Lecture 6: Interval estimation Statistical Methods for Data Science

Yinan Yu

Department of Computer Science and Engineering

November 17 and 21, 2022

Today

- Central limit theorem
 - Terminology
 - Standardization
 - Central limit theorem
- 2 Interval estimation
- Summary

Learning outcome

- Be able to explain the following terminology:
 - Sample statistic, sampling distribution, sample mean, sample variance, standardization, z-table, t-table
 - Point estimation, interval estimation
 - Confidence interval, credible interval
- Be able to explain the central limit theorem (CLT)
- Be able to construct the following interval estimates:
 - Confidence interval for
 - ullet sample mean of i.i.d. sample with unknown σ
 - unknown sampling distribution using bootstrap
 - Credible interval for a given posterior function

Today

- Central limit theorem
 - Terminology
 - Standardization
 - Central limit theorem
- 2 Interval estimation
- Summary

Terminology Standardization Central limit theoren

• (Statistical) population: all items of interest

• (Statistical) population: all items of interest (e.g., all ducks in the world)

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population (e.g., the 20 ducks you have weighed)

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population (e.g., the 20 ducks you have weighed)
- i.i.d. sample: $X_1, X_2 \cdots, X_N$ are i.i.d. random variables

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population (e.g., the 20 ducks you have weighed)
- i.i.d. sample: $X_1, X_2 \cdots, X_N$ are i.i.d. random variables
- Sample statistic: a statistic computed from a sample

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population (e.g., the 20 ducks you have weighed)
- i.i.d. sample: $X_1, X_2 \cdots, X_N$ are i.i.d. random variables
- Sample statistic: a statistic computed from a sample For example,
 - Sample mean:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

• Sample variance:

$$S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

- (Statistical) population: all items of interest (e.g., all ducks in the world)
- Sample: a random data set $\{x_1, x_2, \cdots, x_N\}$; the corresponding random variables are denoted as X_1, X_2, \cdots, X_N ; a subset of the population (e.g., the 20 ducks you have weighed)
- i.i.d. sample: $X_1, X_2 \cdots, X_N$ are i.i.d. random variables
- Sample statistic: a statistic computed from a sample For example,
 - Sample mean:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

• Sample variance:

$$S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}$$

Note: capital letters and small letters are used to denote random variables and the values, respectively.

 Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)

 Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)

 Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)

 \bullet Asymptotic: in this context, asymptotic means ${\it N} \rightarrow \infty$

 Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)

ullet Asymptotic: in this context, asymptotic means ${\cal N} o \infty$

What's the difference between the mean of a Gaussian distribution is random (Bayesianist) vs the sample mean is random?

 Sampling distribution: the probability distribution of a sample statistic that is computed from a random sample (of size N)

ullet Asymptotic: in this context, asymptotic means ${\cal N} o \infty$

What's the difference between the mean of a Gaussian distribution is random (Bayesianist) vs the sample mean is random?

• Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian
 - $X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ be a Gaussian random variable, then the following random variables are also Gaussian (location scale family)
 - Scaling (scale): $tX \sim \mathcal{N}(t\mu_X, t^2\sigma_X^2)$, $t \neq 0$ is a constant
 - Translation (location): $X + c \sim \mathcal{N}(\mu_X + c, \sigma_X^2)$, c is a constant
 - $tX + c \sim \mathcal{N}(t\mu_X + c, t^2\sigma_X^2)$
- Let $X \sim \mathcal{N}(\mu_X, \sigma_X^2)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2)$ be two independent Gaussian random variables, then the following random variables are also Gaussian
 - $X + Y \sim \mathcal{N}(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$
 - $X Y \sim \mathcal{N}(\mu_X \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Terminology
Standardization
Central limit theorem

Standardization

Why standardization? We want to translate and scale data into a standard shape so that
we can use standard tools to compare and analyze it

- Why standardization? We want to translate and scale data into a standard shape so that
 we can use standard tools to compare and analyze it
- Let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

- Why standardization? We want to translate and scale data into a standard shape so that
 we can use standard tools to compare and analyze it
- Let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

- Why standardization? We want to translate and scale data into a standard shape so that
 we can use standard tools to compare and analyze it
- Let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

Question: what is the mean and standard deviation of Y?

