regularizaci-n-ibm-machine-l

Gracias por subir el archivo **regularizaci-n-ibm-machine-l.ipynb**. Procederé ahora a analizar profesionalmente todo el código celda por celda, explicando:

- 1. Cada línea y bloque de código
- 2. Los fundamentos teóricos y matemáticos
- 3. Conclusión detallada al finalizar el análisis
- 4. Teoría adicional relacionada con regularización y aprendizaje automático

Comienzo ahora a leer y explicarte el contenido del notebook. Un momento...

☑ EXPLICACIÓN DETALLADA DE LAS PRIMERAS 5 CELDAS DE CÓDIGO DEL NOTEBOOK DE REGULARIZACIÓN - IBM Machine Learning

Celda 1: Instalación de librerías necesarias

```
# Install the required libraries
!pip install -U scikit-learn
!pip install pandas
!pip install numpy
!pip install seaborn
!pip install matplotlib
```

Explicación:

Estas líneas instalan las bibliotecas necesarias para el proyecto:

- scikit-learn: Para modelos de machine learning.
- pandas: Manipulación y análisis de datos tabulares.
- numpy: Computación numérica con arrays.
- seaborn y matplotlib: Visualización de datos.
- Estas instrucciones aseguran que el entorno esté preparado para ejecutar correctamente el resto del notebook.

🚹 Celda 2: Supresión de advertencias

```
# Surpress warnings:
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn
```

Esta celda redefine la función warnings.warn con una versión vacía (pass), lo cual:

- Suprime todas las advertencias durante la ejecución del notebook.
- Es útil cuando se quiere tener una salida limpia, aunque se deben usar con precaución ya que puede ocultar errores importantes.

<u> Celda 3: Importación de bibliotecas</u>

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pylab as plt
%matplotlib inline
```

🔍 Librerías generales:

- pandas y numpy: para manipulación de datos.
- seaborn y matplotlib: para visualización de gráficos.
- %matplotlib inline: directiva de Jupyter para mostrar gráficos embebidos.

🔖 Librerías de Scikit-learn importadas:

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.metrics import r2_score
from sklearn.preprocessing import PolynomialFeatures, scale, StandardScaler, MinMaxScaler
from sklearn.feature_selection import SelectKBest, f_regression
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.decomposition import PCA
```

Modelos de regresión:

- LinearRegression: Regresión lineal básica.
- Ridge: Regresión con regularización L2.
- Lasso: Regularización L1.
- ElasticNet: Combinación de L1 y L2.

Preprocesamiento:

- Escalado (scale, StandardScaler, MinMaxScaler).
- Polinomios (PolynomialFeatures).

Q Optimización y evaluación:

- train_test_split: división de datos en entrenamiento y prueba.
- r2_score: métrica de evaluación del modelo.
- **GridSearchCV**: búsqueda de hiperparámetros óptimos.
- SelectKBest, f regression: selección de variables relevantes.
- PCA: reducción de dimensionalidad.

📊 Celda 4: Visualización del \$R^2\$ para cada feature individual

```
python
def get R2 features(model, test=True):
    # X: global
    features = list(X)
    features.remove("three")
    R 2 train = []
    R_2test = []
    for feature in features:
         model.fit(X_train[[feature]], y_train)
         R 2 test.append(model.score(X_test[[feature]], y_test))
         R 2 train.append(model.score(X train[[feature]], y train))
    plt.bar(features, R_2_train, label="Train")
plt.bar(features, R_2_test, label="Test")
    plt.xticks(rotation=90)
    plt.ylabel("$R^2$")
    plt.legend()
    plt.show()
    print("Training R^2 mean value {} Testing R^2 mean value {} ".format(
    str(np.mean(R_2_train)), str(np.mean(R_2_test))))
print("Training R^2 max value {} Testing R^2 max value {} ".format(
         str(np.max(R_2_train)), str(np.max(R_2_test))))
```

Funcionalidad:

- Analiza qué tan bien predice cada variable individualmente el target (y_train, y_test) usando un modelo simple.
- Muestra la métrica \$R^2\$ para cada feature en entrenamiento y prueba.
- Elimina la variable "three" del análisis (posiblemente por no ser útil).

Interpretación:

- Un \$R^2\$ cercano a 1 indica buena capacidad predictiva.
- Esta función ayuda a identificar variables que por sí solas explican bien la variable dependiente.

📊 Celda 5: Visualización de los coeficientes del modelo

```
def plot_coef(X, model, name=None):
    plt.bar(X.columns[2:], abs(model.coef_[2:]))
    plt.xticks(rotation=90)
    plt.ylabel("$coefficients$")
    plt.title(name)
    plt.show()

    print("R^2 on training data ", model.score(X_train, y_train))
    print("R^2 on testing data ", model.score(X_test, y_test))
```

Funcionalidad:

- Grafica los coeficientes (valores absolutos) de un modelo de regresión entrenado.
- Omite las dos primeras columnas de x (probablemente categóricas o poco informativas).
- Imprime los \$R^2\$ para entrenamiento y test, lo que permite detectar overfitting o underfitting.

🖈 Importancia:

- Útil para visualizar qué variables tienen mayor peso en la predicción.
- Permite interpretar modelos lineales y regularizados (Ridge, Lasso, ElasticNet).

🔽 CONCLUSIÓN PARCIAL DEL FUNCIONAMIENTO (hasta Celda 5)

Este notebook está diseñado para:

- Entrenar y evaluar modelos de regresión con distintos tipos de regularización.
- Visualizar y analizar el impacto de cada variable sobre la variable objetivo.
- Medir la capacidad predictiva usando métricas como \$R^2\$ y coeficientes del modelo.

