Cambridge (CIE) A Level Chemistry

Enthalpies of Solution & Hydration

Contents

- * Enthalpies of Solution & Hydration
- * Constructing Energy Cycles
- * Energy Cycle Calculations
- * Factors Affecting Enthalpy of Hydration

Enthalpies of Solution & Hydration

More - ve More soluble More + ve less soluble

Enthalpy Change of Hydration & Solution

Enthalpy change of solution

- The standard enthalpy change of solution (ΔH_{sol}^{θ}) is the enthalpy change when 1 mole of an ionic substance dissolves in sufficient water to form a very dilute solution under standard conditions
- The symbol (aq) is used to show that the solid is dissolved in sufficient water
 - For example, the enthalpy changes of solution for potassium chloride are described by the following equations:

$$KCI(s) + aq \rightarrow KCI(aq)$$

OR

$$KCI(s) + aq \rightarrow K^{+}(aq) + CI^{-}(aq)$$

• ΔH_{sol}^{θ} can be **exothermic** (negative) or **endothermic** (positive)

Enthalpy change of hydration

- The lattice energy $(\Delta H_{latt}^{\theta})$ of KCl is -711 kJ mol⁻¹
 - This means that 711 kJ mol⁻¹ is **released** when the KCl ionic lattice is **formed**
 - Therefore, to **break** the attractive forces between the K⁺ and Cl⁻ions, +711 kJ mol⁻¹ is needed
- However, the ΔH_{sol}^{θ} of KCl is +26 kJ mol⁻¹
- This means that another +685 kJ mol⁻¹ (711 26) is required to break the KCI lattice
- This is **compensated** for by the **standard enthalpy change of hydration** $(\Delta H_{hvd}^{\theta})$
 - The standard enthalpy change of hydration (ΔH_{hyd}^{θ}) is the enthalpy change when 1 mole of a specified gaseous ion dissolves in sufficient water to form a very dilute solution under standard conditions

$$Mg^{2+}(g) + aq \rightarrow Mg^{2+}(aq)$$

- Hydration enthalpies are the measure of the energy that is released when there is an attraction formed between the ions and water molecules
 - Hydration enthalpies are exothermic

Ion-Dipole interactions during dissolution

- When an ionic solid dissolves in water, it breaks into positive and negative ions
- Water is a **polar molecule**, with a δ oxygen atom and δ + hydrogen atoms

- The oxygen atom is attracted to positive ions (cations)
- The hydrogen atoms are attracted to negative ions (anions)

- Your notes
- These attractions form **ion-dipole bonds** between the water molecules and the ions

Interactions of polar water molecules and other ions in solution

The polar water molecules will form ion-dipole bonds with the ions in solution (a) causing the ions to become hydrated (b)

Constructing Energy Cycles

Energy Cycle Using Enthalpy Changes & Lattice Energy

■ The standard enthalpy change of hydration (ΔH_{hyd}^{θ}) can be calculated by constructing energy cycles and applying Hess's law

Example energy cycle

Energy cycle involving enthalpy change of solution, lattice energy, and enthalpy change of hydration

- The energy cycle shows that there are two routes to go from the ionic lattice to the hydrated ions in an aqueous solution:
 - Route 1: going from ionic solid → ions in aqueous solution (this is the direct route)

$$\Delta H_{sol}^{\theta}$$
 = enthalpy of solution

■ Route 2: going from ionic lattice → gaseous ions → ions in aqueous solution (this is the indirect route)

 $-\Delta H_{latt}^{\theta} + \Delta H_{hyd}^{\theta}$ = reverse lattice enthalpy + hydration enthalpies of each ion

- Lattice enthalpy usually means Lattice formation enthalpy, in other words bond forming
 - If we are breaking the lattice then this is reversing the enthalpy change so a negative sign is added in front of the term (alternatively it is called lattice dissociation

enthalpy)

• According to **Hess's law**, the enthalpy change for both routes is the same, such that:

$$\Delta H_{sol}^{\theta} = -\Delta H_{latt}^{\theta} + \Delta H_{hvd}^{\theta}$$

$$\Delta H_{hvd}^{\theta} = \Delta H_{sol}^{\theta} + \Delta H_{latt}^{\theta}$$

- Each ion will have its own enthalpy change of hydration, ΔH_{hyd}^{θ} , which will need to be taken into account during calculations
 - The total ΔH_{hyd}^{θ} is found by adding the ΔH_{hyd}^{θ} values of both anions and cations together

Worked Example

Construct an energy cycle and energy level diagram to calculate the $\Delta H_{hyd}{}^{\theta}$ of the chloride ion in KCI.

