Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.Al</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.Al</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

GAN Improvements

Outline

- How GANs have improved
- State of the art methods for improving GANs performance

GANs Over Time

4.5 years of GAN progress on face generation. arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434 arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196 arxiv.org/abs/1812.04948

Use batch standard deviation to encourage diversity

 ∇ : gradient

Improve stability by enforcing 1-Lipschitz continuity

E.g. WGAN-GP and Spectral Normalization

Use moving average for smoother results

Available from: https://arxiv.org/abs/1806.04498v2

Progressive growing gradually trains GAN at increasing resolutions

Available from: https://arxiv.org/abs/1710.10196

Main Improvements: (2) Capacity

Main Improvements: (3) Diversity

Available from: https://github.com/NVlabs/stylegan

Summary

- GANs have improved because of:
 - Stability longer training and better images
 - Capacity larger models and higher resolution images
 - Diversity increasing variety in generated images

deeplearning.ai

StyleGAN Overview

Outline

- StyleGAN achievements
- What styles are
- Introduction to StyleGAN architecture and components

StyleGAN Goals

- 1. Greater fidelity on high-resolution images
- 2. Increased diversity of outputs
- 3. More <u>control</u> over image features

Greater Fidelity

Not fooling anyone

I'm shook

(Left) Available from: https://arxiv.org/abs/1406.2661 (Right) Available from: https://github.com/NVlabs/stylegan

Increased Diversity

Available from: https://arxiv.org/abs/1812.04948

Increased Diversity

More Feature Control

Hair color/style \rightarrow

← Glasses

Available from: https://arxiv.org/abs/1812.04948

Style in GANs

Style = variation in an image

Early styles are coarser like face shape

Later styles are finer like hair wisps

Available from: https://arxiv.org/abs/1812.04948

The Style-Based Generator

Traditional architecture

StyleGAN architecture

Progressive Growing

Available from: https://arxiv.org/abs/1710.10196

Summary

- StyleGAN's goals:
 - Greater fidelity, increased diversity, improved control over features
- Style is any variation in the image
- Main components of StyleGAN:
 - Progressive growing
 - Noise mapping network
 - Adaptive instance normalization (AdaIN)

Progressive Growing

Outline

- Progressive growing intuition and motivation
- How to implement it

Progressive Growing

Progressive Growing in Action

Available from: https://www.gwern.net/images/gan/2019-03-16-stylegan-facestraining.mp4

Progressive Growing: Discriminator

Progressive Growing: Discriminator

Progressive Growing in Context

Progressive Growing in Context

Summary

- Progressive growing gradually doubles image resolution
- Helps with faster, more stable training for higher resolutions

Noise Mapping Network

Outline

- Noise mapping network structure
- Motivation behind the noise mapping network
- Where its output W goes

Noise Mapping Network

Remember: Z-Space Entanglement

Not possible to control single output features

W-Space: Less Entangled

More possible to control single output features

Mapping Network in Context

Mapping Network in Context

Summary

- Noise mapping allows for a more disentangled noise space
- The intermediate noise vector Wis used as input to the generator

deeplearning.ai

Adaptive Instance Normalization (AdaIN)

Outline

- Instance Normalization
- Adaptive Instance Normalization (AdaIN)
- Where and why AdaIN is used

AdalN in Context

AdalN in Context

Step 1: Normalize convolution outputs

Step 1: Normalize convolution outputs using Instance Normalization

Batch norm

Step 1: Normalize convolution outputs using Instance Normalization

(Left) Available from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 (Right) Based on: https://arxiv.org/abs/1812.04948

Step 1: Normalize convolution outputs using Instance Normalization

(Left) Available from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 (Right) Based on: https://arxiv.org/abs/1812.04948

Step 1: Normalize convolution outputs using Instance Normalization

 $(Left) \ Available \ from: https://medium.com/syncedreview/facebook-ai-proposes-group-normalization-alternative-to-batch-normalization-fb0699bffae7 \\ (Right) \ Based \ on: https://arxiv.org/abs/1812.04948$

Step 2: Apply adaptive styles

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

Step 2: Apply adaptive styles using the intermediate noise vector

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

Step 1: Instance normalization

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} \frac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i}$$

AdalN in Context

Summary

- AdalN transfers style information onto the generated image from the intermediate noise vector W
- Instance Normalization is used to normalize individual examples before apply style statistics from

deeplearning.ai

Style Mixing & Stochastic Noise

Outline

- Controlling coarse and fine styles with StyleGAN
- Style mixing for increased diversity during training/inference
- Stochastic noise for additional variation

Style Mixing

Tabby Cat

Tuxedo Cat

Style Mixing

Style Mixing in Context

Style Mixing in Context

Style Mixing in Context

Style Mixing in Context

Style Mixing

Available from: https://arxiv.org/abs/1812.04948

Stochastic Variation

Fine layers

Coarse layers

Available from: https://arxiv.org/abs/1812.04948

Stochastic Noise in Context

Stochastic Noise in Context

Stochastic Noise in Context

Stochastic Variation

Small details: hair strands, wrinkles, etc.

Different extra noise values create stochastic variation

Available from: https://arxiv.org/abs/1812.04948

Summary

- Style mixing increases diversity that the model sees during training
- Stochastic noise causes small variations to output
- Coarse or fineness depends where in the network style or noise is added
 - Earlier for coarser variation
 - Later for finer variation

Putting It All Together

Outline

Putting all the StyleGAN components together!

StyleGAN Architecture: Progressive Growing

StyleGAN Architecture: Noise Mapping Network

StyleGAN Architecture: AdaIN

StyleGAN Architecture: Style Mixing

StyleGAN Architecture: Stochastic Noise

StyleGAN Architecture: That's a Wrap!

Summary

- Main components of StyleGAN:
 - Progressive Growing
 - Noise Mapping Network
 - AdalN
 - Style Mixing
 - Stochastic Noise

