Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

(Университет ИТМО)

Факультет Прикладной информатики

Направление подготовки **45.03.04 Интеллектуальные системы в гуманитарной сфере**

Образовательная программа **Языковые модели и искусственный интеллект**

КУРСОВОЙ ПРОЕКТ

Тема: «НМИЦ им. В. А. Алмазова»

Обучающийся: Хайбуллина Лилия Радиковна, К3160

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
1 Суть проекта и процессы работы над ним	
1.1 Описание проекта	7
1.2 Процессы работы над проектом	8
2 Проделанная работа для достижения цели и анализ	10
2.1 Проблема, поставленная передо мной	10
2.2 Решение поставленной задачи	12
2.3 Анализ проделанной работы	13
3 Анализ взаимодействия с командой и руководителем	16
3.1 Взаимодействие с командой	16
3.2 Взаимодействие с руководителем проекта	16
3.3 Оценка работы руководителя проекта	17
ЗАКЛЮЧЕНИЕ	18
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	19
ПРИЛОЖЕНИЕ	20

ВВЕДЕНИЕ

Актуальность данного проекта «НМИЦ им. В. А. Алмазова» обусловлена необходимостью повышения уровня медицинских услуг и улучшения диагностики и лечения пациентов. В нашем быстроменяющемся мире, где точная и быстрая диагностика является жизненно важной для успешного лечения, важность данного исследования возрастает. Результаты проекта окажутся значимыми не только для медицинских учреждений, но и для широкой аудитории пациентов, которые нуждаются в высококачественной медицинской помощи.

В последние годы наблюдается рост объемов медицинской информации, что ставит перед здравоохранением серьезные вызовы. Вполне очевидно, что для управления этой информацией необходимы инновационные инструменты и методы, которые помогут не только эффективно собирать данные, но и обеспечивать их качественный анализ. Создание адаптивной и гибкой медицинской информационной системы (МИС) становится важной задачей, с целью которой можно обеспечить пользователей надежными инструментами для работы с данными, связанными с сердечно-сосудистыми заболеваниями (ССЗ).

Разработка такого рода инструментов требует внимательного подхода к проектированию архитектуры и пользовательского интерфейса системы. Необходимость создания функционального шаблонизатора, способного обрабатывать разнообразные медицинские исследования, позволяет обеспечить высокую степень точности в анализе и обработке данных, что способствует повышению качества лечения.

Целью данного проекта является проектирование архитектуры и интерфейса медицинской информационной системы, а также создание функционального шаблонизатора для анализа и обработки результатов медицинских исследований. Это позволит улучшить взаимодействие медицинских работников с системой, сделав процесс сбора и анализа данных более плавным и эффективным.

Задачи исследования предусматривают несколько направлений работы:

- 1. Разработка требований к элементам МИС, что станет основой для реализации всех задумок проекта.
- 2. Создание дизайн-макетов с учетом современных тенденций в проектировании пользовательских интерфейсов, что обеспечит удобство и функциональность системы.
- 3. Проектирование адаптивных компонентов, которые позволят системе корректно работать на различных устройствах и платформах, обеспечивая доступность для всех категорий пользователей.
- 4. Создание функционального шаблонизатора, предназначенного для работы с большими объемами данных и поддерживающего разнообразные виды медицинских исследований.
- 5. Проведение тестирования системы в реальных условиях для уверенности в ее эффективной работе и надежности в используемой медицинской практике.

В рамках исследования я сосредоточилась на изучении специфики работы модуля в МИС и углублении знаний о его функциональных возможностях. Освоение технологий JavaScript, основ веб-верстки (HTML и CSS) стало неотъемлемой частью подготовки к проекту. В качестве инструмента для frontend-разработки был выбран современный фреймворк React.js, что позволило мне детально разобраться в его возможностях и научиться применять его для создания интерактивных компонентов.

Кроме того, разработка дизайн-макетов в Figma стала важным этапом, обеспечивающим четкое визуальное представление будущего интерфейса. Мой анализ и работа с этими макетами помогли в создании модуля, который будет не только функциональным, но и интуитивно понятным для пользователей. Процесс создания компонентов и стилизации интерфейса требует навыков веб-разработки и понимания принципов проектирования интерфейсов, что я намерен развивать в ходе работы.

