Correct

bias vectors $b^{[l]}$

Un-selected is correct	
number of iteration Correct	s
lacksquare number of layers L	in the neural network
weight matrices $oldsymbol{W}^{oldsymbol{\square}}$ Un-selected is correct	nj
1/1 points 3.	
Which of the following state The deeper layers o input than the earlie Correct	f a neural network are typically computing more complex features of the
The earlier layers of input than the deep	a neural network are typically computing more complex features of the er layers.
1/1 points 4.	
Vectorization allows you to	compute forward propagation in an L -layer neural network without an er explicit iterative loop) over the layers l=1, 2,,L. True/False?
C False	
Correct Forward propagation pro	pagates the input through the layers, although for shallow networks we

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

Correct

1/1 points

6.

How many layers does this network have?

now many layers does this network have:					
0	The number of layers L is 4. The number of hidden layers is 3.				
Correct					
Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.					
\bigcirc	The number of layers L is 3. The number of hidden layers is 3.				
	The number of layers L is 4. The number of hidden layers is 4.				
	The number of layers L is 5. The number of hidden layers is 4.				

1/1 points

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

1/1 points

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

0	rue		
Correc			
	alse		

1/1 points

9

Consider the following 2 hidden layer neural network:

Which of the following statements are True? (Check all that apply).

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $igwedge W^{[1]}$ will have shape (3, 4)

$b^{[1]}$ will have shape (3, 1) Un-selected is correct $W^{[2]}$ will have shape (3, 4) Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[2]}$ will have shape (1, 1) Un-selected is correct $W^{[2]}$ will have shape (3, 1) **Un-selected is correct** $b^{[2]}$ will have shape (3, 1) Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[3]}$ will have shape (3, 1) **Un-selected is correct** $b^{[3]}$ will have shape (1, 1) Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$. $W^{[3]}$ will have shape (1, 3) Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$. $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

Un-selected is correct