Answer:

■ Energy cycle:

$$\triangle H_{hyd}^{\Phi} = \triangle H_{hyd}^{\Phi} [K^{+}] + \triangle H_{hyd}^{\Phi} [Cl^{-}]$$

$$\triangle H_{hyd}^{\Phi} = \triangle H_{hyd}^{\Phi} [K^{+}] + \triangle H_{hyd}^{\Phi} [Cl^{-}]$$

$$\triangle H_{hyd}^{\Phi} = \triangle H_{hyd}^{\Phi} [K^{+}] + \triangle H_{hyd}^{\Phi} [K^{+}]$$

$$\triangle H_{hyd}^{\Phi} = \triangle H_{latt}^{\Phi} [KCl] + \triangle H_{sol}^{\Phi} [KCl]$$

$$\triangle H_{hyd}^{\Phi} [K^{+}] + \triangle H_{hyd}^{\Phi} [Cl^{-}] = \triangle H_{latt}^{\Phi} [KCl] + \triangle H_{sol}^{\Phi} [KCl]$$

$$\triangle H_{hyd}^{\Phi} [Cl^{-}] = \triangle H_{latt}^{\Phi} [KCl] + \triangle H_{sol}^{\Phi} [KCl] - \triangle H_{hyd}^{\Phi} [K^{+}]$$

$$\triangle H_{hyd}^{\Phi} [Cl^{-}] = \triangle H_{latt}^{\Phi} [KCl] + \triangle H_{sol}^{\Phi} [KCl] - \triangle H_{hyd}^{\Phi} [K^{+}]$$

■ Energy level diagram:

Worked Example

Construct an energy cycle and energy level diagram to calculate the ΔH hyd $^{\theta}$ of magnesium ions in magnesium chloride.

Answer:

■ Energy cycle:

$$\triangle H^{\bullet}_{hyd} = \triangle H^{\bullet}_{latt}[MgCl_{2}] + \triangle H^{\bullet}_{sol}[MgCl_{2}]$$

$$\triangle H^{\bullet}_{hyd}[Mg^{2+}] + 2\triangle H^{\bullet}_{hyd}[Cl^{-}] = \triangle H^{\bullet}_{latt}[MgCl_{2}] + \triangle H^{\bullet}_{sol}[MgCl_{2}]$$

$$\triangle H^{\bullet}_{hyd}[Mg^{2+}] = \triangle H^{\bullet}_{latt}[MgCl_{2}] + \triangle H^{\bullet}_{sol}[MgCl_{2}] - 2\triangle H^{\bullet}_{hyd}[Cl^{-}]$$
 Copyright 0 Save Myr Easter, All Rights, Reserved.

■ Energy level diagram:

$$\triangle H^{\bullet}_{hyd}[Mg^{2+}] \ + \ 2\triangle H^{\bullet}_{hyd}[Cl^{-}] \ = \ \Delta H^{\bullet}_{latt}[MgCl_{2}] \ + \ \Delta H^{\bullet}_{sol}[MgCl_{2}]$$

$$\triangle H^{\bullet}_{hyd}[Mg^{2+}] \ = \ \Delta H^{\bullet}_{latt}[MgCl_{2}] \ + \ \Delta H^{\bullet}_{sol}[MgCl_{2}] \ - \ 2\triangle H^{\bullet}_{hyd}[Cl^{-}]$$
 Copyright © Save My Exams. All Rights Reserved

Energy Cycle Calculations

Energy Cycle Calculations

- The energy cycle involving the enthalpy change of solution $(\Delta H_{sol}^{\theta})$, lattice energy $(\Delta H_{latt}^{\theta})$, and enthalpy change of hydration $(\Delta H_{hyd}^{\theta})$ can be used to calculate the different enthalpy values
- According to Hess's law, the enthalpy change of the direct and of the indirect route will be the same, such that:

$$\Delta H_{hyd}^{\theta} = \Delta H_{latt}^{\theta} + \Delta H_{sol}^{\theta}$$

- This equation can be rearranged depending on which enthalpy value needs to be calculated
- For example, ΔH_{latt}^{θ} can be calculated using:

$$\Delta H_{latt}^{\theta} = \Delta H_{hvd}^{\theta} - \Delta H_{sol}^{\theta}$$

- **Remember**: the total ΔH_{hyd}^{θ} is found by adding the ΔH_{hyd}^{θ} values of both anions and cations together
- Remember: take into account the number of each ion when completing calculations
 - For example, MgCl₂ has **two chloride ions**, so when completing calculations this will need to be accounted for
 - In this case, you would need to double the value of the hydration enthalpy, since you are hydrating 2 moles of chloride ions instead of 1

Worked Example

Calculate the ΔH^{θ} of the chloride ion in potassium chloride using the following data:

- ΔH_{latt}^{θ} [KCl] = -711 kJ mol⁻¹
- ΔH_{sol}^{θ} [KCI] = +26 kJ mol⁻¹
- $\Delta H_{hyd}^{\theta} [K^+] = -322 \text{ kJ mol}^{-1}$

Answer:

