Tutorial letter 101/0/2024

Linear Algebra II

MAT2611

Year Module

Department of Mathematical Sciences

TUTORIAL RESOURCE FOR MAT2611

IMPORTANT INFORMATION:

This tutorial letter contains Assignment 3 for the module MAT2611

BAR CODE

ASSIGNMENT 03 Due date: Friday, 17 May 2024

Problem 9. Determine whether the sets U are V are subspace of \mathbb{R}^4 defined by

$$\begin{array}{lll} U & = & \{(x,y,z,0) \in {\bf R}^4: x+y=z\} \ {\rm and} \\ V & = & \{(x,y,z,v) \in {\bf R}^4: x=2z \ {\rm and} \ y=v+1\}. \end{array}$$

[10 marks]

Problem 10. Express the following as a linear combinations of $\mathbf{u} = (2, 1, 4)$, $\mathbf{v} = (1, -1, 3)$, and $\mathbf{w} = (3, 2, 5)$.

- (a) (6, 1, 6)
- (b) (0,0,0)
- (c) (7,8,9)

[10 marks]

Problem 11. Which of the following sets of vectors in \mathbb{R}^4 are linearly independent.

- (a) (1, 2, -2, 1), (3, 6, -6, 3), (4, -2, 4, 1)
- (b) (2,1,1,-4), (2,-8,9,-2), (0,3,-1,5), (0,-1,2,4)
- (c) (1,1,0,0), (0,1,0,1), (0,0,1,1), (1,0,1,0), (1,0,0,1)

[10 marks]

Problem 12. Determine whether the solution space of the system $A\mathbf{x} = \mathbf{0}$ is a line through the origin, a plane through the origin, or the origin only for

$$A = \left[\begin{array}{rrr} 1 & 2 & -6 \\ 1 & 4 & 4 \\ 3 & 10 & 6 \end{array} \right]$$

[10 marks]

[Total: 40 marks]

- End of assignment -