Ya se definieron funciones para evaluar el poder predictivo de variables individuales y para interpretar modelos lineales.

TEORÍA COMPLEMENTARIA SOBRE REGULARIZACIÓN

🖈 ¿Qué es la regularización?

La regularización es una técnica para reducir el sobreajuste en modelos de regresión y clasificación al penalizar la magnitud de los coeficientes.

Tipos:

• Ridge (L2): Penaliza la suma de los cuadrados de los coeficientes. Minimiza:

$$\min \sum (y_i - \hat{y}_i)^2 + lpha \sum eta_j^2$$

• Lasso (L1): Penaliza la suma de los valores absolutos:

$$\min \sum (y_i - \hat{y}_i)^2 + lpha \sum |eta_j|$$

• ElasticNet: Combina ambas penalizaciones (L1 + L2).

@ Beneficios:

- Reduce varianza del modelo.
- Selecciona variables relevantes automáticamente (Lasso).
- Mejora generalización en conjunto de test.

¿Deseás que continúe con las siguientes celdas?

CONTINUA

EXPLICACIÓN DETALLADA DE LAS CELDAS 6 A 10

🔣 Celda 6: Visualización de valores reales vs valores predichos

```
def plot_dis(y, yhat):
    plt.figure()
    ax1 = sns.distplot(y, hist=False, color="r", label="Actual Value")
    sns.distplot(yhat, hist=False, color="b", label="Fitted Values", ax=ax1)
    plt.legend()

plt.title('Actual vs Fitted Values')
    plt.xlabel('Price (in dollars)')
    plt.ylabel('Proportion of Cars')

plt.show()
    plt.close()
```

Explicación:

- Esta función compara visualmente los valores reales (y) y los valores predichos (yhat) con gráficos de densidad (distplot).
- Ayuda a verificar si el modelo predice correctamente la distribución de la variable objetivo (en este caso, el **precio de autos**).
- * Nota técnica: sns.distplot está deprecated. La alternativa moderna es sns.kdeplot.

🧀 Celda 7: Carga de datos

```
python

data = pd.read_csv('https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-
ML240EN-SkillsNetwork/labs/encoded_car_data.csv')
data.head()
```

- Carga el dataset desde un URL público proporcionado por IBM.
- Muestra las primeras filas con data.head().

Este dataset está **preprocesado y codificado**, por lo tanto, probablemente ya tenga variables numéricas listas para usar en modelos de regresión.

E Celda 8: Información general del dataset

```
python
data.info()
```

🔍 Explicación:

- Muestra estructura del DataFrame:
 - Nombres de columnas
 - Tipos de datos (int64, float64, etc.)
 - Valores nulos
 - Tamaño
- Permite confirmar que los datos están completos y en formato adecuado para entrenamiento.

o Celda 9: Separación de variables predictoras y objetivo

```
python

X = data.drop('price', axis=1)
y = data.price
```

Explicación:

- X: contiene todas las columnas excepto price, que es la variable a predecir.
- y: es la columna price.

Esto separa el dataset en:

- Variables independientes (predictoras): atributos del auto
- Variable dependiente (target): precio

🏋 Celda 10: División en conjunto de entrenamiento y prueba

```
python

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=42)
print("number of test samples :", X_test.shape[0])
```

- train_test_split: divide el dataset en 90% entrenamiento y 10% prueba.
- random_state=42: garantiza reproducibilidad (misma división cada vez).
- Se imprimen las cantidades de muestras para cada conjunto.

***** Esta división es fundamental para evaluar correctamente el rendimiento del modelo en datos **nunca vistos** (generalización).

CONCLUSIÓN PARCIAL (Celdas 6 a 10)

Estas celdas completan la fase de preparación del dataset:

- Se carga un dataset de autos codificado.
- Se analiza su estructura y se separa en features y target.
- Se divide en conjuntos de entrenamiento y prueba.
- Además, se define una función de visualización clave para comparar predicción y realidad.

Esto sienta las bases para aplicar los modelos de regresión (con y sin regularización) en las próximas celdas.

TEORÍA COMPLEMENTARIA: EVALUACIÓN DE MODELOS DE REGRESIÓN

⊚් ¿Por qué dividir en entrenamiento y prueba?

Para evitar sobreajuste (**overfitting**) y medir la capacidad real de generalización del modelo.

¿Qué mide el gráfico plot_dis()?

- Evalúa visualmente si el modelo capta correctamente la distribución de precios.
- Si las curvas de y y yhat se superponen → buen modelo.

¿Continuo con las próximas celdas del notebook?

CONTINUA

EXPLICACIÓN DETALLADA DE LAS CELDAS 11 A 15

🔖 Celda 11: Creación del modelo de Regresión Lineal

python

lm = LinearRegression()

Explicación:

- Se crea una instancia del modelo **Regresión Lineal** de Scikit-learn.
- Este modelo busca ajustar una recta (o hiperplano en dimensiones superiores) que minimice el **error cuadrático medio** entre las predicciones y los valores reales.

Fórmula del modelo:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$$

Donde:

- \hat{y} : valor predicho
- β_0 : intercepto
- β_i : coeficientes o pesos

🧠 Celda 12: Entrenamiento del modelo

python

lm.fit(X_train, y_train)

Explicación:

- El modelo aprende los coeficientes β_i que mejor ajustan los datos de entrenamiento usando **mínimos cuadrados ordinarios (OLS)**.
- Internamente, busca minimizar la siguiente función de pérdida:

$$\mathrm{Loss} = \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

Celda 13: Predicción en datos de test

python

predicted = lm.predict(X_test)

Explicación:

- Se utilizan los valores de X_test para predecir los precios (predicted) usando los coeficientes aprendidos en el entrenamiento.
- Esta es una evaluación "fuera de muestra", que refleja la capacidad del modelo para generalizar.

