MA-102 B. Tech. II Sem (2021-2022) Tutorial sheet-02

Cholesky Decomposition:

Find Cholesky decomposition for following matrices.

1.
$$\begin{bmatrix} 1 & -1 & 2 \\ -1 & 5 & -4 \\ 2 & -4 & 6 \end{bmatrix}$$

Solution

1.

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -1 & 5 & -4 \\ 2 & -4 & 6 \end{bmatrix}$$
$$IA = A$$

$$R_2 \rightarrow R_2 + R_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 4 & -2 \\ 2 & -4 & 6 \end{bmatrix}$$
$$IE_1 A = A_1$$

$$R_3 \rightarrow R_3 - 2R_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} E_1 A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 4 & -2 \\ 0 & -2 & 2 \end{bmatrix}$$

$$IE_2E_1A = A_2$$

$$R_3 \to R_3 + \frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{bmatrix} E_2 E_1 A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 4 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$E_3 E_2 E_1 A = U$$

$$A = (E_3 E_2 E_1)^{-1} U = E_1^{-1} E_2^{-1} E_3^{-1} U = LU$$

$$\begin{split} L &= E_1^{-1} E_2^{-1} E_3^{-1} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -\frac{1}{2} & 1 \end{bmatrix} \end{split}$$

$$A = LU = LIU = LDD^{-1}U$$
$$= L(\sqrt{D}\sqrt{D})D^{-1}U$$
$$= (L\sqrt{D})(\sqrt{D}D^{-1}U) = CC^{T}$$

Let
$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\sqrt{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$L\sqrt{D} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 & 0 \\ -1 & 2 & 0 \\ 2 & -1 & 1 \end{bmatrix} = C$$

$$\sqrt{D}D^{-1}U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 4 & -2 \\ 0 & 0 & 1 \end{bmatrix} \\
= \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -1 \\ 0 & 0 & 1 \end{bmatrix} = C^{T}$$

2.

$$A = \begin{bmatrix} 25 & 15 & -5 \\ 15 & 18 & 0 \\ -5 & 0 & 11 \end{bmatrix}$$

$$IA = A$$

$$R_2 \to R_2 - \frac{3}{5}R_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{5} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A = \begin{bmatrix} 25 & 15 & -5 \\ 0 & 9 & 3 \\ -5 & 0 & 11 \end{bmatrix}$$

$$IE_1A = A_1$$

$$R_3 \to R_3 + \frac{1}{5}R_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & 1 \end{bmatrix} E_1 A = \begin{bmatrix} 25 & 15 & -5 \\ 0 & 9 & 3 \\ 0 & 3 & 10 \end{bmatrix}$$

$$IE_2E_1A = A_2$$

$$R_3 \to R_3 - \frac{1}{3}R_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{3} & 1 \end{bmatrix} E_2 E_1 A = \begin{bmatrix} 25 & 15 & -5 \\ 0 & 9 & 3 \\ 0 & 0 & 9 \end{bmatrix}$$

$$E_3 E_2 E_1 A = U$$

$$A = (E_3 E_2 E_1)^{-1} U = E_1^{-1} E_2^{-1} E_3^{-1} U = LU$$

$$\begin{split} L &= E_1^{-1} E_2^{-1} E_3^{-1} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ -\frac{3}{5} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{5} & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{3} & 1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{5} & 1 & 0 \\ -\frac{1}{5} & \frac{1}{3} & 1 \end{bmatrix} \end{split}$$

$$A = LU = LIU = LDD^{-1}U$$
$$= L(\sqrt{D}\sqrt{D})D^{-1}U$$
$$= (L\sqrt{D})(\sqrt{D}D^{-1}U) = CC^{T}$$

Let
$$D = \begin{bmatrix} 25 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix}$$
 and $\sqrt{D} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

$$L\sqrt{D} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{3}{5} & 1 & 0 \\ -\frac{1}{5} & \frac{1}{3} & 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
$$= \begin{bmatrix} 5 & 0 & 0 \\ 3 & 3 & 0 \\ -1 & 1 & 3 \end{bmatrix} = C$$

$$\sqrt{D}D^{-1}U = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{1}{25} & 0 & 0 \\ 0 & \frac{1}{9} & 0 \\ 0 & 0 & \frac{1}{9} \end{bmatrix} \begin{bmatrix} 25 & 15 & -5 \\ 0 & 9 & 3 \\ 0 & 0 & 9 \end{bmatrix} \\
= \begin{bmatrix} 5 & 3 & -1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} = C^{T}$$

Vector Space:

1. (i) Suppose we define addition on \mathbb{R}^2 by the rule $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, 0)$. Show that additive identity does not exist in \mathbb{R}^2 w.r.t. above rule.

Solution: The set V contains an additive identity element denoted by 0, such that for any vector v in V, we have 0+v=v and v+0=v.

Let $v = (a_1, a_2) \in \mathbb{R}^2$.

Suppose $(e_1, e_2) \in \mathbb{R}^2$ be the additive identity element such that $(e_1, e_2) + (a_1, a_2) = (a_1, a_2)$.

As per operation defined above, $(e_1, e_2) + (a_1, a_2) = (e_1 + a_1, 0)$.

 $\Rightarrow (e_1 + a_1, 0) = (a_1, a_2)$

i.e. $e_1 + a_1 = a_1$ and $a_2 = 0 \Rightarrow e_1 = 0$ and $a_2 = 0$.

 $\Rightarrow (0, e_2)$ is the additive identity element of the element of the form $(a_1, 0)$.

i.e. additive identity element does not exist for the element of the form (a_1, a_2) where $a_2 \neq 0$.

So, we can conclude that additive identity element does not exist for all the elements in \mathbb{R}^2 .

