

CO331 – Network and Web Security

21. Web user tracking

Dr Sergio Maffeis Department of Computing

Course web page: http://www.doc.ic.ac.uk/~maffeis/331

Imperial College London

Web tracking

- Examples (spot the controversial cases...)
 - User-specific website settings maintain a consistent browsing experience across a sequence of related HTTP requests and responses
 - Secure session recognize requests coming from the same user, that has already been authenticated, and provide privileged access
 - Browsing history, personal preferences and demographic data are harvested by marketers to profile users and provide "relevant advertising"
 - User presence online on different devices is correlated by governments to identify individuals
- Tracking is a complex and pervasive issue
 - 1st party trackers
 - · iframes and scripts on origin of website visited by the user
 - 3rd party trackers
 - Cross-domain iframes and their resources, included by visited websites
 - There are *legitimate* and *illegitimate* usages
 - Do not necessarily coincide with desirable and undesirable usages
 - Can happen across devices

Browser support for tracking

- Trackers need to store information in the browser about the user
- Cookies: again 1st/3rd party distinction

Browser support for tracking

- Trackers need to store information in the browser about the user
- Supercookies
 - HTML5 storage: Local/sessionStorage, Web SQL, IndexedDB ...
 - Plugin storage: Flash Local Shared Objects
- Cache
 - Tell browser to cache a script that assigns state to a variable
 - Response header
 - Cache-Control: private, Max-Age=31536000
 - Resource name can be change to reset state state.js?v=1.x
- ETag header
 - Originally intended for cache validation
 - Can be used like a simplified cookie
 - Response header sets ETAG value
 - ETaq: "A23C42BF890DFE"
 - Subsequent request header reflects the value
 - If-none-match: "A23C42BF890DFE"
 - Other request/response header pairs similar to Etag
 - If-Modified-Since/Last-Modified

Imperial College

Browser support for tracking

- Trackers need ways to send user information back to the server
- HTTP request and responses
 - Explicit communication
 - User clicks on a link
 - Loading of page resources (iframes, images, etc.)
 - AJAX and JavaScript-triggered page loading or navigation events
 - Implicit communication
 - W3C Beacons
 - "asynchronous and non-blocking delivery of data that minimizes resource contention with other time-critical operations"
 - navigator.sendBeacon('/collector', data);
 - In Chrome, opening a new tab sends a new tab request to Google
 - Search bar may send in the background one request per character you type
 - Pre-rendering
 - Browser loads resources linked on current page in case you later click
- Other Plugin communications
 - Flash, Java, Active X controls can use sockets

Imperial College London

Example: cross-site tracking

Imperial College

Browser countermeasures

- Do Not Track header
 - W3C Tracking Protection Working Group's brainchild
 - Request header: DNT: 1
 - Mostly interpreted as do not target the users based on collected data
 - Data is still collected
- Private browsing/Incognito mode
 - Prevents caching, history, cookies, preferences
 - A bit of a drastic solution
 - A lot can still be achieved using JavaScript, side-channels, ETag header, etc.
 - "Going incognito doesn't hide your browsing from your employer, your internet service provider, or the websites you visit."
- Block 3rd party cookies in browser settings
 - 3rd party trackers cannot set cookies
 - In some browsers, 3rd party cookies are still sent if they already exists
 - A 3rd party iframe can open a popup which is now a 1st-party cookie setter

Imperial College

Zombie cookies

- Deleted your cookies?
- Tracking data saved in other headers, cache or supercookies can be used to resuscitate them!
 - Cookie respawning, aka Zombie cookies
 - In fact, who needs cookies if you have JavaScript + localStorage?
- Cleared also cache and local/sessionStorage?
 - Respawning via Flash cookies (LSOs)
 - Thanks to Flash, zombie cookies can migrate across browsers!
 - (LSOs can be shared by various Flash plugin instances)
- Key role of fingerprinting in tracking
 - Respawn tracking data associated to a known fingerprint even if browser and Flash data was reset

KISSmetrics and Hulu got sued for that trick in 2011

331-2018 Web user tracking

More countermeasures

- Disable plugins (eradicate Flash)
- Disable JavaScript (stop browsing?)
- Use the TOR Browser
- Use anti-fingerprinting countermeasures
- Install anti-tracking extensions: Ghostery, AdBlock+, Privacy Badger, ShareMeNot...

Research on tracking

- Anti-tracking extensions use blacklists to stop requests to tracking websites
 - How to automatically populate such blacklists?
 - Ongoing research on machine learning techniques to identify trackers
- Trackers leave a trail of information visible from the browser
 - Ongoing research on data analytic techniques to spot tracking patterns
 - Monitorito browser extension (distinguished student project)
 - Monitor and visualise network events in real time
 - Identify trackers using graph analytics

