增量實驗

111550088 張育維 111550176 陳湛宇

膏、 關於增量實驗

增量實驗是為了讓運動員能夠了解自己身體的極限,避免在訓練或是競賽 的過程中遇到精疲力盡的情況,以降低對身體造成損害的風險。以下是這個實 驗的大致流程圖。

貳、 參數代表之生理意義

- 一、HR(心率):心臟跳動的頻率。
- 二、SV(心搏量):每次心臟輸出的血量。
- 三、CO(心輸出量):

單位時間內心臟輸出的血量,受心臟調節控制。可由 HR × SV 獲得。

- 四、LF(低頻範圍的正常心跳間期的變異數): 0.04~0.15Hz,通常受交感神經調節,但也和副交感神經有關。
- 五、HF(高頻範圍的正常心跳間期的變異數): 0.15~0.4Hz,主要受副交感神經調節。
- 六、LF/HF:交感和副交感神經的相對活躍程度,可以作為緊張的程度的指標。

參、 系統架構與數據處理之流程圖

肆、 訊號分析方法

以 RRI[n] = (Index[n+1] - Index[n]) / 200 計算 RRI 並作內插。
利用助教給的內插法製作,求出 RRI 後,每 0.005 秒做一次內插。

二、 再以 Fast Fourier Transform 分析:

使用 Labview 內建的 vi 製作,再用 FFT power spectrum 的 vi 轉換後用圖片釋出。

三、以 HR[n]=60×200/(Index[n+1]-Index[n])=60/RRI[n] 自己計算 HR[n], 輸出成.csv 檔,並與 data 中的 HR 做比較。後面的 for loop 是如果訊號大 於 200,就讓它做前項和後項的平均,整合一下資料。

四、 SV 的數據經內插轉為對時間的關係。這邊的內插跟上面大同小異,只是 因為要轉成與時間相關的數據,因此需要用到 index 做搭配。

五、再以 Fast Fourier Transform 分析 SV。這裡和做 RRI 的基本一致,也是利用 Labview 內建的 vi 做 FFT。

六、 CO=HR × SV,以 HR 及換成時間相關的 SV 數據計算 CO 並作圖。以下 LF 和 HF 的計算方式與 RRI 和 SV 的都一樣,就只統一做說明。

七、LF:頻率在 0.04~0.15Hz 區間,我們的想法是將 0.04 和 0.15 減去 fo。 因為我們發現在 FFT 之後,fo並不是從 0 開始。然後除以 df 求出我們需要的頻段,並利用 array subset 將它框出來,加總乘以 df,利用求黎曼和的方式得出近似積分的數據。

八、 HF: 算法和 LF 大同小異,只是其頻段詩出現在 0.15~0.4Hz 區間。

九、LF/HF:把LF與HF都算出來後相除。

十、 Total Power:利用整個波型的數值總和乘以 df 做計算,也是利用求黎曼和的方式得到近似積分的結果。

伍、 結果分析與討論

一、RRI對心跳次數作圖。前六張為CW助教測試結果,後七張則是HT助教的。整體而言,隨著 stage 的增加,RRI有逐漸減少的趨勢,也就是心跳之間的間隔變小了。我們推測是因為要維持運動的效能,因此HR 會逐漸加快,而RRI與HR 成反比,所以逐漸變小。而在 recovery 的階段中,因為HT助教的RRI回升趨勢較大,所以從這個部分比較,我們認為HT 助教比較有運動習慣。

二、經 Fast Fourier Transform 後得到的 RRI power spectrum。 經過 FFT 轉換後,我們可以得到在每個 stage 中,對應頻率的關係圖。這對於後面我們要算 HF, LF, total power 很有幫助。而分析 RRI 的 power spectrum,對於了解心血管功能、自主神經活動都有幫助。 前六張是 CW 助教的,後七張是 HT 助教的。

整體來說和原本的數據亚沒有太大的差異,趨勢和形狀也大致相同把所有的 stage (CW 助教 6 個,HT 助教 7 個)合在一起。

四、 內插後的 SV series。前六張是 CW 助教的,後七張是 HT 助教的。 進行 FFT 前,必須建立與數據與時間的關係,因此會先完成此步驟。

五、經 Fast Fourier Transform 後的 SV power spectrum。建立與頻率的關係並作 波形圖,方便我們計算 SV 的 LF, HF, LF/HF, total power 等,也有助於了 解心臟功能、心血管功能和血液動力。

六、 CW 助教(左)和 HT 助教(右)的 CO 對心搏數作圖的比較。 這個實驗中,判斷兩位助教在體能上的強弱用 CO 可能不如 HR, SV 準確, 但在其他時候,例如血液動力評估、心血管疾病評估都是很有幫助的數據。

