Lecture 7: Matchings

Shuai Li

John Hopcroft Center, Shanghai Jiao Tong University

https://shuaili8.github.io

https://shuaili8.github.io/Teaching/CS445/index.html

Pattern-free & Hamiltonian

- G is H-free if G doesn't contain a copy of H as induced subgraph
- Theorem (1.25, H) If G is 2-connected and $\{K_{1,3}, Z_1\}$ -free, then G is Hamiltonian

(Ex14, S1.1.2, H) $\kappa(G) \geq 2$ implies G has at least one cycle

- The condition 2-connectivity is necessary
- (Ex2, S1.4.3, H) If G is Hamiltonian, then G is 2-connected

Matchings

Motivating example

Definitions

- A matching is a set of independent edges, in which no pair shares a vertex
- The vertices incident to the edges of a matching M are M-saturated; the others are M-unsaturated
- A perfect matching in a graph is a matching that saturates every vertex
- Example (3.1.2, W) The number of perfect matchings in $K_{n,n}$ is n!
- Example (3.1.3, W) The number of perfect matchings in K_{2n} is $f_n = (2n-1)(2n-3)\cdots 1 = (2n-1)!!$

Maximal/maximum matchings 极大/最大

- A maximal matching in a graph is a matching that cannot be enlarged by adding an edge
- A maximum matching is a matching of maximum size among all matchings in the graph
- Example: P_3 , P_5

 Every maximum matching is maximal, but not every maximal matching is a maximum matching

- The symmetric difference of M, M' is $M\Delta M' = (M-M') \cup (M'-M)$
- Lemma (3.1.9, W) Every component of the symmetric difference of two matchings is a path or an even cycle

Maximum matching and augmenting path

• Given a matching M, an M-alternating path is a path that alternates between edges in M and edges not in M

- An *M*-alternating path whose endpoints are *M*-unsaturated is an *M*-augmenting path
- Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Hall's theorem (TONCAS)

• Theorem (3.1.11, W; 1.51, H; 2.1.2, D; Hall 1935) Let G be a bipartite graph with partition X,Y.

G contains a matching of $X \Leftrightarrow |N(S)| \ge |S|$ for all $S \subseteq X$

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

- Exercise. Read the other two proofs in Diestel.
- Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k>0) bipartite graph has a perfect matching

Application to SDR

• Given some family of sets X, a system of distinct representatives for the sets in X is a 'representative' collection of distinct elements from the sets of X $S_1 = \{2,8\}.$

```
S_1 = \{2, 8\},

S_2 = \{8\},

S_3 = \{5, 7\},

S_4 = \{2, 4, 8\},

S_5 = \{2, 4\}.
```

The family $X_1 = \{S_1, S_2, S_3, S_4\}$ does have an SDR, namely $\{2, 8, 7, 4\}$. The family $X_2 = \{S_1, S_2, S_4, S_5\}$ does not have an SDR.

• Theorem(1.52, H) Let $S_1, S_2, ..., S_k$ be a collection of finite, nonempty sets. This collection has SDR \Leftrightarrow for every $t \in [k]$, the union of any t of these sets contains at least t elements

König-Egeváry Theorem (Min-max theorem)

- A set $U \subseteq V$ is a (vertex) cover of E if every edge in G is incident with a vertex in U
- Example:
 - Art museum is a graph with hallways are edges and corners are nodes
 - A security camera at the corner will guard the paintings on the hallways
 - The minimum set to place the cameras?
- Theorem (3.1.16, W; 1.53, H; 2.1.1, D; König 1931; Egeváry 1931) Let G be a bipartite graph. The maximum size of a matching in G is equal to the minimum size of a vertex cover of its edges

Theorem (3.1.10, W; 1.50, H; Berge 1957) A matching M in a graph G is a maximum matching in $G \Leftrightarrow G$ has no M-augmenting path

