

Naval Facilities Engineering Systems Command Southwest BRAC PMO West San Diego, CA

# Final Summary Report, Radiological Object Recovery

Parcel C Radiological Confirmation Sampling and Survey Hunters Point Naval Shipyard, San Francisco, California September, 2024 This page intentionally left blank

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 3 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVER PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

### TABLE OF CONTENTS

# **Table of Contents**

| 1.0 Introduction                                  | 1 |
|---------------------------------------------------|---|
| 2.0 Project Overview                              | 1 |
| 3.0 Radiological Object Recovery                  | 2 |
| 4.0 Project Data Quality Objectives               | 4 |
| 5.0 Basis for Decision to Re-Excavate Phase 2 TUs | 5 |
| 6.0 Appendices                                    | 6 |
| 7 0 References                                    | 7 |

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 4 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank

### 1.0 Introduction

This Summary Report contains information pertaining to the recovery of a deck marker containing radium-226 (radiological object) at Hunters Point Naval Shipyard (HPNS) Parcel C in San Francisco, California on 24 August 2023. The report and appendices provide a summary of the fieldwork procedures, data collection and analysis, health and safety measures, and third-party Quality Assurance (QA) oversight performed during the recovery of the radiological object. The report establishes that a workplan was created in conjunction with regulatory agencies, the workplan procedures were followed resulting in the recovery of a discrete radiological object, and that adherence to the workplan requires 100 percent re-excavation of Phase 2 Trench Units (TU's) at Parcel C. All procedures outlined in this document are in accordance with the multiagency approved *Final Parcel C Removal Site Evaluation Work Plan, Hunters Point Naval Shipyard, San Francisco, California* (Gilbane, 2022).

The subsections of the report are organized in sequential order. Section 2.0 - Project Overview provides a summary of the overall investigative approach to the radiological "re-work" at Parcel C. Section 3.0 - Radiological Object Recovery Process details the fieldwork and sampling procedures performed pre and post object recovery. Section 4.0 - Project Data Quality Objectives defines the data evaluation and decision-making processes in accordance with the Parcel C Workplan. Section 5.0 - Basis for Decision to Re-excavate Phase 2 Trench Units (TU's) identifies the decision-making criteria involved in determining that based on the radiological object recovery, in consultation with regulatory agencies, the Navy will conduct the re-excavation and characterization of 100 percent of the remaining soil in trench units at Parcel C.

This report was prepared by Naval Facilities Engineering System Command Southwest under Contract Number N62473-17-D-0005 (RADMAC II), CTO# N62473-18-F-5305, with GES, an ASRC Industrial Company (GES).

# 2.0 Project Overview

This section is intended to provide the Parcel C Radiological "re-work" Project Overview. The project is performed in compliance with the multi-agency approved *Final Parcel C Removal Site Evaluation Work Plan, Hunters Point Naval Shipyard, San Francisco, California* (Gilbane, 2022) hereto by referred to as the Parcel C Workplan.

The Parcel C Workplan was developed in order to ensure that the goals in the Parcel C ROD (Record of Decision) RAO (Remedial Action Objective) for soil can be met. In order to achieve a high level of confidence that the Parcel C ROD RAO can be met for soil, a two-phase investigation approach was designed for trench units (TUs) associated with the former sanitary sewers and storm drains in Parcel C, as agreed upon by the Navy and regulatory agencies. Phase 1 includes the re-excavation and characterization of 100 percent of the soil in a targeted group of one-third (23 of the 69) of the TUs. This one-third of the TUs was selected through a cooperative process between the Navy and regulators and based on the highest potential for radioactive contamination. Phase 2 consists of subsurface soil samples collected via borings to be drilled within and along the sidewalls of the remaining two-thirds (46 of 69) of the TUs. Per

the cooperative workplan design, 100 percent of Phase 2 TUs will be re-excavated if contamination (i.e., exceedance of the remediation goal [RG] that is not attributable to naturally occurring radioactive material [NORM] or anthropogenic background) is identified in any of the Phase 1 TUs. The Parcel C RG for <sup>226</sup>Ra, in picocuries per gram (pCi/g), is shown below:

### Soil Remediation Goals from Parcel C ROD

| Radionuclide      | Residential Soil Remediation Goal <sup>a</sup> (pCi/g) |  |  |  |  |
|-------------------|--------------------------------------------------------|--|--|--|--|
| <sup>226</sup> Ra | 1.0 <sup>b</sup>                                       |  |  |  |  |

#### Notes

On August 24, 2023, radioactive contamination in the form of a discrete radioactive object was identified and recovered from soil excavated from a Phase 1 TU. Subsection 3.0 and the appendices contain detailed information on this recovery. Based on the recovery and per the Parcel C workplan, the Navy will now conduct the re-excavation and characterization of 100 percent of the soil in the remaining 46 of 69 TUs identified as Phase 2.

The two-phase approach designed for Parcel C is described in the *FINAL Parcel C Removal Site Evaluation Work Plan, Hunters Point Naval Shipyard, San Francisco, California* (Gilbane, 2022). For Phase 1 TUs, the soil is excavated to the original TU boundaries, as practicable. An additional approximately six inches of soil is removed from the trench sidewalls and floors, and kept separate from the main trench soil throughout the screening process. The excavated soil is moved to a radiological screening yard (RSY) and laid out on RSY pads. A gamma scan survey is conducted over 100 percent of the soil. Soil samples are collected from locations systematically spaced across each pad. In addition, soil samples are collected from biased locations of interest identified by the gamma scan data. For Phase 2 TUs, if no Phase 1 contamination above the RGs was detected, a gamma scan survey of 100 percent of accessible surface areas would be conducted, and subsurface soil samples collected via borings placed within and along the sidewalls of the TU. The borings would be advanced 6-inches beyond the floor boundary of the TU or to the point of refusal. Soil samples would then be analyzed for the radionuclides of concern by an accredited off-site laboratory.

The re-excavation and characterization of soil in Phase 1 TUs in Parcel C began on 2 February 2023. At the time of the discovery of the radioactive object, work was underway on six of the 23 Phase 1 TUs scheduled for re-excavation, with 7,792 cubic yards of 20,445 cubic yards (38.11%) of soil having been re-excavated. Work on the remaining 46 Phase 2 TUs is not scheduled to start until work on the Phase 1 TUs is complete.

### 3.0 Radiological Object Recovery Process at Parcel C

This section is intended to detail the fieldwork and sampling procedures performed pre and post radiological object recovery. All of the following activities were performed in compliance with the Parcel C Workplan.

<sup>&</sup>lt;sup>a</sup> All RGs will be applied as stated in the Parcel C ROD. Analytical results also will be compared to background values.

<sup>&</sup>lt;sup>b</sup> <sup>226</sup>Ra RG is 1 pCi/g above background

On 24 August 2023, at approximately 1030 hours Pacific Time, a radiological anomaly was detected by the Navy's contractor, GES. The radiological anomaly was detected with a towed Radiation Solutions, Inc. RS-700 mobile gamma-ray detection system while driving over a radiological screening yard (RSY) pad unit of soil from trench unit TU-315 in Parcel C at Hunters Point. The area around the radiological anomaly was delineated and secured. At 1042 hours, hand-held radiological detection equipment was used to confirm the anomaly. At 1118 hours the Navy Base Realignment and Closure Program Management Office (BRAC PMO) was alerted of the discovery of the radiological anomaly via phone call from GES. The initial phone call from GES to BRAC PMO was followed by additional contractor and Navy RPM notification calls to the Navy Resident Officer In Charge of Construction (ROICC), Caretaker Site Office (CSO), and the Navy 3<sup>rd</sup> Party radiological oversight contractor (Battelle).

According to GES trench excavation data, the soil from trench unit TU-315 was excavated and placed on the RSY pad between 12 April 2023 and 09 May 2023. Each RSY pad in Parcel C only contains soil from a single trench unit. Each individual truck load is tracked and logged from the point of excavation to each individual RSY pad. According to GES excavation trucking and tracking logs, the radiological object originated in TU-315.

At 1235 hours, in the presence of ROICC and Battelle representatives, GES staged polyvinyl sheeting next to the location to prepare for item retrieval. Shallow lifts of soil were to be removed until the item was located. GES personnel loosened and removed the first lift (the top two inches) of soil with a shovel. An object identified as a deck marker with radioluminescent paint was observed/identified within the first scoop of soil removed. The deck marker was observed to be approximately 1.5 to 2 inches in diameter, did not appear to be broken or corroded, and was found lying flat within the soil with the painted side facing up (Appendix A). Static gamma counts and dose rate readings were collected from the deck marker at contact and from a distance of thirty centimeters. The results are summarized below in the table below and in Appendix A. GES Radiological Technicians ensured the deck marker was bagged, labeled, and placed into a lead-lined safe within a secured GES site trailer under the supervision of the Navy ROICC.

| Radiological Object Field Measurements |                      |  |  |  |  |
|----------------------------------------|----------------------|--|--|--|--|
| Gamma Static Counts Dose Rates         |                      |  |  |  |  |
| 1,348,930 CPM on Contact               | 1200uR/hr on contact |  |  |  |  |
| 16,161 CPM @ 30 cm                     | 32uR/hr @ 30 cm      |  |  |  |  |

Notes: cm = centimeters CPM = counts per minute uR/hr = microRoentgen per hour

A Fact Sheet was disseminated to the public on 28 August 2023 displaying the location of the object recovered in addition to any pertinent information for the community. This Fact Sheet is located in Appendix B.

Following removal of the object, soil was investigated and removed to a distance of roughly two feet in each direction, and bounding samples were collected on 6 September 2023 to confirm that all potential radiological contamination was removed from the area. The bounding sample

results can be found in Appendix A. No activity above the Parcel C Workplan established release criteria was detected in the bounding samples.

The radiological object was received by the the lab on 01 March 2024 for analysis. The lab analytical data were received on 22 March 2024 and are provided in Appendix F. The analysis confirmed the radiological object contained levels of <sup>226</sup>Ra above the project remedial goal.

Additional data review by GES, the Navy, and third party QC contractor was performed following the object recovery and associated sampling. The table below displays the timeline of events in relation to the radiological object recovery at Parcel C.

| Chronology of Events        |                                                                                           |
|-----------------------------|-------------------------------------------------------------------------------------------|
| Date(s)                     | <u>Events</u>                                                                             |
| 12 April 2023 – 09 May 2023 | TU-315 Excavated                                                                          |
| 24 August 2023              | ESU-315 Gamma Drive-Over Performed                                                        |
| 24 August 2023              | RSY Pad Investigation and Object Recovery Performed                                       |
| 28 August 2023              | Public Notified of Parcel C Rad Object via<br>Parcel C Rad Object Fact Sheet (Appendix B) |
| 6 September 2023            | RO-01 bounding samples and ESU-315A systematic/biased soil samples collected              |
| 3 October 2023              | Validated RO-01 bounding sample results received                                          |
| 18 October 2023             | Validated ESU-315A systematic/biased soil sample results received                         |
| 01 March 2024               | Parcel C radiological object received by lab                                              |
| 22 March 2024               | Parcel C radiological object lab results received                                         |
| 19 October 2023 – Present   | Navy Data Review and Parcel C Radiological Object Reporting Performed                     |

# 4.0 Project Data Quality Objectives

This section is intended to define the data evaluation and decision-making processes reviewed by the Navy, in accordance with the Parcel C Workplan.

The project data quality objectives (DQOs) for the Phase 1 soil investigation are found in the Parcel C Work Plan, Section 3.1, and are summarized below.

<u>Step 1-State the Problem</u>: Data manipulation and falsification committed by a contractor during past sanitary sewer and storm drain removal actions call into question the reliability of soil data. There is uncertainty whether radiological contamination was present or remains in place.

<u>Step 2-Identify the Objective</u>: The primary objective of the soil investigation is to determine whether site conditions are compliant with the Parcel C ROD RAO.

<u>Step 3-Identify Inputs to the Objective</u>: The inputs include surface soil and subsurface soil analytical data for the applicable ROCs and gamma scan measurements to identify biased soil sample locations.

<u>Step 4-Define the Study Boundaries</u>: The Phase 1 and Phase 2 TUs are listed in the Parcel C Work Plan Tables 3-1 and 3-2, and are shown on Figure 3-1.

<u>Step 5-Develop Decision Rules</u>: If the investigation results demonstrate exceedances of the RGs determined from a point-by-point comparison with the RGs and are not shown to be NORM or anthropogenic background, remediation will be conducted. Remediation will be based on the following:

- If one Phase 1 TU does not meet the Parcel C ROD RAO, all Phase 2 TUs will be excavated.
- If all Phase 1 TUs meet the Parcel C ROD RAO, Phase 2 will be initiated for TUs.

<u>Step 6-Specify the Performance Criteria</u>: The data will be evaluated by comparing each ROC concentration for every sample to the corresponding RG.

- If all concentrations for all ROCs for all samples are less than or equal to the RGs, then compliance with the Parcel C ROD RAO is achieved.
- If any result is greater than the RG and cannot be attributed to NORM or anthropogenic background, remediation will be performed prior to backfilling.

<u>Step 7-Develop the Plan for Obtaining Data</u>: The radiological investigation will be conducted on a targeted group of 23 of the 69 TUs associated with former sanitary sewers and storm drains in Parcel C.

- Soil will be excavated to the original TU boundaries, as practicable.
- Additional excavation of approximately 6 inches of the trench sidewalls and floors will be performed to provide ex-situ gamma scanning and sampling of the trench sidewalls and floors.
- Excavated soil will be 100 percent gamma scanned by laying it out on RSY pads.
- Systematic and biased samples will be collected from the excavated soil for off-site analysis.
- The soil samples collected will be analyzed for the applicable ROCs by accredited off-site laboratories and the results will be evaluated as described in Step 6.
- If contamination is found during Phase 1, then all of the Phase 2 TUs will be excavated and investigated in a manner exact to the Phase 1 TUs.

### 5.0 Basis for Decision to Re-Excavate Phase 2 TUs

This section identifies the decision-making criteria involved in determining that based on the radiological object recovery, in consultation with regulatory agencies, the Navy will conduct the re-excavation and characterization of 100 percent of the remaining soil in trench units at Parcel C.

The purpose of the Parcel C radiological investigation is to determine whether site conditions are compliant with the Parcel C ROD RAO, which, for radiologically impacted soil, is to prevent receptor exposure to radionuclides of concern at concentrations that exceed the RG for all potentially complete exposure pathways. These pathways include exposure to external radiation. The Parcel C DQOs, specifically Step 3, identify as inputs to the DQOs not only surface soil and subsurface soil analytical data, but also gamma scan measurements. While the DQOs are focused primarily on soil, they clearly encompass site conditions, such as the presence of discrete radioactive objects, where receptor exposure to radionuclides of concern may occur at concentrations that exceed the RG. For example, the Parcel C Work Plan, Section 3.3.1, explains that areas of elevated activity identified during gamma scan surveys "...may result in the collection of biased samples or additional field measurements to determine the areal extent of the elevated activity. Potential causes of elevated gamma scan measurements may include discrete radioactive objects (e.g., deck markers), localized soil contamination, measurement geometry effects, and NORM."

The Parcel C DQOs, specifically Step 5, states that 100 percent of Phase 2 TUs will be re-excavated if contamination (i.e., exceedance of the RG that is not attributable to NORM or anthropogenic background) is identified in Phase 1 TUs. Lab analysis of the discrete radioactive object reported radioactivity in exceedance of the RG that cannot be attributed to NORM or anthropogenic background (See below and Appendix F).

### Soil Remediation Goals from Parcel C ROD

| Radionuclide      | Residential Soil Remediation Goal <sup>a</sup> (pCi/g) | Parcel C Object Analytical Results (pCi/g) |  |  |  |  |
|-------------------|--------------------------------------------------------|--------------------------------------------|--|--|--|--|
| <sup>226</sup> Ra | 1.0 <sup>b</sup>                                       | 60,000                                     |  |  |  |  |

### Notes:

Therefore, based on the discovery of contamination (i.e., the deck marker containing radium-226) in a Phase 1 TU (TU 315), the re-excavation and characterization of 100 percent of the soil in the remaining 46 of 69 TUs identified as Phase 2 is required.

# 6.0 Appendices

- A. HPNS Parcel C Radiological Object GES
- B. HPNS Parcel C Fact Sheet
- C. HPNS Parcel C Phase I Daily Production Report for 08.24.23 GES Report
- D. HPNS Parcel C Radiological Rework 3<sup>rd</sup> Party QA Report 08.24.23

<sup>&</sup>lt;sup>a</sup> All RGs will be applied as stated in the Parcel C ROD. Analytical results also will be compared to background values.

<sup>&</sup>lt;sup>b</sup> <sup>226</sup>Ra RG is 1 pCi/g above background

- E. HPNS Parcel C Radiological Investigation and Survey ROICC Daily Report 08.24.23
- F. Parcel C Radiological Object Laboratory Results

### 7.0 References

Final Removal Site Evaluation Work Plan Radiological Investigation, Survey, and Reporting at Parcel C, Hunters Point Naval Shipyard, San Francisco, California

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 12 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

# APPENDIX A HPNS PARCEL C RADIOLOGICAL OBJECT - GES

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 13 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank



20 December 2023

Submitted via Email

Mr. Sean-Ryan McCray Remedial Project Manager Navy BRAC PMO West 33000 Nixie Way, Building 50 San Diego CA 92147

Subject: Discovery of Radiological Object - Radiological Confirmation Sampling and

Survey at Parcel C, Hunters Point Naval Shipyard, San Francisco, California Contract Number N62473-17-D-0005 (RADMAC II), CTO# N62473-18-F-5305

Dear Mr. McCray:

On 24 August 2023, at approximately 1030 hours Pacific Time, a radiological anomaly was detected with a towed Radiation Solutions, Inc. RS-700 mobile gamma-ray detection system while driving over a unit of soil from trench TU-315 in Parcel C at Hunters Point. The area was delineated/secured and at 1042 hours hand-held radiological detection equipment was used to confirm the anomaly. At 1118 hours the Navy BRAC PMO office was alerted to the discovery via phone call, followed by calls to the Navy Resident Officer In Charge of Construction (ROICC), Caretaker Site Office (CSO), and the Navy 3<sup>rd</sup> Party radiological oversight contractor (Batelle).

Soil from TU-315 was excavated between 12 April and 09 May 2023. At the time of completion of TU-315 excavation, 4,541 cubic yards of an expected 20,445 yards to be completed under the project (22.21%) had been excavated. As of 24 August 2023, 7,792 cubic yards of 20,445 cubic yards (38.11%) have been excavated.

At 1235 hours, in the presence of ROICC and Batelle representatives, GES staged polyvinyl sheeting next to the location to prepare for item retrieval. Shallow lifts of soil were to be removed until the item was located. GES personnel loosened and removed the top two inches of soil with a shovel. A deck marker was detected in the first scoop of soil removed. The marker was approximately 1.5 to 2 inches in diameter, did not appear to be broken or corroded, and was found lying flat within the soil with the painted side facing up. Static gamma counts and dose rate readings were collected from the object at contact and from a distance of thirty centimeters. The results are below. The object was bagged, labeled, and placed into a lead-lined safe within a secured GES site trailer.

| <b>Gamma Static Counts</b> | Dose Rates           |
|----------------------------|----------------------|
| 1,348,930 CPM on Contact   | 1200uR/hr on contact |
| 16,161 CPM @ 30 cm         | 32uR/hr @ 30 cm      |





RS-700 Drive Over Map with Anomalies



Static Gamma Count at Surface





Static Gamma Count Result at Surface



Dose Rate Reading at Surface





Loosening of 2-Inch Soil Layer



Removal of 2-Inch Soil Layer





Device Located in First Scoop of Soil



Position of Object as Found in Soil





Gamma Static Count on Contact



Dose Rate Reading on Contact





Dose Rate Reading at 30 cm



Bagged Object



Following removal of the object, soil was removed to a distance of roughly two feet in each direction, and bounding samples were collected on 6 September 2023 to confirm that all contamination was removed. Results of these samples are attached. No activity above the release criteria was detected.

We will provide additional information as it arises. If you have any questions or require additional information, please contact the undersigned at your earliest convenience.

Sincerely,

Brett Womack Project Manager

925-250-8027

bwomack@ges-ais.com

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 22 of 384

# ARS1-23-01973 Results

| SDG           | Matrix | Location ID     | Sample ID            | Lab Sample ID     | Sample Date          | ample Date Unit Cs-137 Ra-226 |        | Cs-137      |                | Sr-T   |             |                |        |             |                |
|---------------|--------|-----------------|----------------------|-------------------|----------------------|-------------------------------|--------|-------------|----------------|--------|-------------|----------------|--------|-------------|----------------|
|               |        |                 |                      |                   |                      |                               | Result | Remediation | Result exceeds | Result | Remediation | Result exceeds | Result | Remediation | Result exceeds |
|               |        |                 |                      |                   |                      |                               |        | Goal (RG)   | RG (Y/N)       |        | Goal (RG)   | RG (Y/N)       |        | Goal (RG)   | RG (Y/N)       |
| ARS1-23-01973 | SO     | HPPCESU-315A031 | HPPC-ESU-315A-031    | ARS1-23-01973-001 | 9/6/2023 10:20:00 AM | PCI/G                         | -0.021 | 0.113       | 3 N            | 0.394  | 1.861       | N              |        |             |                |
|               |        | HPPCESU-315A032 | HPPC-ESU-315A-032    | ARS1-23-01973-002 | 9/6/2023 10:23:00 AM | PCI/G                         | 0.013  | 0.113       | N              | 0.336  | 1.861       | N              |        |             |                |
|               |        | HPPCESU-315A033 | HPPC-ESU-315A-033    | ARS1-23-01973-003 | 9/6/2023 10:30:00 AM | PCI/G                         | 0.009  | 0.113       | N              | 0.301  | 1.861       | N              | -0.004 | 0.331       | N              |
|               |        |                 | HPPC-ESU-315A-033-FD | ARS1-23-01973-004 | 9/6/2023 10:30:00 AM | PCI/G                         | 0.003  | 0.113       | N              | 0.354  | 1.861       | N              | 0.13   | 0.331       | N              |
|               |        | HPPCESU-315A034 | HPPC-ESU-315A-034    | ARS1-23-01973-005 | 9/6/2023 10:35:00 AM | PCI/G                         | -0.005 | 0.113       | N              | 0.365  | 1.861       | N              |        |             |                |



2609 North River Road Port Allen, Louisiana 70767 (225) 228-1394

# ARS Aleut Analytical, LLC

# Laboratory Analytical Report ARS1-23-01973

GES-AIS, LLC Evelyn Dawson 1501 West Fountainhead Parkway Suite 550 Tempe, AZ 94520 480-212-3768

chemdm-hpns@ges-ais.com, edawson@ges-ais.com, SynecticsDM-HPNS@ges-ais.com

COC Number: **090623P13302** Job Number: **J310000600** 

Job Location: Hunters Point Shipyard, Parcel C Removal Site Evaluation

Project Name: Work Area 33 Phase 1

Questions regarding this analytical report should be addressed to ARS project manager, Abigail Hoover, who can be reached by email at <a href="mailto:projectmanagers@aaa.aleutfederal.com">projectmanagers@aaa.aleutfederal.com</a>.

I certify that the test results presented in this report (in either hardcopy or electronic file (EDD)) meet the requirements of the laboratory's certifications and other applicable contract terms and conditions. A full list of the Port Allen, LA laboratory's certifications is provided with this report. Any exceptions to the certification or contract will be noted within the case narratives presented in the report. Any subcontracted sample results will be identified within the case narratives presented in the report. In the event this report is an amendment to a previously released report, the case narrative will clearly identify the original report as well as the reason(s) for reissuance. A statement of uncertainty for each analysis is available upon request. I authorize release and issuance of this report on the date signed below.

|           |      | Laboratory Management, ARS Aleut Analytical |
|-----------|------|---------------------------------------------|
| Signature | Date | Title                                       |

This report provides analytical results of the requested analysis and does not include any opinions or interpretations. ARS Aleut Analytical, LLC assumes no liability for the use or interpretation of analytical results. Results relate only to items tested. A partial reproduction of this test report is prohibited. Reproduction of this report in full requires the written approval of the laboratory.





ARS1-23-01973 Page 1 of 311



(225) 228-1394

# **Table Of Contents**

| Cover Sneet                               | 1   |
|-------------------------------------------|-----|
| Table Of Contents                         | 2   |
| Certifications                            | 3   |
| Case Narrative                            | 4   |
| Analytical Results                        | 8   |
| Batch QC                                  | 14  |
| QC Summary                                | 17  |
| Sample Management Records                 | 30  |
| Gamma Spec - Raw Data                     | 40  |
| Gamma Spec - ICAL                         | 146 |
| Gamma Spec - CCV                          | 179 |
| Gamma Spec - Daily Source Checks Raw Data | 184 |
| Gamma Spec - Monthly Backgrounds          | 194 |
| Gamma Spec - Monthly Backgrounds Raw Data | 199 |
| Sr-90 - Raw Data                          | 216 |
| Sr-90 - Standards & Carrier               | 233 |
| Sr-90 - ICAL                              | 242 |
| Sr-90 - CCV                               | 287 |
| Technical Review Checklists               | 306 |

ARS1-23-01973 Page 2 of 311

# **Certifications and Accreditations List**

| State or Accrediting Body (AB) | Certificate Number        |
|--------------------------------|---------------------------|
| AIHA LAP, LLC                  | 209312                    |
| Alaska                         | LA01131                   |
| California                     | 3085                      |
| ANAB DoD                       | ADE-1489                  |
| ANAB DOE                       | ADE-1489.01               |
| Louisiana DEQ - NELAC          | 01949                     |
| Louisiana DHH                  | LA022                     |
| Nevada                         | LA011312024-02            |
| New Jersey                     | LA009                     |
| New York                       | 66780 (NPW) / 66781 (SHW) |
| Texas                          | T104704447-22-18          |
| Utah                           | LA011312023-14            |
| Washington                     | C1010                     |

For additional information related to the specific matrices, methods, and analytes recognized by each accrediting body, contact us at QA@aaa.aleutfederal.com for additional information.

ML-QAM-001-FM-13 r3.4 Revision Date: 8/1/2023

ARS1-23-01973 Page 3 of 311

(225) 228-1394

# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

**Case Narrative** 

ARS1-23-01973 Page 4 of 311



(225) 228-1394

# PROJECT SAMPLE IDENTIFICATION CROSS-REFERENCE TO ARS SAMPLE LABORATORY IDs

| Client<br>Sample ID  | ARS Aleut Analytical<br>Sample ID |
|----------------------|-----------------------------------|
| HPPC-ESU-315A-031    | ARS1-23-01973-001                 |
| HPPC-ESU-315A-032    | ARS1-23-01973-002                 |
| HPPC-ESU-315A-033    | ARS1-23-01973-003                 |
| HPPC-ESU-315A-033-FD | ARS1-23-01973-004                 |
| HPPC-ESU-315A-034    | ARS1-23-01973-005                 |

| Sample | Date<br>Collected | Date<br>Received | Analysis    | Analysis Basis |                   | Analysis<br>Date/Time |
|--------|-------------------|------------------|-------------|----------------|-------------------|-----------------------|
| 001    | 09/06/23<br>10:20 | 09/07/23         | GAM-IG21-SO | Dry            | 09/08/23<br>09:50 | 09/29/23<br>09:24     |
| 002    | 09/06/23<br>10:23 | 09/07/23         | GAM-IG21-SO | Dry            | 09/08/23<br>09:50 | 09/29/23<br>09:25     |
| 003    | 09/06/23<br>10:30 | 09/07/23         | GAM-IG21-SO | Dry            | 09/08/23<br>09:50 | 09/29/23<br>10:28     |
| 003    | 09/06/23<br>10:30 | 09/07/23         | GPC-SR90-SO | Dry            | 09/12/23<br>07:27 | 09/13/23<br>11:09     |
| 004    | 09/06/23<br>10:30 | 09/07/23         | GAM-IG21-SO | Dry            | 09/08/23<br>09:50 | 09/29/23<br>10:29     |
| 004    | 09/06/23<br>10:30 | 09/07/23         | GPC-SR90-SO | Dry            | 09/12/23<br>07:27 | 09/13/23<br>11:09     |
| 005    | 09/06/23<br>10:35 | 09/07/23         | GAM-IG21-SO | Dry            | 09/08/23<br>09:50 | 09/29/23<br>11:33     |

#### SAMPLE RECEIPT/PREP

The samples arrived in good condition. The samples were screened for radioactive contamination as per procedure **PALA-SR-001-SOP Sample Receiving**. Sample date(s) and time(s) are listed as provided by the client. Per client, samples 001, 002, 003, 004, and 005 underwent 21 day ingrowth prior to gamma spec analysis. Turnaround time was set at 28 calendar days.

### **ANALYTICAL METHODS**

Cs-137 and Ra-226 analyses were performed using PALA-RAD-007, "Modified Gamma Emitting Radionuclides in Soil, Air, and Biota Matrices (EPA 901.1 Mod, SM 7120B, & HASL-300 Ga-01-R)".

Sr-90 analysis was performed using PALA-RAD-032, "Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation (Eichrom SRW01, EPA 905.0, HASL 300 Sr-01-RC)".

ARS1-23-01973 Page 5 of 311



# 2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

### **ANALYTICAL RESULTS**

Batch ARS1-B23-01624: DUP and/or parent sample value(s) for SR-90 are below the MDA, RPD is not applicable.

Batch ARS1-B23-01775: DUP and/or parent sample value(s) for Cs-137 are below the MDA, RPD is not applicable.

For batch ARS1-B23-01624, sample "HPPC-ESU-315A-033" (ARS1-23-01973-003) was used as the Sample Duplicate.

For batch ARS1-B23-01775, sample "HPPC-ESU-315A-034" (ARS1-23-01973-005) was used as the Sample Duplicate.

ARS1-23-01973 Page 6 of 311

### **Definitions:**

CRDL Contract Required Detection Limit
CSU Combined Standard Uncertainty

DLC Decision Level Concentration (ANSI N42.23)

DUP Duplicate Original Sample Duplicate

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

LOD Limit of Detection
LOQ Limit of Quantitation
MBL Method Blank

MCL Maximum Contaminant Level
MDA Minimum Detectable Activity
MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

N/A Not Applicable
NC Not Calculated
NP Not Provided
NR Not Referenced

PQL Practical Quantitation Limit

### Data Qualifiers:

**B** The result of both the method blank and the target sample are above the MDL.

**D** Sample analysis accomplished through dilution.

J The reported result is an estimated value above the LOD but below the LOQ, or above the MDL but below the PQL.

Q One or more quality control criteria failed.

U Result is below the MDA, MDL, PQL, LOD, or LOQ
\* LCS/LCSD or Sample DUP fails all Duplicate criteria.

**S** Spike

**SC** Subcontracted out to another qualified laboratory.

H Holding time exceeded

E Exceeds MCL

Reporting Limit is higher than MCL; Target cannot be detected
Method/Matrix/Analyte not accredited for this certification

### **Radiochemistry Comments:**

- 1.0) All MDA/MDC values are calculated on a sample specific basis.
- 2.0) Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified.
- 3.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
- 4.0) Ra-226 after ingrowth is determined via secular equilibrium with its daughter, Bismuth 214 (Gamma Spectroscopy only).
- 5.0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
- 6.0) U-238 is determined via secular equilibrium with its daughter, Thorium 234 (Gamma Spectroscopy only).
- 7.0) All gamma spectroscopy was performed utilizing high purity germanium detectors (**HPGe**).
- ARS makes every attempt to match sample density to calibrated density; however, in some cases, it is not practical or possible to do so and data results may be affected (Gamma Spectroscopy only).
- 9.0) Gamma spectroscopy results are calculated values based on the **ORTEC**® GammaVision ENV32 Analysis Engine.
- 10.0) DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in Non-Potable Water:

  Gross Alpha and Gross Beta (EPA 900.0, EPA 9310); Radium 226 (EPA 903.0, EPA 903.1, EPA 9315); Radium 228 (EPA 904.0, EPA 9320); ICP/MS (EPA 6020B); ICP-OES (EPA 6010D); Mercury CVAA (EPA 7470A); Strontium-89 (EPA 905.0, Eichrom SRW01, HASL 300 Sr-01); Strontium-90 (EPA 905.0, Eichrom SRW01, HASL 300 Sr-02-RC); Tritium (EPA 906.0); Enriched Tritium (ARS-040), Carbon-14 (ARS-019), Tritium/Carbon (ARS-151); Gamma Emitters (EPA 901.1, SM 7120B, HASL 300 Ga-01-R); Americium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 Am-03); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03,
- Eichrom ACW16, HASL 300 Se-03, HASL 300 Pu-10); Thorium-228, Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Technetium-99 (Eichrom TCW02)
  - DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in **Solid and Chemical Materials**:
    Gross Alpha and Gross Beta (EPA 900.0 Mod, EPA 9310); ICP/MS (EPA 6020B); ICP-OES (EPA 6010D); Mercury CVAA (EPA 7471B); Strontium-89 (EPA 905.0 Mod, Eichrom SRW01, HASL 300 Sr-01); Strontium-90 (EPA 905.0 Mod, Eichrom SRW01, HASL 300 Sr-02); Tritium (EPA 906.0 Mod); Gamma Emitters (EPA 901.1, HASL 300 Ga-01-R); Americium-241 (Eichrom ACW03, HASL 300 Se-03, HASL 300 Am-01-RC); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 Pu-
- 02-RC, HASL 300 Pu-03-RC); Thorium-228, Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 U-02, HASL 300 U-04); Technetium-99 (Eichrom TCS01)
  DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in <u>Air and Emissions</u>:
  Gross Alpha and Gross Beta (EPA 900.0 Mod, EPA 9310); Strontium-89 (Eichrom SRW01, HASL 300 Sr-01-RC); Strontium-90 (Eichrom SRW01, HASL 300 Sr-02-RC); Gamma Emitters (EPA 901.1, HASL 300 Ga-01-R); Americium-241 (Eichrom ACW03, HASL 300 Se-03); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Technetium-99 (Eichrom TCW02, Eichrom TCS01)

#### **General Comments:**

- Modified analysis procedures are procedures that are modified to meet certain specifications. An example may be the use of a water method to analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of "M" or "Mod" to the procedure number (i.e. 901.1M, 901.1 Mod).
- 2.0 All NIOSH method results are reported without blank corrections applied.
- 3.0 Basis: "As Received" = analyzed as received from client; "Dry" = dried prior to being analyzed; "Dry Weight Corrected" = analyzed as received; result corrected for percent moisture.



(225) 228-1394

# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

# **Analytical Results**

ARS1-23-01973 Page 8 of 311



(225) 228-1394

ARS Sample Delivery Group: ARS1-23-01973

Client Sample ID: HPPC-ESU-315A-031

Sample Collection Date: 09/06/23 10:20
Sample Matrix: Soil/Solid/Sludge

Percent Solids: %

Request or PO Number: J310000600

ARS Sample ID: ARS1-23-01973-001

**Date Received:** 09/07/23 **Report Date:** 10/02/23

# Radiochemistry

Analysis Method: EPA 901.1M ABatch Sample ID: ARS1-B23-01775-04

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Cs-137                  | -0.021              | 0.039       | 0.052 | 0.026 | 0.07 | U    | pCi/g          | 09/29/23 9:24         | SDW                    | N/A                     |
| Ra-226                  | 0.394               | 0.077       | 0.058 | 0.029 | 0.1  |      | pCi/g          | 09/29/23 9:24         | SDW                    | N/A                     |

ARS1-23-01973 Page 9 of 311



(225) 228-1394

ARS Sample Delivery Group: ARS1-23-01973

Client Sample ID: HPPC-ESU-315A-032

Sample Collection Date: 09/06/23 10:23

Sample Matrix: Soil/Solid/Sludge

Percent Solids: %

Request or PO Number: J310000600

ARS Sample ID: ARS1-23-01973-002

**Date Received:** 09/07/23 **Report Date:** 10/02/23

# Radiochemistry

Analysis Method: EPA 901.1M ABatch Sample ID: ARS1-B23-01775-05

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Cs-137                  | 0.013               | 0.032       | 0.045 | 0.023 | 0.07 | U    | pCi/g          | 09/29/23 9:25         | SDW                    | N/A                     |
| Ra-226                  | 0.336               | 0.083       | 0.083 | 0.041 | 0.1  |      | pCi/g          | 09/29/23 9:25         | SDW                    | N/A                     |

ARS1-23-01973 Page 10 of 311



(225) 228-1394

ARS Sample Delivery Group: ARS1-23-01973

Client Sample ID: HPPC-ESU-315A-033

Sample Collection Date: 09/06/23 10:30

Sample Matrix: Soil/Solid/Sludge

Percent Solids: 89.9%

Request or PO Number: J310000600

ARS Sample ID: ARS1-23-01973-003

Date Received: 09/07/23

**Report Date:** 10/02/23

# Radiochemistry

Analysis Method: EPA 901.1M

**ABatch Sample ID:** ARS1-B23-01775-06

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Cs-137                  | 0.009               | 0.034       | 0.046 | 0.023 | 0.07 | U    | pCi/g          | 09/29/23 10:28        | SDW                    | N/A                     |
| Ra-226                  | 0.301               | 0.075       | 0.076 | 0.038 | 0.1  |      | pCi/g          | 09/29/23 10:28        | SDW                    | N/A                     |

Analysis Method: Eichrom SRW01 ABatch Sample ID: ARS1-B23-01624-04

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| SR-90                   | -0.004              | 0.077       | 0.140 | 0.065 | 0.15 | U    | pCi/g          | 09/13/23 11:09        | DWILLIAMS              | 92.2%                   |

ARS1-23-01973 Page 11 of 311



(225) 228-1394

**ARS Sample Delivery Group:** ARS1-23-01973

Client Sample ID: HPPC-ESU-315A-033-FD

Sample Collection Date: 09/06/23 10:30

Sample Matrix: Soil/Solid/Sludge

Percent Solids: 89.2%

Request or PO Number: J310000600

ARS Sample ID: ARS1-23-01973-004

**ABatch Sample ID:** ARS1-B23-01775-07

**Date Received:** 09/07/23 **Report Date:** 10/02/23

# Radiochemistry

Analysis Method: EPA 901.1M

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Cs-137                  | 0.003               | 0.034       | 0.050 | 0.025 | 0.07 | U    | pCi/g          | 09/29/23 10:29        | SDW                    | N/A                     |
| Ra-226                  | 0.354               | 0.087       | 0.089 | 0.045 | 0.1  |      | pCi/q          | 09/29/23 10:29        | SDW                    | N/A                     |

Analysis Method: Eichrom SRW01 ABatch Sample ID: ARS1-B23-01624-06

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| SR-90                   | 0.130               | 0.087       | 0.132 | 0.061 | 0.15 | U    | pCi/g          | 09/13/23 11:09        | DWILLIAMS              | 92.2%                   |

ARS1-23-01973 Page 12 of 311



(225) 228-1394

ARS Sample Delivery Group: ARS1-23-01973

Client Sample ID: HPPC-ESU-315A-034

 $\textbf{Sample Collection Date:} \quad 09/06/23 \ 10{:}35$ 

Sample Matrix: Soil/Solid/Sludge

Percent Solids: %

Request or PO Number: J310000600

ARS Sample ID: ARS1-23-01973-005

**ABatch Sample ID:** ARS1-B23-01775-08

**Date Received:** 09/07/23 **Report Date:** 10/02/23

# Radiochemistry

Analysis Method: EPA 901.1M

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA   | DLC   | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-------|-------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Cs-137                  | -0.005              | 0.032       | 0.044 | 0.022 | 0.07 | U    | pCi/g          | 09/29/23 11:33        | SDW                    | N/A                     |
| Ra-226                  | 0.365               | 0.081       | 0.073 | 0.037 | 0.1  |      | pCi/g          | 09/29/23 11:33        | SDW                    | N/A                     |

ARS1-23-01973 Page 13 of 311



# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

**Batch QC** 

ARS1-23-01973 Page 14 of 311



| ument 28-3 Filed 12/<br>Analytical Batch | ARS1-B23-01624                                               |
|------------------------------------------|--------------------------------------------------------------|
| SDG                                      | ARS1-23-01973                                                |
| Analysis                                 | Strontium-90 in (Soil, Sludge, Biota, Sediment [SO, BI, VG]) |
| Method                                   | Eichrom SRW01                                                |
| Analysis Code                            | GPC-SR90-SO                                                  |
| Report Units                             | pCi/a                                                        |

| Acceptable QC Performance Ranges            |                          |                          |      |  |  |  |  |  |
|---------------------------------------------|--------------------------|--------------------------|------|--|--|--|--|--|
| QC Sample Type Performance Items and Ranges |                          |                          |      |  |  |  |  |  |
| Laboratory Control Sample                   | Recovery (%): > 75 < 125 |                          |      |  |  |  |  |  |
| Matrix Spike                                | Recovery (%): > 60 < 140 |                          |      |  |  |  |  |  |
| Duplicate                                   | Du                       | < 3                      |      |  |  |  |  |  |
|                                             | Relative Pero            | cent Difference (RPD %): | ≤ 25 |  |  |  |  |  |

| Laboratory Control Sa    | ample   |         | Analysis<br>Date | 09/13/23 11:08 | Analysis<br>Technician | DWILLIAMS   |       |
|--------------------------|---------|---------|------------------|----------------|------------------------|-------------|-------|
| Analysis Batch Sample ID | QC Type | Analyte | Results          | CSU (2s)       | Expected Value         | LCS Rec (%) | MDA   |
| ARS1-B23-01624-01        | LCS     | SR-90   | 22.039           | 3.370          | 20.053                 | 109.9       | 0.388 |

| Duplicate RER/DER/RPD | R/DER/RPD   |              | 09/13/23 11:08 | Analysis<br>Technician | DWILI | LIAMS |
|-----------------------|-------------|--------------|----------------|------------------------|-------|-------|
| Analyte               | Results LCS | CSU LCS (2s) | Results LCSD   | CSU LCSD (2s)          | DER   | RPD   |
| SR-90                 | 22.039      | 3.370        | 20.044         | 3.071                  | 0.857 | 9.5   |

| Duplicate RER/DER/F      | R/DER/RPD (Dup Sample) |            | Analysis<br>Date | 09/13/23 11:09 | Analysis<br>Technician | DWILI | LIAMS |
|--------------------------|------------------------|------------|------------------|----------------|------------------------|-------|-------|
| Analysis Batch Sample ID | Analyte                | Results DO | CSU DO (2s)      | Results DUP    | CSU DUP (2s)           | DER   | RPD   |
| ARS1-B23-01624-05        | SR-90                  | -0.004     | 0.077            | 0.063          | 0.081                  | 1.169 | NC    |

| Method Blank             | Analysi<br>Date |         | 09/13/23 11:09 | Analysis<br>Technician | DWILI | LIAMS |
|--------------------------|-----------------|---------|----------------|------------------------|-------|-------|
| Analysis Batch Sample ID | QC Type         | Analyte | Results        | CSU (2s)               | MDA   | Qual  |
| ARS1-B23-01624-03        | MBL             | SR-90   | 0.166          | 0.110                  | 0.170 | U     |

ARS1-23-01973 Page 15 of 311



| Cument 28-3 Filed 12<br>Analytical Batch | ARS1-B23-01775                                                                        |
|------------------------------------------|---------------------------------------------------------------------------------------|
| SDG                                      | ARS1-23-01973                                                                         |
| Analysis                                 | Gamma Spec - 21 Day Ingrowth in (Soil, Sludge, Waste,<br>Sediment,Biota [SO, BI, VG]) |
| Method                                   | EPA 901.1M                                                                            |
| Analysis Code                            | GAM-IG21-SO                                                                           |
| Report Units                             | pCi/g                                                                                 |

| Acceptable QC Performance Ranges            |                          |                          |      |  |  |  |  |  |
|---------------------------------------------|--------------------------|--------------------------|------|--|--|--|--|--|
| QC Sample Type Performance Items and Ranges |                          |                          |      |  |  |  |  |  |
| Laboratory Control Sample                   | Recovery (%): > 75 < 12  |                          |      |  |  |  |  |  |
| Matrix Spike                                | Recovery (%): > 60 < 140 |                          |      |  |  |  |  |  |
| Duplicate                                   | Du                       | < 3                      |      |  |  |  |  |  |
|                                             | Relative Pero            | cent Difference (RPD %): | ≤ 40 |  |  |  |  |  |

| Laboratory Control Sample |         | Analysis<br>Date | 09/29/23 08:55 | Analysis<br>Technician | SE             | DW .        |         |
|---------------------------|---------|------------------|----------------|------------------------|----------------|-------------|---------|
| Analysis Batch Sample ID  | QC Type | Analyte          | Results        | CSU (2s)               | Expected Value | LCS Rec (%) | MDA     |
| ARS1-B23-01775-01         | LCS     | AM-241           | 2.131E+4       | 1.843E+3               | 2.275E+4       | 93.7        | 575.800 |
| ARS1-B23-01775-01         | LCS     | CO-60            | 4.316E+4       | 2.028E+3               | 4.279E+4       | 100.9       | 776.400 |
| ARS1-B23-01775-01         | LCS     | CS-137           | 3.690E+4       | 1.667E+3               | 3.545E+4       | 104.1       | 264.400 |

| Duplicate RER/DER/RPD |             | Analysis<br>Date | 09/29/23 09:08 | Analysis<br>Technician | SE    | DW . |
|-----------------------|-------------|------------------|----------------|------------------------|-------|------|
| Analyte               | Results LCS | CSU LCS (2s)     | Results LCSD   | CSU LCSD (2s)          | DER   | RPD  |
| AM-241                | 2.131E+4    | 1.843E+3         | 2.320E+4       | 1.962E+3               | 1.375 | 8.5  |
| CO-60                 | 4.316E+4    | 2.028E+3         | 4.049E+4       | 2.307E+3               | 1.707 | 6.4  |
| CS-137                | 3.690E+4    | 1.667E+3         | 3.637E+4       | 1.642E+3               | 0.445 | 1.4  |

| Duplicate RER/DER/RPD (Dup Sample) |         | Analysis<br>Date | 09/29/23 12:43 | Analysis<br>Technician | SE           | oW .  |      |
|------------------------------------|---------|------------------|----------------|------------------------|--------------|-------|------|
| Analysis Batch Sample ID           | Analyte | Results DO       | CSU DO (2s)    | Results DUP            | CSU DUP (2s) | DER   | RPD  |
| ARS1-B23-01775-09                  | CS-137  | -0.005           | 0.032          | -0.017                 | 0.036        | 0.493 | NC   |
| ARS1-B23-01775-09                  | RA-226  | 0.365            | 0.081          | 0.405                  | 0.103        | 0.596 | 10.4 |

| Method Blank             |         | Analysis<br>Date | 09/29/23 11:34 | Analysis<br>Technician |       |      |
|--------------------------|---------|------------------|----------------|------------------------|-------|------|
| Analysis Batch Sample ID | QC Type | Analyte          | Results        | CSU (2s)               | MDA   | Qual |
| ARS1-B23-01775-03        | MBL     | CS-137           | 0.012          | 0.028                  | 0.041 | U    |
| ARS1-B23-01775-03        | MBL     | RA-226           | -0.009         | 0.033                  | 0.105 | U    |

ARS1-23-01973 Page 16 of 311



(225) 228-1394

# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

**QC Summary** 

ARS1-23-01973 Page 17 of 311



(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01624

Method: Eichrom SRW01

**Lab Sample ID:** ARS1-B23-01624-01

Sample Type: LCS

Matrix: Soil/Solid/Sludge

**Analysis Date:** 09/13/23 11:08

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|
| SR-90   | 20.053         | 22 039             |      | nCi/a             | 109.9 | 75 - 125        |

ARS1-23-01973 Page 18 of 311



(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01624

Sample Type: LCSD

**Lab Sample ID:** ARS1-B23-01624-02

Matrix: Soil/Solid/Sludge **Analysis Date:** 09/13/23 11:08

Method: Eichrom SRW01

Spike

Analysis

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits | RPD | RPD<br>Limit | DER   | DER<br>Limit |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|-----|--------------|-------|--------------|
| SR-90   | 19.935         | 20.044             |      | pCi/g             | 100.5 | 75 - 125        | 9.5 | 25           | 0.857 | 3            |
|         |                |                    |      |                   |       |                 |     |              |       |              |
|         |                |                    |      |                   |       |                 |     |              |       |              |

Analysis

ARS1-23-01973 Page 19 of 311



(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01624

**Lab Sample ID:** ARS1-B23-01624-03 Method: Eichrom SRW01

Sample Type: MBL

Matrix: Soil/Solid/Sludge **Analysis Date:** 09/13/23 11:09

| Analyte | Analysis<br>Result | CSU +/- 2 s | MDA   | DLC   | Qual | Analysis<br>Units |
|---------|--------------------|-------------|-------|-------|------|-------------------|
| SR-90   | 0.166              | 0.110       | 0.170 | 0.079 | U    | pCi/g             |

ARS1-23-01973 Page 20 of 311



2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01624

**Lab Sample ID:** ARS1-B23-01624-05

Sample Type: DUP

Matrix: Soil/Solid/Sludge **Analysis Date:** 09/13/23 11:09

Method: Eichrom SRW01

| Analyte | DO<br>Result | DO<br>Qual | DUP<br>Result | DUP<br>Qual | Analysis<br>Units | RPD | RPD<br>Limit | DER   | DER Limit |
|---------|--------------|------------|---------------|-------------|-------------------|-----|--------------|-------|-----------|
| SR-90   | -0.004       | U          | 0.063         | U           | pCi/g             | NC  | 25           | 1.169 | 3         |

ARS1-23-01973 Page 21 of 311



(225) 228-1394

#### **QC Association Summary**

ARS Sample Delivery Group: ARS1-23-01973 Analytical Batch: ARS1-B23-01624

**Analysis:** Strontium-90 in (Soil, Sludge, Biota, Sediment [SO, BI, VG])

| Batch Sample ID   | Lab Sample ID     | Client Sample ID                     | Matrix            | Method        | Prep Method |
|-------------------|-------------------|--------------------------------------|-------------------|---------------|-------------|
| ARS1-B23-01624-01 |                   | Lab Control Sample                   | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |
| ARS1-B23-01624-02 |                   | Lab Control Sample Duplicate         | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |
| ARS1-B23-01624-03 |                   | Method Blank                         | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |
| ARS1-B23-01624-04 | ARS1-23-01973-003 | HPPC-ESU-315A-033                    | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |
| ARS1-B23-01624-05 |                   | Sample Duplicate (HPPC-ESU-315A-033) | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |
| ARS1-B23-01624-06 | ARS1-23-01973-004 | HPPC-ESU-315A-033-FD                 | Soil/Solid/Sludge | Eichrom SRW01 | N/A         |

ARS1-23-01973 Page 22 of 311



(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01775

**Lab Sample ID:** ARS1-B23-01775-01

Method: EPA 901.1M

Sample Type: LCS

Matrix: Soil/Solid/Sludge

**Analysis Date:** 09/29/23 8:55

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|
| Am-241  | 2.275E+4       | 2.131E+4           |      | pCi/g             | 93.7  | 75 - 125        |
| Co-60   | 4.279E+4       | 4.316E+4           |      | pCi/g             | 100.9 | 75 - 125        |
| Cs-137  | 3.545E+4       | 3.690E+4           |      | pCi/g             | 104.1 | 75 - 125        |

ARS1-23-01973 Page 23 of 311



(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01775

Sample Type: LCSD

**Lab Sample ID:** ARS1-B23-01775-02

Matrix: Soil/Solid/Sludge

Method: EPA 901.1M

**Analysis Date:** 09/29/23 9:08

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits | RPD | RPD<br>Limit | DER   | DER<br>Limit |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|-----|--------------|-------|--------------|
| Am-241  | 2.275E+4       | 2.320E+4           |      | pCi/g             | 102.0 | 75 - 125        | 8.5 | 40           | 1.375 | 3            |
| Co-60   | 4.279E+4       | 4.049E+4           |      | pCi/g             | 94.6  | 75 - 125        | 6.4 | 40           | 1.707 | 3            |
| Cs-137  | 3.545E+4       | 3.637E+4           |      | pCi/g             | 102.6 | 75 - 125        | 1.4 | 40           | 0.445 | 3            |

ARS1-23-01973 Page 24 of 311



Ra-226

2609 North River Road • Port Allen, Louisiana 70767

(225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01775

**Lab Sample ID:** ARS1-B23-01775-03

Method: EPA 901.1M

Sample Type: MBL

0.053

0.105

Matrix: Soil/Solid/Sludge
Analysis Date: 09/29/23 11:34

U

pCi/g

 Analyte
 Analysis Result
 CSU +/- 2 s
 MDA
 DLC
 Qual Units
 Analysis Units

 Cs-137
 0.012
 0.028
 0.041
 0.020
 U
 pCi/g

0.033

-0.009

ARS1-23-01973 Page 25 of 311



2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

#### **QC Sample Results**

Analytical Batch: ARS1-B23-01775

Sample Type: DUP

**Lab Sample ID:** ARS1-B23-01775-09 **Method:** EPA 901.1M

Matrix: Soil/Solid/Sludge
Analysis Date: 09/29/23 12:43

| Analyte | DO<br>Result | DO<br>Qual | DUP<br>Result | DUP<br>Qual | Analysis<br>Units | RPD  | RPD<br>Limit | DER   | DER Limit |
|---------|--------------|------------|---------------|-------------|-------------------|------|--------------|-------|-----------|
| Cs-137  | -0.005       | U          | -0.017        | U           | pCi/g             | NC   | 40           | 0.493 | 3         |
| Ra-226  | 0.365        |            | 0.405         |             | pCi/g             | 10.4 | 40           | 0.596 | 3         |

ARS1-23-01973 Page 26 of 311



(225) 228-1394

#### **QC Association Summary**

ARS Sample Delivery Group: ARS1-23-01973 Analytical Batch: ARS1-B23-01775

**Analysis:** Gamma Spec - 21 Day Ingrowth in (Soil, Sludge, Waste, Sediment, Biota [SO, BI, VG])

| Batch Sample ID   | Lab Sample ID     | Client Sample ID                     | Matrix            | Method     | Prep Method |
|-------------------|-------------------|--------------------------------------|-------------------|------------|-------------|
| ARS1-B23-01775-01 |                   | Lab Control Sample                   | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-02 |                   | Lab Control Sample Duplicate         | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-03 |                   | Method Blank                         | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-04 | ARS1-23-01973-001 | HPPC-ESU-315A-031                    | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-05 | ARS1-23-01973-002 | HPPC-ESU-315A-032                    | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-06 | ARS1-23-01973-003 | HPPC-ESU-315A-033                    | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-07 | ARS1-23-01973-004 | HPPC-ESU-315A-033-FD                 | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-08 | ARS1-23-01973-005 | HPPC-ESU-315A-034                    | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B23-01775-09 |                   | Sample Duplicate (HPPC-ESU-315A-034) | Soil/Solid/Sludge | EPA 901.1M | N/A         |

ARS1-23-01973 Page 27 of 311



| ument 28-3 Filed 12/<br>Analytical Batch | 06/24 Page 50 of 384<br>ARS1-B23-01624 |
|------------------------------------------|----------------------------------------|
| SDG                                      | ARS1-23-01973                          |
| Analysis                                 | Strontium-90 in (Soil, Sludge, Biota,  |
| Analysis Test Method                     | PALA-RAD-032/Eichrom SRW01,EPA         |
| Analysis Code                            | GPC-SR90-SO                            |
| Report Units                             | pCi/g                                  |

| Acceptable QC Performance Ranges            |             |  |  |  |  |  |
|---------------------------------------------|-------------|--|--|--|--|--|
| QC Sample Type Performance Items and Ranges |             |  |  |  |  |  |
| Laboratory Control Sample                   | ZLCS <= 3   |  |  |  |  |  |
| Matrix Spike                                | ZMS <= 3    |  |  |  |  |  |
| Method Blank                                | ZBLANK <= 3 |  |  |  |  |  |
| Duplicate                                   | ZDUP <= 3   |  |  |  |  |  |

| Laboratory Control Sample | Analysis Date | 09/13/23 11:08 | Analysis<br>Technician | DWILLIAMS      |          |       |  |  |
|---------------------------|---------------|----------------|------------------------|----------------|----------|-------|--|--|
| QC Type                   | Analyte       | Results        | CSU (1s)               | Expected Value | CSU (1s) | z     |  |  |
| LCS                       | SR-90         | 22.039         | 1.719                  | 20.053         | 0.334    | 1.134 |  |  |
| LCSD                      | SR-90         | 20.044         | 1.567                  | 19.935         | 0.334    | 0.068 |  |  |

| Method Blank | Analysis Date | 09/13/23 11:09 | Analysis<br>Technician | DWILLIAMS |
|--------------|---------------|----------------|------------------------|-----------|
| QC Type      | Analyte       | Results        | CSU (1s)               | Z         |
| MBL          | SR-90         | 0.166          | 0.056                  | 2.973     |

| <b>Duplicate Sample</b> | Analysis Date | 09/13/23 11:09 | Analysis<br>Technician |            | DWILLIAMS |       |
|-------------------------|---------------|----------------|------------------------|------------|-----------|-------|
| QC Type                 | Analyte       | Results Dup    | CSU (1s)               | Results DO | CSU (1s)  | z     |
| DUP                     | SR-90         | 0.063          | 0.042                  | -0.004     | 0.039     | 1.169 |
| LCSD                    | SR-90         | 20.044         | 1.567                  | 22.039     | 1.719     | 0.857 |

