Канальный уровень OSI Стандартные ЛВС: Ethernet

Канальный уровень

- Протоколы канального уровня описывают способы обмена кадрами данных при обмене данными между устройствами по общей среде
- Функции канального уровня:
 - разделение среды передачи
 - формирование и пересылка последовательностей бит (кадров) от отправителя к адресату
 - контроль ошибок
- Примеры: Ethernet, Token ring; PPP, HDLC
- Единица данных кадр (frame)

Функции канального уровня

Подуровни MAC и LLC

Сетевой уровень

Logical Link Control (LLC)

- опряжение с вышестоящими протоколами стека
- формирование универсальных PDU LLC
- управление потоком данных

Media Access Control (MAC)

- регулировка доступак среде передачи
- формирование спец. кадров МАС
- контроль ошибок

Ethernet 802.3 Wi-Fi 802.11 Bluetooth 802.15

Физический уровень

Стандарты канального уровня

- □ IEEE 802.2: Управление логическим каналом (Logical link control LLC)
- IEEE 802.3: Локальная сеть Ethernet
- IEEE 802.5: Локальная сеть Token Ring
- **IEEE 802.11:** Беспроводная LAN (Wi-Fi)
- IEEE 802.15: Bluetooth
- IEEE 802.16: WiMax (3G)
- ITU-T G.992: Технология ADSL
- ITU-T G.8100 G.8199: MPLS
- ITU-T Q.922: Frame Relay
- ISO 13239: Протокол HDLC
- ISO 9314, ANSI X3T9.5, ANSI X3T12: FDDI

Управление доступом к среде

Необходимы правила использования общих средств передачи данных (аналог ПДД).

Влияют:

- Топология (как связь между узлами отображается для канального уровня)
- Способ доступа узлов к среде (напр., точка-точка или общая среда)

Физические топологии WAN

- **Двухточечная** топология (точкаточка): простейшая топология с постоянным соединением между узлами
- Hub-and-spoke (звезда):
 подключение периферийных узлов
 к центральному с помощью
 двухточечных соединений
- Полносвязная (full/partial mesh) топология: двухточечные соединений каждый-с-каждым

Логическая точка-точка

- ограничение до 2 узлов
- Упрощенная схема адресации
- Упрощенный протокол доступа
- Виртуальные каналы связи
- Полу- и полнодуплексная передача

Физические топологии LAN

- Шина: все узлы связаны друг с другом общей шиной (проводником, кабелем) и имеют оконцовку на концах шины
- **Кольцо:** узлы подключены к соседним узлам, формируя замкнутый контур связи в форме кольца
- **Звезда:** все узлы подключаются к центральному промежуточному устройству (коммутатору)

Доступ к физической среде

- Конкурентный (множественный) доступ: все узлы конкурируют за использование среды, но имеют особый план на случай коллизии
- Контролируемый доступ:
 каждый узел использует
 среду в специально
 отведённое время, коллизии
 исключены

Пытаюсь отправить, когда готов

Отправляю

Жду своей очереди

Media Access Control (MAC)

IEEE 802.3 (CSMA/CD)
IEEE 802.5 (Token ring)

Служит для:

- регулировки доступа узлов сети к физической среде передачи
- формирования кадра MAC (дополнение PDU LLC информацией об адресах узлов и контрольной суммой кадра)
- выявления ошибок передачи путем подсчёта контрольной суммы кадра
- Формат кадра MAC зависит от применяемого протокола канального уровня (Ethernet, Token ring и др.)

Кадры канального уровня

- Между какими узлами осуществляется связь?
- Когда связь между отдельными узлами начинается, а когда заканчивается?
- Какие ошибки возникли при связи узлов?
- Между какими узлами произойдёт дальнейшая связь?

Заголовок Данные		Концевик
• Флаг начала кадра		• Контроль ошибок
Адресация		Флаг конца
• Управление поток	ОМ	

Структура кадра определяется протоколом передачи (МАС)

ЛВС Ethernet �IEEE 802.3

- Самая распространённая технология ЛВС
- Метод доступа к среде CSMA/CD
- Скорости передачи данных
 - Ethernet 10 Мбит/с
 - Fast Ethernet 100 Мбит/с
 - Gigabit Ethernet 1 Гбит/с
 - 10G Ethernet 10 Гбит/с
 - 40G Ethernet, 100G Ethernet 40 Гбит/с и 100 Гбит/с
- Применяемые физические среды передачи:
 - коаксиальный кабель
 - витая пара
 - одно- и многомодовые оптические кабели