Hence, additive identity does not exist in \mathbb{R}^2 w.r.t. above rule.

(ii) Suppose we define addition on \mathbb{R}^3 by the rule $(a_1, a_2, a_3) + (b_1, b_2, b_3) = (a_1b_1, a_2b_2, a_3b_3)$. Show that we have an additive identity for this operation in \mathbb{R}^3 but inverse may not exist for some elements.

Solution: Let $v = (a_1, a_2, a_3) \in \mathbb{R}^3$.

Suppose $(e_1, e_2, e_3) \in \mathbb{R}^3$ be the additive identity element such that $(e_1, e_2, e_3) + (a_1, a_2, a_3) = (a_1, a_2, a_3).$

As per operation defined above, $(e_1, e_2, e_3) + (a_1, a_2, a_3) = (e_1a_1, e_2a_2, e_3a_3)$.

$$\Rightarrow$$
 $(e_1a_1, e_2a_2, e_3a_3) = (a_1, a_2, a_3)$

i.e.
$$e_1a_1 = a_1$$
, $e_2a_2 = a_2$ and $e_3a_3 = a_3$.

i.e.
$$e_1 = 1, e_2 = 1$$
 and $e_3 = 1$.

So, $(e_1, e_2, e_3) = (1, 1, 1)$ is the additive identity element for this operation in \mathbb{R}^3 .

Now, let (b_1, b_2, b_3) be the inverse of (a_1, a_2, a_3) .

$$\Rightarrow$$
 $(a_1, a_2, a_3) + (b_1, b_2, b_3) = (1, 1, 1).$

$$\Rightarrow (a_1b_1, a_2b_2, a_3b_3) = (1, 1, 1).$$

$$\Rightarrow (a_1b_1, a_2b_2, a_3b_3) = (1, 1, 1).$$

$$\Rightarrow b_1 = \frac{1}{a_1}, b_2 = \frac{1}{a_2}, b_3 = \frac{1}{a_3}.$$

So, from here we can conclude that, inverse exists only when $a_1 \neq 0, \ a_2 \neq 0, \ \text{and} \ a_3 \neq 0.$

i.e. if at least one of the a_i is zero, then inverse does not exists.

Hence, inverse does not exist for some elements.

2. Let \mathbb{R}^+ be the set of all positive real numbers. Define operations of addition \bigoplus and the scalar multiplication \bigotimes as follows: $u \bigoplus v = uv$ for all $u, v \in \mathbb{R}^+$ and $\alpha \bigotimes u = u^{\alpha}$ for all $u \in \mathbb{R}^+$ and $\alpha \in \mathbb{R}$ (here \mathbb{R}^+ is the field of scalars). Prove that $(\mathbb{R}^+, \bigoplus, \bigotimes)$ is a real vector space.

Solution:

For any $u, v \in \mathbb{R}^+$,

(i)
$$u \bigoplus v = uv$$
. Since $uv \in \mathbb{R}^+$, $u \bigoplus v \in \mathbb{R}^+$.

(ii)
$$u \bigoplus v = uv = vu = v \bigoplus u$$

$$[u, v \in \mathbb{R}^+, uv = vu]$$

Let u, v and $w \in \mathbb{R}^+$,

(iii)
$$u \bigoplus (v \bigoplus w) = u \bigoplus vw = uvw = uv \bigoplus w = (u \bigoplus v) \bigoplus w$$

(iv) For any
$$u \in \mathbb{R}^+$$
, $1 \bigoplus u = 1 \cdot u = u$. Similarly, $u \bigoplus 1 = u$. Therefore 1 is additive identity on \mathbb{R}^+ .

- (v) Since $u \in \mathbb{R}^+$, we have $\frac{1}{u} \in \mathbb{R}^+$. Now, $u \bigoplus \frac{1}{u} = u \cdot \frac{1}{u} = 1$ and similarly $\frac{1}{u} \bigoplus u = 1$.
- (vi) For any $\alpha \in \mathbb{R}$ and $u \in \mathbb{R}^+$, $\alpha \bigotimes u = u^{\alpha}$ and $u^{\alpha} \in \mathbb{R}^+$. Therefore, $\alpha \bigotimes u \in \mathbb{R}^+$.
- (vii) For any $u \in \mathbb{R}^+$, $1 \bigotimes u = u^1 = u$.
- (viii) For any $\alpha_1, \alpha_2 \in \mathbb{R}$ and $u \in \mathbb{R}^+, (\alpha_1 \alpha_2) \bigotimes u = u^{\alpha_1 \alpha_2} = \{u^{\alpha_2}\}^{\alpha_1} = \{u^{\alpha_2}\}^{\alpha_1}$ $\alpha_1 \bigotimes (u^{\alpha_2}) = \alpha_1 \bigotimes (\alpha_2 \bigotimes u)$
- (ix) For any $\alpha \in \mathbb{R}$ and $u, v \in \mathbb{R}^+$, $\alpha \bigotimes (u \bigoplus v) = \alpha \bigotimes (uv) = \{uv\}^{\alpha} =$ $u^{\alpha}v^{\alpha} = (u^{\alpha}) \bigoplus (v^{\alpha}) = (\alpha \bigotimes u) \bigoplus (\alpha \bigotimes v).$
- (x) For any $\alpha_1, \alpha_2 \in \mathbb{R}$ and $u \in \mathbb{R}^+$, $(\alpha_1 + \alpha_2) \bigotimes u = u^{(\alpha_1 + \alpha_2)} =$

$$u^{\alpha_1}u^{\alpha_2} = (u^{\alpha_1}) \bigoplus (v^{\alpha_2}) = (\alpha_1 \bigotimes u) \bigoplus (\alpha_2 \bigotimes v).$$

3. Let $V = \mathbb{R}^2$. Define operations of addition \bigoplus and the saclar multiplication \bigotimes as follows:

 $(a_1, a_2) \bigoplus (b_1, b_2) = (a_1 + b_2, a_2 + b_1)$ and $\alpha \bigotimes (a_1, a_2) = (\alpha a_1, \alpha a_2), \alpha \in \mathbb{R}$ (here \mathbb{R} is the field of scalars).

