PAT-NO: JP02003324738A

DOCUMENT-IDENTIFIER: JP 2003324738 A

TITLE: IMAGE PROCESSING APPARATUS AND METHOD, AND

PROGRAM AND

RECORDING MEDIUM

PUBN-DATE: November 14, 2003

INVENTOR-INFORMATION:

NAME COUNTRY
OTSUKA, HIDEKI N/A
HAMAMATSU, TOSHIHIKO N/A
MORIFUJI, TAKAFUMI N/A
KUNIHIRO, TAKESHI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY SONY CORP N/A

APPL-NO: JP2002129440

APPL-DATE: April 30, 2002

INT-CL (IPC): H04N007/30, H03M007/36, H04N011/04

ABSTRACT:

PROBLEM TO BE SOLVED: To efficiently eliminate distortion caused when compression/expansion processing is applied to image data.

SOLUTION: An image processing apparatus 10 receives an MPEG decoded image,

segments a spatial class tap, discriminates whether or not a difference between

pixels of the spatial class tap is a prescribed threshold value or over,

discriminates the presence of an edge between the <u>pixels</u> when the difference

exceeds the threshold value, and detects the position of edge. The spatial

class is classified from the edge position. Further, a temporal

class tap is

segmented from a plurality of frame memories 16, and the edge position between

the adjacent pixels in a temporal direction is detected. Then the temporal

class is classified from the edge position. Pixels in the vicinity of a target

pixel and a pixel at the same position as the target pixel in a plurality of

frames are given to an estimate arithmetic section 24 as a prediction tap,

which calculates a pixel value of an image after distortion eliminating

processing is finished through estimate arithmetic operations from prediction

coefficients
and on the
corresponding to the temporal class and the space class

basis of space and time prediction taps.

COPYRIGHT: (C) 2004, JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2003-324738 (P2003-324738A)

(43)公開日 平成15年11月14日(2003.11.14)

(51) Int.CL'	İ	識別記号	FΙ		รี	`~マコード(多考)
H04N	7/30		H03M	7/36		5 C O 5 7
H03M	7/36		H04N	11/04	Z	5 C O 5 9
H 0 4 N	11/04			7/133	Z	5 J O 6 4

審査請求 未請求 請求項の数75 OL (全 39 頁)

(21)出願番号	特質2002-129440(P2002-129440)	(71)出願人	000002185
			ソニー株式会社
(22)出顧日	平成14年4月30日(2002.4.30)		東京都品川区北島川6丁目7番35号
		(72)発明者	大塚 秀樹
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(72)発明者	浜松 俊彦
			東京都品川区北品川6丁目7番35号 ソニ
			一株式会社内
		(74)代理人	100067736
			弁理士 小池 晃 (外2名)
			最終頁に続く

(54) 【発明の名称】 画像信号処理装置及び方法、並びにプログラム及び記録媒体

(57)【要約】

【課題】 画像データの圧縮/伸長処理を行ったときに 生じた歪みを効率的に除去する。

【解決手段】 画像信号処理装置10は、MPEG復号画像が入力され、空間クラスタップを切り出し、空間クラスタップの画素間の差分値が所定の閾値以上か否かを判定し、閾値を超える場合は、その画素間にエッジが存在すると判定し、エッジ位置を検出する。このエッジ位置から空間クラスを分類する。また、複数のフレームメモリ16から時間クラスタップを切り出し、時間方向に隣接する画素間のエッジ位置を検出する。このエッジ位置から時間クラスを分類する。そして、注目画素近傍の画素及び複数のフレームにおける注目画素と同一位置の画素を予測タップとして推定演算部24に入力し、時間クラス及び空間クラスに対応する予測係数と、空間及び時間予測タップとから推定演算して、歪除去処理済の画像の画素値を算出する。

【特許讃求の範囲】

【請求項1】 入力される第1の画像に対して所定の推 定演算を行って上記第1の画像を第2の画像に変換する 画像信号処理装置において、

上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出手段と、

上記予測タップのうち所定の位置関係を有する画素間の 画素値の差分値を算出する差分値算出手段と、

上記予測タップの差分値に基づき、上記注目画素を複数 のクラスのうち何れかのクラスに分類するクラス分類手 10 段と、

上記注目画素が分類されたクラスに対応する予測係数を 読み出す読出手段と、

読み出された上記予測係数と上記予測タップとから上記 所定の推定演算により上記注目画素の画素値を第2の画 像の画素値に変換する推定演算手段とを有することを特 徴とする画像信号処理装置。

【請求項2】 上記クラス分類手段は、上記差分値が第 1の閾値以上である場合に、該画素間にはエッジが存在 するものと判定し、このエッジ判定結果に基づいてクラ ス分類することを特徴とする請求項1記載の画像信号処 理装置。

【請求項3】 上記領域切出手段は、上記第1の画像における上記注目画素を含むラインデータを上記予測タップとして切り出すことを特徴とする請求項2記載の画像信号処理装置。

【請求項4】 上記クラス分類手段は、上記ラインデータから構成される予測タップの上記差分値が所定の閾値以上である場合に、上記注目画素を複数の空間クラスのいずれかに分類することを特徴とする請求項3記載の画 30 像信号処理装置。

【請求項5】 上記ラインデータは、上記注目画素を含む水平方向の水平ラインデータ及び上記注目画素を含む垂直方向の垂直ラインデータであることを特徴とする請求項3記載の画像信号処理装置。

【請求項6】 上記差分値算出手段は、上記水平ラインデータの水平方向に隣接する2つの画素間及び上記垂直ラインデータの垂直方向に隣接する2つの画素間の差分値を算出することを特徴とする請求項5記載の画像信号処理装置。

【請求項7】 上記差分値算出手段は、上記第1の画像の輝度信号を基に上記差分値を算出することを特徴とする請求項1記載の画像信号処理装置。

【請求項8】 上記差分値算出手段は、上記第1の画像の色差信号を基に上記差分値を算出することを特徴とする請求項1記載の画像信号処理装置。

【請求項9】 上記差分値算出手段で算出された上記ラインデータにおける上記差分値の統計から上記ラインデータの特徴を抽出する統計量算出手段を有することを特徴とする請求項3記載の画像信号処理装置。

【請求項10】 上記差分値算出手段で算出された上記 ラインデータにおける上記差分値の統計から、上記差分 値の最大値と最小値との差であるダイナミックレンジを 算出する統計量算出手段を有することを特徴とする請求 項3記載の画像信号処理装置。

【請求項11】 上記統計量算出手段は、上記差分値の 上記最大値、最小値、及びダイナミックレンジから上記 画素間エッジ判定における上記第1の閾値を算出することを特徴とする請求項10記載の画像信号処理装置。

【請求項12】 上記第1の画像のブロック毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する各画素間の画素値の差分値をブロック画素間差分値算出手段を有することを特徴とする請求項2記載の画像信号処理装置。

【請求項13】 上記注目ブロックにおける上記ブロック画素問差分値が第2の閾値未満である場合に、上記注目ブロックは平坦であると判定し、このブロック凹凸判定結果を記憶するブロック特徴量記憶手段を有することを特徴とする請求項12記載の画像信号処理装置。

【請求項14】 上記注目ブロックがフィールドDCT 構造であるか、又はフレームDCT構造であるかを判定し、このブロックタイプ判定結果を記憶するブロック特 徴量記憶手段を有することを特徴とする請求項12記載の画像信号処理装置。

【請求項15】 上記ブロック画素間差分値算出手段で 算出された上記注目ブロックにおける上記ブロック画素 間差分値の統計から、上記注目ブロックの特徴を抽出す るブロック統計量算出手段を有することを特徴とする請 求項12記載の画像信号処理装置。

【請求項16】 上記ブロック画素間差分値算出手段で 算出された上記注目ブロックにおける上記ブロック画素 間差分値の統計から、上記ブロック画素間差分値の最大 値と最小値との差であるダイナミックレンジを算出する ブロック統計量算出手段を有することを特徴とする請求 項12記載の画像信号処理装置。

【請求項17】 上記ブロック統計量算出手段は、上記ブロック画素間差分値の上記最大値、最小値、及びダイナミックレンジから上記ブロック凹凸判定における上記40 第2の閾値を算出することを特徴とする請求項16記載の画像信号処理装置。

【請求項18】 上記領域切出手段は、上記第1の画像のブロック毎のデータが入力され、上記注目画素が属する注目ブロックにおける該注目画素を含む水平方向及び垂直方向の夫々水平ラインデータ及び垂直ラインデータを上記予測タップとして切り出すことを特徴とする請求項1記載の画像信号処理装置。

【請求項19】 上記領域切出手段は、上記第1の画像のブロック毎のデータが入力され、上記注目画素が属す 50 る注目ブロックにおける該注目画素を含む水平方向及び

2

垂直方向の夫々水平ラインデータ及び垂直ラインデータと、上記注目ブロックに隣接する隣接ブロックにて上記注目画素と水平又は垂直位置が同一で上記注目ブロックに最も近接する隣接ブロック画素とを上記予測タップとして切り出すことを特徴とする請求項1記載の画像信号処理装置。

【請求項20】 上記クラス分類手段は、上記水平ラインデータ及び上記垂直ラインデータで隣りあう画素間の各差分値が所定の閾値以上である場合に、この画素間にはエッジが存在するものと判定し、このエッジ判定結果 10 に基づき上記注目画素を複数の空間クラスのいずれかに分類することを特徴とする請求項19記載の画像信号処理装置。

【請求項21】 上記クラス分類手段は、上記隣接ブロック画素と該隣接ブロック画素に最も近接する画素との差分値が所定値以上である場合に、上記注目ブロックと上記隣接ブロック画素が属する隣接ブロックとの間にはエッジが存在するものと判定し、このエッジ判定結果に基づき上記注目画素を複数の空間クラスのいずれかに分類することを特徴とする請求項19記載の画像信号処理 20 装置。

【請求項22】 上記ブロック画素間差分値が所定の閾値未満の場合、上記注目画素が属する注目ブロック全体は、平坦ブロッククラスに分類されることを特徴とする請求項12記載の画像信号処理装置。

【請求項23】 上記注目画素とこの注目画素の一方の 側にて隣接する画素との間と、上記注目画素とこの注目 画素の他方の側にて隣接する画素との間とに共にエッジ が存在し、且つ、上記画素間の差分値が共に同一符号で ある場合、上記注目画素は、エッジ上クラスに分類され 30 ることを特徴とする請求項4記載の画像信号処理装置。

【請求項24】 上記注目画素とこの注目画素の一方の 側にて隣接する画素との間と、上記注目画素とこの注目 画素の他方の側にて隣接する画素との間とに共にエッジ が存在し、且つ、上記画素間の差分値が互いに異符号で ある場合、上記注目画素は、細線上クラスに分類される ことを特徴とする請求項4記載の画像信号処理装置。

【請求項25】 上記注目画素より一方の側に配置されている各画素間と、上記注目画素から他方の側に配置されている各画素間とのうち、両方向にエッジが存在する場合、上記注目画素は、複雑クラスに分類されることを特徴とする請求項4記載の画像信号処理装置。

【請求項26】 上記注目画素より一方の側に配置されている各画素間と、上記注目画素から他方の側に配置されている各画素間とのうち、何れか一方の側にエッジが存在する場合、上記注目画素は、単純エッジクラスに分類されることを特徴とする請求項4記載の画像信号処理装置。

【請求項27】 上記単純エッジクラスは、エッジの位 算出する予測係数算出手段と、予測係数を上記クラス毎 置に基づいて更に異なるクラスに分類されることを特徴 50 に記憶する記憶手段とを有することを特徴とする請求項

とする請求項26記載の画像信号処理装置。

【請求項28】 上記第1の画像をフレーム毎に記憶する複数のフレームメモリを有し、

4

上記領域切出手段は、上記注目画素を含む注目フレーム 及びこの注目フレームの前後の複数のフレームが入力され、これら全てのフレームにおいて上記注目画素と同一 の位置の画素を上記予測タップとして切り出すことを特 徴とする請求項1記載の画像信号処理装置。

【請求項29】 上記クラス分類手段は、上記全てのフレームにおいて上記注目画素と同一の位置の画素から構成される上記予測タップの上記差分値に基づき、上記注目画素を複数の時間クラスのうち何れかのクラスに分類することを特徴とする請求項28記載の画像信号処理装置。

【請求項30】 上記フレーム毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する各画素間の画素値の差分値をブロック画素間差分値として算出するブロック画素間差分値算出手段と、

20 上記ブロック画素間差分値算出手段で算出された上記注 目ブロックにおける上記ブロック画素間差分値の統計に 基づきブロック閾値を算出するブロック特徴量算出手段 とを有し、

上記クラス分類手段は、上記予測タップにおける隣接フレームの画素間差分値と上記フレーム毎の上記ブロック 関値の最大値とに基づき上記注目画素の時間クラスを分類することを特徴とする請求項29記載の画像信号処理 装置。

【請求項31】 上記予測タップにおける隣接フレーム の画素間差分値が上記フレーム毎の上記ブロック閾値の 最大値より大きい場合は、上記画素間差分値を算出した フレームから上記注目フレームとは離隔する方向のフレームの画素を使用不可タップとし、この使用不可タップ 以外の画素を使用可能タップとし、

上記クラス分類手段は、上記使用可能タップ数及び使用 不可タップ数に基づき上記時間クラスを分類することを 特徴とする請求項30記載の画像信号処理装置。

【請求項32】 上記予測係数を予め学習する学習手段を有し、

上記学習手段は、教師画像に歪みを付加した生徒画像となる上記第1の画像を生成する画像生成手段と、上記第1の画像から注目画素及びその周辺の複数の第1の画素を予測タップとして切り出す領域切出手段と、上記予測タップのうち所定の位置関係を有する画素間の差分値を算出する差分値算出手段と、上記差分値に基づき、上記予測タップを複数のクラスのうち何れかのクラスに分類するクラス分類手段と、上記教師画像及び上記予測タップから上記第2の画像を予測演算するための予測係数を算出する予測係数算出手段と、予測係数を上記クラス毎に記憶する記憶手段とを有することを終数とする語彙項

31記載の画像信号処理装置。

【請求項33】 上記予測タップは、上記注目画素が属 する上記注目フレームから時間的に未来方向及び過去方 向の複数のタップからなり、上記未来方向に1以上の上 記使用可能タップが存在し、且つ、上記過去方向に1以 上の上記使用可能タップが存在する場合、上記注目画素 は、第1の時間クラスに分類されることを特徴とする請 求項32記載の画像信号処理装置。

【請求項34】 上記予測タップは、上記注目画素が属 する上記注目フレームから時間的に未来方向及び過去方 10 向の複数のタップからなり、未来方向における全てのタ ップが上記使用不可タップである場合、上記注目画素 は、第2の時間クラスに分類されることを特徴とする請 求項31記載の画像信号処理装置。

【請求項35】 上記予測タップは、上記注目画素が属 する上記注目フレームから時間的に未来方向及び過去方 向の複数のタップからなり、過去方向における全てのタ ップが上記使用不可タップである場合、上記注目画素 は、第3の時間クラスに分類されることを特徴とする請 求項31記載の画像信号処理装置。

【請求項36】 上記予測タップは、上記注目画素が属 する上記注目フレームから時間的に未来方向及び過去方 向の複数のタップからなり、全てのタップが上記使用不 可タップである場合、上記注目画素は、第4の時間クラ スに分類されることを特徴とする請求項31記載の画像 信号処理装置。

【請求項37】 上記学習手段における上記予測タップ は、上記注目画素が属する上記注目フレームから時間的 に未来方向及び過去方向の複数のタップからなり、全て の上記予測タップが上記使用可能タップである場合、上 30 記注目画素は、上記第1の時間クラスに分類されること を特徴とする請求項33記載の画像信号処理装置。

【請求項38】 上記推定演算時に上記第1の時間クラ スに分類される上記予測タップにおける上記使用不可タ ップに相当する上記第1の時間クラスに分類され学習さ れた上記学習手段における上記予測タップの予測係数 を、上記推定演算時の上記予測タップにおける全ての上 記使用可能タップに分配すると共に、該使用不可タップ の予測係数を0にすることを特徴とする請求項37記載 の画像信号処理装置。

【請求項39】 上記学習手段における上記予測タップ は、上記注目画素が属する上記注目フレームから時間的 に未来方向及び過去方向の複数のタップからなり、未来 方向における全てのタップのうち1つでも上記使用不可 タップがある場合、上記注目画素は、第2の時間クラス に分類されることを特徴とする請求項34記載の画像信 号処理装置。

【請求項40】 上記推定演算時に上記第2の時間クラ スに分類される上記予測タップにおける上記使用不可タ ップに相当する上記第2の時間クラスに分類され学習さ 50 にてクラス分類に使用されるクラスタップを切り出す第

れた上記学習手段における上記予測タップの予測係数 を、上記推定演算時の上記予測タップにおける全ての上 記使用可能タップに分配すると共に、該使用不可タップ の予測係数を0にすることを特徴とする請求項39記載 の画像信号処理装置。

【請求項41】 上記学習手段における上記予測タップ は、上記注目画素が属する上記注目フレームから時間的 に未来方向及び過去方向の複数のタップからなり、過去 方向における全てのタップのうち1つので上記使用不可 タップがある場合、上記注目画素は、第3の時間クラス に分類されることを特徴とする請求項35記載の画像信 号処理装置。

【請求項42】 上記推定演算時に上記第3の時間クラ スに分類される上記予測タップにおける上記使用不可タ ップに相当する上記第3の時間クラスに分類され使用さ れた上記学習手段における上記予測タップの予測係数 を、上記推定演算時の上記予測タップにおける全ての上 記使用可能タップに分配すると共に、該使用不可タップ の予測係数を0にすることを特徴とする請求項41記載 20 の画像信号処理装置。