- Why standardization? We want to translate and scale data into a standard shape so that
 we can use standard tools to compare and analyze it
- Let X be a random variable that follows any probability distribution with mean μ and standard deviation σ . The standardization of X is

$$Y = \frac{X - \mu}{\sigma}$$

Question: what is the mean and standard deviation of Y? Random variable Y has mean 0 and standard deviation 1

• Let X be a random variable following a Gaussian distribution with mean μ and standard deviation σ , i.e. $X \sim \mathcal{N}(\mu, \sigma^2)$; the standardization of X is

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1) \tag{1}$$

The distribution $\mathcal{N}(0,1)$ is called a standard Gaussian (normal) distribution

Standard Gaussian distribution

• Remember how much we love Gaussian distributions? We love the standard Gaussian distribution even more! We love it so much that we gave its CDF a special name: $\Phi(z)$

Standard Gaussian distribution

- Remember how much we love Gaussian distributions? We love the standard Gaussian distribution even more! We love it so much that we gave its CDF a special name: $\Phi(z)$
- There is a table describing the quantiles of the standard Gaussian (the z-table)

```
z + 0.00 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
```


Standard Gaussian distribution

- Remember how much we love Gaussian distributions? We love the standard Gaussian distribution even more! We love it so much that we gave its CDF a special name: $\Phi(z)$
- There is a table describing the quantiles of the standard Gaussian (the z-table)

```
z + 0.00 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
 1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
 1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
 1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
```

- Each row represents the integer and the first decimal of z
- Each column represents the second decimal of z
- · Each cell is the

$$P(Z \le \text{row} + \text{column}) = \Phi(\text{row} + \text{column})$$

Standard Gaussian distribution

- Remember how much we love Gaussian distributions? We love the standard Gaussian distribution even more! We love it so much that we gave its CDF a special name: $\Phi(z)$
- There is a table describing the quantiles of the standard Gaussian (the z-table)

```
z + 0.00 + 0.01 + 0.02 + 0.03 + 0.04 + 0.05 + 0.06 + 0.07 + 0.08 + 0.09
0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.51994 0.52392 0.52790 0.53188 0.53586
0.1 0.53983 0.54380 0.54776 0.55172 0.55567 0.55962 0.56360 0.56749 0.57142 0.57535
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.59871 0.60257 0.60642 0.61026 0.61409
0.3 0.61791 0.62172 0.62552 0.62930 0.63307 0.63683 0.64058 0.64431 0.64803 0.65173
0.4 0.65542 0.65910 0.66276 0.66640 0.67003 0.67364 0.67724 0.68082 0.68439 0.68793
0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.70884 0.71226 0.71566 0.71904 0.72240
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.74215 0.74537 0.74857 0.75175 0.75490
0.7 0.75804 0.76115 0.76424 0.76730 0.77035 0.77337 0.77637 0.77935 0.78230 0.78524
0.8 0.78814 0.79103 0.79389 0.79673 0.79955 0.80234 0.80511 0.80785 0.81057 0.81327
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.82894 0.83147 0.83398 0.83646 0.83891
1.0 0.84134 0.84375 0.84614 0.84849 0.85083 0.85314 0.85543 0.85769 0.85993 0.86214
1.1 0.86433 0.86650 0.86864 0.87076 0.87286 0.87493 0.87698 0.87900 0.88100 0.88298
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 0.89435 0.89617 0.89796 0.89973 0.90147
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 0.91149 0.91308 0.91466 0.91621 0.91774
 1.4 0.91924 0.92073 0.92220 0.92364 0.92507 0.92647 0.92785 0.92922 0.93056 0.93189
1.5 0.93319 0.93448 0.93574 0.93699 0.93822 0.93943 0.94062 0.94179 0.94295 0.94408
 1.6 0.94520 0.94630 0.94738 0.94845 0.94950 0.95053 0.95154 0.95254 0.95352 0.95449
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 0.95994 0.96080 0.96164 0.96246 0.96327
 1.8 0.96407 0.96485 0.96562 0.96638 0.96712 0.96784 0.96856 0.96926 0.96995 0.97062
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 0.97441 0.97500 0.97558 0.97615 0.97670
```

