATTTCTGCCACAAACCTTGGAAGAAATCACATCATT
ANNCCCAAGTGAAAAACTGTGTTGCGTAACAAAGAACATGACTGCGCTCCA
CACATACATCATTGCCCGGCGAGGCGGGACACAAGTCAACGACGGAACA
CTTGAGACAGGCCTACAACTGTGCACGGGTCAGAAGCAAGTTAAGCCAT
ACTTGCTGCAGTGAGACTACATTTCTGTCTATAGAAGATACCTTGA
TCTGTTTTTCAGCTCCAGTTCCCAGATGTGCGTGTTGTGGTCCCCAAGTAT
CACCTTCCAATTTCTGGGAGCAGTGCTCTGGCCG
GATCCTTGCCGCGCGG
ATAAAAAC (SEQ ID NO: 1045)

The sequence was submitted to RepeatMasker, but no repetitive sequences were found. The sequence shown above was used to design the two 50-mer probes using Array Designer as described above. The probes are shown in bold typeface in the sequence depicted below. SEQ ID NO: 1046 and SEQ ID NO:1047

CAGGTCACACACACATCAGTGGCTACATGTGAGCTCAGACCTGGGTCTGCTGT
CTGTCTTCCCAATATCCATGACCTTGACTGATGCAGGTGTCTAGGGATACGTCCATC
CCCGTCCTGCTGGAGCCCAGAGCACGGAAGCCTGGCCCTCCGAGGAGACAGAAGGGA
GTGTCGGACACCATGACGAGAGCTTGGCAGAATAAATAACTTCTTTAAACAATTTTA
CGGCATGAAGAAATCTGGACCAGTTTATTAAATGGGATTTCTGCCACAAACCTTGGA
AGAATCACATCATCTTANNCCCAAGTGAAAACTGTGTTGCGTAACAAAGAACATGAC

TGCGCTCCACACATACATCATTGCCCGGCGAGGCGGGACACAAGTCAACGACGAACCAACTTGAGACAGGCCTACAACTGTGCACGGGTCAGAAGCAAGTTTAAGCCATACTTGC
TGCAGTGAGACTACATTTCTGTCTATAGAAGATACCTGACTTGATCTGTTTTTCAGC
TCCAGTTCCCAGATGTGC

GTCAAGGGTCTACACG

GTGTTGTGGTCCCCAAGTATCACCTTCCAATTTCTGGGAG--→
CACAACACCAGGGGTTCATAGTGGAAGGTTAAAG-5'

 $\texttt{CAGTGCTCTGGCCGGATCCTTGCCGCGCGGATAAAAACT---} \Rightarrow$

Confirmation of probe sequence

Following probe design, each probe sequence was confirmed by comparing the sequence against dbEST, the UniGene cluster set, and the assembled human genome using BLASTn at NCBI. Alignments, accession numbers, gi numbers, UniGene cluster numbers and names were examined and the most common sequence used for the probe. The final probe set was compiled into Table 2. In this table, the sequence ID is given which corresponds to the sequence listing. The origin of the sequence for inclusion on the array is noted as coming from one of the cDNA libraries described in example 1, mining from databases as described in examples 2 and 11 or identification from the published literature. The unigene number, genebank accession and GI number are also given for each sequence when known. The name of the gene associated with the accession number is noted. Finally, the nucleotide sequence of each probe is also given.

Example 6 - Production of an array of 8000 spotted 50mer oligonucleotides

We produced an array of 8000 spotted 50mer oligonucleotides. Examples 11 and 12 exemplify the design and selection of probes for this array.

Sigma-Genosys (The Woodlands, TX) synthesized un-modified 50-mer oligonucleotides using standard phosphoramidite chemistry, with a starting scale of synthesis of 0.05 μmole (see, e.g., R. Meyers, ed. (1995) Molecular Biology and Biotechnology: A Comprehensive Desk Reference). Briefly, to begin synthesis, a 3' hydroxyl nucleoside with a dimethoxytrityl (DMT) group at the 5' end was attached to a solid support. The DMT group was removed with trichloroacetic acid (TCA) in order to free the 5'-hydroxyl for the coupling reaction. Next, tetrazole and a phosphoramidite derivative of the next nucleotide were added. The tetrazole protonates the nitrogen of the phosphoramidite, making it susceptible to nucleophilic attack. The DMT group at the 5'-end of the hydroxyl group blocks further addition of nucleotides in excess. Next, the inter-nucleotide linkage was converted to a phosphotriester bond in an oxidation step using an oxidizing agent and water as the oxygen donor. Excess nucleotides were filtered out and the cycle for the next nucleotide was started by the removal of the DMT protecting group. Following the synthesis, the oligo was cleaved from the solid support. The oligonucleotides were desalted, resuspended in water at a concentration of 100 or 200 μM, and placed

in 96-deep well format. The oligonucleotides were re-arrayed into Whatman Uniplate 384-well polyproylene V bottom plates. The oligonucleotides were diluted to a final concentration 30 μ M in 1X Micro Spotting Solution Plus (Telechem/arrayit.com, Sunnyvale, CA) in a total volume of 15 μ l. In total, 8,031 oligonucleotides were arrayed into twenty-one 384-well plates.

Arrays were produced on Telechem/arrayit.com Super amine glass substrates (Telechem/arrayit.com), which were manufactured in 0.1 mm filtered clean room with exact dimensions of 25x76x0.96 mm. The arrays were printed using the Virtek Chipwriter with a Telechem 48 pin Micro Spotting Printhead. The Printhead was loaded with 48 Stealth SMP3B TeleChem Micro Spotting Pins, which were used to print oligonucleotides onto the slide with the spot size being 110-115 microns in diameter.

Example 7- Amplification, labeling, and hybridization of total RNA to an oligonucleotide microarray Amplification, labeling, hybridization and scanning

Samples consisting of at least 0.5 to 2 μg of intact total RNA were further processed for array hybridization. When available, 2 μg of intact total RNA is used for amplification. Amplification and labeling of total RNA samples was performed in three successive enzymatic reactions. First, a single-stranded DNA copy of the RNA was made (hereinafter, "ss-cDNA"). Second, the ss-cDNA was used as a template for the complementary DNA strand, producing double-stranded cDNA (hereinafter, "ds-cDNA, or cDNA"). Third, linear amplification was performed by in vitro transcription from a bacterial T₇ promoter. During this step, fluorescent-conjugated nucleotides were incorporated into the amplified RNA (hereinafter, "aRNA").

For synthesis of the second cDNA strand, DNA polymerase and RNase were added to the previous reaction, bringing the final volume to 150 μl. The previous contents were diluted and new substrates were added to a final concentration of 20 mM Tris-HCl (pH 7.0) (Fisher Scientific, Pittsburgh, PA #BP1756-100), 90 mMKCl (Teknova, Half Moon Bay, CA, #0313-500), 4.6 mM MgCl₂ (Teknova, Half Moon Bay, CA, #0304-500), 10 mM(NH₄) ₂SO₄ (Fisher Scientific #A702-500)(1x Second Strand buffer, Invitrogen), 0.266 mM dGTP, 0.266 mM dATP, 0.266 mM dTTP, 0.266

mM dCTP, 40 U E. coli DNA polymerase (Invitrogen, #18010-025), and 2 U RNaseH (Invitrogen, #18021-014). The second strand synthesis took place at 16°C for 150 minutes.

Following second-strand synthesis, the ds-cDNA was purified from the enzymes, dNTPs, and buffers before proceeding to amplification, using phenol-chloroform extraction followed by ethanol precipitation of the cDNA in the presence of glycogen.

Alternatively, a silica-gel column is used to purify the cDNA (e.g. Qiaquick PCR cleanup from Qiagen, #28104). The volume of the column purified cDNA was reduced by ethanol precipitation in the presence of glycogen in which the cDNA was collected by centrifugation at >10,000 ×g for 30 minutes, the supernatant is aspirated, and 150 μ l of 70% ethanol, 30% water was added to wash the DNA pellet. Following centrifugation, the supernatant was removed, and residual ethanol was evaporated at room temperature. Alternatively, the volume of the column purified cDNA is reduce in a vacuum evaporator where the supernatant is reduce to a final volume of 7.4 μ l.

Linear amplification of the cDNA was performed by in vitro transcription of the cDNA. The cDNA pellet from the step described above was resuspended in 7.4 μl of water, and in vitro transcription reaction buffer was added to a final volume of 20 μl containing 7.5 mM GTP, 7.5 mM ATP, 7.5 mM TTP, 2.25 mM CTP, 1.025 mM Cy3-conjugated CTP (Perkin Elmer; Boston, MA, #NEL-580), 1x reaction buffer (Ambion, Megascript Kit, Austin, TX and #1334) and 1 % T₇ polymerase enzyme mix (Ambion, Megascript Kit, Austin, TX and #1334). This reaction was incubated at 37°C overnight. Following in vitro transcription, the RNA was purified from the enzyme, buffers, and excess NTPs using the RNeasy kit from Qiagen (Valencia, CA; #74106) as described in the vendor's protocol. A second elution step was performed and the two eluates were combined for a final volume of 60 μl. RNA is quantified using an Agilent 2100 bioanalyzer with the RNA 6000 nano LabChip.

Reference RNA was prepared as described above, except Cy5-CTP was incorporated instead of Cy3CTP. Reference RNA from five reactions, each reaction started with 2 μ g total RNA, was pooled together and quantitated as described above.

Hybridization to an array

RNA was prepared for hybridization as follows: for an 18mm×55mm array, 20 μ g of amplified RNA (aRNA) was combined with 20 μ g of reference aRNA. The combined sample and reference aRNA was concentrated by evaporating the water to 10 μ l in a vacuum evaporator. The sample was fragmented by heating the sample at 95°C for 30 minutes to fragment the RNA into 50-200 bp pieces. Alternatively, the combined sample and reference aRNA was concentrated by evaporating the water to 5 μ l in a vacuum evaporator. Five μ l of 20 mM zinc acetate was added to the aRNA and the mix incubated at 60°C for 10 minutes. Following fragmentation, 40 μ l of hybridization buffer was added to achieve final concentrations of 5×SSC and 0.20 %SDS with 0.1 μ g/ul of Cot-1 DNA (Invitrogen) as a competitor DNA. The final hybridization mix was heated to 98°C, and then reduced to 50°C at 0.1°C per second.

Alternatively, formamide is included in the hybridization mixture to lower the hybridization temperature.

The hybridization mixture was applied to a pre-heated 65°C microarray, surface, covered with a glass coverslip (Corning, #2935-246), and placed on a pre-heated 65°C hybridization chamber (Telechem, AHC-10). 15 ul of 5xSSC was placed in each of the reservoir in the hybridization chamber and the chamber was sealed and placed in a water bath at 62°C for overnight (16-20 hrs). Following incubation, the slides were washed in 2×SSC, 0.1% SDS for five minutes at 30°C, then in 2×SSC for five minutes at 30°C, then in 2×SSC for another five minutes at 30°C, then in 0.2×SSC for two minutes at room temperature. The arrays were spun at 1000×g for 2 minutes to dry them. The dry microarrays are then scanned by methods described above.

The microarrays were imaged on the Agilent (Palo Alto, CA) scanner G2565AA. The scan settings using the Agilent software were as follows: for the PMT Sensitivity (100% Red and 100% Green); Scan Resolution (10 microns); red and green dye channels; used the default scan region for all slides in the carousel; using the largest scan region; scan date for Instrument ID; and barcode for Slide ID. The full image produced by the Agilent scanner was flipped, rotated, and split into two images (one for each signal channel) using TIFFSplitter (Agilent, Palo Alto, CA). The two channels are the output at 532 nm (Cy3-labeled sample) and 633 nm (Cy5-labeled R50). The individual images were loaded into GenePix 3.0 (Axon Instruments, Union City, CA) for feature extraction, each image was assigned an excitation wavelength corresponding the file opened; Red equals 633 nm and Green equals 532 nm. The setting file (gal) was opened and the grid was laid onto the image so that each spot in the grid overlaped with >50% of the feature. Then the GenePix software was used to find the features without setting minimum threshold value for a feature. For features with low signal intensity, GenePix reports "not found". For all features, the diameter setting was adjusted to include only the feature if necessary.

The GenePix software determined the median pixel intensity for each feature (F_i) and the median pixel intensity of the local background for each feature (B_i) in both channels. The standard deviation $(SDF_{i \text{ and}} SDB_i)$ for each is also determined. Features for which GenePix could not discriminate the feature from the background were "flagged" as described below.

Following feature extraction into a ".gpr" file, the header information of the .gpr file was changed to carry accurate information into the database. An Excel macro was written to include the following information: Name of the original .tif image file, SlideID, Version of the feature extraction software, GenePix Array List file, GenePix Settings file, ScanID, Name of person who scanned the slide, Green PMT setting, Red PMT setting, ExtractID (date .gpr file was created, formatted as yyyyy.mm.dd-hh.mm.ss), Results file name (same as the .gpr file name), StorageCD, and Extraction comments.

Pre-processing with Excel Templates

Following analysis of the image and extraction of the data, the data from each hybridization was pre-processed to extract data that was entered into the database and subsequently used for analysis. The complete GPR file produced by the feature extraction in GenePix was imported into an excel file pre-processing template or processed using a AWK script. Both programs used the same processing logic and produce identical results. The same excel template or AWK script was used to process each

GPR file. The template performs a series of calculations on the data to differentiate poor features from others and to combine duplicate or triplicate feature data into a single data point for each probe.

The data columns used in the pre-processing were: Oligo ID, F633 Median (median value from all the pixels in the feature for the Cy5 dye), B633 Median (the median value of all the pixels in the local background of the selected feature for Cy5), B633 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy5), F532 Median (median value from all the pixels in the feature for the Cy3 dye), B532 Median (the median value of all the pixels in the local background of the selected feature for Cy3), B532 SD (the standard deviation of the values for the pixels in the local background of the selected feature for Cy3), and Flags. The GenePix Flags column contains the flags set during feature extraction. "-75" indicates there were no features printed on the array in that position, "-50" indicates that GenePix could not differentiate the feature signal from the local background, and "-100" indicates that the user marked the feature as bad.

Once imported, the data associated with features with -75 flags was not used. Then the median of B633 SD and B532 SD were calculated over all features with a flag value of "0". The minimum values of B633 Median and B532 Median were identified, considering only those values associated with a flag value of "0". For each feature, the signal to noise ratio (S/N) was calculated for both dyes by taking the fluorescence signal minus the local background (BGSS) and dividing it by the standard deviation of the local background:

$$S/N = \frac{F_i - B_i}{SDB_i}$$

If the S/N was less than 3, then an adjusted background-subtracted signal was calculated as the fluorescence minus the minimum local background on the slide. An adjusted S/N was then calculated as the adjusted background subtracted signal divided by the median noise over all features for that channel. If the adjusted S/N was greater than three and the original S/N were less than three, a flag of 25 was set for the Cy5 channel, a flag of 23 was set for the Cy3 channel, and if both met these criteria, then a flag of 28 was set. If both the adjusted S/N and the original S/N were less than three, then a flag of 65 was set for Cy5, 63 set for Cy3, and 68 set if both dye channels had an adjusted S/N less than three. All signal to noise calculations, adjusted background-subtracted signal, and adjusted S/N were calculated for each dye channel. If the BGSS value was greater than or equal to 64000, a flag was set to indicate saturation; 55 for Cy5, 53 for Cy3, 58 for both.

The BGSS used for further calculations was the original BGSS if the original S/N was greater than or equal to three. If the original S/N ratio was less than three and the adjusted S/N ratio was greater than or equal to three, then the adjusted BGSS was used. If the adjusted S/N ratio was less than three, then the adjusted BGSS was used, but with knowledge of the flag status.

To facilitate comparison among arrays, the Cy3 and Cy5 data were scaled. The log of the ratio of Green/Red was determined for all features. The median log ratio value for good features (Flags 0,

23, 25, 28, 63) was determined. The feature values were scaled using the following formula: Log Scaled Feature_Ratio = Log_Feature_Ratio - Median_Log_Ratio.

The flag setting for each feature was used to determine the expression ratio for each probe, a choice of one, two or three features. If all features had flag settings in the same category (categories=negatives, 0 to 28, 53-58, and 63-68), then the average of the three scaled, anti log feature ratios was calculated. If the three features did not have flags in the same category, then the feature or features with the best quality flags were used (0>25>23>28>55>53>58>65>63>68). Features with negative flags were never used. When the best flags were two or three features in the same category, the anti log average was used. If a single feature had a better flag category than the other two then the anti log of that feature ratio was used.

Once the probe expression ratios were calculated from the one, two, or three features, the log of the scaled, averaged ratios was taken as described below and stored for use in analyzing the data. Whichever features were used to calculate the probe value, the flag from those features was carried forward and stored as the flag value for that probe. 2 different data sets can be used for analysis. Flagged data uses all values, including those with flags. Filtered data sets are created by removing flagged data from the set before analysis.

Example 8: Real-time PCR validation of array expression results

Leukocyte microarray gene expression was used to discover expression markers and diagnostic gene sets for clinical outcomes. It is desirable to validate the gene expression results for each gene using a more sensitive and quantitative technology such as real-time PCR. Further, it is possible for the diagnostic nucleotide sets to be implemented as a diagnostic test as a real-time PCR panel. Alternatively, the quantitative information provided by real-time PCR validation can be used to design a diagnostic test using any alternative quantitative or semi-quantitative gene expression technology.

To validate the results of the microarray experiments we used real-time, or kinetic, PCR. In this type of experiment the amplification product is measured during the PCR reaction. This enables the researcher to observe the amplification before any reagent becomes rate limiting for amplification. In kinetic PCR the measurement is of C_T (threshold cycle) or C_P (crossing point). This measurement $(C_T=C_P)$ is the point at which an amplification curve crosses a threshold fluorescence value. The threshold is set to a point within the area where all of the reactions were in their linear phase of amplification. When measuring C_T , a lower C_T value is indicative of a higher amount of starting material since an earlier cycle number means the threshold was crossed more quickly.

Several fluorescence methodologies are available to measure amplification product in real-time PCR. Taqman (Applied BioSystems, Foster City, CA) uses fluorescence resonance energy transfer (FRET) to inhibit signal from a probe until the probe is degraded by the sequence specific binding and Taq 3' exonuclease activity. Molecular Beacons (Stratagene, La Jolla, CA) also use FRET technology, whereby the fluorescence is measured when a hairpin structure is relaxed by the specific probe binding to the amplified DNA. The third commonly used chemistry is Sybr Green, a DNA-

binding dye (Molecular Probes, Eugene, OR). The more amplified product that is produced, the higher the signal. The Sybr Green method is sensitive to non-specific amplification products, increasing the importance of primer design and selection. Other detection chemistries can also been used, such as ethedium bromide or other DNA-binding dyes and many modifications of the fluorescent dye/quencher dye Taqman chemistry.

Sample prep and cDNA synthesis

The inputs for real time PCR reaction are gene-specific primers, cDNA from specific patient samples, and standard reagents. The cDNA was produced from mononuclear RNA (prepared as in example 1) by reverse transcription using Oligo dT primers (Invitrogen, 18418-012) and random hexamers (Invitrogen, 48190-011) at a final concentration of 0.5ng/µl and 3ng/µl respectively. For the first strand reaction mix, 0.5 µg of mononuclear total RNA or 2 µg of whole blood RNA and 1 µl of the Oligo dT/ Random Hexamer Mix, were added to water to a final volume of 11.5 µl. The sample mix was then placed at 70°C for 10 minutes. Following the 70°C incubation, the samples were chilled on ice, spun down, and 88.5 µl of first strand buffer mix dispensed into the reaction tube. The final first strand buffer mix produced final concentrations of 1X first strand buffer (Invitrogen, Y00146, Carlsbad, CA), 10 mM DTT (Invitrogen, Y00147), 0.5 mM dATP (NEB, N0440S, Beverly, MA), 0.5 mM dGTP (NEB, N0442S), 0.5mM dTTP (NEB, N0443S), 0.5 mM dCTP (NEB, N0441S), 200U of reverse transcriptase (Superscript II, Invitrogen, 18064-014), and 18U of RNase inhibitor (RNAGaurd Amersham Pharmacia, 27-0815-01, Piscataway, NJ). The reaction was incubated at 42°C for 90 minutes. After incubation the enzyme was heat inactivated at 70°C for 15 minutes, 2 U of RNAse H added to the reaction tube, and incubated at 37°C for 20 minutes.

PRIMER DESIGN

Two methods were used to design primers. The first was to use the software, Primer Expresstm and recommendations for primer design that are provided with the GeneAmp® 7700 Sequence Detection System supplied by Applied BioSystems (Foster City, CA). The second method used to design primers was the PRIMER3 ver 0.9 program that is available from the Whitehead Research Institute, Cambridge, Massachusetts at the web site genome.wi.mit.edu/genome_software/other/primer3.html. The program can also be accessed on the World Wide Web at the web site genome.wi.mit.edu/cgi-bin/primer/primer3_www.cgi. Primers and Taqman/hybridization probes were designed as described below using both programs.

The Primer Express literature explains that primers should be designed with a melting temperature between 58 and 60 degrees C. while the Taqman probes should have a melting temperature of 68 to 70 under the salt conditions of the supplied reagents. The salt concentration is fixed in the software. Primers should be between 15 and 30 basepairs long. The primers should produce and amplicon in size between 50 and 150 base pairs, have a C-G content between 20% and 80%, have no more than 4 identical base pairs next to one another, and no more than 2 C's and G's in the last 5 bases of the 3' end. The probe cannot have a G on the 5' end and the strand with the fewest G's should be used for the probe.

Primer3 has a large number of parameters. The defaults were used for all except for melting temperature and the optimal size of the amplicon was set at 100 bases. One of the most critical is salt

concentration as it affects the melting temperature of the probes and primers. In order to produce primers and probes with melting temperatures equivalent to Primer Express, a number of primers and probes designed by Primer Express were examined using PRIMER3. Using a salt concentration of 50 mM these primers had an average melting temperature of 3.7 degrees higher than predicted by Primer Express. In order to design primers and probes with equivalent melting temperatures as Primer Express using PRIMER3, a melting temperature of 62.7 plus/minus 1.0 degree was used in PRIMER3 for primers and 72.7 plus/minus 1.0 degrees for probes with a salt concentration of 50 mM.

The C source code for Primer3 was downloaded and complied on a Sun Enterprise 250 server using the GCC complier. The program was then used from the command line using a input file that contained the sequence for which we wanted to design primers and probes along with the input parameters as described by help files that accompany the software. Using scripting it was possible to input a number of sequences and automatically generate a number of possible probes and primers.

Primers for β -Actin (Beta Actin, Genbank Locus: NM_001101)and β -GUS: glucuronidase, beta, (GUSB, Genbank Locus: NM_000181), two reference genes, were designed using both methods and are shown here as examples:

The first step was to mask out repetitive sequences found in the mRNA sequences using RepeatMasker program that can be accessed at: the web site repeatmasker.genome.washington.edu/cgi-bin/RepeatMasker (Smit, AFA & Green, P "RepeatMasker" at the web site ftp.genome.washington.edu/RM/RepeatMasker.html).

The last 500 basepairs on the last 3' end of masked sequence was then submitted to PRIMER3 using the following exemplary input sequences:

PRIMER_SEQUENCE_ID=>ACTB Beta Actin (SEQ ID NO:1049)
SEQUENCE=TTGGCTTGACTCAGGATTTAAAAACTGGAACGGTGAAGGTGACAGCAGTCGGTTGGACGA
GCATCCCCCAAAGTTCACAATGTGGCCGAGGACTTTGATTGCACATTGTTGTTTTTTAATAGTCATTCC
AAATATGAGATGCATTGTTACAGGAAGTCCCTTGCCATCCTAAAAGCACCCCACTTCTCTCTAAGGAGA
ATGGCCCAGTCCTCTCCCAAGTCCACACAGGGGAGGGATAGCATTGCTTTCGTGTAAATTATGTAATGC
AAAATTTTTTTAATCTTCGCCTTAATCTTTTTATTTTTGTTTTATTTTGAATGATGAGCCTTCGTGCCC
CCCCTTCCCCCCTTTTTTCCCCCCAACTTGAGATGTATGAAGGCTTTTTGGTCTCCCTGGGAGTGGAGGGTGGAG
GCAGCCGGGCTTACCTGTACACTGACTTGAGACCAGTTGAATAAAAGTGCACACCCTTA

PRIMER_SEQUENCE_ID=>GUSB (SEQ ID NO:1050)

SEQUENCE=GAAGAGTACCAGAAAAGTCTGCTAGAGCAGTACCATCTGGGTCTGGATCAAAAACGCAGA
AAATATGTGGTTGGAGAGCTCATTTGGAATTTTGCCGATTTCATGACTGAACAGTCACCGACGAGAGTG
CTGGGGAATAAAAAGGGGATCTTCACTCGGCAGAGACCACAAAAAGTGCAGCGTTCCTTTTGCGAGAG
AGATACTGGAAGATTGCCAATGAAACCAGGTATCCCCACTCAGTAGCCAAGTCACAATGTTTGGAAAAC
AGCCCGTTTACTTGAGCAAGACTGATACCACCTGCGTGTCCCTTCCTCCCCGAGTCAGGGCGACTTCCA
CAGCAGCAGAACAAGTGCCTCCTGGACTGTTCACGGCAGACCAGAACGTTTCTGGCCTGGGTTTTGTGG
TCATCTATTCTAGCAGGGAACACTAAAGGTGGAAATAAAAGATTTTCTATTATGGAAATAAAAGAGTTGG
CATGAAAGTCGCTACTG

After running PRIMER3, 100 sets of primers and probes were generated for ACTB and GUSB. From this set, nested primers were chosen based on whether both left primers could be paired with both right primers and a single Taqman probe could be used on an insert of the correct size. With more experience we have decided not use the mix and match approach to primer selection and just use several of the top pairs of predicted primers.

For ACTB this turned out to be:

Forward 75 CACAATGTGGCCGAGGACTT(SEQ ID NO:1051), Forward 80 TGTGGCCGAGGACTTTGATT(SEQ ID NO:1052), Reverse 178 TGGCTTTTAGGATGGCAAGG(SEQ ID NO:1053), and Reverse 168 GGGGGCTTAGTTTGCTTCCT(SEQ ID NO:1054).

Upon testing, the F75 and R178 pair worked best.

For GUSB the following primers were chosen: Forward 59 AAGTGCAGCGTTCCTTTTGC(SEQ ID NO:1055), Forward 65 AGCGTTCCTTTTGCGAGAGA (SEQ ID NO:1056), Reverse 158 CGGGCTGTTTTCCAAACATT (SEQ ID NO:1057), and Reverse 197 GAAGGGACACGCAGGTGGTA (SEQ ID NO:1058).

No combination of these GUSB pairs worked well.

In addition to the primer pairs above, Primer Express predicted the following primers for GUSB: Forward 178 TACCACCTGCGTGTCCCTTC (SEQ ID NO:1059) and Reverse 242 GAGGCACTTGTTCTGCTGCTG (SEQ ID NO:1060). This pair of primers worked to amplify the GUSB mRNA.

The parameters used to predict these primers in Primer Express were:

Primer Tm: min 58, Max=60, opt 59, max difference=2 degrees

Primer GC: min=20% Max =80% no 3' G/C clamp

Primer: Length: min=9 max=40 opt=20 Amplicon: min Tm=0 max Tm=85

min = 50 bp max = 150 bp

Probe: Tm 10 degrees > primers, do not begin with a G on 5' end

Other: max base pair repeat = 3 max number of ambiguous residues = 0

secondary structure: max consecutive bp = 4, max total bp = 8

Uniqueness: max consecutive match = 9

max % match = 75

max 3' consecutive match = 7

Granzyme B is a marker of transplant rejection.

For Granzyme B the following sequence (NM_004131) (SEQ ID:1061) was used as input for Primer3:

For Granzyme B the following primers were chosen for testing: Forward 81 ACGAGCCTGCACCAAAGTCT (SEQ ID NO:1062) Forward 63 AAACAATGGCATGCCTCCAC (SEQ ID NO:1063) Reverse 178 TCATTACAGCGGGGGCTTAG (SEQ ID NO:1064) Reverse 168 GGGGGCTTAGTTTGCTTCCT (SEQ ID NO:1065)

Testing demonstrated that F81 and R178 worked well.

Using this approach, primers were designed for all the genes that were shown to have expression patterns that correlated with allograft rejection. Primers can be designed from any region of a target gene using this approach.

PRIMER ENDPOINT TESTING

Primers were first tested to examine whether they would produce the correct size product without non-specific amplification. The standard real-time PCR protocol was used without the Rox and Sybr green dyes. Each primer pair was tested on cDNA made from universal mononuclear leukocyte reference RNA that was produced from 50 individuals as described in Example 2 (R50).

The PCR reaction consisted of 1X RealTime PCR Buffer (Ambion, Austin, TX), 2mM MgCl2 (Applied BioSystems, B02953), 0.2mM dATP (NEB), 0.2mM dTTP (NEB), 0.2mM dCTP (NEB), 0.2mM dGTP (NEB), .625U AmpliTaq Gold (Applied BioSystems, Foster City, CA), 0.3μM of each primer to be used (Sigma Genosys, The Woodlands, TX), 5μl of the R50 reverse-transcription reaction and water to a final volume of 19μl.

Following 40 cycles of PCR, 10 microliters of each product was combined with Sybr green at a final dilution of 1:72,000. Melt curves for each PCR product were determined on an ABI 7900 (Applied BioSystems, Foster City, CA), and primer pairs yielding a product with one clean peak were chosen for further analysis. One microliter of the product from these primer pairs was examined by agarose gel electrophoresis on an Agilent Bioanalyzer, DNA1000 chip (Palo Alto, CA). Results for 2 genes are shown in Figure 6. From the primer design and the sequence of the target gene, one can calculate the expected size of the amplified DNA product. Only primer pairs with amplification of the desired product and minimal amplification of contaminants were used for real-time PCR. Primers that produced multiple products of different sizes are likely not specific for the gene of interest and may amplify multiple genes or chromosomal loci.

PRIMER OPTIMIZATION/EFFICIENCY

Once primers passed the end-point PCR, the primers were tested to determine the efficiency of the reaction in a real-time PCR reaction. cDNA was synthesized from starting total RNA as described above. A set of 5 serial dilutions of the R50 reverse-transcribed cDNA (as described above) were made in water: 1:10, 1:20, 1:40, 1:80, and 1:160.

The Sybr Green real-time PCR reaction was performed using the Taqman PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primes and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 2mM MgCl2 (Applied BioSystems), 200 μ M dATP (Applied BioSystems), 200 μ M dCTP (Applied BioSystems), 200 μ M dCTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1.25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was dispensed into two, light-tight tubes. Each β -Actin primer F75 and R178 (Sigma-Genosys, The Woodlands, TX), was added to one tube of PCR master mix and Each β -GUS primer F178 and R242 (Sigma-Genosys), was added to the other tube of PCR master mix to a final primer concentration of 300nM. 45 μ l of the β -Actin or β -GUS master mix was dispensed into wells, in a 96-well plate (Applied BioSystems). 5 μ l of the template

dilution series was dispensed into triplicate wells for each primer. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) with the following conditions: 10 min. at 95°C; 40 cycles of 95°C for 15 sec, 60°C for 1 min; followed by a disassociation curve starting at 50°C and ending at 95°C.

The Sequence Detection System v2.0 software was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplified multiple products. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T values for triplicate wells were averaged. The data were plotted as a function of the \log_{10} of the calculated starting concentration of RNA. The starting RNA concentration for each cDNA dilution was determined based on the original amount of RNA used in the RT reaction, the dilution of the RT reaction, and the amount used $(5~\mu l)$ in the real-time PCR reaction. For each gene, a linear regression line was plotted through all of the dilutions series points. The slope of the line was used to calculate the efficiency of the reaction for each primer set using the equation:

$$E = 10^{\binom{-1/slope}{slope}} - 1$$

Using this equation (Pfaffl 2001, Applied Biosystems User Bulletin #2), the efficiency for these β -actin primers is 1.28 and the efficiency for these β -GUS primers is 1.14 (Figure 6). This efficiency was used when comparing the expression levels among multiple genes and multiple samples. This same method was used to calculate reaction efficiency for primer pairs for each gene studied. A primer pair was considered successful if the efficiency was reproducibly determined to be between 0.7 and 2.4.

SYBR-GREEN ASSAYS

Once markers passed the Primer Efficiency QPCR (as stated above), they were used in real-time PCR assays. Patient RNA samples were reverse-transcribed to cDNA (as described above) and 1:10 dilutions made in water. In addition to the patient samples, a no template control (NTC) and a pooled reference RNA (see example 2) described in were included on every plate.

The Sybr Green real-time PCR reaction was performed using the Taqman Core PCR Reagent kit (Applied BioSystems, Foster City, CA, N808-0228). A master mix was made that consisted of all reagents except the primers and template. The final concentration of all ingredients in the reaction was 1X Taqman Buffer A (Applied BioSystems), 2mM MgCl2 (Applied BioSystems), 200µM dATP (Applied BioSystems), 200µM dCTP (Applied BioSystems), 200µM dGTP (Applied BioSystems), 400µM dUTP (Applied BioSystems), 1:400,000 diluted Sybr Green dye (Molecular Probes), 1.25U AmpliTaq Gold (Applied BioSystems). The PCR master mix was aliquotted into eight light-tight

tubes, one for each marker to be examined across a set of samples. The optimized primer pair for each marker was then added to the PCR master mix to a final primer concentration of 300nM. 18µl of the each marker master mix was dispensed into wells in a 384well plate (Applied BioSystems). 2µl of the 1:10 diluted control or patient cDNA sample was dispensed into triplicate wells for each primer pair. The reaction was run on an ABI 7900 Sequence Detection System (Applied BioSystems) using the cycling conditions described above.

The Sequence Detection System v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed the majority of the amplification curves to cross the threshold during the linear phase of amplification. The disassociation curve for each well was compared to other wells for that marker. This comparison allowed identification of "bad" wells, those that did not amplify, that amplified the wrong size product, or that amplified multiple products. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T value representing any well identified as bad by analysis of disassociation curves was deleted. The C_T values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was re-calculated. In each plate, ΔC_T was calculated for each marker-control combination by subtracting the average C_T of the target marker from the average C_T of the control (β -Actin or β -GUS). The expression relative to the control marker was calculated by taking two to the power of the ΔC_T of the target marker. For example, expression relative to β -Actin was calculated by the equation:

$$ErA = 2^{\left(C_{T,Actin} - C_{T,t \text{ arg et}}\right)}$$

All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

TAQMAN PROTOCOL

Real-time PCR assays were also done using Taqman PCR chemistry.

The Taqman real-time PCR reaction was performed using the Taqman Universal PCR Master Mix (Applied BioSystems, Foster City, CA, #4324018). The master mix was aliquoted into eight, light-tight tubes, one for each marker. The optimized primer pair for each marker was then added to the correctly labeled tube of PCR master mix. A FAM/TAMRA dual-labeled Taqman probe (Biosearch Technologies, Navoto, CA, DLO-FT-2) was then added to the correctly labeled tube of PCR master mix. Alternatively, different combinations of fluorescent reporter dyes and quenchers can be used such that the absorption wavelength for the quencher matches the emission wavelength for the reporter, as

shown in table 4. 18µl of the each marker master mix was dispensed into a 384well plate (Applied BioSystems). 2µl of the template sample was dispensed into triplicate wells for each primer pair. The final concentration of each reagent was: 1X TaqMan Universal PCR Master Mix, 300nM each primer, 0.25nM probe, 2µl 1:10 diluted template. The reaction was run on an ABI 7900 Sequence Detection System (Applied Biosystems) using standard conditions (95°C for 10 min., 40 cycles of 95°C for 15 sec, 60°C for 1 min.).

The Sequence Detector v2.0 software (Applied BioSystems) was used to analyze the fluorescent signal from each well. The high end of the baseline was adjusted to between 8 and 20 cycles to reduce the impact on any data curves, yet be as high as possible to reduce baseline drift. A threshold value was selected that allowed most of the amplification curves to cross the threshold during the linear phase of amplification. The cycle number at which each amplification curve crossed the threshold (C_T) was recorded and the file transferred to MS Excel for further analysis. The C_T values for triplicate wells were averaged. The C_T values for triplicate wells were averaged. A standard deviation (Stdev) and a coefficient of variation (CV) were calculated for the triplicate wells. If the CV was greater than 2, an outlier among the three wells was identified and deleted. Then the average was recalculated. In each plate, ΔC_T was calculated for each marker-control combination by subtracting the average C_T of the target marker from the average C_T of the control (β -Actin or β -GUS). The expression relative to the control marker was calculated by taking two to the power of the ΔC_T of the target marker. All plates were run in duplicate and analyzed in the same manner. The percent variation was determined for each sample-marker combination (relative expression) by taking the absolute value of the value of the RE for the second plate from the RE for the first plate, and dividing that by the average. If more than 25% of the variation calculations on a plate are greater than 50%, then a third plate was run.

BI-PLEXING

Variation of real-time PCR assays can arise from unequal amounts of RNA starting material between reactions. In some assays, to reduce variation, the control gene amplification was included in the same reaction well as the target gene. To differentiate the signal from the two genes, different fluorescent dyes were used for the control gene. β -Actin was used as the control gene and the TaqMan probe used was labeled with the fluorescent dye VIC and the quencher TAMRA (Biosearch Technologies, Navoto, CA, DLO-FT-2). Alternatively, other combinations of fluorescent reporter dyes and quenchers (table 4) can be used as long as the emission wavelength of the reporter for the control gene is sufficiently different from the wavelength of the reporter dye used for the target. The control gene primers and probe were used at limiting concentrations in the reaction (150 nM primers and 0.125 nM probe) to ensure that there were enough reagents to amplify the target marker. The plates were run under the same protocol and the data are analyzed in the same way, but with a separate baseline and threshold for the VIC signal. Outliers were removed as above from both the FAM and VIC signal channels. The expression relative to control was calculated as above, using the VIC signal from the control gene.

$$ErA = 2^{(C_{T,VIC} - C_{T,FAM})}$$

ABSOLUTE QUANTITATION

Instead of calculating the expression relative to a reference marker, an absolute quantitation can be performed using real-time PCR. To determine the absolute quantity of each marker, a standard curve is constructed using serial dilutions from a known amount of template for each marker on the plate. The standard curve may be made using cloned genes purified from bacteria or using synthetic complimentary oligonucleotides. In either case, a dilution series that covers the expected range of expression is used as template in a series of wells in the plate. From the average C_T values for these known amounts of template a standard curve can be plotted. From this curve the C_T values for the unknowns are used to identify the starting concentration of cDNA. These absolute quantities can be compared between disease classes (i.e. rejection vs. no-rejection) or can be taken as expression relative to a control gene to correct for variation among samples in sample collection, RNA purification and quantification, cDNA synthesis, and the PCR amplification.

CELL TYPE SPECIFIC EXPRESSION

Some markers are expressed only in specific types of cells. These markers may be useful markers for differentiation of rejection samples from no-rejection samples or may be used to identify differential expression of other markers in a single cell type. A specific marker for cytotoxic T-lymphocytes (such as CD8) can be used to identify differences in cell proportions in the sample. Other markers that are known to be expressed in this cell type can be compared to the level of CD8 to indicate differential gene expression within CD8 T-cells.

Control genes for PCR

As discussed above, PCR expression measurements can be made as either absolute quantification of gene expression using a standard curve or relative expression of a gene of interest compared to a control gene. In the latter case, the gene of interest and the control gene are measured in the same sample. This can be done in separate reactions or in the same reaction (biplex format, see above). In either case, the final measurement for expression of a gene is expressed as a ratio of gene expression to control gene expression. It is important for a control gene to be constitutively expressed in the target tissue of interest and have minimal variation in expression on a per cell basis between individuals or between samples derived from an individual. If the gene has this type of expression behavior, the relative expression ratio will help correct for variability in the amount of sample RNA used in an assay. In addition, an ideal control gene has a high level of expression in the sample of interest compared to the genes being assayed. This is important if the gene of interest and control gene are used in a biplex format. The assay is set up so that the control gene reaches its threshold Ct value early and its amplification is limited by primers so that it does not compete for limiting reagents with the gene of interest.

To identify an ideal control gene for an assay, a number of genes were tested for variability between samples and expression in both mononuclear RNA samples and whole blood RNA samples using the RNA procurement and preparation methods and real-time PCR assays described above. 6 whole-blood and 6 mononuclear RNA samples from transplant recipients were tested. The intensity levels and variability of each gene in duplicate experiments on both sample types are shown in figure 8.

Based on criteria of low variability and high expression across samples, β -actin, 18s, GAPDH, b2microglobulin were found to be good examples of control genes for the PAX samples. A single control gene may be incorporated as an internal biplex control is assays.

Controlling for variation in real time PCR

Due to differences in reagents, experimenters, and preparation methods, and the variability of pipetting steps, there is significant plate-to-plate variation in real-time PCR experiments. This variation can be reduced by automation (to reduce variability and error), reagent lot quality control, and optimal data handling. However, the results on replicate plates are still likely to be different since they are run in the machine at different times.

Variation can also enter in data extraction and analysis. Real-time PCR results are measured as the time (measured in PCR cycles) at which the fluorescence intensity (Δ Rn in Applied Biosystems SDS v2.1 software) crosses a user-determined threshold (CT). When performing relative quantification, the CT value for the target gene is subtracted from the CT value for a control gene. This difference, called Δ CT, is the value compared among experiments to determine whether there is a difference between samples. Variation in setting the threshold can introduce additional error. This is especially true in the duplexed experimental format, where both the target gene and the control gene are measured in the same reaction tube. Duplexing is performed using dyes specific to each of the two genes. Since two different fluorescent dyes are used on the plate, two different thresholds are set. Both of these thresholds contribute to each Δ CT. Slight differences in the each dye's threshold settings (relative to the other dye) from one plate to the next can have significant effects on the Δ CT.

There are several methods for setting the threshold for a PCR plate. Older versions of SDS software (Applied Biosystems) determine the average baseline fluorescence for the plate and the standard deviation of the baseline. The threshold is set to 10x the standard deviation of the baseline. In SDS 2.0 the users must set the baseline by themselves. Software from other machine manufacturers either requires the user to set the threshold themselves or uses different algorithms. The latest version of the SDS software (SDS 2.1) contains Automatic baseline and threshold setting. The software sets the baseline separately for each well on the plate using the ΔRn at cycles preceding detectable levels.

Variability among plates is dependent on reproducible threshold setting. This requires a mathematical or experimental data driven threshold setting protocol. Reproducibly setting the threshold according to a standard formula will minimize variation that might be introduced in the threshold setting process.

Additionally, there may be experimental variation among plates that can be reduced by setting the threshold to a component of the data. We have developed a system that uses a set of reactions on each plate that are called the threshold calibrator (TCb). The TCb wells are used to set the threshold on all plates.

- 1. The TCb wells contain a template, primers, and probes that are common among all plates within an experiment.
- 2. The threshold is set within the minimum threshold and maximum threshold determined above.

3. The threshold is set to a value in this range that results in the average CT value for the TCb wells to be the same on all plates.

Example 9: Correlation and Classification Analysis

After generation and processing of expression data sets from microarrays as described in Example 7, a log ratio value is used for most subsequent analysis. This is the logarithm of the expression ratio for each gene between sample and universal reference. The processing algorithm assigns a number of flags to data that are of low signal to noise, saturated signal or are in some other way of low or uncertain quality. Correlation analysis can proceed with all the data (including the flagged data) or can be done on filtered data sets where the flagged data is removed from the set. Filtered data should have less variability and noise and may result in more significant or predictive results. Flagged data contains all information available and may allow discovery of genes that are missed with the filtered data set.

After filtering the data for quality as described above and in example 7, missing data are common in microarray data sets. Some algorithms don't require complete data sets and can thus tolerate missing values. Other algorithms are optimal with or require imputed values for missing data. Analysis of data sets with missing values can proceed by filtering all genes from the analysis that have more than 5%, 10%, 20%, 40%, 50%, 60% or other % of values missing across all samples in the analysis. Imputation of data for missing values can be done by a variety of methods such as using the row mean, the column mean, the nearest neighbor or some other calculated number. Except when noted, default settings for filtering and imputation were used to prepare the data for all analytical software packages.

In addition to expression data, clinical data are included in the analysis. Continuous variables, such as the ejection fraction of the heart measured by echocardiography or the white blood cell count can be used for correlation analysis. Any piece of clinical data collected on study subjects can be used in a correlation or classification analysis. In some cases, it may be desirable to take the logarithm of the values before analysis. These variables can be included in an analysis along with gene expression values, in which case they are treated as another "gene". Sets of markers can be discovered that work to diagnose a patient condition and these can include both genes and clinical parameters. Categorical variables such as male or female can also be used as variables for correlation analysis. For example, the sex of a patient may be an important splitter for a classification tree.

Clinical data are used as supervising vectors (dependent variables) for the significance or classification analysis of expression data. In this case, clinical data associated with the samples are used to divide samples in to clinically meaningful diagnostic categories for correlation or classification analysis. For example, pathologic specimens from kidney biopsies can be used to divide lupus patients into groups with and without kidney disease. A third or more categories can also be included (for example "unknown" or "not reported"). After generation of expression data and definition of supervising vectors, correlation, significance and classification analysis are used to determine which set of genes and set of genes are most appropriate for diagnosis and classification of patients and patient samples.

Two main types of expression data analyses are commonly performed on the expression data with differing results and purposes. The first is significance analyses or analyses of difference. In this case, the goal of the analysis is to identify genes that are differentially expressed between sample groups and to assign a statistical confidence to those genes that are identified. These genes may be markers of the disease process in question and are further studied and developed as diagnostic tools for the indication.

The second major type of analysis is classification analysis. While significance analysis identifies individual genes that are differentially expressed between sample groups, classification analysis identifies gene sets and an algorithm for their gene expression values that best distinguish sample (patient) groups. The resulting gene expression panel and algorithm can be used to create and implement a diagnostic test. The set of genes and the algorithm for their use as a diagnostic tool are often referred to herein as a "model". Individual markers can also be used to create a gene expression diagnostic model. However, multiple genes (or gene sets) are often more useful and accurate diagnostic tools.

Significance analysis for microarrays (SAM)

Significance analysis for microarrays (SAM) (Tusher 2001) is a method through which genes with a correlation between their expression values and the response vector are statistically discovered and assigned a statistical significance. The ratio of false significant to significant genes is the False Discovery Rate (FDR). This means that for each threshold there are some number of genes that are called significant, and the FDR gives a confidence level for this claim. If a gene is called differentially expressed between two classes by SAM, with a FDR of 5%, there is a 95% chance that the gene is actually differentially expressed between the classes. SAM will identify genes that are differentially expressed between the classes. The algorithm selects genes with low variance within a class and large variance between classes. The algorithm may not identify genes that are useful in classification, but are not differentially expressed in many of the samples. For example, a gene that is a useful marker for disease in women and not men, may not be a highly significant marker in a SAM analysis, but may be useful as part of a gene set for diagnosis of a multi-gene algorithm.

After generation of data from patient samples and definition of categories using clinical data as supervising vectors, SAM is used to detect genes that are likely to be differentially expressed between the groupings. Those genes with the highest significance can be validated by real-time PCR (Example 8) or can be used to build a classification algorithm as described here.

Classification

Classification algorithms are used to identify sets of genes and formulas for the expression levels of those genes that can be applied as diagnostic and disease monitoring tests. The same classification algorithms can be applied to all types of expression and proteomic data, including microarray and PCR based expression data. The discussion below describes the algorithms that were used and how they were used.

Classification and Regression Trees (CART) is a decision tree classification algorithm (Breiman 1984). From gene expression and or other data, CART can develop a decision tree for the classification of samples. Each node on the decision tree involves a query about the expression level of

one or more genes or variables. Samples that are above the threshold go down one branch of the decision tree and samples that are not go down the other branch. Genes from expression data sets can be selected for classification building with CART by significant differential expression in SAM analysis (or other significance test), identification by supervised tree-harvesting analysis, high fold change between sample groups, or known relevance to classification of the target diseases. In addition, clinical data can be used as independent variables for CART that are of known importance to the clinical question or are found to be significant predictors by multivariate analysis or some other technique. CART identifies predictive variables and their associated decision rules for classification (diagnosis). CART also identifies surrogates for each splitter (genes that are the next best substitute for a useful gene in classification). Analysis is performed in CART by weighting misclassification costs to optimize desired performance of the assay. For example, it may be most important that the sensitivity of a test for a given diagnosis be > 90%. CART models can be built and tested using 10 fold cross-validation or v-fold cross validation (see below). CART works best with a smaller number of variables (5-50).

Multiple Additive Regression Trees (Friedman, JH 1999, MART) is similar to CART in that it is a classification algorithm that builds decision trees to distinguish groups. MART builds numerous trees for any classification problem and the resulting model involves a combination of the multiple trees. MART can select variables as it build models and thus can be used on large data sets, such as those derived from an 8000 gene microarray. Because MART uses a combination of many trees and does not take too much information from any one tree, it resists over training. MART identifies a set of genes and an algorithm for their use as a classifier.

A Nearest Shrunken Centroids Classifier can be applied to microarray or other data sets by the methods described by Tibshirani et al. 2002. This algorithms also identified gene sets for classification and determines their 10 fold cross validation error rates for each class of samples. The algorithm determines the error rates for models of any size, from one gene to all genes in the set. The error rates for either or both sample classes can are minimized when a particular number of genes are used. When this gene number is determined, the algorithm associated with the selected genes can be identified and employed as a classifier on prospective sample.

For each classification algorithm and for significance analysis, gene sets and diagnostic algorithms that are built are tested by cross validation and prospective validation. Validation of the algorithm by these means yields an estimate of the predictive value of the algorithm on the target population. There are many approaches, including a 10 fold cross validation analysis in which 10% of the training samples are left out of the analysis and the classification algorithm is built with the remaining 90%. The 10% are then used as a test set for the algorithm. The process is repeated 10 times with 10% of the samples being left out as a test set each time. Through this analysis, one can derive a cross validation error which helps estimate the robustness of the algorithm for use on prospective (test) samples. Any % of the samples can be left out for cross validation (v-fold cross validation, LOOCV). When a gene set is established for a diagnosis with an acceptable cross validation error, this set of genes is tested using samples that were not included in the initial analysis (test samples). These samples may be taken from archives generated during the clinical study.

Alternatively, a new prospective clinical study can be initiated, where samples are obtained and the gene set is used to predict patient diagnoses.

Example 10: Assay sample preparation

In order to show that the leukocyte-specific markers of the present invention can be detected in whole blood, we collected whole blood RNA using the PAXgene whole blood collection, stabilization, and RNA isolation kit (PreAnalytix). Varying amounts of the whole blood RNA were used in the initial RT reaction (1, 2, 4, and 8ug), and varying dilutions of the different RT reactions were tested (1:5, 1:10, 1:20, 1:40, 1:80, 1:160). We did real-time PCR assays with primers specific to XDx's markers and showed that we can reliably detect these markers in whole blood.

Total RNA was prepared from 14 mononuclear samples (CPT, BD) paired with 14 whole blood samples (PAXgene, PreAnalytix) from transplant recipients. cDNA was prepared from each sample using $2\mu g$ total RNA as starting material. Resulting cDNA was diluted 1:10 and Sybr green real-time PCR assays were performed.

For real-time PCR assays, Ct values of 15-30 are desired for each gene. If a gene's Ct value is much above 30, the result may be variable and non-linear. For PAX sample, target RNA will be more dilute than in CPT samples. cDNA dilutions must be appropriate to bring Ct values to less than 30.

Ct values for the first 5 genes tested in this way are shown in the table below for both whole blood RNA (PAX) and mononuclear RNA (CPT).

Gene	Ct PAX	Ct CPT
CD20	27.41512	26.70474
4761	28.45656	26.52635
3096	29.09821	27.83281
GranzymeB	31.18779	30.56954
IL4	33.11774	34.8002
Actin	19.17622	18.32966
B-GUS	26.89142	26.92735

With one exception, the genes have higher Ct values in whole blood. Using this protocol, all genes can be detected with Cts <35. For genes found to have Ct values above 30 in target samples, less diluted cDNA may be needed.

Example 11: Identification and validation of gene expression markers for diagnosis and monitoring of lupus and autoimmune diseases.

Patients were enrolled in a clinical study as described in example 4.

58 peripheral blood samples from 22 patients meeting ACR criteria for SLE, 20 patients with rheumatoid arthritis (RA), 6 patients with osteoarthritis (OA), and 10 healthy donors (HD) were collected (see Table 1). Within 1 hour of collection, samples were processed by density gradient centrifugation and mononuclear cells were lysed and frozen using the technique described in example 1. Total RNA was prepared from cell pellets, amplified and labeled with fluorescent Cy3, and hybridized to a custom oligonucleotide microarray of 8143 DNA sequences selected by virtue of

differential or specific expression in activated or resting leukocytes (methods used are described in examples 5-7). After normalization, the log ratio of Cy3 (donor sample) to Cy5 (pooled reference leukocyte RNA) was used for analysis of gene sequences differentially expressed by the SLE samples versus all non-SLE samples. SLE samples were divided into classic or highly probable SLE diagnosis according to American College of Rheumatology clinical criteria or patients with the clinical diagnosis of SLE, but less with fewer classic signs or symptoms or recent treatment with increased immunosuppression.

Significance analysis of microarrays (SAM, Tusher et al. 2001) was used to identify genes that are differentially expressed between Lupus patients and controls (Example 9). These data are shown in Table 2A where genes are listed that were over- or under-expressed in SLE and control samples at various levels of false detection rates (FDR). Each of these genes may have a correlation to disease or disease activity. Also using the methods of example 9, Multiple Additive Regression Trees (MART) was also used to identify genes that best distinguished SLE from control samples in using multi-gene classification models (Table 2C). This analysis identifies gene sets and formulae that relate the genes to create a diagnostic or monitoring assay for lupus. Genes that are a part of a multi-gene algorithm with a low classification error rate on patient samples and a high level of importance in the algorithm are high priority gene markers.

Real-time PCR by techniques described in example 8 was used to confirm and quantify differential expression of selected gene sequences (Table 2B). PCR primers for all marker genes can be designed by these same methods. Many of the genes tested were validated and showed highly significant correlation or anti-correlation to lupus samples.

Hierarchical cluster analysis (Eisen et al. 1998, Example 9) identified both known and undescribed genes that are coexpressed with genes that showed promise in either the array or PCR data as being markers of SLE (Table 2D). Genes were thus grouped into pathways.

Among the genes identified by the significance and classification analysis, at many are members of the IFN regulatory factor or interferon-induced gene families. The interferon alpha family of molecules and pathways have been implicated in the pathogenesis of Lupus for some time. Patients treated with interferon alpha for chronic viral infections can have the side effect of autoimmune phenomena and Lupus. IFN-a levels are elevated in sera from patients with SLE, RA, Sjogren's syndrome, and scleroderma. IFN-a may also be involved in the very earliest events that initiate autoimmunity. Identification of the specific IFN-a gene products expressed in SLE may allow selective therapeutic targeting of pathogenic cytokines while sparing those IFN's that are protective in the setting of virus infection.

Table 1: Samples used in array and PCR expression profiling experiments

atient	PrimaryDx	Dx1	Dx2	PCR
ationt	C	0	0	
	C	0	0	x
	C	0	2	x
	C	0	0	
	C	0	0	x
	C	0	0	
		0	0	x
	C	0	0	х
<u> </u>	C	0	0	
	C	0	0	
0	C	0	0	х
1	OA		0	X
2	OA	0	0	x
3	OA	0	0	x
4	OA	0	0	X
5	OA	0	0	A
6	OA	0		х
.7	RA	0	0	
.8	RA	0	0	
.9	RA	0	0	
20	RA	0	0	
21	RA	0	0	
22	RA	0	0	X
23	RA	0	0	
24	RA	0	0	X
25	RA	0	0	
26	RA	0	0	X
27	RA	0	0	x
28	RA	0	0	
29	RA	0	0	x
30	RA	0	0	х
31	RA	0	2	X
32	RA	0	0	
33	RA	0	0	x
34	RA	0	0	
	RA	0	0	
35	RA	0	0	
36	SLE	1	2	x
37	SLE	1	2	
38	SLE	1	1	
39		1	1	x
40	SLE	1	2	x
41	SLE	1	1	x
42	SLE		1	
43	SLE	1	1	x
44	SLE	1	2	X
45	SLE	1	2	х
46	SLE	1	1	X
47	SLE	1	1	X
48	SLE	11		X
49	SLE	1	1	
50	SLE	1	1	
51 52	SLE	1	1	X
52	SLE	1	1	X

Table 1: Samples used in array and PCR expression profiling experiments

Patient	PrimaryDx	Dx1	Dx2	PCR
53	SLE	1	2	x
54	SLE	1	1	
55	SLE	1	2	x
56	SLE	1	2	x
57	SLE	1	1	
58	SLE	1	1	

SEQ ID		SEQ ID Full			SAM	SAM
50mer	ACC		нѕ	Gene	FDR	Up/Down
515	NM_031157			heterogeneous nuclear ribonucleoprotein A1 (HNRPA1), transcript variant 2, mRNA /cds=(104,1222)	0.0909	down
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4, clone MGC:2966 IMAGE:3139805, mRNA, complete cds /cds=(1616,2617)	0.0909	down
519	BE550944	17	Hs.61426	602329933F1 cDNA	0.0909	down
520	L13385	18	Hs.77318	Miller-Dieker lissencephaly protein (LIS1)	0.0909	down
521	AF315591	19	Hs.6151	pumilio (Drosophila) homolog 2 (PUM2)	0.0909	down
522	AK025620	20	Hs.5985	cDNA: FLJ21967 fis, clone HEP05652, highly similar to AF131831 clone 25186 mRNA sequence /cds=UNKNOWN	0.0909	down
523	AK026747	21	Hs.12969	cDNA: FLJ23094 fis, clone LNG07379	0.0909	down
524	NM_001731		Hs.77054	B-cell translocation gene 1, anti-proliferative (BTG1), mRNA /cds=(308,823)	0.0909	down
525	NM_004281		Hs.15259	BCL2-associated athanogene 3 (BAG3), mRNA /cds=(306,2033)	0.0909	down
526	XM_008738	24	Hs.79241	B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial protein, transcript variant alpha, mRNA /cds=(31,750)	0.0909	down
527	XM_018498	25	Hs.180946	ribosomal protein L5 pseudogene mRNA, complete cds /cds=UNKNOWN	0.0909	down
528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene, complete cds /cds=(795,9965)	0.0909	down
529		27	Hs.279860	tumor protein, translationally-controlled 1 (TPT1), mRNA /cds=(94,612)	0.0909	down
530	NM_003133		Hs.75975	signal recognition particle 9kD (SRP9), mRNA /cds=(106,366)	0.1042	down
531	NM_004261	29	Hs.90606	15 kDa selenoprotein (SEP15), mRNA /cds=(4,492)	0.1042	down
532	NM_002300	30	Hs.234489	Homo sapiens, lactate dehydrogenase B, clone MGC:3600 IMAGE:3028947, mRNA, complete cds /cds=(1745,2749)	0.1071	down
533	NM_003853	31	Hs.158315	interleukin 18 receptor accessory protein (IL18RAP), mRNA /cds=(483,2282)	0.1071	down
534	X53777	32	Hs.82202	ribosomal protein L17 (RPL17), mRNA /cds≃(286,840)	0.1071	down
535	N27575	33	Hs.75613	CD36 antigen (collagen type I receptor, thrombospondin receptor) (CD36), mRNA /cds=(132,1550)	0.1167	down
536	NM_006800	34	Hs.88764	male-specific lethal-3 (Drosophila)-like 1 (MSL3L1), mRNA /cds=(105,1670)	0.1167	down
537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)	0.141	down
538	NM_003756		Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds=(5,1063)	0.141	down
539	NM_021950		Hs.89751	CD20 antigen	0.141	down
540	AK021632	38	Hs.11571	cDNA FLJ11570 fis, clone HEMBA1003309 /cds=UNKNOWN	0.141	down

ero in		SEQ ID)			
SEQ ID 50mer	ACC	Full	нѕ	Gene	SAM	SAM
541	AK025583	length 39	Hs.82845	cDNA: FLJ21930 fis, clone HEP04301, highly similar to	FDR 0.141	Up/Down
J41	AR02000	39	115.02040	HSU90916 clone 23815 mRNA sequence /cds=UNKNOWN	0.141	down
542	NM_000661	40	Hs.157850	Homo sapiens, clone MGC:15545 IMAGE:3050745, mRNA, complete cds /cds=(1045,1623)	0.141	down
543	NM_001057	41	Hs.161305	tachykinin receptor 2 (TACR2), mRNA /cds=(0,1196)	0.141	down
544	X60656	42		eukaryotic translation elongation factor 1 beta 2 (EEF1B2), mRNA /cds=(235,912)	0.141	down
545	NM_004779	43	Hs.26703	CNOT8 CCR4-NOT transcription complex, subunit 8	0.1628	down
546	X58529	44	Hs.302063	rearranged immunoglobulin mRNA for mu heavy chain enhancer and constant region /cds=UNKNOWN	0.1628	down
547	NM_016091	45	Hs.119503	HSPC025 (HSPC025), mRNA /cds=(33,1727)	0.1705	down
548	NM_001006	46	Hs.77039	ribosomal protein S3A (RPS3A), mRNA /cds=(36,8	0.1739	down
549	NM_001568	47	Hs.106673	eukaryotic translation initiation factor 3, subunit 6 (48kD) (EIF3S6), mRNA /cds=(22,1359)	0.1739	down
550	BC001854	48	Hs.77502	, methionine adenosyltransferase II, alpha, c	0.193	down
551	NM_000983	49	Hs.326249	ribosomal protein L22 (RPL22), mRNA /cds=(51,437)	0.193	down
552	NM_001006	50	Hs.155101	, , ,	0.193	down
553	NM_001403	51		eukaryotic translation elongation factor 1 alpha 1-like 14 (EEF1A1L14), mRNA /cds=(620,1816)	0.193	down
554	NM_002796		Hs.89545	proteasome (prosome, macropain) subunit, beta type, 4 (PSMB4), mRNA /cds=(23,817)	0.193	down
555	NM_016304		Hs.284162	60S ribosomal protein L30 isolog (LOC51187), mRNA /cds=(143,634)	0.193	down
556	NM_017918			hypothetical protein FLJ20647 (FLJ20647), mRNA /cds=(90,836)	0.193	down
557	AA788623	55		yc77a06.s1 cDNA, 3' end /clone=IMAGE:21844 /clone_end=3'	0.193	down
558	NM_001961	56	Hs.75309	eukaryotic translation elongation factor 2 (EEF2), mRNA /cds=(0,2576)	0.193	down
559	AK026309	57	Hs.12436	cDNA: FLJ22656 fis, clone HSI07655 /cds=UNKNOWN		down
560		58		Homo sapiens, ribosomal protein L30, clone MGC:2797, mRNA, complete cds /cds=(29,376)	0.1949	down
561		59	Hs.1600	Homo sapiens, clone IMAGE:3543711, mRNA, partial cds /cds=(0,1620)	0.1949	down
562		60		heterogeneous nuclear ribonucleoprotein H2 (H') (HNRPH2), mRNA /cds≈(78,1427)	0.2131	down
563	U61267	61	Hs.30035	putative splice factor transformer2-beta mRN	0.2133	down
564	X14356	62	Hs.77424	high affinity Fc receptor (FcRI) /cds=(36,116	0.2133	down
565	AF267856	63	Hs.8084	HT033 mRNA, complete cds /cds=(203,931)	0.2133	down
566	AK025306	64	Hs.2083	cDNA: FLJ21653 fis, clone COL08586, highly similar to HUMKINCDC protein kinase mRNA /cds=UNKNOWN	0.2133	down

een in		SEQ ID	!		6411	
SEQ ID 50mer	ACC	Full length	HS	Gene	SAM FDR	SAM Up/Down
567	AL162068	65		HSP22-like protein interacting protein (LOC64165),	0.2133	down
	AL102000		113.002040	mRNA /cds=(0,155)	0.2100	down
568	NM_004768		Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA /cds=(83,1537)		
569	NM_005594	67		transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) (TAP1), mRNA /cds=(30,2456)	0.2133	down
570	Al440234	68	Hs.9614	Nucleophosmin (probe bad, mutations, wrong clone used) (nucleolar phosphoprotein B23, numatrin)	0.2133	down
571	'	69		xm08h07.x1 cDNA, 3' end /clone=IMAGE:2683645 /clone_end=3'	0.2133	down
572	NM_005826	70	Hs.15265	heterogeneous nuclear ribonucleoprotein R (HNRPR), mRNA /cds=(90,1991)	0.2133	down
573	Al568695	71	Hs.75969	proline-rich protein with nuclear targeting signal (B4-2), mRNA /cds=(113,1096)	0.2133	down
574	AL110225	72	Hs.89434	drebrin 1 (DBN1), mRNA /cds=(97,2046)	0.2171	down
575	AL110151	73	Hs.128797	mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080)	0.2403	down
576	NM_006495	74	Hs.5509	ecotropic viral integration site 2B (EVI2B), mRNA /cds=(0,1346)	0.2628	down
577	M74002	75	Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA/cds=(83,1537)	0.2759	down
578	AK002173	76	Hs.5518	cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN	0.2759	down
579	AK024976	77	Hs.323378	coated vesicle membrane protein (RNP24), mRNA /cds=(27,632)	0.2759	down
580	BC000967	78	Hs.195870	chronic myelogenous leukemia tumor antigen 66 mRNA, complete cds, alternatively spliced /cds=(232,1983)	0.2759	down
581	NM_016312	79	Hs.334811	Npw38-binding protein NpwBP (LOC51729), mRNA /cds=(143,2068)	0.2759	down
582	X57347	80	Hs.74405	tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, theta polypeptide (YWHAQ), mRNA /cds=(100,837)	0.2759	down
583	BG424974	81	Hs.292457	Homo sapiens, clone MGC:16362 IMAGE:3927795, mRNA, complete cds /cds=(498,635)	0.276	down
584	U89387	82	Hs.194638	polymerase (RNA) II (DNA directed) polypeptide D (POLR2D), mRNA /cds=(30,458)	0.2784	down
585	AB034205	83	Hs.278670		0.3	down
586	XM_008062	84	Hs.17279	tyrosylprotein sulfotransferase 1 (TPST1), mRNA /cds=(81,1193)	0.3	down
587	NM_016099	85	Hs.7953	HSPC041 protein (LOC51125), mRNA /cds=(141,455)	0.3022	down
588	NM_022898	86	Hs.57987	B-cell lymphoma/leukaemia 11B (BCL11B), mRNA /cds=(267,2738)	0.3533	down
589	NM_006759	87	Hs.77837	UDP-glucose pyrophosphorylase 2 (UGP2), mRNA /cds=(84,1610)	0.367	down
590	AF079566	88	Hs.4311	SUMO-1 activating enzyme subunit 2 (UBA2), mRNA /cds=(25,1947)	0.3798	down
591	NM_001024	89	Hs.182979	cDNA: FLJ22838 fis, clone KAIA4494, highly similar to HUML12A ribosomal protein L12 mRNA /cds=UNKNOWN	0.3798	down
592	NM_017761	90	Hs.7862	hypothetical protein FLJ20312 (FLJ20312), mRNA /cds=(133,552)	0.3798	down

050 10		SEQ ID				
SEQ ID	ACC	Full	110	Como	SAM	SAM
50mer 593	U15085	length 91	HS Hs.1162	Gene major histocompatibility complex, class II, DM beta	FDR 0.3798	Up/Down down
				(HLA-DMB), mRNA /cds=(233,1024)		
594	AW572538	92	Hs.42915	ARP2 (actin-related protein 2, yeast) homolog (ACTR2), mRNA /cds=(74,1258)	0.3798	down
595	AK025557	93	Hs.110771	cDNA: FLJ21904 fis, clone HEP03585 /cds=UNKNOWN	0.3798	down
596	NM_003854	94	Hs.102865	interleukin 1 receptor-like 2 (IL1RL2), mRNA /cds=(134,1822)	0.3798	down
597	AF116679	95	Hs.288036	tRNA isopentenylpyrophosphate transferase (IPT), mRNA /cds=(60,1040)	0.38	down
598	AF148537	96	Hs.65450	reticulon 4a mRNA, complete cds /cds=(141,3719)	0.3857	down
599	NM_017892	97	Hs.107213	hypothetical protein FLJ20585 (FLJ20585), mRNA /cds=(99,746)	0.3972	down
600	NM_000967	98	Hs.119598	ribosomal protein L3 (RPL3), mRNA /cds=(6,1217)	0.4174	down
601	NM_000971	99	Hs.153	ribosomal protein L7 (RPL7), mRNA /cds=(10,756)	0.4174	down
602	AF012872	100	Hs.334874	phosphatidylinositol 4-kinase 230 (pi4K230) mRNA, complete cds /cds=(0,6134)	0.4174	down
603	BC004900	101	Hs.151242	serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1), mRNA /cds=(60,1562)	0.4174	down
604	NM_002298	102	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin) (LCP1), mRNA /cds=(173,2056)	0.4174	down
605	X59405	103	Hs.83532	H.sapiens, gene for Membrane cofactor protein /cds=UNKNOWN	0.4174	down
606	AL049935	104	Hs.301763	mRNA; cDNA DKFZp564O1116 (from clone DKFZp564O1116) /cds=UNKNOWN	0.4174	down
607	NM_017860	105	Hs.79457	hypothetical protein FLJ20519 (FLJ20519), mRNA /cds=(74,604)	0.4181	down
608	J04142	106	Hs.1799	CD1D antigen, d polypeptide (CD1D), mRNA /cds=(164,1171)	0.4231	down
609	NM_016127	107	Hs.279921	HSPC035 protein (LOC51669), mRNA /cds=(16,1035)	0.4622	down
610	AK023379	108	Hs.155160	Homo sapiens, Similar to splicing factor, arginine/serine-rich 2 (SC-35)	0.4798	down
611	L11284	109	Hs.3446	mitogen-activated protein kinase kinase 1 (MAP2K1), mRNA /cds=(72,1253)	0.4798	down
612	NM_002710	110	Hs.79081	protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC), mRNA /cds=(154,1125)	0.4798	down
613	NM_004380	111	Hs.23598	CREB binding protein (Rubinstein-Taybi syndrome) (CREBBP), mRNA /cds=(198,7526)	0.4798	down
614	AW028193	112	Hs.135872	wv61h08.x1 cDNA, 3' end /clone=IMAGE:2534079 /clone_end=3'	0.4798	down
615	NM_001436	113	Hs.99853	fibrillarin (FBL), mRNA /cds=(59,1024)	0.484	down
616	AB007916	114	Hs.214646	mRNA for KIAA0447 protein, partial cds /cds=(233,1633)	0.5	down
617	AL137681	115	Hs.173912	l	0.5	down
618	BC003090	116	Hs.75193	COP9 homolog (COP9), mRNA /cds=(49,678)	0.5	down
619	U15173	117	Hs.155596	BCL2/adenovirus E1B 19kD-interacting protein 2 (BNIP2), mRNA /cds=(211,1155)	0.5	down

SEQ ID		SEQ ID Full			e A B A	CANA
ระนาบ 50mer	ACC	ľ	НS	Gene	SAM FDR	SAM Up/Down
620	NM 014210		Hs.70499	ecotropic viral integration site 2A (EVI2A), mRNA	0.5301	down
				/cds=(219,917)		
621	NM_001011		Hs.301547	ribosomal protein S7 (RPS7), mRNA /cds=(81,665)	0.5331	down
622	U07802	120	Hs.78909	Tis11d gene, complete cds /cds=(291,1739)	0.5331	down
623	Al817153	121	Hs.86693	EST380760 cDNA	0.5331	down
624	NM_006791	122	Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds=(131,1102)	0.56	down
625	NM_004500	123	Hs.182447	heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRPC), transcript variant 1, mRNA /cds=(191,1102)	0.5616	down
626	M16660	124	Hs.318720	Homo sapiens, clone MGC:12387 IMAGE:3933019, mRNA, complete cds /cds=(63,863)	0.588	down
627	NM_001000	125	Hs.300141	cDNA FLJ14163 fis, clone NT2RP1000409 /cds=UNKNOWN	0.5909	down
628	BC008737	126	Hs.164280	Homo sapiens, Similar to solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5, clone MGC:3042 IMAGE:3342722, mRNA, complete cds /cds=(88,984)	0.5938	down
629	BE222392	127	Hs.79914	lumican (LUM), mRNA /cds=(84,1100)	0.6062	down
630	BC010112	128	Hs.79037	Homo sapiens, heat shock 60kD protein 1 (chaperonin), clone MGC:19755 IMAGE:3630225, mRNA, complete cds /cds=(1705,3396)	0.6062	down
631	AK025586	129	Hs.27268	cDNA: FLJ21933 fis, clone HEP04337 /cds=UNKNOWN	0.6224	down
632	NM_015057	130	Hs.151411	KIAA0916 protein (KIAA0916), mRNA /cds=(146,14071)	0.6351	down
633	U10550	131	Hs.79022	GTP-binding protein overexpressed in skeletal muscle (GEM), mRNA /cds=(213,1103)	0.6433	down
634	NM_000986	132	Hs.184582	DPP7 alveolar r	0.6487	down
635	NM_000993	133	Hs.184014	ribosomal protein L31 (RPL31), mRNA /cds=(7,384)	0.6487	down
636	NM_001688	134	Hs.81634	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1 (ATP5F1), mRNA /cds=(32,802)	0.6487	down
637	Al356505	135	Hs.228874	qz22b04.x1 cDNA, 3' end /clone=IMAGE:2027599 /clone_end=3'	0.6487	down
638	AF119850	136	Hs.2186	Homo sapiens, eukaryotic translation elongation factor 1 gamma, clone MGC:4501 IMAGE:2964623, mRNA, complete cds /cds=(2278,3231)	0.6487	down
639	AF132197	137	Hs.301824	hypothetical protein PRO1331 (PRO1331), mRNA /cds=(422,616)	0.6667	down
640	NM_006925	138	Hs.166975	splicing factor, arginine/serine-rich 5 (SFRS5), mRNA /cds=(218,541)	0.6667	down
641	NM_002001	139	Hs.897	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide (FCER1A), mRNA /cds=(106,879)	0.6667	down
513	BC036402	11	NA	116C9	0.6691	up
642	W00466	140	Hs.44189	yz99f01.s1 cDNA, 3' end /clone=IMAGE:291193 /clone_end=3'	0.6691	up

SEQ ID		SEQ ID			SAM	SAM
50mer	ACC	i	нѕ	Gene	FDR	Up/Down
643	D17042	141	Hs.50651	Janus kinase 1 (a protein tyrosine kinase) (JAK1), mRNA /cds=(75,3503)	0.6867	down
644	NM_003380	142	Hs.297753		0.6867	down
645	NM_016824	143		adducin 3 (gamma) (ADD3), transcript variant 1, mRNA /cds=(31,2151)	0.6867	down
646	Al581383	144		to71c02.x1 cDNA, 3' end /clone=IMAGE:2183714 /clone_end=3'	0.6867	down
647	BC005913	145	Hs.1074	surfactant, pulmonary-associated protein C (SFTPC), mRNA /cds=(27,620)	0.6994	down
648	NM_004811	146	Hs.49587	leupaxin (LPXN), mRNA /cds=(93,1253)	0.6994	down
649	AL357536	147	Hs.3576	Homo sapiens, Similar to RIKEN cDNA 5730494N06 gene, clone MGC:13348 IMAGE:4132400, mRNA, complete cds /cds=(132,494)	0.7029	down
650	NM_022570	148		C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 12 (CLECSF12), mRNA /cds=(71,676)	0.7029	down
651	NM_004396	149	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 (RNA helicase, 68kD) (DDX5), mRNA /cds=(170,2014)	0.7151	down
652	AK026372	150	Hs.143631	cDNA: FLJ22719 fis, clone HSI14307 /cds=UNKNOWN	0.7225	down
653	XM_012059	151	Hs.154938	hypothetical protein MDS025 (MDS025), mRNA /cds=(5,769)	0.7299	down
654	XM_011914	152		ribosomal protein S24 (RPS24), transcript variant 1, mRNA /cds=(37,429)	0.7301	down
655	NM_020414			sperm autoantigenic protein 17 (SPA17), mRNA /cds=(1210,1665)	0.7301	down
656	S73591	154		upregulated by 1,25-dihydroxyvitamin D-3 (VDUP1), mRNA /cds=(221,1396)	0.7373	down
657	J00194	155	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA-DRA), mRNA /cds=(26,790)	0.7989	down
658		156		/cds=UNKNOWN	0.7989	down
659	AK027187	157	Hs.289071	cDNA: FLJ22245 fis, clone HRC02612 /cds=UNKNOWN	0.7989	down
660	AL117595	158		mRNA; cDNA DKFZp564C2063 (from clone DKFZp564C2063) /cds=UNKNOWN	0.7989	down
661	NM_002823			prothymosin, alpha (gene sequence 28) (PTMA), mRNA /cds=(155,487)	0.7989	down
662	NM_004327			breakpoint cluster region (BCR), transcript variant 1, mRNA /cds=(488,4303)	0.7989	down
663	NM_017830		Hs.132071	ovarian carcinoma immunoreactive antigen (OCIA), mRNA /cds=(167,904)	0.7989	down
664	X06557	162	Hs.2014	mRNA for T-cell receptor delta /cds=UNKNOWN		down
665	Al146787	163		qb83f02.x1 cDNA, 3' end /clone=IMAGE:1706715 /clone_end=3'	0.7989	down
666	Al568771	164		th15h04.x1 cDNA, 3' end /clone=IMAGE:2118391 /clone_end=3'	0.7989	down
667	AW195119	165		xn66b07.x1 cDNA, 3' end /clone=IMAGE:2699413 /clone_end=3'	0.7989	down
668	NM_016316	166		REV1 (yeast homolog)- like (REV1L), mRNA /cds=(212,3967)	0.8132	down

SEQ ID		SEQ ID Full			SAM	SAM
50mer	ACC	length_		Gene	FDR	Up/Down
69	AV724531	167	Hs.76728	602570065F1 cDNA, 5' end /clone=IMAGE:4694321 /clone_end=5'	0.8594	down
370	AK002059	168	Hs.92918	hypothetical protein (BM-009), mRNA /cds=(385,1047)	0.8594	down
671	NM_001503	169	Hs.272529	glycosylphosphatidylinositol specific phospholipase D1 (GPLD1), mRNA /cds=(32,2557)	0.8653	down
372	AA251806	170		zs09c03.s1 cDNA, 3' end /clone=IMAGE:684676 /clone_end=3'	0.8734	up
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7) mRNA /cds=(105,490)	0.8883	down
673	NM_004315	171	Hs.75811	N-acylsphingosine amidohydrolase (acid ceramidase) (ASAH), mRNA /cds≈(17,1204)	0.8883	down
674	NM_004371	172		coatomer protein complex, subunit alpha (COPA), mRNA /cds=(466,4140)	0.8883	down
675	AF054284	173		splicing factor 3b, subunit 1, 155kD (SF3B1), mRNA /cds=(0,3914)	0.8889	down
676	BE613237	174		RNA binding motif protein, X chromosome (RBMX), mRNA /cds=(11,1186)	0.9257	down
677	NM_003367		Hs.93649	upstream transcription factor 2, c-fos intera	0.9542	up
678	AB014522	176	Hs.11238	mRNA for KIAA0622 protein, partial cds /cds=(0,3869)	0.9542	ир
679	AW137104	177	Hs.8121	Notch (Drosophila) homolog 2 (NOTCH2), mRNA /cds=(12,7427)	0.9542	up
680	BF897042	178		FLJ32028 hypothetical protein FLJ32028	0.9542	up
681	BC002900	179	Hs.181309	2 (PSMA2), mRNA /cds≈(0,704)	0.9563	down
682	AL578975	180	Hs.5057	AL578975 cDNA /clone=CS0DK012YN01-(3-prime)	0.9563	down
683	NM_000988	181	Hs.111611	ribosomal protein L27 (RPL27), mRNA /cds≃(17,427)	0.9662	down
684	NM_003769		Hs.77608	splicing factor, arginine/serine-rich 9 (SFRS9), mRNA /cds=(52,717)	1.0167	down
685	U94855	183	Hs.7811	eukaryotic translation initiation factor 3, subunit 5 (epsilon, 47kD) (EIF3S5), mRNA /cds=(6,1079)	1.0167	down
686	AV749844	184	Hs.26670	PAC clone RP3-515N1 from 22q11.2-q22 /cds=(0,791)		down
687	BC003352	185	Hs.326456	/cds=(1,1239)	1.0236	down
688	AU135154	186	Hs.172028	(ADAM10), mRNA /cds=(469,2715)	1.0327	down
689	AF208850	187	Hs.82911	BM-008 mRNA, complete cds /cds=(341,844)	1.0822	down
690	D29805	188	Hs.198248	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 (B4GALT1), mRNA /cds=(72,1268)	1.0822	down
691	NM_006098	189	Hs.5662	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1), mRNA /cds=(95,1048)	1.0822	down
692	NM_001755	190	Hs.179881	variant 2, mRNA /cds=(11,559)	1.0905	down
693	NM_007355	191	Hs.74335	heat shock 90kD protein 1, beta (HSPCB), mRNA /cds=(0,2174)	1.0905	down

		SEQ ID				1
SEQ ID		Full			SAM	SAM
	ACC	length	HS	Gene	FDR	Up/Down
694	W47229	192	Hs.173334	ELL-RELATED RNA POLYMERASE II, ELONGATION FACTOR (ELL2), mRNA /cds=(0,1922)	1.1	}
695	X51345	193	Hs.198951	jun B proto-oncogene (JUNB), mRNA /cds=(253,1296)	1.1	
506	NM_006417	4	Hs.82316	interferon-induced, hepatitis C-associated microtubular aggregate protein (44kD) (MTAP44), mRNA /cds=(0,1334)	1.1077	up
696	Al364677	194	Hs.368853		1.1077	up
697	Al380594	195	Hs.231261	tf95h06.x1 cDNA, 3' end /clone=IMAGE:2107067 /clone_end=3'		up
698	NM_001641		Hs.73722	APEX nuclease (multifunctional DNA repair enzyme) (APEX), mRNA /cds=(205,1161)	1.1138	down
699	NM_002786	197	Hs.82159	proteasome (prosome, macropain) subunit, alpha type, 1 (PSMA1), mRNA /cds=(105,896)	1.1138	down
700	J02621	198		high-mobility group (nonhistone chromosomal) protein 14 (HMG14), mRNA /cds=(150,452)	1.115	down
701	NM_019111		Hs.76807	major histocompatibility complex, class II, DR alpha (HLA-DRA), mRNA /cds=(26,790)	1.115	down
702	AF248966	200	Hs.183434	ATPase, H+ transporting, lysosomal (vacuolar proton pump) membrane sector associated protein M8-9 (APT6M8-9)	1.1336	down
703	D31767	201	Hs.75416	DAZ associated protein 2 (DAZAP2), mRNA /cds=(69,575)	1.1336	down
704	NM_006839	202	Hs.78504	inner membrane protein, mitochondrial (mitofilin) (IMMT), mRNA /cds≃(92,2368)	1.1336	down
705	Al581732	203	Hs.229918	ar74f03.x1 cDNA, 3' end /clone=IMAGE:2128349 /clone_end=3'	1.1336	down
706	NM_019059	204	Hs.274248	hypothetical protein FLJ20758 (FLJ20758), mRNA /cds=(464,1306)	1.1438	down
707	NM_001033	205	Hs.2934	ribonucleotide reductase M1 polypeptide (RRM1), mRNA /cds=(187,2565)	1.1525	down
708	NM_002719		Hs.171734	protein phosphatase 2, regulatory subunit B (B56), gamma isoform (PPP2R5C), mRNA /cds=(88,1632)	1.1525	down
709	NM_003791	207	Hs.75890	membrane-bound transcription factor protease, site 1 (MBTPS1), mRNA /cds=(496,3654)	1.1772	down
710	NM_001105	208	Hs.150402	activin A receptor, type I (ACVR1), mRNA /cds=(340,1869)	1.1833	down
711	BG179517	209	Hs.99093	chromosome 19, cosmid R28379 /cds=(0,633)	1.1833	down
712	BF940103	210	Hs.26136	hypothetical protein MGC14156 (MGC14156), mRNA /cds=(82,426)	1.1833	down
713	AF061736	211	Hs.169895	ubiquitin-conjugating enzyme E2L 6 (UBE2L6), mRNA /cds=(47,508)	1.6	
714	AK023680	212	Hs.17448	cDNA FLJ13618 fis, clone PLACE1010925 /cds=UNKNOWN	1.6	
715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1 (CCR1), mRNA /cds=(62,1129)	1.6	
716	NM_003811	214	Hs.1524	tumor necrosis factor (ligand) superfamily, member 9 (TNFSF9), mRNA /cds=(3,767)	1.6	
717	X02812	215	Hs.1103	transforming growth factor, beta 1 (TGFB1), mRNA /cds=(841,2016)	1.6	
718	NM_002205	216	Hs.149609	integrin, alpha 5 (fibronectin receptor, alpha polypeptide) (ITGA5), mRNA /cds=(23,3172)	1.6	

SEQ ID	l	SEQ ID Full			SAM	SAM
50mer	ACC		нѕ	Gene	FDR	Up/Down
719	Al818777	217	Hs.229990		1.6	J.
720	NM_005892	218	Hs.100217	formin-like (FMNL), mRNA /cds=(39,1430)	1.6	
721	M26252	219	Hs.198281	pyruvate kinase, muscle (PKM2), mRNA /cds=(109,1704)	1.6	
722	AB002377	220	Hs.32556	mRNA for KIAA0379 protein, partial cds /cds=(0,3180)	1.6324	up
723	Al381586	221	Hs.87908	Snf2-related CBP activator protein (SRCAP), mRNA /cds=(210,9125)	1.6662	up
724	BG760189	222	Hs.37617	602144947F1 cDNA, 5' end /clone=IMAGE:4308683 /clone_end=5'	2.0136	up
725	NM_006913			ring finger protein 5 (RNF5), mRNA /cds=(0,542)	2.0853	up
726	AF189011	224	Hs.49163	ribonuclease III (RN3) mRNA, complete cds /cds=(245,4369)	2.246	up
727	AK022834	225	Hs.58488	catenin (cadherin-associated protein), alpha-like 1 (CTNNAL1), mRNA /cds=(43,2247)	2.3244	up
728	NM_002878			RAD51 (S. cerevisiae)-like 3 (RAD51L3), mRNA /cds=(124,993)	2.3244	up
729	BF899464	227	NA	IL5-MT0211-011200-317-f03 MT0211 cDNA, mRNA sequence	2.3244	up
730		228		Ul-H-BW1-ame-a-12-0-Ul.s1 cDNA, 3' end /clone=IMAGE:3069598 /clone_end=3'	2.3244	up
731	NM_005508			chemokine (C-C motif) receptor 4 (CCR4), mRNA /cds=(182,1264)	2.3244	up
732	X16354	230	Hs.50964	mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA) /cds=(72,1652)	2.468	up
733	AA581115	231		oe10d02.s1 cDNA /clone=IMAGE:1385475	2.468	lup
734	NM_005485	232	Hs.271742	ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)-like 3 (ADPRTL3), mRNA /cds=(246,1847)	2.468	up
735	NM_005816	233		T cell activation, increased late expression (TACTILE), mRNA /cds=(928,2637)	2.468	up
736	BG033294	234	Hs.118787	transforming growth factor, beta-induced, 68kD (TGFBI), mRNA /cds=(47,2098)	2.468	up
737	K01566	235		B-factor, properdin	2.468	ир
738	T25714	236		ESTDIR309 cDNA, 3' end /clone=CDDIRX9 /clone_end=3'	2.468	up
739	NM_022873			interferon, alpha-inducible protein (clone IFI-6-16) (G1P3), transcript variant 3, mRNA /cds=(107,523)	2.468	up
740	X99699	238		XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)	2.67	
741	AF067519	239	}	PITSLRE protein kinase beta SV1 isoform (CDC2L2) mRNA, complete cds /cds=(79,2412)	2.7771	up
742	BG387694	240		cell cycle progression 2 protein (CPR2), mRNA /cds=(126,1691)	2.7771	up
743	AF104032	241		L-type amino acid transporter subunit LAT1 mRNA, complete cds /cds=(66,1589)	2.7771	ир
744	NM_012177		Hs.272027	F-box only protein 5 (FBXO5), mRNA /cds=(61,1404)	2.7771	up
745	AL042370	243	Hs.79709	phosphotidylinositol transfer protein (PITPN), mRNA /cds=(216,1028)	2.9579	up

eeo in		SEQ ID			SAM	S A NA
SEQ ID 50mer	ACC	Full length	нѕ	Gene	FDR	SAM Up/Down
746	BC009469	244		mRNA for FLJ00043 protein, partial cds /cds=(0,4248)	2.9579	up
40	DC009409	244	118.207797	mittan for a 2000043 protein, partial cus reus-(0,4240)	2.8018	lup
47	AA319163	245	Hs.424299	RPLP1 ;germinal	2.9579	up
748	Al393970	246	Hs.76239	hypothetical protein FLJ20608 (FLJ20608), mRNA /cds=(81,680)	2.9579	up
749	NM_014481	247	Hs.154149	Homo sapiens, apurinic/apyrimidinic endonuclease(APEX nuclease)-like 2 protein, clone MGC:1418 IMAGE:3139156, mRNA, complete cds /cds=(38,1594)	2.9579	ир
750	NM_017774	248	Hs.306668	cDNA FLJ14089 fis, clone MAMMA1000257 /cds=UNKNOWN	2.9579	up
751	NM_017859	249	Hs.39850	hypothetical protein FLJ20517 (FLJ20517), mRNA /cds=(44,1690)	2.9579	up
752	R44202	250	Hs.240013	mRNA; cDNA DKFZp547A166 (from clone DKFZp547A166) /cds=UNKNOWN	2.9579	up
753	NM_002904	251	Hs.106061	RD RNA-binding protein (RDBP), mRNA /cds=(108,1250)	2.9579	ир
754	AL133642	252	Hs.241471	nRNA; cDNA DKFZp586G1721 (from clone KFZp586G1721); partial cds /cds=(0,669)		up
755	AF160973	253	Hs.258503	253 inducible protein 3		up
756	NM_001972	254	Hs.99863	elastase 2, neutrophil (ELA2),		up
757	AA282774	255	NA	cDNA clone IMAGE:713136 5'		up
758	AB000115	256	Hs.75470	hypothetical protein, expressed in osteoblast (GS3686), mRNA /cds=(241,1482)		up
759	AJ277247	257	Hs.287369	interleukin 22 (IL22), mRNA /cds=(71,610)	3.0908	up
760	D38081	258	Hs.89887	thromboxane A2 receptor (TBXA2R), mRNA /cds=(991,2022)	3.0908	up
761	NM_001250	259	Hs.25648	tumor necrosis factor receptor superfamily, member 5 (TNFRSF5), mRNA /cds=(47,880)	3.0908	up
762	Al524266	260	Hs.230874	th11g12.x1 cDNA, 3' end /clone=IMAGE:2118022 /clone_end=3'	3.0908	up
763	AL573787	261	Hs.21732	AL573787 cDNA /clone=CS0DI055YM17-(3-prime)	3.0908	up
764	AK001503	262	Hs.265891	cDNA FLJ10641 fis, clone NT2RP2005748 /cds=UNKNOWN	3.0908	up
765	X04430	263	Hs.93913	IFN-beta 2a mRNA for interferon-beta-2, T-cells, macrophages	3.0908	up
766	AF480557	264	NA	142E4	3.0908	up
767	AL550229	265		cDNA FLJ12347 fis, clone MAMMA1002298 /cds=UNKNOWN	3.0908	up
768	AV727063	266	Hs.245798	hypothetical protein DKFZp564I0422 (DKFZP564I0422), mRNA /cds=(510,1196)		ир
769	NM_000389	267	Hs.179665	cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A), mRNA /cds=(75,569)		up
770	NM_001761	268	Hs.1973	cyclin F (CCNF), mRNA /cds=(43,2403)		up
771	NM_002741	269	Hs.2499	protein kinase C-like 1 (PRKCL1), mRNA /cds=(84,2912)		up
772	NM_002880	270	Hs.279474	HSPC070 protein (HSPC070), mRNA /cds=(331,1581)	3.0908	up

SEQ ID		SEQ ID			SAM	SAM
อยนาม 50mer	ACC	l	нѕ	Gene	FDR	Up/Down
773	NM_014373		Hs.97101		3.0908	up
774	U53347	272	Hs.183556	solute carrier family 1 (neutral amino acid transporter), member 5 (SLC1A5), mRNA /cds=(590,2215)	3.0908	up
775	W19201	273	Hs.17778	neuropilin 2 (NRP2), mRNA /cds=(0,2780)	3.0908	ир
776	W79598	274	Hs.163846	putative N6-DNA-methyltransferase (N6AMT1), mRNA /cds=(29,673)	3.0908	up
777	XM_001939	275	Hs.55468	H4 histone, family 2	3.0908	ир
778	Al270476	276	Hs.270341	602307338F1 cDNA, 5' end /clone=IMAGE:4398848 /clone_end=5'	3.0908	up
779	AA992299	277	Hs.129332	ot53b06.s1 cDNA, 3' end /clone=IMAGE:1620467 /clone_end=3'	3.0908	ир
780	AF044595	278	Hs.248078	ymphocyte-predominant Hodgkin's disease case #7 mmunoglobulin heavy chain gene, variable region		ир
781	BI091076	279	Hs.127128	ok13e12.s1 cDNA, 3' end /clone=IMAGE:1507726 clone_end=3'		up
782	H13491	280	Hs.303450	yj15f02.r1 cDNA, 5' end /clone=IMAGE:148827 clone_end=5'		ир
783	M55420	281	Hs.247930	gE chain, last 2 exons		up
784	NM_014271	282	Hs.241385	interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), mRNA /cds=(510,2600)		up
785	Al378091	283	Hs.369056		3.0908	ир
786	Al381601	284	Hs.159025	td05g03.x1 cDNA, 3' end /clone=IMAGE:2074804 /clone_end=3'	3.0908	up
787	Al634972	285	Hs.319825	602021477F1 cDNA, 5' end /clone=IMAGE:4156915 /clone_end=5'	3.0908	up
788	AW005376	286	Hs.173280	ws94a12.x1 cDNA, 3' end /clone=IMAGE:2505598 /clone_end=3'	3.0908	up
789	AW088500	287	Hs.389655	EST, Weakly similar to A35098 MHC class III histocompatibility antigen HLA-B-associated transcript 3	3.0908	up
790	AW195270	288	Hs.330019	xn67c04.x1 cDNA, 3' end /clone=IMAGE:2699526 /clone_end=3'	3.0908	up
791	AW296797	289	Hs.255579	UI-H-BW0-ajb-e-07-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731117 /clone_end=3'	3.0908	up
792	BF827734	290	Hs.156766	ESTs	3.0908	up
793	M11233	291	Hs.79572	cathepsin D (lysosomal aspartyl protease) (CTSD), mRNA /cds=(2,1240)	3.0908	ир
794	AL050218	292	Hs.15020	DNA sequence from clone 51J12 on chromosome 6q26- 27.		up
795	NM_016063	293	Hs.32826	CGI-130 protein (LOC51020), mRNA /cds=(63,575)		up
796	BU678165	294	Hs.377992	479H5, not in ref seq, Rab geranylgeranyltransferase, alpha subunit (RABGGTA),		ир
797	AL050371	295	Hs.8128	phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)	3.33	up

SEQ ID		SEQ ID			8449	CAN
SEQ ID 50mer	ACC	Full length	нѕ	Gene	SAM FDR	SAM Up/Down
798	NM_152545			62C9, hypothetical protein FLJ31695	3.3318	up
. 00	102040	200	110.000010	0200, 1190011011011 1501000	0.0010	l GP
799	XM_007156	297	Hs.159492	sacsin (SACS) gene, complete cds /cds=(76,11565)	3.3318	ир
800	NM_014339	298	Hs.129751	interleukin 17 receptor (IL17R), mRNA /cds=(32,2632)	3.3318	ир
801	NM_019598	299	Hs.159679	kallikrein 12 (KLK12), mRNA /cds=UNKNOWN	3.3318	ир
802	Al081258	300	Hs.134590	oy67c11.x1 cDNA, 3' end /clone=IMAGE:1670900 /clone_end=3'	3.3318	up
803		301		he42e03.x1 cDNA, 3' end /clone=IMAGE:2921692 /clone_end=3'		ир
804	NM_001873		Hs.75360	carboxypeptidase E (CPE), mRNA /cds=(290,1720)	3.369 3.369	ир
805	NM_032839		Hs.11360	hypothetical protein FLJ14784 (FLJ14784), mRNA cds=(133,1569)		up
806	X16277	304		zv26f06.r1 cDNA, 5' end /clone=IMAGE:754787 /clone_end=5'	3.4341	up
807	NM_000395		Hs.285401	granulocyte-macrophage) (CSF2RB), mRNA cds=(28,2721)		
808	NM_013252	306	Hs.126355	C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 5 (CLECSF5), mRNA /cds=(197,763)		ир
809	129F10	307	NA	129F10, chromosome hit	3.7268	up
810	AK024331	308	Hs.287631	cDNA FLJ14269 fis, clone PLACE1003864 /cds=UNKNOWN	3.7268	up
811	NM_000195		Hs.83951	Hermansky-Pudlak syndrome (HPS), mRNA /cds=(206,2308)	3.7268	up
812	NM_030756	<u> </u>		transcription factor 7-like 2 (T-cell specific, HMG-box) (TCF7L2), mRNA /cds=(307,2097)	3.7268	ир
813	M26683	311		interferon gamma treatment inducible mRNA Monocytes	3.7833	
814	AA214691	312		LOC286530 hypothetical protein LOC286530	3.7833	ир
815	AB049113	313	Hs.82113	dUTP pyrophosphatase (DUT), mRNA /cds=(29,523)	3.7833	up
816	AK026819	314	Hs.20242	hypothetical protein FLJ12788 (FLJ12788), mRNA /cds=(9,866)	3.7833	up
817	L21961	315		Homo sapiens, clone MGC:12849 IMAGE:4308973, mRNA, complete cds /cds=(24,725)	3.7833	up
818	NM_001278			mRNA; cDNA DKFZp566L084 (from clone DKFZp566L084) /cds=UNKNOWN	3.7833	up
819	NM_002385		Hs.69547	myelin basic protein (MBP), mRNA /cds=(10,570)	3.7833 3.7833	up
820	NM_005121		Hs.11861	thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601)		up
821	NM_007220	319	Hs.283646			up
822	NM_012381		Hs.74420	origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161)		up
823	NM_014225	321	Hs.173902	protein phosphatase 2 (formerly 2A), regulatory subunit A (PR 65), alpha isoform (PPP2R1A), mRNA /cds=(138,1907)	3.7833	ир

SEQ ID		SEQ ID			SAM	SAM
	ACC	i .	нѕ	Gene	FDR	Up/Down
824	BF966028	322	Hs.5324	hypothetical protein (CL25022), mRNA /cds=(157,1047)	3.7833	up
825	AL157438	323	Hs.66151	mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN	3.7833	up
826	NM_004488	324	Hs.73734	glycoprotein V (platelet) (GP5), mRNA /cds≃(270,1952)	3.7833	ир
827	NM_006929		Hs.153299	DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319)	3.7833	up
828	NM_021976	326	Hs.79372	retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	3.7833	up
829	T93822	327	Hs.294092	EST375308 cDNA	3.7833	up
830	Al524202	328	Hs.171122	th10d11.x1 cDNA, 3' end /clone=IMAGE:2117877 /clone_end=3'	3.7833	up
831	Al684022	329	Hs.90744	proteasome (prosome, macropain) 26S subunit, non- TPase, 11 (PSMD11), mRNA /cds=(0,1268)		up
832	AW452545	330	Hs.257582	UI-H-BW1-ame-d-12-0-UI.s1 cDNA, 3' end /clone=IMAGE:3069742 /clone_end=3'	3.7833	ир
833	NM_153341	331	Hs.64239	DNA sequence from clone RP5-1174N9 on hromosome 1p34.1-35.3. Contains the gene for a novel rotein with IBR domain, a (pseudo?) gene for a novel rotein similar to MT1E (metallothionein 1E (functional)), STs, STSs, GSSs and two putative CpG islands /cd		up
834	BF698885	332	Hs.5890	hypothetical protein FLJ23306 (FLJ23306), mRNA /cds=(562,930)	3.7833	ир
835	NM_000073	333	Hs.2259	CD3G antigen, gamma polypeptide (TiT3 complex) (CD3G), mRNA /cds=(37,585)	3.8053	up
836	NM_004761	334	Hs.170160	RAB2, member RAS oncogene family-like (RAB2L), mRNA /cds=(0,2333)	3.8053	up
837	NM_015898	335	Hs.104640	HIV-1 inducer of short transcripts binding protein (FBI1), mRNA /cds=(0,1754)	3.8053	up
838	NM_014348	336	Hs.296429	similar to rat integral membrane glycoprotein POM121 (POM121L1), mRNA /cds=(0,1286)	3.8053	up
839	AW500534	337	Hs.145668		3.8053	up
840	AA765569	338	Hs.104157	EST380899 cDNA	3.8053	up
841	Al084553	339	Hs.105621	HNC29-1-B1.R cDNA	3.8053	ир
842	Al523617	340	Hs.171098	tg95b03.x1 cDNA, 3' end /clone=IMAGE:2116493 /clone_end=3'	3.8053	ир
843	Al969716	341	Hs.13034	hv63f09.x1 cDNA, 3' end /clone=IMAGE:3178121 /clone_end=3'	3.8053	up
844	NM_002076	342	Hs.164036	glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease 3IIID) (GNS), mRNA /cds=(87,1745)		ир
925	BG505271	423	Hs.86437	602411368F1 cDNA, 5' end /clone=IMAGE:4540096 /clone_end=5'		up
926	BE965319	424	Hs.286754	601659229R1 cDNA, 3' end /clone=IMAGE:3895783 /clone_end=3'		up
927	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)		ир
928	BU540019	426	NA	485A6, EST		up
		427		AV719442 cDNA, 5' end /clone=GLCBNA01 /clone_end=5'		up

	,	SEQ ID			[
SEQ ID		Full	_		SAM	SAM
50mer			HS	Gene	FDR	Up/Down
930	NM_000879		Hs.2247	interleukin 5 (colony-stimulating factor, eosinophil) (IL5), mRNA /cds=(44,448)	4.2464	up
931	NM_001916	429	Hs.289271	cytochrome c-1 (CYC1), mRNA /cds=(8,985)	4.2464	up
932	NM_002460	430	Hs.82132	interferon regulatory factor 4 (IRF4), mRNA /cds=(105,1460)	4.2464	up
933	NM_002994	431	Hs.89714	small inducible cytokine subfamily B (Cys-X-Cys), member 5	4.2464	up
934	NM_007015	432	Hs.97932	chondromodulin I precursor (CHM-I), mRNA /cds=(0,1004)	4.2464	up
935	NM_017644	433	Hs.246875	hypothetical protein FLJ20059 (FLJ20059), mRNA /cds=(25,1290)	4.2464	up
936	X57025	434	Hs.85112	IGF-I mRNA for insulin-like growth factor I /cds=(166,627)	4.2464	up
937	BF892532	435	Hs.38664	IL0-MT0152-061100-501-e04 cDNA	4.2464	up
938	BG028577	436		matrix Gla protein (MGP), mRNA /cds=(46,357)		up
939	AF116909	437	Hs.167827		4.2464	up
940	AL136842	438	Hs.260024	mRNA; cDNA DKFZp434A0530 (from clone 4 0KFZp434A0530); complete cds /cds=(968,1732)		up
941	AW327360	439	Hs.250605	dq02e11.x1 cDNA, 5' end /clone=IMAGE:2846685 /clone_end=5'		up
942	Al538420	440	Hs.231292	td06a03.x1 cDNA, 3' end /clone=IMAGE:2074828 /clone_end=3'		up
943	Al805144	441	NA	EST	4.2464	up
944	AW064160	442	Hs.279141	SP0594 cDNA, 3' end /clone_end=3'	4.2464	up
945	AW078847	443	Hs.244816	xb18g07.x1 cDNA, 3' end /clone=IMAGE:2576700 /clone_end=3'	4.2464	up
946	AW236252	444	Hs.253747	xn71g08.x1 cDNA, 3' end /clone=IMAGE:2699966 /clone_end=3'	4.2464	ир
947	AW297026	445	1	UI-H-BW0-ajf-e-06-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731499 /clone_end=3'	4.2464	up
948	NM_016095	446	Hs.108196	HSPC037 protein (LOC51659), mRNA /cds=(78,635)	4.2464	up
949	AK000575	447	Hs.279581	hypothetical protein FLJ20568 (FLJ20568), mRNA /cds=(6,422)	4.2892	up
950	NM_002462	448	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)	4.2892	up
951	NM_003841	449	Hs.119684	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain (TNFRSF10C), mRNA /cds=(29,928)		up
952	NM_004834	450	Hs.3628	mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), mRNA /cds=(79,3576)		ир
953	NM_013368	451	Hs.169138	RPA-binding trans-activator (RBT1), mRNA /cds=(291,881)		up
954	X12451	452	Hs.78056	cathepsin L (CTSL), mRNA /cds=(288,1289)		ир
955	Y13936	453	Hs.17883	protein phosphatase 1G (formerly 2C), magnesium- ependent, gamma isoform (PPM1G), mRNA cds=(24,1664)		up

050 15	{	SEQ ID				1
SEQ ID		Full			SAM	SAM
50mer	ACC	length	HS	Gene	FDR	Up/Down
956	AW190635	454	Hs.15200	EST379783 cDNA	4.2892	lup
957	Al378123	455	Hs.327454	tc80e02.x1 cDNA, 3' end /clone=IMAGE:2072474 /clone_end=3'	4.2892	up
958	AJ275405	456	Hs.272362	partial IGVL1 gene for immunoglobulin lambda light chain V region	4.2892	ир
959	AA729508	457	Hs.307486	nx54a03.s1 cDNA /clone=IMAGE:1266028	4.2892	up
960	AI865603	458		wk47g03.x1 cDNA, 3' end /clone=IMAGE:2418580 /clone_end=3'	4.2892	up
961	NM_080612	459	Hs.102630	128F5, GRB2-associated binding protein 3 (GAB3),	4.2892	ир
962	NM_014086	460	Hs.6975	PRO1073 protein (PRO1073),	4.3699	up
963	L11695	461	Hs.220	transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kD) (TGFBR1), mRNA /cds=(76,1587)	4.3699	ир
964	NM_002995	462	Hs.3195	small inducible cytokine subfamily C, member 1 (lymphotactin) (SCYC1), mRNA /cds=(20,364)	4.3699	up
965	BF968963	463	Hs.5064	602490910F1 cDNA, 5' end /clone=IMAGE:4619835 /clone_end=5'	4.3699	ир
966	BG286649	464	Hs.323950	zinc finger protein 6 (CMPX1) (ZNF6), mRNA /cds=(1265,3361)	4.3699	ир
967	NM_014148	465	Hs.278944	HSPC048 protein (HSPC048), mRNA /cds=(87,419)		ир
968	BF195579	466	Hs.232257	RST2302 cDNA		ир
969	BF509758	467	Hs.144265	UI-H-BI4-apg-d-04-0-UI.s1 cDNA, 3' end /clone=IMAGE:3087390 /clone_end=3'	4.3699	up
970	AF118274	468	Hs.128740	DNb-5 mRNA, partial cds /cds=(0,1601)	4.4485	ир
971	NM_005082	469	Hs.1579	zinc finger protein 147 (estrogen-responsive finger protein) (ZNF147), mRNA /cds≃(39,1931)	4.4485	up
972	AA576947	470		nm82b04.s1 cDNA, 3' end /clone=IMAGE:1074703 /clone_end=3'	4.4485	ир
973	AA628833	471	NA	EST	4.4485	up
974	Al631850	472	Hs.340604	wa36h07.x1 cDNA, 3' end /clone=IMAGE:2300221 /clone_ end=3'	4.4485	up
975	AW006867	473	Hs.231987	602320903F1 cDNA, 5' end /clone=IMAGE:4424065 /clone_end=5'	4.4485	ир
976	M94046	474	Hs.7647	MYC-associated zinc finger protein (purine-binding transcription factor) (MAZ), mRNA /cds=(91,1584)	4.4977	up
977	AB007861	475	Hs.118047	602971981F1 cDNA, 5' end /clone=IMAGE:5111324 /clone_end=5'	4.5272	up
978	AF061944	476	Hs.432900	PRKWNK1 protein kinase, lysine deficient 1		ир
979	AL136797	477	Hs.273294	mRNA; cDNA DKFZp434N031 (from clone DKFZp434N031); complete cds /cds=(18,3608)		up
980	D42040	478	Hs.75243	bromodomain-containing 2 (BRD2), mRNA 4.5272 /cds=(1701,4106)		up
981	Al089359	479	Hs.130232	qb05h03.x1 cDNA, 3' end /clone=IMAGE:1695413 4.527 /clone_end=3'		ир
982	NM_004776	480	Hs.107526	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 5 (B4GALT5), mRNA /cds=(112,1278)	4.5272	up

SEQ ID		SEQ ID			SAM	SAM
	ACC	1	HS	Gene	FDR	Up/Down
983	NM_020428		Hs.105509		4.5272	up
984	NM_020530	482	Hs.248156	oncostatin M (OSM), mRNA /cds≈(0,758)	4.5272	up
985	NM_003321	483	Hs.12084	Tu translation elongation factor, mitochondrial (TUFM)	4.5631	up
986	BE901218	484	Hs.285122	Homo sapiens, hypothetical protein FLJ21839, clone MGC:2851 IMAGE:2967512, mRNA, complete cds /cds=(444,2618)	4.5631	up
987	Al361733	485	Hs.157811	qz24b02.x1 cDNA, 3' end /clone=IMAGE:2027787 /clone_end=3'	4.5631	up
988	AK026410	486	Hs.236449	hypothetical protein FLJ22757 (FLJ22757), mRNA /cds=(92,2473)	4.6078	ир
989	BG254292	487	NA	cDNA clone IMAGE:4477042 5'	4.6078	up
990	NM_001504	488	Hs.198252	/cds=(68,1174)	4.6078	up
991	BE964596	489	Hs.184052	PP1201 protein (PP1201), mRNA /cds=(75,1010)	4.6078	up
992	AB011098	490	Hs.59403	serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), mRNA /cds=(188,1876)	4.6346	up
993	BE745645	491	Hs.127951	hypothetical protein FLJ14503 (FLJ14503), mRNA cds=(19,2217)		up
994	Al827950	492	Hs.342617	ha15h10.x1 cDNA, 3' end /clone=IMAGE:2873827 clone_end=3'		up
995	AL521097	493	Hs.13144	HSPC160 protein (HSPC160), mRNA /cds=(53,514)		up
996	BE222032	494	Hs.128675	hr61g11.x1 cDNA, 3' end /clone=IMAGE:3133028 /clone_end=3'	4.6346	up
997	AA516406	495	Hs.180201	hypothetical protein FLJ20671 (FLJ20671), mRNA /cds=(72,494)	4.7382	up
998	AJ277832	496	Hs.56247	mRNA for inducible T-cell co-stimulator (ICOS gene) /cds=(67,666)	4.7426	up
999	AV653169	497	Hs.5897	cDNA FLJ13388 fis, clone PLACE1001168 . /cds=UNKNOWN	4.7426	ир
1000	M36820	498	Hs.75765	GRO2 oncogene (GRO2), mRNA /cds=(74,397)	4.7432	up
1001	NM_015919	499	Hs.145956	zinc finger protein mRNA, complete cds /cds=(1073,3133)	4.7432	up
1002	Al378109	500	Hs.283438	7f19b03.x1 cDNA, 3' end /clone=IMAGE:3295085 /clone_end=3'	4.7432	up
1003	Al436418	501	Hs.369051	ESTs, Weakly similar to VAM5_HUMAN Vesicule- associated membrane protein 5 (VAMP-5) (Myobrevin) (HSPC191)	4.7432	up
1004	NM_022488	502	Hs.26367	PC3-96 protein (PC3-96), mRNA /cds=(119,586)		up
845	AI760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370 /clone_end=3'		up, down
504	W16552	2	Hs.306117			up
846	AL565736	344		eukaryotic translation elongation factor 1 alpha 1 (EEF1A1), mRNA /cds=(53,1441)		down
847	NM_004900	345	Hs.226307	phorbolin (similar to apolipoprotein B mRNA editing protein) (DJ742C19.2), mRNA /cds=(79,651)	0.25, 3.09	up

		SEQ ID				
SEQ ID	1	Full	110	Comp	SAM	SAM
	ACC		HS 222054	Gene 602637935F1 cDNA, 5' end /clone=IMAGE:4765448	FDR	Up/Down
848	AI031624	346	HS.238954	/clone_end=5'	0.3142, 0.5638	up, down
849	BF059133	347	Hs.144583	Homo sapiens, clone IMAGE:3462401, mRNA, partial cds /cds=(0,153)	0.669, 0.564	up, down
850	AB036432	348	Hs.184	advanced glycosylation end product-specific receptor (AGER), mRNA /cds≃(0,1214)	0.6691, 0.9257	up, down
851	R64054	349	Hs.208603	7f01d11.x1 cDNA, 3' end /clone=IMAGE:3293397 /clone_end=3'	0.6845, 0.926	up, down
852	M81601	350	Hs.153179	fatty acid binding protein 5 (psoriasis-associated) (FABP5), mRNA /cds=(48,455)	1.03, 3.0908	up, down
853	AY004255	351	Hs.238990	Homo sapiens, Similar to cyclin-dependent kinase inhibitor 1B (p27, Kip1)	1.1, 0.0909	down
854	NM_002258	352	Hs.169824	killer cell lectin-like receptor subfamily B, member 1 KLRB1), mRNA /cds=(60,737)		down
855	M11124	353		major histocompatibility complex, class II, DQ alpha 1 HLA-DQA1), mRNA /cds=(43,810)		down
514	NM_002946	12	Hs.79411	replication protein A2 (32kD) (RPA2)		down
856	AF073705	354	Hs.247721	clone mcg53-54 immunoglobulin lambda light chain variable region 4a mRNA, partial cds /cds=(0,324)	1.1, 0.9542	ир
857	AJ271326	355	Hs.135187	unc93 (C.elegans) homolog B (UNC93B), mRNA /cds=(41,1834)	1.1, 1.437	up
858	NM_138391		Hs.17481	mRNA; cDNA DKFZp434G2415 (from clone DKFZp434G2415) /cds=UNKNOWN	1.1, 2.246	up
859	X97324	357	Hs.3416	adipose differentiation-related protein (ADFP), mRNA /cds=(0,1313)	1.1, 2.32	ир
507	NM_006187		Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3), mRNA /cds=(34,3297)	1.1, 2.47	up
860	NM_006289	358	Hs.18420	talin 1 (TLN1), mRNA /cds=(126,7751)	1.1, 3.0908	up
861	NM_002935		Hs.73839	ribonuclease, RNase A family, 3 (eosinophil cationic protein) (RNASE3), mRNA /cds=(63,545)		up
862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)		down
863	AL567986	361	Hs.77393	farnesyl diphosphate synthase		down
864	NM_000311		Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob disease, 1.6 Gerstmann-Strausler-Scheinker syndrome) 0.1		down
865	NM_016523	363	Hs.183125	killer cell lectin-like receptor subfamily F, member 1 (KLRF1), mRNA /cds=(64,759)	1.6, 0.213	down

0F0 ID	1	SEQ ID				
SEQ ID	000	Full	ne	C	SAM	SAM
50mer 866	ACC AA701193	length 364	HS 421104	Gene EST, Weakly similar to HA21 HUMAN HLA class II	FDR 1.6,	Up/Down down
000	AA701193	304	113.431104	histocompatibility antigen, DQ(1) alpha chain precursor	0.2759	down
			ļ	(DC-4 alpha chain)	0.2700	
510	NM_004510	8	Hs.38125	interferon-induced protein 75, 52kD (IFI75), mRNA	1.6,	up
				/cds=(170,1396)	1.12]
867	AK026594	365	Hs.251653	tubulin, beta, 2 (TUBB2), mRNA /cds=(0,1337)	1.6,	up
		<u> </u>			2.32	<u> </u>
503	NM_000389	1	Hs.179665	CDKN1A cyclin-dependent kinase inhibitor 1A (p21,	1.6,	up
				Cip1)	3.09	
868	AW063509	366	Hs.279105	TN1012 cDNA, 3' end /clone_end=3'	1.6,	up
000	54.600	0.07	11 470000		3.09	ļ
869	R14692	367	Hs.170222	Na+/H+ exchanger NHE-1 isoform [human, heart,	1.6,	up
870	NM 002831	260	Hs.63489	mRNA, 4516 nt] /cds=(577,3024) protein tyrosine phosphatase, non-receptor type 6	3.33	
0/0	14141_002031	300	IDS.03409	protein tyrosine phosphatase, non-receptor type 6 (PTPN6), mRNA /cds=(144,1931)	1.6, 4.3699	up
		<u>.</u>	 	(1 1 1 10), 111(10A /cus=(144,1851)	4.3099	
871	BE868389	369	Hs.179703	tripartite motif protein 14 (TRIM14), mRNA	1.6, 4.6	un
				/cds=(10,1230)	""	
509	BC002409	7	Hs.288061	actin, beta (ACTB), mRNA	NA	
					1	i
518	NM_003033	16	Hs.301698	BAC 180i23 chromosome 8 map 8q24.3 beta-	NA	
				galactoside alpha-2,3-sialyltransferase (SIAT4A) gene	ł	
070	1416000404	070	11 00504	F007 F1 100000	1	
872	AK090404	370	Hs.98531	53G7, FLJ00290 protein	NA	į
873	AK024202	371	He 20000	heat shock 90kD protein 1, alpha (HSPCA), mRNA	NA	
013	711024202	371	115.203000	/cds=(60,2258)	I'VA	
874	AK024240	372	Hs.24115	cDNA FLJ14178 fis, clone NT2RP2003339	NA	
				/cds=UNKNOWN	"	
875	AK024756	373	Hs.12293	hypothetical protein FLJ21103 (FLJ21103), mRNA	NA	
				/cds=(88,1143)	ĺ	
876	AK024969	374	Hs.166254	hypothetical protein DKFZp566I133 (DKFZP566I133),	NA	
				mRNA /cds=(133,1353)		
877	AL136542	375	Hs.322456	hypothetical protein DKFZp761D0211	NA	
				(DKFZP761D0211), mRNA /cds=(164,1822)		
878	NM_015995	376	Hs.7104	mRNA; cDNA DKFZp761P06121 (from clone	NA,	up
	<u> </u>	<u> </u>		DKFZp761P06121) /cds=UNKNOWN	3.09	

Table 2B: Real-time PCR gene expression analysis

SEQ ID	ACC		HS	Gene		PCR p-	SEQ ID	Forward	SEQ ID	Reverse
50mer	· · · · · · · · · · · · · · · · · · ·	ID FL				value	forward	primer	reverse	primer
	NM_000389	1		CDKN1A cyclin- dependent kinase inhibitor 1A (p21, Cip1)	2.25	0.0000	1005	CTAACGTTG AGCCCCTGG AG		ATGGGGAG CCGAGAGAA AAC
	W16552	2	Hs.306117		2.60	0.0000	1007	TCGACATGG TGAGGTAGA GCA	<u></u>	TGTTCTGGC AGCACCTCA AG
	_	3	Hs.166120	interferon regulatory factor 7 (IRF7), transc		0.0001	1009	AGCGTGAGG GTGTGTCTT CC	1010	GGCTGCTCC AGCTCCATA AG
506	NM_006417	4	Hs.82316	interferon-induced, hepatitis C- associated	4.34	0.0001	1011	TGGGAGCTG GACCCTGTA AA	1012	GCAGCCCAT AGCATTCGT CT
507	NM_006187	5	Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3)	5.40	0.0001	1013	CGCAGTTGG GTACCTTCC AT	1014	TGCTCTGGT TCCCACCAT CT
	NM_001548	6	Hs.20315	interferon-induced protein with tetratricopeptide repeats 1	10.30	0.0019	1015	CTGGAAAGC TTGAGCCTC CTT	1016	CTCAGGGCC CGCTCATAG TA
509	BC002409	7	Hs.288061	actin, beta (ACTB), 1 mRNA		0.0028	1017	CACAATGTG GCCGAGGA CTT	1018	TGGCTTTTA GGATGGCAA GG
510	NM_004510	8	Hs.38125	interferon-induced protein 75, 52kD (IFI75)	1.36	0.0034	1019	CAAAGACGT GCTCGGTTT TCA	1020	TGAATCCTG AGGTGGGGA TG
511	NM_000269	9	Hs.183698	ribosomal protein L29 (RPL29)	1.38	0.0057	1021	CATCCATTT CCCCTCCTT CC	1022	CAGATGGTC GGGGATGGT AA
512	NM_138391	10	Hs.17481	Homo sapiens chromosome 1 open reading frame 37 (C1orf37)	1.15	0.0160	1023	TCTTGGAGA TTCGAGCAG CA	1024	CTGCGACCA GAGTCAGTG GA
	BC036402	11	NA	116C9	2.26	0.0258	1025	CCTGATTCG CCAATTTGT CC	1026	CCCAACCCC AAAATCCCTA A
514	NM_002946	12	Hs.79411	replication protein A2 (32kD) (RPA2)	0.88	0.0458	1027	CGTCATGGC AAGTGTGTC AA	1028	TGGCCTCTG CCTGTTTTCA T
515	NM_031157	13	Hs.249495	heterogeneous nuclear ribonucleoprotein A1 (HNRPA1)	0.79	0.0538	1029	TGGTAAATT TCCCCAACA GTGTG	1030	CACCAAGGT TTCCGAAGA CAA
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4	0.73	0.0650	1031	AGCACCACG CAAGAAGAT CC	1032	CTGGCGAAG AATGGTGTT CC
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7)	0.85	0.3054	1033	TTGCGCAGA TACCTAGGC TTG	1034	TCAGCCAGT CAAAATTCCA AAA
518	NM_003033	16	Hs.301698	beta-galactoside alpha-2,3- sialyltransferase (SIAT4A) gene	0.88	0.3680	1035	ACCCATCTA CCGGCATCC TC	1036	GTGCCAGTT CCCTTTGCT GT
519	BE550944	17	Hs.61426	602329933F1 cDNA	0.95	0.5085	1037	CAAAACCTC GCTTACTGT CATGTG	1038	TGGGAAAGG ACATCAGTC TTCA

Table 2C: Multiple Additive Regression Trees analysis of Microarray Data

		SEQ ID			MART		
SEQ ID	1	Full	i		Importanc	MART	}
50mer	ACC	length	HS	Gene	e	error	imp/error
515		13	Hs.249495	heterogeneous nuclear ribonucleoprotein A1 (HNRPA1), transcript variant 2, mRNA /cds=(104,1222)	68.5	0.202	339.108911
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4, clone MGC:2966 IMAGE:3139805, mRNA, complete cds /cds=(1616,2617)	68.71	0.202	340.148515
519	BE550944	17	Hs.61426	602329933F1 cDNA	100, 66.33	0.202	347.0, 328.22
537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)	67.49	0.202	334.108911
538	NM_003756	36	Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds≈(5,1063)		0.092	996.521739
624	NM_006791	122	Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds≃(131,1102)	65.53	0.202	324.405941
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7) mRNA /cds=(105,490)	100	0.092	1086.95652
754	AL133642	252	Hs.241471	mRNA; cDNA DKFZp586G1721 (from clone DKFZp586G1721); partial cds /cds=(0,669)	42.88	0.288	148.888889
797	AL050371	295	Hs.8128	phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)	70.07	0.288	243.298611
927	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)	49.97	0.288	173.506944
845	Al760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370	49.83	0.288	173.020833
862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)	31.53	0.202	156.089109
511	NM_000269	9	Hs.183698	ribosomal protein L29 (RPL29), mRNA /cds≃(29,508)	99.34	0.092	1079.78261
882	NM_003128	380	Hs.324648	cDNA FLJ13700 fis, clone PLACE2000216, highly similar to SPECTRIN BETA CHAIN, BRAIN /cds=UNKNOWN	100	0.202	495.049505
883	AL109669	381	Hs.172803	mRNA full length insert cDNA clone EUROIMAGE 31839 /cds=UNKNOWN	55.24	0.202	273.465347
884	Al307808	382	Hs.238797	602081661F1 cDNA, 5' end /clone=IMAGE:4245999	33.2	0.202	164.356436
885	AF261087	383	Hs.174131	ribosomal protein L6 (RPL6), mRNA /cds=(26,892)	0.68	0.202	3.36633663
886	NM_002546		Hs.81791	tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) (TNFRSF11B), mRNA /cds=(94,1299)	48.54	0.202	240.29703
887	NM_012237		Hs.44017	sirtuin (silent mating type information regulation 2, S.cerevisiae, homolog) 2 (SIRT2), transcript variant 1, mRNA /cds=(200,1369)	68.21	0.202	337.673267
888	X68060	386	Hs.75248	topoisomerase (DNA) II beta (180kD) (TOP2B), mRNA /cds=(0,4865)	48.14	0.288	167.152778

Table 2C: Multiple Additive Regression Trees analysis of Microarray Data

		SEQ ID			MART		
SEQ ID		Full	•		Importanc	MART	1
50mer	ACC	length	HS	Gene	е	error	Imp/error
889	A1660405	387	Hs.111941	qd92a04.x1 cDNA, 3' end /clone=IMAGE:1736910	51.11	0.288	177.465278
890	AI798114	388	Hs.210307	wh81c01.x1 cDNA, 3' end /clone=IMAGE:2387136	0.96	0.202	4.75247525
891	AW075948	389	Hs.265634	xa82b03.x1 cDNA, 3' end /clone=IMAGE:2573261	· 1		247.821782
892	AW294681	390	Hs.255336	UI-H-BW0-ail-g-10-0-UI.s1 cDNA, 3' 50.28 end /clone=IMAGE:2729683 clone_end=3'		0.384	130.9375
893	R40823	391	Hs.108082	602068988F1 cDNA, 5' end /clone=IMAGE:4067972	32.33	0.202	160.049505
894	AA806222	392	Hs.111554	ADP-ribosylation factor-like 7 (ARL7), mRNA /cds=(14,592)	44.47	0.288	154.409722
895	Al380390	393	Hs.158976	UI-H-BI2-ahi-a-03-0-UI.s1 cDNA, 3' end /clone=IMAGE:2726692 /clone_end=3'	54.86	0.202	271.584158
896	BF435621	394	Hs.293476	hypothetical protein FKSG44 (FKSG44), mRNA /cds=(126,1520)	100	0.285	350.877193
897	AK025781	395	Hs.5076	cDNA: FLJ22128 fis, clone HEP19543 /cds=UNKNOWN	51.37	0.288	178.368056
898	X06323	396	Hs.79086	mitochondrial ribosomal protein L3 (MRPL3), mRNA /cds=(76,1122)	47.57	0.288	165.173611
899	X72841	397	Hs.31314	retinoblastoma-binding protein 7 (RBBP7), mRNA /cds=(287,1564)	50.46	0.288	175.208333

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

SEQ ID		SEQ ID Full			Hierarchical
50mer	ACC	length	нѕ	Gene	Cluster OID
900	NM_001015	398	Hs.182740	ribosomal protein S11 (RPS11), mRNA /cds=(15,4	180
901	J02931	399	Hs.62192	placental tissue factor (two forms) mRNA, complete cd	180
914	NM_001778	412	Hs.901	CD48 antigen (B-cell membrane protein) (CD48), mRNA /cds=(36,767)	180
862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)	2177
524	NM_001731	22	Hs.77054	B-cell translocation gene 1, anti- proliferative (BTG1), mRNA /cds=(308,823)	2177
528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene, complete cds /cds=(795,9965)	2177
529	AJ400717	27	Hs.279860	tumor protein, translationally-controlled 1 (TPT1), mRNA /cds=(94,612)	2177
920	NM_014065	418	Hs.279040	HT001 protein (HT001), mRNA /cds=(241,1203)	3780
563	U61267	61	Hs.30035	putative splice factor transformer2- beta mRN	5067
680	BF897042	178	Hs.120219	FLJ32028 hypothetical protein FLJ32028	5067
506	NM_006417	4	Hs.82316	interferon-induced, hepatitis C- associated microtubular aggregate protein (44kD) (MTAP44), mRNA /cds=(0,1334)	5067
504	W16552	2	Hs.306117	PKR	5067
507	NM_006187	5	Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3), mRNA /cds=(34,3297)	5067
715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1 (CCR1), mRNA /cds=(62,1129)	5067
739	NM_022873	237	Hs.265827	interferon, alpha-inducible protein (clone IFI-6-16) (G1P3), transcript variant 3, mRNA /cds=(107,523)	5067
505	NM_004031	3	Hs.166120	interferon regulatory factor 7 (IRF7), transc	5067
508	NM_001548	6	Hs.20315	interferon-induced protein with tetratricopeptide repeats 1 (IFIT1)	5067
904	AF307339	402	Hs.47783	B aggressive lymphoma gene (BAL), mRNA /cds=(228,2792)	5067
906	AK027260	404	Hs.152925	mRNA for KIAA1268 protein, partial cds /cds=(0,3071)	
907	AL360190	405	Hs.318501	stimulated trans-acting factor (50 kDa) (STAF50), mRNA /cds=(122,1450)	5067
917	NM_004031	415	Hs.166120	interferon regulatory factor 7 (IRF7), transcript variant d, mRNA /cds=(335,1885)	5067
921	NM_017523	419	Hs.139262	XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)	5067
922	NM_021105	420	Hs.198282	phospholipid scramblase 1 (PLSCR1), mRNA /cds=(256,1212)	5067

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

Table ZD:	Hierarchical C	SEQ ID	UI LUPUS/AUT	oimmunity Markers	
SEQ ID		Full	}		Hierarchical
50mer	ACC	length	нѕ	Gene	Cluster OID
923	XM 005543	421	Hs.234642	aquaporin 3 (AQP3), mRNA	5067
		1	1.10.20 10.12	/cds=(64,942)	10007
642	W00466	140	Hs.44189	yz99f01.s1 cDNA, 3' end	5083
]	}	/clone=IMAGE:291193 /clone_end=3'	
679	AW137104	177	Hs.8121	Notch (Drosophila) homolog 2	5083
				(NOTCH2), mRNA /cds=(12,7427)	
848	Al031624	346	Hs.238954	602637935F1 cDNA, 5' end	5083
				/clone=IMAGE:4765448 /clone_end=5'	
677	NM_003367	175	Hs.93649	upstream transcription factor 2, c-fos	6382
	<u> </u>	<u> </u>		intera	
503	NM_000389	[1	Hs.179665	CDKN1A cyclin-dependent kinase	6382
FAF	NNA 004457	10	11 040405	inhibitor 1A (p21, Cip1)	
515	NM_031157	13	Hs.249495	heterogeneous nuclear	6444
		1	1	ribonucleoprotein A1 (HNRPA1),	
	}		}	transcript variant 2, mRNA /cds=(104,1222)	ľ
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal	6444
010	D23000	' ' '	115.554622	protein L4, clone MGC:2966	0444
	ļ	j		IMAGE:3139805, mRNA, complete cds	
	ļ			/cds=(1616,2617)	
520	L13385	18	Hs.77318	Miller-Dieker lissencephaly protein	6444
				(LIS1)	}
527	XM 018498	25	Hs.180946	ribosomal protein L5 pseudogene	6444
		İ	İ	mRNA, complete cds /cds=UNKNOWN	
512	NM_138391	10	Hs.17481	Homo sapiens chromosome 1 open	6956
				reading frame 37 (C1orf37), mRNA	
902	D49950	400	Hs.83077	for interferon-gamma inducing	6956
000	1 1 1000000	100	111 100 100	activated macrophages	
908	AV689330	406	Hs.189402	Similar to RIKEN cDNA 2210009G21	6956
909	BC002796	407	Ho 46446	gene, clone IMAGE:4807023	0050
909	DC002196	1407	Hs.46446	lymphoblastic leukemia derived	6956
		j		sequence 1 (LYL1), mRNA /cds=(0,803)	
910	BE899595	408	NA	cDNA clone IMAGE:3952215 5'	6956
912	NM_001111	410	Hs.7957	adenosine deaminase, RNA-specific	6956
			1	(ADAR), transcript variant ADAR-a,	
				mRNA /cds=(187,3867)	}
915	NM_002463	413	Hs.926	myxovirus (influenza) resistance 2,	6956
		ļ	1	homolog of murine (MX2), mRNA	
			<u> </u>	/cds=(104,2251)	
918	NM_006865	416	Hs.113277	leukocyte immunoglobulin-like receptor,	6956
		ł	}	subfamily A (without TM domain),	
		}		member 3 (LILRA3), mRNA	
210	100000000000000000000000000000000000000	ļ	ļ <u></u> -	/cds=(62,1381)	
919	NM_013352	417	Hs.58636	squamous cell carcinoma antigen	6956
	1			recognized by T cell (SART-2), mRNA	[
201	NIM COOFFEE	1400	11-04007	/cds=(149,3025)	0050
924	NM_009587	422	Hs.81337	lectin, galactoside-binding, soluble, 9	6956
				(galectin 9) (LGALS9), transcript variant	
	L			long, mRNA /cds=(56,1123)	L

Table 2D: Hierarchical Clustering of Lupus/Autoimmunity Markers

SEQ ID 50mer	ACC	SEQ ID Full length	HS	Gene	Hierarchical Cluster OID
807	NM_000395	305	Hs.285401	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte- macrophage) (CSF2RB), mRNA /cds=(28,2721)	7330
950	NM_002462	448	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)	7330
905	AK024597	403	Hs.10362	cDNA: FLJ20944 fis, clone ADSE01780 /cds=UNKNOWN	7330
913	NM_001549	411	Hs.181874	interferon-induced protein with tetratricopeptide repeats 4 (IFIT4), mRNA /cds=(61,1533)	7330
916	NM_002759	414	Hs.274382	protein kinase, interferon-inducible double stranded RNA dependent (PRKR), mRNA /cds=(435,2090)	7330
911	K02766	409	Hs.1290	complement component 9 (C9), mRNA /cds=(4,1683)	7379
813	M26683	311	Hs.303649	interferon gamma treatment inducible mRNA Monocytes	7238, 6956
903	NM_001772	401	Hs.83731	CD33 antigen (gp67) (CD33), mRNA.	7238, 6956

2E.				
SEQ ID 50mer	ACC	Full length		Gene
503	NM_000389	1	Hs.179665	CDKN1A cyclin-dependent kinase inhibitor 1A (p21, Cip1)
504	W16552	2	Hs.306117	PKR
505	NM_004031	3	Hs.166120	interferon regulatory factor 7 (IRF7), transc
506			Hs 82316	interferon-induced, hepatitis C-associated microtubular
		'	1.10.02010	aggregate protein
507	NM 006187	5	Hs.56009	2'-5'-oligoadenylate synthetase 3 (100 kD) (OAS3),
				mRNA /cds=(34,3297)
508	NM_001548	6	Hs.20315	interferon-induced protein with tetratricopeptide repeats 1
				(IFIT1)
		<u> Li</u>		actin, beta (ACTB), mRNA
510	NM_004510	8	Hs.38125	interferon-induced protein 75, 52kD (IFI75), mRNA
E44	NIM COOCC	0	11- 400000	/cds=(170,1396)
1911	NN_000269	9	HS.183698	ribosomal protein L29 (RPL29), mRNA /cds=(29,508)
512	NM_138391	10	Hs.17481	Homo sapiens chromosome 1 open reading frame 37 (C1orf37), mRNA
513	BC036402	11	NA	116C9
514			Hs.79411	replication protein A2 (32kD) (RPA2)
				1
515	NM_031157	13	Hs.249495	heterogeneous nuclear ribonucleoprotein A1 (HNRPA1), transcript variant 2, mRNA /cds=(104,1222)
516	D23660	14	Hs.334822	Homo sapiens, Similar to ribosomal protein L4
517	NM_006276	15	Hs.184167	splicing factor, arginine/serine-rich 7 (35kD) (SFRS7) mRNA /cds=(105,490)
518	NM_003033	16	Hs.301698	BAC 180i23 chromosome 8 map 8q24.3 beta- galactoside alpha-2,3-sialyltransferase (SIAT4A) gene
519	BE550944	17	Hs.61426	602329933F1 cDNA
		18	Hs.77318	Miller-Dieker lissencephaly protein (LIS1)
			Hs.6151	pumilio (Drosophila) homolog 2 (PUM2)
				cDNA: FLJ21967 fis, clone HEP05652, highly similar to AF131831 clone 25186 mRNA sequence
				cDNA: FLJ23094 fis, clone LNG07379
				B-cell translocation gene 1, anti-proliferative (BTG1), mRNA /cds=(308,823)
	NM_004281	23	Hs.15259	BCL2-associated athanogene 3 (BAG3), mRNA /cds=(306,2033)
526	XM_008738	24	Hs.79241	B-cell CLL/lymphoma 2 (BCL2), nuclear gene encoding mitochondrial protein, transcript variant alpha, mRNA /cds=(31,750)
527	XM_018498	25	Hs.180946	ribosomal protein L5 pseudogene mRNA, complete cds /cds=UNKNOWN
528	U67093	26	Hs.194382	ataxia telangiectasia (ATM) gene, complete cds /cds=(795,9965)
529	AJ400717	27	Hs.279860	tumor protein, translationally-controlled 1 (TPT1), mRNA /cds=(94,612)
530	NM_003133	28	Hs.75975	signal recognition particle 9kD (SRP9), mRNA /cds=(106,366)
531	NM_004261	29	Hs.90606	15 kDa selenoprotein (SEP15), mRNA /cds=(4,492)
	\$EQ ID 50mer 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530	SEQ ID ACC 503 NM_000389 504 W16552 505 NM_004031 506 NM_006417 507 NM_006187 508 NM_001548 509 BC002409 510 NM_004510 511 NM_000269 512 NM_138391 513 BC036402 514 NM_002946 515 NM_031157 516 D23660 517 NM_006276 518 NM_003033 519 BE550944 520 L13385 521 AF315591 522 AK025620 523 AK026747 524 NM_001731 525 NM_004281 526 XM_008738 527 XM_018498 528 U67093 529 AJ400717 530 NM_003133	SEQ ID 50mer ACC Iength 503 NM_000389 1 504 W16552 2 505 NM_004031 3 506 NM_006417 4 507 NM_006187 5 508 NM_001548 6 509 BC002409 7 510 NM_004510 8 511 NM_000269 9 512 NM_138391 10 513 BC036402 11 514 NM_002946 12 515 NM_031157 13 516 D23660 14 517 NM_006276 15 518 NM_003033 16 519 BE550944 17 520 L13385 18 521 AF315591 19 522 AK025620 20 523 AK026747 21 524 NM_001731 22 525 NM_004281 23 526 XM_008738 24 527 XM_018498 25 528 U67093 26 529 AJ400717 27 530 NM_003133 28	SEQ ID 50mer ACC Full length HS 503 NM_000389 1 Hs.179665 504 W16552 2 Hs.306117 505 NM_004031 3 Hs.166120 506 NM_006417 4 Hs.82316 507 NM_006187 5 Hs.56009 508 NM_001548 6 Hs.283061 510 NM_004510 8 Hs.38125 511 NM_000269 9 Hs.183698 512 NM_138391 10 Hs.17481 513 BC036402 11 NA 514 NM_002946 12 Hs.79411 515 NM_031157 13 Hs.249495 516 D23660 14 Hs.334822 517 NM_006276 15 Hs.184167 518 NM_003033 16 Hs.301698 519 BE550944 17 Hs.61426 520 L13385 18 Hs.77318 521 AF315591 19 Hs.6151 522 AK025620 20 Hs.5985 523 AK026747 21 Hs.79241 525 N

2E.				·
50mer	ACC	Full length	HS	Gene
532	NM_002300	30	Hs.234489	Homo sapiens, lactate dehydrogenase B, clone MGC:3600 IMAGE:3028947, mRNA, complete cds
533	NM_003853	31	Hs.158315	interleukin 18 receptor accessory protein (IL18RAP), mRNA /cds=(483,2282)
534	X53777	32	Hs.82202	ribosomal protein L17 (RPL17), mRNA /cds=(286,840)
535	N27575	33	Hs.75613	CD36 antigen (collagen type I receptor, thrombospondin receptor) (CD36), mRNA /cds=(132,1550)
536	NM_006800	34	Hs.88764	male-specific lethal-3 (Drosophila)-like 1 (MSL3L1), mRNA /cds=(105,1670)
537	NM_000734	35	Hs.97087	CD3Z antigen, zeta polypeptide (TiT3 complex) (CD3Z), mRNA /cds=(178,669)
538	NM_003756	36	Hs.58189	eukaryotic translation initiation factor 3, subunit 3 (gamma, 40kD) (EIF3S3), mRNA /cds=(5,1063)
539	NM_021950	37	Hs.89751	CD20 antigen
540	AK021632	38	Hs.11571	cDNA FLJ11570 fis, clone HEMBA1003309 /cds=UNKNOWN
541	AK025583	39	Hs.82845	cDNA: FLJ21930 fis, clone HEP04301, highly similar to HSU90916 clone 23815 mRNA sequence
542	NM_000661	40	Hs.157850	Homo sapiens, clone MGC:15545 IMAGE:3050745, mRNA, complete cds /cds=(1045,1623)
543	NM_001057	41	Hs.161305	tachykinin receptor 2 (TACR2), mRNA /cds=(0,1196)
544	X60656	42	Hs.275959	eukaryotic translation elongation factor 1 beta 2 (EEF1B2), mRNA /cds=(235,912)
545	NM_004779	43	Hs.26703	CNOT8 CCR4-NOT transcription complex, subunit 8
546	X58529	44	Hs.302063	rearranged immunoglobulin mRNA for mu heavy chain enhancer and constant region /cds≕UNKNOWN
547	NM_016091	45	Hs.119503	HSPC025 (HSPC025), mRNA /cds=(33,1727)
548	NM_001006	46	Hs.77039	ribosomal protein S3A (RPS3A), mRNA /cds≃(36,8
549	NM_001568	47	Hs.106673	eukaryotic translation initiation factor 3, subunit 6 (48kD) (EIF3S6), mRNA /cds=(22,1359)
550	BC001854	48	Hs.77502	, methionine adenosyltransferase II, alpha, c
551	NM_000983	49	Hs.326249	ribosomal protein L22 (RPL22), mRNA /cds=(51,437)
552	NM_001006	50	Hs.155101	mRNA for KIAA1578 protein, partial cds /cds=(0,3608)
553	NM_001403	51	Hs.274466	eukaryotic translation elongation factor 1 alpha 1-like 14 (EEF1A1L14), mRNA /cds=(620,1816)
554	NM_002796	52	Hs.89545	proteasome (prosome, macropain) subunit, beta type, 4 (PSMB4), mRNA /cds=(23,817)
555	NM_016304	53	Hs.284162	60S ribosomal protein L30 isolog (LOC51187), mRNA /cds=(143,634)
556	NM_017918	54	Hs.234149	hypothetical protein FLJ20647 (FLJ20647), mRNA /cds=(90,836)
557	AA788623	55	Hs.332583	yc77a06.s1 cDNA, 3' end /clone=IMAGE:21844 /clone_end=3'
	\$EQ ID 50mer 532 533 534 535 536 537 538 540 541 542 545 546 547 548 550 551 552 553 554 555 556 556	SEQ ID ACC 532 NM_002300 533 NM_003853 534 X53777 535 N27575 536 NM_006800 537 NM_000734 538 NM_003756 539 NM_021950 540 AK021632 541 AK025583 542 NM_000661 543 NM_001057 544 X60656 545 NM_004779 546 X58529 547 NM_016091 548 NM_01006 549 NM_001568 550 BC001854 551 NM_001006 552 NM_001006 553 NM_001403 554 NM_016304 556 NM_017918	SEQ ID 50mer ACC In length Full length 532 NM_002300 30 533 NM_003853 31 534 X53777 32 535 N27575 33 536 NM_006800 34 537 NM_000734 35 538 NM_003756 36 539 NM_021950 37 540 AK021632 38 541 AK025583 39 542 NM_000661 40 543 NM_001057 41 544 X60656 42 545 NM_004779 43 546 X58529 44 547 NM_016091 45 548 NM_01006 46 549 NM_00106 48 551 NM_001983 49 552 NM_01403 51 553 NM_016304 53 555 NM_016304 53 556 NM_017918 <td>SEQ ID 50mer ACC Pull length HS 532 NM_002300 30 Hs.234489 533 NM_003853 31 Hs.158315 534 X53777 32 Hs.82202 535 N27575 33 Hs.75613 536 NM_006800 34 Hs.88764 537 NM_000734 35 Hs.97087 538 NM_003756 36 Hs.58189 539 NM_021950 37 Hs.89751 540 AK021632 38 Hs.11571 541 AK025583 39 Hs.82845 542 NM_000661 40 Hs.157850 543 NM_001057 41 Hs.161305 544 X60656 42 Hs.275959 545 NM_004779 43 Hs.26703 546 X58529 44 Hs.302063 547 NM_016091 45 Hs.119503 548 NM_001608 47 Hs.106673 550</td>	SEQ ID 50mer ACC Pull length HS 532 NM_002300 30 Hs.234489 533 NM_003853 31 Hs.158315 534 X53777 32 Hs.82202 535 N27575 33 Hs.75613 536 NM_006800 34 Hs.88764 537 NM_000734 35 Hs.97087 538 NM_003756 36 Hs.58189 539 NM_021950 37 Hs.89751 540 AK021632 38 Hs.11571 541 AK025583 39 Hs.82845 542 NM_000661 40 Hs.157850 543 NM_001057 41 Hs.161305 544 X60656 42 Hs.275959 545 NM_004779 43 Hs.26703 546 X58529 44 Hs.302063 547 NM_016091 45 Hs.119503 548 NM_001608 47 Hs.106673 550

Table	2E.		,	,	
OID		ACC	SEQ ID Full length	<u> </u>	Gene
7248	558	NM_001961	56	Hs.75309	eukaryotic translation elongation factor 2 (EEF2), mRNA /cds=(0,2576)
7631	559	AK026309	57	Hs.12436	cDNA: FLJ22656 fis, clone HSI07655 /cds=UNKNOWN
1112	560	AK026528	58	Hs.334807	Homo sapiens, ribosomal protein L30, clone MGC:2797, mRNA, complete cds /cds=(29,376)
1450	561	BC002971	59	Hs.1600	Homo sapiens, clone IMAGE:3543711, mRNA, partial cds /cds=(0,1620)
3572	562	U01923	60	Hs.278857	heterogeneous nuclear ribonucleoprotein H2 (H') (HNRPH2), mRNA /cds=(78,1427)
140	563	U61267	61	Hs.30035	putative splice factor transformer2-beta mRN
220	564	X14356	62	Hs.77424	high affinity Fc receptor (FcRI) /cds=(36,116
809	565	AF267856	63	Hs.8084	HT033 mRNA, complete cds /cds=(203,931)
1048	566	AK025306	64	Hs.2083	cDNA: FLJ21653 fis, clone COL08586, highly similar to HUMKINCDC protein kinase mRNA /cds=UNKNOWN
1262	567	AL162068	65	Hs.302649	HSP22-like protein interacting protein (LOC64165), mRNA /cds=(0,155)
	568	NM_004768		Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA /cds=(83,1537)
2793	569	NM_005594		Hs.158164	transporter 1, ATP-binding cassette, sub-family B (MDR/TAP) (TAP1), mRNA /cds=(30,2456)
5210	570	Al440234	68	Hs.9614	Nucleophosmin (probe bad, mutations, wrong clone used) (nucleolar phosphoprotein B23, numatrin)
	571	AW194379	69	Hs.203755	xm08h07.x1 cDNA, 3' end /clone=IMAGE:2683645 /clone_end=3'
2829		NM_005826		Hs.15265	heterogeneous nuclear ribonucleoprotein R (HNRPR), mRNA /cds=(90,1991)
	573	Al568695	71	Hs.75969	proline-rich protein with nuclear targeting signal (B4-2), mRNA /cds=(113,1096)
7965		AL110225	72	Hs.89434	drebrin 1 (DBN1), mRNA /cds=(97,2046)
L	LI	AL110151	73	Hs.128797	mRNA; cDNA DKFZp586D0824 (from clone DKFZp586D0824); partial cds /cds=(0,1080)
2933		NM_006495		Hs.5509	ecotropic viral integration site 2B (EVI2B), mRNA /cds=(0,1346)
1846		M74002	75	Hs.11482	splicing factor, arginine/serine-rich 11 (SFRS11), mRNA /cds=(83,1537)
917	578	AK002173	76	Hs.5518	cDNA FLJ11311 fis, clone PLACE1010102 /cds=UNKNOWN
1037	579	AK024976		Hs.323378	coated vesicle membrane protein (RNP24), mRNA /cds=(27,632)
1415	580	BC000967	78	Hs.195870	chronic myelogenous leukemia tumor antigen 66 mRNA, complete cds, alternatively spliced /cds=(232,1983)
3291	581	NM_016312	79	Hs.334811	Npw38-binding protein NpwBP (LOC51729), mRNA /cds=(143,2068)
3759		X57347		Hs.74405	tyrosine 3-monooxygenase/tryptophan 5- monooxygenase activation protein, theta polypeptide (YWHAQ), mRNA /cds=(100,837)
				Hs.292457	Homo sapiens, clone MGC:16362 IMAGE:3927795, mRNA, complete cds /cds=(498,635)
		U89387		Hs.194638	polymerase (RNA) II (DNA directed) polypeptide D (POLR2D), mRNA /cds=(30,458)
153	585	AB034205	83	Hs.278670	Acid-inducible phosphoprotein

Table	2E.			r	
OID	SEQ ID	ACC	SEQ ID Full length	нѕ	Gene
4111	586	XM_008062		Hs.17279	tyrosylprotein sulfotransferase 1 (TPST1), mRNA /cds=(81,1193)
3263	587	NM_016099	85	Hs.7953	HSPC041 protein (LOC51125), mRNA /cds=(141,455)
3510	588	NM_022898	86	Hs.57987	B-cell lymphoma/leukaemia 11B (BCL11B), mRNA /cds=(267,2738)
2956	589	NM_006759	87	Hs.77837	UDP-glucose pyrophosphorylase 2 (UGP2), mRNA /cds=(84,1610)
694	590	AF079566	88	Hs.4311	SUMO-1 activating enzyme subunit 2 (UBA2), mRNA /cds=(25,1947)
2055	591	NM_001024	89	Hs.182979	cDNA: FLJ22838 fis, clone KAIA4494, highly similar to HUML12A ribosomal protein L12 mRNA
3336	592	NM_017761	90	Hs.7862	hypothetical protein FLJ20312 (FLJ20312), mRNA /cds=(133,552)
3595	593	U15085	91	Hs.1162	major histocompatibility complex, class II, DM beta (HLA- DMB), mRNA /cds=(233,1024)
6004	594	AW572538	92	Hs.42915	ARP2 (actin-related protein 2, yeast) homolog (ACTR2), mRNA /cds=(74,1258)
1060	595	AK025557	93	Hs.110771	cDNA: FLJ21904 fis, clone HEP03585 /cds=UNKNOWN
	596	NM_003854		Hs.102865	interleukin 1 receptor-like 2 (IL1RL2), mRNA /cds=(134,1822)
721	597	AF116679	95	Hs.288036	tRNA isopentenylpyrophosphate transferase (IPT), mRNA /cds=(60,1040)
743	598	AF148537	96	Hs.65450	reticulon 4a mRNA, complete cds /cds=(141,3719)
3348	599	NM_017892		Hs.107213	hypothetical protein FLJ20585 (FLJ20585), mRNA /cds=(99,746)
2020	600	NM_000967	98	Hs.119598	ribosomal protein L3 (RPL3), mRNA /cds=(6,1217)
6847	601	NM_000971	99	Hs.153	ribosomal protein L7 (RPL7), mRNA /cds=(10,756)
626	602	AF012872	100	Hs.334874	phosphatidylinositol 4-kinase 230 (pi4K230) mRNA, complete cds /cds=(0,6134)
1469	603	BC004900	101	Hs.151242	serine (or cysteine) proteinase inhibitor, clade G (C1 inhibitor), member 1 (SERPING1), mRNA /cds=(60,1562)
2277	604	NM_002298	102	Hs.76506	lymphocyte cytosolic protein 1 (L-plastin) (LCP1), mRNA /cds=(173,2056)
3765	605	X59405	103	Hs.83532	H.sapiens, gene for Membrane cofactor protein /cds=UNKNOWN
4444	606	AL049935	104	Hs.301763	mRNA; cDNA DKFZp564O1116 (from clone DKFZp564O1116) /cds≈UNKNOWN
3431	607	NM_017860	105	Hs.79457	hypothetical protein FLJ20519 (FLJ20519), mRNA /cds=(74,604)
1686	608	J04142	106	Hs.1799	CD1D antigen, d polypeptide (CD1D), mRNA /cds=(164,1171)
3267	609	NM_016127	107	Hs.279921	HSPC035 protein (LOC51669), mRNA /cds=(16,1035)
970	610	AK023379	108	Hs.155160	Homo sapiens, Similar to splicing factor, arginine/serine- rich 2 (SC-35)
1710	611	L11284	109	Hs.3446	mitogen-activated protein kinase kinase 1 (MAP2K1), mRNA /cds=(72,1253)

Table	ZE.			· · · · · · · · · · · · · · · · · · ·	
OID	SEQ ID	ACC	SEQ ID Full length	HS	Gene
2358	612	NM_002710		Hs.79081	protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC), mRNA /cds=(154,1125)
2635	613	NM_004380	111	Hs.23598	CREB binding protein (Rubinstein-Taybi syndrome) (CREBBP), mRNA /cds=(198,7526)
8112	614	AW028193	112	Hs.135872	wv61h08.x1 cDNA, 3' end /clone=IMAGE:2534079 /clone end=3'
2124	615	NM_001436	113	Hs.99853	fibrillarin (FBL), mRNA /cds=(59,1024)
453	616	AB007916	114	Hs.214646	mRNA for KIAA0447 protein, partial cds /cds=(233,1633)
1250		AL137681	115	Hs.173912	eukaryotic translation initiation factor 4A, isoform 2 (EIF4A2), mRNA /cds=(15,1238)
1451	618	BC003090	116	Hs.75193	COP9 homolog (COP9), mRNA /cds=(49,678)
3596	619	U15173	117	Hs.155596	BCL2/adenovirus E1B 19kD-interacting protein 2 (BNIP2), mRNA /cds=(211,1155)
3127	620	NM_014210	118	Hs.70499	ecotropic viral integration site 2A (EVI2A), mRNA /cds=(219,917)
2049	621	NM_001011	119	Hs.301547	ribosomal protein S7 (RPS7), mRNA /cds≃(81,665)
3585	622	U07802	120	Hs.78909	Tis11d gene, complete cds /cds=(291,1739)
5466	623	Al817153	121	Hs.86693	EST380760 cDNA
2962	624	NM_006791	122	Hs.6353	MORF-related gene 15 (MRG15), mRNA /cds=(131,1102)
4678	625	NM_004500	123	Hs.182447	heterogeneous nuclear ribonucleoprotein C (C1/C2) (HNRPC), transcript variant 1, mRNA /cds≈(191,1102)
1768	626 ⁻	M16660	124	Hs.318720	Homo sapiens, clone MGC:12387 IMAGE:3933019, mRNA, complete cds /cds=(63,863)
2044	627	NM_001000	125	Hs.300141	cDNA FLJ14163 fis, clone NT2RP1000409 /cds=UNKNOWN
4486	628	BC008737	126	Hs.164280	Homo sapiens, Similar to solute carrier family 25 (mitochondrial carrier; adenine nucleotide translocator), member 5, clone MGC:3042 IMAGE:3342722, mRNA, complete cds /cds=(88,984)
6028		BE222392	127	Hs.79914	lumican (LUM), mRNA /cds=(84,1100)
7958	630	BC010112	128	Hs.79037	Homo sapiens, heat shock 60kD protein 1 (chaperonin), clone MGC:19755 IMAGE:3630225, mRNA, complete cds /cds=(1705,3396)
1062		AK025586	129	Hs.27268	cDNA: FLJ21933 fis, clone HEP04337 /cds=UNKNOWN
3220	632	NM_015057	130	Hs.151411	KIAA0916 protein (KIAA0916), mRNA /cds=(146,14071)
3590	633	U10550	131	Hs.79022	GTP-binding protein overexpressed in skeletal muscle (GEM), mRNA /cds=(213,1103)
2035	634	NM_000986	132	Hs.184582	DPP7 alveolar r
2039	635	NM_000993	133	Hs.184014	ribosomal protein L31 (RPL31), mRNA /cds=(7,384)
	636	NM_001688		Hs.81634	ATP synthase, H+ transporting, mitochondrial F0 complex, subunit b, isoform 1 (ATP5F1), mRNA
4311	637	Al356505	135	Hs.228874	qz22b04.x1 cDNA, 3' end /clone=IMAGE:2027599 /clone_end=3'

Table	2E.				
OID	SEQ ID	ACC	SEQ ID Full length	нѕ	Gene
7945	638	AF119850	136	Hs.2186	Homo sapiens, eukaryotic translation elongation factor 1 gamma, clone MGC:4501 IMAGE:2964623, mRNA, complete cds /cds=(2278,3231)
739	639	AF132197	137	Hs.301824	hypothetical protein PRO1331 (PRO1331), mRNA /cds=(422,616)
2986	640	NM_006925	138	Hs.166975	splicing factor, arginine/serine-rich 5 (SFRS5), mRNA /cds=(218,541)
4589	641	NM_002001		Hs.897	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide (FCER1A), mRNA /cds=(106,879)
5066	642	W00466	140	Hs.44189	yz99f01.s1 cDNA, 3' end /clone=IMAGE:291193 /clone_end=3'
1588	643	D17042	141	Hs.50651	Janus kinase 1 (a protein tyrosine kinase) (JAK1), mRNA /cds=(75,3503)
	644	NM_003380		Hs.297753	vimentin (VIM), mRNA /cds=(122,1522)
3322	645	NM_016824		Hs.324470	adducin 3 (gamma) (ADD3), transcript variant 1, mRNA /cds=(31,2151)
	646	Al581383	144	Hs.327922	to71c02.x1 cDNA, 3' end /clone=IMAGE:2183714 /clone_end=3'
4165	647	BC005913	145	Hs.1074	surfactant, pulmonary-associated protein C (SFTPC), mRNA /cds=(27,620)
4691	648	NM_004811		Hs.49587	leupaxin (LPXN), mRNA /cds≈(93,1253)
1265	649	AL357536	147	Hs.3576	Homo sapiens, Similar to RIKEN cDNA 5730494N06 gene, clone MGC:13348 IMAGE:4132400, mRNA, complete cds /cds=(132,494)
3501	650	NM_022570	148	Hs.161786	C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 12 (CLECSF12), mRNA /cds=(71,676)
2636	651	NM_004396	149	Hs.76053	DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 5 (RNA helicase, 68kD) (DDX5), mRNA /cds=(170,2014)
1101	652	AK026372	150	Hs.143631	cDNA: FLJ22719 fis, clone HSI14307 /cds=UNKNOWN
4131	653	XM_012059	151	Hs.154938	hypothetical protein MDS025 (MDS025), mRNA /cds=(5,769)
	654	XM_011914		Hs.180450	ribosomal protein S24 (RPS24), transcript variant 1, mRNA /cds=(37,429)
8031	655	NM_020414		Hs.286233	sperm autoantigenic protein 17 (SPA17), mRNA /cds=(1210,1665)
3560	656	S73591	154	Hs.179526	upregulated by 1,25-dihydroxyvitamin D-3 (VDUP1), mRNA /cds=(221,1396)
1675		J00194	155	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA DRA), mRNA /cds=(26,790)
924	658	AK021715	156	Hs.271541	cDNA FLJ11653 fis, clone HEMBA1004538 /cds=UNKNOWN
1144		AK027187	157	Hs.289071	cDNA: FLJ22245 fis, clone HRC02612 /cds=UNKNOWN
1212		AL117595	158	Hs.4055	mRNA; cDNA DKFZp564C2063 (from clone DKFZp564C2063) /cds=UNKNOWN
2383	661	NM_002823		Hs.250655	prothymosin, alpha (gene sequence 28) (PTMA), mRNA /cds=(155,487)
2627	662	NM_004327	160	Hs.234799	breakpoint cluster region (BCR), transcript variant 1, mRNA /cds=(488,4303)

Table 2E.

Table	ZE.			, 	
	SEQ ID	l .	SEQ ID Full	,	
OID		ACC	length		Gene
3343	663	NM_017830	161	Hs.132071	ovarian carcinoma immunoreactive antigen (OCIA), mRNA /cds=(167,904)
3717	664	X06557	162	Hs.2014	mRNA for T-cell receptor delta /cds=UNKNOWN
4244	665	AI146787	163	Hs.156601	qb83f02.x1 cDNA, 3' end /clone=IMAGE:1706715 /clone_end≈3'
5323	666	Al568771	164	Hs.327876	
5733	667	AW195119	165	Hs.253151	xn66b07.x1 cDNA, 3' end /clone=IMAGE:2699413 /clone_end=3'
3292	668	NM_016316	166	Hs.110347	
1324	669	AV724531	167	Hs.76728	602570065F1 cDNA, 5' end /clone=IMAGE:4694321 /clone end=5'
915	670	AK002059	168	Hs.92918	hypothetical protein (BM-009), mRNA /cds=(385,1047)
	671	NM_001503		Hs.272529	glycosylphosphatidylinositol specific phospholipase D1 (GPLD1), mRNA /cds=(32,2557)
4221	672	AA251806	170	Hs.177712	
2626	673	NM_004315	171	Hs.75811	N-acylsphingosine amidohydrolase (acid ceramidase) (ASAH), mRNA /cds=(17,1204)
2633	674	NM_004371	172	Hs.75887	coatomer protein complex, subunit alpha (COPA), mRNA /cds=(466,4140)
664	675	AF054284	173	Hs.334826	splicing factor 3b, subunit 1, 155kD (SF3B1), mRNA /cds=(0,3914)
6046	676	BE613237	174	Hs.146381	RNA binding motif protein, X chromosome (RBMX), mRNA /cds=(11,1186)
278	677	NM_003367	175	Hs.93649	upstream transcription factor 2, c-fos intera
469	678	AB014522	176	Hs.11238	mRNA for KIAA0622 protein, partial cds /cds=(0,3869)
5713	679	AW137104	177	Hs.8121	Notch (Drosophila) homolog 2 (NOTCH2), mRNA /cds=(12,7427)
7443	680	BF897042	178	Hs.120219	FLJ32028 hypothetical protein FLJ32028
1447	681	BC002900	179	Hs.181309	
6304	682	AL578975	180	Hs.5057	AL578975 cDNA /clone=CS0DK012YN01-(3-prime)
2037	683	NM_000988	181	Hs.111611	ribosomal protein L27 (RPL27), mRNA /cds=(17,427)
2550	684	NM_003769	182	Hs.77608	splicing factor, arginine/serine-rich 9 (SFRS9), mRNA /cds=(52,717)
3679	685	U94855	183	Hs.7811	eukaryotic translation initiation factor 3, subunit 5 (epsilon, 47kD) (EIF3S5), mRNA /cds=(6,1079)
1337	686	AV749844	184	Hs.26670	PAC clone RP3-515N1 from 22q11.2-q22 /cds=(0,791)
1453	687	BC003352	185	Hs.326456	hypothetical protein FLJ20030 (FLJ20030), mRNA /cds=(1,1239)
1298	688	AU135154	186	Hs.172028	a disintegrin and metalloproteinase domain 10 (ADAM10), mRNA /cds=(469,2715)
779	689	AF208850	187	Hs.82911	BM-008 mRNA, complete cds /cds=(341,844)
1602	690	D29805	188	Hs.198248	UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 (B4GALT1), mRNA /cds=(72,1268)
2867	691	NM_006098	189	Hs.5662	guanine nucleotide binding protein (G protein), beta polypeptide 2-like 1 (GNB2L1), mRNA /cds=(95,1048)

Table	2E.				
OID	SEQ ID	ACC	SEQ ID Full length	HS	Gene
	692	NM 001755		Hs.179881	core-binding factor, beta subunit (CBFB), transcript
				110.170001	variant 2, mRNA /cds=(11,559)
3033	693	NM 007355	191	Hs.74335	heat shock 90kD protein 1, beta (HSPCB), mRNA
ļ					/cds=(0,2174)
3692	694	W47229	192	Hs.173334	ELL-RELATED RNA POLYMERASE II, ELONGATION
					FACTOR (ELL2), mRNA /cds=(0,1922)
	695	X51345	193	Hs.198951	jun B proto-oncogene (JUNB), mRNA /cds=(253,1296)
5114	696	Al364677	194	Hs.368853	ESTs
5135	697	Al380594	195	Hs.231261	tf95h06.x1 cDNA, 3' end /clone=IMAGE:2107067 /clone_end=3'
2158	698	NM 001641	196	Hs.73722	APEX nuclease (multifunctional DNA repair enzyme)
2,00	030	14101_001041	190		(APEX), mRNA /cds=(205,1161)
2369	699	NM_002786	197	Hs.82159	proteasome (prosome, macropain) subunit, alpha type, 1
	<u> </u>				(PSMA1), mRNA /cds=(105,896)
1676	700	J02621	198	Hs.251064	high-mobility group (nonhistone chromosomal) protein 14
2444	704	NINA 040444	400	11- 70007	(HMG14), mRNA /cds=(150,452)
3414	701	NM_019111	199	Hs.76807	major histocompatibility complex, class II, DR alpha (HLA
801	702	AF248966	200	Hs.183434	DRA), mRNA /cds=(26,790) ATPase, H+ transporting, lysosomal (vacuolar proton
100,	102	Ai 240300	200	118.100404	pump) membrane sector associated protein M8-9
	!				(APT6M8-9)
1605	703	D31767	201	Hs.75416	DAZ associated protein 2 (DAZAP2), mRNA
2974	704	NM_006839	202	Hs.78504	inner membrane protein, mitochondrial (mitofilin) (IMMT),
				l	mRNA /cds=(92,2368)
5333	705	Al581732	203	Hs.229918	ar74f03.x1 cDNA, 3' end /clone=IMAGE:2128349
		 			/clone_end=3'
3411	706	NM_019059	204	Hs.274248	hypothetical protein FLJ20758 (FLJ20758), mRNA
2061	707	NM 001033	205	Hs.2934	/cds=(464,1306)
2001	101	14141_001033	205	IDS.2934	ribonucleotide reductase M1 polypeptide (RRM1), mRNA /cds=(187,2565)
2361	708	NM_002719	206	Hs 171734	protein phosphatase 2, regulatory subunit B (B56),
		002, 10		110.171701	gamma isoform (PPP2R5C), mRNA /cds=(88,1632)
2553	709	NM 003791	207	Hs.75890	membrane-bound transcription factor protease, site 1
					(MBTPS1), mRNA /cds=(496,3654)
2068	710	NM_001105	208	Hs.150402	activin A receptor, type I (ACVR1), mRNA /cds=(340,1869)
4153	711	BG179517	209	Hs.99093	chromosome 19, cosmid R28379 /cds=(0,633)
6179	712	BF940103	210	Hs.26136	hypothetical protein MGC14156 (MGC14156), mRNA
					/cds=(82,426)
668	713	AF061736	211	Hs.169895	ubiquitin-conjugating enzyme E2L 6 (UBE2L6), mRNA /cds=(47,508)
981	714	AK023680	212	Hs.17448	cDNA FLJ13618 fis, clone PLACE1010925 /cds=UNKNOWN
2102	715	NM_001295	213	Hs.301921	chemokine (C-C motif) receptor 1 (CCR1), mRNA /cds=(62,1129)
2560	716	NM_003811	214	Hs.1524	tumor necrosis factor (ligand) superfamily, member 9 (TNFSF9), mRNA /cds=(3,767)
3701	717	X02812	215	Hs.1103	transforming growth factor, beta 1 (TGFB1), mRNA
3, 3,			_ 10	1.13.1100	/cds=(841,2016)

Table	2E.		···		
OID	SEQ ID	8	SEQ ID Full length	нѕ	Gene
4601	718	NM_002205		Hs.149609	integrin, alpha 5 (fibronectin receptor, alpha polypeptide) (ITGA5), mRNA /cds=(23,3172)
5468	719	Al818777	217	Hs.229990	wl11f10.x1 cDNA, 3' end /clone=IMAGE:2424619 /clone end=3'
7641	720	NM_005892	218	Hs.100217	formin-like (FMNL), mRNA /cds=(39,1430)
8015	721	M26252	219	Hs.198281	pyruvate kinase, muscle (PKM2), mRNA
446	722	AB002377	220	Hs.32556	mRNA for KIAA0379 protein, partial cds /cds=(0,3180)
4359	723	Al381586	221	Hs.87908	Snf2-related CBP activator protein (SRCAP), mRNA /cds=(210,9125)
5034	724	BG760189	222	Hs.37617	602144947F1 cDNA, 5' end /clone=IMAGE:4308683 /clone_end=5'
4752	725	NM_006913	223	Hs.216354	ring finger protein 5 (RNF5), mRNA /cds=(0,542)
765	726	AF189011	224	Hs.49163	ribonuclease III (RN3) mRNA, complete cds /cds=(245,4369)
949	727	AK022834	225	Hs.58488	catenin (cadherin-associated protein), alpha-like 1 (CTNNAL1), mRNA /cds=(43,2247)
2398	728	NM_002878	226	Hs.125244	RAD51 (S. cerevisiae)-like 3 (RAD51L3), mRNA /cds=(124,993)
7445	729	BF899464	227	NA	IL5-MT0211-011200-317-f03 MT0211 cDNA, mRNA sequence
7748	730	AW452510	228	Hs.300479	UI-H-BW1-ame-a-12-0-UI.s1 cDNA, 3' end /clone=IMAGE:3069598 /clone_end=3'
2778	731	NM_005508	229	Hs.184926	chemokine (C-C motif) receptor 4 (CCR4), mRNA /cds=(182,1264)
3734	732	X16354	230	Hs.50964	mRNA for transmembrane carcinoembryonic antigen BGPa (formerly TM1-CEA) /cds=(72,1652)
4364	733	AA581115	231	Hs.291129	oe10d02.s1 cDNA /clone=IMAGE:1385475
2776	734	NM_005485		Hs.271742	polymerase)-like 3 (ADPRTL3), mRNA /cds=(246,1847)
2826	735	NM_005816	233	Hs.142023	T cell activation, increased late expression (TACTILE), mRNA /cds=(928,2637)
3987	736	BG033294	234	Hs.118787	transforming growth factor, beta-induced, 68kD (TGFBI), mRNA /cds=(47,2098)
4501	737	K01566	235	Hs.69771	B-factor, properdin
6244	738	T25714	236	Hs.330530	ESTDIR309 cDNA, 3' end /clone=CDDIRX9
7346	739	NM_022873	237	Hs.265827	(G1P3), transcript variant 3, mRNA /cds=(107,523)
3827	740	X99699	238	Hs.139262	XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)
676	741	AF067519	239	Hs.307357	PITSLRE protein kinase beta SV1 isoform (CDC2L2) mRNA, complete cds /cds=(79,2412)
4988	742	BG387694	240	Hs.170980	cell cycle progression 2 protein (CPR2), mRNA /cds=(126,1691)
707	743	AF104032	241	Hs.184601	L-type amino acid transporter subunit LAT1 mRNA, complete cds /cds=(66,1589)
7351	744	NM_012177	242	Hs.272027	F-box only protein 5 (FBXO5), mRNA /cds=(61,1404)
1158	745	AL042370	243	Hs.79709	phosphotidylinositol transfer protein (PITPN), mRNA /cds=(216,1028)

Table	2E.			,	
OID	SEQ ID	ACC	SEQ ID Full length	HS	Gene
	746	BC009469	244	Hs.287797	mRNA for FLJ00043 protein, partial cds /cds=(0,4248)
4924		AA319163	245		RPLP1 ;germinal
	748	Al393970	246	Hs.76239	hypothetical protein FLJ20608 (FLJ20608), mRNA /cds=(81,680)
3157	749	NM_014481	247	Hs.154149	Homo sapiens, apurinic/apyrimidinic endonuclease(APEX nuclease)-like 2 protein, clone MGC:1418 IMAGE:3139156, mRNA, complete cds
3338	750	NM_017774	248	Hs.306668	cDNA FLJ14089 fis, clone MAMMA1000257 /cds=UNKNOWN
3346	751	NM_017859	249	Hs.39850	hypothetical protein FLJ20517 (FLJ20517), mRNA /cds=(44,1690)
3544	752	R44202	250	Hs.240013	mRNA; cDNA DKFZp547A166 (from clone DKFZp547A166) /cds=UNKNOWN
4626	753	NM_002904	251	Hs.106061	RD RNA-binding protein (RDBP), mRNA /cds=(108,1250)
7339	754	AL133642	252	Hs.241471	mRNA; cDNA DKFZp586G1721 (from clone DKFZp586G1721); partial cds /cds=(0,669)
109	755	AF160973	253	Hs.258503	P53 inducible protein
285	756	NM_001972	254	Hs.99863	elastase 2, neutrophil (ELA2),
406	757	AA282774	255	NA	cDNA clone IMAGE:713136 5'
436	758	AB000115	256	Hs.75470	hypothetical protein, expressed in osteoblast (GS3686), mRNA /cds=(241,1482)
860	759	AJ277247	257	Hs.287369	interleukin 22 (IL22), mRNA /cds=(71,610)
1610	760	D38081	258	Hs.89887	thromboxane A2 receptor (TBXA2R), mRNA /cds=(991,2022)
2096	761	NM_001250	259	Hs.25648	tumor necrosis factor receptor superfamily, member 5 (TNFRSF5), mRNA /cds=(47,880)
5288	762	Al524266	260	Hs.230874	th11g12.x1 cDNA, 3' end /clone=IMAGE:2118022 /clone_end=3'
5534		AL573787	261	Hs.21732	AL573787 cDNA /clone=CS0DI055YM17-(3-prime)
7347	764	AK001503	262	Hs.265891	cDNA FLJ10641 fis, clone NT2RP2005748 /cds=UNKNOWN
279	765	X04430	263	Hs.93913	IFN-beta 2a mRNA for interferon-beta-2, T-cells, macrophages
349	766	AF480557	264	NA	142E4
1284	767	AL550229	265	Hs.271599	cDNA FLJ12347 fis, clone MAMMA1002298 /cds=UNKNOWN
1328	768	AV727063	266	Hs.245798	hypothetical protein DKFZp564I0422 (DKFZP564I0422), mRNA /cds=(510,1196)
1939	769	NM_000389	267	Hs.179665	cyclin-dependent kinase inhibitor 1A (p21, Cip1) (CDKN1A), mRNA /cds=(75,569)
2186	770	NM_001761	268	Hs.1973	cyclin F (CCNF), mRNA /cds=(43,2403)
2364	771	NM_002741	269	Hs.2499	protein kinase C-like 1 (PRKCL1), mRNA /cds=(84,2912)
2400	772	NM_002880	270	Hs.279474	HSPC070 protein (HSPC070), mRNA /cds=(331,1581)
3146	773	NM_014373	271	Hs.97101	putative G protein-coupled receptor (GPCR150), mRNA /cds=(321,1337)

Table	2E.		,	,	
OID	SEQ ID		SEQ ID Full length	HS	Gene
3633	774	U53347	272	Hs.183556	solute carrier family 1 (neutral amino acid transporter), member 5 (SLC1A5), mRNA /cds=(590,2215)
3689	775	W19201	273	Hs.17778	
					neuropilin 2 (NRP2), mRNA /cds=(0,2780)
3695		W79598	274	Hs.163846	putative N6-DNA-methyltransferase (N6AMT1), mRNA /cds=(29,673)
4079		XM_001939	275	Hs.55468	H4 histone, family 2
4254	778	Al270476	276	Hs.270341	602307338F1 cDNA, 5' end /clone=IMAGE:4398848 /clone_end=5'
4316	779	AA992299	277	Hs.129332	ot53b06.s1 cDNA, 3' end /clone=IMAGE:1620467 /clone_end=3'
4394	780	AF044595	278	Hs.248078	lymphocyte-predominant Hodgkin's disease case #7 immunoglobulin heavy chain gene, variable region
4492	781	BI091076	279	Hs.127128	ok13e12.s1 cDNA, 3' end /clone=IMAGE:1507726 /clone_end=3'
4498	782	H13491	280	Hs.303450	yj15f02.r1 cDNA, 5' end /clone=IMAGE:148827 /clone_end=5'
4507	783	M55420	281	He 247020	IgE chain, last 2 exons
	784	NM 014271		Hs.241385	interleukin 1 receptor accessory protein-like 1
					(IL1RAPL1), mRNA /cds=(510,2600)
5126		Al378091	283	Hs.369056	ESTs
5138	786	Al381601	284	Hs.159025	td05g03.x1 cDNA, 3' end /clone=IMAGE:2074804 /clone_end=3'
5347	787	Al634972	285	Hs.319825	602021477F1 cDNA, 5' end /clone=IMAGE:4156915 /clone_end=5'
5561	788	AW005376	286	Hs.173280	ws94a12.x1 cDNA, 3' end /clone=IMAGE:2505598 /clone end=3'
5706	789	AW088500	287	Hs.389655	EST, Weakly similar to A35098 MHC class III histocompatibility antigen HLA-B-associated transcript 3
5735	790	AW195270	288	Hs.330019	xn67c04.x1 cDNA, 3' end /clone≈IMAGE:2699526 /clone_end=3'
5836	791	AW296797	289	Hs.255579	UI-H-BW0-ajb-e-07-0-UI.s1 cDNA, 3' end
7438	702	BF827734	290	Hs.156766	/clone=IMAGE:2731117 /clone_end=3' ESTs
	793	M11233	291	Hs.79572	cathepsin D (lysosomal aspartyl protease) (CTSD),
1100	704	AL OFOOTO	202	Ha 45000	mRNA /cds=(2,1240)
1182 3260	794 795	AL050218 NM_016063	292 293	Hs.15020 Hs.32826	DNA sequence from clone 51J12 on chromosome 6q26-CGI-130 protein (LOC51020), mRNA /cds=(63,575)
6702	796	BU678165	294	Hs.377992	479H5, not in ref seq, Rab geranylgeranyltransferase,
1186	797	AL050371	295	Hs.8128	alpha subunit (RABGGTA), phosphatidylserine decarboxylase (PISD), mRNA /cds=(223,1350)
330	798	NM_152545	296	Hs.335815	62C9, hypothetical protein FLJ31695
	799	XM_007156		Hs.159492	sacsin (SACS) gene, complete cds /cds=(76,11565)
4780	800	NM_014339	298	Hs.129751	interleukin 17 receptor (IL17R), mRNA /cds=(32,2632)
4821	801	NM_019598	299	Hs.159679	kallikrein 12 (KLK12), mRNA /cds=UNKNOWN
5091	802	Al081258	300	Hs.134590	oy67c11.x1 cDNA, 3' end /clone=IMAGE:1670900 /clone_end=3'

	Table	2E.		,		
Hs.257743	OID	L .		Full		Gene
2202 804 NM_01873 302 Hs.75360 Carboxypeptidase E (CPE), mRNA /cds=(290,1720)						1
	2202	804	NM_001873	302	Hs.75360	
	4886	805	NM_032839	303	Hs.11360	1 **
Granulocyte-macrophage (CSF2RB), mRNA Icds=(28,2721)	3733	806	X16277	304	Hs.339703	l ·
Substract Subs	4526	807	NM_000395	305	Hs.285401	colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-macrophage) (CSF2RB), mRNA
1008 810						C-type (calcium dependent, carbohydrate-recognition domain) lectin, superfamily member 5 (CLECSF5), mRNA /cds=(197,763)
						
			AK024331	308	Hs.287631	
CTCF7L2), mRNA /cds=(307,2097)	1911	811	NM_000195	309	Hs.83951	/cds=(206,2308)
399 814 AA214691 312 Hs.111377 LOC286530 hypothetical protein LOC286530 599 815 AB049113 313 Hs.82113 dUTP pyrophosphatase (DUT), mRNA /cds=(29,523) 1129 816 AK026819 314 Hs.20242 hypothetical protein FLJ12788 (FLJ12788), mRNA /cds=(9,866) 1717 817 L21961 315 Hs.181125 Homo sapiens, clone MGC:12849 IMAGE:4308973, mRNA, complete cds /cds=(24,725) 2101 818 NM_001278 316 Hs.306440 mRNA; cDNA DKFZp566L084 (from clone DKFZp566L084) /cds=UNKNOWN 2290 819 NM_002385 317 Hs.69547 myelin basic protein (MBP), mRNA /cds=(10,570) 2736 820 NM_005121 318 Hs.11861 thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601) 3018 821 NM_007220 319 Hs.283646 carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090) 3068 822 NM_014225 321 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) 3128 8	7307	812	NM_030756	310	Hs.173638	
599 815 AB049113 313 Hs.82113 dUTP pyrophosphatase (DUT), mRNA /cds=(29,523) 1129 816 AK026819 314 Hs.20242 hypothetical protein FLJ12788 (FLJ12788), mRNA /cds=(29,866) 1717 817 L21961 315 Hs.181125 Hs.006 sapiens, clone MGC:12849 IMAGE:4308973, mRNA, complete cds /cds=(24,725) 2101 818 NM_001278 316 Hs.306440 mRNA; cDNA DKFZp566L084 (from clone DKFZp566L084) /cds=UNKNOWN 2290 819 NM_002385 317 Hs.69547 myelin basic protein (MBP), mRNA /cds=(10,570) 2736 820 NM_005121 318 Hs.11861 thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601) 3018 821 NM_007220 319 Hs.283646 carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(37,1090) 3068 822 NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) 3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65 <	150	813	M26683		Hs.303649	interferon gamma treatment inducible mRNA Monocytes
1129 816	399	814			Hs.111377	LOC286530 hypothetical protein LOC286530
	599					
MRNA, complete cds /cds=(24,725)			AK026819		Hs.20242	/cds=(9,866)
DKFZp566L084) /cds=UNKNOWN 2290 819 NM_002385 317 Hs.69547 myelin basic protein (MBP), mRNA /cds=(10,570) 2736 820 NM_005121 318 Hs.11861 thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601) 3018 821 NM_007220 319 Hs.283646 carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090) 3068 822 NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) 3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65) 3965 824 BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) 4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	1717	817	L21961	315	Hs.181125	•
2736 820 NM_005121 318 Hs.11861 thyroid hormone receptor-associated protein, 240 kDa subunit (TRAP240), mRNA /cds=(77,6601) 3018 821 NM_007220 319 Hs.283646 carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090) 3068 822 NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) 3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65) 3965 824 BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) 4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	2101	818	NM_001278	316	Hs.306440	
subunit (TRAP240), mRNA /cds=(77,6601) NM_007220 319 Hs.283646 carbonic anhydrase VB, mitochondrial (CA5B), nuclear gene encoding mitochondrial protein, mRNA /cds=(137,1090) NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65) BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) MRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	2290	819	NM_002385	317	Hs.69547	
gene encoding mitochondrial protein, mRNA /cds=(137,1090) 3068 822 NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)- like (ORC3L), mRNA /cds=(26,2161) 3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65 3965 824 BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) 4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	2736	820	NM_005121	318	Hs.11861	
3068 822 NM_012381 320 Hs.74420 origin recognition complex, subunit 3 (yeast homolog)-like (ORC3L), mRNA /cds=(26,2161) 3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65) 3965 824 BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) 4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	3018	821	NM_007220	319	Hs.283646	gene encoding mitochondrial protein, mRNA
3128 823 NM_014225 321 Hs.173902 protein phosphatase 2 (formerly 2A), regulatory subunit (PR 65) 3965 824 BF966028 322 Hs.5324 hypothetical protein (CL25022), mRNA /cds=(157,1047) 4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	3068	822	NM_012381	320	Hs.74420	origin recognition complex, subunit 3 (yeast homolog)-
4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	3128	823	NM_014225	321	Hs.173902	protein phosphatase 2 (formerly 2A), regulatory subunit A
4450 825 AL157438 323 Hs.66151 mRNA; cDNA DKFZp434A115 (from clone DKFZp434A115) /cds=UNKNOWN 4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	3965	824	BF966028	322	Hs.5324	hypothetical protein (CL25022), mRNA /cds=(157,1047)
4677 826 NM_004488 324 Hs.73734 glycoprotein V (platelet) (GP5), mRNA /cds=(270,1952) 4753 827 NM_006929 325 Hs.153299 DOM-3 (C. elegans) homolog Z (DOM3Z), transcript variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	4450	825	AL157438	323	Hs.66151	mRNA; cDNA DKFZp434A115 (from clone
variant 2, mRNA /cds=(129,1319) 4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	4677	826	NM_004488	324	Hs.73734	
4841 828 NM_021976 326 Hs.79372 retinoid X receptor, beta (RXRB), mRNA /cds=(179,1780)	4753	827	NM_006929	325	Hs.153299	
	4841	828	NM_021976	326	Hs.79372	retinoid X receptor, beta (RXRB), mRNA
	4891	829	T93822	327	Hs.294092	

Table	2E.			,	
OID	SEQ ID		SEQ ID Full length	HS	Gene
	830	Al524202	328	Hs.171122	th10d11.x1 cDNA, 3' end /clone=IMAGE:2117877 /clone_end=3'
5359	831	Al684022	329	Hs.90744	proteasome (prosome, macropain) 26S subunit, non- ATPase, 11 (PSMD11), mRNA /cds=(0,1268)
5965	832	AW452545	330	Hs.257582	UI-H-BW1-ame-d-12-0-UI.s1 cDNA, 3' end /clone=IMAGE:3069742 /clone end=3'
6434	833	NM_153341	331	Hs.64239	DNA sequence from clone RP5-1174N9 on chromosome 1p34.1-35.3.
7175	834	BF698885	332	Hs.5890	hypothetical protein FLJ23306 (FLJ23306), mRNA /cds=(562,930)
1884	835	NM_000073	333	Hs.2259	CD3G antigen, gamma polypeptide (TiT3 complex) (CD3G), mRNA /cds=(37,585)
	836	NM_004761		Hs.170160	RAB2, member RAS oncogene family-like (RAB2L), mRNA /cds=(0,2333)
	837	NM_015898		Hs.104640	mRNA /cds=(0,1754)
	838	NM_014348		Hs.296429	similar to rat integral membrane glycoprotein POM121 (POM121L1), mRNA /cds=(0,1286)
4950	839	AW500534	337	Hs.145668	fmfc5 cDNA /clone=CR6-21
5076	840	AA765569	338	Hs.104157	EST380899 cDNA
5092	841	AI084553	339	Hs.105621	
	842	Al523617	340	Hs.171098	tg95b03.x1 cDNA, 3' end /clone=IMAGE:2116493 /clone_end=3'
	843	Al969716	341	Hs.13034	hv63f09.x1 cDNA, 3' end /clone=IMAGE:3178121 /clone_end=3'
	844	NM_002076		Hs.164036	glucosamine (N-acetyl)-6-sulfatase (Sanfilippo disease IIID) (GNS), mRNA /cds=(87,1745)
	845	Al760224	343	Hs.26873	wh62g06.x1 cDNA, 3' end /clone=IMAGE:2385370 /clone_end=3'
5530		AL565736	344	Hs.181165	(EEF1A1), mRNA /cds=(53,1441)
7330		NM_004900			phorbolin (similar to apolipoprotein B mRNA editing protein) (DJ742C19.2), mRNA /cds=(79,651)
	848	Al031624	346	Hs.238954	602637935F1 cDNA, 5' end /clone=IMAGE:4765448 /clone_end=5'
	849	BF059133	347	Hs.144583	Homo sapiens, clone IMAGE:3462401, mRNA, partial cds /cds=(0,153)
555	850	AB036432	348	Hs.184	advanced glycosylation end product-specific receptor (AGER), mRNA /cds=(0,1214)
	851	R64054	349	Hs.208603	7f01d11.x1 cDNA, 3' end /clone=IMAGE:3293397 /clone_end=3'
1849	852	M81601	350	Hs.153179	fatty acid binding protein 5 (psoriasis-associated) (FABP5), mRNA /cds=(48,455)
1390	853	AY004255	351	Hs.238990	Homo sapiens, Similar to cyclin-dependent kinase inhibitor 1B (p27, Kip1)
4604	854	NM_002258		Hs.169824	killer cell lectin-like receptor subfamily B, member 1 (KLRB1), mRNA /cds=(60,737)
1750	855	M11124	353	Hs.198253	major histocompatibility complex, class II, DQ alpha 1 (HLA-DQA1), mRNA /cds=(43,810)
4400	856	AF073705	354	Hs.247721	clone mcg53-54 immunoglobulin lambda light chain variable region 4a mRNA, partial cds /cds=(0,324)

Table	2E.				
OID	SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene
855	857	AJ271326	355	Hs.135187	unc93 (C.elegans) homolog B (UNC93B), mRNA /cds=(41,1834)
6566	858	NM_138391	356	Hs.17481	mRNA; cDNA DKFZp434G2415 (from clone DKFZp434G2415) /cds≃UNKNOWN
3825	859	X97324	357	Hs.3416	adipose differentiation-related protein (ADFP), mRNA /cds=(0,1313)
2895	860	NM_006289	358	Hs.18420	talin 1 (TLN1), mRNA /cds=(126,7751)
4631	861	NM_002935	359	Hs.73839	ribonuclease, RNase A family, 3 (eosinophil cationic protein) (RNASE3), mRNA /cds=(63,545)
3832, 8069	862	Y00345	360	Hs.172182	poly(A)-binding protein, cytoplasmic 1 (PABPC1), mRNA /cds=(502,2403)
5531	863	AL567986	361	Hs.77393	farnesyl diphosphate synthase
	864	NM_000311		Hs.74621	prion protein (p27-30) (Creutzfeld-Jakob disease, Gerstmann-Strausler-Scheinker syndrome)
3305	865	NM_016523	363	Hs.183125	killer cell lectin-like receptor subfamily F, member 1 (KLRF1), mRNA /cds=(64,759)
5074	866	AA701193	364	Hs.431104	EST, Weakly similar to HA21_HUMAN HLA class II histocompatibility antigen, DQ(1) alpha chain precursor (DC-4 alpha chain)
8095	867	AK026594	365	Hs.251653	tubulin, beta, 2 (TUBB2), mRNA /cds=(0,1337)
5607	868	AW063509	366	Hs.279105	TN1012 cDNA, 3' end /clone_end=3'
3541	869	R14692	367	Hs.170222	Na+/H+ exchanger NHE-1 isoform [human, heart, mRNA, 4516 nt] /cds=(577,3024)
2386	870	NM_002831	368	Hs.63489	protein tyrosine phosphatase, non-receptor type 6 (PTPN6), mRNA /cds=(144,1931)
1535	871	BE868389	369	Hs.179703	tripartite motif protein 14 (TRIM14), mRNA
328	872	AK090404	370	Hs.98531	53G7, FLJ00290 protein
	873	AK024202	371	Hs.289088	heat shock 90kD protein 1, alpha (HSPCA), mRNA /cds=(60,2258)
1003	874	AK024240	372	Hs.24115	cDNA FLJ14178 fis, clone NT2RP2003339 /cds=UNKNOWN
1025	875	AK024756	373	Hs.12293	hypothetical protein FLJ21103 (FLJ21103), mRNA /cds=(88,1143)
1035	876	AK024969	374	Hs.166254	hypothetical protein DKFZp566I133 (DKFZP566I133), mRNA /cds=(133,1353)
1227	877	AL136542	375	Hs.322456	hypothetical protein DKFZp761D0211 (DKFZP761D0211), mRNA /cds=(164,1822)
3249	878	NM_015995	376	Hs.7104	mRNA; cDNA DKFZp761P06121 (from clone DKFZp761P06121) /cds=UNKNOWN
2060	879	NM_001032	377	Hs.539	ribosomal protein S29 (RPS29), mRNA /cds=(30,200)
4902	880	X58397	378	Hs.81220	CLL-12 transcript of unrearranged immunoglobulin V(H)5 gene /cds=(39,425)
5782	881	AW293895	379	Hs.255249	UI-H-BW0-ain-f-10-0-UI.s1 cDNA, 3' end /clone=IMAGE:2729995 /clone end=3'
7626	882	NM_003128		Hs.324648	cDNA FLJ13700 fis, clone PLACE2000216, highly similar to SPECTRIN BETA CHAIN, BRAIN /cds=UNKNOWN
1195	883	AL109669	381	Hs.172803	mRNA full length insert cDNA clone EUROIMAGE 31839 /cds=UNKNOWN

Table	2E.				
OID	SEQ ID 50mer	ACC	SEQ ID Full length	нѕ	Gene
8111	884	Al307808	382	Hs.238797	602081661F1 cDNA, 5' end /clone=IMAGE:4245999 /clone_end=5'
805	885	AF261087	383	Hs.174131	ribosomal protein L6 (RPL6), mRNA /cds=(26,892)
	886	NM_002546		Hs.81791	tumor necrosis factor receptor superfamily, member 11b
<u> </u>			-		(osteoprotegerin) (TNFRSF11B), mRNA /cds=(94,1299)
3053	887	NM_012237	385	Hs.44017	sirtuin (silent mating type information regulation 2, S.cerevisiae, homolog) 2 (SIRT2), transcript variant 1, mRNA /cds=(200,1369)
3779	888	X68060	386	Hs.75248	topoisomerase (DNA) II beta (180kD) (TOP2B), mRNA /cds=(0,4865)
5353	889	Al660405	387	Hs.111941	qd92a04.x1 cDNA, 3' end /clone=IMAGE:1736910 /clone_end=3'
5442	890	AI798114	388	Hs.210307	
5690	891	AW075948	389	Hs.265634	
5791	892	AW294681	390	Hs.255336	
6239	893	R40823	391	Hs.108082	
6260	894	AA806222	392	Hs.111554	
6273	895	Al380390	393	Hs.158976	
6351	896	BF435621	394	Hs.293476	hypothetical protein FKSG44 (FKSG44), mRNA /cds=(126,1520)
7171	897	AK025781	395	Hs.5076	cDNA: FLJ22128 fis, clone HEP19543 /cds=UNKNOWN
8053	898	X06323	396	Hs.79086	mitochondrial ribosomal protein L3 (MRPL3), mRNA /cds=(76,1122)
8065	899	X72841	397	Hs.31314	retinoblastoma-binding protein 7 (RBBP7), mRNA /cds=(287,1564)
78	900	NM_001015	398	Hs.182740	ribosomal protein S11 (RPS11), mRNA /cds=(15,4
174	901	J02931	399	Hs.62192	placental tissue factor (two forms) mRNA, complete cd
252	902	D49950	400	Hs.83077	for interferon-gamma inducing activated macrophages
255	903	NM_001772	401	Hs.83731	CD33 antigen (gp67) (CD33), mRNA.
824	904	AF307339	402	Hs.47783	B aggressive lymphoma gene (BAL), mRNA /cds=(228,2792)
1022	905	AK024597	403	Hs.10362	cDNA: FLJ20944 fis, clone ADSE01780
1155		AK027260	404	Hs.152925	mRNA for KIAA1268 protein, partial cds /cds=(0,3071)
1270	907	AL360190	405	Hs.318501	stimulated trans-acting factor (50 kDa) (STAF50), mRNA /cds=(122,1450)
1301	908	AV689330	406	Hs.189402	Similar to RIKEN cDNA 2210009G21 gene, clone IMAGE:4807023
1443	909	BC002796	407	Hs.46446	lymphoblastic leukemia derived sequence 1 (LYL1), mRNA /cds=(0,803)
1561	910	BE899595	408	NA	cDNA clone IMAGE:3952215 5'
1695		K02766	409	Hs.1290	complement component 9 (C9), mRNA /cds=(4,1683)
2070	912	NM_001111	410	Hs.7957	adenosine deaminase, RNA-specific (ADAR), transcript variant ADAR-a, mRNA /cds=(187,3867)

lable	<u> </u>		r — —	<u> </u>	
	ł		SEQ ID		
	SEQ ID		SEQ ID Full		
OID		ACC		ue	Cono
OID	50mer 913	NM 001549	length	Hs.181874	Gene
<u> </u>					interferon-induced protein with tetratricopeptide repeats 4 (IFIT4), mRNA /cds=(61,1533)
2190	914	NM_001778	412	Hs.901	CD48 antigen (B-cell membrane protein) (CD48), mRNA /cds=(36,767)
2312	915	NM_002463	413	Hs.926	myxovirus (influenza) resistance 2, homolog of murine (MX2), mRNA /cds=(104,2251)
2367	916	NM_002759	414	Hs.274382	protein kinase, interferon-inducible double stranded RNA dependent (PRKR), mRNA /cds=(435,2090)
2593	917	NM_004031	415	Hs.166120	interferon regulatory factor 7 (IRF7), transcript variant d, mRNA /cds=(335,1885)
2979	918	NM_006865	416	Hs.113277	leukocyte immunoglobulin-like receptor, subfamily A (without TM domain), member 3 (LILRA3), mRNA /cds=(62,1381)
3097	919	NM_013352	417	Hs.58636	squamous cell carcinoma antigen recognized by T cell (SART-2), mRNA /cds=(149,3025)
3114	920	NM_014065	418	Hs.279040	HT001 protein (HT001), mRNA /cds=(241,1203)
3328	921	NM_017523	419	Hs.139262	XIAP associated factor-1 (HSXIAPAF1), mRNA /cds=(0,953)
3454	922	NM_021105	420	Hs.198282	phospholipid scramblase 1 (PLSCR1), mRNA /cds=(256,1212)
4096	923	XM_005543	421	Hs.234642	aguaporin 3 (AQP3), mRNA /cds=(64,942)
7264	924	NM_009587	422	Hs.81337	lectin, galactoside-binding, soluble, 9 (galectin 9)
		L			(LGALS9), transcript variant long, mRNA /cds=(56,1123)
4060	925	BG505271	423	Hs.86437	602411368F1 cDNA, 5' end /clone=IMAGE:4540096 /clone end=5'
6122	926	BE965319	424	Hs.286754	601659229R1 cDNA, 3' end /clone=IMAGE:3895783 /clone end=3'
2481	927	NM_003264	425	Hs.63668	toll-like receptor 2 (TLR2), mRNA /cds=(129,2483)
379	928	BU540019	426	NA	485A6, EST
1318			427		AV719442 cDNA. 5' end /clone=GLCBNA01
	930	NM_000879		Hs.2247	interleukin 5 (colony-stimulating factor, eosinophil) (IL5), mRNA /cds=(44,448)
2208	931	NM_001916	429	Hs.289271	cytochrome c-1 (CYC1), mRNA /cds=(8,985)
2309	932	NM_002460	430	Hs.82132	interferon regulatory factor 4 (IRF4), mRNA /cds=(105,1460)
2434	933	NM_002994	431	Hs.89714	small inducible cytokine subfamily B (Cys-X-Cys), member 5
2994	934	NM_007015	432	Hs.97932	chondromodulin I precursor (CHM-I), mRNA /cds=(0,1004)
3332	935	NM_017644	433	Hs.246875	hypothetical protein FLJ20059 (FLJ20059), mRNA /cds=(25,1290)
3757	936	X57025	434	Hs.85112	IGF-I mRNA for insulin-like growth factor I
	937	BF892532	435	Hs.38664	IL0-MT0152-061100-501-e04 cDNA
	938	BG028577	436	Hs.279009	matrix Gla protein (MGP), mRNA /cds=(46,357)
	939	AF116909	437	Hs.167827	clone HH419 unknown mRNA /cds=(189,593)
	940	AL136842	438	Hs.260024	mRNA; cDNA DKFZp434A0530 (from clone
	<u> </u>				DKFZp434A0530); complete cds /cds=(968,1732)

Table	2E.	<u> </u>			
OID	SEQ ID 50mer	ACC	SEQ ID Full length		Gene
4463	941	AW327360	439	Hs.250605	dq02e11.x1 cDNA, 5' end /clone=IMAGE:2846685 /clone_end=5'
5295	942	Al538420	440	Hs.231292	td06a03.x1 cDNA, 3' end /clone=IMAGE:2074828 /clone_end=3'
5452	943	Al805144	441	NA	EST
5642	944	AW064160	442	Hs.279141	SP0594 cDNA, 3' end /clone_end=3'
5699	945	AW078847	443	Hs.244816	
5746	946	AW236252	444	Hs.253747	xn71g08.x1 cDNA, 3' end /clone≈IMAGE:2699966 /clone_end=3'
5841	947	AW297026	445	Hs.255600	UI-H-BW0-ajf-e-06-0-UI.s1 cDNA, 3' end /clone=IMAGE:2731499 /clone end=3'
7608	948	NM_016095	446	Hs.108196	HSPC037 protein (LOC51659), mRNA /cds=(78,635)
877	949	AK000575	447	Hs.279581	hypothetical protein FLJ20568 (FLJ20568), mRNA /cds=(6,422)
2311	950	NM_002462	448	Hs.76391	myxovirus (influenza) resistance 1, homolog of murine (interferon-inducible protein p78) (MX1), mRNA /cds=(345,2333)
2566	951	NM_003841	449	Hs.119684	tumor necrosis factor receptor superfamily, member 10c, decoy without an intracellular domain (TNFRSF10C), mRNA /cds=(29,928)
2693	952	NM_004834	450	Hs.3628	mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), mRNA /cds=(79,3576)
3098	953	NM_013368	451	Hs.169138	RPA-binding trans-activator (RBT1), mRNA /cds=(291,881)
3723	954	X12451	452	Hs.78056	cathepsin L (CTSL), mRNA /cds=(288,1289)
3847	955	Y13936	453	Hs.17883	protein phosphatase 1G (formerly 2C), magnesium- dependent, gamma isoform (PPM1G), mRNA /cds=(24,1664)
4324	956	AW190635	454	Hs.15200	EST379783 cDNA
4373	957	Al378123	455	Hs.327454	tc80e02.x1 cDNA, 3' end /clone=IMAGE:2072474 /clone end=3'
4429	958	AJ275405	456	Hs.272362	partial IGVL1 gene for immunoglobulin lambda light chain V region
5075	959	AA729508	457	Hs.307486	nx54a03.s1 cDNA /clone=IMAGE:1266028
5490	960	Al865603	458	Hs.341208	wk47g03.x1 cDNA, 3' end /clone=IMAGE:2418580 /clone_end=3'
6958	961	NM_080612	459	Hs.102630	128F5, GRB2-associated binding protein 3 (GAB3),
183	962	NM_014086	460	Hs.6975	PRO1073 protein (PRO1073),
1712	963	L11695	461	Hs.220	transforming growth factor, beta receptor I (activin A receptor type II-like kinase, 53kD) (TGFBR1), mRNA /cds=(76,1587)
2435	964	NM_002995		Hs.3195	small inducible cytokine subfamily C, member 1 (lymphotactin) (SCYC1), mRNA /cds=(20,364)
3971	965	BF968963	463	Hs.5064	602490910F1 cDNA, 5' end /clone=IMAGE:4619835 /clone_end=5'

2E.			,	<u>,</u>
		050 15]	
SEO ID				
1	1		ال	
				Gene
				zinc finger protein 6 (CMPX1) (ZNF6), mRNA /cds=(1265,3361)
967	NM_014148	465	Hs.278944	HSPC048 protein (HSPC048), mRNA /cds=(87,419)
968	BF195579	466	Hs.232257	RST2302 cDNA
969	BF509758	467	Hs.144265	UI-H-BI4-apg-d-04-0-UI.s1 cDNA, 3' end /clone=IMAGE:3087390 /clone end=3'
970	AF118274	468	Hs.128740	DNb-5 mRNA, partial cds /cds=(0,1601)
971			Hs.1579	zinc finger protein 147 (estrogen-responsive finger protein) (ZNF147), mRNA /cds=(39,1931)
972	AA576947	470	Hs.188886	nm82b04.s1 cDNA, 3' end /clone=IMAGE:1074703 /clone end=3'
973	AA628833	471	NΔ	EST
				wa36h07.x1 cDNA, 3' end /clone=IMAGE:2300221
		''-	0.0 10004	/clone end=3'
975	AW006867	473	Hs.231987	602320903F1 cDNA, 5' end /clone=IMAGE:4424065
				/clone end=5'
976	M94046	474	Hs.7647	MYC-associated zinc finger protein (purine-binding
ļ			_	transcription factor) (MAZ), mRNA /cds=(91,1584)
977	AB007861	475	Hs.118047	602971981F1 cDNA, 5' end /clone=IMAGE:5111324
				/clone_end=5'
	AF061944		Hs.432900	PRKWNK1 protein kinase, lysine deficient 1
979	AL136797	477	Hs.273294	mRNA; cDNA DKFZp434N031 (from clone DKFZp434N031); complete cds /cds=(18,3608)
980	D42040	478	Hs.75243	bromodomain-containing 2 (BRD2), mRNA /cds=(1701,4106)
981	Al089359	479	Hs.130232	qb05h03.x1 cDNA, 3' end /clone=IMAGE:1695413 /clone_end=3'
982	NM_004776	480	Hs.107526	
983	NM_020428	481	Hs.105509	cDNA FLJ14613 fis, clone NT2RP1001113, highly similar to CTL2 gene /cds=UNKNOWN
9,84	NM_020530	482	Hs.248156	oncostatin M (OSM), mRNA /cds=(0,758)
985	NM_003321	483	Hs.12084	Tu translation elongation factor, mitochondrial (TUFM)
986	BE901218	484	Hs.285122	Homo sapiens, hypothetical protein FLJ21839, clone MGC:2851 IMAGE:2967512, mRNA, complete cds /cds=(444,2618)
987	Al361733	485	Hs.157811	qz24b02.x1 cDNA, 3' end /clone=IMAGE:2027787 /clone_end=3'
988	AK026410	486	Hs.236449	hypothetical protein FLJ22757 (FLJ22757), mRNA /cds=(92,2473)
989	BG254292	487	NA	cDNA clone IMAGE:4477042 5'
990			Hs.198252	G protein-coupled receptor 9 (GPR9), mRNA /cds=(68,1174)
991	BF964596	489	Hs.184052	PP1201 protein (PP1201), mRNA /cds=(75,1010)
992			Hs.59403	serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), mRNA /cds=(188,1876)
993	BE745645	491	Hs.127951	hypothetical protein FLJ14503 (FLJ14503), mRNA /cds=(19,2217)
	\$EQ ID 50mer 966 967 968 969 971 975 976 977 988 989 990 991 992	SEQ ID ACC 966 BG286649 967 NM_014148 968 BF195579 969 BF509758 970 AF118274 971 NM_005082 972 AA576947 973 AA628833 974 AI631850 975 AW006867 976 M94046 977 AB007861 978 AF061944 979 AL136797 980 D42040 981 AI089359 982 NM_004776 983 NM_020428 9,84 NM_020530 985 NM_003321 986 BE901218 987 AI361733 988 AK026410 989 BG254292 990 NM_001504 991 BE964596 992 AB011098	SEQ ID 50mer ACC Full length 966 BG286649 464 967 NM_014148 465 968 BF195579 466 969 BF509758 467 970 AF118274 468 971 NM_005082 469 972 AA576947 470 973 AA628833 471 974 AI631850 472 975 AW006867 473 976 M94046 474 977 AB007861 475 978 AF061944 476 979 AL136797 477 980 D42040 478 981 AI089359 479 982 NM_004776 480 983 NM_020428 481 984 NM_03321 483 985 NM_003321 483 986 BE901218 484 987 AI361733 485 988	SEQ ID 50mer ACC Full length HS 966 BG286649 464 Hs.323950 967 NM_014148 465 Hs.278944 968 BF195579 466 Hs.232257 969 BF509758 467 Hs.144265 970 AF118274 468 Hs.128740 971 NM_005082 469 Hs.1579 972 AA576947 470 Hs.18886 973 AA628833 471 NA 974 Al631850 472 Hs.340604 975 AW006867 473 Hs.231987 976 M94046 474 Hs.7647 977 AB007861 475 Hs.118047 978 AF061944 476 Hs.432900 979 AL136797 477 Hs.273294 980 D42040 478 Hs.75243 981 Al089359 479 Hs.130232 982 NM_004776 480 Hs.1285122

Table	<u> </u>			,	
OID	SEQ ID	ACC	SEQ ID Full length	HS	Gene
5477	994	Al827950	492	Hs.342617	
O-111	004	A1027500	102	113.042017	/clone end=3'
5522	995	AL521097	493	Hs.13144	HSPC160 protein (HSPC160), mRNA /cds=(53,514)
6026	996	BE222032	494	Hs.128675	
4283	997	AA516406	495	Hs.180201	hypothetical protein FLJ20671 (FLJ20671), mRNA /cds=(72,494)
861	998	AJ277832	496	Hs.56247	mRNA for inducible T-cell co-stimulator (ICOS gene) /cds=(67,666)
5550	999	AV653169	497	Hs.5897	cDNA FLJ13388 fis, clone PLACE1001168 /cds≈UNKNOWN
1813	1000	M36820	498	Hs.75765	GRO2 oncogene (GRO2), mRNA /cds=(74,397)
3242	1001	NM_015919	499	Hs.145956	
5128	1002	Al378109	500	Hs.283438	
5195	1003	Al436418	501	Hs.369051	ESTs, Weakly similar to VAM5_HUMAN Vesicule- associated membrane protein 5 (VAMP-5) (Myobrevin)
3497	1004	NM_022488	502	Hs.26367	PC3-96 protein (PC3-96), mRNA /cds≈(119,586)
				L	1

Table 3

Table 3 Disease Classification	Disease/Patient Group
	Diabetes Mellitus I and II
Endocrine Disease	Thyroiditis
	Autoimmune polyglandular syndrome
	Autoimmune oophoritis
	l i
	Autoimmune hypophysitis
	Addisson's Disease
Inflammatory/Rheumatic	Rheumatoid Arthritis
	Systemic Lupus Erythematosis
	Sjogrens Disease
	CREST syndrome
	Scleroderma
	Ankylosing Spondylitis
	Crohn's
	Ulcerative Colitis
	Primary Sclerosing Cholangitis
Inflammatory/Rheumatic	Appendicitis
	Diverticulitis
	Primary Biliary Sclerosis
	Wegener's Granulomatosis
	Polyarteritis nodosa
	Whipple's Disease
	Psoriasis
	Microscopic Polyanngiitis
	Takayasu's Disease
	Kawasaki's Disease
	Autoimmune hepatitis
	Asthma
	Churg-Strauss Disease
	Beurger's Disease
	Raynaud's Disease
	Cholecystitis
	Sarcoidosis
1	Asbestosis
	Pneumoconioses
	Otic inflammatory disease
Į.	Ophthalmic inflammatory disease
	Antinflammatory drug use
Neurological Disease	Alzheimer's Dementia
	Pick's Disease
	Multiple Sclerosis
	Guillain Barre Syndrome
	Post-viral neuropathies
	Peripheral Neuropathy

Table 4: Real-time PCR assay chemistries. Various combinations of reporter and quencher dyes are useful for real-time PCR assays.

Reporter	Quencher				
77.43.6	TAMRA				
FAM	BHQ1				
man	TAMRA				
TET	BHQ1				
TOP	TAMRA				
JOE	BHQ1				
	TAMRA				
HEX	BHQ1				
THE	TAMRA				
VIC	BHQ1				
ROX	BHQ2				
TAMRA	BHQ2				

We claim:

1. A method of diagnosing or monitoring auto immune and chronic inflammatory diseases in a patient, comprising detecting the expression level of one or more genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in said patient wherein said one or more genes comprise a nucleotide sequence selected from the group consisting of SEQ ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID

NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEO ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEO ID NO:702, SEO ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEO ID NO:737, SEO ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEO ID NO:743, SEO ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEO ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEO ID NO:815, SEQ ID NO:816, SEQ ID NO:817, SEQ ID NO:818, SEQ ID NO:819, SEO ID NO:820, SEO ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEO ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEO ID NO:856, SEO ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEO ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEO ID NO:866, SEO ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEO ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID

NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

- 2. The method of claim 1, further comprising detecting the expression level of one or more additional genes in said patient to diagnose or monitor auto immune and chronic inflammatory diseases in a patient, wherein said one or more additional genes comprise a nucleotide sequence selected from the group consisting of: SEQ ID NO:504, SEQ ID NO:507, SEQ ID NO:603, SEQ ID NO:740, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:854, SEQ ID NO:867, SEQ ID NO:912, SEQ ID NO:922, SEQ ID NO:950, SEQ ID NO:971.
- 3. The method of claim 1 comprising detecting the expression level of at least two of said genes.
- 4. The method of claim 1 comprising detecting the expression level of at least ten of said genes.
- The method of claim 1 comprising detecting the expression level of at least one hundred of said genes.
- The method of claim 1 comprising detecting the expression level of all said genes.
- 7. The method of claim 1, wherein said auto immune and chronic inflammatory diseases is selected from the group consisting of: Rheumatoid Arthritis, Cholecystitis, Systemic Lupus Erythematosis, Sjogrens Disease, CREST syndrome, Scleroderma, Ankylosing Spondylitis, Crohn's, Ulcerative Colitis, Primary Sclerosing Cholangitis, Appendicitis, Diverticulitis, Primary Biliary Sclerosis, Wegener's Granulomatosis, Polyarteritis nodosa, Whipple's Disease, Psoriasis, Microscopic Polyanngiitis, Takayasu's Disease, Kawasaki's Disease,

Autoimmune hepatitis, Asthma, Churg-Strauss Disease, Beurger's Disease, Raynaud's Disease, and Cholecystitis.

- 8. The method of claim 1 wherein said diseases is Systemic Lupus Erythematosis.
- 9. The method of claim 1 wherein said diseases is Rheumatoid Arthritis.
- 10. The method of claim 1 wherein said expression level is detected by measuring the RNA level expressed by said one or more genes.
- 11. The method of claim 10, further including isolating RNA from said patient prior to detecting said RNA level expressed by said one or more genes.
- 12. The method of claim 10 wherein said RNA level is detected by PCR.
- 13. The method of claim 12 wherein said PCR uses primers consisting of nucleotide sequences selected from the group consisting of [SEQ ID NO: Z primer pairs].
- The method of claim 10 wherein said RNA level is detected by hybridization.
- 15. The method of claim 10 wherein said RNA level is detected by hybridization to an oligonucleotide.
- The method of claim 15 wherein said oligonucleotide consists of a nucleotide sequence 16. selected from the group consisting of SEQ ID NO:503, SEQ ID NO:504, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:507, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:550, SEQ ID NO:55 NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:555, SEQ ID NO:55 NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:601, SEQ ID NO:602, SEQ ID NO:603, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:609, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:609, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:610, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:61 NO:611, SEQ ID NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID

NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:65 NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID $\operatorname{NO:681},\operatorname{SEQ}\operatorname{ID}\operatorname{NO:682},\operatorname{SEQ}\operatorname{ID}\operatorname{NO:683},\operatorname{SEQ}\operatorname{ID}\operatorname{NO:684},\operatorname{SEQ}\operatorname{ID}\operatorname{NO:685},\operatorname{SEQ}\operatorname{ID}$ NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:740, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:811, SEQ ID NO:812, SEQ ID NO:813, SEQ ID NO:814, SEQ ID NO:815, SEQ ID $\operatorname{NO:816}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:817}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:818}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:819}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:820}, \operatorname{SEQ} \operatorname{ID}$ NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID

 $\operatorname{NO:826}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:827}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:828}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:829}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:830}, \operatorname{SEQ} \operatorname{ID}$ NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:840, SEQ ID NO:840, SEQ ID NO:836, SEQ ID NO:840, SEQ ID NO:84 $\operatorname{NO:841, SEQ}$ ID $\operatorname{NO:842, SEQ}$ ID $\operatorname{NO:843, SEQ}$ ID $\operatorname{NO:844, SEQ}$ ID $\operatorname{NO:845, SEQ}$ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:854, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID $\operatorname{NO:866}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:867}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:868}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:869}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:870}, \operatorname{SEQ'ID}$ NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:912, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:922, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:955, SEQ ID NO:95 NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:950, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:971, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004.

- 17. The method of claim 15 wherein said oligonucleotide comprises DNA, RNA, cDNA, PNA, genomic DNA, or synthetic oligonucleotides.
- 18. The method of claim 1 wherein said expression level is detected by measuring one or more proteins expressed by said one or more genes.

19.

The method of claim 18 wherein said one or more proteins comprise an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID N ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:42, SEQ ID NO:42, SEQ ID NO:41, SEQ ID NO:42, S NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:53, SEQ ID NO:50, S NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, SEQ ID NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:123, SEQ ID NO:120, SEQ ID NO:12 NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID $\operatorname{NO}:184,$ SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID NO:197, SEQ ID NO:198, SEQ ID NO:199, SEQ ID NO:200, SEQ ID NO:201, SEQ ID NO:202, SEQ ID NO:203, SEQ ID

NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:284, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:28 NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID NO:325, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID NO:361, SEQ ID NO:362, SEQ ID NO:363, SEQ ID NO:364, SEQ ID NO:366, SEQ ID NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID

NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID NO:413, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:425, SEQ ID NO:425, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:42 NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID NO:444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:482, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:48 NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:487, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:48 NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502.

- The method of claim 2 wherein said expression level of said one or more genes is detected by measuring one or more proteins expressed by said one or more genes, and said expression level of said one or more additional genes is detected by measuring one or more proteins expressed by said one or more additional genes.
- The method of claim 20, wherein said one or more proteins expressed by said one or more 21. genes comprise an amino acid sequence encoded by a nucleotide sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:23, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, S NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:36, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:37, SEQ ID NO:37, SEQ ID NO:37, SEQ ID NO:38, S NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, S NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:67, SEQ ID NO:69, S NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, S NO:79, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID

NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, SEQ ID NO:158, SEQ ID NO:159, SEQ ID NO:160, SEQ ID NO:161, SEQ ID NO:162, SEQ ID NO:163, SEQ ID NO:164, SEQ ID NO:165, SEQ ID NO:166, SEQ ID NO:167, SEQ ID NO:168, SEQ ID NO:169, SEQ ID NO:170, SEQ ID NO:171, SEQ ID NO:172, SEQ ID NO:173, SEQ ID NO:174, SEQ ID NO:175, SEQ ID NO:176, SEQ ID NO:177, SEQ ID NO:178, SEQ ID NO:179, SEQ ID NO:180, SEQ ID NO:181, SEQ ID NO:182, SEQ ID NO:183, SEQ ID NO:184, SEQ ID NO:185, SEQ ID NO:186, SEQ ID NO:187, SEQ ID NO:188, SEQ ID NO:189, SEQ ID NO:190, SEQ ID NO:191, SEQ ID NO:192, SEQ ID NO:193, SEQ ID NO:194, SEQ ID NO:195, SEQ ID NO:196, SEQ ID $\operatorname{NO}:197,\operatorname{SEQ}\operatorname{ID}\operatorname{NO}:198,\operatorname{SEQ}\operatorname{ID}\operatorname{NO}:199,\operatorname{SEQ}\operatorname{ID}\operatorname{NO}:200,\operatorname{SEQ}\operatorname{ID}\operatorname{NO}:201,\operatorname{SEQ}\operatorname{ID}$ NO:202, SEQ ID NO:203, SEQ ID NO:204, SEQ ID NO:205, SEQ ID NO:206, SEQ ID NO:207, SEQ ID NO:208, SEQ ID NO:209, SEQ ID NO:210, SEQ ID NO:211, SEQ ID NO:212, SEQ ID NO:213, SEQ ID NO:214, SEQ ID NO:215, SEQ ID NO:216, SEQ ID NO:217, SEQ ID NO:218, SEQ ID NO:219, SEQ ID NO:220, SEQ ID NO:221, SEQ ID NO:222, SEQ ID NO:223, SEQ ID NO:224, SEQ ID NO:225, SEQ ID NO:226, SEQ ID NO:227, SEQ ID NO:228, SEQ ID NO:229, SEQ ID NO:230, SEQ ID NO:231, SEQ ID NO:23 NO:232, SEQ ID NO:233, SEQ ID NO:234, SEQ ID NO:235, SEQ ID NO:236, SEQ ID NO:237, SEQ ID NO:239, SEQ ID NO:240, SEQ ID NO:241, SEQ ID NO:242, SEQ ID NO:243, SEQ ID NO:244, SEQ ID NO:245, SEQ ID NO:246, SEQ ID NO:247, SEQ ID NO:248, SEQ ID NO:249, SEQ ID NO:250, SEQ ID NO:251, SEQ ID NO:252, SEQ ID NO:253, SEQ ID NO:254, SEQ ID NO:255, SEQ ID NO:256, SEQ ID NO:257, SEQ ID NO:258, SEQ ID NO:259, SEQ ID NO:260, SEQ ID NO:261, SEQ ID NO:262, SEQ ID NO:263, SEQ ID NO:264, SEQ ID NO:265, SEQ ID NO:266, SEQ ID NO:267, SEQ ID NO:268, SEQ ID NO:269, SEQ ID NO:270, SEQ ID NO:271, SEQ ID NO:272, SEQ ID NO:273, SEQ ID NO:274, SEQ ID NO:275, SEQ ID NO:276, SEQ ID NO:277, SEQ ID NO:278, SEQ ID NO:279, SEQ ID NO:280, SEQ ID NO:281, SEQ ID NO:282, SEQ ID NO:283, SEQ ID NO:284, SEQ ID NO:285, SEQ ID NO:286, SEQ ID NO:287, SEQ ID NO:288, SEQ ID NO:289, SEQ ID NO:290, SEQ ID NO:291, SEQ ID NO:292, SEQ ID

NO:293, SEQ ID NO:294, SEQ ID NO:295, SEQ ID NO:296, SEQ ID NO:297, SEQ ID NO:298, SEQ ID NO:299, SEQ ID NO:300, SEQ ID NO:301, SEQ ID NO:302, SEQ ID NO:303, SEQ ID NO:304, SEQ ID NO:305, SEQ ID NO:306, SEQ ID NO:307, SEQ ID NO:308, SEQ ID NO:311, SEQ ID NO:312, SEQ ID NO:313, SEQ ID NO:314, SEQ ID NO:315, SEQ ID NO:316, SEQ ID NO:317, SEQ ID NO:318, SEQ ID NO:319, SEQ ID NO:320, SEQ ID NO:321, SEQ ID NO:322, SEQ ID NO:323, SEQ ID NO:324, SEQ ID $\operatorname{NO:325}$, SEQ ID NO:326, SEQ ID NO:327, SEQ ID NO:328, SEQ ID NO:329, SEQ ID NO:330, SEQ ID NO:331, SEQ ID NO:332, SEQ ID NO:333, SEQ ID NO:334, SEQ ID NO:335, SEQ ID NO:336, SEQ ID NO:337, SEQ ID NO:338, SEQ ID NO:339, SEQ ID NO:340, SEQ ID NO:341, SEQ ID NO:342, SEQ ID NO:343, SEQ ID NO:344, SEQ ID NO:345, SEQ ID NO:346, SEQ ID NO:347, SEQ ID NO:348, SEQ ID NO:349, SEQ ID NO:350, SEQ ID NO:351, SEQ ID NO:353, SEQ ID NO:354, SEQ ID NO:355, SEQ ID NO:356, SEQ ID NO:357, SEQ ID NO:358, SEQ ID NO:359, SEQ ID NO:360, SEQ ID $\operatorname{NO:361}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:362}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:363}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:364}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:366}, \operatorname{SEQ} \operatorname{ID}$ NO:367, SEQ ID NO:368, SEQ ID NO:369, SEQ ID NO:370, SEQ ID NO:371, SEQ ID NO:372, SEQ ID NO:373, SEQ ID NO:374, SEQ ID NO:375, SEQ ID NO:376, SEQ ID NO:377, SEQ ID NO:378, SEQ ID NO:379, SEQ ID NO:380, SEQ ID NO:381, SEQ ID NO:382, SEQ ID NO:383, SEQ ID NO:384, SEQ ID NO:385, SEQ ID NO:386, SEQ ID NO:387, SEQ ID NO:388, SEQ ID NO:389, SEQ ID NO:390, SEQ ID NO:391, SEQ ID NO:392, SEQ ID NO:393, SEQ ID NO:394, SEQ ID NO:395, SEQ ID NO:396, SEQ ID NO:397, SEQ ID NO:398, SEQ ID NO:399, SEQ ID NO:400, SEQ ID NO:401, SEQ ID NO:402, SEQ ID NO:403, SEQ ID NO:404, SEQ ID NO:405, SEQ ID NO:406, SEQ ID NO:407, SEQ ID NO:408, SEQ ID NO:409, SEQ ID NO:411, SEQ ID NO:412, SEQ ID $\operatorname{NO:413}$, SEQ ID NO:414, SEQ ID NO:415, SEQ ID NO:416, SEQ ID NO:417, SEQ ID NO:418, SEQ ID NO:419, SEQ ID NO:421, SEQ ID NO:422, SEQ ID NO:423, SEQ ID NO:424, SEQ ID NO:425, SEQ ID NO:426, SEQ ID NO:427, SEQ ID NO:428, SEQ ID NO:429, SEQ ID NO:430, SEQ ID NO:431, SEQ ID NO:432, SEQ ID NO:433, SEQ ID NO:434, SEQ ID NO:435, SEQ ID NO:436, SEQ ID NO:437, SEQ ID NO:438, SEQ ID NO:439, SEQ ID NO:440, SEQ ID NO:441, SEQ ID NO:442, SEQ ID NO:443, SEQ ID $\operatorname{NO}:$ 444, SEQ ID NO:445, SEQ ID NO:446, SEQ ID NO:447, SEQ ID NO:449, SEQ ID NO:440, SEQ ID NO:450, SEQ ID NO:451, SEQ ID NO:452, SEQ ID NO:453, SEQ ID NO:454, SEQ ID NO:455, SEQ ID NO:456, SEQ ID NO:457, SEQ ID NO:458, SEQ ID NO:459, SEQ ID NO:460, SEQ ID NO:461, SEQ ID NO:462, SEQ ID NO:463, SEQ ID NO:464, SEQ ID NO:465, SEQ ID NO:466, SEQ ID NO:467, SEQ ID NO:468, SEQ ID NO:470, SEQ ID NO:471, SEQ ID NO:472, SEQ ID NO:473, SEQ ID NO:474, SEQ ID NO:475, SEQ ID NO:476, SEQ ID NO:477, SEQ ID NO:478, SEQ ID NO:479, SEQ ID NO:480, SEQ ID NO:481, SEQ ID NO:482, SEQ ID NO:483, SEQ ID NO:484, SEQ ID NO:485, SEQ ID NO:486, SEQ ID NO:487, SEQ ID NO:488, SEQ ID NO:489, SEQ ID NO:490, SEQ ID NO:491, SEQ ID NO:492, SEQ ID NO:493, SEQ ID NO:494, SEQ ID NO:495, SEQ ID

NO:496, SEQ ID NO:497, SEQ ID NO:498, SEQ ID NO:499, SEQ ID NO:500, SEQ ID NO:501, SEQ ID NO:502, and

said one ore more proteins expressed by said one or more additional genes comprise an amino acid sequence encoded by a nucleotide sequence selected from the group consisting SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:101, SEQ ID NO:238, SEQ ID NO:309, SEQ ID NO:310, SEQ ID NO:352, SEQ ID NO:365, SEQ ID NO:410, SEQ ID NO:420, SEQ ID NO:448, SEQ ID NO:469.

- 22. The method of claim 18, wherein said measuring comprises measuring serum.
- 23. The method of claim 18, wherein said protein is a cell surface protein.
- 24. The method of claim 18, wherein said measuring comprises using a fluorescent activated cell sorter
- 25. The method of claim 1, wherein the expression level detected is expression level in the patient's bodily fluid.
- 26. The method of claim 25, wherein said bodily fluid is peripheral blood.
- 27. The method of claim 1, further comprising selecting an appropriate therapy.
- 28. The method of claim 27 wherein said therapy includes administration of a drug that targets alpha-interferon.
- A system for detecting gene expression in body fluid comprising at least two isolated 29. polynucleotides wherein the isolated polynucleotides detect expression of a gene wherein the gene comprises a nucleotide sequence selected from the group consisting of SEQ ID NO:503, SEQ ID NO:505, SEQ ID NO:506, SEQ ID NO:508, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:509, SEQ ID NO:510, SEQ ID NO:509, SEQ ID NO:510, SEQ I ID NO:511, SEQ ID NO:512, SEQ ID NO:513, SEQ ID NO:514, SEQ ID NO:515, SEQ ID NO:516, SEQ ID NO:517, SEQ ID NO:518, SEQ ID NO:519, SEQ ID NO:520, SEQ ID NO:521, SEQ ID NO:522, SEQ ID NO:523, SEQ ID NO:524, SEQ ID NO:525, SEQ ID NO:526, SEQ ID NO:527, SEQ ID NO:528, SEQ ID NO:529, SEQ ID NO:530, SEQ ID NO:531, SEQ ID NO:532, SEQ ID NO:533, SEQ ID NO:534, SEQ ID NO:535, SEQ ID NO:536, SEQ ID NO:537, SEQ ID NO:538, SEQ ID NO:539, SEQ ID NO:540, SEQ ID NO:541, SEQ ID NO:542, SEQ ID NO:543, SEQ ID NO:544, SEQ ID NO:545, SEQ ID NO:5545, SEQ ID NO:555, SEQ ID NO:546, SEQ ID NO:547, SEQ ID NO:548, SEQ ID NO:549, SEQ ID NO:550, SEQ ID NO:551, SEQ ID NO:552, SEQ ID NO:553, SEQ ID NO:554, SEQ ID NO:555, SEQ ID NO:556, SEQ ID NO:557, SEQ ID NO:558, SEQ ID NO:559, SEQ ID NO:560, SEQ ID NO:561, SEQ ID NO:562, SEQ ID NO:563, SEQ ID NO:564, SEQ ID NO:565, SEQ ID NO:56 NO:566, SEQ ID NO:567, SEQ ID NO:568, SEQ ID NO:569, SEQ ID NO:570, SEQ ID NO:571, SEQ ID NO:572, SEQ ID NO:573, SEQ ID NO:574, SEQ ID NO:575, SEQ ID NO:576, SEQ ID NO:577, SEQ ID NO:578, SEQ ID NO:579, SEQ ID NO:580, SEQ ID NO:581, SEQ ID NO:582, SEQ ID NO:583, SEQ ID NO:584, SEQ ID NO:585, SEQ ID NO:586, SEQ ID NO:587, SEQ ID NO:588, SEQ ID NO:589, SEQ ID NO:590, SEQ ID NO:591, SEQ ID NO:592, SEQ ID NO:593, SEQ ID NO:594, SEQ ID NO:595, SEQ ID NO:596, SEQ ID NO:597, SEQ ID NO:598, SEQ ID NO:599, SEQ ID NO:600, SEQ ID NO:60 NO:601, SEQ ID NO:602, SEQ ID NO:604, SEQ ID NO:605, SEQ ID NO:606, SEQ ID

NO:607, SEQ ID NO:608, SEQ ID NO:609, SEQ ID NO:610, SEQ ID NO:611, SEQ ID NO:6010, SEQ ID NO:611, SEQ ID NO:6010, SEQ ID NO:6110, SEQ ID NO: NO:612, SEQ ID NO:613, SEQ ID NO:614, SEQ ID NO:615, SEQ ID NO:616, SEQ ID NO:617, SEQ ID NO:618, SEQ ID NO:619, SEQ ID NO:620, SEQ ID NO:621, SEQ ID NO:622, SEQ ID NO:623, SEQ ID NO:624, SEQ ID NO:625, SEQ ID NO:626, SEQ ID NO:627, SEQ ID NO:628, SEQ ID NO:629, SEQ ID NO:630, SEQ ID NO:631, SEQ ID NO:632, SEQ ID NO:633, SEQ ID NO:634, SEQ ID NO:635, SEQ ID NO:636, SEQ ID NO:637, SEQ ID NO:638, SEQ ID NO:639, SEQ ID NO:640, SEQ ID NO:641, SEQ ID NO:642, SEQ ID NO:643, SEQ ID NO:644, SEQ ID NO:645, SEQ ID NO:646, SEQ ID NO:647, SEQ ID NO:648, SEQ ID NO:649, SEQ ID NO:650, SEQ ID NO:651, SEQ ID NO:652, SEQ ID NO:653, SEQ ID NO:654, SEQ ID NO:655, SEQ ID NO:656, SEQ ID NO:657, SEQ ID NO:658, SEQ ID NO:659, SEQ ID NO:660, SEQ ID NO:661, SEQ ID NO:662, SEQ ID NO:663, SEQ ID NO:664, SEQ ID NO:665, SEQ ID NO:666, SEQ ID NO:667, SEQ ID NO:668, SEQ ID NO:669, SEQ ID NO:670, SEQ ID NO:671, SEQ ID NO:672, SEQ ID NO:673, SEQ ID NO:674, SEQ ID NO:675, SEQ ID NO:676, SEQ ID NO:677, SEQ ID NO:678, SEQ ID NO:679, SEQ ID NO:680, SEQ ID NO:681, SEQ ID NO:682, SEQ ID NO:683, SEQ ID NO:684, SEQ ID NO:685, SEQ ID NO:686, SEQ ID NO:687, SEQ ID NO:688, SEQ ID NO:689, SEQ ID NO:690, SEQ ID NO:691, SEQ ID NO:692, SEQ ID NO:693, SEQ ID NO:694, SEQ ID NO:695, SEQ ID NO:696, SEQ ID NO:697, SEQ ID NO:698, SEQ ID NO:699, SEQ ID NO:700, SEQ ID NO:701, SEQ ID NO:702, SEQ ID NO:703, SEQ ID NO:704, SEQ ID NO:705, SEQ ID NO:706, SEQ ID NO:707, SEQ ID NO:708, SEQ ID NO:709, SEQ ID NO:710, SEQ ID NO:711, SEQ ID NO:712, SEQ ID NO:713, SEQ ID NO:714, SEQ ID NO:715, SEQ ID NO:716, SEQ ID NO:717, SEQ ID NO:718, SEQ ID NO:719, SEQ ID NO:720, SEQ ID NO:721, SEQ ID NO:722, SEQ ID NO:723, SEQ ID NO:724, SEQ ID NO:725, SEQ ID NO:726, SEQ ID NO:727, SEQ ID NO:728, SEQ ID NO:729, SEQ ID NO:730, SEQ ID NO:731, SEQ ID NO:732, SEQ ID NO:733, SEQ ID NO:734, SEQ ID NO:735, SEQ ID NO:736, SEQ ID NO:737, SEQ ID NO:738, SEQ ID NO:739, SEQ ID NO:741, SEQ ID NO:742, SEQ ID NO:743, SEQ ID NO:744, SEQ ID NO:745, SEQ ID NO:746, SEQ ID NO:747, SEQ ID NO:748, SEQ ID NO:749, SEQ ID NO:750, SEQ ID NO:751, SEQ ID NO:752, SEQ ID NO:753, SEQ ID NO:754, SEQ ID NO:755, SEQ ID NO:756, SEQ ID NO:757, SEQ ID NO:758, SEQ ID NO:759, SEQ ID NO:760, SEQ ID NO:761, SEQ ID NO:762, SEQ ID NO:763, SEQ ID NO:764, SEQ ID NO:765, SEQ ID NO:766, SEQ ID NO:767, SEQ ID NO:768, SEQ ID NO:769, SEQ ID NO:770, SEQ ID NO:771, SEQ ID NO:772, SEQ ID NO:773, SEQ ID NO:774, SEQ ID NO:775, SEQ ID NO:776, SEQ ID NO:777, SEQ ID NO:778, SEQ ID NO:779, SEQ ID NO:780, SEQ ID NO:781, SEQ ID NO:782, SEQ ID NO:783, SEQ ID NO:784, SEQ ID NO:785, SEQ ID NO:786, SEQ ID NO:787, SEQ ID NO:788, SEQ ID NO:789, SEQ ID NO:790, SEQ ID NO:791, SEQ ID NO:792, SEQ ID NO:793, SEQ ID NO:794, SEQ ID NO:795, SEQ ID NO:796, SEQ ID NO:797, SEQ ID NO:798, SEQ ID NO:799, SEQ ID NO:800, SEQ ID NO:801, SEQ ID NO:802, SEQ ID NO:803, SEQ ID NO:804, SEQ ID NO:805, SEQ ID NO:806, SEQ ID NO:807, SEQ ID

NO:808, SEQ ID NO:809, SEQ ID NO:810, SEQ ID NO:813, SEQ ID NO:814, SEQ ID $\operatorname{NO:815}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:816}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:817}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:818}, \operatorname{SEQ} \operatorname{ID} \operatorname{NO:819}, \operatorname{SEQ} \operatorname{ID}$ NO:820, SEQ ID NO:821, SEQ ID NO:822, SEQ ID NO:823, SEQ ID NO:824, SEQ ID NO:825, SEQ ID NO:826, SEQ ID NO:827, SEQ ID NO:828, SEQ ID NO:829, SEQ ID NO:830, SEQ ID NO:831, SEQ ID NO:832, SEQ ID NO:833, SEQ ID NO:834, SEQ ID NO:835, SEQ ID NO:836, SEQ ID NO:837, SEQ ID NO:838, SEQ ID NO:839, SEQ ID NO:840, SEQ ID NO:841, SEQ ID NO:842, SEQ ID NO:843, SEQ ID NO:844, SEQ ID NO:845, SEQ ID NO:846, SEQ ID NO:847, SEQ ID NO:848, SEQ ID NO:849, SEQ ID NO:850, SEQ ID NO:851, SEQ ID NO:852, SEQ ID NO:853, SEQ ID NO:855, SEQ ID NO:856, SEQ ID NO:857, SEQ ID NO:858, SEQ ID NO:859, SEQ ID NO:860, SEQ ID NO:861, SEQ ID NO:862, SEQ ID NO:863, SEQ ID NO:864, SEQ ID NO:865, SEQ ID NO:866, SEQ ID NO:868, SEQ ID NO:869, SEQ ID NO:870, SEQ ID NO:871, SEQ ID NO:872, SEQ ID NO:873, SEQ ID NO:874, SEQ ID NO:875, SEQ ID NO:876, SEQ ID NO:877, SEQ ID NO:878, SEQ ID NO:879, SEQ ID NO:880, SEQ ID NO:881, SEQ ID NO:882, SEQ ID NO:883, SEQ ID NO:884, SEQ ID NO:885, SEQ ID NO:886, SEQ ID NO:887, SEQ ID NO:888, SEQ ID NO:889, SEQ ID NO:890, SEQ ID NO:891, SEQ ID NO:89 NO:892, SEQ ID NO:893, SEQ ID NO:894, SEQ ID NO:895, SEQ ID NO:896, SEQ ID NO:897, SEQ ID NO:898, SEQ ID NO:899, SEQ ID NO:900, SEQ ID NO:901, SEQ ID NO:902, SEQ ID NO:903, SEQ ID NO:904, SEQ ID NO:905, SEQ ID NO:906, SEQ ID NO:907, SEQ ID NO:908, SEQ ID NO:909, SEQ ID NO:910, SEQ ID NO:911, SEQ ID NO:913, SEQ ID NO:914, SEQ ID NO:915, SEQ ID NO:916, SEQ ID NO:917, SEQ ID NO:918, SEQ ID NO:919, SEQ ID NO:920, SEQ ID NO:921, SEQ ID NO:923, SEQ ID NO:924, SEQ ID NO:925, SEQ ID NO:926, SEQ ID NO:927, SEQ ID NO:928, SEQ ID NO:929, SEQ ID NO:930, SEQ ID NO:931, SEQ ID NO:932, SEQ ID NO:933, SEQ ID NO:933, SEQ ID NO:933, SEQ ID NO:934, SEQ ID NO:935, SEQ ID NO:93 NO:934, SEQ ID NO:935, SEQ ID NO:936, SEQ ID NO:937, SEQ ID NO:938, SEQ ID NO:939, SEQ ID NO:940, SEQ ID NO:941, SEQ ID NO:942, SEQ ID NO:943, SEQ ID NO:944, SEQ ID NO:945, SEQ ID NO:946, SEQ ID NO:947, SEQ ID NO:948, SEQ ID NO:949, SEQ ID NO:951, SEQ ID NO:952, SEQ ID NO:953, SEQ ID NO:954, SEQ ID NO:955, SEQ ID NO:956, SEQ ID NO:957, SEQ ID NO:958, SEQ ID NO:959, SEQ ID NO:960, SEQ ID NO:961, SEQ ID NO:962, SEQ ID NO:963, SEQ ID NO:964, SEQ ID NO:965, SEQ ID NO:966, SEQ ID NO:967, SEQ ID NO:968, SEQ ID NO:969, SEQ ID NO:970, SEQ ID NO:972, SEQ ID NO:973, SEQ ID NO:974, SEQ ID NO:975, SEQ ID NO:976, SEQ ID NO:977, SEQ ID NO:978, SEQ ID NO:979, SEQ ID NO:980, SEQ ID NO:981, SEQ ID NO:982, SEQ ID NO:983, SEQ ID NO:984, SEQ ID NO:985, SEQ ID NO:986, SEQ ID NO:987, SEQ ID NO:988, SEQ ID NO:989, SEQ ID NO:990, SEQ ID NO:991, SEQ ID NO:992, SEQ ID NO:993, SEQ ID NO:994, SEQ ID NO:995, SEQ ID NO:996, SEQ ID NO:997, SEQ ID NO:998, SEQ ID NO:999, SEQ ID NO:1000, SEQ ID NO:1001, SEQ ID NO:1002, SEQ ID NO:1003, SEQ ID NO:1004 and the gene is differentially expressed in body fluid in an individual experiencing an auto immune or chronic

inflammatory disease related symptom compared to the expression of the gene in leukocytes in an individual not experiencing said symptom.

Figure 1: Novel Gene Sequence Analysis

Figure 2: Primer efficiency testing. A standard curve of Ct versus log of the starting RNA amount is shown for 2 genes.

Figure 3: Kits for discovery of, or application of diagnostic gene sets

A. Contents of kit for discovery of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 8 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

B. Contents of kit for application of diagnostic gene sets using microarrays

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for labeling of RNA (may vary for various expression profiling techniques)

For fluorescence microarray expression profiling:

Reverse transcriptase and 10x RT buffer

T7(dT)24 primer (primer with T7 promoter at 5' end)

DTT

Deoxynucleotides 100mM each

RNAse inhibitor

2nd strand cDNA buffer

DNA polymerase

Rnase H

T7 RNA polymerase

Ribonucleotides

In Vitro transcription buffer

Cy3 and Cy5 labeled ribonucleotides

- 7. Microarrays containing candidate gene libraries
- 8. Cover slips for slides
- 9. Hybridization chambers
- 10. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server.

- 11. Password and account number to access central database server.
- 12. Kit User Manual

C. Contents of kit for application of diagnostic gene sets using Realtime RT-PCR

- 1. Sterile, endotoxin and RNAse free blood collection tubes
- 2. Alcohol swabs, tourniquet, blood collection set
- 3.-PBS (phosphate buffer saline; needed when method of example 7 is used to derived mononuclear RNA)
- 4. Cell lysis buffer
- 5. RNA isolation kit
- 6. Substrates for real time RT-PCR (may vary for various real-time PCR techniques:

poly dT primers, random hexamer primers

Reverse Transcriptase and RT buffer

DTT

Deoxynucleotides 100 mM

RNase H

primer pairs for diagnostic and control gene set

10x PCR reaction buffer

Taq DNA polymerase

Fluorescent probes for diagnostic and control gene set

(alternatively, fluorescent dye that binds to only double stranded DNA)

reaction tubes with or without barcode for sample tracking

96-well plates with barcode for sample identification, one barcode for entire set, or individual barcode per reaction tube in plate

7. Software package for identification of diagnostic gene set from data

Contains statistical methods.

Allows alteration in desired sensitivity and specificity of gene set.

Software facilitates access to and data analysis by centrally located database server

- 8. Password and account number to access central database server.
- 9. Kit User Manual

FIGURE 4

Median Cy3 Background Subtracted Signals

All columns use the same scale.

Mononuclear cells, resting and stimulated

10 Buffy Coats, resting

Mononuclear cells, resting

All markers are connected and ordered by Features.

10 μ g of each control RNA was labeled.

Figure 5: SLE diagnostic genes and algorithms

A.

B.

Lupus	:	Control	
Sample	Ratio	Sample	Ratio
16-0022-01	1.05	16-0025-01	0.60
16-0030-01	0.96	16-0029-01	0.75
16-0037-01	0.87	16-0031-01	0.63
16-0058-01	1.05	16-0033-01	0.62
16-0054-01	0.99	16-0040-01	0.61
16-0062-01	0.98	16-0015-01	0.72
16-0057-01	1.14	16-0016-01	0.78
		16-0020-01	0.79
		16-0023-01	0.71
		16-0024-01	0.69
		16-0036-01	0.65
	ļ	16-0045-01	0.59
		16-0007-01	0.77
		16-0013-01	0.60
		16-0010-01	0.57
	ĺ	16-0049-01	0.75

Control

	Lupus s			
Average Ratio	1.00	0.68		
Std Dev of Ratio	0.08	0.08		
Fold Change	1.48			

C.

Model	#	Relative	SEQ ID			CART	
<u></u>			50mer	Locus	Nominal Description	Splitter	CART Value for Dx SLE
Model I	2	0.118	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
			510	NM_004510	interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
Model I	3	0.125	514	NM_002946	replication protein A2 (32kD)	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
	1		510	NM_004510	interferon-induced protein 75	co-1st	[(2412)*0.903 - (2648)*0.431] <= 0.1909
<u></u>	<u> </u>		509	BC002409	actin, beta (ACTB)	2nd	(G1436) > 0.0868
Model	{ 1	0.612	1				
11	<u> </u>		504	W16552	PKR	1st	(5067) > 0.1030
Model	3	0.686	504	W16552	 PKR	1.4	(5007) > 0.4000
ľ	ł	}	1			1st	(5067) > 0.1030
	l		875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968
L			876	AK024969	hypothetical protein DKFZp566I133	3rd	(G1035) <= 0.0073
Model	5	0.745					
)	1		504	W16552	PKR	1st	(5067) > 0.1030
1			874	AK024240	cDNA FLJ14178 fis	2nd	(G1003) > 0.2105
			875	AK024756	hypothetical protein FLJ21103	2nd	(G1025) <= 0.3968
		ľ	873	AK024202	heat shock 90kD protein 1, alpha	3rd	(G1001) <= - 0.3107
		<u></u>	876	AK024969	hypothetical protein DKFZp566I133	3rd	(G1035) <= 0.0073

D.

	Model	Sensitivity	Specificity	Relative Cost
Training Set	Model 1 (2 genes)	100	94	
Training Set	Model 1 (3 genes)	100	100	
10-fold Cross	Model 1 (2 genes)	100	88	0.118
Validation	Model 1 (3 genes)	93	94	0.125

E.

Model I (2 genes)

F.

Model 1 (3 genes)

Figure 6. Endpoint testing of PCR primers

Figure 7: Validation of differential expression of Granzyme B in CMV patients using Real-time PCR

A.

B.

