Lecture 9

Philosophy 109

Caley Howland

March 2, 2020

Caley Howland Lecture 9 03/2/20 1/22

Participatory Recap

• Write the truth table definitions of our 5 connectives.

 Caley Howland
 Lecture 9
 03/2/20
 2 / 22

Negation

3/22

Conjunction

$$\begin{array}{c|ccc} p & q & p \land q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

 Caley Howland
 Lecture 9
 03/2/20
 4/22

Disjunction

$$\begin{array}{c|ccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

 Caley Howland
 Lecture 9
 03/2/20
 5/22

Conditionals

р	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

The Biconditional

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Exercises

• Chapter 10 exercises.

(ㅁㅏㅓ롼ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

 A statement is logically true (or tautologous) if it is true on every interpretation (i.e., on every row of its truth-table).
 For example, any statement of the form p ∨ ¬p is logically true.

 Caley Howland
 Lecture 9
 03/2/20
 9/22

 A statement is logically true (or tautologous) if it is true on every interpretation (i.e., on every row of its truth-table).
 For example, any statement of the form p ∨ ¬p is logically true.

 A statement is logically true (or tautologous) if it is true on every interpretation (i.e., on every row of its truth-table).
 For example, any statement of the form p ∨ ¬p is logically true.

• A statement is logically false (or self-contradictory) if it is false on all interpretations. For example, any statement of the form $p \land \neg p$ is logically false.

 A statement is logically true (or tautologous) if it is true on every interpretation (i.e., on every row of its truth-table).
 For example, any statement of the form p ∨ ¬p is logically true.

• A statement is logically false (or self-contradictory) if it is false on all interpretations. For example, any statement of the form $p \land \neg p$ is logically false.

 Caley Howland
 Lecture 9
 03/2/20
 9/22

Logical Contingency

• A statement is **contingent** if it is neither tautological nor self-contradictory. In other words, on at least one row of its truth-table, it comes out true, and on at least one row, it comes out false. For example, the claim $A \rightarrow B$ is logically contingent.

Α	В	$A \rightarrow B$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Equivalence

• Statements p and q are **equivalent** (written $p \Leftrightarrow q$) if they have the same truth-value on all interpretations (i.e., on each row of their truth-tables). For instance, $A \to B$ and $\neg A \lor B$ are logically equivalent.

Α	В	A	\rightarrow	В	_	Α	V	В
T	Т	Т	Т	Т	F	Т	Т	Т
Τ	F	T	F	F	F	Т	F	F
F	Т	F	F T	Т	Т	F	Т	Т
F	F	F	Т	F	Т	F	Т	F

Equivalence

• Statements p and q are equivalent (written $p \Leftrightarrow q$) if they have the same truth-value on all interpretations (i.e., on each row of their truth-tables). For instance, $A \rightarrow B$ and $\neg A \lor B$ are logically equivalent.

Α	В	Α	\rightarrow	В	_	Α	V	В
T	Т	Т	T F T	Т	F	Т	Т	Т
Т	F	Т	F	F	F	Т	F	F
F	Т	F	Т	Т	Т	F	Т	Т
F	F	F	Т	F	Т	F	Т	F

 Comprehension check: What's the difference between $p \leftrightarrow q$ and $p \Leftrightarrow q$?

Contradictoriness

• Statements p and q are contradictory if they have opposite truth-values on all interpretations. For instance, $A \rightarrow B$ and $A \land \neg B$ are contradictory.

Α	В	Α	\rightarrow	В	Α	\wedge	\neg	В
T	Т	Т	Т	Т	Т	F	F	T
Τ	F	Т	F	F	Т	Т	Τ	F
F	Т	F	Τ	Т	F	F	F	Т
F	F	F	T F T	F	F	F	Τ	F

 Caley Howland
 Lecture 9
 03/2/20
 12/22

Inconsistency

 Statements p and q are inconsistent if there is no interpretation on which they are both true. For instance, A ↔ B and A ∧ ¬B are inconsistent. (Note: they are not contradictory!)

Α	В	Α	\leftrightarrow	В	Α	\wedge	\neg	В
Т	Т	Т	Т	Т	Т	F	F	Т
Τ	F	Т	F	F	Т	Т	Τ	F
F	Т	F	F	Т	F	F	F	Т
F	F	F	T F F T	F	F	F	Τ	F

13/22

Consistency

 Statements p and q are consistent if there's at least one interpretation on which they are both true. For example, A ∧ B and A ∨ B are consistent.