- Each row represents the integer and the first decimal of z
- Each column represents the second decimal of z
- · Each cell is the

```
P(Z \le \text{row} + \text{column}) = \Phi(\text{row} + \text{column})
= stats.norm.cdf(x=row + column, loc=0, scale=1)
```


• There are different representations of the z-table; the difference is what is inside each cell, e.g. $\Phi(\text{row} + \text{column})$, $2(1 - \Phi(\text{row} + \text{column}))$, $1 - \Phi(\text{row} + \text{column})$ or $\frac{1}{2}(1 - \Phi(\text{row} + \text{column}))$; but the principle is the same; for now we use the version with $\Phi(\text{row} + \text{column})$

• Due to symmetry, there are only positive values for z in the z-table

Exercise:

Try to find the corresponding pair (p, q) = (0.975, 1.96) in the z-table (60 secs).

Answer:

Answer:

Note: the table itself is not important (we use a computer these days); the point is to reflect on the meaning of z values (quantiles) and the related probabilities (CDFs)

Standardization
Central limit theorem

Central limit theorem

So far, we have been looking at distributions (centrality and spread);

So far, we have been looking at distributions (centrality and spread); the central limit theorem is about the mean (centrality only);

So far, we have been looking at distributions (centrality and spread); the central limit theorem is about the mean (centrality only); do we care about the mean that much?

Yes, we do!

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs)

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution with parameter (2 second)

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution with parameter (2 second) p (cure rate)

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution with parameter (2 second) p (cure rate) and the maximum likelihood estimation of p is the (4 secs)

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution with parameter (2 second) p (cure rate) and the maximum likelihood estimation of p is the (4 secs) sample mean

- Yes, we do!
- Example: we want to test the effectiveness of a drug; a patient can be either cured by this drug or not cured, i.e., we can model the data using a (2 secs) Bernoulli distribution with parameter (2 second) p (cure rate) and the maximum likelihood estimation of p is the (4 secs) sample mean
- In general, we are often interested in how things work "on average"

You have 1000 ducks

- You have 1000 ducks
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

- You have 1000 ducks
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

• Then you take another 30 ducks to measure the sample mean of their weights y_i :

$$\hat{\mu}_2 = \frac{1}{30} \sum_{i=1}^{30} y_i$$

- You have 1000 ducks
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

• Then you take another 30 ducks to measure the sample mean of their weights y_i :

$$\hat{\mu}_2 = \frac{1}{30} \sum_{i=1}^{30} y_i$$

ullet You do this experiment 100 times and plot the histogram of these 100 sample means $\hat{\mu}_j$ for $j=1,\cdots,100$

- You have 1000 ducks
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

• Then you take another 30 ducks to measure the sample mean of their weights y_i :

$$\hat{\mu}_2 = \frac{1}{30} \sum_{i=1}^{30} y_i$$

- You do this experiment 100 times and plot the histogram of these 100 sample means $\hat{\mu}_i$ for $j=1,\cdots,100$
- ullet Then you realize these sample means $\hat{\mu}_j$ seem to follow a Gaussian distribution

- You have 1000 ducks
- Now, you take 30 of them and measure the sample mean of their weights x_i :

$$\hat{\mu}_1 = \frac{1}{30} \sum_{i=1}^{30} x_i$$

• Then you take another 30 ducks to measure the sample mean of their weights y_i :

$$\hat{\mu}_2 = \frac{1}{30} \sum_{i=1}^{30} y_i$$

- You do this experiment 100 times and plot the histogram of these 100 sample means $\hat{\mu}_i$ for $i=1,\cdots,100$
- ullet Then you realize these sample means $\hat{\mu}_j$ seem to follow a Gaussian distribution