【請求項43】 上記学習手段における上記予測タップ は、上記注目画素が属する上記注目フレームから時間的 に未来方向及び過去方向の複数のタップからなり、未来 方向における全てのタップのうち1つでも上記使用不可 タップがあり、且つ過去方向における全てのタップのう ち1つでも上記使用不可タップがある場合、上記注目画 素は、第4の時間クラスに分類されることを特徴とする 請求項35記載の画像信号処理装置。

【請求項44】 上記クラス分類手段は、上記ブロック データにおける上記注目画素の位置に基づきクラス分類 することを特徴とする請求項12記載の画像信号処理装 置。

【請求項45】 上記第1の画像は、DCT変換及びD CT係数の量子化により符号化された画像データが復号 されたものであることを特徴とする請求項1記載の画像 信号処理装置。

【請求項46】 上記第1の画像は、MPEG復号画像 であることを特徴とする請求項1記載の画像信号処理装

【請求項47】 上記第1の画像は、輝度信号及び色差 40 信号を有し、

上記クラス分類手段は、上記色差信号に対応する上記輝 度信号から上記色差信号の注目画素のクラスを分類する ことを特徴とする請求項1記載の画像信号処理装置。

【請求項48】 上記第1の画像がインターレス方式 か、プログレッシブ方式かを判定し、この判定結果を記 録する特徴量記憶手段を有することを特徴とする請求項 47記載の画像信号処理装置。

【請求項49】 上記領域切出手段は、クラス分類手段

1の領域切出手段と、上記推定演算手段にて使用される 予測タップを切り出す第2の領域切出手段とを有することを特徴とする請求項1記載の画像処理装置。

【請求項50】 第1の画像に対して所定の推定演算を 行って上記第1の画像を第2の画像に変換する予測係数 を学習する予測係数学習装置において、

原画像に歪みを付加して第1の画像を生成する画像生成 手段と、

上記第1の画像から注目画素及びその周辺の複数の第1 の画素を予測タップとして切り出す領域切出手段と、

上記予測タップのうち所定の位置関係を有する画素間の 差分値を算出する差分値算出手段と、

上記差分値に基づき、上記予測タップを複数のクラスの うち何れかのクラスに分類するクラス分類手段と、

上記予測タップから上記第2の画像を予測演算するため の予測係数を算出する予測係数算出手段と、

予測係数を上記クラス毎に記憶する記憶手段と を有することを特徴とする予測係数学習装置。

【請求項51】 入力される第1の画像に対して所定の 推定演算を行って上記第1の画像を第2の画像に変換す 20 る画像信号処理方法において、

上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出工程と、

上記予測タップのうち所定の位置関係を有する画素間の 差分値を算出する差分値算出工程と、

上記予測タップの差分値に基づき、上記注目画素を複数 のクラスのうち何れかのクラスに分類するクラス分類工 程と、

上記注目画素が分類されたクラスに対応する予測係数を 読み出す読出工程と、

読み出された上記予測係数と上記予測タップとから上記 所定の推定演算により上記注目画素の画素値を第2の画 像の画素値に変換する推定演算工程とを有することを特 徴とする画像信号処理方法。

【請求項52】 上記クラス分類工程は、上記画素間差分値が所定の閾値以上である場合に、該画素間にはエッジが存在するものと判定し、このエッジ判定結果に基づいてクラス分類することを特徴とする請求項51記載の画像信号処理方法。

【請求項53】 上記領域切出工程では、上記注目画素 40 を含む注目フレーム及びこの注目フレームの前後の複数 のフレームが入力され、これら全てのフレームにおいて 上記注目画素と同一の位置の画素を上記予測タップとして切り出すことを特徴とする請求項51記載の画像信号 処理方法。

【請求項54】 上記クラス分類工程は、上記全てのフレームにおいて上記注目画素と同一の位置の画素から構成される上記予測タップの上記差分値に基づき、上記注目画素を複数の時間クラスのうち何れかのクラス分類することを特徴とする請求項53記載の画像信号処理方

法。

【請求項55】 上記第1の画像のフレーム毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する各画素間の画素値の差分値をブロック画素間差分値として算出するブロック画素間差分値算出工程と、

上記ブロック画素問差分値算出工程で算出した上記注目 ブロックにおける上記ブロック画素問差分値の統計に基 づきブロック関値を算出するブロック特徴量算出工程と 10 を有し、

上記クラス分類工程では、上記予測タップにおける隣接フレームの画素間差分値と上記フレーム毎の上記ブロック関値の最大値とに基づき上記注目画素の時間クラスを分類することを特徴とする請求項54記載の画像信号処理方法。

【請求項56】 上記予測タップにおける隣接フレームの画素間の差分値が上記フレーム毎の上記ブロック閾値の最大値より大きい場合は、上記差分値を算出したフレームから上記注目フレームとは離隔する方向のフレームの画素を使用不可タップとし、この使用不可タップ以外の画素を使用可能タップとし

上記クラス分類工程では、上記使用不可タップ数及び使用可能タップの数に基づき上記時間クラスを分類することを特徴とする請求項55記載の画像信号処理方法。

【請求項57】 上記予測係数を予め学習する学習工程を有し、

上記学習手段では、教師画像に歪みを付加して生徒画像となる上記第1の画像を生成する画像生成工程と、上記第1の画像から注目画素及びその周辺の複数の第1の画 素を予測タップとして切り出す領域切出工程と、上記予測タップのうち所定の位置関係を有する画素間の画素値の差分値を算出する差分値算出工程と、上記差分値に基づき、上予測タップを複数のクラスのうち何れかのクラスに分類するクラス分類工程と、上記教師画像及び上記予測タップから上記第2の画像を予測演算するための予測係数を算出する予測係数算出工程とを有することを特徴とする請求項56記載の画像信号処理方法。

【請求項58】 上記第1の画像は、輝度信号及び色差信号を有し、

40 上記クラス分類工程では、上記色差信号に対応する上記 輝度信号から上記色差信号の注目画素のクラスを分類す ることを特徴とする請求項51記載の画像信号処理方 法。

【請求項59】 第1の画像に対して所定の推定演算を 行って上記第1の画像を第2の画像に変換する予測係数 を学習する予測係数学習方法において、

原画像に歪みを付加して第1の画像を生成する画像生成 工程と、

上記第1の画像から注目画素及びその周辺の複数の第1 50 の画素を予測タップとして切り出す領域切出工程と、 上記予測タップのうち所定の位置関係を有する画素間の 差分値を算出する差分値算出工程と、

上記差分値に基づき、上記予測タップを複数のクラスの うち何れかのクラスに分類するクラス分類工程と、

上記予測タップから上記第2の画像を予測演算するため の予測係数を算出する予測係数算出工程と、

予測係数を上記クラス毎に記憶する記憶工程とを有する ことを特徴とする予測係数学習方法。

【請求項60】 入力される第1の画像に対して所定の 推定演算を行って上記第1の画像を第2の画像に変換す 10 る動作をコンピュータに実行させるためのプログラムに おいて、

上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出工程と、

上記予測タップのうち所定の位置関係を有する画素間の 差分値を算出する差分値算出工程と、

上記予測タップの差分値に基づき、上記注目画素を複数 のクラスのうち何れかのクラスに分類するクラス分類工 程と、

上記注目画素が分類されたクラスに対応する予測係数を 20 読み出す読出工程と、

読み出された上記予測係数と上記予測タップとから上記 所定の推定演算により上記注目画素の画素値を第2の画 像の画素値に変換する推定演算工程とを有することを特 徴とするプログラム。

【請求項61】 上記クラス分類工程は、上記画素間差分値が所定の閾値以上である場合に、該画素間にはエッジが存在するものと判定し、このエッジ判定結果に基づいてクラス分類することを特徴とする請求項60記載のプログラム。

【請求項62】 上記領域切出工程では、上記注目画素を含む注目フレーム及びこの注目フレームの前後の複数のフレームが入力され、これら全てのフレームにおいて上記注目画素と同一の位置の画素を上記予測タップとして切り出すことを特徴とする請求項60記載のプログラム

【請求項63】 上記クラス分類工程は、上記全てのフレームにおいて上記注目画素と同一の位置の画素から構成される上記予測タップの上記差分値に基づき、上記注目画素を複数の時間クラスのうち何れかのクラス分類す 40 ることを特徴とする請求項62記載のプログラム。

【請求項64】 上記第1の画像のフレーム毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する各画素間の画素値の差分値をブロック画素間差分値として算出するブロック画素間差分値算出工程と、

上記ブロック画素間差分値算出工程で算出した上記注目 ブロックにおける上記ブロック画素間差分値の統計に基 づきブロック閾値を算出するブロック特徴量算出工程と を有し、 1.0

上記クラス分類工程では、上記予測タップにおける隣接フレームの画素間差分値と上記フレーム毎の上記ブロック関値の最大値とに基づき上記注目画素の時間クラスを分類することを特徴とする請求項63記載のプログラム。

【請求項65】 上記予測タップにおける隣接フレームの画素間の差分値が上記フレーム毎の上記ブロック閾値の最大値より大きい場合は、上記差分値を算出したフレームから上記注目フレームとは離隔する方向のフレームの画素を使用不可タップとし、この使用不可タップ以外の画素を使用可能タップとし

上記クラス分類工程では、上記使用不可タップ数及び使用可能タップの数に基づき上記時間クラスを分類することを特徴とする請求項64記載のプログラム。

【請求項66】 上記予測係数を予め学習する学習工程 を有し、

上記学習手段では、教師画像に歪みを付加して生徒画像となる上記第1の画像を生成する画像生成工程と、上記第1の画像から注目画素及びその周辺の複数の第1の画素を予測タップとして切り出す領域切出工程と、上記予測タップのうち所定の位置関係を有する画素間の画素値の差分値を算出する差分値算出工程と、上記差分値に基づき、上予測タップを複数のクラスのうち何れかのクラスに分類するクラス分類工程と、上記教師画像及び上記予測タップから上記第2の画像を予測演算するための予測係数を算出する予測係数算出工程とを有することを特徴とする請求項65記載のプログラム。

【請求項67】 上記第1の画像は、輝度信号及び色差信号を有し、

30 上記クラス分類工程では、上記色差信号に対応する上記 輝度信号から上記色差信号の注目画素のクラスを分類す ることを特徴とする請求項60記載のプログラム。

【請求項68】 入力される第1の画像に対して所定の 推定演算を行って上記第1の画像を第2の画像に変換す る動作をコンピュータに実行させるためのプログラムが 記録された記録媒体において、

上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出工程と、

上記予測タップのうち所定の位置関係を有する画素間の 0 差分値を算出する差分値算出工程と、

上記予測タップの差分値に基づき、上記注目画素を複数 のクラスのうち何れかのクラスに分類するクラス分類工 程と、

上記注目画素が分類されたクラスに対応する予測係数を 読み出す読出工程と、

読み出された上記予測係数と上記予測タップとから上記 所定の推定演算により上記注目画素の画素値を第2の画 像の画素値に変換する推定演算工程とを有することを特 徴とするプログラムが記録された記録媒体。

50 【請求項69】 上記クラス分類工程は、上記画素間差

分値が所定の閾値以上である場合に、該画素間にはエッジが存在するものと判定し、このエッジ判定結果に基づいてクラス分類することを特徴とする請求項68記載の記録媒体。

【請求項70】 上記領域切出工程では、上記注目画素を含む注目フレーム及びこの注目フレームの前後の複数のフレームが入力され、これら全てのフレームにおいて上記注目画素と同一の位置の画素を上記予測タップとして切り出すことを特徴とする請求項68記載の記録媒体。

【請求項71】 上記クラス分類工程は、上記全てのフレームにおいて上記注目画素と同一の位置の画素から構成される上記予測タップの上記差分値に基づき、上記注目画素を複数の時間クラスのうち何れかのクラス分類することを特徴とする請求項70記載の記録媒体。

【請求項72】 上記第1の画像のフレーム毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する各画素間の画素値の差分値をブロック画素間差分値として算出するブロック画素間差分値算出工程と、

上記ブロック画素間差分値算出工程で算出した上記注目 ブロックにおける上記ブロック画素間差分値の統計に基 づきブロック閾値を算出するブロック特徴量算出工程と を有し、

上記クラス分類工程では、上記予測タップにおける隣接フレームの画素間差分値と上記フレーム毎の上記ブロック閾値の最大値とに基づき上記注目画素の時間クラスを分類することを特徴とする請求項71記載の記録媒体。 【請求項73】 上記予測タップにおける隣接フレーム

【請求項73】 上記予測タップにおける隣接ノレームの画素間の差分値が上記フレーム毎の上記ブロック閾値の最大値より大きい場合は、上記差分値を算出したフレームから上記注目フレームとは離隔する方向のフレームの画素を使用不可タップとし、この使用不可タップ以外の画素を使用可能タップとし上記クラス分類工程では、上記使用不可タップ数及び使用可能タップの数に基づき上記時間クラスを分類することを特徴とする請求項72記載の記録媒体。

【請求項74】 上記予測係数を予め学習する学習工程を有し、

上記学習手段では、教師画像に歪みを付加して生徒画像 40 となる上記第1の画像を生成する画像生成工程と、上記第1の画像から注目画素及びその周辺の複数の第1の画素を予測タップとして切り出す領域切出工程と、上記予測タップのうち所定の位置関係を有する画素間の画素値の差分値を算出する差分値算出工程と、上記差分値に基づき、上予測タップを複数のクラスのうち何れかのクラスに分類するクラス分類工程と、上記教師画像及び上記予測タップから上記第2の画像を予測演算するための予測係数を算出する予測係数算出工程とを有することを特徴とする請求項73記載の記録媒体。 50

12

【請求項75】 上記第1の画像は、輝度信号及び色差信号を有し、

上記クラス分類工程では、上記色差信号に対応する上記 輝度信号から上記色差信号の注目画素のクラスを分類す ることを特徴とする請求項68記載の記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、DCT変換及びDCT変換後に得られるDCT係数の量子化により生じた10 歪み等の除去を図った画像信号処理装置及びその方法、並びに歪除去処理をコンピュータに実行させるプログラム及びそのプログラムが記録されたコンピュータ読み取り可能な記録媒体に関する。

[0002]

【従来の技術】映像・音声・データ等を限られた伝送帯域幅の中で高品質に伝送したり、限られた容量の記録媒体に記録したりするために、ディジタル画像・音声圧縮技術やディジタル伝送技術の発展が不可欠である。このような圧縮技術として、現在では特にMPEG2(Movi 20 ng Picture Experts Group 2)やMPEG1といったMPEG方式が用いられている。

【0003】MPEG方式で画像データを圧縮(エンコード)する場合、画像データが8×8の正方形のDCT (Discrete Cosine Transform) ブロックに分割され、このDCTブロック毎にDCT変換が行われ、DCT変換後の各係数は所定の量子化ステップで除算されて量子化され、データの圧縮されたデータストリームが生成される

【0004】また、MPEG方式で圧縮されたデータを 90 伸長(デコード)する場合、8×8の正方形のDCTブロック毎の各係数に量子化ステップが乗算され、このD CTブロック毎に逆DCT変換が行われ、画像データが 復号される。

[0005]

【発明が解決しようとする課題】しかしながら、DCT ブロックのDCT係数を粗く量子化すると、直交変換符 号化時特有の雑音、すなわちブロック歪やモスキート・ ノイズが発生してしまう。したがって、復号処理によっ て得られる画像データは、視覚的に大きく画像が劣化す る。

【0006】このブロック歪及びモスキート・ノイズの発生メカニズムについて、図34を参照しながら説明する。なお、この図34では、DCTブロックの水平方向の波形に着目し、右端の1画素のみが明るいパターンの場合の歪みの発生について説明する。原波形が図34の太線で示すようなステップ波形である場合、これをDCT変換して得られるDCTの基底の波形は、図34に示すようなAC成分7本とDC成分とからなる形となる。【0007】MPEG1/MPEG2では、これらの波

50 形の振幅及びDCレベルをある量子化テーブルによって

量子化し、図35に示すAC/DC成分のように情報量 を削減する。この際、通常は高周波成分がより粗く量子 化されるため、量子化誤差を含んだ低周波成分のみを表 示波形とするような波形が復号される。 このとき 、 原波 形のステップ波形に見られない波がブロック左に現れ、 これがモスキート・ノイズと呼ばれる画像の歪みとして 見える。

【0008】また、ブロックの境界部分の画素値で、原 波形と復号した表示波形との間には誤差があり、この誤 ることで段差が生じる。この段差は、一定の位置に固定 されたDCTブロックの境界に沿って現れるため、ブロ ック歪として知覚されやすい。さらにブロック歪は、隣 接するブロック間での波形の食い違いとしても現れる。 図35の太線で示す表示波形は、原波形に対してエッジ が鈍っており、エッジが半画素程度左にずれたように見 える。このようなずれの程度は、エッジの走り方や量子 化の粗さに影響されるため、例えば原波形で上下の隣接 ブロック間で連続していたエッジが、復号後の表示波形 ではブロック境界で不連続になってしまうという問題が 20 発生する。

【0009】なお、図34は理想化された模式図であ り、実際には量子化テーブル、量子化スケール、原波形 の形状や振幅等の要因により、歪みの発生パターンは必 ずしも一定ではない。