QPCR of Granzyme B

Figure 8

Intensity of Control Genes from PAX RNA (2ug) and CPT RNA (0.5 ug)

SEQUENCE LISTING

EXPRESSION DIAGNOSTICS, INC. <110> Wohlgemuth, Jay Fry, Kirk Woodward, Robert Ly, Ngoc <120> METHODS AND COMPOSITIONS FOR DIAGNOSING AND MONITORING AUTO IMMUNE AND CHRONIC INFLAMMATORY DISEASES <130> 506612000149 <150> US 10/131,827 2002-04-24 <151> <160> 1065 <170> PatentIn version 3.2 <210> 1 <211> 2140 <212> DNA <213> Homo sapiens <400> 1 agctgaggtg tgagcagctg ccgaagtcag ttccttgtgg agccggagct gggcgcggat 60 tegecgagge accgaggeac teagaggagg egecatgtea gaaceggetg gggatgteeg 120 tcagaaccca tgcggcagca aggcctgccg ccgcctcttc ggcccagtgg acagcgagca 180 gctgagccgc gactgtgatg cgctaatggc gggctgcatc caggaggccc gtgagcgatg 240 gaacttcgac tttgtcaccg agacaccact ggagggtgac ttcgcctggg agcgtgtgcg 300 gggccttggc ctgcccaagc tctaccttcc cacggggccc cggcgaggcc gggatgagtt 360 gggaggaggc aggcggcctg gcacctcacc tgctctgctg caggggacag cagaggaaga 420 ccatgtggac ctgtcactgt cttgtaccct tgtgcctcgc tcaggggagc aggctgaagg 480 540 gtccccaggt ggacctggag actctcaggg tcgaaaacgg cggcagacca gcatgacaga 600 tttctaccac tccaaacgcc ggctgatctt ctccaagagg aagccctaat ccgcccacag gaageetgea gteetggaag egegagggee teaaaggeee getetacate ttetgeetta 660 720 gtctcagttt gtgtgtctta attattattt gtgttttaat ttaaacacct cctcatgtac ataccctggc cgcccctgc cccccagcct ctggcattag aattatttaa acaaaaacta 780 ggcggttgaa tgagaggttc ctaagagtgc tgggcatttt tattttatga aatactattt 840 900 aaagcctcct catcccgtgt tctccttttc ctctctcccg gaggttgggt gggccggctt 960 catgocaget acttoctect ecceaettgt eegetgggtg gtaccetetg gaggggtgtg 1020 geteetteee ategetgtea caggeggtta tgaaatteae eecettteet ggacaeteag

acctgaattc tttttcattt gagaagtaaa cagatggcac tttgaagggg cctcaccgag

1080

```
tgggggcatc atcaaaaact ttggagtccc ctcacctcct ctaaggttgg gcagggtgac
                                                                  1140
cctgaagtga gcacagccta gggctgagct ggggacctgg taccctcctg gctcttgata
                                                                  1200
ccccctctg tcttgtgaag gcaggggaa ggtggggtac tggagcagac caccccgcct
                                                                  1260
gccctcatgg cccctctgac ctgcactggg gagcccgtct cagtgttgag ccttttccct
ctttggctcc cctgtacctt ttgaggagcc ccagcttacc cttcttctcc agctgggctc
                                                                  1380
tgcaattccc ctctgctgct gtccctcccc cttgtctttc ccttcagtac cctctcatgc
                                                                  1440
tccaggtggc tctgaggtgc ctgtcccacc cccaccccca gctcaatgga ctggaagggg
                                                                  1500
aagggacaca caagaagaag ggcaccctag ttctacctca ggcagctcaa gcagcgaccg
                                                                  1560
cccctcctc tagctgtggg ggtgagggtc ccatgtggtg gcacaggccc ccttgagtgg
                                                                  1620
ggttatctct gtgttagggg tatatgatgg gggagtagat ctttctagga gggagacact
                                                                  1680
ggcccctcaa atcgtccagc gaccttcctc atccacccca tccctcccca gttcattgca
                                                                  1740
ctttgattag cagcggaaca aggagtcaga cattttaaga tggtggcagt agaggctatg
                                                                  1800
gacagggcat gccacgtggg ctcatatggg gctgggagta gttgtctttc ctggcactaa
                                                                  1860
cgttgagccc ctggaggcac tgaagtgctt agtgtacttg gagtattggg gtctgacccc
                                                                  1920
aaacaccttc cagctcctgt aacatactgg cctggactgt tttctctcgg ctccccatgt
                                                                  1980
gtcctggttc ccgtttctcc acctagactg taaacctctc gagggcaggg accacaccct
                                                                  2040
gtactgttct gtgtctttca cagctcctcc cacaatgctg aatatacagc aggtgctcaa
                                                                   2100
                                                                   2140
```

```
<210> 2
<211> 506
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (462)..(462)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (491)..(491)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (498)..(498)
<223> n is a, c, g, t or u
<400> 2
ctgtacatct atcgacatgg tgaggtagag catgtttggg aggaaagacg ttgaatccca
```

60

120 tttggtgaca gtgagcttga ggtgctgcca gaacactgca ctgaagatag gaggagactg taggaaatac aagataggaa aggtctccac tgaaatgtta actctttctc tctaaacggc 180 240 catccaggcc tcaatgtctg cagtttctga tctgtgatta tgacttatcc aaatcttaca tttcttaaaa atagtcatag atgaagggaa tcacagttga tagttatatg gtgacattag 300 tggcttaaat tctaaataac tagaaactgt ataataggca aaactgtgag gcaaataaaa 360 tgcttctcaa actgtgtggc tcttatgggg ttaatttgat ttggacctgt attaattctt 420 atggctgcta tactaacaaa ttccacaact tggtggttta ancacacaca tttatctctt 480 506 ctgtctggag ncagaagnta aaatga

<210> 3

<211> 1940

<212> DNA

<213> Homo sapiens

<400> 3 acccagggtc cggcctgcgc cttcccgcca ggcctggaca ctggttcaac acctgtgact 60 tcatgtgtgc gcgccggcca cacctgcagt cacacctgta gccccctctg ccaagagatc 120 cataccgagg cagcgtcggt ggctacaagc cctcagtcca cacctgtgga cacctgtgac 180 acctggccac acgacctgtg gccgcggcct ggcgtctgct gcgacaggag cccttacctc 240 300 ccctgttata acacctgaca gccacctaac tgcccctgca gaaggagcaa tggccttggc 360 tectgagagg taagageeeg geeeaceete tecagatgee agteeeegag egeeetgeag ceggecetga etetecgegg cegggeacce geagggeage eccaegegtg etgtteggag 420 agtggctcct tggagagatc agcagcggct gctatgaggg gctgcagtgg ctggacgagg 480 cccgcacctg tttccgcgtg ccctggaagc acttcgcgcg caaggacctg agcgaggccg 540 acgcgcgcat cttcaaggcc tgggctgtgg cccgcggcag gtggccgcct agcagcaggg 600 gaggtggccc gccccccgag gctgagactg cggagcgcgc cggctggaaa accaacttcc 660 gctgcgcact gcgcagcacg cgtcgcttcg tgatgctgcg agataactcg ggggacccgg 720 ccgacccgca caaggtgtac gcgctcagcc gggagctgtg ctggcgagaa ggcccaggca 780 cggaccagac tgaggcagag gcccccgcag ctgtcccacc accacagggt gggcccccag 840 ggccattcct ggcacacaca catgctggac tccaagcccc aggccccctc cctgccccag 900 960 ctggtgacga gggggacctc ctgctccagg cagtgcaaca gagctgcctg gcagaccatc 1020 tgctgacagc gtcatggggg gcagatccag tcccaaccaa ggctcctgga gagggacaag 1080 aagggettee eetgaetggg geetgtgetg gaggeeeagg geteeetget ggggagetgt acgggtgggc agtagagacg acccccagcc ccgggcccca gcccgcggca ctaacgacag 1140

gcgaggccgc	ggccccagag	tccccgcacc	aggcagagcc	gtacctgtca	ccctccccaa	1200
gcgcctgcac	cgcggtgcaa	gagcccagcc	caggggcgct	ggacgtgacc	atcatgtaca	1260
agggccgcac	ggtgctgcag	aaggtggtgg	gacacccgag	ctgcacgttc	ctatacggcc	1320
ccccagaccc	agctgtccgg	gccacagacc	cccagcaggt	agcattcccc	agccctgccg	1380
agctcccgga	ccagaagcag	ctgcgctaca	cggaggaact	gctgcggcac	gtggcccctg	1440
ggttgcacct	ggagcttcgg	gggccacagc	tgtgggcccg	gcgcatgggc	aagtgcaagg	1500
tgtactggga	ggtgggcggc	ccccaggct	ccgccagccc	ctccacccca	gcctgcctgc	1560
tgcctcggaa	ctgtgacacc	cccatcttcg	acttcagagt	cttcttccga	gagctggtgg	1620
aattccgggc	acggcagcgc	cgtggctccc	cacgctatac	catctacctg	ggcttcgggc	1680
aggacctgtc	agctgggagg	cccaaggaga	agagcctggt	cctggtgaag	ctggaaccct	1740
ggctgtgccg	agtgcaccta	gagggcacgc	agcgtgaggg	tgtgtcttcc	ctggatagca	1800
gcagcctcag	cctctgcctg	tccagcgcca	acagcctcta	tgacgacatc	gagtgcttcc	1860
ttatggagct	ggagcagccc	gcctagaacc	cagtctaatg	agaactccag	aaagctggag	1920
cageceacet	agagctggcc					1940

<210> 4

<211> 1714

<212> DNA

<213> Homo sapiens

<400> 4 ggggcatttt gtgcctgcct agctatccag acagagcagc taccctcagc tctagctgat 60 actacagaca gtacaacaga tcaagaagta tggcagtgac aactcgtttg acacggttgc 120 180 acgaaaagat cctgcaaaat cattttggag ggaagcggct tagccttctc tataagggta gtgtccatgg attccgtaat ggagttttgc ttgacagatg ttgtaatcaa gggcctactc 240 300 taacagtgat ttatagtgaa gatcatatta ttggagcata tgcggaagag agttaccagg aaggaaagta tgcttccatc atcctttttg cacttcaaga tactaaaatt tcagaatgga 360 aactaggact atgtacacca gaaacactgt tttgttgtga tgttacaaaa tataactccc 420 caactaattt ccagatagat ggaagaaata gaaaagtgat tatggactta aagacaatgg 480 540 aaaatcttgg acttgctcaa aattgtacta tctctattca ggattatgaa gtttttcgat gcgaagattc actggatgaa agaaagataa aaggggtcat tgagctcagg aagagcttac 600 tgtctgcctt gagaacttat gaaccatatg gatccctggt tcaacaaata cgaattctgc 660 tgctgggtcc aattggagct gggaagtcca gctttttcaa ctcagtgagg tctgttttcc 720 aagggcatgt aacgcatcag gctttggtgg gcactaatac aactgggata tctgagaagt 780

ataggacata	ctctattaga	gacgggaaag	atggcaaata	cctgccgttt	attctgtgtg	840
actcactggg	gctgagtgag	aaagaaggcg	gcctgtgcag	ggatgacata	ttctatatct	900
tgaacggtaa	cattcgtgat	agataccagt	ttaatcccat	ggaatcaatc	aaattaaatc	960
atcatgacta	cattgattcc	ccatcgctga	aggacagaat	tcattgtgtg	gcatttgtat	1020
ttgatgccag	ctctattcaa	tacttctcct	ctcagatgat	agtaaagatc	aaaagaattc	1080
gaagggagtt	ggtaaacgct	ggtgtggtac	atgtggcttt	gctcactcat	gtggatagca	1140
tggatttgat	tacaaaaggt	gaccttatag	aaatagagag	atgtgagcct	gtgaggtcca	1200
agctagagga	agtccaaaga	aaacttggat	ttgctctttc	tgacatctcg	gtggttagca	1260
attattcctc	tgagtgggag	ctggaccctg	taaaggatgt	tctaattctt	tctgctctga	1320
gacgaatgct	atgggctgca	gatgacttct	tagaggattt	gccttttgag	caaataggga	1380
atctaaggga	ggaaattatc	aactgtgcac	aaggaaaaaa	atagatatgt	gaaaggttca	1440
cgtaaatttc	ctcacatcac	agaagattaa	aattcagaaa	ggagaaaaca	cagaccaaag	1500
agaagtatct	aagaccaaag	ggatgtgttt	tattaatgtc	taggatgaag	aaatgcatag	1560
aacattgtag	tacttgtaaa	taactagaaa	taacatgatt	tagtcataat	tgtgaaaaat	1620
agtaataatt	tttcttggat	ttatgttctg	tatctgtgaa	aaaataaatt	tcttataaaa	1680
ctcggaaaaa	. aaaaaaaaaa	aaaaaaaaaa	aaaa			1714
<210> 5						
<211> 627						
<212> DNA <213> Hom	no sapiens					
<400> 5	r coottacaco	: tacaccaaac	: ggccatggac	c ttgtacagca	ccccggccgc	60
						12
tgcgctggac	; aggitegigg	, ccayaayyct	. 9049009095	,	g tagagaaggc	

0 0 geggegeget etgggegee tggeegetge eetgagggag egegggggee geeteggtge 180 tgctgccccg cgggtgctga aaactgtcaa gggaggctcc tcgggccggg gcacagctct 240 caagggtggc tgtgattctg aacttgtcat cttcctcgac tgcttcaaga gctatgtgga 300 ccagagggcc cgccgtgcag agatcctcag tgagatgcgg gcatcgctgg aatcctggtg 360 gcagaaccca gtccctggtc tgagactcac gtttcctgag cagagcgtgc ctggggccct 420 gcagttccgc ctgacatccg tagatcttga ggactggatg gatgttagcc tggtgcctgc 480 540 cctcctcaac agtggctgcc aagggggcga gcatgcggcc tgcttcacag agctgcggag 600 gaactttgtg aacattcgcc cagccaagtt gaagaaccta atcttgctgg tgaagcactg 660

gtaccaccag	gtgtgcctac	aggggttgtg	gaaggagacg	ctgcccccgg	tctatgccct	720
ggaattgctg	accatcttcg	cctgggagca	gggctgtaag	aaggatgctt	tcagcctagg	780
cgaaggcctc	cgaactgtcc	tgggcctgat	ccaacagcat	cagcacctgt	gtgttttctg	840
gactgtcaac	tatggcttcg	aggaccctgc	agttgggcag	ttcttgcagc	ggcacgttaa	900
gagacccagg	cctgtgatcc	tggacccagc	tgaccccaca	tgggacctgg	ggaatggggc	960
agcctggcac	tgggatttgc	atgcccagga	ggcagcatcc	tgctatgacc	acccatgctt	1020
tctgaggggg	atgggggacc	cagtgcagtc	ttggaagggg	cegggeette	cacgtgctgg	1080
atgctcaggt	ttgggccacc	ccatccagct	agaccctaac	cagaagaccc	ctgaaaacag	1140
caagagcctc	aatgctgtgt	acccaagagc	agggagcaaa	cctccctcat	gcccagctcc	1200
tggccccact	geggageeag	catcgtaccc	ctctgtgccg	ggaatggcct	tggacctgtc	1260
tcagatcccc	accaaggagc	tggaccgctt	catccaggac	cacctgaagc	cgagccccca	1320
gttccaggag	g caggtgaaaa	aggccatcga	catcatcttg	egetgeetee	atgagaactg	1380
tgttcacaag	gcctcaagag	tcagtaaagg	gggctcattt	ggccggggca	cagacctaag	1440
ggatggctgt	gatgttgaac	tcatcatctt	cctcaactgc	ttcacggact	acaaggacca	1500
ggggccccg	c cgcgcagaga	tccttgatga	gatgcgagcg	cacgtagaat	cctggtggca	1560
ggaccaggt	g cccagcctga	gccttcagtt	tcctgagcag	aatgtgcctg	aggctctgca	1620
gttccagct	g gtgtccacag	ccctgaagag	ctggacggat	gttagcctgc	tgcctgcctt	1680
cgatgctgt	g gggcagctca	gttctggcac	caaaccaaat	ccccaggtct	actcgaggct	1740
cctcaccag	t ggctgccagg	agggcgagca	taaggcctgc	ttcgcagagc	tgcggaggaa	1800
cttcatgaa	c attcgccctg	tcaagctgaa	gaacctgatt	ctgctggtga	agcactggta	1860
ccgccaggt	t gcggctcaga	acaaaggaaa	aggaccagcc	catgaatata	tgcccccagc	1920
ctatgccct	g gagctcctca	. ccatctttgc	ctgggagcag	ggctgcaggc	aggattgttt	1980
caacatggc	c caaggettee	ggacggtgct	ggggctcgtg	caacagcatc	: agcagctctg	2040
tgtctactg	g acggtcaact	atagcactga	ggacccagcc	: atgagaatgo	: accttcttgg	2100
ccagcttcg	a aaacccagac	: ccctggtcct	ggaccccgct	gatcccacct	ggaacgtggg	2160
ccacggtag	c tgggagctgt	: tggcccagga	agcagcagco	g ctggggatgo	aggcctgctt	2220
tctgagtag	a gacgggacat	: ctgtgcagcc	ctgggatgtg	g atgecageco	tcctttacca	2280
aaccccagc	t ggggaccttg	g acaagttcat	: cagtgaattt	ctccagccca	a accgccagtt	2340
cctggccca	g gtgaacaagg	g ccgttgatac	catctgttca	a tttttgaagg	g aaaactgctt	2400
ccggaattc	t cccatcaaag	g tgatcaaggt	ggtcaagggt	ggctcttcag	g ccaaaggcac	2460

agctctgcga	ggccgctcag	atgccgacct	cgtggtgttc	ctcagctgct	tcagccagtt	2520
cactgagcag	ggcaacaagc	gggccgagat	catctccgag	atccgagccc	agctggaggc	2580
atgtcaacag	gagcggcagt	tcgaggtcaa	gtttgaagtc	tccaaatggg	agaatccccg	2640
cgtgctgagc	ttctcactga	catcccagac	gatgctggac	cagagtgtgg	actttgatgt	2700
gctgccagcc	tttgacgccc	taggccagct	ggtctctggc	tccaggccca	gctctcaagt	2760
ctacgtcgac	ctcatccaca	gctacagcaa	tgcgggcgag	tactccacct	gcttcacaga	2820
gctacaacgg	gacttcatca	tctctcgccc	taccaagctg	aagagcctga	tccggctggt	2880
gaagcactgg	taccagcagt	gtaccaagat	ctccaagggg	agaggctccc	tacccccaca	2940
gcacgggctg	gaactcctga	ctgtgtatgc	ctgggagcag	ggcgggaagg	actcccagtt	3000
caacatggct	gagggcttcc	gcacggtcct	ggagctggtc	acccagtacc	gccagctctg	3060
tatctactgg	accatcaact	acaacgccaa	ggacaagact	gttggagact	tcctgaaaca	3120
gcagcttcag	aagcccaggc	ctatcatcct	ggatccggct	gacccgacag	gcaacctggg	3180
ccacaatgcc	cgctgggacc	tgctggccaa	ggaagctgca	gcctgcacat	ctgccctgtg	3240
ctgcatggga	cggaatggca	tccccatcca	gccatggcca	gtgaaggctg	ctgtgtgaag	3300
ttgagaaaat	cagcggtcct	actggatgaa	gagaagatgg	acaccagccc	tcagcatgag	3360
gaaattcagg	gtcccctacc	agatgagaga	gattgtgtac	atgtgtgtgt	gagcacatgt	3420
gtgcatgtgt	gtgcacacgt	gtgcatgtgt	gtgttttagt	gaatctgctc	tcccagctca	3480
cacactcccc	tgcctcccat	ggcttacaca	ctaggatcca	gactccatgg	tttgacacca	3540
gcctgcgttt	gcagcttctc	tgtcacttcc	atgactctat	cctcatacca	ccactgctgc	3600
ttcccaccca	gctgagaatg	cccctcctc	cctgactcct	ctctgcccat	gcaaattagc	3660
tcacatcttt	cctcctgctg	caatccatcc	cttcctccca	ttggcctctc	cttgccaaat	3720
ctaaatactt	: tatataggga	tggcagagag	ttcccatctc	atctgtcago	: cacagtcatt	3780
tggtactggo	: tacctggagc	cttatcttct	gaagggtttt	aaagaatggo	: caattagctg	3840
agaagaatta	tctaatcaat	tagtgatgtc	tgccatggat	gcagtagagg	g aaagtggtgg	3900
tacaagtgco	atgattgatt	agcaatgtct	gcactggata	tggaaaaaag	g aaggtgcttg	3960
caggtttaca	a gtgtatatgt	gggctattga	. agagccctct	gagctcggtt	gctagcagga	4020
gagcatgcco	atattggctt	actttgtctg	ccacagacac	agacagaggg	g agttgggaca	4080
tgcatgctat	ggggaccctc	: ttgttggaca	cctaattgga	a tgcctcttca	a tgagaggcct	4140
ccttttctt	c accttttatg	ctgcactcct	ccctagttt	acacatctt	g atgetgtgge	4200
tcagtttgc	c ttcctgaatt	tttattgggt	ccctgttttc	tctcctaaca	a tgctgagatt	4260
ctgcatccc	c acagcctaaa	ctgagccagt	ggccaaacaa	a ccgtgctcag	g cctgtttctc	4320

7

	tatgacatat a	agagcaaggc	ccaccaggtc	catccaggag (gctctcctga	cctcaagtcc	4380
	aacaacagtg [†]	tccacactag	tcaaggttca	gcccagaaaa	cagaaagcac	tctaggaatc	4440
	ttaggcagaa :	agggatttta	tctaaatcac	tggaaaggct	ggaggagcag	aaggcagagg	4500
	ccaccactgg	actattggtt	tcaatattag	accactgtag	ccgaatcaga	ggccagagag	4560
	cagccactgc	tactgctaat	gccaccacta	cccctgccat	cactgcccca	catggacaaa	4620
	actggagtcg	agacctaggt	tagattcctg	caaccacaaa	catccatcag	ggatggccag	4680
	ctgccagagc	tgcgggaaga	cggatcccac	ctccctttct	tagcagaatc	taaattacag	4740
	ccagacctct	ggctgcagag	gagtctgaga	catgtatgat	tgaatgggtg	ccaagtgcca	4800
	gggggcggag	tccccagcag	atgcatcctg	gccatctgtt	gcgtggatga	gggagtgggt	4860
	ctatctcaga	ggaaggaaca	ggaaacaaag	aaaggaagcc	actgaacatc	ccttctctgc	4920
	tccacaggag	tgtcttagac	agcctgactc	tccacaaacc	actgttaaaa	cttacctgct	4980
	aggaatgcta	gattgaatgg	gatgggaaga	gccttccctc	attattgtca	ttcttggaga	5040
	gaggtgagca	accaagggaa	gctcctctga	ttcacctaga	acctgttctc	tgccgtcttt	5100
	ggctcagcct	acagagacta	gagtaggtga	agggacagag	gacagggctt	ctaatacctg	5160
	tgccatattg	acagcctcca	tccctgtccc	ccatcttggt	gctgaaccaa	cgctaagggc	5220
	accttcttag	actcacctca	tcgatactgc	ctggtaatcc	aaagctagaa	ctctcaggac	5280
	cccaaactcc	acctcttgga	ttggccctgg	ctgctgccac	acacatatcc	aagagctcag	5340
	ggccagttct	ggtgggcagc	agagacctgc	tctgccaagt	tgtccagcag	cagagtggcc	5400
	ctggcctggg	catcacaagc	cagtgatgct	cctgggaaga	ccaggtggca	ggtcgcagtt	5460
	gggtaccttc	cattcccacc	acacagactc	tgggcctccc	cgcaaaatgg	ctccagaatt	5520
	agagtaatta	tgagatggtg	ggaaccagag	caactcaggt	gcatgataca	aggagaggtt	5580
	gtcatctggg	tagggcagag	aggagggctt	gctcatctga	acaggggtgt	atttcattcc	5640
	aggccctcag	tctttggcaa	tggccaccct	ggtgttggca	tattggcccc	: actgtaactt	5700
	ttgggggctt	cccggtctag	ccacaccctc	ggatggaaag	acttgactgo	: ataaagatgt	5760
•	cagttctccc	tgagttgatt	gataggetta	atggtcacco	taaaaacacc	cacatatgct	5820
	tttcgatgga	accagataag	ı ttgacgctaa	agttcttatg	gaaaaataca	a cacgcaatag	5880
	ctaggaaaac	acagggaaag	, aagagttctg	g agcagggcct	agtettage	c aatattaaaa	5940
	catactatga	agcctctgat	acttaaacag	g catggcgctg	gtacgtaaa	agaccaatgc	6000
	agttaggtgg	ctctttccaa	ı gactctgggg	g aaaaaagta <u>g</u>	g taaaaagcta	a aatgcaatca	6060
	atcagcaatt	gaaagctaag	g tgagagagco	c agagggccto	cttggtggt:	a aaagagggtt	6120

gcatttcttg	cagccagaag	gcagagaaag	tgaagaccaa	gtccagaact	gaatcctaag	6180
aaatgcagga	ctgcaaagaa	attggtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtttaa	6240
tttttaaaaa	gtttttattc	ggaatccgcg				6270

<210> 6 <211> 1642 <212> DNA

<213> Homo sapiens

<400> 6 60 ccagatctca gaggagcctg gctaagcaaa accctgcaga acggctgcct aatttacagc aaccatgagt acaaatggtg atgatcatca ggtcaaggat agtctggagc aattgagatg 120 tcactttaca tgggagttat ccattgatga cgatgaaatg cctgatttag aaaacagagt 180 240 cttggatcag attgaattcc tagacaccaa atacagtgtg ggaatacaca acctactagc ctatgtgaaa cacctgaaag gccagaatga ggaagccctg aagagcttaa aagaagctga 300 360 aaacttaatg caggaagaac atgacaacca agcaaatgtg aggagtctgg tgacctgggg caactttgcc tggatgtatt accacatggg cagactggca gaagcccaga cttacctgga 420 caaggtggag aacatttgca agaagctttc aaatcccttc cgctatagaa tggagtgtcc 480 agaaatagac tgtgaggaag gatgggcctt gctgaagtgt ggaggaaaga attatgaacg 540 ggccaaggcc tgctttgaaa aggtgcttga agtggaccct gaaaaccctg aatccagcgc 600 tgggtatgcg atctctgcct atcgcctgga tggctttaaa ttagccacaa aaaatcacaa 660 gccattttct ttgcttcccc taaggcaggc tgtccgctta aatccagaca atggatatat 720 taaggttctc cttgccctga agcttcagga tgaaggacag gaagctgaag gagaaaagta 780 cattgaagaa gctctagcca acatgtcctc acagacctat gtctttcgat atgcagccaa 840 gttttaccga agaaaaggct ctgtggataa agctcttgag ttattaaaaa aggccttgca 900 ggaaacaccc acttctgtct tactgcatca ccagataggg ctttgctaca aggcacaaat 960 gatccaaatc aaggaggcta caaaagggca gcctagaggg cagaacagag aaaagctaga 1020 caaaatgata agatcagcca tatttcattt tgaatctgca gtggaaaaaa agcccacatt 1080 tgaggtggct catctagacc tggcaagaat gtatatagaa gcaggcaatc acagaaaagc 1140 tgaagagaat tttcaaaaat tgttatgcat gaaaccagtg gtagaagaaa caatgcaaga 1200 1260 catacatttc tactatggtc ggtttcagga atttcaaaag aaatctgacg tcaatgcaat 1320 tatccattat ttaaaagcta taaaaataga acaggcatca ttaacaaggg ataaaagtat caattetttg aagaaattgg ttttaaggaa actteggaga aaggeattag atetggaaag 1380 cttgagcctc cttgggttcg tctataaatt ggaaggaaat atgaatgaag ccctggagta 1440

9

ctatgagcgg gccc	tgagac tggctgctg	a ctttgagaac	tctgtgagac	aaggtcctta	1500
ggcacccaga tatc	agccac tttcacatt	t catttcattt	tatgctaaca	tttactaatc	1560
atcttttctg ctta	ctgttt tcagaaaca	t tataattcac	tgtaatgatg	taattcttga	1620
ataataaatc tgac	caaaata tt				1642

<210> 7 <211> 1858 <212> DNA

<213> Homo sapiens

<400> ggcacgaggc gtccgcccg cgagcacaga gcctcgcctt tgccgatccg ccgcccgtcc 60 acaccegeeg ceageteace atggatgatg atategeege getegtegte gacaacgget 120 ceggcatgtg caaggcegge ttegegggeg acgatgeece eegggeegte tteeceteea 180 tcgtggggcg ccccaggcac cagggcgtga tggtgggcat gggtcagaag gattcctatg 240 tgggcgacga ggcccagagc aagagaggca tcctcaccct gaagtacccc atcgagcacg 300 gcatcgtcac caactgggac gacatggaga aaatctggca ccacaccttc tacaatgagc 360 tgcgtgtggc tcccgaggag caccccgtgc tgctgaccga ggcccccctg aaccccaagg 420 ccaaccgcga gaagatgacc cagatcatgt ttgagacctt caacacccca gccatgtacg 480 ttgctatcca ggctgtgcta tccctgtacg cctctggccg taccactggc atcgtgatgg 540 600 actocggtga cggggtcacc cacactgtgc ccatctacga ggggtatgcc ctccccatg ccatcctgcg tctggacctg gctggccggg acctgactga ctacctcatg aagatcctca 660 ccgagcgcgg ctacagcttc accaccacgg ccgagcggga aatcgtgcgt gacattaagg 720 agaagctgtg ctacgtcgcc ctggacttcg agcaagagat ggccacggct gcttccagct 780 cctccctgga gaagagctac gagctgcctg acggccaggt catcaccatt ggcaatgagc 840 ggttccgctg ccctgaggca ctcttccagc cttccttcct gggcatggag tcctgtggca 900 tecaegaaac tacetteaac tecateatga agtgtgaegt ggacateege aaagaeetgt 960 acgccaacac agtgctgtct ggcggcacca ccatgtaccc tggcattgcc gacaggatgc 1020 agaaggagat cactgccctg gcacccagca caatgaagat caagatcatt gctcctcctg 1080 agegeaagta eteegtgtgg ateggegget ceateetgge etegetgtee acetteeage 1140 agatgtggat cagcaagcag gagtatgacg agtccggccc ctccatcgtc caccgcaaat 1200 gcttctaggc ggactatgac ttagttgcgt tacacccttt cttgacaaaa cctaacttgc 1260 1320 tttttttttt tttggcttga ctcaggattt aaaaactgga acggtgaagg tgacagcagt 1380

10

cggttggagc	gagcatcccc	caaagttcac	aatgtggccg	aggactttga	ttgcacattg	1440
ttgtttttt	aatagtcatt	ccaaatatga	gatgcattgt	tacaggaagt	cccttgccat	1500
cctaaaagcc	accccacttc	tctctaagga	gaatggccca	gtcctctccc	aagtccacac	1560
aggggaggtg	atagcattgc	tttcgtgtaa	attatgtaat	gcaaaatttt	tttaatcttc	1620
gccttaatac	ttttttattt	tgttttattt	tgaatgatga	gccttcgtgc	cccccttcc	1680
cccttttttg	tcccccaact	tgagatgtat	gaaggctttt	ggtctccctg	ggagtgggtg	1740
gaggcagcca	gggcttacct	gtacactgac	ttgagaccag	ttgaataaaa	gtgcacacct	1800
taaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaa	1858

<210> 8

<211> 1962

<212> DNA

<213> Homo sapiens

<400> gttttgcctg ctagcatctc cctgtaactc tcccaatctt gaggagtgat ccctgtccca 60 gcccctggaa aggggcagga acgacaaact caaagtccag gatgttcacc atgacaagag 120 ccatggaaga ggctcttttt cagcacttca tgcaccagaa gctggggatc gcctatgcca 180 tacacaagcc atttcccttc tttgaaggcc tcctagacaa ctccatcatc actaagagaa 240 tgtacatgga atctctggaa gcctgtagaa atttgatccc tgtatccaga gtggtgcaca 300 acatteteae ecaactggag aggaetttta acetgtetet tetggtgaca ttgtteagte 360 aaattaacct gcgtgaatat cccaatctgg tgacgattta cagaagcttc aaacgtgttg 420 gtgcttccta tgaacggcag agcagagaca caccaatcct acttgaagcc ccaactggcc 480 tagcagaagg aagctccctc cataccccac tggcgctgcc cccaccacaa ccccctcaac 540 caagctgttc accetgtgcg ccaagagtca gtgagcctgg aacatcctcc cagcaaagcg 600 atgagatect gagtgagteg eccageceat etgaceetgt eetgeetete eetgeaetea 660 tccaggaagg aagaagcact tcagtgacca atgacaagtt aacatccaaa atgaatgcgg 720 aagaagactc agaagagatg cccagcctcc tcactagcac tgtgcaagtg gccagtgaca 780 acctgatccc ccaaataaga gataaagaag accctcaaga gatgccccac tctcccttgg 840 gctctatgcc agagataaga gataattctc cagaaccaaa tgacccagaa gagccccagg 900 aggtgtccag cacaccttca gacaagaaag gaaagaaaag aaaaagatgt atctggtcaa 960 ctccaaaaag gagacataag aaaaaaagcc tcccaagagg gacagcctca tctagacacg 1020 gaatccaaaa gaagctcaaa agggtggatc aggttcctca aaagaaagat gactcaactt 1080 gtaactccac ggtagagaca agggcccaaa aggcgagaac tgaatgtgcc cgaaagtcga 1140

gatcagagga	gatcattgat	ggcacttcag	aaatgaatga	aggaaagagg	tcccagaaga	1200
cgcctagtac	accacgaagg	gtcacacaag	gggcagcctc	acctgggcat	ggcatccaag	1260
agaagctcca	agtggtggat	aaggtgactc	aaaggaaaga	cgactcaacc	tggaactcag	1320
aggtcatgat	gagggtccaa	aaggcaagaa	ctaaatgtgc	ccgaaagtcc	agatcgaaag	1380
aaaagaaaaa	ggagaaagat	atctgttcaa	gctcaaaaag	gagatttcag	aaaaatattc	1440
accgaagagg	aaaacccaaa	agtgacactg	tggattttca	ctgttctaag	ctccccgtga	1500
cctgtggtga	ggcgaaaggg	attttatata	agaagaaaat	gaaacacgga	tcctcagtga	1560
agtgcattcg	gaatgaggat	ggaacttggt	taacaccaaa	tgaatttgaa	gtcgaaggaa	1620
aaggaaggaa	cgcaaagaac	tggaaacgga	atatacgttg	tgaaggaatg	accctaggag	1680
agctgctgaa	gagtggactt	ttgctctgtc	ctccaagaat	aaatctcaag	agagagttaa	1740
atagcaagtg	aatttctact	accctctcag	tcaccatgtt	gcagactttc	cctgtctgga	1800
ggctcacctt	agagcttctg	agtttccaag	ctctgagtca	cctccacatt	tgggcatggc	1860
atcttcaaaa	caattaattt	gcatagttaa	tttgggatgg	ggaagcaaat	gactctaaaa	1920
taaaaattaa	atgaaaaagc	tcaaaaaaaa	aaaaaaaaa	aa		1962

<210> 9

<211> 732

<212> DNA

<213> Homo sapiens

<400> 9 tgctgcgaac cacgtgggtc ccgggcgcgt ttcgggtgct ggcggctgca gccggagttc 60 aaacctaagc agctggaagg aaccatggcc aactgtgagc gtaccttcat tgcgatcaaa 120 ccagatgggg tccagcgggg tcttgtggga gagattatca agcgttttga gcagaaagga 180 ttccgccttg ttggtctgaa attcatgcaa gcttccgaag atcttctcaa ggaacactac 240 gttgacctga aggaccgtcc attctttgcc ggcctggtga aatacatgca ctcagggccg 300 gtagttgcca tggtctggga ggggctgaat gtggtgaaga cgggccgagt catgctcggg 360 gagaccaacc ctgcagactc caagcctggg accatccgtg gagacttctg catacaagtt 420 ggcaggaaca ttatacatgg cagtgattct gtggagagtg cagagaagga gatcggcttg 480 tggtttcacc ctgaggaact ggtagattac acgagctgtg ctcagaactg gatctatgaa 540 tgacaggagg gcagaccaca ttgcttttca catccatttc ccctccttcc catgggcaga 600 ggaccaggct gtaggaaatc tagttattta caggaacttc atcataattt ggagggaagc 660 720 tcttggagct gtgagttctc cctgtacagt gttaccatcc ccgaccatct gattaaaatg 732 cttcctccca gc

<210> 10 <211> 1759 <212> DNA <213> Homo sapiens

<400> 10 ggccgcggag ccgggcggag ctggcttgcg gctcccgggg ccggctctcc ggccggagac 60 atggcccggg ggcccggccc gctaggcagg cctcgccccg atacggtcgc catgcccaag 120 180 agaggaaagc gactcaagtt ccgggcccac gacgcctgct ccggccgagt gaccgtggcg gattacgcca actcggatcc ggcggtcgtg aggtctggac gagtcaagaa agccgtagcc 240 300 aacgctgttc agcaggaagt aaaatctctt tgtggcttgg aagcctctca ggttcctgca 360 gaggaagete tttetgggge tggtgageee tgtgacatea tegacageag tgatgagatg gatgcccagg aggaaagcat ccatgagaga actgtctcca gaaaaaagaa aagcaagaga 420 cacaaagaag aactggacgg ggctggagga gaagagtatc ccatggatat ttggctattg 480 ctggcctcct atatccgtcc tgaggacatt gtgaattttt ccctgatttg taagaatgcc 540 600 tggactgtca cttgcactgc tgccttttgg accaggttgt accgaaggca ctacacgctg gatgetteee tgeetttgeg tetgegacea gagteaatgg agaagetgeg etgteteegg 660 gcttgtgtga tccgatctct gtaccatatg tatgagccat ttgctgctcg aatctccaag 720 780 aatccagcca ttccagaaag cacccccagc acattaaaga attccaaatg cttacttttc tggtgcagaa agattgttgg gaacagacag gaaccaatgt gggaattcaa cttcaagttc 840 900 aaaaaacagt cccctaggtt aaagagcaag tgtacaggag gattgcagcc tcccgttcag tacgaagatg ttcataccaa tccagaccag gactgctgcc tactgcaggt caccaccctc 960 aatttcatct ttattccgat tgtcatggga atgatattta ctctgtttac tatcaatgtg 1020 agcacggaca tgcggcatca tcgagtgaga ctggtgttcc aagattcccc tgtccatggt 1080 ggtcggaaac tgcgcagtga acagggtgtg caagtcatcc tggacccagt gcacagcgtt 1140 cggctctttg actggtggca tcctcagtac ccattctccc tgagagcgta gttactgctt 1200 cccatccctt gggggcagcc tcgagtgtag tccattagta atcagattcc agtttggaca 1260 1320 gggtggctgg attgtatatc tcgttagtaa tgtacatgct cttcaggttc tagggctcct 1380 gttaggggag ggagaaatgt tgaatcaaga gggaaaacaa ctactatgat ttataaacat 1440 attttaatgt aaaaatttgc atttaaaagg agtggccctg ttttctgtgt taaaacccca 1500 tttggtgcta ttgagtttgt tctttattct tttatcccag tgaaaattgt tgatcttgct gtagggaaaa attaaactct ttgaatctcc aaacaaggaa gtttcagcat tcccttatgg 1560 atcagaggaa ccttagaggc ctgaaattgt tgcttccagt ttagctgccc ctcaaattca 1620

agtgaatatt	ttcccttctc	cctttaccct	tctccagaaa	taaagcaggt	gacagggttt	1680
tcagaatctt	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1740
aaaaaaaaaa	aaaaaaaaa					1759

<210> 11 <211> 3280 <212> DNA

<213> Homo sapiens

<400> 11 agegggegaa tettttteat tgaatttgaa eeatttgtaa aatetgtgat getgaageag 60 agtgtgtcac aaagtgatga gaacattact aaaatccacg gacgcactgc gacctaaggg 120 180 ctcaacggct gactcggcag cgggcagcca ccccacgctc ccctgcggtc actcgcacac cacagootga agotococca gogootgoac otogoacaca gotaaggtoa aagttoaaac 240 gcactccaca cggaagctca ttctataccc gaagagcagt ctcagaaagc aagattactt 300 ttgtgttttt taaaaaatga ttctttaatg tatttttcta aacattctga ttggaagtag 360 tggattccta aatgattcca aagtcatctg taattcttct gtttttgttt tgttctgtct 420 tttcttcatt ttggctttgg gtggggggag gggcaggtga cacaaaggat ttttttttt 480 tttttttaat ttttggaatc ttttccaata acaagctaaa gatttgcact gaaatacaac 540 ttgtatgcct tttgcatttt taaagcctgc ttcctggatt taagcagagt gatagtgttc 600 aaagagccag ttcagcctgt aacatatttg aaaaagatat gtctgcactt tgaggtccct 660 tttgaatgcc attcactaga cctctcaagc attttgtttc attgctacat ccaagcgcct 720 cacaagtcca caatgcggga cagcatcaaa agctcaagac tttggaaaaa gcttgtgggc 780 ttgcactggg ggagggaagg gaacaaaatt tgtgtacttc tttgtttaat ttagaaataa 840 900 ggcatccaag agatgccatt attttctgtg tttcaattgt tgtgcctttg agttaaactg catttttgtc ttttggttga aatctgaaat gtactgtccc aatataaaac agtaattatt 960 1020 tgacctttgc actgtttgtc tggtcctttt cagtttgatt gcatataaat gtggaacttg 1080 atagatetet atatttttaa tgeaettgtg ataaaetgge ageagggtta gaeattaett tcaaagcttg aggtagaccg agtcagcatg ctagacaggc ttctctctct aaccaaaact 1140 gtaatcttca ggaccagcaa actcagccca aggcagctaa tccccccaac cccatcctcc 1200 1260 gegeceegtg eggetgateg geagecetga ttegecaatt tgteetetet catteaetga 1320 tccaccagcc tgactgctaa gagctatagt ctttttagtt gttttgtctt tttaagcaag atgaaaacct ttctattagg gattttgggg ttgggagggg atgggcagag atataaaccc 1380 cagcctttaa gactttgaca attgtacgta aatacagatg tgtataaata taggcacatg 1440

catattttta	tgtgaaagtt	gattttaaaa	aactaaaaaa	atctaaactg	cactcttatt	1500
gataccatca	taacgcaagt	gggaaaaata	agagtacgca	gtctaattta	atttcatgca	1560
gtgggaaaat	atatatgtgt	gcttctgtaa	catcctgaaa	acatagcttt	ccatcccctg	1620
ttggctttga	atggtgggcc	gagcacccag	gtcgtctgta	ttttggtttt	cttttgctaa	1680
gcagagatct	tgaattcttc	aaggtgctga	tagcaactgc	tggctccttt	ctgtagtcac	1740
acacctaatg	ctagtttagt	gattcaaaat	gcatcacatt	tttaggcagg	acctagattt	1800
tccctgtcaa	cctaagatga	aaataatttc	agtgttgatt	cagaactgaa	cattaagtag	1860
gccctcgtcc	tgcagttggc	cacttgagtg	ttttgttttg	tttttattt	ttaaggtggg	1920
cattttcctt	taacctctac	tttttcaaaa	gcaacaaagg	ggcctcaacc	tgagtttcct	1980
atgggcctct	cttctgcatc	cccaaagcgg	ccaagagcaa	atcctggggg	ataagaaaaa	2040
agtgtaaact	aggtaggatt	gtgatgctca	aaataaccat	ctagcaatat	cttggagctt	2100
gagaatagat	tttgtgggct	tatttcttct	tgcctcttcc	ccatcctttc	aagagagaac	2160
ttatttttga	aaagtatcta	tatatacaca	cacacacaca	cacacacata	ttattattta	2220
ggtttttata	ccatactgta	ttggcgagaa	taccactatc	attgtccttt	acagtctatt	2280
tcttccccca	agtcttggtc	tttttttatt	ttctatttt	tcatgaacca	cacaggagac	2340
tttaacatco	tggtcttttc	tgtttcttct	ttgtttcccc	aagtttgtct	gtcccccttt	2400
gaattaaatg	agtgttgaac	atcaggtagt	aaaaggctaa	acgcaatttc	ttgcatgtca	2460
atctattctt	tttctatgtt	tgactctgat	gcagtgtgtt	tagcgtgtct	agtagctggc	2520
tactcctatt	: taaaaactct	tcctggtaga	agacaaccca	aagacccttt	tcgatgaggt	2580
ggtttctcat	tctacatcct	ctgatctcta	tagactgtag	gatgetttge	: tttcaaagat	2640
aactgggtta	a gagggtgggg	tgtgcaatag	gtgatttatc	: atggttttt	: tcattatcaa	2700
tattacatgo	g atgattttct	cagattette	tgaaagaaga	a aattgacago	g cactgctaga	2760
ttcagctatt	gaatggctga	agagattgag	tatttgacct	tctctcaaaa	a tcataaagtg	2820
agaattcata	a aggcacccaa	tgttaagatt	tatccagatt	tttacattt	gatttcttct	2880
ctctgtggg	g tggcaagttg	g agggagcatt	cttcatttta	a gcttttacci	gacaaccaaa	2940
cttgccttta	a ccccatccct	agaattggtg	ı ctcttggaat	t attgctgtt	a ccatcatttt	3000
tggggggcc	a tcttcctaat	gctacacaca	gcctgacagg	g ggagcagcag	g atgaaagggt	3060
atgctattc	t gtttccagat	gtttctttat	gtaaatatga	a cgccaatgt	a aatcctgtgt	3120
					t agaaactact	3180
					c tgttaacaaa	3240
	a tttcattatt					3280

<210> 12 <211> 1750 <212> DNA <213> Homo sapiens

<400> 12 ggcacgaggc ttcgtaaaga tggccgcgga ggcttttgga gccaactggg agcgcagtac 60 120 gcgttttctg gagcatgggc agaggagaca ggaacaagcg tagcatccgt gagcaccgat 180 tggctgaagc gagcaccccg ggagctgact ggctccgcca ttcgcgggaa ggcgtttgtg gtgccagaga aaagtagcca gagcggcgca gtggcggccg cgttctgtgg ttttccgcta 240 ttcccccaga cccgcacctt ctcggcctct ttgcggagaa tcgtgaccaa gatgtggaac 300 agtggattcg aaagctatgg cagctcctca tacgggggag ccggcggcta cacgcagtcc 360 ccggggggct ttggatcgcc cgcaccttct caagccgaaa agaaatcaag agcccgagcc 420 cagcacattg tgccctgtac tatatctcag ctgctttctg ccactttggt tgatgaagtg 480 ttcagaattg ggaatgttga gatttcacag gtcactattg tggggatcat cagacatgca 540 gagaaggete caaccaacat tgtttacaaa atagatgaca tgacagetge acccatggac 600 gttcgccagt gggttgacac agatgacacc agcagtgaaa acactgtggt tcctccagaa 660 acatatgtga aagtggcagg ccacctgaga tcttttcaga acaaaaagag cctggtagcc 720 tttaagatca tgcccctgga ggatatgaat gagttcacca cacatattct ggaagtgatc 780 aatgcacaca tggtactaag caaagccaac agccagccct cagcagggag agcacctatc 840 agcaatccag gaatgagtga agcagggaac tttggtggga atagcttcat gccagcaaat 900 ggcctcactg tggcccaaaa ccaggtgttg aatttgatta aggcttgtcc aagacctgaa 960 gggttgaact ttcaggatct caagaaccag ctgaaacaca tgtctgtatc ctcaatcaag 1020 caagctgtgg attttctgag caatgagggg cacatctatt ctactgtgga tgatgaccat 1080 tttaaatcca cagatgcaga ataactggat ctaactgggt acctgagata ttttacagct 1140 1200 ggacctagtt tcacaatctg ttgtctccag ctctgcatat gtctggccag ggggcttcta ggaagtaggt ttcatctatc aaatgtctcc tctgacttcc ttttgaaact tactgctctt 1260 ctgttttatt ttgttttgtt tgaagctcag agggagatgg gcaattgaca gggatgcaat 1320 ccagggtggg atttcttgag gaagttacaa ataagcttgt tacaacatca agatagatgg 1380 1440 aattggaagg atgctaccag gagagtactt acatagtgct caggagtttc tcttcttaaa 1500 atgtttactg ctgaaagatg agcaggacca gggcgttata ggcagagccc tagccgagaa acctgctggc ctctgcctgt tttcatttcc cactttggtt gtgtggcatt actttcagaa 1560 ttgcactttc ctgcttgtca tgactttttg acacacttgc catgacgtgt gtttctgtga 1620

1680 acatgaagtt ctgcggtagt gcctccaggg gcagaggaaa agaagaagtg ttactgcgtt ttgtacaaaa taaatacagt catatgttta ataaaacagt tctattgtaa aaaaaaaaa 1740 1750 aaaaaaaaa <210> 13 <211> 1925 <212> DNA <213> Homo sapiens <400> 13 gagagggcga aggtaggctg gcagatacgt tcgtcagctt gctcctttct gcccgtggac 60 120 gccgccgaag aagcatcgtt aaagtctctc ttcaccctgc cgtcatgtct aagtcagagt ctcctaaaga gcccgaacag ctgaggaagc tcttcattgg agggttgagc tttgaaacaa 180 ctgatgagag cctgaggagc cattttgagc aatggggaac gctcacggac tgtgtggtaa 240 tgagagatcc aaacaccaag cgctctaggg gctttgggtt tgtcacatat gccactgtgg 300 aggaggtgga tgcagctatg aatgcaaggc cacacaaggt ggatggaaga gttgtggaac 360 caaagagagc tgtctccaga gaagattctc aaagaccagg tgcccactta actgtgaaaa 420 agatatttgt tggtggcatt aaagaagaca ctgaagaaca tcacctaaga gattattttg 480 aacagtatgg aaaaattgaa gtgattgaaa tcatgactga ccgaggcagt ggcaagaaaa 540 ggggctttgc ctttgtaacc tttgacgacc atgactccgt ggataagatt gtcattcaga 600 aataccatac tgtgaatggc cacaactgtg aagttagaaa agccctgtca aagcaagaga 660 tggctagtgc ttcatccagc caaagaggtc gaagtggttc tggaaacttt ggtggtggtc 720 gtggaggtgg tttcggtggg aatgacaact tcggtcgtgg aggaaacttc agtggtcgtg 780 gtggctttgg tggcagccgt ggtggtggtg gatatggtgg cagtggggat ggctataatg 840 gatttggcaa tgatggtggt tatggaggag gcggccctgg ttactctgga ggaagcagag 900 960 gctatggaag tggtggacag ggttatggaa accagggcag tggctatggc gggagtggca gctatgacag ctataacaac ggaggcggag gcggctttgg cggtggtagt ggaagcaatt 1020 1080 ttggaggtgg tggaagctac aatgattttg ggaattacaa caatcagtct tcaaattttg gacccatgaa gggaggaaat tttggaggca gaagctctgg cccctatggc ggtggaggcc 1140 aatactttgc aaaaccacga aaccaaggtg gctatggcgg ttccagcagc agcagtagct 1200 1260 atggcagtgg cagaagattt taattaggaa acaaagctta gcaggagagg agagccagag 1320 aagtgacagg gaagctacag gttacaacag atttgtgaac tcagccaagc acagtggtgg cagggcctag ctgctacaaa gaagacatgt tttagacaaa tactcatgtg tatgggcaaa 1380 1440

ggaaagtgta aagcattcca acaaagggtt ttaatgtaga ttttttttt tgcaccccat	1500
gctgttgatt gctaaatgta acagtctgat cgtgacgctg aataaatgtc tttttttaa	1560
tgtgctgtgt aaagttagtc tactcttaag ccatcttggt aaatttcccc aacagtgtga	1620
agttagaatt ccttcagggt gatgccaggt tctatttgga atttatatac aacctgcttg	1680
ggtggagaag ccattgtctt cggaaacctt ggtgtagttg aactgatagt tactgttgtg	1740
acctgaagtt caccattaaa agggattacc caagcaaaat catggaatgg ttataaaagt	1800
gattgttggc acatcctatg caatatatct aaattgaata atggtaccag ataaaattat	1860
agatgggaat gaagettgtg tatecattat catgtgtaat caataaaega tttaattete	1920
ttgaa	1925
<210> 14 <211> 1418 <212> DNA <213> Homo sapiens	
<400> 14 cttttcctgt ggcagcagcc gggctgagag gagcgtggct gtctcctctc tccgccatgg	60
cgtgtgctcg cccactgata tcggtgtact ccgaaaaggg ggagtcatct ggcaaaaatg	120
tcactttgcc tgctgtattc aaggctccta ttcgaccaga tattgtgaac tttgttcaca	180
ccaacttgcg caaaaacaac agacagccct atgctgtcag tgaattagca ggtcatcaga	240
ctagtgctga gtcttggggt actggcagag ctgtggctcg aattcccaga gttcgaggtg	300
gtgggactca ccgctctggc cagggtgctt ttggaaacat gtgtcgtgga ggccgaatgt	360
ttgcaccaac caaaacctgg cgccgttggc atcgtagagt gaacacaacc caaaaacgat	420
acgccatctg ttctgccctg gctgcctcag ccctaccagc actggtcatg tctaaaggtc	480
atcgtattga ggaagttcct gaacttcctt tggtagttga agataaagtt gaaggctaca	540
agaagaccaa ggaagctgtt ttgctcctta agaaacttaa agcctggaat gatatcaaaa	600
aggtctatgc ctctcagcga atgagagctg gcaaaggcaa aatgagaaac cgtcgccgta	660
tccagcgcag gggcccgtgc atcatctata atgaggataa tggtatcatc aaggccttca	720
gaaacatccc tggaattact ctgcttaatg taagcaagct gaacattttg aagcttgctc	: 780
	_

840

900

960

1020

1080

ctggtgggca tgtgggacgt ttctgcattt ggactgaaag tgctttccgg aagttagatg

aattgtacgg cacttggcgt aaagccgctt ccctcaagag taactacaat cttcccatgc

acaagatgat taatacagat cttagcagaa tcttgaaaag cccagagatc caaagagccc

ttcgagcacc acgcaagaag atccatcgca gagtcctaaa gaagaaccca ctgaaaaact

tgagaatcat gttgaagcta aacccatatg caaagaccat gcgccggaac accattcttc

gccaggccag gaatcacaag ctccgggtgg ataaggcagc tgctgcagca gcggcactac 1140 aagccaaatc agatgagaag gcggcggttg caggcaagaa gcctgtggta ggtaagaaag 1200 gaaagaaggc tgctgttggt gttaagaagc agaagaagcc tctggtggga aaaaaggcag 1260 cagctaccaa gaaaccagcc cctgaaaaga agcctgcaga gaagaaacct actacagagg 1320 agaagaagcc tgctgcataa actcttaaat ttgattattc cataaaggtc aaatcatttt 1380 1418 ggacagette ttttgaataa agacetgatt atacagge

<210> 15

<211> 2754

DNA <212>

<213> Homo sapiens

<400> 15 actcgagccc tgggcgctgc ttgctaaaga gccgagcacg cgggtctgtc atcatgtcgc 60 gttacgggcg gtacggagga gaaaccaagg tgtatgttgg taacctggga actggcgctg 120 gcaaaggaga gttagaaagg gctttcagtt attatggtcc tttaagaact gtatggattg 180 cgagaaatcc tccaagattt gcctttgtgg aattcgaaga tcctagagat gcagaagatg 240 cagtacgagg actggatgga aaggtgattt gtggctcccg agtgagggtt gaactatcga 300 caggcatgcc tcggagatca cgttttgata gaccacctgc ccgacgtccc tttgatccaa 360 atgatagatg ctatgagtgt ggcgaaaagg gacattatgc ttatgattgt catcgttaca 420 gccggcgaag aagaagcagg tttcttcgtt tgagtcagtc gccttgattc agaatgtcac 480 gagccttatg atatcatgct gaggcgcctt gcaaatccga caattaagat cctcctagac 540 cttgaggtga tcagcataag aggccagatc ccctcgagtc atctacacct agcttcacct 600 tattctttaa agggcagaaa atttgagacg gtgatcgccg taacagtaaa tttggcttac 660 aattggggcc cccctccggt ttagaaagag gaacaccaga ttgaccacat tcccaactag 720 aaaaatette ttgegteaat caageeteae etggeteatt tggetgteag tttgategte 780 gttagattga agaaaacatc tagatgcagc gatcggctat agatacttct agatcgtcta 840 900 gatctactag accatgggcc aaagagggtc gacctgcaaa cttgcaaggt cacggtctag atcacattct cgatccagag gaaggcgata ctctcgctca cgcagcagga gcaggggacg 960 aaggtcaagg tcagcatctc ctcgacgatt aagatctatc tctcttcgta gatcaagatc 1020 agcttcactc agaagatcta ggtctggttc tataaaagga tcgaggtatt tccaatcccc 1080 gtcgaggtca agatcaagat ccaggtctat ttcacgacca agaagcagcc gatcaaagtc 1140 cagateteca tetecaaaaa gaagtegtte eecateagga agteetegea gaagtgeaag 1200 tcctgaaaga atggactgaa gctctcaagt tcacccttta gggaaaagtt attttgttta 1260

cattattata	agggatttgt	gatgtctgta	aagtgtaacc	taggaaagat	aattcaacca	1320	
tctaatcaaa	atggatctgg	attactatgt	aaattcacag	cagtaagata	atataaattt	1380	
tgttgaatgt	attaacatca	tatggtctga	aaatgtgggt	ttttatttgg	cacatttaaa	1440	
taaaatgttt	ctaactagat	ttttgatttg	tgttcaatat	taacacttct	taatttgata	1500	
tatttgagag	tcagacatta	taattgttaa	ccttattcat	acatacctac	attcagaatt	1560	
gaaaggtgtt	ggttaagtct	tgaacatcac	tattctatgc	ataaaacttg	gccaggatct	1620	
taagggactt	tgaaaattcc	atcttaccct	tgtagctctg	ggtaagatga	cctgagtccc	1680	
ttatgataca	gcctgaatgc	atcatgacag	atccttaagt	tagctaatcc	gtttgaagtt	1740	
ggtgttagta	ggtattgtat	gatcagtggt	gaagcaagta	ggaccactga	tgtgtctaaa	1800	
tgagcatgac	aggaactaaa	cgaaactgat	taaatgtatg	agaaatagaa	actgatttct	1860	
ggatgatctt	tatactaatt	gcagctttca	ggctactagg	tggcatagtg	ttaattagga	1920	
ctccccaaga	tatggggagt	tctactctca	atggtcttgt	ttctttgctt	tctacattag	1980	
ttaaccagtt	ttataccaaa	aaatgcatgt	ttgaggaatt	gtctgaaatt	gggacaaaac	2040	
accttcatgt	aaaccagctt	tgcaaaattt	tccagcccag	atactcttca	tctattcaaa	2100	
tggattgtct	tattctgagc	aaagacctgt	tgttaatctt	caagctaggt	tttgcagttc	2160	
ccaaccacaa	cattcttcta	ttttgccagg	ctggtgcaaa	gtaattaaag	atgtcaatca	2220	
gaaatgtcaa	tgagactaaa	gtggttttgt	aaatctcagc	tatatttago	aacactccat	2280	,
gtagctaata	ttttttggta	gcatctggta	. gaccttagaa	tgttacatag	ccagtaggtt	2340	
ctttattcaa	attttaagta	tcttaagaat	. agtagggcag	, taacagttac	: ttttgagagt	2400	
tttctggtca	agcttttacc	aggcattctc	: tagccttggt	acaaaaaaa	aaaaaacctg	2460	
ctggttgcgc	agatacctag	gcttgtccat	: tttatgcatt	: tcagcaaagt	cattggatac	2520	
tattgcaact	tgggaatact	ggtctgcato	aagtttatto	ggtagtttga	ccgctagtat	2580	
gttggaagtt	atttggattg	, tttttggaat	tttgactggc	tgaattatgg	g ttggtataaa	2640	
gttatgtgta	taactggcag	gcttatttat	ctgttgcact	tggttagcti	taattgttct	2700	
gtattattta	aagataagtt	: tactcaacaa	a taaatctgca	a gagattgaad	c aaat	2754	

<210> 16

<211> 2911

<212> DNA <213> Homo sapiens

<400> 16 ctccagcctc cgccggcgga gcccactatg ccagacagtt tcgacacttt gcaaagacaa 60 120

atgtgagctg	ggaagggggc	aagtgtccgg	gacacccaca	cccctgtatt	ctcctccgaa	180
ccccttcatg	cccaaatccc	ggaaactcca	gcgtgtctcc	agccgtgttg	gtaccatttt	240
cagatttcat	cttcctaaac	tggaaatgtc	aatgagagga	aattaacacc	cccaagagct	300
gcagtgagca	aatgcattga	gcttgggtca	ggacaattcc	atttggggac	cagagatgga	360
cggtcactca	gcctatggag	atgaagaaac	tgaggttcag	agaggttaag	agactccact	420
gaggtcacac	agccgatgac	agacaacctt	ctgtgccttc	atcaagctgg	ttgtgtaccc	480
accatgtccc	tggcgacagg	atgggaaaga	aaaagcccta	attaaggatc	gtcagaaacc	540
acagttggag	gaggacggca	gagacagttt	ccctccccgc	tataccaaca	cccttccttc	600
gaggtcctcg	ctcctgaggg	accctggact	gtcacagaga	ttaatgaccc	cttatcttct	660
ttggatgtga	aaggaaatca	ctggttaaag	cttgatcgag	agacattatc	agctctttaa	720
ggattgcaga	agaataggct	actttattt	ctgaaaaggt	aaatatatgc	aagcaaagcc	780
aacatgccac	gaatggcgtt	ggtctaccac	acagccgtgt	ctgggacaca	gttgggggtc	840
atcccccagc	aggagtgaag	tcgagcttag	cggcccttgt	gtcctccctt	ggaattcctg	900
ccatcccttt	tgattgagcc	tccacctctg	ggatttttct	tccatttttc	tcctctctta	960
ggagggagtt	cctgctaccc	atcgtgggag	gccaccatca	ggactgcgaa	gatggtgacc	1020
ctgcggaaga	ggaccctgaa	agtgctcacc	ttcctcgtgc	tcttcatctt	cctcacctcc	1080
ttcttcctga	actactccca	caccatggtg	gccaccacct	ggttccccaa	gcagatggtc	1140
ctggagctct	ccgagaacct	gaagagactg	atcaagcaca	ggccttgcac	ctgcacccac	1200
tgcatcgggc	agcgcaagct	cteggeetgg	ttcgatgaga	ggttcaacca	. gaccatgcag	1260
ccgctgctga	ccgcccagaa	cgcgctcttg	gaggacgaca	cctaccgate	gtggctgagg	1320
ctccagcggg	agaagaagco	: caataacttg	, aatgacacca	tcaaggagct	gttcagagtg	1380
gtgcctggga	atgtggacco	: tatgctggag	aagaggtcgg	tgggctgccg	gegetgegee	1440
gttgtgggca	actcgggcaa	cctgagggag	g tettettate	g ggcctgagat	: agacagtcac	1500
gactttgtcc	tcaggatgaa	caaggcgccc	acggcagggt	ttgaagctga	tgttgggacc	1560
aagaccaccc	accatctggt	gtaccctgag	g agetteeggg	g agctgggaga	a taatgtcagc	1620
atgatcctgg	tgcccttcaa	a gaccatcgad	ttggagtgg	g tggtgagcgo	c catcaccacg	1680
ggcaccattt	cccacaccta	a catcccggtt	cctgcaaaga	a tcagagtgaa	a acaggataag	1740
atcctgatct	accacccago	c cttcatcaaç	g tatgtctttg	g acaactggc	gcaagggcac	1800
gggcgatacc	catctaccg	g catcctctcc	g gtcatcttc	t caatgcatg	t ctgcgatgag	1860
gtggacttgt	acggcttcg	g ggcagacago	c aaagggaac	t ggcaccact	a ctgggagaac	1920
	cagattcatg cagattcat gcagtgagca cggtcactca gaggtcacac accatgtccc acagttggag gaggtcctcg ttggatgtga ggattgcaga aacatgcac atccccagc ccatccttt ggagggagtt ctgcggaaga ttcttcctga ctgcagcgctct tgcatcggg gtgctgga gttgtgga gttgtgga gttgtgga gttgtgga gtgctgga gttgtggca gactttgtcc aagaccaccc atgatcctgg ggcaccattt atcctgatct	ccccttcatg cccaaatccc cagatttcat cttcctaaac gcagtgagca aatgcattga cggtcactca gcctatggag gaggtcacac agccgatgac accatgtccc tggcgacagg acagttggag gaggacggca gaggtcctcg ctcctgaggg ttggatgtga aaggaaatca ggattgcag agaataggct aacatgcac gaatggcgtt atccccagc aggagtgaag ccatccttt tgattgagcc ggaggagtt cctgctaccc ctgcggaaga ggaccctgaa ttcttcctga actactccca ctggagctct ccgagaacct tgcatcggc agcgcaagct ccgctgctga ccgccagaa ctccagcgg agaagaagcc gttgtggga atgtggacc gttgtgggca actcgggcaa gactttgtcc tcaggatgaa aagaccaccc accatctggt atgatcctgg tgcccttcaa ggcaccattt cccacaccta atcctgatct accacccagc gggcgatacc catctaccg	cagattcat cttcctaaac tggaaactca cagattcat cttcctaaac tggaaactca cggatgagca aatgcattga gettgggtca cggtcactca gectatggag atgaagaaac gaggtcacac agecgatgac agaacagtt gaggtcactc tggegacagg atgggaaaga acagttggag gaggacggca gagacagtt gagttgcaga agaataggct acctggact ttggatgaa agaataggct accttgatgag agaatggag agaatggaa agaataggca gagattgcaga agaataggct ggttaacac atccccag agaatggagt ggttaacac atccccag agaatggagt tggaggaggt cctggaagt tggaggaggaggt cctgcaacac atcggtagag tcgaggaggaggaggaggaggaggaggaggaggaggaggag	cecetteatg cecaaatece ggaaacteca gegtgeteece cagattecat etteetaaac tggaaatgee aatggagga geagtgagea aatgeattga gettgggtea ggacaattee eggteactea geetatggag atgaagaaac tgaggtteag gaggteacea ageegatgae agacaacett etgtgeette accatgtege gaggacagga gaggacagga gaggacagga gaggteeteg eteetagagg accetggaet gteacagaggaggattgaggaggaaggaaggaaggaaggaagg	coccettcatg cccaaatccc ggaaactcca gcgtgtctcc agccgttgg cagatttcat cttcctaaac tggaaatgtc aatgagaga aattaacacc gcagtgagca aatgcattga gcttgggtca ggacaattcc atttggggac cggtcactca gcctatggag atgaagaac tgaggttcag agaggttaag gaggtcacac agccgatgac agacaactt ctgtgccttc atcaagctgg accatgtccc tggcgacagg atgggaaaga aaaagcccta attaaggatc acagttggag gaggacggca gagacagtt ccctccccgc tataccaaca gaggtcctcg ctcctgaggg accctggact gtcacagaga ttaatgaccc ttggatgtga aaggaaatca ctggttaaag cttgatcgag agacattatc ggattgcaga agaataggct actttatttt ctgaaaaggt aaattatcg aacatgccac gaatggcgtt ggtctaccac acagccgtgt ctgggacaca atcccccagc agaggtgaag tcgagcttag cggcccttgt gtcctcctt ccatccttt tgattgagcc tccacctctg ggattttct tccattttc ggagggagtt cctgctaccc atcgtggag gccaccatca ggactggaa ctgcggaaaga ggaccctgaa agtgctcacc ttcctcgtgc tcttcatctt ttcttcctga actactccca caccatggtg gccaccacct ggttccacca ctggagctt ccggaaacct gaagagactg atcaagcaca ggccttgcac ctgcaggacga agcgcaagct ctcggcctgg ttcgatgaga ggttcaacca ctgcatcgga agcgcaagct ctcggcctgg ttcgatgaga ggttcaacca ctgcatcgga agcgcaagct ctcggcctgg ttcgatgaga ggttcaacca ctgcatcgga agcgcaagcc caataacttg aatgacaca ggccttgaac ctgcatgga agcgcaagac caataacttg aatgacaca tcaaggagct gtgcctgga atgtggacc tatgctgga aagaggtcgg ttggagagcc gttgtggga acccggaaa cctgaggaga tcttcttatg ggcctgaga ctccagcggg agaagaagac caataacttg aatgacacca tcaaggagct gttgtgggca acccggcaa cctgaggaga tcttcttatg ggcctgaga gactttgtcc tcaggatgaa cacggccctga acggcagggt ttgaagctga aagaccaccc accatctggt gtaccctgag agcttccggg agctggagac atgatcctgg tgcccttcaa gaccatcgac ttggagtggg tggtgagacg ggcaccattt cccaacccta catcccggtt cctgcaaaga tcaggggg ggcaccattt cccacccagc cttcatcaag tatgtctttg acaactggct gggggatacc catctaccgg catcctctcg gtcatctct caatgcatgg	atgtgagetg ggaaggggg aagtgteegg gacaccaca ceetgtatt eteeteegaa eeeetteat eteetaaa tegaaatee ggaaatee agegtgtee ageggtgteg gacactette eagattteat etteetaaa tegaaatgte aatgaagga aattaacace eeaagggg gacagteate ageggaaatee attgggaaa atgaagaa atgaagaa atgaagaa atgaagaa agaateeaat etgggaaatgte eetteegg taaccacte ggggaaatge ageggaaaga aaaggettaag agaagttaag agacteeact gaggteacaca ageegatgac agacaacett etgtgeette atcaaggag ttgtgtacee accatgteee tggegacagg atgggaaaga aaaagceeta attaaggate gtcagaaace accatgteee tggegacagg atgggaaaga aaaagceeta attaaggate gtcagaaace acagttggag gaggacggea gagacagttt eeeteecege tataccaaca eeetteette ttggatgtga aagaataageet gtcacaagag ttaatgacee ettaetete ttggatgtga aagaataageet acttaattt etgaaaagg agacattate agetettaa ggattgaag agaatagget ggeteacaca acageeggt etgggacaca gttgggggge aacacacee gacaggggagte eeeteecege tataccaaca geetettea ggaattgcaag agaataggeet ggetetacaca acageeggt etgggacaca gttggggggte aacacaceega aggagtgaag tegggettag eggeeetteg teceectet ggaatteetg aacacaceegaa ggaggggagt eegacacace ggacatteet tecetettet ggaagggggat eetgegaag gecacacaca ggactteet tecetette ggaaggaggat eetgegaag agacaceea acacatggtg gecaccacaca ggacttgaa gaggggage eegaagaceet eegaaggagg gecaccacaca ggacttgaa gaggggaga eegaagaceet eegaaggagg gecaccacaca ggacttgaa gaggaggaga eegaagaceetg teegaagaagacegaagaceetga accacacacegagga ggacceeaaa eegaaggacegaaga eegaagaagaagaagaagaagaagaagaagaagaagaaga

aacccatccg	cgggggcttt	tcgcaagacg	ggggtgcacg	atgcagactt	tgagtctaac	1980
gtgacggcca	ccttggcctc	catcaataaa	atccggatct	tcaaggggag	atgacgcagt	2040
gaagggctga	ggatggacgc	actgtcacac	ctctgcattt	ccagccccag	catcttgctg	2100
gagccgttcc	atcccggagc	ttggagggc	agcctcaggt	gtgtgcctgg	gcaccgctca	2160
cagcctcttg	cacccagccg	ttggcagcat	ctactcagca	aggtcactaa	gctctgccag	2220
cgtggcagag	catgtcttgg	aacctgtctt	gagtggggac	aacgtccccc	cactgctgcc	2280
ctagagctgg	ggagacgctg	ggaaaggttc	aacctccaca	cactaaaatc	attttggctc	2340
ctggggcaag	cttggggaat	gaatgtggaa	gatgcctata	ttctgagaga	caggacagtt	2400
tcccaggaag	atgggcagag	acttgagtgg	cgattacctc	cagcacagag	acgtgccagg	2460
cggtgttggc	gctcggggcg	agatgctgcc	cttctttgca	cgaagcctgg	cctcttgctt	2520
ggcgtgataa	ccctgtcatc	ttcccaaagc	tcatttatga	gccaccagag	gctcctaccc	2580
caaagatttt	cacagaaact	tgaggccagg	tgccgtggct	cacacctgta	atctgaacac	2640
tttgggaggc	cgaggcggga	ggatcacttg	agcccaggag	ttcaagacca	gcctgggcaa	2700
catagtgaga	ctcctgtctc	tacaaaaata	aaagatttaa	aaaaattagc	caggcacggt	2760
ggcacacact	tgtagcccca	gctactaggg	aggctgagga	gggaggatct	cttgtgccta	2820
ggagttcgag	gctgcagtgg	gctgtgatca	caccactgca	. ctccagcctg	ggcaacagag	2880
tgagaccctg	f tctctgaaaa	aaaaaaaaaa	a			2911

<210> 17

<211> 428

<212> DNA

<213> Homo sapiens

<400> 17

tacttgaagt	agattgtctg	aataggcatc	ctcatctata	tttacccaaa	acctcgctta	60
ctgtcatgtg	cactacaaat	tgcaatttgg	aaacctactg	tattgaaatt	ctgtcagttt	120
atggttcttg	aagactgatg	tcctttccca	aacactggtt	actgcagcag	catttttaat	180
gtgtaagtga	agaaaaaagg	ccactaaggc	caaagatttt	ttaagaatca	ttgtacaaat	240
cattatgtta	aactatctaa	gctttgctgt	aatactgttt	tctcttcaat	atgtgatggt	300
acaggaagga	tgttaaatga	aggggtggta	ttgcaggaga	gcattttaaa	tggcagaagt	360
aaaaagttat	aatatttata	attttgatgg	gtttaagttt	atttttgtag	ggaagatttt	420
tctcccct						428

<210> 18

<211> 5243

<212> DNA

<213> Homo sapiens

<400> 18 cggcggaggc ggcggtgcag cgctccggtg gaatgaatct tacttgttga atatcttctg 60 gttactagtt ggattcattt gtgaaagaat cattttcccc tgtgtggaag acacttagtg 120 gcatatttaa attataagtc cacggatcaa aaagcttttt gatttcccaa aggagggaca 180 taccactata tcagataagc ttgacattac agccaagatg gtgctgtccc agagacaacg 240 agatgaacta aatcgagcta tagcagatta tcttcgttca aatggctatg aagaggcata 300 ttcagttttt aaaaaggaag ctgaattaga tgtgaatgaa gaattagata aaaagtatgc 360 tggtcttttg gaaaaaaaat ggacatctgt tattagatta caaaagaagg ttatggaatt 420 agaatcaaag ctaaatgaag caaaagaaga atttacgtca ggtggacctc ttggtcagaa 480 acgagaccca aaagaatgga ttccccgtcc gccagaaaaa tatgcattga gtggtcacag 540 gagtccagtc actcgagtca ttttccatcc tgtgttcagt gttatggtct ctgcttcaga 600 ggatgctaca attaaggtgt gggattatga gactggagat tttgaacgaa ctcttaaagg 660 acatacagac tetgtacagg acattteatt egaceacage ggeaagette tggetteetg 720 780 ttctgcagat atgaccatta aactatggga ttttcagggc tttgaatgca tcagaaccat gcacggccat gaccacaatg tttcttcagt agccatcatg cccaatggag atcatatagt 840 gtctgcctca agggataaaa ctataaaaat gtgggaagtg caaactggct actgtgtgaa 900 960 gacattcaca ggacacagag aatgggtacg tatggtacgg ccaaatcaag atggcactct 1020 gatagccagc tgttccaatg accagactgt gcgtgtatgg gtcgtagcaa caaaggaatg caaggetgag eteegagage atgageatgt ggtagaatge attteetggg eteeagaaag 1080 1140 ctcatattcc tccatctctg aagcaacagg atctgagact aaaaaaagtg gtaaacctgg gccattcttg ctgtctggat ccagagacaa gactattaag atgtgggatg tcagtactgg 1200 catgtgcctt atgaccctcg tgggtcatga taactgggta cgtggagttc tgttccattc 1260 tggggggaag tttattttga gttgtgctga tgacaagacc ctacgcgtat gggattacaa 1320 gaacaagcga tgcatgaaga ccctcaatgc gcatgaacac tttgttacct ccttggattt 1380 ccacaagacg gcaccctatg tcgtcactgg cagcgtagat caaacagtaa aagtgtggga 1440 gtgccgttga ttgtgtctcc ttcggcccct cctccctctt ttcctctgga tgcactctga 1500 tgataccatg gttaccccat tgagctctgt ttaaataaat attgtccttt catgtaaatt 1560 1620 attctggatg tagattgagc ttattaaatg ttacacacaa agtattcatg catggtgaat 1680 ccaaattgta tactgtaaat ttacatacgt tgtctagaag taccataggg tttaaaaacc 1740 tgggctggca ttggtcacac caggcctaag aaggcagaag ttgaatcaat tgaactaggg

					L ~ L L L L C L L	1900
	aatagttgac					1800
tctgctatct	gttggtgcct	gacttgatgg	cctcatttgg	ggaaaagtgg	tggttattag	1860
ggcttttcct	gaaatgtgta	tctatgtaac	atcacttaag	tgtgcttaat	aaatctcctg	1920
taaggatttt	agatgataag	gctacaattc	agaatcttct	gaaccatcta	tgtaatgaat	1980
ggggattata	cattggaatt	tttgtcatga	cacatttgcc	aaatcagtag	gatatatttg	2040
ttttggcagc	ctatcacgca	gaggctagtg	gtatatttat	gtaagaaaat	gactgtaaat	2100
ctcaagaaaa	atctcagcag	ctaatagcaa	ctcatttatt	tcattttggt	cttaatgctt	2160
tgtaaacagg	tcaaaaaata	ctgtcatact	ctaagcttct	attttccaca	ctggacatac	2220
ttctagttgt	attctccata	ctattagact	gtgtagtgat	gtgacttcca	agtagaattt	2280
aatctcccca	ttgagtgtgt	catggtacaa	atcactattc	gtttttggtg	ttttttaggg	2340
atgtgcaatg	tgcattacat	aatgacagaa	atactgagaa	ggttctgtgt	gcccatttga	2400
aaggagtggg	aggaatacag	cagtttgttt	ttcaacatga	atctgatatt	gatttaaact	2460
gtgtttcact	tacaagtttt	aaaaaaatga	cagggtttaa	tggagcgtgc	ataaaaatgt	2520
actgttttca	ccttttgttt	atatgtaaat	gtttgtaagt	atatgggcct	atctgtaagt	2580
gggtaagtct	: gtatgtgtgt	atcatacaca	tcaacctcca	tgtccttagt	cctgggtttt	2640
tgaaaaagtg	g ctaaaacgga	caagtagaat	aaatgttgct	gtggaatgcc	atgctttaga	2700
acaaaccctt	: tttgatctta	atgcttctga	aaactaggtc	tgactctggg	gatttttttc	2760
cagccgaagg	g aaaatcactt	ccgttatgtc	cccctctaat	ttagccgctc	gacattttac	2820
acaacccgga	a tatgttgtat	attttgaccc	aaagttacag	gtaggtttaa	gagaatttt	2880
agccatgact	t tttggagcac	: tattccattg	tcagttatta	ataaagaatt	ccattgctta	2940
gctaaccaa	c aggtttttt	tgtttccaag	agagttattt	. gaaaagttaa	cagaacaatg	3000
agataacag [.]	t gacagtttaa	ı caaagataaa	attctgaact	gcgttttatt	catttgtgta	3060
ctatgtgat	t ttttaaatgt	cccctttagt	atttaatgga	aaattggtto	: ctgcaaaaga	3120
caaagggtg	a gagttagcgt	cctgtagata	ı cacacagaga	a ctaggccgta	ı tattaactag	3180
aagcagctt	t atgtctagct	tgtgtctttt	tgtttgtttg	g cttgtttgtt	: tttagattcc	3240
tgagagatg	t ctctggaag	g gaaagtttt	g agaactaatg	g gctatttttg	g aggacaaaaa	3300
ttacatctt	a agctaattc	c ttaaatacat	acagtaggtg	g aattttcagg	g acaatattgc	3360
ctcacaacc	c tgcttacat	t gaaaagtctt	tttcccttag	g ctcttctgad	c tggatttttc	3420
tacaaaact	a tggaaaata	t ctttgttct	t gtttgctgc	t attttctgto	ctattttgag	3480
aaatataaa	it acatagaaa	t ggtgcatct	t aacatttgt	t tgtacatgt:	a taaatgtctt	3540
gtattttaa	ıt tcattttta	g catgaattg	t ttaagggta:	a gccacaaca	t ctagaaatca	3600

ctcatagata ttgaacaata aaggagaatg gtaccgatgc aggaggaagc aagcgtgtct 3	3660
tcccctgcag cacacagcga cttgcgttga caaaggagga ggaaacgatt actctgtaaa 3	3720
caaagttatc cttacttggg agattgccac agcctgctgc tgagttgagt	3780
cctccatgtg agaagcagcg aacattgaat ctcagggatg gcccacaact gggtccacat	3840
gtaatgagcc ctgtttaata acgaaggggt gggggagagc agtccgtcta caacctggaa	3900
tcagatttgc aaaatttcct gcactgctgt ctgacactgt cctgttgatg ccctttctga	3960
ctgtgttctc tgttttctct gtctgctgtc taaccctgtg ccttgcctgg gataaggaca	4020
atgatgaggt tactggtttg gattgtaagt agaggacttt tattaattgg tttagaggtt	4080
cactgctgct ttgtcacttt ctcaatcaaa ttggccactt aagaaataaa gagctggtag	4140
aattgcatcc tcagatgatt attgactgtg tgtgtgtgtg aaaacagaca ttccagtgcc	4200
acccaaatat atatctgtaa cgtgcccaag aaatcctagc tgcgctcttg agagtgcatg	4260
ccatggagac tggtttagac accgcgtgga gcctagttgc ctgttgtcac ggcatcttgc	4320
actttaggag actaagaccg teetggtteg tetgtgtgtg gtgtgaccaa tggtgtgece	4380
agagcactac tctcaaaatc actagtgtta gcaagtcgtc ccgggctggg gagcgttcgc	4440
cgtagtettt ggaagetttg getttagatt taccaagece egeeteeeeg etgeeagtge	4500
cctgctctcc cgttcgcctc tttctgtttc tgtgtgaact ttcccggtaa tatcactcgt	4560
taaataggtt ttctttaaac ttaattaagg aaaaactatt taaaggtaaa ggatattttg	4620
ttgacatcgg tggctcgatc atccttaagc aactgaagtt aaaattgttg aaggaaaagg	4680
cacttaaatt ggttactttc atgtccagct gtatataagt ccagtgtgtt catctagatg	4740
acgcaaagaa tctcctggta gagaagcgac atgtaaaaaa ctggtggaaa aaggttttgg	4800
atttttttc cagtggggtg gggggagggc aagctggatt tacaggtcac ggctggactg	4860
aatgggcctt tttatcttcc cactgtatca tggaagtagc tgcttgcttg tactgtccat	4920
ccttcaggca tccctaaagc tcactctgaa gatgttagag acaaacacaa actcttcgag	4980
ttaaagttga teetgacact gacatgaagg caageettga tttegtatga aegttgetga	5040
agtggtaatt gaggaaaaca gttccccaga ttgttaagag ttcactgaag atattgacac	5100
aattttaaaa aatcagtaaa ggaatgtata taatattgct ctcgtgtttt acagtaagat	5160
ttgttgctct cagactgtgt aaaacaaaat ttattcatgt tttctgcata ttaaaaaatc	5220
ttattgtacc aactggtaaa ccg	5243

<210> 19

<211> 6111

<212> DNA

<213> Homo sapiens

<400> 60 aacaggtttg atctgtggat gaaatgaatc atgattttca agctcttgca ttagaatctc ggggaatggg agagcttttg cctaccaaaa agttttggga acctgatgat tcaacaaaag 120 atggacaaaa aggcatattt cttggggatg atgaatggag agagactgca tggggagctt 180 ctcaccattc aatgtcccag cctattatgg tacagagaag atctggacag ggttttcatg 240 gaaacagtga agtaaatgca atactgtctc cgcgatcaga aagtggaggc cttggtga 300 gcatggtaga atatgtatta agttcttctc ctgctgataa attggattct cgatttagga 360 420 agggaaattt tggcactaga gatgctgaaa cagatggacc tgagaaagga gatcaaaaag 480 gcaaggcttc tccatttgag gaggaccaaa acagagatct taaacaagga gatgatgatg 540 600 atcgtactcc tggaagtcgt caagcctctc caactgaagt agttgagcgc ttgggcccca atactaatcc ctcagaagga ctggggcctc ttcctaatcc tacagctaat aaaccacttg 660 720 ttgaagaatt ttcaaatcct gaaactcaga atctggatgc catggaacaa gttggtctgg 780 aatccttaca gtttgactat cctggtaatc aggtaccaat ggactcttca ggagctactg taggcctttt tgactacaat tcccagcagc agctctttca gaggactaat gcactaacag 840 ttcaacagtt aactgcagct caacagcagc aatatgcatt agcagcagct cagcagccac 900 960 atatagetgg tgtattetea geaggeettg etceagetge atttgtgeea aateeataca 1020 ttattagtgc tgctcctcca gggaccgatc cgtatactgc agcaggattg gctgcagcag ctacattagc aggtccagca gtggttccac ctcagtatta cggcgttcca tggggggtgt 1080 1140 atccagccaa cttatttcag cagcaagctg cagctgcggc aaataacaca gccagtcagc aagcagcatc acaagctcag cctggacagc aacaggttct ccgtgctgga gcaggtcagc 1200 1260 gtcctcttac tcccaatcag ggtcagcaag ggcagcaagc agaatcactt gcggcagctg cagcagcaaa tccaacattg gcttttggtc agggtcttgc tactggcatg ccaggctatc 1320 aagtactagc tccaactgcc tattatgatc agactggtgc cttagtggtt ggccctggag 1380 caaggactgg ccttggagct ccagttcggt taatggctcc aacacctgtt ttaattagtt 1440 cagcagcagc acaagctgca gcagcagcag cagctggagg aactgcaagt agccttacag 1500 gcagcacaaa tggtctgttt cggccaattg gcactcagcc accacagcag cagcaacagc 1560 agccaagcac taatctgcaa tctaattcat tttatggaag cagttctttg actaatagct 1620 cccagagtag ttctttattt tctcatggac ctggtcaacc tggaagtaca tctcttggct 1680 ttggaagtgg taactctttg ggtgctgcta taggctcagc cctcagtgga tttggttcat 1740

cagttggcag ttctgcaagt agtagtgcca caaggagaga gtctctatct	actagctctg	1800
acttgtacaa aagatctagt agcagcctag cacccatagg gcaaccattt	tacaatagtc	1860
tgggattttc ctcctctcca agtccaatag gcatgcctct gccaagccaa	actccaggac	1920
attcacttac gccaccgcca tcactttcat cacatggatc ctcatccagt	ttgcatttag	1980
gaggactgac aaatggtagt ggtcgatata tctctgcagc acctggagca	gaagcaaaat	2040
atcgaagtgc ttcaagcact tccagtctat ttagctccag cagccagctc	tttcctcctt	2100
cccggcttcg gtataatagg tctgatatta tgccttctgg ccgcagtaga	ttattggaag	2160
atttcagaaa caaccgcttc ccaaaccttc agcttagaga cttgattgga	catatagttg	2220
agttttctca agaccagcat ggttctagat tcatacagca aaaactagag	agagctactc	2280
cagctgagcg acagatggta tttaatgaaa ttctgcaagc agcctatcaa	ttaatgactg	2340
atgtttttgg caactatgtt atacagaagt tttttgagtt tgggagtctg	gatcaaaaat	2400
tagccctggc tactcgtatt cgtggtcatg ttctaccctt agccttgcag	atgtatggct	2460
gccgcgttat tcagaaagca ttagaatcta tttcttctga ccagcagagt	gaaatggtaa	2520
aggagctgga tggtcatgtg ctcaaatgtg tgaaagatca gaatggaaac	catgttgtac	2580
aaaaatgtat cgaatgtgtt cagccacagt cactacagtt catcattgat	gctttcaagg	2640
gacaagtatt tgtgctttca actcatcctt atggctgcag agtaattcag	cgcatcctag	2700
agcattgcac tgcagaacag accttaccta tcttagaaga actccaccaa	catacagagc	2760
agttggtaca ggatcagtat ggcaattatg ttattcagca tgtactggaa	cacggtcgac	2820
ctgaagacaa gagcaaaatt gtttccgaaa tcaggggaaa ggttttagcc	: ctgagtcaac	2880
acaaatttgc cagcaatgta gtagaaaagt gtgttactca tgcctcccgt	gctgagagag	2940
ctttactgat tgacgaggtt tgctgccaga atgatggtcc tcacagtgcc	ttatacacca	3000
tgatgaagga ccagtatgcc aattacgtgg ttcaaaagat gattgatatg	g gctgaacctg	3060
ctcagagaaa gataatcatg cacaagattc gacctcacat tactacttt	g cgcaaataca	3120
catacgggaa gcatatactg gccaagttgg aaaagtatta tttgaagaa	agcccggacc	3180
taggacctat tggaggacca ccaaatggaa tgctgtaaat tacaggagc	a agagaaagaa	3240
gataatttaa ccatgtgaaa agaatttttt tgtgtgtgaa ttatcaaaa	c acaactcaac	3300
tatgaatett caattttttt ttaaageaaa aetatttatt gaetttatt	c atccatttgt	3360
aaattttta aggttcttgt gtatatttgg ggggtggggg atgaattat	a aattatattc	3420
agccctgagt ggagacctat cagattggat tgctggcaaa gcacagaat	g cctgtatatg	3480
atgtaactgt atcaaaaata aaaagctgtc acatattttg taaattttt	a ccttgtaaag	3540
tcacaaaaat agtttttaaa ggaaaaagta cagtattctt ttaataaac	t ggctcacagt	3600

ctggtaggtc tacaacccca tagcacaaca ggtttataga gatgtatata gaattata	gt 3660
ccttattttt ttcctttgcg tgaaaccttt tataacagat taacaatcaa ctgcataa	at 3720
attattaata ttttaaaaag agttaagttg tattttgata attcacaaac tatcatgc	aa 3780
ataacgagta agtagacaag aataaagtgg tttgagatga aaagaaccta acattatt	ta 3840
cagtagatgt ggttttaata caattactgc cctaaaatgt ctctggcaat gtacagaa	at 3900
attgtatata cttacatatg taattgttgt aagagttaaa tacaaaatca tggtgaca	ct 3960
tccaattaag tgcactaaat gaaaagttaa gtcacttatt aacttttcag tttggttt	.gc 4020
aatgagaaag agtggaaatt tgtattttgt tttgcttata gaattacaga catgttga	ıgg 4080
aagtgttgag ctttattttg ctttttcata gaggcagaaa gtaggaacca gatagaga	itg 4140
aaaaggggcc actgaaaagt gaatttgata gctcagcatt taagcatgat tacatatt	ca 4200
gatagctctt tttgctttct ataaatatat gcattgtgtg tgtagtaata gatgtaag	gtt 4260
tacactttga aaggaaatct tgtttcaatg tttattataa aagccttgct aatttagt	ag 4320
tgatgctttc cttggttgta caggtgtaca tttgtaaacc ttcatgctgt aaatggaa	att 4380
tgttttatct ctttgggata catttgcatt ttagtgtaca tttacgtccc tgccctct	ttt 4440
gacctggcaa tatagtgttg tataatgtaa atttatttct ccaaatcgag agtgatt	ttt 4500
taaaaatttt ttatctttat atggtttcag aagtatgaac cagctttctt tttatta	ttg 4560
tgagatcatt ttgttttata acatagttgt tgactgttaa tatggacctg ctagaat	ttg 4620
gatcactttc aattgaagtc agggtattgt gcataataga aagtattgga ctgagat	att 4680
tggttaccat ggaggccaat gcttttttca tcttattaaa tgtgatgtga	ctt 4740
tgtacagaag agtactgtat ttttgaatag cctactccca agtaagagca aatctgt	atg 4800
ataacatttt ttcctctgga cataagacat aacagtaaca cgatgtacat ttacaag	cgg 4860
ccttatgtac atttcccaac aatcttttta aggcaaaatt gtgaccatat gtgtata	att 4920
aaaatcgttt ttaatccttt gcctatgaaa atattttgga aaaaaacttg ctgtgta	tat 4980
tcagtttctg aaagataaag aaagtgcttt gtattttgtt gaagtcagta ttttgta	itaa 5040
acatttatgt tgacccactt atgttcagtg ctgaaaacta aaatgaacat gctattc	tgt 5100
cagetgaata tggaagagat etttttttae tagagatetg cagaagaaac geaatet	tct 5160
gagcacaata tggaatctaa aggttttatc acttagttgt tcatattatg aacctaa	aaaa 5220
taatggcata aagtttgggg atgccaggca tacttttca tgtttggtgt tgagtta	attt 5280
tacttttcta acccaacatt ccttggtgag accattaaat ccaaacactt gtcaccg	gttc 5340
cttctcatag tcactctggg tcatcagcat gtcccagtca ctgcagcaac gccttgt	gtt 5400

tgtttcattt	ttttaaaacc	cacacaaagc	cgctgtctca	ctttttccta	ctttaccaac	5460
ctcagagtat	ttcggcccgt	atcgaacttt	tgttctcagt	atcagcccat	ggtttcagga	5520
tcaaagctgt	catgttggag	attggtaatg	gctttcctgt	ctttgtacag	ttgaattcct	5580
agtcttcctt	catccttgcc	ctctgttggc	acaggcatta	tctctgcaat	tttagaaaat	5640
gacaagtaga	gaatactaca	ttgagaaact	aaaccctctt	cttggggtcc	tgatactcat	5700
tcccatttgt	cccagtgctg	acaacccaat	cttcccaata	ctttcaggcc	tgctctacaa	5760
aagtacctgt	tcttgtagaa	attttacagt	ctgccatttt	gggtgcccac	cccaattttt	5820
accttttagt	aagttggcat	gaaattttgg	taaaatctga	aaatcacatt	tcagaataaa	5880
acaattgggc	aaaactacct	aggctttact	cttgagtgtc	tccttttgat	agggattgtt	5940
tctggaccag	tttgtctaag	tcctggctct	tattggttca	tatgaaataa	tgttaacttc	6000
acttctttgt	atattatgta	taaattagaa	aatgaaaaat	gtgtgaataa	cattgtatga	6060
aataaacctg	gtcttgtgtt	tttctctaga	taaaataaaa	atctgtacct	С	6111

<210> 20

<211> 3045

<212> DNA

<213> Homo sapiens

<400> 20 tgagtgaatt ctggttgtgt ttcaactgct gtattgcaga acagcctcag cctaagaggc 60 gacggcggat tgacagaagt atgattggag agcccacaaa ctttgtgcat acagctcatg 120 ttggatcagg agacctgtcc agtggaatga attcagttag ctccattcag aaccaaatgc 180 agtccaaggg aggttatgga ggtggaatgc ctgccaatgt ccagatgcag ctcgtggata 240 cgaaggcggg atagccctgg tectttetee aaagtgtgat ggeacettgt ecaccetgte 300 360 gtgattattc cagtgagatg ttactgttct gctctgaaga agatactgtc agacgaaccc tgcatttcct tcagctggca tgcatgcctt tggactcatg gacagagttc tttggattgt 420 cactgaattt tcaatgttta atcagtatgg atctgatctt cgcatgatct tttttgtgaa 480 tgctaacacc attttgcagt tttttttttc tattttaaac atttttcttt tcactgccga 540 cccctgcct tacgatttta ttggaaagca aggacctgct attatttgtt aatttgccat 600 catttatgta tattttggaa ggtatgagac ccacaagcac aatgatcatt tttatttgtt 660 tgtttgtttg aaacttcagc agaatagata tctgcatgct ttatgaagtt gttgcttcgg 720 taagageeca tgggatgeea gaaattaaca tttetttget geeatggget gatgatgetg 780 ctattagata aagtttagct gtggcaccaa agtcacatca ttttcataga aaaagattac 840 ttgtagctta ttttagaagt atgacctttt ggtctgtttg attgattgat tagaattgca 900

ataaaagaaa agcttgcatt ca	taaggcat t	cattetgtt g	gtaaatgttc	aatatattta	960
ttttgagagc aaggacctgt gg	ttgtaaac a	aggtgtggtt a	acaggtgtgg	ttatgtatct	1020
gagtgttgcg gtcatactct cc	tccagtcc a	aatcctgagc a	atcttcatct	tattaattag	1080
ctgttcgttt ctttgtgcac tc	attctttt a	atttttactt (ctttttaatg	ttatggtatc	1140
cagttgtttc cagtagcagt tt	cttgaact 1	tctggcctgt :	actactaact	gcggacctcc	1200
agagtcactg gcctttctgt gc	tctacata †	ttattttagg (ggccacatca	gttgccaaga	1260
gcaacataca taccgacctg gc	tgaattat	tgccagtgaa	aacaacctgt	acgaagcctt	1320
tgctcaggtt ctaaaatatg tt	tgtccttg	cacgaatttt	gtatatttca	aatatttctg	1380
taaaggtttc ttcttttctg tt	agagtgtg	gtgttaagcc	agagtcagtg	gtttgtgttc	1440
tcattaaaat gtttgtttaa at	cctatgtc	caattcaagc	ctatctaact	acatttggta	1500
ggattaacat ttcatataac aa	atggggct	taattaaaaa	ctttaacttg	gaataaagga	1560
acagggatca ctttatcttc to	gccttcatt	taccttagtc	caagattctt	gcaaaacagg	1620
caactgaaca aacattaggt tt	atgtaggt	aaaatgtgaa	agcatttctc	ctccactttt	1680
taaaatttaa tttacccagt ac	cagcggggc	accagattac	ttgatctttg	tattttgcag	1740
ttttgagcct ttgtgtcaat co	ccaagcaca	gagaggatct	gccaaggaaa	aacatttgca	1800
tcttcggagt agacattttg ca	agtttgttt	aataacaact	tctaaagtaa	gttgaattca	1860
tccattgtca ctgattcacc as	agtggatgt	tgcattgtgg	aatttgcctg	agtactgttg	1920
tcattctgct cagccaggca co	ggtcagttt	cttggccagg	gacattgcta	tgtgctgtgt	1980
gcaagctctt tagaagagag a	ttggatttt	cttggcatta	tcagcactca	tgctatttag	2040
tctacttcta ttttgactga c	tctttaaat	tagtacaatt	tttctacttg	tcatataact	2100
cctggaacaa tagtacggga a	gccgtgatc	cttttccctg	actcatgatt	ttagtctttt	2160
tccaaatcgc tgttttttt t	gttttttt	tttttttgct	gctccaacga	ccagcatgtg	2220
ttggagcaga tctccatggt a	agccaaaag	tggacttgtc	agcctataac	tactctgcag	2280
ctgccactaa ctctacaggc a	cagtaacta	cactttatac	aggagcacat	gccaaagtgc	2340
ctgggaggtg ccaataaaat c	aagaaataa	gaaaactaca	aaaaaagata	cggtattaac	2400
cttggacata attttttta g	ggaggcagc	tttcccactt	ttataaaggg	ggttgtaaat	2460
ctcaagaggt catttgttcc c	catagcagc	atatctcatt	tttaaattga	. agcgaattaa	2520
ataggatttt actactcaac a	ttcattata	ctgttaatct	ttgctgaaat	atatgctaac	2580
aaatgttaag caagggaaac t	gaagactta	gtcatgtgga	ttgttagcag	, tgatctgcat	2640
tctgtaaaag aggtactttc c	catgatgta	ggcatgaagt	ggtgccagta	agcgtagagc	2700
ggaaatgttg actttagtta a	cattgggtt	tagcatttcc	agtgcagcat	tatcagtggg	2760

cctttaaaaa tacttcgtaa gtacattagc tttcactttg ttgttaaatt gtagcagact 2820 cattatggag aacaagtttg ccttgatttt gtttaaaatg acttctgcta agcacccaga 2880 agataaaatt gacatatttt tataatataa gcatactttt tttgtacatt gtgttcattc 2940 ttgaataaaa tgagttctgt gttggcttgt agatactaaa aagaaagtat tgattttgat 3000 3045

<210> 21

3009 <211>

<212> DNA

<213> Homo sapiens

<400> 21

60 tggcctactt ttcctggtca ttttcttcca cctacttaat gttcaacatc cagacctgat ctgccacaat ctctttctga caggaaataa tgaaatgatt gatatgctac ctcattgccc 120 tttacagtca ttgtcagggt ccctggtatt ggattgttgt tctggaaagc tctatagagc 180 actgctcagc cagtcgtctt tattacagct tctgcagaac acttgcttag actgtgagaa 240 gatggctgcg ttgcactgtg cgctctactg cggtcaaggt gcgcagttcc tggaagccca 300 gattattcag tggatttctg agaatgtctc tgcctgccat tcatttgacc tcattcagga 360 atttataatt gcttctttat actggagtgt atattcagag acaagtaaca tggacatact 420 attgccacat tccttaatgc tcacttggaa tccagaaatt tctggaataa ctcttgtgaa 480 agaagacatt gcattgcctc ttatgaaggt gctcagcttt aagggctact gggaaaaact 540 gaactccaac ctagaatatg ttaagtacgc caagccacac ttccactata acaacagtgt 600 ggtcaggaga gagtggcaca acctgatctc tgaagaggta tgagtgggtc agtgagaaca 660 aagccagcag cgaggcatag tggactggat ccaggtgatg cctttaaatc ataaggctgg 720 cttccatgtg cagcactctt cccaattgcc agggacttga tcattgtcat tactgatctc 780 aatgggcaga gagcttctat gatctctgtt ctagggagga aactgaaaag cagaaagttt 840 aaggggacac acagcacatt catagtagaa gtatgattaa tatccatgtc tcagatgtgt 900 tctcaggtta cttatgtagt taaaaattga tattaaaaaa tctaggtgtt cccaacttag 960 tggtcattag gggttggggt agttggaggg agaatagtgg acgtgactca ctgtccaggg 1020 gtgacccagg gaaatctttg ggggtgatcg aagacttcta tgtgttgatt gtggtggtac 1080 attgtaggga catgaatcta aacatgataa aatgacatag aatgacacac acacattgtg 1140 ccaatgtcaa tttttgattt tgatattgtg ctctagttag gtaagatata agcactgagg 1200 agactgggtt gagggtacat tgcatctctc tctagtatcg ctgcatgtag attagtgttg 1260 ttgtgtgtag tatatagttg actcgcagtt tcctgtgaat ctgtaattgt ttcagaataa 1320

aatatttett aaaaetttaa aaaaaateta ggtgttetg	a ttacctggaa agtatatttc 1380
ttctctctga tgctcttaac tgtattgcat tatatcctt	g acgtgaaaaa gtcaccgata 1440
aaacctttac cttccacatt cctgacgtgt tctcactcc	t aggaaacagg aaaaagaagg 1500
tctgcggcat acgtgaggaa tattcttgat aatgcagta	a aggtgatttc taacctagaa 1560
gcaagaaatt cggggccaag attaacaccc ctcctgcag	g aggaagacag ccaccagcgg 1620
ctgctcatgg ggctgatggt gtctgagcta aaagaccat	t ttttgagaca cctacagggt 1680
gtagaaaaga agaaaattga acagatggtt ctggactac	ca tttcaaaact gctggatctc 1740
atttgccaca tcgtagaaac caattggagg aaacataat	te tteatteetg ggtteteeac 1800
ttcaatagtc gtggcagtgc tgctgaattt gcagttttt	cc acatcatgac caggattctg 1860
gaagctacaa acagtttgtt tttacctctg cctcctgg	tt ttcatactct gcacaccatc 1920
ctcggggtcc agtgtctccc tttgcataac ctgctgcat	tt gcattgacag tggagtgttg 1980
cttctcactg aaacagctgt cataaggctc atgaaaga	tc tggataatac agagaaaaat 2040
gaaaaactga aattcagtat cattgtgcgg cttcctcc	gc ttattgggca gaagatttgt 2100
agactttggg atcatcctat gagttctaac atcatttc	gc ggaaccacgt gacgcgactg 2160
cttcagaact ataagaaaca gcctcggaat tctatgat	ta acaagtcatc gttcagtgta 2220
gaatttetge etetgaaeta etteattgaa attetgae	ag atatagagtc ctccaatcaa 2280
gccctgtatc cttttgaagg acatgacaat gtggatgc	ag aatttataga ggaagcagct 2340
ctgaaacaca ccgcgatgct tttaggctta tgaaaaag	aa aacgcaattg gatctgctgc 2400
tgccatttta atcttgctca ttaaccttac tcctttga	ga attetttaae aatatttaaa 2460
attggtaaca aaaatagttt agccataatt gtttagcc	eat gtgagtttca ggttggtaca 2520
cgttcagaca gaactgctgt atcacattcc aattttga	at agccagtgag caatcaagtg 2580
tagagaaatg ataaatggcc taagaaggca tacagtgg	gca taaacgatgc tcttcctagt 2640
agettaatag gecacaaget agtttetgtt gecetete	gaa ataaaatatg ctttaaaaat 2700
gtagggacca gtgcttagaa aagcaaaaac taggtgtg	gtc attgaaataa taggcataaa 2760
aattaaatgt tacataagac ccctatttgg aaaaaggg	gtc cttttaaaaa ctgaatttgt 2820
actaaatcag atttgccatg tccagtacag aataatt	tgt acttagtatt tgcagcaggg 2880
tttgtctttg tgaattcaga tgaaacatat ttatttt	ttt ttatttataa aaggttgatt 2940
taggaatatt ttgtcagtca ttaaaaaccc tgaaccc	ata aaaaaaaaa aaaaaaaaaa 3000
aaaaaaaaa	3009

<210> 22

<211> 1783

<212> DNA

<213> Homo sapiens

<400> 22 cctctcggag ctggaaatgc agctattgag atcttcgaat gctgcggagc tggaggcgga 60 ggcagctggg gaggtccgag cgatgtgacc aggccgccat cgctcgtctc ttcctctct 120 ctgccgcctc ctgtgtcgaa aataactttt ttagtctaaa gaaagaaaga caaaagtagt 180 egteegeece teaegeeete tetteetete ageetteege eeggtgagga ageeeggggt 240 ggctgctccg ccgtcgggc cgcgccgccg agccccagcg ccccgggccg ccccgcacg 300 cegececeat geatecette tacaceeggg cegecaceat gataggegag ategeegeeg 360 420 ccgtgtcctt catctccaag tttctccgca ccaaggggct gacgagcgag cgacagctgc agaccttcag ccagagcctg caggagctgc tggcagaaca ttataaacat cactggttcc 480 540 cagaaaagcc atgcaaggga tcgggttacc gttgtattcg catcaaccat aaaatggatc ctctgattgg acaggcagca cagcggattg gactgagcag tcaggagctg ttcaggcttc 600 teccaagtga acteacacte tgggttgace ectatgaagt gtectacaga attggagagg 660 atggctccat ctgtgtgctg tatgaagcct caccagcagg aggtagcact caaaacagca 720 ccaacgtgca aatggtagac agccgaatca gctgtaagga ggaacttctc ttgggcagaa 780 cgagcccttc caaaaactac aatatgatga ctgtatcagg ttaagatata gtctgtggat 840 ggatcatctg atgatgatcc ataaatttga tttttgcttt gggtgggctc ctcttgggga 900 960 tggattatgg aatttaaacc atgtcacagc tgtgaagatc tggcacaaga tagaatggta aaaaaaaaaa aaaattttaa gtgacagtgc catagtttgg acagtacctt tcaatgatta 1020 attttaatag cctgtgagtc caagtaaatg atcactttat ttgctaggga gggaagtcct 1080 agggtggttt cagtttctcc cagacatacc taaattttta catcaatcct tttaaagaaa 1140 1200 atctgtattt caaagaatct ttctctgcag taaatctcgc aggggaattt gcactattac acttgaaagt tgttattgtt aaccttttcg gcagctttta ataggaaagt taaacgtttt 1260 aaacatggta gtactggaaa ttttacaaga cttttaccta gcacttaaat atgtataaat 1320 gtacataaag acaaactagt aagcatgacc tggggaaatg gtcagacctt gtattgtgtt 1380 tttggccttg aaagtagcaa gtgaccagaa tctgccatgg caacaggctt taaaaaagac 1440 ccttaaaaag acactgtctc aactgtggtg ttagcaccag ccagctctct gtacatttgc 1500 tagcttgtag ttttctaaga ctgagtaaac ttcttatttt tagaaagtgg aggtctggtt 1560 1620 tgtaactttc cttgtactta attgggtaaa agtcttttcc acaaaccacc atctattttg tgaactttgt tagtcatctt ttatttggta aattatgaac tggtgtaaat ttgtacagtt 1680

catgtatatt gattgtggca aagttgtaca gatttctata ttttggatga gaaatttttc 1740
ttctctctat aataaatcgt ttcttatctt ggcattttta acc 1783

<210> 23 <211> 2605

<212> DNA

<213> Homo sapiens

<400> 23 geggagetee geatecaace eegggeegeg gecaacttet etggaetgga eeagaagttt 60 ctagccggcc agttgctacc tccctttatc tcctccttcc cctctggcag cgaggaggct 120 atttccagac acttccaccc ctctctggcc acgtcacccc cgcctttaat tcataaaggt 180 240 gcccggcgcc ggcttcccgg acacgtcggc ggcggagagg ggcccacggc ggcggcccgg ccagagacte ggegeeegga gecagegeee egeaceegeg eeccageggg cagaceecaa 300 360 cccagcatga gcgccgccac ccactcgccc atgatgcagg tggcgtccgg caacggtgac cgcgaccctt tgccccccgg atgggagatc aagatcgacc cgcagaccgg ctggcccttc 420 ttcgtggacc acaacagccg caccactacg tggaacgacc cgcgcgtgcc ctctgagggc 480 cccaaggaga ctccatcctc tgccaatggc ccttcccggg agggctctag gctgccgcct 540 gctagggaag gccaccctgt gtacccccag ctccgaccag gctacattcc cattcctgtg 600 ctccatgaag gcgctgagaa ccggcaggtg caccctttcc atgtctatcc ccagcctggg 660 atgcagcgat tccgaactga ggcggcagca gcggctcctc agaggtccca gtcacctctg 720 cggggcatgc cagaaaccac tcagccagat aaacagtgtg gacaggtggc agcggcggcg 780 gcagcccagc ccccagcctc ccacggacct gagcggtccc agtctccagc tgcctctgac 840 tgctcatcct catcctcctc ggccagcctg ccttcctccg gcaggagcag cctgggcagt 900 960 caccagetee egegggggta catetecatt eeggtgatae aegageagaa egttaeeegg ccagcagccc agccctcctt ccaccaagcc cagaagacgc actacccagc gcagcagggg 1020 gagtaccaga cccaccagcc tgtgtaccac aagatccagg gggatgactg ggagccccgg 1080 cccctgcggg cggcatcccc gttcaggtca tctgtccagg gtgcatcgag ccgggagggc 1140 tcaccagcca ggagcagcac gccactccac tccccctcgc ccatccgtgt gcacaccgtg 1200 gtcgacaggc ctcagcagcc catgacccat cgagaaactg cacctgtttc ccagcctgaa 1260 aacaaaccag aaagtaagcc aggcccagtt ggaccagaac tccctcctgg acacatccca 1320 attcaagtga tccgcaaaga ggtggattct aaacctgttt cccagaagcc cccacctccc 1380 1440 tctgagaagg tagaggtgaa agttccccct gctccagttc cttgtcctcc tcccagccct ggcccttctg ctgtcccctc ttcccccaag agtgtggcta cagaagagag ggcagcccc 1500

agcactgccc	ctgcagaagc	tacacctcca	aaaccaggag	aagccgaggc	tcccccaaaa	1560
catccaggag	tgctgaaagt	ggaagccatc	ctggagaagg	tgcaggggct	ggagcaggct	1620
gtagacaact	ttgaaggcaa	gaagactgac	aaaaagtacc	tgatgatcga	agagtatttg	1680
accaaagagc	tgctggccct	ggattcagtg	gaccccgagg	gacgagccga	tgtgcgtcag	1740
gccaggagag	acggtgtcag	gaaggttcag	accatcttgg	aaaaacttga	acagaaagcc	1800
attgatgtcc	caggtcaagt	ccaggtctat	gaactccagc	ccagcaacct	tgaagcagat	1860
cagccactgc	aggcaatcat	ggagatgggt	gccgtggcag	cagacaaggg	caagaaaaat	1920
gctggaaatg	cagaagatcc	ccacacagaa	acccagcagc	cagaagccac	agcagcagcg	1980
acttcaaacc	ccagcagcat	gacagacacc	cctggtaacc	cagcagcacc	gtagcctctg	2040
ccctgtaaaa	atcagactcg	gaaccgatgt	gtgctttagg	gaattttaag	ttgcatgcat	2100
ttcagagact	ttaagtcagt	tggtttttat	tagctgcttg	gtatgcagta	acttgggtgg	2160
aggcaaaaca	ctaataaaag	ggctaaaaag	gaaaatgatg	cttttcttct	atattcttac	2220
tctgtacaaa	taaagaagtt	gcttgttgtt	tgagaagttt	aaccccgttg	cttgttctgc	2280
agccctgtct	acttgggcac	ccccaccacc	tgttagctgt	ggttgtgcac	tgtcttttgt	2340
agctctggac	tggaggggta	gatggggagt	caattaccca	tcacataaat	atgaaacatt	2400
tatcagaaat	gttgccattt	taatgagatg	attttcttca	tctcataatt	aaaatacctg	2460
actttagaga	gagtaaaatg	tgccaggagc	cataggaata	tctgtatgtt	ggatgacttt	2520
aatgctacat	tttaaaaaaa	gaaaataaag	taataatata	actcaaaaaa	aaaaaaaaa	2580
aaaaaaaaaa	aaaaaaaaaa	aaaaa				2605

<210> 24

<211> 6030

<212> DNA

<213> Homo sapiens

<400> 24 60 gttggccccc gttgcttttc ctctgggaag gatggcgcac gctgggagaa cagggtacga taaccgggag atagtgatga agtacatcca ttataagctg tcgcagaggg gctacgagtg 120 ggatgcggga gatgtgggcg ccgcgcccc gggggccgcc cccgcaccgg gcatcttctc 180 ctcccagccc gggcacacgc cccatccagc cgcatcccgg gacccggtcg ccaggacctc 240 300 geogetgeag accoeggetg ecceeggege egeogeggg cetgegetea geoeggtgee acctgtggtc cacctgaccc tccgccaggc cggcgacgac ttctcccgcc gctaccgccg 360 420 cgacttcgcc gagatgtcca gccagctgca cctgacgccc ttcaccgcgc ggggacgctt tgccacggtg gtggaggagc tcttcaggga cggggtgaac tgggggagga ttgtggcctt 480

ctttgagttc	ggtggggtca	tgtgtgtgga	gagcgtcaac	cgggagatgt	egeceetggt	540
ggacaacatc	gccctgtgga	tgactgagta	cctgaaccgg	cacctgcaca	cctggatcca	600
ggataacgga	ggctgggatg	cctttgtgga	actgtacggc	cccagcatgc	ggcctctgtt	660
tgatttctcc	tggctgtctc	tgaagactct	gctcagtttg	gccctggtgg	gagcttgcat	720
caccctgggt	gcctatctgg	gccacaagtg	aagtcaacat	gcctgcccca	aacaaatatg	780
caaaaggttc	actaaagcag	tagaaataat	atgcattgtc	agtgatgtac	catgaaacaa	840
agctgcaggc	tgtttaagaa	aaaataacac	acatataaac	atcacacaca	cagacagaca	900
cacacacaca	caacaattaa	cagtcttcag	gcaaaacgtc	gaatcagcta	tttactgcca	960
aagggaaata	tcatttattt	tttacattat	taagaaaaaa	agatttattt	atttaagaca	1020
gtcccatcaa	aactcctgtc	tttggaaatc	cgaccactaa	ttgccaagca	ccgcttcgtg	1080
tggctccacc	tggatgttct	gtgcctgtaa	acatagattc	gctttccatg	ttgttggccg	1140
gatcaccatc	tgaagagcag	acggatggaa	aaaggacctg	atcattgggg	aagctggctt	1200
tetggetget	ggaggctggg	gagaaggtgt	tcattcactt	gcatttcttt	gccctggggg	1260
ctgtgatatt	aacagaggga	gggttcctgt	gggggaagt	ccatgcctcc	ctggcctgaa	1320
gaagagacto	: tttgcatatg	actcacatga	tgcatacctg	gtgggaggaa	aagagttggg	1380
aacttcagat	ggacctagta	cccactgaga	tttccacgcc	gaaggacagc	gatgggaaaa	1440
atgcccttaa	atcataggaa	agtattttt	taagctacca	attgtgccga	gaaaagcatt	1500
ttagcaattt	atacaatatc	atccagtacc	ttaagccctg	attgtgtata	ttcatatatt	1560
ttggatacgo	c accccccaac	tcccaatact	ggctctgtct	gagtaagaaa	cagaatcctc	1620
tggaacttga	a ggaagtgaac	atttcggtga	cttccgcatc	aggaaggcta	gagttaccca	1680
gagcatcagg	g ccgccacaag	tgcctgcttt	taggagaccg	aagtccgcag	aacctgcctg	1740
tgtcccagct	tggaggcctg	gtcctggaac	tgagccgggg	ccctcactgg	cctcctccag	1800
ggatgatca	a cagggcagtg	tggtctccga	atgtctggaa	gctgatggag	ctcagaattc	1860
cactgtcaa	g aaagagcagt	agaggggtgt	ggatgggaat	gtcaccctgg	ggccctccag	1920
gtaggcccgt	t tttcacgtgg	agcatgggag	ccacgaccct	tcttaagaca	tgtatcactg	1980
tagagggaag	g gaacagaggo	cctgggccct	tcctatcaga	aggacatggt	gaaggctggg	2040
aacgtgagg	a gaggcaatgg	ccacggccca	ttttggctgt	agcacatggo	acgttggctg	2100
tgtggcctt	g gcccacctgt	gagtttaaag	caaggcttta	a aatgactttg	gagagggtca	2160
caaatccta	a aagaagcatt	gaagtgaggt	gtcatggatt	aattgaccc	tgtctatgga	2220
attacatgt	a aaacattato	: ttgtcactgt	agtttggttt	tatttgaaaa	a cctgacaaaa	2280
aaaaagttc	c aggtgtggaa	ı tatgggggtt	: atctgtacat	cctggggcat	taaaaaaaaa	2340

atcaatggtg	gggaactata	aagaagtaac	aaaagaagtg	acatcttcag	caaataaact	2400
	tttttcttcc					2460
tggcattatt	gcattatata	ccatttatct	gtattaactt	tggaatgtac	tctgttcaat	2520
gtttaatgct	gtggttgata	tttcgaaagc	tgctttaaaa	aaatacatgc	atctcagcgt	2580
	ttaattgtat					2640
gttttctgtt	tgagattttt	atctcttgat	tcttcaaaag	cattctgaga	aggtgagata	2700
agccctgagt	ctcagctacc	taagaaaaac	ctggatgtca	ctggccactg	aggagctttg	2760
	gtcatgtgca					2820
tgttgtccct	ttgaccttgt	ttcttgaagg	tttcctcgtc	cctgggcaat	tccgcattta	2880
attcatggta	ttcaggatta	catgcatgtt	tggttaaacc	catgagattc	attcagttaa	2940
aaatccagat	ggcaaatgac	cagcagattc	aaatctatgg	tggtttgacc	tttagagagt	3000
tgctttacgt	ggcctgtttc	aacacagacc	cacccagagc	cctcctgccc	teetteegeg	3060
ggggctttct	catggctgtc	cttcagggtc	ttcctgaaat	gcagtggtgc	ttacgctcca	3120
ccaagaaagc	aggaaacctg	tggtatgaag	ccagacctcc	ccggcgggcc	tcagggaaca	3180
gaatgatcag	acctttgaat	gattctaatt	tttaagcaaa	atattattt	atgaaaggtt	3240
tacattgtca	aagtgatgaa	tatggaatat	ccaatcctgt	gctgctatcc	tgccaaaatc	3300
attttaatgg	agtcagtttg	cagtatgctc	cacgtggtaa	gatcctccaa	gctgctttag	3360
aagtaacaat	gaagaacgtg	gacgttttta	atataaagcc	tgttttgtct	tttgttgttg	3420
ttcaaacggg	attcacagag	tatttgaaaa	atgtatatat	attaagaggt	cacgggggct	3480
aattgctggc	tggctgcctt	ttgctgtggg	gttttgttac	ctggttttaa	taacagtaaa	3540
tgtgcccagc	: ctcttggccc	cagaactgta	. cagtattgtg	gctgcacttg	ctctaagagt	3600
agttgatgtt	gcattttcct	tattgttaaa	aacatgttag	aagcaatgaa	tgtatataaa	3660
agcctcaact	agtcattttt	ttctcctctt	cttttttc	attatatcta	attattttgc	3720
agttgggcaa	a cagagaacca	tccctatttt	gtattgaaga	gggattcaca	tctgcatctt	3780
aactgctctt	tatgaatgaa	aaaacagtco	: tctgtatgta	ctcctctta	cactggccag	3840
ggtcagagtt	aaatagagta	. tatgcacttt	ccaaattggg	gacaagggct	ctaaaaaaag	3900
ccccaaaagg	g agaagaacat	ctgagaacct	cctcggccct	cccagtccct	cgctgcacaa	3960
atactccgca	a agagaggcca	gaatgacago	tgacagggto	: tatggccato	gggtcgtctc	4020
cgaagattt	g gcaggggcag	aaaactctgg	g caggettaag	atttggaata	a aagtcacaga	4080
attaaggaag	g cacctcaatt	: tagttcaaac	c aagacgccaa	cattctctc	c acagctcact	4140

tacctctctg tgttc	cagatg tggccttcca	tttatatgtg	atctttgttt	tattagtaaa	4200
tgcttatcat ctaaa	agatgt agctctggcc	cagtgggaaa	aattaggaag	tgattataaa	4260
tcgagaggag ttata	aataat caagattaaa	tgtaaataat	cagggcaatc	ccaacacatg	4320
tctagctttc acct	ccagga tctattgagt	gaacagaatt	gcaaatagtc	tctatttgta	4380
attgaactta tcct	aaaaca aatagtttat	aaatgtgaac	ttaaactcta	attaattcca	4440
actgtacttt taag	gcagtg gctgttttta	gactttctta	tcacttatag	ttagtaatgt	4500
acacctactc tatc	agagaa aaacaggaaa	ggctcgaaat	acaagccatt	ctaaggaaat	4560
tagggagtca gttg	aaattc tattctgatc	ttattctgtg	gtgtcttttg	cagcccagac	4620
aaatgtggtt acac	actttt taagaaatac	aattctacat	tgtcaagctt	atgaaggttc	4680
caatcagatc ttta	ttgtta ttcaatttgg	atctttcagg	gattttttt	ttaaattatt	4740
atgggacaaa ggac	atttgt tggaggggtg	ggagggagga	agaatttta	aatgtaaaac	4800
attcccaagt ttgg	gatcagg gagttggaag	g ttttcagaat	aaccagaact	aagggtatga	4860
aggacctgta ttgg	gggtcga tgtgatgcct	ctgcgaagaa	ccttgtgtga	caaatgagaa	4920
acattttgaa gttt	gtggta cgacctttag	g attccagaga	catcagcatg	gctcaaagtg	4980
cagctccgtt tggc	cagtgca atggtataaa	a tttcaagctg	gatatgtcta	atgggtattt	5040
aaacaataaa tgtg	gcagttt taactaacag	g gatatttaat	gacaaccttc	tggttggtag	5100
ggacatctgt ttct	aaatgt ttattatgt	a caatacagaa	aaaaatttta	taaaattaag	5160
caatgtgaaa ctga	aattgga gagtgataa	acaagtcctt	tagtcttacc	cagtgaatca	5220
ttctgttcca tgtc	ctttgga caaccatga	c cttggacaat	.catgaaatat	gcatctcact	5280
ggatgcaaag aaaa	atcagat ggagcatga	a tggtactgta	ccggttcatc	tggactgccc	5340
cagaaaaata actt	tcaagca aacatccta	t caacaacaag	gttgttctgc	ataccaagct	5400
gagcacagaa gato	gggaaca ctggtggag	g atggaaaggc	tcgctcaatc	aagaaaattc	5460
tgagactatt aata	aaataag actgtagtg	t agatactgag	taaatccatg	cacctaaacc	5520
ttttggaaaa tctg	gccgtgg gccctccag	a tagctcattt	cattaagttt	ttccctccaa	5580
ggtagaattt gcaa	agagtga cagtggatt	g catttcttt	ggggaagctt	tcttttggtg	5640
gttttgttta tta	taccttc ttaagtttt	c aaccaaggtt	tgcttttgtt	ttgagttact	5700
ggggttattt ttg	ttttaaa taaaaataa	g tgtacaataa	gtgtttttgt	attgaaagct	5760
tttgttatca aga	ttttcat acttttacc	t tccatggctc	: tttttaagat	tgatactttt	5820
aagaggtggc tga	tattctg caacactgt	a cacataaaaa	atacggtaag	gatactttac	5880
atggttaagg taa	agtaagt ctccagttg	g ccaccattag	g ctataatggc	: actttgtttg	5940
tgttgttgga aaa	agtcaca ttgccatta	a actttccttg	g tctgtctagt	taatattgtg	6000

aagaaaaata	aagtacagtg	tgagatactg				6030
<210> 25 <211> 922 <212> DNA <213> Homo	o sapiens					
<400> 25 gcaggtctct	gtcgagcagc	ggacgccggt	ctctgttccg	caggatgggg	tttgttaaag	60
ttgttaagaa	taaggcctac	tttaagagat	accaagtgaa	atttagaaga	cgacgagagg	120
gtaaaactga	ttattatgct	cggaaacgct	tggtgataca	agataaaaat	aaatacaaca	180
cacccaaata	caggatgata	gttcgtgtga	caaacagaga	tatcatttgt	cagattgctt	240
atgcccgtat	agaggggat	atgatagtct	gcgcagcgta	tgcacacgaa	ctgccaaaat	300
atggtgtgaa	ggttggcctg	acaaattatg	ctgcagccaa	gtggaggtga	ctggtgatga	360
atacaatgtg	gaaagcattg	atggtcagcc	aggtgccttc	acctgctatt	tggatgcagg	420
ccttgccaga	actaccactg	gcaataaagt	ttttggtgcc	ctgaagggag	ctgtggatgg	480
aggcttgtct	atccctcaca	gtaccaaacg	attccctggt	tatgattctg	aaagcaagga	540
atttaatgca	gaagtacatc	ggaagcacat	catgggccag	aatgttgcag	attacatgcg	600
ctacttaatg	gaagaagatg	aagatgctta	caagaaacag	ttctctcaat	acataaagaa	660
cagcgtaact	ccagacatga	tggaggagat	gtataagaaa	gctcatgctg	ctatacgaga	720
gaatccagtc	tatgaaaaga	agcccaagaa	agaagttaaa	aagaagaggt	ggaaccgtcc	780
caaaatgtcc	cttgctcaga	agaaggatcg	ggtagctcaa	aagaaggcaa	gcttcctcag	840
agctcaggag	cgggctgctg	agagctaaac	ccagcaattt	tctatgattt	tttcagatat	900
agataataaa	. cttatgaaca	gc				922
<210> 26 <211> 359 <212> DNA <213> Hom						
<400> 26 tcttcagtat	: atgaattacc	ctttcattca	gcctttagaa	attatattt	agcctttatt	60
tttaacctgo	caacatactt	: taagtaggga	ttaatattta	. agtgaactat	tgtgggtttt	120
tttgaatgtt	ggttttaata	cttgatttaa	tcaccactca	aaaatgtttt	gatggtctta	180
aggaacatct	ctgctttcac	: tctttagaaa	taatggtcat	: tegggetggg	cgcagcggct	240
cacgcctgta	a atcccagcad	: tttgggaggc	: cgaggtgagc	: ggatcacaag	gtcaggagtt	300
cgagaccago	c ctggccaaga	gaccagcctg	gccagtatgg	g tgaaaccctg	tctctactaa	360

aaatacaaaa attagccgag catggts	ggcg ggcacctgta	atcccagcta (ctcgagaggc	420
tgaggcagga gaatctcttg aacctgg				480
attgcactcc agcctgggtg acaagag				540
agaaacttat ttggattttt cctagta	aaga tcactcagtg	ttactaaata	atgaagttgt	600
tatggagaac aaatttcaaa gacaca	gtta gtgtagttac	tatttttta	agtgtgtatt	660
aaaacttctc attctattct ctttat	cttt taagcccttc	tgtactgtcc	atgtatgtta	720
tctttctgtg ataacttcat agattg	cctt ctagttcatg	aattctcttg	tcagatgtat	780
ataatctctt ttaccctatc cattgg	gctt cttctttcag	aaattgtttt	tcatttctaa	840
ttatgcatca tttttcagat ctctgt	ttct tgatgtcatt	tttaatgttt	ttttaatgtt	900
ttttatgtca ctaattattt taaatg	tctg tacctgatag	acactgtaat	agttctatta	960
aatttagttc ctgctgttta tatctg	ttga tttttgtatt	tgataggctg	ttcatccagt	1020
tttgtctttt tgaaaagtga gtttat	tttc agcaaggctt	tatctatggg	aatcttgagt	1080
gtctgtttat gtcatattcc cagggo	tgtt gctgcacaca	agcccattct	tattttaatt	1140
tettggettt agggttteca tacetg	aagt gtagcataaa	tactgatagg	agatttccca	1200
ggccaaggca aacacacttc ctcctc	atct ccttgtgcta	gtgggcagaa	tatttgattg	1260
atgccttttt cactgagagt ataagc	ttcc atgtgtccca	cctttatggc	aggggtggaa	1320
ggaggtacat ttaattccca ctgcct	gcct ttggcaagco	ctgggttctt	tgctccccat	1380
atagatgtct aagctaaaag ccgtgg	gtta atgagactgo	g caaattgttc	caggacagct	1440
acagcatcag ctcacatatt caccto	ctctg gtttttcatt	cccctcattt	ttttctgaga	1500
cagagtettg etetgteace cagget	ggag tgcagtggca	a tgatctcagc	tcactgaaac	1560
ctctgcctcc tgggttcaag caatto	ctect geeteageet	cccgagtagc	tgggactaca	1620
ggcgtgtgcc aacacgcccg gctaa	tttt tgtatttt	a ttagagacgg	agtttcaccg	1680
tgttagccag gatggtctcg atcgc	ttgac ctcgtgatc	c accetecteg	gcctcccaaa	1740
gtgctgggat tacaggtgtg agcca	eegeg eeeggeete	a ttcccctcat	ttttgaccgt	1800
aaggatttcc cctttcttgt aagtt	ctgct atgtattta	a aagaatgttt	tctacatttt	1860
atccagcatt tctctgtgtt ctgtt	ggaag ggaagggct	t aggtatctag	tttgatacat	1920
aggtagaagt ggaacatttc tctgt	ccccc agctgtcat	c atataagata	aacatcagat	1980
aaaaagccac ctgaaagtaa aacta	ctgac tcgtgtatt	a gtgagtataa	tetettetee	2040
atccttagga aaatgttcat cccag	ctgcg gagattaac	a aatgggtgat	tgagctttct	2100
cctcgtattt ggaccttgaa ggtta	tataa attttttc	t tatgaagagt	tggcatttct	2160
ttttattgcc aatggcaggc actca	ttcat atttgatct	c ctcaccttcc	cctcccctaa	2220

aaccaatctc	cagaactttt	tggactataa	atttcttggt	ttgacttctg	gagaactgtt	2280
cagaatatta	ctttgcattt	caaattacaa	acttaccttg	gtgtatcttt	ttcttacaag	2340
ctgcctaaat	gaatatttgg	tatatattgg	tagttttatt	actatagtaa	atcaaggaaa	2400
tgcagtaaac	ttaaaatgtc	tttaagaaag	ccctgaaatc	ttcatgggtg	aaattagaaa	2460
ttatcaacta	gataatagta	tagataaatg	aatttgtagc	taattcttgc	tagttgttgc	2520
atccagagag	ctttgaataa	catcattaat	ctactcttta	gccttgcatg	gtatgctatg	2580
aggctcctgt	tctgttcaag	tattctaatc	aatggctttg	aaaagtttat	caaatttaca	2640
tacagatcac	aagcctagga	gaaataacta	attcacagat	gacagaatta	agattataaa	2700
agatttttt	tttgtaattt	tagtagagac	agggttgcca	ttgtattcca	gccttggcga	2760
cagagcaaga	ctctgcctca	aaaaaaaaaa	aaaaaaggtt	ttggcaagct	ggaactcttt	2820
ctgcaaatga	ctaagataga	aaactgccaa	ggacaaatga	ggagtagtta	gattttgaaa	2880
atattaatca	tagaatagtt	gttgtatgct	aagtcactga	cccatattat	gtacagcatt	2940
tctgatcttt	actttgcaag	attagtgata	ctatcccaat	acactgctgg	agaaatcaga	3000
atttggagaa	ataagttgtc	caaggcaaga	agatagtaaa	ttataagtac	aagtgtaata	3060
tggacagtat	ctaacttgaa	aagatttcag	gcgaaaagaa	tctggggttt	gccagtcagt	3120
tgctcaaaag	gtcaatgaaa	accaaatagt	gaagctatca	gagaagctaa	taaattatag	3180
actgcttgaa	cagttgtgtc	cagattaagg	gagataatag	ctttcccacc	: ctactttgtg	3240
caggtcatac	ctccccaaag	tgtttaccta	atcagtaggt	tcacaaactc	: ttggtcatta	3300
tagtatatgo	ctaaaatgta	tgcacttagg	aatgctaaaa	atttaaatat	ggtctaaagc	3360
aaataaaagd	aaagaggaaa	aactttggac	: atcgtaaaga	ctagaatagt	cttttaaaaa	3420
gaaagccagt	atattggttt	: gaaatataga	gatgtgtccc	: aatttcaagt	attttaattg	3480
caccttaatg	, aaattatcta	ttttctatag	g attttagtac	: tattgaatgt	attactttac	3540
tattaccta	atttattata	a aagtgtttt	gaataaataa	ttctaaaag	2	3590

<400> 27
ggctcagcga tctcccagct cagctcctat agctggatac agcagcacac gcacccaata 60
attttatttg tgtgtgtgt tgtgtgtgta gagacaggtt tcagtagttg cctcccaaag 120
ttctgggatt acaggcatga gctaccatgc aggacctgtt ttgttttaat acttagtaat 180
tgggtgtaaa gtccttcaaa aaacaggtgg ggcaggtggg aaactccctt tgtgtgaccc 240

<210> 27 <211> 5373

<212> DNA

<213> Homo sapiens

tctagcacca gggataaaat ttcaacttca tcttaaagcg acaacatact tttccaagac 30 caagtgcgaa atagtaaagg gaagagctag ctccgtagcc gctcgccaca gaatgccaca 36	50
agctttcaat tatgggacaa aattggaaca catggaaacc ctgtgcagac tcccgcgaca 42	20
tettecetee tetecaagte cetteceaca gacettgege cecacaegat tattececag 48	30
	40
	00
	60
	20
	80
	40
	00
	60
cggatgetea cetececgae tegececege tgtggeeceg ceceegegeg getettegtg 10	20
ccacgtcacc gcctgcgtcg cttccggagg cgcagcgggc gatgacgtca cgggacgtgc 10	80
Coacytoace geologica edecogadas osompossa sucsuis succession	40
	00
egagegeege teeggeege eeggeege adogageege aggeerg.	60
Cogregical crossicad reasonable factories 1555 from 5 5 5	20
gleeleatig caccaccer accessors accessors accessors accessors	
gaaggogoag cogcogoggg cocagggggac googgoggac coagaagaagaagaagaagaa	80
eggtgeeegg ggeteggee cageteegge gegeedgga ggggaee eegeges	40
Cogooggogo gggaaacgog ggaaacggg gogooggggog ourigg gara g	500
grandeggea gaegaegaga egeededega eacosacaag acception 5 55 55	560
gttgtgcctg gaggtggagg ggaaggtgag tcggtcgggc ctgcgcgtgg gggagtccgg 16	520
gccgagcggg ctcgggtttc ctccgctccc ccgcctgagg ttgtgcaatc ctccccgccg 10	580
cctcctggcg aggagacgct ctttccgggc ttgggttttt ctagaaaact ggaggcggag 1°	740
tgatcctgga aataggcccg ccgcctcggc gcccatcctc ctcccggggt tgtccgggac 18	800
atgatgette eggettagga geetggagte etttegtgtt tgteetgtee	860
accggaggca tcacatgccc gcaactggaa acaacttttt aatgacccca ttttttgttc 1	920
cggccaacag acaactettt taagttaggt cgttttgaga aatecacggg tcacaacttt 1	980
attcccaaaa tggtgctttt tttattttca gcaagaacta agaatacttc ttatccgtga 2	040

actattggcg	tggaaggtgc	tttggatgcg	tttgtgtctt	ttgcaattat	actgcttttt	2100
cttaatgcag	atggtcagta	ggacagaagg	taacattgat	gactcgctca	ttggtggaaa	2160
tgcctccgct	gaaggccccg	agggcgaagg	taccgaaagc	acagtaatca	ctggtgtcga	2220
tattgtcatg	aaccatcacc	tgcaggaaac	aagtttcaca	aaagaagcct	acaagaagta	2280
catcaaagat	tacatgaaat	cgtaagtgat	actggcagta	cctagctgat	gtctagaatc	2340
ttacaggatt	taaagattgg	ctaacttttg	aggttctttc	gcagtgggta	tacttttgtg	2400
aaagtccttg	cttttttatt	aatgagttca	cggaaaagag	tggttgcttt	tctataatat	2460
gagcatactg	aagcctgcag	tctgtttccg	tttagaatta	gaatagtatt	ttgaaaatag	2520
tcaacaagaa	atgtaaacat	tcttgaaaga	taccttctgt	gaactagtaa	tttcttaaca	2580
gctggttgcc	tttttcagtg	ttttctttt	ttaagcttgg	atattttta	ctttaaaaat	2640
tgattttact	gaaaattcaa	tacttcaacc	tgttaatgaa	atgttgtttt	agaatcaaag	2700
ggaaacttga	agaacagaga	ccagaaagag	taaaaccttt	tatgacaggg	gctgcagaac	2760
aaatcaagca	catccttgct	aatttcaaaa	actaccaggt	aaatacctta	agtatctgga	2820
tcaaaggatt	gtacaatttt	aactgcaaga	gcaaaaatta	agttgattaa	tcttcaattc	2880
tatactagta	ttccaggtgt	agaaagtggc	tttcccagct	cgcaggtgtt	tccaaatctt	2940
gtcttctgat	tgaaaatttg	cttcccagat	gacatttctc	agtttttctt	tttgtgaatt	3000
gcttaaccac	ctaagtgttc	tttcagtttt	ttgcttacaa	ttttaatgtg	tctcattgct	3060
actggtcctc	cttctaatgt	atctgagctt	gttaattcta	cttttggaaa	atgtcagtgg	3120
ctttcccttt	cctctaattt	tccagcttca	tgcatcccct	ggccataaga	tacttccaga	3180
ctgtatgata	tattctatca	. ctgtcagcct	tatgttccct	gtggttgact	atataagcac	3240
gctttagggt	ttgggattgt	atttaggatt	gagagtaaag	gtttcctgaa	agcctagtgt	3300
tcctggattg	ctctgtaacg	ttattttct	atttaggtca	ctattaaggt	gccttaatcc	3360
agtgaacaga	ı tgtctatgat	aagtgagcat	cagagetttt	gggtactgaa	gttttgattt	3420
ttgtggtggt	ctaaaccttc	ccttgtactg	tagtttgttt	tgaatggcat	gtatttgtat	3480
gtaatagtct	: aattctaggt	attttgtttg	r cttcccaagt	tctttattgg	tgaaaacatg	3540
aatccagato	g gcatggttgd	tctattggad	: taccgtgagg	atggtgtgac	cccatatatg:	3600
attttcttta	a aggatggttt	agaaatggaa	a aaatgtgtaa	gtacaaggaa	gtgggttaaa	3660
ataaataat	g taaaaagaca	a ttttagatgt	gatttgcaat	: tgttttgtga	a cactgagaat	3720
gagttttaca	a gcgttctgaa	a acatggtttt	agttttctct	ttggggatca	agagaattgt	3780
gtttcatate	g taaaacatto	ttagggtata	a acaggettag	g catcttattt	gtggaaacgt	3840
tgagtgcaga	a tggggcata:	a taaagtacaq	g tttaggctgg	g gtgtggtggd	tcacacctgt	3900

aatttcagca	cttgggacgc	cgaggtgggt	gcatcacctg	aggttgggag	ttcgagacca	3960
gcctggccaa	catggcgaaa	ccctatctct	gctaaaaata	caaaaattag	ccaggcatgg	4020
cagcgggcac	ctgtaatccc	agctaatcga	gagcctgagg	caggaaaatc	acttaaacct	4080
gggaggggg	ttgcagtgag	cagagatccc	accactgcac	tctatcctgg	gtgacagagt	4140
gaggtgctgt	ctcaaaaaaa	tacagtagag	tttaaatgct	gaaggagatc	agagaacacc	4200
attgatcttc	ctctagatat	ggcctcactt	tcacttcata	atcatatttt	gctgtatacg	4260
tatggatcag	tatcagtggt	tttcactttg	gtttactgat	aatgggcagc	tgatcattga	4320
aaagcctagt	gcagtactag	cttagtaaat	agagctgact	gctgaactgg	tatgcaaatt	4380
gttttactaa	taataaataa	cttggtgtct	tcctatgttt	tcataggctt	ctgtataagg	4440
aagaagagaa	acataaagct	atactgaaca	agattagagt	caacagtaga	cagaaattac	4500
ttagaacagt	ataagatgac	ttaccaaagg	ggttattcag	acagtatctg	aggtttttgt	4560
tggtagagca	gggtgtgggt	ggtacatgcc	acagccttct	gaaaaatgag	ctaccgctga ·	4620
tttggtaagg	gtgttctgca	tccactgata	gaccttgaac	aatttactgt	tgttcttttg	4680
gtttgcacta	ggatgcaaaa	gaaagaaatc	cctgcgcttt	ctgtctgtct	ttgtggcggc	4740
ccagattgaa	ttggggaata	catctttagc	ctggaaatgt	aggctgcatg	ttaatggtaa	4800
tgtaactttt	gcagtgtaat	gtttgaaaaa	tattaatgta	gtttttgctt	ttacagtaac	4860
aaatgtggca	attattttgg	atctatcacc	tgtcatcata	actggcttct	gcttgtcatc	4920
cacacaacac	caggacttaa	gacaaatggg	actgatgtca	tcttgagctc	ttcatttatt	4980
ttgactgtga	tttatttgga	gtggaggcat	tgtttttaag	aaaaacatgt	catgtaggtt	5040
gtctaaaaat	aaaatgcatt	taaactcatt	tgagagaatg	ccttttagtt	taatgcatat	5100
ttaaactaaa	ttgatcctgt	agtgttcctg	gagaagctag	agcctgattg	taggctacta	5160
ctcatcaatt	aacttctaca	gtggagacta	cttctgggad	tggaatataa	aaaagaatca	5220
aaggttctga	ttttgagttg	caataaaggg	, aaagaccatg	ctcatagcag	, tgccaacatc	5280
tgaagtgtgg	agccttaccc	atttcatcac	: ctacaacgga	agtagttaac	: tggaagagat	5340
taccaagaga	ataaaaagag	actcattcag	ı tgg			5373

<210> 28

<211> 1466

<212> DNA <213> Homo sapiens

<400> 28 60 ggggctgctg ggactcgtcg tcggttggcg actcccggac gttaggtagt ttgttgggcc gggttctgag gccttgcttc tctttacttt tccactctag gccacgatgc cgcagtacca 120

gacctgggag	gagttcagcc	gcgctgccga	gaagctttac	ctcgctgacc	ctatgaaggc	180
acgtgtggtt	ctcaaatata	ggcattctga	tgggaacttg	tgtgttaaag	taacagatga	240
tttagtttgt	ttggtgtata	aaacagacca	agctcaagat	gtaaagaaga	ttgagaaatt	300
ccacagtcaa	ctaatgcgac	ttatggtagc	caaggaagcc	cgcaatgtta	ccatggaaac	360
tgagtgaatg	gtttgaaatg	aagactttgt	cgtgtactta	ggaagtaaat	atcttttgaa	420
ttagagaaag	gttgggacag	aaagtacttt	atgtaactaa	gtgggctgtt	cagaagctta	480
gaggtcattt	tttgtaattt	tctttttaat	tactttagag	agctagggat	gcaaatgttt	540
tcagttagaa	agcctttatt	tacttttgga	aattgaacaa	gaaatgcatc	tgtcttagaa	600
actggagatt	atttgatgtt	aggtaaaaca	tgtaattgtt	tctctggcaa	atttgtatca	660
gtaatttgaa	aatgagatat	taggaaaaac	caattcttct	taaatttagt	tcatctttct	720
ttaaaagaac	attaaatgta	accattttgt	cagatccatg	tattttggag	cataaaatgt	780
atgctgttgt	gaccaataaa	tataaaatat	ggtaattgga	attaactcca	caccatagta	840
tgcattgtta	tacatactgt	gtacctaatt	atgtatagca	gtgtagtctc	aattatatct	900
gaaagtaatt	gtgactaaca	agtatgcttt	gccttatttc	cacatttaaa	ctacctgtta	960
atataaggga	tttgtagtat	cagcttgttg	agcaatgact	ttgaatctag	ttttcagtga	1020
tcagaagcag	cagttatttg	agtgtatgaa	tggaatgatg	atcactgtgc	tataatgtac	1080
tgaaaccacc	atattacaga	aatatttact	acatattttc	catctgtagt	ttctcagaag	1140
ggctatggat	tagtttgaac	tgtcaaatcc	ttgcatactt	ctgtgacacc	cctgcccatt	1200
ttctgtcttt	aattaaccaa	ggtgttaggt	gtgactgtca	caactgttat	gttttccagt	1260
aaactagaag	cacgatattt	gataattata	tttgtatttc	accacctaaa	tgtaatgttg	1320
attcctcaag	aatgaaatga	aggcactaca	ttgaaatatg	ttttgtataa	atttgtcatg	1380
ttgaacagca	ttttagcatg	gtaagttccc	ttagctatat	gaattttggc	atgtttcaga	1440
gagatcagta	aataaaatat	tagata				1466
<400> 29 agcgatggcg	gctgggccga	gtgggtgtct	. ggtgccggcg	tttgggctac	ggttgttgtt	60
ggcgactgtg	cttcaagcgg	tgtctgcttt	tggggcagag	ttttcatcgg	aggcatgcag	120

180

240

agagttaggc ttttctagca acttgctttg cagctcttgt gatcttctcg gacagttcaa

cctgcttcag ctggatcctg attgcagagg atgctgtcag gaggaagcac aatttgaaac

caaaaagctg	tatgcaggag	ctattcttga	agtttgtgga	tgaaaattgg	gaaggttccc	300
tcaagtccaa	gcttttgtta	ggagtgataa	acccaaactg	ttcagaggac	tgcaaatcaa	360
gtatgtccgt	ggttcagacc	ctgtattaaa	gcttttggac	gacaatggga	acattgctga	420
agaactgagc	attctcaaat	ggaacacaga	cagtgtagaa	gaattcctga	gtgaaaagtt	480
ggaacgcata	taaatcttgc	ttaaattttg	tcctatcctt	ttgttacctt	atcaaatgaa	540
atattacagc	acctagaaaa	taatttagtt	ttgcttgctt	ccattgatca	gtcttttact	600
tgaggcatta	aatatctaat	taaatcgtga	aatggcagta	tagtccatga	tatctaagga	660
gttggcaagc	ttaacaaaac	ccattttta	taaatgtcca	tectectgca	tttgttgata	720
ccactaacaa	aatgctttgt	aacagacttg	cggttaatta	tgcaaatgat	agtttgtgat	780
aattggtcca	gttttacgaa	caacagattt	ctaaattaga	gaggttaaca	agacagatga	840
ttactatgcc	tcatgtgctg	tgtgctcttt	gaaaggaatg	acagcagact	acaaagcaaa	900
taagatatac	tgagcctcaa	cagattgcct	gctcctcaga	gtctctccta	tttttgtatt	960
acccagcttt	ctttttaata	caaatgttat	ttatagttta	caatgaatgc	actgcataaa	1020
aactttgtag	cttcattatt	gtaaaacata	ttcaagatcc	tacagtaaga	gtgaaacatt	1080
cacaaagatt	tgcgttaatg	aagactacac	agaaaacctt	tctagggatt	tgtgtggatc	1140
agatacatac	ttggcaaatt	tttgagtttt	acattcttac	agaaaagtcc	atttaaaagt	1200
gatcatttgt	aagaccaaaa	tataaataaa	aagtttcaaa	aatctatctg	aatttggaat	1260
tcttctggtt	tgttctttca	tgtttaaaaa	tgatgtttt	caatgcattt	ttttcatgta	1320
agcccttttt	ttagccaaaa	tgtaaaaatg	gctgtaatat	ttaaaactta	taacatctta	1380
ttgttggtaa	. tagtgcttta	tatttgtctg	attttattt	tcaaagtttt	ttcatttatg	1440
aacacatttt	. cattggtata	ttatttaagg	aatatctctt	gatatagaat	ttttatatta	1500
aaaatgattt	ttetttgge					1519

<210> 30 <211> 1336

<212> DNA

<213> Homo sapiens

<400> 30
ggggcttgca gagccggcgc cggaggagac gcaccgcagct gactttgtct tctccgcacg 60
actgttacag aggtctccag agccttctct ctcctgtgca aaatggcaac tcttaaggaa 120
aaactcattg caccagttgc ggaagaagag gcaacagttc caaacaataa gatcactgta 180
gtgggtgttg gacaagttgg tatggcgtgt gctatcagca ttctgggaaa gtctctggct 240
gatgaacttg ctcttgtgga tgtttggaa gataagctta aaggagaaat gatggatctg 300

		t as as as ast	aaaattataa	asastssaa	ttattctctc	360
cagcatggga	gcttatttct	teagacacet	aaaaccgcgg	Cagacadaga	ccacccgcg	
accgccaatt	ctaagattgt	agtggtaact	gcaggagtcc	gtcagcaaga	aggggagagt	420
cggctcaatc	tggtgcagag	aaatgttaat	gtcttcaaat	tcattattcc	tcagatcgtc	480
aagtacagtc	ctgattgcat	cataattgtg	gtttccaacc	cagtggacat	tcttacgtat	540
gttacctgga	aactaagtgg	attacccaaa	caccgcgtga	ttggaagtgg	atgtaatctg	600
gattctgcta	gatttcgcta	ccttatggct	gaaaaacttg	gcattcatcc	cagcagctgc	660
catggatgga	ttttggggga	acatggcgac	tcaagtgtgg	ctgtgtggag	tggtgtgaat	720
gtggcaggtg	tttctctcca	ggaattgaat	ccagaaatgg	gaactgacaa	tgatagtgaa	780
aattggaagg	aagtgcataa	gatggtggtt	gaaagtgcct	atgaagtcat	caagctaaaa	840
ggatatacca	actgggctat	tggattaagt	gtggctgatc	ttattgaatc	catgttgaaa	900
aatctatcca	ggattcatcc	cgtgtcaaca	atggtaaagg	ggatgtatgg	cattgagaat	960
gaagtcttcc	tgagccttcc	atgtatcctc	aatgcccggg	gattaaccag	cgttatcaac	1020
cagaagctaa	aggatgatga	ggttgctcag	ctcaagaaaa	gtgcagatac	cctgtgggac	1080
atccagaagg	acctaaaaga	cctgtgacta	gtgagctcta	ggctgtagaa	atttaaaaac	1140
tacaatgtga	ttaactcgag	cctttagttt	tcatccatgt	acatggatca	cagtttgctt	1200
tgatcttctt	caatatgtga	atttgggctc	acagaatcaa	agcctatgct	tggtttaatg	1260
cttgcaatct	gagctcttga	acaaataaaa	ttaactattg	tagtgcgaaa	aaaaaaaaa	1320
aaaaaaaaa	aaaaaa					1336
<210> 31 <211> 266	8					

<212> DNA

<213> Homo sapiens

<400> 31 ctctctggat aggaagaaat atagtagaac cctttgaaaa tggatatttt cacatatttt 60 cgttcagata caaaagctgg cagttactga aataaggact tgaagttcct tcctctttt 120 tttatgtctt aagagcagga aataaagaga cagctgaagg tgtagccttg accaactgaa 180 agggaaatct tcatcctctg aaaaaacata tgtgattctc aaaaaacgca tctggaaaat 240 tgataaagaa gcgattctgt agattctccc agcgctgttg ggctctcaat tccttctgtg 300 360 aaggacaaca tatggtgatg gggaaatcag aagctttgag accctctaca cctggatatg 420 aatccccctt ctaatactta ccagaaatga aggggatact cagggcagag ttctgaatct caaaacactc tactctggca aaggaatgaa gttattggag tgatgacagg aacacgggag 480 aacaatgctc tgtttgggct ggatatttct ttggcttgtt gcaggagagc gaattaaagg 540

atttaatatt	tcaggttgtt	ccacaaaaaa	actcctttgg	acatattcta	caaggagtga	600
agaggaattt	gtcttatttt	gtgatttacc	agagccacag	aaatcacatt	tctgccacag	660
aaatcgactc	tcaccaaaac	aagtccctga	gcacctgccc	ttcatgggta	gtaacgacct	720
atctgatgtc	caatggtacc	aacaaccttc	gaatggagat	ccattagagg	acattaggaa	780
aagctatcct	cacatcattc	aggacaaatg	tacccttcac	tttttgaccc	caggggtgaa	840
taattctggg	tcatatattt	gtagacccaa	gatgattaag	agcccctatg	atgtagcctg	900
ttgtgtcaag	atgattttag	aagttaagcc	ccagacaaat	gcatcctgtg	agtattccgc	960
atcacataag	caagacctac	ttcttgggag	cactggctct	atttcttgcc	ccagtctcag	1020
ctgccaaagt	gatgcacaaa	gtccagcggt	aacctggtac	aagaatggaa	aactcctctc	1080
tgtggaaagg	agcaaccgaa	tcgtagtgga	tgaagtttat	gactatcacc	agggcacata	1140
tgtatgtgat	tacactcagt	cggatactgt	gagttcgtgg	acagtcagag	ctgttgttca	1200
agtgagaacc	attgtgggag	acactaaact	caaaccagat	attctggatc	ctgtcgagga	1260
cacactggaa	gtagaacttg	gaaagccttt	aactattagc	tgcaaagcac	gatttggctt	1320
tgaaagggtc	tttaaccctg	tcataaaatg	gtacatcaaa	gattctgacc	tagagtggga	1380
agtctcagta	cctgaggcga	aaagtattaa	atccacttta	aaggatgaaa	tcattgagcg	1440
taatatcatc	ttggaaaaag	tcactcagcg	tgatcttcgc	aggaagtttg	tttgctttgt	1500
ccagaactcc	attggaaaca	caacccagtc	cgtccaactg	aaagaaaaga	gaggagtggt	1560
gctcctgtac	atcctgcttg	gcaccatcgg	gaccctggtg	geegtgetgg	cggcgagtgc	1620
cctcctctac	aggcactgga	ttgaaatagt	gctgctgtac	cggacctacc	agagcaagga	1680
tcagacgctt	ggggataaaa	aggattttga	tgctttcgta	. tcctatgcaa	aatggagctc	1740
ttttccaagt	gaggccactt	catctctgag	tgaagaacac	ttggccctga	gcctatttcc	1800
tgatgtttta	gaaaacaaat	atggatatag	cctgtgtttg	cttgaaagag	atgtggctcc	1860
aggaggagtg	tatgcagaag	acattgtgag	cattattaag	ı agaagcagaa	gaggaatatt	1920
tatcttgagc	cccaactatg	tcaatggacc	cagtatcttt	gaactacaag	cagcagtgaa	1980
tcttgccttg	gatgatcaaa	. cactgaaact	cattttaatt	aagttctgtt	acttccaaga	2040
gccagagtct	ctacctcatc	: tcgtgaaaaa	agctctcagg	gttttgccca	cagttacttg	2100
gagaggctta	aaatcagtto	ctcccaattc	: taggttctgg	g gccaaaatgo	gctaccacat	2160
gcctgtgaaa	aactctcago	g gattcacgt	gaaccagcto	c agaattacct	ctaggatttt	2220
tcagtggaaa	. ggactcagta	a gaacagaaac	cactgggagg	g agctcccago	ctaaggaatg	2280
gtgaaatgag	ccctggagco	c ccctccagtc	cagtccctgg	g gatagagato	g ttgctggaca	2340

gaactcacag ctctgtgtgt gtgtgttcag gctgatagga aattcaaaga gtctcctgc	2400
agcaccaagc aagcttgatg gacaatggag tgggattgag actgtggttt agagcctttg	2460
attteetgga etggaetgae ggegagtgaa ttetetagae ettgggtaet tteagtaea	c 2520
aacaccccta agatttccca gtggtccgag cagaatcaga aaatacagct acttctgcc	2580
tatggctagg gaactgtcat gtctaccatg tattgtacat atgactttat gtatacttg	c 2640
aatcaaataa atattattt attagaaa	2668
<210> 32 <211> 770 <212> DNA <213> Homo sapiens	
<400> 32 aggacacctt tggattaata atgaaaacaa ctactctctg agcagctgtt cgaatcatc	t 60
gatatttata ctgaatgagt tactgtaagt acgtattgac agaattacac tgtactttc	c 120
tctaggtgat ctgtgaaaat ggttcgctat tcacttgacc cggagaaccc cacgaaatc	a 180
tgcaaatcaa gaggttccaa tcttcgtgtt cactttaaga acactcgtga aactgctca	g 240
gccatcaagg gtatgcatat acgaaaagcc acgaagtatc tgaaagatgt cactttaca	g 300
aaacagtgtg taccattccg acgttacaat ggtggagttg gcaggtgtgc gcaggccaa	.g 360
caatggggct ggacacaagg tcggtggccc aaaaagagtg ctgaattttt gctgcacat	g 420
cttaaaaacg cagagagtaa tgctgaactt aagggtttag atgtagattc tctggtcat	t 480
gagcatatcc aagtgaacaa agcacctaag atgcgccgcc ggacctacag agctcatgg	jt 540
cggattaacc catacatgag ctctccctgc cacattgaga tgatccttac ggaaaagga	ia 600
cagattgttc ctaaaccaga agaggaggtt gcccagaaga aaaagatatc ccagaagaa	ıa 660
ctgaagaaac aaaaacttat ggcacgggag taaattcagc attaaaataa atgtaatta	aa 720
aaagaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaa	770
<210> 33 <211> 539 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (82)(82) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (519)(519) <223> n is a, c, g, t or u	

<220> <221> misc_feature (531)..(531) <222> <223> n is a, c, g, t or u <400> 33 gaggccgagc aatagactga agagaccaca gcaattggct cctccatcta gagattttct 60 tggcagtatt ccatgggatg tnaagcaaag gaaaccaaag gaatcgtttc aaatggactc 120 atggcttaga aatctttatt cttagggcag tcagtagtat tctaaagctt tctgacaaga 180 taaaggaagt caccaaaatt tctttttta aattgtatct aatcctcaac aacaaaccaa 240 aacagaacaa ttaaacagcc aaataaaacc tcagggacaa catttttggt gtatttgagc 300 cctcccagca agtttcacct tgggtttgta ttttaaatgt tttacaagaa ttgtccatgt 360 gcttccctag gctgagctgg cattggtctg ctgacctgtt tttgtgtttt tctttttt 420 atacacaaca tttatttcaa actaattggg agggatgaga gtggcttaaa aacttcccac 480 cctacttttc caagagtgcc agttggattc tgaatctgna aagcccgccc nctggtctt 539 <210> 34 2305 <211> <212> DNA <213> Homo sapiens <400> 34 60 aaaatgaaag gaaaaatatt tcaacccggc tgtcggtcta aaagaggaga gaatgctttc tttaaaaaag ggtctgtgaa ttagttttcc tgatctaact tctaattttc tgtatgttct 120 gccatttgtg ggaaatattt cttcgtttca gattgttgat gttattgttg ggaaagacga 180 240 aaaaggcaga aagatcccag aatatctgat ccattttaat ggttggaaca gaagctggga 300 tagatgggca gcagaagatc atgtgcttcg tgataccgat gaaaatcgta gattacagcg taaattggca agaaaagctg tagctcgcct gaggagcaca ggaagaaaga agaagcgctg 360 caggttgcct ggtgtggact ctgtcttaaa aggcctcccc actgaagaaa aagatgaaaa 420 tgatgaaaac tcattaagca gttcctctga ctgtagtgaa aacaaggatg aagaaataag 480 tgaagaaagt gatattgaag aaaagactga agtgaaagaa gaaccagagc ttcaaacaag 540 aagggaaatg gaagaaagaa caataactat agaaatccct gaagttctga agaagcagct 600 ggaggatgat tgttactaca ttaacaggag gaaacggtta gtgaaacttc catgccagac 660 720 caacatcata acgattttgg aatcctatgt gaagcatttt gctatcaatg cagccttttc agccaatgag aggcctcgtc accatcacgt tatgccacat gccaacatga acgtgcatta 780 tatcccagca gaaaagaatg ttgacctttg taaggagatg gtggatggat taagaataac 840 ctttgattac actctcccgt tggttttact ctatccatat gaacaagctc agtataaaaa 900

ggtgacttcg	tctaaatttt	ttcttccaat	taaggaaagt	gccacaagca	ctaacaggag	960
ccaggaggaa	ctctctccca	gtccgccttt	gttgaatcca	tccacgccac	agtccacaga	1020
gagtcagccg	accaccggtg	aaccagccac	ccccaaaagg	cgcaaagctg	agccagaagc	1080
attgcagtct	ctgaggcggt	ccacgcgcca	cagtgccaac	tgtgacaggc	tttctgagag	1140
cagcgcttca	cctcagccca	agcgccggca	gcaggacaca	teegeeagea	tgcccaagct	1200
cttcctgcac	ctggaaaaga	agacacctgt	gcatagcaga	tcatcttcac	ctattcctct	1260
gactcctagc	aaggaaggga	gtgctgtgtt	tgctggcttt	gaagggagaa	gaactaatga	1320
aataaacgag	gtcctctcct	ggaagcttgt	gcctgacaat	taccccccag	gtgaccagcc	1380
gcctccaccc	tcttacattt	atggggcaca	acatttgctg	cgattgtttg	tgaaacttcc	1440
agaaatcctt	ggaaagatgt	ccttttctga	gaagaatctg	aaggctttat	tgaagcactt	1500
tgatctcttt	ttgaggtttt	tagcagaata	ccacgatgac	ttcttcccag	agtcggctta	1560
tgtcgctgcc	tgtgaggcac	attacagcac	caagaacccc	cgggcaattt	attaaaatgt	1620
tgttggttct	gtaagagcaa	ctgctctgtc	tagtttggcg	ctctgggttc	caggtgaata	1680
actaacaagg	tggtgggtct	ttacccacag	cgcaaacaca	atgcccacct	tggggctctg	1740
ttgtttgagt	tgcccacata	ctgcagttat	tctgttagga	atgattccct	gggtgcctga	1800
aagtgctctg	acacgacact	tgttactttg	caggccatct	gtgatggcaa	ggaaaaagca	1860
actatgttca	cagtgaaata	ttcgtggaat	aggttaggcc	atttcagtag	acattgcagt	1920
tagttagcaa	gaaccacatt	gtctctttat	ttgttagcat	taaacaaatt	tttttttgca	1980
aattggtttt	attttttga	tgaagccgag	caactctgtc	caaaaaggtt	tagtttgtac	2040
tcggaaacca	caaagtagtc	tcaaagtatt	ttagagggaa	tcgatattga	tggcaaaaga	2100
aaatttgcag	ctatgcattt	gcttctaacg	gttccctctc	: tgtgaaacat	tatttttggt	2160
gatctaaaga	aagcattgcc	tttcttattt	gagattttac	: agctatactt	tgttgtgtaa	2220
tgttatggtt	ccctttctgt	aaaatgttat	ttttggtgat	: ctaaataaag	cctgtcttgt	2286
ttgaaagaaa	. aaaaaaaaaa	aaaaa				230
<210> 35						

<400> 35

<211> 1723

<212> DNA

<213> Homo sapiens

gggggagtge gaatteettg geetgtegge aggtgettte teaaaggeee eacagteete 60 cactteetgg ggaggtaget geagaataaa accageagag acteettte teetaaeegt 120 ceeggeeace getgeeteag eetetgeete eeageetett tetgagggaa aggaeaagat 180

PCT/US03/13015 WO 03/090694

gaagtggaag	gcgcttttca	ccgcggccat	cctgcaggca	cagttgccga	ttacagaggc	240
acagagcttt	ggcctgctgg	atcccaaact	ctgctacctg	ctggatggaa	tcctcttcat	300
ctatggtgtc	attctcactg	ccttgttcct	gagagtgaag	ttcagcagga	gcgcagacgc	360
ccccgcgtac	cagcagggcc	agaaccagct	ctataacgag	ctcaatctag	gacgaagaga	420
ggagtacgat	gttttggaca	agagacgtgg	ccgggaccct	gagatggggg	gaaagccgag	480
aaggaagaac	cctcaggaag	gcctgtacaa	tgaactgcag	aaagataaga	tggcggaggc	540
ctacagtgag	attgggatga	aaggcgagcg	ccggaggggc	aaggggcacg	atggccttta	600
ccagggtctc	agtacagcca	ccaaggacac	ctacgacgcc	cttcacatgc	aggccctgcc	660
ccctcgctaa	cagccagggg	atttcaccac	tcaaaggcca	gacctgcaga	cgcccagatt	720
atgagacaca	ggatgaagca	tttacaaccc	ggttcactct	tctcagccac	tgaagtattc	780
ccctttatgt	acaggatgct	ttggttatat	ttagctccaa	accttcacac	acagactgtt	840
gtccctgcac	tctttaaggg	agtgtactcc	cagggcttac	ggccctgcct	tgggccctct	900
ggtttgccgg	tggtgcaggt	agacctgtct	cctggcggtt	cctcgttctc	cctgggaggc	960
gggcgcactg	cctctcacag	ctgagttgtt	gagtctgttt	tgtaaagtcc	ccagagaaag	1020
cgcagatgct	agcacatgcc	ctaatgtctg	tatcactctg	tgtctgagtg	gcttcactcc	1080
tgctgtaaat	ttggcttctg	ttgtcacctt	cacctccttt	caaggtaact	gtactgggcc	1140
atgttgtgcc	tccctggtga	gagggccggg	cagaggggca	gatggaaagg	agcctaggcc	1200
aggtgcaacc	agggagctgc	aggggcatgg	gaaggtgggc	gggcagggga	gggtcagcca	1260
gggcctgcga	gggcagcggg	agcctccctg	cctcaggcct	ctgtgccgca	ccattgaact	1320
gtaccatgtg	ctacaggggc	cagaagatga	acagactgac	cttgatgagc	tgtgcacaaa	1380
gtggcataaa	aaacagtgtg	gttacacagt	gtgaataaag	tgctgcggag	caagaggagg	1440
ccgttgattc	acttcacgct	ttcagcgaat	gacaaaatca	tctttgtgaa	ggcctcgcag	1500
gaagacgcaa	. cacatgggac	ctataactgc	ccagcggaca	gtggcaggac	aggaaaaacc	1560
cgtcaatgta	ctagggtact	gctgcgtcat	tacagggcac	aggccatgga	tggaaaacgc	1620
tatatgatat	gcttttttc	tactgtttta	atttatactg	gcatgctatt	gccttcctat	1680
tttgcataat	aaatgcttca	gtgaaaatgc	agctttactc	taa		1723

<210> 36 <211> 1280 <212> DNA

<213> Homo sapiens

<400> 36

gaaagatggc gtcccgcaag gaaggtaccg gctctactgc cacctcttcc agctccaccg 60

ccggcgcagc	agggaaaggc	aaaggcaaag	gcggctcggg	agattcagcc	gtgaagcaag	120
tgcagataga	tggccttgtg	gtattaaaga	taatcaaaca	ttatcaagaa	gaaggacaag	180
gaactgaagt	tgttcaagga	gtgcttttgg	gtctggttgt	agaagatcgg	cttgaaatta	240
ccaactgctt	tcctttccct	cagcacacag	aggatgatgc	tgactttgat	gaagtccaat	300
atcagatgga	aatgatgcgg	agccttcgcc	atgtaaacat	tgatcatctt	cacgtgggct	360
ggtatcagtc	cacatactat	ggctcattcg	ttacccgggc	actcctggac	tctcagttta	420
gttaccagca	tgccattgaa	gaatctgtcg	ttctcattta	tgatcccata	aaaactgccc	480
aaggatctct	ctcactaaag	gcatacagac	tgactcctaa	actgatggaa	gtttgtaaag	540
aaaaggattt	ttcccctgaa	gcattgaaaa	aagcaaatat	cacctttgag	tacatgtttg	600
aagaagtgcc	gattgtaatt	aaaaattcac	atctgatcaa	tgtcctaatg	tgggaacttg	660
aaaagaagtc	agctgttgca	gataaacatg	aattgctcag	ccttgccagc	agcaatcatt	720
tggggaagaa	tctacagttg	ctgatggaca	gagtggatga	aatgagccaa	gatatagtta	780
aatacaacac	atacatgagg	aatactagta	aacaacagca	gcagaaacat	cagtatcagc	840
agcgtcgcca	gcaggagaat	atgcagcgcc	agagccgagg	agaacccccg	ctccctgagg	900
aggacctgtc	caaactcttc	aaaccaccac	agccgcctgc	caggatggac	tcgctgctca	960
ttgcaggcca	gataaacact	tactgccaga	acatcaagga	gttcactgcc	caaaacttag	1020
gcaagctctt	catggcccag	gctcttcaag	aatacaacaa	ctaagaaaag	gaagtttcca	1080
gaaaagaagt	taacatgaac	tcttgaagtc	acaccagggc	aactcttgga	agaaatatat	1140
ttgcatattg	aaaagcacag	aggatttctt	tagtgtcatt	gccgattttg	gctataacag	1200
tgtctttcta	gccataataa	aataaaaaa	aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1260
aaaaaaaaa	aaaaaaaaa					1280

<210> 37

<211> 1653

<212> DNA

<213> Homo sapiens

<400> 37

agcgatttca tcttcaggcc tggactacac cactcacct cccagtgtgc ttgagaaaca 60
aactgcaccc actgaactcc gcagctagca tccaaatcag cccttgagat ttgaggcctt 120
ggagactcag gagttttgag agcaaaatga caacacccag aaattcagta aatgggactt 180
tcccggcaga gccaatgaaa ggccctattg ctatgcaatc tggtccaaaa ccactcttca 240
ggaggatgtc ttcactggtg ggccccacgc aaagcttctt catgagggaa tctaagactt 300
tgggggctgt ccagattatg aatgggctct tccacattgc cctggggggt cttctgatga 360

tcccagcagg	gatctatgca	cccatctgtg	tgactgtgtg	gtaccctctc	tggggaggca	420
ttatgtatat	tatttccgga	tcactcctgg	cagcaacgga	gaaaaactcc	aggaagtgtt	480
tggtcaaagg	aaaaatgata	atgaattcat	tgagcctctt	tgctgccatt	tctggaatga	540
ttctttcaat	catggacata	cttaatatta	aaatttccca	tttttaaaa	atggagagtc	600
tgaattttat	tagagctcac	acaccatata	ttaacatata	caactgtgaa	ccagctaatc	660
cctctgagaa	aaactcccca	tctacccaat	actgttacag	catacaatct	ctgttcttgg	720
gcattttgtc	agtgatgctg	atctttgcct	tcttccagga	acttgtaata	gctggcatcg	780
ttgagaatga	atggaaaaga	acgtgctcca	gacccaaatc	taacatagtt	ctcctgtcag	840
cagaagaaaa	aaaagaacag	actattgaaa	taaaagaaga	agtggttggg	ctaactgaaa	900
catcttccca	accaaagaat	gaagaagaca	ttgaaattat	tccaatccaa	gaagaggaag	960
aagaagaaac	agagacgaac	tttccagaac	ctccccaaga	tcaggaatcc	tcaccaatag	1020
aaaatgacag	ctctccttaa	gtgatttctt	ctgttttctg	tttccttttt	taaacattag	1080
tgttcatagc	ttccaagaga	catgctgact	ttcatttctt	gaggtactct	gcacatacgc	1140
accacatctc	tatctggcct	ttgcatggag	tgaccatagc	tccttctctc	ttacattgaa	1200
tgtagagaat	gtagccattg	tagcagcttg	tgttgtcacg	cttcttcttt	tgagcaactt	1260
tcttacactg	aagaaaggca	gaatgagtgc	ttcagaatgt	gatttcctac	taacctgttc	1320
cttggatagg	ctttttagta	tagtatttt	ttttgtcatt	ttctccatca	acaaccaggg	1380
agactgcacc	tgatggaaaa	gatatatgac	tgcttcatga	. cattcctaaa	ctatctttt	1440
tttattccac	atctacgttt	ttggtggagt	cccttttgca	. tcattgtttt	aaggatgata	1500
aaaaaaaaat	aacaactagg	gacaatacag	aacccattcc	atttatcttt	ctacagggct	1560
gacattgtgg	cacattctta	gagttaccac	accccatgag	ggaagctcta	aatagccaac	1620
acccatctgt	: tttttgtaaa	aacagcatag	ctt			1653

<400> 38
gataactgta ttatatttt catctagcta taaaacttta atcttactct taatatcctg 60
gatttaattc aaactcctgt tgggttcttc acaaatgaga acttgttcaa aggatttatt 120
gaactggtat tgatttcact gaaaattttc cacaccacca ccattgttt tttgaattct 180
tggtgttgtg cttcccacct tctgtccttt tcgtttgttt agagaagatg aatttttaaa 240
aagcagataa attgctaatg agcaataatg accttatctt taccaaaaca ctgaaaatta 300

<210> 38

<211> 1937

<212> DNA

<213> Homo sapiens

agagaggttc	agtgttgaag	aagcacaata	tgctgcggtg	tctttttcta	gaagtgaatg	360
gaaatcttgc	tcagttggca	tttcaagcag	gaaatgaaat	gcttgcttta	atggcaaagc	420
agcgttaaca	tttttcctgt	cgtgtagcag	agagtacaag	aatcatttca	gcaaagcagt	480
gactcaccat	gagacgttat	ctccatggag	ctgcgttttg	acttttccca	ctctcttact	540
catagaagga	ggacaaagga	acgaaatgaa	atcatgctca	caatgaactg	ttcattacat	600
caactgatct	ctctctctct	ctcttcctct	ctttctcttt	ctcccatacc	ccaaggcaaa	660
atttttttaa	agaaatgact	ttaaaaacta	tcatttctgt	attttaatta	catctcttag	720
aaataaaatt	atgtttgcac	catagctttc	taagaaaaaa	aaatgtgttt	ttaactgagt	780
cttagttgct	tagtgctttt	atttgtgtta	tttttagact	gtattttaac	cacaactaca	840
aggatcatgt	ttcattgcac	ttacttattt	gccagtgtct	gcctgtcttt	gctaaataca	900
ttactatctc	caaattgcct	aaaatctgct	atgattctac	agtaaatagc	tcagggtatt	960
tctatttatc	actactaaaa	gggcaccata	gtatgttttg	gtactttagg	cagtaaacac	1020
tgcttggttt	atcattttgt	tattaaatta	gaacaagaac	atcaaatgga	tttgctgcac	1080
tagttattct	ttgtactgtt	gagcaacttg	gtgtgcttat	atgttgtgtt	ggttgaagaa	1140
ctcatccgtt	ttattgtctt	gtaatatgaa	gttagagtgc	ctttttatat	ttgtatattc	1200
tgaaaatgtt	ctgtggaatg	ttttgtattt	tttcatttga	gtgttatcag	agcaatatga	1260
taccagtgag	ttttcatttc	aacttttctt	tgaatgtata	aagtgtcttt	tttcctattt	1320
ccccttgtac	ttgcattgaa	atgaatatga	aaatgcttaa	gttttctata	ggaattgttt	1380
gattttgcag	tgctaaaatg	ctttcgtctt	acgaaactat	aaaccatagg	tcagtattat	1440
aggggaaaag	cattttaaga	tagtgacaat	ctgagtgttg	tataaaatgt	aattctatgc	1500
gtttcttatg	tgatctaaaa	attcaatgca	aatatcttt	atttggtagt	tttgtctaca	1560
tattttatgc	tctagcatgt	gcaatatatc	tttgtaaagc	acgatgatac	aaatctggtg	1620
ccagtgttat	attttgcata	acatatttgt	aacagcataa	aatattgttt	gatgatttca	1680
gtgggatttt	gtctataatg	ttttcttatg	taaattggag	ttgaatgact	ctggtaaatg	1740
tcatgactgt	aaaaatgggg	aaaatgactt	ttagttcagt	gaatgacttt	gaaacaatct	1800
gaatcttctc	aagcacagtt	taatactttt	gcaactactg	aatgctctaa	taacgtaatg	1860
aagtacttaa	ctgtaatata	ctatggaaat	gcattcagat	ggttattttt	acaaataaaa	1920
acggtacaaa	. tattgtt					1937

<210> 39

<211> 2647

<212> DNA

<213> Homo sapiens

<400> 39 aaaccccatc cccgcttagg tgcgaggcat caccttctca caagtgttta gtttctttta 60 accacaagta tcattcttgg gtgataatat agtttcattc tacttaggga ttgtttagaa 120 aacaaagaaa gagccaatta aattttttag tttttgaaat ttttatttat atgtatactt 180 agatgagtat tttaagctgt cgacctttag tttgccatac gggtaggact gtatttcatg 240 ttaacaactg gtggtaatga taagccttct tctagcgtat tttctcttct ttcctgtcac 300 360 tttcctaagt tttttttt taaagactgg aatttttttt ggctttatct tgtcttaccg tagagatttg ttcaaaactc taagccctac cacctcccct ttaataagct ctttaaatag 420 480 ttgaatcatt aacaacctgg tgggaggcaa gtcatttaat tgaaccacta ggaagtgtat tttcttttct ttttctgcca actttttggt ggcatttgta aaagctgata taaaaggctc 540 600 tgagatgtta ttttcagtta ttccataggc aagccttttt acagagcata tgtctccagt 660 tggcagettg agatatttcc gagcatccgg ttctagetac cagtgcctcc caatgcttag tgcacagtac tgtagactgg ccatcacccc tctccttgga aaatgccact gtgctgtttg 720 780 aaaaaaagca gccttttagg gctagagtat tttatataaa cagaagagct aagttcctga agactaagct agatagctgc agctatatgt aaattgtata tttttatgaa cttttgaagc 840 900 acacactcct gtttccctct gtgtagcttt gtggggattt catgtatata tgctgtctga 960 aaqaatccaq aqqttqqaqt gccaatagaa aatgaaaaca aatgccttgt actacaggca 1020 gcctctgaag gtgaccacat aactgtctcc actgtgacca atcggagtcc ctgcttgctt gtgaagaagg ggcttttgta ccttgttgga gatgccacct cagaagttca cactgtgcag 1080 1140 gaaaaaggtt ttattctctc ctggcataca ttagaatgtc agatgcttgc atccatgtgg 1200 accacqatgg gcctctaaaa attggtgggc agggggtttg cttatgagtt ttctctggaa accgatttta ctcctggatg tattgaatgc cccttgagct ttatgagata cgagtccaca 1260 1320 tggataaaat gttagagagt ggagttctac agaggattcc aggaagaggc catgtctgtg cagtcctagt tccagacagg tgagaagctc caggaactac tggctacctt gacaagctgg 1380 1440 gtaaatagtt atcattctgg gtaactggtt gaaactctga cttttggaca agtaattcct 1500 ggggttctgt ctttggtagc atcaccaggg atatttgggt gggacagaca gaagacacac 1560 agetqcctgt tetetectgc ccateatgtt tggcccacta gatgaagetg tactcagcaa tttagggaat gtaaccette teagaactgg ceatttteag gggaagettg ggagageaat 1620 agtatggtga gccccttaga gatgagcgcc tactccttct tggcgaatgc tgccttcaga 1680 1740 tgcttaccaa gtggtcactg catctagtaa gattatattt ccagtacact tccttagggc

agaaacacca	tcctatcagg	tttggtcagt	cccttcttca	tgaagggagt	catggggaat	1800
tcctgaaaat	tttcttcctt	ctgcagacag	ttggatgagt	cccttagaga	aggcatccag	1860
agacataact	aaactgaata	tcatcccata	ttgattttag	gaattgactc	taaaactctg	1920
tgcagaatct	tgtgttggga	ttgtatcttg	acattcctgt	tgtgttattt	ttcttaactg	1980
gagtgtgtgc	tgcctttcag	gtacaatttt	tgtgtaataa	aagccagtgc	attaagttta	2040
tatagactac	tttctatgca	agactgagat	atggaataga	taggaagaga	tatgtactgc	2100
tgggtacatg	gacagtaagt	gtgttttcag	atggagtacc	agcaccgaaa	atgggttgag	2160
ggaggatggg	ttgtatgtat	gtttctgccc	actaattttg	agcagccata	ttatgaatta	2220
aatcgtcaca	gccaagtaat	aacccaagaa	tggtatgagt	ttcatgtgta	atagctcaaa	2280
tggaataagc	atgaatgcct	ggagtggacc	attatcctca	aatattctat	gtcacttctc	2340
atttaaagac	tcttgttatg	aactattaga	aactttaggc	aaaatcaaaa	gtatttgcgg	2400
caaaataaag	gcctattcta	ctcttattta	aagtgaaaca	ctgtatactt	gtttctctcc	2460
aaagcgaaat	taagtattta	taatttcaat	tgcctcgata	agtttccaag	tcactgaaat	2520
ctgctgaagg	ttttactgta	ttgttgcaca	actttaagat	aatttttgtc	tcaatgtcaa	2580
cttttttcac	tgaataaaaa	tttaactggg	tcaagaaaac	acctcattga	aaaaaaaaa	2640
aaaaaaa						2647

<210> 40 <211> 716 <212> DNA

<213> Homo sapiens

<400> 40

ttctttcttt gctgcgtcta ctgcgagaat gaagactatt ctcagcaatc agactgtcga 60 cattccagaa aatgtcgaca ttactctgaa gggacgcaca gttatcgtga agggccccag 120 180 aggaaccctg cggagggact tcaatcacat caatgtagaa ctcagccttc ttggaaagaa 240 aaaaaagagg ctccgggttg acaaatggtg gggtaacaga aaggaactgg ctaccgttcg gactatttgt agtcatgtac agaacatgat caagggtgtt acactgggct tccgttacaa 300 360 gatgaggtet gtgtatgete acttecceat caaegttgtt atceaggaga atgggtetet 420 tgttgaaatc cgaaatttct tgggtgaaaa atacatccgc agggttcgga tgagaccagg 480 tgttgcttgt tcagtatctc aagcccagaa agatgaatta atccttgaag gaaatgacat 540 tgagcttgtt tcaaattcag cggctttgat tcagcaagcc acaacagtta aaaacaagga tatcaggaaa tttttggatg gtatctatgt ctctgaaaaa ggaactgttc agcaggctga 600 tgaataagat ctaagagtta cctggctaca gaaagaagat gccagatgac acttaagacc 660

tacttgtgat atttaaatga tgcaataaaa gacctattga tttggacctt cttctt	716
<210> 41 <211> 1197 <212> DNA <213> Homo sapiens	
<400> 41 atggggacct gtgacattgt gactgaagcc aatatctcat ctggccctga gagcaacacc	60
acgggcatca cagcettete catgeceage tggcagetgg caetgtggge accageetae	120
ctggccctgg tgctggtggc cgtgacgggt aatgccatcg tcatctggat catcctggcc	180
catcggagga tgcgcacagt caccaactac ttcatcgtca atctggcgct ggctgacctc	240
tgcatggctg ccttcaatgc cgccttcaac tttgtctatg ccagccacaa catctggtac	300-
tttggccgtg ccttctgcta cttccagaac ctcttcccca tcacagccat gtttgtcagc	360
atctactcca tgaccgccat tgctgccgac aggtacatgg ccatcgtcca ccccttccag	420
cctcggcttt cagctcccag caccaaggcg gttattgctg gcatctggct ggtggctctc	480
gccctggcct cccctcagtg cttctactcc accgtcacca tggaccaggg tgccaccaag	540
tgcgtggtgg cctggcccga agacagcggg ggcaagacgc tcctcctgta ccacctcgtg	600
gtgatcgccc tcatctactt cctgccgctc gcggtgatgt ttgtagccta cagcgtcatc	660
ggcctcacgc tctggaggcg cgcagtgccc ggacatcagg cgcacggtgc caacctccgc	720
catctgcagg ccaagaagaa gtttgtgaag accatggtgc tggtggtgct gacgtttgcc	780
atctgctggc tgccctacca cctctacttc atcctgggca gcttccagga ggacatctac	840
tgccacaagt tcatccagca agtctacctg gcactcttct ggttggccat gagctctacc	900
atgtacaatc ccatcatcta ctgctgtctc aaccacaggt ttcgctctgg gttccggctt	960
gccttccgct gctgcccatg ggtcacaccc accaaggaag ataagctcga gctgactccc	1020
acgacctccc tctccacgag agtcaacagg tgtcacacta aggagacttt gttcatggct	1080
ggggacacag ccccctccga ggctaccagt ggggaggcgg ggcgtcccca ggatggatca	1140
gggctatggt ttgggtatgg tttgcttgcc cccaccaaaa ctcatgttga aatttga	1197
<210> 42 <211> 818 <212> DNA <213> Homo sapiens	
<400> 42 gcctcgaggc gggcgtcttc ggtcatctcc ggcgcttcta gggctggttc ccgtcatctt	60
cgggagccgt ggagctctcg gatacagccg acaccatggg tttcggagac ctgaaaagcc	120
ctgccggcct ccaggtgctc aacgattacc tggcggacaa gagctacatc gaggggtatg	180

tgccatcaca	agcagatgtg	gcagtatttg	aagccgtgtc	cagcccaccg	cctgccgact	240
tgtgtcatgc	cctacgttgg	tataatcaca	tcaagtctta	cgaaaaggaa	aaggccagcc	300
tgccaggagt	gaagaaagct	ttgggcaaat	atggtcctgc	cgatgtggaa	gacactacag	360
gaagtggagc	tacagatagt	aaagatgatg	atgacattga	cctctttgga	tctgatgatg	420
aggaggaaag	tgaagaagca	aagaggctaa	gggaagaacg	tcttgcacaa	tatgaatcaa	480
agaaagccaa	aaaacctgca	cttgttgcca	agtcttccat	cttactagat	gtgaaacctt	540
gggatgatga	gacagatatg	gcgaaattag	aggagtgcgt	cagaagcatt	caagcagacg	600
gcttagtctg	gggctcatct	aaactagttc	cagtgggata	cggaattaag	aaacttcaaa	660
tacagtgtgt	agttgaagat	gataaagttg	gaacagatat	gctggaggag	cagatcactg	720
cttttgagga	ctatgtgcag	tccatggatg	tggctgcttt	caacaagatc	taaaatccat	780
cctggatcat	ggcatttaaa	taaaagattg	aaagatta			818

<210> 43

<211> 2489

<212> DNA

<213> Homo sapiens

<400> 43 gcacgagggg gtagagggaa aagagctccg ggccaggggc tgccgtcgcc gccgtcgggg 60 agtcagcccg ccagcccgcc agctcgtcag cccgccacca gcttcgcggg ccctgtcggt 120 cccggtaagc gggcctgcgc ttaccggaaa gaggagcgta agatgaaaga gtatcagacc 180 aaacattgtc tggcttgcac tgtaaaacta gttagctgaa gacgacttct caggtttctt 240 300 caggatgcct gcagcacttg tggagaatag ccaggttatc tgtgaagtgt gggccagtaa tctagaagaa gagatgagga agatccgaga aatcgtgccc agttacagtt atattgccat 360 ggacacagaa tttccaggtg ttgtggtgcg accaattggt gaatttcgta gttccataga 420 ttaccaatat cagcttctgc ggtgcaatgt tgacctttta aaaattatcc agctgggcct 480 tacattcaca aatgagaagg gagagtatcc ttctggaatc aatacttggc agttcaattt 540 600 caaatttaac cttacagagg acatgtactc ccaggattcc atagatctcc ttgctaactc aggactacag tttcagaagc atgaagagga agggattgac acactgcact ttgcagagct 660 gcttatgaca tcaggagtgg ttctctgtga caatgtcaaa tggctttcat ttcatagtgg 720 ctatgatttt ggctatatgg taaagttgct tacagattct cgtttgccag aagaggaaca 780 tgaattetta catattetga acettttete eccatecatt tatgatgtga aatacetgat 840 900 gaagagctgc aaaaatctta agggaggtct tcaggaagtt gctgatcagt tggatttgca gaggattgga aggcagcacc aggcaggctc agactcactg ctgacaggaa tggctttctt 960

PCT/US03/13015 WO 03/090694

taggatgaaa	gagttgtttt	ttgaggacag	cattgatgat	gccaagtact	gtgggcggct	1020
ctatggctta	ggcacaggag	tggcccagaa	gcagaatgag	gatgtggact	ctgcccagga	1080
gaagatgagc	atcctggcga	ttatcaacaa	catgcagcag	tgatggcgcc	aggctctgca	1140
gggtgggcct	gatcccagag	tggtgcttac	tgtgctgact	gtgtacttat	cttccccaag	1200
agaaaatgct	tcttttgagc	acactgtacc	taccatctgc	attgagcaga	aagacttttg	1260
tttactgaa	gacaaaagat	gtttttattt	tagacccaga	agagaggagt	ttgctctgaa	1320
tttgtaaata	agtcttcccc	attcctcata	ctcgagcctc	tcctctctgg	ttgcctcctg	1380
ccaccagcat	ccatggctca	tttgacacct	ttttaaatat	caggacaagt	ctgaaacaaa	1440
gtagtaaaat	gtatataact	cttacctgtt	gtcattcttt	ttcttttaaa	tttgttgcta	1500
atctctgata	atgaagattc	ttactctgat	tctcagctga	gctgtgaggg	cttccaggga	1560
aaatggaaca	aaatggtgtt	cttaggtaat	gggttgtaga	tactgagtct	tcctttcctt	1620
ttctgaccct	tctcgaggac	atttgctttc	ctcacacttt	tgtagtctct	ctttacatat	1680
tactatatgg	aaatgaattg	ctctgtgctg	aaatttgaag	accagataat	gaaactgaaa	1740
agcaaacaat	tttactgaa	tctgtctacc	ttcattcatg	agaactccag	aatgagtgtt	1800
gaccactgaa	gcatcttta	. agtctgtgtt	ccattgtgcc	attcaggttt	gctgtcacat	1860
atgcatcato	: tgaaatcatt	tgaaatttt	gtacaataaa	atatcctgga	tttgatcctg	1920
aaggaaacta	ı gtaagatcag	atttttgggt	catgtctgtt	gtattttcag	taatgtgatt	1980
tcagatggto	atctggattc	: tcccacttct	ctactccatt	atttctctac	ttttccttcc	2040
agcaaacctt	gaaacgtgag	ggagatggat	: taatgtgagt	aacaggaatg	tgtctttaaa	2100
aagctagagt	ggttacattt	aatcaggcag	g taagataatt	tgggttcttg	g agttgttttg	2160
gagtaatat	c ccacaactgg	g ggtaggaago	: tcaggacttt	tttctttaaa	gctagtcatt	2220
tcaaaagcat	attgtattt	tttgaatgad	: tacagtatgg	, acaatttcaa	aaaccaaaac	2280
ccactttgg	a ttggtggaag	g taaaaactgg	g taactcactc	: aagtgaatga	atggtcttgc	2340
attttaaaa	g cttatgggaa	a actcaattt	g aaatgattag	g aaaatgtcaa	gtattataag	2400
ctggtattt	a agatgcttgt	t aaatactati	tatgtttta	attttgtaaa	a ataaagattt	2460
ctttttaaa	a aaaaaaaaa	a aaaaaaaaa				2489

<210> 44 <211> 2325 <212> DNA

<213> Homo sapiens

<400> 44

ttttttaaag taagatgttt aagaaattaa acagtcttag ggagagttta tgactgtatt 60

caaaaagttt	tttaaattag	cttgttatcc	cttcatgtga	taactaatct	caaatacttt	120
ttcgatacct	cagagcatta	ttttcataat	gagctgtgtt	cacaatcttt	ttaggttaac	180
tcgttttctc	tttgtcatta	aggagaaaca	ctttgatatt	ctgatagagt	ggccttcatt	240
ttagtatttt	tcaagaccac	ttttcaacta	ctcactttag	gataagtttt	aggtaaaatg	300
tgcatcatta	tcctgaatta	tttcagttaa	gcatgttagt	tggtggcata	agagaaaact	360
caatcagata	gtgctgagac	aggactgtgg	agacacctta	gaaggacaga	ttctgttccg	420
aatcaccgat	gcggcgtcag	caggactggc	ctagcggagg	ctctgggagg	gtggctgcca	480
ggcccggcct	gggctttggg	tctccccgga	ctacccagag	ctgggatgcg	tggcttctgc	540
tgccgggccg	actggctgct	cagccccagc	ccttgttaat	ggacttggag	gaatgattcc	600
atgccaaagc	tttgcaaggc	tcgcagtgac	caggcgcccg	acatgggagt	gcatccgccc	660
caaccctttt	cccctcgtc	tcctgtgaga	attccccgtc	ggatacgagc	agcgtggccg	720
ttggctgcct	cgcacaggac	ttccttcccg	actccatcac	tttctcctgg	aaatacaaga	780
acaactctga	catcagcagc	acceggggct	tcccatcagt	cctgagaggg	ggcaagtacg	840
cagccacctc	acaggtgctg	ctgccttcca	aggacgtcat	gcagggcaca	gacgaacacg	900
tggtgtgcaa	agtccagcac	cccaacggca	acaaagaaaa	gaacgtgcct	cttccagtga	960
ttgccgagct	gcctcccaaa	gtgagcgtct	tcgtcccacc	ccgcgacggc	ttcttcggca	1020
acccccgcaa	gtccaagctc	atctgccagg	ccacgggttt	cagtccccgg	cagattcagg	1080
tgtcctggct	gcgcgagggg	aagcaggtgg	ggtctggcgt	caccacggac	caggtgcagg	1140
ctgaggcaaa	ggagtctggg	cccacgacct	acaaggtgac	cagcacactg	accatcaaag	1200
agagcgactg	gctcagccag	agcatgttca	cctgccgggt	ggatcacagg	ggcctgacct	1260
tccagcagaa	. tgcgtcctcc	atgtgtgtcc	ccgatcaaga	cacagccatc	cgggtcttcg	1320
ccatccccc	atcctttgcc	agcatcttcc	tcaccaagto	caccaagttg	acctgcctgg	1380
tcacagacct	gaccacctat	gacagcgtga	ccatctcctg	gacccgccag	aatggccaag	1440
ctgtgaaaac	: ccacaccaac	atctccgaga	gccaccccaa	tgccactttc	: agcgccgtgg	1500
gtgaggccag	, catctgcgag	gatgactgga	. attccgggga	gaggttcacg	ı tgcaccgtga	1560
cccacacaga	cctgccctcg	ccactgaago	agaccatctc	: ccggcccaaa	ggggtggccc	1620
tgcacaggco	cgatgtctac	: ttgctgccac	cagcccggga	ı gcagctgaac	: ttgcgggagt	1680
cggccaccat	: cacgtgcctg	gtgacgggct	tetetecege	ggacgtcttc	gtgcagtgga	1740
tgcagagggg	g gcagcccttg	ı tccccggaga	agtatgtgad	cagegeeeca	a atgcctgagc	1800
cccaggccc	aggccggtac	: ttcgcccaca	gcatcctgad	c cgtgtccgaa	a gaggaatgga	1860

acacggggga	gacctacacc	tgcgtggtgg	cccatgaggc	cctgcccaac	agggtcaccg	1920
agaggaccgt	ggacaagtcc	accgaggggg	aggtgagcgc	cgacgaggag	ggctttgaga	1980
acctgtgggc	caccgcctcc	accttcatcg	tcctcttcct	cctgagcctc	ttctacagta	2040
ccaccgtcac	cttgttcaag	gtgaaatgat	cccaacagaa	gaacatcgga	gaccagagag	2100
aggaactcaa	agggcgcagc	tacgggtatg	gggtcctgcc	tgcgtggcct	gttggcacgt	2160
gtttctcttc	cccgcccggc	ctccagttgt	gtgctctcac	acaggettee	ttctcgaccg	2220
gcaggggctg	gctggcttgc	aggcacgagg	tgggctctac	cccacactgc	tttgctgtgt	2280
atacgcttgt	tgccctgaaa	taaatatgca	cattttatcc	atgaa		2325

<210> 45

<211> 1901

<212> DNA

<213> Homo sapiens

<400> 45 gtctttccgg cggtgctcgc aagcgaggca gccatgtctt atcccgctga tgattatgag 60 tctgaggcgg cttatgaccc ctacgcttat cccagcgact atgatatgca cacaggagat 120 180 ccaaagcagg accttgctta tgaacgtcag tatgaacagc aaacctatca ggtgatccct 240 gaggtgatca aaaacttcat ccagtatttc cacaaaactg tctcagattt gattgaccag aaagtgtatg agctacaggc cagtcgtgtc tccagtgatg tcattgacca gaaggtgtat 300 gagatccagg acatctatga gaacagctgg accaagctga ctgaaagatt cttcaagaat 360 acaccttggc ccgaggctga agccattgct ccacaggttg gcaatgatgc tgtcttcctg 420 attttataca aagaattata ctacaggcac atatatgcca aagtcagtgg gggaccttcc 480 540 ttggagcaga ggtttgaatc ctattacaac tactgcaatc tcttcaacta cattcttaat 600 gccgatggtc ctgctcccct tgaactaccc aaccagtggc tctgggatat tatcgatgag ttcatctacc agtttcagtc attcagtcag taccgctgta agactgccaa gaagtcagag 660 720 gaggagattg actttcttcg ttccaatccc aaaatctgga atgttcatag tgtcctcaat gtccttcatt ccctggtaga caaatccaac atcaaccgac agttggaggt atacacaagc 780 840 ggaggtgacc ctgagagtgt ggctggggag tatgggcggc actccctcta caaaatgctt ggttacttca gcctggtcgg gcttctccgc ctgcactccc tgttaggaga ttactaccag 900 gccatcaagg tgctggagaa catcgaactg aacaagaaga gtatgtattc ccgtgtgcca 960 gagtgccagg tcaccacata ctattatgtt gggtttgcat atttgatgat gcgtcgttac 1020 caggatgcca tccgggtctt cgccaacatc ctcctctaca tccagaggac caagagcatg 1080 ttccagagga ccacgtacaa gtatgagatg attaacaagc agaatgagca gatgcatgcg 1140

ctgctggcca	ttgccctcac	gatgtacccc	atgcgtatcg	atgagagcat	tcacctccag	1200
ctgcgggaga	aatatgggga	caagatgttg	cgcatgcaga	aaggtgaccc	acaagtctat	1260
gaagaacttt	tcagttactc	ctgccccaag	ttcctgtcgc	ctgtagtgcc	caactatgat	1320
aatgtgcacc	ccaactacca	caaagagccc	ttcctgcagc	agctgaaggt	gttttctgat	1380
gaagtacagc	agcaggccca	gctttcaacc	atccgcagct	tcctgaagct	ctacaccacc	1440
atgcctgtgg	ccaagctggc	tggcttcctg	gacctcacag	agcaggagtt	ccggatccag	1500
cttcttgtct	tcaaacacaa	gatgaagaac	ctcgtgtgga	ccagcggtat	ctcagccctg	1560
gatggtgaat	ttcagtcagc	ctcagaggtt	gacttctaca	tt <u>g</u> ataagga	catgatccac	1620
atcgcggaca	ccaaggtcgc	caggcgttat	ggggatttct	tcatccgtca	gatccacaaa	1680
tttgaggagc	ttaatcgaac	cctgaagaag	atgggacaga	gaccttgatg	atattcacac	1740
acattcagga	acctgttttg	atgtattata	ggcaggaagt	gtttttgcta	ccgtgaaacc	1800
tttacctaga	tcagccatca	gcctgtcaac	tcagttaaca	agttaaggac	cgaagtgttt	1860
caagtggatc	tcagtaaagg	atctttggag	ccagaaaaaa	a		1901

<210> 46

<211> 921

<212> DNA

<213> Homo sapiens

<400> 46 cgcgactccc acttccgccc ttttggctct ctgaccagca ccatggcggt tggcaagaac 60 aagcgcctta cgaaaggcgg caaaaaggga gccaagaaga aagtggttga tccattttct 120 aagaaagatt ggtatgatgt gaaagcacct gctatgttca atataagaaa tattggaaag 180 acgctcgtca ccaggaccca aggaaccaaa attgcatctg atggtctcaa gggtcgtgtg 240 tttgaagtga gtcttgctga tttgcagaat gatgaagttg catttagaaa attcaagctg 300 attactgaag atgttcaggg taaaaactgc ctgactaact tccatggcat ggatcttacc 360 cgtgacaaaa tgtgttccat ggtcaaaaaa tggcagacaa tgattgaagc tcacgttgat 420 gtcaagacta ccgatggtta cttgcttcgt ctgttctgtg ttggttttac taaaaaacgc 480 aacaatcaga tacggaagac ctcttatgct cagcaccaac aggtccgcca aatccggaag 540 aagatgatgg aaatcatgac ccgagaggtg cagacaaatg acttgaaaga agtggtcaat 600 aaattgattc cagacagcat tggaaaagac atagaaaagg cttgccaatc tatttatcct 660 ctccatgatg tcttcgttag aaaagtaaaa atgctgaaga agcccaagtt tgaattggga 720 aagctcatgg agcttcatgg tgaaggcagt agttctggaa aagccactgg ggacgagaca 780

840

ggtgctaaag ttgaacgagc tgatggatat gaaccaccag tccaagaatc tgtttaaagt

tcagacttca	aatagtggca	aataaaaagt	gctatttgtg	atggtttgct	tctgaaaaaa	900
aaaaaaaaa	aaaaaaaaa	a				921
<210> 47 <211> 1510 <212> DNA <213> Homo	o sapiens					
<400> 47 ggactccctt	ttctttggca	agatggcgga	gtacgacttg	actactcgca	tcgcgcactt	60
tttggatcgg	catctagtct	ttccgcttct	tgaatttctc	tctgtaaagg	agatatataa	120
tgaaaaggaa	ttattacaag	gtaaattgga	ccttcttagt	gataccaaca	tggtagactt	180
tgctatggat	gtatacaaaa	acctttattc	tgatgatatt	cctcatgctt	tgagagagaa	240
aagaaccaca	gtggttgcac	aactgaaaca	gcttcaggca	gaaacagaac	caattgtgaa	300
gatgtttgaa	gatccagaaa	ctacaaggca	aatgcagtca	accagggatg	gtaggatgct	360
ctttgactac	ctggcggaca	agcatggttt	taggcaggaa	tatttagata	cactctacag	420
atatgcaaaa	ttccagtacg	aatgtgggaa	ttactcagga	gcagcagaat	atctttattt	480
ttttagagtg	ctggttccag	caacagatag	aaatgcttta	agttcactct	ggggaaagct	540
ggcctctgaa	atcttaatgc	agaattggga	tgcagccatg	gaagacctta	cacggttaaa	600
agagaccata	gataataatt	ctgtgagttc	tccacttcag	tctcttcagc	agagaacatg	660
gctcattcac	tggtctctgt	ttgttttctt	caatcacccc	aaaggtcgcg	ataatattat	720
tgacctcttc	ctttatcagc	cacaatatct	taatgcaatt	cagacaatgt	gtccacacat	780
tcttcgctat	ttgactacag	cagtcataac	aaacaaggat	gttcgaaaac	gtcggcaggt	840
tctaaaagat	ctagttaaag	ttattcaaca	ggagtcttac	acatataaag	acccaattac	900
agaatttgtt	gaatgtttat	atgttaactt	tgactttgat	ggggctcaga	aaaagctgag	960
ggaatgtgaa	tcagtgcttg	tgaatgactt	cttcttggtg	gcttgtcttg	aggatttcat	1020
tgaaaatgco	cgtctcttca	tatttgagac	tttctgtcgc	atccaccagt	gtatcagcat	1080
taacatgttg	gcagataaat	tgaacatgac	tccagaagaa	gctgaaaggt	ggattgtaaa	1140
tttgattaga	. aatgcaagac	tggatgccaa	gattgattct	aaattaggtc	atgtggttat	1200
gggtaacaat	gcagtctcac	cctatcagca	agtgattgaa	aagaccaaaa	gcctttcctt	1260
tagaagccag	atgttggcca	tgaatattga	. gaagaaactt	aatcagaata	. gcaggtcaga	1320
ggctcctaac	: tgggcaacto	aagattctgg	cttctactga	. agaaccataa	. agaaaagatg	1380
aaaaaaaaa	ı ctatcaaaga	aagatgaaat	aataaaacta	ttatataaag	ggtgacttac	1440
attttggaaa	caacatatta	cgtataaatt	. ttgaagaatt	ggaataaaat	tgattcattt	1500

taaaaaaaaa 1510

<210> 48 <211> 2828 <212> DNA <213> Homo sapiens <400> 48 ggcacgaggc gcccgcctgc tacgagtaga acgctgtccg cagcttgcgc atttcgcagc 60 cgctgccgcc tcgccgctgc tccttcgtaa ggccacttcc gcacaccgac accaacatga 120 acggacaget caacggette cacgaggegt teategagga gggeacatte etttteacet 180 240 cagagtcggt cggggaaggc cacccagata agatttgtga ccaaatcagt gatgctgtcc ttgatgccca ccttcagcag gatcctgatg ccaaagtagc ttgtgaaact gttgctaaaa 300 360 ctggaatgat ccttcttgct ggggaaatta catccagagc tgctgttgac taccagaaag tggttcgtga agctgttaaa cacattggat atgatgattc ttccaaaggt tttgactaca 420 agacttgtaa cgtgctggta gccttggagc aacagtcacc agatattgct caaggtgttc 480 atcttgacag aaatgaagaa gacattggtg ctggagacca gggcttaatg tttggctatg 540 ccactgatga aactgaggag tgtatgcctt taaccattgt cttggcacac aagctaaatg 600 ccaaactggc agaactacgc cgtaatggca ctttgccttg gttacgccct gattctaaaa 660 ctcaagttac tgtgcagtat atgcaggatc gaggtgctgt gcttcccatc agagtccaca 720 caattgttat atctgttcag catgatgaag aggtttgtct tgatgaaatg agggatgccc 780 taaaggagaa agtcatcaaa gcagttgtgc ctgcgaaata ccttgatgag gatacaatct 840 accacctaca gccaagtggc agatttgtta ttggtgggcc tcagggtgat gctggtttga 900 ctggacgcaa aatcattgtg gacacttatg gcggttgggg tgctcatgga ggaggtgcct 960 tttcaggaaa ggattatacc aaggtcgacc gttcagctgc ttatgctgct cgttgggtgg 1020 caaaatccct tgttaaagga ggtctgtgcc ggagggttct tgttcaggtc tcttatgcta 1080 ttggagtttc tcatccatta tctatctcca ttttccatta tggtacctct cagaagagtg 1140 agagagagct attagagatt gtgaagaaga atttcgatct ccgccctggg gtcattgtca 1200 gggatctgga tctgaagaag ccaatttatc agaggactgc agcctatggc cactttggta 1260 gggacagctt cccatgggaa gtgcccaaaa agcttaaata ttgaaagtgt tagccttttt 1320 1380 tccccagact tgttggcgta ggctacagag aagccttcaa gctctgaggg aaagggccct 1440 ccttcctaaa ttttcctgtc ctctttcagc tcctgaccag ttgcagtcac tctagtcaat

gacatgaatt ttagcttttg tgggggactg taagttgggc ttgctattct gtccctaggt

gttttgttca ccattataat gaatttagtg agcataggtg atccatgtaa ctgcctagaa

1500

1560

acaacactgt	agtaaataat	gctttgaaat	tgaacctttg	tgccctatca	cccaacgctc	1620
caaagtcata	attgcattga	ctttccccac	cagatgctga	aaatgtcctt	gtgatgtgca	1680
cgtaaagtac	ttgtagttcc	acttatagcc	tetgtetgge	aatgccacag	ccctgtcagc	1740
atgaatttgt	aatgtcttga	gctctattat	gaatgtgaag	ccttcccctt	atcctccctg	1800
taacttgatc	catttctaat	tatgtagctc	tttgtcaggg	agtgttccct	atccaatcaa	1860
tcttgcatgt	aacgcaagtt	cccagttgga	gctccagcct	gacatcaaaa	aaggcagtta	1920
ccattaaacc	atctccctgg	tgcttatgct	cttaattgcc	acctctaaca	gcaccaaatc	1980
aaaatctctc	cactttcagc	tgtcttttgg	aggacgtacg	taataaggtt	ttaatttagt	2040
aaaccaatcc	tatgcatggt	ttcagcacta	gccaaacctc	accaactcct	agttctagaa	2100
aaacaggcac	ttggcagcct	tgtgatgtca	tacagagaag	tcacagggca	gtacctgagg	2160
gtctgtaggt	tgcacacttt	ggtaccagat	aactttttt	tttctttata	agaaagcctg	2220
agtactccac	actgcacaat	aactcctccc	agggttttaa	ctttgtttta	ttttcaaaac	2280
caggtccaat	gagctttctg	aacagctggt	gtagctacag	agaaaccagc	ttccttcaga	2340
gagcagtgct	tttggcgggg	aggaggaaat	cccttcatac	ttgaacgttt	tctaattgct	2400
tatttattgt	attctggggt	atggcgtaag	tacagagaag	ccatcacctc	agatggcagc	2460
ttttaaaaga	tttttttt	ttctctcaac	accatgattc	ctttaacaac	atgtttccag	2520
cattcccagg	taggccaagg	tgtcctacag	aaaaaccttg	ggttagacct	acagggggtc	2580
tggctggtgt	taacagaagg	gagggcagag	ctggtgcggc	tggccatgga	gaaagctgac	2640
ttggctggtg	tggtacagag	aagccagctt	gtttacatgc	ttattccatg	actgcttgcc	2700
ctaagcagaa	agtgcctttc	aggatctatt	tttggaggtt	tattacgtat	gtctggttct	2760
caattccaac	: agtttaatga	agatctaaat	aaaatgctag	gttctacctt	aaaaaaaaa	2820
aaaaaaaa						2828

<210> 49

<211> 574

<212> DNA

<213> Homo sapiens

<400> 49

cctttctaac teegetgeeg ccatggetee tgtgaaaaag cttgtggtga aggggggcaa 60
aaaaaagaag caagttetga agttcactet tgattgeace caccetgtag aagatggaat 120
catggatget gccaattttg agcagttttt gcaagaaagg atcaaagtga aeggaaaage 180
tgggaacett ggtggagggg tggtgaceat cgaaaggage aagagcaaga teacegtgac 240
atcegaggtg cettteteea aaaggtattt gaaatatete accaaaaaat atttgaagaa 300

gaataatcta	cgtgactggt	tgcgcgtagt	tgctaacagc	aaagagagtt	acgaattacg	360
ttacttccag	attaaccagg	acgaagaaga	ggaggaagac	gaggattaaa	tttcatttat	420
ctggaaaatt	ttgtatgagt	tcttgaataa	aacttgggaa	ccaaaatggt	ggtttatcct	480
tgtatctctg	cagtgtggat	tgaacagaaa	attggaaatc	atagtcaaag	ggcttccctt	540
ggttcgccac	tcatttattt	gtaacttgac	ttct			574
<210> 50 <211> 921 <212> DNA <213> Homo	o sapiens					
<400> 50 cgcgactccc	acttccgccc	ttttggctct	ctgaccagca	ccatggcggt	tggcaagaac	60
aagcgcctta	cgaaaggcgg	caaaaaggga	gccaagaaga	aagtggttga	tccattttct	120
aagaaagatt	ggtatgatgt	gaaagcacct	gctatgttca	atataagaaa	tattggaaag	180
acgctcgtca	ccaggaccca	aggaaccaaa	attgcatctg	atggtctcaa	gggtcgtgtg	240
tttgaagtga	gtcttgctga	tttgcagaat	gatgaagttg	catttagaaa	attcaagctg	300
attactgaag	atgttcaggg	taaaaactgc	ctgactaact	tccatggcat	ggatcttacc	360
cgtgacaaaa	tgtgttccat	ggtcaaaaaa	tggcagacaa	tgattgaagc	tcacgttgat	420
gtcaagacta	ccgatggtta	cttgcttcgt	ctgttctgtg	ttggttttac	taaaaaacgc	480
aacaatcaga	tacggaagac	ctcttatgct	cagcaccaac	aggtccgcca	aatccggaag	540
aagatgatgg	aaatcatgac	ccgagaggtg	cagacaaatg	acttgaaaga	agtggtcaat	600
aaattgattc	cagacagcat	tggaaaagac	atagaaaagg	cttgccaatc	tatttatcct	660
ctccatgatg	tcttcgttag	aaaagtaaaa	atgctgaaga	agcccaagtt	tgaattggga	720
aagctcatgg	agcttcatgg	tgaaggcagt	agttctggaa	aagccactgg	ggacgagaca	780
ggtgctaaag	ttgaacgagc	tgatggatat	gaaccaccag	tccaagaatc	tgtttaaagt	840
tcagacttca	aatagtggca	aataaaaagt	gctatttgtg	atggtttgct	tctgaaaaaa	900
aaaaaaaaaa	. aaaaaaaaaa	. a				921
<210> 51 <211> 210 <212> DNA <213> Hom						
<400> 51 gtatacgaaa	tcataaaatc	: tcatagatgt	: atcctgagta	gggcggggcc	: cgtgaaaccc	60
					g atagtgaact	120
					: tctgaaacca	180

tttacttaca	agtggtccat	ttacttacaa	gtgtcagagc	acgttaaagt	gtgatggcgt	240
acatcttgca	gtatgggccg	gcgagttatg	ttaatatgca	aggttaagca	gaaaaaagcg	300
gagccgtagg	gaaaccgagt	ctgaataggg	cgactttagt	atattggcat	atacccgaaa	360
tcaggtgatc	tatccatgag	caggttgaag	cttaggtaaa	actaagtgga	ggaccgaacc	420
gtagtacgct	aaaaagtgcc	cggatggact	tgtggatagt	ggtgaaattc	caatcgaacc	480
tggagatagc	tggttctctt	cgaaatagct	ttagggctag	cgtatagtat	tgtttaatgg	540
gggtagagca	ctgaatgtgg	aatggcggca	tctagctgta	ctgactataa	tcaaactccg	600
aataccatta	aaattaagct	atgcagtcgg	aacgtggtat	caccattgat	atctccttgt	660
ggaaatttga	gaccagcaag	tactatgtga	ctatcattga	tgccccagga	cacagagact	720
ttatccaaaa	catgattaca	gggacctctc	aggctgactg	tgctgtcctg	attgttgctg	780
ctggtgttgg	tgaatttgaa	gctggtatct	ccaagaatgg	gcagacccga	gagcatgccc	840
ttctggctta	cacactgggt	gtgaaacaac	taattgtcgg	tgttaacaaa	atggattcca	900
ctgagccacc	ctacagccag	aagagatatg	aggaaattgt	taaggaagtc	agcacttaca	960
ttaagaaaat	tggctacaac	cccgacacag	tagcatttgt	gccaatttct	ggttggaatg	1020
gtgacaacat	gctggagcca	agtgctaaca	tgccttggtt	caagggatgg	aaagtcaccc	1080
gtaaggatgg	caatgccagt	ggaaccacgc	tgcttgaggc	tctggactgc	atcctaccac	1140
caactcgtcc	aactgacaag	cccttgggcc	tgcctctcca	ggatgtctac	aaaattggtg	1200
gtattggtac	tgttcctgtt	ggccgagtgg	agactggtgt	tctcaaaccc	ggtatggtgg	1260
tcacctttgg	tccagtcaac	gttacaacgg	aagtaaaatc	tgtcgaaatg	caccatgaag	1320
ctttgggtga	. agctcttcct	ggggacaatg	tgggcttcaa	tgtcaagaat	gtgtctgtca	1380
aggatgttcg	tcgtggcaac	gttgctggtg	acagcaaaaa	tgacccacca	atggaagcag	1440
ctggcttccc	: tgctcaggtg	attatcctga	. accatccagg	ccaaataago	gccggctatg	1500
cccctgtatt	ggattgccac	acggctcaca	ttgcatgcaa	gtttgctgag	ctgaaggaaa	1560
agattgatcg	g ccgttctggt	aaaaagctgg	aagatggccc	taaattcttg	aagtctggtg	1620
atgctgccat	: tgttgatatg	gttcctggca	agcccatgtg	tgttgagago	: ttctcagact	1680
atccaccttt	gggctgcttt	gctgttcgtg	, atatgagaca	gacagttgcc	g gtgggtgtca	1740
tcaaagcagt	ggacaagaag	gctgctggag	g ctggcaaggt	caccaagtct	gcccagaaag	1800
ctcagaaggo	: taaatgaata	ttatccctaa	tcctcccacc	ccactcttaa	a tcagtggtgg	1860
aagaccggto	: tcagaactgt	: ttgtttcaat	tgccatttaa	gtttagtagt	aaaagactgg	1920
ttaatgataa	a caatgcatco	, taaaaccttt	cagaaggaaa	ggagaatgtt	ttgtggacac	1980

gttggttttc ttttttgcgt gtggcagttt tagttattag tttttaaaat cagtactttt	2040
taatggaaac aacttgaccc ccaaatttgt cacagaattt tgggacccat taaaaggtta	2100
actggg	2106
<210> 52 <211> 925 <212> DNA <213> Homo sapiens	
<400> 52 ttttttctgc taccgtgact aagatggaag cgtttttggg gtcgcggtcc ggactttggg	60
cggggggtcc ggccccagga cagttttacc gcattccgtc cactcccgat tccttcatgg	120
atccggcgtc tgcactttac agaggtccaa tcacgcggac ccagaacccc atggtgaccg	180
ggacctcagt cctcggcgtt aagttcgagg gcggagtggt gattgccgca gacatgctgg	240
gatectaegg etecttgget egttteegea acateteteg eattatgega gteaacaaea	300
gtaccatget gggtgcctet ggcgactacg ctgatttcca gtatttgaag caagttctcg	360
gccagatggt gattgatgag gagcttctgg gagatggaca cagctatagt cctagagcta	420
ttcattcatg gctgaccagg gccatgtaca gccggcgctc gaagatgaac cctttgtgga	480
acaccatggt catcggaggc tatgctgatg gagagagctt cctcggttat gtggacatgc	540
ttggtgtagc ctatgaagcc ccttcgctgg ccactggtta tggtgcatac ttggctcagc	600
ctctgctgcg agaagttctg gagaagcagc cagtgctaag ccagaccgag gcccgcgact	660
tagtagaacg ctgcatgcga gtgctgtact accgagatgc ccgttcttac aaccggtttc	720
aaatcgccac tgtcaccgaa aaaggtgttg aaatagaggg accattgtct acagagacca	780
actgggatat tgcccacatg atcagtggct ttgaatgaaa tacagatgca ttatccagaa	840
ctgaagttgc cctactttta actttgaact tggctagttc aaagatagac tcttcttttg	900
taaagtaaat aaattettea aaatg	925
<210> 53 <211> 1487 <212> DNA <213> Homo sapiens	
<400> 53 ctggtctaac agacccgcga gaacgaagga cgcttgcctt tttccggtcg gggaaggggg	60
aagaaggtaa cttccggtga cggggttgca tcacttcctc tcaagcttgg cgtttgtttg	120
gtggggttac acgcgggttc aacatgcgta tcgaaaagtg ttatttctgt tcggggccca	180
tctatcctgg acacggcatg atgttcgtcc gcaacgattg caaggtgttc agattttgca	240
aatctaaatg tcataaaaac tttaaaaaga agcgcaatcc tcgcaaagtt aggtggacca	300

aagcattccg	gaaagcagct	ggtaaagagc	ttacagtgga	taattcattt	gaatttgaaa	360
aacgtagaaa	tgaacctatc	aaataccagc	gagagctatg	gaataaaact	attgatgcga	420
tgaagagagt	tgaagaaatc	aaacagaagc	gccaagctaa	atttataatg	aacagattga	480
agaaaaataa	agagctacag	aaagttcagg	atatcaaaga	agtcaagcaa	aacatccatc	540
ttatccgagc	ccctcttgca	ggcaaaggga	aacagttgga	agagaaaatg	gtacagcagt	600
tacaagagga	tgtggacatg	gaagatgctc	cttaaaaatc	tctgtaacca	tttcttttat	660
gtacatttga	aaatgccctt	tggatacttg	gaactgctaa	attattttat	tttttacata	720
aggtcactta	aatgaaaagc	gattaaaaga	catctttcct	gcattgccat	ctacataata	780
tcagatatta	cggatgttag	attgcatctc	agtgttaaat	ctttactgat	agatgtactt	840
aagtaaatca	tgaaaattct	acttgtaact	atagaagtga	attgtggacg	taaaatggtt	900
gtgctatttg	gataatggca	ctaggcagca	tttgtatagt	aactaatggc	aaaaattcat	960
ggctagtgat	gtataaaata	aaatattctt	tgcagtaaaa	tattcccttt	gttaatgtta	1020
tagaaggggg	gatacaaaaa	ggaactaaca	atttgtatgg	cagtgtcaga	tatttttatt	1080
ttagtatttc	ctgttttggt	ttatttgcat	cttagaagag	cataatgaca	ttgtttgatg	1140
aagcctaatt	atgctggact	gttttgacct	ggtttaaccc	ttctgatagg	tagttgtgga	1200
tgctggggat	gagaactgaa	taatctttgc	ctggagtgac	actacactct	agaatttcca	1260
ctttggagaa	tactcagttc	caacttgtga	ttcctgatag	aacagacttt	acttttctag	1320
cccagcattg	atctagaagc	agaggaatcc	cagcgccttt	taaaagttgt	tatgtggttt	1380
tcttttaaaa	agctcctgtt	tttggaaagt	agaatttatg	ggtacaacgt	atgttcatta	1440
tttgtacata	aaataaaacc	atttaaaaag	taaaaaaaaa	aaaaaaa		1487

<210> 54

<211> 1245

<212> DNA

<213> Homo sapiens

<400> 54
ggcacgaggc aggcgctgac gaggagcccg gctgagggag gatgcgccgc tgacgcctgc 60
gggagccgcg cgcctggggc gggaggatgc tccagagggg cctctggccg tggcgcacgc 120
ggctgctgcc gacccctggc acctggcgcc cagcgcgccc gtggccgctg ccgcctccgc 180
cccaggtttt gcgtgtgaag ctgtgtggaa atgtgaaata ctaccagtca caccattata 240
gtaccgtggt gccacctgat gaaataacag ttattatag acatggcctt cccttggtaa 300
cacttacctt gccatctaga aaagaacgtt gtcaattcgt agtcaaacca atgttgtcaa 360
cagttggttc attccttcag gacctacaaa atgaagataa gggtatcaaa actgcagcca 420

tcttcacagc	agatggcaac	atgatttcag	cttctacctt	gatggatatt	ttgctaatga	480
atgattttaa	acttgtcatt	aataaaatag	catatgatgt	gcagtgtcca	aagagagaaa	540
aaccaagtaa	tgagcacact	gctgagatgg	aacacatgaa	atccttggtt	cacagactat	600
ttacaatctt	gcatttagaa	gagtctcaga	aaaagagaga	gcaccattta	ctggagaaaa	660
ttgaccacct	gaaggaacag	ctgcagcccc	ttgaacaggt	gaaagctgga	atagaagctc	720
attcggaagc	caaaaccagt	ggactcctgt	gggctggatt	ggcactgctg	tccattcagg	780
gtggggcact	ggcctggctc	acgtggtggg	tgtactcctg	ggatatcatg	gagccagtta	840
catacttcat	cacatttgca	aattctatgg	tcttttttgc	atactttata	gtcactcgac	900
aggattatac	ttactcagct	gttaagagta	ggcaatttct	tcagttcttc	cacaagaaat	960
caaagcaaca	gcactttgat	gtgcagcaat	acaacaagtt	aaaagaagac	cttgctaagg	1020
ctaaagaatc	cctgaaacag	gcgcgtcatt	ctctctgttt	gcaaatgcaa	gtagaagaac	1080
tcaatgaaaa	gaattaatct	tacagtttta	aatgtcgtca	gattttccat	tatgtattga	1140
ttttgcaact	taggatgttt	ttgagtccca	tggttcattt	tgattgttta	atctttgtta	1200
ttaaattctt	gtaaaacaga	aaaaaaaaaa	aaaaaaaaaa	aaaaa		1245

<210> 55 <211> 440

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (228)..(228)

<223> n is a, c, g, t or u

<400> 55

tttgatgtat gtgttgtcgt gcaggtagag gcttactaga gtgtaaaacg taggcttgga 60 ttaaggcgaa cgatttctag gatagtcagt agaattagaa ttgtgaagat gataagtgta 120 180 gagggaaggt taatggttga tattgctagg gtggtgcttc caattaggtg catgaagagg tggcctgcag taatgttagc gcgttaggcg tacggccaga ggctattngg ttgaatgagt 240 300 aggctgatgg tttcgataat aactagtatg gggaataagg gtgtaagtgt tccctgtggt aaaaaatagg ccaaggcaat tttaaaccta gagcgaaagc gcataaacac tgggcccgcg 360 cataaagggg ttgccacagc taaggttata gataaattgg tgggttgtgt aaaagagaga 420 440 ggcacgagtc cccggaggtt

<210> 56 <211> 3148

<212> DNA

<213> Homo sapiens

<400> 56 cgccgccatc ctcggcgcga ctcgcttctt tcggttctac ctgggagaat ccaccgccat 60 ccgccaccat ggtgaacttc acggtagacc agatccgcgc catcatggac aagaaggcca 120 acatecgeaa catgtetgte ategeceacg tggaceatgg caagtecaeg etgacagaet 180 240 ccctggtgtg caaggcgggc atcatcgcct cggcccgggc cggggagaca cgcttcactg 300 atacceggaa ggaegageag gagegttgea teaccateaa gteaactgee atetecetet tctacgagct ctcggagaat gacttgaact tcatcaagca gagcaaggac ggtgccggct 360 tecteateaa ecteattgae tecceeggge atgtegaett etecteggag gtgaetgetg 420 ccctccgagt caccgatggc gcattggtgg tggtggactg cgtgtcaggc gtgtgcgtgc 480 agacggagac agtgctgcgg caggccattg ccgagcgcat caagcctgtg ctgatgatga 540 acaagatgga ccgcgccctg ctggagctgc agctggagcc cgaggagctc taccagactt 600 tccagcgcat cgtggagaac gtgaacgtca tcatctccac ctacggcgag ggcgagagcg 660 gccccatggg caacatcatg atcgatcctg tcctcggtac cgtgggcttt gggtctggcc 720 tccacgggtg ggccttcacc ctgaagcagt ttgccgagat gtatgtggcc aagttcgccg 780 ccaaggggga gggccagttg gggcctgccg agcgggccaa gaaagtagag gacatgatga 840 agaagctgtg gggtgacagg tactttgacc cagccaacgg caagttcagc aagtcagcca 900 ccagccccga agggaagaag ctgccacgca ccttctgcca gctgatcctg gaccccatct 960 tcaaggtgtt tgatgcgatc atgaatttca agaaagagga gacagcaaaa ctgatagaga 1020 1080 aactggacat caaactggac agcgaggaca aggacaaaga aggcaaaccc ctgctgaagg ctgtgatgcg ccgctggctg cctgccggag acgccttgtt gcagatgatc accatccacc 1140 tgccctcccc tgtgacggcc cagaagtacc gctgcgagct cctgtacgag gggcccccgg 1200 acgacgaggc tgccatgggc attaaaagct gtgaccccaa aggccctctt atgatgtata 1260 tttccaaaat ggtgccaacc tccgacaaag gtcggttcta cgcctttgga cgagtcttct 1320 1380 cggggctggt ctccactggc ctgaaggtca ggatcatggg gcccaactat acccctggga agaaggagga cctctacctg aagccaatcc agagaacaat cttgatgatg ggccgctacg 1440 tggagcccat cgaggatgtg ccttgtggga acattgtggg cctcgtgggc gtggaccagt 1500 tectggtgaa gaegggeace ateaceacet tegageaege geacaacatg egggtgatga 1560 1620 agttcagcgt cagccctgtt gtcagagtgg ccgtggaggc caagaacccg gctgacctgc ccaagctggt ggaggggctg aagcggctgg ccaagtccga ccccatggtg cagtgcatca 1680 tegaggagte gggagageae ateategegg gegeeggega getgeaeetg gagatetgee 1740

tgaaggacct	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	aacacctaca	tccccatcaa	gaaatctgac	ccaatcatct	1800
cgtaccgcga	gacggtcagt	gaagagtcga	acgtgctctg	cctctccaag	tcccccaaca	1860
agcacaaccg	gctgtacatg	aaggcgcggc	ccttccccga	cggcctggcc	gaggacatcg	1920
ataaaggcga	ggtgtccgcc	cgtcaggagc	tcaagcagcg	ggcgcgctac	ctggccgaga	1980
agtacgagtg	ggacgtggct	gaggcccgca	agatctggtg	ctttgggccc	gacggcaccg	2040
gccccaacat	cctcaccgac	atcaccaagg	gtgtgcagta	cctcaacgag	atcaaggaca	2100
gtgtggtggc	cggcttccag	tgggccacca	aggagggcgc	actgtgtgag	gagaacatgc	2160
ggggtgtgcg	cttcgacgtc	cacgacgtca	ccctgcacgc	cgacgccatc	caccgcggag	2220
ggggccagat	catccccaca	gcacggcgct	gcctctacgc	cagtgtgctg	accgcccagc	2280
cacgcctcat	ggagcccatc	taccttgtgg	agatccagtg	tccagagcag	gtggtcggtg	2340
gcatctacgg	ggttttgaac	aggaagcggg	gccacgtgtt	cgaggagtcc	caggtggccg	2400
gcacccccat	gtttgtggtc	aaggcctatc	tgcccgtcaa	cgagtccttt	ggcttcaccg	2460
ctgacctgag	gtccaacacg	ggcggccagg	cgttccccca	gtgtgtgttt	gaccactggc	2520
agatcctgcc	cggagacccc	ttcgacaaca	gcagccgccc	cagccaggtg	gtggcggaga	2580
cccgcaagcg	caagggcctg	aaagaaggca	tccctgccct	ggacaacttc	ctggacaaat	2640
tgtaggcggc	ccttcctgca	gegeetgeeg	ccccggggac	tcgcagcacc	cacagcacca	2700
cgtcctcgaa	ttctcagacg	acacctggag	actgtcccga	cacagcgacg	ctcccctgag	2760
aggtttctgg	ggcccgctgc	gtgccatcac	tcaaccataa	cacttgatgc	cgtttctttc	2820
aatatttatt	tccagagtcc	ggaggcagca	gacacgccct	cttagtaggg	acttaatggg	2880
ccggtcgggg	agggggaggc	gggatgggac	acccaacact	ttttccattt	cttcagaggg	2940
aaactcagat	gtccaaacta	attttaacaa	acgcattaag	aggtttattt	. gggtacatgg	3000
cccgcagtgg	cttttgcccc	agaaagggga	. aaggaacacg	gggtagatg	g atttctagca	3060
ggcaggaagt	cctgtgcggt	gtcaccatga	gcacctccag	g ctgtactagt	gccattggaa	3120
taataaattt	gataaggtgg	tgaaaaaa				3148

<210> 57 <211> 1404

<400> 57
ctgtactgtc ttgtttagtg tagaagggaa gagaattggt gctgcagaag tgtacccgc 60
atgaagccga tgagaaacct cgtgttagtc tgacatgcac tcactcatcc atttctatag 120
gatgcacaat gcatgtggc cctaatattg aggccttatc cctgcagcta ggaggggag 180

<212> DNA

<213> Homo sapiens

gggttgttgc	tgctttgctt	cgtgttttct	tctaacctgg	caaggagaga	gccaggccct	240
ggtcagggct	cccgtgccgc	ctttggcggt	tctgtttctg	tgctgatctg	gaccatcttt	300
gtcttgcctt	ttcacggtag	tggtccccat	gctgaccctc	atctgggcct	gggccctctg	360
ccaagtgccc	ctgtgggatg	ggaggagtga	ggcagtggga	gaagaggtgg	tggtcgtttc	420
tatgcattca	ggctgccttt	ggggctgcct	cccttcttat	tcttccttgc	tgcacgtcca	480
tctcttttcc	tgtctttgag	attgacctga	ctgctctggc	aagaagaaga	ggtgtcctta	540
cagaggcctc	tttactgacc	aactgaagta	tagacttact	gctggacaat	ctgcatgggc	600
atcacccctc	cccgcatgta	acccaaaaga	ggtgtccaga	gccaaggctt	ctaccttcat	660
tgtccctctc	tgtgctcaag	gagttccatt	ccaggaggaa	gagatctata	ccctaagcag	720
atagcaaaga	agataatgga	ggagcaattg	gtcatggcct	tggtttccct	caaaacaacg	780
ctgcagattt	atctgcacaa	acatctccac	ttttggggga	aaggtgggta	gattccagtt	840
ccctggacta	ccttcaggag	gcacgagagc	tgggagaaga	ggcaaagcta	caggtttact	900
tgggagccag	ctgagaagag	agcagactca	caggtgctgg	tgcttggatt	tagccaggct	960
cctccgagca	cctcatgcat	gtcccagccc	ctgggcccta	gccctttcct	gccctgcagt	1020
ctgcagtgcc	agcacgcaaa	tcccttcacc	acagggtttc	gttttgctgg	cttgaagaca	1080
aatggtctta	gaattcattg	agacccatag	cttcatatgg	ctgctccagc	cccacttctt	1140
agcattctta	ctcctcttct	ggggctaatg	tcagcatcta	tagacaatag	actattaaaa	1200
aatcaccttt	taaacaagaa	acggaaggca	tttgatgcag	aatttttgca	tgacaacata	1260
gaaataattt	aaaaatagtg	tttgttctga	atgttggtag	acccttcata	gctttgttac	1320
aatgaaacct	tgaactgaaa	atatttaata	aaataacctt	taaacagtca	aaaaaaaaaa	1380
aaaaaaaaaa	aaaaaaaaa	aaaa				1404
<210> 58 <211> 148 <212> DNA <213> Hom						

gacagtegee agggatgget gagegtgaag atgeageggg tgteeggget geteteetgg 60 acgctgagca gagtcctgtg gctctccggc ctctctgagc cgggagctgc ccggcagccc 120 cggatcatgg aagagaaagc gctagaggtt tatgatttga ttagaactat ccgggaccca 180 gaaaagccca atactttaga agaactggaa gtggtctcgg aaagttgtgt ggaagttcag 240 gagataaatg aagaagaata totggttatt atcaggttca cgccaacagt acctcattgc 300 tctttggcga ctcttattgg gctgtgctta agagtaaaac ttcagcgatg tttaccattt 360

aaacataagt	tggaaatcta	catttctgaa	ggaacccact	caacagaaga	agacatcaat	420
aagcagataa	atgacaaaga	gcgagtggca	gctgcaatgg	aaaaccccaa	cttacgggaa	480
attgtggaac	agtgtgtcct	tgaacctgac	tgatagctgt	tttaagagcc	actggcctgt	540
aattgtttga	tatatttgtt	taaactcttt	gtataatgtc	agagactcat	gtttaataca	600
taggtgattt	gtacctcaga	gcattttta	aaggattctt	tccaagcgag	atttaattat	660
aaggtagtac	ctaatttgtt	caatgtataa	cattctcagg	atttgtaaca	cttaaatgat	720
cagacagaat	aatattttct	agttattatg	tgtaagatga	gttgctattt	ttctgatgct	780
cattctgata	caactatttt	tcgtgtcaaa	tatctactgt	gcccaaatgt	actcaattta	840
aatcattact	ctgtaaaata	aataagcaga	tgattcttaa	aaaaaaaaa	aaaaaaaaa	900
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	960
acctttctcg	ttccccggcc	atcttagcgg	ctgctgttgg	ttgggggccg	tecegetect	1020
aaggcaggaa	gatggtggcc	gcaaagaaga	cgaaaaagtc	gctggagtcg	atcaactcta	1080
ggctccaact	cgttatgaaa	agtgggaagt	acgtcctggg	gtacaagcag	actctgaaga	1140
tgatcagaca	aggcaaagcg	aaattggtca	ttctcgctaa	caactgccca	gctttgagga	1200
aatctgaaat	agagtactat	gctatgttgg	ctaaaactgg	tgtccatcac	tacagtggca	1260
ataatattga	actgggcaca	gcatgcggaa	aatactacag	agtgtgcaca	ctggctatca	1320
ttgatccagg	tgactctgac	atcattagaa	gcatgccaga	acagactggt	gaaaagtaaa	1380
ccttttcacc	tacaaaattt	cacctgcaaa	ccttaaacct	gcaaaatttt	cctttaataa	1440
aatttgcttg	tttaaaaaa	aaaaacaaaa	aaaaaaaaaa	aaa		1483

<210> 59

<211> 1934

<212> DNA

<213> Homo sapiens

<400> 59 giccatgggg accetegeet tegatgaata tgggegeeet tteeteatea teaaggatea 60 ggaccgcaag tcccgtctta tgggacttga ggccctcaag tctcatataa tggcagcaaa 120 ggctgtagca aatacaatga gaacatcact tggaccaaat gggcttgata agatgatggt 180 ggataaggat ggggatgtga ctgtaactaa tgatggggcc accatcttaa gcatgatgga 240 300 tgttgatcat cagattgcca agctgatggt ggaactgtcc aagtctcagg atgatgaaat tggagatgga accacaggag tggttgtcct ggctggtgcc ttgttagaag aagcggagca 360 420 attgctagac cgaggcattc acccaatcag aatagccgat ggctatgagc aggctgctcg cgttgctatt gaacacctgg acaagatcag cgatagcgtc cttgttgaca taaaggacac 480

cgaacccctg	attcagacag	caaaaaccac	gctgggctcc	aaagtggtca	acagttgtca	540
ccgacagatg	gctgagattg	ctgtgaatgc	cgtcctcact	gtagcagata	tggagcggag	600
agacgttgac	tttgagctta	tcaaagtaga	aggcaaagtg	ggcggcaggc	tggaggacac	660
taaactgatt	aagggcgtga	ttgtggacaa	ggatttcagt	cacccacaga	tgccaaaaaa	720
agtggaagat	gcgaagattg	caattctcac	atgtccattt	gaaccaccca	aaccaaaaac	780
aaagcataag	ctggatgtga	cctctgtcga	agattataaa	gcccttcaga	aatacgaaaa	840
ggagaaattt	gaagagatga	ttcaacaaat	taaagagact	ggtgctaacc	tagcaatttg	900
tcagtggggc	tttgatgatg	aagcaaatca	cttacttctt	cagaacaact	tgectgeggt	960
tcgctgggta	ggaggacctg	aaattgagct	gattgccatc	gcaacaggag	ggcggatcgt	1020
ccccaggttc	tcagagctca	cagccgagaa	gctgggcttt	gctggtcttg	tacaggagat	1080
ctcatttggg	acaactaagg	ataaaatgct	ggtcatcgag	cagtgtaaga	actccagagc	1140
tgtaaccatt	tttattagag	gaggaaataa	gatgatcatt	gaggaggcga	aacgatccct	1200
tcacgatgct	ttgtgtgtca	tccggaacct	catccgcgat	aatcgtgtgg	tgtatggagg	1260
aggggctgct	gagatatcct	gtgccctggc	agttagccaa	gaggcggata	agtgccccac	1320
cttagaacag	tatgccatga	gagcgtttgc	cgacgcactg	gaggtcatcc	ccatggccct	1380
ctctgaaaac	agtggcatga	atcccatcca	gactatgacc	gaagtccgag	ccagacaggt	1440
gaaggagatg	aaccctgctc	ttggcatcga	ctgtttgcac	aaggggacaa	atgatatgaa	1500
gcaacagcat	gtcatagaaa	ccttgattgg	caaaaagcaa	cagatatctc	ttgcaacaca	1560
aatggttaga	atgattttga	agattgatga	cattcgtaag	cctggagaat	ctgaagaatg	1620
aagacattga	gaaaactatg	tagcaagato	cacttctgtg	attaagtaaa	tggatgtctc	1680
gtgatgcgtc	: tacagttatt	tattgttaca	tccttttcca	gacactgtag	atgctataat	1740
aaaaatagct	gtttggtaac	catagtttca	cttgttcaaa	gctgtgtaat	cgtgggggta	1800
ctatctcaac	: tgcttttgta	ttcattgtat	: taaaagaato	tgtttaaaca	acctttatct	1860
tctcttcggg	g tttaagaaac	gtttattgta	ı acagtaatta	aatgctgcct	: taattgaaaa	1920
aaaaaaaaa	aaaa					1934

<210> 60

<211> 2220

<212> DNA <213> Homo sapiens

<400> 60

ggaaaattac ccggtatcgt tagagctaca ccaaaattgc attgagccaa acttgccacc 60 aagagcccaa caatcaccat gatgctgagc acggaaggca gggaggggtt cgtggtgaag 120

gtcaggggcc	taccctggtc	ctgctcagcc	gatgaagtga	tgcgcttctt	ctctgattgc	180
aagatccaaa	atggcacatc	aggtattcgt	ttcatctaca	ccagagaagg	cagaccaagt	240
ggtgaagcat	ttgttgaact	tgaatctgaa	gaggaagtga	aattggcttt	gaagaaggac	300
agagaaacca	tgggacacag	atacgttgaa	gtattcaagt	ctaacagtgt	tgaaatggat	360
tgggtgttga	agcatacagg	tccgaatagc	cctgatactg	ccaacgatgg	cttcgtccgg	420
cttagaggac	tcccatttgg	ctgtagcaag	gaagagattg	ttcagttctt	ttcagggttg	480
gaaattgtgc	caaatgggat	gacactgcca	gtggactttc	aggggcgaag	cacaggggaa	540
gcctttgtgc	agtttgcttc	acaggagata	gctgagaagg	ccttaaagaa	acacaaggaa	600
agaatagggc	acaggtacat	tgagatcttc	aagagtagcc	gagctgaagt	tcgaacccac	660
tatgatcccc	ctcgaaagct	catggctatg	cagcggccag	gtccctatga	taggccgggg	720
gctggcagag	ggtataatag	cattggcaga	ggagctgggt	ttgaaaggat	gaggcgtggt	780
gcctatggtg	gagggtatgg	aggctatgat	gactatggtg	gctataatga	tggatatggc	840
tttgggtctg	atagatttgg	aagagacctc	aattactgtt	tttcaggaat	gtctgatcat	900
agatacggag	atggtgggtc	cagtttccag	agcaccacag	ggcactgtgt	acacatgagg	960
gggttacctt	acagagccac	tgagaatgat	atttataatt	tcttctcacc	tcttaatccc	1020
atgagagtac	atattgaaat	tggacccgat	ggcagagtta	ccggtgaggc	agatgttgaa	1080
tttgctactc	atgaagatgc	tgtggcagct	atggcaaaag	acaaagctaa	tatgcaacac	1140
agatatgtgg	agctcttctt	aaattctact	gcaggaacaa	gtgggggtgc	ttacgatcac	1200
agctatgtag	aactttttt	gaattctaca	gcaggggcaa	gtggtggcgc	ttatggtagc	1260
caaatgatgg	gagggatggg	cttatccaac	cagtctagtt	atggaggtcc	tgctagccag	1320
cagctgagtg	gtggttatgg	aggtggttat	ggtggtcaga	gcagtatgag	tggatatgac	1380
caagttctgo	: aggaaaactc	cagtgactat	cagtcaaacc	ttgcttaggt	agagaaggag	1440
cactaaatag	ctactccaga	tataaaagct	gtacatttgt	gggagttgaa	. tagaatggga	1500
gggatgttta	gtatatccag	tatgattggt	aaatgggaaa	tataattgat	tctgatcact	1560
cttggtcago	ttetettet	ttatctttct	gtctcctttt	ttaagaaaac	gagttaagtt	1620
taacagtttt	gcattacagg	cttgtgattc	atgettaetg	taaagtggaa	gttgagatta	1680
tttaaaact	tcaagctcag	taattttgaa	ccactgaaac	attcatctag	gacataataa	1740
caaagttcag	g tattgaccat	aactgttaaa	a acaatttta	gettteetea	agttagttat	1800
gttgtaggag	y tgtacctaag	ı cagtaagcgt	atttaggtta	atgcagtttc	: acttatgtta	1860
aatgttgct	ttataccaca	ı aatacattga	a aaacttcgga	tgcatgttga	gaaacatgcc	1920

WO 03/0	90694				PCT	Γ/US03/13
tttctgtaaa ac	ctcaaatat	aggagctgtg	tctacgattc	aaagtgaaaa	catttggcat	1980
gtttgttaat to	ctagctttt	tggtttaata	tcctgtaagg	cacgtgagtg	tacacttttt	2040
ttttttttaa g	gatacggga	caattttaag	atgtaatacc	aatactttag	aagtttggtc	2100
gtgtcgtttg ta	atgaaaatc	tgaggctttg	gtttaaatct	ttccttgtat	tgtgatttcc	2160
atttagatgt a	ttgtactaa	gtgaaacttg	ttaaataaat	cttcctttta	aaaactggaa	2220
<210> 61 <211> 1972 <212> DNA <213> Homo <400> 61	sapiens					
gaattcggca c	gagggcgac	cggcgcgtcg	tgcggggctg	cggcggagcc	tccttaagga	60
aggtgcaaga g	gttggcagc	ttcgattgaa	gcacatcgac	cggcgacagc	agccaggagt	120
catgagcgac a	gcggcgagc	agaactacgg	cgagcgggaa	tcccgttctg	cttccagaag	180
tggaagtgct c	acggatcgg	ggaaatctgc	aaggcatacc	cctgcaaggt	ctcgctccaa	240
ggaagattcc a	ggcgttcca	gatcaaagtc	caggtcccga	tctgaatcta	ggtctagatc	300
cagaagaagc t	cccgaaggc	attatacccg	gtcacggtct	cgctcccgct	cccatagacg	360
atcacgtagc a	ggtcttaca	gtcgagatta	tcgtagacgg	cacagccaca	gccattctcc	420

catgtctact cgcaggcgtc atgttgggaa tcgggcaaat cctgatccta actgttgtct

tggagtattt gggctgagct tgtacaccac agaaagagat ctaagagaag tgttctctaa

atatggtccc attgccgatg tgtctattgt atatgaccag cagtctaggc gttcaagagg

atttgccttt gtatattttg aaaatgtaga tgatgccaag gaagctaaag aacgtgccaa

aaagtatgtt ttgcatgtat ttttttacag tctaaatttt gactgctgag aagtttctat

tgtacaaaac ttcatttaaa aggtttttct actgaatcca gggtattctg aagatcgaag

480

540

600

660

1260

1320

cctgtgtaaa	atgctaccaa	atggcaaaaa	gcaacaataa	acagtttgat	ttttactttt	1380
ctttctaaca	tatcaatgct	tagcagaact	attcagattg	tcagtagtaa	atttaaagac	1440
aaatgcccgt	tttcctccag	tccatgaaac	ataccatact	tatatacctg	caactaagtg	1500
tttaaaatta	tgctctgtaa	ctctgtactg	ctagtattag	aactaaaaat	cttaaaatac	1560
agccagtgct	taatgcttat	atcaatgtgg	atttgtcggc	ttttatgtaa	tctgtaatat	1620
gtatagcagg	aaatacgaag	agttacacag	tgtatgcctt	aaaaggctgt	ttcttaaagg	1680
tgttacaagg	ggataatggt	atttcaacta	gttatcagca	agtgacaata	cattccacca	1740
caaatacact	cttgttcttc	tagcttttag	actatatgaa	aaaaccgggt	gcttcaaagt	1800
acatgataag	ggaacactat	acctgtcatg	gatgaactga	agactttgcc	tgttcatttt	1860
ttaaatatta	ttttcaggtc	ctttgcttac	caaaggaggc	ccaatttcac	tcaaatgttt	1920
tgagaactgt	gtttaaataa	acgcaaatga	aaagaaaaaa	aaaaaaaaa	aa	1972

<210> 62

<211> 1321

<212> DNA

<213> Homo sapiens

<400> 62 gacagatttc actgctccca ccagcttgga gacaacatgt ggttcttgac aactctgctc 60 120 ctttgggttc cagttgatgg gcaagtggac accacaaagg cagtgatctc tttgcagcct 180 ccatgggtca gcgtgttcca agaggaaacc gtaaccttgc actgtgaggt gctccatctg 240 cctgggagca gctctacaca gtggtttctc aatggcacag ccactcagac ctcgacccc agctacagaa tcacctctgc cagtgtcaat gacagtggtg aatacaggtg ccagagaggt 300 360 ctctcagggc gaagtgaccc catacagctg gaaatccaca gaggctggct actactgcag 420 qtctccaqca gagtcttcac ggaaggagaa cctctggcct tgaggtgtca tgcgtggaag 480 gataagctgg tgtacaatgt gctttactat cgaaatggca aagcctttaa gtttttccac 540 tggaattcta acctcaccat tctgaaaacc aacataagtc acaatggcac ctaccattgc 600 tcaggcatgg gaaagcatcg ctacacatca gcaggaatat ctgtcactgt gaaagagcta tttccagctc cagtgctgaa tgcatctgtg acatccccac tcctggaggg gaatctggtc 660 720 accetgaget gtgaaacaaa gttgetettg cagaggeetg gtttgeaget ttaettetee ttctacatgg gcagcaagac cctgcgaggc aggaacacat cctctgaata ccaaatacta 780 actgctagaa gagaagactc tgggttatac tggtgcgagg ctgccacaga ggatggaaat 840 gtccttaagc gcagccctga gttggagctt caagtgcttg gcctccagtt accaactcct 900 gtctggtttc atgtcctttt ctatctggca gtgggaataa tgtttttagt gaacactgtt 960

ctctgggtga	caatacgtaa	agaactgaaa	agaaagaaaa	agtgggattt	agaaatctct	1020
ttggattctg	gtcatgagaa	gaaggtaact	tccagccttc	aagaagacag	acatttagaa	1080
gaagagctga	aatgtcagga	acaaaaagaa	gaacagctgc	aggaaggggt	gcaccggaag	1140
gagccccagg	gggccacgta	gcagcggctc	agtgggtggc	catcgatctg	gaccgtcccc	1200
tgcccacttg	ctccccgtga	gcactgcgta	caaacatcca	aaagttcaac	aacaccagaa	1260
ctgtgtgtct	catggtatgt	aactcttaaa	gcaaataaat	gaactgactt	caaaaaaaa	1320
a						1321

<210> 63

<211> 2972

<212> DNA

<213> Homo sapiens

<400> 63

60 ccggacgtag gaggtggagg ttgtggaatt cgccgttcga aagcagggac taaaagcccc acttcgtctt acgttccgaa aggaaggcgt ctgttgagcc tttctctcag tcgtgaggga 120 ggcgtcgacg gcgtgcggaa gtcctgagtt gaggcttgcg ggatcctttc cggagaaagc 180 240 gcaggctaaa gccgcaggtg aagatgtcca actacgtgaa cgacatgtgg ccgggctcgc 300 cgcaggagaa ggattcgccc tcgacctcgc ggtcgggcgg gtccagccgg ctgtcgtcgc 360 ggtctaggag ccgctctttt tccagaagct ctcggtccca ttcccgcgtc tcgagccggt tttcgtccag gagtcggagg agcaagtcca ggtcccgttc ccgaaggcgc caccagcgga 420 agtacaggcg ctactcgcgg tcatactcgc ggagccggtc gcgatcccgc agccgccgtt 480 540 accgagagag gcgctacggg ttcaccagga gatactaccg gtctccttcg cggtaccggt 600 cccggtcccg tagcaggtcg cgctctcggg gaaggtcgta ctgcggaagg gcgtacgcga tcgcgcgggg acagcgctac tacggctttg gtcgcacagt gtacccggag gagcacagca 660 gatggaggga cagatccagg acgaggtcgc ggagcagaac cccctttcgc ttaagtgaaa 720 780 aagatcgaat ggagctgtta gaaatagcaa aaaccaatgc agcgaaagct ctaggaacaa ccaacattga cttgccagct agtctcagaa ctgttccttc agccaaagaa acaagccgtg 840 900 gaataggtgt atcaagtaat ggtgcaaagc ctgaagtaag tattctaggt ttgtcggaac 960 aaaactttca gaaagccaac tgtcaaatct gattagccac ttatatctta gactatactt 1020 tttgggaagt ctagagatgt atataatgtg ctaaattcaa agtagcaaat ctgaagatag 1080 gcaatgtcaa acccatgaaa atgggagatt aatgagcttt atttggccgt gcatggtgcc tcatgcctgt aatgaggcag atggcttgag tccaggagtt caagactagc ctgggcaatg 1140 tggcaaaacc gcgtgtttac aaaaaataca aaaattagcc aggcatggtg gtgcatgcct 1200

gtagtcccag ct	gtttggga 🤉	ggctgaggca	ggaggatctt	tgagcctagg	atgctaaggt .	1260
tgcagtgagc ca	agatggca (ccattgcact	ctagcctggg	cagcagagcg	agaccctgtc	1320
tcaaaaaata ca	tttatttt t	tttcattttc	agttaacagt	gtactcttat	aacaccgtta	1380
ttagctggta ct	ttggtgat	ttctattact	agtttttcta	agctatttac	agagtgtttg	1440
tagctttcat tt	gccagcat	tatgttcccc	acaaattctg	tactcagcat	atacagtata	1500
gtttatctgc to	ctatttctg	tcttatagaa	atcatgaatg	tggtctgcag	acattgatga	1560
agaaaatctg tt	ggtaattg	atacatgggc	taaagcatca	gaggtttaat	ttgaagttta	1620
tgttcacaca ct	gaaaactt	agtttttttg	ttggtagatc	catgtgcatg	ctagaatttg	1680
ggacaggcac ta	atttgcata	aagtattaaa	gtcaattttt	aaactaagca	aaggtacacg	1740
ttgtaacggt gg	ggcatctg	tgaaaaagat	gtccctttca	taatatatgc	aatatattcc	1800
agatgttttg ag	gagattaca	gaagaggagg	cctgcttcac	ttgcagataa	gtttattata	1860
attctccaga aa	atgtgcagg	atgtgcatta	gcaaattgca	ctgtactttt	cactccagcc	1920
tgggtgacag ag	gcaagactc	cgtctcgggg	gcttaaaaaa	aaaaaaatgc	tgtatctaaa	1980
tgaatctgtg ta	aattgggcc	cagatgtggg	tttgctcagt	attagtagac	aaggtctttg	2040
ttcagacgat ta	aggtgccta	actggcaaat	gccttagttt	cttaaaacgt	attttctgat	2100
gtggctttac at	tttcaaaag	tgaacttgat	tcaacctgag	aaaactgatt	aaaaaattag	2160
tttaaatttg co	cagcaggga	agtaaaataa	ttatgggaag	agtgtcttaa	gcctaatatt	2220
aaatcagttt t	gttaagggg	aaaactcaat	agttctgtta	cttaggctgt	tagatccaag	2280
ttgatttttg t	gtctacagc	taaattttgt	ttacaattag	gctattttt	aatataggat	2340
ttagaaacca a	gggtatgtg	ttttaaaatt	acacttttc	ttaacctgtc	tagctgtcgg	2400
aaaaggtaac a	gaagatgga	actcgaaatc	ccaatgaaaa	acctacccag	caaagaagca	2460
tagcttttag c	tctaataat	tctgtagcaa	agccaataca	aaaatcagct	aaagctgcca	2520
cagaagaggc a	tcttcaaga	tcaccaaaaa	tagatcagaa	aaaaagtcca	tatggactgt	2580
ggatacctat c	taaaagaag	aaaactgatg	gctaagtttg	catgaaaact	gcactttatt	2640
gcaagttagt g	tttctagca	ttatcccatc	cctttgagcc	attcaggggt	acttgtgcat	2700
ttaaaaacca a	cacaaaaag	atgtaaatac	ttaacactca	aatattaaca	ttttaggttt	2760
ctcttgcaga t	atgagagat	agcacagatg	gaccaaaggt	tatgcacagg	tgggagtctt	2820
ttgtatatag t	tgtaaatat	tgtcttggtt	atgtaaaaat	gaaattttt	agacacagta	2880
attgaactgt a	ttcctgttt	tgtatattta	ataaatttct	tgttttcatt	cttaaaaaaa	2940
aaaaaaaaaa a	aaaaaaaaa	aaaaaaaaa	aa			2972

<210> 64 <211> 3189 <212> DNA <213> Homo sapiens

_

<400> agattagttg aaaattatta caaaatattc taaaagggtt ttttgtggta cttcaagaaa 60 cctgattagt tttgatctat tgaaatcaca aaagtagaac agggcatttt atttttgtat 120 aatttaggat taggtatgct tctttgttct aacaagtcat gttttctaac ccttctttca 180 ctaagcaaac cagaacagat ttgaactgtt atgggttata tattagtatg gagatcagct 240 cagatgacat taaaaatgcc gtagtgttat tcttgtatgc caaatctttt tttccccaaa 300 attagcactt taattttatt tactgttata atatttgttt tcttagatta ggtaggaaat 360 cttaatttgg ccaccgccta ctttgacaag taaatattac atcatacgat tttgcaacat 420 taaattagaa cactagaaac taaaaaatta tgtttcagtg aatgctacaa ctaagcattt 480 tttttttttta agaaaaacaa ttgtattatg ttttgttgcc ttgccacttt gagtatctta 540 600 tctgaaaatc tgttccttgc catgtttttc tcctgttaac ataaactatg tgccctgtga atttctgggg actgaatttg aaattgctcc tgccaaccgt ttgtggcctg gcgtgtatct 660 gaatgootga atatotooco gotgaatgaa tttogtatto tgooctgaat toactogggt 720 atattgattg gctggatgat cttggtgccg cccacttgac gtttccagaa gagtcaccga 780 840 aggaaaagaa ccaggagtgt agaggatgat gaggagggtc acctgatctg tcagagtgga gacgtactaa gtgcaagatg tatagaatat ttttcaacac ttattaactt ttcagataac 900 ataatctata tatagattaa gctttcaggg atttggaaat ctttttttct ttctcttttt 960 tgtttttgtt ttatttttcc atttcttttg gtggggggga ttgtattttt gctttcttta 1020 1080 gaaatgtaat gtttgttata tagaacttcc agaacagtaa tcaaattaat gaaattagtc 1140 ctaataatta tgttttttga tggtgttgac caataaaata tctagtgata aggaaatttg tagcatcaac tagaataatc tacattgata gcatttattg tgataagtac attgtttcca 1200 1260 cttcttgata tgactgagat ttatttctct cttttagatg aaattgttga tactttaggt 1320 gaaggagctt ttggaaaagt tgtggagtgc atcgatcata aagcgggagg tagacatgta gcagtaaaaa tagttaaaaa tgtggataga tactgtgaag ctgctcgctc agaaatacaa 1380 gttctggaac atctgaatac aacagacccc aacagtactt tccgctgtgt ccagatgttg 1440 gaatggtttg agcatcatgg tcacatttgc attgtttttg aactattggg acttagtact 1500 1560 tacgacttca ttaaagaaaa tggttttcta ccatttcgac tggatcatat cagaaagatg gcatatcaga tatgcaagtc tgtgaattgt aagttcttgg tatatcttcg ttaatttgct 1620 ggttttatcc attccacata tcaaaatgtg catcctaagt gtgtacaatt tttatttgat 1680

PCT/US03/13015 WO 03/090694

taaaaataaa	gggggaggaa	gaataggtat	gaagagattt	gattacaggc	tgttgatcca	1740
gcagtgtaca	tttcattcag	caagtaggat	atccaccata	taacaacgta	ctttgttgca	1800
gactatgatt	tagacttttc	tgatgcgcaa	aaatagtaac	ttcgaatgct	gggtaaaaat	1860
taaggcgtga	tatatctcat	aaaagaaagc	ttcataagag	gtagtaagtt	ttagttactg	1920
gtgattttct	agcagactgg	aatgttgacc	attctttggg	aaaggaatca	gaggtttttt	1980
gttgggtttt	tttgttttt	gaaatggagt	ctcgctttgt	tgttcaggct	gaagtgcagt	2040
ggcgcagtct	tcactcactg	caaactctgc	ctccccagtt	caagtgattc	tcctgcctca	2100
gcctcccgag	tagctaggac	tacaggcaca	cgccaccaca	cccggccaat	ttttgtaatt	2160
ttggtagaga	cagggtttca	ccatattggt	caggctggtc	tcgaactcct	gacctcaggt	2220
gattacaggc	gtgagccact	gcacccggcc	tgttgtgggg	ttttgtgatt	tggtttggtt	2280
tggtgttttc	tgattacagc	aactttctct	ttattctcag	ttttgcacag	taataagttg	2340
actcacacag	acttaaagcc	tgaaaacatc	ttatttgtgc	agtctgacta	cacagaggcg	2400
tataatccca	aaataaaacg	tgatgaacgc	accttaataa	atccagatat	taaagttgta	2460
gactttggta	gtgcaacata	tgatgacgaa	catcacagta	cattggtatc	tacaagacat	2520
tatagagcac	ctgaagttat	tttagcccta	gggtggtccc	aaccatgtga	tgtctggagc	2580
ataggatgca	ttcttattga	atactatctt	gggtttaccg	tatttccaac	acacgatagt	2640
aaggagcatt	tagcaatgat	ggaaaggatt	cttggacctc	taccaaaaca	tatgatacag	2700
aaaaccagga	aacgtaaata	ttttcaccac	gatcgattag	actgggatga	acacagttct	2760
gccggcagat	atgtttcaag	acgctgtaaa	cctctgaagg	aatttatgct	ttctcaagat	2820
gttgaacatg	agcgtctctt	tgacctcatt	cagaaaatgt	tggagtatga	tccagccaaa	2880
agaattacto	tcagagaagc	cttaaagcat	cctttctttg	accttctgaa	gaaaagtata	2940
tagatctgta	. attggacago	tctctcgaag	agatcttaca	gactgtatca	gtctaatttt	3000
taaattttaa	gttattttgt	acagctttgt	aaattcttaa	. catttttata	ttgccatgtt	3060
tattttgttt	gggtaatttg	gttcattaag	, tacatagcta	. aggtaatgaa	. catcttttc	3120
agtaattgta	. aagtgattta	ttcagaataa	attttttgtg	cttatgaagt	tgaaaaaaaa	3180
aaaaaaaaa						3189

<210> 65

<211> 3585 <212> DNA

<213> Homo sapiens

<400> 65

ctgetegegg egeegeetee tgeteeteee getgetgetg eegetgeege eetgagteae 60

tgcctgcgca	gctccggccg	cctggctccc	catactagtc	gccgatattt	ggagttctta	120
caacatggca	gacattgaca	acaaagaaca	gtctgaactt	gatcaagatt	tggatgatgt	180
tgaagaagta	gaagaagagg	aaactggtga	agaaacaaaa	ctcaaagcac	gtcagctaac	240
tgttcagatg	atgcaaaatc	ctcagattct	tgcagccctt	caagaaagac	ttgatggtct	300
ggtagaaaca	ccaacaggat	acattgaaag	cctgcctagg	gtagttaaaa	gacgagtgaa	360
tgctctcaaa	aacctgcaag	ttaaatgtgc	acagatagaa	gccaaattct	atgaggaagt	420
tcacgatctt	gaaaggaagt	atgctgttct	ctatcagcct	ctatttgata	agcgatttga	480
aattattaat	gcaatttatg	aacctacgga	agaagaatgt	gaatggaaac	cagatgaaga	540
agatgagatt	toggaggaat	tgaaagaaaa	ggccaagatt	gaagatgaga	aaaaggatga	600
agaaaaagaa	gaccccaaag	gaattcctga	attttggtta	actgttttta	agaatgttga	660
cttgctcagt	gatatggttc	aggaacacga	tgaacctatt	ctgaagcact	tgaaagatat	720
taaagtgaag	ttctcagatg	ctggccagcc	tatgagtttt	gtcttagaat	ttcactttga	780
acccaatgaa	tattttacaa	atgaagtgct	gacaaagaca	tacaggatga	ggtcagaacc	840
agatgattct	gatccctttt	cttttgatgg	accagaaatt	atgggttgta	cagggtgcca	900
gatagattgg	aaaaaaggaa	agaatgtcac	tttgaaaact	attaagaaga	agcagaaaca	960
caagggacgt	gggacagttc	gtactgtgac	taaaacagtt	tccaatgact	ctttctttaa	1020
cttttttgcc	cctcctgaag	ttcctgagag	tggagatctg	gatgatgatg	ctgaagctat	1080
ccttgctgca	gacttcgaaa	ttggtcactt	tttacgtgag	cgtataatcc	caagatcagt	1140
gttatattt	actggagaag	ctattgaaga	tgatgatgat	gattatgatg	aagaaggtga	1200
agaagcggat	gaggaagggg	aagaagaagg	agatgaggaa	aatgatccag	actatgaccc	1260
aaagaaggat	caaaacccag	cagagtgcaa	gcagcagtga	agcaggatgt	atgtggcctt	1320
gaggataacc	tgcactgtaa	tagcctaaac	acaactctta	tttacttaca	gccttatgtt	1380
tttgtatttt	cttggtagac	taggtaattt	tttttaaag	gacaggaaac	tgatatttta	1440
aagaccaatt	tgttctacct	agcattttaa	ctagttttc	tgccagctat	gttgaatgca	1500
caaattctgt	cacgcatgtt	cattcattgo	: tacataattt	ggttcttctg	gaatatttt	1560
atgtagctct	tggagtacag	ctatgaaaat	: taacaactgt	taaaggaaat	acctttttt	1620
tttttttgta	attttttcct	tgaagaacca	aagtatttt	tcagctggtt	gttgaatagg	1680
gttaagtccg	g cttggattag	ctgtgccttt	: cattactttg	ttacagaaat	gcagtgactt	1740
atactaagac	: aatttattgt	ttaaaaaaaa	aattggcaag	acaactatat	ggttaagaat	1800
ttccagtatg	g accacaccca	. ataactgtta	ı ttagagtgtt	aatggattat	: tgtgttttag	1860

gtgacatagt taactgtaaa gtaacctga	nc tcagtatagt tactggtacc acagtgaggt 1	1920
		1980
		2040
		2100
		2160
		2220
		2280
		2340
		2400
cttctatggt ttcttctaat tcttattg	ct taaagtatga gtatgtcact tacccgtgct	2460
tctgtttact gtgtaattaa aatgggtag	gt actgtttacc taactacctc atggatgtgt	2520
taaggcatat tgagttaaat ctcatata	at gtttctcaat cttgttaaaa gctcaaaatt	2580
ttgggcctat ttgtaatgcc agtgtgac	ac taagcatttt gttcacacca cgctttgata	2640
actaaactgg aaaacaaagg tgttaagt	ac ctctgttctg gatctgggca gtcagcactc	2700
tttttagatc tttgtgtggc tcctattt	tt atagaagtgg agggatgcac tatttcacaa	2760
ggtccaagat ttgttttcag atattttt	ga tgactgtatt gtaaatacta cagggatagc	2820
actatagtat tgtagtcatg agacttaa	ag tggaaataag actatttttg acaaaagatg	2880
ccattaaatt tcagactgta gagccaca	tt tacaatacct caggctaatt actgttaatt	2940
ttggggttga actttttttg acagtgag	gg tggattattg gattgtcatt agaggaaggt	3000
ctagatttcc tgctcttaat aaaattac	at tgaattgatt tttagaggta atgaaaactt	3060
cctttctgag aagttagtgt taaggtct	tg gaatgtgaac acattgtttg tagtgctatc	3120
cattcctctc ctgagatttt aacttact	ac tggaaatcct taaccaatta taatagcttt	3180
ttttctttat tttcaaaatg atttcctt	tg ctttgattag acactatgtg ctttttttt	3240
ttaaccatag ttcatcgaaa tgcagctt	tt totgaactto aaagatagaa toocattttt	3300
aatgaactga agtagcaaaa tcatcttt	tt cattetttag gaaatageta ttgecaaagt	3360
gaaggtgtag ataataccta gtcttgtt	cac ataaagggga tgtggtttgc agaagaattt	3420
totttataaa attgaagttt taagggad	cgt cagtgtttat gccatttttc cagttccaaa	3480
atgattccat tccattctag aaatttga	aag tatgtaacct gaaatcctta ataaaatttg	3540
gatttaattt taaaaaaaaa aaaaaaaa	aaa aaaaaaaaaa aaaaa	3585

<210> 66 <211> 2775

<212> DNA

<213> Homo sapiens

<400> 66 60 gcagtccaga tgtcgtcagc accagcgcct gggctggagg acagagaagc cttttccgtt geoggtgeeg geetagegte etggaattae tteaateaac aggagegaga accegageag 120 cgccatgagc aacactaccg tcgtccccag cactgcaggt ccgggcccca gcggcgggcc 180 240 cggtggcgga ggtggtggtg gcggcggagg cggcggcacc gaggtaatcc aggtgactaa 300 tgtctccccq aqcgctagct ctgagcagat gcggactctc ttcggtttcc taggcaagat 360 cgacgaactg cgcctcttcc cgccggatga ttcgcctttg ccagtctcat ctcgtgtctg ctttgttaag ttccatgatc cagactcagc agttgtggca cagcatctga caaacactgt 420 attcgttgac agagctttga tagtcgtacc atatgcagaa ggagttattc ctgatgaagc 480 taaagetttg tetetgttgg caccagetaa tgeagtggea ggtettetge etggtggtgg 540 actcctgcct actcctaacc cacttaccca gattggcgct gttccactgg ctgctttggg 600 ggctcctact cttgatcctg cccttgctgc acttgggctt cctggagcaa acttgaactc 660 tcagtctctt gctgcagatc agttgctgaa gcttatgagt actgttgatc ccaagttgaa 720 tcatgtagct gctggtctcg tttcaccaag tctgaaatcg gatacctcta gtaaagaaat 780 agaggaagct atgaaaagag tacgagaagc acagtcccta atttctgctg ctatagaacc 840 agataagaaa gaagaaaaaa gaaggcattc aagatcaaga tcacgttcta ggaggaggag 900 gactccctca tcttctagac acaggcggtc aagaagcaga tcgagacggc ggtcacattc 960 1020 taagtctagg agtcggcgac gatccaaaag cccaaggcgg agaagatctc attccagaga 1080 aagaggtaga aggtcaagga gcacatcaaa aacaagagac aaaaagaaag aagacaaaga 1140 aaagaaacgt tctaaaacac caccaaaaag ttacagcaca gccagacgtt ctagaagtgc 1200 aagcagagag agacgacgac gaagaagcag gagtggcaca agatctccta aaaagcctcg gtctcctaaa agaaaattgt cccgctcacc atcccctagg agacataaaa aggagaagaa 1260 gaaagataaa gacaaagaaa gaagtaggga tgaaagagaa cgatcaacaa gcaagaagaa 1320 gaagagtaaa gataaggaaa aggaccggga aagaaaatca gagagtgata aagatgtaaa 1380 acaggttaca cgggattatg atgaagagga acaggggtat gacagtgaga aagagaaaaa 1440 1500 agaagagaag aaaccaatag aaacaggttc ccctaaaaca aaggaatgtt ctgtggaaaa 1560 gggaactggt gattcactaa gagaatccaa agtgaatggg gatgatcatc atgaagaaga catggatatg agtgactgaa tattgcctct gagggagtcc aactgtatac ctgcatcagt 1620 gtcattcctt tgtgtgattt cttaatgctg tatttgttca tctcaaacct agatgtatac 1680 agctctgagt tataaatggt tataaagctc ctgttactca tattagttat ttacatcaaa 1740

aagcttttag	aaaatggtac	gaggtaacca	attcttgtca	tggtgaaatc	tgattgagta	1800
accaagcagt	tttactattc	tggtgctgct	tcataacaaa	aatgaaaagc	tgcatgcatc	1860
tacagcaggc	atggattgtt	tatgtcgtat	gatatccttt	attaagtaag	ttcacttata	1920
gtatttctat	aatttgattc	attgccgtaa	tagagccatg	taggaaatgc	actgattgca	1980
tgttattgtg	gcaagaatat	cctaaatgtc	attaaaatcc	tccaacatga	tggatctact	2040
tatggtcttg	tttgttgaca	tgacaaatta	acattcttat	agttacatct	ggaaatgagc	2100
atttgaaata	gataatcctt	taagccttgt	ggcaaaattt	ttgtggcttt	tgtttaactt	2160
tgaaaggtta	ttatgcacta	accttttttg	gtggctaatt	agggtttaaa	tacagaaaca	2220
agatttcaaa	taaaactgtc	tttggcagtg	agtaaatagc	atattttgaa	gtagagttgt	2280
atacttttc	ataagatgtt	tgggaatttt	tttcctgaag	taataattta	ttccacatct	2340
acatcagtga	aagctatcta	cctatcctga	gtctatctta	aaggaaaaaa	agaaaaaaac	2400
cttatctctt	gcccttattt	tgaattttcc	actctttcat	taatttgttt	taagctccgt	2460
gttggaaaaa	aggggtagtg	cattttaaat	tgaccttcat	acgcttttaa	aataagacaa	2520
atctacttga	taatgtacct	ttatttgatc	tcaagttgta	taaaaccaat	aaatttgtgt	2580
tactgcagta	gtaatcttat	gcacacggtg	atttcatgtt	atatatgcaa	agtaggcaac	2640
tgttttctta	gttacagaag	tttcaagctt	cacttttgtg	cagtagaaac	aaaagtaggc	2700
tacagtctgt	gccatgttga	tgtacagttt	ctgaaattgt	tttacaagac	tttgataata	2760
aaacccttaa	actta					2775

<210> 67

<211> 797

<212> DNA

<213> Homo sapiens

<400> 67 cttggttccg cgttccctgc acaaaatgcc cggcgaagcc acagaaaccg tccctgctac 60 agagcaggag ttgccgcagc cccaggctga gacagggtct ggaacagaat ctgacagtga 120 tgaatcagta ccagagcttg aagaacagga ttccacccag gcaaccacac aacaagccca 180 240 gctggcggca gcagctgaaa ttgatgaaga accagtcagt aaagcaaaac agagtcggag tgaaaagaag gcacggaagg ctatgtccaa actgggtctt cggcaggtta caggagttac 300 360 tagagtcact atccggaaat ctaagaatat actctttgtc atcacaaaac cagatgtcta caagagccct gcttcagata cttacatagt ttttggggaa gccaagatcg aagatttatc 420 ccagcaagca caactagcag ctgctgagaa attcaaagtt caaggtgaag ctgtctcaaa 480 cattcaagaa aacacacaga ctccaactgt acaagaggag agtgaagagg aagaggtcga 540

tgaaacaggt gtagaagtta aggacattga attggtcatg tcacaagcaa atgtg	tcgag 600
agcaaaggca gtccgagccc tgaagaacaa cagtaatgat attgtaaatg cgatt	atgga 660
attaacaatg taaccatatg gaagcaactt tttttggtgt ctcaaaggag taact	gcagc 720
ttggtttgaa atttgtactg tttctatcat aaataaagtt atggcttctt gttgg	gaaaaa 780
aaaaaaaaa aaaaaaa	797
<pre><210> 68 <211> 492 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (115)(115) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (210)(210)</pre>	
<223> n is a, c, g, t or u <400> 68	
attaaaaaac tggggtttat ttcacatgga tatttttggc tccccaccat tttca	atgtct 60
gaccacccgt actactatgt cctatcataa cattcccata cattctttaa accc	nagcaa 120
gggggggtt tccatcttta aaacctaacc aggcttttgg gacaacacat tcct	tgcaat 180
agaccctgga cacatttatc aaacacggtn gggaaagtct cactctgcat tataa	aaagga 240
cagccagata tcaactgttc agaaatgaaa ttagaccgga aatttttaa ccaa	attgtt 300
aaacctattt ctttaagagg acttcctcca ctggccaaga tcttgaatag gcct	cttggc 360
agtcatccgg aggcaattct tcacataatt gatgaatttg gcttccactt ttgg	aagaga 420
accaccettt ttettaactg ettgeatttt gettttatge ttetaegaaa cagg	ccctct 480
ttggggttta gg	492
<210> 69 <211> 420 <212> DNA <213> Homo sapiens	
<pre><400> 69 tttttttttt ttgcagtttt ataactttgt ttgatatagt tgacaatcag tgat</pre>	tagttc 60
tcatccacaa tgactgtcta tagatttttg aaagtggtaa caggtacata ggta	accgaa 120
gtacagaget tatttgggga atetteatee teattatatt etttggaeaa etge	acatgg 180
attcggcatg ggacattcct tattcctttg gcccagacag ccttgttgag cctg	gtatca 240

300 gttgtgcaca tttagagttc ccatctcctt cctgacaaat ttccgaatct ctttgagtgc tcaaggggca tgcttcttga agcccactcc atggatgcac ttgtgaatgt tgatggggta 360 ttctcgggtc accacctcat tgatggcaga acggcccttt ttcttcttgc cacccttctt 420 <210> 70 <211> 2663 <212> DNA <213> Homo sapiens <400> 70 60 cgcgcgcgcc atttctagtc gttttcaaag cgcctcgcgc tgattctcac gggcccggct 120 gccggccccc gctctgccct gcataataaa atggctaatc aggtgaatgg taatgcggta cagttaaaag aagaggaaga accaatggat acttccagtg taactcacac agaacactac 180 aagacactga tagaggcagg cctcccacag aaggtggcag aaagacttga tgaaatattt 240 cagacaggat tggtagctta tgtcgatctt gatgaaagag caattgatgc tctcagggaa 300 tttaatgaag aaggagctct gtctgtacta cagcagttca aggaaagtga cttatcacat 360 gttcagaaca aaagtgcatt tttatgtgga gttatgaaga cctacaggca gagagagaaa 420 480 caggggagca aggtgcaaga gtccacaaag ggacctgatg aagcgaagat caaggccttg 540 cttgagagaa ctggttatac tctggatgta accacaggac agaggaagta tggtggtcct 600 ccaccagaca gtgtgtactc tggcgtgcaa cctggaattg gaacggaggt atttgtaggc 660 aaaataccaa gggatttata tgaggatgag ttggtgcccc tttttgagaa ggccggaccc atttgggatc tacgtcttat gatggatcca ctgtccggtc agaatagagg gtatgcattt 720 780 atcaccttct gtggaaagga agctgcacag gaagccgtga aactgtgtga cagctatgaa attcgccctg gtaaacacct tggagtgtgc atttctgtgg caaacaacag actttttgtt 840 900 ggatccattc cgaagaataa gactaaagaa aacattttgg aagaattcag taaagtcaca 960 gagggtttgg tggacgttat tctctatcat caacccgatg acaaaaagaa gaatcggggg 1020 ttctgcttcc ttgaatatga ggatcacaag tcagcagcac aagccagacg ccggctgatg agtggaaaag taaaagtgtg gggaaatgta gttacagttg aatgggctga ccctgtggaa 1080 1140 gaaccagatc cagaagtcat ggctaaggta aaagttttgt ttgtgagaaa cttggctact acggtgacag aagaaatatt ggaaaagtca ttttctgaat ttggaaaact cgaaagagta 1200 1260 aagaagttga aagattatgc atttgttcat tttgaagaca gaggagcagc tgttaaggct 1320 atggatgaaa tgaatggcaa agaaatagaa ggggaagaaa ttgaaatagt cttagccaag ccaccagaca agaaaaggaa agagcgccaa gctgctagac aggcctccag aagcactgcg 1380 tatgaagatt attactacca ccctcctcct cgcatgccac ctccaattag aggtcggggt 1440

cgtggtgggg	ggagaggtgg	atatggctac	cctccagatt	actacggcta	tgaagattac	1500
tatgatgatt	actatggtta	tgattatcac	gactatcgtg	gaggctatga	agatccctac	1560
tacggctatg	atgatggcta	tgcagtaaga	ggaagaggag	gaggaagggg	agggcgaggt	1620
gctccaccac	caccaagggg	gaggggagca	ccacctccaa	gaggtagagc	tggctattca	1680
cagagggggg	cacctttggg	accaccaaga	ggctctaggg	gtggcagagg	gggtcctgct	1740
caacagcaga	gaggccgtgg	ttcccgtgga	tctcggggca	atcgtggggg	caatgtagga	1800
ggcaagagaa	aggcagatgg	gtacaaccag	cctgattcca	agcgtcgtca	gaccaacaac	1860
caacagaact	ggggttccca	acccatcgct	cagcagccgc	ttcagcaagg	tggtgactat	1920
tctggtaact	atggttacaa	taatgacaac	caggaatttt	atcaggatac	ttatgggcaa	1980
cagtggaagt	agacaagtaa	gggcttgaaa	atgatactgg	caagatacga	ttggctctag	2040
atctacattc	ttcaaaaaaa	aaaattggct	taactgtttc	atctttaagt	agcattttgc	2100
tgccatttgt	attgggctga	agaaatcact	attgtgtata	tactcaagtc	tttttattt	2160
tcctctttc	ataaatgctc	ttggacatta	ttgggcttgc	agagttccct	tattctgggg	2220
attacaatgo	tttatcgtt	tcaggcttca	ttttagcttc	aaaacaagct	gggcacactg	2280
ttaaatcatg	attttgcaga	acctttggtt	ttggacagtt	tcatttttt	ggatttggga	2340
tagattacat	aggagtatgg	agtatgctgt	aaataaaaat	acaagctagt	gctttgtctt	2400
agtagtttta	agaaattaaa	gcaaacaaat	ttaagttttc	ttgtattgaa	aataacctat	2460
gattgtatgt	. tttgcattcc	tagaagtagg	ttaactgtgt	ttttaaattg	ttataacttc	2520
acaccttttt	gaaatctgcc	ctacaaaatt	tgtttggctt	aaacgtcaaa	. agccgtgaca	2580
atttgttctt	: tgatgtgatt	gtatttccaa	tttcttgttc	atgtaagatt	tcaataaaac	2640
taaaaaatct	attcaaaaca	tta				2663
•						
<400> 71 tttttttt	: ttttttttt	ttttttttt	tttttttt	: tttttttaaa	ggggggcca	60
aattttttt	tttttaaaat	ttgattcccc	ccaattttgt:	: tggcattaaa	attaaaggca	120
ttaagctgga	a atggttttt	cccaaaccca	ı aaaattgggt	ttaccaaaaa	a ggggaatagg	180
agttgttcag	g tattttcaaa	ttacaaatca	ı atttaaaaaa	a acaaacccct	tgcttacatt	240
gtttgggcc	a caaatttaaa	ı cttcaggggg	gcattagaaa	a ac		282

<210> 72 <211> 2870 <212> DNA <213> Homo sapiens

1210

<400> 72 gggcggccgg acgcggccca gaggcgcggg gtcccgatgt ggggcccggg gccgcgtggc 60 cctgcgggag cccatccccc accctacccc ccgggcccgg gggacaggtg tgcacggggc 120 ggccaagggc accttcgcca ccttcgagcg ggcgaggtcc gggcggggac ggggcgggga 180 240 ccqaqctaqc ggagccagcg cagcctgccc ggctcagccc ggcccggcca cagcacaaag gaaagcgagg gcgggggagg agcggagcgg gctgggggcc gggcgccccg cccaccgggg 300 360 ggcctctcgg agtgggccgc cctccccccg aaacctgggc tggaagtgagg tggaaggatg tttgctgcca catggcgacc gcgaagtgac tcccttaccg ccgcgggtcg cggaggaggc 420 agggggaagg tgcccatctg gttcctaggc ctcctctccc tgctggcaga tgggaacagg 480 ttcttcttga ggaaactgag gcaaagagga gggcaggtct gagggacccc gcttgggctg 540 gcctcacccg cacactggga gggcagccag gtggggactc tgacctgggg gcttctggag 600 660 gagaggatga gatggctggg catccatggc atggtactgc agcactggcc agcagccagg 720 cctggaggga tggacgcgag agacaagctc tcgtgtcctg cagggctctg tacacatatg 780 aagatggctc cgatgacctc aagcttgcag catcaggaga agggggcttg caggagcttt 840 cgggacactt tgagaaccag aaggtgatgt acggcttctg cagtgtcaag gactcccaag 900 ctgctctgcc aaaatacgtg ctcatcaact gggtgggcga agatgtgcct gatgcccgca 960 aqtqcqcttq tgccagccac gtggctaagg tggcagagtt cttccagggt gtcgacgtga tcgtgaacgc cagcagcgtg gaagacatag acgcgggtgc catcgggcag cggctctcta 1020 1080 acgggctggc gcgactctcc agecctgtgc tgcaccgact gcggctgcga gaggatgaga acgcagagcc cgtgggcacc acctaccaga agacggatgc agctgtggaa atgaagcgga 1140 ttaaccgaga gcagttctgg gagcaggcca agaaggaaga agagctgcgg aaggaggagg 1200 1260 agcqqaaqaa ggccctggat gagaggctca ggttcgagca ggagcggatg gagcaggagc ggcaggagca agaggagcgc gagcggcgct accgggagcg ggagcagcag atcgaggagc 1320 1380 acaggaggaa acagcagact ttagaagcgg aagaggccaa gaggcggttg aaggagcagt ctatctttgg tgaccatcgg gatgaggagg aagagaccca catgaagaag tcagagtcgg 1440 1500 aggtggagga ggcagcagct attattgccc agcggcctga caacccaagg gagttcttca 1560 agcagcagga aagagtcgca tcggcctctg cgggcagctg tgatgtaccc tcgcccttca 1620 accategace aggeageeac etggacagee accggaggat ggegeeeact eccateecea cgcggagccc gtctgactcc agcaccgcct ccacccctgt cgctgagcag atagagcggg 1680

ccctggatga	ggtcacctcc	tegeageete	caccactgcc	accgccaccc	ccaccagccc	1740
aagagaccca	ggagcccagc	cccatcctag	acagtgagga	gaccagagca	gcagcccctc	1800
aggcctgggc	cggccccatg	gaggagcccc	ctcaggcaca	ggcgcctccc	cgggggccag	1860
gcagccctgc	agaggacttg	atgttcatgg	agtctgcaga	gcaggctgtc	ctggctgctc	1920
ccgtggagcc	tgccacagct	gacgccacgg	aggtccacga	tgcagctgac	accattgaaa	1980
ctgacactgc	cactgctgac	accactgttg	ccaacaacgt	accccccgcc	gccaccagcc	2040
tcattgacct	atggcctggc	aacggggaag	gggcctccac	actccagggt	gagcccaggg	2100
ccccacgcc	accctcgggt	actgaggtca	ccctggcaga	ggtgcccctg	ctggatgagg	2160
tggctccgga	gccactgctg	ccagcaggcg	aaggctgtgc	cacccttctc	aactttgatg	2220
agctgcctga	gccgccagcc	accttctgtg	acccagagga	agtggaaggg	gagcccctgg	2280
ctgcccccca	gaccccaact	ctgccctcag	cccttgagga	gctggagcaa	gagcaggagc	2340
cggagcccca	cctgctaacc	aatggcgaga	ccacccagaa	ggaggggacc	caggccagtg	2400
aggggtactt	cagtcaatca	caggaggagg	agtttgccca	atcggaagag	ctctgtgcca	2460
aggctccgcc	tcctgtgttc	tacaacaagc	ctccagagat	cgacatcaca	tgctgggatg	2520
cagacccagt	tccagaagag	gaggagggct	tcgagggtgg	tgattagcgg	tggcgccagc	2580
cctaggctac	ccttgccaag	gccgcccacc	tgcatcagcc	tctggccaga	cggcccgccg	2640
tgcctgcatt	cgcagcagct	ccgcctggca	cccactccgg	attccggccc	tggctgggga	2700
cttggccgct	tccctaccca	cagggcctga	cttttacagc	ttttctctt	ttttaaaaag	2760
ttgataggaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	2820
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa		2870
010 ==						
<210> 73	0					
<211> 132			•			
~212~ DNT						

<212> DNA

<213> Homo sapiens

cagcagatet gagctagaa teateetggt gggcaaaaca ggaactggca aaagtgetge 120
cagcagatet gagctgagaa teateetggt gggcaaaaca ggaactggca aaagtgetge 180
agggaacage ateeteagga agcaageatt tgaategaag etgggtteee agacettgae 240
taagacttge agcaaaagte agggaagetg gggaaataga gagattgtea ttattgacae 300
accagatatg ttttettgga aggaccaetg tgaagetetg tacaaagagg tgeagaggtg 360
ctaettgete tetgeaceag gaececatgt getgeteetg gtgaeteage tgggcegeta 420

tacctcacag	gaccagcagg	ctgcacagag	ggtgaaggag	atctttggag	aggatgccat	480
gggacacaca	attgtcctct	ttacccacaa	ggaagacctc	aatggtggct	ccctgatgga	540
ttacatgcac	gactcagata	acaaagccct	aagcaagctg	gtggcagcat	gtggtgggcg	600
aatctgtgcc	tttaataacc	gtgctgaagg	gagcaatcag	gatgaccaag	tgaaggaact	660
aatggactgt	attgaggatc	tgttgatgga	gaaaaatggt	gatcactata	ccaatgggtt	720
gtacagccta	atacagaggt	ctaaatgtgg	acctgtggga	tcagatgaaa	gagtaaagga	780
attcaaacag	agccttataa	agtacatgga	aactcaaaga	agttacacag	ccttggctga	840
agcaaactgc	ctaaaaggag	ccttaatcaa	aacacaactg	tgtgttttat	tttgtattca	900
gttgtttctc	agattgataa	ttctgtggct	ttgcatactg	cacagcatgt	gcaatttgtt	960
ttgttgctta	ctctttagta	tgtgcaattt	attctgcagt	ttgctgttta	ttatacccaa	1020
aaagttaatg	atatttttga	gaacagttat	tagactagaa	cgcaagactc	ctaggttata	1080
gttacagatc	ccagttatta	tttactcact	atcatttagt	gggtgaatca	cagtaatttc	1140
cctgtaaaat	gtggtacctg	aagtcatatt	tgagattcta	tgaaatgttt	aaatcttaac	1200
atcactccaa	ttattaatga	accaaatcat	acgataagtt	actgtttgca	ttgaaatata	1260
atatcaaagc	cttttgaaat	ctgtaaacat	aaaattcctc	tcattttcaa	ataaaaaaaa	1320
aaaaaaaaa						132

<210> 74

<211> 1983

<212> DNA

<213> Homo sapiens

<400> 74

gaattgaacc acccattttc ctttcttagc caaatcacca aaatgtccag ttagaacaag 60 aatttagcat totgcaaaag aagttaacag otgagataac gaggaaatat totgaaatgg 120 atcccaaata tttcatctta attttgtttt gtggacacct gaacaataca tttttttcaa 180 agacagagac aattacaaca gagaagcagt cacagcctac cttattcaca tcatcaatgt 240 300 cacaggtatt ggctaattct caaaacacaa cagggaatcc tttgggtcaa ccaacacaat 360 tcagcgacac tttttctgga caatcaatat cacctgccaa agtcactgct ggacaaccaa caccagetgt ctatacetet tetgaaaaac cagaagcaca tacttetget ggacaaccac 420 480 ttgcctacaa caccaaacaa ccaacaccaa tagccaacac ctcctcccag caagccgtgt 540 tcacctctgc cagacaacta ccatctgccc gtacttctac cacacaacca ccaaagtcat ttgtctatac ttttactcaa caatcatcat ctgtccagat cccttctaga aaacaaataa 600 ctgttcataa tccatccaca caaccaacat caactgtcaa aaattcacct aggagtacac 660

caggatttat	cttagatact	accagtaaca	aacaaacccc	acaaaaaaac	aattataatt	720
caatagctgc	catactaatt	ggtgtacttc	tgacttctat	gttggtagct	ataatcatca	780
ttgtactttg	gaaatgctta	aggaaaccag	ttttaaatga	tcaaaattgg	gcaggtagat	840
ctccatttgc	tgatggagaa	acccctgaca	tttgtatgga	taacatcaga	gaaaatgaaa	900
tatccacaaa	acgtacatca	atcatttcac	ttacaccctg	gaaaccaagc	aaaagcacac	960
ttttagcaga	tgacttagaa	attaagttgt	ttgaatcaag	tgaaaacatt	gaagactcca	1020
acaaccccaa	aacagagaaa	ataaaagatc	aagtaaatgg	tacatcagaa	gatagtgctg	1080
atggttcaac	agttggaact	gctgtttctt	cttcagatga	tgcaggtctg	cctccaccac	1140
ctccccttct	ggatttggaa	ggacaggaaa	gtaaccaatc	tgacaaaccc	acaatgacaa	1200
ttgtatctcc	tcttccaaat	gattctacta	gtctccctcc	atctctggac	tgtctcaatc	1260
aagactgtgg	agatcataaa	tctgagataa	tacaatcatt	tccaccgctt	gactcactta	1320
acttgcccct	gccaccagta	gattttatga	aaaaccaaga	agattccaac	cttgagatcc	1380
agtgtcagga	gttctctatt	cctcccaact	ctgatcaaga	tcttaatgaa	tecetgecae	1440
ctccacctgc	agaactgtta	taaatattac	aacttgcttt	ttagctgatc	ttccatcctc	1500
aaatgactct	tttttcttta	tatgttaaca	tatataaaat	ggcaactgat	agtcaatttt	1560
gatttttatt	caggaactat	ctgaaatctg	ctcagagcct	atgtgcatag	atgaaacttt	1620
tttttaaaaa	aagttattta	acagtaatct	atttactaat	tatagtacct	atctttaaag	1680
tatagtacat	tttacatatg	taaatggtat	gtttcaataa	tttaagaact	ctgaaacaat	1740
ctacatatac	ttattaccca	gtacagtttt	ttttcccctg	aaaagctgtg	tataaaatta	1800
tggtgaataa	acttttatgt	ttccatttca	aagaccaggg	tggagaggaa	taagagacta	1860
agtatatgct	tcaagtttta	aattaatacc	tcaagtatta	aataaatatt	ccaagtttgt	1920
gggaatggga	gattaaaatg	catgtttgag	agtaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	1980
aaa						1983

<210> 75 <211> 2736 <212> DNA

<213> Homo sapiens

<400> 75

60 gagagaagcc ttttccgttg ccggtgccgg cctagcgtcc tggaattact tcaatcaaca ggagcgagaa cccgagcagc gccatgagca acactaccgt cgtccccagc actgcaggtc 120 cgggccccag cggcgggccc ggtggcggag gtggtggtgg cggcggaggc ggcggcaccg 180 aggtaatcca ggtgactaat gtctccccga gcgctagctc tgagcagatg cggactctct 240

teggttteet	aggcaagatc	gacgaactgc	gaatattaaa	gccggatgat	tegeetttge	300
cagtctcatc	tcgtgtctgc	tttgttaagt	tccatgatcc	agactcagca	gttgtggcac	360
agcatctgac	aaacactgta	ttcgttgaca	gagctttgat	agtcgtacca	tatgcagaag	420
gagttattcc	tgatgaagct	aaagctttgt	ctctgttggc	accagctaat	gcagtggcag	480
gtcttctgcc	tggtggtgga	ctcctgccta	ctcctaaccc	acttacccag	attggcgctg	540
ttccactggc	tgctttgggg	gctcctactc	ttgatcctgc	ccttgctgca	cttgggcttc	600
ctggagcaaa	cttgaactct	cagtctcttg	ctgcagatca	gttgctgaag	cttatgagta	660
ctgttgatcc	caagttgaat	catgtagctg	ctggtctcgt	ttcaccaagt	ctgaaatcgg	720
atacctctag	taaagaaata	gaggaagcta	tgaaaagagt	acgagaagca	cagtccctaa	.780
tttctgctgc	tatagaacca	gataagaaag	aagaaaaaag	aaggcattca	agatcaagat	840
cacgttctag	gaggaggagg	actccctcat	cttctagaca	caggcggtca	agaagcagat	900
cgagacggcg	gtcacattct	aagtctagga	gtcggcgacg	atccaaaagc	ccaaggcgga	960
gaagatctca	ttccagagaa	agaggtagaa	ggtcaaggag	cacatcaaaa	acaagagaca	1020
aaaagaaaga	agacaaagaa	aagaaacgtt	ctaaaacacc	accaaaaagt	tacagcacag	1080
ccagacgttc	tagaagtgca	agcagagaga	gacgacgacg	aagaagcagg	agtggcacaa	1140
gatctcctaa	aaagcctcgg	tctcctaaaa	gaaaattgtc	ccgctcacca	tcccctagga	1200
gacataaaaa	ggagaagaag	aaagataaag	acaaagaaag	aagtagggat	gaaagagaac	1260
gatcaacaag	caagaagaag	aagagtaaag	ataaggaaaa	ggaccgggaa	agaaaatcag	1320
agagtgataa	agatgtaaaa	caggttacac	gggattatga	tgaagaggaa	caggggtatg	1380
acagtgagaa	agagaaaaaa	gaagagaaga	aaccaataga	aacaggttcc	cctaaaacaa	1440
aggaatgttc	tgtggaaaag	ggaactggtg	attcactaag	agaatccaaa	gtgaatgggg	1500
atgatcatca	tgaagaagac	atggatatga	gtgactgaat	attgcctctg	agggagtcca	1560
actgtatacc	tgcatcagtg	tcattccttt	gtgtgatttc	ttaatgctgt	atttgttcat	1620
ctcaaaccta	gatgtataca	gctctgagtt	ataaatggtt	ataaagctcc	tgttactcat	1680
attagttatt	tacatcaaaa	agcttttaga	aaatggtacg	aggtaaccaa	ttcttgtcat	1740
ggtgaaatct	gattgagtaa	ccaagcagtt	ttactattct	ggtgctgctt	cataacaaaa	1800
atgaaaagct	gcatgcatct	acagcaggca	tggattgttt	atgtcgtatg	atatccttta	1860
ttaagtaagt	tcacttatag	tatttctata	atttgattca	ttgccgtaat	agagccatgt	1920
aggaaatgca	ctgattgcat	gttattgtgg	caagaatatc	ctaaatgtca	ttaaaatcct	1980
ccaacatgat	ggatctactt	atggtcttgt	ttgttgacat	gacaaattaa	cattcttata	2040

gttacatctg gaaatgagca	tttgaaatag	ataatccttt	aagccttgtg	gcaaaatttt	2100
tgtggctttt gtttaacttt	gaaaggttat	tatgcactaa	ccttttttgg	tggctaatta	2160
gggtttaaat acagaaacaa	gatttcaaat	aaaactgtct	ttgggcagtg	agtaaatagc	2220
atattttgaa gtagagttgt	atactttttc	ataagatgtt	tgggaatttt	tttcctgaag	2280
taataattta ttcccacatc	tacatcagtg	aaagctatct	acctatcctg	agtctatctt	2340
aaaggaaaaa aagaaaaaaa	ccttatctct	tgcccttatt	ttgaattttc	cactctttca	2400
ttaatttgtt ttaagctcct	gttggaaaaa	aaggggtagt	gcattttaaa	ttgaccttca	2460
tacgctttta aaataagaca	aatctacttg	ataatgtacc	tttatttgat	ctcaagttgt	2520
ataaaaccaa taaatttgtg	ttactgcagt	agtaatctta	tgcacacggt	gatttcatgt	2580
tatatatgca aagtaggcaa	ctgttttctt	agttacagaa	gtttcaagct	tcacttttgt	2640
gcagtagaaa caaaagtagg	ctacagtctg	tgccatgttg	atgtacagtt	tctgaaattg	2700
ttttacaaga ctttgataat	aaaaccctta	aactta			2736