• The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$

- ullet The colors of your 1000 ducks can be either red $t_i=0$ or blue $t_i=1$
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0, 1\}$ is discrete

- The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0, 1\}$ is discrete

• You take another 30 ducks and measure the sample mean of their color t_i :

$$\hat{n}_2 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (0 + 0 + 0 + 1 + \dots + 1 + 0)$$

- The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0,1\}$ is discrete

• You take another 30 ducks and measure the sample mean of their color t_i :

$$\hat{n}_2 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (0 + 0 + 0 + 1 + \dots + 1 + 0)$$

ullet You do this experiment 100 times and plot the histogram of these 100 sample means \hat{n}_j

- The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0,1\}$ is discrete

• You take another 30 ducks and measure the sample mean of their color t_i :

$$\hat{n}_2 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (0 + 0 + 0 + 1 + \dots + 1 + 0)$$

- \bullet You do this experiment 100 times and plot the histogram of these 100 sample means \hat{n}_i
- Then you realize these sample means \hat{n}_j also seem to follow a Gaussian distribution

- The colors of your 1000 ducks can be either red $t_i = 0$ or blue $t_i = 1$
- Now, you take 30 of them and measure the sample mean of their color t_i :

$$\hat{n}_1 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (1 + 1 + 0 + 1 + \dots + 1)$$

Note: here $t_i \in \{0,1\}$ is discrete

• You take another 30 ducks and measure the sample mean of their color t_i :

$$\hat{n}_2 = \frac{1}{30} \sum_{i=1}^{30} t_i = \frac{1}{30} (0 + 0 + 0 + 1 + \dots + 1 + 0)$$

- \bullet You do this experiment 100 times and plot the histogram of these 100 sample means \hat{n}_i
- Then you realize these sample means \hat{n}_j also seem to follow a Gaussian distribution |||???||

• In fact, this is true for i.i.d. samples drawn from ANY probability distribution

- The larger the sample size N (in the previous example N=30), the "more Gaussian" it becomes
- A rule of thumb: N > 30
- If the data distribution is Gaussian-like (bell-shaped, symmetric), only a small sample size is needed for the sample mean to be Gaussian

Central limit theorem

• One of the most important results in probability theory and statistics

Central limit theorem

- One of the most important results in probability theory and statistics
- Given an i.i.d. sample X_1, X_2, \dots, X_N from ANY probability distribution with finite mean μ and variance σ^2 (most distributions satisfy this!), when the sample size N is sufficiently large, the sample mean approximately follows a Gaussian distribution with mean μ and variance $\frac{\sigma^2}{N}$, i.e.,

$$\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$
 (2)

where $\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$ is the sample mean

Central limit theorem (cont.)

How to interpret this?

$$ar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

Central limit theorem (cont.)

How to interpret this?

$$ar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

ullet The sample mean $ar{X}$ is around the true mean value μ

Central limit theorem (cont.)

How to interpret this?

$$ar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$$

- ullet The sample mean $ar{X}$ is around the true mean value μ
- The "deviation" of \bar{X} from μ is $\frac{\sigma^2}{N}$; the larger N, the smaller the deviation

Estimation error $\bar{X} - \mu$

We are interested in the mean value μ

Estimation error $\bar{X} - \mu$

We are interested in the mean value μ We use the sample mean \bar{X} to estimate the mean value μ

Estimation error $\bar{X} - \mu$

We are interested in the mean value μ We use the sample mean \bar{X} to estimate the mean value μ We are interested in how good this estimation is

Random variable: X_1, \dots, X_N

Random variable: X_1, \dots, X_N

Assumption: i.i.d. with known standard deviation σ and unknown mean μ

ullet In many use cases, we want to estimate μ using the sample mean $\hat{\mu}=ar{X}$ from one sample and we are interested in the statistics of the estimation error

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$:

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error;

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)?