【0010】ところで、既存のDVD (Digital Versat ile Disk) プレーヤ等でもBNR (Block Noise Reduct ion) 等の名称でブロック歪やモスキート・ノイズの除 去を行っている例はあるが、処理としてはブロック境界 部や画像のエッジ付近をローパス・フィルタによってぼ かす程度であり、能動的な歪み除去とは言い難いもので あった。また、画像が本来有しているエッジもぼかして しまうため、解像度の低下を招来するといった問題点が あった。

【0011】本発明は、このような従来の実情に鑑みて 提案されたものであり、画像データの圧縮/伸長処理を 行ったときに生じた歪みを効率的に除去する画像信号処 理装置及びその方法、並びに歪み除去処理をコンピュー タに実行させるプログラム及びそのプログラムが記録さ れたコンピュータ読み取り可能な記録媒体を提供するこ 40 とを目的とする。

[0012]

【課題を解決するための手段】上述した目的を達成する ために、本発明に係る画像信号処理装置は、入力される 第1の画像に対して所定の推定演算を行って上記第1の 画像を第2の画像に変換する画像信号処理装置におい て、上記第1の画像から、注目画素及びその周辺の複数 の画素を予測タップとして切り出す領域切出手段と、上 記予測タップのうち所定の位置関係を有する西素間の画 素値の差分値を算出する差分値算出手段と、上記予測タ

ップの差分値に基づき、上記注目画素を複数のクラスの うち何れかのクラスに分類するクラス分類手段と、上記 注目画素が分類されたクラスに対応する予測係数を読み 出す読出手段と、読み出された上記予測係数と上記予測 タップとから上記所定の推定演算により上記注目画素の 画素値を第2の画像の画素値に変換する推定演算手段と を有することを特徴とする。

【0013】本発明においては、クラスタップの画素間 の差分値を算出して、この差分値に基づきクラスタップ 差の現れ方が左右に隣接するブロック間でまちまちにな 10 のクラス分類を行って所定の推定演算を行うクラス分類 適応処理により、画像信号を変換処理する際に、本来画 像が有するエッジは抽出し、逆にモスキート・ノイズ及 びブロック歪等を効果的に抑圧することができる。

> 【0014】また、上記クラス分類手段は、上記画素間 差分値が第1の閾値以上である場合に、該画素間にはエ ッジが存在するものと判定し、このエッジ判定結果に基 づいてクラス分類することができ、ノイズが発生しやす く、且つ、目立ちやすいケースに着目したクラス分類を 行うことができる。

【0015】更に、上記差分値算出手段は、上記水平ラ インデータの水平方向に隣接する2つの画素間及び上記 垂直ラインデータの垂直方向に隣接する2つの画素間の 差分値を算出することができる。

【0016】更にまた、上記差分値算出手段は、上記第 1の画像の輝度信号及び色差信号を基に上記差分値算出 手段で算出された上記ラインデータにおける上記画素間 差分値の統計から上記ラインデータの特徴を抽出する統 計量算出手段を有することができる。

【0017】また、上記画素間差分値算出手段で算出さ 30 れた上記ラインデータにおける上記画素間差分値の統計 から、上記画素間差分値の最大値と最小値との差である ダイナミックレンジを求め、上記画素間差分値の上記最 大値、最小値、及びダイナミックレンジから上記画素間 エッジ判定における上記第1の閾値を算出することがで き、これにより、モスキート・ノイズの判別・分離に は、上下及び左右の画素間の差分値を求め、その統計量 から求めた閾値と比較することにより、本来画像が有す るエッジとは別に、ノイズを分離することができる。

【0018】更に、上記第1の画像のブロック毎のブロ ックデータが入力され、上記注目画素が属する注目ブロ ックにおいて水平方向及び垂直方向に隣接する各画素間 毎の差分値をブロック画素間差分値として算出するブロ ック画素間差分値算出手段を有してもよい。

【0019】また、上記領域切出手段は、上記第1の画 像のブロック毎のデータが入力され、上記注目画素が属 する注目ブロックにおける該注目画素を含む水平方向及・ び垂直方向の夫々水平ラインデータ及び垂直ラインデー タと、上記注目ブロックに隣接する隣接ブロックにて上 記注目画素と水平又は垂直位置が同一で上記注目ブロッ 50 クに最も近接する隣接ブロック画素とを上記予測タップ

として切り出すことができ、これにより、DCT変換に 使用されるブロック構造を考慮し、発生する歪みの特性 に合わせたタップ構造とすることができる。

15

【0020】更に、上記クラス分類手段は、上記水平ラインデータ及び上記垂直ラインデータで隣りあう画素間の各差分値が所定の関値以上である場合に、この画素間にはエッジが存在するものと判定し、このエッジ判定結果に基づき上記注目画素を複数の空間クラスのいずれかに分類することができる。

【0021】更にまた、上記クラス分類手段は、上記隣 10 接ブロック画素と該隣接ブロック画素に最も近接する画 素との差分値が所定値以上である場合に、上記注目ブロ ックと上記隣接ブロック画素が属する隣接ブロックとの 間にはエッジが存在するものと判定し、このエッジ判定 結果に基づき上記注目画素を複数の空間クラスのいずれ かに分類することができ、例えば、平坦ブロッククラ ス、エッジ上クラス、細線上クラス、複雑クラスに分 類、又は単純エッジクラス等に分類することができる。 【0022】また、上記第1の画像をフレーム毎に記憶 する複数のフレームメモリを有し、上記第1の領域切出 手段は、上記注目画素を含む注目フレーム及びこの注目 フレームの前後の複数のフレームが入力され、これら全 てのフレームにおいて上記注目画素と同一の位置の画素 を上記予測タップとして切り出すことができ、これに基 づき時間クラスを分類することにより画素間の時間変動 を抑圧することができる。

【0023】更に、上記フレーム毎のブロックデータが入力され、上記注目画素が属する注目ブロックにおいて水平方向及び垂直方向に隣接する全ての画素間の各差分値をブロック画素間差分値として算出するブロック画素間差分値算出手段とを有し、上記ブロック特徴量算出手段は、上記ブロック画素間差分値算出手段で算出された上記注目ブロックにおける上記ブロック画素間差分値の統計に基づきブロック関値を算出し、上記クラス分類手段は、上記予測タップにおける隣接フレームの画素間差分値と上記フレーム毎の上記ブロック関値の最大値とに基づき上記注目画素の時間クラスを分類することができ、動画本来の時間変化を必要以上に抑制せず不自然な動きばけ発生を防止して、時間変動抑圧に使用できるタップを制限することができる。

【0024】更にまた、上記予測タップにおける隣接フレームの画素間の差分値が上記フレーム毎の上記ブロック閾値の最大値より大きい場合は、上記差分値を算出したフレームから上記注目フレームとは離隔する方向のフレームの画素を使用不可タップとし、この使用不可タップ以外の画素を使用可能タップとし、上記クラス分類手段は、上記タップの種類(使用可能タップであるか使用不可タップであるか)に基づき上記時間クラスを分類することができる。

【0025】また、予測タップは、上記注目画素が属す 50 定演算を行って上記第1の画像を第2の画像に変換する

る上記注目フレームから時間的に未来方向及び過去方向 の複数のタップからなり、推定演算時の予測タップは、 上記未来方向に1以上の上記使用可能タップが存在し、 且つ、上記過去方向に1以上の上記使用可能タップが存 在する場合、上記注目画素は、第1の時間クラスに分類 され、上記学習時の予測タップは、全ての予測タップが 上記使用可能タップである場合、上記注目画素は、上記 第1の時間クラスに分類され、上記推定演算時に上記第 1の時間クラスに分類される上記予測タップにおける上 記使用不可タップに相当する上記第1の時間クラスに分 類され学習された上記学習手段における上記予測タップ の予測係数を、上記推定演算時の上記予測タップにおけ る全ての上記使用可能タップに分配すると共に、該使用 不可タップの予測係数をOにすることにより、正確に学 習すると共に効率よくマッピングすることができる。 【0026】更に、上記クラス分類手段は、上記ブロッ クデータにおける上記注目画素の位置に基づきクラス分 類することができ、第1の画像の性質に合わせて画素位

クデータにおける上記注目画素の位置に基づきクラス分類することができ、第1の画像の性質に合わせて画素位置を設定することにより、クラス数を削減できる。
(0027]本発明に係る予測係数学習装置は、第1の画像に対して所定の推定演算を行って上記第1の画像を第2の画像に変換する予測係数を学習する予測係数学習装置によいて、原画像に歪みを付加して第1の画像を生

第2の画像に変換する予測係数を子音する予測係数子音 装置において、原画像に歪みを付加して第1の画像を生成する画像生成手段と、上記第1の画像から注目画素及 びその周辺の複数の第1の画素を予測タップとして切り 出す領域切出手段と、上記予測タップのうち所定の位置 関係を有する画素間の差分値を算出する差分値算出手段 と、上記差分値に基づき、上記予測タップを複数のクラ スのうち何れかのクラスに分類するクラス分類手段と、 上記予測タップから上記第2の画像を予測演算するため

上記予測タップから上記第2の画像を予測演算するため の予測係数を算出する予測係数算出手段と、予測係数を 上記クラス毎に記憶する記憶手段とを有することを特徴 とする。

【0028】本発明に係る画像信号処理方法は、入力される第1の画像に対して所定の推定演算を行って上記第1の画像を第2の画像に変換する画像信号処理方法において、上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出工程と、上記予測タップのうち所定の位置関係を有する画素間の参介値を算出する差分値算出工程と、上記予測タップの差分値に基づき、上記注目画素を複数のクラスのうち何れかのクラスに分類するクラス分類工程と、上記注目画素が分類されたクラスに対応する予測係数を読み出す読出工程と、読み出された上記予測係数と上記予測タップとから上記所定の推定演算により上記注目画素の画素値を第2の画像の画素値に変換する推定演算工程とを有することを特徴とする。

【0029】本発明に係るプログラム又はこれを記録した記録媒体は、入力される第1の画像に対して所定の推定演算を行って上記第1の画像を第2の画像に変換する

動作をコンピュータに実行させるためのプログラム又は これを記録した記録媒体において、上記第1の画像か ら、注目画素及びその周辺の複数の画素を予測タップと して切り出す領域切出工程と、上記予測タップのうち所 定の位置関係を有する画素間の差分値を算出する差分値 算出工程と、上記予測タップの差分値に基づき、上記注 目画素を複数のクラスのうち何れかのクラスに分類する クラス分類工程と、上記注目画素が分類されたクラスに 対応する予測係数を読み出す読出工程と、読み出された 上記予測係数と上記予測タップとから上記所定の推定演 10 算により上記注目画素の画素値を第2の画像の画素値に 変換する推定演算工程とを有することを特徴とする。 [0030]

【発明の実施の形態】本願発明者等は、上述した課題を 解決するために鋭意実験研究した結果、上述の図35に 示す原波形のエッジ近辺では表示波形の画素間差分が大 きく、モスキート・ノイズ部分の画素間差分は相対的に 小さいこと、及び原波形がブロック間で連続であれば、 ブロック間で生じる段差も表示波形のエッジ付近の画素 間差分値よりは小さくなることを知見した。但し、極端 20 な高圧縮率のために量子化ステップが非常に粗くなり、 AC成分がほとんど残らないような場合はその限りでは ない。本願発明者等は、上記の知見に基づき、ブロック 内部での画素間差分絶対値の分布を調べれば、画像本来 のエッジとそれ以外の歪成分とを区別することができる ことを見出した。即ち、画素間差分絶対値の統計量を使 用してエッジ検出を行い、エッジの有無及びブロック内 での配置に基づきクラス分類することにより、効率的な **歪抑圧を行うことができることを見出した。**

【0031】以下、本発明を適用した具体的な実施の形 30 態について、図面を参照しながら詳細に説明する。本実 施の形態は、本発明をMPEGデコードされた画像デー タに生じるブロック歪み及びモスキート・ノイズを除去 するための画像信号処理装置及び方法に適用したもので ある。

【0032】(1)クラス分類適応処理の原理 先ず、本実施の形態の説明に先立ち、理解を容易とする ために、クラス分類適応処理の概要について説明する。 図1は、クラス分類適応処理を使用した画像信号処理装 置の一例を示すブロック図を示す。 図1に示すように、 画像信号処理装置100は、第1の画像データD1が入 力され、所定の領域の画像を切り出す第1及び第2の領 域切出部101、102と、第1の領域切出部101に より切り出されたデータD2からクラスコードを生成す るクラスコード生成部103と、クラスコード生成部1 03から供給されるクラスコードに対応する予測係数を 読み出すROM (Read Only Memory) テーブル104 と、第2の領域切出部102により切り出されたデータ D3及びROMテーブル24から読み出された予測係数

D4を生成する推定演算部105とから構成されてい

【0033】後述する本実施の形態においては、第1の 画像データとして、MPEG復号画像データが入力さ れ、この第1の画像データから変換する第2の画像デー タとして、MPEG復号画像データのブロック歪及びモ スキート・ノイズ等が除去された歪除去処理済画像を生 成する。

【0034】第1の領域切出部101は、画像データD 1から例えば、注目画素及びこの注目画素を中心しとし た複数の周辺画素から構成される例えば合計7画素(タ ップ)をクラス分類用の画素(以下、これをクラスタッ プという。) として切り出し、これら7タップの画素値 をクラスコード生成部103に供給する。

【0035】クラスコード生成部103は、供給された クラスタップの信号レベル分布に基づいて、注目画素の クラスを示すクラスコードを生成する。クラスコードの 生成方法としては、画像データD 1が例えばパルス符号 変調PCM (Pulse Code Modulation) データであると きは、このPCMデータをそのままクラスコードとして 使用する方法や、いわゆるADRC (Adaptive Dynamic Range Coding) 等のデータ圧縮方法を使用してクラス 数を削減する方法等がる。このうち、PCMデータをそ のままクラスコードとする方法では、クラスタップとし て8ビットのPCMデータを7タップ使用する場合、ク ラス数が256という膨大な数のクラス数に分類される ことになり、実用上問題がある。そこで実際には、クラ スコード生成部103は、ADRCのようなデータ圧縮 処理(すなわち再量子化処理)を施すことによりクラス 数を削減するようになされている。ADRCによる分類 法は、領域内のダイナミックレンジから再量子化ビット 数に応じた量子化ステップ幅を算出し、入力画素値から 最小画素値を減算した画素値を量子化ステップ幅に応じ て再量子化するものである。例えば、領域内の7タップ において、各クラスタップを1ビットに再量子化する1 ビットADRCを行う場合では、領域内のダイナミック レンジに基づいて7タップの各入力画素値を適応的に1

【0036】生成されたクラスコードは、ROMテーブ ル104に送られる。ROMテーブル104は、後述す る学習回路によって予め学習された各クラスコードに対 応する予測係数が格納されている。そしてROMテーブ ル104にて、クラスコードに応じた予測係数が読み出・ され、この予測係数が推定演算部105に送出される。 【0037】一方、第2の領域切出部102は、画像デ ータD1から、注目画素及びこの注目画素を中心しとし が入力され、所定の推定演算を行って第2の画像データ 50 た複数の周辺画素から構成される例えば合計13タップ

ビット量子化し、その結果、7タップの入力画素値を7

ビットのデータに削減することができるので、全体とし

40 てクラス数を128クラスにまで削減することができ

を予測演算用の画素(以下、これを予測タップという。)として切り出し、この予測タップの画素値を推定演算部105に供給する。

19

【0038】推定演算部105は、第2の領域切出部102から供給された予測タップの各画素値と、ROMテーブル104から読み出された予測係数とを使用して、積和演算を行うことにより、予測タップには存在しない、例えば高解像度HD(HighDefinition)の画素の集まりであるHD画像データ等の第2の画像データの画素値を生成する。

【0039】本発明は、このような画像信号処理装置において、第1の画像データとして入力されるMPEGデコードされた画像データを変換し、第1の画像データに生じるブロック歪み及びモスキート・ノイズを除去した歪除去処理済画像データを第2の画像データとして生成する(以下、マッピングという。)際のクラスタップ及び予測タップ、並びに後述する学習回路において使用する際のクラスタップ及び予測タップにおいて、ブロック歪み及びモスキート・ノイズを効率よく除去するためのタップ構造を提案するものである。

【0040】次に、ROMテーブル104に格納されている予測係数を学習する学習回路について説明する。学習は、教師画像と、変換対象である生徒画像との間で行う。即ち、本発明の画像信号処理装置であれば、教師画像としてMPEG圧縮符号化前の原画像、即ち、歪等がない画像を使用し、生徒画像としてMPEG復号画像データを使用して学習することにより、MPEG復号画像データから歪を除去して原画像に近づけた歪除去処理済画像を生成するための予測計数を学習する。即ち、学習回路は、生徒画像から教師画像へ変換するための予測係30数を学習するものである。

【0041】図2は、図1に示す画像信号処理装置の学 習回路の一例を示すブロック図である。ここでは、高解 像度画像である教師画像と、低域通過フィルタ(LP F)を通して解像度を下げた生徒画像との間で行う学習 について説明する。学習回路130は、予測係数を予め 学習して、これを図1に示すROMテーブル104に格 納するようになされている。この学習回路130は、教 師画像データD11が入力される垂直間引きフィルタL PF131と、LPF131から出力された低解像度デ 40 ータD12(生徒画像データ)からクラスタップ及び予 測タップを切り出す第1及び第2の領域切出部132、 133と、第1の領域切出部132から供給されたクラ スタップの画素値に基づきクラスコードを生成するクラ スコード生成部134と、第2の領域切出部133から 供給される予測タップの画素値、クラスコード生成部1 34から供給されるクラスコード、及び画像データ(教 師画像データ) D11が入力され、正規方程式により予 測係数を演算する正規方程式演算部135と、予測係数 を決定する予測係数決定部136と、決定された予測係 50