<210> 76

<211> 1839

<212> DNA

<213> Homo sapiens

<400> 76 60 tgaaaataat gtactgcccc atgtattact gttccaaaag gagaaagcta tgtagaaaga tacattaagg gtgaaaatag caatacagta gatttgaata ccttgatgtt ttgcattact 120 tcatttatgt ttacatcatg tttagaaatg ttttcattta ctgtggtctt tggtcacttc 180 agctcaaaga cctagtgatg gatatttctt tgaggctttc atttatataa ttttattttg 240 tacaatgttt tttttaaatg tgcaaatact gtattcaagt gaaaaaaata cagtatttgt 300 agataaccat agctactaca cagttcttcg gtagtcccag tgtagttata tcagtgttta 360 ctgaagggaa catcaaaata ttaatggtat attataaaat aaagactttc ttaaaggaaa 420 attgcaccta ttttaccttt ttaagagtaa gccatgaaat cttgtaacat gtctcttaac 480 540 tatttataat gaaaagtggc atttgggtat agtcaccaca gcaatgttct acatccctaa 600 gattatctag gtaggacatg tcaaagatga ctgttgtcat tctggaggtc ctattagaga atattataaa agggtgacct tgtaggaagg atctgagtcc tccccctgag gttctctttt 660 720 tcttggtgct ttattagcaa ctctggatat ttttataaaa ctagttacat tataaacggt ttcaaacatg tttaatttac attaggtttt tatgtaagag tgtcatggaa gcactcagca 780 agcaggctga ttgcaataga ctcagacatg cgaataaatg taattgagag tctattcatg 840 gtgaggagta catcccagtg cctttaacct ggatttctaa tcttaagtga aatgggtgca 900

gcattccttt	ggaaaaaaaa	atctttttat	tttcaagtga	taattttgtg	ttttcctcat	960
ataagttttc	tccagagcac	ccaccttctc	ttccttcttg	gtctgtcatt	atattgcaaa	1020
atatttttcc	tctgaatgaa	attatcacag	gttgtctcaa	gcacaaccaa	ctgaatgtct	1080
cttaactgtg	gggaccaata	gggagagagc	ctggggtcta	caagaggaga	cacatcatca	1140
aatgtttgaa	tgatcacaaa	ttaagacatt	atcagcccag	taaatttctt	gcttaatgtt	1200
tttccaagtt	ctggcttgaa	tatttcttat	taaagctatc	ttatgtgggt	actttatttt	1260
gaaaggtatt	atagtttgta	tatttaacag	taaggaggaa	actgtaacca	aaattagtat	1320
ttctctatac	gtattggtac	ttgaagattc	ctttcaaaag	aaatccagcg	ttttcctaat	1380
tttagtactt	aatttctctt	tttaatttaa	gtgatctttc	taattcgaaa	gctgtgttct	1440
ttttgaatac	cgtgcatggg	ggttaagctg	atgttaaaac	agtttgcaat	aaaaaaaat	1500
gaatcagctt	aagtcattta	atcatttcaa	gtgcattctg	catcctttaa	aaataagttt	1560
aagaaattta	agagaattgt	gttttcatta	agttttgcat	atcttttgtt	atgccatgta	1620
aattcccttt	ttcgtatgat	taaaggaagg	ttatgataaa	atgattagtt	catttacatt	1680
cacttgtagc	aattacatga	gaatttgaat	tttgtcgtgt	ttgggtttgt	tcattcctgt	1740
gaatgatggt	acagttaggt	gagattttct	gttatggtac	ccaaactcac	catttggtcc	1800
tctttaatct	ttgagggttt	caataaaaat	tgttcactc			1839

<210> 77

<211> 1348

<212> DNA <213> Homo sapiens

<400> 77

tttttattt ctgaactgta cactcacaac ttatgtttct ttgagattaa tagatattgg 60 gggaaaaacg cctttttagg aaaattatag tgaaaatttg acagttgatt ggcataattt 120 cttgtttgaa tgctgcctcc attatatagg tccttccagg aactcaaaca ctgtaagtga 180 aatatgggag tatagttttt attatttctt cttttccttt tgttttcata atataatgca 240 gtttgttcag gaaatcagca caaagcctga tagtacttta ctaaaatgac tgcattcttt 300 ggattccttc agtctatggt tcaagtcact aaagattcat ttttgttgag tccttatgag 360 aaacagcagt atgaatcttg acggtttctg cccgtcctaa tggcagagct ctctgacttg 420 ggtgtatgct gccaggctgg gtactttcat actttgtttt cttgttttgc tttaaaacta 480 cgactcagca tacattttcc cacatacatt tttacattgt accttaggac tcagtcatct 540 ccacttaaat tgatgacaca agcagctaat aaccatttct gggtttctgc ctaaccccct 600 aattgtctgt taaagccaat tctctgggtg tcccagtgag tggtggcttt ttttctttcc 660

97

acattggcac attcacttct	cccactcttg	gcatgtaaga	aataagcatt	tacataattg	720
gaaaaatctg gatttctgat g	gccaaagggt	taaagcttct	tggatttcat	ttcattgata	780
tacagccact attttatttt t	tgatcagtgg	cctttgggcc	actgttcagg	gtactgacca	840
tcagtgtcag cattagggtt	ttggtttttg	tttcttttgg	gtatttcttt	tttggcacat	900.
gtgaatcttg ttttgtgtaa	aatgaaatta	ctttctcttg	ttctctgatg	atgggtttaa	960
aattaaaaga gcatccggtt	ttggtatggg	gatgatccag	gattatgttg	tgactgatac	1020
atattagtta cttgtgcttt	tttttttt	ttggatcttt	gcaagggcaa	aactacaagt	1080
aacgagtttt atataattaa	tttaaatttg	ttacaggttt	tcatgttcag	gataaaccat	1140
acttccacct tgggtgagaa	cacttgcaac	agtttattaa	tgaggtgact	ttcaccttag	1200
gacaactgtt gcatgccaag	ttttttgtgt	gtgtgaaaca	cttcaaaact	gatttaaaag	1260
atgtaaattt aaaattggtt	gtatctaata	tgccccaggt	tcggtaaata	aacaattctt	1320
tttaaaaaca aaaaaaaaaa	aaaaaaaa				1348

<210> 78

<211> 2156

<212> DNA

<213> Homo sapiens

<400> 78 gcgcggacct ttcaacaagg gctttattaa ttctcacgct gcggccctgg aaagcgatgg 60 aggtggcggc taattgctcc ctacgggtga agagacctct gttggatccc cgcttcgagg 120 gttacaagct ctctcttgag ccgctgcctt gttaccagct ggagcttgac gcagctgtgg 180 cagaggtaaa acttcgagat gatcaatata cactggaaca catgcatgct tttggaatgt 240 ataattacct gcactgtgat tcatggtatc aagacagtgt ctactatatt gatacccttg 300 360 gaagaattat gaatttaaca gtaatgctgg acactgcctt aggaaaacca cgagaggtgt 420 ttcgacttcc tacagatttg acagcatgtg acaaccgtct ttgtgcatct atccatttct 480 catcttctac ctgggttacc ttgtcagatg gaactggaag attgtatgtc attggaacag 540 gtgaacgtgg aaatagcgct tctgaaaaat gggagattat gtttaatgaa gaacttgggg 600 atccttttat tataattcac agtatctcac tgctaaatgc tgaagaacat tctatagcta 660 ccctacttct tcgaatagag aaagaggaat tggatatgaa aggaagtggt ttctatgttt 720 ctctggagtg ggtcactatc agtaagaaaa atcaagataa taaaaaatat gaaattatta 780 agegtgatat teteegtgga aagteagtge cacattatge tgetattgag eetgatggaa 840 atggtctaat gattgtatcc tacaagtctt tcacatttgt tcaggctggt caagatcttg 900 aagaaaatat ggatgaagac atatcagaga aaatcaaaga acctctgtat tactggcaac

agactgaaga	tgatttgaca	gtaaccatac	ggcttccaga	agacagtact	aaggaggaca	960
ttcaaataca	gtttttgcct	gatcacatca	acattgtact	gaaggatcac	cagtttttag	1020
aaggaaaact	ctattcatct	attgatcatg	aaagcagtac	atggataatt	aaagagagta	1080
atagcttgga	gatttccttg	attaagaaga	atgaaggact	gacctggcca	gagctagtaa	1140
ttggagataa	acaaggggaa	cttataagag	attcagccca	gtgtgctgca	atagctgaac	1200
gtttgatgca	tttgacctct	gaagaactga	atccaaatcc	agataaagaa	aaaccacctt	1260
gcaatgctca	agagttagaa	gaatgtgata	ttttctttga	agagagctcc	agtttatgca	1320
gatttgatgg	caatacatta	aaaactactc	atgtggtgaa	tcttggaagc	aaccagtacc	1380
ttttctctgt	catagtggat	cctaaagaaa	tgccctgctt	ctgtttgcgc	catgatgttg	1440
atgccctact	ctggcaacca	cactccagca	aacaagatga	tatgtgggag	cacatcgcaa	1500
ctttcaatgc	tttaggctat	gtccaagcat	caaagagaga	caaaaaattt	tttgcctgtg	1560
ctccaaatta	ctcgtatgca	gccctttgtg	agtgccttcg	tcgagtattc	atctatcgtc	1620
agcctgctcc	catgtccact	gtactttaca	acagaaagga	aggcaggcaa	gtaggacagg	1680
ttgctaagca	gcaagtagca	agcctagaaa	ccaatgatcc	tattttagga	tttcaggcaa	1740
caaatgagag	attatttgtt	cttactacca	aaaacctctt	tttaataaaa	gtaaatacag	1800
agaattaatt	attctaacat	attggcctct	ttgtactgga	aaagtattca	gtggtacctg	1860
gaggtctgga	. cagttatact	gtaacctctt	aagttttaat	gtgctaaata	tatcttgtat	1920
gattttttat	ttttaataa	cattggaaat	atattcaaga	gattatgatt	ctgtaaagct	1980
gtggaatgaa	gctgcagatt	tagagaacat	tggcttctga	aaaaaaaaa	gagtgaagat	2040
agtactagca	agtatactta	. ttttttaaaa	caggctagaa	tctcatgttt	tatatgaaag	2100
atgtacaatt	: cagtgtttaa	aaataaaaat	atttattgtg	taaaaaaaaa	aaaaaa	2156

<210> 79

<211> 2690

<212> DNA

<213> Homo sapiens

<400> 79
agatggcggt agctgagggg ttgaccgaga gacccagttg aaggccttta cgaagtgaaa 60

gaggccggga gtcgcccct acccgcttct cgtagtcctg ggagcacagc agaagtgttt 120

ttctttttt aatgaacaag taaaccatac aaattgtcaa catgggacgg agatctacat 180

catccaccaa gagtggaaaa tttatgaacc ccacagacca agcccgaaag gaagcccgga 240

agagagaatt aaagaagaac aaaaacagc gcatgatggt tcgagctgca gtttaaaga 300

tgaaggatcc aaaacagata atccgagaca tggagaaatt ggatgaaatg gagtttaacc 360

cagtgcaaca	gccacaatta	aatgagaaag	tactgaaaga	caagcgtaaa	aagctgcgtg	420
aaacctttga	acgtattcta	cgactctatg	aaaaagagaa	tccagatatt	tacaaagaat	480
tgagaaagct	agaagtagaa	tatgaacaga	agagggctca	acttagccaa	tattttgatg	540
ctgtcaagaa	tgctcagcat	gtggaagtgg	agagtattcc	tttgccagat	atgccacatg	600
ctccttccaa	cattttgatc	caggacattc	cacttcctgg	tgcccagcca	ccctctatcc	660
taaagaaaac	ctcagcctat	ggacctccaa	ctcgggcagt	ttctatcctt	cctcttcttg	720
gacatggtgt	tccacgtttg	cccctggca	gaaaacctcc	tggccctccc	cctggtccac	780
ctcctcctca	agtcgtgcag	atgtatggcc	gtaaagtggg	ttttgcccta	gatcttcccc	840
ctcgtaggcg	agatgaagac	atgttatata	gtcctgaact	tgcccagcga	ggtcatgatg	900
atgatgtttc	tagcaccagt	gaagatgatg	gctatcctga	ggacatggat	caagataagc	960
atgatgacag	tactgatgac	agtgacaccg	acaaatcaga	tggagaaagt	gacggggatg	1020
aatttgtgca	ccgtgataat	ggtgagagag	acaacaatga	agaaaagaag	tcaggtctga	1080
gtgtacggtt	tgcagatatg	cctggaaaat	caaggaagaa	aaagaagaac	atgaaggaac	1140
tgactcctct	tcaagccatg	atgcttcgta	tggcaggtca	agaaatccct	gaggaggac	1200
gggaagtaga	ggaattttca	gaggacgatg	atgaagatga	ttctgatgac	tctgaagcag	1260,
aaaagcaatc	acaaaagcag	cataaagagg	aatcccattc	tgatggcaca	tccactgctt	1320
cttcacagca	gcaggctccg	ccgcagtctg	ttcctccttc	tcagatacaa	gcacctccca	1380
tgccaggacc	accacctctt	ggaccaccac	ctgctccacc	attacggcct	cctgggccac	1440
ctacaggcct	: teeteetggt	ccacctccag	gagctcctcc	attcctgaga	ccacctggaa	1500
tgccaggact	ccgagggccc	ttaccccgac	ttttacctcc	aggaccacca	ccaggccgac	1560
cccctggccc	tcccccaggt	ccacctccag	gtatgaataa	tggtccccct	cctcgtggac	1620
ccccaccaaç	g gctacctccc	cctgcacctc	caggtattcc	tccacctcgt	cctggcatga	1680
tgcgcccaco	tttggtgcct	ccccttggac	ctgcccccc	: tgggctgttc	ccaccagete:	1740
ccttgccaaa	a ccctggggtt	ttaagtgccc	cacccaactt	gattcagcga	cccaaggcgg	1800
atgatacaag	g tgcagccaco	: attgagaaga	aagccacago	aaccatcagt	gccaagccac	1860
agatcacta	a teccaaggea	gagattacto	gatttgtgcc	cactgcactg	g agagtacgtc	1920
gggagaata	a aggggctact	getgeteece	: aaagaaagto	agaggatgat	tetgetgtge	1980
ctcttgcca	a agcagcacco	aaatctggto	cttctgttcc	tgtctcagta	a caaactaagg	2040
atgatgtct	a tgaggcttt	c atgaaagaga	ı tggaagggct	actgtgacag	g cttttgatgc	2100
cagaaaagg	c ttctgttcad	c aacagtggco	c catggagaaa	a gaggctctta	a ttaaacttag	2160
atgaaagag	c tgcttccati	gtcagggtat	tttctaatt	cagttcaag	g aatatcctaa	2220

aatttagcct tgttcagaat ttactgcaca taaaaaaggg tatttcatcc agaatagatc	2280
agttattgaa gcagtgctgc taacatccat tccctttcat accaccattt tcaccctgtt	2340
tetteceete etecagtiet tiggaaatti gigalegggg galettagti getlattigt	2400
tttgactctt gtgtgctgtg ggcactggag tagagatttc tggagaaaaa aaaacagttt	2460
atttcatctt gccttttgtg tttgagttat ttttaatatt ttcctgtaaa tattttgtaa	2520
tattttactt gtaatgaaat ggatcacaat gtcatttcct aatacaaggc aggatatgtg	2580
ggaagaatat gtacaattat ttgattaaaa ttatttccca ctgacctaaa ctttcagtga	2640
tttgtgggaa aaataaataa atgttctaca ccaaaaaaaa aaaaaaaaaa	2690
<210> 80 <211> 1874 <212> DNA <213> Homo sapiens	
-	
<400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc	60
<400> 80	60 120
<400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc	
<400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc tctcctcgcc ctccgccccg gccccggccc cgcgcccgcc	120
<pre><400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc tctcctcgcc ctccgccccg gccccggccc cgcgcccgcc</pre>	120 180
<pre><400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc tctcctcgcc ctccgccccg gccccggcc cgcgcccgcc</pre>	120 180 240
<pre><400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc tctcctcgcc ctccgccccg gccccggccc cgcgcccgcc</pre>	120 180 240 300
<pre><400> 80 ggccgcggag acgtgaagct ctcgaggctc ctcccgctgc gggtcggcgc tcgccctcgc tctcctcgcc ctccgcccg gccccggcc cgcgcccgcc</pre>	120 180 240 300 360
ccagaaggcc aagctggcg gccccggcc cgcgccgcc atggagaaga ctgagctgat ccagaaggcc aagctggcg agcaggcga gcgctacgac gacatggcca cctgcatgaa ggcagtgacc gagcagggcg ccgagctgtc caacgaggag cgcaacctgc tctccgtggc ctacaagaac gtggtcgggg gccgcaggtc cgcctggagg gtcatctcta gcatcgagca gacaggcga acctccgaca agaagttgca gctgattaag gactatcggg agaaagtgga gtccgaggtg agaacgga agaaagtgga gtccgaggtg agaacggag gtcgaggaggagaaagtgga gtccgaggtg agaacggag agaaagtgga gtccgaggtg agaacggag gccgcaggtg gctggaattg ttggataaat atttaatagc	120 180 240 300 360 420
education of the control of the cont	120 180 240 300 360 420 480

tgcctgcacg ctggctaaaa cggcttttga tgaggccatt gctgaacttg atacactgaa

tgaagactca tacaaagaca gcaccctcat catgcagttg cttagagaca acctaacact

ttggacatca gacagtgcag gagaagaatg tgatgcggca gaaggggctg aaaactaaat

ccatacaggg tgtcatcctt ctttccttca agaaaccttt ttacacatct ccattcctta

ttccacttgg atttcctata gcaaagaaac ccattcatgt gtatggaatc aactgtttat

agtettttca cactgcaget ttgggaaaac ttcattcctt gatttgtgtt tgtcttggcc

gtaactccca aacacttatg tagaggacta aaaatgtatc tggtatttaa gtaatctgaa

720

780

840

900

960

1020

1080

1140

ccagttctgc	aagtgactgt	gttttgtatt	actgtgaaaa	taagaaaatg	tagttaatta	1200
caatttaaag	agtattccac	ataacttctt	aatttctaca	ttccctccct	tactcttcgg	1260
gggtttcctt	tcagtaagca	acttttccat	gctcttaatg	tattcctttt	tagtaggaat	1320
ccggaagtat	tagattgaat	ggaaaagcac	ttgccatctc	tgtctagggg	tcacaaattg	1380
aaatggctcc	tgtatcacat	acggaggtct	tgtgtatctg	tggcaacagg	gagtttcctt	1440
attcactctt	tatttgctgc	tgtttaagtt	gccaacctcc	cctcccaata	aaaattcact	1500
tacacctcct	gcctttgtag	ttctggtatt	cactttacta	tgtgatagaa	gtgcatgttg	1560
ctgccagaat	acaagcattg	cttttggcaa	attaaagtgc	atgtcatttc	ttaatacact	1620
agaaagggga	aataaattaa	agtacacaag	tccaagtcta	aaactttagt	acttttccat	1680
gcagatttgt	gcacatgtga	gagggtgtcc	agtttgtcta	gtgattgtta	tttagagagt	1740
tggaccacta	ttgtgtgttg	ctaatcattg	actgtagtcc	caaaaaagcc	ttgtgaaaat	1800
gttatgccct	atgtaacagc	agagtaacat	aaaataaaag	tacattttat	aaaccaaaaa	1860
aaaaaaaaa	aaaa					1874
<210> 81 <211> 445 <212> DNA <213> Hom						
<400> 81 gtcggccttc	gcgagcgtct	gggcgggtgg	taggaacaat	ggcgctgtct	taagtggcac	60
agtggagcag	ctctgaagat	gcaaagatac	acgaaaaaac	ttccagaaca	tctgggagaa	120
tatttaatgg	g aaaatcgctt	ggttaaaacc	tgacactttt	aacagtgaac	agcgttctga	180
gtgtggacga	gtagccagtg	aagataatga	atgtcgaatg	tgactgacta	gcagcttcat	240
tttgaatgag	ggtcgctgtc	tgcccattga	tagaggccag	attgtcttgg	aagttccaaa	300
gttgcaacga	tttctggcta	gtgccacgag	gtttacttga	ctgttgtgtg	aaaagctgat	360
aagaaaacca	a tccagaaaaa	agctcttcgt	tttacaaaca	. tgaaaataaa	acatgtattt	420
tggattatga	a aaaaaaaaa	aaaaa				445

<210> 82

<211> 13359

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (8374)..(8374)

<223> n is a, c, g, t or u

<220>

<221> misc feature (9044)..(9044) <222> <223> n is a, c, g, t or u <400> 82 ggatcctaag gatgtgacac tggttttcaa caacatgctt agagaactca tgaagtggat 60 tgggtgtcaa cccagtgaac atgtttttat ttaatttatt ttttgaagtt tatgtggtga 120 180 tggtgtggct ttccgaaatg ggcaaatatt cagaaaatct tttgcatttt cttctgtcag gaatggggaa ggggagtggg ggcacaatct gagaaaggac acctgtgctg ttctaggcat 240 300 cgctggcaag tttgtgggaa gggatgggca agggtgagtg ggtttgctcc acaccgtcct gtgctgctcg agaggacctg ggacgtgcga gggaaacgtg ggtgacggtg cctaggctgc 360 ggcccttcac tgctgtgctg ggttcctgca gcctgctacg tttcccttgg caatgtaaat 420 gaagatggag gggtcgtttc gtgatttcct gctgctgaga ataaatgtct tgttaaaaac 480 gtggcaacgg ttactcttag gtgccatgga tcgatgtcag ggtggtcagc tctggactaa 540 gccacccacc tccaatttgt acaacagtat tgatacatag ggctacactc attactgttc 600 aagtgttcta tgttaagagt tgtgtttaat ttctaaagat taaaaaaagc aaaaaaattg 660 gtgctaaacc ttcacccctg agcacgctca gtgagactgg tcatgcaagc atttacagtg 720 ccatgctcct caagccgatt ttttcttgta gaaatgttgc cctatttgtc ttctccaatg 780 tatggtatgt tattttattt tattatttta ttttatttta ttttatttta tcgaggggg 840 900 gtacgatacc tgccatttaa gaaaatgaat agaaaatttt aaaacccgag aaatggggga aaaaaaatca gtgcacaaga attgggctgg ttaggcccag caccacactg aagtgggctc 960 agtggttttt ggagtgaaga agccttactc cctgcacatt ccctcatgct cccacacaag 1020 1080 tccagcaatg gaaatgcttg ggttcctctt gctttgtcag gggactcagg agtcgaccaa gggaaaccat ttggccccgt gaggaatggg cattgtcagt atccgtcctg aacggggcct 1140 agtcaggaag cggtctagaa gtgtacggtc acggtcgcct catgaaagtg tgtagcaggt 1200 ggctctcagg aaaaatacca agtctggatc atccatgtgg cagctttgca tagggagagg 1260 atagetecga actggaactg aactgeette tetgeacget tgaccaaage agtgatgaag 1320 gcgctggtgg tggcgcgcgg cgcggcgcgg cgatggcggc gggtggcagc gatccgcggg 1380 1440 ctggcgacgt agaggaggac gcctcacagc tcatctttcc taaaggttgg gctcggggct 1500 gccaaactcc cccgcgccac ttcgcgtggt cgccgcaggc ctggcgttat gcgcgcttcg 1560 cccaaggccc tgcctaagcg gcggcttggg caagccccac cgcggcgtgg ggctggggag 1620 ggaacatggc cttgggaggg accatggcct tgggagggac cgcctgggca actgggttat

tttatgtgat	aaactgcgaa	gttccgggga	cctgtgtcaa	agataaacaa	agccggacac	1680
tcaggtggta	aggacagatt	tttaaacagt	aatatactgt	tgcactaggg	aaaagagccc	1740
agcgtgaacc	gaactcaact	tcgattagta	cagaacctct	gggcgtttta	acggagaatt	1800
agggaataag	gatgtggtga	gcgggagctc	gggggagtcg	gggaagtgag	aaatgtaaaa	1860
aagcgggaag	aggaggattg	gtccgtgtga	acgcagcttg	gtttgttgac	tggcgcacct	1920
gtggaagtta	ggcccctacc	ctcccacaga	ggcagagaga	cagagtccta	tcttcagctg	1980
ttggctggaa	caaattattt	tggcagcctt	gagttttctc	acgcacgcac	tttaagtggt	2040
tggggagggt	attcctaggg	atgaggtctt	cagctcaaaa	acttgaaaat	gtatacagct	2100
gtcttacact	ttattgattt	attgatttat	tgattgagat	agggtctcgc	cctcttgttg	2160
aggctggagt	atagtggcat	gatcagagcc	cactgcaacc	tcaacctctc	aaccgctcaa	2220
gctatcctcc	cacctcagcc	tcccaagtag	ctgagaccac	agatgcacgc	ccccatacct	2280
ggcccattaa	aaaaattttt	tcgtaaagac	agggtctcac	tatgtcgccc	aggctggtct	2340
caaactcctg	ggcttaagtt	aatcacggca	cctgacctat	cttattcttt	tattcattca	2400
ttcatttact	tatttagaga	cagagtetca	ctctgttgcc	caggctgggg	tgcagtggta	2460
cgaactcggc	tcactgcaac	ctccgtctcc	tgggctcaag	tgattatcct	gcctcagcct	2520
cccgagtagc	tgggattaca	ggtgcccacc	accacacccg	gctaatttt	gtattttcag	2580
tagagctggg	gtttcaccat	gttggccagc	ctgttctcga	actcgtgacc	tcaggtgatc	2640
cacccagctc	ggcctcccag	agtgctggga	ttactgatgt	gagccattgc	ctggcaaaat	2700
aataaattta	aaattaaaac	ggaaatacta	ccctctaaga	. aataaaaaat	ataaaaatga	2760
aaaaatgttt	attatgtgtt	ttttgtattt	tatggtttaa	tacgttagaa	cttactattt	2820
tagttgttaa	tttattttt	ttaattttt	ttttaatttt	attttgagat	agggtttcac	2880
tctgtcacco	aggctggagt	gcagtgatgt	gatttcggct	cactgcaacc	: tacccctcct	2940
agtttcaago	c catectgeet	. cagcctccca	agtagctggg	g aatacaggcg	g cctgccacca	3000
tgcccagcta	a atttttgtgt	. ttttagtagg	gacggtgttt	caccatgttg	g gccaggctgg	3060
tctcgaacto	c ctgacctcaa	gtgatccacc	caccttggc	ttcccagtgo	: tgagattaca	3120
ggtgtgagc	c acctcaccct	gcctttttt	tttttttt	ttttttttt	tttttttt	3180
tttgagacg	g gatctcattc	tgctacctag	gttggagtg	agtggtgtg	a tcacagetca	3240
ctgcagcct	c aaccttccct	aggctcaggt	tatcctctca	a cctcacttca	a gcctctggaa	3300
tacttggga	c tacaagtgca	a ggccaccact	: cctggctaat	t ttttgtatt	ttttgtggag	3360
acaaggttt	c accatgtggo	c ccaggctggt	cttgaactco	c tgggctcag	g taatctgccc	3420
gcctcgacc	a cccaaagtgt	tagaaagtat	aggtgtgage	c cactgcacc	t ggcctattaa	3480

tggtggtaat	gacgtatcct	cggtaaaatt	tccagatgac	atacagccaa	ggagttgttt	3540
ttcctttttt	agcaacagag	attaattatg	gccattgttc	ttaaaatatt	tgcacaagag	3600
aaaataacag	gcagatcccc	tgatctattt	ccttttgttt	ctaaataaat	tgtgtgtgtg	3660
tgtgtgtgtg	tatgtgcgcg	cgtgtgcgcg	ccttcacttg	aaaatgttcc	ttgggattag	3720
ccatggggag	aagtcttgga	tccctcctct	ccatagttac	acaaaagtgt	ctgaactgcc	3780
tcccccatcc	ccattttgtt	gatgctgaat	cctgggaatg	cctcccaaaa	gctctgtggt	3840
aggtctcaga	caccactttc	ctaggcactc	tgagttacag	tttggctgcc	tcgaccttcc	3900
ttggttgaag	ggagtgaggg	taatgtatta	gtagtacttg	ggtattgttc	ttaatgagaa	3960
atagggacag	ttgaccagtt	tcctggtgtc	ctaaaagttc	cattcctttc	catttaacaa	4020
gtaatttggt	ttagtgcaga	aagggaccat	ctctctttt	tttttttt	ttttttttg	4080
agacggagtt	tcactgttgt	tgccttaggc	tggagtgcag	tggcacaatc	teggeteact	4140
gcaacctcca	cctcccgggt	tcaagcaatt	ctcctgcctc	ggcctcctga	gtaggtggga	4200
gtacagtcat	gtgccaccac	tcccgactaa	tttttgtatt	tttagtagag	atggggtttc	4260
accatgttag	gctggtctcg	aactcctgac	ctcaggtgat	tcacctgcct	tggcctccca	4320
aagtgttggg	attacaggcg	tgagccactg	cgcttagcct	gggaggcatc	tcttaacatt	4380
gatttttcca	ggacctgtaa	aagcatcaaa	gttccaacaa	acagatttgt	aactgattag	4440
ctgctgcttc	ccttttttt	ttttttttt	tggcctgatg	tcatttgtta	ctgtcacttc	4500
agagtttgga	ggttctgcag	tcctgataca	taatgccttt	tcctctactc	attgctgtga	4560
ggcagtagtt	tcttctgtac	ctacactgcc	tcagtgttaa	ggattaaaag	aggtaacttt	4620
ccctggtata	. caaataggct	ctcactgtag	taaatccccc	tgttataggc	tagaagactg	4680
aaaaagaagg	tgttctgagg	ttttcgttta	aactctcctg	ccctcaggta	gaaaacagtt	4740
tttggttacc	: tatttttaa	tttatatttt	aattttattt	caatagtgct	ccaactgtat	4800
tggcagccta	ttctatttag	tagcaatgag	tacctttcaa	. ataaaaatac	agtttcctcc	4860
tgacccacca	ı cttaaaacta	tatgtgttgt	aaaaggaaaa	tgaagctctt	gtcagttacc	4920
tggcttgaga	aatgggaagg	cattactctg	agggaggtgt	tagtgatttc	cctgatagta	4980
aacagaccca	tagcacatct	aaatgtgaaa	ttgcaagtcg	ttttggcttt	tcctcactgt	5040
tgcttcctct	tcagtgtggg	gttataaaca	ı tgaattcatg	g tttatgaatg	gttcctactc	5100
taagggaact	cactgttaag	ı agaaaggcag	, ataaaaacta	tctctaatac	: tttgagataa	5160
acattaggaa	a cataagatco	: tgcaggaacg	, taagggagag	g aatgatttt	ccaagggtaa	5220
cagcatttt	taacagaact	: attgtagaaa	tgtagaaggt	cgccgtatat	: tatgaaaagg	5280

ggccatgggt	ttcttttct	ctcaaaccta	attcttaaaa	attgcttata	acatttgtgt	5340
gtgcacaaaa a	atagattttg	gggtacatta	tatttatttc	cagacacttg	gccctattta	5400
acatgtaaca	attcttaaaa	ttgagagtat	aatactagca	ttatggaagt	aggaagatga	5460
tgagctgatg	ccggctagag	ggaaggaatt	gtcagtgtac	tcttgaaatc	agtaactagt	5520
ctatgtgtca	ttacttagta	gcatgtctag	gtcaggtttt	tggtgtcaga	atctagctca	5580
gacaagctaa	atgttagtgt	ctcgtgaact	ccactgtgcc	ttgtggtatg	taactgtgcc	5640
ttgtggtatg	taactgtggg	tgaacttaaa	gatgtggagt	agctgcaggc	ataaaaagga	5700
aggagatccc	agcctgggca	gtgtggtgaa	acccccatct	ctaccaacaa	cacacagggt	5760
gtggtggcgt	gtgcctgcag	tccagctacc	tgggaggccg	agatggggat	ggggcatcac	5820
ctgaactcag	ggaggtcaag	gctgcagtga	attgtattca	tgccactaca	ctccagcctg	5880
ggtgacagat	tgagactctg	tctcaaaaaa	aaaaataaaa	gaacgaaatc	atatcttttg	5940
cagcaacatg	gatggagctg	gaggccattc	acttaagcaa	ttaacacagg	aacaaaagac	6000
caagcacctc	acattcttat	aagtgggagt	taaaccttga	gtacatatgg	acagaaggga	6060
acaacagaca	ctgaggccta	gttgaggggg	tgggtggtgc	agattgaaaa	actatgtatc	6120
agtactatgc	ttatcacttg	gatgacaaaa	tagtctgttc	gccaaacctt	cacaacaccc	6180
attttcccct	gtagtacaga	cctgcacatg	cactctgaac	ctaaaataaa	agttcaaaaa	6240
aaagcagatg	tggagtagga	aacccctcga	tttctgcagg	ggcagagaaa	tgttcaaatg	6300
cacagtgaac	atttagaagc	aaacttttga	aggagtattt	tcagctgcca	tttatgcttc	6360
ttacaaatag	agtttgaaac	agctgagaca	cttctaaatt	cagaagttca	tatgcttctg	6420
gaacatcgaa	agcagcagaa	. tgagagtgca	gaggacgaac	aggagctctc	: agaagtcttc	6480
atgaaaacat	taaactacac	agcccgtttc	agtcgtttca	aaaacagaga	gaccattgcc	6540
agtgttcgta	ggtgagtgct	aaaagaaagt	tttattaat	ccaaaccatt	ggacaactgc	6600
atgtagaatg	ctgtcccctc	: cccctttccc	aggtgtcact	tgtgaattta	agtaaaataa	6660
tgttaggctg	ggcatggtgg	g ctcacaccca	ı gcactttgga	aggttgaggo	agcagatcac	6720
ttgaggccag	gtgttcaaga	ccagcctggt	: cgatatagca	a aaaacccgto	tctgctaaaa	6780
atgcaaaaaa	ttagctggtg	g gtacacacca	ı ttaatcctag	g ctgctcagga	a ggccgaggcg	6840
ggagaatcgc	ttgaatctgt	aggccaaggt	tgcagtgago	cgagattgc	g caactgcact	6900
ccaacctggg	caacttagaa	a gaccagaatt	tcagccaggt	gtggtggct	t acacctgtaa	6960
tccacacttt	gtggagctga	a ggtggaccag	g tetettgagg	g ccaggagtt	c aagaccagca	7020
tgtgcaacat	ggtgaaacto	gtgtcccta	c aaaaaaaata	a cagaaatta	g ccaggtgtgg	7080
tggcaggtac	ctgtggtcct	agttacttg	g gaggetgaag	g tgggaggat	c atgtgagcct	7140

gggaggttga	ggctttagtg	agctgtgatt	gtgccactgt	actccagtct	gggaacagat	7200
tcaaatatga	atctgtcata	ttttgtgtaa	gtccagtatg	tgtgatctaa	atggtactgt	7260
tagtggggaa	gtaacttttt	ttgttatttt	ttttagagat	ggggagactt	actatgttgt	7320
ccaggctggt	ctcaaactcc	tggcctcaat	tgatcctcca	accttagccc	cccaaagtgc	7380
tgggattggc	cgggtgcagt	ggctcatgcc	tgtaattcca	gcactttggg	agaccaagat	7440
gggcacatct	cttgcggtca	ggagttcaag	accagcctga	ccaaaatggt	gaaatctcgt	7500
ctactaaaaa	tacaaaaatt	agctgggcgt	ggtagcgcat	gcctgtagtc	ccagctactt	7560
gggagcctga	gaaaggagaa	ttgcttgaac	ccgggagagg	gaggtagcag	tcagccaaga	7620
tcgtgccact	gcactgcagc	ccgggtgaca	tagagtgaga	ctccatctca	aaaaaaacaa	7680
agtcctcgaa	ttagaggtaa	gccaccatgt	ccagcctata	gatagataga	tagatagata	7740
atagtatttg	tacctatgta	tgaggtacat	atgatatttt	gttacttaga	atgtgtaatg	7800
agtatgttag	ggtattgagg	gtattgatca	tttctatgta	ttaggaacat	gtcaagtctc	7860
ccttagctat	ttttatttta	tgtatttatt	cattgatttt	agagacaagg	tctcactgtg	7920
ttgcccaggc	tgaagacgtc	ttgaactcct	ggactcaagt	gatcctcctg	ccttggcctc	7980
ccaaagtgct	aggattacag	gcatgagctg	ctaagcctgg	cctcttctac	cttttttttg	8040
ttttgtttcg	ttttgttttg	agacagtctc	acttcatcac	ccagattgga	gtgtagtggt	8100
gcggtcttgg	ctcactgcaa	cctccacctc	ccaggttaaa	gcagttctca	tgcctcagcc	8160
ttccaaatag	ctgggactac	agacacacac	caccacaccc	ggctaatttt	tttagttttt	8220
tgttttttg	gttttgtttg	tttgtttgtt	tgtctgtttt	gagacggagt	ctagttctgt	8280
cacccaggct	ggagtgcagt	ggcgtgatct	tggctcactg	cagcctccgc	ctcccgggtt	8340
caagcaattc	tcctgcctca	gcctcccgag	tagntgggag	tagcccgcca	gtgcacccag	8400
ctaatttttg	tgtttttagt	agagacgggg	tttcaccacg	ttggccaggc	tggtcttgaa	8460
ctcctgacct	ccgttgatcc	acccgcctcg	gcctcccaaa	gtgctgggat	tacaggcgtg	8520
agccactgcg	ccttggcaat	ttttgtattt	ttagtagaga	cggggtttcg	ccatggtgct	8580
caggctggtc	tcgaactcct	cacgtcaagt	gattacccac	cttggcctct	cagagtgctg	8640
gaattacagg	tgtgagccac	tacacctggc	cgtctagata	tttttaaata	. ctagctacgt	8700
ttgatccctt	ttttcctgtt	gattactctt	tgatttttgt	tgtttatttg	tttttgatta	8760
ttttgatttt	tttttttcc	: ttttgattag	cttgctactc	cagaaaaagc	: ttcataagtt	8820
tgagttggcc	tgtttggcca	acctttgccc	agagactgct	gaggagtcca	aggctctaat	8880
cccaaggtta	gtaccagttg	, tgataagttc	tctgtatact	ggataaatto	ctacaaatag	8940

aattggtgtg	tctaaaatgt	gtatgcgtta	tatatttggg	tacataattg	ccaatattga	9000
		ttttttttt				9060
		tgatctcggc				9120
		cccgagtagc				9180
		agagatgggg				9240
		acccgcctcg				9300
		agtgcccttt				9360
		aatatgaaac				9420
		aatcattttg				9480
		aaatccattc				9540
		ttttagtgtt				9600
		ccaggctggt				9660
		gggattacag				9720
		atttgataat				9780
		tgtttattat				9840
		tatgccagaa				9900
		ttcttataaa				9960
		tataaaaata				10020
		attgaggatg				10080
						10140
		cagccatcca				10200
		gtaatcccag				10260
					tactaaaata	10320
		ggtgtgcgac				
					cgccactgca	10380
					aggtgtggtg	10440
gctcacacct	gtcatcccac	g cactttggga	ggttgatacc	attagaaaac	: atgaagacag	10500
taaatgaaaa	a aatgcagggo	: cgggcgtggt	ggctcatgcc	: tgtaatccca	gcactttggg	10560
aggttgagad	aggaggatca	a ccctgaggtc	aggagttcga	gaccagccto	gccagtggtg	10620
aaaccccgt	tctactaaaa	a atataaaaat	: tagctgggtg	g agggctgggt	gtggtggctt	10680
acgcctgtaa	a tcccagcact	ttgggaggct	gaggcgggcg	gatcacgagg	g tcaggagatc	10740
gagaccgtc	c tggataacad	c agtgaaacco	tgtctctact	: aaaaatacaa	a aaaattagct	10800

gggcgtggtg	gcgggcacct	gcagtcccag	ctacttggga	ggctgaggca	ggagaatggt	10860
gggaatccgg	aaggcggagc	ttgcagtgag	ccgagattgc	gccactgcac	tcccagcctg	10920
ggcgacagag	caagactccg	tttggtaggc	tgagacagga	gaatcacttg	aaccctggag	10980
gtggaggttt	tggtgagccg	agatcatgcc	acttcactct	agcctaagag	gcaagagcga	11040
aactccatct	caaaaaaag	aaaaaaaaa	acctctaagt	caagtggggc	taactgtaaa	11100
ggtatatttt	ttataccttt	tatcttttat	atgtttgaaa	tattttgtaa	tgttttatca	11160
ggaaaagtgg	aaaagaaatc	cagatgaaag	gtaaaggtgt	tagagatgtg	ggcagtagat	11220
tagcacgcct	caaagaagag	tgcggggaaa	ttgccagtcg	ccaaatcact	catttcttt	11280
cattttcttg	tagcttggag	ggacggtttg	aagatgagga	gctgcagcag	attcttgatg	11340
atatccagac	aaagcgcagc	tttcagtatt	aatctccaaa	catcactgct	gctcggagaa	11400
accacatccc	caggcataac	accaccttcc	cactgtctgg	ggctgacttg	cacagaaatt	11460
ctgttgaaga	cagttgagaa	ttcctttgga	gaaaacagcc	cagcttggcg	tggggttagg	11520
ttgctgtttc	aaataactca	caggcccagg	tgacatggaa	tcttggagca	gccttgtgca	11580
gtggcagcca	gtggcttcct	gaacgtgcct	ctgcgaagtg	tgagatgagg	ggtcacataa	11640
ccacactgtt	gactacctca	ttcctggttt	ttggcctcca	catcatcttt	tttcttaata	11700
tttcatgttt	taatttcagg	gtgtttatac	tttttgaaac	tagaccagaa	gatagtagac	11760
tttatagaga	aagaccagtt	ttacctagat	actaaaggaa	gaattaaacc	gctgttagtt	11820
tgaaatgctt	tttttttt	ttttaaatg	gagatagggt	cttaactctt	gtccaggctg	11880
gaggagtgca	gtcgtacagt	catggctcac	tgaagtcttg	accccgctgc	ctcagcctcc	11940
caaataactg	gggccacagg	tgtgcaccac	aactctcagc	: taattttaa	aatttttat	12000
agaggtgggg	ttttactatg	ctgtccagac	tggtcttaaa	ctcctgggct	. caagtgatcc	12060
ccctgccttg	gcctcccaaa	ctggtgagat	. tacaggcatg	g agccaccaca	actggcctga	12120
aattcttaaa	ggatgggagt	gtcgatgaca	gcaccttggc	atcgttgtgc	ctaacctggg	12180
agacggaaga	agcacgccat	gggaagtgtt	tacacttggg	g ggacaagtgo	: taagtattgt	12240
ggagcccata	gccccttgag	, atagatggct	actttgcctt	tcttcttgaa	ctgtcttgca	12300
gaatgtggat	ttggggtaag	ı tggtcttgaa	ggattcattt	agtcacccto	aaattaagat	12360
ttttacttca	tatttattgg	g geetgeacet	ccaagataac	aaagaagaag	g caatggtcgt	12420
gccaaagagg	tccacaacca	ggtgtgcact	gttcactgca	a gcccatttgo	tgtatgaact	12480
gtggttgttg	tgtgcccaat	gacaaggcta	a ctaagaaatt	catcatttga	a aacgtagagg	12540
ccgcagcagt	cagcgatgtt	tctgaaatga	gcatccttga	a cgcctgtgta	a cttcccaggc	12600

tggatgtgaa gctacattac catgtgagtt gtgccattca cagcacagtg gtgaggaatt gageteatga ageaggeaag gaeegaacae etecaeeeea aegtagaeet geaggtgetg 12720 ccccatgacc tccaccaaag cccatataag gagcggagtt gttaaggact gaagaaaaac 12780 ttctctggag aaaaataaaa ttgcaattct acttaaaaaa aattttttt ttttttac 12840 ttcataggcc aggcttgaag ttctgaacac tttgaagtct ccaattatga gagatccagt 12900 ctaagcctct ggcctgctaa ttagcaataa gtgctttatt tggaaggagg gagtcatcca 12960 ctcttgagcc actgcagtga agtcacttga tctcagtctg ggggaaaaca cttcaatagc 13020 taaacattct agctttgatt tttctgaagg gaatacactt gttttcaatt ttggggtttt 13080 tetttgggge aettgettga etetgtatga aettgtgate caaggaaaaa ggagaaagaa 13140 cagtgttggc ttttaaaatc aggatggttt tatgtttgct acgaaataag gcaagaataa 13200 aaaattotta tittatta titattatt tittgagata gagtotggot gigtigooca 13260 ggatgcaatg gcgcaatctt ggctcactgc aacctctgcc ttctgggttc aagtgattct 13320 13359 cctgcctcag cctcccaagt agctgggatt acaggtacc

<210> 83

<211> 3451

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (2141)..(2141)

<223> n is a, c, g, t or u

<400> 83

tctggttcgg cccacctctg aaggttccag aatcaatagt gaattcgtgg gatttcggcc 60 tgagagcggg ccgaggagat tggcgacggt gtcgcccgtg ttttcgttgg cgggtgcctg 120 180 ggctggtggg aacagccgcc cgaaggaagc accatgattt cggccgcgca gttgttggat gagttaatgg gccgggaccg aaacctagcc ccggacgaga agcgcagcaa cgtgcggtgg 240 gaccacgaga gcgtttgtaa atattatctc tgtggttttt gtcctgcgga attgttcaca 300 360 aatacacgtt ctgatcttgg tccgtgtgaa aaaattcatg atgaaaatct acgaaaacag tatgagaaga gctctcgttt catgaaagtt ggctatgaaa gagatttttt gcgatactta 420 480 cagagettae ttgcagaagt agaacgtagg atcagacgag gecatgeteg tttggcatta 540 tctcaaaacc agcagtcttc tggggccgct ggcccaacag gcaaaaatga agaaaaaatt caggttctaa cagacaaaat tgatgtactt ctgcaacaga ttgaagaatt agggtctgaa 600 ggaaaagtag aagaagccca ggggatgatg aaattagttg agcaattaaa agaagagaga 660

,	gaactgctaa ggtccacaac gtcgacaatt gaaagctttg ctgcacaaga aaaacaaatg	720
	gaagtttgtg aagtatgtgg agccttttta atagtaggag atgcccagtc ccgggtagat	780
	gaccatttga tgggaaaaca acacatgggc tatgccaaaa ttaaagctac tgtagaagaa	840
	ttaaaagaaa agttaaggaa aagaaccgaa gaacctgatc gtgatgagcg tctaaaaaag	900
	gagaagcaag aaagagaaga aagagaaaaa gaacgggaga gagaaaggga agaaagagaa	960
	aggaaaagac gaagggaaga ggaagaaaga gaaaaagaaa gggctcgtga cagagaaaga	1020
	agaaagagaa gtcgttcacg aagtagacac tcaagccgaa catcagacag aagatgcagc	1080
	aggtctcggg accacaaaag gtcacgaagt agagaaagaa ggcggagcag aagtagagat	1140
	cgacgaagaa gcagaagcca tgatcgatca gaaagaaaac acagatctcg aagtcgggat	1200
	cgaagaagat caaaaagccg ggatcgaaag tcatataagc acaggagcaa aagtcgggac	1260
	agagaacaag atagaaaatc caaggagaaa gaaaagaggg gatctgatga taaaaaaagt	1320
	agtgtgaagt ccggtagtcg agaaaagcag agtgaagaca caaacactga atcgaaggaa	1380
	agtgatacta agaatgaggt caatgggacc agtgaagaca ttaaatctga aggtgacact	1440
	cagtccaatt aaaactgatc tgataagacc tcagatcaga	1500
	ctcactttga ttagggcttt ttgttactgt ttgacagtgc agcgtaagta tgcacagatg	1560
	aagatggaac taagccgagt aagaagacat acaaaagcct cttctgaagg aaaagacagt	1620
	gtagtcctgc aaaacatttt gaggtacatt gttttgtctc agctattttg tagcagactc	1680
	gtgccccat tagtgtgcct ctttggaaat tatcgcccac atttgtaata tagtcgccat	1740
	tgaaaagtta attatccttt ttttagggat tttgatgtca tttcttttt tttttaata	1800
	aaaaggttga actgtttttt tttttctttt tggtattaag tccatcttgt gttggtacat	1860
	tggcagagac atatgcttta aaaacttaaa tatttcggag gcacatgttg gactactttg	1920
	ttttaattaa actgctagta tttctttgtc aaggatgttt ctagtttttt gctttattgc	1980
	cttgcattct aatgcagttt gttctgtaac tcgagagcca gtagcattgg attgatggaa	2040
٠	gtgtagggtt tatgaattat tgcagctgac taccatacct cacacagcgt tggtgttgtg	2100
	agcggcccat gaaaagccaa attaaaaatc aaggattcag ncaaactaag caggtactca	2160
	tgccaggtac tcctttctct acccacatcc atgtttgaat gctattgcct gtgatcttta	2220
	cgcttaactg ttgtgtatct tttttgttct ttacaagaag tgcagagggg ttttttgtgt	2280
	attgcgtgaa aacttataaa acaaatgtta acagaatgga atttttttc aactgtatgt	2340
	agggctgcag tggtggccag aattagatat ctttaaagaa ttttaaatac aataaacact	2400
	tcatattatt cgccttgtta cactcaatgc aattctcaag tctataagag gtatgtgctt	2460
	aatatttoot actgtgtagg agaatttgca gtcagccata ggtatgtagg aatagtcact	2520

PCT/US03/13015 WO 03/090694

cactggctga	tacatttaaa	gcagcagtgt	gaatagcaag	gacagacacc	ttcaatttgt	2580
gaaatcaaag	aactgatgca	ctatatagaa	cgaatttggg	tttttaaaga	aatattaaaa	2640
gttaggtact	gtaagtgttc	ttaaaacctg	taaacttcat	tctgtgggct	agtggtgtgg	2700
gacaaaatat	tcctaatgaa	aggaagtacc	aattagttga	tttgttggtg	gcattcccct	2760
tttgggaaag	caatgtaagg	ttatgtctgt	gtatgtcatt	cacacttagg	caagcataca	2820
caggcacatg	gctttaagaa	ccacactgat	gccttgataa	ttaaaaagaa	tacaagcatt	2880
ccatgtacac	atgttaatta	gcagttagtg	actgggccaa	cactttctca	taaaaattgg	2940
ccttttacat	gttgtctaat	tatcattttt	ccccaaattg	ggcgttgtag	gactactgtt	3000
cgaagatttt	tggaagaata	ctgagaacgg	cataaagtga	agatcgacat	ttaaaaaatg	3060
aggtgaaaga	aagctatagt	ggcatagaaa	aagtataaag	ctcagttagt	ttttttatta	3120
ttattattat	taaaagttaa	ttcaggactg	atgtgaccta	ccagatttca	gaacatgtgt	3180
taatagtata	tatgccactg	aaaacttagg	tcctgtatca	tacttttttc	tttaagactt	3240
tttaagaaat	attacttaaa	. catgtggctt	gctcagtgtt	taattgcaag	ttttcaatct	3300
tggactttga	. aaacaggatt	aaacgttagt	attcgtgtga	atcagactaa	gtgggatttc	3360
atttttacaa	ı ctctgctcta	cttagccttt	ggatttagaa	. gtaaaaataa	agtatctctg	3420
	: aaaaaaaaa					3451

<400> 84 atggtgcgca	tgaatgtcct	ggcagatgct	ctcaagagta	tcaacaatgc	cgaaaagaga	60
ggcaaacgcc	aggtgcttat	taggccgtgc	tccaaagtca	tcgtccggtt	tctcactgtg	120
atgatgaagc	atggttacat	tggcgaattt	gaaatcattg	atgaccacag	agctgggaaa	180
attgttgtga	acctcacagg	caggctaaac	aagtgtgggg	tgatcagccc	cagatttgac	240
gtgcaactca	aagacctgga	aaaatggcag	aataatctgc	ttccatcccg	ccagtttggt	300
ttcattgtac	tgacaacctc	agctggcatc	atggaccatg	aagaagcaag	acgaaaacac	360
acaggaggga	aaatcctggg	attcttttc	tagggatgta	atacatatat	ttacaaataa	420
aatgcctcat	ggact					435

<210> 84

<211> 435

<212> DNA <213> Homo sapiens

<210> 85

<211> 1898 <212> DNA <213> Homo sapiens

<400> 85 agctggaggg	cagaggaggc	ggcgcggggt	gtcctgtcct	cgccatgagg	ccgcagcagg	60
cgccggtgtc	cggaaaggtg	ttcattcagc	gagactacag	cagtggcaca	cgctgccagt	120
tccagaccaa	gttccctgcg	gatggagaac	cggattgata	ggcagcagtt	tgaagaaaca	180
gttcgaactc	taaataacct	ttatgcagaa	gcagagaagc	teggeggeea	gtcatatctc	240
gaaggttgtt	tggcttgttt	aacagcatat	accatcttcc	tatgcatgga	aactcattat	300
gagaaggttc	tgaagaaagt	ctccaaatac	attcaagagc	agaatgagaa	gatctatgct	360
ccacaaggcc	tcctcctgac	agaccctatt	gagcgaggac	tgcgagttat	tgaaattacc	420
atttatgaag	acagaggcat	gagcagtgga	agataaaccg	aagaattaaa	gatcccactt	480
ccagccgggc	ccctcatgta	tccactggcc	gaccgcagag	tgtccctacc	tcctctccag	540
agcatcattc	ctttctatct	gctgccagag	ccacggtgcc	atttactcca	aggactcact	600
ttctaaaatt	ccacacctgg	agtgacctct	agtcgctcag	catccacttt	gtgtctccaa	660
attgtgtagg	actctgtaat	cttttgatta	gtttctgaga	aaacacaatg	aagcacttca	720
ctttttttta	ttcaaagcca	tttaataaaa	cacagttggt	cageceagtg	caaagcttgt	780
tatctgccac	cagtacatac	cattggttct	cttcattcct	tgggccagct	tctcaggtgg	840
ctttagacct	caacaagccg	tatcttcacc	agtgttctat	cttgttcccc	taaattaata	900
aaatgttttt	ctccaggatt	ttggtgaggg	ttggctgtgg	ctgtcgtttt	gcacctccca	960
gatttcaaag	aattactggt	tttaccatga	ctcaaatctt	: aagatctgtt	tctactattc	1020
agttcctcaa	actgaagctt	attgaaaaaa	aaatgtataa	tgttatttgt	tttattatag	1080
caattattcc	taattaaago	: agtatttaat	gcaatttcca	gttatttctt	: tggagaattt	1140
tatgtcattg	ttccattacc	ttgaatgttg	gaaagatato	g atacgtgctg	g cttgttcatc	1200
acaaaaatca	gtaagcacaa	ı taaagtggat	gccaaaccat	cagacacata	a aatgttcccg	1260
ctgtgtccct	ggatatggaa	a taagcaggta	a taaaaaatat	t tttaattata	a gttttgttat	1320
aaatataact	tatgagaaaa	a aaatttgata	a ggaataata	c tgtatatta	c taatttttaa	1380
ctatccctaa	ggcaaacctt	t atgacccaca	a gaattttct	c atatacagta	a ttcagtgcac	1440
agaaatctta	tgattggct	c aagtacagta	a agttacttc	t cagtaaaac	t ctcaagtctg	1500
agtccatatt	tgtagctct	g cttttggctg	g tacgttcct	a ggatcgggg	c tgcttatgcc	1560
tttcgtttat	ccttggggt	t tgagagcgc	t gtatttggg	a gagagttta	a aaatacatta	1620
ggagagaga	a accattaaa	a gtttcactg	t cagagatat	t gtaggtgct	a atactggatt	1680
tcgtctcaga	a tttaatttc	t tttatgggt	c tgttagtca	t tcaacaaat	c ccataagtat	1740
gtgttaatat	: tttaattgt	g taaaactca	t ttgttactt	t acagcctgt	a atagtgtgtc	1800

1860

tgcattttca acctgttgca ataactttgc tgaaatatta acacattaat aaaacttttc 1898 <210> 86 <211> 7603 <212> DNA <213> Homo sapiens <400> 86 ttttcttgct tttcttccct tttttttctt tttgcaaaca aaacaaaaaa cagcatagaa 60 gaaagagcaa aataaagaag aagaagagga ggaagaggg gaaagagagg aagggaaaaa 120 aaacaccaac ccgggcagag gaggaggtgc ggcggcggcg gcggcggcgg cagcggcggc 180 ageggegegg eggeggeteg gaccccctcc eceggetecc eceateagtg eageteteeg 240 ggcgatgcca gaatagatgc cggggcaatg tcccgccgca aacagggcaa cccgcagcac 300 ttgtcccaga gggagctcat caccccagag gctgaccatg tggaggccgc catcctcgaa 360 gaagacgagg gtctggagat agaggagcca agtggcctgg ggctgatggt gggtggcccc 420 gaccetgace tgeteacetg tggccagtgt caaatgaact teceettggg ggacateetg 480 gtttttatag agcacaaaag gaagcagtgt ggcggcagct tgggtgcctg ctatgacaag 540 gccctggaca aggacagccc gccaccctcc tcacgctccg agctcaggaa agtgtccgag 600 ceggtggaga tegggateca agteacece gacgaagatg accacetget etcacecacg 660 aaaggcatct gtcccaagca ggagaacatt gcaggtaaag atgagccttc cagctacatt 720 tgcacaacat gcaagcagcc cttcaacagc gcgtggttcc tgctgcagca cgcgcagaac 780 acgcacggct tecgcateta cetggageee gggeeggeea geageteget eacgeegegg 840 ctcaccatcc cgccgccgct cgggccggag gccgtggcgc agtccccgct catgaatttc 900 ctgggcgaca gcaacccctt caacctgctg cgcatgacgg gccccatcct gcgggaccac 960 cegggetteg gegagggeeg cetgeeggge acgeegeete tetteagtee eeegeegege 1020 caccacctgg acccgcaccg cctcagtgcc gaggagatgg ggctcgtcgc ccagcacccc 1080 agtgccttcg accgagtcat gcgcctgaac cccatggcca tcgactcgcc cgccatggac 1140 ttetegegge ggeteegega getggeggge aacageteca egeegeegee egtgteeeeg 1200 1260 ttcctgagca cgccgccgct gccgcccatg ccccctggcg gcacgccgcc cccgcagccg 1320 ccagccaaga gcaagtcgtg cgagttctgc ggcaagacct tcaagttcca gagcaatctc 1380 atcgtgcacc ggcgcagtca cacgggcgag aagccctaca agtgccagct gtgcgaccac 1440 gcgtgctcgc aggccagcaa gctcaagcgc cacatgaaga cgcacatgca caaggccggc 1500

tegetggeeg geegeteega egaegggete teggeegeea geteeeega geeeggeaee 1	.560
	.620
	680
	L740
	1800
	1860
	1920
ttcctgaagc gtgcggcggg cggcggggac gcgggcgacg acgacgacgc gggcggctgc :	1980
ggggacgcgg gcgcgggcgg cgcggtcaac gggcgcgggg gcggcttcgc gccaggcacc 2	2040
gagecettee cegggetett ceegegeaag ceegegeege tgeecageee egggeteaae	2100
agegeegeea agegeateaa ggtggagaag gaeetggage tgeegeeege egegeteate	2160
ccgtccgaga acgtgtactc gcagtggctg gtgggctacg cggcgtcgcg gcacttcatg	2220
aaggacccct teetgggett caeggaegea egaeagtege eettegeeae gtegteegag	2280
cactegteeg agaacggeag cetgegette tecaegeege ceggggaeet getggaegge	2340
ggcctctcgg gccgcagcgg cacggccagc ggaggcagca ccccgcacct gggcggcccg	2400
ggccccgggc ggcccagctc caaggagggc cgccgcagcg acacgtgcga gtactgcggc	2460
aaggtgttca agaactgcag caacttgacg gtgcaccggc ggagccacac cggcgagcgg	2520
ccttacaagt gcgagctgtg caactacgcg tgcgcgcaga gcagcaagct cacgcgccac	2580
atgaagacgc acgggcagat cggcaaggag gtgtaccgct gcgacatctg ccagatgccc	2640
ttcagcgtct acagcaccct ggagaaacac atgaaaaagt ggcacggcga gcacttgctg	2700
actaacgacg tcaaaatcga gcaggccgag aggagctaag cgcgcgggcc ccggcgcccc	2760
gcacctgtac agtggaaccg ttgccaaccg agagaatgct gacctgactt gcctccgtgt	2820
caccgccacc ccgcaccccg cgtgtccccg gggcccaggg gaggcggcac tccaacctaa	2880
cctgtgtctg cgaagtccta tggaaacccg agggttgatt aaggcagtac aaattgtgga	2940
gccttttaac tgtgcaataa tttctgtatt tattgggttt tgtaattttt ttggcatgtg	3000
caggtacttt ttattattat tttttctgtt tgaattcctt taagagattt tgttgggtat	3060
ccatcccttc tttgtttttt ttttaacccg gtagtagcct gagcaatgac tcgcaagcaa	3120
tgttagaggg gaagcatatc ttttaaatta taatttgggg ggaggggtgg tgctgctttt	3180
ttgaaattta agctaagcat gtgtaatttc ttgtgaagaa gccaacactc aaatgacttt	3240
taaagttgtt tactttttca ttccttcctt ttttttgtcc tgaaataaaa agtggcatgc	3300

agttttttt t	taattattt	tttaattttt	tttttggttt	ttgtttttgg	ggtgggggt	3360
gtggatgtac a	agcggataac	aatctttcaa	gtcgtagcac	tttgtttcag	aactggaatg	3420
gagatgtagc a	actcatgtcg	tcccgagtca	agcggccttt	tctgtgttga	tttcggcttt	3480
catattacat	aagggaaacc	ttgagtggtg	gtgctggggg	aggcacccca	cagactcagc	3540
gccgccagag	atagggtttt	tggagggctc	ctctgggaaa	tggcccgaca	gcattctgag	3600
gttgtgcatg	accagcagat	actatcctgt	tggtgtgccc	tggggtgcca	tggctgctat	3660
tcgctgtaga	ttaggctaca	taaaatgggc	tgagggtacc	tttttgggga	gatggggtgg	3720
cctgcagtga	cacagaaagg	aagaaactag	cggtgttctt	ttaggcgttt	tctggcttga	3780
cggcttctct	ctttttttaa	atcaccccca	ccacataaat	ctcaaatcct	atgttgctac	3840
aaggggtcat	ccatcatttc	ccaagcagac	gaatgcccta	attaattgaa	gttagtgttc	3900
tctcatttaa	tgcacactga	tgatattgta	gggatgggtg	gggtggggat	cttgcaaatt	3960
tctattctct	tttactgaaa	aagcagggga	tgagttccat	cagaaggtgc	ccagcgctac	4020
ttcccaggtt	tttattttt	ttttcctatc	tcattaggtt	ggaaggtact	aaatattgaa	4080
ctgttaagat	tagacatttg	aattctgttg	accegcactt	taaagctttt	gtttgcattt	4140
aaattaaatg	gcttctaaac	aagaaattgc	agcatattct	tctctttggc	ccagaggtgg	4200
gttaaactgt	aagggacagc	tgagattgag	tgtcagtatt	gctaagcgtg	gcattcacaa	4260
tactggcact	ataaagaaca	aaataaaata	ataatttata	ggacagtttt	tctactgcca	4320
ttcaatttga	tgtgagtgcc	ttgaaaactg	atcttcctat	ttgagtctct	tgagacaaat	4380
gcaaaacttt	ttttttgaaa	tgaaaagact	ttttaaaaaa	gtaaaacaag	aaaagtacat [,]	4440
tctttagaaa	ctaacaaagc	cacatttact	ttaagtaaaa	aaaaaaaaa	ttctggttga	4500
agatagagga	tatgaaatgc	cataagaccc	aatcaaatga	agaaataaac	ccagcacaac	4560
cttggacatc	cattagctga	attatcctca	gccccttttg	tttttgggac	aacgctgctt	4620
agatatggag	tggaggtgat	ttactgctga	attaaaactc	aagtgacaca	agttacaagt	4680
tgatatcgtt	gaatgaaaag	caaaacaaaa	acaattcagg	aacaacggct	aattttttct	4740
aaagttaaat	ttagtgcact	ctgtcttaaa	aatacgttta	cagtattggg	tacatacaag	4800
ggtaaaaaaa	aaattgtgtg	tatgtgtgtt	ggagcgatct	tttttttca	aagtttgctt	4860
aataggttat	acaaaaatgo	cacagtggcc	gcgtgtatat	: tgttttcttt	: tggtgacggg	4920
gttttagtat	atattatata	tattaaaatt	tcttgattac	: tgtaaaagtg	g gaccagtatt	4980
tgtaataatc	gagaatgcct	gggcatttt	ı caaaacaaga	a aaaaaaatad	ccttttcttt	5040
tccttgaaaa	tgttgcagta	a aaatttaaat	: ggtgggtcta	taaatttgtt	cttgttacag	5100
taactgtaaa	gtcggagttt	: tagtaaattt	ttttctgcct	tgggtgttga	a atttttattt	5160

caaaaaaaat gtatagaaac ttgtatttgg ggattcaaag gggattgcta caccatgtag	5220
	5280
	5340
	5400
	5460
	5520
aaatattgca aaaaaaacac atttgtatgt taagtcctat tgtacaggag aaaaagggtt	5580
gtttgacaac ctttgagaaa aagaaacaaa aggaagtagt taaatgcttt ggttcacaaa	5640
tcatttagtt gtatatattt tttgtcggaa ttggcctaca cagagaaccg ttcgtgttgg	5700
gcttctctct gaacgccccg aaccttgcat caaggctcct tggtgtggcc acagcagacc	5760
agatgggaaa ttatttgtgt tgagtggaaa aaaatcagtt tttgtaaaga tgtcagtaac	5820
attccacatc gtcctccctt tctctaagag gccatctcta agatgtcaga tgtagaggag	5880
agagagcgag agaacatett eettetetae eateaeteet gtggeggtea eeaeeaeeae	5940
ctctcccgcc cttaccagca gaaagcaatg caaactgagc tgctttagtc cttgagaaat	6000
tgtgaaacaa acacaaatat cataaaagga gctggtgatt cagctgggtc caggtgaagt	6060
gacctgctgt tgagaccggt acaaattgga tttcaggaag gagactccat cacagccagg	6120
acctttcgtg ccatggagag tgttggcctc ttgtctttct tccctgcttt gctgctttgc	6180
tctctgaaac ctacattccg tcagtttccg aatgcgaggg cctgggatga atttggtgcc	6240
tttccatatc tcgttctctc tccttcccct gcgtttcctc tccatccttc atcctccatt	6300
ggtccttttt ttttctttca ttttttattt aatttctttt cttcctgtct gttcctcccc	6360
taatcctcta ttttattttt attttttgta aagccaagta gctttaagat aaagtggtgg	6420
tottttggat gagggaataa tgcattttta aataaaatao caatatcagg aagccatttt	6480
ttatttcagg aaatgtaaga aaccattatt tcaggttatg aaagtataac caagcatcct	6540
tttgggcaat teettaceaa atgeagaage ttttetgtte gatgeaetet tteeteettg	6600
ccacttacct ttgcaaagtt aaaaaaaagg ggggagggaa tgggagagaa agctgagatt	6660
tcagtttcct actgcagttt cctacctgca gatccagggg ctgctgttgc ctttggatgc	6720
cccactgagg tcctagagtg cctccagggt ggtcttcctg tagtcataac agctagccag	6780
tgctcaccag cttaccagat tgccaggact aagccatccc aaagcacaag cattgtgtgt	6840
ctctgtgact gcagagaaga gagaattttg cttctgtttt gtgtttaaaa aaccaacacg	6900
gaagcagatg atcccgagag agaggcctct agcatgggtg acccagccga cctcaggccg	6960

gtttccgcac	tgccacaact	ttgttcaaag	ttgcccccaa	ttggaacctg	ccacttggca	7020
ttagagggtc	tttcatgggg	agagaaggag	actgaattac	tctaagcaaa	atgtgaaaag	7080
	agcctttcat					7140
	ccgtgatttt					7200
	tgtttgcatt					7260
					caagtttgga	7320
					ttttttatta	7380
					atatttattg	7440
					acaatgttga	7500
					tgttctggtt	7560
	aaaataaatt					7603

<210> 87

<211> 1832

<212> DNA

<213> Homo sapiens

<400> 87 aggagaggaa gagagacctg ccctgtagcg tgactcctct agaaaaaaaa aaaaaaagcc 60 ggagtatttt actaagcccc taaaatgtcg agatttgtac aagatcttag caaagcaatg 120 tctcaagatg gtgcttctca gttccaagaa gtcattcggc aagagctaga attatctgtg 180 aagaaggaac tagaaaaaat actcaccaca gcatcatcac atgaatttga gcacaccaaa 240 aaagacctgg atggatttcg gaagctattt catagatttt tgcaagaaaa ggggccttct 300 gtggattggg gaaaaatcca gagaccccct gaagattcga ttcaacccta tgaaaagata 360 aaggccaggg gcctgcctga taatatatct tccgtgttga acaaactagt ggtggtgaaa 420 ctcaatggtg gtttgggaac cagcatgggc tgcaaaggcc ctaaaagtct gattggtgtg 480 aggaatgaga atacctttct ggatctgact gttcagcaaa ttgaacattt gaacaaaacc 540 tacaatacag atgtccctct tgttttaatg aactctttta acacggatga agataccaaa 600 aaaatactac agaagtacaa tcattgtcgt gtgaaaatct acactttcaa tcaaagcagg 660 tacccgagga ttaataaaga atctttacgg cctgtagcaa aggacgtgtc ttactcaggg 720 gaaaatacag aagcttggta ccctccaggt catggtgata tttacgccag tttctacaac 780 tctggattgc ttgatacctt tataggagaa ggcaaagagt atatttttgt gtctaacata 840 gataatctgg gtgccacagt ggatctgtat attcttaatc atctaatcaa cccacccaat 900 ggaaaacgct gtgaatttgt catggaagtc acaaataaaa cacgtgcaga tgtaaagggc 960

gggacactca	ctcaatatga	aggcaaactg	agactggtgg	aaattgctca	agtgccaaaa	1020
gcacatgttg	acgagttcaa	gtctgtatca	aagttcaaaa	tatttaatac	aaacaaccta	1080
tggatttctc	ttgcagcagt	taaaagactg	caggagcaaa	atgccattga	catggaaatc	1140
attgtgaatg	caaagacttt	ggatggaggc	ctgaatgtca	ttcaattaga	aactgcagta	1200
ggggctgcca	tcaaaagctt	tgagaattct	ctaggtatta	atgtgccaag	gagccgtttt	1260
ctgcctgtca	aaaccacatc	agatctcttg	ctggtgatgt	caaacctcta	tagtcttaat	1320
gcaggatctc	tgacaatgag	tgaaaagcgg	gaatttccta	cagtgccctt	ggttaaatta	1380
ggcagttctt	ttacgaaggt	tcaagattat	ctaagaagat	ttgaaagtat	accagatatg	1440
cttgaattgg	atcacctcac	agtttcagga	gatgtgacat	ttggaaaaaa	tgtttcatta	1500
aagggaacgg	ttatcatcat	tgcaaatcat	ggtgacagaa	ttgatatccc	acctggagca	1560
gtattagaga	acaagatagt	gtctggaaac	cttcgcatct	tggaccactg	aaatgaaaaa	1620
tactgtggac	acttaaataa	tgggctagtt	tcttacaatg	aaatgttctc	taggatttag	1680
gcactaaaag	gtactttact	atgttactgt	accctgcagt	gttgatttt	aaaatagagt	1740
tttctgcagt	atgcttttag	tctaagaaaa	gcacagatgg	tgcaatactt	tccttctttg	1800
aagagatccc	aaagttagtt	actcttaagt	gc			1832

<210> 88

<211> 2683

<212> DNA

<213> Homo sapiens

<400> 88 60 ctagggacaa atgggtccag ggtggccctt tgattgtggt cccgggtgcg gattggcagg gecteegeeg eggetegtgg ttgteeegee atggeaetgt egeggggget geeeegggag 120 180 gagctcctca agaatctcgt gctcaccggt ttctcccaca tcgacctgat tgatctggat 240 actattgatg taagcaacct caacagacag tttttgtttc aaaagaaaca tgttggaaga 300 tcaaaggcac aggttgccaa ggaaagtgta ctgcagtttt acccgaaagc taatatcgtt 360 gcctaccatg acagcatcat gaaccctgac tataatgtgg aatttttccg acagtttata 420 ctggttatga atgctttaga taacagagct gcccgaaacc atgttaatag aatgtgcctg 480 gcagctgatg ttcctcttat tgaaagtgga acagctgggt atcttggaca agtaactact 540 atcaaaaagg gtgtgaccga gtgttatgag tgtcatccta agccgaccca gagaaccttt 600 cctggctgta caattcgtaa cacaccttca gaacctatac attgcatcgt ttgggcaaag 660 tacttgttca accagttgtt tggggaagaa gatgctgatc aagaagtatc tcctgacaga 720

getgaceetg aagetgeetg ggaaccaaeg gaageegaag eeagagetag ageatgtaat	780
gaagatggtg acattaaacg tatttctact aaggaatggg ctaaatcaac tggatatgat	840
ccagttaaac tttttaccaa gctttttaaa gatgacatca ggtatctgtt gacaatggac	900
aaactatggc ggaaaaggaa acctccagtt ccgttggact gggctgaagt acaaagtcaa	960
	1020
	1080
	1140
	1200
gcaatggatt ttgtcacctc tgctgcaaac ctcaggatgc atattttcag tatgaatatg	1260
aagagtagat ttgatatcaa atcaatggca gggaacatta ttcctgctat tgctactact	1320
aatgcagtaa ttgctgggtt gatagtattg gaaggattga agattttatc aggaaaaata	
gaccagtgca gaacaatttt tttgaataaa caaccaaacc caagaaagaa gcttcttgtg	1380
ccttgtgcac tggatcctcc caaccccaat tgttatgtat gtgccagcaa gccagaggtg	1440
actgtgcggc tgaatgtcca taaagtgact gttctcacct tacaagacaa gatagtgaaa	1500
gaaaaatttg ctatggtagc accagatgtc caaattgaag atgggaaagg aacaatccta	1560
atatetteeg aagagggaga gaeggaaget aataateaea agaagttgte agaatttgga	1620
attagaaatg gcagccggct tcaagcagat gacttcctcc aggactatac tttattgatc	1680
aacatccttc atagtgaaga cctaggaaag gacgttgaat ttgaagttgt tggtgatgcc	1740
ccggaaaaag tggggcccaa acaagctgaa gatgctgcca aaagcataac caatggcagt	1800
gatgatggag ctcagccctc cacctccaca gctcaagagc aagatgacgt tctcatagtt	1860
gattcggatg aagaagattc ttcaaataat gccgacgtca gtgaagaaga gagaagccgc	1920
aagaggaaat tagatgagaa agagaatctc agtgcaaaga ggtcacgtat agaacagaag	1980
gaagagettg atgatgteat ageattagat tgaacagaaa tgeetetaaa cagaaceete	2040
ttactattta gtttatctgg gcagaaccag attgttatgt cctttgttcc aaagggaaaa	2100
aattgacagc agtgacttga aaatgattct gctccctttg aaagcattca ttttgctaga	2160
actgttagac acattgcagt atgctgtatt gaaagtagga atatagtttt aaaaaccctt	2220
tgaacaaagt gtgtgcataa ccagtcatga gataaaacaa cacaatgcat gttgcctttt	2280
taatgtaaat accettaggt atcattaata gtttcaaaat attgtggttt agtaaagttg	2340
atacctggtt ataaatatta tgcctttatt tttggctaga agaagaatta tttttagccc	2400
	2460
tagatcctaa ccattttcat actcttaact gattgaaaca gattcaaaga agtatcgagt	2520
gctatgcatt gaaacttgtt tttaaatgtt agatggcact atgtatatta atgtaaaaca	
atgttaattt actcaagttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	2580

ttttgtgtat	tgttacagtt	tcaggttatt	tatattcgat	gttttgtaaa	actcaaataa	2640
cgactatact	tatggaccaa	ataaatggca	tctgcattct	tgt		2683
<210> 89 <211> 356 <212> DNA <213> Hom	o sapiens					
<400> 89	cgcgcgcggt	gtggtggcag	caggcgcagc	ccagcctcga	aatgcagaac	60
gacgccggcg	agttcgtgga	cctgtacgtg	ccgcggaaat	gctccgctag	caatcgcatc	120
		atccatccag				180
		taaaacttat				240
		ccgattggcc				300
		tgtggaatat				356
<210> 90 <211> 238 <212> DNZ <213> Hor						
<400> 90 agaaggagaa	a ggtcgggttg	g tagaagctgg	ggtggccggc	: agctcgctca	teggtgtteg	60
tgggctttg	t cggtccgtgo	ctcgtctctc	cctggaaagg	gagggaggct	tcgacgtcga	120
gagggagcc	g ctgccgcgtt	agttccgago	ttgaagtcac	: taggacttct	ctcaaacttg	180
tgtgctgag	g agactcagat	t gttggcctca	gctcctaggo	tgaactcago	agateggeee	240
					a cttgttatct	300
					a aaagcagact	360
					ccagcccctc	420
					c aaggaacaga	480
					t aactcatcag	540
					a aataatcaaa	600
					t aatcagaact	660
					a ccaccaagcc	720
					t caacttaaaa	780
					a tgttcacgga	840
					g aactaattaa	900

			haractetes.	+>+aatoota	atatcaatac	960
	acagaccatc					
aactttaatg	attgtacttg	atattaagtg	ttctcaactg	agtaactttt	aagtggaaac	1020
caagtttaga	tttggggagt	ggtaaaggaa	tcagcttttt	ctattgttag	gggaagacag	1080
taatttatca	ttcatggacc	agtagattgt	tgaaagttgg	tgaatcggat	tataagcttc	1140
tagctaacac	aaggattcag	aattaggtaa	acatctgaag	gtttagtata	ttagaaacac	1200
ccaaaccagt	aatatgctaa	cctgatgcac	tgctgaaaga	aaatgtgaat	ttttcgtaat	1260
aattgcattt	tagtgaattg	tacagtgggt	ggaaagggca	tttggagctc	attagaatga	1320
gacatagtac	accccaatgg	ccctgtttat	taaatgtagt	ggattaagtg	tctgtcaaca	1380
aatacaccaa	aaccattttt	tatagaaaca	gtatttaatg	gtcactcaat	agctttcaaa	1440
atacattttt	gtattacagc	actgcacaag	ctattctaat	agtgctctcg	cctcatcatt	1500
cctgcaaagc	ttgctttggg	gagttggata	atgtgaaaat	tttaagtacc	taggggagaa	1560
agagccatgt	aaatatctgt	aataaacttg	tagcatatgt	aaagttttct	tggcctttat	1620
cttacaaaaa	. tggagtattt	tagtatgaat	ttgctgaatg	taagaccgtg	gactgttttt	1680
tataatatgg	cctaatttta	aaggtccaaa	. ataacttgtt	tttaaagttt	gcccttgtgc	1740
taaagtgcca	ı gtgtatgtat	gttatacttg	atttggttgt	aaactatatt	tcaaagtaaa	1800
ccctagtgta	ataagtttta	. taactaaaaa	ggtttaagct	gctaaaacta	tttttaagag	1860
atgtgaaatg	g cagtatggga	ctatctttt	: ttectectet	aagcccaaag	attaactaga	1920
gtccctccaa	a ccttatagat	: tgttggcttt	cacaatctta	taacctagga	tacaggtagt	1980
ttcgagtat	g gtgccagtga	ı tgttttgttt	: ttgtttggtc	aaggggtagg	j tgcaacccaa	2040
tggaccactt	atgcaaaaga	a tgtaaactct	tgcataatac	attgataaca	tgttttgcca	2100
actttaaat	g cttaaacata	a agcgaaacca	a gtagcaagta	tgtgggtcag	g cttaaaaatt	2160
ttgattgtta	a atgccctatt	ttctaattt	g gcacctcttg	g atgcctaago	aggtaagcag	2220
atgcctaag	c tgtatttct	c caaataaat	c aagatgaagt	actgcccaa	g ttaaatattg	2280
atagcctaa	a gacaagttt	a tgtagtact	t aatgtacatg	g atatgaatg	t gaagcataaa	2340
attaaataa	a atttttccc	c attaaaaaa	a aaaaaaaaa	a aa		2382

<210> 91

<211> 1362

<212> DNA

<213> Homo sapiens

<400> 91
cctgtttggg acactggact cccgtgagct ggaaggaaca gatttaatat ctaggggctg
ggtatcccca catcactcat ttgggggtc aagggacccg ggcaatatag tattctgctc 120

			gcttctggga			180
ctggaagagc	tggtccaggg	gactgaactc	ccggcatctt	tacagagcag	agcatgatca	240
cattcctgcc	gctgctgctg	gggctcagcc	tgggctgcac	aggagcaggt	ggcttcgtgg	300
cccatgtgga	aagcacctgt	ctgttggatg	atgctgggac	tccaaaggat	ttcacatact	360
gcatctcctt	caacaaggat	ctgctgacct	gctgggatcc	agaggagaat	aagatggccc	420
cttgcgaatt	tggggtgctg	aatagcttgg	cgaatgtcct	ctcacagcac	ctcaaccaaa	480
			ggcttcagaa			540
			ggccaccatc			600
			tggcctgcta			660
			ggaagcttgt		•	720
			cataccagac			780
			tggtagagca			840
			: ccatgcagac			900
			: tctctcttgg			960
					tggcacattt	1020
					actcaatgat	1080
					: tatggtttct	1140
					c ttgggggacc	1200
					: tgggatgaat	1260
						1320
					a tagaggacag	1362
caactggtg	a ttgtttcag	a gaaataaac	t ttggtggaaa	a aa		1304

<210> 92

<211> 470

<212> DNA

<213> Homo sapiens

caaaaggctg	ggggtattta	tataagaact	tattccaaag	tgactctaag	atccatgttc	420
ccaagatcta	gtacgggcta	ttcatggttc	tgaggcatgt	ccagcatgca		470

- <210> 93
- <211> 2224 <212> DNA
- <213> Homo sapiens

<400> 93

ccagttacag accttttggg gttcaggatg ctatagattg acaccctcct gcctgttttt 60 ctctgcaccc caacctggcc aaggcccctc ctgtggggtg cccatctgtg cctttattcc 120 ggctgtgccc tcgactttcc agcttcccat gtttctttgg ttaggtttct ctcccttcct 180 tctttctcct tccccaatcc gcctgtttcg tcagggccca gtttgtttcc tcatacacct 240 tecteactae eccaececae atggttgaet ettteeetea getecaecag etetteatea 300 tgccactcat ttcagaactt gagcaaaaca gggcagtcag gatctgatgt ctttctggtc 360 tecetaagaa aactaagete ttgagggaca geeettggea atgettteet atetgetgat 420 catggtgacc ttccttagga cttccagagt tcagttcctt ctggcagaga ggttttcttt 480 540 ctccatgcca tatggatgtg actcaaatga ggggtcccac agcttttcct ggctaccact tgctgtgacc ttatacatgt tggggtttgc tcttaaagag gagagcagga agaaaggttg 600 gtttcagaaa ccaagaggt cggcagtgga cgcgtacatt ttgtcacgga gtccacagag 660 ctgagctttt gagcagactc tgagaagtat cattgcttgt gttgaaagaa tacaacagga 720 tttaagtttc tetttagaaa ttgcactgaa gaaaggccgg gcgcggtggc tccccctgta 780 atcccagcgc tttgggaggc cgaggcgggg ggatcacgag gtcaagagat cgagaccatc 840 ctggccaaca tggtgaaacc ccgtctctaa taaaaataca aaaattagcc gggcatggtg 900 acgtgcacct gtagtcccag ctactagata ggctgaggca ggagaattgc ttgaatccgg 960 gaggcggagg ttgcagtgag ccgagatcgt gccactgaac tccaacctgc caatagagcg 1020 1080 agactccgtc tcaaaaaaaa aaaaaaaaaa gaaagaaata gcattgaaga aaataccgca catcagagga aagcttattt tctgcatggt gtcttttcaa agatagaata tttgaagcat 1140 gttttctagc gattgtgtgg atgagggtga gctggctgag gcatcgctca agctggggg 1200 tggtgtgtaa gaagcacgtg gagccacaag aggcacctcc tatagtcagc taagggcttc 1260 cctttctgcg cccagctttt gggtgaaggg tgatttctat tagacacatc tgtgcttcag 1320 tcatagatgt taatagagga agcagttttc ctgctgcaga ttcctgaata gagttgctga 1380 1440 aagagtctac ttctggactc aggggaagtt gaaggccagt ctgtgtagaa aggctgaggc aacggggaaa gacctgacag ctagttacat acgctctgac atagtgctcc catgatggct 1500

tccagtgaca	catgtgctga	tagaattcta	aacctctgga	atttccctgc	tggcgacttc	1560
tatggccgtt	gactgtacag	ggtaacctga	tgccagatgc	tatgggcgtg	atgagaacta	1620
gagcattgca	gcatggagga	aactgtgagg	caccagatcc	tgtgcttctg	caggccattt	1680
tctgaaaacc	cctgttagga	aggttggatt	tggcgtgact	tgcttgagca	agagtcctgg	1740
ggagagattt	tgaggtttaa	tttaacggta	tatccagagc	taacagtgac	tcaactcgtc	1800
tagttctgca	agtcagatgt	acacttagag	tctctctgtg	aagggtttgg	gtctgagctg	1860
tatagtatgt	caaactgcca	gtaagccagc	ccctcaccct	ctgatagata	ttcctttaat	1920
gcaccagact	tcgtgtttga	taaatgatta	atggttgaaa	ttgtttctct	tcttttgtgt	1980
tttcccagtt	aatagatggt	cactgtttcc	acaatgtttt	atactttcag	ctttttgtaa	2040
cttaactata	attacttaat	tttattttt	taaagcttgt	tgtggtctaa	tgagaagtat	2100
ttttcagtgc	ataatgtttt	tctgagcttc	tgtaaatgcc	atcccaatgt	ggtttggttt	2160
tgttgaacag	aaaccaaaat	aaatttcaaa	atgttaaagc	aaaaaaaaa	aaaaaaaaaa	2220
aaaa						2224

<210> 94

<211> 1964

<212> DNA

<213> Homo sapiens

<400> 94

cccgcccacg gtggcgggga aatacctagg catggaagtg gcatgacagg gctcgtgtcc 60 120 ctgtcatatt ttccactete cacgaggtee tgcgcgctte aatcetgcag gcagcceggt ttggggatgt ggtccttgct gctctgcggg ttgtccatcg cccttccact gtctgtcaca 180 gcagatggat gcaaggacat ttttatgaaa aatgagatac tttcagcaag ccagcctttt 240 300 gcttttaatt gtacattccc tcccataaca tctggggaag tcagtgtaac atggtataaa 360 aattctagca aaatcccagt gtccaaaatc atacagtcta gaattcacca ggacgagact 420 tggattttgt ttctccccat ggaatggggg gactcaggag tctaccaatg tgttataaag 480 ggtagagaca gctgtcatag aatacatgta aacctaactg tttttgaaaa acattggtgt 540 gacacttcca taggtggttt accaaattta tcagatgagt acaagcaaat attacatctt 600 ggaaaagatg atagtctcac atgtcatctg cacttcccga agagttgtgt tttgggtcca ataaagtggt ataaggactg taacgagatt aaaggggagc ggttcactgt tttggaaacc 660 aggettttgg tgageaatgt eteggeagag gaeagaggga actaegegtg teaageeata 720 ctgacacact cagggaagca gtacgaggtt ttaaatggca tcactgtgag cattacagaa 780 840 agagctggat atggaggaag tgtccctaaa atcatttatc caaaaaatca ttcaattgaa

gtacagcttg	gtaccactct	gattgtggac	tgcaatgtaa	cagacaccaa	ggataataca	900
aatctacgat	gctggagagt	caataacact	ttggtggatg	attactatga	tgaatccaaa	960
cgaatcagag	aaggggtgga	aacccatgtc	tcttttcggg	aacataattt	gtacacagta	1020
aacatcacct	tcttggaagt	gaaaatggaa	gattatggcc	ttcctttcat	gtgccacgct	1080
ggagtgtcca	cagcatacat	tatattacag	ctcccagctc	cggattttcg	agcttacttg	1140
ataggagggc	ttatcgcctt	ggtggctgtg	gctgtgtctg	ttgtgtacat	atacaacatt	1200
tttaagatcg	acattgttct	ttggtatcga	agtgccttcc	attctacaga	gaccatagta	1260
gatgggaagc	tgtatgacgc	ctatgtctta	taccccaagc	cccacaagga	aagccagagg	1320
catgccgtgg	atgccctggt	gttgaatatc	ctgcccgagg	tgttggagag	acaatgtgga	1380
tataagttgt	ttatattcgg	cagagatgaa	ttccctggac	aagccgtggc	caatgtcatc	1440
gatgaaaacg	ttaagctgtg	caggaggctg	attgtcattg	tggtccccga	atcgctgggc	1500
tttggcctgt	tgaagaacct	gtcagaagaa	caaatcgcgg	tctacagtgc	cctgatccag	1560
gacgggatga	aggttattct	cattgagctg	gagaaaatcg	aggactacac	agtcatgcca	1620
gagtcaattc	agtacatcaa	acagaagcat	ggtgccatcc	ggtggcatgg	ggacttcacg	1680
gagcagtcac	: agtgtatgaa	gaccaagttt	tggaagacag	, tgagatacca	catgeegeee	1740
agaaggtgto	ggccgtttcc	tccggtccag	ctgctgcago	acacacctto	g ctaccgcacc	1800
gcaggcccag	g aactaggete	aagaagaaag	aagtgtacto	tcacgactgg	g ctaagacttg	1860
ctggactgac	acctatggct	ggaagatgac	: ttgttttgct	ccatgtctcc	c tcattcctac	1920
acctatttt	tgctgcagga	tgaggctagg	gttagcatto	taga		1964

<210> 95

<211> 1222

<212> DNA

<213> Homo sapiens

<400> 95 cagatttgta actcaataga aagacagcag tgataataac tcacacatga gcagctcgca 60 aatttcaaag totttggtot tcaagtocta tgtcacagot tcctcagtot gattccctcc 120 ttctctgtag aattccgaga actagtttgg ttcacttaat catctcaatg gagatggccc 180 tttcctgcca ttcactcaaa tctagaactc ccaatatgtg gctcacaaat acttcagtca 240 tctacaaaag catctggaaa ttagataatt ttagccagag tcagggacat aaaacttctt 300 taaagggatg cagtcaatcc tggtattcac cacaaagaag atcctcatgt ataaaaatgt 360 ggaatctgtg ctgcttttaa taatagaacc tttaaggttc aaagaaaaaa aaaatgcttt 420 cctgaactac atcatttcca gacacatcag ccacacaagg agctgacaag acctgctgtt 480

tctattatag agaacgtgag	actttaaaac	cacatcaaaa	gaaaatggtg	ggagcttttc	540
tgctatgcag agaattccgc	atagcactcc	tttgcccaga	ctgggagaca	aacatacccc	600
tecetectga actggatece	caccaccttt	ccaaaggcca	ctggacatgt	ctcttaaacg	660
ctgcatttca gctcttgatc	attctgccct	ggggatccct	tctctttagg	ttctttgtta	720
tggtctgggg aaacactctg	actttctatg	gtgttgagag	cttctcagac	tatccacctt	780
tgggtcgctt tgctgttcgt	gatatgagac	agacagttgc	ggtgggtgtc	atcaaagcag	840
tggacaagaa ggctgctgga	gctggcaagg	tcaccaagtc	tgcccagaaa	gctcagaagg	900
ctaaatgaat attatcccta	atacctgcca	ccccactctt	aatcagtggt	ggaagaacgg	960
tctcagaact gtttgtttca	attggccatt	taagtttagt	agtaaaagac	tggttaatga	1020
taacaatgca tcgtaaaacc	ttcagaagga	aaggagaatg	ttttgtggac	cactttggtt	1080
ttcttttttg cgtgtggcag	ttttaagtta	ttagttttta	aaatcagtac	tttttaatgg	1140
aaacaacttg accaaaaatt	tgtcacagaa	ttttgagacc	cattaaaaaa	gttaaatgag	1200
aaaaaaaaaa aaaaaaaaaa	aa				1222

<210> 96

<211> 4632

<212> DNA

<213> Homo sapiens

<400> 96 gagecgteae caeagtaggt ceeteggete agteggeeca geecetetea gteeteecea 60 accccacaa ccgcccgcgg ctctgagacg cggccccggc ggcggcggca gcagctgcag 120 180 catcatctcc accctccagc catggaagac ctggaccagt ctcctctggt ctcgtcctcg 240 gacagcccac cccggccgca gcccgcgttc aagtaccagt tcgtgaggga gcccgaggac 300 gaggaggaag aagaggagga ggaagaggag gacgaggacg aagacctgga ggagctggag 360 gtgctggaga ggaagcccgc cgccgggctg tccgcggccc cagtgcccac cgcccctgcc gccggcgcgc ccctgatgga cttcggaaat gacttcgtgc cgccggcgcc ccgggggaccc 420 ctgccggccg ctcccccgt cgccccggag cggcagccgt cttgggaccc gagcccggtg 480 540 tcgtcgaccg tgcccgcgcc atccccgctg tctgctgccg cagtctcgcc ctccaagctc cctgaggacg acgagcctcc ggcccggcct ccccctcctc ccccggccag cgtgagcccc 600 caggcagage cegtgtggae eeegecagee eeggeteeeg eegegeeeee etecaeeeeg 660 720 gccgcgccca agcgcagggg ctcctcgggc tcagtggatg agaccctttt tgctcttcct 780 gctgcatctg agcctgtgat acgctcctct gcagaaaata tggacttgaa ggagcagcca ggtaacacta tttcggctgg tcaagaggat ttcccatctg tcctgcttga aactgctgct 840

tetetteett	ctctgtctcc	teteteagee	gcttctttca	aagaacatga	ataccttggt	900
aatttgtcaa	cagtattacc	cactgaagga	acacttcaag	aaaatgtcag	tgaagcttct	960
aaagaggtct	cagagaaggc	aaaaactcta	ctcatagata	gagatttaac	agagttttca	1020
gaattagaat	actcagaaat	gggatcatcg	ttcagtgtct	ctccaaaagc	agaatctgcc	1080
gtaatagtag	caaatcctag	ggaagaaata	atcgtgaaaa	ataaagatga	agaagagaag	1140
ttagttagta	ataacatcct	tcataatcaa	caagagttac	ctacagctct	tactaaattg	1200
gttaaagagg	atgaagttgt	gtcttcagaa	aaagcaaaag	acagttttaa	tgaaaagaga	1260
gttgcagtgg	aagctcctat	gagggaggaa	tatgcagact	tcaaaccatt	tgagcgagta	1320
tgggaagtga	aagatagtaa	ggaagatagt	gatatgttgg	ctgctggagg	taaaatcgag	1380
agcaacttgg	aaagtaaagt	ggataaaaaa	tgttttgcag	atagccttga	gcaaactaat	1440
cacgaaaaag	atagtgagag	tagtaatgat	gatacttctt	tccccagtac	gccagaaggt	1500
ataaaggatc	gttcaggagc	atatatcaca	tgtgctccct	ttaacccagc	agcaactgag	1560
agcattgcaa	caaacatttt	tcctttgtta	ggagatccta	cttcagaaaa	taagaccgat	1620
gaaaaaaaaa	tagaagaaaa	gaaggcccaa	atagtaadag	agaagaatac	tagcaccaaa	1680
acatcaaacc	cttttcttgt	agcagcacag	gattctgaga	cagattatgt	cacaacagat	1740
aatttaacaa	aggtgactga	ggaagtcgtg	gcaaacatgc	ctgaaggcct	gactccagat	1800
ttagtacagg	aagcatgtga	aagtgaattg	aatgaagtta	ctggtacaaa	gattgcttat	1860
gaaacaaaaa	tggacttggt	tcaaacatca	gaagttatgc	aagagtcact	ctatcctgca	1920
gcacagcttt	gcccatcatt	tgaagagtca	gaagctactc	cttcaccagt	tttgcctgac	1980
attgttatgg	aagcaccatt	gaattctgca	gttcctagtg	ctggtgcttc	cgtgatacag	2040
cccagctcat	caccattaga	agcttcttca	gttaattatg	aaagcataaa	acatgagcct	2100
gaaaaccccc	caccatatga	agaggccatg	agtgtatcac	taaaaaaagt	atcaggaata	2160
aaggaagaaa	ttaaagagcc	tgaaaatatt	aatgcagctc	ttcaagaaac	agaagctcct	2220
tatatatcta	ttgcatgtga	. tttaattaaa	gaaacaaagc	tttctgctga	accagctccg	2280
gatttctctg	attattcaga	aatggcaaaa	gttgaacagc	cagtgcctga	tcattctgag	2340
ctagttgaag	attcctcacc	: tgattctgaa	ccagttgact	tatttagtga	tgattcaata	2400
cctgacgttc	cacaaaaaca	agatgaaact	gtgatgcttg	tgaaagaaag	tctcactgag	2460
acttcatttg	agtcaatgat	: agaatatgaa	. aataaggaaa	aactcagtgo	tttgccacct	2520
gagggaggaa	agccatattt	ggaatctttt	aagctcagtt	: tagataacac	: aaaagatacc	2580
ctgttacctg	atgaagttto	c aacattgago	: aaaaaggaga	aaattccttt	gcagatggag	2640
gagctcagta	ctgcagttta	a ttcaaatgat	gacttattta	tttctaagga	ı agcacagata	2700

agagaaactg aaacgttttc agattcatct ccaattgaaa ttatagatga gttccctaca	2760
·	2820
gtateccaca aaagtgaaat tgetaatgee eeggatggag etgggteatt geettgeaca	2880
gaattgcccc atgacctttc tttgaagaac atacaaccca aagttgaaga gaaaatcagt	2940
ttctcagatg acttttctaa aaatgggtct gctacatcaa aggtgctctt attgcctcca	3000
gatgtttctg ctttggccac tcaagcagag atagagagca tagttaaacc caaagttctt	3060
gtgaaagaag ctgagaaaaa acttccttcc gatacagaaa aagaggacag atcaccatct	3120
gctatatttt cagcagagct gagtaaaact tcagttgttg acctcctgta ctggagagac	3180
attaagaaga ctggagtggt gtttggtgcc agcctattcc tgctgctttc attgacagta	3240
ttcagcattg tgagcgtaac agcctacatt gccttggccc tgctctctgt gaccatcagc	3300
tttaggatat acaagggtgt gatccaagct atccagaaat cagatgaagg ccacccattc	3360
agggcatatc tggaatctga agttgctata tctgaggagt tggttcagaa gtacagtaat	3420
tctgctcttg gtcatgtgaa ctgcacgata aaggaactca ggcgcctctt cttagttgat	3480
gatttagttg attctctgaa gtttgcagtg ttgatgtggg tatttaccta tgttggtgcc	3540
ttgtttaatg gtctgacact actgattttg gctctcattt cactcttcag tgttcctgtt	3600
atttatgaac ggcatcaggc acagatagat cattatctag gacttgcaaa taagaatgtt	3660
aaagatgcta tggctaaaat ccaagcaaaa atccctggat tgaagcgcaa agctgaatga	3720
aaacgcccaa aataattagt aggagttcat ctttaaaggg gatattcatt tgattatacg	3780
gatetttatt tttagecatg caetgttgtg aggaaaaatt aeetgtettg aetgeeatgt	3840
gttcatcatc ttaagtattg taagctgcta tgtatggatt taaaccgtaa tcatatcttt	3900
ttcctatctg aggcactggt ggaataaaaa acctgtatat tttactttgt tgcagatagt	3960
cttgccgcat cttggcaagt tgcagagatg gtggagctag aaaaaaaaaa	4020
ttttcagttt gtgcactgtg tatggtccgt gtagattgat gcagattttc tgaaatgaaa	4080
tgtttgttta gacgagatca taccggtaaa gcaggaatga caaagcttgc ttttctggta	4140
tgttctaggt gtattgtgac ttttactgtt atattaattg ccaatataag taaatataga	4200
ttatatatgt atagtgtttc acaaagctta gacctttacc ttccagccac cccacagtgc	4260
ttgatatttc agagtcagtc attggttata catgtgtagt tccaaagcac ataagctaga	4320
agaagaaata tttctaggag cactaccatc tgttttcaac atgaaatgcc acacacatag	4380
aactccaaca acatcaattt cattgcacag actgactgta gttaattttg tcacagaatc	4440
tatggactga atctaatgct tccaaaaatg ttgtttgttt gcaaatatca aacattgtta	4500

tgcaagaaat	tattaattac	aaaatgaaga	tttataccat	tgtggtttaa	gctgtactga	4560
actaaatctg	tggaatgcat	tgtgaactgt	aaaagcaaag	tatcaataaa	gcttatagac	4620
ttaaaaaaaa	aa					4632

PCT/US03/13015

<210> 97 <211> 1954 <212> DNA

<213> Homo sapiens

WO 03/090694

<400> 97 gattcactaa tatgcttggt cagcctggat caactgcact tgatcttttc aagttttatg 60 ttgaggatct taaagcacag ttatcatgac gagaagaaga taataaaaga cattctaaag 120 gataaaggat ttgtagttga agtaaacact acttttgaag attttgtggc gataatcagt 180 tcaactaaaa gatcaactac attagatgct ggaaatatca aattggcttt caatagttta 240 ctagaaaagg cagaagcccc gtgaaccgtg aaagagaaaa agaagaggct ccggaagatg 300 aaaccgaaaa agaatctgca tttaagagta tgttaaaaca agctgctcct ccgatagaat 360 tggatgctgt ctgggaagat atccgtgaga gatttgtaaa agagccagca tttgaggaca 420 taactctaga atctgaaaga aaacgaatat ttaaagattt tatgcatgtg cttgagcatg 480 aatgtcagca tcatcattca aagaacaaga aacattctaa gaaatctaaa aaacatcata 540 ggaaacgttc ccgctctcga tcggggtcag attcagatga tgatgatagc cattcaaaga 600 aaaaaagaca gcgatcagag tctcgttctg cttcagaaca ttcttctagt gcagagtctg 660 agagaagtta taaaaagtca aaaaagcata agaagaaaag taagaagagg agacataaat 720 ctgactctcc agaatccgat gctgagcgag agaaggataa aaaagaaaaa gatcgggaaa 780 gtgaaaaaga cagaactaga caaagatcag aatcaaaaca caaatcgcct aagaaaaaga 840 ctggaaagga ttctggtaat tgggatactt ctggcagcga actgagtgaa ggggaattgg 900 aaaagcgcag aagaaccctt ttggagcaac tggatgatga tcaataaatt ataccaaata 960 tatgtttaca gtatgattta aagtctgatt cagaccaggg actctatttt aagttcaact 1020 gaaataacac tgggttttaa ttatatcaca ggaaaaaaaa agtgcattta agtattgtta 1080 tegtggaett tataaaagea aaggaaattg aaagtaaett ttgattetgt ateaagaate 1140 atattttcat acagtcataa ctgtctttct gtgacccttt cacagggcac tgtaggatgg 1200 attaaaggtg gcaatttact gataactgca gatgtctcta ctttgttcta aaatctaagt 1260 catgaggtga tttgatttac tttatagaag ctggattttg aagatctaat gaaaaatttt 1320 ttgataatat agtagtacaa aaaaagcacc agcaactgat aaaaattgct tttttgtgcg 1380 ctacccaact ggttaaagcc aatgtgatct tttatggtga aactcctaag aaacaggtgg 1440

ttttgctgga	aacttggtag	acccttaatt	atagtggtgc	taatgagcac	tactgtaata	1500
taaagccacc	attattttt	tatcaaacat	ctgaatacat	tttacaaagg	ctattgtgag	1560
ggcattattt	tgagcatcta	ttttgaggtg	atgtttaaaa	aaactttaac	atcaaatcaa	1620
				aaagaatgtg		1680
				aaaagttgac		1740
				cttgcttttt		1800
				ttgacttcgt		1860
					accttctctt	1920
Cladaycacc						1954

PCT/US03/13015

<210> 98

<211> 1311 <212> DNA

<213> Homo sapiens

ctagtgaaaa aaaaaaaaaa aaaaaaaaa aaaa

WO 03/090694

<400> 98 ctctaccggc gggatttgat ggcgtgatgt ctcacagaaa gttctccgct cccagacatg 60 ggtccctcgg cttcctgcct cggaagcgca gcagcaggca tcgtgggaag gtgaagagct 120 tecetaagga tgaccegtee aageeggtee aceteacage etteetggga tacaaggetg 180 gcatgactca catcgtgcgg gaagtcgaca ggccgggatc caaggtgaac aagaaggagg 240 tggtggaggc tgtgaccatt gtagagacac cacccatggt ggttgtgggc attgtgggct 300 acgtggaaac ccctcgaggc ctccggacct tcaagactgt ctttgctgag cacatcagtg 360 atgaatgcaa gaggcgtttc tataagaatt ggcataaatc taagaagaag gcctttacca 420 agtactgcaa gaaatggcag gatgaggatg gcaagaagca gctggagaag gacttcagca 480 gcatgaagaa gtactgccaa gtcatccgtg tcattgccca cacccagatg cgcctgcttc 540 ctctgcgcca gaagaaggcc cacctgatgg agatccaggt gaacggaggc actgtggccg 600 agaagetgga etgggeeege gagaggettg ageageaggt acetgtgaae caagtgtttg 660 ggcaggatga gatgatcgac gtcatcgggg tgaccaaggg caaaggctac aaaggggtca 720 ccagtcgttg gcacaccaag aagctgcccc gcaagaccca ccgaggcctg cgcaaggtgg 780 cctgtattgg ggcatggcat cctgctcgtg tagccttctc tgtggcacgc gctgggcaga 840 aaggctacca tcaccgcact gagatcaaca agaagattta taagattggc cagggctacc 900 ttatcaagga cggcaagctg atcaagaaca atgcctccac tgactatgac ctatctgaca 960 agagcatcaa ccctctgggt ggctttgtcc actatggtga agtgaccaat gactttgtca 1020 1080 tgctgaaagg ctgtgtggtg ggaaccaaga agcgggtgct caccctccgc aagtccttgc

tggtgcagac	gaagcggcgg	gctctggaga	agattgacct	taagttcatt	gacaccacct	1140
ccaagtttgg	ccatggccgc	ttccagacca	tggaggagaa	gaaagcattc	atgggaccac	1200
tgaagaaaga	ccgaattgca	aaggaagaag	gagcttaatg	ccaggaacag	attttgcagt	1260
tggtggggtc	tcaataaaag	ttattttcca	ctgaaaaaaa	aaaaaaaaa	a	1311
<210> 99 <211> 838 <212> DNA <213> Home	o sapiens					
<400> 99 cctcttttc	cggctggaac	catggagggt	gtagaagaga	agaagaagga	ggttcctgct	60
gtgccagaaa	cccttaagaa	aaagcgaagg	aatttcgcag	agctgaagat	caagcgcctg	120
agaaagaagt	ttgcccaaaa	gatgcttcga	aaggcaagga	ggaagcttat	ctatgaaaaa	180
gcaaagcact	atcacaagga	atataggcag	atgtacagaa	ctgaaattcg	aatggcgagg	240
atggcaagaa	aagctggcaa	cttctatgta	cctgcagaac	ccaaattggc	gtttgtcatc	300
agaatcagag	gtatcaatgg	agtgagccca	aaggttcgaa	aggtgttgca	gcttcttcgc	360
cttcgtcaaa	tcttcaatgg	aacctttgtg	aagctcaaca	aggcttcgat	taacatgctg	420
aggattgtag	agccatatat	tgcatggggg	taccccaatc	tgaagtcagt	aaatgaacta	480
atctacaagc	gtggttatgg	caaaatcaat	aagaagcgaa	ttgctttgac	agataacgct	540
ttgattgctc	gatctcttgg	taaatacggc	atcatctgca	tggaggattt	gattcatgag	600
atctatactg	ttggaaaacg	cttcaaagag	gcaaataact	tcctgtggcc	cttcaaattg	660
tcttctccac	gaggtggaat	gaagaaaaag	accacccatt	ttgtagaagg	tggagatgct	720
ggcaacaggg	aggaccagat	caacaggctt	attagaagaa	tgaactaagg	tgtctaccat	780
gattatttt	ctaagctggt	tggttaataa	acagtacctg	ctctcaaatt	gaaaaaaa	838
	2 no sapiens					
<400> 100 atgtgcccag		tgggatcttc	cagttagatg	aaagacggag	agatgcagtg	60
attgcattgg	gcatttttct	gattgaatct	gatetteage	acaaagattg	tgtggttcct	120
taccttcttc	gacttctcaa	aggtetteca	aaagtgtatt	gggtagaaga	aagcacagct	180
cggaaaggca	a gaggtgccct	cccggttgca	gagagcttca	gcttctgctt	ggtaactctg	240
ctgtctgatc	g tggcctatag	ggatccttca	cttagggatg	agattttaga	ı ggtgcttttg	300
caggttttg	atgtcctctt	ggggatgtgc	caggccttgg	agattcaaga	caaagaatac	360

ctttgcaagt	atgctatccc	atgcctgata	ggaatctcgc	gagcatttgg	gcgttacagc	420
aacatggaag	agtctctcct	ctcaaagctc	tttcccaaaa	tccctcctca	ttecctccgt	480
gtcctggaag	agcttgaagg	tgttcgaagg	cgttccttta	atgacttccg	ctccatcctc	540
cccagcaatc	tgctgactgt	ctgtcaggag	ggtaccctga	agaggaaaac	cagcagtgtg	600
tccagcatct	ctcaggtcag	ccctgaacgc	ggcatgcccc	ctcccagttc	ccctggagga	660
tetgeettte	actactttga	agcctcctgt	ttgcccgatg	ggactgccct	agagcctgag	720
tactactttt	caaccatcag	ctccagcttc	tcagtctctc	cccttttcaa	cggtgtcaca	780
tataaggagt	ttaacattcc	attggaaatg	cttcgggaac	tcttaaacct	ggtgaagaag	840
atcgttgagg	aggctgttct	caaatctttg	gatgccattg	tagccagtgt	gatggaggcc	900
aaccccagtg	ctgatcttta	ctacacttcc	ttcagtgacc	ctctctacct	gaccatgttc	960
aagatgctgc	gtgacactct	gtactacatg	aaggacctcc	cgacctcttt	tgtgaaggag	1020
atccatgatt	ttgtgctgga	gcagttcaac	acgagccagg	gggagctcca	gaagattcta	1080
catgacgcag	accggatcca	caatgagctg	agccccctca	aactgcgctg	tcaggcgagt	1140
gctgcctgtg	tggacctcat	ggtgtgggct	gtgaaggacg	agcagggtgc	agaaaacctt	1200
tgcatcaagc	tatctgagaa	gctgcagtcc	aagacgtcca	gcaaagtcat	tattgctcac	1260
ttgcccctgc	tgatctgctg	tctgcagggt	ttgggccgcc	tgtgcgagag	gttcccggtg	1320
gtggtgcact	ctgtgacacc	gtccttgcga	gacttcctgg	tcatcccgtc	cccagttctg	. 1380
gtgaagctct	acaagtacca	cagtcagtac	cacacagttg	ctggcaatga	tataaaaatc	1440
agtgtgacca	atgagcattc	cgagtcaacc	ctgaacgtca	tgtcgggtaa	gaagagccag	1500
ccctccatgt	acgagcagct	ccgagacatc	gctattgaca	acatctgcag	gtgcctgaag	1560
gctggattga	cggtggaccc	agtgattgtg	gaggcgttct	tggccagcct	gtccaaccgg	1620
ctctacatct	ctcaggagag	cgacaaggac	gctcacttga	ttcccgacca	cacaatccga	1680
gccttgggac	acattgcggt	ggccttgagg	gacaccccga	aggtcatgga	gcccattctg	1740
cagatectae	agcagaaatt	ttgccagcca	ccctccccc	tcgatgtgct	gattattgac	1800
cagctgggct	gcctggttat	caccggaaat	caatacatct	atcaggaagt	gtggaacctc	1860
ttccagcaga	tcagtgtgaa	ggccagctcc	gttgtatact	cagccaccaa	agattacaag	1920
gaccacggct	ataggcattg	ctccctggca	gtgattaatg	ccctggccaa	catcgcggcc	1980
aacatccaag	acgagcacct	ggtggatgag	ctgctcatga	acctgttgga	gttgtttgtg	2040
cagctggggc	tggaggggaa	gcgagccagc	gagagggcaa	gcgagaaggg	ccctgcccta	2100
aaggcttcta	gcagtgcagg	gaacttggga	gtactcattc	ctgtaatagc	tgtgctcacc	2160

cgacgactgc	cacccatcaa	agaagctaag	cctcggttac	agaagctctt	ccgagacttc	2220
tggctgtatt	ccgttctgat	gggattcgct	gtggagggct	caggactctg	gccagaagaa	2280
tggtacgagg	gggtctgtga	aatagccact	aagtccccct	tgctcacctt	tcccagcaag	2340
gagccactgc	ggtccgtcct	ccagtataac	tcagccatga	agaatgacac	ggtcaccccc	2400
gctgagctga	gtgagctccg	cagcactatc	atcaacctgc	tggacccccc	tcccgaggtg	2460
tccgcactca	tcaacaagct	ggacttcgcc	atgtccacct	acctcctctc	tgtgtaccgg	2520
ctggagtaca	tgagggtact	gcgttcaaca	gatcctgatc	gcttccaggt	aatgttctgc	2580
tactttgagg	ataaagctat	tcagaaagac	aaatctggga	tgatgcagtg	tgtgattgca	2640
gtcgcggaca	aagtattcga	tgccttcctg	aacatgatgg	cggataaagc	caagaccaag	2700
gagaacgagg	aggagctgga	gcggcacgct	cagttcctgt	tggtgaactt	caaccacatc	2760
cacaagagga	taaggagggt	ggcagacaag	tatctatctg	gtctggtgga	taagtttccc	2820
cacttgctct	ggagcgggac	tgtgctgaag	accatgctgg	acatcctgca	gaccctgtca	2880
ctgtcactga	gcgctgatat	tcacaaggat	cagccttact	atgacatccc	cgacgccccc	2940
taccggatca	cggttcctga	cacgtacgaa	gcccgtgaga	gcattgtgaa	ggacttcgct	3000
gcacgctgtg	ggatgatcct	ccaggaggcc	atgaagtggg	cacctaccgt	caccaagtcc	3060
cacctgcagg	aatatctgaa	caaacatcag	aactgggtat	cgggactgtc	ccagcacaca	3120
gggctggcca	tggccactga	gagcatcctt	cactttgctg	gctacaacaa	gcagaacaca	3180
actcttgggg	g caactcagct	gagcgagcgc	ccggcctgtg	tgaagaaaga	ctactccaac	3240
ttcatggcat	ccctgaatct	gcgcaaccgc	tacgcgggcg	aggtgtatgg	aatgattcgg	3300
ttctcaggca	ccacaggcca	gatgtctgac	ctgaacaaaa	tgatggtcca	ggatctacat	3360
tcagctttag	g accgcagtca	. tcctcagcac	tacacgcagg	ccatgttcaa	gctgaccgca	3420
atgctcatta	a gcagtaaaga	ttgtgacccg	cagctccttc	atcatctgtg	ctggggtccc	3480
ctccggatgt	tcaatgagca	tggcatggag	acggccctgg	cctgctggga	gtggctgctg	3540
gctggcaagg	g atggagtgga	agtgccgttc	atgcgggaga	. tggcaggggc	ctggcacatg	3600
acggtggag	c agaaatttgg	g cctgttttct	. gctgagataa	aggaagcaga	cccctggct	3660
gcctcggaag	g caagtcaaco	caaaccctgt	ccccccgaag	g tgacccccca	. ctacatctgg	3720
atcgacttc	c tggtgcagcg	g gtttgagato	gccaagtact	gcagctctga	ccaagtggag	3780
atcttctcc	a gcctgctgca	a gcgctccato	g tecetgaaca	tcggcggggc	: caaggggagc	3840
atgaaccgg	c acgtggcgg	c catcgggcc	cgcttcaago	tgctgaccct	ggggctgtcc	3900
ctcctgcat	g ccgatgtggt	tccaaatgca	a accatccgca	atgtgcttcg	g cgagaagatc	3960
tactccact	g cctttgacta	a cttcagctgt	ccccaaagt	tccctactca	aggagagaag	4020

cggctgcgtg aagacataag catcatgatt aaattttgga ccgccatgtt ctcagataag 40	080
	140
gacataactg teggeteteg geaacaagee acceaagget ggateaacae ataceeetg 4	200
	260
tcccagctgc acaaatacta catgaagcgc aggacgctgc tgctgtccct gctggccact 4	320
	1380
caggccggag agaacagcgt ggccaactgg agatctaagt acatcagcct gagtgagaag 4	1440
cagtggaagg acaacgtgaa cctcgcctgg agcatctctc cctacctagc cgtgcagctg 4	1500
cctgccaggt ttaagaacac agaagccatt gggaacgaag tgacccgtct cgttcggttg 4	4560
gacccgggag ccgttagtga tgtgcctgaa gcaatcaagt tcctggtcac ctggcacacc 4	4620
atcgacgccg atgctccaga gctcagccat gtgctgtgct	4680
acaggeetet cetaettete cageatgtae eegeegeace eteteaegge geagtaeggg	4740
gtgaaagtcc tgcggtcctt ccctccggac gccatcctct tctacatccc ccagattgtg	4800
caggecetea ggtaegaeaa gatgggetat gtgegggagt atattetgtg ggeagegtet	4860
aaatcccagc ttctggcaca ccagttcatc tggaacatga agactaacat ttatctagat	4920
gaagagggcc accagaaaga ccctgacatc ggcgacctcc tggatcagtt ggtagaggag	4980
atcacagget cettgteegg eccagegaag gaettttace agegggagtt tgatttettt	5040
aacaagatca ccaacgtgtc ggctatcatc aagccctacc ctaaaggcga cgagagaaag	5100
aaggettgte tgteggeeet gtetgaagtg aaggtgeage egggetgeta eetgeeeage	5160
aaccctgagg ccattgtgct ggacatcgac tacaagtctg ggaccccgat gcagagtgct	5220
gcaaaagccc catatctggc caagttcaag gtgaagcgat gtggagttag tgaacttgaa	5280
aaagaaggtc tgcggtgccg ctcagactcc gaggatgagt gcagcacgca ggaggccgac	5340
ggccagaaga tctcctggca ggcagccatc ttcaaggtgg gagacgactg ccggcaggac	5400
atgctggccc tgcagatcat cgacctcttc aagaacatct tccagctggt cggcctggac	5460
ctctttgttt ttccctaccg cgtggtggcc actgcccctg ggtgcggggt gatcgagtgc	5520
atccccgact gcacctcccg ggaccagctg ggccgccaga cagacttcgg catgtacgac	5580
tacttcacac gccagtacgg ggatgagtcc accetggeet tecageagge ecgetacaac	5640
ttcatccgaa gcatggccgc ctacagcctc ctgctgttcc tgctgcagat caaggacaga	5700
cacaacggca acattatgct ggacaagaag ggccatatca tccacatcga ctttggcttc	5760
atgtttgaaa gctcgccggg cggcaatctc ggctgggaac ccgacatcaa gctgacggat	5820

gagatggtga	tgatcatggg	gggcaagatg	gaggccacac	ccttcaagtg	gttcatggag	5880
atgtgtgtcc	gaggctacct	ggctgtgcgg	ccctacatgg	acgcggtcgt	ctccctggtc	5940
actctcatgt	tggacacggg	cctgccctgt	tttcgcggcc	agacaatcaa	gctcttgaag	6000
cacaggttta	gccccaacat	gactgagcgc	gaggctgcaa	atttcatcat	gaaggtcatc	6060
cagagctgct	tcctcagcaa	caggagccgg	acctacgaca	tgatccagta	ctatcagaat	6120
gacatcccct	actgaggagg	ggaccttcga	gggcctctgc	cccatgtgcc	ctcaaagctg	6180
tcccacaatc	atggagccct	gcgacctccc	tgccctgccg	ccacatgcag	tggaggagag	6240
gcctgtggcc	caaagaacct	ggtagcgcct	cctggggcag	cacgtgggtg	gcgcagcctt	6300
ggtaacgcca	tggactgcag	cgacaatcaa	tggatggtgc	tgtctatgca	caggtgtgag	6360
tectetgttt	gcactggaca	tattccctac	ctgtcttatt	tcataggtac	atgaagtatt	6420
gtgtataaaa	aaagagataa	gatttaacca	acatcaacaa	aataaaaacc	caaaatagta	6480
aaaacccaaa	. aaaaaaaaaa	aa				6502

<210> 101

<211> 1128

<212> DNA

<213> Homo sapiens

<400> 101 ggcacgaggc ggaggtgcag gtcctggtgc ttgatggtcg aggccatctc ctgggccgcc 60 tggcggccat cgtggctaaa caggtactgc tgggccggaa ggtggtggtc gtacgctgtg 120 aaggcatcaa catttctggc aatttctaca gaaacaagtt gaagtacctg gctttcctcc 180 gcaagcggat gaacaccaac cettecegag geceetacca ettecgggee eccageegea 240 tettetggeg gaccgtgega ggtatgetge eccacaaaae caagegagge caggeegete 300 tggaccgtct caaggtgttt gacggcatcc caccgcccta cgacaagaaa aagcggatgg 360 tggttcctgc tgccctcaag gtcgtgcgtc tgaagcctac aagaaagttt gcctatctgg 420 480 ggcgcctggc tcacgaggtt ggctggaagt accaggcagt gacagccacc ctggaggaga 540 agaggaaaga gaaagccaag atccactacc ggaagaagaa acagctcatg aggctacgga 600 aacaggccga gaagaacgtg gagaagaaaa ttgacaaata cacagaggtc ctcaagaccc acggactcct ggtctgagcc caataaagac tgttaattcc tcatgcgttg cctgcccttc 660 ctccattgtt gccctggaat gtacgggacc caggggcagc agcagtccag gtgccacagg 720 cagccctggg acataggaag ctgggagcaa ggaaagggtc ttagtcactg cctcccgaag 780 840 ttgcttgaaa gcactcggag aattgtgcag gtgtcattta tctatgacca ataggaagag 900 caaccagtta ctatgagtga aagggagcca gaagactgat tggagggccc tatcttgtga

WO 03/090694	PCT/US03/13015

60

120

gtggggcatc	tgttggactt	tccacctggt	catatactct	gcagctgtta	gaatgtgcaa	960
gcacttgggg	acagcatgag	cttgctgttg	tacacagggt	atttctagaa	gcagaaatag	1020
actgggaaga	tgcacaacca	aggggttaca	ggcatcgccc	atgctcctca	cctgtatttt	1080
gtaatcagaa	ataaattgct	tttaaagaaa	aaaaaaaaaa	aaaaaaaa		1128

<210> 102 <211> 3723

<212> DNA

<213> Homo sapiens

<400> 102
tttttcttc ctggctgatg atttgtcatt ctagtcactt cctgccttgt gaccacacac
ccaggcttga caaagctgtt ctgcagatca gaaagaaggg gttcctggtc atacaccagt

actaccaagg acagctttt tcctgcaaga tctgttacct aaagcaataa aaaatggcca 180
gaggatcagt gtccgatgag gaaatgatgg agctcagaga agcttttgcc aaagttgata 240
ctgatggcaa tggatacatc agcttcaatg agttgaatga cttgttcaag gctgcttgct 300
tgcctttgcc tgggtataga gtacgagaaa ttacagaaaa cctgatggct acaggtgatc 360

tggaccaaga tggaaggatc agctttgatg agtttatcaa gattttccat ggcctaaaaa 420 gcacagatgt tgccaagacc tttagaaaag caatcaataa gaaggaaggg atttgtgcaa 480 tcggtggtac ttcagagcag tctagcgttg gcacccaaca ctcctattca gaggaagaaa 540

agtatgeett tgteaactgg ataaacaaag eeetggaaaa tgateetgat tgteggeatg 600 teateecaat gaacecaaac acgaatgate tetttaatge tgttggagat ggeattgtee 660 tttgtaaaat gateaacetg teagtgeeag acacaattga tgaaagaaca ateaacaaaa 720

agaagctaac ccctttcacc attcaggaaa atctgaactt ggctctgaac tctgcctcag 780 ccatcgggtg ccatgtggtc aacatagggg ctgaggacct gaaggagggg aagccttatc 840

tggtcctggg acttctgtgg caagtcatca agattgggtt gtttgctgac attgaactca 900 gcagaaatga agctctgatt gctcttttga gagaaggtga gagcctggag gatttgatga 960

aactctcccc tgaagagetc ttgctgaggt gggctaatta ccacctggaa aatgcagget 1020

gcaacaaaat tggcaacttc agtactgaca tcaaggactc aaaagcttat taccacctgc 1080

ttgagcaggt ggctccaaaa ggagatgaag aaggtgttcc tgctgttgtt attgacatgt 1140 caggactgcg ggagaaggat gacatccaga gggcagaatg catgctgcag caggcggaga 1200

ggctgggctg ccggcagttt gtcacagcca cagatgttgt ccgagggaac cccaagttga 1260

acttggcttt tattgccaac ctctttaaca gataccctgc cctgcacaaa ccagagaacc 1320 aggacattga ctggggggct cttgaaggtg agacgagaga agagcggaca tttaggaact 1380

137

ggatgaactc cctgggtgtt aaccctcgag tcaatcattt gtacagtgac ttatcagatg	1440
ccctggtcat cttccagctc tatgaaaaga tcaaagttcc tgttgactgg aacagagtaa	1500
acaaaccgcc ataccccaaa ctgggaggca atatgaagaa gcttgagaat tgtaactacg	1560
cggtagaatt ggggaagaat caagcgaagt tctccctggt tggcatcggt ggacaagatc	1620
tcaatgaagg aaaccgcact ctcacactgg ccttgatttg gcagctaatg agaaggtata	1680
cactgaatat cctcgaagaa attggtggtg gccagaaggt caatgatgac attattgtca	1740
actgggtgaa tgaaacattg agggaagcag agaaaagttc atccatctct agtttcaagg	1800
	1860
ccattaacta tgaccttctg aagacagaaa atctgaatga tgatgagaaa ctcaacaatg	1920
caaaatatgc catctctatg gcccgaaaaa ttggagcaag agtgtatgcc ctgccagaag	1980
acctggttga agtgaacccc aaaatggtca tgaccgtgtt tgcctgcctc atggggaaag	2040
gaatgaagag ggtgtgaggc caatggggct gggtgggagg cggtgcactc actcctgact	2100
gcccggcaca gatgctccag ggatgattca agccattcca aagttcaact tggtgacact	2160
ctataagatt ccaaaaagca catattagtg cagccaagta gcctctcctg tatttaacaa	2220
aaagtgette attetttgea ggaggeeeaa eeteetatat ataggtttet attettgatt	2280
tatttgcttc ttcgaaaatc tagaggaaaa gaaagaagtt attttccagg tacccttctc	2340
gcttttgcca ttagccaagg atagaagctg cagtggtatt aattttgata taatctttca	2400
aaccagcttg ttgtggcttc ccttttcttt gttcaagatg agggccagga ggggaaacat	2460
cacacctgcc ctaaaccctg ttcctggagg tcagcatttg atctgttgca agcccctctt	2520
tetgteeeet etteetaeee tgeeteeeat gaetttgete eteaeaettt tggaaceatg	2580
cetteegggg gggeeeatet ettetggegg teettgtete tgggeeaett ggagtgtgtg	2640
ataaatcagt caagctgttg aagtctcagg agtctctggt agcctgcaga agtaagcctc	2700
atcatcagag cctttcctca aaactggagt cccaaatgtc atcaggtttt gttttttttc	2760
agccactaag aacccctctg cttttaactc tagaatttgg gcttggacca gatctaacat	2820
cttgaatact ctgccctcta gagccttcag ccttaatgga aggttggatc caaggaggtg	2880
taatggaatc ggaatcaagc cactcggcag gcatggagct ataactaagc atccttaggg	2940
ttctgcctct ccaggcatta gccctcacat tagatctagt tactgtggta tggctaatac	3000
ctgtcaacat ttggaggcaa tcctaccttg cttttgcttc tagagcttag catatctgat	3060
tgttgtcagg ccatattatc aatgtttact tttttggtac tataaaagct ttctgccacc	3120
cctaaactcc aggggggaca atatgtgcca atcaatagca cccctactca catacacaca	3180
cacctagcca gctgtcaagg gcagaatgaa tctatgctgg ataagaaatg gtggaactgc	3240

gttatgaaga	gctaatttac	tggacaaaga	attccaaagc	aaaaccagaa	cagtatgaat	3300
ttgagcaggt	ctcataggtt	gagcaatttc	cccctaaacc	aactgaaggc	taaaaagcaa	3360
caggccattg	tgaaccaatg	caagacgccc	tctatcatgg	tgaaaagctc	catcaatgag	3420
gtatcttctt	tagtggtggt	atgtaatgga	acttagccat	ttttcaaagc	aattgaaatg	3480
cattgctctg	gatctgttcc	ttggcagtgg	actcagaaag	ccaacatgtg	gctcctccca	3540
gcccataacc	agtatttttg	ctgcttctga	atacaaattg	gttggttttg	acttcagatt	3600
gaacttactg	tagcctcaga	tgatttcccc	cctccgcctc	ccaggaagaa	agaatgttac	3660
tgccttaata	aaaaatgaaa	agagaatgat	gctcaaaatc	tttccaaata	aaatgttccc	3720
tat						3723

<210> 103

<211> 3318 <212> DNA

<213> Homo sapiens

<400> 103 gcccacctgt cctgcagcac tggatgcttt gtgagttggg gattgttgcg tcccatatct 60 ggacccagaa gggacttccc tgctcggctg gctctcggtt tctctgcttt cctccggaga 120 aataacageg tetteegege egegeatgga geeteeegge egeegegagt gteeetttee 180 tteetggege ttteetgggt tgettetgge ggeeatggtg ttgetgetgt acteettete 240 cgatgcctgt gaggagccac caacatttga agctatggag ctcattggta aaccaaaacc 300 ctactatgag attggtgaac gagtagatta taagtgtaaa aaaggatact tctatatacc 360 tectettgee acceatacta tttgtgateg gaatcataca tggetacetg tetcagatga 420 cgcctgttat agagaaacat gtccatatat acgggatcct ttaaatggcc aagcagtccc 480 tgcaaatggg acttacgagt ttggttatca gatgcacttt atttgtaatg agggttatta 540 cttaattggt gaagaaattc tatattgtga acttaaagga tcagtagcaa tttggagcgg 600 taagccccca atatgtgaaa aggttttgtg tacaccacct ccaaaaataa aaaatggaaa 660 acacaccttt agtgaagtag aagtatttga gtatcttgat gcagtaactt atagttgtga 720 tectgeacet ggaccagate catttteact tattggagag ageacgattt attgtggtga 780 caattcagtg tggagtcgtg ctgctccaga gtgtaaagtg gtcaaatgtc gatttccagt 840 agtcgaaaat ggaaaacaga tatcaggatt tggaaaaaaa ttttactaca aagcaacagt 900 tatgtttgaa tgcgataagg gtttttacct cgatggcagc gacacaattg tctgtgacag 960 taacagtact tgggatecce cagttecaaa gtgtettaaa gtgtegaett ettecaetae 1020 aaaatctcca gegtecagtg cetcaggtee taggeetact tacaageete cagtetcaaa 1080

ttatccagga tatcctaaac ctgaggaagg aatacttgac agtttggatg tttgggtcat 1	140
	200 ⁻
atatetteaa aggaggaaga agaaaggeae atacetaaet gatgagaeee acagagaagt 1	260
	.320
	.380
	440
	1500
	L560
	1620
	1680
	1740
aaatcttttt tgttcaaaga ttaatgccaa ctcttaagat tattctttca ccaactatag	1800
aatgtatttt atatatcgtt cattgtaaaa agcccttaaa aatatgtgta tactactttg	1860
gctcttgtgc ataaaaacaa gaacactgaa aattgggaat atgcacaaac ttggcttctt	1920
taaccaagaa tattattgga aaattctcta aaagttaata gggtaaattc tctattttt	1980
gtaatgtgtt cggtgatttc agaaagctag aaagtgtatg tgtggcattt gttttcactt	2040
tttaaaaacat ccctaactga tcgaatatat cagtaatttc agaatcagat gcatcctttc	2100
ataagaagtg agaggactct gacagccata acaggagtgc cacttcatgg tgcgaagtga	2160
acactgtagt cttgttgttt tcccaaagag aactccgtat gttctcttag gttgagtaac	2220
ccactctgaa ttctggttac atgtgttttt ctctccctcc ttaaataaag agaggggtta	2280
aacatgccct ctaaaagtag gtggttttga agagaataaa ttcatcagat aacctcaagt	2340
cacatgagaa tettagteea tttacattge ettggetagt aaaageeate tatgtatatg	2400
tettacetea teteetaaaa ggeagagtae aaagtaagee atgtatetea ggaaggtaae	2460
ttcattttgt ctatttgctg ttgattgtac caagggatgg aagaagtaaa tatagctcag	2520
gtagcacttt atactcaggc agatctcagc cctctactga gtcccttagc caagcagttt	2580
ctttcaaaga agccagcagg cgaaaagcag ggactgccac tgcatttcat atcacactgt	2640
taaaagttgt gttttgaaat tttatgttta gttgcacaaa ttgggccaaa gaaacattgc	2700
cttgaggaag atatgattgg aaaatcaaga gtgtagaaga ataaatactg ttttactgtc	2760
caaagacatg tttatagtgc tctgtaaatg ttcctttcct	2820
ctttaggaag ataaaagttt gaggagaaca aacaggaatt ctgaattaag cacagagttg	2880

aagtttatac	ccgtttcaca	tgcttttcaa	gaatgtcgca	attactaaga	agcagataat	2940
ggtgttttt	agaaacctaa	ttgaagtata	ttcaaccaaa	tactttaatg	tataaaataa	3000
atattataca	atatacttgt	atagcagttt	ctgcttcaca	tttgattttt	tcaaatttaa	3060
tatttatatt	agagatctat	atatgtataa	atatgtattt	tgtcaaattt	gttacttaaa	3120
tatatagaga	ccagttttct	ctggaagttt	gtttaaatga	cagaagcgta	tatgaattca	3180
agaaaattta	agctgcaaaa	atgtatttgc	tataaaatga	gaagtctcac	tgatagaggt	3240
tctttattgc	tcatttttta	aaaaatggac	tcttgaaatc	tgttaaaata	aaattgtaca	3300
tttggaaaaa	aaaaaaaa					3318

<210> 104

<211> 5957

<212> DNA

<213> Homo sapiens

<400> 104 60 ggggatgaca aactcatttc cagtctgtga actcctggac aaagcaaact aaccactgaa aaactcgaaa atagggcaag acgacattaa ccttgtgaaa gtctgctttg aaaaaaggca 120 ttctgtcaag ctgtgtattt ttttcttgat tattcaaatt tatttcgtta ttcaaattta 180 attcagaaaa tagctcagtt ggtttcaggg ggaatggggt gggaggggtt tgggcacata 240 300 aatttatgat gataatttta aatgtacgat cattaagttg tatgcctcag tactataaca ggtgaatctc tgtaatattg actaaacagt taaaagatat tttgtaaatt tcaggtccat 360 cgcatcaatg catgaaatat tagaaaacca aattccaaag aatcaggaat ttccatttcc 420 acccaaagta tacattatta tettetagea gttgtetgtt aatataaaag cagcaaaate 480 tcagctactt atataatttt ctccttttat ttgaaagtta cacttagaga ttaataatat 540 600 gtacagagaa gcttttcctg cctactctgt ttataactcc gtccaacttg cccacaaaca etgecetect teaacceate tgatgtggge aaagceactg ttttettagg eccataacte 660 720 agtgcagctg ttttattttt ataatgccgg tcaacctttt tgtttgtgtg tgtgtgtg 780 tgtgtgtgtg tgtgtgtgt tgtgtgtgt tgtgtctacg atgtgcttat ttaataattg ccaaaatatt tagactagag taacttccgg tgggtcaatt ggattgtgac tttcttttgt 840 ggttttttgg ttcttcgatt gctctctgtt aaatattttc ataattcccc ccacagaata 900 cgtgtgtata tactgcaact taaaaactaa aagcagtact cgaatgagtt gttttaatgt 960 tgtactttta tctgtttgtt ttatgggttc tcctgctgcc taatgacctt tctgtttta 1020 taactgccgg aaagccgcga agcctctcgc atggggagct aggtccccgc tgcggctccg 1080 cacttgagtt tattataaac tetggggtte tgagtaagtt ttgtttgaat acagcaacat 1140

gattgtctct ttctattctt atcctaaaag actctgtctg gcatctttta gttgtaccct 1	200
cgtatctgct tctctaataa atgttatatt ttttctcagt attgtgtatt ttaagtgact 1	L260
	1320
	1380
	1440
	1500
gcggaatgaa tacagaacaa caggttttcc ttttcaccaa agattttaca ttgtactgct :	1560
	1620
	1680
ccaagctgaa gtgcagtggt gtgatcctgg ctcgctgcag cctcgacctc cctgggctca	1740
agccatcctt ccaactcatc ttcccgaata gtcgggacta caggcgcatg ccaacatgct	1800
ggttaatttt tttttaattt tttgtagaga tgaggtctgg ctatgttgtg gcccaggctg	1860
gtcttgaact cctgagctca tgcatcctcc ctcttcagcc tctcaaagtg ctgggattac	1920
aggtatgagc cactgcaccc aacctccgtt tccttttttt tttttttga gacggagtct	1980
tgctctgttg tccaggctgg agtgcagtgg cccgatctca gctcactgca acctccgcct	2040
cctgggttga agcgattett ctgcctcage ctcccaagta gctgggatta caggcacctg	2100
ccaccgcgcc aggctaattg ttgtattttt aatagagatg ggttttcacc atgttagcca	2160
ggctggtett gaacteetga eetegtgate tgeetgeete aggeteecaa agtgetggga	2220
ttacaggcat gagccacggc gcccagcccc ggcctccgtt tcttactttc tctcaaaact	2280
aaacttatga gaaagacgag ttggggcgga tggcctcatc agtctcctgt ttgggcttct	2340
cttaactctg aaggaaagac cagctaaagg ctagagagaa aaccgtgaaa gttcctcatc	2400
tcagaccege cetgtggtaa cegattgete taagaegeee eeteccatee etecceteee	2460
actaccctcc cctcccaggg cggtgcagtt tgtagccaag agcaaaatgc ccgcctgaaa	2520
cccgcgcctt cctctctaac agagagtttc tctttctgtt tctctttgtg ttgtagattc	2580
ctagagggga gtgcctgcga gcctcgggtg agccttcctg gaggagcctc cgtctgcttg	2640
ttcccacagg cctccagcgc cctgccctgt ggacagccca cccctccgca gccccatccc	2700
tgcggggcgg tctctctctc tctctccagc atgctccctg cggccctgcc ctcccgccca	2760
gcccgggcca cctcgtgggg gacaagtctc gccagcgccc acccccatgg ctcgggtcag	2820
tecteatege teccectece caceeegege aggecactga gaeggtggga cactegeeee	2880
cacctgctcc ttcctgggcc ctcagtccac ccgggctcgt cctggcagcc cttccgcgct	2940
tcacacagtg ccttttgtga aagtgtcatc acgggtcccc tgaggagaca aggcaggtcc	3000

agcgcacatc aggtggactg agcactcgat gtcatccgtg tcgatgtcat ccgtgtgtcc	3060
	3120
cctttttgga ttctaggctt gcacctcata ctaaacattg accctttcac tatgccctca	3180
	3240
	3300
	3360
	3420
	3480
	3540
	3600
atctcggctc actacaacct ccacctcctg ggttccagcg attctcctgc ctcagcctcc	3660
caaatagctg tgattacagg cgtgcaccac cacgcccggc taatgtttgt atttttagta	3720
gagacagggt ttcaccgtgt tggtcaggct ggtctcaaac tcctgacctc aggtgatccg	3780
cccgcctcag cctcccaaag tgctgagatt acaggtgtga gctaccgcac cccgccgagg	3840
ttagcacttt catcaccaaa gaccccgtgc ctctcgtggt cctttgaggg atcccgccgc	3900
caccaccett gtattttate acgtgetett cagggeatgt ggaattegtt gagtttgett	3960
ttagagccaa gtttctttcc ctgtgtgggt ttttgaggaa aacctgaggt cccctaatct	4020
gtggccacca ccccccccc gccgccacgc cttagagcag agcagcccct cctctcattt	4080
ggtgcagaaa cagtcaagag gaaccattgg cctagagctc ctgtgaccga gagcgccacg	4140
gaagcctggg gatgatgtcg ggcagcttta ttctttgctt ggctttggta actaggtggt	4200
cccctcaagc atcctcagtt cctcttgctg tttatgaatc taagacaagg aagtcctata	4260
gaagccaaag ggacagggac ggaaaggaca ggtcccaagg gatggggctg tctttacttg	4320
tggaaaccag gaaattgctc ctctcagcca accaaggttg accacacac acccttccgg	4380
agcagctcag tcagccctcg gggacgagaa accacaagcg cagagacgct gaggcccagg	4440
caggtgaaga ggaagtggct ttgggttttt aaagtaggtg agcgtgagcc tctctgactg	4500
cttcttcccc gggggggact gcaaaccgct cagggttgcg gcagagccat ggacttccgg	4560
tecetgeaac gggtgaceta agegtggtge acceateagt caegeaggag gaetgaettg	4620
acagacgaaa gacaagcccg gatgacacag ggtgagaaga gtcagggccg cacctctgtc	4680
cctgcaaacc aacaggtgca tggtgagtgt ggcagtcccc acagctccac aatgggctcc	4740
cccgccaacg gggacgacag ggatcttcag gaacttctga cctcaccaag tcaagtggac	4800

cactctccac tccacgagga tgtgaaacgg ttctttaaaa tgggatttta gagcct	cggg 4860
aatgcatgtg cgtcgcatct ttcatattat gggtcaggat agattcattt cttgca	
agtggaaaag atataagctg cagtaatttg ctctttgaat gaccgtcacc cccagt	atag 4980
gatatgettg tatececeeg teactectee teetgttttt taaactttte caccae	cctgc 5040
gtccaaaaag aatgttatag cgagtgctct taaatgttga acctgggtgt tgcttc	ccggg 5100
ccagtctgcg tggctccatg aaaagcccac tgctgcccca gccgggcttc ttagag	ggagg 5160
tcagttgtcc tatgtatcat catttactct gggaatccta ctgtgaaatc atgtc	
ttttctggag cagttcacat agagtagaat gtggaatttc ccgtgaacgt ctcct	
ccccgtatct gccgcctgtc acttcgccac cgtgctagaa tactgttgtg ttgta	
actaatttta aaagaacctg ccctgaaaag ttcttagaaa cgcaatgaaa gggag	
tgtcctttac ccagtttttc ctttgtagga tgggaaagta taaaaaggca cagaa	
tcatgggctg ttccttgggg gtttttatcc tgctcaccgt ggagataagc ctgcg	
tctaaccagc gcagcgcaaa ggtctcaatg ccttttggta acatccgtca ttgca	
aagtttacac gacgtcaaaa agtgacgttc atgctaagtg tttttccaga aatat	
tcatgtttct tattggctct gcctcctgtg cttatatcat ccaaaaactt tttaa	
tccagaattc tattttaacc tgatgttgag cacctttaaa acgttcgtat gtgtg	
ctaattctaa actttggagg cattttgctg tgtgaggccg atcgccactg taaag	
agagttgcct gtttgtctct ggagatggaa ttaaaccaaa taaagagctt ccact	
cttgtattga ccttgtaact atatgttaat ctcgtgttaa aataaaatat aact	
aaaaaaaaa aaaaaaa	5957

<210> 105 <211> 2064

<212> DNA

<213> Homo sapiens

<400> 105

ggcacgaggg gagcgaaggt aggaggcagg gcttgcctca ctggccaccc tcccaacccc 60 aagagcccag ccccatggtc cccgccgccg gcgcgctgct gtgggtcctg ctgctgaatc 120 tgggtccccg ggcggcgggg gcccaaggcc tgacccagac tccgaccgaa atgcagcggg 180 tcagtttacg ctttgggggc cccatgaccc gcagctaccg gagcaccgcc cggactggtc 240 ttccccggaa gacaaggata atcctagagg acgagaatga tgccatggcc gacgccgacc 300 gcctggctgg accageggct gccgagctct tggccgccac ggtgtccacc ggctttagcc 360 ggtcgtccgc cattaacgag gaggatgggt cttcagaaga gggggttgtg attaatgccg 420

PCT/US03/13015

gaaaggatag caccagcaga gagcttccca gtgcgactcc caatacagcg gggagttcca	480
gcacgaggtt tatagccaat agtcaggagc ctgaaatcag gctgacttca agcctgccgc	540
gctcccccgg gaggtctact gaggacctgc caggctcgca ggccaccctg agccagtggt	600
ccacacctgg gtctaccccg agccggtggc cgtcaccctc acccacagcc atgccatctc	660
ctgaggatet geggetggtg etgatgeeet ggggeeegtg geaetgeeae tgeaagtegg	720
gcaccatgag ccggagccgg tctgggaagc tgcacggcct ttccgggcgc cttcgagttg	780
gggcgctgag ccagctccgc acggagcaca agccttgcac ctatcaacaa tgtccctgca	840
accgacttcg ggaagagtgc cccctggaca caagtctctg tactgacacc aactgtgcct	900
ctcagagcac caccagtacc aggaccacca ctaccccctt ccccaccatc cacctcagaa	960
gcagtcccag cctgccaccc gccagccct gcccagccct ggctttttgg aaacgggtca	1020
ggattggcct ggaggatatt tggaatagcc tctcttcagt gttcacagag atgcaaccaa	1080
tagacagaaa ccagaggtaa tggccacttc atccacatga ggagatgtca gtatctcaac	1140
ctctcttgcc ctttcaatcc tagcacccac tagatatttt tagtacagaa aaacaaaact	1200
ggaaaacaca ttgtttggtc ttgtgtttct ttacagaggt acctgaggga ggagagacat	1260
aaatcccttc atccctaaga ctgaactatg taactagcag cctctggctt gttttctact	1320
ccctgtccct caggataaaa tgttgatatt gctcattttc ctcatttcca acattgtttt	1380
aaaacaagta cttcttttac aggcttgaaa aatctcaaat aaacgctaag aaaagggagt	1440
aggaagaaca aggagttgag cccttgaaag atgacagtgg tcttcttgcc ttcatgcttg	1500
gccctctctc ctcaaaaggg caatgttggt acaaaattcc atctcagcca ctttcgagga	1560
gttatcttca ttagctatat ccatccttta atccaacaca cacctgcaat gattactgtg	1620
caactatttt gcttaatttt ttatttgaaa aaatgtattt aaaagtccaa caacttttta	1680
atataaatta cgactctcaa acccattccc atcactttat tagtgatggt agcatacata	1740
ttagagaagg tagctaaagg caagagagca ccaaaggaaa aagactgtcc aaagaacagg	1800
tattagaatg aggccgaaga tcacggtgac cagagatttc taggagtctc taacctttcc	1860
accctatcct gttaaccctt tagatctcta gtataacact caggctactg aggtatttta	1920
gagcaacaag ctgggttact ttcagagcaa ccagcttgac tggaactgag agtaaattgg	1980
gaatgtatga ccaatcttag accctgaaaa atggcagaaa atacatggaa atttgaaaaa	2040
aaaaaaaaaa aaaaaaaaa aaaa	2064

<210> 106

<211> 1903

<212> DNA

<213> Homo sapiens

<400> 106 cagaagcagc aaaccgccgg caagcccagc gaggagggct gccggggtct gggcttggga	60
attggctggc acccagcgga aagggacgtg agctgagcgc gggggagaag agtgcgcagg	120
tcagagggcg gcgcgcagtc cgcgaggtcc ccacgccggg cgatatgggg tgcctgctgt	180
ttctgctgct ctgggcgctc ctccaggctt ggggaagcgc tgaagtcccg caaaggcttt	240
toccootcog otgoctocag atotogtoct togocaatag cagotggacg ogcacogacg	300
gettggegtg getgggggag etgeagaege acagetggag caacgaeteg gaeacegtee	360
gctctctgaa gccttggtcc cagggcacgt tcagcgacca gcagtgggag acgctgcagc	420
atatatttcg ggtttatcga agcagcttca ccagggacgt gaaggaattc gccaaaatgc	480
tacgettate etatecettg gagetecagg tgteegetgg etgtgaggtg caccetggga	540
acgcctcaaa taacttcttc catgtagcat ttcaaggaaa agatatcctg agtttccaag	600
gaacttettg ggageeaace caagaggeee caetttgggt aaacttggee atteaagtge	660
tcaaccagga caagtggacg agggaaacag tgcagtggct ccttaatggc acctgccccc	720
aatttgtcag tggcctcctt gagtcaggga agtcggaact gaagaagcaa gtgaagccca	780
aggeetgget gteeegtgge eccagteetg geeetggeeg tetgetgetg gtgtgeeatg	840
tctcaggatt ctacccaaag cctgtatggg tgaagtggat gcggggtgag caggagcagc	900
agggcactca gccaggggac atcctgccca atgctgacga gacatggtat ctccgagcaa	960
ccctggatgt ggtggctggg gaggcagctg gcctgtcctg tcgggtgaag cacagcagtc	1020
tagagggcca ggacatcgtc ctctactggg gtgggagcta cacctccatg ggcttgattg	1080
ccttggcagt cctggcgtgc ttgctgttcc tcctcattgt gggctttacc tcccggttta	1140
agaggcaaac ttcctatcag ggcgtcctgt gactcgcctt gccacatctg tgtctctgga	1200
acccaggacc tctggacctc aggttcccaa gacttcagtc ctggtctgct caggaattga	1260
agatgtaagg aattgaagat aggagagata ccttgaaaaa gtagagaaca gtcatgaggc	1320
agctttcatc acaccctttt aacatttatc taaaagaatt taaattcttt ttcaaaaatt	1380
acactacaag tttataagcc caaatggctc tgtgaaatca gaagtgcaaa ggtgtgcaaa	1440
cttgtatctg aagacctacc agggacaagc aggtaagagc tgatgtgagt gtgtgtgatg	1500
ggatctgtaa ggaactggaa cacacatgtc ctatccaaag gaatcagctg cagctgcttg	1560
ttgtcaagta taaagtcagg acctggcttg gctttaaccg tttttcaaga aaactggaaa	1620
totggatttt cagogaacat gootgatttt aaaaggttga otcaagtttt tacaaaatac	1680
tatgtgggac acctcaaata catacctact gactgatgac aaacccagga gtttgtgtgt	1740
cttttataaa aagtttgccc tggatgtcat attggcagtt ggaggacaca gtttctattg	1800

taaatttgga tttacgactg aagaaggaca ttttctcttt aaaagaaagt taggttataa 1860 1903 gaaacagagg cgtctcacat ttttacttgg tgtaattaat aaa

107 <210> 1840 <211> <212> DNA

<213> Homo sapiens

<400> 107 atcttcatcg agcgccatgg ccgcagcctg cgggccggga gcggccgggt actgcttgct 60 cctcggcttg catttgtttc tgctgaccgc gggccctgcc ctgggctgga acgaccctga 120 cagaatgttg ctgcgggatg taaaagctct taccctccac tatgaccgct ataccacctc 180 ccgcagctgg gatcccatcc cacagttgaa atgtgttgga ggcacagctg gttgtgattc 240 ttatacccca aaagtcatac agtgtcagaa caaaggctgg gatgggtatg atgtacagtg 300 ggaatgtaag acggacttag atattgcata caaatttgga aaaactgtgg tgagctgtga 360 aggctatgag tcctctgaag accagtatgt actaagaggt tcttgtggct tggagtataa 420 tttagattat acagaacttg gcctgcagaa actgaaggag tctggaaagc agcacggctt 480 tgcctctttc tctgattatt attataagtg gtcctcggcg gattcctgta acatgagtgg 540 attgattacc atcgtggtac tecttgggat egeetttgta gtetataage tgtteetgag 600 tgacgggcag tattctcctc caccgtactc tgagtatcct ccattttccc accgttacca 660 gagattcacc aactcagcag gacctcctcc cccaggcttt aagtctgagt tcacaggacc 720 acagaatact ggccatggtg caacttctgg ttttggcagt gcttttacag gacaacaagg 780 atatgaaaat tcaggaccag ggttctggac aggcttggga actggtggaa tactaggata 840 tttgtttggc agcaatagag cggcaacacc cttctcagac tcgtggtact acccgtccta 900 tectecetee taccetggea egtggaatag ggettaetea eccetteatg gaggeteggg 960 cagctattcg gtatgttcaa actcagacac gaaaaccaga actgcatcag gatatggtgg 1020

ttcaaaagtt ctgtggtgtt atgtccagtg tagctttttg tattctatta tttgaggcta aaagttgatg tgtgacaaaa tacttatgtg ttgtatgtca gtgtaacatg cagatgtata 1260 ttgcagtttt tgaaagtgat cattactgtg gaatgctaaa aatacattaa tttctaaaac 1320 ctgtgatgcc ctaagaagca ttaagaatga aggtgttgta ctaatagaaa ctaagtacag 1380 aaatttcagt tttaggtggt tgtagctgat gagttattac ctcatagaga ctataatatt 1440 ctatttggta ttatattatt tgatgtttgc tgttcttcaa acatttaaat caagctttgg 1500

taccaggaga cgataaagta gaaagttgga gtcaaacact ggatgcagaa attttggatt

tttcatcact ttctctttag aaaaaaagta ctacctgtta acaattggga aaaggggata

1080

1140

1200

actaattatg	ctaatttgtg	agttctgatc	acttttgagc	tctgaagctt	tgaatcattc	1560
agtggtggag	atggccttct	ggtaactgaa	tattaccttc	tgtaggaaaa	ggtggaaaat	1620
aagcatctag	aaggttgttg	tgaatgactc	tgtgctggca	aaaatgcttg	aaacctctat	1680
atttctttcg	ttcataagag	gtaaaggtca	aatttttcaa	caaaagtctt	ttaataacaa	1740
aagcatgcag	ttctctgtga	aatctcaaat	attgttgtaa	tagtctgttt	caatcttaaa	1800
aagaatcaat	aaaaacaaac	aaggggaaaa	aaaaaaaaa		-	1840

<210> 108

<211> 1966

<212> DNA

<213> Homo sapiens

<400> 108 attggagttc agctaccaaa aggaaacctt cctctgggtc ctggagtatt tggcctgaaa 60 ttgggaactc ggaagttgct gctccagggc gctccctgcg gagctccgcc gcccgcctct 120 ccgcccggcc tttcccggcg tccccacgcg gggcgcaacc gcgagaaaga aacgcaggtc 180 gcaccgtcag cgcccagagc agcgccagtt tccgggcccg ggctgctctc ggagccatga 240 getgeggeeg ecceetece gaegtggaeg geatgateae ecteaaggtg gaeaacetga 300 cctaccgcac ctctcccgac agcttgaggc gcgtgttcga gaagtacggg cgcgtgggcg 360 acgtgtacat cccgcgggag ccccacacca aggcgccccg gggcttcgct ttcgtccgct 420 ttcacgaceg gegegacgee caagaegeeg aggeegeeat ggaeggggeg gagetggaeg 480 gacgcgagct gcgggtgcag gtggcgcgct atggccgccg ggacctgccc cgcagccgcc 540 agggagagec acgeggeagg tecagaggeg geggetaegg aeggeggage egeagetaeg 600 ggcggcggag ccgcagccc aggcggcgac accgcagccg atcccggggt cccagctgct 660 ccaggteceg cageegatet egetataggg gttetegeta tageeggtet eeetacagee 720 gatctcctta cagccggtcg cgctacagcc gctctcccta cagcagatct cgctacaggg 780 aatctcgcta cggcggatct cactacagct catctggtta cagtaactct cgctacagcc 840 gatatcacag cagcoggtot cactogaagt otgggtoote cactagotot cgctotgcat 900 caacctccaa atcgagctct gcgcgacgat ccaagtcctc ctcggtctcc aggtctcgct 960 cgcggtccag gtcttcatct atgaccagga gtcctccccg ggtatccaag aggaaatcca 1020 agtcaaggtc gcgatccaag aggcccccca agtctcctga agaggaagga cagatgtcct 1080 cttaagaaaa tgatgcatca ggaagcaacg tgatggagga cttgggggaa aaggatcaca 1140 tactcagtct atggaagcaa cgtccctgtt gcagtgcaga gtgctgagct gcttcctgtt 1200 ttcttctgat tgctcctggg gaaaacacgc cttgtcctga agaacaaatg gctgtccagt 1260

ttattaaaat gootgtoaac tgoacttoca gtoaccoagg cottgoagat aaataatgga 1320 1380 gcatgcggtg agcacatcta gctgacgata atcacacctt ttcccccgtc ttttctgaaa aattgtaaat ctgatcatat caacatgtat gaacttaaaa tatggagaat gttatggaag 1440 aaatagttta taagtttgtt aagtacttat aacatggttt atctttttga ttattaattt 1500 tttacgctaa ccattgtttc tgtagttaaa attgttttct tggtgttatc ttttctcaga 1560 ataaaattag aaacttttga tggaaagtag gttgttttat tttctgtatg acttttggat 1620 atttgtactt ttgagaaaat tattagcacc aagtgtttct caaaatataa tttttaaaaa 1680 atccttaata ggcttttagc tatgtgcttt attgttttat cacaatgcag tttatttgta 1740 gtttctctct tttttcctca cacctatggt ttttttactt ccaaaattat tttcaaataa 1800 tccatttttg gctttcatca ttatccctac tagatgttat gtgttctttt gcaattgttt 1860 ctgcttatac ctttactagc aaagggaaaa ataacaattt ggtgtcaatg atctggtgac 1920 aataggatta cattggagcc aattgaataa atttattctt tcaatc 1966

109 <210>

2222 <212> DNA

<213> Homo sapiens

<400> 109

atteggeacg agggaggaag egagaggtge tgeeeteece eeggagttgg aagegegtta 60 cccgggtcca aaatgcccaa gaagaagccg acgcccatcc agctgaaccc ggcccccgac 120 ggctctgcag ttaacgggac cagctctgcg gagaccaact tggaggcctt gcagaagaag 180 ctggaggagc tagagcttga tgagcagcag cgaaagcgcc ttgaggcctt tcttacccag 240 aagcagaagg tgggagaact gaaggatgac gactttgaga agatcagtga gctgggggct 300 ggcaatggcg gtgtggtgtt caaggtctcc cacaagcctt ctggcctggt catggccaga 360 aagctaattc atctggagat caaacccgca atccggaacc agatcataag ggagctgcag 420 gttctgcatg agtgcaactc tccgtacatc gtgggcttct atggtgcgtt ctacagcgat 480 ggcgagatca gtatctgcat ggagcacatg gatggaggtt ctctggatca agtcctgaag 540 aaagctggaa gaattcctga acaaatttta ggaaaagtta gcattgctgt aataaaaggc 600 ctgacatatc tgagggagaa gcacaagatc atgcacagag atgtcaagcc ctccaacatc 660 ctagtcaact cccgtgggga gatcaagctc tgtgactttg gggtcagcgg gcagctcatc 720 gactccatgg ccaactcctt cgtgggcaca aggtcctaca tgtcgccaga aagactccag 780 840 gggactcatt actctgtgca gtcagacatc tggagcatgg gactgtctct ggtagagatg gcggttggga ggtatcccat ccctcctcca gatgccaagg agctggagct gatgtttggg 900

			aasaaasaaa	caaddacccc	cgggaggccc	960
	aaggagatgc					1020
	acggaatgga					
atagtcaacg	agcctcctcc	aaaactgccc	agtggagtgt	tcagtctgga	atttcaagat	1080
tttgtgaata	aatgcttaat	aaaaaacccc	gcagagagag	cagatttgaa	gcaactcatg	1140
gttcatgctt	ttatcaagag	atctgatgct	gaggaagtgg	attttgcagg	ttggctctgc	1200
tccaccatcg	gccttaacca	gcccagcaca	ccaacccatg	ctgctggcgt	ctaagtgttt	1260
	aaagagcgag					1320
	tgtctctgtt					1380
	agattctact					1440
	cctaagtgga					1500
	g tgccaggctg					1560
	a ctgctgttcc					1620
	a tttggtggad					1680
					a aaatgagcat	1740
					a gaactcagca	1800
					ttcaccagtc	1860
					t tcagtatact	1920
					t aaatggaatt	1980
					t ccccatatcc	2040
					a aaatcctttt	2100
					a tatactatga	2160
aataaaaa	a aaaggagaa	a gctaaaaaa	a aaadaada	a aaaaaaaaa	a aaaaaaaaaa	2222
aa						<i>644</i>

<210> 110 <211> 2263 <212> DNA

<213> Homo sapiens

<400> 110
aggaagtagg gagcggggtg gcagggggg gacccgccgc ggcttgctc accgccca 60
ccaccgcctc tgctcgtggc gtgggaaagg aggtgtgagt cccgggggg agccggggg 120
gcgccgctgc gggagggtcg gcggtgggaa ggcgatggcg gatttagata aactcaacat 180
cgacagcatt atccaacggc tgctggaagt gagagggtcc aagcctggta agaatgtcca 240

gcttcaggag aa	atgaaatca (gaggactgtg	cttaaagtct	cgtgaaatct	ttctcagtca	300
gcctatccta ct						360
ctatgatttg c						420
tcttggggac t						480
ctacaaaata a						540
catcaacaga a	tttatggat	tttatgatga	atgtaaaaga	agatacaaca	ttaaactatg	600
gaaaactttc a	cagactgtt	ttaactgttt	accgatagca	gccatcgtgg	atgagaagat	660
attctgctgt c	atggaggtt	tatcaccaga	tcttcaatct	atggagcaga	ttcggcgaat	720
tatgcgacca a	ctgatgtac	cagatcaagg	tcttctttgt	gatcttttgt	ggtctgaccc	780
cgataaagat g						840
agaagtggtt <u>c</u>	caaaatttc	tccataagca	tgatttggat	cttatatgta	gagcccatca	900
ggtggttgaa g	gatggatatg	aattttttgc	aaagaggcag	ttggtcactc	tgttttctgc	960
gcccaattat t	gcggagagt	ttgacaatgc	aggtgccatg	atgagtgtgg	atgaaacact	1020
aatgtgttct t	ttcagattt	taaagcctgc	agagaaaaag	aagccaaatg	ccacgagacc	1080
tgtaacgcct (ccaaggggta	tgatcacaaa	gcaagcaaag	aaatagatgt	cgttttgaca	1140
ctgcctagtc (gggacttgta	acatagagta	. tataaccttc	atttttaaga	ctgtaatgtg	1200
tactggtcag	cttgctcaga	tagatctgtg	tttgtggggg	ccattactta	: catttttgat	1260
ttagtgaatg	gcatttgctg	gttataacag	r caaatgaaag	, actcttcact	ccaaaaagaa	1320
aagtgttttg	tttttaatt	ctctgttcct	: tttgcaaaca	attttaatga	a tggtgttaaa	1380
gctgtacacc	ccaggacagt	ttatcctgto	: tgaggagtaa	a gtgtacaatt	gatcttttt	1440
aattcagtac	aacccataat	catgtaaatg	g ctcattttct	ttaggacata	a aagagagccc	1500
tagggtgctc	tgaatctgta	catgttctt	g tcataaaatq	g catactgtt	g atacaaacca	1560
ctgtgaacat	tttttatttg	g agaattttgt	t ttcaaaggga	a ttgcttttt	c ctctcattgt	1620
cttgttatgt	acaaactagt	tttatagc	t atcaacatt	a ggagtaact	t tcaaccttgc	1680
cagcatcact	ggtatgatg	t atatttaat	t aaagcacac	t tttccccga	c cgtatactta	1740
aaatgacaaa	gccattctt	t taaatattt	g tgactcttt	c ctaaagcca	a agtttctgtt	1800
gaattatgtt	ttgacacac	c cctaagtac	a aggtggtat	g gttgtatac	a catgctgcct	1860
tcttggggat	tcaaaaaca	g gtttttgat	t ttgaatagc	a attagtgat	a tagtgctgtt	1920
taagctacta	acgataaaa	g gtaataaca	t tttatacaa	t ttccatata	g tctattcatt	1980
aagtaatctt	tttacagtt	g catcaggcc	t gaacccgtc	c attcagaaa	g cttcaaatta	2040

tagaaacaat actgtto	tat acgagtgacc	gattatgctt	tctttggcct	acattcttta	2100
ttctgcggtg aagttga	aggc ttataagtta	. aaacaaagga	actaacttac	tgtccaccag	2160
tttatacaga actcaca	agta cctatgactt	tttaaacta	agatctgtta	aaaaagaaat	2220
ctgtttcaac agatga	ccgt gtacaatacc	: gtgtggtgaa	aat		2263

PCT/US03/13015

<210> 111 <211> 8694

<212> DNA

<213> Homo sapiens

WO 03/090694

<400> 111 tgaggaatca acagccgcca tcttgtcgcg gacccgaccg gggcttcgag cgcgatctac 60 teggeceege eggteeeggg ecceacaace gecegegete geteetetee etegeageeg 120 gcagggcccc cgacccccgt ccgggccctc gccggcccgg ccgcccgtgc ccggggctgt 180 tttcgcgagc aggtgaaaat ggctgagaac ttgctggacg gaccgcccaa ccccaaaaga 240 gccaaactca gctcgcccgg tttctcggcg aatgacagca cagattttgg atcattgttt 300 gacttggaaa atgatcttcc tgatgagctg atacccaatg gaggagaatt aggcctttta 360 aacagtggga accttgttcc agatgctgct tccaaacata aacaactgtc ggagcttcta 420 cgaggaggca gcggctctag tatcaaccca ggaataggaa atgtgagcgc cagcagcccc 480 gtgcagcagg gcctgggtgg ccaggctcaa gggcagccga acagtgctaa catggccagc 540 ctcagtgcca tgggcaagag ccctctgagc cagggagatt cttcagcccc cagcctgcct 600 aaacaggcag ccagcacctc tgggcccacc cccgctgcct cccaagcact gaatccgcaa 660 gcacaaaagc aagtggggct ggcgactagc agccctgcca cgtcacagac tggacctggt 720 atctgcatga atgctaactt taaccagacc cacccaggcc tcctcaatag taactctggc 780 catagcttaa ttaatcaggc ttcacaaggg caggcgcaag tcatgaatgg atctcttggg 840 getgetggea gaggaagggg agetggaatg eegtaceeta etecageeat geagggegee 900 tegageageg tgetggetga gaccetaacg caggtttece egcaaatgae tggteaegeg 960 ggactgaaca ccgcacaggc aggaggcatg gccaagatgg gaataactgg gaacacaagt 1020 ccatttggac agccctttag tcaagctgga gggcagccaa tgggagccac tggagtgaac 1080 ccccagttag ccagcaaaca gagcatggtc aacagtttgc ccaccttccc tacagatatc 1140 aagaatactt cagtcaccaa cgtgccaaat atgtctcaga tgcaaacatc agtgggaatt 1200 gtacccacac aagcaattgc aacaggcccc actgcagatc ctgaaaaacg caaactgata 1260 cagcagcagc tggttctact gcttcatgct cataagtgtc agagacgaga gcaagcaaac 1320 ggagaggttc gggcctgctc gctcccgcat tgtcgaacca tgaaaaacgt tttgaatcac 1380

atgacgcatt gtcaggctgg gaaagcctgc caagttgccc attgtgcatc ttcacgacaa 1	440
·	500
	L560
	1620
	1680
	1740
caccagcaga tgaggactct caaccccctg ggaaataatc caatgaacat tccagcagga	1800
ggaataacaa cagatcagca gcccccaaac ttgatttcag aatcagctct tccgacttcc	1860
ctgggggcca caaacccact gatgaacgat ggctccaact ctggtaacat tggaaccctc	1920
agcactatac caacagcagc tecteettet agcaceggtg taaggaaagg etggeaegaa	1980
catgtcactc aggacctgcg gagccatcta gtgcataaac tcgtccaagc catcttccca	2040
acacctgatc ccgcagctct aaaggatcgc cgcatggaaa acctggtagc ctatgctaag	2100
aaagtggaag gggacatgta cgagtctgcc aacagcaggg atgaatatta tcacttatta	2160
gcagagaaaa tctacaagat acaaaaagaa ctagaagaaa aacggaggtc gcgtttacat	2220
aaacaaggca tcttggggaa ccagccagcc ttaccagccc cgggggctca gccccctgtg	2280
attccacagg cacaacctgt gagacctcca aatggacccc tgtccctgcc agtgaatcgc	2340
atgcaagttt ctcaagggat gaattcattt aaccccatgt ccttggggaa cgtccagttg	2400
ccacaagcac ccatgggacc tcgtgcagcc tccccaatga accactctgt ccagatgaac	2460
agcatgggct cagtgccagg gatggccatt tctccttccc gaatgcctca gcctccgaac	2520
atgatgggtg cacacaccaa caacatgatg gcccaggcgc ccgctcagag ccagtttctg	2580
ccacagaacc agttcccgtc atccagcggg gcgatgagtg tgggcatggg gcagccgcca	2640
gcccaaacag gcgtgtcaca gggacaggtg cctggtgctg ctcttcctaa ccctctcaac	2700
atgctggggc ctcaggccag ccagctacct tgccctccag tgacacagtc accactgcac	2760
ccaacaccgc ctcctgcttc cacggctgct ggcatgccat ctctccagca cacgacacca	2820
cctgggatga ctcctcccca gccagcagct cccactcagc catcaactcc tgtgtcgtct	2880
teegggeaga eteecaceee gaeteetgge teagtgeeea gtgetaceea aaceeagage	2940
acccctacag tccaggcagc agcccaggcc caggtgaccc cgcagcctca aaccccagtt	3000
cagcccccgt ctgtggctac ccctcagtca tcgcagcaac agccgacgcc tgtgcacgcc	3060
cagcetectg geacaceget tteecaggea geagecagea ttgataacag agteectace	3120
ccctcctcgg tggccagcgc agaaaccaat tcccagcagc caggacctga cgtacctgtg	3180
ctggaaatga agacggagac ccaagcagag gacactgagc ccgatcctgg tgaatccaaa	3240

ggggagccca g						3300
gaaacagaca t	tagcagagca	gaaatcagaa	ccaatggaag	tggatgaaaa	gaaacctgaa	3360
gtgaaagtag a	aagttaaaga	ggaagaagag	agtagcagta	acggcacagc	ctctcagtca	3420
acatctcctt	cgcagccgcg	caaaaaaatc	tttaaaccag	aggagttacg	ccaggccctc	3480
atgccaaccc	tagaagcact	gtatcgacag	gacccagagt	cattaccttt	ccggcagcct	3540
gtagatcccc	agctcctcgg	aattccagac	tattttgaca	tcgtaaagaa	tcccatggac	3600
ctctccacca	tcaagcggaa	gctggacaca	gggcaatacc	aagagccctg	gcagtacgtg	3660
gacgacgtct	ggctcatgtt	caacaatgcc	tggctctata	atcgcaagac	atcccgagtc	3720
tataagtttt	gcagtaagct	tgcagaggtc	tttgagcagg	aaattgaccc	tgtcatgcag	3780
tcccttggat						3840
gggaagcagc						3900
					gggtgacgac	3960
					aaatgatacc	4020
					tcagatttgc	4080
					cttgaagaaa	4140
					: cacaagactg	4200
					ccctgaagcc	4260
					caagcccggg	4320
					ı tcgaaccaaa	4380
					g aatgcacgtc	4440
					t ttcttatctg	4500
					a tgagatcctt	4560
					t ctgggcctgt	4620
					a aaaaataccc	4680
					t tgcagagcgg	4740
					t caccagtgcc	4800
						4860
					a gagcattaag	4920
					c cagtgaaacc	4980
					a gaaaaccaac	5040
aagaacaaa	a gcagcatca	g ccgcgccaa	ıc aagaagaag	ge ceageatge	c caacgtgtcc	2040

aatgacctgt cccagaagct gtatgccacc atggagaagc acaaggaggt cttcttcgtg 5	100
	3160
atccacctgc acgctgggcc tgtcatcaac accctgcccc ccatcgtcga ccccgacccc	5220
ctgctcagct gtgacctcat ggatgggcgc gacgccttcc tcacccosgs oughs	
cactgggagt tetecteett gegeegetee aagtggteea egeteegear 30055155 5	5280
ctgcacaccc agggccagga ccgctttgtc tadacctgca acgagogodd godon y	5340
gagacgcgct ggcactgcac tgtgtgcgag gactacgacc tctgcatcaa ctgctataac	5400
acgaagagcc atgcccataa gatggtgaag tgggggctgg gcctggatga cgagggcagc	5460
	5520
	5580
	5640
ggctgcccgg tgtgcaagca gctcatcgcc ctctgctgct accacgccaa gcactgccaa	5700
gaaaacaaat gccccgtgcc cttctgcctc aacatcaaac acaagctccg ccagcagcag	5760
atccagcacc gcctgcagca ggcccagctc atgcgccggc ggatggccac catgaacacc	5820
cgcaacgtgc ctcagcagag tctgccttct cctacctcag caccgcccgg gacccccaca	5880
cagcagecca geacacecca gaegeegeag eceeetgeee ageeccaace eteaceegtg	5940
	6000
agcatgtcac cagctggctt ccccagcgtg gcccggactc agcccccac cacggtgtcc	6060
acagggaage ctaccageca ggtgeeggee eececaeeee eggeeeagee eecteetgea	6120
gcggtggaag cggctcggca gatcgagcgt gaggcccagc agcagcagca cctgtaccgg	
gtgaacatca acaacagcat gcccccagga cgcacgggca tggggacccc ggggagccag	6180
atggcccccg tgagcctgaa tgtgccccga cccaaccagg tgagcgggcc cgtcatgccc	6240
agcatgcctc ccgggcagtg gcagcaggcg ccccttcccc agcagcagcc catgccaggc	6300
ttgcccaggc ctgtgatatc catgcaggcc caggcggccg tggctgggcc ccggatgccc	6360
agcgtgcagc cacccaggag catctcaccc agcgctctgc aagacctgct gcggaccctg	6420
aagtegeeca geteecetea geageaacag caggtgetga acatteteaa ateaaaceeg	6480
cagctaatgg cagctttcat caaacagcgc acagccaagt acgtggccaa tcagcccggc	6540
atgcagcccc agcctggcct ccagtcccag cccggcatgc aaccccagcc tggcatgcac	6600
cagcageeca geetgeagaa eetgaatgee atgeaggetg gegtgeegeg geeeggtgtg	6660
cetecacage ageaggegat gggaggeetg aaceeecagg gecaggeett gaacateatg	6720
aacccaggac acaaccccaa catggcgagt atgaatccac agtaccgaga aatgttacgg	6780
	6840
aggeagetge tgeageagea geageaacag cageageaac aacageagea acageageag	6900
cagcaaggga gtgccggcat ggctgggggc atggcggggc acggccagtt ccagcagcct	

caaggacceg gaggetacce aceggeeatg cageageage agegeatgea geageatete 6	960
	020
	7080
	7140
	7200
	7260
	7320
	7380
	7440
	7500
	7560
	7620
	7680
	7740
	7800
	7860
caagttcatt atattcatat tttttatttg tattttcaag actttaaaca tttatgttta	7920
aaagtaagaa gaaaaataat attcagaact gattcctgaa ataatgcaag cttataatgt	7980
atcccgataa ctttgtgatg tttcgggaag atttttttct atagtgaact ctgtgggcgt	8040
ctcccagtat taccctggat gataggaatt gactccggcg tgcacacacg tacacaccca	8100
cacacatcta tctatacata atggctgaag ccaaacttgt cttgcagatg tagaaattgt	8160
tgctttgttt ctctgataaa actggtttta gacaaaaaat agggatgatc actcttagac	8220
catgctaatg ttactagaga agaagccttc ttttctttct tctatgtgaa acttgaaatg	8280
aggaaaagca attctagtgt aaatcatgca agcgctctaa ttcctataaa tacgaaactc	8340
gagaagattc aatcactgta tagaatggta aaataccaac tcatttctta tatcatattg	8400
ttaaataaac tgtgtgcaac agacaaaaag ggtggtcctt cttgaattca tgtacatggt	8460
attaacactt agtgttcggg gttttttgtt atgaaaatgc tgttttcaac attgtatttg	8520
gactatgcat gtgttttttc cccattgtat ataaagtacc gcttaaaatt gatataaatt	8580
actgaggttt ttaacatgta ttctgttctt taagatcccc tgtaagaatg tttaaggttt	8640
ttatttattt atatatattt tttggtctgt tctttgtaaa aaaaaaaaaa	8694

```
<210> 112
<211> 383
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
      (383)..(383)
<222>
<223> n is a, c, g, t or u
<400> 112
ttttttttt tttttttt tttttttt tttttaaaaa aaaagagttt atttaaaaag
                                                                      60
gttcataggg gaaacaaaca aattggcccc ctttgatttt cttggaatac aaaactcggg
                                                                     120
atgcaaagct gaagttgggg ggccaaaact cttgacaggt gggcttcttt aggggggggg
                                                                      180
ggttttttaa aaaaagaatt atctgggaac cctacgggat taataaagat ttcctttaag
                                                                      240
ggagagggg ggcgagatgc tggtgttatc ttctgcctca aacagacagt ataagggggc
                                                                      300
ttggttctaa aattcctacc cccgttactt tgggccaagt ttccccatcc ccttgcgttt
                                                                      360
                                                                      383
ggggggggg tgaaaaatgt tgn
 <210> 113
 <211> 1135
 <212> DNA
 <213> Homo sapiens
 <400>
        113
 ggatccggca acgaaggtac catggccgga ctccggagcc gcacaaacca gggctcgcca
                                                                       60
 tgaagccagg attcagtccc cgtgggggtg gctttggcgg ccgagggggc tttggtgacc
                                                                       120
 gtggtggtcg tggaggccga gggggctttg gcgggggccg aggtcgaggc ggaggcttta
                                                                       180
 gaggtcgtgg acgaggagga ggtggaggcg gcggcggcgg tggaggagga ggaagaggtg
                                                                       240
 gtggaggctt ccattctggt ggcaaccggg gtcgtggtcg gggaggaaaa agaggaaacc
                                                                       300
 agtcggggaa gaatgtgatg gtggagccgc atcggcatga gggtgtcttc atttgtcgag
                                                                       360
 gaaaggaaga tgcactggtc accaagaacc tggtccctgg ggaatcagtt tatggagaga
                                                                       420
 agagagtete gattteggaa ggagatgaca aaattgagta eegageetgg aaceeettee
                                                                       480
 gctccaagct agcagcagca atcctgggtg gtgtggacca gatccacatc aaaccggggg
                                                                       540
 ctaaggttct ctacctcggg gctgcctcgg gcaccacggt ctcccatgtc tctgacatcg
                                                                       600
 ttggtccgga tggtctagtc tatgcagtcg agttctccca ccgctctggc cgtgacctca
                                                                       660
 ttaacttggc caagaagagg accaacatca ttcctgtgat cgaggatgct cgacacccac
                                                                       720
  acaaataccg catgctcatc gcaatggtgg atgtgatctt tgctgatgtg gcccagccag
                                                                       780
  accagacccg gattgtggcc ctgaatgccc acaccttcct gcgtaatgga ggacactttg
                                                                       840
```

tgatttccat	taaggccaac	tgcattgact	ccacagcctc	agccgaggcc	gtgtttgcct	900
ccgaagtgaa	aaagatgcaa	caggagaaca	tgaagccgca	ggagcagttg	acccttgagc	960
catatgaaag	agaccatgcc	gtggtcgtgg	gagtgtacag	gccacccccc	aaggtgaaga	1020
actgaagttc	agcgctgtca	ggattgcgag	agatgtgtgt	tgatactgtt	gcacgtgtgt	1080
ttttctatta	aaagactcat	ccgtcaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaa	1135

<210> 114

<211> 5932

<212> DNA

<213> Homo sapiens

<400> 114 ggggcactga ggagcggcgc ccgcggggca gcgaggagcc cgatgcaggg ttctgcgcgt 60 cattteeggt ecegeggeg eceegtgaag eceaeetgga teegeeageg etgtgeeact 120 ccccagtgcc gagctccgag ctgtctccgc ggcctcgcgc ccggcccctc caccgcgcac 180 ctcttaggcc ccgcccgcca gcgtcccttt gttgtgaagg cgccggggcc tagcgctatg 240 cetgeggegg agactgeate aggetetege gtetgettet gegetttgee tgggagagge 300 cetggtggcc tegtteetgg egeceggagt ceetgetgeg geeceacece egggeggtea 360 cggtgaccca tgctgcccag cctggaggta aaatcgttcg tggctgtggc ttcagcatgt 420 cgtcctcggt gaaaacccca gcactggaag agctggttcc tggctccgaa gagaagccga 480 aaggcaggtc gcctctcagc tggggctctc tgtttggtca ccgaagtgag aagattgttt 540 ttgccaagag cgacggcggc acagatgaga acgtactgac cgtcaccatc acggagacca 600 eggteatega gteagaettg ggtgtgtgga getegeggge getgetetae eteaegetgt 660 ggttcttctt cagcttctgc acgctcttcc tcaacaagta catcctgtcc ctgctgggag 720 gcgagcccag catgctaggt gcggtgcaga tgctgtccac cacggttatc gggtgtgtga 780 aaaccctcgt tccttgctgt ttgtatcagc acaaggcccg gctttcctac ccacccaact 840 teettatgae gatgetgttt gtgggtetga tgaggtttge aactgtggtt ttgggtttgg 900 tcagcctgaa aaatgtggcg gtttcgtttg ctgagacggt gaagagctcc gccccatct 960 tcacggtgat catgtctcgg atgattctgg gggagtacac agggctgctg gtcaacctct 1020 ccctcatccc agtcatgggc gggctggcgc tgtgcacggc cactgagatc agcttcaatg 1080 tectggggtt eteggeegea etgtecacea acateatgga etgtttgeaa aatgtttttt 1140 caaaaaagct gctcagcggg gacaaataca ggttctcggc cccggagctg cagttctaca 1200 ccagcgccgc tgcggtggcc atgctcgtcc cggcccgggt tttctttacg gacgtcccag 1260 tgatcgggag gagcgggaag agcttcagct acaaccagga cgtggtgctg ctgcttctga 1320

cagacggagt (cctgttccac	cttcagagcg	tcacggcgta	cgccctcatg	gggaaaatct	1380
ccccggtgac t	ttcagcgtc	gccagcaccg	tgaaacatgc	cttgtccatc	tggctcagcg	1440
taatcgtttt (cggcaacaag	atcaccagct	tgtcggccgt	tggcacagcc	ctggtgaccg	1500
ttggggtcct (gctctacaac	aaagccaggc	aacaccagca	ggaggcgctg	cagagcctgg	1560
ctgcagccac	tggccgggcc	ccagacgaca	cagtggagcc	gctgcttcca	caggacccca	1620
ggcagcatcc	ctgagagcag	gaagctgcca	gctgctgctg	tcctcgtgac	actgcatccc	1680
ccagaaatgg	gcagggacgc	cctcctccat	ggccctgctg	gggtgcagga	catggggagc	1740
taagttggcc	attgcctgcg	gctttctcgg	tttgtcggtg	aagaccagca	gaaactcaaa	1800
ctggggattc	caggtatcag	cttcctggag	tagacaccag	accagtagct	gactgtgtcc	1860
gccgagccca	tccccgtgta	atgtgaaaac	agcctctgag	gctcccatgc	tgggggtgcc	1920
cacttcctct	ctgggcgaca	ccccagggtc	caccgggagc	cagaggtggg	tccagtgcca	1980
acgagagccg	ctccctgcca	cagccaagag	agccctcggc	ttcccacacc	agccatcgaa	2040
ggccctgagg	ccctggaccg	gcggcagact	ggccctgggc	atgaggccac	agagcagggc	2100
cgaagggagg	ggacagaggg	ccctggaagg	aagggtctcc	tgctgccacg	gtgggcactc	2160
agaacttctc	cccacctgac	ccagggctgt	gggcatcctc	agactatccc	agaggcatcg	2220
caagcctcaa	gctgcagcat	tgcacggcac	: tcaagggcta	tgaccacgga	ggccgttcag	2280
tegettetgt	ttagaggaag	gccccctacc	tcttccacac	c cctgccctcc	tatecettee	2340
acaccctggg	ctgcatgago	tccccgcaac	c cccagggca	c cetgeceted	tacctgtggg	2400
ggtttccagc	cctgaggttg	g aggacaaaco	tatagtgttt	aacttgggag	g gagatgtgta	2460
cgttcctttt	cttttttgga	a ctctgagtat	gaggcaggct	t gttctgagg [†]	ccccgtgggg	2520
tgagcctgtc	tgtcctccct	cagagecea	c cgttcctate	c atcatctage	c acctgtccgg	2580
ttccccacgt	gagccttgg	g caggacgct	g cagtgttga	t ggtttgggt	t acgtggcgtt	2640
tacctgggcg	ccgtccttg	c tgaaaaagg	a aacgtccac	a ctgaatgtt	t ctggggcgcg	2700
tggtgtgtgt	: caggcgccc	a ccctgtccc	a ctctcccca	a gggacagta	g tacggcacac	2760
tggggccacc	: agccagctc	a actcatcct	c ctgtgtcac	g cacccccga	g ggcgcaggag	2820
gcctgaggag	g tggctactg	g agccgtgtg	t taggcagag	g cttctgacc	a tgtctgagct	2880
ctttacccc	c aatctcgca	a ccggcggat	t cccatgccc	g gtgcagcct	g ttgccagcca	2940
gcctttgaga	a cccagagct	c cagggettg	rt cagaggcag	gc atggggcto	c agtggtcccg	3000
					t cactggtttt	3060
ccatttggc	t tctcaccto	g gaaatacaa	a aatagccc	ct cctgaagat	a aaatcgttca	3120

gaaacagagc	aataattctg	actcattaac	ttctacctac	tcaaaaaagt	ctgccatgat	3180
		tttaacccac				3240
		gagtgcagtg				3300
		cctcagcctc				3360
		gttgagctgg				3420
		ccttcccact				3480
		agccgcttct				3540
		cgctgcgaag				3600
		tcctcaaaaa				3660
					ggagttcgag	3720
					ttagctgggt	3780
					g aattgtttga	3840
					a gcctgggcaa	3900
		•			a ggtggcgggg	3960
					g tecacetece	4020
					g gagaggtgca	4080
					g ccctcccctc	4140
					a gaaacaaacg	4200
					t ggggcctctt	4260
					g cccttgctca	4320
					a gtttccagcc	4380
					c caaggcctgg	4440
					a atacttttct	4500
					a ccgggtgtgg	4560
					aa acagaacact	4620
					ga gatttgcagc	4680
					aa aaaagaaaat	4740
					ct ggaaagatga	4800
					cc atggtgagtc	
					gc tcagctttgt	
					cc gccgcgctcc	
agetgeet	المراجعة المراجعة المراجعة المراجعة	.03 0000	55 5 -			

160

tgggtgatca	ctcagacggg	tcagtgggaa	taacgggcca	acaagacagc	tttttacatg	5040
tgtccaaagg	atggcctttc	gaaggcctgg	aagtatttca	ctgttggaag	aagtaaacaa	5100
gaatgacatt	ccagatggaa	atagaattct	ctctcttgcc	tttgaccaac	atggtactaa	5160
ggggtttctt	ctttcccaat	gtatgtacgt	gccctgctgg	gggccttact	ttatagaatg	5220
agagcatccg	agcttcccta	atgaatctgg	ctagttctgt	gtctggctga	ggatacagga	5280
gtgggacatc	cactctcgga	tccctcagag	cacagaaacc	ttcagctttg	ctgtctctga	5340
agtatttcct	ccagtttccc	tgcgggcccc	tatgtttgag	tttgatggct	gctggatcct	5400
cactcaacga	aaactcggtt	ggaaactgtt	ccgcctggca	gtcctttttt	gttgttttcc	5460
atctcatttc	ccttccatct	gaaagtggca	ttcagctgac	ttgctcattt	agactgttca	5520
cggagtctga	atctgccaac	gtggtgttgg	aggctccacc	ttgaaaaggg	ccacagtcag	5580
	cccatacagg					5640
attatattto	ctttatacca	aacaaaacta	tggagaacta	. aaagtacatc	acacaaaacg	5700
tttatagtgt	tttgcatgtg	acctatttca	gtatttatat	aactagatta	gtgctttcta	5760
					aagttgatac	5820
					g cagccgtggt	5880
	tatgattctt					5932

<210> 115

<211> 3926

<212> DNA

<213> Homo sapiens

<400> 115

caactgtgaa gaatttaaaa cttagtataa attggtccta ccagatccct ccttttaatt 60 gtccatgcat gcagggagtt tttgttgaaa gttttaaaag aactgggtat gcaggtatgg 120 180 tttgtagggt tgtatactaa tagattgaga atccgaagcg ctctcttgga tgtactagat ctgtccccat tttttaagtt tgaatgcagt tgtgcaacat gaaaactgca gtgacatgtt 240 accatttgac tgtctccgta gttcgtgatg catctgttgc atgctatgtt ttcaaagctc 300 actgctatat tggctttgaa gtaaaccttc ctaataaagc tgtaggcttt attgaggtca 360 ggattatata aggcacaata ccctctgggg gaaaaaaatc atttgcccta gctgtaatta 420 cagaacataa atttcactac gtactcccta cctacagtga agaataatgt aggaaacgtt 480 attcttgaat tgtctagctg atgcgtggag cagcagcatc ccaagtttga caaggcataa 540 gaaagacatt aagggaattt taccttgcag cagttaggtc gtctgcattt taagcttgga 600 agtagttttg tgctgtgcat gcataaaagc tgttggcaga ccagattata tttgccttta 660

tgctttaaaa attagtcatt gatcctggag ttctgc	ggaa taataattaa ggcttgggtt 720
ttagatccaa aaggtaattc tggcacttgg agacta	tatg ggagccactt gtcatgcctg 780
cattggtgga acaaatgttc gaaatgaaat gcaaaa	actg caggctgaag caccacatat 840
tgttgttggt acacccggga gagtgtttga tatgtt	aaac agaagatacc tttctccaaa 900
atggatcaaa atgtttgttt tggatgaagc agatga	aatg ttgagccgtg gttttaagga 960
tcaaatctat gagattttcc aaaaactaaa cacaag	tatt caggtaagca ttacttcacc 1020
cccctcttaa aggtagagat ggggtttatt taatgo	caggt actgttacaa tacaactgat 1080
gtgttttgct gtcgttcccc ctgcttaaag cacttg	gatgc ataactctgt ctaccttcat 1140
tccgtagtaa gacagagacg cttggcttca gacatt	
ttgtgctaca acataatttt ctctttttaa ggttg	
tgatgtgttg gaagtgacca aaaaattcat gagag	
ggaagaattg acccttgaag gaatcaaaca gtttt	
gaagttggat acactttgtg acttgtacga gacac	
tctcaatacg aggcgcaagg tggactggct gactg	
agtttctgct ctgcatggtg acatggacca gaagg	
ccggtcaggg tcaagtcgtg ttctgatcac tactg	
ttttaaaaat ctaccaaaag ttagcttttt ggggg	
cttgggctat ttggaagagt aaaagaccac actco	
gttcgctact attttgtggc ctacatgaca ggtgt	
aacatgccat tgtgtttcag gctcgcggga ttgat	
attatgatct acctaccaat cgtgaaaact atatt	
ctgtattgaa aaaaattcat acgtttttct actgt	
tcaaggaata gattcagtaa agtcagtagt gttca	
ctagggaagg ttgatgagaa caaagtggga aaac	
atagggtttt tttccacaat tgttggtctt acct	
tgtgtccatg tgtttttctt ggtgattttt tcta	
ggtagcaatt tgagtgaacc ctggtttagt tata	_
ttgtactttg ttatatgatg taaaaaaaga cttt	
cagttggtga cgagatggca ctcagaaacg gcgt	
aagcgaaaca gcacactgtt tgaataaaga gcga	

WO 03/090694	i.				PCT/US03/13015
tgtcatgatt atttgat	ttt taagttgctc	cagctaaggc	atttttttgt	attagtattt	2520
ctattaggga acctttc					2580
ctgtttggca gttaaac	cacg tttagagtaa	tttgagttac	aacgtgtgaa	actgagcaaa	2640
aaagcagtga taagttt	tggc taaccatacc	: aaatatttgt	tttcccactg	gaaaaaagta	2700
agttttagaa aatagtt	taac ctttgcagca	tttgtttaca	gtttacagtt	ccagaagtgc	2760
gtcgaaatgg attacat	taac tgctctttta	a ttcctggtgt	tcacatctgt	cccaggctga	2820
cacctgctct tggctg	gccc actttggtat	gggctttaat	ttcactaccc	caaacacgat	2880
actgtcatct gcttta	taat aatgctcaag	g atgcctgata	aaaatctcat	tttgcagcca	2940
gacaagcctt gaatcc	tttt ggcactaac	t gcaaaggaag	attttttctc	tagatatgca	3000
ttagcagcta gtgctc	cagt tagaagcac	g aacctataac	cttgataagt	aaacagcago	3060
tggtggttaa caagtg	gatc gtcatgttc	a gtagtttata	. cattatgtga	gaagtaacgt	3120
tctgattctt tttctt	acac agaattggc	a gaggggggtc	: gatttgggag	gaaaggtgtg	g 3180
gctataaact ttggtt	actg aagaagaca	a gaggattctt	: cgtgacattg	agactttcta	a 3240
caatactaca gtggag	ggaga tgcccatga	a tgtggctgad	cttatttaat	tcctgggat	g 3300
agagttttgg atgcag	gtgct cgctgttgc	t gaataggcga	a tcacaacgtg	cattgtgct	t 3360
ctttctttgg gaatat	tttga atcttgtct	c aatgctcata	a acggatcaga	aatacagat	t 3420
ttgatagcaa agcgad	cgtta gtcgtgago	t cttgtgagg	a aagtcattgg	g ctttatcct	c 3480

tttagagtta gactgttggg gtgggtataa aagatggggt ctgtaaaatc tttctttctt

agaaatttat ttcctagttc tgtagaaatg gttgtattag atgttctcta tcatttaata

atatacttgt ggactaaaag atataagtgc tgtataaaat cagccaatta tgttaaacta

gcatatctgc ctttattgtg tttgtcatta gcctgagtag aaaggccttt aaaatttttt

tagaaagcat ttgaatgcat tttgtttggt attgtattta ttcaataaag tatttaatta

gtgctaagtg tgaactggac cctgttgcta agccccagca agcaatccta ggtagggttt

aatccccagt aaaattgcca tattgcacat gtcttaatga agtttgaatg ttaaataaat

3540

3600

3660

3720

3780

3840

3900

3926

<210> 116 <211> 1637 <212> DNA <213> Homo sapiens

tgtatattca ctttaaaaaa aaaaaa

<400> 116
ctggggtttg gctgtccgga cggtgcagcg gcgaggccgg ccgcgaagat gccagtggcg 60
gtgatggcgg aaagcgcctt tagtttcaaa aagttgctgg atcagtgcga gaaccaggag 120

ctcgaggccc	ctggaggaat	tgctacaccc	ccagtgtatg	gtcagcttct	agctttatat	180
ttgctccata	atgacatgaa	taatgcaaga	tatctttgga	aaagaatacc	acctgctata	240
aaatctgcaa	attctgaact	tgggggaatt	tggtcagtag	gacaaagaat	ctggcagaga	300
gatttccctg	ggatctatac	aaccatcaac	gctcaccagt	ggtctgagac	ggtccagcca	360
attatggaag	cacttagaga	tgcaacaagg	agacgcgcct	ttgccctggt	ctctcaagcg	420
tatacttcaa	tcatcgccga	tgattttgca	gcctttgttg	gacttcctgt	agaagaggct	480
gtgaaaggca	tattagaaca	aggatggcaa	gctgattcca	ccacaagaat	ggttctgccc	540
agaaagccag	ttgcaggggc	cctggatgtt	tcctttaaca	agtttattcc	cttatcagag	600
cctgctccag	ttcccccaat	acccaatgaa	cagcagttag	ccagactgac	ggattatgtg	660
gctttccttg	aaaactgatt	tatcactctg	agttcaagat	tcatcttcag	aatcctgtat	720
actgacaaac	gtagaaatgt	aaagtttgta	ttttcaattt	attggatggc	ttaagcacct	780
cagcattcct	tactatgtga	taaaatacat	atagaatata	. agatatacta	tatacatttt	840
gtccataaac	gttatgctga	atagttgttg	aaacagttct	. cattttgtag	tatttaataa	900
tctggatgga	gcctgtcagt	attacagtta	gttttctagt	gactcataaa	ataagatttc	960
ctgtttcatg	, tagaatagtg	tttgtcaact	gtcttttctc	: tgtcccagca	catgccgtac	1020
tcttatatgt	accattggtt:	gataattata	atgattcatt	tggacttgaa	a gaaagattgt	1080
ccccaggcad	agtatctgaa	. tcactgggga	ttatgattca	a ccctctttgg	g agaacatgct	1140
ctcttttcac	c ccccacctc	: ctgagagcca	ctaatgtaag	g atacagaaa	atagctgagg	1200
aacaaataga	a ccatttccat	actaaaccag	tttgttaac	t ttagatttt	tccaatagtg	1260
tgagtatat	c cattgctggc	agtggagggc	ttgccatga	a aatgcaact	t atttaagaca	1320
tttatgaga	c atattaactt	gtgctgtcgc	c cttttagaa	g gagaaactt	a agtgtggaat	1380
gcattatat	g ggcaaagaag	g ctatgaagat	acatgatac	a ctttgtaca	a ctatcctgca	1440
gcccattgg	t tgcttatatt	tatcgcttgg	g ctcaagttc	t gccctttgg	a gaaatactga	1500
gcaagtctt	t cattctctgt	gtgacagcc	c tctgaatat	t tgaagttgt	t tgttgtaact	1560
taaggttat	a acagccctt	a gttcattta	c tctgcattt	g ttcaataaa	t atttaactga	1620

PCT/US03/13015

1637

aaaaaaaaa aaaaaaa

WO 03/090694

<210> 117 <211> 2382

<212> DNA

<213> Homo sapiens

<400> 117

agtaccgctg cggccggggg attgggccgg ggtctccacc gccgaccgag gggagcggcg

teegetegge cetgettttt gegaeetgee gteageecea egtegeegge etggagggge	120
gaagaggacg aggggcgcaa ggcttcctcc ggggacattg gctccctgga ttatcaagca	180
gtttgtagtt gacattgaat ccaggctgag gatggaaggt gtggaactta aagaagaatg	240
gcaagatgaa gattttccga tacctttacc agaagatgat agtattgaag cagatatact	300
agctataact ggaccagagg accagcctgg ctcactagaa gttaatggaa ataaagtgag	360
aaagaaacta atggctccag acattagcct gacactggat cctagtgatg gctctgtatt	420
gtcagatgat ttggatgaaa gtggggagat tgacttagat ggcttagaca caccgtcaga	480
gaatagtaat gagtttgagt gggaagatga tottocaaaa oocaagacta otgaagtaat	540
taggaaaggc tcaattactg aatacacagc agcagaggaa aaagaagatg gacgacgctg	600
gcgtatgttc aggattggag aacaggacca cagggttgat atgaaggcaa ttgaacccta	660
taaaaaagtt atcagccatg ggggatatta tggggatgga ttaaatgcca ttgttgtatt	720
tgctgtctgt ttcatgcctg aaagtagtca gcctaactat agatacctga tggacaatct	780
ttttaaatat gttattggca ctttggagct attagtagca gaaaactaca tgatagttta	840
tttaaatggt gcaacaactc gaagaaaaat gcccagtctg ggatggctca ggaaatgtta	900
tcagcaaatt gatagaaggt tacggaaaaa tctaaaatcc ctaatcattg tacatccttc	960
ttggtttatc agaacacttc tggctgttac aagaccattt attagctcga aattcagcca	1020
aaaaattaga tacgtgttta atttggcaga actagcagaa cttgtcccca tggaatacgt	1080
tggcatacca gaatgcataa aacaagttga tcaagaactt aatggaaaac aagatgaacc	1140
gaaaaatgaa cagtaagttt ggcatctagt ccaaacaaga ctgaagaatg tgctgatgga	1200
gcagtgctgt ttctgcattc ataatgcatt tattggccca tatttttatg taacctgtta	1260
caaaatagac ttgacttttt cataatggac ttttgtatta tacaagggac tgttcactgc	1320
tgtactggtt tgcaaatttc ttgaatttag ctctttaata gctaactgta ttattatcgt	1380
tttatatttt atattgctaa atagagaacc acactttata taaagtagtt tttgcatttg	1440
tttattgaat gatgcatctt cttcggtgaa atatttatat gcataaatgg caaaggaaag	1500
aaataatata tatttttatg tcattgagca atattttttc aatgtgtacc tgtcttatgg	1560
aagaaatatg caggtatata agaccacgat tttctaagct gccatataag aatttttgtt	1620
tttgtaaatg gttaaataca tttcctgggt aacttaggaa attaagcttt ttcataaggc	1680
aacagatggt aaactgattg tcatgaatac ccaaagatca tgtatataat cgaagtgtat	1740
tagtaccatc ccaaggtttt tttctcattt aacatatttg tttcataatt cagcaagtac	1800
agatgcaagc gcattgcaca ctttttcctt tctaaactta aagacaagtc aaaaagccat	1860
tcttagaact agaggattta agcagggtcg gaattacggg tttgtatata tgtatatact	1920

cgtttgtata	tatgtatata	ctgggacatt	ttatcttctg	gcccaaagtc	agaactttat	1980
aaaaatcttg	agtttgttca	cttaatgtga	aataagctat	gtgtccaggg	tattgctccc	2040
ctgagtgtat	atgagtgctg	agtagtattg	cagagaatgt	gatgagttat	cactgtcaca	2100
actttttcta	tagaaaacag	gggctgcttt	taaactctca	ctatgggaca	ctttaccaaa	2160
atacttccat	atcaattatt	tgaacccggt	agtttgtttg	acctagttag	attgtggtgt	2220
ttattcaagt	ttgaaatcat	gtttgacaat	actgtaaatt	aggttaattt	tgaagtctta	2280
gcatcatcat	attgtgctgt	tttggataac	acgtttgttc	aagaacattt	aaactgtttc	2340
tttggtgtcc	tttacattga	aataaattgt	gtttgtgcct	cc		2382

<210> 118

<211> 1563

<212> DNA

Homo sapiens <213>

<400> 118

60 gcacatatcc ttttttactg cagatttact ttaaggctca tattctccaa gtctattctg 120 ctttaaaaag aagacaagaa aagaagtggt ttatcaaaat cacgttataa tcagattttg 180 accaagcatt ttgtaagatt gccaagtatg cccacggaca tggaacacac aggacattac 240 ctacatcttg cctttctgat gacaacagtt ttttctttgt ctcctggaac aaaagcaaac 300 tatacccgtc tgtgggctaa cagtacttct tcctgggatt cagttattca aaacaagaca 360 ggcagaaacc aaaatgaaaa cattaacaca aaccctataa ctcctgaagt agattataaa 420 ggtaattcta caaacatgcc tgaaacatct cacatcgtag ctttaacttc taaatctgaa 480 caggagettt atatacette tgtegteage aacagteett caacagtaca gageattgaa 540 aacacaagca aaagtcatgg tgaaattttc aaaaaggatg tctgtgcgga aaacaacaac 600 aacatggcta tgctaatttg cttaattata attgcagtgc tttttcttat ctgtaccttt 660 ctatttctat caactgtggt tttggcaaac aaagtctctt ctctcagacg atcaaaacaa 720 gtaggcaagc gtcagcctag aagcaatggc gattttctgg caagcggtct atggcccgct 780 gaatcagaca cttggaaaag aacaaaacag ctcacaggac ccaacctagt gatgcaatct 840 actggagtgc tcacagctac aagggaaaga aaagatgaag aaggaactga aaaacttact 900 aacaaacaga taggttagtg aagaaaaatg caaagtagca atgagaaggc ttatggagta 960 aaaatgaagt cagttggtat ttaatcccaa agtgttgttc tgattatcta aaatttgaca 1020 tggtagacct tgcaatttag aatcaagcag gtgagacagg gagaagtatg cctgcttaat 1080 tatttaaact gtgtactttt gttttgacac tgaatatttt aaaaagcaaa taataaaata 1140

actaagcatt	tgaggaaaat	tttaaggata	aattgaggaa	actgattaat	agagatagca	1200
agggataatt	aaataaatat	tccctatgta	gcaacagtgg	ttagatgatc	tttgtctgaa	1260
tgtaataaaa	ctttgaatag	ttttagtgtg	tccttaaagc	caagtatatg	ctttaacatc	1320
			agagagagct			1380
			accagcttat			1440
			cacgtaagaa			1500
			aaattaaaac			1560
cgt						1563
3						
<210> 119 <211> 729						
<212> DNA <213> Hom	o sapiens					
<400> 119						60
			. ctcgcgagat			60
			: atgttcagtt			120
cccaatggcg	agaagccgga	cgagttcgag	g teeggeatet	cccaggctct	tctggagctg	180
gagatgaact	: cggacctcaa	a ggctcagcto	agggagctga	. atattacggc	: agctaaggaa	240
attgaagttg	g gtggtggtcg	g gaaagctato	ataatctttg	ttcccgttcc	: tcaactgaaa	300
tctttccaga	a aaatccaagt	ccggctagta	a cgcgaattgg	g agaaaaagtt	cagtgggaag	360
catgtcgtct	ttatcgctca	a gaggagaatt	ctgcctaagc	: caactcgaaa	aagccgtaca	420
aaaaataago	c aaaagcgtc	c caggagccgt	t actctgacas	g ctgtgcacga	a tgccatcctt	480
gaggacttg	g tetteccaa	g cgaaattgt	g ggcaagagaa	tccgcgtcaa	a actagatggc	540
agccggctca	a taaaggttc	a tttggacaa	a gcacagcaga	a acaatgtgga	a acacaaggtt	600
gaaactttt	t ctggtgtct	a taagaagct	c acgggcaagg	g atgttaatt	t tgaattccca	660
gagtttcaa	t tgtaaacaa	a aatgactaa	a taaaaagta	c atattcaca	g taaaaaaaaa	720
aaaaaaaaa						729
<210> 12 <211> 55						
<212> DN <213> Ho	A mo sapiens					
<400> 12	0				a anggatagna	60
					c cagcctccag	
atcgttcct	a ctggggctg	ıt cagcggctt	t agctcactg	g gcgctagat	g ggagtgtccc	120

ctccgtaccc ggacgaaggc ggggcgcccg ctggcaaagc gcattttcca gcgcaagctg	180
tttggggtgc ggggctggcg agtgagggaa aacagagggt ggcgcccca ccatcagcgt	240
	300
	360
	420
tggggaaggc cggcccgacc agcagcagga aagggggcgc taagtcgcct tcaagcccgc	480
acggetetee eggeetttee teetgteete agagteaget eeceegeeeg ggaegteeeg	540
cgccactccg cgcctttggc cctggctcaa ggtcttgtga tgtgattaga caaagccgac	600
gccttgtcct cagacactca gccctgcccg gcaggccccg gacgctcaag ccctgtttac	660
tgagcctggg cggggagggg gcggaagaaa cgagcccggg ctccaccggc aagactgccg	720
cggcggccgc ccgcgtggcc acccccaccc ccaccgcgac tccacgtgca gtcgggctgg	780
agccgccacc gactggacgc aggccccgag cccccgcctc ctggccgggg caccctttgc	840
aaacccgccg ggccgcgggg ctggttgcga atatctggca ttttgcaatt cccgcgccca	900
gtacaaaacc gaagtggagc ttaaagctcc acaggtccgc cgtcggagaa cagggcaggg	960
aaagacacgt ccagggctgc agaatcccgg ccacgctaaa cgaccgggct ctccgaccgc	1020
gcaccccgga ggagaacage cgtgccttcc cgccgccacc cggcgcatcc actggggccg	1080
agactacacg ccacaccggc cgcccgaccg cgggccccgc ccggaggcct ggagcaccct	1140
ccccggagg taaaaaaatt gcgcggccaa tgggaggccg ggaaggcgcc tgacgtccgc	1200
gagegggegg geggegttge etggagaeee eggeggggge egagttetgt eeceteeeee	1260
ggegegeeeg ceeegeegea geegeactee egggetetat ttagggegeg egeteggegg	1320
aggeegeega gttecageag teegegaget geegtegget eegegggggg ggegggeegg	1380
gcaccceggg gegeggagga gegeteeteg etteteteet teeceeetge egcacteege	1440
eggaccetee egeeggeeeg egeegetgea etegeeetet eetetegeee eeeggeaaae	1500
tttcggcccc tccccgcccc tcgcccgtta ttcgtcgtgg ctcaagcccg gccacgccgc	1560
cccaagggct cctcccgacc tcccggcctg ccgctccggc cactgcggga tccagaaaca	1620
tgtcgaccac acttctgtcc gccttctacg atgtcgactt cttgtgcaag gtaggccagg	1680
gacggggccc ggccggcagc agccgttgta gttcttggac tttgcctctg tccccaggtt	1740
ctgggggacg cccctcccgc cctgcctttc aaagcgggaa agtcccgggg tttgcaaaag	1800
agtgtccgac ccctgagcgg gaggacgccg tgtcgcggtt gagtttctcc actgccgacc	1860
geggecaege tgeceggge tteeeggaea gettegegee geecaeeteg geageegggg	1920
cggaggatca cgtgtcgaaa cccagcgcgg cccacggtgg gcgtcctccc ctctcccgct	1980

						2040
ccgtccagca a						
gateegeeaa						2100
gccccgagtc	tgtcttcccc	ttccgttttt	catcccttcc	ccgctcccct	ccctttggca	2160
gacagagaaa	tccctggcca	acctcaacct	gaacaacatg	ctggacaaga	aggcggtggg	2220
gacgcctgtg	gccgccgccc	ccagctcggg	cttcgcgccg	ggattcctcc	gacggcactc	2280
ggccagcaac	ctgcatgcac	tcgcccaccc	cgcgcccagc	cccggcagct	gctcgcccaa	2340
gttcccgggc	gccgctaacg	gcagcagctg	cggcagcgcg	geggeeggeg	gtccggacct	2400
ctacggcacc	cttaaggagc	cgtcgggggg	cggcggcaca	gccctgctca	acaaggagaa	2460
caaattccgg	gaccgctcgt	ttagcgagaa	cggcgatcgc	agccagcacc	tcctgcacct	2520
gcagcagcag	cagaaggggg	geggeggete	ccagatcaac	tccacgcgct	acaagaccga	2580
				ggcgaaaagt		2640
					ccgagctgtg	2700
					tcatccacaa	2760
cgcggacgag	cggcggcccg	cgccgtcggg	gggcgcctcc	ggggaccttc	gtgcctttgg	2820
					tgcaccacag	2880
					: tcgagtcgcc	2940
gctgctgctc	gacagcccca	. cgtcgcgcac	geegeegeeg	g ccctcctgct	ctteggeete	3000
					a cgccctcggg	3060
					g gcaccggggg	3120
					g cetegtgege	3180
					c tegecateca	3240
					c agcagcagca	3300
					a ccctccccgc	3360
					c gcctgtccga	3420
					c gcgacagcta	3480
					a gcctcgaccc	3540
					g gcaagagggc	3600
					t cgccatctcg	3660
					t ctgcaagccc	3720
					c ctttttcggt	3780
caccyayca		5 5				

WO 03/090694	PCT/US03/13015
WO 03/090694	PCT/US03/13015

aaaaaaaaa aaaaaaacac ttaaactttg ttagagactcc gatgagtttg ggacttcagg 3960 aaaaaaaaaa aaaaaaacac ttaaactttg ttaggactcc gatgagtttg ggacttcagg 3960 aaaaatcaac ccagcaccag cagctaccaa ccaccattcc atctctcac ttgaacagca 4020 ttagttaagt ccagatgtgg gaacccttct cttggaagaa gttcctaatt gtgtctcaga 4080 ccggtgtaaa caaaccagcc agccgccacc ttgctaaacc tataagcttt ttaaaatcca 4140 atatattctg ccaagaatat gccttgatag ttagccctca gcccataggt gtttttgtt 4200 ttttaacaga attatatatg tctgggggtg aaaaaaccct tgcattccaa agctccatac 4260 tggttacttg gttcattgc caccacttag tggatgtca gtttagaacc attttgtctg 4320 ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggaagaat actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccact gcaccacac tcaatatgaa aactatttaa 4440 cttatttatt atcttgtgaa aaatatacaa tgaaaattt gttcatactg tattataca 4500 gtatgatgaa aagcaataga tatatattct tttattagt taaattaga ttgccattat 4560 acttggttat tttattgtaa atgagtacaa aattcttaa ttaaggaat ttgatgatata 4680 acttggttat tttattgtaa atgagtacaa aattcttaat ttaagagaat gtatgtaata 4680 ttaattcgcaa atctgagg tggtgaagta gtttgagaa catcctatag gttttcttgaa actggtaaa atgtggact tcttgtgaagaa gtttgagaaa catcctatag gttttcttgaa acagaaateg atcttgatgc tgtggaagta gtttgagaaa aatgacaca tactttgaa 4860 tcaggctgaa atgtggcat ctttctaat tccaacttt taaactagca aaaaaggtt 4920 acagaataga atgtggaat cttttctaat tccaacttt taaactagca aaaaaggtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagcactga gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga aggaccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatga aggatgggt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagaa cccgccttag 5220 actatttttt tttccatgta gaaaggcagg aatgtccc aagcttcct aggcttcat tacctctgg 5220 actatttttt tttccatgta gaaaggcagg aatgtccc aagcttcct ggcagcaga 5280 gaatcagcgg tagctttag ttgtcgtagg tacagttgga gcactatatg tacctctcg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aacttgtac tggaagtgat 5400 actactttgg acagaagtag gtttttgaat gtacaagtga acattgtac tggaagtgat 5400 actactttgg acagaagtag gtttttgaa gaaaaagga aacttgtac tggaaagtt 5400	ttcctcttgt	ctttttttt	ttatttttat	tacgaagttt	cattcttttt	gagcaaaaaa	3840
ttagttaagt coagcacag cagctaccaa coaccattce atctettcac ttgaacagca 4020 ttagttaagt coagatgtgg gaaccettct cttggaagaa gttcctaatt gtgtctcaga 4080 coggtgtaaa caaaccagce agcogccace ttgctaaacc tataagcttt ttaaaacca 4140 atatattctg coaagaatat gccttgatag ttagccctca gcccataggt gtttttgtt 4200 ttttaacaga attatatatg tctgggggtg aaaaaaccct tgcattccaa agctccatac 4260 tggttacttg gtttcattgc caccacttag tggatgttca gtttagaacc attttgtctg 4320 ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggagaata actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccact gcaccacaac tcaatatgaa aactatttaa 4440 cttatttatt atcttgtgaa aaatatacaa tgaaaattt gttcatactg tatttacaa 4500 gtatgatgaa aagcaataga tatatattct tttattatgt taaattaga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatgcctt ttgtaacttc 4620 acttggttat tttattgtaa atgagtacaa aattcttaat ttaagagatt gtatgtaata 4680 tttattcat taatttctt ccttgtttac gtaaattttg aaagattgca tgatttcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttcttga 4860 tcaggctgaa atgtggcatg cttttctaat tcaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacacga tacttttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatga gccataacgg 4980 ggagtggggg ggagtctcc atgccttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaaa attttacca cttttttaa atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagcact gaatagcct tgtttaatta cagaaaattc caaaacttgt 5220 actatttttt tttccatgta gaaaggcagg aatgtccct aagcttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactcctgg 5340 actatttttt tttccatgt gaaaggcag aatgtccct aagcttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagatga accatttatg tactccttgg 5340 actatttttgg acagaagtag gtttttgaat gtaacaagat aagcactt gagttgtaat 5400	gtcgaacttt	ttctgttgaa	taaaatattc	acaacagggc	agttgtgata	cgaatagaac	3900
coggityaaa caaaccagcc agcogccacc tigctaaacc tataagctit tiaaaatcca 4140 atatatictg ccaagaatat gootigatag tiagcocca goocataggi gittitigtt 4200 tittaacaga attatatatg totgggggig aaaaaaccci tigcaticcaa agciccatacc 4260 tiggitactig gittcatigc caccactiag tiggatytica gittagaacc attitigtig 4320 ctocctocgg aagcottigo cagagottac titigtaatig tiggagaata actgotigaat 4380 tittagotig titigagigat togcaccact gaccacaacc toaatatgaa aactatitaa 4440 cttattati atotiggaa aaatatacaa tigaaaatti gitcataccig tattiaccaa 4560 gatagagaa aagcaataga tatatatict titattatig taaattataga tigcacatac 4560 taatoggoaa aatgiggagi gatagticti ticacagaa tatataga tigaactic 4620 actiggitat titatigaa atgagacaa aattottaat tiaagagatt gitatgaata 4680 titatticat taattotii cotigitiac gitaaattig aaagatiga gittititaga 4680 titatticat taattotii cotigitiac gitaaattig aaagatiga gittititaga 4800 aaagaaatog atotigatgo tigagaagaa gittigaggaa catoctatga gittiotiag 4800 toaagcigaa atgiggaci catocaacti caatgaaaaa aatgaccaca tactitigaa 4800 toaggotigaa atgiggaci cittictaat toaacatta taaaccagaa aaaaaggit 4920 tigottattoc accagitota citgigacata citgagataa aggaccaca tactitigaa 4980 gagagiggggg ggagatotoc atgoctitga aggacogac tigottaaat citcotcaac 5040 caaatacgaa tittataca cittittaa atagaataa aggaagaaa coccgocttag 5160 tagcigaaata tigagaca gaatagaga aattgaataa aggaagagaa coccgocttag 5160 tagcigaaata tittacca cittittaa atagaatata cagaaaatto caaaactigi 5220 actatititt titocatga gaaaggaag aatgcocca aagcticoc aagcticoc gaaacacgg tagcitaag 5340 actatititt titocatga gaaaggaag aatgcocca aagcacaca tactoctagg 5340 actactitigg acagaagtag gittitgaat gitaacaagat aagcaactt gagtigtaat 5400 actactitigg acagaagga gittitgaat gitaacaagat aagcaactt gagtigtaat 5400 actactitigg acagaagga gattitigaat gitaacaagat aagcaactt gagtigtaat 5400 actactitigg acagaagga aatcaacatt gaagacaaca accaccatactiga 5400	aaaaaaaaaa	aaaaaaacac	ttaaactttg	ttaggactcc	gatgagtttg	ggacttcagg	3960
atatattctg ccaagaatat gccttgatag ttagccctca gcccataggt gtttttgtt 4200 ttttaacaga attatatatg tctgggggtg aaaaaaccct tgcattccaa agctccatac 4260 tggttacttg gtttcattgc caccacttag tggatgttca gtttagaacc attttgtctg 4320 ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggaggata actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccac gcaccacac tcaatatgaa aactatttaa 4440 cttattatt atcttgtgaa aaatatacaa tgaaaattt gttcatactg tatttacaa 4500 gtatgatgaa aagcaataga tatatattct tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatgcctt ttgtaacttc 4620 acttggttat tttattgtaa atgagtacaa aattcttaat ttaagagatt gtatgtaata 4680 tttatttcat taattcttt ccttgtttac gtaaattttg aaagattgca tgatttcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gtttcttag 4800 aatgtaaaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4800 tcaggctgaa atgtggagt gttttctaat tccaacttta taaactagca aaaaagtgt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatga gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagag atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttg 5220 actattttt tttccatgta gaaaggcagg aatgtccc aagcttcct aagcttcct ggcagcagat 5220 actattttt tttccatgta gaaaggcagg aatgtccc aagcttcct ggcagcagat 5230 gaatcagcgg tagctttagt ttgtcgtagg tacagttga gcactatatg tactcctcgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgaat 5400 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgaat 5400 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgaat 5400 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgaat	aaaaatcaac	ccagcaccag	cagctaccaa	ccaccattcc	atctcttcac	ttgaacagca	4020
atatattctg ccaagaata gccttgatag ttagccctca gcccataggt gtttttgtt 4200 ttttaacaga attatatatg tctgggggtg aaaaaaccct tgcattccaa agctccatac 4260 tggttacttg gtttcattgc caccacttag tggatgttca gtttagaacc attttgtctg 4320 ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggagaata actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccact gcaccacac tcaatatgaa aactatttaa 4440 cttattatt atcttgtgaa aaatatacaa tgaaaatttt gttcatactg tatttacaa 4500 gtatgatgaa aagcaataga tatatattct tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatgcctt ttgtaacttc 4620 acttggttat tttattgtaa atgagtacaa aattcttaat ttaagagatt gtatgtaata 4680 tttattcat taatttctt ccttgtttac gtaaattttg aaagattgca tgatttcttg 4740 acagaaatcg atcttgatgc tgtgggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggacg catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggagc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggagc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggagcg catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggagcg catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtgggagg ggagtctcc atgcctttga agggccgac tgccttaaat ctcccaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatggggt caactgcaca 5100 aaaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaaattc caaaacttgt 5220 actatttttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactcctcgg 5340 actatttttt tttccatgta gaaaggcagg atgactcct aacagttgga gcactatatg tactcctcgg 5340 actatttttgg aaagaagaa gtttttgaat gtaacaagat aagcactgtaact gagttgtaat 5400 actactttgg aaagaagag gtttttgaat gtaacaagat aacattgtac tgaatagtt	ttagttaagt	ccagatgtgg	gaacccttct	cttggaagaa	gttcctaatt	gtgtctcaga	4080
ttttaacaga attatatatg tetgggggtg aaaaaaccet tgcattccaa agetecatac 4260 tggttacttg gtttcattgc caccacttag tggatgttca gtttagaacc attttgtetg 4320 ctccctctgg aagecttgcg cagagettac tttgtaattg ttggagaata actgetgaat 4380 ttttagetgt tttgagtgat tegcaccact gcaccacaac tcaatatgaa aactattaa 4440 cttatttatt atcttgtgaa aaatatacaa tgaaaattt gttcatactg tatttatcaa 4500 gtatgatgaa aagcaataga tatatattet tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttett ttcacagtaa tatatgcett ttgtaacttc 4620 acttggttat tttattgtaa atgagtacaa aattettaat ttaagagatt gtatgtaata 4680 tttatttat taatteett cettgttac gtaaattttg aaagattgca tgatttettg acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttettag aatgataaaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag atttttacca cttttttta atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagetttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg actatttttt tttccatgta ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagta aactatgtac tgaatatgt actacttttgg acagaagtag gtttttgaat gtaacaagta aacacttgtac tgaatatgt	ccggtgtaaa	caaaccagcc	agccgccacc	ttgctaaacc	tataagcttt	ttaaaatcca	4140
tggttacttg gtttcattgc caccacttag tggatgttca gtttagaacc attttgtctg 4320 ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggagaata actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccact gcaccacaac tcaatatgaa aactatttaa 4440 cttattatt atcttgtgaa aaatatacaa tgaaaatttt gttcatactg tatttatcaa 4500 gtatgatgaa aagcaataga tatatattct tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatgcctt ttgtaactc 4620 acttggttat tttattgaa atgagtacaa aattcttaat ttaatggatt gtatgtaata 4680 tttattcat taattctt ccttgttac gtaaattttg aaagattgca tgattcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gtttcttag 4800 aatgataaaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaactta taaactagca aaaaagtgt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatga gcataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatga aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttaat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaaatagcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtccct aagctttcct aggcagaat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgag gcactaatatg tactctctgg 5340 actatttttt tttccatgta gaaaggcagg tacagttgag gtaacaatat gtagaacat gcactaatgt 5400 actactttgg acagaagaag gtttttgaat gtaacaagat aagtcaactt gagttgaat 5400 actactttgg acagaagatag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 actactttgg acagaagaga actcacaaaatt gtagaacaga accacaacttg tacacacaacttg acacacacaacaca	atatattctg	ccaagaatat	gccttgatag	ttagccctca	gcccataggt	gttttttgtt	4200
ctccctctgg aagccttgcg cagagcttac tttgtaattg ttggagaata actgctgaat 4380 ttttagctgt tttgagtgat tcgcaccact gcaccacaac tcaatatgaa aactatttaa 4440 cttatttatt atcttgtgaa aaatatacaa tgaaaatttt gttcatactg tatttatcaa 4500 gtatgatgaa aagcaataga tatatattct tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatagcett ttgtaacttc 4620 acttggttat tttattgtaa atgagtacaa aattctaat ttaaggattg gtatgtatat 4680 tttattcat taatttcttt ccttgtttac gtaaattttg aaagattgca tgatttcttg 4740 acagaaatcg atcttgatge tgtggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaactta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggt caactgcaca 5100 aaaggaaaaa attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttggg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400	tttaacaga	attatatatg	tctgggggtg	aaaaaaccct	tgcattccaa	agctccatac	4260
ttttagetgt tttgagtgat tegeaceaet geaceaeaae teaatatgaa aactattaa 4440 cttattatt atettggaa aaatatacaa tgaaaatttt gtteataetg tatttateaa 4500 gtatgatgaa aageaataga tatatattet tttattatgt taaattatga ttgeeattat 4560 taateggeaa aatgtggagt gtatgttett tteacagtaa tatatgeett ttgtaaette 4620 acttggttat tttattgtaa atgagtacaa aattettaat ttaaggatt gtatgtaata 4680 tttatteeat taattteett eettgttae gtaaaattttg aaagattgea tgatteettg 4740 acagaaateg atettgatge tgtggaagta gtttgaggaa cateetatga gttteettag 4800 aatgtataaa ggttgtagee eateeaaett eaatgaaaaa aatgaceaea taetttgeaa 4860 teaggetgaa atgtggeatg etttetaat teeaaettta taaaetagea aaaaagtgtt 4920 tgettattee aceagtteta etgtgacata etegagtata aagacatgta geeataaegg 4980 ggagtggggg gggagtetee atgeetttga agggeeggae tgeettaaat etteeteaae 5040 caaataegta ttttattagt gattgagaga atetgaatgt aggatgggt eaaetgeaea 5100 aaaggaaaag attttacea ettttttat atagatataa agtgaageaa eeegeettag 5160 tgetgaaata tgtagtacat gaatatgeet tgtttaatta eagaaaatte eaaaaettgt 5220 actattttt ttteeatgta gaaaggeagg aatgeteet aagettteet ggeageagat 5280 gaateagegg tagetttagt ttgtegtaag taeagttgga geactatatg taetetetgg 5340 actaetttgg acagaagtag gtttttgaat gtaacaagat aagteaaett gagttgaat 5400 atatttttggg aaateagete actacaaatt gtaacaagta aagteaaett gagttgaat 5400	tggttacttg	gtttcattgc	caccacttag	tggatgttca	gtttagaacc	attttgtctg	4320
cttatttatt atcttgtgaa aaatatacaa tgaaaattt gttcatactg tatttatcaa 4500 gtatgatgaa aagcaataga tatatatct tttattatg taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttctt ttcacagtaa tatatgcctt ttgtaacttc 4620 acttggttat tttattgaa atgagtacaa aattcttaat ttaaggatt gtatgtaata 4680 tttattcat taattctt ccttgttac gtaaattttg aaagattgca tgattcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtgcatgc cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtccct aagcttcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactcctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaaga aagtcaactt gagttgtaat 5400 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttggg aaatcagctc actacaaatt gtagacctga acaaacttg tacactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttggg aaatcagctc actacaaatt gtagacctga acaattgtac tgtaaaatgt 5400 atatttttggg aaatcagctc actacaaatt gtagacctga acaacttgaactt tgtaaaatgtt 5400	ctccctctgg	aagccttgcg	cagagcttac	tttgtaattg	ttggagaata	actgctgaat	4380
gtatgatgaa aagcaataga tatatattet tttattatgt taaattatga ttgccattat 4560 taatcggcaa aatgtggagt gtatgttett tteacagtaa tatatgeett ttgtaactte 4620 acttggttat tttattgtaa atgagtacaa aattettaat ttaagagatt gtatgtaata 4680 tttattteat taatteettt eettgtttae gtaaattttg aaagattgea tgatteettg 4740 acagaaateg atettgatge tgtggaagta gtttgaggaa eateetatga gttteettag 4800 aatgtataaa ggttgtagee catecaactt caatgaaaaa aatgaccaca taetttgeaa 4860 teaggetgaa atgtggeatg ettteetaat tecaactta taaactagea aaaaagtgtt 4920 tgettattee aceagtteta etgtgacata etegagtata aagacatgta gecataacgg 4980 ggagtggggg gggagtetee atgeetttga agggeeegae tgeettaaat etteeteaae 5040 caaatacgta ttttattagt gattgaggaa atetgaatgt aggatgggt caactgcaca 5100 aaaggaaaag attttacca ettttttat atagatataa agtgaaggaa eeegeettag 5160 tgetgaaata tgtagtacat gaaatatgeet tgtttaatta eagaaaatte caaaacttgt 5220 actattttt tttecatgta gaaaggeagg aatgteete aagetteet ggeageagat 5280 gaatcagegg tagetttagt ttgtegtagg tacagttga geactatatg taeteetegg 5340 actaettttgg acagaagtag gtttttgaat gtaacaagat aagteaactt gagttgtaat 5400 atattttgg aaatcagete actacaaatt gtagactgta aacattgtae tgtaaatgtt 5460	ttttagctgt	tttgagtgat	tcgcaccact	gcaccacaac	tcaatatgaa	aactatttaa	4440
acttggttat tttattgtaa atgagtacaa aattcttaat ttaaggatt gtatgtaata 4680 tttattcat taattcttt ccttgtttac gtaaattttg aaagattgca tgatttcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtggacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtccc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgaggaa atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag atttttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actacttttgg acagaagtag gttttgaat gtaacaagat aacttgtac tgtaaatgt 5400 atattttgg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgt 5400 atattttgg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgt.	cttatttatt	atcttgtgaa	. aaatatacaa	tgaaaatttt	gttcatactg	tatttatcaa	4500
acttggttat titattgtaa atgagtacaa aattcttaat tiaagagatt gtatgtaata 4680 titatttcat taatttctt cettgttae gtaaattttg aaagattgea tgatttcttg 4740 acagaaateg atcttgatge tgtggaagta gtitgaggaa catectatga gtittettag 4800 aatgtataaa ggttgtagee catecaacti caatgaaaaa aatgaccaca tactitgeaa 4860 teaggetgaa atgtggeatg etittetaat teeaactita taaactagea aaaaagtgit 4920 tgettattee accagiteta etiggacata etiggagata aagacatga geeataaegg 4980 ggagtggggg gggagtetee atgeetitga agggeeggae tgeetiaaat eticeteaae 5040 caaataegta tittattagi gattgagga atetgaatgi aggatgggit eaaetgeaca 5100 aaaggaaaag atittacea etittitata atagatataa agtgaageaa eeegeetiag 5160 tgetgaaata tgtagtacat gaatatgeet tgittaatta eagaaaatte caaaactig 5220 actatittit titleeatgia gaaaggeagg aatgteet aagetiteet ggeageagat 5280 gaateagegg tagetitagi titgtegtagg tacagitgga geactatatg taetetetgg 5340 actatittigg acagaagtag gtitttgaat gtaacaagat aagetaactt gagitgtaat 5400 atatittigg aaateageet actacaaatt gtagactga aacattgtae tgtaaaatgt 5400 atatittigg aaateageet actacaaatt gtagactgta aacattgtae tgtaaaatgti 5400	gtatgatgaa	aagcaataga	tatatattct	tttattatgt	taaattatga	ttgccattat	4560
tttatttcat taatttcttt ccttgtttac gtaaattttg aaagattgca tgattcttg 4740 acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt	taatcggcaa	aatgtggagt	gtatgttctt	ttcacagtaa	tatatgcctt	ttgtaacttc	4620
acagaaatcg atcttgatgc tgtggaagta gtttgaggaa catcctatga gttttcttag 4800 aatgtataaa ggttgtagcc catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttgg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaaatgtt 5460	acttggttat	tttattgtaa	atgagtacaa	. aattcttaat	ttaagagatt	gtatgtaata	4680
acagaaatcg atcttgatge tgtggaagta gtttgaggaa eactoreact gagtagaaa atgtgaagaa atgtgtagce catccaactt caatgaaaaa aatgaccaca tactttgcaa 4860 tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttgg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	tttatttcat	taatttcttt	ccttgtttac	gtaaattttg	aaagattgca	tgatttcttg	4740
tcaggctgaa atgtggcatg cttttctaat tccaacttta taaactagca aaaaagtgtt 4920 tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	acagaaatcg	atcttgatgo	: tgtggaagta	ı gtttgaggaa	catcctatga	gttttcttag	4800
tgcttattcc accagttcta ctgtgacata ctcgagtata aagacatgta gccataacgg 4980 ggagtggggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaaatgtt 5460	aatgtataaa	ggttgtagco	c catccaactt	: caatgaaaaa	aatgaccaca	tactttgcaa	4860
ggagtgggg gggagtctcc atgcctttga agggcccgac tgccttaaat cttcctcaac 5040 caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag atttttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaaatgtt 5460	tcaggctgaa	atgtggcate	g cttttctaat	tccaacttta	a taaactagca	a aaaaagtgtt	4920
caaatacgta ttttattagt gattgagaga atctgaatgt aggatgggtt caactgcaca 5100 aaaggaaaag atttttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atatttttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	tgcttattcc	c accagttcta	a ctgtgacata	a ctcgagtata	a aagacatgta	a gccataacgg	4980
aaaggaaaag attttacca cttttttat atagatataa agtgaagcaa cccgccttag 5160 tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	ggagtgggg	g gggagtctc	c atgcctttg	a agggcccgad	c tgccttaaat	cttcctcaac	5040
tgctgaaata tgtagtacat gaatatgcct tgtttaatta cagaaaattc caaaacttgt 5220 actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	caaatacgta	a ttttattag	t gattgagaga	a atctgaatgt	aggatgggt	t caactgcaca	5100
actattttt tttccatgta gaaaggcagg aatgtctcct aagctttcct ggcagcagat 5280 gaatcagcgg tagctttagt ttgtcgtagg tacagttgga gcactatatg tactctctgg 5340 actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	aaaggaaaa	g atttttacc	a ctttttta	t atagatata	a agtgaagca	a cccgccttag	5160
gaatcagegg tagetttagt ttgtegtagg tacagttgga geactatatg tactetetgg 5340 actaetttgg acagaagtag gttttgaat gtaacaagat aagteaactt gagttgtaat 5400 atattttggg aaatcagete actaeaaatt gtagaetgta aacattgtae tgtaaatgtt 5460	tgctgaaat	a tgtagtaca	t gaatatgcc	t tgtttaatt	a cagaaaatt	c caaaacttgt	5220
actactttgg acagaagtag gtttttgaat gtaacaagat aagtcaactt gagttgtaat 5400 atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	actatttt	t tttccatgt	a gaaaggcag	g aatgtctcc	t aagctttcc	t ggcagcagat	5280
actactttgg acagaagtag gtttttgaat gtaacaagat aagteddee gageegtaaa atattttggg aaatcagctc actacaaatt gtagactgta aacattgtac tgtaaatgtt 5460	gaatcagcg	g tagctttag	t ttgtcgtag	g tacagttgg	a gcactatat	g tactctctgg	5340
atattttggg aaatcagctc actacaaatt gtagactgta aacattgtas ogsammig	actactttg	g acagaagta	g gtttttgaa	t gtaacaaga	t aagtcaact	t gagttgtaat	5400
ttgtagtttt cccccaataa aatttttggg aaaaaaggga attc 5504	atattttgg	g aaatcagct	c actacaaat	t gtagactgt	a aacattgta	c tgtaaatgtt	5460
	ttgtagttt	t cccccaata	a aattttgg	g aaaaaaggg	a attc		5504

<210> 121 <211> 521

<212> DNA

<213> Homo sapiens

<400> 121 ggggaatgtc ttccactagt ggtcgctaaa aatgtagaaa tatcataggg agtgcaaatt 60 acattgtctc tttacctgcc acaatctggc agcactcatc atgtagcaaa tgcccaaata 120 atagactaca gattatagtg acttcaccct aggttaacat tatttctagg taaggtacta 180 gtatatctga attgaaaagt ggggcagctg ttgactcaga ttcggcattt taattacatt 240 gtttccaagt atgatattct gagagtgtct atagcactta gtgtctgctt catataaact 300 accagttatt atatatttat gatgcaagta gttttccaaa tgtggtgaaa gtctgagtct 360 ttttatcccc atgggtaaaa tctgaatctg gctctctgtg tctctcagtg cttgtttatt 420 gctggtcaga gagtaaattc ttgataaaag ctgttgactt ggctctcaca gtttatgcag 480 521 acattggaga gacaatttgg ttatttcaaa catcacagga t

<210> 122

<211> 1766

<212> DNA

<213> Homo sapiens

<400> 122 ggcaaatccg gcccaggatg tagagctggc agtgcctgac ggcgcgtctg acgcggagtt 60 gggtggggta gagagtaggg ggcggtagtc gggggtggtg ggagaaggag gaggcggcga 120 atcacttata aatggcgccg aagcaggacc cgaagcctaa attccaggag ggtgagcgag 180 tgctgtgctt tcatgggcct cttctttatg aagcaaagtg tgtaaaggtt gccataaagg 240 acaaacaagt gaaatacttc atacattaca gtggttggaa taaaaattgg gatgaatggg 300 ttccggagag cagagtactc aaatacgtgg acaccaattt gcagaaacag cgagaacttc 360 aaaaagccaa tcaggagcag tatgcagagg ggaagatgag agggggtgcc ccaggaaaga 420 agacatctgg tctgcaacag aaaaatgttg aagtgaaaac gaaaaagaac aaacagaaaa 480 cacctggaaa tggagatggt ggcagtacca gtgagacccc tcagcctcct cggaagaaaa 540 gggcccgggt agatcctact gttgaaaatg aggaaacatt catgaacaga gttgaagtta 600 aagtaaagat teetgaagag etaaaaeegt ggettgttga tgaetgggae ttaattaeea 660 ggcaaaaaca gctcttttat cttcctgcca agaagaatgt ggattccatt cttgaggatt 720 atgcaaatta caagaaatct cgtggaaaca cagataataa ggagtatgcg gttaatgaag 780 ttgtggcagg gataaaagaa tacttcaacg taatgttggg tacccagcta ctctataaat 840 ttgagagacc acagtatgct gaaattcttg cagatcatcc cgatgcaccc atgtcccagg 900 tgtatggagc gccacatctc ctgagattat ttgtacgaat tggagcaatg ttggcttata 960

cacctctgga	tgagaagagc	cttgctttat	tactcaatta	tcttcacgat	ttcctaaagt	.1020
	gaattctgca					1080
	gaaagctgtg					1140
	gttcttagtc					1200
	atgtttgttt					1260
	tttcttcttt					1320
	acagagggat					1380
	ggtggttcta					1440
	aatgctctga					1500
	catttgtgct				•	1560
	atccatgttg					1620
					tgatagacgc	1680
					ttttcagatc	1740
	tttttcttta		,			1766

<210> 123

<211> 1732

<212> DNA

<213> Homo sapiens

<400> 123

ttttgtgaag agacgaagac tgagcggttg tggccgcgtt gccgacctcc agcagcagtc 60 ggcttctcta cgcagaaccc gggagtagga gactcagaat cgaatctctt ctccctcccc 120 ttcttgtgag atttttttga tcttcagcta cattttcggc tttgtgagaa accttaccat 180 caaacacgat ggccagcaac gttaccaaca agacagatcc tcgctccatg aactcccgtg 240 tattcattgg gaatctcaac actcttgtgg tcaagaaatc tgatgtggag gcaatctttt 300 cgaagtatgg caaaattgtg ggctgctctg ttcataaggg ctttgccttc gttcagtatg 360 ttaatgagag aaatgcccgg gctgctgtag caggagagga tggcagaatg attgctggcc 420 aggttttaga tattaacctg gctgcagagc caaaagtgaa ccgaggaaaa gcaggtgtga 480 aacgatctgc agcggagatg tacggctcct cttttgactt ggactatgac tttcaacggg 540 actattatga taggatgtac agttacccag cacgtgtacc tcctcctcct cctattgctc 600 gggctgtagt gccctcgaaa cgtcagcgtg tatcaggaaa cacttcacga aggggcaaaa 660 gtggcttcaa ttctaagagt ggacagcggg gatcttccaa gtctggaaag ttgaaaggag 720 atgacettea ggecattaag aaggagetga eecagataaa acaaaaagtg gattetetee 780 tggaaaacct ggaaaaaatg gaaaaggaac agagcaaaca agcagtagag atgaagaatg 840 ataagtcaga agaggagcag agcagcagct ccgtgaagaa agatgagact aatgtgaaga 900 tggagtctga ggggggtgca gatgactctg ctgaggaggg ggacctactg gatgatgatg 960 ataatgaaga toggggggat gaccagotgg agttgatcaa ggatgatgaa aaagaggotg 1020 aggaaggaga ggatgacaga gacagcgcca atggaggatg actcttaagc acatagtggg 1080 gtttagaaat cttatcccat tatttcttta cctaggcgct tgtctaagat caaatttttc 1140 accagatect eteceetagt atetteagea catgeteact gtteteecea teettgteet 1200 teccatgtte attaatteat attgeecege geetagteee atttteaett eetttgaege 1260 tcctagtagt tttgttaagt cttaccctgt aatttttgct tttaattttg atacctcttt 1320 atgacttaac aataaaaagg atgtatggtt tttatcaact gtctccaaaa taatctcttg 1380 ttatgcaggg agtacagttc ttttcattca tacataagtt cagtagttgc ttccctaact 1440 gcaaaggcaa tctcatttag ttgagtagct cttgaaagca gctttgagtt agaagtatgt 1500 gtgttacacc ctcacattag tgtgctgtgt ggggcagttc aacacaaatg taacaattat 1560 ttttgtgaat gagagttggc atgtcaaatg catcctctag aaaaataatt agtgttatag 1620 tcttaagatt tgttttctaa agttgatact gtgggatttt tgtgaacagc ctgatgtttg 1680

ggaccttttt tcctcaaaat aaacaagtcc ttattaaacc aggaatttgg ag

PCT/US03/13015

1732

<210> 124 <211> 2543

<212> DNA

<213> Homo sapiens

WO 03/090694

<400> 124 ctccggcgca gtgttgggac tgtctgggta tcggaaagca agcctacgtt gctcactatt 60 acgtataatc cttttctttt caagatgcct gaggaagtgc accatggaga ggaggaggtg 120 gagacttttg cetttcagge agaaattgee caactcatgt ceetcateat caatacette 180 tattccaaca aggagatttt ccttcgggag ttgatctcta atgcttctga tgccttggac 240 aagattcgct atgagagcct gacagaccct tcgaagttgg acagtggtaa agagctgaaa 300 attgacatca tececaacce teaggaacgt accetgactt tggtagacae aggeattgge 360 atgaccaaag ctgatctcat aaataatttg ggaaccattg ccaagtctgg tactaaagca 420 ttcatggagg ctcttcaggc tggtgcagac atctccatga ttgggcagtt tggtgttggc 480 ttttattctg cctacttggt ggcagagaaa gtggttgtga tcagaaagca caacgatgat 540 gaacagtatg cttgggagtc ttctgctgga ggttccttca ctgtgcgtgc tgaccatggt 600 gagcccattg gcatgggtac caaagtgatc ctccatctta aagaagatca gacagagtac 660

and against a sanger and against the control against a	720
ctagaagaga ggcgggtcaa agaagtagtg aagaagcatt ctcagttcat aggctatccc	780
atcaccettt atttggagaa ggaacgagag aaggaaatta gtgatgatga ggcagaggaa	
gagaaaggtg agaaagaaga ggaagataaa gatgatgaag aaaagcccaa gatcgaagat	840
gtgggttcag atgaggagga tgacagcggt aaggataaga agaagaaaac taagaagatc	900
aaagagaaat acattgatca ggaagaacta aacaagacca agcctatttg gaccagaaac	960
cctgatgaca tcacccaaga ggagtatgga gaattctaca agagcctcac taatgactgg	1020
gaagaccact tggcagtcaa gcacttttct gtagaaggtc agttggaatt cagggcattg	1080
ctatttattc ctcgtcgggc tccctttgac ctttttgaga acaagaagaa aaagaacaac	1140
atcaaactct atgtccgccg tgtgttcatc atggacagct gtgatgagtt gataccagag	1200
tatctcaatt ttatccgtgg tgtggttgac tctgaggatc tgcccctgaa catctcccga	1260
gaaatgctcc agcagagcaa aatcttgaaa gtcattcgca aaaacattgt taagaagtgc	1320
cttgagctct tctctgagct ggcagaagac aaggagaatt acaagaaatt ctatgaggca	1380
ttototaaaa atotoaagot tggaatooao gaagaotooa otaacogoog cogootgtot	1440
gagetgetge getateatae eteccagtet ggagatgaga tgacatetet gteagagtat	1500
gtttctcgca tgaaggagac acagaagtcc atctattaca tcactggtga gagcaaagag	. 1560
caggtggcca actcagcttt tgtggagcga gtgcggaaac ggggcttcga ggtggtatat	1620
atgaccgagc ccattgacga gtactgtgtg cagcagctca aggaatttga tgggaagagc	1680
ctggtctcag ttaccaagga gggtctggag ctgcctgagg atgaggagga gaagaagaag	1740
atggaagaga gcaaggcaaa gtttgagaac ctctgcaagc tcatgaaaga aatcttagat	1800
aagaaggttg agaaggtgac aatctccaat agacttgtgt cttcaccttg ctgcattgtg	1860
accagcacct acggctggac agccaatatg gagcggatca tgaaagccca ggcacttcgg	
gacaactcca ccatgggcta tatgatggcc aaaaagcacc tggagatcaa ccctgaccac	
cccattgtgg agacgctgcg gcagaaggct gaggccgaca agaatgataa ggcagttaag	
gacctggtgg tgctgctgtt tgaaaccgcc ctgctatctt ctggcttttc ccttgaggat	
ccccagaccc actccaaccg catctatcgc atgatcaagc taggtctagg tattgatgaa	
gatgaagtgg cagcagagga acccaatgct gcagttcctg atgagatccc ccctctcgag	
ggcgatgagg atgcgtctcg catggaagaa gtcgattagg ttaggagttc atagttggaa	
aacttgtgcc cttgtatagt gtccccatgg gctcccactg cagcctcgag tgcccctgtc	
ccacctggct ccccctgctg gtgtctagtg tttttttccc tctcctgtcc ttgtgttga	
ggcagtaaac taagggtgtc aagccccatt ccctctctac tcttgacagc aggattgga	
ggcagtaaac taaggggee aaggggeens	

taaagaatat gccgttttta tac	2543
<210> 125 <211> 401 <212> DNA <213> Homo sapiens	
<400> 125 cttccgccag cttccctcct cttcctttct ccgccatcgt ggtgtgttct tgactccgct	60
gctcgccatg tcttctcaca agactttcag gattaagcga ttcctggcca agaaacaaaa	120
gcaaaatcgt cccattcccc agtggattcg gatgaaaact ggaaataaaa tcaggtacaa	180
ctccaaaagg agacattgga gaagaaccaa gctgggtcta taaggaattg cacatgagat	240
ggcacacata tttatgctgt ctgaaggtca cgatcatgtt accatatcaa gctgaaaatg	300
tcaccactat ctggagattt cgacgtgttt tcctctctga atctgttatg aacacgttgg	360
ttggctggat tcagtaataa atatgtaagg cctttctttt t	401
<210> 126 <211> 1466 <212> DNA <213> Homo sapiens	
<400> 126 ggcacgaggc tgagccagcg acgccctcca ttcactctcc gcgcccgttc tccggctgtc	60
ctcccgttcc gctgcccgcc ctgccaccat gacggaacag gccatctcct tcgccaaaga	120
cttcttggcc ggaggcatcg ccgccgccat ctccaagacg gccgtggctc cgatcgagcg	180
ggtcaagctg ctgctgcagg tccagcacgc cagcaagcag atcgccgccg acaagcagta	240
caagggcatc gtggactgca ttgtccgcat ccccaaggag cagggcgtgc tgtccttctg	300
gaggggcaac cttgccaacg tcattcgcta cttccccact caagccctca acttcgcctt	360
caaggataag tacaagcaga tetteetggg gggegtggae aageaeaege agttetggag	420
gtactttgcg ggcaacctgg cctccggcgg tgcggccggc gcgacctccc tctgcttcgt	480
gtacccgctg gatttcgcca gaacccgcct ggcagcggac gtgggaaagt caggcacaga	540
gcgcgagttc cgaggcctgg gagactgcct ggtgaagatc accaagtccg acggcatccg	600
gggcctgtac cagggcttca gtgtctccgt gcagggcatc atcatctacc gggcggccta	660
cttcggcgtg tacgatacgg ccaagggcat gctccccgac cccaagaaca cgcacatcgt	720
ggtgagetgg atgategege agacegtgae ggeegtggee ggegtggtgt eetaceeett	780
cgacacggtg cggcggca tgatgatgca gtccgggcgc aaaggagctg acatcatgta	840
cacgggcacc gtcgactgtt ggaggaagat cttcagagat gaggggggca aggccttctt	900

caagggtgcg tggtccaacg tcctgcgggg catggggggc gccttcgtgc tggtcctgta	960
	1020
	1080
	1140
	1200
	1260
	1320
acgttttccc atttgtactt cagegetage ecctgttttg cacageegag tactggegag	1380
tatgttctat gttgggcctc ctgctgcaaa acaataaaca gaggacgcag aaaaaaaaaa	1440
aaaaaaaaaa aaaaaaaa aaaaaa	1466
<pre><210> 127 <211> 477 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (462)(462) <223> n is a, c, g, t or u</pre>	
<400> 127 tttggtgttc agttttgcca attttattga accaataaaa ttcctactaa taacaatgaa	60
ataaatttot goaagtataa atgtgataca gtttaacaaa acccattgtt otgtacctat	120
aaatagattt tcaaaatgtc ataaaaagtg cagttatgaa ttgttaacat gttaatacac	180
agtteettta ttteagatgt gtttgtettg acteactaae agtteettet geatetgtee	240
aaataatgtt accctccctc caaagaaaaa aagagtcatt aaagcactag aatattacac	300
ataaactgat ccatttaggt cagctttagt cagaactgta aaatcagcaa acataagaaa	360
aacaaaacct agtaatacat acaaaagctt tcatgggttc tagaaccttc ttaactgctg	420
attcatgtgg agggcattaa gagttgaaaa ggcttatatg gntaactacc ttagact	477
<210> 128 <211> 3875 <212> DNA <213> Homo sapiens	
<400> 128 ggcacgaggg taaatatggc ataagttaat aacacttttc cccaaaatgg tgctttggat	60
ttgaaaaggg tctgatgggg agaaggagaa cgtatcatcc tagcttcctc tcttaataaa	120
cctagaaaaa cgggtagtaa actgtggata gtcaggaaaa cacccagcaa gggacacagc	180

tgtcaggaaa tgaatcttcc ccccaacccc caccatgcag atggatagac agaatctttc	240
ctgactagtc attaggatca ggggcctctg ttggatttgt gtttcttgaa gaatagctgg	300
cagagtggta taaaagacac gaatatctcc tggtctataa ggatactctg atttggggtt	360
tgcatttttc atggttttta tttcctgttc cccctggagt tttccattag tgagtttttg	420
tgcaaggatc ttatttgtga tgccttccct cccctagaaa gattttgtgc aatatattaa	480
atggggacag aattctaaat ggataaaaca atggctggtt ctagccctga gtgacagtct	540
taaggctaga teetteeeat agtateatet gteetetgga atgaetetee tgteeetaaa	600
ggggttaaga gagagatcac ctagaaatcc ctctggacac ttgtgggttc tttagggttt	660
gagtttcttc ttccccttga gcttcagaga ggagagttgg catggttaaa tctgaatggt	720
tacctcactg ctgaaaaccc agaggggcgt ggcacactcg cttgtgtgga aaagcctcta	780
aatgcatccc ttcctttctt tcctgcttcc tttgccttac aattgaagca gcccgtggta	840
ccatcacagt atgcagagac ttcctcacct ttcatatcta gggaccaccc ccgatgcatt	900
ggtgagggtg ggcacttata aatgcctgct attgttaagc cattccagcc tcttcctctg	960
aatagaccag acgecettte acttagttea gtgecagtee ttttgeette ecaaccetge	1020
tgttaggcct gctgttccct ttgctcttga ttaggagaga tggaaggaga tgagctccca	1080
taactgaatt ggcctttggt tcatgttttc tccccatatg tatatatgcc atatgtgaat	1140
atgccatata tatgtgccaa caaatctatc tacgttgttc ttttcaaatt agcacgcaga	1200
taggaatttt gagtttette ttettttagt aactagtata acaageactg gtatttttgt	1260
acaaaaaaga aaaacaaaag attgactatt gtggtctgca tgacataaac aaacaaatgg	1320
tgatatcaaa gcaacgtata ccccagtcca gtgtgtgttg ccataatttg caattcagct	1380
taacagtgca cccaatctat atttgcattt tgatattatt taagctctat gtacaaggtt	1440
ttgcatgtat ttatatggtt cttagggaaa aaaaatgcta taaactgcaa atctgaaatt	1500
caaatgtgtt gttccactga gaccagaaga agaagaggag ttttaaaaagg gataatttgt	1560
tggagccaat aaagcttttt gctgatgaac agaaaccaat actgctgtgc actgagaata	1620
aaaactcatg cccacttgta aaaaaaaaaa aaaaaaaaaa	1680
toggttacco acagtottto gocagatgag acoggtgtoc agggtactgg otoctoatot	1740
cacceggget tatgecaaag atgtaaaatt tggtgeagat geeegageet taatgettea	1800
aggtgtagac cttttagccg atgctgtggc cgttacaatg gggccaaagg gaagaacagt	1860
gattattgag cagagttggg gaagtcccaa agtaacaaaa gatggtgtga ctgttgcaaa	1920
gtcaattgac ttaaaagata aatacaagaa cattggagct aaacttgttc aagatgttgc	1980

caataacaca	aatgaagaag	ctggggatgg	cactaccact	gctactgtac	tggcacgctc	2040
	gaaggcttcg					2100
	ttagctgttg					2160
	gaagaaattg					2220
	atctctgatg					2280
	acactgaatg					2340
	ccatacttta					2400
	ttgagtgaaa					2460
	gctcaccgta					2520
	. ctcgtcttga					2580
	ggtgacaata					2640
	ggagaagagg					2700
					aaggaaaagg	2760
					g atgtcacaac	2820
					g atggagtggc	2880
					g acagagttac	2940
					g gagggggttg	3000
					g aagatcaaaa	3060
					a ttgctaagaa	3120
					t cagaagttgg	3180
					a ttgacccaac	3240
					t taactacagc	3300
					g gtgcaatggg	3360
					t gctttacctt	3420
					c ttcagagaag	3480
					it cagttactgg	3540
					t acagataatt	3600
					a caagagccat	3660
					a ttctgttaaa	3720
					t ctgtggagag	
					ct ttgtgtaata	

aaaatttgtt taaagttaaa aaaaaaaaaa aaaaa

3875

129 <210> 2058 <211> <212> DNA<213> Homo sapiens <400> 129 ttttgaacaa attgttttaa atgtaatata agagaattag tttaaggaag taaagagaat 60 catttgcttg tgttacattt tcagtgagga ttcagtttaa gagtcattct taggacttcc 120 atttcctaat atttattcat gggtaatgaa gaaatggttt gcattttgtg gccagtccta 180 atttattttc cagctgagcc ctaacttccg gctcccacct acctccacgg acttcctaac 240 agagacttaa gaataccagg atgtgttttt gttaagtcag gttcaattcg ttgcccctgt 300 cagttttata gagtgtgagg gtcactccat taaagatctc tcctgggtgg atcctacttg 360 gatgttcagg tgattttgaa aactgctaac atttttaaaa ggctagaaca tcctttgact 420 tettgaaaat etgeatgtet ggettgggtt ttattaceae atgeetgagt tetteaagaa 480 tggaaggctc aagtattctc atcttccatt tgccaaactt ccttcctgat ttgagtcacg 540 tgttccactt ggaaagaaag ggaacagaga gcctcctcca tggacagtgt atgaatttca 600 ttgggaatet tgetetetee egeetetatg eetttetete tttttaacet taetttaeat 660 aatattatag atgggccaag aaaagaaaag atgacataac attttgatga attacaccta 720 ttccattctt cacgtttcag aattggtcga ctttgttaga agataattga agtagccttg 780 ggtcaaaagc aaccttttca attgtgatca tacctaaaac atataaaaac cctgccgtag 840 attaaaagca attataaaat cataaaattg aatgtttgca gaatcctgga gcagtagatt 900 teettgtett tggeetgegg actagaaaga gggeageagt agtatgetgg agetteeetg 960 ggataccagc cacatggttt cttttcatta gatctgattt ttgtttccca ctgtagatct 1020 gattttgtag ttgaaaacat ttcaccacca tcaaacacta tttctgaata ttgtgccttt 1080 ttatacctag cctagatgaa aaccgatgcc attcttattc agaaaatccc cccatcctac 1140 atgactgtta tctagacata aagcaaagtg catttaattc aaaatttggt tcacaatata 1200 agtattttgt aaaagccagc tgaaccagca ttttatcagg tggaaatctc tgcaagccaa 1260 attgctgata ctccttcatg cagatcaact tggtgtccca gtcagaatag aacagcataa 1320 ttacctggag ttagggggag tatttctgca ctattacttg tcagggagag aagaaactta 1380 gaattgtccc tcaaaggagt gtcaagaagt atgaataaat gtcctttcac cagctcacag 1440 gccagaaatg gaggacccaa gtcaactagg tgaaactact agcagaccca gctttcccat 1500 aataacctaa tctgcaaatt gttctattaa agtctcattg ttttcaggat gcaatgaaag 1560

tggatttcaa	aaggctttgg	aaaaataagt	ggaacatgac	tgatcttgaa	aaaaaaagca	1620
aaagcttaaa	tatttgatac	aagtttactt	agctacaaca	tactttacat	tgttgccttt	1680
agttatctca	caggcactga	cattttatat	ttagaaaata	cttttaatct	ttctaatctt	1740
tttttgtaaa	tattagtgtc	cattctgtat	gactcgctaa	cctactttgc	aaggctttgg	1800
gcaacatttt	, agctcattaa	cttcaagatg	atgtgtcatc	tgtataggtc	aaagaatggg	1860
acttctgaac	tgaggaattt	gctgttgaca	gccaaagtat	agtgtacaag	attgatgtaa	1920
cttgatatgt	atttttgttg	aagttttttg	taaaaaaaaa	ttatttacaa	tgttatttga	1980
atgattttt	taaatgctgt	gaatctatat	ttgttgtttt	gtatattaaa	attcattgcc	2040
aaaaaaaaaa						2058

<210> 130 <211> 14807

<212> DNA

<213> Homo sapiens

<400> 130 tettggageg tteteagttt eteaacagat etteaettge taggeageea gaageeggeg 60 gcagtggcgg caccgcctcc tectcacatt cccggggttgg cggggttaga tgagcggccc 120 cagtcgcggc gccgggggcg ctgttcatgc cggttcccga cggctccgtg gctgctgcgg 180 ggctggggct ggggctaccc gccgcggact ccccgggtca ctaccagctg ctgctgtcag 240 geegggeeet ggeegaeege taeeggagga tttataeege tgegeteaat gaeagggaee 300 aggggggggg cagcgctgga cacccagcct ccaggaataa gaaaatttta aataagaaga 360 aattgaaaag aaaacagaag agcaaatcaa aagtgaagac aagaagcaag tctgaaaact 420 tagagaatac agtaatcata ccagatatca aactacatag caatccttct gctttcaata 480 tttactgtaa tgtacgccat tgcgttctgg aatggcagaa aaaggaaata tcattggcag 540 ccgcatctaa gaactctgtg cagagtggag aatcagatag tgatgaagaa gaggaatcca 600 aagageeece tateaagett eeaaagatta ttgaggttgg eetttgtgaa gtttttgaat 660 tgatcaaaga gacacgattt tctcatccat ccctgtgtct caggagtctc caagccctgc 720 tcaacgtgct gcagggccag cagccagaag tgctccagtc tgagccacct gaggtcctag 780 agtctctctt ccagcttctt ttggaaatca ccgttcgaag tactgggatg aatgacagca 840 caggacagtc cttaacagca ctttcctgtg cttgcctctt tagtctggtg gcttcttggg 900 gagaaacagg aaggacactt caggccatct ctgctatcct caccaacaat ggaagccatg 960 cttgccaaac tattcaggtg ccaacaattc taaattcgct acagagaagt gtacaagcag 1020 ttttggtggg aaaaattcaa attcaggact ggtttagtaa tggcattaag aaagcagctt 1080

taatgcacaa gtggccatta aaagaaatat ctgttgatga agatgaccaa tgtctacttc	1140
•	1200
	1260
	1320
	1380
	1440
	1500
	1560
gtatctcatt attcgatctg gaaaaggact tgcatattat aagtacagga tttgatgagg	1620
agtcagcaat tcttggtgca ggacgagagt ttgcgctaat gaaaacagca aatggaaaga	1680
tatattacac tggcaaatac cagagtettg gaatcaaaca aggtggteet teagcaggaa	1740
aatgggttga gctaccaatt acaaaatctc caaagatagt acacttctca gttggacacg	1800
atggetetea egecetttta gttgeagaag atgggageat attetttaea ggatetgeta	1860
gtaaaggaga agatggagaa tcaattaaga gcagacggca atccaaacct tataaaccta	1920
aaaagataat taagatggaa ggaaagattg tggtatatac agcctgcaat aatggaagta	1980
gttctgttat ttctaaagat ggagaactct acatgtttgg aaaagatgcc atttactctg	2040
atagttcaag tttggtaact gatttgaagg gccattttgt aactcaggta gctatgggca	2100
aagctcacac ttgtgtttta atgaagaatg gagaggtgtg gacatttggt gtaaataata	2160
aaggacagtg tggacgagat actggtgcca tgaaccaagg tgggaaaggg tttggagttg	2220
aaaatatggc aacagcaatg gatgaagacc tggaagaaga actagatgaa aaagatgaga	2280
agtctatgat gtgccctcca ggcatgcaca aatggaagct ggagcagtgc atggtttgca	2340
ctgtctgtgg agactgtaca ggttatggag ccagctgtgt cagtagtgga cggccagaca	2400
gagtccccgg agggatctgt ggttgtggtt ccggagaatc tggttgtgct gtgtgtggat	2460
gttgcaaggc ctgtgcaaga gagttagatg gtcaagaggc aagacaaaga ggaattcttg	2520
atgcagtgaa agaaatgata cetttagate ttettttage tgtcccagtg cccggggtta	2580
acattgaaga acaccttcag ttacgacaag aagaaaaacg gcaacgtgta atcagaaggc	2640
acagattaga ggaaggaaga ggcccccttg tatttgctgg tcctattttt atgaaccatc	2700
gagaacaggc tctagccaga ctcagatccc atccagcaca cgtaaagcat aaacgggaca	2760
agcacaaaga tggaagtgga gaaagaggcg aaaaggatgc aagcaaaatc acaacatacc	2820
ctccaggctc tgtgcgattt gactgtgagc tccgggcagt ccaagtcagc tgtggatttc	2880

accattcagt gg	ıtttaatg g	aaaatggag a	atgtctatac	atttggttat	gggcagcatg	2940
ggcagctagg ac	catggagat g	tcaactcca 🤉	ggggatgtcc	cactcttgtt	caagcattgc	3000
caggccctag ca	acacaagtc a	ctgcaggca (gcaaccatac	ggcagtactt	ttaatggatg	3060
gacaggtctt ca	acatttgga a	gtttttcta	aaggacaact	gggcagacca	attttggatg	3120
tgccatattg ga	aatgcaaag o	ccagctccca	tgcctaacat	tggatcaaaa	tatggaagaa	3180
aagctacttg g	ataggtgca a	agtggggacc	aaacttttt	acgaattgat	gaagcactta	3240
ttaattctca t	gtacttgct a	acatcagaaa	tttttgccag	taaacacata	ataggcttgg	3300
tacctgcttc t	atatcagaa (cctcctccat	ttaaatgcct	tctgataaat	aaagtggatg	3360
ggagttgtaa a	acttttaat (gactcagaac	aagaggatct	gcaaggattt	ggtgtgtgtc	3420
ttgatcctgt a	tatgatgta	atttggaggt	ttcgaccaaa	tactagagag	ctgtggtgtt	3480
acaatgcggt g	gttgctgat	gccaggcttc	cctctgcagc	agacatgcag	tccagatgta	3540
gtatcctaag t	cctgaactt	gccttaccaa	caggatcaag	ggccctcact	acccgatctc	3600
atgcagcttt g	cacatttta	ggttgtcttg	ataccttggc	agctatgcag	gacttaaaaa	3660
tgggtgttgc a	ıagtacagag	gaagagactc	aagcagtaat	gaaggtttat	: tctaaagaag	3720
attatagtgt g	gtaaacagg	tttgaaagtc	atggaggagg	ctggggttat	tctgcccatt	3780
cagtagaagc t	atacgtttc	agtgccgaca	ctgatatttt	acttggtggt	cttggtctgt	3840
ttggaggtag a	aggagaatat	actgctaaaa	ttaagctgtt	: tgaattgggt	cctgatggag	3900
gagatcatga a	aactgatggt	gaccttcttg	cagagactga	tgtattggc	tatgactgtg	3960
ctgctagaga	aaaatatgca	atgatgtttg	atgagcctgt	tctcctgca	a gctgggtggt	4020
ggtatgtggc	atgggcccga	gtgtcaggac	ccagcagtga	a ctgtggatc	t catggacagg	4080
					g aaatcaaata	4140
atggtacaga	tgttaatgcg	ggtcagatac	ctcagttati	t atacagact	t ccaaccagtg	4200
atggcagtgc	ttcaaaaggc	aaacagcaaa	ccagtgaac	c tgtacacat	t ttaaagaggt	4260
cttttgcaag	aactgtctca	gtggaatgtt	: ttgagtcat	t gttgagtat	t cttcactgga	4320
gctggaccac	cttagtctta	ggagttgaag	g aacttagag	g attaaaagg	a ttccagttca	4380
cagctacact	cctagattta	gagagactgo	gctttgtgg	g tacctgttc	t ctgaggttat	4440
					a gttgtagaag	4500
					ga aaaattttat	4560
					ga tatctcagtc	4620
					c actgeetget	4680
ttcattcttt	ctacccaact	cctgcctta	c agtgggctt	g cctttgtg	at ctgctgaatt	4740

gtttggatca ggatatccaa gaagcaaact tcaagacate aagtageega eeeeeg	4800
ctgttatgtc agctctgtgt cacacgtctg ttaagctgac ttecatetee eegastg-3	4860
atgatggaga agtattacta cgatcaattg ttaaacaagt tagtacagag aacgactcaa	4920
cactagttca tcgttttccc cttttggtgg cacatatgga aaaactcagc cagagtgaag	4980
agaatatete agggatgaca agetteegtg aagttetgga gaaaatgetg gteattgttg	5040
tgctaccagt caggaacagc ctgaggagag aaaatgaact cttctcctcc cacctcgtct	5100
ctaacacctg tggattactg gccagcattg tcagtgaact gacagcgtca gccctgggat	5160
ctgaggttga tggacttaat tctcttcact ctgtaaaagc tagtgctaac cgatttacaa	5220
aaacaagtca gggcagaagt tggaacactg ggaacgggtc ccctgatgca atctgttttt	5280
cagtagacaa acctggaata gttgtggttg gtttctctgt ctatggagga ggtggaattc	5340
atgaatatga attagaggtg ttggttgatg atagtgaaca tgcaggagat tcaactcatt	5400
cccacagatg gacatctctg gaattagtga aaggaacgta cacaacggat gactcaccca	5460
gtgatatagc tgagatcaga cttgacaaag tggttccttt aaaggaaaat gttaaatatg	5520
ctgtgcgctt gaggaactat ggaagccgta cagccaatgg agatggagga atgaccacag	5580
ttcagtgccc tgatggtgtg acattcacat tcagcacgtg cagcttgagc agtaacggca	5640
caaaccaaac cagaggacag atcccacaga tactctacta taggagtgaa tttgatggag	5700
atttacaatc ccaacttctg agtaaagcca atgaagaaga taaaaactgt agcagagcat	5760
tgtctgttgt aagcactgtc gttcgagcct ctaaggacct cctgcacaga gctcttgctg	5820
tggatgctga tgacattcca gaactgctga gttcttccag tctgttttcc atgctgctcc	5880
cccttattat agcctacata ggaccagtag ctgctgctat tcccaaggtg gctgtagaag	5940
tctttggcct tgtccaacaa ttgcttccgt cagttgccat tttgaatcag aagtatgcac	6000
cgcctgcctt caaccctaat cagtcgacag atagcaccac aggaaaccag cctgaacagg	6060
gcctctctgc ttgtacaacc tccagtcact atgctgtcat agagagtgag cacccgtata	6120
aacctgcctg tgtgatgcat tacaaggtga cattcccaga atgtgtgagg tggatgacaa	6180
tcgaatttga ccctcagtgt ggtactgcac agtcagaaga tgtccttcgt ttgttgattc	6240
ctgtcagaac tgttcagaat tcaggatatg gaccaaaatt gacatctgtt catgaaaatc	6300
ttaattcatg gatagaatta aagaaatttt caggatcctc tgggtggcct actatggttt	6360
tggtgttgcc aggaaatgag gccctttttt cattggagac tgcatcagat tatgtgaaag	6420
atgacaaagc ttctttctat ggttttatgt gttttgcaat tggatatgaa tttagccctg	6480
gacctgatga gggagtcatc caattggaaa aagaattagc caatcttggt ggggtttgtg	6540

cagcagctct	antanaaaaa	gacctaggac	ttcctattqq	taatgaatta	gaagaagacc	6600
ttgaaattct						6660
						6720
	tctttctcat					6780
	aagcaatgaa		•			6840
	aaggcttgca					
	cctgaataag					6900
	ccagtatggg					6960
ctgtccctgt	ttctcagaaa	aaaatgtctt	tacaacaaga	tcaagcaaag	aaacctcaaa	7020
ggattcctgg	cagtcctgca	gtaacagctg	catcttctaa	tactgacatg	acttatggag	7080
ggctggcatc	accaaagcta	gatgtttcat	atgaaccaat	gatagtgaag	gaagctcgat	7140
atattgccat	aacaatgatg	aaggtttatg	aaaattatto	atttgaagaa	ctacgttttg	7200
					aatgatggga	7260
					gttaccattg	7320
					a aaagggatga	7380
					aaggttcgaa	7440
					c cttcagagtg	7500
					g atccataatg	7560
					c cctaacatga	7620
					g agtcttctgg	7680
					a aactcctgct	7740
						7800
					a gggccaggca	7860
					c cctaacctta	7920
					g ggagaggtaa	7980
					ng ttctgtgaga	
					ag tacctccgac	8040
					ca agecetttet	8100
					at tatggactcg	8160
gaaatagca	aa aggtgatc	ga ggaaacato	ct caacatctt	tc taaaccag	cc tctacatcag	8220
gaaaatcag	ga gctgtcct	ct aaacacag	ca gategetta	aa acctgatg	ga cgtatgagcc	8280
					ct agtgaatccc	
					gg tcattatccc	

ccaaccataa ca	-attagaa :	acattoaaat	ctaataaaaa	gatgccttct	agctccagag	8460
						8520
ctgaatcccc ag						8580
ataggtctag co						8640
tacctcaaaa a						
aatcagactc t						8700
aacctttgag a	ggacggtca	acgtcaccaa	aaccaaaatc	agtaccaaag	gattctacag	8760
attcccctgg a	tctgaaaat	agagctccct	ctccccatgt	ggtacaggaa	aacctccaca	8820
gtgaggtggt c	gaagtctgc	acctcaagta	ctttaaaaac	aaatagtcta	acagacagca	8880
cctgcgatga c	agcagtgaa	tttaagagtg	tggatgaagg	ttcaaataaa	gttcatttta	8940
gcattggaaa a	gcaccactg	aaagatgaac	aggaaatgag	agcatctccc	aaaataagtc	9000
gaaaatgtgc t	aatagacac	accaggccca	aaaaagaaaa	atcgagtttt	cttttcaaag	9060
gagatggatc c						9120
gtgccagagc t						9180
cttgttcttc t	ttcctaaag	tttcatcctg	aactttccaa	. agaacatgct	cctataagga	9240
gtagtttaaa 1						9300
cattagaaat a						9360
ctaagatggg						9420
					g cataacacaa	9480
					tgggaagaca	9540
					t cctggttcct	9600
					c aaaaaggaaa	9660
					a gagatggccc	9720
					g gagtcacatc	9780
					a tatgctggtg	9840
					c tgtggtgatg	9900
						9960
					a aaatacctcc	10020
					a ccaatgcaag	10020
					a gccaatgcac	
					ac catcctgcaa	10140
agccattcca	atctcagtt	g cccagtgta	a aagaaggca	at ttctgagga	at cttcctgtga	10200

aaatgccttg tctgtacctg cagacattag ctaggcatca tcatgaaaat tttgtgggct 10	260
	320
	0380
	0440
	0500
	0560
	0620
	0680
	.0740
	.0800
	0860
	L0920
	10980
	11040
	11100
	11160
cagatgatgg cgatagtgaa gagagtttta gcatcagtat acagtctggc tttgaagcta	11220
	11280
	11340
gggaatcagg agatgaagat aaaaacaaaa ctaagaacat caccatcaac tgtgtaaaag	11400
gaatcaatgc ccgctatgtg tctgttcacg tggacaattc ccgagatctt gggaataaag	11460
ttacctcaat gaccttctta actggcaaag cagtagaaga tttgtgcaga ataaagcagg	11520
ttgatctgga ttccaggcac attggctggg taacaagtga acttccagga ggggataatc	11580
acatcataaa aattgaatta aaaggcccag aaaatacact gagagttcga caagtcaaag	11640
teetgggetg gaaagatggt gaaagcacaa aaatagetgg ceagatttea geeagtgtgg	11700
cccagcagag gaactgtgaa gctgagactc tgcgagtatt cagactgatt acgtctcaag	11760
tatttggaaa gctcatctct ggagatgctg aacctacacc agaacaagag gaaaaagcac	11820
tattgtcatc acctgaagga gaagaaaaag tatacaatgc aacatcagat gctgacctga	11880
aagaacatat ggttggaatc atattcagca ggagtaagct gactaactta caaaaacagg	11940
tgtgtgctca tattgtccaa gctattcgca tggaagctac cagagtccgt gaagaatggg	12000
aacatgctat atcaagcaaa gaaaatgcca attctcagcc aaatgatgaa gatgcctcct	12060

ctgatgccta ctgctttgag ctgctctcta tggttttagc actgagtggc tctaacgttg 1212	:0
geoggeaata tetggeteaa eagetaaeee tgetteagga tetetteteg etgetteaea 1218	30
cagcetetee tagagteeag agacaggtaa eetetttaet aagaagagtt ttgeetgaag 1224	ŧΟ
taacccctag tegtetggee ageateatag gagtgaaate eeteeceea geagatatea 1230	00
gtgatatcat tcactcaaca gagaaaggag actggaataa gctgggtatc ttggacatgt 1236	50
ttctaggatg cattgccaaa gcactcactg tacagctaaa agccaaagga accaccatca 1242	20
ctggaacagc tggtaccact gtgggcaaag gagttacaac agttactctt ccgatgattt 1248	80
tcaattccag ttatctccga cgaggtgaaa gtcattggtg gatgaagggc tcaaccccta 1254	40
cccagatctc agagatcatc attaaactta tcaaggatat ggcagcaggt catctgtcag 126	00
aagettggte eegagtgaca aaaaatgeta ttgeagaaae cateattgee ttgaccaaga 126	60
tggaagaaga atttaggtet eeagtgagat gtattgeaae aactagaete tggettgete 127	20
tegeatecet atgtgttett gateaggace aegtagateg teteteeteg gggagatgga 127	80
tgggaaagga tggacaacaa aaacaaatgc ctatgtgtga taaccatgat gatggtgaaa 128	40
ctgcagcaat cattttatgc aatgtctgtg gaaatttatg tacagactgt gacagattcc 129	00
ttcaccttca tcgaagaacc aaaactcatc aaagacaggt cttcaaagaa gaagaagaag 129	60
ctataaaggt tgaccttcat gaaggttgtg gtagaaccaa attgttctgg ttgatggcac 130	20
tggcagattc taaaacaatg aaggcaatgg tggaattccg agaacacaca ggcaaaccca 130	080
ccacgagtag ctcagaagca tgtcgcttct gtggttccag gagtggaaca gagttatctg 131	L40
ctgttggcag tgtttgttct gatgcagatt gccaggaata cgctaagata gcctgtagta 132	300
agacgcatec ttgtggccat ccatgcgggg gtgttaaaaa cgaagagcac tgtctgccct 132	260
gtctacacgg ctgtgacaaa agtgccacaa gcctgaagca agacgccgat gacatgtgca 133	320
tgatatgttt caccgaagcg ctctcggcag caccagccat tcagctggat tgtagtcaca 133	380
tattccactt acagtgctgt cggcgagtat tagaaaatcg atggcttggc ccaaggataa 134	440
catttggatt tatatcttgt cccatttgca agaacaaaat taatcacata gtactaaaag 13	500
acctacttga tccaataaaa gaactctatg aggatgtcag aagaaaagcc ttaatgagat 13	560
tggaatatga aggtctgcat aagagtgaag ctatcacaac tcctggtgtg aggttttata 13	620
atgacccagc tggctatgca atgaatagat atgcatatta tgtgtgctac aaatgcagaa 13	680
aggcatattt tggtggtgaa gctcgctgcg atgctgaggc tggacgggga gatgattatg 13	740
atcccagaga gctcatttgt ggtgcctgtt ctgatgtttc cagggctcag atgtgtccca 13	800
aacatggcac agactttttg gaatataaat gtcgctactg ctgttcagtg gctgtttttt 13	860

tctgttttgg	aacaacacat	ttttgtaatg	cttgtcatga	tgattttcaa	agaatgacta	13920
gcattcctaa	ggaagaacta	ccacactgtc	ctgcaggtcc	caaaggcaag	cagttagaag	13980
gaactgaatg	tccactccat	gttgttcatc	cacccactgg	ggaagagttt	gctctgggat	14040
gtggagtgtg	cagaaatgcc	cacacttttt	agaacacgca	gatcctttgt	ctacagagag	14100
aaaaattgcc	ttcatccccc	aagaggatgc	ggtgaagttt	aaactctgct	caccataagg	14160
acgggaccat	ttttacatcc	atgaaaatga	accattcaca	gtgcaagaag	gataccaaat	14220
accatgtaca	taattcttgc	tatgaaaagt	ttccccatta	ttttggttta	tattattttg	14280
aacaaatgac	atcaaacttg	tgaggtgttt	gcatgtggcc	attaccgtca	ttggcctgtg	14340
aagcattgga	catttataga	taattgatat	aaaagaatcg	ccatgcccat	ggactaagaa	14400
cgatgctggc	tttcaagcaa	aaaagaaaaa	taatcattgt	ttattgtata	ctgccttttt	14460
gtaatcctgt	acaattgcat	cacgggtggg	gataaaaaga	ggaatattct	ggtttatttc	14520
ctagactgtt	atttaaaaaa	aaaaaaaaca	ttgtgttagg	acagcatata	aatgtaataa	14580
gtatcacact	gtatataaac	atatcaatgt	ttgtcctgta	taagaattac	taaattacaa	14640
atgcaattto	atttaaactt	ctaggttaag	tttgagcctg	aaattttaat	gaagtgcaat	14700
actgagtgtg	g cctcattatc	ttgcagctgt	aaacatattg	gaatgtacat	gtcaataaaa	14760
ccactgtaca	ı tttttataca	gtgataaagt	ctaaaaaaaa	aaaaaaa		14807

