Initialization of Equality Constrained LASSO

안승환

2019

Contents

1	Pro	bblem	1
2	Init	ialization	2
3		mpleteness of Active Set	3
	3.1	Where $\mathcal{B} = \mathcal{A} (\mathcal{B} = m+1) \dots \dots \dots \dots \dots$	5
	3.2	Where $ \mathcal{B} = m$	5
	3.3	Where $ \mathcal{B} < m$	5
4	Appendix		
	4.1	Appendix 1	5
	4.2	Appendix 2	6

1 Problem

Constrained lasso problem with only equality constraints:

minimize
$$L(\beta) + \rho ||\beta||_1$$

subject to $\mathbf{A}\beta = 0$ (1)

(In this paper, we would think of $L(\beta)$ as $\frac{1}{2}||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2$.)

Since we perform path following in the decreasing direction of penalty parameter ρ , an initializing value for the parameter ρ is needed. ($\mathbf{y} \in \mathbb{R}^n, \mathbf{X} \in \mathbb{R}^{n \times p}, \boldsymbol{\beta} \in \mathbb{R}^p, \mathbf{A} \in \mathbb{R}^{m \times p}$, and m is the number of constraints.)

As $\rho \to \infty$, the solution β to the original problem is given by

minimize
$$||\boldsymbol{\beta}||_1$$

subject to $\mathbf{A}\boldsymbol{\beta} = 0$ (2)

And obviously, the solution $\hat{\beta}$ for the above problem is 0_p .

2 Initialization

The stationarity of KKT conditions for (2) is as follows:

$$\nabla L(\boldsymbol{\beta}) + \rho sign(\boldsymbol{\beta}) + \mathbf{A}^T \lambda = 0_p$$

, where $\lambda \in \mathbb{R}^m$ is lagrangian multiplier and $sign(\beta)$ is the subgradient of $||\beta||_1$. Since $|sign(\beta)| \leq 1_p$, we can transform above stationarity condition as follows:

$$|\nabla L(\boldsymbol{\beta}) + \mathbf{A}^T \lambda| \le \rho 1_p$$

Lemma 1 For fixed ρ , β , let $\mathcal{E}_{\rho}(\beta) = \{\lambda \in \mathbb{R}^m : |\nabla L(\beta) + \mathbf{A}^T \lambda| \leq \rho \mathbf{1}_p\}$, and let $\rho_{max} = \inf\{\rho \in \mathbb{R} : \mathcal{E}_{\rho}(\beta) \neq \varnothing\}$.

Then for $\rho < \rho_{max}$, $\beta = 0_p$ is not solution of (1). (This can be proved by Seperating Hyperplane Theorem?)

Corollary 1 The minimizer of (1) for a ρ is $\beta = 0_p$ if and only if $\rho \geq \rho_{max}$, where ρ_{max} is the optimal solution of (3). And also, we can get the solution λ_{max} corresponding to ρ_{max} by (3).

minimize
$$\rho$$

subject to $z = \mathbf{A}^T \lambda$
 $z \le -\nabla L(\boldsymbol{\beta}) + \rho 1$
 $z \ge -\nabla L(\boldsymbol{\beta}) - \rho 1$
 $\rho \ge 0$ (3)

Active Set

So, we can initialize active set A as follows:

$$\mathcal{A} = \{j : |\nabla L(\boldsymbol{\beta})_j + a_j^T \lambda_{max}| = \rho_{max}\}$$

where $\mathbf{A} = [a_1, \cdots a_p]$.

If we decrease ρ very little as $\rho < \rho_{max}$, $\hat{\beta}_j = 0$ cannot be the coefficient of optimal solution (1) for predictor x_j . So, predictor x_j must be activated as ρ decreasing.

Uniqueness of λ_{max}

 λ_{max} is the unique solution to (3) if the solution for $\mathbf{A}_{\mathcal{A}}^T \tilde{\lambda} = 0$ is only $\tilde{\lambda} = 0$. ($\Leftrightarrow \mathbf{A}_{\mathcal{A}}^T$ is full column).

Because we can formulate an equation for predictors which are set on boundaries of the stationarity condition (which compose active set A) as follows:

$$|\nabla L(\boldsymbol{\beta})_{\mathcal{A}} + \mathbf{A}_{\mathcal{A}}^{T}(\lambda_{max} + \tilde{\lambda})| = \rho_{max} \mathbf{1}_{\mathcal{A}}$$

3 Completeness of Active Set

In this section, our main question is : What happens if we do NOT activate all the violated predictors of A?