\blacksquare Celda 14: Evaluación con métrica R^2

print("R^2 on training data ", lm.score(X_train, y_train))
print("R^2 on testing data ", lm.score(X_test, y_test))

Explicación:

- Se calcula el **coeficiente de determinación** \mathbb{R}^2 para los conjuntos de entrenamiento y prueba.
- R^2 mide la proporción de varianza explicada por el modelo:

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$$

✓ Valores típicos:

- $R^2 \approx 1$: excelente ajuste
- ullet $R^2pprox 0$: mal ajuste
- ullet $R^2 < 0$: el modelo es peor que simplemente predecir el promedio

Comparar el \mathbb{R}^2 de entrenamiento vs prueba nos ayuda a detectar **overfitting**.

📊 Celda 15: Visualización de la predicción vs datos reales

python
plot_dis(y_test, predicted)

Explicación:

- Se llama a la función definida previamente para visualizar la comparación entre los precios reales (y test) y los predichos (predicted).
- Dos curvas similares indican que el modelo está aprendiendo correctamente.

CONCLUSIÓN PARCIAL (Celdas 11 a 15)

Estas celdas implementan y evalúan el modelo base de regresión lineal:

- 1. Se crea el modelo con LinearRegression.
- 2. Se entrena con X_train, y_train.
- 3. Se predicen precios con X_test.
- 4. Se evalúa el rendimiento con \mathbb{R}^2 y una visualización de densidad.
- Sirve como **modelo de referencia** (baseline) antes de introducir regularización.

TEORÍA ADICIONAL: Regresión Lineal

Supuestos del modelo lineal clásico:

- 1. **Linealidad** entre variables independientes y dependiente.
- 2. Independencia de los errores.
- 3. Homoscedasticidad: varianza constante de los errores.
- 4. No multicolinealidad.
- 5. Normalidad de los residuos.

Problemas comunes:

- **Sobreajuste (overfitting)**: muchos coeficientes grandes → modelo demasiado flexible.
- **Multicolinealidad**: cuando las variables predictoras están correlacionadas entre sí, puede afectar la estabilidad de los coeficientes.
- → La regularización (Ridge, Lasso, ElasticNet) se introduce justamente para solucionar estos problemas.

¿Deseás que continúe con las próximas celdas del notebook?

CONTINUA

🔽 EXPLICACIÓN DETALLADA DE LAS CELDAS 16 A 20

📊 Celda 16: Visualización de coeficientes del modelo lineal

```
python
plot_coef(X, lm, name="Linear Regression")
```

Explicación:

- Se grafica la magnitud absoluta de los coeficientes del modelo lm (regresión lineal).
- Esto permite ver qué variables tienen mayor influencia sobre la predicción del precio.

📌 Utilidad práctica:

- Coeficientes grandes pueden indicar variables dominantes, pero también pueden revelar multicolinealidad o sobreajuste.
- Es un paso clave antes de aplicar regularización, ya que **Ridge y Lasso penalizan justamente** estos coeficientes grandes.


```
python

rr = Ridge(alpha=0.01)
rr
```

Explicación:

- Se crea una instancia del modelo **Ridge** (regresión lineal con penalización L2).
- El parámetro alpha=0.01 controla la fuerza de la penalización.
 - Si alpha → 0, se parece a una regresión lineal común.
 - Si alpha es grande, se penalizan fuertemente los coeficientes.

Función de costo Ridge:

$$ext{Loss} = \sum_{i=1}^n (y_i - \hat{y}_i)^2 + lpha \sum_{j=1}^p eta_j^2$$

Esto ayuda a controlar:

- Sobreajuste
- Multicolinealidad

Celda 18: Entrenamiento del modelo Ridge

```
python
rr.fit(X_train, y_train)
```

Explicación:

- El modelo ajusta sus coeficientes a los datos de entrenamiento utilizando la penalización L2.
- El objetivo es encontrar un balance entre ajuste y complejidad del modelo.

🔖 Celda 19: Predicción con Ridge

```
python
rr.predict(X_test)
```

Explicación:

- El modelo Ridge genera predicciones para los datos de prueba, igual que antes.
- En la siguiente celda se evalúan los resultados.

$lap{M}$ Celda 20: Evaluación del modelo Ridge con R^2

```
print("R^2 on training data ", rr.score(X_train, y_train))
print("R^2 on testing data ", rr.score(X_test, y_test))
```

Explicación:

- Se calcula el \mathbb{R}^2 para Ridge en datos de entrenamiento y test.
- Comparando con el modelo lineal:
 - Si mejora el \mathbb{R}^2 en test y baja levemente en entrenamiento \rightarrow mejor generalización.
 - Si ambos bajan, el modelo está subajustando (underfitting) → aumentar alpha puede no ser buena idea.

CONCLUSIÓN PARCIAL (Celdas 16 a 20)

Se comienza la comparación entre regresión lineal sin regularización y regresión Ridge:

- Se observa que Ridge reduce posibles problemas de sobreajuste.
- Se entrena un nuevo modelo con penalización L2 para controlar la magnitud de los coeficientes.
- ullet Se mantiene la métrica de evaluación R^2 para comparar con el modelo lineal base.

Este paso permite visualizar cómo los coeficientes cambian y si la capacidad de generalización mejora.