ARS1-23-01973 Page 28 of 311



| ument 28-3 Filed 12/<br>Analytical Batch | 06/24 Page 51 of 384<br>ARS1-B23-01775 |
|------------------------------------------|----------------------------------------|
| SDG                                      | ARS1-23-01973                          |
| Analysis                                 | Gamma Spec - 21 Day Ingrowth in (Soil, |
| Analysis Test Method                     | PALA-RAD-007/EPA 901.1M                |
| Analysis Code                            | GAM-IG21-SO                            |
| Report Units                             | pCi/g                                  |

| Acceptable QC Performance Ranges            |             |  |  |  |  |  |  |  |  |
|---------------------------------------------|-------------|--|--|--|--|--|--|--|--|
| QC Sample Type Performance Items and Ranges |             |  |  |  |  |  |  |  |  |
| Laboratory Control Sample                   | ZLCS <= 3   |  |  |  |  |  |  |  |  |
| Matrix Spike                                | ZMS <= 3    |  |  |  |  |  |  |  |  |
| Method Blank                                | ZBLANK <= 3 |  |  |  |  |  |  |  |  |
| Duplicate                                   | ZDUP <= 3   |  |  |  |  |  |  |  |  |

| <b>Laboratory Control Sample</b> | Analysis Date | 09/29/23 08:55 | Analysis<br>Technician | SDW            |          |       |  |  |
|----------------------------------|---------------|----------------|------------------------|----------------|----------|-------|--|--|
| QC Туре                          | Analyte       | Results        | CSU (1s)               | Expected Value | CSU (1s) | z     |  |  |
| LCS                              | AM-241        | 2.131E+4       | 940.408                | 2.275E+4       | 682.432  | 1.241 |  |  |
| LCSD                             | AM-241        | 2.320E+4       | 1.001E+3               | 2.275E+4       | 682.432  | 0.369 |  |  |
| LCS                              | CO-60         | 4.316E+4       | 1.035E+3               | 4.279E+4       | 1.284E+3 | 0.225 |  |  |
| LCSD                             | CO-60         | 4.049E+4       | 1.177E+3               | 4.279E+4       | 1.284E+3 | 1.323 |  |  |
| LCS                              | CS-137        | 3.690E+4       | 850.612                | 3.545E+4       | 1.064E+3 | 1.064 |  |  |
| LCSD                             | CS-137        | 3.637E+4       | 837.704                | 3.545E+4       | 1.064E+3 | 0.678 |  |  |

| Method Blank | Analysis Date | 09/29/23 11:34 | Analysis<br>Technician | SDW   |
|--------------|---------------|----------------|------------------------|-------|
| QC Type      | Analyte       | Results        | CSU (1s)               | Z     |
| MBL          | CS-137        | 0.012          | 0.014                  | 0.832 |
| MBL          | RA-226        | -0.009         | 0.017                  | 0.532 |

| <b>Duplicate Sample</b> | Analysis Date | 09/29/23 12:43 | Analysis<br>Technician | SDW        |          |       |  |  |
|-------------------------|---------------|----------------|------------------------|------------|----------|-------|--|--|
| QC Type                 | Analyte       | Results Dup    | CSU (1s)               | Results DO | CSU (1s) | z     |  |  |
| DUP                     | RA-226        | 0.405          | 0.053                  | 0.365      | 0.041    | 0.596 |  |  |
| DUP                     | CS-137        | -0.017         | 0.018                  | -0.005     | 0.016    | 0.493 |  |  |
| LCSD                    | AM-241        | 2.320E+4       | 1.001E+3               | 2.131E+4   | 940.408  | 1.375 |  |  |
| LCSD                    | CO-60         | 4.049E+4       | 1.177E+3               | 4.316E+4   | 1.035E+3 | 1.707 |  |  |
| LCSD                    | CS-137        | 3.637E+4       | 837.704                | 3.690E+4   | 850.612  | 0.445 |  |  |

ARS1-23-01973 Page 29 of 311

2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

### Sample Management Records

ARS1-23-01973 Page 30 of 311

#### CHAIN-OF-CUSTODY RECORD

COC# 090623P13302

Gilbane Federal Brett Womack 1501 W Fountainhead Parkway, Suite 550, Tempe, Arizona 85282 bwomack@ges-ais.com



| Project Name: Hunters Point Shipyard, Parcel C Removal Site Evaluatio | on L            | Labor                                               | atory: | ARS Aleut Analy | tical (AAA). | Port Allen, LA              |        |                                         |          | Event: Wor | k Area 33 Phase 1 |
|-----------------------------------------------------------------------|-----------------|-----------------------------------------------------|--------|-----------------|--------------|-----------------------------|--------|-----------------------------------------|----------|------------|-------------------|
| Project Number: J310000600                                            |                 | POC: Keith Greene Keith.Greene@aaa.aleutfederal.com |        |                 |              |                             |        |                                         |          |            |                   |
| WBS Code: J310000600                                                  |                 | _                                                   | _      |                 |              | en, LA 70767-3469           |        | *************************************** |          |            |                   |
| Comments:                                                             | T               | 7                                                   | T      |                 | TTT          | Code Matrix                 |        |                                         |          | 1          |                   |
| Please place on 21-day ingrowth. High Priority 28 day TAT             |                 |                                                     |        |                 |              | SO Soil                     |        |                                         |          |            |                   |
| Do not dispose, return to GES after 90 days.                          |                 | 137                                                 |        |                 |              | Code Container/Preservative |        | ~                                       |          |            |                   |
|                                                                       |                 | Cs1                                                 |        |                 |              | 1 1x Gallon Ziploc Bag. N   | Vone   |                                         |          |            |                   |
|                                                                       |                 | a22(                                                |        |                 |              |                             |        |                                         |          |            |                   |
|                                                                       | pot             | Spec Ra226                                          |        |                 |              |                             |        |                                         |          |            |                   |
|                                                                       |                 |                                                     |        |                 |              |                             |        |                                         |          |            |                   |
| Equipment:                                                            | est             | Gamma                                               | 2      |                 |              |                             |        |                                         |          |            |                   |
|                                                                       | al T            |                                                     |        |                 |              |                             |        |                                         |          | -          |                   |
|                                                                       | Analytical Test | E901.1 -                                            | 2      |                 |              |                             |        |                                         |          |            |                   |
|                                                                       | Anal            | E901                                                | 200    |                 |              |                             |        |                                         |          |            |                   |
| Event: Work Area 33 Phase 1                                           |                 | 1 1                                                 |        |                 |              |                             |        |                                         |          | <u> </u>   |                   |
| Sam                                                                   | am              |                                                     |        |                 |              |                             | Sample | Depth                                   | (ft bgs) |            |                   |
| Sample ID Matrix Date Time Init                                       | it.             |                                                     |        |                 |              | Location ID                 | Туре   | Top -                                   | Bottom   | Cooler     | Comments          |
| 1 HPPC-ESU-315A-031 SO 09/06/2023 1020 TR                             | 8               | X                                                   |        |                 |              | HPPCESU-315A031             | N1     | 0.00                                    | 0.50     | 1          |                   |
| 2 HPPC-ESU-315A-032 SO 09/06/2023 (023 TK                             | RT              | X                                                   |        |                 |              | HPPCESU-315A032             | N1     | 0.00                                    | 0.50     | 1          |                   |
| 3 HPPC-ESU-315A-033 SO 09/06/2023 LOBO TR                             | 2               | X >                                                 |        |                 |              | HPPCESU-315A033             | N1     | 0.00                                    | 0.50     | 1          |                   |
| 4 HPPC-ESU-315A-033-FD SO 09/06/2023 1630 TR                          | 2               | X >                                                 |        |                 |              | HPPCESU-315A033             | FD1    | 0.00                                    | 0.50     | 1          |                   |
| 5 HPPC-ESU-315A-034 SO 09/06/2023 / 035 TR                            | 2               | X                                                   |        |                 |              | HPPCESU-315A034             | N1     | 0.00                                    | 0.50     | 1          |                   |
| Furnaround Time: NA                                                   |                 |                                                     |        |                 |              |                             |        |                                         |          |            |                   |

| Relinquished by: (Signature) | Date      | Time | Received by: (Signature) | Date     |       | Shipping Date / Carrier / Airbill Number                      |
|------------------------------|-----------|------|--------------------------|----------|-------|---------------------------------------------------------------|
| 1/                           | 109/04/23 | 1600 | Feg Ex                   | 09/04/23 | 1600  | Shipping Date: 11 49/04/2023 Fedex<br>Master # 7733 2324 1396 |
|                              | 7 /       |      | Jaces helet              | 9-7-23   | 13:50 | 2nd # 7733 2324 1683                                          |
|                              |           |      |                          |          |       | Received by Laboratory: (Signature, Date, Time) & condition   |
|                              |           |      |                          |          |       |                                                               |

GES.Navy\_COC\_Field August 31, 2023

#### CHAIN-OF-CUSTODY RECORD

Gilbane Federal Brett Womack 1501 W Fountainhead Parkway, Suite 550, Tempe, Arizona 85282 bwomack@ges-ais.com

COC# 090623P13302



| Project Name: Hunters Point Shipyard, Parcel C Removal Ste Evaluat | tion                                                | Laboratory: ARS Aleut Analytical (AAA), Port Allen, LA |                                                          |   |   |   |   |   |  |                             |        | Event: Work Area 33 Phase 1 |          |        |          |
|--------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|---|---|---|---|---|--|-----------------------------|--------|-----------------------------|----------|--------|----------|
| Project Number: J310000600                                         | POC: Keith Greene Keith.Greene@aaa.aleutfederal.com |                                                        |                                                          |   |   |   |   |   |  |                             |        |                             |          |        |          |
| WBS Code: J310000600                                               |                                                     | Ship                                                   | nip to: 2609 North River Road, Port Allen, LA 70767-3469 |   |   |   |   |   |  |                             |        |                             |          |        |          |
| Comments:                                                          |                                                     | T                                                      | T                                                        | T | П | T | T | Г |  | Code Matrix                 |        |                             |          | l -    |          |
| Please place on 21-day ingrowth. High Priority 28 day TAT          |                                                     | 1                                                      |                                                          |   |   |   |   |   |  | SO Soil                     |        |                             |          |        |          |
| Do not dispose, return to GES after 90 days.                       |                                                     |                                                        |                                                          |   |   |   |   |   |  | Code Container/Preservative | 1011   |                             |          |        |          |
|                                                                    |                                                     | 26 Cs137                                               |                                                          |   |   |   |   |   |  | 1 1x Gallon Ziploc Bag,     | None   |                             |          |        |          |
|                                                                    | -                                                   | Spec Ra226                                             |                                                          |   |   |   |   |   |  |                             |        |                             |          |        |          |
|                                                                    | Analytical Test Method                              | bec                                                    |                                                          |   |   |   |   |   |  |                             |        |                             |          |        |          |
| Equipment:                                                         | I Me                                                | na S                                                   | 0                                                        |   |   |   |   |   |  |                             |        |                             |          |        |          |
|                                                                    | 168                                                 | Gamma                                                  | Sr90                                                     |   |   |   |   |   |  |                             |        |                             |          |        |          |
|                                                                    | tical                                               | 9                                                      | ò                                                        | 1 |   |   |   |   |  |                             |        |                             |          |        |          |
|                                                                    | ylaly                                               | E901.1                                                 | SR02RC                                                   |   |   |   |   |   |  |                             |        |                             |          |        |          |
| Event: Work Area 33 Phase 1                                        | A                                                   | 100                                                    | 1                                                        | - | - | + | + | + |  |                             |        |                             |          |        |          |
|                                                                    |                                                     |                                                        | -                                                        | + | - |   | - | - |  |                             | Sample | Denth                       | (ft bgs) |        |          |
|                                                                    | amp<br>Init.                                        |                                                        |                                                          |   |   |   |   |   |  | Location ID                 | Туре   |                             | Bottom   | Cooler | Comments |
| 1 HPPC-ESU-315A-031 SO 09/06/2023 1020 T                           | R                                                   | X                                                      | 7                                                        |   |   |   |   |   |  | HPPCESU-315A031             | N1     | 0.00                        | 0.50     | 1      |          |
|                                                                    | TR                                                  | X                                                      |                                                          |   |   |   |   |   |  | HPPCESU-315A032             | N1     | 0.00                        | 0.50     | 1      |          |
| 3 HPPC-ESU-315A-033 SO 09/06/2023 1.0 3 O                          | _                                                   | Х                                                      | X                                                        |   |   |   |   |   |  | HPPCESU-315A033             | N1     | 0.00                        | 0.50     | 1      |          |
|                                                                    |                                                     | X                                                      | х                                                        |   |   |   |   |   |  | HPPCESU-315A033             | FD1    | 0.00                        | 0.50     | 1      |          |
| 5 HPPC-ESU-315A-034 SO 09/06/2023 / 0 3 5 T                        | R                                                   | X                                                      |                                                          |   |   |   |   |   |  | HPPCESU-315A034             | N1     | 0.00                        | 0.50     | 1      |          |
| Turnaround Time: NA                                                |                                                     |                                                        |                                                          |   |   |   |   |   |  |                             |        |                             |          |        |          |

| Relinquished by: (Signature) | Date | Time Received by: (Signature) |          | Date      |                                                                | Shipping Date / Carrier / Airbill Number |                                                             |  |  |  |
|------------------------------|------|-------------------------------|----------|-----------|----------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|--|--|--|
| 09/04/23/600                 |      | Fed Ex                        | 09/04/23 | 1600      | Shipping Date: 11 69/04/2023 FELEX<br>Muster # 7733 23 24 1396 |                                          |                                                             |  |  |  |
|                              | 7 /  |                               |          | Faur Whet | 9-7-23                                                         | 12:30                                    | 2nd # 77332324 1683                                         |  |  |  |
|                              |      |                               |          |           |                                                                |                                          | Received by Laboratory: (Signature, Date, Time) & condition |  |  |  |
|                              |      |                               |          |           |                                                                |                                          |                                                             |  |  |  |

GES.Navy\_COC\_Field August 31, 2023

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 10/2/2023 12:04 PM Page 1 of 2

#### **SDG Report - Samples and Containers**

|                | SDG Specific Data |                   |            |              |                         |  |  |  |  |  |  |  |  |  |
|----------------|-------------------|-------------------|------------|--------------|-------------------------|--|--|--|--|--|--|--|--|--|
| SDG            | ARS1-23-01973     | Environmental     |            |              |                         |  |  |  |  |  |  |  |  |  |
| Sample Count   | 5 Rpt Level 4     | Date Received     | 09/07/2023 | COC Number   | 090623P13302            |  |  |  |  |  |  |  |  |  |
| Client         | GES-AIS, LLC      | Discrepancy Resol | N/A        | PO Number    |                         |  |  |  |  |  |  |  |  |  |
| Client Code    | 1138              | Client Deadline   | 10/05/2023 | Job Number   | J310000600              |  |  |  |  |  |  |  |  |  |
| Profile Number | PN-01440          |                   |            | Job Location | Hunters Point Shipyard, |  |  |  |  |  |  |  |  |  |
|                |                   |                   |            |              | Parcel C Removal Site   |  |  |  |  |  |  |  |  |  |
|                |                   |                   |            |              | Evaluation              |  |  |  |  |  |  |  |  |  |

Priority sample per email. Comment

|     |                      |                           |                  | Samples and Co   | ntainers | Checked I | n Thus | Far     |          |
|-----|----------------------|---------------------------|------------------|------------------|----------|-----------|--------|---------|----------|
| FR  | Name                 | Matrix                    | Start Date       | End Date         | Disp     | Hold      | Arch   | Storage | Comments |
| 001 | HPPC-ESU-315A-031    | Soil/Sol<br>id/Slud<br>ge | 09/06/2023 10:20 | 09/06/2023 10:20 | Н        | 30        | 10     | PrePrep |          |
|     | IC_ID                | Cnt                       | Container Type   | Container Size   | pH Orig  | pH Final  | Ten    | np (C)  | Comments |
|     | 447544               | 1                         | HDP Container    | Plastic Zip Bag  |          |           |        |         |          |
| 002 | HPPC-ESU-315A-032    | Soil/Sol<br>id/Slud<br>ge | 09/06/2023 10:23 | 09/06/2023 10:23 | Н        | 30        | 10     | PrePrep |          |
|     | IC_ID                | Cnt                       | Container Type   | Container Size   | pH Orig  | pH Final  | Ten    | np (C)  | Comments |
|     | 447545               | 1                         | HDP Container    | Plastic Zip Bag  |          |           |        |         |          |
| 003 | HPPC-ESU-315A-033    | Soil/Sol<br>id/Slud<br>ge | 09/06/2023 10:30 | 09/06/2023 10:30 | Н        | 30        | 10     | PrePrep |          |
|     | IC_ID                | Cnt                       | Container Type   | Container Size   | pH Orig  | pH Final  | Ten    | np (C)  | Comments |
|     | 447546               | 1                         | HDP Container    | Plastic Zip Bag  |          |           |        |         |          |
| 004 | HPPC-ESU-315A-033-FD | Soil/Sol<br>id/Slud<br>ge | 09/06/2023 10:30 | 09/06/2023 10:30 | Н        | 30        | 10     | PrePrep |          |
|     | IC_ID                | Cnt                       | Container Type   | Container Size   | pH Orig  | pH Final  | Ten    | np (C)  | Comments |
|     | 447547               | 1                         | HDP Container    | Plastic Zip Bag  |          |           |        |         |          |
| 005 | HPPC-ESU-315A-034    | Soil/Sol<br>id/Slud<br>ge | 09/06/2023 10:35 | 09/06/2023 10:35 | Н        | 30        | 10     | PrePrep |          |
|     | IC_ID                | Cnt                       | Container Type   | Container Size   | pH Orig  | pH Final  | Ten    | np (C)  | Comments |
|     | 447548               | 1                         | HDP Container    | Plastic Zip Bag  |          |           |        |         |          |

ARS1-23-01973 Page 33 of 311 ARS Aleut Analytical, LLC Port Allen Laboratory

**SDG Report - Analysis Assignments** 

| SDG    | ARS1-23-01973 | Sample Count   | 5   |
|--------|---------------|----------------|-----|
| Client | GES-AIS, LLC  | Analysis Count | 2-7 |

|               | Sample Count Totals Per Analysis                                                    |        |               |
|---------------|-------------------------------------------------------------------------------------|--------|---------------|
| Analysis Code | Analysis Description                                                                | In/Out | Samples Count |
| GAM-IG21-SO   | Gamma Spec - 21 Day Ingrowth in (Soil, Sludge, Waste, Sediment, Biota [SO, BI, VG]) | I      | 5             |
| GPC-SR90-SO   | Strontium-90 in (Soil, Sludge, Biota, Sediment [SO, BI, VG])                        | I      | 2             |

| А        | nalyses Assigned Per Fra | action       |
|----------|--------------------------|--------------|
| Fraction | Analysis Code            | X = Assigned |
| 001      | GAM-IG21-SO              | X            |
| 002      | GAM-IG21-SO              | X            |
| 003      | GAM-IG21-SO              | X            |
| 003      | GPC-SR90-SO              | X            |
| 004      | GAM-IG21-SO              | X            |
| 004      | GPC-SR90-SO              | X            |
| 005      | GAM-IG21-SO              | X            |

Printed: 10/2/2023 12:04 PM

Page 2 of 2

ARS1-23-01973 Page 34 of 311

Case 3:24-cv-03899-VC

Document 28-3 Filed 12/06/24

Page 57 of 384

Printed: 10/2/2023 12:04 PM

Page 1 of 2

ARS Aleut Analytical, LLC Port Allen Laboratory

#### **DQO Report for SDG**

ARS1-23-01973

Profile Name: Parcel C Rad Sampling Report Level: 4 Client Name: GES-AIS, LLC

| Analysis Code | Prep Type           | Units | Aliquot    | Prep Code        | Procedure | Count Time |             |        |     |            |     |
|---------------|---------------------|-------|------------|------------------|-----------|------------|-------------|--------|-----|------------|-----|
| GAM-IG21-SO   | DG21 pCi g          |       | N/A        | PALA-RAD-<br>007 |           |            |             |        |     |            |     |
|               | Analyte             |       | RDL        | LCS LL/UL        | MS LL/UL  | RadY LL/UL | GravY LL/UL | RER    | RPD | Surr LL/UL |     |
|               | Cs-137 (10045-97-3) |       | 0.07 pCi/g | 75/125           | 60/140    | 30/110     | 40/110      | 1      | 40  | N/A        |     |
|               | Ra-226 (13982-      | 63-3) |            | 0.1 pCi/g        | 75/125    | 60/140     | 30/110      | 40/110 | 1   | 40         | N/A |
| GPC-SR90-SO   | DRAD pCi g          |       | N/A        | PALA-RAD-<br>032 |           |            |             |        |     |            |     |
|               | Analyte             |       | RDL        | LCS LL/UL        | MS LL/UL  | RadY LL/UL | GravY LL/UL | RER    | RPD | Surr LL/UL |     |
|               | Sr-90 (10098-97-2)  |       | 0.15 pCi/g | 75/125           | 60/140    | 30/110     | 30/110      | 1      | 25  | N/A        |     |

User: SLEESE Last Modified: 9/28/2023 1:10:06 PM Page 35 of 311

Printed: 10/2/2023 12:04 PM

Page 2 of 2

### ARS Aleut Analytical, LLC Port Allen Laboratory

#### **DQO Report for SDG**

ARS1-23-01973

| Analysis Code | Fraction | Units                      | Aliquot | Conductivity | Analyte Count |
|---------------|----------|----------------------------|---------|--------------|---------------|
| GAM-IG21-SO   | 001      | pCi                        | g       | N/A          | 2             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Work Area 34 Phas | e I     | Cs-137       |               |
|               |          | Parcel C Work Area 34 Phas | e I     | Ra-226       |               |
| GAM-IG21-SO   | 002      | pCi                        | g       | N/A          | 2             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Work Area 34 Phas | e I     | Cs-137       |               |
|               |          | Parcel C Work Area 34 Phas | e I     | Ra-226       |               |
| GAM-IG21-SO   | 003      | pCi                        | g       | N/A          | 2             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Work Area 34 Phas | e I     | Cs-137       |               |
|               |          | Parcel C Work Area 34 Phas | e I     | Ra-226       |               |
| GAM-IG21-SO   | 004      | pCi                        | g       | N/A          | 2             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Work Area 34 Phas | e I     | Cs-137       |               |
|               |          | Parcel C Work Area 34 Phas | e I     | Ra-226       |               |
| GAM-IG21-SO   | 005      | pCi                        | g       | N/A          | 2             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Work Area 34 Phas | e I     | Cs-137       |               |
|               |          | Parcel C Work Area 34 Phas | e I     | Ra-226       |               |
| GPC-SR90-SO   | 003      | pCi                        | g       | N/A          | 1             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Rad Sampling      |         | Sr-90        |               |
| GPC-SR90-SO   | 004      | pCi                        | g       | N/A          | 1             |
|               |          | Group                      |         | Analyt       | e             |
|               |          | Parcel C Rad Sampling      |         | Sr-90        |               |

User: SLEESE Last Modified: 9/28/2023 1:10:06 PM Page 36 of 311

Case 3:24-cv-03899-VC PALA Sample Receipt Instition Form

Page 59 of 384

Client Name: \_\_G\_65 SDG: ARS1-23-01973

| Sample Custodian: June                                                             |                                 |                       | Sur                 | vey Start Da | ate: 9-7-23           | Survey Start Time:                                      | 14:15                                      |                          |                                        |           |
|------------------------------------------------------------------------------------|---------------------------------|-----------------------|---------------------|--------------|-----------------------|---------------------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------|-----------|
| Thermometer ID: EXOS                                                               |                                 |                       | Calibrat            | ion Due Da   | te: E-12-24           | nti Damari Lati                                         | * I A                                      |                          |                                        |           |
| Exposure Rate Meter + Probe  Count Rate Meter + Probe  Delivery Type (circle one): | Unit ID:                        | 2689                  | 93                  | _            | Calibration Due Da    | te: <u>9-13-23</u>                                      | Backgro                                    | ound:_                   | 5                                      | _μR/hr    |
| Delivery Type (circle one):                                                        | Direct                          | Lock Bo               | ox Confine          | rcial Carrie | r: Fed Ex             | te: <u>7= M- 23</u><br>Total#o                          | Backgro                                    | und:                     | 20                                     | cpm       |
| External Shipping Container Tracking: A: 773323241394                              | Exposur<br>(μR/hr)<br>(limit <5 | re Rate<br>500 μR/hr) | Max Ext<br>Counts ( | ernal Swipe  |                       | True temperature is recorded<br>ESC True<br>Temps* (°C) | which includes a<br>TRAX Ma<br>(See Sectio | ny applicat<br>trix ID ( | circle all t                           | on factor |
| B:                                                                                 | _                               |                       |                     |              |                       | -                                                       | AQ                                         | WD                       | WG                                     | WC        |
| C                                                                                  | -                               |                       |                     |              |                       |                                                         | WS                                         | ww                       | SI                                     | UR        |
| D. ———                                                                             |                                 |                       |                     |              |                       |                                                         | <b>₽</b>                                   | OL                       | BI                                     | VG        |
| E:                                                                                 | -                               |                       |                     |              |                       |                                                         | VVP                                        | SM                       | AF                                     |           |
| F: Visual Inspection: External Shipping Container                                  |                                 | cle respo             |                     | 1            | C/Sample Inspection   |                                                         | (Cir                                       | rala rasu                | ************************************** |           |
| Good Condition                                                                     | 0                               |                       |                     |              | nple Containers in g  |                                                         | Fes                                        | cle resp                 | onse)                                  |           |
| with no Leaks or Tears                                                             | (Yes)                           | No                    |                     |              | spills or leaks       |                                                         |                                            | No                       |                                        |           |
| Marked Radioactive                                                                 | Yes                             | NO                    |                     | Mar          | ked Radioactive       |                                                         | Yes                                        | No                       |                                        |           |
| UN2910                                                                             | Yes                             | <b>W</b>              |                     | Dura         | able labels w/indelib | ole ink                                                 | (Ves                                       | No                       |                                        |           |
| ecurity Seals                                                                      | <b>E</b>                        | No                    |                     | coc          | reliquished/receive   | d correctly                                             | (es                                        | No                       |                                        |           |
| If yes, intact?                                                                    | <b>O</b> s                      | No                    | N/A                 |              | quate volume/filled   |                                                         | (C)                                        | No                       |                                        |           |
| ternal Shipping Container                                                          |                                 |                       |                     |              | Time sufficient for a |                                                         | (e)s                                       | No                       |                                        |           |
| OC's Present                                                                       | <b>Fes</b>                      | No                    |                     | For V        | OC/Radon, Head spa    | ace?                                                    | Yes                                        | No                       | (A)A                                   |           |
| ell packaged container with<br>signs of leakage                                    | (Pes                            | No                    |                     | If           | yes, <6mm?            |                                                         | Yes                                        | No                       | MA.                                    |           |
|                                                                                    |                                 |                       |                     | # of co      | ontainers received n  | natches # on COC                                        | (Yes)                                      | No                       |                                        |           |
|                                                                                    |                                 |                       |                     | Sampl        |                       |                                                         |                                            |                          |                                        |           |
| mments:                                                                            |                                 |                       |                     | Julipi       | es received on ice?   |                                                         | Yes                                        | (No)                     |                                        |           |

Tip Lot#:\_

PALA Sample Survey Form
Client Name: GES
SDG: ARSI- 23- 01973

| Disposible pipette lot#:                   |                                          |                    |                                       |                              | <2 is        |                                             |                | <100 |
|--------------------------------------------|------------------------------------------|--------------------|---------------------------------------|------------------------------|--------------|---------------------------------------------|----------------|------|
| Sample ID from Client on COC or Sample     | 1031 A Σίριος 50 A Λ<br>1032 ( ) 1033-F0 | pH<br>Adjusted     | Acid Lot # or Ind container temp ('C) | Vol. of<br>Acid Used<br>(mL) | cpm/cn       |                                             |                |      |
| HPPC-ECU-315A-031                          | A                                        | Ziploc             | 50                                    | A                            | A            | NA                                          | M              | 80   |
| HPPC-ECU-315A-032<br>HPPC-ECU-315A-033     |                                          |                    | (                                     | 1                            | 1            |                                             | 1              | 1    |
| HPPC-ECU-315 A0 33                         |                                          |                    |                                       |                              |              |                                             |                |      |
| HPPC-ECU-315A-033-FD                       |                                          |                    |                                       |                              |              |                                             |                |      |
| HPPC-ECU-315A-034                          |                                          | 1                  |                                       | -                            | 1            | -                                           |                | l    |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             | 1              |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            | 1                                        |                    |                                       |                              |              |                                             |                | 1    |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            | 17.                                      |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    | 12.1                                  |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
|                                            |                                          |                    |                                       |                              |              |                                             |                |      |
| mple Custodian: Javan Bulet                |                                          | Survey End Da      | ate: <u>9-7-</u>                      | 23 s                         | urvey/pH     | End Time: 14:13                             |                |      |
| re-check required? YES or NO               | NOTE: Any                                | metals sample acid | lified at sample                      | receiving n                  | must be re-c | hecked after a 24 hour hold.                |                |      |
| YES: pH re-check date/time:                | /_                                       |                    | Analyst: _                            |                              |              | pH strip lot #:                             |                | _    |
| ere all re-checked samples' pH < 2? YES or | NO*                                      | - 3                | 1. Section A of                       | PALA-SR                      | -001-FM-0    | ect Management:<br>05 (24 Hour Hold pH Read |                |      |
|                                            |                                          |                    | 2. SR section o                       | f PALA-SI                    | R-001-FM-    | -03 (Discrepant Sample Re                   | ceipt Report). |      |

PALA-SR-001-FM-02 r 00.3 Sample Survey Form Effective Date: 7/7/2023 11:53 AM

Pipette ID:\_

Acceptance



After printing this label:

2. Fold the printed page along the horizontal line. 1. Use the Print' button on this page to print your label to your laser or inkjet printer.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

additional billing cnarges, along with the cancellation of your hedex account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery,misdelivery,or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx betwice Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, atthorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide. Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Document 28-3

Filed 12/06/24

Page 61 of 384

Case 3:24-cv-03899-VC



(225) 228-1394

# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

**Gamma Spec - Raw Data** 

ARS1-23-01973 Page 40 of 311

Printed: 10/2/2023 11:12 AM

Page 1 of 1

#### **Analytical Batch Report**

| 1                 | -    | Analysis Batch ID | ARS1-B23-017      | 75                 |          |         |           |                     |                       |                                  |              |
|-------------------|------|-------------------|-------------------|--------------------|----------|---------|-----------|---------------------|-----------------------|----------------------------------|--------------|
| ALCHT             |      | Procedure         | PALA-RAD-007      | Analysis           | GAM-I    | G21-S   | 0         | Prep                | N/A                   |                                  |              |
| ALCUI             |      | Description       | Gamma Spec - 21 I | Day Ingrowth in (S | oil, Slu | ıdge, \ | Vaste, \$ | Sediment,Bio        | ta [SO, BI, VG])      |                                  |              |
| ABatch Sample ID  | Туре | В                 | Blinds            | SDG                | FR       | Run     | Matrix    | Holding<br>Deadline | Client ID             | Group Name                       | Lab Deadline |
| ARS1-B23-01775-01 | LCS  | 159               | 5-98-4            |                    |          |         |           | 1595-98-4 -         | GAMMA GEOMETRY: 250 r | nL (8oz.) Tuna Can               |              |
| ARS1-B23-01775-02 | LCSD | 159               | 5-98-4            |                    |          |         |           | 1595-98-4 -         | GAMMA GEOMETRY: 250 r | nL (8oz.) Tuna Can               |              |
| ARS1-B23-01775-03 | MBL  |                   |                   |                    |          |         |           |                     |                       |                                  |              |
| ARS1-B23-01775-04 | TRG  |                   |                   | ARS1-23-01973      | 001      | 1       | SO        |                     | HPPC-ESU-315A-031     | Parcel C Work Area<br>34 Phase I | 10/02/23     |
| ARS1-B23-01775-05 | TRG  |                   |                   | ARS1-23-01973      | 002      | 1       | SO        |                     | HPPC-ESU-315A-032     | Parcel C Work Area<br>34 Phase I | 10/02/23     |
| ARS1-B23-01775-06 | TRG  |                   |                   | ARS1-23-01973      | 003      | 1       | SO        |                     | HPPC-ESU-315A-033     | Parcel C Work Area<br>34 Phase I | 10/02/23     |
| ARS1-B23-01775-07 | TRG  |                   |                   | ARS1-23-01973      | 004      | 1       | SO        |                     | HPPC-ESU-315A-033-FD  | Parcel C Work Area<br>34 Phase I | 10/02/23     |
| ARS1-B23-01775-08 | TRG  |                   |                   | ARS1-23-01973      | 005      | 1       | SO        |                     | HPPC-ESU-315A-034     | Parcel C Work Area<br>34 Phase I | 10/02/23     |
| ARS1-B23-01775-09 | DUP  |                   |                   | Parent: ARS1-23-   | 01973-   | 005     |           |                     |                       |                                  |              |

Page 41 of 311 ARS1-23-01973

Document 28-3 Filed 12/06/24

Page 64 of 384

Printed: 10/2/2023 11:12 AM

Page 1 of 1

ARS Aleut Analytical, LLC Port Allen Laboratory

### **LCS** Report

Analytical Batch: ARS1-B23-01775

| ABatch Sample ID  | Isotope | Source ID | Ref Date   | Ref ACT dpm | <b>Expected Value CT</b> | Mid Point Count Date | User ID  | Mod Date   |
|-------------------|---------|-----------|------------|-------------|--------------------------|----------------------|----------|------------|
| ARS1-B23-01775-01 | Am-241  | 1595-98-4 | 07/01/2012 | 50500       | 22747.74775              | 09/29/2023           | SWALDROP | 09/29/2023 |
| ARS1-B23-01775-02 | Am-241  | 1595-98-4 | 07/01/2012 | 50500       | 22747.74775              | 09/29/2023           | SWALDROP | 09/29/2023 |
| ARS1-B23-01775-01 | Co-60   | 1595-98-4 | 07/01/2012 | 95000       | 42792.79279              | 09/29/2023           | SWALDROP | 09/29/2023 |
| ARS1-B23-01775-02 | Co-60   | 1595-98-4 | 07/01/2012 | 95000       | 42792.79279              | 09/29/2023           | SWALDROP | 09/29/2023 |
| ARS1-B23-01775-01 | Cs-137  | 1595-98-4 | 07/01/2012 | 78700       | 35450.45045              | 09/29/2023           | SWALDROP | 09/29/2023 |
| ARS1-B23-01775-02 | Cs-137  | 1595-98-4 | 07/01/2012 | 78700       | 35450.45045              | 09/29/2023           | SWALDROP | 09/29/2023 |

Page 42 of 311 ARS1-23-01973

ARS Aleut Analytical, LLC Port Allen Laboratory

#### **Calculation Report** ARS1-B23-01775

Printed: 10/2/2023 8:03 AM Page 1 of 3

Analytical Batch ID ARS1-B23-01775

Analysis Code GAM-IG21-SO

Procedure No PALA-RAD-007

Matrix Soil/Solid/Sludge

|                   |                |               |         | VIALITY 2011/2011        | <i>a,</i> O i i | uugu    |             |            |            |           |           |           |            |     |              |
|-------------------|----------------|---------------|---------|--------------------------|-----------------|---------|-------------|------------|------------|-----------|-----------|-----------|------------|-----|--------------|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | Client ID                | Run             | Isotope | ACT         | CSU 1s     | CSU 2s     | MDA       | DLC       | CU 1s     | CU 2s      | MCL | Result Units |
| ARS1-B23-01775-01 | LCS            |               |         |                          |                 | Am-241  | 21306.00000 | 940.40816  | 1843.20000 | 575.80000 | 287.90000 | 339.64286 | 665.70000  |     | pCi/g        |
| ARS1-B23-01775-01 | LCS            |               |         |                          |                 | Co-60   | 43164.00000 | 1034.84694 | 2028.30000 | 776.40000 | 388.20000 | 645.05102 | 1264.30000 |     | pCi/g        |
| ARS1-B23-01775-01 | LCS            |               |         |                          |                 | Cs-137  | 36899.00000 | 850.61224  | 1667.20000 | 264.40000 | 132.20000 | 390.06633 | 764.53000  |     | pCi/g        |
| ARS1-B23-01775-02 | LCSD           |               |         |                          |                 | Am-241  | 23195.00000 | 1001.17347 | 1962.30000 | 390.30000 | 195.15000 | 301.43878 | 590.82000  |     | pCi/g        |
| ARS1-B23-01775-02 | LCSD           |               |         |                          |                 | Co-60   | 40489.00000 | 1177.09184 | 2307.10000 | 776.80000 | 388.40000 | 899.64286 | 1763.30000 |     | pCi/g        |
| ARS1-B23-01775-02 | LCSD           |               |         |                          |                 | Cs-137  | 36368.00000 | 837.70408  | 1641.90000 | 248.30000 | 124.15000 | 383.07143 | 750.82000  |     | pCi/g        |
| ARS1-B23-01775-03 | MBL            |               |         |                          |                 | Cs-137  | 0.01177     | 0.01414    | 0.02772    | 0.04050   | 0.02025   | 0.01414   | 0.02771    |     | pCi/g        |
| ARS1-B23-01775-03 | MBL            |               |         |                          |                 | Ra-226  | -0.00895    | 0.01682    | 0.03296    | 0.10500   | 0.05250   | 0.01681   | 0.03296    |     | pCi/g        |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     | HPPC-ESU-315A-031        | 1               | Cs-137  | -0.02149    | 0.01994    | 0.03909    | 0.05150   | 0.02575   | 0.01994   | 0.03908    |     | pCi/g        |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     | HPPC-ESU-315A-031        | 1               | Ra-226  | 0.39364     | 0.03917    | 0.07676    | 0.05820   | 0.02910   | 0.03731   | 0.07313    |     | pCi/g        |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     | HPPC-ESU-315A-032        | 1               | Cs-137  | 0.01284     | 0.01609    | 0.03153    | 0.04540   | 0.02270   | 0.01608   | 0.03153    |     | pCi/g        |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     | HPPC-ESU-315A-032        | 1               | Ra-226  | 0.33574     | 0.04244    | 0.08318    | 0.08250   | 0.04125   | 0.04118   | 0.08071    |     | pCi/g        |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     | HPPC-ESU-315A-033        | 1               | Cs-137  | 0.00909     | 0.01722    | 0.03375    | 0.04560   | 0.02280   | 0.01722   | 0.03375    |     | pCi/g        |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     | HPPC-ESU-315A-033        | 1               | Ra-226  | 0.30123     | 0.03847    | 0.07541    | 0.07550   | 0.03775   | 0.03738   | 0.07326    |     | pCi/g        |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     | HPPC-ESU-315A-033-<br>FD | 1               | Cs-137  | 0.00305     | 0.01733    | 0.03398    | 0.05020   | 0.02510   | 0.01733   | 0.03398    |     | pCi/g        |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     | HPPC-ESU-315A-033-<br>FD | 1               | Ra-226  | 0.35392     | 0.04462    | 0.08746    | 0.08910   | 0.04455   | 0.04329   | 0.08484    |     | pCi/g        |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     | HPPC-ESU-315A-034        | 1               | Cs-137  | -0.00499    | 0.01634    | 0.03202    | 0.04360   | 0.02180   | 0.01634   | 0.03202    |     | pCi/g        |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     | HPPC-ESU-315A-034        | 1               | Ra-226  | 0.36471     | 0.04139    | 0.08112    | 0.07320   | 0.03660   | 0.03989   | 0.07818    |     | pCi/g        |
| ARS1-B23-01775-09 | DUP            |               |         |                          |                 | Cs-137  | -0.01712    | 0.01841    | 0.03608    | 0.05130   | 0.02565   | 0.01840   | 0.03607    |     | pCi/g        |
| ARS1-B23-01775-09 | DUP            |               |         |                          |                 | Ra-226  | 0.40464     | 0.05275    | 0.10339    | 0.09630   | 0.04815   | 0.05128   | 0.10050    |     | pCi/g        |

#### **Calculation Report** ARS1-B23-01775

Printed: 10/2/2023 8:03 AM Page 2 of 3

Analytical Batch ID ARS1-B23-01775

Analysis Code GAM-IG21-SO

Procedure No PALA-RAD-007

Matrix Soil/Solid/Sludge

Case 3:24-cv-03899-VC

| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | Detector ID | Library         | Geometry                          | Nuclide Energy<br>(keV) | Peak Energy<br>(keV) | FWHM | ALIQ | Sample Coll Date | Mid Point Count<br>Date |
|-------------------|----------------|---------------|---------|-------------|-----------------|-----------------------------------|-------------------------|----------------------|------|------|------------------|-------------------------|
| ARS1-B23-01775-01 | LCS            |               |         | ARS06 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           | (KEV)                   | (KEV)                |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-01 | LCS            |               |         | ARS06 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-01 | LCS            |               |         | ARSO6 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-02 | LCSD           |               |         | ARSO6 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-02 | LCSD           |               |         | ARSO6 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-02 | LCSD           |               |         | ARS06 MCB   | LCS Fission.Lib | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-03 | MBL            |               |         | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-03 | MBL            |               |         | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     | ARSO6 MCB   | ITSI COUNT.Lib  | 2275-19-5 250mL tc poly           |                         |                      |      |      | 9/6/2023         | 9/29/2023               |
| ARS1-B23-01775-09 | DUP            |               |         | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/29/2023        | 9/29/2023               |
| ARS1-B23-01775-09 | DUP            |               |         | (ARS03) MC  | ITSI COUNT.Lib  | 250mL tuna can poly 1948-<br>64-2 |                         |                      |      |      | 9/29/2023        | 9/29/2023               |

#### **Calculation Report** ARS1-B23-01775

Printed: 10/2/2023 8:03 AM Page 3 of 3



Analytical Batch ID ARS1-B23-01775 Analysis Code GAM-IG21-SO

Procedure No PALA-RAD-007

Matrix Soil/Solid/Sludge

|                   |                |               | 11      | Soll/Solid/Siuage |                 |                  |       |         |         |
|-------------------|----------------|---------------|---------|-------------------|-----------------|------------------|-------|---------|---------|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | Qualifier         | Expected Result | Percent Recovery | RPD   | RER     | DER     |
| ARS1-B23-01775-01 | LCS            |               |         |                   | 22747.74775     | 93.7%            |       |         |         |
| ARS1-B23-01775-01 | LCS            |               |         |                   | 42792.79279     | 100.9%           |       |         |         |
| ARS1-B23-01775-01 | LCS            |               |         |                   | 35450.45045     | 104.1%           |       |         |         |
| ARS1-B23-01775-02 | LCSD           |               |         |                   | 22747.74775     | 102.0%           | 8.5%  | 0.97292 | 1.37524 |
| ARS1-B23-01775-02 | LCSD           |               |         |                   | 42792.79279     | 94.6%            | 6.4%  | 1.20935 | 1.70675 |
| ARS1-B23-01775-02 | LCSD           |               |         |                   | 35450.45045     | 102.6%           | 1.4%  | 0.31451 | 0.44478 |
| ARS1-B23-01775-03 | MBL            |               |         | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-03 | MBL            |               |         | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-04 | TRG            | ARS1-23-01973 | 001     |                   |                 |                  |       |         |         |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-05 | TRG            | ARS1-23-01973 | 002     |                   |                 |                  |       |         |         |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-06 | TRG            | ARS1-23-01973 | 003     |                   |                 |                  |       |         |         |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-07 | TRG            | ARS1-23-01973 | 004     |                   |                 |                  |       |         |         |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     | U                 |                 |                  |       |         |         |
| ARS1-B23-01775-08 | TRG            | ARS1-23-01973 | 005     |                   |                 |                  |       |         |         |
| ARS1-B23-01775-09 | DUP            |               |         | U                 |                 |                  |       | 0.34894 | 0.49261 |
| ARS1-B23-01775-09 | DUP            |               |         |                   |                 |                  | 10.4% | 0.42417 | 0.59554 |

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 9/29/2023 9:07 AM Page 1 of 1

|         | 1.          | Batch Sample ID  | ARS                     | ARS1-B23-01775-01 |                 |  |  |  |
|---------|-------------|------------------|-------------------------|-------------------|-----------------|--|--|--|
|         |             | Analytical Batch | ARS1-B23-01775          | Analysis Date     | 9/29/2023 08:54 |  |  |  |
|         |             | Analysis Code    | GAM-IG21-SO             | SDG               |                 |  |  |  |
|         |             | Detector         | ARS06 MCB 133           |                   |                 |  |  |  |
|         |             | Count Time (sec) | 600                     | Run               |                 |  |  |  |
| Ortec G | Samma       | Library          | LCS Fission.Lib         |                   |                 |  |  |  |
|         |             | Geometry         | 2275-19-5 250mL tc poly |                   |                 |  |  |  |
| Isotope | Activity    | Units            | CSU                     | MDA               | DL              |  |  |  |
| Am-241  | 2.1306E+004 | pCi/g            | 1.8432E+003             | 5.7580E+002       | 2.8790E+002     |  |  |  |
| Co-60   | 4.3164E+004 | pCi/g            | 2.0283E+003             | 7.7640E+002       | 3.8820E+002     |  |  |  |
| Cs-137  | 3.6899E+004 | pCi/g            | 1.6672E+003             | 2.6440E+002       | 1.3220E+002     |  |  |  |

ARS1-23-01973 Page 46 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 9:04:51 AM
AAA
                               Spectrum name: ARS06049.An1
Sample description
    Batch ID: 23-01775-01
    SDG ID: 1595-98-4 Tech:
Spectrum Filename: C:\User\ARS06049.An1
Acquisition information
      Start time:
                                 9/29/2023 8:54:40 AM
      Live time:
                                600
      Real time:
                               605
      Dead time:
                                 0.76 %
      Detector ID:
                                    21
Detector system
    ARS06 MCB 133
Calibration
                                 2275-19-5 250mL tc poly cal 12-8-21.Clb
      Filename:
    2275-19-5 250mL tc poly
    12-8-21 EEC
      Energy Calibration
                                 12/8/2021 10:48:48 AM
           Created:
           Zero offset:
                                 0.100 keV
           Gain:
                                 0.250 keV/channel
           Quadratic:
                                 -3.095E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 12/8/2021 11:58:07 AM
           Type:
                                Polynomial
           Uncertainty:
                                 1.254 %
           Coefficients:
                                -0.502841 -4.041766
                                                       0.314910
                                 Library Files
      Main analysis library:
                                LCS Fission.Lib
      Library Match Width:
                                 0.500
      Peak stripping:
                                 Library based
Analysis parameters
      Analysis engine:
                                 Env32
                                         G800W064
                                10 (
      Start channel:
                                         2.60keV )
      Stop channel:
                               8000 ( 1998.39keV )
      Peak rejection level:
                                40.000%
      Peak search sensitivity:
                                 1
      Sample Size:
                                 1.0000E+00 +/- 0.000E+00%
                                 1.0000E+06/(1.0000E+00*1.0000E+00) =
      Activity scaling factor:
                                 1.0000E+06
      Detection limit method:
                                 Reg. Guide 4.16 Method
      Random error:
                                 1.000000E+00
      Systematic error:
                                 1.000000E+00
      Fraction Limit:
                                0.000%
      Background width:
                                best method (based on spectrum).
      Half lives decay limit: 12.000
```

ARS1-23-01973 Page 47 of 311

#### 

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 9:04:51 AM AAA Spectrum name: ARS06049.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 7/1/2012 2:00:00 PM

Decay during acquisition: NO
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES LCS.LCSD.Pbc

9/21/2023 8:04:19 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0917

SUMMARY OF PEAKS IN RANGE Peak Area Uncert FWHM Corrctn Nuclide Brnch. Act. Nuc Factor Ratio Energy Energy pCi/g 32.38 196. 16.26 0.97 1.748E-02 36.73 170. 21.26 0.98 2.095E-02 0.87 2.877E-02 46.58 4357. 2.26 59.58 6692. 1.56 0.91 3.972E-02 59.54 36.300 2.131E+04 AM241 573.53 63. 32.63 0.50 2.110E-02 661.78 10308. 1.04 1.66 1.912E-02 661.66 85.210 3.690E+04 CS137 1173.48 2732. 2.09 1.97 1.249E-02 1173.24 99.900 4.324E+04 CO60 2.08 1.122E-02 1332.50 99.982 4.308E+04 CO60 1332.79 2445. 2.05

|         | ntroid B | D E N T I :<br>ackground N<br>Counts |      | _           | S U M I<br>Uncert<br>2 Sigma % | FWHM S | ****<br>Suspe<br>Nucl |    |
|---------|----------|--------------------------------------|------|-------------|--------------------------------|--------|-----------------------|----|
| 129.11  | 32.29    | 411.                                 | 196  | . 1.122E+04 | 32.52                          | 0.971  | _                     | D  |
| 146.52  | 36.64    | 568.                                 | 170  | . 8.110E+03 | 42.52                          | 0.976  | -                     | sD |
| 185.89  | 46.59    | 1913.                                | 4357 | . 1.515E+05 | 4.52                           | 0.870  | _                     |    |
| 2294.08 | 573.43   | 118.                                 | 63   | . 3.004E+03 | 65.26                          | 0.502  | _                     | s  |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

\_\_\_\_\_\_

This section based on library: LCS Fission.Lib

ARS1-23-01973 Page 48 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 9:04:51 AM AAA Spectrum name: ARS06049.An1

| *****   | ***** I | D E N T I | F I E D P  | EAK      | S U M M A R | Y ***** | ***** |
|---------|---------|-----------|------------|----------|-------------|---------|-------|
| Nuclide | Peak    | Centroid  | Background | Net Area | Intensity   | Uncert  | FWHM  |
|         | Channel | Energy    | Counts     | Counts   | Cts/Sec 2   | Sigma % | keV   |
| AM-241  | 237.90  | 59.58     | 1461.      | 6692.    | 11.153      | 3.12    | 0.905 |
| CS-137  | 2647.24 | 661.78    | 233.       | 10308.   | 17.180      | 2.07    | 1.662 |
| CO-60   | 4695.63 | 1173.48   | 99.        | 2732.    | 4.554       | 4.18    | 1.973 |
| CO-60   | 5333.57 | 1332.79   | 16.        | 2445.    | 4.076       | 4.11    | 2.081 |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| **** S U - Nuclide - Name Code | Average      |           | BRARY<br>Peak<br>Activity<br>pCi/g |       |           | -                                                      |
|--------------------------------|--------------|-----------|------------------------------------|-------|-----------|--------------------------------------------------------|
| AM-241                         | 2.1306E+04   | 59.54     | 2.131E+04                          | (     | 5.758E+02 | 1.58E+05<br>1.56E+00 3.63E+01 G                        |
| CS-137                         | 3.6899E+04   | 661.66    | 3.690E+04                          | (     | 2.644E+02 | 1.10E+04<br>1.04E+00 8.52E+01 G                        |
| CO-60                          | 4.3164E+04   |           | 4.324E+04<br>4.308E+04             | •     |           | 1.93E+03<br>2.09E+00 9.99E+01 G<br>2.05E+00 1.00E+02 G |
| ( - This                       | peak used in | the nucli | .de activit                        | cy av | rerage.   |                                                        |

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

Nuclide Codes: Peak Codes: T - Thermal Neutron Activation G - Gamma Ray

ARS1-23-01973 Page 49 of 311

| ORTEC g v - i (3263) Env32 G800W064 9/29/2023 9:04:51 AM AAA Spectrum name: ARS06049.An1                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F - Fast Neutron Activation X - X-Ray I - Fission Product P - Positron Decay N - Naturally Occurring Isotope S - Single-Escape P - Photon Reaction D - Double-Escape C - Charged Particle Reaction K - Key Line M - No MDA Calculation A - Not in Average R - Coincidence Corrected C - Coincidence Peak H - Halflife limit exceeded                                                   |
| **************************************                                                                                                                                                                                                                                                                                                                                                 |
| P - Peakbackground subtraction  ***** SUMMARY OF NUCLIDES IN SAMPLE *****  Time of Count Time Corrected Uncertainty 2 Sigma  Nuclide Activity Activity Counting Total MDA  pCi/g pCi/g pCi/g pCi/g pCi/g                                                                                                                                                                               |
| AM-241 2.0925E+04 2.1306E+04 6.6570E+02 1.8432E+03 5.758E+02 CS-137 2.8500E+04 3.6899E+04 7.6453E+02 1.6672E+03 2.644E+02 CO-60 9.8394E+03 4.3164E+04 1.2643E+03 2.0283E+03 7.764E+02 <- MDA value printed. A - Activity printed, but activity < MDA. B - Activity < MDA and failed test. C - Area < Critical level. F - Failed fraction or key line test. H - Halflife limit exceeded |
| Total Activity ( 2.6 to 1998.4 keV) 5.926E+04 pCi/g Total Decayed Activity ( 2.6 to 1998.4 keV) 1.0136937E+05 pCi/g                                                                                                                                                                                                                                                                    |
| Analyzed by:Countroom                                                                                                                                                                                                                                                                                                                                                                  |
| Reviewed by:Supervisor                                                                                                                                                                                                                                                                                                                                                                 |
| Laboratory: AAA                                                                                                                                                                                                                                                                                                                                                                        |

ARS1-23-01973 Page 50 of 311

Printed: 9/29/2023 9:20 AM Page 1 of 1

ARS Aleut Analytical, LLC Port Allen Laboratory

|         | 1           | Batch Sample ID  | ARS                     | -02           |                 |
|---------|-------------|------------------|-------------------------|---------------|-----------------|
| • 1     |             | Analytical Batch | ARS1-B23-01775          | Analysis Date | 9/29/2023 09:07 |
|         |             | Analysis Code    | GAM-IG21-SO             | SDG           |                 |
|         |             | Detector         | ARS06 MCB 133           | Fraction      |                 |
|         |             | Count Time (sec) | 600                     | Run           |                 |
| Ortec   | Gamma       | Library          | LCS Fission.Lib         |               |                 |
|         |             | Geometry         | 2275-19-5 250mL tc poly |               |                 |
| Isotope | Activity    | Units            | CSU                     | MDA           | DL              |
| Am-241  | 2.3195E+004 | pCi/g            | 1.9623E+003             | 3.9030E+002   | 1.9515E+002     |
| Co-60   | 4.0489E+004 | pCi/g            | 2.3071E+003             | 7.7680E+002   | 3.8840E+002     |
| Cs-137  | 3.6368E+004 | pCi/g            | 1.6419E+003             | 2.4830E+002   | 1.2415E+002     |

ARS1-23-01973 Page 51 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 9:17:53 AM
AAA
                               Spectrum name: ARS06050.An1
Sample description
    Batch ID: 23-01775-02
    SDG ID: 1595-98-4 Tech:
Spectrum Filename: C:\User\ARS06050.An1
Acquisition information
      Start time:
                                 9/29/2023 9:07:41 AM
      Live time:
                                600
      Real time:
                               605
                                 0.75 %
      Dead time:
      Detector ID:
                                    21
Detector system
    ARS06 MCB 133
Calibration
                                 2275-19-5 250mL tc poly cal 12-8-21.Clb
      Filename:
    2275-19-5 250mL tc poly
    12-8-21 EEC
      Energy Calibration
                                 12/8/2021 10:48:48 AM
           Created:
           Zero offset:
                                 0.100 keV
           Gain:
                                 0.250 keV/channel
           Quadratic:
                                -3.095E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 12/8/2021 11:58:07 AM
           Type:
                                Polynomial
           Uncertainty:
                                 1.254 %
           Coefficients:
                                -0.502841 -4.041766
                                                      0.314910
                                Library Files
      Main analysis library:
                                LCS Fission.Lib
      Library Match Width:
                                 0.500
      Peak stripping:
                                 Library based
Analysis parameters
      Analysis engine:
                                 Env32
                                         G800W064
                                10 (
      Start channel:
                                         2.60keV )
      Stop channel:
                               8000 ( 1998.39keV )
      Peak rejection level:
                                40.000%
      Peak search sensitivity:
                                 1
      Sample Size:
                                 1.0000E+00 +/- 0.000E+00%
                                 1.0000E+06/(1.0000E+00*1.0000E+00) =
      Activity scaling factor:
                                 1.0000E+06
      Detection limit method:
                                 Reg. Guide 4.16 Method
      Random error:
                                 1.000000E+00
      Systematic error:
                                 1.000000E+00
      Fraction Limit:
                                0.000%
      Background width:
                                best method (based on spectrum).
      Half lives decay limit: 12.000
```

ARS1-23-01973 Page 52 of 311

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 7/1/2012 2:00:00 PM

Decay during acquisition: NO
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES LCS.LCSD.Pbc

9/21/2023 8:04:19 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0767

| ***** S<br>Peak<br>Energy | U M M A F<br>Area | R Y O<br>Uncert | F PE<br>FWHM | A K S I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio | *****<br>Act.<br>pCi/g | Nuc   |
|---------------------------|-------------------|-----------------|--------------|------------------------------|----------------------------|------------------------|------------------------|-------|
| 12.30                     | 137.              | 13.26           | 0.95         | 1.599E-03                    |                            |                        |                        |       |
| 16.53                     | 84.               | 24.16           | 0.95         | 4.975E-03                    |                            |                        |                        |       |
| 19.40                     | 54.               | 36.13           | 0.96         | 7.261E-03                    |                            |                        |                        |       |
| 32.14                     | 244.              | 14.83           | 1.05         | 1.737E-02                    |                            |                        |                        |       |
| 36.84                     | 124.              | 33.30           | 0.96         | 2.113E-02                    |                            |                        |                        |       |
| 46.56                     | 4267.             | 2.30            | 0.92         | 2.874E-02                    |                            |                        |                        |       |
| 56.10                     | 224.              | 23.23           | 1.00         | 3.693E-02                    |                            |                        |                        |       |
| 59.60                     | 7285.             | 1.27            | 1.00         | 3.970E-02                    | 59.54                      | 36.300                 | 2.320E+04              | AM241 |
| 572.82                    | 61.               | 36.49           | 1.89         | 2.112E-02                    |                            |                        |                        |       |
| 661.78                    | 10159.            | 1.03            | 1.54         | 1.912E-02                    | 661.66                     | 85.210                 | 3.637E+04              | CS137 |
| 1173.45                   | 2558.             | 2.18            | 2.11         | 1.249E-02                    | 1173.24                    | 99.900                 | 4.049E+04              | CO60  |
| 1332.77                   | 2477.             | 2.09            | 2.05         | 1.122E-02                    | 1332.50                    | 99.982                 | 4.365E+04              | CO60  |
| 1617.66                   | 9.                | 33.33           | 1.12         | 9.367E-03                    |                            |                        |                        |       |

| *****   | *** U N I | DENTI       | FIED   | PEAK      | SUMI      | MARY  | ****  | ***** |
|---------|-----------|-------------|--------|-----------|-----------|-------|-------|-------|
|         |           | ackground N |        | _         | Uncert    |       | Suspe |       |
| Channel | Energy    | Counts      | Counts | * Area    | 2 Sigma % | keV   | Nucl  | ide   |
|         |           |             |        |           |           |       |       |       |
| 48.79   | 12.37     | 96.         | 137.   | 8.556E+04 | 26.52     | 0.947 | -     | sD    |
| 65.72   | 16.60     | 164.        | 84.    | 1.688E+04 | 48.33     | 0.952 | -     | sD    |
| 77.19   | 19.47     | 163.        | 54.    | 7.430E+03 | 72.26     | 0.956 | -     | sD    |
| 128.13  | 32.15     | 442.        | 244.   | 1.402E+04 | 29.66     | 1.054 | -     |       |
| 146.93  | 36.85     | 661.        | 124.   | 5.879E+03 | 66.59     | 0.959 | -     | s     |
| 185.82  | 46.55     | 1915.       | 4267.  | 1.485E+05 | 4.60      | 0.915 | _     |       |
| 224.04  | 56.06     | 1263.       | 225.   | 6.099E+03 | 46.57     | 0.999 | _     | sD    |

ARS1-23-01973 Page 53 of 311

Channel Energy Background Net area Eff\*Area Uncert FWHM Suspected 2291.20 572.78 130. 61. 2.907E+03 72.98 1.886 - s 6474.56 1617.66 0. 9. 9.608E+02 66.67 1.123 - s