Let $L(\beta) = \frac{1}{2}||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2$. Given ρ_{max} , λ_{max} , we want $\mathcal{B}(\subseteq \mathcal{A})$, $\Delta \rho$, $\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}}$, and $\frac{d}{d\rho}\lambda_{\mathcal{B}}$ such that satisfy following conditions(stationarity from KKT conditions, and the equality constraint):

$$-\mathbf{X}_{:\mathcal{B}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}})) +$$

$$(\rho_{max} - \Delta \rho) sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}}) + \mathbf{A}_{:\mathcal{B}}^{T}(\lambda_{max} - \Delta \rho \frac{d}{d\rho} \lambda) = 0 \quad (4)$$

$$|\mathbf{X}_{:\mathcal{B}^{C}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}})) - \mathbf{A}_{:\mathcal{B}^{C}}^{T}(\lambda_{max} - \Delta \rho \frac{d}{d\rho} \lambda)| \leq$$

$$(\rho_{max} - \Delta \rho) \mathbf{1}_{|\mathcal{B}^{C}|} \quad (5)$$

$$\mathbf{A}_{:\mathcal{B}}(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}}) = 0 \quad (6)$$

 ρ is in decreasing direction, so $\Delta \rho > 0$. And the moving direction of $\boldsymbol{\beta}$ is must be maintained. So,

$$sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)} - \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}}) = sign(\boldsymbol{\beta}^{(0)})$$

. From Corollary 1, we have following:

$$-\mathbf{X}_{:\mathcal{B}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \rho_{max}sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{T}(\lambda_{max}) = 0$$
 (7)

$$|\mathbf{X}_{:\mathcal{B}^{c}}^{T}(\mathbf{y} - \mathbf{X}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) - \mathbf{A}_{:\mathcal{B}^{c}}^{T}\lambda_{max}| \leq \rho_{max}1_{|\mathcal{B}^{c}|}$$
 (8)

$$\mathbf{A}_{:\mathcal{B}}\boldsymbol{\beta}_{\mathcal{B}}^{(0)} = 0 \tag{9}$$

Finally, we get

$$\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}} \Delta \rho \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} - \Delta \rho sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) + \mathbf{A}_{:\mathcal{B}}^{T} \Delta \rho \frac{d}{d\rho} \lambda = 0$$
 (10)

$$\mathbf{A}_{:\mathcal{B}}\Delta\rho\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} = 0 \tag{11}$$

$$|\mathbf{X}_{:\mathcal{B}^{C}}^{T}\mathbf{X}_{:\mathcal{B}}\Delta\rho\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} + \mathbf{A}_{:\mathcal{B}^{C}}^{T}\Delta\rho\frac{d}{d\rho}\lambda| \leq \Delta\rho 1_{|\mathcal{B}^{C}|}$$
(12)

Let's focus on first two equations (10), (11):

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^T \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix} \begin{bmatrix} \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$
(13)

And,

$$\begin{bmatrix} \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^T \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}^{-1} \begin{bmatrix} sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix}$$
(14)

Assumption 1 Rows of $A_{:\mathcal{B}}$ are linearly independent.

So,
$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^T \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}$$
 is invertible by **Assumption 1**.

Obviously, $\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}}$ is invertible. By inverse of block matrix, we have following equation:

$$\begin{bmatrix} \frac{d}{d\rho} \boldsymbol{\beta}_{\mathcal{B}} \\ \frac{d}{d\rho} \lambda \end{bmatrix} = \begin{bmatrix} (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^T Z^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} & (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^T Z^{-1} \end{bmatrix} \begin{bmatrix} sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) \\ 0 \end{bmatrix} (15)$$

where $Z = \mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ and here, inverse of $Z(Z^{-1})$ could be not only its inverse but also its generalized inverse.

Therefore,

$$\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} = \left((\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} - (\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^{T}Z^{-1}\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1} \right) sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)})$$

$$= \left((\mathbf{X}_{:\mathcal{B}}^{T}\mathbf{X}_{:\mathcal{B}})^{-1}(\mathbf{I} - \mathbf{W}) \right) sign(\boldsymbol{\beta}_{\mathcal{B}}^{(0)}) \tag{16}$$

whor

$$\mathbf{W} = \mathbf{A}_{:\mathcal{B}}^T Z^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} = \mathbf{A}_{:\mathcal{B}}^T (\mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^T)^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}})^{-1}$$

If $\frac{d}{d\rho}\beta_{\mathcal{B}}\approx 0$, for new active set \mathcal{B} , there is no direction to move $\beta_{\mathcal{B}}$ that satisfies KKT conditions.

If not, we check $\frac{d}{d\rho}\beta_{\mathcal{B}}$ and $\frac{d}{d\rho}\lambda$ for following condition:

$$|\mathbf{X}_{:\mathcal{B}^{\mathcal{C}}}^{T}\mathbf{X}_{:\mathcal{B}}\frac{d}{d\rho}\boldsymbol{\beta}_{\mathcal{B}} + \mathbf{A}_{:\mathcal{B}^{\mathcal{C}}}^{T}\frac{d}{d\rho}\boldsymbol{\lambda}| \leq 1_{|\mathcal{B}^{\mathcal{C}}|}$$
(17)

(And it can be easily shown that for all \mathcal{B}^{C} , above inequality is satisfied).