セ、LF&HF

這是我們針對兩位助教的 RRI, SV 的 power spectrum 做分析出來的結果。副交感神經和心臟休息、恢復和消化扮演重要角色,因此高功率的 HF 和心臟狀態良好、血管彈性良好有偌大的關聯;而交感神經扮演的角色與運動、壓力等較有關係,因此 LF 也可以被用來當作壓力、心臟負荷、血管問題的基準。

由圖中可知,在SV方面,CW助教的HF在第四階段(stage 3)前都高於LF,並在第五階段(stage 4)時被超過,並在最後階段(recovery)趨近於一致;而HT助教的HF則一直處於高於LF的狀態,並在第六階段(stage 5)的時候有產生明顯的高峰。在RRI方面,CW助教的HF一樣是在第五階段(stage 4)的時候被LF超過,最後階段趨近一致。比較不一樣的是RRI的HF在圖中有產生明顯的高峰;而HT助教的則是一樣HF始終大於LF,整體趨勢為下降,並且最後也趨於一致。

從以上訊息判斷,兩位助教的數據比起來,我們認為 HT 助教較有運動習慣,因為 HT 助教的 HF 始終比 LF 大,我們認為這是因為其已經習慣運動了,因此在遇到強度時,交感神經依舊不需要太活躍也能應付。

八、LF/HF

和前面的 LF, HF 差不多,但這更能看出 LF 與 HF 之間的關係。有鑑於兩者與副交感,交感神經的關聯, LF/HF 可以用來看目前較為活躍的是哪一個自主神經。

根據這張圖,我們認為 HT 助教較會運動。因為在兩張圖中,我們都可看出 CW 助教的值有的時候會大於一,也就是代表其 LF>HF,也就是交感神經較為活躍;而 HT 助教的數據整體都小於一,代表其 HF>LF,也就是副交感神經較為活躍。因此從這裡可以看出,HT 比較習慣強度運動,運動能力較強。

九、 RRI & SV total power

在增量實驗中,我們可以利用功率來觀察測試者的受負荷情形,因為當負荷增加,也就是進入了下一個 stage 時,如果功率也有跟著上升,表示測試者可以承受得起;藉由這個方法,我們可以觀察受測者的能耐究竟在那個範圍內。另外,我們也可以做效能的評估,根據網上資料顯示,如果總功率的增加幅度越大,那就代表心臟和自律神經有著更好的適應能力和調節功能。

利用 excel 計算整個實驗過程中 CW 和 HT 助教的 SV 與 RRI 的 total power,得到了以下數據:

	CW	HT
SV	3748.423	1024.907
RRI	0.028613	0.020889

根據這些數據,很難判定誰的運動強度較高。因為 CW 助教的數據都大於 HT 助教,就前述論點而言, CW 助教應該有著較好的適應和調節能力。然而若細看兩位助教的 SV 圖,會發現 CW 助教的 SV 圖在第二階段 (stage 1)有了明顯的高峰後,整體趨勢就呈現下降的現象,但是 HT 助教的卻在第四階段(stage 3)仍出現了一個跟第二階段(stage 1)可以相比擬的高峰,代表其在受負荷能力上較有優勢。綜上所述,我們認為沒辦法用這個判斷兩人的運動強度。

十、 綜合比較

這兩張圖我們是比較兩個人的 HR, SV, CO 會有怎麼樣的變化。首先,在 CW 助教的圖中,SV 的起伏不大,但細看的話最大值約略出現在第三階段(stage 2),後面便開始下降。而 HR 的部分則是上升至第五階段(stage 4),也就是在休息前皆一直保持上升趨勢,並且 CO 因為 HR 的關係,整體來說,在休息以前也是上升的,且趨勢較受 HR 的趨勢影響。

而 HT 助教的圖也呈現了差不多的現象,雖然和 CW 助教相比 HT 助教的 SV 出現了較大的波動,但整體而言波動也不大,且 HR 在休息前也是上升的, CO 也較受 HR 的趨勢影響。

根據這兩張圖,我們認為HT助教比較有運動習慣,因為在SV上,其值較CW助教的大,並且運動期間相同階段比較結果顯示其HR較CW助教的小。並且其又多騎了一個stage,因此我們認為其運動能力較強。

同樣的結果可由下列的柱狀圖分析而得。

陸、 結論

對於這次的增量實驗數據分析,我們認為 HT 助教的運動能力較強,因為在很多的圖表中都出現了支持這個可能的證據。

畢竟是第一次用 Labview 練習分析數據,這次的期末專題對於我們來說實在是有一點吃力,並且我們也不太確定我們的算法是否正確,而且很多的專有名詞也似懂非懂。不過透過這次的報告,確實讓我們更了解了這項實驗的相關資訊,也熟悉了 Labview 的一些使用方法,獲益良多。