Application Development Center EMS-GRIVORY Answer to Technical Inquiry No.: 2018-0660

Author: Gian Cadisch Date: 07.05.2019

To: Hiroaki Mifune

Company: Kyocera / Camera

Country: Japan (JP)

Material: Grivory GVX-5H Application: Sensor Camera

Problem Description / Target of the Customer:

The customer shows interests in Grivory series and required the comparison of weatherability with the competitor's materials.

The same test conditions were used as in TI 2016-0534S

Weatherability tests based on ISO 4892-2 method A

- Black Panel thermometer: Temperature: 83°C ±2°C
- Cycles of 18 minutes with pure water dispersion 102 minutes interval (Total 120 minutes for 1 cycle)

Repeat this condition for 1000 hours

Please measure each specimen at the point of the start and after 400, 700, 1000 hours (Total 4 points)

- 1. Observation of the appearance / t2 x 60(100) plates / 5 pcs x 4 points for each materials
 - Gloss
 - E
- Measurement of the properties / Specimens based on ISO standard
 Tensile impact toughness / ISO 8256 Type 3 specimens / 5 pcs x 4 points for each
 materials

Materials:

- Grivory GVX-5H
- Grivory G6VX-AP XE11107
- Grivory G6VX-AP XE11107 UV (Blended with 4% MB 3427 AUV)
- Grivory HT3 XE4065
- Grivory HTV-45H1
- Reny XL1027U
- Reny 1027
- Amodel A-1145HS
- Xyron XP640

Requests:

- 1. Blending of Grivory XE11107 + 4% MB 3427 AUV at ECSZ
 - Please blend necessary volume at ECCH
- 2. Make the specimens at ECCH once received the materials
 - Plates: t2 x 60 or 100mm
 - ISO 8256 Type 3 specimen
 - *The pellets will be sent from ECJP.
- 3. Please run the weatherability tests

These recommendations are based on our present experience. No liability whatsoever can be assumed.

Same conditions with TI ECJP 2016-0534S.

- *This measurement will be handled by Mr. Gian Cadisch of ECCH.
- *The size of specimens can be changed at ECCH
- *Please send the tested specimens to Hiroaki Mifune of ECJP.

Result / Solution / Proposal:

All suggested materials were sent by ECJP and molded in ECCH. The weathering stability was tested according to ISO 4892-2 method A cycle 1 on ISO 8256 Type 3 specimen with 1mm thickness. Afterwards optical tests such as discoloration measurements (dE) according to ISO 11664-4, residual gloss at 60° according to ISO 2813 performed and tensile properties according to ISO 527-2 with 2.5mm/min tensile speed tested. The results are displayed in the attachement. It can be clearly seen that the products of the competition does not perform a good weathering stability compared to our products. The mechanical properties of all materials are not really influenced, but the optical properties such as discoloration dE and gloss 60° have a big impact on competitor's materials. It can be clearly seen that Xyron XP640 black shows the worst and GV XE 11107 black 9915 + 4% MB 3427 shows the best weathering performance.

A) Reny 1027 black PAP: 7K5128G

Zeit [h]		SZZ [kJ/m²]	Farbdifferen2 dE D65	Glanz 60°
0	4	Lycesadi	0	44
400	4		2,5	16
700	A		5.6	16
1000			3.4	11

B) Amodel A-1145HS black

PAP: 1624000732

Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	B		0	76
400	B		1.3	64
700	B		3.2	40
1000	8		3.9	18

C) Xyron XP640 black

PAP: 218701

Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	C		0	78
400			34. 4	8
700	C		35,5	3
1000	C		32.6	1

D) Reny XL 1027U black PAP: 7E4717G

Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	O)		0	79
400	O	-	2.2	62
700	D		2.7	62
1000			3.6	44

E) HTV-45H1 BLACK 9205

PAP: 7115698/13

Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	E		0	80
400	E		0.7	76
700	ϵ		1.7	50
1000	E		3.0	18

F) XE 4065 BLACK 9238

PAP: 7679885/01

	The state of the s		T	
Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	F		0	62
400	F		1.2	57
700	F		1.9	49
1000	F		5.3	39

G) GVX-5H BLACK 9915

PAP: C180812/06

Zeit [h]		SZZ [kJ/m²]	Farbdifferenz dE D65	Glanz 60°
0	G	-	0	71
400	9		0.8	36
700	4		2,9	31
1000	G		4.8	23

H) GV XE 11107 BLACK 9915

PAP: 6005759/01

Zeit [h]		SZZ [kJ/m²]	Farbdifferenæ dE D65	Glanz 60°
0			0	68
400	H		0,7	68
700	H		1.8	61
1000	H		2.1	41

I) GV XE 11107 BLACK 9915 + 4% MB 3427 PAP: 6005759/01

Zeit [h]		SZZ [kJ/m²]	Farbdiffere dE D65	Glanz 60°
0			0	70
400	I		0.4	70
700			0.8	68
1000	I		1.4	34

Weather Resistance

Weather Resistance

Weather Resistance

