Exercise 3 Answer Sheet — Logic Theory (2), 80424

April 14, 2025

Question 1

Let $T=\operatorname{Th}(\hat{\mathbb{N}})$ We will show that T has 2^ω non-isomorphic countable models.

Proof. Let us define $P\subseteq \hat{\mathbb{N}}$ the set of prime numbers. We assume that $S\subseteq P$ is some set. We enrich the language by a new constant symbol, c. Let $T_S=T\cup\{\exists x,(x\cdot p=c)\land \neg(\exists y,y\cdot p=x)\mid p\in S\}$, namely extension of T such that $c=\prod_{p\in S}p$. T_S is finitely satisfiable by $\hat{\mathbb{N}}$ as for every finite $S,\prod_{p\in S}p\in \mathbb{N}$, then by compactness T_S is also satisfiable. It follows that there is a model $\mathcal{M}_S\models T_S$ over $L\cup\{c\}$, then it is also a model of T by reduction of the language.

Let $S \neq S'$ be subsets of P and let \mathcal{M}, \mathcal{N} be some of their respective models. We will show that $\mathcal{M} \not\simeq \mathcal{N}$. It is clear for $L \cup \{c\}$ -isomorphisms, as there is $p \in S \setminus S'$ (without loss of generality) such that $\mathcal{M} \models p \mid c$ but $\mathcal{N} \not\models p \mid c$. By the last claim we can deduce that if there was such L-isomorphism, then for $c^{\mathcal{M}}$ there would be a contradiction, meaning there is no such isomorphism.

We know that $P \subseteq \mathbb{N}$, and that this set is not finite, then $|P| = \omega$, it derives that there are $|2^P| = 2^\omega$ non-isomorphic models $\mathcal{M}_S \models T$.

Question 2

Let F be an infinite field, and let $L_{F \text{ VS}}$ be the language of vector spaces over F. Let $V \subseteq U$ be two non-trivial vector spaces over F, we will show that $V \prec U$.

Proof. Let P be a disjoint unary relation symbol to L_{FVS} , and let us define $L' = L_{FVS} \cup \{P\}$. We extend U to L' by $P^U(x) \iff x \in V$. For every $\psi(x_0, \dots, x_{n-1}) \in \operatorname{Th}(V)$, let $\varphi_{\psi} = \exists_{i < n} x_i (\bigwedge_{i < n} P(x_i) \to \exists x_n \psi(x_0, \dots, x_{n-1}))$