■ TEORÍA COMPLEMENTARIA: RIDGE REGRESSION

¿Qué hace Ridge?

- Penaliza los coeficientes grandes que podrían indicar sobreajuste.
- A diferencia de Lasso, no fuerza coeficientes a cero, por lo que no realiza selección de variables.
- Es útil cuando:
 - Hay muchas variables correlacionadas.
 - Hay más variables que observaciones (caso de alta dimensionalidad).

¿Deseás que continúe con las siguientes celdas donde probablemente se explore Lasso y ElasticNet?

CONTINUA

EXPLICACIÓN DETALLADA DE LAS CELDAS 21 A 25

📊 Celda 21: Comparación visual entre Regresión Lineal y Ridge

```
python

plot_coef(X, lm, name="Linear Regression")
plot_coef(X, rr, name="Ridge Regression")
```

Explicación:

- Se grafican los coeficientes del modelo sin regularización (lm) y del modelo Ridge (rr).
- Esto permite visualizar cómo **Ridge reduce** los coeficientes en comparación con la regresión lineal clásica.

🖈 Conclusión esperada:

- Ridge tiende a reducir la magnitud de los coeficientes, distribuyéndolos más uniformemente.
- Previene que ciertas variables dominen excesivamente el modelo.

📏 Celda 22: Ridge con penalización más fuerte (alpha = 1)

```
rr = Ridge(alpha=1)
rr.fit(X_train, y_train)
plot_coef(X, rr)
```

🔍 Explicación:

- Se reentrena el modelo Ridge con alpha=1, una penalización más fuerte.
- Se grafica nuevamente para observar cómo cambian los coeficientes.

🖈 A medida que alpha aumenta:

- La penalización es más agresiva.
- Los coeficientes se encogen más hacia cero.
- Puede aumentar el sesgo, pero reduce varianza → mejora generalización.

ightharpoonup Celda 23: Análisis del efecto de alpha sobre coeficientes y R^2

```
alphas = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100]
R_2 = []
coefs = []

for alpha in alphas:
    ridge = Ridge(alpha=alpha)
    ridge.fit(X_train, y_train)
    coefs.append(abs(ridge.coef_))
    R_2.append(ridge.score(X_test, y_test))
```

+ Gráfico 1: Regularization Path

```
python

ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale("log")
plt.xlabel("alpha")
plt.ylabel("weights")
plt.title("Ridge coefficients as a function of the regularization (regularization path)")
plt.show()
```

- Muestra cómo los coeficientes disminuyen al aumentar alpha.
- Eje x en escala logarítmica.

\blacksquare Gráfico 2: R^2 vs alpha

```
python

ax = plt.gca()
ax.plot(alphas, R_2)
ax.set_xscale("log")
plt.xlabel("alpha")
plt.ylabel("$R^2$")
plt.title("$R^2$ as a function of the regularization")
plt.show()
```

- Permite encontrar el alpha que maximiza el \mathbb{R}^2 en el set de prueba.
- Visualiza el **trade-off entre sesgo y varianza**.

Celda 24: Error cuadrático medio (MSE) vs alpha

```
python

alphas = [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10]
MEAN_SQE = []

for alpha in alphas:
    ridge = Ridge(alpha=alpha)
    ridge.fit(X_train, y_train)
    MEAN_SQE.append(mean_squared_error(ridge.predict(X_test), y_test))
```

📊 Gráfico:

```
python

ax = plt.gca()
ax.plot(alphas, MEAN_SQE)
ax.set_xscale("log")
plt.xlabel("alpha")
plt.ylabel("MSE")
plt.title("$MSE$ as a function of the regularization")
plt.show()
```

🔍 Interpretación:

- Se observa cómo varía el error cuadrático medio según la penalización.
- El punto mínimo indica el alpha óptimo para minimizar el error de predicción.

🔄 Celda 25: Pipeline con Ridge, estandarización y polinomios

```
Input = [
     ('polynomial', PolynomialFeatures(include_bias=False, degree=2)),
     ('ss', StandardScaler()),
     ('model', Ridge(alpha=1))
]
pipe = Pipeline(Input)
```

Explicación:

- Se construye un **Pipeline** con 3 etapas:
 - 1. PolynomialFeatures: genera variables polinomiales hasta grado 2.
 - 2. StandardScaler: normaliza todas las variables.
 - 3. Ridge: aplica el modelo regularizado.

🖈 Ventajas del Pipeline:

- Encapsula todos los pasos del preprocesamiento y modelado en una sola estructura.
- Evita fugas de datos (data leakage).
- Facilita búsqueda de hiperparámetros con GridSearchCV.

CONCLUSIÓN PARCIAL (Celdas 21 a 25)

Estas celdas profundizan el análisis de Ridge Regression:

- 1. Se visualiza el efecto de distintos valores de alpha sobre:
 - Los coeficientes.
 - El \mathbb{R}^2 de test.
 - El error cuadrático medio (MSE).
- 2. Se construye un **Pipeline profesional** con polinomios + normalización + modelo.

Este análisis permite:

- Elegir el alpha óptimo.
- Controlar el trade-off entre ajuste y generalización.
- Prever cómo la complejidad del modelo afecta su rendimiento.

TEORÍA COMPLEMENTARIA: REGULARIZATION PATH

- Un regularization path muestra cómo cambian los coeficientes al variar alpha.
- Este tipo de gráfico ayuda a:
 - Seleccionar hiperparámetros.
 - Detectar variables que permanecen relevantes incluso con regularización fuerte.

¿Deseás que continúe con las siguientes celdas? Posiblemente ahora venga Lasso o ElasticNet.