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

-----

This section based on library: LCS Fission.Lib

| *****    | ***** I | DENTI   | FIED P     | EAK      | SUMMAR    | Y ***** | *****  |
|----------|---------|---------|------------|----------|-----------|---------|--------|
| Nuclide  | Peak    |         | Background | Net Area | Intensity | Uncert  |        |
|          | Channel | Energy  | Counts     | Counts   | Cts/Sec 2 | Sigma % | keV    |
| 725 0 41 | 000 00  |         |            |          | 10 140    |         | 1 0025 |
| AM-241   | 237.73  | 59.54   | 662.       | 7285.    | 12.142    | 2.55    | 1.003D |
| CS-137   | 2647.21 | 661.78  | 205.       | 10159.   | 16.932    | 2.06    | 1.537  |
| CO-60    | 4695.50 | 1173.45 | 99.        | 2558.    | 4.263     | 4.35    | 2.106  |
| CO-60    | 5333.49 | 1332.77 | 40.        | 2477.    | 4.129     | 4.19    | 2.053  |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| ***** S - Nuclide - | U M M A R Y<br>Average | -             |                   |     | P E A K              |          | ****       |   |
|---------------------|------------------------|---------------|-------------------|-----|----------------------|----------|------------|---|
| Name Code           | Activity<br>pCi/g      | Energy<br>keV | Activity<br>pCi/g | Cod | e MDA Value<br>pCi/g |          | MENTS      |   |
| AM-241              | 2.3195E+04             |               |                   |     |                      | 1.58E+   | -05        |   |
|                     |                        | 59.54         | 2.320E+04         | (   | 3.903E+02            | 1.27E+00 | 3.63E+01 ( | 3 |
| CS-137              | 3.6368E+04             |               |                   |     |                      | 1.10E+   | -04        |   |
|                     |                        | 661.66        | 3.637E+04         | (   | 2.483E+02            | 1.03E+00 | 8.52E+01 ( | 3 |
| CO-60               | 4.0489E+04             |               |                   |     |                      | 1.93E+   | -03        |   |
|                     |                        | 1173.24       | 4.049E+04         | (   | 7.768E+02            | 2.18E+00 | 9.99E+01 ( | 3 |
|                     |                        | 1332.50       | 4.365E+04         | +   | 5.644E+02            | 2.09E+00 | 1.00E+02 ( | 3 |
| ( - This            | peak used in           | the nucli     | de activit        | y a | verage.              |          |            |   |

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide

ARS1-23-01973 Page 54 of 311

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 77 of 384 ORTEC q v - i (3263) Env32 G800W064 9/29/2023 9:17:53 AM AAA Spectrum name: ARS06050.An1 failed one or more qualification tests. + - Peak activity higher than counting uncertainty range. - - Peak activity lower than counting uncertainty range. = - Peak outside analysis energy range. & - Calculated peak centroid is not close enough to the library energy centroid for positive identification. P - Peakbackground subtraction } - Peak is too close to another for the activity to be found directly. Nuclide Codes: Peak Codes: G - Gamma X - X-Ray T - Thermal Neutron Activation G - Gamma Ray F - Fast Neutron Activation I - Fission Product
P - Positron Decay
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation

R - Ray
P - Positron Decay
S - Single-Escape
K - Key Line
A - Not in Average R - Coincidence Corrected C - Coincidence Peak H - Halflife limit exceeded \*\*\*\*\*\*\* D I S C A R D E D I S O T O P E P E A K S \*\*\*\*\*\*\*\*\* Nuclide Centroid Background Net Area Intensity Uncert Activity Cts/Sec 2 Sigma % Energy Counts Counts P - Peakbackground subtraction SUMMARY OF NUCLIDES IN SAMPLE \*\*\*\*\* Time of Count Time Corrected Uncertainty 2 Sigma Total Nuclide Activity Activity Counting MDA pCi/g pCi/g pCi/g pCi/g pCi/g AM-241 2.2781E+04 2.3195E+04 CS-137 2.8089E+04 3.6368E+04 CO-60 9.2296E+03 4.0489E+04 5.9082E+02 1.9623E+03 3.903E+02 7.5082E+02 1.6419E+03 2.483E+02 1.7633E+03 2.3071E+03 7.768E+02 < - MDA value printed. A - Activity printed, but activity < MDA. B - Activity < MDA and failed test. C - Area < Critical level. F - Failed fraction or key line test. H - Halflife limit exceeded S U M M A R Y -----\_\_\_\_\_

Total Activity ( 2.6 to 1998.4 keV) 6.010E+04 pCi/g

Total Decayed Activity ( 2.6 to 1998.4 keV) 1.0005228E+05 pCi/g

Analyzed by: \_\_\_\_ Countroom

Reviewed by: \_\_\_\_

Supervisor

Laboratory: AAA

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 9/29/2023 12:35 PM Page 1 of 1

|             | 1            | Batch Sample ID  | ARS                       | 1-B23-01775-  | ·03             |  |
|-------------|--------------|------------------|---------------------------|---------------|-----------------|--|
|             |              | Analytical Batch | ARS1-B23-01775            | Analysis Date | 9/29/2023 11:33 |  |
| ALE         | -1111        | Analysis Code    | GAM-IG21-SO               | SDG           |                 |  |
|             |              | Detector         | (ARS03) MCB 129           | Fraction      |                 |  |
| Ortec Gamma |              | Count Time (sec) | 3600                      | Run           |                 |  |
|             |              | Library          | ITSI COUNT.Lib            |               |                 |  |
|             |              | Geometry         | 250mL tuna can poly 1948- | 64-2          |                 |  |
| Isotope     | Activity     | Units            | CSU                       | MDA           | DL              |  |
| Am-241      | -2.9686E-002 | pCi/g            | 7.7093E-002               | 1.2900E-001   | 6.4500E-002     |  |
| Bi-212      | -3.2830E-002 | pCi/g            | 3.0302E-001               | 4.6900E-001   | 2.3450E-001     |  |
| Bi-214      | -8.9510E-003 | pCi/g            | 3.2959E-002               | 1.0500E-001   | 5.2500E-002     |  |
| Co-60       | 8.0943E-003  | pCi/g            | 1.3170E-002               | 3.2800E-002   | 1.6400E-002     |  |
| Cs-137      | 1.1772E-002  | pCi/g            | 2.7718E-002               | 4.0500E-002   | 2.0250E-002     |  |
| Eu-152      | 6.3852E-002  | pCi/g            | 4.8968E-002               | 2.5100E-001   | 1.2550E-001     |  |
| Eu-154      | 6.3764E-002  | pCi/g            | 5.8511E-002               | 6.5800E-002   | 3.2900E-002     |  |
| K-40        | -8.8628E-002 | pCi/g            | 3.9123E-001               | 6.1600E-001   | 3.0800E-001     |  |
| Pa-234      | 4.3594E-002  | pCi/g            | 7.8398E-002               | 1.4300E-001   | 7.1500E-002     |  |
| Pb-210      | 1.6362E-001  | pCi/g            | 6.4570E-001               | 9.8200E-001   | 4.9100E-001     |  |
| Pb-212      | -2.2200E-002 | pCi/g            | 6.1662E-002               | 1.0700E-001   | 5.3500E-002     |  |
| Pb-214      | 1.1573E-002  | pCi/g            | 6.1100E-002               | 1.0700E-001   | 5.3500E-002     |  |
| Ra-226      | -6.1143E-001 | pCi/g            | 5.9618E-001               | 1.0000E+000   | 5.0000E-001     |  |
| Ra-228      | 4.7797E-002  | pCi/g            | 8.6108E-002               | 1.2500E-001   | 6.2500E-002     |  |
| TI-208      | 2.1154E-002  | pCi/g            | 2.8557E-002               | 3.9400E-002   | 1.9700E-002     |  |
| U-235       | 5.1170E-002  | pCi/g            | 1.4428E-001               | 2.2000E-001   | 1.1000E-001     |  |
| U-238       | -4.1961E-001 | pCi/g            | 6.6769E-001               | 1.1500E+000   | 5.7500E-001     |  |

ARS1-23-01973 Page 56 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM
AAA
                               Spectrum name: ARS03249.An1
Sample description
     Batch ID: 23-01775-03
     SDG ID: MBL Tech: SDW
Spectrum Filename: C:\User\ARS03249.An1
Acquisition information
       Start time:
                                  9/29/2023 11:33:55 AM
      Live time:
                               3600
                               3603
      Real time:
       Dead time:
                                  0.08 %
       Detector ID:
                                     17
Detector system
     (ARS03) MCB 129
Calibration
                                  1948-64-2 250mL tc poly cal 12-15-17.Clb
      Filename:
     250mL tuna can poly 1948-64-2
     12-15-17 EEC
       Energy Calibration
                                  12/15/2017 11:10:20 AM
            Created:
            Zero offset:
                                  0.253 keV
            Gain:
                                  0.250 keV/channel
            Quadratic:
                                 -1.778E-08 keV/channel^2
       Efficiency Calibration
            Created:
                                  12/15/2017 12:18:46 PM
            Type:
                                 Polynomial
           Uncertainty:
                                 1.552 %
           Coefficients:
                                 -0.414479 -4.439273
                                                       0.364604
                                 -0.031228
                                           0.000978 -0.000011
Library Files
       Main analysis library:
                                 ITSI COUNT.Lib
      Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
                                 10 (
       Start channel:
                                          2.75keV )
       Stop channel:
                               8000 ( 1997.02keV )
      Peak rejection level:
                               1000.000%
      Peak search sensitivity:
                                 1
       Sample Size:
                                  3.6020E+02 +/- 0.000E+00%
                                  1.0000E+06/(1.0000E+00*3.6020E+02) =
       Activity scaling factor:
                                  2.7762E+03
      Detection limit method:
                                  Reg. Guide 4.16 Method
      Random error:
                                  1.000000E+00
       Systematic error:
                                  1.000000E+00
       Fraction Limit:
                                 0.000%
       Background width:
                                  5
      Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 57 of 311

## 

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM AAA Spectrum name: ARS03249.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO
Decay during collection: NO

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:26:46 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.2827

| ***** S U<br>Peak<br>Energy | M M A l<br>Area | R Y O<br>Uncert | F P E<br>FWHM | A K S I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio | *****<br>Act.<br>pCi/g                | Nuc   |
|-----------------------------|-----------------|-----------------|---------------|------------------------------|----------------------------|------------------------|---------------------------------------|-------|
| 37.70                       | 12.             | 67.40           | 0.47          | 2.159E-02                    |                            |                        |                                       |       |
| 46.80                       | 61.             | 22.94           | 0.55          | 2.653E-02                    | 46.52                      | 4.000                  | PBC <mda< td=""><td>PB210</td></mda<> | PB210 |
| 60.24                       | 4.              | 201.12          | 0.89          | 3.480E-02                    | 59.54                      | 35.900                 | 7.437E-03                             | Am241 |
| 63.36                       | 44.             | 27.89           | 0.89          | 3.649E-02                    | 63.29                      | 3.900                  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 77.03                       | 6.              | 165.09          | 0.34          | 4.214E-02                    |                            |                        |                                       |       |
| 92.83                       | 78.             | 17.66           | 0.47          | 4.522E-02                    | 92.38                      | 2.570                  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
|                             |                 |                 |               |                              | 92.80                      | 3.000                  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 94.67                       | 17.             | 148.39          | 0.92          | 4.537E-02                    | 94.67                      | 15.500                 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 98.44                       |                 | 340.83          | 0.92          | 4.559E-02                    | 98.44                      | 25.100                 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 111.00                      | 6.              | 265.20          | 0.93          | 4.546E-02                    | 111.00                     | 8.550                  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 119.40                      | 5.              | 173.21          | 0.59          | 4.487E-02                    |                            |                        |                                       |       |
| 123.10                      | 15.             | 115.66          | 0.94          | 4.452E-02                    | 123.10                     | 40.460                 | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 143.76                      | 8.              | 177.75          | 0.96          | 4.202E-02                    | 143.76                     | 10.500                 | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 163.35                      | 7.              | 218.76          | 0.98          | 3.932E-02                    | 163.35                     | 4.700                  | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 171.82                      | 6.              | 107.62          | 0.38          | 3.817E-02                    |                            |                        |                                       |       |
| 185.56                      | 37.             | 35.93           | 2.03          | 3.636E-02                    | 186.21                     | 3.640                  | PBC <mda< td=""><td>RA226</td></mda<> | RA226 |
| 209.69                      | 10.             | 87.15           | 1.02          | 3.351E-02                    |                            |                        |                                       |       |
| 213.15                      | 6.              | 114.80          | 1.02          | 3.312E-02                    |                            |                        |                                       |       |
| 226.87                      | 4.              | 291.94          | 1.03          | 3.164E-02                    | 226.87                     | 6.500                  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 238.63                      | -14.            | 138.83          | 1.04          | 3.050E-02                    | 238.63                     | 43.100                 | PBC <mda< td=""><td>PB212</td></mda<> | PB212 |
| 241.98                      | 7.              | 263.93          | 1.05          | 3.019E-02                    | 241.98                     | 7.500                  | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |
| 244.67                      | 14.             | 144.52          | 1.05          | 2.995E-02                    | 244.67                     | 7.616                  | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 248.04                      | 10.             | 191.74          | 1.05          | 2.965E-02                    | 248.04                     | 6.600                  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 270.86                      | 11.             | 66.18           | 0.25          | 2.777E-02                    |                            |                        |                                       |       |
| 277.36                      | 3.              | 476.77          | 1.08          | 2.728E-02                    | 277.36                     | 6.500                  | PBC <mda< td=""><td>TL208</td></mda<> | TL208 |
| 295.72                      | 33.             | 33.71           | 0.73          | 2.600E-02                    | 295.21                     | 18.500                 | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |
| 301.17                      | 3.              | 227.22          | 1.10          | 2.565E-02                    | 300.09                     | 3.270                  | PBC <mda< td=""><td>PB212</td></mda<> | PB212 |

ARS1-23-01973 Page 58 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM AAA Spectrum name: ARS03249.An1

| pk energy | area | uncert | fwhm | corr      | nuclide | brnch. | act.                                  | nuc   |
|-----------|------|--------|------|-----------|---------|--------|---------------------------------------|-------|
| 303.97    | 13.  | 64.31  | 1.10 | 2.547E-02 |         |        |                                       |       |
| 428.89    | 2.   | 186.41 | 0.29 | 1.975E-02 |         |        |                                       |       |
| 511.08    | 111. | 12.96  | 2.52 | 1.742E-02 | 510.72  | 22.500 | 5.899E-01                             | TL208 |
| 569.26    | 3.   | 358.95 | 1.32 | 1.615E-02 | 569.26  | 10.400 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 583.14    | 13.  | 67.42  | 1.33 | 1.588E-02 | 583.14  | 86.000 | PBC <mda< td=""><td>TL208</td></mda<> | TL208 |
| 591.70    | 17.  | 45.75  | 1.34 | 1.572E-02 | 591.70  | 4.600  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 609.61    | 20.  | 33.01  | 0.40 | 1.540E-02 | 609.31  | 44.791 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 661.66    | 7.   | 117.72 | 1.40 | 1.455E-02 | 661.66  | 85.210 | PBC <mda< td=""><td>CS137</td></mda<> | CS137 |
| 678.23    | 13.  | 37.04  | 0.70 | 1.430E-02 |         |        |                                       |       |
| 723.30    | 6.   | 165.55 | 1.45 | 1.368E-02 | 723.30  | 19.700 | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 867.39    | 18.  | 37.93  | 1.56 | 1.205E-02 | 867.39  | 4.176  | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 880.51    | 6.   | 117.85 | 1.58 | 1.193E-02 | 880.51  | 6.500  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 911.07    | 8.   |        | 1.60 | 1.164E-02 | 911.07  | 29.000 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 946.00    | 4.   | 123.99 | 1.63 | 1.134E-02 | 946.00  | 20.000 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 964.00    | 8.   | 96.82  | 1.64 | 1.119E-02 | 964.00  | 14.580 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
|           |      |        |      |           | 964.60  | 5.452  | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 1085.80   | 4.   | 106.94 | 1.74 | 1.026E-02 | 1085.80 | 10.290 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 1112.07   | 1.   | 733.78 | 1.76 | 1.008E-02 | 1112.07 | 13.580 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 1119.97   | -5.  | 164.17 | 1.76 | 1.003E-02 | 1120.29 | 14.797 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 1173.24   | 2.   | 288.68 | 1.80 | 9.688E-03 | 1173.24 | 99.900 | PBC <mda< td=""><td>CO60</td></mda<>  | CO60  |
| 1238.11   | 2.   | 450.69 | 1.85 | 9.299E-03 | 1238.11 | 5.859  | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 1332.50   | 5.   |        | 1.92 | 8.781E-03 | 1332.50 | 99.982 | PBC <mda< td=""><td>CO60</td></mda<>  | CO60  |
| 1394.10   | 2.   | 254.42 | 1.97 | 8.470E-03 | 1394.10 | 3.900  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 1408.08   | 5.   | 84.40  | 1.98 | 8.401E-03 | 1408.08 | 21.210 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 1460.75   | -4.  | 220.69 | 2.02 | 8.152E-03 | 1460.75 | 10.700 | PBC <mda< td=""><td>K40</td></mda<>   | K40   |
| 1620.56   | -1.  | 626.96 | 2.13 | 7.464E-03 | 1620.56 | 2.750  | PBC <mda< td=""><td>BI212</td></mda<> | BI212 |
| 1763.26   | -3.  | 196.34 | 2.23 | 6.917E-03 | 1764.49 | 15.357 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |

| *******<br>Peak Cer |        | D E N T I F<br>ackground Ne |        | P E A K<br>fficiency | S U M I<br>Uncert | FWHM S | *******<br>Suspected |    |
|---------------------|--------|-----------------------------|--------|----------------------|-------------------|--------|----------------------|----|
| Channel             | Energy | Counts                      | Counts | * Area 2             | 2 Sigma %         | keV    | Nuclide              |    |
| 149.95              | 37.70  | 30.                         | 12.    | 5.696E+02            | 134.80            | 0.475  | BA-139               |    |
| 241.13              | 60.40  | 46.                         | 1.     | 3.624E+01            | 1527.15           | 0.886  | EU-155               |    |
| 307.43              | 77.03  | 40.                         | 6.     | 1.305E+02            | 330.19            | 0.338  | PB-212               |    |
| 477.09              | 119.40 | 35.                         | 5.     | 1.114E+02            | 346.41            | 0.589  | BA-140               |    |
| 687.02              | 171.82 | 22.                         | 6.     | 1.677E+02            | 215.24            | 0.383  | GD-153               |    |
| 742.06              | 185.55 | 53.                         | 37.    | 1.026E+03            | 71.86             | 2.028  | U-235                | s  |
| 838.67              | 209.37 | 32.                         | 10.    | 2.939E+02            | 174.30            | 1.018  | AC-228               | sc |
| 852.54              | 212.83 | 19.                         | 6.     | 1.756E+02            | 229.60            | 1.021  | NP-237               | sc |
| 1083.67             | 270.86 | 21.                         | 11.    | 3.961E+02            | 132.37            | 0.251  | _                    | s  |
| 1183.23             | 295.72 | 30.                         | 33.    | 1.254E+03            | 67.42             | 0.726  | PB-214               | s  |
| 1205.04             | 301.16 | 25.                         | 3.     | 1.256E+02            | 454.43            | 1.097  | PB-212               | sc |
| 1216.24             | 303.96 | 28.                         | 13.    | 5.067E+02            | 128.63            | 1.099  | SE-75                | sD |
| 1716.57             | 428.89 | 7.                          | 2.     | 1.013E+02            | 372.83            | 0.286  | RH-106               | sc |
| 2045.74             | 511.08 | 24.                         | 111.   | 6.372E+03            | 25.92             | 2.519  | NA-22                |    |

ARS1-23-01973 Page 59 of 311

Channel Energy Background Net area Eff\*Area Uncert FWHM Suspected 2715.29 678.23 3. 13. 8.812E+02 74.08 0.702 AG-110M s

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

\_\_\_\_\_

This section based on library: ITSI COUNT.Lib

| *******<br>Nuclide | ***** I<br>Peak<br>Channel | D E N T I<br>Centroid<br>Energy | F I E D P<br>Background<br>Counts | E A K S<br>Net Area<br>Counts | S U M M A<br>Intensit<br>Cts/Sec |         | FWHM   |
|--------------------|----------------------------|---------------------------------|-----------------------------------|-------------------------------|----------------------------------|---------|--------|
| EU-152             | 157.23                     | 39.52                           | 311.                              | -14.                          | -0.004                           | 364.40  | 0.868s |
| EU-152             | 159.64                     | 40.12                           | 297.                              | -14.                          | -0.004                           | 356.11  | 0.868s |
| EU-154             | 171.17                     | 43.00                           | 281.                              | 0.                            | 0.000                            | 2000.00 | 0.871s |
| EU-152             | 180.78                     | 45.40                           | 281.                              | 0.                            | 0.000                            | 2000.00 | 0.873s |
| PB-210             | 186.37                     | 46.80                           | 102.                              | 8.                            | 0.002                            | 394.50  | 0.551s |
| EU-154             | 193.99                     | 48.70                           | 274.                              | 0.                            | 0.000                            | 2000.00 | 0.876  |
| Am-241             | 237.40                     | 59.54                           | 251.                              | -18.                          | -0.005                           | 259.62  | 0.886s |
| U-238              | 252.42                     | 63.29                           | 265.                              | -29.                          | -0.008                           | 158.93  | 0.889  |
| U-238              | 368.90                     | 92.38                           | 379.                              | -42.                          | -0.012                           | 83.81   | 0.915s |
| U-238              | 370.59                     | 92.80                           | 334.                              | -13.                          | -0.004                           | 385.34  | 0.915A |
| PA-234             | 378.07                     | 94.67                           | 287.                              | 17.                           | 0.005                            | 296.77  | 0.917s |
| PA-234             | 393.17                     | 98.44                           | 263.                              | 7.                            | 0.002                            | 681.66  | 0.920s |
| PA-234             | 398.22                     | 99.70                           | 297.                              | -7.                           | -0.002                           | 732.42  | 0.921s |
| PA-234             | 443.47                     | 111.00                          | 103.                              | 6.                            | 0.002                            | 530.40  | 0.931s |
| EU-152             | 486.63                     | 121.78                          | 144.                              | -15.                          | -0.004                           | 237.98  | 0.941s |
| EU-154             | 491.92                     | 123.10                          | 135.                              | 15.                           | 0.004                            | 231.32  | 0.942s |
| PA-234             | 524.68                     | 131.28                          | 84.                               | -5.                           | -0.001                           | 563.13  | 0.949s |
| U-235              | 574.65                     | 143.76                          | 89.                               | 8.                            | 0.002                            | 355.50  | 0.960s |
| U-235              | 653.10                     | 163.35                          | 91.                               | 7.                            | 0.002                            | 437.53  | 0.977s |
| RA-226             | 744.65                     | 186.21                          | 170.                              | -39.                          | -0.011                           | 97.30   | 0.997s |
| U-235              | 821.14                     | 205.31                          | 212.                              | -17.                          | -0.005                           | 242.87  | 1.014s |
| PA-234             | 907.48                     | 226.87                          | 61.                               | 4.                            | 0.001                            | 583.88  | 1.032s |
| PB-212             | 954.57                     | 238.63                          | 193.                              | -14.                          | -0.004                           | 277.65  | 1.043  |
| PB-214             | 967.99                     | 241.98                          | 186.                              | 7.                            | 0.002                            | 527.87  | 1.046  |
| EU-152             | 978.76                     | 244.67                          | 193.                              | 14.                           | 0.004                            | 289.05  | 1.048s |
| EU-154             | 992.26                     | 248.04                          | 193.                              | 10.                           | 0.003                            | 383.49  | 1.051s |
| TL-208             | 1109.68                    | 277.36                          | 59.                               | 3.                            | 0.001                            | 953.53  | 1.076  |
| PB-214             | 1181.18                    | 295.21                          | 173.                              | -6.                           | -0.002                           | 619.07  | 1.092s |
| EU-152             | 1377.77                    | 344.30                          | 65.                               | -8.                           | -0.002                           | 326.44  | 1.134  |
| TL-208             | 2044.31                    | 510.72                          | 186.                              | -28.                          | -0.008                           | 142.47  | 2.524  |
| PA-234             | 2278.79                    | 569.26                          | 37.                               | 3.                            | 0.001                            | 717.90  | 1.323s |
| TL-208             | 2334.38                    | 583.14                          | 25.                               | 13.                           | 0.004                            | 134.85  | 1.334  |
| EU-154             | 2368.67                    | 591.70                          | 15.                               | 17.                           | 0.005                            | 91.51   | 1.342s |
| BI-214             | 2439.22                    | 609.31                          | 47.                               | -6.                           | -0.002                           | 368.17  | 1.356s |

ARS1-23-01973 Page 60 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM AAA Spectrum name: ARS03249.An1

| Nuclide | Channel | Energy  | Background | Net area | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|----------|----------|---------|--------|
| CS-137  | 2648.91 | 661.66  | 21.        | 7.       | 0.002    | 235.43  | 1.399s |
| PA-234  | 2798.88 | 699.10  | 36.        | -11.     | -0.003   | 195.32  | 1.430s |
| EU-154  | 2895.82 | 723.30  | 43.        | 6.       | 0.002    | 331.11  | 1.449s |
| BI-212  | 2911.32 | 727.17  | 52.        | -3.      | -0.001   | 923.00  | 1.452s |
| PA-234  | 2934.68 | 733.00  | 54.        | -7.      | -0.002   | 302.47  | 1.457s |
| EU-154  | 3029.62 | 756.70  | 22.        | -2.      | -0.001   | 706.32  | 1.476s |
| TL-208  | 3056.06 | 763.30  | 26.        | -3.      | -0.001   | 510.07  | 1.482s |
| BI-214  | 3076.31 | 768.36  | 47.        | -5.      | -0.001   | 179.31  | 1.486s |
| EU-152  | 3118.55 | 778.90  | 22.        | -5.      | -0.002   | 320.41  | 1.494s |
| BI-212  | 3144.67 | 785.42  | 25.        | -5.      | -0.001   | 244.89  | 1.499  |
| PA-234  | 3235.53 | 808.10  | 35.        | -14.     | -0.004   | 163.18  | 1.518s |
| PA-234  | 3327.67 | 831.10  | 29.        | -8.      | -0.002   | 252.64  | 1.536s |
| TL-208  | 3445.33 | 860.47  | 13.        | -1.      | 0.000    | 1590.60 | 1.559s |
| EU-152  | 3473.05 | 867.39  | 14.        | 18.      | 0.005    | 75.86   | 1.565s |
| EU-154  | 3496.33 | 873.20  | 45.        | -8.      | -0.002   | 237.14  | 1.569s |
| PA-234  | 3525.61 | 880.51  | 22.        | 6.       | 0.002    | 235.70  | 1.575s |
| PA-234  | 3598.08 | 898.60  | 23.        | -5.      | -0.001   | 257.42  | 1.590s |
| Ra-228  | 3648.04 | 911.07  | 14.        | 8.       | 0.002    | 180.04  | 1.600  |
| PA-234  | 3710.66 | 926.70  | 22.        | -1.      | 0.000    | 1202.38 | 1.612s |
| BI-214  | 3740.15 | 934.06  | 13.        | -2.      | -0.001   | 715.61  | 1.618s |
| PA-234  | 3787.98 | 946.00  | 9.         | 4.       | 0.001    | 247.98  | 1.627s |
| PA-234  | 3800.00 | 949.00  | 15.        | -2.      | -0.001   | 741.34  | 1.629s |
| EU-152  | 3860.10 | 964.00  | 26.        | 8.       | 0.002    | 193.65  | 1.641s |
| EU-154  | 3989.51 | 996.30  | 17.        | -4.      | -0.001   | 387.62  | 1.667s |
| EU-154  | 4023.56 | 1004.80 | 24.        | -9.      | -0.002   | 212.40  | 1.673s |
| EU-152  | 4348.09 | 1085.80 | 3.         | 4.       | 0.001    | 213.87  | 1.736  |
| EU-152  | 4453.35 | 1112.07 | 10.        | 1.       | 0.000    | 1467.57 | 1.756  |
| BI-214  | 4486.27 | 1120.29 | 23.        | -5.      | -0.001   | 328.35  | 1.762s |
| CO-60   | 4698.44 | 1173.24 | 7.         | 2.       | 0.000    | 577.35  | 1.802s |
| BI-214  | 4958.38 | 1238.11 | 14.        | 2.       | 0.000    | 901.39  | 1.852s |
| EU-154  | 5105.40 | 1274.80 | 14.        | -6.      | -0.002   | 235.52  | 1.879s |
| CO-60   | 5336.62 | 1332.50 | 4.         | 5.       | 0.001    | 162.67  | 1.922s |
| BI-214  | 5517.62 | 1377.67 | 4.         | -1.      | 0.000    | 1468.48 | 1.955s |
| PA-234  | 5583.46 | 1394.10 | 4.         | 2.       | 0.000    | 508.84  | 1.967s |
| EU-152  | 5639.49 | 1408.08 | 4.         | 5.       | 0.001    | 168.79  | 1.978s |
| K - 40  | 5850.56 | 1460.75 | 25.        | -4.      | -0.001   | 441.38  | 2.016s |
| BI-212  | 6491.04 | 1620.56 | 9.         | -1.      | 0.000    | 1253.91 | 2.130s |
| BI-214  | 7067.93 | 1764.49 | 14.        | -3.      | -0.001   | 392.68  | 2.231s |

s - Peak fails shape tests.

ARS1-23-01973 Page 61 of 311

D - Peak area deconvoluted.

A Derived peak area.

| **** S U<br>- Nuclide - | JMMARY<br>Average | OF LIBRARY PEAK USAGE *****                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Activity pCi/g    | Energy Activity Code MDA Value keV pCi/g pCi/g COMMENTS                                                                                                                                                                                                                                                                                                                        |
| U-235                   | 5.1170E-02        | 1.39E+09<br>143.76 3.874E-02 ?( 2.203E-01 1.78E+02 1.05E+01 G<br>205.31-2.257E-01 + 9.205E-01 1.21E+02 4.70E+00 G<br>163.35 7.894E-02 ?( 5.319E-01 2.19E+02 4.70E+00 G                                                                                                                                                                                                         |
| RA-226                  | -6.1143E-01       | 5.84E+05<br>186.21-6.114E-01 &(P 1.001E+00 4.86E+01 3.64E+00 G K                                                                                                                                                                                                                                                                                                               |
| Ra-228                  | 4.7797E-02        | 2.10E+03<br>911.07 4.780E-02 ?(P 1.253E-01 9.00E+01 2.90E+01 G<br>968.90 1.500E-03 % P 3.237E-01 6.07E+03 1.75E+01 G<br>338.40 4.429E-03 & P 2.917E-01 2.14E+03 1.20E+01 G<br>964.60-1.915E-02 % P 1.029E+00 1.47E+03 5.45E+00 G                                                                                                                                               |
| Am-241 T                | -2.9686E-02       | 1.58E+05<br>59.54-2.969E-02 &( 1.294E-01 1.30E+02 3.59E+01 G K                                                                                                                                                                                                                                                                                                                 |
| PB-210                  | 1.6362E-01        | 7.45E+03<br>46.52 1.636E-01 (P 9.823E-01 1.97E+02 4.00E+00 G                                                                                                                                                                                                                                                                                                                   |
| U-238                   | -4.1961E-01       | 1.63E+12<br>63.29-4.196E-01 (P 1.154E+00 7.95E+01 3.90E+00 G<br>92.80-2.056E-01 } P 1.350E+00 1.93E+02 3.00E+00 G<br>92.38-7.623E-01 } P 1.677E+00 4.19E+01 2.57E+00 G                                                                                                                                                                                                         |
| K-40                    | -8.8628E-02       | 4.68E+11<br>1460.75-8.863E-02 ?(P 6.162E-01 2.21E+02 1.07E+01 G                                                                                                                                                                                                                                                                                                                |
| PB-214                  | 1.1573E-02        | 5.84E+05<br>351.92-3.060E-04 %(P 1.071E-01 1.14E+04 3.58E+01 G<br>295.21-2.608E-02 + P 2.770E-01 3.10E+02 1.85E+01 G<br>241.98 6.828E-02 ?(P 6.096E-01 2.64E+02 7.50E+00 G                                                                                                                                                                                                     |
| BI-214                  | -8.9510E-03       | 5.84E+05 609.31-1.813E-02 ?(P 1.047E-01 1.84E+02 4.48E+01 G 1764.49-6.515E-02 & P 3.992E-01 1.96E+02 1.54E+01 G 1120.29-6.854E-02 + P 3.512E-01 1.64E+02 1.48E+01 G 1238.11 6.121E-02 ?( 7.801E-01 4.51E+02 5.86E+00 G 768.36-1.623E-01 & P 1.144E+00 8.97E+01 4.80E+00 G 1377.67-6.966E-02 + P 7.569E-01 7.34E+02 3.92E+00 G 934.06-1.083E-01 + 1.166E+00 3.58E+02 3.03E+00 G |

ARS1-23-01973 Page 62 of 311

|         |              | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide | Ave activity | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| BI-212  | -3.2830E-02  | 2.10E+03<br>727.17-3.283E-02 &(P 4.688E-01 4.61E+02 1.18E+01 G<br>1620.56-1.380E-01 + P 1.723E+00 6.27E+02 2.75E+00 G<br>785.42-3.687E-01 + P 2.082E+00 1.22E+02 2.00E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PB-212  | -2.2200E-02  | 2.10E+03<br>238.63-2.220E-02 (P 1.070E-01 1.39E+02 4.31E+01 G<br>300.09-1.207E-02 & P 1.553E+00 3.79E+03 3.27E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TL-208  | 2.1154E-02   | 2.10E+03<br>583.14 2.039E-02 (P 3.944E-02 6.74E+01 8.60E+01 G<br>510.72-1.492E-01 + 3.520E-01 7.12E+01 2.25E+01 G<br>860.47-1.146E-02 - 2.777E-01 7.95E+02 1.20E+01 G<br>277.36 3.127E-02 ?(P 4.538E-01 4.77E+02 6.50E+00 G<br>763.30-2.699E-01 + 2.459E+00 2.55E+02 1.70E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PA-234  | 4.3594E-02   | 1.65E+12  98.44 1.249E-02 ?(P 1.426E-01 3.41E+02 2.51E+01 G 946.00 3.493E-02 ?( 1.548E-01 1.24E+02 2.00E+01 G 131.28-1.195E-02 + 1.085E-01 2.82E+02 2.00E+01 G 94.67 4.941E-02 ?(P 2.420E-01 1.48E+02 1.55E+01 G 883.24 7.298E-03 % 3.962E-01 1.49E+03 1.20E+01 G 926.70-2.306E-02 + 4.079E-01 6.01E+02 1.10E+01 G 569.26 3.723E-02 ?(P 3.854E-01 3.59E+02 1.04E+01 G 111.00 3.239E-02 ?(P 2.681E-01 2.65E+02 8.55E+00 G 733.00-1.285E-01 + 6.693E-01 1.51E+02 8.50E+00 G 949.00-4.952E-02 + P 4.917E-01 3.71E+02 7.80E+00 G 880.51 1.613E-01 ?( 6.605E-01 1.18E+02 6.50E+00 G 226.87 4.471E-02 ?(P 3.950E-01 2.92E+02 6.50E+00 G 831.10-2.338E-01 + 8.307E-01 1.26E+02 5.60E+00 G 808.10-4.560E-01 + 1.020E+00 8.16E+01 4.90E+00 G 99.70-6.366E-02 & P 8.063E-01 3.66E+02 4.70E+00 G 699.10-3.560E-01 + 9.925E-01 9.77E+01 4.60E+00 G 898.60-2.172E-01 & P 1.108E+00 1.29E+02 4.00E+00 G 1394.10 1.085E-01 ?(P 7.793E-01 2.54E+02 3.90E+00 G |
| CS-137  | 1.1772E-02   | 1.10E+04<br>661.66 1.177E-02 ( 4.047E-02 1.18E+02 8.52E+01 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CO-60   | 8.0943E-03   | 1.93E+03<br>1173.24 3.876E-03 ?( 3.276E-02 2.89E+02 9.99E+01 K<br>1332.50 1.231E-02 ?( 2.742E-02 8.13E+01 1.00E+02 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EU-152  | 6.3852E-02   | 4.64E+03<br>40.12-4.194E-02 &( 2.514E-01 1.78E+02 3.00E+01 G<br>121.78-2.331E-02 & 9.347E-02 1.19E+02 2.92E+01 G<br>344.30-2.661E-02 + 1.340E-01 1.63E+02 2.70E+01 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

