Lecciones de

Programación

Intermedia.

Diferentes maneras de moverse:

Sincronización, poder regulado, rampa arriba y abajo.

Objetivos:

- Aprender sobre los diferentes bloques para mover el robot y cuando usar cada bloque.
- Aprender acerca de la regulación de poder, sincronización del motor y rampa arriba/ abajo.

Diferentes formas de moverse:

¿Como son estas diferentes una de otra en términos de lo siguiente?

- Regulación de poder
- Sincronización del motor
- Rampa arriba/ rampa abajo

Poder Regulado

- ▼ El poder regulado trata de mover el robot a una velocidad fija.
- Cuando el robot tiene problemas moviéndose porque es pesado, porque se está moviendo cuesta arriba, porque la batería está muerta o porque está bloqueado, la regulación de poder da más poder al motor para alcanzar la velocidad requerida.
- Esto es bueno para asegurar que el robot se mueve a una velocidad predecible.

Motores Sincronizados

- Los motores sincronizados asegura que ambos motores giren igual.
- Si una rueda se atora, prevé que la otra rueda gire.
- Si tiene los motores girando igual, ayuda a asegurar que el robot se mueva derecho si una de las llantas deja de girar con la misma intensidad.
- Cuando tiene los motores sincronizados con una misma proporción, hace que el robot gire de manera predecible y suave.
- Video en versión inglesa

Sincronizado vs desincronizado

- Haga clic para ver los videos.
- Motor sincronizado (izquierda): Un motor que se atora causa que el otro se detenga.
- Motor desincronizado (derecha): El segundo motor continúa a pesar de que el primero se atora.

Rampa arriba / rampa abajo

- Rampa arriba hace que el robot acelere gradualmente al empezar a moverse.
- Rampa abajo hace que el robot frene de manera gradual al final.
- Sin rampa arriba/ rampa abajo, puede que vean al robot dar un tirón al detenerse o acelerar súbitamente.
- A pesar de esto, el robot seguirá ajustando sus motores después de frenar/ acelerar para obtener los datos del sensor de rotación, pero de esta manera será menos preciso.

Diferentes maneras de moverse

	Poder Regulado	Motores sincronizados	Rampa arriba/ Rampa abajo
1 (O) SO 360 V	✓	✓	✓
2	✓	✓	✓
3 8 6 8	✓	X	X
4	X	X	X

Grados de movimiento vs. Segundos

Grados de movimiento	Segundos de movimiento	
El bloque no se complete hasta que los grados buscados se logren.	 Menos preciso para los movimientos del robot. La distancia recorrida depende de la velocidad, nivel de la batería y peso del robot. 	
Así que ¿qué pasa si el robot se atora en la alfombra? • El programa se detiene y no avanza al siguiente bloque. • Tendrá que salvar el robot y tomar un penalti de toque.	Tiene que recordad esto cuando decida si los segundos de movimiento se deban usar.	
	Sin embargo, puede ayudar a evitar que se detenga. • Ejemplo: Puede ser usado si sus brazos se atoran.	

Video en la siguiente página del texto original.

Grados de movimiento vs. Segundos.

- Presione para ver los videos
- Robot Detenido (izquierda): El robot se atora. Termina solo cuando es desatorado.
- Robot no Detenido (derecha): El robot se atora, pero aún así termina (puede escuchar el sonido)

Guía de discusión

Llene la siguiente tabla:

Créditos

- Este tutorial fue creado por Sanjay Seshan y Arvind Seshan de Droids Robotics.
- Mas lecciones están disponibles en: www.ev3lessons.com
- Email de los autores: team@droidsrobotics.org
- Traducido por: Equipo Tec Balam 3527