Rates Série A 2014-2019

```
library(dplyr)
library(knitr)
library(reshape2)
library(ggplot2)
load("dados_serie_a_2014_2019.RData")
x = list(); y = list(); xy = list()
for(i in 1:N) {
  x[[i]] = c(x1[[i]], x2[[i]])
  y[[i]] = c(y1[[i]], y2[[i]])
 xy[[i]] = paste(x[[i]], y[[i]], sep = "-")
tables = lapply(xy, table)
scores = NULL
c = 0
for(i in 0:3) {
 for(j in 0:3) {
    c = c + 1
    scores[c] = paste(i, j, sep = "-")
}
delta_home = list(); delta_away = list(); t = list()
for(i in 1:length(scores)) {
  tmp_delta_home = NULL
  tmp_delta_away = NULL
  tmp_t = NULL
  for(k in 1:N) {
    if(scores[i] %in% names(tables[[k]])) {
      next_score = names(tables[[k]])[which(names(tables[[k]]) ==
                                               names(tables[[k]][scores[i]])) + 1]
      if(is.na(next_score)) {
        tmp_delta_home[k] = 0
        tmp_delta_away[k] = 0
      } else {
        if(as.integer(substr(next_score, 1, 1)) > as.integer(substr(scores[i], 1, 1))) {
          tmp_delta_home[k] = 1
          tmp_delta_away[k] = 0
        } else {
          tmp_delta_home[k] = 0
          tmp_delta_away[k] = 1
```

```
tmp_t[k] = tables[[k]][scores[i]]
    } else {
      tmp_delta_home[k] = 0
      tmp_delta_away[k] = 0
      tmp_t[k] = 0
    }
  }
  delta_home[[i]] = tmp_delta_home
  delta_away[[i]] = tmp_delta_away
  t[[i]] = tmp_t
}
rates = NULL; rates_home = NULL; rates_away = NULL
for(i in 1:length(scores)) {
  rates[i] = (sum(delta_home[[i]]) + sum(delta_away[[i]])) / sum(t[[i]])
  rates_home[i] = sum(delta_home[[i]]) / sum(t[[i]])
  rates_away[i] = sum(delta_away[[i]]) / sum(t[[i]])
}
# Crowder pag 66
sd_home = NULL; sd_away = NULL; sd = NULL
for(i in 1:length(scores)) {
  sd[i] = rates[i] / sqrt(sum(delta_home[[i]]) + sum(delta_away[[i]]))
  sd_home[i] = rates_home[i] / sqrt(sum(delta_home[[i]]))
  sd_away[i] = rates_away[i] / sqrt(sum(delta_away[[i]]))
tib = tibble(Rate = paste0("$\\nu_{", stringr::str_replace(scores, "-", ""), "}$"),
             'Est.(both)' = rates, 'Est.(home)' = rates_home, 'Est.(away)' = rates_away,
             'S.e.(both)' = sd, 'S.e.(home)' = sd_home, 'S.e.(away)' = sd_away)
```

Table 1: Estimates and standard errors of the rate of the time to the next goal

Rate	Est.(both)	Est.(home)	Est.(away)	S.e.(both)	S.e.(home)	S.e.(away)
$\overline{\nu_{00}}$	0.0224	0.0137	0.0087	0.0005	0.0004	0.0003
ν_{01}	0.0239	0.0151	0.0088	0.0010	0.0008	0.0006
ν_{02}	0.0250	0.0158	0.0092	0.0021	0.0017	0.0013
ν_{03}	0.0222	0.0141	0.0081	0.0047	0.0038	0.0028
$ u_{10}$	0.0220	0.0128	0.0091	0.0007	0.0006	0.0005
ν_{11}	0.0276	0.0174	0.0102	0.0012	0.0010	0.0008
ν_{12}	0.0271	0.0183	0.0088	0.0023	0.0019	0.0013
ν_{13}	0.0288	0.0144	0.0144	0.0061	0.0043	0.0043
ν_{20}	0.0238	0.0143	0.0095	0.0014	0.0010	0.0009
ν_{21}	0.0255	0.0152	0.0103	0.0017	0.0013	0.0011
ν_{22}	0.0293	0.0178	0.0115	0.0033	0.0026	0.0021
ν_{23}	0.0357	0.0198	0.0159	0.0084	0.0063	0.0056
ν_{30}	0.0211	0.0129	0.0082	0.0023	0.0018	0.0015
ν_{31}	0.0291	0.0162	0.0129	0.0035	0.0026	0.0023
ν_{32}	0.0255	0.0155	0.0100	0.0048	0.0037	0.0030
ν_{33}	0.0317	0.0159	0.0159	0.0112	0.0079	0.0079

```
names(rates) = scores
names(rates_home) = scores
names(rates_away) = scores
mat = matrix(NA, nrow = 4, ncol = 4)
rownames(mat) = paste0(0:3)
colnames(mat) = paste0(0:3)
mat home = mat
mat_away = mat
for(i in 1:4) {
 for(j in 1:4) {
    mat[i,j] = rates[paste(i-1, j-1, sep = "-")]
    mat_home[i,j] = rates_home[paste(i-1, j-1, sep = "-")]
    mat_away[i,j] = rates_away[paste(i-1, j-1, sep = "-")]
  }
}
melted_mat = melt(mat) %>%
 rename(x = Var1, y = Var2)
melted_mat_home = melt(mat_home) %>%
 rename(x = Var1, y = Var2)
melted_mat_away = melt(mat_away) %>%
  rename(x = Var1, y = Var2)
```

\hat{v}_{xy} for the both teams

\hat{v}_{xy} for the home team

\hat{v}_{xy} for the away team