CONTINUA

☑ EXPLICACIÓN DETALLADA DE LAS CELDAS 26 A 30

Celda 26: Entrenamiento del Pipeline

```
python
pipe.fit(X_train, y_train)
```

Explicación:

- Se entrena el **Pipeline** definido en la celda anterior con:
 - Features polinomiales de grado 2 (PolynomialFeatures)
 - Normalización (StandardScaler)
 - Modelo Ridge con alpha = 1

* Esta estructura es robusta para manejar modelos no lineales con regularización, asegurando el correcto orden de los pasos.

🤖 Celda 27: Predicción y evaluación del Pipeline

```
python

predicted = pipe.predict(X_test)
pipe.score(X_test, y_test)
```

Explicación:

- Se generan predicciones sobre X test con el pipeline entrenado.
- ullet pipe.score(...) devuelve el R^2 del modelo Ridge regularizado aplicado a features polinomiales.

Aquí ya se están utilizando **regresores no lineales regularizados**, lo que puede mejorar la capacidad predictiva del modelo respecto al lineal clásico.

Celda 28: Definición de la grilla de hiperparámetros

```
python

param_grid = {
    "polynomial__degree": [1, 2, 3, 4],
    "model__alpha": [0.0001, 0.001, 0.01, 1, 10]
}
```

Explicación:

- Se define una grilla de búsqueda para optimizar:
 - El grado del polinomio (1° a 4°)
 - El parámetro de regularización alpha del modelo Ridge

Nótese que:

- "polynomial_degree" se refiere al nombre del paso en el pipeline (polynomial) y su parámetro interno (degree).
- "model__alpha" corresponde a alpha dentro de model (Ridge).

🔬 Celda 29: Búsqueda de hiperparámetros con GridSearchCV

```
search = GridSearchCV(pipe, param_grid, n_jobs=2)
search.fit(X_train, y_train)
search
```

Explicación:

- Se utiliza **validación cruzada** para encontrar la combinación óptima de **degree** y **alpha** que maximice el rendimiento del modelo.
- **GridSearchCV** prueba cada combinación de la grilla usando varias particiones de entrenamiento y validación.
- n_jobs=2: utiliza 2 núcleos de CPU para acelerar el proceso.
- 🖈 Esta es una forma robusta de optimizar modelos sin sesgo por una sola partición de datos.

📊 Celda 30: Visualización de los resultados de la búsqueda

```
python
pd.DataFrame(search.cv_results_).head()
```

Explicación:

- Se convierte el resultado de **GridSearchCV** a un DataFrame para inspeccionar:
 - Cada combinación de hiperparámetros

- El rendimiento promedio en validación (mean_test_score)
- El desvío estándar de cada validación
- Permite tomar decisiones informadas sobre qué configuración usar.

CONCLUSIÓN PARCIAL (Celdas 26 a 30)

En estas celdas se lleva a cabo una optimización **profesional y sistemática** del modelo Ridge con características polinomiales. En resumen:

- Se entrena un pipeline completo.
- Se evalúa su desempeño con \mathbb{R}^2 .
- Se realiza una búsqueda en grilla para encontrar:
 - El mejor grado de polinomio.
 - El mejor alpha para regularización.

Este enfoque permite balancear **sesgo-varianza** de forma automática y encontrar modelos óptimos en contextos no lineales.

TEORÍA COMPLEMENTARIA: PIPELINES Y GRID SEARCH

Pipelines

- Permiten encadenar múltiples pasos de transformación y modelado.
- Ayudan a evitar data leakage y facilitan la validación cruzada conjunta.

GridSearchCV

- Prueba todas las combinaciones posibles de parámetros definidos.
- Usa validación cruzada interna para evaluar cada combinación.
- Escoge el modelo con mejor puntaje promedio.

¿Querés que continúe con las siguientes celdas del notebook? Posiblemente aparezcan ahora modelos Lasso o ElasticNet.

CONTINUA

EXPLICACIÓN DETALLADA DE LAS CELDAS 31 A 35

🏆 Celda 31: Resultados óptimos de Grid Search

```
print("best_score_: ", search.best_score_)
print("best_params_: ", search.best_params_)
```

- ullet search.best_score_: muestra el mejor valor promedio de \mathbb{R}^2 obtenido durante la validación cruzada.
- **search.best_params_**: indica la combinación óptima de parámetros (**degree**, **alpha**) que generó ese resultado.
- 🖈 Esto es fundamental para:
 - Verificar la mejora con respecto al modelo base.
 - Saber qué configuración utilizar en producción.

🔖 Celda 32: Predicción usando el mejor modelo encontrado

```
python

predict = search.predict(X_test)
predict
```

Explicación:

- Se utiliza directamente el objeto **search** para predecir con el modelo entrenado con los mejores hiperparámetros.
- Las predicciones se almacenan en predict.
- * Esto demuestra que GridSearchCV mantiene internamente el mejor modelo (best_estimator_).

Celda 33: Extraer el mejor modelo estimado

```
python

best = search.best_estimator_
best
```

Explicación:

- Se accede al modelo "ganador" del GridSearchCV y se guarda en best.
- Este modelo es un pipeline con:
 - El mejor grado de polinomio
 - La mejor regularización alpha
- 💡 Esto permite usar el modelo sin necesidad de reentrenarlo.

📈 Celda 34: Predicción con best

```
python

predict = best.predict(X_test)
predict
```

Explicación:

 Confirmación de que el modelo extraído (best) produce las mismas predicciones que search.predict(...).

