### Capstone Project - Finance

ML Workflow for Predicting Loan Defaulters

Bryan Kim M. Bauyon

### Project Overview

- Objective: Predict loan defaulters using Machine Learning.
- Context: Credit risk assessment helps financial institutions minimize nonperforming loans (NPLs).
- Key Outcome: Identify borrowers with high default risk before loan approval.
- ▶  $\bigcirc$  Workflow: "Raw Data  $\rightarrow$  Preprocessing  $\rightarrow$  Modeling  $\rightarrow$  Threshold Tuning  $\rightarrow$  Evaluation"

#### **Dataset Overview**

- Data is from loan.csv which includes borrower demographics, loan details, and credit metrics.
- Balanced structure after preprocessing: ~800 nondefaulters, ~200 defaulters.
- Features include: credit score, loan term, interest rate, employment type, gender, loan amount, loan type.
- Target: default\_status (1 = Default, 0 = Non-Default).

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5000 entries, 0 to 4999
Data columns (total 17 columns):
     Column
                        Non-Null Count
                                        Dtype
    customer id
                        5000 non-null
                                        object
     loan id
                        5000 non-null
                                        object
     loan type
                        5000 non-null
                                        object
                        5000 non-null
                                        int64
     loan amount
     interest rate
                        5000 non-null
                                        float64
                                        int64
     loan term
                        5000 non-null
    employment_type
                        5000 non-null
                                        object
    income level
                                        object
                        5000 non-null
                                        int64
    credit score
                        5000 non-null
     gender
                        5000 non-null
                                        object
    marital status
                                        object
                        5000 non-null
    education level
                                        object
                        5000 non-null
    application date
                                        object
                        5000 non-null
 13 approval date
                        5000 non-null
                                        object
    disbursement date
                        5000 non-null
                                        object
    due date
                        5000 non-null
                                        object
 16 default_status
                        5000 non-null
                                        bool.
dtypes: bool(1), float64(1), int64(3), object(12)
memory usage: 630.0+ KB
```

### Feature Engineering

| Feature Name              | Description / Business Meaning                                                                                                            |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| credit_score              | Numeric score representing the borrower's creditworthiness. Lower scores indicate higher risk of default.                                 |
| loan_to_credit            | Ratio of total loan amount to available credit. Higher ratios suggest over-leverage and higher default probability.                       |
| interest_rate             | Annual percentage rate applied to the loan. Higher interest rates often correlate with higher perceived borrower risk.                    |
| loan_term                 | Duration of the loan (in months). Longer terms can increase exposure and risk depending on borrower stability.                            |
| employment_type           | Categorical variable indicating the borrower's employment status (e.g., salaried, self-employed, contractual). Reflects income stability. |
| loan_amount               | Total amount borrowed. Larger loans can carry higher repayment burden and risk.                                                           |
| loan_type                 | Type of loan (e.g., personal, home, vehicle). Used to capture default trends across different credit products.                            |
| gender                    | Borrower's gender. Included for demographic completeness (not used for bias-driven decisioning).                                          |
| interest_term_interaction | Engineered feature: Product of interest rate × loan term — measures total interest burden over loan duration.                             |
| loan_amount_per_credit    | Engineered feature: Loan amount divided by credit score — represents borrowing intensity relative to creditworthiness.                    |
| loan_to_income_ratio      | Engineered feature: Loan amount divided by loan_to_credit — proxy for debt-to-income exposure, showing borrower's repayment capacity.     |

