Fuzzy ILP and Semantic Information Extraction form Texts

Jan Dědek

Department of Software Engineering, Faculty of Mathematics and Physics, Charles University in Prague, Czech Republic

KEG. 15 October 2009, VŠE, Praha

Outline

Introduction

- Introduction
 - Our Information Extraction System
 - Linguistics we have used.
 - Domain of fire-department articles
- **Our Information Extraction Method**
 - Manually created rules
 - Learning of rules
- **Fuzzy ILP**
 - Introd. example, theory, architecture and an experiment
 - Fuzzy ILP Implementation
 - Evaluation and Conclusion
- Conclusion

Introduction to Presented Work

- Extraction of semantic information form texts.
 - In Czech language.
 - Coming form web pages.
- Using of Semantic Web ontologies.
 - RDF, OWL
- Exploiting of linguistic tools.
 - Mainly from the Prague Dependency Treebank project.
 - Experiments with the Czech WordNet.
- Rule based extraction method.
 - Extraction rules ≈ tree queries
 - ILP learning of extraction rules

Our Information Extraction System

Introduction

Schema of the extraction process

1) Extraction of text

2) Linguistic annotation

3) Data extraction

4) Semantic representation

Ontology

- Extraction of text
 - Using RSS feed to download pages.
 - Regular expression to extract text.
- 2 Linguistic annotation
 - Using chain of 6 linguistic tools (see on next slides).
- Data extraction
 - Exploitation of linguistic trees.
 - Using extraction rules.
- Semantic representation of data
 - Ontology needed.
 - Semantic interpretation of rules.
 - Far form finished in current state.

00000000

Layers of linguistic annotation in PDT

- Tectogrammatical layer
- Analytical layer
- Morphological layer

Sentence:

Byl by šel dolesa. He-was would went toforest. Linguistics we have used.

Introduction

Tools for machine linguistic annotation

Available on the PDT 2.0 CD-ROM

- Segmentation and tokenization
- Morphological analysis
- Morphological tagging
- Collins' parser Czech adaptation
- Analytical function assignment
- Tectogrammatical analysis
 - Developed by Václav Klimeš

Linguistics we have used.

Example of tectogrammatical tree

- Lemmas
- Functors
- Semantic parts of speech

Sentence:

Ve zdemolovaném trabantu na místě zemřeli dva muži – 82letý senior a další muž, jehož totožnost zjišťují policisté.

Two men died on the spot in demolished trabant – . . .

Domain of fire-department articles

Introduction

000000000

Example of the web-page with a report of a fire department

Domain of our experiments

- Fire-department articles
- Published by The Ministry of Interior of the Czech Republic¹
- Processed more than 800 articles from different regions of Czech Republic
- 1.2 MB of textual data
- Linguistic tools produced 10 MB of annotations, run time 3.5 hours
- Extracting information about injured and killed people
- 470 matches of the extraction rule,
 200 numeric values of quantity (described later)

¹ http://www.mvcr.cz/rss/regionhzs.html

00000000

Example of processed text

- Information to be extracted is decorated.
- See the last sentence on the next slide.

Domain of fire-department articles

Introduction

00000000

Example of a linguistic tree

- ..., škodu vyšetřovatel předběžně vyčíslil na osm tisíc korun.
- ..., investigating officer preliminarily reckoned the damage to be 8 000 CZK.
- Our IE method uses tree queries (tree patterns)

- Our Information Extraction System
- Linguistics we have used
- Domain of fire-department articles

Our Information Extraction Method

- Manually created rules
- Learning of rules
- Fuzzy ILP
 - Introd. example, theory, architecture and an experiment
 - Fuzzy ILP Implementation
 - Evaluation and Conclusion
- Conclusion

 How to extract the information about two dead people?

Extraction rules – Netgraph queries

- Tree patterns on shape and nodes (on node attributes).
- Evaluation gives actual matches of particular nodes.
- Names of nodes allow use of references.