ARS1-23-01973 Page 63 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM
 AAA
                                 Spectrum name: ARS03249.An1
Nuclide Ave activity
                                   Activity Code Peak MDA Comments
                         Energy
                          1408.08 6.082E-02 ?( 1.380E-01 8.44E+01 2.12E+01 G
                                                4.891E-01 1.82E+02 1.60E+01 G
                            39.52-7.974E-02 +
                           964.00 1.022E-01 ?( 3.383E-01 9.68E+01 1.46E+01 G
                          1112.07 1.218E-02 &( 2.678E-01 7.34E+02 1.36E+01 G
                           778.90-6.669E-02 +
                                                3.059E-01 1.60E+02 1.30E+01 G
                          1085.80 7.105E-02 ?( 2.231E-01 1.07E+02 1.03E+01 G
                                                7.228E-01 1.00E+03 9.00E+00 G
                            45.40 0.000E+00 &
                           244.67 1.265E-01 ?( 6.167E-01 1.45E+02 7.62E+00 G
                           867.39 7.412E-01 ?( 8.368E-01 3.79E+01 4.18E+00 G
EU-154
            6.3764E-02
                                                             3.10E+03
                           123.10 1.688E-02 ?( 6.578E-02 1.16E+02 4.05E+01 G
                          1274.80-4.133E-02 +
                                                1.317E-01 1.18E+02 3.55E+01 G
                           723.30 4.487E-02 ?( 2.579E-01 1.66E+02 1.97E+01 G
                          1004.80-9.598E-02 +
                                                2.775E-01 1.06E+02 1.76E+01 G
                            43.00 0.000E+00 -
                                                5.237E-01 1.00E+03 1.31E+01 G
                           873.20-1.292E-01 +
                                                5.244E-01 1.19E+02 1.13E+01 G
                           996.30-7.132E-02 +
                                                3.909E-01 1.94E+02 1.07E+01 G
                                                9.586E-01 1.03E+03 7.30E+00 G
                            42.31-2.729E-02 %
                           248.04 1.105E-01 &( 7.178E-01 1.92E+02 6.60E+00 G
                           591.70 4.900E-01 ?( 5.984E-01 4.58E+01 4.60E+00 G
                            48.70 0.000E+00 -
                                                1.431E+00 1.00E+03 4.20E+00 G
                           756.70-9.205E-02 +
                                                9.498E-01 3.53E+02 4.10E+00 G
   ( - This peak used in the nuclide activity average.
   * - Peak is too wide, but only one peak in library.
   ! - Peak is part of a multiplet and this area went
      negative during deconvolution.
   ? - Peak is too narrow.
   @ - Peak is too wide at FW25M, but ok at FWHM.
   % - Peak fails sensitivity test.
   $ - Peak identified, but first peak of this nuclide
      failed one or more qualification tests.
   + - Peak activity higher than counting uncertainty range.
   - - Peak activity lower than counting uncertainty range.
   = - Peak outside analysis energy range.
   & - Calculated peak centroid is not close enough to the
       library energy centroid for positive identification.
   P - Peakbackground subtraction
   } - Peak is too close to another for the activity
       to be found directly.
  Nuclide Codes:
                                       Peak Codes:
   T - Thermal Neutron Activation
                                       G - Gamma Ray
  F - Fast Neutron Activation
                                       X - X-Ray
   I - Fission Product
                                       P - Positron Decay
  N - Naturally Occurring Isotope
                                      S - Single-Escape
  P - Photon Reaction
                                       D - Double-Escape
```

ARS1-23-01973 Page 64 of 311

C - Charged Particle Reaction K - Key Line

M - No MDA Calculation A - Not in Average R - Coincidence Corrected C - Coincidence Peak

H - Halflife limit exceeded

| *****   | ***** D  | ISCARD     | ED ISO   | TOPE      | PEAKS   | *****      | *** |
|---------|----------|------------|----------|-----------|---------|------------|-----|
| Nuclide | Centroid | Background | Net Area | Intensity | Uncert  | Activity   |     |
|         | Energy   | Counts     | Counts   | Cts/Sec   | 2 Sigma | 0          |     |
| EU-152  | 39.52    | 311.       | -14.     | -0.004    | 364.40  | -7.974E-02 |     |
| EU-152  | 40.12    | 297.       | -14.     | -0.004    | 356.11  | -4.194E-02 |     |
| Am-241  | 59.54    | 251.       | -18.     | -0.005    | 259.62  | -2.969E-02 |     |
| U-238   | 63.29    | 265.       | -29.     | -0.008    | 158.93  | -4.196E-01 | P   |
| U-238   | 92.38    | 379.       | -42.     | -0.012    | 83.81   | -7.623E-01 | P   |
| U-238   | 92.80    | 334.       | -13.     | -0.004    | 385.34  | -2.056E-01 | P   |
| PA-234  | 94.67    | 287.       | 17.      | 0.005     | 296.77  | 4.941E-02  | P   |
| PA-234  | 98.44    | 263.       | 7.       | 0.002     | 681.66  | 1.249E-02  | P   |
| PA-234  | 99.70    | 297.       | -7.      | -0.002    | 732.42  | -6.366E-02 | P   |
| PA-234  | 111.00   | 103.       | 6.       | 0.002     | 530.40  | 3.239E-02  | P   |
| EU-152  | 121.78   | 144.       | -15.     | -0.004    | 237.98  | -2.331E-02 |     |
| EU-154  | 123.10   | 135.       | 15.      | 0.004     | 231.32  | 1.688E-02  |     |
| PA-234  | 131.28   | 84.        | -5.      | -0.001    | 563.13  | -1.195E-02 |     |
| U-235   | 143.76   | 89.        | 8.       | 0.002     | 355.50  | 3.874E-02  |     |
| U-235   | 163.35   | 91.        | 7.       | 0.002     | 437.53  | 7.894E-02  |     |
| RA-226  | 186.21   | 170.       | -39.     | -0.011    | 97.30   | -6.114E-01 | P   |
| U-235   | 205.31   | 212.       | -17.     | -0.005    | 242.87  | -2.257E-01 |     |
| PA-234  | 226.87   | 61.        | 4.       | 0.001     | 583.88  | 4.471E-02  | P   |
| PB-212  | 238.63   | 193.       | -14.     | -0.004    | 277.65  | -2.220E-02 | P   |
| PB-214  | 241.98   | 186.       | 7.       | 0.002     | 527.87  | 6.828E-02  | P   |
| EU-152  | 244.67   | 193.       | 14.      | 0.004     | 289.05  | 1.265E-01  |     |
| EU-154  | 248.04   | 193.       | 10.      | 0.003     | 383.49  | 1.105E-01  |     |
| TL-208  | 277.36   | 59.        | 3.       | 0.001     | 953.53  | 3.127E-02  | P   |
| PB-214  | 295.21   | 173.       | -6.      | -0.002    | 619.07  | -2.608E-02 | P   |
| EU-152  | 344.30   | 65.        | -8.      | -0.002    | 326.44  | -2.661E-02 |     |
| TL-208  | 510.72   | 186.       | -28.     | -0.008    | 142.47  | -1.492E-01 |     |
| PA-234  | 569.26   | 37.        | 3.       | 0.001     | 717.90  | 3.723E-02  | P   |
| TL-208  | 583.14   | 25.        | 13.      | 0.004     | 134.85  | 2.039E-02  | P   |
| EU-154  | 591.70   | 15.        | 17.      | 0.005     | 91.51   | 4.900E-01  |     |
| CS-137  | 661.66   | 21.        | 7.       | 0.002     | 235.43  | 1.177E-02  |     |
| PA-234  | 699.10   | 36.        | -11.     | -0.003    | 195.32  | -3.560E-01 |     |
| EU-154  | 723.30   | 43.        | 6.       | 0.002     | 331.11  | 4.487E-02  |     |
| BI-212  | 727.17   | 52.        | -3.      | -0.001    | 923.00  | -3.283E-02 | P   |
| PA-234  | 733.00   | 54.        | -7.      | -0.002    | 302.47  | -1.285E-01 |     |
| EU-154  | 756.70   | 22.        | -2.      | -0.001    | 706.32  | -9.205E-02 |     |
| TL-208  | 763.30   | 26.        | -3.      | -0.001    | 510.07  | -2.699E-01 |     |
| EU-152  | 778.90   | 22.        | -5.      | -0.002    | 320.41  | -6.669E-02 |     |
| BI-212  | 785.42   | 25.        | -5.      | -0.001    | 244.89  | -3.687E-01 | P   |
| PA-234  | 808.10   | 35.        | -14.     | -0.004    | 163.18  | -4.560E-01 | -   |
| PA-234  | 831.10   | 29.        | -8.      | -0.002    | 252.64  | -2.338E-01 |     |
| TL-208  | 860.47   | 13.        | -1.      | 0.002     | 1590.60 | -1.146E-02 |     |
| -11 200 | 000.17   | ± J •      | Δ.       | 0.000     | 10000   | 1.1100 02  |     |

ARS1-23-01973 Page 65 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:34:09 PM AAA Spectrum name: ARS03249.An1

| Nuclide | Channel | Energy Backgr | ound Net | area C | nts/sec | Uncert FV  | MHV |
|---------|---------|---------------|----------|--------|---------|------------|-----|
| EU-152  | 867.39  | 14.           | 18.      | 0.005  | 75.86   | 7.412E-01  |     |
| EU-154  | 873.20  | 45.           | -8.      | -0.002 | 237.14  | -1.292E-01 |     |
| PA-234  | 880.51  | 22.           | 6.       | 0.002  | 235.70  | 1.613E-01  |     |
| PA-234  | 898.60  | 23.           | -5.      | -0.001 | 257.42  | -2.172E-01 | P   |
| Ra-228  | 911.07  | 14.           | 8.       | 0.002  | 180.04  | 4.780E-02  | P   |
| PA-234  | 926.70  | 22.           | -1.      | 0.000  | 1202.38 | -2.306E-02 |     |
| PA-234  | 946.00  | 9.            | 4.       | 0.001  | 247.98  | 3.493E-02  |     |
| PA-234  | 949.00  | 15.           | -2.      | -0.001 | 741.34  | -4.952E-02 | P   |
| EU-152  | 964.00  | 26.           | 8.       | 0.002  | 193.65  | 1.022E-01  |     |
| EU-154  | 996.30  | 17.           | -4.      | -0.001 | 387.62  | -7.132E-02 |     |
| EU-154  | 1004.80 | 24.           | -9.      | -0.002 | 212.40  | -9.598E-02 |     |
| EU-152  | 1085.80 | 3.            | 4.       | 0.001  | 213.87  | 7.105E-02  |     |
| EU-152  | 1112.07 | 10.           | 1.       | 0.000  | 1467.57 | 1.218E-02  |     |
| CO-60   | 1173.24 | 7.            | 2.       | 0.000  | 577.35  | 3.876E-03  |     |
| EU-154  | 1274.80 | 14.           | -6.      | -0.002 | 235.52  | -4.133E-02 |     |
| CO-60   | 1332.50 | 4.            | 5.       | 0.001  | 162.67  | 1.231E-02  |     |
| PA-234  | 1394.10 | 4.            | 2.       | 0.000  | 508.84  | 1.085E-01  | P   |
| EU-152  | 1408.08 | 4.            | 5.       | 0.001  | 168.79  | 6.082E-02  |     |
| K - 40  | 1460.75 | 25.           | -4.      | -0.001 | 441.38  | -8.863E-02 | P   |
| BI-212  | 1620.56 | 9.            | -1.      | 0.000  | 1253.91 | -1.380E-01 | P   |

P - Peakbackground subtraction

\*\*\*\*\* SUMMARY OF NUCLIDES IN SAMPLE \*\*\*\*\*
Time of Count Uncertainty 2 Sigma

| Nuclide   | Activity pCi/g | Counting pCi/g | Total pCi/g | MDA<br>pCi/g |  |
|-----------|----------------|----------------|-------------|--------------|--|
| U-235 #A  | 5.1170E-02     | 1.4423E-01     | 1.4428E-01  | 0.220E+00    |  |
| RA-226 #A | -6.1143E-01    | 5.9491E-01     | 5.9618E-01  | 0.100E+01    |  |
| Ra-228 #A | 4.7797E-02     | 8.6055E-02     | 8.6108E-02  | 0.125E+00    |  |
| Am-241 #A | -2.9686E-02    | 7.7070E-02     | 7.7093E-02  | 0.129E+00    |  |
| PB-210 A  | 1.6362E-01     | 6.4550E-01     | 6.4570E-01  | 0.982E+00    |  |
| U-238 #A  | -4.1961E-01    | 6.6691E-01     | 6.6769E-01  | 0.115E+01    |  |
| K-40 #A   | -8.8628E-02    | 3.9119E-01     | 3.9123E-01  | 0.616E+00    |  |
| PB-214 #A | 1.1573E-02     | 6.1092E-02     | 6.1100E-02  | 0.107E+00    |  |
| BI-214 #A | -8.9510E-03    | 3.2955E-02     | 3.2959E-02  | 0.105E+00    |  |
| BI-212 #A | -3.2830E-02    | 3.0302E-01     | 3.0302E-01  | 0.469E+00    |  |
| PB-212 #A | -2.2200E-02    | 6.1639E-02     | 6.1662E-02  | 0.107E+00    |  |
| TL-208 #A | 2.1154E-02     | 2.8526E-02     | 2.8557E-02  | 0.394E-01    |  |
| PA-234 #A | 4.3594E-02     | 7.8332E-02     | 7.8398E-02  | 0.143E+00    |  |
| CS-137 #A | 1.1772E-02     | 2.7714E-02     | 2.7718E-02  | 0.405E-01    |  |
| CO-60 #A  | 8.0943E-03     | 1.3167E-02     | 1.3170E-02  | 0.328E-01    |  |
| EU-152 #A | 6.3852E-02     | 4.8440E-02     | 4.8968E-02  | 0.251E+00    |  |
| EU-154 #A | 6.3764E-02     | 5.8349E-02     | 5.8511E-02  | 0.658E-01    |  |

ARS1-23-01973 Page 66 of 311

## Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 89 of 384

| AAA                                    | ORTEC g v - i (3263)                                                                                                                                                                            |                                                                                  | 9/29/2023 1<br>name: ARS0324 |           | ŅΜ |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------|-----------|----|
| * -<br>& -<br>A -<br>B -<br>C -<br>F - | All peaks for activ<br>Activity omitted from Activity omitted from MDA value printed.<br>Activity printed, by Activity < MDA and Area < Critical lever Failed fraction or Halflife limit excess | om total om total and all ut activity < MDA failed test. el. key line test. eded | peaks had ba                 | ad shape. |    |
|                                        | Activity ( 2.8 to                                                                                                                                                                               |                                                                                  |                              |           |    |
| Analy                                  | zed by:Countre                                                                                                                                                                                  | oom                                                                              |                              |           |    |
| Revie                                  | wed by:Superv                                                                                                                                                                                   | isor                                                                             |                              |           |    |

ARS1-23-01973 Page 67 of 311

Laboratory: AAA

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 10/2/2023 8:02 AM Page 1 of 1

|               | Batch Sample ID ARS1-B23-01775-0 |                  |                         |               |                 |  |  |
|---------------|----------------------------------|------------------|-------------------------|---------------|-----------------|--|--|
| • 1           |                                  | Analytical Batch | ARS1-B23-01775          | Analysis Date | 9/29/2023 09:23 |  |  |
| Alf           |                                  | Analysis Code    | GAM-IG21-SO             | SDG           | ARS1-23-01973   |  |  |
| / <b>\</b> LL |                                  |                  | ARS06 MCB 133           | Fraction      | 001             |  |  |
|               |                                  | Count Time (sec) | 3600 Rur                |               | 1               |  |  |
| Ortec 6       | Gamma                            | Library          | ITSI COUNT.Lib          |               |                 |  |  |
|               |                                  | Geometry         | 2275-19-5 250mL tc poly |               |                 |  |  |
| Isotope       | Activity                         | Units            | CSU                     | MDA           | DL              |  |  |
| Am-241        | 8.3861E-002                      | pCi/g            | 1.5947E-001             | 2.6400E-001   | 1.3200E-001     |  |  |
| Bi-212        | 1.3902E-001                      | pCi/g            | 2.5771E-001             | 4.6100E-001   | 2.3050E-001     |  |  |
| Bi-214        | 3.9364E-001                      | pCi/g            | 7.6764E-002             | 5.8200E-002   | 2.9100E-002     |  |  |
| Co-60         | 8.9171E-003                      | pCi/g            | 2.5456E-002             | 4.6500E-002   | 2.3250E-002     |  |  |
| Cs-137        | -2.1490E-002                     | pCi/g            | 3.9087E-002             | 5.1500E-002   | 2.5750E-002     |  |  |
| Eu-152        | 3.7348E-001                      | pCi/g            | 4.4316E-001             | 7.9600E-001   | 3.9800E-001     |  |  |
| Eu-154        | 1.7122E-001                      | pCi/g            | 2.6899E-001             | 1.0300E-001   | 5.1500E-002     |  |  |
| K-40          | 1.0494E+001                      | pCi/g            | 1.0748E+000             | 1.8700E-001   | 9.3500E-002     |  |  |
| Pa-234        | 5.4157E-002                      | pCi/g            | 8.4514E-002             | 2.0100E-001   | 1.0050E-001     |  |  |
| Pb-210        | 9.2542E-001                      | pCi/g            | 3.0516E+000             | 5.0500E+000   | 2.5250E+000     |  |  |
| Pb-212        | 3.0233E-001                      | pCi/g            | 8.1072E-002             | 1.1700E-001   | 5.8500E-002     |  |  |
| Pb-214        | 4.0624E-001                      | pCi/g            | 7.2129E-002             | 5.4600E-002   | 2.7300E-002     |  |  |
| Ra-226        | 8.1443E-001                      | pCi/g            | 3.7927E-001             | 5.1900E-001   | 2.5950E-001     |  |  |
| Ra-228        | 3.9732E-001                      | pCi/g            | 7.5962E-002             | 9.1000E-002   | 4.5500E-002     |  |  |
| TI-208        | 9.6852E-002                      | pCi/g            | 3.7045E-002             | 4.0200E-002   | 2.0100E-002     |  |  |
| U-235         | -1.0703E-001                     | pCi/g            | 2.1664E-001             | 3.6000E-001   | 1.8000E-001     |  |  |
| U-238         | 5.1876E-001                      | pCi/g            | 1.3939E+000             | 2.3100E+000   | 1.1550E+000     |  |  |

ARS1-23-01973 Page 68 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 10:23:44 AM
                               Spectrum name: ARS06051.An1
AAA
Sample description
     Batch ID: 23-01775-04
     SDG ID: ARS1-23-01973-001 Tech: SDW
Spectrum Filename: C:\User\ARS06051.An1
Acquisition information
      Start time:
                                   9/29/2023 9:23:34 AM
      Live time:
                               3600
                               3603
      Real time:
       Dead time:
                                  0.09 %
       Detector ID:
                                      21
Detector system
    ARS06 MCB 133
Calibration
                                  2275-19-5 250mL tc poly cal 12-8-21.Clb
      Filename:
     2275-19-5 250mL tc poly
     12-8-21 EEC
       Energy Calibration
            Created:
                                  12/8/2021 10:48:48 AM
            Zero offset:
                                  0.100 keV
            Gain:
                                  0.250 keV/channel
            Quadratic:
                                 -3.095E-08 keV/channel^2
       Efficiency Calibration
            Created:
                                  12/8/2021 11:58:07 AM
            Type:
                                 Polynomial
           Uncertainty:
                                  1.254 %
           Coefficients:
                                 -0.502841 -4.041766
                                                        0.314910
                                 -0.026798
                                            0.000803 -0.000009
Library Files
       Main analysis library:
                                  ITSI COUNT.Lib
      Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
                                 10 (
       Start channel:
                                          2.60keV )
       Stop channel:
                               8000 ( 1998.39keV )
       Peak rejection level:
                               1000.000%
      Peak search sensitivity:
                                  1
       Sample Size:
                                  4.1599E+02 +/- 0.000E+00%
                                  1.0000E+06/(1.0000E+00*4.1599E+02) =
      Activity scaling factor:
                                  2.4039E+03
       Detection limit method:
                                  Reg. Guide 4.16 Method
      Random error:
                                  1.000000E+00
       Systematic error:
                                  1.000000E+00
       Fraction Limit:
                                 0.000%
       Background width:
                                  5
      Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 69 of 311

## 

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 10:23:44 AM AAA Spectrum name: ARS06051.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO
Decay during collection: NO

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:04:04 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1204

| **** S U | JMMAR  | У О    | F P E | A K S I   | N RAN        | G E    | ****                                  |       |
|----------|--------|--------|-------|-----------|--------------|--------|---------------------------------------|-------|
| Peak     | Area ( | Uncert | FWHM  | Corrctn   |              | Brnch. |                                       | Nuc   |
| Energy   |        |        |       | Factor    | Energy       | Ratio  | pCi/g                                 |       |
|          | 0.50   | 12 50  | 1 00  | 1 2555    |              |        |                                       |       |
| 12.09    | 268.   | 13.58  | 1.28  | 1.377E-03 |              |        |                                       |       |
| 20.86    | 441.   | 13.90  | 1.32  | 8.369E-03 |              |        |                                       |       |
| 27.78    | 232.   | 21.72  | 1.57  | 1.389E-02 |              |        |                                       |       |
| 36.39    | 227.   | 22.86  | 0.50  | 2.075E-02 |              |        |                                       |       |
| 39.52    | 158.   |        | 0.98  | 2.325E-02 | 39.52        | 16.000 |                                       |       |
| 40.12    |        | 162.20 | 0.98  | 2.373E-02 | 40.12        | 30.000 |                                       |       |
| 42.24    | 153.   | 27.67  | 0.98  | 2.541E-02 |              | 7.300  |                                       |       |
|          |        |        |       |           | 43.00        | 13.100 | 8.118E-01                             | EU154 |
| 45.34    | 23. 3  | 169.66 | 0.99  | 2.789E-02 | 45.40        | 9.000  | 1.618E-01                             | EU152 |
| 46.84    | 19. 1  | 188.20 | 0.99  | 2.898E-02 | 46.52        | 4.000  | 3.000E-01                             | PB210 |
| 48.70    | 59. 3  | 165.44 | 0.99  | 3.063E-02 | 48.70        | 4.200  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 50.22    | 13. 2  | 227.34 | 0.99  | 3.196E-02 |              |        |                                       |       |
| 56.01    | 229.   | 18.31  | 1.48  | 3.698E-02 |              |        |                                       |       |
| 59.54    | 66.    | 95.03  | 1.00  | 3.968E-02 | 59.54        | 35.900 | PBC <mda< td=""><td>Am241</td></mda<> | Am241 |
| 63.15    | 16. 3  | 179.84 | 0.49  | 4.231E-02 | 63.29        | 3.900  | 1.746E-01                             | U238  |
| 74.80    | 178.   | 17.09  | 1.02  | 4.897E-02 |              |        |                                       |       |
| 77.15    | 278.   | 11.11  | 1.02  | 4.996E-02 |              |        |                                       |       |
| 87.42    | 130.   | 24.89  | 1.29  | 5.304E-02 |              |        |                                       |       |
| 98.44    | 38. 3  | 120.01 | 1.05  | 5.457E-02 | 98.44        | 25.100 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 105.76   | 19. 1  | 116.43 | 0.35  | 5.481E-02 |              |        |                                       |       |
| 111.36   | 10.    | 167.72 | 1.06  | 5.470E-02 | 111.00       | 8.550  | 3.703E-02                             | PA234 |
| 127.61   | 9. 1   | 160.63 | 0.00  | 5.339E-02 |              |        |                                       |       |
| 139.96   | 42.    | 40.18  | 0.97  | 5.182E-02 |              |        |                                       |       |
| 165.97   | 38.    | 42.27  | 1.51  | 4.801E-02 |              |        |                                       |       |
| 176.75   | 22.    | 65.45  | 0.56  | 4.641E-02 |              |        |                                       |       |
| 186.07   | 74.    | 23.11  | 0.95  | 4.507E-02 | 186.21       | 3.640  | 8.144E-01                             | RA226 |
| 210.68   |        | 130.70 | 0.21  | 4.178E-02 | <del>-</del> |        |                                       |       |

ARS1-23-01973 Page 70 of 311

| nlr onomerr         | 0.70.0      | 117 G 0 20 ±     | frahm               | G 0.7070               | nualido           | hwn ah          | o a t                                                | nua       |
|---------------------|-------------|------------------|---------------------|------------------------|-------------------|-----------------|------------------------------------------------------|-----------|
| pk energy<br>238.45 | area        | uncert           | fwhm                | corr<br>3.855E-02      | nuclide<br>238.63 | brnch. 43.100   | act.<br>3.377E-01                                    | nuc       |
| 241.89              | 311.<br>68. | 7.14<br>25.41    | $1.21 \\ 1.21$      | 3.819E-02              | 230.03            | 7.500           | 4.283E-01                                            |           |
| 274.30              | 15.         | 58.80            | 1.25                | 3.506E-02              | 241.90            | 7.500           | 4.2036-01                                            | PDZ14     |
| 279.89              |             | 98.23            | 1.25                |                        |                   |                 |                                                      |           |
|                     | 11.         |                  |                     | 3.458E-02              | 20E 21            | 10 500          | / 0/EE 01                                            | חם 1 1 1  |
| 295.15              | 166.        | 11.74            | 0.93                | 3.335E-02              | 295.21            | 18.500          | 4.845E-01                                            |           |
| 299.98              | 31.         | 35.76<br>126.26  | 1.28                | 3.297E-02              | 300.09            | 3.270           | PBC <mda< td=""><td>PRZIZ</td></mda<>                | PRZIZ     |
| 309.06              |             |                  | 0.56                | 3.230E-02              | 220 40            | 10 010          | 4 70Fm 01                                            | D-220     |
| 338.26<br>348.24    | 97.         | 15.96            | 1.12                | 3.035E-02              | 338.40            | 12.010          | 4.785E-01                                            | Razzo     |
|                     | 20.         | 45.79            | 1.33                | 2.975E-02              | 251 02            | 35.800          | 2 7655 01                                            | DD 21 4   |
| 351.81              | 221.        | 7.85             | 1.33                | 2.954E-02              | 351.92            | 35.800          | 3.765E-01                                            | PBZ14     |
| 374.17              | 10.         | 68.40            | 0.72                | 2.830E-02              |                   |                 |                                                      |           |
| 392.88              | 28.         | 38.80            | 2.24                | 2.736E-02              |                   |                 |                                                      |           |
| 484.03              |             | 177.59           | 0.24                | 2.371E-02              | F10 70            | 22 500          | C 045H 01                                            | mr 000    |
| 510.76              | 195.        | 11.93            | 2.55                | 2.285E-02              | 510.72            | 22.500          | 6.845E-01                                            |           |
| 569.26              |             | 330.50           | 1.56                | 2.121E-02              | 569.26            | 10.400          | PBC <mda< td=""><td></td></mda<>                     |           |
| 583.45              | 108.        | 16.78            | 1.08                | 2.085E-02              | 583.14            | 86.000          | 1.086E-01                                            |           |
| 591.70              | 14.<br>202. | 78.48<br>9.29    | 1.59                | 2.065E-02              | 591.70            | 4.600           | PBC <mda< td=""><td></td></mda<>                     |           |
| 609.49              |             |                  | 1.46                | 2.024E-02              | 609.31            | 44.791          | 4.013E-01                                            | BIZI4     |
| 647.27              | 14.         | 42.23            | 0.73                | 1.941E-02              |                   |                 |                                                      |           |
| 688.48              | 19.         | 49.76            | 0.67                | 1.860E-02              |                   |                 |                                                      |           |
| 712.61              | 17.         | 53.30            | 0.32                | 1.816E-02              | 722 20            | 10 700          |                                                      | DII 1 F / |
| 723.30              | 17.         | 86.41            | 1.72                | 1.797E-02              | 723.30            | 19.700          | PBC <mda< td=""><td></td></mda<>                     |           |
| 727.17              | 17.         | 92.64            | 1.72                | 1.790E-02              | 727.17            | 11.800          | PBC <mda< td=""><td></td></mda<>                     |           |
| 733.00              |             | 540.73           | 1.73                | 1.780E-02              | 733.00            | 8.500           | PBC <mda< td=""><td></td></mda<>                     |           |
| 756.70              |             | 107.31           | 1.75                | 1.740E-02              | 756.70            | 4.100           | PBC <mda< td=""><td></td></mda<>                     |           |
| 764.84              |             | 591.61           | 0.22                | 1.727E-02              | 763.30            | 1.700           | 3.069E-02                                            |           |
| 768.36              |             | 235.16           | 1.76                | 1.722E-02              | 768.36            | 4.799           | PBC <mda< td=""><td></td></mda<>                     |           |
| 778.90              |             | 184.40           | 1.77                | 1.705E-02              | 778.90            | 12.990          | PBC <mda<br>PBC<mda< td=""><td></td></mda<></mda<br> |           |
| 860.66              |             | 109.75           | 1.85                | 1.587E-02              | 860.47            | 12.000          |                                                      |           |
| 911.26              | 84.         | 14.06            | 1.65                | 1.521E-02              | 911.07            | 29.000          | 3.452E-01                                            |           |
| 932.96              | 13.         | 100.37           | 1.92                | 1.493E-02              | 934.06<br>946.00  | 3.029           | PBC <mda< td=""><td></td></mda<>                     |           |
| 946.00              |             | 77.94            | 1.93                | 1.479E-02              |                   | 20.000          | PBC <mda< td=""><td></td></mda<>                     |           |
| 964.00              | ٥.          | 343.84           | 1.95                | 1.458E-02              | 964.00            | 14.580          | PBC <mda< td=""><td></td></mda<>                     |           |
| 064 00              | 1.0         | 120 70           | 1.95                | 1.458E-02              | 964.60<br>964.00  | 5.452<br>14.580 | 1.059E-01                                            |           |
| 964.89              | 12.         | 120.78           | 1.95                | 1.456E-02              | 964.60            | 5.452           | PBC <mda 2.668e-01<="" td=""><td></td></mda>         |           |
| 969.31              | 51.         | 20.85            | 2.42                | 1.452E-02              | 968.90            | 17.460          | 3.600E-01                                            |           |
| 1076.42             |             | 162.16           | 0.00                | 1.432E-02<br>1.339E-02 | 900.90            | 17.400          | 3.000E-01                                            | KaZZ0     |
| 1108.35             | 11.         | 44.17            | 0.68                | 1.309E-02              |                   |                 |                                                      |           |
| 1120.37             |             | 24.31            | 2.21                |                        | 1120.29           | 14 707          | 6.186E-01                                            | DT 21 /   |
|                     |             |                  |                     |                        | 1173.24           | 99.900          |                                                      |           |
| 1173.24<br>1236.76  |             | 142.72<br>108.84 | $2.14 \\ 2.19$      | 1.250E-02<br>1.195E-02 | 1238.11           | 5.859           | PBC <mda<br>PBC<mda< td=""><td></td></mda<></mda<br> |           |
| 1332.50             | 3.          | 327.62           | 2.19                | 1.195E-02<br>1.122E-02 | 1332.50           | 99.982          | PBC <mda< td=""><td></td></mda<>                     |           |
| 1377.85             | 3.<br>17.   | 36.43            | 0.47                | 1.122E-02<br>1.089E-02 | 1377.67           | 3.919           | 7.019E-01                                            |           |
| 1394.10             |             | 933.27           | 2.32                | 1.089E-02<br>1.078E-02 | 1377.67           | 3.919           | PBC <mda< td=""><td></td></mda<>                     |           |
| 1408.08             |             | 697.62           | 2.32                | 1.078E-02<br>1.068E-02 | 1408.08           | 21.210          | PBC <mda< td=""><td></td></mda<>                     |           |
| 1461.03             | 642.        | 3.99             | $\frac{2.33}{1.75}$ | 1.086E-02<br>1.032E-02 | 1400.00           | 10.700          | 1.049E+01                                            |           |
| 1496.32             | 8.          | 45.55            | 0.46                | 1.032E-02<br>1.010E-02 | 1400.75           | 10.700          | 1.047ETUI                                            | 77.40     |
| 1770.34             | ٥.          | 49.00            | 0.40                | I.UIUE-UZ              |                   |                 |                                                      |           |

ARS1-23-01973 Page 71 of 311

| pk energy | area | uncert | fwhm | corr      | nuclide | brnch. | act. nuc                        |
|-----------|------|--------|------|-----------|---------|--------|---------------------------------|
| 1602.12   | 15.  | 25.82  | 0.94 | 9.456E-03 |         |        |                                 |
| 1620.56   | 1.   | 627.11 | 2.49 | 9.350E-03 | 1620.56 | 2.750  | PBC <mda bi212<="" td=""></mda> |
| 1728.03   | 20.  | 22.36  | 0.37 | 8.762E-03 |         |        |                                 |
| 1764.27   | 41.  | 15.62  | 2.56 | 8.575E-03 | 1764.49 | 15.357 | 4.845E-01 BI214                 |

| Peak Ce |         | ackground N |        | -         | Uncert  |       |      | ected |
|---------|---------|-------------|--------|-----------|---------|-------|------|-------|
| Channel | Energy  | Counts      | Counts | * Area 2  | Sigma % | keV   | Nucl | .ide  |
| 47.96   | 12.09   | 462.        | 268.   | 1.949E+05 | 27.16   | 1.279 |      | s     |
| 83.02   | 20.86   | 1326.       | 441.   | 5.269E+04 | 27.79   | 1.319 | _    | s     |
| 110.70  | 27.78   | 965.        | 232.   | 1.673E+04 | 43.44   | 1.568 | _    | s     |
| 145.13  | 36.39   | 1023.       | 227.   | 1.092E+04 | 45.72   | 0.503 | _    | s     |
| 168.57  | 42.23   | 824.        | 153.   | 6.033E+03 | 55.37   | 0.983 | _    | sD    |
| 180.98  | 45.33   | 721.        | 21.    | 7.692E+02 | 356.68  | 0.986 | _    | sc    |
| 200.50  | 50.21   | 452.        | 14.    | 4.276E+02 | 443.36  | 0.992 | _    | sc    |
| 223.63  | 56.12   | 564.        | 229.   | 6.181E+03 | 36.63   | 1.484 | _    | s     |
| 298.78  | 74.88   | 374.        | 178.   | 3.636E+03 | 34.17   | 1.021 | _    | sD    |
| 308.18  | 77.23   | 339.        | 278.   | 5.567E+03 | 22.23   | 1.024 | _    | D     |
| 349.23  | 87.42   | 350.        | 130.   | 2.443E+03 | 49.78   | 1.287 | _    | sM    |
| 422.59  | 105.66  | 196.        | 19.    | 3.466E+02 | 232.87  | 0.345 | -    | sc    |
| 445.00  | 111.36  | 131.        | 10.    | 1.755E+02 | 335.45  | 0.000 | -    | sc    |
| 510.00  | 127.61  | 100.        | 9.     | 1.686E+02 | 321.26  | 0.000 | _    | sc    |
| 559.41  | 139.96  | 109.        | 42.    | 8.066E+02 | 80.35   | 0.975 | _    | s     |
| 663.43  | 165.89  | 86.         | 38.    | 7.810E+02 | 84.54   | 1.514 | _    | s     |
| 706.58  | 176.75  | 84.         | 22.    | 4.848E+02 | 130.90  | 0.561 | -    | s     |
| 842.29  | 210.68  | 70.         | 10.    | 2.298E+02 | 261.41  | 0.208 | -    | sc    |
| 1096.79 | 274.34  | 32.         | 15.    | 4.327E+02 | 117.61  | 1.249 | -    | sD    |
| 1119.15 | 279.93  | 56.         | 11.    | 3.261E+02 | 196.46  | 1.255 | _    | sc    |
| 1235.85 | 309.06  | 26.         | 6.     | 1.826E+02 | 252.51  | 0.556 | -    | sc    |
| 1391.74 | 348.14  | 26.         | 20.    | 6.708E+02 | 85.07   | 1.330 | _    | sD    |
| 1496.33 | 374.17  | 21.         | 10.    | 3.639E+02 | 136.79  | 0.721 | _    | sc    |
| 1571.21 | 392.88  | 30.         | 28.    | 1.023E+03 | 77.59   | 2.236 | _    | s     |
| 1935.93 | 484.03  | 10.         | 3.     | 1.097E+02 | 355.18  | 0.236 | -    | sc    |
| 2589.17 | 647.27  | 7.          | 14.    | 7.108E+02 | 84.46   | 0.730 | -    | s     |
| 2754.07 | 688.48  | 22.         | 19.    | 1.022E+03 | 99.53   | 0.674 | _    | s     |
| 2850.67 | 712.61  | 21.         | 17.    | 9.363E+02 | 106.60  | 0.321 | _    | s     |
| 3059.69 | 764.84  | 41.         | 2.     | 1.445E+02 | 736.75  | 1.761 | _    | sc    |
| 4307.00 | 1076.42 | 4.          | 2.     | 1.344E+02 | 324.32  | 0.000 | -    | sc    |
| 4434.83 | 1108.35 | 5.          | 11.    | 8.253E+02 | 88.35   | 0.678 | -    | s     |
| 5514.03 | 1377.85 | 5.          | 17.    | 1.524E+03 | 72.87   | 0.474 | _    | sM    |
| 5988.49 | 1496.32 | 2.          | 8.     | 8.022E+02 | 91.09   | 0.461 | -    | s     |
| 6412.30 | 1602.12 | 0.          | 15.    | 1.586E+03 | 51.64   | 0.936 | -    | s     |
| 6916.71 | 1728.03 | 0.          | 20.    | 2.282E+03 | 44.72   | 0.374 | -    | s     |

ARS1-23-01973 Page 72 of 311

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.
- M Peak is close to a library peak.

-----

This section based on library: ITSI COUNT.Lib

| *****   | ***** I | DENTI    | FIED P     | EAK      | SUMMA    | R Y ***** | *****  |
|---------|---------|----------|------------|----------|----------|-----------|--------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensit |           |        |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec  | 2 Sigma % | keV    |
|         |         |          |            |          |          |           |        |
| EU-152  | 157.66  | 39.52    | 4303.      | 158.     | 0.044    | 118.14    | 0.980s |
| EU-152  | 160.06  | 40.12    | 4461.      | 58.      | 0.016    | 324.41    | 0.980  |
| EU-154  | 168.82  | 42.31    | 4520.      | 59.      | 0.016    | 325.63    | 0.983  |
| EU-154  | 171.58  | 43.00    | 4578.      | 59.      | 0.016    | 327.43    | 0.984s |
| EU-152  | 181.18  | 45.40    | 4637.      | 59.      | 0.016    | 328.62    | 0.986s |
| PB-210  | 185.66  | 46.52    | 4679.      | 59.      | 0.016    | 329.61    | 0.988s |
| EU-154  | 194.38  | 48.70    | 4738.      | 59.      | 0.016    | 330.88    | 0.990s |
| Am-241  | 237.73  | 59.54    | 1946.      | 66.      | 0.018    | 190.05    | 1.003  |
| U-238   | 252.73  | 63.29    | 2014.      | 48.      | 0.013    | 268.59    | 1.008s |
| U-238   | 369.09  | 92.38    | 1197.      | -39.     | -0.011   | 253.16    | 1.041  |
| U-238   | 370.77  | 92.80    | 1236.      | -39.     | -0.011   | 257.04    | 1.042  |
| PA-234  | 378.24  | 94.67    | 1275.      | -39.     | -0.011   | 260.50    | 1.044s |
| PA-234  | 393.32  | 98.44    | 1037.      | 38.      | 0.011    | 240.02    | 1.048s |
| PA-234  | 398.36  | 99.70    | 1118.      | -37.     | -0.010   | 259.16    | 1.050s |
| PA-234  | 443.56  | 111.00   | 441.       | -19.     | -0.005   | 312.78    | 1.063s |
| EU-152  | 486.68  | 121.78   | 689.       | -8.      | -0.002   | 886.79    | 1.076s |
| PA-234  | 524.68  | 131.28   | 450.       | -5.      | -0.001   | 1203.33   | 1.087  |
| U-235   | 574.60  | 143.76   | 506.       | -32.     | -0.009   | 202.30    | 1.101s |
| U-235   | 652.96  | 163.35   | 342.       | -28.     | -0.008   | 189.14    | 1.123s |
| RA-226  | 743.84  | 186.07   | 91.        | 74.      | 0.021    | 46.22     | 0.952  |
| U-235   | 820.81  | 205.31   | 204.       | -12.     | -0.003   | 383.14    | 1.171  |
| PB-212  | 954.10  | 238.63   | 510.       | 278.     | 0.077    | 25.90     | 1.209  |
| PB-214  | 967.51  | 241.98   | 114.       | 69.      | 0.019    | 50.11     | 1.212D |
| EU-152  | 978.26  | 244.67   | 788.       | 0.       | 0.000    | 2000.00   | 1.216s |
| TL-208  | 1109.04 | 277.36   | 232.       | -24.     | -0.007   | 187.18    | 1.252  |
| PB-214  | 1180.46 | 295.21   | 49.        | 155.     | 0.043    | 20.56     | 1.272D |
| PB-212  | 1199.97 | 300.09   | 48.        | 31.      | 0.009    | 71.52     | 1.277D |
| Ra-228  | 1352.70 | 338.26   | 50.        | 97.      | 0.027    | 31.92     | 1.124  |
| EU-152  | 1376.85 | 344.30   | 478.       | -22.     | -0.006   | 280.57    | 1.326  |
| PB-214  | 1407.34 | 351.92   | 39.        | 221.     | 0.061    | 15.69     | 1.334D |
| TL-208  | 2042.88 | 510.76   | 63.        | 195.     | 0.054    | 23.87     | 2.548s |
| PA-234  | 2276.97 | 569.26   | 61.        | 4.       | 0.001    | 661.00    | 1.565s |
| TL-208  | 2332.51 | 583.14   | 64.        | 90.      | 0.025    | 37.74     | 1.579s |
| EU-154  | 2366.77 | 591.70   | 32.        | 14.      | 0.004    | 156.96    | 1.588s |
| BI-214  | 2437.98 | 609.49   | 32.        | 202.     | 0.056    | 18.58     | 1.461  |

ARS1-23-01973 Page 73 of 311

| Nuclide         Channel         Energy         Background         Net         area         Cnts/sec         Uncert         FWHM           CS-137         2646.75         661.66         88.         -19.         -0.005         181.84         1.659           PA-234         2796.59         699.10         71.         -9.         -0.003         333.04         1.696           EU-154         2893.44         723.30         104.         17.         0.005         172.82         1.726           BI-212         2908.93         727.17         121.         17.         0.005         185.28         1.724           PA-234         2932.26         733.00         137.         3.         0.001         1081.46         1.736 |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| PA-234 2796.59 699.10 7190.003 333.04 1.696<br>EU-154 2893.44 723.30 104. 17. 0.005 172.82 1.726<br>BI-212 2908.93 727.17 121. 17. 0.005 185.28 1.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    |
| EU-154 2893.44 723.30 104. 17. 0.005 172.82 1.720 BI-212 2908.93 727.17 121. 17. 0.005 185.28 1.720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| BI-212 2908.93 727.17 121. 17. 0.005 185.28 1.724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| FREA.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| EU-154 3027.12 756.70 96. 13. 0.004 214.61 1.753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| TL-208 3053.54 763.30 104. 13. 0.004 221.95 1.760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| BI-214 3073.77 768.36 118. 7. 0.002 470.31 1.764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| EU-152 3115.98 778.90 94. 8. 0.002 368.80 1.775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| BI-212 3142.07 785.42 11060.002 535.48 1.781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| PA-234 3232.85 808.10 5020.001 1114.30 1.803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| PA-234 3324.91 831.10 4350.001 481.00 1.825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| TL-208 3442.48 860.47 128. 15. 0.004 219.49 1.853                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| EU-152 3470.18 867.39 143. 0. 0.000 2000.00 1.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| EU-154 3493.43 873.20 143. 0. 0.000 2000.00 1.865                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| PA-234 3522.70 880.51 143. 0. 0.000 2000.00 1.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| PA-234 3533.62 883.24 143. 0. 0.000 2000.00 1.874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| PA-234 3595.11 898.60 54140.004 203.54 1.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| Ra-228 3645.79 911.26 18. 84. 0.023 28.11 1.652                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PA-234 3707.60 926.70 7530.001 774.60 1.915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| BI-214 3737.06 934.06 88. 14. 0.004 200.75 1.922                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| PA-234 3784.86 946.00 44. 13. 0.004 155.89 1.933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| PA-234 3796.87 949.00 6140.001 574.95 1.936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| EU-152 3856.92 964.00 126. 5. 0.001 687.68 1.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Ra-228 3859.32 964.60 95. 12. 0.003 241.55 1.950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| Ra-228 3876.53 968.90 21. 60. 0.017 33.52 1.954                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| EU-154 3986.22 996.30 3450.001 441.45 1.979                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| EU-154 4020.25 1004.80 53180.005 161.15 1.987                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| EU-152 4344.54 1085.80 61110.003 284.34 2.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| EU-152 4449.72 1112.07 162140.004 269.88 2.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
| BI-214 4482.96 1120.37 35. 66. 0.018 48.62 2.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| CO-60 4694.64 1173.24 40. 9. 0.002 285.45 2.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| BI-214 4954.40 1238.11 48. 13. 0.004 217.68 2.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0s |
| EU-154 5101.33 1274.80 3690.002 271.62 2.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |
| CO-60 5332.40 1332.50 24. 3. 0.001 655.24 2.268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
| PA-234 5579.09 1394.10 21. 1. 0.000 1866.55 2.318                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| EU-152 5635.08 1408.08 17. 1. 0.000 1395.23 2.329                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| K-40 5847.15 1461.03 4. 642. 0.178 7.99 1.745                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |
| BI-212 6486.16 1620.56 18. 1. 0.000 1254.22 2.491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| BI-214 7062.79 1764.49 24. 19. 0.005 112.74 2.594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |

s - Peak fails shape tests.

ARS1-23-01973 Page 74 of 311

D - Peak area deconvoluted.

A Derived peak area.

| **** S T<br>- Nuclide - | JMMARY<br>Average | OF LIBRARY PEAK USAGE *****                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | Activity pCi/g    | Energy Activity Code MDA Value keV pCi/g pCi/g COMMENTS                                                                                                                                                                                                                                                                                                                |
| U-235                   | -1.0703E-01       | 1.39E+09<br>143.76-1.070E-01 ?( 3.603E-01 1.01E+02 1.05E+01 G<br>205.31-1.121E-01 + 6.269E-01 1.92E+02 4.70E+00 G<br>163.35-2.239E-01 + 7.053E-01 9.46E+01 4.70E+00 G                                                                                                                                                                                                  |
| RA-226                  | 8.1443E-01        | 5.84E+05<br>186.21 8.144E-01 ( 5.191E-01 2.31E+01 3.64E+00 G K                                                                                                                                                                                                                                                                                                         |
| Ra-228                  | 3.9732E-01        | 2.10E+03<br>911.07 3.452E-01 ( 9.105E-02 1.41E+01 2.90E+01 G<br>968.90 4.281E-01 ( 1.704E-01 1.68E+01 1.75E+01 G<br>338.40 4.785E-01 ( 1.773E-01 1.60E+01 1.20E+01 G<br>964.60 2.668E-01 - 1.092E+00 1.21E+02 5.45E+00 G                                                                                                                                               |
| Am-241 T                | 8.3861E-02        | 1.58E+05<br>59.54 8.386E-02 ?( 2.638E-01 9.50E+01 3.59E+01 G K                                                                                                                                                                                                                                                                                                         |
| PB-210                  | 9.2542E-01        | 7.45E+03<br>46.52 9.254E-01 &( 5.052E+00 1.65E+02 4.00E+00 G                                                                                                                                                                                                                                                                                                           |
| U-238                   | 5.1876E-01        | 1.63E+12<br>63.29 5.188E-01 ?( 2.312E+00 1.34E+02 3.90E+00 G<br>92.80-4.344E-01 + 1.855E+00 1.29E+02 3.00E+00 G<br>92.38-5.073E-01 + 2.134E+00 1.27E+02 2.57E+00 G                                                                                                                                                                                                     |
| K-40                    | 1.0494E+01        | 4.68E+11<br>1460.75 1.049E+01 ( 1.867E-01 3.99E+00 1.07E+01 G                                                                                                                                                                                                                                                                                                          |
| PB-214                  | 4.0624E-01        | 5.84E+05<br>351.92 3.765E-01 ( 5.460E-02 7.85E+00 3.58E+01 G<br>295.21 4.526E-01 ( 1.035E-01 1.03E+01 1.85E+01 G<br>241.98 4.337E-01 ( 3.310E-01 2.51E+01 7.50E+00 G                                                                                                                                                                                                   |
| BI-214                  | 3.9364E-01        | 5.84E+05 609.31 4.013E-01 ( 5.819E-02 9.29E+00 4.48E+01 G 1764.49 2.597E-01 - P 3.504E-01 5.64E+01 1.54E+01 G 1120.29 6.186E-01 + 2.854E-01 2.43E+01 1.48E+01 G 1238.11 3.351E-01 &( 9.021E-01 1.09E+02 5.86E+00 G 768.36 1.449E-01 - 1.167E+00 2.35E+02 4.80E+00 G 1377.67 2.537E-02 % 1.108E+00 1.19E+03 3.92E+00 G 934.06 5.466E-01 & 1.849E+00 1.00E+02 3.03E+00 G |

ARS1-23-01973 Page 75 of 311

|         |              | -                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                                                  |                                         |                                         |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| Nuclide | Ave activity | Energy Activity                                                                                                                                                                                                                                                                                                                                                    | Code                                                                                                                    | Peak MDA                                                                                                                                                          | Comment                                                                                                                                                                          | ts                                      |                                         |
| BI-212  | 1.3902E-01   | 727.17 1.485E-01<br>1620.56 9.826E-01<br>785.42-2.982E-01                                                                                                                                                                                                                                                                                                          | &( 1.                                                                                                                   | 562E+00                                                                                                                                                           | 6.27E+02                                                                                                                                                                         | 1.18E+01                                | G                                       |
| PB-212  | 3.0233E-01   | 238.63 3.023E-03                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                         |                                                                                                                                                                   |                                                                                                                                                                                  | 4.31E+01                                |                                         |
| TL-208  | 9.6852E-02   | 583.14 9.053E-02<br>510.72 6.845E-03<br>860.47 1.422E-03<br>277.36-1.883E-03<br>763.30 8.231E-03                                                                                                                                                                                                                                                                   | + 1.<br>?( 5.                                                                                                           | 394E-01 :<br>254E-01 :                                                                                                                                            | 1.19E+01<br>1.10E+02                                                                                                                                                             | 8.60E+01<br>2.25E+01<br>1.20E+01        | G<br>G                                  |
| PA-234  | 5.4157E-02   | 98.44 5.046E-02<br>946.00 7.869E-02<br>131.28-8.520E-03<br>94.67-8.387E-02<br>883.24 0.000E+00<br>926.70-3.495E-02<br>569.26 3.436E-02<br>111.00-7.407E-02<br>733.00 3.671E-02<br>949.00-6.114E-02<br>880.51 0.000E+00<br>226.87-8.364E-03<br>831.10-1.030E-03<br>808.10-5.323E-02<br>99.70-2.585E-03<br>699.10-2.004E-03<br>898.60-4.109E-03<br>1394.10 4.294E-02 | ?( 2.<br>- 1.<br>+ 3.<br>- 5.<br>- 4.<br>?( 3.<br>+ 3.<br>&( 6.<br>- 1.<br>% 4.<br>+ 6.<br>& 7.<br>& 1.<br>+ 8.<br>+ 1. | 053E-01<br>731E-01<br>631E-01<br>645E-01<br>709E-01<br>194E-01<br>881E-01<br>126E-01<br>040E+00<br>363E-01<br>602E-01<br>938E-01<br>114E+00<br>974E-01<br>085E+00 | 7.79E+01<br>6.02E+02<br>1.30E+02<br>1.00E+03<br>3.87E+02<br>3.30E+02<br>1.56E+02<br>5.41E+02<br>2.87E+02<br>1.00E+03<br>1.76E+03<br>2.40E+02<br>5.57E+02<br>1.30E+02<br>1.67E+02 |                                         | 000000000000000000000000000000000000000 |
| CS-137  | -2.1490E-02  | 661.66-2.149E-02                                                                                                                                                                                                                                                                                                                                                   | ?( 5.                                                                                                                   | 154E-02                                                                                                                                                           | 1.10E-<br>9.09E+01                                                                                                                                                               |                                         | G                                       |
| CO-60   | 8.9171E-03   | 1173.24 1.301E-02<br>1332.50 4.827E-03                                                                                                                                                                                                                                                                                                                             | •                                                                                                                       |                                                                                                                                                                   |                                                                                                                                                                                  | 9.99E+01                                | K<br>K                                  |
| EU-152  | 3.7348E-01   | 40.12 1.481E-03<br>121.78-9.603E-03<br>344.30-4.973E-03                                                                                                                                                                                                                                                                                                            | - 1.                                                                                                                    | 430E-01                                                                                                                                                           | 4.43E+02                                                                                                                                                                         | +03<br>3.00E+01<br>2.92E+01<br>2.70E+01 | G                                       |

ARS1-23-01973 Page 76 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 10:23:44 AM
 AAA
                                 Spectrum name: ARS06051.An1
Nuclide Ave activity
                                   Activity Code Peak MDA Comments
                         Energy
                          1408.08 9.561E-03 -
                                               1.738E-01 6.98E+02 2.12E+01 G
                            39.52 7.688E-01 ?( 1.496E+00 5.91E+01 1.60E+01 G
                                                4.675E-01 3.44E+02 1.46E+01 G
                           964.00 3.960E-02 -
                          1112.07-1.385E-01 -
                                                6.308E-01 1.35E+02 1.36E+01 G
                           778.90 6.193E-02 -
                                                3.910E-01 1.84E+02 1.30E+01 G
                          1085.80-1.424E-01 -
                                                5.148E-01 1.42E+02 1.03E+01 G
                            45.40 4.219E-01 ?( 2.297E+00 1.64E+02 9.00E+00 G
                                               8.350E-01 1.00E+03 7.62E+00 G
                           244.67 0.000E+00 -
                           867.39 0.000E+00 -
                                                1.601E+00 1.00E+03 4.18E+00 G
EU-154
            1.7122E-01
                                                             3.10E+03
                           123.10 4.936E-11 %( 1.030E-01 6.19E+10 4.05E+01 G
                          1274.80-3.925E-02 +
                                                1.338E-01 1.36E+02 3.55E+01 G
                           723.30 8.842E-02 ?( 2.557E-01 8.64E+01 1.97E+01 G
                          1004.80-1.321E-01 +
                                                2.663E-01 8.06E+01 1.76E+01 G
                            43.00 3.104E-01 ?( 1.683E+00 1.64E+02 1.31E+01 G
                           873.20 0.000E+00 &
                                                5.945E-01 1.00E+03 1.13E+01 G
                                                3.553E-01 2.21E+02 1.07E+01 G
                           996.30-6.166E-02 +
                            42.31 5.685E-01 ?( 3.066E+00 1.63E+02 7.30E+00 G
                           248.04 6.554E-03 %
                                                9.609E-01 4.36E+03 6.60E+00 G
                           591.70 2.570E-01 ?( 5.522E-01 7.85E+01 4.60E+00 G
                            48.70 8.279E-01 ?( 4.537E+00 1.65E+02 4.20E+00 G
                           756.70 3.379E-01 ?( 1.224E+00 1.07E+02 4.10E+00 G
   ( - This peak used in the nuclide activity average.
   * - Peak is too wide, but only one peak in library.
   ! - Peak is part of a multiplet and this area went
      negative during deconvolution.
   ? - Peak is too narrow.
   @ - Peak is too wide at FW25M, but ok at FWHM.
   % - Peak fails sensitivity test.
   $ - Peak identified, but first peak of this nuclide
      failed one or more qualification tests.
   + - Peak activity higher than counting uncertainty range.
   - - Peak activity lower than counting uncertainty range.
   = - Peak outside analysis energy range.
   & - Calculated peak centroid is not close enough to the
       library energy centroid for positive identification.
   P - Peakbackground subtraction
   } - Peak is too close to another for the activity
       to be found directly.
  Nuclide Codes:
                                       Peak Codes:
   T - Thermal Neutron Activation
                                       G - Gamma Ray
  F - Fast Neutron Activation
                                       X - X-Ray
   I - Fission Product
                                       P - Positron Decay
  N - Naturally Occurring Isotope
                                      S - Single-Escape
  P - Photon Reaction
                                       D - Double-Escape
```

ARS1-23-01973 Page 77 of 311

C - Charged Particle Reaction K - Key Line

M - No MDA Calculation A - Not in Average R - Coincidence Corrected C - Coincidence Peak

H - Halflife limit exceeded

-----

| ******* PISCARDED ISOTOPE PEAKS **********                     |  |
|----------------------------------------------------------------|--|
| Nuclide Centroid Background Net Area Intensity Uncert Activity |  |
| Energy Counts Counts Cts/Sec 2 Sigma %                         |  |
| ·                                                              |  |
| EU-152 39.52 4303. 158. 0.044 118.14 7.688E-01                 |  |
| EU-152 40.12 4461. 58. 0.016 324.41 1.481E-01                  |  |
| EU-152 45.40 4637. 59. 0.016 328.62 4.219E-01                  |  |
| Am-241 59.54 1946. 66. 0.018 190.05 8.386E-02                  |  |
| PA-234 94.67 1275390.011 260.50 -8.387E-02                     |  |
| PA-234 98.44 1037. 38. 0.011 240.02 5.046E-02                  |  |
| PA-234 99.70 1118370.010 259.16 -2.585E-01                     |  |
| PA-234 111.00 441190.005 312.78 -7.407E-02                     |  |
| EU-152 121.78 68980.002 886.79 -9.603E-03                      |  |
| PA-234 131.28 45050.001 1203.33 -8.520E-03                     |  |
| U-235 143.76 506320.009 202.30 -1.070E-01                      |  |
| U-235 163.35 342280.008 189.14 -2.239E-01                      |  |
| U-235 205.31 204120.003 383.14 -1.121E-01                      |  |
| EU-152 344.30 478220.006 280.57 -4.973E-02                     |  |
| PA-234 569.26 61. 4. 0.001 661.00 3.436E-02                    |  |
| CS-137 661.66 88190.005 181.84 -2.149E-02                      |  |
| PA-234 699.10 7190.003 333.04 -2.004E-01                       |  |
| BI-212 727.17 121. 17. 0.005 185.28 1.485E-01                  |  |
| PA-234 733.00 137. 3. 0.001 1081.46 3.671E-02                  |  |
| EU-152 778.90 94. 8. 0.002 368.80 6.193E-02                    |  |
| BI-212 785.42 11060.002 535.48 -2.982E-01                      |  |
| PA-234 808.10 5020.001 1114.30 -5.323E-02                      |  |
| PA-234 831.10 4350.001 481.00 -1.030E-01                       |  |
| PA-234 898.60 54140.004 203.54 -4.109E-01                      |  |
| PA-234 926.70 7530.001 774.60 -3.495E-02                       |  |
| PA-234 946.00 44. 13. 0.004 155.89 7.869E-02                   |  |
| PA-234 949.00 6140.001 574.95 -6.114E-02                       |  |
| EU-152 964.00 126. 5. 0.001 687.68 3.960E-02                   |  |
| EU-152 1085.80 61110.003 284.34 -1.424E-01                     |  |
| EU-152 1112.07 162140.004 269.88 -1.385E-01                    |  |
| CO-60 1173.24 40. 9. 0.002 285.45 1.301E-02                    |  |
| CO-60 1332.50 24. 3. 0.001 655.24 4.827E-03                    |  |
| PA-234 1394.10 21. 1. 0.000 1866.55 4.294E-02                  |  |
| EU-152 1408.08 17. 1. 0.000 1395.23 9.561E-03                  |  |
| BI-212 1620.56 18. 1. 0.000 1254.22 9.826E-02                  |  |

P - Peakbackground subtraction

ARS1-23-01973 Page 78 of 311

| ARY O        | F NUCLI                                                                                                                                                                           | DES IN                  | SAMPLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| of Count (   | Incertainty 2                                                                                                                                                                     | Sigma                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| vity         | Counting                                                                                                                                                                          | Total                   | MDA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| pCi/g        | pCi/g                                                                                                                                                                             | pCi/g                   | pCi/g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .0703E-01    | 2.1652E-01                                                                                                                                                                        | 2.1664E-01              | 0.360E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1443E-01    | 3.7639E-01                                                                                                                                                                        | 3.7927E-01              | 0.519E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .9732E-01    | 7.1725E-02                                                                                                                                                                        | 7.5962E-02              | 0.910E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                   | 3.0516E+00              | 0.505E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1876E-01    | 1.3933E+00                                                                                                                                                                        | 1.3939E+00              | 0.231E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .0494E+01    | 8.3809E-01                                                                                                                                                                        | 1.0748E+00              | 0.187E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .0624E-01    | 6.3753E-02                                                                                                                                                                        | 7.2129E-02              | 0.546E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .9364E-01    | 7.3126E-02                                                                                                                                                                        | 7.6764E-02              | 0.582E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .3902E-01    | 2.5756E-01                                                                                                                                                                        | 2.5771E-01              | 0.461E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .0233E-01    | 7.8301E-02                                                                                                                                                                        | 8.1072E-02              | 0.117E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .6852E-02    | 3.6551E-02                                                                                                                                                                        | 3.7045E-02              | 0.402E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .4157E-02    | 8.4425E-02                                                                                                                                                                        | 8.4514E-02              | 0.201E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .1490E-02    | 3.9078E-02                                                                                                                                                                        | 3.9087E-02              | 0.515E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .9171E-03    | 2.5454E-02                                                                                                                                                                        | 2.5456E-02              | 0.465E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .7348E-01    | 4.4122E-01                                                                                                                                                                        | 4.4316E-01              | 0.796E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .7122E-01    | 2.6874E-01                                                                                                                                                                        | 2.6899E-01              | 0.103E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                   |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                                                                                                                                                                                   | n had bad sha           | ape.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| omitted from | -m + a + a l                                                                                                                                                                      |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              | of Count (1.vity pCi/g)  0703E-01 1443E-01 9732E-01 3861E-02 2542E-01 1876E-01 0494E+01 0624E-01 9364E-01 3902E-01 0233E-01 6852E-02 4157E-02 1490E-02 9171E-03 7348E-01 7122E-01 | Def Count Uncertainty 2 | Total pCi/g pCi/g pCi/g pCi/g  0703E-01 2.1652E-01 2.1664E-01 1443E-01 3.7639E-01 3.7927E-01 9732E-01 7.1725E-02 7.5962E-02 3861E-02 1.5938E-01 1.5947E-01 2542E-01 3.0503E+00 3.0516E+00 1876E-01 1.3933E+00 1.3939E+00 0494E+01 8.3809E-01 1.0748E+00 0624E-01 6.3753E-02 7.2129E-02 9364E-01 7.3126E-02 7.6764E-02 3902E-01 2.5756E-01 2.5771E-01 0233E-01 7.8301E-02 8.1072E-02 4157E-02 8.4425E-02 8.4514E-02 1490E-02 3.9078E-02 3.9087E-02 9171E-03 2.5454E-02 2.5456E-02 7348E-01 4.4122E-01 4.4316E-01 7122E-01 2.6874E-01 2.6899E-01 | Total MDA PCi/g PCi/g PCi/g PCi/g  0703E-01 2.1652E-01 2.1664E-01 0.360E+00 1443E-01 3.7639E-01 3.7927E-01 0.519E+00 9732E-01 7.1725E-02 7.5962E-02 0.910E-01 3861E-02 1.5938E-01 1.5947E-01 0.264E+00 2542E-01 3.0503E+00 3.0516E+00 0.505E+01 1876E-01 1.3933E+00 1.3939E+00 0.231E+01 0494E+01 8.3809E-01 1.0748E+00 0.187E+00 0624E-01 6.3753E-02 7.2129E-02 0.546E-01 9364E-01 7.3126E-02 7.6764E-02 0.582E-01 3902E-01 2.5756E-01 2.5771E-01 0.461E+00 0233E-01 7.8301E-02 8.1072E-02 0.117E+00 6852E-02 3.6551E-02 3.7045E-02 0.402E-01 4157E-02 8.4425E-02 8.4514E-02 0.201E+00 1490E-02 3.9078E-02 3.9087E-02 0.515E-01 9171E-03 2.5454E-02 2.5456E-02 0.465E-01 7348E-01 4.4122E-01 4.4316E-01 0.796E+00 7122E-01 2.6874E-01 2.6899E-01 0.103E+00 |

- & Activity omitted from total and all peaks had bad shape.
- < MDA value printed.
- A Activity printed, but activity < MDA.
- B Activity < MDA and failed test.
- C Area < Critical level.
- ${\tt F}$   ${\tt Failed}$  fraction or key line test.
- H Halflife limit exceeded

----- S U M M A R Y ------ Total Activity ( 2.6 to 1998.4 keV) 1.290E+01 pCi/g

Analyzed by: \_\_\_\_\_\_Countroom

Reviewed by: \_\_\_\_\_\_Supervisor

Laboratory: AAA

ARS1-23-01973 Page 79 of 311

1.5161E-001

5.6824E-001

2.6000E-001

8.4700E-001

Printed: 10/2/2023 8:02 AM

Page 1 of 1

1.3000E-001

4.2350E-001

ARS Aleut Analytical, LLC Port Allen Laboratory

U-235

U-238

ARS1-B23-01775-05 **Batch Sample ID Analytical Batch** ARS1-B23-01775 **Analysis Date** 9/29/2023 09:24 **Analysis Code** GAM-IG21-SO SDG ARS1-23-01973 Detector (ARS03) MCB 129 Fraction 002 Count Time (sec) 3600 Run 1 Ortec Gamma Library ITSI COUNT.Lib Geometry 250mL tuna can poly 1948-64-2 Isotope Activity Units CSU MDA DL Am-241 2.7848E-002 pCi/g 9.3338E-002 1.5600E-001 7.8000E-002 Bi-212 3.4794E-001 2.8808E-001 4.8500E-001 2.4250E-001 pCi/g Bi-214 3.3574E-001 pCi/g 8.3176E-002 8.2500E-002 4.1250E-002 Co-60 8.6448E-003 2.8141E-002 5.3400E-002 2.6700E-002 pCi/g Cs-137 1.2838E-002 pCi/g 3.1529E-002 4.5400E-002 2.2700E-002 1.6350E-001 Eu-152 4.2052E-002 pCi/g 6.7916E-002 3.2700E-001 Eu-154 5.6502E-002 pCi/g 1.1463E-001 7.6100E-002 3.8050E-002 K-40 8.1209E+000pCi/g 1.0093E+000 4.7000E-001 2.3500E-001 Pa-234 8.3656E-002 pCi/g 1.1949E-001 1.1300E-001 5.6500E-002 Pb-210 -4.9579E-001 pCi/q 1.3231E+000 2.2300E+000 1.1150E+000 Pb-212 6.4271E-002 7.0200E-002 3.5100E-002 3.3666E-001 pCi/g Pb-214 3.2313E-001 pCi/g 8.0131E-002 8.6200E-002 4.3100E-002 8.6912E-001 Ra-226 pCi/g 7.0580E-001 1.1300E+000 5.6500E-001 Ra-228 3.8090E-001 pCi/g 1.3467E-001 1.3200E-001 6.6000E-002 TI-208 1.2605E-001 pCi/g 3.6014E-002 3.8500E-002 1.9250E-002

pCi/g

pCi/g

ARS1-23-01973 Page 80 of 311

9.7422E-002

4.6312E-001

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 10:25:08 AM
AAA
                               Spectrum name: ARS03247.An1
Sample description
     Batch ID: 23-01775-05
     SDG ID: ARS1-23-01973-002 Tech: SDW
Spectrum Filename: C:\User\ARS03247.An1
Acquisition information
       Start time:
                                  9/29/2023 9:24:52 AM
      Live time:
                               3600
      Real time:
                               3603
       Dead time:
                                  0.09 %
       Detector ID:
                                     17
Detector system
     (ARS03) MCB 129
Calibration
                                  1948-64-2 250mL tc poly cal 12-15-17.Clb
      Filename:
     250mL tuna can poly 1948-64-2
     12-15-17 EEC
       Energy Calibration
                                  12/15/2017 11:10:20 AM
            Created:
            Zero offset:
                                  0.253 keV
            Gain:
                                  0.250 keV/channel
            Quadratic:
                                 -1.778E-08 keV/channel^2
       Efficiency Calibration
            Created:
                                  12/15/2017 12:18:46 PM
            Type:
                                 Polynomial
           Uncertainty:
                                 1.552 %
           Coefficients:
                                 -0.414479 -4.439273
                                                        0.364604
                                 -0.031228
                                           0.000978 -0.000011
Library Files
       Main analysis library:
                                 ITSI COUNT.Lib
      Library Match Width:
                                  0.500
       Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
                                 10 (
       Start channel:
                                          2.75keV )
       Stop channel:
                               8000 ( 1997.02keV )
      Peak rejection level:
                               1000.000%
      Peak search sensitivity:
                                 1
       Sample Size:
                                  4.2463E+02 +/- 0.000E+00%
                                  1.0000E+06/(1.0000E+00*4.2463E+02) =
       Activity scaling factor:
                                  2.3550E+03
      Detection limit method:
                                  Req. Guide 4.16 Method
      Random error:
                                  1.000000E+00
       Systematic error:
                                  1.000000E+00
       Fraction Limit:
                                 0.000%
       Background width:
                                  5
      Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 81 of 311

## Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 104 of 384

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 10:25:08 AM AAA Spectrum name: ARS03247.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO
Dealed background correction: VES

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:26:46 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.2112

| **** S [ | JMMAI | R Y O  | F P E | AKS I     | N RAN   | GE     | ****                                  |       |
|----------|-------|--------|-------|-----------|---------|--------|---------------------------------------|-------|
| Peak     | Area  | Uncert | FWHM  | Corrctn   | Nuclide | Brnch. | Act.                                  | Nuc   |
| Energy   |       |        |       | Factor    | Energy  | Ratio  | pCi/g                                 |       |
|          |       |        |       |           |         |        |                                       |       |
| 27.65    |       | 86.44  | 0.86  | 1.598E-02 |         |        |                                       |       |
| 30.84    |       | 119.03 | 0.86  | 1.776E-02 |         |        |                                       |       |
| 40.37    | 29.   | 41.96  | 0.87  | 2.300E-02 | 39.52   | 16.000 |                                       |       |
|          |       |        |       |           | 40.12   | 30.000 |                                       |       |
| 42.36    | 14.   | 90.99  | 0.87  | 2.411E-02 | 42.31   | 7.300  |                                       |       |
|          |       |        |       |           | 43.00   | 13.100 |                                       |       |
| 46.65    |       | 18.37  | 0.87  | 2.651E-02 | 46.52   | 4.000  | _                                     |       |
| 48.70    |       | 161.35 | 0.88  | 2.769E-02 | 48.70   | 4.200  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 56.26    | 3.    | 219.02 | 0.19  | 3.237E-02 |         |        |                                       |       |
| 59.54    | 19.   | 167.55 | 0.89  | 3.431E-02 | 59.54   | 35.900 | PBC <mda< td=""><td>Am241</td></mda<> | Am241 |
| 63.49    | 83.   | 25.78  | 0.69  | 3.648E-02 | 63.29   | 3.900  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 74.90    | 141.  | 15.15  | 0.90  | 4.144E-02 |         |        |                                       |       |
| 77.28    | 204.  | 10.63  | 0.90  | 4.221E-02 |         |        |                                       |       |
| 84.06    | 21.   | 78.40  | 0.91  | 4.394E-02 |         |        |                                       |       |
| 87.27    | 54.   | 34.24  | 0.91  | 4.452E-02 |         |        |                                       |       |
| 89.98    | 33.   | 54.15  | 0.91  | 4.491E-02 |         |        |                                       |       |
| 92.82    | 100.  | 20.23  | 0.92  | 4.522E-02 | 92.38   | 2.570  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
|          |       |        |       |           | 92.80   | 3.000  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 106.64   | 5.    | 135.62 | 0.00  | 4.563E-02 |         |        |                                       |       |
| 143.70   | 17.   | 79.59  | 0.30  | 4.203E-02 | 143.76  | 10.500 | 6.773E-02                             | U235  |
| 158.75   | 12.   | 89.30  | 0.54  | 3.996E-02 |         |        |                                       |       |
| 182.50   | 19.   | 67.60  | 0.99  | 3.676E-02 |         |        |                                       |       |
| 185.75   | 78.   | 20.87  | 1.00  | 3.635E-02 | 186.21  | 3.640  | PBC <mda< td=""><td>RA226</td></mda<> | RA226 |
| 205.16   | 16.   | 79.35  | 0.60  | 3.397E-02 | 205.31  | 4.700  | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 217.19   | 7.    | 108.55 | 0.45  | 3.265E-02 |         |        |                                       |       |
| 238.63   | 280.  | 7.53   | 1.04  | 3.050E-02 | 238.63  | 43.100 | 3.395E-01                             | PB212 |
| 241.81   | 59.   | 23.24  | 1.05  | 3.021E-02 | 241.98  | 7.500  | 4.096E-01                             | PB214 |
|          |       |        |       |           |         |        |                                       |       |

ARS1-23-01973 Page 82 of 311

|           |      |                 |      | -         |         |        |                                       |            |
|-----------|------|-----------------|------|-----------|---------|--------|---------------------------------------|------------|
| pk energy | area | uncert          | fwhm | corr      | nuclide | brnch. | act.                                  | nuc        |
| 244.65    | 20.  | 185.96          | 1.05 | 2.995E-02 | 244.67  | 7.616  | PBC <mda< td=""><td>EU152</td></mda<> | EU152      |
| 248.10    | 9.   | 95.45           | 0.45 | 2.964E-02 | 248.04  | 6.600  | 8.133E-02                             | EU154      |
| 277.36    | 10.  | 197.19          | 1.08 | 2.728E-02 | 277.36  | 6.500  | PBC <mda< td=""><td>TL208</td></mda<> | TL208      |
| 295.35    | 90.  | 21.26           | 0.94 | 2.603E-02 | 295.21  | 18.500 | 2.797E-01                             |            |
| 305.15    |      | 110.00          | 1.10 | 2.539E-02 |         |        |                                       |            |
| 307.19    | 15.  | 64.78           | 1.10 | 2.527E-02 |         |        |                                       |            |
| 328.65    | 23.  | 49.19           | 1.50 | 2.403E-02 |         |        |                                       |            |
| 338.18    | 29.  | 38.47           | 0.97 | 2.352E-02 | 338.40  | 12.010 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228      |
| 351.91    | 176. | 9.51            | 1.23 | 2.283E-02 | 351.92  | 35.800 | 3.298E-01                             |            |
| 463.26    | 48.  | 22.00           | 0.35 | 1.868E-02 | 332172  | 33.333 | 3,1,01 01                             |            |
| 511.13    | 201. | 11.01           | 2.54 | 1.742E-02 | 510.72  | 22.500 | 9.062E-01                             | тт.208     |
| 530.70    |      | 100.00          | 0.42 | 1.696E-02 | 310.72  | 22.500 | J.002H 01                             | 111200     |
| 546.54    | 17.  | 48.25           | 1.59 | 1.662E-02 |         |        |                                       |            |
| 569.26    |      | 118.25          | 1.32 | 1.615E-02 | 569.26  | 10.400 | PBC <mda< td=""><td>D7234</td></mda<> | D7234      |
| 583.41    | 107. | 12.16           | 1.26 | 1.587E-02 | 583.14  | 86.000 | 1.260E-01                             |            |
| 609.51    | 148. | 10.11           | 1.27 | 1.540E-02 | 609.31  | 44.791 | 3.357E-01                             |            |
| 661.66    |      | 122.78          | 1.40 | 1.455E-02 | 661.66  | 85.210 | PBC <mda< td=""><td></td></mda<>      |            |
|           |      |                 |      |           | 001.00  | 03.210 | PBC <mda< td=""><td>CSIST</td></mda<> | CSIST      |
| 677.73    | 15.  | 40.38<br>101.38 | 1.23 | 1.431E-02 | 702 20  | 10 700 |                                       | DII 1 F /  |
| 723.30    |      |                 | 1.45 | 1.368E-02 | 723.30  | 19.700 | PBC <mda< td=""><td></td></mda<>      |            |
| 727.17    |      | 142.32          | 1.45 | 1.363E-02 | 727.17  | 11.800 | PBC <mda< td=""><td></td></mda<>      |            |
| 733.00    |      | 121.64          | 1.46 | 1.355E-02 | 733.00  | 8.500  | PBC <mda< td=""><td>_</td></mda<>     | _          |
| 756.70    |      | 107.41          | 1.48 | 1.325E-02 | 756.70  | 4.100  | PBC <mda< td=""><td></td></mda<>      |            |
| 767.97    | 27.  | 33.98           | 0.87 | 1.312E-02 | 768.36  | 4.799  | 7.697E-01                             |            |
| 785.42    | 27.  | 41.28           | 1.50 | 1.292E-02 | 785.42  | 2.000  | PBC <mda< td=""><td>BI212</td></mda<> | BI212      |
| 840.74    | 18.  | 31.98           | 0.40 | 1.232E-02 |         |        |                                       |            |
| 860.90    | 21.  | 28.74           | 1.21 | 1.212E-02 | 860.47  | 12.000 | 2.589E-01                             |            |
| 873.20    |      | 405.07          | 1.57 | 1.200E-02 | 873.20  | 11.300 | PBC <mda< td=""><td></td></mda<>      |            |
| 880.36    |      | 156.79          | 1.58 | 1.193E-02 | 880.51  | 6.500  | 2.737E-02                             |            |
| 883.24    |      | 111.53          | 1.58 | 1.190E-02 | 883.24  | 12.000 | PBC <mda< td=""><td>PA234</td></mda<> | PA234      |
| 898.60    |      | 150.78          | 1.59 | 1.176E-02 | 898.60  | 4.000  | PBC <mda< td=""><td></td></mda<>      |            |
| 911.59    | 77.  | 16.02           | 1.17 | 1.164E-02 | 911.07  | 29.000 | 3.809E-01                             | Ra228      |
| 926.70    | 9.   | 100.23          | 1.61 | 1.150E-02 | 926.70  | 11.000 | PBC <mda< td=""><td>PA234</td></mda<> | PA234      |
| 934.00    | 26.  | 27.48           | 4.45 | 1.144E-02 | 934.06  | 3.029  | 1.316E+00                             | BI214      |
| 963.94    | 32.  | 26.29           | 0.48 | 1.119E-02 | 964.00  | 14.580 | 3.426E-01                             | EU152      |
|           |      |                 |      |           | 964.60  | 5.452  | 9.003E-01                             | Ra228      |
| 969.04    | 8.   | 149.32          | 1.65 | 1.115E-02 | 968.90  | 17.460 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228      |
| 1085.67   | 8.   | 124.51          | 1.74 | 1.026E-02 | 1085.80 | 10.290 | PBC <mda< td=""><td>EU152</td></mda<> | EU152      |
| 1112.07   | 11.  | 92.99           | 1.76 | 1.008E-02 | 1112.07 | 13.580 | PBC <mda< td=""><td>EU152</td></mda<> | EU152      |
| 1120.90   | 53.  | 16.20           | 1.94 | 1.002E-02 | 1120.29 | 14.797 | 5.567E-01                             |            |
| 1173.24   |      |                 |      | 9.688E-03 |         | 99.900 | PBC <mda< td=""><td></td></mda<>      |            |
| 1332.50   |      | 280.00          | 1.92 | 8.781E-03 | 1332.50 | 99.982 | PBC <mda< td=""><td></td></mda<>      |            |
| 1374.98   | 15.  |                 | 1.96 | 8.551E-03 | 1377.67 | 3.919  | PBC <mda< td=""><td></td></mda<>      |            |
| 1408.53   |      | 274.42          | 1.98 | 8.401E-03 | 1408.08 | 21.210 | PBC <mda< td=""><td></td></mda<>      |            |
| 1461.32   | 414. | 5.06            | 1.86 | 8.150E-03 | 1460.75 | 10.700 | 8.121E+00                             |            |
| 1620.56   | 4.   |                 | 2.13 | 7.464E-03 | 1620.56 | 2.750  | PBC <mda< td=""><td></td></mda<>      |            |
| 1764.98   | 35.  | 18.78           | 2.23 | 6.914E-03 | 1764.49 | 15.357 | 4.816E-01                             |            |
| 1766.27   |      | 347.10          | 2.23 | 6.910E-03 | 1764.49 | 15.357 | PBC <mda< td=""><td></td></mda<>      |            |
| 1/00.2/   | ٥.   | J=1.10          | 4.43 | 0.9105-03 | 1/04.43 | 10.00/ | P D C \ NIDA                          | $DTQT_{4}$ |

ARS1-23-01973 Page 83 of 311

| *******<br>Peak Ce |         | DENTIE |        | P E A K<br>fficiency | Uncert    |       | ******<br>Suspecte |    |
|--------------------|---------|--------|--------|----------------------|-----------|-------|--------------------|----|
| Channel            | Energy  | Counts | Counts | * Area 2             | 2 Sigma % | keV   | Nuclide            |    |
| 109.71             | 27.65   | 74.    |        | 9.252E+02            | 172.88    | 0.857 | SB-124             |    |
| 122.48             | 30.84   | 67.    | 10.    | 5.660E+02            | 238.06    | 0.860 | J-131              |    |
| 168.61             | 42.21   | 71.    | 14.    | 5.690E+02            | 182.24    | 0.870 | CE-141             |    |
| 224.26             | 56.26   | 33.    | 3.     | 9.885E+01            | 438.04    | 0.195 | HF-181             |    |
| 298.89             | 74.89   | 159.   | 141.   | 3.411E+03            | 30.30     | 0.899 | TH-234             | D  |
| 308.42             | 77.27   | 133.   | 204.   | 4.832E+03            | 21.26     | 0.901 | PB-212             | D  |
| 335.75             | 84.09   | 124.   | 22.    | 4.991E+02            | 149.83    | 0.907 | HG-203             | С  |
| 348.61             | 87.30   | 149.   | 54.    | 1.216E+03            | 69.28     | 0.910 | PB-212             | D  |
| 359.49             | 90.02   | 136.   | 33.    | 7.251E+02            | 107.33    | 0.913 | AC-228             | sD |
| 426.00             | 106.64  | 26.    | 5.     | 1.008E+02            | 271.24    | 0.000 | _                  | sc |
| 634.41             | 158.75  | 65.    | 15.    | 3.698E+02            | 163.05    | 0.973 | MO-99              | sc |
| 729.52             | 182.43  | 75.    | 19.    | 5.234E+02            | 135.02    | 0.994 | U-235              | sc |
| 868.71             | 217.19  | 34.    | 7.     | 2.267E+02            | 217.09    | 0.447 | _                  | sc |
| 992.44             | 248.10  | 50.    | 14.    | 4.636E+02            | 155.59    | 1.051 | EU-154             | sc |
| 1220.98            | 305.21  | 36.    | 8.     | 3.200E+02            | 219.99    | 1.100 | BA-140             | sc |
| 1229.16            | 307.25  | 39.    | 15.    | 5.891E+02            | 129.57    | 1.102 | _                  | sD |
| 1315.08            | 328.65  | 42.    | 23.    | 9.573E+02            | 98.38     | 1.499 | LA-140             | s  |
| 1854.21            | 463.26  | 24.    | 48.    | 2.580E+03            | 44.00     | 0.350 | SB-125             | s  |
| 2124.33            | 530.70  | 4.     | 3.     | 1.768E+02            | 200.00    | 0.416 | ND-147             | sc |
| 2187.77            | 546.54  | 17.    | 17.    | 1.017E+03            | 96.50     | 1.593 | J-135              | s  |
| 2713.26            | 677.73  | 8.     | 15.    | 1.021E+03            | 80.76     | 1.232 | AG-110M            | M  |
| 3366.27            | 840.74  | 4.     | 18.    | 1.429E+03            | 63.96     | 0.396 | _                  | s  |
| 3525.00            | 880.36  | 2.     | 1.     | 1.006E+02            | 313.58    | 0.000 | _                  | sc |
| 7077.37            | 1766.49 | 40.    | 4.     | 6.042E+02            | 438.97    | 2.233 | RH-106             | sc |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.
- M Peak is close to a library peak.