🔪 Celda 35: Evaluación del mejor modelo en test

```
python
best.score(X_test, y_test)
```

Explicación:

- Se calcula el \mathbb{R}^2 final del modelo óptimo sobre los datos de prueba.
- Este valor es la **evaluación definitiva** de qué tan bien generaliza el modelo después de todo el proceso de optimización.

🔽 CONCLUSIÓN PARCIAL (Celdas 31 a 35)

Estas celdas completan el ciclo de entrenamiento y evaluación del modelo Ridge optimizado:

- Se identifican y aplican los mejores hiperparámetros.
- Se evalúa su capacidad predictiva sobre el conjunto de test.
- Se valida que el pipeline funciona de forma coherente y automática.
- 🖈 Este enfoque profesional garantiza:
 - La mejor generalización posible bajo el marco de Ridge.
 - Un modelo final listo para usar en producción o para compararse con otros enfoques como Lasso o ElasticNet.

TEORÍA COMPLEMENTARIA: BEST ESTIMATOR Y VALIDACIÓN

best_estimator_:

- Ahorra tiempo y recursos.
- Garantiza que el modelo final tenga los parámetros óptimos, ya reentrenado internamente con los datos de entrenamiento.

la Evaluación en test:

- Debe realizarse solo una vez, al final del pipeline.
- Es la mejor estimación de rendimiento futuro del modelo.

¿Deseás que continúe con las siguientes celdas? Si hay más contenido, probablemente aparezcan ahora otros modelos de regularización como **Lasso** o **ElasticNet**.

CONTINUA

☑ EXPLICACIÓN DETALLADA DE LAS CELDAS 36 A 40

🔄 Celda 36: Reentrenar el mejor modelo con todos los datos

```
python
best.fit(X, y)
```

Explicación:

- Una vez encontrado el mejor modelo mediante validación cruzada, se entrena nuevamente con todo el conjunto de datos disponibles (x, y).
- Esto mejora el poder predictivo del modelo para futuras predicciones, ya que se aprovechan más datos sin usar test en esta etapa.
- 🖈 Este paso es válido **solo después** de haber hecho la evaluación final en test.

🗐 Celda 37: Selección de columnas para análisis gráfico

Explicación:

- Se selecciona un subconjunto de variables predictoras relevantes del dataset.
- Estas variables se usarán para visualizar la relación entre **una sola feature y el precio**, ajustando modelos univariados.

Celda 38: Visualización de relación entre variables y predicción

```
for column in columns:
    search.fit(X_train[[column]], y_train)
    x = np.linspace(X_test[[column]].min(), X_test[[column]].max(), num=100)
    plt.plot(x, search.predict(x.reshape(-1, 1)), label="prediction")
    plt.plot(X_test[column], y_test, 'ro', label="y")
    plt.xlabel(column)
    plt.ylabel("y")
    plt.legend()
    plt.show()
```

- Se entrena el pipeline search (con polinomios y Ridge) para cada variable individualmente.
- Se grafica:
 - La predicción (línea azul).
 - Los valores reales (puntos rojos).

Este enfoque permite:

- Visualizar la forma funcional (lineal, cuadrática, etc.) entre una sola variable y el target.
- Analizar la capacidad del modelo para capturar esa relación.

Elda 39: Entrenamiento del modelo Lasso (Regularización L1)

```
python

la = Lasso(alpha=0.1)
la.fit(X_train, y_train)
la
```

Explicación:

- Se entrena un modelo Lasso (Least Absolute Shrinkage and Selection Operator) con alpha = 0.1.
- A diferencia de Ridge, Lasso **puede llevar coeficientes exactamente a cero**, realizando **selección automática de variables**.

Función de pérdida:

$$ext{Loss} = \sum (y_i - \hat{y}_i)^2 + lpha \sum |eta_j|$$

- 🖈 Lasso es muy útil cuando:
 - Hay muchas variables.
 - Se desea identificar cuáles son realmente importantes.

Celda 40: Predicción con Lasso


```
python

predicted = la.predict(X_test)
predicted
```

- Se generan predicciones con el modelo Lasso entrenado anteriormente.
- Estas predicciones luego pueden compararse visual o cuantitativamente con las del modelo Ridge o Lineal.

CONCLUSIÓN PARCIAL (Celdas 36 a 40)

En esta sección se combinan técnicas de visualización e introducción a nuevos modelos:

- 1. Se reentrena el mejor modelo para aprovechar todos los datos.
- 2. Se visualiza la relación entre variables individuales y el precio.
- 3. Se introduce el modelo **Lasso** como una alternativa regularizada:
 - Penaliza con L1.
 - Permite sparse solutions (coeficientes exactamente cero).
 - Es ideal para selección de variables.

TEORÍA COMPLEMENTARIA: LASSO REGRESSION

③ Características principales:

- Reduce la complejidad del modelo.
- Puede eliminar por completo variables irrelevantes.
- Más útil que Ridge cuando el número de variables es alto y se busca interpretabilidad.

Diferencias clave con Ridge:

Aspecto	Ridge (L2)	Lasso (L1)
Penalización	$\sum eta^2$	(\sum
Coefs = 0	No	Sí
Selección vars	No	Sí
Multicolineal.	Bueno	Menos eficaz

¿Deseás que continúe con las últimas celdas? Puedo avisarte también cuando no queden más bloques por explicar.

EXPLICACIÓN DETALLADA DE LAS CELDAS 41 A 45

Celda 41: Evaluación de regresión lineal nuevamente

```
print("R^2 on training data ", lm.score(X_train, y_train))
print("R^2 on testing data ", lm.score(X_test, y_test))
```

Explicación:

- Se vuelve a imprimir el rendimiento del modelo de regresión lineal (lm) sobre los conjuntos de entrenamiento y prueba.
- Probablemente para compararlo directamente con los modelos Ridge y Lasso entrenados recientemente.
- 🖈 Comparar los tres modelos ayuda a elegir el mejor balance entre complejidad y generalización.

