Импулсни схеми с ТТЛ интегрални схеми

Автогенериращи мултивибратори

1. Общи сведения

Мултивибраторите са схеми или устройства за получаване на правоъгълни импулси. Те могат да работят в три режима:

- автогенераторен. След включване на захранването мултивибраторите започват самостоятелно да генерират периодични правоъгълни импулси. Периодът T и продължителността t_p на генерираните импулси зависят от параметрите на мултивибратора.

-чакащ. В този режим мултивибраторите генерират импулс с определена продължителност t_p , зависеща от параметрите на схемата, само при подаване на входен, пусков сигнал. Чакащите мултивибратори се наричат още моновибратори.

Тригер	Две устойчиви състояния
Автогенериращ мултивибратор	Две временно устойчиви
	състояния
Чакащ мултивибратор	Едно устойчиво и
	едно временно устойчиво
	състояние

Чрез включване на втора времезадаваща група в схемата на чакащия мултивибратор се премахва единственото му устойчиво състояние и се получава генератор, който с подаване на захранващото напрежение започва да генерира непрекъсната поредица от правоъгълни импулси - автогенериращ мултивибратор.

1. Автогенериращ мултивибратор с диференциращи време-задаващи групи (ВЗГ)

Стойностите на $R_1\,$ и $R_2\,$ могат да са еднакви — няколко стотин $\Omega;\, C_1\,$ и C_2 — различни.

Да допуснем, че в даден момент $ЛЕ_1$ се е превключил и Q=1. Скокът, получен на изхода на $ЛЕ_1$ през C_1 се предава към входа на $ЛЕ_2$ и $\overline{Q}=0$. Със зареждането на кондензатора C_1 през R_2 и изхода на $ЛE_1$ напрежението на входа на $ЛE_2$ ще спада по експонента до момента, в който елемента $ЛE_2$ се превключи от ниско към високо ниво на изхода. Разреждането на кондензатора C_1 става по веригата C_1 - изход на $ЛE_1$ ($ЛE_1$ е в състояние логическа 0) - D_2 .

 t_{p1} : C_{1} се разрежда през изхода на ΠE_{1} . C_{2} се зарежда.

Помощен процес

Главен процес, определящ времето

 t_{p2} : C_2 се разрежда, C_1 се зарежда.

Резисторите R_1 и R_2 са в границите $500~\Omega \le R_1,~R_2 \le 1,5~k\Omega$.

$$T = t_{\mu_{1}} + t_{\mu_{2}} =$$

$$= C_{2}(R_{1} + R_{0}^{1}) \ln \frac{3.9R_{1}}{1.3(R_{1} + R_{0}^{1})} + C_{1}.(R_{2} + R_{0}^{1}) \ln \frac{3.9R_{2}}{1.3(R_{2} + R_{0}^{1})}$$

Ако R_1 и R_2 са малки, то те ще установяват логическа 0 на входа на ΠE_1 и ΠE_2 , на двата изхода ще се формират 1 и схемата няма да генерира. За да се избегне това, могат да се включат резистори паралелно на ΠE , които вкарват ΠE в участък ΠE на предавателната характеристика. Друг метод е чрез включване на два допълнителни логически елемента — по този начин се разбалансира схемата.

доц. д-р Нина Бенчева

2. Автогенериращ мултивибратор с резистор, паралелно свързан към един от логическите елементи

Не можем да задаваме коефициента на запълване

$$t_{p1} = R.C \ln \frac{0 - (U_o^1 - U_0)}{0 - U_0}$$

$$t_{p2} = R.C \ln \frac{U_o^1 - [-(U_o^1 - U_0)]}{U_o^1 - U_0}$$
• T = t_{p1} + t_{p2}.

$$\bullet \quad T = t_{p1} + t_{p2}$$

3. Автогенериращ мултивибратор с интегриращи ВЗГ

При обединяване на два чакащи мултивибратора с интегрираща времезадаваща верига се получава автогенериращ мултивибратор, чиято принципна схема и временни диаграми са показани на фигурите

Чакащ мултивибратор 1 е изпълнен с елементите ЛЕ1, ЛЕ2, ЛЕ3, R_1 , C а чакащ мултивибратор 2 - с елементите ЛЕ1, ЛЕ2, ЛЕ4, R_2 , C. Отбележете, че кондензаторът C е общ за двете схеми. Съпротивленията R_1' и R_2' повдигат нивото на логическата единица на елементите ЛЕ3 и ЛЕ4 когато на изходите им има високо ниво. Те стабилизират работата на схемата