\_\_\_\_\_

This section based on library: ITSI COUNT.Lib

| *****   | ***** I | DENTI    | FIED P     | EAK      | SUMMAF    | S X ***** | *****  |
|---------|---------|----------|------------|----------|-----------|-----------|--------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | y Uncert  | FWHM   |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec   | 2 Sigma % | keV    |
| EU-152  | 157.23  | 39.52    | 762.       | -23.     | -0.006    | 346.71    | 0.868  |
| EU-152  | 159.64  | 40.12    | 715.       | -23.     | -0.006    | 335.85    | 0.868s |
| EU-154  | 168.41  | 42.31    | 692.       | -23.     | -0.006    | 329.89    | 0.870s |
| EU-154  | 171.17  | 43.00    | 670.       | -23.     | -0.006    | 324.27    | 0.871s |
| EU-152  | 180.78  | 45.40    | 636.       | -23.     | -0.006    | 315.31    | 0.873s |

ARS1-23-01973 Page 84 of 311

| Nuclide | Channel | Energy | Background | Net area | Cnts/sec | Uncert  | FWHM   |
|---------|---------|--------|------------|----------|----------|---------|--------|
| PB-210  | 185.26  | 46.52  | 782.       | -30.     | -0.008   | 266.68  | 0.874s |
| EU-154  | 193.99  | 48.70  | 592.       | 22.      | 0.006    | 322.70  | 0.876s |
| Am-241  | 237.40  | 59.54  | 519.       | 19.      | 0.005    | 335.11  | 0.886s |
| U-238   | 253.21  | 63.49  | 196.       | 37.      | 0.010    | 122.46  | 0.688  |
| U-238   | 368.90  | 92.38  | 1299.      | 30.      | 0.008    | 140.99  | 0.915D |
| U-238   | 370.59  | 92.80  | 1182.      | 36.      | 0.010    | 122.09  | 0.915D |
| PA-234  | 393.17  | 98.44  | 229.       | -15.     | -0.004   | 660.73  | 0.920s |
| PA-234  | 398.22  | 99.70  | 296.       | -11.     | -0.003   | 912.13  | 0.921s |
| PA-234  | 443.47  | 111.00 | 327.       | -13.     | -0.004   | 757.09  | 0.931s |
| EU-152  | 486.63  | 121.78 | 210.       | 0.       | 0.000    | 2000.00 | 0.941s |
| EU-154  | 491.92  | 123.10 | 258.       | -7.      | -0.002   | 644.39  | 0.942s |
| PA-234  | 524.68  | 131.28 | 286.       | -28.     | -0.008   | 187.51  | 0.949s |
| U-235   | 574.65  | 143.76 | 178.       | 15.      | 0.004    | 267.38  | 0.960s |
| U-235   | 653.10  | 163.35 | 410.       | -26.     | -0.007   | 227.59  | 0.977  |
| RA-226  | 744.65  | 186.21 | 305.       | 65.      | 0.018    | 80.96   | 0.997  |
| U-235   | 820.55  | 205.16 | 66.        | 16.      | 0.004    | 158.71  | 0.601s |
| PA-234  | 907.48  | 226.87 | 149.       | -14.     | -0.004   | 383.89  | 1.032s |
| PB-212  | 954.57  | 238.63 | 113.       | 250.     | 0.070    | 17.52   | 1.043D |
| PB-214  | 967.99  | 241.98 | 82.        | 44.      | 0.012    | 66.57   | 1.046D |
| EU-152  | 978.76  | 244.67 | 694.       | 20.      | 0.006    | 371.92  | 1.048s |
| EU-154  | 992.26  | 248.04 | 731.       | -11.     | -0.003   | 716.72  | 1.051s |
| TL-208  | 1109.68 | 277.36 | 137.       | 10.      | 0.003    | 394.37  | 1.076  |
| PB-214  | 1181.18 | 295.21 | 78.        | 82.      | 0.023    | 38.14   | 1.092D |
| PB-212  | 1200.71 | 300.09 | 328.       | -11.     | -0.003   | 226.58  | 1.096  |
| Ra-228  | 1353.24 | 338.18 | 48.        | 26.      | 0.007    | 88.40   | 0.972  |
| EU-152  | 1377.77 | 344.30 | 101.       | -18.     | -0.005   | 179.23  | 1.134s |
| PB-214  | 1408.24 | 351.91 | 64.        | 152.     | 0.042    | 23.24   | 1.232  |
| TL-208  | 2044.31 | 510.72 | 84.        | 159.     | 0.044    | 28.58   | 2.524  |
| PA-234  | 2278.79 | 569.26 | 34.        | 9.       | 0.002    | 236.50  | 1.323s |
| TL-208  | 2335.46 | 583.41 | 34.        | 97.      | 0.027    | 27.87   | 1.255  |
| BI-214  | 2440.00 | 609.51 | 40.        | 131.     | 0.036    | 24.04   | 1.267s |
| CS-137  | 2648.91 | 661.66 | 39.        | 9.       | 0.002    | 245.55  | 1.399s |
| EU-154  | 2895.82 | 723.30 | 65.        | 12.      | 0.003    | 202.77  | 1.449s |
| BI-212  | 2911.32 | 727.17 | 79.        | 9.       | 0.003    | 284.63  | 1.452s |
| PA-234  | 2934.68 | 733.00 | 92.        | 12.      | 0.003    | 243.27  | 1.457s |
| EU-154  | 3029.62 | 756.70 | 38.        | 11.      | 0.003    | 214.83  | 1.476s |
| TL-208  | 3056.06 | 763.30 | 86.        | -2.      | 0.000    | 1547.85 | 1.482  |
| BI-214  | 3074.75 | 767.97 | 18.        | 27.      | 0.008    | 67.97   | 0.865s |
| EU-152  | 3118.55 | 778.90 | 29.        | -3.      | -0.001   | 685.42  | 1.494s |
| BI-212  | 3144.67 | 785.42 | 31.        | 27.      | 0.008    | 82.55   | 1.499s |
| PA-234  | 3235.53 | 808.10 | 42.        | -8.      | -0.002   | 307.52  | 1.518s |
| PA-234  | 3327.67 | 831.10 | 51.        | -13.     | -0.004   | 198.66  | 1.536s |
| TL-208  | 3445.33 | 860.47 | 45.        | 6.       | 0.002    | 388.55  | 1.559s |
| EU-152  | 3473.05 | 867.39 | 80.        | -16.     | -0.004   | 167.72  | 1.565  |
| EU-154  | 3496.33 | 873.20 | 87.        | 3.       | 0.001    | 810.15  | 1.569s |
| PA-234  | 3525.61 | 880.51 | 63.        | -7.      | -0.002   | 338.43  | 1.575s |
| PA-234  | 3536.55 | 883.24 | 57.        | 10.      | 0.003    | 223.07  | 1.578s |
| PA-234  | 3598.08 | 898.60 | 36.        | 7.       | 0.002    | 301.56  | 1.590s |

ARS1-23-01973 Page 85 of 311

| Nuclide | Channel | Energy  | Background | Net area | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|----------|----------|---------|--------|
| Ra-228  | 3650.11 | 911.59  | 23.        | 73.      | 0.020    | 34.79   | 1.174s |
| PA-234  | 3710.66 | 926.70  | 26.        | 9.       | 0.003    | 200.45  | 1.612s |
| BI-214  | 3739.91 | 934.00  | 7.         | 26.      | 0.007    | 54.97   | 4.448s |
| PA-234  | 3787.98 | 946.00  | 41.        | -4.      | -0.001   | 424.46  | 1.627s |
| PA-234  | 3800.00 | 949.00  | 48.        | -2.      | -0.001   | 1250.90 | 1.629s |
| EU-152  | 3860.10 | 964.00  | 119.       | -13.     | -0.004   | 239.19  | 1.641  |
| Ra-228  | 3862.50 | 964.60  | 13.        | 23.      | 0.006    | 62.20   | 1.642D |
| Ra-228  | 3879.73 | 968.90  | 67.        | 8.       | 0.002    | 298.64  | 1.645s |
| EU-154  | 4023.56 | 1004.80 | 51.        | -17.     | -0.005   | 160.15  | 1.673s |
| EU-152  | 4348.09 | 1085.80 | 31.        | 8.       | 0.002    | 249.01  | 1.736s |
| EU-152  | 4453.35 | 1112.07 | 31.        | 11.      | 0.003    | 185.98  | 1.756  |
| BI-214  | 4488.71 | 1120.90 | 11.        | 47.      | 0.013    | 38.21   | 1.938  |
| CO-60   | 4698.44 | 1173.24 | 32.        | 7.       | 0.002    | 331.95  | 1.802s |
| BI-214  | 4958.38 | 1238.11 | 68.        | -14.     | -0.004   | 221.27  | 1.852  |
| EU-154  | 5105.40 | 1274.80 | 36.        | -4.      | -0.001   | 570.09  | 1.879  |
| CO-60   | 5336.62 | 1332.50 | 14.        | 3.       | 0.001    | 560.01  | 1.922s |
| BI-214  | 5517.62 | 1377.67 | 12.        | 15.      | 0.004    | 100.96  | 1.955s |
| PA-234  | 5583.46 | 1394.10 | 23.        | -7.      | -0.002   | 221.96  | 1.967s |
| EU-152  | 5639.49 | 1408.08 | 15.        | 3.       | 0.001    | 548.84  | 1.978  |
| K-40    | 5852.84 | 1461.32 | 19.        | 401.     | 0.111    | 10.64   | 1.857  |
| BI-212  | 6491.04 | 1620.56 | 9.         | 4.       | 0.001    | 343.07  | 2.130s |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| - Nuclide - | M M A R Y<br>Average<br>Activity<br>pCi/g | OF LIBRARY PEA Peak Energy Activity Code MDA keV pCi/g pCi/ | Value                      |
|-------------|-------------------------------------------|-------------------------------------------------------------|----------------------------|
| U-235       | 9.7422E-02                                |                                                             | 1.39E+09                   |
|             |                                           | 143.76 6.171E-02 ?( 2.597                                   | E-01 1.34E+02 1.05E+01 G   |
|             |                                           | 205.31 1.772E-01 ( 4.493                                    | E-01 7.94E+01 4.70E+00 G   |
|             |                                           | 163.35-2.443E-01 + 9.281                                    | E-01 1.14E+02 4.70E+00 G   |
| RA-226      | 8.6912E-01                                |                                                             | 5.84E+05                   |
|             |                                           | 186.21 8.691E-01 &(P 1.126                                  | E+00 4.05E+01 3.64E+00 G K |
|             |                                           |                                                             |                            |
| Ra-228      | 3.8090E-01                                |                                                             | 2.10E+03                   |
|             |                                           | 911.07 3.809E-01 (P 1.319                                   | E-01 1.74E+01 2.90E+01 G   |
|             |                                           | 968.90 7.315E-02 - P 3.712                                  | E-01 1.49E+02 1.75E+01 G   |
|             |                                           | 338.40 1.647E-01 - P 2.185                                  | E-01 4.42E+01 1.20E+01 G   |
|             |                                           | 964.60 6.718E-01 + P 5.629                                  | E-01 3.11E+01 5.45E+00 G   |
| Am-241 T    | 2.7848E-02                                |                                                             | 1.58E+05                   |
|             |                                           | 59.54 2.785E-02 ?( 1.562                                    | E-01 1.68E+02 3.59E+01 G K |

ARS1-23-01973 Page 86 of 311

| $\Lambda\Lambda\Lambda$ |              | Spectian name: AKS03247.Anii                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide                 | Ave activity | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                                             |
| PB-210                  | -4.9579E-01  | 7.45E+03<br>46.52-4.958E-01 ?(P 2.230E+00 1.33E+02 4.00E+00 G                                                                                                                                                                                                                                                                                                                                      |
| U-238                   | 4.6312E-01   | 1.63E+12<br>63.29 4.631E-01 (P 8.465E-01 6.12E+01 3.90E+00 G<br>92.80 4.631E-01 } P 2.123E+00 6.10E+01 3.00E+00 G<br>92.38 4.631E-01 } P 2.598E+00 7.05E+01 2.57E+00 G                                                                                                                                                                                                                             |
| K-40                    | 8.1209E+00   | 4.68E+11<br>1460.75 8.121E+00 (P 4.702E-01 5.32E+00 1.07E+01 G                                                                                                                                                                                                                                                                                                                                     |
| PB-214                  | 3.2313E-01   | 5.84E+05<br>351.92 3.298E-01 (P 8.619E-02 1.16E+01 3.58E+01 G<br>295.21 3.026E-01 (P 1.613E-01 1.91E+01 1.85E+01 G<br>241.98 3.420E-01 (P 3.511E-01 3.33E+01 7.50E+00 G                                                                                                                                                                                                                            |
| BI-214                  | 3.3574E-01   | 5.84E+05<br>609.31 3.357E-01 *(P 8.248E-02 1.20E+01 4.48E+01 G<br>1764.49-4.989E-03 % P 3.414E-01 1.85E+03 1.54E+01 G<br>1120.29 5.567E-01 + P 2.188E-01 1.91E+01 1.48E+01 G<br>1238.11-4.673E-01 - 1.339E+00 1.11E+02 5.86E+00 G<br>768.36 7.697E-01 + P 6.253E-01 3.40E+01 4.80E+00 G<br>1377.67 8.062E-01 & P 9.847E-01 5.05E+01 3.92E+00 G<br>934.06 1.316E+00 + 7.763E-01 2.75E+01 3.03E+00 G |
| BI-212                  | 3.4794E-01   | 2.10E+03<br>727.17 1.014E-01 ?(P 4.854E-01 1.42E+02 1.18E+01 G<br>1620.56 3.136E-01 ?(P 1.461E+00 1.72E+02 2.75E+00 G<br>785.42 1.850E+00 &(P 1.960E+00 4.13E+01 2.00E+00 G                                                                                                                                                                                                                        |
| PB-212                  | 3.3666E-01   | 2.10E+03<br>238.63 3.367E-01 (P 7.017E-02 8.76E+00 4.31E+01 G<br>300.09-2.339E-01 - P 1.832E+00 1.13E+02 3.27E+00 G                                                                                                                                                                                                                                                                                |
| TL-208                  | 1.2605E-01   | 2.10E+03 583.14 1.260E-01 (P 3.850E-02 1.39E+01 8.60E+01 G 510.72 7.186E-01 + 2.043E-01 1.43E+01 2.25E+01 G 860.47 7.537E-02 - 4.121E-01 1.94E+02 1.20E+01 G 277.36 9.632E-02 - P 5.715E-01 1.97E+02 6.50E+00 G 763.30-1.342E-01 - 3.619E+00 7.74E+02 1.70E+00 G                                                                                                                                   |
| PA-234                  | 8.3656E-02   | 1.65E+12<br>98.44-2.301E-02 &(P 1.131E-01 3.30E+02 2.51E+01 G<br>946.00-3.431E-02 + 2.549E-01 2.12E+02 2.00E+01 G<br>131.28-5.657E-02 + 1.651E-01 9.38E+01 2.00E+01 G<br>94.67-6.787E-04 % P 4.050E-01 1.81E+04 1.55E+01 G<br>883.24 1.238E-01 ?( 4.699E-01 1.12E+02 1.20E+01 G                                                                                                                    |

ARS1-23-01973 Page 87 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 10:25:08 AM AAA Spectrum name: ARS03247.An1 Nuclide Ave activity Activity Code Peak MDA Comments Energy ( 3.673E-01 1.00E+02 1.10E+01 G 926.70 1.313E-01 569.26 9.474E-02 (P 3.146E-01 1.18E+02 1.04E+01 G 111.00-5.986E-02 + P 3.957E-01 3.79E+02 8.55E+00 G 733.00 1.769E-01 \*( 7.295E-01 1.22E+02 8.50E+00 G 949.00-4.200E-02 + P 7.006E-01 6.25E+02 7.80E+00 G 880.51-1.551E-01 + 9.040E-01 1.69E+02 6.50E+00 G 226.87-1.202E-01 + P 5.122E-01 1.92E+02 6.50E+00 G 831.10-3.356E-01 & 9.166E-01 9.93E+01 5.60E+00 G 808.10-2.165E-01 + 9.336E-01 1.54E+02 4.90E+00 G 99.70-8.945E-02 + P 6.832E-01 4.56E+02 4.70E+00 G 699.10-2.745E-02 % 9.879E-01 1.22E+03 4.60E+00 G 898.60 2.744E-01 ?(P 1.149E+00 1.51E+02 4.00E+00 G 1394.10-3.897E-01 + P 1.349E+00 1.11E+02 3.90E+00 G CS-137 1.2838E-02 1.10E+04 661.66 1.284E-02 ?( 4.538E-02 1.23E+02 8.52E+01 G CO-60 8.6448E-03 1.93E+03 1173.24 1.206E-02 ?( 5.341E-02 1.66E+02 9.99E+01 K 1332.50 5.236E-03 ?( 4.107E-02 2.80E+02 1.00E+02 EU-152 4.2052E-02 4.64E+03 40.12-5.830E-02 ?( 3.270E-01 1.68E+02 3.00E+01 G 121.78 0.000E+00 & 9.511E-02 1.00E+03 2.92E+01 G 344.30-5.191E-02 + 1.400E-01 8.96E+01 2.70E+01 G 1408.08 2.778E-02 ?( 2.071E-01 2.74E+02 2.12E+01 G 39.52-1.109E-01 + 6.418E-01 1.73E+02 1.60E+01 G 964.00-1.440E-01 + 5.816E-01 1.20E+02 1.46E+01 G 1112.07 1.472E-01 ( 3.678E-01 9.30E+01 1.36E+01 G 778.90-2.933E-02 & 2.904E-01 3.43E+02 1.30E+01 G 1085.80 1.406E-01 ?( 4.770E-01 1.25E+02 1.03E+01 G 9.119E-01 1.58E+02 9.00E+00 G 45.40-1.731E-01 + 244.67 1.564E-01 ?( 9.726E-01 1.86E+02 7.62E+00 G 1.557E+00 8.39E+01 4.18E+00 G 867.39-5.547E-01 +5.6502E-02 EU-154 3.10E+03 123.10-6.968E-03 ?( 7.614E-02 3.22E+02 4.05E+01 G 1274.80-2.191E-02 & 1.680E-01 2.85E+02 3.55E+01 G 723.30 7.695E-02 ( 2.640E-01 1.01E+02 1.97E+01 G 3.330E-01 8.01E+01 1.76E+01 G 1004.80-1.573E-01 + 43.00-1.251E-01 & 6.777E-01 1.62E+02 1.31E+01 G 873.20 4.294E-02 &( 6.032E-01 4.05E+02 1.13E+01 G 996.30-1.815E-02 % 5.096E-01 1.01E+03 1.07E+01 G 1.256E+00 1.65E+02 7.30E+00 G 42.31-2.279E-01 + 1.163E+00 3.58E+02 6.60E+00 G 248.04-9.675E-02 + 591.70-2.445E-02 % 8.047E-01 1.11E+03 4.60E+00 G 48.70 3.270E-01 ?( 1.764E+00 1.61E+02 4.20E+00 G 756.70 3.449E-01 ?( 1.028E+00 1.07E+02 4.10E+00 G

ARS1-23-01973 Page 88 of 311

- ( This peak used in the nuclide activity average.
- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

| 3.7 | 7 1 7         | _    | -    |   |
|-----|---------------|------|------|---|
| Nuc | $_{\perp 10}$ | le C | odes | : |

- T Thermal Neutron Activation
- F Fast Neutron Activation
- I Fission Product
- N Naturally Occurring Isotope
- P Photon Reaction
- C Charged Particle Reaction
- M No MDA Calculation
- R Coincidence Corrected
- H Halflife limit exceeded

#### Peak Codes:

- G Gamma Ray
- X X-Ray
- P Positron Decay
- S Single-Escape
  - D Double-Escape
- K Key Line
  - A Not in Average
  - C Coincidence Peak

| *****   | ***** D  | ISCARD     | E D I S O | TOPE      | PEAKS   | *****      | **** |
|---------|----------|------------|-----------|-----------|---------|------------|------|
| Nuclide | Centroid | Background | Net Area  | Intensity | Uncert  | Activity   |      |
|         | Energy   | Counts     | Counts    | Cts/Sec   | 2 Sigma | 96         |      |
|         | 10.01    |            |           |           |         | 0 070- 01  |      |
| EU-154  | 42.31    | 692.       | -23.      | -0.006    | 329.89  | -2.279E-01 |      |
| EU-154  | 43.00    | 670.       | -23.      | -0.006    | 324.27  | -1.251E-01 |      |
| PB-210  | 46.52    | 782.       | -30.      | -0.008    | 266.68  | -4.958E-01 | P    |
| EU-154  | 48.70    | 592.       | 22.       | 0.006     | 322.70  | 3.270E-01  |      |
| Am-241  | 59.54    | 519.       | 19.       | 0.005     | 335.11  | 2.785E-02  |      |
| PA-234  | 98.44    | 229.       | -15.      | -0.004    | 660.73  | -2.301E-02 | P    |
| PA-234  | 99.70    | 296.       | -11.      | -0.003    | 912.13  | -8.945E-02 | P    |
| PA-234  | 111.00   | 327.       | -13.      | -0.004    | 757.09  | -5.986E-02 | P    |
| EU-154  | 123.10   | 258.       | -7.       | -0.002    | 644.39  | -6.968E-03 |      |
| PA-234  | 131.28   | 286.       | -28.      | -0.008    | 187.51  | -5.657E-02 |      |
| PA-234  | 226.87   | 149.       | -14.      | -0.004    | 383.89  | -1.202E-01 | P    |
| EU-154  | 248.04   | 731.       | -11.      | -0.003    | 716.72  | -9.675E-02 |      |
| PA-234  | 569.26   | 34.        | 9.        | 0.002     | 236.50  | 9.474E-02  | P    |
| CS-137  | 661.66   | 39.        | 9.        | 0.002     | 245.55  | 1.284E-02  |      |
| EU-154  | 723.30   | 65.        | 12.       | 0.003     | 202.77  | 7.695E-02  |      |
| BI-212  | 727.17   | 79.        | 9.        | 0.003     | 284.63  | 1.014E-01  | P    |
| PA-234  | 733.00   | 92.        | 12.       | 0.003     | 243.27  | 1.769E-01  |      |
| EU-154  | 756.70   | 38.        | 11.       | 0.003     | 214.83  | 3.449E-01  |      |

ARS1-23-01973 Page 89 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 10:25:08 AM AAA Spectrum name: ARS03247.An1

| Nuclide | Channel | Energy Backgr | round Net | area ( | Cnts/sec | Uncert F   | MHW |
|---------|---------|---------------|-----------|--------|----------|------------|-----|
| BI-212  | 785.42  | 31.           | 27.       | 0.008  | 82.55    | 1.850E+00  | P   |
| PA-234  | 808.10  | 42.           | -8.       | -0.002 | 307.52   | -2.165E-01 |     |
| PA-234  | 831.10  | 51.           | -13.      | -0.004 | 198.66   | -3.356E-01 |     |
| EU-154  | 873.20  | 87.           | 3.        | 0.001  | 810.15   | 4.294E-02  |     |
| PA-234  | 880.51  | 63.           | -7.       | -0.002 | 338.43   | -1.551E-01 |     |
| PA-234  | 883.24  | 57.           | 10.       | 0.003  | 223.07   | 1.238E-01  |     |
| PA-234  | 898.60  | 36.           | 7.        | 0.002  | 301.56   | 2.744E-01  | P   |
| PA-234  | 926.70  | 26.           | 9.        | 0.003  | 200.45   | 1.313E-01  |     |
| PA-234  | 946.00  | 41.           | -4.       | -0.001 | 424.46   | -3.431E-02 |     |
| PA-234  | 949.00  | 48.           | -2.       | -0.001 | 1250.90  | -4.200E-02 | P   |
| EU-154  | 1004.80 | 51.           | -17.      | -0.005 | 160.15   | -1.573E-01 |     |
| CO-60   | 1173.24 | 32.           | 7.        | 0.002  | 331.95   | 1.206E-02  |     |
| EU-154  | 1274.80 | 36.           | -4.       | -0.001 | 570.09   | -2.191E-02 |     |
| CO-60   | 1332.50 | 14.           | 3.        | 0.001  | 560.01   | 5.236E-03  |     |
| PA-234  | 1394.10 | 23.           | -7.       | -0.002 | 221.96   | -3.897E-01 | P   |
| BI-212  | 1620.56 | 9.            | 4.        | 0.001  | 343.07   | 3.136E-01  | P   |

P - Peakbackground subtraction

\*\*\*\*\* SUMMARY OF NUCLIDES IN SAMPLE \*\*\*\*\*

Time of Count Uncertainty 2 Sigma

Juclide Activity Counting Total MDA

| Nuclide | <u> </u> | Activity pCi/g | Counting pCi/g | Total<br>pCi/g | MDA<br>pCi/g |  |
|---------|----------|----------------|----------------|----------------|--------------|--|
| U-235   | A        | 9.7422E-02     | 1.5146E-01     | 1.5161E-01     | 0.260E+00    |  |
| RA-226  | Α        | 8.6912E-01     | 7.0364E-01     | 7.0580E-01     | 0.113E+01    |  |
| Ra-228  |          | 3.8090E-01     | 1.3250E-01     | 1.3467E-01     | 0.132E+00    |  |
| Am-241  | #A       | 2.7848E-02     | 9.3321E-02     | 9.3338E-02     | 0.156E+00    |  |
| PB-210  | #A       | -4.9579E-01    | 1.3222E+00     | 1.3231E+00     | 0.223E+01    |  |
| U-238   | Α        | 4.6312E-01     | 5.6712E-01     | 5.6824E-01     | 0.847E+00    |  |
| K-40    |          | 8.1209E+00     | 8.6432E-01     | 1.0093E+00     | 0.470E+00    |  |
| PB-214  |          | 3.2313E-01     | 7.5105E-02     | 8.0131E-02     | 0.862E-01    |  |
| BI-214  |          | 3.3574E-01     | 8.0705E-02     | 8.3176E-02     | 0.825E-01    |  |
| BI-212  | #A       | 3.4794E-01     | 2.8723E-01     | 2.8808E-01     | 0.485E+00    |  |
| PB-212  | #        | 3.3666E-01     | 5.8979E-02     | 6.4271E-02     | 0.702E-01    |  |
| TL-208  |          | 1.2605E-01     | 3.5126E-02     | 3.6014E-02     | 0.385E-01    |  |
| PA-234  | #A       | 8.3656E-02     | 1.1933E-01     | 1.1949E-01     | 0.113E+00    |  |
| CS-137  | #A       | 1.2838E-02     | 3.1525E-02     | 3.1529E-02     | 0.454E-01    |  |
| CO-60   | #A       | 8.6448E-03     | 2.8139E-02     | 2.8141E-02     | 0.534E-01    |  |
| EU-152  | Α        | 4.2052E-02     | 6.7752E-02     | 6.7916E-02     | 0.327E+00    |  |
| EU-154  | #A       | 5.6502E-02     | 1.1457E-01     | 1.1463E-01     | 0.761E-01    |  |

<sup># -</sup> All peaks for activity calculation had bad shape.

ARS1-23-01973 Page 90 of 311

<sup>\* -</sup> Activity omitted from total

<sup>&</sup>amp; - Activity omitted from total and all peaks had bad shape.

# Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 113 of 384

| AAA                             | ORTEC g v -                                                       | 1 (3263) E:                                            | nv32 G800W064<br>Spectrum i | 9/29/2023<br>name: ARS032 |       | ∕M |
|---------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|-----------------------------|---------------------------|-------|----|
| A -<br>B -<br>C -<br>F -<br>H - | - Activity < 1<br>- Area < Crit<br>- Failed frac<br>- Halflife li | inted, but MDA and fa ical level tion or ke mit exceed | . y line test. ed SUMMA     | R Y                       |       |    |
| Tota.                           | Activity (                                                        | 2.8 to                                                 | 1997.0 keV)                 | 1.096E+01                 | pC1/g |    |
| Analy                           | zed by:                                                           | Countroo                                               | <br>m                       |                           |       |    |
| Revie                           | ewed by:                                                          | Supervis                                               | or                          |                           |       |    |

Laboratory: AAA

ARS1-23-01973 Page 91 of 311

4.5958E-002

-1.1330E+000

3.9992E-001

3.4404E-001

8.4033E-001

3.8691E-001

1.2875E-001

8.9099E-002

-8.1436E-001

1.3112E-001

4.1547E+000

5.7292E-002

7.2910E-002

4.8591E-001

9.0331E-002

3.1432E-002

1.7615E-001

2.9807E+000

2.3700E-001

6.8700E+000

4.6700E-002

8.1400E-002

6.3500E-001

9.0600E-002

2.8600E-002

3.6600E-001

4.9300E+000

Printed: 10/2/2023 8:02 AM

Page 1 of 1

1.1850E-001

3.4350E+000

2.3350E-002

4.0700E-002

3.1750E-001

4.5300E-002

1.4300E-002

1.8300E-001

2.4650E+000

ARS Aleut Analytical, LLC Port Allen Laboratory

Pa-234

Pb-210

Pb-212

Pb-214

Ra-226

Ra-228

TI-208

U-235

U-238

ARS1-B23-01775-06 **Batch Sample ID Analytical Batch** ARS1-B23-01775 **Analysis Date** 9/29/2023 10:28 **Analysis Code** GAM-IG21-SO SDG ARS1-23-01973 Detector **ARS06 MCB 133** Fraction 003 Count Time (sec) 3600 Run 1 Ortec Gamma Library ITSI COUNT.Lib Geometry 2275-19-5 250mL tc poly Isotope Activity Units MDA DL Am-241 -9.2733E-002 pCi/g 3.3107E-001 5.4800E-001 2.7400E-001 Bi-212 3.0915E-001 pCi/g 2.9876E-001 4.9200E-001 2.4600E-001 Bi-214 3.0123E-001 pCi/g 7.5406E-002 7.5500E-002 3.7750E-002 Co-60 0.0000E + 0002.7197E-002 5.3200E-002 2.6600E-002 pCi/g Cs-137 9.0870E-003 pCi/g 3.3748E-002 4.5600E-002 2.2800E-002 -1.1228E-001 Eu-152 pCi/g 3.0247E-001 1.1200E+000 5.6000E-001 Eu-154 3.8903E-002 pCi/g 8.0417E-002 7.4700E-002 3.7350E-002 K-40 9.5351E+000pCi/g 1.0310E+000 2.2400E-001 1.1200E-001

pCi/g

pCi/q

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

ARS1-23-01973 Page 92 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 11:28:33 AM
                               Spectrum name: ARS06052.An1
AAA
Sample description
    Batch ID: 23-01775-06
    SDG ID: ARS1-23-01973-003 Tech: SDW
Spectrum Filename: C:\User\ARS06052.An1
Acquisition information
      Start time:
                                  9/29/2023 10:28:23 AM
      Live time:
                              3600
                              3603
      Real time:
      Dead time:
                                  0.10 %
      Detector ID:
                                     21
Detector system
    ARS06 MCB 133
Calibration
                                  2275-19-5 250mL tc poly cal 12-8-21.Clb
      Filename:
    2275-19-5 250mL tc poly
    12-8-21 EEC
      Energy Calibration
           Created:
                                  12/8/2021 10:48:48 AM
           Zero offset:
                                 0.100 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -3.095E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 12/8/2021 11:58:07 AM
           Type:
                                Polynomial
           Uncertainty:
                                 1.254 %
           Coefficients:
                                -0.502841 -4.041766
                                                       0.314910
                                 Library Files
      Main analysis library:
                                 ITSI COUNT.Lib
      Library Match Width:
                                 0.500
      Peak stripping:
                                 Library based
Analysis parameters
      Analysis engine:
                                 Env32
                                         G800W064
                                10 (
      Start channel:
                                         2.60keV )
      Stop channel:
                               8000 ( 1998.39keV )
      Peak rejection level:
                              1000.000%
      Peak search sensitivity:
                                 1
      Sample Size:
                                  3.9554E+02 +/- 0.000E+00%
                                 1.0000E+06/(1.0000E+00*3.9554E+02) =
      Activity scaling factor:
                                  2.5282E+03
      Detection limit method:
                                 Req. Guide 4.16 Method
      Random error:
                                 1.000000E+00
      Systematic error:
                                 1.000000E+00
      Fraction Limit:
                                0.000%
      Background width:
                                  5
      Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 93 of 311

# Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 116 of 384

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 11:28:33 AM AAA Spectrum name: ARS06052.An1

> 2.000 Activity range factor: Min. step backg. energy 0.000 Multiplet shift channel 2.000

Corrections Comments Status

> Decay correct to date: NO Decay during acquisition: YES Decay during collection: True coincidence correction: NO Peaked background correction: YES

ITSI.Pbc

9/21/2023 8:04:04 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1452

| ***** S U<br>Peak<br>Energy | J M M A I<br>Area | R Y O<br>Uncert | F P E<br>FWHM | A K S I<br>Corrctn<br>Factor |        | 0 11   | Act.                                  | Nuc   |
|-----------------------------|-------------------|-----------------|---------------|------------------------------|--------|--------|---------------------------------------|-------|
| 11.92                       | 762.              | 4.97            | 0.95          | 1.349E-03                    |        |        |                                       |       |
| 15.28                       | 234.              | 18.47           | 0.95          | 4.032E-03                    |        |        |                                       |       |
| 22.10                       | 28.               | 148.87          | 0.96          | 9.362E-03                    |        |        |                                       |       |
| 27.65                       | 25.               | 183.82          | 0.97          | 1.378E-02                    |        |        |                                       |       |
| 31.33                       | 16.               | 232.97          | 0.97          | 1.672E-02                    |        |        |                                       |       |
| 39.35                       | 24.               | 111.06          | 0.98          | 2.312E-02                    | 39.52  | 16.000 | 1.224E-01                             | EU152 |
|                             |                   |                 |               |                              | 40.12  | 30.000 | 6.399E-02                             | EU152 |
| 53.11                       | 87.               |                 | 1.00          | 3.447E-02                    |        |        |                                       |       |
| 55.08                       | 104.              | 34.46           | 1.00          | 3.614E-02                    |        |        |                                       |       |
| 57.62                       | 170.              | 21.19           | 1.00          | 3.819E-02                    |        |        |                                       |       |
| 59.99                       | 146.              | 24.17           | 1.00          | 4.003E-02                    | 59.54  | 35.900 | 1.940E-01                             | Am241 |
| 68.55                       | 37.               | 64.11           | 0.92          | 4.574E-02                    |        |        |                                       |       |
| 74.97                       | 64.               | 43.89           | 1.02          | 4.900E-02                    |        |        |                                       |       |
| 77.19                       | 248.              | 12.57           | 1.02          | 4.993E-02                    |        |        |                                       |       |
| 86.90                       | 47.               |                 | 0.94          | 5.293E-02                    |        |        |                                       |       |
| 99.70                       |                   | 142.61          | 1.05          | 5.465E-02                    | 99.70  | 4.700  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 103.79                      |                   | 41.62           | 1.29          | 5.480E-02                    |        |        |                                       |       |
| 121.81                      |                   | 85.13           | 1.63          | 5.399E-02                    | 121.78 | 29.240 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 129.35                      |                   | 137.70          | 0.25          | 5.319E-02                    |        |        |                                       |       |
| 143.76                      |                   | 305.15          | 1.10          | 5.129E-02                    | 143.76 | 10.500 | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 148.86                      |                   | 117.71          | 0.11          | 5.055E-02                    |        |        |                                       |       |
| 163.35                      |                   | 98.79           | 1.12          | 4.839E-02                    | 163.35 | 4.700  | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 168.58                      |                   | 86.60           | 0.55          | 4.761E-02                    |        |        |                                       |       |
| 186.09                      | 73.               | 28.77           | 1.46          | 4.507E-02                    | 186.21 | 3.640  | 8.403E-01                             | RA226 |
| 192.91                      |                   | 156.40          | 1.16          | 4.412E-02                    |        |        |                                       |       |
| 193.54                      |                   | 168.44          | 1.16          | 4.403E-02                    |        |        |                                       |       |
| 227.50                      | 17.               | 62.69           | 1.20          | 3.975E-02                    | 226.87 | 6.500  | 1.254E-01                             | PA234 |

ARS1-23-01973 Page 94 of 311

| pk energy          | area       | uncert         | fwhm      | corr                   | nuclide            | brnch.           | act.                                          | nuc       |
|--------------------|------------|----------------|-----------|------------------------|--------------------|------------------|-----------------------------------------------|-----------|
| 230.46             | 26.        | 51.36          | 1.20      | 3.942E-02              | nacriae            | DITICIT.         | act.                                          | nuc       |
| 238.50             | 352.       | 6.26           | 1.21      | 3.855E-02              | 238.63             | 43.100           | 4.023E-01                                     | PB212     |
| 241.78             | 71.        | 22.12          | 1.21      | 3.820E-02              | 241.98             | 7.500            | 4.709E-01                                     |           |
| 247.07             | 22.        | 52.09          | 1.22      | 3.765E-02              | 248.04             | 6.600            | 1.713E-01                                     |           |
| 277.36             |            | 371.59         | 1.25      | 3.480E-02              | 277.36             | 6.500            | PBC <mda< td=""><td></td></mda<>              |           |
| 295.15             | 125.       | 15.49          | 1.32      | 3.335E-02              | 295.21             | 18.500           | 3.849E-01                                     |           |
| 299.94             | 21.        | 119.92         | 1.28      | 3.297E-02              | 300.09             | 3.270            | PBC <mda< td=""><td></td></mda<>              |           |
| 323.22             | 7.         | 92.80          | 0.36      | 3.132E-02              |                    |                  |                                               |           |
| 337.89             | 73.        | 21.27          | 1.01      | 3.037E-02              | 338.40             | 12.010           | 3.803E-01                                     | Ra228     |
| 344.30             | 6.         |                | 1.33      | 2.998E-02              | 344.30             | 27.000           | PBC <mda< td=""><td></td></mda<>              |           |
| 351.73             | 174.       | 12.62          | 1.40      | 2.954E-02              | 351.92             | 35.800           | 3.130E-01                                     |           |
| 510.92             | 193.       | 12.80          | 2.30      | 2.284E-02              | 510.72             | 22.500           | 7.140E-01                                     |           |
| 583.33             | 122.       | 11.80          | 1.39      | 2.086E-02              | 583.14             | 86.000           | 1.287E-01                                     | TL208     |
| 591.70             | 1.         | 815.54         | 1.59      | 2.065E-02              | 591.70             | 4.600            | PBC <mda< td=""><td>EU154</td></mda<>         | EU154     |
| 609.55             | 152.       | 11.55          | 1.63      | 2.024E-02              | 609.31             | 44.791           | 3.182E-01                                     |           |
| 661.66             | 8.         | 185.68         | 1.66      | 1.912E-02              | 661.66             | 85.210           | PBC <mda< td=""><td>CS137</td></mda<>         | CS137     |
| 693.50             | 7.         | 68.51          | 0.75      | 1.850E-02              |                    |                  |                                               |           |
| 725.41             | 4.         | 105.82         | 0.35      | 1.793E-02              |                    |                  |                                               |           |
| 727.17             | 19.        | 88.08          | 1.72      | 1.790E-02              | 727.17             | 11.800           | PBC <mda< td=""><td>BI212</td></mda<>         | BI212     |
| 733.00             | 7.         | 237.46         | 1.73      | 1.780E-02              | 733.00             | 8.500            | PBC <mda< td=""><td>PA234</td></mda<>         | PA234     |
| 756.70             | 16.        |                | 1.75      | 1.740E-02              | 756.70             | 4.100            | PBC <mda< td=""><td></td></mda<>              |           |
| 763.30             | 7.         | 266.00         | 1.76      | 1.730E-02              | 763.30             | 1.700            | PBC <mda< td=""><td>TL208</td></mda<>         | TL208     |
| 768.36             |            | 670.46         | 1.76      | 1.722E-02              | 768.36             | 4.799            | PBC <mda< td=""><td>BI214</td></mda<>         | BI214     |
| 783.89             | 16.        | 86.51          | 1.78      | 1.695E-02              | 785.42             | 2.000            | PBC <mda< td=""><td></td></mda<>              |           |
| 808.10             | 6.         |                | 1.80      | 1.661E-02              | 808.10             | 4.900            | PBC <mda< td=""><td></td></mda<>              |           |
| 861.46             | 11.        | 44.50          | 0.60      | 1.586E-02              | 860.47             | 12.000           | 1.067E-01                                     | TL208     |
| 889.55             | 6.         | 56.24          | 0.44      | 1.549E-02              |                    |                  |                                               |           |
| 911.24             | 98.        | 13.02          | 1.43      | 1.521E-02              | 911.07             | 29.000           | 4.194E-01                                     |           |
| 946.00             | 5.         |                | 1.93      | 1.479E-02              | 946.00             | 20.000           | PBC <mda< td=""><td></td></mda<>              |           |
| 968.68             | 69.        | 20.24          | 1.93      | 1.453E-02              | 968.90             | 17.460           | 5.163E-01                                     |           |
| 996.30             |            | 117.33         | 1.98      | 1.422E-02              | 996.30             | 10.700           | PBC <mda< td=""><td></td></mda<>              |           |
| 1004.80            | 3.         | 406.17         | 1.99      | 1.413E-02              | 1004.80            | 17.600           | PBC <mda< td=""><td></td></mda<>              |           |
| 1085.41            | 5.         | 188.69         | 2.06      | 1.330E-02              | 1085.80            | 10.290           | PBC <mda< td=""><td></td></mda<>              |           |
| 1120.29            | 22.        | 80.71          | 2.09      | 1.297E-02              | 1120.29            | 14.797           | PBC <mda< td=""><td>BI214</td></mda<>         | BI214     |
| 1123.38            |            | 147.55         | 0.00      | 1.295E-02              | 1200 60            | 2 010            |                                               | D T O 1 4 |
| 1377.60            |            | 135.15         | 2.30      | 1.089E-02              | 1377.67            | 3.919            | PBC <mda< td=""><td></td></mda<>              |           |
| 1408.08            | 5.<br>555. | 190.89<br>4.35 | 2.33 2.25 | 1.068E-02              | 1408.08            | 21.210<br>10.700 | PBC <mda< td=""><td></td></mda<>              |           |
| 1460.99<br>1620.56 | 555.       | 4.35<br>75.37  | 2.25      | 1.033E-02<br>9.350E-03 | 1460.75<br>1620.56 | 2.750            | 9.535E+00<br>PBC <mda< td=""><td></td></mda<> |           |
| 1670.78            | 7.<br>6.   | 40.82          | 0.87      | 9.350E-03<br>9.069E-03 | 1020.30            | 4./50            | PDC <ivida< td=""><td>סדקדק</td></ivida<>     | סדקדק     |
| 1729.50            | 15.        | 25.82          | 0.87      | 8.755E-03              |                    |                  |                                               |           |
| 1764.91            | 37.        | 16.44          | 1.00      | 8.572E-03              | 1764.49            | 15.357           | 4.519E-01                                     | BT214     |
| 1 / UT • J1        | 5/.        | 10.44          | 1.00      | 0.3/25-03              | 1/04.43            | 10.00/           | 4.313E-01                                     | DT714     |

ARS1-23-01973 Page 95 of 311

| *******<br>Peak Ce | 0 11 1  | D E N T I<br>Background N |      | P E A K<br>fficiency | S U M I   |       | ****<br>Suspe | *******<br>cted |
|--------------------|---------|---------------------------|------|----------------------|-----------|-------|---------------|-----------------|
| Channel            | Energy  | Counts                    |      | _                    | 2 Sigma % | keV   | Nucl          |                 |
| 47.27              | 12.06   | 336.                      | 762. | 5.649E+05            | 9.94      | 0.947 | _             | sD              |
| 60.72              | 15.42   | 819.                      | 234. | 5.811E+04            | 36.94     | 0.951 | _             | sD              |
| 88.00              | 22.10   | 874.                      | 28.  | 3.024E+03            | 297.74    | 0.959 | _             | sc              |
| 110.17             | 27.65   | 1038.                     | 25.  | 1.809E+03            | 367.65    | 0.965 | -             | sc              |
| 124.90             | 31.33   | 715.                      | 16.  | 9.765E+02            | 465.93    | 0.970 | -             | sc              |
| 156.92             | 39.35   | 429.                      | 75.  | 3.240E+03            | 81.55     | 0.979 | -             | sD              |
| 212.63             | 53.11   | 552.                      | 88.  | 2.541E+03            | 78.83     | 0.996 | _             | sD              |
| 220.53             | 55.09   | 579.                      | 102. | 2.826E+03            | 69.53     | 0.998 | _             | sD              |
| 230.67             | 57.62   | 597.                      | 158. | 4.146E+03            | 46.44     | 1.001 | _             | sD              |
| 273.78             | 68.55   | 292.                      | 37.  | 8.089E+02            | 128.21    | 0.918 | _             | sc              |
| 299.44             | 74.93   | 367.                      | 64.  | 1.313E+03            | 87.79     | 1.021 | _             | sD              |
| 308.33             | 77.15   | 360.                      | 248. | 4.957E+03            | 25.13     | 1.024 | -             | sD              |
| 347.18             | 86.90   | 240.                      | 47.  | 8.917E+02            | 99.44     | 0.943 | -             | s               |
| 414.71             | 103.79  | 189.                      | 56.  | 1.026E+03            | 83.24     | 1.292 | -             | s               |
| 516.96             | 129.35  | 81.                       | 9.   | 1.655E+02            | 275.40    | 0.248 | _             | sc              |
| 595.00             | 148.86  | 38.                       | 7.   | 1.306E+02            | 235.43    | 0.113 | _             | sc              |
| 673.89             | 168.58  | 86.                       | 17.  | 3.486E+02            | 173.21    | 0.549 | -             | sc              |
| 771.22             | 192.91  | 96.                       | 9.   | 2.058E+02            | 312.81    | 1.157 | -             | sc              |
| 773.73             | 193.54  | 112.                      | 9.   | 2.061E+02            | 336.88    | 1.158 | _             | sc              |
| 909.30             | 227.59  | 47.                       | 16.  | 4.127E+02            | 127.61    | 1.196 | _             | sD              |
| 921.14             | 230.55  | 77.                       | 27.  | 6.850E+02            | 99.41     | 1.200 | -             | sD              |
| 987.30             | 247.06  | 67.                       | 21.  | 5.697E+02            | 116.15    | 1.218 | -             | sD              |
| 1292.51            | 323.22  | 21.                       | 7.   | 2.299E+02            | 185.59    | 0.359 | -             | sc              |
| 2774.19            | 693.62  | 8.                        | 7.   | 3.783E+02            | 137.02    | 0.748 | -             | s               |
| 2901.88            | 725.41  | 38.                       | 3.   | 1.936E+02            | 511.60    | 1.722 | _             | sc              |
| 3558.89            | 889.55  | 2.                        | 6.   | 3.616E+02            | 112.49    | 0.437 | -             | s               |
| 4495.00            | 1123.38 | 55.                       | 5.   | 3.989E+02            | 414.95    | 2.092 | -             | sc              |
| 6687.33            | 1670.78 | 0.                        |      | 6.616E+02            | 81.65     | 0.874 | -             | s               |
| 6922.57            | 1729.50 | 0.                        | 15.  | 1.713E+03            | 51.64     | 0.312 | -             | s               |

s - Peak fails shape tests.

\_\_\_\_\_

This section based on library: ITSI COUNT.Lib

ARS1-23-01973 Page 96 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

| Nuclide | Peak<br>Channel |        | Background<br>Counts | Net Area<br>Counts | Intensit<br>Cts/Sec | 2 Sigma 8 | FWHM<br>keV |
|---------|-----------------|--------|----------------------|--------------------|---------------------|-----------|-------------|
| EU-152  | 157.66          | 39.52  | 8099.                | -66.               | -0.018              | 385.54    | 0.980       |
| EU-152  | 160.06          | 40.12  | 8038.                | -66.               | -0.018              | 383.88    | 0.980s      |
| EU-154  | 168.82          | 42.31  | 7972.                | -66.               | -0.018              | 381.27    | 0.983s      |
| EU-154  | 171.58          | 43.00  | 7906.                | -66.               | -0.018              | 379.35    | 0.984s      |
| EU-152  | 181.18          | 45.40  | 7837.                | -67.               | -0.019              | 376.67    | 0.986s      |
| PB-210  | 185.66          | 46.52  | 7858.                | -69.               | -0.019              | 366.58    | 0.988s      |
| EU-154  | 194.38          | 48.70  | 7789.                | -69.               | -0.019              | 364.12    | 0.990s      |
| Am-241  | 237.73          | 59.54  | 7682.                | -70.               | -0.019              | 356.96    | 1.003       |
| U-238   | 252.73          | 63.29  | 8392.                | -71.               | -0.020              | 365.93    | 1.008s      |
| U-238   | 369.09          | 92.38  | 1318.                | -36.               | -0.010              | 286.10    | 1.041s      |
| U-238   | 370.77          | 92.80  | 1282.                | -36.               | -0.010              | 282.05    | 1.042s      |
| PA-234  | 378.24          | 94.67  | 1278.                | -32.               | -0.009              | 322.79    | 1.044s      |
| PA-234  | 398.36          | 99.70  | 559.                 | 24.                | 0.007               | 285.21    | 1.050       |
| EU-152  | 486.81          | 121.81 | 124.                 | 20.                | 0.006               | 170.26    | 1.626s      |
| EU-154  | 491.96          | 123.10 | 318.                 | -10.               | -0.003              | 483.94    | 1.077s      |
| PA-234  | 524.68          | 131.28 | 427.                 | -34.               | -0.009              | 175.34    | 1.087s      |
| U-235   | 574.60          | 143.76 | 470.                 | 10.                | 0.003               | 610.31    | 1.101s      |
| U-235   | 652.96          | 163.35 | 234.                 | 25.                | 0.007               | 197.59    | 1.123s      |
| RA-226  | 743.92          | 186.09 | 125.                 | 73.                | 0.020               | 57.54     | 1.460s      |
| U-235   | 820.81          | 205.31 | 210.                 | -12.               | -0.003              | 401.04    | 1.171s      |
| PA-234  | 907.06          | 226.87 | 291.                 | -25.               | -0.007              | 199.25    | 1.196s      |
| PB-212  | 954.10          | 238.63 | 67.                  | 352.               | 0.098               | 12.53     | 1.209D      |
| PB-214  | 967.51          | 241.98 | 92.                  | 70.                | 0.019               | 45.73     | 1.212D      |
| EU-152  | 978.26          | 244.67 | 861.                 | -25.               | -0.007              | 335.24    | 1.216s      |
| EU-154  | 991.75          | 248.04 | 809.                 | -24.               | -0.007              | 332.71    | 1.219s      |
| TL-208  | 1109.04         | 277.36 | 126.                 | 5.                 | 0.001               | 743.18    | 1.252       |
| PB-214  | 1180.46         | 295.21 | 58.                  | 116.               | 0.032               | 26.33     | 1.272D      |
| PB-212  | 1199.97         | 300.09 | 304.                 | 21.                | 0.006               | 239.85    | 1.277s      |
| Ra-228  | 1351.19         | 337.89 | 56.                  | 73.                | 0.020               | 42.53     | 1.007       |
| EU-152  | 1376.85         | 344.30 | 102.                 | 6.                 | 0.002               | 579.08    | 1.326       |
| PB-214  | 1406.58         | 351.73 | 84.                  | 174.               | 0.048               | 25.24     | 1.402       |
| TL-208  | 2042.72         | 510.72 | 106.                 | 149.               | 0.041               | 33.52     | 2.754       |
| TL-208  | 2333.26         | 583.33 | 27.                  | 122.               | 0.034               | 23.61     | 1.387       |
| EU-154  | 2366.77         | 591.70 | 42.                  | 1.                 | 0.000               | 1631.07   | 1.588s      |
| BI-214  | 2437.25         | 609.31 | 51.                  | 143.               | 0.040               | 24.32     | 1.606       |
| CS-137  | 2646.75         | 661.66 | 61.                  | 8.                 | 0.002               | 371.36    | 1.659s      |
| PA-234  | 2796.59         | 699.10 | 82.                  | -3.                | -0.001              | 861.52    | 1.696s      |
| EU-154  | 2893.44         | 723.30 | 147.                 | -10.               | -0.003              | 358.63    | 1.720s      |
| BI-212  | 2908.93         | 727.17 | 125.                 | 19.                | 0.005               | 176.16    | 1.724s      |
| PA-234  | 2932.26         | 733.00 | 129.                 | 7.                 | 0.002               | 474.92    | 1.730s      |
| EU-154  | 3027.12         | 756.70 | 135.                 | 16.                | 0.005               | 206.60    | 1.753s      |
| TL-208  | 3053.54         | 763.30 | 150.                 | 7.                 | 0.002               | 532.00    | 1.760s      |
| BI-214  | 3073.77         | 768.36 | 144.                 | 3.                 | 0.001               | 1340.92   | 1.764       |
| EU-152  | 3115.98         | 778.90 | 103.                 | -21.               | -0.006              | 144.26    | 1.775s      |

ARS1-23-01973 Page 97 of 311

| Nuclide | Channel | Energy  | Background | Net area     | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|--------------|----------|---------|--------|
| BI-212  | 3142.07 | 785.42  | 87.        | net area 16. | 0.004    | 173.03  | 1.781s |
| PA-234  | 3232.85 | 808.10  | 47.        | 6.           | 0.004    | 420.59  | 1.803s |
| PA-234  | 3324.91 | 831.10  | 54.        | -5.          | -0.001   | 557.14  | 1.825s |
| TL-208  | 3442.48 | 860.47  | 265.       | -21.         | -0.006   | 221.72  | 1.853s |
| EU-152  | 3470.18 | 867.39  | 273.       | -21.         | -0.006   | 224.07  | 1.859s |
| EU-152  | 3493.43 | 873.20  | 294.       | -21.         | -0.006   | 231.65  | 1.865s |
| PA-234  | 3522.70 | 880.51  | 316.       | -21.         | -0.003   | 451.00  | 1.872s |
| PA-234  | 3533.62 | 883.24  | 327.       | 0.           | 0.000    | 2000.00 | 1.874s |
| PA-234  | 3595.11 | 898.60  | 43.        | -3.          | -0.001   | 776.61  | 1.889  |
| Ra-228  | 3645.71 | 911.24  | 16.        | 98.          | 0.001    | 26.03   | 1.435s |
| PA-234  | 3707.60 | 926.70  | 93.        | -20.         | -0.006   | 143.88  | 1.433s |
| BI-214  | 3737.06 | 934.06  | 130.       | -13.         | -0.003   | 264.36  | 1.922s |
| PA-234  | 3784.86 | 946.00  | 49.        | 5.           | 0.003    | 405.96  | 1.933s |
| PA-234  | 3796.87 | 949.00  | 77.        | -20.         | -0.006   | 131.91  | 1.936s |
| EU-152  | 3856.92 | 964.00  | 124.       | -2.          | -0.001   | 1576.45 | 1.949  |
| Ra-228  | 3859.32 | 964.60  | 106.       | 0.           | 0.000    | 1833.03 | 1.950D |
| Ra-228  | 3876.53 | 968.90  | 30.        | 45.          | 0.013    | 45.41   | 1.954D |
| EU-154  | 3986.22 | 996.30  | 23.        | 8.           | 0.002    | 234.65  | 1.979s |
| EU-154  | 4020.25 | 1004.80 | 34.        | 3.           | 0.001    | 812.34  | 1.987s |
| EU-152  | 4344.54 | 1085.80 | 27.        | 5.           | 0.001    | 377.38  | 2.059s |
| EU-152  | 4449.72 | 1112.07 | 161.       | -22.         | -0.006   | 170.54  | 2.082s |
| BI-214  | 4482.62 | 1120.29 | 144.       | 22.          | 0.006    | 161.42  | 2.089  |
| CO-60   | 4694.64 | 1173.24 | 48.        | 0.           | 0.000    | 2000.00 | 2.135s |
| BI-214  | 4954.40 | 1238.11 | 84.        | -14.         | -0.004   | 264.03  | 2.190  |
| EU-154  | 5101.33 | 1274.80 | 52.        | -13.         | -0.004   | 226.00  | 2.221s |
| CO-60   | 5332.40 | 1332.50 | 24.        | 0.           | 0.000    | 2000.00 | 2.268s |
| BI-214  | 5513.29 | 1377.67 | 25.        | 8.           | 0.002    | 270.29  | 2.305s |
| PA-234  | 5579.09 | 1394.10 | 21.        | -1.          | 0.000    | 1866.55 | 2.318s |
| EU-152  | 5635.08 | 1408.08 | 21.        | 5.           | 0.001    | 381.79  | 2.329  |
| K-40    | 5847.00 | 1460.99 | 5.         | 555.         | 0.154    | 8.71    | 2.252  |
| BI-212  | 6486.16 | 1620.56 | 4.         | 7.           | 0.002    | 150.74  | 2.491s |
| BI-214  | 7062.79 | 1764.49 | 19.        | 21.          | 0.006    | 94.86   | 2.594s |

s - Peak fails shape tests.

