Motion Planning of Ladder Climbing for Humanoid Robots

Indiana: Yajia Zhang, Jingru Luo, Kris Hauser

Drexel: Robert Ellenberg, Paul Oh

Purdue: H. Andy Park, Manas Paldhe,

C.S. George Lee

Challenges

"Human strategies can and do fail when applied directly to humanoids."

Although seemingly straightforward for humans, this task is quite challenging for humanoid robots for the following reasons:

- Differences from human kinematics (number of joints, limb lengths, joint ranges, and etc.)
- Significant contact forces
- Simultaneous coordination of 3 or 4 limbs in contact
- Limited motor torque and shock tolerance

Contributions / Outline

- General planning approach
 - Accepts arbitrary robot models, ladder models, and surrounding obstacles.
- Primitive-based method (7 primitives)
 - Adapts knowledge from previous plans or from human experts to help converge to reasonable solutions
- Planner / Simulation cycle
 Plan with simplified planner model, design, test, and verify.
 - Candidate hardware changes were factored into this cycle.
- Identified variables in ladder-climbing capabilities
 - Grip strength, hip flexibility, and Lower-leg thickness, foot friction, and high-force static poses.

Ladder Specification as Input

Major Ladder properties are ladder inclination, rung spacing, stringer width, and cross-sectional geometries.

3m	Length of stringers			
0.6m	Width between stringers			
75 °	Slope of ladder (angle of elevation from ground)			
0.25m	Distance between center of two rungs along the stringer			
1	Stringer shape parameter (1: cuboid, 0: cylindrical)			
0.05m	Width of stringers *			
0.05m	Thickness of stringers *			
0.025m	Radius of stringers †			
0	Rung shape parameter (1: cuboid, 0: cylindrical)			
0.05m	Height of rungs *			
0.10m	n Thickness of the rungs *			
0.03m	Radius of rungs †			
* required for cuboidal shape				
† required for cylindrical shape				

Ladder Climbing Planner

- Hubo's ladder climbing motion
 - Mount on the ladder
 - Climb to higher rung (5x-8x)
 - Dismount (Future work...)
- Input variables
 - Ladder specification: slope, rung spacing, etc.
 - Initial rung holding
- Output: a kinematically feasible path

Contact Modeling

- A hold, or contact of a single robot link with environment
 - Modeled as point-contacts:
 - Two per hand, one per foot
 - Encodes constraints for one limb.
- A stance (δ) can be 3 or 4 holds
- Coulomb friction coefficient:
 - u = 0.40
- Test stability using Bretl's method
 - More inclusive criteria than ZMP
 - Expanded support polygon (green) is projected stable region of COM

Point-contacts and corresponding support polygon

Motion Primitives for Climbing Motion

- Motion Primitive (MP)
 - Releases and places one limb at a new contact
 - Rest holds (h_d) unchanged
- Climbing motion (7 primitives)
 - Mounting ladder primitives

Climbing primitives

Planning with Ideal Motion

- Design ideal MPs with experiences from human experts.
- Adapt ideal MPs to new problems.
- Perturb around an "ideal" motion to achieve an ideal contact via an ideal path

Find Feasible Configuration

- Input: Environment, existing holds h₁..h₃, desired hold h_d
- Problem Formulation Find q such that:
 - Contacts: desired position and rotation of links in (h_1,h_2,h_3,h_d) .
 - Within joint limits: $\mathbf{q} \in [\mathbf{q}_{\min}, \mathbf{q}_{\max}]$
 - Collision free: C(q) = 0
 - No Self-Collision: SC(q) = 0
 - Stable under gravity: COM(q) ∈ SP(h_1,h_2,h_3)
- Strategy
 - IK based on constrained optimization
 - 1. Initialize with a good start (seed configuration)
 - 2. Retract if colliding slightly with ladder
 - 3. Perturb in a growing neighborhood of seed

Seed Aided Initialization

- Choose "initial" (non-physical) pose :
 - Avoid local minima
 - Reduce optimization cost
- Predict postures based on stance
- Use seed to initialize:
 - Speed up the optimization
 - Help obtain collision free configuration
 - Impose the preference on configuration

Left: placeHands Middle: liftLFoot Right: liftRFoot

Algorithm for Finding q

- for i = 0, 1, 2, ..., n:
 q_{init} = q_{seed} + perturb(i)
 if find q from IK solver starting from q_{init}:
 - if no self-collision and no environment collision and stable:

return q

• if no self-collision and has environment collision and stable:

if retract(q) succeeds, return q

 perturb(i) function adjusts perturbation radius in joint space i*c for some constant c