• Step 1: Draw the energy cycle of KCI

- Step 2: Apply Hess's law to find ΔH_{hyd}^{θ} [Cl⁻]
 - $\Delta H_{hyd}^{\theta} = (\Delta H_{latt}^{\theta}[KCI]) + (\Delta H_{sol}^{\theta}[KCI])$
 - $\bullet (\Delta H_{hyd}^{\theta}[K^{+}]) + (\Delta H_{hyd}^{\theta}[Cl^{-}]) = (\Delta H_{latt}^{\theta}[KCl]) + (\Delta H_{sol}^{\theta}[KCl])$
 - $\bullet \quad (\Delta H_{hyd}{}^{\theta}[\mathsf{Cl}^{-}]) = (\Delta H_{latt}{}^{\theta}[\mathsf{KCl}]) + (\Delta H_{sol}{}^{\theta}[\mathsf{KCl}]) (\Delta H_{hyd}{}^{\theta}[\mathsf{K}^{+}])$
- **Step 3**: Substitute the values to find ΔH_{hyd}^{\equiv} [Cl⁻]
 - ΔH_{hyd}^{θ} [Cl⁻] = (-711) + (+26) (-322) = -363 kJ mol⁻¹

Worked Example

Calculate the ΔH^{θ}_{hyd} of the magnesium ion in the magnesium chloride using the following data:

- ΔH_{latt}^{θ} [MgCl₂] = -2592 kJ mol⁻¹
- ΔH_{sol}^{θ} [MgCl₂] = -55 kJ mol⁻¹
- ΔH_{hyd}^{θ} [Cl⁻] = -363 kJ mol⁻¹

Answer:

• Step 1: Draw the energy cycle of MgCl₂

$$\triangle H_{\mathsf{hyd}}^{\bullet}[\mathsf{Mg}^{2+}] + 2\triangle H_{\mathsf{hyd}}^{\bullet}[\mathsf{Cl}^{-}] = \triangle H_{\mathsf{latt}}^{\bullet}[\mathsf{MgCl}_{2}] + \triangle H_{\mathsf{sol}}^{\bullet}[\mathsf{MgCl}_{2}]$$

$$\therefore \triangle H_{\mathsf{hyd}}^{\bullet}[\mathsf{Mg}^{2+}] = \triangle H_{\mathsf{latt}}^{\bullet}[\mathsf{MgCl}_{2}] + \triangle H_{\mathsf{sol}}^{\bullet}[\mathsf{MgCl}_{2}] - 2\triangle H_{\mathsf{hyd}}^{\bullet}[\mathsf{Cl}^{-}]$$
Coordinate Span M. Frank A. Bildeth Reprodu

- Step 2: Apply Hess's law to find ΔH_{hyd}^{Ξ} [Mg²⁺]
 - $\Delta H_{hvd}^{\theta} = (\Delta H_{latt}^{\theta}[MgCl_2]) + (\Delta H_{sol}^{\theta}[MgCl_2])$
 - $\bullet \quad (\Delta H_{hyd}^{\theta}[\mathrm{Mg^{2+}}]) + (2\Delta H_{hyd}^{\theta}[\mathrm{Cl^{-}}]) = (\Delta H_{latt}^{\theta}[\mathrm{MgCl_{2}}]) + (\Delta H_{sol}^{\theta}[\mathrm{MgCl_{2}}])$
 - $\bullet \quad (\Delta H_{hyd}^{\theta}[\mathrm{Mg^{2+}}]) = (\Delta H_{latt}^{\theta}[\mathrm{MgCl_2}]) + (\Delta H_{sol}^{\theta}[\mathrm{MgCl_2}]) (2\Delta H_{hyd}^{\theta}[\mathrm{Cl^-}])$
- Step 3: Substitute the values to find $\Delta H_{hyd}^{\theta}[Mg^{2+}]$
 - $\Delta H_{hyd}^{\theta}[Mg^{2+}] = (-2592) + (-55) (2 \times -363) = -1921 \text{ kJ mol}^{-1}$

Factors Affecting Enthalpy of Hydration

Enthalpy of Hydration: Ionic Charge & Radius

- The standard enthalpy change of hydration $(\Delta H_{hyd}^{\theta})$ is affected by the amount that the ions are attracted to the water molecules
- The factors which affect this attraction are the ionic charge and radius

Ionic radius

- The standard enthalpy change of hydration $(\Delta H_{hyd}^{\theta})$ becomes **more exothermic** (more negative) as the ionic radius decreases
- Smaller ions have a **higher charge density**, resulting in stronger **ion-dipole attractions** with water molecules
- Therefore, more energy is released when these ions are hydrated
- For example:
 - Mg²⁺ in MgSO₄ is smaller than Ba²⁺ in BaSO₄
 - As a result, ΔH_{hvd}^{θ} of MgSO₄ is more exothermic than that of BaSO₄

Ionic charge

- The enthalpy of hydration becomes **more exothermic** as the **ionic charge increases**
- Higher charge leads to a greater charge density, strengthening ion-dipole attractions with water molecules
- This means more energy is released during hydration
- For example:
 - Ca²⁺ and O²⁻ in CaO have higher charges than K⁺ and Cl⁻ in KCl
 - Therefore, ΔH_{hvd}^{θ} of CaO is more exothermic than that of KCI

Comparing enthalpies of hydration

The enthalpy of hydration is more exothermic for smaller ions and ions with a greater ionic charge