20 数をクラスコードと共に格納するメモリ137とから構 成される。

【0042】第1の領域切出部132、第2の領域切出部133及びクラスコード生成部134は、図1に示す画像信号処理装置における第1の領域切出部101、第2の領域切出部102及びクラスコード生成部103と同様の構成とすることができ、第1の領域切出部132に入力される生徒画像データD12からクラスタップを切り出し、クラスコード生成部134がクラスタップの10信号レベル分布に基づいてクラスコードを生成した後、これを正規化方程式演算部135に送出する。また、第2の領域切出部133は、生徒画像データD12から予測タップを切り出し、正規化方程式演算部135に供給する。

【0043】正規化方程式演算部135は、教師画像データD11及び予測タップの画素値を基に、予測係数を算出して予測係数決定部136で決定された予測係数をクラスコードと共にメモリ137に格納する。このような画像信号変換装置においては、クラス分類適応処理に20 より、予め学習された予測係数を使用して所定の推定演算をすることにより、変換対象の第1の画像データを所望の画像データに変換することができる。

【0044】以下、本発明の実施の形態について説明する。図3は、本発明の実施の形態に係る画像信号処理装置を示すブロック図である。本実施の形態の画像信号処理装置10は、第1の画像であるMPEG復号画像が入力され、第2の画像である歪除去処理済画像の予測値を求める所定の推定演算により、MPEG復号画像を歪除去処理済画像に変換するものである。

6 【0045】本実施の形態においては、MPEG復号画像から注目画素を含む複数の画素をクラスタップとして切り出してクラス分類する際、注目画素を空間クラス及び時間クラスに分類する。この際の処理をブロック単位で行うため、ブロック毎の特徴量を抽出し、空間及び時間クラス分類に使用する。

【0046】<u>(2) 画像信号処理装置 (マッピング処理</u> 装置) の構成

先ず、空間クラスを分類する際の処理は、図3に示すように、MPEG復号画像のブロックデータから注目画素及び注目画素を含む水平方向及び垂直方向のラインデータを空間クラス分類に使用する空間クラスタップとして出力するラインメモリ15と、統計量算出部13と、メモリ14と、特徴量抽出部20とで行われる。差分値算出手部12は、空間クラスタップのうち所定の位置関係を有する画素間の差分値を算出する。統計量算出部13は、クラスタップの差分値の統計からクラスタップの特徴量を記憶する。また、特徴量抽出部20は、クラスタップの特徴量を記憶する。また、特徴量抽出部20は、クラスタップの特徴量を記憶する。また、特徴量抽出部20は、クラスタップの特徴量を記憶する。

50 【0047】また、時間クラスを分類する際の処理は、

注目画素が属する注目フレームとその前後の複数のフレ ームを記憶する並列 (メモリバンク状) に接続されたフ レームメモリ16と、注目フレーム及びその前後の複数 のフレームが入力され、注目画素及び注目画素と同一の 位置にある画素を時間クラス分類に使用する時間クラス タップとして切り出す領域切出部17と、時間クラスタ ップにおいて時間方向に隣接する画素間の差分値を算出 する画素間差分値算出部18と、時間クラスタップの差 分値の統計から時間クラスタップの特徴を抽出する統計 量算出部19と、特徴量抽出部20とで行われる。特徴 量抽出部20は、時間クラスタップの画素間差分値及び 特徴から時間クラスを分類する。

【0048】また、ブロック単位の特徴を抽出する処理 は、画素間差分値算出部12、統計量算出部13及び特 **敬量メモリ14で行われる。画素間差分値算出部12** は、ブロック毎のデータも入力されブロック内の隣接す る画素間の画素値の差分値を算出する。統計量算出部1 3は、画素間差分値の統計からブロック毎の特徴を抽出 し、これを特徴量メモリ14に送出する。

【0049】更に、画像信号処理装置10は、特徴量抽 20 出部20にて分類された空間クラス及び時間クラス等か ら注目画素のクラスを識別するクラスコードを発生する クラスコード発生部21と、後述する学習回路にて予め 学習された複数のクラス毎の予測係数のうち、上記クラ スコードに対応する予測係数を読み出すROMテーブル 22と、フレームメモリから注目フレーム及びその前後 のフレームデータが入力され、注目画素及びこの注目画 素が属するブロック内の複数個の空間予測タップ及び時 間方向に異なるブロックにおいて注目画素と同一位置に ある時間予測タップを切り出す領域切出部23と、予測 係数及び予測タップから推定演算して注目画素の画素値 を算出する推定演算部24とを有している。

【0050】(3)学習回路の構成

図4は、画像信号処理装置10で使用される予測係数を 学習する学習回路を示す。基本的な構成は、画像信号処 理装置10と同様である。教師画像として、原画像デー タD21が入力され、この原画データD21をMPEG 符号化し、更に復号化し、MPEG歪を不可した生徒画 像D22を生成する歪付加部31を有している。また、 正規化方程式演算部44には、クラスコード、予測タッ 40 プ及び教師画像である原画像データD21が入力され、 予測係数を所定の正規化方程式により演算して決定し、 決定された予測係数をクラスコードと共にメモリ42に 記憶する。ここで、詳しくは、後述するが、学習時とマ ッピング時とでは、時間クラスタップの構成が異なり、 学習時にはより正確な予測係数を求めるために、使用可 能な時間クラスタップをマッピング時よりも制限する。 【0051】上述した如く、DVDやCS放送、BSハ イビジョン放送等で使用されるMPEG2、又はMPE

DCD変換と、変換後に得られるDCT係数の量子化が 主な発生原因となり、ブロック歪やモスキート・ノイズ と呼ばれる特有の歪が発生する。更に、MPEG2の場 合には、復号したイントラ・フレームから動き補償を行 い、DCT残差を加えてノンイントラ・フレームを作る ため、時間的な画質の変動も加わる。

【0052】本実施の形態の画像信号処理装置において は、ノイズが発生しやすく、且つ目立ちやすい場合、具 体的には、DCTブロック内の画像に鋭いエッジが含ま 10 れ、その周辺が平坦である場合等に着目してクラス分類 を行うことにより、モスキート・ノイズ抑圧することが できる。

【0053】また、ノイズの発生パターンはブロック内 のエッジの位置とある程度の相関があるため、エッジの 位置にも着目し、画像が本来有するエッジの抽出と、モ スキート・ノイズ成分との判別/分離には、上下及び左 右の画素間の差分値をブロック内や注目画素周辺につい て求め、その統計量(最大及び最小値)から求めた閾値 と、差分値とを比較することでクラス分類を行う。

【0054】更に、予測タップの一部が常に注目ブロッ クの上下左右の隣接ブロックに配置されるタップ構造と し、動きぼけを防止する。

【0055】更にまた、このようなクラス分類及びタッ プ構造を使用して、MPEG2符号化/復号した画像を 生徒画像、原画像を教師画像として学習を行い、予測係 数を生成するものである。

【0056】以下、本実施の形態における画像信号処理 装置10及び学習回路30にて行われる信号処理につい て詳細に説明する。

【0057】先ず、DCTブロックの輝度信号の処理に 30 ついて説明する。なお、後述するクロマ信号(色差信 号)の処理についても、基本的には輝度信号と同様に行 うものとする。

【0058】 先ず、 クラス分類適応処理を施す画像信号 処理装置10におけるクラス分類方法を説明する。本実 施の形態におけるクラス分類方法は、DCTブロック単 位毎のブロック特徴量を抽出する第1の工程と、同一フ レームデータから空間クラスを分類する第2の工程と、 複数のフレームデータから時間クラスを分類する第3の 工程とを有している。以下、画像信号処理装置10によ りMPEG復号画像を歪除去処理済画像に変換するマッ ピング時の処理について説明するが、学習回路において 予測係数を学習する学習時においても基本的には同様で あるため、その詳細な説明は省略する。

【0059】(4)ブロック特徴量の算出

ブロック特徴量は、図3に示す画像信号処理装置10の 画素間差分値算出部12と、統計量算出部13と、ブロ ック特徴量メモリ14とから抽出される。抽出したブロ ック特徴量は、後述する空間クラス分類及び時間クラス G1による画像圧縮では、圧縮方式の基礎になっている 50 分類の何れにおいても使用する。画素間差分値算出部1

2は、16×16 画素のマクロブロック単位のMPEG 復号画像が入力され、このマクロブロックがフィールド DCT構造であるか、またはフレームDCT構造であるかのブロックタイプを判定すると共に、8×8 画素のブロックにおいて、隣接する各画素間の画素値の微分値から画素間絶対差分値を算出する。統計量算出部13は、画素間絶対差分値が入力され、ブロック毎の画素間絶対差分値の統計量をとって、ブロックが平坦であるか否かを示す平坦フラグを算出し、空間クラス分類に使用する。また、統計量から時間クラス分類において使用する。また、統計量から時間クラス分類において使用する。プロック単位の閾値(ブロック閾値Bth)を算出する。ブロック特徴量メモリ14は、ブロックタイプ、平坦フラグ及びブロック閾値Bth等のデータを記憶する。以下、このブロック特徴量の抽出について詳細に説明する。

【0060】 (4-1) ブロックタイプの判定 図5は、ブロック単位の閾値Bthを算出する工程を示 すフローチャートである。図5に示すように、先ず、ス テップS1において、マクロブロック毎の輝度値が読み 込まれ、ステップS2において、そのブロック構造がフ 20 ィールドブロックであるか、又はフレームブロックであ るかが判定される。すなわち、本実施の形態におけるD CTブロックは、MPEGのエンコード時に選択される ブロック構造を想定しているため、フィールドDCTブ ロックとフレームDCTブロックの2通りが存在し得 る。ここで、ブロック構造をフィールド又はフレームの 何れにするかは、MPEGのビットストリームから情報 が得られる場合はそれに従う。また、既に復号された画 像のように、ブロック情報が得られない場合には、MP EG1/MPEG2で行われるのと同様の手法を適用す る等して、DCTブロックの構造を判定する。後者の場 合には、判定結果であるブロックタイプフラグBtype_fl agを後述するブロック単位閾値Bth等と共に記憶して

【0061】<u>(4-2) 画素間差分值算出</u>

おく。

次に、ステップS3において、8×8画素のDCTブロック毎の画素の輝度値が抽出され、ステップS4において、水平方向及び垂直方向の隣接画素間の差分絶対値が算出される。

【0062】図6(a)及び(b)は、8×8画素のD 40 CTブロックを示す模式図である。先ず、図6(a)に示すように、ブロックB1において、水平方向の隣接画素間の輝度の差分値(以下、水平差分値という。)を算出する。ブロックB1は、水平方向に8画素配列されているため、水平差分値は、各行毎に7個求まり、ブロックB1全体では、7×8(列)=56個が算出される。また、図6(b)に示すように、ブロック画素11において、垂直方向の隣接画素間の輝度の差分値(以下、垂直差分値という。)を算出する。垂直方向にも8画素配列されているため、垂直差分値は、各列毎に7個求ま 50

り、ブロックB1全体では、7×8 (行) = 56個が算出される。これらの水平差分値及び垂直差分値が統計量 算出部13に送られる。

24

【0063】<u>(4-3)ブロック画素間差分値統計量の</u> 算出

次に、ステップS5において、統計量算出部13により、水平差分値及び垂直差分値から、夫々最大値(MAX)、最小値(MIN)及びダイナミックレンジ(DR=MAX-MIN)を算出する。以下、水平方向のダイナミックレンジ及び最小値を夫々HDR及びHMINとし、垂直方向のダイナミックレンジ及び最小値を夫々VDR及びVMINという。

【0064】次に、ステップS6では、HDR及びVDRがともに所定値未満であるか否かが判別される。ここで、HDR及びVDRが共に所定の閾値未満である場合は、このブロック内部には、明確なエッジが存在しないものとみなし、ステップ7に進み、このブロックが平坦であることを示す平坦フラグPflagに1をたてる。一方、HDR及びVDRの何れも所定の閾値以上である場合には、ステップS8に進む。

【0065】ステップS8では、ブロック関値Bthを算出する。図7は、横軸に水平方向又は垂直方向の差分値をとり、縦軸にその度数を取って、ブロック内の差分値の分布を模式的に示すとストグラムである。図7に示すように、得られた水平方向(又は垂直方向)の56個の値から、HMIN、HMAX、HDR及びHDR/4+HMIN(又は、VMIN、VMAX、VDR及びVDR/4+VMIN)を夫々求める。そして、水平方向及び垂直方向の夫々(HDR/4+HMIN)及び(VDR/4+VMIN)の値のうち、小さい方の値をとってそのブロックの閾値Bthとする。

【0066】このブロック閾値Bthは、後述する時間 方向クラス分類において、複数のフレームに亘ってブロック閾値を参照し、その中で最大のものを選択して使用 するものである。従って、画像データが入力される都度、予め各ブロック毎に閾値Bthを算出し、画像データ及び平坦フラグと共にこの閾値Bthを記録しておく。また、上述したように、DCTブロックの構造がフィールド又はフレームであるか判断した後、このブロック構造に従って画素をサンプリングしてブロック閾値Bthの計算を行う。

【0067】ここで、ブロック閾値Bth算出の際には、HDR又はVDRを1/4倍してHMIN又はVMINに加えているが、比率は1/4に限定されるものではない。しかし、エッジとモスキート・ノイズとの判別性能に関係するため、それを考慮して適宜決定する必要がある。

【0068】次に、ステップS9では、ブロック閾値B th、平坦フラグPflag及びブロックタイプフラグBty 50 pe_flagがフラグメモリ(ブロック特徴量メモリ14、 図1参照) に記録される。

【0069】続いて、ステップS10では、ステップS9にてブロック関値NBth、平坦フラグPflag及びブロックタイプフラグBtype_flagを算出・判定したブロックが最終マクロブロックであるか否かが判別される。このステップS10において、最終マクロブロックでないと判別された場合には、ステップS11に進み、マクロブロック位置を更新してステップS1に戻る。一方、ステップS10において、最終マクロブロックであると判定された場合には、ステップS12に進み、マクロブ10ロック位置をリセットし、次フレームの処理に移る。

【0070】(5)空間クラス分類処理 空間方向のクラス分類は、図1に示す画像信号処理装置 10において、ラインメモリ15と、画素間差分値算出 部12と、統計量算出部13と、ブロック特徴量メモリ 14と、特徴量抽出部20とで行われる。ラインメモリ 15は、入力されるMPEG復号画像から、8×8画素 のブロックにおいて、ブロック内をスキャンして注目画 素を含む水平方向のラインデータ(水平ラインデータ) と、注目画素を含む垂直方向のラインデータ(垂直ライ ンデータ)とを記憶する。 画素間差分値算出部12は、 画素のラインメモリ15から各8画素の水平ラインデー 夕及び垂直ラインデータが入力され、上述したブロック データと同様に、隣接する画素間の差分値を算出する。 統計量算出部136、上述と同様に、各ラインデータか ら算出された7つの画素間差分値から最大値、最小値、 及びダイナミックレンジ等を求める。ブロック特徴量メ モリ14は、それらの値を記憶する。そして、特徴量抽 出部20にて、ブロック特徴量メモリ14から読み出さ れたデータを元に空間クラス分類を分類する。クラス分 類されたクラスタップは、クラスコード発生部21によ りクラスコード (クラス番号) が付される。

【0071】以下、空間クラス分類における各工程について詳細に説明する。図8及び図9は、空間クラス分類及び後述する時間クラス分類からクラスコードを発生し、更に予測演算する一連の工程を示すタイミングチャートである。

【0072】(5-1)空間クラスタップの抽出 先ず、ステップS21では、ブロック特徴量メモリ14 に記憶されている注目ブロックのPflag及びBtype_fla gが読み出され、特徴量抽出部20に入力される。次い で、ステップS22においては、注目画素が属する注目 ブロック内の画素がスキャンされる。そして、ステップ S23において、図10に示すように、注目ブロックB 2から注目画素51を含む水平方向及び垂直方向の各8 画素が抽出される。更に、ステップS24において、注 目ブロックB2に隣接する隣接ブロックにおいて、注目 西素と同じ水平位置及び垂直位置の画素であって、注目 ブロックに隣接する画素(インタレース方式において は、注目画素と同一のフィールドで、注目ブロックに再 近接する画素)をブロック隣接画素として抽出する。即ち、図11に示すように、ブロック隣接画素は、注目画素51と水平位置が同じ左右のブロックの画素で、注目画素が属するブロックB2と接している画素52a,52b及び注目画素51と垂直位置が同じ上下のブロックの画素で、注目画素51が属するブロックB1と接している画素53a,53bを示す。本実施の形態においては、この注目ブロックにおける注目画素を含む水平及び垂直方向の計15画素及びブロック隣接画素から空間クラスを分類する空間クラスタップが構成される。

【0073】 (5-2) クラスタップの統計量の算出 図10に示すように、ステップS25では、ステップS 23にて抽出されたDCTブロック内の注目画素51を 含むの上下方向(垂直方向)及び左右方向(水平方向) の各8画素の隣接する画素間の差分絶対値を求める。 【0074】次いで、ステップS26において、上述の ブロック閾値Bthの算出と同様に、図7と同様のヒス トグラムから隣接する画素間差分絶対値の分布を調べ、 水平方向及び垂直方向のダイナミックレンジ及び最小値 20の夫々hdr、hmin及びvdr、vminを求め る。

【0075】なお、図10及び図11では、注目画素5 1を注目ブロックB1の上から3行目、左から4列目の 画素としているが、他の画素が注目画素の場合において も、注目画素を含む水平方向及び垂直方向の各8画素の 画素間差分絶対値を求めるものとする。