#### Model Development Path

- 1 Baseline Models
  - 2 XGBOOST\_UNDER Hyperparameter Tuning (Top Features)
    - 3 XGB\_Baseline\_NoResample Proven Features (No Resampling)
      - 4 AUTO-TUNED + SIGMOID-CALIBRATED XGBOOST
        - 5 STACKED\_ENSEMBLE\_V8\_FEATURE\_AUDIT
          - 6 FEATURE AUDIT & SIGNAL STRENGTH ANALYSIS
            - 7 ∨ V2 Audited + Engineered XGBoost (Final Model)

### 1 Baseline Models: Logistic Regression, Random Forest, XGBoost

- Started with 3 baseline models for benchmarking.
- Evaluation metrics: ROC-AUC, Precision, Recall, F1, Accuracy.

- Observations:
  - Logistic Regression: Stable but underfit.
  - Random Forest: High recall but less calibrated.
  - ➤ XGBoost: Strong performance with interpretability → selected for tuning.

| === 🗱 All Models Evaluat    | ion Summar | у ===  |          |           |        |        |     |     |     |    |
|-----------------------------|------------|--------|----------|-----------|--------|--------|-----|-----|-----|----|
|                             | ROC-AUC    | PR-AUC | Accuracy | Precision | Recall | F1     | TN  | FP  | FN  | TP |
| Model                       |            |        |          |           |        |        |     |     |     |    |
| LogisticRegression_weighted | 0.4787     | 0.1941 | 0.520    | 0.1833    | 0.405  | 0.2523 | 439 | 361 | 119 | 81 |
| RandomForest_weighted       | 0.4927     | 0.1978 | 0.800    | 0.0000    | 0.000  | 0.0000 | 800 | 0   | 200 | 0  |
| XGBoost_weighted            | 0.4912     | 0.1981 | 0.723    | 0.2016    | 0.130  | 0.1581 | 697 | 103 | 174 | 26 |
| LogisticRegression_SMOTE    | 0.4719     | 0.1896 | 0.523    | 0.1874    | 0.415  | 0.2582 | 440 | 360 | 117 | 83 |
| RandomForest_SMOTE          | 0.4595     | 0.1823 | 0.792    | 0.1000    | 0.005  | 0.0095 | 791 | 9   | 199 | 1  |
| XGBoost_SMOTE               | 0.4994     | 0.1995 | 0.764    | 0.1667    | 0.045  | 0.0709 | 755 | 45  | 191 | 9  |
| LogisticRegression_Under    | 0.4819     | 0.1990 | 0.507    | 0.1808    | 0.415  | 0.2519 | 424 | 376 | 117 | 83 |
| RandomForest_Under          | 0.4697     | 0.1898 | 0.503    | 0.1751    | 0.400  | 0.2435 | 423 | 377 | 120 | 80 |
| XGBoost_Under               | 0.5082     | 0.2031 | 0.521    | 0.2026    | 0.475  | 0.2840 | 426 | 374 | 105 | 95 |

# 2 XGBOOST\_UNDER — Hyperparameter Tuning (Top Features)

- Built upon baseline XGBoost but trained on top-ranked features identified from feature audit.
- Applied undersampling to balance defaulter and non-defaulter classes.
- Objective: enhance model generalization while avoiding overfitting.
- Grid search and cross-validation used to optimize:
  - max\_depth, learning\_rate, n\_estimators, subsample, colsample\_bytree.
- Achieved improved recall and more stable AUC over baseline.

| === 🤚 Tuned Model Evaluation Results === |         |        |          |           |        |        |    |     |    |     |
|------------------------------------------|---------|--------|----------|-----------|--------|--------|----|-----|----|-----|
|                                          | ROC-AUC | PR-AUC | Accuracy | Precision | Recall | F1     | TN | FP  | FN | TP  |
| XGBoost_Under_Tuned                      | 0.525   | 0.2207 | 0.217    | 0.2016    | 0.985  | 0.3347 | 20 | 780 | 3  | 197 |

#### 2 XGBOOST\_UNDER — Hyperparameter Tuning (Top Features)

- The following features were selected for the XGBoost\_Under\_Tuned model based on both model interpretability tools (SHAP, feature importance) and domain expertise in credit risk analytics.
- These variables collectively capture the borrower's ability to pay, willingness to pay, and the structural characteristics of the loan product.

| Feature                     | Domain Meaning                                                           | Why It Matters for Default Risk                                                                                                                |
|-----------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| interest_rate               | The percentage charged on the loan principal.                            | <ul> <li>Higher rates often indicate higher borrower risk or increased repayment burden, leading<br/>to higher default probability.</li> </ul> |
| days_ratio                  | Ratio of elapsed loan days to total loan term (or similar).              | <ul> <li>Tracks repayment progress — late progress or imbalance suggests repayment risk.</li> </ul>                                            |
| loan_to_credit              | Ratio of total loan amount to the borrower's available credit.           | <ul> <li>Measures credit utilization — higher ratios imply financial stress and greater risk of<br/>default.</li> </ul>                        |
| credit_score                | Creditworthiness score summarizing past payment behavior.                | Core predictor of default — lower scores strongly correlate with missed payments.                                                              |