Raw data extraction output

```
<QueryMatches>
  <Match root id="T-vvsocina63466.txt-001-pls4" match string="2:0.7:3.8:4.11:2">
    <Sentence>
      Při požáru byla jedna osoba lehce zraněna - jednalo se
      o majitele domu, který si vykloubil rameno.
    </Sentence>
    <Data>
      <Value variable name="action type" attribute name="t lemma">zranit</Value>
      <Value variable name="injury manner" attribute name="t lemma">lehký</Value>
      <Value variable name="participant" attribute name="t lemma">osoba</Value>
      <Value variable name="quantity" attribute name="t lemma">jeden</Value>
    </Data>
  </Match>
  <Match root_id="T-jihomoravsky49640.txt-001-p1s4" match_string="1:0,13:3,14:4">
    <Sentence>
      Ve zdemolovaném trabantu na místě zemřeli dva muži - 82letý senior
      a další muž, jehož totožnost zjišťují policisté.
    </Sentence>
    <Data>
     <Value variable name="action type" attribute name="t lemma">zemřít</Value>
      <Value variable name="participant" attribute name="t lemma">muž</Value>
      <Value variable name="guantity" attribute name="t lemma">dva</Value>
    </Data>
  </Match>
  <Match root id="T-jihomoravsky49736.txt-001-p4s3" match string="1:0.3:3.7:1">
    <Sentence>Čtyřiatřicetiletý řidič nebyl zraněn.
    <Data>
      <Value variable name="action type" attribute name="t lemma">zranit</Value>
      <Value variable_name="a-negation" attribute_name="m/tag">VpYS---XR-(N)A---
      </Value>
      <Value variable_name="participant" attribute_name="t_lemma">řidič</Value>
    </Data>
  </Match>
</OuervMatches>
```

Semantic interpretation of extraction rules

- Determines how particular values of attributes are used.
- Gives semantics to extraction rule.
- Gives semantics to extracted data.

Semantic data output

Two instances of two ontology classes.

The experimental ontology

- Two classes
 - Incident and Participant
- One object property relation
 - hasParticipant
- Five datatype property relations
 - actionManner (light or heavy injury)
 - negation
 - actionType (injury or death)
 - participantType (man, woman, driver, etc.)
 - participantQuantity

Design of extraction rules – iterative process

- Frequency analysis → representative key-words.
- ② Investigating of matching trees → tuning of tree query.
- **3** Complexity of the query \cong complexity of extracted data.

- Our Information Extraction System
- Linguistics we have used
- Domain of fire-department articles

Our Information Extraction Method

- Manually created rules
- Learning of rules

Fuzzy ILP

- Introd. example, theory, architecture and an experiment
- Fuzzy ILP Implementation
- Evaluation and Conclusion
- Conclusion

Learning of rules

Integration of ILP in our extraction process

- Transformation of trees to logic representation.
- Today: just first promising experiments.

Learning of rules

Logic representation of linguistic trees

Learning of rules

First promising results :-)

Example

```
contains num injured(A) :- t lemma(A,1).
contains_num_injured(A)
                        :- t lemma(A,2).
contains num injured(A)
                        :- t lemma(A,23).
contains num injured(A)
                        :- edge(A,B), m form(B, jeden).
contains num injured(A)
                        :- edge(A,B), m_tag(B,cn_s1___
                        :- edge(B,A), functor(B,coni).
contains_num_injured(A)
contains num injured(A)
                        :- edge(B,A), t lemma(B,dite).
contains num injured(A)
                        :- edge(B,A), t lemma(B,muz).
contains_num_injured(A)
                        :- edge(B,A), edge(B,C), m_tag14(C,1).
contains num injured(A)
                        :- edge(B,A), edge(B,C), t lemma(C,tezky).
contains num injured(A)
                        :- edge(B,A), edge(B,C), t lemma(C,nasledek).
contains num injured(A)
                        :- edge(A,B), edge(C,A), m_tag4(B,1), functor(C,pat).
contains num injured(A)
                        :- edge(A,B), edge(C,A), functor(C,act), a afun(B,sb).
                        :- edge(B,A), edge(C,B), edge(C,D), t lemma(D,vloni).
contains num injured(A)
contains_num_injured(A)
                        :- edge(B,A), edge(C,B), t_lemma(B,osoba), t_lemma(C,zranit).
contains num injured(A)
                        :- edge(B,A), edge(C,B), t lemma(B,osoba), t lemma(C,zemrit).
contains num injured(A)
                        :- edge(B,A), edge(C,B), functor(B,act), edge(C,D),
                           a afun(D.obi).
contains_num_injured(A)
                        :- edge(B,A), edge(C,B), t lemma(B,osoba), edge(C,D), edge(D,E).
                           functor (D, twhen) .
                           edge(B,A), t_lemma(A,tri), edge(B,C), edge(D,B), edge(E,D),
contains num injured(A) :-
                           m_tag2(C, m).
```

- Our Information Extraction System
- Linguistics we have used.
- Domain of fire-department articles
- Our Information Extraction Method
 - Manually created rules
 - Learning of rules
- Fuzzy ILP
 - Introd. example, theory, architecture and an experiment
 - Fuzzy ILP Implementation
 - Evaluation and Conclusion
- 4 Conclusion