【0076】更に、図10及び図11は、フレームDC Tブロックを示すものであるが、フィールドDCTブロ ックの場合は、垂直方向は1ラインおきにサンプリング して、1ラインおきの画素間の差分絶対値を求める。 【0077】(5-3)空間クラスタップの特徴量抽出 次に、ステップS27において、画素間差分値(エッジ 検出)による空間クラス分類を行う。以下、このエッジ 検出による空間クラス分類について詳細に説明する。図 12万至図15は、図8に示すステップ27のエッジ検 出による空間クラス分類における工程を詳細に示すフロ ーチャートである。 また、 図16 (a) 乃至 (e) は、 図11に示す注目ブロックの注目画素を含む水平方向の 1ライン及び注目ブロックの左右(水平方向)に隣接す る隣接ブロックのブロック隣接画素において算出された エッジの値と、空間クラス分類の関係を示す模式図であ る。

【0078】先ず、ステップS51において、上述のステップS26にて算出したhdr, hmin及びvdr, vminから、水平方向の閾値(水平ライン閾値)hth=hdr/4+hmin、垂直方向の閾値(垂直ライン閾値)vth=vdr/4+vminを計算する。

ブロックに隣接する画素(インタレース方式において 【0079】なお、上述のブロック閾値Bth、並びには、注目画素と同一のフィールドで、注目ブロックに再 50 水平ライン閾値hth、及び垂直ライン閾値vth算出

の際に、ダイナミックレンジDR(dr)を1/4倍 し、これに最小値MIN (min)を加えているが、こ の比率はエッジとモスキート・ノイズとの判別性能に関 係するもので、それを考慮して適宜決定することができ

【0080】(5-4)境界フラグの検出 先ずクラス分類に先立って、ステップS52において、 ステップS8で求めたブロック閾値Bthと、ステップ S51にて求めた水平ライン閾値hth及び垂直ライン 閾値vthとを使用し、注目ブロックに隣接するブロッ 10 ク隣接画素との連続性を調べる。隣接画素との連続性 は、まず注目画素とブロック隣接画素との差分絶対値を 求め、左右のブロック隣接画素は水平ライン閾値hth と比較し、上下の隣接画素は垂直ライン閾値vthと比 較する。 即ち、 図16 (a) に示す水平ラインにおいて は、注目ブロックB3の左側にて隣接する左隣接画素5 2aと注目画素51との差分絶対値(175-128= 47)、及び注目ブロックB3の右側にて隣接する右隣 接画素52bと注目画素51との差分絶対値(146-128=18) を水平ライン閾値hdrと比較して、水 20 平ライン閾値hdrを超えるか否かを検出する。垂直方 向においても同様に計算し、垂直ライン閾値vdrを超 えるか否かを検出する。そして、これら4つの検出結果 を注目ブロックと左右上下に隣接する隣接ブロックとの 連続性を示す夫々ブロック境界段差A(A1乃至A4) に格納する。ここで、水平ライン閾値hdr、垂直ライ

ン閾値vdrを超える場合は、注目ブロックと隣接ブロ

ックとの間には連続性がないものとし、対応するブロッ

ク境界段差Aに1を格納し、水平ライン閾値hdr、垂

直ライン閾値vdrを超えない場合は対応するブロック

境界段差AにOを格納する。

【0081】次に、ステップS53において、左右及び 上下のブロック隣接画素とブロック境界を隔てて接する 注目ブロック内の画素との差分絶対値を求め、1/2倍 したのち、同様に夫々水平ライン閾値hdr、垂直ライ ン閾値vdrと比較する。即ち、図16(a)に示す水 平方向のラインにおいては、左ブロック隣接画素52a とこれに隣接する内側画素54aとの画素間差分絶対値 ((181-175)/2=3)と、右ブロック隣接画 素52bとこれに隣接する内側画素54bとの画素間絶 40 対差分値((146-138)/2=4)とを求め、こ れらの値が水平ライン閾値hdrを超えるか否かを検出 する。垂直方向においても同様に計算し、垂直ライン閾 値vdrを超えるか否かを検出する。そして、これら4 つの検出結果を、注目ブロック B 3 と左右上下に隣接す るブロックとの連続性を示すブロック境界段差B(B1 乃至B4) に格納する。ここで、水平ライン閾値h d r、垂直ライン閾値vdrを超える場合は、連続性がな いものとし、対応するブロック境界段差Bに1を格納 し、超えない場合は対応するブロック境界段差Bに0を 50 号448乃至463が付され、ステップS54で求めた

格納する。

【0082】次に、ステップS54において、ブロック 隣接画素と注目画素との差分絶対値、又は内側画素との 差分絶対値の1/2のいずれかが閾値を超えたとき、即 ち、ブロック境界段差Aとブロック境界段差Bのうち、 いずれか一方でも1である (連続性がない) 場合は、注 目画素と注目画素が属する注目ブロックに隣接する隣接 ブロックとの間には連続性がないものとみなし、境界フ ラグを1とする。即ち、ブロック境界段差Aとブロック 境界段差BとのORをとる。こうして、注目ブロックB 3の上下左右の隣接ブロックに対応して設けられた4b i tの境界フラグのうち、連続性がない場合はフラグを 1とし、どちらも閾値を超えない場合のみ該当する境界 フラグを0とする。

28

【0083】なお、注目画素がブロック境界に接してい る場合には、重複して判定を行うことになるため、差分 絶対値を1/2倍した値との比較は省略可能である。

【0084】このブロック境界の連続性判定は、注目画

素の歪を処理するにあたって、隣接ブロックの情報を補 正項として使用できるか否かを判定し、分類することを 目的とする。これにより、ブロック間に閾値を超える差 がある場合には、これを画像が本来持っているエッジが 関与しているものと判断し、補正項としては隣接ブロッ クの情報を使用しないように分類することができる。 【0085】即ち、ブロック境界部において、偶然、画 像本来のエッジが重なる場合には、不用意に段差を埋め ると画像がぼけて見えてしまうため、このようなケース では段差を残しておかねばならない。本実施の形態に は、境界フラグにより、注目画素周辺の画素間差分から 求めた閾値を使用して、ある程度大きな段差がある場合

には画像本来のエッジとみなすことにより、画像本来の

エッジか又はノイズであるかの判別に使用することがで

【0086】ここで、ブロック境界をまたいで接する画 素間の差分を1/2倍する理由は、この位置にはブロッ ク歪成分が重畳しやすく、補正すべきブロック歪を画像 本来のエッジと混同してしまう恐れがあるためである。 この倍率は、ブロック歪の検出性能を考慮して適宜決定 することができる。こうして、隣接ブロックを補正項と して使用するか否かが判定された後、隣接画素の状況に 続いて、ブロック内部の画像エッジに基づいてクラス分 類を行う。

【0087】(5-5)平坦ブロッククラス

先ず、ステップS55において、注目画素が属する注目 ブロックについて、ブロック単位の閾値Bthと共に求 めた平坦フラグPflagを参照し、平坦フラグPflagが1 である (平坦なブロックである) 場合は、ステップS5 6に進み、この注目ブロックは、平坦ブロッククラスと してクラス分類する。更に、ステップS57に進み、番

29 境界フラグの4bitの情報に基づいてクラス番号44 8乃至463に分類される。

【0088】<u>(5-6)水平方向の空間クラス分類</u>:左 <u>右平坦クラス、左右エッジ上クラス、左右細線上クラ</u> ス、左右複雑クラス、左右単純エッジクラス

平坦フラグPflagが1ではないブロック、即ち、平坦で はないブロックについては、エッジの位置から、水平方 向及び垂直方向において、大きく分けて、平坦クラス、 エッジ上クラス、細線上クラス、複雑クラス及び単純エ ッジクラスの5つのクラスに分類される。なお、図16 10 ジフラグが同一符号でない場合は、水平細線上クラス (b) 乃至(e) は、図10に示す注目ブロック内にお いて、注目画素を含む水平方向の8画素を抜き出して示 すのである。以下、これを使用して数値例を交えて説明 する。垂直方向もこれと同様にして分類を行う。

【0089】 先ず、水平方向における平坦クラス、エッ ジ上クラス、細線上クラス、複雑クラス及び単純エッジ クラスのクラス分類を行う。 ステップS58において、 注目ブロック内で、ステップS26で求めた注目画素を 含む水平方向にて隣接する画素間の差分絶対値のダイナ プS59に進み、左右平坦クラスに分類する。即ち、平 世ではないブロックでも、注目画素の周囲は局所的に平 坦である場合である。次に、8画素の差分絶対値のhd rが所定の閾値以上の場合は、ステップS60に進み、 画素間差分値とhthとを比較してエッジを検出する。 このエッジの検出結果を使用して、更に細かくクラス分 類する。

【0090】先ず、ステップS60におけるエッジ検出 について説明する。 図16(a)に示すように、8個の 画素の画素間にエッジ位置番号1~7を定義する。本実 30 施の形態においては、水平方向の左から右へ番号を付す ものとする。次いで、隣り合う画素間の差分値を求め、 エッジ位置番号1~7に割り当てる。この段階では差分 値は、絶対値を取らず正負の符号は残す。差分は2つの 隣接画素において、左側から右側の値を引いた差分値と する。ここで、上述の水平ライン閾値hthは差分絶対 値の分布から求めるため、図16(a)の場合では、水 平ライン最大値hmax=51、水平ライン最小値hm in=2であり、水平ライン閾値hth=14となる。 【0091】次いで、各差分値の絶対値を水平ライン閾 値hthと比較し、このhthを超える場合には該当す るエッジ位置にエッジフラグを立てる。このフラグに は、エッジの傾きの方向を示すため、差分値の符号を付 加する。従って、このフラグは-1、0、1の3値を有 する。なお、上述したように、隣接ブロック画素52a 又は52bとの差分値は、1/2倍してから水平ライン 閾値hdrと比較する。

【0092】このエッジフラグを利用して、注目画素の 周辺のエッジ有無及びその配置に基づいてクラス分類す る.

【0093】ステップS61において、注目画素と、そ の両側の画素との間のエッジフラグを調べる。ここで、 注目画素の両側のいずれにもエッジがある場合、ステッ プS62に進み、両側のエッジフラグの符号が一致して いるか否かを検出する。そして、図16(b)に示すよ うに、注目画素52の両側のエッジフラグが同一符号で ある場合は、水平エッジ上クラスと分類され、ステップ S63に進み、エッジ上フラグをたてる。一方、図16 (c) に示すように、注目画素52の両側の両側のエッ (縦細線上クラス)と分類され、ステップS64に進 み、細線上フラグをたてる。エッジ上フラグ又は細線上 フラグをたてた後、ステップS65に進み、注目画素の 両側を除き、左右のブロック境界までのエッジの有無を 検出し、ステップS66に進む。ステップS66では、 ステップS65の検出結果から、エッジがある側の境界 フラグを1とする。図16(b)及び(c)の例におい ては、右側のみエッジがあるので、右境界フラグが1と なり、左境界フラグはステップS54のままとなる。ま ミックレンジhdrが所定の閾値未満の場合は、ステッ 20 た、両側にエッジがあるときは、左右の境界フラグが1 となり、いずれの側にもエッジがないときは左右の境界 フラグはステップS54のままとなる。

【0094】即ち、注目画素の両側を除く左右のブロッ ク境界までの間にエッジフラグがある場合は、注目画素 からエッジフラグがある隣接ブロックに達するまでの間 に、画像のエッジが横切っており、隣接ブロックにおけ るブロック隣接画素が補正項として使えないことを示す ので、ステップS54で求めた結果とORをとる。即 ち、左右のブロック境界フラグに1を立てる。

【0095】また、ステップS61において、注目画素 の両側のいずれか一方又はいずれにもエッジがない場合 は、ステップS67に進む。そして、注目画素から左右 のブロック境界までのエッジの有無を検出し、ステップ S68に進む。そして、図16(d)に示すように、左 右いずれの方向においてもエッジがある場合は、左右複 雑クラスに分類され、ステップS69に進み、左右の境 界フラグに、ステップS54で求めた結果とORをとっ て1を立てる。一方、図16(e)に示すように、注目 画素の左右いずれか一方にエッジがある場合は、左右単 純エッジクラスと分類され、ステップ68からステップ 69に進み、エッジが検出された方向のエッジ境界フラ グに、ステップS54で求めた結果とORをとって1を 立てると共に、そのエッジ位置を記録する。エッジを複 数有する場合は、注目画素に最も近い位置とし、例え ば、図16(e)に示す例においては、エッジ位置番号 は5である。こうして、左右単純エッジクラスは、その エッジ位置番号から、更に7つのクラスに分類される。 【0096】(5-7)垂直方向の空間クラス分類:上 下平坦クラス、上下エッジ上クラス、上下細線上クラ

50 ス、上下複雑クラス、上下単純エッジクラス

注目ブロックにおける注目画素を含む垂直方向の8画素 についても同様に、垂直方向における平坦クラス、エッ ジ上クラス、細線上クラス、複雑クラス及び単純エッジ クラスのクラス分類を行う。即ち、ステップS71にお いて、注目ブロック内で、ステップS26で求めた注目 画素を含む水平方向に隣接する画素間の差分絶対値のダ イナミックレンジvdrが所定の閾値未満の場合は、上 下平坦クラスに分類されステップS72に進む。即ち、 平坦ではないブロックでも、注目画素の周囲は局所的に drが所定の閾値以上の場合は、ステップS73に進 み、画素間差分値とhthとを比較し、エッジを検出す る。そして、ステップS74において、注目画素のすぐ 上下にエッジがあるか否かを検出し、何れもエッジがあ る場合はステップS75に進み、エッジの符号が同一で ある場合は、垂直エッジ上クラスと分類され、ステップ S76に進む。一方、エッジの符号が異なるときは、垂 直細線上クラス (横細線上クラス) と分類され、ステッ プS77に進む。垂直エッジ上クラス又は垂直細線上ク ラスに分類された後、ステップS77では、注目画素の 20 ラス分類を示す。 上下を除き、注目ブロックに隣接する上下のブロック境 界までのエッジの有無を調べ、S79にてエッジがある 側、即ち、上側、下側又は上下両方に対応する境界フラ*

*グに1をたてる。

【0097】一方、ステップS74にて、注目画素のす ぐ上下の両方、又は何れか1方にエッジがなかった場合 は、ステップS80に進み、注目画素から注目ブロック に上下に隣接する隣接ブロックの境界までのエッジの有 無を調べる。そして、ステップS80の検出結果から、 ステップ81にて、上下両方向にエッジがある場合は上 下複雑クラスと分類され、ステップS82に進み、上下 の境界フラグを1とする。一方、上下のいずれか一方に 平坦である場合である。次に、8画素の差分絶対値のv 10 のみエッジがある場合は、上下単純エッジクラスに分類 され、ステップS83に進み、エッジがある側の境界フ ラグを1にすると共に、そのエッジ位置番号を記憶す る。これにより、上下単純エッジクラスは、エッジの位 置により、更に7つに分類される。

> 【0098】以上、ブロック内部のエッジ分類として は、水平及び垂直方向、それぞれに1:平坦クラス、 2: エッジ上クラス、3: 細線上クラス、4: 複雑クラ ス、5:単純エッジクラス(1~7)の5種類、11ク ラスに分類される。下記表1及び表2に、以上の空間ク

[0099]

【表1】

.関、下関へは	ユーバベクバースカルフタる	106011 7 7 1		
	プロック境界段差 上下左右、各 ibit	エッジ 位置	クラスの意味	備考
0~15	0000~1111	無関係	複雑プロック	注目画素が エッジに挟まれる場合
16~22	00x0, 000x			
23~29	00x1、001x			
30~36	01x0, 010x	'		
37~43	01x1、011x	水平1~7	上下平坦クラス	
44~50	10x0、100x	み ⊕ 1~1	左右単純エッジ クラス	
51~57	10x1, 101x		//^	
58~64	11x0、110x			
65~71	lizi, liix			
72~78	xxx0, xx0x		上下複雑クラス	
79~85	xxxi, xxix	水平 1~7	左右単純エッジ クラス	上下はエッジに挟まれる
86~92	0x00\ x000			4
93~99	1x00, x100			Ŷ
100~106	0x01、x001		L	
107~113	1x01、x101	垂直 1~7	上下単純エッジ クラス	·
114~120	0x10, x010		ケッス 左右平坦クラス	
121~127	1x10、x110]		
128~134	0x11, x011]	'	
135~141	1x11、x111			
142~148	Oxxx, x0xx		上下単純エッジ	
149~155	lxxx, xlxx	垂直 1~7	クラス 左右複雑クラス	左右はエッジに挟まれる

[0100]

空間方向の クラス番号	ブロック境界段差 上下左右、各 lbit	エッジ 位置	クラスの意味	備考	
156~204	x0x0, x00x, 0xx0, 0x0x				
205~253	. x0x1, x01x, 0xx1, 0x1x	垂直 1~7 ×	フス	垂直エッジ位置1つにつき、 水平エッジ1~7 で分類。	
254~302	x1x0、x10x、 1xx0、1x0x	水平1~7	左右単純エッジク ラス	(垂直が上位)	
303~351	x1x1、x11x、 1xx1、1x1x				
352~367	0000~1111		水平エッジ上 クラス	注目画素が 縦に走るエッジ上にある	
368~383	0000~1111		垂直エッジ上 クラス	注目画素が 横に走るエッジ上にある	
384~399	0000~1111	画素位置	右上がりエッジ上 クラス	斜めに走るエッジ上にある	
400~415	0000~1111	表現	左上がりエッジ上 クラス	神のに走るエッン工にある	
416~431	0000~1111		縦細線クラス	注目画案が 縦に走る細線上にある	
432~447	0000~1111		横細線クラス	注目画素が 横に走る細線上にある	
448~463	0000~1111	無関係	平坦ブロック クラス		

