Project Development Phase Model Performance Test

Date	10 November 2022
Team ID	PNT2022TMID31390
Project Name	Project - Predicting the energy output of wind
	turbine based on weather condition
Maximum Marks	10 Marks

Model Performance Testing:

Random Forest Regressor:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Gives the highest accuracy. Random forest	<pre>from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor (n_estimators=30, random_state=0) regressor.fit(X_train,y_train)</pre>
		is a supervised learning algorithm that uses an	RandomForestRegressor(n_estimators=30, random_state=0)
		ensemble learning method for classification	
		and regression.	
2.	Accuracy	Training Accuracy – 100%	<pre>from sklearn.metrics import r2_score r2_score(y_test, y_pred)</pre>
		Validation Accuracy – 88.4%	e.8849999426996336 Ref:Model1 RandomForestRegressor VIDH YAMBIKA.ipynb
3.	Visualizing the model	X axis-True values Y axis-Predicted values	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°
			True Values Ref: VISUALISING M1ipynb.ipynb

Random Forest Regressor but with two parameters eliminated:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Gives accuracy less than model 1. Random forest is a bagging technique and not a boosting technique.	<pre>from sklearn.ensemble import RandomForestRegressor regressor = RandomForestRegressor (n_estimators=20, random_state=0) regressor.fit(X_train,y_train) RandomForestRegressor(n_estimators=20, random_state=0)</pre>
2.	Accuracy	Training Accuracy – 100% Validation Accuracy – 87.7%	from sklearn.metrics import r2_score r2_score(y_test, y_pred) 0.8773928979826746 Ref:Model2RandomForestRegeliminatin g2par.ipynb
3.	Visualizing the model	X axis-True values Y axis-Predicted values	Ref: VISUALISINGM2.ipynb

Support Vector Regression (SVR):

S.No.	Parameter	Values	Screenshot
1.	Model Summary	Gives accuracy less than model 2. SVR uses the same principle as SVM, but this SVR is applied for regression problems.	<pre>from sklearn.svm import SVR # Choose regression method and set hyperparameter svr_rbf=SVR(C=1.0, epsilon=0.2, kernel='rbf') # Training of the regression model svr_rbf.fit(X_train, y_train) y_pred = svr_rbf.predict(X_test)</pre>
2.	Accuracy	Training Accuracy – 100% Validation Accuracy – 84.6%	<pre>from sklearn.metrics import r2_score r2_score(y_test, y_pred) 0.8466893820599397 Ref: Model3SVR.ipynb</pre>
3.	Visualizing the model	X axis-True values Y axis-Predicted values	True Values Ref: VISUALISING_M3.ipynb

Multi linear Regression:

S.No.	Parameter	Values	Screenshot
1.	Model Summary	model 3. Multiple linear regression (MLR), also known simply as multiple regression, is a statistical technique that uses several explanatory variables to predict the outcome of a response variable. Multiple regression is an extension of linear (OLS) regression that uses just one	<pre>from sklearn.linear_model import LinearRegression lr=LinearRegression()</pre>
			lr.fit(X_train,y_train)
			LinearRegression()
			<pre>y_pred=lr.predict(X_test) y_pred</pre>
			Ref: Model4multilinearregression.ipynb
2.	Accuracy	explanatory variable. Training Accuracy – 100% Validation Accuracy – 75%	<pre>print("Mean squared error =", round(sm.mean_squared_error(y_test, y_pred), 2)) print("Median_absolute_error =", round(sm.median_absolute_error(y_test, y_pred), 2)) print("Explain_variance_score =", round(sm.explained_variance_score(y_test, y_pred), 2)) print("R2 score =", round(sm.r2_score(y_test, y_pred), 2))</pre>
			Mean squared error = 149.42 Median absolute error = 6.21 Explain variance score = 0.75 R2 score = 0.75
3.	Visualizing the model	X axis-True values Y axis-Predicted values	y_test vs y_pred (Test set)