История Ethernet

22.05.1973, Ethernet Network – Xerox PARC 1980, Ethernet II (DIX) - DEC, Intel, Xerox 1983, Ethernet - IEEE 802.3 1995, Fast Ethernet - IEEE 802.3u Технология 1998, Gigabit Ethernet – IEEE 802.3ab 802.3 2003, 10G Ethernet - IEEE 802.3ae 2010, 40G, 100G Ethernet - IEEE 802.3ba 2015 – Terabit Ethernet

MAC-кадр Ethernet (II)

- Преамбула (ограничитель) синхронизация 10101010 ... 10101010 10101011
- DA, SA (Destination Address, Source Address) MAC адреса получателя/отправителя
- EtherType (тип кадра) тип протокола верхнего (сетевого) уровня (аналог DSAP/SSAP)
- Data данные верхнего уровня
- **IDENTIFY SECOND SECON**

MAC-кадры Ethernet других форматов

- PDU LLC модуль данных LLC (слайд 7)
- SNAP (Subnetwork Access Protocol)
 - OUI (Organizationally Unique Identifier) идентификатор организации, контролирующей коды протоколов (для протоколов 802 это IEEE; OUI=000000)
 - PID (Protocol Identifier) идентификатор протокола согласно кодировке организации по OUI (для IEEE PID=EtherType)

МАС-адрес: структура

- МАС-адрес (физический адрес) уникальный идентификатор, сопоставляемый с различными типами оборудования для компьютерных сетей
- Длина: 48 бит (6 байт/октетов) = 12 шестнадцатеричных (hexadecimal) разрядов

 24
 24

 OUI
 Номер

- OUI регистрационный код вендора в IEEE
- Номер идентификатор устройства, присвоенный вендором

00a0.173d.bc01 00-60-2F-3A-07-BC 00:2c:6a:5d:bb:28 003f-5ab3-75dg

МАС-адреса узлов и групп

- cmd.exe:
- ipconfig /all


```
Command Prompt
Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. All rights reserved.
C:\Users\ss.STANKINORG>ipconfig /all
Ethernet adapter Ethernet:
   Connection-specific DNS Suffix .:
                                        : Realtek PCIe GRF Family Controller
  Physical Address. . . . . . . . : 00-1F-D0-0C-A9-69
                                         fe80::7858:f0ad:40fa:fcec%3(Preferred)
                                          192.168.1.13(Preferred)
                                          00-01-00-01-1B-E1-52-FD-00-1F-D0-0C-A9-69
   NetBIOS over Topip. . . . . .
C:\Users\ss.STANKINORG>
```

- MULTICAST (групповой): 01:00:5E:XX:XX:XX
- BROADCAST (широковещ.): FF:FF:FF:FF:FF

CSMA/CD – обзор

CSMA/CD (Carrier sense multiple access with collision detection) – метод множественного доступа с контролем несущей и обнаружением коллизий

Особенности:

- Множественный доступ
 - Все узлы имеют постоянный доступ к несущей (и передаваемым по сети данным) «логическая шина»
 - Захват среды передачи происходит по требованию любого узла в любой момент времени «случайный доступ»
- Контроль несущей
 - Перед отправкой кадра узел проверяет, свободна ли среда
- Обнаружение коллизий
 - Одновременная отправка кадра несколькими узлами коллизия. Требуется обнаружение и обработка

CSMA/CD – получение кадра

CSMA/CD – передача кадра

CSMA/CD – коллизия

Коллизия – искажение передаваемых по сети кадров, происходящее в результате наложения кадров от двух и более станций, пытающихся вести одновременную передачу.

Алгоритм возникновения:

- Два узла начинают передачу одновременно;
- Один узел начинает передачу раньше другого, но его сигналы не успевают достигнуть второго узла до того, как и он также начинает передачу.

CSMA/CD – этапы устранения коллизии

1. Обнаружение коллизии

- коллизию всегда обнаруживает станция, вызвавшая её (по разнице передаваемого и принимаемого сигналов)
- станция, обнаружившая коллизию, мгновенно приостанавливает передачу

2. **Јат-последовательность** (32 бит)

- специальный набор символов, усиливающий коллизию (т.к. короче минимального кадра) повышение вероятности скорейшего обнаружения коллизии всеми станциями
- передается станцией, первой обнаружившей коллизию (т.е. вызвавшей её)

з. Случайная пауза

выдерживается всеми станциями сети после получения јат

Повторная попытка передачи

• захват канала, IFG и т.д.