Connecting Path

- Challenge
 - Collision avoidance
 - Other fixed links should remain in contact
 - Natural looking actions, less redundancy than randomized planners
- Our method
 - Draw intermediate waypoints from "ideal" waypoint set
 - Interpolate in contact space, not joint space

Contact Space Interpolation

- Contact space
 - Specified by contacts
 - Subspace of joint space
 - Nullspace of contact constraints
- Recursive Interpolation
 - Linearly interpolate midpoint between q1 and q2 in joint space
 - Project from joint space to contact space
 - Repeat until desired motion resolution is reached
- Projection function
 - IK constraints are from fixed links
 - Solve IK to obtain projection point on contact space

Ladder Batch Testing

- Ladder specifications
 - Slope: 70° 90°
 - Vertical spacing: 20 cm 35 cm
- Apply all 7 motion primitives for each ladder
 - Kinematically feasible: no collision
 - Stable: COM within support polygon
- Intel i-7 with 4GB RAM; cutoff time: 60 seconds

Original Hubo+ Model

Overall success rate= 0.1548

 Success rate for mounting ladder only = 0.2530

Shrink Knee Joints

• Overall success rate = 0.3482

 Success rate for mounting ladder only = 0.4286

Enlarge Leg Joints Limits

• Overall success rate = 0.4345

 Success rate for mounting ladder only = 0.5000

With Both Modifications

Overall success rate = 0.7024

 Success rate for mounting ladder only = 0.7381

Validation Strategy

- Initial experiments to eliminate obvious gaps between environments
 - Ladder rung size
 - Initial position of robot
- Identify baseline finger properties that reproduce real behavior within limits of ODE
- Batch of simulations with various ladder shapes given "optimistic" grip strength
 - Stock hubo limits and leg size
 - No-Shell model's thinner limbs
 - Expanded joint limits corresponding to no-shell model

First Simulation Results

90° ladder reduces swinging room for arms

6cm Thick rungs drastically reduce available grip force

Simulation settings

Robot: rlhuboplus.noshell.robot.xml (expanded limits, no body shells)

Time step: 0.0005sec Friction coefficient (u): 1 QuickStep iterations: 20

Trajectory time step: 0.05sec (5x slowed from planned motion)

Quick Grasp Force Validation

- Assumptions / Setup
 - Servo controller contributes minimal torque (<.1 Nm) to grasp
 - Can control open-loop of finger joints
 - Grasp a 10b (4.5kg) weight
- Process and results
 - Max required grip torque was 1.6Nm with mu=1.0 (erp=.5,cfm=0.00001)

Knuckle	1	2	3
Thumb	1.6Nm	.8Nm	.4Nm
Fingers	.8Nm	.4Nm	.25Nm

 Python script adds joint torque in addition to velocity motor

Simulation Results

TABLE I. PREDICTED SUCCESSES OF SELECT CASES WITH A STOCK HUBO-II+ AND THE MODIFICATIONS RECOMMENDED IN OUR MOTION PLANNER.

		Prediction		Result	
Angle	Spacing	Stock	Modified	Stock	Modified
70°	20 cm	7	7	2	7
70°	25 cm	2	7	2	5
75°	22 cm	7	7	2	5
75°	25 cm	2	7	2	5
80°	25 cm	7	7	2	5
80°	30 cm	2	7	2	5
85°	25 cm	7	7	2	3
85°	30 cm	2	7	2	3
90°	25 cm	7	7	0	0
90°	32 cm	2	7	0	0

- 1) OpenHubo was able to climb onto ladders of slope <= 80°
 - 2) Steeper ladders failed regardless of improvements
- 3) Only a combination of increased joint limits and thinner legs succeeded in stepping up

Failure Modes (1)

Failure Modes (2)

Future Work (Planning)

Possible improvements

- Estimate grip forces from pose and contacts
- More seed poses (bent elbows / knees) reduce required swing room
- Explicitly check stability in intermediate poses
- Friction at feet as additional optimization criteria
- Seed configurations with lower grip force

Future Work - Simulation

- Possible contact modeling improvements
 - Adjust ODE quickstep iteration limit
 - KrisLibrary
 - FCL + DART
- Physics Improvements
 - Reduced-density models
 - Open-loop torque control
 - Motor estimation for failure states (overvoltage, overtorque, "jam" error)

Hardware Considerations

- Thinner limbs with greater range of motion
- Increase grip and wrist strength
- Friction enhancement for hands / feet
 - Grooves / channels to "lock-in" to ladder surface
 - Grip surfaces
- "5 point" Harness for rigging Hubo during experiments
- In-place recovery (motor power-off preserves encoder values)

Questions?