3. Автогенериращ мултивибратор с интегриращи ВЗГ

$$\begin{bmatrix} & & & \\$$

(3)
$$U_{C_{t_1}} = E_C - U_0 \frac{R_1 + R_2 + R_2}{R_1}$$

Дължината на импулса лесно може да се определи по известната формула:

(4)
$$t_{u_1} = (R_1 + R_2 + R_1') C \ln \frac{u_B(\infty) - u_B(0)}{u_B(\infty) - u_B(t_{u_1})}$$

 $u_B(\infty) = 0$ (при пълно зареждане на кондензатора C токът през R_2 е нула)

(5)
$$u_B(0) = u_B(t_1) = \frac{E_C + U_{C_{t_1}}}{R_1 + R_2 + R_1'} R_2$$

Ще разгледаме веригата на презаряд на кондензатора след момента t₁ (фиг. 3. a). Ще пренебрегнем напрежението на изхода на логическите елементи, когато те са в състояние логическа $0 (U_V^0 \le 0.4 \text{ V})$. Временното устойчиво състояние ще продължи докато напрежението в т. В стане $u_B = U_0$ и ЛЕ2 се превключи. За оценка на дължината на импулса t_{μ_1} е нужно да определим началната и крайната стойност на напрежението u_в. Тъй като превключването на схемата в момента t₁ става точно тогава, когато $u_A = U_0$, то напрежението върху кондензатора С може да се оцени (фиг. 3. б)

$$\begin{bmatrix} E_{\rm C} + E_{\rm C} - \frac{U_0}{R_1} (R_1 + R_2 + R_2')] \frac{R_2}{R_1 + R_2 + R_1'} \\ (6) \ t_{\rm H_1} = (R_1 + R_2 + R_1') {\rm C} \ln (\frac{2E_{\rm C}}{U_0} \frac{R_2}{R_1 + R_2 + R_1'} - \frac{R_2}{R_1} \cdot \frac{R_1 + R_2 + R_2'}{R_1 + R_2 + R_1'}) \\ \Pi \rm p \mu \ R_1' = R_2' = R \end{bmatrix}$$

(7)
$$t_{\mu_1} = (R_1 + R_2 + R)C\ln(\frac{2E_C}{U_0} \frac{R_2}{R_1 + R_2 + R} - \frac{R_2}{R_1})$$

Периодът на колебание е:

(8)
$$T = t_{u_1} + t_{u_2}$$
,

където $t_{\mu \gamma}$ се определя по аналогичен начин.

Ограничителни условия за резисторите:

$$(9) \quad 100\Omega \le R_1(R_2) \le 250\Omega$$

4. Автогенериращ мултивибратор с тригер на Шмит

$$T = t_{p1} + t_{p2} U_I = 1,7 V U_{II} = 0,9 V$$

При включване на захранването кондензаторът е бил разреден и на входа на тригера на Шмит има 0, на изхода 1.

Кондензаторът започва да се зарежда и тригерът на Шмит се превключва при достигането на U_I . Кондензаторът започва да се разрежда и когато достигне U_{II} , схемата се връща в изходно състояние, кондензаторът започва да се зарежда от U_{II} до U_I и оттук нататък процесът става периодичен.

Пренебрегваме входният ток и изходното съпротивление на тригера на Шмит.

$$\begin{aligned} t_{p1} &= R.C \ln \frac{0 - U_{I}}{0 - U_{II}} = R.C \ln \frac{U_{I}}{U_{II}} \\ t_{p2} &= R.C \ln \frac{U_{o}^{1} - U_{II}}{U_{o}^{1} - U_{I}} \end{aligned}$$

Кондензаторът се зарежда и разрежда през R

5. Автогенериращи мултивибратори в интегрално изпълнение

Автогенериращи мултивибратори могат да бъдат изградени от чакащи мултивибратори в интегрално изпълнение по следните две схеми:

Чакащият мултивибратор 1 задейства чакащия мултивибратор 2 и след изтичането на импулса на ЧМ1 той отново се задейства през закъснителната верига.

Чакащият мултивибратор 1 определя периода на импулсите на изхода — Т. Чакащият мултивибратор 2 определя продължителноста на импулсите - t_p .