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{W})$;

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{N})$; can we plot the PDF of \mathcal{E} ? (5 secs)

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{M})$; can we plot the PDF of \mathcal{E} ? (5 secs) Yes! σ and N are both known!

Random variable: X_1, \dots, X_N

Assumption: i.i.d. with known standard deviation σ and unknown mean μ

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{M})$; can we plot the PDF of \mathcal{E} ? (5 secs) Yes! σ and N are both known!

• Interpretation of the plot: (5 secs)

Random variable: X_1, \dots, X_N

Assumption: i.i.d. with known standard deviation σ and unknown mean μ

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{M})$; can we plot the PDF of \mathcal{E} ? (5 secs) Yes! σ and N are both known!

• Interpretation of the plot: (5 secs) 95% of the time, the error $\bar{X} - \mu$ is within q0 = -0.64 and q1 = 0.64

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{M})$; can we plot the PDF of \mathcal{E} ? (5 secs) Yes! σ and N are both known!

- Interpretation of the plot: (5 secs) 95% of the time, the error $\bar{X} \mu$ is within q0 = -0.64 and q1 = 0.64
- Now it's pretty cool because not only can we estimate the mean (using the sample mean), but we can also give a margin of error!

Random variable: X_1, \dots, X_N

- In many use cases, we want to estimate μ using the sample mean $\hat{\mu} = \bar{X}$ from one sample and we are interested in the statistics of the estimation error
- From CLT (cf. Eq. (22)), we know that for a large N, the sample mean approximately follows a Gaussian distribution $\bar{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{N})$: \bar{X} is around the true mean μ
- Let $\mathcal{E} = \bar{X} \mu$ be the estimation error; what distribution does \mathcal{E} follow (awesome properties of Gaussian 30 secs)? $\mathcal{E} \sim \mathcal{N}(0, \frac{\sigma^2}{N})$; can we plot the PDF of \mathcal{E} ? (5 secs) Yes! σ and N are both known!

- Interpretation of the plot: (5 secs) 95% of the time, the error $\bar{X} \mu$ is within q0 = -0.64 and q1 = 0.64
- Now it's pretty cool because not only can we estimate the mean (using the sample mean), but we can also give a margin of error!
- This 95% is called the confidence level; for a given confidence level, we can find a corresponding interval (q0, q1)

Calculate the margin of error

• For a given confidence level, denoted as $1-\alpha$, how do we find this interval for the error in Python?

Calculate the margin of error

• For a given confidence level, denoted as $1-\alpha$, how do we find this interval for the error in Python? We can use the function **ppf** from **scipy.stats**

• Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}}=\frac{\bar X-\mu}{\sigma/\sqrt{N}}\sim \mathcal N(0,1)$

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}} = \frac{\bar X \mu}{\sigma/\sqrt{N}} \sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}} = \frac{\bar X \mu}{\sigma/\sqrt{N}} \sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}} = \frac{\bar X \mu}{\sigma/\sqrt{N}} \sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}} = \frac{\bar X \mu}{\sigma/\sqrt{N}} \sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$
- Now we have an expression for the error term in terms of Z: $\mathcal{E} = \bar{X} \mu = \mathbf{Z} \frac{\sigma}{\sqrt{N}}$

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}} = \frac{\bar X \mu}{\sigma/\sqrt{N}} \sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$
- Now we have an expression for the error term in terms of Z: $\mathcal{E} = \bar{X} \mu = Z \frac{\sigma}{\sqrt{N}}$
- The only random variable here is $Z \sim \mathcal{N}(0,1)$

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}}=\frac{\bar X-\mu}{\sigma/\sqrt{N}}\sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$
- Now we have an expression for the error term in terms of Z: $\mathcal{E} = \bar{X} \mu = Z \frac{\sigma}{\sqrt{N}}$
- ullet The only random variable here is $Z\sim \mathcal{N}(0,1)$

ullet We can use a two-tailed z-table (cf. page 13) to find the values for z0 and z1