【0101】(5-8)空間クラス番号の発生

次に、ステップS51乃至83で分類した水平方向及び 垂直方向の各5種類11クラスに、先に求めた境界フラ グ、及び平坦ブロッククラスの情報を加え、最終的なフ レーム内クラス番号(空間クラス)を決定する。

【0102】基本的に水平方向及び垂直方向のクラスの組合せと、境界フラグの状況とで分類し、更に、単純エッジクラスが関係する時はエッジの位置で分類する。即ち、水平方向及び垂直方向の各5種類11クラスに分類された後、図14に示すように、ステップS84において、上下左右、共に平坦クラスであるか否かが判定され、共に平坦クラスである場合は、ステップS85に進む。この上下左右平坦クラスは、境界フラグの4ビットの情報が付加されて、ステップS57の上下平坦ブロッククラスと同様に、境界フラグの4ビットの情報に基づいてクラス番号448乃至463に分類される。なお、この上下左右平坦クラスと、平坦ブロッククラスを別々のクラスとして分類しいてもよい。

【0103】一方、上下左右の何れか一方又は共に平坦クラスではない場合は、ステップS86に進み、上下、左右共に複雑クラスであるか否かが判定される。ここで、上下、左右共に複雑クラスである場合は、複雑ブロックに分類され、ステップS87に進み、境界フラグの4ビットのデータに基づいてクラス番号0乃至15に分類される。

【0104】また、ステップS86でNOである場合、即ち、上下、左右の何れか一方又は両方が複雑クラスではない場合は、ステップS88に進み、上下平坦クラスであり、且つ左右が単純エッジクラスである場合は、ステップS89に進み、境界フラグ及び左右単純エッジクラスのエッジ位置番号に基づいてクラス番号16円至7。

20 * 1 に分類される。

【0105】ステップS88でNOである場合、ステップS90に進み、上下複雑クラスであり、かつ左右単純エッジクラスである場合は、ステップS91に進み、境界フラグ及び左右単純エッジクラスのエッジ位置番号に基づいてクラス番号72乃至85に分類される。

【0106】ステップS90でNOである場合、ステップS92に進み、上下単純エッジクラスであり、且つ左右複雑クラスである場合は、ステップS93に進み、境界フラグ及び上下単純エッジクラスのエッジ位置番号に30 基づいてクラス番号86乃至141に分類される。

【0107】ステップS92でNOの場合、ステップS94に進み、上下単純エッジクラスであり、且つ左右複雑クラスである場合は、ステップS95に進み、境界フラグ及び上下単純エッジクラスのエッジ位置番号に基づいてクラス番号142乃至155に分類される。

【0108】ステップS94でNOの場合、ステップS 96に進み、上下、左右共に単純エッジクラスである場合は、ステップS97に進み、境界フラグ、並びに上下 及び左右単純エッジクラスのエッジ位置番号に基づいて 40 クラス番号156乃至351に分類される。

【0109】ステップS96でNOの場合、ステップS98に進み、水平エッジ上クラスである場合は、ステップS99に進み、境界フラグに基づいてクラス番号352万至367に分類される。

【0110】ステップS98でNOの場合、ステップS 100に進み、垂直エッジ上クラスである場合は、ステップS101に進み、境界フラグに基づいてクラス番号 368乃至383に分類される。

テップS89に進み、境界フラグ及び左右単純エッジク 【0111】ステップS100でNOの場合、ステップ ラスのエッジ位置番号に基づいてクラス番号16乃至7*50 S102に進み、右上りエッジ上クラスである場合は、

ステップS103に進み、境界フラグに基づいてクラス 番号384乃至399に分類される。右上りエッジ上ク ラスとは、注目画素が共に同じ値を有する細線上クラス の場合であり、例えば図16(c)に示す左右細線上ク ラスであれば、この注目画素の上下のエッジフラグが、

(1、-1)となる場合である。

【0112】ステップS102でNOの場合、ステップ S104に進み、左上がりエッジ上クラスである場合 は、ステップS105に進み、境界フラグに基づいてク 上クラスとは、注目画素が互いに異なる値を有する細線 上クラスの場合であり、例えば図16(c)に示す左右 細線上クラスであれば、この注目画素の上下のエッジフ ラグが、(-1,1)となる場合である。

【0113】ステップS104でNOの場合、ステップ S106に進み、水平方向のみが細線上クラス (縦細線 上クラス)である場合は、ステップS107に進み、境 界フラグに基づいてクラス番号416乃至431に分類 される。

【0114】ステップS106でNOの場合、ステップ 20 なクラスコードを発生する。以下、空間クラス分類の各 S108に進み、垂直方向のみが細線上クラス (横細線 上クラス) である場合は、ステップS109に進み、境 界フラグに基づいてクラス番号432乃至447に分類 される。

【0115】ステップS108でNOの場合、ステップ S110に進み、これらは、孤立点(複雑クラス)と分 類され、ステップS86と同様に、境界フラグの4ビッ トのデータに基づいてクラス番号0乃至15に分類され る。

【0116】(6)時間クラス分類処理

(6-1)時間クラスタップの構成

次に、画素値の時間変動による輝度差を利用して時間方 向のクラス分類を行う。この時間クラスは、時間クラス タップの画素間の差分値に基づき時間クラス分類を行う が、後述する予測タップにおいても、空間タップ及び時 間タップから構成され、予測タップの時間タップは、時 間クラスタップと同様の理由により同様のタップ構造を 有する。即ち、主として静止西 (及び動画の静止部)の 画素値が時間的に変動する問題への対策として、注目画 素が属するフレームの前後、多数のフレームに渡って注 40 目画素と同じ位置に時間クラスタップ (予測タップ)を 1点ずつ張り、時間クラス分類を行って予測係数の学習 とマッピングを行う。これによって、時間方向の画素値 が平均されることで、時間変動を目立たなくする。

【0117】使用するフレーム数は多いほど良いが、リ アルタイム再生の場合などにディレイの原因となるの で、それを勘案して決定する。本実施の形態において は、注目フレームとその前後3フレームずつ、合計7フ レームとして説明する。

【0118】即ち、図3に示す画像信号処理装置10に 50 に、そのブロックに対するブロック閾値Bthそのもの

おけるフレームメモリ16と、領域切出部17と、画素 間差分値算出部18と、統計量算出部19と、特徴量抽 出部20とクラスコード発生部21とにより空間クラス 分類が行われる。フレームメモリ16は、注目画素が属 する注目フレームを中心に時間的に前後3フレームを記 憶する。領域切出部17は、フレームメモリから7つの フレームデータが入力され、注目フレームも注目画素と 同一の位置の各フレームにおける画素を空間クラスタッ プとして設定する。統計量算出部19は、7つの空間ク ラス番号400万至415に分類される。左上りエッジ 10 ラスタップにおいて、時間的に隣り合う画素間の絶対差 分値を算出する。特徴量抽出部20は、7つのフレーム において、空間クラスタップが属するブロックにおける 各ブロック閾値Bthを読み出し、その中で最大のブロ ック閾値Bthと画素間差分値とを比較し、使用可能タ ップを選択し、使用可能タップ数に基づき空間クラスを 分類する。そして、クラスコード発生部20において、 クラスコード (空間クラス番号) が付される。なお、ク ラスコード発生部20は、この時間クラスと、後述する 画素位置モード、及び先に求めた空間クラスから最終的

36

【0119】(6-2)使用可能時間クラスタップの判 定

工程について詳細に説明する。

次に、使用可能な時間クラスタップの判定を行う。な お、上述したように、後述する予測タップの時間タップ についても同様に使用可能か否かの判定を行うことがで きる。画素値の時間平均をとるとき、即ち、正確には予 測係数と画素との積和演算の際、7フレームの範囲に動 物体が割り込んでくるフレームがある場合には、そのフ 30 レーム (以降)の画素値は使用するべきではない。従っ て、時間方向で使える範囲をまず判定しておく。

【0120】そこで、先ず、図8に示すステップS28 において、使用可能フレームを判定するため、上述した 如くステップS8において、空間内の画素間微分値から 求めたブロック閾値Bthを使用し、注目画素を含む注 目ブロックを中心フレームとして時間方向7フレームの 中で最大のブロック閾値Bthを選択し、この最大ブロ ック閾値Bthと時間方向の画素間差分絶対値(画素の フレーム間差分絶対値)とを比較し、フレーム間差分絶 対値が最大ブロック閾値Bthを超えるフレームの手前 までを使用可能と判定する。以下、ステップS28につ いて更に詳細に説明する。

【0121】先ず、注目画素を含む注目ブロックを中心 として時間方向7フレームのブロック閾値Bthのう ち、最大のブロック閾値Bthを選択する。ここで、最 大ブロック閾値Bthを選択する理由について説明す る。

【0122】ブロック閾値Bthは、DCTブロック単 位にフレーム内で求めているので、図17に示すよう

も時間的に変動する。図17は、t=5~7及びt=1 3で静止部のブロック内に動物体の一部(着色部)が侵 入し、その画像エッジの影響でBthの値が他より大き くなっている様子を示す。ここで、ブロック閾値Bth の大きさは、th6>th13>th7>th5>その 他、の関係があるものとする。

【0123】このような場合には、例えば注目フレーム がt=4であるとき、このときのBthとしてBth= th4を使用すると、t=5,6のフレームが使用可能 範囲から排除されてしまう。

【0124】実際に、図17のブロックの右側の画素B R のように、注目画素位置にt=5~7で動物体が割り 込んでくるのであれば、 t=5~7のフレームが排除さ れるのが正しいが、図17のブロックの左側の画素BL のように、注目画素位置にそのようなことが起きない場 合でも、動物体のエッジが起こすモスキート・ノイズに より、静止部でもブロック閾値Bth=th4を超える 時間変動が起き、 t=5~7のフレームが排除されてし まう可能性がある。

らは望ましくない。なぜならば、例えばブロック閾値B thが大きいt=6のフレームではt=4も参照するの に、その逆はなくなってしまうので、 t=4~7にかけ ての変動を滑らかに押さえることができなくなるからで ある。

【0126】そこで、ブロック閾値Bthの値は、時間 タップを張るフレーム範囲(使用される可能性があるフ レーム)の全てのブロック閾値Bthから最大のものを 選択するようにする。即ち、合計7フレームを参照し、 選択される。これによって、先に述べたフレーム毎の不 整合が解消される。

【0127】なお、図17はどのフレームもフレームD CTブロックとして示しているが、実際にはフレーム及 びフィールドDCTブロックが混在する。このため、各 フレームでのブロック構造に合わせて、注目画素が属す るブロックのブロック閾値Bthを調べる必要がある。 【0128】次に、最大ブロック閾値Bthと画素のフ レーム間差分絶対値とを比較し、差分絶対値が関値Bt hを超えたフレームから先は、使用不可のタップとす る。時間方向のクラス分類は、基本的にはフレーム間差 分の閾値処理で分類するが、時間クラス分類は、マッピ ング時と学習時とで分類方法が異なる。

【0129】(6-3)時間クラスの分類

画素値の時間変動は、発生原因としてMPEGの動き補 償(静止部でもあり得る)や、DCT量子化残差の加算 のほか、DCTプロックの一部に動物体が入ったことに よるDCT係数の加算、GOP (Group of Picture) の 切れ目でイントラピクチャ符号化が行われる際の量子化 スケールの変化等がある。

【0130】このような時間変動は、画像が静止してい る領域で特に見えやすいため、前後の多数フレームに亘 って空間的な位置を固定した予測タップを配置すること により、変動を抑圧することができる。ここで、上述し た注目ブロック内の画素間差分値から求めたブロック閾 値Bthと、時間タップとの間の差分値とを比較して、 変動抑圧に使用できるタップの範囲と時間クラスとを決 定することにより、動画像本来の時間変化を抑圧してし まい不自然な動きぼけとして見えてしまうことを防止す 10 る。

38

【0131】図18は、横方向に時間をとって、注目画 素とこの注目画素とブロック内で同位置における未来及 び過去方向の各3タップ、合計7タップを示し、縦方向 に空間タップを示す模式図である。 先ず、ステップ29 において、注目画素51とブロック内で同位置における 未来及び過去方向の各3タップを読み込む。以下、注目 画素より時間的に過去となる側を過去方向、注目画素よ り時間的に未来となる側を未来方向という。

【0132】次に、ステップS30において、読み込ん 【0125】これは静止部の時間変動を押さえる目的か 20 だ時間方向の7タップにおいて、時間方向に隣接する画 素の差分絶対値 (フレーム間差分絶対値)を計算する。 【0133】そして、ステップS31において、求めた フレーム間差分絶対値と、上述した最大ブロック閾値B thとを比較し、最大ブロック閾値Bthを超えたフレ ームから先のタップは使用不可タップとすると共に、使 用不可タップに基づき、時間方向のクラス分類を行う。 【0134】以下、ステップS31における工程につい て、詳細に説明する。図19(a)~(d)及び図20 (a)~(d)は、夫々学習時及びマッピング時のクラ t=4であれば、最大のブロック閾値Bth=th6が 30 ス分類を示す模式図である。図中、使用可能タップを○ で示し、使用不可と判定された使用不可タップを●で示 し、注目画素をハッチングして示す。また、下記表3及 び表4に、時間クラス分類におけるクラス番号及びフラ グの意味を示す

【0135】<u>(6-3-1)学習時における時間クラス</u>

先ず、学習時のクラス分類について説明する。 図19 (a) に示すように、過去及び未来方向全てに、使用不 可タップが存在しない場合は、表3に示す時間クラス番 40 号0 (クラス00:第1の時間クラス) と分類され、全 ての時間タップが予測タップとして使用可能のクラスと し、学習を行う。

【0136】また、図19 (b) に示すように、未来方 向のみに使用不可タップ61があるときは、表3に示す 時間クラス番号2(クラス10:第2の時間クラス)と 分類され、過去方向の時間タップのみを使用し、未来方 向の時間タップは使用しない。また、未来方向の時間タ ップのみが使用可能な場合は、表3に示す時間クラス番 号1 (クラス01:第3の時間クラス) と分類される。

【0137】ここで、学習時においては、過去又は未来 50

方向に1つでも使用不可タップがある場合は、過去又は 未来方向の全ての時間タップは使用できないものとす る。従って、図19(c)に示す場合は、過去方向の3 タップ全て、未来方向の1タップが使用不可タップ61 であり、図19(d)に示す場合は、過去及び未来方向 の全ての時間タップが使用不可タップ61であるため、 共に表3に示す時間クラス番号3(クラス11:第4の 時間クラス)と分類され、学習時には全ての時間タップ は使用不可クラスと判定される。こうして学習時の時間 に分類される。

【0138】このように、学習時には、時間タップが使 用可能となるクラス00,10,01は、その方向の全 ての時間タップが使える場合のみになる。これにより、 学習時においては、使用可能のクラスでは全時間タップ が注目画素と相関が高い状態にしておき、時間平均に近 い予測タップを得ることができる。

【0139】こうして求めた時間クラス0~3は、この 値を、空間クラス数倍である464倍して空間クラスの する。 即ち、 クラス番号 = 時間クラス×464 + 空間ク ラス、となる。

【0140】(6-3-2)マッピング時における時間 クラス分類

次に、マッピング時の時間クラス分類について説明す る。 図20 (a) に示すように、使用不可タップがない 場合は、学習時と同様に、表3に示す時間クラス番号0 (クラス00:第1の時間クラス)と分類されるもの の、図20(b)に示すように、例えば未来方向に使用 不可タップ61が1つのみ存在したとしても、マッピン 30 グ時には、学習時とは異なり、表3に示す時間クラス番*

*号0 (クラス00:第1の時間クラス)と分類され、両 方向の時間タップが使用可能なクラスに分類される。即 ち、マッピング時には、1つでも使用可能のタップがあ る場合は、その方向の時間タップは使用するものとす る。従って、図20(c)に示すように、過去方向の3 タップが全て使用不可タップ61であり、未来方向の1 タップが使用不可タップ61である場合は、表3に示す 時間クラス番号1 (クラス01:第2の時間クラス) と 分類され、未来方向の時間タップは使用する。同様に、 クラスは、表3に示す時間クラス番号0~3の4クラス 10 過去方向にのみ、使用可能タップがある場合は、表3に 示す時間クラス番号2(クラス10:第3の時間クラ ス) と分類される。 そして、 図20 (d) に示すよう に、未来及び過去方向全ての時間タップが使用不可タッ プ61である場合のみ、表3に示す時間クラス番号3 (クラス11:第4の時間クラス)と分類され、全ての 時間タップが使用できないクラスに分類される。このよ うに、マッピング時には、一部のタップが使える場合に はその方向の時間タップが使用可能であるクラスに分類 することにより、時間平均の効果を上げることができ 番号を加算し、最終的なクラス番号0~1855を確定 20 る。 即ち、 マッピング時には、 時間平均の効果を上げる ために、少しでも多くのフレームを使用し、且つ使用す るフレーム数をなるべく時間的に滑らかに変化させるこ とができる。

40

【0141】こうして、マッピング時の時間クラスにお いても、クラス00~11 (空間クラス番号0~3)の 4クラスに分類される。このマッピング時においても、 学習時と同様に、4つの時間クラスを464倍して空間 クラス番号を足し、最終的なクラス番号とする点は同様 である。

[0142] 【表3】

	クラス (フラグの有無、有=1)			
時間クラス番号	未来	過去		
0	0	0		
1	0 .	1		
2	1	0		
3	1	1		

[0143]