<210> 131

<211> 2156

<212> DNA

<213> Homo sapiens

<400> 131 60 agegeageae teccegeteg ttggeeeggg tateceageg eggaeeeaeg egataegetg acgccccgac gccgatccgg ccgagccaag taagggggac ggcccgagac ggagaaggga 120 gagagtggga gtttcccagc ccgcagaact ttcgaagttg agaagagaac ccctggaacg 180 tgcgctcagc actgggattt tctggactca acgatgactc tgaataatgt caccatgcgc 240 cagggcactg tgggcatgca gccacagcag cagcgctgga gcatcccagc tgatggcagg 300 catctgatgg tccagaaaga gccccaccag tacagccacc gcaaccgcca ttctgctacc 360 cctgaggacc actgccgccg aagctggtcc tctgactcca cagactcagt catctcctct 420 gagtcaggga acacctacta ccgagtggtg ctcatagggg agcaggggt gggcaagtcc 480 actctggcca acatctttgc aggtgtgcat gacagcatgg acagcgactg cgaggtgctg 540 ggagaagata catatgaacg aaccctgatg gttgatgggg aaagtgcaac gattatactc 600 ctggatatgt gggaaaataa gggggaaaat gaatggctcc atgaccactg catgcaggtc 660

ggggacgcat	acctgattgt	ctactcaatc	acagaccgag	cgagettega	gaaggcatct	720
gagctgcgaa	tccagctccg	cagggcccgg	cagacagagg	acattcccat	aattttggtt	780
ggcaacaaaa	gtgacttagt	gcggtgccga	gaagtgtctg	tatcagaagg	gagagcctgt	840
gcagtggtgt	ttgactgcaa	gttcatcgag	acctctgcag	ctgtccagca	caacgtgaag	900
gagctgtttg	agggcattgt	gcgacaggtg	cgccttcggc	gggacagcaa	ggagaagaat	960
gaacggcggc	tggcctacca	gaaaaggaag	gagagcatgc	ccaggaaagc	caggcgcttc	1020
tggggcaaga	tcgtggccaa	aaacaacaag	aatatggcct	tcaagctcaa	gtccaaatcc	1080
tgccatgacc	tctctgtact	ctaggaaccc	agggtcaccc	agatgtccct	ttgatggccc	1140
ttgttgaagg	ccattgggac	caataatcta	tattagattg	aatacttaag	ttagatgtgg	1200
tttcccccat	tgtagcaggg	agctagcgta	ttagccttgt	gggcaacatg	atgcatggga	1260
aatgaaagat	ttttgtaaaa	agtcagtatt	tatttccagg	aaaagcctga	ccttgctatt	1320
tgaacaccca	agactcttta	gaggatgtgt	ttggtgttca	catgtgtttc	ttctattttg	1380
gatagtaggg	aagtaaagct	tacaaagaat	gcctagaaca	agaacttttc	atcattaaaa	1440
atttttccca	gtgttctgat	atgtgacttt	gaggccaatg	agtcataaac	aaatataaga	1500
aagctgtcaa	tgagtttctt	caaaggaggg	aaaactttct	acgaatctaa	gatccatgga	1560
gctagaattg	, tagaactagg	ctcatcagaa	tcgtgactat	tattgctcca	tcaaactgtg	1620
aaaagaaatg	g atgtggacct	tgctggaaac	aaaggcttag	caaacaattt	ttgttcaatg	1680
cccaccgaga	a catatagaat	tgggaactga	a tacatgtgtc	ccttataggo	: tcaaaaatta	1740
tatcttacaa	a tttcttattt	. agggggaaat	: tatttgaatc	: agattctatt	: tagtcaaacc	1800
accttttat	g ttttattatt	tttgaattca	a tggagccatc	: ataaaaatat	ttttaaaatc	1860
agaattatt	g ataccctgta	gtgcaaaat	g tcaatttta	atgtataato	agaagtctga	1920
attttcata	a aacatatago	c ataaaaacci	t ccagtacttt	ggttgaccct	tgtatgtcac	1980
agctctgct	c tatttattat	tattttgca	a aataaccatt	ttaacattt	g ataaagcata	2040
tttatgaac	a tatttcttaa	a taagaaaaa	t atccatttta	a ttaccattt	t ctatctttt	2100
caaaatatg	c aagttttta	c ctatatgtc	t tataataaa	a gaaataaaa	t atttga	2156

<210> 132

<211> 556

<212> DNA

<213> Homo sapiens

<400> 132

tettttegee atettttgte tttccgtgga getgtcgcca tgaaggtcga getgtgcagt 60 tttagcgggt acaagatcta ccccggacac gggaggcgct acgccaggac cgacgggaag 120

gttttccagt t	tcttaatgc	gaaatgcgag	tcggctttcc	tttccaagag	gaatcctcgg	180
cagataaact <u>c</u>	ggactgtcct	ctacagaagg	aagcacaaaa	agggacagtc	ggaagaaatt	240
caaaagaaaa g	gaacccgccg	agcagtcaaa	ttccagaggg	ccattactgg	tgcatctctt	300
gctgatataa t	ggccaagag	gaatcagaaa	cctgaagtta	gaaaggctca	acgagaacaa	360
gctatcaggg (ctgctaagga	agcaaaaaag	gctaagcaag	catctaaaaa	gactgcaatg	420
gctgctgcta a	aggcacctac	aaaggcagca	cctaagcaaa	agattgtgaa	gcctgtgaaa	480
gtttcagctc (cccgagttgg	tggaaaacgc	taaactggca	gattagattt	ttaaataaag	540
attggattat a	aactct					556
<210> 133 <211> 442 <212> DNA <213> Homo	sapiens					
<400> 133 cttcctttcc	aacttggacg	ctgcagaatg	gctcccgcaa	agaagggtgg	cgagaagaaa	60
aagggccgtt	ctgccatcaa	cgaagtggta	acccgagaat	acaccatcaa	cattcacaag	120
cgcatccatg	gagtgggctt	caagaagcgt	gcacctcggg	cactcaaaga	. gattcggaaa	180
tttgccatga	aggagatggg	aactccagat	gtgcgcattg	acaccaggct	caacaaagct	240
gtctgggcca	aaggaataag	gaatgtgcca	. taccgaatcc	gtgtgcggct	gtccagaaaa	300
cgtaatgagg	atgaagattc	accaaataag	ctatatactt	tggttaccta	tgtacctgtt	360
accactttca	aaaatctaca	gacagtcaat	. gtggatgaga	actaatcgct	gatcgtcaga	420
tcaaataaag	ttataaaatt	gc				442
<210> 134 <211> 1230 <212> DNA <213> Homo) o sapiens					
<400> 134	qtqaqcqqco	atcttggtc	tgccctgaca	a gattctcct:	a tcggggtcac	60
					g tggtactttc	120
					c caggggtatt	180
					c cacctcttcc	240
					c agtttcttta	300
					t tgtacgcttt	360
					g tactaggtgt	420
					g ataaactcaa	480

gagcaaaaa cttgcccaac tagaagaggc gaagcaggct tccatccaac acatccagaa	540
tgcaattgat acggagaagt cacaacaggc actggttcag aagcgccatt acctttttga	600
tgtgcaaagg aataacattg ctatggcttt ggaagttact taccgggaac gactgtatag	660
agtatataag gaagtaaaga atcgcctgga ctatcatata tctgtgcaga acatgatgcg	720
tcgaaaggaa caagaacaca tgataaattg ggtggagaag cacgtggtgc aaagcatctc	780
cacacagcag gaaaaggaga caattgccaa gtgcattgcg gacctaaagc tgctggcaaa	840
gaaggctcaa gcacagccag ttatgtaaat gtatctatcc caattgagac agctagaaac	900
agttgactga ctaaatggaa actagtctat ttgacaaagt ctttctgtgt tggtgtctac	960
tgaagttata gtttaccctt cctaaaaatg aaaagtttgt ttcatatagt gagagaacga	1020
aatctctatc ggccagtcag atgtttctca tccttcttgc tctgcctttg agttgttccg	1080
tgatcacttc tgaataagca gtttgccttt ataaaaactt gctgcctgac taaagattaa	1140
caggttatag tttaaatttg taattaattc taccatcttg caataaagtg acaattgaat	1200
aaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaa	1230
<210> 135 <211> 402	
<212> DNA <213> Homo sapiens	
<400> 135	. 60
tttttttt tttttttt tttttttt tttttttt tttt	
aaaaaaccca tttattatag gccagggggg tctaaaagag gaaaggagcg tctacgggtc	
tttcaacccc ttcagtcttt tgagggggga ctttaccggg acaggggaag gggttttgta	
cctccaggcc ccgccagcca ctgttttaat gcaggaacca cagggccaaa tccccacagg	g 240
tggttttttc attttggttt tgccacaaaa agagcaaggg tacttggggg gctggctgat	300
ttaaattttt ttcaccattt tccggaggga ggccccatag ggggtcccgt atttaccgac	360
aaacccgact tttttgggac gtttgggcat gtcgccgcaa cc	402
<210> 136 <211> 2266	
<212> DNA <213> Homo sapiens	
-400> 136	
aagataataa gaacaatgca tctgacaaag ctgttagatc gtgaggtcaa gaacaagtc	
tctctatttc tatatatcca aggactatgc ttggatatat agaacactca attgttgat	g 120
ananacagaa toagtaagto toaagtaata otttottotg aaagtaatat tttaagata	c 180

ctgaaacagt t	tgttttaa (cagaaaatag .	agctccacat	ttccaaaaga	aaaaaaaatg	240
tttttggtct 9	gcagataaac	ttcctacctc	tcgatctttg	agtttcatgg	cgagtaccaa	300
ctgatgcctg	tggttagtga (gagcctcccg	gtaatttcct	ttggagaaga	atgcagagcc	360
cagattccca	tgagctcggc	attctcctgt	ctggtcacct	ggattgaatt	gagaaaaaaa	420
aaaagaaaaa	atttctctaa	gttataatgt	tatttataac	atataatggt	catcttaatt	480
taagagccac	agatttatta	gctaagattt	cacttatctt	ctattagaaa	agtatttgtt	540
tcttccacaa	gaccctatgt	ggggagttac	tgccctagaa	tttaaatctc	tggataacaa	600
ctgcttttat	tgtcataaca	tacaactgca	gacagggact	taggtgtctt	agaaacaaaa	660
ggttaaagac	cttaacacaa	actagctgct	gtttgagtcc	tcattgccct	gctaatgacc	720
tttgattcta	aacaaccatc	agcttgttgg	ttcagtcatt	tgactccaaa	tctacaaaaa	780
aatatcttta	caagtatgct	ggtggtagat	gcaccttatc	ccttctctta	ctccaatcct	840
gtaagtcctt	gaataatcac	catagcggct	gggaccctgt	acacgtatcc	tgaaaactgg	900
agggccttca	aggctctcat	cgctgctcag	tacagcgggg	ctcaggtccg	cgtgctctcc	960
gcaccacccc	acttccattt	tggccaaacc	aaccgcaccc	ctgaatttct	ccgcaaattt	1020
cctgccggca	aggtcccagc	atttgagggt	gatgatggat	tctgtgtgtt	tgagagcaac	1080
gccattgcct	actatgtgag	caatgaggag	ctgcggggaa	gtactccaga	ggcagcagcc	1140
caggtggtgc	agtgggtgag	ctttgctgat	tccgatatag	tgcccccagc	cagtacctgg	1200
gtgttcccca	ccttgggcat	catgcaccac	aacaaacagg	ccactgagaa	tgcaaaggag	1260
gaagtgaggc	gaattctggg	gctgctggat	gcttacttga	agacgaggac	ttttctggtg	1320
ggcgaacgag	tgacattggc	tgacatcaca	gttgtctgca	ccctgttgtg	gctctataag	1380
caggttctag	agccttcttt	ccgccaggcc	tttcccaata	ccaaccgctg	gttcctcacc	1440
tgcattaacc	agccccagtt	acgggctgtc	ttgggcgaag	tgaaactgtg	ı tgagaagatg	1500
gcccagtttg	atgctaaaaa	gtttgcagag	acccaaccta	aaaaggacac	: accacggaaa	1560
gagaagggtt	cacgggaaga	gaagcagaag	g ccccaggctc	g agcggaagga	a ggagaaaaag	1620
gcggctgccc	ctgctcctga	ı ggaggagatç	g gatgaatgtg	g agcaggcgct	ggctgctgag	1680
cccaaggcca	aggacccctt	: cgctcaccto	g cccaagagta	a cctttgtgtt	ggatgaattt	1740
aagcgcaagt	actccaatga	a ggacacacto	tctgtggcad	c tgccatatt	ctgggagcac	1800
tttgataagg	acggctggtc	cctgtggtad	c tcagagtato	getteeetga	a agaactcact	1860
cagaccttca	tgagctgcaa	a tctcatcact	t ggaatgttc	agcgactgg:	a caagctgagg	1920
aagaatgcct	: tegecagtgt	catcetttt	t ggaaccaac	a atagcagct	c catttctgga	1980
gtctgggtct	tccgaggcc	a ggagcttgc	c tttccgctg	a gtccagatt	g gcaggtggac	2040

tacgagtcat acacatggcg gaaactggat cctggcagcg aggagaccca gacgctggtt 2100 cgagagtact tttcctggga gggggccttc cagcatgtgg gcaaagcctt caatcagggc 2160 aagatettea agtgaacate tettgeeate acetagetge etgeacetge cetteaggga 2220 2266 gatgggggtc attaaaggaa actgaacatt gaaaaaaaa aaaaaa <210> 137 1634 <211> <212> DNA <213> Homo sapiens <400> 137 acgatgaagt cagtgaggag gaggaatagt aattgtcaat gagcttttaa taccaagata 60 cacccctgc ccccaaagaa gagtcctctt ttagggaatc agaaccttca ttgtcctaga 120 agctgaaaga ttcttggaac attttagctt ttactctcaa cttgctgttc tctttacatt 180 ccttaagtta gactttcggg tgtggcttct ctctcagggg taacatttac ttccattttc 240 tagaccgaac caaaagtctt ctgcagaatc tcccaccgag tgtggtaaga aggaaggaca 300 aaaggettta ggatataaat tteatgttae agageatgte attgteaaag gaaatetgtg 360 gccctgagat tttaagaaca taaaatgtga catttgatat ttctccagcc cagggaagta 420 agatggttag caatggttgc cttaatcaaa tggtcccatt tttaacccca aaggaagtgc 480 ccacagcaag aggtttgtgt gatgcactta tgtcctccgg tgaggaaagg gggccacata 540 tgaaaggccc cttaggtcag atcctgagag tagcacattt gagtgcagat tcctgggccc 600 cacctcaaac ctactaattc tgaatctctg ggaatagggc caggaaatct gccctttcta 660 720 caaactaccc aagttgttct gttgcacatc aatgtttggg aaccactgct gtaagggaat 780 cattetggte accttgaget ttgagetace actaagecat gaaagaaaat acateataca gggaagagag aagggaggag gttccaagta gtaactggca gatcctcctg tctggaggta 840 900 ccaccttcta ttctggtttc tgacttttcc ttcttgatga ccatagatgt gttccagagg 960 caaaagagac acattatccc agatggcaga acatgctttc aaaacatata aaatgtcaaa gttccagatc cttctacatc tttagtcctg tctgaggatg gtagctggct ctctgtagct 1020 gatagatggc tagagttcca tccaaatcct tgaccacgac ttcatggaga tttgaataat 1080 ctatttgatg agatttctat ttcaataacc cacctctctc accccacatt catatcccta 1140 aatttgaccc tctgggccga gtcacattac cttcaggaga cttgatccca gtagactgag 1200 1260 gtcttccctt tcagcagaaa gatttcattt ccctggcttg ccagtggcac tgatttccga 1320 acacccaatg agtttaatat tettteetee ttggcattae tgeeceagee gettttttt 1380 tttttttgtg tgtgtctaat aaccaggaaa aaaataaagc ttaggtttta aaaagtttta

aaaataatct gtttcagaaa ctgtcaaatg taccatattt gtattaagag ttgttgggaa 1440
tttttgtaca atgaatttac atttattat ggtgacatat ttacgcttgt gatcaaataa 1500
tgatgttaaa ttcttaaatc atatttgcta tgcagctgaa gatgatattt tgatttgtat 1560
tttgggggta cctgtgttga gttgataaac atttccatct tcattaaaac tgcttccaaa 1620
ctaaaaaaaa aaaa 1634

<210> 138

<211> 1865

<212> DNA

<213> Homo sapiens

<400> 138 gcgtggaggt cgacgactcc gtcgcagact acggacctgt ctgggtctca gccgccaaag 60 accccgtccg gtaggtgagt ggctcacttt gagggcaagc cttctcggat cgaggcttct 120 tcatggccgc tcagatcgtg agcggccggg gctgctctct ttgcggagga tggcgtctaa 180 tgagcgcagt tgattcgagg aagtactagc cggacatcat gagtggctgt cgggtattca 240 tegggagaet aaateeageg geeagggaga aggaegtgga aagattette aagggatatg 300 gacggataag agatattgat ctgaaaagag gctttggttt tgtggaattt gaggatccaa 360 420 gggatgcaga tgatgctgtg tatgagcttg atggaaaaga actctgtagt gaaagggtta ctattgaaca tgctagggct cggtcacgag gtggaagagg tagaggacga tactctgacc 480 gttttagtag tcgcagacct cgaaatgata gacggtatgt gaagggtgga tggctgcatt 540 gaacaattat tgtaggggta gcatttaaga ttcaggagtc attagcagtg atgattttgg 600 gacctgccgt ataatctgtt cttctattcc cacgttagcc aattgttctt gatgaatcta 660 tatgagtcat agaacacaaa tctattgacg gaagtcatta gaatggcttg tgatatctga 720 tggcttgaac ttgcccacag ttgaacacaa gtgctgtcat tgcatttctt ccattgtgaa 780 tacgaatttt cttcctcaga aatgctccac ctgtaagaac agaaaatcgt cttatagttg 840 agaatttatc ctcaagagtc agctggcagg atctcaaaga tttcatgaga caagctgggg 900 960 aagtaacgtt tgcggatgca caccgaccta aattaaatga aggggtggtt gagtttgcct cttatggtga cttaaagaat gctattgaaa aactttctgg aaaggaaata aatgggagaa 1020 aaataaaatt aattgaaggc agcaaaaggc acaggtcaag aagcaggtct cgatcccgga 1080 ccagaagttc ctctaggtct cgtagccgat cccgttcccg tagtcgcaaa tcttacagcc 1140 ggtcaagaag caggagcagg agccggagcc ggagcaagtc ccgttctgtt agtaggtctc 1200 ccgtgcctga gaagagccag aaacgtggtt cttcaagtag atctaagtct ccagcatctg 1260 tggatcgcca gaggtcccgg tcccgatcaa ggtccagatc agttgacagt ggcaattaaa 1320

ctgtaaataa	cttgccctgg	gggccttttt	ttttaaaaaa	caaaaaccac	aaaaattccc	1380
aaaccatact	tgctaaaaat	tctggtaagt	atgtgctttt	ctgtgggggt	gggatttgga	1440
aggggggttg	ggttgggctg	gatatctttg	tagatgtgga	ccaccaaggg	gttgttgaaa	1500
actaattgta	ttaaatgtct	tttgataagc	cttctgctca	catttttgtg	aatgtctgaa	1560
gtatatagtt	tgtgtatatt	gacagagete	ttttataact	aaagcaaatt	taatttttt	1620
gtactagaaa	aaaatttgaa	cattttagtt	cttggttata	aaaatgttaa	ttcagaatta	1680
gtttaatgcc	ttaattaaac	taattaatag	ctttggacac	ttaaaagagc	tctaaatttg	1740
cttgtacata	aaggcttaat	ttgttttcct	tgttagggtc	aagggtgtcc	tccactcttt	1800
aacagctgct	ggacagacac	attagagcag	ctgtttgtta	ttgataataa	aatattataa	1860
aacta						1865

<210> 139 <211> 1198

<212> DNA

<213> Homo sapiens

<400> 139 tactaagagt ctccagcatc ctccacctgt ctaccaccga gcatgggcct atatttgaag 60 cettagatet etecageaca gtaageacea ggagteeatg aagaagatgg etectgeeat 120 ggaatcccct actctactgt gtgtagcctt actgttcttc gctccagatg gcgtgttagc 180 agtccctcag aaacctaagg tctccttgaa ccctccatgg aatagaatat ttaaaggaga 240 gaatgtgact cttacatgta atgggaacaa tttctttgaa gtcagttcca ccaaatggtt 300 ccacaatggc agcctttcag aagagacaaa ttcaagtttg aatattgtga atgccaaatt 360 tgaagacagt ggagaataca aatgtcagca ccaacaagtt aatgagagtg aacctgtgta 420 cctggaagtc ttcagtgact ggctgctcct tcaggcctct gctgaggtgg tgatggaggg 480 ccagcccctc ttcctcaggt gccatggttg gaggaactgg gatgtgtaca aggtgatcta 540 ttataaggat ggtgaagctc tcaagtactg gtatgagaac cacaacatct ccattacaaa 600 tgccacagtt gaagacagtg gaacctacta ctgtacgggc aaagtgtggc agctggacta 660 tgagtctgag cccctcaaca ttactgtaat aaaagctccg cgtgagaagt actggctaca 720 attttttatc ccattgttgg tggtgattct gtttgctgtg gacacaggat tatttatctc 780 aactcagcag caggtcacat ttctcttgaa gattaagaga accaggaaag gcttcagact 840 tctgaaccca catcctaagc caaaccccaa aaacaactga tataattact caagaaatat 900 ttgcaacatt agttttttc cagcatcagc aattgctact caattgtcaa acacagcttg 960 caatatacat agaaacgtct gtgctcaagg atttatagaa atgcttcatt aaactgagtg 1020

aaactggtta	agtggcatgt	aatagtaagt	gctcaattaa	cattggttga	ataaatgaga	1080
gaatgaatag	attcatttat	tagcatttgt	aaaagagatg	ttcaatttca	ataaaataaa	1140
tataaaacca	tgtaacagaa	tgcttctgag	taaaaaaaaa	aaaaaaaaaa	aaaaaaaa	1198
<210> 140 <211> 453 <212> DNA <213> Home	o sapiens					
<222> (18	c_feature 2)(182) s a, c, g,	t or u				
<400> 140 gaatgggttt	caagtgattg	taccaaaata	ggaaaactat	aaatatatat	tcatacatat	60
agtaaaatgt	taagactgag	atttagaatt	catttaatga	gcccaaattg	tattttatgt	120
atgagtaaac	: tgaggcacag	taagactaag	ttaactgccc	aaactcttcc	acctggttag	180
tngggaaaat	aacatttcca	accctgatct	ttctggttcc	tgaaccagga	tagctggact	240
gtacttcccc	: atttttgaaa	aagctgctaa	aaacttggtt	acaaacttta	agtgacacgt	300
ttctccattt	: atgtggtggt	tatagcaacg	gtacaactct	ctatttataa	a attaaacctt	360
gagaaacacc	catctccact	: tcctagacaa	accaatgaac	: attagtctta	a tttttctccc	420
agaaaatgto	agagggtgtt	acagtggcta	a cac			453
<210> 143 <211> 223 <212> DNA <213> Hor	2					
<222> (1	sc_feature 59)(159) is a, c, g,	t or u				
<400> 14 aggacttcc	1 t ctttaaatt	t ggtaccagt	a acttagtga	c acataatga	c aaccaaaata	60
tttgaaagc	a cttaagcac	t cctccttgt	g gaaagaata	t accaccatt	t catctggcta	120
gttcaccat	c acaactgca	t accaaaag	g ggattttn	c aaacgcgga	g ttgaccaaaa	180
taatatctg	a ggatgattg	gc ttttccctg	c tgccagctg	a tc		222
<210> 14 <211> 18 <212> DN	51					

<213> Homo sapiens

<400> 142 gggcgcgcca gagacg	cagc cgcgctccca	ccacccacac	ccaccgcgcc	ctcgttcgcc	60
tcttctccgg gagcca	gtcc gcgccaccgc	cgccgcccag	gccatcgcca	ccctccgcag	120
ccatgtccac caggtc	cgtg tcctcgtcct	cctaccgcag	gatgttcggc	ggcccgggca	180
ccgcgagccg gccgag	ctcc agccggagct	acgtgactac	gtccacccgc	acctacagcc	240
tgggcagcgc gctgcg					300
tgtatgccac gcgctc	ctct gccgtgcgcc	tgcggagcag	cgtgcccggg	gtgcggctcc	360
tgcaggactc ggtgga	actte tegetggeeg	acgccatcaa	caccgagttc	aagaacaccc	420
gcaccaacga gaaggt	ggag ctgcaggagc	tgaatgaccg	cttcgccaac	tacatcgaca	480
aggtgcgctt cctgga	agcag cagaataaga	tcctgctggc	cgagctcgag	cagctcaagg	540
gccaaggcaa gtcgcg	gccta ggggacctct	acgaggagga	gatgcgggag	ctgcgccggc	600
aggtggacca gctaac	ccaac gacaaagccc	gcgtcgaggt	ggagcgcgac	aacctggccg	660
aggacatcat gcgcct	tccgg gagaaattgc	aggaggagat	gcttcagaga	gaggaagccg	720
aaaacaccct gcaato	ctttc agacaggatg	ttgacaatgc	gtctctggca	cgtcttgacc	780
ttgaacgcaa agtgg	aatct ttgcaagaag	agattgcctt	tttgaagaaa	ctccacgaag	840
aggaaatcca ggagc	tgcag gctcagattc	aggaacagca	tgtccaaatc	gatgtggatg	900
tttccaagcc tgacc	tcacg gctgccctgc	gtgacgtacg	tcagcaatat	gaaagtgtgg	960
ctgccaagaa cctgc	aggag gcagaagaat	. ggtacaaatc	caagtttgct	gacctctctg	1020
aggctgccaa ccgga	acaat gacgccctgc	: gccaggcaaa	gcaggagtco	actgagtacc	1080
ggagacaggt gcagt	ccctc acctgtgaag	tggatgccct	taaaggaaco	aatgagtccc	1140
tggaacgcca gatgc	gtgaa atggaagaga	actttgccgt	tgaagctgct	aactaccaag	1200
acactattgg ccgcc	tgcag gatgagatto	agaatatgaa	a ggaggaaat	g gctcgtcacc	1260
ttcgtgaata ccaag	jacctg ctcaatgtta	a agatggccct	tgacattga	g attgccacct	1320
acaggaagct gctgg	gaaggc gaggagagca	a ggatttctct	geetettee	a aacttttcct	1380
ccctgaacct gaggg	gaaact aatctggatt	t cactecetet	t ggttgatac	c cactcaaaaa	1440
ggacattcct gatta	aagacg gttgaaacta	a gagatggaca	a ggttatcaa	c gaaacttctc	1500
agcatcacga tgaco	cttgaa taaaaattg	c acacactca	g tggcaggcg	a tatattaccc	1560
aggcaagaat aaaaa	aagaaa tcccatatc	t taaagaaac	a gctttcaag	t gcctttctgc	1620
agtttttcag gagc	gcaaga tagatttgg	a ataggaata	a gctctagtt	c ttaacaaccg	1680
acactcctac aaga	tttaga aaaaagttt	a caacataat	c tagtttaca	g aaaaatcttg	1740

60

tgctagaata ctttttaaaa ggtattttga ataccattaa aactgctttt tttttccag 1800 caagtatcca accaacttgg ttctgcttca ataaatcttt ggaaaactcc a 1851

143 <210>

<211> 2864

DNA <212>

Homo sapiens <213>

<400> 143

agataacaag agtaatccac agacttaaaa catgagctca gatgccagcc aaggcgtgat taccactcct cctcctccca gcatgcctca caaagagaga tattttgacc gcatcaatga 120 aaatgaccca gaatacatta gggagaggaa catgtctcct gatctacgac aagacttcaa 180 catgatggag cagaggaaac gagttactca gatcctgcaa agtcctgcct ttcgggaaga 240 cttggaatgc cttattcaag aacagatgaa gaaaggccac aacccaactg gattactagc 300 attacagcag attgcagatt acatcatggc caattctttc tcgggttttt cttcacctcc 360 teteagtett ggeatggtea cacetateaa tgacetteet ggtgeagata cateeteata 420 tgtgaaggga gaaaaactta ctcgctgtaa acttgccagc ctgtacagac ttgtagactt 480 gtttggatgg gcacacctgg caaataccta tatctcagta agaataagta aggagcaaga 540 ccacattata ataattccca gaggcctatc tttttctgaa gctacagcct ccaatttggt 600 gaaagtcaat ataataggag aagtggttga ccagggaagt accaatttga aaattgacca 660 tacaggattc agtccccatg ctgcaatcta ttcaacacgt cctgatgtta agtgtgtcat 720 acacatccat accettgcaa cagcagetgt atcetecatg aaatgtggga teettecaat 780 ttctcaagag tctcttcttc tgggagatgt tgcctattat gactaccaag ggtcacttga 840 agaacaggag gagagaattc aactgcagaa ggttctggga ccaagttgta aggtgctggt 900 actcaggaat catggtgtgg ttgcacttgg agaaacatta gaggaggctt ttcattatat 960 ttttaatgtg caactagcct gtgagattca ggtgcaggcc ctagcaggtg caggtggagt 1020 agacaatctc catgtactgg actttcagaa gtataaagct ttcacttaca ctgtagcagc 1080 gtctggtgga ggaggtgtga atatgggttc ccatcaaaaa tggaaggttg gcgaaattga 1140 gtttgaaggg cttatgagga ctctggacaa cttggggtat agaacaggct atgcttacag 1200 gcatcctctc attcgagaga agcctaggca caagagtgat gtggaaatcc cagcaactgt 1260 gactgctttt tcctttgaag acgatacagt gccactctct cctctcaaat acatggcaca 1320 gaggcaacag cgtgaaaaaa caagatggct gaactcacca aatacttaca tgaaagtgaa 1380 tgtgcctgag gagtctcgga acggagaaac cagtccccga accaaaatca cgtggatgaa 1440 agcagaagac tcatctaaag ttagtggtgg aacacctatc aaaattgaag atccaaatca 1500

					1.1	1560
gtttgttcct	ttaaacacaa	acccgaatga	ggtactagaa	aagagaaata	agattcggga	1560
acaaaatcga	tatgacttga	aaacagcagg	accacaatct	cagttgcttg	ctggaattgt	1620
tgtggataag	ccaccttcta	ctatgcaatt	tgaagatgat	gatcatggcc	caccagctcc	1680
tcctaaccca	tttagtcatc	tcacagaagg	agaacttgaa	gagtataaga	ggacaatcga	1740
acgtaaacaa	caaggcctag	aagatgctga	gcaggaatta	ctctcagatg	acgcttcatc	1800
tgtttcacaa	attcagtctc	aaactcagtc	accgcaaaat	gtccctgaaa	aattagaaga	1860
aaaccatgag	ctgttttcca	agagcttcat	ctccatggaa	gtgcctgtca	tggtagtaaa	1920
tggcaaggat	gatatgcatg	atgttgaaga	tgagcttgct	aagcgagtga	gtaggttaag	1980
cacaagtaca	accatagaaa	acatcgagat	tactattaag	tctccagaga	aaatcgaaga	2040
agtcctgtca	cctgaaggct	ccccttcaaa	atcgccatcc	aagaaaaaga	agaaattccg	2100
cactccttct	tttctgaaaa	agaacaaaaa	aaaggagaaa	gttgaggcct	aaataaagtc	2160
tttttataat	: tattattata	acaatgtgac	attgcacatc	taaataccac	atttaagttg	2220
atcattaata	ı tgcaatggta	gatcagattg	ggggatgtag	caaactggac	tttaagaact	2280
ggaaagaggt	: tttacaaaag	aaaaactttc	agattcatct	ctcattttat	atgtccagaa	2340
atggctttga	attttaagca	attactagtt	ttaattagct	ctgccctcat	gaagtattat	2400
tataattca	c cataaacagc	tatctgtctg	aattacttca	ggccttctcc	: ataatatctg	2460
ttagaaagaa	a attgccagtg	agcaagtgag	aattttatt	tctcaatacc	: tgcttcactt	2520
gataatcata	a ttataatttt	. ttatcatgat	tattgactat	atttttggag	tcccattgtt	2580
tcagtgggc	a ttaacagaat	gctttaaaaa	cttctaagac	c aagaatctat	: agcattagta	2640
tacactggc	a cataatttt	: taaaaagttt	taagaaaaga	a ttcatttgga	a attttattca	2700
cagtataaa	a tttcctcacc	: tgaagtaact	ttgtttgcca	a aaaaagttgt	tttaataaac	2760
tataatttt	t gaaaacttco	: ttttttatta	gtttagaaaq	g ccccttatti	ttcaacaaag	2820
gggattttg	t acacataaca	a tgggttattt	agtttaact	c tggc		2864

<210> 144

<211> 360

<212> DNA

<213> Homo sapiens

attttcccca aataactttg cctccttggg cacaaggccc aattcgctca catttactta 300 aatgacagtc ccttgggaat aacacccaaa gttgatccag gggggataag gatttttctt 360 <210> 145 876 <211> DNA <212> <213> Homo sapiens <400> 145 gaggagagga gagcatagca cctgcagcaa gatggatgtg ggcagcaaag aggtcctgat 60 ggagageceg eeggaetaet eegeagetee eeggggeega titggeatte eetgetgeee 120 agtgcacctg aaacgccttc ttatcgtggt ggtggtggtg gtcctcatcg tcgtggtgat 180 tgtgggagcc ctgctcatgg gtctccacat gagccagaaa cacacggaga tggttctgga 240 gatgagcatt ggggcgccgg aagcccagca acgcctggcc ctgagtgagc acctggttac 300 cactgocacc ttctccatcg gctccactgg cctcgtggtg tatgactacc agcagctgct 360 gatcgcctac aagccagccc ctggcacctg ctgctacatc atgaagatag ctccagagag 420 catccccagt cttgaggctc tcaatagaaa agtccacaac ttccagatgg aatgctctct 480 gcaggccaag cccgcagtgc ctacgtctaa gctgggccag gcagaggggc gagatgcagg 540 ctcagcaccc tccggagggg acccggcctt cctgggcatg gccgtgaaca ccctgtgtgg 600 cgaggtgccg ctctactaca tctaggacgc ctccgggtca gtggaagccc caacgggaaa 660 ggaaacgccc cgggcaaagg gtcttttgca gcttttgcag acgggcaaga agctgcttct 720 gcccacaccg cagggacaaa ccctggagaa atgggagctt ggggagagga tgggagtggg 780 cagaggtggc acccaggggc ccgggaactc ctgccacaac agaataaagc agcctgattg 840 876 aaaagcaaaa aaaaaaaaa aaaaaaaa aaaaaa <210> 146 <211> 1875 <212> DNA <213> Homo sapiens <400> 146 aaagcatcca gttcctttgc ggtcctcttc ttcagcacat gccaaagctg ttcctcacgg 60 cctgtgagac aagagcatct tggatgtagg acaatggaag agttagatgc cttattggag 120 gaactggaac gctccaccct tcaggacagt gatgaatatt ccaacccagc tcctcttccc 180 ctggatcagc attccagaaa ggagactaac cttgatgaga cttcggagat cctttctatt 240 caggataaca caagteeett geeggegeag etegtgtata etaccaatat eeaggagete 300 aatgtctaca gtgaagccca agagccaaag gaatcaccac caccttctaa aacgtcagca 360 gctgctcagt tggatgagct catggctcac ctgactgaga tgcaggccaa ggttgcagtg 420

agaggagatg	ctggcaagaa	qcacttacca	gacaagcagg	atcacaaggc	ctccctggac	480
	ggggtctgga					540
						600
ggccattgtg	catcctgcca	gaaaccgatt	gctgggaagg	tgatccatgc	tctagggcaa	600
tcatggcatc	ctgagcattt	tgtctgtact	cattgcaaag	aagagattgg	ctccagtccc	660
ttctttgagc	ggagtggctt	ggcctactgc	cccaacgact	accaccaact	tttttctcca	720
cgctgtgctt	actgcgctgc	teccatectg	gataaagtgc	tgacagcaat	gaaccagacc	780
tggcacccag	agcacttctt	ctgctctcac	tgcggagagg	tgtttggtgc	agaaggcttt	840
catgagaagg	acaagaagcc	atattgccga	aaggatttct	tagccatgtt	ctcacccaag	900
tgtggtggct	gcaatcgccc	agtgttggaa	aactaccttt	cagccatgga	cactgtctgg	960
cacccagagt	gctttgtttg	tggggactgc	ttcaccagtt	tttctactgg	ctccttcttt	1020
gaactggatg	gacgtccatt	ctgtgagctc	cattaccatc	accgccgggg	aacgctctgc	1080
catgggtgtg	ggcagcccat	cactggccgt	tgtatcagtg	ccatggggta	caagttccat	1140
cctgagcact	ttgtgtgtgc	tttctgcctg	acacagttgt	cgaagggcat	tttcagggag	1200
cagaatgaca	agacctattg	tcaaccttgc	ttcaataagc	tcttcccact	gtaatgccaa	1260
ctgatccata	gcctcttcag	atteettata	aaatttaaac	caagagagga	gaggaaaggg	1320
taaattttct	gttactgacc	: ttctgcttaa	tagtcttata	gaaaaaggaa	aggtgatgag	1380
caaataaagg	g aacttctaga	ctttacatga	ı ctaggctgat	aatcttattt	tttaggcttc	1440
tatacagtta	a attctataaa	ttctctttct	ccctctcttc	: tccaatcaag	g cacttggagt	1500
tagatctag	g teettetate	tegtecetet	: acagatgtat	tttccacttg	g cataattcat	1560
gccaacact	g gttttcttag	g gtttctccat	tttcacctct	agtgatggco	ctactcatat	1620
cttctctaa	t ttggtcctga	a tacttgttt	c ttttcacgtt	ttcccattt	g ccctgtggct	1680
cactgtctt	a caatcactg	c tgtggaatc	a tgataccact	tttagctct	tgcatcttcc	1740
					t ttgagtactg	1800
acatcattg	a taaataaac	t ggcttgtgg	t ttcaataaa	a aaaaaaaaa	a aaaaaaaaaa	1860
aaaaaaaa	a aaaaa					1875

<210> 147

<211> 1161

<212> DNA <213> Homo sapiens

<400> 147

ggcgcctttc tcattattat aggctccctc ctgctgtcag gctacatcag caaagggggg 60 gcagaccggg ccgttccagt gctgatcatt ggcattctgg tgttcctacc cggattttac 120

cacctgcgca	tcgcttacta	tgcatccaaa	ggctaccgtg	gttactccta	tgatgacatt	180
ccagactttg	atgactagca	cccaccccat	agctgaggag	gagtcacagt	ggaactgtcc	240
cagctttaag	atatctagca	gaaactatag	ctgaggacta	aggaattctg	cagcttgcag	300
atgtttaaga	aaataatggc	cagatttttt	gggtccttcc	caaagatgtt	aagtgaacct	360
acagttagct	aattaggaca	agctctattt	ttcatccctg	ggccctgaca	agtttttcca	420
caggaatatg	tatcatggaa	gaatagaggt	tattctgtaa	tggaaaagtg	ttgcctgcca	480
	tagagctgag					540
agcaaatgga	acaatgtggt	atggctaatt	tcttattatt	aagtaattta	ttttaaaaat	600
atctgagtat	attatcctgt	acacttatcc	ctaccttcat	gttccagtgg	aagaccttag	660
taaaatcaaa	gatcagtgag	ttcatctgta	atatttttt	tacttgcttt	cttactgaca	720
gcaaccagga	. attttttta	tcctgcagag	caagttttca	aaatgtaaat	acttcctctg	780
tttaacagtc	cttggaccat	tctgatccag	ttcaccagta	. ggttggacag	catataattt	840
gcatcatttt	gtcccttgta	aatcaagatg	ttctgcagat	tattccttta	acggccggac	900
ttttggctgt	: ttcctaatga	aacatgtagt	ggttattatt	: tagagtttat	agccgtattg	960
ctagcacctt	gtagtatgtc	atcattctgc	tcatgattcc	aaggatcago	: ctggatgcct	1020
agaggactag	g atcaccttag	tttgattcta	ı ttttttagct	tgcaaaaagt	gacttatatt	1080
ccaaagaaat	taaaatgttg	aaatccaaat	: cctagaaata	a aaatgagtta	acttcaaaca	1140
tttcaaaaa	a aaaaaaaaa	. a				1163

<210> 148 <211> 2354

<212> DNA

<213> Homo sapiens

<400> 148 agegeegetg aattetagge agaaagaaaa gageteecaa atgetatate tateagggge 60 tctcaagaac aatggaatat catcctgatt tagaaaattt ggatgaagat ggatatactc 120 aattacactt cgactctcaa agcaatacca ggatagctgt tgtttcagag aaaggatcgt 180 gtgctgcatc tcctccttgg cgcctcattg ctgtaatttt gggaatccta tgcttggtaa 240 tactggtgat agctgtggtc ctgggtacca tgggggttct ttccagccct tgtcctccta 300 attggattat atatgagaag agctgttatc tattcagcat gtcactaaat tcctgggatg 360 gaagtaaaag acaatgctgg caactgggct ctaatctcct aaagatagac agctcaaatg 420 aattgggatt tatagtaaaa caagtgtctt cccaacctga taattcattt tggataggcc 480 tttctcggcc ccagactgag gtaccatggc tctgggagga tggatcaaca ttctcttcta 540

acttatttca gatcagaacc acagctaccc aagaa	aaccc atctccaaat tgtgtatgga 600
ttcacgtgtc agtcatttat gaccaactgt gtagt	gtgcc ctcatatagt atttgtgaga 660
agaagttttc aatgtaagag gaagggtgga gaagg	gagaga gaaatatgtg aggtagtaag 720
gaggacagaa aacagaacag aaaagagtaa cagct	gaggt caagataaat gcagaaaatg 780
tttagagagc ttggccaact gtaatcttaa ccaag	gaaatt gaagggagag gctgtgattt 840
ctgtatttgt cgacctacag gtaggctagt attat	ettttc tagttagtag atccctagac 900
atggaatcag ggcagccaag cttgagtttt tattt	etttat ttatttattt ttttgagata 960
gggtctcact ttgttaccca ggctggagtg cagtg	ggcaca atctcgactc actgcagcta 1020
tetetegeet cageceetea agtagetggg actac	caggtg catgccacca tgccaggcta 1080
atttttggtg ttttttgtag agactgggtt ttgc	catgtt gaccaagctg gtctctaact 1140
cctgggctta agtgatctgc ccgccttggc ctcc	caaagt gctgggatta cagatgtgag 1200
ccaccacacc tggccccaag cttgaatttt catto	ctgcca ttgacttggc atttaccttg 1260
ggtaagccat aagcgaatct taatttetgg etet	atcaga gttgtttcat gctcaacaat 1320
gccattggag tgcacggtgt gttgccacga tttg	accete aacttetage agtatateag 1380
ttatgaactg agggtgaaat atatttctga atag	ctaaat gaagaaatgg gaaaaaatct 1440
tcaccacagt cagagcaatt ttattatttt catc	agtatg atcataatta tgattatcat 1500
cttagtaaaa agcaggaact cctacttttt cttt	atcaat taaatagctc agagagtaca 1560
tctgccatat ctctaataga atctttttt tttt	tttttt tttgagacag agtttcgctc 1620
ttgttgccca ggctggagtg caacggcacg atct	eggete accgeaacet cegeceeetg 1680
ggttcaagca attctcctgc ctcagcctcc caag	stagctg ggattacagt caggcaccac 1740
cacacccggc taattttgta tttttttagt agag	gacaggg tttctccatg tcggtcaggg 1800
tagtcccgaa ctcctgacct caagtgatct gcct	egecteg geeteecaag tgetgggatt 1860
acaggogtga gocactgoac coagcotaga atot	tgtata atatgtaatt gtagggaaac 1920
tgctctcata ggaaagtttt ctgcttttta aata	acaaaaa taccataaaa atacataaaa 1980
tctgatgatg aatataaaaa gtaaccaacc tcat	ttggaac aagtattaac attttggaat 2040
atgttttatt agttttgtga tgtactgttt taca	aattttt accatttttt tccagtaatt 2100
acctgtaaaa tggtattatt ggaatgaaac tata	atttcct catgtgctga tttgtcttat 2160
tttttcata ctttcccact ggtgctattt tta	tttccaa tggatatttc tgtattacta 2220
gggaggcatt tacagtcctc taatgttgat taa	tatgtga aaagaaattg taccaatttt 2280
actaaattat gcagtttaaa atggatgatt tta	tgttatg tggatttcat ttcaataaaa 2340

aaaaactctt atta

PCT/US03/13015

<210> 149 <211> 2325 <212> DNA <213> Homo sapiens

<400> 149 acctcattca tttctaccgg tctctagtag tgcagcttcg gctggtgtca tcggtgtcct 60 tecteegetg eegeceege aaggettege egteategag gecattteea gegaettgte 120 gcacgctttt ctatatactt cgttccccgc caaccgcaac cattgacgcc atgtcgggtt 180 attcgagtga ccgagaccgc ggccgggacc gagggtttgg tgcacctcga tttggaggaa 240 gtagggcagg gcccttatct ggaaagaagt ttggaaaccc tggggagaaa ttagttaaaa 300 360 agaagtggaa tettgatgag etgeetaaat ttgagaagaa ttttateaa gageaceetg atttggctag gcgcacagca caagaggtgg aaacatacag aagaagcaag gaaattacag 420 ttagaggtca caactgcccg aagccagttc taaattttta tgaagccaat ttccctgcaa 480 atgtcatgga tgttattgca agacagaatt tcactgaacc cactgctatt caagctcagg 540 gatggccagt tgctctaagt ggattggata tggttggagt ggcacagact ggatctggga 600 aaacattgtc ttatttgctt cctgccattg tccacatcaa tcatcagcca ttcctagaga 660 gaggcgatgg gcctatttgt ttggtgctgg caccaactcg ggaactggcc caacaggtgc 720 agcaagtagc tgctgaatat tgtagagcat gtcgcttgaa gtctacttgt atctacggtg 780 qtqctcctaa gggaccacaa atacgtgatt tggagagagg tgtggaaatc tgtattgcaa 840 cacctggaag actgattgac tttttagagt gtggaaaaac caatctgaga agaacaacct 900 accttgtcct tgatgaagca gatagaatgc ttgatatggg ctttgaaccc caaataagga 960 agattgtgga tcaaataaga cctgataggc aaactctaat gtggagtgcg acttggccaa 1020 aagaagtaag acagcttgct gaagatttcc tgaaagacta tattcatata aacattggtg 1080 cacttgaact gagtgcaaac cacaacattc ttcagattgt ggatgtgtgt catgacgtag 1140 aaaaggatga aaaacttatt cgtctaatgg aagagatcat gagtgagaag gagaataaaa 1200 ccattgtttt tgtggaaacc aaaagaagat gtgatgagct taccagaaaa atgaggagag 1260 atgggtggcc tgccatgggt atccatggtg acaagagtca acaagagcgt gactgggttc 1320 taaatgaatt caaacatgga aaagctccta ttctgattgc tacagatgtg gcctccagag 1380 ggctagatgt ggaagatgtg aaatttgtca tcaattatga ctaccctaac tcctcagagg 1440 attatattca tcgaattgga agaactgctc gcagtaccaa aacaggcaca gcatacactt 1500 tetttacace taataacata aagcaagtga gegacettat etetgtgett egtgaageta 1560

atcaagcaat	taatcccaag	ttgcttcagt	tggtcgaaga	cagaggttca	ggtcgttcca	1620
ggggtagagg	aggcatgaag	gatgaccgtc	gggacagata	ctctgcgggc	aaaaggggtg	1680
gatttaatac	ctttagagac	agggaaaatt	atgacagagg	ttactctagc	ctgcttaaaa	1740
gagattttgg	ggcaaaaact	cagaatggtg	tttacagtgc	tgcaaattac	accaatggga	1800
gctttggaag	taattttgtg	tctgctggta	tacagaccag	ttttaggact	ggtaatccaa	1860
cagggactta	ccagaatggt	tatgatagca	ctcagcaata	cggaagtaat	gttccaaata	1920
tgcacaatgg	tatgaaccaa	caggcatatg	catatcctgc	tactgcagct	gcacctatga	1980
ttggttatcc	aatgccaaca	ggatattccc	aataagactt	tagaagtata	tgtaaatgtc	2040
tgtttttcat	aattgctctt	tatattgtgt	gttatctgac	aagatagtta	tttaagaaac	2100
atgggaattg	cagaaatgac	tgcagtgcag	cagtaattat	ggtgcacttt	ttcgctattt	2160
aagttggata	tttctctaca	ttcctgaaac	aatttttagg	tttttttgt	actagaaaat	2220
gcaggcagtg	ttttcacaaa	agtaaatgta	cagtgatttg	aaatacaata	atgaaggcaa	2280
tgcatggcct	tccaataaaa	aatatttgaa	gactgaaaaa	aaaaa		2325

<210> 150

<211> 2304

<212> DNA

<213> Homo sapiens

<400> 150 atttcggagc gagagccgag gccgggggaa gttcctgcgg agtgctcaag ggcagaagag 60 gtgccgcgtc ccgaagaggg gaagcggaga agtttgctgc tgcccgggtc gcctcgcgac 120 getgagagaa tegeecagee eteegeagee geecagegag aaceggaget geggeecege 180 accggcgtga gtccagctga gctgacacgc cgagccggtt gtgcctttcc gagggaggaa 240 tgtgccgtgg aatccaaact ttggaaaacg tcccacccga attcccagcg agcagcaagg 300 agaccagage gtcgatggag ccaccgttag ttgcgggtgg getgtcccca agaggaatte 360 atcactgtcg tccgctggga gggaccaacc ttgaaatggg gttggtggag agagggatag 420 agaagagccg gcgtgcttat aaataacaaa acttagctat gaacccttcc gattcccaag 480 tggggaagat ggggtaaaat tctaagtgac ttctcgctcc gaagagggat accacaaaaa 540 gcggagcgca gggtacttgg cgtataataa gccatcaata atttatgggt gaaattgaga 600 gccaaatata agatgataaa ctgaagaata aaaacagctg acaaatactg tatagaaaag 660 720 attgcgttgg aatcataact gtggattgga agtgatgtta aggattattg gattgagtat 780 ttgtagetga atttctgctg gcatttctat cagtggggaa agccctcaca gctccatagg taatttttgt taggggagga agaagtgttg ttctgtcacc cacccccagg caaagagtcg 840

			L	aattaattaa	ttacttactt	900
			tcctttcttt			
			ctccctccct			960
ttctttcctt	tctttctttg	aaacggagtt	tcgttcttgt	tgcccgcgct	ggagtgcagt	1020
gcagtgctgt	gatctcggct	cattgcaact	tccacctccc	gggttcgagg	gatcctcctg	1080
cctcagcctc	ccaagtagct	gggattacag	gcgcacgcca	ccgcacccgg	gtaattttgt	1140
atttttaata	gagacggggt	ttcaccatgt	tggccaggct	gtttgaactc	ctgacctcaa	1200
gtgatccgcc	cgcctcggcc	tctcaaagtg	ctgggattac	aggcgtgagc	caccaagtcc	1260
tgcctaatct	cctttttata	gttgaggaaa	gctagtaact	tgactgaagt	ctcatatatt	1320
agagctgtaa	ctgaagtttt	taagtgtctc	aattctgcaa	ctattcgttt	ttctatcaca	1380
tcactgtttg	gcatatatat	agcgggaaaa	ggaaaggctg	gaaattagtt	gaccacacac	1440
tgattaagct	tgaaacatat	ttctactgga	gaaaaaaagg	tactgtaatt	ttggcatagg	1500
catcacatat	tgctggagtg	gaaagaccca	tgcactcagg	tcctgctttc	tataatctgt	1560
gacctcgggc	cagtcactcc	atttctcctg	aactagatca	ctgatgatct	gttgaaagaa	1620
aaaatatggo	: tagtaatgcc	ttaattatct	cacagaggtt	ttacatggag	caaaaagaca	1680
atgtatttt	: aaatgtactt	tgttgaaggt	gtgtgttgtc	gagacaatac	agcagtgaag	1740
agaaggcatg	g caaagctgtc	ttgttggagt	ctggctaaag	agcaccaaag	cagcctgttg	1800
tgggatgtc	: tctgggggcc	acctggactt	gctatgttaa	catggaggga	ctaggcaggg	1860
gtatgaagaa	a ggaagcccag	cagagcagga	ggcagcagca	acaatgagag	attggttatc	1920
catatgactt	ggatctgtgt	: ccccacccaa	atctcatgtt	gaattgtaat	ccccaatgtt	1980
ggaggtggg	g actggtggga	ı ggtgactgga	tcatgggggt	ggatttctta	ı tgaatggttt	2040
					aatctggtca	2100
ttgaaaaat	a tgtggcacct	catacatata	: tattttgata	: ctgccccgg	tatatgatgc	2160
aatttgtct	t cagccatgat	tgtaagttt	c ccgaggcctc	: cccagaagct	gagcagatgc	2220
					tttcctttac	2280
aaattaaaa	a aaaaaaaaa	a aaaa				2304

<210> 151

<211> 1582

<212> DNA

<213> Homo sapiens

<400> 151

taatggccgc tggctatctt gggggagcca gctgttggac tatgccccac tgccaggaaa 60 caggcgccgg aaggttctct gacaagatct cgctttccta gggcggtgaa ggcgttcaaa 120

						180
ggtcgggaag	gggcgctggg	agaagcgggg	cagcgctgag	ccatgctcgc	gaactgtggg	
tctgtctgtg	aagagaccca	gtttcgtggg	accacggtgg	cgcctgcgct	gggaggtgag	240
cttgtgacag	agcgaaaact	acaattccca	gcattcctgt	ggtgccagaa	ctaccttgcc	300
cgaaagcctg	tgcgagattt	accccgtctt	ccgcctccct	cccaccggaa	aactctgagg	360
acatgaatag	tcgccaggct	tggcggctct	ttctctccca	aggcagagga	gatcgttggg	420
tttcaaggcc	ccgcgggcat	ttctcgccgg	ccctgcggag	agagttcttc	actaccacaa	480
ccaaggaggg	atatgatagg	cggccagtgg	atataactcc	tttagaacaa	aggaaattaa	540
cttttgatac	ccatgcattg	gttcaggact	tggaaactca	tggatttgac	aaaacacaag	600
cagaaacaat	tgtatcagcg	ttaactgctt	tatcaaatgt	cagcctggat	actatctata	660
aagagatggt	cactcaagct	caacaggaaa	taacagtaca	acagctaatg	gctcatttgg	720
atgctatcag	gaaagacatg	gtcatcctag	agaaaagtga	atttgcaaat	ctgagagcag	780
agaatgagaa	aatgaaaatt	gaattagacc	aagttaagca	acaactaatg	catgaaacca	840
gtcgaatcag	agcagataat	aaactggata	tcaacttaga	aaggagcaga	gtaacagata	900
tgtttacaga	. tcaagaaaag	caacttatgg	aaacaactac	agaatttaca	aaaaaggata	960
ctcaaaccaa	aagtattatt	tcagagacca	gtaataaaat	tgacgctgaa	attgcttcct	1020
taaaaacact	gatggaatct	aacaaacttg	agacaattcg	ttatcttgca	gcttcggtgt	1080
ttacttgcct	ggcaatagca	ttgggatttt	atagattctg	gaagtagtat	taatgctcat	1140
cctgctgtgg	g ctgttggctt	cttagaacac	caaaccggga	gagatttact	ttgaacattg	1200
tcagttgcag	g caaaaattta	ctacacaaga	. ttattcgaag	ı tgtatacgga	ctaaaagagg	1260
aagtgtttt	a gaatgagaag	g agatactgtg	tctttattgt	gtgtgtgtga	gtgcaggtgt	1320
gtgtctttat	tatattgaaa	agctgtcact	: cagacctggt	ttgagataga	agagcatttt	1380
gtccttttga	a tagttaatag	g aaattgaacc	: agagttttct	tatgtttgct	tgaacagttg	1440
tgtaaatca	t acaggatttt	gtgggtattg	g gttgaatatt	tgtaaaccat	tccctagcct	1500
acatattta	t tactgaatta	a actttcctga	a taaccattgo	c ataattacat	ttttctataa	1560
aatgaaaga	t tattacaaca	a aa				1582

<210> 152

<211> 515

<212> DNA

<213> Homo sapiens

<400> 152

cttttcctcc ttggctgtct gaagatagat cgccatcatg aacgacaccg taactatccg 60 cactagaaag ttcatgacca accgactact tcagaggaaa caaatggtca ttgatgtcct 120

tcaccccggg	aaggcgacag	tgcctaagac	agaaattcgg	gaaaaactag	ccaaaatgta	180
caagaccaca	ccggatgtca	tctttgtatt	tggattcaga	actcattttg	gtggtggcaa	240
gacaactggc	tttggcatga	tttatgattc	cctggattat	gcaaagaaaa	atgaacccaa	300
acatagactt	gcaagacatg	gcctgtatga	gaagaaaaag	acctcaagaa	agcaacgaaa	360
ggaacgcaag	aacagaatga	agaaagtcag	ggggactgca	aaggccaatg	ttggtgctgg	420
caaaaagccg	aaggagtaaa	ggtgctgcaa	tgatgttagc	tgtggccact	gtggattttt	480
cgcaagaaca	ttaataaact	aaaaacttca	tgtgt			515

<210> 153

<211> 2967

<212> DNA

<213> Homo sapiens

<400> 153

ceggaactgc agttgctgct gcagctgagg tacageggeg gtttctgagg ttcttcactc 60 gcgactgacg gagctgcggt ggcgtctcca cacgcaacca tgaagttgaa ggacacaaaa 120 tcaaggccaa agcagtcaag ctgtggcaaa tttcagacaa agggaatcaa agttgtggga 180 aaatggaagg aagtgaagat tgacccaaat atgtttgcag atggacagat ggatgacttg 240 gtgtgctttg aggaattgac agattaccag ttggtctccc ctgccaagaa tccctccagt 300 ctcttctcaa aggaagcacc caagagaaag gcacaagctg tttcagaaga agaggaggag 360 gaggagggaa agtctagctc accaaagaaa aagatcaagt tgaagaaaag taaaaatgta 420 gcaactgaag gaaccagtac ccagaaagaa tttgaagtga aagatcctga gctggaggcc 480 cagggagatg acatggtttg tgatgatccg gaggctgggg agatgacatc agaaaacctg 540 gtccaaactg ctccaaaaaa gaagaaaaat aaagggaaaa aagggttgga gccttctcag 600 agcactgctg ccaaggtgcc caaaaaagcg aagacatgga ttcctgaagt tcatgatcag 660 aaagcagatg tgtcagcttg gaaggacctg tttgttccca ggccggttct ccgagcactc 720 agetttetag gettetetge acceacacea atecaagece tgacettgge acctgecate 780 cgtgacaaac tggacatcct tggggctgct gagacaggaa gtgggaaaac tcttgccttt 840 gccatcccaa tgattcatgc ggtgttgcag tggcagaaga ggaatgctgc ccctcctcca 900 agtaacaccg aagcaccacc tggagagacc agaactgagg ccggagctga gactagatca 960 ccaggcaagg ctgaagctga gtctgatgca ttgcctgacg atactgtaat tgagagtgaa 1020 gcactgccca gtgatattgc agccgaggcc agagccaaga ctggaggcac tgtctcagac 1080 caggegttge tetttggtga egatgatget ggtgaaggge ettetteeet gatcagggag 1140 aaacctgttc ccaaacagaa tgagaatgag gaggaaaatc ttgataaaga gcagactgga 1200

aatctaaaac	aggagttgga	tgacaaaagc	gccacctgta	aggcatatcc	aaagcgtcct	1260
ctgcttggac	tggttctgac	tcccactcga	gagctggccg	tccaggtcaa	acagcacatt	1320
gatgctgtgg	ccaggtttac	aggaattaaa	actgctattt	tggttggtgg	aatgtccacg	1380
cagaaacagc	agaggatgct	gaaccgtcgt	cctgagattg	tggttgctac	tccaggccgg	1440
ctgtgggaat	taattaaaga	aaagcattat	catttgagga	accttcggca	gctcaggtgc	1500
ctggtagtgg	atgaggctga	ccggatggtt	gagaaaggcc	attttgctga	gctctcacag	1560
ctgctagaga	tgctcaatga	ctcccaatac	aacccaaaga	gacaaacgct	tgttttttct	1620
gccacactca	ccctggtgca	tcaggctcct	gctcgaatcc	ttcataagaa	gcacaccaag	1680.
aaaatggata	aaacagccaa	acttgacctc	cttatgcaga	aaattggcat	gaggggcaag	1740
cccaaggtca	ttgacctcac	aaggaatgag	gccacggtgg	agacgctaac	agagaccaag	1800
atccattgtg	agactgatga	gaaagacttc	tacttgtact	acttcctgat	gcagtatcca	1860
ggccgcagct	tagtgtttgc	caacagtatc	tcctgcatca	aacgcctctc	tgggctcctc	1920
aaagtccttg	atatcatgcc	cttgaccctg	catgcctgta	tgcaccagaa	gcagaggctc	1980
agaaacctgg	agcagtttgc	ccgtctggaa	gactgtgttc	tcttggcaac	agatgtggca	2040
gctcggggtc	: tggatattcc	taaagtccag	catgtcatcc	attaccaggt	cccacgtacc	2100
teggagattt	atgtccaccg	aagtggtcga	actgctcgag	ctaccaatga	aggcctcagt _.	2160
ctgatgctca	ı ttgggcctga	ggatgtgatc	aactttaaga	agatttacaa	aacgctcaag	2220
aaagatgagg	g atatcccact	gttccccgtg	cagacaaaat	acatggatgt	ggtcaaggag	2280
cgaatccgtt	: tagctcgaca	gattgagaaa	. tctgagtatc	ggaacttcca	ggcttgcctg	2340
cacaactctt	ggattgagca	. ggcagcagct	gccctggaga	ttgagctgga	agaagacatg	2400
tataagggag	g gaaaagctga	ccagcaagaa	gaacgtcgga	gacaaaagca	gatgaaggtt	2460
ctgaagaag	g agctgcgcca	cctgctgtcc	: cagccactgt	ttacggagag	ccagaaaacc	2520
aagtatccc	a ctcagtctgg	g caageegeed	ctgcttgtgt	ctgccccaag	taagagcgag	2580
tatgatttga	a gctgtctctc	caagcagaag	g aagaagaaga	caaagaagco	gaaggagcca	2640
cagccggaa	c agccacagco	c aagtacaagt	gcaaattaac	tggtcaagtg	g tgtcagtgac	2700
tgcacattg	g tttctgttct	ctggctattt	gcaaaacctc	tcccaccctt	gtgtttcact	2760
ccaccacca	a ccccaggtaa	a aaaagtctco	c ctctcttcca	. ctcacaccca	a tagegggaga	2820
gacctcatg	c agatttgcat	tgttttggag	g taagaattca	atgcagcago	c ttaatttttc	2880
tgtattgca	g tgtttatagg	g cttcttgtg	t gttaaacttg	, atttcataaa	a ttaaaaacaa	2940
tggtcagaa	a aaaaaaaaaa	a aaaaaaa				2967

<210> 154 <211> 2704 <212> DNA

<213> Homo sapiens

<400> 154 gcttagtgta accagcggcg tatatttttt aggcgccttt tcgaaaacct agtagttaat 60 attcatttgt ttaaatctta ttttattttt aagctcaaac tgcttaagaa taccttaatt 120 ccttaaagtg aaataatttt ttgcaaaggg gtttcctcga tttggagctt ttttttctt 180 ccaccgtcat ttctaactct taaaaccaac tcagttccat catggtgatg ttcaagaaga 240 tcaagtcttt tgaggtggtc tttaacgacc ctgaaaaggt gtacggcagt ggcgagaggg 300 tggctggccg ggtgatagtg gaggtgtgtg aagttactcg tgtcaaagcc gttaggatcc 360 tggcttgcgg agtggctaaa gtgctttgga tgcagggatc ccagcagtgc aaacagactt 420 cggagtacct gcgctatgaa gacacgcttc ttctggaaga ccagccaaca ggtgagaatg 480 agatggtgat catgagacct ggaaacaaat atgagtacaa gttcggcttt gagcttcctc 540 aggggcctct gggaacatcc ttcaaaggaa aatatgggtg tgtagactac tgggtgaagg 600 cttttcttga ccgcccgagc cagccaactc aagagacaaa gaaaaacttt gaagtagtgg 660 720 aagtttcctg catgttcatt cctgatgggc gggtgtctgt ctctgctcga attgacagaa 780 aaggattctg tgaaggtgat gagatttcca tccatgctga ctttgagaat acatgttccc 840 gaattgtggt ccccaaagct gccattgtgg cccgccacac ttaccttgcc aatggccaga 900 ccaaggtgct gactcagaag ttgtcatcag tcagaggcaa tcatattatc tcagggacat 960 gcgcatcatg gcgtggcaag agccttcggg ttcagaagat caggccttct atcctgggct 1020 gcaacatcct tcgagttgaa tattccttac tgatctatgt tagcgttcct ggatccaaga 1080 aggtcatcct tgacctgccc ctggtaattg gcagcagatc aggtctaagc agcagaacat 1140 ccagcatggc cagccgaacc agctctgaga tgagttgggt agatctgaac atccctgata 1200 ccccagaagc tcctccctgc tatatggatg tcattcctga agatcaccga ttggagagcc 1260 caacaactcc tctgctagat gacatggatg gctctcaaga cagccctatc tttatgtatg 1320 1380 cccctgagtt caagttcatg ccaccaccga cttatactga ggtggatccc tgcatcctca acaacaatgt gcagtgagca tgtggaagaa aagaagcagc tttacctact tgtttctttt 1440 tgtctctctt cctggacact cactttttca gagactcaac agtctcgtca atggagtgtg 1500 ggtccacctt agcctctgac ttcctaatgt aggaggtggt cagcaggcaa tctcctgggc 1560 cttaaaggat gcggactcat cctcagccag cgcccatgtt gtgatacagg ggtgtttgtt 1620 ggatgggttt aaaaataact agaaaaactc aggcccatcc attttctcag atctccttga 1680

aaattgaggc	cttttcgata	gtttcgggtc	aggtaaaaat	ggcctcctgg	cgtaagcttt	1740
tcaaggtttt	ttggaggctt	tttgtaaatt	gtgataggaa	ctttggacct	tgaacttacg	1800
tatcatgtgg	agaagagcca	atttaacaaa	ctaggaagat	gaaaagggaa	attgtggcca	1860
aaactttggg	aaaaggaggt	tcttaaaatc	agtgtttccc	ctttgtgcac	ttgtagaaaa	1920
aaaagaaaaa	ccttctagag	ctgatttgat	ggacaatgga	gagagctttc	cctgtgatta	1980
taaaaaagga	agctagctgc	tctacggtca	tctttgctta	gagtatactt	taacctggct	2040
tttaaagcag	tagtaactgc	cccaccaaag	gtcttaaaag	ccatttttgg	agcctattgc	2100
actgtgttct	cctactgcaa	atattttcat	atgggaggat	ggttttctct	tcatgtaagt	2160
ccttggaatt	gattctaagg	tgatgttctt	agcactttaa	ttcctgtcaa	attttttgtt	2220
ctccccttct	gccatcttaa	atgtaagctg	aaactggtct	actgtgtctc	tagggttaag	2280
ccaaaagaca	aaaaaaattt	tactactttt	gagattgccc	caatgtacag	aattatataa	2340
ttctaacgct	taaatcatgt	gaaagggttg	ctgctgtcag	ccttgcccac	tgtgacttca	2400
aacccaagga	. ggaactcttg	atcaagatgc	ccaaccctgt	gatcagaacc	tccaaatact	2460
gccatgagaa	actagagggc	aggtgttcat	aaaagccctt	tgaaccccct	tcctgccctg	2520
tgttaggaga	tagggatatt	ggcccctcac	tgcagctgcc	agcacttggt	cagtcactct	2580
cagccatago	: actttgttca	ctgtcctgtg	tcagagcact	gagetecace	cttttctgag	2640
agttattaca	ı gccagaaagt	gtgggctgaa	gatggttggt	ttcatgtggg	ggtattatgt	2700
accc						2704

<210> 155

<211> 1199

<212> DNA

<213> Homo sapiens

<400> 155 actcccaacg agcgcccaag aagaaaatgg ccataagtgg agtccctgtg ctaggatttt 60 tcatcatagc tgtgctgatg agcgctcagg aatcatgggc tatcaaagaa gaacatgtga 120 tcatccaggc cgagttctat ctgaatcctg accaatcagg cgagtttatg tttgactttg 180 atggtgatga gattttccat gtggatatgg caaagaagga gacggtctgg cggcttgaag 240 aatttggacg atttgccagc tttgaggctc aaggtgcatt ggccaacata gctgtggaca 300 aagccaacct ggaaatcatg acaaagcgct ccaactatac tccgatcacc aatgtacctc 360 cagaggtaac tgtgctcacg aacagccctg tggaactgag agagcccaac gtcctcatct 420 gtttcatcga caagttcacc ccaccagtgg tcaatgtcac gtggcttcga aatggaaaac 480 ctgtcaccac aggagtgtca gagacagtct tcctgcccag ggaagaccac cttttccgca 540

agttccacta	tctccccttc	ctgccctcaa	ctgaggacgt	ttacgactgc	agggtggagc	600
actggggctt	ggatgagcct	cttctcaagc	actgggagtt	tgatgctcca	agccctctcc	660
cagagactac	agagaacgtg	gtgtgtgccc	tgggcctgac	tgtgggtctg	gtgggcatca	720
ttattgggac	catcttcatc	atcaagggag	tgcgcaaaag	caatgcagca	gaacgcaggg	780
ggcctctgta	aggcacatgg	aggtgatgat	gtttcttaga	gagaagatca	ctgaagaaac	840
ttctgcttta	atgactttac	aaagctggca	atattacaat	ccttgacctc	agtgaaagca	900
gtcatcttca	gcgttttcca	gccctatagc	caccccaagt	gtggttatgc	ctcctcgatt	960
gctccgtact	ctaacatcta	gctggctttc	cctgtctatt	gccttttcct	gtatctattt	1020
tcctctattt	cctatcattt	tattatcacc	atgcaatgcc	tctggaataa	aacatacagg	1080
agtctgtctc	tgctatggaa	tgccccatgg	ggctctcttg	tgtacttatt	gtttaaggtt	1140
tcctcaaact	gtgattttc	tgaacacaat	aaactatttt	gatgatcttg	ggtggaaaa	1199

<210> 156

<211> 1603 <212> DNA

<213> Homo sapiens

<400> 156 ttttttttt ttttctttct tttttgggcc ctcataataa gcattgttac tattggaagt 60 tgttttcaca ttctttccaa tattaaatat gtatttttt aagtaatgat aatattttcc 120 agtggctcat ttggatgaga actaccctct atttttaata ttaaaactac atccaactca 180 tcatttagcc tttggttgta cagttgtgta atgggctatg gactgttaca caccttacca 240 cctctaggcc tatgtttttt ctttccccat atattctgat ggggataaat actgttttgc 300 ctctcccata ggaatggaat acatttattc taaaatgatc tttcacagaa gtaagagaga 360 gggaaaccta aatatacctc taaattgttt gaagttggtc ccagcagcat aaaatgggtt 420 ggccccaaag ggttggaggg tgggcttggt tatcagtatt tgttttcaga atgagatggg 480 agcatctttc ctttgccacg tgctttgtgc ttgataacat catgcttggt tcaaacgaca 540 actcagcaca aagccttgag tataaattgt tggaatcaaa acatctcatt ctgatgacgt 600 660 ggtttaattt tttaattttt ttttttaata ggggtgggag ggagggtact ttgccccaaa agggagggtg tctgcactaa ggatttagaa acactttgga agctcataac ctcatcagaa 720 actgccttta gccacactcc tgaccttcta gatgagtaac aaaaaaatga aataagttct 780 tggaaattaa gccatttatt ttaatttgct attttttca atgttctagg tatctttaaa 840 tattgtggaa tcattttcct gccagatacc tttatcaaaa ttattggcct catgagagct 900 960 gaagtaagtc agctttttgg tgaactttag tggacttctg tgagattgta gttgtacttt

•	gtatctctaa	atctaaagat	agttttttaa	aactcccaaa	gaaaatctgc	tctcctttct	1020
	gatctaaaaa	ctcatctttg	gggtaaagag	ttaagtgtcc	aaaggttgtc	acagttcatg	1080
	aggtcagagg	gagctagcct	ggcacctgga	ctctgcccat	ccacagctga	cagattccaa	1140
	cagaagtgta	tttaaattct	ccagtagaca	atgctgggta	agggagggg	tagggctggg	1200
	ttattaagat	acaggctgct	gtattttaca	ttggttatgg	gggaagggga	gcctggagaa	1260
	aacaaagtca	ctattccctt	ttttgaaaca	ggaaaaaaaa	ttattttttg	ttcagtaaaa	1320
	atggtagaga	attccaatgt	ccctagccac	aagggaccag	ttccactgag	aagtgaacag	1380
	tgggaactca	aaatttcaga	aacattgggg	gaagggaaaa	ttggctttct	cttaattggc	1440
	agatgttcca	gtggggggg	ggggggctc	tgtttttgtt	gggatgtgtt	atgttgtatg	1500
	tacgcatata	tggaccggag	tctgctgagt	ttataaggtt	ccaaaaatat	ggtaaaatct	1560
	tggtttttgt	taatttatct	caataaaagc	ccactggaac	tcc		1603

<210> 157 <211> 2439

<212> DNA

<213> Homo sapiens

<400> 157 gcctactgga attggccagc atcatcatga tctttctgac tgcactggcc acgttcatcg 60 tcatcctgcc tggcattcgg ggaaagacga ggctgttctg gctgcttcgg gtggtgacca 120 gcttattcat cggggctgca atcctggctg tgaatttcag ttctgagtgg tctgtgggcc 180 aggtcagcac caacacatca tacaaggcct tcagttctga gtggatcagc gctgatattg 240 ggctgcaggt cgggctgggt ggagtcaaca tcacactcac agggaccccc gtgcagcagc 300 tgaatgagac catcaattac aacgaggagt tcacctggcg cctgggtgag aactatgctg 360 aggagtatgc aaaggctctg gagaaggggc tgccagaccc tgtgttgtac ctagctgaga 420 agttcactcc aagaagccca tgtggcctat accgccagta ccgcctggcg ggacactaca 480 cctcagccat gctatgcagg tagaagtacc tgggccagtc ctcactgggt cctggctctc 540 cagggtggca ttcctctgct ggctgctggc caatgtgatg ctctccatgc ctgtgctggt 600 atatggtggc tacatgctat tggccacggg catcttccag ctgttggctc tgctcttctt 660 ctccatggcc acatcactca cctcaccctg tcccctgcac ctgggcgctt ctgtgctgca 720 tactcaccat gggcctgcct tctggatcac attgaccaca ggactgctgt gtgtgctgct 780 gggcctggct atggcggtgg cccacaggat gcagcctcac aggctgaagg ctttcttcaa 840 ccagagtgtg gatgaagacc ccatgctgga gtggagtcct gaggaaggtg gactcctgag 900 ccccgctac cggtccatgg ctgacagtcc caagtcccag gacattcccc tgtcagaggc 960

ttcctccacc a	aaggcatact (gtaaggaggc	acaccccaaa	gatcctgatt	gtgctttata	1020
acattcctcc (ccgtggaggc (cacctggact	tccagtctgg	ctccaaacct	cattggcgcc	1080
ccataaaacc a	agcagaactg (ccctcagggt	ggctgttacc	agacacccag	caccaatcta	1140
cagacggagt a	agaaaaagga 🤉	ggctctatat	actgatgtta	aaaaacaaaa	caaaacaaaa	1200
agccctaagg	gactgaagag	atgctgggcc	tgtccataaa	gcctgttgcc	atgataaggc	1260
caagcagggg	ctagcttatc	tgcacagcaa	cccagccttt	ccgtgctgcc	ttgcctcttc	1320
aagatgctat	tcactgaaac	ctaacttcac	ccccataaca	ccagcagggt	gggggttaca	1380
tatgattctc	ctatggtttc	ctctcatccc	teggeacete	ttgttttcct	ttttcctggg	1440
ttccttttgt	tcttccttta	cttctccagc	ttgtgtggcc	ttttggtaca	atgaaagaca	1500
gcactggaaa	ggaggggaaa	ccaaacttct	catcctaggt	ctaacattaa	ccaactatgc	1560
cacattcttt	teegtggege	ctcggaggcg	ttcagctgct	tcaagatgaa	gctgaacatc	1620
tccttcccag	ccactggcct	gccagaaact	cattgaagtg	gacggatgaa	cgcaaacttc	1680
gtactttcta	tgagaagcgt	atggccacag	aagttgctgc	tgacgctctg	ggtgaagaat	1740
ggaagggtta	tgtggtccga	atcagtggtg	ggaacgacaa	acaaggttto	cccatgaagc	1800
agggtgtctt	gacccatggc	cgtgtccgcc	tgctactgag	taaggggcat	tcctgttaca	1860
gaccaaggag	aactggagaa	agaaagagaa	aatcagttcg	tggttgcatt	gtggatgcaa	1920
atctgagcgt	tctcaacttg	gttattgtaa	aaaaaggaga	gaaggatatt	: cctggactga	1980
ctgatactac	agtgcctcgc	cgcctgggcc	ccaaaagago	: tagcagaato	c cgcaaacttt	2040
tcaatctctc	taaagaagat	gatgtccgcc	agtatgttgt	aagaaagcc	ttaaataaag	2100
aaggtaagaa	acctaggacc	aaagcaccca	agattcagco	g tcttgttact	ccacgtgtcc	2160
tgcagcacaa	acggcggcgt	attgctctga	agaagcagc	g taccaagaaa	a aataaagaag	2220
aggctgcaga	atatgctaaa	ccttttggcc	: aagagaatga	a aggaggcta	a ggagaagcgc	2280
caggaacaaa	ttgcgaagag	acgcagactt	tectetetge	c gagetteta	c ttctaagtct	2340
gaatccagtc	agaaataaga	. ttttttgagt	: aacaaataa	a taagatcag	a ctctgaaaaa	2400
aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	a aaaaaaaaa			2439

<210> 158

<211> 1444

<212> DNA

<213> Homo sapiens

<400> 158
gtttctctta tttatgcctt gaggactaat ttctggttt ctagctgtta atgcactgtt
gaccttcata atggtgcctt acgcaagcga tcccttctgt gggggtctca tacaggggtg 120

tgggcgatgc	atgctttatt	aaggctcttg	tttcacctgg	cagtgtactg	tatcaacgta	180
taatacagaa	aaaaaatctc	tttaaggtcc	tccttcacaa	agacatagag	tgaaactccc	240
tttacatgtc	agtatttgtt	caacacttta	ggcaacttga	ctgtcagtgt	taaaatggaa	300
aacaggaaaa	tggaaaaatc	tgaccaattc	tgccaccctg	agactttcat	atagaccttg	360
cacaacaatt	gtatagatca	cacaccggct	gtatttaata	tgtaacattt	tcacacatat	420
taaagataca	gaagtattaa	aaaaccccca	atgttaatgt	atttgcttaa	aaggcacaag	480
tttcacatat	ctgtctagct	atctgttggt	aatacagaaa	gtatactact	ttttaaaaa	540
agtgggcaga	attcttgtgt	atgtatattt	gtgtgtacag	tatgtgtatg	tgtgtatata	600
tatatattat	atatatagat	aatatataaa	tattttttt	aaggagaaac	tagaacgttt	660
agctagaaaa	ttccacagcc	tgtgaagaaa	tatttcaaaa	tggccataaa	ggaggtaaaa	720
atgaaaaacc	ataacctaac	ttttatagag	gctttatctt	taatttaacg	atgtgcggag	780
gactttcttg	cttgaatctg	ttccgggctg	tctgctctgt	ccatcaaatg	ggcaggtctg	840
gaatgaggca	. ccttcggccg	ttcagaagtg	gcctgaacag	aatgctggaa	cccaggctgg	900
actcggacac	actaaggttt	tgattttgaa	tttcagcctt	attagaagat	ctaacctaag	960
agtaagctaa	. ccacagggat	tcttttgtag	aacacttttt	atgcagatga	agctattttt	1020
tccagcaagt	agattettee	agtttttcca	aggagtaatt	tccccgaatt	ggcataccac	1080
ggcgtggaca	gctgatattt	cacccagctg	ctggcttgtg	ggtgtggctc	tttgctttat	1140
atatatata	acacatgtga	gtctggctgg	gctggtattt	tgtttgatct	tcctggaaat	1200
gagcagtgad	c taacgctcac	ataactggtt	tttttttctt	atctgggctg	atgaatacat	1260
ttacctaaga	a aactcattto	gttttactta	agaggggaag	tgcagttttc	: ttttggcagt	1320
tcagaatcc	a agcacttgat	ttgctgggtt	tggaaaacto	cttttttggc	: cttctatgtg	1380
cttagccata	a acaattccat	: taagcaagaa	ggtaagcaaa	ı agacaaaaa	a aaaaaaaaaa	1440
aaaa						1444
<210> 15 <211> 12 <212> DN <213> Ho	33					
<400> 15 ccccactgg	9 c tgctctgaaa	a agccatctt	gcattgttco	c teateegeet	t cattgataga	60
cgcagccgc	c teegeegeg	c geeteeteeg	g cegeegegg	a ctccggcag	c tttatcgcca	120
gagtccctg	a actctcgct	t tctttttaat	cccctgcate	ggatcaccg	g cgtgcccac	180

catgtcagac gcagccgtag acaccagctc cgaaatcacc accaaggact taaaggagaa 240

gaaggaagtt	gtggaagagg	cagaaaatgg	aagagacgcc	cctgctaacg	ggaatgctaa	300
tgaggaaaat	ggggagcagg	aggctgacaa	tgaggtagac	gaagaagagg	aagaaggtgg	360
ggaggaagag	gaggaggaag	aagaaggtga	tggtgaggag	gagggtggag	atgaagatga	420
ggaagctgag	tcagctacgg	gcaagcgggc	agctgaagat	gatgaggatg	acgatgtcga	480
taccaagaag	cagaagaccg	acgaggatga	ctagacagca	aaaaaggaaa	agttaaacta	540
aaaaaaaaa	ggccgccgtg	acctattcac	cctccacttc	ccgtctcaga	atctaaacgt	600
ggtcaccttc	gagtagagag	gcccgcccgc	ccaccgtggg	cagtgccacc	cgcagatgac	660
acgcgctctc	caccacccaa	cccaaaccat	gagaatttgc	aacaggggag	gaaaaaagaa	720
ccaaaacttc	caaggccctg	ctttttttct	taaaagtact	ttaaaaagga	aatttgtttg	780
tatttttat	ttacatttta	tatttttgta	catattgtta	gggtcagcca	tttttaatga	840
tctcggatga	ccaaaccagc	cttcggagcg	ttctctgtcc	tacttctgac	tttacttgtg	900
gtgtgaccat	gttcattata	atctcaaagg	agaaaaaaaa	ccttgtaaaa	aaagcaaaaa	960
tgacaacaga	aaaacaatct	tattccgagc	attccagtaa	cttttttgtg	tatgtactta	1020
gctgtactat	aagtagttgg	tttgtatgag	atggttaaaa	aggccaaaga	taaaaggttt	1080
ctttttttt	ccttttttgt	ctatgaagtt	gctgtttatt	ttttttggcc	tgtttgatgt	1140
atgtgtgaaa	caatgttgtc	caacaataaa	caggaatttt	attttgctga	gttgttctaa	1200
cagaaaaaaa	aaaaaaaaa	aaaaaaaaaa	aaa			1233
	9 o sapiens					
<400> 160 ggggagatag	gtaggagtag	cgtggtaagg	gcgatgagtg	tgggccgggc	: gggagtgcgg	60
cgagagccgg	ctggctgagc	: ttagcgtccg	aggaggcggc	: ggcggcggc	gcggcagcgg	120
cggcggcggg	gctgtgggg	ggtgcggaag	cgagaggcga	ggagcgcgcg	g ggccgtggcc	180
agagtctggc	: ggcggcctgg	g cggagcggag	agcagcgccc	gegeetegee	gtgcggagga	240
gccccgcaca	caatagcggc	gegegeagee	: cgcgcccttc	c cccccggcgc	gecegeece	300
gcgcgccgac	g egeceegete	c cgcctcacct	gccaccaggg	g agtgggcggg	g cattgttcgc	360
cgccgccgcc	geegegegg	g gccatggggg	g ccgcccggcg	g cccggggccg	g ggcctggcga	420
ggccgccgcg	g ccgccgctga	a gacgggccc	gegegeage	c cggcggcgca	a ggtaaggccg	480

540

600

gccgcgccat ggtggacccg gtgggcttcg cggaggcgtg gaaggcgcag ttcccggact

cagagecece gegeatggag etgegeteag tgggegaeat egageaggag etggageget

gcaaggcctc cattcggcgc ctggagcagg aggtgaacca ggagcgcttc cgcatgatct	660
acctgcagac gttgctggcc aaggaaaaga agagctatga ccggcagcga tggggcttcc	720
ggcgcgcggc gcaggccccc gacggcgcct ccgagccccg agcgtccgcg tcgcgcccgc	780
agccagegee egeegaegga geegaeeege egeeegeega ggageeegag geeeggeeeg	840
acggcgaggg ttctccgggt aaggccaggc ccgggaccgc ccgcaggccc ggggcagccg	900
cgtcggggga acgggacgac cggggacccc ccgccagcgt ggcggcgctc aggtccaact	960
	1020
	1080
accgcatcag ctccctgggc agccaggcca tgcagatgga gcgcaaaaag tcccagcacg	1140
gcgcgggctc gagcgtgggg gatgcatcca ggccccctta ccggggacgc tcctcggaga	1200
gcagctgcgg cgtcgacggc gactacgagg acgccgagtt gaacccccgc ttcctgaagg	1260
acaacctgat cgacgccaat ggcggtagca ggcccccttg gccgcccctg gagtaccagc	1320
cctaccagag catctacgtc gggggcatga tggaagggga gggcaagggc ccgctcctgc	1380
gcagccagag cacctctgag caggagaagc gccttacctg gccccgcagg tcctactccc	1440
cccggagttt tgaggattgc ggaggcggct ataccccgga ctgcagctcc aatgagaacc	1500
tcacctccag cgaggaggac ttctcctctg gccagtccag ccgcgtgtcc ccaagcccca	1560
ccacctaccg catgttccgg gacaaaagcc gctctccctc gcagaactcg caacagtcct	1620
tcgacagcag cagtcccccc acgccgcagt gccataagcg gcaccggcac tgcccggttg	1680.
tcgtgtccga ggccaccatc gtgggcgtcc gcaagaccgg gcagatctgg cccaacgatg	1740
gcgagggcgc cttccatgga gacgcagatg gctcgttcgg aacaccacct ggatacggct	1800
gcgctgcaga ccgggcagag gagcagcgcc ggcaccaaga tgggctgccc tacattgatg	1860
actegecete eteategece caceteagea geaagggeag gggeageegg gatgegetgg	1920
tctcgggagc cctggagtcc actaaagcga gtgagctgga cttggaaaag ggcttggaga	1980
tgagaaaatg ggtcctgtcg ggaatcctgg ctagcgagga gacttacctg agccacctgg	2040
aggcactgct gctgcccatg aagcctttga aagccgctgc caccacctct cagccggtgc	2100
tgacgagtca gcagatcgag accatcttct tcaaagtgcc tgagctctac gagatccaca	2160
aggagttcta tgatgggctc ttcccccgcg tgcagcagtg gagccaccag cagcgggtgg	2220
gcgacctctt ccagaagctg gccagccagc tgggtgtgta ccgggccttc gtggacaact	2280
acggagttgc catggaaatg gctgagaagt gctgtcaggc caatgctcag tttgcagaaa	2340
tctccgagaa cctgagagcc agaagcaaca aagatgccaa ggatccaacg accaagaact	2400

ctctggaaac tctgctctac aagcctgtgg accgtgtgac gaggagcacg ctggtcctcc 2	2460
	2520
	2580
	2640
	2700
	2760
	2820
	2880
	2940
tgtcggagca ggagtcactg ctgctgctta tgtctcccag catggccttc agggtgcaca	3000
gccgcaacgg caagagttac acgttcctga tctcctctga ctatgagcgt gcagagtgga	3060
gggagaacat ccgggagcag cagaagaagt gtttcagaag cttctccctg acatccgtgg	3120
agctgcagat gctgaccaac tcgtgtgtga aactccagac tgtccacagc attccgctga	3180
ccatcaataa ggaagatgat gagtctccgg ggctctatgg gtttctgaat gtcatcgtcc	3240
actcagccac tggatttaag cagagttcaa atctgtactg caccctggag gtggattcct	3300
ttgggtattt tgtgaataaa gcaaagacgc gcgtctacag ggacacagct gagccaaact	3360
ggaacgagga atttgagata gagctggagg gctcccagac cctgaggata ctgtgctatg	3420
aaaagtgtta caacaagacg aagatcccca aggaggacgg cgagagcacg gacagactca	3480
tggggaaggg ccaggtccag ctggacccgc aggccctgca ggacagagac tggcagcgca	3540
ccgtcatcgc catgaatggg atcgaagtaa agctctcggt caagttcaac agcagggagt	3600
tcagcttgaa gaggatgccg tcccgaaaac agacaggggt cttcggagtc aagattgctg	3660
tggtcaccaa gagagagagg tccaaggtgc cctacatcgt gcgccagtgc gtggaggaga	3720
tcgagcgccg aggcatggag gaggtgggca tctaccgcgt gtccggtgtg gccacggaca	3780
tccaggcact gaaggcagcc ttcgacgtca ataacaagga tgtgtcggtg atgatgagcg	3840
agatggacgt gaacgccatc gcaggcacgc tgaagctgta cttccgtgag ctgcccgagc	3900
ccctcttcac tgacgagttc taccccaact tcgcagaggg catcgctctt tcagacccgg	3960
ttgcaaagga gagetgcatg etcaacetge tgetgteeet geeggaggee aacetgetea	4020
ccttcctttt ccttctggac cacctgaaaa gggtggcaga gaaggaggca gtcaataaga	4080
tgtccctgca caacctcgcc acggtctttg gccccacgct gctccggccc tccgagaagg	4140
agagcaagct ccctgccaac cccagccagc ctatcaccat gactgacagc tggtccttgg	4200
aggtcatgtc ccaggtccag gtgctgctgt acttcctgca gctggaggcc atccctgccc	4260

cggacagcaa	gagacagagc	atcctgttct	ccaccgaagt	ctaaaggtcc	cagtccatct	4320
cctggaggca	gacagatggc	ctggaaacct	ctggctaatc	gggccatccg	tagagcggga	4380
accttcctga	ggtgtccttg	ggccaccccc	aagtgttggg	ccatctgcca	agagacagcg	4440
acccaaagcc	gaaggacagg	tggcctgggc	agatctcgcc	caggtctggg	agccccaggc	4500
tggcctcaga	ctgtggtttt	ttatgtggcc	acccgagggc	gccccaagcc	agttcatctc	4560
agagtccagg	cctgaccctg	ggagacaggg	tgaagggagt	gatttttatg	aacttaactt	4620
agagtctaaa	agatttctac	tggatcactt	gtcaagatgc	gccctctctg	gggagaaggg	4680
aacgtgaccg	gattccctca	ctgttgtatc	ttgaataaac	gctgctgctt	catcctgtg	4739

<210> 161

<211> 1434

<212> DNA

<213> Homo sapiens

<400> 161 gagcccctgt ctggatgact tcttgcggct gttctacccc tccccctccc cgcggtacct 60 tgcacttttc tccctccctg ccccctctcg agtccaccct ccgggccttc tgcccctgat 120 cgcttggttt tccttgcagt cgcctgctgc tgtcgtcggg aggaaagatg aatgggaggg 180 ctgattttcg agagccgaat gcagaggttc caagaccaat tccccacata gggcctgatt 240 acattccaac agaggaagaa aggagagtct tcgcagaatg caatgatgaa agcttctggt 300 tcagatctgt gcctttggct gcaacaagta tgttgattac tcaaggatta attagtaaag 360 gaatactttc aagtcatccc aaatatggtt ccatccctaa acttatactt gcttgtatca 420 tgggatactt tgctggaaaa ctttcttatg tgaaaacttg ccaagagaaa ttcaagaaac 480 ttgaaaattc cccccttgga gaagctttac gatcaggaca agcacgacga tcttcaccac 540 ctgggcacta ttatcaaaag tcaaaatatg actcaagtgt gagtggtcaa tcatcttttg 600 tgacatcccc agcagcagac aacatagaaa tgcttcctca ttatgagcca attccattca 660 gttcttctat gaatgaatct gctcccactg gtattactga tcatattgtc caaggacctg 720 atcccaacct tgaagaaagt cctaaaagaa aaaatattac atatgaggaa ttaaggaata 780 agaacagaga gtcatatgaa gtatctttaa cacaaaagac tgacccctca gtcaggccta 840 tgcatgaaag agtgccaaaa aaagaagtca aagtaaacaa gtatggagat acttgggatg 900 agtgaaaaat tacatcattg gacatgaagg agtttcaaca tccagcttca tctaggtggt 960 catgattacc tgcatgcttt gagctcagca gcagtcttca taaacacatt taaaacaaga 1020 teetgggttt ttgtggtttg acttetatgg tgttttaaaa aaacacagat ttttagtgtt 1080 aatattgtgt aaatgtactc accttaggga ttcatttgaa tgatggtatt ataccatgat 1140

tgtatacagt t	tgtgaaatt	gttgcaaggg	caaagataac	tcttaaaaaa	ccgtcgagat	1200
tacaatgctc t	tagaatcagc	atataagaaa	ataaatgata	tctgcatgtt	gaattggggt	1260
ggatggggg	agcaagcata	atttttaagt	gtgaagcttt	gcatcaagaa	attattaaaa	1320
agctttttt	ctccagtatt	ttctgtatta	tcttaatgtt	tatggcaaat	aaaatgtaaa	1380
ggaacatgcc	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaa	1434
	sapiens					
<400> 162 caaagagcta	catgccacat	gctgttctcc	agcctgctgt	gtgtatttgt	ggccttcagc	60
tactctggat	caagtgtggc	ccagaaggtt	actcaagccc	agtcatcagt	atccatgcca	120
gtgaggaaag	cagtcaccct	gaactgcctg	tatgaaacaa	gttggtggtc	atattatatt	180
ttttggtaca	agcaacttcc	cagcaaagag	atgattttcc	ttattcgcca	gggttctgat	240
gaacagaatg	caaaaagtgg	tcgctattct	gtcaacttca	agaaagcagc	gaaatccgtc	300
gccttaacca	tttcagcctt	acagctagaa	gattcagcaa	agtacttttg	tgctcttggg	360
acgggggtga	ggggactcca	ggacaccgat	aaactcatct	ttggaaaagg	aacccgtgtg	420
actgtggaac	caagaagtca	gcctcatacc	aaaccatccg	tttttgtcat	gaaaaatgga	480
acaaatgtcg	cttgtctggt	gaaggaattc	taccccaagg	atataagaat	aaatctcgtg	540
tcatccaaga	agataacaga	gtttgatcct	gctattgtca	tctctcccag	tgggaagtac	600 [.]
aatgctgtca	agcttggtaa	atatgaagat	tcaaattcag	tgacatgttc	agttcaacac	660
gacaataaaa	ctgtgcactc	cactgacttt	gaagtgaaga	cagattctac	: agatcacgta	720
aaaccaaagg	aaactgaaaa	cacaaagcaa	ccttcaaaga	. gctgccataa	acccaaagcc	780
atagttcata	ccgagaaggt	gaacatgatg	tccctcacag	tgcttgggct	acgaatgctg	840
tttgcaaaga	ctgttgccgt	caattttctc	: ttgactgcca	agttatttt	cttgtaaggc	900

agggatagaa ggatataaaa a

960

1020

1080

1140

1161

tgactggcat gaggaagcta cactcctgaa gaaaccaaag gcttacaaaa atgcatctcc

ttggcttctg acttctttgt gattcaagtt gacctgtcat agccttgtta aaatggctgc

tagccaaacc acttttctt caaagacaac aaacccagct catcctccag cttgatggga

agacaaaagt cctggggaag gggggtttat gtcctaactg ctttgtatgc tgttttataa

<210> 163 <211> 387

```
<212> DNA
<213> Homo sapiens
<400> 163
ttttttttt tttttttt tttttttt ttcagttttt cacatggttt tattacaaaa
                                                                  60
caagccacaa aacagtttta aaaaattttt gctacatccc aattaggaaa tcacataaaa
                                                                 120
ggaaaagcgt aacagtttcc atgccctcag cctaaagctt acagggaggg cttttcacag
                                                                 180
ttgaaacatc actgttttaa aacacaaaat catgctcccc cttcataagc agaggggag
                                                                  240
gaggtcaaac agtttgtttt tgccaaacgt tggctttatc tgaactctat ctagtatgaa
                                                                  300
                                                                  360
ggactggctg ccgcaggcaa taccccagag gggaaaggga ccaaaggaaa aaaggggtgc
                                                                  387
tggcaaacaa aatttaacaa acctgtc
<210> 164
<211> 538
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (410)..(410)
<223> n is a, c, g, t or u
<220>
 <221> misc_feature
 <222> (532)..(532)
 <223> n is a, c, g, t or u
 <400> 164
60
ccccaggagg gctttatttt tttttttaaa aatccggttt gggggtttcc ttggtttttt
                                                                  120
 ttgcccgtat cccaaaaacc cgggcgttgg cccggcccat acggaaacta gcaaaggttt
                                                                  180
 tgaaattttt tttttcctaa gggaggaccc gagctttttc ctttttataa acgttccgga
                                                                  240
 cgggcataac cggcccggcc agttgggggg ccagtttaat tttttaaaaa aaactgtttc
                                                                  300
 cctttttggg ggccgagggc ttcctgggga aaaggataat tttggagcgg tcctccttca
                                                                  360
 cccgttgcac gttggcctga agggactccg gggacttgtt ccccctcctn ggatccaaaa
                                                                   420
 aaatgeegat ggteeggee acetttttgt gaatgeegge caecetgage teeteeaggt
                                                                   480
 taaagccggg gcccggccgc accttttgtg tgtaccaaac cgtggggcaa cncacgat
                                                                   538
 <210> 165
 <211> 272
 <212> DNA
 <213> Homo sapiens
 <400> 165
```

WO 03/090694	PCT/US03/13015
tttttaaacg ataacaacaa aagtttttt taatgcgtgc tgtctttaaa caaaataa	aa 60
ggaaatcctc acgtggtaga aatggaagag agaaaccaca gccaaagcag taagtata	
ctggaaacct agagcccatg gaaattgcag aggagccaaa tttaggctct agagactg	
ctgaaattaa agcacctgtg tgagaatagg acatgtggcc ttaggcttgc ttggagga	
gaaaatggtt ttttcatttg tttgttttaa ga	272
<210> 166 <211> 4276 <212> DNA <213> Homo sapiens	
<400> 166 agagccaccg cggagcgcgc gcggggttgg ttgccgcgag cgtgggggag cgtggacc	cgc 60
ggcgctgctc agcggtgggg ctgccttccc ccggccctcc tccctggtcc ctggcga	ggg 120
cactggcggc ggcggggccg gggtccgcaa ggccggagaa ggccgccggg cccgggc	
gtggtctggg gcaacgcgga agaagctcca ccatgaggcg aggtggatgg aggaagc	gag 240
ctgaaaatga tggctgggaa acatggggtg ggtatatggc tgccaaggtc cagaaat	tgg 300
aggaacagtt tegateagat getgetatge agaaggatgg gaetteatet acaattt	tta 360
gtggagttgc catctatgtt aatggataca cagatccttc cgctgaggaa ttgagaa	aac 420
taatgatgtt gcatggaggt caataccatg tatattattc cagatctaaa acaacac	ata 480
ttattgccac aaatcttccc aatgccaaaa ttaaagaatt aaagggggaa aaagtaa	attc 540
gaccagaatg gattgtggaa agcatcaaag ctggacgact cctctcctac attccat	atc 600
agctgtacac caagcagtcc agtgtgcaga aaggtctcag ctttaatcct gtatgca	agac 660
ctgaggatcc tctgccaggt ccaagcaata tagccaaaca gctcaacaac agggtaa	aatc 720
acatcgttaa gaagattgaa acggaaaatg aagtcaaagt caatggcatg aacagtt	:gga 780
atgaagaaga tgaaaataat gattttagtt ttgtggatct ggagcagacc tctccgg	ggaa 840
ggaaacagaa tggaatteeg cateecagag ggageaetge catttttaat ggaeaea	actc 900
ctagetetaa tggtgeetta aagacaeagg attgettggt geeeatggte aaeagte	gttg 960
ccagcaggct ttctccagcc ttttcccagg aggaggataa ggctgagaag agcagc	actg 1020
atttcagaga ctgcactctg cagcagttgc agcaaagcac cagaaacaca gatgct	ttgc 1080
ggaatccaca cagaactaat tctttctcat tatcaccttt gcacagtaac actaaa	atca 1140
atggtgctca ccactccact gttcaggggc cttcaagcac aaaaagcact tcttca	gtat 1200
ctacgtttag caaggcagca ccttcagtgc catccaaacc ttcagactgc aatttt	attt 1260

caaacttcta ttctcattca agactgcatc acatatcaat gtggaagtgt gaattgactg

agtttgtcaa taccctacaa agacaaagta atggtatctt tccaggaagg gaaaagttaa	1380
aaaaaatgaa aacaggcagg tctgcacttg ttgtaactga cacaggagat atgtcagtat	1440
tgaattctcc cagacatcag agctgtataa tgcatgttga tatggattgc ttctttgtat	1500
cagtgggtat acgaaataga ccagatctca aaggaaaacc agtggctgtt acaagtaaca	1560
gaggcacagg aagggcacct ttacgtcctg gcgctaaccc ccagctggag tggcagtatt	1620
accagaataa aatcctgaaa ggcaaagcag cagatatacc agattcatca ttgtgggaga	1680
atccagattc tgcgcaagca aatggaattg attctgtttt gtcaagggct gaaattgcat	1740
cttgtagtta tgaggccagg caacttggca ttaagaacgg aatgtttttt gggcatgcta	1800
aacaactatg tectaatett caagetgtte catacgattt teatgeatat aaggaagteg	1860
cacaaacatt gtatgaaaca ttggcaagct acactcataa cattgaagct gtcagttgtg	1920
atgaagcgct ggtagacatt accgaaatcc ttgcagagac caaacttact cctgatgaat	1980
ttgcaaatgc tgttcgtatg gaaatcaaag accagacgaa atgtgctgcc tctgttggaa	2040
ttggttctaa tattctcctg gctagaatgg caactagaaa agcaaaacca gatgggcagt	
accacctaaa accagaagaa gtagatgatt ttatcagagg ccagctagtg accaatctac	
caggagttgg acattcaatg gaatctaagt tggcatcttt gggaattaaa acttgtggag	
acttgcagta tatgaccatg gcaaaactcc aaaaagaatt tggtcccaaa acaggtcaga	
tgctttatag gttctgccgt ggcttggatg atagaccagt tcgaactgaa aaggaaagaa	
aatctgtttc agctgagatc aactatggaa taaggtttac tcagccaaaa gaggcagaag	
cttttcttct gagtctttca gaagaaattc aaagaagact agaagccact ggcatgaag	
gtaaacgtct aactctcaaa atcatggtac gaaagcctgg ggctcctgta gaaactgca	
aatttggagg ccatggaatt tgtgataaca ttgccaggac tgtaactctt gaccaggca	
cagataatgc aaaaataatt ggaaaggcga tgctaaacat gtttcataca atgaaacta	
atatatcaga tatgagaggg gttgggattc acgtgaatca gttggttcca actaatctg	
accettecae atgteceagt egeceateag tteagteaag ecaettteet agtgggtea	
actetgteeg tgatgtette caagtteaga aagetaagaa ateeaeegaa gaggageae	
aagaagtatt tegggetget gtggatetgg aaatateate tgettetaga aettgeaet	
tettgecace tttteetgea catetgeega eeagteetga taetaacaag getgagtet	
cagggaaatg gaatggtcta catactcctg tcagtgtgca gtcgagactt aacctgagt	
tagaggtccc gtcaccttcc cagctggatc agtctgtttt agaagcactt ccacctga	
toogggaaca agtagagcaa gtotgtgotg tooagcaago agagtoacat ggogacaa	
agaaagaacc agtaaatggc tgtaatacag gaattttgcc acaaccagtt gggacagt	

tgttgcaaat	accagaacct	caagaatcga	acagtgacgc	aggaataaat	ttaatagccc	3240
			tatttgctgc			3300
			aaaggcaggg			3360
			ctttacttca			3420
			ttggttcacc			3480
			aaactctgcc			3540
			aaggacctcc			3600
			gcctttctag			3660
			ctggagctgt			3720
			cagatccaat			3780
		· ·			gatctagtta	3840
					atggcatttg	3900
					c acattaaaag	3'960
					a agtgcttgtg	4020
					a aatttctttt	4080
					t attgcatgta	4140
					g tttgtttata	4200
					a ctgtatgtaa	4260 [.]
aaaaaaaaa						4276

<210> 167

<211> 567

<212> DNA

<213> Homo sapiens

<400> 167

aaaagcatgg tcactcactg ctcatctcca aagttacctg gattatccct attagtcact 60 gaaaatgacc taacaaagga ccccagcagg tgatggcagt tagtaaaaaa tatgacacaa 120 gtaaaactga taaaaaaatc cctcaaccaa ataaaataca ataaaaaata aacggttgcc 180 cgacaatcat ttctccagtt tccaacaaca ggtaaattaa ggagtatgtg tttccataca 240 tacaccacag atccccattt ttgaataccc attttaagac aagagaaacc tagaaggttg 300 attacagett aatttttatt actgagatgg aggagtaaac ttategtgtt ttgagetttg 360 ttagtgcaaa taacaatttg gtggtcactt actaaattga ctatagcatc ctgaaaaaag 420 aaatatttcc aattacggga tagccctgtt attttaattc tgacattctt agggatttaa 480

acagaatgga (cctggagttt	ccaggagaaa a	aataatcacc †	tttgaaggtt 1	tttagagcat	540
gtgaaattag t	caaaaaaaa	aaaaaaa				567
<210> 168 <211> 2022 <212> DNA <213> Homo	sapiens					
<400> 168 aaacggcggc	ggcggcggca	ccggaggctc	cgaggctcct	gcgctcccgc	geegegetee	60
cctcgtccgc	ccgggccgcc	aggagaagaa	actgaggcct	ggaatttgat	taactcattc	120
aaggttaccc	agttggtaat	tcatttgcac	acctgttagc	aagaaacaga	agttgaagga	180
ctggaacaag	tgaactagga	aagagggaac	gccaatccaa	ggatagaagg	acaaggacag	240
aatcaccagc	actggctgaa	ggcctcctgt	ttcctgcgct	ttctcctttt	cctgtgaaat	300
ctccgaggag	aagaaagaat	gatggacagt	ttatcctttc	actgccacaa	ggcctgttta	360
cttggcagta	ccttaacatg	gggaatcttc	ttaaagtttt	gacatgcaca	gaccttgagc	420
aggggccaaa	ttttttcctt	gattttgaaa	atgcccagcc	tacagagtct	gagaaggaaa	480
tttataatca	ggtgaatgta	gtattaaaag	atgcagaagg	catcttggag	gacttgcagt	540
catacagagg	agctggccac	gaaatacgag	aggcaatcca	gcatccagca	gatgagaagt	600
tgcaagagaa	ggcatggggt	gcagttgttc	cactagtagg	caaattaaag	aaattttacg	660
aattttctca	gaggttagaa	gcagcattaa	gaggtcttct	gggagcctta	acaagtaccc	720
catattctcc	cacccagcat	ctagagcgag	agcaggctct	tgctaaacag	tttgcagaaa	780
ttcttcattt	cacactccgg	ı tttgatgaac	tcaagatgac	aaatcctgcc	atacagaatg	840
atttcagcta	ttatagaaga	a cattgagtc	gtatgaggat	taacaatgta	ccggcagaag	900
		gaattggcaa				960
		g agtgatgcca				1020
		a gattgtttaa				1080
tggaaacacc	ggaatacag	a agcagattta	caaatgaaga	gacagtgtca	ttctgcttga	1140
gggtaatggt	gggtgtcat	a atactctat <u>c</u>	g accacgtaca	tccagtggga	gcatttgcta	1200
aaacttccaa	aattgatat	g aaaggttgta	tcaaagttct	taaggaccaa	cctcctaata	1260
		•			gatgagacta	1320
					ctgctgtaga	1380
					c aattactatc	1440
					taatcatgtt	1500

cttaagactt	cttttctgtg	ccaaaatcag	taaagttaca	ctctgaaggg	atatcatcct	1560
ttcaaacggg	ccatctaagc	cagctaatta	tgcattgcat	tggggtctct	actgagaaaa	1620
attctgtgac	ttgaactaaa	tatttttaaa	tgtggatttt	ttttgaaact	aatatttaat	1680
attgcttctc	ctgcatggca	agactgccta	ttctgctatt	taaaaaccct	caatgacttt	1740
attttctact	gccgcctttt	tcatgtgcaa	ccaaaatgag	aatgtttaaa	ttaactgtgt	1800
tgtacgaatg	gtacccaaca	caaacttttt	ttaaattagt	aatacttttg	tttaaagttt	1860
taagtttgca	ttttgacttt	ttttgtaagg	atgtatgttg	tgtgtttaac	ctttattaac	1920
taacgttaaa	agctgtgatg	tgtgcgtaga	atattacgta	tgcatgttca	tgtctaaaga	1980
atggctgttg	atgataaaat	aaaaatcagc	tttcattttt	ct		2022

<210> 169

<211> 3489

<212> DNA

<213> Homo sapiens

<400> 169 gtgacctgct tagagagaag cggtgggtct gcacctggat tttggagtcc cagtgctgct 60 gcagctctga gcattcccac gtcaccagag aagccggtgg gcaatgagat catgtctgct 120 ttcaggttgt ggcctggcct gctgatcatg ttgggttctc tctgccatag aggttcaccg 180 tgtggccttt caacacacgt agaaatagga cacagagctc tggagtttct tcagcttcac 240 aatgggcgtg ttaactacag agagctgtta ctagaacacc aggatgcgta tcaggctgga 300 atcgtgtttc ctgattgttt ttaccctagc atctgcaaag gaggaaaatt ccatgatgtg 360 tetgagagea eteaetggae teegtttett aatgeaageg tteattatat eegagagaae 420 tatccccttc cctgggagaa ggacacagag aaactggtag ctttcttgtt tggaattact 480 teteacatgg eggeagatgt eagetggeat agtetgggee ttgaacaagg atteettagg 540 accatgggag ctattgattt tcacggctcc tattcagagg ctcattcggc tggtgatttt 600 ggaggagatg tgttgagcca gtttgaattt aattttaatt accttgcacg acgctggtat 660 gtgccagtca aagatctact gggaatttat gagaaactgt atggtcgaaa agtcatcacc 720 gaaaatgtaa tegttgattg tteacatate eagttettag aaatgtatgg tgagatgeta 780 getgtttcca agttatatcc cacttactct acaaagtccc cgtttttggt ggaacaattc 840 caagagtatt ttcttggagg actggatgat atggcatttt ggtccactaa tatttaccat 900 ctaacaagct tcatgttgga gaatgggacc agtgactgca acctgcctga gaaccctctg 960 ttcattgcat gtggcggcca gcaaaaccac acccagggct caaaaatgca gaaaaatgat 1020 tttcacagaa atttgactac atccctaact gaaagtgttg acaggaatat aaactatact . 1080

gaaagaggag tgttctttag tgtaaattcc tggaccccgg attccatgtc ctttatctac	1140
aaggetttgg aaaggaacat aaggacaatg tteataggtg geteteagtt gteacaaaag	1200
cacgtctcca geceettage atettaette ttgtcattte ettatgegag gettggetgg	1260
gcaatgacct cagctgacct caaccaggat gggcacggtg acctcgtggt gggcgcacca	1320
ggctacagcc gccccggcca catccacatc gggcgcgtgt acctcatcta cggcaatgac	1380
ctgggcctgc cacctgttga cctggacctg gacaaggagg cccacaggat ccttgaaggc	1440
ttccagccct caggtcggtt tggctcggcc ttggctgtgt tggactttaa cgtggacggc	1500
gtgcctgacc tggccgtggg agctccctcg gtgggctccg agcagctcac ctacaaaggt	1560
gccgtgtatg tctactttgg ttccaaacaa ggaggaatgt cttcttcccc taacatcacc	1620
atttcttgcc aggacatcta ctgtaacttg ggctggactc tcttggctgc agatgtgaat	1680
ggagacagtg aacccgatct ggtcatcggc tccccttttg caccaggtgg agggaagcag	1740
aagggaattg tggctgcgtt ttattctggc cccagcctga gcgacaaaga aaaactgaac	1800
gtggaggcag ccaactggac ggtgagaggc gaggaagact tctcctggtt tggatattcc	1860
cttcacggtg tcactgtgga caacagaacc ttgctgttgg ttgggagccc gacctggaag	1920
aatgccagca ggctgggcca tttgttacac atccgagatg agaaaaagag ccttgggagg	1980
gtgtatggct acttcccacc aaacggccaa agctggttta ccatttctgg agacaaggca	2040
atggggaaac tgggtacttc cctttccagt ggccacgtac tgatgaatgg gactctgaaa	2100
caagtgctgc tggttggagc ccctacgtac gatgacgtgt ctaaggtggc attcctgacc	2160
gtgaccctac accaaggegg agecactege atgtacgeac teacatetga egegeageet	2220
ctgctgctca gcaccttcag cggagaccgc cgcttctccc gatttggtgg cgttctgcac	2280
ttgagtgacc tggatgatga tggcttagat gaaatcatca tggcagcccc cctgaggata	2340
gcagatgtaa cctctggact gattggggga gaagacggcc gagtatatgt atataatggc	2400
aaagagacca cccttggtga catgactggc aaatgcaaat catggataac tccatgtcca	2460
gaagaaaagg cccaatatgt attgatttct cctgaagcca gctcaaggtt tgggagctcc	2520
ctcatcaccg tgaggtccaa ggcaaagaac caagtcgtca ttgctgctgg aaggagttct	2580
ttgggagccc gactctccgg ggcacttcac gtctatagcc ttggctcaga ttgaagattt	2640
cactgoattt coccactotg cocacctotc toatgotgaa toacatocat ggtgagcatt	2700
ttgatggaca aagtggcaca tccagtggag cggtggtaga tcctgataga catggggctc	2760
ctgggagtag agagacacac taacagccac accetetgga aatetgatac agtaaatata	2820
tgactgcacc agaaatatgt gaaatagcag acattctgct tactcatgtc tccttccaca	2880

gtttacttcc tcgctccctt tgcatctaaa cctttcttct ttcccaactt attg	gootgta 2940
gtcagacctg ctgtacaacc tatttcctct tcctcttgaa tgtctttcca atgg	gctggaa 3000
aggtccctct gtggttatct gttagaacag tctctgtaca caattcctcc taaa	aaacatc 3060
cttttttaaa aaaagaattg ttcagccata aagaaagaac aagatcatgc cctt	
gacatggatg gagctggagg ccattatcct tcataaacta ttgcaggaac agaa	1
acactecata tteteaettg taagtgggag etaaatgaga acaegtggae acat	
aaacaacaca cactggggcc tatgagaggg cggaaggtgg gaggagggag aga	
aaataactaa tggatactta gggtgatgaa ataatctgtg taacaaaccc cca	
cctttatgta tgtaacaaac cagcacttcc tgcgcatgta cccctgaact taa	
aaaaaagttg aacttaaaaa taacagattg gcccatgcca atcaaagtat aat	
atagtatac	3489
acageses	
<210> 170	
<211> 341	
<212> DNA	
<213> Homo sapiens	
<400> 170 ttttttttt tttttttt ttttttta tttctttctg aatttatttt gag	gatcagaa 60
gaaaaatagg gaaaggaaat gagtaaagga gggaggaagg agagaaagag agg	
aagaaaagag agaacagcat ttcactgaaa atgtattgac cttaattttt aaa	
cttttactgg acccattttc attgtgatgg agtcatatcc catgaagtgg aaa	
ttctcactcc aactccagag ctaaaggtag cttagtgaaa tcagcagtga tt	tgcgatgt 300
acactgggaa gggggaaaga ctatctgtgg tctgaggagg c	341
<210> 171	
<211> 2333	
<212> DNA	
<213> Homo sapiens	
<400> 171	aactacca 60
ggcacgaggc tagagcgatg ccgggccgga gttgcgtcgc cttagtcctc ct	.555
ccgtcagctg tgccgtcgcg cagcacgcgc cgccgtggac agaggactgc ag	gaaaatcaa 120
cctatcctcc ttcaggacca acgtacagag gtgcagttcc atggtacacc at	taaatcttg 180
acttaccacc ctacaaaaga tggcatgaat tgatgcttga caaggcacca at	gctaaagg 240
ttatagtgaa ttctctgaag aatatgataa atacattcgt gccaagtgga aa	aagttatgc 300
aggtggtgga tgaaaaattg cctggcctac ttggcaactt tcctggccct tt	ttgaagagg 360
aaatgaaggg tattgccgct gttactgata tacctttagg agagattatt to	cattcaata 420

ttttttatga attatttacc atttgtactt caatagtagc agaagacaaa aaaggtcatc	480
taatacatgg gagaaacatg gattttggag tatttcttgg gtggaacata aataatgata	540
cctgggtcat aactgagcaa ctaaaacctt taacagtgaa tttggatttc caaagaaaca	600
acaaaactgt cttcaaggct tcaagctttg ctggctatgt gggcatgtta acaggattca	660
aaccaggact gttcagtett acactgaatg aacgtttcag tataaatggt ggttatctgg	720
gtattctaga atggattctg ggaaagaaag atgccatgtg gatagggttc ctcactagaa	780
cagttctgga aaatagcaca agttatgaag aagccaagaa tttattgacc aagaccaaga	840
tattggcccc agcctacttt atcctgggag gcaaccagtc tggggaaggt tgtgtgatta	900
cacgagacag aaaggaatca ttggatgtat atgaactcga tgctaagcag ggtagatggt	960
atgtggtaca aacaaattat gaccgttgga aacatccctt cttccttgat gatcgcagaa	1020
cgcctgcaaa gatgtgtctg aaccgcacca gccaagagaa tatctcattt gaaaccatgt	1080
atgatgtcct gtcaacaaaa cctgtcctca acaagctgac cgtatacaca accttgatag	1140
atgttaccaa aggtcaattc gaaacttacc tgcgggactg ccctgaccct tgtataggtt	1200
ggtgagcaca cgtctggcct acagaatgcg gcctctgaga catgaagaca ccatctccat	1260
gtgaccgaac actgcagctg tctgaccttc caaagactaa gactcgcggc aggttctctt	1320
tgagtcaata gcttgtcttc gtccatctgt tgacaaatga cagatctttt ttttttccc	1380
cctatcagtt gatttttctt atttacagat aacttcttta ggggaagtaa aacagtcatc	1440
tagaattcac tgagttttgt ttcactttga catttgggga tctggtgggc agtcgaacca	1500
tggtgaactc cacctccgtg gaataaatgg agattcagcg tgggtgttga atccagcacg	1560
totgtgtgag taacgggaca gtaaacacto cacattotto agtttttcac ttotacctac	1620
atatttgtat gtttttctgt ataacagcct tttccttctg gttctaactg ctgttaaaat	1680
taatatatca ttatctttgc tgttattgac agcgatatta ttttattaca tatcattaga	1740
gggatgagac agacattcac ctgtatattt cttttaatgg gcacaaaatg ggcccttgcc	1800
tctaaatagc actttttggg gttcaagaag taatcagtat gcaaagcaat cttttataca	1860
ataattgaag tgttcccttt ttcataatta ctctacttcc cagtaaccct aaggaagttg	1920
ctaacttaaa aaactgcatc ccacgttctg ttaatttagt aaataaacaa gtcaaagact	1980
tgtggaaaat aggaagtgaa cccatatttt aaattctcat aagtagcatt gatgtaataa	2040
acaggtttt agtttgttct tcagattgat agggagtttt aaagaaattt tagtagttac	2100
taaaattatg ttactgtatt tttcagaaat caaactgctt atgaaaagta ctaatagaac	2160
ttgttaacct ttctaacctt cacgattaac tgtgaaatgt acgtcatttg tgcaagaccg	2220

2280

tttgtccact tcattttgta taatcacagt tgtgttcctg acactcaata aacagtcact 2333 172 <210> 5064 <211> DNA <212> <213> Homo sapiens <400> 172 gagaagggga ccttcaggtc caggcaaagg gggaacttct gtcgtgggaa cgaaaaagaa 60 agaggattta cagggtgggg ggacagaggg gcagcaggaa ccagaaggga gacagtggcg 120 1.80 gtcgcaccgg ggccgatccg agagttcccc ttagagaacg gagctcacgg gcggggaggc 240 ctcacctgct agtaggacgc agaaagacag aaggcgaagg agaccccctg ccgtagccat cttgcctctc tgctgagcgg aagcccccgt tcggctcctg tctgttagcg gcctctctag 300 gctaccactg acaccgtctc tgtggcccgg agcctaagag accggaagtt cgtgtttcca 360 ggcgcttccg gaaaccgcgg gagagggtcg ctgacgtgga ggcgtccgaa gggcagcagg 420 gtgtgtcggg gctcggatta agacatcgga gtcggagacc tgagagatgt taaccaaatt 480 cgagaccaag agcgcgcggg tcaaagggct cagctttcac cccaaaagac cttggatcct 540 gactagttta cataatgggg tcatccagtt atgggactat cggatgtgca ctctcattga 600 caagtttgat gaacatgatg gtccagtgcg aggcattgac ttccataagc agcagccact 660 720 gttcgtctct ggaggagatg actataagat taaggtttgg aattacaagc ttcggcgctg 780 tcttttcaca ttgcttgggc acttagatta tattcgcacc acgttttttc atcatgaata tccctggatt ctgagtgcct ccgatgatca gaccatccga gtgtggaatt ggcaatctag 840 900 aacctgtgtt tgtgtgttaa cagggcacaa ccattatgtg atgtgtgctc agttccaccc 960 cacagaagac ttggtagtat cagccagcct ggaccagact gtgcgcgttt gggatatttc tggtctgagg aaaaaaaacc tgtcccctgg tgcggtggaa tcggatgtga gaggaataac 1020 tggggttgat ctatttggaa ctacagatgc agtggtgaag catgtactag agggtcacga 1080 togtggagta aactgggotg cottocacco cactatgcco ottattgtat otggggoaga 1140 tgatcgtcaa gtgaagatct ggcgcatgaa tgaatcaaag gcatgggagg ttgatacctg 1200 ccggggccat tacaacaatg tatcttgtgc cgtcttccac cctcgccaag agttgatcct 1260 cagcaattct gaggacaaga gtattcgagt ctgggatatg tctaagcgga ctggggttca 1320 1380 gactttccgc agagaccatg atcgtttctg ggtcctagct gctcacccta accttaacct 1440 ctttgcagca ggccatgatg gtggtatgat tgtgtttaag ctggaacggg aacggccagc 1500 ctatgctgtt catggcaata tgctacacta tgtcaaggac cgattcttac gacagctgga

tttcaacagc	tccaaagatg	tagctgtgat	gcagttgcgg	agtggttcca	agtttccagt	1560
attcaatatg	tcatacaatc	cagcagaaaa	tgcagtcctg	ctttgtacaa	gagctagcaa	1620
tctagagaat	agtacctatg	acctgtacac	catccctaaa	gatgctgact	cccagaatcc	1680
tgatgcgcct	gaagggaaac	gatcctcagg	cctgacagcc	gtttgggtcg	ctcgaaatcg	1740
gtttgctgtc	ctagatcgga	tgcattcgct	tctgatcaag	aatctgaaga	atgagatcac	1800
caaaaaggta	caggtgccca	actgtgatga	gatcttctat	gctggcacag	gcaatctcct	1860
gcttcgagat	gcggactcta	tcacactctt	tgacgtacag	cagaagcgga	ctctggcatc	1920
tgtgaagatt	tctaaagtga	aatacgttat	ctggtcagca	gacatgtcac	atgtagcact	1980
actagccaaa	cacgccattg	tgatctgtaa	ccgcaaactg	gatgctttat	gtaacattca	2040
tgagaacatt	cgtgtcaaga	gtggggcctg	ggatgagagt	ggggtattta	tctataccac	2100
aagcaaccac	atcaaatatg	ctgtcaccac	tggggaccac	gggatcattc	gaactctgga	2160
tttacccatc	tatgtcacac	gggtgaaggg	caacaatgta	tactgcctag	acagggagtg	2220
tcgtccccgg	gtactcacca	ttgatcccac	tgagttcaaa	ttcaagctgg	ccctgatcaa	2280
cagaaaatat	gatgaggtac	tgcacatggt	gaggaatgcc	aaactagttg	gccagtctat	2340
tattgcttat	ctccagaaga	agggctatcc	tgaagtggca	ctgcattttg	tcaaggatga	2400
gaaaactcgc	tttagtctgg	cactggagtg	tggaaacatt	gagattgctc	tggaagcagc	2460
caaagcactg	gatgacaaga	actgctggga	aaagctggga	gaagtggccc	tgctgcaggg	2520
gaaccaccag	attgtggaaa	tgtgctatca	gcgtaccaaa	aactttgaca	aagtttcctt	2580
cctgtatctt	atcactggca	acttagaaaa	acttcgcaag	atgatgaaga	ttgctgagat	2640
cagaaaggac	atgagtggcc	actatcagaa	tgccctatac	ctgggtgatg	tgtcagagcg	2700
tgtgcggatc	ctgaagaact	gtggacagaa	gtecetggee	tatctcacag	ctgctaccca	2760
tggcttagat	gaagaagctg	agagcctaaa	ggagacattt	gacccagaga	aggagacaat	2820
cccagacatt	gaccctaatg	ccaagctgct	ccagccacct	gcacctatca	tgccattgga	2880
taccaattgg	cctttattga	ctgtatccaa	aggattttt	gaaggcacca	ttgccagcaa	2940
agggaaggga	ggagcactgg	ctgctgacat	tgacattgac	actgttggta	cagagggctg	3000
gggagaggat	gcagagctgc	agttggatga	agatgggttt	gtggaggcta	cagaaggttt	3060
gggggatgat	gctcttggca	agggacagga	agaaggaggt	ggctgggatg	tagaagaaga	3120
tctggagctc	cctcctgagc	tggatatatc	ccctggggca	gctggtgggg	ctgaagatgg	3180
tttctttgtg	ccccaacca	agggaacaag	tccaactcag	atctggtgta	ataactctca	3240
gcttccagtt	gatcacatcc	tggcaggctc	tttcgaaaca	gccatgcggc	tccttcatga	3300
ccaagtaggg	gtaatccagt	ttggccccta	caagcaactg	ttcctacaga	catacgcccg	3360

aggeegeaca	acctatcagg	ctctqccctq	cctaccctcc	atgtatggct	atcctaatcg	3420
	gatgcagggc					3480
						3540
	cggttgcagc					
tgtggaaaaa	ttccgttcca	tccttctcag	tgtgccactt	cttgttgtgg	acaataaaca	3600
agagattgca	gaggcccagc	agctcatcac	catttgccgt	gagtacattg	tgggtttgtc	3660
.cgtggagaca	gaaaggaaga	agctgcccaa	agagactcta	gaacagcaga	agcgcatctg	3720
tgagatggca	gcctatttca	cccactcaaa	cctgcagcct	gtgcacatga	tcctggtgct	3780
gcgtacagcc	ctcaatctgt	tcttcaagct	caagaacttc	aagacagctg	ccacctttgc	3840
tcggcgccta	ctagaactcg	ggcccaagcc	tgaggtggcc	caacagaccc	gaaaaatcct	3900
gtctgcctgt	gagaagaatc	ccacagatgc	ctaccagctc	aattatgaca	tgcacaaccc	3960
ctttgacatt	tgtgctgcat	catateggee	catctaccgt	ggaaagccag	tagaaaagtg	4020
tccactcagt	ggggcctgct	attcccctga	gttcaaaggt	caaatctgca	gggtcaccac	4080
agtgacagag	attggcaaag	atgtgattgg	tttaaggatc	agtcctctgc	agtttcgcta	4140
aggccccctt	tgtgtgcatg	ggtcagtcac	catatgttcc	ccccagagaa	tgtgtctata	4200
tcctccttct	aacagcacct	tececetgea	gctactcttc	agatctggct	ctctgtaccc	4260
taaaacctag	tatctttttc	tcttctatgg	aaaatccgaa	ggtctaaact	tgactttttt	4320
gaggtcttct	caacttgact	acagttgtgc	tcataattgt	ccttgccttt	ccagcttaat	4380
tattttaagg	aacaaatgaa	aactctgggc	tgggtggagt	ggctcatacc	tgtaatccca	4440
gcactttggg	aggctacggt	gggcagatca	tctgaggcca	ggagttcgag	acctgcctgg	4500
ccaacatggc	aacaccccgt	ctctaataaa	aatataaaaa	ttagcctggc	atggtagcat	4560
gcgcctatag	tcccagctgc	tcaggaggct	gaggcatgag	aatcgcttga	acctaggagg	4620
tggaggttgc	attcaactga	gatcatacca	cttcattcca	gcctgggtga	cagagcaaga	4680
ctctgtctca	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaggaaaac	tctgtgatgg	4740
acatttgttt	agtaaatccc	ttcagtattt	atccctcctt	tccccacagc	agctttcttt	4800
cctgtcaact	agaaaggagc	aggatgtaat	aaatacattt	tggtgtgact	aggccacacc	4860
aactcttaat	catctcccat	tttccttaga	catttaaatt	tcaaggcagg	taccctctgt	4920
gtactcagaa	atttgaagaa	gttatttggt	tttccaaaat	gcacactgcg	ggttattgat	4980
ttgttcttta	caactattgt	tctcatattt	ctcacactaa	ataaatctct	atgagagctt	5040
cttgaaaaaa	aaaaaaaaaa	agcg				5064

<210> 173

<211> 4259

<212> DNA

<213> Homo sapiens

<400> 173

60 atggcgaaga tcgccaagac tcacgaagat attgaagcac agattcgaga aattcaaggc aagaaggcag ctcttgatga agctcaagga gtgggcctcg attctacagg ttattatgac 120 180 caggaaattt atggtggaag tgacagcaga tttgctggat acgtgacatc aattgctgca actgaacttg aagatgatga cgatgactat tcatcatcta cgagtttgct tggtcagaag 240 300 360 tatgatccat ttgctgagca cagacctcca aagattgcag accgggaaga tgaatacaaa aagcataggc ggaccatgat aatttcccca gagcgtcttg atccttttgc agatggaggg 420 480 aagacccctg atcctaaaat gaatgttagg acttacatgg atgtaatgcg agaacaacac ttqactaaaq aaqaacqaqa aattaqqcaa caqctagcag aaaaagctaa agctggagaa 540 600 ctaaaagtcg tcaatggagc agcagcgtcc cagcctccat caaaacgaaa acggcgttgg gatcaaacag ctgatcagac tcctggtgcc actcccaaaa aactatcaag ttgggatcag 660 gcagagaccc ctgggcatac tccttcctta agatgggatg agacaccagg tcgtgcaaag 720 ggaagcgaga ctcctggagc aaccccaggc tcaaaaatat gggatcctac acctagccac 780 acaccagegg gagetgetac teetggaega ggtgatacac caggecatge gacaccagge 840 catggaggcg caacttccag tgctcgtaaa aacagatggg atgaaacccc caaaacagag 900 agagatactc ctgggcatgg aagtggatgg gctgagactc ctcgaacaga tcgaggtgga 960 qattctattq qtqaaacacc qactcctgga qccaqtaaaa gaaaatcacg gtgggatgaa 1020 acaccaqcta qtcaqatqqq tqqaaqcact ccagttctga cccctggaaa gacaccaatt 1080 1140 ggcacaccag ccatgaacat ggctacccct actccaggtc acataatgag tatgactcct 1200 gaacagette aggettggeg gtgggaaaga gaaattgatg agagaaateg cecaetttet 1260 gatgaggaat tagatgctat gttcccagaa ggatataagg tacttcctcc tccagctggt 1320 tatgttccta ttcgaactcc agctcgaaag ctgacagcta ctccaacacc tttgggtggt 1380 atgactggtt tccacatgca aactgaagat cgaactatga aaagtgttaa tgaccagcca tctggaaatc ttccattttt aaaacctgat gatattcaat actttgataa actattggtt 1440 1500 gatgttgatg aatcaacact tagtccagaa gagcaaaaag agagaaaaat aatgaagttg 1560 cttttaaaaa ttaagaatgg aacaccacca atgagaaagg ctgcattgcg tcagattact 1620 gataaagctc gtgaatttgg agctggtcct ttgtttaatc agattcttcc tctgctgatg 1680 tctcctacac ttgaggatca agagcgtcat ttacttgtga aagttattga taggatactg

tacaaacttg	atgacttagt	tcgtccatat	gtgcataaga	tcctcgtggt	cattgaaccg	1740
ctattgattg	atgaagatta	ctatgctaga	gtggaaggcc	tagagatcat	ttctaatttg	1800
gcaaaggctg	ctggtctggc	tactatgatc	tctaccatga	gacctgatat	agataacatg	1860
gatgagtatg	tccgtaacac	aacagctaga	gcttttgctg	ttgtagcctc	tgccctgggc	1920
attccttctt	tattgccctt	cttaaaagct	gtgtgcaaaa	gcaagaagtc	ctggcaagcg	1980
agacacactg	gtattaagat	tgtacaacag	atagctattc	ttatgggctg	tgccatcttg	2040
ccacatctta	gaagtttagt	tgaaatcatt	gaacatggtc	ttgtggatga	gcagcagaaa	2100
gttcggacca	tcagtgcttt	ggccattgct	gccttggctg	aagcagcaac	tccttatggt	2160
atcgaatctt	ttgattctgt	gttaaagcct	ttatggaagg	gtatccgcca	acacagagga	2220
aagggtttgg	ctgctttctt	gaaggctatt	gggtatctta	ttcctcttat	ggatgcagaa	2280
tatgccaact	actatactag	agaagtgatg	ttaatcctta	ttcgagaatt	ccagtctcct	2340
gatgaggaaa	tgaaaaaaat	tgtgctgaag	gtggtaaaac	agtgttgtgg	gacagatggt	2400
gtagaagcaa	actacattaa	aacagagatt	cttcctccct	tttttaaaca	cttctggcag	2460
cacaggatgg	ctttggatag	aagaaattac	cgacagttag	ttgatactac	tgtggagttg	2520
gcaaacaaag	taggtgcagc	agaaattata	tccaggattg	tggatgatct	gaaagatgaa	2580
gccgaacagt	acagaaaaat	ggtgatggag	acaattgaga	aaattatggg	caatttggga	2640
gcagcagata	ttgatcataa	acttgaagaa	caactgattg	atggtattct	ttatgctttc	2700
caagaacaga	ctacagagga	ctcagtaatg	ttgaacggct	ttggcacagt	ggttaatgct	2760
cttggcaaac	gagtcaaacc	atacttgcct	cagatctgtg	gtacagtttt	gtggcgttta	2820
aataacaaat	ctgctaaagt	taggcaacag	gcagctgact	tgatttctcg	aactgctgtt	2880
gtcatgaaga	cttgtcaaga	ggaaaaattg	atgggacact	tgggtgttgt	attgtatgag	2940
tatttgggtg	aagagtaccc	tgaagtattg	ggcagcattc	ttggagcact	gaaggccatt	3000
gtaaatgtca	taggtatgca	taagatgact	ccaccaatta	aagatctgct	gcctagactc	3060
acccccatct	taaagaacag	acatgaaaaa	gtacaagaga	attgtattga	tcttgttggt	3120
cgtattgctg	acaggggagc	tgaatatgta	tctgcaagag	agtggatgag	gatttgcttt	3180
gagcttttag	agctcttaaa	agcccacaaa	aaggctattc	gtagagccac	agtcaacaca	3240
tttggttata	ttgcaaaggc	cattggccct	catgatgtat	tggctacact	tctgaacaac	3300
ctcaaagttc	aagaaaggca	gaacagagtt	tgtaccactg	tagcaatagc	tattgttgca	3360
gaaacatgtt	caccctttac	agtactccct	gccttaatga	atgaatacag	agttcctgaa	3420
ctgaatgttc	aaaatggagt	gttaaaatcg	ctttccttct	tgtttgaata	tattggtgaa	3480
atgggaaaag	actacattta	tgccgtaaca	ccgttacttg	aagatgcttt	aatggataga	3540

gaccttgtac	acagacagac	ggctagtgca	gtggtacagc	acatgtcact	tggggtttat	3600
ggatttggtt	gtgaagattc	gctgaatcac	ttgttgaact	atgtatggcc	caatgtattt	3660
gagacatctc	ctcatgtaat	tcaggcagtt	atgggagccc	tagagggcct	gagagttgct	3720
attggaccat	gtagaatgtt	gcaatattgt	ttacagggtc	tgtttcaccc	agcccggaaa	3780
gtcagagatg	tatattggaa	aatttacaac	tccatctaca	ttggttccca	ggacgctctc	3840
atagcacatt	acccaagaat	ctacaacgat	gataagaaca	cctatattcg	ttatgaactt	3900
gactatatct	tataatttta	ttgtttattt	tgtgtttaat	gcacagctac	ttcacacctt	3960
aaacttgctt	tgatttggtg	atgtaaactt	ttaaacattg	cagttcagtg	tagaactggt	4020
catagaggaa	gagctagaaa	tccagtagca	tgatttttaa	ataacctgtc	tttgtttttg	4080
atgttaaaca	gtaaatgcca	gtagtgacca	agaacacagt	gattatatac	actatactgg	4140
agggatttca	tttttaattc	atctttatga	agatttagaa	ctcattcctt	gtgtttaaag	4200
ggaatgttta	attgagaaat	aaacatttgt	gtacaaaatg	ctaaaaaaaa	aaaaaaaaa	4259
	o sapiens					
<400> 174 aagtgatcta	cagacgtaag	tctatgttca	actaccagtt	aaacaaggaa	aacattttct	60
gtatcattct	gttttacaac	cagtataaac	: ccagaagaat	caagatctga	ttccttttcc	120
acacatctgc	taggtcagta	aactatcaaa	caggtatctg	gtcattttaa	catactcctt	180
atattcctat	ttggtacaat	ctctatatcc	: tatactatct	tcaagatatc	taaatatctt	240
aaatatttag	ggtatctcaa	gagccagaag	gtcctcacag	aagcgttaac	ccaagtaatc	300
gtaagagtat	agaaagatto	ggctaagaca	actatggagt	gcaaaaacca	cataaatttg	360
gtcattaccc	ttgtggtctg	, tgattagtag	g taggttgtca	aatgagagtt	aaaaatgttg	420
tattatccct	agttgcaaat	gttccaaata	a agacagtgcc	ataactacac	: gacaaaaaca	480
aaaaaaaaa	. tcatataagt	tgggttagtt	cctctaatco	aac		523
<210> 175 <211> 157 <212> DNA <213> Hom	'9					
<400> 175 atggacatgo	; tggacccgg	g tctggatcc	c getgeetegg	g ccaccgctgo	tgccgccgcc	60
adddaddada	agggacccq	a qqcqqaqqa	g ggcgtcgag	tgcaggaagg	g cggggacggc	120

ccaggagcgg	aggagcagac	agcggtggcc	atcaccagcg	tccagcaggc	ggcgttcggc	180
gaccacaaca	tccagtacca	gttccgcaca	gagacaaatg	gaggacaggt	gacataccgc	240
gtagtccagg	tgactgatgg	tcagctggac	ggccagggcg	acacagctgg	cgccgtcagc	300
gtcgtgtcca	ccgctgcctt	cgcggggggg	cagcaggctg	tgacccaggt	gggtgtggac	360
ggggcagccc	agcgcccggg	ccccgccgct	gcctctgtgc	ccccaggtcc	tgcagcgccc	420
ttcccgctgg	ctgtgatcca	aaatcccttc	agcaatggtg	gcagtccggc	ggccgaggct	480
gtcagcgggg	aggcacgatt	tgcctatttc	ccagcgtcca	gtgtgggaga	tactacggct	540
gtgtccgtac	agaccacaga	ccagagcttg	caggctggag	gccagttcta	cgtcatgatg	600
acgccccagg	atgtgcttca	gacaggaaca	cagaggacga	tegececeeg	gacacaccct	660
tactctccaa	aaattgatgg	aaccagaaca	ccccgagatg	agaggagaag	agcccagcac	720
aacgaagtgg	agcggaggcg	gagggacaag	atcaacaact	ggatcgtcca	gctttcgaaa	780
atcattccag	actgtaacgc	agacaacagc	aagacgggag	cgagtaaagg	agggatcctg	840
tccaaggcct	gcgattacat	ccgggagttg	cgccagacca	accagcgcat	gcaggagacc	900
ttcaaagagg	ccgagcggct	gcagatggac	aacgagctcc	tgaggcagca	gatcgaggag	960
ctgaagaatg	agaacgccct	gcttcgagcc	cagctgcagc	agcacaacct	ggagatggtg	1020
ggcgagggca	. cccggcagtg	acgcccgcca	ccaccacgca	gccgccgccg	cccacgccgg	1080
cctctgctgc	cccttccc	agcccttagc	acagagaggg	acacatgccc	etcccccagc	1140
tgcgttttt	. tatagtagat	tttaacaaa	aaacggggag	aaataatgca	tttctgtgga	1200
tacagtgccc	: accgccctcc	tccacttgga	aacggtatcc	tecetgecea	tccgtctgtc	1260
tgtcgccctt	: ctcccggccc	: tcgctaagcc	ccggcacttc	tagtggtctc	acctggaggc	1320
aagagggagg	gtacagagco	tctgccaacg	tecegetggt	gcctcctgct	ctctggaggt	1380
actgagacag	g ggtgctgatg	ggaaggaggg	gagcctttgg	gggggccaco	cggggcctgg	1440
acctatgcag	g ggaggccacg	g teccacecca	cctcttgttt	ctgggtccct	geteceettt	1500
gggggtgtg	gtgtgtgtt	: taattttctt	: tatggaaaaa	ttgacaaaa	a aaaaatagag	1560
agagaggtat	ttaactgca					1579
<210> 170 <211> 690						

<211> 6951

<212> DNA

<213> Homo sapiens

<400> 176

aacagacctt cctctgctag ttctacatca tccaaggctc caccaagttc tcggagaaac 60 120

gcaaaagaag	gagctggtgc	tgttgatgaa	gaggatttta	ttaaagcatt	tgatgatgta	180
cctgtagtac	agatttattc	cagccgagac	cttgaggaat	ccataaacaa	aattagggaa	240
atattatctg	atgacaagca	tgattgggag	cagagagtaa	atgctctaaa	aaagattaga	300
tctttacttt	tggctggtgc	tgctgagtat	gataacttct	ttcaacattt	gcgtcttttg	360
gatggagcct	ttaaactctc	tgctaaggac	ctgcggtctc	aggtagtgcg	ggaggcttgt	420
atcacgttgg	ggcatctgtc	atcagttctg	gggaataagt	ttgaccatgg	agctgaagcc	480
attatgccaa	ctatctttaa	tttaattcca	aacagtgcca	aaattatggc	cacatctggt	540
gttgtagctg	ttaggttaat	tattcggcac	acacacatcc	ctaggttaat	acctgtcata	600
acaagcaact	gtacctctaa	gtctgtcgca	gttagaaggc	gctgttttga	atttttagat	660
ttgcttttac	aagaatggca	gacacattca	ctagaacgac	acatatcagt	attagctgaa	720
acaataaaga	agggaataca	tgatgctgat	tccgaagcaa	gaatagaagc	cagaaaatgt	780
tactggggtt	tccacagtca	cttcagcaga	gaagcagagc	acttgtacca	caccttggag	840
tcctcctacc	agaaagccct	gcagtcccac	ctgaagaact	cagacagcat	agtgtctctg	900
cctcagtcag	accgctcatc	ttccagctct	caagagagtc	taaatcgtcc	gctgtctgcc	960
aaaagaagtc	ctactggaag	taccacatct	agagcttcta	cagttagtac	caaatctgtg	1020
tcaacgactg	ggtccctcca	gcgatctcga	agtgatattg	atgtgaacgc	agcagccagt	1080
gccaaatcca	aagtctcctc	atcttcgggc	acgacgcctt	tcagctctgc	agcagctttg	1140
cctccagggt	catacgcatc	cttaggtcgg	atccgcacaa	gacggcaaag	ctctgggagt	1200
gccaccaacg	tegeetetae	acctgataac	cggggccgca	gtcgcgctaa	agtggtttca	1260
cagtcccagc	gatccagatc	tgctaatcct	gctggtgctg	gcagccggtc	aagttcccca	1320
ggaaaattgt	tgggaagtgg	ttatggtgga	cttactgggg	gctcctcacg	aggcccacct	1380
gtgacaccgt	cttcagaaaa	gcgaagcaag	attcccagga	gccagggatg	tagccgggaa	1440
acaagtccaa	accgaatagg	attagcacgg	agcagccgta	tccctcgacc	cagcatgagt	1500
caggggtgca	gccgcgatac	cagccgtgag	agcagccgag	atacaagccc	tgctcggggc	1560
tttcctccac	ttgatcggtt	tgggcttggc	cagccaggaa	gaatacctgg	ttctgtgaat	1620
gccatgagag	ttctgagcac	aagtacagat	cttgaagctg	ctgttgctga	tgctttgaag	1680
aagcctgtga	ggaggagata	tgagccgtat	gggatgtatt	ctgacgatga	tgccaacagt	1740
gatgcctcaa	gtgtttgctc	tgagcgctca	tatggctcca	ggaatggtgg	cattccccat	1800
tatctgcggc	agactgagga	tgtagcagaa	gttctcaacc	actgtgctag	ttcaaactgg	1860
tcagaaagga	aagaagggct	tctgggcctg	cagaacttac	tgaagagcca	aagaacactg	1920
agtcgagttg	aactgaaaag	gttgtgtgag	atcttcactc	ggatgtttgc	tgaccctcat	1980

agcaagagag t	ttttcagtat g	gtttttggag	actcttgtgg	attttataat	aattcataag	2040
gatgatttac a	aagactggct	ttttgttctt	ctcacacaat	tacttaagaa	aatgggagca	2100
gatttacttg g	gatctgtgca	agcaaaagtt	caaaaggctc	tagatgtcac	aagggactcc	2160
tttccatttg a	atcaacaatt	taacattttg	atgagattta	ttgtggatca	aactcaaact	2220
ccaaacctca	aggtcaaagt	tgcaatcctg	aaatacattg	agtctctggc	cagacagatg	2280
gatccaacag	attttgtaaa	ctctagtgag	acaaggcttg	ctgtttctag	aatcataacc	2340
tggacaacag	aaccaaagag	ttcagacgtg	agaaaggcag	cacagattgt	gctaatctct	2400
ctgtttgaat	tgaatactcc	tgaatttacc	atgttacttg	gtgccttgcc	aaaaacattc	2460
caggatggtg	ccaccaaact	cctgcacaac	cacctcaaga	attccagtaa	caccagtgtg	2520
ggctctccaa	gcaatacgat	tggccggacg	ccctcccgac	acaccagcag	caggaccagc	2580
cccctgacct	cacccaccaa	ctgttcccat	gggggtctgt	ctccaagtcg	gttatggggt	2640
tggagtgccg	acgggttagc	gaagcaccca	cctccctttt	ctcagcctaa	ctccatcccc	2700
accgctccct	cccacaaggc	tctcaggcgc	tcttactctc	ccagcatgct	ggactatgat	2760
acagagaacc	tgaactctga	agaaatctat	agttctctac	gtggagttac	agaagccatt	2820
gaaaagttta	gttttcgaag	ccaagaagat	ctgaatgagc	caattaaacg	agatggcaaa	2880
aaggagtgtg	atattgtgtc	ccgcgatggg	ggcgctgcct	cccctgccac	tgagggccgg	2940
gggggtagtg	aagtagaagg	aggccggaca	gctctggata	acaagaccto	actactcaac	3000
acccagcctc	cgcgcgcctt	cccggggccg	cgggcgcgag	actacaacco	gtacccctac	3060
tcagatgcca	tcaacaccta	cgacaagacc	gccctgaaag	aggctgtgtt	: cgatgacgac	3120
atggagcagc	ttcgagacgt	gcccatcgac	cattctgacc	tggtggctga	a ccttctgaaa	3180
gagctgtcca	accacaatga	gcgagtggag	gaacggaagg	gagccctgct	ggagetgete	3240
aagatcacgc	gggaagacag	ccttggtgtc	tgggaggagc	acttcaagad	c cattctgctc	3300
ctgctgctgg	agacccttgg	agacaaagac	cattcaattc	gagcactgg	gttaagagtt	3360
ttgagggaaa	ttctgagaaa	tcaaccagca	. agatttaaaa	actacgccg	a gctgacgatt	3420
atgaagactc	tggaagccca	caaagactcc	cataaggagg	tggtgagag	c ggctgaggag	3480
gctgcgtcca	cactggccag	ttccatccac	: ccggagcagt	gcatcaagg	t gctctgcccc	3540
atcatccaga	cggccgacta	. ccccatcaac	: cttgctgcca	tcaagatgc	a gaccaaagtc	3600
gtcgagagga	tcgcaaagga	gtcattgctg	g cageteette	g tegacatea	t cccaggcttg	3660
ctgcagggtt	atgacaacac	: cgaaagtagt	gtgcgtaagg	g ccagcgtgt	t ttgcttagtg	3720
gcaatttatt	ccgtaatcgg	g agaagacctg	g aaacctcaco	ttgcacagc	t cacagggagc	3780

aagatgaagc tactaaactt	atacataaag	agggcccaga	ccaccaacag	caacagcagc	3840
tectecteeg atgtetecae	gcacagctaa	tggcagtacc	tgtctcttgt	gtagacctag	3900
aagcaatcgg tggtgcctct	cagagacctt	tecccacece	cttcatcggc	tgcccagtca	3960
gtacaaggag gcccacaaat	atttattaca	atcagtattt	tggtcccttc	cagcttttct	4020
gtagaatctt actggtattg	aatgtaaagg	aagcaaggcc	tgtattgcag	tcttcataca	4080
aaacaaaagg aataagaaca	gaaaagagcc	atactgaaac	atgtcttgta	cagcctgctg	4140
agatggcgaa accctgtgtg	tggggtgcag	ttttaaaaa	tcagagcgct	ctagccacta	4200
cttggtagaa agtagcattt	tttttttcag	ttaataacat	atttgggggt	ggggtggggt	4260
gttactttgt gttcttcctc	cttagcctat	tttcttgtgc	gtatggtctg	tgtggggccc	4320
ctttcacagc tgacaccac	aaaggtgata	tatctttaag	ttgtgttctg	agacctacta	4380
aaaatgggaa tcaagtcttg	gcaagaacag	tctgaagatg	gccttttaac	aaacgctggg	4440
aattttgctt gtcatatcca	ı gactggaggc	cgactgccct	ggctttcagc	gtagaattgg	4500
gagtgcaccc tgacagtcto	cttccagctc	tccctaatcg	actccaccga	caaggtccct	4560
accccagagc ttccatgcaa	aggaattctt	caagtttaaa	tctggacaca	aaaataagat	4620
aaatgtatgg catcatttag	g ggatgcctga	gatggcagtt	catgaagcac	agaagataaa	4680
gaagaagtet tteatettt	a ctgctgagat	ccttgggaac	actgttgtca	tgggggctct	4740
gccaagaccc tcatctctg	g gctacacggt	gattcagatt	gagcaccaac	ttgtttcctc	4800
ccctcaaagt tctgcctaa	g ccgttcagtt	ctaacatggt	ctcagttaat	ctggtaaatg	4860
gcatctttac catcttagt	ctgacttctc	agtttaatgt	gggattaaga	gccaagaaaa	4920
gcctagagag actggatat	c acaattttt	ttaattttat	aaactgaagt	agttccttga	4980
atgtctgttg atgaaatag	t cactgtttaa	ggaaaaaagt	aattatgagg	tgtagcagat	5040
tgcagaaaaa caggattag	a aacacactta	aaaagaacac	acatttagag	tctctcttcc	5100
tecteagega accaetagg	c ccccttttt	aaaaacacct	ttagagccta	attactccaa	5160
taaaagtaac tagaggttt	g gagtctggtt	aaataaattc	tgagtaaaat	tcttaagcca	5220
aatggaaatt cttaatgca	a tcatgaggac	ttctattgtc	tcttactgtt	gtattagatc	5280
ctataaattg aactgattt	t tccataagga	aaatgcttct	tttgagatta	attctaataa	5340
cgtatttgct attgcagtg	c agagcccact	gcaactgcta	ggactgaaag	cagaggctgg	5400
gtgccagagc acgtgattc	t taacatcatt	tccacagacc	: cctctgccct	gaccctctgc	5460
attggatgca ggaagctgg	g aaagactgat	gttgatttgg	aaacatgggc	tgaaaatgaa	5520
ggccccatag tgcatagga	a cagtaaagco	agggtgctga	cgtgtgtgtg	tgtgtgtgtg	5580
tgtgtgtgtg tgtgtgtgg	t gttgtgtgtg	tttgtgcgtg	g caccctacac	: atgtgtggta	5640

cctcactgct	gctgtttagg	gaacttgagg	gacgcgtttc	aaggggttgg	gtattactga	5700
cgagctttgg	ctcaaaatat	agcaggacca	ggtcttttgt	tgataagtac	tgtttgttta	5760
ttaatatgtc	attaatggta	tttcttttt	acactctaca	agtgaattag	ggagtctctt	5820
gttgacccct	ttgttgcagg	aatgtgcgtc	gggctaggtt	atccatgagt	ttctttattc	5880
ctaatgcagt	tagaaagacc	tttctccttg	agctctttga	ctcccagaag	gtaccccagt	5940
ccccagtgta	cttagaaagg	atctcgaaca	ttgctggacg	tcctcatagt	actcacaaag	6000
ggctagcctt	gaatgtcact	cgcccagtct	tcagtctcct	gacttagaga	tacaatcacg	6060
tcacaggtct	cttggcctca	atctgaaaac	tgctgccgcc	gcgccgagga	gactcgcatg	6120
ccgccaccac	ctcactggga	gggcgccgag	cccaccgtcg	ccccctagac	cctgacagct	6180
gcagctgcct	tgccttgccg	ccgcctccct	gcagggcccc	tgttccaatg	aaaaacagaa	6240
cacaaaagag	cagagcacct	aagcctgtct	ctgcctccct	gtctaccgga	ctggccaggg	6300
cccaagaccc	ccgctgctcc	actgcggggc	tgggcgggct	gactccctgc	ttcctccaag	6360
ctgctgcctc	ccctgcagcc	agggtctggg	cagggtgcag	ccggtcctcg	gggcacgcag	6420
cttccttcaa	gtacactgtg	tgtgcttccc	ggacctgcgg	cgatgccacg	ggcctgcctt	6480
ttctatgcgc	ctcactagct	taccaccctg	tgcaggtaat	gcaactgact	ttgtctcatc	6540
agtcttttc	tttccctgcc	accctttatt	tatcaagcgt	aatgttacac	tttaaaggac	6600
agcaaataag	aactttgtag	aatcccacca	ggactttgct	aacaataatg	tttggaaata	6660
aagaagtgct	ctgaaaaaat	atcagccacc	aaaatagtta	tgttggcact	gtgttcacac	6720
gcatggtccc	cacaccccca	ggttgggtgg	gtttttttgt	tttttgggtt	tttttggggg	6780
gggggctttt	tcatgttaca	tccatatctg	tatttatatc	ttatttgttt	cactttcaag	6840
tgtatcatgg	caaatgtaca	gatttttttg	ttaataatgt	gctaggattt	gctaaaaaag	6900
aaaaaaaaa	aacccttttg	agtttgccct	agaataaatg	agacttaatt	t	6951

<210> 177

<211> 570

<212> DNA

<213> Homo sapiens

<400> 177

ttttttttt tttttttag tttaaagcac tttattaacc acacatacat attttccagt 60
gtctaattct catcgtgttc ttttccattc cagacttccc tgtctctttc ccagagctct 120
gttcctcttc tcactgtttc tggaaggcag ttgcactcaa aagtgaagtc accagtctgc 180
cgacaggtgc ctccattgac acaaggcgag ggtgcacagg gcacatacag gctgtcacag 240
tactggcctg tgaagccctg aaggcactgg cactggtagg aaccaggcag gttgaggcag 300

	aataaaaata	taataassta	tcacactcat	tgacatcagt	ctcacacttc	360
	gctggcagtg					
	agcctgtgag					420
cttccatttg	cacagggatg	agacaggcag	gcatcggtcc	attggcactc	cttacctgta	480
aacccgactt	gacaggtgca	ctcataggta	tcccggctga	gcatatggca	tgtgccgcca	540
ttcaggcaag	gtcgagcctc	gtgccgaatt				570
<210> 178 <211> 381 <212> DNA <213> Hom	o sapiens					
<400> 178	gaggcgggtg	atgtgctcac	ttctgatcaa	catgtgttgc	ctcctctcag	60
	gctcactgca					120
	ggcctaaatc					180
	ataatttcct					240
aggaactttt	ctcgaggagc	gttatgtcat	ggaaaagaca	ccaaacacag	caagtatttt	300
aatgaataca	ccatcccagg	gggtcagtaa	getetgeetg	ccaagaagac	acagtgagag	360
gtgtccacag	tcctgatgag	g				381
<210> 179 <211> 867 <212> DNF <213> Hon	•					
<400> 179) y ctgactacat	tcagcccgtc	tggtaaactt	gtccagattc	g aatatgettt	60
ggctgctgta	a gctggaggag	ccccgtccgt	gggaattaaa	a gctgcaaatg	gtgtggtatt	120
agcaactgag	g aaaaaacaga	aatccattct	gtatgatgag	g cgaagtgtad	acaaagtaga	180
accaattac	c aagcatatag	gtttggtgta	. cagtggcato	g ggccccgatt	acagagtgct	240
tgtgcacaga	a gctcgaaaac	tagctcaaca	atactatct	t gtgtaccaag	g aacccattcc	300
tacagctca	g ctggtacaga	a gagtagctto	tgtgatgca	a gaatatacto	agtcaggtgg	360
tgttcgtcc	a tttggagttt	: ctttacttat	: ttgtggttg	g aatgaggga	c gaccatattt	420
atttcagtc	a gatccatcto	g gagcttactt	: tgcctggaa	a gctacagca:	a tgggaaagaa	480
ctatgtgaa	t gggaagacti	tccttgagaa	a aagatataa	t gaagatctg	g aacttgaaga	540
tgccattca	t acagccatc	taaccctaaa	a ggaaagctt	t gaagggcaa	a tgacagagga	600
taadatada	a ottogaato	- gcaatgaag	: tagatttag	g aggettaet	c caactgaagt	660

taaggattac	ttggctgcca	tagcataaca	atgaagtgac	tgaaaaatcc	agaatttcag	720
		tgtttaaagt				780
		cgactgtttt				840
			caaaacyaca	cccacaaaco	000000000	867
gttaaaccca	aaaaaaaaa	aaaaaaa				007
<210> 180 <211> 953 <212> DNA <213> Home	o sapiens					
<400> 180 attcaatagt	cattaattca	gcaaatccca	ttcaagtaaa	agtkaccaaa	gataaagcaa	60
tcaatcacac	tgggccaaat	atacaatatg	tttcctttct	gggagatgac	aaagtcccaa	120
agcaaatccc	ttcaatgagc	attgcaagca	ttcctcaact	ggataggatc	ccactcacta	180
cccaagtgtt	cagcaaaatg	catcaaaact	gaagggtctt	tctttctgaa	atgacttggg	240
		aatcaataca				300
		gcttttatta				360
tgatcaccag	gacaaagccc	atgccttgtg	agtaaagaaa	ggcacaactc	agatttaggc	420
		acttacttgc				480
		tgcattcccc				540
		. ttagacccgc				600
		ctatacatto				660
		: attatttaaa				720
					atttctttaa	780
					gttaaagaca	840
					caatgataac	900
		aactttgttt				953
adageddag			3 3	_		
<210> 183 <211> 513 <212> DNA <213> Hor	3					
<400> 183		g taggcccgg	g tggttgctgo	c cgaaatgggc	: aagttcatga	60
					gctgtcatcg	120
					gtggctggaa	180
					gccaagagat	240

caaagataaa atcttttgtg	aaagtgtata	actacaatca	cctaatgccc	acaaggtact	300
ctgtggatat ccccttggac	aaaactgtcg	tcaataagga	tgtcttcaga	gatcctgctc	360
ttaaacgcaa ggcccgacgg	gaggccaagg	tcaagtttga	agagagatac	aagacaggca	420
agaacaagtg gttcttccag	aaactgcggt	tttagatgct	ttgttttgat	cattaaaaat	480
tataaagaaa aaaaaaaaa	. aaaaaaaaaa	aaa			513
<210> 182 <211> 1069 <212> DNA <213> Homo sapiens					
<400> 182 ggcggcggcg gcgacgtggg	g ctgcggcggg	cccgcggcgt	cgggcggtgc	ggatgtcggg	60
ctgggcggac gagcgcggcg	g gcgagggcga	cgggcgcatc	tacgtgggga	accttccgac	120
cgacgtgcgc gagaaggac	tggaggacct	gttctacaag	tacggccgca	tccgcgagat	180
cgagctcaag aaccggcac	g gcctcgtgcc	cttcgccttc	gtgcgcttcg	aggacccccg	240
agatgcagag gatgctatt	t atggaagaaa	tggttatgat	tatggccagt	gtcggcttcg	300
tgtggagttc cccaggact	t atggaggtcg	gggtgggtgg	ccccgtggtg	ggaggaatgg	360
gcctcctaca agaagatct	g atttccgagt	tcttgtttca	ggacttcctc	cgtcaggcag	420
ctggcaggac ctgaaggat	c acatgcgaga	agctggggat	gtctgttatg	ctgatgtgca	480
gaaggatgga gtggggatg	g tcgagtatct	cagaaaagaa	gacatggaat	atgccctgcg	540
taaactggat gacaccaaa	t teegetetea	tgagggtgaa	acttcctaca	. tccgagttta	600
tcctgagaga agcaccago	t atggctacto	: acggtctcgg	tctgggtcaa	ggggccgtga	660
ctctccatac caaagcagg	g gttccccaca	ctacttctct	cctttcaggo	: cctactgaga	720
caggtgatgg gaattttt	c tttattttt	aggttaactg	agctgctttg	, tgctcagaat	780
ctacattcca gattgagga	t ttagtgtctt	aggaaatttt	: tttaatttt	: tttttttaaa	840
gaagaaaaaa aactacata	a tttctaccaç	g ggccatatta	gcagtgaaa	attttaaact	900
gcagaaattg tggttttgg	ıt tcagaaacaa	a gttgtatatt	tttcacccct	gattatggga	960
aaaaatcgtt ctgtctttg					1020
gagteggeee attetgttt	a gaaatatati	t ttaaatgttt	agtaattga		1069

<210> 183 <211> 1231 <212> DNA

<213> Homo sapiens

<400> 183

gacaagatgg ccacaco	egge ggtaccagta	agtgctcctc	cggccacgcc	aaccccagtc	60
ccggcggcgg ccccago	cctc agttccagcg	ccaacgccag	caccggctgc	ggctccggtt	120
cccgctgcgg ctccago	cctc atcctcagac	cctgcggcag	cagcggctgc	aactgcggct	180
cctggccaga ccccgg	cctc agcgcaagct	ccagcgcaga	ccccagcgcc	cgctctgcct	240
ggtcctgctc ttccag	ggcc cttccccggc	ggccgcgtgg	tcaggctgca	cccagtcatt	300
ttggcctcca ttgtgg	acag ctacgagaga	cgcaacgagg	gtgctgcccg	agttatcggg	360
accctgttgg gaactg	tcga caaacactca	gtggaggtca	ccaattgctt	ttcagtgccg	420
cacaatgagt cagaag	atga agtggctgtt	gacatggaat	ttgctaagaa	tatgtatgaa	480
ctgcataaaa aagttt	ctcc aaatgagctc	atcctgggct	ggtacgctac	gggccatgac	540
atcacagagc actctg	tgct gatccatgag	tactacagcc	gagaggcccc	caaccccatc	600
cacctcactg tggaca	caag tctccagaac	ggccgcatga	gcatcaaagc	ctacgtcagc	660
actttaatgg gagtcc	ctgg gaggaccatg	ggagtgatgt	tcacgcctct	gacagtgaaa	720
tacgcgtact acgaca	ctga acgcatcgga	gttgacctga	tcatgaagac	ctgctttagc	780
cccaacagag tgattg	gact ctcaagtgac	ttgcagcaag	taggaggggc	atcagctcgc	840
atccaggatg ccctga	gtac agtgttgcaa	tatgcagagg	atgtactgtc	tggaaaggtg	900
tcagctgaca atactg	tggg ccgcttcctg	atgagcctgg	ttaaccaagt	accgaaaata	960
gttcccgatg actttg	agac catgctcaac	agcaacatca	atgacctttt	gatggtgacc	1020
tacctggcca acctca	caca gtcacagatt	gcactcaatg	aaaaacttgt	aaacctgtga	1080
atggacccca agcagt	acac ttgctggtct	aggtattaac	cccaggactc	agaagtgaag	1140
gagaaatggg ttttt	gtgg tcttgagtca	cactgagata	gtcagttgtg	tgtgactcta	1200
ataaacggag cctacc	tttt gtaaaaaaa	ı a			1231
<210> 184 <211> 586 <212> DNA <213> Homo sapie	ens				
<400> 184 gcaccaaggg ctgcto	ccca agtgggcctg	g aagcaggtgg	tcctgcgggc	gtccaggtca	60
gcaccttcct gtagg	acact aggactagg	tcacagece	: taactcataa	aqcaatcaaa	120

<400> 184
gcaccaaggg ctgctcccca agtgggcctg aagcaggtgg tcctgcgggc gtccaggtca 60
gcaccttcct gtagggcact ggggctaggg tcacagccc taactcataa agcaatcaaa 120
gaaccattag aaagggctca ttaagccgga cacaggaccc cagagaggaa aaagtgactt 180
gcccaaggtc gtaagcaagc tactggcatg gcaagagccc agcttcctga cggagcgcaa 240
catttctcca ctgcactgtg ctagcagctc agcaggcct ctaacctgtg atgtcacact 300
caagaggcct tggcagctcc tagccataga gcttcctttc cagaaccctt ccactgcca 360

```
atgtggagac aggggttagt ggggctttct atggagccat ctgctttggg gacctagacc
                                                                  420
480
ctataaaggc atttctctat atacatgttt tatatacctc attctgacac ctgcatatag
                                                                  540
                                                                  586
tgtgggaaat tgctctgcat ttgacttaat taaaaaaaaa aaaaaa
<210> 185
<211> 852
<212>
      DNA
<213> Homo sapiens
<400> 185
cccacgcgtc cgccctccc cccgagcgcc gctccggctg caccgcgctc gctccgagtt
                                                                   60
tcaggctcgt gctaagctag cgccgtcgtc gtctcccttc agtcgccatc atgattatct
                                                                  120
accgggacct catcagccac gatgagatgt tctccgacat ctacaagatc cgggagatcg
                                                                  180
cggacgggtt gtgcctggag gtggagggga agatggtcag taggacagaa ggtaacattg
                                                                  240
atgactcgct cattggtgga aatgcctccg ctgaaggccc cgagggcgaa ggtaccgaaa
                                                                  300
gcacagtaat cactggtgtc gatattgtca tgaaccatca cctgcaggaa acaagtttca
                                                                   360
caaaagaagc ctacaagaag tacatcaaag attacatgaa atcaatcaaa gggaaacttg
                                                                   420
aagaacagag accagaaaga gtaaaacctt ttatgacagg ggctgcagaa caaatcaagc
                                                                   480
acatccttgc taatttcaaa aactaccagt tctttattgg tgaaaacatg aatccagatg
                                                                   540
gcatggttgc tctattggac taccgtgagg atggtgtgac cccatatatg attttcttta
                                                                   600
aggatggttt agaaatggaa aaatgttaac aaatgtggca attattttgg atctatcacc
                                                                   660
tgtcatcata actggcttct gcttgtcatc cacacaacac caggacttaa gacaaatggg
                                                                   720
 actgatgtca tcttgagctc ttcatttatt ttgactgtga tttatttgga gtggaggcat
                                                                   780
 tgtttttaag aaaaacatgt catgtaggtt gtctaaaaat aaaatgcatt taaactcaaa
                                                                   840
                                                                   852
 aaaaaaaaa aa
 <210> 186
 <211>
       787
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc feature
       (722)..(722)
 <222>
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (735)..(735)
 <223> n is a, c, g, t or u
```

<220>

```
<221> misc_feature
<222> (744)..(744)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (752)..(752)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (764)..(764)
<223> n is a, c, g, t or u
<400> 186
caaggctagg aggctcgacc acctcaacat tggagacatc acttgccaat gtacatacct
                                                                       60
tgttatatgc agacatgtat ttcttacgta cactgtactt ctgtgtgcaa ttgtaaacag
                                                                      120
aaattgcaat atggatgttt ctttgtatta taaaattttt ccgctcttaa ttaaaaatta
                                                                      180
ctgtttaatt gacatactca ggataacaga gaatggtggt attcagtggt ccaggattct
                                                                      240
gtaatgcttt acacaggcag ttttgaaatg aaaatcaatt tacctttctg ttacgatgga
                                                                      300
gttggttttg atactcattt tttctttatc acatggctgc tacgggcaca agtgactata
                                                                      360
ctgaagaaca cagttaagtg ttgtgcaaac tggacatagc agcacatact acttcagagt
                                                                      420
tcatgatgta gatgtctggt ttctgcttac gtcttttaaa ctttctaatt caattccatt
                                                                      480
tttcaattaa taggtgaaat tttattcatg ctttgataga aattatgtca atgaaatgat
                                                                      540
tctttttatt tgtagcctac ttatttgtgt ttttcatata tctgaaatat gctaattatg
                                                                      600
ttttctgtct gatatggaaa agaaaagctg tgtctttatc aaaatattta aacggttttt
                                                                      660
                                                                      720
 tcagcatatc atcactgatc attggtaacc actaaagatg agtaatttgc ttaagtagta
 anttaaaaat tgtanatagg gccntcctga cnattttttt cccnaaaatt tttaacaagc
                                                                      780
                                                                      787
 aattqaa
 <210> 187
       3256
 <211>
 <212> DNA
 <213> Homo sapiens
 <400> 187
                                                                        60
 tgacctacac ttttaacttg tctcactagt gcctaaatgt agtaaaggct gcttaagttt
                                                                       120
 tgtatgtagt tggatttttt ggagtccgaa gtattccatc tgcagaaatt gaggcccaaa
 ttgaatttgg attcaagtgg attctaaata ctttgcttat cttgaagaga gaagcttcat
                                                                       180
                                                                       240
 aaggaataaa caagttgaat agagaaaaca ctgattgata ataggcattt tagtggtctt
 tttaatgttt tctgctgtga aacatttcaa gatttattga ttttttttt tcactttccc
                                                                       300
```

catcacactc	acacgcacgc	tcacactttt	tatttgccat	aatgaaccgt	ccagcccctg	360
tggagatctc	ctatgagaac	atgcgttttc	tgataactca	caaccctacc	aatgctactc	420
tcaacaagtt	cacagaggaa	cttaagaagt	atggagtgac	gactttggtt	cgagtttgtg	480
atgctacata	tgataaagct	ccagttgaaa	aagaaggaat	ccacgttcta	gattggccat	540
ttgatgatgg	agctccaccc	cctaatcaga	tagtagatga	ttggttaaac	ctgttaaaaa	600
ccaaatttcg	tgaagagcca	ggttgctgtg	ttgcagtgca	ttgtgttgca	ggattgggaa	660
gggcacctgt	gctggttgca	cttgctttga	ttgaatgtgg	aatgaagtac	gaagatgcag	720
ttcagtttat	aagacaaaaa	agaaggggag	cgttcaattc	caaacagctg	ctttatttgg	780
agaaataccg	acctaagatg	cgattacgct	tcagagatac	caatgggcat	tgctgtgttc	840
agtagaagga	aatgtaaacg	aaggctgact	tgattgtgcc	atttagaggg	aactcttggt	900
acctggaaat	gtgaatctgg	aatattacct	gtgtcatcaa	agtagtgatg	gattcagtac	960
tcctcaacca	ctctcctaat	gattggaaca	aaagcaaaca	aaaaagaaat	ctctctataa	1020
aatgaataaa	atgtttaaga	aaagagaaag	agaaaaggaa	ttaattcagt	gaaggatgat	1080
tttgctccta	gttttggagt	ttgaatttct	gccaggattg	aattattttg	aaatctcctg	1140
tctttttaaa	ctttttcaaa	ataggtctct	aaggaaaacc	agcagaacat	taggcctgtg	1200
caaaaccatc	tgtttgggga	gcacactctt	ccattatgct	tggcacatag	atctccctgt	1260
ggtgggattt	tttttttccc	ttttttgtg	ggggagggtt	ggtggtatat	ttttcccctc	1320
ttttttcctt	cctctcctac	atctcccttt	tcccccgatc	caagttgtag	atggaataga	1380
agcccttgtt	gctgtagatg	tgcgtgcagt	ctggcagcct	taagcccacc	tgggcacttt	1440
tagataaaaa	aaaaaaaaa	caaaaaacaa	caccaaaaaa	acagcagtga	tatatatatt	1500
ccaggtggtt	tttagtcttt	actgatgaaa	gggtgttcat	gttagtttct	tcaaaaccct	1560
atctaatact	aggcaaagta	gccaagagcc	ttttgttttg	tttttattt	gataaattag	1620
tggagaaatg	gcattttaag	aggagtctct	tctcaactta	cctgagagtc	gaattcttct	1680
cttccctaac	caatgaagct	aagtggttat	cccagaaact	tgtcttctaa	aagggaggac	1740
tccaggccat	caataaagat	gtccaggcag	tgagcgtact	ttttacaccc	tgtagaattg	1800
tgggctgtag	cgttactctg	attttctgtc	tagtatcaga	gaatgctggt	agcttaaaat	1860
tttattta	ggacttgtac	tctgaatttt	caggaaccgt	caaaggagca	gcagcaaatt	1920
cacatattt	cgacttgaga	aatgcttgtg	gtatgtgttt	tccaaactgc	cccctatatg	1980
taaagttcag	tttaaccact	gattgccttg	ttattactag	gttttttgag	attaaaaaaa	2040
aaaaatccct	ggtttaaaac	caacaatgat	gcctagtgag	tatgtgtcca	caggccataa	2100

cagggtagaa	gagagacatc	gtgcaaccca	atgagtagtg	aagggactgt	gttgcttgtg	2160
aagcggtgta	gtagcatttt	tgcagattct	tggctgggtt	tagtgtactg	atctagaaaa	2220
gctgttttc	tgctcctttg	tggaaggcag	ttatgatcag	gctgcatgga	caaagcaggt	2280
agaggggcac	catcaggggc	tcttgcacta	ttttcacctc	taaatattac	gtactcagta	2340
gtgccctgct	tctagggctc	tgaatacggg	cttaaagtca	tattgtaatg	ctggaatttg	2400
ctgtgcagag	ccataagcct	cccattttgt	tagcgtcagc	taggccaata	ggaacagacc	2460
gggaccttgt	ctcacactga	tgatacctca	catgttgacc	ggctatgtga	actgcctatt	2520
tcctatgctg	gagttttgat	ttttaactaa	acgcaaatct	gtagattctc	tcctctccca	2580
tcccagaaaa	caaaacaaaa	taatgctttt	cgaaattgtt	tctaggactt	taaaacataa	2640
tggtatatcc	aaaattcttt	atttcagaat	gcaacaatag	attccattaa	tatagactca	2700
agatcaaaac	agcatacctg	ctaagctaag	atagatggtg	ttgattccac	tgggttttga	2760
tcaatacaat	aacaaacctt	tttcctttga	catactctga	attttgttgt	ttggggggag	2820
ggggtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtattgtgt	gtgtgtgtgt	gtgcacgcgc	2880
agtgtccatc	agtatcagtg	cctgcctgag	ttaggaaaat	tacattcctg	gttctgtatt	2940
gaggagaagg	atgtataaag	caacatgaaa	cattagccct	ccttttattt	taaagactaa	3000
tgttaattgt	tcttaaaact	ggatttttt	tccttaaagc	aattttttc	ttttcgattt	3060
aatgaagtat	. tgctagctga	. agccagtttg	acatagagag	atgtcagatt	gatttgaaag	3120
gtgtgcagco	: tgatttaaaa	ccaaaccctg	aacccttta	aagaacaata	aaacatattt	3180
tacacgctca	a aaaaaaaaaa	ı aaaaaaaaa	. aaaaaaaaa	ı aaaaaaaaa	aaaaaaaaaa	3240
aaaaaaaaa	a, aaaaaa					3256

<210> 188

<211> 4080

<212> DNA

<213> Homo sapiens

<400> 188
gcgcctgcggcgccgcggggggtcgcctcccctcctgtagcccacaccttcttaaagc60ggcggcgggaagatgaggcttcgggagccgctcctgagccggagcgccgcgatgccaggc120gcgtccctacagegggcctgccgcctgctcgtggccgtctgcgctctgcaccttggcgtc180accctcgtttactacctggctggccgcgacctgagccgcctgccccaactggtcggagtc240tccacaccgctgcagggcgggtcgaacagtgccgccgccatcgggcagtcctccggggac300ctccggaccggaggggcccggccgccgcctcctctaggcgcctcctcccagccgcgcccg360ggtggcgactccagcccagtcgtggattctggccctggccccgctagcaacttgacctcg420

gtcccagtgc	cccacaccac	cgcactgtcg	ctgcccgcct	gccctgagga	gtccccgctg	480
cttgtgggcc	ccatgctgat	tgagtttaac	atgcctgtgg	acctggagct	cgtggcaaag	540
cagaacccaa	atgtgaagat	gggcggccgc	tatgccccca	gggactgcgt	ctctcctcac	600
aaggtggcca	tcatcattcc	attccgcaac	cggcaggagc	acctcaagta	ctggctatat	660
tatttgcacc	cagtcctgca	gcgccagcag	ctggactatg	gcatctatgt	tatcaaccag	720
gcgggagaca	ctatattcaa	tcgtgctaag	ctcctcaatg	ttggctttca	agaagccttg	780
aaggactatg	actacacctg	ctttgtgttt	agtgacgtgg	acctcattcc	aatgaatgat	840
cataatgcgt	acaggtgttt	ttcacagcca	cggcacattt	ccgttgcaat	ggataagttt	900
ggattcagcc	taccttatgt	tcagtatttt	ggaggtgtct	ctgcttcaag	taaacaacag	960
tttctaacca	tcaatggatt	tcctaataat	tattggggct	ggggaggaga	agatgatgac	1020
atttttaaca	gattagtttt	tagaggcatg	tctatatctc	gcccaaatgc	tgtggtcggg	1080
acgtgtcgca	tgatccgcca	ctcaagagac	aagaaaaatg	aacccaatcc	tcagaggttt	1140
gaccgaattg	cacacacaaa	ggagacaatg	ctctctgatg	gtttgaactc	actcacctac	1200
caggtgctgg	atgtacagag	atacccattg	tatacccaaa	tcacagtgga	catcgggaca	1260
ccgagctagc	gttttggtac	acggataaga	gacctgaaat	tagccaggga	cctctgctgt	1320
gtgtctctgc	caatctgctg	ggctggtccc	tctcattttt	accagtctga	gtgacagctc	1380
cccttggctc	atcattcaga	tggctttcca	gatgaccagg	acaggtggga	. tattttgccc	1440
ccaacttggc	tcggcatgtg	aattcttagc	tctgcaaggt	gtttatgcct	ttgcgggttt	1500
cttgatgtgt	tegeagtgte	acccaagagt	cagaactgta	gacatcccaa	aatttggtgg	1560
ccgtggaaca	. cattcccggt	gatagaattg	ctaaattgtc	gtgaaatagg	g ttagaatttt	1620
tctttaaatt	atggttttct	tattcgcgaa	aattcggaga	gtgctgctaa	a aattggattg	1680
gtgtcatctt	tttggtagtt	gtaatttaac	: agaaaaacac	: aaaatttcaa	a ccattcttaa	1740
tgttacgtcd	tccccccacc	cccttctttc	: agtggtatgo	aaccactgca	a atcaatgtgt	1800
catatgtctt	ttcttagcaa	aaggatttaa	aacttgagco	c ctggaccttt	tgcctatgtg	1860
tgtggattc	e agggcaacto	: tagcatcaga	gcaaaagcct	tgggtttct	gcattcagtg	1920
gcctatctcc	c agattgtctg	g atttctgaat	gtaaagttgt	tgtgttttt	t tttaaatagt	1980
aggtttgtag	g tattttaaag	g aaagaacaga	a togagttota	a attatgato	t agcttgattt	2040
tgtgttgat	c caaatttgca	a tagctgttta	a atgttaagto	c atgacaatt	t atttttcttg	2100
gcatgctate	g taaacttgaa	a tttcctaagt	atttttatt	c tggtgtttt	a aatatgggga	2160
ggggtattg	a gcattttta	a gggagaaaa	a taaatatat	g ctgtagtgg	c cacaaatagg	2220
cctatgatt	t agctggcag	g ccaggtttt	c tcaagagca	a aatcaccct	c tggccccttg	2280

gcaggtaagg	cctcccggtc	agcattatcc	tgccagacct	cggggaggat	acctgggaga	2340
cagaagcctc	tgcacctact	gtgcagaact	ctccacttcc	ccaaccctcc	ccaggtgggc	2400
agggcggagg	gagcctcagc	ctccttagac	tgacccctca	ggcccctagg	ctggggggtt	2460
gtaaataaca	gcagtcaggt	tgtttaccag	ccctttgcac	ctccccaggc	agagggagcc	2520
tctgttctgg	tgggggccac	ctccctcaga	ggctctgcta	gccacactcc	gtggcccacc	2580
ctttgttacc	agttcttcct	ccttcctctt	ttcccctgcc	tttctcattc	cttccttcgt	2640
ctccctttt	gttcctttgc	ctcttgcctg	tcccctaaaa	cttgactgtg	gcactcaggg	2700
tcaaacagac	tatccattcc	ccagcatgaa	tgtgcctttt	aattagtgat	ctagaaagaa	2760
gttcagccgc	acccacaccc	caactccctc	ccaagaactt	cggtcctaaa	gcctcctgtt	2820
ccacctcagg	ttttcacagg	tgctcacacc	acagttgagg	ctcacacaca	ggtctgtctg	2880
tcacaaaccc	acctctgttg	ggagctattg	agccacctgg	gatgagatga	cacaagacac	2940
tcctaccact	gagcgccttt	gtccaggtgc	cagcctgggc	tcaggttcca	agactcagct	3000
gcctaatccc	agggttgagc	cttgtgctcg	tgtcggaccc	caaaccactg	ccctcctggt	3060
accagccctc	agtgtggagg	ctgagctggt	geetggeece	agtcttatct	gtgcctttac	3120
tgctttgcgc	atctcagatg	ctaacttggt	tctttttcca	gaaggctttg	tattggttaa	3180
aaattatttt	ctattgcaga	gagcagctgt	gactcatgca	aaaagtattt	tctctgtcag	3240
atccccactc	tataccaagg	atattattaa	aactagaaat	gactgcattg	agagggagtt	3300
gtgggaaata	agaagaatga	aagcctctct	ttctgtccgc	agatcctgac	ttttccaaag	3360
tgccttaaaa	gaaatcagac	aaatgccctg	agtggtaact	tctgtgttat	tttactctta	3420
aaaccaaact	ctaccttttc	ttgtttttt	tttttttt	tttttttt	ttggttacct	3480
tctcattcat	gtcaagtatg	tggttcattc	ttagaaccaa	gggaaatact	gctcccccca	3540
tttgctgacg	tagtgctctc	atgggctcac	ctgggcccaa	ggcacagcca	gggcacagtt	3600
aggcctggat	gtttgcctgg	tccgtgagat	gccgcgggtc	ctgtttcctt	actggggatt	3660
tcagggctgg	gggttcaggg	agcatttcct	tttcctggga	gttatgtacc	gcgaagtgtg	3720
tcatgtgccg	tgcccttttc	tgtttctgtg	tatcctattg	ctggtgactc	tgtgtgaact	3780
ggcctttggg	aaagatcaga	gaggcagagg	tggcacagga	cagtaaagga	gatgctgtgc	3840
tgcctacagc	ctggacaggg	tctctgctgt	actgccaggg	gegggggete	tgcatagcca	3900
ggatgacgcc	tttcatgtcc	cagagacctg	ttgtgctgtg	tattttgatt	tcctgtgtat	3960
gcaaatgtgt	gtatttacca	ttgtgtaggg	ggctgtgtct	gatcttggtg	ttcaaaacag	4020
aactgtattt	ttgcctttaa	aattaaataa	tataacgtga	. ataaatgacc	ctaactttgt	4080

<210> 189 <211> 1093 <212> DNA <213> Homo sapiens	
<400> 189 ctgcaaggcg gcggcaggag aggttgtggt gctagtttct ctaagccatc cagtgccatc	60
ctcgtcgctg cagcgacacc gctctcgccg ccgccatgac tgagcagatg acccttcgtg	120
gcaccetcaa gggccacaac ggctgggtaa cccagatege tactaceeeg cagtteeegg	180
acatgateet eteegeetet egagataaga eeateateat gtggaaaetg accagggatg	240
agaccaacta tggaattcca cagcgtgctc tgcggggtca ctcccacttt gttagtgatg	300
tggttatete etcagatgge cagtttgeee tetcaggete etgggatgga accetgegee	360
tetgggatet cacaacggge accaccacga ggcgatttgt gggccatace aaggatgtge	420
tgagtgtggc cttctcctct gacaaccggc agattgtctc tggatctcga gataaaacca	480
tcaagctatg gaataccctg ggtgtgtgca aatacactgt ccaggatgag agccactcag	540
agtgggtgtc ttgtgtccgc ttctcgccca acagcagcaa ccctatcatc gtctcctgtg	600
gctgggacaa gctggtcaag gtatggaacc tggctaactg caagctgaag accaaccaca	660
ttggccacac aggctatctg aacacggtga ctgtctctcc agatggatcc ctctgtgctt	720
ctggaggcaa ggatggccag gccatgttat gggatctcaa cgaaggcaaa cacctttaca	780
cgctagatgg tggggacatc atcaacgccc tgtgcttcag ccctaaccgc tactggctgt	840
gtgctgccac aggccccagc atcaagatct gggatttaga gggaaagatc attgtagatg	900
aactgaagca agaagttatc agtaccagca gcaaggcaga accaccccag tgcacttccc	960
tggcctggtc tgctgatggc cagactctgt ttgctggcta cacggacaac ctggtgcgag	1020
tgtggcaggt gaccattggc acacgctaga agtttatggc agagctttac aaataaaaaa	1080
aaaatggctt ttc	1093
<210> 190 <211> 2883 <212> DNA <213> Homo sapiens	
<400> 190 agggcggaa gatgccgcg gtcgtgcccg accagagaag caagttcgag aacgaggagt	60
ttttaggaa gctgagccgc gagtgtgaga ttaagtacac gggcttcagg gaccggcccc	120
acgaggaacg ccaggcacgc ttccagaacg cctgccgcga cggccgctcg gaaatcgctt	180
ttgtggccac aggaaccaat ctgtctctcc aattttttcc ggccagctgg cagggagaac	240
agcgacaaac acctagccga gagtatgtcg acttagaaag agaagcaggc aaggtatatt	300

tgaaggctcc	catgattctg	aatggagtct	gtgttatctg	gaaaggctgg	attgatctcc	360
aaagactgga	tggtatgggc	tgtctggagt	ttgatgagga	gcgagcccag	caggaggatg	420
cattagcaca	acaggccttt	gaagaggctc	ggagaaggac	acgcgaattt	gaagatagag	480
acaggtctca	tcgggaggaa	atggaggtga	gagtttcaca	gctgctggca	gtaactggca	540
agaagacaac	aagaccctag	tectggttec	aatttaggtg	gtggtgatga	cctcaaactt	600
cgttaattaa	tagcacagca	gatgtgtgct	gcccatcttt	acatacacat	tgcttctagt	660
tggcagaaat	aattgattaa	aagaccagaa	actgtgataa	ctggaggtac	tacggtctat	720
ttctcaacct	taggcagtaa	tagacatcac	aaactgccat	ggttttgcac	tatgattata	780
atacctgcat	ttctaatttt	ttaagcatgt	agccagtaat	aatttgaagt	tttttttcta	840
tgcaagctta	ccttgttggc	attattttag	ggagttgaaa	ctatcaactg	taaagctcct	900
tttcttccac	tttaatttaa	aagttcatgt	catttaaaaa	caagtcaaga	aattaaaatt	960
gtatcagagg	gttttctcta	atcattttt	ctatttttt	ttttgtactt	ctagatgttt	1020
tggttataca	gcttcatttt	agatgagcat	tcttatttt	tgttttgttt	gccccatttc	1080
cttttgtgtt	tttatagtct	atagcatttt	aaaactgctg	atgttgtttg	cattatttac	1140
aggctaaaaa	cttagtagca	tagagctgtc	tgccacagcc	ttctgacaaa	gtttacagtt	1200
attaaagttg	cagtatcctt	ttaaatgcta	gtaatcagca	ctctttcttt	tttttttt	1260
taatagagac	agggtctcgc	agtgttgccc	aggctggtct	cgaactcctg	gcatcaagcg	1320
atcctcctgc	cttagcctcc	cagagtactg	ggattacagg	ctctttcttt	ttaaacataa	1380
aagttttaaa	. ttggtattaa	ctctgtactc	tgccctagat	tgttttagct	tctgttctgt	1440
aatcatgagt	ttggttggag	atattctcca	tagatgatct	tctactgaaa	tgcctaaaga	1500
agtcacaggo	: tggcttctgt	tttattcagg	gatttttta	aaaagtcaat	cagaaaaggg	1560
atactggago	: ttcttcatgt	atgtaacagc	atattaaact	ggagacagtg	atgaatcagc	1620
tacaaaggta	atattgtatt	aaaatcatgt	ttaagatagc	: tgcttttatg	tgtattttat	1680
attgcatgct	tttgtaaaa	ı catgctgggt	gatgaaagat	tagttttaga	gagaaaatgt	1740
tcatctgtgc	agaggatgca	ı ttttcttcca	ttaattctgg	, aaaaaacgtt	: cacagttata	1800
tatatggtat	tttgcaaaag	g gactattaat	agaacctttt	gagatgaatt	: aatgtaagaa	1860
tatttttaa	a ataggettad	tgtcaaattg	g caacttttt	tttagataca	ı gagtggaaaa	1920
cagtgctaag	g tcatttggca	a cctccttaca	aatattttt	catggtcaca	a tttattaaat	1980
gttactacat	t ttctgaattt	ttgaaaaatg	g tattttatca	a ttaaatggca	a ttattttcaa	2040
agggtgaaaa	a actgacacag	g tcaattcaga	a aaatggacts	g aagtctgaa	aaggtcattg	2100

catttaaaaa	gcatataact	gtacttgact	gatgagggag	gtgttacttt	cattgtatat	2160
aggtcttatt	tcataaacag	atatcctgta	tcaaataaaa	gtatttgtta	tatatttgaa	2220
gttatgcatg	gaaaggagtg	tgtttaaatt	gttacaaaca	ataatgcgtc	attaaaggcc	2280
atgctgatct	tgcataacta	taagtactat	gaatgaattt	ggttggtttt	ggtgttgtac	2340
agctcacatg	tttacacact	cagtgcccta	atttcccctg	agggaatcgc	tttttaagtg	2400
atccttacag	tggtgtttta	tgttacttta	ttacagagct	ccttggtttt	ttacttctgc	2460
acttaaattt	ttttaaataa	catgatgatg	gtacattttc	ctctattgtc	tagctaaggg	2520
ctttcggtcc	accagtaaat	aagatcaaat	gctcttaaat	gttcctgtta	ccatcctaat	2580
gtaaatactg	gatttttctg	tcatttagca	ccatgctgct	tctgtctgtc	ttaatgctgg	2640
cattaagatc	atgagccctt	tttctccagt	agtacaggct	ttgaaaacta	cttctattaa	2700
gttattgatg	caatttgata	ttttttcata	atctatattt	aaacaaaatt	acatcattgc	2760
atcatctttt	ctaaattcat	ctccattaaa	acttgcctta	agctaccaga	ttgcttttgc	2820
caccattggc	catactgtgt	gtttgtttgt	ttaatttact	ttcacaataa	acttctgtgt	2880
agt						2883

<210> 191

<211> 2567

<212> DNA

<213> Homo sapiens

<400> 191 ctccggcgca gtgttgggac tgtctgggta tcggaaagca agcctacgtt gctcactatt 60 acgtataatc cttttctttt caagatgcct gaggaagtgc accatggaga ggaggaggtg 120 gagacttttg cctttcaggc agaaattgcc caactcatgt ccctcatcat caataccttc 180 tattccaaca aggagatttt ccttcgggag ttgatctcta atgcttctga tgccttggac 240 aagattcgct atgagagcct gacagaccct tcgaagttgg acagtggtaa agagctgaaa 300 attgacatca tccccaaccc tcaggaacgt accctgactt tggtagacac aggcattggc 360 atgaccaaag ctgatctcat aaataatttg ggaaccattg ccaagtctgg tactaaagca 420 ttcatggagg ctcttcaggc tggtgcagac atctccatga ttgggcagtt tggtgttggc 480 ttttattctg cctacttggt ggcagagaaa gtggttgtga tcacaaagca caacgatgat 540 gaacagtatg cttgggagtc ttctgctgga ggttccttca ctgtgcgtgc tgaccatggt 600 gagcccattg gcaggggtac caaagtgatc ctccatctta aagaagatca gacagagtac 660 ctagaagaga ggcgggtcaa agaagtagtg aagaagcatt ctcagttcat aggctatccc 720 atcacccttt atttggagaa ggaacgagag aaggaaatta gtgatgatga ggcagaggaa 780

gagaaaggtg agaaagaaga ggaagataaa gatgatgaag aaaaacccaa gatcgaagat	840
gtgggttcag atgaggagga tgacagcggt aaggataaga agaagaaaac taagaagatc	900
aaagagaaat acattgatca ggaagaacta aacaagacca agcctatttg gaccagaaac	960
cctgatgaca tcacccaaga ggagtatgga gaattctaca agagcctcac taatgactgg	1020
gaagaccact tggcagtcaa gcacttttct gtagaaggtc agttggaatt cagggcattg	1080
ctatttattc ctcgtcgggc tccctttgac ctttttgaga acaagaagaa aaagaacaac	1140
atcaaactct atgtccgccg tgtgttcatc atggacagct gtgatgagtt gataccagag	1200
tatctcaatt ttatccgtgg tgtggttgac tctgaggatc tgcccctgaa catctcccga	1260
gaaatgctcc agcagagcaa aatcttgaaa gtcattcgca aaaacattgt taagaagtgc	1320
cttgagctct tctctgagct ggcagaagac aaggagaatt acaagaaatt ctatgaggca	1380
ttctctaaaa atctcaagct tggaatccac gaagactcca ctaaccgccg ccgcctgtct	1440
gagetgetge getateatae eteceagtet ggagatgaga tgacatetet gteagagtat	1500
gtttctcgca tgaaggagac acagaagtcc atctattaca tcactggtga gagcaaagag	1560
caggtggcca actcagcttt tgtggagcga gtgcggaaac ggggcttcga ggtggtatat	1620
atgaccgagc ccattgacga gtactgtgtg cagcagctca aggaatttga tgggaagagc	1680
ctggtctcag ttaccaagga gggtctggag ctgcctgagg atgaggagga gaagaagaag	1740
atggaagaga gcaaggcaaa gtttgagaac ctctgcaagc tcatgaaaga aatcttagat	1800
aagaaggttg agaaggtgac aatctccaat agacttgtgt cttcaccttg ctgcattgtg	1860 :
accagcacct acggctggac agccaatatg gagcggatca tgaaagccca ggcacttcgg	1920
gacaactcca ccatgggcta tatgatggcc aaaaagcacc tggagatcaa ccctgaccac	1980
cccattgtgg agacgctgcg gcagaaggct gaggccgaca agaatgataa ggcagttaag	2040
gacetggtgg tgctgctgtt tgaaaccgcc ctgctatctt ctggcttttc ccttgaggat	2100
ccccagaccc actccaaccg catctatcgc atgatcaagc taggtctagg tattgatgaa	2160
gatgaagtgg cagcagagga acccaatgct gcagttcctg atgagatccc ccctctcgag	2220
ggcgatgagg atgcgtctcg catggaagaa gtcgattagg ttaggagttc atagttggaa	2280
aacttgtgcc cttgtatagt gtccccatgg gctcccactg cagcctcgag tgcccctgtc	2340
ccacctggct ccccctgctg gtgtctagtg tttttttccc tctcctgtcc ttgtgttgaa	2400
ggcagtaaac taagggtgtc aagccccatt ccctctctac tcttgacagc aggattggat	2460
gttgtgtatt gtggtttatt ttattttctt cattttgttc tgaaattaaa gtatgcaaaa	2520
taaagaatat gccgttttaa aaaaaaaaaa aaaaaaaaa aaaaaaa	2567

<210> 192					
<211> 418 <212> DNA					
<212> DNA <213> Homo sap	oiens				
<400> 192 gggatccagt gtcc	cacactt aaaagttgta	tgtgtttaaa a	aaacaacaac a	agtaatgtgc	60
aaggtgaaat gctt	ttggga taaacgtaag	cctattttct	gacgtttctt a	aatgcaaact	120
ctttgcctta aatg	ggtagaa tatttagaaa	tttgcacaaa a	attaaaaaaa ·	taaacattgt	180
cttggagggt taaa	aaaatag aaaggtgtat	gtgtatagat 1	tcacatacac	atatgtatat	240
acaggctgac ttga	atctaga acattaaatc	cgccctgcaa (gttaaccccc	cattgcaatg	. 300
	gtttgct agttgtgtac				360
tcccacttga ttag	gagcaat gggaagcata	ctgtggccta	ccagcatctg	gaagtgtg	418
<210> 193 <211> 1797 <212> DNA <213> Homo sa	piens				
<400> 193 ccagcaggga gct	gggagct gggggaaacg	acgccaggaa	agctatcgcg	ccagagaggg	60
cgacgggggc tcg	ggaagcc tgacagggct	tttgcgcaca	gctgccggct	ggctgctacc	120
cgcccgcgcc agc	ccccgag aacgcgcgac	: caggcaccca	gtccggtcac	cgcagcggag	180
agctcgccgc tcg	ctgcagc gaggcccgga	geggeeeege	agggaccctc	cccagaccgc	240
ctgggccgcc cgg	atgtgca ctaaaatgga	acagcccttc	taccacgacg	actcatacac	300
agctacggga tac	ggccggg cccctggtgg	g cctctctcta	cacgactaca	aactcctgaa	360
accgagcctg gcg	gtcaacc tggccgacco	c ctaccggagt	ctcaaagcgc	ctggggctcg	420
	agagggcg gcggtggcgg				480
	caageteg cetettegga				540
	gacgacgc ctacacccc				600
	gcagggg gcgcagggg				660
	caaagccc tggacgatc				720
	cgctaccg gggggcccc				780
	cgtttaca ccaacctca				840
	tgccgtcg ggaccggga				900
	gcccttcg ccggtggcc				960
atagagatta aa	daadaac cqcaqaccq	t accadadaca	cqcaqccqqq	acqccacgcc	1020

gccggtgtcc cccatcaaca tggaagacca agagcgcatc aaagtggagc gcaagcggct	1080
gcggaaccgg ctggcggcca ccaagtgccg gaagcggaag ctggagcgca tcgcgcgcct	1140
ggaggacaag gtgaagacgc tcaaggccga gaacgcgggg ctgtcgagta ccgccggcct	1200
cctccgggag caggtggccc agctcaaaca gaaggtcatg acccacgtca gcaacggctg	1260
tcagctgctg cttggggtca agggacacgc cttctgaacg tcccctgccc ctttacggac	1320
accccctcgc ttggacggct gggcacacgc ctcccactgg ggtccaggga gcaggcggtg	1380
ggcacccacc ctgggaccta ggggcgccgc aaaccacact ggactccggc ccccctaccc	1440
tgcgcccagt ccttccacct cgacgtttac aagccccccc ttccactttt ttttgtatgt	1500
tttttttctg ctggaaacag actcgattca tattgaatat aatatatttg tgtatttaac	1560
agggaggga agagggggg atcgcggcgg agctggccc gccgcctggt actcaagccc	1620
geggggacat tgggaagggg acceeegece eetgeeetee eetetetgea eegtaetgtg	1680
gaaaagaaac acgcacttag tctctaaaga gtttatttta agacgtgttt gtgtttgtgt	1740
gtgtttgttc tttttattga atctatttaa gtaaaaaaaa aattggttct ttattaa	1797
<210> 194 <211> 215	
<212> DNA <213> Homo sapiens	
<400> 194	
atcgtagcca actttcaaat agttgaagta actcagcctc agacttcaga caaagttcct	
cattaggatt atgctataaa ccctcactta tggctcacac agggtgacca tattgcttcc	
tccaactggc atttctcagg gtgatcaggg tcctgtggtg acagccggcc cacagccatc	
agcagcttgt cttgggaggg ccaggttgca ggtct	215
<210> 195	,
<211> 524 <212> DNA	
<213> Homo sapiens	
<400> 195 ttttttttt tttttttt tttttttt tttttttc ccaaaggccc cttttataaa	a 60
aaaaaatggc cctaaaaatt aaaaatcccc caagcccggg gaattttccg gagtccccag	
gettgetggg ggaceggeag geatecacee ettggggeag eegggeaggg geegegtggg	
ggcaaaccac caggcccaaa gcaggagctc aggggcatac cccacacctc cacctgagca	
ccccttttc cggggctgga aacaaagggg ggggggggc taaaactacc cccatgccg	
caacagggga ggggggcaaa ccttacaatt ttattaacac aaagcacccc tccagggcc	
cggcccacag ggcgatctag ggagaaagct ctcctaaaca ctttgggggc caaaccccc	-

gcccaggagg tggaaccaag caatgcgggg gcttgaaatg gtagggccca tcctcaggag	480
aacatgcaac ccccaggccc gcaacagttg ttgcccgcaa acag	524
<210> 196 <211> 1574 <212> DNA <213> Homo sapiens	
<400> 196 cagacagacc aatcacgcgc attettegge cacgacaage gegeetetga teaegtgace	60
aggtccgcta cccacgtggg ggctcagcgt gcacccttct ttgtgctcgg gttaggagga	120
gctaggctgc catcgggccg gtgcagatac ggggttgctc ttttgctcat aagaggggct	180
tegetggeag tetgaaegge aagettgagt eaggaceett aattaagate eteaattgge	240
tggagggcag atctcgcgag tagggcaacg cggtaaaaat attgcttcgg tgggtgacgc	300
ggtacagetg eccaagggeg ttegtaaegg gaatgeegaa gegtgggaaa aagggagegg	360
tggcggaaga cggggatgag ctcaggacag agccagaggc caagaagagt aagacggccg	420
caaagaaaaa tgacaaagag gcagcaggag agggcccagc cctgtatgag gaccccccag	480
atcagaaaac ctcacccagt ggcaaacctg ccacactcaa gatctgctct tggaatgtgg	540
atgggcttcg agcctggatt aagaagaaag gattagattg ggtaaaggaa gaagccccag	600
atatactgtg ccttcaagag accaaatgtt cagagaacaa actaccagct gaacttcagg	660
agctgcctgg actctctcat caatactggt cagctccttc ggacaaggaa gggtacagtg	720
gcgtgggcct gctttcccgc cagtgcccac tcaaagtttc ttacggcata ggcgatgagg	780
agcatgatca ggaaggccgg gtgattgtgg ctgaatttga ctcgtttgtg ctggtaacag	840
catatgtacc taatgcaggc cgaggtctgg tacgactgga gtaccggcag cgctgggatg	900
aagcettteg caagtteetg aagggeetgg etteeegaaa geeeettgtg etgtgtggag	960
acctcaatgt ggcacatgaa gaaattgacc ttcgcaaccc caaggggaac aaaaagaatg	1020
ctggcttcac gccacaagag cgccaaggct tcggggaatt actgcaggct gtgccactgg	1080
ctgacagett taggeacete taccecaaca caccetatge etacacettt tggaettata	1140
tgatgaatgc tcgatccaag aatgttggtt ggcgccttga ttactttttg ttgtcccact	1200
ctctgttacc tgcattgtgt gacagcaaga tccgttccaa ggccctcggc agtgatcact	1260
gtoctatcac cotatacota goactgtgac accaececta aateactttg ageetgggaa	1320
ataagccccc tcaactacca ttccttcttt aaacactctt cagagaaatc tgcattctat	1380
ttctcatgta taaaactagg aatcctccaa ccaggctcct gtgatagagt tcttttaagc	1440
ccaagatttt ttatttgagg gttttttgtt ttttaaaaaa aaattgaaca aagactacta	1500

atgactttgt	ttgaattatc	cacatgaaaa	taaagagcca	tagtttcaaa	aaaaaaaaa	1560
aaaaaaaaa	aaaa					1574
010 107						
<210> 197 <211> 1238	3					
<212> DNA <213> Homo	sapiens					
<400> 197		et sest eggt	aaaaataat	ttcaacaaca	cctccttgat	60
	agacttctct					120
	gctggaggcc					
	gtcactgttt					180
ggaagctgtt	aaacaaggtt	cagccacagt	tggtctgaaa	tcaaaaactc	atgcagtttt	240
ggttgcattg	aaaagggcgc	aatcagagct	tgcagctcat	cagaaaaaaa	ttctccatgt	300
tgacaaccat	attggtatct	caattgcggg	gcttactgct	gatgctagac	tgttatgtaa	360
ttttatgcgt	caggagtgtt	tggattccag	atttgtattc	gatagaccac	tgcctgtgtc	420
tcgtcttgta	tctctaattg	gaagcaagac	ccagatacca	acacaacgat	atggccggag	480
accatatggt	gttggtctcc	ttattgctgg	ttatgatgat	atgggccctc	acattttcca	540
aacctgtcca	tetgetaact	attttgactg	cagagccatg	tccattggag	cccgttccca	600
atcagctcgt	acttacttgg	agagacatat	gtctgaattt	atggagtgta	atttaaatga	660
actagttaaa	catggtctgc	gtgccttaag	agagacgctt	cctgcagaac	: aggacctgac	720
tacaaagaat	gtttccattc	gaattgttgg	taaagacttg	gagtttacaa	ı tctatgatga	780
tgatgatgtg	g tctccattcc	: tggaaggtct	tgaagaaaga	ccacagagaa	aggcacagcc	840
tgctcaacct	gctgatgaad	ctgcagaaaa	ggctgatgaa	ccaatggaad	attaagtgat	900
aagccagtct	: atatatgtat	: tatcaaatat	gtaagaatac	: aggcaccaca	a tactgatgac	960
aataatctat	actttgaac	aaaagttgca	ı gagtggtgga	atgctatgtt	: ttaggaatca	1020
gtccagatg	t gagtttttt	c caagcaacct	cactgaaacc	: tatataatg	g aatacatttt	1080
tctttgaaag	g ggtctgtata	a atcattttct	agaaagtato	g ggtatctata	a ctaatgtttt	1140
tatatgaag	a acataggtg	t ctttgtggtt	ttaaagacaa	a ctgtgaaat	a aaattgtttc	1200
accgcctgg	t aaaaaaaaa	a aaaaaaaaa	a aaaaaaaa			1238
<210> 19	8					

<211> 1249 <212> DNA

<213> Homo sapiens

<400> 198

				•		
gaattcgggt	ctcagcagct	cgggcggcgg	gaggagtggc	agcggcaagg	cagcccagtt	60
tcgcgaaggc	tgtcggcgcg	ccgcggcccg	caggcacccg	gcacgcgcct	tccccgcagg	120
cacccggcac	gcgccttccc	cgccgccacg	atgcccaaga	ggaaggtcag	ctccgccgaa	180
ggcgccgcca	aggaagagcc	caagaggaga	tcggcgcggt	tgtcagctaa	acctcctgca	240
aaagtggaag	cgaagccgaa	aaaggcagca	gcgaaggata	aatcttcaga	caaaaaagtg	300
caaacaaaag	ggaaaagggg	agcaaaggga	aaacaggccg	aagtggctaa	ccaagaaact	360
aaagaagact	tacctgcgga	aaacggggaa	acgaagactg	aggagagtcc	agcctctgat	420
gaagcaggag	agaaagaagc	caagtctgat	taataaccat	ataccatgtc	ttatcagtgg	480
tccctgtctc	ccttcttgta	caatccagag	gaatatttt	atcaactatt	ttgtaatgca	540
agttttttag	tagctctaga	aacattttta	agaaggaggg	aatcccacct	catcccattt	600
tttaagtgta	aatgcttttt	ttaagaggtg	aaatcatttg	, ctggttgttt	attttttggt	660
acaaccagaa	aatagtgtgg	gatattgaat	tatgggaggc	tctgactgtc	tegggtgtca	720
gcttaacatt	ccacagatgg	ggggttagtt	tttatatcct	ataatacaaa	gcatattaaa	780
tggcaatatg	gagtcagtcc	tgcatttaat	gtcttgaaca	tttaaatta	cttctattac	840
catgttgttt	tttagtagaa	ttgtttccta	aagaaaacca	. ctctttgatc	atggctctct	900
ctgccagaat	: tgtgtgcact	ctgtaacatc	tttggttgtg	gtagtcctgt	tttcctaata	960
actttgttac	: tgtgctgtga	aagattacag	atttgaacat	gtagtgtacg	ı tgctattgag	1020
ttgtgaactg	g gtgggccgta	. tgtaacagct	gaccaacgto	, aagatactgg	g tacttgatag	1080
cctcttaagg	g aaaatttgct	tccaaatttt	: aagctggaaa	gtcactggaa	taactttaaa	1140
aaagaattad	e aatacatggo	: tttttagaat	: ttcgttacgt	atgttaagat	: ttgtgtacaa	1200
attgaaatgt	ctgtactgat	: cctcaaccaa	taaaatctca	a gccgaattc		1249

<210> 199

<211> 1237

<212> DNA

<400> 199

<213> Homo sapiens

attettgtet gttetgeete acteeegage tetaetgaet eecaaaagag egeecaagaa 60
gaaaatggee ataagtggag teeetgtget aggatttte ateatagetg tgetgatgag 120
egeteaggaa teatgggeta teaaagaaga acatgtgate ateeaggeeg agttetatet 180
gaateetgae caateaggeg agtttatgtt tgaetttgat ggtgatgaga tttteeatgt 240

ggatatggca aagaaggaga cggtctggcg gcttgaagaa tttggacgat ttgccagctt 300

tgaggeteaa ggtgeattgg ecaacatage tgtggacaaa gecaacetgg aaateatgae

360

aaagcgctcc	aactatactc	cgatcaccaa	tgtacctcca	gaggtaactg	tgctcacgaa	420
cagccctgtg	gaactgagag	agcccaacgt	cctcatctgt	ttcatcgaca	agttcacccc	480
accagtggtc	aatgtcacgt	ggcttcgaaa	tggaaaacct	gtcaccacag	gagtgtcaga	540
gacagtcttc	ctgcccaggg	aagaccacct	tttccgcaag	ttccactatc	teceetteet	600
gccctcaact	gaggacgttt	acgactgcag	ggtggagcac	tggggcttgg	atgagcctct	660
tctcaagcac	tgggagtttg	atgctccaag	ccctctccca	gagactacag	agaacgtggt	720
gtgtgccctg	ggcctgactg	tgggtctggt	gggcatcatt	attgggacca	tcttcatcat	780
caagggagtg	cgcaaaagca	atgcagcaga	acgcaggggg	cctctgtaag	gcacatggag	840
gtgatgatgt	ttcttagaga	gaagatcact	gaagaaactt	ctgctttaat	gactttacaa	900
agctggcaat	attacaatcc	ttgacctcag	tgaaagcagt	catcttcagc	gttttccagc	960
cctatagcca	ccccaagtgt	ggttatgcct	cctcgattgc	tccgtactct	aacatctagc	1020
tggctttccc	tgtctattgc	cttttcctgt	atctattttc	ctctatttcc	tatcatttta	1080
ttatcaccat	gcaatgcctc	tggaataaaa	catacaggag	tctgtctctg	ctatggaatg	1140
ccccatgggg	ctctcttgtg	tacttattgt	ttaaggtttc	ctcaaactgt	gatttttctg	1200
aacacaataa	actattttga	tgatcttggg	tggaaaa			1237

<210> 200

<211> 2049

<212> DNA

<213> Homo sapiens

<400> 200 gggagetgga cgagtecgag cgcgtcacct cctcacgetg cggctgtege ccgtgtcccg 60 ceggecegtt eegtgtegee eegeagtget geggeegeeg eggeaecatg getgtgtttg 120 tegtgeteet ggegttggtg gegggtgttt tggggaaega gtttagtata ttaaaatcae 180 cagggtctgt tgttttccga aatggaaatt ggcctatacc aggagagcgg atcccagacg 240 tggctgcatt gtccatgggc ttctctgtga aagaagacct ttcttggcca ggactcgcag 300 360 tgggtaacct gtttcatcgt cctcgggcta ccgtcatggt gatggtgaag ggagtgaaca aactggctct accccaggc agtgtcattt cgtacccttt ggagaatgca gttcctttta 420 gtcttgacag tgttgcaaat tccattcact ccttattttc tgaggaaact cctgttgttt 480 tgcagttggc tcccagtgag gaaagagtgt atatggtagg gaaggcaaac tcagtgtttg 540 aagacctttc agtcaccttg cgccagctcc gtaatcgcct gtttcaagaa aactctgttc 600 tcagttcact cccctcaat tctctgagta ggaacaatga agttgacctg ctctttcttt 660 ctgaactgca agtgctacat gatatttcaa gcttgctgtc tcgtcataag catctagcca 720

aggatcattc	tcctgattta	tattcactgg	agctggcagg	tttggatgaa	attgggaagc	780
gttatgggga	agactctgaa	caattcagag	atgcttctaa	gatccttgtt	gacgctctgc	840
aaaagtttgc	agatgacatg	tacagtcttt	atggtgggaa	tgcagtggta	gagttagtca	900
ctgtcaagtc	atttgacacc	tccctcatta	ggaagacaag	gactatcctt	gaggcaaaac	960
gagcgaagaa	cccagcaagt	ccctataacc	ttgcatataa	gtataatttt	gaatattccg	1020
tggttttcaa	catggtactt	tggataatga	tegeettgge	cttggctgtg	attatcacct	1080
cttacaatat	ttggaacatg	gatcctggat	atgatagcat	catttatagg	atgacaaacc	1140
agaagattcg	aatggattga	atgttacctg	tgccagaatt	agaaaagggg	gttggaaatt	1200
ggctgttttg	ttaaaatata	tcttttagtg	tgctttaaag	tagatagtat	actttacatt	1260
tataaaaaaa	aatcaaattt	tgttctttat	tttgtgtgtg	cctgtgatgt	ttttctagag	1320
tgaattatag	tattgacgtg	aatcccactg	tggtatagat	tccataatat	gcttgaatat	1380
tatgatatag	ccatttaata	acattgattt	cattctgttt	aatggatttg	gaaatatgca	1440
ctgaaagaaa	tgtaaaacat	ttagaatagc	tcgtgttatg	gaaaaaagtg	cactgaattt	1500
attagacaaa	. cttacgaatg	cttaacttct	ttacacagca	taggtgaaaa	tcatatttgg	1560
gctattgtat	actatgaaca	atttgtaaat	gtcttaattt	gatgtaaata	actctgaaac	1620
aagagaaaag	gtttttaact	tagagtagcc	ctaaaatatg	gatgtgctta	tataatcgct	1680
tagttttgga	actgtatctg	agtaacagag	gacagctgtt	tttaaccct	cttctgcaag	1740
tttgttgaco	: tacatgggct	aatatggata	ctaaaaatac	tacattgato	: taagaagaaa	1800
ctagccttgt	ggagtatata	. gatgcttttc	attatacaca	caaaaatccc	: tgagggacat	1860
tttgaggcat	gaatataaaa	catttttatt	tcagtaactt	ttccccctgt	gtaagttact	1920
atggtttgtg	g gtacaacttc	attctataga	atattaagtg	gaagtgggtg	g aattctactt	1980
tttatgttg	g agtggaccaa	tgtctatcaa	gagtgacaaa	taaagttaat	gatgattcca	2040
aaaaaaaaa						2049

<400> 201
ctccgaacaggaagaggacgaaaaaaataaccgtccgcgacgccgagacaaaccggacc60gcaaccaccatgaacagcaaaggtcaatatccaaccacgccaacctaccctgtgcagcct120cctgggaatccagtataccctcagaccttgcatcttcctcaggctccaccctataccgat180gctccacctgcctactcagagctctatcgtccgagctttgtgcacccaggggctgccaca240

<210> 201

<211> 1897

<212> DNA

<213> Homo sapiens

gtccccacca	tgtcagccgc	atttcctgga	gcctctctgt	atcttcccat	ggcccagtct	300
gtggctgttg	ggcctttagg	ttccacaatc	cccatggctt	attatccagt	cggtcccatc	360
tatccacctg	gctccacagt	gctggtggaa	ggagggtatg	atgcaggtgc	cagatttgga	420
gctggggcta	ctgctggcaa	cattcctcct	ccacctcctg	gatgccctcc	caatgctgct	480
cagcttgcag	tcatgcaggg	agccaacgtc	ctcgtaactc	agcggaaggg	gaacttcttc	540
atgggtggtt	cagatggtgg	ctacaccatc	tggtgaggaa	ccaaggccac	ctctgtgccg	600
ggaaagacat	cacatacctt	cagcacttct	cacaatgtaa	ctgctttagt	catattaacc	660
tgaagttgca	gtttagacac	atgttgttgg	ggtgtctttc	tggtgcccaa	actttcaggc	720
acttttcaaa	tttaataagg	aaccatgtaa	tggtagcagt	acctccctaa	agcattttga	780
ggtaggggag	gtatccattc	ataaaatgaa	tgtgggtgaa	gccgccctaa	ggattttcct	840
ttaatttctc	tggagtaata	ctgtaccata	ctggtctttg	cttttagtaa	taaaacatca	900
aattaggttt	ggagggaact	ttgatcttcc	taagaattaa	agttgccaaa	ttattctgat	960
tggtctttaa	tctcctttaa	gtctttgata	tatattactt	gttataaatg	gaacgcatta	1020
gttgtctgcc	ttttcctttc	catcccttgc	cccacccatc	ccatctccaa	ccctagtctt	1080
ccatttcctc	ccgccagtct	ccattgaatc	aatggtgcag	gacagaaagc	cagtcagact	1140
aatttccttc	tttcctcgca	. cttctcccca	ctcgtcatct	tttaactagt	gtttcacaag	1200
gateetetga	aaccctctct	gtgccccaag	tacagatgcc	attacttctg	ctttcgtatc	1260
tcctcaggca	aaagtggagg	gtgccttatg	ggccctcctc	: ataggttgtc	tctgcataca	1320
cgaacctaac	ccaaatttgc	: tttggtgcca	gaaaaactga	ı gctatgtttg	aacaaagatg	1380
tcgtgcaaac	tgtactgtga	acaacagttg	gtttaaaata	tgaggggcaa	ggaggaggat	1440
gcatttcaaa	agcttgattg	g atgtgttcag	, agctaaatta	a agaggagttt	: tcagatcaaa	1500
aactggttac	cattttttgt	cagagtgtct	gatgcggcca	a ctcattcggc	: tccccagaat	1560
tcctagactg	ggttaatagg	g gtcatattgt	gaatgtctca	a ctacaaaatg	g acttgagtcc	1620
agtgaaatct	cattagggtt	taagaatatt	tcagggatco	c ttaatgtttt	gatttttgtt	1680
ttctgaaatt	ggattttatt	ttattttato	ttataattt	c agttcatcta	a aattgtgtgt	1740
tctgtacatg	g tgatgtttga	a ctgtaccatt	gactgttate	g gaagttcago	gttgtatgtc	1800
tctctctaca	ctgtggtgc	a cttaacttg	ggaattttt	a tactaaaaal	gtagaataaa	1860
gactattttç	g aagatttgaa	a taaagtgat	g aagttgc			1897

<210> 202

<211> 2697 <212> DNA <213> Homo sapiens

<400> 202 acgcgggcac	gcacacacgg	aagcacgcct	ccacttaact	cgcgccgccg	cggcagctcg	60
agtccaccag	cagcgccgtc	cgcttgaccg	agatgctgcg	ggcctgtcag	ttatcgggtg	120
tgaccgccgc	cgcccagagt	tgtctctgtg	ggaagtttgt	cctccgtcca	ttgcgaccat	180
gccgcagata	ctctacttca	ggcagctctg	ggttgactac	tggcaaaatt	gctggagctg	240
gccttttgtt	tgttggtgga	ggtattggtg	gcactatcct	atatgccaaa	tgggattccc	300
atttccggga	aagtgtagag	aaaaccatac	cttactcaga	caaactcttc	gagatggttc	360
ttggtcctgc	agcttataat	gttccattgc	caaagaaatc	gattcagtcg	ggtccactaa	420
aaatctctag	tgtatcagaa	gtaatgaaag	aatctaaaca	gtctgcctca	caactccaaa	480
aacaaaaggg	agatactcca	gcttcagcaa	cagcacctac	agaagcggct	caaattattt	540
ctgcagcagg	tgataccctg	tcggtcccag	cccctgcagt	tcagcctgag	gaatctttaa	600
aaactgatca	ccctgaaatt	ggtgaaggaa	aacccacacc	tgcactttca	gaagaagcat	660
cctcatcttc	tataagggag	cgaccacctg	aagaagttgc	agctcgcctt	gcacaacagg	720
aaaaacaaga	acaagttaaa	attgagtctc	tagccaagag	cttagaagat	gctctgaggc	780
aaactgcaag	tgtcactctg	caggctattg	cagctcagaa	tgctgcggtc	caggctgtca	840
atgcacactc	caacatattg	aaagccgcca	tggacaattc	tgagattgca	ggcgagaaga	900
aatctgctca	gtggcgcaca	gtggagggtg	cattgaagga	acgcagaaag	gcagtagatg	960
aagctgccga	tgcccttctc	aaagccaaag	aagagttaga	gaagatgaaa	agtgtgattg	1020
aaaatgcaaa	gaaaaaagag	gttgctgggg	ccaagcctca	tataactgct	gcagagggta	1080
aacttcacaa	catgatagtt	gatctggata	atgtggtcaa	aaaggtccaa	gcagctcagt	1140
ctgaggctaa	ggttgtatct	cagtatcatg	agctggtggt	ccaagctcgg	gatgacttta	1200
aacgagagct	ggacagtatt	actccagaag	teetteetgg	atggaaagga	atgagtgttt	1260
cagacttagc	tgacaagctc	tctactgatg	atctgaactc	cctcattgct	catgcacatc	1320
gtcgtattga	tcagctgaac	agagagctgg	cagaacagaa	ggccaccgaa	aagcagcaca	1380
tcacgttagc	cttggagaaa	caaaagctgg	aagaaaagcg	ggcatttgac	tctgcagtag	1440
caaaagcatt	agaacatcac	: agaagtgaaa	tacaggctga	acaggacaga	. aagatagaag	1500
aagtcagaga	tgccatggaa	ı aatgaaatga	gaacccagct	tcgccgacag	gcagctgccc	1560
acactgatca	cttgcgagat	gtccttaggg	j tacaagaaca	ggaattgaag	tctgaatttg	1620
agcagaacct	gtctgagaaa	ctctctgaac	: aagaattaca	atttcgtcgt	: ctcagtcaag	1680
agcaagttga	caactttact	ctggatataa	atactgccta	tgccagacto	: agaggaatcg	1740
aacaggctgt	tcagagccat	gcagttgctg	g aagaggaago	cagaaaagco	caccaactct:	1800

ggctttcagt	ggaggcatta	aaqtacagca	tgaagacctc	atctgcagaa	acacctacta	1860
			aagccaactg			1920
			ccctgacccg			1980
			aactggcccg			2040
						2100
			tctcctacct			
cacctcagca	actgaagccg	ccccagagc	tctgccctga	ggatataaac	acatttaaat	2160
tactgtcata	tgcttcctat	tgcattgagc	atggtgatct	ggagctagca	gcaaagtttg	2220
tcaatcagct	gaagggggaa	tccagacgag	tggcacagga	ctggctgaag	gaagcccgaa	2280
tgaccctaga	aacgaaacag	atagtggaaa	tcctgacagc	atatgccagc	gccgtaggaa	2340
taggaaccac	tcaggtgcag	ccagagtgag	gtttaggaag	attttcataa	agtcatattt	2400
catgtcaaag	gaaatcagca	gtgatagatg	aagggttcgc	agcgagagtc	ccggacttgt	2460
ctagaaatga	gcaggtttac	aagtactgtt	ctaaatgtta	acacctgttg	catttatatt	2520
ctttccattt	gctatcatgt	cagtgaacgc	caggagtgct	ttctttgcaa	cttgtgtaac	2580
attttctgtt	tttcaggtt	ttactgatga	ggcttgtgag	gccaatcaaa	ataatgtttg	2640
tgatctctac	: tactgttgat	tttgccctcg	gagcaaactg	aataaagcaa	caagatg	2697
<210> 203 <211> 353 <212> DNA <213> Hon	3					
<400> 203	} c ttttttttt	ttttttttt	: ttttattcgg	gtcaacctaa	a teetttttgg	60
agccacccaa	a aggccaaact	tagggctagg	g aagaagatta	aaaaaaggga	a tgacataact	120
attaggggc	a ggttaattg	ttggagggc	catgggaggg	gaaaaaggg	g ggcaatttct	180
aaaacaaat	a ataaaaagg	g aatagctcct	aaaaaaaatt	: ttatggaaa:	a agggacccgg	240
gcgggggat	a tagggtcca	a cccccaccc	c aaagggggg	g atttttcta	t gtaccccgtg	300
agttggggg	a gccaaaagg	g aataattat	t aaaaataagg	g ctaggaggg	t gtt	353
<210> 20 <211> 48 <212> DN <213> Ho	7					

```
<220>
<221> misc_feature
<222> (22)..(22)
<223> n is a, c, g, t or u
```

<400> 204 ccgtgatgtg	gcgcctgcac	antcctttcc	ctttcggatt	cccgacgctg	tggttgctgt	60
aaggggtcct	ccctgcgcca	cacggccgtc	gccatggtga	agctgagcaa	agaggccaag	120
cagagactac	agcagctctt	caaggggagc	cagtttgcca	ttcgctgggg	ctttatccct	180
cttgtgattt	acctgggatt	taagaggggt	gcagatcccg	gaatgcctga	accaactgtt	240
ttgagcctac	tttggggata	aaggattatt	tggtcttctg	gatttggagg	caatcagcgg	300
acagcatgga	agatgtgtgc	tctggctcgg	ataagagatg	ggacatcatt	cagtcactag	360
ttggatggca	caaggctctt	cacagacgca	tctgtagcag	agtggaactt	gtactaactt	420
atgatagaat	gtatcagaat	aaatgttttt	aacagtgtaa	aaaaaaaaaa	aaaaaaaaa	480
aaaaaaa						487
<210> 205 <211> 311 <212> DNA <213> Hom	7					
<400> 205 attcgaacco	cgtcgcgccc	ctttgtgcgt	cacgggtggc	gggcgcggga	aggggatttg	60
gattgttgcg	cctctgctct	gaagaaagtg	ctgtctggct	ccaactccag	ttctttcccc	120
tgagcagcgc	ctggaaccta	acccttccca	ctctgtcacc	ttctcgatcc	cgccggcgct	180
ttagagccgc	agtccagtct	tggatccttc	agagcctcag	ccactagctg	cgatgcatgt	240
gatcaagcga	gatggccgcc	aagaacgagt	catgtttgac	: aaaattacat	ctcgaatcca	300
gaagctttgt	tatggactca	atatggattt	tgttgatcct	gctcagatca	ccatgaaagt	360
aatccaaggo	ttgtacagtg	gggtcaccac	agtggaacta	gatactttgg	stgctgaaac	420
agctgcaaco	ttgactacta	agcaccctga	ctatgctato	ctggcagcca	ggatcgctgt	480
ctctaactt	g cacaaagaaa	caaagaaagt	gttcagtgat	gtgatggaag	g acctctataa	540
ctacataaa	t ccacataatg	gcaaacacto	tcccatggtg	g gccaagtcaa	a cattggatat	600
tgttctggc	c aataaagatc	gcctgaattc	: tgctattat	c tatgaccgag	g atttctctta	660
caattactt	c ggctttaaga	cgctagagcg	g gtcttattt	g ttgaagatca	a atggaaaagt	720
ggctgaaag	a ccacaacata	tgttgatgag	g agtatctgt	t gggatccaca	a aagaagacat	780
tgatgcagc	a attgaaacat	ataatcttct	ttctgagag	g tggtttact	c atgcttcgcc	840
cactctctt	c aatgctggta	ccaaccgcc	c acaacttțc	t agctgtttt	c ttctgagtat	900
gaaagatga	c agcattgaag	gcatttatga	a cactctaaa	g caatgtgca	t tgatttctaa	960
atatactaa	a ggaattggto	ttgctgtgag	g ttgtattcg	g gctactggc	a gctacattgc	1020

tgggactaat	ggcaattcca	atggccttgt	accgatgctg	agagtatata	acaacacagc	1080
tagatatgtg	gatcaaggtg	ggaacaagcg	tcctggggca	tttgctattt	acctggagcc	1140
ttggcattta	gacatctttg	aattccttga	tttaaagaag	aacacaggaa	aggaagagca	1200
gcgtgccaga	gatcttttct	ttgctctttg	gattccggat	ctcttcatga	aacgagtgga	1260
gactaatcag	gactggtctt	tgatgtgtcc	aaatgagtgt	cctggtctgg	atgaggtttg	1320
gggagaggaa	tttgagaaac	tatatgcaag	ttatgagaaa	caaggtcgtg	tccgcaaagt	1380
tgtaaaagct	cagcagcttt	ggtatgccat	cattgagtct	cagacggaaa	caggcacccc	1440
gtatatgctc	tacaaagatt	cctgtaatcg	aaagagcaac	cagcagaacc	tgggaaccat	1500
caaatgcagc	aacctgtgca	cagaaatagt	ggagtacacc	agcaaagatg	aggttgctgt	1560
ttgtaatttg	gcttccctgg	ccctgaatat	gtatgtcaca	tcagaacaca	catacgactt	1620
taagaagttg	gctgaagtca	ctaaagtcgt	tgtccgaaac	ttgaataaaa	ttattgatat	1680
aaactactat	cctgtaccag	aggcatgcct	atcaaataaa	cgccatcgcc	ccattggaat	1740
tggggtacaa	ggtctggcag	atgcttttat	cctgatgaga	tacccttttg	agagtgcaga	1800
agcccagtta	ctgaataagc	agatctttga	aactatttat	tatggtgctc	tggaagccag	1860
ctgtgacctt	gccaaggagc	agggcccata	cgaaacctat	gagggctctc	cagttagcaa	1920
aggaattett	. cagtatgata	tgtggaatgt	tactcctaca	gacctatggg	actggaaggt	1980
tctcaaggag	g aagattgcaa	agtatggtat	aagaaacagt	ttacttattg	ccccgatgcc	2040
tacagcttcc	actgctcaga	tcctggggaa	taatgagtcc	attgaacctt	acaccagcaa	2100
catctatact	: cgcagagtct	tgtcaggaga	atttcagatt	gtaaatcctc	acttattgaa	2160
agatcttacc	gageggggee	tatggcatga	agagatgaaa	aaccagatta	ttgcatgcaa	2220
tggctctatt	cagagcatac	: cagaaattcc	tgatgacctg	g aagcaacttt	: ataaaactgt	2280
gtgggaaato	c tctcagaaaa	ctgttctcaa	gatggcagct	gagagaggtg	g ctttcattga	2340
tcaaagccaa	a tctttgaaca	tccacattgc	: tgagcctaac	tatggcaaa	tcactagtat	2400
gcacttctac	c ggctggaago	agggtttgaa	gactgggatg	g tattatttaa	a ggacaagacc	2460
agcagctaa	t ccaatccagt	tcactctaaa	taaggagaag	g ctaaaagata	a aagaaaaggt	2520
atcaaaaga	g gaagaagaga	a aggagaggaa	a cacagcagco	c atggtgtgc	ctttggagaa	2580
tagagatga	a tgtctgatg	gtggatcctg	g aggaaagact	t tggaagaga	c cagcatgtct	2640
tcagtagcc	a aactacttc	t tgagcataga	a taggtatagi	t gggtttgct	t gaggtggtaa	2700
ggctttgct	g gaccctgtt	g caggcaaaag	g gagtaattg	a tttaaagta	c tgttaatgat	2760
gttaatgat	t tttttttaa	a ctcatatatt	t gggattttc	a ccaaaataa	t gcttttgaaa	2820
aaaagaaaa	a aaaaacgga	t atattgagaa	a tcaaagtag	a agttttagg	a atgcaaaata	2880

agtcatcttg catacaggga gtggttaagt aaggtttcat cacccattta gcatgctttt 2940 ctgaagactt cagttttgtt aaggagattt agttttactg ctttgactgg tgggtctcta 3000 gaagcaaaac tgagtgataa ctcatgagaa gtactgatag gacctttatc tggatatggt 3060 cctataggtt attctgaaat aaagataaac atttctaagt gaaaaaaaa aaaaaaa 3117 <210> 206 <211> 4064 <212> DNA <213> Homo sapiens <400> 206 60 ctgcggccgc ctggtttctt gccttaagga gcccattgcc tttcccgctg aagtctagat 120 gttgacatgt aataaagcgg gcagcaggat ggtggtggat gcggccaact ccaatgggcc tttccagccc gtggtccttc tccatattcg agatgttcct cctgctgatc aagagaagct 180 ttttatccag aagttacgtc agtgttgcgt cctctttgac tttgtttctg atccactaag 240 tgacctaaag tggaaggaag taaaacgagc tgctttaagt gaaatggtag aatatatcac 300 ccataatcgg aatgtgatca cagagcctat ttacccagaa gtagtccata tgtttgcagt 360 taacatgttt cgaacattac caccttcctc caatcctacg ggagcggaat ttgacccgga 420 ggaagatgaa ccaacgttag aagcagcctg gcctcatcta cagcttgttt atgaattttt 480 cttaagattt ttagagtctc cagatttcca acctaatata gcgaagaaat atattgatca 540 gaagtttgta ttgcagcttt tagagctctt tgacagtgaa gatcctcggg agagagattt 600 tcttaaaacc acccttcaca gaatctatgg gaaattccta ggcttgagag cttacatcag 660 aaaacagata aataatatat tttataggtt tatttatgaa acagagcatc ataatggcat 720 agcagagtta ctggaaatat tgggaagtat aattaatgga tttgccttac cactaaaaga 780 agagcacaag attttcttat tgaaggtgtt actacctttg cacaaagtga aatctctgag 840 tgtctaccat ccccagctgg catactgtgt agtgcagttt ttagaaaagg acagcaccct 900 cacggaacca gtggtgatgg cacttctcaa atactggcca aagactcaca gtccaaaaga 960 agtaatgttc ttaaacgaat tagaagagat tttagatgtc attgaaccat cagaatttgt 1020 gaagatcatg gaacccctct tccggcagtt ggccaaatgt gtctccagcc cacacttcca 1080 ggtggcagag cgagctctct attactggaa taatgaatac atcatgagtt taatcagtga 1140 caacgcagcg aagattctgc ccatcatgtt tccttccttg taccgcaact caaagaccca 1200 ttggaacaag acaatacatg gcttgatata caacgccctg aagctcttca tggagatgaa 1260 ccaaaagcta tttgatgact gtacacaaca gttcaaagca gagaaactaa aagagaagct 1320 aaaaatgaaa gaacgggaag aagcatgggt taaaatagaa aatctagcca aagccaatcc 1380

ccagtacaca g	gtgtatagtc	aagccagcac	catgagcatt	ccggttgcaa	tggagacaga	1440
tgggccttta t	ttgaagatg	tgcagatgct	gagaaagaca	gtgaaggacg	aggctcatca	1500
ggcacagaaa g	gatccgaaga	aggaccgtcc	tcttgcactc	cgcaagtccg	agctgcctca	1560
ggacccccac a	accaagaaag	ccttggaagc	tcactgcagg	gccgatgagc	tggcctccca	1620
ggacggccgc	tagcctccgg	ggcgccgcgt	cggggccggg	cccgccagtt	cttttccgga	1680
ttctgtagaa	aatacatact	tcctgtgcca	taccaatcag	ttacactcaa	agctttcttg	1740
gaccccgttc	cgtaggcaat	aacgtgcgtc	cgcctcagcg	cgagattagg	agttcaaaca	1800
atggtgactt	cccagagccc	gctggcagag	ccgcgggttg	acgacggtgt	cctcgcagtg	1860
tegeegeeae	cccagcgtag	tccaagtcag	actatttcac	aaagtcagag	cgataggaaa	1920
gcaccctgcc	cttcatcttc	atgttctccc	aaatggaact	taggatcttt	taacataggt	1980
ggttctgtga	taacatcagt	gttttccaaa	tcaaaggaac	gctttaaaaa	ataggaccta	2040
tttttaaga	ctttacagcc	tttgaaatgg	tttccacgtg	attgttacgc	cagcagttct	2100
tttgtttgtt	tttcaatctc	agtgaaatgg	ctctttgctt	tcgagttctc	acgcaacgta	2160
ctgggcaaat	gacaatcctc	agccgctggt	attttctaag	gggtctcttc	actttgatga	2220
gtgacatgaa	caccgtgtct	ccttctcttg	tgtgtaccta	aagccatatt	tccaagtctg	2280
tggtactcca	ggattccagg	agtaagcctg	tagaagagat	ttattttaaa	agagattgct	2340
ctgaaattta	tcttaaaaga	gcttgctctg	tctaccttga	cagaaattgg	agttttaaaa	2400
ttatgtgtta	atattttat	ttgcagattt	cgtttccgtc	aacttaaaca	ttgttgccct	2460
tcaacaaggc	tcttgaatta	ataaaattat	agtctctaag	aattccacat	tttatggaaa	2520
gttagagcaa	aatcattttg	agttaagcca	gttcttagcc	taatgcaaac	tgcagcgcct	2580
ttaagcataa	agtaacacaa	cagcattgca	cggggccggc	actgccgctg	ccttcactga	2640
aggctgcagt	gctgttctga	. gagcttggag	gaggcaccag	cgaggatgac	: gtttagtgga	2700
gctctttctg	ttgaaaagag	ctcacgttat	caacaccttg	taaggaaaat	acagtgtctg	2760
agttttcatc	ggtcttcaca	tgctgctata	tattccacag	agttccttgo	atgtactgag	2820
cttttgttt	agatggaata	ı gcacaaggag	g aaaaatcttt	aaacttagtg	g ctttgtctat	2880
tctttatttc	tctcagggtg	g gccagtattt	tgacttattt	atcctgcttg	g aaagctactt	2940
gagatgtgta	ctgctattct	aaacacgtga	a tctagtttct	ttcatctctq	g gcataagatt	3000
atataactta	atgttaagtg	g tcttgaggca	a taaaagacaa	aatgtggcti	attttaggat	3060
ctgtttttc	atcgaggtct	cgggtatcct	t ttcaaagata	gtgagaagc	a gacactgctc	3120
cttgtgcagc	tctggtacct	cctgcccact	t gctgtcacti	caagecact	g gcaatgcttc	3180

tgtcctcgtg	tcttggagga	aaatcacctg	gggggagggg	acttcttgtg	gtaagagcaa	3240
gtgcaggtat	gaaatgcgaa	gattgcccca	gctaaaagtg	gacaagtccg	ctttgtgaga	3300
tgaatacttc	ctgagaaact	tgacaagtat	ctctccattt	taccattatg	aaaactatca	3360
ttaaaaaaaa	cagtttagat	gccttctcct	tttgagggaa	aaagggtgct	ttttattgta	3420
taaagcagcg	tcttatgtat	tttgatatac	cattgtttga	acttccgtct	ttagctgata	3480
gattctcaaa	tatccttgat	tttggatgtt	cagtatgttt	gtgagagagg	tttctgggaa	3540
gactctcttt	ttgccctcgg	gaaaaagcaa	aatatcaatg	tttgggtgac	tgtgtaaagc	3600
tcagtgtgta	agaacatctt	tttgtctagg	ttttctttct	gctctttatt	gaagacaaac	3660
actcaccaaa	aagaaaaata	aaagttttca	gagaaactaa	ttttctttgg	caagagtatt	3720
acttaatatt	ttggcctcct	aaagtttccc	tagttagtac	tcggactcct	gtgctaattg	3780
tcagcttaca	tatcattgta	tagagactgt	ttattctgta	ccaaactgat	ttcaaaagta	3840
ctacattgaa	aataaaccgg	tgactgtttt	tcttcataaa	gttctgcgtt	tggcatcttc	3900
actctttcca	aaatgtatct	gtacatcaga	aatgtcacta	ttccaagtgt	ctttttagtg	3960
tggcctttag	tatggcttcc	ttttaatatt	gtacatacat	tgtatctttg	ttttatggta	4020
ataagtaata	aaaatgtaga	. cttcaaaaaa	aaaagcggcc	gcag		4064

<210> 207

<211> 4338

<212> DNA

<213> Homo sapiens

<400> 207 cagggcacgc tgggtcggcg gagctgaggc tcccagctgt gggcctcgct ggcccggtcg 60 cccagtctcg cgagagttgg gagtaaacag ccccgaatgg agtgcccagg cgtgttcgcc 120 180 geggaggege egttateeeg ggeeegeegg eeetgagete eeggeggege agattggete acagtggttg attgatcaac cccattggac gttggttctg tggtacaaat ggagtacagg 240 300 actcagtcgt cacggcctga gtgagagaag ccttatttcc aagatggaga agaagcggag aaagaaatga aagcctctct tcaggctgaa ccacaaaagg ccatgggatt taacttttat 360 ttatgttggg caagactgta agatggctga tcagtaatgt tgcagctttt agctgaaaca 420 aaaattcact tttaatcaag aagaaaaaag tgtgatttga atatatgcaa ttttatgatc 480 atattcgctt gtgaccatga agcttgtcaa catctggctg cttctgctcg tggttttgct 540 ctgtgggaag aaacatctgg gcgacagact ggaaaagaaa tcttttgaaa aggccccatg 600 ccctggctgt tcccacctga ctttgaaggt ggaattctca tcaacagttg tggaatatga 660 atatattgtg gctttcaatg gatactttac agccaaagct agaaattcat ttatttcaag 720

tgccctgaag	agcagtgaag	tagacaattg	gagaattata	cctcgaaaca	atccatccag	780
tgactaccct	agtgattttg	aggtgattca	gataaaagaa	aaacagaaag	cggggctgct	840
aacacttgaa	gatcatccaa	acatcaaacg	ggtcacgccc	caacgaaaag	tetttegtte	900
cctcaagtat	gctgaatctg	accccacagt	accctgcaat	gaaacccggt	ggagccagaa	960
gtggcaatca	tcacgtcccc	tgcgaagagc	cagcctctcc	ctgggctctg	gcttctggca	1020
tgctacggga	aggcattcga	gcagacggct	gctgagagcc	atcccgcgcc	aggttgccca	1080
gacactgcag	gcagatgtgc	tctggcagat	gggatataca	ggtgctaatg	taagagttgc	1140
tgtttttgac	actgggctga	gcgagaagca	tccccacttc	aaaaatgtga	aggagagaac	1200
caactggacc	aacgagcgaa	cgctggacga	tgggttgggc	catggcacat	tcgtggcagg	1260
tgtgatagcc	agcatgaggg	agtgccaagg	atttgctcca	gatgcagaac	ttcacatttt	1320
cagggtcttt	accaataatc	aggtatctta	cacatcttgg	tttttggacg	ccttcaacta	1380
tgccatttta	aagaagatcg	acgtgttaaa	cctcagcatc	ggcggcccgg	acttcatgga	1440
tcatccgttt	gttgacaagg	tgtgggaatt	aacagctaac	aatgtaatca	tggtttctgc	1500
tattggcaat	gacggacctc	tttatggcac	tctgaataac	cctgctgatc	aaatggatgt	1560
gattggagta	ggcggcattg	actttgaaga	taacatcgcc	cgcttttctt	caaggggaat	1620
gactacctgg	gagctaccag	gaggctacgg	tegeatgaaa	cctgacattg	tcacctatgg	1680
tgctggcgtg	cggggttctg	gcgtgaaagg	ggggtgccgg	gccctctcag	ggaccagtgt	1740
tgcttctcca	gtggttgcag	gtgctgtcac	cttgttagtg	agcacagtco	: agaagcgtga	1800
gctggtgaat	cccgccagta	tgaagcaggc	cctgatcgcg	tcagcccgga	ggctccccgg	1860
ggtcaacatg	tttgagcaag	gccacggcaa	gctcgatctc	g ctcagagcct	atcagatcct	1920
caacagctac	aagccacagg	caagtttgag	g ccccagctac	: atagatctga	a ctgagtgtcc	1980
ctacatgtgg	ccctactgct	cccagcccat	ctactatgga	ı ggaatgccga	a cagttgttaa	2040
tgtcaccatc	: ctcaacggca	tgggagtcac	c aggaagaatt	gtagataag	c ctgactggca	2100
gccctatttg	g ccacagaacg	gagacaacat	tgaagttgco	c ttctcctact	t cctcggtctt	2160
atggccttgg	g tegggetace	: tggccatcto	c catttctgtg	g accaagaaa	g cggcttcctg	2220
ggaaggcatt	gctcagggcc	: atgtcatgat	t cactgtggct	t tececagea	g agacagagtc	2280
aaaaaatggt	gcagaacaga	a cttcaacagi	t aaagctccc	c attaaggtg	a agataattcc	2340
tactccccc	g cgaagcaaga	a gagttctct;	g ggatcagta	c cacaacctc	c gctatccacc	2400
tggctattt	c cccagggata	a atttaagga	t gaagaatga	c cctttagac	t ggaatggtga	2460
tcacatcca	c accaatttca	a gggatatgt:	a ccagcatct	g agaagcatg	g gctactttgt	2520
agaggtcct	c ggggccccct	t tcacgtgtt	t tgatgccag	t cagtatggc	a ctttgctgat	2580

ggtggacagt	gaggaggagt	acttccctga	agagatcgcc	aagctccgga	gggacgtgga	2640
caacggcctc	tegetegtea	tcttcagtga	ctggtacaac	acttctgtta	tgagaaaagt	2700
gaagttttat	gatgaaaaca	caaggcagtg	gtggatgccg	gataccggag	gagctaacat	2760
cccagctctg	aatgagctgc	tgtctgtgtg	gaacatgggg	ttcagcgatg	gcctgtatga	2820
aggggagttc	accctggcca	accatgacat	gtattatgcg	tcagggtgca	gcatcgcgaa	2880
gtttccagaa	gatggcgtcg	tgataacaca	gactttcaag	gaccaaggat	tggaggtttt	2940
aaagcaggaa	acagcagttg	ttgaaaacgt	ccccattttg	ggactttatc	agattccagc	3000
tgagggtgga	ggccggattg	tactgtatgg	ggactccaat	tgcttggatg	acagtcaccg	3060
acagaaggac	tgcttttggc	ttctggatgc	cctcctccag	tacacatcgt	atggggtgac	3120
accgcctagc	ctcagtcact	ctgggaaccg	ccagcgccct	cccagtggag	caggctcagt	3180
cactccagag	aggatggaag	gaaaccatct	tcatcggtac	tccaaggttc	tggaggccca	3240
tttgggagac	ccaaaacctc	ggcctctacc	agcctgtcca	cgcttgtctt	gggccaagcc	3300
acagccttta	aacgagacgg	cgcccagtaa	cctttggaaa	catcagaagc	tactctccat	3360
tgacctggac	aaggtggtgt	tacccaactt	tcgatcgaat	cgccctcaag	tgaggccctt	3420
gtcccctgga	gagagcggcg	cctgggacat	tcctggaggg	atcatgcctg	gccgctacaa	3480
ccaggaggtg	ggccagacca	. ttcctgtctt	tgccttcctg	ggagccatgg	tggtcctggc	3540
cttctttgtg	gtacaaatca	acaaggccaa	gagcaggccg	aagcggagga	agcccagggt	3600
gaagcgcccg	cagctcatgo	agcaggttca	. cccgccaaag	accccttcgg	, tgtgaccggc	3660
agcctggctg	accgtgaggg	g ccagagagag	ccttcacgga	cggcgctggt	gggtgagccg	3720
agctgtggtg	gcggctggtt	taaaagggat	ccagtttcca	gctgcaggtt	tgttagagtc	3780
tgttctacat	gggcctgccc	c teetgtgatg	ggcagaggct	cctggtacat	cgagaagatt	3840
cctgtggatc	ccgtcaggag	g ggacttagtg	getetgeege	c cagtgagact	tecegeegge	3900
agctgtgcgc	accaaagact	cgggagaact	ggaaaggctg	g tatggggtat	tctgactgca	3960
ggggaaggat	gtactttcca	a aacaaatgat	acaaccctga	a ccaagctaa:	a agacgcttgt	4020
taaaggctat	tttctatatt	t tattgttggg	g aaaagtcact	ttaaagact	t gtgctatttg	4080
gaagcaaagc	tattttttt	t gtcagtggaa	a tgcagtttti	t ttactattc	c atcatgagga	4140
acaacataga	ttccatgat	c tttttaatga	a cagtacaga	c tgagatttg	a aggaaacatg	4200
cacaaatctg	taaaacata	g accttcgcti	t tatttttgt:	a agtatcacc	t gccaccatgt	4260
tttgtaattt	gaggtettg	a tttcaccat	t gtcggtgaa	g aaaattttc	a ataaatatgt	4320
attacccgtc	: tgaagctt					4338

<210> 208 <211> 2952 <212> DNA <213> Homo sapiens

<400> 208

gaagcgaata gcgttttcag agatattggg cggctcaagg gtcttactct gtcgcccagt 60 ctgtaatgca gtgctgtgac catagcccac tgcagcctcc acctcccagg ctcaagcagt 120 ccttcccccc tcgccctcat gaatagctgg gactacagcc tggagcattg gtaagcgtca 180 cactgccaaa gtgagagctg ctggagaact cataatccca ggaacgcctc ttctactctc 240 300 cgagtacccc agtgaccaga gtgagagaag ctctgaacga gggcacgcgg cttgaaggac tgtgggcaga tgtgaccaag agcctgcatt aagttgtaca atggtagatg gagtgatgat 360 tetteetgtg ettateatga ttgetetece eteceetagt atggaagatg agaageecaa 420 ggtcaacccc aaactctaca tgtgtgtgtg tgaaggtctc tcctgcggta atgaggacca 480 ctgtgaaggc cagcagtgct tttcctcact gagcatcaac gatggcttcc acgtctacca 540 gaaaggctgc ttccaggttt atgagcaggg aaagatgacc tgtaagaccc cgccgtcccc 600 tggccaagct gtggagtgct gccaagggga ctggtgtaac aggaacatca cggcccagct 660 gcccactaaa ggaaaatcct tccctggaac acagaatttc cacttggagg ttggcctcat 720 tattctctct gtagtgttcg cagtatgtct tttagcctgc ctgctgggag ttgctctccg 780 aaaatttaaa aggcgcaacc aagaacgcct caatccccga gacgtggagt atggcactat 840 900 cgaagggctc atcaccacca atgttggaga cagcacttta gcagatttat tggatcattc gtgtacatca ggaagtggct etggtettee ttttetggta caaagaacag tggetegeca 960 gattacactg ttggagtgtg tcgggaaagg caggtatggt gaggtgtgga ggggcagctg 1020 gcaaggggaa aatgttgccg tgaagatctt ctcctcccgt gatgagaagt catggttcag 1080 ggaaacggaa ttgtacaaca ctgtgatgct gaggcatgaa aatatcttag gtttcattgc 1140 ttcagacatg acatcaagac actccagtac ccagctgtgg ttaattacac attatcatga 1200 aatgggatcg ttgtacgact atcttcagct tactactctg gatacagtta gctgccttcg 1260 aatagtgctg tccatagcta gtggtcttgc acatttgcac atagagatat ttgggaccca 1320 agggaaacca gccattgccc atcgagattt aaagagcaaa aatattctgg ttaagaagaa 1380 tggacagtgt tgcatagcag atttgggcct ggcagtcatg cattcccaga gcaccaatca 1440 1500 gcttgatgtg gggaacaatc cccgtgtggg caccaagcgc tacatggccc ccgaagttct agatgaaacc atccaggtgg attgtttcga ttcttataaa agggtcgata tttgggcctt 1560 tggacttgtt ttgtgggaag tggccaggcg gatggtgagc aatggtatag tggaggatta 1620

caagccaccg	ttctacgatg	tggttcccaa	tgacccaagt	tttgaagata	tgaggaaggt	1680
agtctgtgtg	gatcaacaaa	ggccaaacat	acccaacaga	tggttctcag	acccgacatt	1740
aacctctctg	gccaagctaa	tgaaagaatg	ctggtatcaa	aatccatccg	caagactcac	1800
agcactgcgt	atcaaaaaga	ctttgaccaa	aattgataat	tccctcgaca	aattgaaaac	1860
tgactgttga	cattttcata	gtgtcaagaa	ggaagatttg	acgttgttgt	cattgtccag	1920
ctgggaccta	atgctggcct	gactggttgt	cagaatggaa	tccatctgtc	tccctcccca	1980
aatggctgct	ttgacaaggc	agacgtcgta	cccagccatg	tgttggggag	acatcaaaac	2040
caccctaacc	tcgctcgatg	actgtgaact	gggcatttca	cgaactgttc	acactgcaga	2100
gactaatgtt	ggacagacac	tgttgcaaag	gtagggactg	gaggaacaca	gagaaatcct	2160
aaaagagatc	tgggcattaa	gtcagtggct	ttgcatagct	ttcacaagtc	tcctagacac	2220
tccccacggg	aaactcaagg	aggtggtgaa	tttttaatca	gcaatattgc	ctgtgcttct	2280
cttctttatt	gcactaggaa	ttctttgcat	tccttacttg	cactgttact	cttaatttta	2340
aagacccaac	ttgccaaaat	gttggctgcg	tactccactg	gtctgtcttt	ggataatagg	2400
aattcaattt	ggcaaaacaa	aatgtaatgt	cagactttgc	tgcattttac	acatgtgctg	2460
atgtttacaa	tgatgccgaa	cattaggaat	tgtttataca	. caactttgca	aattatttat	2520
tacttgtgca	cttagtagtt	tttacaaaac	tgctttgtgc	atatgttaaa	gcttattttt	2580
atgtggtctt	: atgattttat	tacagaaatg	tttttaacac	: tatactctaa	aatggacatt	2640
ttcttttatt	atcagttaaa	atcacatttt	aagtgcttca	catttgtatg	tgtgtagact	2700
gtaactttt	ttcagttcat	: atgcagaacg	, tatttagcca	ttacccacgt	gacaccaccg	2760
aatatattat	cgatttagaa	gcaaagattt	: cagtagaatt	: ttagtcctga	a acgctacggg	2820
gaaaatgcat	tttcttcaga	attatccatt	acgtgcattt	aaactctgc	c agaaaaaaat	2880
aactatttt	g ttttaatcta	a ctttttgtat	ttagtagtta	a tttgtataaa	a ttaaataaac	2940
tgttttcaag	g tc					2952
	_					

<210> 209

<400> 209

<211> 828

<212> DNA

<213> Homo sapiens

gcagccgccg ccgcagagcc ggagcggggg ccgccggcgg ccgcaatccc tctctacctg 60 ccaacatcct gtattagaga acttgtggcc ggaggtgtgg ctgtggagag ctggccgggg 120 agggacgctg ctcagctgct gctctgctcc tgtctcctgt cccctccccc ggtcatgaca 180 gagacccgtg agccagctga gactgggggc tacgccagct tggaagaaga tgatgaagac 240

		actagagaaa	taataaataa	aatgcagcct	ggaactcctc	300
		agtggcgcaa				360
		ctcagcctcc				
tcctctgatt	cagaatacac	tctctcagag	ccggactccg	aagaggaaga	agatgaggag	420
gaggaggaag	aggagaccac	tgacgatcct	gaatatgatc	ctggctacaa	ggtgaagcag	480
cgccttggcg	ggggccgtgg	tggcccatcc	cgccgggccc	ccccgtgcag	cccagccccg	540
gcccagcctt	gccagctctg	tggccgctca	ccccttgggg	gaggccccag	caggggaacc	600
ccacctgccg	gtactgctgc	ccctgctaca	gcccccaggg	aagcaccagg	cccctgaagg	660
cacggccctc	gggcaggcaa	gacgcggacc	acctcgggct	ggggagggcg	acacttgggc	720
gggagaggag	gagaacacgg	ggggagggac	caccacgtac	gaatgggagg	tcctcgacac	780
ctggggaact	gcggactatg	cggcagcccg	gggagggagc	acccaagg		828
	o sapiens					
<400> 210 aggaaagtgt		attgctaata	taagcattta	atgtcaaaga	aatgaaggta	60
attttacaaa	ctcagtttt	gtaagtacat	gaagtttcta	tttgattatg	tggttttata	120
tcacattcgt	: tcaaatgcat	tteteteect	tagagggact	attccaacat	cactcctttg	180
gaattatttc	agtcatcctt	aacatgtgac	: tttaccaaag	accttgaago	: taaacaaaca	240
agcaaaacaa	aatttcaatg	g actcttagat	: gaatggaata	agaaatagto	atcacatgtc	300
aattagggat	gttcatctcc	c aaccaagaca	ı ctgtcaaaat	gtttcttctg	g atacagcagt	360
tataagtcag	g agccttcaaa	a aaacaagggo	agaacaagaç	g tacaataaaa	a gaagcatctg	420
caacttaago	c ctcccacagt	cctaagcctg	g atatgcgcaa	a agcaaagcct	ctttcc	476
	23 A mo sapiens					
<400> 213 agctcggtc	ı c tgctggagg	c cacgggtgc	c acacactcg	g tecegacat	g atggcgagca	60
tgcgagtgg	t gaaggagct	g gaggatett	c agaagaagc	c tcccccata	c ctgcggaacc	120
tgtccagcg	a tgatgccaa	t gtcctggtg	t ggcacgctc	t cctcctacc	c gaccaacctc	180
cctaccacc	t gaaagcctt	c aacctgcgc	a tcagcttcc	c gccggagta	t ccgttcaagc	240
ctcccatga	t caaattcac	a accaagatc	t accacccca	a cgtggacga	g aacggacaga	300
tttgcctgc	c catcatcag	c agtgagaac	t ggaagcctt	g caccaagac	t tgccaagtcc	360

tggaggccct	caatgtgctg	gtgaatagac	cgaatatcag	ggagcccctg	cggatggacc	420
tcgctgacct	gctgacacag	aatccggagc	tgttcagaaa	gaatgccgaa	gagttcaccc	480
tccgattcgg	agtggaccgg	ccctcctaac	tcatgttctg	accctctgtg	cactggatcc	540
tcggcatagc	ggacggacac	acctcatgga	ctgaggccag	agccccctgt	ggcccattcc	600
ccattcattt	ttcccttctt	aggttgttag	tcattagttt	gtgtgtgtgt	gtggtggagg	660
gaagggagct	atgagtgtgt	gtgttgtgta	tggactcact	cccaggttca	cctggccaca	720
ggtgcaccct	tcccacaccc	tttacattcc	ccagagccaa	gggagtttaa	gtttgcagtt	780
acaggccagt	tctccagctc	tccatcttag	agagacaggt	caccttgcag	gcctgcttgc	840
aggaaatgaa	tccagcagcc	aactcgaatc	cccctagggc	tcaggcactg	agggcctggg	900
gacagtggag	catatgggtg	ggagacagat	ggagggtacc	ctatttacaa	ctgagtcagc	960
					cacggatgag	1020
tcacaatctg	aagaatcaaa	cttccatcct	gaaaatctat	atgtttcaaa	accacttgcc	1080
atcctgttag	attgccagtt	cctgggacca	ggcctcagac	tgtgaagtat	atatcctcca	1140
gcattcagtc	cagggggagc	cacggaaacc	atgttcttgc	: ttaagccatt	aaagtcagag	1200
						1223

<210> 212

<211> 2148

<212> DNA

<213> Homo sapiens

<400> 212 gtaaaaatga cttggattga aaatatgtgg tagccttttt atttctacat taagttctac 60 ctaggatatt tccaaggact gccacaaaac ccatatgtgc agtactttac tactttggga 120 aagctgcatc tttctaccac attttaacat ctaatatatt taatttcttt gaagagggtt 180 ctgtgtacgt tattgtagtt cccagtttaa tatagttctt tgtatctctt aacaggttga 240 agttattgca aaacactctg gaaagtaata attacatcat aatcatttat tttttaaact 300 taaaagccta gaaatttcct agaaagaaaa taggagacat ctcagagcaa tttggttttg 360 gtgtatatgt tctcaacaga aaaccagtgt taatgaatat catgcctcag cactgtcact 420 tttaaaacct gtcaggatcc caccgtaaaa ttggaaatgg gcagttctga attttcacgt 480 ttgaaatgta aaatataaac ttcagtcaat atccaggttt attgtgtcct actatttaat 540 aatgagagaa gtaatggcaa ggcctttact ttcaggaaag gatagaagta tagattaatg 600 actggaaagt tttaatatat ttagcccaaa ggttactttg aattgaagtc tttgcattga 660 ctgtttgtgt ttggtttatt tgtttagctt tacaaggtac acataagtta ggttgagggg 720

ttgttaaccc	ttccgtggtc	tgctttcatt	ccgtgtgctt	cctgtcacag	gtaatggaaa	780
acataagtag	aataggtgac	ctcttagttt	tgaacttatt	taagtgtggg	gatgaatttt	840
tcatcagaag	tgcttacagg	gttactacct	cagtttacaa	tctacctggt	cattatttta	900
tttctatcca	gttctaagaa	ctgcctccac	tgtttatata	ttcataatta	aacacattga	960
gaatgcaaca	ctataaaagc	tggtcaaatt	tttgcagagc	ccttattctg	tgtgtttttt	1020
gtttttttct	ttttttttg	agacagagtc	tcgttcggtc	ccccagcttg	gagtgcagtg	1080
gcgcgatctc	ggctcactgc	aacctccgcc	tcctgggttc	acgcgattct	cctgcctcag	1140
cctcccgagt	agctgggatt	acaggcacac	accaccacgc	ccggctaatt	ttttgtgtct	1200
ttttagtaga	gacggggttt	cgctatgttg	gccagactgg	tcttgaactg	ctgacctcgt	1260
gatccgcccg	cctcggcctc	tcaaagtgct	gggattctgt	gtgttttgtg	cacctccact	1320
ttaggtaatc	atagggagca	catttacagg	atggtctaat	aacatgaaaa	caggctagtt	1380
tcaagcaaca	gcaatgtcgg	ttggaaagca	ggcgtcattt	gccttgaaaa	aagccttttg	1440
acaacataca	ggcattcttt	taaaaccagg	ctgaaacatt	ttatttccga	gacttaacgt	1500
tgtgtttcct	gtttcttaaa	cctagcacct	ctgtgtattt	gaaaataatg	agacatcttt	1560
cattggattt	tggaaaattg	ttccccatgg	gattctaacc	tcactaccaa	atgagtgaaa	1620
gcttgattaa	gagttcttcc	atatactagc	ctccttggaa	gaagtgatca	. gaaggtgata	1680
agaaggacag	g aaaggactat	tttaaagttg	gactgaagga	gaaaaaagca	aaattcttgt	1740
ttcatcccaa	ttctagttag	aacaaagtta	aacccccgta	. atcttaaaga	gaaaatcttt	1800
ggaggtttta	attaaacatt	ttatacattt	aaagtcttgt	taatggtgct	: ttaagtgtca	1860
atgtagcatg	g taaaaggctt	tgtacagaca	. ggtaaaagtt	ccatttctga	gtgatgaaat	1920
gtaacactto	c ttcatcttta	acttgaaatc	: aaaactatca	gattttattt	: ttgtataatt	1980
taaggaaggt	aaagttaggg	gactagaaga	ctctaaattg	gcttctacaq	g atcaataatt	2040
taaatgtaa	c tagttgggat	: tttatagtta	aaattatatt	: tgtgtatata	a acataattaa	2100
tctgtaaat	t gtaataaata	tatttgcaat	: tattaaatgt	taagtgat		2148