Does $(V, \bigoplus, \bigotimes)$ form a real vector space? Give reasons for your assertion.

Solution: Let us calculate $(a_1, a_2) \bigoplus (b_1, b_2) = (a_1 + b_2, a_2 + b_1)$ and $(b_1, b_2) \bigoplus (a_1, a_2) = (b_1 + a_2, b_2 + a_1)$.

Since $(a_1 + b_2) \neq (b_1 + a_2)$ and $(a_2 + b_1) \neq (b_2 + a_1)$.

So $(a_1, a_2) \bigoplus (b_1, b_2) \neq (b_1, b_2) \bigoplus (a_1, a_2)$ which means $(V, \bigoplus, \bigotimes)$ does not form a vector space.

- 4. Done in class.
- 5. Done in class.
- 6. Let V = C[0,1] be the set of all real valued function defined and continuous on the closed interval [0,1]. Prove that V is a real vector space with respect to pointwise addition and multiplication. Further, determine that which of the following subsets of V are subspaces.

Solution:

For $f(x), g(x) \in C[0,1]$ and $c \in \mathbb{R}$, we define the functions f+g and cf by

$$(f+g)(x) = f(x) + g(x)$$
$$(cf)(x) = c(f(x))$$

We have to show that V = C[0, 1] with the given operations is a vector space. We check the vector space axioms for this V.

We let f, g, h be arbitrary elements of V. We know from calculus that the sum of any two continuous functions is continuous and that any constant times a continuous function is also continuous. Therefore, the closure of addition and that of scalar multiplication hold.

Now for all x such that $0 \le x \le 1$, we have from the definition and the commutative law of real number addition that

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x).$$

Since this holds for all x, we conclude that f + g = g + f, which is the commutative law of vector addition. Similarly,

$$((f+g)+h)(x) = (f+g)(x) + h(x) = (f(x)+g(x)) + h(x)$$
$$= f(x) + (g(x)+h(x)) = (f+(g+h))(x)$$

Since this holds for all x, we conclude that (f + g) + h = f + (g + h), which is the associative law for addition of vectors.

Next, if 0 denotes the constant function with value 0, then for any $f \in V$ we have that for all $0 \le x \le 1$,

$$(f+0)(x) = f(x) + 0 = f(x).$$

Since this is true for all x we have that f + 0 = f, which establishes the additive identity law.

Also, we define (-f)(x) = -(f(x)) so that for all $0 \le x \le 1$,

$$(f + (-f))(x) = f(x) - f(x) = 0,$$

from which we see that f + (-f) = 0. The additive inverse law follows. For the distributive laws, note that for real numbers c, d and continuous functions $f, g \in V$, we have that for all $0 \le x \le 1$,

$$c(f+g)(x) = c(f(x) + g(x)) = cf(x) + cg(x) = (cf + cg)(x),$$

which proves the first distributive law. For the second distributive law, note that for all $0 \le x \le 1$,

$$((c+d)g)(x) = (c+d)g(x) = cg(x) + dg(x) = (cg+dg)(x),$$

and the second distributive law follows. For the scalar associative law, observe that for all $0 \le x \le 1$,

$$((cd)f)(x) = (cd)f(x) = c(df(x)) = (c(df))(x),$$

so that (cd)f = c(df), as required. Finally, we see that

$$(1.f)(x) = 1.f(x) = f(x),$$

from which we have the monoidal law 1.f = f. Thus, C[0,1] with the prescribed operations is a vector space.

We know that $W(F) \subset V(\mathbb{F})$ is said to be a subspace of V, if $\alpha, \beta \in \mathbb{F}$ and $u, v \in W$, then $\alpha u + \beta v \in W$. Also, zero vector is in W.

(a)
$$W_1 = \{ f \in V : f(1/2) = 0 \}.$$

Solution:

Clearly, zero vector is in W_1 .

Let
$$f, g \in W_1 \Rightarrow f, g \in V$$

As V is vector space $\Rightarrow \alpha f + \beta g \in V$.

If W_1 is subspace then, only we have to show $\alpha f + \beta g \in W_1$ i.e.

$$(\alpha f + \beta g) \left(\frac{1}{2}\right) = 0.$$

As
$$f, g \in W_1 \Rightarrow f(\frac{1}{2}) = 0, g(\frac{1}{2}) = 0.$$

$$(\alpha f + \beta g)\left(\frac{1}{2}\right) = \alpha f\left(\frac{1}{2}\right) + \beta g\left(\frac{1}{2}\right) = 0 + 0 = 0.$$

 $\Rightarrow \alpha f + \beta g \in W_1$ i.e. W_1 is subspace of V.

(b)
$$W_2 = \{ f \in V : f(3/4) = 1 \}.$$

Solution:

Since zero element is not in this subset W_2 . So it is not a subspace of V.

(c)
$$W_3 = \{ f \in V : f(0) = f(1) \}.$$

Solution:

Clearly, zero vector is in W_3 .

Let
$$f, g \in W_3 \Rightarrow f, g \in V$$

As V is vector space $\Rightarrow \alpha f + \beta g \in V$.