ILP Example

Types of ground variables

```
animal(dog). animal(dolphin) ... animal(penguin).
class(mammal). class(fish). class(reptile). class(bird).
covering(hair). covering(none). covering(scales).
habitat(land). habitat(water). habitat(air).
```

Background knowledge

```
has_covering(dog, hair). has_covering(crocodile, scales). has_legs(dog,4). ... has_legs(penguin, 2). etc. has_milk(dog). ... has_milk(platypus). etc. homeothermic(dog). ... homeothermic(penguin). etc. habitat(dog, land). ... habitat(penguin, water). etc. has_eggs(platypus). ... has_eggs(eagle). etc. has_gills(trout). ... has_gills(eel). etc.
```

ILP Example

Positive examples

```
class(lizard, reptile).
class(trout, fish).
class(bat, mammal).
```

Negative examples

```
class(trout, mammal).
class(herring, mammal).
class(platypus, reptile).
```

Induced rules

Classical ILP and Fuzzy ILP principles

- Learning examples $E = P \cup N$ (Positive and Negative)
- Background knowledge B
- ILP task to find hypothesis H such that:

$$(\forall e \in P)(B \cup H \models e) \& (\forall n \in N)(B \cup H \not\models n).$$

- Fuzzy learning examples $\mathcal{E}: E \longrightarrow [0,1]$
- Fuzzy background knowledge $\mathcal{B}: B \longrightarrow [0, 1]$
- Fuzzy ILP task to find hyp. $\mathcal{H}: H \longrightarrow [0,1]$ such that:

$$(\forall e_1, e_2 \in E)(\forall \mathcal{M})(\mathcal{M} \models_f \mathcal{B} \cup \mathcal{H}) \ : \ \mathcal{E}(e_1) > \mathcal{E}(e_2) \Rightarrow \|e_1\|_{\mathcal{M}} \geq \|e_2\|_{\mathcal{M}}$$

Generalized Annotated Programs

- Fuzzy ILP is equivalent to Induction of Generalized Annotated Programs²
- For implementation we use GAP or strictly speaking:
 Definite Logic Programs with monotonicity axioms (also equivalent)
- Basic paradigm: deal with values as with degrees.
 - We don't have to normalize values, they order is enough.
- For example with monotonicity axioms we can use rule: serious (A, 4) \leftarrow fatalities (A, 10). and form the fact fatalities (id_123, 1000) deduce serious_alt(id_123, 4).

²See in S. Krajci, R. Lencses and P. Vojtas: "A comparison of fuzzy and annotated logic programming", Fuzzy Sets and Systems, vol.144, pp.173–192, 2004.

Schema of the whole system

- Web Crawling
- Information Extraction and User Evaluation
- Logic representation
 - Construction of background knowledge
 - Construction of learning examples
- ILP Learning
 - Crisp
 - Fuzzy
- Comparison of results

Accident attributes

	distinct	missing	
attribute name	values	values	monotonic
size (of file)	49	0	yes
type (of accident)	3	0	no
damage	18	30	yes
dur_minutes	30	17	yes
fatalities	4	0	yes
injuries	5	0	yes
cars	5	0	yes
amateur_units	7	1	yes
profesional_units	6	1	yes
pipes	7	8	yes
lather	3	2	yes
aqualung	3	3	yes
fan	3	2	yes
ranking	14	0	yes

- Information that could be extracted.
- Missing values.
- Almost all attributes are numeric.
 - So monotonic
 - This will be used for "fuzzyfication"
- Artificial target attribute seriousness ranking.

Fuzzy ILP

Introduction

Histogram of the seriousness ranking attribute

- 14 different values, range 0.5 8
- Divided into four approximately equipotent groups.

- Introduction
 - Our Information Extraction System
 - Linguistics we have used
 - Domain of fire-department articles
- Our Information Extraction Method
 - Manually created rules
 - Learning of rules
- Fuzzy ILP
 - Introd. example, theory, architecture and an experiment
 - Fuzzy ILP Implementation
 - Evaluation and Conclusion
- 4 Conclusion

Fuzzy ILP Implementation

Essential difference between learning examples

Crisp learning examples

```
serious_2(id_47443). %positive
serious_0(id_47443). %negative
serious_1(id_47443). %negative
serious_3(id_47443). %negative
```

Monotonized learning examples

```
serious_atl_0(id_47443). *positive serious_atl_1(id_47443). *positive serious_atl_2(id_47443). *positive serious_atl_3(id_47443). *negative
```

For one evidence (occurrence):

- Crisp:
 Always one positive and three negative learning examples
- Monotonized:
 Up to the observed degree positive, the rest negative.

