

Course No: MATH F113

Probability and Statistics

Simulation

Sumanta Pasari

Office: 6067 C (NAB) sumanta.pasari@pilani.bits-pilani.ac.in

innovate achieve lead

A Few Comments

- "Monte-Carlo simulation is an extremely bad (costly)
 method; it should be used only when all alternative
 methods are worse (Sokal, 1989)"
- Nevertheless, there are times when all else is worse!
- So, we shall anyway discuss:
 - ✓ What is simulation? Its dictionary meaning?
 - ✓ How do we carry out simulation?

innovate achieve lead

What is Simulation?

- Simulation is a technique by which we try to mimic or imitate real systems or process, usually via computer
- Using simulation, we basically produce synthetic data.
- Simulation allows us to generate many values of the random variables without physically performing the random experiment.
- Extremely useful in a wide spectrum of disciplines: Operation Research, Physics, Finance, Chemistry, Biology and Medicine, Artificial Intelligence, Catastrophe modelling.

Steps in Simulation Process

- Step 1: Generating random digits (random numbers) –
 What is the purpose? How to generate?
- Step 2: Calculate cdf from pdf; Why? How?
- Step 3: (a) For discrete RV, allocate random numbers (via generalized inverse function)
 - (b) For continuous RV, allocate random numbers (via *inverse transformation method*)

Let's Watch...

https://www.youtube.com/watch?v=amXYVHiGTeg

Random Digits

- Let us generate one digit random number: put 10 balls with distinct levels 0,1, 2, ..., 9 in an urn, and pick one ball at random; read the level on it.
- So, each digit (for each ball) has equal probability
- To generate two digit random numbers, repeat the experiment twice.
- Instead of this long process, we may use random number tables readily available.
- By the way, random number generation is altogether a different topic itself, and we shall not discuss much.

Random Number

- Random numbers are numbers that occur in a sequence satisfying two conditions:
 - Values are uniformly distributed over a defined interval, usually on the interval [0,1].
 - Impossible to predict future values based on past or present values
- What are the *pseudo random* numbers? (can you find it using your calculator?)

Random Digit Table

10097 32533	76520 13586	34673 54876	80959 09117	39292 74945
37542 04805	64894 74296	24805 24037	20636 10402	00822 91665
08422 68953	19645 09303	23209 02560	15953 34764	35080 33606
99019 02529	09376 70715	38311 31165	88676 74397	04436 27659
12807 99970	80157 36147	64032 36653	98951 16877	12171 76833
66065 74717	34072 76850	36697 36170	65813 39885	11199 29170
31060 10805	45571 82406	35303 42614	86799 07439	23403 09732
85269 77602	02051 65692	68665 74818	73053 85247	18623 88579
63573 32135	05325 47048	90553 57548	28468 28709	83491 25624
73796 45753	03529 64778	35808 34282	60935 20344	35273 88435
98520 17767	14905 68607	22109 40558	60970 93433	50500 73998
11805 05431	39808 27732	50725 68248	29405 24201	52775 67851
83452 99634	06288 98083	13746 70078	18475 40610	68711 77817
88685 40200	86507 58401	36766 67951	90364 76493	29609 11062
99594 67348	87517 64969	91826 08928	93785 61368	23478 34113
65481 17674	17468 50950	58047 76974	73039 57186	40218 16544
80124 35635	17727 08015	45318 22374	21115 78253	14385 53763
74350 99817	77402 77214	43236 00210	45521 64237	96286 02655
69916 26803	66252 29148	36936 87203	76621 13990	94400 56418
09893 20505	14225 68514	46427 56788	96297 78822	54382 14598

Random Digit Table

(Table 3.9; Page: 79)

Column	Random digits		
Row	(1)	(2)	(3)
1	10480	15011	01536
2	22368	46573	25595
3	24130	48360	22527
4	42167	93093	06243
5	37570	39 975	81837
6	77921	<u>06</u> 907	11008
7	99562	72 905	56420
8	96301	91 977	05463
9	89579	<u>14</u> 342	63661
10	85485	36857	43342

innovate achieve lead

Remarks

- To pick 1-digit random number, look at the 1st digit occurring on the table; alternatively, you can choose any cell and see the 1st digit.
- To produce a sequence of 10 one-digit random number, pick randomly a location; start reading either column wise or row wise; if you come to an end of a column/row, continue with the 1st entry of the next column/row. For 10 r-digits random numbers, same...
- While producing number from table, DO NOT leave any cell in between, otherwise randomness effect will be violated.