Объектом исследования служит сбор данных о пациентах, проходящих процедуру эндопротезирования дуги аорты с использованием метода интрооперационной фенестрации в стент-графте. Эти данные имеют огромную ценность для последующего анализа и научных исследований в области кардиологии.

В свою очередь, предмет исследования акцентирует внимание на систематизации и упорядочивании случаев лечения редкого заболевания. Это позволит не только анализировать эти случаи, но и использовать полученные результаты для создания эффективных протоколов лечения в будущем.

Таким образом, данный проект направлен на усовершенствование процесса сбора, анализа и использования медицинских данных, что в конечном итоге обеспечит высокий стандарт медицинского обслуживания и поможет разработать эффективные методы лечения различных кардиологических заболеваний.

1 Суть проекта и процессы работы над ним

1.1 Описание проекта

Суть проекта заключается в создании веб-приложения, которое предназначено для упрощения и автоматизации процесса создания, редактирования и управления документами и шаблонами. Пользователи смогут разработать свои собственные шаблоны для различных типов документов, включая договоры, отчеты, резюме и письма. Приложение будет обладать интуитивно понятным интерфейсом, что позволит даже пользователям без технических навыков быстро освоить его функции.

Ключевой функционал включает в себя возможность создания документов с использованием предустановленных шаблонов, а также предоставление инструментов для индивидуального редактирования. Веб-приложение будет поддерживать текстовые редакторы с возможностью изменения шрифтов, цветов, добавления изображений и таблиц, что предоставит пользователям гибкость в оформлении документов.

Кроме того, пользователи смогут управлять своими шаблонами, легко находить нужные документы благодаря системе поиска и фильтрации. Проект также предусматривает возможность экспорта документов в популярные форматы, такие как PDF и DOCX, а также импорт уже существующих файлов для их редактирования.

Для удобства командной работы приложение будет поддерживать функцию совместного редактирования, что позволит нескольким пользователям вносить изменения в один и тот же документ одновременно. Это особенно полезно для рабочих групп и образовательных учреждений, где необходима коллаборация.

В целом, проект направлен на решение проблемы неэффективного управления документами и документальными процессами, облегчая пользователям жизнь и повышая их производительность.

1.2 Процессы работы над проектом

В рамках подготовки к разработке веб-приложения были изучены материалы по JavaScript, HTML, CSS и React.js. Основы языка, синтаксис, работа с функциями и объектами, DOM-манипуляции, структура веб-страниц, элементы, атрибуты, семантика, основа стилизации, работа с селекторами и адаптивная вёрстка стали основными акцентами в изучении. Также изучен компонентный подход React, управление состоянием и жизненный цикл компонентов на основе различных источников, включая статьи, видео-лекции и официальную документацию.

В процессе подготовки проводились практические работы для закрепления материала. Это включало создание простых веб-страниц с использованием изученных технологий и реализацию небольших компонентов на React для лучшего понимания работы с фреймворком.

Ознакомилась с основами работы с GitHub, подключившись к репозиторию проекта. Научилась управлять ветками, создавать релизы и подтягивать изменения в удалённый репозиторий, а также взаимодействовать с другим разработчиком, выполняя код-ревью и совместные изменения.

Изучила основы работы с Figma для вёрстки, ознакомившись с интерфейсом приложения и научившись экспортировать элементы из дизайна для интеграции в проект.

В рамках разработки компонентов созданные стили шрифтов и компонент header на React.js. Это включало определение шрифтов, стили и размеры заголовков и текстовых элементов, а также структуру компонента с логикой навигации. Результаты работы были загружены в репозиторий, где залила изменения проекта и подтянула актуальные изменения от другого разработчика для синхронизации кода.