<400> 213

<210> 213

<211> 2156

<212> DNA

<213> Homo sapiens

ggcacgagcc cagaaacaaa gacttcacgg acaaagtccc ttggaaccag agagaagccg 60 ggatggaaac tccaaacacc acagaggact atgacacgac cacagagttt gactatgggg 120 atgcaactcc gtgccagaag gtgaacgaga gggcctttgg ggcccaactg ctgcccctc 180

tgtactcctt	ggtatttgtc	attggcctgg	ttggaaacat	cctggtggtc	ctggtccttg	240
tgcaatacaa	gaggctaaaa	aacatgacca	gcatctacct	cctgaacctg	gccatttctg	300
acctgctctt	cctgttcacg	cttcccttct	ggatcgacta	caagttgaag	gatgactggg	360
tttttggtga	tgccatgtgt	aagatcctct	ctgggtttta	ttacacaggc	ttgtacagcg	420
agatcttttt	catcatcctg	ctgacgattg	acaggtacct	ggccatcgtc	cacgccgtgt	480
ttgccttgcg	ggcacggacc	gtcacttttg	gtgtcatcac	cagcatcatc	atttgggccc	540
tggccatctt	ggcttccatg	ccaggcttat	acttttccaa	gacccaatgg	gaattcactc	600
accacacctg	cagccttcac	tttcctcacg	aaagcctacg	agagtggaag	ctgtttcagg	660
ctctgaaact	gaacctcttt	gggctggtat	tgcctttgtt	ggtcatgatc	atctgctaca	720
cagggattat	aaagattctg	ctaagacgac	caaatgagaa	gaaatccaaa	gctgtccgtt	780
tgatttttgt	catcatgatc	atctttttc	tcttttggac	cccctacaat	ttgactatac	840
ttatttctgt	tttccaagac	ttcctgttca	cccatgagtg	tgagcagagc	agacatttgg	900
acctggctgt	gcaagtgacg	gaggtgatcg	cctacacgca	ctgctgtgtc	aacccagtga	960
tctacgcctt	cgttggtgag	aggttccgga	agtacctgcg	gcagttgttc	cacaggcgtg	1020
tggctgtgca	cctggttaaa	tggctcccct	tcctctccgt	ggacaggctg	gagagggtca	1080
gctccacatc	tccctccaca	ggggagcatg	aactctctgc	tgggttctga	ctcagaccat	1140
aggaggccaa	cccaaaataa	gcaggcgtga	cctgccaggc	acactgagcc	agcagcctgg	1200
ctctcccagc	caggttctga	ctcttggcac	agcatggagt	cacagccact	tgggatagag	1260
agggaatgta	atggtggcct	ggggcttctg	aggcttctgg	ggcttcagtc	ttttccatga	1320
acttctcccc	tggtagaaag	aagatgaatg	agcaaaacca	aatattccag	agactgggac	1380
taagtgtacc	agagaagggc	ttggactcaa	gcaagatttc	agatttgtga	ccattagcat	1440
ttgtcaacaa	agtcacccac	ttcccactat	tgcttgcaca	aaccaattaa	acccagtagt	1500
ggtgactgtg	ggctccattc	aaagtgagct	cctaagccat	gggagacact	gatgtatgag	1560
gaatttctgt	tcttccatca	. cetececec	cccgccaccc	teccaetgee	aagaacttgg	1620
aaatagtgat	ttccacagtg	actccactct	. gagtcccaga	gccaatcagt	agccagcatc	1680
tgcctcccct	tcactcccac	: cgcaggattt	gggctcttgg	aatcctgggg	aacatagaac	1740
tcatgacgga	agagttgaga	ı cctaacgaga	ı aatagaaatg	ggggaactac	: tgctggcagt	1800
ggaactaaga	aagcccttag	gaagaatttt	tatatccact	aaaatcaaac	: aattcaggga	1860
gtgggctaag	g cacgggccat	: atgaataaca	tggtgtgctt	cttaaaatag	g ccataaaggg	1920
gagggactca	ı tcatttccat	ttacccttct	: tttctgacta	tttttcagaa	tctctcttct	1980

tttcaagttg ggtgatatgt tggtagattc taatggcttt attgcagcga ttaataacag 2040 gcaaaaggaa gcagggttgg tttcccttct ttttgttctt catctaagcc ttctggtttt 2100 atgggtcaga gttccgactg ccatcttgga cttgtcagca aaaaaaaaa aaaaaa 2156

<210> 214

<211> 1645

<212> DNA

<213> Homo sapiens

<400> 214 agtetetegt catggaatae geetetgaeg etteaetgga eecegaagee eegtggeete 60 ccgcgccccg cgctcgcgcc tgccgcgtac tgccttgggc cctggtcgcg gggctgctgc 120 180 tgctgctgct gctcgctgcc gcctgcgccg tcttcctcgc ctgcccctgg gccgtgtccg 240 gggctcgcgc ctcgcccggc tccgcggcca gcccgagact ccgcgagggt cccgagcttt cgcccgacga tcccgccggc ctcttggacc tgcggcaggg catgtttgcg cagctggtgg 300 360 cccaaaatgt tctgctgatc gatgggcccc tgagctggta cagtgaccca ggcctggcag gcgtgtccct gacgggggc ctgagctaca aagaggacac gaaggagctg gtggtggcca 420 aggctggagt ctactatgtc ttctttcaac tagagctgcg gcgcgtggtg gccggcgagg 480 geteaggete egttteaett gegetgeace tgeageeact gegetetget getggggeeg 540 ccgccctggc tttgaccgtg gacctgccac ccgcctcctc cgaggctcgg aactcggcct 600 teggttteca gggeegettg etgeacetga gtgeeggeea gegeetggge gteeatette 660 acactgaggc cagggcacgc catgcctggc agcttaccca gggcgccaca gtcttgggac 720 tetteegggt gacceeggaa ateceageeg gacteeette accgaggteg gaataacgee 780 cagcctgggt gcagcccacc tggacagagt ccgaatccta ctccatcctt catggagacc 840 cctggtgctg ggtccctgct gctttctcta cctcaagggg cttggcaggg gtccctgctg 900 ctgacctccc cttgaggacc ctcctcaccc actccttccc caagttggac cttgatattt 960 attctgagcc tgagctcaga taatatatta tatatattat atatatata atatttctat 1020 1080 1140 tettegacat tgeegagget ggtettgaae teetggaett agaegateet eetgeeteag 1200 cctcccaagc aactgggatt catcctttct attaattcat tgtacttatt tgcctatttg 1260 tgtgtattga gcatctgtaa tgtgccagca ttgtgcccag gctagggggc tatagaaaca 1320 tctagaaata gactgaaaga aaatctgagt tatggtaata cgtgaggaat ttaaagactc 1380 atccccagcc tccacctcct gtgtgatact tgggggctag cttttttctt tctttcttt 1440 ttttgagatg gtcttgttct gtcaaccagg ctagaatgca gcggtgcaat catgagtcaa

tgcag	geetee	agcctcgacc	tcccgaggct	caggtgatcc	tcccatctca	gcctctcgag	1500
tagct	gggac	cacagttgtg	tgccaccaca	cttggctaac	tttttaattt	ttttgcggag	1560
acggt	attgc	tatgttgcca	aggttgttta	catgccagta	caatttataa	taaacactca	1620
tttt	cctca	aaaaaaaaaa	aaaaa				1645

<210> 215 <211> 2745

<212> DNA

<213> Homo sapiens

<400> 215 60 acctccctcc gcggagcagc cagacagcga gggccccggc cgggggcagg ggggacgccc cgtccggggc acccccccg gctctgagcc gcccgcgggg ccggcctcgg cccggagcgg 120 aggaaggagt cgccgaggag cagcctgagg ccccagagtc tgagacgagc cgccgccgcc 180 cccgccactg cggggaggag ggggaggagg agcgggagga gggacgagct ggtcgggaga 240 agaggaaaaa aacttttgag acttttccgt tgccgctggg agccggaggc gcggggacct 300 cttggcgcga cgctgccccg cgaggaggca ggacttgggg accccagacc gcctcccttt 360 geogeogggg acgettgete cetecetgee ceetacaegg egteceteag gegeeceeat 420 teeggaceag ceetegggag tegeegacee ggeeteeege aaagaetttt eeceagaeet 480 egggegeace ecetgeacge egeetteate eceggeetgt etectgagee ecegegeate 540 ctagaccctt tctcctccag gagacggatc tctctccgac ctgccacaga tcccctattc 600 aagaccaccc accttctggt accagatcgc gcccatctag gttatttccg tgggatactg 660 agacaccccc ggtccaagcc tcccctccac cactgcgccc ttctccctga ggagcctcag 720 780 ctttccctcg aggccctcct accttttgcc gggagacccc cagcccctgc aggggcgggg cctccccacc acaccagccc tgttcgcgct ctcggcagtg ccgggggggcg ccgcctcccc 840 catgeegeec teegggetge ggetgetgee getgetgeta eegetgetgt ggetaetggt 900 gctgacgcct ggcccgccgg ccgcgggact atccacctgc aagactatcg acatggagct 960 ggtgaagegg aagegeateg aggeeateeg eggeeagate etgteeaage tgeggetege 1020 cageceeeg agecagggg aggtgeegee eggeeegetg eeegaggeeg tgetegeeet 1080 gtacaacagc accegegace gggtggcegg ggagagtgca gaaceggage eegageetga 1140 ggccgactac tacgccaagg aggtcacccg cgtgctaatg gtggaaaccc acaacgaaat 1200 1260 ctatgacaag ttcaagcaga gtacacacag catatatatg ttcttcaaca catcagagct ccgagaagcg gtacctgaac ccgtgttgct ctcccgggca gagctgcgtc tgctgaggag 1320 gctcaagtta aaagtggagc agcacgtgga gctgtaccag aaatacagca acaattcctg 1380

60

120

180

240

gcgatacctc	agcaaccggc	tgctggcacc	cagcgactcg	ccagagtggt	tatcttttga	1440
tgtcaccgga	gttgtgcggc	agtggttgag	ccgtggaggg	gaaattgagg	gctttcgcct	1500
tagcgcccac	tgctcctgtg	acagcaggga	taacacactg	caagtggaca	tcaacgggtt	1560
cactaccggc	cgccgaggtg	acctggccac	cattcatggc	atgaaccggc	ctttcctgct	1620
tctcatggcc	accccgctgg	agagggccca	gcatctgcaa	agctcccggc	accgccgagc	1680
cctggacacc	aactattgct	tcagctccac	ggagaagaac	tgctgcgtgc	ggcagctgta	1740
cattgacttc	cgcaaggacc	tcggctggaa	gtggatccac	gagcccaagg	gctaccatgc	1800
caacttctgc	ctcgggccct	gcccctacat	ttggagcctg	gacacgcagt	acagcaaggt	1860
cctggccctg	tacaaccagc	ataacccggg	cgcctcggcg	gcgccgtgct	gcgtgccgca	1920
ggcgctggag	ccgctgccca	tcgtgtacta	cgtgggccgc	aagcccaagg	tggagcagct	1980
gtccaacatg	atcgtgcgct	cctgcaagtg	cagctgaggt	cccgccccgc	acagacacaga	2040
cccggcaggc	ccggccccac	cccgccccgc	ccccgctgcc	ttgcccatgg	gggctgtatt	2100
taaggacacc	gtgccccaag	cccacctggg	gccccattaa	agatggagag	aggactgcgg	2160
atctctgtgt	cattgggcgc	ctgcctgggg	tctccatccc	tgacgttccc	ccactcccac	2220
tccctctctc	tecetetetg	cctcctcctg	cctgtctgca	ctattccttt	gcccggcatc	2280
aaggcacagg	ggaccagtgg	ggaacactac	tgtagttaga	tctatttatt	gagcaccttg	2340
ggcactgttg	aagtgcctta	cattaatgaa	ctcattcagt	caccatagca	acactctgag	2400
atggcaggga	ctctgataac	acccatttta	aaggttgagg	aaacaagccc	agagaggtta	2460
agggaggagt	tcctgcccac	caggaacctg	ctttagtggg	ggatagtgaa	gaagacaata	2520
aaagatagta	gttcaggcca	ggcggggtgc	tcacgcctgt	aatcctagca	cttttgggag	2580
gcagagatgg	gaggatactt	gaatccaggo	atttgagacc	agcctgggta	acatagtgag	2640
accctatctc	tacaaaacac	tttaaaaaa	. tgtacacctg	tggtcccago	tactctggag	2700
gctaaggtgg	gaggatcact	tgatectggg	aggtcaaggc	: tgcag		2745
<210> 216 <211> 420 <212> DNA <213> Hom <400> 216	4 o sapiens					
			addadadada	anantecect	- ctccacqccq	60

cggggccccc gggctccttc ttcggattct cagtggagtt ttaccggccg ggaacagacg

caggacaggg aagagcgggc gctatgggga gccggacgcc agagtcccct ctccacgccg

tgcagctgcg ctggggcccc cggcgccgac ccccgctcgt gccgctgctg ttgctgctcg

tgccgccgcc acccagggtc gggggcttca acttagacgc ggaggcccca gcagtactct

gggtcagtgt	gctggtggga	gcacccaagg	ctaataccag	ccagccagga	gtgctgcagg	300
			ccagccccac			360
			cctcactgtc			420
			gggcaacagt			480
			gcacagagaa			540
			tcacccgaat			600
			gttactgcca			660
						720
			gaccaggaag			780
			aatcttatta			
			ccagttccat			840
gatactctgt	ggctgttggt	gaattcagtg	gtgatgacac	agaagacttt	gttgctggtg	900
tgcccaaagg	gaacctcact	tacggctatg	tcaccatcct	taatggctca	gacattcgat	960
ccctctacaa	cttctcaggg	gaacagatgg	cctcctactt	tggctatgca	gtggccgcca	1020
cagacgtcaa	tggggacggg	ctggatgact	tgctggtggg	ggcacccctg	ctcatggatc	1080
ggacccctga	. cgggcggcct	caggaggtgg	gcagggtcta	cgtctacctg	cagcacccag	1140
ccggcataga	gcccacgccc	acccttaccc	tcactggcca	tgatgagttt	ggccgatttg	1200
gcagctcctt	gacccccctg	ggggacctgg	accaggatgg	ctacaatgat	gtggccatcg	1260
gggctccctt	: tggtggggag	acccagcagg	gagtagtgtt	tgtatttcct	gggggcccag	1320
gagggctggg	g ctctaagcct	. tcccaggttc	tgcagcccct	gtgggcagcc	agccacaccc	1380
cagacttctt	tggctctgcc	: cttcgaggag	gccgagacct	ggatggcaat	ggatatcctg	1440
					: cgccccatcg	1500
tgtccgctag	g tgeeteecte	accatcttcc	: ccgccatgtt	caacccagag	g gagcggagct	1560
gcagcttaga	a ggggaaccct	gtggcctgca	ı tcaaccttag	cttctgccto	aatgcttctg	1620
gaaaacacgt	tgctgactco	: attggtttca	a cagtggaact	tcagctggad	tggcagaagc	1680
agaagggagg	g ggtacggcgg	g gcactgttco	tggcctccag	gcaggcaac	c ctgacccaga	1740
ccctgctcat	t ccagaatggg	g gctcgagagg	g attgcagaga	gatgaagato	c tacctcagga	1800
acgagtcag	a atttcgagad	c aaactctcg	c cgattcacat	: cgctctcaa	c ttctccttgg	1860
acccccaag	c cccagtgga	c agccacggc	c tcaggccago	c cctacatta	t cagagcaaga	1920
gccggatag	a ggacaaggc	t cagatettg	c tggactgtgg	g agaagacaa	c atctgtgtgc	1980
ctgacctgc	a gctggaagt	g tttggggag	c agaaccatgt	gtacctggg	t gacaagaatg	2040
ccctgaacc	t cactttcca	t gcccagaat	g tgggtgaggg	g tggcgccta	t gaggetgage	2100

ttcgggtcac cgcccctcca gaggctgagt actcaggact cgtcagacac ccagggaact	2160
tetecageet gagetgtgae taetttgeeg tgaaccagag eegeetgetg gtgtgtgaee	2220
tgggcaaccc catgaaggca ggagccagtc tgtggggtgg ccttcggttt acagtccctc	2280
atctccggga cactaagaaa accatccagt ttgacttcca gatcctcagc aagaatctca	2340
acaactegea aagegaegtg gttteettte ggeteteegt ggaggeteag geecaggtea	2400
ccctgaacgg tgtctccaag cctgaggcag tgctattccc agtaagcgac tggcatcccc	2460
gagaccagec teagaaggag gaggaeetgg gaeetgetgt eeaccatgte tatgagetea	2520
tcaaccaagg ccccagctcc attagccagg gtgtgctgga actcagctgt ccccaggctc	2580
tggaaggtca gcagctccta tatgtgacca gagttacggg actcaactgc accaccaatc	2640
accccattaa cccaaagggc ctggagttgg atcccgaggg ttccctgcac caccagcaaa	2700
aacgggaagc tecaageege agetetgett eetegggaee teagateetg aaatgeeegg	2760
aggetgagtg ttteaggetg egetgtgage tegggeeeet geaccaacaa gagageeaaa	2820
gtctgcagtt gcatttccga gtctgggcca agactttctt gcagcgggag caccagccat	2880
ttageetgea gtgtgagget gtgtacaaag eeetgaagat geeetaeega ateetgeete	2940
ggcagctgcc ccaaaaagag cgtcaggtgg ccacagctgt gcaatggacc aaggcagaag	3000
gcagctatgg cgtcccactg tggatcatca tcctagccat cctgtttggc ctcctgctcc	3060
taggtctact catctacatc ctctacaagc ttggattctt caaacgctcc ctcccatatg	3120
gcaccgccat ggaaaaagct cagctcaagc ctccagccac ctctgatgcc tgagtcctcc	3180
caatttcaga ctcccattcc tgaagaacca gtccccccac cctcattcta ctgaaaagga	3240
ggggtctggg tacttcttga aggtgctgac ggccagggag aagctcctct ccccagccca	3300
gagacatact tgaagggcca gagccagggg ggtgaggagc tggggatccc tccccccat	3360
gcactgtgaa ggacccttgt ttacacatac cctcttcatg gatgggggaa ctcagatcca	3420
gggacagagg cccagcctcc ctgaagcctt tgcattttgg agagtttcct gaaacaactg	3480
gaaagataac taggaaatcc attcacagtt ctttgggcca gacatgccac aaggacttcc	3540
tgtccagctc caacctgcaa agatctgtcc tcagccttgc cagagatcca aaagaagccc	3600
ccagtaagaa cctggaactt ggggagttaa gacctggcag ctctggacag ccccaccctg	3660
gtgggccaac aaagaacact aactatgcat ggtgccccag gaccagctca ggacagatgc	3720
cacaaggata gatgctggcc cagggccaga gcccagctcc aaggggaatc agaactcaaa	3780
tggggccaga tccagcctgg ggtctggagt tgatctggaa cccagactca gacattggca	3840
ccaatccagg cagatccagg actatatttg ggcctgctcc agacctgatc ctggaggccc	3900

						2000
agttcaccct	gatttaggag	aagccaggaa	tttcccagga	cctgaagggg	ccatgatggc	3960
aacagatctg	gaacctcagc	ctggccagac	acaggccctc	cctgttcccc	agagaaaggg	4020
gagcccactg	teetgggeet	gcagaatttg	ggttctgcct	gccagctgca	ctgatgctgc	4080
ccctcatctc	tctgcccaac	ccttccctca	ccttggcacc	agacacccag	gacttattta	4140
aactctgttg	caagtgcaat	aaatctgacc	cagtgccccc	actgaccaga	actagaaaaa	4200
aaaa						4204
<210> 217 <211> 543 <212> DNA <213> Hom	o sapiens					
<400> 217	tttttttt	tttttttt	tttttttt	tcccaggtca	agtttaatac	60
aaaccacaaa	. agattaaggg	ggggccctac	taatacatca	tacaaaccag	gggccggccc	120
ccaaccccaa	ctcaggccat	tcctaccaaa	ggaaaaaagg	gtggtctctc	cccccctgt	180
gggaaaggcc	: ggccttgtga	. aacaccacaa	ttcggctgaa	tctgaagtct	tgggttttac	240
taagggaaaa	aaaaaatcca	aaaaagggtt	tgttctcatg	ggtgccccc	gcagcctggc	300
cctaaaacag	g cccagcgctc	: acttttgctg	ggaaaaatat	tctttgctct	ttgggacatc	360
aggettgagg	ggatcactgo	: caggtttcca	. gccagctggg	cccacttccc	catgtttgtc	420
agggaactgg	g aaggcctgaa	ı ctagtctcaa	agtctcatcc	acagagcggc	caacagggag	480
gtcatttcag	g ggatctgccg	g aagaacccct	: tatcatcaat	gataagaggg	ccccgtgacg	540
aga						543
	84 A mo sapiens					
<400> 21 aaaacagct	a agccaggcg	c gcaaggagti	c ggagaccctg	g cgggagcgct	tcagcgaatc	60
gaccgccat	g ggcgcctcc	a ggcgtcccc	c agagcctgag	g aaagcgcct	c ccgctgcccc	120
gacgcggcc	c teggeeetg	g agctgaagg	t ggaggagctq	g gaggagaag	g ggttaatccg	180
tattctgcg	g gggccgggg	g atgctgtct	c catcgagato	e atacacgta	g ctgtggcaac	240
teegagegg	c ggtgatgct	c cgactccgg	g ggtgccgac	c ggctccccc	a gcccagatct	300
cgcacctgc	a gcagagccg	g ctcccggag	c agcgccacc	g ccgccgccc	c cactgcccgg	360
cctcccctc	c ccgcaggaa	g ccccgccct	c tgcgccccc	a caggccccg	c ctctccctgg	420
cagcccgga	g cccccgcct	g cgccgccgc	t gcccggaga	c ctgccgccc	c cacccccgcc	480

accgccacca	cctccgggca	ctgacgggcc	ggtgcctccg	ccgccgccgc	cgccgccgcc	540
gcctcccgga	ggtactactg	atgccctagg	aagacgcgac	tcagaattgg	gcccaggagt	600
gaaggccaag	aagcccatcc	agactaagtt	ccgaatgcca	ctcttgaact	gggtggcact	660
gaaacccagc	cagatcaccg	gcactgtctt	cacagagete	aatgatgaga	aggtgctgca	720
ggagctagac	atgagtgatt	ttgaggaaca	gttcaagacc	aagtcccaag	gccccagcct	780
ggacctcagc	gctctcaaga	gtaaggcagc	ccagaaggcc	cccagcaagg	cgacactcat	840
tgaggccaac	cgggccaaga	acttggccat	caccctgcgg	aagggcaacc	tgggggccga	900
gcgcatctgc	caagccattg	aggcgtacga	cctgcaggct	ctgggcctgg	acttcctgga	960
gctgctgatg	cgcttcctgc	ccacagagta	tgagcgcagc	ctcatcaccc	gctttgagcg	1020
ggagcagcgg	ccaatggagg	agctgtcaga	ggaggaccgc	ttcatgctat	gcttcagccg	1080
catcccgcgc	ctgccggagc	gcatgaccac	actcaccttc	ctgggcaact	tcccggacac	1140
agcccagctg	ctcatgccgc	aactgaatgc	catcattgca	gcctcaatgt	ccatcaagtc	1200
ctctgacaaa	èteegeeaga	tcctggagat	tgtcctggcc	tttggcaact	acatgaacag	1260
tagcaagcgt	ggggcagcct	atggcttccg	gctccagagc	ctggatgcgc	tgttggagat	1320
gaagtcgact	gatcgcaagc	agacgctgct	gcactacctg	gtgaaggtca	ttgctgagaa	1380
gtacccgcaa	ctcacaggct	tccacagcga	cctgcacttc	ctggacaagg	cgggctcagt	1440
gtccctggac	agtgtcctgg	cggacgtgcg	ctccctgcag	cgaggcctag	agttgacaca	1500
gagagagttt	gtgcggcagg	atgactgcat	ggtgctcaag	gagttcctga	gggccaactc	1560
gcccaccatg	gacaagctgc	tggcagacag	caagacggct	caggaggcct	ttgagtctgt	1620
ggtggagtac	ttcggagaga	accccaagac	cacatcccca	ggcctgttct	tctccctctt	1680
tagccgcttc	attaaggcct	acaagaaagc	tgagcaggag	gtggaacagt	ggaaaaaaga	1740
agccgctgcc	caggaggcag	gcgctgatac	cccgggcaaa	ggggagcccc	cagcacccaa	1800
gtcaccgcca	aaggcccggc	ggccacagat	ggacctcatc	tctgagctga	aacggaggca	1860
gcagaaggag	ccactcattt	atgagagcga	ccgtgatggg	gccattgaag	acatcatcac	1920
agatctgcgg	aaccagccct	acateegege	agacacaggc	cgccgcagtg	cccgtcggcg	1980
tcccccgggc	cccccactgc	aggtcacctc	: cgacctctcg	ctgtagccgc	tatttctgca	2040
ggtggattct	gcaggggtgt	ggggccgtgg	acaggctgag	gctcaaggaa	ggtggtcctc	2100
agctcggctg	geegggeage	ceetecteeg	ctgtggcccg	cctcaaacgg	gctggtgcat	2160
cctcctcttg	gccacagagg	gcagcatcgc	cegeceette	: ccccaaatgc	: tgcttgcagc	2220
acccacccta	aageeeete	: caaatagcca	tacttagcct	cagcaggago	: ctggcctgta	2280

2340

acttataaag tgcacctcgc ccccgcaagc cccagccccg aggaccgtcc atggacctta tttttatatg agattaataa agatgtttgc aaaagaaaaa aaaa 2384 <210> 219 <211> 2306 <212> DNA <213> Homo sapiens <400> 219 gggcgggagc tgcacgcgcc gtggctccgg atctcttcgt ctttgcagcg tacgcccgag 60 teggteageg eeggaggace teageageea tgtegaagee eeatagtgaa geegggaetg 120 180 ccttcattca gacccagcag ctgcacgcag ccatggctga cacattcctg gagcacatgt gccgcctgga cattgattca ccacccatca cagcccggaa cactggcatc atctgtacca 240 300 ttggcccagc ttcccgatca gtggagacgt tgaaggagat gattaagtct ggaatgaatg tggctcgtct gaacttctct catggaactc atgagtacca tgcggagacc atcaagaatg 360 420 tgcgcacagc cacggaaagc tttgcttctg acccctacct ctaccggccc gttgctgtgg ctctagacac taaaggacct gagatccgaa ctgggctcat caagggcagc ggcactgcag 480 540 agctggagct gaagaaggga gccactctca aaatcacgct ggataacgcc tacatggaaa 600 agtgtgacga gaacatcctg tggctggact acaagaacat ctgcaaggtg gtggaagtgg gcagcaagat ctacgtggat gatgggctta tttctctcca ggtgaagcag aaaggtgccg 660 acttcctggt gacggaggtg gaaaatggtg gctccttggg cagcaagaag ggtgtgaacc 720 780 ttcctggggc tgctgtggac ttgcctgctg tgtcggagaa ggacatccag gatctgaagt ttggggtcga gcaggatgtt gatatggtgt ttgcgtcatt catccgcaag gcatctgatg 840 tccatgaagt taggaaggtc ctgggagaga agggaaagaa catcaagatt atcagcaaaa 900 tcgagaatca tgagggggtt cggaggtttg atgaaatcct ggaggccagt gatgggatca 960 1020 tggtggctcg tggtgatcta ggcattgaga ttcctgcaga gaaggtcttc cttgctcaga 1080 agatgatgat tggacggtgc aaccgagctg ggaagcctgt catctgtgct actcagatgc tggagagcat gatcaagaag ccccgccca ctcgggctga aggcagtgat gtggccaatg 1140 1200 cagtcctgga tggagccgac tgcatcatgc tgtctggaga aacagccaaa ggggactatc 1260 ctctggaggc tgtgcgcatg cagcacctga ttgcccgtga ggcagaggct gccatctacc acttgcaatt atttgaggaa ctccgccgcc tggcgcccat taccagcgac cccacagaag 1320 ccaccgccgt gggtgccgtg gaggcctcct tcaagtgctg cagtggggcc ataatcgtcc 1380 tcaccaagtc tggcaggtct gctcaccagg tggccagata ccgcccacgt gcccccatca 1440 ttgctgtgac ccggaatccc cagacagctc gtcaggccca cctgtaccgt ggcatcttcc 1500

ctgtgctgtg caaggacco	ca gtccaggagg	cctgggctga	ggacgtggac	ctccgggtga	1560
actttgccat gaatgttg	gc aaggcccgag	gcttcttcaa	gaagggagat	gtggtcattg	1620
tgctgaccgg atggcgcc	ct ggctccggct	tcaccaacac	catgcgtgtt	gttcctgtgc	1680
cgtgatggac cccagagc	cc ctcctccagc	ccctgtccca	ccccttccc	ccagcccatc	1740
cattaggcca gcaacgct	tg tagaactcac	tctgggctgt	aacgtggcac	tggtaggttg	1800
ggacaccagg gaagaaga	tc aacgcctcac	tgaaacatgg	ctgtgtttgc	agcctgctct	1860
agtgggacag cccagagc	ct ggctgcccat	catgtggccc	cacccaatca	agggaagaag	1920
gaggaatgct ggactgga	gg cccctggagc	cagatggcaa	gagggtgaca	gcttcctttc	1980
ctgtgtgtac tctgtcca	gt tcctttagaa	aaaatggatg	cccagaggac	tcccaaccct	2040
ggcttggggt caagaaac	ag ccagcaagag	ttaggggcct	tagggcactg	ggctgttgtt	2100
ccattgaagc cgactctg	gc cctggccctt	acttgcttct	ctagctctct	aggcctctcc	2160
agtttgcacc tgtcccca	.cc ctccactcag	s ctgtcctgca	gcaaacactc	caccctccac	2220
cttccatttt cccccact	ac tgcagcacct	ccaggcctgt	tgctatagag	cctacctgta	2280
tgtcaataaa caacagct	ga agcacc				2306

<210> 220

<211> 4408

<212> DNA

<213> Homo sapiens

<400> 220 gggcgcggag gcgaccgcca tggcgttcct caaactccgt gaccagccat cactggtgca 60 agctatattt aacggagatc ctgatgaagt tcgagcacta atatttaaga aagaagatgt 120 180 taactttcag gacaatgaaa agcgaacccc attgcacgcc gcagcttacc ttggagatgc 240 agaaatcatt gaacttctta ttttatctgg agctagagtt aatgccaaag acagcaaatg gttgacacct ttacacagag cagttgcatc ttgtagtgag gaagcagttc aggtactttt 300 360 gaagcattct gcagatgtta atgctcgaga caaaaattgg caaacccctt tacatatagc tgctgctaat aaagctgtaa agtgtgctga agctttggta cctcttctga gtaatgtaaa 420 480 cgtatctgat cgagcaggga ggactgcatt acatcatgca gctttcagtg gacatggtga gatggtcaaa ctactcttgt ctagaggtgc caatattaat gcttttgaca agaaagatag 540 gcgtgctatc cattgggcag catatatggg tcacattgaa gtagtgaaat tgcttgtgtc 600 gcatggagct gaagtgacat gcaaggataa aaagtcttat acacctcttc atgcagcagc 660 ctctagtgga atgatcagcg tagtcaagta ccttctagat cttggagttg atatgaatga 720 accaaatgcc tatggaaata cacctcttca tgtagcctgc tataatggac aagatgttgt 780

agtgaatgaa	cttatagact	gtggtgctat	tgtgaatcaa	aagaatgaaa	aaggatttac	840
tcctttgcac	tttgctgctg	catcaacaca	tggagcattg	tgtttagagc	ttctagttgg	900
caatggggcc	gatgtcaata	tgaagagtaa	agatgggaaa	accccactac	acatgactgc	960
tctccacggt	agattctccc	gatcacaaac	cattatccag	agtggagctg	taatcgactg	1020
tgaggataag	aatggaaata	cccctttgca	catagcagca	cggtatggcc	atgagctgct	1080
gatcaacact	cttattacaa	gtggtgctga	cactgcaaag	cgtggcatac	atggaatgtt	1140
cccctccat	ttggcagcct	taagcggctt	ttcagattgc	tgcagaaaac	ttctttcttc	1200
aggatttgat	atagataccc	cagatgattt	tggcaggact	tgtctacatg	cagctgcagc	1260
tggagggaat	ttggagtgcc	taaaccttct	gctgaatact	ggtgcagact	ttaataaaaa	1320
ggacaaattt	gggagatctc	cactgcacta	cgctgctgcc	aactgcaatt	accagtgcct	1380
gtttgctctt	gtgggatcag	gagcaagtgt	gaatgacctt	gatgaaagag	gctgcacacc	1440
cctgcactat	gcagctacat	cagacacaga	tggcaagtgc	ctggaatact	tattaagaaa	1500
cgatgcaaat	ccagggatcc	gtgataagca	aggatacaac	gcagttcatt	attcagctgc	1560
ttatggtcac	cgtctatgtc	ttcagctgat	tgcaagtgaa	actcctctag	atgttttaat	1620
ggaaacctca	ggaacagaca	tgctgagtga	ttcagataat	agagcaacaa	taagcccttt	1680
acacttggct	gcctatcatg	gtcaccatca	agcactggaa	gtgttggtac	agtctttgtt	1740
agatcttgat	gtcagaaata	gtagtggaag	aacaccccta	gatcttgcag	cttttaaggg	1800
ccatgttgaa	tgtgtggatg	tactcattaa	tcagggagcc	tcaatcttag	taaaagatta	1860
cattttgaag	aggacaccta	ttcatgcagc	agcaacaaat	ggtcattcag	aatgcttacg	1920
gctattaata	. ggaaatgcag	aaccacagaa	tgcagtggat	attcaagatg	gaaatggaca	1980
gacgcctctg	atgctatctg	ttctcaacgg	gcacacagac	tgtgtttact	cattgctgaa	2040
caaaggagca	aatgtagatg	ccaaagataa	gtggggaagg	acagcgttgc	atagaggggc	2100
agttacaggo	: catgaagaat	gtgtagatgc	attacttcaa	catggtgcta	. agtgcttact	2160
tcgggatagc	aggggccgga	cgcctataca	. cctgtctgct	gcctgtggac	acattggtgt	2220
tcttggagco	cttttgcagt	: cagcagcatc	: tatggatgca	aatccagcca	cagcagacaa	2280
tcatggatat	acggcactto	actgggcttg	ctacaatggt	: cacgagacat	gtgtagaact	2340
gcttttagaa	a caggaagttt	: tccagaaaac	: ggaaggaaat	gcttttagtc	cattgcattg	2400
tgccgtgata	a aatgacaacg	g aaggtgctgc	: tgagatgtta	attgatacat	taggtgccag	2460
cattgtgaad	gccacagatt	caaaaggaag	g aactcctctc	c catgcagccg	g ccttcacaga	2520
ccatgtagag	g tgtttacago	tgctgctcag	g ccataatgct	caagtcaatt	ctgtggactc	2580
tacagggaaa	a acacctctta	a tgatggctgo	agaaaatgga	a caaacaaata	a cagttgagat	2640

gctggttagc agtgctagtg cagaactgac tttacaagat aacagtaaaa atactgccct 27	700
ccatttggct tgtagcaagg gtcatgaaac tagtgccttg ttaatactgg aaaagataac 27	760
agatagaaac ctcatcaatg caaccaacgc agccttgcaa acacctctgc atgttgctgc 28	820
ccgaaatggg ctaacaatgg tggttcagga acttttggga aaaggagcaa gtgtgcttgc 28	880
agtagatgaa aatggctata ccccagcttt ggcctgtgct cccaataagg atgtggctga 29	940
ttgcctggct ctcattttgg ccaccatgat gcctgtctca tcaagtagtc ctttatcatc 30	000
cttaacattc aatgccatta accgttatac caacacctca aaaacagtca gctttgaagc 30	060
tttgcccatc atgaggaatg aacctagctc ctattgcagt ttcaataaca ttggagggga 33	120
acaggagtac ttatacactg acgtggatga gctcaacgac tccgattctg agacctactg 33	180
agaggctgag gaggagggag ttctcacagt aaagcttcaa actgtgcttt ttcaggaaaa 3	240
aggcactttg atattcacgt agaaattcaa cctaagagga aagatcccac agtgagccaa 3	300
tgttaagaga tctgatggca ttaggaggaa gagttttaaa ggaattctct tctgaattcc 3	360
ctgagggaat tttctagaat ctcagaattg aaagagacct gaggttcatc cagtctctaa 3	420
cctcttaaca aatgcaggag tcccttctac aagggtgatc tttccacctt gaacacttcc 3	480
aagtgactct acctcaccaa gcagtccatt cagttgttga gcagctctaa ctgttagaaa 3	540
ggtcttcctt agatggagtt gaagcctccc tcccggtaac ttctgtcttt gggcctgggt 3	600
ctgtcctcca agagaaccct gagaatgttg gaaggatgaa tctcgcacat tctgccatgt 3	660
cttctctttt acaggctgtt tgacttctct gctgaagtga tttccagaag gactcatttg 3	3720
acacactatt agatttacca catctaatga aatccaaggt gtagctataa agtgacaagc 3	3780
tgtttttaat ttatcacata caccagaact tctatcctgc atcacttata tgtaaatgat 3	3840
gctgttacca aaaacattaa ggtagttctt gcgaatgcca ccccactaag aaaactattt 3	3900
cattactttt gtaatccatc tgtgagagtc tgcccccag cttaaccact tcctttgatc 3	3960
tgcacccaat gaagggaaac cccaaagtac tgtctcaaat ggtatttgaa ctacgccagt	1020
attgttggaa taagtacatt aattacttga atgaatgaac acagcaccgt agaaatttcc	4080
tttatggtta caccttgtat gtctaaagca ttcaggccct gttctgtagt gtttcttatc	4140
ctcacacaga gtagaaaagc ctgtttgctt tatttaactt atacataaaa gatgacatct	4200
gaaatatctg atgtgtatta taataccagc ttctgctcta gaactacttt gggtgaaatg	4260
gtggtaatag caaatgacct cctttaacaa gacactcatc tcaaacaatg ccatttagtt	4320
caggagatet etaagtgtag etgtaaattt tggggttaat ttggettata ttggaeettt	4380
	4408

	221 479 DNA Homo	sapiens					
<400> gtcagta	221 agaa	ggtagctgtt	atttattgtt	ctattctggg	gtaaaggtat	cagattctca	60
aagggat	tct	taatctagaa	agtttgcgaa	gagatggcaa	aggtgtttga	aagctatcag	120
gaaacca	atcc	tcgcgtaaaa	cgaagcagcg	ctacagaagt	gggctgccat	gggaatcggg	180
aggccca	aggt	tccactgcta	acttgctgca	gcttactggg	tgatctgtaa	ataaaaaggg	240
aggtggd	eggt	ggtccgagct	ggcagccgca	atgcagcccc	aggtagatct	aggggcaaac	300
ggtaaag	ggcg	ctccgaggaa	gggcgagcgc	gcagcctctg	ggagactaca	cctcccaggc	360
tgccttg	gcgc	accgtgctgc	accctacgct	agcacgcgag	cctccccgtt	ccccaccct	420
ccagtta	actg	tctctcgcga	gaagacgggc	cgcgccggcg	atagcgattc	cgagcgagt	479
<210><211><211><212><213>		o sapiens					
<400> ggtacto	222 ccgt	ggaaggcttc	atcgacaaga	acagagattt	cctcttccag	gacttcaagc	60
ggctgct	tgta	caacagcacg	gaccccactc	tacgggccat	gtggccggac	gggcagcagg	120
acatca	caga	ggtgaccaag	cgccccctga	cggctggcac	actcttcaag	aactccatgg	180
tggccct	tggt	ggagaacctt	gcctccaagg	agcccttcta	cgtccgctgc	atcaagccca	240
atgagga	acaa	ggtagctggg	aagctggatg	agaaccactg	tcgccaccag	gtcgcatacc	300
tggggc	tgct	ggagaatgtg	agggtccgca	gggctggctt	cgcttcccgc	cagccctact	360
ctcgat	tcct	gctcaggtac	aagatgacct	gtgaatacac	atgggccaac	cacctgctgg	420
gataag	acaa	ggcagccgtg	agcgctctcc	tggagcagca	cgggctgcag	ggggacgtgg	480
cctttg	gcca	cagcaagctg	ttcatccgct	caccccggac	actggtcaca	ctggagcaga	540
, agccga	gccc	gcctcatccc	catcattgtg	ctgctattgc	agaaggccac	tgacaatccc	600
acagca	tcaa	gcctgtccgc	tcagcgacta	aagacacttc	aggacaaagc	atggcttcgg	660
ggctgt	gctc	ttttccaagc	catgtccgca	aggtgaaccg	cttccacaag	atccggaacc	720
gggccc	taat	gctcacagac	caggaactct	acaagctgga	ccctgaccgg	cagtaccgag	780
<210><211><211>	223 543 DNA						

<213> Homo sapiens

<400> 223 60 gegggegega eettegaatg taatatatgt ttggagaetg etegggaage tgtggteagt 120 gtgtgtggcc acctgtactg ttggccatgt cttcatcagt ggctggagac acggccagaa 180 cggcaagagt gtccagtatg taaagctggg atcagcagag agaaggttgt cccgctttat 240 gggcgaggga gccagaagcc ccaggatccc agattaaaaa ctccaccccg cccccagggc 300 cagagaccag ctccggagag cagaggggga ttccagccat ttggtgatac cgggggcttc 360 420 cactteteat ttggtgttgg tgetttteee tttggetttt teaccacegt etteaatgee catgageett teegeegggg taeaggtgtg gatetgggae agggteaece ageeteeage 480 540 tggcaggatt ccctcttcct gtttctcgcc atcttcttct ttttttggct gctcagtatt 543 tga <210> 224 <211> 4764 DNA <212> Homo sapiens <213> <400> 224 ctgtcttggt acctgcggta gtagcctggc tttgctctga cggcgatctc gcggcccgag 60 agccttttat aggttgcttt tcccggggat gtgaaggata cagaaatgac tgtgaatcaa 120 cccatatcat caaggagctg ataatctagt ggaagagtta gacgtgtgca tacttcacta 180 tgatatgagg cagtctctga gcttatattc tctgtggaag atgtgacata tccaggcgga 240 acatcatgat gcagggaaac acatgtcaca gaatgtcgtt ccacccggga cgagggtgtc 300 cccgaggacg aggaggacat ggagccagac cctcagcacc atcctttagg ccccaaaatc 360 tgaggetget teacceteag cageeteetg tgeaatatea atatgaacet ceaagtgeee 420 480 cttccaccac tttctcaaac tctccagccc ccaattttct ccctccacga ccagactttg taccettece eccacecatg ecteegteag egeaaggeee tetteceece tgeecaatea 540 ggccgccttt ccccaaccac cagatgaggc accccttccc agttcctcct tgttttcctc 600 ccatgccacc accaatgcct tgtcctaata acccccagt ccctggggca cctcctggac 660 720 aaggcacttt ccccttcatg atgccccctc cctccatgcc tcatcccccg cccctccag 780 tcatgccgca gcaggttaat tatcagtacc ctccgggcta ttctcaccac aacttcccac ctcccagttt taatagtttc cagaacaacc ctagttcttt cctgcccagt gctaataaca 840 gcagtagtcc tcatttcaga catctccctc catacccact cccaaaggct cccagtgaga 900

960

gaaggtcccc agaaaggctg aaacactatg atgaccacag gcaccgagat cacagtcatg

ggcgaggtga gag	gcategg teect	ggatc ggcggg	agcg aggccgca	gt cccgacagga	1020
gaagacaaga cag	ccggtac agatc	gatt atgaco	gagg gagaacac	ca tctcgccacc	1080
gcagctacga acg	gagcaga gagcg	agaac gggaga	igaca caggcatc	ga gacaaccgaa	1140
gatcaccatc tct	ggaaagg teeta	caaaa aagagt	ataa gagatctg	ga aggagttacg	1200
gtttatcggt tgt	tcctgaa cctgc	tggat gcacad	caga attacctg	gg gagattatta	1260
aaaatacaga ttc	ttgggcc ccacc	cctgg agattg	gtgaa tcatcgct	cc ccaagtaggg	1320
agaagaagag agc	tcgttgg gagga	agaaa aagac	gttg gagtgaca	ac cagagttctg	1380
gcaaagacaa gaa	ctatacc tcaat	caagg aaaaa	gagcc cgaggaga	icc atgcctgaca	1440
agaatgagga gga	agaagaa gaact	tctta agccto	gtgtg gattcgat	gc actcattcag	1500
aaaactacta ctc	cagtgac cccat	ggatc aggtg	ggaga ttctacag	gtg gttggaacga	1560
gtaggcttcg tga	cttatat gacaa	atttg aggagg	gagtt ggggagca	agg caagaaaagg	1620
ccaaagctgc tcg	gcctccg tggga	acctc caaag	acgaa gctcgatg	gaa gatttagaga	1680
gttccagtga atc	cgagtgt gagto	tgatg aggac	agcac ctgttcta	agc agctcagact	1740
ctgaagtttt tga	.cgttatt gcaga	aatca aacgc	aaaaa ggcccaco	ect gaccgactto	1800
atgatgaact ttg	gtacaac gatco	aggcc agatg	aatga tggaccad	ctc tgcaaatgca	1860
gcgcaaaggc aag	acgcaca ggaat	taggc acagc	attta tootggag	gaa gaggccatca	1920
agccctgtcg tcc	tatgacc aacaa	tgctg gcaga	ctttt ccactac	cgg atcacagtct	1980
ccccgcctac gaa	cttttta actga	cagge caact	gttat agaatac	gat gatcacgagt	2040
atatctttga agg	attttct atgtt	tgcac atgcc	cccct gaccaata	att ccactgtgta	a 2100
aagtaattag att	caacata gacta	.cacga ttcat	ttcat tgaagaga	atg atgccggaga	a 2160
atttttgtgt gaa	agggctt gaact	ctttt cactg	ttcct attcaga	gat attttggaat	2220
tatatgactg gaa	atcttaaa ggtco	tttgt ttgaa	gadag dddtddd	tgc tgcccaagal	2280
ttcatttcat gcc	cacgtttt gtaag	gatttc ttcca	gatgg aggaaag	gaa gtgctgtcc	a 2340
tgcaccagat tct	cctgtac ttgtt	aaggt gcagc	aaagc cctggtg	cct gaggaggag	a 2400
ttgccaatat gct	tcagtgg gagga	igctgg agtgg	cagaa atatgca	gaa gaatgcaaa	g 2460
gcatgattgt tad	ccaaccct ggga	gaaac caago	tctgt ccgtatc	gat caactggat	c 2520
gtgaacagtt caa	accccgat gtga	tactt ttccg	attat cgtccac	ttt gggatacgc	c 2580
ctgcacagtt gag	gttatgca ggaga	acccac agtac	caaaa actgtgg	aag agttatgtg	a 2640
aacttcgcca cct	cctagca aata	gtccca aagtc	aaaca aactgac	aaa cagaagctg	g 2700
cacagaggga gga	aagccctc caaa	aaatac ggcag	aagaa tacaatg	aga cgagaagta	a 2760
cggtggagct aag	gtagccaa ggat	ctgga aaact	ggcat ccgttct	gat gtctgtcag	c 2820

atgcaatgat	gctacctgtt	ctgacccatc	atatccgcta	ccaccaatgc	ctaatgcatt	2880
tggacaagtt	gataggatat	actttccaag	atcgttgtct	gttgcagctg	gccatgactc	2940
atccaagtca	tcatttaaat	tttggaatga	atcctgatca	tgccaggaat	tcattatcta	3000
actgtggaat	teggeageee	aaatacggag	acagaaaagt	tcatcacatg	cacatgcgga	3060
agaaagggat	taacaccttg	ataaatatca	tgtcacgcct	tggccaagat	gacccaactc	3120
cctcgaggat	taaccacaat	gaacggttgg	aattcctggg	tgatgctgtt	gttgaatttc	3180
tgaccagcgt	ccatttgtac	tatttgtttc	ctagtctgga	agaaggagga	ttagcaacct	3240
atcggactgc	cattgttcag	aatcagcacc	ttgccatgct	agcaaagaaa	cttgaactgg	3300
atccatttat	gctgtatgct	cacgggcctg	acctttgtag	agaatcggac	cttcgacatg	3360
caatggccaa	ttgttttgaa	gcgttaatag	gagctgttta	cttggaggga	agcctggagg	3420
aagccaagca	gttatttgga	cgcttgctct	ttaatgatcc	ggacctgcgc	gaagtctggc	3480
tcaattatcc	tctccaccca	ctccaactac	aagagccaaa	tactgatcga	caacttattg	3540
aaacttctcc	agttctacaa	aaacttactg	agtttgaaga	agcaattgga	gtaatttta	3600
ctcatgttcg	acttctggca	agggcattca	cattgagaac	tgtgggattt	aaccatctga	3660
ccctaggcca	caatcagaga	atggaattcc	taggtgactc	cataatgcaa	ctggtagcca	3720
cagagtactt	attcattcat	ttcccagatc	atcatgaagg	acacttaact	ttgttgcgaa	3780
gctctttggt	gaataataga	actcaggcca	aggtagcgga	ggagctgggc	atgcaggagt	3840
acgccataac	caacgacaag	accaagaggc	ctgtggcgct	tcgcaccaag	accttggcgg	3900
accttttgga	atcatttatt	gcagcgctgt	acactgataa	ggatttggaa	tatgttcata	3960
ctttcatgaa	tgtctgcttc	tttccacgat	tgaaagaatt	cattttgaat	caggattgga	4020
atgaccccaa	atcccagctt	cagcagtgtt	gcttgacact	taggacagaa	ggaaaagagc	4080
cagacattcc	tctgtacaag	actctgcaga	cagtgggccc	atcccatgcc	: cgaacctaca	4140
ctgtggctgt	ttatttcaag	ggagaaagaa	taggctgtgg	gaaaggacca	agtattcagc	4200
aagcggaaat	gggagcagca	atggatgcgc	ttgaaaaata	taattttccc	: cagatggccc	4260
atcagaagco	gttcatcgaa	cggaagtaca	gacaagagtt	aaaagaaatg	g aggtgggaaa	4320
gagagcatca	agagagagag	ccagatgaga	ctgaagacat	: caagaaataa	aggagggcat	4380
gcaagtgtgg	g agtatttact	tgctcagtaa	. ctgtgactgt	tgtctattga	a gacctagcct	4440
agttttcctg	g cagacaatga	acgaagtgtg	ctcattgaaa	ı taaaatacag	g agtcaaatcg	4500
ctattgttgt	tttaatgatc	: tgtttttagd	: tggatggtct	: ttattacaaa	gtattagatt	4560
tttcttctat	ttaacggaaa	acttgacttt	ggtgaatgtg	g cattacttco	ttttattttg	4620

ctctttaaat aataaaattc aagaagcata ttctatgtgg aatagatcct gtttttccat 4680 ctgtgtccca gattgtgacc ctagactttc aattgacaag taaaaaattg actttactag 4740 4764 taaaaaaaa aaaaaaaaaa aaaa 225 <210> 2488 <211> <212> DNA <213> Homo sapiens <400> 225 cctgtcgccg ccgcctcggg cgggtgggct gactggcggc aggctcgccg cggcgcggag 60 teceggetge gggatagace gagggeeatg geegeetete eeggaeeege eggegttgge 120 ggcgccggag cagtctacgg ctccggctct tcgggcttcg ccctcgactc gggactggag 180 atcaaaactc gctcggtgga gcagacgcta ctcccgctgg tttctcagat caccacgctt 240 attaatcata aagataatac caaaaagtct gataaaactc tgcaagcaat tcagcgtgta 300 ggacaagctg tcaacttggc agttggaaga tttgttaaag taggagaagc tatagccaat 360 gaaaactggg atttgaaaga agaaataaat attgcttgta ttgaagctaa acaagcagga 420 gaaacaattg cagcacttac agacataacc aacttgaacc atctggaatc tgatgggcag 480 atcacaattt ttacagacaa aacaggagtg ataaaggctg caagattact tctttcttca 540 gtgacaaaag tgttgttgct ggcagaccga gtagtcatta aacagataat aacatcaaga 600 aataaggttc tcgcaactat ggaaagacta gagaaagtga atagctttca agagtttgtc 660 caaatattca gaatttggaa atgaaatggt ggagtttgca catctgagtg gagatagaca 720 aaatgatttg aaagatgaaa agaaaaaggc aaaaatggca gcagctaggg cagttcttga 780 aaagtgtaca atgatgcttc tcacagcttc aaagacatgt ctgaggcatc ctaactgcga 840 atcagcccat aaaaacaaag aaggagtatt tgaccgtatg aaagtggcat tggataaggt 900 960 cattgaaatt gtgactgact gtaaaccgaa tggagagact gacatttcat ctatcagtat 1020 ttttactgga attaaggaat tcaagatgaa tattgaagct cttcgggaga atctttattt 1080 tcagtccaaa gagaaccttt ctgtgacatt ggaagtcatc ttggagcgta tggaggactt tactgattct gcctacacca gccatgagca cagagaacgc atcttggaac tgtcaactca 1140 1200 ggcgagaatg gaactgcagc agttaatttc tgtgtggatt caagctcaaa gcaagaaaac 1260 aaaaagcatc gctgaagaac tggaactcag tattttgaaa atcagtcaca gtcttaatga 1320 acttaagaaa gaacctcata gtacagcgac acagctggca gcagatctat taaaatacca 1380 tqctqatcat gtggttctaa aagcattaaa acttactgga gtagaaggaa atttagaagc

tttggctgaa tatgcctgta aactctctga acagaaagag cagcttgttg agacctgtcg

1440

attgttacga	cacatatctg	ggacagaacc	tctggaaata	acctgtatac	atgcagagga	1500
gacatttcag	gtgattggcc	aacagataat	ttctgctgct	gaaacattga	cattgcatcc	1560
atctagtaaa	attgctaaag	aaaacctaga	tgtattttgt	gaagcttggg	aatcccaaat	1620
tagtgacatg	tcaacactgc	tgagagaaat	caatgacgtg	tttgaaggaa	gacgaggaga	1680
gaagtatggc	tacctttcac	ttccaaagcc	aatgaagaat	aatgcaaacc	tgaaatcatt	1740
aaagccagac	aagcctgact	ctgaggagca	agccaagata	gcaaagcttg	gacttaagct	1800
gggtttgctc	acctctgacg	ctgactgcga	aattgagaag	tgggaagatc	aggagaatgg	1860
gattgttcaa	tatggacgga	acatgtccag	tatggcctat	tctctgtatt	tatttactag	1920
aggagagggg	ccactgaaaa	cttcccagga	tttaattcat	caactagagg	tttttgctgc	1980
agagggttta	aagcttactt	ccagtgttca	agctttttca	aaacagctga	aagacgatga	2040
caagcttatg	cttctcctgg	aaataaacaa	gctaattcct	ctatgccacc	agctccagac	2100
agtaactaag	acttctttgc	agaataaagt	atttctaaag	gttgacaagt	gtattacgaa	2160
gacaagatcc	atgatggctc	tcttagtcca	acttctttca	ctttgttata	aactgctgaa	2220
gaagcttcag	atggaaaata	acggatgggt	ctcagttaca	aataaggaca	ctatggatag	2280
taaaacttga	gaagcttttg	gggtcagatc	tctggaacat	catgtgatga	agctgacatt	2340
tttaaaaatc	aaatgatcct	ttatctttc	agaaattcat	caattttata	aagaaaacaa	2400
tattgaaatt	ttgctctatt	ttctgatcat	gaaactgatt	gtaaagcttt	ttgacaacta	2460
ataaatgtct	tggtaattgc	tagattct				2488

<210> 226

<211> 1849

<212> DNA

<213> Homo sapiens

<400> 226

ctggaacccg gaagcggcag cgcggcgcga cccggcgggc gggctctggg cgcggggaatc 60 ccggcggatc ccgggcgggc ggatgacccc cagccctacc cttggtgccg cctcctcctc 120 tctcctttct cctccggcag ccagcgcgcc tgtgtcctct ctaggaaggg gtaggggagg 180 ggcgtctgga gaggaccccc cgcgaatgcc cacgtgacgt gcagtccccc tggggctgtt 240 ccggcctgcg gggaacatgg gcgtgctcag ggtcggactg tgccctggcc ttaccgagga 300 gatgatccag cttctcagga gccacaggat caagacagtg gtggacctgg tttctgcaga 360 cctggaagag gtagctcaga aatgtggctt gtcttacaag gccctggttg ccctgaggcg 420 ggtgctgctg gctcagttct cggctttccc cgtgaatggc gctgatctcc acgaggaact 480 gaagacetet actgecatee tgtecactgg cattggcagt ettgataaac tgettgatge 540

300

tggtctctat actggagaag	tgactgaaat	tgtaggaggc	ccaggtagcg	gcaaaactca	600
ggtatgtctc tgtatggcag	caaatgtggc	ccatggcctg	cagcaaaacg	tcctatatgt	660
agattccaat ggagggctga	cagcttcccg	cctcctccag	ctgcttcagg	ctaaaaccca	720
ggatgaggag gaacaggcag	aagctctccg	gaggatccag	gtggtgcatg	catttgacat	780
cttccagatg ctggatgtgc	tgcaggagct	ccgaggcact	gtggcccagc	aggtgactgg	840
ttcttcagga actgtgaagg	tggtggttgt	ggactcggtc	actgcggtgg	tttccccact	900
tctgggaggt cagcagaggg	aaggcttggc	cttgatgatg	cagctggccc	gagagctgaa	960
gaccctggcc cgggaccttg	gcatggcagt	ggtggtgacc	aaccacataa	ctcgagacag	1020
ggacagcggg aggctcaaac	: ctgccctcgg	acgctcctgg	agctttgtgc	ccagcactcg	1080
gattctcctg gacaccatcg	agggagcagg	agcatcaggc	ggccggcgca	tggcgtgtct	1140
ggccaaatct tcccgacago	: caacaggttt	ccaggagatg	gtagacattg	ggacctgggg	1200
gacctcagag cagagtgcca	cattacaggg	tgatcagaca	tgacctgtgc	tgttgtttgg	1260
gaaacaggga agcattgggg	g acccctccca	acttttcttc	ccagtaacgc	ctgctgttta	1320
ctgccacctg gcactggtga	ctacagacgt	tctcaggctg	gccagaagag	acatcttggg	1380
ttccttggcc tcactctctc	y taagcatata	aaccacaggc	gaaagaggat	gctgcattgc	1440
gaggacccag aaattcatad	tggtgccacg	tttccttccc	ttatttctaa	cgtgtatgtt	1500
tctggtggaa accaagttca	ccctggctgg	gagcatctct	gatgaggcat	gctggcgact	1560
ggatggataa teetgtgeat	caccattgtg	tcctgtgctc	cctcctagcg	cagtggccaa	1620
gccgggaaag cctctaactt	geetttgetg	ctgctgcctt	ttttttcttt	tgtctctgcc	1680
tttccatttg ttagatgggg	g gcccactctt	ccttagctct	gtctctgagt	tactgggtgg	1740
aaataagctt ataaatgaaa	a tactcttctt	catctctgtt	ttgctcttaa	aaatataaaa	1800
aggcaattcc ccgaaaaaa	a aaaaaaaaaa	aaaaaaaaa	aaaaaaaa		1849
<210> 227 <211> 486 <212> DNA <213> Homo sapiens					
<400> 227 tggtgactca catctgtag	ctcagcattt	tgggaggcaa	aggcgggtgg	atcgcctgag	60
cccggggatt gagaccagc	gggcaatgtg	gcgaaaaccc	gtctctacaa	aaaatacaaa	120
aattagccat agggatggg	g gtgggaggat	ggcttgagcg	caggagatcg	aggctgcagc	180
agtgaactga gactgcgcta	a cggcaatcca	gcctgggcaa	cagagtgagt	ccctgtctcc	240

aaaaagtgga tgtaagaaga aaaaaatcaa atgaagatta aattccaaac tcctatgcca

actectetgt etteactact agagte	staga ttggactcag	atactccatg	gctatgatga	360
gagcaggtaa acttgctggg ctttcc	tcca cgagttttat	tctataagag	taatccacat	420
cccagggaca gtcacaatga cctac	ggctt tagctgtccc	tgcggtgggt	catgtcttat	480
acccgg				486
<210> 228 <211> 286 <212> DNA <213> Homo sapiens				
<400> 228			di akana	CO
ttttttttt ttttttaggt tcagc				60
aggagtgaag ggtagtagtg aggtg				120
aaaagagatg tctacctgac agact	ctttc cccagaccto	catctccctc	taccactagc	180
ctacacgttc aaattaacct ctcct	gttct tttccttato	y ttatagggtg	atcgcacaac	240
ctgcatcttt agtgctttct tgtca	gtggc gttgggcct	gtgccg		286
<210> 229 <211> 1677 <212> DNA <213> Homo sapiens				
<400> 229 cgggggtttt gatcttcttc ccctt	ctttt cttcccctt	c ttctttcctt	cctccctccc	60
tototoattt coottotoot totoo	ctcag tctccacat	t caacattgac	aagtccattc	120
agaaaagcaa gctgcttctg gttgg	gccca gacctgcct	t gaggagcctg	tagagttaaa	180
aaatgaaccc cacggatata gcaga	atacca ccctcgatg	a aagcatatac	e agcaattact	240
atctgtatga aagtatcccc aagco	cttgca ccaaagaag	g catcaaggca	tttggggagc	300
tetteetgee eccaetgtat teett	ggttt ttgtatttg	g tctgcttgga	aattctgtgg	360
tggttctggt cctgttcaaa tacaa	agegge teaggteea	t gactgatgtg	g tacctgctca	420
accttgccat ctcggatctg ctct	tegtgt tttecetee	c tttttgggg	tactatgcag	480
cagaccagtg ggtttttggg ctag	gtctgt gcaagatga	t ttcctggate	g tacttggtgg	540
gcttttacag tggcatattc tttg	tcatgc tcatgagca	t tgatagatad	c ctggcgatag	600
tgcacgcggt gttttccttg aggg	caagga ccttgactt	a tggggtcato	c accagtttgg	660
ctacatggtc agtggctgtg ttcg				720
ctgagcgcaa ccatacctac tgca				780
ttctcagctc cctggaaatc aaca				840
tttgctactc catgatcatc agga				900

cggtgaagat	gatctttgcc	gtggtggtcc	tetteettgg	gttctggaca	ccttacaaca	960
tagtgctctt	cctagagacc	ctggtggagc	tagaagtcct	tcaggactgc	acctttgaaa	1020
gatacttgga	ctatgccatc	caggccacag	aaactctggc	ttttgttcac	tgctgcctta	1080
atcccatcat	ctacttttt	ctgggggaga	aatttcgcaa	gtacatccta	cagctcttca	1140
aaacctgcag	gggccttttt	gtgctctgcc	aatactgtgg	gctcctccaa	atttactctg	1200
ctgacacccc	cagctcatct	tacacgcagt	ccaccatgga	tcatgatctt	catgatgctc	1260
tgtaggaaaa	atgaaatggt	gaaatgcaga	gtcaatgaac	ttttccacat	tcagagctta	1320
ctttaaaatt	ggtatttta	ggtaagagat	ccctgagcca	gtgtcaggag	gaaggcttac	1380
acccacagtg	gaaagacagc	ttctcatcct	gcaggcagct	ttttctctcc	cactagacaa	1440
gtccagcctg	gcaagggttc	acctgggctg	aggcatcctt	cctcacacca	ggcttgcctg	1500
caggcatgag	tcagtctgat	gagaactctg	agcagtgctt	gaatgaagtt	gtaggtaata	1560
ttgcaaggca	aagactattc	ccttctaacc	tgaactgatg	ggtttctcca	gagggaattg	1620
cagagtactg	gctgatggag	taaatcgcta	ccttttgctg	tggcaaatgg	gececeg	1677

<210> 230

<211> 3464 <212> DNA

<213> Homo sapiens

<400> 230 cagccgtgct cgaagcgttc ctggagccca agctctcctc cacaggtgaa gacagggcca 60 gcaggagaca ccatggggca cctctcagcc ccacttcaca gagtgcgtgt accctggcag 120 gggcttctgc tcacagcctc acttctaacc ttctggaacc cgcccaccac tgcccagctc 180 actactgaat ccatgccatt caatgttgca gaggggaagg aggttcttct ccttgtccac 240 300 aatctgcccc agcaactttt tggctacagc tggtacaaag gggaaagagt ggatggcaac cgtcaaattg taggatatgc aataggaact caacaagcta ccccagggcc cgcaaacagc 360 ggtcgagaga caatataccc caatgcatcc ctgctgatcc agaacgtcac ccagaatgac 420 acaggattet acaccetaca agteataaag teagatettg tgaatgaaga ageaaetgga 480 cagttccatg tatacccgga gctgcccaag ccctccatct ccagcaacaa ctccaaccct 540 gtggaggaca aggatgctgt ggccttcacc tgtgaacctg agactcagga cacaacctac 600 ctgtggtgga taaacaatca gagcctcccg gtcagtccca ggctgcagct gtccaatggc 660 720 aacaggaccc tcactctact cagtgtcaca aggaatgaca caggacccta tgagtgtgaa 780 atacagaacc cagtgagtgc gaaccgcagt gacccagtca ccttgaatgt cacctatggc 840 ccggacaccc ccaccatttc cccttcagac acctattacc gtccagggc aaacctcagc

ctctcctgct	atgcagcctc	taacccacct	gcacagtact	cctggcttat	caatggaaca	900
ttccagcaaa	gcacacaaga	gctctttatc	cctaacatca	ctgtgaataa	tagtggatcc	960
tatacctgcc	acgccaataa	ctcagtcact	ggctgcaaca	ggaccacagt	caagacgatc	1020
atagtcactg	agctaagtcc	agtagtagca	aagccccaaa	tcaaagccag	caagaccaca	1080
gtcacaggag	ataaggactc	tgtgaacctg	acctgctcca	caaatgacac	tggaatctcc	1140
atccgttggt	tcttcaaaaa	ccagagtctc	ccgtcctcgg	agaggatgaa	gctgtcccag	1200
ggcaacacca	ccctcagcat	aaaccctgtc	aagagggagg	atgctgggac	gtattggtgt	1260
gaggtcttca	acccaatcag	taagaaccaa	agcgacccca	tcatgctgaa	cgtaaactat	1320
aatgctctac	cacaagaaaa	tggcctctca	cctggggcca	ttgctggcat	tgtgattgga	1380
gtagtggccc	tggttgctct	gatagcagta	gccctggcat	gttttctgca	tttcgggaag	1440
accggcaggg	caagcgacca	gcgtgatctc	acagagcaca	aaccctcagt	ctccaaccac	1500
actcaggacc	actccaatga	cccacctaac	aagatgaatg	aagttactta	ttctaccctg	1560
aactttgaag	cccagcaacc	cacacaacca	acttcagcct	ccccatccct	aacagccaca	1620
gaaataattt	attcagaagt	aaaaaagcag	taatgaaacc	tgtcctgctc	actgcagtgc	1680
tgatgtattt	caagtctctc	accctcatca	ctaggagatt	cctttcccct	ctagggtaga	1740
ggggtgggga	cagaaacaac	tttctcctac	tetteettee	taataggcat	ctccaggctg	1800
cctggtcact	gacactatat	cagtgtcaat	agatgaaagt	acattgggag	tctgtaggaa	1860
acccaacctt	cttgtcattg	aaatttggca	aagctgactt	tgggaaagag	ggaccagaac	1920
ttcccctccc	ttcccctttt	cccaacctgg	acttgtttta	aacttgcctg	ttcagagcac	1980
tcattccttc	ccacccccag	tcctgtccta	tcactctaat	tcggatttgc	catageettg	2040
aggttatgto	cttttccatt	aagtacatgt	gccaggaaac	agcgagagag	agaaagtaaa	2100
cggcagtaat	gcttctccta	. tttctccaaa	gccttgtgtg	aactagcaaa	gagaagaaaa	2160
ccaaatatat	. aaccaatagt	gaaatgccac	aggtttgtcc	actgtcaggg	ttgtctacct	2220
gtaggatcag	g ggtctaagca	ccttggtgct	tagctagaat	accacctaat	: ccttctggca	2280
agcctgtctt	cagagaacco	: actagaagca	. actaggaaaa	atcacttgcc	c aaaatccaag	2340
gcaattcctg	g atggaaaatg	g caaaagcaca	tatatgtttt	aatatcttta	tgggctctgt	2400
tcaaggcagt	getgagaggg	g aggggttata	ı gcttcaggaç	ggaaccagct	tctgataaac	2460
acaatctgct	aggaacttgg	gaaaggaato	: agagagctgc	ccttcagcga	a ttatttaaat	2520
tattgttaaa	a gaatacacaa	ı tttggggtat	tgggatttt	ctccttttct	ctgagacatt	2580
ccaccattt	t aatttttgta	a actgcttatt	tatgtgaaaa	a gggttattti	tacttagctt	2640

agctatgtca gccaatccga ttgccttagg tgaaagaaac caccgaaatc cctcaggt	.cc 2700
cttggtcagg agcctctcaa gattttttt gtcagaggct ccaaatagaa aataagaa	aa 2760
ggttttcttc attcatggct agagctagat ttaactcagt ttctaggcac ctcagacc	aa 2820
tcatcaacta ccattctatt ccatgtttgc acctgtgcat tttctgtttg cccccatt	ca 2880
ctttgtcagg aaaccttggc ctctgctaag gtgtatttgg tccttgagaa gtgggagc	ac 2940
cctacaggga cactatcact catgctggtg gcattgttta cagctagaaa gctgcact	gg 3000
tgctaatgcc ccttgggaaa tggggctgtg aggaggagga ttataactta ggcctagc	ct 3060
cttttaacag cctctgaaat ttatcttttc ttctatgggg cttataaatg tatcttat	aa 3120
taaaaaggaa ggacaggagg aagacaggca aatgtacttc tcacccagtc ttctacac	cag 3180
atggaatete titggggeta agagaaaggt titattetat attgettace tgatetea	atg 3240
ttaggcctaa gaggctttct ccaggaggat tagcttggag ttctctatac tcaggtag	act 3300
ctttcagggt tttctaaccc tgacacggac tgtgcatact ttccctcatc catgctgt	:gc 3360
tgtgttattt aatttttcct ggctaagatc atgtctgaat tatgtatgaa aattatto	cta 3420
tgtttttata ataaaaataa tatatcagac atcgaaaaaa aaaa	3464
<210> 231 <211> 329 <212> DNA <213> Homo sapiens	
gtagagacga atcttcccct gttgcccagg ctggattctt aggctcaagc gatcctc	ccc 60
gctcatcttc aaagtctttg ttgaggctgt tcccacctcc ctggactctt gattagc	gga 120
aaaggaagca gcagcaagaa gacctaggcc ccagcagcaa gaggaaagca ggcagtg	gca 180
gaaggccata gtcctgggtt cagagctgac tcccttcaca cccgaggttg ctgtctc	tgg 240
ttctccttcc ctgacatagg ctggaaaaag cttgagtctc catggggctg gcagaga	aga 300
tgaaggctgg tggtgaaatg gcttcagga	329
<210> 232 <211> 2240 <212> DNA <213> Homo sapiens	
<400> 232 tgggactggt cgcctgactc ggcctgcccc agcctctgct tcaccccact ggtggcc	aaa 60
tagccgatgt ctaatccccc acacaagctc atccccggcc tctgggattg ttgggaa	
tctccctaat tcacgcctga ggctcatgga gagttgctag acctgggact gccctgg	gag 180
gcgcacacaa ccaggccggg tggcagccag gacctctccc atgtccctgc ttttctt	.ggg 240

acagccatgg	ctccaaagcc	gaagccctgg	gtacagactg	agggccctga	gaagaagaag	300
ggccggcagg	caggaaggga	ggaggacccc	ttccgctcca	ccgctgaggc	cctcaaggcc	360
atacccgcag	agaagcgcat	aatccgcgtg	gatccaacat	gtccactcag	cagcaacccc	420
gggacccagg	tgtatgagga	ctacaactgc	accctgaacc	agaccaacat	cgagaacaac	480
aacaagaagt	tctacatcat	ccagctgctc	caagacagca	accgcttctt	cacctgctgg	540
aaccgctggg	gccgtgtggg	agaggtcggc	cagtcaaaga	tcaaccactt	cacaaggcta	600
gaagatgcaa	agaaggactt	tgagaagaaa	tttcgggaaa	agaccaagaa	caactgggca	660
gagcgggacc	actttgtgtc	tcacccgggc	aagtacacac	ttatcgaagt	acaggcagag	720
gatgaggccc	aggaagctgt	ggtgaaggtg	gacagagccc	cagtgaggac	tgtgactaag	780
cgggtgcagc	cctgctccct	ggacccagcc	acgcagaagc	tcatcactaa	catcttcagc	840
aaggagatgt	tcaagaacac	catggccctc	atggacctgg	atgtgaagaa	gatgcccctg	900
ggaaagctga	gcaagcaaca	gattgcacgg	ggtttcgagg	ccttggaggc	gctggaggag	960
gccctgaaag	gccccacgga	tggtggccaa	agcctggagg	agctgtcctc	acacttttac	1020
accgtcatcc	cgcacaactt	cggccacagc	cagcccccgc	ccatcaattc	ccctgagctt	1080
ctgcaggcca	agaaggacat	gctgctggtg	ctggcggaca	tcgagctggc	ccaggccctg	1140
caggcagtct	ctgagcagga	gaagacggtg	gaggaggtgc	cacaccccct	ggaccgagac	1200
taccagcttc	tcaagtgcca	gctgcagctg	ctagactctg	gagcacctga	gtacaaggtg	1260
atacagacct	acttagaaca	gactggcagc	aaccacaggt	gccctacact	tcaacacatc	1320
tggaaagtaa	accaagaagg	ggaggaagac	agattccagg	cccactccaa	actgggtaat	1380
cggaagctgc	tgtggcatgg	caccaacatg	gccgtggtgg	ccgccatcct	cactagtggg	1440
ctccgcatca	tgccacattc	tggtgggcgt	gttggcaagg	gcatctactt	tgcctcagag	1500
aacagcaagt	cagctggata	tgttattggc	atgaagtgtg	gggcccacca	tgtcggctac	1560
atgttcctgg	gtgaggtggc	cctgggcaga	gagcaccata	tcaacacgga	caaccccagc	1620
ttgaagagcc	cacctcctgg	cttcgacagt	gtcattgccc	gaggccacac	cgagcctgat	1680
ccgacccagg	acactgagtt	ggagctggat	ggccagcaag	tggtggtgcc	ccagggccag	1740
cctgtgccct	gcccagagtt	cagcagctcc	acattctccc	agagcgagta	cctcatctac	1800
caggagagcc	agtgtcgcct	gcgctacctg	ctggaggtcc	acctctgagt	gacagacatg	1860
tececegggg	tcctgcaagg	ctggactgtg	atcttcaatc	atcctgccca	tctctggtac	1920
ccctatatca	ctccttttt	tcaagaatac	aatacgttgt	tgttaactat	agtcaccatg	1980
ctgtacaaga	tccctgaact	tatgcctcct	aactgaaatt	ttgtattctt	tgacacatct	2040

gcccagtccc tetectecca gcccatggta accagcattt gactetttac ttgtataagg 2100
gcagctttta taggttccac atgtaagtga gatcatgcag tgtttgtctt tetgtgcctg 2160
gcttatttca etcagcataa tgtgcaecgg gtteaeccat gtttteataa atgacaagat 2220
tteeteetca aaaaaaaaaa 2240

<210> 233 <211> 4517 <212> DNA

<213> Homo sapiens

<400> 233

60 acacaaattt cagagaacaa tttcaacatt gttctgtcga acgttatact cagtcctgaa ccacattact ttcctqtcta cqtttcattt cctgggggct tgccaagtga taaacagact 120 caggcgtgtg tggtagagtt cgggtttttt agcacgaagt gggtggctgg agtttgcttg 180 240 aaaacatcaa ttgactttgt gatcattaca gaaatgctgg tgtaaggtgt tcagaagaca 300 atggagaaaa aatggaaata ctgtgctgtc tattacatca tccagataca ttttgtcaag ggagtttggg aaaaaacagt caacacagaa gaaaatgttt atgctacact tggctctgat 360 420 qtcaacctga cctgccaaac acagacagta ggcttcttcg tgcagatgca atggtccaag 480 qtcaccaata aqataqacct gattgctgtc tatcatcccc aatacggctt ctactgtgcc tatqqqaqac cctgtgagtc acttgtgact ttcacagaaa ctcctgagaa tgggtcaaaa 540 tggactctgc acttaaggaa tatgtcttgt tcagtcagtg gaaggtacga gtgtatgctt 600 gttctgtatc cagagggcat tcagactaaa atctacaacc ttctcattca gacacacgtt 660 acagcagatg aatggaacag caaccatacg atagaaatag agataaatca gactctggaa 720 780 ataccatgct ttcaaaatag ctcctcaaaa atttcatctg agttcaccta tgcatggtcg gtggaggata atggaactca ggaaacactt atctcccaaa atcacctcat cagcaattcc 840 acattactta aagatagagt caagcttggt acagactaca gactccacct ctctccagtc 900 caaatcttcg atgatgggcg gaagttctct tgccacatta gagtcggtcc taacaaaatc 960 ttqaqqaqct ccaccacagt caaqgttttt gctaaaccag aaatccctgt gattgtggaa 1020 aataactcca cqgatgtctt qqtaqaqaqa agatttacct qcttactaaa gaatgtattt 1080 1140 cccaaaqcaa atatcacatg gtttatagat ggaagttttc ttcatgatga aaaagaagga atatatatta ctaatgaaga gagaaaaggc aaagatggat ttttggaact gaagtctgtt 1200 1260 ttaacaaggg tacatagtaa taaaccagcc caatcagaca acttgaccat ttggtgtatg 1320 gctctgtctc cagtcccagg aaataaagtg tggaacatct catcagaaaa gatcactttt ctcttaggtt ctgaaatttc ctcaacagac cctccactga gtgttacaga atctaccctt 1380

gacacccaac	cttctccagc	cagcagtgta	tctcctgcaa	gatatccagc	tacatcttca	1440
gtgacccttg	tagatgtgag	tgccttgagg	ccaaacacca	ctcctcaacc	cagcaattcc	1500
agtatgacta	cccgaggctt	caactatccc	tggacctcca	gtgggacaga	taccaaaaaa	1560
tcagtttcac	ggatacctag	tgaaacatac	agttcatccc	cctcaggtgc	aggctcaaca	1620
cttcatgaca	atgtctttac	cagcacagcc	agagcatttt	cagaagtccc	cacaactgcc	1680
aatggatcta	cgaaaactaa	tcacgtccat	atcactggta	ttgtggtcaa	taagcccaaa	1740
gatggaatgt	cctggccagt	gattgtagca	gctttactct	tttgctgcat	gatattgttt	1800
ggtcttggag	tgagaaaatg	gtgtcagtac	caaaaagaaa	taatggaaag	acctccacct	1860
ttcaagccac	caccacctcc	catcaagtac	acttgcattc	aagagcccaa	cgaaagtgat	1920
ctgccttatc	atgagatgga	gaccctctag	tctcgtgaga	ctttgcccca	tggcagaact	1980
ctgctggaat	cctattgaga	aggtagacat	tgtgctttat	taatatagtc	gctcttcagc	2040
catgcctttg	ctgcagctga	aatggaagtc	agaagtgagt	gacctgtttt	cccagcaact	2100
caccctcttt	catctccaaa	cgcctgaagc	ttaaccaaga	gtgagaggat	atgtcatgtt	2160
cacactcaat	gcaattcgta	gtggttttct	tgcttattgt	aagaagtaca	tattagtctg	2220
ccatctttaa	aaaaaataca	gtattttcat	ttaaattctc	tgatggaggg	acaacaatgg	2280
tttcaactgt	atgcccatgc	ctgatcctct	tatttgaaca	tctatcaaca	ttgtaaactc	2340
tttgccaaaa	tcctggggct	ttgctgcatt	ccctaagata	attataggaa	aaagaaaatg	2400
taaaagtgct	aacaaggctg	ccaagtaatg	gagaagtatg	gttagccttc	atattgaaat	2460
tctgttgctt	attttcatgg	aaggaaacag	aatactttgc	acaggaacca	cattttcaat	2520
cctccttcac	tgtcttccta	ccatgttcag	cccagactcc	tgccacatgg	accaggatga	2580
agagggatca	aagagataat	tagccaaaaa	cccagtagcc	tagaagatac	aaaactccac	2640
tggcctctaa	aattatatta	gccaagagtg	gtttcatttg	agtgccttcg	tgtgtatgtc	2700
catcaaactg	gaaccaaact	gttttgtaag	taaacaggca	gcctaagccc	aaccctactt	2760
tctaattccg	gttattctct	ttttcatctg	gggatttacc	tgttcattta	atctgcctgt	2820
tttgatctgt	tttgaaaaag	ataaagagcc	tcaaatcaga	ccagcactga	ttaattaacc	2880
ctgctcctac	caatctttt	taaagcagtt	gaagcagaat	gtataggtgt	cagagaagaa	2940
acctagtcag	ccagacgtgc	tctgtattca	gcaatagttt	gtgaatgaat	aaattactaa	3000
tcctccttgt	cgcttgaaac	cttcccacac	tccctgctcc	aggagggaaa	aacagatgtt	3060
gttgacagat	agagtgatag	gcaaattctg	tgtggacttt	agtcccaaaa	. ggaaacttta	3120
gttcacttgo	agtatgctta	tccttgactg	cacatgagaa	tgccttgtgc	agagttattt	3180
ggagattatg	tctttttctt	aaacaccatg	gctgtcacac	ttcagttcaa	ttaaatcaga	3240

atgtctgagg	agtgagacac	aggcatcaac	actctcaaat	gattcacatg	ttcagccaaa	3300
gttgagaacc	atcgagcctg	tggaagttct	ttctcatggc	tcagaatctt	aggtaggtgc	3360
ttaactcttg	tggtggccag	cctccaagat	gagccccagt	gttcttgcct	cctactattc	3420
acatctttat	gtggtcccct	ccaatgctga	atacagatga	tttgtgtaac	ctgaggccag	3480
gattaaggtg	aggcaatcaa	tgtacctagg	gaaaaaattt	aaggaggtat	tcacactcag	3540
ggtcatgcac	ttgcacaatg	ttgagaatga	gtaccactct	caccattggt	atagccaaaa	3600
aaagcttgga	agtgaccaag	gctaggtcac	aaaatacact	gtggcttctt	ctttgatctc	3660
tctttgacca	tactgacact	gggaaaagcc	cattcccatg	ccatgaagac	accaaggcag	3720
ccctattgag	aaatctacct	gtcgtggccg	ggcgcagtgg	ctcacgcctg	taatcccagc	3780
actttgggag	gccgaggtgg	gtggatcacg	aggtcaggag	atcgagacca	tcctggctaa	3840
cacagtgaaa	ccccgtctct	actaaaaata	caaaaattag	ccgggtgtgg	tgtcgggcac	3900
ctgtagtccc	agctactcag	gaggctgagg	caggagaagg	gtgggaaccc	gggaggcaga	3960
gcttgcagtg	agccgagatt	gtgccactgc	acactccaat	ctgggtgaaa	gaccgagact	4020
ccgcctcaaa	aaaaaaaaa	aaagaaagaa	agaaagaaag	aaagaaagaa	atctacctgt	4080
caaggaacta	aggtattttg	ctaacaagca	ccaacttgcc	agccatgtaa	gggagccatc	4140
ttggaagcag	atcctccagc	ctccagtcaa	gtcttcagat	aattgcaact	tcagttgatc	4200
ttttgaccaa	gacctcaaga	gagccagaac	tacccagcta	agccttttac	taaatttctg	4260
aacttctaac	actattagat	aataagtgct	tattgtttaa	caccattaat	tttgagtata	4320
atttgttaca	tagcgacaga	taactataca	gctcaacaac	tagaaaaata	aactgtttac	4380
ctgccttaat	tatttatctt	tagttcctta	ttagttctca	agaaacaaat	gctagcttca	4440
tatgtatggc	tgttgctttg	cttcatgtgt	atggctattt	gtatttaaca	agacttaatc	4500
atcagtaatt	tgtatac					4517
010 004						

<210> 234

<211> 990

<212> DNA

<213> Homo sapiens

<400> 234

```
tcagtgctag tatttatgta tgttaaccca cgctgtgctt tggattcagg ctatttcaaa
                                                                     360
                                                                     420
ttttagataa tatggtacat atattattaa taccactagt tactacattg gtacttttca
gcaaaatata tctaagtggg atcaaatgag actgtaaata gctttacatc agttcaggtc
                                                                     480
                                                                      540
agttatqttq ctaaattact tttggcatta agtttaggga aaaaaaatgg gtttgggatt
                                                                      600
tttggtttca acatttgtga ttgagagact atggacctgt aataagtcca agaacagcag
ttgcagtgta acaggactgt tactggaatc gggtcattta gaaacagtca gacttcgctg
                                                                      660
tgtgcatgtg ggttagggaa gccagggcac cacctcaggt cctttagaac tgtcaggctg
                                                                      720
                                                                      780
aagccatagc gattggaatt ccaggaatct ctcccattgt ggtggccggt gcggggtgca
cacacaccac gggcgacact ctctggagat tgagaattcc ccttgaaaaa aaaagaattt
                                                                      840
tccgcgggaa aggcggttct gaaacacaaa agagttaaca gacaccaaaa cggagtcacc
                                                                      900
ggccgacaac ggaaactctg tctctaccac catgtgacag acgcgttgat gcgtccaaag
                                                                      960
                                                                      990
aaacgcggcg aacaacaacc atatcatcag
```

```
<210> 235
<211> 2088
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (292)..(324)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (490)..(501)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (688)..(696)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (949)..(966)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
      (1720)..(1734)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (1834)..(1860)
<223> n is a, c, g, t or u
```

<220>

misc feature <221> (1984)..(1992) <222> n is a, c, g, t or u <223> <400> 235 caagaccaaa agactgtcag gaaggcagag tgcagagcaa tccactgtcc aagaccacac 60 gacttcgaga acggggaata ctggccccgg tctccctact acaatgtgag tgatgagatc 120 180 tctttccact gctatgacgg ttacactctc cggggctctg ccaatcgcac ctgccaagtc aatggccgat ggagtgggca gacagcgatc tgtgacaacg gagcggggta ctgctccaac 240 300 ccgggcatcc ccattggcac aaggaaggtg ggcagccagt accgccttga gnnnnnnnn nnnnnnnn nnnnnnnnn nnnnaccetg egtggeteec ageggegaac gtgteaggaa 360 ggtggctctt ggagcgggac ggagccttcc tgccaagact ccttcatgta cgacacccct 420 480 caaqaggtgg ccgaagcttt cctgtcttcc ctgacagaga ccatagaagg agtcgatgct 540 gaggatgggn nnnnnnnnn ngaacaacag aagcggaaga tcgtcctgga cccttcaggc 600 tccatgaaca tctacctggt gctagatgga tcagacagca ttggggccag caacttcaca 660 qqaqccaaaa agtgtctagt caacttaatt gagaagctgg caagttatgg tgtgaagcca 720 agatatggtc tagtgacata tgccacannn nnnnnnattt gggtcaaagt gtctgaagca 780 gtcagcagta atgcagactg ggtcacgaag cagctcaatg aaatcaatta tgaagaccac aagttgaagt cagggactaa caccgaagaa gccctccaag cagtgtacag catgatgagc 840 tggccagatg acgtccctcc tgaaggctgg aaccgcaccc gccatgtcat catcctcatg 900 actgatggat tgcacaacat gggcggggac ccaattactg tcattgatnn nnnnnnnnn 960 1020 nnnnnntaca ttggcaagga tcgcaaaaac ccaagggagg attatctgga tgtctatgtg tttggggtcg ggcctttggt gaaccaagtg aacatcaatg ctttggcttc caagaaagac 1080 aatgagcaac atgtgttcaa agtcaaggat atggaaaacc tggaagatgt tttctaccaa 1140 1200 atgatcgatg aaagccagtc tctgagtctc tgtggcatgg tttgggaaca caggaagggt accgattacc acaagcaacc atggcaggcc aagatctcag tcattcgccc ttcaaagggc 1260 cacgagaget gtatgggge tgtggtgtet gagtaetttg tgetgaeage ageacattgt 1320 1380 ttcactgtgg atgacaagga acactcaatc aaggtcagcg taggagggga gaagcgggac ctagagatag aagtagtact atttcacccc aactacaaca ttaatgggaa aaaagaagca 1440 ggaattcccg aattttatga ctatgacgtt gccctgatca agctcaagaa taagctgaaa 1500 tatggccaga ctatcaggcc catttgtctc ccctgcaccg agggaacaac tcgagctttg 1560 aggetteete caactaceae ttgecageaa caaaaggaag agetgeteee tgeacaggat 1620

```
atcaaagctc tgtttgtgtc tgaggaggag aaaaagctga ctcggaagga ggtctacatc
                                                                   1680
aagaatgggg ataagaaagg cagctgtgag agagatgctn nnnnnnnnn nnnntatgac
                                                                   1740
aaagtcaagg acatctcaga ggtggtcacc cctcggttcc tttgtactgg aggagtgagt
                                                                   1800
                                                                   1860
ccctatgctg accccaatac ttgcagaggt gatnnnnnn nnnnnnnnn nnnnnnnnn
                                                                   1920
agaagtcgtt tcattcaagt tggtgtaatc agctggggag tagtggatgt ctgcaaaaac
cagaagcggc aaaagcaggt acccgctcac gcccgagact ttcacatcaa cctctttcaa
                                                                   1980
gtgnnnnnn nnctgaagga gaaactccaa gatgaggatt tgggttttct ataaggggtt
                                                                   2040
tcctgctgaa caggggcgtg ggattgaatt aaaacagctg cgacaaca
                                                                   2088
<210> 236
<211> 111
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (62)..(62)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (66)..(67)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (86)..(86)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (90)..(91)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (100)..(101)
<223> n is a, c, g, t or u
<400> 236
gcaacaggat ccggtttatt ctgccttcag gtggtcctga gagtggtggg tgccaccctg
                                                                     60
                                                                    111
tneggnnegg agagaggee egaggnagtn naggeeaatn ngggagaage a
<210> 237
<211> 841
<212> DNA
<213> Homo sapiens
<400> 237
gaaccgttta ctcgctgctg tgcccatcta tcagcaggct ccgggctgaa gattgcttct
                                                                      60
```

cttctctcct	ccaaggtcta	gtgacggagc	ccgcgcgcgg	cgccaccatg	cggcagaagg	120
cggtatcgc	tttcttgtgc	tacctgctgc	tcttcacttg	cagtggggtg	gaggcaggtg	180
agaatgcgg	g taaggatgca	ggtaagaaaa	agtgctcgga	gagctcggac	agcggctccg	240
ggttctgga	a ggccctgacc	ttcatggccg	tcggaggagg	actcgcagtc	gccgggctgc	300
ccgcgctgg	g cttcaccggc	gccggcatcg	cggccaactc	ggtggctgcc	tcgctgatga	360
gctggtctg	c gatcctgaat	gggggcggcg	tgcccgccgg	ggggctagtg	gccacgctgc	420
agagcctcg	g ggctggtggc	agcagcgtcg	tcataggtaa	tattggtgcc	ctgatgggct	480
acgccaccc	a caagtatctc	gatagtgagg	aggatgagga	gtagccagca	gctcccagaa	540
cctcttctt	c cttcttggcc	taactcttcc	agttaggatc	tagaactttg	ccttttttt	600
ttttttt	t tttttttgag	atgggttctc	actatattgt	ccaggctaga	gtgcagtggc	660
tattcacag	a tgcgaacata	gtacactgca	gcctccaact	cctagcctca	agtgatcctc	720
ctgtctcaa	c ctcccaagta	ggattacaag	catgcgccga	cgatgcccag	aatccagaac	780
tttgtctat	c actctcccca	acaacctaga	tgtgaaaaca	gaataaactt	cacccagaaa	840
a						841

<210> 238

<211> 1326

<212> DNA

<213> Homo sapiens

<400> 238 atggaaggag acttctcggt gtgcaggaac tgtaaaagac atgtagtctc tgccaacttc 60 120 accetecatg aggettactg cetgeggtte etggteetgt gteeggagtg tgaggageet gtccccaagg aaaccatgga ggagcactgc aagcttgagc accagcaggt tgggtgtacg 180 atgtgtcagc agagcatgca gaagtcctcg ctggagtttc ataaggccaa tgagtgccag 240 300 gagcgccctg ttgagtgtaa gttctgcaaa ctggacatgc agctcagcaa gctggagctc 360 cacgagtect actgtggcag ccggacagag ctctgccaag gctgtggcca gttcatcatg caccgcatgc tcgcccagca cagagatgtc tgtcggagtg aacaggccca gctcgggaaa 420 480 ggggaaagaa tttcagctcc tgaaagggaa atctactgtc attattgcaa ccaaatgatt 540 ccagaaaata agtatttcca ccatatgggt aaatgttgtc cagactcaga gtttaagaaa cactttcctg ttggaaatcc agaaattctt ccttcatctc ttccaagtca agctgctgaa 600 aatcaaactt ccacgatgga gaaagatgtt cgtccaaaga caagaagtat aaacagattt 660 cctcttcatt ctgaaagttc atcaaagaaa gcaccaagaa gcaaaaacaa aaccttggat 720 ccacttttga tgtcagagcc caagcccagg accagctccc ctagaggaga taaagcagcc 780

tatgacattc	tgaggagatg	ttctcagtgt	ggcatcctgc	ttcccctgcc	gatcctaaat	840
caacatcagg	agaaatgccg	gtggttagct	tcatcaaaaa	ggaaaacaag	tgagaaattt	900
cagctagatt	tggaaaagga	aaggtactac	aaattcaaaa	gatttcactt	ttaacactgg	960
cattcctgcc	tacttgctgt	ggtggtcttg	tgaaaggtga	tgggttttat	tcgttgggct	1020
ttaaaagaaa	aggtttggca	gaactaaaaa	caaaactcac	gtatcatctc	aatagataca	1080
gaaaaggctt	ttgataaaat	tcaacttgac	ttcatgttaa	aaaccctcaa	caaaccaggc	1140
gtcgaaggaa	catacctcaa	aataataaga	gccatctatg	acaaaaccac	agccaacatc	1200
atactgaatg	agcaaaagct	ggagcattac	tcttgagaag	tagaacaagg	cacttcagtc	1260
ctattcaaca	tagtactgga	agtctcgcca	cagcaatcag	gcaagagaaa	gaagtaaaag	1320
gcaccc						1326

<210> 239

<211> 2439 <212> DNA

<213> Homo sapiens

<400> 239 60 gatacttctg gcgagcgcgg ttgctgtttc ttctcaggct cagggaccgg ccgcggcccc 120 gtagggtgtt ttaactcaaa tgggtgatga aaaggactct tggaaagtga aaactttaga tgaaattett caggaaaaga aacgaaggaa ggaacaagag gagaaagcag agataaaacg 180 240 cttaaaaaat tctgatgacc gggattccaa gcgggattcc cttgaggagg gggagctgag 300 agacagagga gaagaagatg attetttgge cateaaacca ccccagcaaa tgtettggaa 360 agaaaaagtt catcacagaa aagatgaaaa gaggaaagaa aaatgtaggc atcatagcca 420 480 ttcagcagaa ggggggaagc atgctagagt gaaagaaaga gagcacgaac gtcggaaacg 540 acatcgagaa gaacaggata aagctcgccg ggaatgggaa agacagaaga gaagggaaat 600 ggcaagggag cattccagga gagaaaggga ccgcttggag cagttagaaa ggaagcggga 660 gcgggagcgc aagatgcggg agcagcagaa ggagcagcgg gagcagaagg agcgcgagcg 720 gcgggcggag gagcggcaa aggagcggga ggcccgcagg gaagtgtctg cacatcaccg 780 aacgatgaga gaggactaca gcgacaaagt gaaagccagc cactggagtc gcagcccgcc tcggccgccg cgggagcggt tcgagttggg agacggccgg aagccagtaa aagaagagaa 840 aatggaagaa agggacctgc tgtccgactt acaggacatc agcgacagcg agaggaagac 900 cagctcggcc gagtcctcgt cagcagaatc aggctcaggt tctgaggaag aagaggagga 960 ggaggaagag gaggaggagg aagggagcac cagtgaagaa tcagaggagg aagaggaaga 1020

ggaggaggag	gagaccggca	gcaactctga	ggaggcatca	gagcagtctg	ccgaagaagt	1080
aagtgaggaa	gaaatgagtg	aagatgaaga	acgagaaaat	gaaaaccacc	tcttggttgt	1140
tccagagtca	cggttcgacc	gagattccgg	ggagagtgaa	gaagcagagg	aagaagtggg	1200
tgagggaacg	ccgcagagca	gcgccctgac	agagggcgac	tatgtgcccg	actcccctgc	1260
cctgttgccc	atcgagctca	agcaggagct	gcccaagtac	ctgccggccc	tgcagggctg	1320
ccggagcgtc	gaggagttcc	agtgcctgaa	caggatcgag	gagggcacct	atggagtggt	1380
ctacagagca	aaagacaaga	aaacagatga	aattgtggct	ctaaagcggc	tgaagatgga	1440
gaaggagaag	gagggcttcc	cgatcacgtc	cctgagggag	atcaacacca	tcctcaaggc	1500
ccagcatccc	aacattgtca	ccgttagaga	gattgtggtg	ggcagcaaca	tggacaagat	1560
ctacatcgtg	atgaactatg	tggagcacga	cctcaagagc	ctgatggaga	ccatgaaaca	1620
gcccttcctg	ccaggggagg	tgaagaccct	gatgatccag	ctgctgcgtg	gggtgaaaca	1680
cctgcacgac	aactggatcc	tgcaccgtga	cctcaagacg	tccaacctgc	tgctgagcca	1740
cgccggcatc	ctcaaggtgg	gtgattttgg	gctggcgcgg	gagtacggat	cccctctgaa	1800
ggcctacacc	ccggtcgtgg	tgacccagtg	gtaccgcgcc	ccagagctgc	tgcttggtgc	1860
caaggaatac	tccacggccg	tggacatgtg	gtcagtgggc	tgcatcttcg	gggagctgct	1920
gactcagaag	cctctgttcc	ccgggaattc	ggaaatcgat	cagatcaaca	aagtgttcaa	1980
ggagetgggg	acccccagtg	agaaaatctg	gcccggctac	agtgagctcc	cagtagtcaa	2040
gaagatgacc	ttcagcgagc	acccctacaa	caacctccgc	aagcgcttcg	gggctctgct	2100
ctcagaccag	ggcttcgacc	tcatgaacaa	gttcctgacc	tacttccccg	ggaggaggat	2160
cagegetgag	gacggcctca	agcatgagta	tttccgcgag	acccccctcc	ccatcgaccc	2220
ctccatgttc	cccacgtggc	ccgccaagag	cgagcagcag	cgtgtgaagc	ggggcaccag	2280
cccgaggccc	cctgagggag	gcctgggcta	cagccagctg	ggtgacgacg	acctgaagga	2340
gacgggcttc	caccttacca	ccacgaacca	gggggcctct	gccgcgggcc	ccggcttcag	2400
cctcaagttc	tgaaggtcag	agtggacccc	gtcatgggg			2439
<210> 240 <211> 675						

<211> 675

<400> 240

<212> DNA

<213> Homo sapiens

atggaaggat gtggaactgt ccttgcccat cctcgctatt tgcagcacca cattaaatac 60 cagcatttgc tgaagaagaa atatgtatgt ccccatccct cctgtggacg actcttcagg 120 cttcagaagc aacttctgcg acatgccaaa catcatacag atcaaaggga ttatatctgt 180

gaatattgtg	ctcgggcctt	caagagttcc	cacaatctgg	cagtgcaccg	gatgattcac	240
actggcgaga	agccattaca	atgtgagatc	tgtggattta	cttgtcgaca	aaaggcatct	300
cttaattggc	acatgaagaa	acatgatgca	gactccttct	accagttttc	ttgcaatatc	360
tgtggcaaaa	aatttgagaa	gaaggacagc	gtagtggcac	acaaggcaaa	aagccaccct	420
gaggtgctga	ttgcagaagc	tctggctgcc	aatgcaggcg	ccctcatcac	cagcacagat	480
atcttgggca	ctaacccaga	gtccctgacg	cagccttcag	atggtcaggg	tcttcctctt	540
cttcctgagc	ccttgggaaa	ctcaacctct	ggagagtgcc	tactgttaga	agctgaaggg	600
atgtcaaagt	catactgcag	tgggacggaa	cgggtgaagc	ctgatggctg	atgcggcacg	660
atcttgcggg	caagg					675
	o sapiens					
<400> 241 gcggcgcgca	cactgctcgc	tgggccgcgg	ctcccgggtg	tcccaggccc	ggccggtgcg	60
cagagcatgg	cgggtgcggg	cccgaagcgg	cgcgcgctag	cggcgccggc	ggccgaggag	120
aaggaagagg	cgcgggagaa	gatgctggcc	gccaagagcg	cggacggctc	ggcgccggca	180
ggcgagggcg	agggcgtgac	cctgcagcgg	aacatcacgc	tgctcaacgg	cgtggccatc	240
atcgtgggga	ccattatcgg	ctcgggcatc	ttcgtgacgc	ccacgggcgt	gctcaaggag	300
gcaggctcgc	cggggctggc	gctggtggtg	tgggccgcgt	gcggcgtctt	ctccatcgtg	360
ggcgcgctct	gctacgcgga	gctcggcacc	accatctcca	aatcgggcgg	cgactacgcc	420
tacatgctgg	aggtctacgg	ctcgctgccc	gccttcctca	agctctggat	cgagctgctc	480
atcatccggc	cttcatcgca	gtacatcgtg	gccctggtct	tcgccaccta	cctgctcaag	540

ccgctcttcc ccacctgccc ggtgcccgag gaggcagcca agctcgtggc ctgcctctgc

gtgctgctgc tcacggccgt gaactgctac agcgtgaagg ccgccacccg ggtccaggat

gcctttgccg ccgccaagct cctggccctg gccctgatca tcctgctggg cttcgtccag

atcgggaagg gtgatgtgtc caatctagat cccaacttct catttgaagg caccaaactg

600

660

720

780

gtcaatgggt	ccctgttcac	atcctccagg	ctcttcttcg	tggggtcccg	ggaaggccac	1140
ctgccctcca	tcctctccat	gatccaccca	cagctcctca	cccccgtgcc	gtccctcgtg	1200
ttcacgtgtg	tgatgacgct	gctctacgcc	ttctccaagg	acatettete	cgtcatcaac	1260
ttcttcagct	tcttcaactg	gctctgcgtg	gccctggcca	tcatcggcat	gatctggctg	1320
cgccacagaa	agcctgagct	tgagcggccc	atcaaggtga	acctggccct	gcctgtgttc	1380
ttcatcctgg	cctgcctctt	cctgatcgcc	gtctccttct	ggaagacacc	cgtggagtgt	1440
ggcatcggct	tcaccatcat	cctcagcggg	ctgcccgtct	acttcttcgg	ggtctggtgg	1500
aaaaacaagc	ccaagtggct	cctccagggc	atcttctcca	cgaccgtcct	gtgtcagaag	1560
ctcatgcagg	tggtccccca	ggagacatag	ccaggaggcc	gagtggctgc	cggaggagca	1620
tgcgcagagg	ccagttaaag	tagatcacct	cctcgaaccc	actccggttc	cccgcaaccc	1680
acagctcagc	tgcccatccc	agtccctcgc	cgtccctccc	aggtcgggca	gtggaggctg	1740
ctgtgaaaac	tctggtacga	atctcatccc	tcaactgagg	gccagggacc	caggtgtgcc	1800
tgtgctcctg	cccaggagca	gcttttggtc	tccttgggcc	ctttttccct	tccctccttt	1860
gtttacttat	atatatattt	tttttaaact	taaattttgg	gtcaacttga	caccactaag	1920
atgattttt	aaggagctgg	gggaaggcag	gagccttcct	ttctcctgcc	ccaagggccc	1980
agaccctggg	caaacagagc	tactgagact	tggaacctca	ttgctacgac	agacttgcac	2040
tgaagccgga	cagctgccca	gacacatggg	cttgtgacat	tcgtgaaaac	caaccctgtg	2100
ggcttatgtc	tctgccttag	ggtttgcaga	gtggaaactc	agccgtaggg	tggcactggg	2160
agggggtggg	ggatctgggc	aaggtgggtg	attcctctca	ggaggtgctt	gaggccccga	2220
tggactcctg	accataatcc	tagccctgag	acaccatcct	gagccaggga	acagccccag	2280
ggttgggggg	tgccggcatc	tcccctagct	caccaggcct	ggcctctggg	cagtgtggcc	2340
tcttggctat	ttctgtgtcc	agttttggag	gctgagttct	ggttcatgca	gacaaagccc	2400
tgtccttcag	tcttctagaa	acagagacaa	gaaaggcaga	cacaccgcgg	ccaggcaccc	2460
atgtgggcgc	ccaccctggg	ctccacacag	cagtgtcccc	tgccccagag	gtcgcagcta	2520
ccctcagcct	ccaatgcatt	ggcctctgta	ccgcccggca	gccccttctg	gccggtgctg	2580
ggttcccact	cccggcctag	gcacctcccc	gctctccctg	tcacgctcat	gtcctgtcct	2640
ggtcctgatg	cccgttgtct	aggagacaga	gccaagcact	gctcacgtct	ctgccgcctg	2700
cgtttggagg	ccctgggct	ctcacccagt	ccccacccgc	ctgcagagag	ggaactaggg	2760
caccccttgt	ttctgttgtt	cccgtgaatt	tttttcgcta	tgggaggcag	ccgaggcctg	2820
gccaatgcgg	cccactttcc	tgagctgtcg	ctgcctccat	ggcagcagcc	aaggaccccc	2880

agaacaagaa	gacccccccg	caggatccct	cctgagctcg	gggggctctg	ccttctcagg	2940
ccccgggctt	cccttctccc	cagccagagg	tggagccaag	tggtccagcg	tcactccagt	3000
gctcagctgt	ggctggagga	gctggcctgt	ggcacagccc	tgagtgtccc	aagccgggag	3060
ccaacgaagc	cggacacggc	ttcactgacc	agcggctgct	caagccgcaa	gctctcagca	3120
agtgcccagc	ggagcctgcc	gcccccacct	gggcaccggg	acccctcac	catccagtgg	3180
gcccggagaa	acctgatgaa	cagtttgggg	actcaggacc	agatgtccgt	ctctcttgct	3240
tgaggaatga	agacctttat	tcacccctgc	cccgttgctt	cccgctgcac	atggacagac	3300
ttcacagcgt	ctgctcatag	gacctgcatc	cttcctgggg	acgaattcca	ctcgtccaag	3360
ggacagccca	cggtctggag	gccgaggacc	accagcaggc	aggtggactg	actgtgttgg	3420
gcaagacctc	ttccctctgg	gcctgttctc	ttggctgcaa	ataaggacag	cagctggtgc	3480
cccacctgcc	tggtgcattg	ctgtgtgaat	ccaggaggca	gtggacatcg	taggcagcca	3540
cggccccggg	tccaggagaa	gtgctccctg	gaggcacgca	ccactgcttc	ccactggggc	3600
cggcggggcc	cacgcacgac	gtcagcctct	taccttcccg	cctcggctag	gggtcctcgg	3660
gatgccgttc	tgttccaacc	tcctgctctg	ggacgtggac	atgcctcaag	gatacaggga	3720
gccggcggcc	tctcgacggc	acgcacttgc	ctgttggctg	ctgcggctgt	gggcgagcat	3780
gggggctgcc	agcgtctgtt	gtggaaagta	gctgctagtg	aaatggctgg	ggccgctggg	3840
gtccgtcttc	acactgcgca	ggtctcttct	gggcgtctga	gctggggtgg	gagctcctcc	3900
gcagaaggtt	ggtgggggt	ccagtctgtg	atccttggtg	ctgtgtgccc	cactccagcc	3960
tggggacccc	acttcagaag	gtaggggccg	tgtcccgcgg	tgctgactga	ggcctgcttc	4020
accetacaca	tcctgctgtg	ctggaattcc	acagggacca	gggccaccgc	aggggactgt	4080
ctcagaagac	ttgatttttc	cgtccctttt	tctccacact	ccactgacaa	acgtccccag	4140
cggtttccac	ttgtgggctt	caggtgtttt	caagcacaac	ccaccacaac	aagcaagtgc	4200
attttcagtc	gttgtgcttt	tttgttttgt	gctaacgtct	tactaattta	aagatgctgt	4260
cggcaccatg	tttatttatt	tccagtggtc	atgctcagcc	ttgctgctct	gcgtggcgca	4320
ggtgccatgc	ctgctccctg	tctgtgtccc	agccacgcag	ggccatccac	tgtgacgtcg	4380
gccgaccagg	ctggacaccc	tctgccgagt	aatgacgtgt	gtggctggga	ccttctttat	4440
tctgtgttaa	tggctaacct	gttacactgg	gctgggttgg	gtagggtgtt	ctggcttttt	4500
tgtggggttt	ttattttaa	agaaacactc	aatcatccta	. aaaaaaaaaa	aaaaaaaaaa	4560
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaaa	4620
aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	ι	4670

<210> 242 <211> 2082

<212> DNA

<213> Homo sapiens

<400> 242 gacaggtctg tgaagcaggc aggttgctca gctgcccccg gagcggttcc tccacctgag 60 gcagactcca cgtcggctgg catgagccgg cgcccctgca gctgcgccct acggccaccc 120 cgctgctcct gcagcgccag ccccagcgca gtgacagccg ccgggcgccc tcgaccctcg 180 240 qataqttqta aagaagaaag ttctaccctt tctgtcaaaa tgaagtgtga ttttaattgt 300 aaccatqttc attccggact taaactggta aaacctgatg acattggaag actagtttcc 360 tacacccctg catatttgga aggttcctgt aaagactgca ttaaagacta tgaaaggctg 420 tcatqtattq qqtcaccgat tgtgagccct aggattgtac aacttgaaac tgaaagcaag cgcttgcata acaaggaaaa tcaacatgtg caacagacac ttaatagtac aaatgaaata 480 gaagcactag agaccagtag actttatgaa gacagtggct attcctcatt ttctctacaa 540 600 agtggcctca gtgaacatga agaaggtagc ctcctggagg agaatttcgg tgacagtcta 660 caatcctgcc tgctacaaat acaaagccca gaccaatatc ccaacaaaaa cttgctgcca 720 gttcttcatt ttgaaaaagt ggtttgttca acattaaaaa agaatgcaaa acgaaatcct 780 aaagtagatc gggagatgct gaaggaaatt atagccagag gaaattttag actgcagaat ataattggca gaaaaatggg cctagaatgt gtagatattc tcagcgaact ctttcgaagg 840 900 qqactcaqac atgtcttagc aactatttta gcacaactca gtgacatgga cttaatcaat 960 qtqtctaaaq tgagcacaac ttggaagaag atcctagaag atgataaggg ggcattccag 1020 ttqtacaqta aagcaataca aagagttacc gaaaacaaca ataaattttc acctcatgct tcaaccagag aatatgttat gttcagaacc ccactggctt ctgttcagaa atcagcagcc 1080 1140 cagacttctc tcaaaaaaga tgctcaaacc aagttatcca atcaaggtga tcagaaaggt tctacttata gtcgacacaa tgaattctct gaggttgcca agacattgaa aaagaacgaa 1200 agcctcaaag cctgtattcg ctgtaattca cctgcaaaat atgattgcta tttacaacgg 1260 1320 gcaacctgca aacgagaagg ctgtggattt gattattgta cgaagtgtct ctgtaattat 1380 catactacta aagactgttc agatggcaag ctcctcaaag ccagttgtaa aataggtccc 1440 ctgcctggta caaagaaaag caaaaagaat ttacgaagat tgtgatctct tattaaatca attgttactg atcatgaatg ttagttagaa aatgttaggt tttaacttaa aaaaaattgt 1500 attqtgattt tcaattttat gttgaaatcg gtgtagtatc ctgaggtttt tttcccccca 1560 1620 qaaqataaag aggatagaca acctcttaaa atatttttac aatttaatga gaaaaagttt 1680 aaaattctca atacaaatca aacaatttaa atattttaag aaaaaaggaa aagtagatag

tgatactgag ggtaaaaaaa aaattgattc aattttatgg taaaggaaac ccatgcaatt 1740 ttacctaqac aqtcttaaat atgtctggtt ttccatctgt tagcatttca gacattttat 1800 gttcctctta ctcaattgat accaacagaa atatcaactt ctggagtcta ttaaatgtgt 1860 1920 tqtcaccttt ctaaagcttt ttttcattgt gtgtatttcc caagaaagta tcctttgtaa aaacttgctt gttttcctta tttctgaaat ctgttttaat atttttgtat acatgtaaat 1980 atttctgtat tttttatatg tcaaagaata tgtctcttgt atgtacatat aaaaataaat 2040 2082 tttgctcaat aaaattgtaa gcttaaaaaa aaaaaaaaa aa <210> 243 <211> 688 <212> DNA <213> Homo sapiens <220> <221> misc feature <222> (678)..(678) <223> n is a, c, g, t or u <400> 243 cagaacccga ccaaagtagg ctggtgagga agtccaggct ccaggggaac agacgctgcc 60 120 caqtqttcat agcttcctgc aacttgacag agcctgagtt tgcctcttag tgggagaatg agagagaget gtagtgtcac ctgacattcc ccaaaccttg tgaagcacgt tggcctaagt 180 240 qtqccqtqat cccaqcccac actaqcctgg gtgcatctgc taatgggaga ccaaatcttt 300 gtccqgqaag caagaagtgg gtgggagaat gtatcctgtt tttgtcagtt tgtttgcctt 360 actcatttct aagtgcaata agggagtgtc tcacaggatt gcacctgtga catcctgatg 420 gatgcttccc tgtggccctc ctggggcaag ggtggacaga ctcagacccc cagcatggtt 480 agegetgace tteattgagg tecetttgga accagatgte ttgttacaga cacetteete tgtgtaagtc tcctcacctt gaggggtctt tagtaatgca tctgggtagc atctcaactg 540 600 ctqqtaqcat ttatctqact tqqaaagttg gagaagaggc attcctactg gagaaaaatg 660 tcaqtqtttt cctataaqct ctqtqttagc tattcattat atttggtgct taaagatgtt 688 ccttcattca tcaactangg ggaaagtt <210> 244 <211> 2309 <212> DNA <213> Homo sapiens ctgggctgca acggttccag gacacaagtc agtacgtgtg tgcagagctg caggccctgg 60

aacaggagca	gaggcagata	gatgggcggg	cggctgaggt	ggagatgcag	ctgaggagcc	120
tcatggagtc	aggtgccaac	aagctgcagg	aggaggtgct	gatccaggag	tggttcaccc	180
tggtcaacaa	gaagaacgct	ctcatccgga	ggcaggacca	gctgcagctg	ctcatggagg	240
agcaggactt	ggagcgaagg	ttcgagctgc	tgagccgcga	gctgcgggcc	atgctggcca	300
tcgaagactg	gcagaaaacg	tccgctcagc	agcaccgaga	gcagctccta	ctggaggagc	360
tggtgtcgct	ggtgaaccag	cgcgatgagc	tagtccggga	cctggaccac	aagtagcgga	420
tcgccctgga	ggaggacgag	cgcctggagc	gcggcctgga	acagcggcgc	cgcaagctga	480
gccggcagtt	gagccggcgg	gagcgctgcg	tgctgagctg	aggccgccgg	cccgggtggc	540
ccataacttc	tcgcgtcccc	ggcgtccgcc	gccgccccgg	gcctgcgctg	cggacgaccc	600
ggccgtcccg	gaggccgcgc	gcgtgtccgc	taggggccgc	cggcgccctt	ccccgtatag	660
ggcagggcgg	atccccgacc	ccacgggcgg	ggcggccgcc	gtatttattt	gtcaccgagg	720
gtgtgtgcgc	gctcgcggcg	ggtgcggggt	cctccccgac	ggcacggccg	ggccggcggc	780
ctcggggaga	gggatgcctg	ggcactaccg	ccccgcgctg	gcttgccctc	ctgttctcca	840
gagcaataaa	gttggacgag	actaaaaaaa	aaaaaaaaaa	actcgagact	agttctctgc	900
ttgctggacc	agcaggagaa	gctgctggcg	gtgatcgagg	agcagcacaa	ggagatccac	960
cagcagaggc	aggaggacga	ggaggataaa	cccaggcagg	tggaggtgca	tcaagagccc	1020
ggggcagcgg	tgcccagagg	ccaggaggcc	cctgaaggca	aggccaggga	gacggtggag	1080
aatctgcctc	ccctgccttt	ggaccctgtc	ctcagagctc	ctgggggccg	ccctgctcca	1140
teccaggace	ttaaccagcg	ctccctggag	cactctgagg	ggcctgtggg	cagagaccct	1200
gctggccctc	ctgacggcgg	ccctgacaca	gagcctcggg	cagcccaggg	caagctgaga	1260
gatggccaga	aggatgccgc	ccccagggca	gctggcactg	tgaaggagct	ccccaagggc	1320
ccggagcagg	tgcccgtgcc	agaccccgcc	agggaagccg	ggggcccaga	ggagcgcctc	1380
gcagaggaat	tccctgggca	aagtcaggac	gttactggcg	gttcccaaga	caggaaaaaa	1440
cctgggaagg	aggtggcagc	cactggcacc	agcattctga	. aggaagccaa	ctggctcgtg	1500
gcagggccag	gagcagagac	gggggaccct	cgcatgaagc	: ccaagcaagt	gageegagae	1560
ctgggccttg	cagcggacct	gcccggtggg	gcggaaggag	cagctgcaca	gccccaggct	1620
gtgttacgcc	agccggaact	gcgggtcatc	tctgatggcg	agcagggtgg	acagcagggc	1680
caccggctgg	accatggcgg	tcacctggag	atgagaaagg	cccgcgggg	ggaccatgtg	1740
cctgtgtccc	: acgagcagcc	gagaggcggg	gaggacgctc	ı ctgtccagga	gcccaggcag	1800
aggccagago	: cagagetggg	gctcaaacga	gctgtcccgg	ggggccagag	gccggacaat	1860
gccaagccca	ı accgggacct	gaaactgcag	gctggctccg	g acctccggag	gcgacggcgg	1920

gaccttggcc ctcatgcaga gggtcagctg gccccgaggg atggggtcat tggccttaac	1980
cccctgcctg atgtccaggt gaacgacctc cgtggcgccc tggatgccca gctccgccag	2040
gctgcggggg gagctctgca ggtggtccac agccggcagc ttagacaggc gcctgggcct	2100
ccagaggagt cctagcacct gctggccatg agggccacgc cagccactgc cctcctcggc	2160
cagcagcagg tetgteteag eegeateeea geeaaaetet ggaggteaea etegeetete	2220
cccagggttt catgtctgag gccctcacca agtgtgagtg acagtataaa agattcactg	2280
tggcatcgtt aaaaaaaaaa aaaaaaaaa	2309
<210> 245 <211> 171 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (72)(72) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (137)(137) <223> n is a, c, g, t or u	
<400> 245 ggaaagaata ttcatttgag tgtttcagga agtttggatt ttttttttac caacatatta	60
tttgtaaaag gngggaaatc agctgcctca ggaggttctt aacatatagg aatgtaatta	120
tcagattcaa agctgancag tagtgcgttg ccctgtaacc taagtcttgg c	171
<210> 246 <211> 302 <212> DNA <213> Homo sapiens	
<400> 246 geggeegeee tegggeactt eeggteegte eecaagtegg eecegategg eageggeeae	60
ceggeggtte etacgeacag egecegetgg egteetegeg geceeegett etgeattgge	120
tcaggccccg ccgggcccga aaggcgacgg tttccggtta gtggaatcac ggtcccagtc	180
ctcgcgcggt tcctcagctc cgcctggtcc cttacggagg caaaaaacta catttcccac	240
aatcccaggg ggtgcgggcc ctggatatac ccgcaggtcc agaatcgttt ccggaccacc	300
ca	302

<210> 247 <211> 1991

<212> DNA

<213> Homo sapiens

247 <400> 60 tggccaactt ctgaacagga agcagttcgc tcgcgcctag gttggcgcgg gctgggaggt gttccagccc tttaagatgt tgcgcgtggt gagctggaac atcaatggga ttcggagacc 120 cctgcaaggg gtggcaaatc aggaacccag caactgtgcc gccgtggccg tggggcgcat 180 tttggacgag ctggatgcgg atatcgtctg tctccaggaa accaaagtga ccagggatgc 240 300 actgacagag cccctggcta tcgttgaggg ttataactcc tatttcagct tcagccgcaa 360 ccgtagcggc tattctggtg tagccacctt ctgtaaggac aatgctaccc cagtggctgc 420 tgaagaaggc ctgagtggcc tgtttgccac ccagaatggg gatgttggtt gctatggaaa 480 catggatgag tttacccaag aggaactccg ggctctggat agtgagggca gggccctcct 540 cacacagcat aagatccgca catgggaagg taaggagaag accttgaccc taatcaacgt gtactgcccc catgcggacc ctgggaggcc tgagcggcta gtctttaaga tgcgcttcta 600 660 togtttgctg caaatcogag cagaagcoot cotggoggca ggcagcoatg tgatcattot 720 gggtgacctg aatacagccc accgccccat tgaccactgg gatgcagtca acctggaatg 780 ctttgaagag gacccagggc gcaagtggat ggacagcttg ctcagtaact tggggtgcca 840 gtctgcctct catgtagggc ccttcatcga tagctaccgc tgcttccaac caaagcagga 900 gggggccttc acctgctggt cagcagtcac tggcgcccgc catctcaact atggctcccg gcttgactat gtgctggggg acaggaccct ggtcatagac acctttcagg cctctttcct 960 gctgcctgag gtgatgggct ctgaccactg ccctgtgggt gcagtcttga gtgtgtcctc 1020 1080 tgtgcctgca aaacagtgcc cacctctgtg cacccgcttc ctccctgagt ttgcaggcac ccagctcaag atccttcgct tcctagttcc tctcgaacaa agtcctgtgt tggagcagtc 1140 gacgctgcag cacaacaatc aaacccgggt acagacatgc caaaacaaag cccaagtgcg 1200 ctcaaccagg cctcagccca gtcaggttgg ctctagcaga ggccagaaaa acctgaagag 1260 1320 ctactttcag ccctccccta gctgtcccca agcctctcct gacatagagc tgcctagcct accactgatg agcgccctca tgaccccgaa gactccagaa gagaaggcag tggccaaagt 1380 1440 ggtgaagggg caggccaaga cttcagaagc caaagatgag aaggagttac ggacctcatt 1500 ctggaagtct gtgctggcgg ggcccttgcg cacacccctc tgtgggggcc acagggagcc atgtgtgatg cgtactgtga agaagccagg acccaacttg ggccgccgct tctacatgtg 1560 1620 tgccaggccc cggggtcctc ccactgaccc ctcctcccgg tgcaacttct tcctctggag caggcccagc tgaaccaatg gaggcctggg gacatctggc atggtcaccc ctgcacatga 1680 tctgaggcca gctccccttc cctgagctgc ctcctgcttc tccctcaaag tctcctaccc 1740

ttctcttcct	cttttaagcc	ctctcttcct	cgctttcctt	cctacctagc	tccttgttgg	1800
tgagcttctt	gtgccttaat	cctgtgaccc	agccccttac	accactttcc	accttcctgt	1860
ccgaagtaca	cggacactag	ctgccccagg	aagttgtgtg	attttaaatc	acttctgtct	1920
ttgctggaaa	gtgtatttgt	gcataaataa	agtctgtgta	tttgtttcag	ggttgcaaaa	1980
aaaaaaaaa	a					1991
	sapiens					
<400> 248 gcgggttgat	tttctcactt	tggactggtt	tttacttccc	gacttctgga	ctcatctttc	60
aagaggactt	tagactaatt	gcagataatt	aaggtggtag	agaatatgcc	ttctgcatcc	120
tgtgatacac	tactggatga	catcgaagat	atcgtgtctc	aggaagattc	aaaaccacaa	180
gataggcatt	ttgtaagaaa	ggatgttgtc	ccgaaggtac	gaaggcgaaa	tacccaaaaa	240
tatttgcaag	aggaagaaaa	cagtccacca	agtgacagca	ctattccagg	catacagaaa	300
atttggatac	gaacatgggg	ttgttctcat	aataattcag	atggagaata	tatggctgga	360
cagctagctg	cttatggcta	taaaattaca	gaaaatgcat	ccgatgcaga	tttatggctc	420
ctgaacagtt	gcactgtaaa	aaacccagct	gaagaccact	ttagaaactc	aattaaaaaa	480
gctcaagagg	agaacaagaa	aatcgtactg	gctggatgcg	ttcctcaagc	ccagcctcgc	540
caggactacc	ttaagggact	gagtatcatt	ggggttcagc	agatagatcg	tgtggtagaa	600
gttgtggagg	agacaattaa	aggtcactct	gtgagactgc	tgggtcagaa	aaaggataat	660
ggaaggcggc	ttgggggagc	acgattggat	ttgccgaaga	ttaggaagaa	tccactgata	720
gaaatcattt	ccatcagtac	cgggtgtctc	aatgcttgta	cctactgcaa	aactaaacac	780
gccagaggaa	atttggccag	ttatccaatt	gatgaactag	tagatagagc	caaacaatct	840
tttcaagagg	gtgtttgtga	gatatggttg	accagtgaag	acacgggggc	ttatggcaga	900
gatattggca	ccaatctccc	cacactcctg	tggaaactgg	ttgaagtgat	tcctgaggga	960
gcaatgctga	ggcttggcat	gacaaatccg	ccctatattt	tagagcatct	ggaggaaatg	1020
gcaaaaatcc	ttaatcaccc	cagagtctac	gcttttctgc	acataccagt	ccagtctgcc	1080
tccgacagcg	tactcatgga	aatgaaaaga	gaatactgtg	tggctgactt	caaaagagta	1140
gtggattttc	tgaaagagaa	agttcctgga	ataactattg	ctacagatat	tatctgtggt	1200
tttcctggag	aaacagatca	ggattttcaa	gaaacagtga	. aacttgttga	agagtacaaa	1260
ttcccaagcc	tgtttattaa	ccaattttac	ccaagaccag	gaactcctgc	tgcaaaaatg	1320

gaacaagttc	cagcacaagt	gaaaaagcaa	aggacaaaag	atctttctcg	ggtgtttcat	1380
tcttacagtc	catatgatca	caagattggt	gaaagacaac	aagtgttagt	aacagaagaa	1440
tcttttgatt	ccaagtttta	tgttgcacac	aatcaattct	atgagcaggt	tttagtgcca	1500
aagaaccctg	cgttcatggg	gaagatggtt	gaagtggaca	tctatgaatc	aggcaaacat	1560
tttatgaaag	ggcagccagt	atctgatgcc	aaagtgtaca	cgccctccat	cagcaaaccg	1620
ctagcaaagg	gagaagtctc	aggtttgaca	aaggacttca	gaaatgggct	tgggaaccag	1680
ctgagttcag	gatcccacac	ctctgctgca	tctcagtgtg	actcagcgag	ttccagaatg	1740
gtgctgccca	tgccaaggct	acatcaagac	tgtgcgctga	ggatgtccgt	gggcttggct	1800
ctgctgggtc	ttctttttgc	tttttttgtc	aaggtctata	attagaatac	aactaatgga	1860
aacatctata	aagaagaata	catttctaat	taaaatcttc	aatgaacagg	aaagcgacat	1920
ctccattctc	caagggcaat	aatttgtact	ggtcatgctg	cctccttctc	agccactctt	1980
cttaatgagg	ctccccctgt	ctcacattga	gttgggccca	ttggttattt	gacctaaaac	2040
ctaatcaccg	ctaccatagc	acatccttca	aattaaactg	cttttggttt	acttttagca	2100
agaaatgcaa	gcggttgcat	tttttctgtt	tgtttcaatc	tctaatcttt	aagtcagaac	2160
ctaattgtac	agtggctctg	gccatctttt	cctcatgtgg	aagaattttc	tatctttaat	2220
aaactttttc	tttgttttt	ttttccagat	ggagtttcgc	tcttgtcccc	caggctggag	2280
tggtgcagtg	gcacgatctc	aggtcactgc	aacctctgcc	tcctgggttc	aaacgattct	2340
cctacctcag	cctccctaat	agccaggggc	tacaggcata	taccaccatg	cccaactaat	2400
tttttaattt	tttgtagaga	tgagtgtcac	tatgttgccc	aggcttgcct	ggaactccta	2460
gcctcaagca	gtettettge	ctcagcctcc	caaagtgctg	ggattacagg	cgtgagccac	2520
tccacccago	ccagattaaa	tgtttttatt	tctacctgcc	atcattggto	tttactaagt	2580
gaagtgactt	ctttcttaa	. caataaatgg	aattggtata	. ctaagcaaaa	aaaaaaaaaa	2640
aa						2642

<210> 249 <211> 1847

<212> DNA

<213> Homo sapiens

<400> 249
ttgcgcgccg cccggccagg cccgcaaaga ggcctccgag cgccatggct gcgccccgg 60
cccgcgcgga cgctgatcct tcgcccacgt cgccacctac ggcccgagac acaccaggcc 120
ggcaggctga gaaaagcgag accgcgtgcg aggaccgcag caatgcagag tccctggaca 180
ggctcctgcc acctgtgggc actgggcgct ctccccggaa gcggaccacc agccagtgca 240

agtcagagcc	tcccctgctg	cgtacaagca	agcgtaccat	ctacaccgcc	gggcggccgc	300
	tgaacacggc					360
	tgggaagacc					420
	gctgtccatg					480
aggccgcaca	caacaacttc	aacttcgacc	acccagatgc	ctttgacttc	gacctcatca	540
tttccaccct	caagaagctg	aagcaggga	agagtgtcaa	ggtgcccatt	tatgacttca	600
ccacgcacag	ccggaagaag	gactggaaaa	cactgtatgg	tgcaaacgtc	atcatctttg	660
agggcatcat	ggcctttgct	gacaagacac	tgttggagct	cctggacatg	aagatctttg	720
tggacacaga	ctccgacatc	cgcctggtac	ggcggctgcg	ccgggacatc	agtgagcg <u>c</u> g	780
gccgggacat	cgagggtgtc	atcaagcagt	acaacaagtt	tgtcaagccc	tccttcgacc	840
agtacatcca	gcccaccatg	cgcctggcag	acatcgtggt	ccccagaggg	agcggcaaca	900
cggtggccat	caacctgatt	gtgcagcacg	tgcacagcca	gctggaggag	cgtgaactca	960
gcgtcagggc	tgcgctggcc	teggeacace	agtgccaccc	gctgccccgg	acgctgagcg	1020
tcctgaagag	cacgccgcag	gtacggggca	tgcacaccat	catcagggac	aaggagacca	1080
gtcgcgacga	gttcatcttc	tactccaaga	gactgatgcg	gctgctcatc	gagcacgcgc	1140
teteetteet	gccctttcag	gactgcgtcg	tacagacccc	gcaggggcag	gactatgcgg	1200
gcaagtgcta	tgcggggaag	cagatcaccg	gtgtgtccat	tetgegegee	ggtgaaacca	1260
tggagcccgc	gctgcgcgct	gtgtgcaaag	acgtgcgcat	cggcaccatc	ctcatccaga	1320
ccaaccagct	taccggggag	cccgagctcc	actacctgag	gctgcccaag	gacatcagcg	1380
atgaccacgt	gatcctcatg	gactgcaccg	tgtccacggg	cgcggcggcc	atgatggcag	1440
tgcgcgtgct	cctggaccac	gacgtgcctg	aggacaagat	ctttttgctg	tcgctgctca	1500
tggcagagat	gggcgtgcac	tcagtggcct	atgcatttcc	gcgagtgaga	atcatcacca	1560
cggcggtgga	caagcgggtc	aatgaccttt	teegeateat	cccaggcatt	gggaactttg	1620
gcgaccgcta	ctttgggaca	gacgcggtcc	ccgatggcag	tgacgaggag	gaagtggcct	1680
acacgggtta	gctgcccagt	gagccatccc	gtecceacca	ccctcctcct	gcctcctgac	1740
ccaggactgt	: tgaatacaaa	gatgttaatt	tttaaaatgt	tactagtata	atttattcta	1800
tgcattttat	: aaaataaata	aagctttaga	aaaaaaaaaa	aaaaaaa		1847

<210> 250 <211> 271

<212> DNA

<213> Homo sapiens

<220> <221> misc feature (173)..(173) <222> <223> n is a, c, g, t or u <400> 250 tttttttttt agattcttaa tttctatttt atattttaa aacatgatat tagtatataa 60 gataatatag ctagccagtg ttagtaaaga agtcatgatt gagtcttaaa aaagaacaat 120 180 ccagtgttgc agttcagaga ggttagcatg tcagggcgca ggctcggcga ggntgtgctt tgcatttagg gacacagccc ggagccgcag aaggtcagca gggagcacgt ctgggcacct 240 271 tcagtaccag ggctgggtga gagagcccgg a <210> 251 <211> 1464 <212> DNA <213> Homo sapiens <400> 251 cgttttccgc tcctcgctac gtcatcgttg tgagcccgct atcagcggcc agcgcgggcg 60 cggccggaga ccgtggggcc cccggttgcc gccccctcgg gagccaccat gttggtgata 120 cccccggac tgagcgagga agaggaggct ctgcagaaga aattcaacaa gctcaagaaa 180 aagaaaaagg cattgctggc tctgaagaag caaagtagca gcagcacaac cagccaaggt 240 ggtgtcaaac gctcactatc agagcagcct gtcatggaca cagccacagc aacagagcag 300 gcaaagcagc tggtgaagtc aggagccatc agtgccatca aggctgagac caagaactca 360 ggcttcaagc gttctcgaac ccttgagggg aagttaaagg accccgagaa gggaccagtc 420 cccactttcc agccgttcca gaggagcata tctgctgatg atgacctgca agagtcatcc 480 agacgtcccc agaggaaatc tctgtatgag agctttgtgt cttctagtga tcgacttcga 540 600 gaactaggac cagatggaga agaggcagag ggcccagggg ctggtgatgg tccccctcga 660 agctttgact ggggctatga agaacgcagt ggtgcccact cctcagcctc ccctccccga agccgcagcc gggaccgcag ccatgagagg aaccgggaca gagaccgaga tcgggagcgg 720 780 gatcgagacc gggatcgaga cagagacaga gagcgggaca gggatcggga tcgggatcga 840 gatcgagacc gggaacggga cagggatcgg gagcgggatc gagaccgaga ccgagagggt 900 cctttccgca ggtcggattc attccctgaa cggcgagccc ctaggaaagg gaatactctc 960 tatgtatatg gagaagacat gacacccacc cttctccgtg gggccttctc tccttttgga 1020 aacatcattg acctctccat ggacccaccc agaaactgtg ccttcgtcac ctatgaaaag 1080 atggagtcag cagatcaggc cgttgctgag ctcaacggga cccaggtgga gtctgtacag ctcaaagtca acatagcccg aaaacagccc atgctggatg ccgctactgg caagtctgtc 1140

tggggctccc	tcgctgtcca	gaacagccct	aagggttgcc	accgggacaa	gaggacccag	1200
attgtctaca	gtgatgacgt	ctacaaggaa	aaccttgtgg	atggcttcta	gggaacagag	1260
ctggattcct	tgtgcctcat	atgccccaat	gctggtctca	gtaaaacact	gaggtggaag	1320
cttacacatc	teceteagee	tctggttttt	cagcacttgg	gattggggtt	aagcctttaa	1380
aaacggctgt	caggtttgat	ctcagtgtaa	cgacatggcc	agtgcctgtt	ccccactccc	1440
ttgccccaaa	aggatctgga	acac				1464
<210> 252 <211> 2917 <212> DNA <213> Homo	o sapiens					
<400> 252 catcctccca	ccaggacatc	cttcatctgc	agccagcgcc	cccgtctcat	gtagtgggcc	60
tecacegece	ccccacccc	cagtcccacc	tccacccact	ggggctaccc	cacctccccc	120
acccccactg	ccagccggag	gagcccaggg	gtccagccac	gacgagagct	ccatgtcagg	180
actggccgct	gccatagctg	gggccaagct	gagaagagtc	caacggccag	aagacgcatc	240
tggaggctcc	agtcccagtg	ggacctcaaa	gtccgatgcc	aaccgggcaa	gcagcggggg	300
tggcggagga	ggcctcatgg	aggaaatgaa	caaactgctg	gccaagagga	gaaaagcagc	360
ctcccagtca	gacaagccag	ccgagaagaa	ggaagatgaa	agccaaatgg	aagatcctag	420
tacctccccc	tctccgggga	cccgagcagc	cagccagcca	cctaactcct	cagaggctgg	480
ccggaagccc	tgggagcgga	gcaactcggt	ggagaagcct	gtgtcctcga	ttctgtccag	540
aaccccgtct	gtggcaaaga	gccccgaagc	taagagcccc	cttcagtcgc	agcctcactc	600
taggtaccga	acaaccctcc	tgctcacatg	tcccccaggg	tttggggctc	ctctgtcccc	660
cgtcccgtga	ctaacaccct	tgcacgctgt	ctcacgtcct	ggcatttaac	aacttgctct	720
gcgaaggtgg	tctgttcttt	cagacccagg	acctcggggt	cctgtcagtc	agctgctccg	780
tattttaaat	ctgagagaga	gaccaagggc	aaggagggca	gtgacctgtc	cacagaggta	840
gtgcaggggg	ggccaacatg	gagtcccagc	tctggactca	ctacgtgtga	cagtgggcaa	900
gttaggggac	ctctccaagc	ctctgttttc	ccccacaaa	gtgaggtctg	ttaacccctg	960
ctgcacaggg	tggtggtggg	gacagctgtg	agcaacagct	ggacatgggg	, tgtggtcact	1020
agccagggct	gcaccctaca	gttcaaccag	tcctagcact	ggcgctgagc	cctacccctt	1080
tcctccagcc	cagagtcctt	cctctgcggc	: cggcacacag	aatcagttto	cccacagaca	1140
tactgaccat	atttcccaag	ccaaaagctg	gcatgacaac	: atgatagaat	atttggaact	1200
gagattgccc	aaaaaggcag	aggcagccag	g ccacatagta	ı tctggaggta	a catgtggcct	1260

gaattggaag	gcctctagaa	cctgcgtcaa	gaatgtctcc	atcgccacca	caaattgaag	1320
ggaaaccacc	cttatcacag	agcaggaggc	attgaaactg	gccttgcaga	gctgaacagg	1380
tggtgagagc	agagcagtgc	aggtggacag	agatgaggaa	gtcttagcag	tcagctgggg	1440
tttgtccaag	gcttgtggtc	agccaggccg	tgtgctgggg	acagtccctg	cctgcaaaga	1500
gcaccgtgtg	aacaaggcca	ctgtggtcct	gaggggtgct	ctggacaggg	tgcagggcca	1560
catggtggaa	gggacagggt	gctttgcgga	gtggggtggg	gcaagcctct	gtcgggagct	1620
ggcattttcg	ttgacccgga	cgaggaggag	tctgctctgc	ggagatcatg	gggacagcct	1680
cccaagctga	aggaagggta	agtgccaggg	ccctgagcct	gcagccaccc	gccaagctcc	1740
cccgcacctc	cacctggaag	cagacaggcc	atggggcagg	ggaacgggaa	gggtgaggaa	1,800
gagggtgtgg	gggagcgcgg	agttagaagt	ttgcattgtg	ttcatgcgca	gggcccagtc	1860
atggaacttg	aggcacaggg	tgccatggtg	gaggctggga	aggggaaggc	aaccagagtg	1920
ggcaaaacga	gggccctgga	gcagacacgg	cagcaagggg	agcctgcagc	gctcccagcg	1980
gactccgcca	cgtcctgctg	gtggagcaaa	ggcgggctgc	catgttgtga	gtggccaagg	2040
gtcgctcact	gggcaggaac	attgtcaagg	ccattcatgc	ttggaatagg	gtctctcttc	2100
agctctgagg	caaatctgtt	ctctaatttt	cagatgactt	caaggggaac	gtgtaccacc	2160
acccctctgg	tgcgtcacat	tgcttaggaa	gcctgctgtg	tttatcactg	ggtggctgtc	2220
agggctgaga	tggagagggc	cagggcctgg	cgaggtggag	cagtcggccc	aggtgtccca	2280
gcaattgttg	ctggaacagg	gtctggaacc	cacaggagag	gcctgaagga	cccagggccc	2340
tctggctgga	tgcgtttgcc	tatcaggacc	cagaattact	tacagacctg	tttagggcta	2400
ggcttggcct	ctttcttgag	ctcatctgga	ggggtgtggc	aacactcatt	cttcatcctt	2460
attctccctg	gctgtgggca	acactggtcc	tcagtgtcac	cagatggtcc	tcctctgtgc	2520
ccatgacccc	tcagcagcca	aggctggccc	tgccagataa	atgtgtgtgc	ccatgatcac	2580
acccaggggc	: acaggccaca	. tacgtttccc	tgaaaccttg	ggctccagcc	: tccatcccgt	2640
ccatgtggga	gggaacttgg	gtcccagcag	tgtgtctttc	agcaccaagt	catgtttaaa	2700
agaccagaga	gacaagcatt	ttgccaagat	: cttccaggga	agatgcatgt	gtgacacatt	2760
aacattcaaa	tcaggccagc	gcggtgctca	tgcctgtcat	cccagcactt	tgggaggccg	2820
aggcgggagg	g atcacttgag	g cccaggactt	ggagaccagt	: ctgggcaaca	cagtgagacc	2880
ccatctctac	: aaaaagtcaa	ı aaaaaaaaa	aaaaagg			2917

<210> 253

<211> 4035

<212> DNA

<213> Homo sapiens

<400> 253 teccetggae ecgeegeaga gecagtgeag aatacagaaa etgeageeat gaecaegeae 60 gtcaccctgg aagatgccct gtccaacgtg gacctgcttg aagagcttcc cctccccgac 120 cagcagccat gcatcgagcc tccaccttcc tccatcatgt accaggctaa ctttgacaca 180 aactttgagg acaggaatgc atttgtcacg ggcattgcaa ggtacattga gcaggctaca 240 gtccactcca gcatgaatga gatgctggag gaaggacatg agtatgcggt catgctgtac 300 360 acctggcgca gctgttcccg ggccattccc caggtgaaat gcaacgagca gcccaaccga gtagagatet atgagaagae agtagaggtg etggageegg aggteaceaa geteatgaag 420 480 ttcatgtatt ttcagcgcaa ggccatcgag cggttctgca gcgaggtgaa gcggctgtgc 540 catgccgagc gcaggaagga ctttgtctct gaggcctacc tcctgaccct tggcaagttc 600 atcaacatgt ttgctgtcct ggatgagcta aagaacatga agtgcagcgt caagaatgac cactetgeet acaagagge ageacagtte etgeggaaga tggcagatee ecagtetate 660 caggagtcgc agaacctttc catgttcctg gccaaccaca acaggatcac ccagtgtctc 720 780 caccagcaac ttgaagtgat cccaggctat gaggagctgc tggctgacat tgtcaacatc tgtgtggatt actacgagaa caagatgtac ctgactccca gtgagaaaca tatgctcctc 840 aaggtgatgg gctttggcct ctacctaatg gatggaaatg tcagtaacat ttacaaactg 900 gatgccaaga agagaattaa tottagcaaa attgataaat totttaagca gotgcaggtg 960 gtgccccttt tcggcgacat gcagatagag ctggccagat acattaagac cagtgctcac 1020 tatgaagaga acaagtccaa gtggacgtgc acccagagca gcatcagccc ccagtacaat 1080 atctgcgagc agatggttca gatccgggat gaccacatcc gcttcatctc cgagctcgct 1140 cgctacagca acagtgaggt ggtgacgggc tcagggctgg acagccagaa gtcagacgag 1200 gagtatcgcg agctcttcga cctagccctg cggggtctgc agcttctatc caagtggagc 1260 gcccacgtca tggaggtgta ctcttggaag ctggttcatc ccacagacaa gttctgcaac 1320 1380 aaggactgtc ctggcaccgc ggaggaatat gagagagcca cacgctacaa ttacaccagt 1440 gaggaaaaat ttgccttcgt tgaggtgatc gccatgatca aaggcctgca ggtgctcatg 1500 ggcaggatgg agagcgtctt caaccaggcc atcaggaaca ccatctacgc ggcattgcag 1560 gacttcgccc aggtgacgct gcgtgagccc ctgcggcagg cggtacggaa gaagaagaat 1620 gtcctcatca gcgtcctaca ggcaattcga aagaccatct gtgactggga gggagggcga 1680 gagcccccta atgacccatg cttgagaggg gagaaggacc ccaaaggtgg atttgatatc 1740 aaggtgcccc ggcgtgctgt ggggccatcc agcacacagc tgtacatggt gcggaccatg

cttgaatcac	tcattgcaga	caaaagcggc	tccaagaaga	ccctgaggag	cagcctggat	1800
ggacccattg	tectegecat	agaggacttt	cacaaacagt	ccttcttctt	cacacatctg	1860
ctcaacatca	gtgaagccct	gcagcagtgt	tgtgacctct	cccagctctg	gttccgagaa	1920
ttcttcctgg	agttaaccat	gggccgacga	atccagttcc	ccatcgagat	gtccatgccc	1980
tggattctaa	cggaccatat	cctggaaacc	aaagaacctt	ccatgatgga	gtatgtcctc	2040
taccctctgg	atctgtacaa	cgacagcgcc	tactatgctc	tgaccaagtt	taaaaagcag	2100 ·
ttcctgtacg	atgagataga	agctgaggtg	aacctgtgtt	ttgatcagtt	tgtctacaag	2160
ctggcagacc	agatctttgc	ttactacaaa	gccatggctg	gcagtgtcct	gttggataaa	2220
cgttttcgag	ctgagtgtaa	gaattatggc	gtcatcattc	cgtatccacc	gtccaatcgc	2280
tatgaaacac	tgctgaagca	gagacacgtc	cagctgttgg	gtagatcaat	tgacttgaac	2340
agactcatta	cccagcgcat	ctctgccgcc	atgtataaat	ccttggacca	agctatcagc	2400
cgctttgaga	gtgaggacct	gacctccatt	gtggagctgg	agtggctgct	ggagattaac	2460
cggctcacgc	atcggctgct	ctgtaagcat	atgacgctgg	acagcttcga	tgccatgttc	2520
cgagaggcca	atcacaatgt	gtccgccccc	tatggccgta	tcaccctgca	tgtcttctgg	2580
gaactgaact	ttgactttct	ccccaactac	tgctacaatg	ggtccactaa	ccgttttgtg	2640
cggactgcca	ttcctttcac	ccaagaacca	caacgagaca	aacctgccaa	cgtccagcct	2700
tattacctct	atggatccaa	gcctctcaac	attgcctaca	gccacatcta	cagctcctac	2760
aggaatttcg	tggggccacc	tcatttcaag	actatctgca	gactcctggg	ttatcagggc	2820
atcgctgtgg	tcatggagga	actgctaaag	attgtgaaga	gcttgctcca	aggaaccatt	2880
ctccagtatg	tgaaaacact	gatagaggtg	atgcccaaga	tatgccgctt	gccccgacat	2940
gagtatggct	ccccagggat	cctggagttc	ttccaccacc	agctgaagga	catcattgag	3000
tacgcagagc	tcaaaacaga	cgtgttccag	agcctgaggg	aagtgggcaa	tgccatcctc	3060
ttctgcctcc	tcatagagca	agctctgtct	caggaggagg	tctgcgattt	gctccatgcc	3120
gcacccttcc	aaaacatctt	gcctagagtc	tacatcaaag	agggggagcg	cctggaggtc	3180
cggatgaaac	gtctggaagc	caagtatgcc	ccgctccacc	tggtccctct	gatcgagcgg	3240
ctggggaccc	: ctcagcaaat	: cgccattgct	cgcgagggtg	acctcctgac	: caaggagcgg	3300
ctgtgctgtg	gcctgtccat	gttcgaggtc	atcctgaccc	gcattcggag	g ctacctgcag	3360
gaccccatct	ggcggggcc	: accgcccacc	: aatggcgtca	tgcacgtcga	tgagtgtgtg	3420
gagttccacc	ggctgtggag	g cgccatgcag	f ttcgtgtact	gcatecetgt	gggaaccaac	3480
gagttcacag	g ctgagcagtg	g tttcggcgat	ggcttgaact	gggctggttg	g ctccatcatt	3540
gtcctgctgg	g gccagcagcg	g tegetttgad	ctgttcgact	tctgttacca	a cctgctaaaa	3600

gtgcagaggc aggad	egggaa ggatgaaatc	attaagaatg	tgcccctgaa	gaagatggcc	3660
gaccggatca ggaag	gtatca gatcttgaac	aatgaggttt	ttgccatcct	gaacaaatac	3720
atgaagtccg tggag	gacaga cagttccact	gtggagcatg	tgcgctgctt	ccagccaccc	3780
atccaccagt cctto	ggccac cacttgctaa	gcagaagatc	ctgcagaccc	ttatctggag	3840
gaggaagaga agcag	ggagag agaaagccac	agccagcctg	ccataggatc	caactggaca	3900
acgtgtggga tgga	cctgga aacaagcacc	tccccaaaca	catcaccact	ccctagggcg	3960
gggcctgtgc atgc	tctccc atgacatctc	catgctggtt	tctccatagc	ataaatgaaa	4020
aaaaaaaaaa aaaa	a				4035
<210> 254 <211> 920 <212> DNA <213> Homo sap	iens	,			
<400> 254 gcacggaggg gcag	agaccc cggagcccca	gccccaccat	gaccctcggc	cgccgactcg	60
cgtgtctttt cctc	geetgt gteetgeegg	ccttgctgct	ggggggcacc	gcgctggcct	120
cggagattgt gggg	ggccgg cgagcgcggc	: cccacgcgtg	gcccttcatg	gtgtccctgc	180
agctgcgcgg aggc	cacttc tgcggcgcca	ccctgattgc	gcccaacttc	gtcatgtcgg	240
ccgcgcactg cgtg	ggcgaat gtaaacgtco	gegeggtgeg	ggtggtcctg	ggagcccata	300
acctctcgcg gcgg	ggagccc acccggcagg	g tgttcgccgt	gcagcgcatc	ttcgaaaacg	360
gctacgaccc cgta	aacttg ctcaacgaca	tcgtgattct	ccagctcaac	gggtcggcca	420
ccatcaacgc caac	egtgcag gtggcccago	tgccggctca	gggacgccgc	ctgggcaacg	480
gggtgcagtg cctg	ggccatg ggctggggc	ttctgggcag	gaaccgtggg	atcgccagcg	540
teetgeagga gete	caacgtg acggtggtg	a cgtccctctg	ccgtcgcago	aacgtctgca	600
ctctcgtgag gggc	eeggeag geeggegte	gtttcgggga	ctccggcago	: cccttggtct	660
gcaacgggct aato	ccacgga attgcctcc	t cgtccgggg	aggctgcgcc	tcagggctct	720
accccgatgc cttt	tgccccg gtggcacag	t ttgtaaactg	gatcgactct	atcatccaac	780
gctccgagga caac	ccctgt ccccacccc	c gggacccgga	cccggccago	aggacccact	840
gagaagggct gccc	egggtca ceteagetg	c ccacacccac	e actctccago	atctggcaca	900
ataaacattc tctg	gttttgt				920

<210> 255

<211> 429

<212> DNA <213> Homo sapiens

<400> 255 caggtacatc	tacatgctta	tcaaaaacaa	cagcaaaacc	acctaccatg	acaaatacta	60
ttgcagcaaa	accgaacaaa	taaattctgt	gccataaagt	ttcctaaacc	tcatctattt	120
tgtagaaatc	tagtcacttg	agtatcatcc	ttcacaaagt	tctttctatt	ttttctactg	180
tacaaagttt	tctgttgtca	aatagcaaga	gatctctgtt	ttctacttgg	aatgggcctg	240
gagaagggag	acagcacccg	ctccctccac	cccttgtccc	tgagcacagc	atggtgacct	300
gccaagccag	agggtgacct	ggacactcat	aactcaatgc	agggccaact	gtagcctctg	360
ggeggtgtee	ctgagtgagg	gcaaagttgt	aataacactt	gttctctcct	tttctccaat	420
ttgctccca						429
	o sapiens					
<400> 256 gcacgaggaa	gccacagatc	tcttaagaac	tttctgtctc	caaaccgtgg	ctgctcgata	60
aatcagacag	aacagttaat	cctcaattta	agcctgatct	aacccctaga	aacagatata	120
gaacaatgga	agtgacaaca	agattgacat	ggaatgatga	aaatcatctg	cgcaactgct	180
tggaaatgtt	tctttgagtc	ttctctataa	gtctagtgtt	catggaggta	gcattgaaga	240
tatggttgaa	. agatgcagcc	gtcagggatg	tactataaca	atggcttaca	ttgattacaa	300
tatgattgta	gcctttatgc	ttggaaatta	tattaattta	cgtgaaagtt	ctacagagcc	360
aaatgattco	: ctatggtttt	cacttcaaaa	gaaaaatgac	accactgaaa	tagaaacttt	420
actcttaaat	acagcaccaa	aaattattga	tgagcaactg	gtgtgtcgtt	tatcgaaaac	480
ggatatttt	: attatatgtc	gagataataa	aatttatcta	gataaaatga	. taacaagaaa	540
cttgaaacta	aggttttatg	gccaccgtca	gtatttggaa	tgtgaagttt	ttcgagttga	600
aggaattaag	g gataacctag	acgacataaa	gaggataatt	aaagccagag	g agcacagaaa	660
taggcttcta	a gcagacatca	. gagactatag	gecetatgea	. gacttggttt	: cagaaattcg	720
tattcttttg	g gtgggtccag	ttgggtctgg	aaagtccagt	tttttcaatt	cagtcaagtc	780
tatttttcat	ggccatgtga	ctggccaago	: cgtagtgggg	tctgatacca	ccagcataac	840
cgagcggtat	aggatatatt	ctgttaaaga	tggaaaaaat	ggaaaatcto	tgccatttat	900
gttgtgtga	c actatggggc	: tagatggggc	: agaaggagca	ggactgtgca	a tggatgacat	960
tccccacato	c ttaaaaggtt	gtatgccaga	cagatatca <u>c</u>	tttaattcc	gtaaaccaat	1020
tacacctgag	g cattctactt	ttatcaccto	tccatctctc	g aaggacagga	a ttcactgtgt	1080

ggcttatgtc	ttagacatca	actctattga	caatctctac	tctaaaatgt	tggcaaaagt	1140
gaagcaagtt	cacaaagaag	tattaaactg	tggtatagca	tatgtggcct	tgcttactaa	1200
agtggatgat	tgcagtgagg	ttcttcaaga	caacttttta	aacatgagta	gatctatgac	1260
ttctcaaagc	cgggtcatga	atgtccataa	aatgctaggc	attcctattt	ccaatatttt	1320
gatggttgga	aattatgctt	cagatttgga	actggacccc	atgaaggata	ttctcatcct	1380
ctctgcactg	aggcagatgc	tgcgggctgc	agatgatttt	ttagaagatt	tgcctcttga	1440
ggaaactggt	gcaattgaga	gagcgttaca	gccctgcatt	tgagataagt	tgccttgatt	1500
ctgacatttg	gcccagcctg	tactggtgtg	ccgcaatgag	agtcaatctc	tattgacagc	1560
ctgcttcaga	ttttgctttt	gttcgttttg	ccttctgtcc	ttggaacagt	catatctcaa	.1620
gttcaaaggc	caaaacctga	gaagcggtgg	gctaagatag	gtcctactgc	aaaccacccc	1680
tccatatttc	cgtaccattt	acaattcagt	ttctgtgaca	tctttttaaa	ccactggagg	1740
aaaaatgaga	tattctctaa	tttattcttc	tataacactc	tatatagagc	tatgtgagta	1800
ctaatcacat	tgaataatag	ttataaaatt	attgtataga	catctgcttc	ttaaacagat	1860
tgtgagttct	ttgagaaaca	gcgtggattt	tacttatctg	tgtattcaca	gagcttagca	1920
cagtgcctgg	taatgagcaa	gcatacttgc	cattactttt	ccttcccact	ctctccaaca	1980
tcacattcac	tttaaatttt	tctgtatata	gaaaggaaaa	ctagcctggg	caacatgatg	2040
aaaccccatc	tccactgc					2058

<210> 257

<211> 690

<212> DNA

<213> Homo sapiens

<400> 257 tgcacaagca gaatcttcag aacaggttct ccttccccag tcaccagttg ctcgagttag 60 aattgtctgc aatggccgcc ctgcagaaat ctgtgagctc tttccttatg gggaccctgg 120 ccaccagetg ceteettete ttggccetet tggtacaggg aggageaget gegeecatea 180 gctcccactg caggcttgac aagtccaact tccagcagcc ctatatcacc aaccgcacct 240 tcatgctggc taaggaggct agcttggctg ataacaacac agacgttcgt ctcattgggg 300 agaaactgtt ccacggagtc agtatgagtg agcgctgcta tctgatgaag caggtgctga 360 acttcaccct tgaagaagtg ctgttccctc aatctgatag gttccagcct tatatgcagg 420 aggtggtgcc cttcctggcc aggctcagca acaggctaag cacatgtcat attgaaggtg 480 atgacctgca tatccagagg aatgtgcaaa agctgaagga cacagtgaaa aagcttggag 540 agagtggaga gatcaaagca attggagaac tggatttgct gtttatgtct ctgagaaatg 600

cctgcatttg accagagcaa agctgaaaaa tgaataacta accccctttc cctgctagaa	660
ataacaatta gatgccccaa agcgattttt	690
<210> 258 <211> 2932 <212> DNA <213> Homo sapiens	
<400> 258 gtaatgcaga gataataaaa cttcttaggt ccataggtct tataataatt taataaccta	60
aacatggtat acaaattcct ccaaacccaa taacataatt atagtttcaa aaagttcccc	120
aaactttcaa gttagatttt attgctttga tgagtggctt taaatatgaa aagtcttgcc	180
tgtgaagggc aatcetttte cegtggactg ggatetatag aaatacagaa atgtgeecag	240
gggttcatct ccctaataac catcattcac atttctcaac ctccctaata accagccacc	300
atgtgagaag gatccacagt tactgtttat gactataatt aactagtacc tgggactggt	360
cagtggagtt ggttgcaacc tgatgctaag gatgtcaaag ttgtctcggc ctctgttccc	420
agccagtaag taattccctg gcctcgggcc atacccccta atcttggtca gctgattatg	480
acaggcagac agcacagtaa ataacactat atattaagaa aacccaaagc atatgtatca	540
atggtatata cccaacagca tcctaggaat ggagagtctg tagcaagggc ctccaatgtg	600
aaggtcaaca cagtcactgt gatgcgtgta tttccatttt gtaaagcatg atctctggtg	660
gtcattttta tcttcctaac ttattggaaa agtctcctgt tttgggggcc cgcccctggt	720
cacagccaga ctgactcagt ttccctggga ggtcccgctc gagcccgtcc ttcccctccc	780
totgocogoo cocagocoto gococaccot oggogocogo acatotgoot gotoagotoo	840
agacggcgcc cggacccccg ggcgcgggat ccagccaggt gggagccccg cagatgaggt	900
ctctgaaggt gtgcctgaac cagtgccagc ctgccctgtc tgcagcatcg gcctgatggg	960
gtggtgactg atccctcagg gctccggagc catgtggccc aacggcagtt ccctggggcc	1020
ctgtttccgg cccacaaaca ttaccctgga ggagagacgg ctgatcgcct cgccctggtt	1080
cgccgcctcc ttctgcgtgg tgggcctggc ctccaacctg ctggccctga gcgtgctggc	1140
gggcgcgcgg cagggggtt cgcacacgcg ctcctccttc ctcaccttcc tctgcggcct	1200
cgtcctcacc gacttcctgg ggctgctggt gaccggtacc atcgtggtgt cccagcacgc	1260
cgcgctcttc gagtggcacg ccgtggaccc tggctgccgt ctctgtcgct tcatgggcgt	1320
cgtcatgatc ttcttcggcc tgtccccgct gctgctgggg gccgccatgg cctcagagcg	1380
ctacctgggt atcacccggc cettetegeg eeeggeggte geetegeage geegegeetg	1440
ggccaccgtg gggctggtgt gggcggccgc gctggcgctg ggcctgctgc ccctgctggg	1500

cgtgggtcgc	tacaccgtgc	aatacccggg	gtcctggtgc	ttcctgacgc	tgggcgccga	1560
gtccggggac	gtggccttcg	ggctgctctt	ctccatgctg	ggcggcctct	cggtcgggct	1620
gtccttcctg	ctgaacacgg	tcagcgtggc	caccctgtgc	cacgtctacc	acgggcagga	1680
ggcggcccag	cagegteece	gggactccga	ggtggagatg	atggctcagc	tcctggggat	1740
catggtggtg	gccagcgtgt	gttggctgcc	ccttctggtc	ttcattgccc	agacagtgct	1800
gcgaaacccg	cctgccatga	gccccgccgg	gcagctgtcc	cgcaccacgg	agaaggagct	1860
gctcatctac	ttgcgcgtgg	ccacctggaa	ccagatcctg	gacccctggg	tgtatatcct	1920
gttccgccgc	gccgtgctcc	ggcgtctcca	gcctcgcctc	agcacccggc	ccaggtcgct	1980
gtccctccag	ccccagctca	cgcagcgctc	cgggctgcag	taggaagtgg	acagagcgcc	2040
catacagaga	ctttccgcgg	agcccttggc	ccctcggaca	gcccatctgc	ctgttctgag	2100
gattcagggg	ctgggggtgc	tggatggaca	gtgggcatca	gcagcagggt	tttgggttga	2160
ccccaatcca	acccggggac	ccccaactcc	tccctgatcc	ttttaccaag	cactctccct	2220
tcctcggccc	ctttttccca	tccagagctc	ccaccccttc	tctgcgtccc	tcccaacccc	2280
aggaagggca	tgcagacatt	ggaagagggt	cttgcattgc	tattttttt	tttagacgga	2340
gtcttgctct	gtcccccagg	ctggagtgca	gtggcgcaat	ctcagctcac	tgcaacctcc	2400
acctcccggg	ttcaagcgat	tctcctgcct	cagcctcctg	agtagctggg	actataggcg	2460
cgcgccacca	cgcccggcta	atttttgtat	ttttagtaga	gacggggttt	caccgtgttg	2520
gccaggctgg	tcttgaactc	ctgacctcag	gtgattcacc	agcctcagcc	tcccaaagtg	2580
ctgggatcac	aggcatgaac	caccacacct	ggccattttt	tttttttt	tagacggagt	2640
ctcactctgt	ggcccagcct	ggagtacagt	ggcacgatct	cggctcactg	caacctccgc	2700
ctcccgggtt	caagcgattc	tegtgeetea	gcctcccgag	cagctgggat	tacaggcgta	2760
agccactgcg	cccggccttg	catgctcttt	gaccctgaat	ttgacctact	. tgctggggta	2820
cagttgcttc	cttttgaacc	tccaacaggg	aaggctctgt	: ccagaaagga	ttgaatgtga	2880
aacgggggca	ccccttttc	: ttgccaaaat	atatctctgc	: ctttggtttt	: at	2932
<210> 259 <211> 117 <212> DNA <213> Hom	7					

<400> 259

gccaaggctg gggcagggga gtcagcagag gcctcgctcg ggcgccagt ggtcctgccg 60 cctggtctca cctcgctatg gttcgtctgc ctctgcagtg cgtcctctgg ggctgcttgc 120 tgaccgctgt ccatccagaa ccacccactg catgcagaga aaaacagtac ctaataaaca 180

gtcagtgctg ttctttgtg	gc cagccaggac	agaaactggt	gagtgactgc	acagagttca	240
ctgaaacgga atgccttc	ct tgcggtgaaa	gcgaattcct	agacacctgg	aacagagaga	300
cacactgeca ccagcaca	aa tactgcgacc	ccaacctagg	gcttcgggtc	cagcagaagg	360
gcacctcaga aacagaca	cc atctgcacct	gtgaagaagg	ctggcactgt	acgagtgagg	420
cctgtgagag ctgtgtcc	tg caccgctcat	gctcgcccgg	ctttggggtc	aagcagattg	480
ctacaggggt ttctgata	cc atctgcgagc	cctgcccagt	cggcttcttc	tccaatgtgt	540
catctgcttt cgaaaaat	gt cacccttgga	caagctgtga	gaccaaagac	ctggttgtgc	600
aacaggcagg cacaaaca	ag actgatgttg	tctgtggtcc	ccaggatcgg	ctgagagccc	660
tggtggtgat ccccatca	tc ttcgggatcc	tgtttgccat	cctcttggtg	ctggtcttta	720
tcaaaaaggt ggccaaga	ag ccaaccaata	aggcccccca	ccccaagcag	gaaccccagg	780
agatcaattt tcccgacg	at cttcctggct	ccaacactgc	tgctccagtg	caggagactt	840
tacatggatg ccaaccgg	tc acccaggagg	atggcaaaga	gagtcgcatc	tcagtgcagg	900
agagacagtg aggctgca	.cc cacccaggag	tgtggccacg	tgggcaaaca	ggcagttggc	960
cagagagcct ggtgctgc	tg ctgctgtggc	gtgagggtga	ggggctggca	ctgactgggc	1020
atagctcccc gcttctgc	ct gcacccctgc	agtttgagac	aggagacctg	gcactggatg	1080
cagaaacagt tcaccttg	gaa gaacctctca	cttcaccctg	gagcccatcc	agtctcccaa	1140
cttgtattaa agacagag	gc agaaaaaaaa	aaaaaaa			1177
<210> 260 <211> 436 <212> DNA <213> Homo sapiens	3				
<400> 260 ttttttttt tttttt	tt tttttttt	tttttttt	tttttcaaac	ccccgggact	60
ttattgcaaa aaagccc	egc agggetggag	cccaccctag	gegggggetg	ccctgctgg	120
cgcccgggga acccagto	ctg gtttttgtag	gggggcaggg	gggggcccac	ccagggccca	180
aaggggggga cccggcc	ccc acgggggggg	cccaacacgg	gggccttact	tgaggacagt	240
cgtttaccag tcctgaa	cac cttactgggg	cttaatactc	cggatgaccg	ggcgaggtca	300
ctgttacagc cctttaca	aaa tgaagcggca	caaagaggcc	gggtaactco	: cccgggggta	360

cggttttgaa aaaagg

420

436

cagtcgggga aggagtccgt ccggggaccc cctgcaaagc tgcctttgcc cactggattc

<210> 261 <211> 878

<212> DNA

<213> Homo sapiens

<220> <221> misc feature <222> (1)..(1) <223> n is a, c, g, t or u <220> <221> misc feature <222> (579)..(579) <223> n is a, c, g, t or u <400> 261 ntaattcctt tgtttcttgc cccctttagt gttttccccc cacatttaat tttcatttgc 60 120 tccccactcc cttttwtaaa tagaatgcaa acaaccatcc tgaagtgtct gargggcacc 180 tgcccycacm tccctgccct ccaaaatgca gactgagaag ccaacagact gccttttctt 240 ttcttaatca ggtcactagt tcyaaatatg gtggcctgga ggtcccatag aaaaagcaaa 300 ggggtgtkaa cagtatgtat aacagcgtat ttacagggag tcacatgcgg acaaaaagct 360 acaatactga gtatcagacg acgcargkga kaacaaaggg ccgggggtgg gggsagagaa ccccatgggc aaagaaaccc caggaaacgt taaactggta aatcaatggc gagttaaggc 420 480 ttaaaaagtg tataaaaata acacagttaa tattcaaaac ggaactccas atacagaata tatagatgag tttctgtcta gttttctttt ttttcccggg gggatgatag gagggcttct 540 600 ctgggctctg taaatarttc ctatatacac cgacacgcnt ggctttcaga ttggggtgtg tetgtggggg etrggggcag ggtetgetee tggraactge etmecegggg atecetteee 660 720 trcagagrgg cctagggcct cggcwggggg aatcmcactc catagmaggg aagacaaata 780 accettect agggeactge ceceatetgw gaggaaatte tggagggaag wemcarawee aggcccactc cctccccatc ccccwgccma cagtctgggt atggtgggag aggtagccga 840 878 aaggtttcct ggccagcacc gaggtagamt ggggtggt <210> 262 <211> 2451 <212> DNA <213> Homo sapiens <400> 262 atgtagaaaa acatttaggc ataggtcagg ccttatgcag catcagagaa cacaccag 60 agtttaactc tgtgggtaag agttgtacaa ttgtgaaatg caaggagttc actgtagggg 120 tgagactcca cagaaaagaa aagtttcctg agagcagaac ttctgtcctt ccctcccagt 180 240 tcggtactat aagaagacat gcacacaaag atgtttgtta tgattattga agtgttaaat ggaagaaaaa tgttacccaa gtcttctcca aaaagaatgg tagatatttc cttgaaatgc 300

ctaacccatt	tctggatgag	actcatcaat	atccccttca	ctccactctc	tgccaactca	360
gatataattt	ccattgggca	ccttcacagt	aatgccagga	ttggggcaga	gatcctgaaa	420
gagcttctta	taagatggca	aatgtgcctg	gcaagagcat	ttgtattttg	tcaggtggag	480
gcatgtgctg	agagttattc	aactatctga	aatgttgaat	ttggaggttg	tgaaaatatt	540
gaattatgct	attagtttaa	taatatctga	ggcagtaaaa	tagtacctga	ggaatggtgc	600
ctcattctgc	ccccttgcca	gttgtctcct	caatcctgag	cttcctgctg	aggttaattc	660
aagtctacta	gtttattgag	cacctgctat	gtgctaggca	ttgaggtaga	cctggtcatt	720
gccctcccag	agttaagggc	taataggata	tgcatatata	ctaaacagta	attacagtaa	780
agtgtggtaa	gtgctttggt	aggaaaaatg	cgggtttcca	tcaaagtaca	tggcagggat	840
acctaaatct	ggtctatgag	tcactaaaga	cttcctggat	atgatggtat	ctcagacgta	900
aaggtgggta	gaaggtagca	agggcagggg	agaagagaac	aggatctgga	gacactccat	960
gaagactctt	ctctactgca	gaaattgtca	tagacctaat	ttttaaaaaa	atgaatctga	1020
gggagtaatt	caacaaatat	ttattgccct	caagtataat	agctcagggc	ctgcaagcct	1080
ggtaaggagg	ggtgtgggca	gggaatgggg	aatagcagag	cctgggaagg	cagatcaccg	1140
tgttccttta	tacttcccac	tgcctgagtc	ccagagtcat	gggacacaaa	cactccagtc	1200
cccactgtct	ctctagcctc	tgatatgcat	tctttccctg	tgtatataca	tgccttttcc	1260
cataaaatgc	accagtctct	caccacacta	attctgagta	cttcagagtc	tcacaggtca	1320
ttctgggtct	agaataggct	ccccaactca	gtgattataa	gtaggaagag	gaaaagcaac	1380
acatggggat	tctgagccag	gctttatgac	aactaattcc	tgctggagag	aagagtcctg	1440
atgatgggct	gtctccagat	cctatcttat	cttcatgcca	ttgtatgggc	tataacctct	1500
gcctgtaact	ctctctgcta	atttttattt	tggcagtttt	aattaaccca	caattgctga	1560
gggcaattaa	tacctaaaag	aaagtttgat	tcctcttcta	agatatccta	ggtagtgtca	1620
tttctaaaga	agacttggtg	atcactgctt	gtattagtcc	attttcacag	tgctatgaag	1680
atactacctg	atactgggta	. atttattaaa	. aaaaaaaaag	aggtttaatt	gactgacagt	1740
tctgcagggc	tggggaggco	tcaggaaact	taaatcatgg	tggaaggcga	aggggaagca	1800
agcaccttct	tcacaaggtg	gcaagagaga	gtgcagggga	. aatgctaggc	acttatcaat	1860
cagccaaatc	tcatgagaat	tcactatcat	: gagaacaagg	gggaaatctg	ctcccatgat	1920
ctaatcaccc	cccaccacga	. ccctccctca	ı acacctgggg	attactattg	gagatttggg	1980
tggggacaca	. agagccaaac	catatogoto	g ctgttgtggg	taatagggga	. ggtgaaattg	2040
gggggacaat	teggeetett	: tgtgtccaga	a ggttgtgcag	ttatcgagtg	aggtcgatca	2100
gaagtctaaa	gggatettte	aaatggatag	g tgagttgcct	tttcctatag	gtgacaatca	2160

PCT/US03/13015 WO 03/090694

gagatttaat gttt	taagta tcatataata	ggtttttctc	ctgattgtga	attgtaagtg	2220
ttggtaatac agaa	aaatgag aaagtataaa	ccacccccaa	tcccaatgcc	catagaaacg	2280
ttgttaacat tttg	ggagtac tttctattag	tgtttatttt	tcccaatcct	agtattttta	2340
gtaaaactac tgtt	tagtaa atgatttttg	gtaactaatt	tcaaaattta	tacttcaacc	2400
gtttattatt agaa	atgtaat gcaagatgta	ttgcaataaa	acttgagttt	t	2451
<210> 263 <211> 1145 <212> DNA <213> Homo sag	piens				
	tctgagg ctcattctgc	cctcgagccc	accgggaacg	aaagagaagc	60
tctatctccc ctcc	caggagc ccagctatga	actccttctc	cacaagcgcc	ttcggtccag	120
ttgccttctc ccts	ggggctg ctcctggtgt	tgcctgctgc	cttccctgcc	ccagtacccc	180
caggagaaga ttc	caaagat gtagccgccc	cacacagaca	gccactcacc	tcttcagaac	240
gaattgacaa acaa	aattegg tacateeteg	acggcatctc	agccctgaga	aaggagacat	300
gtaacaagag taa	catgtgt gaaagcagca	aagaggcact	ggcagaaaac	aacctgaacc	360
ttccaaagat ggc	tgaaaaa gatggatgct	tccaatctgg	attcaatgag	gagacttgcc	420
tggtgaaaat cat	cactggt cttttggagt	ttgaggtata	cctagagtac	ctccagaaca	480
gatttgagag tag	tgaggaa caagccagag	g ctgtccagat	gagtacaaaa	gtcctgatcc	540
agttcctgca gaa	aaaggca aagaatctag	g atgcaataac	cacccctgac	ccaaccacaa	600
atgccagcct gct	gacgaag ctgcaggcad	agaaccagtg	gctgcaggac	atgacaactc	660
atctcattct gcg	cagcttt aaggagttco	tgcagtccag	cctgagggct	cttcggcaaa	720
tgtagcatgg gca	.cctcaga ttgttgttg	taatgggcat	tccttcttct	ggtcagaaac	780
ctgtccactg ggc	acagaac ttatgttgt	ctctatggag	aactaaaagt	atgagcgtta	840
ggacactatt tta	attattt ttaatttat	aatatttaaa	tatgtgaagc	tgagttaatt	900
tatgtaagtc ata	tttata ttttaaga	a gtaccacttg	aaacatttta	tgtattagtt	960
ttgaaataat aat	ggaaagt ggctatgca	g tttgaatatc	ctttgtttca	gagccagatc	1020
atttcttgga aag	tgtaggc ttacctcaa	a taaatggcta	actttataca	tatttttaaa	1080
gaaatattta tat	tgtattt atataatgt	a taaatggttt	ttataccaat	aaatggcatt	1140
ttaaa					1145

<210> 264 <211> 81

	DNA Homo	sapiens					
<400> 2	264 cgg g	tagcttatc a	agactgatgt	tgactgttga	atctcatggc	aacaccagtc	60
gatgggc	tgt c	tgacatttt (g				81
<211> <212>	265 1024 DNA Homo	sapiens					
<222>	(13)	_feature (13) a, c, g, t	or u				
<400> ggcgcgg	265 jaga (cgngaagcgg	gtggcgctgg	gacgcatgct	ctgggggaga	tgagtataat	60
gacccgc	gtt '	tgtccgccgc	ccgtgccccg	ctcaatcccc	gcatcaatcc	cgtgaggccg	120
tttctcc	ccgt	tggctccact	gtaccggggg	ctgaggccca	gggaggtctc	geggeteeet	180
aggttat	cca	gctagtaaga	ggcgaactgg	aattctcact	gtgggcccat	tccatggctt	240
ttgccag	gagc	gccagggaca	cactcagttc	accttctagc	agggaagacc	caaagatgcg	300
cgcccct	tggc	agccagggcg	tcggaccagg	caattcctac	tgtccagcat	cacctcctcc	360
			ttgggacagc				420
gtcataa	agct	gtaaacagat	tctactcccg	ctttttcttc	tttgtcgcac	gtctacccta	480
tttggg	aaag	tttaaacctt	agccaatcgg	gatcagctca	gattgtgcgg	tccaaccccc	540
cagcca	atgg	ggaaaggaca	cagaaacagg	aactgcgtta	gggttaaaaa	ccacttccct	600
			tgggattgca				660
taaaga	tgcc	ttgctgggaa	gtcttctgtc	tcagtgctgg	tttttcttga	ctacactgag	720
cacttg	tttt	caacaaattt	gagggtcttc	tgggatccat	tctcctttgg	gaggggtagc	780
gattac	tttt	cctcgtgaga	cacgtcccac	tgccttgttg	cagtggccca	aggagcggag	840
gatcgg	gtcc	acccaaagtg	aggaataaat	ccggactttc	agcaacgtgg	gcaggaagga	900
gcctta	aaat	tcccaggcaa	gtgggtaact	ctgtgcacag	accaagccgc	cgacgggacc	960
atcaca	aaag	ctttacaagg	ccttaccacc	ctggcaaatg	g aattagccga	aaattctgga	1020
ctag							1024
<210>	266						

<211> 687 <212> DNA

<213> Homo sapiens

<220> <221> misc feature <222> (503)..(503) n is a, c, g, t or u <223> <400> 266 gatcccccgg gctgcaggaa ttcggcacca gatcagtttc cacaggtaac ctgggcaggg 60 agtgggggtg acggaaactg gagttcctat tgtggctatc tcttgtgtgg aaggaacagg 120 aggattctgc taattctaat aactttccca gctggtagca gggaagcatc gtatgtcctt 180 tgtgtttctc aaatctgccc aattgttctc tgctttcggg gaagctttac tcattttcta 240 300 aaagaaatcc aagtactgtt tggtcattac cccttagtaa aaaaaagtaa caggaggata 360 togtaatttt ctactgtttt attoctotgt tagacogggo ottgacatga atgacgoogt 420 aagggagaaa gagatettee caateageaa teacegtaaa ageetgetgt gtteeegtta 480 aaattaggaa attctcacta gatgaattga catgggaggc atttagattt ctaatagtca 540 catagtaatt ctgcggagga atngagtcat ctttgatagc catgggatta agcgatgtta attaaagtgc aaaagattac ctttctggtc ttactagaat agagtaataa aaagaaccct 600 aggtttcttt tgtttgctgg aagaaaaatc aaaattcttt aagtctgtca aaccagaact 660 687 ctttgaagca ctttgaacaa tgccctg 267 <210> 2140 <211> DNA <212> <213> Homo sapiens <400> 267 60 agctgaggtg tgagcagctg ccgaagtcag ttccttgtgg agccggagct gggcgcggat 120 tcgccgaggc accgaggcac tcagaggagg cgccatgtca gaaccggctg gggatgtccg tcagaaccca tgcggcagca aggcctgccg ccgcctcttc ggcccagtgg acagcgagca 180 240 gctgagccgc gactgtgatg cgctaatggc gggctgcatc caggaggccc gtgagcgatg gaacttcgac tttgtcaccg agacaccact ggagggtgac ttcgcctggg agcgtgtgcg 300 gggccttggc ctgcccaagc tctaccttcc cacggggccc cggcgaggcc gggatgagtt 360 gggaggaggc aggcggcctg gcacctcacc tgctctgctg caggggacag cagaggaaga 420 480 ccatgtggac ctgtcactgt cttgtaccct tgtgcctcgc tcaggggagc aggctgaagg gtccccaggt ggacctggag actctcaggg tcgaaaacgg cggcagacca gcatgacaga 540 600 tttctaccac tccaaacgcc ggctgatctt ctccaagagg aagccctaat ccgcccacag 660 gaagcctgca gtcctggaag cgcgagggcc tcaaaggccc gctctacatc ttctgcctta

gtctcagttt q	gtgtgtctta	attattattt	gtgttttaat	ttaaacacct	cctcatgtac	720
ataccctggc (cgccccctgc	cccccagcct	ctggcattag	aattatttaa	acaaaaacta	780
ggcggttgaa †	tgagaggttc	ctaagagtgc	tgggcatttt	tattttatga	aatactattt	840
aaagcctcct (catcccgtgt	tctccttttc	ctctctcccg	gaggttgggt	gggccggctt	900
catgccagct a	acttcctcct	ccccacttgt	ccgctgggtg	gtaccctctg	gaggggtgtg	960
gctccttccc	atcgctgtca	caggcggtta	tgaaattcac	cccctttcct	ggacactcag	1020
acctgaattc	tttttcattt	gagaagtaaa	cagatggcac	tttgaagggg	cctcaccgag	1080
tgggggcatc	atcaaaaact	ttggagtccc	ctcacctcct	ctaaggttgg	gcagggtgac	1140
cctgaagtga	gcacagccta	gggctgagct	ggggacctgg	taccctcctg	gctcttgata	1200
ccccctctg	tcttgtgaag	gcagggggaa	ggtggggtac	tggagcagac	caccccgcct	1260
gccctcatgg	cccctctgac	ctgcactggg	gagcccgtct	cagtgttgag	ccttttccct	1320
ctttggctcc	cctgtacctt	ttgaggagcc	ccagcttacc	cttcttctcc	agctgggctc	1380
tgcaattccc	ctctgctgct	gtccctcccc	cttgtctttc	ccttcagtac	cctctcatgc	1440
tccaggtggc	tctgaggtgc	ctgtcccacc	cccaccccca	gctcaatgga	ctggaagggg	1500
aagggacaca	caagaagaag	ggcaccctag	ttctacctca	ggcagctcaa	gcagcgaccg	1560
cccctcctc	tagctgtggg	ggtgagggtc	ccatgtggtg	gcacaggccc	ccttgagtgg	1620
ggttatctct	gtgttagggg	tatatgatgg	gggagtagat	ctttctagga	gggagacact	1680
ggcccctcaa	atcgtccagc	gaccttcctc	atccacccca	tecetececa	gttcattgca	1740
ctttgattag	cagcggaaca	aggagtcaga	cattttaaga	tggtggcagt	agaggctatg	1800
gacagggcat	gccacgtggg	ctcatatggg	gctgggagta	gttgtattta	ctggcactaa	1860
cgttgagccc	ctggaggcac	tgaagtgctt	agtgtacttg	gagtattggg	gtctgacccc	1920
aaacaccttc	cagctcctgt	aacatactgg	cctggactgt	tttatatagg	ctccccatgt	1980
gtcctggttc	ccgtttctcc	acctagactg	taaacctctc	: gagggcaggg	accacaccct	2040
gtactgttct	gtgtctttca	cagetectec	cacaatgctg	g aatatacago	aggtgctcaa	2100
taaatgattc	ttagtgactt	taaaaaaaaa	aaaaaaaaa			2140

<210> 268

<211> 4238

<212> DNA

<213> Homo sapiens

<400> 268
gcgctctcag gcggctccg gcggcagcga cgcgagcgcg gcgatgggga gcggcggcgt
ggtccactgt aggtgtgcca agtgtttctg ttatcctaca aagcgaagaa taaggaggag
120

gccccgaaac	ctgaccatct	tgagtctccc	cgaagatgtg	ctctttcaca	tcctgaaatg	180
gctttctgta	gaggacatcc	tggccgtccg	agctgtacac	tcccagctga	aggacctggt	240
ggacaaccac	gccagtgtgt	gggcatgtgc	cagcttccag	gagctgtggc	cgtctccagg	300
gaacctgaag	ctctttgaaa	gggctgctga	aaaggggaat	ttcgaagctg	ctgtgaagct	360
gggcatagcc	tacctctaca	atgaaggcct	gtctgtgtct	gatgaggccc	gcgcagaagt	420
gaatggcctg	aaggcctctc	gcttcttcag	tctcgctgag	cggctgaatg	tgggtgccgc	480
acctttcatc	tggctcttca	teegeeetee	gtggtcggtg	agcggaagct	gctgcaaggc	540
cgtggttcac	gagagcctca	gggcagagtg	ccagctgcag	aggactcaca	aagcatccat	600
attgcactgc	ttgggcagag	tgctgagtct	gttcgaggat	gaggagaagc	agcagcaggc	660
ccatgacctg	tttgaggagg	ctgctcatca	gggatgtctg	accagetect	acctcctctg	720
ggaaagcgac	aggaggacag	atgtgtcaga	tectgggcga	tgcctccaca	gcttccgaaa	780
actcagggac	tacgctcgca	aaggctgctg	ggaagcgcag	ctgtctttag	ccaaagcctg	840
tgcaaatgca	aaccagcttg	gactggaggt	gagagettee	agtgagatcg	tctgccagct	900
atttcaggct	tcccaggctg	tcagtaaaca	acaagtcttc	teegtgeaga	agggactcaa	960
tgacacaatg	aggtacattc	tgatcgactg	gctggtggaa	gttgccacca	tgaatgactt	1020
cacaagcctg	tgcctgcacc	tgaccgtgga	gtgtgtggac	cggtacctgc	ggaggaggct	1080
ggtgccgcgg	tacaggctcc	agctgctggg	catcgcctgc	atggtcatct	gcacccggtt	1140
tatcagtaaa	gagateetga	ccatccggga	ggccgtatgg	ctcacggaca	acacttacaa	1200
gtacgaggac	ctggtgagaa	tgatgggcga	gatcgtctcc	gccttggaag	ggaagattcg	1260
agtccccact	gtggtggatt	acaaggaggt	cctgctgacg	ctagtccctg	tggagctgag	1320
aacccagcac	: ctgtgcagct	tcctctgcga	gctctccctg	ctgcacacca	geetgteege	1380
ctacgcccca	gcccgcctgg	ctgccgcagc	: cctgctcctg	gccagactga	. cgcacgggca	1440
gacacagcco	: tggaccacto	: agctgtggga	cctcaccgga	. ttctcctatg	aagacctcat	1500
tecetgegte	ttgagcctco	: ataagaagto	g cttccatgat	gacgccccca	aggactacag	1560
gcaagtctct	ctgaccgccg	g tgaagcagcg	g gtttgaggac	aagcgctatg	gagaaatcag	1620
ccaggaagag	g gtgctgagct	: acagccagtt	gtgtgctgca	.ttaggagtga	a cacaagacag	1680
ccccgacccc	c ccgactttcc	tcagcacage	g ggagatccac	gccttcctca	gctctccctc	1740
ggggcggaga	a accaaacgga	a agcgggagaa	a cagcctccag	gaagacagag	g gcagcttcgt	1800
taccacccc	c actgcggago	tgtccagcca	a ggaggagaco	gtgctgggca	a gcttcctcga	1860
ctggagcct	g gactgctgc	t ctggctatga	a aggcgaccac	g gagagtgagg	g gcgagaagga	1920

gggcgacgtg	acagctccca	geggeatect	cgatgtcacc	gtggtctacc	tgaacccaga	1980
acagcattgc	tgccaggaat	ccagtgatga	ggaggcttgt	ccagaggcaa	agggacccca	2040
ggacccacag	gcactggcgc	tggacaccca	gatccctgca	acccctggac	ccaaacccct	2100
ggtccgcacc	agccgggagc	cagggaagga	cgtcacgacc	tcagggtact	cctccgtcag	2160
caccgcaagt	cccacaagct	ccgtggacgg	tggcttgggg	gccctgcccc	aacctacctc	2220
agtgctgtcc	ctgcacagtg	actcgcacac	acagccctgc	caccatcagg	ccaggaagtc	2280
atgtttacag	tgtcgtcccc	caagtccccc	ggagagcagt	gttccccagc	aacaggtgaa	2340
gcggataaac	ctatgcatac	acagtgagga	ggaggacatg	aacctgggcc	ttgtgaggct	2400
gtaagtgtgt	cagcacattt	gccgcagtgg	atgtgtactg	agggggctgg	aggcgaaggg	2460
tgggagcata	gcataggaac	gctgcataga	ccatggaggc	ctttgcgcag	agagcagaga	2520
ggatgacttg	cggccaccaa	gtttctgtct	ccgcgggagt	cccgtgcaag	ccatcagaat	2580
gttgaaatga	gggtgaagag	ctcagatccc	tctctttgga	aagtttagcc	tggaagcagt	2640
tggccacact	gtgtggaggg	cacctctctg	tecetteegt	gtctcactgt	ctctggaagc	2700
ttcagcccat	gtgtgtcctg	gtgttcccag	ccccaccaga	gccccgtgcc	gggagctgac	2760
agctttcacg	cttaaggcac	gtgtgacctg	ggtagtcaga	caccacttga	gcccctgccc	2820
acatctgctg	gtttggggct	tcagtgggga	gctgacagct	gtgagcacac	cactgtcccc	2880
tcatccacct	. cggcctgcat	ggggcaccca	cttccttctg	ggtggggctt	ccatggtaag	2940
ggggcctgcg	tccctgcaca	ctgcgaggac	tgccttgcca	caggcccact	ccctacgaca	3000
cgtgactcgt	: tttagagctc	tgtcccagag	gcgttcgtat	gtgacccaca	gatggcgtca	3060
atgtgaacac	ctctctttgt	gctgaatttc	tgggccattc	ttttcctgtc	ttatttctaa	3120
atttccttct	tccaagatga	aaacaaaaga	aaaacttaaa	acagaaggta	ttaaaaaaac	3180
aagagattco	c caccattatt	taggttcacc	tgcaaaacaa	. aaatcttact	ccagcccctc	3240
aatgccatco	c tgacacactt	. tatgcaaaaa	gaattttccc	agataggcta	gccagaaaaa	3300
acttcaagto	c ctctgtaaca	tctgaggtga	ccaagaggca	gaagagcaga	gcagtcgggg	3360
gccgtgtcc	t ggctgatccc	: aactgcagct	ctgctgtggg	ggcccgtggg	g agggaggcag	3420
acccctggg	c tttcctgctg	gccacggaga	ctctgctcct	gcatggaaag	g ggagcctggg	3480
agccagcag	c ccacgcctgg	g ggagcctgcc	: tggggccatg	tgaccatggo	c ctctccctgg	3540
gaacgggct	g accacaacac	accetgetge	catccactto	tgtttactct	gcaaatgtaa	3600
gaaagaacc	a cttggccaga	agtgtcccc	agatgctttt	ttttttttt	ttttggagac	3660
agttttgct	c ttgtctccc	ggctggagtg	g cagtggcate	g atctcaacto	c tcaactcact	3720
gtaacctcc	g cctcccggat	actcctgcct	cagcctcct	g ggtagctggg	g attacaagca	3780

cccaaccacg	cccagctaat	ttttgtattt	tcggtagaga	cgggatttca	ccatgttggc	3840
caggctagtc	tcgaactcat	gacctcaagt	gatccgccca	cttcggtctc	ccaaagtgct	3900
gggattacag	gcatgagcca	cggcgcctgg	ccccaaatg	ctcttgaacc	ggaaacccag	3960
ggatgggaga	tgctcactga	gctgctgctt	ttatgtgtgc	tggtgctatg	tgtgttcatg	4020
tccgcggcag	ctgtcttttt	gctactataa	gggaattctg	gccaccctgg	gtggggtgtg	4080
gtcggggtga	gaacccaagc	gttggaactg	tagacccgtc	ctgtcgactg	tgtgcccctg	414,0
ggcatgtgtg	agcctcagtt	tcctcatctg	taaggggggc	aatgatacct	acctcacagg	4200
gggttgtgag	gattaaatgt	gaggaggata	gtggcaac			4238

<210> 269

<211> 3001

<212> DNA

<213> Homo sapiens

<400> 269 tgagtaaatc gatacatcat acgcgcgctc ctctggccgc ccctccctcc gacgatcggg 60 gaccetggeg ggeggeagga ggacatggee agegaegeeg tgeagagtga geetegeage 120 tggtccctgc tagagcagct gggcctggcc ggggcagacc tggcggcccc cggggtacag 180 cagcagctgg agctggagcg ggagcggctg cggcgggaaa tccgcaagga gctgaagctg 240 aaggagggtg ctgagaacct gcggcgggcc accactgacc tgggccgcag cctgggcccc 300 gtagagetge tgetgegggg etectegege egeetegace tgetgeacea geagetgeag 360 gagetgeacg cecaegtggt getteeegae eeggeggeea eecaegatgg eeceeagtee 420 cctggtgcgg gtggccccac ctgctcggcc accaacctga gccgcgtggc gggcctggag 480 540 aagcagttgg ccattgagct gaaggtgaag cagggggggg agaacatgat ccagacctac agcaatggca gcaccaagga ccggaagctg ctgctgacag cccagcagat gttgcaggac 600 agtaagacca agattgacat catccgcatg caactccgcc gggcgctgca ggccgaccag 660 720 ctggagaacc aggcagcccc ggatgacacc caagggagtc ctgacctggg ggctgtggag ctgcgcatcg aagagctgcg gcaccacttc cgagtggagc acgcggtggc cgagggtgcc 780 aagaacgtac tgcgcctgct cagcgctgcc aaggccccgg accgcaaggc agtcagcgag 840 gcccaggaga aattgacaga atccaaccag aagctggggc tgctgcggga ggctctggag 900 cggagacttg gggagctgcc cgccgaccac cccaaggggc ggctgctgcg agaagagctc 960 gctgcggcct cctccgctgc cttcagcacc cgcctggccg ggccctttcc cgccacgcac 1020 tacagcaccc tgtgcaagcc cgcgccgctc acagggaccc tggaggtacg agtggtgggc 1080 tgcagagacc tcccagagac catcccgtgg aaccctaccc cctcaatggg gggacctggg 1140

accccagaca	gccgccccc	cttcctgagc	cgcccagccc	ggggccttta	cagccgaagc	1200
ggaagcctca	gtggccggag	cagcctcaaa	gcagaagccg	agaacaccag	tgaagtcagc	1260
actgtgctta	agctggataa	cacagtggtg	gggcagacgt	cttggaagcc	atgtggcccc	1320
aatgcctggg	accagagctt	cactctggag	ctggaaaggg	cacgggaact	ggagttggct	1380
gtgttctggc	gggaccagcg	gggcctgtgt	gccctcaaat	tcctgaagtt	ggaggatttc	1440
ttggacaatg	agaggcatga	ggtgcagctg	gacatggaac	cccagggctg	cctggtggct	1500
gaggtcacct	tccgcaaccc	tgtcattgag	aggattcctc	ggctccgacg	gcagaagaaa	1560
attttctcca	agcagcaagg	gaaggcgttc	cagcgtgcta	ggcagatgaa	catcgatgtc	1620
gccacgtggg	tgcggctgct	ccggaggctc	atccccaatg	ccacgggcac	aggcaccttt	1680
agccctgggg	cttctccagg	atccgaggcc	cggaccacgg	gtgacatatc	ggtggagaag	1740
ctgaacctcg	gcactgactc	ggacagetea	cctcagaaga	gctcgcggga	tcctccttcc	1800
agcccatcga	gcctgagctc	ccccatccag	gaatccactg	ctcccgagct	gccttcggag	1860
acccaggaga	ccccaggccc	cgccctgtgc	agccctctga	ggaagtcacc	tctgaccctc	1920
gaagatttca	agttcctggc	ggtgctgggc	cggggtcatt	ttgggaaggt	gctcctctcc	1980
gaattccggc	ccagtgggga	gctgttcgcc	atcaaggctc	tgaagaaagg	ggacattgtg	2040
gcccgagacg	aggtggagag	cctgatgtgt	gagaagcgga	tattggcggc	agtgaccagt	2100
gcgggacacc	ccttcctggt	gaacctcttc	ggctgtttcc	agacaccgga	gcacgtgtgc	2160
ttcgtgatgg	agtactcggc	cggtggggac	ctgatgctgc	acatccacag	cgacgtgttc	2220
tctgagcccc	gtgccatctt	ttattccgcc	tgcgtggtgc	tgggcctaca	gtttcttcac	2280
gaacacaaga	tcgtctacag	ggacctgaag	ttggacaatt	tgctcctgga	caccgagggc	2340
tacgtcaaga	tcgcagactt	tggcctctgc	aaggaggga	tgggctatgg	ggaccggacc	2400
agcacattct	gtgggacccc	ggagttcctg	gcccctgagg	tgctgacgga	cacgtcgtac	2460
acgcgagctg	tggactggtg	gggactgggt	gtgctgctct	acgagatgct	ggttggcgag	2520
tccccattcc	caggggatga	tgaggaggag	gtcttcgaca	gcatcgtcaa	cgacgaggtt	2580
cgctacccc	gcttcctgtc	ggccgaagcc	atcggcatca	tgagaaggct	gcttcggagg	2640
aacccagago	ggaggctggg	atctagcgag	agagatgcag	aagatgtgaa	gaaacagccc	2700
ttcttcagga	ctctgggctg	ggaagccctg	ttggcccggc	gcctgccacc	gccctttgtg	2760
cccacgctgt	ccggccgcac	cgacgtcagc	aacttcgacg	aggagttcac	cggggaggcc	2820
cccacactga	geeegeeeg	cgacgcgcgg	cccctcacag	ccgcggagca	ggcagccttc	2880
ctggacttcg	acttcgtggc	cgggggctgc	tagccccctc	ccctgcccct	gcccctgccc	2940
		•				

3000 3001 a

270 <210>

<211> 2977

DNA

Homo sapiens <400> 270 60 ccgaatgtga ccgcctcccg ctccctcacc cgccgcgggg aggaggagcg ggcgagaagc tgccgccgaa cgacaggacg ttggggcggc ctggctccct caggtttaag aattgtttaa 120 180 gctgcatcaa tggagcacat acagggagct tggaagacga tcagcaatgg ttttggattc aaagatgccg tgtttgatgg ctccagctgc atctctccta caatagttca gcagtttggc tatcagegee gggeateaga tgatggeaaa eteacagate ettetaagae aageaacaet 300 360 atccgtgttt tcttgccgaa caagcaaaga acagtggtca atgtgcgaaa tggaatgagc 420 ttgcatgact gccttatgaa agcactcaag gtgaggggcc tgcaaccaga gtgctgtgca gtgttcagac ttctccacga acacaaaggt aaaaaagcac gcttagattg gaatactgat 480 540 gctgcgtctt tgattggaga agaacttcaa gtágatttcc tggatcatgt tcccctcaca 600 acacacact ttgctcggaa gacgttcctg aagcttgcct tctgtgacat ctgtcagaaa 660 ttcctgctca atggatttcg atgtcagact tgtggctaca aatttcatga gcactgtagc 720 accaaagtac ctactatgtg tgtggactgg agtaacatca gacaactctt attgtttcca aattccacta ttggtgatag tggagtccca gcactacctt ctttgactat gcgtcgtatg 780 cgagagtctg tttccaggat gcctgttagt tctcagcaca gatattctac acctcacgcc 840 900 ttcaccttta acacctccag tccctcatct gaaggttccc tctcccagag gcagaggtcg 960 acatccacac ctaatgtcca catggtcagc accacgctgc ctgtggacag caggatgatt 1020 gaggatgcaa ttcgaagtca cagcgaatca gcctcacctt cagccctgtc cagtagcccc 1080 aacaatctga gcccaacagg ctggtcacag ccgaaaaccc ccgtgccagc acaaagagag 1140 cgggcaccag tatctgggac ccaggagaaa aacaaaatta ggcctcgtgg acagagagat tcaagctatt attgggaaat agaagccagt gaagtgatgc tgtccactcg gattgggtca 1200 1260 qqctcttttg gaactgttta taagggtaaa tggcacggag atgttgcagt aaagatccta 1320 aaggttgtcg acccaacccc agagcaattc caggccttca ggaatgaggt ggctgttctg cgcaaaacac ggcatgtgaa cattctgctt ttcatggggt acatgacaaa ggacaacctg 1380 gcaattgtga cccagtggtg cgagggcagc agcctctaca aacacctgca tgtccaggag 1440 1500 accaagtttc agatgttcca gctaattgac attgcccggc agacggctca gggaatggac

tatttgcatg	caaagaacat	catccataga	gacatgaaat	ccaacaatat	atttctccat	1560
gaaggcttaa	cagtgaaaat	tggagatttt	ggtttggcaa	cagtaaagtc	acgctggagt	1620
ggttctcagc	aggttgaaca	acctactggc	tctgtcctct	ggatggcccc	agaggtgatc	1680
cgaatgcagg	ataacaaccc	attcagtttc	cagtcggatg	tctactccta	tggcatcgta	1740
ttgtatgaac	tgatgacggg	ggagcttcct	tattctcaca	tcaacaaccg	agatcagatc	1800
atcttcatgg	tgggccgagg	atatgcctcc	ccagatctta	gtaagctata	taagaactgc	1860
cccaaagcaa	tgaagaggct	ggtagctgac	tgtgtgaaga	aagtaaagga	agagaggcct	1920
ctttttcccc	agatcctgtc	ttccattgag	ctgctccaac	actctctacc	gaagatcaac	1980
cggagcgctt	ccgagccatc	cttgcatcgg	gcagcccaca	ctgaggatat	caatgcttgc	2040
acgctgacca	cgtccccgag	gctgcctgtc	ttctagttga	ctttgcacct	gtcttcaggc	2100
tgccagggga	ggaggagaag	ccagcaggca	ccacttttct	gctccctttc	tccagaggca	2160
gaacacatgt	tttcagagaa	gctctgctaa	ggaccttcta	gactgctcac	agggccttaa	2220
cttcatgttg	ccttctttc	tatccctttg	ggccctggga	gaaggaagcc	atttgcagtg	2280
ctggtgtgtc	ctgctccctc	cccacattcc	ccatgctcaa	ggcccagcct	tctgtagatg	2340
cgcaagtgga	tgttgatggt	agtacaaaaa	gcaggggccc	agccccagct	gttggctaca	2400
tgagtattta	gaggáagtaa	ggtagcaggc	agtccagccc	tgatgtggag	acacatggga	2460
ttttggaaat	cagcttctgg	aggaatgcat	gtcacaggcg	ggactttctt	cagagagtgg	2520
tgcagcgcca	gacattttgc	acataaggca	ccaaacagcc	caggactgcc	gagactctgg	2580
ccgcccgaag	gagcctgctt	tggtactatg	gaacttttct	taggggacac	gtcctccttt	2640
cacagcttct	aaggtgtcca	gtgcattggg	atggttttcc	aggcaaggca	ctcggccaat	2700
ccgcatctca	gccctctcag	gagcagtctt	ccatcatgct	gaattttgtc	ttccaggagc	2760
tgcccctatg	gggcgggccg	cagggccagc	ctgtttctct	aacaaacaaa	caaacaaaca	2820
gccttgtttc	tctagtcaca	tcatgtgtat	acaaggaagc	caggaataca	ggttttcttg	2880
atgatttggg	ttttaatttt	gtttttattg	cacctgacaa	aatacagtta	tctgatggtc	2940
cctcaattat	gttattttaa	taaaataaat	taaattt			2977

<210> 271

<211> 1749

<212> DNA <213> Homo sapiens

<400> 271

gtggcctcga ggtggtggca gggccgcccc ctgcagtccg gagacgaacg cacggaccgg 60 gcctccggag gcaggttcgg ctggaaggaa ccgctctcgc ttcgtcctac acttgcgcaa 120

PCT/US03/13015 WO 03/090694

atgtctccga	gcttactcac	atagcatatt	ggtatatcaa	aatgaaatgc	aaggaaccaa	180
aaataacata	attgaaggca	gtaaaagtga	aattaaatag	gaagatcatc	agtcaaggaa	240
gacccactgg	agaggacaga	aaatgaagca	gtgttttatc	atgtgtattt	cagcaggtct	300
tcttgaaatt	taactaaaaa	tatgactgct	ctctcttcag	agaactgctc	ttttcagtac	360
cagttacgtc	aaacaaacca	gcccctagac	gttaactatc	tgctattctt	gatcatactt	420
gggaaaatat	tattaaatat	ccttacacta	ggaatgagaa	gaaaaaacac	ctgtcaaaat	480
tttatggaat	atttttgcat	ttcactagca	ttcgttgatc	ttttactttt	ggtaaacatt	540
tccattatat	tgtatttcag	ggattttgta	cttttaagca	ttaggttcac	taaataccac	600
atctgcctat	ttactcaaat	tatttccttt	acttatggct	ttttgcatta	tccagttttc	660
ctgacagctt	gtatagatta	ttgcctgaat	ttctctaaaa	caaccaagct	ttcatttaag	720
tgtcaaaaat	tattttattt	ctttacagta	attttaattt	ggatttcagt	ccttgcttat	780
gttttgggag	acccagccat	ctaccaaagc	ctgaaggcac	agaatgctta	ttctcgtcac	840
tgtcctttct	atgtcagcat	tcagagttac	tggctgtcat	ttttcatggt	gatgatttta	900
tttgtagctt	tcataacctg	ttgggaagaa	gttactactt	tggtacaggc	tatcaggata	960
acttcctata	tgaatgaaac	tatcttatat	tttccttttt	catcccactc	cagttatact	1020
gtgagatcta	aaaaaatatt	cttatccaag	ctcattgtct	gttttctcag	tacctggtta	1080
ccatttgtac	tacttcaggt	aatcattgtt	ttacttaaag	ttcagattcc	agcatatatt	1140
gagatgaata	ttccctggtt	atactttgtc	aatagttttc	tcattgctac	agtgtattgg	1200
tttaattgtc	acaagcttaa	tttaaaagac	attggattac	ctttggatcc	atttgtcaac	1260
tggaagtgct	gcttcattcc	acttacaatt	cctaatcttg	agcaaattga	aaagcctata	1320
tcaataatga	tttgttaata	ttattaatta	aaagttacag	ctgtcataag	atcataattt	1380
tatgaacaga	aagaactcag	gacatattaa	aaaataaact	gaactaaaac	aacttttgcc	1440
ccctgactga	tagcatttca	gaatgtgtct	tttgaagggc	tataccagtt	attaaatagt	1500
gttttattt	aaaaacaaaa	taattccaag	aagtttttat	agttattcag	ggacactata	1560
ttacaaatat	tactttgtta	ttaacacaaa	aagtgataag	agttaacatt	tggctatact	1620
gatgtttgtg	ttactcaaaa	aaactactgg	atgcaaactg	ttatgtaaat	ctgagatttc	1680
actgacaact	ttaagatatc	aacctaaaca	tttttattaa	atgttcaaat	gtaagcaaga	1740
aaaaaaaaa						1749

<210> 272

<211> 2885 <212> DNA <213> Homo sapiens

<400> 272						
	gggaggcttt	ctctggctgg	taaccgctac	teceggacae	cagaccaccg	60
ccttccgtac	acaggggccc	gcatcccacc	ctcccggacc	taagagcctg	ggtcccctgt	120
ttccggagtc	cgcttcccgg	ccccagatt	ctggcatccc	agccctcagt	gtccaagacc	180
caggcagccc	gggtccccgc	ctcccggatc	caggcgtccg	ggatctgcgc	caccagaacc	240
tagcctcctg	cagacctccg	ccatctgggg	gcactcaacc	tcctggagcc	aagggcccca	300
cgtcccaccc	agagaaactc	tcgtattccc	agctcctagg	gccaaggaac	ccgggcgctc	360
cgaactccca	gctttcggac	atctggcaca	cggggcagag	cagagaagcc	tcagcgccca	420
gcctggggaa	tttaaacact	ccagcttcca	agagccaagg	aacttcagtg	ctgtgaactc	480
acaactctaa	ggagccctcc	aaagttccag	tctccaggtg	ctgttactca	actcagtcct	540
aggaacgtcg	ggtcctggga	aggagcccaa	gcgctcccag	ccagcttcca	ggcgctaaga	600
aaccccggtg	cttcccatca	tggtggccga	tcctcctcga	gactccaagg.	ggctcgcagc	660
ggcggagcca	ccgccaacgg	gggcctggca	gctggcctcc	atcgaggacc	aaggcgcggc	720
agcaggcggc	tactgcggtt	cccgggacct	ggtgcgccgc	tgccttcgag	ccaacctgct	780
tgtgctgctg	acagtggtgg	ccgtggtggc	cggcgtggcg	ctgggactgg	gggtgtcggg	840
ggccgggggt	gcgctggcgt	tgggcccggg	agcgcttgag	gccttcgtct	tecegggega	900
gctgctgctg	cgtctgctgc	ggatgatcat	cttgccgctg	gtggtgtgca	gcttgatcgg	960
cggcgccgcc	agcctggacc	ccggcgcgct	cggccgtctg	ggcgcctggg	cgctgctctt	1020
tttcctggtc	accacgctgc	tggcgtcggc	gctcggagtg	ggcttggcgc	tggctctgca	1080
gccgggcgcc	gcctccgccg	ccatcaacgc	ctccgtggga	gccgcgggca	gtgccgaaaa	1140
tgcccccagc	aaggaggtgc	tcgattcgtt	cctggatctt	gcgagaaata	tcttcccttc	1200
caacctggtg	tcagcagcct	ttcgctcata	ctctaccacc	tatgaagaga	ggaatatcac	1260
cggaaccagg	gtgaaggtgc	ccgtggggca	ggaggtggag	gggatgaaca	tcctgggctt	1320
ggtagtgttt	gccatcgtct	ttggtgtggc	gctgcggaag	ctggggcctg	aaggggagct	1380
gcttatccgc	ttcttcaact	ccttcaatga	ggccaccatg	gttctggtct	cctggatcat	1440
gtggtacgcc	cctgtgggca	tcatgttcct	ggtggctggc	aagatcgtgg	agatggagga	1500
tgtgggttta	ctctttgccc	gccttggcaa	gtacattctg	tgctgcctgc	tgggtcacgc	1560
catccatggg	ctcctggtac	tgcccctcat	ctacttcctc	ttcacccgca	aaaaccccta	1620
ccgcttcctg	tggggcatcg	tgacgccgct	ggccactgcc	tttgggacct	cttccagttc	1680
cgccacgctg	ccgctgatga	tgaagtgcgt	ggaggagaat	aatggcgtgg	ccaagcacat	1740
cagccgtttc	atcctgccca	teggegeeae	cgtcaacatg	gacggtgccg	cgctcttcca	1800

gtgcgtggcc	gcagtgttca	ttgcacagct	cagccagcag	tccttggact	tcgtaaagat	1860
catcaccatc	ctggtcacgg	ccacagcgtc	cagcgtgggg	gcagcgggca	tccctgctgg	1920
aggtgtcctc	actctggcca	tcatcctcga	agcagtcaac	ctcccggtcg	accatatctc	1980
cttgatcctg	gctgtggact	ggctagtcga	ccggtcctgt	accgtcctca	atgtagaagg	2040
tgacgctctg	ggggcaggac	tcctccaaaa	ttatgtggac	cgtacggagt	cgagaagcac	2100
agagcctgag	ttgatacaag	tgaagagtga	gctgcccctg	gatccgctgc	cagtccccac	2160
tgaggaagga	aaccccctcc	tcaaacacta	tegggggccc	gcaggggatg	ccacggtcgc	2220
ctctgagaag	gaatcagtca	tgtaaacccc	gggagggacc	ttccctgccc	tgctgggggt	2280
gctctttgga	cactggatta	tgaggaatgg	ataaatggat	gagctagggc	tctgggggtc	2340
tgcctgcaca	ctctggggag	ccaggggccc	cagcaccctc	caggacagga	gatctgggat	2400
gcctggctgc	tggagtacat	gtgttcacaa	gggttactcc	tcaaaacccc	cagttctcac	2460
tcatgtcccc	aactcaaggc	tagaaaacag	caagatggag	aaataatgtt	ctgctgcgtc	2520
cccaccgtga	cctgcctggc	ctcccctgtc	tcagggagca	ggtcacaggt	caccatgggg	2580
aattctagcc	cccactgggg	ggatgttaca	acaccatgct	ggttattttg	gcggctgtag	2640
ttgtgggggg	atgtgtgtgt	gcacgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	2700
tctgtgacct	cctgtcccca	tggtacgtcc	caccctgtcc	ccagatcccc	tattccctcc	2760
acaataacag	aaacactccc	agggactctg	gggagaggct	gaggacaaat	acctgctgtc	2820
actccagagg	acatttttt	tagcaataaa	attgagtgtc	aactattaaa	aaaaaaaaa	2880
aaaaa						2885
<210> 273 <211> 438 <212> DNA <213> Hom						
<222> (41	c_feature 7)(418) s a, c, g,	t or u				
<400> 273		ctacgatggc	cttaagcaca	aggtcaagat	gaaccaccaa	60
_					tcattccagc	120
					ataatctcga	180
					gcaggaggaa	240
		2 2 33-		5 5 5		

gggagatgca gccgcacagg ggatgattac cctcctagga ccgcggtggc taagtcattg

caggaacggg gctgtgttct	ctgctgggac	aaaacaggag	ctcatctctt	tggggtcaca	360
gttctatttt gtttgtgagt	ttgtattatt	attattatta	ttattattat	attttanntc	420
tttggtctgt gagcaact					438
<210> 274					
<211> 484			,		
<212> DNA <213> Homo sapiens					
<220> <221> misc feature					
<222> (457)(457)	ON 11				
<223> n is a, c, g, t	. or u				
<220> <221> misc_feature					
<222> (483)(483) <223> n is a, c, g, t	or u				
<400> 274					
cctgcccttc cttgcagctg	tggctcagac	aggtagcatg	ggctcaccaa	ttagacataa	60
ctgtgtgaaa tctggaagca	agtactttgc	agacaagagt	agtatgagat	acattttgtt	120
gaacggagca gtgatgtggt	tttcaaggca	gcagtggcag	aggtcccatg	taatggtgca	180
aggtgtggag gctttgctta	gcagtttttc	ccccgcagct	gctccaaggt	ataaaaatgg	240
gcatttttgg gggctccgta	gtcctgacct	ccacgcctgt	gacttgtgag	ccattttatt	300
ctgtttgttt aaactagcta	gtgtagatcc	tgttgtttgt	aaccaagagt	gttgacatac	360
agccactatt taattgtaac	cactgtcaac	ctttttcctt	atttacttca	gatccttttg	420
tgtttaaata aaggaaaagc	tgcacatcca	aaaaagnaga	gaaaaaaaga	tggcggccga	480
agng					484
010 055					
<210> 275 <211> 931					
<212> DNA <213> Homo sapiens					
<400> 275					
agcggtcatg tccggcagag	gaaagggcgg	aaaaggctta	ggcaaagggg	gcgctaagcg	60
ccaccgcaag gtcttgagag	acaacattca	gggcatcacc	aagcctgcca	ttcggcgtct	120
agctcggcgt ggcggcgtta	agcggatctc	tggcctcatt	tacgaggaga	cccgcggtgt	180
gctgaaggtg ttcctggaga	atgtgattcg	ggacgcagtc	acctacaccg	agcacgccaa	240
gcgcaagacc gtcacagcca	tggatgtggt	gtacgcgctc	aagcgccagg	ggcgcaccct	300
gtacggcttc ggaggctagg	ccgccgctcc	agctttgcac	gtttcgatcc	caaaggccct	360

ttttagggcc	gaccacttgc	tcatctgagg	agttggacac	ttgactgcgt	aaagtgcaac	420
agtaacgatg	ttggaaggct	tatgatttta	ctgtgtatgt	atttgggaga	agaaattctg	480
tcagctccca	aaggataaac	cagcagttgc	tttattggtc	ttcagatgtg	gctgcaaaca	540
cttgagactg	aactaagctt	aaaacacggt	acttagcaat	cgggttgcca	gcaaagcact	600
ggatgcaagc	cttgccttcc	agaagcttac	cagtcgggtt	gccagcaaag	cagtggatgc	660
aagacttgcc	ctccaggagc	ttaccatcac	aacgaagaag	acaaataaat	gcataatata	720
tagacgacat	aaatccatac	tgtacacatt	taagaataaa	cagtccagta	gtaagaggca	780
gtacatattc	aatctgctga	gaaatgtaga	caataactac	tataagaatc	ctaatgctac	840
agaagtcact	ggctgctggg	aaaccgggga	aaacttggct	atggacgtgg	gggcttgtgt	900
cggactctga	ataaagagca	gaatgattgg	C			931
<210> 276 <211> 405 <212> DNA <213> Hom <400> 276	o sapiens					
	gagtcttact	ctgttgccca	ggctggagtg	cagtggtggg	atctcggctc	60
actgcaacct	ccacctcccg	ggttcaagcg	atteteetge	ctcagcctcc	tgagtagctg	120
ggactacagg	cgcccgccac	cacgcctggc	taatttttgt	atttttagta	gagacggggt	180
ttcaccatgt	tggtcaggct	ggtctcgatc	tcttgacctc	gcgatccact	cgcctcagcc	240
tcccaaagtg	ctgggattac	aggcctgagc	cactgcgcct	ggcagaccac	ctatattact	300
tttaaccaca	aatgaaatag	atgacttctt	agaaaaacat	aaaagcagag	ctgtctcaaa	360
aaccaacaga	atatctgcat	agcctaaaaa	ccataaagaa	agcag		405
<210> 277 <211> 368 <212> DNA <213> Hom						
<400> 277 tttgagagta	ctgtatattt	tattttcatg	aaaaatttat	aataaaccac	cacgttactc	60
cctgtctctg	tggctgggct	gcctggacat	ttcatagaaa	tgggatcaca	cacggcatgt	120
cctctgtgtc	tggcgtgtct	cattgagcct	ggagtgtctc	attgagcctg	gcgtcctgaa	180
ggtgcgtcca	cgccgtgcct	gagtcagagc	ttcttccttt	tcatggctgg	gttgtgttcc	240
agtgcatgga	gggccacact	acgcctcctc	ctctgctgac	ggccatctgg	gttgtagcca	300
ccatccaact	. actagaatcc	acggcggcgt	ctgcgcacgg	gettetgegt	ggctgcgggc	360

ttccactc	368
<210> 278 <211> 239 <212> DNA <213> Homo sapiens	
<400> 278 aaggggctgg aatgggtgac ttttatagga ttcatagaag tcatgaattc tatagagact	60
tcgtgaaggg ccgatttatc atctccagag acaattccaa gaacacgctc tatctgtaaa	120
tgaacaccct gagagtcgag gacacggcta tatattattg cgcgagagac cgagggaaat	180
tatattgtag tggtggtatt tgctttccgc ctgttggcta cttcgacccc tggggccaa	239
<210> 279 <211> 335 <212> DNA <213> Homo sapiens	
<pre><400> 279 ggggagagct catgtcagtg aatatagatc attctgttga taccettett tgaatattet</pre>	60
agtgtattaa tataccatgt ttaatttaat catgtcttat taatggactg gctgttttca	120
catatttgat atatcaagtg tcttcacaac tgtgcttgca tattctttcc caaaatattg	180
aaagtccata tatttccttg tacattttta aagttgatat ctaaatcttt catgtagttg	240
caaagcatgt aatttcttgg gggagggggg ctgtaaatat tgacatttta aaataaaact	300
tttaaatcag ccttaaaaaa aaaaaaaaa aaaaa	335
<210> 280 <211> 430 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (374)(374) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (417)(417) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (425)(425) <223> n is a, c, g, t or u	
<400> 280 agattcggaa cgaggcctaa ccctaagtcc tgtgcacaga gccctgtagc cgcccctacc	60

cagagcaggc	actgacaagc	ccacccattt	ctagtgctgc	ccaaggtgga	ctcagcccac	120
aaaggcccca	gccccagcct	ttgcggatag	gtttcctccg	tggtgccaac	aactcttgtg	180
gatttgaaag	aggcaacctt	tttcctcgcg	tttctaaagg	cctatgaaaa	gggcacgtcg	240
ggaagtgcac	ataagacgtt	gaacatcgtt	gcatgagatg	ttgaagaagt	acaagatttc	300
gttcttcctt	ccattaaagt	acaatctccc	tggggagaga	cacacaaagt	acacatttag	360
agaccagtta	tttnttttc	cagattcgtt	tcccggtgcc	tttttcctag	gttaagnagc	420
ttttncctgg						430
	sapiens					
<400> 281 gagctcacgc	atccttccga	gggccctgag	tgaggcggcc	actgctgtgc	cgaggggttg	60
ggtccttctc	tggggagggc	gtggggtcta	gagaggcgga	gtggaggtaa	ccagaggtca	120
ggagagaagc	cgtaagaaca	gagggaaaat	ggggccagag	tcggggcgca	gggacgagag	180
gtcaggagtg	gtcggcctgg	ccctgggcgt	tgactgactc	gggacctggg	tgcccaccct	240
cagggctggc	tggcggctcc	gcgcagtccc	agagggcccc	ggatagggtg	ctctgccact	300
ccggacagca	gcagggactg	ccgagagcag	caggaggctc	tgtcccccac	ccccgctgcc	360
actgtggagc	cgggagggct	gactggccag	gtcccccaga	gctggacgtg	tgcgtggagg	420
aggccgaggg	cgaggcgccg	tggacgtgga	ccggcctctg	catcttcgcc	gcactcttcc	480
tgctcagcgt	gagctacagc	gccgccctca	cgctcctcat	ggtgggcacc	cacctccagg	540
ggcccagcca	gggcaggggg	ttgggcagag	cagcagagcc	cctgacccac	geceteceet	600
caggtgcagc	ggttcctctc	agccacgcgg	caggggaggc	cccagacctc	cctcgactac	660
accaacgtcc	tccagcccca	cgcctagccg	cgggccactc	acgctccacc	aggcccagct	720
ttttctctgc	cagcgcctga	gcctccctcg	ggctgcaccc	tgccctgggt	gggaaaaggg	780
aagcagacaa	gaaaaggggg	catcaaggtc	actactgtgg	gctgatggcc	agtgaacctg	840
agccagaggg	gccgctcagc	cgcaaggtta	caggcgccga	gagaaccacc	agtcgcaggc	900
cccacccgaa	aaccgtgtct	gtcccttcaa	cagagtcatc	gaggaggggt	ggctgctagc	960
cgtctcgagc	tc					972

<210> 282

<211> 3624

<212> DNA

<213> Homo sapiens

<400> 282 cagtactgta	caaggaaaac	cccgtcggat	ctgttattgc	gggatacttg	tgaaatatac	60
ataggattct	ttcttatggc	tgcatcccgg	atctggaaat	tttacttggg	gaccaggagg	120
atttgaaagg	ctgcatgtac	tcagaagatt	tgcaagcaac	actccaattc	ttgtcataga	180
gctcgcagac	ttctcactta	tcggcttttt	tccttcctta	ttttttaaga	attattctta	240
ttttcccctc	tctttttctg	ctctctcctc	tctcagtctc	tccttttcta	tctgcctctt	1300
catttttctc	ctagtctgtt	tttttttc	ctgctctgca	cctggattgt	atcttcagca	360
aacaatcggg	cactttgaga	actaactgga	gacagtcttg	tagggaagat	ctgtatggaa	420
ttatctgctt	ttatggtgaa	cttggcattt	gtgaatggga	atcttgttca	caatattaat	480
tgctagcaaa	aacaagaaaa	agaacacagg	agtaaaacgt	ggatttttct	gaatacgcat	540
tgtgatgacc	agcaattacc	ttaccgacta	atatccagag	gagaataatt	tggaagactg	600
ttgtggggaa	cagcctttaa	gagctggaag	atgaaagctc	cgattccaca	cttgattctc	660
ttatacgcta	cttttactca	gagtttgaag	gttgtgacca	aaagaggctc	cgccgatgga	720
tgcactgact	ggtctatcga	tatcaagaaa	tatcaagttt	tggtgggaga	gcctgttcga	780
atcaaatgtg	cactctttta	tggttatatc	agaacaaatt	actcccttgc	ccaaagtgct	840
ggactcagtt	tgatgtggta	caaaagttct	ggtcctggag	actttgaaga	gccaatagcc	900
tttgacggaa	gtagaatgag	caaagaagaa	gactccattt	ggttccggcc	aacattgcta	960
caggacagtg	gtctctacgc	ctgtgtcatc	agaaactcca	cttactgtat	gaaagtatcc	1020
atctcactga	cagtgggtga	aaatgacact	ggactctgct	ataattccaa	gatgaagtat	1080
tttgaaaaag	ctgaacttag	caaaagcaag	gaaatttcat	gccgtgacat	agaggatttt	1140
ctactgccaa	ccagagaacc	tgaaatcctt	tggtacaagg	aatgcaggac	aaaaacatgg	1200
aggccaagta	ttgtattcaa	aagagatact	ctgcttataa	gagaagtcag	agaagatgac	1260
attggaaatt	atacctgtga	attaaaatat	ggaggctttg	ttgtgagaag	aactactgaa	1320
ttaactgtta	cagcccctct	gactgataag	ccacccaagc	ttttgtatcc	tatggaaagt	1380
aaactgacaa	ttcaggagac	ccagctgggt	gactctgcta	atctaacctg	cagagettte	1440
tttgggtaca	gcggagatgt	cagtccttta	atttactgga	. tgaaaggaga	aaaatttatt	1500
gaagatctgg	atgaaaatcg	agtttgggaa	agtgacatta	. gaattcttaa	ggagcatctt	1560
ggggaacagg	aagtttccat	ctcattaatt	gtggactctg	tggaagaagg	tgacttggga	1620
aattactcct	gttatgttga	aaatggaaat	ggacgtcgac	acgccagcgt	tctccttcat	1680
aaacgagagc	taatgtacac	agtggaactt	gctggaggcc	: ttggtgctat	actcttgctg	1740
cttgtatgtt	tggtgaccat	ctacaagtgt	tacaagatag	, aaatcatgct	cttctacagg	1800

				,		
aatcattttg	gagctgaaga	gctcgatgga	gacaataaag	attatgatgc	atacttatca	1860
tacaccaaag	tggatcctga	ccagtggaat	caagagactg	gggaagaaga	acgttttgcc	1920
cttgaaatcc	tacctgatat	gcttgaaaag	cattatggat	ataagttgtt	tataccagat	1980
agagatttaa	tcccaactgg	aacatacatt	gaagatgtgg	caagatgtgt	agatcaaagc	2040
aagcggctga	ttattgtcat	gaccccaaat	tacgtagtta	gaaggggctg	gagcatcttt	2100
gagctggaaa	ccagacttcg	aaatatgctt	gtgactggag	aaattaaagt	gattctaatt	2160
gaatgcagtg	aactgagagg	aattatgaac	taccaggagg	tggaggccct	gaagcacacc	2220
atcaagctcc	tgacggtcat	taaatggcat	ggaccaaaat	gcaacaagtt	gaactccaag	2280
ttctggaaac	gtttacagta	tgaaatgcct	tttaagagga	tagaacccat	tacacatgag	2340
caggctttag	atgtcagtga	gcaagggcct	tttggggagc	tgcagactgt	ctcggccatt	2400
tccatggccg	cggccacctc	cacagctcta	gccactgccc	atccagatct	ccgttctacc	2460
tttcacaaca	cgtaccattc	acaaatgcgt	cagaaacact	actaccgaag	ctatgagtac	2520
gacgtacctc	ctaccggcac	cctgcctctt	acctccatag	gcaatcagca	tacctactgt	2580
aacatcccta	tgacactcat	caacgggcag	cggccacaga	caaaatcgag	cagggagcag	2640
aatccagatg	aggcccacac	aaacagtgcc	atcctgccgc	tgttgccaag	ggagaccagt	2700
atatccagtg	tgatatggtg	acagaaaagc	aagggacatc	ccgtccctgg	gaggttgagt	2760
ggaatctgca	gtccagtgcc	tggaactaaa	tcctcgactg	ctgctgttaa	aaaacatgca	2820
ttagaatctc	tagaacacga	ggaaaaacag	ggtcttgtac	atatgtttt	tggaatttct	2880
ttgtagcatc	agtgtcctcc	tgttttacca	tgtcttttac	cattacattt	tttgactttg	2940
ttttatatgt	cgttggaatt	tgtaaattta	cattttttt	aaagaagaga	ctgatgtgta	3000
gatagaaaac	cctttttttg	cttcattagt	ttagttttag	aatgggtttt	tattttattt	3060
ccttttttaa	aattttactt	tgcttttaac	atttccttgg	ggtgcttgga	caaatctatc	3120
cgatgggaca	aggagcaccg	gattctttct	cgggttctgc	ctagcatcaa	ctgggccacg	3180
tcggccttca	gagaacagtg	caacaaatgc	cagcattgcc	attcggggga	aaaaaaaaa	3240
aaaaaaaaa	agatgagaag	aacacttgtt	cataggaggg	ccccaccagt	cagagecetg	3300
aatctcttcc	ttgtcccacc	tcattcccca	cctctacctt	tctaatggcg	gcatgatgtg	3360
taaactctgt	gcaggggtgg	gggcgggtct	aactgtctta	acattcaagt	cactgctctt	3420
cagaatacac	tctagaccca	aaggtgtgct	aatcacttca	cagtgaccac	tacagagtac	3480
taagaagaga	agatcaaggg	catgaaattg	gggaagagtg	ttatttccgt	tttttaaatg	3540
agttgatgta	cccttatata	tatatacata	tatatataaa	tataaatata	tataaaaaca	3600
acaaaacaaa	acaaaaaaag	aaaa				3624

```
<210> 283
<211> 456
<212> DNA
<213> Homo sapiens
<400> 283
tttttagatt gcctggatag cacagggtta ggaatgcagg ctctggggta gaacatctgg
                                                                  60
                                                                 120
gtttttcctt attcatctga ccctatgtaa actccatttg tggtatctct ggatttcagt
taccttatct gcaaaatagg catataagta atattaatct ccaatggctg tcatgagcat
                                                                 180
taaaccaacc gccacagagt agatgttcaa tcaaagtgag ctgttaatga caaggttatt
                                                                 240
                                                                 300
tttgttgtct tttacccctt ttcacggttt catttccctt cctttgtcct ctaggtactt
acatcetett eccatgtgea teaetteett tetgagtete tetaeatgae egeetttete
                                                                 360
tttgaatatt cctgctcttg aacaacatcc tcacatttaa atttgtcccc tcttctgcca
                                                                 420
tcaccaagtt tctcccgtga tataagaaat atacat
                                                                  456
<210> 284
<211> 406
<212> DNA
<213> Homo sapiens
<400> 284
60
                                                                  120
ttitttattt tqqtaatttt ttccccccac caacaggggt ttttttataa tcaaaaaaac
aaaaaaccct cgcaaaaaag ggaagggctg ggtgggctcc tggccacggg gccccccaag
                                                                  180
caggatttgg aagggtcctg ggctttggag tccaaaaacc aactggggcc ccccaggttt
                                                                  240
taacctcccc agctgtaatg caaagtatgc cccccaggg aggactcctc acctggtttt
                                                                  300
gccccttccc aaccattcca ccaccacca aaagggccta gggtgggggg cttgcactgt
                                                                  360
                                                                  406
gaaaggccca agcaaggagg ggacccaaag gccctggccc aaccca
<210> 285
<211> 473
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
      (379)..(379)
<222>
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (433)..(433)
<223> n is a, c, g, t or u
```

<400> 285 gagtttaaca cagattttat	tgccctatag	acaggtatga	tgtgaccagt	ggatatcaat	60
gaaacttctt aattatttga	gtctgaaaat	gcatatttaa	aacattaaaa	gattgactcc	120
actttgtgcc aagctctgcg	ggtaggcata	tttcatatct	taaaaaggct	tgtaattcat	180
tcagggaggc aaaagcaaaa	tctgtaatta	gaggttagcc	ataatgttat	gaaagtgcca	240
tgagaataga gagagagaat	aaaatcataa	agatataaat	aaacatattt	gaactacagg	300
tgatgtattg tcttaaatta	cttctatatc	atatgccaga	gggccttcaa	tggaaaatcc	360
taggtagaaa gacactctnt	ctatgttcct	accacttctg	agtggacctg	aataaacaga	420
tattactggt atntttattt	tttcctctgt	tccatattct	acagagatta	gct	473
<210> 286 <211> 500 <212> DNA <213> Homo sapiens <400> 286	·				
geggeegetg etgeegagte	aaggaggaaa	ccttcatgca	cggaagtttc	tcgggggcgg	60
ccgggctttg ttcgcgccag	aggcgctcga	gacateteeg	ggaggggagc	gcgggcggag	120
cgcacagggc tagtttccag	cagcggcggc	gcccctttcc	ctgccccacc	acgcgacgtc	180
ctggccgtgg cttgggggga	cccgggcgcc	ctccaggtgc	aggcagaggg	tcgggtgccc	240
tegegttget gttgggetee	cctgaccagg	gaggatggaa	aggaaggagc	aggcaggctt	300
agctgcccta gaccggccct	agaccgggaa	cctggaagca	gatctgactt	ccacttccaa	360
gggagaaacc gcctcccgca	ctggcgcccc	gaggggagag	agaagcccag	ctaggtttcc	420
gcgtggtccg cgtggttggt	gaaccctcag	gctggggggt	gccccgcttg	gcgtgcaagg	480
ccctctttgg agctgccgtc	Ī	•			500
<210> 287 <211> 364 <212> DNA <213> Homo sapiens					
<400> 287 gatcatcatc aaacccccgo	: ggagcattaa	ccaaccccta	ccgactgtcc	ttcgggcctt	60
cctgcagtcg tttataaata	ttataccgca	cctgctgcct	gtaactctcc	tgaacctctg	120
atgcctccag gtccctgata	acgctctcta	ggctcgttac	gggcccagct	ccaactgcct	180
tagcatecca geteacage	c tctgaaaaaa	acatcttggg	gccctcaccc	tgcatcaact	240
tgcttctatt gacaagcata	ı ccactgaggt	aggcatcact	cataggggct	gttgattaca	300
tccgcagact ctgatattco	agctggatta	aattgaccca	ttctgtgggg	actgtccttg	360

ccct	364
<210> 288 <211> 364 <212> DNA <213> Homo sapiens	
<400> 288 tttttttt tttttttt tttttttt tttttttt tttt	60
ttttttttt aacccgggcc ttcccaaatt tatttggggc ccccccaaa aaaggccccc	120
ccccaaaaaa aaagggggg gccctttggg gggaaaaccg ggtttgggcc aaccgcccaa	180
aaccccgggg ggcaacggaa aattaatttt gaaatcggga aaatttttaa aacccccccc	240
gggggacttt gtggcccgaa acccccccac cttaaaaaaa taaaaggaag gggcccgggc	300
ccggggccgg gccaccattt tttttgtaaa acttggggaa aaacccccct gggggggaaa	360
aggc	364
<210> 289 <211> 479 <212> DNA <213> Homo sapiens	
<400> 289 ttttttttt ttttgttacc ttatccatta acctgttaca acaattaatt cagggttcat	60
tgtgtccaga gcagtttatt agaaaggggt acagactcca gaagcataac ccctggtatg	120
tggtcagggg actgttagtc agggatacat tttatggaag ttacaattta tagagctgga	180
aactttcaag cacagttctt tgtccaactt agtttcaact ttaacaaaca caagagtact	240
tgtagagaga aattctcctc caacgcatac tcttctggtg attaccagca ggtccactgg	300
cagcagctag attgagtgtt tgagtcagcc tggctgatta ccttaatcgc cttaatcata	360
gaatctaccc tccctggaat gggcttaaca tggagagtgg cagaatggca gaataaccac	420
tctaagctga aaatttcttg ttagaacggg ttctgatgcc tttaatgaag agcttgcga	479
<210> 290 <211> 403 <212> DNA <213> Homo sapiens	
<400> 290 gaccgcaccc tgccatttac tccatggcct tcaggaagga atgagccagc cgagccaaag	60
accgcttctt ctgtgctctc agccagcact cctcttgacc cctgccctcc tgcaatgcat	120
gagggaggct ttgcaatcac tccctgtcac tctgtcccag ctctcagtcc aacagtgata	180
adattttada aatotootoa otggaottta gaaatacgat totactcagg aacotaacag	240

tgctgacttt tcctggcatg ccattatgct acgttcaagt ttccaccagg ttgtttgcct 300 tggcatgttt ctttgcatga agtgatccac ttggagctgc tactggtccc attgagtcct 360 403 atagtacttc agtgactctc aggttagcca tggagtagat ggc 291 <210> 2038 <211> <212> DNA <213> Homo sapiens 291 <400> ggctataagc gcacggcctc ggcgaccctc tccgacccgg ccgccgccgc catgcagccc 60 tecageette tgeegetege cetetgeetg etggetgeae eegeeteege getegteagg 120 atcccgctgc acaagttcac gtccatccgc cggaccatgt cggaggttgg gggctctgtg 180 gaggacctga ttgccaaagg ccccgtctca aagtactccc aggcggtgcc agccgtgacc 240 300 gaggggccca ttcccgaggt gctcaagaac tacatggacg cccagtacta cggggagatt 360 ggcatcggga cgcccccca gtgcttcaca gtcgtcttcg acacgggctc ctccaacctg tgggtcccct ccatccactg caaactgctg gacatcgctt gctggatcca ccacaagtac 420 480 aacagcgaca agtccagcac ctacgtgaag aatggtacct cgtttgacat ccactatggc 540 tegggeagee teteegggta cetgageeag gacactgtgt eggtgeeetg ceagteageg 600 tcqtcaqcct ctgccctggg cggtgtcaaa gtggagaggc aggtctttgg ggaggccacc aagcagccag gcatcacctt catcgcagcc aagttcgatg gcatcctggg catggcctac 660 ccccgcatct ccgtcaacaa cgtgctgccc gtcttcgaca acctgatgca gcagaagctg 720 780 gtggaccaga acatcttctc cttctacctg agcagggacc cagatgcgca gcctgggggt 840 gagetgatge tgggtggeac agaetecaag tattacaagg gttetetgte etacetgaat 900 gtcacccgca aggcctactg gcaggtccac ctggaccagg tggaggtggc cagcgggctg accetgtgca aggagggetg tgaggecatt gtggacacag gcaetteeet catggtggge 960 1020 ccggtggatg aggtgcgcga gctgcagaag gccatcgggg ccgtgccgct gattcagggc 1080 gagtacatga tcccctgtga gaaggtgtcc accctgcccg cgatcacact gaagctggga ggcaaaggct acaagctgtc cccagaggac tacacgctca aggtgtcgca ggccgggaag 1140 1200 accetetgee tgageggett catgggeatg gacatecege caeceagegg gecactetgg 1260 atcctgggcg acgtetteat eggeegetae tacaetgtgt ttgaeegtga caacaacagg gtgggcttcg ccgaggctgc ccgcctctag ttcccaaggc gtccgcgcgc cagcacagaa 1320 acagaggaga gtcccagagc aggaggcccc tggcccagcg gcccctccca cacacaccca 1380 cacactcgcc cgcccactgt cctgggcgcc ctggaagccg gcggcccaag cccgacttgc 1440

tgttttgttc t	tgtggttttc	ccctccctgg	gttcagaaat	gctgcctgcc	tgtctgtctc	1500
tccatctgtt t	tggtggggt	agagctgatc	cagagcacag	atctgtttcg	tgcattggaa	1560
gaccccaccc a	aagcttggca	gccgagctcg	tgtatcctgg	ggctcccttc	atctccaggg	1620
agtcccctcc o	ccggccctac	cagcgcccgc	tgggctgagc	ccctacccca	caccaggccg	1680
teeteeeggg (ccctcccttg	gaaacctgcc	ctgcctgagg	gcccctctgc	ccagcttggg	1740
cccagctggg (ctctgccacc	ctacctgttc	agtgtcccgg	gcccgttgag	gatgaggccg	1800
ctagaggcct q	gaggatgagc	tggaaggagt	gagaggggac	aaaacccacc	ttgttggagc	1860
ctgcagggtg (gtgctgggac	tgagccagtc	ccaggggcat	gtattggcct	ggaggtgggg	1920
ttgggattgg (gggctggtgc	cagccttcct	ctgcagctga	cctctgttgt	cctccccttg	1980
ggcggctgag a	agccccagct	gacatggaaa	tacagttgtt	ggcctccggc	ctcccctc	2038

<210> 292

<211> 1282

<212> DNA

<213> Homo sapiens

<400> 292

gctttgatca gacaaataca gaccgctgtc atgccaaacg gaactcctca cccaactgct 60 120 qcaataqttc ctccagggcc cgaagctggt ttaatctata caccctatga gtacccctac acattggcac cagctacatc aatccttgag tatcctattg aacctagtgg tgtattaggt 180 gcggtggcta ctaaagttcg aaggcacgat atgcgtgtcc atccttacca aaggattgtg 240 accgcagacc gagccgccac cggcaactaa cctatgacct tctgacctct gaactcttca 300 360 cccaatgatg acctgaccat gcctgcctgc tgatcagtta actggtaatc gcctttgctt gcctgtcgtc agtgcagcga gctgaggcac ttgtccgttc gtcttaccat ctaaccaaac 420 aaaagacaaa gaaattgttg tcctccaact cagctttttt ttttttttc ctgtttgggt 480 540 gaaagtggtt ctagaaactg cactgaatag tagtaaagca ataaggccca attcatccca 600 caqcactgat catcttttaa tatcccaccc taagcgaacg gtaagaaggc ctctcttaag 660 aaqqqqaqac aqatqgtcct taactactca atgacagagg cagttactgt gagagacttc 720 taggaatett tttettetea tagegaagte aaagetetet etgaatgtae tgtgtgatga 780 tgcatcatgc atgaaccttc ggtcagggat atcattggtg aagtgatttc aaaaagtatt caaaatttga tatgctgttt agtcactaca gtgccctcaa agggcagaag ttgcagcctt 840 ttttatattg cctgccaaaa tttgaagtat tagaagaaag tgtgccatga gagaaaaact 900 taaggagttt tgaaaagtaa tgcaaataac aaaactgcaa cactattttt aaaaagataa 960 atatctgagt taaaattact gaatctttat tttacaccta aaaaaatatg agaacaaggt 1020

acatgcatta tgtgtcacat tactgggcaa actgttcaag tattttttt taaacctccc 1080
tgtatagaaa aaaatcatta aggatgtaaa agccatgctt gcctatttgc tgtatacatg 1140
taatgaaatt gtagataaag tgtagtgcat tgaaacaaat gaacaaaaag tagatacttt 1200
tactatacaa gggtgctggt gcagaaaaaa atatatatat ttttggaaat gtagcatttt 1260
atactttcaa gtgttataaa aa 1282

<210> 293 <211> 1372

<212> DNA

<213> Homo sapiens

<400> 293 gattcggcac tagcggggag gagcttcccg cggcctgctc cgccagccgg ggtcggtggc 60 cgcatggctt cggtctcctc tgcgaccttc tcgggccacg gggctcggtc cctactgcag 120 ttcctgcggc tggtagggca gctcaagaga gtcccacgaa ctggctgggt atacagaaat 180 gtccagaggc cggagagcgt ttcagatcac atgtaccgga tggcagttat ggctatggtg 240 300 atcaaagatg accgtcttaa caaagacccg gaagctatga agcagataac ccagctccta 360 ccagaggacc tcagaaagga gctctatgaa ctttgggaag agtacgagac ccaatctagt 420 gcagaagcca aatttgtgaa gcagctagac caatgtgaaa tgattcttca agcatctgaa 480 tatqaaqacc ttqaacacaa acctgggaga ctgcaagact tctatgattc cacagcagga 540 aaattcaatc accctgagat agtccagctt gtttctgaac ttgaggcaga aagaagcact aacatagctg cagctgccag tgagccacac tcctgagaca ctctctaaat tgctgcactc 600 ctgtaacaaa cattattttt ccatttcatt gtattgtgtt ttgccattgt tggtctgttg 660 720 atttccctag atgtgagtct gtttgttttc aattgtctga acttcagcaa gaaatgtgat acaacttggg cactaaaaga agccacagaa caggaagcgg tcatgaaagt gccatggatg 780 840 aacactggag gtggcagtgc ctgtttatga actaaataaa taaatattaa acacctaaaa 900 tattagaata tttattggag atttaaaatc atcttattct gacttaatta ccgatatccc 960 cgaaggctag gttcattgaa taatagaaaa tttcattatg attgctttta agaacagatt cttcagctga tttagtgata agaatccaga aaagaaaatg tactagtgat gtattctctc 1020 cccagatgaa attgctgcct tattcagatt tactctcttg agccagattt tgaatttcac 1080 tgcagactgc ttcagacttc taatcatagg cttgtaaacc tactaatagg ctctgcccct 1140 cttcccaata ctttttgtca tttagagata taaaccgggg catataaaaa tgcaacttgt 1200 attcctttgt atatttttcc ctgtctgact tataaatctt gagaccttta ttgtaaaagc 1260 atttatcatc aggtgagaaa tataaatagg aactggggtc attgagcctc aggtagggaa 1320

1372 tatatcaacc cgatttcttc ctctcttttc ccttttatag gataaataat cc <210> 294 <211> 690 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (21)..(21) <223> n is a, c, g, t or u <220> <221> misc feature <222> (653)..(653) <223> n is a, c, g, t or u <400> 294 60 ttttttttt tttttttgg nagcctgaga gggcctctcc attctttatt cagtcccaat 120 aagttaaagg gcaagggtag ggggcagggc ctcttaggtg aggacgctgc taactgaagg cagcagttca gccagttgct ccaagatgcc caccgcttgg cacagcgggt taccctgcag 180 240 gttgaggagg accagcctgg ggcaggaggc aagaggctgg agcactgcag gctgctggag 300 qcqqttqttq cacagtagca gctcctgcag ccggggtagg ttggtgacgc cgtctaggga 360 ctctatggca ttatcactgg cctgcagcac ctgggggcag gaagggcagg gaggcaggac 420 aggcqctqtc agccagggat ggttcagcaa ctgaggagct cagggtgacg ggtccacaga gcacagaggg gctcacaggg tcaggctgcg tgatggaggt ggaaggcacg cagttacctg 480 ttcggggtgg agggtcctgc acatctcctt gtaggatggg cacacttctg agggagagga 540 600 agaggaaaag aaccacccgt gacagggacg gagacatggg tactttacct caaggcagcg 660 cagggcagcc agtgcaggtg gcagggttcg gagacgattg tgtgacaagt cangatgggt 690 gaccaagagc agctgttcca gatggcagag <210> 295 <211> 2549 <212> DNA <213> Homo sapiens <400> 295 agacaagatg gcgacgtccg tggggcaccg atgtctggga ttactgcacg gggtcgcgcc 60 gtggcggagc agcctccatc cctgtgagat cactgccctg agccaatccc tacagccctt 120 acggaagctg ccttttagag cctttcgcac agatgccaga aaaatccaca ctgcccctgc 180 ccgaaccatg ttcctgctgc gtcccctgcc cattctgttg gtgacaggcg gcgggtatgc 240 agggtaccgg cagtatgaga agtacaggga gcgagagctg gagaagctgg gattggagat 300

tccacccaaa	cttgctggtc	actgggaggt	ggctttgtac	aagtcagtgc	caacgcgctt	360
gctgtcacgg	gcctggggtc	gcctcaatca	ggtggagctg	ccacactggc	tgcgcaggcc	420
cgtctacagc	ctgtacatct	ggacgtttgg	ggtgaacatg	aaagaggccg	ctgtggagga	480
cctgcatcac	taccgcaacc	tcagcgagtt	cttccggcgc	aagctgaagc	cgcaggcccg	540
gcctgtctgt	ggcctgcaca	gcgtggtgag	gcctgaccct	ttcctcctgc	aggaaacagg	600
actttttcct	gcctccccag	cacageeeee	ctggtctcca	gcgtatctgg	aaggggcagg	660
atgacaaggg	gaggtggggg	ctgtctcctg	gggggaggag	accctgctct	ccctggcagc	720
aagcctctcc	tgcccttcca	gattagccca	tcggatggaa	ggatcctcaa	ctttgggcag	780
gtgaagaact	gtgaggtgga	gcaggtaaag	ggggtcacct	actccctgga	gtcgttcctg	840
ggcccgcgta	tgtgcacaga	ggacctgccc	ttcccaccag	ccgcgtcgtg	tgactccttc	900
aagaaccagc	tggtcacccg	ggaagggaat	gagctctatc	actgtgtcat	ctacctggcc	960
cctggggact	accactgctt	ccactcccc	accgactgga	ctgtgtccca	ccggcgccac	1020
ttcccaggct	ccctgatgtc	agtgaaccct	ggcatggctc	gctggatcaa	agagctcttc	1080
tgccataacg	agcgggtggt	cctgacgggg	gactggaaac	atggcttctt	ctcactgaca	1140
gctgtggggg	ccaccaacgt	gggctccatt	cgcatctact	ttgaccggga	cctgcacaca	1200
aacagcccaa	ggcacagcaa	gggctcctac	aatgacttca	gcttcgtgac	gcacaccaat	1260
agagagggcg	tccccatgcg	taagggcgag	cacctgggcg	agttcaacct	gggctccacc	1320
atcgtgctca	tcttcgaggc	ccccaaggac	ttcaatttcc	agctgaaaac	aggacagaaa	1380
atccgctttg	gggaagccct	gggctcgctc	tagagtctct	ttcctgatta	tggctgctaa	1440
gggatctttt	ccaaacagag	tgagggtctt	ttcaagaggg	aggcccatga	ggccatccag	1500
gtaagggcct	gcctcagcgt	ggttgggagt	ctgaccaggt	aggacttgaa	tgattcggct	1560
cccacctgtt	ccagaggtgc	agacaagagg	tggcgagagc	ccccgtcatg	cccctcaacc	1620
tatecegtte	cttctgccta	caaataaaaa	gtgcaggctg	gaatgatctc	agtcacattt	1680
ggatctttt	aaacactgta	tagacggaag	agcctgcatt	cctgaccgaa	ccttcagttg	1740
gtctcggttg	tegttttte	ttgctgctcc	tccccccatc	acctgagctg	ttttctgttg	1800
gccccttttg	ttttttggcc	ttaacgctcc	tgctgcacag	ggtgaggtac	ctccttggca	1860
cagactgtgg	atgeetetee	cccagcagag	ccacacagcc	ttcgtgacaa	. ctgctttccg	1920
ttcccacatt	cacctcatcc	tgctctttag	aaaaagcagt	ctttgtgctt	gtggctgaac	1980
gcatcaccct	ggactctgct	agtgtcttct	gaggacactg	atgacactga	ttaatgatac	2040
agacetttge	: aggacctgat	gagtgaccct	tctggagctg	gccaggtcct	ctgcagcagg	2100

caagaccaat	caatcactga	acctgcctca	tggcaccaga	gtgaacaggg	caggcaggta	2160
gtaggcccag	g ctggggaaat	gggagagttc	ctgtccccct	ccacatatcc	ctacatgaaa	2220
tatgggaaag	g ttgctgctat	tgattcaggg	tctgtcttgg	aggcagagga	cccttggtgg	2280
atagttggt	c aatgcctgga	aaacctgtcc	cagtttatca	ggaacgcagg	cctggggagc	2340
ccccagtgg	c ggggacaggg	ccagatttca	tgttgaccct	ggggatgctg	tgaatttctc	2400
ctgcaggaga	a gacatcattg	aattttttca	actgtatcag	tagcacagta	tttttgtatg	2460
aaaagtggg	a gacttctgaa	cagtaattca	tttaattgca	aagcattttg	aaataaaaaa	2520
aatcaaact	t aaaaaaaaaa	aaaaaaaaa				2549

<210> 296

<211> 2269

<212> DNA

<213> Homo sapiens

<400> 296 agtataaaca aggaacccga ctggttagac agattttgtt tttcttcttc ccgcgcgctt 60 120 tagctccctg tcctttggtc gcatttgtgg gcgcgcggca cgcagccggg aggccgagga 180 ctcggagttc acctgcagga aagtatgcct cagactcctc ccttttcagc aatgtttgac 240 agcagtggtt acaatcgaaa cctctatcag tctgcagagg acagctgtgg agggttgtat 300 taccatgaca acaacctcct ctctggatcc ctggaagcac tcatccagca cttagtacct aatgtggatt actatccaga tagaacatac atatttacct tcctactcag ttctcggtta 360 420 tttatqcatc cqtatqagct aatggccaaa gtttgccact tatgtgttga gcaccagaga 480 ctaagtgatc ctgatagtga taagaaccag atgagaaaaa ttgcacccaa aatccttcaa ctcctcacgg aatggacgga aacatttccc tatgattttc gggatgaaag aatgatgaga 540 aacttaaaag atctggctca ccgaatagcc agtggcgaag agcagacata cagaaagaat 600 660 gtccagcaaa tgatgcagtg tctgatccgc aagcttgctg cgctcagcca gtacgaagaa 720 gtcctggcaa aaatcagctc cacatccaca gatcggctca cagttctcaa gaccaagcca 780 caqtctatac aaagggatat cattactgtc tgcaacgacc cttacacgtt ggcccagcag 840 ctgactcata tagagctgga gaggctcaat tatattgggc cagaagaatt tgttcaggcg ttcgtgcaga aggacccttt ggataatgac aagagttgct acagtgaacg gaagaaaaca 900 cgaaacttag aagcttacgt ggaatggttt aatcgcctca gctacttggt tgctacagaa 960 1020 atctgtatgc ctgttaagaa aaaacaccga gcaagaatga ttgagtattt cattgacgta gctcgggagt gttttaacat tggcaacttc aactccttga tggcgataat ctctggtatg 1080 aatatgagcc cagtctctcg actaaaaaaa acttgggcca aagtgaagac tgcaaaattt 1140

gacattcttg	agcatcagat	ggacccttca	agcaatttct	ataattatcg	aacagctctt	1200
cgtggggcag	cacaaaggtc	tttaactgct	catagtagta	gagaaaagat	tgtgatacca	1260
ttcttcagtc	tcttaatcaa	agatatttat	ttcctcaatg	agggttgtgc	caaccgcctt	1320
cccaatggcc	atgtcaattt	tgagaaattt	tgggaactgg	ccaaacaagt	gagtgaattt	1380
atgacatgga	aacaagtgga	gtgtccattt	gagagggacc	ggaagatctt	gcagtatctg	1440
ctcacagtac	cagtcttcag	tgaagatgct	ctctacttgg	cttcttatga	gagtgaagga	1500
cctgaaaatc	atatagagaa	agacagatgg	aagtctttaa	ggtcgagcct	cttaggcaga	1560
gtttaacaca	tgggagctgc	ctgcctgctg	ctgctgctgc	ttcctgcaga	tcatggaggg	1620
gctggccttt	gttttctggc	atctcgtacc	acgaacgctc	atgaagaccc	tgcagtcatt	1680
ggagcacccg	ggtcagcaaa	gcacacaagc	tcactcaaga	ccagatggag	aacttatttc	1740
ctgcagctga	cagatagact	cagattttgt	gagactgaaa	tgttcactga	agacacttga	1800
gaaagaatcc	tctaaaaatc	ccggctctgc	acattattca	tctcctggaa	tttccatgtg	1860
aatcacagct	ctgcacctgg	atggagtttt	cttttgtgtg	tgtgtgtttt	ttttaatttg	1920
gttgaacatt	tgctgctaat	gggacttgcc	cagctgagtg	ctggctctga	ggaagcccac	1980
gtttcttttg	ttaacttaaa	tgaagaaagg	agtggaggga	ggggatctaa	aacccccccg	2040
tttagatccc	aaaccttagc	tcaaccagta	ttgccagaga	ggggtaagac	tggttggaag	2100
ctgactgcag	actttgtttc	cccttagtat	gtgctgtgtt	gtaaattttt	ctcctccctc	2160
ctcctacaag	gttttgagtt	ggctgctggt	tagcaaactc	ctttttaccc	atataagtta	2220
tttaatataa	taatgaagct	caacactgtg	gtaggaaaat	agccactag		2269