Simulation: Discrete RV

Ex 1: Probability that a computer software salesperson will make 0, 1, 2, 3, 4, or 5 sales on a day are 0.10, 0.30, 0.25, 0.15, 0.14, and 0.06. Use two-digit random numbers 15, 45, 23, 72, 90 to simulate his sales on 5 days. Hence, estimate his average daily sales.

Solution: Allocation of RNs innovate

Value of RV (X=x)	Probability P(X=x)	Cumulative Prob. P(X ≤ x)	Allocation of Random Numbers
0	0.10	0.10	00-09
1	0.30	0.40	10-39
2	0.25	0.65	40-64
3	0.15	0.80	65-79
4	0.14	0.94	80-93
5	0.06	1.00	94-99

Solution: Average Sale

2-digit RNs	Value of RV
15	1
45	2
23	1
72	3
90	4

- As per the RNs given in the exercise, value of RVs (sales) correspond to outcomes 1, 2, 1, 3, 4.
- Hence, average sale = (1+2+1+3+4)/5 = 2.2
- If you change RNs to 25, 35, 52, 36, 78, then?
- If you change RNs to 445, 125, 360, 787, 111, then?
- Can you calculate sample variance of the sale?

Simulation: Discrete RV

Example 3.9.2. (Page 79): Suppose that at a particular airport planes arrive at an average rate of one per minute and depart at the same rate. We are interested in simulating the behavior of the random variable Z, the number of planes on the ground at a given time. We will simulate Z for five consecutive one-minute periods. Note that for each of these periods the random variables X, the number of arrivals, and Y, the number of departures, are both Poisson variables with parameters k=1. Assume that initially, *Z*= 100.

Solution: Allocation of RNs

Value of RV (number of arrivals, departures)	Probability	Cumulative Prob.	Allocation of Random Numbers
0	0.368	0.368	000-367
1	0.368	0.736	368-735
2	0.184	0.920	736-919
3	0.061	0.981	920-980
4	0.015	0.996	981-995
5	0.003	0.999	996-998
6	0.001	1.000	999

Random Number Table

(Table 3.9; Page: 79)

Column	Random digits		
Row	(1)	(2)	(3)
1	10480	15011	015 β6
2	22368	46573	255 95
3	24130	48360	225 27
4	42167	93093	062 43
5	37570	39975	818 37
6	77921	06907	110 08
7	99562	72905	564 20
8	96301	91977	054 63
9	89579	14342	636 51
10	85485	36857	433 42

Time span (min)	3-digit RNs (from table 3.9)	No of arrivals (x)	No of departures (y)	Number on ground at end of time period (z)
1	015	0		
	255		0	100
2	225	0		
	062		0	100
3	818	2		
	110		0	102
4	564	1		
	054		0	103
5	636	1		
	433		1	103

- On the average, how many planes are on the ground?
- How much variability is there in the number of planes on the ground?

Homework

HW 1: Let *X* be a discrete random variable with the following distribution :

X : 1

2

3

4

Probability: 0.2

0.1

0.4

0.3

- (a) Simulate five values of *X* based on the random numbers 101, 001, 205, 989, 871
- (b) Simulate five values of *X* based on the random numbers 201, 111, 255, 999, 181
- (c) Simulate five values of X based on the random numbers 21, 11, 55, 99, 81
- (d) Compare.

Rationale: Simulation of Discrete RV

X: discrete RV; F(x) is a step function

We know,
$$u = F(x) \in [0,1]$$

To simulate the values x of X, we find

$$x = F^{-1}(u) = \inf\{x : F(x) > u\}; u \in [0,1)$$

Here u is a random number $\in [0,1)$, and values of u are generally provided to you

Course No: MATH F113

Probability and Statistics

Simulation: Continuous RV

It is based on the following fact:

If X is a continuous RV with cdf F(x),

then U = F(X) has uniform dist. on [0,1].

Thus, given a value $u \in [0,1)$ of the uniform RV

U on [0,1], a value x of X can be generated

as follows (Inverse Transformation Method):

$$u = F(x) \quad \forall x \implies x = F^{-1}(u)$$

Example: Exponential (β)

Let X has the exponential distribution with parameter β . How to generate exponential random variate?

