Mathematics for Machine Learning (Al 512)

Amit Chattopadhyay

IIIT-Bangalore

Lecture: Stationary Distribution

Stationary Distribution

Stationary Distribution: Definition

A row vector $\underline{\pi} = (\underline{\pi_1, \dots, \pi_N})$ is said to be a **stationary distribution** for the MC, if it satisfies:

(i)
$$\pi_i \geq 0$$
 for $i = 1, 2, ..., N$ and $\sum_{i=1}^{N} \pi_i = 1$ (b.m.f.)

(ii) $\pi \mathbb{P} = \pi$

Examples:

1. Every probability distribution on the states is a stationary probability distribution when \mathbb{P} is the identity matrix.

$$\checkmark$$
2. If $\mathbb{P} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{10} & \frac{9}{10} \end{bmatrix}$ then $\pi = (\frac{1}{6}, \frac{5}{6})$ satisfies $\pi \mathbb{P} = \pi$.

$$\frac{P}{P} = \frac{P}{P}$$

$$\frac{P}{P} = \frac{P}{P}$$

$$\frac{P}{P} = \frac{P}{P}$$

Largest eigenvalue of P

Lemma: The largest eigenvalue of a **row-stochastic** square matrix \mathbb{P} is 1.

Proof: Let \mathbb{P} be an $N \times N$ row-stochastic matrix.

To show for any other eigenvalue λ of \mathbb{P} , $|\lambda| \leq 1$:

Then $\boxed{\mathbb{P}\underline{1} = \underline{1}} \Longrightarrow \underline{1}$ is a right eigenvector with eigenvalue 1.

$$\mathbb{P}\left(\begin{matrix} 1 \\ \vdots \\ 1 \end{matrix}\right) = \left(\begin{matrix} 1 \\ \vdots \\ \vdots \\ 1 \end{matrix}\right)$$

To show for any other eigenvalue
$$\lambda$$
 of \mathbb{P} , $|\lambda| \leq 1$:

$$|P| = \begin{pmatrix} |a_{1}| \\ |b_{1}| \end{pmatrix}_{N \times N}$$

$$|P| = |A| \cup |P|$$
with $|Q| = \begin{pmatrix} |Q_{1}| \\ |Q_{2}| \\ |Q_{N}| \end{pmatrix}$

$$|A| = |A| \cup |A|$$

$$|A| = |A| = |A|$$

$$|$$

Largest eigenvalue of \mathbb{P}

(P1) If (λ, \mathbf{v}) be a right eigen-pair of square matrix \mathbb{P} , then (λ, \mathbf{v}^T) is a left eigen-pair of the matrix \mathbb{P}^T . $\Rightarrow \mathcal{V}^T \mathbb{P}^T = \lambda \mathbb{P}^T$ (P2) A matrix \mathbb{P} and its transpose \mathbb{P}^T have the same set of eigenvalues.

<**₫** > 夕 Q (?)

Largest eigenvalue of a non-negative matrix

Perron-Frobenius (P-F) Theorem

1 (if aperiodie MC)

Let $\mathbb A$ be an irreducible, non-negative $N \times N$ matrix with period p and spectral radius $\rho(\mathbb A) = r$. Then

- 1. The number r is a **unique eigenvalue** of \mathbb{A} (it is a simple root of the characteristic equation of \mathbb{A}).
- 2. A has a <u>left eigenvector</u> \mathbf{v} with associated eigenvalue r, and \mathbf{v} has all positive entries. $|\lambda_1| = |\lambda_2| = |\lambda_b| = r$
 - 3. \mathbb{A} has exactly p complex eigenvalues with modulus r and each is a simple root of the characteristic polynomial of \mathbb{A} .
- **Note:** Using P-F theorem, an irreducible and aperiodic transition matrix \mathbb{P} (which is row-stochastic) has a unique eigenvalue 1 and all other eigenvalues have moduli **strictly less** than 1.

Uniqueness and Convergence

Theorem: (i) An irreducible, aperiodic, homogeneous finite Markov chain has a unique stationary distribution. (Ref. Olle Hanshire)

(ii) Furthermore, if \mathbb{P} is **diagonalizable** and \mathbb{P} has N linearly independent eigenvectors, then $\mathbf{p}^{(n)}$ (distribution of X_n) will converge to this **unique stationary distribution** as time $n \to \infty$, regardless of the initial distribution.

$$\lambda_{1}, \dots, \lambda_{\frac{b}{b}}, \dots \lambda_{\frac{b}{b}}$$

$$AM(\lambda_{\frac{b}{b}}) = GM(\lambda_{\frac{b}{b}})$$

Power Iteration: Convergence

To converge to the eigenvector corresponding to the dominant eigenvalue of \mathbb{P} .

Assumptions:

$$u \lambda_1 = 1 > |\lambda_2| \ge |\lambda_3| \ge \ldots \ge |\lambda_N|.$$

Let, $\underline{v}_1, \underline{v}_2, \dots, \underline{v}_N$ be the corresponding left eigenvectots of \mathbb{P} .

2. Initial distribution $p^{(0)}$ has a non-zero component in the direction of the eigenvector along the dominant eigenvalue, i.e.

$$\mathscr{N}\underline{p}^{(0)} = \underline{\theta_1}\underline{v}_1 + \underline{\theta_2}\underline{v}_2 + \ldots + \underline{\theta_N}\underline{v}_N \text{ with } \underline{\theta_1} \neq 0.$$

Power Iteration: Convergence

Using Condition 1,
$$\lim_{n\to\infty}\underline{\mathbf{p}}^{(n)}=\lim_{n\to\infty}\sum_{i=1}^n\theta_i\lambda_i^n=\underbrace{\theta_1\underline{\mathbf{v}}_1}$$

Thus

$$\pi = \theta_{1}\underline{V}_{1} \text{ satisfies } \pi \mathbb{P} = \pi.$$

Note: θ_1 is the normalizing factor for π to be a p.m.f.

Example: Stationary Distribution

Ex 1: Consider the MC with the transition matrix:

Show that the stationary distribution of the MC is

$$\underline{\pi} = \left[\frac{21}{62}, \frac{23}{62}, \frac{18}{62} \right] \approx [0.3387, 0.3710, 0.2903].$$

Power Iteration Method

Initialize:
$$\underline{p}^{(0)} = [1/3, 1/3, 1/3]$$

Iteration:

Stopping Criterion:
$$\|\underline{\mathbf{p}}^{(i+1)} - \underline{\mathbf{p}}^{(i)}\|_1 < \varepsilon$$
 0.0000 1

11/11