

Instructor: Lih-Yih Chiou

**Speaker: Eric** 

Date: 2021/3/31







#### **Outline**

- CNN Introduction
- Convolution
- Activation Function
- Max Pooling
- □ Flatten
- ☐ Fully Connected





#### **CNN Introduction**

- Convolutional Neural Network (CNN) is a network structure that designed for recognize patterns from images.
- CNN is basically composed of convolution layers, pooling layers and fully connected layers.





#### Convolution (1/3)

- Find the certain features in the image.
- Each filter represents a specific feature.
- The output of convolutional layer is called feature map.





### Convolution (2/3)

| 1  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | 3  |
| 2  | -3 | 0  | 1  |
| 3  | -2 | -2 | -1 |

Filter0 Channel 2

|   | 1 | $\mid 0 \mid$ | 1 |  |
|---|---|---------------|---|--|
| ł | 1 | 0             | 1 |  |
|   | 1 | 0             | 1 |  |

Channel 2

| 3  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | 3  |
| -3 | 3  | 0  | 1  |
| 3  | 2  | 2  | -1 |

Channel 1

Filter0

Channel 1

| 1 | 0 | 1 |
|---|---|---|
| 0 | 0 | 0 |
| 1 | 0 | 1 |

| -3 | 2 |
|----|---|
|    |   |

 $3 \times 3 \times 2$  filters  $4 \times 4 \times 2$  image Stride = 1



Bias = 1









### Convolution (3/3)

| 1  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | 3  |
| 2  | -3 | 0  | 1  |
| 3  | -2 | -2 | -1 |

Filter1 Channel 2

| 0 | 0 | 1 |  |
|---|---|---|--|
| 0 | 0 | 1 |  |
| 0 | 0 | 1 |  |

3

Channel 2

| 3  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | 3  |
| -3 | 3  | 0  | 1  |
| 3  | 2  | 2  | -1 |

Filter1 Channel 1



Bias = 0



| 1 | 0 | U | -3 | 3 |
|---|---|---|----|---|
| 1 | 0 | 0 | 2  | 6 |
| 1 | 0 | 0 | -3 | U |

Channel 1

 $4 \times 4 \times 2$  image

 $3 \times 3 \times 2$  filters Stride = 1







#### Padding (1/2)

- A method to keep the feature map size same after the convolution process.
- Common method: Zero-Padding

| 1  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | 3  |
| 2  | -3 | 0  | 1  |
| 3  | -2 | -2 | -1 |







## Padding (2/2)

| 0 | 0  | 0  | 0  | 0  | 0 |
|---|----|----|----|----|---|
| 0 | 1  | -1 | -3 | -1 | 0 |
| 0 | -3 | 1  | 0  | 3  | 0 |
| 0 | 2  | -3 | 0  | 1  | 0 |
| 0 | 3  | -2 | -2 | -1 | 0 |
| 0 | 0  | 0  | 0  | 0  | 0 |

| 1 | 0 | 1 |
|---|---|---|
| 1 | 0 | 1 |
| 1 | 0 | 1 |

| 0  | -5 | 2  | -3 |
|----|----|----|----|
| -3 | -3 | 0  | -3 |
| -4 | 0  | -1 | -2 |
| -5 | 3  | -5 | -2 |





#### **Activation Function (1/2)**

Because neural networks usually imitate complicated mathematic functions, we need to add non-linear functions to increase complexity.



One of the popular activations is Rectified linear units (ReLU).



# LPHPLMB VLSI Design LAB

#### **Activation Function (2/2)**



 $2 \times 2 \times 2$  output feature map





#### Max Pooling (1/2)

- Subsampling the image will not change the object.
- Less parameters for neural network to learn.







(Image source: Convolutional Neural Network, Hung-Yi Lee)







### Max Pooling (2/2)

Stride = 2

| 3   | -1 | -3 | -1 |
|-----|----|----|----|
| -3  | 1  | 0  | -3 |
| -3  | -3 | 0  | 1  |
| 3   | -2 | -2 | -1 |
| (1) |    |    |    |

3

| 3   | -1 | -3 | -1 |
|-----|----|----|----|
| -3  | 1  | 0  | -3 |
| -3  | -3 | 0  | 1  |
| 3   | -2 | -2 | -1 |
| (2) |    |    |    |

3 0

**(1)** 

| 3   | -1 | -3 | -1 |  |
|-----|----|----|----|--|
| -3  | 1  | 0  | -3 |  |
| -3  | -3 | 0  | 1  |  |
| 3   | -2 | -2 | -1 |  |
| (3) |    |    |    |  |

3 0

| 3  | -1 | -3 | -1 |
|----|----|----|----|
| -3 | 1  | 0  | -3 |
| -3 | -3 | 0  | 1  |
| 3  | -2 | -2 | -1 |
|    |    |    |    |

3 0 3 1

**(4)** 





#### **Flatten**

Flatten the three-dimensional array into one dimensional array. (Row major)









#### Fully Connected (1/2)

- The main function of fully connected layer is to classify objects.
- Usually, there are activation functions applied in fully connected layers.





## LPHPLMB VLSI Design LAB

#### Fully Connected (2/2)