A Derived peak area.

| - Nuclide - | Average<br>Activity | Energy | Peak Activity (                            | PEAK U      | -<br>-                                                            |
|-------------|---------------------|--------|--------------------------------------------|-------------|-------------------------------------------------------------------|
|             | pCi/g<br>8.9099E-02 | keV    | pCi/g                                      | pCi/g<br>   | COMMENTS<br>                                                      |
|             |                     | 205.31 | 3.560E-02 (<br>-1.141E-01 -<br>2.086E-01 ( | + 6.680E-01 | 3.05E+02 1.05E+01 G<br>2.01E+02 4.70E+00 G<br>9.88E+01 4.70E+00 G |

ARS1-23-01973 Page 98 of 311

D - Peak area deconvoluted.

| Nuclide | Ave activity  | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                  |
|---------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RA-226  | 8.4033E-01    | 5.84E+05<br>186.21 8.403E-01 *( 6.354E-01 2.88E+01 3.64E+00 G K                                                                                                                                                                                                                                                                                                         |
| Ra-228  | 3.8691E-01    | 2.10E+03<br>911.07 4.194E-01 ( 9.058E-02 1.30E+01 2.90E+01 G                                                                                                                                                                                                                                                                                                            |
|         |               | 968.90 3.375E-01 ( 2.109E-01 2.27E+01 1.75E+01 G<br>338.40 3.803E-01 ( 1.958E-01 2.13E+01 1.20E+01 G<br>964.60 0.000E+00 } 1.209E+00 9.17E+02 5.45E+00 G                                                                                                                                                                                                                |
| Am-241  | T -9.2733E-02 | 1.58E+05<br>59.54-9.273E-02 ?( 5.478E-01 1.78E+02 3.59E+01 G K                                                                                                                                                                                                                                                                                                          |
| PB-210  | -1.1330E+00   | 7.45E+03<br>46.52-1.133E+00 ?( 6.873E+00 1.83E+02 4.00E+00 G                                                                                                                                                                                                                                                                                                            |
| U-238   | -8.1436E-01   | 1.63E+12<br>63.29-8.144E-01 ?( 4.931E+00 1.83E+02 3.90E+00 G<br>92.80-4.237E-01 + 1.987E+00 1.41E+02 3.00E+00 G<br>92.38-4.948E-01 & 2.354E+00 1.43E+02 2.57E+00 G                                                                                                                                                                                                      |
| K-40    | 9.5351E+00    | 4.68E+11<br>1460.75 9.535E+00 ( 2.237E-01 4.35E+00 1.07E+01 G                                                                                                                                                                                                                                                                                                           |
| PB-214  | 3.4404E-01    | 5.84E+05<br>351.92 3.130E-01 ( 8.142E-02 1.26E+01 3.58E+01 G<br>295.21 3.562E-01 ( 1.178E-01 1.32E+01 1.85E+01 G<br>241.98 4.624E-01 ( 3.147E-01 2.29E+01 7.50E+00 G                                                                                                                                                                                                    |
| BI-214  | 3.0123E-01    | 5.84E+05 609.31 2.990E-01 ?( 7.548E-02 1.22E+01 4.48E+01 G 1764.49 2.962E-01 ?(P 3.353E-01 4.74E+01 1.54E+01 G 1120.29 2.157E-01 - 5.798E-01 8.07E+01 1.48E+01 G 1238.11-3.795E-01 - 1.231E+00 1.32E+02 5.86E+00 G 768.36 5.850E-02 & 1.349E+00 6.70E+02 4.80E+00 G 1377.67 3.468E-01 ?( 1.161E+00 1.35E+02 3.92E+00 G 934.06-5.249E-01 - 2.347E+00 1.32E+02 3.03E+00 G |
| BI-212  | 3.0915E-01    | 2.10E+03<br>727.17 1.670E-01 &( 4.919E-01 8.81E+01 1.18E+01 G<br>1620.56 4.959E-01 ?( 9.216E-01 7.54E+01 2.75E+00 G<br>785.42 8.912E-01 &( 2.583E+00 8.65E+01 2.00E+00 G                                                                                                                                                                                                |
| PB-212  | 3.9992E-01    | 2.10E+03<br>238.63 4.023E-01 ( 4.670E-02 6.26E+00 4.31E+01 G<br>300.09 3.685E-01 ?( 1.479E+00 1.20E+02 3.27E+00 G                                                                                                                                                                                                                                                       |

ARS1-23-01973 Page 99 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 11:28:33 AM AAA Spectrum name: ARS06052.An1 Nuclide Ave activity Energy Activity Code Peak MDA Comments TL-208 1.2875E-01 2.10E+03 583.14 1.287E-01 ( 2.862E-02 1.18E+01 8.60E+01 G 510.72 5.508E-01 + 1.870E-01 1.68E+01 2.25E+01 G 860.47-2.111E-01 -7.833E-01 1.11E+02 1.20E+01 G 277.36 4.195E-02 -4.616E-01 3.72E+02 6.50E+00 G 763.30 4.255E-01 & 3.864E+00 2.66E+02 1.70E+00 G PA-234 4.5958E-02 1.65E+12 98.44-5.286E-09 %( 2.374E-01 1.34E+09 2.51E+01 G 946.00 3.208E-02 ?( 2.266E-01 2.03E+02 2.00E+01 G 131.28-6.093E-02 + 1.775E-01 8.77E+01 2.00E+01 G 94.67-7.117E-02 & 3.823E-01 1.61E+02 1.55E+01 G 883.24 0.000E+00 & 8.834E-01 1.00E+03 1.20E+01 G 5.484E-01 7.19E+01 1.10E+01 G 926.70-2.296E-01 + 569.26 1.721E-03 & 3.360E-01 6.87E+03 1.04E+01 G 111.00 6.492E-03 % 3.505E-01 1.78E+03 8.55E+00 G 733.00 8.603E-02 ?( 6.984E-01 2.37E+02 8.50E+00 G 949.00-3.298E-01 + 7.189E-01 6.60E+01 7.80E+00 G 880.51-2.103E-01 + 1.600E+00 2.26E+02 6.50E+00 G 226.87-1.813E-01 + 6.028E-01 9.96E+01 6.50E+00 G 831.10-1.041E-01 + 7.696E-01 2.79E+02 5.60E+00 G 808.10 1.446E-01 ?( 8.068E-01 2.10E+02 4.90E+00 G 99.70 1.751E-01 ( 8.345E-01 1.43E+02 4.70E+00 G 1.007E+00 4.31E+02 4.60E+00 G 699.10-6.727E-02 + 898.60-9.879E-02 + 1.029E+00 3.88E+02 4.00E+00 G

CS-137 9.0870E-03 1.10E+04 661.66 9.087E-03 ( 4.563E-02 1.86E+02 8.52E+01 G EU-152 -1.1228E-01 4.64E+03 1.121E+00 1.92E+02 3.00E+01 G 40.12-1.765E-01 &(

1394.10-4.516E-02 +

6.552E-02 8.51E+01 2.92E+01 G 121.78 2.465E-02 + 344.30 1.407E-02 + 1.167E-01 2.90E+02 2.70E+01 G 2.016E-01 1.91E+02 2.12E+01 G 1408.08 4.190E-02 + 2.153E+00 1.93E+02 1.60E+01 G 39.52-3.375E-01 +964.00-1.791E-02 } 4.874E-01 7.88E+02 1.46E+01 G 1112.07-2.328E-01 & 6.621E-01 8.53E+01 1.36E+01 G 4.277E-01 7.21E+01 1.30E+01 G 778.90-1.786E-01 & 1085.80 7.488E-02 ?( 3.708E-01 1.89E+02 1.03E+01 G 45.40-5.028E-01 + 3.134E+00 1.88E+02 9.00E+00 G 9.170E-01 1.68E+02 7.62E+00 G 244.67-1.640E-01 + 2.296E+00 1.12E+02 4.18E+00 G 867.39-6.125E-01 +

1.087E+00 9.33E+02 3.90E+00 G

1.666E-01 1.13E+02 3.55E+01 G

EU-154 3.8903E-02 3.10E+03 123.10-9.145E-03 &( 7.468E-02 2.42E+02 4.05E+01 G

1274.80-5.963E-02 +

ARS1-23-01973 Page 100 of 311

Nuclide Ave activity Activity Code Peak MDA Comments Energy 723.30-5.207E-02 & 3.172E-01 1.79E+02 1.97E+01 G 1004.80 2.137E-02 ?( 2.287E-01 4.06E+02 1.76E+01 G 43.00-3.698E-01 & 2.322E+00 1.90E+02 1.31E+01 G 873.20-2.281E-01 + 8.842E-01 1.16E+02 1.13E+01 G 996.30 1.023E-01 &( 3.113E-01 1.17E+02 1.07E+01 G 42.31-6.774E-01 + 4.274E+00 1.91E+02 7.30E+00 G 1.036E+00 1.66E+02 6.60E+00 G 248.04-1.866E-01 + 591.70 2.797E-02 &( 6.546E-01 8.16E+02 4.60E+00 G 48.70-1.014E+00 + 6.107E+00 1.82E+02 4.20E+00 G 756.70 4.352E-01 &( 1.511E+00 1.03E+02 4.10E+00 G

( - This peak used in the nuclide activity average.

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

### Nuclide Codes:

T - Thermal Neutron Activation

F - Fast Neutron Activation

I - Fission Product

N - Naturally Occurring Isotope

P - Photon Reaction

C - Charged Particle Reaction

M - No MDA Calculation

R - Coincidence Corrected

H - Halflife limit exceeded

Peak Codes:

G - Gamma Ray

X - X-Ray

P - Positron Decay

S - Single-Escape

D - Double-Escape

K - Key Line

A - Not in Average

C - Coincidence Peak

|        |       | I S C A R D<br>Background<br>Counts |      | Intensity |        | <b>-</b>   |
|--------|-------|-------------------------------------|------|-----------|--------|------------|
| EU-154 | 42.31 | 7972.                               | -66. | -0.018    | 381.27 | -6.774E-01 |
| EU-154 | 43.00 | 7906.                               | -66. | -0.018    | 379.35 | -3.698E-01 |
| PB-210 | 46.52 | 7858.                               | -69. | -0.019    | 366.58 | -1.133E+00 |
| EU-154 | 48.70 | 7789.                               | -69. | -0.019    | 364.12 | -1.014E+00 |
| Am-241 | 59.54 | 7682.                               | -70. | -0.019    | 356.96 | -9.273E-02 |

ARS1-23-01973 Page 101 of 311

| Nuclide | Channel | Energy Back | ground Net | area C | nts/sec | Uncert FWHM |
|---------|---------|-------------|------------|--------|---------|-------------|
| U-238   | 63.29   | 8392.       | -71.       | -0.020 | 365.93  | -8.144E-01  |
| U-238   | 92.38   | 1318.       | -36.       | -0.010 | 286.10  | -4.948E-01  |
| U-238   | 92.80   | 1282.       | -36.       | -0.010 | 282.05  | -4.237E-01  |
| PA-234  | 94.67   | 1278.       | -32.       | -0.009 | 322.79  | -7.117E-02  |
| PA-234  | 99.70   | 559.        | 24.        | 0.007  | 285.21  | 1.751E-01   |
| EU-154  | 123.10  | 318.        | -10.       | -0.003 | 483.94  | -9.145E-03  |
| PA-234  | 131.28  | 427.        | -34.       | -0.009 | 175.34  | -6.093E-02  |
| U-235   | 143.76  | 470.        | 10.        | 0.003  | 610.31  | 3.560E-02   |
| U-235   | 163.35  | 234.        | 25.        | 0.007  | 197.59  | 2.086E-01   |
| U-235   | 205.31  | 210.        | -12.       | -0.003 | 401.04  | -1.141E-01  |
| PA-234  | 226.87  | 291.        | -25.       | -0.007 | 199.25  | -1.813E-01  |
| EU-154  | 248.04  | 809.        | -24.       | -0.007 | 332.71  | -1.866E-01  |
| EU-154  | 591.70  | 42.         | 1.         | 0.000  | 1631.07 | 2.797E-02   |
| CS-137  | 661.66  | 61.         | 8.         | 0.002  | 371.36  | 9.087E-03   |
| PA-234  | 699.10  | 82.         | -3.        | -0.001 | 861.52  | -6.727E-02  |
| EU-154  | 723.30  | 147.        | -10.       | -0.003 | 358.63  | -5.207E-02  |
| PA-234  | 733.00  | 129.        | 7.         | 0.002  | 474.92  | 8.603E-02   |
| EU-154  | 756.70  | 135.        | 16.        | 0.005  | 206.60  | 4.352E-01   |
| PA-234  | 808.10  | 47.         | 6.         | 0.002  | 420.59  | 1.446E-01   |
| PA-234  | 831.10  | 54.         | -5.        | -0.001 | 557.14  | -1.041E-01  |
| EU-154  | 873.20  | 294.        | -21.       | -0.006 | 231.65  | -2.281E-01  |
| PA-234  | 880.51  | 316.        | -11.       | -0.003 | 451.00  | -2.103E-01  |
| PA-234  | 898.60  | 43.         | -3.        | -0.001 | 776.61  | -9.879E-02  |
| PA-234  | 926.70  | 93.         | -20.       | -0.006 | 143.88  | -2.296E-01  |
| PA-234  | 946.00  | 49.         | 5.         | 0.001  | 405.96  | 3.208E-02   |
| PA-234  | 949.00  | 77.         | -20.       | -0.006 | 131.91  | -3.298E-01  |
| EU-154  | 996.30  | 23.         | 8.         | 0.002  | 234.65  | 1.023E-01   |
| EU-154  | 1004.80 | 34.         | 3.         | 0.001  | 812.34  | 2.137E-02   |
| EU-154  | 1274.80 | 52.         | -13.       | -0.004 | 226.00  | -5.963E-02  |
| PA-234  | 1394.10 | 21.         | -1.        | 0.000  | 1866.55 | -4.516E-02  |

P - Peakbackground subtraction

| ****    |    | ime of Count | Uncertainty | IDES IN<br>2 Sigma |           | **** |
|---------|----|--------------|-------------|--------------------|-----------|------|
| Nuclide |    | Activity     | Counting    | Total              | MDA       |      |
|         |    | pCi/g        | pCi/g       | pCi/g              | pCi/g     |      |
| U-235   | #A | 8.9099E-02   | 1.7605E-01  | 1.7615E-01         | 0.366E+00 |      |
| RA-226  | #  | 8.4033E-01   | 4.8352E-01  | 4.8591E-01         | 0.635E+00 |      |
| Ra-228  |    | 3.8691E-01   | 8.6985E-02  | 9.0331E-02         | 0.906E-01 |      |
| Am-241  | #A | -9.2733E-02  | 3.3102E-01  | 3.3107E-01         | 0.548E+00 |      |
| PB-210  | #A | -1.1330E+00  | 4.1533E+00  | 4.1547E+00         | 0.687E+01 |      |
| U-238   | #A | -8.1436E-01  | 2.9800E+00  | 2.9807E+00         | 0.493E+01 |      |
| K-40    |    | 9.5351E+00   | 8.3023E-01  | 1.0310E+00         | 0.224E+00 |      |
| PB-214  |    | 3.4404E-01   | 6.7079E-02  | 7.2910E-02         | 0.814E-01 |      |
| BI-214  |    | 3.0123E-01   | 7.3258E-02  | 7.5406E-02         | 0.755E-01 |      |
| BI-212  | #A | 3.0915E-01   | 2.9812E-01  | 2.9876E-01         | 0.492E+00 |      |

ARS1-23-01973 Page 102 of 311

| ORTE<br>AAA                                                                          | Cgv-i(3263)                                                                                                                                      |                                                                            | 064 9/29/202<br>um name: ARS0 |            | MA |
|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|------------|----|
| AAA                                                                                  |                                                                                                                                                  | ppecci                                                                     | alli Hallie: ANDO             | 0052.AIII  |    |
| TL-208                                                                               | 3.9992E-01<br>1.2875E-01                                                                                                                         | 3.0391E-02                                                                 | 3.1432E-02                    | 0.286E-01  |    |
| CS-137 #A                                                                            | 4.5958E-02<br>9.0870E-03<br>0.0000E+00                                                                                                           | 3.3746E-02                                                                 | 3.3748E-02                    | 0.456E-01  |    |
| EU-152 A                                                                             | -1.1228E-01<br>3.8903E-02                                                                                                                        | 3.0222E-01                                                                 | 3.0247E-01                    | 0.112E+01  |    |
| * - Act<br>& - Act<br>< - MDA<br>A - Act<br>B - Act<br>C - Are<br>F - Fai<br>H - Hal | peaks for activivity omitted frivity omitted frivalue printed. ivity printed, bivity < MDA and a < Critical leveled fraction or flife limit exce | om total om total and a  ut activity < failed test. el. key line test eded | all peaks had<br>MDA.         | bad shape. |    |
| Total Act                                                                            | ivity ( 2.6 t                                                                                                                                    | o 1998.4 keV                                                               | ) 1.194E+                     | 01 pCi/g   |    |
| Analyzed                                                                             | by:Countr                                                                                                                                        |                                                                            |                               | _          |    |
| Reviewed                                                                             | by:Superv                                                                                                                                        | isor                                                                       |                               |            |    |
| _                                                                                    |                                                                                                                                                  |                                                                            |                               |            |    |

Laboratory: AAA

ARS1-23-01973 Page 103 of 311

-5.2081E-001

1.0478E-001

-5.5076E-001

3.7230E-001

3.7797E-001

6.9010E-001

3.3683E-001

1.0664E-001

-1.0053E-001

2.3556E-001

2.9202E-001

7.4639E-002

1.3085E+000

6.7562E-002

7.7213E-002

5.5950E-001

1.0979E-001

3.3320E-002

2.2003E-001

5.7681E-001

2.2700E+000

2.1300E-001

2.2100E+000

6.9400E-002

9.7200E-002

8.0800E-001

1.9100E-001

3.5400E-002

3.6700E-001

9.0500E-001

Printed: 10/2/2023 8:02 AM

1.1350E+000

1.0650E-001

1.1050E+000

3.4700E-002

4.8600E-002

4.0400E-001

9.5500E-002

1.7700E-002

1.8350E-001

4.5250E-001

ARS Aleut Analytical, LLC Port Allen Laboratory

K-40

Pa-234

Pb-210

Pb-212

Pb-214

Ra-226

Ra-228

TI-208

U-235

U-238

Page 1 of 1 ARS1-B23-01775-07 **Batch Sample ID Analytical Batch** ARS1-B23-01775 **Analysis Date** 9/29/2023 10:29 **Analysis Code** GAM-IG21-SO SDG ARS1-23-01973 Detector (ARS03) MCB 129 Fraction 004 Count Time (sec) 3600 Run 1 Ortec Gamma Library ITSI COUNT.Lib Geometry 250mL tuna can poly 1948-64-2 Isotope Activity Units CSU MDA DL Am-241 2.0741E-002 pCi/g 9.8169E-002 1.6500E-001 8.2500E-002 Bi-212 1.9660E-001 2.3100E-001 1.1550E-001 3.1542E-001 pCi/g Bi-214 3.5392E-001 pCi/g 8.7456E-002 8.9100E-002 4.4550E-002 Co-60 3.4021E-002 3.7732E-002 4.7600E-002 2.3800E-002 pCi/g Cs-137 3.0535E-003 pCi/g 3.3976E-002 5.0200E-002 2.5100E-002 2.0655E-002 5.7500E-002 Eu-152 pCi/g 6.6747E-002 1.1500E-001 Eu-154 6.8908E-002 pCi/g 1.1612E-001 7.0700E-002 3.5350E-002

pCi/g

pCi/g

pCi/q

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

pCi/g

ARS1-23-01973 Page 104 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 11:29:28 AM
AAA
                               Spectrum name: ARS03248.An1
Sample description
     Batch ID: 23-01775-07
     SDG ID: ARS1-23-01973-004 Tech: SDW
Spectrum Filename: C:\User\ARS03248.An1
Acquisition information
      Start time:
                                  9/29/2023 10:29:12 AM
      Live time:
                               3600
      Real time:
                               3603
       Dead time:
                                  0.09 %
       Detector ID:
                                     17
Detector system
     (ARS03) MCB 129
Calibration
                                  1948-64-2 250mL tc poly cal 12-15-17.Clb
      Filename:
     250mL tuna can poly 1948-64-2
     12-15-17 EEC
       Energy Calibration
                                  12/15/2017 11:10:20 AM
           Created:
           Zero offset:
                                  0.253 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -1.778E-08 keV/channel^2
       Efficiency Calibration
           Created:
                                  12/15/2017 12:18:46 PM
           Type:
                                 Polynomial
           Uncertainty:
                                 1.552 %
           Coefficients:
                                 -0.414479 -4.439273
                                                       0.364604
                                 -0.031228
                                           0.000978 -0.000011
Library Files
       Main analysis library:
                                 ITSI COUNT.Lib
      Library Match Width:
                                  0.500
       Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
                                 10 (
       Start channel:
                                          2.75keV )
       Stop channel:
                               8000 ( 1997.02keV )
      Peak rejection level:
                               1000.000%
      Peak search sensitivity:
                                 1
       Sample Size:
                                  3.9674E+02 +/- 0.000E+00%
                                  1.0000E+06/(1.0000E+00*3.9674E+02) =
       Activity scaling factor:
                                  2.5205E+03
       Detection limit method:
                                  Req. Guide 4.16 Method
      Random error:
                                  1.000000E+00
       Systematic error:
                                  1.000000E+00
       Fraction Limit:
                                 0.000%
       Background width:
                                  5
       Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 105 of 311

# Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 128 of 384

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 11:29:28 AM AAA Spectrum name: ARS03248.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO
Decay during collection: NO

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:26:46 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1621

| **** S<br>Peak<br>Energy | U M M A I<br>Area | R Y O<br>Uncert | F P E<br>FWHM | AKS I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio |                                       | Nuc   |
|--------------------------|-------------------|-----------------|---------------|----------------------------|----------------------------|------------------------|---------------------------------------|-------|
| 20.48                    |                   | 116.90          | 0.00          | 1.197E-02                  |                            |                        |                                       |       |
| 37.23                    | 15.               |                 | 0.87          | 2.131E-02                  |                            |                        |                                       |       |
| 40.99                    |                   | 161.48          | 0.87          | 2.341E-02                  |                            |                        |                                       |       |
| 46.66                    |                   | 29.01           | 0.87          | 2.648E-02                  | 46.52                      | 4.000                  | PBC <mda< td=""><td>PB210</td></mda<> | PB210 |
| 48.04                    |                   | 182.38          | 0.88          | 2.732E-02                  | 48.70                      | 4.200                  |                                       |       |
| 59.54                    |                   | 236.63          | 0.89          | 3.431E-02                  | 59.54                      | 35.900                 |                                       |       |
| 63.38                    | 64.               |                 | 0.45          | 3.642E-02                  | 63.29                      | 3.900                  | _                                     |       |
| 74.86                    | 81.               | 25.56           | 0.90          | 4.144E-02                  |                            |                        |                                       |       |
| 77.17                    | 189.              | 11.57           | 0.90          | 4.219E-02                  |                            |                        |                                       |       |
| 84.22                    | 36.               | 48.58           | 0.91          | 4.395E-02                  |                            |                        |                                       |       |
| 87.37                    | 75.               | 26.19           | 0.91          | 4.452E-02                  |                            |                        |                                       |       |
| 92.68                    | 107.              | 18.23           | 0.91          | 4.521E-02                  | 92.38                      | 2.570                  | 1.325E+00                             | U238  |
|                          |                   |                 |               |                            | 92.80                      | 3.000                  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 95.09                    | 7.                | 219.67          | 0.92          | 4.541E-02                  | 94.67                      | 15.500                 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 105.67                   | 13.               | 89.51           | 0.36          | 4.565E-02                  |                            |                        |                                       |       |
| 121.78                   | 6.                | 302.88          | 0.94          | 4.465E-02                  | 121.78                     | 29.240                 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 123.10                   | 20.               | 98.99           | 0.94          | 4.452E-02                  | 123.10                     | 40.460                 | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 142.02                   | 13.               | 94.63           | 0.96          | 4.222E-02                  |                            |                        |                                       |       |
| 146.00                   | 25.               | 52.36           | 0.96          | 4.169E-02                  |                            |                        |                                       |       |
| 172.26                   | 30.               | 41.21           | 0.98          | 3.809E-02                  |                            |                        |                                       |       |
| 175.19                   | 29.               | 40.22           | 0.99          | 3.769E-02                  |                            |                        |                                       |       |
| 186.03                   | 82.               | 22.14           | 1.18          | 3.630E-02                  | 186.21                     | 3.640                  | PBC <mda< td=""><td>RA226</td></mda<> | RA226 |
| 209.26                   | 38.               | 36.47           | 0.81          | 3.352E-02                  |                            |                        |                                       |       |
| 221.01                   | 13.               | 73.38           | 0.31          | 3.225E-02                  |                            |                        |                                       |       |
| 226.87                   | 4.                | 539.36          | 1.03          | 3.164E-02                  | 226.87                     | 6.500                  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 238.54                   | 266.              | 8.46            | 1.07          | 3.051E-02                  | 238.63                     | 43.100                 |                                       | PB212 |
| 241.95                   | 30.               | 51.76           | 1.05          | 3.019E-02                  | 241.98                     | 7.500                  | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |

ARS1-23-01973 Page 106 of 311

| nlr onowerr         | 0.74.0.0   | 1100000+         | fwhm                | G 0 7070               | nuclide | brnch. | 2 a t                                                  | 2116          |
|---------------------|------------|------------------|---------------------|------------------------|---------|--------|--------------------------------------------------------|---------------|
| pk energy<br>248.04 | area<br>10 | uncert<br>192.91 | 1.05                | corr<br>2.965E-02      | 248.04  | 6.600  | act.<br>PBC <mda< td=""><td>nuc<br/>FII154</td></mda<> | nuc<br>FII154 |
| 270.08              | 33.        | 43.04            | 0.66                | 2.783E-02              | 240.04  | 0.000  | PBC <mda< td=""><td>FOID4</td></mda<>                  | FOID4         |
| 277.36              | 5.         | 344.32           | 1.08                | 2.783E-02<br>2.728E-02 | 277.36  | 6.500  | PBC <mda< td=""><td>חיד ארם</td></mda<>                | חיד ארם       |
| 295.16              | 116.       | 16.04            | 1.14                | 2.728E-02<br>2.604E-02 | 295.21  | 18.500 | 3.996E-01                                              |               |
| 300.07              | 23.        | 47.89            | 1.14                | 2.572E-02              | 300.09  | 3.270  | PBC <mda< td=""><td></td></mda<>                       |               |
| 327.96              | 20.        | 49.61            | 1.12                | 2.406E-02              | 300.09  | 3.270  | PBCNIDA                                                | PDZIZ         |
| 330.10              | 14.        | 71.68            | $\frac{1.12}{1.12}$ | 2.400E-02<br>2.394E-02 |         |        |                                                        |               |
| 338.31              | 56.        | 22.18            | 1.31                | 2.351E-02              | 338.40  | 12.010 | 3.586E-01                                              | Da 228        |
| 351.99              | 181.       | 9.14             | 1.14                | 2.283E-02              | 351.92  | 35.800 | 3.636E-01                                              |               |
| 353.72              | 9.         | 194.54           | 1.14                | 2.263E-02<br>2.274E-02 | 331.92  | 33.600 | 3.030E-01                                              | PDZ14         |
| 423.23              | 14.        | 40.26            | 0.45                | 1.994E-02              |         |        |                                                        |               |
| 432.32              | 14.        | 78.90            | 0.45                | 1.964E-02              |         |        |                                                        |               |
| 510.97              | 182.       | 11.66            | 2.30                | 1.742E-02              | 510.72  | 22.500 | 8.763E-01                                              | TT.208        |
| 569.26              | 102.       |                  | 1.32                | 1.615E-02              | 569.26  | 10.400 | PBC <mda< td=""><td></td></mda<>                       |               |
| 583.39              | 87.        | 12.86            | 1.36                | 1.587E-02              | 583.14  | 86.000 | 1.066E-01                                              | _             |
| 591.70              |            | 191.78           | 1.34                | 1.572E-02              | 591.70  | 4.600  | PBC <mda< td=""><td></td></mda<>                       |               |
| 597.54              | 24.        | 33.88            | 1.16                | 1.561E-02              | 391.70  | 4.000  | PBCNIDA                                                | FOIDA         |
| 609.60              | 144.       | 10.01            | 0.90                | 1.540E-02              | 609.31  | 44.791 | 3.489E-01                                              | BT214         |
| 661.66              |            | 556.33           | 1.40                | 1.455E-02              | 661.66  | 85.210 | PBC <mda< td=""><td></td></mda<>                       |               |
| 727.98              | 27.        | 31.00            | 0.68                | 1.455E 02<br>1.361E-02 | 727.17  | 11.800 | 2.856E-01                                              |               |
| 733.00              |            |                  | 1.46                | 1.355E-02              | 733.00  | 8.500  | PBC <mda< td=""><td></td></mda<>                       |               |
| 795.77              | 32.        | 22.67            | 0.85                | 1.280E-02              | 733.00  | 0.500  | FBCNMDA                                                | FAZJī         |
| 831.10              | 6.         | 144.70           | 1.54                | 1.242E-02              | 831.10  | 5.600  | PBC <mda< td=""><td>DZ234</td></mda<>                  | DZ234         |
| 861.44              | 13.        | 79.75            | 1.56                | 1.212E-02              | 860.47  | 12.000 | PBC <mda< td=""><td></td></mda<>                       |               |
| 867.39              |            | 314.25           | 1.56                | 1.205E-02              | 867.39  | 4.176  | PBC <mda< td=""><td></td></mda<>                       |               |
| 880.51              | 10.        | 76.39            | 1.58                | 1.193E-02              | 880.51  | 6.500  | PBC <mda< td=""><td></td></mda<>                       |               |
| 898.85              | 10.        | 40.18            | 0.48                | 1.175E-02              | 898.60  | 4.000  | PBC <mda< td=""><td></td></mda<>                       |               |
| 911.43              | 90.        | 13.93            | 1.49                | 1.164E-02              | 911.07  | 29.000 | 4.783E-01                                              |               |
| 926.70              |            | 111.52           | 1.61                | 1.150E-02              | 926.70  | 11.000 | PBC <mda< td=""><td></td></mda<>                       |               |
| 949.00              |            | 149.43           | 1.63                | 1.131E-02              | 949.00  | 7.800  | PBC <mda< td=""><td></td></mda<>                       |               |
| 964.60              | 3.         |                  | 1.64                | 1.118E-02              | 964.00  | 14.580 | PBC <mda< td=""><td></td></mda<>                       |               |
|                     |            |                  |                     |                        | 964.60  | 5.452  | PBC <mda< td=""><td></td></mda<>                       |               |
| 969.48              | 40.        | 24.14            | 0.43                | 1.114E-02              | 968.90  | 17.460 | 3.378E-01                                              |               |
| 996.30              | 3.         |                  | 1.67                | 1.092E-02              | 996.30  | 10.700 | PBC <mda< td=""><td></td></mda<>                       |               |
| 1004.80             | 6.         |                  | 1.67                | 1.086E-02              | 1004.80 | 17.600 | PBC <mda< td=""><td></td></mda<>                       |               |
| 1085.80             | 4.         |                  | 1.74                | 1.026E-02              | 1085.80 | 10.290 | PBC <mda< td=""><td></td></mda<>                       |               |
| 1120.45             | 45.        | 19.90            | 1.08                | 1.003E-02              | 1120.29 | 14.797 | 4.989E-01                                              | BI214         |
| 1173.24             | 17.        | 55.42            | 1.80                | 9.688E-03              | 1173.24 | 99.900 | HL>Cutoff                                              | CO60          |
| 1239.13             | 15.        | 79.16            | 1.85                | 9.299E-03              | 1238.11 | 5.859  | PBC <mda< td=""><td></td></mda<>                       |               |
| 1377.33             | 7.         | 98.58            | 1.96                | 8.551E-03              | 1377.67 | 3.919  | PBC <mda< td=""><td></td></mda<>                       |               |
| 1394.10             | 11.        | 35.43            | 1.97                | 8.470E-03              | 1394.10 | 3.900  | 6.027E-01                                              | PA234         |
| 1461.37             | 451.       | 4.71             | 1.62                | 8.150E-03              | 1460.75 | 10.700 | 9.499E+00                                              | K40           |
| 1765.02             | 27.        | 23.40            | 0.72                | 6.915E-03              | 1764.49 | 15.357 | PBC <mda< td=""><td>BI214</td></mda<>                  | BI214         |
|                     |            |                  |                     |                        |         |        |                                                        |               |

ARS1-23-01973 Page 107 of 311

| ******  | *** U N I | DENTI        | FIED      | PEAK      | SUMM      | I A R Y | *****    | ****     |
|---------|-----------|--------------|-----------|-----------|-----------|---------|----------|----------|
| Peak Ce | ntroid B  | Background N | et Area E | fficiency | Uncert    | FWHM S  | Suspecte | ed       |
| Channel | Energy    | Counts       | Counts    | * Area    | 2 Sigma % | keV     | Nuclide  | <u> </u> |
|         |           |              |           |           |           |         |          |          |
| 81.00   | 20.48     | 27.          |           | 5.013E+02 |           | 0.000   | -        |          |
| 148.08  | 37.20     | 58.          | 15.       | 7.004E+02 | 153.25    | 0.866   | CE-141   |          |
| 192.08  | 48.09     | 105.         | 9.        | 3.138E+02 | 345.51    | 0.876   | EU-154   |          |
| 298.73  | 74.89     | 171.         | 81.       | 1.943E+03 | 51.13     | 0.899   | TH-234   | sD       |
| 308.00  | 77.20     | 144.         | 189.      | 4.474E+03 | 23.14     | 0.901   | PB-212   | D        |
| 336.23  | 84.16     | 138.         | 36.       | 8.268E+02 | 97.16     | 0.907   | HG-203   | sD       |
| 348.84  | 87.31     | 153.         | 75.       | 1.675E+03 | 52.37     | 0.910   | PB-212   | sD       |
| 380.17  | 95.15     | 103.         | 7.        | 1.602E+02 | 400.87    | 0.917   | AC-228   | sc       |
| 422.11  | 105.67    | 68.          | 13.       | 2.848E+02 | 179.02    | 0.364   | AC-228   | sc       |
| 567.67  | 142.23    | 72.          | 13.       | 3.140E+02 | 189.25    | 0.958   | FE-59    | sc       |
| 583.60  | 146.21    | 72.          | 25.       | 5.958E+02 | 104.73    | 0.962   | EU-155   | sD       |
| 688.77  | 172.43    | 59.          | 30.       | 7.763E+02 | 82.42     | 0.985   | GD-153   | sD       |
| 700.52  | 175.36    | 55.          | 29.       | 7.791E+02 | 80.44     | 0.987   | SB-125   | sD       |
| 836.95  | 209.26    | 68.          | 38.       | 1.122E+03 | 72.95     | 0.809   | AC-228   |          |
| 884.00  | 221.01    | 39.          | 13.       | 4.032E+02 | 146.76    | 0.311   | KR-89    | С        |
| 1080.53 | 270.04    | 63.          | 33.       | 1.189E+03 | 86.07     | 0.665   | AC-228   | sM       |
| 1312.32 | 328.10    | 41.          | 20.       | 8.433E+02 | 99.23     | 1.120   | BI-207   | sD       |
| 1320.91 | 330.24    | 42.          | 14.       | 5.774E+02 | 143.35    | 1.122   | TH-227   | sc       |
| 1416.09 | 353.80    | 109.         | 10.       | 4.336E+02 | 306.36    | 1.142   | CO-57    | sc       |
| 1693.88 | 423.23    | 9.           | 14.       | 7.121E+02 | 80.52     | 0.449   | J-133    | s        |
| 1730.29 | 432.32    | 36.          | 14.       | 7.130E+02 | 157.79    | 0.449   | LA-140   | s        |
| 2392.08 | 597.54    | 14.          | 24.       | 1.512E+03 | 67.75     | 1.157   | J-134    | s        |
| 3186.15 | 795.77    | 7.           | 32.       | 2.484E+03 | 45.34     | 0.849   | CS-134   | s        |
| 3599.09 | 898.85    | 2.           | 10.       | 8.167E+02 | 80.36     | 0.481   | K-42     | s        |
| 3652.40 | 912.11    | 79.          | 24.       | 2.079E+03 | 111.84    | 1.600   | AC-228   | sD       |
| 5853.05 | 1461.37   | 0.           | 451.      | 5.534E+04 | 9.42      | 1.622   | K-40     | M        |
|         |           |              |           |           |           |         |          |          |

s - Peak fails shape tests.

\_\_\_\_\_\_

This section based on library: ITSI COUNT.Lib

ARS1-23-01973 Page 108 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

M - Peak is close to a library peak.

| Nuclide          | Peak<br>Channel  |                  | Background<br>Counts | Net Area<br>Counts | Intensit<br>Cts/Sec | 2 Sigma %        | FWHM<br>keV      |
|------------------|------------------|------------------|----------------------|--------------------|---------------------|------------------|------------------|
| EU-152           | 157.23           | 39.52            | 677.                 | -22.               | -0.006              | 343.92           | 0.868            |
| EU-152           | 159.64           | 40.12            | 70.                  | 8.                 | 0.002               | 322.96           | 0.869D           |
| EU-154           | 168.41           | 42.31            | 634.                 | -18.               | -0.005              | 402.81           | 0.870            |
| PB-210           | 185.26           | 46.52            | 669.                 | -31.               | -0.009              | 237.38           | 0.874s           |
| EU-154           | 193.99           | 48.70            | 524.                 | 21.                | 0.006               | 315.55           | 0.876s           |
| Am-241           | 237.40           | 59.54            | 504.                 | 14.                | 0.004               | 473.26           | 0.886            |
| U-238            | 252.79           | 63.38            | 195.                 | 18.                | 0.005               | 244.74           | 0.449s           |
| U-238            | 368.90           | 92.38            | 244.                 | 14.                | 0.004               | 292.09           | 0.915D           |
| U-238            | 370.59           | 92.80            | 678.                 | 17.                | 0.005               | 257.07           | 0.915D           |
| PA-234           | 378.07           | 94.67            | 672.                 | 23.                | 0.007               | 318.01           | 0.917D           |
| PA-234           | 393.17           | 98.44            | 731.                 | -29.               | -0.008              | 259.62           | 0.920s           |
| PA-234           | 398.22           | 99.70            | 757.                 | -29.               | -0.008              | 264.02           | 0.921s           |
| PA-234           | 443.47           | 111.00           | 221.                 | -16.               | -0.004              | 494.46           | 0.931s           |
| EU-152           | 486.63<br>491.92 | 121.78           | 186.                 | 6.                 | 0.002               | 605.76           | 0.941            |
| EU-154           |                  | 123.10           | 192.                 | 20.<br>-11.        | 0.006               | 197.99<br>434.16 | 0.942s           |
| PA-234<br>U-235  | 524.68<br>574.65 | 131.28<br>143.76 | 226.<br>317.         | -11.<br>-23.       | -0.003<br>-0.007    | 218.77           | 0.949s<br>0.960s |
| U-235            | 653.10           | 163.76           | 211.                 | -23.<br>-15.       | -0.007              | 318.65           | 0.900s<br>0.977s |
|                  | 743.91           | 186.03           | 133.                 | 48.                | 0.013               | 80.83            | 1.181s           |
| RA-226<br>U-235  | 821.14           | 205.31           | 326.                 | -24.               | -0.007              | 221.16           |                  |
|                  | 907.48           | 205.31           |                      | -24.<br>4.         |                     | 1078.71          | 1.014s<br>1.032s |
| PA-234<br>PB-212 | 954.57           | 238.63           | 146.<br>95.          | 259.               | 0.001<br>0.072      | 16.49            | 1.0328<br>1.043D |
| PB-212<br>PB-214 | 967.99           | 241.98           | 107.                 | 30.                | 0.072               | 103.52           | 1.043D<br>1.046D |
| EU-152           | 978.76           | 241.98           | 703.                 | -15.               | -0.004              | 511.86           | 1.0400           |
| EU-152<br>EU-154 | 992.26           | 248.04           | 641.                 | 19.                | 0.005               | 385.81           | 1.046<br>1.051s  |
| TL-208           | 1109.68          | 277.36           | 106.                 | 5.                 | 0.003               | 688.65           | 1.076            |
| PB-214           | 1181.18          | 295.21           | 60.                  | 103.               | 0.029               | 29.48            | 1.070<br>1.092D  |
| PB-214           | 1200.71          | 300.09           | 44.                  | 23.                | 0.025               | 95.78            | 1.092D<br>1.096D |
| Ra-228           | 1353.80          | 338.31           | 45.                  | 54.                | 0.015               | 48.21            | 1.311            |
| EU-152           | 1377.77          | 344.30           | 114.                 | -20.               | -0.006              | 172.62           | 1.134            |
| PB-214           | 1408.29          | 351.92           | 71.                  | 157.               | 0.044               | 22.39            | 1.140D           |
| TL-208           | 2045.31          | 510.97           | 42.                  | 182.               | 0.050               | 23.33            | 2.302            |
| PA-234           | 2278.79          | 569.26           | 31.                  | 10.                | 0.003               | 200.11           | 1.323s           |
| TL-208           | 2335.38          | 583.39           | 24.                  | 77.                | 0.003               | 30.60            | 1.364            |
| EU-154           | 2368.67          | 591.70           | 84.                  | 7.                 | 0.002               | 383.55           | 1.342            |
| BI-214           | 2440.38          | 609.60           | 41.                  | 127.               | 0.035               | 23.97            | 0.902s           |
| CS-137           | 2648.91          | 661.66           | 42.                  | 2.                 | 0.001               | 1112.65          | 1.399s           |
| PA-234           | 2798.88          | 699.10           | 57.                  | -9 <b>.</b>        | -0.002              | 293.38           | 1.430s           |
| EU-154           | 2895.82          | 723.30           | 120.                 | -14.               | -0.004              | 226.58           | 1.449s           |
| BI-212           | 2914.57          | 727.98           | 13.                  | 27.                | 0.007               | 62.01            | 0.685            |
| PA-234           | 2934.68          | 733.00           | 82.                  | 13.                | 0.007               | 204.51           | 1.457s           |
| EU-154           | 3029.62          | 756.70           | 61.                  | -12.               | -0.003              | 239.86           | 1.476            |
| TL-208           | 3056.06          | 763.30           | 65.                  | -6.                | -0.002              | 401.25           | 1.482            |
| BI-214           | 3076.31          | 768.36           | 91.                  | -3.                | -0.001              | 366.81           | 1.486s           |
|                  |                  |                  |                      | ٠.                 |                     |                  |                  |

ARS1-23-01973 Page 109 of 311

| Nuclide | Channel | Energy  | Background | Net area | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|----------|----------|---------|--------|
| EU-152  | 3118.55 | 778.90  | 58.        | -17.     | -0.005   | 168.31  | 1.494  |
| BI-212  | 3144.67 | 785.42  | 47.        | -4.      | -0.001   | 296.99  | 1.499  |
| PA-234  | 3327.67 | 831.10  | 26.        | 6.       | 0.002    | 289.40  | 1.536s |
| TL-208  | 3445.33 | 860.47  | 32.        | 13.      | 0.004    | 159.50  | 1.559s |
| EU-152  | 3473.05 | 867.39  | 46.        | 3.       | 0.001    | 628.49  | 1.565  |
| PA-234  | 3525.61 | 880.51  | 26.        | 10.      | 0.003    | 152.77  | 1.575  |
| PA-234  | 3536.55 | 883.24  | 49.        | -5.      | -0.001   | 397.99  | 1.578s |
| PA-234  | 3598.08 | 898.60  | 26.        | -2.      | -0.001   | 626.08  | 1.590s |
| Ra-228  | 3648.04 | 911.07  | 45.        | 58.      | 0.016    | 42.03   | 1.600D |
| PA-234  | 3710.66 | 926.70  | 26.        | 8.       | 0.002    | 223.05  | 1.612s |
| BI-214  | 3740.15 | 934.06  | 51.        | -6.      | -0.002   | 414.26  | 1.618s |
| PA-234  | 3787.98 | 946.00  | 46.        | -12.     | -0.003   | 169.97  | 1.627s |
| PA-234  | 3800.00 | 949.00  | 51.        | 7.       | 0.002    | 298.86  | 1.629s |
| EU-152  | 3860.10 | 964.00  | 97.        | -2.      | 0.000    | 1727.45 | 1.641  |
| Ra-228  | 3862.50 | 964.60  | 92.        | 3.       | 0.001    | 1036.60 | 1.642  |
| Ra-228  | 3879.73 | 968.90  | 26.        | 20.      | 0.006    | 86.62   | 1.645D |
| EU-154  | 3989.51 | 996.30  | 27.        | 3.       | 0.001    | 687.20  | 1.667s |
| EU-154  | 4023.56 | 1004.80 | 27.        | 6.       | 0.002    | 337.09  | 1.673s |
| EU-152  | 4348.09 | 1085.80 | 24.        | 4.       | 0.001    | 433.15  | 1.736  |
| BI-214  | 4486.94 | 1120.45 | 17.        | 39.      | 0.011    | 47.76   | 1.080s |
| CO-60   | 4698.44 | 1173.24 | 22.        | 17.      | 0.005    | 110.85  | 1.802  |
| BI-214  | 4958.38 | 1238.11 | 36.        | 15.      | 0.004    | 158.32  | 1.852s |
| EU-154  | 5105.40 | 1274.80 | 36.        | -3.      | -0.001   | 757.19  | 1.879s |
| CO-60   | 5336.62 | 1332.50 | 47.        | -19.     | -0.005   | 144.52  | 1.922s |
| BI-214  | 5517.62 | 1377.67 | 12.        | 7.       | 0.002    | 197.15  | 1.955s |
| PA-234  | 5583.46 | 1394.10 | 0.         | 11.      | 0.003    | 70.85   | 1.967s |
| EU-152  | 5639.49 | 1408.08 | 11.        | -1.      | 0.000    | 943.07  | 1.978  |
| K-40    | 5850.56 | 1460.75 | 481.       | -24.     | -0.007   | 55.70   | 2.016  |
| BI-212  | 6491.04 | 1620.56 | 13.        | -3.      | -0.001   | 422.32  | 2.130  |
| BI-214  | 7067.93 | 1764.49 | 22.        | 13.      | 0.004    | 149.38  | 2.231s |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| ***** S<br>- Nuclide -<br>Name Code | Average     | OF LIBRARY PEAK USAGE ***** Peak Energy Activity Code MDA Value keV pCi/g pCi/g COMMENTS                                                                        |     |
|-------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| U-235                               | -1.0053E-01 | 1.39E+09<br>143.76-1.005E-01 ?( 3.674E-01 1.09E+02 1.05E+01<br>205.31-2.787E-01 & 1.030E+00 1.11E+02 4.70E+00<br>163.35-1.495E-01 & 7.202E-01 1.59E+02 4.70E+00 | G   |
| RA-226                              | 6.9010E-01  | 5.84E+05<br>186.21 6.901E-01 (P 8.085E-01 4.04E+01 3.64E+00                                                                                                     | G K |

ARS1-23-01973 Page 110 of 311

|         |              | -                                                                                                                                                                                                                                                                                                                                                                            |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide | Ave activity | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                       |
| Ra-228  | 3.3683E-01   | 2.10E+03<br>911.07 3.278E-01 (P 1.912E-01 2.10E+01 2.90E+01 G<br>968.90 1.938E-01 - P 2.577E-01 4.33E+01 1.75E+01 G<br>338.40 3.586E-01 (P 2.288E-01 2.41E+01 1.20E+01 G<br>964.60 8.264E-02 - P 1.474E+00 5.18E+02 5.45E+00 G                                                                                                                                               |
| Am-241  | T 2.0741E-02 | 1.58E+05<br>59.54 2.074E-02 &( 1.648E-01 2.37E+02 3.59E+01 G K                                                                                                                                                                                                                                                                                                               |
| PB-210  | -5.5076E-01  | 7.45E+03<br>46.52-5.508E-01 ?(P 2.211E+00 1.19E+02 4.00E+00 G                                                                                                                                                                                                                                                                                                                |
| U-238   | 2.3556E-01   | 1.63E+12<br>63.29 2.356E-01 (P 9.049E-01 1.22E+02 3.90E+00 G<br>92.80 2.356E-01 } P 1.731E+00 1.29E+02 3.00E+00 G<br>92.38 2.356E-01 } P 1.232E+00 1.46E+02 2.57E+00 G                                                                                                                                                                                                       |
| K-40    | -5.2081E-01  | 4.68E+11<br>1460.75-5.208E-01 (P 2.275E+00 2.79E+01 1.07E+01 G                                                                                                                                                                                                                                                                                                               |
| PB-214  | 3.7797E-01   | 5.84E+05<br>351.92 3.639E-01 (P 9.720E-02 1.12E+01 3.58E+01 G<br>295.21 4.051E-01 (P 1.523E-01 1.47E+01 1.85E+01 G<br>241.98 2.542E-01 - P 4.247E-01 5.18E+01 7.50E+00 G                                                                                                                                                                                                     |
| BI-214  | 3.5392E-01   | 5.84E+05 609.31 3.489E-01 (P 8.908E-02 1.20E+01 4.48E+01 G 1764.49 2.259E-01 - P 4.405E-01 7.47E+01 1.54E+01 G 1120.29 4.989E-01 + P 2.787E-01 2.39E+01 1.48E+01 G 1238.11 5.210E-01 & 1.065E+00 7.92E+01 5.86E+00 G 768.36-7.817E-02 & P 1.419E+00 1.83E+02 4.80E+00 G 1377.67 4.111E-01 ?(P 1.054E+00 9.86E+01 3.92E+00 G 934.06-3.386E-01 - 1.969E+00 2.07E+02 3.03E+00 G |
| BI-212  | 3.1542E-01   | 2.10E+03<br>727.17 3.154E-01 (P 2.312E-01 3.10E+01 1.18E+01 G<br>1620.56-3.097E-01 + P 1.820E+00 2.11E+02 2.75E+00 G<br>785.42-2.908E-01 + P 2.538E+00 1.48E+02 2.00E+00 G                                                                                                                                                                                                   |
| PB-212  | 3.7230E-01   | 2.10E+03<br>238.63 3.723E-01 (P 6.941E-02 8.24E+00 4.31E+01 G<br>300.09 5.179E-01 + P 7.564E-01 4.79E+01 3.27E+00 G                                                                                                                                                                                                                                                          |
| TL-208  | 1.0664E-01   | 2.10E+03<br>583.14 1.066E-01 (P 3.541E-02 1.53E+01 8.60E+01 G<br>510.72 8.763E-01 + 1.595E-01 1.17E+01 2.25E+01 G<br>860.47 1.730E-01 & 3.782E-01 7.98E+01 1.20E+01 G                                                                                                                                                                                                        |

ARS1-23-01973 Page 111 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 11:29:28 AM AAA Spectrum name: ARS03248.An1 Activity Code Peak MDA Comments Nuclide Ave activity Energy 277.36 5.186E-02 - P 5.413E-01 3.44E+02 6.50E+00 G 763.30-4.900E-01 -3.398E+00 2.01E+02 1.70E+00 G PA-234 1.0478E-01 1.65E+12 98.44-4.797E-02 ?(P 2.128E-01 1.30E+02 2.51E+01 G 946.00-1.002E-01 & 2.864E-01 8.50E+01 2.00E+01 G 131.28-2.299E-02 + 1.577E-01 2.17E+02 2.00E+01 G 94.67 6.305E-02 ?(P 3.323E-01 1.59E+02 1.55E+01 G 883.24-6.769E-02 + 4.686E-01 1.99E+02 1.20E+01 G 926.70 1.256E-01 ?( 3.931E-01 1.12E+02 1.10E+01 G 569.26 1.159E-01 \*(P 3.229E-01 1.00E+02 1.04E+01 G 111.00-7.575E-02 + P 3.501E-01 2.47E+02 8.55E+00 G 733.00 2.141E-01 &( 7.391E-01 1.02E+02 8.50E+00 G 949.00 1.524E-01 &(P 7.712E-01 1.49E+02 7.80E+00 G 880.51 2.541E-01 ?( 6.506E-01 7.64E+01 6.50E+00 G 226.87 3.324E-02 &(P 5.436E-01 5.39E+02 6.50E+00 G 831.10 1.741E-01 ?( 7.153E-01 1.45E+02 5.60E+00 G 9.992E-01 1.90E+03 4.90E+00 G 808.10-1.830E-02 % 99.70-2.542E-01 + P 1.156E+00 1.32E+02 4.70E+00 G 699.10-2.644E-01 + 1.113E+00 1.47E+02 4.60E+00 G 898.60-8.450E-02 + P 1.067E+00 3.13E+02 4.00E+00 G 1394.10 6.027E-01 ?(P 4.222E-01 3.54E+01 3.90E+00 G CS-137 3.0535E-03 1.10E+04661.66 3.054E-03 &( 5.025E-02 5.56E+02 8.52E+01 G CO-60 3.4021E-02 1.93E+03 1173.24 3.402E-02 ?( 4.764E-02 5.54E+01 9.99E+01 K 1332.50-4.029E-02 -7.455E-02 7.23E+01 1.00E+02 EU-152 2.0655E-02 4.64E+03 40.12 2.065E-02 !( 1.145E-01 1.61E+02 3.00E+01 G 121.78 9.299E-03 + 9.594E-02 3.03E+02 2.92E+01 G 1.587E-01 8.63E+01 2.70E+01 G 344.30-6.123E-02 + 1.959E-01 4.72E+02 2.12E+01 G 1408.08-1.487E-02 + 6.484E-01 1.72E+02 1.60E+01 G 39.52-1.128E-01 + 5.629E-01 8.64E+02 1.46E+01 G 964.00-1.875E-02 + 1112.07-5.528E-03 % 4.313E-01 2.78E+03 1.36E+01 G 778.90-1.861E-01 + 4.269E-01 8.42E+01 1.30E+01 G 4.559E-01 2.17E+02 1.03E+01 G 1085.80 7.526E-02 ( 45.40 3.097E-08 % 9.611E-01 9.20E+08 9.00E+00 G 244.67-1.222E-01 + 1.047E+00 2.56E+02 7.62E+00 G 867.39 1.165E-01 ( 1.289E+00 3.14E+02 4.18E+00 G EU-154 6.8908E-02 3.10E+03 123.10 2.134E-02 ( 7.068E-02 9.90E+01 4.05E+01 G 1274.80-1.759E-02 -1.798E-01 3.79E+02 3.55E+01 G 723.30-9.898E-02 & 3.782E-01 1.13E+02 1.97E+01 G

ARS1-23-01973 Page 112 of 311

Nuclide Ave activity Activity Code Peak MDA Comments Energy 1004.80 5.743E-02 ?( 2.675E-01 1.69E+02 1.76E+01 G 43.00-2.244E-08 % 6.964E-01 9.20E+08 1.31E+01 G 873.20-8.376E-03 % 5.096E-01 1.71E+03 1.13E+01 G 996.30 4.533E-02 &( 4.373E-01 3.44E+02 1.07E+01 G 42.31-1.909E-01 + 1.287E+00 2.01E+02 7.30E+00 G 248.04 1.809E-01 ?( 1.168E+00 1.93E+02 6.60E+00 G 591.70 1.806E-01 ?( 1.189E+00 1.92E+02 4.60E+00 G 48.70 3.371E-01 &( 1.780E+00 1.58E+02 4.20E+00 G 756.70-4.109E-01 + 1.360E+00 1.20E+02 4.10E+00 G

- ( This peak used in the nuclide activity average.
- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

### Nuclide Codes:

T - Thermal Neutron Activation G - Gamma Ray X - X-Ray F - Fast Neutron Activation P - Positron Decay I - Fission Product N - Naturally Occurring Isotope S - Single-Escape P - Photon Reaction

C - Charged Particle Reaction

M - No MDA Calculation

R - Coincidence Corrected

H - Halflife limit exceeded

### Peak Codes:

D - Double-Escape

K - Key Line

A - Not in Average C - Coincidence Peak

|        |       | I S C A R D<br>Background<br>Counts | E D I S O<br>Net Area<br>Counts | T O P E<br>Intensity<br>Cts/Sec |        | Activity   | *** |
|--------|-------|-------------------------------------|---------------------------------|---------------------------------|--------|------------|-----|
| EU-154 | 42.31 | 634.                                | -18.                            | -0.005                          | 402.81 | -1.909E-01 |     |
| PB-210 | 46.52 | 669.                                | -31.                            | -0.009                          | 237.38 | -5.508E-01 | P   |
| EU-154 | 48.70 | 524.                                | 21.                             | 0.006                           | 315.55 | 3.371E-01  |     |
| Am-241 | 59.54 | 504.                                | 14.                             | 0.004                           | 473.26 | 2.074E-02  |     |
| PA-234 | 94.67 | 672.                                | 23.                             | 0.007                           | 318.01 | 6.305E-02  | P   |
| PA-234 | 98.44 | 731.                                | -29.                            | -0.008                          | 259.62 | -4.797E-02 | P   |

ARS1-23-01973 Page 113 of 311

| Nuclide | Channel | Energy Bac | kground Net | area C | nts/sec | Uncert FW  | MH |
|---------|---------|------------|-------------|--------|---------|------------|----|
| PA-234  | 99.70   | 757.       | -29.        | -0.008 | 264.02  | -2.542E-01 | P  |
| PA-234  | 111.00  | 221.       | -16.        | -0.004 | 494.46  | -7.575E-02 | P  |
| EU-154  | 123.10  | 192.       | 20.         | 0.006  | 197.99  | 2.134E-02  |    |
| PA-234  | 131.28  | 226.       | -11.        | -0.003 | 434.16  | -2.299E-02 |    |
| U-235   | 143.76  | 317.       | -23.        | -0.007 | 218.77  | -1.005E-01 |    |
| U-235   | 163.35  | 211.       | -15.        | -0.004 | 318.65  | -1.495E-01 |    |
| U-235   | 205.31  | 326.       | -24.        | -0.007 | 221.16  | -2.787E-01 |    |
| PA-234  | 226.87  | 146.       | 4.          | 0.001  | 1078.71 | 3.324E-02  | P  |
| EU-154  | 248.04  | 641.       | 19.         | 0.005  | 385.81  | 1.809E-01  |    |
| PA-234  | 569.26  | 31.        | 10.         | 0.003  | 200.11  | 1.159E-01  | P  |
| EU-154  | 591.70  | 84.        | 7.          | 0.002  | 383.55  | 1.806E-01  |    |
| CS-137  | 661.66  | 42.        | 2.          | 0.001  | 1112.65 | 3.054E-03  |    |
| PA-234  | 699.10  | 57.        | -9.         | -0.002 | 293.38  | -2.644E-01 |    |
| EU-154  | 723.30  | 120.       | -14.        | -0.004 | 226.58  | -9.898E-02 |    |
| PA-234  | 733.00  | 82.        | 13.         | 0.004  | 204.51  | 2.141E-01  |    |
| EU-154  | 756.70  | 61.        | -12.        | -0.003 | 239.86  | -4.109E-01 |    |
| PA-234  | 831.10  | 26.        | 6.          | 0.002  | 289.40  | 1.741E-01  |    |
| PA-234  | 880.51  | 26.        | 10.         | 0.003  | 152.77  | 2.541E-01  |    |
| PA-234  | 883.24  | 49.        | -5.         | -0.001 | 397.99  | -6.769E-02 |    |
| PA-234  | 898.60  | 26.        | -2.         | -0.001 | 626.08  | -8.450E-02 | P  |
| PA-234  | 926.70  | 26.        | 8.          | 0.002  | 223.05  | 1.256E-01  |    |
| PA-234  | 946.00  | 46.        | -12.        | -0.003 | 169.97  | -1.002E-01 |    |
| PA-234  | 949.00  | 51.        | 7.          | 0.002  | 298.86  | 1.524E-01  | P  |
| EU-154  | 996.30  | 27.        | 3.          | 0.001  | 687.20  | 4.533E-02  |    |
| EU-154  | 1004.80 | 27.        | 6.          | 0.002  | 337.09  | 5.743E-02  |    |
| CO-60   | 1173.24 | 22.        | 17.         | 0.005  | 110.85  | 3.402E-02  |    |
| EU-154  | 1274.80 | 36.        | -3.         | -0.001 | 757.19  | -1.759E-02 |    |
| CO-60   | 1332.50 | 47.        | -19.        | -0.005 | 144.52  | -4.029E-02 |    |
| PA-234  | 1394.10 | 0.         | 11.         | 0.003  | 70.85   | 6.027E-01  | P  |
| K-40    | 1460.75 | 481.       | -24.        | -0.007 | 55.70   | -5.208E-01 | P  |

