Number of Sequences

A sequence of n integers is *nice* if the following conditions are satisfied:

- $0 \le a_k \le k-1$,
- $a_k \equiv a_m \mod k$ for all pairs k, m such that k divides m.

You're given a sequence, a_1, \ldots, a_n , where some numbers may be -1. Find and print the number of *nice* sequences you can create by changing each -1 to a non-negative integer. As this number can be quite large, your answer must be modulo $10^9 + 7$.

Input Format

The first line contains a single integer, n.

The second line contains n space-separated integers describing the respective values of a_1, \ldots, a_n .

Constraints

- $1 < n < 10^5$
- $-1 \le a_k \le k-1$
- $n \leq 1000$ for at least 50% of the test cases.

Output Format

Print a single integer denoting the number of *nice* sequences you can get by changing each -1 to a non-negative integer. As this number can be guite large, your answer must be modulo $10^9 + 7$.

Sample Input 0

3 0 -1 -1

Sample Output 0

6

Explanation 0

The nice sequences for this input are:

- 1. 0, 0, 0
- 2. 0, 1, 0
- 3. 0, 1, 1
- 4. 0, 1, 2
- 5. 0, 0, 1
- 6. 0, 0, 2

Thus, we print the result of $6 \bmod (10^9 + 7) = 6$ on a new line.

Sample Input 1

Sample Output 1

1