If W_3 is subspace then, only we have to show $\alpha f + \beta g \in W_3$ i.e.

$$(\alpha f + \beta g)(0) = (\alpha f + \beta g)(1).$$

As
$$f, g \in W_3 \Rightarrow f(0) = f(1)$$
 and $g(0) = g(1)$.

$$(\alpha f + \beta g)(0) = \alpha f(0) + \beta g(0) = \alpha f(1) + \beta g(1) = (\alpha f + \beta g)(1).$$

 $\Rightarrow W_3$ is subspace of V.

(d) $W_4 = \{ f \in V : f(x) = 0 \text{ only at a finite number of points } \}.$

Solution:

Since zero polynomial is not in W_4 . So, W_4 is not subspace of V.

7. Determine whether each of the following set S forms a subspace of \mathbb{R}^4 , if addition and multiplication rules are defined in the usual way.

Solution: We know that $W(F) \subset V(\mathbb{F})$ is said to be a subspace of V, if $\alpha, \beta \in \mathbb{F}$ and $u, v \in W$, then $\alpha u + \beta v \in W$. Also, zero vector is in W.

(a)
$$S = \{(a, b, c, d) \mid a = c + d\}$$

Clearly, zero vector is in W.

Let
$$u = (a_1, b_1, c_1, d_1), v = (a_2, b_2, c_2, d_2) \in S \& \alpha, \beta \in \mathbb{F}$$

i.e
$$a_1 = c_1 + d_1$$
, $a_2 = c_2 + d_2$

$$\Rightarrow \alpha(a_1, b_1, c_1, d_1) + \beta(a_2, b_2, c_2, d_2) = (\alpha a_1 + \beta a_2, \alpha b_1 + \beta b_2, \alpha c_1 + \beta c_2, \alpha d_1 + \beta d_2)$$

We know from above, $a_1 = c_1 + d_1$, $a_2 = c_2 + d_2$ $\Rightarrow \alpha a_1 = \alpha c_1 + \alpha d_1$ and $\beta a_2 = \beta c_2 + \beta d_2$ On adding both terms, we get $\Rightarrow \alpha a_1 + \beta a_2 = \alpha c_1 + \alpha d_1 + \beta c_2 + \beta d_2$ $\Rightarrow \alpha u + \beta v \in S$ Hence, S is a subspace of \mathbb{R}^4 .

- (b) $S = \{(a, b, c, d) \mid b = c d \text{ and } a = c + d\}$ Clearly, zero vector is in W. Let $u = (a_1, b_1, c_1, d_1)$, $v = (a_2, b_2, c_2, d_2) \in S \& \alpha, \beta \in \mathbb{F}$ i.e $b_1 = c_1 - d_1$, $a_1 = c_1 + d_1$ and $b_2 = c_2 - d_2$, $a_2 = c_2 + d_2$ $\Rightarrow \quad \alpha(a_1, b_1, c_1, d_1) + \beta(a_2, b_2, c_2, d_2) = (\alpha a_1 + \beta a_2, \alpha b_1 + \beta b_2, \alpha c_1 + \beta c_2, \alpha d_1 + \beta d_2)$ We know from above, $b_1 = c_1 - d_1$, $a_1 = c_1 + d_1$ and $b_2 = c_2 - d_2$, $a_2 = c_2 + d_2$ $\Rightarrow \alpha b_1 = \alpha c_1 - \alpha d_1$, $\alpha a_1 = \alpha c_1 + \alpha d_1$ and $\beta b_2 = \beta c_2 - \beta d_2$, $\beta a_2 = \beta c_2 + \beta d_2$ On adding, we get $\Rightarrow \alpha b_1 + \beta b_2 = \alpha c_1 - \alpha d_1 + \beta c_2 - \beta d_2$ and $\alpha a_1 + \beta a_2 = \alpha c_1 + \alpha d_1 + \beta c_2 + \beta d_2$ $\Rightarrow \alpha u + \beta v \in S$ Hence, S is a subspace of \mathbb{R}^4 .
- (c) $S = \{(a,b,c,d) \mid c = d\}$ Clearly, zero vector is in W. Let $u = (a_1,b_1,c_1,d_1)$, $v = (a_2,b_2,c_2,d_2) \in S \& \alpha,\beta \in \mathbb{F}$ i.e $c_1 = d_1$, $c_2 = d_2$ $\Rightarrow \quad \alpha(a_1,b_1,c_1,d_1)+\beta(a_2,b_2,c_2,d_2) = (\alpha a_1 + \beta a_2,\alpha b_1 + \beta b_2,\alpha c_1 + \beta c_2,\alpha d_1 + \beta d_2)$ We know from above, $c_1 = d_1$, $c_2 = d_2$ $\Rightarrow \alpha c_1 = \alpha d_1$, $\beta c_2 = \beta d_2$ On adding both terms, we get $\Rightarrow \alpha c_1 + \beta c_2 = \alpha d_1 + \beta d_2$ $\Rightarrow \quad \alpha u + \beta v \in S$ Hence, S is a subspace of \mathbb{R}^4 .
- (d) $S = \{(-a+c, a-b, b+c, a+b) \mid a, b, c \in \mathbb{R}\}$ Clearly, zero vector is in W. Let $u = (-a_1 + c_1, a_1 - b_1, b_1 + c_1, a_1 + b_1)$,

$$v = (-a_2 + c_2, a_2 - b_2, b_2 + c_2, a_2 + b_2) \in S \& \alpha, \beta \in \mathbb{F}$$

$$\Rightarrow \alpha u + \beta v = \alpha (-a_1 + c_1, a_1 - b_1, b_1 + c_1, a_1 + b_1) + \beta (-a_2 + c_2, a_2 - b_2, b_2 + c_2, a_2 + b_2)$$

$$= (-\alpha a_1 - \beta a_2 + \alpha c_1 + \beta c_2, \alpha a_1 + \beta a_2 - \alpha b_1 - \beta b_2,$$

$$\alpha b_1 + \beta b_2 + \alpha c_1 + \beta c_2, \alpha a_1 + \beta a_2 + \alpha b_1 + \beta b_2)$$

and

$$-\alpha a_1 - \beta a_2 + \alpha c_1 + \beta c_2, \quad \alpha a_1 + \beta a_2 - \alpha b_1 - \beta b_2, \quad \alpha b_1 + \beta b_2 + \alpha c_1 + \beta c_2 \in \mathbb{R}$$

$$\Rightarrow \quad \alpha u + \beta v \in S$$

Hence, S is a subspace of \mathbb{R}^4 .