P - Peakbackground subtraction

| ****    | SI | JMMARY       | OF NUCL     | IDES IN SAMPLE ****  |   |
|---------|----|--------------|-------------|----------------------|---|
|         | T  | ime of Count | Uncertainty | 2 Sigma              |   |
| Nuclide |    | Activity     | Counting    | Total MDA            |   |
|         |    | pCi/g        | pCi/g       | pCi/g pCi/g          |   |
|         |    |              |             |                      | _ |
| U-235   | #A | -1.0053E-01  | 2.1992E-01  | 2.2003E-01 0.367E+00 |   |
| RA-226  | #A | 6.9010E-01   | 5.5778E-01  | 5.5950E-01 0.808E+00 |   |
| Ra-228  |    | 3.3683E-01   | 1.0771E-01  | 1.0979E-01 0.191E+00 |   |
| Am-241  | #A | 2.0741E-02   | 9.8160E-02  | 9.8169E-02 0.165E+00 |   |
| PB-210  | #A | -5.5076E-01  | 1.3074E+00  | 1.3085E+00 0.221E+01 |   |
| U-238   | Α  | 2.3556E-01   | 5.7653E-01  | 5.7681E-01 0.905E+00 |   |
| K - 40  | #A | -5.2081E-01  | 2.9010E-01  | 2.9202E-01 0.227E+01 |   |
| PB-214  |    | 3.7797E-01   | 6.9959E-02  | 7.7213E-02 0.972E-01 |   |
| BI-214  |    | 3.5392E-01   | 8.4844E-02  | 8.7456E-02 0.891E-01 |   |
| BI-212  | #  | 3.1542E-01   | 1.9559E-01  | 1.9660E-01 0.231E+00 |   |

ARS1-23-01973 Page 114 of 311

| ORTEC 9                                                                                                                                                                                                                                                                                                                                                                         | g v - i (3263)                                                                                 |                                                                    | 064 9/29/202<br>rum name: ARS0                                     |                                                               | MA |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|----|--|--|--|
| TL-208 PA-234 #A CS-137 #A CO-60 #A EU-152 A                                                                                                                                                                                                                                                                                                                                    | 3.7230E-01<br>1.0664E-01<br>1.0478E-01<br>3.0535E-03<br>3.4021E-02<br>2.0655E-02<br>6.8908E-02 | 3.2635E-02<br>7.4237E-02<br>3.3975E-02<br>3.7711E-02<br>6.6707E-02 | 3.3320E-02<br>7.4639E-02<br>3.3976E-02<br>3.7732E-02<br>6.6747E-02 | 0.354E-01<br>0.213E+00<br>0.502E-01<br>0.476E-01<br>0.115E+00 |    |  |  |  |
| <pre># - All peaks for activity calculation had bad shape. * - Activity omitted from total &amp; - Activity omitted from total and all peaks had bad shape. &lt; - MDA value printed. A - Activity printed, but activity &lt; MDA. B - Activity &lt; MDA and failed test. C - Area &lt; Critical level. F - Failed fraction or key line test. H - Halflife limit exceeded</pre> |                                                                                                |                                                                    |                                                                    |                                                               |    |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                |                                                                    |                                                                    |                                                               |    |  |  |  |
| The library has energies which are not separable.                                                                                                                                                                                                                                                                                                                               |                                                                                                |                                                                    |                                                                    |                                                               |    |  |  |  |
| Analyzed by:                                                                                                                                                                                                                                                                                                                                                                    | Countr                                                                                         | oom                                                                |                                                                    |                                                               |    |  |  |  |
| Reviewed by:Supervisor                                                                                                                                                                                                                                                                                                                                                          |                                                                                                |                                                                    |                                                                    |                                                               |    |  |  |  |

Laboratory: AAA

ARS1-23-01973 Page 115 of 311

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 10/2/2023 8:03 AM Page 1 of 1

|         | 1            | Batch Sample ID  | ARS1-B23-01775-08       |               |                 |  |  |
|---------|--------------|------------------|-------------------------|---------------|-----------------|--|--|
| • 1     |              | Analytical Batch | ARS1-B23-01775          | Analysis Date | 9/29/2023 11:33 |  |  |
|         | FUT          | Analysis Code    | GAM-IG21-SO             | SDG           | ARS1-23-01973   |  |  |
|         | LUI          | Detector         | ARS06 MCB 133           | Fraction      | 005             |  |  |
|         |              | Count Time (sec) | 3600                    | Run           | 1               |  |  |
| Ortec   | Gamma        | Library          | ITSI COUNT.Lib          |               |                 |  |  |
|         |              | Geometry         | 2275-19-5 250mL tc poly |               |                 |  |  |
| Isotope | Activity     | Units            | CSU                     | MDA           | DL              |  |  |
| Am-241  | 8.3131E-002  | pCi/g            | 5.9530E-002             | 8.7200E-002   | 4.3600E-002     |  |  |
| Bi-212  | 2.5692E-001  | pCi/g            | 2.9806E-001             | 5.1400E-001   | 2.5700E-001     |  |  |
| Bi-214  | 3.6471E-001  | pCi/g            | 8.1120E-002             | 7.3200E-002   | 3.6600E-002     |  |  |
| Co-60   | -3.2566E-002 | pCi/g            | 5.0624E-002             | 6.1400E-002   | 3.0700E-002     |  |  |
| Cs-137  | -4.9910E-003 | pCi/g            | 3.2024E-002             | 4.3600E-002   | 2.1800E-002     |  |  |
| Eu-152  | 1.6428E-002  | pCi/g            | 2.7112E-002             | 5.1500E-001   | 2.5750E-001     |  |  |
| Eu-154  | 4.4776E-002  | pCi/g            | 8.5812E-002             | 6.6100E-002   | 3.3050E-002     |  |  |
| K-40    | 1.0382E+001  | pCi/g            | 1.0524E+000             | 1.1800E-001   | 5.9000E-002     |  |  |
| Pa-234  | 1.2562E-001  | pCi/g            | 1.0489E-001             | 7.0900E-002   | 3.5450E-002     |  |  |
| Pb-210  | 9.4688E-001  | pCi/g            | 6.4556E-001             | 1.0200E+000   | 5.1000E-001     |  |  |
| Pb-212  | 4.0192E-001  | pCi/g            | 5.7387E-002             | 4.9500E-002   | 2.4750E-002     |  |  |
| Pb-214  | 4.0326E-001  | pCi/g            | 6.9882E-002             | 6.4300E-002   | 3.2150E-002     |  |  |
| Ra-226  | 7.6112E-001  | pCi/g            | 3.7310E-001             | 5.6200E-001   | 2.8100E-001     |  |  |
| Ra-228  | 3.5345E-001  | pCi/g            | 9.4172E-002             | 9.8400E-002   | 4.9200E-002     |  |  |
| TI-208  | 1.2562E-001  | pCi/g            | 3.3736E-002             | 3.1900E-002   | 1.5950E-002     |  |  |
| U-235   | 7.7446E-002  | pCi/g            | 1.6060E-001             | 2.6000E-001   | 1.3000E-001     |  |  |
| U-238   | -3.7921E-001 | pCi/g            | 8.4799E-001             | 1.4100E+000   | 7.0500E-001     |  |  |

ARS1-23-01973 Page 116 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM
AAA
                               Spectrum name: ARS06053.An1
Sample description
    Batch ID: 23-01775-08
    SDG ID: ARS1-23-01973-005 Tech: SDW
Spectrum Filename: C:\User\ARS06053.An1
Acquisition information
      Start time:
                                 9/29/2023 11:33:04 AM
      Live time:
                              3600
                              3603
      Real time:
      Dead time:
                                 0.09 %
      Detector ID:
                                    21
Detector system
    ARS06 MCB 133
Calibration
                                 2275-19-5 250mL tc poly cal 12-8-21.Clb
      Filename:
    2275-19-5 250mL tc poly
    12-8-21 EEC
      Energy Calibration
           Created:
                                 12/8/2021 10:48:48 AM
           Zero offset:
                                 0.100 keV
           Gain:
                                 0.250 keV/channel
           Quadratic:
                                -3.095E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 12/8/2021 11:58:07 AM
           Type:
                                Polynomial
           Uncertainty:
                                 1.254 %
           Coefficients:
                                -0.502841 -4.041766
                                                      0.314910
                                Library Files
      Main analysis library:
                                ITSI COUNT.Lib
      Library Match Width:
                                 0.500
      Peak stripping:
                                 Library based
Analysis parameters
      Analysis engine:
                                 Env32
                                         G800W064
                                10 (
      Start channel:
                                         2.60keV )
      Stop channel:
                               8000 ( 1998.39keV )
      Peak rejection level:
                              1000.000%
      Peak search sensitivity:
                                1
      Sample Size:
                                 4.2471E+02 +/- 0.000E+00%
                                 1.0000E+06/(1.0000E+00*4.2471E+02) =
      Activity scaling factor:
                                 2.3545E+03
      Detection limit method:
                                 Reg. Guide 4.16 Method
      Random error:
                                 1.000000E+00
      Systematic error:
                                 1.000000E+00
      Fraction Limit:
                                0.000%
      Background width:
                                 5
      Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 117 of 311

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO
Decay during collection: NO

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:04:04 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1833

| ***** S U<br>Peak<br>Energy | J M M A 1<br>Area | R Y O<br>Uncert | F PE<br>FWHM | AKS I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio |                                       | Nuc   |
|-----------------------------|-------------------|-----------------|--------------|----------------------------|----------------------------|------------------------|---------------------------------------|-------|
| 12.35                       | 176.              | 13.33           | 1.30         | 1.514E-03                  |                            |                        |                                       |       |
| 20.67                       | 18.               | 91.84           | 0.44         | 8.216E-03                  |                            |                        |                                       |       |
| 30.02                       | 54.               | 42.15           | 1.10         | 1.568E-02                  |                            |                        |                                       |       |
| 37.75                       | 85.               | 27.31           | 0.98         | 2.198E-02                  |                            |                        |                                       |       |
| 41.72                       | 176.              | 18.52           | 0.98         | 2.514E-02                  | 42.31                      | 7.300                  | 1.671E+00                             | EU154 |
| 42.72                       | 155.              | 19.07           | 0.98         | 2.594E-02                  | 42.31                      | 7.300                  | 1.476E+00                             | EU154 |
|                             |                   |                 |              |                            | 43.00                      | 13.100                 | 8.049E-01                             | EU154 |
| 44.39                       | 28.               | 82.23           | 0.99         | 2.727E-02                  |                            |                        |                                       |       |
| 46.68                       | 66.               | 30.68           | 0.99         | 2.900E-02                  | 46.52                      | 4.000                  | 1.018E+00                             | PB210 |
| 48.70                       |                   | 155.17          | 0.99         | 3.063E-02                  | 48.70                      | 4.200                  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 53.53                       | 53.               | 50.75           | 0.26         | 3.483E-02                  |                            |                        |                                       |       |
| 59.71                       | 67.               | 35.67           | 0.45         | 3.982E-02                  | 59.54                      | 35.900                 | 8.313E-02                             | Am241 |
| 71.56                       | 36.               | 50.66           | 1.02         | 4.738E-02                  |                            |                        |                                       |       |
| 74.83                       | 162.              | 15.27           | 1.02         | 4.896E-02                  |                            |                        |                                       |       |
| 77.11                       | 254.              | 10.42           | 1.02         | 4.992E-02                  |                            |                        |                                       |       |
| 84.21                       | 39.               | 46.04           | 1.03         | 5.228E-02                  |                            |                        |                                       |       |
| 87.44                       | 86.               | 22.47           | 1.04         | 5.306E-02                  |                            |                        |                                       |       |
| 89.68                       | 67.               | 27.88           | 1.04         | 5.350E-02                  |                            |                        |                                       |       |
| 92.88                       | 82.               | 24.16           | 1.04         | 5.400E-02                  | 92.38                      | 2.570                  |                                       |       |
|                             |                   |                 |              |                            | 92.80                      | 3.000                  |                                       |       |
| 98.92                       | 30.               | 65.93           | 1.82         | 5.461E-02                  | 98.44                      | 25.100                 |                                       | _     |
|                             |                   |                 |              |                            | 99.70                      | 4.700                  |                                       |       |
| 111.00                      |                   | 380.59          | 1.06         | 5.471E-02                  | 111.00                     | 8.550                  |                                       |       |
| 123.10                      |                   | 194.75          | 1.08         | 5.386E-02                  | 123.10                     | 40.460                 | _                                     |       |
| 143.76                      |                   | 395.86          | 1.10         | 5.129E-02                  | 143.76                     | 10.500                 | _                                     |       |
| 163.35                      |                   | 103.63          | 1.12         | 4.839E-02                  | 163.35                     | 4.700                  | PBC <mda< td=""><td>U235</td></mda<>  | U235  |
| 167.93                      | 8.                | 153.09          | 0.20         | 4.771E-02                  |                            |                        |                                       |       |

ARS1-23-01973 Page 118 of 311

| _                |             |                 |              |                        |         |                 |                                       |          |
|------------------|-------------|-----------------|--------------|------------------------|---------|-----------------|---------------------------------------|----------|
| pk energy        | area        | uncert          | fwhm         | corr                   | nuclide | brnch.          | act.                                  | nuc      |
| 185.97           | 71.         | 24.38           | 1.15         | 4.508E-02              | 186.21  | 3.640           | 7.600E-01                             | RA226    |
| 190.25           |             | 194.96          | 1.15         | 4.448E-02              |         |                 |                                       |          |
| 191.94           |             | 112.71          | 1.16         | 4.425E-02              | 205 21  | 4 700           | г 127 <del>п</del> 02                 | TT 2 2 E |
| 205.65<br>232.64 | 16.         | 176.81<br>95.69 | 0.39<br>0.32 | 4.242E-02<br>3.919E-02 | 205.31  | 4.700           | 5.137E-02                             | 0235     |
| 232.64           |             | 7.73            | 0.32 $1.17$  | 3.919E-02<br>3.855E-02 | 238.63  | 12 100          | 3.600E-01                             | DD 21 2  |
| 241.85           | 338.<br>67. | 24.64           | 1.17         | 3.855E-02<br>3.817E-02 | 238.63  | 43.100<br>7.500 | 4.139E-01                             |          |
| 263.57           | 24.         | 50.94           | 0.76         | 3.604E-02              | 241.90  | 7.500           | 4.139E-U1                             | PBZ14    |
| 277.33           | 31.         | 38.02           | 1.25         | 3.481E-02              | 277.36  | 6.500           | 2.423E-01                             | TT 200   |
| 282.18           | 21.         | 53.11           | 1.25         | 3.440E-02              | 2//.30  | 0.500           | 2.423E-UI                             | 11200    |
| 294.96           | 126.        | 12.94           | 1.27         | 3.440E-02<br>3.336E-02 | 295.21  | 18.500          | 3.600E-01                             | חם 21 /  |
| 300.34           | 40.         | 31.54           | 1.27         | 3.336E-02<br>3.295E-02 | 300.09  | 3.270           | 6.610E-01                             |          |
| 338.31           | 86.         | 22.29           | 0.54         | 3.295E-02<br>3.035E-02 | 338.40  | 12.010          | 4.167E-01                             |          |
| 344.30           |             | 157.25          | 1.33         | 2.998E-02              | 344.30  | 27.000          | PBC <mda< td=""><td></td></mda<>      |          |
| 349.25           |             | 137.25          | 1.33         | 2.968E-02              | 344.30  | 27.000          | PBC <mda< td=""><td>FOISZ</td></mda<> | FOISZ    |
| 351.80           | 253.        | 7.56            | 1.33         | 2.953E-02              | 351.92  | 35.800          | 4.234E-01                             | מם 21 /  |
| 511.09           | 188.        | 11.30           | 2.55         | 2.284E-02              | 510.72  | 22.500          | 6.450E-01                             |          |
| 583.20           | 128.        | 13.06           | 0.82         | 2.086E-02              | 583.14  | 86.000          | 1.256E-01                             |          |
| 609.47           | 191.        | 10.72           | 1.61         | 2.030E 02<br>2.024E-02 | 609.31  | 44.791          | 3.728E-01                             |          |
| 621.91           |             | 100.72          | 0.66         | 1.996E-02              | 007.31  | 44.701          | J. 720E 01                            | DIZIT    |
| 727.29           | 39.         | 21.72           | 1.22         | 1.790E-02              | 727.17  | 11.800          | 3.281E-01                             | RT212    |
| 733.04           |             | 123.51          | 1.73         | 1.780E-02              | 733.00  | 8.500           | PBC <mda< td=""><td></td></mda<>      |          |
| 778.90           | 10.         |                 | 1.77         | 1.705E-02              | 778.90  | 12.990          | PBC <mda< td=""><td></td></mda<>      |          |
| 784.65           | 16.         | 83.19           | 1.78         | 1.695E-02              | 785.42  | 2.000           | PBC <mda< td=""><td></td></mda<>      |          |
| 866.10           |             | 319.12          | 1.86         | 1.579E-02              | 867.39  | 4.176           | 1.878E-02                             |          |
| 883.24           | 18.         |                 | 1.87         | 1.557E-02              | 883.24  | 12.000          | PBC <mda< td=""><td></td></mda<>      |          |
| 898.60           | 27.         | 41.59           | 1.89         | 1.537E-02              | 898.60  | 4.000           | PBC <mda< td=""><td></td></mda<>      |          |
| 911.50           | 82.         | 15.05           | 1.87         | 1.521E-02              | 911.07  | 29.000          | 3.285E-01                             |          |
| 934.06           | 16.         | 79.94           | 1.92         | 1.493E-02              | 934.06  | 3.029           | PBC <mda< td=""><td></td></mda<>      |          |
| 964.00           | 14.         | 126.25          | 1.95         | 1.458E-02              | 964.00  | 14.580          | PBC <mda< td=""><td></td></mda<>      |          |
|                  |             |                 |              |                        | 964.60  | 5.452           | 3.003E-01                             |          |
| 969.49           | 57.         | 21.03           | 1.95         | 1.452E-02              | 968.90  | 17.460          | 3.944E-01                             |          |
| 1085.80          |             | 300.62          | 2.06         | 1.330E-02              | 1085.80 | 10.290          | PBC <mda< td=""><td></td></mda<>      |          |
| 1120.20          | 59.         | 14.68           | 2.49         | 1.298E-02              | 1120.29 | 14.797          | 5.451E-01                             | BI214    |
| 1207.46          | 32.         | 25.22           | 0.80         | 1.220E-02              |         |                 |                                       |          |
| 1238.27          | 12.         | 150.00          | 2.19         | 1.195E-02              | 1238.11 | 5.859           | PBC <mda< td=""><td>BI214</td></mda<> | BI214    |
| 1274.80          | 7.          | 143.29          | 2.22         | 1.166E-02              | 1274.80 | 35.500          | PBC <mda< td=""><td>EU154</td></mda<> | EU154    |
| 1332.50          | 9.          | 93.89           | 2.27         | 1.122E-02              | 1332.50 | 99.982          | PBC <mda< td=""><td>CO60</td></mda<>  | CO60     |
| 1461.04          | 649.        | 3.93            | 1.94         | 1.032E-02              | 1460.75 | 10.700          | 1.038E+01                             | K40      |
| 1508.51          | 20.         | 22.36           | 2.37         | 1.002E-02              |         |                 |                                       |          |
| 1618.27          | 7.          | 75.37           | 2.49         | 9.350E-03              | 1620.56 | 2.750           | PBC <mda< td=""><td></td></mda<>      |          |
| 1764.77          | 34.         | 17.15           | 1.83         | 8.573E-03              | 1764.49 | 15.357          | 3.806E-01                             | BI214    |
|                  |             |                 |              |                        |         |                 |                                       |          |

ARS1-23-01973 Page 119 of 311

| *****   | *** U N ] | DENTI         | FIED       | PEAK      | SUMI      | MARY   | ***   | ***** |
|---------|-----------|---------------|------------|-----------|-----------|--------|-------|-------|
| Peak Ce | ntroid E  | Background No | et Area E: | fficiency | Uncert    | FWHM S | Suspe | cted  |
| Channel | Energy    | Counts        | Counts     | * Area 2  | 2 Sigma % | keV    | Nucl  | ide   |
|         |           |               |            |           |           |        |       |       |
| 48.99   | 12.26     | 144.          |            | 1.162E+05 | 26.66     | 1.302  | -     | s     |
| 82.25   | 20.67     | 136.          | 18.        | 2.203E+03 | 183.67    | 0.436  | -     | sc    |
| 119.68  | 30.02     | 200.          | 54.        | 3.431E+03 | 84.30     | 1.101  | -     |       |
| 150.76  | 37.92     | 229.          | 85.        | 3.879E+03 | 54.65     | 0.977  | -     | sD    |
| 166.61  | 41.89     | 428.          | 181.       | 7.186E+03 | 35.63     | 0.982  | -     | sD    |
| 170.63  | 42.89     | 369.          | 149.       | 5.759E+03 | 39.90     | 0.983  | _     | sD    |
| 177.31  | 44.56     | 259.          | 29.        | 1.061E+03 | 161.69    | 0.985  | -     | sc    |
| 213.68  | 53.53     | 294.          | 53.        | 1.528E+03 | 101.50    | 0.261  | -     | s     |
| 285.80  | 71.56     | 144.          | 36.        | 7.504E+02 | 101.32    | 1.017  | -     | sD    |
| 298.90  | 74.83     | 226.          | 162.       | 3.314E+03 | 30.54     | 1.021  | -     | sD    |
| 308.02  | 77.11     | 224.          | 254.       | 5.097E+03 | 20.83     | 1.024  | _     | sD    |
| 336.44  | 84.23     | 143.          | 39.        | 7.443E+02 | 92.67     | 1.032  | -     | sD    |
| 349.38  | 87.47     | 149.          | 83.        | 1.564E+03 | 47.06     | 1.036  | -     | sD    |
| 358.31  | 89.70     | 139.          | 67.        | 1.248E+03 | 55.62     | 1.038  | _     | sD    |
| 371.13  | 92.91     | 160.          | 75.        | 1.394E+03 | 52.78     | 1.042  | _     | sD    |
| 671.27  | 167.93    | 71.           | 8.         | 1.677E+02 | 306.19    | 0.196  | -     | sc    |
| 760.58  | 190.29    | 105.          | 8.         | 0.000E+00 | 389.91    | 1.154  | _     | lc    |
| 766.33  | 191.97    | 120.          | 14.        | 3.061E+02 | 235.52    | 1.156  | _     | lc    |
| 822.16  | 205.65    | 55.           | 6.         | 1.367E+02 | 353.61    | 0.395  | _     | lc    |
| 930.12  | 232.64    | 91.           | 16.        | 4.083E+02 | 191.38    | 0.317  | _     | lc    |
| 1053.86 | 263.57    | 52.           | 24.        | 6.799E+02 | 101.88    | 0.755  | _     | sM    |
| 1108.94 | 277.31    | 54.           | 31.        | 8.908E+02 | 76.05     | 1.252  | _     | sD    |
| 1128.33 | 282.16    | 49.           | 21.        | 5.983E+02 | 106.21    | 1.258  | _     | sD    |
| 1396.39 | 349.30    | 73.           | 9.         | 3.032E+02 | 276.71    | 1.331  | -     | sc    |
| 2487.67 | 621.91    | 10.           | 5.         | 2.505E+02 | 200.00    | 0.656  | _     | sc    |
| 3464.76 | 866.10    | 17.           | 2.         | 1.524E+02 | 498.47    | 1.858  | -     | sc    |
| 4831.68 | 1207.46   | 8.            | 32.        | 2.589E+03 | 50.44     | 0.796  | _     | s     |
| 6037.33 | 1508.51   | 0.            | 20.        | 1.996E+03 | 44.72     | 2.372  | -     | s     |

s - Peak fails shape tests.

-----

This section based on library: ITSI COUNT.Lib

ARS1-23-01973 Page 120 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

M - Peak is close to a library peak.

| ******** I D E N T I F I E D P E A K S U M M A R Y ********* |          |          |            |          |          |           |         |
|--------------------------------------------------------------|----------|----------|------------|----------|----------|-----------|---------|
| Nuclide                                                      | Peak     | Centroid | Background | Net Area | Intensit |           |         |
| 1.001100                                                     | Channel  |          | Counts     | Counts   | Cts/Sec  | 2 Sigma % |         |
|                                                              | CHAINICI | 21102 97 | Course     | courres  |          | 2 Signa ( | , 110 v |
| EU-152                                                       | 157.66   | 39.52    | 1968.      | -38.     | -0.011   | 333.05    | 0.980s  |
| EU-152                                                       | 160.06   | 40.12    | 1931.      | -38.     | -0.011   | 329.66    | 0.980s  |
| EU-154                                                       | 168.82   | 42.31    | 1893.      | -38.     | -0.011   | 325.56    | 0.983s  |
| EU-154                                                       | 171.58   | 43.00    | 1855.      | -38.     | -0.011   | 322.02    | 0.984s  |
| EU-152                                                       | 181.18   | 45.40    | 1817.      | -38.     | -0.011   | 317.89    | 0.986s  |
| PB-210                                                       | 185.66   | 46.52    | 185.       | 62.      | 0.017    | 67.48     | 0.988D  |
| EU-154                                                       | 194.38   | 48.70    | 1608.      | 37.      | 0.010    | 310.34    | 0.990s  |
| Am-241                                                       | 238.42   | 59.71    | 210.       | 67.      | 0.019    | 71.33     | 0.451s  |
| U-238                                                        | 252.73   | 63.29    | 768.       | -35.     | -0.010   | 223.48    | 1.008s  |
| U-238                                                        | 369.09   | 92.38    | 921.       | 18.      | 0.005    | 482.33    | 1.041s  |
| U-238                                                        | 370.77   | 92.80    | 939.       | 0.       | 0.000    | 2000.00   | 1.042s  |
| PA-234                                                       | 378.24   | 94.67    | 1271.      | -30.     | -0.008   | 334.99    | 1.044   |
| PA-234                                                       | 393.32   | 98.44    | 125.       | 14.      | 0.004    | 235.77    | 1.048D  |
| PA-234                                                       | 398.36   | 99.70    | 1203.      | -8.      | -0.002   | 1272.32   | 1.050   |
| PA-234                                                       | 443.56   | 111.00   | 265.       | 7.       | 0.002    | 761.19    | 1.063   |
| EU-152                                                       | 486.68   | 121.78   | 353.       | -6.      | -0.002   | 834.56    | 1.076s  |
| EU-154                                                       | 491.96   | 123.10   | 285.       | 12.      | 0.003    | 389.51    | 1.077   |
| PA-234                                                       | 524.68   | 131.28   | 270.       | -12.     | -0.003   | 423.18    | 1.087s  |
| U-235                                                        | 574.60   | 143.76   | 270.       | 7.       | 0.002    | 791.72    | 1.101s  |
| U-235                                                        | 652.96   | 163.35   | 350.       | 26.      | 0.007    | 207.26    | 1.123s  |
| RA-226                                                       | 744.41   | 186.21   | 112.       | 71.      | 0.020    | 48.68     | 1.149D  |
| U-235                                                        | 820.81   | 205.31   | 249.       | -6.      | -0.002   | 702.39    | 1.171s  |
| PA-234                                                       | 907.06   | 226.87   | 260.       | -31.     | -0.009   | 174.51    | 1.196s  |
| PB-212                                                       | 954.10   | 238.63   | 88.        | 378.     | 0.105    | 12.47     | 1.209D  |
| PB-214                                                       | 967.51   | 241.98   | 103.       | 67.      | 0.019    | 49.29     | 1.212D  |
| EU-152                                                       | 978.26   | 244.67   | 935.       | -27.     | -0.008   | 318.00    | 1.216   |
| EU-154                                                       | 991.75   | 248.04   | 906.       | -28.     | -0.008   | 305.78    | 1.219   |
| TL-208                                                       | 1109.04  | 277.36   | 254.       | -22.     | -0.006   | 205.89    | 1.252   |
| PB-214                                                       | 1180.46  | 295.21   | 69.        | 126.     | 0.035    | 25.89     | 1.272D  |
| PB-212                                                       | 1199.97  | 300.09   | 56.        | 40.      | 0.011    | 61.70     | 1.277D  |
| Ra-228                                                       | 1353.24  | 338.40   | 129.       | 73.      | 0.020    | 57.93     | 1.320s  |
| EU-152                                                       | 1376.85  | 344.30   | 448.       | 19.      | 0.005    | 314.51    | 1.326s  |
| PB-214                                                       | 1407.34  | 351.92   | 59.        | 253.     | 0.070    | 15.21     | 1.334D  |
| TL-208                                                       | 2044.22  | 511.09   | 50.        | 188.     | 0.052    | 22.61     | 2.552   |
| PA-234                                                       | 2276.97  | 569.26   | 74.        | -4.      | -0.001   | 845.76    | 1.565s  |
| TL-208                                                       | 2332.76  | 583.20   | 40.        | 128.     | 0.035    | 26.12     | 0.817s  |
| EU-154                                                       | 2366.77  | 591.70   | 58.        | -5.      | -0.001   | 588.42    | 1.588s  |
| BI-214                                                       | 2437.87  | 609.47   | 56.        | 191.     | 0.053    | 21.44     | 1.614   |
| CS-137                                                       | 2646.75  | 661.66   | 65.        | -5.      | -0.001   | 641.62    | 1.659s  |
| PA-234                                                       | 2796.59  | 699.10   | 75.        | -6.      | -0.002   | 548.09    | 1.696s  |
| EU-154                                                       | 2893.44  | 723.30   | 196.       | -21.     | -0.006   | 191.38    | 1.720s  |
| BI-212                                                       | 2908.93  | 727.17   | 159.       | 14.      | 0.004    | 265.28    | 1.724s  |
| PA-234                                                       | 2932.26  | 733.00   | 154.       | 15.      | 0.004    | 247.02    | 1.730s  |
| EU-154                                                       | 3027.12  | 756.70   | 183.       | -22.     | -0.006   | 181.77    | 1.753s  |

ARS1-23-01973 Page 121 of 311

| Nuclide | Channel | Energy  | Background | Net area    | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|-------------|----------|---------|--------|
| BI-214  | 3073.77 | 768.36  | 92.        | -19.        | -0.005   | 188.40  | 1.764  |
| EU-152  | 3115.98 | 778.90  | 56.        | 10.         | 0.003    | 212.06  | 1.775s |
| BI-212  | 3142.07 | 785.42  | 76.        | 16.         | 0.003    | 166.37  | 1.773s |
| PA-234  | 3324.91 | 831.10  | 68.        | -14.        | -0.004   | 221.27  | 1.825  |
| TL-208  | 3442.48 | 860.47  | 149.       | -2.         | -0.001   | 1570.78 | 1.853s |
| EU-152  | 3470.18 | 867.39  | 147.       | 0.          | 0.001    | 2000.00 | 1.859s |
| EU-154  | 3493.43 | 873.20  | 147.       | 0.          | 0.000    | 2000.00 | 1.865s |
| PA-234  | 3522.70 | 880.51  | 211.       | -21.        | -0.006   | 196.70  | 1.872s |
| PA-234  | 3533.62 | 883.24  | 188.       | 18.         | 0.005    | 217.81  | 1.874  |
| PA-234  | 3595.11 | 898.60  | 29.        | 27.         | 0.003    | 83.19   | 1.889  |
| Ra-228  | 3646.73 | 911.50  | 22.        | 82.         | 0.023    | 30.11   | 1.872  |
| PA-234  | 3707.60 | 926.70  | 83.        | -13.        | -0.003   | 212.91  | 1.915s |
| BI-214  | 3737.06 | 934.06  | 78.        | 16.         | 0.005    | 159.88  | 1.922s |
| PA-234  | 3784.86 | 946.00  | 66.        | -18.        | -0.005   | 136.08  | 1.933s |
| PA-234  | 3796.87 | 949.00  | 100.       | -9 <b>.</b> | -0.002   | 335.24  | 1.936s |
| EU-152  | 3856.92 | 964.00  | 138.       | 14.         | 0.004    | 252.50  | 1.949s |
| Ra-228  | 3859.32 | 964.60  | 152.       | 0.          | 0.000    | 2000.00 | 1.950  |
| Ra-228  | 3878.89 | 969.49  | 22.        | 57.         | 0.016    | 42.07   | 1.953  |
| EU-154  | 4020.25 | 1004.80 | 53.        | -6.         | -0.002   | 459.65  | 1.987s |
| EU-152  | 4344.54 | 1085.80 | 38.        | 4.          | 0.001    | 601.25  | 2.059  |
| EU-152  | 4449.72 | 1112.07 | 165.       | -22.        | -0.006   | 167.14  | 2.082s |
| BI-214  | 4482.29 | 1120.20 | 5.         | 59.         | 0.016    | 29.36   | 2.489  |
| CO-60   | 4694.64 | 1173.24 | 76.        | -23.        | -0.006   | 155.41  | 2.135s |
| BI-214  | 4954.40 | 1238.11 | 80.        | 12.         | 0.003    | 300.00  | 2.190  |
| EU-154  | 5101.33 | 1274.80 | 24.        | 7.          | 0.002    | 286.57  | 2.221s |
| CO-60   | 5332.40 | 1332.50 | 16.        | 9.          | 0.002    | 187.77  | 2.268s |
| BI-214  | 5513.29 | 1377.67 | 42.        | 0.          | 0.000    | 2000.00 | 2.305s |
| PA-234  | 5579.09 | 1394.10 | 42.        | -15.        | -0.004   | 182.43  | 2.318s |
| EU-152  | 5635.08 | 1408.08 | 42.        | -9.         | -0.002   | 299.13  | 2.329  |
| K-40    | 5847.19 | 1461.04 | 0.         | 649.        | 0.180    | 7.85    | 1.942  |
| BI-212  | 6486.16 | 1620.56 | 4.         | 7.          | 0.002    | 150.74  | 2.491s |
| BI-214  | 7062.79 | 1764.49 | 19.        | 18.         | 0.005    | 109.31  | 2.594s |

s - Peak fails shape tests.

A Derived peak area.

| - Nuclide - |            | OF LIB Energy Ac | - Peak    | _           | S A G E *****       |
|-------------|------------|------------------|-----------|-------------|---------------------|
|             | pCi/g      | keV pC           | i/g       | pCi/g       | COMMENTS            |
| U-235       | 7.7446E-02 |                  |           |             | 1.39E+09            |
|             |            | 143.76 2.1       | 66E-02 @( | 2.604E-01 3 | 3.96E+02 1.05E+01 G |
|             |            | 205.31-5.6       | 68E-02 +  | 6.758E-01 3 | 3.51E+02 4.70E+00 G |
|             |            | 163.35 2.0       | 21E-01 ?( | 6.986E-01 1 | 04E+02 4.70E+00 G   |

ARS1-23-01973 Page 122 of 311

D - Peak area deconvoluted.

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM AAA Spectrum name: ARS06053.An1

| Nuclide | Ave activity | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                 |             |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| RA-226  | 7.6112E-01   | 5.84E+05<br>186.21 7.611E-01 ( 5.618E-01 2.43E+01 3.64E+00 G                                                                                                                                                                                                                                                                                                           | ł K         |
| Ra-228  | 3.5345E-01   | 2.10E+03<br>911.07 3.285E-01 ( 9.842E-02 1.51E+01 2.90E+01 G<br>968.90 3.944E-01 ( 1.726E-01 2.10E+01 1.75E+01 G<br>338.40 3.541E-01 ?( 2.699E-01 2.90E+01 1.20E+01 G<br>964.60 0.000E+00 - 1.338E+00 1.00E+03 5.45E+00 G                                                                                                                                              | 1<br>1<br>1 |
| Am-241  | T 8.3131E-02 | 1.58E+05<br>59.54 8.313E-02 ( 8.715E-02 3.57E+01 3.59E+01 G                                                                                                                                                                                                                                                                                                            | ł K         |
| PB-210  | 9.4688E-01   | 7.45E+03<br>46.52 9.469E-01 ( 1.016E+00 3.37E+01 4.00E+00 G                                                                                                                                                                                                                                                                                                            | ļ           |
| U-238   | -3.7921E-01  | 1.63E+12<br>63.29-3.792E-01 ?( 1.409E+00 1.12E+02 3.90E+00 G<br>92.80 0.000E+00 + 1.588E+00 1.00E+03 3.00E+00 G<br>92.38 2.281E-01 + 1.838E+00 2.41E+02 2.57E+00 G                                                                                                                                                                                                     | i<br>J      |
| K-40    | 1.0382E+01   | 4.68E+11<br>1460.75 1.038E+01 ( 1.179E-01 3.93E+00 1.07E+01 G                                                                                                                                                                                                                                                                                                          | }           |
| PB-214  | 4.0326E-01   | 5.84E+05<br>351.92 4.234E-01 ( 6.428E-02 7.60E+00 3.58E+01 G<br>295.21 3.599E-01 ( 1.190E-01 1.29E+01 1.85E+01 G<br>241.98 4.139E-01 ( 3.087E-01 2.46E+01 7.50E+00 G                                                                                                                                                                                                   | j           |
| BI-214  | 3.6471E-01   | 5.84E+05 609.31 3.728E-01 ( 7.315E-02 1.07E+01 4.48E+01 G 1764.49 2.356E-01 - P 3.123E-01 5.47E+01 1.54E+01 G 1120.29 5.451E-01 + 1.190E-01 1.47E+01 1.48E+01 G 1238.11 3.030E-01 ?( 1.121E+00 1.50E+02 5.86E+00 G 768.36-4.090E-01 - 1.017E+00 9.42E+01 4.80E+00 G 1377.67 0.000E+00 - 1.363E+00 1.00E+03 3.92E+00 G 934.06 6.400E-01 & 1.709E+00 7.99E+01 3.03E+00 G | ;<br>;      |
| BI-212  | 2.5692E-01   | 2.10E+03<br>727.17 1.148E-01 ?( 5.140E-01 1.33E+02 1.18E+01 G<br>1620.56 4.618E-01 &( 8.583E-01 7.54E+01 2.75E+00 G<br>785.42 8.135E-01 ?( 2.265E+00 8.32E+01 2.00E+00 G                                                                                                                                                                                               | 1           |
| PB-212  | 4.0192E-01   | 2.10E+03<br>238.63 4.019E-01 ( 4.952E-02 6.24E+00 4.31E+01 G<br>300.09 6.554E-01 + 6.164E-01 3.08E+01 3.27E+00 G                                                                                                                                                                                                                                                       |             |

ARS1-23-01973 Page 123 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM AAA Spectrum name: ARS06053.An1 Nuclide Ave activity Energy Activity Code Peak MDA Comments TL-208 1.2562E-01 2.10E+03 583.14 1.256E-01 ( 3.189E-02 1.31E+01 8.60E+01 G 510.72 6.450E-01 + 1.231E-01 1.13E+01 2.25E+01 G 860.47-2.049E-02 -5.536E-01 7.85E+02 1.20E+01 G 277.36-1.748E-01 -6.015E-01 1.03E+02 6.50E+00 G 763.30-4.104E-02 & 3.743E+00 2.65E+03 1.70E+00 G PA-234 1.2562E-01 1.65E+12 98.44 1.781E-02 ( 7.087E-02 1.18E+02 2.51E+01 G 2.424E-01 6.80E+01 2.00E+01 G 946.00-1.075E-01 + 131.28-2.070E-02 & 1.324E-01 2.12E+02 2.00E+01 G 94.67-6.369E-02 & 3.551E-01 1.67E+02 1.55E+01 G 883.24 1.723E-01 ( 6.296E-01 1.09E+02 1.20E+01 G 926.70-1.339E-01 + 4.818E-01 1.06E+02 1.10E+01 G 569.26-2.885E-02 -3.421E-01 4.23E+02 1.04E+01 G 2.970E-01 3.81E+02 8.55E+00 G 111.00 2.569E-02 ( 733.00 1.696E-01 ?( 7.063E-01 1.24E+02 8.50E+00 G 7.558E-01 1.68E+02 7.80E+00 G 949.00-1.321E-01 + 880.51-3.730E-01 + 1.226E+00 9.83E+01 6.50E+00 G 226.87-2.120E-01 + 5.319E-01 8.73E+01 6.50E+00 G 831.10-2.793E-01 + 8.001E-01 1.11E+02 5.60E+00 G 808.10-4.345E-03 % 7.242E-01 6.15E+03 4.90E+00 G 99.70-5.315E-02 -1.131E+00 6.36E+02 4.70E+00 G 699.10-1.211E-01 + 8.983E-01 2.74E+02 4.60E+00 G 898.60 7.820E-01 ( 7.969E-01 4.16E+01 4.00E+00 G 1394.10-6.309E-01 + 1.384E+00 9.12E+01 3.90E+00 G CS-137 -4.9910E-03 1.10E+04 661.66-4.991E-03 ?( 4.358E-02 3.21E+02 8.52E+01 G CO-60 -3.2566E-02 1.93E+031173.24-3.257E-02 &( 6.136E-02 7.77E+01 9.99E+01 1332.50 1.418E-02 & 3.365E-02 9.39E+01 1.00E+02 1.6428E-02 EU-152 4.64E+03 40.12-9.406E-02 ?( 5.151E-01 1.65E+02 3.00E+01 G 121.78-7.166E-03 + 1.011E-01 4.17E+02 2.92E+01 G 344.30 4.200E-02 ?( 2.213E-01 1.57E+02 2.70E+01 G 2.568E-01 1.50E+02 2.12E+01 G 1408.08-7.023E-02 + 39.52-1.799E-01 + 9.952E-01 1.67E+02 1.60E+01 G 964.00 1.122E-01 &( 4.784E-01 1.26E+02 1.46E+01 G 1112.07-2.239E-01 + 6.237E-01 8.36E+01 1.36E+01 G 778.90 8.301E-02 ?( 2.990E-01 1.06E+02 1.30E+01 G 1085.80 5.166E-02 ?( 4.060E-01 3.01E+02 1.03E+01 G 45.40-2.680E-01 + 1.415E+00 1.59E+02 9.00E+00 G

244.67-1.678E-01 +

867.39 0.000E+00 -

8.892E-01 1.59E+02 7.62E+00 G

1.589E+00 1.00E+03 4.18E+00 G

ARS1-23-01973 Page 124 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM
 AAA
                                Spectrum name: ARS06053.An1
Nuclide Ave activity
                         Energy
                                  Activity Code Peak MDA Comments
EU-154
             4.4776E-02
                                                             3.10E+03
                           123.10 1.006E-02 &( 6.605E-02 1.95E+02 4.05E+01 G
                          1274.80 2.990E-02 ?(
                                               1.091E-01 1.43E+02 3.55E+01 G
                           723.30-1.061E-01 &
                                               3.393E-01 9.57E+01 1.97E+01 G
                          1004.80-4.407E-02 +
                                               2.608E-01 2.30E+02 1.76E+01 G
                            43.00-1.971E-01 +
                                              1.054E+00 1.61E+02 1.31E+01 G
                                              5.900E-01 1.00E+03 1.13E+01 G
                           873.20 0.000E+00 -
                           996.30-2.323E-03 % 4.263E-01 7.02E+03 1.07E+01 G
                                              1.953E+00 1.63E+02 7.30E+00 G
                            42.31-3.610E-01 +
                           248.04-2.002E-01 & 1.020E+00 1.53E+02 6.60E+00 G
                           591.70-8.558E-02 +
                                               7.084E-01 2.94E+02 4.60E+00 G
                            48.70 5.050E-01 ?( 2.604E+00 1.55E+02 4.20E+00 G
                           756.70-5.362E-01 &
                                               1.627E+00 9.09E+01 4.10E+00 G
   ( - This peak used in the nuclide activity average.
   * - Peak is too wide, but only one peak in library.
   ! - Peak is part of a multiplet and this area went
      negative during deconvolution.
   ? - Peak is too narrow.
   @ - Peak is too wide at FW25M, but ok at FWHM.
   % - Peak fails sensitivity test.
   $ - Peak identified, but first peak of this nuclide
      failed one or more qualification tests.
   + - Peak activity higher than counting uncertainty range.
   - - Peak activity lower than counting uncertainty range.
   = - Peak outside analysis energy range.
   & - Calculated peak centroid is not close enough to the
      library energy centroid for positive identification.
  P - Peakbackground subtraction
   } - Peak is too close to another for the activity
       to be found directly.
  Nuclide Codes:
                                      Peak Codes:
                                      G - Gamma Ray
  T - Thermal Neutron Activation
  F - Fast Neutron Activation
                                      X - X-Ray
   I - Fission Product
                                      P - Positron Decay
  N - Naturally Occurring Isotope
                                      S - Single-Escape
  P - Photon Reaction
                                      D - Double-Escape
  C - Charged Particle Reaction
                                    K - Key Line
  M - No MDA Calculation
                                      A - Not in Average
  R - Coincidence Corrected
                                      C - Coincidence Peak
```

ARS1-23-01973 Page 125 of 311

H - Halflife limit exceeded

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM Spectrum name: ARS06053.An1 AAA

| ***** D I S        | CARDED IS        | O T O P E P | E A K S **********                    |
|--------------------|------------------|-------------|---------------------------------------|
|                    | kground Net Area |             | Uncert Activity                       |
| Energy C           | ounts Counts     | Cts/Sec     | 2 Sigma %                             |
|                    |                  |             | · · · · · · · · · · · · · · · · · · · |
| EU-152 39.52       | 196838           |             | 333.05 -1.799E-01                     |
| EU-152 40.12       | 193138           |             | 329.66 -9.406E-02                     |
| EU-154 42.31       | 189338           |             | 325.56 -3.610E-01                     |
| EU-154 43.00       | 185538           |             | 322.02 -1.971E-01                     |
| EU-152 45.40       | 181738           |             | 317.89 -2.680E-01                     |
| EU-154 48.70       | 1608. 37         |             | 310.34 5.050E-01                      |
| U-238 63.29        | 76835            |             | 223.48 -3.792E-01                     |
| U-238 92.38        | 921. 18          |             | 482.33 2.281E-01                      |
| EU-152 121.78      | 3536             |             | 834.56 -7.166E-03                     |
| EU-154 123.10      | 285. 12          |             | 389.51 1.006E-02                      |
| U-235 143.76       | 270. 7           |             | 791.72 2.166E-02                      |
| U-235 163.35       | 350. 26          | . 0.007     | 207.26 2.021E-01                      |
| U-235 205.31       | 2496             | 0.002       | 702.39 -5.668E-02                     |
| EU-152 244.67      | 93527            | 0.008       | 318.00 -1.678E-01                     |
| EU-154 248.04      | 90628            | 0.008       | 305.78 -2.002E-01                     |
| EU-152 344.30      | 448. 19          | 0.005       | 314.51 4.200E-02                      |
| EU-154 591.70      | 585              |             | 588.42 -8.558E-02                     |
| CS-137 661.66      | 655              |             | 641.62 -4.991E-03                     |
| EU-154 723.30      | 196. –21         |             | 191.38 -1.061E-01                     |
| EU-154 756.70      | 18322            |             | 181.77 -5.362E-01                     |
| EU-152 778.90      | 56. 10           |             | 212.06 8.301E-02                      |
| EU-152 964.00      | 138. 14          |             | 252.50 1.122E-01                      |
| EU-154 1004.80     | 536              |             | 459.65 -4.407E-02                     |
| EU-152 1085.80     | 38. 4            |             | 601.25 5.166E-02                      |
| EU-152 1112.07     | 16522            |             | 167.14 -2.239E-01                     |
| CO-60 1173.24      | 7623             |             | 155.41 -3.257E-02                     |
| EU-154 1274.80     | 24. 7            |             | 286.57 2.990E-02                      |
| CO-60 1332.50      | 16. 9            |             | 187.77 1.418E-02                      |
| EU-152 1408.08     | 429              |             |                                       |
| P - Peakbackground |                  | 0.002       | 299.13 -7.023E-02                     |
| P - Peakbackground | Subtraction      |             |                                       |
| **** S U M M A R Y | OF NUCL          | IDES IN     | SAMPLE ****                           |
| Time of Coun       |                  | 2 Sigma     |                                       |
| Nuclide Activity   | Counting         | Total       | MDA                                   |
| pCi/g              | pCi/g            | pCi/g       | pCi/g                                 |
|                    |                  |             |                                       |
| U-235 #A 7.7446E-  | 02 1.6052E-01    | 1.6060E-01  | 0.260E+00                             |
| RA-226 # 7.6112E-  | 01 3.7055E-01    | 3.7310E-01  | 0.562E+00                             |
| Ra-228 3.5345E-    | 01 9.1505E-02    | 9.4172E-02  | 0.984E-01                             |
| Am-241 A 8.3131E-  | 02 5.9297E-02    | 5.9530E-02  | 0.872E-01                             |
| PB-210 A 9.4688E-  |                  | 6.4556E-01  | 0.102E+01                             |
| U-238 #A -3.7921E- | 01 8.4749E-01    | 8.4799E-01  | 0.141E+01                             |
| K-40 1.0382E+      | 01 8.1509E-01    | 1.0524E+00  | 0.118E+00                             |
|                    |                  |             |                                       |

Page 126 of 311 ARS1-23-01973

```
ORTEC g v - i (3263) Env32 G800W064 9/29/2023 12:33:13 PM
AAA
                             Spectrum name: ARS06053.An1
PB-214
          4.0326E-01 6.1334E-02
                                    6.9882E-02 0.643E-01
          3.6471E-01 7.8181E-02 8.1120E-02 0.732E-01
BI-214
BI-212 #A 2.5692E-01 2.9762E-01 2.9806E-01 0.514E+00
PB-212 4.0192E-01 5.0127E-02 5.7387E-02 0.495E-01
CO-60 #A -3.2566E-02 5.0610E-02 5.0624E-02 0.614E-01
EU-152 #A 1.6428E-02 2.7050E-02 2.7112E-02 0.515E+00
EU-154 #A 4.4776E-02 8.5760E-02 8.5812E-02 0.661E-01
  # - All peaks for activity calculation had bad shape.
  * - Activity omitted from total
 & - Activity omitted from total and all peaks had bad shape.
  < - MDA value printed.
 A - Activity printed, but activity < MDA.
 B - Activity < MDA and failed test.
 C - Area < Critical level.
 F - Failed fraction or key line test.
 H - Halflife limit exceeded
                             S U M M A R Y -----
Total Activity ( 2.6 to 1998.4 keV) 1.382E+01 pCi/g
Analyzed by: ____
                 Countroom
Reviewed by: _____
                 Supervisor
```

Laboratory: AAA

ARS1-23-01973 Page 127 of 311

ARS Aleut Analytical, LLC Port Allen Laboratory

Printed: 10/2/2023 8:03 AM Page 1 of 1 ARS1-B23-01775-09 **Batch Sample ID Analytical Batch** 9/29/2023 12:43 ARS1-B23-01775 **Analysis Date Analysis Code** GAM-IG21-SO **SDG** (ARS03) MCB 129 Fraction Detector Count Time (sec) 3600 Run

| Ortec Gamma |              | Library  | ITSI COUNT.Lib          |                               |             |  |  |  |
|-------------|--------------|----------|-------------------------|-------------------------------|-------------|--|--|--|
|             |              | Geometry | 250mL tuna can poly 194 | 250mL tuna can poly 1948-64-2 |             |  |  |  |
| Isotope     | Activity     | Units    | CSU                     | MDA                           | DL          |  |  |  |
| Am-241      | 1.6074E-002  | pCi/g    | 9.7801E-002             | 1.6400E-001                   | 8.2000E-002 |  |  |  |
| Bi-212      | 3.6678E-002  | pCi/g    | 9.7501E-002             | 6.7000E-001                   | 3.3500E-001 |  |  |  |
| Bi-214      | 4.0464E-001  | pCi/g    | 1.0339E-001             | 9.6300E-002                   | 4.8150E-002 |  |  |  |
| Co-60       | 0.0000E+000  | pCi/g    | 1.9329E-002             | 5.6000E-002                   | 2.8000E-002 |  |  |  |
| Cs-137      | -1.7115E-002 | pCi/g    | 3.6076E-002             | 5.1300E-002                   | 2.5650E-002 |  |  |  |
| Eu-152      | 5.1094E-002  | pCi/g    | 6.1431E-002             | 3.1500E-001                   | 1.5750E-001 |  |  |  |
| Eu-154      | 4.0673E-002  | pCi/g    | 6.9637E-002             | 8.0500E-002                   | 4.0250E-002 |  |  |  |
| K-40        | 9.7466E+000  | pCi/g    | 1.1166E+000             | 4.3300E-001                   | 2.1650E-001 |  |  |  |
| Pa-234      | 7.4481E-002  | pCi/g    | 1.1664E-001             | 1.2000E-001                   | 6.0000E-002 |  |  |  |
| Pb-210      | 6.8682E-001  | pCi/g    | 6.8618E-001             | 1.0200E+000                   | 5.1000E-001 |  |  |  |
| Pb-212      | 3.1334E-001  | pCi/g    | 6.3255E-002             | 7.1900E-002                   | 3.5950E-002 |  |  |  |
| Pb-214      | 4.4271E-001  | pCi/g    | 1.0040E-001             | 8.8700E-002                   | 4.4350E-002 |  |  |  |
| Ra-226      | 6.9224E-001  | pCi/g    | 4.9459E-001             | 7.6300E-001                   | 3.8150E-001 |  |  |  |
| Ra-228      | 4.6555E-001  | pCi/g    | 1.1566E-001             | 1.1200E-001                   | 5.6000E-002 |  |  |  |
| TI-208      | 1.4986E-001  | pCi/g    | 4.5926E-002             | 4.6900E-002                   | 2.3450E-002 |  |  |  |
| U-235       | 6.7918E-003  | pCi/g    | 2.4151E-001             | 4.0800E-001                   | 2.0400E-001 |  |  |  |
| U-238       | -2.3737E-001 | pCi/g    | 8.6601E-001             | 1.4600E+000                   | 7.3000E-001 |  |  |  |

ARS1-23-01973 Page 128 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM
AAA
                               Spectrum name: ARS03250.An1
Sample description
     Batch ID: 23-01775-09
     SDG ID: ARS1-23-01973-005 DUP Tech: SDW
Spectrum Filename: C:\User\ARS03250.An1
Acquisition information
      Start time:
                                  9/29/2023 12:43:06 PM
      Live time:
                               3600
                               3603
      Real time:
       Dead time:
                                  0.10 %
       Detector ID:
                                     17
Detector system
     (ARS03) MCB 129
Calibration
                                  1948-64-2 250mL tc poly cal 12-15-17.Clb
      Filename:
     250mL tuna can poly 1948-64-2
     12-15-17 EEC
       Energy Calibration
                                  12/15/2017 11:10:20 AM
           Created:
           Zero offset:
                                  0.253 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -1.778E-08 keV/channel^2
       Efficiency Calibration
           Created:
                                  12/15/2017 12:18:46 PM
           Type:
                                 Polynomial
           Uncertainty:
                                 1.552 %
           Coefficients:
                                 -0.414479 -4.439273
                                                       0.364604
                                 -0.031228 0.000978 -0.000011
Library Files
       Main analysis library:
                                ITSI COUNT.Lib
      Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
                                 10 (
       Start channel:
                                          2.75keV )
       Stop channel:
                               8000 ( 1997.02keV )
      Peak rejection level:
                               1000.000%
      Peak search sensitivity:
                                 1
       Sample Size:
                                  4.2471E+02 +/- 0.000E+00%
                                  1.0000E+06/(1.0000E+00*4.2471E+02) =
       Activity scaling factor:
                                  2.3545E+03
       Detection limit method:
                                  Req. Guide 4.16 Method
      Random error:
                                  1.000000E+00
       Systematic error:
                                  1.000000E+00
       Fraction Limit:
                                 0.000%
       Background width:
                                  5
       Half lives decay limit:
                                12.000
```

ARS1-23-01973 Page 129 of 311

# Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 152 of 384

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM AAA Spectrum name: ARS03250.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES ITSI.Pbc

9/21/2023 8:26:46 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1720

| **** S | UMMAI | R Y O  | F P E | A K S I   | N RAN   | GE     | ****                                  |       |
|--------|-------|--------|-------|-----------|---------|--------|---------------------------------------|-------|
| Peak   | Area  | Uncert | FWHM  | Corrctn   | Nuclide | Brnch. | Act.                                  | Nuc   |
| Energy |       |        |       | Factor    | Energy  | Ratio  | pCi/g                                 |       |
|        |       |        |       |           |         |        |                                       |       |
| 23.99  | 18.   |        | 0.34  | 1.393E-02 |         |        |                                       |       |
| 46.70  | 93.   |        | 0.67  | 2.648E-02 | 46.52   | 4.000  | _                                     |       |
| 48.70  |       | 169.97 | 0.88  | 2.769E-02 | 48.70   | 4.200  | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 57.76  |       | 106.53 | 0.44  | 3.327E-02 |         |        |                                       |       |
| 59.54  | 11.   | 304.20 | 0.89  | 3.431E-02 | 59.54   | 35.900 |                                       |       |
| 63.18  |       | 33.51  | 0.53  | 3.632E-02 | 63.29   | 3.900  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 67.91  |       | 210.84 | 0.41  | 3.865E-02 |         |        |                                       |       |
| 74.73  | 140.  |        | 0.90  | 4.139E-02 |         |        |                                       |       |
| 77.25  | 156.  |        | 0.90  | 4.221E-02 |         |        |                                       |       |
| 87.07  | 70.   | 26.59  | 0.91  | 4.451E-02 |         |        |                                       |       |
| 89.91  | 50.   | 36.30  | 0.91  | 4.491E-02 |         |        |                                       |       |
| 92.91  | 99.   | 19.90  | 0.92  | 4.524E-02 | 92.38   | 2.570  | _                                     |       |
|        |       |        |       |           | 92.80   | 3.000  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 105.70 | 28.   |        | 0.67  | 4.565E-02 |         |        |                                       |       |
| 121.78 |       | 107.84 | 0.94  | 4.465E-02 | 121.78  | 29.240 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 137.24 | 21.   | 66.80  | 0.95  | 4.286E-02 |         |        |                                       |       |
| 139.14 |       | 140.11 | 0.96  | 4.262E-02 |         |        |                                       |       |
| 156.05 | 25.   | 55.81  | 0.29  | 4.033E-02 |         |        |                                       |       |
| 185.94 | 86.   | 19.66  | 1.00  | 3.632E-02 | 186.21  | 3.640  | PBC <mda< td=""><td>RA226</td></mda<> | RA226 |
| 188.62 | 25.   | 56.19  | 1.00  | 3.598E-02 |         |        |                                       |       |
| 191.94 | 16.   | 80.79  | 1.00  | 3.557E-02 |         |        |                                       |       |
| 209.22 | 33.   | 39.54  | 1.02  | 3.349E-02 |         |        |                                       |       |
| 212.12 | 12.   | 98.08  | 1.02  | 3.317E-02 |         |        |                                       |       |
| 222.82 | 8.    | 108.99 | 0.74  | 3.206E-02 |         |        |                                       |       |
| 238.63 | 232.  | 9.22   | 0.84  | 3.050E-02 | 238.63  | 43.100 | 2.739E-01                             | PB212 |
| 241.97 | 54.   | 31.51  | 1.05  | 3.019E-02 | 241.98  | 7.500  | 4.208E-01                             | PB214 |
| 244.67 | 19.   | 194.21 | 1.05  | 2.995E-02 | 244.67  | 7.616  | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
|        |       |        |       |           |         |        |                                       |       |

