ECE 471/571.	Digital	Signatures	
Alice m, 6	= sign	(m)	B.L
Kpriva non-1	repudiation	n	KpubA
		Verify	lo, m, Kp
		7	true l'alse.
RSA signature		,	
(d,n)	private	e key	P. 9.
< e , n>	pub	key.	$n = p_i q$
sign. $ \sigma = m^d \mod n $			co-pième to \$Cn) = e mod \$Cn)
ver e mod n 7 m	modn		
Existential forgery	w/k	ey only	attack
\mathcal{O} . $m=1$.	6=1.	1 d =	=1 mode
2). randomly	pick +	- 1 ^e :	= (modn
· • /	1 \ 4	7 <i>A</i>	

m = ye modn md = (ye)dmodn = y mod (m) mod n $\equiv y \text{ midn}$ $\langle m, y \rangle = \langle y^e, y \rangle$ solution:

hach-then sign <m, \(\sigma = \left(H(m)\right)^{\delta} \) mod \(n \). $oldsymbol{G} = H(m)$ pre-image resistence Existential forgery w/known message attack (m_1, σ_1) $\sigma_1 = m_1^d \mod n$ (m_2, σ_2) $\sigma_2 = m_2^d \mod n$ 7 Lm' 5 D L- K. G. = [m.m.]

 $\langle m' = (m_1 \cdot m_2), \delta = 0, \delta_2 \rangle$ selective forgery w/ chosen message attack chosse m, gets of form choose m/m = mz, gets $M = m_1 \cdot m_2$. $\delta_1 = \delta/\delta_2 \mod n$ Hash-then sign - Exist. forgery W/ known msg. attack. Mexist (m, d) given (m', d') adv: find m ± m' h(m) = h(m') $h(m) = h(m') \mod n$

Decond - pre image resistance

- Exist. forgery w/ chosen msg attack?

choose < m, o>

find any m', forge < m', o'>

find collision.sit. m \neq m'

h (m') = h (m)

obtain o

h (m) d mod n = h (m') d mod n