- (e) $S = \{(a, b, c, d) \mid a = 1\}$ We know that, if S is a subspace of \mathbb{R}^4 , then '0'(zero element) must belong to that set S. But, here we can see that '0' $\notin S$. Because, if $(0,0,0,0) \in S$, then 0 = 1 which is absurd condition. Hence, S is not a subspace of \mathbb{R}^4 .
- (f) $S = \{(a, b, c, d) \mid a \leq b\}$ Clearly, zero vector is in W. Let u = (1, 2, 4, 5), $v = (2, 4, 5, 6) \in S$ Now, let $\alpha = 1, \beta = -1 \in \mathbb{R}$ $\Rightarrow \alpha (1, 2, 4, 5) + \beta (2, 4, 5, 6) = 1. (1, 2, 4, 5) + (-1). (2, 4, 5, 6)$ = (1 - 2, 2 - 4, 4 - 5, 5 - 6)= (-1, -2, -1, -1)

Now, $-1 \le -2$ is not possible. $\Rightarrow \alpha u + \beta v \notin S$ Hence, S is not a subspace of \mathbb{R}^4 .

(g) $S = \{(a, b, c, d) \mid a = b = c = d\}$ Clearly, zero vector is in W. Let $u = (a_1, b_1, c_1, d_1)$, $v = (a_2, b_2, c_2, d_2) \in S \& \alpha, \beta \in \mathbb{F}$ i.e $a_1 = b_1 = c_1 = d_1$, $a_2 = b_2 = c_2 = d_2$ $\Rightarrow \quad \alpha(a_1, b_1, c_1, d_1) + \beta(a_2, b_2, c_2, d_2) = (\alpha a_1 + \beta a_2, \alpha b_1 + \beta b_2, \alpha c_1 + \beta c_2, \alpha d_1 + \beta d_2)$ We know from above, $a_1 = b_1 = c_1 = d_1$, $a_2 = b_2 = c_2 = d_2$ $\Rightarrow \alpha a_1 = \alpha b_1 = \alpha c_1 = \alpha d_1$, $\beta a_2 = \beta b_2 = \beta c_2 = \beta d_2$ On adding both terms, we get $\Rightarrow \alpha a_1 + \beta a_2 = \alpha b_1 + \beta b_2 = \alpha c_1 + \beta c_2 = \alpha d_1 + \beta d_2$ $\Rightarrow \alpha u + \beta v \in S$ Hence, S is a subspace of \mathbb{R}^4 .

- (h) $S = \{(a, b, c, d) \mid \text{a is an integer}\}\$ Clearly, zero vector is in W. Let $u = (a_1, b_1, c_1, d_1)$, $v = (a_2, b_2, c_2, d_2) \in S \& \alpha, \beta \in \mathbb{F}$ i.e a_1 is an integer, a_2 is an integer Let u = (1, 0, 0, 0), v = (1, 0, 0, 0), $\alpha = \sqrt{2}$, $\beta = 1$ Then, $\alpha u + \beta v = \sqrt{2}(1, 0, 0, 0) + 1.(1, 0, 0, 0) = (\sqrt{2} + 1, 0, 0, 0)$ But, $\sqrt{2} + 1$ is not an integer. $\Rightarrow \alpha u + \beta v \notin S$ Hence, S is not a subspace of \mathbb{R}^4 .
- $$\begin{split} \text{(i)} \quad S &= \{(a,b,c,d) \mid a^2 b^2 = 0\} \\ \quad \text{Clearly, zero vector is in } W. \\ \quad \text{Let } u &= (1,-1,0,0) \,, \ \ v = (2,2,0,0) \in S \\ \quad \text{Now, let } \alpha &= 1, \beta = 1 \in \mathbb{R} \\ \\ &\Rightarrow \alpha \, (1,-1,0,0) + \beta \, (2,2,0,0) = 1. \, (1,-1,0,0) + 1. \, (2,2,0,0) \\ &= (1+2,-1+2,0,0) \\ &= (3,1,0,0) \end{split}$$

Now, $3^2 - 1^2 = 8 \neq 0$. $\Rightarrow \alpha u + \beta v \notin S$ Hence, S is not a subspace of \mathbb{R}^4 .

- 8. Which of the following subsets of P are subspace. Where, P is the real vector space of all polynomials w.r.t usual vector addition and multiplication:
 - $i) \{ p \in P : \deg p \le 4 \}$
 - $ii) \{ p \in P : \deg p = 4 \}$
 - iii) $\{p \in P : \deg p \ge 4\}$
 - iv) $\{p \in P : p(1) = 0\}$
 - $\mathbf{v})\{p\in P: p(2)=1\}$
 - $vi)\{p \in P : p'(1) = 0\}$

Solution 8(i):

Let $S = \{ p \in P : \deg p \le 4 \}$

Let $f(x) = \sum_{i=0}^{4} a_i x^i$ ave $g(x) = \sum_{i=0}^{4} b_i x^i$ be two polynomials in S.

Clearly, S is non-empty since zero polynomial belongs to S.

To check whether S is a subspace of P or not we have to check whether S is closed under addition and scalar multiplication or not.