(Trivial: If $\mathbf{A}_{:\mathcal{B}}$ is invertible,

$$\begin{bmatrix} \mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}} & \mathbf{A}_{:\mathcal{B}}^T \\ \mathbf{A}_{:\mathcal{B}} & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & \mathbf{A}_{:\mathcal{B}}^{-1} \\ (\mathbf{A}_{:\mathcal{B}}^T)^{-1} & -(\mathbf{A}_{:\mathcal{B}}^T)^{-1} \mathbf{X}_{:\mathcal{B}}^T \mathbf{X}_{:\mathcal{B}} \mathbf{A}_{:\mathcal{B}}^{-1} \end{bmatrix}.$$
 (18)

So, $\frac{d}{d\rho}\beta_{\mathcal{B}}=0$ and there is no direction to move.)

3.1 Where B = A (|B| = m + 1)

(See Appendix 2)

• $\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ is invertible. So, $\mathbf{A}_{:\mathcal{B}}$ is right-invertible, and $\mathbf{A}_{:\mathcal{B}}^T$ is left-invertible. And let $\mathbf{A}_{:\mathcal{B}}\mathbf{A}_{:\mathcal{B}}^{-1} = \mathbf{I}$, and $\mathbf{A}_{:\mathcal{B}}^{-T}\mathbf{A}_{:\mathcal{B}}^T = \mathbf{I}$ with their right and left inverses.

$$\mathbf{W} = \mathbf{A}_{:\mathcal{B}}^{T} \mathbf{A}_{:\mathcal{B}}^{-T} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}}) \mathbf{A}_{:\mathcal{B}}^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1}$$

$$\neq \mathbf{I}$$

Because the order of left and right inverse matrix product is changed. So, $\frac{d}{da}\beta_{\mathcal{B}} \neq 0$.

- **3.2** Where |B| = m
 - A:B is invertible (by Assumption 1)

$$\mathbf{W} = \mathbf{A}_{:\mathcal{B}}^{T} \mathbf{A}_{:\mathcal{B}}^{-T} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}}) \mathbf{A}_{:\mathcal{B}}^{-1} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1}$$
$$= \mathbf{I}$$

Therefore, $\frac{d}{d\rho}\beta_{\mathcal{B}}=0$.

- 3.3 Where $|\mathcal{B}| < m$
 - $\mathbf{A}_{:\mathcal{B}}(\mathbf{X}_{:\mathcal{B}}^T\mathbf{X}_{:\mathcal{B}})^{-1}\mathbf{A}_{:\mathcal{B}}^T$ is **NOT invertible** (See Appendix 1) So, we use generalized inverse.

(Assumption 2 Columns of $A_{:B}$ are linearly independent.)

$$\mathbf{W} = \mathbf{A}_{:\mathcal{B}}^{T} (\mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1} \mathbf{A}_{:\mathcal{B}}^{T})^{-} \mathbf{A}_{:\mathcal{B}} (\mathbf{X}_{:\mathcal{B}}^{T} \mathbf{X}_{:\mathcal{B}})^{-1}$$
$$= \mathbf{I}$$

where \mathbf{A}^- means generalized inverse of matrix \mathbf{A} . (This can be proved using the definition of generalized inverse and **Assumption 2**). Therefore, $\frac{d}{d\rho}\beta_{\mathcal{B}} = 0$.

4 Appendix

4.1 Appendix 1

For $H \in \mathbb{R}^{m \times n}$, HH^T is not invertible, where m > n

The columns of H^T are linearly dependent. So, there exists $x \neq 0$ such that $H^T x = 0$. $HH^T x = 0$ and this means 0 is an eigenvalue of HH^T . Therefore, $|HH^T| = 0$ and HH^T is singular. (The determinant of matrix is the product of eigenvalues of the matrix).

4.2 Appendix 2

Why $|\mathcal{A}|$ is always m+1?

For setting initial active set, we solve following problem and find predictors which set on the boundary of inequalities. And these predictors are chose for initial active set.

minimize
$$\rho$$

subject to $z = \mathbf{A}^T \lambda$
 $z \le -\nabla L(\boldsymbol{\beta}) + \rho 1$ (19)
 $z \ge -\nabla L(\boldsymbol{\beta}) - \rho 1$
 $\rho \ge 0$

And we can change above problem to the problem having same purpose (getting initial active set) as following:

Find λ , and minimum ρ satisfying

$$\begin{bmatrix} \mathbf{A}_{\mathcal{A}}^T & \pm 1_{|\mathcal{A}|} \end{bmatrix} \begin{bmatrix} \lambda \\ \rho \end{bmatrix} = \begin{bmatrix} -\mathbf{X}_{\mathcal{A}}^T y \end{bmatrix}$$

. And predictors of \mathcal{A}^C are set between lower and upper bounds of inequalities. The unknown variable $\begin{bmatrix} \lambda \\ \rho \end{bmatrix}$ is m+1 dimension. So, when $|\mathcal{A}|=m+1$, this linear programming has unique solution.

(Application of this property: If you want to activate only q predictors at the initialization step, then you should set q-1 constraints (it means $A \in \mathbb{R}^{q-1 \times p}$).