CSMA/CD – интервалы ожидания

- Битовый интервал (bt) время между появлением двух последовательных бит данных на кабеле (обратно битовой скорости: 0,1 мкс для 10 Мбит/с);
- Межкадровый интервал (технологическая пауза, inter-frame gap IFG):
 IFG = 96 bt
 - приведение сетевых адаптеров в исходное состояние
 - предотвращение монопольного захвата канала одной станцией
- **п** Случайная пауза: $P = L \times 512 \ bt$
 - Для предотвращения повторных коллизий
 - L случайное целое число из диапазона [0; 2^N], где N номер попытки (N≤10);
 - После 10 попыток N не увеличивается, т.о. случайная пауза (для 10 Мбит/с) принимает значения от 0 до 52,4 мс;
 - После 16 последовательных неудачных попыток передачи кадр отбрасывается.

CSMA/CD – временная диаграмма

Домен коллизий

- Домен коллизий (collision domain) это область сети Ethernet, все узлы которой распознают коллизию независимо от того, в какой части этой области коллизия возникла
- Возникшая коллизия не распространяется за рамки соответствующего домена коллизий
- Чем больше количество доменов коллизий, тем менее заметны последствия каждой коллизии
- Для разбиения сети на домены коллизий применяют коммутаторы

Физический уровень Ethernet

10 Base-5

Битовая скорость Частотная характеристика Код физической среды

Спецификация	Физическая среда	Длина сегмента
10 Base-5	«толстый» коаксиал RG-8	500
10 Base-2	«тонкий» коаксиал RG-58	185
10 Base-T	UTP Cat 3(5)	100
10 Base-F	MMF	2000

10 Base-5: «Thick» Ethernet

Физическая шина / Логическая шина

- **Терминатор** «заглушка», препятствует распространению отраженных сигналов
- **Трансивер** (tranceiver = transmitter + receiver) элемент сетевого адаптера, реализующий следующие функции приёма/передачи и обнаружения коллизий

Кабель AUI (до 50м UTP)

- длина сегмента 500м
- мобильность узлов в пределах 50м кабеля OUI

Недостатки:

- высокая стоимость кабеля
- сложность монтажа кабеля
- низкая масштабируемость сети

10 Base-2: «Thin» Ethernet

Физическая шина / Логическая шина

Т-образный BNC-коннектор 50 Ом BNC Терминатор

Достоинства:

- низкая стоимость кабеля
- упрощённый монтаж

Недостатки:

- низкаяпомехозащищенность
- небольшая длина сегмента
- отсутствие мобильности узлов
- плохая эргономика

10 Base-T: Twisted pair

Физическая звезда / Логическая шина

Концентратор 10Base-Т

I_х Transmitter передатчик

R_x Receiver Приёмник

Достоинства:

- масштабируемость сети
- управляемость сети

Недостатки:

- при низкая помехозащищённость
- небольшая длина сегмента (100 м)
- повышенная стоимость:
 - дополнительное оборудование
 - расход кабеля

10 Base-F: Fiber optic

- FOIRL (Fiber Optic Inter-Repeater Link)
 - 2 × MMF(1000 м) магистраль между концентраторами/репитерами
- 10 Base-FL (Fiber Link)
 - 2 × MMF (2000 м) взаимосвязь любых устройств (физическая/логическая звезда)
- 10 Base-FB (Fiber Backbone)
 - 2 × MMF (2000 м) точечная магистраль между концентраторами/репитерами
- 10 Base-FP (Fiber Passive)
 - пассивная ММГ-звезда

Параметры спецификаций физического уровня классического Ethernet

Характеристика	Значение
Номинальная пропускная способность	10 Мбит/с
Максимальное число станций в сети	1024
Максимальное число сегментов в сети	5
Тип кодирования	Манчестерский

Параметр	10Base-5	10Base-2	10Base-T	10Base-F
Тип кабеля	«толстый» коаксиал	«тонкий» коаксиал	UTP Cat. 3(5)	2 × MMF
Максимальная длина сегмента	500м	185м	100м	2000м
Диаметр сети (с повторителями)	2500м	925м	500м	2500м
Физическая топология	шина	шина	звезда	Звезда / точка-точка
Логическая топология	шина	шина	шина	Звезда / точка-точка

Fast Ethernet: 100 Мбит/с

- Метод доступа CSMA/CD (CSMA для точечных полнодуплексных каналов)
- Сохранение формата кадра Ethernet II
- Физическая топология звезда, логическая топология шина/звезда
- Скорость 100 Мбит/с
 - IFG = 0.96 MKC
 - bt = 0.01 MKC
- Используемые физические среды:
 - UTP Cat.3 и выше
 - MMF, SMF