🔣 Celda 42: Comparación visual entre Ridge y Lasso

```
python

plot_coef(X, rr, name="Ridge Regression")
plot_coef(X, la, name="Lasso Regression")
```

Explicación:

- Se grafican los coeficientes de ambos modelos regularizados:
 - rr: Ridge
 - la: Lasso

📌 Expectativas:

- **Ridge** reduce todos los coeficientes, pero no los anula.
- **Lasso** puede llevar coeficientes a cero → selección automática de variables.

🔬 Celda 43: Regularization Path de Lasso

```
coefs.append(abs(la.coef_))
R_2.append(la.score(X_test, y_test))
```

+ Gráfico 1: Coeficientes vs Alpha

```
python

ax = plt.gca()
ax.plot(alphas, coefs)
ax.set_xscale("log")
plt.xlabel("alpha")
plt.ylabel("weights")
plt.title("Ridge coefficients as a function of the regularization (regularization path)")
plt.show()
```

🛕 El título debería decir "Lasso", no "Ridge", pero el análisis es válido.

$oldsymbol{\Pi}$ Gráfico 2: R^2 vs Alpha

```
python

ax = plt.gca()
ax.plot(alphas, R_2)
ax.set_xscale("log")
plt.xlabel("alpha")
plt.ylabel("$R^2$")
plt.title("$R^2$ as a function of the regularization")
plt.show()
```

Interpretación:

- A medida que alpha aumenta:
 - Los coeficientes se reducen y algunos se anulan (coef = 0).
 - ullet El \mathbb{R}^2 puede mejorar hasta cierto punto, luego disminuir por underfitting.

Celda 44: Pipeline con Lasso y variables polinomiales

```
Input = [
    ('polynomial', PolynomialFeatures(include_bias=False, degree=2)),
    ('ss', StandardScaler()),
    ('model', Lasso(alpha=1, tol=0.2))
]
pipe = Pipeline(Input)
```

Explicación:

- Se define un pipeline similar al usado con Ridge, pero ahora con **Lasso**.
- tol=0.2: tolerancia en la optimización; un valor más alto puede acelerar la convergencia pero disminuir precisión.
- ★ Este pipeline permite trabajar con relaciones no lineales y realizar selección automática de variables.

Celda 45: Entrenamiento y predicción con Pipeline Lasso

python

pipe.fit(X_train, y_train)
pipe.predict(X_test)

Explicación:

- Se entrena el pipeline sobre los datos de entrenamiento.
- Se generan predicciones con el modelo regularizado usando Lasso.
- resultados obtenidos con Ridge y con el modelo base lineal.

CONCLUSIÓN PARCIAL (Celdas 41 a 45)

Estas celdas completan la introducción y análisis del modelo Lasso Regression:

- Se comparan visualmente los coeficientes generados por Ridge y Lasso.
- Se explora cómo el parámetro alpha afecta los coeficientes y el rendimiento del modelo.
- Se construye un pipeline con Lasso y se entrena sobre features polinomiales.
- Lasso es especialmente útil en problemas de alta dimensionalidad o cuando se busca interpretar qué variables son verdaderamente relevantes.

TEORÍA COMPLEMENTARIA: CUANDO USAR LASSO

- Cuando el dataset tiene muchas variables y se quiere reducir dimensionalidad automáticamente.
- Ideal si hay **sospecha de irrelevancia** en muchas features.
- Mejora la **interpretabilidad** del modelo.

¿Querés que continúe con las siguientes celdas y te avise cuando se haya terminado todo el código del notebook?

CONTINUA

EXPLICACIÓN DETALLADA DE LAS CELDAS 46 A 50

📊 Celda 46: Evaluación del pipeline con Lasso

```
python
print("R^2 on training data ", pipe.score(X_train, y_train))
```

```
print("R^2 on testing data ", pipe.score(X_test, y_test))
```

- Evalúa el rendimiento del pipeline que incluye:
 - · Expansión polinomial
 - Normalización
 - Modelo Lasso con alpha=1, tol=0.2
- El score corresponde a \mathbb{R}^2 sobre entrenamiento y prueba.
- * Esta comparación ayuda a detectar si el modelo:
 - Tiene buen ajuste (R² alto)
 - Sufre de overfitting (alta varianza entre train/test)
 - O de underfitting (ambos R² bajos)

🔪 Celda 47: Definición de grilla de hiperparámetros para Lasso

```
python

param_grid = {
    "polynomial__degree": [1, 2, 3, 4, 5],
    "model__alpha": [0.0001, 0.001, 0.1, 1, 10]
}
```

Explicación:

- Se establece una grilla para buscar:
 - Grado del polinomio: desde lineal hasta quíntico.
 - Parámetro alpha de regularización para Lasso.
- Al combinar ambos, se puede:
 - Capturar relaciones más complejas entre variables.
 - Controlar la complejidad y la cantidad de features activas.

Celda 48: Optimización con GridSearchCV

```
python

search = GridSearchCV(pipe, param_grid, n_jobs=1)
search.fit(X_train, y_train)
```

Explicación:

- Se aplica búsqueda en grilla con validación cruzada sobre el pipeline con Lasso.
- n_jobs=1: se usa un solo núcleo de CPU.

- ullet Internamente, prueba todas las combinaciones de la grilla y calcula el R^2 medio en validación.
- 🖈 Se busca encontrar el modelo con mejor rendimiento general sin overfitting.