Fuzzy ILP

Monotonization of attributes

damage → damage atl

```
damage_atl(ID,N) :- %unknown values
       damage(ID,N), not(integer(N)).
damage_atl(ID,N) :- %numeric values
       damage(ID,N2), integer(N2),
       damage(N), integer(N), N2>=N.
```

- We infer all lower values as sufficient.
- Treatment of unknown values.
- Negation as failure.

```
serious_0(A):-type(A,fire),pipes(A,0).
serious_0(A):-fatalities(A,0),pipes(A,1),lather(A,0).
serious_1(A):-amateur_units(A,1).
serious_1(A):-amateur_units(A,0),pipes(A,2),aqualung(A,1).
serious_1(A):-damage(A,300000).
serious_1(A):-damage(A,unknown),type(A,fire),prof_units(A,1).
```

serious_1(A):-dur_minutes(A,unknown), fatalities(A,0), cars(A,1). serious_2(A):-lather(A,unknown). serious_2(A):-lather(A,0), aqualung(A,1), fan(A,0). serious_2(A):-amateur_units(A,2),prof_units(A,2). serious_2(A):-dur_minutes(A,unknown).injuries(A,2).

serious_3(A):-fatalities(A,1). serious_3(A):-fatalities(A,2).

serious_3(A):-injuries(A,2), cars(A,2). serious_3(A):-pipes(A,4).

serious O(A):-dur minutes(A,8).

serious_atl_0(A). serious_atl_1(A):-injuries_atl(A,1). serious_atl_1(A):-lather_atl(A,1).

serious_atl_1(A):-pipes_atl(A,3). serious_atl_1(A):-dur_minutes_atl(A,unknown).

serious_atl_1(A):-size_atl(A,764),pipes_atl(A,1). serious_atl_1(A):-damage_atl(A,8000),amateur_units_atl(A,3).

serious_atl_1(A):-type(A,car_accident).
serious_atl_1(A):-pipes_atl(A,unknown), randomized_order_atl(A,35).
serious_atl_2(A):-pipes_atl(A,3), aqualung_atl(A,1).
serious_atl_2(A):-type(A,car_accident), cars_atl(A,2),prof_units_atl(A,2).

serious_atl_2(A):-injuries_atl(A,1),prof_units_atl(A,3),fan_atl(A,0). serious_atl_2(A):-lype(A,other), aqualung_atl(A,1). serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3).

serious_atl_2(A):-dur_minutes_atl(A,59), pipes_atl(A,3 serious_atl_2(A):-injuries_atl(A,2), cars_atl(A,2). serious_atl_2(A):-fatalities_atl(A,1).

serious_atl_3(A):-fatalities_atl(A,1). serious_atl_3(A):-dur_minutes_atl(A,unknown),pipes_atl(A,3). Crisp hypothesis

- Monotonized hypothesis
 - Monotonicity axioms
 - Monotonized learning examples

Evaluation and Conclusion

Introduction

Evaluation and Comparison of Results

		Raw ILP	Monot. ILP
Monot. test set	TP:	42	57
positive: 64	FP:	7	6
negative: 36	Precision:	0,857	0,905
sum: 100	Recall:	0,656	0,891
	F-measure:	0,743	0,898
Crisp test set	TP:	12	15
positive: 25	FP:	13	10
negative: 75	Precision:	0,480	0,600
sum: 100	Recall:	0,480	0,600
	F-measure:	0,480	0,600

- Rules evaluated on both testing sets.
 - By use of conversion predicates (next slide)
- Monotonized rules better in both cases.
- Even better than other classifiers (Znalosti 2010).

Evaluation and Conclusion

Conversion of Results

crisp → monotone

monotone → crisp

```
serious_atl_0(ID) :- serious_2(ID).
serious_atl_1(ID) :- serious_2(ID).
serious atl 2(ID) :- serious 2(ID).
```

Summary

Introduction

- Proposed a system for extraction of semantic information
- Based on linguistic tools for automatic text annotation
- Extraction rules adopted from Netgraph application.
- ILP used for learning rules.
- Our future research will concentrate on:
 - Learning of extraction rules.
 - Extension of the method with WordNet technology.
 - Adaptation of this method on other languages.
 - Evaluation of the method.