※40※【表4】

フラグ	学習時	マッピング時
	その方向における	その方向における
0	全てのフレームが使用可能	1フレーム以上が使用可能
	その方向における	その方向における
1	1フレーム以上が使用不可	全フレームが使用不可

【0144】但し、この分類を行うと、学習時には使用 不可と判定された使用不可タップが、マッピング時には 使用可能と判定される場合があり、このため、この使用

★用不可タップが時間平均に含まれることになってしま う.即ち、マッピング時には、例えば、図20(b)に 示す未来方向3タップのうち、使用不可タップは1つの 不可タップにもマッピング時に予測係数が適用され、使★50 みで、後の2つは使用可能である場合、クラス番号0に

分類されるため、使用不可タップ61がマッピングにお ける時間平均に含まれてしまう。これを防ぐため、マッ ピング時には予測係数を一部加工し、後述するゲイン調 整を行ってから積和演算を行うものとする。

【0145】(6-3-3)時間クラス分類の例外処理 また、時間クラス分類の例外処理として、過去又は未来 方向に画素値が単調に増加又は減少している場合は、そ の方向は全て使用不可タップとする。これは画面のフェ ードイン・アウト、又はゆるやかなグラデーションを有 する物体の移動等に対応するためである。この例外処理 10 は、学習時もマッピング時も同様に行う。

【0146】(7)ブロック内画素位置モード 次に、ステップS32において、ブロック内の画素位置 に基づき画素位置モードを判定する。歪除去にあたっ て、空間方向のクラス分類と共に、注目画素がDCTブ ロックのどの位置に存在しているかについては重要な情 報である。

【0147】そこで、学習及びマッピングには、上述し た空間方向クラス分類及び時間方向クラス分類と共に、 DCTブロック内における画素位置モードを分類する。 【0148】従って、実質的なクラス数は時空間464 ×4=1856クラス数の画素位置モード数倍になる。 ただし、例えばエッジ上クラス等、ブロック端の画素位 置モードでは実際には分類されないクラスも存在する。 【0149】DCTブロックは8×8=64画素で構成 されるため、画素位置モードは64通りとなる。しかし DCTの原理からして、符号化に使用するコサインカー ブの基底波形は、ブロックの中心を通る水平線及び垂直 線に対して線対称であり、モスキート・ノイズの発生パ ターンにも対称性がある。そこで、ブロック全体を4× 30 4=16 画素の小ブロックに4分割し、画素位置モード を16に縮退させることが可能である。

【0150】図21 (a) 乃至 (d) は、DCTブロッ クを4分割して小ブロックとして画素位置モードの分類 を示す模式図であって、夫々、小ブロックがブロック左 上、右上、左下及び右下に位置する場合を示す。図21 に示すように、画素位置モードの番号は小ブロック単位 で割り振られ、その順番は小ブロックのブロック内位置 によって対称になる。また、クラス分類の際に上下左右 の方向に関係する境界フラグ、及びエッジ位置番号も小 40 ブロックの位置に応じて適宜反転させる必要がある。

【0151】図21 (a) に示す小ブロックが左上に位 置する場合を基準にして、図21(b)に示すように、 小ブロックが右上に位置する場合は、図21(a)に示 す場合とブロックの中心を通る垂直線に対して線対称と なり、左右の境界フラグを入れ替える。また、図21 (c) に示すように、小ブロックが左下に位置する場合 は、図21(a)に示す場合と、ブロックの中心を通る 水平線に対して線対称となり、上下の境界フラグを入れ 替える。更に、図21(d)に示すように、小ブロック 50 おける空間タップを示す模式図である。

が右下に位置する場合は、図18(a)に示す場合と、 ブロックの中心に対して点対称となり、上下及び左右の 境界フラグを入れ替える。

【0152】ここで、空間クラスの入れ替えと同様にし て、4通りある時間クラスの分類も、過去・未来の一方 のみ使えるクラス番号1及びクラス番号2において、時 間軸を反転することで時間クラスを1つに縮退させて、 計3クラスとすることができる。

【0153】(8)予測タップ構造

予測タップは、上述した時間クラスタップ及び空間クラ スタップからなるクラスタップと同一の構成とすること ができるが、本実施の形態における予測タップは、注目 画素が属する注目フレーム内の空間タップと、注目フレ ームとは時間的に前後する各3つのフレームにおける注 目画素と同一画素位置の時間タップとから構成されるも のとする。なお、上述したように、予測タップの時間タ ップは、時間クラス分類における時間クラスタップと同 様の構成を有する。また、予測タップの構造は、マッピ ング時及び学習時において同様とすることができる。

【0154】図3に示す画像信号処理装置10において は、フレームメモリ16から入力される注目フレームを 含む7フレームのデータから、領域切出部23にて予測 タップを切り出す。以下、予測タップを抽出する各工程 について詳細に説明する。

【0155】先ず、画素位置モードを判定した後、ステ ップS33に進み、予測タップを読み込む。予測タップ は、注目画素周辺のタップと、注目画素が属する注目ブ ロックに隣接する隣接ブロックのタップと、時間方向の タップとから構成される。

【0156】図22は、予測タップの一例を示す模式図 である。図22に示すように、本実施の形態において は、予測タップは、空間タップと時間タップとからな り、空間タップは、注目画素71の周辺タップ72、即 ち、注目画素に隣接する上下左右のタップと、注目画素 が属する注目ブロック B4 に隣接する隣接ブロックにお ける注目画素と水平又は垂直方向が同一位置の隣接画素 である隣接ブロックタップ73の4タップとの計13タ ップからなり、時間タップ75は、時間方向が前後各3 フレームにおける注目画素と同一位置における計6タッ プからなり、これより、予測タップは、合計19タップ から構成される。

【0157】ここで、注目画素と同一フレームにある周 辺タップ及び隣接ブロックタップ (以下、空間タップと もいう。) に関しては、注目画素が属するDCTブロッ クの構造がフレームDCTであるかフィールドDCTで あるかによって、タップの位置関係が異なる。

【0158】図23 (a) 乃至 (c) は、フレームDC Tブロックにおける空間タップを示す模式図であり、図 24 (a) 及び (b) は、フィールドDCTブロックに

【0159】フレームDCTブロックの場合には、図2 3(a)に示すように、周辺タップは、注目画素の上下 左右共に隣接して配置され、隣接ブロックの隣接ブロッ クタップも注目画素が属する注目ブロックに接してい る。フレームDCTの場合は、上下の隣接ブロックは同 一マクロブロックに属する。

【0160】一方、フィールドDCTブロックの場合に は、図24(a)に示すように、周辺タップのうち、垂 直方向の上下のタップは、注目画素とは1ラインおきに うに、フレームの奇数番目の走査線に相当するトップフ ィールドにある場合は、垂直方向の上下のタップとし て、注目画素と同じフィールド上(トップフィールドF 1上)で注目画素に再近接する画素が選択される。ま た、フィールドDCTブロックの上下のブロック境界L 1, L2は、マクロブロック境界を示す。即ち、フィー ルドDCTの場合は、上下の隣接ブロックは異なるマク ロブロックに属する。左右のブロック境界は、いずれか 一方がマクロブロック境界である。従って、注目画素と 垂直方向が同一の位置である隣接ブロックのブロック隣 20 接画素である隣接ブロックタップとしては、隣接マクロ ブロック上で、注目画素と同一フィールドであり、注目 ブロックに再近接した画素が選択される。即ち、図24 (a) においては、上側の隣接ブロックタップが、注目 ブロックから1ライン離れたところに張られる。左右の 隣接ブロックタップは、フレームDCTの場合と同様で あり、隣接するブロックにおいて、注目ブロックに隣接 する画素が隣接ブロックタップとなる。

【0161】ここで、予測タップ数は任意の数とするこ とができるが、フレーム及びフィールドDCTの何れの 30 場合にも、注目画素の上下左右のタップのうち、注目ブ ロックの水平位置、又は垂直位置が一致する最低1つの タップを隣接ブロックに配置し、隣接ブロックタップと する。

【0162】ブロック歪は隣接するブロック間での不連 続な段差として見えるケースが多いので、DCTブロッ ク内部のみで閉じた処理では不可能であるが、このよう に、予測タップの一部が常に注目ブロックの上下左右の 隣接ブロックに配置されるタップ構造とすることによ り、隣接するブロックの情報を取り込んで段差を埋め て、ブロック歪を抑圧することができる。

【0163】また、注目画素が注目ブロックの端に位置 する場合には、図23 (b) 及び (c) に示すように、 注目画素の周囲のタップが隣接ブロックにはみだして、 隣接ブロックタップが数の上で増加する形になる。 図2 3 (c) に示すように、注目画素が、注目ブロックの最 外周、左下に位置する場合、注目画素と水平方向又は垂 直方向の位置が同一で注目ブロックに隣接する隣接ブロ ックタップ4つに加え、注目画素の左側及び下側に位置 する周囲6タップが隣接ブロックに配置されることにな 50

る。

【0164】インタレースの場合も同様で、例えば、図 24 (b) に示すように、フレームの偶数番目に相当す るボトムフィールドF2の上から1ライン目に注目画素 が位置する場合、注目画素の上方向の周辺タップは、隣 接マクロブロックから選択される。そして、この周辺タ ップの更に上のライン上で注目画素と垂直方向が同一の 位置の画素が隣接ブロックタップとして選択される。

44

【0165】なお、図22では、空間タップと共に、時 配置される。 即ち、注目画素が、図24(a)に示すよ 10 間タップも全てフレームDCTブロックとして示してあ るが、実際には2種のブロック構造が混在しうる。時間 タップは画面上の空間的な位置が注目画素と同一である ことが重要であるので、各フレームにおけるブロック構 造の差はタップ配置の点では無関係とすることができ る。ここで、例えば、注目画素がフレームDCTブロッ ク内にある場合で、時間タップをフィールドDCTブロ ックから切り出す場合は、注目画素の走査線位置が、フ レームの奇数番目にある場合は、トップフィールドのフ ィールドDCTブロックを、また、フレームの偶数番目 にある場合は、ボトムフィールドのDCTブロックを使 用するものとする。なお、先に述べた最大ブロック閾値 Bthを求める際にはブロック構造を考慮する必要があ

> 【0166】予測タップを読み込んだ後、ステップS3 4に進む。ステップS34では、ステップS32におい て判定された画素位置モードがブロックの上半分にある か否かが検出され、画素位置モードが上半分にない場合 は、ステップS35に進み、垂直エッジ位置番号及び予 **拠タップが上下反転される。 即ち、 図21 (a) に示す** ように、ブロックの上から順に垂直エッジ位置番号が付 されていたのに対し、図21(c)及び(d)に示すよ うに、ブロックの下から順に垂直エッジ位置番号が付さ

【0167】また、ステップS34でYes、即ち、画 素位置が上半分であると判定された後及びステップS3 5でエッジ位置番号及び予測タップ位置が反転された後 は、ステップS36に進み、画素位置はブロックの左半 分であるか否かが判定される。ここで、左半分ではない と判定された場合は、ステップS37に進み、水平エッ 40 ジ位置番号及び予測タップが左右反転される。即ち、図 21 (a) に示すように、ブロックの左から順に水平エ ッジ番号が付されていたのに対し、図21(b)及び (d) に示すように、ブロックの右から順次エッジ番号 が付される。

【0168】こうして、予測タップのデータに関して も、図21(e)に示すように、ブロック内の小ブロッ クの位置に応じて空間タップの位置を水平及び垂直方向 並べかえる。即ち、注目画素を中心にして、線対称又は 点対称に再配列する。

【0169】更に、ステップS36でYes、即ち、画

素位置が左半分と判定された場合と、ステップS37と からステップS38に進み、ステップS27で分類した 空間クラス、ステップS31で分類した時間クラス及び ステップS32で判定した画素位置モードから、注目画 素のクラスを確定する。そして、確定したクラスのクラ ス番号 (クラスコード) をROMテーブル22に出力す る。ROMテーブル22では、このクラスコードに対応 する予測係数が読み出される。

【0170】(9)マッピング時の時間クラス分類にお けるゲイン調整

次に、ステップS39に進み、時間タップの使用可能タ ップ数に応じて予測係数のゲイン調整(予測係数の加 工)を行う。

【0171】図25(a)及び(b)は、マッピング時 における時間タップの予測係数のゲイン調整方法を説明 する模式図であって、夫々未来方向の3タップ目(最も 未来の時間タップ)が使用不可タップと判定された例及 び未来方向の3タップ目及び過去方向3タップ全てが使 用不可タップと判定された例を示す模式図である。ここ で、例えば、図25(a)及び(b)に示す未来方向の 3タップ目の予測係数が0.1である場合について説明 する。

【0172】マッピング時においては、図25(a)及 び(b)のいずれの場合においても、注目画素51から 未来方向に3タップ目の使用不可タップ61の予測係数 をOとし、そのタップがマッピングに寄与しないように する。次に、そのタップが有する予測係数の値0.1を 使用可能なタップの予測係数に均等に分配する。即ち、 図25 (a) に示すように、過去方向のフレームにおけ '各タップの予測係数に加える。また、例えば、過去方向 3タップのうち、2タップが使用不可で、6タップのう ち、合計4タップが使えるような場合には、未来方向及 び過去方向の使用不可タップの予測係数を合計し、この 合計値を使用可能である4タップに分配する。

【0173】一方、図25(b)に示すように、過去方 向の全てのタップが使用不可タップ61である場合に は、過去方向は使用不可クラスに分類される。この場合 は、もともと過去方向のタップの予測係数は0に近い値 となっているため、予測係数はそのまま加工せず、未来 40 方向の使用不可タップ61の予測係数0.1を、注目画 素51及び2つの使用可能タップ52の3タップに分配 する。

【0174】こうして、予測計数のゲイン調整を行った 後、ステップS40に進み、予測タップの積和演算を行 い、歪みが除去されたデータを得る。積和演算を行った 後、ステップS41に進み、ブロック内の全ての画素に おいて処理が完了したか否かが判定され、完了していな い場合は、ステップS42に進んで注目画素位置を更新 し、ステップ23に戻る。また、ブロック内全ての画素 50 レッシブ・フレーム及びインタレース・フレームにおけ

において処理が完了されたと判定された場合は、ステッ プS43に進み、マクロブロック内の処理が完了したか 否かが判定され、完了していない場合は、ステップS4 4に進み、マクロブロック内で注目ブロック位置を更新 し、ステップ22に戻る。マクロブロックの処理が完了 したと判定された場合は、ステップS45に進み、最終 マクロブロックであるか否かが判定され、処最終マクロ ブロックでないと判定された場合は、ステップS46に 進み、マクロブロックを更新し、ステップ21に戻る。 10 最終マクロブロックであると判定された場合は、ステッ プS47に進み、マクロブロック位置をリセットし、次

46

のフレーム処理に移る。 【0175】 こうして、全てのフレームについて、クラ ス分類して積和演算を行うことにより、MPEG歪みを

【0176】マッピングではなく学習の場合には、ステ ップS40における予測タップ積和演算が、最小二乗法 を解くためのコレスキー法等の行列に対する予測タップ データの投入に置き換え、多数の画像に対してこのフロ 20 一を回して、最終的に各クラスの予測係数を求めること になる。

【0177】(10)クロマ信号のクラス分類

除去した画像データを得ることができる。

次に、クロマ信号(色差信号)におけるクラス分類本に 基づく処理について説明する。MPEG1/2符号化で は、DVD等のようにYPbPrの4:2:0フォーマ ットの信号を対象にしていることが多く、輝度信号Yだ けでなくクロマ信号(色差信号)CもDCTで符号化さ れている。このため、クロマ信号にもブロック歪やモス キート・ノイズが発生し、これにより、色のずれ及びぼ るタップが全て使用可能である場合には、0.1/6を 30 け、並びに画像のエッジ付近での変色として現れる。従 って、これを防止するために、本実施の形態は、輝度信 号に加え、クロマ信号に対しても輝度信号と同様にマッ ピング及び学習を行うものである。

> 【0178】本実施の形態においては、4:2:0のク ロマ信号Cに対して歪除去処理を行うこととし、以下、 クロマ信号のクラス分類及びタップ構造について説明す る。基本的には輝度信号Yを使用して、上述と同様のク ラス分類を行い、予測タップをクロマ信号に張って学習 及びマッピングを行う。

【0179】クラス分類にY信号を使用するのは、クロ マ信号Cは一般に輝度信号Yよりも狭帯域であり、且つ ダイナミックレンジが小さいため、上述したようなエッ ジに基づくクラス分類に向かないためである。

【0180】クロマ信号CはMPEG復号後にLPF等 の処理によってラインは輝度信号Yと一対一に対応して いるものとする。MPEGではクロマ信号CのDCTブ ロックを構成する際のサンプリング方式が2種類あり、 プログレッシブ・フレームと、インタレース・フレーム とに分かれる。 図26 (a) 及び (b) は、 夫々プログ

る輝度信号Y及びクロマ信号Cのラインの対応関係を示 す模式図である。

【0181】図26(a)及び(b)に示すように、8 ×8画素のクロマ信号は、16×16画素の輝度信号の マクロブロックに相当する。プログレッシブ・フレーム の場合は、図26(a)に示すように、クロマ信号の垂 直方向は8ライン、輝度信号の垂直方向は16ラインで あり、クロマ信号1ラインに対して輝度信号が2ライン ずつ対応する。即ち、クロマ信号の1ライン目と、輝度 信号の1,2ライン目、クロマ信号の2ライン目と、輝 10 度信号の3,4ライン目というように、クロマ信号のラ イン $i (1 \le i \le 8)$ は、輝度信号のライン2i - 1, 2 i に対応する。一方、図26(b)に示すように、イ ンタレース・フレームの場合は、垂直方向のクロマ信号 及び輝度信号の夫々8ライン及び16ラインに対し、ク ロマ信号の奇数ラインi (i=1,3,5,7)は、輝 度信号の2i-1,2i+1ラインに対応し、クロマ信 号の偶数ラインi (i=2,4,6,8)は、輝度信号 02i-2, 2iラインに対応する。