Α	В	Α	\wedge	В	Α	V	В
T	Т	Т	Т	Т	Т	Т	Т
Т	F	Т	F	F	Т	Т	F
F	Т	F	F	F	F	Т	Τ
F	F T F	F	F	F	F	F	F

Relationships between Concepts

- Equivalence doesn't imply consistency. (Example?)
- Consistency doesn't imply equivalence. (Example?)
- Contradictoriness implies inconsistency. (Why?)
- Inconsistency doesn't imply contradictoriness. (Example?)

 Caley Howland
 Lecture 9
 03/2/20
 15/22

Semantic Equivalence Example 1

- Recall that we can translate "p unless q" either as $\neg q \rightarrow p$ or as $p \lor q$.
- That's because they're equivalent, which we demonstrate with the following truth-table.

р	q	Г	q	\rightarrow	р	р	V	q
Т	Т	F	Т	Т	Т		Т	
Т	F	Т	F	Τ	Т		Т	
F	Т	F	Τ	Т	F		Τ	
F	F	Т	F	T T T F	F		F	

• Since their truth-tables are the same, we know $\neg q \rightarrow p \Leftrightarrow p \lor q$.

Semantic Equivalence Example 2

• $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$, as the following truth-table shows.

р	q	$(p \rightarrow q)$	\wedge	$(q \rightarrow p)$	p↔q
Т	Т	Т	Т	Т	Т
Т	F	F	F	Τ	F
F	Т	Т	F	F	F
F	F	Т	Т	T	Т

 Catey Howland
 Lecture 9
 03/2/20
 17 / 22

Example 3

- Intuitively, the truth-conditions for *exclusive* or (\oplus) are such that $p \oplus q$ is true just in case either p or q is true, but not both.
- The following truth-table shows how to represent exclusive or using our usual connectives.

р	q	$(p \lor q)$	\wedge	$\neg(p \land q)$	p⊕q
Т	Т	Т	F	F	F
Т	F	Т	Т	Т	Т
F	Т	Т	Т	T	Т
F	F	F	F	Τ	F

The Exhaustive TT Method for Validity Testing

 Recall: an argument is valid if it is impossible for its premises to be true while its conclusion is false.

The Exhaustive TT Method for Validity Testing

- Recall: an argument is valid if it is impossible for its premises to be true while its conclusion is false.
- Let $p_1, ..., p_n$ be the premises of an LSL argument, and let q be the conclusion of the argument. We then have:

$$P_1$$

$$\vdots$$

$$p_n$$

$$\vdots$$

$$g$$

is **valid** iff there is no row in the simultaneous truth-table of $p_1,...,p_n$ and q such that all of $p_1,...,p_n$ are true but q is false.

• In other words, the argument is invalid if we can find a row in the simultaneous truth-table that looks like this:

(Atomics)	p_1		p _n	q
	T	T	Т	F

Consider the argument:

$$\begin{array}{c}
A \\
A \to B \\
\therefore B
\end{array}$$

• Consider the argument:

$$\begin{array}{c}
A \\
A \to B \\
\vdots B
\end{array}$$

• We can construct a simultaneous truth-table as follows:

Α	В	Α	Α	\rightarrow	В	В
Т	Т	Т		Т		Т
Т	F	Т		F		F
F	Т	F		Τ		Т
F	F	F		Т		F

Consider the argument:

$$\begin{array}{c}
A \\
A \to B \\
\vdots B
\end{array}$$

• We can construct a simultaneous truth-table as follows:

Α	В	Α	Α	\rightarrow	В	В
T	Т	Т		Т		Т
Т	F	Т		F		F
F	Т	F		Τ		Т
F	F	F		Т		F

• Verdict: VALID. There's no row where A and $A \rightarrow B$ are true, but B is false.

Translate and symbolize the argument in TFL (if given in English).

 Caley Howland
 Lecture 9
 03/2/20
 22 / 22

- Translate and symbolize the argument in TFL (if given in English).
- Write out the symbolized argument.

 Caley Howland
 Lecture 9
 03/2/20
 22 / 22

- Translate and symbolize the argument in TFL (if given in English).
- Write out the symbolized argument.
- Make a simultaneous truth-table for the symbolized argument

Caley Howland Lecture 9 03/2/20 22 / 22

- Translate and symbolize the argument in TFL (if given in English).
- Write out the symbolized argument.
- Make a simultaneous truth-table for the symbolized argument
- See if there's a row on which all the premises are true, but the conclusion's false. If not, it's valid. Otherwise, it's invalid.

 Caley Howland
 Lecture 9
 03/2/20
 22 / 22