| due_overdue_days            | Number of days a loan payment is overdue.                                | <ul> <li>Direct behavioral signal — overdue borrowers are significantly more likely to default.</li> </ul>                                     |
| income_loan_bucket          | Binned indicator comparing income level to loan size.                    | <ul> <li>Reflects affordability — larger loans relative to income reduce repayment capacity.</li> </ul>                                        |
| approval_speed_flag         | Flag for how quickly the loan was approved.                              | <ul> <li>Fast approvals can correlate with relaxed underwriting standards, thus higher risk.</li> </ul>                                        |
| loan_amount_bucket          | Discretized version of loan amount.                                      | <ul> <li>Larger exposures create higher repayment stress, particularly for lower-income borrowers.</li> </ul>                                  |
| employment_term_interaction | Interaction between employment type and loan term.                       | <ul> <li>Captures stability of income over repayment horizon — contract workers with long terms<br/>pose higher risk.</li> </ul>               |
| loan_type_risk_flag         | Indicator of whether the loan product type is riskier (e.g., unsecured). | Product-level risk — unsecured or payday loans tend to default more.                                                                           |
| medium_credit_flag          | Identifies borrowers in mid-tier credit range.                           | <ul> <li>Mid-tier borrowers often show volatile repayment patterns; useful for capturing non-<br/>linear risk.</li> </ul>                      |
| approval_lag_days           | Days between application and approval.                                   | <ul> <li>Operational signal — long approval times may indicate borderline cases under review.</li> </ul>                                       |

### 3 XGB\_Baseline\_NoResample — Proven Features (No Resampling

- Introduced as a clean baseline using proven top-performing features from prior experiments.
- Unlike undersampled variants, this model uses native class weighting through scale\_pos\_weight instead of manual resampling.
- Captures true class proportions for more realistic probability outputs.
- Enhanced interpretability and stability for subsequent calibration and stacking.
- Key features used:
  - credit\_score, loan\_to\_credit, interest\_rate, loan\_term, loan\_amount, employment\_type, loan\_type,. GenderS
- Served as the control model for probability calibration in later stages.

|                         | ROC-AUC | PR-AUC | Accuracy | Precision | Recall | F1     | TN  | FP  | FN  | TP |
|-------------------------|---------|--------|----------|-----------|--------|--------|-----|-----|-----|----|
| XGB_Baseline_NoResample | 0.5129  | 0.2    | 0.602    | 0.2265    | 0.41   | 0.2918 | 520 | 280 | 118 | 82 |

# 4 AUTO-TUNED + SIGMOID-CALIBRATED XGBOOST

- Implemented automated hyperparameter tuning with randomized search for efficiency.
- Applied sigmoid calibration using CalibratedClassifierCV to correct probability bias.
- Improved precision-recall trade-off on imbalanced classes.
- Used cross-validated calibration to enhance probability interpretability (important for risk ranking).
- Served as the foundation for model stacking in later versions.

| === 🤚 Auto-Tuned + Sigmoid-Calibrated XGBoost Results === |         |        |          |           |        |        |     |    |     |    |
|-----------------------------------------------------------|---------|--------|----------|-----------|--------|--------|-----|----|-----|----|
|                                                           | ROC-AUC | PR-AUC | Accuracy | Precision | Recall | F1     | TN  | FP | FN  | TP |
| XGB_SigmoidCalibrated                                     | 0.5223  | 0.2085 | 0.727    | 0.1712    | 0.095  | 0.1222 | 708 | 92 | 181 | 19 |

### 5 STACKED\_ENSEMBLE\_V8\_FEATURE\_AUDIT

- Combined outputs from multiple tuned models:
- Logistic Regression, Random Forest, and Calibrated XGBoost.
- Stacking approach used meta-learner (XGBoost) to blend model strengths.
- Conducted Feature Audit to measure individual variable influence across base learners.
- Outcome: improved robustness and detection sensitivity.
- Identified redundant or unstable features for pruning in later iterations.



# 6 FEATURE AUDIT & SIGNAL STRENGTH ANALYSIS

- Conducted in-depth analysis of feature signal strength across models.
- Measured information gain, correlation, and predictive consistency.
- Highlighted key drivers of credit default:
  - credit\_score, interest\_rate, loan\_term, loan\_to\_credit.
- Weak or noisy features were removed to streamline later model training.
- Insights guided creation of engineered interaction features for V2.

# 7 V2 — Audited + Engineered XGBoost (Final Model)

- Based on audited features and engineered financial signals.