HW 2:

If $X \sim \exp(\beta = 5)$, simulate five values of X using the RNs 97, 23, 09, 40, and 99.

Example: Exponential (β)

$$f(x) = \begin{cases} \frac{1}{\beta} e^{-\frac{x}{\beta}}; x \ge 0, \beta > 0\\ 0; \text{o.w} \end{cases}$$

$$F(x) = \begin{cases} 1 - e^{-\frac{x}{\beta}}; x \ge 0, \beta > 0\\ 0; \text{o.w} \end{cases}$$

Let $u \in [0,1)$ be a value of U, then setting u = F(x),

$$1 - e^{-\frac{x}{\beta}} = u \implies x = -\beta \ln(1 - u), 0 \le u < 1$$

$$\implies x = -\beta \ln(u), 0 < u \le 1$$

$$(:: U \sim unif(0,1) \Rightarrow (1-U) \sim unif(0,1))$$

Example: Uniform (a,b)

Let X has the uniform distribution on [a,b].

How to generate uniform random variate?

HW 3:

If $X \sim U(-3,5)$, simulate five values of X using the RNs 97, 23, 09, 40, and 99.

Example: Uniform (a,b)

$$f(x) = \begin{cases} \frac{1}{b-a}; a \le x \le b \\ 0; \text{o.w} \end{cases}$$

$$F(x) = \begin{cases} \frac{0; x < a}{b-a}; a \le x \le b \\ \frac{1; x > b}{b-a} \end{cases}$$

Let
$$u \in [0,1)$$
 be a value of U , then setting $u = F(x)$,

$$\frac{x-a}{b-a} = u \implies x = a + (b-a)u, 0 \le u < 1$$

Example: Uniform (a,b)

HW 4: If $X \sim U(4,7)$, simulate three values of X using 3-digit RNs 235, 789, and 178.

Hint:

$$F(x) = \begin{cases} 0; x < 4 \\ \frac{x - 4}{3}; 4 \le x \le 7 \\ 1; x > 7 \end{cases}$$

3-digit RNs	u	x=F ⁻¹ (u)
235	0.235	4+3(0.235)
789	0.789	4+3(0.789)
178	0.178	4+3(0.178)

HW 5: A continuous random variable *X* has the following pdf:

$$f(x) = \begin{cases} -x^3, & -1 < x < 0 \\ \frac{1}{2}x, & 0 < x < 1 \\ \frac{1}{2}, & 1 < x < 2 \\ 0, & \text{elsewhere} \end{cases}$$

Using the inverse transform method, find a formula for generating values of X. Use two digit RNs 37, 13, 83 to generate three values of X.

$$F(x) = \begin{cases} 0, & x < -1 \\ \frac{1}{4} (1 - x^4), & -1 \le x < 0 \\ \frac{1}{4} (1 + x^2), & 0 \le x < 1 \\ \frac{x}{2}, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$
 Also, F(0) = 0.25, F(1) = 0.50, F(2) = 1

Let $u \in [0,1)$ be a value of U, then setting u = F(x),

If
$$0 \le u < 0.25$$
,

If
$$0 \le u < 0.25$$
, $x = -(1-4u)^{\frac{1}{4}}$

If
$$0.25 \le u < 0.50$$
, $x = (4u - 1)^{\frac{1}{2}}$

$$x = (4u - 1)^{1/2}$$

If
$$0.5 \le u < 1$$
,

$$x = 2u$$

For $u_i = 0.37$, 0.13, 0.83, calculate x_i .

HW 6: A continuous random variable *X* has the following dist:

$$f(x) = \begin{cases} x; & 0 \le x \le 1 \\ 2 - x; & 1 < x \le 2 \\ 0; & e.w \end{cases}$$

RNs: 25, 84, 49, 76, 08

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{6x - x^2 - 5}{5}, & 1 \le x < 3 \\ \frac{x^2 - 6x + 13}{5}, & 3 \le x < 4 \\ 1, & x \ge 4 \end{cases}$$

RNs: 152, 928, 041

Using the inverse transform method, generate values of X.

HW 7: Simulate one value of Binomial RV with n=3, p=0.40, using two-digit RNs 34, 45, 98.