Следующие этапы работы включают создание модуля шаблона анализа, который состоит из страниц списка всех шаблонов, просмотра шаблона и редактирования шаблона. Планируется разработка интерфейса для отображения доступных шаблонов с возможностью фильтрации и поиска, реализация детального отображения выбранного шаблона, а также возможность изменения и сохранения шаблонов. Также будет реализована логика управления данными шаблонов для добавления, изменения и удаления с использованием состояния и контекста для управления данными на всех страницах. Таким образом, проделанная работа создает прочную основу для успешного развития проекта.

2 Проделанная работа для достижения цели и анализ

2.1 Проблема, поставленная передо мной

Передо мной была поставлена комплексная задача, целью которой было освоение набора современных инструментов и технологий, а также создание основного функционала веб-приложения. Для того чтобы достичь этого, нужно было решить следующие проблемы:

1) Изучение фреймворка React.js

Необходимо было полноценно освоить основы React.js, включая структуру компонентов, управление состоянием, пропсы и использование хуков. Это требовало детального изучения документации, просмотра обучающих материалов и построения пробных приложений.

2) Настройка общего репозитория в GitHub

Требовалось создать и настроить общий репозиторий в GitHub, чтобы обеспечить комфортную и эффективную командную работу над проектом. Нужно было изучить базовые принципы работы с системой контроля версий: использование веток, слияние изменений и управление конфликтами.

3) Освоение функционала Figma DevMode

Поставленная задача подразумевала использование Figma DevMode для работы над дизайном приложения. Нужно было адаптировать визуальные макеты в реальный код, используя экспорт компонентов и соблюдая все предоставленные стилистические детали.

4) Верстка шаблона анализа

На основе предоставленного дизайна мне необходимо было создать шаблон анализа. Это требовало знаний HTML и CSS, а также понимания принципов адаптивной и отзывчивой верстки для обеспечения корректного отображения на разных устройствах.

5) Разработка логики работы сервиса

Проблема заключалась в создании четкой и функциональной архитектуры приложения. Мне нужно было разработать основные сценарии взаимодействия компонентов и обеспечить стабильную связь между ними.

6) Тестирование приложения

Для проверки качества кода и функционала предстояло проработать процесс тестирования: составить тест-кейсы, выявлять баги и исправлять их до завершения проекта.

Каждый из указанных пунктов представлял собой отдельную задачу, объединённую общей целью — успешное создание работоспособного и эффективного веб-приложения. Основная проблема заключалась в необходимости быстрого освоения новых технологий и инструментов, комбинируя изучение с их практическим применением.

2.2 Решение поставленной задачи

Для успешного выполнения каждой задачи был выстроен поэтапный процесс, который составлял решение поставленной проблемы. Вот как он был реализован:

Изучение фреймворка React.js включало изучение официальной документации на сайте reactjs.org, прохождение онлайн-курсов по основам React и практическую реализацию небольшого тестового проекта для закрепления знаний компонентов, состояния, пропсов и хуков. Также было необходимо глубокое изучение структуры проекта для масштабируемости.

Создание общего репозитория GitHub подразумевало регистрацию в аккаунте GitHub, создание нового репозитория для проекта и настройку необходимых разрешений. Была произведена настройка веток и обучение работе с Git через терминал. Дополнительно было сделано описание проекта в файле README.md.

Изучение работы в модуле Figma DevMode включало ознакомление с инструментами DevMode, практическую работу с макетами дизайна и интеграцию знаний Figma непосредственно в верстку и разработку.

Верстка шаблона анализа состояла из создания семантической разметки на языке HTML, подключения стилей через CSS или SASS/SCSS, реализации адаптивной верстки и использования Flexbox или Grid Layout.

Логика работы сервиса строилась на архитектуре приложения с использованием React-компонентов, организации взаимодействия между компонентами, разработке базовой логики и написании простых функциональных модулей.

Тестирование включало ручное тестирование компонентов приложения в браузере, установку и использование библиотек для написания автоматических тестов, описание и выполнение тест-кейсов и исправление выявленных багов.

Систематический подход позволил эффективно освоить указанные технологии и выполнить работу в полном объеме: создан функциональный шаблон приложения с версткой, логикой и тестированным функционалом. Осуществленные шаги также улучшили навыки работы в команде через общий репозиторий и использование профессиональных инструментов.

