因果图法补充举例

例 9.2 某电力公司有 A、B、C、D 共 4 类收费标准,并规定,居民用电每月 100 度以下按 A 类收费,100 度及以上按 B 类收费。动力用电以每月 1 万度为分界。非高峰用电不足 1 万度按 B 类收费,达到 1 万度按 C 类收费。高峰用电万度以下为 C 类,达到或超过万度为 D 类。试用因果图法为该公司的电费计算程序设计一组测试用例。

以下列出产生设计用例的 4 点步骤:

(1) 列出程序的输入条件 (因) 和输出动作 (果), 如图 9.5 所示。

输人条件	输出动作
1. 居民用电	A. A 类计费
2. 动力用电	B. B类计费
3. <100度/月	C. C 类计费
4. <10,000 度/月	D. D 类计费
5. 高峰用电	

图 9.5 输入输出表

- (2) 用因果图表明输入和输出之间的逻辑关系,见图 9.6。
- (3) 把因果图转换为判定表。这一步的具体作法是:
- ——选择一个输出动作, 使处于"1"状态;
- ——在因果图上从后向前回溯,找出使此动作为"1"的各种输入条件组合;
- ——将每一个输入条件组合填入判定表中的一列,同时填入在此组合情况下各个输出动作的状态;
 - ——选择下一个输出动作,重复以上3步,直至最后一个输出动作做完为止。

说明

A: 逻辑与

V: 逻辑或

~: 逻辑非

1, 2, 3, 4, 5: 因结点

A, B, C, D: 果结点

I1, I2, I3, I4: 中间结点

图 9.7 示出了本例得出的判定表。表中的因结点就是输入条件,果结点就是输出动作。

规	则	1	2	3	4	5	6
因 结 点	1	1	1	0	0	0	0
	2	0	0	1	1	1	1
	3	I	0				
	4			1 ·	0	1	0
	5			0	0	1	
中间结点	. [1		1				
	I 2			1			
	13				1		
	I 4					1	
果结点	Α	1	0	0	0	0	0
	В	0	1	1	0	0	0
	С	0	, 0	0	1	1	0
	D	0	0	0	0	0	1

(4) 为判定表中的每一列(或规则)设计一个测试用例,如图 9.8。

输入数据	预期结果	输入数据	预期结果
①居民电,90度/月	Α	正动力电,非高峰,1.2	: 万度 / 月 C
②居民电,110度/月	В	5 动力电,高峰,0.9 万	5度/月 C
③动力电,非高峰,8000	度/月 B	⑥动力电,高峰,1.1 万	万度/月 D
	图 9.8 一组	目可能的测试用例	