So $f(x) + g(x) = \sum_{i=0}^{4} (a_i + b_i) x^i$ and $\alpha \cdot f(x) = \sum_{i=0}^{4} \alpha a_i x^i$.

Since addition of two polynomial and multiplication by a scalar does not increase the degree of that polynomial.

Therefore, both f(x) + g(x), $\alpha f(x) \in S$.

Hence, S is a subspace of P.

Solution 8(ii): Assume the set $S_1 = \{p \in P : \deg p = 4\}$ Let $f(x) = x^4, g(x) = -x^4 \in S_1$, but $f(x) + g(x) = 0 \notin S_1$. Therefore, S_1 is not closed under addition. Hence, S_1 is not a subspace of P.

Solution 8(iii): Consider the set $S_2 = \{p \in P : \deg p \ge 4\}$. By the similar above example of f(x) and g(x), we can see that $f(x) + g(x) \notin S_2$. So, S_2 is not closed under addition. Hence, S_2 is not a subspace of P.

Solution 8(iv): Let $S_3 = \{p \in P : p(1) = 0\}$ Clearly, S_3 is nonempty since $0 \in S_3$. Let $f(x), g(x) \in S_3$, then f(1) = 0 = g(1). Now, (f+g)(1) = f(1) + g(1) = 0 + 0 = 0 and $(\alpha f)(1) = \alpha \cdot f(1) = \alpha \cdot 0 = 0$. which implies both $f + g, \alpha f \in S_3$.

Therefore, the set S_3 is closed under addition and multiplication. Hence, S_3 is a subspace of P.

Solution 8(v): Let $S_4 = \{p \in P : p(2) = 1\}$ Since zero polynomial is not in S_4 . Hence S_4 is not a subspace of P.

Solution 8(vi):Let $S_5 = \{p \in P : p'(1) = 0\}$ Clearly, S_5 is non empty since zero polynomial belongs to S_5 . Let $f(x), g(x) \in S_5$, then f'(1) = 0 = g'(1).

Now,
$$(f+g)'(1) = f'(1) + g'(1) = 0 + 0 = 0$$

and $(\alpha f)'(1) = \alpha f'(1) = \alpha \cdot 0 = 0 \Rightarrow f + g, \alpha f \in S_5$.
 $\Rightarrow S_5$ is closed under addition and scalar multiplication.
Hence, S_5 is a subspace of P .

- 9. Which of the following subsets of $\mathbb{R}^{2\times 2}$ are subspaces. Note that, $\mathbb{R}^{m\times n}$ is the vector space over real field of all matrices of order $m \times n$ under usual definitions of addition and scalar multiplication of matrices.
 - (i) All diagonal matrices.
 - (ii) All upper triangular matrices.
 - (iii) All symmetric matrices.
 - (iv) All invertible matrices.
 - (v) All matrices which commute with a given matrix T.
 - (vi) All matrices with zero determinant.

Solution:

(i) Let, \mathcal{D} be the set of all diagonal matrices of order 2 and $D, E \in \mathcal{D}$ be any two elements.

$$D = \begin{bmatrix} d_{11} & 0 \\ 0 & d_{22} \end{bmatrix}, E = \begin{bmatrix} e_{11} & 0 \\ 0 & e_{22} \end{bmatrix}, d_{11}, d_{22}, e_{11}, e_{22} \in \mathbb{R}$$

∴ D+E=
$$\begin{bmatrix} d_{11} + e_{11} & 0 \\ 0 & d_{22} + e_{22} \end{bmatrix}$$

Clearly, $D + E \in \mathcal{D}$.

Also let, $\alpha \in \mathbb{R}$ and $A \in \mathcal{D}$ be any.

Then,

$$A = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{22}. \end{bmatrix}$$

for some
$$a_{11}, a_{22} \in \mathbb{R}$$

$$\therefore \alpha A = \begin{bmatrix} \alpha a_{11} & 0 \\ 0 & \alpha a_{22}. \end{bmatrix} \in \mathcal{D}$$

Hence, \mathcal{D} is a vector subspace of $\mathbb{R}^{2\times 2}$.

(ii) Let, \mathcal{U} be the set of all upper triangular matrices of order 2 and $M, N \in \mathcal{U}$ be any two elements.

$$M = \begin{bmatrix} m_{11} & m_{12} \\ 0 & m_{22} \end{bmatrix}, \ N = \begin{bmatrix} n_{11} & n_{12} \\ 0 & n_{22} \end{bmatrix}, \ m_{11}, m_{12}, m_{22}, n_{11}, n_{12}, n_{22} \in \mathbb{R}$$

$$\therefore M+N = \begin{bmatrix} m_{11} + n_{11} & m_{12} + n_{12} \\ 0 & m_{22} + n_{22} \end{bmatrix}$$

Clearly $M + N \in \mathcal{U}$.

Also let, $\alpha \in \mathbb{R}$ and $A \in \mathcal{U}$ be any. Then,

$$A = \begin{bmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{bmatrix}$$

for some
$$a_{11}, a_{12}, a_{22} \in \mathbb{R}$$

$$\therefore \alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ 0 & \alpha a_{22} \end{bmatrix} \in \mathcal{U}$$

Hence, \mathcal{U} is a vector subspace of $\mathbb{R}^{2\times 2}$.

(iii) Let, \mathcal{S} be the set of all symmetric matrices of order 2 and $A, B \in \mathcal{S}$ be any two elements.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}, a_{11}, a_{12}, a_{21}, a_{22}, b_{11}, b_{12}, b_{21}, b_{22} \in \mathbb{R}$$
 and $a_{12} = a_{21}, b_{12} = b_{21}$

$$\therefore A+B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Clearly $A + B \in \mathcal{S}$ as $a_{12} + b_{12} = a_{21} + b_{21}$ Also let, $\alpha \in \mathbb{R}$ and $G \in \mathcal{S}$ be any.