<210> 297

<211> 11490

<212> DNA

<213> Homo sapiens

<400> 297

atgaatacat totggcotgg cagagaattg attgttcaat ggtatccatt tgatgaaaac 60 agaaatcacc catctgtttc atggcttaag atggtttgga aaaatcttta tatacatttt 120 tcagaggatt tgactttatt tgatgagatg ccacttatcc ccagaactat actagaggaa 180 ggtcagacat gtgtggaact cattagactc aggattccat cgttagtcat tttagacgat 240 gaatctgaag cacagcttcc agaattttta gcagacattg tacaaaaact tggagggttt 300 gtccttaaaa aattagatgc atctatacaa catccgctta ttaaaaaata tattcattca 360 ccattaccaa gtgctgtttt gcagataatg gagaagatgc cattgcagaa attgtgtaat 420 caaataactt cgctacttcc aacacacaaa gatgccctga ggaagttctt ggctagttta 480

accgatagca	gtgagaaaga	gaaaagaatt	attcaagaat	tggcaatatt	caagcgcatt	540
aaccattctt	ctgatcaggg	aatttcctct	tatacaaaat	tgaaaggttg	taaagtotta	600
caccatactg	ccaaactccc	agcagatctg	cgactttcta	tttcagtaat	agacagtagt	660
gatgaagcta	ctattcgtct	ggcaaacatg	ttgaaaatag	aacagttaaa	gaccactagc	720
tgcttaaagc	ttgttttaaa	agatattgaa	aatgcatttt	attcacatga	agaggtaaca	780
cagcttatgt	tatgggtcct	tgagaatcta	tcttctctta	aaaatgagaa	tccaaatgtg	840
cttgagtggt	taacaccatt	aaaattcatc	cagatatcac	aggaacagat	ggtatcagct	900
ggtgaactct	ttgaccctga	tatagaagta	ctaaaggatc	tcttttgtaa	tgaagaagga	960
acctatttcc	caccctcagt	ttttacctca	ccagatattc	ttcactcctt	aagacagatt	1020
ggtttaaaaa	acgaagccag	tctcaaagaa	aaggatgttg	tgcaagtggc	aaaaaaaatt	1080
gaagccttac	aggtcggtgc	ttgtcctgat	caagatgttc	ttctgaagaa	agccaaaacc	1140
ctcttactgg	ttttaaataa	gaatcacaca	ctgttgcaat	catctgaagg	aaagatgaca	1200
ttgaagaaaa	taaaatgggt	tccagcctgc	aaggaaaggc	ctccaaatta	tccaggctct	1260
ttggtctgga	aaggagatct	ctgtaatctc	tgtgcaccac	cagatatgtg	tgatgtaggc	1320
catgcaattc	tcattggctc	ctcacttcct	cttgttgaaa	gtatccatgt	aaacctggaa	1380
aaagcattag	ggatcttcac	aaaacctagc	cttagtgctg	tcttaaaaca	ctttaaaatt	1440
gttgttgatt	ggtattcttc	aaaaaccttt	agtgatgaag	actactatca	attccagcat	1500
attttgcttg	agatttacgg	attcatgcat	gatcatctaa	atgaagggaa	agattctttt	1560
agagccttaa	aatttccatg	ggtttggact	ggcaaaaagt	tttgtccact	tgcccaggct	1620
gtgattaaac	caatccatga	tcttgacctt	cagccttatt	tgcataatgt	acctaaaacc	1680
atggcaaaat	tccaccaact	atttaaggtc	tgtggttcaa	tagaggagtt	gacatcagat	1740
catatttcca	tggttattca	gaagatatat	ctcaaaagtg	accaagatct	cagtgaacaa	1800
gaaagcaaac	aaaatcttca	tcttatgttg	aatattatca	gatggctgta	tagcaatcag	1860
attccagcaa	gccccaacac	accagttcct	atacatcata	gcaaaaatcc	ttctaaactt	1920
atcatgaagc	caattcacga	atgctgttat	tgtgacatta	aagttgatga	ccttaatgac	1980
ttacttgaag	attctgtgga	accaatcatt	ttggtgcatg	aggacatacc	catgaaaact	2040
gcagaatggc	taaaagttcc	atgccttagt	acaagactga	taaatcctga	aaacatggga	2100
tttgagcagt	caggacaaag	agagccactt	actgtaagaa	ttaaaaatat	tctggaagaa	2160
tacccttcag	tgtcagatat	ttttaaagaa	ctacttcaaa	acgctgatga	tgcaaatgca	2220
acagaatgca	gtttcttgat	tgatatgaga	agaaatatgg	acataagaga	gaatctccta	2280
gacccaggga	tggcagcttg	tcatggacct	gctttgtggt	cattcaacaa	ttctcaattc	2340

tcagattcag	attttgtgaa	cataactagg	ttaggagaat	ctttaaaaag	gggagaagtt	2400
gacaaagttg	gaaaatttgg	tcttggattt	aattctgtgt	accatatcac	tgacattccc	2460
atcattatga	gtcgggaatt	catgataatg	ttcgatccaa	acataaatca	tatcagtaaa	2520
cacattaaag	acaaatccaa	tcctgggatc	aaaattaatt	ggagtaaaca	acagaaaaga	2580
cttagaaaat	ttcctaatca	gttcaaacca	tttatagatg	tatttggctg	tcagttacct	2640
ttgactgtag	aagcacctta	cagctataat	ggaacccttt	tccgactgtc	ctttagaact	2700
caacaggaag	caaaagtgag	tgaagttagt	agtacgtgct	acaatacagc	agatatttat	2760
tctcttgtgg	atgaatttag	tctctgtgga	cacaggctta	tcattttcac	tcagagtgta	2820
aagtcaatgt	atttgaagta	cttgaaaatt	gaggaaacca	accccagttt	agcacaagat	2880
acagtaataa	ttaaaaaaaa	atcctgctct	tccaaagcat	tgaacacacc	tgtcttaagt	2940
gttttaaaag	aggctgctaa	gctcatgaag	acttgcagca	gcagtaataa	aaagcttccc	3000
agtgatgaac	caaagtcatc	ttgcattctt	cagatcacag	tggaagaatt	tcaccatgtg	3060
ttcagaagga	ttgctgattt	acagtcgcca	ctttttagag	gtccagatga	tgacccagct	3120
gctctctttg	aaatggctaa	gtctggccaa	tcaaaaaagc	catcagatga	gttgtcacag	3180
aaaacagtag	agtgtaccac	gtggcttctg	tgtacttgca	tggacacagg	agaggctctg	3240
aagttttccc	tgagtgagag	tggaagaaga	ctaggactgg	ttccatgtgg	ggcagtagga	3300
gttcagctgt	cagaaatcca	ggaccagaag	tggacagtga	aaccacacat	tggagaggtg	3360
ttttgctatt	tacctttacg	aataaaaaca	ggcttgccag	ttcatatcaa	tgggtgcttt	3420
gctgttacat	caaataggaa	agaaatctgg	aaaacagata	caaaaggacg	atggaatacc	3480
acgttcatga	gacatgttat	tgtgaaagct	tacttacagg	tactgagtgt	cttacgggac	3540
ctggccacta	gtggggagct	aatggattat	acttactatg	cagtatggcc	cgatcctgat	3600
ttagttcatg	atgattttc	tgtaatttgc	caaggatttt	atgaagatat	agctcatgga	3660
aaagggaaag	aactgaccaa	agtcttctct	gatggatcta	cttgggtttc	catgaagaac	3720
gtaagatttc	tagatgactc	tatacttaaa	agaagagatg	ttggttcagc	agccttcaag	3780
atatttttga	aatacctcaa	gaagactggg	tccaaaaacc	tttgtgctgt	tgaacttcct	3840
tcttcggtaa	aattaggatt	tgaagaagct	ggctgcaaac	agatactact	tgaaaacaca	3900
ttttcagaga	aacagttttt	ttctgaagtg	ttttttccaa	atattcaaga	aattgaagca	3960
gaacttagag	atcctttaat	gatctttgtt	ctaaatgaaa	. aagttgatga	gttctcggga	4020
gttcttcgtg	ttactccatg	tattccttgt	tccttggagg	ggcatccttt	ggttttgcca	4080
tcaagattga	tccaccccga	aggacgagtt	gcaaagttat	ttgatattaa	agatgggaga	4140

ttcccttatg	gttctactca	ggattatctc	aatcctatta	ttttgattaa	actagttcag	4200
ttaggtatgg	caaaagatga	tattttatgg	gatgatatgc	tagaacgtgc	agtgtcagta	4260
gctgaaatta	ataaaagtga	tcatgttgct	gcatgcctaa	gaagtagtat	cttattgagt	4320
cttatcgatg	agaaactaaa	aataagggat	cctagagcaa	aggattttgc	tgcaaaatat	4380
caaacaatcc	gcttccttcc	atttctgaca	aaaccagcag	gtttttcttt	ggactggaaa	4440
ggcaacagtt	ttaagcctga	aaccatgttt	gcagcaactg	acctttatac	agctgaacat	4500
caagatatag	tttgtctttt	gcaaccaatt	ctaaatgaaa	attcccattc	ttttagaggt	4560
tgtggttcag	tgtcattggc	tgttaaagag	tttttgggat	tactcaagaa	gccaacagtt	4620
gatctggtta	taaaccaatt	gaaagaagta	gcaaaatcag	ttgatgatgg	aattacactg	4680
taccaggaga	atatcaccaa	tgcttgctac	aaataccttc	atgaagcctt	gatgcaaaat	4740
gaaatcacta	agatgtcaat	tattgataag	ttaaaaccct	ttagcttcat	tctagttgag	4800
aatgcatatg	ttgactcaga	aaaggtttct	tttcatttaa	attttgaggc	ggcaccatac	4860
ctttatcagt	tgcctaataa	gtataaaaat	aatttccgcg	aactttttga	aaccgtgggt	4920
gtgaggcagt	catgcactgt	tgaagatttt	gctcttgttt	tggaatctat	tgatcaagaa	4980
agaggaacaa	agcaaataac	agaagagaat	tttcagcttt	gccgacgaat	aatcagtgaa	5040
ggaatatgga	gtctcattag	agaaaagaaa	caagaatttt	gtgagaaaaa	ttatggcaag	5100
atattattgc	cagatactaa	tcttatgctt	ctccctgcta	aatcgttatg	ctacaatgat	5160
tgcccttgga	taaaagtaaa	ggataccact	gtaaaatatt	gtcatgctga	catacccagg	5220
gaagtagcag	taaaactagg	agcagtccca	aagcgacaca	aagccttaga	aagatatgca	5280
tccaatgtct	gttttacaac	acttggcaca	gaatttgggc	agaaagaaaa	attgaccagc	5340
agaattaaga	gcatccttaa	tgcatatcct	tctgaaaagg	aaatgttgaa	agagcttctt	5400
caaaatgctg	atgatgcaaa	ggcgacagaa	atctgttttg	tgtttgatcc	tagacagcat	5460
ccagttgata	gaatatttga	tgataagtgg	gccccattgc	aagggccagc	actttgtgtg	5520
tacaacaacc	agccatttac	agaagatgat	gttagaggaa	ttcagaatct	tggaaaaggc	5580
acgaaagagg	gaaatcctta	taaaactgga	cagtatggaa	taggattcaa	ttctgtgtat	5640
catatcacag	actgcccatc	ttttatttct	ggcaatgaca	tcctgtgtat	ttttgatcct	5700
catgccagat	atgcaccagg	ggccacatcc	attagtcccg	gacgcatgtt	tagagatttg	5760
gatgcagatt	ttaggacaca	gttctcagat	gttctggatc	tttatctggg	aacccatttt	5820
aaactggata	attgcacaat	gttcagattt	cctcttcgta	atgcagaaat	ggcaaaagtt	5880
tcggaaattt	cgtctgttcc	agcatcagac	agaatggtcc	agaatctttt	ggacaaactg	5940
cgctcagatg	gggcagaact	tctaatgttt	cttaatcaca	tggaaaaaat	ttctatttgt	6000

gaaatagata	agagtactgg	agctctaaat	gtgctgtatt	cagtaaaggg	caaaatcaca	6060
gatggagaca	gattgaaaag	gaaacaattt	catgcatctg	taattgatag	tgttactaaa	6120
aagaggcagc	tcaaagacat	accagttcaa	caaataacct	atactatgga	tactgaggac	6180
tctgaaggaa	atcttactac	gtggctaatt	tgtaatagat	caggettttc	aagtatggag	6240
aaagtatcta	aaagtgtcat	atcagctcac	aagaaccaag	atattactct	tttcccacgt	6300
ggtggagtag	ctgcctgcat	tactcacaac	tataaaaaac	cccatagggc	cttctgtttt	6360
ttgcctcttt	ctttggagac	tgggctgcca	tttcatgtga	atggccactt	tgcactggat	6420
tcagccagaa	ggaacctgtg	gcgtgatgat	aatggagttg	gtgttcgaag	tgactggaat	6480
aacagtttaa	tgacagcatt	aatagctcct	gcatatgttg	aattgctaat	acagttaaaa	6540
aaacggtatt	tccctggttc	tgatccaaca	ttatcagtgt	tacagaacac	ccctattcat	6600
gttgtaaagg	acactttaaa	gaagttttta	tegtttttee	cagttaaccg	tcttgatcta	6660
cagccagatt	tatattgtct	agtgaaagca	ctttacaatt	gcattcacga	agacatgaaa	6720
cgtcttttac	ctgttgtgcg	ggctccaaat	attgatggct	ctgacttgca	ctctgcagtt	6780
ataattactt	ggatcaatat	gtctacttct	aataaaacta	gaccattttt	tgacaattta	6840
ctacaggatg	aattacaaca	ccttaaaaat	gcagattata	atatcaccac	acgcaaaaca	6900
gtagcagaga	atgtctatag	gctgaaacat	ctccttttag	aaattggttt	caacttggtt	6960
tataactgtg	atgaaactgc	taatctttac	cactgtctta	tagatgcaga	tattcctgtt	7020
agttatgtga	cccctgctga	tatcagatct	tttttaatga	cattttcctc	tcctgacact	7080
aattgccata	ttgggaagct	gccttgtcgt	ctgcagcaga	ctaatctaaa	actttttcat	7140
agtttaaaac	ttttagttga	ttattgtttt	aaagatgcag	aagaaaatga	gattgaagtt	7200
gagggattgc	cccttctcat	cacactggac	agtgttttgc	aaacttttga	tgcaaaacga	7260
cccaagtttc	taacaacata	tcatgaattg	attccatccc	gcaaagactt	gtttatgaat	7320
acattatatt	tgaaatatag	taatattta	ttgaactgta	aagttgcaaa	agtgtttgac	7380
atttccagct	ttgctgattt	gttatcctct	gtgttgcctc	gagaatataa	gaccaaaagt	7440
tgcacaaagt	ggaaagacaa	ttttgcaagt	gagtcttggc	ttaagaatgc	atggcatttt	7500
attagtgaat	ctgtaagtgt	gaaagaagat	caggaagaaa	caaaaccaac	atttgacatt	7560
gttgttgata	ctctaaaaga	ctgggcattg	cttccaggaa	caaagtttac	tgtttcagcc	7620
aaccagcttg	tggttcctga	aggagatgtt	ctgcttcctc	tcagccttat	gcacattgca	7680
gtttttccaa	atgcccagag	tgataaagtt	tttcatgctc	taatgaaagc	tggctgtatt	7740
cagettgett	tgaacaaaat	ctgttccaaa	gacagtgcat	ttgttccttt	gttgtcatgt	7800

cacacagcaa atatagagag	ccccacaagc	atcttgaagg	ctctacatta	tatggtccaa	7860
acttcaacat ttagagcaga	aaaattagta	gaaaatgatt	ttgaggcact	tttgatgtat	7920
ttcaactgca atttgaatca	tttgatgtcc	caagatgata	taaaaattct	aaagtcactt	7980
ccgtgctata aatccatcag	tggccgctat	gtaagcattg	gaaaatttgg	aacatgctac	8040
gtacttacaa aaagtatccc	ttcagctgaa	gtggagaaat	ggacacagtc	atcatcatct	8100
gcatttcttg aagaaaaaat	acacttaaaa	gaactatatg	aggtgattgg	ttgtgtacct	8160
gtagatgatc ttgaggtata	tttgaaacac	ctcttaccaa	aaattgaaaa	tctctcttat	8220
gatgcaaaat tagagcactt	gatctacctt	aagaatagat	tatcaagtgc	tgaggaatta	8280
tcagagatta aggaacaact	ttttgaaaaa	ctggaaagtt	tattgataat	ccatgatgct	8340
aacagtagac taaagcaagc	aaagcatttc	tatgatagaa	ctgtgagagt	ttttgaagtt	8400
atgcttcctg aaaaattgtt	tattcctaat	gatttcttta	agaaattgga	acaacttata	8460
aaacccaaaa atcatgttac	atttatgaca	tactgggtgg	aattcttaag	aaatattgga	8520
ctaaaataca tactttctca	gcagcagttg	ttacagtttg	ctaaggaaat	cagtgtgagg	8580
gctaatacag aaaactggtc	caaagaaaca	ttgcaaaata	cagttgatat	ccttctgcat	8640
catatattcc aagaacgaat	ggatttgtta	tctggaaatt	ttctgaaaga	actatcttta	8700
ataccattct tatgtcctga	gcgggccccc	gcggaattca	ttagatttca	tcctcaatat	8760
caagaggtaa atggaacact	tcctcttata	aagttcaatg	gagcacaggt	aaatccaaaa	8820
ttcaagcaat gtgatgtact	ccagctgtta	tggacatcct	gccctattct	tccagagaaa	8880
gctacaccct taagcattaa	agaacaagaa	ggtagtgacc	ttggtccaca	agaacagctt	8940
gaacaagttt taaatatgct	taatgttaac	ctggatcctc	ctcttgataa	ggtaatcaat	9000
aactgcagaa acatatgcaa	cataacgacg	ttggatgaag	aaatggtaaa	aactagagca	9060
aaagtcttaa ggagcatata	tgaattcctc	agtgcagaaa	aaagggaatt	tcgttttcag	9120
ttgcgagggg ttgcttttgt	gatggtagaa	gatggttgga	aacttctgaa	gcctgaggag	9180
gtagtcataa acctagaata	tgaatctgat	tttaaacctt	atttgtacaa	gctaccttta	9240
gaacttggca catttcacca	gttgttcaaa	cacttaggta	ctgaagatat	tatttcaact	9300
aagcaatatg ttgaagtgtt	gagccgcata	tttaaaaatt	ctgagggcaa	acaattagat	9360
cctaatgaaa tgcgtacagt	taagagagta	gtttctggtc	tgttcaggag	tctacagaat	9420
gattcagtca aggtgaggag	tgatctcgag	aatgtacgag	accttgcgct	ttacctccca	9480
agccaggatg gtagattggt	aaagtcaagc	atcttagtgt	ttgacgatgc	gccacattat	9540
aaaagtagaa tccaggggaa	tattggtgtg	caaatgttag	ttgatctcag	ccagtgctac	9600
ttagggaaag accatggatt	tcacactaag	ttgataatgc	tctttcctca	aaaacttaga	9660

cctcgattat	tgagcagtat	acttgaagaa	caattagatg	aagagactcc	caaagtttgt	9720
cagtttggag	cgttgtgttc	tcttcaagga	agattgcagt	tactcttgtc	ttctgaacag	9780
ttcattacag	gactgattag	aattatgaag	catgaaaatg	ataatgcttt	tctggccaat	9840
gaagaaaaag	ccataagact	ttgcaaagcc	ctaagagaag	gattgaaagt	atcctgcttt	9900
gaaaagcttc	aaacaacatt	aagagttaaa	ggttttaatc	ctattcccca	cagcagaagt	9960
gaaacttttg	cttttttgaa	gcgatttggt	aatgcagtca	tcttgctcta	cattcaacat	10020
tcagacagta	aagacattaa	tttcctgtta	gcattggcaa	tgactcttaa	atcagcaact	10080
gacaatttga	tttctgacac	ttcatattta	attgctatgc	taggatgcaa	tgatatttac	10140
aggattggtg	agaaacttga	cagtttagga	gtgaaatatg	actcttcgga	gccatcaaaa	10200
ctggaacttc	caatgcctgg	cacaccaatt	cctgctgaaa	ttcattacac	tctgcttatg	10260
gacccaatga	atgttttta	cccgggagaa	tatgttgggt	accttgttga	tgctgaaggt	10320
ggtgatatct	atggatcata	ccagccaaca	tacacatatg	caattattgt	acaagaagtt	10380
gaaagagaag	atgctgacaa	ttctagtttt	ctaggaaaga	tatatcagat	agatattggt	10440
tatagtgaat	ataaaatagt	tagctctctt	gatctgtata	agttttcaag	acctgaggaa	10500
agctctcaaa	gcagggacag	tgctccttct	acaccaacca	gccccactga	gttcctcacc	10560
cctggcctga	gaagcattcc	tcctctttc	tctggtagag	agagccacaa	gacttcttcc	10620
aaacatcagt	cccccaaaaa	gcttaaggtt	aattctttac	cagaaatctt	aaaagaagtg	10680
acatctgtgg	tggagcaagc	atggaagctt	ccagaatcgg	aacgaaaaaa	gattattagg	10740
cggttgtatt	tgaaatggca	tcctgacaaa	aatccagaga	accatgacat	tgccaatgaa	10800
gtttttaaac	atttgcagaa	tgaaatcaac	agattagaaa	aacaggcttt	tctagatcaa	10860
aatgcagaca	gggcctccag	acgaacattt	tcaacctcag	catcccgatt	tcagtcagac	10920
aaatactcat	ttcagagatt	ctatacttca	tggaatcaag	aagcaacgag	ccataaatct	10980
gaaagacagc	aacagaacaa	agaaaaatgc	ccccttcag	ccggacagac	ttactctcaa	11040
aggttctttg	ttcctcccac	tttcaagtcg	gttggcaatc	cagtggaago	acgcagatgg	11100
ctaagacaag	ccagagcaaa	cttctcagct	gccaggaatg	accttcataa	aaatgccaat	11160
gagtgggtgt	gctttaaatg	ttacctttct	accaagttag	ctttgattgc	agctgactat	11220
gctgtgaggg	gaaagtctga	taaagatgta	aaaccaactg	cacttgctca	. gaaaatagag	11280
gaatatagto	agcaacttga	aggactgaca	aatgatgtto	acacattgga	. agcttatggt	11340
gtagacagtt	taaaaacaag	ataccctgat	ttgcttccct	ttcctcagat	cccaaatgac	11400
aggttcactt	ctgaggttgc	tatgagggtg	atggaatgta	ctgcctgtat	. cataataaaa	11460

cttgaaaatt ttatgcaaca aaaagtgtga

11490

<210> 298 <211> 3429 <212> DNA <213> Homo sapiens

<400> 298 60 ggctggaagc cggaagcgag caaagtggag ccgactcgaa ctccaccggc acgagggcgg aaaagaaagc ctcagaacgt tcgctcgctg cgtccccagc cggggccgag ccctccgcga 120 180 cgccacccgg gccatggggg ccgcacgcag cccgccgtcc gctgtcccgg ggcccctgct ggggctgctc ctgctgctcc tgggcgtgct ggccccgggt ggcgcctccc tgcgactcct 240 300 ggaccaccgg gcgctggtct gctcccagcc ggggctaaac tgcacggtca agaatagtac ctgcctggat gacagctgga ttcaccctcg aaacctgacc ccctcctccc caaaggacct 360 gcagatccag ctgcactttg cccacaccca acaaggagac ctgttccccg tggctcacat 420 cgaatggaca ctgcagacag acgccagcat cctgtacctc gagggtgcag agttatctgt 480 cctgcagctg aacaccaatg aacgtttgtg cgtcaggttt gagtttctgt ccaaactgag 540 600 gcatcaccac aggcggtggc gttttacctt cagccacttt gtggttgacc ctgaccagga 660 atatgaggtg accepticace acctgeceaa geceatecet gatggggace caaaccaeca 720 gtccaagaat ttccttgtgc ctgactgtga gcacgccagg atgaaggtaa ccacgccatg catgagetea ggeageetgt gggaeeceaa cateacegtg gagaeeetgg aggeeeaeca 780 gctgcgtgtg agcttcaccc tgtggaacga atctacccat taccagatcc tgctgaccag 840 ttttccgcac atggagaacc acagttgctt tgagcacatg caccacatac ctgcgcccag 900 accagaagag ttccaccagc gatccaacgt cacactcact ctacgcaacc ttaaagggtg 960 1020 ctgtcgccac caagtgcaga tccagccctt cttcagcagc tgcctcaatg actgcctcag acacteegeg actgttteet geecagaaat geeagacaet eeagaaceaa tteeggaeta 1080 1140 catgcccctg tgggtgtact ggttcatcac gggcatctcc atcctgctgg tgggctccgt 1200 catcctqctc atcgtctgca tgacctggag gctagctggg cctggaagtg aaaaatacag 1260 tgatgacacc aaatacaccg atggcctgcc tgcggctgac ctgatccccc caccgctgaa gcccaggaag gtctggatca tctactcagc cgaccacccc ctctacgtgg acgtggtcct 1320 gaaattcgcc cagttcctgc tcaccgcctg cggcacggaa gtggccctgg acctgctgga 1380 agagcaggcc atctcggagg caggagtcat gacctgggtg ggccgtcaga agcaggagat 1440 ggtggagagc aactctaaga tcatcgtcct gtgctcccgc ggcacgcgcg ccaagtggca 1500 ggcgctcctg ggccgggggg cgcctgtgcg gctgcgctgc gaccacggaa agcccgtggg 1560

ggacctgttc	actgcagcca	tgaacatgat	cctcccggac	ttcaagaggc	cagcctgctt	1620
cggcacctac	gtagtctgct	acttcagcga	ggtcagctgt	gacggcgacg	tccccgacct	1680
gttcggcgcg	gcgccgcggt	acccgctcat	ggacaggttc	gaggaggtgt	acttccgcat	1740
ccaggacctg	gagatgttcc	agccgggccg	catgcaccgc	gtaggggagc	tgtcggggga	1800
caactacctg	cggagcccgg	gcggcaggca	gctccgcgcc	gccctggaca	ggttccggga	1860
ctggcaggtc	cgctgtcccg	actggttcga	atgtgagaac	ctctactcag	cagatgacca	1920
ggatgccccg	tccctggacg	aagaggtgtt	tgaggagcca	ctgctgcctc	cgggaaccgg	1980
catcgtgaag	cgggcgcccc	tggtgcgcga	gcctggctcc	caggcctgcc	tggccataga	2040
cccgctggtc	ggggaggaag	gaggagcagc	agtggcaaag	ctggaacctc	acctgcagcc	2100
ccggggtcag	ccagcgccgc	agcccctcca	caccctggtg	ctcgccgcag	aggagggggc	2160
cctggtggcc	gcggtggagc	ctgggcccct	ggctgacggt	gccgcagtcc	ggctggcact	2220
ggcgggggag	ggcgaggcct	gcccgctgct	gggcagcccg	ggcgctgggc	gaaatagcgt	2280
cctcttcctc	cccgtggacc	ccgaggactc	gccccttggc	agcagcaccc	ccatggcgtc	2340
tcctgacctc	cttccagagg	acgtgaggga	gcacctcgaa	ggcttgatgc	tctcgctctt	2400
cgagcagagt	ctgagctgcc	aggcccaggg	gggctgcagt	agacccgcca	tggtcctcac	2460
agacccacac	acgccctacg	aggaggagca	gcggcagtca	gtgcagtctg	accagggcta	2520
catctccagg	agctccccgc	agccccccga	gggactcacg	gaaatggagg	aagaggagga	2580
agaggagcag	gacccaggga	agccggccct	gccactctct	cccgaggacc	tggagagcct	2640
gaggagcctc	cagcggcagc	tgcttttccg	ccagctgcag	aagaactcgg	gctgggacac	2700
gatggggtca	gagtcagagg	ggcccagtgc	atgagggcgg	ctccccaggg	accgcccaga	2760
tcccagcttt	gagagaggag	tgtgtgtgca	cgtattcatc	tgtgtgtaca	tgtctgcatg	2820
tgtatatgtt	cgtgtgtgaa	atgtaggctt	taaaatgtaa	atgtctggat	tttaatccca	2880
ggcatccctc	ctaacttttc	tttgtgcagc	ggtctggtta	tcgtctatcc	ccaggggaat	2940
ccacacagcc	cgctcccagg	agctaatggt	agagcgtcct	tgaggctcca	ttattcgttc	3000
attcagcatt	tattgtgcac	ctactatgtg	gcgggcattt	gggataccaa	gataaattgc	3060
atgcggcatg	gccccagcca	tgaaggaact	taaccgctag	tgccgaggac	acgttaaacg	3120
aacaggatgg	gccgggcacg	gtggctcacg	cctgtaatcc	cagcacactg	ggaggccgag	3180
gcaggtggat	cactctgagg	tcaggagttt	gagccagcct	ggccaacatg	gtgaaacccc	3240
atctccacta	aaaatagaaa	aattagccgg	gcatggtgac	acatgcctgt	agtcctagct	3300
acttgggagg	ctgaggcagg	agaattgctt	gaatctggga	ggcagaggtt	gcagtgagcc	3360
gagattgtgc	: çattgcactg	cagcctggat	gacagagcga	. gactctatct	caaaaaaaaa	3420

aaaaaaaaa	3429
<210> 299 <211> 945 <212> DNA <213> Homo sapiens	
<400> 299 gcaggtaggt ggacggagag atagcagcga cgaggacagg ccaaacagtg acagccacgt	60
agaggatctg gcagacaaag agacaaggtg agaaggagac tttggaagtg acccaccatg	120
gggctcagca tctttttgct cctgtgtgtt cttgggctca gccaggcagc cacaccgaag	180
attttcaatg gcactgagtg tgggcgtaac tcacagccgt ggcaggtggg gctgtttgag	240
ggcaccagcc tgcgctgcgg gggtgtcctt attgaccaca ggtgggtcct cacagcggct	300
cactgcagcg gcagcaggta ctgggtgcgc ctgggggaac acagcctcag ccagctcgac	360
tggaccgagc agatccggca cagcggcttc tctgtgaccc atcccggcta cctgggagcc	420
tcgacgagcc acgagcacga cctccggctg ctgcggctgc gcctgcccgt ccgcgtaacc	480
agcagcgttc aacccctgcc cctgcccaat gactgtgcaa ccgctggcac cgagtgccac	540
gtctcaggct ggggcatcac caaccaccca cggaacccat tcccggatct gctccagtgc	600
ctcaacctct ccatcgtctc ccatgccacc tgccatggtg tgtatcccgg gagaatcacg	660
agcaacatgg tgtgtgcagg cggcgtcccg gggcaggatg cctgccaggg tgattctggg	720
ggcccctgg tgtgtgggg agtccttcaa ggtctggtgt cctgggggtc tgtggggccc	780
tgtggacaag atggcatccc tggagtctac acctatattt gcaactccac tcttgttggc	840
ctgggaactt cttggaactt taactcctgc cagcccttct aagacccacg agcggggtga	900
gagaagtgtg caatagtctg gaataaatat aaatgaagga ggggc	945
<210> 300 <211> 513 <212> DNA <213> Homo sapiens	
<pre><400> 300 tattttagcc attgacttta ttatttcttg ctccatataa ttaacatcat ggctaaaaac</pre>	60
aaggcagaaa ttcttttagg aataaaattg tcacaagccc tgcctttccc ttccccataa	120
ggttgatcta actccattaa ctgtcagtct ttgatgtaaa gtatcttacc tgaccttcct	180
tottagcccc tactgagaat ccaaagtaat ctaagagctg tgcattccat tggcaattgg	240
catcttgtag ttgccaattt ggagaaaata ataatctccc ctatacttca cctttgtgga	300
tgtattttcc ttattgtttg agaggaacat aatacaacag taagcagatc aactggaacc	360

cttcaatctg taaataaaag ggcattgtaa gctacatgtt aca	acagaact catttgccca 420
gaaatctgat tttattgtta ggaattggca gcccatcccc aaa	acatgcac ttttaatttt 480
tcctgaaaag accactattt ttgtactgat act	513
<210> 301 <211> 412 <212> DNA <213> Homo sapiens	
<400> 301 tggagaatca acaaatttaa ttagcaatga ttacagaaaa ctt	taaatagc acacacaact 60
ctataatccc tctacccca attccaacat ctgactgatc aac	
aatccatcca gaaggaaaga acagctgtta agctgtaggg gta	
gaccetgagg ceatgtggge ceaggtggee ageaggageg gaa	
cagtccaggg ctcacaagac tcccttcgct tcaggcctga ctt	
attgggacag agacaggctt tggcaatagt taccaaagcc tgt	tcatcata tctgcaccac 360
caccagtccc gaccggaggg cctggctgcc aggtagtttt cag	gtctaact ga 412
<210> 302	
<211> 2443 <212> DNA <213> Homo sapiens	
<212> DNA	ggtttete etgeagetee 60
<212> DNA <213> Homo sapiens <400> 302	J
<212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg	tttgcccg tctcctctgg 120
<212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtgcctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcggtggcccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgc ggcgggctaa gcg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcgggcggggggaga</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gag gagggggcag cgcgctgctg gctctgtgcg gggcactggc tg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gag gagggggcag cgcgctgctg gctctgtgcg gggcactggc tg gcgccgaagc ccaggagccc gggggcccg cggcggcat gag</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420 agctgcgc gaggcgctcg 480
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gag gagggggaag cgcgctgctg gctctgtgcg gggcactggc tg gcgccgaagc ccaggagccc gggggcgccc cggcgggcat gag agcaagagga cggcatctcc ttcgagtacc accgctaccc cg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420 agctgcgc gaggcgctcg 480 cggtgggg cgcagcttcg 540
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gag gagggggcag cgcgctgctg gctctgtgcg gggcactggc tg gcgccgaagc ccaggagccc gggggcgcccg cggcgggcat gag agcaagagga cggcatctcc ttcgagtacc accgctaccc cg tgtccgtgtg gctgcagtgc accgccatca gcaggattta cag </pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420 agctgcgc gaggcgctcg 480 ccggtggg cgcagcttcg 540 gcgtccat gagcctggtg 600
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgcc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggcggcg gacggggggag cgcgctgctg gctctgtgcg gggcactggc tg gcgccgaagc ccaggagccc gggggcgccg cggcgggcat gac agcaagagga cgcatctcc ttcgagtacc accgctaccc cg tgtccgtgtg gctgcagtgc accgccatca gcaggattta cacagggccggaa gctcctggtc atcgagctgt ccgacaaccc tg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420 agctgcgc gaggcgctcg 480 cggtgggg cgcagcttcg 540 gcgtcat gagcctggtg 600 ctgttgga cgagaactgc 660
<pre><212> DNA <213> Homo sapiens <400> 302 aaatggcgtg cccgtctctc cgccggcccc ctgcctcgca gtg cctgggctcc gcggccagta gtgcagcccg tggagccgcg gcg gtggccccag tgcgcgggct gacactcatt cagccgggga agg ggtgcggaac ttgccgccc cagcagcgc ggcgggctaa gcg aagaggccgc ccgcgtagga aggcacggcc ggcggggcg ga gagggggcag cgcgctgctg gctctgtgcg gggcactggc tg gcgccgaagc ccaggagccc gggggcgccg cggcgggcat ga agcaagagga cgcatctcc ttcgagtacc accgctaccc cg tgtccgtgtg gctgcagtgc accgccatca gcaggattta ca agggccgga gctcctggtc atcgagctg ccgacaaccc tg agcctgaatt taaatacatt gggaatatgc atgggaatga gg agcactgaatt taaatacatt gggaatatgc atgggaatga gg</pre>	tttgcccg tctcctctgg 120 gtgaggcg agtagaggct 180 ccagggcc gggcagacaa 240 gcgcagcg atggccgggc 300 cctgcggg tggctcctgg 360 ggcggcgc cggcggctgc 420 agctgcgc gaggcgctcg 480 cggtgggg cgcagcttcg 540 gcgtccat gagcctggtg 600 ctgttgga cgagaactgc 660 ggaacgag acaattgtca 720

gaatagatct gaaccggaac tttccagacc tggataggat agtgtacgtg aatgagaaag 900 aaggtggtcc aaataatcat ctgttgaaaa atatgaagaa aattgtggat caaaacacaa 960 agcttgctcc tgagaccaag gctgtcattc attggattat ggatattcct tttgtgcttt 1020 ctgccaatct ccatggagga gaccttgtgg ccaattatcc atatgatgag acgcggagtg 1080 1140 gtagtgctca cgaatacagc tcctccccag atgacgccat tttccaaagc ttggcccggg catactette tttcaacceg gecatgtetg acceeaateg gecaecatgt egcaagaatg 1200 atgatgacag cagctttgta gatggaacca ccaacggtgg tgcttggtac agcgtacctg 1260 gagggatgca agacttcaat taccttagca gcaactgttt tgagatcacc gtggagctta 1320 1380 qctqtqaqaa qttcccacct gaagagactc tgaagaccta ctgggaggat aacaaaaact ccctcattag ctaccttgag cagatacacc gaggagttaa aggatttgtc cgagaccttc 1440 aaqqtaaccc aattgcgaat gccaccatct ccgtggaagg aatagaccac gatgttacat 1500 1560 ccgcaaagga tggtgattac tggagattgc ttatacctgg aaactataaa cttacagcct cagctccagg ctatctggca ataacaaaga aagtggcagt tccttacagc cctgctgctg 1620 1680 gggttgattt tgaactggag tcattttctg aaaggaaaga agaggagaag gaagaattga 1740 tggaatggtg gaaaatgatg tcagaaactt taaattttta aaaaggcttc tagttagctg ctttaaatct atctatataa tgtagtatga tgtaatgtgg tcttttttt agattttgtg 1800 cagttaatac ttaacattga tttattttt aatcatttaa atattaatca actttcctta 1860 aaataaatag cctcttaggt aaaaatataa gaacttgata tatttcattc tcttatatag 1920 tattcatttt cctacctata ttacacaaaa aagtatagaa aagatttaag taattttgcc 1980 atcctaggct taaatgcaat attcctggta ttatttacaa tgcagaattt tttgagtaat 2040 tctagctttc aaaaattagt gaagttcttt tactgtaatt ggtgacaatg tcacataatg 2100 2160 aatgctattg aaaaggttaa cagatacagc tcggagttgt gagcactcta ctgcaagact 2220 taaatagttc agtataaatt gtcgtttttt tcttgtgctg actaactata agcatgatct 2280 tqttaatqca tttttqatqq qaaqaaaagg tacatgttta caaagaggtt ttatgaaaag aataaaaatt gacttcttgc ttgtacatat aggagcaata ctattatatt atgtagtccg 2340 2400 ttaacactac ttaaaagttt agggttttct cttggttgta gagtggccca gaattgcatt 2443 ctgaatqaat aaaggttaaa aaaaaatccc cagtgaaaaa aaa

<210> 303

<211> 2106

<212> DNA

<213> Homo sapiens

<400> 303 60 accaggegeg gteeggagge egagggegae cacageagee teegeeteet getgeteegg actattctgc gctgggctag tcggcggtga cccggactgc gcccggcagt ggcttcgcgg 120 180 gcqacgcgtc gccatgggct ctcgctggag cagcgaagag gagaggcagc cgctgctggg 240 qcccqqqctc qqqcctqqqc tqqqqqcctc ctqqaqaagc cqqqaqqcqq cqqcqqqc 300 gctgcccgcg gcggtcccgg gtcccgggcg ggtatacggg cgccgctggc tggtgctgct 360 getetteteg etgetggegt tegtteaggg cetggtetgg aacacetggg gteccateca gaactcggcg cgccaggcct acggcttctc cagctgggac atcgcgctgc tcgtgctgtg 420 480 ggggcccatc ggcttcctgc cctgcttcgc gttcatgtgg ctcctggaca agagaggtct ccggataact gtgctcctga catccttcct tatggttttg ggaactggtc taagatgcat 540 600 acctatatca gacttaatcc ttaaaagaag attaattcat ggaggacaga tgttaaatgg 660 attggcaggt ccaactgtaa tgaatgcagc accatttctc tctacgacgt ggttttctgc agatgaaagg gccacagcca cagctattgc atcaatgctc agttatcttg ggggagcatg 720 780 tgcattttta gttggaccac ttgttgttcc agctcccaat gggacatcac ctcttcttgc tgcagagagc agcagggcgc atattaaaga tcgcatagag gctgtgttat atgcagaatt 840 900 tggagttgtc tgcttaatat tttctgcaac actagcttat ttcccacccc gacctcctct 960 tcctcccagt gttgctgcag ctagccagcg gctgagttat cggagaagcg tttgtagatt 1020 attaagcaat tttcgatttt tgatgattgc tttagcatat gccataccac ttggtgtatt 1080 tgctqqctgg tctggagttc tggacttaat tttaacacca gcgcatgtca gccaagtaga 1140 tqctqqctqq attggatttt ggtccatagt tggaggctgt gttgttggaa tagctatggc 1200 aaggtttgca gattttatca ggggtatgct gaaactaatt cttctcctcc tgttttcggg agctacactg tcatccacgt ggttcaccct gacctgtttg aacagcatca cacacctacc 1260 tttaaccaca gtgacattgt atgcctcctg tattctcctg ggagtgttct tgaatagcag 1320 1380 cgtgcctata ttttttgagc tttttgtgga aactgtctac ccagttccag aaggaattac 1440 ttgtggagtt gtcacttttt taagtaatat gtttatggga gtacttttat tttttctcac attttatcat acagagttgt cttggttcaa ctggtgcctt cccgggtcgt gtttgctcag 1500 tetecteete attetgtget teagggaate etatgacaga etetatettg atgtggttgt 1560 ctccgtttaa tagcacagac ttgaaggagt ttaaaaggag gctggaaatc aatactgcac 1620 actgcacatt tgctcagaat tgcacatcta acaggaaaag agggagaaga aagaaacttc 1680 attcagaggt tttgttaggt tacagattat cacattaatt taattactac taggtaataa 1740 taatgggaga cttgagtgat aataggggat tttaaaaactc tacagatggc atacctgtgc 1800

ctgcttctgg	ggttggaagt	gtgacttctt	acacataaag	cactacctaa	gtaattctct	1860
ctctgttttg	tgccagtgct	aaactactga	ttacttgtaa	ttatgaaaag	aaataaaggg	1920
tgtctatcat	atgaagataa	cgccttccct	aagtcacata	tcagaatagg	aagatatgcc	1980
actaacttct	aaagaagttc	aaaccctgta	tccaatttta	atgataaaat	agccaagagg	2040
tatatcgatg	atggaaatta	gccacatgta	cactacattt	tttctaataa	agccatttct	2100
tatatg						2106

<210> 304 <211> 9043

<212> DNA

<213> Homo sapiens

<400> 304 60 ggateegggt ceceteaege teetggetga gteeetgget teacagggga aactacetee gcaggccagg acccatctag ttacaggata cctcgatgtt acaaagacga ggcttccagc 120 180 gcgggggcgt ggaggcggct gccagccctg cccgcagcgt gctggcgacc cccggggacgc 240 cccttccctc ccgcgcctct gctccctagc tggtgggagc agagcgcacc gggatcactt 300 ccaggtccct tgcaccggag gaatgggcgg cagcagggtc cggagtcggc ccggcggggc ccacgtggcc agcacatcgg tcctccgctc gcgatttccc ttttccgctc tcgggcacga 360 420 ggtactgaac gccaggtgga agcacagctg tgcagctaca ggctctgccg ttcagctgcc gegggeeggg geeggggeet geggegtegt gegegtgege ggaeeagtte eaggegggeg 480 540 agaccgccgc agggcggggc ggggcgaggc ggccgcaggg cggggagggc ggggagaggc 600 ggccgcaggg cggggagggc ggggcgcgaa gccgggggcg ggggccacgc gtggggcagg 660 cggtgctcgg ctcggctgac gtcggcccgc cggcgcccca ccagctccgc gcgggcccgg 720 780 gctggtttga gctggtgcgt ctccatggcg acccgccggt gctataagta gggagcggcg 840 tgccgtgggg ctttgtcagt ccctcctgta gccgccgccg ccgccgcccg ccgcccctct 900 qccaqcaqct coggogocac ctogggoogg ogtotooggo gggogggago caggogotga 960 cgggcgcggc gggggggcc gagcgctcct gcggctgcga ctcaggctcc ggcgtctgcg cttccccatg gggctggcct gcggcgcctg ggcgctctga ggtgagggac tccccggccg 1020 1080 cacgtgtgcg gcgcgcctcg ccggcctgca gagacacgtg gtcgccgagc gggccacgac 1140 cttgaggcgc cgcttcctcc cggcccgggg ttctcccgcg gctggataag ggtgatccgg 1200 gcgcctcgtt ctgcccccgt cttcacagct cggggctgga ggggcctagg ggagacccac 1260

ceggagacec tgeggeeceg egeeggeete ttteecaace etteggegge egegetegg 1320 ccggggagcc gttggggagg ccctggcggc cgcgcagcag gtgcaggggc gcagagcctg 1380 ggctcgcctt ggtacagacg agcggccccg gccttggcgc cttcagtttc cttccagttt 1440 1500 ttattttcgc tgtgtctaca gagcagatga caccaatttg gaaacccgcg agagtgggta 1560 gagctaagat agtcttgctg tagtagctgt gatattagat gctcggccat gacttagagg 1620 tgtttattta aggactgtga atgactcggt gatttcggaa aagcttggct tagatgaacg 1680 gacatacaca ggggagacag ccctaaggtt tgcagaaaag gctgattgtg ctgtttgcga agtcgaaata attggtgaaa gtgtagaagg cagaacctct caggaatgtc tggggaggac 1740 1800 aaagaatgtg ttggctgact ttgtttaaac ataaaattgg gcagacttta attgatttgt gaaatttttt tcaaagtttg tttgaattag cccctatctc ttctaacatt atcctcttgt 1860 gctaattgat tgaccatttt aaataactta gctgttacag aaagaccgaa aggtgttctt 1920 cagtaaaata tattcaagta agttacttaa gtaacgcctt aaaagataca gaaaagcaaa 1980 2040 aaagtattgg cgtattaaaa agaaatcaaa actttccaag tttaggcctg aacattgcct 2100 taaaaatatt taataaggcc tcaaatgacc cagtccgaga ctgcatgagc ctatttatta ttaaattgta aatattcttc atataaacaa aaatatataa ccatgtctgt aacaaaaatg 2160 gttttgctag cgttgttact ctcttccctt ctccgagggg tgatttaggc aacttcggag 2220 gttgacaatg ccaagcagtc acaatagata gagctttaaa gcaaattcta tgcatgggtt 2280 tggatttatg acaggcccgt caccctgggc ctgtcatagt accccatgcc agagcaaact 2340 gtgtccccga accattgcct ggcctctgtg cccgtaggct gctggcactg aagtgggttg 2400 cacagtggaa aagaagaaag ctctacctgg cagaaatttt taaaggttaa aataaataat 2460 2520 tttaagaaag ctggttcaca aggtgccaca tttgatgaaa gcaaaataca gtggctttta 2580 ttgttactag agtgatgttc ttgcttgttt ttcttttttg gtgaagttag ccccaaatta 2640 ttctcatagc taagcaaata cgagagtgac tgtaaggaca gttggcattc ccggaattgc taaacttggt aggcaacgct ggtttaagaa tactgagttc tagccgggcg tggtggctca 2700 2760 cgcctgtaat cccaacactt tgggaggctg aggcaggcgg atcacctgag gtcgggagtt 2820 ggagaccagc ctgactaaca tggagaaacg ccatctccac taaaaatata aaattagcca 2880 ggcccgggt gtggtggcac atgccggtaa tcccagctac tcgggagact gaggcaggag aatcgcttga acccaggagg cggaggttga ggtgagccga gatcatgcca ttgcactcca 2940 3000 gatcaggtaa cagcaactgt aatacaatgt gataagttga cttgaagatt acagttttta 3060 agaagtatat acccagctaa tacatgaaaa ttaactcgta aaatctcaaa tgctccagac 3120

atttccatga	tgcctgttgg	tcagtaaaaa	tcattctaag	acttagtgga	agtaggaaat	3180
gtttgtatgg	ctgtgtataa	aggctataat	gtaatcccag	cactttggaa	gaccgaggcg	3240
ggtggatcac	ctggggtcag	gagtttgaga	cccacctgga	caacgtggtg	aaatcctgtc	3300
tctactaaaa	acacaaaaat	tagccgggca	tggtggcagg	cgcctgtaat	cccagctgct	3360
ggggaggctg	aggcaggaga	atcgcttgaa	cccgggaggc	agaggttgca	gtgagccaag	3420
attgcaccgc	tgcactccag	cctgggtgac	agcgtgagac	tctgtctcaa	aaaaaataaa	3480
aaagtctata	atgctatttt	aagtttctaa	ggaactgaaa	ctgctctgaa	ataaatcaga	3540
ccattataag	actttttcc	atatcagtga	gctaagtgca	gataagcttc	tgaaacttgc	3600
atgctagatt	tttttggtac	aaatatttga	aatgcttagt	gtgctgcctt	ggaaaaacct	3660
ggtattttt	gttgtgtcct	tatactgcca	aggtttatgg	aatcatgtac	cttatgccta	3720
gtaataatta	ggatgaccag	gccagtgagt	ggttcatatc	cggggcatga	ttagctctgc	3780
gtgtgctcag	ccagtgcccc	atcttcaact	cgatgtgttc	ctaaggtaga	cagcaaattc	3840
cctattttat	ttctcagatt	gtcactgctg	ttccaagggc	acacgcagag	ggatttggaa	3900
ttcctggaga	gttgcctttg	tgagaagctg	gaaatatttc	tttcaattcc	atctcttagt	3960
tttccatgta	agtattcagt	ttacatttat	gttgcaggtt	aatcttaaga	attgtattgc	4020
taaggcttct	aagtgaattt	ctccactcta	tttgcatttt	gttgcatttc	agaggaacat	4080
caagaaatca	tgaacaactt	tggtaatgaa	gagtttgact	gccacttcct	cgatgaaggt	4140
tttactgcca	aggacattct	ggaccagaaa	attaatgaag	tttcttcttc	tgtaagtata	4200
tgaggcccat	gctggcagtg	cagctgagag	tgccaggcaa	gtggaaaact	ttggcaaggt	4260
ctaaggaaga	gcaatgaggc	ttacatgtct	tgttatggaa	tgtagaaatt	aattcactgg	4320
tggtaaatta	atagtgataa	tggtgatact	catatcagtg	gctagactca	aaagagcagg	4380
attcattgtg	actgatggga	atgaaggtcg	ctggctattg	gtgtggtgtg	tggtgaggct	4440
gctagtgagt	cacctgtgac	cactcttgtt	tcaggatgat	aaggatgcct	tctatgtggc	4500
agacctggga	gacattctaa	agaaacatct	gaggtggtta	aaagctctcc	ctcgtgtcac	4560
ccccttttat	gcagtcaaat	gtaatgatag	caaagccatc	gtgaagaccc	ttgctgctac	4620
cgggacagga	tttgactgtg	ctagcaaggt	aagcgatagc	agcaggcctc	aaaagcgttg	4680
tataaaatgg	gcctggtatt	ccccacgagg	cagatacaag	ttgtgttttt	tgggcaataa	4740
atgctcacta	aaggcaaatg	gggcgggggg	gtacatgaca	. acttcccatg	cttttctgtt	4800
tattccacgt	gttaagccac	atatggatag	catgacacca	. ctcttcttt	: tcagactgaa	4860
atacagttgg	tgcagagtct	gggggtgcct	ccagagagga	. ttatctatgo	: aaatccttgt	4920

aaacaagtat	ctcaaattaa	gtatgctgct	aataatggag	tccagatgat	gacttttgat	4980
agtgaagttg	agttgatgaa	agttgccaga	gcacatccca	aagcaaagtg	agttattccc	5040
ccatctgagg	gcaagatcgg	gagcataaga	tatgtggatt	cttatcaaac	aaacttaaat	5100
ttctgattat	tatatttcta	tactttagta	gaaagtagtt	gaaaccccca	ttgagtcatg	5160
aagcctggga	ctcaaactac	agaatatatc	agcgacagta	tttagaacag	gattgttttt	5220
attttaattg	tggctataag	tgaacatcta	tcatgagaca	tttgctgcac	tttccttgct	5280
tgtaggttgg	ttttgcggat	tgccactgat	gattccaaag	cagtctgtcg	tctcagtgtg	5340
aaattcggtg	ccacgctcag	aaccagcagg	ctccttttgg	aacgggcgaa	agagctaaat	5400
atcgatgttg	ttggtgtcag	gtgagatttt	ggtgggatag	ctagaggtca	agacattgaa	5460
cagtttgagt	tttacaggct	ttctcctagt	gtttgctatt	attttaagaa	atactaagac	5520
acagtgtctc	gtctctttat	tttaccccag	cttccatgta	ggaagcggct	gtaccgatcc	5580
tgagaccttc	gtgcaggcaa	tctctgatgc	ccgctgtgtt	tttgacatgg	gggtgagtat	5640
acgtgaccct	gttagggaag	ggcgggacac	aactgacaat	aactagtctt	aattctagag	5700
ttaacttttt	atggcagttg	gttctgtatt	acatgggttt	cagcctatct	gctgcataca	5760
tttttgttat	tagctgtgga	tctggctgac	ttattttctt	gattctaggc	tgaggttggt	5820
ttcagcatgt	atctgcttga	tattggcggt	ggctttcctg	gatctgagga	tgtgaaactt	5880
aaatttgaag	aggtaattta	gaacaaaact	gtaatactca	gtagccgttc	taataaattc	5940
ctttttggaa	tatttcaaaa	tttaagtgtc	ttaactaata	ccacaatggg	ctgaagtgtc	6000
ttggtgtgat	attttgagtg	atttctttgt	gctgtctgac	attacacttg	ataccatttg	6060
gttttctaaa	gtgtgaatca	gctttcccag	aagtcttgga	taattggtta	cattggaaat	6120
catggctcac	acctgtaatc	cagcacttgg	ggaggccaag	gtggtaggat	cacttgagcc	6180
caggagtttg	agaccagcct	gggcaacaca	gtgagacccc	atctctacaa	aaaaaatttt	6240
aaaattagcc	tggtgtggtg	gcgggcacct	gtaatcccag	ctacttggaa	ggctgaggtg	6300
ggaggatcac	ttgagcccag	gaggttgagg	ctgcagtgag	ccatgatcat	gccactgcac	6360
tcagcctggg	ctacagagtg	agaccctgtc	tcaaaaaaaa	aaaagaaaaa	gcatgttgct	6420
gtgggcttcc	tagagaatat	gctgactgta	gcacatcatc	accccaaatg	tgctttgcta	6480
gacctatgct	tcctctcctt	aaaatacttg	aaatgtttag	tcacttagga	agttaagcca	6540
ttatattggt	gcttgaattt	ataaaataca	tccacatggt	ttgttaaaat	catgacgtag	6600
gcagaatagg	atttttatcc	tgttggcatg	tatttgttaa	aatgttttga	catcttgatg	6660
ccttcctagg	tagtagttag	ttgcgtactg	ttctttgata	aaaatcatac	ccataacatc	6720
ctaaaggaga	tagggtgcct	ggaggggaat	gaaaacgagc	: cacctgggat	atgtageetg	6780

gttttcaggg agatgttgat	gtttttttgc	ttttgttact	ttaatgataa	acctgtctgt	6840
tgatgcctgg tctcatgatg	tcatgtcaca	aggccctgtg	atgttactcc	cccatgtgaa	6900
tttcccacaa tgaaggctgc	tctttctttt	ctgtttcact	ctcttagatc	accggcgtaa	6960
tcaacccagc gttggacaaa	tactttccgt	cagactctgg	agtgagaatc	atagctgagc	7020
ccggcagata ctatgttgca	tcagctttca	cgcttgcagt	taatatcatt	gccaagaaaa	7080
ttgtattaaa ggaacagacg	ggctctgatg	gtatgtataa	aggacgaatc	acttcatgta	7140
taactgaaag ctgatgcaaa	aagtcattaa	gattgttgat	ctgcctttct	agacgaagat	7200
gagtcgagtg agcagacctt	tatgtattat	gtgaatgatg	gcgtctatgg	atcatttaat	7260
tgcatactct atgaccacgc	acatgtaaag	çcccttctgc	aaaaggtaat	ttctgagcat	7320
actgtataaa acaattaaga	ggactggtca	caacacgtgt	aattaagtag	tacttcctct	7380
ctccgtctct ttatatagag	acctaaacca	gatgagaagt	attattcatc	cagcatatgg	7440
ggaccaacat gtgatggcct	cgatcggatt	gttgagcgct	gtgacctgcc	tgaaatgcat	7500
gtgggtgatt ggatgctctt	tgaaaacatg	ggcgcttaca	ctgttgctgc	tgcctctacg	7560
ttcaatggct tccagaggcc	gacgatctac	tatgtgatgt	cagggcctgc	gtggtaagta	7620
agccatgcat gttgatggtg	ctgccaagaa	taggcacctt	cttggatgtg	tgcttcttgt	7680
ctagacgaat aagaaattgt	cttgcctaag	attaaatata	tatggatatt	tttcctaaga	7740
aaagttttag aaaagactga	tgagtgtatt	tctatgtaat	tggaatatat	ttaagttcat	7800
gccatgtgtc ttgtggtttc	cttattacca	aaacggtgac	tgaagaaacg	cttgctttag	7860
aaatacattg aattggccag	gtgtgctggc	tcacacctga	aatcacaaca	cattgggagg	7920
ccaaggcaga aggatcactt	gagcccagga	gttcgagcct	gggcaacata	gtgagaccct	7980
gtctctacaa aaaattaaaa	aattagttgg	ccatggtagt	gggcgcctgt	agtcccagct	8040
gcttggctaa ggtgagaggt	ttgcttgagc	ctgggaggtt	gaggctgcgg	tgagctatga	8100
tagcaccatt gtattccagc	ctgagtaaca	gagaaagacc	ctgtctcaga	aaaaaaaaa	8160
atacattgaa ttgtttcctg	atgggaagta	aatactctca	tgcccagtta	ggagtgagtc	8220
agggttttta atatgccact	ttttctttct	caggcaactc	atgcagcaat	tccagaaccc	8280
cgacttccca cccgaagtag	aggaacagga	tgccagcacc	ctgcctgtgt	cttgtgcctg	8340
ggagagtggg atgaaacgcc	acagagcagc	ctgtgcttcg	gctagtatta	atgtgtagat	8400
agcactctgg tagctgttaa	ctgcaagttt	agcttgaatt	aagggatttg	gggggaccat	8460
gtaacttaat tactgctagt	tttgaaatgt	ctttgtaaga	gtagggtcgc	catgatgcag	8520
ccatatggaa gactaggata	tgggtcacac	ttatctgtgt	tcctatggaa	actatttgaa	8580

tatttgtttt	atatggattt	ttattcactc	ttcagacacg	ctactcaaga	gtgcccctca	8640
gctgctgaac	aagcatttgt	agcttgtaca	atggcagaat	gggccaaaag	cttagtgttg	8700
tgacctgttt	ttaaaataaa	gtatcttgaa	ataattaggc	attgggacgt	ttttatggtg	8760
tgttcattcc	agacagttca	cgaatcccgt	atagctcgct	ctgattctca	gagaacaatg	8820
agtgggtcca	cccacacaca	ggtaggagga	caggtgagac	ggaagcccca	tecteceatg	8880
tggacggtgc	acatctgctc	agcccacccc	acatgtccag	agttggctgc	aaactccttg	8940
tccagagcct	ctggtggtgg	gacctactta	agtctgacgg	acctgtcctg	tccaggccag	9000
tgcccaggga	aggtgtggga	ggccctttga	gcctggcctg	cag		9043

<210> 305

<211> 2996

<212> DNA

<213> Homo sapiens

<400> 305 60 gcctgcctgt ccagagctga ccagggagat ggtgctggcc cagggggtgc tctccatggc cctgctggcc ctgtgctggg agcgcagcct ggcaggggca gaagaaacca tcccgctgca 120 180 gaccetgege tgetacaacg actacaccag ccacatcace tgeaggtggg cagacaccca ggatgcccag cggctcgtca acgtgaccct cattcgccgg gtgaatgagg acctcctgga 240 300 gccagtgtcc tgtgacctca gtgatgacat gccctggtca gcctgccccc atccccgctg cgtgcccagg agatgtgtca ttccctgcca gagttttgtc gtcactgacg ttgactactt 360 420 ctcattccaa ccagacaggc ctctgggcac ccggctcacc gtcactctga cccagcatgt 480 ccaqcctcct gagcccaggg acctgcagat cagcaccgac caggaccact tcctgctgac ctggagtgtg gcccttggga gtccccagag ccactggttg tccccagggg atctggagtt 540 600 tgaggtggtc tacaagcggc ttcaggactc ttgggaggac gcagccatcc tcctccaa cacctcccag gccaccctgg ggccagagca cctcatgccc agcagcacct acgtggcccg 660 720 agtacggacc cgcctggccc caggttctcg gctctcagga cgtcccagca agtggagccc agaggtttgc tgggactccc agccagggga tgaggcccag ccccagaacc tggagtgctt 780 840 ctttqacggg gccgccgtgc tcagctgctc ctgggaggtg aggaaggagg tggccagctc 900 ggtctccttt ggcctattct acaagcccag cccagatgca ggggaggaag agtgctcccc agtgctgagg gaggggctcg gcagcctcca caccaggcac cactgccaga ttcccgtgcc 960 cgaccccgcg acccacggcc aatacatcgt ctctgttcag ccaaggaggg cagagaaaca 1020 cataaagagc tcagtgaaca tccagatggc ccctccatcc ctcaacgtga ccaaggatgg 1080 agacagctac agcctgcgct gggaaacaat gaaaatgcga tacgaacaca tagaccacac 1140

atttgagatc	cagtacagga	aagacacggc	cacgtggaag	gacagcaaga	ccgagaccct	1200
ccagaacgcc	cacagcatgg	ccctgccagc	cctggagccc	tccaccaggt	actgggccag	1260
ggtgagggtc	aggacctccc	gcaccggcta	caacgggatc	tggagcgagt	ggagtgaggc	1320
gegeteetgg	gacaccgagt	cggtgctgcc	tatgtgggtg	ctggccctca	tcgtgatctt	1380
cctcaccatc	gctgtgctcc	tggccctccg	cttctgtggc	atctacgggt	acaggctgcg	1440
cagaaagtgg	gaggagaaga	tccccaaccc	cagcaagagc	cacctgttcc	agaacgggag	1500
cgcagagctt	tggcccccag	gcagcatgtc	ggccttcact	agcgggagtc	ccccacacca	1560
ggggccgtgg	ggcagccgct	tccctgagct	ggaggggtg	ttccctgtag	gattcgggga	1620
cagcgaggtg	tcacctctca	ccatagagga	ccccaagcat	gtctgtgatc	caccatctgg	1680
gcctgacacg	actccagctg	cctcagatct	acccacagag	cagcccccca	gcccccagcc	1740
aggcccgcct	gccgcctccc	acacacctga	gaaacagģct	tccagctttg	acttcaatgg	1800
gccctacctg	gggccgcccc	acagccgctc	cctacctgac	atcctgggcc	agccggagcc	1860
cccacaggag	ggtgggagcc	agaagtcccc	acctccaggg	tccctggagt	acctgtgtct	1920
gcctgctggg	gggcaggtgc	aactggtccc	tctggcccag	gcgatgggac	cgggacaggc	1980
cgtggaagtg	gagagaaggc	cgagccaggg	ggctgcaggg	agtccctccc	tggagtccgg	2040
gggaggccct	gcccctcctg	ctcttgggcc	aagggtggga	ggacaggacc	aaaaggacag	2100
ccctgtggct	atacccatga	gctctgggga	cactgaggac	cctggagtgg	cctctggtta	2160
tgtctcctct	gcagacctgg	tattcacccc	aaactcaggg	gcctcgtctg	tctccctagt	2220
tccctctctg	ggcctcccct	cagaccagac	ccccagctta	tgtcctgggc	tggccagtgg	2280
accccctgga	gccccaggcc	ctgtgaagtc	agggtttgag	ggctatgtgg	agctccctcc	2340
aattgagggc	cggtccccca	ggtcaccaag	gaacaatcct	gtcccccctg	aggccaaaag	2400
ccctgtcctg	aacccagggg	aacgcccggc	agatgtgtcc	ccaacatccc	cacagcccga	2460
gggcctcctt	gtcctgcagc	aagtgggcga	ctattgcttc	ctccccggcc	tggggcccgg	2520
ccctctctcg	ctccggagta	aaccttcttc	cccgggaccc	ggtcctgaga	tcaagaacct	2580
agaccaggct	tttcaagtca	agaagccccc	aggccaggct	gtgccccagg	tgcccgtcat	2640
tcagctcttc	aaagccctga	agcagcagga	ctacctgtct	ctgccccctt	gggaggtcaa	2700
caagcctggg	gaggtgtgtt	gagaccccca	ggcctagaca	ggcaagggga	tggagagggc	2760
ttgccttccc	tcccgcctga	ccttcctcag	tcatttctgc	aaagccaagg	ggcagcctcc	2820
tgtcaaggta	gctagaggcc	tgggaaagga	gatagccttg	ctccggcccc	cttgaccttc	2880
agcaaatcac	ttctctccct	gcgctcacac	agacacacac	acacacacgt	acatgcacac	2940
atttttcctg	tcaggttaac	ttatttgtag	gttctgcatt	attagaactt	tctaga	2996

<210> 306 <211> 3510 <212> DNA <213> Homo sapiens

306 <400> 60 caggaagagg tatttcttgg ggatgctacc aaggcagaga ctgtgaagaa ggaagaacgt 120 tgcttgggca aaaggagcat attctcagga gacggggccc ctgcctgcca caccaagcat 180 taggccacca ggaagacccc catctgcaag caagcctagc cttccaggga gaaagaggcc cctgcagctc cttcatcatg aactggcaca tgatcatctc tgggcttatt gtggtagtgc 240 ttaaagttgt tggaatgacc ttatttctac tttatttccc acagattttt aacaaaagta 300 360 acqatggttt caccaccacc aggagctatg gaacagtctc acagattttt gggagcagtt ccccaagtcc caacggcttc attaccacaa ggagctatgg aacagtctgc cccaaagact 420 gggaatttta tcaagcaaga tgttttttct tatccacttc tgaatcatct tggaatgaaa 480 gcagggactt ttgcaaagga aaaggatcca cattggcaat tgtcaacacg ccagagaaac 540 600 tqaaqtttct tcaqgacata actgatgctg agaagtattt tattggctta atttaccatc gtgaagagaa aaggtggcgt tggatcaaca actctgtgtt caatggcaat gttaccaatc 660 agaatcagaa tttcaactgt gcgaccattg gcctaacaaa gacatttgat gctgcatcat 720 gtgacatcag ctaccgcagg atctgtgaga agaatgccaa atgatcacag ttccctgtga 780 840 caaqaactat acttqcaact ctttttqaat ccatacaggt cgtctggcca atgattcttt 900 tacttaccta tctgtctacc agtagcggtc cttgcccatt tgggaaactg agcttctttc 960 ttctqcactg ggggactgga tgctagccat ctccaggaga caggatcagt tttacggaaa caactcagtt agtatagaga tgaggtccgc ttctgtagta ctgagcattt ctgactgatc 1020 aaaaaggcct agtctgttga cagggtttgt tttattttag cctcagagta taccatacta 1080 1140 ctagggagta actgtagagt gagaaattat aaacattatt tagggattac catggtggaa gagggataaa cataggtcct gtgacttcgt ctctgttctc aagggaaccc cattcacatg 1200 cccctcctaa ctccacaagc gagggtagca gaggctctcc tcagtctgaa ctaaggcttg 1260 1320 gccttqqqqa qggctcctag tgctgagctt ggagcagcac ggacagcagc attgtttatg 1380 ggaatggaga gaggtctggg caggatagga accttcttgg agaccccttt gaagaaaacc aggcagccaa gggagccaaa cacactagat ttctgttctt cagcaaagcc ctgaagagac 1440 acttaagcta aaaattccct tgtcatattt ctgaaactcc attataacat atgtaactcc 1500 tttqtaacca aaatttaggt aagcaggett cetttgetet gaaggttttg agtaeetgge 1560 tgtatttgtt gagtattttt aaaattttgg atagtctctt aggcaacaat aatcacaata 1620

tattcatccc	ttcagttctg	gagaaagcct	gataccagca	cagcctactg	accccaagga	1680
gcctggcact	gattggcatc	acattgatct	aagaactggt	ccagccgacg	aagagtagga	1740
aaagagaagg	gctgctcagg	gaaacattgg	ctgggggcac	ggaataagca	catagtaaaa	1800
agggaacatc	agggtcaaat	ggaaatcacc	tgagacagga	aacagggagt	tcatttggcc	1860
acactggaag	aaaggcaaga	aagaggaaga	caagtcttgg	ggtaccctgg	ctgttctcca	1920
cactcacaag	acatcagcta	tatactctgc	ttggtgcata	agagagagaa	aagagatgcc	1980
ttttgtgttt	tgagtaagaa	taattaaacc	ataaggaaga	ccatgtataa	aactgatgga	2040
aataatagtc	accaaagtac	agcacatacc	attttgtgtc	taataacaat	gtagcacagt	2100
aatgactgta	catgtcattg	tatgtatacc	aaacaagatt	gttgṭaaatc	atatttttta	2160
ttacaacact	aagttctgct	tctgcattcc	taggtttcat	catttttggc	tccttagcat	2220
ggccacttac	aatttttaa	catgagataa	cacatcaggt	gtcagaactt	gcttgaaggg	2280
aattaccaga	agtaatttgt	gtttgagatg	gggtggaaat	tggaattata	ttagtagccg	2340
gtggagatac	aagttctctg	actgtgttgg	gaaaggataa	gtgctaccgt	tgagaaggga	2400
agaaaggctg	agtctaggtg	gagaaaaata	tcaacagaac	tctagccaaa	ggcaagcccc	2460
agaactcaga	caacagaaag	gaaatcctaa	tccttctgtt	ttgagaagag	agaactgtag	2520
ttgcttcact	tcctatttca	tgacagaata	actgcaaact	tttaagatca	ggaaatgtag	2580
acatctagtg	atttctttag	tagacagttt	aatttccccc	aagattagga	gacacttctg	2640
tgcaggttct	aaaaggagcc	caatggcctg	gggtgggagt	ggggagtaga	tagggaatat	2700
gtgggatttg	gtttaagttc	atcattggga	gagttcctgg	atccttgcaa	gcttagataa	2760
atgtgatctt	tattagatag	cagtggcatg	cttttaaaaa	aaaaaaggca	atgaaaattt	2820
agcaagccac	tgaatttgag	ttttcacttt	gtttctaata	tgctgtgtga	atcagtacag	2880
ttttcttacc	ctttcttggt	cttaatttcc	ttactgataa	aatggggtag	taatacctat	2940
ctcaaaaaat	attgcacata	ttaaataaca	ttcctctatg	tatctcaatg	gcattagaca	3000
ttaggagaag	cattttgtgg	aggatttgaa	gttgagatct	tcatccaaga	agtagctttt	3060
caatttgcta	gaagcttaat	gtaggcaagc	cacttcattt	ttcagaactt	gtttactcat	3120
ttataatatg	ggaataaaaa	tttgtgcaag	tcagagaagg	gtgccttaaa	aatgttgtgg	3180
ccaagccaca	tgagatcaaa	gacacacttt	tcatgacctc	aaatgtgggc	ccagcctagg	3240
tcagccaacc	cccatccaac	ccttagactc	acgaacaaat	ccacctgaga	tcagcagagc	3300
caccctagat	cagctgaaac	tctaagcaca	aaaataaaaa	cttatcactg	tataccactg	3360
gagttttctg	gttatctctc	gtatagcaaa	atctaactga	tgcaatctcc	atctggcctt	3420

3480

600

catcettete cetttattgt cetttegtgt attgtteate cageaaccag gatgatettg

3510 ttaaaacatt aaacagattc tgtcactctt <210> 307 <211> 818 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (18)..(18) <223> n is a, c, g, t or u <220> <221> misc feature <222> (287)..(287) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (461)..(461) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (474)..(528) <223> n is a, c, g, t or u <220> <221> misc feature <222> (577)..(577) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (615)..(615) <223> n is a, c, g, t or u <400> 307 aagcaggctg tgcactangg acctagtgac cttactagaa aaaactcaaa ttctctgagc 60 cacaagtcct catgggcaaa atgtagatac caccacctaa ccctgccaat ttcctatcat tgtgactatc aaattaaacc acaggcagga agttgccttg aaaacttttt atagtgtata 180 ttactgttca catagataag caattaactt tacatatacc cgtttttaaa agatcagtcc tgtgattaaa agtctggctg ccctaattca cttcgattat acattangtt aaagccatat 300 aaaagaggca ctacgtcttc ggagagatga atggatatta caagcagtaa ttttggcttt 360 ggaatataca cataatgtcc acttgacctc atctatttga cacaaaatgt aaactaaatt 420 atgagcatca ttagatacct tggccttttc aaatcacaca nggtcctaga tctnnnnnnn 480 540

attctatatc ttgtcagctg tcaacttcat gttttangtt aaattctatc catagtcatc

ccaatatacc	tgctntagat	gatacaaaac	ttcaaagatc	cgctcttcct	tgtaaacgtg	660
gaggacaaac	atcaaggggt	ttgtagtaag	aaaggcaccg	ctcggcaaaa	cgcacctggc	720
acaacagaac	gaataataca	gaagctggat	gacgttgctc	catcttcact	ctgttaatga	780
gacatgatat	ctaaatgcta	gagtctaact	tgtaaatt			818
<210> 308 <211> 2485 <212> DNA <213> Homo	sapiens					
<400> 308 acagtgtgat	ttattctaac	ttgacaagag	aacaggcccc	tgacatcagt	cctaaatctg	60
acaccttaac	ggattctcag	atagacagag	accttcacaa	attatcttta	ctagctcaag	120
ccagtgttat	tacgttccca	tccgattcac	ctcagaactc	atcgcagctg	caaaggaaag	180
taaaagaaga	taaaagatgt	ttcacagcta	accaaaataa	tgttggagat	acctcccgtg	240
gacaggttat	tattatttca	gattctgatg	atgatgatga	tgaaagaatc	ctgagtcttg	300
agaaactcac	taaacaggac	aaaatatgcc	ttgagaggga	acatccagag	cagcacgttt	360
caacagttaa	tagtaaggag	gaaaagaatc	cagtaaagga	agaaaagaca	gagactcttt	420
ttcagtttga	ggaatctgat	tctcagtgtt	ttgagtttga	aagttcatct	gaagtgtttt	480
cagtttggca	agatcatcca	gacgataata	attcagttca	agatggtgag	aaaaaatgtt	540
tggctcctat	agccaatact	acaaatggtc	agggttgtac	agattatgta	tctgaagttg	600
ttaaaaaagg	agcagagggc	attgaagaac	acacaagacc	acggagtatt	tctgttgaag	660
aatgttgtga	aattgaagta	aaaaagccta	agagaaaacg	atctgaaaaa	ccaatggctg	720
aagatcctgt	gaggccttca	tcttctgtca	gaaatgaggg	ccagtctgat	actaataaga	780
gagatcttgt	gggaaatgat	tttaaaagta	ttgatagaag	gacttcaact	cccaattcac	840
gtattcagag	agccactacg	gtttcacaaa	agaagtcttc	aaagctttgt	acttgtacag	900
aacccatcag	gaaagttcca	gtttctaaga	cccctaagaa	aactcattca	gatgccaaaa	960
aaggacagaa	tagaagttca	aattacctaa	gttgtagaad	aactcctgct	atagtgccgc	1020
caaagaaatt	tcgtcagtgt	cctgagccaa	cttcaacago	tgagaaactt	ggcctgaaaa	1080
agggtcctcg	taaggcatat	gagttgtccc	agcggtcttt	ggattatgta	gctcaattac	1140
gtgatcatgg	caaaactgtt	ggagtagttg	atacccgaaa	aaagactaaa	. ttaatttctc	1200
ctcagaacct	gtctgtcaga	aataataaga	aacttctgac	: tagtcaagaa	cttcagatgc	1260
aaaggcagat	cagacccaaa	tcacaaaaaa	. atagacgaag	g actttctgat	tgtgaaagta	1320
cagatgttaa	aagagcaggg	tcacatacag	cacagaatto	: tgacatattt	gtaccagaat	1380

ctgataggtc	agattataat	tgtacaggag	gaactgaggt	acttgccaac	agtaacagaa	1440
aacagttaat	aaaatgcatg	ccttctgaac	cagaaaccat	aaaagcaaaa	catgggtctc	1500
cagcaactga	tgatgcttgc	cctttgaacc	agtgtgattc	tgtagtgtta	aatggaacag	1560
taccaacaaa	tgaagtaatt	gtctccactt	cagaagaccc	tctgggtgga	ggtgatccaa	1620
cagcacgtca	tatagagatg	gcagctttga	aagaaggaga	gcctgactcc	agcagtgatg	1680
cagaggaaga	taacttattt	ttaacccaaa	atgatcctga	agatatggat	ttatgttcac	1740
aaatggagaa	tgacaattat	aaactcattg	aactaattca	tggaaaagat	acagttgagg	1800
ttgaagaaga	ttctgtaagt	cggcctcagt	tggaatcttt	gagtggcaca	aagtgtaagt	1860
acaaagattg	tcttgaaacc	acaaaaaacc	agggtgaata	ctgcccaaaa	cactctgaag	1920
tgaaagcagc	agatgaagat	gtatttcgta	aacctggctt	gcctcctcct	gcatctaaac	1980
ctttgagacc	taccactaag	atttttagct	caaagagtac	ttcacgaatt	gctggtcttt	2040
ctaaatcttt	ggaaacttct	tcagcacttt	caccgtctct	aaaaaataag	tcaaagggga	2100
tacagtcgat	tttgaaagta	ccacagccag	ttcccctcat	agctcagaag	ccagttggtg	2160
aaatgaagaa	ttcgtgcaat	gttcttcatc	ctcagtctcc	gaataattcc	aacaggcaag	2220
gttgcaaagt	tccatttggt	gaaagcaaat	attttccatc	ttcctctcca	gtaaacattc	2280
ttttgtcatc	acagtctgtc	tctgacacct	tcgttaaaga	ggtcttaaaa	tggaaatatg	2340
aaatgttttt	gaactttggt	cagtgtgggc	cccctgcaag	tctttgtcag	tccatctcaa	2400
gacctgtgcc	tgtcagattt	cacaattatg	gagattattt	taatgttttt	ttccctttga	2460
tggtattgaa	. tacttttgaa	acagt				2485
<210> 309 <211> 367 <212> DNA <213> Hom	3					
<400> 309 gggcgctgtg	ı ı cgcgccgcga	tccggtacgt	gggcctccgg	gctgtcccct	ctgggggcga	60
tcctccctcc	: ggagccccc	ttcaaccctc	ccggaagtga	ggaccaggga	tgctgtgctg	120
ctctcccatc	g agccagtcac	cgagtcggtc	tgctgcagcc	ctttctgaac	ctctggccgt	180
ctggatgctc	cactgtgctt	gccaagatga	agtgcgtctt	ggtggccact	gagggcgcag	240

300

360

420

480

aggtcctctt ctactggaca gatcaggagt ttgaagagag tctccggctg aagttcgggc

agtcagagaa tgaggaagaa gagctccctg ccctggagga ccagctcagc accctcctag

ccccggtcat catctcctcc atgacgatgc tggagaagct ctcggacacc tacacctgct

tctccacgga aaatggcaac ttcctgtatg tccttcacct gtttggagaa tgcctgttca

ttgccatcaa	tggtgaccac	accgagagcg	agggggacct	gcggcggaag	ctgtatgtgc	540
tcaagtacct	gtttgaagtg	cactttgggc	tggtgactgt	ggacggtcat	cttatccgaa	600
aggagctgcg	gccccagac	ctggcgcagc	gtgtccagct	gtgggagcac	ttccagagcc	660
tgctgtggac	ctacagccgc	ctgcgggagc	aggagcagtg	cttcgccgtg	gaggccctgg	720
agcgactgat	tcacccccag	ctctgtgagc	tgtgcataga	ggcgctggag	cggcacgtca	780
tccaggctgt	caacaccagc	cccgagcggg	gaggcgagga	ggccctgcat	gccttcctgc	840
tcgtgcactc	caagctgctg	gcattctact	ctagccacag	tgccagctcc	ctgcgcccgg	900
ccgacctgct	tgccctcatc	ctcctggttc	aggacctcta	ccccagcgag	agcacagcag	960
aggacgacat	tcagccttcc	ccgcggaggg	cccggagcag	ccagaacatc	cccgtgcagc	1020
aggcctggag	ccctcactcc	acgggcccaa	ctggggggag	ctctgcagag	acggagacag	1080
acagcttctc	cctccctgag	gagtacttca	caccagctcc	ttcccctggc	gatcagagct	1140
caggtagcac	catctggctg	gagggggca	cccccccat	ggatgccctt	cagatagcag	1200
aggacaccct	ccaaacactg	gttccccact	gccctgtgcc	ttccggcccc	agaaggatct	1260
tcctggatgc	caacgtgaag	gaaagctact	gccccctagt	gccccacacc	atgtactgcc	1320
tgcccctgtg	gcagggcatc	aacctggtgc	tcctgaccag	gagccccagc	gcgcccctgg	1380
ccctggttct	gtcccagctg	atggatggct	tctccatgct	ggagaagaag	ctgaaggaag	1440
ggccggagcc	cggggcctcc	ctgcgctccc	agcccctcgt	gggagacctg	cgccagagga	1500
tggacaagtt	tgtcaagaat	cgaggggcac	aggagattca	gagcacctgg	ctggagttta	1560
aggccaaggc	tttctccaaa	agtgagcccg	gatectectg	ggagctgctc	caggcatgtg	1620
ggaagctgaa	gcggcagctc	tgcgccatct	accggctgaa	ctttctgacc	acagccccca	1680
gcaggggagg	cccacacctg	ccccagcacc	tgcaggacca	agtgcagagg	ctcatgcggg	1740
agaagctgac	ggactggaag	gacttcttgc	tggtgaagag	caggaggaac	atcaccatgg	1800
tgtcctacct	agaagacttc	ccaggcttgg	tgcacttcat	ctatgtggac	cgcaccactg	1860
ggcagatggt	ggcgccttcc	ctcaactgca	gtcaaaagac	ctcgtcggag	ttgggcaagg	1920
ggccgctggc	tgcctttgtc	aaaactaagg	tetggtetet	gatccagctg	gcgcgcagat	1980
acctgcagaa	gggctacacc	acgctgctgt	tccgggaggg	ggatttctac	tgctcctact	2040
tcctgtggtt	. cgagaatgac	atggggtaca	aactccagat	gatcgaggtg	cccgtcctct	2100
ccgacgactc	agtgcctatc	ggcatgctgg	gaggagacta	ctacaggaag	ctcctgcgct	2160
actacagcaa	gaaccgccca	accgaggctg	tcaggtgcta	. cgagctgctg	gccctgcacc	2220
tgtctgtcat	ccccactgac	ctgctggtgc	agcaggccgg	ccagctggcc	cggcgcctct	2280

gggaggcctc	ccgtatcccc	ctgctctagg	ccaaggtggc	cgcagtctgc	ctttgcatcc	2340
tgtcctccag	ccacccttgc	ttgccactgt	tccccatgac	gagagcctcc	tgtctgcagt	2400
ggccatcctg	aggatagggc	agagtgccca	gggtggcccc	agggcttcta	aaaccccacc	2460
tagaccaccc	tccatgtcag	gtactgagca	aggccccaga	tccttctctc	tggaggaaga	2520
gggaagccca	ggggtcctgt	ttgtaaaaca	acggtggcaa	cagctcctct	tccagagctg	2580
cctctgcctt	tatcctggga	gatggggagg	aagccccatc	tctgctgttc	cctgcgtgga	2640
ggaagcccac	ccagcaagct	ctctcctacc	ccaggtaaaa	ggtgctcctt	tgcctgggtt	2700
tgaattccag	cgctgccact	tcctctctgc	acctcctggc	aagtttcttc	tattccccac	2760
gtttaaagcg	atggcacctc	cgtcccaggg	tggtgtgagg	attacccagt	gtggtaggtg	2820
ctcaataaat	gttggtcatt	gttatcactg	aagcccaaca	tgctagtgct	tctagaccct	2880
tctgtcagtg	ctgataagcc	cttgctaagt	cccagcccct	tcatgcttgg	ctggcgtctg	2940
ccctagggct	ggggttctca	agcccctggc	cctggcccag	agatttggat	tcccttggcg	3000
gccgtggagc	ccaggctttg	atgtctttca	aagcttctgt	ggtgcgccct	ggattgagaa	3060
ccaccacccg	aggggtacag	cccctctctt	ccaaccgaga	agttcctgtc	cagaatggac	3120
ccagggacaa	gagaccctga	gagccctggg	actgggagtg	tctgctcctc	tgagccagga	3180
ggccggtgct	gggccagaga	ggacggcgtg	gcgaaagtca	gcgtccactg	cagcacagga	3240
tcagatggcc	gtgtgctgtg	catgcaggag	cctcgccttc	tgtgtcttta	gtcttgagcc	3300
aaaatttgct	caaaagactg	atctcttcct	tgcagggaac	agctttgggg	ctgggggaac	3360
tagaacccac	atgttggtct	aaaccctgag	aaggtggcag	tgaggaagta	tececteagg	3420
tgactggatc	tgtgttcctc	cttaacatca	tctgatggaa	tggcaatgaa	aagcgtggat	3480
tgtggaaaat	acagaaaaac	ataaaggaaa	aaactccaat	cccctgagcc	caccactgtt	3540
caggacccct	gcttttgtca	cctactattt	ccctttagtt	tttagcagcg	gctggatgtg	3600
atatgtctag	tttaaccagt	ccccttgatc	tttctatata	ataaataaca	caggagtgaa	3660
catcctgaat	cag					3673
<210> 310 <211> 244 <212> DNA <213> Hom	4 o sapiens					
<400> 310		ctttttatt	+a++a++++	ttacacatta	agggatect	60

ggtttttttt ttttaccccc cttttttatt tattattttt ttgcacattg agcggatcct tgggaacgag agaaaaaaga aacccaaact cacgcgtgca gaagatctcc cccccttcc 120 180 cctccctcc tccctcttt cccctcccca ggagaaaaag acccccaagc agaaaaaagt

the second second

60

		+a++aa>>+>	+++++	aaaaaaaat	ttaaaaaaat	240
				gggcaaaact		
				aaattgctgc		300
aaaaaaaatg	ccgcagctga	acggcggtgg	aggggatgac	ctaggcgcca	acgacgaact	360
gatttccttc	aaagacgagg	gcgaacagga	ggagaagagc	tccgaaaact	cctcggcaga	420
gagggattta	gctgatgtca	aatcgtctct	agtcaatgaa	tcagaaacga	atcaaaacag	480
ctcctccgat	tccgaggcgg	aaagacggcc	teegeetege	tccgaaagtt	tccgagacaa	540
atcccgggaa	agtttggaag	aagcggccaa	gaggcaagat	ggagggctct	ttaaggggcc	600
accgtatccc	ggctacccct	tcatcatgat	ccccgacctg	acgagcccct	acctccccaa	660
cggatcgctc	tcgcccaccg	cccgaaccta	tctccagatg	aaatggccac	tgcttgatgt	720
ccaggcaggg	agcctccaga	gtagacaagc	cctcaaggat	gcccggtccc	catcaccggc	780
acacattgtc	tctaacaaag	tgccagtggt	gcagcaccct	caccatgtcc	accccctcac	840
gcctcttatc	acgtacagca	atgaacactt	cacgccggga	aacccacctc	cacacttacc	900
agccgacgta	gaccccaaaa	caggaatccc	acggcctccg	caccctccag	atatatcccc	960
gtattaccca	ctatcgcctg	gcaccgtagg	acaaatcccc	catccgctag	gatggttagt	1020
accacagcaa	ggtcaaccag	tgtacccaat	cacgacagga	ggattcagac	acccctaccc	1080
cacagctctg	accgtcaatg	cttccgtgtc	caggttccct	ccccatatgg	tcccaccaca	1140
tcatacgcta	cacacgacgg	gcattccgca	tccggccata	gtcacaccaa	cagtcaaaca	1200
ggaatcgtcc	cagagtgatg	tcggctcact	ccatagttca	aagcatcagg	actccaaaaa	1260
ggaagaagaa	aagaagaagc	cccacataaa	gaaacctctt	aatgcattca	tgttgtatat	1320
gaaggaaatg	agagcaaagg	tcgtagctga	gtgcacgttg	aaagaaagcg	cggccatcaa	1380
ccagatcctt	gggcggaggt	ggcatgcact	gtccagagaa	gagcaagcga	aatactacga	1440
gctggcccgg	aaggagcgac	agcttcatat	gcaactgtac	cccggctggt	ccgcgcggga	1500
taactatgga	aagaagaaga	agaggaaaag	ggacaagcag	ccgggagaga	ccaatgaaca	1560
cagcgaatgt	ttcctaaatc	cttgcctttc	acttcctccg	attacagacc	tcagcgctcc	1620
taagaaatgc	cgagcgcgct	ttggccttga	tcaacagaat	aactggtgcg	gcccttgcag	1680
gagaaaaaaa	aagtgcgttc	gctacataca	. aggtgaaggd	agctgcctca	gcccaccctc	1740
ttcagatgga	agcttactag	attcgcctcc	ccctccccg	aacctgctag	gctcccctcc	1800
ccgagacgcc	aagtcacaga	. ctgagcagac	ccagcctctg	tegetgteed	tgaagcccga	1860
ccccctggcc	cacctgtcca	. tgatgcctcc	gccacccgcc	: ctcctgctcg	ctgaggccac	1920
ccacaaggcc	teegeeetet	gtcccaacgg	ggccctggac	ctgccccag	ccgctttgca	1980
gcctgccgcc	ccctcctcat	. caattgcaca	gccgtcgact	tcttggttac	attcccacag	2040
	t.					

ctccctggcc	gggacccagc	cccagccgct	gtcgctcgtc	accaagtctt	tagaatagct	2100
ttagcgtcgt	gaaccccgct	gctttgttta	tggttttgtt	tcacttttct	taatttgccc	2160
cccaccccca	ccttgaaagg	ttttgttttg	tactctctta	attttgtgcc	atgtggctac	2220
attagttgat	gtttatcgag	ttcattggtc	aatatttgac	ccattcttat	ttcaatttct	2280
ccttttaaat	atgtagatga	gagaagaacc	tcatgattgg	taccaaaatt	tttatcaaca	2340
gctgtttaaa	gtctttgtag	cgtttaaaaa	atatatatat	atacataact	gttatgtagt	2400
tcggatagct	tagttttaaa	agactgatta	aaaaacaaaa	aaaa		2444

<210> 311

<400> 311 ggtttatttt ccagatgcaa tcaatgcccc agtcacctgc tgttataact tcaccaatag 60 gaagatetea gtgcagagge tegegageta tagaagaate accageagea agtgteecaa 120 acaagctgtg atgtgagttc agcacaccaa ccttccctgg cctgaagttc ttccttgtgg 180 240 agcaagggac aagcctcata aacctagagt cagagagtgc actatttaac ttaatgtaca aaggttccca atgggaaaac tgaggcacca agggaaaaag tgaaccccaa catcactctc 300 360 cacctgggtg cctattcaga acacccaatt tctttagctt gaagtcagga tggctccacc tggacaccta taggagcagt ttgccctggg ttccctcctt ccacctgcgt tcctcctcta 420 480 qctcccatqq caqccctttg gtgcagaatg ggctgcactt ctagaccaaa actgcaaagg aacttcatct aactctgtcc tccctcccca cagcttacag accattgtgg caaggagatc 540 tgtgctgacc ccaagcagaa gtgggttcag gattccatgg accacctgga caagcaaacc 600 caaactccga agacttgaac actcactcca caacccaaga atctgcagct aacttatttt 660 tccctagctt tccccagaca ccttgtttat tttattataa tgaattttgt ttgttgatgt 720 780 gaaacattat gccttaagta atgttaattc ttatttaagt tattgatgtt ttaagtttat ctttcatggt actagtgttt tttagataca gagacttggg gaaattgctt ttcctcttga 840 900 accacagttc tacccctggg atgttttgag ggtctttgca agaatcatta atacaaagaa tttttttaa cattccaatg cattgctaaa atattattgt ggaaatgaat attttgtaac 960 1011

<211> 1011

<212> DNA

<213> Homo sapiens

<210> 312

<211> 459

<212> DNA

<213> Homo sapiens

<400> 312					
atggaggetg aagetgetg	t tcggaggccc	tctattggtg	cctctctcct	gccgtcatca	60
ctatggcagg aaaacagag	a tggtttagta	atgaattatc	attcccaaac	ccgtgtccac	120
ctggaacatc aggatggga	c catgtttgaa	aatcgggtct	ttccaaatgt	aattaagtaa	180
ggcgaggcca tactgcatt	t acaatgggcc	caatccagtg	tccctatgag	agacggaaga	240
ggagacacag acacaaago	a ggaggccaca	taaagacaga	ggcagagact	gaagtgatgc	300
tgccccaagc ccaggggat	g cctggagtcc	ccaggagctg	ggagaggcag	gaagggaccc	360
tcccctagag tctcttgga	g ggaactgata	caattgcaga	gtgcactaaa	cagttgcccc	420
aaaagacata tcttgtttt	a aggcccagac	ctgaaattt			459
<210> 313 <211> 1816 <212> DNA <213> Homo sapiens <400> 313					
ctcgccttct ggctctgcc	a tgecetgete	tgaagagaca	cccgccattt	cacccagtaa	60
gegggeeegg cetgeggag	g tgggcggcat	gcagctccgc	tttgcccggc	tctccgagca	120
cgccacggcc cccacccgg	g gctccgcgcg	cgccgcgggc	tacgacctgt	acagtgccta	180
tgattacaca ataccacct	a tggagaaagc	tgttgtgaaa	acggacattc	agatagcgct	240
cccttctggg tgttatgga	a gagtggctcc	acggtcaggc	ttggctgcaa	aacactttat	300
tgatgtagga gctggtgto	a tagatgaaga	ttatagagga	aatgttggtg	ttgtactgtt	360
taattttggc aaagaaaag	ıt ttgaagtcaa	aaaaggtgat	cgaattgcac	agctcatttg	420
cgaacggatt ttttatcca	ıg aaatagaaga	agttcaagcc	ttggatgaca	ccgaaagggg	480
ttcaggaggt tttggttc	a ctggaaagaa	ttaaaattta	tgccaagaac	agaaaacaag	540
aagtcatacc tttttctta	a aaaaaaaaaa	aaagtttttg	cttcaagtgt	tttggtgttt	600
tgcacttctg taaacttad	t agctttacct	tctaaaagta	ctgcattttt	tactttttt	660
tatgatcaag gaaaagato	g ttaaaaaaaa	acacaaagaa	gtttttcttt	gtgtttggat	720
caaaaagaaa ctttgttt	t ccgcaattga	aggttgtatg	taaatctgct	ttgtggtgac	780
ctgatgtaaa cagtgtct	c ttaaaatcaa	. atgtaaatca	. attacagatt	aaaaaaaaa	840
gcctgtattt aactcata	g atctcccttc	agcaacttat	tttgctttaa	ttgctttaaa	900
tcttaagcaa tattttt	at tcagtaaaca	. aattctttca	. caaggtacaa	aatcttgcat	960
aagctgaact aaaataaa	aa tgaaaaggag	agattaaagg	tattccttgt	tcttcccttc	1020
tcttcactag tctaaaaa	ct totttttaat	cttaagatto	: tttgtgatga	gggtgagaaa	1080

aagaatcctc	agtttatttt	tccactatta	atctttcttt	tgataaatcc	tctattgact	1140
gggtagaggt	atgtttgtga	aagacatgta	acttggggat	ttgttacttt	aggtttgttc	1200
ccttgaattt	catctcatca	ggcaaattgt	actagttgta	gttacgagtt	ttccctcagt	1260
gaagtagcaa	taggctgtaa	tcaagaaaat	atgccattta	tagagataag	ataaatgaaa	1320
taatacttca	gccaccaggt	ttttctgtct	cacatacata	agcagcattt	cattgcagat	1380
atgggactga	ttctgtggct	taccttgatt	aacatctttt	ggaagttttg	ctagtgtgct	1440
ttcctttctt	tactatgttt	ctcagattcc	tttgtatcag	ggttttgggt	gtcacttagg	1500
ttttgtccat	cagattctgt	gagacaccag	gcatcgtttt	gaggatgtgg	gttatacaca	1560
tggagtgctt	ctggaactat	cagcccactt	gaccacccag	tttgtggaag	cacaggcaag	1620
agtgttcttt	tctggtgatt	ctccaggcca	tttaataccc	tgcaatgtaa	ttgtccctct	1680
gtggctcaca	tttcattagt	gagccatgaa	atcaactcag	tgggacatag	ccagcatttt	1740
tgcataccag	gttgggctat	aaaatatttc	tgttgtcaat	aaattttaaa	tgttttcctg	1800
ctaaaaaaaa	aaaaaa					1816

<210> 314

<211> 1941

<212> DNA

<213> Homo sapiens

<400> 314 tcagagaggc agctgctgtg tttcaggaaa ctctgagagg tgggtcccag cctgacgcag 60 cccgagaget ccgctcttgc cttctccacc tcacactggt aagggggcca ggcacactgt 120 catgctgagg cggttatcag ggagaattgg ctgggactgc aataccaagc ctcaggtggc 180 240 taaggagggt gcggggaagg atgggtggaa tgagaggcat gggctgtcct gcttaaaaga 300 aggatetqqt gecettetet etecettete ageagggtea gegaggagga atetgtgeae 360 cacctctqtc acctggggcc ctccagccac ttccccatgc tgagctggca ccctcaggcc taccttccct caggtgccct cgaagcactg ctttgaggtc ccctggcctg tctccactct 420 480 tgcattatcc ttcatgtcac cgaagccacc ccaaccagcc cctctcccag actcagagta gaaggcccca tecteteaag ceceaggace etteaaaggg etgggacate etgggaettg 540 ggctccagca tctgtctcag gccagatgag ggggcaccgg tccctcatag ggcagggcca 600 660 tgtatatatc ccttggtggg ggacatagtg tggtgacagt tcactgcata ttttgagacc 720 ttattctcta gatccatagt taatgatgcc ctggcagtca ttcctcttgc catggggaag 780 cttctgatga gagaaaggag ccccacatcc actgaaacat cctttggttc tcaagcttct tctggaggca gtaaggaaaa ataaaaccca ccaaggctca agaagggaac tatagaaaag 840

ttcaggtttt	taggctatag	cagagacagt	gagaaagcat	ctgggccttt	ctcttcctct	900
tggtccaggg	gacctcattc	accaactaga	gcttggtgta	caggaacggg	gtcacagtgc	960
tgagggggct	tgagtcccac	ctttcagctt	gatggatgct	cacctcttct	cagccccagc	1020
tcgtgccctg	tttttctagc	catagccccc	agattactca	cagctcctca	tgccatttcc	1080
tgtccagatt	gctatgtatg	actctgacct	ctcttgtcca	gtggtctggt	gctcacctcc	1140
tctcactgct	agaatattca	ccaagggttt	gcatttggga	agtcccttac	cagctcctgc	1200
ttagagctgg	tagggccata	catgtccaca	ctcccaactg	gtggatataa	cgctgaatgg	1260
ggcctcagca	ggtgcccagg	ctgctacaac	cttggccact	ctgtttctcc	accccagcac	1320
tgggcatggt	aattagcctt	tccccatgtt	aatttattca	gttttttcaa	gggtcaactg	1380
aattccccac	ttcctgggta	agaagcatga	tctcctttta	atttcacgtc	taagatcctg	1440
gcagcttccc	ctagctggtt	cctctgtagt	cctgctggga	ctgtcagctc	atttaaatgt	1500
gggtctgcag	aaggctttag	gtctccccca	accccttac	ctttcacaga	ggaacctttc	1560
atcaggacaa	atgattattg	ctgccctgtg	ggtcttgctc	aatactgttc	atacctggag	1620
agagaaggta	ttgaaacatc	tcctttatgt	gtgactttcc	caaattttta	aaaattgttt	1680
atggtttagg	ccccttaaat	actgtgtagc	aggatgaagt	ctaccattac	cagctgggtc	1740
accttggatg	ggtctgtcaa	catctaagcc	tcagttccct	cacctgtaaa	aatgagggta	1800
gtccctacct	cataagggat	attgtgagga	tggaaagcga	aagtgtgaga	aaatacctcc	1860
caagtgcctg	gtacatagtg	ggtgctaaat	aaaccacttt	ttgtctgcaa	aaaaaaaaaa	1920
aaaaaaaaa	aaaaaaaaa	a				1941

<210> 315

<400> 315

cagtctcagc	tgactcagcc	ggcctcggtg	tccgtgtccc	caggacagac	agccaccatc	60
ccctgctctg	gagataattt	gggggataaa	tatgcttcct	ggtttcagca	gaagccaggc	120
cagtcccctg	tcctggtcat	ctatcaagat	aacaagcggc	cctcagggat	ccctgagcga	180
ttctccggct	ccaactctgg	gagcacagcc	actctgacca	tcagcgggac	ccaggctatg	240
gatgaggctg	actattactg	tcaggcgtgg	gacaccaaca	ctgcggtatt	cggcggaggg	300
accaaggtga	ccgtcctag					319

<210> 316

<211> 319

<212> DNA <213> Homo sapiens

<211> 3579

<212> DNA

<213> Homo sapiens

<400> 316 cacgcgtccg cgagaaggag gactcgcaag cctcggcggc ccggaaccgg cctcggactg 60 120 tcgacggaac ctgaggccgc ttgccctccc gccccatgga gcggcccccg gggctgcggc 180 cgggcgcggg cgggccctgg gagatgcggg agcggctggg caccggcggc ttcgggaacg 240 tctgtctgta ccagcatcgg gaacttgatc tcaaaatagc aattaagtct tgtcgcctag 300 agctaagtac caaaaacaga gaacgatggt gccatgaaat ccagattatg aagaagttga 360 accatgccaa tgttgtaaag gcctgtgatg ttcctgaaga attgaatatt ttgattcatg 420 atgtgcctct tctagcaatg gaatactgtt ctggaggaga tctccgaaag ctgctcaaca aaccagaaaa ttgttgtgga cttaaagaaa gccagatact ttctttacta agtgatatag 480 ggtctgggat tcgatatttg catgaaaaca aaattataca tcgagatcta aaacctgaaa 540 acatagttct tcaggatgtt ggtggaaaga taatacataa aataattgat ctgggatatg 600 660 ccaaagatgt tgatcaagga agtctgtgta catcttttgt gggaacactg cagtatctgg 720 ccccagagct ctttgagaat aagccttaca cagccactgt tgattattgg agctttggga 780 ccatggtatt tgaatgtatt gctggatata ggcctttttt gcatcatctg cagccattta cctggcatga gaagattaag aagaaggatc caaagtgtat atttgcatgt gaagagatgt 840 caggagaagt tcggtttagt agccatttac ctcaaccaaa tagcctttgt agtttaatag 900 tagaacccat ggaaaactgg ctacagttga tgttgaattg ggaccctcag cagagaggag 960 1020 gacctgttga ccttactttg aagcagccaa gatgttttgt attaatggat cacattttga 1080 atttgaagat agtacacatc ctaaatatga cttctgcaaa gataatttct tttctgttac cacctgatga aagtcttcat tcactacagt ctcgtattga gcgtgaaact ggaataaata 1140 ctggttctca agaacttctt tcagagacag gaatttctct ggatcctcgg aaaccagcct 1200 1260 ctcaatgtgt tctagatgga gttagaggct gtgatagcta tatggtttat ttgtttgata 1320 aaagtaaaac tgtatatgaa gggccatttg cttccagaag tttatctgat tgtgtaaatt atattgtaca ggacagcaaa atacagcttc caattataca gctgcgtaaa gtgtgggctg 1380 1440 aagcagtgca ctatgtgtct ggactaaaag aagactatag caggctcttt cagggacaaa 1500 gggcagcaat gttaagtctt cttagatata atgctaactt aacaaaaatg aagaacactt tgatctcagc atcacaacaa ctgaaagcta aattggagtt ttttcacaaa agcattcagc 1560 ttgacttgga gagatacagc gagcagatga cgtatgggat atcttcagaa aaaatgctaa 1620 aagcatggaa agaaatggaa gaaaaggcca tccactatgc tgaggttggt gtcattggat 1680 acctggagga tcagattatg tctttgcatg ctgaaatcat ggagctacag aagagcccct 1740

atggaagacg	tcagggagac	ttgatggaat	ctctggaaca	gcgtgccatt	gatctatata	1800
agcagttaaa	acacagacct	tcagatcact	cctacagtga	cagcacagag	atggtgaaaa	1860
tcattgtgca	cactgtgcag	agtcaggacc	gtgtgctcaa	ggagctgttt	ggtcatttga	1920
gcaagttgtt	gggctgtaag	cagaagatta	ttgatctact	ccctaaggtg	gaagtggccc	1980
tcagtaatat	caaagaagct	gacaatactg	tcatgttcat	gcagggaaaa	aggcagaaag	2040
aaatatggca	tctccttaaa	attgcctgta	cacagagttc	tgcccggtcc	cttgtaggat	2100
ccagtctaga	aggtgcagta	acccctcaga	catcagcatg	gctgcccccg	acttcagcag	2160
aacatgatca	ttctctgtca	tgtgtggtaa	ctcctcaaga	tggggagact	tcagcacaaa	2220
tgatagaaga	aaatttgaac	tgccttggcc	atttaagcac	tattattcat	gaggcaaatg	2280
aggaacaggg	caatagtatg	atgaatcttg	attggagttg	gttaacagaa	tgagttgtca	2340
cttgttcact	gtccccaaac	ctatggaagt	tgttgctata	catgttggaa	atgtgttttt	2400
ccccatgaa	accattcttc	agacatcagt	caatggaaga	aatggctatg	aacagaaact	2460
acatttctac	tatgatcaga	agaacatgat	tttacaagta	taacagtttt	gagtaattca	2520
agcctctaaa	cagacaggaa	tttagaaaaa	gtcaatgtac	ttgtttgaat	atttgtttta	2580
ataccacagc	tatttagaag	catcatcacg	acacatttgc	cttcagtctt	ggtaaaacat	2640
tacttattta	actgattaaa	aataccttct	atgtattagt	gtcaactttt	aacttttggg	2700
cgtaagacaa	agtgtagttt	tgtatacaga	gaagaaaacc	tcaagtaata	ggcattttaa	2760
gtaaaagtct	acctgtgttt	ttttctaaaa	aggctgctca	caagttctat	ttcttgaaga	2820
ataaattcta	cctccttgtg	ttgcactgaa	caggttctct	tcctggcatc	ataaggagtt	2880
ggtgtaatca	ttttaaattc	cactgaaaat	ttaacagtat	ccccttctca	tcgaagggat	2940
tgtgtatctg	tgcttctaat	attagttggc	tttcataaat	catgttgttg	tgtgtatatg	3000
tatttaagat	gtacatttaa	taatatcaaa	gagaagatgc	ctgttaattt	ataatgtatt	3060
tgaaaattac	atgtttttc	atttgtaaaa	atgagtcatt	tgtttaaaca	atctttcatg	3120
tcttgtcata	caaatttata	aaggtctgca	ctcctttatc	tgtaattgta	attccaaaat	3180
ccaaaaagct	ctgaaaacaa	ggtttccata	agcttggtga	caaaattcat	ttgcttgcaa	3240
tctaatctga	actgaccttg	aatcttttta	tcccatttag	tgtgaatatt	cctttatttt	3300
gctgcttgat	gatgagaggg	agggctgctg	ccacagactg	tggtgagggc	tggttaatgt	3360
agtatggtat	atgcacaaaa	ctacttttct	aaaatctaaa	atttcataat	tctgaaacaa	3420
cttgccccaa	gggtttcaga	gaaaggactg	tggacctcta	tcatctgcta	agtaatttag	3480
aagatattat	ttgtcttaaa	aaatgtgaaa	tgcttttata	ttctaatagt	ttttcacttt	3540
gtgtattaaa	tggtttttaa	attaaaaaaa	aaaaaaaa			3579

<210> 317 <211> 1231 <212> DNA <213> Homo sapiens <400> 317 cctggatgtg atggcgtcac agaagagacc ctcccagagg cacggatcca agtacctggc 60 120 cacagcaagt accatggacc atgccaggca tggcttcctc ccaaggcaca gagacacggg catecttgae tecateggge gettetttgg eggtgaeagg ggtgegeeca ageggggete 180 tggcaaggta ccctggctaa agccgggccg gagccctctg ccctctcatg cccgcagcca 240 300 qcctqqqctq tqcaacatqt acaaggactc acaccacccg gcaagaactg ctcactacgg ctccctgccc cagaagtcac acggccggac ccaagatgaa aaccccgtag tccacttctt 360 caaqaacatt qtqacqcctc gcacaccacc cccgtcgcag ggaaaggggg ccgaaggcca 420 gagaccagga tttggctacg gaggcagagc gtccgactat aaatcggctc acaagggatt 480 540 caagggagtc gatgcccagg gcacgctttc caaaattttt aagctgggag gaagagatag tcgctctgga tcacccatgg ctagacgctg aaaacccacc tggttccgga atcctgtcct 600 660 caqcttctta atataactgc cttaaaactt taatcccact tgcccctgtt acctaattag 720 agcagatgac ccctccccta atgcctgcgg agttgtgcac gtagtagggt caggccacgg 780 caqcctaccg gcaatttccg gccaacagtt aaatgagaac atgaaaacag aaaacggtta 840 aaactqtccc tttctgtgtg aagatcacgt tccttccccc gcaatgtgcc cccagacgca cgtgggtctt cagggggcca ggtgcacaga cgtccctcca cgttcacccc tccacccttg 900 960 gactttettt tegeegtgge tgeggeacee ttgegetttt getggteact gecatggagg cacacagctg cagagacaga gaggacgtgg gcggcagaga ggactgttga catccaagct 1020 1080 tootttgttt ttttttootg toottototo acctootaaa gtagacttoa tttttootaa 1140 caggattaga cagtcaagga gtggcttact acatgtggga gcttttggta tgtgacatgc 1200 gggctgggca gctgttagag tccaacgtgg ggcagcacag agagggggcc acctccccag 1231 gccgtggctg cccacacacc ccaattagct g <210> 318 <211> 7389 <212> DNA <213> Homo sapiens <400> 318 gtttctctct ctggtcggaa gcggcggtaa tggcggatgg tgggttgtgg cgccggcggc 60 120 ggctgctgtg agggacgatg agtgcctcct tcgtgccgaa cggggccagc ctggaagatt

gtcactgtaa	cctcttctgc	ctggctgact	tgacaggaat	taagtggaaa	aaatatgtat	180
ggcaaggccc	aacttctgcc	cctattctgt	ttcctgtgac	agaagaagac	cccattttga	240
gcagttttag	tcgctgcctt	aaggcagatg	tacttggtgt	ttggcggcga	gatcaaagac	300
ctggaagaag	agaattgtgg	atattttggt	ggggtgaaga	cccagttttg	ctgaccttat	360
tcaccatgac	ttatcagaag	aagaagatgg	aatgtgggag	aatggacttt	cctatgaatg	420
ccgtactctg	cttttccaaa	gcagttcaca	atctattgga	acggtgttta	atgaacagga	480
attttgtacg	tattggcaag	tggtttgtaa	agccttatga	aaaagatgaa	aaacctataa	540
ataaaagtga	acacttgtcc	tgctccttca	cctttttctt	gcatggagac	agcaatgttt	600
gtaccagtgt	ggaaattaac	caacatcaac	ctgtatacct	tctcagtgaa	gagcatatca	660
cccttgctca	acagtctaat	agcccatttc	aagttatctt	atgcccattt	ggactaaatg	720
gcactctcac	aggacaggca	ttcaagatgt	ctgattcagc	tacaaaaaaa	ttaattggtg	780
aatggaaaca	gttctatcct	atctcatgtt	gcttgaagga	gatgtctgaa	gaaaaacagg	840
aagatatgga	ttgggaagat	gattctttag	ctgcagtaga	agttcttgtt	gctggtgtcc	900
gaatgatcta	cccagcatgc	tttgttctag	tccctcagtc	agacattcct	actcctagcc	960
ctgtgggatc	cactcactgt	tcatcttctt	gcttgggtgt	ccaccaagtg	cctgcttcca	1020
caagagatcc	tgctatgtct	tcggttacgc	ttacaccacc	tacgtctcct	gaggaagtcc	1080
aaacagttga	tcctcagtct	gtccagaagt	gggtcaaatt	ttcttcagta	tctgatggct	1140
tcaactccga	tagtactagc	caccatggtg	ggaaaatacc	cagaaaatta	gcaaatcatg	1200
tggtggatag	agtttggcaa	gaatgcaata	tgaacagagc	acagaacaag	aagaagtatt	1260
ctgcttcatc	aggtggtcta	tgcgaagaag	cgacagctgc	taaagtggca	tcctgggatt	1320
ttgttgaagc	cacacaaaga	acaaattgca	gttgtttgag	gcacaaaaat	ctcaagtcaa	1380
gaaatgctgg	acaacaagga	caggcaccat	ctttaggtca	gcaacaacaa	atacttccta	1440
agcacaagac	caatgagaag	caagaaaaga	gtgaagagcc	acagaaacgc	cccttgactc	1500
cttttcacca	tcgtgtgtct	gttagtgatg	atgttggcat	ggacgcagat	tcagccagcc	1560
aaagacttgt	gatctctgct	ccagacagtc	aagtgagatt	ttcaaatatc	cgaactaatg	1620
atgtagcaaa	gactcctcag	atgcatggca	ccgaaatggc	aaattcacct	caaccacccc	1680
cacttagtcc	tcacccttgt	gatgtggttg	atgaaggagt	gactaaaaca	ccttcaactc	1740
ctcagagtca	acattttat	caaatgccaa	caccagatcc	cttggttcct	tctaaaccaa	1800
tggaagatag	gatagacagt	ttgtcccagt	ctttcccacc	tcaatatcag	gaagctgtag	1860
aacctacagt	atatgttggt	acagcagtaa	acttggaaga	agatgaagco	aatatagcct	1920
ggaagtatta	caagttccca	aagaaaaaag	atgtagagtt	tttaccacct	caacttccaa	1980

gtgataaatt	caaggatgat	ccagttggac	cttttggaca	ggaaagtgta	acatcagtta	2040
cagagttaat	ggtgcaatgt	aagaaacctt	taaaagtttc	tgatgaatta	gtgcagcaat	2100
atcaaattaa	aaaccagtgt	ctttcagcaa	tagcatctga	tgcagaacaa	gaacctaaaa	2160
ttgatccata	tgcatttgtt	gaaggagatg	aggaattcct	ttttcctgat	aaaaaagata	2220
gacaaaatag	tgagagagaa	gctggaaaaa	aacacaaggt	agaagatggg	acatctagtg	2280
taacagtgtt	atcacatgaa	gaagatgcta	tgtcattatt	tagtccctct	atcaagcaag	2340
atgctccacg	ccctactagt	catgcccgtc	ctccatcaac	aagtttgatt	tatgactcag	2400
acctggctgt	ctcttatact	gaccttgata	atctcttcaa	ttctgatgaa	gatgaactaa	2460
cacctggatc	taaaagatca	gcaaatggat	cagatgataa	agccagctgc	aaggaatcaa	2520
agacaggaaa	tctggacccg	ttatcttgca	taagcactgc	agatcttcat	aaaatgtatc	2580
ctacaccacc	atcattggaa	caacatatta	tgggattttc	cccaatgaat	atgaataata	2640
aagaatatgg	tagtatggat	acaacacctg	gaggaactgt	tctagaagga	aatagttcta	2700
gtataggagc	gcagttcaaa	attgaggttg	atgagggatt	ctgtagcccc	aaaccttctg	2760
aaattaaaga	tttttcttat	gtctataagc	ctgaaaattg	tcaaattcta	gtgggatgtt	2820
ccatgtttgc	acctctaaaa	actctaccaa	gccaatatct	gccccttatc	aaattgccag	2880
aagagtgtat	ttaccgtcag	agttggactg	ttggaaaatt	ggaattgctt	tcttcagggc	2940
cttcaatgcc	attcatcaaa	gagggtgatg	gaagtaatat	ggatcaagaa	tatggcactg	3000
cttatacacc	tcaaactcat	acttcttgtg	ggatgcctcc	tagcagtgca	cctcctagta	3060
acagcggagc	aggaattctt	ccttctccat	ccacccctcg	gtttccaact	ccaaggactc	3120
caaggactcc	tcggactcct	cgtggagctg	gtggacctgc	tagtgctcaa	ggttcagtca	3180
aatatgaaaa	ttcagacttg	tattcaccag	cttctacccc	atctacatgc	agacccctta	3240
attctgttga	acctgcaact	gtcccttcca	tccctgaagc	acacagtctt	tatgtaaacc	3300
tcatcctttc	agaatcagtt	atgaatttgt	ttaaagactg	taactctgat	agttgttgca	3360
tctgtgtttg	caacatgaac	atcaagggtg	ccgatgttgg	agtttacatt	ccagatccaa	3420
cgcaggaagc	acaatatagg	tgtacctgtg	gcttcagtgc	tgtcatgaac	agaaaatttg	3480
gaaacaattc	aggattattt	cttgaagatg	aactagatat	cataggacgc	aatacagact	3540
gtggcaaaga	agcagaaaaa	cgttttgaag	ctctcagggc	tacctctgct	gaacatgtta	3600
atggaggact	aaaggaatct	gaaaaattat	ctgatgattt	gatattattg	ctacaagatc	3660
agtgcactaa	tttattttca	ccctttggag	cagcagacca	agatcctttt	cctaaaagtg	3720
gtgtaattag	caattgggta	cgtgttgaag	agcgtgactg	ttgcaatgac	tgctaccttg	3780

cattagaaca	tgggcgtcag	ttcatggata	acatgtcagg	aggaaaagtt	gatgaagcac	3840
ttgtgaaaag	ttcatgctta	cacccctggt	ccaaaagaaa	cgatgtgagt	atgcagtgct	3900
cacaggatat	acttcgaatg	ctcctctctc	ttcagccagt	tcttcaggat	gccattcaga	3960
aaaaaagaac	agtaagacct	tggggtgttc	agggtcctct	cacttggcaa	caatttcata	4020
aaatggctgg	ccgaggctct	tatggaactg	atgaatcccc	agaaccactg	ccaatcccca	4080
catttttgtt	gggttatgat	tatgattatc	tggtgctttc	tccatttgct	cttccttatt	4140
gggagagact	tatgctggaa	ccctatggat	ctcaaagaga	tatagcctat	gttgtactgt	4200
gtccagaaaa	tgaagccttg	ttaaatggag	caaaaagctt	ttttagagat	cttactgcaa	4260
tatatgagtc	ctgtcgatta	ggtcaacata	gacctgtttc	tcgactgtta	acagatggga	4320
tcatgagagt	tggatctact	gcatcaaaga	aactatcaga	aaagttggta	gcagaatggt	4380
tttctcaggc	agctgatggt	aacaatgaag	cattttctaa	actcaagctt	tatgcacaag	4440
tctgcagata	tgacctaggt	ccttatcttg	cttccctgcc	attggacagc	tctctacttt	4500
cccagccaaa	tttagttgcc	cctacaagtc	agtctttgat	tactccacct	cagatgacaa	4560
atactggaaa	tgctaatact	ccatctgcca	ccttagcatc	tgcagcgagc	agcactatga	4620
cagtgacttc	aggtgttgcc	atatctactt	cagttgccac	agctaattca	actttgacca	4680
cagcttcaac	ttcatcttca	tcatcctcca	acttgaatag	tggagtatca	tcaaataaac	4740
taccttcgtt	tccacccttt	ggcagtatga	acagtaatgc	tgcaggatcc	atgtctacac	4800
aagcaaatac	agttcagagt	ggtcagctag	gagggcaaca	gacatcagct	ctacagacag	4860
ctgggatttc	tggagaatca	tcttcacttc	ccactcagcc	gcatcctgat	gtgtctgaaa	4920
gcacgatgga	tcgggataaa	gtgggaatcc	ccacagatgg	tgattcacat	gcagtcacgt	4980
atccacctgc	aattgttgtt	tatataattg	atccttttac	atacgaaaat	acagacgaga	5040
gcactaactc	ttctagtgtg	tggacattgg	ggctacttcg	atgctttcta	gaaatggtcc	5100
agactcttcc	tcctcatatc	aagagtactg	tttctgtaca	gattattcct	tgtcagtacc	5160
tgttgcaacc	tgtgaagcat	gaagatagag	aaatctatcc	ccagcattta	aaatccctgg	5220
ctttttcggc	ctttacccag	tgtcggaggc	cacttccaac	atcaaccaat	gtgaaaacat	5280
tgactggctt	tggtccaggt	ttagccatgg	aaactgccct	tagaagtcct	gatagaccag	5340
agtgtattcg	actttatgca	cctccttta	ttctggctcc	agtgaaggad	aaacagacag	5400
agctaggaga	aacatttgga	gaagctggac	agaaatataa	tgttctttt	gtgggatact	5460
gtttatcaca	tgatcaaagg	tggattcttg	catcttgcac	agatctatat	ggagaacttt	5520
tagaaacttg	tatcattaac	atcgatgttc	caaatagggc	tcgtcggaaa	aaaagttctg	5580
ctagaaaatt	tggtctacag	aaactttggg	agtggtgctt	aggacttgta	caaatgagtt	5640
	4 4					

cattgccatg	gagagttgta	attggtcgtc	taggaaggat	tggtcatgga	gaattgaaag	5700
attggagctg	tttgctgagt	cgtcgaaact	tgcagtctct	aagtaaaagg	ctcaaagaca	5760
tgtgtagaat	gtgtggtata	tctgctgcag	actcccctag	cattctcagt	gcttgcttgg	5820
tggcaatgga	gccgcaaggc	tcttttgtta	ttatgccaga	ttctgtgtca	actggttctg	5880
tatttggaag	aagcacgact	ctaaatatgc	agacatctca	gctaaatacc	ccacaggata	5940
catcatgtac	tcatatactt	gtgtttccta	cttctgcttc	tgtgcaagta	gcttcagcta	6000
cttataccac	tgaaaatttg	gatttagctt	tcaatcccaa	caatgatgga	gcagatggaa	6060
tgggtatctt	tgatttgtta	gacacaggag	atgatcttga	ccctgatatc	attaatatcc	6120
ttcctgcttc	tccaactggt	tctcctgtac	attctccagg	atctcattac	ccccatggag	6180
gtgatgcggg	caagggtcag	agtactgatc	ggctactatc	aacagaacct	catgaggaag	6240
tacctaatat	tcttcagcaa	ccattggccc	ttggttactt	tgtatcaact	gccaaagcag	6300
gtccattacc	tgactggttc	tggtcagcat	gtcctcaagc	acaatatcag	tgtccccttt	6360
ttcttaaggc	ctctttgcac	ctccacgtgc	cttcagtgca	atctgacgag	ctgcttcaca	6420
gtaaacactc	ccacccactt	gactcaaatc	agacttcaga	tgtcctcagg	tttgttttgg	6480
aacagtacaa	tgcactctcc	tggctaacct	gtgaccctgc	aacccaggac	agacgctcat	6540
gtctcccaat	tcattttgtg	gtgctgaatc	agttatataa	ctttattatg	aatatgctgt	6600
gatcttcatt	tgatggaact	gtgcaagaaa	agaacaagga	aaaatggatg	tttcgctgca	6660
ggattaagtt	acaattatct	tctcagtgaa	ggtcatttgt	gatggggtct	aattcttatt	6720
acttcaacaa	atattgtttt	gacttggggg	gaggggctat	aaccctgcta	tttttcattg	6780
actctattga	actctttagg	atgatgactg	atcatacaaa	acgtattata	acattttcgt	6840
agcaaaatta	acctttttt	tttccagtca	cagtatttgt	gaaaagtaat	gagccatagt	6900
acccagtcat	gttaaatgaa	tattaaaagc	atggagagga	aacatgagga	acaatgaatt	6960
tcaacatatg	gcttcagaac	atgaagatgt	tcttgtatgg	attatagtat	ctagtattca	7020
aaaatgcctg	catctcttct	cttatttatt	gtaagttttt	aaatgtataa	attgtcttat	7080
atttcttaac	ctcttttata	aaaattttcc	tagaaggttt	atactgcctt	cttgctttaa	7140
agcaattggt	ctaaaatata	tgtaatcgtc	ttaattaaaa	agttgcagta	gggttgcttt	7200
tagagtatta	tttttttgta	agggggtggg	tgggacagta	aatttgtatt	gtctcgatgt	7260
acagtttaac	ggggatagag	ggggaataat	gtccatacca	ttgtgtgtgg	aggatttaca	7320
gctaagctgt	agttgcagag	tacatgtaca	gtaatgaagt	tcactgtgtt	tataaattga	7380
aaaggtacc						7389
	attggagetg tgtgtagaat tggcaatgga tatttggaag catcatgtac cttataccac tgggtatctt ttectgettc gtgatgeggg tacctaatat gtccattacc ttcttaaggc gtaaacactc aacagtacaa gtctccaat gatttcatt ggattaagtt acttcatcac actctattga actctattga accagtcat tcaacaa attcaacaa actctattga aacactcg tacacacac cgataactcac agcaaatta acccagtcat tcaacatatg aacactcg attcttaac agcaaatta cacagtcat tcaacatatg aacactcg attcttaac agcaattggt tagagtatta acagtttaac gctaagctgt	attggagetg tttgetgagt tgtgtagaat gtgtggtata tggcaatgga gccgcaagge tatttggaag aagcacgact catcatgtac tcatatactt cttataccac tgaaaatttg tgggtatctt tgatttgta ttcctgcttc tccaactggt gtgatgcggg caagggtcag tacctaatat tcttcagcaa gtccattacc tgactggttc ttcttaaggc ctctttgcac gtaaacactc ccacccactt aacagtacaa tgcactctcc gtctcccaat tcattttgtg gatcttcatt tgatggaact ggattaagtt acaattact acttcaacaa atattgttt actctattga actcttttt acccagtcat gttaaatgaa tcaacatatg gcttcagaac aaaatgcctg catctctct attcttaac ctcttttata agcaattggt ctaaaaatata tagagtatta ttttttgta acagtttaac ggggatagag gctaagctgt agttgcagag	attggagctg tttgctgagt cgtcgaaact tgtgtagaat gtgtggtata tcttgctgag tggcaatgga gccgcaaggc tcttttgtta tatttggaag aagcacgact ctaaatatgc catcatgtac tcatatactt gtgtttccta cttataccac tgaaaatttg gatttagctt tggttgttc tccaactggt tctcctgtac gtgatgcggg caagggtcag agtactgatc tacctaatat tcttcagcaa ccattggccc gtccattacc tgactggttc tggtcagcat tctctaaggc ctctttgcac ctccacgtgc gtaaacactc ccaccactt gactcaatac tcatttgg gtgtcagaat tcattaacac tgacccactt gactcaatac gggtaaacact ccaccactt gactcaatac gacacaggag tccattacc gacctctcc tggctaacct gacctcact tgactggtc gtgcaacact tcatttgg gtgctgaatc gacctcaat tcattttgg gtgctgaatc gactcacat tgacgaact gtgcaagaaa acttcaacaa atattgttt gacttgggg acctatatga acctttatga acctttatta accttttt tttccagtca acccagtcat gttaaatgaa tattaaaagc tcaacatatg gcttcagaac atgaagatgt aaaatgcctg catcttct cttatttatt atttcttaac ctctttata aaaatttccaagaattggt ctaaaatata tgtaatcgtc tagagtatta ttttttgta agggggaataat ggcaagtttaac ggggaatagag ggggaataat gctaagctg agttgaagag ggggaataat	attggagetg tttgetgagt egtegaaact tgeagtetet tgtgtagaat gtgtggtata tetgetgeag acteecetag tggcaatgga geegeaagge tettttgtta ttatgeeaga tatttggaag aageaegaet etaaatatge agacatetea cateatgtae teataactt gtgtteeeta ettetgette ettataceae tgaaaatttg gatttagett teaateeag tgggtatett tgatttgtta gacacaggag atgatettga tteetgette teeaaetggt teteetgae atteteeagg gtgatgeggg caagggteag agtactgate ggetaetate tacetaatat tetteageaa eeattggeee ttggttaeet gteeataee tgaetggte tggteageat gteeteaage tteettaagge etetttgeae eteeagge gtaaaeaete eeaeetggte tggetaaeet gtgaeeegg gteteeaat teatttgg gtgetgaate agteteaga acagtacaa tgeaetetee tggetaaeet gtgaeeetge gteteeaat teattttgtg gtgetgaate agteatataa gatetteatt tgatggaaet gtgeaagaaa agaacaagga ggattaagtt acaattatet teeteagtgaa ggeteatttgt acteaaeaa atattgttt gaettggggg gaggggetat actetattga actetttagg atgatgaetg ateatacaaa ageaaaatta acetttttt ttteeagtea eagtatttgt acceagteat gttaaatgaa tattaaaage atggagagga teaaeatatg getteagaae atgaagatgt tettgtatgg aaaatgeetg eateetete ettatttatt gtaagtttt atttettaae etetttata aaaatttee tagaaggttt ageaattggt etaaaataa tgtaatege ttaataaaa taggaattaa ttttttta aaaatttee tagaaggtag acagtttaae ggggatagag ggggaataat gteeataeaa tagagtatta tttttttgta agggggggggggggg	teggagetg tetgetgage egeogaaace tegegeteet aagtaaaagg teggagaagaa geogaaagge tettetgta tetageeaga teetggaga acteccetag eatteteage tatteggaag aagcacgace tetattgta tetageeaga teetggaaace eatcatgtac teatatacet gegtteeta etatteggaag aagcacgace etaaatatge agacatetea getaaatace etataacea teataacet gegtteeta teetageeaga atgeggatatett tegattgta gacacaggag atgatettga eccegatate teetggete teecaactgge tetecetgac attetecagg atcetatace gegagatacet teecaactgge tetecetgace attetecagg accetatace gegagateggg eaagggetaga agacacgace teggetactate teeteageg eaagggteag agacatgate gedeactate accetaatat teeteageaa ecattggeee teggetacet tegattace tegacaggacet etageeaga gedeactace acaagaacet teetaace tegaceggete teggetaagea gedeactace accaagaacet teetatace tegaceggete teggetaagea gedeactace accaaggag geaacacace ecacecact gacteaaace agactecaga accaaggaa gedeacaaate teattteggage gegetaacet gegetaacet gegetaacea tegaceggag gegetaacea teattteggagag gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacet gegetaacea accaaggaa gegetataagt acaattaatet teteaggaga gegegetat aaccetaggagagataacaa accettataga actettaaga atgateggaga gegeggetat aaccetgeta accetaatea accetttett tetecagtea eatgagagaga aacaatgagaga teaacaataa gettaaaataa accetttett tetecagtea eatgagagaga aacatgagaga teaacaataa gettaaaaaa accetttett tettecagtea eatgagagaga aacatgagaga teaacaataa getteaaaaa acgatatataa acceagteat gettaaaaaaa tattaaaaaaaaaaaaaaaa	tacctaatat tetteageaa ceattggeee ttggttaett tgtateaact gecaaageag gtecattace tgactggtte tggteageat gteeteaage acaatateag tgteecettt ttettaagge etetttgeae eteeaegtge etteagtgea atetgaegag etgetteaea gtaacacte eeaeceaett gacteaaate agaetteaga tgteeteagg tttgttttgg aacagtacaa tgeaetetee tggetaacet gtgaceetge aacecaggae agaegeteat gteeteeaat teattttgtg gtgetaacet gtgaeeetge aacecaggae agaegeteat gteeteeaat teattttgtg gtgetagaate agtatataa etttattatg aatatgetgt gatetteatt tgatggaact gtgeaagaaa agaacaagga aaaatggatg tttegetgea ggattaagtt acaattatet teteagtgaa ggteatttgt gatggggtet aattettatt aceteaacaa atattgettt gaeettggggg gaggggetat aacectgeta ttttteattg aceteaacaa atattgettt gaettggggg gaggggetat aacectgeta ttttteattg aceteaataga acetettatga atataacaaa acgtattata acattteegt ageaaaatta acetettett teteeagtea eagtattgt gaaaaagtaat gageeatagt acecagteat gttaaaatgaa tattaaaage atggagagga aacatgagga acaatgaatt teaacaatatg getteagaac atgaagatgt tettgtatgg attatagtat etagtattea aaaatgeetg catetettet ettattatt gtaagtttt aaaatgtataa attgeetta atteettaac eteetttata aaaatttee tagaaggtt ataactgeet ettgettaa ageaattggt etaaaatata tgtaategte ttaattaaaa agttgeagta gggtteettt tagagtatta tettettgta agggggtggg tgggacagta aatttgtatt gteetegatgt acagtttaac ggggatagag ggggaataat gteeaacea ttgtgtgtgg aggatttaca gggattaac ggggatagag ggggaataat gteeatacea ttgtgtgtgg aggatttaca ggeaaggtgag tagaaggtg teaaaggtg teacetgtgt tataaattga teacetgtgt tataaattga

<210> 319 <211> 1164 <212> DNA <213> Homo sapiens					
<400> 319 cgtagtttcg atgccggaac	gtgcaggttg	cgaatccccg	taggcgagcg	agcggctagg	60
ttcgtgatct ggagagacgc	tcagattatt	aagttcctgc	aacttaactg	ggaactgatc	120
aagatttcaa gctaaagatg	gtggtgatga	acagcctgag	ggtcattctt	caagcctctc	180
caggcaaatt gctgtggaga	aagttccaga	ttccgagatt	catgccagcg	aggccctgca	240
gcctctatac ttgtacttac	aaaacccgga	accgagcctt	gcatccactc	tgggagagcg	300
tggacctggt tcctgggggc	gatcgccagt	cacccatcaa	cattcggtgg	agggacagtg	360
tttatgatcc cggcttaaaa	ccactgacca	tctcttatga	cccagccacc	tgcctccacg	420
tctggaataa tgggtactct	ttcctcgtgg	aatttgaaga	ttctacagat	aaatcagtga	480
tcaagggagg acccctggaa	cacaactacc	gattgaagca	gttccatttt	cactgggggg	540
ccatcgatgc ctggggttct	gagcacaccg	tggacagcaa	atgcttccca	gcagagctgc	600
acttagtgca ttggaacgca	gtcagatttg	aaaactttga	ggatgcagca	ctggaagaaa	660
atggtttggc tgtgatagga	gtatttttaa	agctaggcaa	acatcataag	gagctacaga	720
aattagtgga tactttgccg	tcaattaagc	ataaggacgc	ccttgtggaa	tttgggtcat	780
ttgacccttc ctgcctgatg	cctacctgcc	cagattactg	gacctactca	gggtctctga	840
ctaccccacc cctctccgag	tctgtcacct	ggatcattaa	gaagcaacca	gtagaggttg	900
atcatgatca gcttgagcaa	tttcggaccc	tgcttttcac	ttccgaaggg	gagaaagaga	960
aaagaatggt ggacaacttc	cgccccttc	agccactgat	gaatcgcact	gttcgttcat	1020
ccttccggca tgattatgtg	ctgaatgtac	aagcaaaacc	caagccggcc	accagccaag	1080
caaccccta aaacattcat	atctaggcag	tattttgctt	ttgctttaat	atatactagc	1140
ttactataaa ttgttaacta	gact				1164
<210> 320 <211> 2510 <212> DNA <213> Homo sapiens					
<400> 320 ctggaatacg cagagtcagt	aagaccatgg	ctacgtcctc	gatgtctaag	ggttgctttg	60
tttttaagcc aaactccaaa	aagagaaaga	tctctctgcc	aatagaggac	tattttaaca	120
aagggaaaaa tgagcctgag	gacagtaagc	ttcgattcga	aacttatcag	ttgatatggc	180
agcagatgaa atctgaaaat	gagcgactac	aagaggaatt	aaataaaaac	ttgtttgaca	240

atctgattga	atttctgcaa	aaatcacatt	ctggattcca	gaagaattca	agagacttgg	300
gcggtcaaat	aaaactcaga	gaaattccaa	ctgctgctct	tgttcttggt	gtgaatgtca	360
cagatcatga	tttgacattc	ggaagtctaa	cagaggccct	tcagaataat	gtcacaccat	420
atgtagtctc	attgcaagct	aaagattgtc	cagatatgaa	acattttttg	caaaagttga	480
tctcacagtt	gatggactgc	tgtgtagata	taaaatccaa	agaggaggaa	agtgttcacg	540
tcacccaaag	aaagacacat	tattcaatgg	attcactttc	cagttggtat	atgactgtca	600
cacagaagac	ggacccaaaa	atgctaagca	aaaaaaggac	tacttctagc	caatggcagt	660
ctcctcctgt	tgtcgttatc	ttgaaggata	tggaaagctt	tgccacaaaa	gtactacaag	720
acttcataat	tatcagcagt	caacatctcc	atgaatttcc	actaatactc	atttttggaa	780
tagccacatc	tcctattatc	atccaccgat	tgcttcctca	tgcagtatca	tctctattgt	840
gcatagaact	gttccaatct	ttgtcttgta	aggagcacct	gactacggta	ctcgataagc	900
tacttcttac	aactcagttt	ccctttaaaa	taaatgaaaa	agtattacag	gttctgacca	960
acatctttt	gtatcatgat	ttctcagttc	aaaactttat	aaaaggactt	cagctttctc	1020
tattagagca	tttctattcc	cagcccttaa	gtgtcctgtg	ctgtaatctt	ccagaagcca	1080
aaagaagaat	aaattttta	tcaaataatc	aatgtgaaaa	catccgacgt	ctaccatctt	1140
ttaggaggta	cgtggaaaag	caagcttcag	aaaagcaagt	tgcgctcttg	accaatgaga	1200
gatatttgaa	ggaggaaaca	caattattac	tagaaaacct	gcatgtttat	catatgaatt	1260
acttcctggt	tttgagatgt	cttcataagt	tcacctcttc	tcttcccaag	tatccactag	1320
gtcgacagat	cagagagttg	tactgtacat	gtttagaaaa	gaacatatgg	gattcagagg	1380
agtatgcatc	agtcttgcag	ctgctgagga	tgttggcaaa	ggatgaactg	atgaccatac	1440
ttgagaaatg	tttcaaggtt	tttaagtctt	attgtgaaaa	ccaccttggc	agcacagcta	1500
agagaataga	ggagttcctg	gcccagtttc	agagcctcga	tgaaaccaaa	gaagaagaag	1560
atgcttctgg	gtcacagcca	aaggggcttc	agaagacaga	cctctatcat	cttcagaagt	1620
ccttattgga	aatgaaggag	tttagaagaa	gtaagaagca	aaccaaattt	gaagtactca	1680
gagaaaatgt	tgtgaacttc	attgactgtc	tagtgagaga	ataccttctg	cctcctgaga	1740
cacagcctct	ccatgaggtg	gtgtacttca	gtgctgccca	tgcccttcgt	gagcatttaa	1800
atgctgctcc	gcgaattgcc	ctccatactg	cactcaacaa	tccttactat	tatctcaaga	1860
atgaagcact	gaaaagcgaa	gaaggctgca	ttccgaatat	cgccccagac	atctgcatag	1920
catacaaact	gcacctagag	tgtagcaggc	tcatcaacct	cgtggactgg	tcagaggctt	1980
ttgcaacagt	tgtgacagct	gctgaaaaaa	tggatgcaaa	ttctgcaacc	tcagaagaaa	2040

tgaatgaaat	tatccatgct	cggtttatta	gagctgtttc	tgaactagaa	cttttaggat	2100
ttataaaacc	taccaaacag	aagactgacc	atgtggcaag	actaacatgg	ggaggctgct	2160
agaaagcaaa	taagcaaagc	cagaactatc	acatttagct	taagagaaaa	aggtgaccag	2220
tcatatttac	atatattaga	ggagcctgtt	ttgttgagaa	gataaatgtg	taacccccat	2280
tgatgtttaa	ccagaaaagt	acattgctaa	ccccaaacag	gcatgtatca	aaacacctgt	2340
ggagtacttt	agactccaac	aaataataat	gtaactaaaa	ctgctcacac	attttactgt	2400
actttccaaa	gtcattacta	aattgtgagt	aaatcattct	tgaacttaga	gtatgtaaat	2460
gtaataaatt	ccgttatcca	ggagtataaa	aaaaaaaaaa	aaaaaaaaaa		2510

<210> 321

<211> 2291

<212> DNA

<213> Homo sapiens

<400> 321 ggcacgaggc agcgctggcc gcagtctgac aggaaaggga cggagccaag atggcggcgg 60 120 ccqacggcga cgactcgctg taccccatcg cggtgctcat agacgaactc cgcaatgagg 180 acgttcagct tcgcctcaac agcatcaaga agctgtccac catcgccttg gcccttgggg ttgaaaggac ccgaagtgag cttctgcctt tccttacaga taccatctat gatgaagatg 240 300 aggtcctcct ggccctggca gaacagctgg gaaccttcac taccctggtg ggaggcccag agtacgtgca ctgcctgctg ccaccgctgg agtcgctggc cacagtggag gagacagtgg 360 420 tgcgggacaa ggcagtggag tccttacggg ccatctcaca cgagcactcg ccctctgacc tggaggcgca ctttgtgccg ctagtgaagc ggctggcggg cggcgactgg ttcacctccc 480 gcacctcggc ctgcggcctc ttctccgtct gctacccccg agtgtccagt gctgtgaagg 540 cggaacttcg acagtacttc cggaacctgt gctcagatga cacccccatg gtgcggcggg 600 ccgcagcctc caagctgggg gagtttgcca aggtgctgga gctggacaac gtcaagagtg 660 720 agatcatccc catgttctcc aacctggcct ctgacgagca ggactcggtg cggctgctgg 780 cggtggaggc gtgcgtgaac atcgcccagc ttctgcccca ggaggatctg gaggccctgg 840 tgatqcccac tctgcgccag gccgctgaag acaagtcctg gcgcgtccgc tacatggtgg 900 ctgacaagtt cacagagctc cagaaagcag tggggcctga gatcaccaag acagacctgg 960 tccctgcctt ccagaacctg atgaaagact gtgaggccga ggtgagggcc gcagcctccc 1020 acaaggtcaa agagttctgt gaaaacctct cagctgactg tcgggagaat gtgatcatgt cccagatctt gccctgcatc aaggagctgg tgtccgatgc caaccaacat gtcaagtctg 1080 ccctggcctc agtcatcatg ggtctctctc ccatcttggg caaagacaac accatcgagc 1140

acctcttgcc	cctcttcctg	gctcagctga	aggatgagtg	ccctgaggta	cggctgaaca	1200
tcatctctaa	cctggactgt	gtgaacgagg	tgattggcat	ccggcagctg	tcccagtccc	1260
tgctccctgc	cattgtggag	ctggctgagg	acgccaagtg	gcgggtgcgg	ctggccatca	1320
ttgagtacat	gcccctcctg	gctggacagc	tgggagtgga	gttctttgat	gagaaactta	1380
actccttgtg	catggcctgg	cttgtggatc	atgtatatgc	catccgcgag	gcagccacca	1440
gcaacctgaa	gaagctagtg	gaaaagtttg	ggaaggagtg	ggcccatgcc	acaatcatcc	1500
ccaaggtctt	ggccatgtcc	ggagacccca	actacctgca	ccgcatgact	acgctcttct	1560
gcatcaatgt	gctgtctgag	gtctgtgggc	aggacatcac	caccaagcac	atgctaccca	1620
cggttctgcg	catggctggg	gacccggttg	ccaatgtccg	cttcaatgtg	gccaagtctc	1680
tgcagaagat	agggcccatc	ctggacaaca	gcaccttgca	gagtgaagtc	aagcccatcc	1740
tagagaagct	gacccaggac	caggatgtgg	acgtcaaata	ctttgcccag	gaggctctga	1800
ctgttctgtc	tctcgcctga	tgctggaaga	ggagcaaaca	ctggcctctg	gtgtccaccc	1860
tccaaccccc	acaagtccct	ctttggggag	acactggggg	gcctttggct	gtcactccct	1920
gtgcatggtc	tgaccccagg	ccccttcccc	cagcacggtt	cctcctctcc	ccagcctggg	1980
aagatgtctc	actgtccacc	tcccaacggg	ctaggggagc	acggggttgg	acaggacagt	2040
gaccttggga	ggaaggggct	actccgccca	cgtcagggag	agatgtgagc	atcccgggtc	2100
actggatcct	gctgctgtaa	tgggaacccc	tcccccattt	acttctccac	ctcccgtcct	2160
ccccatcatt	ggttttttt	tgtgtgtcaa	ctgtgccgtt	tttattttat	tccttttatt	2220
ttcccccttt	tcacagagaa	ataaaggtct	agaagtaaaa	aaaaaaaaa	aaaaaaaaa	2280
aaaaaaaaaa	a					2291

<210> 322

<211> 814

<212> DNA

<213> Homo sapiens

<400> 322

gttgtgcagt ggtgtactgt tatacttcag agaaagggta agagtacatc tagttcagtt 60 cctatgaggt agctgtaacc cttaaaaatg aaacgtcaac tctagggtac atttgacatt 120 gaaagaatag ttaggaaata acttggttt gatagggtca tgattaagaa atgatatatt 180 ggttttattt atggaattgt tttatagtgc atacaaatca gcgatcagcc agcaaatatt 240 tttctttgag cttgtgaaag ctctgtgttc ttttgccttc aatctgttgt cttcaaaaca 300 aacaaacaaa aaaagcttct tgcgccttc cctccctgt tttcttcctt tttcttttg 360 cttgtatgca caaggtagga cttacttcgt aagaaacaaa atgccagtat tttcttaagc 420

catgatgtga	aaccaatgac	cctgtgacca	catggcacag	aacactaaat	tttggtccca	480
tggctgaaac	ttgagggtga	ctaaaagtaa	tgcctgtgaa	acatgatatc	tatctgggat	540
ggccatttga	tctctaaaag	gaattttgta	cactccacag	aactcctatc	tatagtaaaa	600
ttgattttca	gttttaaatg	tgggcaaaaa	ggcattttct	ccagatttta	aaactaattc	660
ttattttaa	atggctttac	caaacattgt	cagtaccttt	acgtgttaga	aggcatttta	720
aaaatcattt	ctaacagcct	ttgactttag	tcagtctcta	ctctttattt	tgtttatcaa	780
agattatgac	ctccttcttt	gaataaaata	attg			814

<210> 323

<211> 6676

<212> DNA

<213> Homo sapiens

<400> 323 ctgttttctc tttatttgct tatatgttaa tatggttttt aaattggtaa cttttatata 60 gtatggtaac agtatgttaa tacacacata catatgcaca catgctttgg gtccttccat 120 180 aatactttta tatttgtaaa tcaatgtttt ggagcaatcc caagtttaag ggaaatattt 240 ttqtaaatgt aatggttttg aaaatctgag caatcctttt gcttatacat ttttaaagca 300 tttgtgcttt aaaattgtta tgctggtgtt tgaaacatga tactcctgtg gtgcagatga gaagctataa cagtgaatat gtggtttctc ttacgtcatc caccttgaca tgatgggtca 360 gaaacaaatg gaaatccaga gcaagtcctc cagggttgca ccaggtttac ctaaagcttg 420 ttgccttttc ttggctgttt atccgtgtag agcactcaag aaagttctga aactgctttg 480 tatctgcttt gtactgttgg tgccttcttg gtattgtacc ccaaaattct gcatagatta 540 tttagtataa tggtaagtta aaaaatgtta aaggaagatt ttattaagaa tctgaatgtt 600 660 tattcattat attgttacaa tttaacatta acatttattt gtggtatttg tgatttggtt aatctgtata aaaattgtaa gtagaaaggt ttatatttca tcttaattct tttgatgttg 720 taaacgtact ttttaaaaga tggattattt gaatgtttat ggcacctgac ttgtaaaaaa 780 aaaaaactac aaaaaaatcc ttagaatcat taaattgtgt ccctgtatta ccaaaataac 840 acagcaccgt gcatgtatag tttaattgca gtttcatctg tgaaaacgtg aaattgtcta 900 gtccttcgtt atgttcccca gatgtcttcc agatttgctc tgcatgtggt aacttgtgtt 960 agggctgtga gctgttcctc gagttgaatg gggatgtcag tgctcctagg gttctccagg 1020 tggttcttca gaccttcacc tgtggggggg ggggtaggcg gtgcccacgc ccatctcctc 1080 atcctcctga acttctgcaa ccccactgct gggcagacat cctgggcaac ccctttttc 1140 agagcaagaa gtcataaaga taggatttct tggacatttg gttcttatca atattgggca 1200

ttatgtaatg	acttatttac	aaaacaaaga	tactggaaaa	tgttttggat	gtggtgttat	1260
ggaaagagca	caggccttgg	acccatccag	ctgggttcag	aactaccccc	tgcttataac	1320
tgcggctggc	tgtgggccag	tcattctgcg	tctctgcttt	cttcctctgc	ttcagactgt	1380
cagctgtaaa	gtggaagcaa	tattacttgc	cttgtatatg	gtaaagatta	taaaaataca	1440
tttcaactgt	tcagcatagt	acttcaaagc	aagtactcag	taaatagcaa	gtctttttaa	1500
atgctgcttt	atttcactaa	attttgttgt	gaggtgtcac	taaaatgcct	gcaaacaaac	1560
gtaactgcta	atctgagagg	aaaccctctt	actaatcaga	gaagaaaccc	tcctgtcaga	1620
aaccttcagg	gaagtgagct	gatcacacct	aaactgggag	tttgcaatgg	ggtatttgaa	1680
gcactgtggg	agtattccac	tggccccctc	cctgagagac	ttaacagtct	tccctgttgt	1740
ccagattctg	tataaggcaa	tcagaataat	catcttcctt	gttcagcaga	ggagcctggt	1800
cccattttcc	ccactttgtg	atgggcttct	ctcagcggta	gctcagcagt	tccagatggc	1860
agtttggacc	agcatctagg	ctggccagtt	cgctgtgttt	acttagaacc	aacacgttca	1920
gagctggcct	ggaccatctg	aggggaacag	gaaacacccc	taggctgtgg	aagcaagtgc	1980
agacccccac	ccccggccct	gaagccaagg	gggcagggtt	tgggagtggc	caaagagaag	2040
cagtgcaggg	atgggttttc	ctagggacag	gcttagcatt	cctgactcta	ggaagaagga	2100
gcagtgaggc	ggagaaacag	tggaggggat	ggtggcattg	ggccccatgg	ggccgagatg	2160
gacacagggc	tcgttctctt	gagtctggtg	ccaaggacag	ctgaagacga	catcattttc	2220
aggtggagag	gagagagtgg	agggagatca	tgccctgtga	tgtgtctttt	gcaggtgaag	2280
gtgggagaca	aggtctctgc	tgacgatgag	gcagagccac	cgtgaaagtt	gtaataggag	2340
gactgcccgc	cgctggaagg	gcctgcagtg	acgctaggac	accctctgcc	tgcatgtcac	2400
gttagctggg	ctgggcgaag	tagaagacca	aggggaagag	gtgcagtggg	gagaccaggt	2460
gggatgcaac	cacaggacca	gtggaggggc	tgtggcacgt	gggcggagac	tgagtggctg	2520
ggcatgtgtt	gtggctgagc	atgtggtgtg	ggcagtggtc	ctagaccccg	ccatgtccgg	2580
acaatgatat	agagcgtctc	agcatcgcca	gtctagactg	tctatggaga	gcagaaagtt	2640
gtctagggct	gcctggggaa	ctgtgaggcc	agctatatca	ccgtcgctga	tggtgacatt	2700
acggtggtgg	caggagcaag	gagagaggga	agaaggaccc	cgtccagctt	tagtcacaaa	2760
atacccaatg	gaagatgcca	gtgccaatcc	tgtgggtttc	cttgggactt	cacactggct	2820
ttcttatctg	ctccagatcc	attcagtagt	cactgagttc	ctgccaaata	ctttgtagcg	2880
ccagaagcca	ggagcggggt	ctgcagcagg	gcagtccccg	ttttcaggaa	atgcctggag	2940
ctgctggtcc	ctgagagaaa	ggaaaacatc	tttcagccgt	acgcaggcca	agaaggccaa	3000
tgtccagtag	ctttgtgatt	tttttatat	ttttttattt	atttatttt	gagatagagt	3060
•		•				

cttgctctgt	cgctcaggct	ggagtgcagt	ggcgtgatct	ccactcactg	caacttccgc	3120
ctcctggggt	caagcagttc	tgcctcagcc	tcccgagtag	ctgggattac	aggcacacgc	3180
caccacaccc	agctaatttt	tgtgtttta	gtagagacgg	tttcaccatg	teggeeagge	3240
tggtctcaaa	ctcctgacct	cagatgattc	agcctcccaa	agtgctggga	ttacaggtgt	3300
gagccactgc	acccagcctg	tgatgtttct	gtggggttcc	acaaatgtgt	gtgtgtgtaa	3360
aagctgatga	ttacagcaag	aatgtgaaca	gtagcagttt	tccatttgaa	ggcaagtttt	3420
gtctttatct	gggtatcaga	aggaccctct	gggccattgt	cgcttcctgt	actcagagcc	3480
accctagtac	tacgggcaca	cacagaaaac	agcagcctgc	gtactttcaa	aggaaaggca	3540
tctttaatca	ccaatgcctg	gaaaaattat	tttgtttccc	tetteettee	gtcttgtttc	3600
ctaacttctt	accaaagttt	agagtctgag	tttttcgtat	aataatgtcc	cacatccaca	3660
catcgggcct	acagatgctc	tcccttgaat	cgactggaaa	catgacaccg	gttccatgct	3720
ctggaactgt	cacctgtgat	gtgctgggct	gtgtcccaag	cacaggaatc	ccagcagttt	3780
cagctcgatg	cagaaccacc	atgctccaga	cacaggcttg	ggaaagacac	gtcaaaatta	3840
aaatactagg	taagagaagc	acctgattgg	gtagaagttg	gagaggaatc	ctggaatttt	3900
gtggccagaa	ggagccactg	ccccttttgt	ttagtaagac	tagacagtaa	cagaagccag	3960
ttgtcagcta	tgaaagtggt	gggtgaagca	ggggaggctc	ctctatggtg	ggaccctgga	4020
caagggaagc	cgaatgtgtg	aagaaggggt	gcgggggtgt	gcggtgccct	aggacactag	4080
ggcaaaggtt	tcaaacctgg	aacaaggcac	tggaggaaga	tctgctgcca	gtcagcagtg	4140
cgggccctcg	agttagcagt	ccgtgcgcag	aggggccagt	tctgagacca	gtttggagag	4200
tcaggcagtg	acccattggc	catgtcataa	ttccttcagc	ctgcctcctc	tttaatccca	4260
gagagtgctc	tttcttcata	cttcctttaa	aatactaaat	tgttcccatt	ccatggggag	4320
ctggctaggc	tttacaggct	aggaaatgta	ggttttctga	gatggaacca	tctacacaag	4380
gaggaggaag	gcactaagac	tacagatgag	acccatgaca	gggctgagca	tttggaagcc	4440
aaccctggtt	gcttttcaag	aattgctttg	tggctgggtg	cagtggttca	cacctgtaat	4500
tgcagcactt	tgggaggctg	aggcaggtgg	attgcttgaa	cccaggagtt	cgagaccagc	4560
ctgggcaaca	tatgggacac	cccaccgccc	ccggctctgc	aaaaaaatta	aaaattagcc	4620
aggcgtggtg	tcatgagcct	gtggtctcaa	ctactcagga	ggctgaggct	ggaggatcgc	4680
ttgaacctgg	gaggtcaagg	ctccagtgaa	ccataattgt	gccactgcac	tgcagcctgg	4740
gcgacaattt	gttttctaaa	ttgcttttga	aagtctactg	cattacatat	tccaaaaagc	4800
agtggttttc	aaatactttt	atcaccgata	tccttttatg	aaatgaaatc	agtagaactt	4860

tctctgctct	gaataagcaa	gggtgggaac	ctgtctacct	cccacagata	gcataatgtg	4920	
cctgccatag	aggagccaaa	aaatggtgat	gggaactgag	aggagagcaa	atgtcacaaa	4980	
agactgagca	attgagaaaa	caaaacaaga	ccacagatga	ctgttaacgc	ctccacagtg	5040	
gaccaagaaa	ggacagagag	ctggcagcat	gggcatcact	gtctggtcgg	cagcaggaag	5100	
gcctcgctag	ggaattgagt	acagtcatct	aactagttta	aaagtacagg	aaggatgatt	5160	
aaggctattg	gagaggtcat	acaaataggg	gaggggcagg	caatggctga	taagacatga	5220	
atttgtaagg	cgatgagtat	tgcagtcagc	aaaacaaacg	agactgctct	cccaacacat	5280	
aactcagcag	ggaggccagg	cattggttta	accatttaat	ataaagaagt	taaaattaca	5340	
aatgcgctaa	gtgcctaaag	aagaataagt	gcaggaatga	gagcagcatg	gactgccaca	5400	
gttttagaat	aagcactgtc	actgctagat	tggaaacaaa	aatccataaa	tttggcccgg	5460	
tgtggtggcg	gacgcctgta	gtcccagcta	cttggaggct	gaggcgtgag	aatcgcttga	5520	
acccgggagg	cggaggttgc	agtgagccga	gatggcgcca	ctgcactcca	gcctgggcgt	5580	
cagagtgaga	actctgtatc	aaaaaataaa	aaaaaaaaa	agtccataaa	tctgcaatgt	5640	
ctcagttaag	aaagaaagac	tgggccaatg	cagatttcaa	accggagaaa	gtcatactgt	5700	
cagtgaaggc	cgcctgtggc	cggaaggcgc	caggggatta	gcaccctgga	ctcagtgttg	5760	
ctgggaaaca	gggccccaag	gctgggagca	cagtgtttaa	agggcatcta	cccaagaagg	5820	
gagcacaggg	caaggaggag	ctgcaggggg	tcttggctgc	caaagtgaat	tctgaggaga	5880	
gagctattgc	tgcctacgat	atgcaggctg	cacagaacac	aagtggaatc	agcaggcagg	5940	
agaggcagct	aacgacgcag	cccgtttctt	atttctgttt	tctcacaagc	gatgaaagtg	6000	
gaaaagaggg	tgagcaggtg	gcccacacat	gtgcctccag	tgctgcggcc	cctccgggga	6060 ·	
ccatcggcca	ggccccgggg	agggagccag	ccacagtgtg	teeggetett	ctctgaaggg	6120	
aagagagcct	tgaatagact	gaagcgaaga	cggttctgca	aggacaaggc	agaccgaagg	6180	
cattggtttt	tttttttcag	ataaggagaa	ttagactccc	aagtagacac	cagagtcact	6240	
gtttggttgg	tgggtgatag	tggggtcaca	gtggctgcct	gtgatacaca	agggtgagcg	6300	
tgactgtgct	aacctgggtg	gggcagcatg	cacacccctc	tggcagccct	ttgttgctcg	6360	
ctgatgacaa	gtttggatga	tcccgccaaa	cagettgeta	agatgtagto	cccagtgttg:	6420	
gaggtggggc	ctgatgggag	gtgctaccct	tgtgagataa	ggttgtgtaa	aagcctgtgg	6480	
cacctcccca	cactgacgct	ctcacccctg	ctctggccat	gtgccgcgc	: tgctcccact	6540	
teceettetg	ccaggagtaa	aagcccccga	gacctcccag	aagccaagca	gatgctagtg	6600	
ccatgcttcc	tctgcagcct	gcagaactgt	gagccaatta	aacctcttt	: ctctataaaa	6660	
aaaaaaaaa	aaaaaa					6676	

<210> 324 <211> 5207 <212> DNA <213> Homo sapiens

<400> 324 agagttatat tgtgccattt atggaaaaac tctccccact gctcttggct ttgacagtag 60 gaatcaggtt atatatggtc tctcggtttg aagatatttg tcattaaaaa ccagaacaag 120 180 ggctctgaga tagggtcctt tcctgaccta ctctggtaaa gtctttatcc tcaggatgca aggataccac cctcttcctg tggaaagtgt cgaatcacat gcagagctct aagtctttca 240 300 gttactttgg agtgcagaac catttcagac atgctgaggg ggactctact gtgcgcggtg ctcgggcttc tgcgcgccca gcccttcccc tgtccgccag cttgcaagtg tgtcttccgg 360 gacgccgcgc agtgctcggg gggcgacgtg gcgcgcatct ccgcgctggg cctgcccacc 420 aacctcacgc acatcctgct cttcggaatg ggccgcggcg tcctgcagag ccagagcttc 480 ageggeatga cegteetgea gegeeteatg ateteegaea geeacattte egeegttgee 540 600 cccggcacct tcagtgacct gataaaactg aaaaccctga ggctgtcgcg caacaaaatc acgcatcttc caggtgcgct gctggataag atggtgctcc tggagcagtt gtttttggac 660 720 cacaatgcgc taaggggcat tgaccaaaac atgtttcaga aactggttaa cctgcaggag 780 ctcgctctga accagaatca gctcgatttc cttcctgcca gtctcttcac gaatctggag aacctgaagt tgttggattt atcgggaaac aacctgaccc acctgcccaa ggggttgctt 840 ggagcacagg ctaagctcga gagacttctg ctccactcga accgccttgt gtctctggat 900 tcggggctgt tgaacagcct gggcgccctg acggagctgc agttccaccg aaatcacatc 960 cgttccatcg cacccggggc cttcgaccgg ctcccaaacc tcagttcttt gacgctttcg 1020 agaaaccacc ttgcgtttct cccctctgcg ctctttcttc attcgcacaa tctgactctg 1080 1140 ttgactctgt tcgagaaccc gctggcagag ctcccggggg tgctcttcgg ggagatgggg 1200 ggcctgcagg agctgtggct gaaccgcacc cagctgcgca ccctgcccgc cgccgccttc 1260 cgcaacctga gccgcctgcg gtacttaggg gtgactctga gcccgcggct gagcgcgctt 1320 ccgcagggcg ccttccaggg ccttggcgag ctccaggtgc tcgccctgca ctccaacggc 1380 ctgaccgccc tccccgacgg cttgctgcgc ggcctcggca agctgcgcca ggtgtccctg 1440 cgccqcaaca ggctgcgcgc cctgccccgt gccctcttcc gcaatctcag cagcctggag agegtecage tegaceacaa ceagetggag accetgeetg gegacgtgtt tggggetetg 1500 ccccggctga cggaggtcct gttggggcac aactcctggc gctgcgactg tggcctgggg 1560 1620 cccttcctqq qqtggctgcg gcagcaccta ggcctcgtgg gcggggaaga gcccccacgg

tgcgcaggcc ctggggcgca cgccggcctg ccgctctggg ccctg	ccggg gggtgacgcg 1680
gagtgcccgg gcccccgggg cccgcctccc cgccccgctg cggac	agete eteggaagee 1740
cetgtecace cageettgge teccaacage teagaaceet gggtg	tgggc ccagccggtg 1800
accacgggca aaggtcaaga tcatagtccg ttctgggggt tttat	tttct gcttttagct 1860
gttcaggcca tgatcaccgt gatcatcgtg tttgctatga ttaaa	attgg ccaactcttt 1920
cgaaaattaa tcagagagag agcccttggg taaaccaatg ggaaa	atctt ctaattactt 1980
agaacctgac cagatgtggc tcggagggga atccagaccc gctgc	tgtct tgctctccct 2040
cccctcccca ctcctcctct cttcttcctc ttctctctc	cacgcc ttcctttccc 2100
tectectece ectetecget etgtgetett catteteacg ggeee	gcaac ccctcctctc 2160
tetgteeceg ecegtetetg gaaactgage ttgacgtttg taaac	tgtgg ttgcctgcct 2220
teccagetee aegeggtgtg egetgaeaet geegggggge tggae	etgtgt tggacccatc 2280
cttgccccgc tgtgcctggc ttggcctctg gtggagagag ggacc	etette agtgtetaet 2340
gagtaagggg acagctccag gccggggctg tctcctgcac agagt	taagcc ggtaaatgtt 2400
tgtgaaatca atgcgtggat aaaggaacac atgccatcca agtga	atgatg gcttttcctg 2460
gagggaaagg ataggctgtt gctctatcta attttttgtt tttgt	ettttg gacagtctag 2520
ctctgtggcc caggctggcg tgcagtgggc cgtctcagtt cactg	gcagec teegeeetee 2580
aggttcaagt gattctcatg cctcagcgtt ctgagtagct gggat	tagag gcgtgtgcca 2640
ctacacccgg ctaatttttg tactttttaa agtagagacg ggctt	ttgcca tattggcctg 2700
gctgatctca aactcctggt cttgaactcc tggccacaag tgatc	etgece geettageet 2760
cccaaagtgc tgggattaca ggcgcaagcc actacacctg ccctc	cttcat cgaattttat 2820
ttgagaagta gagctcttgc cattttttcc cttgctccat ttttc	ctcact ttatgtctct 2880
ctgacctatg ggctacttgg gagagcactg gactccattc atgca	atgagc attttcagga 2940
taagcgactt ctgtgaggct gagagaggaa gaaaacacgg agcct	ttccct ccaggtgccc 3000
agtgtaggtc cagcgtgttt cctgagcctc ctgtgagttt ccact	ttgctt tacatccatg 3060
caacatgtca ttttgaaact ggattgattt gcatttcctg gaact	tetgee aceteattte 3120
acaagcattt atggagcagt taacatgtga ctggtattca tgaat	tataat gataagcttg 3180
attctagttc agctgctgtc acagtctcat ttgttcttcc aactg	gaaagc cgtaaaacct 3240
ttgttgcttt aattgaatgt ctgtgcttat gagaggcagt ggtta	aaaaca ttttctggcg 3300
agttgacaac tgtgggttca aatcccagct ctaccactta ctaac	ctgcat gggactttgg 3360
gtaagacacc tgcttacatt ctctaagcct tggtttcctg aacct	ttaaaa caggataaca 3420

tagtacctgc	ttcatagagt	tttgtgagaa	ttaaaggcaa	taaagcatat	aatgacttag	3480
cccagcggcc	tgcagacaat	acatgttaat	gaatgttagc	tattattact	aaagatgagc	3540
aattattatt	ggcatcatga	tttctaaaga	agagctttga	gttggtattt	ttctctgtgt	3600
ataagggtaa	gtccgaactt	tctcatactg	gaggttacat	tcacatcagt	ctgtcttccc	3660
ctgcggatgg	cctcagccct	gggtggccag	gctctgtgct	cacagtccag	agcaatggat	3720
cctccaacac	caccaggtgg	atgtggagca	ggagagctgg	atcgtggcat	ttgtttctgg	3780
gttctgcagt	tgggagttgg	tttctgggtt	ctccattggt	ctacttgtct	agtcccatac	3840
cagactcacg	gtctccatta	ttggagcttt	aataatttt	ggtatagggt	catctctcca	3900
ccttgttttt	cttctattct	tggttctttg	caattctatg	aatatttcag	ggtcagcatg	3960
tcaactccat	tgaaaaaccc	tgctgggatt	ttaatagaac	ttacagctca	cgcctgtaat	4020
cccagcactt	tgggaggctg	aggtgggtgg	atcacaggtc	aggagtttga	gaacagctgg	4080
ccaagatggt	gaaaccccgt	ctctactaaa	aatacaaaaa	ttagctgggt	gcggtggcag	4140
gtgcctgtag	tcccagctac	ttgggacacc	gaggcaggag	aatcacttga	acccgggagg	4200
cggaggttgc	agtgagccga	gatcgtgcca	ctgcactcta	gcctgggcga	cagagcgaga	4260
ctccatctca	aaaaaaaga	aaaagaaaat	tgcagtaaat	ttaaaactaa	tttggggaag	4320
aatctgtatt	tttacaatac	ctagtgttct	tgccagtaag	catggttcat	cttcccattt	4380
atttacgtca	ttttaaatct	ttcagtgatg	ttttagaatt	ttttttataa	aaaccttcac	4440
tataagaaca	gaaaaccaaa	caccgcatgt	tctcactcat	aggtgggaat	tgaacaatga	4500
gaacacttgg	acacagggcg	gggaacgtca	cacgcctgga	ctgttggggg	ggtggctggg	4560
agagggatag	tgttaggaga	aatacctaat	gtaaatgacg	agttaatggt	gcagccaacc	4620
aacctggcac	atgtattcat	atgtaacaaa	cctgcacgtt	gtgcacatgt	accctagaac	4680
ttaaagtata	ttaaaaaaag	aaaccttggc	actgattttg	ttagatttat	tcctaggtat	4740
ccttcctctt	ttttgatttg	tcattgctat	tgtagatggc	atctttttaa	aaagttatat	4800
tttctaaagc	aaaaaataaa	aaaagttgta	tttctaattt	ttattaccaa	tatataagaa	4860
tgtaatttat	ttttacataa	ttatcttatg	tctagtaata	attctgataa	tttgcttctt	4920
cctattaaaa	ccttacaccc	attattgatt	tatttttctg	ttttaaaata	tcttcctgca	4980
ctggctaaaa	cctccactat	aatgttgagc	agaacagtga	ggcatcctta	gaactatctt	5040
ggttgcaaag	ggtaggtctc	taatgtttca	tcaataaatg	tgatgtttct	agtctgagtt	5100
tgctaagtat	attttaaaat	aatcagtaaa	gttagatttt	atccatttt	atcttaacta	5160
ttgagatgct	catatcattt	ttcttcttca	atgtgttaaa	atggtga		5207

<210> 325 <211> 4187

<212> DNA

<213> Homo sapiens

<400> 325 cgtagcgccc gcagagcaac gcaaagagga agaacagaga aacggctatg agaaaaaggg 60 ccgaagagtg agaagcagag ggccttaccc gagggggcgg caaccggggg ccccacggtc 120 teeggeegeg eeegetgg eegetgatag egggeteaca acgatgaegt agegaggage 180 240 qqaaaacqcq gtaaccaagg cggccccagg cgcgcacttc cgcccggcct tccaccggtc caggtctgcc cctccgcagc gatagttcac gctctcggcg gggctgtacc ggaagttgcc 300 360 totacttccg cccgttccgg ggcggggctt acttcgcagc gactacttgc cgcacttccg ggctgccagg cagctgctgt ggctccagga tgatggagac agagcgactt gtgctacccc 420 ctccagatcc cctggaccta ccccttcggg ccgtggagct cggatgcacg gggcactggg 480 agctgctgaa cttgcctgga gctccagaga gtagccttcc ccatggcctc cctccttgtg 540 ccccagatct gcagcaagaa gcagaacagt tgtttctgtc atccccagcc tggctgcctc 600 tgcatggtgt ggagcactca gcccgaaaat ggcagaggaa gacggatccc tggtctcttt 660 720 tggctgtcct gggagcccca gtcccatccg acctacaggc ccaaagacac ccaaccacag 780 gccagatact gggttacaaa gaggtcttgc tggagaacac aaatctctcg gctacaacct ccttgtctct tcgccggcct ccagggccag cctcccagtc cttatgggga aatccaactc 840 900 ggtatccctt ctggccaggg gggatggatg aacccaccat aacagatctg aacacacggg aggaggctga ggaggagata gactttgaga aagatcttct tactattcca cctggtttca 960 1020 agaaaggcat ggactttgca ccaaaagatt gtccaactcc agctcctgga ctactaagcc 1080 ttagctgtct gttggagcct ctggatttgg gtgggggtga cgaggatgag aatgaggcag tgggacagcc aggaggtccc agaggggaca ctgtttcagc ctctccctgc agtgctcccc 1140 1200 tggcccgagc aagcagcttg gaagacctag tgttgaagga agcgtccaca gctgtatcca 1260 ccccagaggc cccagagcct ccatctcagg agcagtgggc catccctgtg gacgccacct ccctgttgg tgatttctat cgcctcattc cccagccagc cttccagtgg gcatttgagc 1320 1380 cagatotott tcagaaacag gccatcctgc acttggaacg gcatgactct gtctttgtcg 1440 caqctcacac atctgcagga aaaacagttg tggctgaata tgccattgcc ctggcccaga 1500 aacacatqac acgcaccatc tacacttcgc ccatcaaggc cctgagcaac cagaagttcc gggacttccg aaacacattc ggggatgtgg ggctgctcac cggggatgta cagctgcatc 1560 cggaggcctc ctgcctcatc atgaccacag agatccttcg ctccatgctg tacagtggct 1620 cagatgttat tcgggacctg gagtgggtca tctttgatga ggttcactat atcaacgatg 1680

tcgagcgtgg ggtcgtgtgg gaggaggtgc ttatcatgct acctgaccac gtttctatca 1740 1800 tccttctgag tgccaccgtc cccaacgccc ttgagtttgc tgactggatt gggcggctga agcgtcgtca gatctatgtg attagcactg taacccgccc cgtgcccctg gagcactatc 1860 ttttcacagg gaacagctcc aagacccagg gggagctctt tttgttgctg gactcccgag 1920 gagccttcca tacaaaaggg tactatgcag ctgtggaggc caagaaggag agaatgagca 1980 2040 aacacgccca gacctttggg gccaagcagc ccacacatca ggggggccct gcacaggacc geggagtgta cetgteete etggeeteee teegeacaeg tgeecagttg eeegtggtgg 2100 tgttcacctt ctcccggggc cgctgtgatg agcaggcctc aggcctcacc tcccttgacc 2160 tcaccaccag ttcggagaag agcgagatcc acctcttcct gcagcgctgc cttgctcgcc 2220 tecgtggete tgacegecag etgececagg tectgeacat gteagagete etgaategeg 2280 gcctgggtgt gcaccatagc ggcatcctgc ccatcctcaa ggagatcgtg gagatgctct 2340 tcagccgtgg cctggtcaag gtcttgtttg ccacagagac ctttgccatg ggagtaaaca 2400 tgcctgctcg tacagtagtg tttgactcca tgcgcaaaca cgatggctcc accttccggg 2460 acctgctccc tggggagtat gtgcagatgg caggccgggc agggcggagg ggcctggacc 2520 2580 · ccacaggcac cgttatcctg ctctgcaagg gccgagtgcc cgagatggca gacctgcacc 2640 qcatqatqat qqqqaaqccg tcccagctgc agtcccagtt ccgcctcacg tacactatga 2700 tcctcaactt gctgcgagtg gatgccctca gggtggagga catgatgaag aggagcttct 2760 ctgagtttcc ctcccgcaaa gacagcaagg cccatgaaca ggccctggct gaactgacca 2820 agaggetggg agetttggag gageetgaea tgaetggeea aetggtegae etgeetgaat 2880 attacagctg gggggaggaa ctgacagaga cccagcacat gatccagcga cgcatcatgg agtctgtgaa cgggctgaag tctctctcag caggaagggt ggtggttgtg aagaatcagg 2940 agcatcacaa cgcattggga gtgatcctac aggtctcctc gaactccacc agcagagtat 3000 3060 tcacaaccct ggtcttgtgt gataagccct tgtcccagga cccacaggac agggggccag 3120 ccactgcaga ggtgccctat ccagatgacc tcgtgggatt caagctgttc ctgcctgaag 3180 qqccttqtqa ccacaccqtq qtcaagctcc agccaggaga tatggctgcc atcaccacca 3240 aggtgctccg ggtgaatggg gagaagatct tggaggactt cagcaagagg cagcagccaa 3300 aattcaagaa ggatcctccc cttgcagccg tgaccactgc tgtccaggaa ctgctgcgtc tggctcaggc ccacccagcc ggacctccca ccctcgaccc tgtcaatgac ctgcagctca 3360 3420 aagatatgtc agttgtagag ggtgggctcc gggcccggaa gctggaggag ctgatccagg gggctcagtg tgtacacagc ccccgttttc ctgcccagta cctgaagctg cgggagcgaa 3480

64 1

tgcagataca	gaaggagatg	gagcggctgc	gcttcctact	gtcggatcag	tcattgctgc	3540
tgcttcctga	gtaccatcag	cgagtagagg	tgctccgaac	cctgggttac	gtggacgagg	3600
tgggcactgt	gaagctggca	gggcgggtgg	cttgtgccat	gagcagccat	gagttgctcc	3660
tcactgagct	catgtttgac	aatgcactga	gcaccctgcg	gcctgaggag	attgctgcct	3720
tgctctctgg	cctggtctgc	cagagecetg	gggacgctgg	ggatcagctc	ccaaacaccc	3780
tcaagcaggg	aatagaacgt	gtccgggctg	tggccaagcg	gattggtgag	gtccaggtgg	3840
cttgtggcct	gaaccagacg	gtggaggaat	ttgtggggga	gctgaatttt	gggctggttg	3900
aggttgtata	tgagtgggcc	cggggcatgc	ccttctccga	gttggcaggg	ctctcaggga	3960
cccctgaggg	cctggtggtc	cgctgcattc	agcgcctggc	tgagatgtgt	cgctcactgc	4020
ggggggcagc	ccgcctggta	ggagagcctg	tgctgggtgc	caagatggag	acagcggcta	4080
ccttgctacg	gcgggacatc	gtatttgcgg	ccagcctcta	cacccagtga	atgccccatg	4140
taaaaacatg	atgataaaac	agcaaagcac	aaaaaaaaa	aaaaaaa		4187

<210> 326

<211> 2892

<212> DNA

<213> Homo sapiens

<400> 326 caaagatggc tgccacattg gcgctgtcat tttggtactg agcagagcga cgggcttaat 60 tcgacccaat ccaggccaga gtctttctct caggggcttc ctcgtgctca gctaatcctc 120 180 cgatcaatcc ttgggaatcc ctgggacctc ttcggtatcc ctactctcag ccagggatca tgtcttgggc cgctcgcccg cccttcctcc ctcagcggca tgccgcaggg cagtgtgggc 240 300 cggtggggt gcgaaaagaa atgcattgtg gggtcgcgtc ccggtggcgg cggcgacggc cctggctgga tcccgcagcg gcggcggcgg cggcggtggc aggcggagaa caacaaaccc 360 cggagccgga gccaggggag gctggacggg acgggatggg cgacagcggg cgggactccc 420 gaagcccaga cagctcctcc ccaaatcccc ttccccaggg agtccctccc ccttctcctc 480 ctgggccacc cctacccct tcaacagctc catcccttgg aggctctggg gccccacccc 540 600 caccccgat gccaccaccc ccactgggct ctccctttcc agtcatcagt tcttccatgg ggtcccctgg tctgcccct ccagctcccc caggattctc cgggcctgtc agcagccccc 660 720 agattaactc aacagtgtca ctccctgggg gtgggtctgg cccccctgaa gatgtgaagc 780 caccagtett aggggteegg ggeetgeact gteeaceece teeaggtgge eetggggetg gcaaacggct atgtgcaatc tgcggggaca gaagctcagg caaacactac ggggtttaca 840 gctgtgaggg ttgcaagggc ttcttcaaac gcaccatccg caaagacctt acatactctt 900

gccgggacaa	caaagactgc	acagtggaca	agcgccagcg	gaaccgctgt	cagtactgcc	960
gctatcagaa	gtgcctggcc	actggcatga	agagggaggc	ggtacaggag	gagcgtcagc	1020
ggggaaagga	caaggatggg	gatggggagg	gggctggggg	agcccccgag	gagatgcctg	1080
tggacaggat	cctggaggca	gagcttgctg	tggaacagaa	gagtgaccag	ggcgttgagg	1140
gtcctggggg	aaccgggggt	agcggcagca	gcccaaatga	ccctgtgact	aacatctgtc	1200
aggcagctga	caaacagcta	ttcacgcttg	ttgagtgggc	gaagaggatc	ccacactttt	1260
cctccttgcc	tctggatgat	caggtcatat	tgctgcgggc	aggctggaat	gaactcctca	1320
ttgcctcctt	ctcacaccga	tccattgatg	ttcgagatgg	catcctcctt	gccacaggtc	1380
ttcacgtgca	ccgcaactca	gcccattcag	caggagtagg	agccatcttt	gatcgggtgc	1440
tgacagagct	agtgtccaaa	atgcgtgaca	tgaggatgga	caagacagag	cttggctgcc	1500
tgagggcaat	cattctgttt	aatccagatg	ccaagggcct	ctccaaccct	agtgaggtgg	1560
aggtcctgcg	ggagaaagtg	tatgcatcac	tggagaccta	ctgcaaacag	aagtaccctg	1620
agcagcaggg	acggtttgcc	aagctgctgc	tacgtcttcc	tgccctccgg	tccattggcc	1680
ttaagtgtct	agagcatctg	tttttcttca	agctcattgg	tgacaccccc	atcgacacct	1740
tcctcatgga	gatgcttgag	gctccccatc	aactggcctg	agctcagacc	cagacgtggt	1800
gcttctcaca	ctggaggagc	acacatccaa	gagggactcc	aagccctggg	gcagggtggg	1860
gggccatgtt	cccagaacct	tgatggggtg	agaagtacag	ggcagaacca	agaacataaa	1920
ccctccaagg	gatctgcttg	atatcccaag	ttggaaggga	ccccagatac	ctgtgaggac	1980
tggttgtctc	tcttcggtgg	ccttgagtct	ctgaatttgt	cgggttctcc	catgatttgg	2040
ggtgatttct	caccctctgt	ccttccccca	gcacaaagca	ctggccttgc	ctccaggacc	2100
ttgcttcctt	ctcatcttgc	ctcattttgc	ttcccatctg	aagagtggaa	atggggaact	2160
cccccagagg	tggatactgg	ggggcaggcc	tcccaagctg	atggacatga	gagtagggcc	2220
ctgacaggcc	ttcctcctct	caaacctggc	agatgggggc	ctctctggaa	gagggagggg	2280
ccctgtcact	gtccagagtc	tctttttaca	cttcacctcc	ttctgcagtc	agactgaaat	2340
ataaaaaagg	tggtggtggt	ggtgaagggg	ctggtggaga	tgtaggaacc	gatctgctat	2400
ttttaatttc	ctgtgaggat	agagacttgc	agttagactc	aaagaagtac	tgtactttcc	2460
caggttgact	aagaaatgcc	agtggtggag	gtgggtgttt	gggaaaggca	gggccctgaa	2520
atggcctgtc	cctagggctc	tccaagcact	agccttccca	gcttcccgcc	gccccccta	2580
tetetteetg	tctaacttgg	ggaaggggcc	tgggctgtga	ggacagggcc	cccacagggg	2640
atggtttcac	gagtgtagtc	ccggaggcct	tccctttaca	gctctcctcc	agccctgggc	2700
acatagcata	ggctggggac	acaggatcct	ggcctgagaa	ttgaggggag	gtggccagcc	2760

```
cgcagaggtg gggtgctggg gctgcatgat ttttgccctg cgtcccttct ctttggggct
                                                                    2820
cctttcccct ctcatacata aaatcgcttt caaattaaaa tcgctgtttt ctggaaaaaa
                                                                    2880
                                                                    2892
aaaaaaaaa aa
<210> 327
<211> 262
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (74)..(74)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (100)..(100)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (145)..(145)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (154)..(154)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (181)..(181)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (191)..(191)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (241)..(241)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (246)..(246)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (252)..(252)
<223> n is a, c, g, t or u
<400> 327
ttagaaagaa aagtctttta ttagtactgt gtagggaagg ctaaagaaat atacatttaa
                                                                       60
```

ttcagaataa	tttntaagaa	aaaacgtggg	gttccaagan	atggtgattt	acattcaaat	120
gaacatgtac	atttgcaaac	ctggntaagt	aganattttc	atgaagcacg	ctacaagaaa	180
nttcacacag	nattatttgt	ttttcaaagg	cctctttcaa	agtacaggct	ccaagtccat	240
ngcgantacc	cntgggcatg	at				262
<210> 328 <211> 521 <212> DNA <213> Homo	o sapiens					
<400> 328 ttaaaccagc	atcaacttta	tttgatcttg	aaatagaaaa	tacttttgct	taattcagcc	60
tgtcagccaa	ggaagaaatc	tgtcttctag	caggaggagt	gacatcttgt	gagaaggaaa	120
ttcagcataa	aagattaagt	acaatcccac	tcaataatta	agaacaactc	tttatagtgt	180
aactacttta	tttgaaatgc	taaaaattcc	caaaatatca	gatatattca	taagaagaaa	240
actacattat	tcatgctacc	acttacttcc	aaatgtatct	ataattaagg	gctgacttta	300
taagttattg	ttttaaatag	cctatttccc	ttaaaattac	tcaagatgag	taggtttttt	360
taaagtggcc	atctgttcag	gttgtgatgt	gagcgcctcc	ctctatttcc	tgcttgattg	420
gcgaggcctt	atttttatgt	gtgactggat	ggagtctata	ctgacagtct	cctattctct	480
aactgcaccc	ctgtgggcta	caatatagga	ttatactagc	g		521
<210> 329 <211> 390 <212> DNA <213> Hom						
<400> 329		tttttttt	ttccttttac	aaaatataaa	tttattatga	60
aaacctggaa	ggataatcca	aggaaggtaa	aaaaagaaaa	aaggaggcca	ccaaaaaaag	120
gcaggaagga	. gaggaaaaga	aaaaaagaca	aagaggagat	gagagaaaaa	aatccagttc	180
agcacaacaa	aagtgcaaaa	gctcacctac	: ccaaatggca	ttaaagcctc	gttgtgtaat	240
cgtgtcagaa	aacaaagcat	actgacacat	agggctttac	: ttcccatcca	cttgagtttt	300
aagaggtaaa	. ttaaaaagct	ccttgggaag	gggacatgag	gttgttcaaa	aacccaacaa	360
agaaaattaa	ı aaaaaaaaga	. gagagagaaa	ı			390

<210> 330 <211> 455

<212> DNA

<213> Homo sapiens

<400> 330 ttttttttt tttttaaag aaaaaacaa taaacaagaa aaagaattac atgaaataat 60 tatgaagtac atcccaattt cagaacatta acgtggagta ggcgtgggag tggggctcca 120 tcaaggaacc tagaatagca gtggctaaat agggtagaca aacttggaga tgcaatttga 180 240 qqtccctatt tqqatcctgt gcctacctcc ttgggcgacc cacttaactc ctctgcacct 300 ctagcttctc gtgtataaaa taagaatgca ggattacatg agagctaagg tcccagttag 360 cqqcaaattt aattgggatc tagacttact gatgtttctc tgactcagtt cctgacaaga 420 qtctctttqq ataaaaatgt ccgctgcctg ttgcttgtgc ctttgtgaag agacacttta 455 aattccctcc tctttcaagc ttctcaattg gggct <210> 331 <211> 1988 <212> DNA <213> Homo sapiens <400> 331 catgctgcgc cgctacctag cctcggaccc cgactgccgc tggtgcccgg ccccggactg 60 cggttatgct gttattgcct atggctgtgc cagctgcccg aagctaactt gtgagaggga 120 180 aggttgccag actgagttct gctaccactg caagcagata tggcatccaa atcagacatg cgatatggcc cgtcaacaga gggcccagac tttacgagtt cggaccaaac acacttcagg 240 300 tctcagttat gggcaagaat ctggaccagc agatgacgtc aagccatgcc cacgatgcag 360 tgcatacatt atcaagatga atgatggaag ctgtaatcac atgacctgtg cagtgtgtgg 420 ctqtqaattc tqttqgcttt gtatgaaaga gatctcagac ttgcattacc tcagcccctc tggctgtaca ttctggggca agaagccatg gagccgtaag aagaaaattc tttggcagct 480 540 gggcacgttg attggtgctc cagtggggat ttctctcatt gctggcattg ccattcctgc 600 catggtcatt ggcattcctg tttatgttgg aaggaagatt cacagcaggt atgagggaag 660 gaaaacctcc aaacacaaga ggaatttggc tatcactgga ggagtgactt tgtcggtcat tqcatcccca qttattqctq cagttagtgt tggtattggt gtccccatta tgctggcata 720 780 tgtttatggg gttgtgccca tttctctttg tcgtggaggc ggctgtggag ttagcacagc caacggaaaa ggagtgaaaa ttgaatttga tgaagatgat ggtccaatca cagtggcaga 840 900 tgcctggaga gccctcaaga atcccagcat tggggaaagc agcattgaag gcctgactag 960 tgtattgagc actagtggaa gccctacaga tggacttagt gttatgcaag gtccttacag cgaaacggcc agctttgcag ccctctcagg gggcacgctg agtggcggca ttctctccag 1020 tggcaaggga aaatatagca ggttagaagt tcaagccgat gtccaaaagg aaattttccc 1080 1140 caaaqacaca gccagtcttg gtgcaattag tgacaacgca agcactcgtg ctatggccgg

ttccataatc agttcctaca	acccacagga	cagagaatgc	aacaatatgg	aaatccaagt	1200
ggacattgaa gccaaaccaa	gccactatca	gctggtgagt	ggaagcagca	cggaggactc	1260
gctccatgtt catgctcaga	tggcagagaa	tgaagaagaa	ggtagtggtg	gcggaggcag	1320
tgaagaggat ccccctgca	gacaccaaag	ctgtgaacag	aaagactgcc	tggccagcaa	1380
accttgggac atcagcctgg	cccagcctga	aagcatccgc	agtgacctag	agagttctga	1440
tgcacagtca gacgatgtgc	cagacatcac	ctcagatgag	tgtggctccc	cccgctccca	1500
tactgcagcc tgcccctcga	ccccagagc	ccaaggtgca	ccgagcccaa	gtgcccatat	1560
gaacctctct gccctagccg	agggacaaac	tgtcttgaag	ccagaaggtg	gagaagccag	1620
agtatgaagt ggaatgaatg	ctcctgttct	gagaagcaca	cttgtaactg	catcttttgg	1680
aattttttt tttttttt	ccaaggggta	gagatttatg	tattttattt	cacagattct	1740
ctggtcacag gtttttgccc	agggaaattc	tgagaaattc	acaatttctt	accagataaa	1800
acatgaaaag tttgccgtta	gttcccctcc	cctccctcc	ctctttttag	tttaattta	1860
ttggttaaac tgatggcagc	aatccatgag	gtgtgtcaaa	gagtgtacat	atgtatgtgt	1920
gtatattgaa tgctaaacat	attactgaaa	gacacatttt	aataaagatt	tctgtcataa	1980
ttcaactt					1988

<210> 332

<211> 1529

<212> DNA

<213> Homo sapiens

<400> 332

60 ggaccaatag aatatgtgat gtgtgaattt tctttaaaaa acttaaggag tcttggctac cttctgcttg tgagttgttt gggcattcat attaaaagcc agcatctcac tatttattgg 120 acaggtgggc tgtgtgtgt cgcatgtgtg tatacatttc caggcgtgcc tgtgtcctgt 180 240 agotttttaa aaggaaaccc agtcatccca ctatgaatct ggcatcttct tatgcttcta 300 gtgttttqqc catacatcaa ccaaggggtt taatttatcc aatgcttgac gacatgttca ggaggggtg gatcaaattt tgagagggtt atgggaaagg gagggggaga agaaattgac 360 atttatttat tatttatttt aaatgtttac atcttcttta tgttgtatca agcctgaata 420 480 tcaaatttag gatacccaat ttgtgttccc acagcgctcg ggactggcgg gtatacctgg 540 ttaaaggtcc ggataaacag ggatcacatc ctctggacag ggtcgcacaa atctcttgtc 600 ggcaacccgg gaactcgcgc ttccaaaaat ttcccgtgtt gaaggtcccc atagcgggtc 660 ctcctggaga acaatctggt atagccgggc aaagaaggtc tagtcttccc cttatcatct 720

tgtttacatt	ccgcctcact	acctttttt	tcacacaaca	caccaacaac	acccacccac	780
ccccaccaa	cccacaccc	accccaccca	ggcgctgaag	aggaggcgag	agccgccgca	840
cacgcggacg	agcgcgggcg	aggcgagggc	gggagcgggg	gagggggac	gagggacggg	900
ggacgcgggg	gggagagagg	cggggaaggg	ggaggcgagg	aggagagcgc	tacagcgcca	960
cgacgagcga	ggacagcaaa	ggagaggaaa	cgcgaggcgg	ggcgagacag	gagagaaagg	1020
acacaaaagg	gagcgcgaca	gggagagaaa	cggcagcgac	aaagaagaga	cgagagagac	1080
gacacagagg	agagacaggc	ggagagaaga	gaaacgtaag	cagagaatag	aggaagagaa	1140
ggaaccagag	cacaagaggg	gacgcggaca	acagaggcgc	agagaaccaa	gagacagaga	1200
gagacaggaa	cgagaggcaa	gagcaaacaa -	ccagaagcaa	aaagagacca	cgcgagagca	1260
cgagaggaag	cgagagcaca	cagcaggaag	ccgagcccaa	agcagaggca	gagacgcaga	1320
aggcaacgaa	aggcacgcaa	gcccgaagca	gcgcaccaca	gacacacgaa	aacccagcaa	1380
gcacgaacac	caccaaacac	agcaccagca	agcgacgaag	ccgacacaga	aaccacaaga	1440
caaacaccag	cgacacaccg	caacagcacc	acgacgcgaa	gaccaagaga	gacaacagac	1500
gcagcaaaca	gccgaagcac	cagacaaca				1529

<210> 333

<211> 822

<212> DNA

<213> Homo sapiens

<400> 333

60 gggctgctcc acgcttttgc cggagacaga gactgacatg gaacagggga agggcctggc 120 tgtcctcatc ctggctatca ttcttcttca aggtactttg gcccagtcaa tcaaaggaaa ccacttggtt aaggtgtatg actatcaaga agatggttcg gtacttctga cttgtgatgc 180 240 agaagccaaa aatatcacat ggtttaaaga tgggaagatg atcggcttcc taactgaaga taaaaaaaaa tggaatctgg gaagtaatgc caaggaccct cgagggatgt atcagtgtaa 300 360 aggatcacag aacaagtcaa aaccactcca agtgtattac agaatgtgtc agaactgcat tgaactaaat gcagccacca tatctggctt tctctttgct gaaatcgtca gcattttcgt 420 480 ccttgctgtt ggggtctact tcattgctgg acaggatgga gttcgccagt cgagagcttc 540 agacaagcag actotyttyc ccaatyacca gototaccag cccctcaagg atcgagaaga tgaccagtac agccaccttc aaggaaacca gttgaggagg aattgaactc aggactcaga 600 660 gtagtccagg tgttctcctc ctattcagtt cccagaatca aagcaatgca ttttggaaag ctcctagcag agagactttc agccctaaat ctagactcaa ggttcccaga gatgacaaat 720 780 aaatactgtg tttcagaagc gccacctatt ggggaaaatt gt

822

1560

<210> 334 2918 <211> <212> DNA <213> Homo sapiens <400> 334 acggaaaagc cggggagggg actcggtccg gggccggaga ccgacggcaa cagcggctca 60 ggacccacgc tgcccccacc cctcccgagc aggcgccccc atggcccgac cccgctgatt 120 ccttcactcg gccatgctcc cgcggcccct gcggctgctt ttggacacga gcccccccgg 180 240 gggagtcgta ctgagcagct tccgaagccg ggaccccgaa gagggtgggg gcccaggtgg 300 cctqqtcgtg ggcgggggc aggaggaaga ggaggaggaa gaagaagagg cccctgtgtc cgtctgggat gaggaggagg atggtgccgt gtttaccgtc acaagccgcc aatatcgacc 360 tettgatece ttggteecta tgeeteecce aegtteetee egaeggetee gagetggeae 420 480 tctggaggcc ctggtcagac acctactgga tacccggaca tcagggactg atgtgagctt 540 catqtcaqcc ttcctggcta cccaccgggc cttcacctcc acgcctgcct tgctagggct 600 tatggctgac aggctggaag cccttgaatc tcatcctacc gacgaactag agaggacaac agaggtagcc atctctgtac tgtcaacctg gctggcctct caccctgagg attttggctc 660 tgaggccaag ggtcagcttg accggcttga gagcttctta cttcagacag ggtatgcagc 720 780 agggaagggt gttggggggg gcagcgctga cctcatccgc aatctccggt cccgggtgga 840 ccccaggcc cccgaccttc ctaagcccct ggcctcccc ggcgatcccc ctgctgaccc 900 cacggatgtc ctggtgttcc tcgctgacca cttggccgaa cagctgaccc tgctagatgc ggaacttttt ctcaatttga tcccctctca gtgcctggga ggcctgtggg gtcacagaga 960 1020 ccggccagga catteteace tetgcccate tgtccgaget actgtcacac agtttaacaa 1080 qqtqqcaqqq gcagtggtta gttctgtcct gggggctact tccactggag agggacctgg 1140 qqaqqtqacc atacggccac tccgtccccc acagagggcc cggctcctgg agaagtggat 1200 ccgcqtqqca gaggagtgcc ggctgctccg aaacttctct tcagtttatg ccgtggtgtc 1260 agecetqeag tecageceea tecacagget tegggeagee tggggggaag caaccaggga 1320 caqcctcaga gtcttttcca gcctctgcca gattttctcc gaggaggata attattccca 1380 gagtcgggag ctgctcgtgc aggaggtgaa gctgcagtct cctctggagc cacactccaa gaaggccccg aggtctggct cccggggtgg gggtgtggtc ccataccttg gcaccttcct 1440 gaaqqacctt gtgatgctgg atgcagcctc caaggatgag ttggagaatg gatacatcaa 1500

ttttgacaag cggaggaagg agtttgcagt cctttctgag ttgcgacggc tccagaatga

atgtcgtggc	tataacctcc	aacctgacca	tgatatccag	aggtggctac	aggggctccg	1620
gccactgaca	gaggctcaga	gccatcgtgt	atcctgtgag	gtggagccac	ctggttccag	1680
tgaccctcct	gccccacggg	tgcttcggcc	aacattggtc	atctcgcagt	ggacagaggt	1740
tttgggctct	gttggggtcc	ctaccccgct	tgtgtcctgt	gaccggccca	gtactggggg	1800
agatgaggcg	cctacaactc	ctgctcctct	gctgactcgg	ctggcccagc	acatgaagtg	1860
gccatctgtc	tcgtcactag	actctgcctt	ggaaagcagt	ccatccctgc	acagtccagc	1920
tgaccccagc	cacctctccc	caccagcctc	ctcccctagg	ccttctcgag	gtcaccgccg	1980
ctcagcctcc	tgtggctccc	cgctgagtgg	gggtgcagaa	gaggcctccg	gggggactgg	2040
atatggggga	gagggatctg	ggccaggggc	ctctgattgc	cgtatcatcc	gagtccagat	2100
ggagttgggg	gaagatggca	gtgtctataa	gagcattttg	gtgacaagcc	aggacaaggc	2160
tccaagtgtc	atcagtcgtg	tccttaagaa	aaacaatcgt	gactctgcag	tggcttcaga	2220
gtatgagctg	gtacagctgc	taccagggga	gcgagagctg	actatcccag	cctcggctaa	2280
tgtattctac	gccatggatg	gagcttcaca	cgatttcctc	ctgcggcagc	ggcgaaggtc	2340
ctctactgct	acacctggcg	tcaccagtgg	cccgtctgcc	tcaggaactc	ctccgagtga	2400
gggaggaggg	ggctcctttc	ccaggatcaa	ggccacaggg	aggaagattg	cacgggcact	2460
gttctgagga	ggaagccccg	ttggcttaca	gaagtcatgg	tgttcatacc	agatgtgggt	2520
agccatcctg	aatggtggca	attatatcac	attgagacag	aaattcagaa	agggagccag	2580
ccaccctggg	gcagtgaagt	gccactggtt	taccagacag	ctgagaaatc	cagccctgtg	2640
ggaactggtg	tcttataacc	aagtt <u>g</u> gata	cctgtgtata	gcttcccacc	ttccatgagt	2700
gcagcacaca	ggtagtgctg	gaaaaacgca	tcagtttctg	attcttggcc	atatcctaac	2760
atgcaagggc	caagcaaagg	cttcaaggct	ctgagcccca	gggcagaggg	gaatggcaaa	2820
atgtaggtcc	tcgcaggagc	tcttcttccc	actctggggg	tttctatcac	tgtgacaaca	2880
ctaagataat	aaaccaaaac	actacctgaa	aaaaaaa			2918
	o sapiens					
<400> 335 atggccggcg	gcgtggacgg	ccccatcggg	atcccgttcc	ccgaccacag	cagcgacatc	60
ctgagtgggc	tgaacgagca	gcggacgcag	ggcctgctgt	gcgacgtggt	gatcctggtg	120
			1			100

180

240

gagggccgcg agttccccac gcaccgctcg gtgctggccg cctgcagcca gtacttcaag

aagctgttca cgtcgggcgc cgtggtggac cagcagaacg tgtacgagat cgacttcgtc

agcgccgagg	cgctcaccgc	gctcatggac	ttcgcctaca	cggccacgct	caccgtcagc	300
acagccaacg	tgggtgacat	cctcagcgcc	gcccgcctgc	tggagatccc	cgccgtgagc	360
cacgtgtgcg	ccgacctcct	ggaccggcag	atcctggcgg	ccgacgcggg	cgccgacgcc	420
gggcagctgg	accttgtaga	tcaaattgat	cagcgcaacc	tcctccgcgc	caaggagtac	480
ctcgagttct	tccagagcaa	ccccatgaac	agcctgcccc	ccgcggccgc	cgccgccgct	540
gccagcttcc	cgtggtccgc	ctttggggcg	tccgatgatg	acctggatgc	caccaaggag	600
gccgtggccg	ccgctgtggc	cgccgtggcc	gcgggcgact	gcaacggctt	agacttctat	660
gggccgggcc	ccccggccga	gcggcccccg	acgggggacg	gggacgaggg	cgacagcaac	720
ccgggtctgt	ggccagagcg	ggatgaggac	gcccccaccg	ggggtctctt	tçcgccgccg	780
gtggccccgc	cggccgccac	gcagaacggc	cactacggcc	gcggcggaga	ggaggaggcc	840
gcctcgctgt	cggaggcggc	ccccgagccg	ggcgactctc	cgggcttcct	gtcgggagcg	900
gccgagggcg	aggacgggga	cgggcccgac	gtggacgggc	tggcggccag	cacgctgctg	, 960
cagcagatga	tgtcatcggt	gggccgggcg	ggggccgcgg	cgggggacag	cgacgaggag	1020
tcgcgggccg	acgacaaggg	cgtcatggac	tactacctga	agtacttcag	cggcgcccac	1080
gacggcgacg	tctacccggc	ctggtcgcag	aaggtggaga	agaagatccg	agccaaggcc	1140
ttccagaagt	gccccatctg	cgagaaggtc	atccagggcg	ccggcaagct	gccgcgacac	1200
atccgcaccc	acacgggcga	gaagccctac	gagtgcaaca	tctgcaaggt	ccgcttcacc	1260
aggcaggaca	agctgaaggt	gcacatgcgg	aagcacacgg	gcgagaagcc	gtacctgtgc	1320
cagcagtgcg	gcgccgcctt	tgcccacaac	tacgacctga	agaaccacat	gcgcgtgcac	1380
acgggcctgc	gcccctacca	gtgcgacagc	tgctgcaaga	ccttcgtccg	ctccgaccac	1440
ctgcacagac	acctcaagaa	agacggctgc	aacggcgtcc	cctcgcgccg	cggccgcaag	1500
ccccgcgtcc	ggggcggggc	gcccgacccc	agcccggggg	ccaccgcgac	ccccggcgcc	1560
cccgcccagc	ccagctcccc	cgacgcccgg	cgcaacggcc	aggagaagca	ctttaaggac	1620
gaggacgagg	acgaggacgt	ggccagcccc	gacggcttgg	gccggttgaa	tgtagcgggc	1680
gccggtggag	gaggtgacag	cggaggtggc	cccggggccg	ccaccgacgg	taacttcaca	1740
gccggactcg	cctaa					1755

<210> 336 <211> 1287

<212> DNA

<213> Homo sapiens

<400> 336

⁶⁰ atggactctc tgtggggccc aggagccggg agtcacccct ttggggtcca caacacccgg

ctgtccccag	acttgtgtcc	agggaagata	gtgttgaggg	ccctcaagga	gagcggggca	120
gggatgcctg	agcaggacaa	ggaccctaga	gtccaagaga	atcctggtga	tcagagaagg	180
gtcccggagg	tcaccgggga	tgcaccgtct	gcatttcggc	ccctgcggga	caatggaggc	240
ctctctccct	ttgtgcccgg	gcccgggcct	ctgcagacag	acctccatgc	ccagaggtca	300
gaaatcagat	ataaccagac	atcccagacc	tcctggacga	gctcctgcac	caaccgaaat	360
gccatctcca	gctcctacag	ctccacggga	ggcttgccgg	ggctaaagcg	gaggagggg	420
ccagcctcat	cccactgcca	gctgaccctc	agttcctcaa	agacagtgag	tgaggacagg	480
cctcaggctg	tctcttcagg	tcacacccag	tgtgaaaagg	cagcagatat	agcaccaggg	540
cagacactca	ccctcaggaa	tgactcctcc	acatccgagg	cctctaggcc	cagtacacac	600
aagtttcccc	tgctgccatg	caggcgaggg	gagcctttga	tgctgccacc	tcccttagag	660
ctggggtacc	gggtcactgt	tgaagacctt	gaccgggaga	aggaggcggc	attccagcgc	720
atcaacagtg	cactgcaagt	tgaggacaag	gccatctcgg	actgcagacc	ctcacggcct	780
tcccacactt	tgtcctcact	tgcaacaggg	gcttctggtc	tgcctgccgt	ttctaaagca	840
cccagtatgg	atgcacagca	ggagacacac	aagtcccaag	actgcctggg	cctactggcc	900
cccttagcat	ctgctgcaga	ggtcccctct	acagctccca	tgtctgggaa	gaagcacaga	960
ccaccaggcc	ccctgttctc	ctcctcagat	ccccttcctg	ccacctcttc	ccattcccag	1020
gactcagccc	aggtcacctc	gctgattcct	gccccttcc	cagctgcaag	catggatgcg	1080
ggcatgagaa	gaacaaggcg	tggcacttct	gctcctgcag	ctgccgcagc	agcccctccc	1140
ccctccgcat	tgaaccccac	gttggggtca	ctactggagt	ggatggaggc	ccttcacatt	1200
tctgggcctc	agccacagct	gcagcaggtg	cccagaggtc	agaaccagag	atcgcagacc	1260
tcccggacca	gctcgtgccc	caaatga				1287
	o sapiens			•		
<400> 337 cacgaggaca		agctatggga	aaattgtgaa	gataaatgaa	agttttaatt	60
ctaggattct	ggaaacagag	acagtaagag	ttctccaagg	attttgcctt	ttttgtttgt	120
ttttgagatg	gagtctcgct	cttgtcgccc	aggctggagt	gcagtggcac	gatctcagct	180
ccctgcaacc	teegeeteee	gggttcatgt	gattctcctg	cctcagcctc	cccagtagct	240

300

360

gggaatacag gcacccgcca ccatgcccgg ctaatttttg tagttttagt agagacgggg

tttcatcatg ttggacaggc tggtctcgaa ctcctgacct caggtgatcc atcagcctgg

gcctcccaaa gtactgggat tacaggcatg agccaccaca cctggcccca ttttttattt	420
attacaaaat caaagacatg ggtgatgcct ggcacatgtt gtctggagtc tggcacactg	480
gttatcaata gcacattcag tgtattcagt gatgtcattc tttatttatt tttgagaca	539
<210> 338 <211> 396 <212> DNA <213> Homo sapiens	
<400> 338 ccgctgccat ggcgaagtgg caaattcacc aaacggctca gcaagcctgg cacggcggct	60
gacgccggca gagcgtgtct gaggccgtgc ggggctccgt ggtgctggaa aaggccaaag	120
ttgttgagcc cctggactat gagaatgtta ttgcccaaag aaaaacccag atttacagcg	180
accccctccg agatctgctt atgttcccaa tggaagatat atctatctcg gtgataggtc	240
gtcaacgcag aacggtgcag tctactgtac cagaagatgc tgaaaagagg gcccagagtt	300
tatttgttaa agagtgtatt aaaacctata gcacagattg gcacgtggta aactacaagt	360
atgaggactt ctctggggac tttcgaatgt tgccat	396
<210> 339 <211> 409 <212> DNA <213> Homo sapiens	
ggatccatcc cgcctcccgg cgtctcactg tgtgccctac cctttgaaac acgccccgc	60
gcccgccctg ccgtagacca ggcagcgagg aagcccacag tctccggggg cgctgccgaa	120
tgttagcacg tgcttctcga aacaccgcat cccccgggtc ccgccccgcc	180
actcgaaccc gcccagagag cgttgcgtgg cgctgggtgc gagcagggtc tagccacccc	240
cacceteace teaceteagg ceacettget ttttteaggt teateaaggt ttgcgcagtg	300
gateegegaa tgaageeage etggaagate eecagteteg agacagagee tgacagggge	360
agatgcactg gaaggaccct gtctgggttt agcaaccaag cagccatcc	409
<210> 340 <211> 552 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (366)(366) <223> n is a, c, g, t or u	

<400> 340						
tttttttt	ttttttttt	: ttttttttt	tttttttt	tttttttt	tttttttt	60
aaaacccctg	gggggatttt	aaaaaccccc	cagtttattt	ggaaaaattc	aggatttgga	120
cattttctaa	ааааасссаа	aaattccctt	acatcggcct	aaacatttat	taaagggggg	180
ggaaaaaacc	: tttttcaatt	tttaagcggg	ccaaaaaaaa	accctttccc	caacttttaa	240
aatttttaa	aaaaaaaagc	caatttatat	gggacattgg	gggtcccggg	gcataaaaaa	300
acaggcattt	tececaacgg	gccaaaaacc	aacaaacaag	gggccttttt	ttggggggaa	360
attaanttto	aaaggcaaag	gggttcaaag	gggacccaag	gggctgcccc	ccccaggaag	420
aaaaccccac	aaaaataatg	aagtttggag	ggggccaccg	ccgggtccca	aaaagggttc	480
tttcttccct	attttttaaa	aaaacaaggg	ggccctaggg	gggggagaa	aaaaaaacca	540
ctttaatata	ga					552
<210> 341 <211> 474 <212> DNA <213> Hom						
<400> 341						
ttttttttt	tttgatttta	acaatgaatt	tcaggtttaa	tgatttttta	cctttcctct	60
gaaagacagt	tgaaaaggac	acaaatgatt	cacaacagag	gtttatgttt	gaggtgatca	120
ccactaatac	acactttgaa	aagtaccatc	accatatata	tatttgcttt	aaaaaattat	180
gacaagcttc	aggtaaaaat	aatttttaaa	gggtccattt	ttcatttacg	tacaatcagt	240
acatcttatt	tacatatatg	actggatctt	tattctattt	tcttcatata	agatatttta	300
actggtaggt	aactgctcta	ttctgttttt	atagaaagac	taaacacctt	atttacaggc	360
agttttgatg	atgctagttt	gtctccaaat	tacgtactga	atatagttaa	aatcttaatg	420
aataacataa	aaattaagat	ccggtattaa	cagactattt	tatgggtcac	actg	474
<210> 342 <211> 2379 <212> DNA <213> Homo	e o sapiens					
<400> 342	tcoaaatata	aaattaaa	+			
		gcccttcagc				60
		gtccgctatg				120
		cctgccctcc				180
ggcggctgcc	tgggggtctt	cggggtggct	gcgggaaccc	ggaggcccaa	cgtggtgctg	240
ctcctcacgg	acgaccagga	cgaagtgctc	ggcggcatga	caccactaaa	gaaaaccaaa	300

gctctcatcg	gagagatggg	gatgactttt	tccagtgctt	atgtgccaag	tgctctctgc	360
tgccccagca	gagccagtat	cctgacagga	aagtacccac	ataatcatca	cgttgtgaac	420
aacactctgg	aggggaactg	cagtagtaag	tcctggcaga	agatccaaga	accaaatact	480
ttcccagcaa	ttctcagatc	aatgtgtggt	tatcagacct	tttttgcagg	gaaatattta	540
aatgagtacg	gagccccaga	tgcaggtgga	ctagaacacg	ttcctctggg	ttggagttac	600
tggtatgcct	tggaaaagaa	ttctaagtat	tataattaca	ccctgtctat	caatgggaag	660
gcacggaagc	atggtgaaaa	ctatagtgtg	gactacctga	cagatgtttt	ggctaatgtc	720
tccttggact	ttctggacta	caagtccaac	tttgagccct	tcttcatgat	gatcgccact	780
ccagcgcctc	attcgccttg	gacagctgca	cctcagtacc	agaaggcttt	ccagaatgtc	840
tttgcaccaa	gaaacaagaa	cttcaacatc	catggaacga	acaagcactg	gttaattagg	900
caagccaaga	ctccaatgac	taattcttca	atacagtttt	tagataatgc	atttaggaaa	960
aggtggcaaa	ctctcctctc	agttgatgac	cttgtggaga	aactggtcaa	gaggctggag	1020
ttcactgggg	agctcaacaa	cacttacatc	ttctatacct	cagacaatgg	ctatcacaca	1080
ggacagtttt	ccttgccaat	agacaagaga	cagctgtatg	agtttgatat	caaagttcca	1140
ctgttggttc	gaggacctgg	gatcaaacca	aatcagacaa	gcaagatgct	ggttgccaac	1200
attgacttgg	gtcctactat	tttggacatt	gctggctacg	acctaaataa	gacacagatg	1260
gatgggatgt	ccttattgcc	cattttgaga	ggtgccagta	acttgacctg	gcgatcagat	1320
gtcctggtgg	aataccaagg	agaaggccgt	aacgtcactg	acccaacatg	cccttccctg	1380
agtcctggcg	tatctcaatg	cttcccagac	tgtgtatgtg	aagatgctta	taacaatacc	1440
tatgcctgtg	tgaggacaat	gtcagcattg	tggaatttgc	agtattgcga	gtttgatgac	1500
caggaggtgt	ttgtagaagt	ctațaatctg	actgcagacc	cagaccagat	cactaacatt	1560
gctaaaacca	tagacccaga	gcttttagga	aagatgaact	atcggttaat	gatgttacag	1620
tcctgttctg	ggccaacctg	tcgcactcca	ggggtttttg	accccggata	caggtttgac	1680
ccccgtctca	tgttcagcaa	tcgcggcagt	gtcaggactc	gaagattttc	caaacatctt	1740
ctgtagcgac	ctcacacagc	ctctgcagat	ggatccctgc	acgcctcttt	ctgatgaagt	1800
gattgtagta	ggtgtctgta	gctagtcttc	aagaccacac	ctggaagagt	ttctgggctg	1860
gctttaagtc	ctgtttgaaa	aagcaaccca	gtcagctgac	ttcctcgtgc	aatgtgttaa	1920
actgtgaact	ctgcccatgt	gtcaggagtg	gctgtctctg	gtctcttcct	ttagctgaca	1980
aggacactcc	tgaggtcttt	gttctcactg	tattttttt	atcctggggc	cacagttctt	2040
gattattcct	cttgtggtta	aagactgaat	ttgtaaaccc	attcagataa	atggcagtac	2100
tttaggacac	acacaaacac	acagatacac	cttttgatat	gtaagcttga	cctaaagtca	2160

```
aaggacctgt gtagcatttc agattgagca cttcactatc aaaaatacta acatcacatg
                                                                     2220
gcttgaagag taaccatcag agctgaatca tccaagtaag aacaagtacc attgttgatt
                                                                     2280
gataagtaga gatacatttt ttatgatgtt catcacagtg tggtaaggtt gcaaattcaa
                                                                     2340
aacatgtcac ccaagctctg ttcatgtttt tgtgaattc
                                                                     2379
<210> 343
<211> 558
<212> DNA
<213> Homo sapiens
<400> 343
ttttgttttt ttaaaaatat gcctttatag atttttatat atgtatatta taaaatccat
                                                                      60
acatgtattt acatgattgc tacatacaaa attacagcac tgtggtatgt acacatctac
                                                                      120
aggtacattc ttgccgcgca tccctgctgt gctttcccca cgtgagggag ggagggagac
                                                                     180
tgaatcggtt gttagcagct gagggctggc cgggccgcgg agcctctgag ttggggcctg
                                                                     240
ggttgaggag gatgtactat tgtcacacat tcatcaacta ttatctgctc ttttttccaa
                                                                     300
tetttttgca atttetteet ettateteat ettaceteet etttegetag taatgaacta
                                                                     360
actccccaac gttgttctac attccgtccg actcttttta taactctcta tacatgttac
                                                                     420
tgcattctta tacattctta acatactagc tgcggatgta atagctactt ctgttcgttt
                                                                     480
gattaacatc ctatttcaac ttattagatt gctatgttcc cttcatattt tactagattt
                                                                     540
cgggtcgtat tattttga
                                                                     558
<210> 344
<211> 569
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (15)..(15)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (122)..(122)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (127)..(127)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222>
      (131)..(131)
```

```
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (133)..(133)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (136)..(138)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (146)..(148)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (156)..(156)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (162)..(162)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (164)..(165)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (172)..(173)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (175)..(175)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
 <222> (177)..(177)
<223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (179)..(179)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (190)..(190)
 <223> n is a, c, g, t or u
 <220>
 <221> misc feature
 <222> (194)..(194)
 <223> n is a, c, g, t or u
```

```
<220>
<221> misc feature
<222> (197)..(197)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (202)..(203)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (205)..(206)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (211)..(211)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (214)..(214)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (217)..(217)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (222)..(222)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (228)..(228)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (230)..(231)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (241)..(241)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (248)..(248)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (259)..(259)
<223> n is a, c, g, t or u
```

```
<220>
<221> misc_feature
<222> (261)..(262)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (268)..(268)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (271)..(272)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (286)..(286)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (291)..(291)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (296)..(296)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (307)..(307)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (325)..(326)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (330)..(331)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (333)..(333)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
 <222> (335)..(335)
 <223> n is a, c, g, t or u
 <220>
 <221> misc_feature
 <222> (342)..(342)
 <223> n is a, c, g, t or u
 <220>
```

<221> misc feature <222> (344)..(344)n is a, c, g, t or u <223> <400> 344 gggtgtttgg ggtgntgttc gtttggcctt ctgggctttc tgggggggct tggtggcctt 60 gcsggctccg gcggcsttct tgtcccctgc tttggtggca cccccgcaa ctgtctgtct 120 entitenegg nengennnge ggeeennngg tgggtngtet gngnngetet ennenenent 180 ggggttgssn gggnccnttt cnncnntggs ngcntcnccg gncttccngn nttttgggcc 240 ntcttccngc ttttttccng nncggcgntc nntgcgtttt ccttcngctc ngcggncttg 300 cgtgsgntgt gggcgcgtgt ggcgnntccn ntncnggggc gntngccggc gcttatttgg 360 cctggmtggt tcaggataat cacctgagca gtgaagccag ctgcttccat tggtgggtca 420 tttttgctgt caccagcaac gttgccacgc cgcacatcct tgccagmcac attcttgccm 480 ttgcagcccm cattgtcccc cggcagmgct tcactcaaag cttcatggtg catttcgaca 540 gattttactt ccgttgtwac gttgactgg 569 <210> 345 <211> 1536 <212> DNA <213> Homo sapiens <400> 345 acagagette aaaaaaagag egggacaggg acaagegtat etaagagget gaacatgaat 60 ccacagatca gaaatccgat ggagcggatg tatcgagaca cattctacga caactttgaa 120 aacgaaccca tcctctatgg tcggagctac acttggctgt gctatgaagt gaaaataaag 180 aggggccgct caaatctcct ttgggacaca ggggtctttc gaggccaggt gtatttcaag 240 cctcagtacc acgcagaaat gtgcttcctc tcttggttct gtggcaacca gctgcctgct 300 tacaagtgtt tecagateae etggtttgta teetggaeee eetgeeegga etgtgtggeg 360 aagctggccg aattcctgtc tgagcacccc aatgtcaccc tgaccatctc tgccgcccgc 420 ctctactact actgggaaag agattaccga agggcgctct gcaggctgag tcaggcagga 480 gcccgcgtga cgatcatgga ctatgaagaa tttgcatact gctgggaaaa ctttgtgtac 540 aatgaaggtc agcaattcat gccttggtac aaattcgatg aaaattatgc attcctgcac 600 cgcacgctaa aggagattct cagatacctg atggatccag acacattcac tttcaacttt 660 aataatgacc ctttggtcct tcgacggcgc cagacctact tgtgctatga ggtggagcgc 720 ctggacaatg gcacctgggt cctgatggac cagcacatgg gctttctatg caacgaggct 780 aagaatette tetgtggett ttaeggeege catgeggage tgegettett ggacetggtt 840 cettetttgc agttggaccc ggcccagatc tacagggtca cttggttcat ctcctggagc 900

ccctgcttct	cctggggctg	tgccggggaa	gtgcgtgcgt	tccttcagga	gaacacacac	960
gtgagactgc	gcatcttcgc	tgcccgcatc	tatgattacg	accccctata	taaggaggcg	1020
ctgcaaatgc	tgcgggatgc	tggggcccaa	gtctccatca	tgacctacga	tgagtttgag	1080
tactgctggg	acacctttgt	gtaccgccag	ggatgtccct	tccagccctg	ggatggacta	1140
gaggagcaca	gccaagccct	gagtgggagg	ctgcgggcca	ttctccagaa	tcagggaaac	1200
tgaaggatgg	gcctcagtct	ctaaggaagg	cagagacctg	ggttgagcag	cagaataaaa	1260
gatettette	caagaaatgc	aaacagaccg	ttcaccacca	tctccagctg	ctcacagaca	1320
ccagcaaagc	aatgtgctcc	tgatcaagta	gatttttaa	aaatcagagt	caattaattt	1380
taattgaaaa	tttctcttat	gttccaagtg	tacaagagta	agattatgct	caatattccc	1440
agaatagttt	tcaatgtatt	aatgaagtga	ttaattggct	ccatatttag	actaataaaa	1500
cattaagaat	cttccataat	tgtttccaca	aacact			1536
<210> 346 <211> 476 <212> DNA <213> Home <400> 346	o sapiens					
tttttttt	catctgtata	ctcatctcct	cctggttcct	ccacaccttt	agcctccata	60
ctgtcagcct	tcttctgacc	tttggacttc	tetteettgg	cctctgtctc	ttccctactc	120
ccttctctca	atctgacttt	tgtctcttgg	cttcccccag	cctcccctct	atcctcactg	180
gcctttccag	cctccacctt	ggtctctgga	cttccctctg	cctcttccct	gatgtctagc	240
ctgcctccag	gctcagcctg	cttgtcctcc	ccaacttccc	agcatgcctg	ctcttcccca	300
ccctgtccca	gagcctgcct	tccacatcct	gctgcctctc	cctccagact	ccctgaaccc	360
ttccagattg	ggggtttagg	tcccagaagg	ggacttaggt	catcataggc	actcaggaaa	420
acttcctccc	cattttcctc	ctcaacttca	ggcctggggc	cagcggagtc	caggga	476
<210> 347 <211> 412 <212> DNA <213> Homo	o sapiens					
<400> 347	taaaagtcag	aaqtqtttt	tctca+++-	atatatasta	200ttt	
	gtcttaaata					60
	actttcagtg				_	120
	tttttttt				332	180
	ししししししししし		aacaccccaa	LULLCEGCGA	aaactoaaat	240

tgttacaggc	caccctgccg	cggccagggc	gagacaggct	gggcccaccc	agaggtagaa	300
agtagtttta	tgttttttaa	aaatttttt	aagtttttt	ttttttcctc	ctattacctg	360
agtttcaggc	gtggttccca	cgccgtctga	caaactccag	agaaactgaa	at	412
	sapiens					
<400> 348 gccaggaccc	tggaaggaag	caggatggca	gccggaacag	cagttggagc	ctgggtgctg	60
gtcctcagtc	tgtgggggc	agtagtaggt	gctcaaaaca	tcacagcccg	gattggcgag	120
ccactggtgc	tgaagtgtaa	gggggcccc	aagaaaccac	cccagcggct	ggaatggaaa	180
ctgaacacag (gccggacaga	agcttggaag	gtcctgtctc	cccagggagg	aggcccctgg	240
gacagtgtgg (ctcgtgtcct	tcccaacggc	tacatattaa	ttccggctgt	cgggatccag	300
gatgaggga (ttttccggtg	ccaggcaatg	aacaggaatg	gaaaggagac	caagtccaac	360
taccgagtcc (gtgtctacca	gattcctggg	aagccagaaa	ttgtagattc	tgcctctgaa	420
ctcacggctg	gtgttcccaa	taaggtgggg	acatgtgtgt	cagagggaag	ctaccctgca	480
gggactctta g	gctggcactt	ggatgggaag	cccctggtgc	ctaatgagaa	gggagtatct	540
gtgaaggaac a	agaccaggag	acaccctgag	acagggctct	tcacactgca	gtcggagcta	600
atggtgaccc (cagcccgggg	aggagatccc	cgtcccacct	tctcctgtag	cttcagccca	660
ggcctteece g	gacaccgggc	cttgcgcaca	gcccccatcc	agccccgtgt	ctgggagcct	720
gtgcctctgg a	aggaggtcca	attggtggtg	gagccagaag	gtggagcagt	agctcctggt	780
ggaaccgtaa c	cctgacctg	tgaagtccct	gcccagccct	ctcctcaaat	ccactggatg	840
aaggatggtg t	gcccttgcc	ccttcccccc	agccctgtgc	tgatcctccc	tgagataggg	900
cctcaggacc a	agggaaccta	cagctgtgtg	gccacccatt	ccagccacgg	gccccaggaa	960
agccgtgctg t	cagcatcag	catcatcgaa	ccaggcgagg	aggggccaac	tgcaggctct	1020
gtgggaggat o	agggctggg	aactctagcc	ctggccctgg	ggatcctggg	aggcctgggg	1080
acageegeee t	gctcattgg	ggtcatcttg	tggcaaaggc	ggcaacgccg	aggagaggag	1140
aggaaggccc c	agaaaacca	ggaggaagag	gaggagcgtg	cagaactgaa	tcagtcggag	1200
gaacctgagg c	aggcgagag	tagtactgga	gggccttgag	gggcccacag	acagatccca	1260
tccatcag						1268

<210> 349

<211> 475

<212> DNA

```
<213> Homo sapiens
<220>
<221> misc_feature
<222> (393)..(393)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (413)..(413)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (432)..(432)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (443)..(443)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (472)..(472)
<223> n is a, c, g, t or u
<400> 349
gggaaactga ggctcagaga agttaaatca ttcactccag gccatacatc tgctaaatgt
                                                                      60
gtcatgctac atccactttg cacctagttt gaacaggttt acaaagcaag tcagtaaccc
                                                                     120
ctgcatgcct gggtgcctga agttgaaaag gggtggctct aagatgtggt ctactacctc
                                                                     180
tectggactg ttgcagttgg gtgtggctga tttgaaattg tgcttcaaaa gaatgagttc
                                                                     240
tagtccctga atagaggagc tcacaccaca gtgcactgta gatctttgtg atccagaagt
                                                                     300
cctccagatg ttcccaaaag gatcttctta aggtgtttgc tgggggatgt tgtgtgtatt
                                                                     360
aggggagtgt ttcccttggg gggccttttg agncctcctg gggagagaag gcntcatagg
                                                                     420
ttaatgggca tnccccagaa aantttacaa tttgggattt ggggacccca antta
                                                                     475
<210> 350
<211> 2634
<212> DNA
<213> Homo sapiens
<400> 350
geegeegeeg eegeegeege egegggette gttegtaagg aagggggeet aggeegggee
                                                                      60
tgcggtggtg ggggttgctg cgcgccgggg gtcgctcctq ctqtqtcttc cqctccaqct
                                                                     120
tegeceactt eccettacea geggggtggg egeggagaag acetgeegga gecatggagg
                                                                     180
acgaagtggt ccgctttgcc aagaagatgg acaagatggt gcagaagaag aacgcggctg
                                                                     240
gagcattgga tttgctaaag gagcttaaga atattcctat gaccctggaa ttactgcagt
                                                                     300
```

ccacaagaat	cggaatgtca	gttaatgcta	ttcgcaagca	gagtacagat	gaggaagtta	360
catctttggc	aaagtctctc	atcaaatcct	ggaaaaaatt	attagatggg	ccatcaactg	420
agaaagacct	tgacgaaaag	aagaaagaac	ctgcaattac	atcgcagaac	agccctgagg	480
caagagaaga	aagtacttcc	agcggcaatg	taagcaacag	aaaggatgag	acaaatgctc	540
gagatactta	tctttcatcc	tttcctcggg	caccaagcac	ttctgattct	gtgcggttga	600
agtgtaggga	gatgcttgct	gcagctcttc	gaacagggga	tgactacatt	gcaattggag	660
ctgatgagga	agaattagga	tctcaaattg	aagaagctat	atatcaagaa	ataaggaata	720
cagacatgaa	atacaaaaat	agagtacgaa	gtaggatatc	aaatcttaaa	gatgcaaaaa	780
atccaaattt	aaggaaaaat	gtcctctgtg	ggaatattcc	tcctgactta	tttgctagaa	840
tgacagcaga	ggaaatggct	agtgatgagc	tgaaagagat	gcggaaaaac	ttgaccaaag	900
aagccatcag	agagcatcag	atggccaaga	ctggtgggac	ccagactgac	ttgttcacat	960
gtggcaaatg	taaaaagaag	aattgcactt	acacacaggt	acaaacccgt	agtgctgatg	1020
aaccaatgac	aacatttgtt	gtctgtaatg	aatgtggaaa	tcgatggaag	ttctgttgag	1080
ttggaagaat	tggcaaaata	tctggaccat	taagaaaacg	gattttgtaa	ctagctttaa	1140
actaggccaa	gcaactagtt	ttcctgcaaa	tcaaattttt	aaagcaactt	gggttagact	1200
ttgtttttga	cctaacatcc	cttccttaaa	tgccttctgt	agtttcagat	cagtagggag	1260
accatataat	aattgtatgg	tacctgtttc	aaaacatatt	ttttctgttt	ttataagtaa	1320
gttgatatta	attaaactct	tggcaatatt	tcttcttct	taaaggaaaa	tataccttaa	1380
cttttttct	tttacactgt	gaaacataca	cagtagaaat	tctgttactc	tctgttatta	1440
atacataaat	gaaaatacat	ttttttccat	attggcatgt	agctacaaat	attaaaggag	1500
gagaaaaggt	aatataattt	taggtttacc	aaatatggtg	tgtattcaaa	taatacttga	1560
ccagcttatc	taaaatgtac	ataattttga	ggtagcttat	gaatttgatt	ttaattatta	1620
tgttcacaag	cttggaatat	tagatattat	tttgcatctg	taactaaccg	tgatcatcat	1680
ttcttgtaat	ttcttgtaca	tgtatattac	ttgttcttaa	tagatttttg	gaaacaagac	1740
tttattgaga	tcagtttggt	tttcctgtta	atttacctgt	ttgactttat	aatgtgtttt	1800
agttttgcag	aagaacactg	ttgtagttta	gaaggctttt	cataaatccc	ctcataggca	1860
aagatgaaaa	cttcccacta	tttttttccc	ctcttaggaa	gacatactgg	aaagaaaatg	1920
tttagcatct	tagtgtagta	tagctattgt	aaacagttca	tgactagatt	ttgattcgga	1980
aatctatact	gaccaaggat	taatcttaag	gattgtataa	ttcattaaag	ctgtggtctt	2040
tccatgtgga	gactgataga	aaataatttt	gtcccaagtc	ttatttgctg	actttttctg	2100

tcatgagtga	gattgttgaa	caaactgaat	atatgggcta	tagcaagtag	ctttacagta	2160
cagatettae	aattaagttt	tgcttttgtt	aaagtgtgta	ccatttttc	tgtttggagt	2220
aagacaaaaa	ttgttttgac	ataggttccc	tagggtacac	ttgctctagc	atactttaaa	2280
ggccactgtt	gcaaagtcta	cattttatgc	tgaatctgca	ttctgtcagg	cacccataga	2340
aagacctcag	tacatgcttt	gcactctcct	ttgctccctt	tttccaattt	cttattgcat	2400
atcattttgt	tgtaatacag	aaagcagcat	ttttaaatgt	ccgtgttaag	aattggcccg	2460
	ctcacctcta					2520
	atttttgaaa					2580
attttaaaat	ttgtaattca	ataaagtttt	ttttgttgtt	aaacataaaa	aaaa	2634

<210> 351

<211> 2090

<212> DNA

<213> Homo sapiens

<400> 351

gggccgtggc tcgtcggggt cagtgtcttt tggctccgag ggcagtcgct gggcttccga 60 gaggggttcg ggccgcgtag gggcgctttg ttttgttcgg ttttgttttt ttgagagtgc 120 gagagaggcg gtcgtgcaga cccgggagaa agatgtcaaa cgtgcgagtg tctaacggga 180 gccctagcct ggagcggatg gacgccaggc aggcggatca ccccaagccc tcggcctgca 240 ggaacctctt cggcccggtg gaccacgaag agttaacccg ggacttggag aagcactgca 300 gagacatgga agaggcgagc cagcgcaagt ggaatttcga ttttcagaat cacaaaccc 360 tagagggcaa gtacgagtgg caagaggtgg agaagggcag cttgcccgag ttctactaca 420 gacccccgcg gccccccaaa ggtgcctgca aggtgccggc gcaggagagc caggatggca 480 gegggageeg eeeggeggeg eetttaattg gggeteegge taactetgag gacacgeatt 540 tggtggaccc aaagactgat ccgtcggaca gccagacggg gttagcggag caatgcgcag 600 gaataaggaa gcgacctgca accgacgatt cttctactca aaacaaaaga gccaacagaa 660 cagaagaaaa tgtttcagac ggttccccaa atgccggttc tgtggagcag acgcccaaga 720 agcctggcct cagaagacgt caaacgtaaa cagctcgaat taagaatatg tttccttgtt 780 tatcagatac atcactgctt gatgaagcaa ggaagatata catgaaaatt ttaaaaatac 840 atatcgctga cttcatggaa tggacatcct gtataagcac tgaaaaacaa caacacaata 900 acactaaaat tttaggcact cttaaatgat ctgcctctaa aagcgttgga tgtagcatta 960 tgcaattagg tttttcctta tttgcttcat tgtactacct gtgtatatag tttttacctt 1020 ttatgtagca cataaacttt ggggaaggga gggcagggtg gggctgacga actgacgtgg 1080

agcggggtat	gaagagcttg	ctttgattta	cagcaagtag	ataaatattt	gacttgcatg	1140
aagagaagca	attttgggga	agggtttgaa	ttgttttctt	taaatatgta	atgtcccttt	1200
cagagacagc	tgatacttca	tttaaaaaaa	tcacaaaaat	ttgaacactg	gctaaagata	1260
attgctattt	atttttacaa	gaagtttatt	ctcatttggg	agatctggtg	atctcccaag	1320
ctatctaaag	tttgttagat	agctgcatgt	ggctttttta	aaaaagcaac	agaaacctat	1380
cctcactgcc	ctccccagtc	tctcttaaag	ttggaattta	ccagttaatt	actcagcaga	1440
atggtgatca	ctccaggtag	tttggggcaa	aaatccgagg	tgcttgggag	ttttgaatgt	1500
taagaattga	ccatctgctt	ttattaaatt	tgttgacaaa	attttctcat	tttcttttca	1560
cttegggetg	tgtaaacaca	gtcaaaataa	ttctaaatcc	ctcgatattt	ttaaagatct	1620
gtaagtaact	tcacattaaa	aaatgaaata	ttttttaatt	taaagcttac	tctgtccatt	1680
tatccacagg	aaagtgttat	ttttaaagga	aggttcatgt	agagaaaagc	acacttgtag	1740
gataagtgaa	atggatacta	catctttaaa	cagtatttca	ttgcctgtgt	atggaaaaac	1800
catttgaagt	gtacctgtgt	acataactct	gtaaaaacac	tgaaaaatta	tactaactta	1860
tttatgttaa	aagattttt	ttaatctaga	caatatacaa	gccaaagtgg	catgttttgt	1920
gcatttgtaa	atgctgtgtt	gggtagaata	ggttttcccc	tcttttgtta	aataatatgg	1980
ctatgcttaa	aaggttgcat	actgagccaa	gtataatttt	ttgtaatgtg	tgaaaaagat	2040
gccaattatt	gttacacatt	aagtaatcaa	taaagaaaac	ttccatagct		2090

<210> 352

<211> 738

<212> DNA

<213> Homo sapiens

<400> 352

aaagcagaat tgagagtttg ttcttacaca caagtttaat gccaccttcc tctgtctgcc 60 atggaccaac aagcaatata tgctgagtta aacttaccca cagactcagg cccagaaagt 120 tetteacett catetettee tegggatgte tgteagggtt cacettggea teaatttgee 180 ctgaaactta gctgtgctgg gattattctc cttgtcttgg ttgttactgg gttgagtgtt 240 tcagtgacat ccttaataca gaaatcatca atagaaaaat gcagtgtgga cattcaacag 300 agcaggaata aaacaacaga gagaccgggt ctcttaaact gcccaatata ttggcagcaa 360 ctccgagaga aatgcttgtt attttctcac actgtcaacc cttggaataa cagtctagct 420 gattgttcca ccaaagaatc cagcetgetg ettattcgag ataaggatga attgatacac 480 acacagaacc tgatacgtga caaagcaatt ctgttttgga ttggattaaa tttttcatta 540 tcagaaaaga actggaagtg gataaacggc tcttttttaa attctaatga cttagaaatt 600

agaggtgatg	ctaaagaaaa	cagctgtatt	tccatctcac	agacatctgt	gtattctgag	660
tactgtagta	cagaaatcag	atggatctgc	caaaaagaac	taacacctgt	gagaaataaa	720
gtgțatcctg	actcttga	*				738
<210> 353 <211> 835 <212> DNA <213> Homo	o sapiens					
<400> 353 agcccttgtg	gagctgacca	cgttgcctct	tacggtgtaa	acttgtacca	gtcttatggt	60
ccctctgggc	agtacagcca	tgaatttgat	ggagacgagg	agttctatgt	ggacctggag	120
aggaaggaga	ctgtctggca	gttgcctctg	ttccgcagat	ttagaagatt	tgacccgcaa	180
tttgcactga	caaacatcgc	tgtgctaaaa	cataacttga	acatcgtgat	taaacgctcc	240
aactctaccc	ctgctaccaa	tgaggttcct	gaggtcacag	tgttttccaa	gtctcccgtg	300
acactgggtc	agcccaacac	cctcatctgt	cttgtggaca	acatctttcc	tcctgtggtc	360
aacatcacct	ggctgagcaa	tgggcactca	gtcacagaag	gtgtttctga	gaccagcttc	420
ctctccaaga	gtgatcattc	cttcttcaag	atcagttacc	tcaccttcct	cccttctgat	480
gatgagattt	atgactgcaa	ggtggagcac	tggggcctgg	atgageetet	tctgaaacac	540
tgggagcctg	agattccaac	acctatgtca	gacctcacag	agactgtggt	ctgcgccctg	600
gggttgtctg	tgggcctcgt	gggcattgtg	gtggggaccg	tcttgatcat	ccgaggcctg	660
cgttcagttg	gtgcttccag	acaccaaggg	cccttgtgaa	tcccatcctg	aaaaggaagg	720
tgttacctac	taagagatgc	ctggggtaag	ccgcccagct	acctaattcc	tcagtaacat	780
cgatctaaaa	tctccatgga	agcaataaat	tccctttaag	agatctatgt	caaat	835
<210> 354 <211> 325 <212> DNA <213> Homo	o sapiens					
<400> 354 cagcctgtgc	tgactcaatc	atcctctgcc	tetgetteee	tgggatcctc	ggtcaagctc	60
acctgcactc	tgagcagtgg	gcacagtagc	tacatcatcg	catggcatca	gcagcagcca	120
gggaaggccc	ctcggtactt	gatgaagctt	gaaggtagtg	gaagctacaa	caaggggagc	180
ggagttcctg	atcgcttctc	aggctccagc	tctggggctg	accgctacct	caccatctcc	240
aacctccagt	ttgaggatga	ggctgattat	tactgtgaga	cctgggacag	taacattcgg	300
gtgttcggcg	gagggaccaa	gctga				325

<210> 355

<211> 2282

<212> DNA

<213> Homo sapiens

<400> 355 gactccgggg	cgaccgccgc	gagtccgcag	tagttcgggc	catggaggcg	gagccgccgc	60
tctacccgat	ggcgggggct	gcggggccgc	agggcgacga	ggacctgctc	ggggtcccgg	120
acgggcccga	ggccccgctg	gacgagctgg	tgggcgcgta	ccccaactac	aacgaggagg	180
aggaggagcg	ccgctactac	cgccgcaagc	gcctgggcgt	gctcaagaac	gtgctggctg	240
ccagcgccgg	gggcatgctc	acctacggcg	tctacctggg	cctcctgcag	atgcagctga	300
tcctgcacta	cgacgagacc	taccgcgagg	tgaagtatgg	caacatgggg	ctgcccgaca	360
tcgacagcaa	aatgctgatg	ggcatcaacg	tgactcccat	egeegeeetg	ctctacacac	420
ctgtgctcat	caggtttttt	ggaacgaagt	ggatgatgtt	cctcgctgtg	ggcatctacg	480
ccctctttgt	ctccaccaac	tactgggagc	gctactacac	gcttgtgccc	tcggctgtgg	540
ccctgggcat	ggccatcgtg	cctctttggg	cttccatggg	caactacatc	accaggatgg	600
cgcagaagta	ccatgagtac	tcccactaca	aggagcagga	tgggcagggg	atgaagcagc	660
ggcctccgcg	gggctcccac	gcgccctatc	tcctggtctt	ccaagccatc	ttctacagct	720
tcttccatct	gagcttcgcc	tgcgcccagc	tgcccatgat	ttatttcctg	aaccactacc	780
tgtatgacct	gaaccacacg	ctgtacaatg	tgcagagctg	cggcaccaac	agccacggga	840
tcctcagcgg	cttcaacaag	acggttctgc	ggacgctccc	gcggagcgga	aacctcattg	900
tggtggagag	cgtgctcatg	gcagtggcct	tcctggccat	gctgctggtg	ctgggtttgt	960
gcggagccgc	ttaccggccc	acggaggaga	tcgatctgcg	cagcgtgggc	tggggcaaca	1020
tcttccagct	gcccttcaag	cacgtgcgtg	actaccgcct	gcgccacctc	gtgcctttct	1080
ttatctacag	cggcttcgag	gtgctctttg	cctgcactgg	tatcgccttg	ggctatggcg	1140
tgtgctcggt	ggggctggag	cggctggctt	acctcctcgt	ggcttacagc	ctgggcgcct	1200
cagccgcctc	actcctgggc	ctgctgggcc	tgtggctgcc	acgcccggtg	cccctggtgg	1260
ccggagcagg	ggtgcacctg	ctgctcacct	tcatcctctt	tttctgggcc	cctgtgcctc	1320
gggtcctgca	acacagetgg	atcctctatg	tggcagctgc	cctttggggt	gtgggcagtg	1380
ccctgaacaa	gactggactc	agcacactcc	tgggaatctt	gtacgaagac	aaggagagac	1440
aggacttcat	cttcaccatc	taccactggt	ggcaggctgt	ggccatcttc	accgtgtacc	1500
tgggctcgag	cctgcacatg	aaggctaagc	tggcggtgct	gctggtgacg	ctggtggcgg	1560
ccgcggtctc	ctacctgcgg	attgagcaga	agctgcggcg	gggcgtggcc	ccgcgccagc	1620
cccgcatccc	gcggccccag	cacaaggtgc	gcggttaccg	ctacttggag	gaggacaact	1680

cggacgagag cgacgcggag	ggcgagcatg	gggacggcgc	ggaggaggag	gcgccgcccg	1740
cagggcccag gcctggcccc	gagcccgctg	gactcggccg	ccggccctgc	ccgtacgaac	1800
aggcgcaggg gggagacggg	ccggaggagc	agtgaggggc	cgcctggtcc	ccggactcag	1860
cetecetect egeeggeete	agtttaccac	gtctgaggtc	ggggggaccc	cctccgagtc	1920
ccgcgctgtc ttcaaaggcc	cctgtctccc	ctccccgacg	ttggggacgc	ccctcccaga	1980
gcccaggtca cctccgggct	teegeageee	cctccaaggc	ggagtggagc	cttgggaacc	2040
cctcggccaa gcacaggggt	tcgaaaatac	agctgaaacc	ccgcgggccc	ttagcacgcg	2100
ccccagcgcc ggagcacggt	cagggtcttc	ttgcgacccg	gcccgctcca	gatccccaca	2160
gettteggee geggaeeegg	gccgcgtgtg	agcgcacttt	gcacctccta	tccccagggt	2220
ccgccgagag ccacgatttt	ttacagaaaa	tgagcaataa	agagattttg	tactgtcaaa	2280
aa					2282
<210> 356 <211> 1759 <212> DNA <213> Homo sapiens					
<211> 1759 <212> DNA	ctggcttgcg	geteeegggg	ccggctctcc	ggccggagac	60
<211> 1759 <212> DNA <213> Homo sapiens <400> 356					60 120
<211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag	gctaggcagg	cctcgccccg	atacggtcgc	catgcccaag	
<211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag atggcccggg ggcccggccc	gctaggcagg	cctcgccccg	atacggtcgc ccggccgagt	catgcccaag	120
<211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag atggcccggg ggcccggccc agaggaaagc gactcaagtt	gctaggcagg ccgggcccac ggcggtcgtg	cctcgccccg gacgcctgct aggtctggac	atacggtcgc ccggccgagt gagtcaagaa	catgcccaag gaccgtggcg agccgtagcc	120 180
<211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag atggcccggg ggcccggccc agaggaaagc gactcaagtt gattacgcca actcggatcc	gctaggcagg ccgggcccac ggcggtcgtg aaaatctctt	cctcgccccg gacgcctgct aggtctggac tgtggcttgg	atacggtcgc ccggccgagt gagtcaagaa aagcctctca	catgcccaag gaccgtggcg agccgtagcc ggttcctgca	120 180 240
<211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag atggcccggg ggcccggccc agaggaaagc gactcaagtt gattacgcca actcggatcc aacgctgttc agcaggaagt	gctaggcagg ccgggcccac ggcggtcgtg aaaatctctt tggtgagccc	cctcgccccg gacgcctgct aggtctggac tgtggcttgg tgtgacatca	atacggtcgc ccggccgagt gagtcaagaa aagcctctca tcgacagcag	catgcccaag gaccgtggcg agccgtagcc ggttcctgca tgatgagatg	120 180 240 300
<pre><211> 1759 <212> DNA <213> Homo sapiens <400> 356 ggccgcggag ccgggcggag atggcccggg ggcccggccc agaggaaagc gactcaagtt gattacgcca actcggatcc aacgctgttc agcaggaagt gaggaagctc tttctggggc</pre>	gctaggcagg ccgggccac ggcggtcgtg aaaatctctt tggtgagccc ccatgagaga	cctcgccccg gacgcctgct aggtctggac tgtggcttgg tgtgacatca actgtctcca	atacggtcgc ccggccgagt gagtcaagaa aagcctctca tcgacagcag gaaaaaagaa	catgcccaag gaccgtggcg agccgtagcc ggttcctgca tgatgagatg aagcaagaga	120 180 240 300 360

tggactgtca cttgcactgc tgccttttgg accaggttgt accgaaggca ctacacgctg

gatgetteec tgeetttgeg tetgegacca gagteaatgg agaagetgeg etgteteegg

gcttgtgtga tccgatctct gtaccatatg tatgagccat ttgctgctcg aatctccaag

aatccagcca ttccagaaag caccccagc acattaaaga attccaaatg cttacttttc

tggtgcagaa agattgttgg gaacagacag gaaccaatgt gggaattcaa cttcaagttc

aaaaaacagt cccctaggtt aaagagcaag tgtacaggag gattgcagcc tcccgttcag

tacgaagatg ttcataccaa tccagaccag gactgctgcc tactgcaggt caccaccctc

600

660

720

780

840

900

960

aatttcatct t	tattccgat	tgtcatggga	atgatattta	ctctgtttac	tatcaatgtg	1020
agcacggaca t	gcggcatca	tcgagtgaga	ctggtgttcc	aagattcccc	tgtccatggt	1080
ggtcggaaac t	gcgcagtga	acagggtgtg	caagtcatcc	tggacccagt	gcacagcgtt	1140
cggctctttg a	.ctggtggca	tcctcagtac	ccattctccc	tgagagcgta	gttactgctt	1200
cccatccctt g	ggggcagcc	tcgagtgtag	tccattagta	atcagattcc	agtttggaca	1260
gggtggctgg a	ttgtatatc	tcgttagtaa	tgtacatgct	cttcaggttc	tagggctcct	1320
gttaggggag g	gagaaatgt	tgaatcaaga	gggaaaacaa	ctactatgat	ttataaacat	1380
attttaatgt a	aaaatttgc	atttaaaagg	agtggccctg	ttttctgtgt	taaaacccca	1440
tttggtgcta ti	tgagtttgt	tctttattct	tttatcccag	tgaaaattgt	tgatcttgct	1500
gtagggaaaa a	ttaaactct	ttgaatctcc	aaacaaggaa	gtttcagcat	tecettatgg	1560
atcagaggaa co	cttagaggc	ctgaaattgt	tgcttccagt	ttagctgccc	ctcaaattca	1620
agtgaatatt t	tcccttctc	cctttaccct	tctccagaaa	taaagcaggt	gacagggttt	1680
tcagaatctt aa	aaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1740
aaaaaaaaaa aa	aaaaaaa					1759
<210> 357 <211> 1314 <212> DNA <213> Homo s	aaaaaaaa sapiens					1759
<210> 357 <211> 1314 <212> DNA	sapiens	tccacaaccg	agtgtggtga	ctcgggtggt	caacctgccc	1759 60
<210> 357 <211> 1314 <212> DNA <213> Homo s	sapiens tgcagttga					
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt	sapiens tgcagttga cacgtatga	cctcatgtcc	tcagcctatc	tcagtacaaa	ggaccagtat	60
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt	sapiens tgcagttga cacgtatga gtctgtgtg	cctcatgtcc tgagatggca	tcagcctatc gagaacggtg	tcagtacaaa tgaagaccat	ggaccagtat	60 120
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt ttggtgagct cc ccctacctga ag	sapiens tgcagttga cacgtatga gtctgtgtg	cctcatgtcc tgagatggca catcatccag	tcagcctatc gagaacggtg aagctagagc	tcagtacaaa tgaagaccat cgcaaattgc	ggaccagtat cacctccgtg agttgccaat	60 120 180
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt ttggtgagct cc ccctacctga aggcatcctga aggcatcca gt	sapiens tgcagttga cacgtatga gtctgtgtg tgctctgcc taaggggct	cctcatgtcc tgagatggca catcatccag agacaggatt	tcagcctatc gagaacggtg aagctagagc gaggagagac	tcagtacaaa tgaagaccat cgcaaattgc tgcctattct	ggaccagtat cacctccgtg agttgccaat gaatcagcca	60 120 180 240
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt ttggtgagct cc ccctacctga ag gccatgacca gt acctatgcct gt	sapiens tgcagttga cacgtatga gtctgtgtg tgctctgcc taaggggct tgttgccaa	cctcatgtcc tgagatggca catcatccag agacaggatt tgccaaaggc	tcagcctatc gagaacggtg aagctagagc gaggagagac gctgtgactg	tcagtacaaa tgaagaccat cgcaaattgc tgcctattct gggcaaaaga	ggaccagtat cacctccgtg agttgccaat gaatcagcca tgctgtgacg	60 120 180 240 300
<210> 357 <211> 1314 <212> DNA <213> Homo s <400> 357 atggcatccg tt ttggtgagct cc ccctacctga ag gccatgacca gt acctatgct gt tcaactcaga tt	sapiens tgcagttga cacgtatga gtctgtgtg tgctctgcc taaggggct tgttgccaa	cctcatgtcc tgagatggca catcatccag agacaggatt tgccaaaggc ggattctgtg	tcagcctatc gagaacggtg aagctagagc gaggagagac gctgtgactg gccagcacga	tcagtacaaa tgaagaccat cgcaaattgc tgcctattct gggcaaaaga tcacaggggt	ggaccagtat cacctccgtg agttgccaat gaatcagcca tgctgtgacg gatggacaag	60 120 180 240 300 360

accaaatcag agctgttggt agaacagtac ctccctctca ctgaggaaga actagaaaaa

gaagcaaaaa aagttgaagg atttgatctg gttcagaagc caagttatta tgttagactg

ggatccctgt ctaccaagct tcactcccgt gcctaccagc aggctctcag cagggttaaa

gaagctaagc aaaaaagcca acagaccatt tctcagctcc attctactgt tcacctgatt

600

660

720

780

gaatttgcca	ggaagaatgt	gtatagtgcc	aatcagaaaa	ttcaggatgc	tcaggataag	840
ctctacctct	catgggtaga	gtggaaaagg	agcattggat	atgatgatac	tgatgagtcc	900
cactgtgctg	agcaatttga	gtcacgtact	cttgcaattg	cccgcaacct	gactcagcag	960
ctccagacca	cgtgccacac	cctcctgtcc	aacatccaag	gtgtaccaca	gaacatccaa	1020
gatcaagcca	agcacatggg	ggtgatggca	ggcgacatct	actcagtgtt	ccgcaatgct	1080
gcctccttta	aagaagtgtc	tgacagcctc	ctcacttcta	gcaaggggca	gctgcagaaa	1140
atgaaggaat	ctttagatga	cgtgatggat	tatcttgtta	acaacacgcc	cctcaactgg	1200
ctggtaggtc	ccttttatcc	tcagctgact	gagtctcaga	atgctcagga	ccaaggtgca	1260
gagatggaca	agagcagcca	ggagacccag	cgatctgagc	ataaaaçtca	ttaa	1314

<210> 358

<211> 8187

<212> DNA

<213> Homo sapiens

<400> 358

cccgagaagc ggcggggcgg cgggccggcg ggcggggcgc agagccaggc agcgcaggta 60 tagccaggct ggagaaaaga agctgccacc atggttgcac tttcactgaa gatcagcatt 120 gggaatgtgg tgaagacgat gcagtttgag ccgtctacca tggtgtacga cgcctgccgc 180 atcattcgtg agcggatccc agaggcccca gctggtcctc ccagcgactt tgggctcttt 240 ctgtcagatg atgaccccaa aaagggtata tggctggagg ctgggaaagc tttggactac 300 tacatgctcc gaaatgggga cactatggag tacaggaaga aacagagacc cctgaagatc 360 egtatgetgg atggaactgt gaagaegate atggtggatg actetaagae tgteactgae 420 atgeteatga ceatetgtge eegeattgge ateaceaate atgatgaata tteattggtt 480 cgagagctga tggaagagaa aaaggaggaa ataacaggga ccttaagaaa ggacaagaca 540 ttgctgcgag atgaaaagaa gatggagaaa ctaaagcaga aattgcacac agatgatgag 600 ttgaactggc tggaccatgg tcggacactg agggagcagg gtgtagagga gcacgagacg 660 ctgctgctgc ggaggaagtt cttttactca gaccagaatg tggattcccg ggaccctgta 720 cagetgaace teetgtatgt geaggeacga gatgaeatee tgaatggete ceaecetgte 780 tectttgaca aggeetgtga gtttgetgge ttecaatgee agateeagtt tgggeeceae 840 aatgagcaga agcacaaggc tggcttcctt gacctgaagg acttcctgcc caaggagtat 900 gtgaagcaga agggagagcg taagatcttc caggcacaca agaattgtgg gcagatgagt 960 gagattgagg ccaaggtccg ctacgtgaag ctagcccgtt ctctcaagac ttacggtgtc 1020 teettettee tggtgaagga aaaaatgaaa gggaagaaca agetagtgee caggettetg 1080

ggcatcacca	aggagtgtgt	gatgcgagtg	gatgagaaga	ccaaggaagt	gatccaggag	1140
tggaacctca	ccaacatcaa	acgctgggct	gcgtctccca	aaagcttcac	cctggatttt	1200
ggagattacc	aagatggcta	ttactcagta	cagacaactg	aaggggagca	gattgcacag	1260
ctcattgccg	gctacatcga	tatcatcctg	aagaagaaaa	aaagcaagga	tcactttggg	1320
ctggaaggag	atgaggagtc	tactatgctg	gaggactcag	tgtcccccaa	aaagtcaaca	1380
gtcctgcagc	agcaatacaa	ccgggtgggg	aaagtggagc	atggctctgt	ggccctgcct	1440
gccatcatgc	gctctggagc	ctctggtcct	gagaatttcc	aggtgggcag	catgccccct	1500
gcccagcagc	agattaccag	cggccagatg	caccgaggac	acatgcctcc	tctgacttca	1560
gcccagcagg	cactcactgg	aaccattaac	tccagcatgc	aggccgtgca	ggctgcccag	1620
gccaccctgg	atgactttga	cactctgccg	cctcttggcc	aggatgctgc	ctctaaggcc	1680
tggcgtaaaa	acaagatgga	tgaatcaaag	catgagatcc	actctcaggt	agatgccatc	1740
acagctggta	ctgcgtctgt	ggtgaacctg	acagcagggg	accctgctga	gacagactat	1800
accgcagtgg	gctgtgcagt	caccacaatc	tcctccaacc	tgacggagat	gtcccgtggg	1860
gtgaagctgc	tggctgcctt	gctggaggac	gaaggcggca	gtggtcggcc	cctgttgcag	1920
gcagcaaagg	gccttgcggg	agcagtgtca	gaactgctgc	gcagtgccca	accagccagt	1980
gctgagcccc	gtcagaacct	gctgcaagca	gctgggaacg	tgggccaggc	cagtggggag	2040
ctgttgcaac	aaattgggga	aagtgatact	gacccccact	tccaggatgc	gctaatgcag	2100
ctcgccaaag	ctgtggcaag	tgctgcagct	gccctggtcc	tcaaggccaa	gagtgtggcc	2160
cagcggacag	aggactcggg	acttcagacc	caagttattg	ctgcagcaac	acagtgtgcc	2220
ctatccactt	cccaactagt	ggcctgtact	aaggtggtgg	cacctacaat	cagctcacct	2280
gtctgccaag	agcaactggt	ggaggctgga	cgactggtag	ccaaagccgt	ggagggctgt	2340
gtgtctgcct	cccaggcagc	tacagaggat	gggcaactgt	tgcgaggggt	aggagcagca	2400
gccacagctg	tcacccaggc	cctaaatgag	ctgctgcagc	atgtgaaagc	ccatgccaca	2460
ggggctgggc	ctgctggccg	ttatgaccag	gctactgaca	ccatcctaac	cgtcactgag	2520
aacatcttta	gctccatggg	tgatgctggg	gagatggtgg	gacaggcccg	catcctggcc	2580
caagccacat	ctgacctggt	caatgccatc	aaggctgatg	ctgaggggga	aagtgatctg	2640
gagaactccc	gcaagctctt	aagtgctgcc	aagatcctag	ctgatgccac	agccaagatg	2700
gtagaggctg	ccaagggagc	agctgcccac	cctgacagtg	aggagcagca	gcagcggctg	2760
cgggaggcag	ctgaggggct	gcgcatggcc	accaatgcag	ctgcgcagaa	tgccatcaag	2820
aaaaagctgg	tgcagcgcct	ggagcatgca	gccaagcagg	ctgcagcctc	agccacacag	2880

accatcgctg	cagctcagca	cgcagcctct	acccccaaag	cctctgccgg	ccccagccc	2940
ctgctggtgc	agagctgcaa	ggcagtggca	gagcagattc	cactgctggt	gcagggcgtc	3000
cgaggaagcc	aagcccagcc	tgacagecee	agegeteage	ttgccctcat	tgctgccagc	3060
cagagettee	tgcagccagg	tgggaagatg	gtggcagctg	caaaggcctc	agtgccaacg	3120
attcaggacc	aggcttcagc	catgcagctg	agtcagtgtg	ccaagaacct	gggcaccgcg	3180
ctggctgaac	tccggacggc	tgcccagaag	gctcaggaag	catgtggacc	tttggagatg	3240
gattctgcac	tgagtgtggt	acagaatcta	gagaaagatc	tacaggaagt	gaaggcagca	3300
gctcgagatg	gcaagcttaa	acccttacct	ggggagacaa	tggagaagtg	tacccaggac	3360
ctgggcaaca	gcaccaaagc	cgtgagctca	gccatcgccc	agctactggg	agaggttgcc	3420
cagggcaatg	agaattatgc	aggtattgca	gctcgggatg	tggcaggtgg	gctgcggtca	3480
ctggcccagg	ccgctagggg	agtcgctgca	ctgacgtcag	atcctgcagt	gcaggccatt	3540
gtacttgata	cggccagtga	tgtgctggac	aagg ⁱ ccagca	gcctcattga	ggaggcgaaa	3600
aaggcagctg	gccatccagg	ggaccctgag	agccagcagc	ggcttgccca	ggtggctaaa	3660
gcagtgaccc	aggctctgaa	ccgctgtgtc	agctgcctac	ctggccagcg	cgatgtggat	3720
aatgccctga	gggcagttgg	agatgccagc	aagcgactcc	tgagtgactc	gcttcctcct	3780
agcactggga	catttcaaga	agctcagagc	cggttgaatg	aagctgctgc	tgggctgaat	3840
caggcagcca	cagaactggt	gcaggcctct	cggggaaccc	ctcaggacct	ggctcgagcc	3900
tcaggccgat	ttggacagga	cttcagcacc	ttcctggaag	ctggtgtgga	gatggcaggc	3960
caggeteega	gccaggagga	ccgagcccaa	gttgtgtcca	acttgaaggg	catctccatg	4020
tcttcaagca	aacttcttct	ggctgccaag	gccctgtcca	cggaccctgc	tgcccctaac	4080
ctcaagagtc	agctggctgc	agctgccagg	gcagtaactg	acagcatcaa	tcagctcatc	4140
actatgtgca	cccagcaggc	acccggccag	aaggagtgtg	ataacgccct	gcgggaattg	4200
gagacggtcc	gggaactcct	ggagaaccca	gtccagccca	tcaatgacat	gtcctacttt	4260
ggttgcctgg	acagtgtaat	ggagaactca	aaggtgctgg	gcgaggccat	gactggcatc	4320
tcccaaaatg	ccaagaacgg	aaacctgcca	gagtttggag	atgccatttc	cacagcctca	4380
aaggcacttt	gtggcttcac	cgaggcagct	gcacaggctg	catatctggt	tggtgtctct	4440
gaccccaata	gccaagctgg	acagcaaggg	ctagtggagc	ccacacagtt	tgcccgtgca	4500
aaccaggcaa	ttcagatggc	ctgccagagt	ttgggagagc	ctggctgtac	ccaggcccag	4560
gtgctctctg	cagccaccat	tgtggctaaa	cacacctctg	cactgtgtaa	cagctgtcgc	4620
ctggcttctg	cccgtaccac	caatcctact	gccaagcgcc	agtttgtaca	gtcagccaag	4680
gaggtggcca	acagcacagc	taatcttgtc	aagaccatca	aggcgctaga	tggggccttc	4740

acagaggaga	accgtgccca	gtgccgagca	gcaacagccc	ctctgctgga	ggctgtggac	4800
aatctgagtg	cctttgcgtc	caaccctgag	ttctccagca	ttcctgccca	gatcagccct	4860
gagggtcggg	ctgccatgga	gcccattgtg	atctctgcca	agacaatgtt	agagagtgcc	4920
gggggactca	tccagacagc	ccgggccctc	gcagtcaatc	cccgggaccc	cccgagctgg	4980
tcggtgctgg	ccggccactc	ccgtactgtc	tcagactcca	tcaagaagct	aattacaagc	5040
atgagggaca	aggctccagg	gcagctggag	tgtgaaacgg	ccattgcagc	tctgaacagt	5100
tgtctacggg	acctagacca	ggcttccctc	gctgcagtca	gccagcagct	tgctccccgt	5160
gagggaatct	ctcaagaggc	cttgcacact	cagatgctca	ctgcagtcca	agagatctcc	5220
catctcattg	agccgctggc	caatgctgcc	cgggctgaag	cctcccagct	gggacacaag	5280
gtgtcccaga	tggcgcagta	ctttgagccg	ctcaccctgg	ctgcagtggg	tgctgcctcc	5340
aagaccctga	gccacccgca	gcagatggca	ctcctggacc	agactaaaac	attggcagag	5400
tctgccctgc	agttgctata	cactgccaag	gaggctggtg	gtaacccaaa	gcaagcagct	5460
cacacccagg	aagccctgga	ggaggctgtg	cagatgatga	ccgaggccgt	agaggacctg	5520
acaacaaccc	tcaacgaggc	agccagtgct	gctggggtcg	tgggtggcat	ggtggactcc	5580
atcacccagg	ccatcaacca	gctagatgaa	ggaccaatgg	gtgaaccaga	aggttccttc	5640
gtggattacc	aaacaactat	ggtgcggaca	gccaaggcca	ttgcagtgac	cgttcaggag	5700
atggttacca	agtcaaacac	cagcccagag	gagctgggcc	ctcttgctaa	ccagctgacc	5760
agtgactatg	gccgtctggc	ctcggaggcc	aagcctgcag	cggtggctgc	tgaaaatgaa	5820
gagataggtt	cccatatcaa	acaccgggta	caggagctgg	gccatggctg	tgccgctctg	5880
gtcaccaagg	caggcgccct	gcagtgcagc	cccagtgatg	cctacaccaa	gaaggagctc	5940
atagagtgtg	cccggagagt	ctctgagaag	gtctcccacg	tcctggctgc	gctccaggct	6000
gggaatcgtg	gcacccaggc	ctgcatcaca	gcagccagcg	ctgtgtctgg	tatcattgct	6060
gacctcgaca	ccaccatcat	gttcgccact	gctggcacgc	tcaatcgtga	gggtactgaa	6120
actttcgctg	accaccggga	gggcatcctg	aagactgcga	aggtgctggt	ggaggacacc	6180
aaggtcctgg	tgcaaaacgc	agctgggagc	caggagaagt	tggcgcaggc	tgcccagtcc	6240
tccgtggcga	ccatcacccg	cctcgctgat	gtggtcaagc	tgggtgcagc	cagcctggga	6300
gctgaggacc	ctgagaccca	ggtggtacta	atcaacgcag	tgaaagatgt	agccaaagcc	6360
ctgggagacc	tcatcagtgc	aacgaaggct	gcagctggca	aagttggaga	tgaccctgct	6420
gtgtggcagc	taaagaactc	tgccaaggtg	atggtgacca	atgtgacatc	attgcttaag	6480
acagtaaaag	ccgtggaaga	tgaggccacc	aaaggcactc	gggccctgga	ggcaaccaca	6540

gaacacatac ggcaggagct	ggcggttttc	tgttccccag	agccacctgc	caagacctct	6600
accccagaag acttcatcc	, aatgaccaag	ggtatcacca	tggcaaccgc	caaggccgtt	6660
gctgctggca attcctgtcg	, ccaggaagat	gtcattgcca	cagccaatct	gagccgccgt	6720
gctattgcag atatgcttcg	ggcttgcaag	gaagcagctt	accacccaga	agtggcccct	6780
gatgtgcggc ttcgagccct	gcactatggc	cgggagtgtg	ccaatggcta	cctggaactg	6840
ctggaccatg tactgctgad	cctgcagaag	ccaagcccag	aactgaagca	gcagttgaca	6900
ggacattcaa agcgtgtgg	tggttccgtc	actgagctca	tccaggctgc	tgaagccatg	6960
aagggaacag aatgggtaga	cccagaggac	cccacagtca	ttgctgagaa	tgagctcctg	7020
ggagetgeag eegeeattga	ggctgcagcc	aaaaagctag	agcagctgaa	gccccgggcc	7080
aaacccaagg aggcagatga	gtccttgaac	tttgaggagc	agatactaga	agctgccaag	7140
tccattgcag cagccaccag	g tgcactggta	aaggctgcgt	cggctgccca	gagagaacta	7200
gtggcccaag ggaaggtgg	g tgccattcca	gccaatgcac	tggacgatgg	gcagtggtcc	7260
cagggcctca tttctgctgc	ccggatggtg	gctgcggcca	ccaacaatct	gtgtgaggca	7320
gccaatgcag ctgtacaag	g ccatgccagc	caggagaagc	tcatctcatc	agccaagcag	7380
gtagctgcct ccacagccca	gctccttgtg	gcctgcaagg	tcaaggctga	ccaggactcg	7440
gaggcaatga aacgacttca	ggctgctggc	aacgcagtga	agcgagcctc	agataatctg	7500
gtgaaagcag cacagaaggo	tgcagccttt	gaagagcagg	agaatgagac	agtggtggtg	7560
aaagagaaga tggttggcgg	cattgcccag	atcatcgcag	cacaggaaga	aatgcttcgg	7620
aaggaacgag agctggaaga	ggcgcggaag	aaactggccc	agatccggca	gcagcagtac	7680
aagtttctgc cttcagagct	tcgagatgag	cactaaagaa	gcctcttcta	tttaatgcag	7740
acceggeeca gagaetgtge	gtgccactac	caaagccttc	tgggctgtcg	gggcccaacc	7800
tgcccaaccc cagcactccc	caaagtgcct	gccaaacccc	agggcctggc	cccgcccagt	7860
cccgcagtac atcccctgto	ccctccccaa	ccccaagtgc	cttcatgccc	tagggccccc	7920
caagtgcctg cccctcccc	gagtattaac	gctccaagag	tattattaac	gctgctgtac	7980
ctcgatctga atctgccggg	gccccagccc	actccaccct	gccagcagct	tccagccagt	8040
ccccacagcc tcatcagcto	: tcttcaccgt	tttttgatac	tatcttcccc	caccccagc	8100
tacccatagg ggctgcagag	ttataagccc	caaacaggtc	atgctccaat	aaaaatgatt	8160
ctacctacaa aaaaaaaaa	aaaaaaa				8187

<210> 359

<211> 726

<212> DNA

<213> Homo sapiens

<400> 359	2202200200	taataaatt	ctcacaggag	aaaaaaataa	as as at agas	. 60
aacatggttc	caaaactgtt	cacttcccaa	atttgtctgc	ttcttctgtt	ggggcttatg	120
ggtgtggagg	gctcactcca	tgccagaccc	ccacagttta	cgagggctca	gtggtttgcc	180
atccagcaca	tcagtctgaa	ccccctcga	tgcaccattg	caatgcgggc	aattaacaat	240
tatcgatggc	gttgcaaaaa	ccaaaatact	tttcttcgta	caacttttgc	taatgtagtt	300
aatgtttgtg	gtaaccaaag	tatacgctgc	cctcataaca	gaactctcaa	caattgtcat	360
cggagtagat	teegggtgee	tttactccac	tgtgacctca	taaatccagg	tgcacagaat	420
atttcaaact	gcaggtatgc	agacagacca	ggaaggaggt	tctatgtagt	tgcatgtgac	480
aacagagatc	cacgggattc	tccacggtat	cctgtggttc	cagttcacct	ggataccacc	540
atctaagctc	ctgtatcagc	agtcctcatc	atcactcatc	tgccaagctc	ctcaatcata	600
gccaagatcc	catccctcca	tgtactctgg	gtatcagcaa	ctgtcctcat	cagtctccat	660
accccttcag	ctttcctgag	ctgaagtcct	tgtgaaccct	gcaataaact	gctttgcaaa	720
ttcatc						726
	sapiens					
<400> 360 ccttctcccc	ggcggttagt	gctgagagtg	cggagtgtgt	gctccgggct	cggaacacac	60
atttattatt	aaaaaatcca	aaaaaaatct	aaaaaaatct	tttaaaaaac	cccaaaaaaa	120
tttacaaaaa	atccgcgtct	cccccgccgg	agacttttat	tttttttctt	cctcttttat	180
aaaataaccc	ggtgaagcag	ccgagaccga	cccgcccgcc	cgcggccccg	cagcagctcc	240
aagaaggaac	caagagaccg	aggccttccc	gctgcccgga	cccgacaccg	ccaccctcgc	300
teceegeegg	cagccggcag	ccagcggcag	tggatcgacc	ccgttctgcg	gccgttgagt	360
agttttcaat	tccggttgat	ttttgtccct	ctgcgcttgc	tccccgctcc	cctcccccg	420
gataaggaaa	ccagccccgg	cactcgctct	cctcctctca	cggaaaggtc	geggeetgtg	480
ccctgcgggc	agccgtgccg	agatgaaccc	cagtgccccc	agctacccca	tggcctcgct	540
ctacgtgggg	gacctccacc	ccgacgtgac	cgaggcgatg	ctctacgaga	agttcagccc	600
ggccgggccc	atcctctcca	tccgggtctg	cagggacatg	atcacccgcc	gctccttggg	660
ctacgcgtat	gtgaacttcc	agcagccggc	ggacgcggag	cgtgctttgg	acaccatgaa	720
ttttgatgtt	ataaagggca	agccagtacg	catcatqtqq	tctcagcgtg	atccatcact	780

tcgcaaaagt	ggagtaggca	acatattcat	taaaaatctg	gacaaatcca	ttgataataa	. 840
agcactgtat	gatacatttt	ctgcttttgg	taacatcctt	tcatgtaagg	tggtttgtga	900
tgaaaatggt	tccaagggct	acggatttgt	acactttgag	acgcaggaag	cagctgaaag	960
agctattgaa	aaaatgaatg	gaatgctcct	aaatgatcgc	aaagtatttg	ttggacgatt	1020
taagtctcgt	aaagaacgag	aagctgaact	tggagctagg	gcaaaagaat	tcaccaatgt	1080
ttacatcaag	aattttggag	aagacatgga	tgatgagcgc	cttaaggatc	tatttgggac	1140
tgccttaagt	gtgaaagtaa	tgactgatga	aagtggaaaa	tccaaaggat	ttggatttgt	1200
aagctttgaa	aggcatgaag	atgcacagaa	agctgtggat	gagatgaacg	gaaaggagct	1260
caatggaaaa	caaatttatg	ttggtcgagc	tcagaaaaag	gtggaacggc	agacggaact	1320
taagcgcaaa	tttgaacaga	tgaaacaaga	taggatcacc	agataccagg	gtgttaatct	1380
ttatgtgaaa	aatcttgatg	atggtattga	tgatgaacgt	ctccggaaag	agttttctcc	1440
atttggtaca	atcactagtg	caaaggttat	gatggagggt	ggtcgcagca	aagggtttgg	1500
ttttgtatgt	ttctcctccc	cagaagaagc	cactaaagca	gttacagaaa	tgaacggtag	1560
aattgtggcc	acaaagccat	tgtatgtagc	tttagctcag	cgcaaagaag	agcgccaggc	1620
tcacctcact	aaccagtata	tgcagagaat	ggcaagtgta	cgagctgttc	ccaaccctgt	1680
aatcaacccc	taccagecag	cacctccttc	aggttacttc	atggcagcta	tcccacagac	1740
tcagaaccgt	gctgcatact	atcctcctag	ccaagttgct	caactaagac	caagtcctcg	1800
ctggactgct	cagggtgcca	gacctcatcc	attccaaaat	atgcccggtg	ctatccgccc	1860
agctgctcct	agaccaccat	ttagtactat	gagaccagct	tcttcacagg	ttccacgagt	1920
catgtcaaca	cagcgtgttg	ctaacacatc	aacacagaca	atgggtccac	gtcctgcagc	1980
tgcagccgct	gcagctactc	ctgctgtccg	caccgttcca	cagtataaat	atgctgcagg	2040
agttcgcaat	cctcagcaac	atcttaatgc	acagccacaa	gttacaatgc	aacagcctgc	2100
tgttcatgta	caaggtcagg	aacctttgac	tgcttccatg	ttggcatctg	cccctcctca	2160
agagcaaaag	caaatgttgg	gtgaacggct	gtttcctctt	attcaagcca	tgcaccctac	2220
tettgetggt	aaaatcactg	gcatgttgtt	ggagattgat	aattcagaac	ttcttcatat	2280
gctcgagtct	ccagagtcac	tccgttctaa	ggttgatgaa	gctgtagctg	tactacaagc	2340
ccaccaagct	aaagaggctg	cccagaaagc	agttaacagt	gccaccggtg	ttccaactgt	2400
ttaaaattga	tcagggacca	tgaaaagaaa	cttgtgcttc	accgaagaaa	aatatctaaa	2460
catcgaaaaa	cttaaatatt	atggaaaaaa	aacattgcaa	aatataaaat	aaataaaaaa	2520
aggaaaggaa	actttgaacc	ttatgtaccg	agcaaatgcc	aggtctagca	aacataatgc	2580
tagtcctaga	ttacttattg	atttaaaaac	aaaaaaacac	aaaaaatagt	aaaatataaa	2640

aacaaattaa tgttttatag accctgggaa aaagaatttt cagcaaagta caaaaattta 2700 aagcattcct ttctttaatt ttgtaattct ttactgtgga atagctcaga atgtcagttc 2760 tgttttaagt aacagaattg ataactgagc aaggaaacqt aatttggatt ataaaattct 2820 tgctttaata aaaattcctt aaacagtg 2848 <210> 361 <211> 524 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (254)..(254) <223> n is a, c, g, t or u <220> <221> misc_feature <222> (257)..(257) <223> n is a, c, g, t or u <400> 361 tettettggc attggsgtgc teettetege cateaattee tgeetgeggg ggggggggg 60 ttaataagcc aaaccccagg ggtgccggca tcttcctggc tgcttcctcc catqqqqtct 120 tgccctactg cagccccaaa tctttcctct ctcttcagac atcttggctt ccctgaccta 180 gacagtectg actgatggte cageeteaat eccaettatt titggetagg cetteetggg 240 agtcataaaa gagntgnatc cattctagag gtgcacagcc tgtctcttcc ctcacaaatg 300 tcagtcccca agtcattctg atccaccttc ctaatatttt tgccacctcc aacttctttc 360 aagatgaaaa ggaaatgtag agaagcaagg wcagggtaga cacttaatcc cactgactgt 420 ctwtaatcca ctcttctccc tctcwacctg gatgatctcc acactcctat ccatactcaq 480 atwcaggata tattgttccc ctatttatgt gctaagcact ttca 524 <210> 362 <211> 2415 <212> DNA <213> Homo sapiens <400> 362 eggegeegeg agetteteet eteeteaega eegaggeaga geagteatta tggegaaeet 60 tggctgctgg atgctggttc tctttgtggc cacatggagt gacctgggcc tctgcaagaa 120 gcgcccgaag cctggaggat ggaacactgg gggcagccga tacccggggc agggcagccc 180 tggaggcaac cgctacccac ctcagggcgg tggtggctgg gggcaqcctc atggtggtgg 240 ctgggggcag cctcatggtg gtggctgggg gcagccccat ggtggtggct ggggacagcc 300

tcatggtggt	ggctggggtc	aaggaggtgg	cacccacagt	cagtggaaca	agccgagtaa	360
gccaaaaacc	aacatgaagc	acatggctgg	tgctgcagca	gctggggcag	tggtgggggg	420
ccttggcggc	tacatgctgg	gaagtgccat	gagcaggccc	atcatacatt	tcggcagtga	480
ctatgaggac	cgttactatc	gtgaaaacat	gcaccgttac	cccaaccaag	tgtactacag	540
gcccatggat	gagtacagca	accagaacaa	ctttgtgcac	gactgcgtca	atatcacaat	600
caagcagcac	acggtcacca	caaccaccaa	gggggagaac	ttcaccgaga	ccgacgttaa	660
gatgatggag	cgcgtggttg	agcagatgtg	tatcacccag	tacgagaggg	aatctcaggc	720
ctattaccag	agaggatcga	gcatggtcct	cttctcctct	ccacctgtga	tcctcctgat	780
ctctttcctc	atcttcctga	tagtgggatg	aggaaggtct	tectgtttte	accatctttc	840
taatcttttt	ccagcttgag	ggaggcggta	tccacctgca	gcccttttag	tggtggtgtc	900
tcactctttc	ttctctcttt	gtcccggata	ggctaatcaa	tacccttggc	actgatgggc	960
actggaaaac	atagagtaga	cctgagatgc	tggtcaagcc	ccctttgatt	gagttcatca	1020
tgagccgttg	ctaatgccag	gccagtaaaa	gtataacagc	aaataaccat	tggttaatct	1080
ggacttattt	ttggacttag	tgcaacaggt	tgaggctaaa	acaaatctca	gaacagtctg	1140
aaataccttt	gcctggatac	ctctggctcc	ttcagcagct	agagctcagt	atactaatgc	1200
cctatcttag	tagagatttc	atagctattt	agagatattt	tccattttaa	gaaaacccga	1260
caacatttct	gccaggtttg	ttaggaggcc	acatgatact	tattcaaaaa	aatcctagag	1320
attcttagct	cttgggatgc	aggctcagcc	cgctggagca	tgagctctgt	gtgtaccgag	1380
aactggggtg	atgttttact	tttcacagta	tgggctacac	agcagctgtt	caacaagagt	1440
aaatattgtc	acaacactga	acctctggct	agaggacata	ttcacagtga	acataactgt	1500
aacatatatg	aaaggcttct	gggacttgaa	atcaaatgtt	tgggaatggt	gcccttggag	1560
gcaacctccc	attttagatg	tttaaaggac	cctatatgtg	gcattccttt	ctttaaacta	1620
taggtaatta	aggcagctga	aaagtaaatt	gccttctaga	cactgaaggc	aaatctcctt	1680
tgtccattta	cctggaaacc	agaatgattt	tgacatacag	gagagctgca	gttgtgaaag	1740
caccatcatc	atagaggatg	atgtaattaa	aaaatggtca	gtgtgcaaag	aaaagaactg	1800
cttgcatttc	tttatttctg	tctcataatt	gtcaaaaaćc	agaattaggt	caagttcata	1860
gtttctgtaa	ttggcttttg	aatcaaagaa	tagggagaca	atctaaaaaa	tatcttaggt	1920
tggagatgac	agaaatatga	ttgatttgaa	gtggaaaaag	aaattctgtt	aatgttaatt	1980
aaagtaaaat	tattccctga	attgtttgat	attgtcacct	agcagațatg	tattactttt	2040
ctgcaatgtt	attattggct	tgcactttgt	gagtatctat	gtaaaaatat	atatgtatat	2100

aaaatatata ttgcatagga cagacttagg agttttgttt agagcagtta acatctgaag 2160
tgtctaatgc attaactttt gtaaggtact gaatacttaa tatgtgggaa acccttttgc 2220
gtggtcctta ggcttacaat gtgcactgaa tcgtttcatg taagaatcca aagtggacac 2280
cattaacagg tctttgaaat atgcatgtac tttatatttt ctatatttgt aactttgcat 2340
gttcttgttt tgttatataa aaaaattgta aatgtttaat atctgactga aattaaacga 2400
gcgaagatga gcacc 2415

<210> 363

<211> 1242 <212> DNA

<213> Homo sapiens

<400> 363

atttcatgtt atacttaata aaacaaaaca tacctgtata cacacacatt cactcacatt 60 120 qaaqatqcaa qatqaaqaaa qatacatqac attqaatqta caqtcaaaqa aaaqqaqttc tqcccaaaca tctcaactta catttaaaqa ttattcaqtq acqttqcact qqtataaaat 180 cttactqqqa atatctqqaa ccqtqaatqq tattctcact ttqactttqa tctccttqat 240 300 cctgttggtt tctcagggag tattgctaaa atgccaaaaa ggaagttgtt caaatgccac tcagtatgag gacactggag atctaaaagt gaataatggc acaagaagaa atataagtaa 360 taaggacctt tgtgcttcga gatctgcaga ccagacagta ctatgccaat cagaatggct 420 caaataccaa gggaagtgtt attggttctc taatgagatg aaaagctgga gtgacagtta 480 tgtgtattgt ttggaaagaa aatctcatct actaatcata catgaccaac ttgaaatggc 540 ttttatacag aaaaacctaa gacaattaaa ctacgtatgg attgggctta actttacctc 600 cttgaaaatg acatggactt gggtggatgg ttctccaata gattcaaaga tattcttcat 660 aaagggacca gctaaagaaa acagctgtgc tgccattaag gaaagcaaaa ttttctctga 720 aacctgcagc agtgttttca aatggatttg tcagtattag agtttgacaa aattcacagt 780 gaaataatca atgatcacta tttttggcct attagtttct aatattaatc tccaggtgta 840 agattttaaa gtgcaattaa atgccaaaat ctcttctccc ttctccctcc atcatcgaca 900 ctggtctagc ctcagagtaa cccctgttaa caaactaaaa tgtacacttc aaaattttta 960 cgtgatagta taaaccaatg tgacttcatg tgatcatatc caggattttt attcgtcgct 1020 tattttatgc caaatgtgat caaattatgc ctgtttttct gtatcttgcg ttttaaattc 1080 ttaataaggt cctaaacaaa atttcttata tttctaatgg ttgaattata atgtgggttt 1140 atacattttt taccettttg teaaagagaa ttaaetttqt tteeagqett ttgetaetet 1200 1242 tcactcagct acaataaaca tcctgaatgt tttcttaaaa aa

<210> 364 <211> 493 <212> DNA <213> Homo	o sapiens					
	-					
	tcttaaaggg	aatttattgc	ttccatggga	gatttagata	gatgttactg	60
agggattaag	tagctgggcg	gcttaaccca	ggcatcctct	taatagggaa	aaacctcctt	120
ttcaggaagg	gaatcacaag	gggccttggt	gtctggaagc	cacaactgga	agcaggcctc	180
ggatgagtaa	gaaggttccc	accaaaatgg	ccaagagggc	cacagaaaac	cccagggggc	240
aggacacagt	ttttgtgagg	tctggaataa	gtgttggaat	cttagggtcc	cagtgtttta	300
gaagaaggtc	atacaaggcc	cagtggtcca	ccttggagtt	cttaatttca	tctatcgaaa	360
ggaggaaggt	gaggtgactg	gtctttaaga	aggaatgatt	aatcctggag	aggaagctgg	420
gttcagaaac	accctctgtg	actgagtggc	cattgtctcg	ccaggtgatg	ttggacccaa	480
gagagaagaa	gtt					493
<210> 365 <211> 158' <212> DNA <213> Homo						
<400> 365 agcactctgc	gcgcccgctc	ttctgctgct	gtttgtctac	ttcctcctgc	ttccccgccg	60
ccgccgccgc	catcatgagg	gaaatcgtgc	acttgcaggc	cgggcagtgc	ggcaaccaaa	120
tcggcgccaa	gttttgggag	gtgatcagcg	atgagcacgg	catcgacccc	acgggcacct	180
accacgggga	cagcgacctg	cagctggaac	gcatcaacgt	gtactacaat	gaggccaccg	240
gcggcaagta	cgtgccccgc	gccgtgctcg	tggatctgga	gcccggcacc	atggactccg	300
tgcgctcggg	gcccttcggg	cagatettee	ggccggacaa	cttcgttttc	ggtcagagtg	360
gtgctgggaa	caactgggcc	aaggggcact	acacagaagg	cgcggagctg	gtggactcgg	420
tgctggatgt	tgtgagaaag	gaggctgaga	gctgtgactg	cctgcagggt	ttccagctga	480
cccactccct	gggtgggggg	actgggtctg	ggatgggtac	cctcctcatc	agcaagatcc	540
gggaggagta	cccagacagg	atcatgaaca	cgtttagtgt	ggtgccttcg	cccaaagtgt	600
cagacacagt	ggtggagccc	tacaacgcca	ccctctcagt	ccaccagctc	gtagaaaaca	660
cagacgagac	ctactgcatt	gataacgaag	ctctctacga	catttgcttc	agaaccctaa	720
agctgaccac	gcccacctat	ggtgacctga	accacctggt	gtctgctacc	atgagtgggg	780
tcaccacctg	cctgcgcttc	ccaggccagc	tcaatgctga	cctgcggaag	ctggctgtga	840
acataatccc	attteceeaa	ctgcacttct	tcatqcccaa	ctttqcccca	ctgaccagcc	900

ggggcagcca gcagtaccgg gcgctgaccg tgcccgagct cacccagcag atgtttgatg	960
ccaagaacat gatggctgcc tgcgaccccc gccatggccg ctacctgacg gttgccgccg	1020
tgttcagggg ccgcatgtcc atgaaggagg tggatgagca aatgcttaat gtccaaaaca	1080
aaaacagcag ctattttgtt gagtggatcc ccaacaatgt gaaaacggct gtctgtgaca	1140
teccaceteg ggggetaaaa atgteegeea eetteattgg caacageaeg gecatecagg	1200
agctgttcaa gcgcatctcc gagcagttca cggccatgtt ccggcgcaag gccttcctgc	1260
actggtacac gggcgagggc atggacgaga tggagttcac cgaggccgag agcaacatga	1320
atgacctggt gtccgagtac cagcagtacc aggatgccac agccgaggag gagggcgagt	1380
tcgaggagga ggctgaggag gaggtggcct agagccttca gtcactgggg aaagcaggga	1440
agcagtgtga actctttatt cactcccage ctgtcctgtg gcctgtccca ctgtgtgcac	1500
ttgctgtttt ccctgtccac atccatgctg tacagacacc accattgaag cattttcata	1560
gtgaaaaaaa aaaaaaaa aaaaaaa	1587
<210> 366 <211> 385 <212> DNA <213> Homo sapiens	
<400> 366 tcgatgtgaa tcttgttgtc caacaaccgc gtcaggcctg cttgctcggc cagggccatc	60
accgggacca ggcccgcgca ggacacgaga ttgtcctcgt cgaacacagc agagtcaggg	120
ccgaacgtgt gggacacttg cactggaagt gcctttcttg aaccggtcag atcgttgcgt	180
agagaacacc aatctttcca gttcagaggg cactttcatc attccgacac ccggacaacc	240
agcctgttta tcggtggatc aaggctaagc ccagcggttc gcaagcaact tgaaactcgg	300
catgtcctcc agaaacacca gcgcctcata gatccgctga tacccggggg ctggggatcc	360
gccaagcacc gtcctcatcc ttgcg	385
<210> 367 <211> 290 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (283)(283) <223> n is a, c, g, t or u	
<400> 367	~^
acatggctgg gggagggact gctgacccac caaggtctca cactcctcct gccagctctg	60

tcaccctggc cacc	cacccaa cctgtcctta	ctcagagctg	cgggctgagg	gcatctctga	120
gtgtctctgc ctgc	ggagcag gggtggtttc	tacggtgaca	gtgacgtgac	tcagagcttt	180
tcgaactgtg ctcd	ccacggg gaccactggg	cccttcaggg	gaagctgcta	ggggaaggac	240
tggcctggct ccag	gaatgtt gttgcctttt	taagttttgt	ttnttcacat		290
<210> 368 <211> 2161 <212> DNA <213> Homo sap	piens				
<400> 368 agtggagtgg cago	ccccaga actgggacca	ccgggggtgg	tgaggcggcc	cggcactggg	60
agctgcatct gagg	gettagt ecetgagete	: tatgaatgaa	cagactagct	gcacctcctc	120
attccctgcg ccc	ccttcct ctccggaago	: ccccaggatg	gtgaggtggt	ttcaccgaga	180
cctcagtggg ctgg	gatgcag agaccctgct	: caagggccga	ggtgtccacg	gtagcttcct	240
ggctcggccc agto	cgcaaga accagggtga	cttctcgctc	tccgtcaggg	tgggggatca	300
ggtgacccat atto	cggatcc agaactcagg	ggatttctat	gacctgtatg	gaggggagaa	360
gtttgcgact ctga	acagagc tggtggagta	ctacactcag	cagcagggtg	tectgcagga	420
ccgcgacggc acca	atcatcc acctcaagta	cccgctgaac	tgctccgatc	ccactagtga	480
gaggtggtac cate	ggccaca tgtctggcgg	gcaggcagag	acgctgctgc	aggccaaggg	540
cgagccctgg acgt	tttcttg tgcgtgagag	g cctcagccag	cctggagact	tegtgettte	600
tgtgctcagt gac	cagecca aggetggec	aggeteeeeg	ctcagggtca	cccacatcaa	660
ggtcatgtgc gagg	ggtggac gctacacagt	gggtggtttg	gagaccttcg	acagcctcac	720 .
ggacctggtg gag	catttca agaagacggg	g gattgaggag	gcctcaggcg	cctttgtcta	780
cctgcggcag ccgt	tactatg ccacgagggt	gaatgegget	gacattgaga	accgagtgtt	840
ggaactgaac aaga	aagcagg agtccgagga	a tacagccaag	gctggcttct	gggaggagtt	900
tgagagtttg caga	aagcagg aggtgaagaa	a cttgcaccag	cgtctggaag	ggcagcggcc	960
agagaacaag ggc	aagaacc gctacaagaa	a cattctcccc	tttgaccaca	gccgagtgat	1020
cctgcaggga cggg	gacagta acatccccg	g gtccgactac	atcaatgcca	actacatcaa	1080
gaaccagctg ctag	ggccctg atgagaacgo	taagacctac	atcgccagcc	agggctgtct	1140
ggaggccacg gtca	aatgact tctggcagat	ggcgtggcag	gagaacagcc	gtgtcatcgt	1200
catgaccacc cgag	gaggtgg agaaaggcc	g gaacaaatgc	gtcccatact	ggcccgaggt	1260
gggcatgcag cgt	gcttatg ggccctacto	c tgtgaccaac	tgcggggagc	atgacacaac	1320
cgaatacaaa ctc	cgtacct tacaggtcto	cccgctggac	aatggagacc	tgattcggga	1380

gatctggcat	taccagtacc	tgagctggcc	cgaccatggg	gtccccagtg	agcctggggg	1440
tgtcctcagc	ttcctggacc	agatcaacca	gcggcaggaa	agtctgcctc	acgcagggcc	1500
catcatègtg	cactgcagcg	ccggcatcgg	ccgcacaggc	accatcattg	tcatcgacat	1560
gctcatggag	aacatctcca	ccaagggcct	ggactgtgac	attgacatcc	agaagaccat	1620
ccagatggtg	cgggcgcagc	gctcgggcat	ggtgcagacg	gaggcgcagt	acaagttcat	1680
ctacgtggcc	atcgcccagt	tcattgaaac	cactaagaag	aagctggagg	tcctgcagtc	1740
gcagaagggc	caggagtcgg	agtacgggaa	catcacctat	ccccagcca	tgaagaatgc	1800
ccatgccaag	gcctcccgca	cctcgtccaa	acacaaggag	gatgtgtatg	agaacctgca	1860
cactaagaac	aagagggagg	agaaagtgaa	gaagcagcgg	tcagcagaca	aggagaagag	1920
caagggttcc	ctcaagagga	agtgagcggt	gctgtcctca	ggtggccatg	cctcagccct	1980
gaccctgtgg	aagcatttcg	cgatggacag	actcacaacc	tgaacctagg	agtgccccat	2040
tcttttgtaa	tttaaatggc	tgcatccccc	ccacctctcc	ctgaccctgt	atatagccca	2100
gccaggcccc	aggcagggcc	aacccttctc	ctcttgtaaa	taaagccctg	ggatcactgt	2160
g						2161