Find the maximum matching: Augmenting

path algorithm

- Input: G = B(X, Y), a matching M in G $U = \{M$ -unsaturated vertices in X $\}$
- Idea: Explore M-alternating paths from U letting $S \subseteq X$ and $T \subseteq Y$ be the sets of vertices reached
- Initialization: S = U, $T = \emptyset$ and all vertices in S are unmarked
- Iteration:
 - If S has no unmarked vertex, stop and report $T \cup (X S)$ as a minimum cover and M as a maximum matching

Y

- Otherwise, select an unmarked $x \in S$ to explore
 - Consider each $y \in N(x)$ such that $xy \notin M$
 - If y is unsaturated, terminate and report an M-augmenting path from U to y
 - Otherwise, $yw \in M$ for some w
 - include y in T (reached from x) and include w in S (reached from y)
 - After exploring all such edges incident to x, mark x and iterate.

Example

Theoretical guarantee for Augmenting path algorithm

• Theorem (3.2.2, W) Repeatedly applying the Augmenting Path Algorithm to a bipartite graph produces a matching and a vertex cover of equal size

Weighted bipartite matching

- The maximum weighted matching problem is to seek a perfect matching M to maximize the total weight w(M)
- A (weighted) cover is a choice of labels u_1,\ldots,u_n and v_1,\ldots,v_n such that $u_i+v_j\geq w_{i,j}$ for all i,j
 - The cost c(u, v) of a cover (u, v) is $\sum_i u_i + \sum_j v_j$
 - The minimum weighted cover problem is that of finding a cover of minimum cost
- Lemma (3.2.7, W) For a perfect matching M and cover (u,v) in a weighted bipartite graph G, $c(u,v) \ge w(M)$ $c(u,v) = w(M) \Leftrightarrow M$ consists of edges $x_i y_j$ such that $u_i + v_j = w_{i,j}$ In this case, M and (u,v) are optimal.

Hungarian algorithm

- The equality subgraph $G_{u,v}$ for a cover (u,v) is the spanning subgrapn of $K_{n,n}$ having the edges x_iy_j such that $u_i+v_j=w_{i,j}$
- Input: Weighted $K_{n,n} = B(X,Y)$
- Idea: Iteratively adjusting the cover (u,v) until the equality subgraph $G_{u,v}$ has a perfect matching
- Initialization: Let (u, v) be a cover, such as $u_i = \max_j w_{i,j}$, $v_j = 0$
- **Iteration**: Find a maximum matching M in $G_{u,v}$
 - If M is a perfect matching, stop and report M as a maximum weight matching
 - Otherwise, let Q be a vertex cover of size |M| in $G_{u,v}$

• Let
$$R = X \cap Q$$
, $T = Y \cap Q$

$$\epsilon = \min\{u_i + v_j - w_{i,j} : x_i \in X - R, y_j \in Y - T\}$$

- Decrease u_i by ϵ for $x_i \in X R$ and increase v_i by ϵ for $y_i \in T$
- Form the new equality subgraph and repeat

Example

Theoretical guarantee for Hungarian algorithm

 Theorem (3.2.11, W) The Hungarian Algorithm finds a maximum weight matching and a minimum cost cover

Matchings in general graphs

Perfect matchings

• K_{2n} , C_{2n} , P_{2n} have perfect matchings

Corollary (3.1.13, W; 2.1.3, D) Every k-regular (k > 0) bipartite graph has a perfect matching

• Theorem(1.58, H) If G is a graph of order 2n such that $\delta(G) \geq n$, then G has a perfect matching

Theorem (1.22, H, Dirac) Let G be a graph of order $n \geq 3$. If $\delta(G) \geq n/2$, then G is Hamiltonian

Tutte's Theorem (TONCAS)

- Let q(G) be the number of connected components with odd order
- Theorem (1.59, H) Let G be a graph of order $n \ge 2$. G has a perfect matching $\Leftrightarrow q(G-S) \le |S|$ for all $S \subseteq V$

Petersen's Theorem

• Theorem (1.60, H) Every bridgeless, 3-regular graph contains a perfect matching