Then,

$$G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix}$$

for some $g_{11}, g_{12}, g_{21}, g_{22} \in \mathbb{R}$ and $g_{12} = g_{21}$

$$\therefore \alpha G = \begin{bmatrix} \alpha g_{11} & \alpha g_{12} \\ \alpha g_{21} & \alpha g_{22} \end{bmatrix} \in \mathcal{S} \text{ as } \alpha g_{12} = \alpha g_{21}$$

Hence, S is a vector subspace of $\mathbb{R}^{2\times 2}$.

(iv) Let \mathcal{I} be the set of all invertible matrices of order 2.

Then
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ are two members of \mathcal{I} . Now,

$$A + B = \begin{bmatrix} 2 & 0 \\ 0 & 0. \end{bmatrix}$$

Clearly $A + B \notin \mathcal{I}$ Hence, \mathcal{I} is not a subspace of $\mathbb{R}^{2 \times 2}$.

(v) It is given that T is a fixed matrix of order 2. Let, \mathcal{C} be the set of all order 2 matrices which commutes with T. Since the identity matrix of order 2 commutes with T. So, \mathcal{C} is a non empty subset of $\mathbb{R}^{2\times 2}$. Now let, P,Q be any two elements of \mathcal{C} . Hence,

$$TP = PT \tag{1}$$

$$TQ = QT (2)$$

Therefore using (1) and (2) we get,

$$T(P+Q) = TP + TQ$$
$$= PT + QT$$
$$= (P+Q)T.$$

Hence, $P + Q \in \mathcal{C}$ Similarly, let $A \in \mathcal{C}$ and $\alpha \in \mathbb{R}$.

$$T(\alpha A) = \alpha(TA)$$
$$= \alpha(AT)$$
$$= (\alpha A)T.$$

Hence, $\alpha A \in \mathcal{C}$.

Therefore, \mathcal{C} is a vector subspace of $\mathbb{R}^{2\times 2}$.

(vi) Let \mathcal{N} be the set of all order 2 matrices with determinant zero. Then, $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are two members of \mathcal{N} .

$$\det(A+B) = \det \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1 \neq 0$$

Hence $A + B \notin \mathcal{N}$, showing that \mathcal{N} is not a vector subspace of $\mathbb{R}^{2 \times 2}$.

- 10. Done in class.
- 11. Let W_1 and W_2 be subspaces of a vector Space V such that $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$ Show that for each vector u in V there are unique vectors u_1 in W_1 and u_2 in W_2 such that $u = u_1 + u_2$.

Solutions: It is given that $V = W_1 + W_2$ and $W_1 \cap W_2 = \{0\}$. Let $u \in V$. Then, $u \in V = W_1 + W_2 \Rightarrow u = u_1 + u_2$ for some $u_1 \in W_1$, $u_2 \in W_2$.

We have to prove the uniqueness. For uniqueness, let $u = w_1 + w_2$ for $w_1 \in W_1$ and $w_2 \in W_2$.

Then $u_1 + u_2 = u = w_1 + w_2$.

$$\Rightarrow u_1 - w_1 = w_2 - u_2 \in W_2.$$

Also, $(u_1 - w_1) \in W_1$. So $(u_1 - w_1) \in W_1 \cap W_2$.

Thus, $(u_1 - w_1) \in \{0\}$. So, $u_1 = w_1$. Similarly we can show, $u_2 = w_2$. This proves the uniqueness of u_1, u_2 . This completes the proof.

- 12. Let $S = \{(1, 2, 3), (1, 1, -1), (3, 5, 5)\}$. Determine which of the following are in L(S).
 - (a) (0,0,0)
 - (b) (1,1,0)
 - (c) (4,5,0)
 - (d) (1, -3, 8)

Solution:- Here we have given set $S = \{(1,2,3), (1,1,-1), (3,5,5)\}.$

(a) If it is in L(S) then, it can be written as a(1,2,3)+b(1,1,-1)+c(3,5,5)=(0,0,0)

Now to find the value of a, b, c we can write it in augmented matrix form as:-

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 2 & 1 & 5 & 0 \\ 3 & -1 & 5 & 0 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$R_3 \rightarrow R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 1 & 3 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & -4 & -4 & 0 \end{bmatrix}$$

$$R_2 \rightarrow (-1)R_2$$

$$R_3 \rightarrow R_3/(-4)$$

$$\begin{bmatrix}
1 & 1 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0
\end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 1 & 3 & & 0 \\ 0 & 1 & 1 & & 0 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

So it can be written as:- a+b+3c=0, b+c=0For simplicity let us consider c=1 then b=-1, a=-2. Therefore, (0,0,0) is in L(S).

(b) If it is in L(S) then, it can be written as a(1,2,3)+b(1,1,-1)+c(3,5,5)=(1,1,0)Now to find the value of a, b, c we can write it in augmented matrix form as:-

$$\begin{bmatrix} 1 & 1 & 3 & | & 1 \\ 2 & 1 & 5 & | & 1 \\ 3 & -1 & 5 & | & 0 \end{bmatrix}$$

$$R_2 \to R_2 - 2R_1$$

$$R_3 \to R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -1 & -1 \\ 0 & -4 & -4 & -3 \end{bmatrix}$$

$$R_2 \to (-1)R_2$$

$$R_3 \to (-1)R_3$$

$$\begin{bmatrix} 1 & 1 & 3 & | & 1 \\ 0 & 1 & 1 & | & 1 \\ 0 & 4 & 4 & | & 3 \end{bmatrix}$$

 $R_3 \rightarrow R_3 - 4R_2$

$$\begin{bmatrix} 1 & 1 & 3 & & 1 \\ 0 & 1 & 1 & & 1 \\ 0 & 0 & 0 & & -1 \end{bmatrix}$$

So it can be written as: a+b+3c=1, b+c=1,and 0.a+0.b+0.c=-1which is impossible. Therefore, (1,1,0) is not in L(S).

