GATE 2016 XE(53-65)

1

EE24BTECH11030 - J.KEDARANANDA

In a diffraction experiment, monochromatic X-rays of wavelength 1.54 Å are used
to examine a material with a BCC structure. If the lattice parameter is 4.1 Å, the
angular position θ of the first diffraction peak is degrees.

- 2) The yield strength of a ferritic steel increases from $120 \, \text{MPa}$ to $150 \, \text{MPa}$ when the grain size is decreased from $256 \, \mu \text{m}$ to $64 \, \mu \text{m}$. When the grain size is further reduced to $16 \, \mu \text{m}$, the expected yield strength is _____ MPa.
- 3) A direct bandgap semiconductor has a bandgap of 1.8 eV. The threshold value of the wavelength **BELOW** which this material will absorb radiation is _____ Å. (Given: Planck's constant, $h = 6.626 \times 10^{-34} \,\mathrm{J}$ s, the charge of an electron, $e = 1.6 \times 10^{-19} \,\mathrm{C}$, and speed of light, $c = 3 \times 10^8 \,\mathrm{m \ s^{-1}}$)
- 4) A half cell consisting of pure Ni immersed in an aqueous solution containing Ni²⁺ ions of unknown concentration, is galvanically coupled with another half cell consisting of pure Cd immersed in a 1M aqueous solution of Cd²⁺ ions. The temperature is 25 °C and pressure is 1 atm. The standard electrode reduction potentials of Ni and Cd are $-0.250 \, \text{V}$ and $-0.403 \, \text{V}$, respectively. The voltage of the cell is found to be zero. The concentration of Ni²⁺ in the solution is _____ ×10⁻⁶ M. (Given: Universal gas constant, $R = 8.31 \, \text{J mol}^{-1} \text{K}^{-1}$, Faraday's constant, $F = 96500 \, \text{C} \, \text{mol}^{-1}$)
- 5) Match the type of magnetism given in Group 1 with the material given in Group 2:

Group 1	Group 2
P : Ferromagnetic	1 : Nickel oxide
Q: Ferrimagnetic	2 : Sodium
R : Antiferromagnetic	3 : Magnetite
S: Paramagnetic	4 : Cobalt

- a) (A) P:4, Q:3, R:1, S:2
- b) (B) P:4, Q:1, R:3, S:2
- c) (C) P:1, Q:2, R:4, S:3
- d) (D) P:3, Q:2, R:1, S:4
- 6) Gallium is to be diffused into pure silicon wafer such that its concentration at a depth of 10^{-3} cm will be one half the surface concentration. Given that the diffusion coefficient (*D*) of gallium in silicon at $1355\,^{\circ}$ C is $6\times10^{-11}\,\mathrm{cm^2\,s^{-1}}$, the time the silicon wafer should be heated in contact with gallium vapor at $1355\,^{\circ}$ C is s.

(Given: $erf(0.5) \approx 0.5$)

- 7) A batch of spherical titania nanoparticles, uniform in size, has a specific surface area of 125 m² g⁻¹. If the density of titania is 4.23 g cm⁻³, the diameter of the particles is _____ nm.
- 8) Given the probability distribution function

$$f(x) = \begin{cases} 0.25x & \text{for } 1 \le x \le 3\\ 0 & \text{otherwise} \end{cases}$$

The probability that the random variable x takes a value between 1 and $\sqrt{5}$ is _____.

- 10) Match the heat treatment process of steels given in Group 1 with the microstructural feature given in Group 2:

Group 1	Group 2
P : Quenching	1 : Bainite
Q : Normalizing	2 : Martensite
R: Tempering	3 : Pearlite
S: Austempering	4 : Iron carbide precipitates
The state of the s	5 : Intermetallic precipitates

- a) (A) P: 2, Q: 3, R: 4, S: 1
- b) (B) P:3, Q:4, R:5, S:1
- c) (C) P:4, Q:1, R:5, S:3
- d) (D) P: 2, Q: 5, R: 4, S: 3
- 11) In the photoelectric effect, electrons are ejected
 - a) at all wavelengths, as long as the intensity of the incident radiation is above a threshold value.
 - b) at all wavelengths, as long as the intensity of the incident radiation is below a threshold value.
 - c) at all intensities, as long as the wavelength of the incident radiation is below a threshold value.
 - d) at all intensities, as long as the wavelength of the incident radiation is above a threshold value.
- 12) The angle between [110] and [111] directions in the cubic system is ______ degrees.

- 13) A single degree of freedom vibrating system has mass of 5 kg, stiffness of 500 N/m and damping coefficient of 100 N-s/m. To make the system critically damped
 - a) only the mass is to be increased by 1.2 times.
 - b) only the stiffness is to be reduced to half.
 - c) only the damping coefficient is to be doubled.
 - d) no change in any of the system parameters is required.