PROBLEMAS 8.6

De los problemas 1 al 18 determine si la matriz dada es una matriz de Jordan.

1.
$$\begin{pmatrix} 3 & 4 \\ 0 & 3 \end{pmatrix}$$

1.
$$\begin{pmatrix} 3 & 4 \\ 0 & 3 \end{pmatrix}$$
 2. $\begin{pmatrix} 1 & 1 \\ 0 & -6 \end{pmatrix}$ **3.** $\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$ **4.** $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$ **5.** $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

3.
$$\begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}$$

$$4. \ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

5.
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

$$\mathbf{6.} \, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

6.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
 7. $\begin{pmatrix} -1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ 8. $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ 9. $\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

8.
$$\begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$

$$9. \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

10.
$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
 11. $\begin{pmatrix} p & 0 & 0 \\ 0 & e & 1 \\ 0 & 0 & e \end{pmatrix}$ **12.** $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ **13.** $\begin{pmatrix} \frac{1}{3} & 1 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{3}{5} \end{pmatrix}$

11.
$$\begin{pmatrix} p & 0 & 0 \\ 0 & e & 1 \\ 0 & 0 & e \end{pmatrix}$$

$$\begin{array}{cccc}
 & 1 & 0 & 0 \\
 & 0 & 3 & 1 \\
 & 0 & 0 & 3
 \end{array}$$

13.
$$\begin{pmatrix} \frac{1}{3} & 1 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{3}{5} \end{pmatrix}$$

14.
$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 2
\end{pmatrix}$$

14.
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 \\ 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 \end{pmatrix}$$
 15.
$$\begin{pmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 2 & 3 \end{pmatrix}$$
 16.
$$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 5 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{pmatrix}$$

17.
$$\begin{pmatrix}
a & 0 & 0 & 0 & 0 \\
0 & b & 0 & 0 & 0 \\
0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & d & 0 \\
0 & 0 & 0 & 0 & e
\end{pmatrix}$$

17.
$$\begin{pmatrix} a & 0 & 0 & 0 & 0 \\ 0 & b & 0 & 0 & 0 \\ 0 & 0 & c & 0 & 0 \\ 0 & 0 & 0 & d & 0 \\ 0 & 0 & 0 & 0 & e \end{pmatrix}$$
 18.
$$\begin{pmatrix} a & 1 & 0 & 0 & 0 \\ 0 & a & 0 & 0 & 0 \\ 0 & 0 & c & 1 & 0 \\ 0 & 0 & 0 & c & 1 \\ 0 & 0 & 0 & 0 & c \end{pmatrix}$$

De los problemas 19 al 22 encuentre una matriz invertible C que transforme la matriz de 2×2 a su forma canónica de Jordan.

19.
$$\begin{pmatrix} 6 & 1 \\ 0 & 6 \end{pmatrix}$$

20.
$$\begin{pmatrix} -4 & 4 \\ -9 & 8 \end{pmatrix}$$

19.
$$\begin{pmatrix} 6 & 1 \\ 0 & 6 \end{pmatrix}$$
 20. $\begin{pmatrix} -4 & 4 \\ -9 & 8 \end{pmatrix}$ **21.** $\begin{pmatrix} -10 & -7 \\ 7 & 2 \end{pmatrix}$ **22.** $\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$

22.
$$\begin{pmatrix} 4 & -1 \\ 1 & 2 \end{pmatrix}$$

- *23. Sea A una matriz de 3×3 . Suponga que A es un valor característico de A con multiplicidad algebraica 3 y multiplicidad geométrica 1 y sea v₁el vector característico correspondiente.
 - a) Demuestre que existe una solución, \mathbf{v}_2 , al sistema $(A \lambda I)\mathbf{v}_2 = \mathbf{v}_1$ tal que \mathbf{v}_1 y \mathbf{v}_2 son linealmente independientes.
 - b) Con v_2 definido en el inciso a), demuestre que existe una solución, v_3 , al sistema $(A - \lambda I)\mathbf{v}_3 = \mathbf{v}_2$ tal que \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 son linealmente independientes.
 - c) Demuestre que si C es una matriz cuyas columnas son \mathbf{v}_1 , \mathbf{v}_2 y \mathbf{v}_3 , entonces

$$C^{-1}AC = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}.$$