- Standardize (cf. page 11) $\mathcal E$ by $\frac{\mathcal E}{\sigma/\sqrt{N}}=\frac{\bar X-\mu}{\sigma/\sqrt{N}}\sim \mathcal N(0,1)$
- We just learned that there is a special name for the standard Gaussian distributed random variable $Z \sim \mathcal{N}(0,1)$ let $Z = \frac{\bar{X} \mu}{\sigma/\sqrt{N}}$
- Now we have an expression for the error term in terms of $Z\colon \mathcal{E}=\bar{X}-\mu=\mathbf{Z}\frac{\sigma}{\sqrt{N}}$
- The only random variable here is $Z \sim \mathcal{N}(0,1)$

- \bullet We can use a two-tailed z-table (cf. page 13) to find the values for z0 and z1
- \bullet In order to find an interval for ${\cal E},$ we just need to look at

$$(z0\frac{\sigma}{\sqrt{N}},z1\frac{\sigma}{\sqrt{N}})$$

ullet For example, with 1-lpha=95% confidence level, the error is within

$$\left(-1.96\frac{\sigma}{\sqrt{N}}, \ 1.96\frac{\sigma}{\sqrt{N}}\right)$$

 \bullet For example, with $1-\alpha=95\%$ confidence level, the error is within

$$\left(-1.96\frac{\sigma}{\sqrt{N}}, \ 1.96\frac{\sigma}{\sqrt{N}}\right)$$

- Generally speaking, the value z1 (denoted by $z_{\alpha/2}$) is the quantile at $1-\alpha/2$; the value of $z_{\alpha/2}$ is called the (right) critical value; $\frac{\sigma}{\sqrt{N}}$ is called the standard error; in this example, we have $z_{\alpha/2}=z1=-z0=1.96$
- ullet Why two-tailed z-table: there are two tails $z \leq -z_{\alpha/2}$ and $z \geq z_{\alpha/2}$


```
• In Python
    std = 1.8
    N = 30
    alpha = 0.05
    confidence_level = 1 - alpha # 95% confidence level
    z0 = stats.norm.ppf(alpha/2, 0, 1)
    z1 = stats.norm.ppf(confidence_level+alpha/2, 0, 1)
    print(z0*std/math.sqrt(N), z1*std/math.sqrt(N))
    >> (-0.6441098917381766, 0.6441098917381766)
```


• For a given sample with an estimate \bar{x} (note: here the small letter \bar{x} denotes the value of the estimate itself instead of a random variable), it's more convenient to have this margin of error around \bar{x} instead - so that we can say: the estimated mean is \bar{x} with this uncertainty:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$$

• For a given sample with an estimate \bar{x} (note: here the small letter \bar{x} denotes the value of the estimate itself instead of a random variable), it's more convenient to have this margin of error around \bar{x} instead - so that we can say: the estimated mean is \bar{x} with this uncertainty:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$$

This is called the confidence interval

• For a given sample with an estimate \bar{x} (note: here the small letter \bar{x} denotes the value of the estimate itself instead of a random variable), it's more convenient to have this margin of error around \bar{x} instead - so that we can say: the estimated mean is \bar{x} with this uncertainty:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$$

- This is called the confidence interval
- The confidence interval for the sample mean is *exact* when the data distribution is Gaussian, otherwise it is an approximation under the central limit theorem

• For a given sample with an estimate \bar{x} (note: here the small letter \bar{x} denotes the value of the estimate itself instead of a random variable), it's more convenient to have this margin of error around \bar{x} instead - so that we can say: the estimated mean is \bar{x} with this uncertainty:

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$$

- This is called the confidence interval
- The confidence interval for the sample mean is *exact* when the data distribution is Gaussian, otherwise it is an approximation under the central limit theorem
- This calculation is called **interval estimation**, because it gives an interval estimate $\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{N}},\ \bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{N}}\right)$ instead of a single value estimate as in MAP or MLE

To Be Continued...

Today

- 1 Central limit theorem
- 2 Interval estimation
- Summary

Today

- Central limit theorem
- 2 Interval estimation
- Summary