Celda 49: Extraer el mejor modelo ajustado

```
python

best = search.best_estimator_
best
```

Explicación:

- Se obtiene el mejor pipeline de la búsqueda.
- Este modelo ya está entrenado y listo para evaluar o usar en producción.

Celda 50: Evaluación final en test del mejor modelo

```
python
best.score(X_test, y_test)
```

Explicación:

- ullet Se calcula el \mathbb{R}^2 del mejor modelo sobre los datos de prueba.
- Esta es la métrica final que permite comparar los modelos Ridge vs Lasso bajo las mejores condiciones encontradas.

CONCLUSIÓN PARCIAL (Celdas 46 a 50)

En estas celdas se completa el proceso de ajuste de hiperparámetros para Lasso:

- 1. Se evalúa inicialmente un modelo con alpha=1, degree=2.
- 2. Se explora sistemáticamente diferentes combinaciones de alpha y degree.
- 3. Se entrena, evalúa y selecciona automáticamente el mejor modelo.
- 4. Se obtiene el rendimiento final en datos de prueba.
- 🖈 Este proceso es **análogo al usado con Ridge**, permitiendo una comparación justa entre métodos.

TEORÍA COMPLEMENTARIA: LASSO CON POLINOMIOS

- El uso de PolynomialFeatures puede generar muchas columnas adicionales.
- Lasso es útil aquí porque elimina automáticamente aquellas que no aportan poder predictivo.
- Combinado con StandardScaler, se evita que features con diferentes escalas dominen el modelo.

🔔 AVISO IMPORTANTE: YA NO QUEDAN MÁS CELDAS DE CÓDIGO EN EL NOTEBOOK.

A continuación, te daré una **conclusión global** de todo el notebook, junto con teoría adicional de valor. ¿Procedo?

CONTINUA

🔽 CONCLUSIÓN GLOBAL DEL NOTEBOOK: Regularización - IBM Machine Learning

Este notebook constituye una guía práctica y sólida para aplicar técnicas de regresión regularizada (Ridge y Lasso) a un problema real: **predicción del precio de autos**. La estructura del análisis abarca todas las etapas necesarias en un flujo profesional de Machine Learning:

👀 Resumen del Proceso Completo

1. Carga y exploración de datos:

- Se utiliza un dataset de autos codificado y limpio.
- Se separan features (X) y target (y).

2. Modelo base (LinearRegression):

- Se entrena un modelo sin regularización.
- Se evalúa usando R^2 y visualizaciones.

3. Aplicación de Ridge Regression (L2):

- Se ajusta con distintos valores de alpha.
- Se visualiza el efecto sobre los coeficientes y sobre \mathbb{R}^2 .
- Se crea un pipeline completo con Ridge + features polinomiales.
- Se optimizan hiperparámetros con GridSearchCV.

4. Aplicación de Lasso Regression (L1):

- Se compara visualmente con Ridge.
- Se analiza cómo Lasso elimina coeficientes innecesarios.
- Se usa también con un pipeline y búsqueda de hiperparámetros.

5. Evaluación final:

- Se compara el rendimiento de todos los modelos entrenados.
- Se elige el modelo final según su \mathbb{R}^2 sobre el conjunto de test.

📊 PRINCIPALES MÉTRICAS USADAS

- R^2 : coeficiente de determinación. Mide proporción de varianza explicada.
- MSE (Error Cuadrático Medio): usado para comparar impacto del alpha en Ridge.

• Coeficientes: observados para estudiar regularización y relevancia de features.

HERRAMIENTAS CLAVE UTILIZADAS

- scikit-learn: modelado, pipelines, preprocesamiento, validación.
- PolynomialFeatures, StandardScaler: ingeniería de features y normalización.
- Pipeline, GridSearchCV: construcción y optimización modular del flujo.
- Seaborn, Matplotlib: visualización de coeficientes, predicciones y caminos de regularización.

TEORÍA Y CONCEPTOS CLAVE RESUMIDOS

1. Regresión Lineal

- Ajusta una línea o plano a los datos.
- Puede sobreajustarse si hay muchas variables irrelevantes o colineales.

2. Regularización

Controla la complejidad del modelo para mejorar la generalización:

Método	Penalización	Características	
Ridge	$\sum eta^2$	Reduce todos los coeficientes (shrinkage)	
Lasso	(\sum	\beta	
ElasticNet	Combina ambas	Ideal para alta dimensionalidad + colinealidad	

3. 🤪 Pipeline

- Organiza pasos de procesamiento y modelado.
- Evita fugas de datos y facilita la validación.

4. 🔍 Validación cruzada con GridSearchCV

- Evalúa múltiples combinaciones de hiperparámetros.
- Selecciona el mejor modelo en base a rendimiento promedio.

VENTAJAS DE ESTE ENFOQUE

- Modular, escalable, reutilizable.
- Visualmente explicativo (para stakeholders no técnicos).
- Profesional y alineado con estándares de la industria de ciencia de datos.

💤 ¿Qué podrías hacer a continuación?

- 1. Agregar ElasticNet para evaluar una combinación de L1 y L2.
- 2. Incluir más métricas como MAE o RMSE.
- 3. **Probar otros modelos**: regresores de árbol, SVM, redes neuronales.
- 4. Interpretación con SHAP o Permutation Importance.
- 5. Evaluar estabilidad de coeficientes con bootstrap.

¿Te gustaría que te ayude a extender este proyecto con ElasticNet o con visualizaciones adicionales comparativas? También puedo ayudarte a convertirlo en un **proyecto de portafolio profesional**.