対応する輝度信号に基づいて行うため、クロマ信号の歪 除去処理の際は、プログレッシブ・フレーム又はインタ レース・フレームの何れかの構造に従って行う必要があ る。そこで、先ず、歪除去処理に先立って、クロマ信号 が、どちらの構造になっているかを判別する。判断方法 としては、例えば輝度信号Yのフレーム/フィールドD CTブロックの判別と同様に、ライン間差分の二乗和を 比較する方法等を使用することができる。

【0183】クラス分類は輝度信号Yの画素を元にし て、輝度信号の画素間差分から閾値を求め、エッジを検 30 出して分類する。上述したように、マクロ信号Cのブロ ックは輝度信号Yのマクロブロック全体に対応するた め、輝度信号Yの画素は16×16=256画素存在す る。従って、エッジの位置に関して多少の変換を要す

【0184】<u>(10-1)クロマ信号の空間クラス分</u> 類:水平方向

図27は、輝度信号Yから検出したエッジ位置をCのエ ッジ位置に置きかえた場合の水平方向のエッジ位置を示 す模式図である。図27に示すように、クロマ信号の水 40 平方向の各C画素CO~C7に対して、輝度信号の水平 方向に隣接する2つのY画素 (YO, Y1)、 (Y2, Y3)、…、(Y14, Y15)が対応する。ここで、 輝度信号YのYエッジ位置は、1~15の15個とな り、クロマ信号のCエッジ位置は、1~7の7個とな る。Cエッジ位置をk(1≤k≤7)としたとき、この Cエッジ位置に対応するYエッジ位置Kは、K=2k と、この2kの両隣のエッジ(2k-1及び2k+1) のうち、C画素の注目画素側の位置のものとなる。そし

ッジ位置にエッジが存在する場合、この注目画素(C画 素)をエッジ上クラスと分類する。 即ち、 図27に示す ように、ハッチングして示すクロマ信号の注目画素がC 3である場合、クロマ信号のエッジ位置k=1~3に は、輝度信号のエッジ位置K=2k-1,2k、即ち、 夫々(1,2)、(3,4)及び(5,6)が対応し、 クロマ信号のエッジ位置k=4乃至7には、輝度信号の

48

9)、(10, 11)、(12, 13)及び(14, 1 5) が対応する。例えば、Yエッジ位置5に存在するエ ッジは、Cエッジ位置3となり、Yエッジ位置10に存 在するエッジは、Cエッジ位置5となる。

エッジ位置K=2k, 2k+1、即ち、夫々(8,

【0185】クラス分類は、注目画素C3に対応するY 画素 (Y6, Y7) の間のYエッジ位置K=7にエッジ があれば、注目画素C3はエッジ上クラスに分類され る。

【0186】また、細線上クラスは、注目するC画素の 2つの隣接画素に対応する各2つのY画素のうち、注目 画素に近接する側の各Y画素のいずれか一方が細線上ク 【0182】クロマ信号のクラス分類は、クロマ信号に 20 ラスとなる場合とする。例えば、注目画素がC3である 場合、この注目画素C3に隣接する画素C2及びC4に 夫々対応するY画素Y4, Y5及びY8, Y9におい て、注目画素C3に近接する側のY画素である画素Y5 及びY8の何れか一方が細線上クラスである場合であ る。即ち、Yエッジ位置5,6の何れにもエッジが存在 し、且つ逆符号である場合か、又はYエッジ位置8,9 の何れにもエッジが存在し、且つ逆符号である場合に、 注目画素C3を水平エッジ上クラスに分類する。それ以 外は、上述の輝度信号のクラス分類と同様に行う。

【0187】<u>(10-2)クロマ信号の空間クラス分</u> 類:垂直方向

次に、クロマ信号の垂直方向のクラス分類について説明 する。 図28 (a) 及び (b) は、 垂直方向のYエッジ 位置及びCエッジ位置を示す図であって、夫々プログレ ッシブ・フレーム及びインタレース・フレームの場合を 示す模式図である。この図28(a)及び(b)は、夫 々図26(a)及び(b)に対応する。

【0188】垂直方向は、図28に示すように、プログ レッシブ・フレームか、又はインタレース・フレームで あるかと、ラインがA~H (左側から奇数列目) の系列 か、又はA'~H'(左側から偶数列目)の系列かとに 応じて、Yのエッジ位置をCエッジ位置へ変換する。要 するに各系列のライン間にある複数のYのエッジ位置 を、同じCのエッジ位置に落とし込むようにする。図2 8 (a) に示すプログレッシブ・フレームの場合、奇数 列目であるラインA〜Hにおいては、Yエッジ位置Kの 上から2つずつが順に1つのCエッジ位置kに対応し、 余った最後の15番目のYエッジKが下境界エッジE1 となる。また、偶数列目であるラインA'~H'におい て、注目画素のC画素に対応する2つのY画素の間のエ 50 ては、一番上のYエッジKを上境界エッジE2とし、2

49 番目以降のYエッジ位置Kの上から2つずつが順に1つ のCエッジ位置kに対応する。

【0189】一方、図28(b)に示すように、インタレース・フレームの場合は、奇数列目であるラインA~Hにおいては、奇数行目の1つのCエッジ位置kには、3つのYエッジ位置Kが対応し、偶数行目の1つのCエッジ位置kには1つのYエッジ位置Kが対応する。また、偶数列目であるラインA'~H'においては、一番上及び下のYエッジ位置は、夫々上境界エッジE3及び下境界エッジE4となり、奇数行目の1つのCエッジ位置には1つのYエッジ位置が対応し、偶数行目の1つのCエッジ位置には、3つのYエッジ位置が対応する。そして、各上下境界エッジE1~E4となるYエッジ位置にエッジがある場合は、境界フラグに1を立てる。

【0190】その他、隣接ブロック画素との連続性は、 上述の輝度信号Yと同様に行うが、クロマ信号のC画素 1つに対して、輝度信号のY画素2つが対応するので、 2つのY画素のうち何れか1つが隣接画素と不連続(注 目画素と隣接画素の差分絶対値、またはブロック境界を またぐ2画素の差分絶対値の1/2倍が閾値より大)の 20 場合に不連続として、該当する境界フラグを立てる。

【0191】以上のようにして輝度信号を元に、クロマ 信号のクラス分類を行うが、輝度信号に明確なエッジが 存在せず、色のみが変化するようなブロックでは、輝度 信号によるクラス分類を行うと、色のにじみを引き起こ す恐れがある。これを回避するためには、クロマ信号の エッジ検出を加え、輝度信号のエッジとのORをとる か、又は輝度信号Yにエッジがなく、クロマ信号Cの差 分絶対値のDRが大である場合は、特に歪除去処理を行 わずにそのまま出力する等の方法をとることができる。 【0192】(10-3)クロマ信号の予測タップ構造 次に、クロマ信号の予測タップ構造について説明する。 図29は、クロマ信号の予測タップを示す模式図であ る。C信号の予測タップ構造も、上述の輝度信号とほぼ 同様であるが、垂直方向のタップ位置は、図29(a) に示すように、プログレッシブ・フレームの場合には1 ラインおき、また、図29 (b) に示すように、インタ レース・フレームの場合には、不等間隔になる。

【0193】また、画素位置モードの16モード化は、 Cのブロック内画素位置を基準として行う。その他の学 40 習及びマッピング関係の処理は輝度信号Yと同様である。

【0194】(12) 歪除去処理における効果 図30乃至図32は、実際にMPEG2で符号化/復号 したMPEG復号画像、本発明による歪除去処理を行っ た歪除去処理画像、及び符号化前の原画を示す。なお、 この図30及び図32において、輝度信号のみ部分拡大 してある。

【0195】原画サイズは704×480画素の4: のクラスに分類するクラス分類手段と、上記注目画素が1:1フォーマットで、MPEG符号化はN=15、M 50 分類されたクラスに対応する予測係数を読み出す読出手

=3、4Mbpsの条件で行った。画像の内容は、花柄の背景の前で玩具の歯車が回転しているものである。インタレース画像をフレームで表示しているため、歯車の歯が櫛状に見えているが、これは正常なフィールドの違いによるものである。

【0196】図30では、右下の白い歯車及び左上の白い台形領域の縁にモスキート・ノイズが目立ち、中央の歯車にはモザイク状のブロック歪も見られる。これらの歪が図31では低減されているのがわかる。また、歯車が回転しているため、MPEG復号画像では、背景のDCTブロックの一部に歯車がかかる箇所で、背景にも歯車の影響が出てしまい、背景は静止しているにもかかわらず時間的な画素値の変動が発生している。

【0197】一例として、白い歯車の右上部分、図中× 印で示した画素の輝度レベルの時間的な推移を図33に 示す。図33は、横軸にフレーム番号(時間)をとり、 縦軸に輝度レベルをとって、輝度レベルの時間的変動を 示すグラフ図である。図33に示すように、中央のフレ ーム番号44が図30乃至32の画像に相当する。

【0198】○で示す原画における輝度レベルは、169~173の範囲で安定しているのに対し、×で示すMPEG復号画における輝度レベルは156から186と、原画に比して輝度レベルの変化が極めて大きい。これに対して、本発明の歪除去処理を行った▲で示す歪み除去処理画像における輝度レベルは158から177の範囲に抑え込まれ、原画に近づいて安定しているのがわかる。

【0199】なお、本発明は上述した実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能であることは勿論である。【0200】例えば、本発明は、MPEG1/2で符号化/復号された画像の歪除去を対象としているが、同様にDCT変換とDCT係数の量子化とによって画像を圧縮する、例えばMotionJPEG等の符号化方式にも対応することができる。また、時間方向の処理を省けばJPEGにも応用することができる。

[0201]

【発明の効果】以上詳細に説明したように本発明に係る画像信号処理装置は、入力される第1の画像に対して所定の推定演算を行って上記第1の画像を第2の画像に変換する画像信号処理装置において、入力される第1の画像を第2の画像に変換する画像信号処理装置において、上記第1の画像から、注目画素及びその周辺の複数の画素を予測タップとして切り出す領域切出手段と、上記予測タップのうち所定の位置関係を有する画素間の画素値の差分値を算出する差分値算出手段と、上記予測タップの差分値に基づき、上記注目画素を複数のクラスのうち何れかのクラスに分類するクラス分類手段と、上記注目画素が分類されたクラスに対応する予測係数を認み出す適出手

段と、読み出された上記予測係数と上記予測タップとから上記所定の推定演算により上記注目画素の画素値を第2の画像の画素値に変換する推定演算手段とを有するので、例えばDCT変換に使用されるブロック構造を考慮し発生する歪の特性に合わせたタップ構造とし、差分値を利用して適切なクラス分類を行うことで、効果的にMPEG復号画像に発生するブロック歪、モスキート・ノイズ、及び画素の時間変動を抑圧することができる。

【図面の簡単な説明】

【図1】クラス分類適応処理を使用した画像信号処理装 10 置の一例を示すブロック図である。

【図2】画像信号処理装置の学習回路の一例を示すブロック図である。

【図3】本発明の実施の形態に係る画像信号処理装置を 示すブロック図である。

【図4】本発明の実施の形態に係る画像信号処理装置で 使用される予測係数を学習する学習回路を示すブロック 図である。

【図5】ブロック単位の関値Bthを算出する工程を示すフローチャートである。

【図6】(a)及び(b)は、8×8画素のDCTブロックを示す模式図である。

【図7】横軸に水平方向又は垂直方向の差分値をとり、 縦軸にその度数を取って、ブロック内の差分値の分布を 模式的に示すヒストグラムである。

【図8】空間クラス分類及び後述する時間クラス分類からクラスコードを発生し、更に予測演算する一連の工程をその工程順に示すフローチャートである。

【図9】同じく、空間クラス分類及び後述する時間クラス分類からクラスコードを発生し、更に予測演算する一30連の工程を示す図であって、図8に示す工程の後の工程をその工程順に示すフローチャートである。

【図10】本発明の実施の形態に係る画像信号処理装置における空間クラス分類に使用される注目ブロック及び注目画素を含む水平ライン及び垂直ラインの各8画素を示す模式図である。

【図11】本発明の実施の形態に係る画像信号処理装置における空間クラス分類に使用されるクラスタップを示す模式図である。

【図12】図8に示すステップ27のエッジ検出による 40 空間クラス分類における工程をその工程順に示すフローチャートである。

【図13】同じく、図8に示すステップ27のエッジ検出による空間クラス分類における工程を示す図であって、図12に示す工程の後の工程をその工程順に示すフローチャートである。

【図14】同じく、図8に示すステップ27のエッジ検出による空間クラス分類における工程を示す図であって、図13に示す工程の後の工程をその工程順に示すフローチャートである。

【図15】同じく、図8に示すステップ27のエッジ検出による空間クラス分類における工程を示す図であって、図14に示す工程の後の工程をその工程順に示すフローチャートである。

52

【図16】(a) 乃至(e) は、図11に示す注目ブロックの注目画素を含む水平方向の1ライン及び注目ブロックの左右(水平方向)に隣接する隣接ブロックのブロック隣接画素において算出されたエッジの値と、空間クラス分類の関係を示す模式図である。

【図17】本発明の実施の形態に係る画像信号処理装置 における時間クラス分類に使用されるブロックを示す模 式図である。

【図18】横方向に時間をとって、注目画素とこの注目 画素とブロック内で同位置における未来及び過去方向の 各3タップ、縦方向に空間タップを示す模式図である。 【図19】学習時の時間クラス分類を示す模式図である。

【図20】マッピング時の時間クラス分類を示す模式図である。

20 【図21】(a)乃至(d)は、DCTブロックを4分割して小ブロックとして画素位置モードの分類を示す模式図であって、夫々マクロブロック左上、右上、左下及び右下に位置する小ブロックを示し、(e)は、画素位置モードに基づいて移動する予測タップの移動方向を示す模式図である。

【図22】本発明の実施の形態に係る画像信号処理装置 における推定演算時に使用される予測タップの一例を示す模式図である。

【図23】フレームDCTブロックにおける空間予測タップを示す模式図である。

【図24】(a)及び(b)は、フィールドDCTプロックにおける空間予測タップを示し、夫々注目画素がトップフィールド及びボトムフィールドに位置する場合を示す模式図である。

【図25】(a)及び(b)は、マッピング時における時間タップの予測係数のゲイン調整方法を示す模式図である。

【図26】(a)及び(b)は、夫々プログレッシブ・フレーム及びインタレース・フレームにおける輝度信号 Y及びクロマ信号Cのラインの対応関係を示す模式図である。

【図27】輝度信号から検出したYエッジ位置をクロマ信号のCエッジ位置に置きかえる際の水平方向における Yエッジ位置とCエッジ位置との対応関係を示す模式図である。

【図28】(a)及び(b)は、垂直方向のYエッジ位置及びCエッジ位置の対応関係を示す図であって、夫々プログレッシブ・フレーム及びインタレース・フレームにおける対応関係を示す模式図である。

50 【図29】(a)及び(b)は、クロマ信号における空

間予測タップを示す図であって、夫々プログレッシブ・フレーム及びインタレース・フレームにおける場合を示す模式図である。

【図30】実際にMPEG2で符号化/復号したMPE G復号画像を示す図である。

【図31】図30に示すMPEG復号画像から本発明に よる歪除去処理を行った歪除去処理画像を示す図であ る

【図32】MPEG符号化前の原画像を示す図である。 【図33】横軸にフレーム番号(時間)をとり、縦軸に 10 輝度レベルをとって、輝度レベルの時間的変動を示すグラフ図である。

【図34】理想的なステップ波形をDCT変換したDC Tブロックの水平方向の波形を示すグラフ図である。 【図35】モスキート・ノイズを示すグラフ図である。 【符号の説明】

54

10 画像信号処理装置、 12、18、32、38 画素間差分値算出部、13、19、33、39 統計量算出部、 14、34 特徴量メモリ、 15、35 ラインメモリ、 16、36 フレームメモリ、 17、23、37、43 領域切出部、 20、40 特徴量抽出部、 21、41 クラスコード発生部、 22 ROMテーブル、 24 推定演算部、 44 正規化方程式演算部、 42 メモリ

【図12】

【図35】

【図13】

【図14】

【図21】

【図22】

13タップ+6タップの場合

【図26】

【図28】

【図34】

【図29】

(a) プログレッシブ・フレーム		(b) インタレース・	フレーム
A~Hラインの時	A'~H'51>05	A~Hラインの時	A'~H'ライン0時
_ A B C H	W.B.C.H.	ABCGH	A,B,C.C.H.
		O O O O O O O O O O O O O O O O O O O	

【図30】

【図31】

【図32】

フロントページの続き

(72)発明者 森藤 孝文

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

(72)発明者 國弘 威

東京都品川区北品川6丁目7番35号 ソニ

一株式会社内

Fターム(参考) 50057 EA02 EA07 ED10 EL01 EM09

EM12 EM13 EM16 GC01 GG03

GH06

5C059 KK03 KK04 MA00 MA23 MA28

MC11 MC38 ME01 PP04 PP16

PP22 PP25 TA41 TB10 TC34

TD08 UA02 UA05 UA12 UA33

5J064 AA01 BB01 BB03 BB07 BC01

BC25 BD01