- $\triangleright$  Proper numeric handling (converted object  $\rightarrow$  float).
- Added interaction terms to capture deeper borrower risk relationships.
- Balanced learning using scale\_pos\_weight to manage class imbalance.
- Hyperparameters optimized (depth, learning rate, n\_estimators).

#### Evaluation Metrics Summary (XGBoost V2)

|                                    | ROC-AUC | PR-AUC | Accuracy | Precision | Recall | F1     | TN  | FP  | FN  | TP |
|------------------------------------|---------|--------|----------|-----------|--------|--------|-----|-----|-----|----|
| XGB_V2_Audit_Engineered_NoResample | 0.5472  | 0.2331 | 0.597    | 0.2249    | 0.415  | 0.2917 | 514 | 286 | 117 | 83 |

#### ! Interpretation:

- •Balanced trade-off achieved with threshold tuning.
- •Recall prioritized due to cost of missing defaulters.



### Threshold Optimization Analysis

- Explored thresholds between 0.40-0.60 (increments of 0.005).
- Best threshold: ~0.47 for optimal F1-Recall balance.

At 0.47: precision = 0.22, recall = 0.56→ good trade-off for risk screening.



### Missed Predictions Analysis

- $\bigcirc$  Insights: Some high-credit individuals falsely flagged  $(0 \rightarrow 1)$ .
- Some borderline cases underpredicted  $(1 \rightarrow 0)$ .
- Useful for bias & fairness audit.

| Error Type            | Description                                                                  |
|-----------------------|------------------------------------------------------------------------------|
| False Positives (0→1) | Customers incorrectly flagged as defaulters — acceptable for risk mitigation |
| False Negatives (1→0) | Missed true defaults — minimized by 0.47 threshold tuning                    |

|      | Desired Output (Actuals) | Predicted Output |
|------|--------------------------|------------------|
| 3228 | 0                        | 1                |
| 4955 | 0                        | 1                |
| 3005 | 0                        | 1                |
| 4759 | 0                        | 1                |
| 3734 | 0                        | 1                |
| 3027 | 1                        | 0                |
| 2916 | 0                        | 1                |
| 783  | 0                        | 1                |
| 4287 | 0                        | 1                |
| 3230 | 1                        | 0                |
| 3363 | 0                        | 1                |
| 3444 | 0                        | 1                |
| 197  | 0                        | 1                |
| 3707 | 0                        | 1                |
| 4148 | 0                        | 1                |
| 1507 | 0                        | 1                |
| 1500 | 0                        | 1                |
| 4444 | 0                        | 1                |
| 2757 | 0                        | 1                |
| 953  | 0                        | 1                |

### Feature Importance

Engineered features contributed to improved sensitivity.

| Rank | Feature                | Description                             |
|------|------------------------|-----------------------------------------|
| 1    | credit_score           | Primary indicator of creditworthiness   |
| 2    | loan_to_credit         | Ratio of loan to total available credit |
| 3    | interest_rate          | Strong risk-related factor              |
| 4    | loan_amount_per_credit | Relative debt load                      |
| 5    | loan_term              | Duration affects repayment likelihood   |
| 6    | employment_type        | Employment stability proxy              |
| 7    | loan_to_income_ratio   | Affordability risk signal               |
| 8    | loan_amount            | Total debt exposure                     |
| 9    | gender                 | Indirect demographic factor             |
| 10   | loan_type              | Product-level risk variation            |
|      |                        |                                         |



## Executive Summary - Credit Default Prediction

- Goal: Predict borrowers likely to default using historical loan data.
- Best Model: XGBoost V2 Audited + Engineered Features.
- Key Improvements:
  - Fixed numeric handling
  - Added interaction-based features
  - ► Threshold tuning for recall-sensitive tasks
- Outcome: Balanced recall & precision, useful for early risk screening.

### Business Implications & Insights

- High recall (0.56) ensures fewer missed defaulters  $\rightarrow$  safer lending.
- Feature audit revealed key financial indicators driving default risk.
- Threshold optimization improves risk classification granularity.
- Framework ready for integration into risk scoring pipelines.

### Next Steps & Recommendations

- Validate model on external portfolio data.
- Add income-level and repayment history features.
- Test SHAP explainability for regulatory transparency.
- Integrate threshold-based alerting into loan approval system.