Физический уровень Fast Ethernet

Спецификация	Физическая среда	Топология	Тип кодирования
100 Base-TX*	2 пары UTP Cat.5+ (100м)	Физическая звезда, логическая шина (<i>звез∂а</i>)	4B5B, MLT-3
100 Base-T4	4 пары UTP Cat.3+ (100м)	Физическая звезда, логическая шина	8B6T, PAM-3
100 Base-T2	2 пары UTP Cat.3+ (100м)	Физическая звезда, логическая шина (<i>звезда</i>)	PAM-5
100 Base-FX	2 × MMF (400м/ <i>2000м</i>)	Физическая звезда, логическая шина (<i>звезда</i>)	4B5B, NRZI
100 Base-SX**	2 × MMF (300м)	Физическая звезда, логическая шина	Манчестер- ский код
100 Base-BX10	1 × SMF <i>(10км)</i>	Физическая звезда, логическая звезда	4B5B, NRZI
100 Base-LX10	2 × SMF (10км)	Физическая звезда, логическая звезда	4B5B, NRZI

^{*} оборудование совместимо с **10 Base-T** ** оборудование совместимо с **10 Base-FL**

half-duplex (полудуплекс) full-duplex (дуплекс)

Gigabit Ethernet: 1 Гбит/с

- Метод доступа CSMA (только полнодуплексные каналы: коллизий нет)
- Сохранение формата кадра Ethernet II
- Физическая/логическая топология звезда
- Скорость 1 Гбит/с
 - IFG = 9,6 HC
 - bt = 1 HC
- Используемые физические среды:
 - UTP Cat.5 и выше
 - MMF, SMF

Физический уровень Gigabit Ethernet

Физическая звезда / Логическая звезда (только полнодуплексные каналы)

Спецификация	Физическая среда	Тип кодирования
1000 Base-T *	4 пары UTP Cat.5+ (100м)	4D-PAM5
1000 Base-TX	2 пары UTP Cat.6+ (100м)	4B5B, MLT-3
1000 Base-CX	2 пары UTP Cat.5+ (25м)	8B10B, NRZ
1000 Base-SX	2 × MMF (550м)	8B10B, NRZ
1000 Base-LX	2 × MMF (550м) 2 × SMF (5км)	8B10B, NRZ
1000 Base-ZX	2 × SMF (70км)	8B10B, NRZ
1000 Base-LX10	2 × SMF (10км)	8B10B, NRZ
1000 Base-BX10	1 × SMF (10км)	8B10B, NRZ

^{*} обязательная совместимость с **10 Base-T, 100 Base-TX**

10G Ethernet: 10 Гбит/с

- Метод доступа CSMA (только полнодуплексные каналы: коллизий нет)
- Сохранение формата кадра Ethernet II
- Физическая/логическая топология звезда
- Скорость 10 Гбит/с
 - IFG = 0.96 HC
 - bt = 0.1 HC
- Используемые физические среды:
 - UTP Cat.6 и выше, STP
 - MMF, SMF

Физический уровень 10G Ethernet

Физическая звезда / Логическая звезда (только полнодуплексные каналы)

Спецификация	Физическая среда		Тип кодирования
10G Base-SR	2 × MMF (33n	л/300м)	64B/66B
10G Base-LR	2 × SMF (1	Окм)	64B/66B
10G Base-ER	2 × SMF (4	Окм)	64B/66B
10G Base-ZR	2 × SMF (8	Юкм)	64B/66B
10G Base-CX4	4 пары STP (15м)		8B10B, NRZ
10G Base-T	4 пары UTP Cat 6+ (100м)		8B10B, NRZ
10G Base-KX4 10G Base-KR	backplane (1м)		8B10B, NRZ
10G Base-SW	WAN PHY (OC-192 / STM-64 SONET/SDH)	(33/300м)	64B/66B
10G Base-LW		(10км)	64B/66B
10G Base-EW		(40км)	64B/66B

Настоящее будущее: 4oGbE, 1ooGbE, TbE

Физическая звезда / Логическая звезда (только полнодуплексные каналы)

Физическая среда	40GbE (не путать с 40Гбит/с DWDM)	100Gb Ethernet
backplane (1м)	40G Base-KR4	-
STP (10m)	40G Base-CR4	100G Base-CR10
ММF (100м)	40G Base-SR4	100G Base-SR10
SMF (10км)	40G Base-LR4	100G Base-LR4
SMF (40км)	-	100G Base-ER4

Terabit Ethernet (802.3bs – запланирован на 2020 г.)