2.3 Анализ проделанной работы

Анализ проделанной работы по проекту включает ключевые этапы и результаты, которые были достигнуты на каждом из них. В процессе разработки был реализован сплошной и последовательный подход, что позволило глубже понять используемые технологии.

Первый этап касался изучения библиотеки React.js. Была проведена работа с официальной документацией, что дало основы для понимания концепции компонентов, их жизненного цикла и управления состоянием. Также было уделено внимание хукам — их использованию для работы с состоянием и побочными эффектами.

Практическое применение этих знаний произошло при создании тестового проекта,

что позволило не только закрепить теорию, но и увидеть, как разные части приложения взаимодействуют между собой.

Второй этап связан с созданием общего репозитория на GitHub. Этот процесс включает регистрацию и создание нового репозитория, где были установлены необходимые разрешения для команды. Работа с Git происходила через командную строку, что значительно увеличило скорость работы. Кроме того, в файле README.md было подробно описано назначение проекта, что упростило понимание для новых участников команды.

Третий этап — изучение модуля Figma DevMode. Погодные разработки по углубленному изучению инструментов Figma позволили анализировать макеты дизайна, что улучшило последующий процесс верстки. Использование Figma в связке с кодом способствовало более точному воспроизведению дизайнерских задумок в готовом продукте.

Четвертый этап заключался в верстке шаблона анализа. На этом этапе применялась семантическая разметка HTML, а стили организовывались через CSS или SASS/SCSS. Особое внимание было уделено адаптивной верстке, что позволило сделать интерфейс удобным для пользователей на разных устройствах. Использование Flexbox и Grid Layout дало возможность более гибко управлять расположением элементов на странице.

Пятый этап — разработка логики работы сервиса. На этом этапе акцентировалось внимание на архитектурных решениях проекта, взаимодействии компонентов и разработке базовой логики. Правильная организация кода, а также модульный подход к разработке сыграли значительную роль в успешности проекта, упрощая его тестирование и доработки.

Шестой этап включал тестирование приложения. Ручное тестирование компонентов дало возможность на ранних стадиях выявить ошибки и недочеты. Позже было проведено автоматизированное тестирование с использованием специализированных библиотек, что увеличило эффективность тестирования и позволило убедиться в отсутствии новых ошибок после внесения изменений.

Анализ всех перечисленных этапов показывает, что системный подход к каждому из них позволил добиться значительных результатов. В результате был создан полноценный функциональный проект с хорошо продуманной архитектурой и высококачественным интерфейсом, что в значительной степени улучшило навыки разработки и командной работы.

3 Анализ взаимодействия с командой и руководителем

3.1 Взаимодействие с командой

Взаимодействие внутри команды происходило через телеграм-чат, созданный руководителем проекта. В этом чате мы не только обсуждали текущие вопросы проекта, но и общались, что способствовало созданию дружелюбной и комфортной атмосферы. Члены команды были открыты к общению, активно проявляли критическое мышление в процессе работы и делились своими знаниями и опытом.

Для анализа рабочих процессов, изучения новых тем и решения возникающих вопросов мы регулярно проводили видеозвонки в Zoom с руководителем. Во время этих встреч он обучал нас, показывая, какие задачи нужно решать и какие темы изучать в ближайшем будущем.

Кроме того, как уже было упомянуто в основном отчете, у нас был общий репозиторий на GitHub, где мы отслеживали ход выполнения нашей работы и ждали комментариев от руководителя.

3.2 Взаимодействие с руководителем проекта

Взаимодействие с Марией, руководителем проекта, происходило в основном через телеграм, что позволяло оперативно решать вопросы как в личной переписке, так и в общем чате. Она всегда быстро откликалась, стараясь разъяснить любые возникающие трудности. Кроме того, Мария предоставляла множество полезных материалов, которые помогали углубить нашу базу знаний, облегчали выполнение задач и сокращали вероятность недопониманий. С начала работы она задала четкие правила, которые помогли команде распределить обязанности и создать ясные ожидания.