<210> 369

<211> 914

<212> DNA

<213> Homo sapiens

<400> 369 ggttctactt gtttgaacat aaataaagag tatgcagcac gtttaataaa atcagaactc 60 120 ttaatggctt atgcccaggt ctaggctgag aagtcctttt tcttcttccc acctttattt ccttagtttc tgtccacctt aatcgaaaca acacatggtt atgtcttttt cctgctacaa 180 240 ctacagggta cttgagcctt tcccctcaag tgcattcgaa gtcacccagg atgatcctca 300 ctagtagcct gcttggcagt gtggcttttg cacacttgcc ctgtcttcct gagactactt 360 cagtaagcca tgcttccttc ttccccactt ttatttggtg tcatgaatag aaacttccaa 420 atgtaaccat ggaagctaag ttggcctgct tgctttttag tctccacacc atgggcagaa 480 ctgctgtctt tactacttca tctcacccaa gtcccgttcc caggcagcca gggcctgggt ttgaataatt gcagggccag cctgcatgat ctttctcact tactcctctc ccattcagca 540 atcaaccaga ctaaggagtt tgatccctag tgattacagc ctgaagaaaa ttaaatctga 600 attaatttta catggcttcc gtgatcttac tgctgttctt actttttcga atgtagttgg 660 gggtgggagg gacaggtatg gtattcaaga gattaacttt tgcctacgtg tttgtcacca 720 gtagatetet ggtaacagtg tetgteteat teaatettea tgtggaecag teacagtgte 780

caggaatact tagtcctta	c ggtgtaggac	tcataagttt	cattctcaca	aaggaaggta	840
ttacaaggat tggggggca	a agaaagtaca	ttgggtgaaa	atttaaaaag	gtatggagca	900
ttgaaaatgt aatt					914
<210> 370 <211> 5590 <212> DNA <213> Homo sapiens					
<400> 370 ttttaccacg atgtaaaca	a acaaacaaaa	aactctcggc	attgccccca	ctccctggca	60
gtgtctattg tgggaggag	a gaccgaaatt	ctcaggacac	acccaggcct	caagacttct	120
cgcccaatcc gtcaccact	t cctggcgcag	acatcggact	gttaaggccc	ctccacttcc	180 .
cgctcaggtt acagacccc	a gggcacatcc	ccccatcctc	acccgcctgc	atgaccaggc	240
tgcccctgc cccgcacac	c tctctctgag	tagcctcctg	tetteeetet	ggcagctgag	300
tcagcttcac cacctcact	g ggtctggaac	agccaactcc	tgacactttc	acactcacag	360
aggtggagca ggggcacgg	g ggctgggcac	caccagtgtg	tgggcagcac	ccaggcatta	420
aacacagcag aggatggcg	c aggcacccct	gttctcctcc	cagagccaag	cttcaggcca	480
tgtccagcgg gggaggctg	t gagtcacctc	tgcctcatgt	gggtgatcat	aggagggtgt	540
gagtcagctc tgtccacat	g gttgctcatg	ggagggtatg	agtcagctct	gtcaatgtgg	600
gtggtgggtg gtcacggga	ıg ggtgtgagtc	agctctgtcc	acgtggttgc	tcataggagg	660
ttgtgagtca gctctgtco	a tgtggggtgc	tcacaggagg	gtgtgtgtca	gctctgtctg	720
tgtgggtggt cacgggagg	gg tgtgagtcag	ctctgtctgt	gggtggtcac	aggagggtgt	780
gagtcagctc tgtctgagt	g ggtggtcacg	ggagggtgtg	tgtcagctct	gtctgtgtgg	840
gtggtcacgg gagggtgtg	gt gtcagctctg	tccgtgtggg	tgctcacggg	agggtgtgag	900
tcagctctgt ctgtgtggg	gt ggtcacagga	gggtgtgtgt	cagctctgtc	tgtgtgggtg	960
ctcacgggag ggtgtgag	c agetetgtet	gtgtgggtgg	tcacagaagg	gtgtgtgtca	1020
gctctgtgtg ggtgctca	g ggagggtgtg	agtcagctct	gtctgtgtgg	gtggtcacag	1080
gagggtgtgt gtcagctc	g totgtgtggg	tggtcacggg	agggtgtgag	tcagctctgt	1140
ctgtgtgggt ggtcacag	ga gggtgtgagt	cagetetgte	tgtgtgggtg	gtcacaggag	1200
ggtgtgagtc agctctgt	cc atgtgggtgc	tcacgggagg	ttgtgagtca	gctctgtctg	1260
tgtgggtggt cacaggag	gg tgtgagtcac	: ctctgcctgt	gggtggtcac	gggagggtgt	1320
gagtcagctc tgtctgtg	g ggtggtcaca	ı ggagggtgtg	agtcagctct	gggtggtcac	1380
gggagggtgt gagtcagc	cc tgtctgtgtg	ggtggtcacg	ggagggtgtg	agtcagctct	1440

gtctgtgtgg	gtgctcacgg	gagggtgtga	gtcagctctg	tctgtgtggg	tgctcacagg	1500
agggtgtgag	tcagctctgt	ctgtgtgggt	ggtcacggga	gggtgtgagt	cagctttgtc	1560
tgtgtgggtg	ctcacaggag	ggtgtgagtc	agttctgtgt	gggtggtcac	aggagggtgt	1620
gagtcagctc	tgtgtgggtg	gtcacgggag	ggtgtgagtc	agctctgtct	gtgtgggtgc	1680
tcacaggagg	gtgtgagtca	gctctgtctg	tgtgggtggt	cacgggaggg	tgtgtgtcag	1740
ctttgtctgt	gtgggtgctc	acaggagggt	gtgagtcagc	tctgtccgtg	tgggtgctca	1800
caggagggtg	tgagtcagct	ctgtgtgggt	tgtcacggga	gggtgtgagt	cagctctgtc	1860
tgtgtgggtg	gtcacaggag	ggtgtgagtc	agctctgtct	ctgtgggtgg	tcacaggcgg	1920
gtgtgagtca	gctctgtctc	tggggtggtc	acaggcgggt	gtgagtcagc	tctgtctctg	1980
tgggtggtca	ccggcgggtg	tgagtcagct	ctgtccgtgt	gggtgctcac	aggagggtgt	2040
gtgtcagctc	tgtctctgtg	ggtggtcaca	gtagcgtgtg	agtcagctct	gtctgtgtgg	2100
gtggtcacgg	gagcgtgtga	gtcagctctg	tctgtgtggg	tgctcacagg	agggtgtgag	2160
tcagctctgt	gtgtgtgggt	ggtcacagga	gagtgtgagt	cagctctgtg	tgtgtgggtg	2220
gtcacaggag	ggtgtgagtc	agctctgtct	ctgtgggtgg	tcacgggagg	gtgtgagtca	2280°
gctgtacgtc	atgtagttgg	tcatctgtgt	gttccacctg	catcctgggg	tagcctgttg	2340
gccatttttg	ttgccactat	aaagccctga	gtgtggctag	gaagggggtg	ctgggtggga	2400
ccgtatgatc	acgtgtgctc	agtttggcat	gtgtgatcgt	catgtgactg	ggctcacaga	2460
aaggagcttg	tccctaatga	tttccaacct	tcggactgtg	tcctgacctg	gcctgtagtc	2520
ctgctgtctg	ggtttgcatg	gccccgagag	cccttctgaa	caaaggatgc	tgatggattc	2580
aagccagctt	ggtgggtgcc	gggccctccc	tcccacctcc	tttagtcttt	atgttgacct	2640
tgagctgggg	tggtcctggg	accccgaggt	tcgtgagcgg	aagggcttgc	aggagggcac	2700
acagcagggg	agctgggaga	gggggcttgt	ttgcctcagc	attgggggag	ccgaggaaac	2760
gttcatgaaa	gcttctgaaa	gggaagcagg	aaggattttc	accccagggc	tgcagcttca	2820
gggactacat	gagggtatgg	gtggggatga	ggggaaggcc	cacagggtgt	tattcccatc	2880
tcatcgtcct	cctctggctt	tgctttgtgt	tgcgaacccg	catcctgagg	ctgacttcag	2940
aatgttaaga	aaggcagccc	tgagcctttg	atcaccccag	gagttccaga	aggcaccagg	3000
gagtectete	gggtcccatg	cccctcccag	ccccttgggg	tcaccctgat	cggcctggcc	3060
aaggtcgcca	getgeetggg	gactggggag	cagccacatg	ccctctgcag	gggagtagtt	3120
gccaggaagg	tgcaggcgga	ggccctgctc	tccatcacag	cggtcctgat	tatgagatcg	3180
tcactctcaa	gaggccaaaa	gttatgacca	aacttcaaga	gaaactccca	gtaaagtagt	3240
atttccacag	cagacagttg	ggatgcaggt	ccacccacag	ccagctctga	gctgacacag	3300

gggccctggc cagggttcca	ccctgctctg	cctgcctggg	gccctggcta	gcctgcagat	3360
aacatcaagt agtttcgtaa	tttccacaca	cagcacttcc	agagcctcat	aatcaaccat	3420
ctataaagtc tcaagaagcc	atgttgcttc	ctcatggcac	ctgctttcct	tcctctgtgg	3480
tctcgggcag ggtcagagag	agggccattt	agttgagaat	ggaagggagg	ggccgctggc	3540
ttctcactcc tcaggaaggc	gcccctgctg	ctgccccttg	agctgggagt	gtccggcact	3600
gtggtctcag cacgttccag	gccccccgg	cccctgtgtt	ctctgctggg	cctccccttc	3660
ccgaggggac taggggaggc	agctgggatc	tgcccagagc	ttggtcctca	ccctcctgtt	3720
cctgggctcc ccagcctgtc	agacccttgc	tggatatttg	ctatgaccac	acagttggat	3780
ggaggcttct ccaaggaaaa	ggcagagacc	aggggccagc	aactcccctg	cggctgaaca	3840
tggaactctc aggccaagag	gagccctggg	gtgagcaaca	gccctgtggc	cttgctttcg	3900
ggttcaggtg gtgcagggag	ccaccccgga	cctccgtgaa	ggccagtgaa	atggacagga	3960
caaggtgctt ggcctgcggc	tggagagccc	atcttcttac	cccctggcca	catggttctg	4020
ggaaggcact gacgctttgt	aaaacttgcc	tggtgtggaa	aatgatggcg	gtcatatgta	4080
gtaccttaga aggctgtgct	gggagttaac	gatataacat	agcgcaaatg	cctgacccct	4140
gggagagggg cagtgagagt	ttgttgaagt	tggcatgtga	agtcgaggct	ctcagtgagg	4200
tgcagacttt tcctgtccag	gaatgggaga	çaaggagctg	tcattcactc	aagcccttcg	4260
tctgccagcc cctggcctgt	tatacacccc	ttttcaatcc	tgtaaggtaa	gtgttcttat	4320
ctccaacttc caggtgggaa	gtctgaagct	cagagagcct	gggccaatgg	tacaggtcac	4380
acagcacatc agtggctaca	tgtgagctca	gacctgggtc	tgctgctgtc	tgtcttccca	4440
atatccatga ccttgactga	tgcaggtgtc	tagggatacg	tecateceeg	tectgetgga	4500
gcccagagca cggaagcctg	geeeteegag	gagacagaag	ggagtgtcgg	acaccatgac	4560
gagagettge cacgaaatat	gcagcttcct	ttccctgaga	aaatggcaaa	gaaaattcaa	4620
cacagaaggc cagggagggt	gtgtggaaac	gattcacatg	ttcaaaagat	ttatatgtgt	4680
agaagaaagc tgtgaagtgt	gaagtatatt	ttctattgta	. gaatggatga	aaatggaata	4740
aaaataatat cctttgctag	gcagaataaa	taacttcttt	: aaacaatttt	acggcatgaa	4800
gaaatctgga ccagtttatt	: aaatgggatt	tctgccacaa	accttggaag	, aatcacatca	4860
tettagecea aggtgaaaac	: tgtgttgcgt	aacaaagaac	: atgactgcgc	: tccacacata	4920
catcattgcc cggcgaggcg	g ggacacaagt	caacgacgga	acacttgaga	caggeetaca	4980
actgtgcacg gttcagaago	aggtttaagc	: catacttgct	gcagtgagac	: tacatttctg	5040
tctaaagaag atgtgagtco	: taagcagact	taaagccaag	g aaaataagaa	ı gaggaaagag	5100

agagggcctg	ccttaaccac	ctgtggtgct	gacttggaca	attccaggtc	aagaggaact	5160
gtctactttc	gactttgtgt	gatagtaact	ttttaagcag	tggaccggga	gcccaagact	5220
cagatgcagc	aagctttgca	aggctgacga	gagctgagat	cttcagtggc	cgatgggtac	5280
agggctgctg	ggagcgtagc	cacgtctgct	ccaaggtggc	ttgaatgagg	cagtgcccaa	5340
gtccttttga	ctggctgagg	tgagcctgtg	gctcagtcac	actttgtccc	tctcgtaata	5400
agtgcatttc	ccagacagca	gctccttggt	gtcatgcaac	tgaggaacct	aattgtctgg	5460
gtgggttgtt	cccatccaac	ttccacctgt	cacgaaggtt	gctttttcag	atcagtctcc	5520
acagctacca	tcttgtcggg	cacagagccg	ggcatcaaca	agtgtatgtt	gaataaagaa	5580
tgaattgatg						5590

<210> 371

<211> 3027 <212> DNA

<213> Homo sapiens

<400> 371 60 gtgtgttggg ggtggtgaga atgcgctctc ttcggcccgc cccgtccttt ccaaagaaac gtgctcataa tggggtgacc taattacatc gcaatggaac tcaatcttag ccactccgca 120 gcaccgggtt tcataacaga ctcggcggcc tcgagtgctg ggaagaaacg tgcgagggcc 180 gagggggggg gcggagcccg cgtggaaatc ggaaagaagc gcagccctgc gacttccgcc 240 tgggtcatca cgccagcagt cgggccaagg cgcagggggc gggtggggga cacgttaact 300 ttttatttgg gtgggcggca tccaaaccta acagtatata ttttatcatt ttcaagggag 360 tcatgeteca ttgegggeee tteggttteg tggeteceat gteeceetet ecaceteeeg 420 ccaaaacggc gcagcgtgac aagccatatg ttccactccg gtgggggcga gagagaagca 480 acaataagtt aaaagtgccg cctccctcca cctctttacc ttcattctta ccaaagtaac 540 600 660 ttgtggcgcc gcccagaatt cggagcgcgc gtggaaagta gtgagttgct cggtgggctt tttctgggag gaaggggcat tcaggaagga ttagggtttt cttgactaaa aagtttaaag 720 780 attggatgcg tgaaaagaaa cggcacgcct aggcctggta aaacaaacaa tcgtcccggg 840 ttgtggtctt tttttgcggc gcccccacc cgcccacacc cggagagcgc cggctgcaaa 900 gcgagcgcga gtgtcgacgc gtgcgacgca ctaaattgtg ccgcgctcgc gcccgccaga ccatgtcctc ctggggaaaa agtttcccta gtcccccag caccgcgccc caccctacgc 960 cccgctggaa aaaaaaacag caacataaaa tcctaggctt gaacattctg tgcgtcccaa 1020 1080 atttctaatg tcctcggcct gcccggtttg ccgaagggag ccgagtgtcg aagagaagtc

gggaaaaggt	aagttgtgca	gacacttggg	gaagtttcaa	ggagaccgcc	agctcaagat	1140
ggaaaccgcg	gcccgggcgc	taagaacggg	cttcagctcc	cgctggcaaa	aagagaaagt	1200
cgagcccgcc	ttcctgccca	acaaaaaaca	acaacatgac	aacaagaacc	ccggagggag	1260
tggaatgagt	gacgtcacag	ccgcgctctg	aggctgacaa	aggagggggc	gcgcccctcc	1320
cgctctgcgc	ccgcgcggcc	ccggagaggg	ggcgcctgaa	gcgccgggta	gggaagtcag	1380
ccgacttgaa	acttttcctc	ttaaagaaaa	aaaaaaaaa	gttgtgcgcg	gctcacagtg	1440
gggtttttt	ttttccgcct	tcttttctcg	teteccetec	cccttcttcc	ttttgaaagt	1500
ttcttctcct	ccccctgccc	cccctccccg	cctgaccgca	tggctgattc	aactccagtg	1560
tcaatcaact	tctttttcct	cctcttcctc	atttaaataa	gtttaaagct	cctcctcccc	1620
ccggcccacc	aaatctgaac	tttataaatt	gggctttgcg	cgccccagcc	cggagtcaga	1680
aaggcgaggg	gcgccgggaa	ctggcgtgtg	ggactccaga	caggagaggc	tgcgccttcc	1740
ccgcaccggg	accttcgcga	cacaccagat	cctcgcccct	ggctcgcgcg	aacgcacagg	1800
atgaccacca	ccctcgtgtc	tgccaccatc	ttcgacttga	gcgaagtttt	atgcaagggt	1860
aacaagatgc	tcaactatag	tgctcccagt	gcagggggtt	gcctgctgga	cagaaaggca	1920
gtgggcaccc	ctgctggtgg	gggcttccct	cggaggcact	cagtcaccct	gcccagctcc	1980
aagttccacc	agaaccagct	cctcagcagc	ctcaagggtg	agccagcccc	cgctctgagc	2040
tcgcgggaca	gaagattaag	agaccgctcc	ttctcggaag	ggggcgagcg	gctgctgccc	2100
acccggaagc	agcccggggg	cggccaggtc	aactccagcc	gctacaagac	ggagctgtgc	2160
cgcccctttg	aggaaaacgg	tgcctgtaag	tacggggaca	agtgccagtt	cgcacacggc	2220
atccacgagc	teegeageet	gacccgccac	cccaagtaca	agacggagct	gtgccgcacc	2280
ttccacacca	tcggcttttg	cccctacggg	ccccgctgcc	acttcatcca	caacgctgaa	2340
gagcgccgtg	ccctggccgg	ggcccgggac	ctctccgctg	accgtccccg	cctccagcat	2400
agctttagct	ttgctgggtt	tcccagtgcc	gctgccaccg	ccgctgccac	cgggctgctg	2460
gacagcccca	cgtccatcac	cccaccccct	attctgagcg	ccgatgacct	cctgggctca	2520
cctaccctgc	ccgatggcac	caataaccct	tttgccttct	ccagccagga	gctggcaagc	2580
ctctttgccc	ctagcatggg	gctgcccggg	ggtggctccc	cgaccacctt	cctcttccgg	2640
cccatgtccg	agtcccctca	catgtttgac	tctcccccca	gccctcagga	ctctctctcg	2700
gaccaggagg	gctacctgag	cagctccagc	agcagccaca	gtggctcaga	ctccccgacc	2760
ttggacaact	caagacgcct	gcccatcttc	agcagacttt	ccatctcaga	tgactaagcc	2820
agggtctgca	ggaaggaagg	ctgaaaaagc	ggacgaagat	tttgacttaa	gtgggacttt	2880
gtgatttaat	tttttcttt	ttttaagtgg	ggaggaaggg	gaagctagat	ggactaggag	2940

3000

agacttgatt ttggtgctaa agttccccag ttcatatgtg acatcttttt aaaaaaaata 3027 acaacaaaaa aaaatgagag aaaagct <210> 372 <211> 2750 <212> DNA <213> Homo sapiens <400> 372 60 aatttagggt tggggtacaa tttgtttcta ttaagcaagt accagtttac caatacatga gtaactgaag tgtaactgtt aaatgcttgt atactagttt ttctttctga ttgtcagtga 120 tttataaqct ataaatgacc aaggtcctca gactgctttt agcatctgca acttaaaaaa 180 atqqqaqtta qaaaaaqaac aaatgctaaa tagagtaaca gttaaatgta tgtgtacact 240 cttcccaaat qccaaqaqtq cagcgqtggg gtgagattca gatattcatt tatttctaag 300 tctqtaqtta acatttatqt tccctactcc ctacgtaagc cagactttgg caacagtgat 360 aqttqattcc aqqcttattt gacttaaagt cactgaagtg gaaactaaga agtggcagtt 420 agtgttttac ccagcatttc tgccttctct cttttcttca tgtgtttttg tctctagcct 480 atgtgtattt gtgtagaata atgtgggata cctgaataat agatttaaaa ggaccaagtg 540 gtaaaattgg gcccaagctg aagtacaggc aaacttgatg tttgaaagat aagttttgag 600 aaatgtcatt gtattttgga gtaaaagagg ctatcttagt aataaggaat aaacttccat 660 720 aacactaggt tagaccaccc aataaatcta gaaatcagct tttaaaaaata ttgtctgaag tctaacaaaa gttttcacct ctaatgtgtt ctttaagaaa tttaaggaac ttagccttgg 780 840 attcctqaat agaaaqqtaa qaattctatc attctggaqt tgatgaaaac ataaattttc aggatgtgaa atgaacagtg atttataaaa tggaaatcaa attgtacatt agcagagttc 900 ttaagctttt tgaattgaag gagacctaat aattgtgtct ttttggttat ttagtgacaa 960 1020 acgtggcttt caaactatgc ttaaaaagtt ccggctggac acggtggctc acacctataa tcctagcact tggggaggct gaggcagatg gattacctga ggtcaggagt tcgagaccaa 1080 1140 cctggccgac atggtgaaac gctgtctcta ctaaaaatat aaaaaattag ccgggtgcag tggcgtgcac ctgtaatccc agctactctg gaggctgagg caggagaatc acctgaacct 1200 1260 gggaggtgga ggtttcagtg agctgagatc ctgccactgc actccagcct gggcgcaaga 1320 ggtctggtag tttgcaaaat ggtgtgcttt tggggagata cactagcaat ttttttaaaa 1380 1440 aatgqaacaq tqtqataqga agcctgctgg atgatttctt aaatattcta aaatgtaagt 1500 caaatatqtt ttaataacaa agacttaaat ggcttttctc cctagagact gaaactagta

ttcattgtgt tcagaactta attgggcttg aactgagatt taaatctaat aaacaagtta

1560

120

180

240

300

360

ataaatgtgt	atgttttgtt	gtgggtttgg	tagtgatctg	tggttctata	gggtttaata	1620
ggaattgctt	ttgatttgtt	tctggcttta	gaatgtgagg	caaattttac	attcttggtt	1680
ctattaagat	tttcttaggc	atgctaacat	gccaacaaaa	agccatgtaa	gtattgtata	1740
aaaagattca	cattgttaat	ttagccattt	tgaaattcag	atgagtgagc	aagttgataa	1800
tggcctcatc	tctgacctga	gaaaaaacaa	ctttgaccct	tgttcttaaa	atgctttaac	1860
cttgaagttg	cttgagactt	aagaggtcat	gttgctttag	gtttaataaa	tagccttaac	1920
tatttggagg	ggaaaagatg	ggtcaacttt	tttttttt	ttggcgtttg	catgtacaac	1980
tttctatttt	tagcctatat	ttggaaagaa	agcacttaac	attttaggaa	ttctttttaa	2040
agctgcttgc	aaagtgttgg	tgattttact	gaaaactttt	gagatcttca	ttttacaggc	2100
agacctgtct	aactacaagc	cagacttggg	ttttctcctg	tagtttgaag	acacactgac	2160
tcctgacaaa	atgcagcctg	caacttcctg	gagaacaact	cagtgtcaca	ttaaagttta	2220
ttatgtattt	aatgatacac	tgtttaattg	acagttttgc	atagtttgtc	taactttaga	2280
gaattaagag	cctctcaact	gagcagtaaa	ggtaaggaga	gctcaatctg	cacagagcca	2340
gtttttagtg	tttgatggaa	ataagatcat	catgcccact	tgagacttca	gattattctt	2400
tagcttagtg	gttgtatgag	ttacatctta	ttaaagtcga	aattaatgta	gttttctgcc	2460
ttgataacat	ttcatatgtg	gtattagttt	taaagggtca	ttaggaaaat	gcacatattc	2520
catgaatttt	aagacccata	gaaaagttga	agaatgctta	attttcttat	ccagtaatgt	2580
aaacacagag	acagaacatt	gagatgtgcc	tagttccgta	tttacagttt	ggtctggctg	2640
tttgagttct	agcgcattta	atgttaataa	ataaaatact	gaattttaaa	gctgttaaga	2700
aattgtccag	aacgagaata	ttgaaataaa	aacttcaagg	ttataatcgc		2750
<400> 373	o sapiens					
agctggagta	gtggcgtttg	gaggagactc	ggatatacct	tctcagaagc	tgcacaggag	60

gaaagcagtg acaaagaaag aagttgtcat tctttgcacg aaactggatg gcttctacag

ggagccaggc ctctgatata gacgagattt ttggattctt caacgatggc gaacctccca

ccaaaaagcc caggaagctg cttccaagct taaaaactaa gaagcctcga gaacttgtgc

tagtgattgg aacaggcatt agtgctgcag ttgcgcccca agttccagcc ctcaaatcct

ggaaggggtt aattcaggcc ttactggatg ctgccattga ttttgatctt ttagaagatg

aggagagcaa a	aagtttcag	aaatgtctcc	atgaagacaa	gaacctggtc	catgttgccc	420
atgaccttat c	cagaaactc	tctcctcgta	ccagtaatgt	tcgatccaca	tttttcaagg	480
actgtttata t	gaagtattt	gatggcttgg	agtcaaagat	ggaagattct	ggaaaacagc	540
tacttcagtc a	gttctccac	ctgatggaaa	atggagccct	cgtattaact	acaaattttg	600
ataatctctt g	gaactgtat	gcagcagatc	aggggaaaca	gcttgaatcc	cttgacctta	660
ctgatgagaa a	aaggtcctc	gagtgggctc	aggagaagcg	taagctgagc	gtgttgcata	720
ttcacggagt c	tacaccaac	cctagtggca	ttgtccttca	tccggctgga	tatcagaacg	780
tgctcaggaa c	actgaagtc	atgagagaaa	ttcagaaact	ctacgaaaac	aagtcatttc	840
ttttcctggg c	tgtggctgg	actgtggatg	acaccacttt	ccaggccctt	ttcttggagg	900
ctgtcaagca t	aaatctgac	ctagaacatt	tcatgctggt	tcggagagga	gacgtagatg	960
agttcaaaaa g	cttcgagaa	aacatgctgg	acaaggggat	taaagtcatc	tcctatggag	1020
atgactatgc c	gatcttcca	gaatatttca	agcgactgac	atgtgagatc	tccacaaggg	1080
gtacatcagc a	gggatggtg	agagaaggtc	agctaaatgg	ctcatctgca	gcacacagtg	1140
aaataagagg c	tgtagtaca	tgagcgagct	agagaaatca	ccaccgttta	gaccaagctg	1200
taaggcccta c	tacagacag	tgtttaacaa	gtaaacttac	aagaacccaa	cacaattccc	1260
agaaagtaac a	atagccaga	ggttgaaggg	cggggtagaa	gagggggaa	tgttgcagcg	1320
taatccttca t	accacctgg	ttcttgatat	tctgccgcct	gttcaagttc	aagaataaaa	1380
gcgacagcag g	acccaaatg	cagctcccaa	cccactcccc	aggctagaca	tgcttgtgtc	1440
cacacagcac a	ccaatgtga	tacttccact	gaccggctgc *	agctctgcat	gaaggactcg	1500
gggtctggat g	ıccatggaat	cactgtggct	cttgttgcag	ttttgtactc	tatacttggt	1560
ttttcaatta a	ıgcttaatgg	cttttttaaa	acatgacttg	aagctcaaaa	aaaaaaaaa	1620
aaa						1623
<210> 374 <211> 2047 <212> DNA <213> Homo <400> 374	sapiens					
gcgggttccg g	gttgtctgga	gcccagcggc	gggtgtgaga	gtccgtaagg	agcagcttcc	60
aggatcctga g	jatccggagc	agccggggtc	ggagcggctc	ctcaagagtt	actgatctat	120
gaaatggcag a	ıgaatggaaa	aaattgtgac	cagagacgtg	tagcaatgaa	caaggaacat	1.80
cataatggaa a	ıtttcacaga	cccctcttca	gtgaatgaaa	agaagaggag	ggagcgggaa	240

300

gaaaggcaga atattgtcct gtggagacag ccgctcatta ccttgcagta tttttctctg

360 qaaatccttg taatcttgaa ggaatggacc tcaaaattat ggcatcgtca aagcattgtg 420 qtqtcttttt tactqctgct tgctgtgctt atagctacgt attatgttga aggagtgcat 480 caacagtatg tgcaacgtat agagaaacag tttcttttgt atgcctactg gataggctta ggaattttgt cttctgttgg gcttggaaca gggctgcaca cctttctgct ttatctgggt 540 600 ccacatataq cctcaqttac attagctgct tatgaatgca attcagttaa ttttcccgaa 660 ccaccctatc ctgatcagat tatttgtcca gatgaagagg gcactgaagg aaccatttct ttgtggagta tcatctcaaa agttaggatt gaagcctgca tgtggggtat cggtacagca 720 780 ateggagage tgeetecata ttteatggee agageagete geeteteagg tgetgaacea 840 gatgatgaag agtatcagga atttgaagag atgctggaac atgcagagtc tgcacaagac 900 tttgcctccc gggccaaact ggcagttcaa aaactagtac agaaagttgg attttttgga 960 attttggcct gtgcttcaat tccaaatcct ttatttgatc tggctggaat aacgtgtgga 1020 cactttctgg tacctttttg gaccttcttt ggtgcaaccc taattggaaa agcaataata 1080 aaaatgcata tccagaaaat ttttgttata ataacattca gcaagcgcat agtggagcaa 1140 atqqtqqctt tcattqgtgc tgtccccggc ataggtccat ctctgcagaa gccatttcag 1200 gagtacctgg aggctcaacg gcagaagctt caccacaaaa gcgaaatggg cacaccacag ggagaaaact ggttgtcctg gatgtttgaa aagttggtcg ttgtcatggt gtgttacttc 1260 1320 atcctatcta tcattaactc catggcacaa agttatgcca aacgaatcca gcagcggttg 1380 aactcagagg agaaaactaa ataagtagag aaagttttaa actgcagaaa ttggagtgga tgggttctgc cttaaattgg gaggactcca agccgggaag gaaaattccc ttttccaacc 1440 tgtatcaatt tttacaactt ttttcctgaa agcagtttag tccatacttt gcactgacat 1500 1560 actttttcct tctgtgctaa ggtaaggtat ccaccctcga tgcaatccac cttgtgtttt 1620 cttaggqtgq aatgtgatgt tcagcagcaa acttgcaaca gactggcctt ctgtttgtta 1680 ctttcaaaag gcccacatga tacaattaga gaattcccac cgcacaaaaa aagttcctaa gtatgttaaa tatgtcaagc tttttaggct tgtcacaaat gattgctttg ttttcctaag 1740 tcatcaaaat gtatataaat tatctagatt ggataacagt cttgcatgtt tatcatgtta 1800 caatttaata ttccatcctg cccaaccctt cctctcccat cctcaaaaaa gggccatttt 1860 atqatqcatt qcacaccctc tggggaaatt gatctttaaa ttttgagaca gtataaggaa 1920 aatctggttg gtgtcttaca agtgagctga caccattttt tattctgtgt atttagaatg 1980 2040 aaqtottqaa aaaaacttta taaagacato tttaatoatt ccaaaaaaaa aaaaaaaaaa 2047 aaaaaaa

<210> 375 <211> 2939 <212> DNA <213> Homo sapiens

<400> 375 60 ggcgggtgag aggccgcggc ggcaggtcca cctgggcttg cgaaggcaca gattccccgt ccacagctca cgaccagatg caccagcagg agtccacatc gaggacgtcc tccgggcact 120 cccacgacca gtgaccagga gttaaacttt gggatgtgcc cgtgatgttg gaccacaagg 180 240 acttagaggc cgaaatccac cccttgaaaa atgaagaaag aaaatcgcag gaaaatctgg 300 gaaatccatc aaaaaatgag gataacgtga aaagcgcgcc tccacagtcc cggctctccc 360 ggtgccgagc ggcggcgttt tttctttcat tgtttctctg cctttttgtg gtgttcgtcg 420 tctcattcqt catcccqtqt ccagaccggc cggcgtcaca gcgaatgtgg aggatagact 480 acaqtqccqc tqttatctat gactttctgg ctgtggatga tataaacggg gacaggatcc aagatgttct ttttctttat aaaaacacca acagcagcaa caatttcagc cgatcctgtg 540 600 tggacgaagg cttttcctct ccctgcacct ttgcagctgc tgtgtcgggg gccaacggca 660 gcacgctctg ggagagacct gtggcccaag acgtggccct cgtggagtgt gctgtgcccc agccaagagg cagtgaggca ccttctgcct gcatcctggt gggcagaccc agttctttca 720 ttgcagtcaa cttgttcaca ggggaaaccc tgtggaacca cagcagcagc ttcagcggga 780 840 atgegtecat eetgageest etgetgeagg tgeetgatgt ggaeggegat ggggeeceag 900 acctgctggt tctcacccag gagcgggagg aggttagtgg ccacctctac tccggcagca 960 ccqqqcacca qattqqcctc agaggcagcc ttggtgtgga cggggaaagt ggcttcctcc ttcacgtcac caggacaggt gcccactaca tcctctttcc ctgcgcaagc tccctctgcg 1020 gctgctctgt gaagggtctc tacgagaagg tgaccgggag cggcggcccg ttcaagagtg 1080 accegcactg ggagageatg eteaatgeea ecaceegeag gatgetttee eacagetetg 1140 gagcagtgcg ctacctgatg catgtcccag ggaacgccgg tgcagatgtg cttcttgtgg 1200 gctcagaggc cttcgtgctg ctggacgggc aggagctgac gcctcgctgg acacccaagg 1260 cageccatgt cetgagaaaa eccatetteg geegetacaa accagacace ttggetgtag 1320 ccgttgaaaa cggaactggc accgacagac agatcctgtt tctggacctt ggcactggag 1380 ccgtcctgtg tagcctagcc ctcccgagcc tccctggggg tccactgtcc gccagcctgc 1440 cgaccgcaga ccaccgctca gccttcttct tctggggcct ccacgagctg gggagcacca 1500 gcgagacgga gaccgggag gcccggcaca gcctgtacat gttccacccc accctgccgc 1560 1620 qcqtqctqct qqaqctqqcc aatgtctcta cccacattgt cgcctttgac gccgtcctgt

ttgagccaag ccgccacgcc gcctacatcc ttctgacagg cccggcagac tcagaggcac	1680
ccggcctggt ctctgtgatc aagcacaagg tgcgggacct tgtcccaagc agcagggtgg	1740
tccgcctggg tgagggtggg ccagacagtg accaagccat cagggaccgg ttctcccggc	1800
tgcggtacca gagtgaggcg tagaggcacg ccagccagag cctgtggaga gactccgcct	1860
gctgacacta aacgtcctgg gaagtgggcc cttccctggg tctctgcact gactccccca	1920
ctcctgaccc tggtgatggt cgccactggg cagcagcagc cttaccagtc ctccatgatc	1980
acacccaggg acctgcatgg gtgaggggac accctgggcc tetetecege ccagcatect	2040
ccctgagtcc ccacacaggg cctcactctg caccccacca gggtcccgct cacaccaggc	2100
agcetteata gtggtetece tggeeacett gggeagaget gggteatgea geaceceate	2160
cttacceggt geeeteteet tgeeagette teeceaggee agageggeea tegegtagaa	2220
agaaccaggg tgtccccggg acaggccgtc ccccacccca	2280
ttttccctcc tgtgctctgt cccccaagga gtcatggaac tcagggtact gggcctcaac	2340
gggaacctga gacagcttcc agcttcgcag cccttcccgg agctacaggg ggatcctcta	2400
gcatgggggg tgtgacttgg ttcctttgac caggtcctgt gaggaagcct ggagcaaggg	2460
tctcccccag caggatgggt ggggcctgct ctggagctga gcccgtggcc gctcacaggt	2520
gtccttagtg gtgttgcagc tgtctactgg ctgcatgtgc tgtgaatatc ccaaggaact	2580
ggctgtggaa tgcgtgtttg ggtcagtctg tgccctctca gtagacactg gagctgctct	2640
gtccctgaag aggccccgtg ccccaggcat ggcaagcgcc tgcctctccc cttccggtgc	2700
tcacacgccc acgccgtgcc acccgatgca ggactcacct ctgtgccttg ctgctcctga	2760
ggcccaaggg cagccatggt gctctgtact gctcgggccg cccaggtcac agagcctgag	2820
cttcgtagcc aaagcagcct gatgacccac ccaccaagga agaaagcaga ataaacattt	2880
ttgcactgcc tgaaaaaccc cggtggtcag gcgtgagcct aaaaaaaaaa	2939
<210> 376 <211> 1079 <212> DNA <213> Homo sapiens	
<400> 376 ctgacgactt gaagccagag gcaccgccag ttggccccag cccgcagcat ggcagccgcc	60
gectatgtgg accaettege egecgagtge etegtgteea tgtegageeg egeggtegtg	120
cacgggccgc gggaggggcc ggagtcccgg cccgagggcg cgtccgtggc cgccaccccc	180
acgctgcccc gcgtcgagga gcgccgcgac ggtaaggaca gcgcctcgct cttcgtggta	240
gegeggatee tageggaeet caaccageaa gegeeggege eegeeegge ggagegeagg	300

gagggegeeg eggeeeggaa ggegaggaee eeetgeegee tgeegeegee egeeeeeatg	360
agcccacctc ccccggcgct gaaggcgcgg cgagccgcgc ccccagccc ggcgtggagc	420
gagccggagc ccgaggcggg gctggagccc gagcgggagc cggggcccgc ggggagcggc	480
gagcccggcc tcagacaaag ggtccggcgg ggccgaagtc gcgccgacct cgagtccccg	540
cagaggaagc acaagtgcca ctacgcgggc tgcgagaaag tttacgggaa atcttcgcac	600
ctcaaggcgc acctgagaac tcacacaggt gagaggccct tcgcctgcag ctggcaggac	660
tgcaacaaga agttegegeg eteegaegag etggegegge aetaeegeae acaeaeggge	720
gagaagaagt tcagctgccc catctgcgag aagcgcttca tgcgcagcga ccacctgacc	780
aagcacgcgc gccgccacgc caacttccac ccgggaatgc tgcagcggcg cggcgggggc	840
togoggacog gotocotoag ogactacago ogotocgacg coagoagoco caccatoago	900
ceggecaget egecetgage eegeacagee atgageagee geteecacee eetegtgagt	960
ccctggcctt tccttttgtt ataagaaaga agagagagaa cttgatgcca agtccacgaa	1020
aaaacaattt ttttcacctc aggtgtcaaa gtaaatttgt taaaaaaaaa aaaaaaaaa	1079
<210> 377 <211> 346 <212> DNA	
<213> Homo sapiens	
<213> Homo sapiens <400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac	60
<400> 377	60 120
<400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac	
<400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg	120
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc</pre>	120 180
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca</pre>	120 180 240
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgct gttcaaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa</pre>	120 180 240 300
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa</pre>	120 180 240 300
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa</pre>	120 180 240 300 346
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaaa aaaaaaaaaa</pre>	120 180 240 300 346
<pre><400> 377 cttttacctc gttgcactgc tgagagcaag atgggtcacc agcagctgta ctggagccac ccgcgaaaat tcggccaggg ttctcgctct tgtcgtgtct gttcaaaccg gcacggtctg atccggaaat atggcctcaa tatgtgccgc cagtgtttcc gtcagtacgc gaaggatatc ggtttcatta agttggacta aatgctcttc cttcagagga ttatccgggg catctactca atgaaaaacc atgataattc tttgtatata aaataaacat ttgaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaa</pre>	120 180 240 300 346

accatctcag	ccgacaagtc	catcagcacc	gcctacctgc	agtggagcag	cctgaaggcc	360
tcggacaccg (ccatgtatta	ctgtgcgaga	cacacagtga	gagaaaccag	ccccgagccc	420
gtctaaaacc (ctccacaccg	caggtgcaga	gtgagctgct	agagactcac	tccccagggg	480
cctctctatt	catctgggga	ggaaacactg	gctgtttgtg	tcctcaggag	caagaaccag	540
agaacaatgt g	gggagggttc	ccagccccta	aggcaactgt	ataggggacc	tgaccatggg	600
aggtggattc	tctgacgggg	ctcttgtgtg	ttctacaagg	ttgttcatgg	tgtatattag	660
atggttaaca	tcaaaaggct	gcctaacagg	cacctctcca	atatgatagt	attttaatta	720
gtgaaaattt	tacacagttc	atcattgctt	gcttgccttc	ctccctcctg	teegetetea	780
ctcactcctt	cttttattt	ctacttaatt	ttacaaaatc	atttaacccc	tttttgaact	840
attaataggt	tatctttgtt	tggtgattgt	ttttctttta	ataatatgta	ctgaataatt	900
catctttgta	ccaattcata	agtattctgg	tgtaataaag	acttctttca	aaaaaaaaa	960
aaaaaaa						967
	sapiens					
<400> 379 tttttttt	tttttgtgat	tctggaaaga	aagaaggagg	gagggaggga	gaaaatacag	60
tttgagcacc	tgctatgtat	caattacttg	tacattactt	gtatttatct	tcacaatgac	120
cttgtcagca	aggtcttgta	ttctcacttt	ataaaagagg	agattgagac	tcagatctct	180
 tggtgtcttt	aattccaagt	ccaaagagtt	geggagtett	ttgattccaa	gtctgaattc	240
ctaatattta	tttccttcct	gaatgttgtg	gtattgacgt	taaataagac	cattctatt	299
	sapiens					
<400> 380 gtgagctgaa	gcagggcagg	gcatcaactc	acccaggaag	tgcaaggggt	ttggggattt	60
tcctttccta	gccaagggaa	ggcatgacag	actgtacctg	gaaaaacagg	acactcttgc	120
ccaaatactg	cactttttgc	acagtcttag	caactggcag	accaggagat	tetetectgt	180
gcctgattca	ttgggtccca	cacccatagg	gccttgctta	ctgccagtgc	agcagtctga	240
gattaacacc	ccatccccgg	gagaactcta	agaaggagct	gatgtggagg	agcagctgag	300
acagttcaag	atgacgacca	cagtagccac	agactatgac	aacattgaga	tccagcagca	360

	gtacagtgat	gtcaacaacc	gctgggatgt	cgacgactgg	gacaatgaga	acagctctgc	420
	gcggcttttt	gagcggtccc	gcatcaaggc	tctggcagat	gagcgtgaag	ccgtgcagaa	480
	gaagaccttc	accaagtggg	tcaattccca	ccttgcccgt	gtgtcctgcc	ggatcacaga	540
	cctgtacact	gaccttcgag	atggacggat	gctcatcaag	ctgctggagg	tcctctctgg	600
	agagaggctg	cctaaaccca	ccaagggacg	aatgcgcatc	cactgcttag	agaatgtgga	660
	caaggccctt	cagttcctga	aggagcagag	agtccatctt	gagaacatgg	ggtcccatga	720
	catcgtggat	ggaaaccacc	ggctgaccct	tggcctcatc	tggaccatca	tectgegett	780
	ccagatccag	gatatcagtg	tggaaactga	agacaacaaa	gagaagaaat	ctgccaagga	840
	tgcattgctg	ttgtggtgcc	agatgaagac	agctgggtac	cccaatgtca	acattcacaa	900
	tttcaccact	agctggaggg	acggcatggc	cttcaatgca	ctgatacaca	aacaccggcc	960
	tgacctgata	gattttgaca	aactaaagaa	atctaacgca	cactacaacc	tgcagaatgc	1020
	atttaatctg	gcagaacagc	acctcggcct	cactaaactg	ttggaccccg	aagacatcag	1080
	cgtggaccat	cctgatgaga	agtccataat	cacttatgtg	gtgacttatt	accactactt	1140
	ctctaagatg	aaggccttag	ctgttgaagg	aaaacgaatt	ggaaaggtgc	ttgacaatgc	1200
	tattgaaaca	gaaaaaatga	ttgaaaagta	tgaatcactt	gcctctgacc	ttctggaatg	1260
	gattgaacaa	accatcatca	ttctgaacaa	tcgcaaattt	gccaattcac	tggtcggggt	1320
	tcaacagcag	cttcaggcat	tcaacactta	ccgcactgtg	gagaaaccac	ccaaatttac	1380
	tgagaagggg	aacttggaag	tgctgctctt	caccattcag	agcaagatga	gggccaacaa	1440
	ccagaaggtc	tacatgcccc	gggaggggaa	gctcatctct	gacatcaaca	aggcctggga	1500
itesomer s	aagactggaa	aaagcggaac	' ක්්රලික්ක්ක්ලික්ලික්	actggctttg	'cggaatgagc	tcataagaca "	1560
	ggagaaactg	gaacageteg	cccgcagatt	tgatcgcaag	gcagctatga	gggagacttg	1620
	gctgagcgaa	aaccagcgtc	tggtgtctca	ggacaacttt	gggtttgacc	ttcctgcagt	1680
	tgaggccgcc	acaaaaaagc	acgaggccat	tgagacagac	attgccgcat	acgaggagcg	1740
	tgtgcaggct	gtggtagccg	tggccaggga	gctcgaggcc	gagaattacc	acgacatcaa	1800
	gcgcatcaca	gcgaggaagg	acaatgtcat	ccggctctgg	gaatacctac	tggaactgct	1860
	cagggcccgg	agacagcggc	tcgagatgaa	cctggggctg	cagaagatat	tccaggaaat	1920
	gctctacatt	atggactgga	tggatgaaat	gaaggtgcta	gtattgtctc	aagactatgg	1980
	caaacactta	cttggtgtgg	aagacctgtt	acagaagcac	accctggttg	aagcagacat	2040
	tggcatccag	gcagagcggg	tgagaggtgt	caatgcctcc	gcccagaagt	tcgcaacaga	2100
	cggggaaggt	tacaagccct	gtgaccccca	ggtgatccga	gaccgcgtgg	cccacatgga	2160
	gttctgttat	caagagcttt	gccagctggc	ggctgagcgc	agggcccgtc	tggaagagtc	2220
٠.			•				
				470			

cagacgaata	tggaagttct	tctgggagat	ggcagaagag	gaaggctgga	tacgggagaa	2280
ggagaagatc	ctgtcctcgg	acgattacgg	gaaagacctg	accagcgtca	tgcgcctgct	2340
cagcaagcac	cgggcgttcg	aggacgagat	gagcggccgc	agtggccact	ttgagcaggc	2400
catcaaggaa	ggcgaagaca	tgatcgcgga	ggagcacttc	gggtcggaga	agatccgtga	2460
gaggatcatt	tacatccggg	agcagtgggc	caacctagag	cagctctcgg	ccattcggaa	2520
gaagcgcctg	gaggaggcct	ccctgctgca	ccagttccag	gcagatgctg	atgacattga	2580
tgcctggatg	ctggacatcc	tcaagattgt	ctccagcagc	gacgtgggcc	acgatgagta	2640
ttccacacag	tctctggtca	agaaacacaa	ggacgtggcg	gaagagatcg	ccaattacag	2700
gcccaccctt	gacacgctgc	acgaacaagc	cagcgccctc	ccccaggagc	atgccgagtc	2760
tccagacgtg	aggggcaggc	tgtcgggcat	cgaggagcgg	tataaggagg	tggcagagct	2820
gacgcggctg	cggaagcagg	cactccagga	cactctggcc	ctgtacaaga	tgttcagcga	2880
ggctgatgcc	tgtgagctct	ggatcgacga	gaaggagcag	tggctcaaca	acatgcagat	2940
cccagagaag	ctggaggatc	tggaggtcat	ccagcacaga	tttgagagcc	tagaaccaga	3000
aatgaacaac	caggetteec	gggttgcagt	ggtgaaccag	attgcacgcc	agctgatgca	3060
cagcggccac	ccaagtgaga	aggaaatcaa	agcccagcag	gacaaactca	acacaaggtg	3120
gagccagttc	agagaactgg	ttgacaggaa	gaaggatgcc	ctcctgtctg	ccctgagcat	3180
ccagaactac	cacctcgagt	gcaatgaaac	caaatcctgg	attcgggaaa	agaccaaggt	3240
catcgagtcc	acccaggacc	tgggcaatga	cctggctggc	gtcatggccc	tgcagcgcaa	3300
getgaeegge	atggageggg	adttggtggc	cattgaggca	aagctgagtg	acctgcagaa	3360
ggaggcggag	aagctggagt	ccgagcaccc	cgaccaggcc	caggccatcc	tgtctcggct	3420
ggccgagatc	agcgacgtgt	gggaggagat	gaagaccacc	ctgaaaaacc	gagaggcctc	3480
cctgggagag	gccagcaagc	tgcagcagtt	cctacgggac	ttggacgact	tccagtcctg	3540
getetetagg	acccagacag	cgatcgcctc	ggaggacatg	ccaaacaccc	tgaccgaggc	3600
tgagaagctg	ctcacgcagc	acgagaacat	caagaatgag	atcgacaact	acgaggagga	3660
ctaccagaag	atgagggaca	tgggcgagat	ggtcacccag	gggcagaccg	atgcccagta	3720
catgtttctg	cggcagcggc	tgcaggccct	ggacactgga	tggaacgagc	tccacaagat	3780
gtgggagaac	agacaaaatc	tcctatccca	gtcacatgcc	taccagcagt	tcctcagaga	3840
cacgaagcaa	gccgaagcct	ttcttaacaa	ccaggagtat	gttctggctc	acactgaaat	3900
gcctaccacc	ttggaaggag	ctgaagcagc	aattaaaaag	caagaggact	tcatgaccac	3960
catggacgcc	aatgaggaga	agatcaatgc	tgtggtggag	actggccgga	ggctggtgag	4020

cgatgggaac	atcaactcag	atcgcatcca	ggagaaggtg	gactctattg	atgacagaca	4080
taggaagaat	cgtgagacag	ccagtgaact	tttgatgagg	ttgaaggaca	acagggatct	4140
acagaaattc	ctgcaagatt	gtcaagagct	gtctctctgg	atcaatgaga	agatgctcac	4200
agcccaggac	atgtcttacg	atgaagccag	aaatctgcac	agtaaatggt	tgaagcatca	4260
agcatttatg	gcagaacttg	catccaacaa	agaatggctt	gacaaaatcg	agaaggaagg	4320
aatgcagctc	atttcagaaa	agcctgagac	ggaagctgtg	gtgaaggaga	aactcactgg	4380
tttacataaa	atgtgggaag	tccttgaatc	cactacccag	acaaaggccc	agcggctctt	4440
tgatgcaaac	aaggccgaac	ttttcaccca	gagctgtgca	gatctagaca	aatggctgca	4500
cggcctggag	agtcagattc	agtctgatga	ctatggcaaa	cacctgacca	gtgtcaatat	4560
cctgctgaaa	aagcaacaga	tgctggagaa	tcagatggaa	gtgcggaaga	aggagatcga	4620
agagctccaa	agccaagccc	aggccctgag	tcaggaaggg	aagagcaccg	acgaggtaga	4680
cagcaagcgc	ctcaccgtgc	agaccaagtt	catggagttg	ctggagccct	tgaacgagag	4740
gaagcataac	ctgctggcct	ccaaagagat	ccatcagttc	aacagggatg	tggaggacga	4800
gatcttgtgg	gttggagaga	ggatgccttt	ggcaacttcc	acggatcatg	gccacaacct	4860
ccagactgtg	cagctgttaa	taaagaaaaa	tcagaccctc	cagaaagaaa	tccaggggca	4920
ccagcctcgc	attgacgaca	tctttgagag	gagccaaaac	atcgtcactg	acagcagcag	4980
cctcagcgct	gaggccatca	gacagaggct	tgccgacctg	aagcagctgt	ggggtctcct	5040
cattgaggag	acagagaaac	gccacaggcg	gctggaggag	gcgcacaggg	cccagcagta	5100
ctactttgac	gctgctgagg	ccgaagcctg	gatgagcgag	caggagctgt	acatgatgtc	5160
agaggagaag	ġcďa agģātg	agdağağtgö	tgtctccatg	ttgaagaagc	accagatett	5220
agaacaagct	gtggaggact	atgcagagac	cgtgcatcag	ctctccaaga	ccagccgggc	5280
cctggtggcc	gacagccatc	ctgaaagtga	gcgcattagc	atgcggcagt	ccaaagtgga	5340
taaactgtac	gctggtctga	aagaccttgc	tgaagagaga	agaggcaagc	tggatgagag	5400
acacaggtta	ttccagctca	accgggaggt	ggacgacctg	gagcagtgga	tcgctgagag	5460
ggaggtggtc	gcagggtccc	atgaactggg	acaggactat	gagcatgtca	cgatgttaca	5520
agaacgattc	cgggagtttg	cccgagacac	cgggaacatt	gggcaggagc	gcgtggacac	5580
ggtcaatcac	ctggcagatg	ageteateaa	ctctggacat	tcagatgccg	ccaccatcgc	5640
tgaatggaag	gatggcctca	atgaagcctg	ggccgacctc	ctggagctca	ttgacacaag	5700
aacacagatt	cttgccgctt	cctatgaact	gcacaagttt	taccacgatg	ccaaggagat	5760
ctttgggcgt	atacaggaca	aacacaagaa	actccctgag	gagcttggga	gagatcagaa	5820
cacagtggag	accttacaga	gaatgcacac	tacatttgag	catgacatcc	aggctctggg	5880

100 80 50 5

cacacaggtg	aggcagctgc	aggaggatgc	agcccgcctc	caggcggcct	atgcgggtga	5940
caaggccgac	gatatccaga	agcgcgagaa	cgaggtcctg	gaagcctgga	agtccctcct	6000
ggacgcctgt	gagagccgca	gggtgcggct	ggtggacaca	ggggacaagt	tccgcttctt	6060
cagcatggtg	cgcgacctca	tgctctggat	ggaggatgtc	atccggcaga	tcgaggccca	6120
ggagaagcca	agggatgtat	catctgttga	actcttaatg	aataatcatc	aaggcatcaa	6180
agctgaaatt	gatgcacgta	atgacagttt	cacaacctgc	attgaacttg	ggaaatccct	6240
gttggcgaga	aaacactatg	catctgagga	gatcaaggaa	aaattactgc	agttgacgga	6300
aaagaggaaa	gaaatgatcg	acaagtggga	agaccgatgg	gaatggttaa	gactgattct	6360
ggaggtccat	cagttctcaa	gagacgccag	tgtggccgag	gcctggctgc	ttggacagga	6420
gccgtaccta	tccagccgag	agataggcca	gagcgtggac	gaggtggaga	agctcatcaa	6480
gcgccacgag	gcatttgaaa	agtctgcagc	aacctgggat	gagaggttct	ctgccctgga	6540
aaggctgact	acattggagt	tactggaagt	gcgcagacag	caagaggaag	aggagaggaa	6600
gaggcggccg	ccttctcccg	agccgagcac	gaaggtttca	gaggaagccg	agtcccagca	6660
gcagtgggat	acttcaaaag	gagaacaagt	ttcccaaaac	ggtttgccag	ctgaacaggg	6720
atctccacgg	atggcagaaa	cggtggacac	aagcgaaatg	gtcaacggcg	ctacagaaca	6780
aaggacgagc	tctaaagagt	ccagccccat	accetecceg	acctctgatc	gtaaagccaa	6840
gactgccctc	ccagcccaga	gtgccgccac	cttaccagcc	agaacccagg	agacaccttc	6900
ggcccagatg	gaaggcttcc	tcaatcggaa	acacgagtgg	gaggcccaca	ataagaaagc	6960
ctcaagcagg	teetggeaca	atgtttattg	tgtcataaat	aaccaagaaa	tgggtttcta	7020
caaagatgca	aagactgctg	cttctggaat	tccctaccac	agcgaggtcc	ctgtgagttt	7080
gaaagaagct	gtctgcgaag	tggcccttga	ttacaaaaag	aagaaacacg	tattcaagct	7140
aagactaaat	gatggcaatg	agtacctctt	ccaagccaaa	gacgatgagg	aaatgaacac	7200
atggatccag	gctatctctt	ccgccatctc	ctctgataaa	cacgaggtgt	ctgccagcac	7260
ccagagcacg	ccagcatcca	gccgcgcgca	gaccctcccc	accagcgtcg	tcaccatcac	7320
cagcgagtcc	agtcccggca	agcgggaaaa	ggacaaagag	aaagacaaag	agaagcggtt	7380
cagccttttt	ggcaaaaaga	aatgaactcc	tttccttcac	ctcctgccct	tctcttacct	7440
tttcagtgaa	attccagcat	gcaagctcag	aaccaacaca	ttactctctg	tgcctaatgt	7500
tcctcaatgt	ggttgattta	tttttttt	taatttatag	agcatttcgg	ggggggtggg	7560
g						7561

<210> 381

<211> 2779

<212> DNA

<213> Homo sapiens

<400> 381

60 gcctggccaa agggatattt ggtttggcca tctctggatg cctgattgcc aagctcagga 120 ccaggcaatg tgactttgca tcagcaacaa ccagcatccc ttgaccaggc ctgggccaga qtattqqtct cctctcaqcc cctqatcctg tgaagtaagg atgtggggga agacctggca 180 240 aggacacaga tgaaacacaa acaatagtaa ttctcaggcc atcatcagtg gagccatgtt aatgtaatct gatggcttct ccagggtcca caggaagtga agaatctgtt tcccagcagt 300 360 ggactcaaaa cccatctggg ctcctaacct tcctgtaaac ccctttagtg gcttcattag agcaggcgtt cagctcactg ttctattcat ctcaaggaat aatgggctta gagcagtttc 420 tgtcctgctg gttaacttgt ttggcctatt ccattctgga ttttgtcaag cagtagacaa 480 gcaattagac aagaacttgg aggcaccatt tgtatccact ttttagactt aatagaaaca 540 ttqaaqatga acataatcta ccaacgaaag acgtgattca attcaacact cccttcccat 600 gacccaggct gggcaaggag gccacgtgat gtggagggca cattccttgc ctgcacaaac 660 tcaccatctg tgcacgcagt ggccttccct aaaatcaggg aattgtttta agtcttatca 720 agcagccaag ggatgaaaga gaaggtgggt tttcatcaag actggaaggt ggggacaggg 780 atgagcatgg agctggccgt gggcctgggg taccaagaga ctccttgaga gaccaggcaa 840 agcaagtgat tgggacagag gttatctgtc ccaggttatc tgggcataga tgcaggtgag 900 cccatggccc tcccagtacc tcctgtctct ggcctgtttt agaaggttct ctcctccca 960 1020 aggagacaca acaacteeta gggccactga agatataact attgeccagg tttetggtet 1080 ctaggctggg gaagtcctct gggtaggaat cagcaagaag atcctaaaac aaaagctcat 1140 ccatttgcgt tccatgatgc tgggatttac acttgaggct tagctttgct cctgccaact tcttcagagc tgacacagga tgaaggcaat gccatcctca aacactgcag gcatcacagc 1200 taacaattgt gaagtcgtct taactcacca taaaaaggaa tccactccca ggcagcccta 1260 cttctttgct ttgcccagca ttttactgat tcatacatta tctcacttgt gccaacactc 1320 aagaaqcagg ctacactgac actggtattc ctgcctccat attttcttta aaagacaaat 1380 caaagcagat atattaagtg actgttcaag agcacacttg gcccaagtgg cagagcttgg 1440 1500 actggatgca tgttttccag ctcctcatcc agggctctga ccagtttaac ctgatgcagt cacqtqqaqq agcaqtqcaq qcacaqtatg tcccataqqc ccagtgagat gcattcttgg 1560 ttggctggcc ttccacttgg ctacacaggg atgtacaagg cgatcccatc ttgataagac 1620 caccacctca gagtatggag ctcagagagg gcaggcatga agtttccttg gctggtgcac 1680

ctagaattgg ctgaactcat	gagaagttga	tatagaacag	tgcttgccac	agagcgggga	1740
ctcggtaagc acttaacgaa	. tgaatgaatt	ctaagtcaat	ccaagagtct	gatgatttct	1800
tgaaaagggt gttagctaaa	. ggatcttagg	catgactgta	gaatttgtag	ttgcaataga	1860
acagagaaag aggaagcttt	ctgtctcctt	aacactgagc	tgtcatgttt	taaagcttgc	1920
tcacatcttg gcacatttae	gagacagtca	ccccaggact	caaaaatagg	gaagtaacag	1980
taacgcaggg gaaacgtttt	ctgtttggag	gagcaaaggc	tgagaacact	gtgaaaacat	2040
tttgcgcgca caatagtaac	ctgggtaaat	gcagcgtgaa	gggattttag	tcacacgtgg	2100
tctttcttac aaggaaggtg	gtgggggtgc	agatgaggtt	gctagagaat	gttagaggat	2160
ccctctctgg attggagata	gggaaagaaa	gttgcacggc	tgctgaggcc	ccttctaggt	2220
ggcaaggctg tgctccctg	ttctgatgat	gtgcctgggt	ggacatggcc	cctgtgagtt	2280
tgtacagtct tgcagcagga	tctagagggg	ggatttccag	ccagggctgc	tagacggagg	2340
cctactcttc catctttcct	. gatggcagga	tggcctggcc	agggcctgga	agacagagac	2400
ctcctgcctc cgcctcagta	agacgacaag	gaaaggcaaa	tgcccaaggg	aaagaaaagg	2460
aaggetette teeceagagt	tccccatgca	gacatgagtg	cgtgctcagt	tcagaatcac	2520
ttctgagaac tcatccctaa	ı tgctgcagat	ttgggctgga	acagattcac	actgtctggt	2580
ttcaccgagg acatgaaact	ccaccttgcg	gggataaaga	gagaaaaaca	aattcatcaa	2640
atggaagaca cattgaaagt	gtttttcctt	aatgcttatc	ctgtttttaa	accattattt	2700
ccaagttgac acctttttt	aggaaaaata	aatattttgc	ggcattaaag	ctatataaaa	2760
aaaaaaaaaa aaaaaaaaa					2779

<210> 382

<211> 622

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (304)..(304)

<223> n is a, c, g, t or u

المستخف فللعب فالمنصوف والمناز ويوفيهم فللعارض أأقل المرازي والمناز والمنازي والمنازي والمناز والمناز والمنازين

<400> 382

ttttttcact tgcgaaagat tatttattgc acaatttatc agtgggtact aagaataaca 60
cagatcctat tattctcaac ctctaaattc agtacatagt aaaattcatt ttctcaaact 120
aaggttctat acataatcgg agtaaaccct ctgttactga gttaggatag ggaaaacaaa 180
ttccttagag ttcatgaaac cacttcacaa atcctagaag gcacacatta tatttcctat 240
catagtaagt acatttaagt acttcatatt taaaaaagac aaagctgtac agaatacaaa 300

aagngtaatt tgagt	ccatt aagcaaattt	acaactttta	cgattagtta	ttacagtaga	360
actgacctaa catto	cacatc taaataatta	tcacccagtt	caatagagcg	aacaaagagc	420
tgtgctcatt tattt	atttg ataaggctaa	. taacatttta	tattcacagt	agatcagtaa	480
gtgtcttgga gctca	atattg taaaataaaa	aggtttgggc	cctattgagt	cactgggctc	540
attgttaaat aacto	ecttga aaggtgaagg	attctggggg	ataaaatcat	tggctatccc	600
tggaaagatc caaaa	actctg ta				622
<210> 383 <211> 937 <212> DNA <213> Homo sapi	iens				
<400> 383 gctctctttc ccatc	cttgca agatggcggg	tgaaaaagtt	gagaagccag	atactaaaga	60
gaagaaaccc gaago	ccaaga aggttgatgo	: tggtggcaag	gtgaaaaagg	gtaacctcaa	120
agctaaaaag cccaa	agaagg ggaagcccca	ttgcagccgc	aaccctgtcc	ttgtcagagg	180
aattggcagg tatto	cccgat ctgccatgta	ttccagaaag	gccatgtaca	agaggaagta	240
ctcagccgct aaato	caagg ttgaaaagaa	aaagaaggag	aaggttctcg	caactgttac	300
aaaaccagtt ggtgg	gtgaca agaacggcgg	tacccgggtg	gttaaacttc	gcaaaatgcc	360
tagatattat cctad	ctgaag atgtgcctc	, aaagctgttg	agccacggca	aaaaaccctt	420
cagtcagcac gtgag	gaaaac tgcgagccag	g cattacccc	gggaccattc	tgatcatcct	480
cactggacgc cgcag	ggggca agaattgggt	ggttttcctg	aagcagctgg	ctagtggctt	540
attacttgtg actg	gacctc tggtcctcas	tegagtteet	ctacgaagaa	cacaccagaa	600
atttgtcatt gccac	cttcaa ccaaaatcga	tatcagcaat	gtaaaaatcc	caaaacatct	660
tactgatgct tactt	tcaaga agaagaagct	geggaageee	agacaccagg	aaggtgagat	720
cttcgacaca gaaaa	aagaga aatatgagat	: tacggagcag	cgcaagattg	atcagaaagc	780
tgtggactca caaat	ttttac caaaaatcaa	agctattcct	cagctccagg	gctacctgcg	840
atctgtgttt gctct	tgacga atggaattta	tcctcacaaa	ttggtgttct	aaatgtctta	900
agaacctaat taaat	tagctg actaccgaaa	aaaaaaa			937
<210> 384 <211> 2291 <212> DNA <213> Homo saps <400> 384	iens				
	cctgaa agcgttaacc	c ctggagcttt	ctgcacaccc	cccgaccgct	60
cccgcccaag cttc	ctaaaa aagaaaggto	g caaagtttgg	tccaggatag	aaaaatgact	120
			,		

.. .

gatcaaaggc	aggcgatact	tcctgttgcc	gggacgctat	atataacgtg	atgagcgcac	180
gggctgcgga	gacgcaccgg	agcgctcgcc	cagccgccgc	ctccaagccc	ctgaggtttc	240
cggggaccac	aatgaacaag	ttgctgtgct	gcgcgctcgt	gtttctggac	atctccatta	300
agtggaccad	ccaggaaacg	tttcctccaa	agtaccttca	ttatgacgaa	gaaacctctc	360
atcagctgtt	gtgtgacaaa	tgtcctcctg	gtacctacct	aaaacaacac	tgtacagcaa	420
agtggaagac	cgtgtgcgcc	ccttgccctg	accactacta	cacagacagc	tggcacacca	480
gtgacgagtg	tctatactgc	agccccgtgt	gcaaggagct	gcagtacgtc	aagcaggagt	540
gcaatcgcac	ccacaaccgc	gtgtgcgaat	gcaaggaagg	gcgctacctt	gagatagagt	600
tctgcttgaa	acataggagc	tgccctcctg	gatttggagt	ggtgcaagct	ggaaccccag	660
agcgaaatac	agtttgcaaa	agatgtccag	atgggttctt	ctcaaatgag	acgtcatcta	720
aagcaccctg	tagaaaacac	acaaattgca	gtgtctttgg	tctcctgcta	actcagaaag	780
gaaatgcaac	acacgacaac	atatgttccg	gaaacagtga	atcaactcaa	aaatgtggaa	840
tagatgttac	cctgtgtgag	gaggcattct	tcaggtttgc	tgttcctaca	aagtttacgc	900
ctaactggct	tagtgtcttg	gtagacaatt	tgcctggcac	caaagtaaac	gcagagagtg	960
tagagaggat	aaaacggcaa	cacageteae	aagaacagac	tttccagctg	ctgaagttat	1020
ggaaacatca	aaacaaagac	caagatatag	tcaagaagat	catccaagat	attgacctct	1080
gtgaaaacag	cgtgcagcgg	cacattggac	atgctaacct	caccttcgag	cagcttcgta	1140
gcttgatgga	aagcttaccg	ggaaagaaag	tgggagcaga	agacattgaa	aaaacaataa	1200
aggcatgcaa	acccagtgac	cagatectga	agctgctcag	tttgtggcga	ataaaaaatg	1260
gcgaccaaga	caccttgaag	ggcctaatgc	acgcactaaa	gcactcaaag	acgtaccact	1320
ttcccaaaac	tgtcactcag	agtctaaaga	agaccatcag	gttccttcac	agcttcacaa	1380
tgtacaaatt	gtatcagaag	ttatttttag	aaatgatagg	taaccaggtc	caatcagtaa	1440
aaataagctg	cttataactg	gaaatggcca	ttgagctgtt	tcctcacaat	tggcgagatc	1500
ccatggatga	gtaaactgtt	tctcaggcac	ttgaggcttt	cagtgatatc	tttctcatta	1560
ccagtgacta	attttgccac	agggtactaa	aagaaactat	gatgtggaga	aaggactaac	1620
atctcctcca	ataaacccca	aatggttaat	ccaactgtca	gatctggatc	gttatctact	1680
gactatattt	tcccttatta	ctgcttgcag	taattcaact	ggaaattaaa	aaaaaaaac	1740
tagactccat	tgtgccttac	taaatatggg	aatgtctaac	ttaaatagct	ttgagatttc	1800
agctatgcta	gaggctttta	ttagaaagcc	atatttttt	ctgtaaaagt	tactaatata	1860
tctgtaacac	tattacagta	ttgctattta	tattcattca	gatataagat	ttgtacatat	1920

tatcatccta	taaagaaacg	gtatgactta	attttagaaa	gaaaattata	ttctgtttat	1980
tatgacaaat	gaaagagaaa	atatatattt	ttaatggaaa	gtttgtagca	tttttctaat	2040
aggtactgcc	atatttttct	gtgtggagta	tttttataat	tttatctgta	taagctgtaa	2100
tatcatttta	tagaaaatgc	attatttagt	caattgttta	atgttggaaa	acatatgaaa	2160
tataaattat	ctgaatatta	gatgctctga	gaaattgaat	gtaccttatt	taaaagattt	2220
tatggtttta	taactatata	aatgacatta	ttaaagtttt	caaattattt	tttaaaaaaa	2280
aaaaaaaaa	a					2291

<210> 385

<211> 1963

<212> DNA

<213> Homo sapiens

<400> 385

gtgttgtacg aaagcgcgtc tgcggccgca atgtctgctg agagttgtag ttctgtgccc 60 120 agcagtcggt gacgggacac agtggttggt gacgggacag agcggtcggt gacagcctca 180 agggetteag cacegegeee atggeagage cagacecete teacectetg gagacecagg 240 cagggaaggt gcaggaggct caggactcag attcagactc tgagggagga gccgctggtg 300 gagaagcaga catggacttc ctgcggaact tattctccca gacgctcagc ctgggcagcc 360 420 agaaggageg tetgetggae gagetgaeet tggaaggggt ggeeeggtae atgeagageg aacgctgtcg cagagtcatc tgtttggtgg gagctggaat ctccacatcc gcaggcatcc 480 cegacttteg etetecatee aceggeetet atgacaacet agagaagtac catetteeet 540 600 acccagagge catctttgag atcagctatt tcaagaaaca tccggaaccc ttcttcgccc 660 tegecaagga actetateet gggeagttea agecaaceat etgteaetae tteatgegee 720 tgctgaagga caaggggcta ctcctgcgct gctacacgca gaacatagat accctggagc gaatagccgg gctggaacag gaggacttgg tggaggcgca cggcaccttc tacacatcac 780 actgcgtcag cgccagctgc cggcacgaat acccgctaag ctggatgaaa gagaagatct 840 tetetgaggt gaegeceaag tgtgaagaet gteagageet ggtgaageet gatategtet 900 tttttggtga gagcctccca gcgcgtttct tctcctgtat gcagtcagac ttcctgaagg 960 1020 tggacetect cetggteatg ggtacetect tgeaggtgea gecetttgee teceteatea gcaaggcacc cctctccacc cctcgcctgc tcatcaacaa ggagaaagct ggccagtcgg 1080 accettteet ggggatgatt atgggeeteg gaggaggeat ggaetttgae tecaagaagg 1140 cctacaggga cgtggcctgg ctgggtgaat gcgaccaggg ctgcctggcc cttgctgagc 1200

tccttggatg	gaagaaggag	ctggaggacc	ttgtccggag	ggagcacgcc	agcatagatg	1260
cccagtcggg	ggcgggggtc	cccaacccca	gcacttcagc	ttcccccaag	aagtccccgc	1320
cacctgccaa	ggacgaggcc	aggacaacag	agagggagaa	accccagtga	cagctgcatc	1380
tcccaggcgg	gatgccgagc	tcctcaggga	cagctgagcc	ccaaccgggc	ctggccccct	1440
cttaaccagc	agttcttgtc	tggggagctc	agaacatccc	ccaatctctt	acagctccct	1500
ccccaaaact	ggggtcccag	caaccctggc	ccccaacccc	agcaaatctc	taacacctcc	1560
tagaggccaa	ggcttaaaca	ggcatctcta	ccagccccac	tgtctctaac	cactcctggg	1620
ctaaggagta	acctccctca	tctctaactg	ccccacggg	gccagggcta	ccccagaact	1680
tttaactctt	ccaggacagg	gagcttcggg	ccccactct	gtctcctgcc	cccgggggcc	1740
tgtggctaag	taaaccatac	ctaacctacc	ccagtgtggg	tgtgggcctc	tgaatataac	1800
ccacacccag	cgtaggggga	gtctgagccg	ggagggctcc	cgagtctctg	ccttcagctc	1860
ccaaagtggg	tggtgggccc	ccttcacgtg	ggacccactt	cccatgctgg	atgggcagaa	1920
gacattgctt	attggagaca	aattaaaaac	aaaaacaact	aac		1963

<210> 386

<211> 4866

<212> DNA

<213> Homo sapiens

<400> 386

60 atggccaagt cgggtggctg cggcgggga gccggcgtgg gcggcggcaa cggggcactg acctgggtga acaatgctgc aaaaaaagaa gagtcagaaa ctgccaacaa aaatgattct 120 tcaaagaagt tgtctgttga gagagtgtat cagaagaaga cacaacttga acacattctt 180 cttcgtcctg atacatatat tgggtcagtg gagccattga cgcagttcat gtgggtgtat 240 gatgaagatg taggaatgaa ttgcagggag gttacctttg tgccaggttt atacaagatc 300 tttgatgaaa ttttggttaa tgctgctgac aataaacaga gggataagaa catgacttgt 360 attaaagttt ctattgatcc tgaatctaac attataagca tttggaataa tgggaaaggc 420 480 attecagtag tagaacacaa ggtagagaaa gtttatgtte etgetttaat ttttggacag cttttaacat ccagtaacta tgatgatgat gagaaaaaag ttacaggtgg tcgtaatggt 540 tatggtgcaa aactttgtaa tattttcagt acaaagttta cagtagaaac agcttgcaaa 600 660 gaatacaaac acagttttaa gcagacatgg atgaataata tgatgaagac ttctgaagcc 720 aaaattaaac attttgatgg tgaagattac acatgcataa cattccaacc agatctgtcc 780 aaatttaaga tggaaaaact tgacaaggat attgtggccc tcatgactag aagggcatat 840 gatttggctg gttcgtgtag aggggtcaag gtcatgttta atggaaagaa attgcctgta

aatggatttc	gcagttatgt	agatctttat	gtgaaagaca	aattggatga	aactggggtg	900
gccctgaaag	ttattcatga	gcttgcaaat	gaaagatggg	atgtttgtct	cacattgagt	960
gaaaaaggat	tccagcaaat	cagctttgta	aatagtattg	caactacaaa	aggtggacgg	1020
cacgtggatt	atgtggtaga	tcaagttgtt	ggtaaactga	ttgaagtagt	taagaaaaag	1080
aacaaagctg	gtgtatcagt	gaaaccattt	caagtaaaaa	accatatatg	ggtttttatt	1140
aattgcctta	ttgaaaatcc	aacttttgat	tctcagacta	aggaaaacat	gactctgcag	1200
cccaaaagtt	ttgggtctaa	atgccagctg	tcagaaaaat	ttttaaagc	agcctctaat	1260
tgtggcattg	tagaaagtat	cctgaactgg	gtgaaattta	aggctcagac	tcagctgaat	1320
aagaagtgtt	catcagtaaa	atacagtaaa	atcaaaggta	ttcccaaact	ggatgatgct	1380
aatgatgctg	gtggtaaaca	ttccctggag	tgtacactga	tattaacaga	gggagactct	1440
gccaaatcac	tggctgtgtc	tggattaggt	gtgattggac	gagacagata	cggagttttt	1500
ccactcaggg	gcaaaattct	taatgtacgg	gaagcttctc	ataaacagat	catggaaaat	1560
gctgaaataa	ataatattat	taaaatagtt	ggtctacaat	ataagaaaag	ttacgatgat	1620
gcagaatctc	tgaaaacctt	acgctatgga	aagattatga	ttatgaccga	tcaggatcaa	1680
gatggttctc	acataaaagg	cctgcttatt	aatttcatcc	atcacaattg	gccatcactt	1740
ttgaagcatg	gttttcttga	agagttcatt	actcctattg	taaaggcaag	caaaaataag	1800
caggaacttt	ccttctacag	tattcctgaa	tttgacgaat	ggaaaaaaca	tatagaaaac	1860
cagaaagcct	ggaaaataaa	gtactataaa	ggattgggta	ctagtacagc	taaagaagca	1920
aaggaatatt	ttgctgatat	ggaaaggcat	cgcatcttgt	ttagatatgc	tggtcctgaa	1980
gatgatgctg	ccattacctt	ggcatttágt	aagaagaaga	ttgatgacag	aaaagaatgg	2040
ttaacaaatt	ttatggaaga	ccggagacag	cgtaggctac	atggcttacc	agagcaattt	2100
ttatatggta	ctgcaacaaa	gcatttgact	tataatgatt	tcatcaacaa	ggaattgatt	2160
ctcttctcaa	actcagacaa	tgaaagatct	ataccatctc	ttgttgatgg	ctttaaacct	2220
ggccagcgga	aagttttatt	tacctgtttc	aagaggaatg	ataaacgtga	agtaaaagtt	2280
gcccagttgg	ctggctctgt	tgctgagatg	tcggcttatc	atcatggaga	acaagcattg	2340
atgatgacta	ttgtgaattt	ggctcagaac	tttgtgggaa	gtaacaacat	taacttgctt	2400
cagcctattg	gtcagtttgg	aactcggctt	catggtggca	aagatgctgc	aagccctcgt	2460
tatattttca	caatgttaag	cactttagca	aggctacttt	ttcctgctgt	ggatgacaac	2520
ctccttaagt	tcctttatga	tgataatcaa	cgtgtagagc	ctgagtggta	tattcctata	2580
attcccatgg	ttttaataaa	tggtgctgag	ggcattggta	ctggatgggc	ttgtaaacta	2640
cccaactatg	atgctaggga	aattgtgaac	aatgtcagac	gaatgctaga	tggcctggat	2700

2760 cctcatccca tgcttccaaa ctacaaaaac tttaaaggca cgattcaaga acttggtcaa 2820 aaccagtatg cagtcagtgg tgaaatattt gtagtggaca gaaacacagt agaaattaca 2880 gagettecag ttagaacttg gacacaggta tataaagaac aggttttaga acctatgeta aatqqaacaq ataaaacacc aqcattaatt tctqattata aaqaatatca tactqacaca 2940 3000 actgtgaaat ttgtggtgaa aatgactgaa gagaaactag cacaagcaga agctgctgga ctgcataaag tttttaaact tcaaactact cttacttgta attccatggt actttttgat 3060 3120 catatgggat gtctgaagaa atatgaaact gtgcaagaca ttctgaaaga attctttgat 3180 ttacgattaa gttattacgg tttacgtaag gagtggcttg tgggaatgtt gggagcagaa 3240 tctacaaagc ttaacaatca agcccgtttc attttagaga agatacaagg gaaaattact atagagaata ggtcaaagaa agatttgatt caaatgttag tccagagagg ttatgaatct 3300 3360 qacccaqtqa aaqcctqqaa aqaaqcacaa qaaaaqqcaq caqaaqaqqa tqaaacacaa 3420 aaccagcatg atgatagttc ctccgattca ggaactcctt caggcccaga ttttaattat attttaaata tgtctctgtg gtctcttact aaagaaaaag ttgaagaact gattaaacag 3480 agagatgcaa aagggcgaga ggtcaatgat cttaaaagaa aatctccttc agatctttgg 3540 aaagaggatt tagcggcatt tgttgaagaa ctggataaag tggaatctca agaacgagaa 3600 3660 gatgttctgg ctggaatgtc tggaaaagca attaaaggta aagttggcaa acctaaggtg aagaaactcc agttggaaga gacaatgccc tcaccttatg gcagaagaat aattcctgaa 3720 attacagcta tgaaggcaga tgccagcaaa aagttgctga agaagaagaa gggtgatctt 3780 gatactgcag cagtaaaagt ggaatttgat gaagaattca gtggagcacc agtagaaggt 3840 gcaggagaag aggcattgac tccatcagtt cctataaata aaggtcccaa acctaagagg 3900 gagaagaagg agcctggtac cagagtgaga aaaacaccta catcatctgg taaacctagt 3960 gcaaagaaag tgaagaaacg gaatccttgg tcagatgatg aatccaagtc agaaagtgat 4020 ttggaagaaa cagaacctgt ggttattcca agagattctt tgcttaggag agcagcagcc 4080 gaaagaccta aatacacatt tgatttctca gaagaagagg atgatgatgc tgatgatgat 4140 gatgatgaca ataatgattt agaggaattg aaagttaaag catctcccat aacaaatgat 4200 ggggaaqatq aatttgttcc ttcagatggg ttagataaag atgaatatac attttcacca 4260 ggcaaatcaa aagccactcc agaaaaatct ttgcatqaca aaaaaagtca ggattttgga 4320 4380 aatctcttct catttccttc atattctcag aagtcagaag atgattcagc taaatttgac agtaatgaag aagattetge ttetgttttt teaccateat ttggtetgaa acagacagat 4440 4500 aaagttccaa gtaaaacggt agctgctaaa aagggaaaac cgtcttcaga tacagtccct

aagcccaaga gagccccaaa	acagaagaaa	gtagtagagg	ctgtaaactc	tgactcggat	4560
tcagaatttg gcattccaaa	gaagactaca	acaccaaaag	gtaaaggccg	aggggcaaag	4620
aaaaggaaag catctggctc	tgaaaatgaa	ggcgattata	accctggcag	gaaaacatcc	4680
aaaacaacaa gcaagaaacc	gaagaagaca	tcttttgatc	aggattcaga	tgtggacatc	4740
ttcccctcag acttccctac	tgagccacct	tctctgccac	gaaccggtcg	ggctaggaaa	4800
gaagtaaaat attttacaga	gtctgatgaa	gaagaagatg	atgttgattt	tgcaatgttt	4860
aattaa					4866
<210> 387 <211> 319 <212> DNA <213> Homo sapiens					
<400> 387 gcttcggggt cgccgctggg	tgagtcccac	tececegegt	tgcaggtgac	ctcactcccc	60
ggtgcctggc ccctgggggc	cggcagctgc	gatcactcca	gccggtgtgg	ttacagecee	120
actgggctcc tccacccggg	accttttgac	ctcgggctct	ccagtggaag	aggcggaggc	180
agaggcggtg gtggcagtgg	ctggggtgtg	gtggccgtgg	ccgcgacggc	tgctgctggc	240
tccttgggcc ccacctcgca	cacccgggtg	accaccaccg	gcgcggatga	actcgcttgg	300
gtcgcaagga gctgcaaag					319
<210> 388 <211> 408 <212> DNA <213> Homo sapiens	erge 🕶 ,				
<400> 388 ttttttttt ttttttt	tttttttt	tttttttt	tttttttc	ccatgggaag	60
aaactttttt ttaaaaaaaa	aaaaacgggg	gggaaaaccc	ctttgactta	ccttccagta	120
gtcattcccc ccttttacgg	gccaattcaa	aaccttgttt	tccgggggaa	tgggacggaa	180
aattacattt ggacaacttt	ttttcctttt	atccccaact	ttggccaaaa	agcaaaaaaa	240
ggcctttttt ttataaaaaa	agaataaatt	cccccagggg	tttttaaaaa	aatttccccc	300
ccccggccct ttaaaaggga	aaaaaacaag	gacttttta	aacccgaaaa	ccccttttt	360
ggggtttttt ttaaaaactt	aaaaaacggg	ggtttttcc	cccttaaa		408
<210> 389 <211> 462 <212> DNA <213> Homo sapiens					

<213> Homo sapiens

<400> 389

ttacaataaa ccagtaatag t	tttattcac	ttaaagatga	aaacaatctg	cttttgtaca	60
gcaagggtca tgaaaaataa a	agttaatgga	caactagagt	aaaaatattt	ttaacatatg	120
acaaggagct aataccccaa t	tatatacaga	gctcagaagt	tattatgaaa	gacattaaca	180
tatagcaaaa caagcaatgg (ccatgtggta	tcacagaaaa	ttctggaatt	tcatatcaag	240
ggtgatagga ggctcttttg 1	ttttagtgag	acaattttt	tttttttt	tgagacacag	300
tctcgctctg tcacccaggc t	tggagtgaag	tggtgcgatc	tcggctcact	gcaagctccg	360
cctcccaggt tcacgccatt (ctcctgcctc	agcctcccga	gtagctggga	ctacaggtgc	420
ccgccaccaa gcctggctaa 1	ttttttgtat	ttttagtaga	ga		462
<210> 390 <211> 598 <212> DNA <213> Homo sapiens <400> 390					
ttttttttt ttttttaga 9	gagataaaca	atgtagctaa	ttttgtagga	aaggccaaag	60
tagctaattt tgtagggac (ctgattttta	gtccagcttg	gctggcaact	aattttaggt	120
ctgtaaaggt tcagaaagca	tatcctgaac	acaagccctc	ctcagttacg	ttatttaaag	180
tgttaaatac tcaagccaac	cgaaacacaa	accaaagtaa	agaatttaga	taagaaagac	240
atgtgaaaag gaggctactg	gtaagtacag	aactcagtta	aatgtaaata	attatgaatt	300
aattgtatta tctttttatt	taaaaatcta	ataaattctg	atttttctct	ccccaacttc	360
ctgtgatata actaagaaaa a	aacaaagaga	aactagtttc	tgtaaaactg	gaaactccga	420
gaatteetea gtgatatgee	aggaaacagg	aagaatttcc	actagccaaa	gttctgagga	480
agttacaggc aggaaaaaag	ataagggtta	ccatctttt	ttagtcaata	aagctatgcc	540
cactctaggt actttcctta	gaaacatgga	gtcttcccag	cagagaaagg	aaagctag	598
<pre><210> 391 <211> 383 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (341)(341) <223> n is a, c, g, t <220> <221> misc_feature <222> (346)(346)</pre>					
<223> n is a, c, g, t	or u				
<220>					
		483			

```
<221> misc feature
<222> (365)..(365)
<223> n is a, c, g, t or u
<400> 391
tttttttttq qtacacaaat tcaqaaqtct ttattttgaa aaaaattctt ccaacagtat
                                                                      60
ttcacaatqa acaaqaactt aaccaaattt atctatcata ctaaaagtatt tcagaaatga
                                                                     120
atattgaaaa cagcctgtaa gttttcatcc aatatttaaa accacctcct ggaactaaaa
                                                                     180
ttggtcttca aaaatcatgg gcgtattaac attttccaaa catgccctgc tggactagga
                                                                     240
                                                                     300
aggtectgtt attettett ttgaacttee cagtaagttt cettgtteee tatteetagg
gtttaaagtg gcaaagggac tttttatgag gctattaggg ncaagntttc ttccattgga
                                                                    360
aaatnaaact tttggcggga aat
                                                                    383
<210> 392
<211> 573
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (521)..(521)
<223> n is a, c, g, t or u
<400> 392
gattgtataa ataatttatt tetgtteaca geateatata tgeattataa aaggetatgg
                                                                      60
aaacaaaaga gaaggatgat gagacagaga attacagcag tagaaaggaa aacagaaacc
                                                                     120
agggcacaca gttccaacac cagaacagag aatttgggaa gataattgct ctgaaacaga
                                                                     180
actogoctec ctototetat taqaaaacat ttecaaaget cacogagga ggecaactte
                                                                     240
ccctatggga aacccattca ctcgccaaag ggcagaaggc atcataaatc acccattgat
                                                                     300
                                                                     360
acattggtgg ggggctcctg tccccctggt gaccactcca aggtgatttg atctgtgctt
cctctgttgg gtcagagacg aaacgggcta ttattaggtc aaacattaca gaaatcaact
                                                                     420
gagactetta actagtagtt gatacaccae agggetttae tttactgeae aattactaae
                                                                     480
agttgattgc acccttaagt attgattatg caaaaaacaa natcatctcg catcagtttt
                                                                     540
aaagcatgac agggtttgaa cagtgatctt gaa
                                                                     573
<210> 393
<211> 497
<212> DNA
<213> Homo sapiens
<400> 393
cacacacata tottottatt tgagagttta aaaggaaato tgaggtocag aggatoacag
                                                                      60
```

agcctcttgt tctgctatca aaggaccaat aagaagcaaa ctgatattac agggcaaatg	120
ttcccagaca gcccagcctg ctccccttag gaatgagtgt ccctggaggg ggagagcctg	180
gaaccaaagc cccgccagga actgcttccc ctaaactgag gttctctgaa aaaaatgttc	240
gcctggctga taaagccgcc tcttaacaga gcccagacac ttctgtgctt cccctgggtt	300
gctaattgag gacactaaag ccctaagaga taccccaggt cgggggaagg ggccccaaga	360
cctagacctc cggtggcgac catgcccttg agaggatggg agctgaattg gagcacgaga	420
ttatttatca tcgctggatg aagctccagc tagagctcag tatttcctct ttttctgggc	480
tcagacagac acagact	497
<210> 394 <211> 505 <212> DNA <213> Homo sapiens	
<400> 394 tttttttttg ttagaaactg attttaataa gtcacatgat acaaaagaat gagaacattc	60
aaagaatgag taaaatactg ctttgtccca aaggacaagc agaaaatgtt aaggcacaac	120
ggatgctcag aaaacgtaag aagctgaagg gaaaacacat catctgtgta ctcagacaca	180
cacactecaa eccateacae gaacacaece tegecegece ateagagaag aattegeetg	240
gaatcagctg ggggcggtgg ctcacgccta taatcccagc actttgggag gttgaggcgg	300
gcagatcatg aggtcaggag ttcacgacca gcctgaccaa catggtgaaa ccctatctct	360
actaaaaata caaaaatcag cggggcctgg tggcatgcac ctgtaatccc agctactcag	420
gaggetgagg caggagaate gettgagaca gaggttgcag tgageegaga tgegeeactg	480
cactcctgcc tgggcaacag agcaa	, 505
<210> 395 <211> 2283 <212> DNA <213> Homo sapiens <400> 395	
ttgatgctgc aagttcaggg gatttttctt actcttaggt ttaaccaaga acactgagca	60
gggaaaaacc ctgcctttcc taactgcatg tattttttcc tttttggaaa ggtggtagag	120
actcagaagc tttccttgtt ttcttcaggc ctgctcccag ttttcttaac agtttctttt	180
gttgctttct ctctcccttg ttgctttcca tggcagtaat cctcctagag tccaagcagt	240
ctgttgtatg gagcagggtg tgtgggtttt ctgggcccat cattatggct gcttcagagt	300
cagaagaaag ccatagggca gtaggggagc tcctattgcc tagcccctct ccctttgtgg	360
ctcccactct agctgcctat ttttgctcat cagctggtga gtcagtatgg gccagcagtt	420

ctccctccct	aagcccttgc	tactttatgg	gttagctttg	caggtttggt	ggcttgaggg	480
gtgggggcaa	ctcaccactg	ccaggtaact	ccctgaaggg	tgggagtgga	ttatcttcta	540
ggctcttacc	cgcggtaggg	aagggcatca	acactgtctt	ccttccattc	tcctttcccc	600
catcccattt	agtgctgcca	cagggcagaa	gcacacaaac	caaccacaca	gtctctgact	660
tctcctaagc	actttgagtt	gttgaatggg	gctcaggggc	aagagttttt	gctgccctcc	720
ccagcgtggt	cacagggtta	ttgaactgcc	tgcacttgtt	tctcatgcaa	ctccagcatt	780
ttccccagaa	gttgaactat	ggatagcagc	ttggtatgga	tttcctaaat	cttaacattt	840
gaagcagctt	cttgaggctg	gcaactatcc	tggtttctgt	cttggagggg	gtggtttgtt	900
tgctggggcc	caacgtctgt	cccaagtggt	ggggtgagag	taagttaact	ttggtgccag	960
gtgagaggtg	ggggctcttt	gcttagactc	cctatcatgg	aaagattgga	gttttctatg	1020
cagggcactg	gggaaaagga	ttgctgattc	tgactgaccc	tgatcagaga	gattaggatt	1080
gtattttgac	ataggatttg	gaacccatct	aaatgttgaa	gttccctgag	acagctctcc	1140
agctgctgag	cctgcgccag	gggctaagca	gcccctaatg	agaggctctg	ctccctttcc	1200
cacctcgcca	atgttgttgt	tgctgccttt	ttgatttgta	tcctctgtta	tagacatttt	1260
ttaaaaacga	tttcctcttt	cattgtgcac	aagtgctgag	agtctgaggc	cccatttctg	1320
ctgtgtatat	atatcctgac	tcggggcttt	tattcagcaa	actgttcatt	cttctgtcag	1380
acaatgtcat	attcaactct	gttcatatta	aaccactgtg	aagcaagcct	ctgttttcct	1440
gcttaagttg	taaatttagt	attctttagt	gtctaggata	tgctgggtat	tatgcagaaa	1500
tcatacagtg	tggccagtgt	cctgaggtaa	tgttttgcat	ttaaattttt	ttagaaagca	1560
gaatcttaac	ttatcttaat	gatatttacc	tatccttttt	gcaactcaca	actgactttg	1620
tcacagaggt	aatgcatctg	cttgcaggaa	gtagctgtag	gctcagtacc	tgttgtttga	1680
gtcagattta	gcagatttgg	tttttaagct	tgtgggtttg	tgctaatttg	ggcagaatat	1740
atttattata	tatgtgtgtg	tgtatgtgtg	tatgtgtgtg	tctgcatatg	taatacatgt	1800
acataaacac	acatgcatgt	gttcatcctc	tgacacaccc	acacaacacc	aacaaacatt	1860
tcttctatag	gctttttatc	tcaactgaca	ctgtttttt	tcccaaataa	atttgacaca	1920
ggcagaaagg	tgggtgaact	ctcagaactt	ttggtgggtg	gatattcatc	tgaccagtga	1980
gctctgaaat	ggtttcccta	cacagagtgg	gttttggcaa	gggttggaat	gaggggaggt	2040
agcagtcttg	tcatttagaa	aatcaagcta	gttttgatgt	agctcaacat	ggaaagaagg	2100
tacagaaagt	gatgtgttca	aaacattagc	aaattaaggc	tgaatgtggt	tggctcatgc	2160
ctgtaatccc	agcattttgg	gaggctgagg	caggaggatt	gcttgagccc	aggaggttga	2220

2280

2283 aaa <210> 396 <211> 1634 <212> DNA <213> Homo sapiens <400> 396 60 ggtggcgtgg ggactccctg aaagcagagc ggcagggcgc ccggaagtcg tgagtcgagt cttcccgggc taatccatgc cgggttggag gctgctgacg caggtcggcg cccaggtgct 120 gggtcgactc ggggacggcc tgggtgctgc cctgggcccg gggaacagaa cacacatctg 180 gctttttgtt agaggtcttc atggaaagag tggtacatgg tgggatgagc atctttctga 240 agaaaatgtc ccattcatta agcagttggt ctctgatgaa gataaagccc aattagcaag 300 taaactgtgt cctctgaaag atgaaccatg gcctatacat ccttgggaac caggttcctt 360 tagagttggt cttattgcct tgaagctggg catgatgcct ttatggacca aggatggtca 420 aaagcatgtg gtcacattac ttcaggtaca agactgtcat gtcttaaaat atacgtcaaa 480 ggaaaactgt aatggaaaaa tggcaaccct gtctgtagga ggaaaaactg tatcacgttt 540 tcgtaaagct acatccatat tggaatttta ccgggaactt ggattgccgc cgaaacagac 600 agttaaaatc tttaatataa cagataatgc tgcaattaaa ccaggcactc ctctttatgc 660 tgctcacttt cgtccaggac agtatgtgga tgtcacagcc aaaactattg gtaaaggttt • 720 780 tcaaggtgtc atgaaaagat ggggatttaa aggccagcct gctacgcatg gtcaaacgaa aacccacagg agacctggag ctgttgcaac tggtgatatt ggcagagtct ggcctggaac 840 900 taaaatgcct ggaaaaatgg gaaacatata caggacagaa tatggactga aagtgtggag 960 aataaacaca aagcacaaca taatctatgt aaatggctct gtacctggac ataaaaattg cttagtaaag gtcaaagatt ctaaactgcc tgcatataag gatctcggta aaaatctacc 1020 attccctaca tattttcctg atggagatga agaggaactg ccagaagatt tgtatgatga 1080 aaacgtgtgt cagcccggtg cgccttctat tacatttgcc taacatcttt ggacgtggca 1140 gaaccttaca tattctgtga gcttcgatga gccagagtga tatcataacc accagaaatc 1200 atacteteet ttettagtea caacaaaate acacatgtea tetttgteaa gggcataaat 1260 atatcattca tacccccatt aaattttgtt agaaaaatta ccacattaaa tatatgagtt 1320 aaqtaqattq qatttqctqa aattggtgtt gggcatatta gcaaaatatt cttaatttgt 1380 1440 ggactcgatt cttttttact acatatttcc caagttatct taagatgtct gtaaatttaa cttttattaa aqttttqtca atctttgtga aataqtqqtt qtqqaacagt agaaaaccat 1500

atggggacta tagtgcaacc tatttgggta aagaaaccat ttgctaaaat ggagaaagta 1560 1620 aatagatttt tatttaaatt acagaaacat gttaaaggcc ggacaaagga aagacaataa 1634 aatcataaat tatc <210> 397 <211> 1943 <212> DNA <213> Homo sapiens <400> 397 gcctcgtcag ctgcctgggc gggctgggag gcgcgggttg aaaagtctcg ttccaagttt 60 ggagagagag agaagagcgc ctcagacctc ggtacccgcg agcggggagg aggcaggaaa 120 gaaggacgcg gcgtctgggg agcacccagg cagcaagacg gggcccgggc tttcgacagt 180 ggggagtgtg acgcgcttgg gaaaggcagg agcgccacgt cgggctgctc ttggctaacg 240 agaggagtec gaggeggegg egaggggega acgaecegae geaagatgge gagtaaagag 300 atgtttgaag atactgtgga ggagcgtgtc atcaatgaag aatataaaat ctggaagaag 360 aatacaccgt ttctatatga cctggttatg acccatgctc ttcagtggcc cagtcttacc 420 gttcagtggc ttcctgaagt gactaaacct gaaggaaaag attatgccct tcattggcta 480 gtgctgggga ctcatacgtc tgatgagcag aatcatctgg tggttgctcg agtacatatt 540 cccaatgatg atgcacagtt tgatgcttcc cattgtgaca gtgacaaggg tgaatttggt 600 660 ggctttggtt ctgtaacagg aaaaattgaa tgtgaaatta aaatcaatca cgaaggagaa gtaaaccgtg ctcgttacat gccgcagaat cctcacatca ttgctacaaa aacaccatct 720 tctgatgtgt tggtttttga ctatacaaaa caccctgcta aaccagaccc aagtggagaa 780 840 tgtaatcctg atctcagatt aagaggtcac cagaaggaag gctatggtct ctcctggaat 900 tcaaatttga gtggacatct cctaagtgca tctgatgacc atactgtttg tctgtgggat ataaacgcag gaccaaaaga aggcaaaatt gtggatgcta aagccatctt tactggccac 960 tcagctgttg tagaggatgt ggcctggcac ctgctgcacg agtcattgtt tggatctgtt 1020 gctgatgatc agaaacttat gatatgggac accaggtcca ataccacctc caagccgagt 1080 cacttggtgg atgcgcacac tgccgaagtc aactgcctct cattcaatcc ctacagcgaa 1140 tttattctag ccaccggctc tgcggataag accgtagctt tatgggatct gcgtaactta 1200 aaattaaaac tccatacctt cgaatctcat aaagatgaaa ttttccaggt ccactggtct 1260 ccacataatg aaactattct ggcttcaagt ggtactgacc gccgcctgaa tgtgtgggat 1320 ttaagtaaaa ttggggaaga acaatcagca gaagatgcag aagatgggcc tccagaactc 1380

1440

ctqtttattc atgqaggaca cactgctaag atttcagatt ttagctggaa ccccaatgag

ccttgggtca tttgctcagt	gtctgaggat	aacatcatgc	agatatggca	aatggctgaa	1500
aatatttaca atgatgaaga	gtcagatgtc	acgacatccg	aactggaggg	acaaggatct	1560
taaacccaaa gtacgagaaa	tgtttctgtt	gaatgtaatg	ctacatgaat	gcttgattta	1620
tcaagcgcca aaaaggcatt	gtatagtagg	aaatgtaagt	ggggtggctt	atggcttctt	1680
tatcctctga ttctagcatt	tcaagtgagc	tgttgcgtac	tgtatcatat	tgtagctatt	1740
agggaagaga agaatgttgc	ttaagaaaga	acatcaccat	tgattttaaa	tacaagtagc	1800
agggtattgc ctttgattca	actgttttaa	gtcctcattt	tctcaaacta	agtgcttgct	1860
gttcccaaat atgcaagaat	aacttttaca	ctttttcctt	ccaacacttc	ttgattggct	1920
ttgcagaaat aaagttttaa	aat				1943
<210> 398 <211> 594 <212> DNA <213> Homo sapiens <400> 398				•	
ctgcccttt cttttttca	ggcggccggg	aagatggcgg	acattcagac	tgagcgtgcc	60
taccaaaagc agccgaccat	ctttcaaaac	aagaagaggg	tcctgctggg	agaaactggc	120
aaggagaagc tcccgcggta	ctacaagaac	atcggtctgg	gcttcaagac	acccaaggag	180
gctattgagg gcacctacat	tgacaagaaa	tgccccttca	ctggtaatgt	gtccattcga	240
gggcggatcc tctctggcgt	ggtgaccaag	atgaagatgc	agaggaccat	tgtcatccgc	300
cgagactatc tgcactacat	ccgcaagtac	aaccgcttcg	agaagcgcca	caagaacatg	360
totgtacacc tgtccccctg	cttcagggac	gtccagatcg	gtgacatcgt	cacagtgggc	420
gagtgccggc ctctgagcaa	gacagtgcgc	ttcaacgtgc	tcaaggtcac	caaggctgcc	480
ggcaccaaga agcagttcca	gaagttctga	ggctggacat	cggcccgctc	cccacaatga	540
aataaagtta ttttctcatt	ccaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaa	594
<210> 399 <211> 2141 <212> DNA <213> Homo sapiens <400> 399					
cgggcgaacc ccctcgcact	ccctctggcc	ggcccagggc	gccttcagcc	caacctcccc	60
agccccacgg gcgccacgga	acccgctcga	tctcgccgcc	aactggtaga	catggagacc	120
catgactgga caagggtaca	gcgccccgag	accgccgtcg	ctcggacgct	cctgctcggc	180
tgggtcttcg cccaggtggc	cggcgcttca	ggcactacaa	atactgtggc	agcatataat	240
ttaacttgga aatcaactaa	tttcaagaca	attttggagt	gggaacccaa	acccgtcaat	300

caagtctaca	ctgttcaaat	aagcactaag	tcaggagatt	ggaaaagcaa	atgcttttac	360
acaacagaca	cagagtgtga	cctcaccgac	gagattgtga	aggatgtgaa	gcagacgtac	420
ttggcacggg	tcttctccta	cccggcaggg	aatgtggaga	gcaccggttc	tgctggggag	480
cctctgtatg	agaactcccc	agagttcaca	ccttacctgg	agacaaacct	cggacagcca	540
acaattcaga	gttttgaaca	ggtgggaaca	aaagtgaatg	tgaccgtaga	agatgaacgg	600
actttagtca	gaaggaacaa	cactttccta	agcctccggg	atgtttttgg	caaggactta	660
atttatacac	tttattattg	gaaatcttca	agttcaggaa	agaaaacagc	caaaacaaac	720
actaatgagt	ttttgattga	tgtggataaa	ggagaaaact	actgtttcag	tgttcaagca	780
gtgattccct	cccgaacagt	taaccggaag	agtacagaca	gcccggtaga	gtgtatgggc	840
caggagaaag	gggaattcag	agaaatattc	tacatcattg	gagctgtggt	atttgtggtc	900
atcatccttg	tcatcatcct	ggctatatct	ctacacaagt	gtagaaaggc	aggagtgggg	960
cagagctgga	aggagaactc	cccactgaat	gtttcataaa	ggaagcactg	ttggagctac	1020
tgcaaatgct	atattgcact	gtgaccgaga	acttttaaga	ggatagaata	catggaaacg	1080
caaatgagta	tttcggagca	tgaagaccct	ggagttcaaa	aaactcttga	tatgacctgt	1140
tattaccatt	agcattctgg	ttttgacatc	agcattagtc	actttgaaat	gtaacgaatg	1200
gtactacaac	caattccaag	ttttaatttt	taacaccatg	gcaccttttg	cacataacat	1260
gctttagatt	atatattccg	cacttaagga	ttaaccaggt	cgtccaagca	aaaacaaatg	1320
ggaaaatgtc	ttaaaaaatc	ctgggtggac	ttttgaaaag	ctttttttt	tttttttt	1380
tgagacggag	tcttgctctg	ttgcccaggc	tggagtgcag	tagcacgatc	tcggctcact	1440
tgcaccctcc	gtctctcggg	ttcaagcaat	tgtctgcctc	agcctcccga	gtagctggga	1500
ttacaggtgc	gcactaccac	gccaagctaa	tttttgtatt	ttttagtaga	gatggggttt	1560
caccatcttg	gccaggctgg	tcttgaattc	ctgacctcag	tgatccaccc	accttggcct	1620
cccaaagatg	ctagtattat	gggcgtgaac	caccatgece	agccgaaaag	cttttgaggg	1680
gctgacttca	atccatgtag	gaaagtaaaa	tggaaggaaa	ttgggtgcat	ttctaggact	1740
tttctaacat	atgtctataa	tatagtgttt	aggttctttt	ttttttcagg	aatacatttg	1800
gaaattcaaa	acaattgggc	aaactttgta	ttaatgtgtt	aagtgcagga	gacattggta	1860
ttctgggcag	cttcctaata	tgctttacaa	tctgcacttt	aactgactta	agtggcatta	1920
aacatttgag	agctaactat	atttttataa	gactactata	caaactacag	agtttatgat	1980
ttaaggtact	taaagcttct	atggttgaca	ttgtatatat	aattttttaa	aaaggttttt	2040
ctatatgggg	attttctatt	tatgtaggta	atattgttct	atttgtatat	attgagataa	2100

tttatttaat atactttaaa taaaggtgac tgggaattgt t

<210> 400 <211> 1102 <212> DNA 2141

180

240

<213> Homo sapi	ens.				
<400> 400 gcctggacag tcago	aagga attgtctccc	agtgcatttt	gccctcctgg	ctgccaactc	60
tggctgctaa agcgg	sctgcc acctgctgca	gtctacacag	cttcgggaag	aggaaaggaa	120
cctcagacct tccag	gatege tteetetege	aacaaactat	ttgtcgcagg	aataaagatg	180
gctgctgaac cagta	gaaga caattgcatc	aactttgtgg	caatgaaatt	tattgacaat	240
acgctttact ttata	ıgctga agatgatgaa	aacctggaat	cagattactt	tggcaagctt	300
gaatctaaat tatca	ngtcat aagaaatttg	aatgaccaag	ttctcttcat	tgaccaagga	360
aatcggcctc tattt	gaaga tatgactgat	tctgactgta	gagataatgc	accccggacc	420
atatttatta taagt	atgta taaagatago	cagcctagag	gtatggctgt	aactatctct	480
gtgaagtgtg agaaa	atttc aactctctcc	tgtgagaaca	aaattatttc	ctttaaggaa	540
atgaatcctc ctgat	aacat caaggataca	aaaagtgaca	tcatattctt	tcagagaagt	600
gtcccaggac atgat	aataa gatgcaattt	gaatcttcat	catacgaagg	atactttcta	660
gcttgtgaaa aagaq	gagaga cctttttaaa	ctcattttga	aaaaagagga	tgaattgggg	720
gatagatcta taatq	gttcac tgttcaaaac	gaagactagc	tattaaaatt	tcatgccggg	780
cgcagtggct cacgo	cctgta atcccagccc	tttgggaggc	tgaggcgggc	agatcaccag	840
aggtcaggtg ttcas	agacca gcctgaccaa	catggtgaaa	cctcatctct	actaaaaata	900
ctaaaaatta gctga	igtgta gtgacgcatg	ccctcaatcc	cagctactca	agaggctgag	960
gcaggagaat cactt	geact eeggaggtag	aggttgtggt	gagccgagat	tgcaccattg	1020
cgctctagcc tgggc	caacaa cagcaaaact	ccatctcaaa	aaataaaata	aataaataaa	1080
caaataaaaa attca	itaatg tg				1102
<210> 401 <211> 1437 <212> DNA <213> Homo sapi	lens				
<400> 401 gcttcctcag acato	geeget getgetaetg	ctgcccctgc	tgtgggcagg	ggccctggct	60
atggatccaa attto	tggct gcaagtgcag	gagtcagtga	cggtacagga	gggtttgtgc	120

gtcctcgtgc cctgcacttt cttccatccc ataccctact acgacaagaa ctccccagtt

catggttact ggttccggga aggagccatt atatccgggg actctccagt ggccacaaac

aagctagatc	aagaagtaca	ggaggagact	cagggcagat	teegeeteet	tggggatccc	300
agtaggaaca	actgctccct	gagcatcgta	gacgccagga	ggagggataa	tggttcatac	360
ttctttcgga	tggagagagg	aagtaccaaa	tacagttaca	aatctcccca	gctctctgtg	420
catgtgacag	acttgaccca	caggcccaaa	atcctcatcc	ctggcactct	agaacccggc	480
cactccaaaa	accttacctg	ctctgtgtcc	tgggcctgtg	agcagggaac	acccccgatc	540
ttctcctggt	tgtcagctgc	ccccacctcc	ctgggcccca	ggactactca	ctcctcggtg	600
ctcataatca	ccccacggcc	ccaggaccac	ggcaccaacc	tgacctgtca	ggtgaagttc	660
gctggagctg	gtgtgactac	ggagagaacc	atccagctca	acgtcaccta	tgttccacag	720
aacccaacaa	ctggtatctt	tccaggagat	ggctcaggga	aacaagagac	cagagcagga	780
ctggttcatg	gggccattgg	aggagctggt	gttacagccc	tgetegetet	ttgtctctgc	840
ctcatcttct	tcatagtgaa	gacccacagg	aggaaagcag	ccaggacagc	agtgggcagc	900
aatgacaccc	accctaccac	agggtcagcc	tccccgaaac	accagaagaa	ctccaagtta	960
catggcccca	ctgaaacctc	aagctgttca	ggtgccgccc	ctactgtgga	gatggatgag	1020
gagctgcatt	atgcttccct	caactttcat	gggatgaatc	cttccaagga	cacctccacc	1080
gaatactcag	aggtcaggac	ccagtgagga	accctcaaga	gcatcaggct	cagctagaag	1140
atccacatcc	tctacaggtc	ggggaccaaa	ggctgattct	tggagattta	actccccaca	1200
ggcaatgggt	ttatagacat	tatgtgagtt	tcctgctata	ttaacatcat	cttgagactt	1260
tgcaagcaga	gagtcgtgga	atcaaatctg	tgctctttca	tttgctaagt	gtatgatgtc	1320
acacaagctc	cttaaccttc	catgtctcca	ttttcttctc	tgtgaagtag	gtataagaag	1380
tcctatctca	tagggatgct	gtgagcatta	aataaaggta	cacatggaaa	acaccag	1437
<210> 402 <211> 3133 <212> DNA	8					

<213> Homo sapiens

<400> 402

gggcttcgtg ttcctgggtg ctgaccgtgc actccccgcc gcccgaggac ttagagctct 60 ggaagtagct ctccagcttc cttcgtactc gggggccgga cttgtacacc cgcacgagga 120 gcggggacgg cgggcgaa agtgggccac catatctgga aactacagtc tatgctttga 180 agcgcaaaag ggaataaaca tttaaagact cccccgggga cctggaggat ggacttttcc 240 atggtggccg gagcagcagc ttacaatgaa aaatcagaga ctggtgctct tggagaaaac 300 tatagttggc aaattcccat taaccacaat gacttcaaaa ttttaaaaaa taatgagcgt 360 cagctgtgtg aagtcctcca gaataagttt ggctgtatct ctaccctggt ctctccagtt 420

caggaaggca	acagcaaatc	tctgcaagtg	ttcagaaaaa	tgctgactcc	taggatagag	480
ttatcagtct	ggaaagatga	cctcaccaca	catgctgttg	atgctgtggt	gaatgcagcc	540
aatgaagatc	ttctgcatgg	gggaggcctg	gccctggccc	tggtaaaagc	tggtggattt	600
gaaatccaag	aagagagcaa	acagtttgtt	gccagatatg	gtaaagtgtc	agctggtgag	660
atagctgtca	cgggagcagg	gaggetteec	tgcaaacaga	tcatccatgc	tgttgggcct	720
cggtggatgg	aatgggataa	acagggatgt	actggaaagc	tgcagagggc	cattgtaagt	780
attctgaatt	atgtcatcta	taaaaatact	cacattaaga	cagtagcaat	tccagccttg	840
agctctggga	tttttcagtt	ccctctgaat	ttgtgtacaa	agactattgt	agagactatc	900
cgggttagtt	tgcaagggaa	gccaatgatg	agtaatttga	aagaaattca	cctggtgagc	, 960
aatgaggacc	ctactgttgc	tgcctttaaa	gctgcttcag	aattcatcct	agggaagagt	1020
gagctgggac	aagaaaccac	cccttcttc	aatgcaatgg	tcgtgaacaa	cctgaccctc	1080
cagattgtcc	agggccacat	tgaatggcag	acggcagatg	taattgttaa	ttctgtaaac	1140
ccacatgata	ttacagttgg	acctgtggca	aagtcaattc	tacaacaagc	aggagttgaa	1200
atgaaatcgg	aatttcttgc	cacaaaggct	aaacagtttc	aacggtccca	gttggtactg	1260
gtcacaaaag	gatttaactt	gttctgtaaa	tatatatacc	atgtactgtg	gcattcagaa	1320
tttcctaaac	ctcagatatt	aaaacatgca	atgaaggagt	gtttggaaaa	atgcattgag	1380
caaaatataa	cttccatttc	ctttcctgcc	cttgggactg	gaaacatgga	aataaagaag	1440
gaaacagcag	cagagatttt	gtttgatgaa	gttttaacat	ttgccaaaga	ccatgtaaaa	1500
caccagttaa	ctgtaaaatt	tgtgatcttt	ccaacagatt	tggagatata	taaggctttc	1560
agttctgaaa	tggcaaagag	gtccaagatg	ctgagtttga	acaattacag	tgtcccccag	1620
tcaaccagag	aggagaaaag	agaaaatggg	cttgaagcta	gatctcctgc	catcaatctg	1680
atgggattca	acgtggaaga	gatgtgtgag	gcccacgcat	ggatccaaag	aatcctgagt	1740
ctccagaacc	accacatcat	tgagaataat	catattctgt	accttgggag	aaaggaacat	1800
gacattttgt	ctcagcttca	gaaaacttca	agtgtctcca	tcacagaaat	tatcagccca	1860
ggaaggacag	agttagagat	tgaaggagcc	cgggctgacc	tcattgaggt	ggttatgaac	1920
attgaagata	tgctttgtaa	agtacaggag	gaaatggcaa	ggaaaaagga	gcgaggcctt	1980
tggcgctcgt	taggacagtg	gactattcag	caacaaaaaa	cccaagacga	aatgaaagaa	2040
aatatcatat	ttctgaaatg	tcctgtgcct	ccaactcaag	agcttctaga	tcaaaagaaa	2100
cagtttgaaa	aatgtggttt	gcaggttcta	aaggtggaga	agatagacaa	tgaggtcctt	2160
atggctgcct	ttcaaagaaa	gaagaaaatg	atggaagaaa	aactgcacag	gcaacctgtg	2220

agccataggc	tgtttcagca	agtcccatac	cagttctgca	atgtggtatg	cagagttggc	2280
tttcaaagaa	tgtactcgac	accttgcgat	ccaaaatacg	gagctggcat	atacttcacc	2340
aagaacctca	aaaacctggc	agagaaggcc	aagaaaatct	ctgctgcaga	taagctgatc	2400
tatgtgtttg	aggctgaagt	actcacaggc	ttcttctgcc	agggacatcc	gttaaatatt	2460
gttcccccac	cactgagtcc	tggagctata	gatggtcatg	acagtgtggt	tgacaatgtc	2520
tccagccctg	aaacctttgt	tatttttagt	ggcatgcagg	ctatacctca	gtatttgtgg	2580
acatgcaccc	aggaatatgt	acagtcacaa	gattactcat	caggaccaat	gagacccttt	2640
gcacagcatc	cttggagggg	attcgcaagt	ggcagccctg	ttgattaatc	tctacatcat	2700
tttaacagct	ggtatggcct	taccttgggt	gaactaacca	aataatgacc	atcgatggct	2760
caaagagtgg	cttgaatata	tcccatgggt	tatctgtatg	gactgactgg	gttattgaaa	2820
ggactagcca	catactagca	tcttagtgcc	tttatctgtc	tttatgtctt	ggggttgggg	2880
taggtagata	ccaaatgaaa	cactttcagg	accttccttc	ctcttgcagt	tgttctttaa	2940
tctcctttac	tagaggagat	aaatattttg	catataatga	agaaatttt	ctagtatata	3000
acgcaggcct	tttattttct	aaaatgatga	tagtataaaa	atgttaggat	aacagaatga	3060
ttttagattt	tccagagaat	attataaagt	gctttaggta	tgaaaataaa	tcatctttgt	3120
ctgattaaaa	aaaaaaaa					3138

<210> 403

<211> 2490

<212> DNA

<213> Homo sapiens

<400> 403

aageetgtgt tggatttgtg atteagggte atggtgaeee tgateeagtt tgggtggaaa 60 tecttectaa gtateataag aageatettg geagagatge tttggtggea geeatgaget 120 ttgctggagg ccttgcttcc catagccttg gctgtggggc aaggaactct gccaggcgag 180 ggggatgctg ccctggatca acagaagcct ggtgggtttg ctcgtgttag agtgtcctgc 240 cttettactg acaactette teggtgatag cetetettee etggattgtg acatatggaa 300 tgacagtgca ggtaccaccg aggctagcac agtcaagcct ccagctaagc tggatccctg 360 aagcetgeta teaegeagae aggetatgeg getgeetegg accatgetag gecaettget 420 99ggtgtcaa cctaccacca aaggggtctt ttagcaaacc tcatggggaa caggaacatt 480 540 cctgctcatc cctggccaca ggctgcagac ccagcactgg cccttgcgtg agtcagagcc 600 tggggctggc cctagcccct tctactgact tcctcattta agccaattat ataagctcac 660 attgatcagg gagggaggga aagagctaaa gagggtcaca caagtggcta ttttccctgc

agtgtttctg	tgtggtgaaa	ataacccagt	ccactaaggg	gcggggagtg	aatggatggc	720
tggattttcc	ccaagctcct	tatagcctaa	tgttgtcagg	atgtgagtat	gaggaattta	780
gcctcttata	gtgaaatgag	tccaactctg	ggctttgctt	agaggagagc	tcctgtcagg	840
cttcctataa	tatgaaaaga	agtcaccatt	ggggaactag	agaccccaga	ccttgtcata	900
tggatatttg	agaatgtaat	gcatctcagg	cctcgtgctg	gaactctagg	gcactctagg	960
caggctcaga	acacttgata	ttcctgacag	ctacacacct	gacatgcagg	tacatacctg	1020
atcggtgtca	tctcctaaca	aggattttca	gttcctcggg	agagcaataa	tctttgtagg	1080
aaagacatcc	ctgcaatagg	tgatatgtgg	tccttagaag	ttttattcct	ttactacttg	1140
gaagaaaagt	tctttggtga	ttcttctctg	cttttgaaga	tgatcaaaag	catcttcatt	1200
gattttctga	aacgaaagcc	ttgtctgaaa	ccaattaata	cttgggaaac	agctgggctt	1260
ggaggagtag	aatgccagag	ataaatccat	ggctcctgct	ctggctctct	tctgcagaaa	1320
tgagggcaac	agtgaggcca	cttccctggc	aaatgtgcag	ctcaggatag	ggaagcataa	1380
gaccctctgt	ttaaaagaga	gtcaagtagg	taaccaaagc	caagctctgt	gcaaggtgct	1440
ttggagttgt	aaattgagga	gtgcatcctt	gctgtcttga	accattctgt	ttgcaatggt	1500
gagaccttac	ataacctagc	cttgcagggc	cgccacacaa	ccctggagtc	ctagagttgg	1560
aggaaccttt	gtatccatct	gacttctcat	tttgcagaat	atgatgagaa	agtagaggat	1620
cgctctgttc	accactcttg	ctattccatt	agtggggaga	tgcctgctag	catgtgtgag	1680
gggaacactc	tgatacactg	ggaagtatcg	gaaattccca	gaaacacaaa	cataaaataa	1740
ctctcctaga	cccaggtact	ggggactgtc	tcagtccgtg	tggcatgata	aataaaaggt	1800
taggatcaág	tctttgtatt	tttcaagttg	tggtagctga	ttattcctgt	tttaagtact	1860
ctgaaattga	tctgtgatca	ataatactaa	tatgttatct	tttaccgtat	tctgcctctc	1920
actattgatt	ttaattagtt	aggagtattt	gagctgttat	ttcttgagct	taatatttt	1980
ttagagttaa	ctctttaagg	agataatcat	ggctgtagac	aaggccaggg	ctggctgacg	2040
tgccttagaa	ggtttgaatg	caataaagcg	gtgtttggcg	ttctcctgca	ttgtagtgcg	2100
ggtacaaaat	gctatttgtt	cgtcatactg	ttgtcagcag	atgagccgcc	cactacagac	2160
ggctactgcc	cagggacctg	cccaggcccc	acccaagggc	tcccaagggt	tgagatttct	2220
gcagacctat	agccagcaca	cttagtcctg	ccctatatag	agttcctctt	cgggaagctt	2280
ttgataagga	attctcagac	cgatagggtg	tctgtctggg	ctttgctgcg	ggacagtcta	2340
actgtggggg	ctaggggaaa	gcaggagagt	atcgatcaaa	gagtaagcca	cacacggata	2400
atcagttact	agggatggag	gtgtgagggt	tcattatatt	attcatttta	ctgttgtata	2460
tgtttgaaaa	tgtctataat	aaaaagcttt				2490

<210> 404 <211> 2560 <212> DNA <213> Homo sapiens

<400> 404 agggaaccta ttttqctqtc aatqccaatt attctgccaa tqatacqtac tccaqaccaq 60 atgcaaatgg gagaaagcat gtgtattatg tgcgagtact tactggaatc tatacacatg 120 gaaatcattc attaattgtg cctccttcaa agaaccctca aaatcctact gacctgtatg 180 acactgtcac agataatgtg caccatccaa gtttatttgt ggcattttat gactaccaag 240 catacccaga gtaccttatt acgtttagaa aataacactt tggtatcctt cccacaaaat 300 tattctccat ttgtacatat ctagttgtaa aacaagtttt agcttttttt ttaattcctc 360 ttaacagatt tttctaatat ccaaggatca ttctttgtcg ctgcagtcag tctttcttca 420 gcttctcttt cataatggaa atgaacttat tatcttgaga gcaaataact tggaaaattt 480 aaatgaqata atgcagttgc aactgtgtgt ccacaagtat ggacatcaaa tctgtgggaa 540 aagaacaggt ttgtattttc aggaaggaga gaataacagt cttatagaca gagggcacag 600 ctaagcacag ctgccactgc aggagacagg ccccatgtca ggatgccata gtgctgtggg 660 720 gagcacagta ttacccagtg ggtagggctt ctgtcttccc tgggagcagg gatggtatct tagtcaattt ttttcccttg agatgaggtc tgtgcctgat gtacaacgga tactccataa 780 atgtttgaca aaccaacgaa gaatgaaaaa aagcctagtc agactcccat ccaaagtagg 840 aactatctct ttaacattct tgactcacta tcactttacc tcaaattgaa cagattccat 900 qacggaactt cattetteac aaactageet gacatgtggg acagetetgg ccagggetet 960 gggactgcag tgtacttgcg ctctgcacgg tccaggagct gtgatgtggc tgtggtctag 1020 1080 gggaatcctg cctgcccat ggagttgcgc agcacaaccc tggctccaat tgccagaagg 1140 cttgttgccc aggctggagt gcaatggcgc gatctcagct cactgcagcc actgcctccc 1200 aggttcaagt gattctcctg cctcagccac ccgagtagct gggattacag gcatgcgcta 1260 acacaccag ctaattttgt atttttagta gagacgaggt ttctccatgt tcgacaggct 1320 ggtctcgaac tcccacctca gcctcccaaa ctgctgggat tacaggtgtg agccaccgtg 1380 accagccaat gtgccttctt atagtgtcta ctcattggtc tttgttctgc ccagtgataa 1440 caatgggata acgcctgcta cacatcttca ttgtgaaacc cttcccctgt gctgagatta 1500 aatgaactet aagattatta aatagtatat tttccttgac agcctagcgt ttgatgattt 1560 taaaqcctta tqtataaata aaccaaagga agtaagcagt catattgcta atttgctaac 1620

tcctatctat	tgaatggtga	agttttaaaa	atttccccag	gtaagtttaa	gattcaaaca	1680
ccatctattg	agcacctaca	ttgtgtgcca	ggtagtaaaa	taggtgcttt	catacacatc	1740
gtctcaattc	ctgtgaggtc	ggaattatct	ctgcatttga	aacttgagga	aacatgctca	1800
gagtgcaaga	agcttccttg	cctgagatca	cctagaaagg	aaccctcaga	gccggcaact	1860
gaatcttggt	ccctgtgatg	tcaagcccat	tgctctccca	ctgcagaaca	tggcctctag	1920
attaatgcca	ccgattcagg	aacacctccg	acagtcttga	aataccccca	tgttgccttg	1980
tttgttttt	ccttctggct	tcttctatta	cagtctcttc	attggaagct	ctgtaggcca	2040
aggccagagc	tgatactgac	acggagccaa	tgcagatagc	acatcagatg	ctaggggtcg	2100
ctgggaggat	taagggactt	aatctgctag	gaacacctgt	acttgaagtg	gaggaggcta	2160
gggggccaca	gttgctgctt	cattaacata	gaggttttgg	atttttttct	cttgtggttt	2220
gttttttaag	tggattggca	gactccttgt	tgcttaagag	tggctttcta	ggcaggccac	2280
tggcatctga	attcatcatt	gacaataaat	gtaagaaatt	ggaataaaaa	agagagacct	2340
gctgttattc	gcttttgttc	tccagtgatt	tgattaactc	agggcaaggc	tgaatatcag	2400
agtgtatcgc	actgaagaat	aataatccat	tcagtaatgt	tatagttatc	ctcagtctaa	2460
atatgtcaac	tgtcattttg	ctgcttttca	aataaaatac	ttgaaaactg	taaaaaaaaa	2520
aaaaaaaaa	aaaaaaaaaa	aaaaaaaaa	aaaaaaaaaa			2560

<210> 405

<211> 1441

<212> DNA

<213> Homo sapiens

<400> 405

ggtatggcta ctgggttata ggattacaga atacatgtga atataatgct tttgaggact 60 ceteetette tgateceaag gttttgacte tetttatgge tgtgceteee tgtegtattg 120 gggttttcct agactatgag gcaggcattg tctcattttt caatgtcaca aaccacggag 180 cactcatcta caagttetet ggatgteget tttetegace tgettateeg tattteaate 240 cttggaactg cctagtcccc atgactgtgt gcccaccgag ctcctgagtg ttctcattcc 300 tttacccact tctgcatagt agcccttgtg ctgagactca gattctgcac ctgagttcat 360 ctctactgag accatctctt cctttctttc cccttctttt acttagaatg tctttgtatt 420 catttgctag ggcttccata gcaaagcatc atagattgct gatttaaact gtaattgtat 480 tgccgtactg tgggctggaa atcccaaatc tagattccag cagagttggt tctttctgag 540 gtctqcaagg aagggctctg ttccatgcct ctctccttgg cttgtagaag gcatcttgtc 600 cctatgactc ttcacattgt ctttatgtac atctctgtgc ccaagttttc cctttttatt 660

aagacaccag tcatactggc tcagggccca ccgctaatgc cttaatgaaa tcattttaac 720 attatattct ctacaaagac cttatttcca aataagataa tatttggagg tattgggaat 780 aaaaactcca acatataaat ttgaggaagg cacgatttca ctcataacaa tcttaccctt 840 tcttgcaaga gatgcttgta cattattttc ctaatacctt ggtttcacta gtagtaaaca 900 ttattatttt ttttatattt gcaaaggaaa catatctaat ccttcctata gaaagaacag 960 tattgctgta attccttttc ttttcttcct catttcctct gccccttaaa agattgaaga 1020 aagagaaact tgtcaactca tatccacgtt atctagcaaa gtacataaga atctatcact 1080 aagtaatgta teetteagaa tgtgttggtt taccagtgac accecatatt catcacaaaa 1140 ttaaagcaaq aagtccataq taatttattt qctaataqtq qatttttaat qctcaqaqtt 1200 tctgaggtca aattttatct tttcacttac aagctctatg atcttaaata atttacttaa 1260 tgtattttgg tgtattttcc tcaaattaat attggtgttc aagactatat ctaattcctc 1320 tgatcacttt gagaaacaaa cttttattaa atgtaaggca cttttctatg aattttaaat 1380 1440 a 1441 <210> 406 <211> 620 <212> DNA<213> Homo sapiens

```
<220>
<221> misc feature
<222>
      (455)..(455)
<223> n is a, c, g, t or u
<220>
<221> misc feature
<222> (538)..(538)
<223> n is a, c, g, t or u
<220>
<221> misc_feature
<222> (589)..(589)
<223> n is a, c, g, t or u
<400> 406
cccatctgaa agttatggct ttcaaatcac agcctatttc ctcaagagag ggatacgcct
                                                                      60
tegetgeate aggageaeae agaatgetga actetgtgta tteeetgaea gatttgtggt
                                                                     120
ttqtqtcagt cagcttgcat tcagtcgtga tcttttagca agtcagaatg aagatttgga
                                                                     180
taaccagage accattgeet getteettet teetgaagga aggggteeae cetteacaat
                                                                     240
taaaqtcctg gcactgagcc acattcagag gaggctgatc tatgcccttc caataccagg
                                                                     300
```

ggtgtcccag acagaagcat	ctggcagcta	cccaaggaat	tctggggtcc	tgcagaatcc	360
aagtttacaa accaccagaa	caaggttttg	cttcaggata	gtgtttgact	tcactgctgc	420
gaaatgactg tctcctggct	agtaggatct	agatntctcc	ctccctttga	ccccaccttg	480
tggaaaccca gctgtctact	ggcagacatt	ggtgagaaag	cggagctacg	ctagggcnag	540
gagatgtcat ggcctcaact	cttcgctgtc	cgggtcctca	ggccacctnc	ccaatgagcc	600
ctgctcatgc acggatcccg	ra,		•		620
<210> 407 <211> 1519 <212> DNA <213> Homo sapiens					
<400> 407 ggcacgaggc agcctggccc	ttatctgcac	tgggccagca	tcctccggcc	gctgcgccgc	60
caggggtgag agggaggaaa	ccgggccgcc	gggggcgggg	agaaggcggg	ccggcccggg	120
agccgctcac tttccctggg	ggggacctac	gcggagacct	cggctatcct	ggccttccga	180
ggcccacgag gaggcgcggc	ccaacgccgg	ggcctggagc	attgaggccg	gaccctcgcg	240
agacagcaga gcctggcctg	acgctggaaa	ccacaccctg	gcccagactg	ccagccctga	300
cgggacagag ccagggcact	caccaggctg	caagaacagt	gctggggtga	gtacccccac	360
gtcggggtcc atgtgcccgc	ctcaggcaca	ggcagaggtg	ggccccacca	tgactgagaa	420
ggcagagatg gtgtgtgccc	ccagcccagc	gcctgcccca	ccccctaagc	ctgcctcgcc	480
tgggcccccg caggtggagg	aggtgggcca	ccgaggaggc	tectegecec	ccaggctgcc	540
acctggtgta ccagtgatca	gcctgggcca	cagcaggccc	ccaggggtag	ccatgcccac	600
cacagagetg ggcaetetge	ggcccccgct	gctgcaactc	tccaccctgg	gaactgcccc	660
gcccactttg gccctgcact	accaccctca	ccccttcctc	aacagtgtct	acattgggcc	720
agcaggacct tttagcatct	tccctagcag	ccggttgaag	cggagaccaa	gccactgtga	780
gctggacctg gctgaggggc	accagcccca	gaaggtggcc	cggcgcgtgt	tcaccaacag	840
cegggagege tggeggeage	agaacgttaa	cggcgccttc	gccgagctga	ggaagctgct	900
gccgacgcac ccgcccgacc	ggaagctgag	caagaacgag	gtgctccgcc	tagccatgaa	960
gtacatcggc ttcctggtgc	ggctgctgcg	cgaccaagcc	gcagctctgg	ccgcaggccc	1020
cacccctccc gggcctcgca	aacggccggt	gcaccgggtc	ccagacgacg	gcgcccgccg	1080
gggatccgga cgcagggccg	aggcggcagc	gcgctcgcag	cccgcgcccc	cggccgaccc	1140
cgacggcagc cccggtggag	cggcccggcc	catcaagatg	gagcaaaccg	ctttgagccc	1200
agaggtgcgg tgaccgcacg	cggcagcacc	tctgagccgg	agggcaccag	ggactcggcc	1260

```
cagggccgtc aaggaaaggg cagtggacgt gctgcgcatg ttcgggagcg aactcccccg
                                                                     1320
aaqaaqqacc aqtqaaqacq tcaqqqqcaa qqtctcqqqq qtccqgaaqq qtqatcatcq
                                                                     1380
                                                                     1440
acceccaagg gaccegeaga ceettaaaaa aateaceeac aaccetetgg aagtggeett
georggteec ctteccaggg gegaggtegg caaagcaaca tggcagagca gtcataggaa
                                                                     1500
                                                                     1519
aaaaaaaaa aaaaaaaaa
<210>
      408
      777
<211>
<212> DNA
<213> Homo sapiens
      408
<400>
ggtctttgga gtagataacc tgtgaggaaa ggtattcctg ctaatgctag gctgccaatg
                                                                       60
                                                                      120
gtgagggagg ttgaagtgag aggtatggtt ttgagtagtc ctcctatttt tcgaatatct
tgttcattgt taaggttgtg gatgatggac ccggagcaca taaatagtat ggctttgaag
                                                                      180
aaggegtggg tacagatgtg caggaatgct aggtgtggtt ggttgatgcc gattgtaact
                                                                      240
attatgagtc ctagttgact tgaagtggag aaggctacga tttttttgat gtcattttgt
                                                                      300
gtaagggcgc agactgctgc gaacagagtg gtgatagcgc ctaagcatag tgttagagtt
                                                                      360
tggattagtg ggctattttc tgctaggggg tggaagcgga tgagtaagaa gattcctgct
                                                                      420
acaactatag tgcttgagtg gagtagggct gagactgggg tggggccttc tatggctgag
                                                                      480
gggagtcagg ggtggagacc taattgggct gatttgcctg ctgctgctag gaggaggcct
                                                                      540
agtagtgggg tgaggcttgg attagcgttt agaagggcta tatgtggtgg gtctcatgag
                                                                      600
ttggagtqta qgataaatca tgctaagqcg gagqatgaaa ccgatatcqc cgatacqgtq
                                                                      660
tgtataggat ttgcttgaat tggtgctgtg ttgggatctg ctcgggcgta tcatcaactg
                                                                      720
                                                                      777
gtgaqcccqa agggatatta tttctaaqgc ctcttaqcqa tqaaacaqtq gqaaagq
<210>
      409
<211>
       2461
<212>
      DNA
<213> Homo sapiens
<220>
<221>
      misc_feature
<222>
       (34)..(34)
<223> n is a, c, g, t or u
<220>
      misc feature
<221>
      (47)...(47)
<222>
<223> n is a, c, g, t or u
```

<400> 409 60 tcagcctgcc ggagctttgc agttgcaatc tgcnttttag aaataancat cctcacagca 120 cagtacacga ccagttatga cccagagcta acagaaagca gtggctctgc atcacacata qaccgcagaa tgagcccctg gagtgaatgg tcacaatgcg atccttgtct cagacaaatg 180 tttcgttcaa gaagcattga ggtctttgga caatttaatg ggaaaagatg caccgacgct 240 gtgggagaca gacgacaatg tgtgcccaca gagccctgtg aggatgctga ggatgactgc 300 ggaaatgact ttcaatgcag tacaggcaga tgcataaaga tgcgacttcg gtgtaatggt 360 gacaatgact gcggagactt ttcagatgag gatgattgtg aaagtgagcc ccgtccccc 420 tgcagagaca gagtggtaga agagtctgag ctggcacgaa cagcaggcta tgggatcaac 480 attttaggga tggatcccct aagcacacct tttgacaatg agttctacaa tggactctgt 540 600 aaccqqqatc qqqatqqaaa cactctqaca tactaccqaa qaccttqqaa cqtqqcttct ttgatctatg aaaccaaagg cgagaaaaat ttcagaaccg aacattacga agaacaaatt 660 .720 gaagcattta aaagtatcat ccaagagaag acatcaaatt ttaatgcagc tatatctcta 780 aaatttacac ccactgaaac aaataaagct gaacaatgtt gtgaggaaac agcctcctca atttctttac atggcaaggg tagttttcgg ttttcatatt ccaaaaatga aacttaccaa 840 900 ctatttttgt catattcttc aaagaaggaa aaaatgtttc tgcatgtgaa aggagaaatt 960 catctgggaa gatttgtaat gagaaatcgc gatgtgctca caacaacttt tgtggatgat 1020 ataaaagctt tgccaactac ctatgaaaag ggagaatatt ttgccttttt ggaaacctat ggaactcact acagtagete tgggteteta ggaggaetet atgaactaat atatgttttg 1080 gataaagctt ccatgaagcg gaaaggtgtt gaactaaaag acataaagag atgccttggg 1140 tatcatctgg atgtatctct ggctttctct gaaatctctg ttggagctga atttaataaa 1200 gatgattgtg taaagagggg agagggtaga gctgtaaaca tccccagtga aaacctcata 1260 gatgatgttg tttcactcat aagaggtgga accagaaaat atgcatttga actgaaagaa 1320 aagettetee gaggaacegt gattgatgtg actgactttg teaactggge etetteeata 1380 aatgatgctc ctgttctcat tagtcaaaaa ctgtctccta tatataatct ggttccagtg 1440 aaaatgaaaa atgcacacct aaagaaacaa aacttggaaa gagccattga agactatatc 1500 aatgaattta gtgtaagaaa atgccacaca tgccaaaatg gaggtacagt gattctaatg 1560 gatggaaagt gtttgtgtgc ctgcccattc aaatttgagg gaattgcctg tgaaatcagt 1620 aaacaaaaaa tttctgaagg attgccagcc ctagagttcc ccaatgaaaa atagagctgt 1680 tggcttctct gagctccagt ggaagaagaa aacactagta ccttcagatc ctacccctga 1740 agataatctt agctgccaag taaatagcaa catgcttcat gaaaatccta ccaacctctg 1800

aagtctcttc to	ctcttaggt	ctataatttt	tttttaattt	ttcttcctta	aactcctgtg	1860
atgtttccat th	ttttgttcc	ctaatgagaa	gtcaacagtg	aaatacgcga	gaactgcttt	1920
atcccacgga as	aaagccaat	ctcttctaaa	aaaaaacaa	aattaaatta	aaaacagaat	1980
gttggtttaa aa	aaacttcaa	agtaattttc	aaacggcttt	gtatggttaa	catattctgc	2040
caggtccatg ad	ccacacgtc	tgtaccatgc	aatttaactc	ttatttacat	tgttatgttt	2100
agtttggtta t	ttgcttagg	tgtgcataca	ttcattcagc	aaatgctgag	caccagccac	2160
gtgcacagca gt	ttgctttta	ctagtcttag	ctctacgatt	taaatccatg	tgtccaaggg	2220
ggaaaacata ti	tatatttgt	aaccaaaaac	tactagttta	ccagaggact	gaagggagat	2280
aaagaggagt t	ggttaatgg	gtacaaaaat	ccagttagat	gaaaggaata	atatagatag	2340
tgttcagtag ca	agaatagaa	tgaacataaa	ctattagttt	aaattatgtg	aaattccttc	2400
tatttgatca ta	attttacaa	gaaaaaacat	caattttata	tagtccaact	taatacctag	2460
С						2461

<210> 410

<211> 6628

<212> DNA

<213> Homo sapiens

<400> 410

cgaaattgaa ccggagccat cttgggcccg gcgcgcagac ccgcggagtt tcccgtgccg 60 acgccccggg gccacttcca gtgcggagta gcggaggcgt gggggcctcg aggggctggc 120 180 240 gggcgcaatg aatccgcggc aggggtattc cctcagcgga tactacaccc atccatttca 300 aggetatgag cacagacage teagatacea geageetggg ceaggatett ceeceagtag 360 tttcctgctt aagcaaatag aatttctcaa ggggcagctc ccagaagcac cggtgattgg 420 aaagcagaca ccgtcactgc caccttccct cccaggactc cggccaaggt ttccagtact acttgcctcc agtaccagag gcaggcaagt ggacatcagg ggtgtcccca ggggcgtgca 480 tctcggaagt caggggctcc agagagggtt ccagcatcct tcaccacgtg gcaggagtct 540 600 gccacagaga ggtgttgatt gcctttcctc acatttccag gaactgagta tctaccaaga 660 720 acatgatctg tctgggaaac ttgggactcc gaagaaagaa atcaatcgag ttttatactc 780 cctggcaaag aagggcaagc tacagaaaga ggcaggaaca cccctttgt ggaaaatcgc 840 ggtctccact caggcttgga accagcacag cggagtggta agaccagacg gtcatagcca 900 aggagececa aacteagace egagtttgga aceggaagae agaaacteea catetgtete

- .

agaagatctt ctt	gagcctt ttattg	cagt ctcagct	cag gcttggaacc	agcacagcgg	960
agtggtaaga cca	gacagtc atagcc	aagg atcccca	aac tcagacccag	gtttggaacc	1020
tgaagacagc aac	tccacat ctgcct	tgga agatcct	ctt gagtttttag	acatggccga	1080
gatcaaggag aaa	atctgcg actatc	tctt caatgtg	tct gactcctctg	ccctgaattt	1140
ggctaaaaat att	ggcctta ccaagg	cccg agatata	aat gctgtgctaa	ttgacatgga	1200
aaggcagggg gat	gtctata gacaag	ggac aacccct	ccc atatggcatt	tgacagacaa	1260
gaagcgagag agg	gatgcaaa tcaaga	gaaa tacgaac	agt gttcctgaaa	ccgctccagc	1320
tgcaatccct gag	Jaccagaa gaaacg	caga gttcctc	acc tgtaatatac	ccacatcaaa	1380
tgcctcaaat aac	atggtaa ccacag	aaaa agtggag	aat gggcaggaac	ctgtcataaa	1440
gttagaaaac agg	gcaagagg ccagac	caga accagca	aga ctgaaaccac	ctgttcatta	1500
caatggcccc tca	aaagcag ggtatg	ttga ctttgaa	aat ggccagtggg	ccacagatga	1560
catcccagat gac	ttgaata gtatcc	gcgc agcacca	ggt gagtttcgag	ccatcatgga	1620
gatgccctcc ttc	ctacagtc atggct	tgcc acggtgt	tca ccctacaaga	aactgacaga	1680
gtgccagctg aag	gaacccca tcagcg	ggct gttagaa	tat gcccagttcg	ctagtcaaac	1740
ctgtgagttc aac	catgatag agcaga	gtgg accaccc	cat gaacctcgat	ttaaattcca	1800
ggttgtcatc aat	ggccgag agtttc	cccc agctgaa	gct ggaagcaaga	aagtggccaa	1860
gcaggatgca gct	atgaaag ccatga	caat tctgcta	gag gaagccaaag	ccaaggacag	1920
tggaaaatca gaa	agaatcat cccact	attc cacagag	aaa gaatcagaga	agactgcaga	1980
gtcccagacc ccc	caccctt cagcca	catc cttcttt	tct gggaagagcc	ccgtcaccac	2040
actgcttgag tgt	atgcaća aattgg	ggaa ctcctgc	gaa ttccgtctcc	tgtccaaaga	2100
aggccctgcc cat	gaaccca agttco	aata ctgtgtt	gca gtgggagccc	aaactttccc	2160
cagtgtgagt gct	cccagca agaaag	tggc aaagcag	atg gccgcagagg	aagccatgaa	2220
ggccctgcat ggg	ggaggcga ccaact	ccat ggcttct	gat aaccagcctg	aaggtatgat	2280
ctcagagtca ctt	gataact tggaat	ccat gatgccc	aac aaggtcagga	agattggcga	2340
gctcgtgaga tac	ectgaaca ccaaco	ctgt gggtggc	ctt ttggagtacg	cccgctccca	2400
tggctttgct gct	gaattca agttgg	toga ocagtoo	gga cctcctcacg	agcccaagtt	2460
cgtttaccaa gca	aaagttg ggggto	gctg gttccca	gcc gtctgcgcac	acagcaagaa	2520
gcaaggcaag cag	ggaagcag cagatg	cggc tctccgt	gtc ttgattgggg	agaacgagaa	2580
ggcagaacgc ato	gggtttca cagagg	taac cccagtg	aca ggggccagto	tcagaagaac	2640
tatgctcctc ctc	ctcaaggt ccccag	aagc acagcca	aag acactccctc	tcactggcag	2700
caccttccat gad	ccagatag ccatgo	tgag ccaccgg	tgc ttcaacactc	tgactaacag	2760

cttccagccc	teettgeteg	gccgcaagat	tatggaagaa	atcattatga	aaaaagactc	2820
tgaggacatg	ggtgtcgtcg	tcagcttggg	aacagggaat	cgctgtgtta	aaggagattc	2880
tctcagccta	aaaggagaaa	ctgtcaatga	ctgccatgca	gaaataatct	cccggagagg	2940
cttcatcagg	tttctctaca	gtgagttaat	gaaatacaac	tcccagactg	cgaaggatag	3000
tatatttgaa	cctgctaagg	gaggagaaaa	gctccaaata	aaaaagactg	tgtcattcca	3060
tctgtatatc	agcactgctc	cgtgtggaga	tggcgccctc	tttgacaagt	cctgcagcga	3120
ccgtgctatg	gaaagcacag	aatcccgcca	ctaccctgtc	ttcgagaatc	ccaaacaagg	3180
aaagctccgc	accaaggtgg	agaacggaga	aggcacaatc	cctgtggaat	ccagtgacat	3240
tgtgcctacg	tgggatggca	ttcggctcgg	ggagagactc	cgtaccatgt	cctgtagtga	3300
caaaatccta	cgctggaacg	tgctgggcct	gcaaggggca	ctgttgaccc	acttcctgca	3360
gcccatttat	ctcaaatctg	tcacattggg	ttaccttttc	agccaagggc	atctgacccg	3420
tgctatttgc	tgtcgtgtga	caagagatgg	gagtgcattt	gaggatggac	tacgacatcc	3480
ctttattgtc	aaccacccca	aggttggcag	agtcagcata	tatgattcca	aaaggcaatc	3540
cgggaagact	aaggagacaa	gcgtcaactg	gtgtctggct	gatggctatg	acctggagat	3600
cctggacggt	accagaggca	ctgtggatgg	gccacggaat	gaattgtccc	gggtctccaa	3660
aaagaacatt	tttcttctat	ttaagaagct	ctgctccttc	cgttaccgca	gggatctact	3720
gagactctcc	tatggtgagg	ccaagaaagc	tgcccgtgac	tacgagacgg	ccaagaacta	3780
cttcaaaaaa	ggcctgaagg	atatgggcta	tgggaactgg	attagcaaac	cccaggagga	3840
aaagaacttt	tatctctgcc	cagtatagta	tgctccagtg	acagatggat	tagggtgtgt	3900
catactaggg	tgtgagagag	gtaggtcgta	gcattcctca	tcacatggtc	aggggatttt	3960
tttttctcct	tttttttc	ttttaagcc	ataattggtg	atactgaaaa	ctttgggttc	4020
ccatttatcc	tgctttcttt	gggattgcta	ggcaaggtct	ggccaggccc	ccctttttc	4080
ccccaagtga	agaggcagaa	acctaagaag	ttatcttttc	tttctaccca	aagcatacat	4140
agtcactgag	cacctgcggt	ccatttcctc	ttaaaagttt	tgttttgatt	tgtttccatt	4200
tectttecet	ttgtgtttgc	tacactgacc	tcttgcggtc	ttgattaggt	ttcagtcaac	4260
tetggateat	gtcagggact	gataatttca	tttgtggatt	acgcagaccc	ctctacttcc	4320
cctctttccc	ttctgagatt	ctttccttgt	gatctgaatg	tatactttta	cccctcagag	4380
ggcaaagagg	tgaacataaa	ggatttggtg	aaacatttgt	aagggtagga	gttgaaaact	4440
gcagttccca	gtgccacgga	agtgtgattg	gagcctgcag	ataatgccca	gccatcctcc	4500
catcctgcac	tttagccagc	tgcagggcgg	gcaaggcaag	gaaagctgct	tccctggaag	4560

tgtatcactt	tctccggcag	ctgggaagtc	tagaaccagc	cagactgggt	taagggagct	4620
gctcaagcaa	tagcagaggt	ttcacccggc	aggatgacac	agaccacttc	ccagggagca	4680
cgggcatgcc	ttggaatatt	gccaagcttc	cagctgcctc	ttctcctaaa	gcattcctag	4740
gaatattttc	cccgccaatg	ctgggcgtac	accctagcca	acgggacaaa	tcctagaggg	4800
tataaaatca	tctctgctca	gataatcatg	acttagcaag	aataagggca	aaaaatcctg	4860
ttggcttaac	gtcactgttc	cacccggtgt	aatatctctc	atgącagtga	caccaaggga	4920
agttgactaa	gtcacatgta	aattaggagt	gttttaaaga	atgccataga	tgttgattct	4980
taactgctac	agataacctg	taattgagca	gatttaaaat	tcaggcatac	ttttccattt	5040
atccaagtgc	tttcattttt	ccagatggct	tcagaagtag	gctcgtgggc	agggcgcaga	5100
cctgatcttt	ctagggttga	catagaaagc	agtagttgtg	ggtgaaaggg	caggttgtct	5160
tcaaactctg	tgaggtagaa	tactttgtat	atacctccat	gaacattgac	tcgtgtgttc	5220
agagcctttg	gcctctctgt	ggagtctggc	tatatggata	ctgtgcattc	tttgaatagt	5280
cactcgtaaa	aactgtcagt	gcttgaaact	gtttccttta	ctcatgttga	agggactttg	5340
ttggctttta	gagtgttggt	catgactcca	agagcagagc	agggaagagc	ccaagcatag	5400
acttggtgcc	gtggtgatgg	ctgcagtcca	gttttgtgat	gctgctttta	cgtgtccctc	5460
gataacagtc	agctagacac	actcaggagg	actactgagg	ctctgcgacc	ttcaggagct	5520
gagcctgcct	ctctccttta	gatgacagac	cttcatctgg	gaacgtgctg	agccagcacc	5580
ctcagatgat	ttccctccaa	actgctgact	aggtcatcct	ctgtctggta	gagacattca	5640
catctttgct	tttattctat	gctctctgta	cttttgacca	aaaattgacc	aaagtaagaa	5700
aatgcaagtt	ctaaaaatag	actaaggatg	cctttgcaga	acaccaaagc	atcccaagga	5760
actggtaggg	aagtggcgcc	tgtctcctgg	agtggaagag	gcctgctccc	tggctctggg	5820
tetgetgggg	gcacagtaaa	tcagtcttgg	cacccacatc	cagggcagag	aggtctgtgg	5880
ttctcagcat	cagaaggcag	cgcagcccct	ctcctcttca	ggctacaggg	ttgtcacctg	5940
ctgagtcctc	aggttgtttg	gcctctctgg	tccatcttgg	gcattaggtt	ctccagcaga	6000
gctctggcca	gctgcctctt	ctttaactgg	gaacacaggc	tctcacaaga	tcagaacccc	6060
cactcacccc	caagatetta	tctagcaagc	ctgtagtatt	cagtttctgt	tgtaggaaga	6120
gagcgaggca	tccctgaatt	ccacgcatct	gctggaaacg	agccgtgtca	gatcgcacat	6180
ccctgcgccc	ccatgccccc	atgcccctct	gagtcacaca	ggacagagga	ggcagagctt	6240
ctgcccactg	ttatcttcac	tttctttgtc	cagtcttttg	tttttaataa	gcagtgaccc	6300
tecetactet	tctttttaat	gatttttgta	gttgatttgt	ctgaactgtg	gctactgtgc	6360
attccttgaa	taatcacttg	taaaaattgt	cagtgcttga	agctgtttcc	tttactcaca	6420

ttgaagggac ttcgttggtt ttttggagtc ttggttgtga ctccaagagc agagtgagga 6480 agacccccaa gcatagactc gggtactgtg atgatggctg cagtccagtt ttatgattct 6540 gcttttatgt gtcccttgat aacagtgact taacaatata cattcctcat aaataaaaaa 6600 aaaacaagaa tctgaattcc tgcagccc 6628 <210> 411 <211> 1919 <212> DNA <213> Homo sapiens <400> 411 ctgaagaaca aatcagcctg gtcaccagct tttcggaaca gcagagacac agagggcagt 60 catgagtgag gtcaccaaga attccctgga gaaaatcctt ccacagctga aatgccattt 120 cacctggaac ttattcaagg aagacagtgt ctcaagggat ctagaagata gagtgtgtaa 180 ccagattgaa tttttaaaca ctgagttcaa agctacaatg tacaacttgt tggcctacat 240 aaaacaccta gatggtaaca acgaggcagc cctggaatgc ttacggcaag ctgaagagtt 300 aatccagcaa gaacatgctg accaagcaga aatcagaagt ctagtcactt ggggaaacta 360 cgcctgggtc tactatcact tgggcagact ctcagatgct cagatttatg tagataaggt 420 gaaacaaacc tgcaagaaat tttcaaatcc atacagtatt gagtattctg aacttgactg 480 tgaggaaggg tggacacaac tgaagtgtgg aagaaatgaa agggcgaagg tgtgttttga 540 600 gaaggetetg gaagaaaage ccaacaacce agaattetee tetggaetgg caattgegat gtaccatctg gataatcacc cagagaaaca gttctctact gatgttttga agcaggccat 660 tgagetgagt cetgataace aatacgteaa ggttetettg ggeetgaaac tgeagaagat 720 gaataaagaa gctgaaggag agcagtttgt tgaagaagcc ttggaaaagt ctccttgcca 780 840 aacagatgtc ctccgcagtg cagccaaatt ttacagaaga aaaggtgacc tagacaaagc tattgaactg tttcaacggg tgttggaatc cacaccaaac aatggctacc tctatcacca 900 gattgggtgc tgctacaagg caaaagtaag acaaatgcag aatacaggag aatctgaagc 960 tagtggaaat aaagagatga ttgaagcact aaagcaatat gctatggact attcgaataa 1020 agctcttgag aagggactga atcctctgaa tgcatactcc gatctcgctg agttcctgga 1080 gacggaatgt tatcagacac cattcaataa ggaagtccct gatgctgaaa agcaacaaca 1140 atcccatcag cgctactgca accttcagaa atataatggg aagtctgaag acactgctgt 1200 qcaacatqqt ttaqaqqqtt tqtccataag Caaaaaatca actgacaaqq aagagatcaa 1260 agaccaacca cagaatgtat ctgaaaatct gcttccacaa aatgcaccaa attattggta 1320 tcttcaagga ttaattcata agcagaatgg agatctgctg caagccaaat gttatgagaa 1380

ggaactgggc	cgcctgctaa	gggatgcccc	ttcaggcata	ggcagtattt	tcctgtcagc	1440
atctgagctt	gaggatggta	gtgaggaaat	gggccagggc	gcagtcagct	ccagtcccag	1500
agagctcctc	tctaactcag	agcaactgaa	ctgagacaga	ggaggaaaac	agagcatcag	1560
aagcctgcag	tggtggttgt	gacgggtagg	aggataggaa	gacagggggc	ccaacctggg	1620
attgctgagc	agggaagctt	tgcatgttgc	tctaaggtac	atttttaaag	agttgttttt	1680
tggccgggcg	cagtgctcat	gcctgtaatc	ccagaacttt	gggaggccga	ggtgggcgga	1740
tcacgaggtc	tggagtttga	gaccatcctg	gctaacacag	tgaaatcccg	tctctactaa	1800
aaatacaaaa	aattagccag	gcgtggtggc	tggcacctgt	agtcccagct	acttgggagg	1860
ctgaggcagg	agaatggcgt	gaacctggaa	ggaagaggtt	gcagagagcc	aagattgcg	1919

<210> 412

<211> 1099

<212> DNA

<213> Homo sapiens

<400> 412

tectgegttg etgggaagtt etggaaggaa geatgtgete eagaggttgg gattegtgte 60 tggctctgga attgctactg ctgcctctgt cactcctggt gaccagcatt caaggtcact 120 tggtacatat gaccgtggtc tccggcagca acgtgactct gaacatctct gagagcctgc 180 ctgagaacta caaacaacta acctggtttt atactttcga ccagaagatt gtagaatggg 240 3 0 0 attocagaaa atotaagtao titgaatooa aatttaaagg cagggtcaga citgatooto agagtggcgc actgtacatc tctaaggtcc agaaagagga caacagcacc tacatcatga 360 420 gggtgttgaa aaagactggg aatgagcaag aatggaagat caagctgcaa gtgcttgacc 480 ctgtacccaa gcctgtcatc aaaattgaga agatagaaga catggatgac aactgttatt tgaaactgtc atgtgtgata cctggcgagt ctgtaaacta cacctggtat ggggacaaaa 540 ggcccttccc aaaggagctc cagaacagtg tgcttgaaac cacccttatg ccacataatt 600 actocaggtg ttatacttgc caagtcagca attctgtgag cagcaagaat ggcacggtct 660 gcctcagtcc accctgtacc ctggcccggt cctttggagt agaatggatt gcaagttggc 720 tagtggtcac ggtgcccacc attcttggcc tgttacttac ctgagatgag ctcttttaac 780 tcaagcgaaa cttcaaggcc agaagatctt gcctgttggt gatcatgctc ctcaccagga 840 900 cagagactgt ataggctgac cagaagcatg ctgctgaatt atcaacgagg attttcaagt taacttttaa atactqqtta ttatttaatt ttatatccct ttqttqtttt ctagtacaca 960 gagatataga gatacacatg cttttttccc acccaaaatt gtgacaacat tatgtgaatg 1020 1080 aaaaaaaaa aaaaaaaaa 1099

<210> 413 <211> 2961 <212> DNA <213> Homo sapiens

<400> 413

aagagatgat ttctccatcc tgaacgtgca gcgagcttgt caggaagatc ggaggtgcca 60 120 agtagcagag aaagcatccc ccagctctga cagggagaca gcacatgtct aaggcccaca agccttggcc ctaccggagg agaagtcaat tttcttctcg aaaatacctg aaaaaagaaa 180 tgaattcctt ccagcaacag ccaccgccat tcggcacagt gccaccacaa atgatgtttc 240 ctccaaactg gcaggggca gagaaggacg ctgctttcct cgccaaggac ttcaactttc 300 tcactttgaa caatcagcca ccaccaggaa acaggagcca accaagggca atggggcccg 360 agaacaacct gtacagccag tacgagcaga aggtgcgccc ctgcattgac ctcatcgact 420 ccctgcgggc tctgggtgtg gagcaggacc tggccctgcc agccatcgcc gtcatcgggg 480 accagagete gggeaagage tetgtgetgg aggeaetgte aggagtegeg etteecagag 540 gcagcggaat cgtaaccagg tgtccgctgg tgctgaaact gaaaaagcag ccctgtgagg 600 catgggccgg aaggatcagc taccggaaca ccgagctaga gcttcaggac cctggccagg 660 tggagaaaga gatacacaaa gcccagaacg tcatggccgg gaatggccgg ggcatcagcc 720 atgageteat cageetggag ateacetece etgaggttee agacetgace ateattgace 780 ttcccggcat caccagggtg gctgtggaca accagccccg agacatcgga ctgcagatca 840 900 aggeteteat caaqaaqtae atecaqagge agcaqaeqat caacttggtg gtggtteeet 960 gtaacgtgga cattgccacc acggaggcgc tgagcatggc ccatgaggtg gacccggaag gggacaggac catcggtatc ctgaccaaac cagatctaat ggacaggggc actgagaaaa 1020 gcgtcatgaa tgtggtgcgg aacctcacgt accccctcaa gaagggctac atgattgtga 1080 agtgccgggg ccaqcaggag atcacaaaca ggctgagctt ggcagaggca accaagaaag 1140 aaattacatt ctttcaaaca catccatatt tcagagttct cctggaggag gggtcagcca 1200 cggttccccg actggcagaa agacttacca ctgaactcat catgcatatc caaaaatcgc 1260 tcccgttgtt agaaggacaa ataagggaga gccaccagaa ggcgaccgag gagctgcggc 1320 gttgcggggc tgacatcccc agccaggagg ccgacaagat gttctttcta attgagaaaa 1380 tcaagatgtt taatcaggac atcgaaaagt tagtagaagg agaagaagtt gtaagggaga 1440 1500 atgaqacccq tttatacaac aaaatcagag aggattttaa aaactgggta ggcatacttg caactaatac ccaaaaaqtt aaaaatatta tccacgaaqa agttgaaaaa tatgaaaagc 1560

agtatcgagg	caaggagctt	ctgggatttg	tcaactacaa	gacatttgag	atcatcgtgc	1620
atcagtacat	ccagcagctg	gtggagcccg	cccttagcat	gctccagaaa	gccatggaaa	1680
ttatccagca	agctttcatt	aacgtggcca	aaaaacattt	tggcgaattt	ttcaacctta	1740
accaaactgt	tcagagcacg	attgaagaca	taaaagtgaa	acacacagca	aaggcagaaa	1800
acatgatcca	acttcagttc	agaatggagc	agatggtttt	ttgtcaagat	cagatttaca	1860
gtgttgttct	gaagaaagtc	cgagaagaga	tttttaaccc	tctggggacg	cctfcacaga	1920
atatgaagtt	gaactctcat	tttcccagta	atgagtcttc	ggtttcctcc	tttactgaaa	1980
taggcatcca	cctgaatgcc	tacttcttgg	aaaccagcaa	acgtctcgcc	aaccagatcc	2040
catttataat	tcagtatttt	atgctccgag	agaatggtga	ctccttgcag	aaagccatga	2100
tgcagatact	acaggaaaaa	aatcgctatt	cctggctgct	tcaagagcag	agtgagaccg	2160
ctaccaagag	aagaatcctt	aaggagagaa	tttaccggct	cactcaggcg	cgacacgcac	2220
tctgtcaatt	ctccagcaaa	gagatccact	gaagggcggc	gatgcctgtg	gttgttttct	2280
tgtgcgtact	cattcattct	aaggggagtc	ggtgcaggat	gccgcttctg	ctttggggcc	2340
aaactcttct	gtcactatca	gtgtccatct	ctactgtact	ccctcagcat	cagagcatgc	2400
atcaggggtc	cacacaggct	cagctctctc	caccacccag	ctcttccctg	accttcacga	2460
agggatggct	ctccagtcct	tgggtcccgt	agcacacagt	tacagtgtcc	taagatactg	2520
ctatcattct	tcgctaattt	gtatttgtat	tacattacaa	ctacaagatt	atgagacccc	2580
agaggggaa	ggtctgggtc	aaattcttct	tttgtatgtc	cagtctcctg	cacagcacct	2640
gcagcattgt	aactgcttaa	taaatgacat	ctcactgaac	gaatgagtgc	tgtgtaagtg	2700
atggagatac	ctgaggctat	tgctcaagcc	caggccttgg	acatttagtg	actgttagcc	2760
ggtccctttc	agatccagtg	gccatgcccc	ctgcttccca	tggttcactg	tcattgtgtt	2820
tcccagcctc	tccactcccc	cgccagaaag	gagcctgagt	gattctcttt	tcttcttgtt	2880
tccctgatta	tgatgagctt	ccattgttct	gttaagtctt	gaagaggaat	ttaataaagc	2940
aaagaaactt	tttaaaaacg	t				2961

<210> 414 <211> 2808

<212> DNA

<213> Homo sapiens

<400> 414

geggeggegg eggegeagtt tgeteatact ttgtgacttg eggteacagt ggeatteage 60
tecacacttg gtagaaceae aggeaegaea ageatagaaa cateetaaae aatetteate 120
gaggeatega ggteeateee aataaaaate aggagaeeet ggetateata gaeettagte 180

ttcgctggta	tactcgctgt	ctgtcaacca	gcggttgact	ttttttaagc	cttctttttt	240
ctcttttacc	agtttctgga	gcaaattcag	tttgccttcc	tggatttgta	aattgtaatg	300
acctcaaaac	tttagcagtt	cttccatctg	actcaggttt	gcttctctgg	cggtcttcag	360
aatcaacatc	cacacttccg	tgattatctg	cgtgcatttt	ggacaaagct	tccaaccagg	420
atacgggaag	aagaaatggc	tggtgatctt	tcagcaggtt	tcttcatgga	ggaacttaat	480
acataccgtc	agaagcaggg	agtagtactt	aaatatcaag	aactgcctaa	ttcaggacct	54 ⁰
ccacatgata	ggaggtttac	atttcaagtt	ataatagatg	gaagagaatt	tccagaaggt	600
gaaggtagat	caaagaagga	agcaaaaaat	gccgcagcca	aattagctgt	tgagatactt	660
aataaggaaa	agaaggcagt	tagtccttta	ttattgacaa	caacgaattc	ttcagaagga	720
ttatccatgg	ggaattacat	aggccttatc	aatagaattg	cccagaagaa	aagactaact	780
gtaaattatg	aacagtgtgc	atcgggggtg	catgggccag	aaggatttca	ttataaatgc	840
aaaatgggac	agaaagaata	tagtattggt	acaggttcta	ctaaacagga	agcaaaacaa	900
ttggccgcta	aacttgcata	tcttcagata	ttatcagaag	aaacctcagt	gaaatctgac	960
tacctgtcct	ctggttcttt	tgctactacg	tgtgagtccc	aaagcaactc	tttagtgacc	1020
agcacactcg	cttctgaatc	atcatctgaa	ggtgacttct	cagcagatac	atcagagata	1080
aattctaaca	gtgacagttt	aaacagttct	tcgttgctta	tgaatggtct	cagaaataat	1140
caaaggaagg	caaaaagatc	tttggcaccc	agatttgacc	ttcctgacat	gaaagaaaca	1200
aagtatactg	tggacaagag	gtttggcatg	gattttaaag	aaatagaatt	aattggctca	1260
ggtggatttg	gccaagtttt	caaagcaaaa	cacagaattg	acggaaagac	ttacgttatt	1320
aaacgtgtta	aatataataa	cgagaaggcg	gagcgtgaag	taaaagcatt	ggcaaaactt	1380
gatcatgtaa	atattgttca	ctacaatggc	tgttgggatg	gatttgatta	tgatcctgag	1440
accagtgatg	attctcttga	gagcagtgat	tatgatcctg	agaacagcaa	aaatagttca	1500
aggtcaaaga	ctaagtgcct	tttcatccaa	atggaattct	gtgataaagg	gaccttggaa	1560
caatggattg	aaaaaagaag	aggcgagaaa	ctagacaaag	ttttggcttt	ggaactcttt	1620
gaacaaataa	caaaaggggt	ggattatata	cattcaaaaa	aattaattca	tagagatctt	1680
aagccaagta	atatattctt	agtagataca	aaacaagtaa	agattggaga	ctttggactt	1740
gtaacatctc	tgaaaaatga	tggaaagcga	acaaggagta	agggaacttt	gcgatacatg	1800
agcccagaac	agatttcttc	gcaagactat	ggaaaggaag	tggacctcta	cgctttgggg	1860
ctaattcttg	ctgaacttct	tcatgtatgt	gacactgctt	ttgaaacatc	aaagtttttc	1920
acagacctac	gggatggcat	catctcagat	atatttgata	aaaaagaaaa	aactcttcta	1980

cagaaattac	tctcaaagaa	acctgaggat	cgacctaaca	catctgaaat	actaaggacc	2040
ttgactgtgt	ggaagaaaag	cccagagaaa	aatgaacgac	acacatgtta	gagcccttct	2100
gaaaaagtat	cctgcttctg	atatgcagtt	ttccttaaat	tatctaaaat	ctgctaggga	2160
atatcaatag	atatttacct	tttattttaa	tgtttccttt	aattttttac	tatttttact	2220
aatctttctg	cagaaacaga	aaggttttct	tctttttgct	tcaaaaacat	tcttacattt	2280
tactttttcc	tggctcatct	ctttattctt	tttttttt	ttaaagacag	agtctcgctc	2340
tgttgcccag	gctggagtgc	aatgacacag	tcttggctca	ctgcaacttc	tgcctcttgg	2400
gttcaagtga	tteteetgee	tcagcctcct	gagtagctgg	attacaggca	tgtgccaccc	2460
acccaactaa	tttttgtgtt	tttaataaag	acagggtttc	accatgttgg	ccaggctggt	2520
ctcaaactcc	tgacctcaag	taatccacct	gcctcggcct	cccaaagtgc	tgggattaca	2580
gggatgagcc	accgcgccca	gcctcatctc	tttgttctaa	agatggaaaa	accaccccca	2640
aattttcttt	ttatactatt	aatgaatcaa	tcaattcata	tctatttatt	aaatttctac	2700
cgcttttagg	ccaaaaaaat	gtaagatcgt	tctctgcctc	acatagctta	caagccagct	2760
ggagaaatat	ggtactcatt	aaaaaaaaaa	aaaaagtgat	gtacaacc		2808

<210> 415

<211> 1940

<212> DNA

<213> Homo sapiens

<400> 415

60 acccagggtc cggcctgcgc cttcccgcca ggcctggaca ctggttcaac acctgtgact tcatgtgtgc gcgccggcca cacctgcagt cacacctgta gccccctctg ccaagagatc 120 cataccgagg cagcgtcggt ggctacaagc cctcagtcca cacctgtgga cacctgtgac 180 acctggccac acgaectgtg geogeggeet ggcgtetget gegacaggag ccettacete 240 ccctgttata acacctgaca gccacctaac tgcccctgca gaaggagcaa tggccttggc 300 360 tectgagagg taagageeeg geeeaceete tecagatgee agteeeegag egeeetgeag 420 ccggccctga ctctccgcgg ccgggcaccc gcagggcagc cccacgcgtg ctgttcggag agtggctcct tggagagatc agcagcggct gctatgaggg gctgcagtgg ctggacgagg 480 cccgcacctg tttccgcgtg ccctggaagc acttcgcgcg caaggacctg agcgaggccg 540 600 acqcqcqcat cttcaaggcc tgggctgtgg cccgcggcag gtggccgcct agcagcaggg 660 gaqqtqqccc gcccccqag gctgagactg cggagcgcgc cggctggaaa accaacttcc 720 gctgcgcact gcgcagcacg cgtcgcttcg tgatgctgcg agataactcg ggggacccgg 780 ccgacccgca caaggtgtac gcgctcagcc gggagctgtg ctggcgagaa ggcccaggca

cggaccagac	tgaggcagag	gcccccgcag	ctgtcccacc	accacagggt	gggcccccag	840
ggccattcct	ggcacacaca	catgctggac	tccaagcccc	aggccccctc	cctgccccag	900
ctggtgacga	gggggacctc	ctgctccagg	cagtgcaaca	gagctgcctg	gcagaccatc	960
tgctgacagc	gtcatggggg	gcagatccag	tcccaaccaa	ggctcctgga	gagggacaag	1020
aagggcttcc	cctgactggg	gcctgtgctg	gaggcccagg	gctccctgct	ggggagctgt	1080
, acgggtgggc	agtagagacg	acccccagcc	ccdddcccca	gcccącgąca	ctaacgacag	1140
gcgaggccgc	ggccccagag	tccccgcacc	aggcagagcc	gtacctgtca	ccctccccaa	1200
gcgcctgcac	cgcggtgcaa	gagcccagcc	caggggcgct	ggacgtgacc	atcatgtaca	1260
agggccgcac	ggtgctgcag	aaggtggtgg	gacacccgag	ctgcacgttc	ctatacggcc	1320
ccccagaccc	agctgtccgg	gccacagacc	cccagcaggt	agcattcccc	agccctgccg	1380
agctcccgga	ccagaagcag	ctgcgctaca	cggaggaact	gctgcggcac	gtggcccctg	1440
ggttgcacct	ggagcttcgg	gggccacagc	tgtgggcccg	gcgcatgggc	aagtgcaagg	1500
tgtactggga	ggtgggcggc	cccccaggct	ccgccagccc	ctccacccca	gcctgcctgc	1560
tgcctcggaa	ctgtgacacc	cccatcttcg	acttcagagt	cttcttccga	gagctggtgg	1620
aattccgggc	acggcagcgc	cgtggctccc	cacgctatac	catctacctg	ggcttcgggc	1680
aggacctgtc	agctgggagg	cccaaggaga	agagcctggt	cctggtgaag	ctggaaccct	1740
ggetgtgeeg	agtgcaccta	gagggcacgc	agcgtgaggg	tgtgtcttcc	ctggatagca	1800
gcagcctcag	cctctgcctg	tccagcgcca	acagcctcta	tgacgacatc	gagtgcttcc	1860
ttatggagct	ggagcagccc	gcctagaacc	cagtctaatg	agaactccag	aaagctggag	1920
cagcccacct	agagctggcc					1940

<210> 416

<211> 1571

<212> DNA

<213> Homo sapiens

<400> 416

gagcctacag	caaacccacc	ctctcagctc	tgcccagccc	tgtggtgacc	tcaggaggga	480
atgtgaccat	ccagtgtgac	tcacaggtgg	catttgatgg	cttcattctg	tgtaaggaag	540
gagaagatga	acacccacaa	tgcctgaact	cccattccca	tgcccgtggg	tcatcccggg	600
ccatcttctc	cgtgggcccc	gtgagcccaa	gtcgcaggtg	gtcgtacagg	tgctatggtt	660
atgactcgcg	cgctccctat	gtgtggtctc	tacccagtga	tctcctgggg	ctcctggtcc	720
caggtgtttc	taagaagcca	tcactctcag	tgcagccggg	teetgtegtg	gcccctgggg	780
agaagctgac	cttccagtgt	ggctctgatg	ccggctacga	cagatttgtt	ctgtacaagg	840
agtggggacg	tgacttcctc	cagegeeetg	gccggcagcc	ccaggctggg	ctctcccagg	900
ccaacttcac	cctgggccct	gtgagccgct	cctacggggg	ccagtacaca	tgctccggtg	960
catacaacct	ctcctccgag	tggtcggccc	ccagcgaccc	cctggacatc	ctgatcacag	1020
gacagatccg	tgccagaccc	ttcctctccg	tgcggccggg	ccccacagtg	gcctcaggag	1080
agaacgtgac	cctgctgtgt	cagtcacagg	gagggatgca	cactttcctt	ttgaccaagg	1140
agggggcagc	tgattccccg	ctgcgtctaa	aatcaaagcg	ccaatctcat	aagtaccagg	1200
ctgaattccc	catgagtcct	gtgacctcgg	cccacgcggg	gacctacagg	tgctacggct	1260
cactcagete	caacccctac	ctgctgactc	accccagtga	ccccctggag	ctcgtggtct	1320
caggagcagc	tgagaccctc	agcccaccac	aaaacaagtc	cgactccaag	gctggtgagt	1380
gaggagatgc	ttgccgtgat	gacgctgggc	acagagggtc	aggtcctgtc	aagaggagct	1440
gggtgtcctg	ggtggacatt	tgaagaatta	tattcattcc	aacttgaaga	attattcaac	1500
acctttaaca	atgtatatgt	gaagtacttt	attctttcat	attttaaaaa	taaaagataa	1560
ttatccatga	a					1571

<210> 417 <211> 3998

<212> DNA

<213> Homo sapiens

<400> 417

60 ccgggagccc gggcgccctg gagtgaggag gaccgggagc tggctctgga ggctgcggag 120 gcgacgccgg agagaacgaa gcctcggctg ggagcggatc tttcgaagat ggtttggctg 180 ccttggagat ttggagatct gatgccacga tgaggactca cacacggggg gctcccagtg 240 tgtttttcat atatttgctt tgctttgtgt cagcctacat caccgacgag aacccagaag 300 ttatgattcc cttcaccaat gccaactacg acagccatcc catgctgtac ttctccaggg 360 cagaagtggc ggagctgcag ctcagggctg ccagctcgca cgagcacatt gcagcccgcc tcacggaggc tgtgcacacg atgctgtcca gccccttgga atacctccct ccctgggatc 420

ccaaggacta cagtgcccg	jc tggaatgaaa	tttttggaaa	caacttgggt	gccttggcaa	480
tgttctgtgt gctgtatco	t gagaacattg	aagcccgaga	catggccaaa	gactacatgg	540
agaggatggc agcgcagco	t agttggttgg	tgaaagatgc	tccttgggat	gaggtcccgc	600
ttgctcactc cctggttgg	gt tttgccactg	cttatgactt	cttgtacaac	tacctgagca	660
agacacaaca ggagaagti	t cttgaagtga	ttgccaatgc	ctcagggtat	atgtatgaaa	720
cttcatacag gagaggatg	gg ggatttcaat	acctgcacaa	tcatcagccc	accaactgta	780
tggctttgct cacgggaag	gc ctagtcctga	tgaatcaagg	atatcttcaa	gaagcctact	840
tatggaccaa acaagttc	g accatcatgg	agaaatctct	ggtettgete	agggaggtga	900
cggatggctc cctctatga	aa ggagttgcgt	atggcagcta	caccactaga	tcactcttcc	960
aatacatgtt tctcgtcc	ag aggcacttca	acatcaacca	ctttggccat	ccgtggctta	1020
aacaacactt tgcattta	g tatagaacca	tectgecagg	gtttcaaagg	actgtggcta	1080
ttgcggactc aaattacaa	ac tggttttatg	gtccagaaag	ccaattagtg	ttccttgata	1140
aatttgtcat gcgtaatg	gc agtggtaact	ggctagctga	ccaaatcaga	aggaaccgtg	1200
tggtggaagg tccaggaa	ca ccatccaaag	ggcagcgctg	gtgcactctg	cacacagaat	1260
ttctctggta tgatggca	gc ttgaaatcgg	ttcctcctcc	agactttggc	acccctacac	1320
tgcattattt tgaagact	gg ggtgtegtga	cttatggaag	tgcactacct	gcagaaatca	1380
atagatettt cettteet	cc aagtctggaa	aactgggggg	acgtgcaata	tatgacattg	1440
tccacagaaa caaataca	aa gattggatca	aaggatggag	aaattttaat	gcagggcatg	1500
aacatcctga tcaaaact	ca tttacttttg	ctcccaatgg	tgtgcctttc	attactgagg	1560
ctctgtacgg gccaaagt	ac accttcttca	acaatgtttt	gatgttttcc	ccagctgtgt	1620
caaagagctg cttttctc	cc tgggtgggtc	aggtcacaga	agactgctca	tcaaaatggt	1680
ctaaatacaa gcatgacc	tg gcagctagtt	gtcaggggag	ggtggttgca	gcagaggaga	1740
aaaatggggt ggttttca	cc cgaggagaag	gtgtgggagc	ttataacccc	cagctcaacc	1800
tgaagaatgt tcagagga	at ctcatcctcc	tacatccaca	gctgcttctc	cttgtagacc	1860
aaatacacct gggagagg	ag agtcccttgg	agacagcagc	gagcttcttc	cataatgtgg	1920
atgttccttt tgaggaga	ct gtggtagatg	gtgtccatgg	ggctttcatc	aggcagagag	1980
atggtctcta taaaatgt	ac tggatggacg	atactggcta	cagcgagaaa	gcaacctttg	2040
cctcagtgac atatcctc	gg ggctatccct	acaacgggac	aaactatgtg	aatgtcacca	2100
tgcacctccg aagtccca	tc accagggcag	cttacctctt	catagggcca	tctatagatg	2160
ttcagagett cactgtee	ac ggagactctc	agcaactgga	tgtgttcata	gccaccagca	2220
aacatgeeta egecacat	ac ctgtggacag	gtgaggccac	aggacagtct	gcctttgcac	2280

aggtcattgc	tgatcgtcac	aaaattctgt	ttgaccggaa	ttcagccatc	aagagcagca	2340
ttgtccctga	ggtgaaggac	tatgctgcta	ttgtggaaca	gaacttgcag	cattttaaac	2400
cagtgtttca	gctgctggag	aagcagatac	tgtcccgagt	ccggaacaca	gctagcttta	2460
ggaagactgc	tgaacgcctg	ctgagatttt	cagataagag	acagactgag	gaggccattg	2520
acaggatttt	tgccatatca	cagcaacagc	agcagcaaag	caagtcaaag	aaaaaccgaa	2580
gggcaggcaa	acgctataaa	tttgtggatg	ctgtccctga	tatttttgca	cagattgaag	2640
tcaatgagaa	aaagattaga	cagaaagctc	agattttggc	acagaaagaa	ctacccatag	2700
atgaagatga	agaaatgaaa	gaccttttag	attttgcaga	tgtaacatac	gagaaacata	2760
aaaatggggg	cttgattaaa	ggccggtttg	gacaggcacg	gatggtgaca	actacacaca	2820
gcagggcccc	atcactgtct	gcttcctata	ccaggttgtt	cctgattctg	aacattgcta	2880
ttttctttgt	catgttggca	atgcaactga	cttatttcca	gagggcccag	agcctacatg	2940
gccaaagatg	tctttatgca	gttcttctca	tagatagctg	tattttatta	tggttgtact	3000
cttcttgttc	ccaatcacag	tgttagcact	gaagctataa	attacctggt	cattttgtga	3060
tcacaagagt	ctatgcaaaa	aaaaaaattt	ctttacccca	gattatcaga	ttttttccc	3120
tcagattcat	tttaacaaat	taagggaaga	tattttgaca	caagaaagca	ggaacgtgga	3180
gaaattggag	caggaaaaga	aattatcaaa	gcaatagaaa	tagcttggtg	gtcctatggt	3240
gtttttggaa	gtatttggca	ttgctaattg	agcagtccat	atagtactac	ttttagaaga	3300
aacaaaaagt	ctattttta	aagtaatgtt	ttttcttatg	agaaaaaggt	ttagatagaa	3360
ttgggtttta	ttaatattaa	tttaatgcta	ttagcaattt	ccatatacta	tattgtggaa	3420
aagactgaag	aatacaattc	tgagaaatat	aaaaaaattt	taatggtata	ctcatgttga	3480
aagataaatg	ttgctaagtc	ctggtatgat	ggtgtgagct	tccttgggga	agtacttctt	3540
gagttatgta	actaacagga	tgttttacta	cagatctgga	tggctattca	gataacatgg	3600
caaaaaatga	tagcagaaga	tcattaaaaa	cttaaaatat	attttattag	aaaacattta	3660
tctatgaatg	aatatttcct	tgatgctggt	ctctgcacac	atatgcttgg	ttacttgcat	3720
gcattcattg	gttgttcaat	aagtgagatg	attacagata	atactgtatt	ttccttatat	3780
ggaaaaccgt	tatagaccca	ataacaacta	aacctttcaa	aagaaaatat	tttctattat	3840
gaatgttgat	: tttcatacca	aagaagatgg	agagtctaaa	atttggatat	gattcttatg	3900
tttttttaat	agaaaacctt	cttcaagttt	attttcctaa	ataaacatca	. taattgtgaa	3960
aaaaaaaaa	ı aaaaaaaaa	aaaaaaaaaa	aaaaaaaa			3998

<210> 418

<211> 1402

<212> DNA

<213> Homo sapiens

<400> 418

60 tctctcccca aqaaqaqtcg agaaaatgtt aaggaacttc tctgctgttc catggaagaa taccaacagt ccccggtgaa gctgcaggac ttcttccagt atggtagtta tgtctgtacg 120 180 qacqcttcqq atctqqqtct accagagtgg gtgctaggag ctctggccaa agcgcgtacc acctttcatc agtgatgctt tggtgctccg aaggaccttt cttcacacac aggtagaaaa 240 catgcagcgg ccaaatgctc acagaatatc tcagcccatc aggcaaatca tctatgggct 300 tcttttaaat gcctcaccac atctggacaa gacatcctgg aatgcattgc ctcctcagcc 360 tctagctttc agtgaagtgg aaaggattaa taaaaatatc agaacctcaa tcattgatgc 420 agtagaactg gccaaggatc attctgactt aagcagattg actgagctct ccttgaggag 480 540 gcggcagatg cttctgttag aaaccctgaa ggtgaaacag accattctgg agccaatccc tacttcactg aagttgccca ttgctgtcag ttgctactgg ttgcagcaca ccgagaccaa 600 660 agcaaagcta catcatctac aatccttact gctcacaatg ctagtggggc ccttgattgc 720 cataatcaac aqccctqqta aggaagagct gcaggaagat ggtgctaaga tgttgtatgc 780 agagttccaa agagtgaagg cgcagacacg gctgggcaca agactggact tagacacagc tcacatcttc tgtcagtggc agtcctgtct ccagatgggg atgtatctca accagctgct 840 qtccactcct ctcccagagc cagacctaac tcgactgtac agtggaagcc tggtgcacgg 900 960 actatgccag caactgctag catcgacctc tgtagaaagt ctcctgagca tatgtcctga ggctaagcaa ctttatgaat atctattcaa tgccacaagg tcatatgccc ccgctgaaat 1020 1080 attcctacca aaaqqtaqat caaattcaaa aaaaaaaagg cagaagaaac agaataccag 1140 ctqttctaaq aacaqaqqqa gaaccactgc acacaccaag tgttggtatg agggaaacaa 1200 ccggtttggg ttgttaatgg ttgaaaactt agaggaacat agtgaggcct ccaacattga ataaaactca gtttgcatca aactagatgt atttaatata atccttactt aaaattcttc 1260 cgttaccacc cttgaaacaa ttagcttttt ctttaggact gacctgttag gggataaaca 1320 tcacaataat ctgaattcca agttattttg tattttgttt ttaataaata caacctgatt 1380 1402 taagaaaaaa aaaaaaaaa aa

<210> 419

<211> 1326

<212> DNA

<213> Homo sapiens

<400> 419

atggaaggag acttctcggt gtgcaggaac tgtaaaagac atgtagtctc tgccaacttc 60

the strength atagagata taagaagat	120
accetecatg aggettactg cetgeggtte etggteetgt gteeggagtg tgaggageet	100
gtccccaagg aaaccatgga ggagcactgc aagcttgagc accagcaggt tgggtgtacg	180
atgtgtcagc agagcatgca gaagtcctcg ctggagtttc ataaggccaa tgagtgccag	240
gagcgccctg ttgagtgtaa gttctgcaaa ctggacatgc agctcagcaa gctggagctc	300
cacgagtect actgtggcag ccggacagag ctctgccaag gctgtggcca gttcatcatg	360
caccgcatgc tcgcccagca cagagatgtc tgtcggagtg aacaggccca gctcgggaaa	420
ggggaaagaa tttcagctcc tgaaagggaa atctactgtc attattgcaa ccaaatgatt	480
ccagaaaata agtatttcca ccatatgggt aaatgttgtc cagactcaga gtttaagaaa	540
cactttcctg ttggaaatcc agaaattctt ccttcatctc ttccaagtca agctgctgaa	600
aatcaaactt ccacgatgga gaaagatgtt cgtccaaaga caagaagtat aaacagattt	660
cctcttcatt ctgaaagttc atcaaagaaa gcaccaagaa gcaaaaacaa aaccttggat	720
ccacttttga tgtcagagcc caagcccagg accagctccc ctagaggaga taaagcagcc	780
tatgacattc tgaggagatg ttctcagtgt ggcatcctgc ttcccctgcc gatcctaaat	840
caacatcagg agaaatgccg gtggttagct tcatcaaaaa ggaaaacaag tgagaaattt	900
cagctagatt tggaaaagga aaggtactac aaattcaaaa gatttcactt ttaacactgg	960
cattcctgcc tacttgctgt ggtggtcttg tgaaaggtga tgggttttat tcgttgggct	1020
ttaaaagaaa aggtttggca gaactaaaaa caaaactcac gtatcatctc aatagataca	1080
gaaaaggctt ttgataaaat tcaacttgac ttcatgttaa aaaccctcaa caaaccaggc	1140
gtcgaaggaa catacctcaa aataataaga gccatctatg acaaaaccac agccaacatc	1200
atactgaatg agcaaaagct ggagcattac tettgagaag tagaacaagg caettcagte	1260
ctattcaaca tagtactgga agtctcgcca cagcaatcag gcaagagaaa gaagtaaaag	1320
	1326
gcaccc	

<210> 420 <211> 2077

<212> DNA

<213> Homo sapiens

<400> 420
ccgagcgccagcgcggggaaccgggaaaaggaaaccgtgttgtgtacgtaagattcagga60aacgaaaccaggagccgcgggtgttggcgcaaaggttactcccagacccttttccggctg120acttctgagaaggttgcgcacagctgtgccggcagtctagaggcgcagaagaggaagcc180atcgcctggccccggctctctggaccttgtctcgctcggagcggaaacagcggcagca240gagaactgttttaatcatggacaaacaaaactcacagatgaatgcttctcacccggaaac300

aaacttgcca gttgggtatc ctcctcagta tccaccgaca gcattccaag gacctccagg 360 atatagtggc taccetgggc cecaggtcag ctacceacce ccaccagecg gecattcagg 420 tcctggccca gctggctttc ctgtcccaaa tcagccagtg tataatcagc cagtatataa 480 tcagccagtt ggagctgcag gggtaccatg gatgccagcg ccacagcctc cattaaactg 540 tccacctgga ttagaatatt taagtcagat agatcagata ctgattcatc agcaaattga 600 acttctggaa gttttaacag gttttgaaac taataacaaa tatgaaatta agaacagctt 660 tggacagagg gtttactttg cagcggaaga tactgattgc tgtacccgaa attgctgtgg 720 gccatctaga ccttttacct tgaggattat tgataatatg ggtcaagaag tcataactct 780 ggagagacca ctaagatgta gcagctgttg ttgtccctgc tgccttcagg agatagaaat 840 ccaagctcct cctggtgtac caataggtta tgttattcag acttggcacc catgtctacc 900 aaagtttaca attcaaaatg agaaaagaga ggatgtacta aaaataagtg gtccatgtgt 960 tgtgtgcagc tgttgtggag atgttgattt tgagattaaa tctcttgatg aacagtgtgt 1020 ggttggcaaa atttccaagc actggactgg aattttgaga gaggcattta cagacgctga 1080 taactttgga atccagttcc ctttagacct tgatgttaaa atgaaagctg taatgattgg 1140 tgcctgtttc ctcattgact tcatgttttt tgaaagcact ggcagccagg aacaaaaatc 1200 aggagtgtgg tagtggatta gtgaaagtct cctcaggaaa tctgaagtct gtatattgat 1260 tgagactatc taaactcata cctgtatgaa ttaagctgta aggcctgtag ctctggttgt 1320 atacttttgc ttttcaaatt atagtttatc ttctgtataa ctgatttata aaggtttttg 1380 tacatttttt aatactcatt gtcaatttga gaaaaaggac atatgagttt ttgcatttat 1440 taatgaaact tootttgaaa aactgotttg aattatgato totgattoat tgtocatttt 1500 actaccaaat attaactaag gccttattaa tttttatata aattatatct tgtcctatta 1560 aatctagtta caatttattt catgcataag agctaatgtt attttgcaaa tgccatatat 1620 tcaaaaaagc tcaaagataa ttttctttac tattatgttc aaataatatt caatatgcat 1680 attatcttta aaaagttaaa tgttttttta atcttcaaga aatcatgcta cacttaactt 1740 ctcctagaag ctaatctata ccataatatt ttcatattca caagatatta aattaccaat 1800 tttcaaatta ttgttagtaa agaacaaaat gattctctcc caaagaaaga cacattttaa 1860 atactccttc actctaaaac tctggtatta taacttttga aagttaatat ttctacatga 1920 aatgtttagc tettacactc tateetteet agaaaatggt aattgagatt aeteagatat 1980 taattaaata caatatcata tatatattca cagagtataa acctaaataa tgatctatta 2040 2077 gattcaaata tttgaaataa aaacttgatt tttttgt

<210>	421	
<211>	1450	
<212>		
<213>	Homo	sapiens

<400> 421 tgctcgctgc gccaccgcct cccgccaccc ctgcccgccc gacagcgccg ccgcctgccc 60 cgccatgggt cgacagaagg agctggtgtc ccgctgcggg gagatgctcc acatccgcta 120 ccggctgctc cgacaggcgc tggccgagtg cctggggacc ctcatcctgg tgatgtttgg 180 ctgtggctcc gtggcccagg ttgtgctcag ccggggcacc cacggtggtt tcctcaccat 240 caacctggcc tttggctttg ctgtcactct gggcatcctc atcgctggcc aggtctctgg 300 ggcccacctg aaccctgccg tgacctttgc catgtgcttc ctggctcgtg agccctggat 360 caagctgccc atctacaccc tggcacagac gctgggagcc ttcttgggtg ctggaatagt 420 ttttgggctg tattatgatg caatctggca cttcgccgac aaccagcttt ttgtttcggg 480 ccccaatggc acagccggca tctttgctac ctacccctct ggacacttgg atatgatcaa 540 tggcttcttt gaccagttca taggcacagc ctcccttatc gtgtgtgtgc tggccattgt 600 tgacccctac aacaaccccg tcccccgagg cctggaggcc ttcaccgtgg gcctggtggt 660 cctggtcatt ggcacctcca tgggcttcaa ctccggctat gccgtcaacc ctgcccggga 720 ctttggcccc cgccttttta cagcccttgc gggctggggc tctgcagtct tcacgaccgg 780 ccagcattgg tggtgggtgc ccatcgtgtc cccactcctg ggctccattg cgggtgtctt 840 cgtgtaccag ctgatgatcg gctgccacct ggagcagccc ccaccctcca acgaggaaga 900 gaatgtgaag ctggcccatg tgaagcacaa ggagcagatc tgagtgggca ggggccatct 960 ccccactccg ctgccctggc cttgagcatc cactgactgt ccaagggcca ctcccaagaa 1020 geceettea egateeacce ttteaggeta aggageteee tatetaceet eacceeacga 1080 gacageceet teaggattte caetggaeet tgeecaaata geaeettagg eeaetgeeee 1140 taagctgggg tggaaccgga atttgggtca atacatcctt ttgtctccca agggaagaga 1200 atgggcagca ggtatgtgtg tgtgtgcatg tgtgtgcatg tgtgtgcatg tgtgtgcagg 1260 ggtgtgtgtg tgtgggggg gttcccagat attcagggca agggaccagt cggaagggat 1320 tctggctatt gggggagccc agagacaggg gaaggcagcc tgtccatctg tgcataagga 1380 gaggaaagtt ccagggtgtg tatgtttcag gggcttcaca tggaggagct gcagatagat 1440 1450 atgtgtttct

<210> 422 <211> 1696

<212> DNA

<213> Homo sapiens

422 caaaggactt cctagtgggt gtgaaaggca gcggtggcca cagaggcggc ggagagatgg <400> 60 ccttcagcgg ttcccaggct ccctacctga gtccagctgt ccccttttct gggactattc 120 aaggaggtct ccaggacgga cttcagatca ctgtcaatgg gaccgttctc agctccagtg 180 gaaccaggtt tgctgtgaac tttcagactg gcttcagtgg aaatgacatt gccttccact 240 tcaaccctcg gtttgaagat ggagggtacg tggtgtgcaa cacgaggcag aacggaagct 300 gggggcccga ggagaggaag acacacatgc ctttccagaa ggggatgccc tttgacctct 360 gcttcctggt gcagagctca gatttcaagg tgatggtgaa cgggatcctc ttcgtgcagt 420 acttccaccg cgtgcccttc caccgtgtgg acaccatctc cgtcaatggc tctgtgcagc 480 tgtcctacat cagcttccag aacccccgca cagtccctgt tcagcctgcc ttctccacgg 540 tgccgttctc ccagcctgtc tgtttcccac ccaggcccag ggggcgcaga caaaaacctc 600 ceggegtgtg geetgecaac ceggeteeca ttacecagae agteateeac acagtgeaga 660 gegeceetgg acagatgtte tetacteecg ceateceace tatgatgtae ecceaceeg 720 cctatccgat gcctttcatc accaccattc tgggagggct gtacccatcc aagtccatcc 780 tectgteagg caetgteetg eccagtgete agaggtteea cateaacetg tgetetggga 840 accacatogo ottocacotg aaccocogtt ttgatgagaa tgotgtggto ogcaacacoo 900 agatcgacaa ctcctggggg tctgaggagc gaagtctgcc ccgaaaaatg cccttcgtcc 960 gtggccagag cttctcagtg tggatcttgt gtgaagctca ctgcctcaag gtggccgtgg 1020 atggtcagca cetgtttgaa tactaccatc geetgaggaa eetgeecace atcaacagae 1080 tggaagtggg gggcgacatc cagctgaccc atgtgcagac ataggcggct tcctggccct 1140 ggggccgggg gctggggtgt ggggcagtct gggtcctctc atcatcccca cttcccaggc 1200 ccagcettte caaccetgee tgggatetgg getttaatge agaggeeatg teettgtetg 1260 gtcctgcttc tggctacagc caccctggaa cggagaaggc agctgacggg gattgccttc 1320 ctcagccgca gcagcacctg gggctccagc tgctggaatc ctaccatccc aggaggcagg 1380 cacagccagg gagagggag gagtgggcag tgaagatgaa gccccatgct cagtcccctc 1440 ccatccccca cgcagctcca ccccagtccc aagccaccag ctgtctgctc ctggtgggag 1500 gtggcctcct cagcccctcc tctctgacct ttaacctcac tctcaccttg caccgtgcac 1560 caaccettca cccctcctgg aaagcaggee tgatggette ccactggeet ccaccacctg 1620 accagagtgt totottoaga ggactggoto otttoccagt gtoottaaaa taaagaaatg 1680 1696 aaaatgcttg ttggca

<210> 423 <211> 817 <212> DNA <213> Homo sapiens	
<400> 423 gtatattcag cagggtattt aagtgctagg gctggtcaca cacaaccaac tgaaaaagac	60
tagagggatt agtacaaact cctcttatac agaaggcaaa tctgaggttc cacagaagtc	120
tggaaccaag actattcagt tggttaaata aagaggttag tctagactgg gcctgctcat	180
tctaggtcac cacattttcc atctccaaat agccaggccc tctctccctc aagaaatgcc	240
cagatgtaga aattcatcag tgcctattgg tcttccagaa ttttccatct tccgtatctc	300
ccaggcatga gactaccaag tttgtttgtt ttctttccaa tttgggaatt tatacttcag	360
tatggtttca acgcagttat gtttccagag aacatctaga agtggctgga aaccagaagc	420
tggggattcc agggacccca cttagtgctc tatttccttt ataggtttta tttctggtca	480
tagagagaga aggacctttg actttttctt cgttgaggct tctgaggagg aaaaacaaac	540
taaaatagaa atacagtcag cetttcaaat ccatgggtte tgtgteegtg gattcaacca	600
agcttggatc aaacaatatt tgacaaaaaa tctaccaagt tccaaaaagc aaaacttgaa	660
tttgggtgca tgccaagaaa gtatggttgg aattcctggt acactgaagt ggatgttgta	720
aggcattgta ttacgatatt ataggaaatt ctagaaatgg attttaaagc attacaggca	780
ggatgtgcgc ttaggttatt atggcgaatt attatgg	817
<210> 424 <211> 832 <212> DNA <213> Homo sapiens	
<400> 424 ttttttttt tttttttt tttaaaaaat cgaatacctt tattggggct cccttaagca	60
gctggtgaaa aggggagtga cctcagcaga ggccgggtat cttggcccgt gtggaaaacc	120
caaaatctca gctgcctagt cgggggtttt caaacagaag taaaagaggg gggggccacc	180
tccagtgctg tatccgggag gaggtccggg tcagcacggg gcaaggtagg tagctagctg	240
ccttgacccc tagtcggggg tgggaacttc ggttggcctg agataagggg atgtcagtcc	300
aaaagattgc tccacatggt gtcttcttct gcaggggtaa aagggcgggt cctggaatgg	360
gccgggagtg taccctaggg gaggcccagg ggctctttgg gatcagggat cctgaaaaaa	420
gctgccctgg gaggcccttg aaataacata gggagcaaga atgagtgctc gagtcgtcgc	480
tgacacagtc cagctcacac ggccatcaca gaggctgatg tgagcagtca cccagggggg	540
ggctccagct cattccatcc ccagggggca aggtgactag agggtaagaa gcccccgagt	600

aagccagggc ctctcccgct gtccaacccc gaggaataac ti	tccagcggt (ccaagcacac	660
gaagtcggag gatgccaaaa taccggccct ggctgtacca ag			720
tegaagtagt ctacetegag tgagaacegt ggcaacagtg gg			780
			832
gcagacacca gtaacacact gggggaccgt caaggaagag g	5555555		
<210> 425			
<211> 2621 <212> DNA			
<213> Homo sapiens			
<400> 425 cagtgtttgg tgttgcaagc aggatccaaa ggagacctat a	gtgactccc	aggagctctt	60
agtgaccaag tgaaggtacc tgtggggctc attgtgccca t	tgetettte	actgctttca	120
actggtagtt gtgggttgaa gcactggaca atgccacata c	etttgtggat	ggtgtgggtc	180
ttgggggtca tcatcagcct ctccaaggaa gaatcctcca a	atcaggcttc	tctgtcttgt	240
gaccgcaatg gtatctgcaa gggcagctca ggatctttaa a	actccattcc	ctcagggctc	300
acagaagctg taaaaagcct tgacctgtcc aacaacagga t	tcacctacat	tagcaacagt	360
gacctacaga ggtgtgtgaa cctccaggct ctggtgctga c	catccaatgg	aattaacaca	420
atagaggaag attettttte tteeetggge agtettgaae a	atttagactt	atcctataat	480
tacttatcta atttatcgtc ttcctggttc aagccccttt	cttctttaac	attcttaaac	540
ttactgggaa atccttacaa aaccctaggg gaaacatctc	ttttttctca	tctcacaaaa	600
ttgcaaatcc tgagagtggg aaatatggac accttcacta	agattcaaag	aaaagatttt	660
gctggactta ccttccttga ggaacttgag attgatgctt			720
ccaaaaagtt tgaagtcaat tcagaatgta agtcatctga			780
attttactgc tggagatttt tgtagatgtt acaagttccg			840
gatactgatt tggacacttt ccatttttca gaactatcca			900
attaaaaagt ttacatttag aaatgtgaaa atcaccgatg	aaagtttgtt	tcaggttatg	960
aaacttttga atcagatttc tggattgtta gaattagagt	ttgatgactg	tacccttaat	1020
ggagttggta attttagagc atctgataat gacagagtta			1080
acgttaacaa tccggaggct gcatattcca aggttttact			1140
ttatattcac ttacagaaag agttaaaaga atcacagtag			1200
gttccttgtt tactttcaca acatttaaaa tcattagaat			1260
ttgatggttg aagaatactt gaaaaattca gcctgtgagg			1320
actttaattt taaggcaaaa tcatttggca tcattggaaa			1380

actctgaaaa	acttgactaa	cattgatatc	agtaagaata	gttttcattc	tatgcctgaa	1440
acttgtcagt	ggccagaaaa	gatgaaatat	ttgaacttat	ccagcacacg	aatacacagt	1500
gtaacaggct	gcattcccaa	gacactggaa	attttagatg	ttagcaacaa	caatctcaat	1560
	tgaatttgcc					1620
	atgcctccct					1680
ataactacgt	tttctaagga	gcaacttgac	tcatttcaca	cactgaagac	tttggaagct	1740
	acttcatttg					1800
	tcttgattga					1860
	aggttcagga					1920
	tgtgctgtgc					1980
	gcctgtggta					2040
	ctcccagcag					2100
	gggtggagaa					2160
	ttcataagcg					2220
	g aaaagagcca					2280
	agtatgaact					2340
	tcattcttct					2400
					a cgaggctcag	2460
					catatttaag	2520
					: cattcagaca	2580
	a aaaactacgt					2621

```
<210> 426
<211> 975
<212> DNA
<213> Homo sapiens
```

```
<220>
<221> misc_feature
<222> (792)..(793)
<223> n is a, c, g, t or u
```

<400> 426 ggattctgaa atagatatgg ctgtgctaga atgaaggaat ctagaaagga atgcccctgg 60 aagctcatct tgaagagag atcttttca gcagatcagc aaaacgctgg ctcagcacct 120 ctgagttagc tcagtgaaag aaaaggctga cgcctgccag tgagctccgg aggcttcccc 180

tttctaacaa ggtcatttct tcaaataggg agttcccatt gtttcagagt cacttagatg 240 ttccaggcac taagacaggt ctctctctag ggtcttccca atttagccag cgtaaaaaca 300 atggtggaaa ggaaaacct ggaaactttg cacagcccag agcctggtca tgggccacac 360 ccgctataag ggaagctgag acacatagct cctagctgag cagctacatg cccagaaaag 420 actcgtatta ccacgaaagc atgagcgcaa tctcactgga gctagtagcc tctgcaatgc 480 tgggtgggat aggcaggttg taagtgattt ttctggaagc tgtgaactct gtaaaaatgt 540 ttacttggat ggtcccagaa cttaaattag tatatggttc atgaggatcc ttccccaccc 600 ccagttctga atggaaactg ccacgaacaa gaatgtatct cttgaagatg gcagcctttg 660 ctgacagaac cacatgaaag gcaggaagga gatccggcac gctcccaccg ttacgctaac 720 gtcgcagtat ctcctaggtg aactgcattt gtttctcaga ttctttttag ttttctttt 780 catcttccct annaaaaata ttaataataa gattttggga cttgggaaga gagagagaga 840 gagagacccc cttctgtgtt tctgtgacaa cactttcaga gacaaaaaaa aaacgccctc ⁻ 900 tggctttttc cttggatggg tgactgtctg cccaattatt cccttttaac ccacgaacat 960 975 agggggaaaa ggccc

<210> 427 <211> 632 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (13)..(13)

<223> n is a, c, g, t or u

<400> 427 tggggatact gtngacaaag atacagtttt attaatgctg aattattaat atgaaaagcc 60 120 ttgčaatcaa attaggagag cgcttgataa aacaagccct cttcttgcga gtaatttgaa agaataactg cttttcatta caatctcagc tcccagcagg tcctacataa accaagccag 180 ctgcggttca agaaaaggtc caaaggagga cccactcgag gtgaggataa atcacaattg 240 tgatcacaga ccaggtttct atcttttta ttccctttaa taaattgggc ttgacctgaa 300 actccaagaa agttaattta taacagccaa aataattttt tttacgtaac agcccacctt 360 420 tctttttctt ttaaacttaa accattatga caaatggaga tttattacat accataaaca catgtggctt gagcactggt atttagtctg gaaactcaga tggggcagta agctgctgct 480 540 gcaatcagga aatgccatgt gacattcttg ataaagacga aacacacaca catttcacag cacttattgt ggccacagtg gttttggcca ttgtgtgggc accacagtct cagtgcaggg 600

ctgggaagtg aaagacgatt caccagacca ag	632
<210> 428 <211> 816 <212> DNA <213> Homo sapiens	
<400> 428 atgcactttc tttgccaaag gcaaacgcag aacgtttcag agccatgagg atgcttctgc	60
atttgagttt gctagctctt ggagctgcct acgtgtatgc catccccaca gaaattccca	120
caagtgcatt ggtgaaagag accttggcac tgctttctac tcatcgaact ctgctgatag	180
ccaatgagac tctgaggatt cctgttcctg tacataaaaa tcaccaactg tgcactgaag	240
aaatctttca gggaataggc acactggaga gtcaaactgt gcaagggggt actgtggaaa	300
gactattcaa aaacttgtcc ttaataaaga aatacattga cggccaaaaa aaaaagtgtg	360
gagaagaaag acggagagta aaccaattcc tagactacct gcaagagttt cttggtgtaa	420
tgaacaccga gtggataata gaaagttgag actaaactgg tttgttgcag ccaaagattt	480
tggaggagaa ggacatttta ctgcagtgag aatgagggcc aagaaagagt caggccttaa	540
ttttcagtat aatttaactt cagagggaaa gtaaatattt caggcatact gacactttgc	600
cagaaagcat aaaattctta aaatatattt cagatatcag aatcattgaa gtattttcct	660
ccaggcaaaa ttgatatact tttttcttat ttaacttaac	720
acttaatagt atttatgaaa tggttaagaa tttggtaaat tagtatttat ttaatgttat	780
gttgtgttct aataaaacaa aaatagacaa ctgttc	816
<210> 429 <211> 1273 <212> DNA <213> Homo sapiens	
<400> 429 caagatggg cttcgcttcg cggggtagtg ttgggcccgc ggggcgcggg	60
geteceggge gegegtgeee ggggtetget gtgeagegeg eggeeeggge ageteeeget	120
acggacacct caggcagtgg ccttgtcgtc gaagtctggc ctttcccgag gccggaaagt	180
gatgctgtca gcgctgggca tgctggcggc agggggtgcg gggctggccg tggctctgca	240
ttcggctgtg agtgccagtg acctggagct gcaccccccc agctatccgt ggtctcaccg	300
tggcctcctc tcttccttgg accacaccag catccggagg ggtttccagg tatataagca	360
ggtgtgcgcc tcctgccaca gcatggactt cgtggcctac cgccacctgg tgggcgtgtg	420
ctacacggag gatgaagcta aggagctggc tgcggaggtg gaggttcaag acggccccaa	480

tgaagatggg gag	gatgttca	tgcggccagg	gaagctgttc	gactatttcc	caaaaccata	540
ccccaacagt gag	getgete	gagctgccaa	caacggagca	ttgccccctg	acctcagcta	600
catcgtgcga gct	aggcatg	gtggtgagga	ctacgtcttc	tccctgctca	cgggctactg	660
cgagccaccc acc	ggggtgt	cactgcggga	aggtctctac	ttcaacccct	actttcctgg	720
ccaggccatt gcc						780
cccagctacc ato	gtcccaga	tagccaagga	tgtgtgcacc	ttcctgcgct	gggcatctga	840
gccagagcac ga						900
ggtgcccctg gto						960
ggcatatcgg cc						1020
ccctcaagcc ca	agagccat	cccaggcctg	ttcaggcctc	agctaagcct	ctcttcatct	1080
ggaagaagag gc						1140
atcatgggaa ta						1200
aaaaaaaaaa aa						1260
aaaaaaaaaa aa						1273

<210> 430

<211> 5065

<212> DNA

<213> Homo sapiens

<400> 430 cgctcgatct tgggacccac cgctgccctc agctccgagt ccagggcgag tgcagagcac 60 agegggegga ggacceeggg egegggegeg gaeggeaege ggggeatgaa eetggaggge 120 ggcggccgag gcggagagtt cggcatgagc gcggtgagct gcggcaacgg gaagctccgc 180 cagtggctga tcgaccagat cgacagcggc aagtaccccg ggctggtgtg ggagaacgag 240 gagaagagca tetteegeat eecetggaag caegegggca ageaggacta caacegegag 300 gaggacgccg cgctcttcaa ggcttgggca ctgtttaaag gaaagttccg agaaggcatc 360 gacaagcegg acceteceae etggaagaeg egeetgeggt gegetttgaa eaagageaat 420 gactttgagg aactggttga gcggagccag ctggacatct cagacccgta caaagtgtac 480 aggattgttc ctgagggagc caaaaaagga gccaagcagc tcaccctgga ggacccgcag 540 atgtccatga gccaccccta caccatgaca acgccttacc cttcgctccc agcccagcag 600 gttcacaact acatgatgcc acccctcgac cgaagctgga gggactacgt cccggatcag 660 ccacaccegg aaatcccgta ccaatgtccc atgacgtttg gacccegegg ccaccactgg 720 caaggeccag ettgtgaaaa tggttgecag gtgacaggaa eettttatge ttgtgeecca 780

				~~~~~~~	taaggtgtgg	cgaagccttg	840
					taaggtctgc		900
					gggaaatcct		•
(	ctgaccacgt	ccagccccga	gggctgccgg	atctcccatg	gacatacgta	tgacgccagc	960
	aacctggacc	aggtcctgtt	cccctaccca	gaggacaatg	gccacaggaa	aaacattgag	1020
,	aacctgctga	gccacctgga	gaggggcgtg	gtcctctgga	tggcccccga	cgggctctat	1080
	gcgaaaagac	tgtgccagag	cacgatctac	tgggacgggc	ccctggcgct	gtgcaacgac	1140
	cggcccaaca	aactggagag	agaccagacc	tgcaagctct	ttgacacaca	gcagttcttg	1200
	tcagagctgc	aagcgtttgc	tcaccacggc	cgctccctgc	caagattcca	ggtgactcta	1260
	tgctttggag	aggagtttcc	agaccctcag	aggcaaagaa	agctcatcac	agctcacgta	1320
	gaacctctgc	tagccagaca	actatattat	tttgctcaac	aaaacagtgg	acatttcctg	1380
	aggggctacg	atttaccaga	acacatcagc	aatccagaag	attaccacag	atctatccgc	1440
	cattcctcta	ttcaagaatg	aaaaatgtca	agatgagtgg	ttttctttt	ccttttttt	1500
	tttttttt	ttgatacgga	gatacggggt	cttgctctgt	ctcccaggct	ggagtgcagt	1560
	gacacaatct	cagctcactg	tgacctccgc	ctcctgggtt	caagagactc	tcctgcctca	1620
	gcctccctgg	tagctgggat	tacaggtgtg	agccactgca	cccacccaag	acaagtgatt	1680
	ttcattgtaa	atatttgact	: ttagtgaaag	g cgtccaattg	actgccctct	tactgttttg	1740
	aggaactcag	aagtggagat	: ttcagttcag	g cggttgagga	gaattgcggc	gagacaagca	1800
	tggaaaatca	gtgacatct	g attggcagat	gagcttattt	caaaaggaag	ggtggctttg	1860
	cattttcttg	f tgttctgtag	g actgccatca	a ttgatgatca	a ctgtgaaaat	tgaccaagtg	1920
	atgtgtttac	: atttactga	a atgegetett	taatttgttg	g tagattaggt	cttgctggaa	1980
						cttgtaggta	2040
	tgtctgtgc	atttctcag	g gaagtaaga	t gtaaattgaa	a gaagcctcac	: acgtaaaaga	2100
e !	aatgtattaa	a tgtaťgťag	g agctgcagt	t cttgtggaag	g acacttgcts	g agtgaaggaa	2160
	atgaatctt	: gactgaagc	c gtgcctgta	g ccttgggga	g gcccatccc	cacctgccag	2220
	cggtttcct	g gtgtgggtc	c ctctgcccc	a ccctccttc	c cattggctt	ctctccttgg	2280
	cctttcctg	g aagccagtt	a gtaaacttc	c tattttctt	g agtcaaaaa	a catgagcgct	2340
	actcttgga	t gggacattt	t tgtctgtcc	t acaatctag	t aatgtctaa	g taatggttaa	2400
						a attcttcgca	2460
						c cttctgtcca	2520
						t tggctgtcca	2580
	gcgatcagc	c atggcgaca	c taaaggagg	a ggagccggg	g actcccagg	c tggagagcac	2640

tgccaggacc	caccactgga	agcaggatgg	agctgactac	ggaactgcac	actcagtggg	2700
ctgtttctgc	ttatttcatc	tgttctatgc	ttcctcgtgc	caattatagt	ttgacagggc	2760
cttaaaatta	cttggctttt	tccaaatgct	tctatttata	gaaatcccaa	agacctccac	2820
ttgcttaagt	atacctatca	cttacatttt	tgtggttttg	agaaagtaca	gcagtagact	2880
ggggcgtcac	ctccaggccg	tttctcatac	tacaggatat	ttactattac	tcccaggatt	2940
cagcagaaga	ttgcgttagc	tctcaaatgt	gtgttcctgc	ttttctaatg	gatattttaa	3000
		gtaagtgcct				3060
ttatcaagct	tagtgagcag	tgagcactga	aacattattt	tttaatgttt	aaaaagtttc	3120
taatattaaa	gtcagaatat	taatacaatt	aatattaata	ttaactacag	aaaagacaaa	3180
cagtagagaa	cagcaaaaaa	ataaaaagga	tctccttttt	tcccagccca	aattctcctc	3240
					tttctgtaaa	3300
tatacataaa	cttaaaaaga	aaacctcatg	gagtcatctt	gcacacactt	ttcatgcagt	3360
gctctttgta	gctaaacagt	gaagatttac	ctcgttctgc	tcagaggcct	tgctgtggag	3420
ctccactgcc	atgtacccag	tagggtttga	. catttcatta	gccatgcaac	atggatatgt	3480
attgggcago	agactgtgtt	tcgtgaactg	cagtgatgta	. tacatcttat	. agatgcaaag	3540
tattttgggg	tatattatco	taagggaaga	taaagatgat	attaagaact	gctgtttcac	3600
ggggccctta	cctgtgacco	: tctttgctga	ı agaatattta	accccacaca	gcacttcaaa	3660
gaagctgtct	: tggaagtctg	tctcaggago	accctgtctt	cttaattctc	caageggatg	3720
ctccatttca	attgctttgt	gacttcttct	: tctttgtttt	: tttaaatatt	atgctgcttt	3780
aacagtggag	g ctgaatttt	tggaaaatgo	ttattggatg	g gggccacta	e ctcctttcct	3840
atctttacat	ctatgtgtat	gttgactttt	taaaattct	g agtgatcca	g ggtatgacct	3900
agggaatgaa	a ctagctatg	g aaataactca	a gggttagga	a tectageac	t tgtctcagga	3960
ctctgaaaa	g gaacggctt	c ctcattcct	t gtcttgata	a agtggaatt	g gcaaactaga	4020
atttagttt	g tactcagtg	g acagtgctg	t tgaagattt	g aggacttgt	t aaagagcact	4080
gggtcatat	g gaaaaaatg	t atgtgtctc	c ccaggtgca	t tttcttggt	t tatgtcttgt	4140
tcttgagat	t ttgtatatt	t aggaaaacc	t caagcagta	a ttaatatct	c ctggaacact	4200
atagagaac	c aagtgaccg	a ctcatttac	a actgaaacc	t aggaagccc	c tgagtcctga	4260
gcgaaaaca	g gagagttag	t cgccctaca	g aaaacccag	c tagactatt	g ggtatgaact	4320
aaaaagaga	c tgtgccatg	g tgagaaaaa	t gtaaaatcc	t acagtggaa	t gagcagccct	4380
tacagtgtt	g ttaccacca	a gggcaggta	g gtattagtg	t ttgaaaaag	c tggtctttga	4440

gcgagggcat aaatacag	ct agccccaggg	gtggaacaac	tgtgggagtc	ttgggtactc	4500
gcacctcttg gctttgtt	ga tgctccgcca	ggaaggccac	ttgtgtgtgc	gtgtcagtta	4560
cttttttagt aacaattc	ag atccagtgta	aacttccgtt	cattgctctc	cagtcacatg	4620
ccccacttc cccacagg	tg aaagttttc	tgaagtgttg	ggattggtta	aggtctttat	4680
ttgtattacg tatctccc	ca agteetetgt	ggccagctgc	atctgtctga	atggtgcgtg	4740
aaggetetea gaeettae	ac accattttgt	aagttatgtt	ttacatgccc	cgtttttgag	4800
actgatctcg atgcaggt	gg atctccttga	gatcctgata	gcctgttaca	ggaatgaagt	4860
aaaggtcagt tttttttg	ıta ttgattttca	cagctttgag	gaacatgcat	aagaaatgta	4920
gctgaagtag aggggacg	ntg agagaaggg	: caggccggca	ggccaaccct	cctccaatgg	4980
aaattcccgt gttgcttc	caa actgagacag	g atgggactta	acaggcaatg	gggtccactt	5040
cccctcttc agcatcc	ccc gtacc				5065

<210> 431

<211> 1502

<212> DNA

<213> Homo sapiens

<400> 431 gccacagtgc tccggatcct ccaatcttcg ctcctccaat ctccgctcct ccacccagtt 60 caggaacccg cgaccgctcg cagcgctctc ttgaccacta tgagcctcct gtccagccgc 120 geggeeegtg teeceggtee ttegagetee ttgtgegege tgttggtget getgetgetg 180 ctgacgcagc cagggcccat cgccagcgct ggtcctgccg ctgctgtgtt gagagagctg 240 cgttgcgttt gtttacagac cacgcaagga gttcatccca aaatgatcag taatctgcaa 300 gtgttcgcca taggcccaca gtgctccaag gtggaagtgg tagcctccct gaagaacggg 360 420 aaggaaattt gtcttgatcc agaagcccct tttctaaaga aagtcatcca gaaaattttg gacggtggaa acaaggaaaa ctgattaaga gaaatgagca cgcatggaaa agtttcccag 480 tcttcagcag agaagttttc tggaggtctc tgaacccagg gaagacaaga aggaaagatt 540 ttgttgttgt ttgtttattt gtttttccag tagttagctt tcttcctgga ttcctcactt 600 660 tttagcatag tacctctgct atttgctgtt attttatctg ctatgctatt gaagttttgg 720 caattgacta tagtgtgagc caggaatcac tggctgttaa tctttcaaag tgtcttgaat 780 tgtaggtgac tattatattt ccaagaaata ttccttaaga tattaactga gaaggctgtg 840 gatttaatgt ggaaatgatg tttcataaga attctgttga tggaaataca ctgttatctt 900 cacttttata agaaatagga aatattttaa tgtttcttgg ggaatatgtt agagaatttc 960

cttactcttg attgtgg	gat actatttaat	tatttcactt	tagaaagctg	agtgtttcac	1020
accttatcta tgtagaa	tat atttccttat	tcagaatttc	taaaagttta	agttctatga	1080
gggctaatat cttatct	tcc tataatttta	gacattcttt	atctttttag	tatggcaaac	1140
tgccatcatt tactttt	aaa ctttgatttt	atatgctatt	tattaagtat	tttattagga	1200
gtaccataat tctggta	igct aaatatatat	tttagataga	tgaagaagct	agaaaacagg	1260
caaattcctg actgcta	igtt tatatagaaa	tgtattcttt	tagtttttaa	agtaaaggca	1320
aacttaacaa tgactto	gtac tctgaaagtt	ttggaaacgt	attcaaacaa	tttgaatata	1380
aatttatcat ttagtta	ataa aaatatatag	gegacatecte	gaggccctag	catttctcct	1440
tggatagggg accagag	gaga gcttggaatg	, tcaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1500
aa			•		1502

<210> 432

<211> 1328

<212> DNA

<213> Homo sapiens

<400> 432 atgacagaga actccgacaa agttcccatt gccctggtgg gacctgatga cgtggaattc 60 tgcagecece eggegtaege taegetgaeg gtgaageeet eeageeeege geggetgete 120 aaggtgggag ccgtggtcct catttcggga gctgtgctgc tgctctttgg ggccatcggg 180 gccttctact tctggaaggg gagcgacagt cacatttaca atgtccatta caccatgagt 240 atcaatggga aactacaaga tgggtcaatg gaaatagacg ctgggaacaa cttggagacc 300 tttaaaatgg gaagtggagc tgaagaagca attgcagtta atgatttcca gaatggcatc 360 acaggaattc gttttgctgg aggagagaag tgctacatta aagcgcaagt gaaggctcgt 420 attectgagg tgggcgccgt gaccaaacag agcateteet ccaaactgga aggcaagate 480 atgccagtca aatatgaaga aaattctctt atctgggtgg ctgtagatca gcctgtgaag 540 600 gacaacagct tottgagttc taaggtgtta gaactctgcg gtgaccttcc tattttctgg 660 cttaaaccaa cctatccaaa agaaatccag agggaaagaa gagaagtggt aagaaaaatt gttccaacta ccacaaaaag accacacagt ggaccacgga gcaacccagg cgctggaaga 720 ctgaataatg aaaccagacc cagtgttcaa gaggactcac aagccttcaa tcctgataat 780 cettateate ageaggaagg ggaaageatg acattegace etagaetgga teacgaagga 840 900 atctgttgta tagaatgtag gcggagctac acccactgcc agaagatctg tgaacccctg 960 gggggctatt acccatggcc ttataattat caaggctgcc gttcggcctg cagagtcatc atgccatgta gctggtgggt ggcccgtatc ttgggcatgg tgtgaaatca cttcatatat 1020

cacgtgctgt	aaaataagaa	ctagctgaag	agacaaccaa	agaagcatta	aggcaggttg	1080
atgctgatgg	gaccataaaa	tatttttaca	cgcagcctga	gcggttattc	ttgacactct	1140
taacagaatt	tttttaatcg	ttttccagaa	ctttagtata	tgcaaatgca	ctgaaagggt	1200
agttcaagtc	taaaatgcca	taaccccgtt	atttgttatt	ttttatttgc	attgatttgc	1260
cataagtctt	cccttgcttg	catcttccaa	agctatttcg	aaataaacac	gaaaatttac	1320
agtttgcc			· · · · ·			1328

<210> 433

<211> 1817

<212> DNA

<213> Homo sapiens

<400> 433 gatcaatggt attttagctg aagctatgga atgttttttg cagtatgttt atactggaaa 60 ggtgaagatc actacagaga atgtacagta tctctttgag acatcaagcc tctttcagat 120 tagtgttctc cgtgatgcat gtgccaagtt cttggaggag caacttgatc cttgtaattg 180 cttaggaatc cagcgctttg ctgataccca ttcactcaaa acactcttca caaaatgcaa 240 aaattttgcg ttacagactt ttgaggatgt atcccagcac gaagaatttc ttgagcttga 300 caaagatgaa cttattgatt atatttgtag tgatgaactt gttattggta aagaggagat 360 ggtttttgaa geegteatge gttgggteta tegtgeegtt gatetgagaa gaceaetgtt 420 acacgagete etgacacatg tgagactece tetgttgcat eccaactact ttgttcaaac 480 agttgaagtg gaccaattga tccagaattc tcctgagtgt tatcagttgt tgcatgaagc 540 aagacggtac cacatacttg ggaatgaaat gatgtcccca aggactaggc cacgcaggtc 600 cactggctat tctgaggtga tagttgtcgt tggaggatgt gagcgagttg gaggatttaa 660 tcttccatac actgagtgct acgatcctgt aacaggagaa tggaagtctt tggctaagct 720 tccagaattt accaaatcag agtatgcagt ctgtgctcta aggaatgaca ttcttgtttc 780 aggtggaaga atcaacagcc gtgatgtctg gatttataac tcacagttaa atatttggat 840 cagagttgcc tctctcaata aaggcagatg gcgtcacaaa atggctgtcc tccttggtaa 900 agtatatgtt gtcggtggct atgatgggca aaacagactt agcagcgtag aatgttatga 960 ttccttttca aatcgatgga ctgaagttgc tccccttaag gaagccgtga gttctcctgc 1020 agtgactagc tgtgtaggca aactgtttgt gattggtgga ggacctgatg ataatacttg 1080 1140 ttctgataag gttcaatctt atgatccaga aaccaattct tggctacttc gtgcagctat 1200 ccgaattgcc aaaaggtgta taacagctgt atccctaaac aacctgatct atgttgccgg tggactgacc aaggcaatat actgttacga tccagttgaa gattactgga tgcacgtaca 1260

gaatacattc	agccgtcagg	taataacatg	aagcagtaca	aaagaaaaat	aaatctaaga	1320
gggaccaagt	acataatcat	tattaataca	ctggaatttc	aattttaaaa	tatttcaggc	1380
tgggcgtggt	ggctcacgcc	tgtggtccca	gcactttggg	aggccgaggt	ggatagatca	1440
cttgaggtca	ggagttcaag	accagcctgg	ctaatatggt	gaaaccccgt	ctctactaaa	1500
aaattatggc	caggcgtggt	ggttcatgcc	tgtaatccca	gcactttggg	aggctgaggc	1560
aggccaatca	cctgaggtcg	ggagttcgag	accagcctga	ccaacatgga	gaaaccccgt	1620
ctctgctaaa	aatacaaaat	tagctgggcg	tggtggcgca	ttgcctgtaa	tcccagctac	1680
tagggaggct	gcggcaggag	aattgcttga	acccgggagg	tggaggtcgc	ggtgagccga	1740
gatcgagcca	ttgcactcca	gcctggacag	caggagcgaa	actccgtctc	aaaaataaat	1800
aaaaaaaaa	aaaaaaa					1817

<210> 434

<211> 7260

<212> DNA

<213> Homo sapiens

<400> 434 tcactgtcac tgctaaattc agagcagatt agagcctgcg caatggaata aagtcctcaa 60 aattgaaatg tgacattgct ctcaacatct cccatctctc tggatttcct tttgcttcat 120 tattcctgct aaccaattca ttttcagact ttgtacttca gaagcaatgg gaaaaatcag 180 cagtetteca acceaattat ttaagtgetg ettttgtgat ttettgaagg tgaagatgea 240 caccatgtcc tectegeate tettetacet ggegetgtge etgeteacet teaccagete 300 tgccacggct ggaccggaga cgctctgcgg ggctgagctg gtggatgctc ttcagttcgt 360 gtgtggagac aggggctttt atttcaacaa gcccacaggg tatggctcca gcagtcggag 420 ggcgcctcag acaggcatcg tggatgagtg ctgcttccgg agctgtgatc taaggaggct 480 ggagatgtat tgcgcacccc tcaagcctgc caagtcagct cgctctgtcc gtgcccagcg 540 ccacaccgac atgcccaaga cccagaagga agtacatttg aagaacgcaa gtagagggag 600 tgcaggaaac aagaactaca ggatgtagga agaccctcct gaggagtgaa gagtgacatg 660 ccaccgcagg atcctttgct ctgcacgagt tacctgttaa actttggaac acctaccaaa 720 aaataagttt gataacattt aaaagatggg cgtttccccc aatgaaatac acaagtaaac 780 attccaacat tgtctttagg agtgatttgc accttgcaaa aatggtcctg gagttggtag 840 attgctgttg atcttttatc aataatgttc tatagaaaag aaaaaaaaat atatatata 900 960 atatatetta gteeetgeet eteaagagee acaaatgeat gggtgttgta tagateeagt tgcactaaat tcctctctga atcttggctg ctggagccat tcattcagca accttgtcta 1020

agtggtttat gaattgtttc cttatttgca cttctttcta cacaactcgg gctgtttgtt	1080
ttacagtgtc tgataatctt gttagtctat acccaccacc tcccttcata acctttatat	1140
ttgccgaatt tggcctcctc aaaagcagca gcaagtcgtc aagaagcaca ccaattctaa	1200
cccacaagat tccatctgtg gcatttgtac caaatataag ttggatgcat tttattttag	1260
acacaaagct ttatttttcc acatcatgct tacaaaaaag aataatgcaa atagttgcaa	1320
ctttgaggcc aatcattttt aggcatatgt tttaaacata gaaagtttct tcaactcaaa	1380
agagttcctt caaatgatga gttaatgtgc aacctaatta gtaactttcc tctttttatt	1440
ttttccatat agagcactat gtaaatttag catatcaatt atacaggata tatcaaacag	1500
tatgtaaaac tctgtttttt agtataatgg tgctattttg tagtttgtta tatgaaagag	1560
tctggccaaa acggtaatac gtgaaagcaa aacaataggg gaagcctgga gccaaagatg	1620
acacaagggg aagggtactg aaaacaccat ccatttggga aagaaggcaa agtcccccca	1680
gttatgcctt ccaagaggaa cttcagacac aaaagtccac tgatgcaaat tggactggcg	1740
agtccagaga ggaaactgtg gaatggaaaa agcagaaggc taggaatttt agcagtcctg	1800
gtttcttttt ctcatggaag aaatgaacat ctgccagctg tgtcatggac tcaccactgt	1860
gtgaccttgg gcaagtcact tcacctctct gtgcctcagt ttcctcatct gcaaaatggg	1920
ggcaatatgt catctaccta cctcaaaggg gtggtataag gtttaaaaag ataaagattc	1980
agattttttt accctgggtt gctgtaaggg tgcaacatca gggcgcttga gttgctgaga	2040
tgcaaggaat tctataaata acccattcat agcatagcta gagattggtg aattgaatgc	2100
tectgacate teagttettg teagtgaage tatecaaata aetggeeaae tagttgttaa	2160
aagctaacag ctcaatctct taaaacactt ttcaaaatat gtgggaagca tttgattttc	2220
aatttgattt tgaattctgc atttggtttt atgaatacaa agataagtga aaagagagaa	2280
aggaaaagaa aaaggagaaa aacaaagaga tttctaccag tgaaagggga attaattact	2340
ctttgttagc actcactgac tcttctatgc agttactaca tatctagtaa aaccttgttt	2400
aatactataa ataatattot attoattttg aaaaacacaa tgattootto ttttotaggo	2460
aatataagga aagtgatcca aaatttgaaa tattaaaata atatctaata aaaagtcaca	2520
aagttatett etttaacaaa etttaetett attettaget gtatataeat ttttttaaaa	2580
agtttgttaa aatatgcttg actagagttt cagttgaaag gcaaaaactt ccatcacaac	2640
aagaaatttc ccatgcctgc tcagaagggt agcccctagc tctctgtgaa tgtgttttat	2700
ccattcaact gaaaattggt atcaagaaag tccactggtt agtgtactag tccatcatag	2760
cctagaaaat gatccctatc tgcagatcaa gattttctca ttagaacaat gaattatcca	2820
gcattcagat ctttctagtc accttagaac tttttggtta aaagtaccca ggcttgatta	2880

tttcatgcaa attctatatt ttacattctt ggaaagtcta tatgaaaaac aaaaataaca 2940 tetteagttt tteteceact gggteacete aaggateaga ggeeaggaaa aaaaaaaaag 3000 actccctgga tctctgaata tatgcaaaaa gaaggcccca tttagtggag ccagcaatcc 3060 tgttcagtca acaagtattt taactctcag tccaacatta tttgaattga gcacctcaag 3120 catgcttagc aatgttctaa tcactatgga cagatgtaaa agaaactata catcattttt 3180 gccctctgcc tgttttccag acatacaggt tctgtggaat aagatactgg actcctcttc 3240 ccaagatggc acttcttttt atttcttgtc cccagtgtgt accttttaaa attattccct 3300 ctcaacaaaa ctttataggc agtcttctgc agacttaaca tgttttctgt catagttaga 3360 tgtgataatt ctaagagtgt ctatgactta tttccttcac ttaattctat ccacagtcaa 3420 aaatccccca aggaggaaag ctgaaagatg caactgccaa tattatcttt cttaactttt 3480 tccaacacat aatcctctcc aactggatta taaataaatt gaaaataact cattatacca 3540 attcactatt ttattttta atgaattaaa actagaaaac aaattgatgc aaaccctgga 3600 agtcagttga ttactatata ctacagcaga atgactcaga tttcatagaa aggagcaacc 3660 aaaatgtcac aaccaaaact ttacaagctt tgcttcagaa ttagattgct ttataattct 3720 tgaatgaggc aatttcaaga tatttgtaaa agaacagtaa acattggtaa gaatgagctt 3780 tcaactcata ggcttatttc caatttaatt gaccatactg gatacttagg tcaaatttct 3840 gttctctctt gcccaaataa tattaaagta ttatttgaac tttttaagat gaggcagttc 3900 ccctgaaaaa gttaatgcag ctctccatca gaatccactc ttctagggat atgaaaatct 3960 4020 cacacattca ccctaaggat ccaatggaat actgaaaaga aatcacttcc ttgaaaattt 4080 tattaaaaaa caaacaaaca aacaaaaagc ctgtccaccc ttgagaatcc ttcctctcct 4140 tggaacgtca atgtttgtgt agatgaaacc atctcatgct ctgtggctcc agggtttctg 4200 ttactatttt atgcacttgg gagaaggett agaataaaag atgtagcaca ttttgettte 4260 ccatttattg tttggccagc tatgccaatg tggtgctatt gtttctttaa gaaagtactt 4320 gactaaaaaa aaaagaaaaa aagaaaaaaa agaaagcata gacatatttt tttaaagtat 4380 aaaaacaaca attctataga tagatggctt aataaaatag cattaggtct atctagccac 4440 caccaccttt caacttttta tcactcacaa gtagtgtact gttcaccaaa ttgtgaattt 4500 gggggtgcag gggcaggagt tggaaatttt ttaaagttag aaggctccat tgttttgttg 4560 gctctcaaac ttagcaaaat tagcaatata ttatccaatc ttctgaactt gatcaagagc 4620 atggagaata aacgcgggaa aaaagatctt ataggcaaat agaagaattt aaaagataag 4680

taagtteett attgattttt gtgeactetg etetaaaaca gatatteage aagtggagaa	4740
	4800
	4860
	4920
	4980
	5040
	5100
	5160
actataggct agatagaaat gtatgtttga cttgttgaag ctataatcag actatttaaa	5220
atgttttgct atttttaatc ttaaaagatt gtgctaattt attagagcag aacctgtttg	5280
gctctcctca gaagaaagaa tctttccatt caaatcacat ggctttccac caatattttc	5340
aaaagataaa totgatttat goaatggoat catttatttt aaaacagaag aattgtgaaa	5400
gtttatgccc ctcccttgca aagaccataa agtccagatc tggtaggggg gcaacaacaa	5460
aaggaaaatg ttgttgattc ttggttttgg attttgtttt gttttcaatg ctagtgttta	5520
atcctgtagt acatatttgc ttattgctat tttaatattt tataagacct tcctgttagg	5580
tattagaaag tgatacatag atatcttttt tgtgtaattt ctatttaaaa aagagagaag	5640
actgtcagaa gctttaagtg catatggtac aggataaaga tatcaattta aataaccaat	5700
tcctatctgg aacaatgctt ttgtttttta aagaaacctc tcacagataa gacagaggcc	5760
caggggattt ttgaagctgt ctttattctg cccccatccc aacccagccc ttattatttt	5820
agtatctgcc tcagaatttt atagagggct gaccaagctg aaactctaga attaaaggaa	5880
cctcactgaa aacatatatt tcacgtgttc cctctcttt ttttcctttt tgtgagatgg	5940
ggtetegeae tgteeceeag getggagtge agtggeatga teteggetea etgeaacete	6000
cacctcctgg gtttaagcga ttctcctgcc tcagcctcct gagtagctgg gattacaggc	6060
acccaccact atgcccggct aattttttgg atttttaata gagacggggt tttaccatgt	6120
tggccaggtt ggactcaaac tcctgacctt gtgatttgcc cgcctcagcc tcccaaattg	6180
ctgggattac aggcatgagc caccacaccc tgcccatgtg ttccctctta atgtatgatt	6240
acatggatct taaacatgat ccttctctcc tcattcttca actatctttg atggggtctt	6300·
tcaaggggaa aaaaatccaa gctttttaa agtaaaaaaa aaaaaagaga ggacacaaaa	6360
ccaaatgtta ctgctcaact gaaatatgag ttaagatgga gacagagttt ctcctaataa	6420
ccggagctga attacctttc actttcaaaa acatgacctt ccacaatcct tagaatctgc	6480 '
cttttttat attactgagg cctaaaagta aacattactc attttattt gcccaaaatg	6540

cactgatgta	aagtaggaaa	aataaaaaca	gagctctaaa	atccctttca	agccacccat	6600
tgaccccact	caccaactca	tagcaaagtc	acttctgtta	atcccttaat	ctgattttgt	6660
ttggatattt	atcttgtacc	cgctgctaaa	cacactgcag	gagggactct	gaaacctcaa	6720
gctgtctact	tacatctttt	atctgtgtct	gtgtatcatg	aaaatgtcta	ttcaaaatat	6780
caaaaccttt	caaatatcac	gcagcttata	ttcagtttac	ataaaggccc	caaataccat	6840
gtcagatctt	tttggtaaaa	gagttaatga	actatgagaa	ttgggattac	atcatgtatt	6900
ttgcctcatg	tatttttatc	acacttatag	gccaagtgtg	ataaataaac	ttacagacac	6960
tgaattaatt	tcccctgcta	ctttgaaacc	agaaaataat	gactggccat	tcgttacatc	7020
tgtcttagtt	gaaaagcata	ttttttatta	aattaattct	gattgtattt	gaaattatta	7080
ttcaattcac	ttatggcaga	ggaatatcaa	tcctaatgac	ttctaaaaat	gtaactaatt	7140
gaatcattat	cttacattta	ctgtttaata	agcatatttt	gaaaatgtat	ggctagagtg	7200
tcataataaa	atggtatatc	tttctttagt	aattacaaaa	aaaaaaaaa	aaaaaaaaa	7260
	o sapiens					
<400> 435 tgaagagtgg	aagagacatt	. ccagaggagg	attgccttcg	tcagggtaac	ggggtgggct	60
gctcaggtgc	cctacccttc	accccttct	gtatcagatt	ggacctccca	ctcccatctc	120
actctgcgtg	tacaatcttc	: catatccgca	agttcactgg	cactcttctc	gcacctgggc	180
aagatcccag	g aacagaggat	ggagtgåctg	g gcctcacaga	gcttagtgcc	: cgactcaggg	240
gaaatgggac	: tggtgcatgg	g gaaatggtca	a gcctaggata	ı ggacacgaga	gtctgaaatt	300
caaagcaacc	agcttgaagt	ggtttgaga	a gctggaagca	a acatgggct	agagagatag	360
ggcagaagto	aagacgagga	a totggaotga	a tigtggagaca	agtagccac	gaagcatgaa	420
ctgtatcctg	g cacaaagtc	c ctcttcccc	g cctcctaatt	cattatgcc	c aaaagtgctt	480
acgtgaaatt	ccagcccag	a gtactcatg	a cttgagagad	gtggacgga	g ccagcttcta	540
ccttgcttgg	g acgtetete	c cct				563
<210> 430 <211> 684 <212> DN	4					

60

ggcagtcatg cctcaaaaga tgccaaccag gttcactcca ctaccaggag gaatagcaac

<213> Homo sapiens

agtccgccct	ctccgtcctc	tatgaaccaa	agaaggctgg	gccccagaga	ggtggggggc	120
caggtagcag	gcaacacagg	aggactggag	ccagtgcacc	ctgccagcct	cccggactcc	180
tctctggcaa	ccagtgcccc	gctgtgctgc	accctctgcc	acgagcggct	ggaggacacc	240
cattttgtgc	agtgcccgtc	cgtcccttcg	cacaagttct	gcttcccttg	ctccagacaa	300
agcatcaaac	agcagggagc	tagtggagag	gtctattgtc	ccagtgggga	aaaatgccct	360
cttgtgggct	ccaatgtccc	ctgggccttt	atgcaagggg	aaattgcaac	catccttgct	420
ggagatgtga	aagtgaaaaa	agagagagac	tcgtgacttt	tccggtttca	gaaaaaccca	480
atgattaccc	ttaattaaaa	ctgcttgaat	tgtatatata	tctccatata	tatatatatc	540
caagacaagg	gaaatgtaga	cttcataaac	atggctgtat	aattttgatt	ttttttgaat	600
acattgtgtt	tctatattt	ttttgacgac	aaaaggtatg	tacttataaa	agacattttt	660
tttcttttgt	taacgttatt	agca				684

<210> 437

<211> 894

<212> DNA

<213> Homo sapiens

<400> 437 taccttcagg tggtttactt attctgtaaa gaatatgtgt aaatattttg tacagagccc 60 tgtgtcaaat aaacagccat atgtggttac taatcacctc ttctgtcatt ccgtccttgg 120 ccaccgctca gtgggaatgg tctctgatct ggatgctccc accttccatg tcaggcccag 180 aactgtgcca tggtctgtgg actcctggtc agccttgact ggctaggaga ccttgggcag 240 tacctacagt cttgctgttt ctgtttcatc tgcaagaatt atgacccaca cactccagct 300 gcagcccagg gcactgtgat attttatacg tgtgtagatg tttttgtcca cagttcctgg 360 ttcatcactc ccataaccct ttgttataat gttgggacac tgcaggcctc agaaaacgga 420 atctctgtct gtgaccttct cctgccccat ttcacttgct caacaccaga ctttaatctg 480 actgtagctc ataagaccct cattccagag agggtgctgc cccatacccg gaaggaggaa 540 cgctgcacag agaggccaag aagcatctgg acagacaggc cttgctgggt ttagacctta 600 tgctttttgt ccagtttcat ctcaacacag ctgccatgct tcagccatgc ctatccaatg 660 acgtctccat aaaaggccca ggaacacggg agcttctgaa gagctgaaca tgtggaggga 720 ggggaacgag aacttgtcca tgtgccaaga gggtggcgca ccccactcc atggggacag 780 aagctccagc atttgcccag gacccgtcca gacctcaccc tgtgtgtatc ttcatctggc 840 894 tgtttactta tttgtatcct tttctaataa tgtttgtaat aaactggtaa acat

<210> 438

<211> 2768

<212> DNA

<213> Homo sapiens

<400> 438 60 ggcctggccg gggcggcgca ctcaggtggc ctcgcttccc tgcgggtcac cgcccgccac tegeacaget aggteggeet gttgggateg ggagaggtgg gegeacgagt tttagtgegg 120 gagteegggg tgegggegga gteetattgt eeeegtgeac eegggeggea geaceteegg 180 gtccctcttt aaaccgagcg tccggcgacc tttctttgtg cttagggagt cgaaagcggc 240 atcttctccg agagaagtcg cctactgggg ggtggcgctg gggaggtaac aatgggcgcc 300 cattgtcctc cgagggtcca acggtgaccc cccccgctgc gcacgegccc ggccaccggt 360 tggccccggg ccagggcaca ggtaccgcgg ccgggagggt cggccccgct gcccgcgccc 420 tecgeceege eccagtgagt eccegegeeg ecggeceege eccgegeege eccgecetee 480 gcaggttcag tectegegte eggeegeece gegeteagte gegegeacet tetetegegg 540 ccgggggacc gcagcgcggg gctagcccgg agacccggcc accggcctgg ggcgccttca 600 cgccgtctcg gagcggataa tgcggtgagc aggcaccacg ccggcagact cggctggatc 660 tgcgcacagc ggcagggatt gcgtgcgccc gcgggaggcc cgggggcagcg gctgggatcc 720 tcagcggcgg ccggtttgtc ctggttgtgg tcaagactgg atgatgtaac tggctctcta 780 ggaagcctca cttggccgta acctcaggaa ggttctcttt gaccccatct catttcgaag 840 ccacttctga agccacttga gaaaaatgat gtgacagttc ctatcaaaaa ggattcagaa 900 acatatacca tetgtgaaga aagtggeeet tteteeeget tgcaaaatag acatteteaa 960 attccaaaat gccagccaag accccaattt acctgaaagc agccaataac aagaaaggaa 1020 agaaatttaa actgagggac attctgtctc ctgatatgat cagtcccccg cttggagact 1080 ttcgccacac catccacatt ggcaaagagg gccagcacga tgtctttgga gatatttcct 1140 ttcttcaagg gaactacgag cttttacctg gaaaccagga gaaagcacac ctgggccagt 1200 1260 tccctgggca taatgagttc ttccgggcca acagcacctc ggactctgtg ttcacagaaa cgccctcccc ggtgctcaaa aatgccatct ccctcccgac cattggagga tcccaagctc 1320 tcatgttgcc cttattgtca ccagtgacat ttaattccaa acaggagtcc ttcgggccag 1380 caaagctgcc caggcttagc tgcgagcccg tcatggagga aaaagctcag gagaaaagca 1440 gtctgttgga gaatgggaca gtccaccagg gagacacctc gtggggctcc agcggttctg 1500 catctcagtc cagccaaggc agagacagcc actcctccag cctgtccgaa cagtaccccg 1560. actggccagc cgaggacatg tttgaccatc ccaccccatg cgagctcatc aagggaaaga 1620 ctaagtcaga ggagtccctc tctgacctta caggttccct cctctccctg cagcttgatc 1680

ttgggccctc acttttggat gaggtgctga atgtaatgga taaaaataag taacaagatg 1740 ccaacttttt tcctttgggg taaaaggtac aaaaacaaac taaccacagt tgaagagaag 1800 ggcttccgga gctgtatttg cagttttgtg ttgggttttc taaaataata ttcttacaaa 1860 gtatttttt acctgttatg ccctgtttgc aaaaacaatt tagaaaaaaa caacaaagca 1920 aaacctatct tggcaaaaaa aggaagtgag tcagagccca ttttcaggag gcattggtga 1980 tgttcggctc acatattgtt tgcagacaca caagaaatct ggcttggcca ggattggcac 2040 tagctatgaa gggctgagcg agtcacatta aggaacttca cggaacttta tagcactccg 2100 acattttctg agcaagagga agtcaaaatt tatttaacac ctaagccttt ttgtagactc 2160 ttttctatat attgcttagg ctcaccatag cgaattctcc agtgttaaaa cttttctgtt 2220 2280 ttcacatttg aactttatgg gttttgggga ttttcttgta gttcttatat atccctatat 2340 attatatcta tattgcaaaa ttttgactgt cagctacatg ttggtaagac acaggcaaag tattactgta actaagttat ttttaaagtt aaaatatatt tttacgtgcc tttggctttt 2400 2460 tattgcagag tctacatttt atagattcta catcagatgt tgtcacttat ttccattggg attccattgt aagctgtgta tgtgcgtgtt tggaaaagtg tattcatact tagtttttt 2520 2580 ttcttcatct gttatcatac ttttaacagc aaccaataac ggattgtaaa gtgtaaaggc acaggttact catgatgctt ctgcagagac tgtgggctac accacatatg ttatttggaa 2640 atataggtat tttagtacag tacatacttg cattacatag gtacttcaag caacacaata 2700 2760 2768 aaaaaaag

<210> 439 <211> 616

<212> DNA <213> Homo sapiens

<220>

<221> misc feature

<222> (5)..(6)

<223> n is a, c, g, t or u

<400> 439
tagennagtt ttagtagaga cggggtttea cegtgttggc caggatggtc tegateteet 60
gaceteatga teegeeegee teggeeteec aaagtgetgg gattacagge gtgageeaec 120
gegeecagee agaaatagtt ttaaaaaaag aaataaggag egtgeggeee gegggggaag 180
egeetttace agetegagee tgeageeee eageegege egteetegge teeeceggge 240
agegeegggg ttttgteagg egeggetge tgtttgeetg gattgegete attetgaeee 300

tgaagccagc ggcccca	actg acacgccctg	aaaagtggga	gccacacgcg	ggatccggag	360
accgcgctaa agtccc	acgc acgacggcgc	ccgccggcga	gtccacgccc	gcacgtcggc	420
gcatgcgcgc ggccaa	geeg gtgeeegege	ccaccagcgc	gcatgcgcgc	cccgtccctt	480
ccctcccccc gtgctc	tgcc ccgatggttc	ggtccgcgcc	gggggcgggg	ccagggggga	540
tttctttagc ccaaga	gtgg.aggctaagct	acttacttcc	aagcctgggt	gatcaaaaaa	600
aaaaaaaaa aatttc		. , .	vi, .		616
<210> 440 <211> 463 <212> DNA <213> Homo sapie	ns			غة	
<400> 440 ttttttttt ttttt	tttt tttttttt	ttttttt	taagggccca	aaaacccctt	60
ttttgggcac gtcccc					120
tgcccaaaaa aaagtc					180
ttttgaaaaa aaaggg					240
agttggggtg ctttg					300
ggctgcggaa cttgac					360
ccttttccgg gagcag					420
ggatttcctc caggto					463
<210> 441 <211> 508 <212> DNA <213> Homo sapi					
<400> 441 ttttttttt tttt	tttt titttttt	ttttttttt	: ttttttttt	ttttttttt	60
ttttttcccc ccaaa	attct gggcttttg	g ggaaaaaaa	a aagggggcc	ttgaaggggg	120
ggggaaaccc aaagg	ggccc ccccaaaac	c cccaggggg	g ggggggacc	c ccaaaaccca	180
ggggagggcc cctca	ggccc aaattccaa	a ggggttttg	g ggggaaccc	c ccccccaaac	240
cccacccttg ggaaa	ggggg ggccccca	a aatttaaaa	t ttcccccaa	a cccaaaagga	300
acccaaatgg ggggg	gaaac ggggggctc	a ttttttggg	g ggggcccc	c aattccaaaa	360
aaacgggaaa agcac	atggg gcccccctt	t tttcccagg	g gggggaagg	g gggaccctta	420
ggccccatca gggcc	aaaac caacattta	t tgggtgggg	g cacgggctt	c ttcccgggag	480
aactaaatta cccc	ccaga aactaaaa				508

<210> 442					
<211> 240					
<212> DNA					
<213> Homo sapiens					
<400> 442					60
caaaccccgc gccattccag	acgctctgcg	tacggccttt	gccgacgaga	geagegeggg	60
tacacactca gagcaggaga	taaagcgtgg	aagctaacgt	cgtcgaccat	tectecatgt	120
ggagcctggt cagcagtgcc	agcgttgtag	tgcagttggt	aatgctgacc	ctggttgccg	180
catcggtgac ttcatggatc	atgatctttc	agcgcagcaa	cctgctgcgt	gccggtcgac	240
<210> 443 <211> 255 <212> DNA <213> Homo sapiens					
<400> 443 ttttttttt tttttttt	tttttttt	tttttttt	tttcaggggg	atgtaccttt	60
ttttgagtaa aggaaaaagg	gaattccccc	ccttgatcca	aaggttccag	ttgatcaaag	120
ggcccaaacc cccttcctgt	ttgcgtgatg	ggaacccccc	cacccccgg	ggcccccgga	180
accccctgcc ccaaggaaat	ggttccccct	ctcccccca	tgaccagctc	ctggtcattc	240
ccaaaaggca agggc					255
<210> 444 <211> 447 <212> DNA <213> Homo sapiens					
<400> 444 gtggtgtgtt tgttttaatt	ccacttgagg	gcactgtcta	'cttcagcaag	, aatgggatca	60
atttatattt gccacttata	taagacacct	gtggaaacct	ctatcttgac	acaatataaa	120
caaaactcct tataagggct	gcccaaacag	ctatccaacc	cctcaatttg	g gttggattcc	180
tttaaaggac caaactgaag	g tgttggttct	: ttttgaccaa	aatgctttta	a acatgtcaac	240
actttccaca agaaaatgtc					300
aaattatttt gcataactct					360
atgetteetg aggtegegaa		agatctact <u>c</u>	g tctagagtti	t tcccttgcaa	420
tcagccattt tctgtggtt	t cctgctg				447
<210> 445 <211> 444 <212> DNA <213> Homo sapiens					
-400- 445					

tttttttt	tttttttaat	ggacaaattc	tgtttatttt	ggaggtattg	gttcttacag	60
ccatcaataa	agacaccaat	tatgtactaa	catatataag	tccccggaag	gagacaaatt	120
tatattatgt	tagcaaattg	actgtaaaat	cctcttttc	tggaaagatg	atcttcttt	180
gggaggaaaa	cacagatctc	ctagagagag	tttcctcata	gctgatatgt	ctgaggacgc	240
ctgcctagat	ttgcatttcc	tgacattttc	ctgtagttgt	gtgtcatgca	ttttaatcta	300
gtgactctag	cagtttggtt	gcttaatgga	tttagtaata	ggagttttt	aaataacaca	360
caatcagatg	aaacacaatg	ccaacatatc	aactggtgcc	aagcacaaat	atttgtttag	420
tgaacgagca	agacacatgt	ggga				444

<210> 446

<211> 1182

<212> DNA

<213> Homo sapiens

<400> 446 geggeeggeg gegteteete eegggaeget gagggeeeg aggagaeegt gaggetetgg 60 cctgcagctc gcgccgccat ggacgctgcc gaggtcgaat tcctcgccga gaaggagctg 120 gttaccatta tececaactt cagtetggae aagatetace teateggggg ggaeetgggg 180 ccttttaacc ctggtttacc cgtggaagtg cccctgtggc tggcgattaa cctgaaacaa 240 agacagaaat gtcgcctgct ccctccagag tggatggatg tagaaaagtt ggagaagatg 300 agggatcatg aacgaaagga agaaactttt accccaatgc ccagccctta ctacatggaa 360 cttacgaagc teetgttaaa teatgettea gacaacatee egaaggeaga egaaateegg 420 accetggtca aggatatgtg ggacactcgt atagccaaac tecgagtgte tgetgacage 480 tttgtgagac agcaggaggc acatgccaag ctggataact tgaccttgat ggagatcaac 540 accageggga etttecteae acaagegete aaccacatgt acaaacteeg caegaacete 600 cagcetetgg agagtaetea gteteaggae ttetagagaa aggeetggtg caggeggett 660 gctgggggat gtgagcgctc aggatgtgat gaggtactcg tggttctgga gctctagaaa 720 cacttctgat gcatgaaaaa tgtgtgatgg tgcaaggaat ggattcagga tgttgttgga 780 gaaacaagtt tgtgattagt ccttaaaact tagctccctg ggacattctt caattccaca 840 tctgtttcta gaaaccagcc ctttttcccc ccacttttga gaaataaaaa agccttaggt 900 aaataagtca ttctccctag cagagccact tgggtctcct gcatggaagc cgtcacactt 960 gggcaggtgt tcagtgactg gtaggtgtag atacagcagg agtggccatg tggtccacgg 1020 ctttttaccc cttcttgatc ctgatttctt gggctgaatt tagactctct cacagaggtg 1080 gctcacagag aaggatggca gatggtgcag ccaacaatgc tgaccggtgc ttatcctcta 1140

agccctgatc cacaataaaa atggacccaa ctcaaaaaaa aa	1182
aggggggate cacaacaaaa acggaccom ii	
<210> 447 <211> 671 <212> DNA <213> Homo sapiens	
<400> 447 aacccaatga tcctgcagca gcccttgcag cgaggccccc agggagggc ccagcgcctc	60
ccgcgggccg ccttgggggt gacttggggc ctggacgcca gctcccctct ccgaggagct	120
gtgcccatga gcaccaagcg gcgcctggag gaggagcagg agcctctgcg caagcagttt	180
ctgtctgagg agaacatggc cacccacttc tctcaactca gcctgcacaa tgaccacccc	240
tactgcagcc cccccatgac cttctcccca gccctgcccc cactcaggag cccttgctct	300
gagetgette tetggegeta teetggeage eteatecetg aggeceteeg tetgetgagg	360
ctgggggaca cccccagtcc cccctaccct gcaaccccag ctggggacat aatggagctc	420
tgagtgetgg tggacagtge eceteceace tteettette eceacaacag aagagaccag	480
cgactcccgc aaagggacaa ggttcctccc tctcctgcag agtaggcatc tgggcaccaa	540
gaccttccct caacagagga cactgagccc aacggagttc tgggatggga	600
catgggaagg gaggcatccc acccccaga agaactgaat aaagattgct gagcaaaaaa	660
	671
aaaaaaaaaa a	
<210> 448 <211> 2787 <212> DNA <213> Homo sapiens	,
<400> 448 agageggagg cegeaeteca geaetgegea gggaeegeet tggaeegeag ttgeeggeea	60
	120
ggaatcccag tgtcacggtg gacacgcctc cctcgcgccc ttgccgccca cctgctcacc	180
cageteaggg getttggaat tetgtggeea eaetgegagg agateggtte tgggteggag	240
gctacaggaa gactcccact ccctgaaatc tggagtgaag aacgccgcca tccagccacc	300
attccaagga ggtgcaggag aacagctctg tgataccatt taacttgttg acattacttt	
tatttgaagg aacgtatatt agagcttact ttgcaaagaa ggaagatggt tgtttccgaa	360
gtggacatcg caaaagctga tccagctgct gcatcccacc ctctattact gaatggagat	420
gctactgtgg cccagaaaaa tccaggctcg gtggctgaga acaacctgtg cagccagtat	480
gaggagaagg tgcgccctg catcgacctc attgactccc tgcgggctct aggtgtggag	540

600

660

caggacctgg ccctgccagc catcgccgtc atcggggacc agagctcggg caagagctcc

gtgttggagg cactgtcagg agttgccctt cccagaggca gcgggatcgt gaccagatgc

	_	) la		ataaaaaa	caaddtaat	720
ccgctggtgc '						
taccaggact						780
gcccagaatg	ccatcgccgg	ggaaggaatg	ggaatcagtc	atgagctaat	caccctggag	840
atcagctccc	gagatgtccc	ggatctgact	ctaatagacc	ttcctggcat	aaccagagtg	900
gctgtgggca	atcagcctgc	tgacattggg	tataagatca	agacactcat	caagaagtac	960
atccagaggc	aggagacaat	cagcctggtg	gtggtcccca	gtaatgtgga	catcgccacc	1020
acagaggctc	tcagcatggc	ccaggaggtg	gaccccgagg	gagacaggac	catcggaatc	1080
ttgacgaagc	ctgatctggt	ggacaaagga	actgaagaca	aggttgtgga	cgtggtgcgg	1140
aacctcgtgt	tccacctgaa	gaagggttac	atgattgtca	agtgccgggg	ccagcaggag	1200 .
atccaggacc	agctgagcct	gtccgaagcc	ctgcagagag	agaagatctt	ctttgagaac	1260
cacccatatt	tcagggatct	gctggaggaa	ggaaaggcca	cggttccctg	cctggcagaa	1320
aaacttacca	gcgagctcat	cacacatatc	tgtaaatctc	tgcccctgtt	agaaaatcaa	1380
atcaaggaga	ctcaccagag	aataacagag	gagctacaaa	agtatggtgt	cgacataccg	1440
gaagacgaaa	atgaaaaaat	gttetteetg	atagataaaa	ttaatgcctt	taatcaggac	1500
atcactgctc	tcatgcaagg	agaggaaact	gtaggggagg	aagacattcg	gctgtttacc	1560
agactccgac	acgagttcca	caaatggagt	acaataattg	aaaacaattt	tcaagaaggc	1620
cataaaattt	tgagtagaaa	aatccagaaa	. tttgaaaatc	: agtatcgtgg	tagagagctg	1680
ccaggctttg	tgaattacag	gacatttgag	acaatcgtga	ı aacagcaaat	caaggcactg	1740
gaagagccgg	ctgtggatat	gctacacacc	gtgacggata	tggtccggct	tgctttcaca	1800
gatgtttcga	taaaaaattt	tgaagagttt	tttaacctcc	acagaaccgo	: caagtccaaa	1860
attgaagaca	ttagagcaga	a acaagagaga	gaaggtgaga	a agctgatccg	g cctccacttc	1920
cagatggaac	agattgtcta	a ctgccaggad	caggtataca	a ggggtgcatt	gcagaaggtc	1980
agagagaagg	agctggaaga	a agaaaagaaq	g aagaaatcct	gggattttg	g ggctttccag	2040
tccagctcgg	caacagact	c ttccatggag	g gagatettt	c agcacctgat	ggcctatcac	2100
caggaggcca	gcaagcgca	t ctccagcca	c atccctttg	a tcatccagti	t cttcatgctc	2160
cagacgtacg	gccagcagc	t tcagaaggc	c atgctgcage	c tcctgcagg	a caaggacacc	2220
					t cctgaaggag	2280
					g ttaaccacac	2340
					g gtagccactg	2400
					t tatccgttag	2460
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	<b>-</b>					

ccgtggtgat	ttagcaggaa	gctgtgagag	cagtttggtt	tctagcatga	agacagagcc	2520
ccaccctcag	atgcacatga	gctggcggga	ttgaaggatg	ctgtcttcgt	actgggaaag	2580
ggattttcag	ccctcagaat	cgctccacct	tgcagctctc	cccttctctg	tattcctaga	2640
aactgacaca	tgctgaacat	cacagcttat	ttcctcattt	ttataatgtc	ccttcacaaa	2700
cccagtgttt	taggagcatg	agtgccgtgt	gtgtgcgtcc	tgtcggagcc	ctgtctcctc	2760
tctctgtaat	aaactcattt	ctagcag į				2787

<210> 449

<211> 1404

<212> DNA

<213> Homo sapiens

<400> 449 ggcagtgcag ctgtgggaac ctctccacgc gcacgaactc agccaacgat ttctgataga 60 tttttgggag tttgaccaga gatgcaaggg gtgaaggagc gcttcctacc gttagggaac 120 tetggggaca gagegeeeeg geegeetgat ggeegaggea gggtgegaee caggaeeeag 180 gacggcgtcg ggaaccatac catggcccgg atccccaaga ccctaaagtt cgtcgtcgtc 240 300 atcgtcgcgg tcctgctgcc agtcctagct tactctgcca ccactgcccg gcaggaggaa gttccccagc agacagtggc cccacagcaa cagaggcaca gcttcaaggg ggaggagtgt 360 ccagcaggat ctcatagatc agaacatact ggagcctgta acccgtgcac agagggtgtg 420 gattacacca acgettecaa caatgaacct tettgettee catgtacagt ttgtaaatca 480 gatcaaaaac ataaaagttc ctgcaccatg accagagaca cagtgtgtca gtgtaaagaa 540 ggcaccttcc ggaatgaaaa ctccccagag atgtgccgga agtgtagcag gtgccctagt 600 ggggaagtcc aagtcagtaa ttgtacgtcc tgggatgata tccagtgtgt tgaagaattt 660 ggtgccaatg ccactgtgga aaccccagct gctgaagaga caatgaacac cagcccgggg 720 actectgece cagetgetga agagacaatg aacaccagee cagggactee tgeeccaget 780 gctgaagaga caatgaccac cagcccgggg actcctgccc cagctgctga agagacaatg 840 900 accaccagec eggggaetec tgeeceaget getgaagaga caatgaccae eageeegggg actcctgcct cttctcatta cctctcatgc accatcgtag ggatcatagt tctaattgtg 960 cttctgattg tgtttgtttg aaagacttca ctgtggaaga aattccttcc ttacctgaaa 1020 ggttcaggta ggcgctggct gagggcgggg ggcgctggac actctctgcc ctgcctccct 1080 ctgctgtgtt cccacagaca gaaacgcctg cccctgcccc aagtcctggt gtctccagcc 1140 tggctctatc ttcctccttg tgatcgtccc atccccacat cccgtgcacc ccccaggacc 1200 1260 ctggtctcat cagtccctct cctggagctg ggggtccaca catctcccag ccaagtccaa

gagggcaggg ccagttcctc ccatcttcag gcccagccag gcagggggca gtcggctcct 1320 caactgggtg acaagggtga ggatgagaag tggtcacggg atttattcag ccttggtcag 1380 agcagaaaaa aaaaaaaaa aaaa 1404

<210> 450 <211> 3817 <212> DNA

<213> Homo sapiens

<400> 450 cacagagcga cagagacatt tattgttatt tgttttttgg tggcaaaaag ggaaaatggc 60 gaacgactcc cctgcaaaaa gtctggtgga catcgacctc tcctccctgc gggatcctgc 120 tgggattttt gagctggtgg aagtggttgg aaatggcacc tatggacaag tctataaggg 180 tegacatgtt aaaacgggte agttggeage cateaaagtt atggatgtea etgaggatga 240 300 agaggaagaa atcaaactgg agataaatat gctaaagaaa tactctcatc acagaaacat tgcaacatat tatggtgctt tcatcaaaaa gagccctcca ggacatgatg accaactctg 360 gcttgttatg gagttctgtg gggctgggtc cattacagac cttgtgaaga acaccaaagg 420 gaacacactc aaagaagact ggatcgctta catctccaga gaaatcctga ggggactggc 480 acatcttcac attcatcatg tgattcaccg ggatatcaag ggccagaatg tgttgctgac 540 tgagaatgca gaggtgaaac ttgttgactt tggtgtgagt gctcagctgg acaggactgt 600 ggggcggaga aatacgttca taggcactcc ctactggatg gctcctgagg tcatcgcctg 660 tgatgagaac ccagatgcca cctatgatta cagaagtgat ctttggtctt gtggcattac 720 agccattgag atggcagaag gtgctccccc tctctgtgac atgcatccaa tgagagcact 780 840 gtttctcatt cccagaaacc ctcctccccg gctgaagtca aaaaaatggt cgaagaagtt ttttagtttt atagaagggt gcctggtgaa gaattacatg cagcggccct ctacagagca 900 gcttttgaaa catcctttta taagggatca gccaaatgaa aggcaagtta gaatccagct 960 taaggatcat atagatcgta ccaggaagaa gagaggcgag aaagatgaaa ctgagtatga 1020 gtacagtggg agtgaggaag aagaggagga agtgcctgaa caggaaggag agccaagttc 1080 cattgtgaac gtgcctggtg agtctactct tcgccgagat ttcctgagac tgcagcagga 1140 gaacaaggaa cgttccgagg ctcttcggag acaacagtta ctacaggagc aacagctccg 1200 ggagcaggaa gaatataaaa ggcaactgct ggcagagaga cagaagcgga ttgagcagca 1260 gaaagaacag aggcgacggc tagaagagca acaaaggaga gagcgggaag ctagaaggca 1320 1380 gcaggaacgt gaacagcgaa ggagagaaca agaagaaaag aggcgtctag aggagttgga gagaaggcgc aaagaagaag aggagaggag acgggcagaa gaagaaaaga ggagagttga 1440

aadadaddad	gagtatatca	ggcgacagct	agaagaggag	cagcggcact	tggaagtcct	1500
	ctgctccagg					1560
						1620
	cagcagccgc					1680
	aaagcccact					
	tacactgtta					1740
	gcaggacaga					18,00
gagagtggag	aagctggtgc	ccagacctgg	cagtggcagc	tcctcagggt	ccagcaactc	1860
aggatcccag	cccgggtctc	accctgggtc	tcagagtggc	tccggggaac	gcttcagagt	1920
gagatcatca	tccaagtctg	aaggctctcc	atctcagcgc	ctggaaaatg	cagtgaaaaa	1980
acctgaagat	aaaaaggaag	ttttcagacc	cctcaagcct	gctggcgaag	tggatctgac	2040
cgcactggcc	aaagagcttc	gagcagtgga	agatgtacgg	ccacctcaca	aagtaacgga	2100
ctactcctca	tccagtgagg	agtcggggac	gacggatgag	gaggacgacg	atgtggagca	2160
ggaaggggct	gacgagtcca	cctcaggacc	agaggacacc	agagcagcgt	catctctgaa	2220
tttgagcaat	ggtgaaacgg	aatctgtgaa	aaccatgatt	gtccatgatg	atgtagaaag	2280
	: atgaccccat					2340
	a ctccagaaac					2400
					gattttcctg	2460
					cagtggtcaa	2520
					aatacaagaa	2580
					tagtgggtac	2640
					ctcttatcaa	2700
	•				g tgacaatatc	2760
					a aaatacttca	2820
					tggaaggatg	2880
						2940
					g ctttgaagag	3000
					g cctttaagtc	
					g aaggccagag	3060
					g attcaggatc	3120
agtctatga	c atttatcta	c caacacatg	t aagaaagaa	c ccacactct	a tgatccagtg	3180
tagcatcaa	ıa ccccatgca	a tcatcatcc	t ccccaatac	a gatggaatg	g agcttctggt	3240
gtgctatga	ıa gatgagggg	g tttatgtaa	a cacatatgg	a aggatcacc	a aggatgtagt	3300

tctacagtgg ggagagatgc ctacatcagt agcatatatt cgatccaatc agacaatggg 3360 ctggggagag aaggccatag agatccgatc tgtggaaact ggtcacttgg atggtgtgtt 3420 catgcacaaa agggctcaaa gactaaaatt cttgtgtgaa cgcaatgaca aggtgttctt 3480 tgcctctgtt cggtctggtg gcagcagtca ggtttatttc atgaccttag gcaggacttc 3540 tettetgage tggtagaage agtgtgatee agggattaet ggeeteeaga gtetteaaga 3600 tectgagaac ttggaattee ttgtaactgg ageteggage tgeacegagg geaaceagga 3660 cagctgtgtg tgcagacctc atgtgttggg ttctctcccc tccttcctgt tcctcttata 3720 taccagttta tececattet ttttttttt ettactecaa aataaateaa ggetgeaatg 3780 3817 cagctggtgc tgttcagatt ctaaaaaaaa aaaaaaa

