

Estructuras de Datos

Profesor

Sergio Gonzalez

Unidad 6: Listas

Profesor

Sergio Gonzalez

Estructuras estáticas

- Hasta ahora trabajamos con estructuras estáticas
- Posiciones de memoria específicas
- Variables perfectamente dimensionadas

Estructuras dinámicas

- Adquirir posiciones de memoria adicionales
- Variables que se dimensionan (crecen y decrecen) en tiempo de ejecución
- Punteros → Posición de memoria

Estructuras dinámicas

- Asi las estructuras pueden variar su tamaño
- Elementos de estructura → Nodos

DATOS PUNTERO

Estructuras dinámicas

- Dependiendo de las relaciones entre nodos:
 - Estructuras lineales
 - Listas
 - Pilas
 - Colas
 - Estructuras no lineales:
 - Árboles
 - Grafos

Listas

- Conjunto de datos de un mismo tipo (??)
- Cantidad variable
- Cada elemento tiene un único predecesor y un único sucesor
 - Excepto el primero y el último

- Cada nodo contiene:
 - Dato (información)
 - Enlace al siguiente nodo
- Nodo Inicial → Nombre de lista
- Nodo final → Enlace vacio

- Creación de una lista:
 - Crear lista vacía
 - Enlace vacío
- A partir del nodo inicial:
 - Modificación, crecimiento, inserción, decrecimiento, borrado

- Operaciones
 - Crear
 - Recorrido
 - ObtenerElemento
 - Tamanio
 - EstaVacia
 - Estallena

- EliminarLista
- Insertar elemento
 - Agregar
 - Insertar
- Eliminar elemento

- Crear
 - Generar lista vacia
 - Sin ningún nodo

- Recorrer
 - Pasar por los nodos de la lista hasta el final

- ObtenerElemento
 - Obtener el dato de una posicion determinada de la lista (nodo en una posicion)

Tamanio

 Recorrer lista sumando en un contador para obtener la cantidad de nodos.

- Insertar al final (Agregar Append)
 - Se crea nuevo nodo
 - Si la lista esta vacia:
 - Se agrega nuevo nodo
 - Si no esta vacia:
 - Se recorrre la lista hasta el final
 - Se agrega nuevo nodo

- Insertar en una posición específica (incluye inicio)
 - Se crea nuevo nodo
 - Se recorre lista hasta la posición deseada:
 - Se agrega nuevo nodo
 - Si la posicion deseada es mayor que la cantidad de elementos:
 - Se agrega nuevo nodo al final

- Eliminar de una posición específica (incluye inicio y final)
 - Un nodo quedará fuera de la lista
 - Se recorre lista hasta la posición deseada:
 - Se enlaza nodo anterior con nodo siguiente y el actual queda fuera de la lista

Fig. 5.9 (b) Situación tras el paso 1

• ¿Como podemos implementarlo en Python?

- TDA NodoLista
- TDA Lista

• ¿Como podemos implementarlo en Python?

Una unica referencia al inicio

Dos referencias: Inicio y Final

• ¿Como podemos implementarlo en Python?

class NodoLista:

```
def __init__(self, dato = None):
self.dato = dato
self.siguiente = None
```


• ¿Como podemos implementarlo en Python?

class Lista:

```
def __init__(self):
self.primero = None
```


• ¿Como podemos implementarlo en Python? class Lista:

```
def recorrido(self):
aux = self.primero
while aux != None:
aux = aux.siguiente
```


Listas dobles enlazadas

Dos enlaces en cada nodo: Anterior y siguiente nodo

Listas dobles enlazadas

- Elemento anterior primero es null
- Elemento siguiente al ultimo es null
- Podemos movernos desde un nodo hacia el anterior o el siguiente
- Se puede recorrer en ambos sentidos

Listas circulares

- Simples
- Dobles

- Ultimo nodo conectado con el primero
- No hay ningun enlace null