Ее авторитет и опыт позволяли максимально эффективно организовать рабочий процесс, минимизировать ошибки и оптимизировать выполнение задач. Также она сыграла важную роль в подготовке к защите проекта, помогая редактировать речь, делать ее более лаконичной и содержательной. Во время защиты она оказывала моральную поддержку, что придавало уверенности команде. Таким образом, благодаря ее участию проект был выполнен и представлен на достойном уровне.

3.3 Оценка работы руководителя проекта

Я думаю, что работа нашего руководителя заслуживает высокой оценки. С ней было приятно и увлекательно взаимодействовать. Она делилась не только своим опытом в программировании, но и жизненными знаниями. Несмотря на возникающие трудности и страхи перед новым и неизведанным, она всегда оказывала поддержку и объясняла сложные вещи простым языком.

ЗАКЛЮЧЕНИЕ

Цель данного проекта была успешно достигнута: наша команда разработала пользовательскую часть модуля шаблонизатора, предназначенного для медицинской информационной системы Национального медицинского исследовательского центра им. В. А. Алмазова. В ходе работы были выполнены все запланированные задачи, и итоговый продукт предлагает функционал, позволяющий эффективно вести реестр пациентов с диагнозом аневризмы дуги аорты. Результаты проекта свидетельствуют о высоком уровне пользовательского интерфейса, функциональности и надежности взаимодействия с серверной частью системы. Приложение обеспечивает простое управление данными, визуализирует информацию и предоставляет легкий доступ к нужным записям, что значительно облегчает работу специалистов медицинского центра.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. https://ru.legacy.reactjs.org/tutorial/tutorial.html Введение: знакомство с React
- 2. https://www.youtube.com/watch?v=s7mcVglW6wk основы Frontend
- 3. https://www.youtube.com/playlist?list=PLNaJj8xMY1XQgYzVhLEF
 <a href="https://www.youtube.com
- 4. https://www.youtube.com/watch?app=desktop&v=UFmZaNj6wyA JavaScript
- 5. https://www.youtube.com/watch?v=D8OIb5LZYYE применение Js для верстки
- 6. https://learn.javascript.ru/first-steps

ПРИЛОЖЕНИЕ

ТЕХНИЧЕСКОЕ ЗАДАНИЕ

1. Обшие положения

- 1.1 Название проекта: Разработка UI/UX дизайна и клиентской части модуля шаблонизатора в МИС для НМИЦ им. В.А.Алмазова.
- 1.2 Цель (назначение): Разработать дизайн-макеты и клиентскую часть модуля для МИС.
- 1.3 Сроки выполнения: начало 2024-11-01, конец 2024-12-20.
- 1.4 Команда проекта: исполнитель проекта (руководитель проекта) –
 Каратецкая Мария Юрьевна, frontend-разработчики Дмитриева
 Екатерина, Хайбуллина Лилия, дизайнеры Митрофанова Полина,
 Абакар Иссака Мали, Рубинштейн Камилла.
- 1.5 Этапы задач: Изучение основ ui/ux дизайна, изучение работы в Figma, изучение требований к модулю, изучение frontend-разработки, разработка макетов, разработка клиентской части модуля, тестирование, написание отчета.
- 1.6 Термины и сокращения:
- МИС Медицинская информационная система,
- МУ Медицинское учреждение,
- ОАК общий анализ крови,
- ПРР популяционно-раковый регистр,
- НМИЦ национальный медицинский исследовательский центр.

2. Технические требования

- 2.1 Анимированный прототип должен учитывать все возможные сценарии
- 2.2 Дизайн-макеты должны быть основаны на компонентах с использованием готовой библиотеки Ant Design
- 2.3 Для разработки клиентской части необходимо использовать фреймворк React.js
- 2.4 Необходимо создать test cases для проведения тестирования клиентской части
- 2.5 Интуитивно понятный и современный дизайн
- 2.6 Технология для разработки дизайна

3. Основные результаты работы

В процессе работы дизайнеры создадут следующие артефакты: черновые прототипы, дизайн-макеты, система компонентов, анимированный прототипа модуля.

Разработчики создадут клиентскую часть модуля.