<210> 451

<211> 1542

<212> DNA

<213> Homo sapiens

<400> 451 tctgtactag aataggaaac tgaggccctg agaattgact cattcagatc acttcccatg 60 atcacgcagc tgagcagttt ccaatacaga attcagattt ggggttccct acttcgaatc 120 caggtetetg tgetecacae ttgtettteg tgetecatgt ttgaagaaat taatattgtg 180 gaagaacagt tttaaggctt agaggaactt gagttaggat ccgtacttgg cagatgagga 240 aattgattet catggatgta aatteaetgt ttgaggeeae aacagggeat catggtggga 300 ggcttgaaga ggaaacactc tgatttggaa gaggaggagg agaggtggga gtggagtcca 360 gcaggeette agagetacca gcaageeetg eteegeatet eeetagacaa agteeagege 420 agcctgggcc cccgagcacc cagcctccgc aggcatgtcc tcatccataa caccctccaa 480 cagctgcagg ctgcacttcg cctggctccc gcccctgccc tgccccccga gcccctcttc 540 ctgggcgagg aggatttctc cctgtcagcc accattggct ctatcctcag ggagctggac 600 acctccatgg atgggactga gcccctcag aatccagtga ctccccttgg cctccagaat 660 gaagtgccac cccagcctga tccagtcttc ttagaagctc tgagctcccg gtacttgggg 720 gactctggcc tggatgactt ctttctggac attgacacat ctgcggtaga aaaggagcct 780 gcacgggccc caccagagcc tcctcacaac ctcttctgtg ccccaggttc ttgggagtgg 840 aatgaactgg atcacatcat ggaaatcatt ctggggtcct aaaactgtga tagaggggat 900 cgatccttcc tcatgtcatc ttcggtggcc tggatccctg aatgcaactc tgggtgtgtg 960 tttttgtggg ggctcgaagc agtgactatg gcctcctttg ttcccatttc agggttccac 1020 aaactgtctt gcatgtgtgt gtgtgtctgg ttaccccgac cttctgtgaa ggtgggtctt 1080

cctgaattaa	tttatctatt	ccaaatgcct	taacgagact	ctgtttctgg	gagtctgatt	1140
ttccacttac	acatttcttc	cacctttcct	gctagttccc	actcccctgt	gaccactggg	1200
gcctcaggga	agataaagaa	agctgggcct	gtcgaaggat	gacagggatg	tgctgccagg	1260
ttgctataga	aacccaggct	ctgcctcttg	caccttgagg	gggtgggagg	ggctggtgtc	1320
ctccctccag	gctgaacccc	acttcctcgg	caggacccca	gtctcagcag	cctcctgatt	1380
tcataaccag	gccggaccac	gtgcaatagg	gtggaaacca	aactgctcca	tgccgggtta	1440
tttaaaagaa	aggcagagtt	tgtggtggct	tttttttt	tttttggatt	gtttgtaatt	1500
ttttaaata	aaagtatttt	ggaaggagaa	aaaaaaaaa	aa		1542

<210> 452

<211> 1575

<212> DNA

<213> Homo sapiens

<400> 452 agaaccgcga cctccgcaac cttgagcggc atccgtggag tgcgcctgca gctacgaccg 60 cagcaggaaa gcgccgccgg ccaggcccag ctgtggccgg acagggactg gaagagaga 120 cgcggtcgag taggtgtgca ccagccctgg caacgagagc gtctaccccg aactctgctg 180 gccttgaggt ggggaagccg gggagggcag ttgaggaccc cgcggaggcg cgtgactggt 240 tgagcgggca ggccagcctc cgagccgggt ggacacaggt tttaaaacat gaatcctaca 300 ctcatccttg ctgccttttg cctgggaatt gcctcagcta ctctaacatt tgatcacagt 360 ttagaggcac agtggaccaa gtggaaggcg atgcacaaca gattatacgg catgaatgaa 420 gaaggatgga ggagagcagt gtgggagaag aacatgaaga tgattgaact gcacaatcag 480 gaatacaggg aagggaaaca cagcttcaca atggccatga acgcctttgg agacatgacc 540 agtgaagaat tcaggcaggt gatgaatggc tttcaaaacc gtaagcccag gaaggggaaa 600 gtgttccagg aacctctgtt ttatgaggcc cccagatctg tggattggag agagaaaggc 660 tacgtgactc ctgtgaagaa tcagggtcag tgtggttctt gttgggcttt tagtgctact 720 ggtgctcttg aaggacagat gttccggaaa actgggaggc ttatctcact gagtgagcag 780 aatctggtag actgctctgg gcctcaaggc aatgaaggct gcaatggtgg cctaatggat 840 tatgetttee agtatgttea ggataatgga ggeetggaet etgaggaate etateeatat 900 gaggcaacag aagaatcctg taagtacaat cccaagtatt ctgttgctaa tgacaccggc 960 1020 tttgtggaca tccctaagca ggagaaggcc ctgatgaagg cagttgcaac tgtggggccc 1080 atttctgttg ctattgatgc aggtcatgag tccttcctgt tctataaaga aggcatttat tttgagccag actgtagcag tgaagacatg gatcatggtg tgctggtggt tggctacgga 1140

tttgaaagca	cagaatcaga	taacaataaa	tattggctgg	tgaagaacag	ctggggtgaa	1200
gaatggggca	tgggtggcta	cgtaaagatg	gccaaagacc	ggagaaacca	ttgtggaatt	1260
gcctcagcag	ccagctaccc	cactgtgtga	gctggtggac	ggtgatgagg	aaggacttga	1320
ctggggatgg	cgcatgcatg	ggaggaattc	atcttcagtc	taccagcccc	cgctgtgtcg	1380
gatacacact	cgaatcattg	aagatccgag	tgtgatttga	attctgtgat	attttcacac	1440
tggtaaatgt	tacctctatt	ttaattactg	ctataaatag	gtttatatta	ttgattcact	1500
tactgacttt	gcattttcgt	ttttaaaagg	atgtataaat	ttttacctgt	ttaaataaaa	1560
tttaatttca	aatgt					1575

<210> 453

<211> 1932

<212> DNA

<213> Homo sapiens

<400> 453 tgaggccgcc ggccagccgc cgccatgggt gcctacctct cccagcccaa cacggtgaag 60 tgctccgggg acggggtcgg cgccccgcgc ctgccgctgc cctacggctt ctccgccatg 120 caaggetgge gegteteeat ggaggatget cacaactgta tteetgaget ggacagtgag 180 acagecatgt tttctgtcta egatggacat ggaggggagg aagttgeett gtactgtgee 240 300 aaatatette etgatateat caaagateag aaggeetaea aggaaggeaa getacagaag gctttagaag atgccttctt ggctattgac gccaaattga ccactgaaga agtcattaaa 360 420 gagctggcac agattgcagg gcgacccact gaggatgaag atgaaaaaga aaaagtagct gatgaagatg atgtggacaa tgaggaggct gcactgctgc atgaagaggc taccatgact 480 attgaagagc tgctgacacg ctacgggcag aactgtcaca agggccctcc ccacagcaaa 540 tctggaggtg ggacaggcga ggaaccaggg tcccagggcc tcaatgggga ggcaggacct 600 gaggactcaa ctagggaaac tccttcacaa gaaaatggcc ccacagccaa ggcctacaca 660 ggcttttcct ccaactcgga acgtgggact gaggcaggcc aagttggtga gcctggcatt 720 cccactggtg aggctgggcc ttcctgctct tcagcctctg acaagctgcc tcgagttgct 780 aagtccaagt tctttgagga cagtgaggat gagtcagatg aggcggagga agaagaggaa 840 gacagtgagg aatgcagcga ggaagaggat ggctacagca gtgaggaggc agagaatgag 900 gaagatgagg atgacaccga ggaggctgaa gaggacgatg aagaagaaga agaagagatg 960 atggtgccag ggatggaagg caaagaggag cctggctctg acagtggtac aacagcggtg 1020 gtggccctga tacgagggaa gcagttgatt gtagccaacg caggagactc tcgctgtgtg 1080 gtatctgagg ctggcaaagc tttagacatg tcctatgatc acaaaccaga ggatgaagta 1140

gaactagcac gcatcaagaa	tgctggtggc	aaggtcacca	tggatgggcg	agtcaacggg	1200
ggcctcaacc tctccagagc	cattggggac	cacttctata	agagaaacaa	gaacctgcca	1260
cctgaggaac agatgatttc	agcccttcct	gacatcaagg	tgctgactct	cactgacgac	1320
catgaattca tggtcattgc	: ctgtgatggc	atctggaatg	tgatgagcag	ccaggaagtt	1380
gtagatttca ttcaatcaaa	gatcagccag	cgtgatgaaa	atggggagct	tcggttattg	1440
tcatccattg tggaagagct	gctggatcag	tgcctggcac	cagacacttc	tggggatggt	1500
acagggtgtg acaacatgac	ctgcatcatc	atttgcttca	agccccgaaa	cacagcagag	1560
ctccagccag agagtggcaa	a gcgaaaacta	gaggaggtgc	tctctactga	gggggctgaa	1620
gaaaatggca acagcgacaa	a gaagaagaag	gccaagcgag	actagcagtc	atccagaccc	1680
ctgcccacct agactgttt	ctgagccctc	cggacctgag	actgagtttt	gtctttttcc	1740
tttagcctta gcagtgggt	a tgaggtgtgc	agggggagct	gggtggcttc	actccgccca	1800
ttccaaagag ggctctccc	t ccacactgca	gccgggagcc	tatgatgtaa	ttcccagccg	1860
cctctgctcc tcgggctca	t caccggttct	gtgcctgtgc	tctgttgtgt	tggagggaag	1920
gactggcggt tc					1932
<210> 454 <211> 261					
<212> DNA <213> Homo sapiens					
<400> 454			- ctctactact	gggaatgtga	60
taggtattct ttttttat					120
gactgattgt gaagatttc					180
ggaaaaacag tgtaaccta					240
aattgtttcc agggaagct	c atgtettte:	a cccaggcaga	a ggctctacat	aaaaccttct	
aagtgagcaa atgagccct	t g				261
<210> 455					
<211> 399 <212> DNA					
<213> Homo sapiens					
<400> 455 ttttttttt ttttttt	-+	t ttttttt	t tttttttt	t ttttttttt	60
tttaaaccca aaccccct					120
ccctgaaccc ccggcccg					180
					240
gaacccaccc gggggggt	gg goodacood	c cacagiica	Cedadacco		•

gcaggcgaca aaggcgggga attaaccaaa aaacaaaaa	ac cccccagga aattttttta 300
aaaacccccc aaagtttggg gccccccaag tcccaccc	cc aaaggccggg agggggggga 360
ctaacagccc ccccctccc ccggggccgg gggaaccc	399
<210> 456 <211> 278 <212> DNA <213> Homo sapiens	ě
<220> <221> misc_feature <222> (181)(181) <223> n is a, c, g, t or u	
<400> 456 gaagcctcgg tgtcagggac cgtgggacag agggtcac	cc tctcctgtag tggaaacaca 60
aacaacgttg gaagttatgc tgtgggctgc tacctaca	ga tttctcacgg tgctcccaaa 120
actatgatgt ttggaaactg tctgccctca gggattcc	tg geegettete tggeteaaag 180
nctggggcct cagcctccct gactatctcg ggcctcta	gc ctgaggacga ggctgattat 240
tattgttcaa tacagcctca gtgcgagggg tettcgg	278
<210> 457 <211> 258 <212> DNA <213> Homo sapiens	
<400> 457 ttttttttt aaggcaggag agacaaagaa tgagctt	taa agtgcatgtt tacagaaatg 60
atcaagggtt tgacggtgtg gtaaaagcac aggccac	taa cccagactcc atcaggggaa 120
tggagaggcc ctgtactccg ctctttgatg ccacctg	acc tggaccagcc ctccacgctg 180
catgctttta aaagcgaggc gagttgtgca tttccac	ttg tgcctgttct ccccaccagg 240
tccaagcctt tcaattac	258
<210> 458 <211> 309 <212> DNA <213> Homo sapiens	
<400> 458 ttttttttt ttttgagaca gggtcttgct ctgtcac	cct ggctggagtg cagtgatgca 60
atcacggtca ctgcagcctt gatctcctga gctcaag	gtt tagtaaaaac agggtttcgc 120
tgtctctact ttcctccaac ctcaaaagca cccccac	cac acacctccta ccccagtagc 180
taggactaga ggaggagag accaccacac coggeta	gtg tgtgtgtatt ttttttttt 240

300

gtaaacatgg ggtttcgcca tgttgcccag gctggcctcg tgccgaattc ttggcctcga 309 gggccaaat <210> 459 4731 <211> <212> DNA <213> Homo sapiens <400> 459 cccagctgga ggaagcggcg gcggcggcca cgatgagtgc gggcgacgca gtgtgcaccg 60 gctggctcgt taagtcgccc cccgagagga agctacagcg ctacgcctgg cgcaagcgct 120 ggtttgtcct ccggcgaggc cgcatgagcg gcaaccccga tgtcttggag tactacagga 180 acaagcactc cagcaagccc atccgggtga tagacctcag cgagtgtgca gtgtggaagc 240 atgtgggccc cagctttgtt cggaaggaat ttcagaataa tttcgtgttc attgtcaaga 300 ctacttcccg tacattctac ctggtggcca aaactgagca agaaatgcag gtgtgggtgc 360 acagcatcag tcaggtctgc aaccttggcc acctggagga tggtgcagat tccatggaga 420 gcctctctta cacgccctcc tccctgcagc catcctctgc cagctccctt cttaccgccc 480 atgctgccag ctcctctttg ccaagagatg acccaaacac taatgccgta gccactgagg 540 aaaccagaag tgagtcagag cttctcttcc ttccagatta tctggttttg tccaactgcg 600 agactggaag actgcaccat accagtctac ccaccagatg tgatagctgg tcaaactcag 660 accettcatt ggaacaggct tcatttgatg atgtttttgt tgactgcctg cagccgctcc 720 cctccagtca tttggtccac ccctcatgcc atggcagtgg agctcaggag gtgccatcct 780 840 cgaggcctca ggctgccctg atctggagta gagaaatcaa tgggccaccc agggaccact tgtcttcttc accattgctg gaaagttcct taagttccac cattcaggta gataaaaatc 900 960 aaggtteett accetgtgga geaaaagaae tagacattat gteeaacaet eeaceteece 1020 gtagcaagaa gccagaatgc actctggttc caagaagaat ctccctctct ggtttagaca 1080 acatgagaac ctggaaagct gatgtagaag gccaatcctt aagacaccga gacaagcggc 1140 ttagtttgaa tttgccatgc aggttctccc cgatgtaccc cacagcttca gccagtatcg 1200 aagacagcta tgtgcccatg agcccccagg ctggtgcctc tggtcttgga ccccactgca 1260 gccctgatga ctacattcca atgaactcag gaagcatctc aagcccgttg cctgagctgc 1320 ctgcaaacct ggaacctccc ccagtgaata gagatctcaa gcctcagagg aaatcacggc 1380 cacctcctct ggacctgaga aacctctcga tcatccggga acatgcatct cttaccagga 1440 cccgcactgt gccttgcagt cgaaccagct ttctctctcc agaaagaaat ggtattaatt 1500

					ataaaataa	1560
	ttttgctaat					
	aacagccagt					1620
gcctagatta	tttggccctg	gacttcaatt	cagcatcacc	agcccccatg	cagcagaaac	1680
ttctcctttc	agaagaacaa	agagtagact	atgtccaagt	ggatgagcag	aagacacagg	1740
ctctccagag	cacaaaacag	gagtggacgg	atgaaaggca	atccaaagta	tgagaggtgc	1800
gggcttgtgc	catgtgtgaa	acagggaagc	ttggggctca	gtttgagttt	tttcttttt	1860
tttttttt	gtccactaaa	aacacactga	tggtcaacac	aggtcaaaac	caagagagaa	1920
tgtgtagttt	tcaaggtctt	ggccagaacc	tttaggaaag	aagacctgtt	tatacattga	1980
aggaagaaaa	gaaggaagca	gttgccttcc	ggaggggct	ctgagagaat	ctagcctccc	2040
ctctgtccta	ttggagcaaa	gattggagtg	agtgttgcca	ccaacaggat	tttatcgttt	2100
gactccaata	cctgaaattc	tgacttctct	cctgtgcttc	aatgagaatg	ataaattatc	2160
ctagcaaagg	ggcctctgga	gaccatcttg	ttccagcctc	tgaagacagt	tgaggagatc	2220
aagcccagca	atggtggcag	aatcttactc	cacagacttc	agcagactag	tcatttcaat	2280
acccaaagaa	a agacaagtga	caggggcaat	ggatctcagg	ctctgagata	agtatatcag	2340
atgacactgg	g tggctctaag	gatattgcaa	ttaagcagct	acctgtagcc	aggtattctg	2400
ctgctcttgg	g ccttttccca	cgcatcgtct	cgtgtcttct	ccgaaagacc	ttggaagata	2460
ggcctggaag	g agactgttga	tgccactttg	aagaaaagaa	cactgagaac	tagaggaggg	2520
aacactttg	c ccaagattac	tcacaaagcc	aagacccaga	. gtccagctta	gagaatagag	2580
ttgttcagg	c tgccaattgo	aagctcattc	ctctacctca	tacttcctct	gaggattttg	2640
acaaaatgg	a ttaattgggt	gagccttgga	gacatgtggg	aaacacctgo	agacacaaaa	2700
tgagtagtc	a teetgtetee	c ctttcaatag	ggatctgaac	: aggtgttttg	, atacttgaaa	2760
gatgtgcat	g tcaagtgagg	g gtttctttct	gcgatgttca	actggaacto	: tcccatcagt	2820
agttacaat	t agaaatacct	t actgatggtt	: agtctgaagg	g ccattctcat	ggtcacctat	2880
acagtgtgt	t tccctgtgag	g ctagcagaca	a caatgaccag	g gaaaaaacct	atgaattcca	2940
ttcttaggt	t tcccagcca	a ttgctccctt	ctgctttaga	a agtgactagg	g tactgagagt	3000
acaaacact	c ccactttat	a atgaaggcgt	t catgtcacco	c cttcctttac	c aggtcctggg	3060
gtccaggag	a cccagaatg	a aggtgtcagi	t tgggcatga	a gtgttattt	a gtgtccattc	3120
					g cattctgact	3180
					t gatagtcagt	3240
					c accccacagg	3300
					t gattttcaaa	3360

gaagccgttt t	tgattttcaa	agaagcaggt	tctggtgaca	ttattttctt	ccttggacaa	3420
			gagttcaggg			3480
agcaaggaga (	gggctcccca	ctccctaagc	cccacagcca	gttctgcatc	accacacaca	3540
gccagagcct (	gtgaggagct	gccttcttcc	ccatgtgact	tgcaaagagt	ctcaggcaag	3600
aaaccagggc	ttcaaactgc	tagttcccat	ggagggtagt	tccctcgtgt	ggagcacttg	3660
tgttaggatc	actgattatc	tgacaaaggc	tggtgcagaa	aaaaaattgt	aggcccaagt	3720
gtcaagaacc	acaccagatt	ggagatagaa	aagaatagct	gaaattatgt	cagtggtgaa	3780
atgtcactcc	attgacccac	cgaaaaaaga	aaagaaatct	gtttctacca	aacatttcca	3840
gaaacgtatt	tatagcatga	agaaacacac	atgggtagtg	tgacctgttt	ggatgtgatt	3900
acttaaaaat	ggaatgctct	gaataggcac	tctctacatt	aaaggtatgg	aaggcgatag	3960
gggtcagaat	tttaaaaatt	taattttgaa	aaaggtgact	cacccctcat	ttccagagtg	4020
taggcaatta	tgtcctgctt	tgataaaact	gctagaggat	ggctatgcaa	aagcataacg	4080
attcaaggaa	acaaagtaca	ggtagttttt	gagctgacag	cagcaaaggc	accataagtc	4140
aaaatattgg	ttttggtgga	gatgatcgat	gtgtgtgtgt	gagagagag	tatgtttcta	4200
accaagggcc	taatgtttgt	tacagaaatg	atcccagaga	cctacaagat	gtgggaatca	4260
gcataacagg	gcaatgcagc	aattaaccc	acatcgtttt	ctgtagttcc	: tttttgtttc	4320
attttcttct	gtctcacctc	gttagaaaat	tecteccagt	caggggtcgt	: ccagtgcagg	4380
acgggggacc	caagggtctc	aagcctgcaa	gtccagaagg	tgacaaacco	aggagcactg	4440
ggagttaagc	tttccttggg	gagggaagag	g ccttgatgtc	: cagcacacaç	g cctggctata	4500
aagacacgaa	gcgacctacc	: cactgtacag	g tccacttcac	aggatcagct	gaatcatgac	4560
ctttaaaagt	tccgagttga	aactgaaggo	tctcctcaga	cctggcttt	tcctcagtcc	4620
ctgttcatac	catctctgca	cccacaatca	a cactgatttt	tcaaattca	tttgtttttg	4680
ctgtttcatt	tctggcatta	ataaaagtct	tataaggaaa	a aaaaaaaaa	a a	4731
	no sapiens					
<400> 460 atgcagataa	) i tgttctcato	c agtagtaag	a atctcaggg	t tatgcttat	t ccccaatgga	60
ggtatgacat	: ataatcttt	t ctgccttta	c ttatcaatt	c accaaggag	c tgttttctct	12

gcatctaggc catcatactg ccaggctggt tatgactcag aagatgttat ctga 174

<210> 461 <211> 2308

<212> DNA

<213> Homo sapiens

<400> 461 60 eggtggegge gggaccatgg aggeggeggt egetgeteeg egteeeegge tgeteeteet 120 egtgetggeg geggeggegg eggeggegge ggegetgete eegggggega eggegttaca 180 gtgtttctgc cacctctgta caaaagacaa ttttacttgt gtgacagatg ggctctgctt 240 tgtctctgtc acagagacca cagacaaagt tatacacaac agcatgtgta tagctgaaat 300 tgacttaatt cctcgagata ggccgtttgt atgtgcaccc tcttcaaaaa ctgggtctgt 360 420 gactacaaca tattgctgca atcaggacca ttgcaataaa atagaacttc caactactgt aaagtcatca cctggccttg gtcctgtgga actggcagct gtcattgctg gaccagtgtg 480 cttcgtctgc atctcactca tgttgatggt ctatatctgc cacaaccgca ctgtcattca 540 ccatcgagtg ccaaatgaag aggaccette attagatege cettttattt cagagggtae 600 tacgttgaaa gacttaattt atgatatgac aacgtcaggt tctggctcag gtttaccatt 660 gcttgttcag agaacaattg cgagaactat tgtgttacaa gaaagcattg gcaaaggtcg 720 atttggagaa gtttggagag gaaagtggcg gggagaagaa gttgctgtta agatattctc 780 ctctagagaa gaacgttcgt ggttccgtga ggcagagatt tatcaaactg taatgttacg 840 tcatgaaaac atcctgggat ttatagcagc agacaataaa gacaatggta cttggactca 900 gctctggttg gtgtcagatt atcatgagca tggatccctt tttgattact taaacagata 960 cacagttact gtggaaggaa tgataaaact tgctctgtcc acggcgagcg gtcttgccca 1020 1080 tetteacatg gagattgttg gtacccaagg aaagccagce attgeteata gagatttgaa atcaaagaat atcttggtaa agaagaatgg aacttgctgt attgcagact taggactggc 1140 agtaagacat gattcagcca cagataccat tgatattgct ccaaaccaca gagtgggaac 1200 aaaaaggtac atggcccctg aagttctcga tgattccata aatatgaaac attttgaatc 1260 cttcaaacgt gctgacatct atgcaatggg cttagtattc tgggaaattg ctcgacgatg 1320 1380 ttccattggt ggaattcatg aagattacca actgccttat tatgatcttg taccttctga cccatcagtt gaagaaatga gaaaagttgt ttgtgaacag aagttaaggc caaatatccc 1440 1500 aaacagatgg cagagctgtg aagccttgag agtaatggct aaaattatga gagaatgttg gtatgccaat ggagcagcta ggcttacagc attgcggatt aagaaaacat tatcgcaact 1560 cagtcaacag gaaggcatca aaatgtaatt ctacagcttt gcctgaactc tccttttttc 1620 ttcagatctg ctcctgggtt ttaatttggg aggtcagttg ttctacctca ctgagaggga 1680

acagaaggat	attgcttcct	tttgcagcag	tgtaataaag	tcaattaaaa	acttcccagg	1740
atttctttgg	acccaggaaa	cagccatgtg	ggtcctttct	gtgcactatg	aacgcttctt	1800
tcccaggaca	gaaaatgtgt	agtctacctt	tatttttat	taacaaaact	tgttttttaa	1860
aaagatgatt	gctggtctta	actttaggta	actctgctgt	gctggagatc	atctttaagg	1920
gcaaaggagt	tggattgctg	aattacaatg	aaacatgtct	tattactaaa	gaaagtgatt	1980
tactcctggt	tagtacattc	tcagaggatt	ctgaaccact	agagtttcct	tgattcagac	2040
tttgaatgta	ctgttctata	gtttttcagg	atcttaaaac	taacacttat	aaaactctta	2100
tcttgagtct	aaaaatgacc	tcatatagta	gtgaggaaca	taattcatgc	aattgtattt	2160
tgtatactat	tattgttctt	tcacttattc	agaacattac	atgccttcaa	aatgggattg	2220
tactatacca	gtaagtgcca	cttctgtgtc	tttctaatgg	aaatgagtag	aattgctgaa	2280
agtctctatg	ttaaaaccta	tagtgttt				2308

<210> 462

<211> 1222

<212> DNA

<213> Homo sapiens

<400> 462 ageteageag gaceteagee atgagaette teateetgge ceteettgge atetgetete 60 tcactgcata cattgtggaa ggtgtaggga gtgaagtctc agataagagg acctgtgtga 120 gecteactae ceagegactg eeggttagea gaateaagae etacaecate aeggaagget 180 ccttgagagc agtaattttt attaccaaac gtggcctaaa agtctgtgct gatccacaag 240 ccacatgggt gagagacgtg gtcaggagca tggacaggaa atccaacacc agaaataaca 300 tgatccagac caagccaaca ggaacccagc aatcgaccaa tacagctgtg actctgactg 360 420 gctagtagtc tctggcaccc tgtccgtctc cagccagcca gctcatttca ctttacacgc tcatggactg agtttatact caccttttat gaaagcactg catgaataaa attattcctt 480 tgtattttta cttttaaatg tcttctgtat tcacttatat gttctaatta ataaattatt 540 tattattaag aatagttccc tagtctattc attatattta gggaaaggta gtgtatcatt 600 gttgtttgat ttctgacctt gtacctctct ttgatggtaa ccataatgga agagattctg 660 gctagtgtct atcagaggtg aaagctatat caatctctct tagagtccag cttgtaatgg 720 ttctttacac atcagtcaca agttacagct gtgacaatgg caacaatttg agatgtattt 780 caacttgtct ctataataga attctgttta tagaataagg gagaaaataa tccagtcttc 840 actgggttcc cattctgagg gtccactact caaaaatttg cttcactcaa ttttttcac 900 ctctttgtgt tttattttgg tgtcctatta aaggaataaa atgacacaac ttgtcccttt 960

+++atacat	taggaaaaat	tagaattttg	gtataaagaa	actttattca	agtaaaaatc	1020
						1080
				ggatttctgt		1140
				cttttaatgc		
gacccatgca	atatttcctc	atgtgatcac	aatttgcagt	aaacttttaa	ttaaatgctc	1200
atctggtaac	tcaacacccc	ag				1222
<210> 463 <211> 928 <212> DNA <213> Hom	o sapiens					
<400> 463 atttggaaaa	ttacacagct	ttggaagaat	ccactaaagt	ttcttctttg	gatttcttga	60
					tctgacctca	120
atactatagt	aacttttagg	cgtgggtgta	ı gaagtttata	. ggtttctatt	, gacagttatt	180
gtaaattago	atttactgtg	gtacaaatto	tttataactg	acttagtcat	ttgccgctta	240
gcagtttata	tactgaaatg	aaaacatctt	gtggggaaaa	gtgactttag	attatgaact	300
caattcaaat	gaactctatt	: taaaatgggg	g teetattttg	gacaaaggaa	attaagaatg	360
taaaagtcag	g aacagtctto	g aggtaaaaag	g tgtgctttgg	g cttaaaaggg	, atacagtata	420
					tttctcaaaa	480
caaaataata	a ttaatgagta	a cttctattt	g ctgcattttt	cttattacaç	g cctttgagac	540
agctggtaat	tataagtca	tttccattt	t ttaaaacata	a attttataaa	a gaattctctt	600
atctcgacta	a tgtagaata	g cacctactg	g acagaacaa	t ttttgtatco	c aaaactggca	660
tttcttagag	g atgggttgg	a ggagtacac	t atggtttaag	g ttgggtaaa	a tgcaacactg	720
					a gtatgggata	780
					g gaaggattct	840
tctttaact	a gtaaggcct	t gtaaaaatg	a atggtgggg	a gaaaaaagg	g gggcacagtc	900
	t cttataatt					928
<210> 46 <211> 97 <212> DN <213> Ho	7					
<400> 46	4 a aaaagaggo	t gagacagga	ag gttattttc	a attttattt	t ggaattaaat	60
					g ttttcacgat	120

agaaataagg	gaggtctaga	gcttctattc	cttggccatt	gtcaacggag	agctggccaa	180
gtcttcacaa	acccttgcaa	cattgcctga	agtttatgga	ataagatgta	ttctcactcc	240
cttgatctca	agggcgtaac	tctggaagca	cagcttgact	acacgtcatt	tttaccaatg	300
attttcaggt	gacctgggct	aagtcattta	aactgggtct	ttataaaagt	aaaaggccaa	360
catttaatta	ttttgcaaag	caacctaaga	gctaaagatg	taatttttct	tgcaattgta	420
aatcttttgt	gtctcctgaa	gacttccctt	aaaattagct	ctgagtgaaa	aatcaaaaga	480
gacaaaagac	atcttcgaat	ccatatttca	agcctggtag	aattggcttt	tctagcagaa	540
cctttccaaa	agttttatat	tgagattcat	aacaacacca	agaattgatt	tgtagccaac	600
attcattcaa	tactgttata	tcagaggagt	aggagagagg	aaaaatttga	ctttatctgg	660
gaaaagcaaa	atgtacttaa	gaataagaat	acatggtcca	ttcaacttta	tgttatagat	720
					ctctgtgctg	780
gtcaatgacc	acgttatgtg	cctgacttcg	aggacaccct	ctctggtttg	gtattttggg _,	840
ggcgaaaatg	ggaaccatat	tattttcggt	ggaccttgga	aataggggct	agagagagca	900
aaaaaggggg	ggatcacggg	ggaaccagat	ggaaggcgaa	cttaaaggcg	ccggagacaa	960
ggtagaggga						977

<210> 465

<211> 710

<212> DNA

<213> Homo sapiens

<400> 465 gagaggtgga ggcgctttga aaggtgagag cgcgagggcg gtgcggggct gtctcccggc 60 tgggactcgc tcgcgctccc ggtgctaatg gtttatgaga gggcggggga agccgtgcct 120 cctcgcggac taagagaaaa attcccgcgg gcgctctttg ggtgggccgg agaacgcccc 180 tcagcccttt gcgcctctaa ccctcctcag ctgagctgca gtgggcgcgg tgcccgttat 240 ttccgccttg gggaggtgct tggaactgat gtagggagct cggttggtga tttctcgggt 300 ttctggcctt tccagaccct tgtaattgtt ttctcggtgc agagctcttt tggggtctgg 360 gggtttccgt cgtcctgcgc gcgtcatcgc gaagcttggc ctgagggtcc ggtttcctag 420 ctactgtgcc cctcctcct ggaggcagag tgacggacta gtgggctagc gggcgctggg 480 ttcctgcgtc ccgccaaaga ggtttgtaat catgaaagtt cacccttccg ggtgttaatt 540 cctgagagga tctactccac tgtctaccac tcattcctgc tgcattaacc ttcattgtta 600 acggatttta atgaataata tagttatccc ggataccatg ctggcaggat ccactttgcg 660 aaattgtgga ctgttggact gtgattctaa gtgggggaaa taggctttag 710

```
<210>
      466
      630
<211>
<212> DNA
<213> Homo sapiens
<220>
      misc feature
<221>
      (469)..(469)
<222>
<223> n is a, c, g, t or u
<400> 466
teegegaegt ceaegegagg caccageece acgegeageg cegegeetgg agetegeggg
                                                                      60
agccccccac ggccgccgcc gccgccgccg ctgctgggca ccgtgtcgtc gcccagctcg
                                                                      120
tegeccacce acetgtggae eggegaggtg agegeggeee caceecage eegegteegg
                                                                      180
catcggagga ggtctccgga gcagagccga agctcgccgg agaagaggag ccccagcgcc
                                                                      240
ceggtttgca aagcaggtga caaaacacga cagcettett caagceecte cagtattate
                                                                      300
cgacgcactt cctccctgga tactcttgct gcaccgtatc ttgctggaca ctggcctcgg
                                                                      360
gatagccatg ggcaagctgc accttgcatg agggacaaag ctacacagac agagagtgca
                                                                      420
tgggctgaag aatactctga aaagaagaaa gggtctcaca agcgctcanc atcgttgggc
                                                                      480
agtacagatc aacttaatga gatagcaaaa ttacaccagc agttgcagag aagtaaacac
                                                                      540
atcagtcggc atcatcgaga taaagaaaga cagtctccat ttcattgcaa ccatgcagct
                                                                      600
                                                                      630
atttaacaat gtcaggctgc tgttccaaaa
<210>
       467
 <211>
        485
 <212>
       DNA
       Homo sapiens
 <213>
 <400> 467
 tttttttttt ttttttaat taattattta tttatttatt ggagacagag tttcattccg
                                                                        60
 tcacccagge tggaatgcag tagcacaatg tcggctcact gcaacctctg caataagagt
                                                                       120
 gaaactccgt ctcaaaacaa aaagaaaaag aaaggagcca tggagcccca ggtaggccag
                                                                      180
 ggctgatgga acggcccttg ctctaaggcc ttgcggcgtc actttctggg ctgtgacaga
                                                                       240
 aatggagaat ggctggaaga tcacagcacc gggatggcat ctgtacttgt tgggtagaca
                                                                       300
 cagggcgaac caagctctgg aaggtgccac catctagaag agctgcactc gcagattgag
                                                                       360
 acacatgcag ttaatttcta cagtagtgac cagaggaggg gcctggagtg ccccagctgg
                                                                       420
 gagcaggcta tagctgagta tgtgattcac ctttactgtc catttgacac cacttccttg
                                                                       480
                                                                       485
 tctgt
```

<210> 468 <211> 1748 <212> DNA <213> Homo sapiens

<220>

<221> misc_feature

<222> (41)..(41)

<223> n is a, c, g, t or u

<400> 468 aagaacgggc ccaccgcgtt cggggttctc ctcccgsrga ngggaaccca aaccctgtct 60 ctttccccak gtttcggagg aggctttgga tacgtcctcg gcggaatcca ctgggataaa 120 acgggcttcg ggagggccct ggggggacag ttccgagtca twwacctctt cactgcggtc 180 accetgagyg teaccacegt cetgaecetg gteageatee etgagaggee getgeggeeg 240 ccgagtgaga agcgggcagc catgaagagc cccagcctcc cgctgccccc gtccccgccc 300 gtcctgccag aggaaggccc tggcgacagc ctcccgtcgc acacggccac caacttctcc 360 agccccatct cgccgcccag cccctcacg cccaagtacg gcagcttcat cagcagggac 420 agetecetga egggeateag egagttegee teateetttg geaeggeeaa eatagaeage 480 gtcctcattg actgcttcac gggcggccac gacagctacc tggccatccc tggcagcgtc 540 cccaggccgc ccatcagcgt cagcttcccc cgggcccccg acggcttcta ccgccaggac 600 cgtggacttc tggagggcag agagggtgcc ctgacctccg gctgtgacgg ggacattctg 660 agggtgggct ccttggacac ctctaagcca aggtcatcag ggattctgaa gagacctcag 720 accttggcca tcccggacgc agccggagga gggggtcccg aaaccagcag gagaaggaat 780 gtgaccttca gtcagcaggt ggccaatatc ctgctcaacg gcgtgaagta tgagagcgag 840 900 ctgacgggct ccagcgagcg cgcggagcag cctctgtccg tggggcgcct ctgctccacc 960 atetgeaaca tgeccaagge getaegeace etetgegtea accaetteet ggggtggete tcattcgagg ggatgttgct cttctacaca gacttcatgg gcgaggtggt gtttcagggg 1020 gaccccaagg ccccgcacac atcagaggcg tatcagaagt acaacagcgg cgtgaccatg 1080 ggctgctggg gcatgtgtat ctacgccttc agtgctgcct tctactcagc tatcctggag 1140 aagctggagg agttcctcag cgtccgcacc ctctacttca tcgcctatct cgccttcggc 1200 ctggggaccg ggcttgccac cctctccagg aacctctacg tggtcctgtc gctctgcata 1260 acctacggga ttttattttc cacctgtgc accttgcctt actcgctgct ctgcgattac 1320 tatcagagta agaagtttgc agggtccagt gcggacggca cccggcgggg catgggcgtg 1380 gacatetete tgctgagetg ccagtactte etggeteaga ttetggtete cetggteetg 1440 gggcccctga cctcggccgt gggcagtgcc aacggggtga tgtacttctc cagcctcgtg 1500

tacttactgg	gctgcctgta	ctcctccctg	tttgtcattt	atgaaattcc	tcccagcgac	1560
gctgcagacg	aggagcaccg	gecectectg	ctgaacgtct	gacatcgcgg	agcctcgact	1620
ccggagacgc	gcctgcacct	gggggtctgg	agcaggccga	ccagtgagga	ccaaagggcc	1680
ttgttggaca	gggggacagg	ctgcctactg	gaatgtaaat	atgtgataaa	ataataaatg	1740
acaagcgc						1748
	sapiens					
<400> 469 gtttcctcgg	cggcctcgga	gcgcgggtgc	agcagttgtg	tcccgacccc	tgggagcgcc	60
atggcagagc	tgtgccccct	ggccgaggag	ctgtcgtgct	ccatctgcct	ggagcccttc	120
aaggagccgg	tcaccactcc	gtgcggccac	aacttctgcg	ggtcgtgcct	gaatgagacg	180
tgggcagtcc	agggctcgcc	atacctgtgc	ccgcagtgcc	gcgccgtcta	ccaggcgcga	240
ccgcagctgc	acaagaacac	ggtgctgtgc	aacgtggtgg	agcagttcct	gcaggccgac	300
ctggcccggg	agccacccgc	cgacgtctgg	acgccgcccg	cccgcgcctc	tgcacccagc	360
ccgaatgccc	aggtggcctg	cgaccactgc	ctgaaggagg	ccgccgtgaa	gacgtgcttg	420
gtgtgcatgg	cctccttctg	tcaggagcac	ctgcagccgc	: acttcgacag	ccccgccttc	480
caggaccacc	cgctgcagcc	gcccgttcgc	gacctgttgc	gccgcaaatg	ttcccagcac	540
aatcggctgc	gggaatttt	ctgccccgag	cacagcgagt	gcatctgcca	catctgcctg	600
gtggagcata	agacctgctc	tecegegtee	ctgagccagg	g ccagcgccga	cctggaggcc	660
accctgaggc	acaaactaac	tgtcatgtac	agtcagatca	a acggggcgtc	gagagcactg	720
gatgatgtga	gaaacaggca	gcaggatgtg	cggatgact	g caaacagaaa	. ggtggagcag	780
ctacaacaag	aatacacgga	aatgaaggct	ctcttggac	g cctcagagac	cacctcgaca	840
aggaagataa	aggaagagga	ı gaagagggto	aacagcaagt	t ttgacaccat	: ttatcagatt	900
ctcctcaaga	. agaagagtga	gatccagaco	ttgaaggag	g agattgaaca	gagcctgacc	960
aagagggatg	agttcgagtt	tctggagaaa	a gcatcaaaa	c tgcgaggaat	ctcaacaaag	1020
ccagtctaca	tccccgaggt	ggaactgaad	cacaagctg	a taaaaggcat	ccaccagage	1080
accatagaco	: tcaaaaacga	a gctgaagcag	g tgcatcggg	c ggctccagga	a gctcaccccc	1140
agttcaggtg	g accctggaga	a gcatgaccca	a gcgtccaca	c acaaatcca	c acgccctgtg	1200
aagaaggtct	ccaaagagga	a aaagaaatc	c aagaaacct	c cccctgtcc	c tgccttaccc	1260
agcaagctto	ccacgtttgg	g agccccgga	a cagttagtg	g atttaaaac	a agctggcttg	1320
,		•			•	

gaggctgcag	ccaaagccac	cagctcacat	ccgaactcaa	catctctcaa	ggccaaggtg	1380
ctggagacct	tcctggccaa	gtccagacct	gagctcctgg	agtattacat	taaagtcatc	1440
	acaccgccca					1500
	tgcctcagaa					1560
	tgcactgcta					1620
	gtggggtagg					1680
	gcaacagcgc					1740
	acgtggagaa					1800
	accacggctt					1860
	gggtggactt					1920
					gggctgactg	1980
					ttggataatt	2040
					gggtgggagg	2100
					gcgtttccac	2160
					ı tctccaggct	2220
					cctcttagag	2280
	gccttcagat					2317

<210> 470 <211> 241 <212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<222> (53)..(53)
<223> n is a, c, g, t or u

<210> 471 <211> 389

```
<212> DNA
<213> Homo sapiens
<400> 471
ttttgaccca atagggaagg agatatggtt ctaaatatat cattttagaa cagatccatt
                                                                      60
tcactaaacg aaattcattt gataaacaag ataggacaaa ctacggcgta acgagtcttt
                                                                     120
ttcatttttt atccttttc tgttatattt tatctaacaa ccttgatcca tgacaatgtg
                                                                     180
aaaaaaaaag acaataagtt ttcttctatg tgacttacag caacatagca agtatgttac
                                                                     240
gatattaaat attttatttt ctaacctttc aaaattaaga acttatgaat aaatgagatg
                                                                     300
actctcagaa tatgaacaga aaagtctact tctgaacata aaaatgtaat cagaaacaat
                                                                     360
                                                                     389
gtttccacag aataagatgt aaaggtatc
<210> 472
<211> 491
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
 <222> (487)..(487)
<223> n is a, c, g, t or u
 <400> 472
ttttttttcg cttcacaccg tttttattga ccgatcgcag cccagcaaga ttgatcgagc
                                                                       60
 tggaatggga agggacttet cetececeag geceageteg eeagggeete gggeegtget
                                                                      120
 gcagtttctg gcctttggtg tcgctccccg cccccagcc ccgcaaaatc ccggcttctt
                                                                      180
 ttctgtctgc gcggccggga ccgcccaggc aggcgccggg gctccggggc tccgggggaa
                                                                      240
 gggactcggc ggctcggctc ggctccgctt ctttctcctg cctgcaaata tttgctgcct
                                                                      300
 cgctggaaat ccgacgattt cgcgcgcgct ctgcttgcaa agtctttaag taaacacgct
                                                                      360
 caaatgaceg cecegggegg cecgaggeac getetetece ceteegeggg attagtaact
                                                                      420
 ttaggacttc gaccccgggg ctccgctttg cctgttaccc aggtcgggca gcgcgcgggc
                                                                      480
                                                                      491
 gcccggngcc g
 <210> 473
 <211> 557
 <212> DNA
 <213> Homo sapiens
  <220>
 <221> misc_feature
  <222> (499)..(499)
 <223> n is a, c, g, t or u
```

<220> <221> misc_feature <222> (554)..(554) <223> n is a, c, g, t or u <400> 473 aactgtgtca tactccttag aagaagaaag cctcaagaag ttctgcgttt gtcggagtta 60 eggetegeag ageetegtge taeceggggg gtgtttteae egggttetge ageagetget 120 gacatccatc taagacaaaa gcatatctct tttctgaggt ttcaccagag attgttataa 180 attatccaca gctgcaagca gataatttct gcaaagcaga agtaattttc aagccaagga 240 aatttagaaa tagcaataaa aagagtatca gtgactcata gaagctaacc ttccatttaa 300 gatgtttcca ggtcagcagg aaccatcatg aaaagctcag cccgttcaat acctggctgg 360 getggtacet gactatgcca geagggcaa egeetettee eteettagat eeaggtteea 420 gatgaacagg cagaactggc atccctcagt gccccaaggc tctgagtctc tgagagagga 480 caaagttgaa caggcgctnt ctctgaagat cactgcaatt caccgctgat tccgagtatt 540 557 ctttctcatt cggngag <210> 474 2389 <211> <212> DNA <213> Homo sapiens <400> 474 cggctcagcg ggggccgagg ccatgttccc ggtgtttcct tgcacgctgc tggcccccc 60 cttccccgtg ctgggcctgg actcccgggg ggtgggcggc ctcatgaact ccttcccgcc 120 acctcagggt cacgcccaga accccctgca ggtcggggct gagctccagt cccgcttctt 180 tgcctcccag ggctgcgccc agagtccatt ccaggccgcg ccggcgcccc cgcccacgcc 240 ccaggccccg gcggccgagc ccctccaggt ggacttgctc ccggtgctcg ccgccgccca 300 ggagtccgcc gcggctgctg cggccgctgc cgccgctgct gccgccgtcg ctgccgcgcc 360 cccggcccct gccgccct ctacggtgga cacagcggcc ctgaagcagc ctccggcgcc 420 480 cectecgeca ceceegecag tgteggegee egeggeegag geegegeece eegecteege cgccactatc gccgcggcgg cggccaccgc cgtcgtagcc ccaacctcga cggtcgccgt 540 ggccccggtc gcgtctgcct tggagaagaa gacaaagagc aaggggccct acatctgcgc 600 tctgtgcgcc aaggagttca agaacggcta caatctccgg aggcacgaag ccatccacac 660 gggagccaag gccggccggg tcccctcggg tgctatgaag atgccgacca tggtgcccct 720 gagcetectg agegtgeece agetgagegg ageeggeggg ggagggggag aggegggtge 780 cggcggcggc gctgccgcag tggccgccgg tggcgtggtg accacgaccg cctcggggaa 840

WO 03/090694					PCT/US03/13015
gcgcatccgg aagaaccatg	cctgcgagat	gtgtggcaag	geetteegeg	acgtctacca	900
cctgaaccga cacaagctgt (					
gcagcgcttc aagcgcaagg	accgcatgag	ctaccacgtg	cgctcacatg	acggcgctgt	1020
gcacaagccc tacaactgct	cccactgtgg	caagagcttc	teceggeegg	atcacctcaa	1080
cagtcacgtc agacaagtgc	actcaacaga	acggcccttc	aaatgtgaga	aatgtgaggo	1140
agctttcgcc acgaaggatc	ggctgcgggc	gcacacagta	cgacacgagg	agaaagtgc	1200

1260

1320

1380

1440

1500

1560

1620

1680

1740

1800

1860

1920

1980

2040

2100

2160

2220

2280

2340

2389

atgtcacgtg tgtggcaaga tgctgagctc ggcttatatt tcggaccaca tgaaggtgca

cagccagggt cctcaccatg tctgtgagct ctgcaacaaa ggtactggtg aggtttgtcc

aatggcggcg gcagcggcag cggcggcagc ggcagcagcg gcagcagtag cagccctcc

cacagetgtg ggetecetet egggggegga gggggtgeet gtgagetete agecaettee

ctcccaaccc tggtgagctc caagttggtt gcgggggaga ggggagaatg gagtagagtc

cettggtaca agetectete eccetettt teccaceaac tectatttee etaccaacea

aggagcetee agaaggaaag gaggaagaaa tgttttetta ggggaatteg etaggtttta

acgatttgct tetectgete etettetate agacetgace ecacacaaac etgteecete

ggttgtgttg aagtcccctg gacagtgggc aggggtggca gaggacacga gcagccactg

cccgtacccc ctctcctct tgtaagccca tgccctgtct tcccagggac ttgtgagcct

ettecetega eggteetett eteteettee agteetetee eeetgetgte tgeageeeet

ccccggggag ttggtgcttt cttttccttt ttttttttt ttccaggggg agggaggaga

ggaaggaggg ggatcagagc tgtcccaaag agggaaagcg gtgaggtttg aggaggggca

gaagcagggc cggcaaaggt tgtaccttca taaggtggta tcggggggtt ggggtcaggc

cctgaacatc gtcctacttg agaatctgtc aggggaaaaa gtcaagggga gcaggaggaa

gagccaggag ggccagaggc agagaagaga tggagtctta ggggccaggg tgagccaggg

gtccagggcc tagaggtgct tctggggggg ggggaatgca gccagtgtcc ccctccctc

ttccacccca getccagece tggtettgte ttttcatece tettccccae gacagaagaa

gttgtggccc tggcatgtca tcgtgttcct gtgtcccctg catgtacccc accctccacc

ccttcctttt gcgcggaccc cattacaata aattttaaat aaaatcctg
<210> 475
<211> 6454
<212> DNA
<213> Homo sapiens

<400> 475
ctgagtttgc cgagctgccc agccaggctg ttcccacaga cgcccaccac cccactcctc 60

	gcctgcgtac	ccaggcccca	aggagtatct	gcttcccaag	gcccccctac	120
	gtccagggac					180
						240
	agagccagta					300
	caagacacct					
	ctcaggaggc					360
gctggggtgt	gttctcgtct	ggggagagtc	ctgccatcgt	ccctgacaag	ctcagttcct	420
ttggggccag	ctgcctggcc	ccttcccact	tcacagatgg	ccagtggggg	ctgttccccg	480
gtgaggggca	gcaggcagct	tcccactctg	gaggacggct	gcgaggcaaa	ccgtggagcc	540
cctgcaagtt	tgggaacagc	acctcggcct	tggctgggcc	cagcctgact	gagaagccgt	600
gggcgctggg	ggcaggggat	ttcaactcgg	ccctgaaagg	tagtcctggg	ttccaagaca	660
agctgtggaa	ccccatgaaa	ggagaggagg	gcaggattcc	agccgcaggg	gccagccagc	720
tggtcttcta	ccagcacaag	aacctcaacc	agcccaacca	cgggctggcc	ctctgggaag	780
ccaagatgaa	a gcagctggcg	gagagggcac	gggcacggca	ggaggaggct	gcccggctgg	840
	a gcaggaggcc					900
	c ccagcagaaa					960
	a ctcggcggtc					1020
acageeget	g gatctaggtg	ccagggagcc	agcgtacctc	agegteggge	ctggcccgag	1080
ctgtctctg	t ggtgcttttg	ccctcatacc	: tgggggcggg	ttgggggtgo	agaagtcttt	1140
ttatctcta	t atacatatat	agatgcgcat	: atcatatata	tgtatttatg	gtccaaacct	1200
cagaactga	c cegecectec	: cttaccccca	cttccccago	: actttgaaga	a agaaactacg	1260
gctgtcggg	t gatttttccg	, tgatcttaat	: atttatatct	ccaagttgto	cccccccttg	1320
tctgggggg	t ttttatttt	attttctctt	tgtttttaaa	a actctatcct	tgtatatcac	1380
aataatgga	a agaaagttta	ı tagtatcctt	tcacaaagga	a gtagttttaa	a attccattta	1440
					g atgggcagga	1500
aaggccagt	a gtgctcccc	gcccagtct	c gctgggtctg	g gcgagccaa	g ceceteggge	1560
gctggcgag	g teeteagee	a tetgeceet	c gagagccaa	g cgcggacgg	t agccacccag	1620
ttcatccct	c ccgacataca	a ccccttccc	t ttggggaag	g gagcctcag	g acagcttctg	1680
					t ttccagtccc	1740
					c tggcatagct	1800
					c acactgaatc	1860
					c acctcacgct	1920

ggagctggag tgcgaggttc ttaggggccg tgcccaccat gttgccaagc caatgcatgc	1980
tgagotgaag gaatttgtot tagtggoagt tttttaaaaa atgooccoaa agtotatgot	2040
gatactgaaa aagggctact gtatctttaa aaacaggaag ttgaacccaa gctgtgaaaa	2100
gccagtggtg ctctgtgcat ggtgctgtgc ggagcctggt gctgtagtgt tgtgctggga	2160
ctttcttgac tcttgggcag gtcacatcct acaggagctc agcagaccag tgtaacaaca	2220
gttaatgcat ctatcctgat ccctgaattt ccacattgga caatggtgca tgcctcacac	2280
ctgagcctgc ttcctccatg ctgtcattgg gttcgggggc ctacacttaa caattttaaa	2340
gtgcaagagt caaacatttt caacaggttg ctataatttt cctccctaat tggtgccatt	2400
totocattig atcattitot tittitoott totocootot toatocacti taatatagot	2460
gttctgaaat tctggtgcat tcattcggtt ctttgaaatg agaatgtggt gcttaatttt	2520
tgtgacgttg tcgagagagg ttgggcctga tgggagcaac actcatcatc accaagtcaa	2580
actttgttgg agtgttggtt tttcttgtga tattagcaga aatgatctca tgctagccat	2640
gtggatgtgt gtgtggtgaa tggggggctt catcaggaca cacagagggg aatgtggcca	2700
cacggtggat gaccaccaag ccctgagatg aacaggtatt tactgagcag ttgtattcag	2760
atatgggtct tcatgaatca tgtttaacaa tcagatgacc gctataggca agttcctgag	2820
cttccgggtg ccttgagtaa gagctgagaa ccggcctgct gggtgtttac tgtatctgtt	2880
tggaagcact ggcggagggt cgttgtaaga tgtcctgagc atttatgtgg tctggtttta	2940
actgtaaata gtgaaagatt tttttaagca cttttgccta gatttaaaca gcaacttgaa	3000
aaaaaaagta tgttttaaca tgtaattgtg ggagaaattg taaatagtag ccgaatattt	3060
aatgtgcttt gtctatcctc cacttttacc atattctgta aagttgcatt tattttacag	3120
gacaaaaaaa tgaaatatta ttgcttttga aataaatacc caagagctta tcaggactta	3180
gaattattca gaactcagat ttataggaaa acctctgacc ttcagtttga caagctaaag	3240
gaagcagagt ctttaatgag catgctaatt ttctagtttt gaggaaaaat tgggtccttt	3300
aaatgctatt ttgcttatcg catcagtact tttatgcagg tctcatttga ctccgtgctt	3360
aggtagatgc gggggtgcct tgaaaacttc attttaaatg atcttaagca agaaatacaa	3420
tattttacga aacatttgga gaatgtgacc gtctgtatga cccgtggaag ccccaggttg	3480
gctgttggtt tggaaggtcc cgagtgtaac ccaggtgatt ctgatacttg gcatgtgta	3540
atcttcctga tgtatgttaa ataaactctt cccctcatca ccctttggta ggaaagccat	3600
tagatgaaag gagaaaccaa tacaagctaa aagcatgcga cgtctgtccc ccagcccaaa	3660
cagccttggt tcatcagttt ctgcagtagg agataggctg ctgagaggtg agtcaagagg	3720

cagteteeat tggatgteee caeteeeege agaatggegt tteeagagtt aggeggtgtg	3780
gttgccgtgc tcaagcccat gctgatttgt acactacatg tctaacctac ctcaaatctc	: 3840
agtcattaaa attagcatgc tttagacata tatttaaaaa gtaactatgc acagctcttt	3900
atcccccct tgctgctgaa gctttcttaa agagaaaaat caaattttta ttttttactc	3960
gcactatcat tttttaagtc ctaaagatga ttaacagaca tttttatcat gagaagaaaa	
ataaagccat tgcaactaaa gaacctaaca gcatgaccaa gttcgaagag tcatattata	a 4080 ,
gcaacggaaa tcgatggcgt cttagtcatc tccccagtgt gccctgtcca cggacaccat	4140
ccacgtgcag tgcaaacatt tggttccttt tctgctctgt tttgttttcc ctgcctgttg	g 4200
cgtgcaaggg aagtgcttgt aaagttctgt gctacgagat ttttaaaata aaaatcgct	t 4260
cgcagcaggt tctcacaaaa taactggtgc tagctcaaga aatcatcatc tgaccatca	g 4320
aaatcttgac taaaggtgtt gcatggattt gggggtcttt cggtttttgg ttttgggtc	t 4380
ggcttttagc agggccaatg tttcccacac cccggcttca tgggtactgc tttgccttc	t 4440
caccaaggtg acgatggtgt gcgtggaaag agatgatacc ccaccgcccc ctcttggtc	c 4500
ttccaccagc ctcttttggg aacagtagtt tgcagagcaa gggattttta aagcgctaa	a 4560
ggaaagaagt agcagagctt aactgctttg taccacacag cagtagatgt gcaaggacg	g 4620
ttgacaatga gtcgatgata acctaatttc attgagagaa acccagccag acttgcttc	t 4680
agaggtttaa tcaccatgag atctcaaacc aaggcaaagc tggtggaaaa ctatatgat	a 4740
tccctgacgt gcctcaacca gtatctcttt ccttttgtta ctgaagtgtg ttttatgga	c 4800
taggaagcat ttttatgaat tgaaatagtc taaataaaat ggtgctatgg tgttttaat	g 4860
tgactgtccc tgatcctgtc ttgctgaggt gctatcaacg ttctgaaacc acaaccaac	cc 4920
aaaaacaagg tgggctccag tctcttggct tttttttttt	g 4980
ctgtcttaga cccgtttacc gtgctataat ctgctctgag cagtgttgtg ttgtgttgt	a 5040
ttgttcttcc cttggtggcc aaacaaagca agtcgagaag gcagctatct ccctttctg	gt 5100
gatcgggagt gggcctgcct ggcttggcag gtgctttttg gttccacacc tgtcttctc	ca 5160
ggcttgatgt gaaagaaagg gcgaagggtt ttttgagttt ttgtttttga ggaagggg	ag 5220
ttgggtactt ctgcctctcc tagcatgata ggcattctca tagccaggga cagatttt	ct 5280
cctgcagccc agggtgctaa gcagacatct ctgggagtcc caagggcaca ccaaggga	ga 5340
ccagatggat ctccttcctc ccctggcact ggctgggacc atggtgggca ggggcttc	at 5400
tetetgacce agegttgett etgeetetea ttggtaacce ettatgtteg gactaaag	ga 5460
aggagettte tttgeteact egatgeeact gaggetgett tttagttggt getaacet	aa 5520
atttcttctt gggtccacag aagttgatgt tttaaaaact caccaggaag ctccattt	tg 5580

tgtcatccac	tgtcacaata	atttttttaa	atacctcaaa	aacaggacat	catgacaact	5640
tcagtaaagt	agattccatg	agggtctgat	acctgcaggt	tgtccgtctg	atgacatact	5700
tgaccttgaa	aaatctgggg	tcattttgtt	tttcattctt	cagcagttaa	gatagcggaa	5760
cgccgaaagg	aaggagcgta	gttggctgta	tttcatgttt	aagttttgct	tttgaataaa	5820
atgtgaattt	cctatgccca	tctcattgag	ctttctcagt	cattgttgct	gtcatttgaa	5880
atgactccct	caaaacctag	ttttattagc	cagctgcctc	tgctgtagta	catggccaac	5940
ttcaacatac	cctggaccaa	aacatttttg	aggtgcatac	ccccaacata	agttacacag	6000
tcccacatcc	aggtgcacag	agtgcgagtg	cactccgcga	gtgcgggggg	aggggcggcc	6060
ccctctggtg	ctcccagccc	ttcctcctgc	agagctgcag	gcaagagcag	agcaataggc	6120
ttctcccctg	agcagagacc	gcagcacaga	aatgcaaggt	ctaaagttgc	tttttgccta	6180
					tcagggatgc	6240
					ttcaggggta	6300
actcatcact	cttcacacgg	ggatttaaat	taagaaacta	attggctcat	gtgaacattc	6360
caaattttct	tggtttcaat	acccttttt	tttcttttga	ggggaaaaga	ggggagaaaa	6420
acaggagtga	tgtcatttct	ttttcatgta	ttcc			6454

<210> 476

<211> 2653

<212> DNA <213> Homo sapiens

الفراري الصرائب معنى الدول المستجورات المحارب في المحتجور المن المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب المحارب	
<pre>&lt;400&gt; 476 ccggcccttc gcctctgggc gatgggcgac ctgtgaggcc ggtccccatc gctgggggcg</pre>	60
cgtgtgggag gaggcggccg cccgagtgac cgggagccgg gccgcggcct tccctcgccc	120
geeteggeee eteceactee tetgeeeegg ggeegeeaee geeegggegt eggaeetggt	180
cccgtgctcg cggtgccgcc gccctctggg cctagcccgc ccagctcggc gagcggcggc	240
agtgggagcc gcgtccgccg catccgcctc gactcggtgc cggcccctgg ccctcccctc	300
atgactgcgg cgcctctgct gccaccgccc gcccggccgc cgctcgccgc aggatggatg	360
cggaccgtgc ggcgctaacc cccgtggctc agctcccgaa tcgcccgcct tcgagccctc	420
ctcgtgagcc gcagcagcct cggtgccagc ccccgccgca gctgggccca gcggtccgcc	480
tgtccctcgt tgcggcttgt cggtgctgag tgaggcgtcg tccgggtcgg cgcgaacccg	540
cccggccgcg gtgccctgca gacctctgcg cgggcggctc ggcccttcac gcccttttcg	600
ttcacgaatc cgagcccgct cgcctctctc cagcgaaccg accatgtctg gcggcgccgc	660
agagaagcag agcagcactc ccggttccct gttcctctcg ccgccggctc ctgccccaa	720

gaatggctcc agctccgatt cctccgtggg ggagaaactg ggagccgcgg ccgccgacgc	780
tgtgaccggc aggaccgagg agtacaggcg ccgccgccac actatggaca aggacagccg	840
tgggggggcc gcgaccacta ccaccactga gcaccgcttc ttccgccgga gcgtcatctg	900
cgactccaat gccactgcac tggagcttcc cggccttcct ctttccctgc cccagcccag	960
cateceegeg getgteeege agagtgetee aceggageee caeegggaag agaeegtgae 1	L020
cgccaccgcc acttcccagg tagcccagca gcctccagcc gctgccgccc ctggggaaca 1	L080
ggccgtcgcg ggccctgccc cctcgactgt ccccagcagt accagcaaag accgcccagt 1	1140
gtcccagcct agccttgtgg ggagcaaaga ggagccgccg ccggcgagaa gtggcagcgg	1200
cggcggcagc gccaaggagc cacaggagga acggagccag cagcaggatg atatcgaaga	1260
gctggagacc aaggccgtgg gaatgtctaa cgatggccgc tttctcaagt ttgacatcga	1320
aatcggcaga ggctccttta agacggtcta caaaggtctg gacactgaaa ccaccgtgga	1380
agtcgcctgg tgtgaactgc aggatcgaaa attaacaaag tctgagaggc agagatttaa	1440
agaagaagct gaaatgttaa aaggtettea geateeeaat attgttagat tttatgatte	1500
ctgggaatcc acagtaaaag gaaagaagtg cattgttttg gtgactgaac ttatgacgtc	1560
tggaacactt aaaacgtatc tgaaaaggtt taaagtgatg aagatcaaag ttctaagaag	1620
ctggtgccgt cagatcctta aaggtcttca gtttcttcat actcgaactc cacctatcat	1680
tcaccgcgat cttaaatgtg acaacatctt tatcaccggc cctactggct cagtcaagat	1740
tggagacete ggtetggeaa eeetgaageg ggettetttt geeaagagtg tgataggtae	1800
cccagagttc atggcccctg agatgtatga ggagaaatat gatgaatccg ttgacgttta	1860
tgcttttggg atgtgcatgc ttgagatggc tacatctgaa tatccttact cggagtgcca	1920
aaatgctgcg cagatctacc gtcgcgtgac cagtggggtg aagccagcca gttttgacaa	1980
agtagcaatt cctgaagtga aggaaattat tgaaggatgc atacgacaaa acaaagatga	2040
aagatattee ateaaagaee ttttgaaeea tgeettette caagaggaaa caggagtaeg	2100
. ggtagaatta gcagaagaag atgatggaga aaaaatagcc ataaaattat ggctacgtat	2160
tgaagatatt aagaaattaa agggaaaata caaagataat gaagctattg agttttcttt	2220
tgatttagag agagatgtcc cagaagatgt tgcacaagaa atggtagagt ctgggtatgt	2280
ctgtgaaggt gatcacaaga ccatggctaa agctatcaaa gacagagtat cattaattaa	2340
gaggaaacga gagcagcggc agttggtacg ggaggagcaa gaaaaaaaaa agcaggaaga	2400
gagcagtete aaacagcagg tagaacaate cagtgettee cagacaggaa teaagcaget	2460
cccttctgct agcaccggca tacctactgc ttctaccact tcagcttcag tttctacaca	2520

agtagaacct	gaagaacctg	aggcagatca	acatcaacaa	ctacagtacc	agcaacccag	2580
tatatctgtg	ttatctgatg	ggacggttga	cagtggtcag	ggatcctctg	tcttcacaga	2640
atctcgaggg	aaa					2653

<210> 477 <211> 5277

<212> DNA

<213> Homo sapiens

<400> 477 gctgcataaa gctgagagat gcctacagct gagagtgaag caaaagtaaa aaccaaagtt 60 cgctttgaaa aattgcttaa gacccacagt gatctaatgc gtgaaaagaa aaaactgaag 120 180 aaaaaacttg tcaggtctga agaaaacatc tcacctgaca ctattagaag caatcttcac tatatgaaag aaactacaag tgatgatccc gacactatta gaagcaatct tccccatatt 240 aaagaaacta caagtgatga tgtaagtgct gctaacacta acaacctgaa gaagagcacg 300 agagtcacta aaaacaaatt gaggaacaca cagttagcaa ctgaaaatcc taatggtgat 360 gctagtgtag aggaagacaa acaaggaaag ccaaataaaa aggtgataaa gacggtgccc 420 cagttgacta cacaagacct gaaaccggaa actcctgaga ataaggttga ttctacacac 480 cagaaaacac atacaaagcc acagccaggc gttgatcatc agaaaagtga gaaggcaaat 540 gagggaagag aagagactga tttagaagag gatgaagaat tgatgcaagc atatcagtgc 600 660 catgtaactg aagaaatggc aaaggagatt aagaggaaaa taagaaagaa actgaaagaa 720 cagttgactt actttccctc agatacttta ttccatgatg acaaactaag cagtgaaaaa aggaaaaaga aaaaggaagt tocagtotto totaaagotg aaacaagtac attgaccato 780 tctggtgaca cagttgaagg tgaacaaaag aaagaatctt cagttagatc agtttcttca 840 gatteteate aagatgatga aataagetea atggaacaaa geacagaaga cagcatgeaa 900 gatgatacaa aacctaaacc aaaaaaaaca aaaaagaaga ctaaagcagt tgcagataat 960 aatgaagatg ttgatggtga tggtgttcat gaaataacaa gccgagatag cccggtttat 1020 cccaaatgtt tgcttgatga tgaccttgtc ttgggagttt acattcaccg aactgataga 1080 cttaagtcag attttatgat ttctcaccca atggtaaaaa ttcatgtggt tgatgagcat 1140 actggtcaat atgtcaagaa agatgatagt ggacggcctg tttcatctta ctatgaaaaa 1200 gagaatgtgg attatattct tcctattatg acccagccat atgattttaa acagttaaaa 1260 1320 tcaagacttc cagagtggga agaacaaatt gtatttaatg aaaattttcc ctatttgctt cgaggctctg atgagagtcc taaagtcatc ctgttctttg agattcttga tttcttaagc 1380 gtggatgaaa ttaagaataa ttctgaggtt caaaaccaag aatgtggctt tcggaaaatt 1440

gcctgggcat 1	ttcttaagct	tctgggagcc	aatggaaatg	caaacatcaa	ctcaaaactt	1500
cgcttgcagc	tatattaccc	acctactaag	cctcgatccc	cattaagtgt	tgttgaggca	1560
tttgaatggt (	ggtcaaaatg	tccaagaaat	cattacccat	caacactgta	cgtaactgta	1620
agaggactga	aagttccaga	ctgtataaag	ccatcttacc	gctctatgat	ggctcttcag	1680
gaggaaaaag	gtaaaccagt	gcattgtgaa	cgtcaccatg	agtcaagctc	agtagacaca	1740
gaacctggat	tàgaagagtc	aaaggaagta	ataaagtgga	aacgactccc	tgggcaggct	1800
tgccgtatcc	caaacaaaca	cctcttctca	ctaaatgcag	gagaacgagg	atgtttttgt	1860
cttgatttct	cccacaatgg	aagaatatta	gcagcagctt	gtgccagccg	ggatggatat	1920
ccaattattt	tatatgaaat	tccttctgga	cgtttcatga	gagaattgtg	tggccacctc	1980
aatatcattt	atgatctttc	ctggtcaaaa	gatgatcact	acatccttac	ttcatcatct	2040
gatggcactg	ccaggatatg	gaaaaatgaa	ataaacaata	caaatacttt	cagagtttta	2100
cctcatcctt	cttttgttta	cacggctaaa	ttccatccag	ctgtaagaga	gctagtagtt	2160
acaggatgct	atgattccat	gatacggata	tggaaagttg	agatgagaga	agattctgcc	2220
atattggtcc	gacagtttga	tgttcacaaa	agttttatca	actcactttg	ttttgatact	2280
gaaggtcatc	atatgtattc	aggagattgt	acaggggtga	ttgttgtttg	gaatacctat	2340
gtcaagatta	atgatttgga	acattcagtg	caccactgga	ctataaataa	ggaaattaaa	2400
gaaactgagt	ttaagggaat	tccaataagt	tatttggaga	ttcatcccaa	tggaaaacgt	2460
ttgttaatcc	ataccaaaga	cagtactttg	agaattatgg	atctccggat	attagtagca	2520
aggaagtttg	taggagcagc	aaattatcgg	gagaagattc	atagtacttt	gactccatgt	2580
gggacttttc	tgtttgctgg	aagtgaggat	ggtatagtgt	atgtttggaa	cccagaaaca	2640
ggagaacaag	tagccatgta	ttctgacttg	ccattcaagt	cacccattcg	g agacatttct	2700
tatcatccat	Étgaaaatat	ggttgcattc	tgtgcatttg	ggcaaaatga	gccaattctt	2760
ctgtatattt	acgatttcca	tgttgcccag	caggaggctg	aaatgttcaa	acgctacaat	2820
ggaacatttc	cattacctgg	, aatacaccaa	agtcaagato	ccctatgtad	c ctgtccaaaa	2880
ctaccccatc	aaggctcttt	tcagattgat	gaatttgtco	: acactgaaaq	g ttcttcaacg	2940
aagatgcagc	tagtaaaaca	a gaggcttgaa	actgtcaca <u>c</u>	g aggtgataco	g ttcctgtgct	3000
gcaaaagtca	acaaaaatct	ctcatttact	tcaccaccag	g cagtttcct	c acaacagtct	3060
aagttaaagc	agtcaaacat	gctgaccgct	caagagatto	tacatcagt	t tggtttcact	3120
cagaccggga	ttatcagcat	agaaagaaag	g ccttgtaaco	atcaggtag	a tacagcacca	3180
acggtagtgg	ctctttatga	a ctacacagco	g aatcgatcag	g atgaactaa	c catccatcgc	3240
ggagacatta	tccgagtgt	t tttcaaagat	aatgaagact	ggtggtatg	g cagcatagga	3300
					-	

aagggacagg aaggttattt tocagctaat catgtggota gtgaaacact gtatcaagaa 3360 3420 ctgcctcctg agataaagga gcgatcccct cctttaagcc ctgaggaaaa aactaaaata gaaaaatctc cagctcctca aaagcaatca atcaataaga acaagtccca ggacttcaga 3480 ctaggeteag aatetatgae acattetgaa atgagaaaag aacagageea tgaggaeeaa 3540 ggacacataa tggatacacg gatgaggaag aacaagcaag caggcagaaa agtcactcta 3600 atagagtaaa gaattgaaga aaagttaaga gctgccgaaa tgcacagagg tgaaaatgac 3660 aaaccaaatg gaatttetet teagagttea gaatttteag atactaagga ggaagaaagg 3720 atccactact tottgttott atgaatgact ctagaaaaat cagaatcaag ttgtgggtgg 3780 3840 aaaaatcaac gtggcctttg agttcagttg ttataaacca ttgtgactat tgttggtcaa agtattggta cttatattgt tagtaattgc atcataatta cattaccagt gttggaaaac 3900 taatgaagaa aacactgtaa ttgctactca gcaaatgtga ataaaaggtg tttgcgttat 3960 taggatgtct gttaagtaat catttaatat tattatattg gtaatggttg tatgtgtgat 4020 gctatgccca gaatatgaag tatctgtttt tgaaattcac tttatttaaa agataagcag 4080 ctgactgggc acggtgcctc atgcctgtaa tcctagcacc ttgggaggct gaggcaggtg 4140 gatcacctaa ggtcaggagt tcaacaacac cagcctgacc aacatggtga aaccccatct 4200 ctactaaaaa tacaaaaatc agccgggtct catggcaggc acctgtaatc ccatctactg 4260 aggcaggaga attgcttgac ccaggaggca gaggttgcag tgagccaaga tcacgccatt 4320 gcactccagc ctgggggaca gagcaagact ctatctccaa aaaacaaaaa agataagcag 4380 4440 ctttagaata tggcgcattc aaaacagtct cagtaacaaa gacattaaaa gaaaacaatt tactttctaa ttaaaatttt gtgtttctta agatcaaatc atataggtaa cttcatagac 4500 ctaaattaaa agtgattttt ggctggactg gcaacaatgt tcccaatgtc tttactttt 4560 aaaaaaggct tttcatattt aagcacatac ctattttgta gacttacatt gtttaatatt 4620 4680 tattttaatc ttaatatttt tacattatta tattgcatta tttatttttt ctaagttcca gaataatagt gtcattatta tagactatat gttttgaagt ttgatattat aatgggatat 4740 tcattttttg ttcttttctt gactcctttc tcaagtgtgt gataaggtct gctgataaaa 4800 tatttaaccc caagaaagtg aaaactaata taaaattaga aagacctatc caaattagac 4860 4920 agtcaattcc attaaaataa gaagtgagaa aaacaatgtt gggcattgag gtgtaaattt tgcccagatg tatacccagt gtgaaatatc ttctaataaa aatatatttg gctcttatcc 4980 5040 ctgcacatgt agaggcataa aaattggtaa acatgtcccg ctgtgtagaa ctttaaaaaa 5100 aaggcatttt tgaaagtgtt gagtggcact gataactggt gaagcctaca gccatccgcc

caaaagtctg ttctgatggc actgagtttt cattgttctg gatgtataag tctgtgtgtc 5160 aggtacagct gggcccagcc agcttgagtc actcttgtac aagcttgttt ttttctgtct 5220 tgtgaatgca cttgataatt taaaaataaa aatatctgtt tctctgcaaa aaaaaaa 5277 <210> 478 4664 <211> DNA Homo sapiens <400> 478 ggactgcggg ataggaagct ggggatatgg acaagcagca gcgttatagc gctctgggtt 60 tegggacata ggeetgggee atgeggeece ettggeecet tggegegace eecaggaacg 120 180 ttcggaaagc tggtcctcgt ggctggggga aaggcggggg gtggggggga agcgggcacg tgaccccggt cagccaatct gggtgctgct gacgtggccg cgcggccccg atgctctccc 240 300 cacccccca gcccgttccg gaagggaggg gctgggggct acgcccctc ccccagcacg gcttcgtttt ctgggggggg gttgacaccc cggattacat accccgtacc aagccgaggg 360 caactttgga ggccccctgg aaggctttag gatccagatt cttcgctgct gctgccttac 420 480 cgccgagaac caccacccgc caggcgtctt gcggccacac ccctggcggg ttcaggcagg 540 ctacgcccac gcgacccctc ccgtttccct gctttggcca atggaggagc tacgaatggc acgacctgct cgagcttggc agtctccagt tgggctgtgc atggaagctt gggaagactt 600 tgttggaagg ggaggcgggg agagagtgct ggaggctctg gggcgatggc ttccgcacct 660 cttccaacca ccctctttcc ctggagtcgg cggaccacag ctcagccaat tggcttggag 720 atgtggcggg ttgccacttc cctgtgggtc tctgcggcac tcttctgcct ggtgactgac 780 840 accttggaaa tgaagtttat gacgtcatcg ctgcggctgg ccaatagaaa aagctcccgc 900 ggagaggtgt teetteeect tegacteage ttetteacce gegtgagega gegegegege geggagggg tggggaaaat etcaageagg gtggegegea tgageggega ageteeteet 960 ccccgcctat atataaaggg ctggcgcggg gctcggcggc gccatttcgt gctggagtgg 1020 agcagcctct agaacgagct ggaggattct gcctaccgat acagagcctt cgagtcgtcc 1080 ggggccgcca ttacaatcca cctccatccg cttggaaatg gccttcgtcc cggcctatga 1140

ctggtcccag cgggcagtac agacccccta gaagcccctg gagctcccct ttttcgggcc 1200 1260 cegeccaate eteggagtet gtecacecee tetacteege ceteaagagg attteaaaga 1320 tggaggcggc ggctccctaa accacttttc gtgttcatcc gcctccatcc gagatcgaaa 1380 cgggacctcg tcggccccgt aggggcccga caagaagagg gaatccctgc agaccaacag 1440 cgggctatat tgacgacggt gtctgagatc ggggaccgtc ttttgaagag tcagtccctc

cttagttgcc	cgcctcagct	gaggccgccg	ccattttctt	gctgtccgcc	gtctgcagag	1500
	tgcccggagc					1560
	ttgtcgcctg					1620
	gggcggtgag					1680
	ttgcggtcaa					1740
						1800
	cagggttgct					1860
	ctctcttgta					1920
	cccctgccaa					1980
	accagctgca					
cagttcgcat	ggccattccg	gcagcctgtg	gatgctgtca	aactgggtct	accggattat	2040
cacaaaatta	taaaacagcc	tatggacatg	ggtactatta	agaggagact	tgaaaacaat	2100
tattattggg	ctgcttcaga	gtgtatgcaa	gattttaata	ccatgttcac	caactgttac	2160
atttacaaca	agcccactga	tgatattgtc	ctaatggcac	aaacgctgga	aaagatattc	2220
ctacagaagg	ttgcatcaat	gccacaagaa	gaacaagagc	tggtagtgac	catccctaag	2280
aacagccaca	agaaggggg	caagttggca	gcgctccagg	gcagtgttac	cagtgcccat	2340
caggtgcctg	cegtetette	tgtgtcacac	acagccctgt	atactcctcc	acctgagata	2400
cctaccactç	, teeteaacat	tccccaccca	tcagtcattt	cctctccact	tctcaagtcc	2460
ttgcactctg	ctggaccccc	gctccttgct	gttactgcag	ctcctccago	ccagcccctt	2520
gccaagaaaa	aaggcgtaaa	geggaaagea	gatactacca	cccctacacc	: tacagccatc	2580
tťggatáatg	gttctccago	tagecetect	gggagtcttg	agcctaaggc	agcacggctt	2640
cccctatgo	gtagagagag	tggtcgccc	atcaagcccc	cacgcaaaga	cttgcctgac	2700
totoagcaac	aacaccagag	g ctctaagaaa	ggaaagcttt	cagaacagtt	aaaacattgc	2760
aatggcattt	tgaaggagtt	actctctaag	aagcatgctc	cctatgcttg	g gcctttctat	2820
aaaccagtg	g atgcttctgo	acttggcctg	catgactacc	: atgacatcat	taagcacccc	2880
atggacctca	a gcactgtcaa	a gcggaagatg	gagaaccgtg	attaccggga	a tgcacaggag	2940
tttgctgct	g atgtacggc	tatgttctcc	: aactgctata	agtacaatco	c cccagatcac	3000
gatgttgtg	g caatggcac	g aaagctacag	g gatgtatttg	g agttccgtta	a tgccaagatg	3060
ccagatgaa	c cactagaac	c agggccttta	a ccagtctcta	a ctgccatgc	c ccctggcttg	3120
gccaaatcg	t cttcagagt	c ctccagtgag	g gaaagtagca	a gtgagagct	c ctctgaggaa	3180
gaggaggag	g aagatgagg	a ggacgaggag	g gaagaagaga	a gtgaaagct	c agactcagag	3240
gaagaaagg	g ctcatcgct	t agcagaacta	a caggaacago	c ttcgggcag	t acatgaacaa	3300

ctggctgctc	tgtcccaggg	tccaatatcc	aagcccaaga	ggaaaagaga	gaaaaaagag	3360
aaaaagaaga	aacggaaggc	agagaagcat	cgaggccgag	ctggggccga	tgaagatgac	3420
aaggggccta	gggcaccccg	cccacctcaa	cctaagaagt	ccaagaaagc	aagtggcagt	3480
gggggtggca	gtgctgcttt	aggcccttct	ggctttggac	cttctggagg	aagtggcacc	3540
aagctcccca	aaaaggccac	aaagacagcc	ccacctgccc	tgcctacagg	ttatgattca .	3600
gaggaggagg	aagagagcag	gcccatgagt	tacgatgaga	agcggcagct	gagcctggac	3660
atcaacaaat	tacctgggga	gaagctgggc	cgagttgtgc	atataatcca	agccagggag	3720
ccctctttac	gtgattcaaa	cccagaagag	attgagattg	attttgaaac	actcaagcca	3780
tccacactta	gagagcttga	gcgctatgtc	ctttcctgcc	tacgtaagaa	accccggaag	3840
ccctacacca	ttaagaagcc	tgtgggaaag	acaaaggagg	aactggcttt	ggagaaaaag	3900
cgggaattag	aaaagcggtt	acaagatgtc	agcggacagc	tcaattctac	taaaaagccc	3960
cccaagaaag	cgaatgagaa	aacagagtca	tcctctgcac	agcaagtagc	agtgtcacgc	4020
cttagcgctt	ccagctccag	ctcagattcc	agctcctcct	cttcctcgtc	gtcgtcttca	4080
gacaccagtg	attcagactc	aggctaaggg	gtcaggccag	atggggcagg	aaggctccgc	4140
	: ccctagacca					4200
cttcatctca	ccccccccg	ccccctcta	ggagagctgg	g ctctgcagtg	ggggagggat	4260
gcagggacat	ttactgaagg	agggacatgg	acaaaacaac	attgaattco	: cagccccatt	4320
ggggagtgat	ctcttggaca	. cagagccccc	attcaaaatg	g gggcagggca	agggtgggag	4380
tgtgcaaago	c cctgatctgg	agttacctga	ggccatagct	gccctattca	cttctaaggg	4440
					a àaaaaaaaa a	450
ggggccgtgg	g teceeteage	ctccatgggg	agggaagaag	g ggggagctct	: ttttttacgt	456
tgatttttt	t ttttctactc	: tgttttccct	ttttccttcc	c gctccattt	g gggccctggg	462
ggtttcagto	c atctccccat	: ttggtcccca	aatggagcg	g aagg		466

<210> 479

<211> 448

<212> DNA

<213> Homo sapiens

c400> 479
gatgaaaaca aacatttatt gaacacgaac tatgtgctag atgtaccett tgtctttatg 60

ttgcttatgg tctggggagg aaagaacgc taaacaagta accacaagtt tataagtttt 120

acaaaagggg cagatgatat gccacagaga tgcagaacag aggggtccga gtctagttta 180

gggaatcagg ggaaggcatc tctgcataag gaatatttga gctgagatcc agaggatgag 240

aggaagttag agcaggatgc agggagcagt acatgtgtgg	getteeettg	aacttaggaa	300
gaaagggtgt ctaatgggca gcaggaagta ctaagctcca c	cctctctact	gtgaactggg	360
gcttgcccca tccacactgt ggatctcgac tcctcatttg t	tcatgagtgg	ttggctgaga	420
gggcctgtgc tgacctggac tctgggct			448
<210> 480 <211> 4646 <212> DNA <213> Homo sapiens			
<400> 480 gggaggcggt ggccgaggcc caggcggtgg cggcggc	ccaggaggcg	gcggacgggg	60
agctgcggga gcaggcccgg gcctggctct ctagcggccg	cctggctgca	gcatgcgcgc	120
ccgccggggg ctgctgcggc tgccgcggccg ctcgctgctc	gccgcgctct	tcttctttc	180
tctctcgtcc tcgctgctgt acttcgtcta tgtggcgccc	ggcatagtga	acacctacct	240
cttcatgatg caagcccaag gcattctgat ccgggacaac	gtgagaacaa	tcggtgctca	300
ggtttatgag caggtgcttc ggagtgctta tgccaagagg	aacagcagtg	taaatgactc	360
agattatcct cttgacttga accacagtga aaccttcctg	caaactacaa	catttcttcc	420
tgaagacttc acctactttg caaaccatac ctgccctgaa	agactccctt	ccatgaaggg	480
cccaatagac ataaacatga gtgaaattgg aatggattac	attcatgaac	tcttctccaa	540
agacccaacc atcaagctcg gaggtcactg gaagccttct	gattgcatgc	ctcggtggaa	600
ggtggcgatc cttatcccct tccggaaccg ccacgagcac	ctcccagtcc	tgttcagaca	660
cctgcttccc atgctccagc gccagcgctt gcagtttgca	ttttatgtgg	ttgaacaagt	720
tggtacccaa ccctttaatc gagccatgct tttcaacgtt	ggctttcaag	aggcaatgaa	780
agacttggat tgggactgtt tgatttttca tgatgtagat	cacataccgg	aaagtgatcg	840
caactattat ggatgtggac agatgccgag gcattttgca	accaaattgg	ataagtatat	900
gtatctgctt ccttataccg agttctttgg cggagtgagt	ggcttaacag	tggaacaatt	960
tcggaaaatc aatggctttc ctaatgcttt ctggggttgg	ggtggagaag	atgacgacct	1020
ctggaacaga gtacagaatg caggctattc tgtgagccgg	ccagagggtg	acacaggaaa	1080
gtacaagtcc attcctcatc accatcgagg agaagtccag	tttcttggaa	ggtatgctct	1140
gctgaggaag tcaaaagaac ggcaagggct ggatggcctc	aacaacctga	actactttgc	1200
aaacatcaca tacgacgcct tgtataaaaa cataactgtc	aacctgacac	: ccgagctggc	1260
tcaggtgaac gagtactgag aggagagaat gtacgtttgc	tttacccacc	gccaccaaga	1320
aagcagtccg atgagatttt tttttggagg ggggagggtc	tacacagcaa	a gagaacagaa	1380

					2020002022	1440
atactgtgtc						
acgccttcac						1500
gcactggctt	tctgttttca	caagacagac	gtctgtcccg	ctgctctctc	cccatctcct	1560
accccacatc	ctgtcttagc	cgcagtctcc	agaacccatg	atgaactgtg	atctgccgtg	1620
gtcctgccgt	ggtcctgccg	tggagcctgt	ccctacacat	gaccttggag	cctcttggcc	1680
ttcagagcag	aggcaaaccc	accacagggc	agctgcgttt	taggaagagc	aaatgaaact	1740
ccacaccatt	cttctagatc	tctggtgttc	tatttggttt	cattttttta	aaaaattacc	1800
ttctttgggt	ggggattgag	ggtggagggg	agggtgtttg	ggaaagataa	atagacataa	1860
atatataaca	atcacttctt	gaagaagtat	aattgtaaat	aagccatgta	aaatgccttt	1920
ttaaaattta	attttctagc	tggctccaat	tcaaattgag	gatttatgta	ttaggccact	1980
tacttggttg	gcaagtgcag	gaactcagtt	aaaatgcagt	tgaagaatgt	catctcccga	2040
attgctgtca	ctttggcgag	ggagtggata	tagggcatgt	cacaaaagaa	caaaataacc	2100
cgacctttat	tgctgggagc	tggcttctgt	ccctttcttc	cccccccac	gagtcttgcc	2160
cttgacttct	gctctggatt	cactcttccc	tgtcggccgc	gcatgtgctc	atcccactct	2220
ccgctaagcg	ggaggctgct	gttagagcag	gctgcttcct	gcctaaagca	ggcccttcgg	2280
					tcatcagcat	2340
ggcggggcgg	999909999	gegggggtgt	gtatgggaat	ccctcccct	cttacttttt	2400
					ctggcttcag	2460
					tagtaactga	2520
tacatagaac	caaggagcac	tcaaataggg	agccaggagc	: cagggagctg	gtgacacttg	2580
					attagactaa	2640
					g cattttgaag	2700
	•				a agctggagtg	2760
					c attttcccac	2820
					c taattttttg	2880
					g aactcctgga	2940
					g ggtgtgagcc	3000
					c tetttgtttt	3060
					t totggaaaat	3120
						3180
gccagttttc	c ctcccccgc	e ettgittite	L aladaacat	a cicacacac	t gtgatgagga	

gtactttctg	aagagtactt	cgtattttt	tttaattgcc	ttgtttgcct	tcaacttcct	3240
	agtttacatg					3300
	gttgcatgtg					3360
•	gccttgtttt					3420
	tagaaaataa					3480
	cttgaaaatg					3540
	aaataccttc	٠,				3600
	gtgcatatag					3660
ccgggccttt	gtccctgcct	tggcttttct	ccccttctca	tteteetete	ccctttcctc	3720
actgaaggct	gtgagttgct	ttcaatgtga	caacactatg	atgtcatttg	gaaggatttg	3780
ccaggacaga	ctgattctga	gtcctgggtg	ccgtatgtgt	atgcggcagt	gttgtcaggc	3840
gatcttgttt	gaagctctat	gttgccataa	ttaccatcaa	gtacacactg	ttggcaaaag	3900
gctaacacct	gactttagaa	aatgctgatt	tgagaacaaa	aggaaaggtc	ttttttcact	3960
gcttaaagtg	gggtcacttt	gatacctttg	cggtcatgtc	tgtgtctgat	gagtgtagaa	4020
tctctggatg	; tgcactgtca	gtcatgtgtc	caccaggcct	cgaatatcat	atgggaaatg	4080
tcatagttaa	aaacgtacag	ccaggcccgt	gtgctgttaa	tagtgtgaaa	ttgtcatgtt	4140
aaaaaaaaa	acaggaacca	. aatgtgacct	tgtgcatata	ttggtagctg	aaaatcttca	4200
aggctactga	tgggtggccc	cttaatcttg	tctttgattg	ctgtgtgcag	ggaaaggtgt	4260
ccccgtttgt	tcatgctgtt	ttggggggtg	ggggggtatt	tgcaagaata	ctcattttga	4320
cataataggt	cctcttgtca	gagatectet	: accacagaca	ttaatagctg	agcaggagcc	4380
acatggatt	g attgtatcca	ctcaccatte	g acgatggcat	tgagcgtagc	: tagcttattt	4440
ccatcacta	c gtgtttttga	a gcttgctctt	acgttttaag	aggtgccagg	ggtacatttt	4500
tgcactgaa	a tctaaagato	y ttttaaaaaa	a cacttttcac	: aaaaatagto	: ctttgtcatt	4560
acattattt	a ctcatgtgt1	tgtacattt	tgtatgttaa	tttatgaatg	g attttttcag	4620
taaaaaata	c atattcaaga	a accaaa				4646

<210> 481

<211> 2121

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (1524)..(1524) <223> n is a, c, g, t or u

<400> 481 atgggggacg	agcggcccca	ctactacggg	aaacacggaa	cgccacagaa	gtatgatccc	60
actttcaaag	gacccattta	caataggggc	tgcacggata	tcatatgctg	tgtgttcctg	120
ctcctggcca	ttgtgggcta	cgtggctgta	ggcatcatag	cctggactca	tggagaccct	180
cgaaaggtga	tctaccccac	tgatagccgg	ggcgagttct	gcgggcagaa	gggcacaaaa	240
aacgagaaca	aaccctatct	gttttatttc	aacattgtga	aatgtgccag	cccctggtt	300
ctgctggaat	tccaatgtcc	cactccccag	atctgcgtgg	aaaaatgccc	cgaccgctac	360
ctcacgtacc	tgaatgctcg	cagctcccgg	gactttgagt	actataagca	gttctgtgtt	420
cctggcttca	agaacaataa	aggagtggct	gaggtgcttc	gagatggtga	ctgccctgct	480
gtcctcatcc	ccagcaaacc	cttggcccgg	agatgcttcc	ccgctatcca	cgcctacaag	. 540
ggtgtcctga	tggtgggcaa	tgagacgacc	tatgaggatg	ggcatggctc	ccggaaaaac	600
atcacagacc	tggtggaggg	cgccaagaaa	gccaatggag	tcctagaggc	gcggcaactc	660
gccatgcgca	tatttgaaga	ttacaccgtc	tcttggtact	ggattatcat	aggcctggtc	720
attgccatgg	cgatgagcct	cctgttcatc	atcctgcttc	gcttcctggc	tggtattatg	780
gtctgggtga	tgatcatcat	ggtgattctg	gtgctgggct	acggaatatt	tcactgctac	840
atggagtact	cccgactgcg	tggtgaggcc	ggctctgatg	tctctttggt	ggacctcggc	900
tttcagacgg	atttccgggt	gtacctgcac	ttacggcaga	cctggttggc	ctttatgatc	960
attctgagta	tccttgaagt	cattatcatc	ttgctgctca	tctttctccg	gaagagaatt	1020
ctcatcgcga	ttgcactcat	caaagaagcc	agcagggctg	tgggatacgt	catgtgctcc	1080
ttgctctacc	cactggtcac	cttcttcttg	ctgtgcctct	gcatcgccta	ctgggccagc	1140
actgctgtct	tcctgtccac	ttccaacgaa	geggtetata	agatctttga	tgacagecee	1200
tgcccattta	a ctgcgaaaac	ctgcaaccca	. gagacettee	cctcctccaa	tgagtcccgc	1260
caatgcccca	atgcccgttg	ccagttcgcc	: ttctacggtg	gtgagtcggg	ctaccaccgg	1320
gccctgctgg	g gcctgcagat	cttcaatgcc	: ttcatgttct	tctggttggc	: caacttcgtg	1380
ctggcgctgg	g gccaggtcac	getggeeggg	g gcctttgcct	cctattactg	ggccctgcgc	1440
aagccggac	g acctgccggc	: cttcccgctc	ttetetgeet	ttggccgggc	: gctcaggtac	1500
cacacaggc	t ccctggcctt	tggngcgcto	e atcctggcca	ttgtgcagat	cateegtgtg	1560
atactcgag	t acctggatca	a gcggctgaaa	a ggtgcagaga	a acaagtttgo	caagtgcctc	
atgacctgt	c tcaaatgctg	g cttctggtg	c ctggagaagt	tcatcaaatt	ccttaatagg	1680
aatgcctac	a tcatgattgo	catctacgg	c accaatttct	gcacctcgg(	c caggaatgcc	
ttettectg	c tcatgagaaa	a catcatcag	a gtggctgtco	c tggataaagt	tactgacttc	1800

ctcttcctgt	tgggcaaact	tctgatcgtt	ggtagtgtgg	ggatcctggc	tttcttcttc	1860
ttcacccacc	gtatcaggat	cgtgcaggat	acagcaccac	ccctcaatta	ttactgggtt	1920
cctatactga	cggtgatcgt	tggctcctac	ttgattgcac	acggtttctt	cagcgtctat	1980
ggcatgtgtg	tggacacgct	gttcctctgc	ttcttggagg	acctggagag	gaatgacggc	2040
tcggccgaga	ggccttactt	catgtcttcc	accctcaaga	aactcttgaa	caagaccaac	2100
aagaaggcag	cggagtcctg	a				2121

<210> 482

<211> 1880

<212> DNA

<213> Homo sapiens

<400> 482 agccgagagg tgtcaccccc agcgggcgcg ggccggagca cgggcaccca gcatgggggt 60 actgctcaca cagaggacgc tgctcagtct ggtccttgca ctcctgtttc caagcatggc 120 gagcatggcg gctataggca gctgctcgaa agagtaccgc gtgctccttg gccagctcca 180 gaagcagaca gatctcatgc aggacaccag cagactcctg gacccctata tacgtatcca 240 aggcctggat gttcctaaac tgagagagca ctgcagggag cgccccgggg ccttccccag 300 tgaggagacc ctgaggggc tgggcaggcg gggcttcctg cagaccctca atgccacact 360 gggctgcgtc ctgcacagac tggccgactt agagcagcgc ctccccaagg cccaggattt 420 ggagaggtct gggctgaaca tcgaggactt ggagaagctg cagatggcga ggccgaacat 480 cctcgggctc aggaacaaca tctactgcat ggcccagctg ctggacaact cagacacggc 540 tgagcccacg aaggctggcc ggggggcctc tcagccgccc accccaccc ctgcctcgga 600 tgcttttcag cgcaagctgg agggctgcag gttcctgcat ggctaccatc gcttcatgca 660 720 ctcagtgggg cgggtcttca gcaagtgggg ggagagcccg aaccggagcc ggagacacag ccccaccag gccctgagga agggggtgcg caggaccaga ccctccagga aaggcaagag 780 actcatgacc aggggacagc tgccccggta gcctcgagag caccccttgc cggtgaagga 840 tgcggcaggt gctctgtgga tgagaggaac catcgcagga tgacagctcc cgggtcccca 900 aacctgttcc cctctgctac tagccactga gaagtgcact ttaagaggtg ggagctgggc 960 agacccctct acctcctcca ggctgggaga cagagtcagg ctgttgcgct cccacctcag 1020 ccccaagttc cccaggccca gtggggtggc cgggcgggcc acgcgggacc gactttccat 1080 tgattcaggg gtctgatgac acaggctgac tcatggccgg gctgactgcc cccctgcctt 1140 gctccccgag gcctgccggt ccttccctct catgacttgc agggccgttg cccccagact 1200 1260 tecteettte egtgtttetg aaggggaggt caeageetga getggeetee tatgeeteat

catgtcccaa	accagacacc	tggatgtctg	ggtgacctca	ctttaggcag	ctgtaacagc	1320
ggcagggtgt	cccaggagcc	ctgatccggg	ggtccaggga	atggagctca	ggtcccaggc	1380
cagccccgaa	gtcgccacgt	ggcctggggc	aggtcacttt	acctctgtgg	acctgttttc	1440
tctttgtgaa	gctagggagt	tagaggctgt	acaaggcccc	cactgcctgt	cggttgcttg	1500
gattccctga	cgtaaggtgg	atattaaaaa	tctgtaaatc	aggacaggtg	gtgcaaatgg	1560
cgctgggagg	tgtacacgga	ggtctctgta	aaagcagacc	cacctcccag	cgccgggaag	1620
cccgtcttgg	gtcctcgctg	ctggctgctc	cccctggtgg	tggatcctgg	aattttctca	1680
cgcaggagcc	attgctctcc	tagagggggt	ctcagaaact	gcgaggccag	ttccttggag	1740
ggacatgact	aatttatcga	tttttatcaa	tttttatcag	ttttatattt	ataagcctta	1800
tttatgatgt	atatttaatg	ttaatattgt	gcaaacttat	atttaaaact	tgcctggttt	1860
ctaaaaaaaa	aaaaaaaaaa					1880

<210> 483 <211> 1636

<212> DNA

<213> Homo sapiens

483 <400> ggcacgaggc ttctgtgcgc tcgggctcct ggtcccggct ccccggttac cggggcgcga 60 gtatgaccac aatggcggcc gccaccctgc tgcgcgcgac gccccacttc agcggtctcg 120 180 ccgccggccg gaccttcctg ctgcagggtc tgttgcggct gctgaaagcc ccggcattgc 240 ctctcttgtg ccgcggcctg gccgtggagg ccaagaagac ttacgtgcgc gacaagccac atgtgaatgt gggtaccatc ggccatgtgg accacgggaa gaccacgctg actgcagcca 300 360 tcacgaagat tctagctgag ggaggtgggg ctaagttcaa gaagtacgag gagattgaca atgccccgga ggagcgagct cggggtatca ccatcaatgc ggctcatgtg gagtatagca 420 ctgccgcccg ccactacgcc cacacagact gcccgggtca tgcagattat gttaagaata 480 tgatcacagg cactgcaccc ctcgacggct gcatcctggt ggtagcagcc aatgacggcc 540 ccatgcccca gacccgagag cacttattac tggccagaca gattggggtg gagcatgtgg 600 tggtgtatgt gaacaaggct gacgctgtcc aggactctga gatggtggaa ctggtggaac 660 tggagatccg ggagctgctc accgagtttg gctataaagg ggaggagacc ccagtcatcg 720 taggetetge tetetgtgee ettgagggte gggaceetga gttaggeetg aagtetgtge 780 agaagctact ggatgctgtg gacacttaca tcccagtgcc cgcccgggac ctggagaagc 840 ctttcctgct gcctgtggag gcggtgtact ccgtccctgg ccgtggcacc gtggtgacag 900 gtacactaga gcgtggcatt ttaaagaagg gagacgagtg tgagctccta ggacatagca 960

agaacatccg cactgtggtg acaggcattg agatgttcca caagagcctg gagagggccg 1020 1080 aggccggaga taacctcggg gccctggtcc gaggcttgaa gcgggaggac ttgcggcggg gcctggtcat ggtcaagcca ggttccatca agccccacca gaaggtggag gcccaggttt 1140 acatecteag caaggaggaa ggtggeegee acaageeett tgtgteeeae tteatgeetg 1200 tcatgttctc cctgacttgg gacatggcct gtcggattat cctgccccca gagaaggagc 1260 ttgccatgcc cggggaggac ctgaagttca acctaatctt gcggcagcca atgatcttag 1320 agaaaggcca gcgtttcacc ctgcgagatg gcaaccggac tattggcacc ggtctagtca 1380 1440 ccaacacgct ggccatgact gaggaggaga agaatatcaa atggggttga gtgtgcagat 1500 ctctgctcag cttcccttgc gtttaaggcc tgccctagcc agggctccct cctgcttcca gtaccctctc atggcatagg ctgcaaccca gcagagggca gctagatgga catttcccct 1560 gctcggaagg gttggcctgc ctggctgggg aggtcagtaa actttgaata gtaaaaaaaa 1620 1636 aaaaaaaaa aaaaaa

<210> 484 <211> 641 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (535)..(535)

<223> n is a, c, g, t or u

<400> 484 60 ttttttttt tttttaaaa ggtctatatt ttaatattgg gggggaggga gtagaaaagc aagcccctat acggggccct attcaggggc agcttctggt cccataggat ataaggaaga 120 ctctgaggaa ataaaagtgg ttgggaaaaa tccaggtgta gtggcttggt atgtggtgag 180 tgggtagaag ggatgaagtg aagtgtgaag gcccctcata ccctccatct ggcctcagac 240 tatgtccggg aacccgtggg gcggagaaag cgccactttc attccggctt ctggggatgg 300 ttgacggcca cgtagtgata gagaacgaca agcaaagaag agcggacacg cccagcatgg 360 ttgggcagaa agatgggcgg agctggcacg tccggggatc atcctggacc agtccgggct 420 cggctccgac gccaccaggg aacctgggga acagagccct tggcgtcctc cctcagaatg 480 540 aacgggagac cagaatctca gagttgttta ggcccaagaa aagcggggat tccgntcagc 600 acttctccca gaatcgtaag ggggctgacg gaggatgaga gggggcaccc agagatcgga 641 gagtgctatg gccgcggctc aaggaggtcc gggagtacaa g

<210> 485						
<211> 317						
<212> DNA <213> Homo	sapiens					
<213> HOMO	saprens					
<400> 485 ttttttttt	ttttttttt	tttttttt	tttttttt	tttttttt	cacccccacc	60
ccccctttaa	aaaaaacagg	gggggggggt	catggaacag	aaaaaagggg	ggaaaaaagg	120
cccattaaca	accacaaaaa	aacctttgtc	catgtttacc	ccctġgaaaa	ggggggcagc	180
agggcacaag	ggggctggac	ccacccctat	ttgaaaagga	tatcgtaggg	cccagcccgg	240
aaaaaaagga	aaaccttggc	ctcggacccc	taaggaaaaa	tgggcggatg	ggggggcccc	300
ccctccccgg	ggcccat					317
<210> 486 <211> 2813 <212> DNA <213> Homo	l o sapiens					
<400> 486						
acacaggaag	ctgagccggc	ttggggccca	gcatacacag	gcccccagga	eccetgggga	60
gagggccccg	ctgggctggc	cctgcaggga	ccatggaatc	cagagctgaa	gggggctccc	120
ctgctgtgtt	tgattggttc	ttcgaagcgg	cctgccctgc	ctccctgcag	gaggatcccc	180
	gcagttccct					240
	cccttttgat					300
ccttcgccct	cacagacctt	gccggcaacc	gcagatttgg	tttctgccgc	ctgcgggcgg	360
gtacccagag	ctgtctctgc	atcctcagcc	acctgccttg	gttcgaggtg	ttttacaagc	420
tattgaacac	agtgggagac	ctcctagccc	aggaccaagt	caccgaggca	gaggaacttc	480
ttcaaaatct	gtttcagcag	tccctgtctg	ggccccaggc	ctcagtgggg	cttgagctgg	540
gcagcggagt	gacggtctcc	agcgggcagg	gtatccccc	ccctacccgg	gggaatagca	600
agccgctttc	: ctgcttcgtg	gccccggact	ceggeegeet	gccatccatc	cctgagaaca	660
ggaacctaac	: ggagctggtg	gtggccgtga	ctgacgagaa	catcgtgggg	ctgttcgcgg	720
cgctcctggc	: cgagagaaga	gtcctgctca	ccgccagcaa	actcagcacc	ctgacctcgt	780
gcgtccacgo	gteetgegeg	ctcctgtacc	ccatgcgctc	ggagcacgtg	ctgatcccca	840
cgctgcccc	acacctgctg	gactactgct	gcgcgccat	gccctacctc	attggagtgc	900
acgccagtct	cgccgagaga	gtacgagaaa	aagccctgga	a ggacgtcgtg	gtgctgaacg	96
tggacgccaa	a taccttggag	acgacettta	acgacgtgca	a ggcgctgcct	ccagacgtgg	102
tatecetaet	gaggeteegg	ctcaggaagg	tegecetgge	c cccggggaa	ggggtgtccc	108

gtctcttcct	caaagcccag	gccctgctct	tcggggggta	ccgcgacgca	ctcgtctgca	1140
gcccgggcca	gccagtgacc	ttcagtgagg	aagtcttctt	ggcccagaag	cctggggcac	1200
ctctgcaggc	cttccaccgg	cgggctgtgc	acctgcagct	gttcaaacag	ttcatcgaag	1260
cccggctgga	gaagctcaac	aagggggagg	gcttctcaga	tcaattcgag	caggagatca	1320
ctggctgcgg	ggcctcccca	ggggcccttc	gatcctatca	gctctgggcc	gacaatctaa	1380
agaaaggtgg	tggcgccctc	ctgcactcag	tcaaggccaa	gacccaacca	gccgtcaaga	1440
acatgtaccg	ctcggccaag	agtggcttga	agggggtgca	gagccttcta	atgtataagg	1500
atggggactc	tgtcctgcag	agggggggct	ctctgagggc	cccagccctc	cccagccgct	1560
cagaccgcct	gcagcaacgc	ctcccaatca	ctcagcactt	tggaaagaac	cggccccttc	1620
gccccagcag	gagacgccag	ctggaagagg	gaacttccga	gcccccaggg	gcggggacac	1680
ccccactgag	ccctgaggat	gaggggtgcc	cgtgggcaga	agaagctctg	gacagcagct	1740
tattggggta	tggagaagaa	ctggatttgt	tgagcgagat	tctggacagt	cttagcatgg	1800
gagccaagag	cgcaggcagc	ctgagaccga	gccagagttt	agactgctgt	cacagaggag	1860
acctggacag	ctgcttcagc	ctgcccaaca	tactaagatg	gcaaccagac	gataagaaac	1920
taccagagcc	ggagccccag	cccctttccc	tgccatccct	gcaaaatgcc	tcgtctttgg	1980
atgccaccag	ctcttcaaag	gactccaggt	cccagctgat	accctcagag	tccgaccaag	2040
aagtcacgtc	tccatcccag	tcctcaacag	cttctgcaga	cccaagcatc	tggggggacc	2100
ccaaaccctc	: tcctctcaca	gagcccctaa	ttcttcatct	caccccttcc	cacaaggcag	2160
ctgaagattt	tacagcccag	gaaaacccca	ctccctggct	ctccactgca	cccactgagc	2220
ccagccctcc	agaaagcccc	caaattctgg	ccccacaaa	gcccaacttt	gatatagcct	2280
ggacgtccca	gccccttgat	ccttcctcag	accccagttc	tctggaggac	cccagagccc	2340
ggcctcccaa	a agccctgctg	gcagagcgcg	ctcacctcca	. gccacgggag	gaaccaggag	2400
ccctgaatto	c ccctgctaca	. cccaccagca	actgtcaaaa	gtcccagccc	: agcaagccgg	2460
cccagagtc	g ctgatcttaa	gaagtgcttt	gagggttaag	aatcaggggt	: ccaagagaga	2520
ccccagtcc	c tcaataaagc	: cacaagagco	: caaaaaagct	ggttttttc	: ctggtgaatt	2580
tctctggtg	c cctcactctg	g ctcggaaatc	: catcccaccc	acctctgtcc	c ctccaagggc	2640
agcctctct	a actggctcct	: agcagggaat	tccaggaago	ctcctggtct	tctagaatcc	2700
tggcaacct	t acaattccto	c tcggcatttg	g tcacttccat	: ctcagctaat	gcacccacca	2760
gctcaaaca	c accaataaag	g cttttgttac	tctcaaaaaa	a aaaaaaaaa	a a	2811

<210> 487

<211> 796

<212> DNA <213> Homo sapiens

<400> 487 cacaaacact	tagttaacag	ctaagcaccc	taatcaactg	gcttcaatct	acttctcccg	60
ccgccgggaa	aaaaggcggg	agaagccccg	gcaggtttga	agctgcttct	tcgaatttgc	120
aattcaatat	gaaaatcacc	tcggagctgg	taaaaagagg	cctaacccct	gtctttagat	180
ttacagtcca	atgcttcact	cagccatttt	acctcacccc	cactgatgtt	cgccgaccgt	240
tgactattct	ctacaaacca	caaagacatt	ggaacactat	acctattatt	cggcgcatga	300
gctggagtcc	taggcacagc	tctaagcctc	cttattcgag	ccgagctggg	ccagccaggc	360
aaccttctag	gtaacgacca	catctacaac	gttatcgtca	cagcccatgc	atttgtaata	420
atcttcttca	tagtaatacc	catcataatc	ggaggctttg	gcaactgact	agttccccta	480
ataatcggtg	ccccgatat	ggcgtttccc	cgcataaaca	acataagctt	ctgactctta	540
cctccctctc	tcctactcct	gctcgcatct	gcatatagtg	gaggcccgga	gcaagagaac	600
agggttgaac	agtctacccc	tcccctttag	cagggcaacc	tcctccccca	gcctggtagc	660
cttccggtaa	aacctaaacc	atctttcttc	ctttaaacta	agccaggtgg	tccctcctaa	720
cttaaggggg	ccaatcaagt	tcatcgcaac	attatccatt	taaacccctg	cataacccat	780
taccaaagcc	ctcttg					796

<210> 488 <211> 1670

<212> DNA

<213> Homo sapiens

<400> 488 ccaaccacaa gcaccaaagc agaggggcag gcagcacacc acccagcagc cagagcacca 60 gcccagccat ggtccttgag gtgagtgacc accaagtgct aaatgacgcc gaggttgccg 120 ccctcctgga gaacttcagc tcttcctatg actatggaga aaacgagagt gactcgtgct 180 gtacctcccc gccctgccca caggacttca gcctgaactt cgaccgggcc ttcctgccag 240 300 ccctctacag cctcctcttt ctgctggggc tgctgggcaa cggcgggtg gcagccgtgc tgctgagccg gcggacagcc ctgagcagca ccgacacctt cctgctccac ctagctgtag 360 420 cagacacgct gctggtgctg acactgccgc tctgggcagt ggacgctgcc gtccagtggg tctttggctc tggcctctgc aaagtggcag gtgccctctt caacatcaac ttctacgcag 480 540 gagccctcct gctggcctgc atcagctttg accgctacct gaacatagtt catgccaccc 600 agetetaceg cegggggeec ceggecegeg tgacceteae etgeetgget gtetgggge 660 tetgeetget tttegeeete ceagaettea tetteetgte ggeeeaceae gaegagegee

tcaacgccac ccactgccaa tacaacttcc cacaggtggg ccgcacggct ctgcgggtgc 720 tgcagctggt ggctggcttt ctgctgcccc tgctggtcat ggcctactgc tatgcccaca 780 tectggeegt getgetggtt tecaggggee ageggegeet gegggeeatg eggetggtgg 840 tggtggtcgt ggtggccttt gccctctgct ggacccccta tcacctggtg gtgctggtgg 900 acatcctcat ggacctgggc gctttggccc gcaactgtgg ccgagaaagc agggtagacg 960 tggccaagtc ggtcacctca ggcctgggct acatgcactg ctgcctcaac ccgctgctct 1020 atgcctttgt aggggtcaag ttccgggagc ggatgtggat gctgctcttg cgcctgggct 1080 gccccaacca gagagggctc cagaggcagc catcgtcttc ccgccgggat tcatcctggt 1140 ctgagacctc agaggcctcc tactcgggct tgtgaggccg gaatccgggc tcccctttcg 1200 cccacagtet gaettecceg cattecagge tectecetee etetgeegge tetggetete 1260 cccaatatcc tcgctcccgg gactcactgg cagccccagc accaccaggt ctcccgggaa 1320 gccaccetec cagetetgag gactgcacca ttgctgctcc ttagetgcca agecccatec 1380 tgccgcccga ggtggctgcc tggagcccca ctgcccttct catttggaaa ctaaaacttc 1440 atcttcccca agtgcgggga gtacaaggca tggcgtagag ggtgctgccc catgaagcca 1500 cagcccaggc ctccagctca gcagtgactg tggccatggt ccccaagacc tctatatttg 1560 ctcttttatt tttatgtcta aaatcctgct taaaactttt caataaacaa gatcgtcagg 1620 1670 

```
<210> 489
<211> 1143
<212> DNA
```

<220>
<221> misc_feature
<222> (655)..(655)
<223> n is a, c, g, t or u

<220>
<221> misc_feature
<222> (688)..(688)
<223> n is a, c, g, t or u

<400> 489
ttttttttt tttttaactt ctagaacata aattttatta catttatagt tgtatccctt 60
ggtgtgatat agttaggatt tctctattaa gtaattaatc ctaactatat ccttgggctg
gattggattt ctggcgccc acccgacaga ctgaccctgt gtcccccttc cccattccag 180
ctcaaggcac ttaatattac aaaagaaggc agtgggctgg gctgggaaga gatggggct 240
caatgtcaag aaatcccca gtggcaatct taagacaaac agagaagaat gtcaccttcc 300

<213> Homo sapiens

ttcttaggac	cctcccgggg	ttagcagaaa	ggaaagaacc	cagaaagttc	ttcagtacca	360
cagtaggctt	cggttattct	ccctaagcca	ggtgagggac	ccccaggcta	ttctccctgg	420
cccgcaccga	gtctcttgtt	caccctgggc	taatcttcct	gggccacaac	tgttattgac	480
tcctggcccc	ttaactttct	ggcgtctgga	gctggcctgg	aataacggga	agcaagagtt	540
cactctggac	cagagatcca	aaagccttgc	aaggaggccc	cagaagcttt	tcaaaaattg	600
gggagcaaat	tggccacatg	tgttggccgt	gcctcgtgtc	ttatagcgtc	aaaangccaa	660
ggagcaagcc	cagggggaaa	tgctgtcnca	tgcttggccg	gtatacggtc	acttggcttc	720
gttcatatta	tctggtcccc	catcccttaa	ccagataacc	aatcacatta	ttgtcctgaa	780
accacgaagg	gtttgaccgc	agggagaccc	atgggcacaa	gattctcttc	tacctttcct	840
ggagctaaag	aatgccaagg	ccaaggaatc	acggataggg	gctatgtgtc	caggagggcc	900
gggggaacaa	ggctctctgt	gggtttgggg	gcgcgaaaaa	aatagtctca	cattagttct	960
ctataaacct	gtgaacaatg	tcgaggggga	acctctgacc	ttgaaggctt	ttcacttata	1020
tttcctttaa	. tatagcacca	cgtccggagc	gggggtaaaa	tccggactct	cagcaggcac	1080
actgcttttg	aaagtatact	ggtgacaaac	acagggtagg	atgtaattat	cctccacaca	1140
gag						1143

<210> 490 <211> 6814

<212> DNA

<213> Homo sapiens

<400> 490 ccttggccga gaccggtcct ctgcggagag ggccccgccc tctgtgaagg cccgcccggg 60 120 180 gacttggagc agccgccgcc gctgccaccg cctacagagc ctgccttgcg cctggtgctg ccaggaagat gcggccggag cccggagget gctgctgccg ccgcacggtg cgggcgaatg 240 gctgcgtggc gaacggggaa gtacggaacg ggtacgtgag gagcagcgct gcagccgcag 300 ccgcagccgc cgccggccag atccatcatg ttacacaaaa tggaggacta tataaaagac 360 cgtttaatga agcttttgaa gaaacaccaa tgctggttgc tgtgctcacg tatgtggggt 420 atggcgtact caccctcttt ggatatcttc gagatttctt gaggtattgg agaattgaaa 480 agtgtcacca tgcaacagaa agagaagaac aaaaggactt tgtgtcattg tatcaagatt 540 ttgaaaactt ttatacaagg aatctgtaca tgaggataag agacaactgg aatcggccaa 600 tctgtagtgt gcctggagcc agggtggaca tcatggagag acagtctcat gattataact 660 ggtccttcaa gtatacaggg aatataataa agggtgttat aaacatgggt tcctacaact 720

atcttggatt	tgcacggaat	actggatcat	gtcaagaagc	agccgccaaa	gtccttgagg	780
agtatggagc	tggagtgtgc	agtactcggc _.	aggaaattgg	aaacctggac	aagcatgaag	840
aactagagga	gcttgtagca	aggttcttag	gagtagaagc	tgctatggcg	tatggcatgg	900
gatttgcaac	gaattcaatg	aacattcctg	ctcttgttgg	caaaggttgc	ctgattctga	960
gtgatgaact	gaaccatgca	tcactggttc	tgggagccag	actgtcagga	gcaaccatta	1020
gaatcttcaa	acacaacaat	atgcaaagcc	tagagaagct	attgaaagat	gccattgttt	1080
atggtcagcc	tcggacacga	aggccctgga	agaaaattct	catccttgtg	gaaggaatat	1140
atagcatgga	gggatctatt	gttcgtcttc	ctgaagtgat	tgccctcaag	aagaaataca	1200
aggcatactt	gtatctggat	gaggctcaca	gcattggcgc	cctgggcccc	acaggccggg	1260
gtgtggtgga	gtactttggc	ctggatcccg	aggatgtgga	tgttatgatg	ggaacgttca	1320
caaagagttt	tggtgcttct	ggaggatata	ttggaggcaa	gaaggagctg	atagactacc	1380
tgcgaacaca	ttctcatagt	gcagtgtatg	ccacgtcatt	gtcacctcct	gtagtggagc	1440
agatcatcac	ctccatgaag	tgcatcatgg	ggcaggatgg	caccagcctt	ggtaaagagt	1500
gtgtacaaca	gttagctgaa	aacaccaggt	atttcaggag	acgcctgaaa	gagatgggct	1560
tcatcatcta	tggaaatgaa	gactctccag	tagtgccttt	gatgctctac	atgcctgcca	1620
aaattggcgc	ctttggacgg	gagatgctga	agcggaacat	cggtgtcgtt	gtggttggat	1680
ttcctgccac	cccaattatt	gagtccagag	ccaggttttg	cctgtcagca	gctcatacca	1740
aagaaatact	tgatactgct	ttaaaggaga	tagatgaagt	: tggggaccta	ttgcagctga	1800
agtattcccg	tcatcggttg	gtacctctac	tggacaggco	ctttgacgag	acgacgtatg	1860
aagaaacaga	agactgagco	: tttttggtgc	tccctcagag	gaactctccc	: tcacccagga	1920
cagcctgtgg	cctttgtgag	g ccagttccag	gaaccacact	tctgtggcca	tctcacgtga	1980
aagacattgo	ctcagctact	gaaggtggcc	: acctccacto	c taaatgacat	tttgtaaata	2040
gtaaaaaact	gcttctaato	c cttcctttgc	taaatctca	c ctttaaaaa	gaaggtgact	2100
cactttgctt	tttcagtcca	a ttaaaaaaaa	attttattt	gcaaccatto	c tacttgtgaa	2160
atcacgctga	ccctagcct	g tetetggeta	accacacag	g ccattcccct	ctcccagcac	2220
cttgcagact	: tgggcccato	c aagagctact	gatggacat	g gctccgcago	c ctggatactt	2280
acctggccct	cctccctage	g gagcaagtgo	cttccactt	a cttcccatco	c aggtctcaga	2340
					c ggaagttttc	2400
accctttaat	cttaagttt:	a gccttttaag	g aaaaacagt	a agcgatgac	t gctgaaaggc	2460
tcattgtgta	a atctcccaa	g ggtttggtcl	t tattccatt	t tcttctggt	c accagatgat	2520
*						

ttcttccttt	accatcaaat	acttcttcat	aatggtcaca	gtctgaggat	gtgcgcaaat	2580
tctggttctt	cccaagctct	aaccgtaaca	cgtcccaccc	cctttttaaa	gcacttactg	2640
ttttcagagc	acccatatcc	caccctggtg	agaaggccac	tctcacatct	gagtgttggg	2700 ·
tacaaagctg	ctccgtagag	tgatgtgcac	tcctggtggg	tgaggggcag	gggcagtggc	2760
agtgtgcaaa	gaattgatta	ctccttgcag	agcctgtggc	ttgcatttcc	tactgctttc	2820
tacgtttgaa	aațtatgaca	gtctctggct	aggtctgggt	ccagattagg	atttaaactg	2880
ataaaggaaa	ctgttggtaa	atcctctgct	cagaaagcat	ttatcatgtt	cctatttaag	2940
gattaggttt	attaatttag	gcctcttaga	agctaaccca	cttaaatatt	actcttctga	3000
atgctagttc	tcttttattc	ttgatgtcct	aagtcaattg	aatctggcat	ctggggctag	3060
ggtctgcctg	tctacatatt	tttatttt	ttctgagaaa	ttctgaacac	atagatctct	3120
ttcctaaact	gacattttct	attttgactg	ttttcatact	ataaccaggt	aaagggactt	3180
ctttcagaga	gctttatact	gcctgaccaa	agaacaaatc	tgaaaatcac	cattttaaag	3240
ttatttttc	agttgaacca	aagtttaagt	gaagaggact	tttggcatat	tatacccagg	3300
atcagtttgt	ctttttgtat	ccatcaagta	ttacaggaga	aggattggga	acagaatgga	3360
aaaacagtgt	atgaaagtca	tgttacaggc	cgagtgcggt	ggctcacacc	tgtaatccta	3420
gcactttggg	aggctgaggc	aggtggctca	cttgaggtca	ggaattcaag	accagcctgg	3480
ccaacatggt	gaaaccccgt	ctctactaaa	aagacaaaaa	attagctggg	cgtggtggcg	3540
ggcacctata	atcccaccta	cttggtaggc	tgaggcagga	gaatcgcttg	aacccaggag	3600
gcggaggttg	g cagtgagacg	agattgtgcc	actgcactct	agcctgggtg	acagagcaaa	3660
actgtgtctc	c aaaaaaaaa	. aagtcatgtt	. acacatttaa	. gtttttgaaa	ttgctccttt	3720
tatcggtaaa	a gattctcaat	ccaaattctc	: ctgggtgtgt	tgtcatcago	: tgtgatatgt	3780
ttgtgcacat	tacgtatago	: agaggatgta	agcaatatta	ttgtttgtga	agttttgttt	3840
ttaatgtctt	t gagtatgagt	: tatgtttagt	cactgtcago	: atctgagaac	: tttaataagc	3900
ccttgagata	a ttccaaagtt	ttattttact	tttttaaaga	acagaaaaag	g atgaatgaaa	3960
gaaccaagg	a gagatgcaga	a gactatattt	agcatgtata	ı ggttaaagta	a agaaggaggt	4020
tgtggtaact	t aaataggagt	cctataaaat	caaatacatt	gtcaaccttt	tctgcacatc	4080
tagtttcct	a ccatagaato	c ccactggaat	accacatago	ttttgcacts	g cagttactat	4140
ttactaatg	t aaacgtagg	g tttgtaaaag	g tcacaaactt	ataagcaat	g aacttacctg	4200
ctagtcttt	t tattttggc	tgcatgaagt	t cactgcaaat	t tcaaatgtca	a gtaccggcat	4260
ttaaaatat	a tctatatca	c tttgttggt:	a Caaagttati	t tcaagataa	g tgtaattttg	4320
ttacaagtt	t attttgaag	a gacaaatct	c ctgtgatct	a tgcaggacc	t ctgtactttc	4380

taaagaacaa	aatgttatgt	agacattata	catggttggt	tgtctcttct	tgaaactgta	4440
	agggtccagt					4500
	atataaatac					4560
	agtttaacac					4620
	actaccaaaa					4680
	tctcattcct					4740
	cagcagatca					4800
	ggagtggacc					4860
	ttagcagggg					4920
	atccttacct					4980
	tgaagaatcc					5040
	gattttaaaa					5100
	accactaagg					5160
	tccagtgatt					5220
	cttcaagttc					5280
	ggctttgaag					5340
	aggaggaggc					5400
	tttcaaattt					5460
					tattggtgaa	5520
					aggaaaaaag	5580
					aaggatttct	5640
					: cgtaggccgt	5700
					ggcagttgtt	5760
					g tgttctaggt	5820
					a gaggtgagag	5880
					a ggacagccag	5940
					atggtggtgc	6000
					a aggctgcagt	6060
					c tggctcaata	6120
					t cccagctact	6180
agagggga	a aaaaaatig		, 5-2-25~-2,		-	

tgagaggctg agg	ıccggagg	attgcttaaa	cccaagaatt	tgagcgtagc	ctgggcaaca	6240
cagcaagacc cca	atctaaga	aaaaaatgtt	ttttaaatca	gcttagccca	aaggggttgt	6300
gaatggggag gta	ataaaaag	caaagattat	tttttggcta	ctaagccaag	aacttacagg	6360
gattttttt ttc	cagtccca	gaacctacag	ataccctgct	acttgcttca	cgtggatgct	6420
cagtgcccag cag	gccatctt	aatacattaa	accagtttaa	aaaatacctt	ccatgtggag	6480
aaaaacatgt ctt	ttttctcg	cctcaacttt	atccacatga	aatgtgtgcc	catggctggg	6540
cgcagtggct cad	cctgtaat	cccaacactt	tgggaggctg	aagcaggcag	attgcttgag	6600
gccaggagtt cga	agaacagt	ctggccaaca	tggcgaaacc	tcatctctac	taaaattaca	6660
aaaattagcc gg	gcatggtg	gcacatgcct	gtaatcccag	ctacgtcagg	aggctgaggc	6720
acaggaattg ct	tgaaccca	agaggcagag	gatgcaatga	gccaagatca	caccactgca	6780
ctccagcctt gg	cgacagag	ggagactctg	tctc			6814

<210> 491

<211> 925

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (681)..(681)

<223> n is a, c, g, t or u

<400> 491

60 cgtgtcacac cttaaaatct tcatgctgta gtcactccag accatggagt ggctttccag ctgaatgaat cctatgtctc gcgtgcaggt ggttggtttt caatgttctt gctaattttt 120 tttctatgga tcttgggagt tttcttgttg ctcctgtgtt gcccagcttt aataaaacca 180 240 ggcgcaaaca aaaaccatag cattctgaaa caataggggg cccacatgga cccagtatgt 300 cactttaatg gacttcaaga aaaaatctga atgggaaaaa tgacactaga atgtatactc cacacatttt atgccatata atggtgtgtt ttcttaattt gtttcttgtg gcgaaatgtg 360 gctttcaaat taaaatgacc ttttcttctt tgaaactttt cgttttgact tgtataatta 420 agggttggaa agattcataa ttctgagaga ggtttgcaac caggagatac aaagaagtct 480 cagtagtaat cttgttcatg tgcttttaca gccagctaca tttaagaatg tattagttac 540 agaaattata tgtctgtgtg tgtctctact caataaagta catgcctcca cataatgcgg 600 tgctgtccat ctcggcaaat actggccagt ccctttatga caggcacaca gaaaccatag 660 catgggtctg gtttcagaaa natggctctc atctttcctg ggaaccttat tttgcttaat 720 gtttggtttc tggtgattct gttggtacct cacagcacat tgtgacatgg tgatgcctca 780

ttgctgatat ggtcctgtgg ttatgtgcac tctttccttg agagtccaaa caaaaaaaaa	840
ctgcggtttt ttggggggga aaggtagaag ggcggcatgg tgccgccctt taaaggaagg	900
gcccatgagt aaaacgtaaa gaaca	925
<210> 492 <211> 486	
<212> DNA <213> Homo sapiens	
<400> 492	60
aactgctgtt tttcatttta ttttctaaat ttttcaagtt ttctacaatg actttgtgtt	120
tttataacga cactcaaact tcagcatgaa caacagtatg tcaatcaaaa cccacatatg	
ataaagccgc cagctcgaag caactggcgc tacatcacaa taggaggctg cgcagcctgg	180 .
atgetegaga ggeeageeeg geagegtggg gaggaggtet etteetegtg agetacatga	240
agettecete cacetgeete ggggacaaaa ggaatgteee etgeeecag tgcaactetg	300
aagactcgct aggccccagc tgcgcggcct ccccagaggc tggtcagaat tccatcccag	360
gtccacagtg cacattccag agaaatagtg agacagacat gcgacatgag gagcctctca	420
gtgcttgtcc ccttgtattg aaaagccctt gcccaatcac ctgaggtcag gagttcaaaa	480
ccagcc	486
0.10 4.03	
<210> 493 <211> 884	
<212> DNA <213> Homo sapiens	
<400> 493	60
gtagggkcgg ggtttcacca tgttgcccag gctggtctcg aactcctgag ctcaggtgat	120
ccacccgtct tggcctccca aagtgctgga ttacaggcat aagccactgt gcccggcctg	
aatottgtot tttgacaata ocaaagaaat agggggtago tagagtaaag aacotagggo	180
ctggacctgg gctggacagt gtatcccttt aggkgtggga actgggtatt tccctggggt	240
ckgtatgcct ttgtcttgtc atttgctttt agggcagatg acactttttc ccaccctttt	300
aaagckacaa gtctatcttc tttcttgacc catttcaggg gggggccctc tcctttakcc	360
kgatataata ttkaaragac agaacaagaa agcatgtagc cctaakgaka ggrgattatc	420
gcatagrgtt cagagackgg raackgaatt kkccckcgac kttcactttg ggggtaaatc	
acccaatttt aggcgckktk cggcaagggg ggccaaaatk aakcatkkkk aaraagtaga	480
acceaette aggegemen oggovangggg ggovennam i	480 540
ttcakgccca ctgcccttgg gggggggga ggaatacggg ggtgcccaga agcccccagg	
	540
ttcakgccca ctgcccttgg ggggggggga ggaatacggg ggtgcccaga agcccccagg	540 600

tgttgcccat	atagccggag	ccctttttct	catttgagaa	tctcttccct	actaagtgtt	780
aagcttagag	tgaagggcac	tcctactgga	ccaaaggaga	ggggattgga	gaattgtttt	840
aagttttata	cattaggtca	gtattccatc	ttcccacccc	cagc		884
<210> 494 <211> 529 <212> DNA <213> Hom	o sapiens					
<400> 494 gcggccgcgc	ccgtgaccgc	gccccgcgga	gcaccccagc	gecetgtgtg	ctcactcact	60
gcgcgcctcg	ccagcactcg	gcctggaatc	cagcgctcaa	cgcagttccc	gctcgtattt	120
gaggaagcaa	aggctccaga	gctccagctg	ggcgggaaac	ggagcaggtg	gggctagggg	180
tttgaatcgc	ccgccttttg	ggaaaaggtt	gtctgcgaac	caattggtta	ctttctttca	240
cttttaaato	agccgtgcct	cttccggcct	aaacctcagg	tagctacagc	gtgcagtact	300
tgacgctgtg	tttatatcag	acagcactgc	cagtctgaaa	caaaactttc	tgaatttcct	360
aatccccaga	gccagcgtga	gaagtagact	tgagcctgtt	ctcttccctt	gaacttttct	420
tttacacgag	, tacaacaaaa	aacaagaaca	gagacaagtc	gtagtgttgc	tagtgataag	480
gcagattttt	: caccaagcct	aaaaagcttt	taaaaatctg	gtcccataa		529
	5 A no sapiens					
<400> 495		cgattcaaac	: agtgtgaagg	g aggaagcaac	: taattatctc	60
cctctcctg	a tttttcataa	a ttttattaaa	tcatcactgo	g gtaaactaat	ggtttgcgta	120
tcacacaat	t acactacaat	ctgataggag	g tggtaaaaco	c agccaatgga	a atccaggtaa	180
agtacaaaa	a cgccacctt	tattgtcctg	g tcttatttct	cgggaagga	g ggttctactt	240
tacacattt	c atgagccago	c agtggacttg	g agttacaat	g tgtaggttc	c ttgtggttat	300
agctgcaga	a gaagccatca	a aattcttgag	g gacttgacat	t ctctcggaaa	a gaagcaaact	360
agtagactg	a tgagctgga	t tgcttagati	gataacatt	t acaaat		406
<210> 49 <211> 26 <212> DN <213> Ho	41					
<400> 49	6 g aattcactg	t cagetttga	a cactgaacg	c qaqqactqt	t aactgtttct	61

ggcaaacatg	aagtcaggcc	tctggtattt	ctttctcttc	tgcttgcgca	ttaaagtttt	120
aacaggagaa	atcaatggtt	ctgccaatta	tgagatgttt	atatttcaca	acggaggtgt	180
acaaatttta	tgcaaatatc	ctgacattgt	ccagcaattt	aaaatgcagt	tgctgaaagg	240
ggggcaaata	ctctgcgatc	tcactaagac	aaaaggaagt	ggaaacacag	tgtccattaa	300
gagtctgaaa	ttctgccatt	ctcagttatc	caacaacagt	gtctctttt	ttctatacaa	360
cttggaccat	tctcatgcca	actattactt	ctgcaaccta	tcaatttttg	atcctcctcc	420
ttttaaagta	actcttacag	gaggatattt	gcatatttat	gaatcacaac	tttgttgcca	480
gctgaagttc	tggttaccca	taggatgtgc	agcctttgtt	gtagtctgca	ttttgggatg	540
catacttatt	tgttggctta	caaaaaagaa	gtattcatcc	agtgtgcacg	accctaacgg	600
tgaatacatg	ttcatgagag	cagtgaacac	agccaaaaaa	tctagactca	cagatgtgac	660
cctataatat	ggaactctgg	cacccaggca	tgaagcacgt	tggccagttt	tcctcaactt	720
gaagtgcaag	attctcttat	ttccgggacc	acggagagtc	tgacttaact	acatacatct	780
tctgctggtg	ttttgttcaa	tctggaagaa	tgactgtatc	agtcaatggg	gattttaaca	840
gactgccttg	gtactgccga	gtcctctcaa	aacaaacacc	ctcttgcaac	cagctttgga	900
gaaagcccag	ctcctgtgtg	ctcactggga	gtggaatccc	tgtctccaca	tctgctccta	960
gcagtgcatc	agccagtaaa	acaaacacat	ttacaagaaa	aatgttttaa	agatgccagg	1020
ggtactgaat	ctgcaaagca	aatgagcagc	caaggaccag	catctgtccg	catttcacta	1080
tcatactacc	tcttcttct	gtagggatga	gaatteetet	tttaatcagt	caagggagat	1140
gcttcaaagc	tggagctatt	: ttatttctga	gatgttgatg	g tgaactgtac	attagtacat	1200
actcagtact	ctccttcaat	: tgctgaaccc	cagttgacca	tttaccaag	actttagatg	1260
ctttcttgtg	ccctcaattt	tcttttaaa	aatacttcta	a catgactgct	: tgacagccca	1320
acagccactc	tcaatagaga	a gctatgtctt	acattctttc	c ctctgctgct	: caatagtttt	1380
atatatctat	gcatacatat	: atacacacat	atgtatataa	a aattcataat	: gaatatattt	1440
gcctatattc	tccctacaa	g aatattttg	g ctccagaaag	g acatgttctt	ttctcaaatt	1500
cagttaaaat	ggtttactt	t gttcaagtta	a gtggtaggaa	a acattgcccg	g. gaattgaaag	1560
caaatttatt	ttattatcc	t attttctac	c attatctate	g ttttcatggt	gctattaatt	1620
acaagtttag	ttctttttg	t agatcatat	t aaaattgcaa	a acaaaatca	ctttaatggg	1680
ccagcattct	catggggta	g agcagaata	t tcatttagc	c tgaaagctg	c agttactata	1740
ggttgctgto	agactatac	c catggtgcc	t ctgggcttg	a caggtcaaa	a tggtccccat	1800
cagcctggag	g cagecetee	a gacctgggt	g gaattccag	g gttgagaga	c tcccctgagc	1860

cagaggccac	taggtattct	tgctcccaga	ggctgaagtc	accctgggaa	tcacagtggt	1920
ctacctgcat	tcataattcc	aggatctgtg	aagagcacat	atgtgtcagg	gcacaattcc	1980
ctctcataaa	aaccacacag	cctggaaatt	ggccctggcc	cttcaagata	gccttcttta	2040
gaatatgatt	tggctagaaa	gattcttaaa	tatgtggaat	atgattattc	ttagctggaa	2100
tattttctct	acttcctgtc	tgcatgccca	aggcttctga	agcagccaat	gtcgatgcaa	2160
caacatttgt	aactttaggt	aaactgggat	tatgttgtag	tttaacattt	tgtaactgtg	2220
tgcttatagt	ttacaagtga	gacccgatat	gtcattatgc	atacttatat	tatcttaagc	2280
atgtgtaatg	ctggatgtgt	acagtacagt	actgaacttg	taatttgaat	ctagtatggt	2340
gttctgtttt	cagctgactt	ggacaacctg	actggctttg	cacaggtgtt	ccctgagttg	2400
tttgcaggtt	tctgtgtgtg	gggtggggta	tggggaggag	aaccttcatg	gtggcccacc	2460
tggcctggtt	gtccaagctg	tgcctcgaca	catcctcatc	cccagcatgg	gacacctcaa	2520
gatgaataat	aattcacaaa	atttctgtga	aatcaaatcc	agttttaaga	ggagccactt	2580
atcaaagaga	tttaacagt	agtaagaagg	caaagaataa	acatttgata	ttcagcaact	2640
g						2641

<210> 497

<400> 497 gcaaagtggt tattaaggat cctccaccac cacgcgtccc tgcaccaaaa gaggaggaag 60 aagaaccttt gcctactaaa aagtggccaa ctgtggatgc ttcctattat ggtggtcgag 120 gggttggagg aattaaacag aatggaggtt cgttggggtg ataaaggatc tactgaggaa 180 ggtgcaaggc tagagaaagc caaaaatgct gtggtgaaga ttcctgaaga aacagaggaa 240 300 cccatcaagc ctagaccacc tcgacccaga cccacacacc agtctcctca gacaaaatgg tacaccccaa ttaaaggtcg tcttgatgct ctctgggctt tgttgacgcg gcagtatgac 360 cgggtttctt tgatgcgacc tcaggaagga gatgaggcc ggtgcataaa cttatcccga 420 gttccatctc agttgatgtt catccaaatg aacgacatca agtgcatttc agaagctttt 480 ggagagcagc ttaattgctc tcactcggga aatgttttct ctgccttatg ctatgcttgc 540 accaaacatt tctaaacact tgtgtctgca tctccatggg aggtgatgaa actcagtggt 600 613 aactcatgat taa

<211> 613

<212> DNA

<213> Homo sapiens

<210> 498

<211> 1110

<212> DNA

<213> Homo sapiens

			6			
<400> 498 gacagagccc	gggccacgga	geteettgee	agctctcctc	ctcgcacagc	cgctcgaacc	60
gcctgctgag	ccccatggcc	cgcgccacgc	tctccgccgc	ccccagcaat	ccccggctcc	120
tgcgggtggc	gctgctgctc	ctgctcctgg	tggccgccag	ccggcgcgca	gcaggagcgc	180
ccctggccac	tgaactgcgc	tgccagtgct	tgcagaccct	gcagggaatt	cacctcaaga	240
acatccaaag	tgtgaaggtg	aagtcccccg	gaccccactg	cgcccaaacc	gaagtcatag	300
ccacactcaa	gaatgggcag	aaagcttgtc	tcaaccccgc	atcgcccatg	gttaagaaaa	360
tcatcgaaaa	gatgctgaaa	aatggcaaat	ccaactgacc	agaaggaagg	aggaagctta	420
ttggtggctg	ttcctgaagg	aggccctgcc	ttacaggaac	agaagaggaa	agagagacac	480
agctgcagag	gccacctggc	ttgcgcctaa	tgtgtttgag	catacttagg	agaagtcttc	540
tatttattta	tttatttatt	tatttgtttg	ttttagaaga	ttctatgtta	atattttatg	600
tgtaaaataa	ggttatgatt	gaatctactt	gcacactctc	ccattatatt	tattgtttat	660
tttaggtcaa	acccaagtta	gttcaatcct	gattcatatt	taatttgaag	atagaaggtt	720
tgcagatatt	ctctagtcat	ttgttaatat	ttcttcgtga	tgacatatca	catgtcagcc	780
actgtgatag	aggctgagga	atccaagaaa	atggccagta	agatcaatgt	gacggcaggg	840
aaatgtatgt	gtgtctattt	tgtaactgta	aagatgaatg	tcagttgtta	tttattgaaa	900
tgatttcaca	gtgtgtggtc	aacatttctc	atgttgaagc	tttaagaact	aaaatgttct	960
aaatatccct	tggcatttta	tgtctttctt	gtaagatact	gccttgttta	. atgttaatta	1020
tgcagtgttt	ccctctgtgt	: tagagcagag	aggtttcgat	atttattgat	gttttcacaa	1080
agaacaggaa	a aataaaatat	ttaaaaatat	1			1110
<210> 499 <211> 809 <212> DNA <213> Hor	5					

<400> 499
gcccttcgta gcagccatct tttcctggct ttggtgattc ttccctgact tctcaaaaag 60
cactgcacag aggaggagc agcagaaccc cacttcagct tcttaggact ctgcacttcc 120
ccagaaggaa gaattaaaaa tgaatatgtt caaggaagca gtgaccttca aggacgtggc 180
tgtggccttc acggaggagg aattggggct gctgggccct gcccagagga agctgtaccg 240
agatgtatca gtggagaact ttaggaacct gctgtcagtg gggcatccac ccttcaaaca 300
agatgtatca cctatagaaa gaaatgagca gctttggata atgacgacag caacccgaag 360
acagggaaat ttagatacct tacctgtaaa agctcttttg ctctatgacc tggctcaaac 420

ttaaacttgg atttgaagtt agaagaaatg ttggaagtca tttatatatg aagaaatgtt	480
ggaaggactc atatatgcat acattccttg agtgactatg aatgactgcc gggcagtaac	540
ttctgggctg tggttgtaaa ctgtgagcac tacaaaatgt ttttccttat tgataccata	600
ttatggtagg aaagacatgg aataaaaaat ttagatagta tgtcagtagt tgtgttttta	660
aatgggtttc attagtgctt agcaattggg agcttggtgg accatctctt ggttttggac	720
catctcttgg tttctgtcag tatgtaaacc agaaacttca aatgtgtcac aaaagatgag	780
cagaactatc ccgaggttca ttaaa	805
<210> 500 <211> 378 <212> DNA <213> Homo sapiens	
<400> 500 tttcagccaa ggcagacctc acccagggac cctccaccca ggcagcgtgg aagtgccagg	60
gcccacagac agcacccccc cgcccccgc cggcctcctc acccccttcg aaggagactc	120
caggcctgct gtgcactcct gtggcatcgg ggggcggggg gcaagcatca cagtcatagg	180
gagtgtgagg cgcccagaat gggggctcca cagtcaggcc tgcaccccgg ctgcaggata	240
ccagatectg tggttcactg tgagacetee geeteteteg tetgeettae getgeeceet	300
cgcaccccca aggtatgacg gcatttgaac aatgcacgtg cccatctaga gccttggggt	360
gggcctgtga gagagtgg	378
<210> 501 <211> 601 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (499)(499) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (540)(540) <223> n is a, c, g, t or u	
<400> 501 tgttaggaat attcaatttc cactcttgta gttattttga tctatacata atttttttt	60
tttaatcagc tttcactgag cttcaggtgg ggctggcccg gcatggccag tatggcaggg	120
tgccctcgag ggccagtctg tggcatgaca agaaatgcag gggtgcacgt gttggggctg	180
ccctttggca ctcactgggg tgggtcaggg gagagcaaac accaaggttc tctggagacc	240

		aaataaaaa	anaatatana	taccadacc	300
ggaaccagcc agtgcagcca					
ctgaggtggt gcctgcatco	taggtctgtg	gggcattact	ggtgtcactc	tgagggagaa	360
agatggccag ctgctcaato	aggatgatga	gcaggctacc	acccaccact	agccccaagt	420
agatctggca atggatgtt	c teccageact	tattatggga	cagggtcttt	gttgtcttgc	480
tgaaggetga geteatatne	c cagagttggt	ctgaacgctg	ctccagttcg	gtcagctttn	540
catcatgctc caggacctt	g tcaaagttgt	taagcgtgat	ttccgtcacc	tttgtcgctt	600
g					601
<210> 502 <211> 1381 <212> DNA <213> Homo sapiens					
<400> 502 ggcacgaggc gggtgctga	t gcgagtcggt	ggcagcgagg	acattttctg	actccctggc	60
ccctgacacg gctgcactt	t ccatcccgtc	gcggggccgg	ccgctactcc	ggccccagga	120
tgcagaatgt gattaatac	t gtgaagggaa	aggcactgga	agtggctgag	tacctgaccc	180
cggtcctcaa ggaatcaaa	g tttaaggaaa	caggtgtaat	taccccagaa	gagtttgtgg	240
cagctggaga tcacctagt	c caccactgtc	caacatggca	atgggctaca	ggggaagaat	300
tgaaagtgaa ggcatacct	a ccaacaggca	aacaatttt	ggtaaccaaa	aatgtgccgt	360
gctataagcg gtgcaaaca	ıg atggaatatt	cagatgaatt	ggaagctato	attgaagaag	420
atgatggtga tggcggatg	g gtagatacat	atcacaacac	aggtattaca	ggaataacgg	480
aagccgttaa agagatcac	a ctggaaaata	aggacaatat	aaggcttcaa	gattgctcag	540
cactatgtga agaggaaga	a gatgaagatg	g aaggagaagc	tgcagatatg	gaagaatatg	600
aagagagtgg attgttgga	aa acagatgagg	g ctaccctaga	tacaaggaaa	ı atagtagaag	660
cttgtaaagc caaaactga	at gctggcggtg	g aagatgctat	tttgcaaaco	agaacttatg	720
acctttacat cacttatga	at aaatattaco	agactccacg	attatggttg	g tttggctatg	780
atgagcaacg gcagcctt	ca acagttgago	c acatgtatga	ı agacatcagt	caggatcatg	840
tgaagaaaac agtgacca	tt gaaaatcac	ctcatctgcc	accacctcc	atgtgttcag	900
ttcacccatg caggcatg	ct gaggtgatga	a agaaaatcat	tgagactgt	gcagaaggag	960
ggggagaact tggagttc	at atgtatctto	c ttattttctt	gaaatttgt	a caagctgtca	1020
ttccaacaat agaatatg	ac tacacaaga	c acttcacaat	gtaatgaag	a gagcataaaa	1080
tctatcctaa ttattggt	tc tgattttta	a agaattaaco	catagatgt	g accattgacc	1140
atattcatca atatatac	ag tttctctaa	t aagggactta	a tatgtttat	g cattaaataa	1200

	1260
aaatatgttc cactaccagc cttacttgtt taataaaaat cagtgcaaag aaaaaaaaaa	
aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaaaa	1320
aaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaa	1380
a	1381
<210> 503	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 503	
gagtagttgt ctttcctggc actaacgttg agctcgtgta cgcactgaag	50
<210> 504	•
<211> 50 <212> DNA	
<212> DNA <213> Homo sapiens	
<400> 504 aactgtgagg caaataaaat gcttctcaaa ctgtgtggct cttatggggt	50
<210> 505	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 505	50
ctgtccagcg ccaacagcct ctatgacgac atcgagtgct tccttatgga	
<210> 506 <211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 506	5.0
tgccttttga gcaaataggg aatctaaggg aggaaattat caactgtgca	50
<210> 507 <211> 50	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 507	
attccaggcc ctcagtcttt ggcaatggcc accetggtgt tggcatattg	50
<210> 508	
<211> 50 <212> DNA	
<213> Homo sapiens	
<400> 508	
· · · · · · · · · · · · · · · · · · ·	

W O 03/070024	1 C 1/ USUS/130
ctgagactgg ctgctgactt tgagaactct gtgagacaag gtccttaggc	50
<210> 509 <211> 50 <212> DNA <213> Homo sapiens	
<400> 509 ccaacttgag atgtatgaag gcttttggtc tccctgggag tgggtggagg	50
<210> 510 <211> 50 <212> DNA <213> Homo sapiens	
<400> 510 aggaagcaat gtggttggac ctggttaagg gaaaggctga ttacggaaat	50
<210> 511 <211> 50 <212> DNA <213> Homo sapiens	
<400> 511 acttcatcat aatttggagg gaagctcttg gagctgtgag ttctccctgt	50
<210> 512 <211> 50 <212> DNA <213> Homo sapiens <400> 512	50
gtacagagat cggatcacac aagcccggag acagtgcagc ttctccactg <210> 513	30
<211> 50 <212> DNA <213> Homo sapiens	
<400> 513 aatgcacttg tgataaactg acagcagggt tagacattac tttcaaagct	50
<210> 514 <211> 50 <212> DNA <213> Homo sapiens	
<400> 514 ggtagtgcct ccaggggcag aggaaaagaa gaagtgttac tgcattttgt	50
<210> 515 <211> 50 <212> DNA <213> Homo sapiens	

PCT/US03/13015

WO 03/090694

<400> 515 cccatgctgt tgattgctaa atgtaacagt ctgatcgtga cgctgaataa	50
<210> 516	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 516	50
cagagaagaa acctactaca gaggagaaga agcctgctgc ataaactctt	50
<210> 517	
<211> 50	
<212> DNA	
<213> Homo sapiens .	
<400> 517	50
actggcaggc ttatttatct gttgcacttg gttagcttta attgttctgt	30
<210> 518	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 518	50
geetettget tggegtgata accetgteat etteccaaag eteatttatg	50
<210> 519	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 519	50
gcacatgaca gtaagcgagg ttttgggtaa atatagatga ggatgcctat	50
<210> 520	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 520	<b>50</b>
cgttgctgaa gtggtaattg aggaaaacag ttccccagat tgttaagagt	50
	i i
<210> 521	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 521	pre 6-
agggattgtt tctggaccag tttgtctaag tcctggctct tattggttca	50
<210> 522	
<211> 50	

<212> <213>	DNA Homo sapiens	
<400> agaaca	522 agtt tgeettgatt ttgtttaaaa tgaettetge taageaceea	50
<210><211><211>	523 50 DNA	
<213>	Homo sapiens 523	
tttgcc	atgt ccagtacaga ataatttgta cttagtattt gcagcagggt	50
<210><211><211><212>		
<400>		50
<210><211><211><212><213>	50	
<400>		50
<210><211><211><212>	50	
<400>		50
<400>	- -	50
<210><211><212><213>	50	
<400> aaaqa	528 aagcc agtatattgg tttgaaatat agagatgtgt cccaatttca	50

<210>	529	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>	529	
catctga	aagt gtggagcctt acccatttca tcacctacaa cggaagtagt	50
<210>	530	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	530	50
agcatg	gtaa gttcccttag ctatatgaat tttggcatgt ttcagagaga	50
<210>	531	
<211>	50	
<212>		
<213>	Homo sapiens	
.400-		
<400>	531 aaga tttgcgttaa tgaagactac acagaaaacc tttctaggga	50
LLCaca	adya titigogitaa igaagactae adagadadoo toobbaggga	
<210>	532	
<211>	50	
<211>		
<213>		
<213>	nomo sapiens	
<400>	532	
	ttgg gctcacagaa tcaaagccta tgcttggtag ctcttgaaca	50
gegaae	5 55 5 5	
<210>	533	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>		
agctac	ttct gccttatggc tagggaactg tcatgtctac catgtattgt	50
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	534	50
gaggag	ggttg cccagaagaa aaagatatcc cagaagaaac tgaagaaaca	50
010		
<210>		
<211>		
<212>		
<213>	Homo sapiens	
-100-	535	
<400>	tacg cttggcatct tcagaatgct tttctagcat taagagatgt	50
ycaact	fraca creation remains a creation and an armana	

```
<210> 536
<211> 50
<212> DNA
<213> Homo sapiens
<400> 536
acagctatac tttgttgtgt aatgttatgg ttccctttct gtaaaatgtt
                                                                     50
<210> 537
<211> 50
<212> DNA
<213> Homo sapiens
<400> 537
                                                                     50
tgctattgcc ttcctatttt gcataataaa tgcttcagtg aaaatgcagc
<210> 538
<211> 50
<212> DNA
<213> Homo sapiens
<400> 538
                                                                     50
aagaagttaa catgaactct tgaagtcaca ccagggcaac tcttggaaga
<210> 539
<211> 50
<212> DNA
<213> Homo sapiens
<400> 539
                                                                     50
acccattcca tttatctttc tacagggctg acattgtggc acattcttag
<210> 540
<211> 50
<212> DNA
<213> Homo sapiens
<400> 540
tctttgtaaa gcacgatgat acaaatctgg tgccagtgtt atattttgca
                                                                      50
 <210> 541
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 541
                                                                      50
 ttgcctcgat aagtttccaa gtcactgaaa tctgctgaag gttttactgt
 <210> 542
 <211> 50
 <212> DNA
 <213> Homo sapiens
```

<400> 542 ggctacagaa agaagatgcc agatgacact taagacctac ttgtgatatt	50
<210> 543 <211> 50 <212> DNA <213> Homo sapiens	
<400> 543 caacaggtgt cacactaagg agactttgtt catggctggg gacacagccc	50
<210> 544 <211> 50 <212> DNA <213> Homo sapiens	
<400> 544 tggatgtggc tgctttcaac aagatctaaa atccatcctg gatcatggca	50
<210> 545 <211> 50 <212> DNA <213> Homo sapiens	
<400> 545 tggtggaagt aaaaactggt aactcactca agtgaatgaa tggtcttgca	50
<210> 546 <211> 50 <212> DNA <213> Homo sapiens	
<400> 546 cccacactgc tttgctgtgt atacgcttgt tgccctgaaa taaatatgca	50
<210> 547 <211> 50 <212> DNA <213> Homo sapiens	
<400> 547 aggaccgaag tgtttcaagt ggatctcagt aaaggatctt tggagccaga	50
<210> 548 <211> 50 <212> DNA <213> Homo sapiens	
<400> 548 cactggggac gagacaggtg ctaaagttga acgagctgat ggatatgaac	50
<210> 549 <211> 50 <212> DNA	

WO 03/090694 PCT/US03/13015

<213> Homo sapiens

<400> 549
agagggtggt aactggggaa ctcaagattc tqqcttctac tgaagaacca

50

<400> 549 agaggeteet aactgggeaa etcaagatte tggettetae tgaagaacea <210> 550 <211> 50 <212> DNA <213> Homo sapiens <400> 550 50 agtgcctttc aggatctatt tttggaggtt tattacgtat gtctggttct <210> 551 <211> 50 <212> DNA <213> Homo sapiens <400> 551 50 ttggaaatca tagtcaaagg gcttccttgg ttcgccactc atttatttgt <210> 552 <211> 50 <212> DNA <213> Homo sapiens <400> 552 gctaaagttg aacgagctga tggatatgaa ccaccagtcc aagaatctgt 50 <210> 553 <211> 50 <212> DNA <213> Homo sapiens <400> 553 50 aaatcagtac tttttaatgg aaacaacttg acccccaaat ttgtcacaga <210> 554 <211> 50 <212> DNA <213> Homo sapiens <400> 554 tgcattatcc agaactgaag ttgccctact tttaactttg aacttggcta 50 <210> 555 <211> 50 <212> DNA <213> Homo sapiens

<213> Homo sapiens
<400> 555
atggcactag gcagcatttg tatagtaact aatggcaaaa attcatggct 50

<210> 556

	50				
	DNA				
<213>	Homo sapiens		•		
<400>	556			I to be be seen to be seen	50
tgatttt	gca acttaggatg	tttttgagtc	ccatggttca	ttttgattgt	50
		•			
	557		•		
	50				
	DNA Homo sapiens	**	•		
<213>	nomo saprens				
<400>	557		++++~++	atagggttt	50
gctgtaa	atc tctgtctcat	catccttctc	ttttgtttde	acageeeee	50
<210>	558			•	
<211>	50				
<212> <213>	DNA Homo sapiens				
<7T2>	Homo sabrens				
<400>	558				50
tagatga	attt ctagcaggca	ggaagtcctg	tgcggtgtca	ccatgagcac	50
<210>	559				
	50				
<212>					
<213>	Homo sapiens				
	559				
tgttct	gaat gttggtagac	ccttcatago	tttgttacaa	. tgaaaccttg	50
<210>	560				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	560				
ttcacc	taca aaatttcacc	tgcaaacctt	aaacctgcaa	aattttcctt	50
<210>	561				
<211>					
<212>					
<213>	Homo sapiens				
<400>	561				
agctgt	ttgg taaccatagt	ttcacttgtt	caaagctgt	g taatcgtggg	50
-				•	
<210>	562				
<211>					
<212>					
<213>					
-400-	E 6 3				
<400>	562 Icaat tttaagatgt	aataccaata	a ctttagaag	t ttggtcgtgt	50

<210> <211> <212>	563 50 DNA					
<400>	Homo sapiens 563 tttc attctgcatt	tgtgtagttt	ggtgctttgt	tccaagttaa		50
<210><211><211><212>	564 50 DNA					
<213><400>	Homo sapiens 564 gtga gcactgcgta	caaacatcca	aaagttcaac	aacaccagaa		50
<210>	565					
<211><212><213>	50 DNA Homo sapiens					
<400> agagat	565 agca cagatggacc	aaaggttatg	cacaggtggg	agtcttttgt		50
<210><211><211><212>	566 50 DNA Homo sapiens					
<400>	566 attg gacagetete	tcgaagagat	cttacagact	gtatcagtct	·	50
<210><211><212>	567 50 DNA					
<400>	Homo sapiens 567 gtttt aagggacgto	: agtgtttatg	ccatttttcc	agttccaaaa		50
<210><211><211>	50 DNA					
<400>	Homo sapiens 568 agtag aaacaaaagt	: aggctacagt	: ctgtgccatc	, ttgatgtaca	ı	50
<210><211><211><212><213>	50					
<400>	569					

	1 0 1, 0 0 0 0, 10 0
tctcaaagga gtaactgcag cttggtttga aatttgtact gtttctatca	50
<210> 570 <211> 50 <212> DNA <213> Homo sapiens	
<400> 570 tgataggaca tagtagtacg ggtggtcaga catgaaaatg gtggggagcc	50
<210> 571 <211> 50 <212> DNA <213> Homo sapiens	
<400> 571 cccaaataag ctctgtactt cggttaccta tgtacctgtt accactttca	50
<210> 572 <211> 50 <212> DNA <213> Homo sapiens	
<400> 572 gccgtgacaa tttgttcttt gatgtgattg tatttccaat ttcttgttca	50
<210> 573 <211> 50 <212> DNA <213> Homo sapiens <400> 573 aaaaccattc cagcttaatg cctttaattt taatgccaac aaaattgggg	50
<210> 574 <211> 50 <212> DNA	
<213> Homo sapiens  <400> 574  ttggccgctt ccctacccac agggcctgac ttttacagct tttctctttt	50
<210> 575 <211> 50 <212> DNA <213> Homo sapiens	
<400> 575 agtgggtgaa tcacagtaat ttccctgtaa aatgtggtac ctgaagtcat	50
<210> 576 <211> 50 <212> DNA <213> Homo sapiens	

PCT/US03/13015

WO 03/090694

	576 ettg agatecagtg teaggagtte tetatteete eeaaetetga	50
<211> <212>	577 50 DNA Homo sapiens	
<400>	577 gtag aaacaaaagt aggctacagt ctgtgccatg ttgatgtaca	50
	578	
	50 DNA	
	DNA Homo sapiens	
	578	
tggtacc	ccaa actcaccatt tggtcctctt taatctttga gggtttcaat	50
<210>	579	
<211>		
<213>	-	
<400>	579	50
gggtgag	gaac acttgcaaca gtttattaat gaggtgactt tcaccttagg	50
<210>	580	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>		ΕO
tgattc	tgta aagctgtgga atgaagctgc agatttagag aacattggct	50
<210>	581	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	581	50
atttga	attaa aattatttcc cactgaccta aactttcagt gatttgtggg	50
<210>	582	
<211>		
<212>		
<213>	Homo sapiens	
<400>	582	50
aaaagc	ccttg tgaaaatgtt atgccctatg taacagcaga gtaacataaa	50
<210>	583	
<211>		

<212> <213>	DNA Homo sapiens				
<400>	583				<b>.</b>
tgtgaaa	agc tgataagaaa	accatccaga	aaaaagctct	tcgttttaca	50
<210>	584				
<211>	50				
	DNA				
<213>	Homo sapiens				
<400>	584 ccac caaagcccat	ataaqqaqqq	gagttgttaa	ggactgaaga	50
Lgaccic	cac caaageccat	acaaggageg	9490090044	33	
<210>	585				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	585				50
tcgtgt	gaat cagactaagt	gggatttcat	ttttacaact	ctgctctact	50
<210>	586				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	586			h	50
catgaa	gaag caagacgaaa	acacacagga	gggaaaatcc	tgggattett	50
<210>	587				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	587	t	0.0 to at ago t	ttaatataaa	50
agttto	actg tcagagatat	tgtaggtgdt	aatactygat	. ettgtettag	30
<210>	588				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	588				<b>-</b> 0
agcato	tgtc tgccatttca	tttgtacgct	tgttcaaaac	c caagtttgtt	50
J010-	589				
<210> <211>	50				
<211>					
	Homo sapiens		,		
<400>	589				
agcaca	gatg gtgcaatact	ttccttctt	gaagagatco	c caaagttagt	50

<210>	590	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>	590	50
actcaag	yttt tcagtttgta ccgcctggta tgtctgtgta agaagccaat	50
<210>	591	
<211>	50	
<212>		
<213>	Homo sapiens	
	591	50
gatggc	atcg tctcaaagaa cttttgactg gagagaatca cagatgtgga	50
<210>	592	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	592	50
cctctt	gatg cctaagcagg taagcagatg cctaagctgt atttctccaa	50
<210>	593	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	593	50
ggctct	cagt gtgccataga ggacagcaac tggtgattgt ttcagagaaa	50
	•	
<210>	594	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>		50
tggaat	ggac tcttaaaaca atgaaagagc atttatcgtt tgtcccttga	
0.7.0	F0F	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
400	505	
<400>	CCC	50
gcttct	gtaa atgccatccc aatgtggttt ggttttgttg aacagaaacc	-0
.O10.	E06	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
-400:	596	
<400>	gttt tgctccatgt ctcctcattc ctacacctat tttctgctgc	50
Lgacti	-gene egenerated outside outside and outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside outside o	

<210>	597	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>	597	
tgcatcg	ytaa aaccttcaga aggaaaggag aatgttttgt ggaccacttt	50
<210>	598	
<211>	50	
	DNA	
<213>	Homo sapiens	
	T00	
<400>	598	50
tgtggti	ttaa gctgtactga actaaatctg tggaatgcat tgtgaactgt	50
<210>	599	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
12-01		
<400>	599	
	ctgc tattgaggaa gtattttgcc ttccctactc actgagaagt	50
	ctgc tattgaggaa gtatttiget tootetatte actgagaag	
<210>	600	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	600	
aagaag	gagc ttaatgccag gaacagattt tgcagttggt ggggtctcaa	50
<210>	601	
<211>	50	
<212>	DNA	
	Homo sapiens	
<b>\</b> 213/	nome sapreme	
.400-	601	
<400>	601. ctga agtcagtaaa tgaactaatc tacaagcgtg gttatggcaa	50
cccaat	ctga agtcagtada tgaactaate tacaagegtg geedeggedd	
_		
<210>	602	
<211>		
<212>		
<213>	Homo sapiens	
<400>	602	
gtataa	gtcc tctgtttgca ctggacatat tccctacctg tcttatttca	50
J-3-3		
<210>	603	
	50	
<211>		
<212>		
<213>	Homo sapiens	

<400> ggcatco	603 gccc atgctcctca	cctgtatttt	gtaatcagaa	ataaattgct		50
	604 50 DNA Homo sapiens					
<400> tccccc	604 ctcc gcctcccagg	aagaaagaat	gttactgcct	taataaaaaa		50
<210><211><212><213>	605 50 DNA Homo sapiens					
	605 cagt tttctctgga	agtttgttta	aatgacagaa	gcgtatatga		50
<210><211><211><212><213>						
<400> gcttcc	606 actg gaggcttgta	ttgaccttgt	aactatatgt	taatctcgtg		50
<210><211><212><213>	_					
<400> tgactg	607 gaac tgagagtaaa	ttgggaatgt	atgaccaatc	ttagaccctg		50
<210><211><212><212><213>	50 DNA					
<400> agtttg	608 ccct ggatgtcata	ttggcagttg	gaggacacag	tttctattgt		50
<210><211><211><212><213>	DNA					
<400> agcatg	609 gcagt tctctgtgaa	atctcaaata	ı ttgttgtaat	agtctgtttc	,	50
<210> <211> <212>	610 50 DNA					

WO 03/090694 PCT/US03/13015 <213> Homo sapiens <400> 610 50 ttggtgtcaa tgatctggtg acaataggat tacattggag ccaattgaat <210> 611 <211> 50 <212> DNA <213> Homo sapiens <400> 611 50 ttccccatat ccaagtacca atgctgttgt aaacaacgtg tatagtgcct <210> 612 <211> 50 <212> DNA <213> Homo sapiens <400> 612 50 aaaagaaatc tgtttcaaca gatgaccgtg tacaataccg tgtggtgaaa <210> 613 <211> 50 <212> DNA <213> Homo sapiens <400> 613 .50 gctgttttca acattgtatt tggactatgc atgtgttttt tccccattgt <210> 614 <211> 50 <212> DNA <213> Homo sapiens <400> 614 50 tttgcatccc gagttttgta ttccaagaaa atcaaagggg gccaatttgt <210> 615 <211> 50 <212> DNA <213> Homo sapiens <400> 615 gtcaggattg cgagagatgt gtgttgatac tgttgcacgt gtgtttttct 50 <210> 616 <211> 50 <212> DNA <213> Homo sapiens <400> 616 50 ttgtccaaac gaagcagccg tggtagtagc tgtctatgat tcttgctcag

<210> 617

<211>	50			
	DNA			
<213>	Homo sapiens			
<400>	617			
aggtag	ggtt taatccccag taaaa	ttgcc atattgcac	a tgtcttaatg	50
<210>	618			
<211>				
<212>	DNA			
<213>	Homo sapiens			
<400>	618			
	cttt tagaaggaga aacti	aagtg tggaatgc	at tatatgggca	50
-				
<210>	619			
<211>	50			
<212>				
<213>	•			
. 4 0 0 .	619			
<400>	tttc tttggtgtcc ttta	cattga aataaatt	gt gtttgtgcct	50
aaaccj				
<210>	620			
<211><212>				
	Homo sapiens			
\Z13>	nome bapacite			
<400>	620			50
ggcaga	atcc acaccagctt atca	accaac acagctaa	LL LLAGARLAGG	50
	•			
<210>	621			
<211>				
<212>				
<213>	Homo sapiens			
<400>	621			
tggtgt	ctat aagaagctca cggg	caagga tgttaatt	tt gaattcccag	50
<210>	622			
<211>	50			
<212>				
<213>	Homo sapiens			
<400>	622			
ggtaca	agttg gagcactata tgta	ctctct ggactact.	tt ggacagaagt	50
<210>	623			
<211>				
<212>				
<213>	_			
-400-	623			
<400>	623 attgt ggcaggtaaa gaga	caatgt aatttqca	ct ccctatgata	50
3~~~3			~	

```
<210> 624
<211> 50
<212> DNA
<213> Homo sapiens
<400> 624
                                                                     50
tgcattgtgt agctagtttt ctggaaaagt caatctttta ggaattgttt
<210> 625
<211> 50
<212> DNA
<213> Homo sapiens
<400> 625
                                                                     50
aaagttgata ctgtgggatt tttgtgaaca gcctgatgtt tgggaccttt
<210> 626
<211> 50
<212> DNA
<213> Homo sapiens
<400> 626
                                                                     50
cttccttagc tcctgttctt ggcctgaagc ctcacagctt tgatggcagt
<210> 627
<211> 50
<212> DNA
<213> Homo sapiens
<400> 627
                                                                     50
tctgttatga acacgttggt tggctggatt cagtaataaa tatgtaaggc
<210> 628
<211> 50
<212> DNA
<213> Homo sapiens
<400> 628
actggcgagt atgttctatg ttgggcctcc tgctgcaaaa caataaacag
                                                                      50
<210> 629
<211> 50
<212> DNA
<213> Homo sapiens
<400> 629
atttggacag atgcagaagg aactgttagt gagtcaagac aaacacatct
                                                                      50
<210> 630
 <211> 50
 <212> DNA
<213> Homo sapiens
 <400> 630
```

agcagccttt ctgtggagag tgagaataat tgtgtacaaa gtagagaagt	50
<210> 631 <211> 50 <212> DNA <213> Homo sapiens	
<400> 631 acttctgaac tgaggaattt gctgttgaca gccaaagtat agtgtacaag	50
<210> 632 <211> 50 <212> DNA <213> Homo sapiens	
<400> 632 tgcctcatta tcttgcagct gtaaacatat tggaatgtac atgtcaataa	50
<210> 633 <211> 50 <212> DNA <213> Homo sapiens	
<400> 633 tggttgaccc ttgtatgtca cagctctgct ctatttatta ttattttgca	50
<210> 634 <211> 50 <212> DNA <213> Homo sapiens <400> 634 gtttcagctc cccgagttgg tggaaaacgc taaactggca gattagattt	50
<210> 635 <211> 50	
<212> DNA <213> Homo sapiens	
<400> 635 atctacagac agtcaatgtg gatgagaact aatcgctgat caaataacgt	50
<210> 636 <211> 50 <212> DNA <213> Homo sapiens	
<400> 636 ttgcctttat aaaaacttgc tgcctgacta aagattaaca ggttatagtt	50
<210> 637 <211> 50 <212> DNA <213> Homo sapiens	

PCT/US03/13015

WO 03/090694

	637 agg ggttgaaaga	cccgtagacg	ctcctttcct	cttttagacc	50
<211> <212>	638 50 DNA Homo sapiens				
	638 aac atctcttgcc	atcacctagc	tgcctgcacc	tgcccttcag	50
<211> <212>	639 50 DNA Homo sapiens				
<400> ggggtac	639 ctg tgttgagttg	ataaacattt	ccatcttcat	taaaactgct	50
<210><211><212><212><213>	640 50 DNA Homo sapiens				
<400> ggtcaag	640 gggt gteeteeact	ctttaacagc	tgctggacag	acacattaga	50
<210><211><211><212>	641 50 DNA Homo sapiens				
<400>	641 caaa cacagcttgc	aatatacata	gaaacgtctg	tgctcaagga	50
<210><211><211><212>					
<213> <400> ccttga	-	cacttcctag	acaaaccaat	gaacattagt	50
<210><211><212>	50 DNA				
<400>	Homo sapiens 643 ttga ccaaaataat	atctgaggat	gattgetttt	ccctgctgcc	50
<210> <211>					

	DNA Homo sapiens				
<400>	644 gcaa gtatccaacc	aagttaatta	tacttcaata	aatotttooa	50
ccccag	gcaa gracecaace	aacceggeee	egecceaaca	uucccccggu	
<210> <211>	645 50				
<212>					
	Homo sapiens				
<400>	645 aagg ggattttgta	gagataagat	aaattattta	atttaactct	50
CCaaCaa	aagg ggatttegta	Cacacacac	gggccaccca	geeeaacee	
<210>	646				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	646				
tgaaga	aact gccctttctg	tgatgttttt	gaatactacc	caacagccaa	50
<210>	647				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	647	anaattaaaa	agagataga	autagagaga	50
gacaaa	ccct ggagaaatgg	gagettgggg	agaggacggg	agcgggcaga	50
<210>	648				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	648 caac tttgagtact	gacatcattg	ataaataaac	tagettatag	50
		J		33 3 3	
<210>					
<211>					
<212>					
<213>	Homo sapiens				
<400>					
catgat	tcca aggatcagcc	tggatgccta	gaggactaga	tcaccttagt	50
<210>	650				
<211>					
<212>					
	Homo sapiens				
<400>	650	2472222	aatttaaa=	aatataatat	50
ccaatg	gata tttctgtatt	accagggagg	catttacage	. Colocaacyc	30

<210>	651	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>		50
aagtaaa	atgt acagtgattt gaaatacaat aatgaaggca atgcatggcc	50
<210>	652	
<211>	50	
<212>	DNA	
	Homo sapiens	
1227		
<400>	652	
	agaa ggaagcccag cagagcagga ggcagcagca acaatgagag	50
gcacgae	agaa ggaageeeag eagageagga ggeageagaa aaa g g g	
<210>	653	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	653	
tattta	cttg aacagttgtg taaatcatac aggattttgt gggtattggt	50
- 3 - 3		
<210>	654	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	654	50
ctggca	aaaa gccgaaggag taaaggtgct gcaatgatgt tagctgtggc	50
<210>	655	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	_	
<400>	655	
	gctt aatttttctg tattgcagtg tttataggct tcttgtgtgt	50
gcagca	good dateconded dategorages contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate contemplate co	
-01A:	656	
<210>	656	
<211>	50	
<212>		
<213>	Homo sapiens ·	
<400>	656	<b></b> -
ccagaa	lagtg tgggctgaag atggttggtt tcatgtgggg gtattatgta	50
_		
<210>	657	
<211>	50	
<212>	•	
<213>		
~~ x 3 >	TOWO Dalance	
-400-	657	
<400>	657	50
catggg	goto tottgtgtac ttattgttta aggtttooto aaactgtgat	

<210> <211>	658 50				
	DNA Homo sapiens				
<400> tggacc <u>c</u>	658 ggag tetgetgagt	ttataaggtt	ccaaaaatat	ggtaaaatct	50
	659 50 DNA				
<213>	Homo sapiens				
<400> caagaga	659 aatg aaggaggcta	aggagaagcg	ccaggaacaa	attgcgaaga	. 50
<210><211><212><212><213>	660 50 DNA Homo sapiens			,	
<400>	660 ctat gtgcttagcc	ataacaattc	cattaagcaa	gaaggtaagc	50
33					
<210> <211>	661 50				
<212> <213>	DNA Homo sapiens				
	661 ctgt tttgatgtat	gtgtgaaaca	atgttgtcca	acaataaaca	50
<210> <211>	662 50 DNA				
<212> <213>	Homo sapiens				
<400> tgaccg	662 gatt ccctcactgt	: tgtatcttga	ataaacgctc	g ctgcttcatc	50
<210><211><212><213>	50				
<400> gttgaa	663 attgg ggtggatggg	g gggagcaagc	ataattttta	a agtgtgaagc	50
<210><211><212><213>	50				

	664 atg teetaaetge tt	tgtatgct	gttttataaa	gggatagaag	50
<211> <212>	665 50 DNA Homo sapiens				
	665 aggc tgagggcatg ga	aactgtta	cgcttttcct	tttatgtgat	50
<210><211><212><212><213>	666 50 DNA Homo sapiens				
<400> attatco	666 cttt teeccaggaa go	cecteggee	cccaaaaagg	gaaacagttt	50
<210><211><212><213>					
<400>	667 tgtc ctattctcac ac	caggtgctt	taatttcagc	ccagtctcta	50
<210><211><212>					
<400>	Homo sapiens 668 agtg ttttgtacat t [.]	tcttttcaa	aaagtgccaa	. atttgtcagt	50
<210><211><211>	50				
<213> <400>	Homo sapiens	22+4244+	taaaaattt	· tagaggatgt	50
<210>	670	aaccacccc	cgaaggeee	·	
<211> <212> <213>					
<400> tgtgtg	670 gcgta gaatattacg t	atgcatgtt	catgtctaaa	a gaatggctgt	50
<210> <211> <212>	671 50 DNA				

<213>	Homo sapiens				
<400>	671				
teteett	cca cagtttattt (	cctcacttcc	tttqcatcta :	aacctttctt	50
	coa oageroare (		· J		
	672				
<211>					
<212>					
<213>	Homo sapiens				
<400>	672				
	cact tcatgggata 1	tgactccatc	acaatgaaaa	tgggtccagt	50
J					
<210>	673				
<211>					
<212>					
	Homo sapiens		•	·	
\Z.I.J/	nomo papieno				
<400>					
ataatc	acag ttgtgttcct	gacactcaat	aaacagtcac	tggaaagagt	50
<210>	674				
<211>					
<212>					
	Homo sapiens				
12.2.7					
<400>					
tgcggg	ttat tgatttgttc	tttacaacta	ttgttctcat	atttctcaca	50
<210>	675				
<211>					
<212>					
	Homo sapiens				
<400>			totogogtot	actoracidada	50
tgccag	tagt gaccaagaac	acagigatia	tatacactat	actggaggga	50
<210>	676				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	676				
	ctag cagatgtgtg	gaaaaggaat.	cagatettga	ttettetaga	50
accgac	ccag cagacgeges	<u> </u>		333	
<210>	677				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	677				
	ggag gtactgagac	agggtgctga	tgggaaggag	gggagccttt	50
	600				
<210>	678				

PCT/US03/13015

**WO** 03/090694

<211> <212>	50 DNA					
	Homo sapiens					
<400>	678				r	<b>50</b>
caccaaa	ata gttatgttgg	cactgtgttc	acacgcatgg	tccccacacc		50
<210><211>	679 50					
<212>						
<213>	Homo sapiens					
	679					
gctctg	ggaa agagacaggg	aagtctggaa	tggaaaagaa	cacgatgaga		50
<210>	680					
<211>	50					
<212> <213>	DNA Homo sapiens					
72107						
<400>	680		agtgagggt	atacacacta		50
greage	aagc tctgcctgcc	aagaagacac	agtgagaggt	geeedeagee		-
<210>	681					
<211>	50					
<212>						
<213>	Homo sapiens					
<400>	681					
acttgg	ctgc catagcataa	caatgaagtg	actgaaaaat	ccagaatttc		50
<210>	682					
<211> <212>	50 DNA					
<213>	_					
<400>	682 [,] cagt gtgattgatt	gctttatctt	tggtactttt	acttgaatgg		50
55+-		~				
<210>	683					
<211>	50					
<212>	DNA 					
<213>	Homo sapiens					
<400>	683		<u> </u>	tetttaata		50
gaacaa	gtgg ttcttccaga	aactgcggtt	ttagatgett	igittigate		30
0.5	604					
<210> <211>	684 50					
<211>	DNA					
<213>						
<400>	684					
ggttcg	ctct actatggaga	tcaacagtta	ctgtgactga	gtcggcccat		50

```
<210> 685
<211> 50
<212> DNA
<213> Homo sapiens
<400> 685
                                                                    50
acactgagat agtcagttgt gtgtgactct aataaacgga gcctaccttt
<210> 686
<211> 50
<212> DNA
<213> Homo sapiens
<400> 686
                                                                    50
acctcattct gacacctgca tatagtgtgg gaaattgctc tgcatttgac
<210> 687
<211> 50
<212> DNA
<213> Homo sapiens
<400> 687
                                                                    50 -
tttggagtgg aggcattgtt tttaagaaaa acatgtcatg taggttgtct
<210> 688
<211> 50
<212> DNA
<213> Homo sapiens
<400> 688
tggacatagc agcacatact acttcagagt tcatgatgta gatgtctggt
                                                                     50
<210> 689
<211> 50
<212> DNA
<213> Homo sapiens
<400> 689
                                                                     50
cagattgatt tgaaaggtgt gcagcctgat ttaaaaccaa accctgaacc
<210> 690
<211> 50
<212> DNA
<213> Homo sapiens
agggggctgt gtctgatctt ggtgttcaaa acagaactgt atttttgcct
                                                                     50
<210> 691
 <211> 50
 <212> DNA
<213> Homo sapiens
 <400> 691
```

	1 0 1, 0 2 0 0, 10 0
ggcaggtgac cattggcaca cgctagaagt ttatggcaga gctttacaaa	50
<210> 692 <211> 50 <212> DNA <213> Homo sapiens	
<400> 692 cttgccttaa gctaccagat tgcttttgcc accattggcc atactgtgtg	50
<210> 693 <211> 50 <212> DNA <213> Homo sapiens	
<400> 693 gacagcagga ttggatgttg tgtattgtgg tttattttat	50
<210> 694 <211> 50 <212> DNA <213> Homo sapiens	
<400> 694 ttgattagag caatgggaag catactgtgg cctaccagca tctggaagtg	50
<210> 695 <211> 50 <212> DNA <213> Homo sapiens <400> 695 tgaatataat atatttgtgt atttaacagg gaggggaaga gggggcgatc	50
<210> 696 <211> 50 <212> DNA <213> Homo sapiens	
<400> 696 agcataatcc taatgaggaa ctttgtctga agtctgaggc tgagttactt	50
<210> 697 <211> 50 <212> DNA <213> Homo sapiens	
<400> 697 gtttggcccc caaagtgttt aggagagett teteeetaga tegeeetgtg	50
<210> 698 <211> 50 <212> DNA <213> Homo sapiens	

WO 03/090694

PCT/US03/13015

<400> ttctcat	698 gta	taaaactagg	aatcctccaa	ccaggctcct	gtgatagagt		50
<211> <212>		o sapiens					
<400> ctttgtg	699 ggtt	ttaaagacaa	ctgtgaaata	aaattgtttc	accgcctggt		50
	700 50 DNA Home	o sapiens	·				
<400> acaaat	700 tgaa	atgtctgtac	tgatcctcaa	ccaataaaat	ctcagccgaa		50
<210><211><211><212><213>							
<400> catggg	701 gctc		ttattgttta	aggtttcctc	aaactgtgat		50
<210><211><211><212><213>							
<400> aagtgg	702 aagt		tacttttat	gttggagtgg	accaatgtct		50
<210><211><211><212><213>							
<400> acatgt	703 gato		ı ccattgactç	g ttatggaagt	tcagcgttgt	:	50
<210><211><212><213>	DNA						
<400> tgaggo		l gaggecaate	c aaaataatgt	: ttgtgatct	c tactactgtt		50
<210> <211>		5					

<212> <213>	DNA Homo sapiens	
<400>	705	
cttcct	agcc ctaagtttgg cctttgggtg gctccaaaaa ggattaggtt	50
<210>	706	
<211>	50	
	DNA	
<213>	Homo sapiens	
<400>	706	50
tggctc	ggat aagagatggg acatcattca gtcactagtt ggatggcaca	30
0.7.0		
<210>	707	
<211><212>	50 . DNA	
<213>	Homo sapiens	
<213>	nomo saprems	
<400>	707	50
gagtga	taac tcatgagaag tactgatagg acctttatct ggatatggtc	50
<210>	708	
<211>	50	
<212>		
<213>	Homo sapiens	
·<400>	708	50
agttct	gegt ttggeatett cactetttee aaaatgtate tgtacateag	50
<210>	709	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>		50
acctgo	ccacc atgttttgta atttgaggtc ttgatttcac cattgtcggt	30
<210>	710	
<211>	50	
<212><213>		
<213>	Homo sapiens	
<400>	710	50
agcaa	agatt tcagtagaat tttagtcctg aacgctacgg ggaaaatgca	50
<210>	711	
<211>		
<212>		
<213>	Homo sapiens	
<400>	711	F 0
gtacg	aatgg gaggteeteg acaeetgggg aaetgeggae tatgeggeag	50

<210>	712	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	712	
aattcca	aaag gagtgatgtt ggaatagtcc ctctaaggga gagaaatgca	50
<210>	713	
<211>	50	
<212>		
<213>	Homo sapiens	
4.0.0	m10	
<400>	713	50
gtatata	atcc tccagcattc agtccagggg gagccacgga aaccatgttc	•
		-
<210>	714	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	-	
<400>	714	
	ggta aagttagggg actagaagac tctaaattgg cttctacaga	50
aaggaa	9900 0090000000000000000000000000000000	
<210>	715	
	i .	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>		50
tgttct	tcat ctaagccttc tggttttatg ggtcagagtt ccgactgcca	50
<210>	716	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	716	
cccago	ctag ggggctatag aaacatctag aaatagactg aaagaaaatc	50
	· · · · · · · · · · · · · · · · · · ·	
<210>	717	
<211>		
<212>		
	Homo sapiens	
<213>	HOMO Papiens	
-100	717	
<400>	717	50
caccac	ggaac ctgctttagt gggggatagt gaagaagaca ataaaagata	
<210>	718	
<211>		
<212>		
<213>	Homo sapiens	
<400>	718	
cctcac	cettg geaccagaca eccaggaett atttaaaete tgttgeaagt	50

<210> <211>	719 50	
	DNA	
<213>	Homo sapiens	
<400>	719	E0
taaaaco	ccaa gacttcagat tcagccgaat tgtggtgttt cacaaggccg	50
<210>	720	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	720	<b></b> 0
tagcca	tact tagcctcagc aggagcctgg cctgtaactt ataaagtgca	50
<210>	721	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	721	= 0
attgaa	geeg actetggeee tggeeettae ttgettetet agetetetag	- 50
<210>	722	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	722	
agttca	ggag atctctaagt gtagctgtaa attttggggt taatttggct	50
<210>	723	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	723	
	tggt ttcctgatag ctttcaaaca cctttgccat ctcttcgcaa	50
<210>	724	
<211>		
<212>		
<213>	Homo sapiens	
<400>	724	
cctgct	caca gaccaggaac tctacaagct ggaccctgac cggcagtacc	50
<210>	725	
<211>		
<212>		
<213>	Homo sapiens	

	725 acc accgtcttca atgcccatga gcctttccgc cggggtacag	50
<211> 5	726 50 DNA Homo sapiens	
	726 ctg tgtcccagat tgtgacccta gactttcaat tgacaagtaa	50
<211> <212> !	727 50 DNA Homo sapiens	
	727 ggg gtcagatctc tggaacatca tgtgatgaag ctgacatttt	50
<211> <212>	728 50 DNA Homo sapiens	
	728 cat ctctgttttg ctcttaaaaa tataaaaagg caattccccg	50
<211> <212>	729 50 DNA Homo sapiens	
	729 atcc acatcccagg gacagtcaca atgacctacg gctttagctg	50
<211> <212>	730 50 DNA Homo sapiens	
	730 ctgc acctcactac taccettcac teettggaga cetgggcaag	50
	731 50 DNA Homo sapiens	
<400> ccttcta	731 aacc tgaactgatg ggtttctcca gagggaattg cagagtactg	50
<210><211><212>	732 50 DNA	

<213>	Homo sapiens	
<400> tttctaa	732 accc tgacacggac tgtgcatact ttccctcatc catgctgtgc	50
<210><211><212><212><213>		
<400> ttccttt	733 ttcc gctaatcaag agtccaggga ggtgggaaca gcctcaacaa	50
<210><211><212><212><213>	734 50 DNA Homo sapiens	
<400>	734 aagg ctggactgtg atcttcaatc atcctgccca tctctggtac	50
<210><211><211><212><213>	NA	
<400>	735 ettgc tttgcttcat gtgtatggct atttgtattt aacaagactt	50
<210><211><211>		
<213> <400> gacaac	Homo sapiens 736 ggaa actctgtctc taccaccatg tgacagacgc gttgatgcgt	50
<210><211><212>	737 50 DNA	
<213> <400> gggttt	-	50
<210><211><211>	738 50 DNA	
<213> <400>		50
<210>	739	

<211> <212>	50 DNA				
	Homo sapiens				
72137	nomo bapronio				
<400>	739				
tccagaa	actt tgtctatcac t	tctccccaac	aacctagatg	tgaaaacaga	50
<210>	740				
<211>	50				
<212>			-		
<213>	Homo sapiens				
<400>	740				
	tgt ggtggtcttg	taaaaaataa	tagattttat	tcqttqqqct	50
cacceg	2030 3303300003	-34443	-555	3 335	
<210>	741				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	741				- 0
gtgacg	acga cctgaaggag	acgggcttcc	accttaccac	cacgaaccag	50
0.7.0	E40				
<210>	742				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	742				
	ctgg agagtgccta	ctattagaag	ctgaagggat	gtcaaagtca	50
••••		5 5 5	2 222	-	
<210>	743				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	743	aatattaaaa	taaastaaat	tanatanaat	50
tattct	gtgt taatggctaa	cetgttacae	rgggergggr	. Lyggtagggt	50
<210>	744				
<211>	50				
<212>					
<213>					•
<400>	744				
aggtco	cctg cctggtacaa	agaaaagcaa	aaagaattta	a cgaagattgt	50
<210>	745				
<211>	50				
<212>					
<213>	Homo sapiens				
-400:	745				
<400>	745 ggta gcatttatct:	gacttggaaa	attananaan	aggeatteet	50
actgct	ggia goalliaidi	Jucceyyada	. geeggagaag	, was	

<210>	746		*		
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	746				
cccagg	ttt catgtctgag	gccctcacca	agtgtgagtg	acagtataaa	50
	,				
<210>	747				
<211>	50				
<212>					
	Homo sapiens				
72207	1100				
<400>	747				
	tca ggaggttctt	aacatatagg	aatotaatta	tcagattcaa	50
ageege	3500 330350000		<b>J</b> -	J	
		•			
<210>	748	•			
	50				
<211>		•			
<212>	DNA				
<213>	Homo sapiens				
400	E40				
<400>	748 tggg accgtgattc	anathanaaa	aaaccatcac	ctttcaaacc	50
gaggae	iggg accgrgatic	caccaaccgg	aaaccgccgc	000099900	
010	740				
<210>	749				
<211>	50				
<212>					
<213>	Homo sapiens				
400	E 4.0				
<400>	749	~+~+~++~+	~aataaataa	actetatata	50
acttct	gtct ttgctggaaa	gigiallige	gcataaataa	agecegegea	
.010.	750				
<210>	750				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
-400-	750				
<400>	catc attggtcttt	actaactcaa	ataacttett	tctttaacaa	50
accigo	cate arragicers	accaagcgaa	. gegaceece	coccaaaaa	
42105	751				
<210>					
<212>					
<213>	Homo sapiens				
. 4 0 0 .	751				
<400>	gagg aggaagtggc:	· ctacacccct	· taggtgggg	ataaaccatc	50
agcgac	gagg aggaagrygc	. ccacacyggi	. cagetgeeca	. gegagecare	30
-010-	750				
<210>	752 50				
<211>					
<212>					
<777>	Homo sapiens				
-400>	752				

WO 03/090694 PCT/US03/13015 50 ctttgcattt agggacacag cccggagccg cagaaggtca gcagggagca <210> 753 <211> 50 <212> DNA <213> Homo sapiens <400> 753 aaagccttta aaaacggctg tcaggtttga tctcagtgta acaacatggc 50 <210> 754 <211> 50 <212> DNA <213> Homo sapiens <400> 754 tcagcaccaa gtcatgttta aaagaccaga gagacaagca ttttgccaag 50 <210> 755 <211> 50 <212> DNA <213> Homo sapiens <400> 755 50 agaccettat etggaggagg aagagaagca ggagagagaa agccacagce <210> 756 <211> 50 <212> DNA <213> Homo sapiens <400> 756 50 acatcgtgat tctccagctc aacgggtcgg ccaccatcaa cgccaacgtg <210> 757 <211> 50 <212> DNA <213> Homo sapiens <400> 757 ccggtgtccc tgagtgaggg caaagttgta ataacacttg ttctctcctt 50 <210> 758 <211> 50 <212> DNA <213> Homo sapiens <400> 758 50 acttgccatt acttttcctt cccactctct ccaacatcac attcacttta <210> 759 <211> 50

<212> DNA

<213> Homo sapiens

	759 ccc ctttccctgc	tagaaataac	aattagatgc	cccaaagcga	50
<211> <212>	760 50 DNA Homo sapiens				
	760 cca acagggaagg	ctctgtccag	aaaggattga	atgtgaaacg	50
<211> <212>	761 50 DNA Homo sapiens				
	761 gatg gcaaagagag	tcgcatctca	gtgcaggaga	gacagtgagg	50
<211> <212> <213>	762 50 DNA Homo sapiens				
	762 cagt aaggtgttca	ggactggtaa	acgactgtcc	tcaagtaagg	50
	763 50 DNA Homo sapiens				
<400> gcattct	763 Latt taaaaaggga	gtggggagca	aatgaaaatt	aaatgtgggg	50
<210><211><212><213>	764 50 DNA Homo sapiens				
<400> gggatct	764 tttc aaatggatag	tgagttgcct	tttcctatag	gtgacaatca	50
<210><211><212><213>					
<400> ctcttc	765 ggca aatgtagcat	gggcacctca	ı gattgttgtt	gttaatgggc	50
<210> <211>	766 50				

<212> <213>	DNA Homo sapiens				
<400> actttg	766 togg gtagottato	agactgatgt	tgactgttga	atctcatggc	50
<212>	767 50 DNA Homo sapiens				
<400>	767 cagg cctctcggat	gcctctgttg	ggacagctaa	gttcctcttc	50
	768 50 DNA	·			
<400>	Homo sapiens 768 agtc tgtcaaacca	gaactctttg	aagcactttg	aacaatgccc	50
<210><211><211><212><213>	769 50 DNA Homo sapiens				
<400> ccctgg	769 aggc actgaagtgc	ttagtgtact	tggagtattg	gggtctgacc	50
<210><211><211><212><213>	770 50 DNA Homo sapiens				
<400> gtgtgg	770 stcgg ggtgagaacc	caagcgttgg	aactgtagac	ccgtcctgtc	50
<210><211><211><212><213>					
<400> cagago	771 ggag gctgggatct	agcgagagag	atgcagaaga	tgtgaagaaa	50
<210><211><211><212><213>	772 50 DNA Homo sapiens				
<400> ctagge	772 ctctg ggcacatttc	ctgttcttga	. attetgetee	tgaagagggt	50

<210>	773	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	773	
	tcaga atgtgtcttt tgaagggcta taccagttat taaatagtgt	50
J		
<210>	774	
<211>		
<213>	Homo sapiens	
<400>		50
ctgggga	gagag gctgaggaca aatacctgct gtcactccag aggacatttt	30
		•
<210>	775	
<211>	50	
<212>	DNA	
<213>		٠
12		
<400>	775	
ataaat:	taagt cattgcagga acggggctgt gttctctgct gggacaaaac	50
gugguu		
010		
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>		
acttca	agatc cttttgtgtt taaataaagg aaaagctgca catccaaaaa	- 50
<210>	> 777	
<211>	<b>&gt;</b> 50	
<212>		
<213>		
12207		
<400>	> 777	
	ggaggc taggccgccg ctccagcttt gcacgtttcg atcccaaagg	50
uccegg	gagge taggetgetg tectagetet goatgettag arretaings	
.010	770	
<210>		
<211>		
<212>		
<213>	> Homo sapiens	
<400>		
tatggt	gttttt aggctatgca gatattctgt tggtttttga gacagctctg	50
<210>	> 779	
<211>		
<212>		
<213>		
7010/		
-400-	> 779	
		50
cactgg	ggaaca caacccagcc atgaaaagga agaagctctg actcaggcac	

<210>	780	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	*	
<400>	780	
	tgta gtggtggtat ttgctttccg cctgttggct acttcgaccc	50
ccacac		
<210>	781	
<211>	50	
<212>		
<213>	Homo sapiens	
400	R01	
<400>	781	50
gggagag	gctc atgtcagtga atatagatca ttctgttgat accettcttt	50
<210>	782	
<211>	50	
<212>		
<213>	Homo sapiens	
<400>	782	
agaagta	acaa gatttegtte tteetteeat taaagtacaa teteeetggg	50
<210>	783	
<211>	50	
<212>		
	Homo sapiens	
<400>	783	
	gtgt ctgtcccttc aacagagtca tcgaggaggg gtggctgcta	50
<210>	784	
<211>	50	
<212>	DNA	
	Homo sapiens	
\Z.I.J.	TIOMO Daptons	
<400>	784	
	ytgac cactacagag tactaagaag agaagatcaa gggcatgaaa	50
ccacag	jugat dateadagag tateaagaag agaang agaan gggaan g	
<210>	785	
<211>		
<211>		
<213>	Homo sapiens	
-100-	785	
<400>	785 gtcat taacagetea etttgattga acatetaete tgtggeggtt	50
accurg	gibac baabagbbba bbbbgabbga ababbbabbb bgbggbggbb	_ •
-210.	706	
<210>		
<211>		
<212>		
<213>	Homo sapiens	

<400> ccagttg	786 Igtt t	ttggactcc	aaagcccagg	acccttccaa	atcctgcttg	50
<210>	787					
<211>	50					
<212>	DNA					
<213>	Homo	sapiens				
<400>	787					
		ttgatatcc	actggtcaca	tcatacctgt	ctatagggca	50
<210>	788					
<211>	50					
<212>	DNA					
		sapiens				
		_			e	
<400>	788		catttaataa	ttaaataaa	adadddd	50
gagaaac	ette c	gegeaegaa	ggttteetee	ttgactcggc	agcagcggcc	50
<210>	789					
<211>	50					
<212>	DNA					
<213>	Homo	sapiens				
<400>	789					
		aggttcagga	gagttacagg	cagcaggtgc	ggtataatat	50
<210>	790					
<211>	52					
<212>	DNA					
<213>	Homo	sapiens				
<400>	790					
		aaattttccc	gatttcaaaa	ttaattttcc	gttgcccccc gg	52
3333						
<210>	791					
<211>	50					
<212>	DNA				·	
<213>	Homo	sapiens				
		_				
<400>			topostasta	+ + + + + + + + + + + + + + + + + + + +	gaaccctgaa	50
gagtet	grac	CCCLLCLAA	taaactyctc	. Lygacacaac	gaacectgaa	
0.7.0	B 0 0					
<210>	792					
<211>	50					
<212> <213>		sapiens				
<b>\413&gt;</b>	дошо	pahremp				
<400>	792				t	50
gtgatc	cact	tggagctgct	actggtccca	ı ttgagteeta	. tagtacttca	50
<210>	793					
<211>	50					
<212>	DNA					

<213> Homo sapiens	
<400> 793 ctgaggatga gctggaagga gtgagagggg acaaaaccca ccttgttgga	50
<210> 794 <211> 50 <212> DNA <213> Homo sapiens	
<400> 794 aacaaggtac atgcattatg tgtcacatta ctgggcaaac tgttcaagta	50
<210> 795 <211> 50 <212> DNA <213> Homo sapiens	
<400> 795 ggtcattgag cctcaggtag ggaatatatc aacccgattt cttcctctt	50
<210> 796 <211> 50 <212> DNA <213> Homo sapiens	
<400> 796 tetgtgetet gtggaecegt caccetgage teetcagttg etgaaccate	50
<210> 797 <211> 50 <212> DNA <213> Homo sapiens	
<400> 797 agggccagat ttcatgttga ccctggggat gctgtgaatt tctcctgcag	50
<210> 798 <211> 50 <212> DNA <213> Home gapiens	
<213> Homo sapiens  <400> 798  ctcatgcctg cagtgctgct catgttgccc ccttggaatt acttgttcaa	50
<210> 799 <211> 50 <212> DNA	
<213> Homo sapiens <400> 799 tgacaggttc acttctgagg ttgctatgag ggtgatggaa tgtactgcct	50
<210> 800 ·	

<211>	50					
<212>	DNA					
<213>	Homo sapiens					
4.0.0	000					
<400>	800	taattataat	atataaaaa	aaaataaa		50
CEEEEC	ttg tgcagcggtc	tggttattgt	Ctatecccag	gggaacccac		50
<210>	801					
<211>	50					
	DNA					
<213>	Homo sapiens					
<400>	801					
acttctt	gga actttaactc	ctgccagccc	ttctaagacc	cacgagcggg		50
010	000					
<210> <211>	802 50				*	
<211>	DNA					
<213>	Homo sapiens					
\Z.I.J.	nome bapiens					
<400>	802					
	agat caaccttatg	gggaagggaa	aggcagggct	tgtgacaatt		50
	_					
<210>	803					
<211>	50					
<212>	DNA 				•	
<213>	Homo sapiens					
<400>	803					
	gatg ttggaattgg	gggtagaggg	attatagagt	tgtgtgtgct		50
	J J - 1 J J	JJJ J <b>JJ</b> J	5 5			
<210>	804					
<211>	50					
<212>	DNA .					
<213>	Homo sapiens					
. 1 0 0 .	0.04					
<400>	804 aagt ttagggtttt	ctcttaatta	tagagtggcc	cagaattgca	,	50
acctaa	aagt ctagggeete	ccccggccg	cagagegge	oagaacogoa		
<210>	805					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	805					EΛ
agccaa	gagg tatatcgatg	atggaaatta	gecacatgta	Cactacatte		50
<210>	806					
<210>	50					
<212>						
<213>						
	-					
<400>	806					
cttaag	tctg acggacctgt	cctgtccagg	ccagtgccca	. gggaaggtgt		50

```
<210> 807
<211> 50
<212> DNA
<213> Homo sapiens
<400> 807
gagatagect tgeteeggee eeettgacet teageaaate aettetetee
                                                                    50
<210> 808
<211> 50
<212> DNA
<213> Homo sapiens
<400> 808
tcactgtata ccactggagt tttctggtta tctctcgtat agcaaaatct
                                                                    50
<210> 809
<211> 50
<212> DNA
<213> Homo sapiens
<400> 809
                                                                    50
qtcatccagc ttctgtatta ttcgttctgt tgtgccaggt gcgttttgcc
<210> 810
<211> 50
<212> DNA
<213> Homo sapiens
<400> 810
                                                                    50
tcagtccatc tcaagacctg tgcctgtcag atttcacaat tatggagatt
<210> 811
<211> 50
<212> DNA
<213> Homo sapiens
<400> 811
agcagcggct ggatgtgata tgtctagttt aaccagtccc cttgatcttt
                                                                     50
<210> 812
<211> 50
<212> DNA
<213> Homo sapiens
<400> 812
tttgtgccat gtggctacat tagttgatgt ttatcgagtt cattggtcaa
                                                                     50
<210> 813
<211> 50
<212> DNA
<213> Homo sapiens
<400> 813
```

gaaattgctt ttcctcttga accacagttc tacccctggg atgttttgag	50
<210> 814 <211> 50 <212> DNA <213> Homo sapiens	
<400> 814 tgcactaaac agttgcccca aaagacatat cttgttttaa ggcccagacc	50
<210> 815 <211> 50 <212> DNA <213> Homo sapiens	
<400> 815 tggtgattct ccaggccatt taataccctg caatgtaatt gtccctctgt	50
<210> 816 <211> 50 <212> DNA <213> Homo sapiens	
<400> 816 acctggagag agaaggtatt gaaacatctc ctttatgtgt gactttccca	50
<210> 817 <211> 50 <212> DNA <213> Homo sapiens	
<400> 817 agtcccctgt cctggtcatc tatcaagata acaagcggcc ctcagggatc	50
<210> 818 <211> 50 <212> DNA <213> Homo sapiens	
<400> 818 ggcaaatgag gaacagggca atagtatgat gaatcttgat tggagttggt	50
<210> 819 <211> 50 <212> DNA <213> Homo sapiens	,
<400> 819 gacatgcggg ctgggcagct gttagagtcc aacgtggggc agcacagaga	50
<210> 820 <211> 50 <212> DNA <213> Homo sapiens	

	820 cat tgtgtgtgga	ggatttacag	ctaagctgta	gttgcagagt	,	50
<211> <212>	821 50 DNA Homo sapiens					
	821 Igcc aagcaacccc	ctaaaacatt	catatctagg	cagtattttg		50
<210><211><211><212><213>	822 50 DNA Homo sapiens					
<400> cccaaac	822 cagg catgtatcaa	aacacctgtg	gagtacttta	gactccaaca		50
<210><211><212><212><213>						
<400> gacagga	823 acag tgaccttggg	aggaaggggc	tactccgcca	tccttaaaag		50
<210><211><211><212><213>	824 50 DNA Homo sapiens					
<400> attttt	824 aaat ggctttacca	ı aacattgtca	gtacctttac	gtgttagaag		50
<210><211><211><212><213>						
<400> caagta	825 gaca ccagagtcad	: tgtttggttg	g gtgggtgata	ı gtggggtcac		50
<210><211><211><212><213>	DNA					
<400> gtggat	826 gtgg agcaggagag	g ctggatcgtç	g gcatttgttl	ctgggttetg		50
<210>						

	DNA Homo sapiens				
<400> acatcgt	827 att tgcggccagc	ctctacaccc	agtgaatgcc	ccatgtaaaa	50
<210><211><212>	828 50 DNA				
<213>	Homo sapiens				
	828 gtga ggactggttg	tetetetteg	gtgcccttga	gtctctgaat	50
<211> <212>	829 50 DNA				
	Homo sapiens				
	agaa aagtcttta	ttagtactgt	gtagggaagg	ctaaagaaat	50
<210><211><211><212><213>	830 50 DNA Homo sapiens				
<400> cctcct	830 gcta gaagacagat	ttcttccttg	gctgacaggc	tgaattaagc	50
<210><211><211><212><213>	831 50 DNA Homo sapiens				
<400> ttctga	831 cacg attacacaac	gaggctttaa	tgccatttgg	gtaggtgagc	50
<210><211><211><212><213>					
<400>	832 actg ctattctagg	ttccttgatg	gagccccact	: cccacgccta	5
		. J J		-	
<210><211><211><212><213>	i i		`		
<400> acatga	833 wcctg tgcagtgtgt	: ggctgtgaat	tctgttggct	: ttgtatgaaa	5

<210>	834	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	834	
qaaqacc	caag agagacaaca gacgcagcaa acagccgaag caccagacaa	50
2 2		
<210>	835	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	835	50
aaaaata	aaaa acaaatactg tgtttcagaa gcgccaccta ttggggaaaa	50
	·	
<210>	836	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	•	
<400>	836	
	cagg atcaaggcca cagggaggaa gattgcacgg gcactgttct	50
	cagg accaaggeed cagggaag gaccaga gaccagg	
0.7.0	000	
<210>	837	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	837	
caacgg	ccag gagaagcact ttaaggacga ggacgaggac gaggacgtgg	50
<210>	838	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
12107	neme saprem	
<400>	838	
	tggg gtcactactg gagtggatgg aggcccttca catttctggg	50
CCacgi	reggy greaters gagingular aggeorates esteroiss	
.010	020	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>		
cctggc	acat gttgtctgga gtctggcaca ctggttatca atagcacatt	50
<210>	840	
<211>		
<212>		
	Homo sapiens	
<b>ヘビエウン</b>	TOWO PAPACITO	
-100-	840	
<400>	04U	50
acatto	tcat agtccagggg ctcaacaact ttggcctttt ccagcaccac	

	841				
<211>	50				
	DNA				
<213>	Homo sapiens				
	841				50
gatggct	gct tggttgctaa	acccagacag	ggtccttcca	gtgcatetge	50
				44	
<210>	842				
<211>	50				
	DNA				
<213>	Homo sapiens				
. 1 0 0 .	0.40				
<400>	842 gccc cttgtttgtt	aattttaaa	ccattagga	aaatooctot	50
aaaaagg	jeee ettgereger	ggtttttggt	ccgccgggga	aaacgcccgc	50
<210>	843				È
<211>	50				
<212>					
<213>					
<2137	HOMO Bapichs				
<400>	843				
	gaa tcatttgtgt	ccttttcaac	tatatttaa	aggaaaggta	50
cegeeg	agaa adaadaagaga		-55	.55 55	
<210>	844				
<211>	50				
	DNA				
	Homo sapiens				
	<u> </u>				
<400>	844				
tcatca	cagt gtggtaaggt	tgcaaattca	aaacatgtca	cccaagctct	50
<210>	845				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	845				Ε0
gatgcg	cggc aagaatgtac	ctgtagatgt	gtacatacca	cagtgctgta	50
<210>	846				
<211>					
<212>					
<213>	Homo sapiens				
400	0.4.6				
<400>			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	aaaaaataaa	50
agctgg	cttc actgctcagg	igaliatect	gaaccaccag	gccaaacaag	50
Z210-	847				
<210> <211>	84 / 50				
<212>	DNA				
<213>	Homo sapiens				

	847 cac agacaccagc a	aaagcaatgt	gctcctgatc	aagtagattt	50
<211> <212>	848 50 DNA Homo sapiens				
	848 Igta tggaggctaa	aggtgtggag	gaaccaggag	gagatgagta	50
<210><211><212><213>	849 50 DNA Homo sapiens				
<400> cggcago	849 ggtg geetgtaaca	atttcagttt	tcgcagaaca	ttcaggtatt	50
<210><211><212><213>	850 50 DNA Homo sapiens				
<400> agaacte	850 gaat cagtcggagg	aacctgaggc	aggcgagagt	agtactggag	50
<210><211><211><212><213>	851 50 DNA Homo sapiens				
<400> ctctcc	851 tgga ctgttgcagt	tgggtgtggc	tgatttgaaa	ttgtgcttca	50
<210><211><212><212><213>	50				
<400> tcatca	852 cttt ggacaggagt	taattaagag	aatgaccaag	ctcagttcaa	50
<210><211><211><212><213>	853 50 DNA Homo sapiens				
<400> acaagc	853 caaa gtggcatgtt	ttgtgcattt	gtaaatgctg	tgttgggtag	50
<210><211><212>	854 50 DNA				

<213>	Homo sapiens					
	854					
tggatct	gcc aaaaagaact	aacacctgtg	agaaataaag	tgtatcctga	50	i
	•					
<210>	855					
	50					
	DNA Homo sapiens					
(213)	nomo saprens					
<400>	855				r c	
agccgc	ccag ctacctaatt	cctcagtaac	atcgatctaa	aatctccatg	50	)
<210>	856					
<211>	50					
<212>	DNA Homo sapiens			•		
<b>\</b> 213/	HOMO Sapicis					
<400>	856				r <del>.</del>	^
tccaac	ctcc agtttgagga	tgaggctgat	tattactgtg	agacctggga	5(	J
<210>	857					
	50					
<212>	DNA Homo sapiens					
<213>	nomo saprens					
<400>	857				re .	_
cacaag	gtgc gcggttaccg	ctacttggag	gaggacaact	cggacgagag	50	IJ
<210>	858					
<211>	50					
<212> <213>	DNA Homo sapiens				•	
<4.TJ/	nomo sapiens					
<400>	858				-	_
cagtgg	agaa gctgcactgt	ctccgggctt	gtgtgatccg	atctctgtac	5	U
<210>	859					
<211>	50					
<212> <213>						
<b>\213</b> 2	nomo saprens					
<400>					_	_
ctgact	gagt ctcagaatgc	tcaggaccaa	ggtgcagaga	. tggacaagag	5	0
<210>	860					
<211>	50					
<212>						
<b>~</b> 413>	Homo sapiens					
<400>					_	
ctctcc	aaga gtattattaa	. cgctgctgta	cctcgatctg	aatctgccgg	5	0
<210>	861					

<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	861	
	caac tgtcctcatc agtctccata ccccttcagc tttcctgagc	50
caccago	tade egreeceded agreeced of the sample and a sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the sample agreeced to the	
<210>	862	
	50	
<211>		
<212>	DNA	
<213>	Homo sapiens	
<400>	862	
		50
atgtcag	gttc tgttttaagt aacagaattg ataactgagc aaggaaacgt	-
<210>	863	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
400	0.52	
	863	50
agtcag	gact gtctaggtca gggaagccaa gatgtctgaa gagagaggaa	50
-210-	864	
<210>		
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
1000		
400		
<400>	864	50
gcactg	aatc gtttcatgta agaatccaaa gtggacacca ttaacaggtc	50
<210>	865	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
1		
400	0.65	
<400>		50
ttccag	gctt ttgctactct tcactcagct acaataaaca tcctgaatgt	50
<210>	966	
<211>		
<212>	DNA	
<213>	Homo sapiens	
400	0.00	
<400>	866	EΛ
agccgc	ccag ctacttaatc cctcagtaac atctatctaa atctcccatg	50
4070	067	
<210>		
<211>		
<212>	DNA	
	Homo sapiens	
	-	
400	0.67	
<400>	867	50
gaaago	caggg aagcagtgtg aactetttat teacteccag cetgteetgt	50

<210><211><212><213>	868 50 DNA Homo sapiens				
<400>	868 cacg ttcggccctg	actctgctgt	gttcgacgag	gacaatctcg	50
	869 50 DNA				
<400>	Homo sapiens 869 gcta ggggaaggac	tggcctggct	ccagaatgtt	gttgcctttt	50
<210> <211>	870 50				٠
<212> <213>	DNA Homo sapiens				
<400> gcgatg	870 gaca gactcacaac	ctgaacctag	gagtgcccca	ttcttttgta	50
<210><211><212><212><213>	871 50 DNA Homo sapiens				
<400>	871 :aaag aaagtacatt	gggtgaaaat	ttaaaaaggt	atggagcatt	50
<210><211><212><212><213>	872 50 DNA Homo sapiens				
<400>	872 agaag aggaaagaga	a gaggeetgee	: ctaacccact	: gttgtgctga	50
<210><211><212><213>	873 50 DNA Homo sapiens				
<400> tggact	873 Lagga gagacttgat	: tttggtgcta	a aagttcccca	a gttcatatgt	50
<210><211><212><213>	50 DNA				
<400>	874				

acagaacatt gagatgtgcc tagttccgta tttacagttt ggtctggctg	50
<210> 875 <211> 50 <212> DNA <213> Homo sapiens	
<400> 875 tagacatgct tgtgtccaca cagcacacca atgtgatact tccactgacc	50
<210> 876 <211> 50 <212> DNA <213> Homo sapiens	
<400> 876 gggccatttt atgatgcatt gcacaccctc tggggaaatt gatctttaaa	50
<210> 877 <211> 50 <212> DNA <213> Homo sapiens	
<400> 877 tgacccaccc accaaggaag aaagcagaat aaacattttt gcactgcctg	50
<210> 878 <211> 50 <212> DNA <213> Homo sapiens	
<400> 878 aagaaagaag agagagaact tgatgccaag tccacgaaaa aacaattttt	50
<210> 879 <211> 50 <212> DNA <213> Homo sapiens	
<400> 879 gccagtgttt ccgtcagtac gcgaaggata tcggtttcat taagttggac	50
<210> 880 <211> 50 <212> DNA <213> Homo sapiens	
<400> 880 ttcatcattg cttgcttgcc ttcctccctc ctgtccgctc tcactcactc	50
<210> 881 <211> 50 <212> DNA <213> Homo sapiens	

<400> 881 ggtgctcaaa ctgtattttc tccctccctc cctccttctt tctttccaga	50
<210> 882 <211> 50 <212> DNA <213> Homo sapiens	
<400> 882 tetteegeea teteetetga taaacaegag gtgtetgeea geacceagag	50
<210> 883 <211> 50 <212> DNA <213> Homo sapiens	
<400> 883 ttcaccgagg acatgaaact ccaccttgcg gggataaaga gagaaaaaca	50
<210> 884 <211> 50 <212> DNA <213> Homo sapiens	·
<400> 884 aaggaatttg ttttccctat cctaactcag taacagaggg tttactccga	50
<21 ⁵ 0> 885 <211> 50 <212> DNA <213> Homo sapiens	
<400> 885 cgatctgtgt ttgctctgac gaatggaatt tatcctcaca aattggtgtt	50
<210> 886 <211> 50 <212> DNA <213> Homo sapiens	
<400> 886 ggtaaccagg tccaatcagt aaaaataagc tgcttataac tggaaatggc	50
<210> 887 <211> 50 <212> DNA <213> Homo sapiens	
<400> 887 cccacttccc atgctggatg ggcagaagac attgcttatt ggagacaaat	50
<210> 888 <211> 50	

<212> <213>	DNA Homo sapiens	
<400> tttgat	888 cagg attcagatgt ggacatette ceetcagaet teeetaetga	50
<210>	889	
<211>	51	
<212>	DNA	
<213>	Homo sapiens	
	889	51
caccgc	ctct gcctccgcct cttccactgg agagcccgag gtcaaaaggt c	21
<210>	890	
<211>	50	
<212>		
	Homo sapiens	
	890	50
teegte	ccat tececeggaa aacaaggttt tgaattggee egtaaaaggg	50
<210>	891	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	891 ccct tgatatgaaa ttccagaatt ttctgtgata ccacatggcc	50
Clatte	locot Egatucguau teolouguate oootgegmen temanogg	
<210>		
<211>		
<212>		
	Homo sapiens	
<400>	892 gtccc ctacaaaatt agctactttg gcctttccta caaaattagc	50
<210>		
<211>		
<212>	Homo sapiens	
<400>	893 cagga ggtggtttta aatattggat gaaaacttac aggctgtttt	50
agtto	gagga ggeggeeed aacaeeggae gaadaeedae aggeeggeee	
<210>		
<211>		
<212>		
	Homo sapiens	
<400> gctgt	894 aatto totgtotoat catoottoto ttttgtttoo atagootttt	50

	895 50 DNA					
<213>	Homo sapiens					
<400> gtccttt	895 gat agcagaacaa	gaggctctgt	gatectetgg	acctcagatt	5	0
<211> <212>	896 50 DNA Homo sapiens			/s		
	896 ctga gcatccgttg	tgccttaaca	ttttctgctt	gtcctttggg	5	0
<211> <212>	897 50 DNA Homo sapiens					
	897 catg gaaagaaggt	acagaaagtg	atgtgttcaa	aacattagca	٥	50
<210><211><211><212><213>	898 50 DNA Homo sapiens					
	898 ctat agtgcaacct	atttgggtaa	agaaaccatt	tgctaaaatg		50
<210><211><212><212><213>	899 50 DNA Homo sapiens					
<400> aacttt	899 taca ctttttcctt	ccaacacttc	ttgattggct	: ttgcagaaat		50
<210><211><211><212><213>	50					
<400> aggctg	900 gaca teggeeeget	ccccacaatg	g aaataaagtt	attttctcat		50
<210><211><211><212><213>	50					
<400>	901 aagt gcaggagaca	ttggtattct	gggcacctto	c ctaatatgct		50

<210>	902				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	902				
tgacato	ata ttctttcaga	gaagtgtccc	aggacatgat	aataagatgc	50
_	_		-		
<210>	903			•	
<211>	50				
<212>					
	Homo sapiens				
V2102	nomo baprono				
<400>	903				
	atc cacatcctct	acadat cada	gaccaaaggc	taattottaa	50
ccagaag	acc cacacococ	acaggeeggg	gaccaaagge	cgaccccc ₃₃	33
<210>	904				
<211>	50				
	DNA			•	
<213>	Homo sapiens				
400	004				
<400>	904		1.1. 2.2	1.1	50
gaaacac	ttt caggaccttc	cttcctcttg	cagttgttct	ttaatctcct	50
<210>	905				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	905				
gttcct	ttc gggaagcttt	tgataaggaa	ttctcagacc	gatagggtgt	50
<210>	906				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	906				
ccagtga	attt gattaactca	gggcaaggct	gaatatcaga	gtgtatcgca	50
		•			
<210>	907				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	·				
<400>	907				
	caga atgtgttggt	ttaccagtga	caccccatat	tcatcacaaa	50
20000					
<210>	908				
<211>	50				
<211>	DNA				
<212>	Homo sapiens				
イベエコン	TOWO Babrens				

WO 03/090694 PCT/US03/13015 <400> 908 50 ctttgacccc accttgtgga aacccagctg tctactggca gacattggtg <210> 909 <211> 50 <212> DNA <213> Homo sapiens <400> 909 50 cagtgaagac gtcaggggca aggtctcggg ggtccggaag ggtgatcatc <210> 910 <211> 50 <212> DNA <213> Homo sapiens <400> 910 50 ggcgtatcat caactggtga gcccgaaggg atattatttc taaggcctct <210> 911 <211> 50 <212> DNA <213> Homo sapiens <400> 911 ttgcttttac tagtcttagc tctacgattt aaatccatgt gtccaagggg 50 <210> 912 <211> 50 <212> DNA <213> Homo sapiens <400> 912 50 tgcttttatg tgtcccttga taacagtgac ttaacaatat acattcctca <210> 913 <211> 50 <212> DNA <213> Homo sapiens <400> 913 50 gcagggaagc tttgcatgtt gctctaaggt acatttttaa agagttgttt <210> 914 <211> 50 <212> DNA <213> Homo sapiens <400> 914

.

ggtgcccacc attcttggcc tgttacttac ctgagatgag ctcttttaac

<210> 915 <211> 50 <212> DNA 50

WO 03/090694 PCT/US03/13015 <213> Homo sapiens <400> 915 50 tttccctgat tatgatgagc ttccattgtt ctgttaagtc ttgaagagga <210> 916 <211> 50 <212> DNA <213> Homo sapiens <400> 916 tgcagaaaca gaaaggtttt cttctttttg cttcaaaaac attcttacat 50 <210> 917 <211> 50 <212> DNA <213> Homo sapiens <400> 917 50 cttccttatg gagctggagc agcccgccta gaacccagtc taatgagaac <210> 918 <211> 50 <212> DNA <213> Homo sapiens <400> 918 50 gatgacgctg ggcacagagg gtcaggtcct gtcaagagga gctgggtgtc <210> 919 <211> 50 <212> DNA <213> Homo sapiens gcatgcattc attggttgtt caataagtga gatgattaca gataatactg 50 <210> 920 <211> 50 <212> DNA <213> Homo sapiens <400> 920 aatccttact taaaattctt ccgttaccac ccttgaaaca attagctttt 50 <210> 921 <211> 50 <212> DNA <213> Homo sapiens <400> 921 50 tacttgctgt ggtggtcttg tgaaaggtga tgggttttat tcgttgggct

<210> 922

<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	922				
	itga aatgtttagc	tcttacactc	tatccttcct	agaaaatggt	50
				-	
<210>	923				
<211>	50				
	DNA				
			•		
<213>	Homo sapiens				
400	000				
<400>	923	~~~~~	agget at at a	tattttaaa	50
tccatc	gtg cataaggaga	ggaaagttee	agggtgtgta	Lycectagg	50
	924				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				•
<400>	924				
ctccac	cacc tgaccagagt	gttctčttca	gaggactggc	tcctttccca	50
	J J J	_			
<210>	925				
<211>	50				
<212>					
	Homo sapiens				
<413>	HOMO Saprens				
. 4 0 0 .	00 5				
<400>	925	+~~++~~~~+	taataataaa	atasataas	50
gggtge	atgc caagaaagta	tggttggaat	ccciggiaca	ccgaagcgga	-
010	006				
<210>	926				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	926				
ctgaga	tttt gggttttcca	cacgggccaa	gatacccggc	ctctgctgag	50
	ä		,		
<210>	927				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	*				
<400>	927				
	aagg attttgggta	aatctgagag	ctocoataaa	gtcctaggtt	50
~			J J		
<210>	928				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	928				
ctttcc	aggt tttccctttc	cgccattgtt	ttcccgctcg	ctaaagtgac	50

<210>	929	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	929	
	agtc tcagtgcagg gctgggaagt gaaagacgat tcaccagacc	50
caccacc	2300 0003030033 3003334030 30003000 3	
<210>	930	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	930	
tcagago	ggaa agtaaatatt tcaggcatac tgacactttg ccagaaagca	50
5 5.		
<210>	931	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
<400>	931	
cttcate	ctgg aagaagaggc aagggggcag gagaccaggc tctagctctg	50
<210>	932	
<211>	50	
<212>		
<213>	Homo sapiens	
400	020	
<400>	932	50
tggaaa	ttcc cgtgttgctt caaactgaga cagatgggac ttaacaggca	50
<210>	933	
<211>	50	
<212>	DNA	
<213>	Homo sapiens	
	<del>-</del>	
<400>	933	
	gatg gaaatacaac tggtatcttc acttttttag gaattgggaa	50
coccgo	320 320	
.010.	024	
<210>		
<211>		
<212>	·	
<213>	Homo sapiens	
<400>	934	
ttgatt	tgcc ataagtette cettgettge atettecaaa getatttega	50
-		
<210>	935	
<211>		
<211>		
<213>	momo paprema	
	025	
<400>	<b>333</b>	

WO 03/090694 PCT/US03/13015 ggatgcacgt acagaataca ttcagccgtc aggtaataac atgaagcagt 50 <210> 936 <211> 50 <212> DNA <213> Homo sapiens <400> 936 50 cccctgctac tttgaaacca gaaaataatg actggccatt cgttacatct <210> 937 <211> 50 <212> DNA <213> Homo sapiens <400> 937 50 agtactcatg acttgagaga cgtggacgga gccagcttct accttgcttg <210> 938 <211> 50 <212> DNA <213> Homo sapiens <400> 938 cacgagegge tggaggacac ceattttgtg cagtgeeegt cegteeette 50

<210> 939 <211> 50 <212> DNA <213> Homo sapiens

<400> 939
tggctaggag accttgggca gtacctacag tcttgctgtt tctgtttcat 50

<210> 940 <211> 50 <212> DNA <213> Homo sapiens <400> 940

aacagcaacc aataacggat tgtaaagtgt aaaggcacag gttactcatg 50

<210> 941 <211> 50 <212> DNA <213> Homo sapiens <400> 941

tttctttagc ccaagagtgg aggctaagct acttacttcc aagcctgggt 50

<210> 942 <211> 50 <212> DNA <213> Homo sapiens

	942 catc aacttcaaca	actactacca	ggacgcctga	gggtgctttt		50
<210><211><211><212><213>	943 50 DNA Homo sapiens					
<400> gggaaga	943 aagc cegtgeeece	acccaataaa	igttggtttt	ggccctgatg		50
<210><211><212><212><213>	944 50 DNA Homo sapiens					
	944 ttcc acgetttate	tectgetetg	agtgtgtacc	cgcgctgctc		50
<210><211><212><212><213>						
<400> aaacag	945 ['] gaag ggggtttggg	ccctttgatc	aactggaacc	tttggatcaa	g	51
<210><211><211><212><213>						
<400> aattga	946 tccc attcttgctg	aagtagacag	tgccctcaag	tggaattaaa		50
<210><211><211><212><213>	50					
<400> gatctg	947 tgtt ttcctcccaa	aagaagatca	. tctttccaga	. aaaagaggat		50
<210><211><211><212><213>	50					
<400> gccaac	948 aatg ctgaccggtg	cttatcctct	: aagccctgat	ccacaataaa		50
<210>						

<212> <213>	DNA Homo sapiens				
	<del>-</del>				
<400>	949 aggc atctgggcac	caagaccttc	cctcaacaga	ggacactgag	50
<210>	950				
<211>	50				
<212> <213>	DNA Homo sapiens				
• •	•	•	•	of to	
<400>	950 gegg agecetgtet	cctctctctq	taataaactc	atttctagcc	50
		J		5	
<210>	951				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	951				
aagggt	gagg atgagaagtg	gtcacgggat	ttattcagcc	ttggtcagag	50
<210>	952 50				
<211> <212>					
	Homo sapiens				
<400>	952				
	aat aaatcaaggc	tgcaatgcag	ctggtgctgt	tcagattcca	50
<210>	953				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	953				50
ctgatt	cat aaccaggccg	gaccacgtgc	aatagggtgg	aaaccaaact	50
<210> <211>	954 50				
<211>					
	Homo sapiens				
<400>	954				
	catt gaagatccga	gtgtgatttg	aattctgtga	tattttcaca	50
		_			
<210>	955				
<211>	50				
<212>					
<213>	Homo sapiens				
<400>	955				
ctcatca	accg gttctgtgcc	tgtgctctgt	tgtgttggag	ggaaggactg	50

PCT/US03/13015

**WO** 03/090694

<210>	956				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	956				
	cag tctcagattc	aasaasaasa	agagtgaatt	atatattata	50
ccacaa	cag icicagaite	ccagcagcag	agagugaauu	gracycryca	50
	4				
<210>	957				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				•
<400>	957				
		ttaaaaattt	aggagtaggt	ttaataaaaa	50
gggttt	aggg ggttttccct	Ligodogici	ggeeergggt	ccaacaaaaa	50
<210>	958				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	958				
		tatagataa	aasaasaat	anttattatt	FO
Guddati	gact atctcgggcc	Letageetga	ggacgagget	gallallall	50
<210>	959				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	<u>.</u>				
<400>	959				
		aaataaaaa	attantantt	tatatanaan	50
Lygodi	gtgc ttttaccaca	ccgccaaacc	Cityateatt	tetgtaaaca	50
<210>	960				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
	-				
<400>	960				
	gtgg gggtgctttt	asaattaasa	assatsasa	2020002220	50
-grgrg:	araa aaaracccc	gaggccggag	gaaagcagag	acagegaaac	50
.010	0.61				
<210>	961				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	961				
	ctca ggaaactgcc	tattcaatac	tcctccaatt	caattaagct	50
		-955-59		2222232	50
2010:	062				
<210>	962				
<211>	50				
<212>	DNA				
<213>	Homo sapiens				
<400>	962				
ttctctc	gcat ctaggccatc	atactqccaq	gctgqttata	actcagaaga	50
•				٠, -	

```
<210> 963
<211> 50
<212> DNA
<213> Homo sapiens
<400> 963
tgggattgta ctataccagt aagtgccact tctgtgtctt tctaatggaa
                                                                    50
<210> 964
<211> 50
<212> DNA
<213> Homo sapiens
<400> 964
aatttgcagt aaacttttaa ttaaatgctc atctggtaac tcaacaccc
                                                                    50
<210> 965
<211> 50
<212> DNA
<213> Homo sapiens
<400> 965
gaatggtggg gagaaaaaag gggggcacag tcatgatcgg ctcttataat
                                                                    50
<210> 966
<211> 50
<212> DNA
<213> Homo sapiens
<400> 966
gaccacgtta tgtgcctgac ttcgaggaca ccctctctgg tttggtattt
                                                                    50
<210> 967
<211> 50
<212> DNA
<213> Homo sapiens
<400> 967
tgcgaaattg tggactgttg gactgtgatt ctaagtgggg gaaataggct
                                                                    50
<210> 968
<211> 50
<212> DNA
<213> Homo sapiens
<400> 968
taatactgga ggggcttgaa gaaggctgtc gtgttttgtc acctgctttg
                                                                    50
<210> 969
<211> 50
<212> DNA
<213> Homo sapiens
```

<400> aagtac	969 agat gccatcccgg	tgctgtgatc	ttccagccat	tctccatttc	50
<210><211><212><212><213>					
<400> ccttgt	970 tgga cagggggaca	ggctgcctac	tggaatgtaa	atatgtgata	50
<210><211><212><212><213>	971 50 DNA Homo sapiens				
	971 ccga ttcctcttag	agaaaatcca	tagccttcag	atcttggtgt	50
<210><211><212><213>	DNA	·			
<400> cttttg	972 ctgg agactcatcg	ctttgggaag	tgcatttgct	tegtegteeg	50
<210><211><212><213>					
<400> gactcg	973 ttac gccgtagttt	gtcctatctt	gtttatcaaa	tgaatttcgt	50
<210><211><212><213>		,			
<400> gcctgg	974 ggga ggagaagtcc	cttcccattc	cagctcgatc	aatcttgctg	50
<210><211><211><212><213>	DNA				
<400> ccgtaa	975 ctcc gacaaacgca	gaacttcttg	aggctttctt	cttctaagga	50
<210><211><212>	976 50 DNA				

<213> Homo sapiens  <400> 976 caccctccac cccttccttt tgcgcggacc ccattacaat aaattttaaa 50  <210> 977 <211> 50	,
caccetecae ecetteett tgegeggaee ecattacaat aaattttaaa 50 <210> 977	,
caccetecae ecetteett tgegeggaee ecattacaat aaattttaaa 50 <210> 977	
<210> 977	
7 M M M F	
<212> DNA	
<213> Homo sapiens	
<400> 977	
aggggaaaag aggggagaaa aacaggagtg atgtcatttc tttttcatgt 50	
<210> 978	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 978	
aacccagtat atctgtgtta tctgatggga cggttgacag tggtcaggga 50	
<210> 979	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 979	
ccgcccaaaa gtctgttctg atggcactga gttttcattg ttctggatgt 50	
<210> 980	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 980	
gccctgatct ggagttacct gaggccatag ctgccctatt cacttctaag 50	
<210> 981	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 981	
cccagttcac agtagagagg tggagcttag tacttcctgc tgcccattag 50	
<210> 982	
<211> 50	
<212> DNA	
<213> Homo sapiens	
<400> 982	
tgagcttgct cttacgtttt aagaggtgcc aggggtacat ttttgcactg 50	

•

<210> 983

<211> <212> <213>	50 DNA Homo sapiens				
<400>	983 ccac cctcaagaaa	ctcttgaaca	agaccaacaa	gaaggcagcg	50
<210><211><212>	984 50 DNA				
<213>		,			
<400> gcagga	984 ccag accetecagg	aaaggcaaga	gactcatgac	caggggacag	50
<210>	985				
<211> <212>	50 DNA				
<213> <400>	Homo sapiens 985				
	agga ggagaagaat	atcaaatggg	gttgagtgtg	cagatetetg	50
<210>	986				
<211><212><213>	50 DNA Homo sapiens				
<400>	986				
ccagaa	cgt aagggggctg	acggaggatg	agagggggca	cccagagatc	50
<210> <211>	987				
	50				
<212> <213>	DNA Homo sapiens				
<213> <400>	DNA Homo sapiens 987				
<213> <400>	DNA Homo sapiens	taggggtggg	tecagecece	ttgtgccctg	50
<213> <400>	DNA Homo sapiens  987 atat ccttttcaaa	taggggtggg	tecagecece	ttgtgccctg	50
<213> <400> cctacga <210> <211> <212>	DNA Homo sapiens  987 atat ccttttcaaa  988 50	taggggtggg	tccagccccc	ttgtgccctg	50
<213> <400> cctacga <210> <211> <212> <213> <400>	DNA Homo sapiens  987 atat ccttttcaaa  988 50 DNA Homo sapiens  988				
<213> <400> cctacga <210> <211> <212> <213> <400>	DNA Homo sapiens  987 atat ccttttcaaa  988 50 DNA Homo sapiens				50
<213> <400> cctacga <210> <211> <212> <213> <400> acttcca <210> <211>	DNA Homo sapiens  987 atat ccttttcaaa  988 50 DNA Homo sapiens  988 atct cagctaatgc				
<213> <400> cctacga <210> <211> <212> <213> <400> acttcca <210>	DNA Homo sapiens  987 atat ccttttcaaa  988 50 DNA Homo sapiens  988 atct cagctaatgc  989 50 DNA				
<213> <400> cctacga <210> <211> <212> <213> <400> acttcca <210> <211> <212> <213> <400>	DNA Homo sapiens  987 atat ccttttcaaa  988 50 DNA Homo sapiens  988 atct cagctaatgc  989 50 DNA	acccaccagc	tcaaacacac	caataaagct	

<210>	990					
<211>	50					
	DNA					
<213>	Homo sapiens					
<400>	990			aantaaaata		50
aaactaa	aac ttcatcttcc	ccaagtgcgg	ggagtacaag	geatggegta		50
010	0.07					
<210>	991		•			
<211>	50					
	DNA					
<213>	Homo sapiens					
<400>	991					
	gaaa tccaatccag	cccaaggata	tagttaggat	taattactta		50
gegeeas	jaaa ceedaceedg	0004455454				
<210>	992					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
12207				•	•	
<400>	992					
	gtct ttttctcgcc	tcaactttat	ccacatgaaa	tgtgtgccca		50.
•						
<210>	993					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>	993		- 1 1 1 1-			50
attgtg	acat ggtgatgcct	cattgctgat	atggteetgt	ggitatgige		50
<210>	994 -					
<211>	50					
<212>	DNA					
	Homo sapiens					
<213>	HOIIO Saprens					
<400>	994					
	tttt gattgacata	ctgttgttca	tgctgaagtt	tgagtgtcgt		50
<210>	995					
<211>	50					
<212>	DNA					
<213>	Homo sapiens					
<400>						
gataca	ctgt ccagcccagg	tccaggccct	aggttcttta	ctctagctac		50
0.5.5	226					
<210>	996					
<211>	50					
<212>						
<213>	Homo sapiens					
-400-	996					
<400>	シブロ					

a	gctct	ggag cctttgcttc	ctcaaatacg	agcgggaact	gcgttgagcg	50
<	211> 212>	997 50 DNA Homo sapiens				
< a		997 agag ggagataatt			tgtttgaatc	50
<	:210> :211> :212> :213>	998 50 DNA Homo sapiens	• • •			
	:400> jcctcg	998 acac atcctcatcc	ccagcatggg	acacctcaag	atgaataata	50
<	:211>	999 50 DNA Homo sapiens	. •	•		
(	<400>	999 agta ggcaaaggtt	: cttcttcctc	ctcttttggt	gcagggacgc	50
•	<210><211><212><213>	1000 50 DNA Homo sapiens				
	<400> atgcag	1000 gtgtt tecetetgtg	g ttagagcaga	gaggtttcga	tatttattga	50
	<210><211><211><212><213>	1001 50 DNA Homo sapiens				
	<400> accaga	1001 aaact tcaaatgtg	t cacaaaagat	: gagcagaact	atcccgaggt	50
	<210><211><212><213>	1002 50 DNA Homo sapiens				
	<400> gtaagg	1002 gcaga cgagagagg	c ggaggtctca	a cagtgaacca	caggatctgg	50
	<210> <211> <212> <213>	1003 50 DNA Homo sapiens				

	1003 ccg ggccagcccc	acctgaagct	cagtgaaagc	tgattaaaaa	50
<211> <212>	1004 50 DNA Homo sapiens		(		
<400> tgttcca	1004 acta ccagecttac	ttgtttaaťa		caaagagaaa	50
<210><211><211><212><213>	1005 20 DNA Homo sapiens			,	•
<400> ctaacgt	1005 ttga gcccctggag				20
<210><211><212><212><213>		. •	and the second		
<400>	1006 agcc gagagaaaac				20
<210><211><212><212><213>					
<400>	Homo sapiens 1007 tggt gaggtagago	a a			21
<210><211><212>					
<213> <400> tgttct		ı	•		20
<210><211>					
<212> <213> <400>	Homo sapiens	_			20
	gaggg tgtgtcttcc				۷ ک
<210> <211>					

<212>	DNA	
<213>	Homo sapiens	
	1010	20
ggerge	tcca gctccataag	
<210>	1011	
<211>	20	
<212>		
<213>	Homo sapiens	
<400>	1011	
	otgg accetgtaaa	20
9999-0		
<210>		
<211>		
<212>	DNA Homo sapiens	
<213>	nollo saprens	
<400>	1012	
	cata gcattcgtct	20
•		
<210>		
<211> <212>		
<213>		
	•	
<400>	1013	
cgcagt	tggg taccttccat	20
<210>	1014	
<211>	·	-
<212>		
<213>	Homo sapiens	
	1014 tggtt cccaccatct	20
rgerer	Lygic Cocaccator	
<210>	1015	
<211>		
<212>		
<213>	Homo sapiens	
<400>	1015	
	aagct tgagcctcct t	21
J		
<210>		
<211>		
<212> <213>		
7010/		
<400>	1016	
ctcagg	ggccc gctcatagta	20

PCT/US03/13015

WO 03/090694

<210> <211>	1017 20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1017	
cacaat	gtgg ccgaggactt	20
<210>	1018	
<211>	20	
<212>		
	Homo sapiens	
<400>	1018	
	ttag gatggcaagg	20
055000		
<210>	1019	
<211> <212>	21 DNA	
<212 <i>&gt;</i>		
12207		
<400>	1019	
caaaga	cgtg ctcggttttc a	21
<210>	1020	
<211>		
<212>		
<213>	Homo sapiens	
.400.	1020	
<400>	1020 ctga ggtggggatg	20
cgaacc		
<210>	1021	
<211>	20	
<212>	DNA Homo garrieng	
<213>	Homo sapiens	
<400>	1021	
catcca	tttc ccctccttcc	20
<210>	1022	
<211>	· · · · · · · · · · · · · · · · · · ·	
<212>		
<213>	Homo sapiens	
<400>		20
cagacg	gtcg gggatggtaa	20
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<400>	1023	
	agat tcgagcagca	20

<210>	1024	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
<400>	1024	
ctqcqaq	ccag agtcagtgga	20
<b>.</b> .	• • • • • • • • • • • • • • • • • • • •	
<210>	1025	
<211>	20	
<212>	DNA.	
<213>	Homo sapiens	
\Z1J/	1101110 Bupitonia	
-4005	1025	
<400>		20
cctgati	tege caatttgtee	
<210>	1026	
<211>	20	
<212>		
<213>	Homo sapiens	
<400>	1026	
cccaac	ccca aaatccctaa	20
<210>	1027	
<211>	20	
<212>	DNA	
<213>		
	-	
<400>	1027	
catcat	ggca agtgtgtcaa `	20
J		
<210>	1028	
<211>	20	
<212>	DNA	
<213>	Homo sapiens	
/21J/	Homo bupicus	
<400>	1028	
	ctgc ctgttttcat	20
tggcct	cege eligibledat	
.010.	1020	
<210>	1029	
<211>		
<212>		
<213>	Homo sapiens	
<400>		22
tggtaa	attt ccccaacagt gtg	23
<210>	1030	
<211>	21	
<212>		
<213>	Homo sapiens	

WO 03/090694 PCT/US03/13015 <400> 1030 21 caccaaggtt tccgaagaca a <210> 1031 <211> 20 <212> DNA <213> Homo sapiens <400> 1031 20 agcaccacgc aagaagatcc <210> 1032 <211> 20 <212> DNA <213> Homo sapiens <400> 1032 20 ctggcgaaga atggtgttcc <210> 1033 . . . <211> 21 <212> DNA <213> Homo sapiens <400> 1033 21 ttgcgcagat acctaggctt g <210> 1034 <211> 22 <212> DNA <213> Homo sapiens <400> 1034 22 tcagccagtc aaaattccaa aa <210> 1035 <211> 20 <212> DNA <213> Homo sapiens <400> 1035 20 acccatctac cggcatcctc <210> 1036 <211> 20 <212> DNA <213> Homo sapiens

<400> 1036

<210> 1037 <211>

<212> DNA

24

gtgccagttc cctttgctgt

20

<213> Homo sapiens					
<400> 1037 caaaacctcg cttactgtca t	gtg		·		24
<210> 1038 <211> 22 <212> DNA <213> Homo sapiens					
<400> 1038 tgggaaagga catcagtctt o	ca				22
<210> 1039 <211> 5252 <212> DNA <213> Homo sapiens					
<400> 1039 ctctctccca gaacgtgtct (	ctgctgcaag g	gcaccgggcc	ctttcgctct	gcagaactgc	60
acttgcaaga ccattatcaa					120
tcatcgccct ccaggactga	ctgcattgca (	cagatgatgg	atatttacgt	atgtttgaaa	180
cgaccatcct ggatggtgga	caataaaaga a	atgaggactg	cttcaaattt	ccagtggctg	240
ttatcaacat ttattcttct	atatctaatg a	aatcaagtaa	atagccagaa	aaagggggct	300
cctcatgatt tgaagtgtgt	aactaacaat 1	ttgcaagtgt	ggaactgttc	ttggaaagca	360
ccctctggaa caggccgtgg	tactgattat (	gaagtttgca	ttgaaaacag	gtcccgttct	420
tgttatcagt tggagaaaac	cagtattaaa a	attccagctc	tttcacatgg	tgattatgaa	480
ataacaataa attctctaca	tgattttgga a	agttctacaa	gtaaattcac	actaaatgaa	540
caaaacgttt ccttaattcc	agatactcca	gagatcttga	atttgtctgc	tgatttctca	600
acctctacat tatacctaaa	gtggaacgac	aggggttcag	tttttccaca	ccgctcaaat	660
gttatctggg aaattaaagt	tctacgtaaa	gagagtatgg	agctcgtaaa	attagtgacc	720
cacaacacaa ctctgaatgg	caaagataca	cttcatcact	ggagttgggc	ctcagatatg	780
cccttggaat gtgccattca	ttttgtggaa	attagatgct	acattgacaa	tcttcatttt	840
tctggtctcg aagagtggag	tgactggagc	cctgtgaaga	acatttcttg	gatacctgat	900
tctcagacta aggtttttcc	tcaagataaa	gtgatacttg	taggctcaga	cataacattt	960
tgttgtgtga gtcaagaaaa	agtgttatca	gcactgattg	gccatacaaa	ctgccccttg	1020
atccatcttg atggggaaaa	tgttgcaatc	aagattcgta	atatttctgt	ttctgcaagt	1080
agtggaacaa atgtagtttt	tacaaccgaa	gataacatat	ttggaaccgt	tatttttgct	1140
ggatatccac cagatactcc	tcaacaacto	aattqtqaqa	cacatgattt	aaaagaaatt	1200

atatgtagtt ggaatcc	aqq aaqqqtgaca	gcgttggtgg (	gcccacgtgc	tacaagctac	1260
actttagttg aaagttt					1320
aacgaaagct atcaatt					1380
ttgaatgctc acaatcc					1440
aaagtttatc cccatac					1500
aaagtttate eecatae					1560
					1620
attaagaaat ctaatto					1680
tcaagttatc ttgttgc					1740
cgttgttcta ctgaaac					
acaacagaag ccagtco					1800
aaaaatttaa taatcta	attg gaagccttta	cccattaatg	aagctaatgg	aaaaatactt	1860
toctacaatg tatogto	gttc atcagatgag	gaaacacagt ·	ccctttctga	aatccctgat	1920
cctcagcaca aagcaga	agat acgacttgat	aagaatgact	acatcatcag	cgtagtggct	1980
aaaaattctg tgggcto	catc accaccttcc	aaaatagcga	gtatggaaat	tccaaatgat	2040
gatctcaaaa tagaaca	aagt tgttgggatg	ggaaagggga	ttctcctcac	ctggcattac	2100
gaccccaaca tgactt	gcga ctacgtcatt	aagtggtgta	actcgtctcg	gtcggaacca	2160
tgccttatgg actggag	gaaa agttccctca	aacagcactg	aaactgtaat	agaatctgat	2220
gagtttcgac caggta	taag atataatttt	ttcctgtatg	gatgcagaaa	tcaaggatat	2280
caattattac gctcca	tgat tggatatata	gaagaattgg	ctcccattgt	tgcaccaaat	2340
tttactgttg aggata	cttč tgcagattcg	atattagtaa	aatgggaaga	cattcctgtg	2400
gaagaactta gaggct					2460
acatctaaga tgaggg				· ·	2520
gacatatccc agaaga					2580
gtcttgcgag cctata					2640
aaggaaaatt ctgtgg					2700
gttggagtgg tgacaa					2760
taccetgata ttecaa					2820
					2880
gagggaagca gtgctc					2940
gttctggaaa ctcgat					3000
gctgagcgtc ctgaag					
tgtccaccca tcattg	gagga agaaatacca	a aacccagccg	g cagatgaag	c tggagggact	3060

gcacaggtta	tttacattga	tgttcagtcg	atgtatcagc	ctcaagcaaa	accagaagaa	3120
gaacaagaaa	atgaccctgt	aggagggca	ggctataagc	cacagatgca	cctccccatt	3180
aattctactg	tggaagatat	agctgcagaa	gaggacttag	ataaaactgc	gggttacaga	3240
cctcaggcca	atgtaaatac	atggaattta	gtgtctccag	actctcctag	atccatagac	3300
agcaacagtg	agattgtctc	atttggaagt	ccatgctcca	ttaattcccg	acaatttttg	3360
attcctccta	aagatgaaga	ctctcctaaa	tctaatggag	gagggtggtc	ctttacaaac	3420
ttttttcaga	acaaaccaaa	cgattaacag	tgtcaccgtg	tcacttcagt	cagccatctc	3480
aataagctct	tactgctagt	gttgctacat	cagcactggg	cattcttgga	gggatcctgt	3540
gaagtattgt	taggaggtga	acttcactac	atgttaagtt	acactgaaag	ttcatgtgct	3600
tttaatgtag	tctaaaagcc	aaagtatagt	gactcagaat	cctcaatcca	caaaactcaa	3660
gattgggagc	tctttgtgat	caagccaaag	aattctcatg	tactctacct	tcaagaagca	3720
tttcaaggctʻ	aatacctact	tgtacgtaca	tgtaaaacaa	atcccgccgc	aactgttttc	3780
tgttctgttg	tttgtggttt	tctcatatgt	atacttggtg	gaattgtaag	tggatttgca	3840
ggccagggag	aaaatgtcca	agtaacaggt	gaagtttatt	tgcctgacgt	ttactccttt	3900
ctagatgaaa	accaagcaca	gattttaaaa	cttctaagat	tattctcctc	tatccacagc	3960
attcacaaaa	attaatataa	tttttaatgt	agtgacagcg	atttagtgtt	ttgtttgata	4020
aagtatgctt	atttctgtgc	ctactgtata	atggttatca	aacagttgtc	tcaggggtac	4080
aaactttgaa	aacaagtgtg	acactgacca	gcccaaatca	taatcatgtt	ttcttgctgt	4140
gataggtttt	gcttgccttt	tcattattt	ttagctttta	tgcttgcttc	cattatttca	4200
gttggttgcc	ctaatattta	aaatttacac	ttctaagact	agagacccac	attttttaaa	4260
aatcatttta	ttttgtgata	cagtgacagc	tttatatgag	caaattcaat	attattcata	4320
agcatgtaat	tccagtgact	tactatgtga	gatgactact	aagcaatatc	tagcagcgtt	4380
agttccatat	agttctgatt	ggatttcgtt	cctcctgagg	agaccatgcc	gttgagcttg	4440
gctacccagg	cagtggtgat	ctttgacacc	ttctggtgga	. tgttcctccc	actcatgagt	4500
cttttcatca	tgccacatta	tctgatccag	tecteacatt	tttaaatata	aaactaaaga	4560
gagaatgctt	cttacaggaa	cagttaccca	agggctgttt	cttagtaact	gtcataaact	4620
gatctggatc	catgggcata	. cctgtgttcg	aggtgcagca	attgcttggt	gagctgtgca	4680
gaattgattg	ccttcagcac	agcatcctct	gcccaccctt	gtttctcata	agcgatgtct	4740
ggagtgattg	tggttcttgg	aaaagcagaa	ggaaaaacta	aaaagtgtat	cttgtatttt	4800
ccctgccctc	aggttgccta	tgtattttac	cttttcatat	: ttaaggcaaa	agtacttgaa	4860

aattttaagt gtccgaataa gatatgtctt ttttgtttgt ttttttggt tggttgtttg 4920
ttttttatca tctgagattc tgtaatgtat ttgcaaataa tggatcaatt aattttttt 4980
gaagctcata ttgtatcttt ttaaaaacca tgttgtggaa aaaagccaga gtgacaagtg 5040
acaaaatcta tttaggaact ctgtgtatga atcctgattt taactgctag gattcagcta 5100
aatttctgag ctttatgatc tgtggaaatt tggaatgaa tcgaattcat tttgtacata 5160
catagtatat taaaactata taatagttca tagaaatgtt cagtaatgaa aaaatatatc 5220
caatcagagc catcccgaaa aaaaaaaaa aa 5252

<210> 1040

<211> 5252

<212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (3967)..(3988)

<223> n is a, c, g, t or u

<400> 1040 ctctctccca gaacgtgtct ctgctgcaag gcaccgggcc ctttcgctct gcagaactgc 60 acttgcaaga ccattatcaa ctcctaatcc cagctcagaa agggagcctc tgcgactcat 120 tcatcgccct ccaggactga ctgcattgca cagatgatgg atatttacgt atgtttgaaa 180 cgaccatcct ggatggtgga caataaaaga atgaggactg cttcaaattt ccagtggctg 240 ttatcaacat ttattcttct atatctaatg aatcaagtaa atagccagaa aaagggggct 300 cctcatgatt tgaagtgtgt aactaacaat ttgcaagtgt ggaactgttc ttggaaagca 360 ccctctggaa caggccgtgg tactgattat gaagtttgca ttgaaaacag gtcccgttct 420 tgttatcagt tggagaaaac cagtattaaa attccagctc tttcacatgg tgattatgaa 480 540 ataacaataa attototaca tgattttgga agttotacaa gtaaattcac actaaatgaa caaaacgttt ccttaattcc agatactcca gagatcttga atttgtctgc tgatttctca 600 660 acctctacat tatacctaaa gtggaacgac aggggttcag tttttccaca ccgctcaaat gttatctggg aaattaaagt tctacgtaaa gagagtatgg agctcgtaaa attagtgacc 720 cacaacacaa ctctgaatgg caaagataca cttcatcact ggagttgggc ctcagatatg 780 cccttggaat gtgccattca ttttgtggaa attagatgct acattgacaa tcttcatttt 840 900 tetggteteg aagagtggag tgaetggage cetgtgaaga acatttettg gatacetgat 960 tctcagacta aggtttttcc tcaagataaa gtgatacttg taggctcaga cataacattt 1020 tgttgtgtga gtcaagaaaa agtgttatca gcactgattg gccatacaaa ctgccccttg

atccatcttg atggggaaaa tgttgcaatc aagattcgta atatttctgt ttctgcaagt	1080
agtggaacaa atgtagtttt tacaaccgaa gataacatat ttggaaccgt tatttttgct	1140
ggatatccac cagatactcc tcaacaactg aattgtgaga cacatgattt aaaagaaatt	1200
atatgtagtt ggaatccagg aagggtgaca gcgttggtgg gcccacgtgc tacaagctac	1260
actttagttg aaagtttttc aggaaaatat gttagactta aaagagctga agcacctaca	1320
aacgaaagct atcaattatt atttcaaatg cttccaaatc aagaaatata taattttact	1380
ttgaatgctc acaatccgct gggtcgatca caatcaacaa ttttagttaa tataactgaa	1440
aaagtttatc cccatactcc tacttcattc aaagtgaagg atattaattc aacagctgtt	1500
aaactttctt ggcatttacc aggcaacttt gcaaagatta atttttatg tgaaattgaa	1560
attaagaaat ctaattcagt acaagagcag cggaatgtca caatcaaagg agtagaaaat	1620
tcaagttatc ttgttgctct ggacaagtta aatccataca ctctatatac ttttcggatt	1680
cgttgttcta ctgaaacttt ctggaaatgg agcaaatgga gcaataaaaa acaacattta	1740
acaacagaag ccagtccttc aaaggggcct gatacttgga gagagtggag ttctgatgga	1800
aaaaatttaa taatctattg gaagccttta cccattaatg aagctaatgg aaaaatactt	1860
tectacaatg tategtgtte ateagatgag gaaacacagt eeetttetga aateeetgat	1920
cctcagcaca aagcagagat acgacttgat aagaatgact acatcatcag cgtagtggct	1980
aaaaattctg tgggctcatc accaccttcc aaaatagcga gtatggaaat tccaaatgat	2040
gatctcaaaa tagaacaagt tgttgggatg ggaaagggga ttctcctcac ctggcattac	2100
gaccccaaca tgacttgcga ctacgtcatt aagtggtgta actcgtctcg gtcggaacca	2160
tgccttatgg actggagaaa agttccctca aacagcactg aaactgtaat agaatctgat	2220
gagtttcgac caggtataag atataatttt ttcctgtatg gatgcagaaa tcaaggatat	2280
caattattac gctccatgat tggatatata gaagaattgg ctcccattgt tgcaccaaat	2340
tttactgttg aggatacttc tgcagattcg atattagtaa aatgggaaga cattcctgtg	2400
gaagaactta gaggcttttt aagaggatat ttgttttact ttggaaaagg agaaagagac	2460
acatctaaga tgagggtttt agaatcaggt cgttctgaca taaaagttaa gaatattact	2520
gacatatccc agaagacact gagaattgct gatcttcaag gtaaaacaag ttaccacctg	2580
gtcttgcgag cctatacaga tggtggagtg ggcccggaga agagtatgta tgtggtgaca	2640
aaggaaaatt ctgtgggatt aattattgcc attctcatcc cagtggcagt ggctgtcatt	2700
gttggagtgg tgacaagtat cctttgctat cggaaacgag aatggattaa agaaaccttc	2760
taccctgata ttccaaatcc agaaaactgt aaagcattac agtttcaaaa gagtgtctgt	2820
gagggaagca gtgctcttaa aacattggaa atgaatcctt gtaccccaaa taatgttgag	2880

gttctggaaa	ctcgatcagc	atttcctaaa	atagaagata	cagaaataat	ttccccagta	2940
gctgagcgtc	ctgaagatcg	ctctgatgca	gagcctgaaa	accatgtggt	tgtgtcctat	3000
tgtccaccca	tcattgagga	agaaatacca	aacccagccg	cagatgaagc	tggagggact	3060
gcacaggtta	tttacattga	tgttcagtcg	atgtatcagc	ctcaagcaaa	accagaagaa	3120
gaacaagaaa	atgaccctgt	aggaggggca	ggctataagc	cacagatgca	cctccccatt	3180
aattctactg	tggaagatat	agctgcagaa	gaggacttag	ataaaactgc	gggttacaga	3240
cctcaggcca	atgtaaatac	atggaattta	gtgtctccag	actctcctag	atccatagac	3300
agcaacagtg	agattgtctc	atttggaagt	ccatgctcca	ttaattcccg	acaatttttg	3360
attcctccta	aagatgaaga	ctctcctaaa	ţctaatggag	gagggtggtc	ctttacaaac	3420
ttttttcaga	acaaaccaaa	cgattaacag	tgtcaccgtg	tcacttcagt	cagccatctc	3480
aataagctct	tactgctagt	gttgctacat	cagcactggg	cattcttgga	gggatcctgt	3540
gaagtattgt	taggaggtga	acttcactac	atgttaagtt	acactgaaag	ttcatgtgct	3600
tttaatgtag	tctaaaagcc	aaagtatagt	gactcagaat	cctcaatcca	caaaactcaa	3660
gattgggagc	tctttgtgat	caagccaaag	aattctcatg	tactctacct	tcaagaagca	3720
tttcaaggct	aatacctact	tgtacgtaca	tgtaaaacaa	. atcccgccgc	aactgttttc	3780
tgttctgttg	tttgtggttt	tctcatatgt	atacttggtg	gaattgtaag	tggatttgca	3840
ggccagggag	aaaatgtcca	agtaacaggt	gaagtttatt	: tgcctgacgt	ttactccttt	3900
ctagatgaaa	accaagcaca	gattttaaaa	cttctaagat	: tattctcctc	tatccacagc	3960
attcacnnnn	nnnnnnnnn	nnnnnnngt	agtgacagcg	atttagtgtt	ttgtttgata	4020
aagtatgctt	atttctgtgc	: ctactgtata	atggttatca	a aacagttgtc	: tcaggggtac	4080
aaactttgaa	aacaagtgtg	g acactgacca	a gcccaaatca	a taatcatgtt	ttettgetgt	4140
gataggtttt	gcttgccttt	tcattattt	ttagctttta	a tgcttgctto	cattatttca	4200
gttggttgcc	: ctaatattta	a aaatttacad	c ttctaagact	agagacccac	attttttaaa	4260
aatcatttta	ttttgtgata	a cagtgacago	c tttatatgag	g caaattcaat	: attattcata	4320
agcatgtaat	tccagtgact	tactatgtg	a gatgactaci	t aagcaatato	tagcagcgtt	4380
agttccatat	agttctgat	ggatttcgtt	t cctcctgag	g agaccatgc	gttgagcttg	4440
gctacccago	g cagtggtga	t ctttgacac	c ttctggtgg	a tgttcctcc	c actcatgagt	4500
cttttcatca	a tgccacatt	a totgatoca	g tcctcacat	t tttaaatata	a aaactaaaga	4560
gagaatgctt	cttacagga	a cagttaccc	a agggctgtt	t cttagtaac	t gtcataaact	4620
gatctggato	c catgggcat	a cctgtgttc	g aggtgcagc	a attgcttgg	t gagctgtgca	4680

gaattgattg ccttcagcac agcatcctct gcccaccctt gtttctcata agcgatgtct	4740
ggagtgattg tggttcttgg aaaagcagaa ggaaaaacta aaaagtgtat cttgtatttt	4800
ccctgccctc aggttgccta tgtattttac cttttcatat ttaaggcaaa agtacttgaa	4860
aattttaagt gtccgaataa gatatgtctt ttttgtttgt tttttttggt tggttgtttg	4920
ttttttatca tctgagattc tgtaatgtat ttgcaaataa tggatcaatt aattttttt	4980
gaageteata ttgtatettt ttaaaaaecca tgttgtggaa aaaageeaga gtgacaagtg	5040
acaaaatcta tttaggaact ctgtgtatga atcctgattt taactgctag gattcagcta	5100
aatttctgag ctttatgatc tgtggaaatt tggaatgaaa tcgaattcat tttgtacata	5160
catagtatat taaaactata taatagttca tagaaatgtt cagtaatgaa aaaatatatc	5220
caatcagagc catcccgaaa aaaaaaaaaa aa	5252
<210> 1041 <211> 50 <212> DNA <213> Homo sapiens	
<400> 1041 agaaatgtaa aaatatatcc aatcagagcc atcccgaaaa	50
<210> 1042 <211> 841 <212> DNA <213> Homo sapiens	
<400> 1042 ttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac	60.
aagtgtteet etaaattaga aaggeateae taetaaaatt ttatacatat titttatata	120
agagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga	180
acagctatta aaatgactaa tattgctaaa atgaaggcta ctaaatttcc ccaagaattt	240
cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa	300
tctctccacc ccttcataaa agatttaagc taaaaaaaaa aaaaaaagaa gaaaatccaa	360
cagctgaaga cattgggcta tttataaatc ttctcccagt cccccagaca gcctcacatg	420
ggggctgtaa acagctaact aaaatatctt tgagactctt atgtccacac ccactgacac	480
aaggagagct gtaaccacag tgaaactaga ctttgctttc ctttagcaag tatgtgccta	540
tgatagtaaa ctggagtaaa tgtaacagta ataaaacaaa tttttttaa aaataaaaat	600
tatacctttt tctccaacaa acggtaaaga ccacgtgaag acatccataa aattaggcaa	660
ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt	720
aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt	780

attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg

a	841
<210> 1043 <211> 841 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> (94)(121) <223> n is a, c, g, t or u	
<220> <221> misc_feature <222> (569)(604) <223> n is a, c, g, t or u	
<400> 1043 ttttttttt ttttcttaaa tagcatttat tttctctcaa aaagcctatt atgtactaac	60
aagtgttcct ctaaattaga aaggcatcac tacnnnnnn nnnnnnnnn nnnnnnnnn	120
ngagaaggaa tattgggtta caatctgaat ttctctttat gatttctctt aaagtataga	180
acagctatta aaatgactaa tattgctaaa atgaaggcta ctaaatttcc ccaagaattt	240
cggtggaatg cccaaaaatg gtgttaagat atgcagaagg gcccatttca agcaaagcaa	300
tctctccacc ccttcataaa agatttaagc taaaaaaaaa aaaaaaagaa gaaaatccaa	360
cagetgaaga cattgggeta tttataaate tteteccagt eecceagaca geeteacatg	420
ggggctgtaa acagctaact aaaatatctt tgagactctt atgtccacac ccactgacac	480
aaggagaget gtaaccacag tgaaactaga ctttgctttc ctttagcaag tatgtgccta	540
tgatagtaaa ctggagtaaa tgtaacagnn nnnnnnnnn nnnnnnnnn nnnnnnnnn	600
	660
nnnncctttt tctccaacaa acggtaaaga ccacgtgaag acatccataa aattaggcaa	720
ccagtaaaga tgtggagaac cagtaaactg tcgaaattca tcacattatt ttcatacttt	780
aatacagcag ctttaattat tggagaacat caaagtaatt aggtgccgaa aaacattgtt	
attaatgaag ggaacccctg acgtttgacc ttttctgtac catctatagc cctggacttg	840
a	841
<210> 1044 <211> 50 <212> DNA <213> Homo sapiens	
<400> 1044 gggcattcca ccgaaattct tggggaaatt tagtagcctt cattttagca	50

```
<210> 1045
<211> 609
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (303)..(304)
<223> n is a, c, g, t or u
<400> 1045
caggicacac agcacatcag tggctacatg tgagetcaga cetgggtetg etgetgtetg
                                                                          60
tetteccaat atecatgace ttgactgatg caggtgteta gggatacgte cateccegte
                                                                          120
ctgctggagc ccagagcacg gaagcctggc cctccgagga gacagaaggg agtgtcggac
                                                                          180
accatgacga gagcttggca gaataaataa cttctttaaa caattttacg gcatgaagaa
                                                                          240
atctggacca gtttattaaa tgggatttct gccacaaacc ttggaagaat cacatcatct
                                                                          3.00
tanncccaag tgaaaactgt gttgcgtaac aaagaacatg actgcgctcc acacatacat
                                                                          360
cattgcccgg cgaggcggga cacaagtcaa cgacggaaca cttgagacag gcctacaact
                                                                          420
gtgcacgggt cagaagcaag tttaagccat acttgctgca gtgagactac atttctgtct
                                                                          480
atagaagata cctgacttga tctgtttttc agctccagtt cccagatgtg cgtgttgtgg
                                                                          540
tecceaagta teacetteea atttetggga geagtgetet ggeeggatee ttgeegegeg
                                                                          600
                                                                           609
 gataaaaac
 <210> 1046
<211> 50
                   المنافقة والمنافقة  <212> DNA
 <213> Homo sapiens
 <400> 1046
                                                                            50
 cagttcccag atgtgcgtgt tgtggtcccc aagtatcacc ttccaatttc
 <210> 1047
 <211> 50
 <212> DNA
 <213> Homo sapiens
 <400> 1047
                                                                            50
 gtcccttagg ggagggagag ttgtcctctt tgcccacagt ctaccctcag
 <210> 1048
 <211> 63
  <212> DNA
 <213> Homo sapiens
  <400> 1048
```

ggccagtgaa	ttgtaatacg	actcactata	gggaggcggt	tttttttt	tttttttt	60
ttt						63
			10			
<210> 1049 <211> 463 <212> DNA <213> Homo	o sapiens	- 11% - 38°°''	÷ ••	u* ·	, .	
<400> 1049	e					60
ttggcttgac	tcaggattta	aaaactggaa	cggtgaaggt	gacagcagtc	ggttggacga	60
gcatccccca	aagttcacaa	tgtggccgag	gactttgatt	gcacattgtt	gttttttaat	120
agtcattcca	aatatgagat	gcattgttac	aggaagtccc	ttgccatcct	aaaagcaccc	180
cacttctctc	taaggagaat	ggcccagtcc	tctcccaagt	ccacacaggg	gagggatagc	240
attgctttcg	tgtaaattat	gtaatgcaaa	atttttttaa	tcttcgcctt	aatcttttt	300
attttgttt	attttgaatg	atgagccttc	gtgcccccc	ttcccccttt	tttcccccaa	360
cttgagatgt	atgaaggctt	ttggtctccc	tgggagtggg	tggaggcagc	cgggcttacc	420
tgtacactga	cttgagacca	gttgaataaa	agtgcacacc	tta		463
	o sapiens					
<400> 105 gaagagtaco	: agaaaagtct	gctagagcag	j taccatctgg	gtctggatca	aaaacgcaga	60 [,]
aaatatgtgg	ı ttggagagct	: catttggaat	: tttgccgatt	tcatgactga	acagtcaccg	120
acgagagtgo	tggggaáta	a aaaggggato	ttcactcggc	: agagacaacc	c aaaaagtgca	180
gcgttccttt	tgcgagagag	g atactggaag	g attgccaatc	g aaaccaggta	a tccccactca	240
gtagccaagt	cacaatgtt	t ggaaaacag	c ccgtttactt	: gagcaagact	gataccacct	300
gcgtgtccct	tactacaag	a gtcagggcga	a cttccacago	agcagaacaa	a gtgcctcctg	360
gactgttca	c ggcagacca	g aacgtttct	g gcctgggttt	tgtggtcato	c tattctagca	420
gggaacact	a aaggtggaa	a taaaagatt	t tctattatgg	g aaataaagaq	g ttggcatgaa	480
agtcgctac	t g					491
<210> 10 <211> 20 <212> DN <213> Ho						
	51 g ccgaggact	t				20

<210><211><211><212><213>	1052 20 DNA Homo sapiens		
<400> tgtggc	1052 cgag gactttgatt		20
<210><211><211><212><213>	<u>.</u>	•	
	1053 ttag gatggcaagg		20
<210><211><211><212><213>	DNA		
<400>	1054 cttag tttgcttcct		20
<210><211><211><212><213>	20 DNA		
<400> aagtg	1055 cagcg ttccttttgc		20
<210> <211> <212> <213>	20 DNA	and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o	
<400> agcgt	1056 tcctt ttgcgagaga		20
<400:	> 1057 ctgttt tccaaacatt		20
<210: <211: <212: <213:	> 20		
-400	> 1058		

gaagggacac gcaggtggta	20
<210> 1059 <211> 20 <212> DNA <213> Homo sapiens	
<400> 1059 taccacctgc gtgtcccttc	20
<210> 1060 <211> 21 <212> DNA <213> Homo sapiens	
<400> 1060 gaggcacttg ttctgctgct g	21
<210> 1061 <211> 327 <212> DNA <213> Homo sapiens	
<400> 1061 ggggactctg gaggccctct tgtgtgtaac aaggtggccc agggcattgt ctcctatgga	60
cgaaacaatg gcatgcctcc acgagcctgc accaaagtct caagctttgt acactggata	120
aagaaaacca tgaaacgcta ctaactacag gaagcaaact aagcccccgc tgtaatgaaa	180
caccttctct ggagccaagt ccagatttac actgggagag gtgccagcaa ctgaataaat	240
acctetecca gtgtaaatet ggageeaagt eeagatttae aetgggagag gtgeeageaa	300
ctgaataaat acctcttagc tgagtgg	327
<210> 1062 <211> 20 <212> DNA <213> Homo sapiens	
<400> 1062 acgagcctgc accaaagtct	. 20
<210> 1063 <211> 20 <212> DNA <213> Homo sapiens	
<400> 1063 aaacaatggc atgcctccac	20
<210> 1064 <211> 20 <212> DNA	

PCT/US03/13015

WO 03/090694

WO 03/090694	PCT/US03/13015
<213> Homo sapiens	
<400> 1064 tcattacagc gggggcttag	20
<210> 1065 <211> 20 <212> DNA <213> Homo sapiens	
<400> 1065 gggggcttag tttgcttcct	20