(c) If it is in L(S) then, it can be written as a(1,2,3)+b(1,1,-1)+c(3,5,5)=(4,5,0)Now to find the value of a, b, c we can write it in augmented matrix form as:-

$$\begin{bmatrix} 1 & 1 & 3 & | & 4 \\ 2 & 1 & 5 & | & 5 \\ 3 & -1 & 5 & | & 0 \end{bmatrix}$$

$$R_2 \rightarrow R_2 - 2R_1$$

$$R_3 \rightarrow R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 1 & 3 & | & 4 \\ 0 & -1 & -1 & | & -3 \\ 0 & -4 & -4 & | & -12 \end{bmatrix}$$

$$R_2 \to (-1)R_2$$

 $R_3 \to R_3/(-4)$

$$\begin{bmatrix} 1 & 1 & 3 & & 4 \\ 0 & 1 & 1 & & 3 \\ 0 & 1 & 1 & & 3 \end{bmatrix}$$

$$R_3 \rightarrow R_3 - R_2$$

$$\begin{bmatrix} 1 & 1 & 3 & & 4 \\ 0 & 1 & 1 & & 3 \\ 0 & 0 & 0 & & 0 \end{bmatrix}$$

So it can be written as:-

$$a + b + 3c = 4, b + c = 3$$

For simplicity let us consider c = 1 then b = 2, a = -1.

Therefore (4,5,0) are in L(S).

(d) If it is in L(S) then it can be written as a(1,2,3)+b(1,1,-1)+c(3,5,5)=(1,-3,8) Now to find the value of a, b, c we can write it in augmented

$$\begin{bmatrix} 1 & 1 & 3 & & 1 \\ 2 & 1 & 5 & & -3 \\ 3 & -1 & 5 & & 8 \end{bmatrix}$$

$$R_2 \to R_2 - 2R_1$$

$$R_3 \to R_3 - 3R_1$$

matrix form as:-

$$\begin{bmatrix} 1 & 1 & 3 & 1 \\ 0 & -1 & -1 & -5 \\ 0 & -4 & -4 & 5 \end{bmatrix}$$

$$R_2 \rightarrow (-1)R_2$$

$$\begin{bmatrix} 1 & 1 & 3 & | & 1 \\ 0 & 1 & 1 & | & 5 \\ 0 & -4 & -4 & | & 5 \end{bmatrix}$$

$$R_3 \rightarrow R_3 + 4R_2$$

$$\begin{bmatrix} 1 & 1 & 3 & & 1 \\ 0 & 1 & 1 & & 5 \\ 0 & 0 & 0 & & 25 \end{bmatrix}$$

So it can be written as:- a+b+3c=1, b+c=5, and, 0.a+0.b+0.c=25 Which is impossible. Therefore (1,-3,8) is not in L(S).

13. In the complex vector space \mathbb{C}^2 , determine whether are not $(1+i, 1-i) \in L[(1+i, 1), (1, 1-i)]$.

Solution- Here, given vector space is complex vector space i.e. $\mathbb{C}^2(\mathbb{C})$. Let $a, b \in \mathbb{C}$ such that

$$a(1+i,1) + b(1,1-i) = (1+i,1-i),$$

Now, to find the value of a, b we will use Gauss elimination method.

$$\begin{pmatrix} 1+i & 1 & & 1+i \\ 1 & 1-i & & 1-i \end{pmatrix} \sim \begin{pmatrix} 1 & 1-i & & 1-i \\ 1+i & 1 & & 1+i \end{pmatrix} \sim \begin{pmatrix} 1 & 1-i & & 1-i \\ 0 & -1 & & -1+i \end{pmatrix}$$

$$a + (1 - i)b = 1 - i,$$

 $-b = -1 + i,$

using back substitution, we get,

$$a = 1 + i$$
 and $b = 1 - i$.

So,
$$(1+i, 1-i) \in L[(1+i, 1), (1, 1-i)].$$

- 14. Let M and N be subsets of the vector space (V, +, .). Define $M + N = \{m + n : m \in M \text{ and } n \in N\}$. Then
 - (a) $M \subset N \implies L[M] \subset L[N]$
 - (b) M is subspace of $V \iff L[M] = M$
 - (c) L[L[M]] = L[M].

Solution- We know that if M is any subset of vector space (V, +, .). Then L[M] is the smallest subspace of V that contain M.

(**proof:** It is easy to prove that L[M] is subspace of (V, +, .). Now let W be any arbitrary subspace that contains M. Now we have to prove that $L[M] \subset W$. Let $x \in L[M]$, Then $\exists m_1, m_2, \cdots m_n \in M$ and $a_1, a_2, \cdots a_n \in F$ such that

$$x = \sum_{i=1}^{n} a_i m_i$$

 $\implies x \in W(by \ properties \ of \ subspace \ W)$

$$\implies L[M] \subset W$$

Hence, L[M] is the smallest subspace of V that contain M.)

Solution(a)- Here $M \subset N$ So, $M \subset N \subset L[N]$. But L[M] is the smallest subset that contain M. So, $L[M] \subset L[N]$.

Solution(b)- Let M is subspace of V. Since L[M] is the smallest subset that contain M. So, L[M] = M. Conversely assume that L[M] = M and we know that L[M] is subspace of V. So, M will be subspace of V.

Solution(c)- we know that L[M] is subspace of V. by (b) we have L[L[M]] = L[M].