ARS1-23-01973 Page 130 of 311

| 260.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pk energy | area | uncert | fwhm | corr      | nuclide | brnch. | act.                                  | nuc   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|--------|------|-----------|---------|--------|---------------------------------------|-------|
| 295.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |        |      |           |         |        |                                       |       |
| 322.14 6. 92.63 0.34 2.439E-02 338.29 85. 18.93 0.54 2.351E-02 338.40 12.010 5.159E-01 Ra228 344.30 16. 87.03 1.13 2.321E-02 344.30 27.000 PBC <mda 0.26="" 0.35="" 0.46="" 0.48="" 0.50="" 0.84="" 1.28="" 1.45="" 1.650e-02<="" 1.720e-02="" 1.743e-02="" 1.811e-02="" 11.89="" 175.="" 2.000e-02="" 2.158e-02="" 2.254e-02="" 2.284e-02="" 20.="" 208.="" 21.="" 22.500="" 3.989e-01="" 35.800="" 351.87="" 351.92="" 358.08="" 379.92="" 421.52="" 44.99="" 45.51="" 483.75="" 510.72="" 510.82="" 520.20="" 552.01="" 60.78="" 7.="" 7.888e-01="" 70.64="" 75.65="" 8.="" 8.86="" 80.45="" 9.="" eu152="" pb214="" td="" tl208=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |        |      |           |         |        |                                       |       |
| 338.29 85. 18.93 0.54 2.351E-02 338.40 12.010 5.159E-01 Ra228 344.30 16. 87.03 1.13 2.321E-02 344.30 27.000 PBC <mda 0.26="" 0.35="" 0.46="" 0.48="" 0.50="" 0.84="" 1.28="" 1.45="" 1.650e-02<="" 1.720e-02="" 1.743e-02="" 1.811e-02="" 11.89="" 175.="" 2.000e-02="" 2.158e-02="" 2.254e-02="" 2.284e-02="" 20.="" 208.="" 21.="" 22.500="" 3.989e-01="" 35.800="" 351.87="" 351.92="" 358.08="" 379.92="" 421.52="" 44.99="" 45.51="" 483.75="" 510.72="" 510.82="" 520.20="" 552.01="" 60.78="" 7.="" 7.888e-01="" 70.64="" 75.65="" 8.="" 8.86="" 80.45="" 9.="" eu152="" pb214="" td="" tl208=""><td></td><td></td><td></td><td></td><td></td><td>295.21</td><td>18.500</td><td>5.065E-01</td><td>PB214</td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |      |        |      |           | 295.21  | 18.500 | 5.065E-01                             | PB214 |
| 344.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |        |      |           |         |        |                                       |       |
| 351.87 208. 8.86 0.84 2.284E-02 351.92 35.800 3.989E-01 PB214 358.08 9. 70.64 0.50 2.254E-02 379.92 20. 44.99 1.45 2.158E-02 421.52 8. 80.45 0.26 2.000E-02 483.75 7. 75.65 0.46 1.811E-02 510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208 520.20 9. 60.78 0.48 1.720E-02 552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |      |        |      |           |         |        |                                       |       |
| 358.08 9. 70.64 0.50 2.254E-02<br>379.92 20. 44.99 1.45 2.158E-02<br>421.52 8. 80.45 0.26 2.000E-02<br>483.75 7. 75.65 0.46 1.811E-02<br>510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208<br>520.20 9. 60.78 0.48 1.720E-02<br>552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |      |        |      |           |         |        |                                       |       |
| 379.92 20. 44.99 1.45 2.158E-02<br>421.52 8. 80.45 0.26 2.000E-02<br>483.75 7. 75.65 0.46 1.811E-02<br>510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208<br>520.20 9. 60.78 0.48 1.720E-02<br>552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |      |        |      |           | 351.92  | 35.800 | 3.989E-01                             | PB214 |
| 421.52 8. 80.45 0.26 2.000E-02<br>483.75 7. 75.65 0.46 1.811E-02<br>510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208<br>520.20 9. 60.78 0.48 1.720E-02<br>552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |      |        |      |           |         |        |                                       |       |
| 483.75 7. 75.65 0.46 1.811E-02<br>510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208<br>520.20 9. 60.78 0.48 1.720E-02<br>552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |        |      |           |         |        |                                       |       |
| 510.82 175. 11.89 1.28 1.743E-02 510.72 22.500 7.888E-01 TL208 520.20 9. 60.78 0.48 1.720E-02 552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |        |      |           |         |        |                                       |       |
| 520.20 9. 60.78 0.48 1.720E-02<br>552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |      |        |      |           |         |        |                                       |       |
| 552.01 21. 45.51 0.35 1.650E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |        |      |           | 510.72  | 22.500 | 7.888E-01                             | TL208 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |        |      |           |         |        |                                       |       |
| 7 17265 122166926 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 16026 1602 |           |      |        |      |           |         |        |                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 569.26    |      | 172.65 | 1.32 | 1.615E-02 | 569.26  | 10.400 |                                       |       |
| 583.26 125. 13.50 1.22 1.588E-02 583.14 86.000 1.493E-01 TL208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |        |      |           |         |        |                                       |       |
| 591.70 15. 85.54 1.34 1.572E-02 591.70 4.600 PBC <mda eu154<="" td=""><td></td><td></td><td></td><td></td><td>1.572E-02</td><td></td><td></td><td></td><td></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |      |        |      | 1.572E-02 |         |        |                                       |       |
| 609.47 167. 10.76 0.89 1.540E-02 609.31 44.791 3.844E-01 BI214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |      |        |      | 1.540E-02 | 609.31  | 44.791 | 3.844E-01                             | BI214 |
| 671.06 2. 223.61 0.20 1.440E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 671.06    | 2.   | 223.61 | 0.20 | 1.440E-02 |         |        |                                       |       |
| 733.00 3. 639.89 1.46 1.355E-02 733.00 8.500 PBC <mda pa234<="" td=""><td></td><td>3.</td><td>639.89</td><td>1.46</td><td>1.355E-02</td><td>733.00</td><td>8.500</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 3.   | 639.89 | 1.46 | 1.355E-02 | 733.00  | 8.500  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 756.32 15. 35.40 0.47 1.326E-02 756.70 4.100 4.879E-01 EU154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 756.32    |      |        |      | 1.326E-02 |         |        | 4.879E-01                             | EU154 |
| 766.84 6. 257.32 1.49 1.312E-02 768.36 4.799 PBC <mda bi214<="" td=""><td>766.84</td><td></td><td></td><td>1.49</td><td>1.312E-02</td><td>768.36</td><td>4.799</td><td>PBC<mda< td=""><td>BI214</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 766.84    |      |        | 1.49 | 1.312E-02 | 768.36  | 4.799  | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 808.10 2. 585.10 1.52 1.266E-02 808.10 4.900 PBC <mda pa234<="" td=""><td>808.10</td><td>2.</td><td>585.10</td><td>1.52</td><td>1.266E-02</td><td>808.10</td><td>4.900</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 808.10    | 2.   | 585.10 | 1.52 | 1.266E-02 | 808.10  | 4.900  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 831.10 6. 181.79 1.54 1.242E-02 831.10 5.600 PBC <mda pa234<="" td=""><td>831.10</td><td>6.</td><td>181.79</td><td>1.54</td><td>1.242E-02</td><td>831.10</td><td>5.600</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 831.10    | 6.   | 181.79 | 1.54 | 1.242E-02 | 831.10  | 5.600  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 860.13 31. 29.49 0.35 1.212E-02 860.47 12.000 3.719E-01 TL208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 860.13    | 31.  | 29.49  | 0.35 | 1.212E-02 | 860.47  | 12.000 | 3.719E-01                             | TL208 |
| 867.39 10. 85.17 1.56 1.205E-02 867.39 4.176 PBC <mda eu152<="" td=""><td>867.39</td><td>10.</td><td>85.17</td><td>1.56</td><td>1.205E-02</td><td>867.39</td><td>4.176</td><td>PBC<mda< td=""><td>EU152</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 867.39    | 10.  | 85.17  | 1.56 | 1.205E-02 | 867.39  | 4.176  | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 880.51 1. 943.40 1.58 1.193E-02 880.51 6.500 PBC <mda pa234<="" td=""><td>880.51</td><td>1.</td><td>943.40</td><td>1.58</td><td>1.193E-02</td><td>880.51</td><td>6.500</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 880.51    | 1.   | 943.40 | 1.58 | 1.193E-02 | 880.51  | 6.500  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 898.60 5. 192.52 1.59 1.176E-02 898.60 4.000 PBC <mda pa234<="" td=""><td>898.60</td><td>5.</td><td>192.52</td><td>1.59</td><td>1.176E-02</td><td></td><td>4.000</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 898.60    | 5.   | 192.52 | 1.59 | 1.176E-02 |         | 4.000  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 911.52 90. 12.36 0.80 1.164E-02 911.07 29.000 4.447E-01 Ra228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 90.  | 12.36  | 0.80 | 1.164E-02 |         |        | 4.447E-01                             | Ra228 |
| 926.70 12. 78.22 1.61 1.150E-02 926.70 11.000 PBC <mda pa234<="" td=""><td>926.70</td><td>12.</td><td></td><td>1.61</td><td>1.150E-02</td><td>926.70</td><td>11.000</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 926.70    | 12.  |        | 1.61 | 1.150E-02 | 926.70  | 11.000 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 933.78 22. 31.23 0.31 1.144E-02 934.06 3.029 1.122E+00 BI214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 933.78    |      |        | 0.31 | 1.144E-02 |         | 3.029  | 1.122E+00                             | BI214 |
| 946.00 10. 100.05 1.63 1.134E-02 946.00 20.000 PBC <mda pa234<="" td=""><td></td><td></td><td></td><td>1.63</td><td>1.134E-02</td><td>946.00</td><td>20.000</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |      |        | 1.63 | 1.134E-02 | 946.00  | 20.000 | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 949.00 9. 110.44 1.63 1.131E-02 949.00 7.800 PBC <mda pa234<="" td=""><td>949.00</td><td>9.</td><td>110.44</td><td>1.63</td><td>1.131E-02</td><td>949.00</td><td>7.800</td><td>PBC<mda< td=""><td>PA234</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 949.00    | 9.   | 110.44 | 1.63 | 1.131E-02 | 949.00  | 7.800  | PBC <mda< td=""><td>PA234</td></mda<> | PA234 |
| 965.47 35. 19.32 1.64 1.117E-02 964.00 14.580 3.815E-01 EU152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 965.47    | 35.  | 19.32  | 1.64 | 1.117E-02 | 964.00  | 14.580 | 3.815E-01                             | EU152 |
| 964.60 5.452 PBC <mda ra228<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>5.452</td><td>PBC<mda< td=""><td>Ra228</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |        |      |           |         | 5.452  | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 969.22 38. 23.12 1.65 1.114E-02 968.90 17.460 PBC <mda ra228<="" td=""><td></td><td></td><td></td><td></td><td></td><td>968.90</td><td>17.460</td><td>PBC<mda< td=""><td>Ra228</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |      |        |      |           | 968.90  | 17.460 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 1001.40 27. 22.73 1.53 1.088E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1001.40   | 27.  | 22.73  | 1.53 | 1.088E-02 |         |        |                                       |       |
| 1004.80 11. 107.59 1.67 1.086E-02 1004.80 17.600 PBC <mda eu154<="" td=""><td></td><td>11.</td><td>107.59</td><td></td><td>1.086E-02</td><td>1004.80</td><td>17.600</td><td>PBC<mda< td=""><td>EU154</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | 11.  | 107.59 |      | 1.086E-02 | 1004.80 | 17.600 | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 1085.80 12. 76.98 1.74 1.026E-02 1085.80 10.290 PBC <mda eu152<="" td=""><td>1085.80</td><td>12.</td><td>76.98</td><td>1.74</td><td>1.026E-02</td><td>1085.80</td><td>10.290</td><td>PBC<mda< td=""><td>EU152</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1085.80   | 12.  | 76.98  | 1.74 | 1.026E-02 | 1085.80 | 10.290 | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 1120.82 45. 20.73 1.17 1.002E-02 1120.29 14.797 4.660E-01 BI214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1120.82   | 45.  | 20.73  | 1.17 | 1.002E-02 | 1120.29 | 14.797 | 4.660E-01                             | BI214 |
| 1149.61 18. 33.83 1.78 9.837E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 18.  | 33.83  | 1.78 | 9.837E-03 |         |        |                                       |       |
| 1155.78 19. 34.73 1.79 9.797E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1155.78   |      |        | 1.79 |           |         |        |                                       |       |
| 1274.80 1.841.63 1.88 9.092E-03 1274.80 35.500 PBC <mda eu154<="" td=""><td>1274.80</td><td>1.</td><td>841.63</td><td>1.88</td><td>9.092E-03</td><td>1274.80</td><td>35.500</td><td>PBC<mda< td=""><td>EU154</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1274.80   | 1.   | 841.63 | 1.88 | 9.092E-03 | 1274.80 | 35.500 | PBC <mda< td=""><td>EU154</td></mda<> | EU154 |
| 1336.96 17. 30.68 2.43 8.758E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | 17.  |        |      |           |         |        |                                       |       |
| 1378.18 16. 52.47 1.96 8.551E-03 1377.67 3.919 PBC <mda bi214<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>3.919</td><td>PBC<mda< td=""><td>BI214</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |      |        |      |           |         | 3.919  | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 1408.08 4. 215.49 1.98 8.401E-03 1408.08 21.210 PBC <mda eu152<="" td=""><td></td><td>4.</td><td></td><td>1.98</td><td>8.401E-03</td><td>1408.08</td><td></td><td>PBC<mda< td=""><td>EU152</td></mda<></td></mda>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | 4.   |        | 1.98 | 8.401E-03 | 1408.08 |        | PBC <mda< td=""><td>EU152</td></mda<> | EU152 |
| 1461.27 494. 4.55 2.04 8.150E-03 1460.75 10.700 9.747E+00 K40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |      |        |      |           | 1460.75 | 10.700 | 9.747E+00                             | K40   |
| 1588.18 16. 25.00 1.75 7.596E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1588.18   | 16.  | 25.00  | 1.75 | 7.596E-03 |         |        |                                       |       |

ARS1-23-01973 Page 131 of 311

| pk energy | area | uncert | fwhm | corr      | nuclide | brnch. | act.                                  | nuc   |
|-----------|------|--------|------|-----------|---------|--------|---------------------------------------|-------|
| 1620.56   | 4.   | 132.88 | 2.13 | 7.464E-03 | 1620.56 | 2.750  | PBC <mda< td=""><td>BI212</td></mda<> | BI212 |
| 1764.69   | 32.  | 19.95  | 0.39 | 6.916E-03 | 1764.49 | 15.357 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |

|         |         | I D E N T I  |        | PEAK      |         | M A R Y |          |    |
|---------|---------|--------------|--------|-----------|---------|---------|----------|----|
| Peak Ce |         | Background 1 |        |           | Uncert  |         | Suspecte |    |
| Channel | Energy  | Counts       | Counts | * Area 2  | Sigma % | keV     | Nuclide  | 3  |
| 95.06   | 23.99   | 91.          | 18.    | 1.292E+03 | 157.13  | 0.337   | RH-106   |    |
| 230.28  | 57.76   | 78.          | 12.    | 3.487E+02 | 213.07  | 0.443   | TH-234   |    |
| 270.92  | 67.91   |              | 6.     | 1.656E+02 | 421.68  | 0.406   | NP-239   |    |
| 298.24  | 74.75   | 191.         |        | 3.373E+03 | 32.74   | 0.899   | TH-234   | sD |
| 308.34  | 77.27   | 175.         | 156.   | 3.706E+03 | 28.75   | 0.901   | PB-212   | D  |
| 348.15  | 87.22   | 138.         | 69.    | 1.549E+03 | 53.91   | 0.910   | PB-212   | sD |
| 359.50  | 90.05   | 148.         | 40.    | 8.819E+02 | 92.42   | 0.913   | AC-228   | sD |
| 422.25  | 105.70  | 88.          | 28.    | 6.134E+02 | 104.20  | 0.673   | AC-228   | s  |
| 548.54  | 137.35  | 84.          | 21.    | 4.799E+02 | 133.60  | 0.954   | BR-82    | sc |
| 556.14  | 139.25  | 100.         | 10.    | 2.425E+02 | 280.22  | 0.956   | CE-143   | sc |
| 623.88  | 156.05  | 84.          | 25.    | 6.298E+02 | 111.62  | 0.294   | TA-182   | s  |
| 753.15  | 188.55  | 88.          | 22.    | 6.081E+02 | 128.66  | 0.999   | FE-59    | sD |
| 766.41  | 191.87  | 78.          | 14.    | 3.871E+02 | 189.73  | 1.002   | CS-138   | sc |
| 836.81  | 209.49  | 70.          | 33.    | 9.955E+02 | 79.08   | 1.017   | AC-228   | sD |
| 848.40  | 212.39  | 65.          | 12.    | 3.678E+02 | 196.16  | 1.020   | NP-237   | sc |
| 891.24  | 222.82  | 39.          | 8.     | 2.589E+02 | 217.98  | 0.743   | BA-133   | sc |
| 1040.35 | 260.39  | 40.          | 5.     | 1.888E+02 | 332.59  | 0.240   | -        | sc |
| 1289.01 | 322.14  | 18.          | 6.     | 2.665E+02 | 185.26  | 0.343   | -        | sc |
| 1432.94 | 358.08  | 15.          | 9.     | 3.859E+02 | 141.28  | 0.498   | J-131    | sc |
| 1520.43 | 379.92  | 27.          | 20.    | 9.454E+02 | 89.98   | 1.452   | MO-99    | s  |
| 1687.05 | 421.52  | 17.          | 8.     | 3.950E+02 | 160.89  | 0.258   | CS-138   | sc |
| 1936.27 | 483.75  | 13.          | 7.     | 4.085E+02 | 151.30  | 0.464   | _        | sc |
| 2082.28 | 520.20  | 10.          | 9.     | 4.999E+02 | 121.55  | 0.480   | _        | s  |
| 2209.71 | 552.01  |              | 21.    |           | 91.01   | 0.347   | W - 187  | s  |
| 2686.58 | 671.06  | 6.           | 2.     | 1.041E+02 | 447.21  |         | J-132    | sc |
| 3028.11 | 756.32  | 6.           | 15.    | 1.131E+03 | 70.80   | 0.466   | ZR-95    | s  |
| 3866.64 | 965.33  | 29.          | 26.    | 2.331E+03 | 70.52   | 1.642   | AC-228   | sD |
| 4009.94 | 1001.40 | 4.           | 27.    |           | 45.46   | 1.535   | _        | s  |
| 4603.75 | 1149.66 | 10.          |        | 1.848E+03 | 67.66   |         | CS-138   | sD |
| 4628.47 | 1155.82 |              |        | 1.929E+03 | 69.45   |         | BI-214   | sD |
| 5354.47 | 1336.96 | 3.           | 17.    | 1.964E+03 | 61.35   |         | CO-60    | s  |
| 6361.25 | 1588.18 | 0.           | 16.    | 2.106E+03 | 50.00   |         | AC-228   | s  |
| 7073.62 | 1765.95 | 25.          | 12.    | 1.743E+03 | 130.04  | 2.232   | RH-106   | sD |

s - Peak fails shape tests.

\_\_\_\_\_

This section based on library: ITSI COUNT.Lib

ARS1-23-01973 Page 132 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

| *****   | ***** T  | DENTI    | ч п.н. р   | EAK S    | TI M M A | R Y *****  | *****   |
|---------|----------|----------|------------|----------|----------|------------|---------|
| Nuclide | Peak     | Centroid | Background | Net Area | Intensit |            |         |
| Nacitae | Channel  |          | Counts     | Counts   | Cts/Sec  | 2 Sigma %  |         |
|         | CHAIHICI | Eliciay  | Couries    | Courtes  | CCB/ BCC | z bigina e | ) 11C V |
| EU-152  | 157.23   | 39.52    | 683.       | -22.     | -0.006   | 339.53     | 0.868s  |
| EU-152  | 159.64   | 40.12    | 661.       | -15.     | -0.004   | 485.79     | 0.868s  |
| EU-152  | 180.78   | 45.40    | 683.       | -22.     | -0.006   | 337.47     | 0.873s  |
| PB-210  | 185.99   | 46.70    | 156.       | 41.      | 0.011    | 99.42      | 0.669   |
| EU-154  | 193.99   | 48.70    | 375.       | 16.      | 0.005    | 339.95     | 0.876s  |
| Am-241  | 237.40   | 59.54    | 575.       | 11.      | 0.003    | 608.40     | 0.886   |
| U-238   | 252.42   | 63.29    | 606.       | -19.     | -0.005   | 364.76     | 0.889s  |
| U-238   | 368.90   | 92.38    | 1188.      | -53.     | -0.015   | 134.03     | 0.915   |
| U-238   | 370.59   | 92.80    | 1089.      | -36.     | -0.010   | 85.95      | 0.915A  |
| PA-234  | 393.17   | 98.44    | 261.       | -3.      | -0.001   | 1362.66    | 0.920s  |
| EU-152  | 486.63   | 121.78   | 295.       | 23.      | 0.006    | 215.68     | 0.941s  |
| EU-154  | 491.92   | 123.10   | 290.       | -15.     | -0.004   | 330.21     | 0.942s  |
| U-235   | 653.10   | 163.35   | 203.       | -11.     | -0.003   | 421.39     | 0.977   |
| RA-226  | 744.65   | 186.21   | 136.       | 52.      | 0.014    | 71.17      | 0.997D  |
| U-235   | 821.14   | 205.31   | 389.       | -14.     | -0.004   | 415.30     | 1.014s  |
| PA-234  | 907.48   | 226.87   | 348.       | -29.     | -0.008   | 132.93     | 1.032   |
| PB-212  | 954.57   | 238.63   | 118.       | 233.     | 0.065    | 18.71      | 1.043D  |
| PB-214  | 967.99   | 241.98   | 115.       | 54.      | 0.015    | 63.02      | 1.046D  |
| EU-152  | 978.76   | 244.67   | 701.       | 19.      | 0.005    | 388.43     | 1.048s  |
| EU-154  | 992.26   | 248.04   | 769.       | -23.     | -0.006   | 338.25     | 1.051s  |
| TL-208  | 1109.68  | 277.36   | 101.       | 16.      | 0.004    | 211.72     | 1.076s  |
| PB-214  | 1181.18  | 295.21   | 56.        | 146.     | 0.041    | 22.35      | 1.092D  |
| PB-212  | 1200.71  | 300.09   | 373.       | -11.     | -0.003   | 235.45     | 1.096s  |
| Ra-228  | 1353.69  | 338.29   | 61.        | 82.      | 0.023    | 39.92      | 0.543s  |
| EU-152  | 1377.77  | 344.30   | 73.        | 16.      | 0.004    | 174.06     | 1.134   |
| PB-214  | 1408.09  | 351.87   | 68.        | 184.     | 0.051    | 20.97      | 0.841s  |
| TL-208  | 2044.31  | 510.72   | 111.       | 156.     | 0.043    | 24.85      | 2.524s  |
| PA-234  | 2278.79  | 569.26   | 46.        | 7.       | 0.002    | 345.30     | 1.323s  |
| TL-208  | 2334.87  | 583.26   | 52.        | 115.     | 0.032    | 29.99      | 1.223   |
| EU-154  | 2368.67  | 591.70   | 51.        | 15.      | 0.004    | 171.08     | 1.342   |
| BI-214  | 2439.86  | 609.47   | 56.        | 150.     | 0.042    | 24.84      | 0.890s  |
| CS-137  | 2648.91  | 661.66   | 51.        | -12.     | -0.003   | 210.75     | 1.399s  |
| PA-234  | 2798.88  | 699.10   | 60.        | -12.     | -0.003   | 227.30     | 1.430s  |
| EU-154  | 2895.82  | 723.30   | 137.       | -17.     | -0.005   | 202.87     | 1.449s  |
| BI-212  | 2911.32  | 727.17   | 156.       | -3.      | -0.001   | 1501.74    | 1.452s  |
| PA-234  | 2934.68  | 733.00   | 148.       | 3.       | 0.001    | 1279.78    | 1.457s  |
| EU-154  | 3029.62  | 756.70   | 44.        | -2.      | 0.000    | 1050.57    | 1.476s  |
| TL-208  | 3056.06  | 763.30   | 66.        | -11.     | -0.003   | 212.32     | 1.482s  |
| BI-214  | 3076.31  | 768.36   | 102.       | 6.       | 0.002    | 514.64     | 1.486s  |
| EU-152  | 3118.55  | 778.90   | 51.        | -7.      | -0.002   | 357.81     | 1.494s  |
| BI-212  | 3144.67  | 785.42   | 53.        | -9.      | -0.003   | 321.70     | 1.499   |
| PA-234  | 3235.53  | 808.10   | 35.        | 2.       | 0.000    | 1170.21    | 1.518s  |
| PA-234  | 3327.67  | 831.10   | 42.        | 6.       | 0.002    | 363.58     | 1.536s  |
| TL-208  | 3443.98  | 860.13   | 12.        | 31.      | 0.008    | 58.98      | 0.349s  |
|         |          |          |            |          |          |            |         |

ARS1-23-01973 Page 133 of 311

| Nuclide | Channel | Energy  | Background | Net area    | Cnts/sec | Uncert  | FWHM   |
|---------|---------|---------|------------|-------------|----------|---------|--------|
| EU-152  | 3473.05 | 867.39  | 34.        | 10.         | 0.003    | 170.34  | 1.565s |
| EU-154  | 3496.33 | 873.20  | 54.        | -6 <b>.</b> | -0.002   | 338.39  | 1.569s |
| PA-234  | 3525.61 | 880.51  | 44.        | 1.          | 0.000    | 1886.80 | 1.575s |
| PA-234  | 3536.55 | 883.24  | 44.        | 0.          | 0.000    | 2000.00 | 1.578s |
| PA-234  | 3598.08 | 898.60  | 26.        | 5.          | 0.001    | 385.05  | 1.590s |
| Ra-228  | 3649.83 | 911.52  | 16.        | 85.         | 0.024    | 26.75   | 0.803s |
| PA-234  | 3710.66 | 926.70  | 22.        | 12.         | 0.003    | 156.43  | 1.612s |
| BI-214  | 3739.01 | 933.78  | 9.         | 22.         | 0.006    | 62.46   | 0.310s |
| PA-234  | 3787.98 | 946.00  | 44.        | 10.         | 0.003    | 200.09  | 1.627s |
| PA-234  | 3800.00 | 949.00  | 40.        | 9.          | 0.002    | 220.87  | 1.629s |
| EU-152  | 3860.10 | 964.00  | 125.       | -14.        | -0.004   | 232.07  | 1.641s |
| Ra-228  | 3862.50 | 964.60  | 100.       | 2.          | 0.000    | 1727.45 | 1.642s |
| Ra-228  | 3879.73 | 968.90  | 74.        | 9.          | 0.002    | 286.90  | 1.645s |
| EU-154  | 3989.51 | 996.30  | 81.        | -3.         | -0.001   | 915.85  | 1.667s |
| EU-154  | 4023.56 | 1004.80 | 65.        | 11.         | 0.003    | 215.19  | 1.673s |
| EU-152  | 4348.09 | 1085.80 | 24.        | 12.         | 0.003    | 153.96  | 1.736s |
| EU-152  | 4453.35 | 1112.07 | 44.        | -5.         | -0.001   | 472.72  | 1.756s |
| BI-214  | 4488.40 | 1120.82 | 20.        | 39.         | 0.011    | 49.59   | 1.169s |
| CO-60   | 4698.44 | 1173.24 | 36.        | 0.          | 0.000    | 2000.00 | 1.802  |
| BI-214  | 4958.38 | 1238.11 | 68.        | -2.         | -0.001   | 1295.83 | 1.852s |
| EU-154  | 5105.40 | 1274.80 | 29.        | 1.          | 0.000    | 1683.25 | 1.879s |
| CO-60   | 5336.62 | 1332.50 | 63.        | -15.        | -0.004   | 161.52  | 1.922s |
| BI-214  | 5517.62 | 1377.67 | 16.        | 16.         | 0.005    | 104.93  | 1.955s |
| PA-234  | 5583.46 | 1394.10 | 19.        | -8.         | -0.002   | 211.66  | 1.967s |
| EU-152  | 5639.49 | 1408.08 | 19.        | 4.          | 0.001    | 430.99  | 1.978s |
| K-40    | 5852.63 | 1461.27 | 16.        | 481.        | 0.134    | 9.49    | 2.042  |
| BI-212  | 6491.04 | 1620.56 | 5.         | 4.          | 0.001    | 265.75  | 2.130s |
| BI-214  | 7067.93 | 1764.49 | 35.        | 5.          | 0.001    | 334.58  | 2.231s |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| - Nuclide - |            | OF LIBRARY<br>Peak<br>Energy Activity Co                        |                | SAGE ****                                                               |
|-------------|------------|-----------------------------------------------------------------|----------------|-------------------------------------------------------------------------|
|             | pCi/g      | keV pCi/g                                                       | pCi/g          | COMMENTS                                                                |
| U-235       | 6.7918E-03 | 143.76 6.792E-03 &(<br>205.31-1.499E-01 &<br>163.35-1.033E-01 + | 1.047E+00 2.   | 1.39E+09<br>78E+03 1.05E+01 G<br>08E+02 4.70E+00 G<br>11E+02 4.70E+00 G |
| RA-226      | 6.9224E-01 | 186.21 6.922E-01 (                                              | P 7.630E-01 3. | 5.84E+05<br>56E+01 3.64E+00 G K                                         |

ARS1-23-01973 Page 134 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM AAA Spectrum name: ARS03250.An1

|         |              | -                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide | Ave activity | Energy Activity Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                                           |
| Ra-228  | 4.6555E-01   | 2.10E+03<br>911.07 4.447E-01 (P 1.119E-01 1.34E+01 2.90E+01 G<br>968.90 7.968E-02 - P 3.876E-01 1.43E+02 1.75E+01 G<br>338.40 5.159E-01 (P 2.441E-01 2.00E+01 1.20E+01 G<br>964.60 4.812E-02 - P 1.432E+00 8.64E+02 5.45E+00 G                                                                                                                                                                   |
| Am-241  | T 1.6074E-02 | 1.58E+05<br>59.54 1.607E-02 ?( 1.642E-01 3.04E+02 3.59E+01 G K                                                                                                                                                                                                                                                                                                                                   |
| PB-210  | 6.8682E-01   | 7.45E+03<br>46.52 6.868E-01 (P 1.021E+00 4.97E+01 4.00E+00 G                                                                                                                                                                                                                                                                                                                                     |
| U-238   | -2.3737E-01  | 1.63E+12<br>63.29-2.374E-01 ?(P 1.463E+00 1.82E+02 3.90E+00 G<br>92.80-4.682E-01 } P 2.039E+00 4.30E+01 3.00E+00 G<br>92.38-8.122E-01 } P 2.486E+00 6.70E+01 2.57E+00 G                                                                                                                                                                                                                          |
| K-40    | 9.7466E+00   | 4.68E+11<br>1460.75 9.747E+00 (P 4.330E-01 4.74E+00 1.07E+01 G                                                                                                                                                                                                                                                                                                                                   |
| PB-214  | 4.4271E-01   | 5.84E+05<br>351.92 3.989E-01 (P 8.866E-02 1.05E+01 3.58E+01 G<br>295.21 5.363E-01 (P 1.382E-01 1.12E+01 1.85E+01 G<br>241.98 4.208E-01 (P 4.115E-01 3.15E+01 7.50E+00 G                                                                                                                                                                                                                          |
| BI-214  | 4.0464E-01   | 5.84E+05<br>609.31 3.844E-01 (P 9.630E-02 1.24E+01 4.48E+01 G<br>1764.49 8.714E-02 - P 5.024E-01 1.67E+02 1.54E+01 G<br>1120.29 4.660E-01 (P 2.798E-01 2.48E+01 1.48E+01 G<br>1238.11-7.787E-02 - 1.338E+00 6.48E+02 5.86E+00 G<br>768.36 1.601E-01 & P 1.397E+00 2.57E+02 4.80E+00 G<br>1377.67 8.693E-01 + P 1.111E+00 5.25E+01 3.92E+00 G<br>934.06 1.122E+00 + 8.514E-01 3.12E+01 3.03E+00 G |
| BI-212  | 3.6678E-02   | 2.10E+03<br>727.17-2.784E-02 ?(P 6.700E-01 7.51E+02 1.18E+01 G<br>1620.56 3.135E-01 &(P 1.162E+00 1.33E+02 2.75E+00 G<br>785.42-6.411E-01 + P 2.515E+00 1.61E+02 2.00E+00 G                                                                                                                                                                                                                      |
| PB-212  | 3.1334E-01   | 2.10E+03<br>238.63 3.133E-01 (P 7.185E-02 9.35E+00 4.31E+01 G<br>300.09-2.382E-01 - P 1.950E+00 1.18E+02 3.27E+00 G                                                                                                                                                                                                                                                                              |
| TL-208  | 1.4986E-01   | 2.10E+03<br>583.14 1.493E-01 (P 4.685E-02 1.50E+01 8.60E+01 G<br>510.72 7.050E-01 + 2.331E-01 1.24E+01 2.25E+01 G<br>860.47 3.719E-01 + 2.324E-01 2.95E+01 1.20E+01 G                                                                                                                                                                                                                            |

ARS1-23-01973 Page 135 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM AAA Spectrum name: ARS03250.An1 Nuclide Ave activity Activity Code Peak MDA Comments Energy 277.36 1.570E-01 ?(P 4.937E-01 1.06E+02 6.50E+00 G 763.30-8.918E-01 -3.208E+00 1.06E+02 1.70E+00 G PA-234 7.4481E-02 1.65E+12 98.44-4.001E-03 & (P 1.204E-01 6.81E+02 2.51E+01 G 946.00 7.718E-02 ?( 2.624E-01 1.00E+02 2.00E+01 G 131.28 3.242E-03 % 1.525E-01 1.48E+03 2.00E+01 G 94.67-6.786E-04 % P 3.869E-01 6.22E+03 1.55E+01 G 883.24 0.000E+00 -4.162E-01 1.00E+03 1.20E+01 G 926.70 1.607E-01 &( 3.459E-01 7.82E+01 1.10E+01 G 569.26 7.368E-02 &(P 3.612E-01 1.73E+02 1.04E+01 G 111.00-1.637E-03 % P 3.388E-01 6.57E+03 8.55E+00 G 733.00 4.144E-02 ?( 9.114E-01 6.40E+02 8.50E+00 G 949.00 1.737E-01 ?(P 6.418E-01 1.10E+02 7.80E+00 G 880.51 2.280E-02 ?( 7.666E-01 9.43E+02 6.50E+00 G 226.87-2.484E-01 + P 7.701E-01 6.65E+01 6.50E+00 G 831.10 1.627E-01 ?( 8.329E-01 1.82E+02 5.60E+00 G 808.10 5.128E-02 ?( 8.648E-01 5.85E+02 4.90E+00 G 99.70 1.195E-02 & P 6.558E-01 1.63E+03 4.70E+00 G 699.10-3.293E-01 + 1.065E+00 1.14E+02 4.60E+00 G 898.60 1.842E-01 ?(P 9.967E-01 1.93E+02 4.00E+00 G 1394.10-4.538E-01 + P 1.246E+00 1.06E+02 3.90E+00 G CS-137 -1.7115E-02 1.10E + 04661.66-1.711E-02 ?( 5.133E-02 1.05E+02 8.52E+01 G EU-152 5.1094E-02 4.64E+03 40.12-3.866E-02 &( 3.147E-01 2.43E+02 3.00E+01 G 121.78 3.109E-02 &( 1.121E-01 1.08E+02 2.92E+01 G 344.30 4.563E-02 ?( 1.198E-01 8.70E+01 2.70E+01 G 1408.08 3.968E-02 ?( 2.284E-01 2.15E+02 2.12E+01 G 39.52-1.072E-01 & 6.084E-01 1.70E+02 1.60E+01 G 5.939E-01 1.16E+02 1.46E+01 G 964.00-1.517E-01 + 1112.07-6.713E-02 & 4.349E-01 2.36E+02 1.36E+01 G 3.776E-01 1.79E+02 1.30E+01 G 778.90-7.542E-02 + 1085.80 2.073E-01 ( 4.259E-01 7.70E+01 1.03E+01 G 9.443E-01 1.69E+02 9.00E+00 G 45.40-1.675E-01 + 244.67 1.504E-01 ?( 9.770E-01 1.94E+02 7.62E+00 G 867.39 3.631E-01 ?( 1.044E+00 8.52E+01 4.18E+00 G 4.0673E-02 EU-154 3.10E+03 123.10-1.449E-02 ?( 8.050E-02 1.65E+02 4.05E+01 G 1274.80 6.572E-03 ?( 1.518E-01 8.42E+02 3.55E+01 G 3.754E-01 1.01E+02 1.97E+01 G 723.30-1.102E-01 + 1004.80 1.022E-01 ?( 3.731E-01 1.08E+02 1.76E+01 G 43.00 2.096E-08 % 6.658E-01 9.42E+08 1.31E+01 G 873.20-8.266E-02 + 4.833E-01 1.69E+02 1.13E+01 G 996.30-4.234E-02 + 6.744E-01 4.58E+02 1.07E+01 G

ARS1-23-01973 Page 136 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM AAA Spectrum name: ARS03250.An1

- ( This peak used in the nuclide activity average.
- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

### Nuclide Codes:

T - Thermal Neutron Activation G - F - Fast Neutron Activation X -

I - Fission Product

N - Naturally Occurring Isotope

P - Photon Reaction

C - Charged Particle Reaction

M - No MDA Calculation

R - Coincidence Corrected

H - Halflife limit exceeded

# Peak Codes:

G - Gamma Ray

X - X-Ray

P - Positron Decay

S - Single-Escape

D - Double-Escape

K - Key Line

A - Not in Average

C - Coincidence Peak

| *******<br>Nuclide | D      | ISCARD<br>Background<br>Counts | E D I S O<br>Net Area<br>Counts | T O P E<br>Intensity<br>Cts/Sec | PEAKS<br>Uncert<br>2 Sigma | Activity   | **** |
|--------------------|--------|--------------------------------|---------------------------------|---------------------------------|----------------------------|------------|------|
| EU-152             | 39.52  | 683.                           | -22.                            | -0.006                          | 339.53                     | -1.072E-01 |      |
| EU-152             | 40.12  | 661.                           | -15.                            | -0.004                          | 485.79                     | -3.866E-02 |      |
| EU-152             | 45.40  | 683.                           | -22.                            | -0.006                          | 337.47                     | -1.675E-01 |      |
| EU-154             | 48.70  | 375.                           | 16.                             | 0.005                           | 339.95                     | 2.474E-01  |      |
| Am-241             | 59.54  | 575.                           | 11.                             | 0.003                           | 608.40                     | 1.607E-02  |      |
| U-238              | 63.29  | 606.                           | -19.                            | -0.005                          | 364.76                     | -2.374E-01 | P    |
| U-238              | 92.38  | 1188.                          | -53.                            | -0.015                          | 134.03                     | -8.122E-01 | P    |
| U-238              | 92.80  | 1089.                          | -36.                            | -0.010                          | 85.95                      | -4.682E-01 | P    |
| PA-234             | 98.44  | 261.                           | -3.                             | -0.001                          | 1362.66                    | -4.001E-03 | P    |
| EU-152             | 121.78 | 295.                           | 23.                             | 0.006                           | 215.68                     | 3.109E-02  |      |

ARS1-23-01973 Page 137 of 311

| Nuclide | Channel |     | Background |        |           |            | MHW |
|---------|---------|-----|------------|--------|-----------|------------|-----|
| EU-154  | 123.10  | 290 |            |        |           | -1.449E-02 |     |
| U-235   | 163.35  | 203 |            |        |           | -1.033E-01 |     |
| U-235   | 205.31  | 389 |            |        |           | -1.499E-01 |     |
| PA-234  | 226.87  | 348 |            |        |           | -2.484E-01 | Р   |
| EU-152  | 244.67  | 701 |            |        |           | 1.504E-01  |     |
| EU-154  | 248.04  | 769 |            |        |           | -2.111E-01 |     |
| EU-152  | 344.30  | 73  |            |        |           | 4.563E-02  |     |
| PA-234  | 569.26  | 46  |            |        |           | 7.368E-02  | P   |
| EU-154  | 591.70  | 51  |            |        |           | 3.647E-01  |     |
| CS-137  | 661.66  | 51  |            |        |           | -1.711E-02 |     |
| PA-234  | 699.10  | 60  |            |        |           | -3.293E-01 |     |
| EU-154  | 723.30  | 137 |            |        | 202.87    | -1.102E-01 |     |
| BI-212  | 727.17  | 156 |            |        | L 1501.74 | -2.784E-02 | P   |
| PA-234  | 733.00  | 148 |            |        |           | 4.144E-02  |     |
| EU-154  | 756.70  | 44  | 2.         | 0.000  | 1050.57   | -5.855E-02 |     |
| EU-152  | 778.90  | 51  | 7.         | -0.002 | 2 357.81  | -7.542E-02 |     |
| BI-212  | 785.42  | 53  | . –9.      | -0.003 | 3 321.70  | -6.411E-01 | P   |
| PA-234  | 808.10  | 35  | . 2.       | 0.000  | 1170.21   | 5.128E-02  |     |
| PA-234  | 831.10  | 42  | . 6.       | 0.002  | 2 363.58  | 1.627E-01  |     |
| EU-152  | 867.39  | 34  | . 10.      | 0.003  | 3 170.34  | 3.631E-01  |     |
| EU-154  | 873.20  | 54  | 6.         | -0.002 | 338.39    | -8.266E-02 |     |
| PA-234  | 880.51  | 44  | . 1.       | 0.000  | 1886.80   | 2.280E-02  |     |
| PA-234  | 898.60  | 26  | . 5.       | 0.001  | L 385.05  | 1.842E-01  | P   |
| PA-234  | 926.70  | 22  | . 12.      | 0.003  | 3 156.43  | 1.607E-01  |     |
| PA-234  | 946.00  | 44  | . 10.      | 0.003  | 3 200.09  | 7.718E-02  |     |
| PA-234  | 949.00  | 40  | . 9.       | 0.002  | 2 220.87  | 1.737E-01  | P   |
| EU-152  | 964.00  | 125 | 14.        | -0.004 | 1 232.07  | -1.517E-01 |     |
| EU-154  | 996.30  | 81  | 3.         | -0.001 | L 915.85  | -4.234E-02 |     |
| EU-154  | 1004.80 | 65  | . 11.      | 0.003  | 3 215.19  | 1.022E-01  |     |
| EU-152  | 1085.80 | 24  | . 12.      | 0.003  | 3 153.96  | 2.073E-01  |     |
| EU-152  | 1112.07 | 44  | 5.         | -0.001 | L 472.72  | -6.713E-02 |     |
| EU-154  | 1274.80 | 29  | . 1.       | 0.000  | 1683.25   | 6.572E-03  |     |
| CO-60   | 1332.50 | 63  | 15.        | -0.004 | 161.52    | -2.953E-02 |     |
| PA-234  | 1394.10 | 19  | 8.         | -0.002 | 2 211.66  | -4.538E-01 | P   |
| EU-152  | 1408.08 | 19  | . 4.       | 0.001  | L 430.99  | 3.968E-02  |     |
| BI-212  | 1620.56 | 5   | . 4.       | 0.001  | L 265.75  | 3.135E-01  | P   |

P - Peakbackground subtraction

| ***** Nuclide                | S U M M A R Y Time of Count Activity pCi/g |            | I D E S I N<br>2 Sigma<br>Total<br>pCi/g | SAMPLE<br>MDA<br>pCi/g | **** |
|------------------------------|--------------------------------------------|------------|------------------------------------------|------------------------|------|
| U-235 ‡                      | •                                          |            | 2.4151E-01<br>4.9459E-01                 |                        |      |
| RA-226<br>Ra-228<br>Am-241 ± | 4.6555E-01                                 | 1.1186E-01 | 1.1566E-01<br>9 7801E-02                 | 0.112E+00              |      |

ARS1-23-01973 Page 138 of 311

```
ORTEC g v - i (3263) Env32 G800W064 9/29/2023 1:43:21 PM
AAA
                                        Spectrum name: ARS03250.An1
PB-210 A 6.8682E-01 6.8283E-01
                                                   6.8618E-01 0.102E+01
U-238 #A -2.3737E-01 8.6582E-01 8.6601E-01 0.146E+01
K-40 9.7466E+00 9.2493E-01 1.1166E+00 0.433E+00
PB-214 4.4271E-01 9.2820E-02 1.0040E-01 0.887E-01
BI-214 4.0464E-01 1.0050E-01 1.0339E-01 0.963E-01
BI-212 #A 3.6678E-02 9.7473E-02 9.7501E-02 0.670E+00
             3.1334E-01 5.8619E-02 6.3255E-02 0.719E-01
PB-212
TL-208
               1.4986E-01 4.4944E-02 4.5926E-02 0.469E-01
PA-234 #A 7.4481E-02 1.1651E-01 1.1664E-01 0.120E+00 CS-137 #A -1.7115E-02 3.6070E-02 3.6076E-02 0.513E-01 CO-60 #A 0.0000E+00 1.9329E-02 1.9329E-02 0.560E-01 EU-152 #A 5.1094E-02 6.1163E-02 6.1431E-02 0.315E+00
             4.0673E-02 6.9582E-02 6.9637E-02 0.805E-01
EU-154 #A
   # - All peaks for activity calculation had bad shape.
   * - Activity omitted from total
  & - Activity omitted from total and all peaks had bad shape.
   < - MDA value printed.
  A - Activity printed, but activity < MDA.
  B - Activity < MDA and failed test.
  C - Area < Critical level.
  F - Failed fraction or key line test.
  H - Halflife limit exceeded
                                        S U M M A R Y -----
______
Total Activity ( 2.8 to 1997.0 keV) 1.290E+01 pCi/g
Analyzed by: ____
                        Countroom
Reviewed by: ____
                        Supervisor
```

Laboratory: AAA

ARS1-23-01973 Page 139 of 311

Printed: 10/2/2023 11:12 AM Page 1 of 1

| ALE      | <del>L</del><br>UT | SDG                  | ARS1-                         | 23-0  | 1973                   |           |        |              |         |            |                |
|----------|--------------------|----------------------|-------------------------------|-------|------------------------|-----------|--------|--------------|---------|------------|----------------|
| Fraction | Cnt                | Client ID            | Aliquot                       | Units | Geometry               | Prep Type | Origin | Origin2      | ICOC ID | User       | Date           |
| 001      | 1                  | HPPC-ESU-315A-031    | Plastic Zip Bag<br>(25%-<50%) | NA    |                        | ORIG      | SCI    |              | 447544  | LHERBERT   | 9/7/2023 14:35 |
| 001      | 1                  | HPPC-ESU-315A-031    | 633.93                        | g     | Other Geometry         | DRYF      | PRP    |              | 447549  | KGALLAGHER | 9/7/2023 14:53 |
| 001      | 1                  | HPPC-ESU-315A-031    | 415.99                        | g     | 250 mL (8oz.) Tuna Can | DGAM      | PRP    |              | 447634  | KGALLAGHER | 9/8/2023 14:08 |
| 002      | 1                  | HPPC-ESU-315A-032    | Plastic Zip Bag<br>(25%-<50%) | NA    |                        | ORIG      | SCI    |              | 447545  | LHERBERT   | 9/7/2023 14:35 |
| 002      | 1                  | HPPC-ESU-315A-032    | 673                           | g     | Other Geometry         | DRYF      | PRP    |              | 447550  | KGALLAGHER | 9/7/2023 14:53 |
| 002      | 1                  | HPPC-ESU-315A-032    | 424.63                        | g     | 250 mL (8oz.) Tuna Can | DGAM      | PRP    |              | 447635  | KGALLAGHER | 9/8/2023 14:09 |
| 003      | 1                  | HPPC-ESU-315A-033    | Plastic Zip Bag<br>(25%-<50%) | NA    |                        | ORIG      | SCI    |              | 447546  | LHERBERT   | 9/7/2023 14:3  |
| 003      | 1                  | HPPC-ESU-315A-033    | 652.39                        | g     | Other Geometry         | DRYF      | PRP    |              | 447551  | KGALLAGHER | 9/7/2023 14:5  |
| 003      | 1                  | HPPC-ESU-315A-033    | 395.54                        | g     | 250 mL (8oz.) Tuna Can | DGAM      | PRP    |              | 447636  | KGALLAGHER | 9/8/2023 14:0  |
| 003      | 1                  | HPPC-ESU-315A-033    | 652.39                        | g     | Other Geometry         | DRYF      | PRP    |              | 447639  | KGALLAGHER | 9/8/2023 14:1  |
| 003      | 1                  | HPPC-ESU-315A-033    | 3.011                         | g     | 50mL Centrifuge Tube   | DRAD      | PRO    | PALA-RAD-032 | 447712  | KEASTMAN   | 9/12/2023 7:2  |
| 004      | 1                  | HPPC-ESU-315A-033-FD | Plastic Zip Bag<br>(25%-<50%) | NA    |                        | ORIG      | SCI    |              | 447547  | LHERBERT   | 9/7/2023 14:3  |
| 004      | 1                  | HPPC-ESU-315A-033-FD | 626.6                         | g     | Other Geometry         | DRYF      | PRP    |              | 447552  | KGALLAGHER | 9/7/2023 14:5  |
| 004      | 1                  | HPPC-ESU-315A-033-FD | 396.74                        | g     | 250 mL (8oz.) Tuna Can | DGAM      | PRP    |              | 447637  | KGALLAGHER | 9/8/2023 14:1  |
| 004      | 1                  | HPPC-ESU-315A-033-FD | 626.6                         | g     | Other Geometry         | DRYF      | PRP    |              | 447640  | KGALLAGHER | 9/8/2023 14:1  |
| 004      | 1                  | HPPC-ESU-315A-033-FD | 3.01                          | g     | 50mL Centrifuge Tube   | DRAD      | PRO    | PALA-RAD-032 | 447713  | KEASTMAN   | 9/12/2023 7:3  |
| 005      | 1                  | HPPC-ESU-315A-034    | Plastic Zip Bag<br>(25%-<50%) | NA    |                        | ORIG      | SCI    |              | 447548  | LHERBERT   | 9/7/2023 14:3  |
| 005      | 1                  | HPPC-ESU-315A-034    | 721.21                        | g     | Other Geometry         | DRYF      | PRP    |              | 447553  | KGALLAGHER | 9/7/2023 14:55 |
| 005      | 1                  | HPPC-ESU-315A-034    | 424.71                        | g     | 250 mL (8oz.) Tuna Can | DGAM      | PRP    |              | 447638  | KGALLAGHER | 9/8/2023 14:10 |

Page 140 of 311 ARS1-23-01973

Printed: 10/2/2023 11:12 AM

Page 1 of 1

ARS Aleut Analytical, LLC Port Allen Laboratory

# **Prep Batch Report**

Prep Batch ID ARS1-P23-01206 Matrix SO Prep Batch Type GammaDry PBatch Sample ID Basis SDG FR Dup Notes Storage Client ID Lab Deadline ARS1-P23-01206-01 DG21 ARS1-23-01973 001 PrePrep HPPC-ESU-315A-031 10/02/23 DG21 ARS1-P23-01206-02 ARS1-23-01973 002 PrePrep HPPC-ESU-315A-032 10/02/23 DG21, DRAD 003 ARS1-P23-01206-03 ARS1-23-01973 PrePrep HPPC-ESU-315A-033 10/02/23 DG21, DRAD 004 ARS1-P23-01206-04 ARS1-23-01973 PrePrep HPPC-ESU-315A-033-FD 10/02/23 DG21 ARS1-23-01973 10/02/23 ARS1-P23-01206-05 005 PrePrep HPPC-ESU-315A-034

ARS1-23-01973 Page 141 of 311

Printed: 10/2/2023 11:12 AM Page 1 of 2

### **Prep Batch Report - Gamma Spec Aliquot SDG** ICOC Parent ID **Prep Batch ID** FR Dup **Type** Geometry Tare g Cont+Smp g Net Sample g **Balance** ARS1-P23-01206-01 ARS1-23-01973 001 447634 447544 DG21 250 mL (8oz.) Tuna Can 42.06 458.05 415.99 1339 ARS1-P23-01206-02 ARS1-23-01973 002 447635 447545 DG21 250 mL (8oz.) Tuna Can 42.71 467.34 424.63 1339 ARS1-P23-01206-03 ARS1-23-01973 003 447636 447546 DG21, DRAD 250 mL (8oz.) Tuna Can 42.09 437.63 395.54 1339 ARS1-P23-01206-04 DG21, DRAD 004 250 mL (8oz.) Tuna Can 41.97 438.71 ARS1-23-01973 447637 447547 396.74 1339 ARS1-P23-01206-05 ARS1-23-01973 005 447548 DG21 250 mL (8oz.) Tuna Can 42.28 466.99 424.71 1339 447638

ARS1-23-01973 Page 142 of 311

Printed: 10/2/2023 11:12 AM Page 2 of 2

### **Prep Batch Report - Percent Moisture** Tare g Cont+Sample Net Sample Oven Prep Batch ID SDG FR Dup ICOC Parent Oven **Start Time Stop Time** Cont+Smp | Net Smp % Solid % Moisure **Balance** ID Temp C ID g ARS1-P23-01206-01 ARS1-23-01973 447549 447544 7.28 641.21 633.93 4 104 9/7/2023 15:21 9/8/2023 9:50 580.36 573.08 90.40% 9.60% 1339 ARS1-P23-01206-02 ARS1-23-01973 002 447550 447545 7.25 680.25 673.00 104 9/7/2023 15:21 9/8/2023 9:50 520.20 512.95 76.22% 23.78% 1339 **ARS1-P23-01206-03** ARS1-23-01973 003 447551 447546 7.20 659.59 652.39 4 104 9/7/2023 15:21 9/8/2023 9:50 593.42 586.22 89.86% 10.14% 1339 **ARS1-P23-01206-04** ARS1-23-01973 447547 104 89.19% 10.81% 1339 004 447552 7.26 633.86 626.60 9/7/2023 15:21 9/8/2023 9:50 558.86 4 566.12 **ARS1-P23-01206-05** ARS1-23-01973 447553 447548 7.25 728.46 721.21 104 9/7/2023 15:21 9/8/2023 9:50 671.54 664.29 92.11% 7.89% 1339

Page 143 of 311 ARS1-23-01973

ARS Aleut Analytical, LLC Port Allen Laboratory

Document 28-3 Filed 12/06/24

Page 166 of 384

Printed: 10/2/2023 11:12 AM Page 1 of 2

# **Gamma Spectroscopy Logbook** ARS03

| Date      | Time  | ARS Batch Sample ID | Weight (g)<br>or Volume (L) | Spectrum<br>File Number | Geometry               | Tech Initials |
|-----------|-------|---------------------|-----------------------------|-------------------------|------------------------|---------------|
| 9/29/2023 | 11:33 | ARS1-B23-01775-03   | 360.2                       | 03249                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 9:24  | ARS1-B23-01775-05   | 424.63                      | 03247                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 10:29 | ARS1-B23-01775-07   | 396.74                      | 03248                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 12:43 | ARS1-B23-01775-09   | 424.71                      | 03250                   | 250 mL (8oz.) Tuna Can | SDW           |

ARS1-23-01973 Page 144 of 311 ARS Aleut Analytical, LLC Port Allen Laboratory

Document 28-3

Filed 12/06/24

Page 167 of 384

Printed: 10/2/2023 11:12 AM Page 2 of 2

# Gamma Spectroscopy Logbook ARS06

| Date      | Time  | ARS Batch Sample ID | Weight (g)<br>or Volume (L) | Spectrum<br>File Number | Geometry               | Tech Initials |
|-----------|-------|---------------------|-----------------------------|-------------------------|------------------------|---------------|
| 9/29/2023 | 8:54  | ARS1-B23-01775-01   | 1595-98-4                   | 06049                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 9:07  | ARS1-B23-01775-02   | 1595-98-4                   | 06050                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 9:23  | ARS1-B23-01775-04   | 415.99                      | 06051                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 10:28 | ARS1-B23-01775-06   | 395.54                      | 06052                   | 250 mL (8oz.) Tuna Can | SDW           |
| 9/29/2023 | 11:33 | ARS1-B23-01775-08   | 424.71                      | 06053                   | 250 mL (8oz.) Tuna Can | SDW           |

ARS1-23-01973 Page 145 of 311



(225) 228-1394

# **ARS Aleut Analytical, LLC Analytical Reports**

for

**GES-AIS, LLC** 

Gamma Spec - ICAL

ARS1-23-01973 Page 146 of 311



| Instrument ID: ARS03  Ver. Date leas Act. Criteria  2.31E+05  10:00% | Weas Act. Oriteria (200 2.31E+05 10.0 |
|----------------------------------------------------------------------|---------------------------------------|
|                                                                      | 2.10E+04<br>2.13E+05                  |
|                                                                      | 8.07E+03<br>1.11E+04                  |
|                                                                      | 4.12E+05<br>4.07E+04                  |
|                                                                      | 5.10E+04<br>3.55E+04                  |
|                                                                      | 8.30E+04                              |
|                                                                      | 4.21E+04                              |

# Independent Standard

| STD#         | 1891-50-3 |         |                |              | (IV)   | William Hall Company of the Company |
|--------------|-----------|---------|----------------|--------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)          | u.Gi jo   | Çi Meas | leas Act. Crii | Criteria Dif | %d∏    | Pass/Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | 0.2119    | 211900  | 2.14E+05       | 10:00%       | 1990   | 0.94% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <del>-</del> | 0.02087   | 20870   | 2.02E+04       | 5.00%        | 099    | 3.16% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6            | 0.2192    | 219200  | 2.19E+05       | 10.00%       | 70     | 0.03% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 0.007577  | 7577    | 7.62E+03       | 10.00%       | 46.1   | 0.61% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3m           | 0.01084   | 10840   | 1.18E+04       | 10.00%       | 928    | 8.56% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | 0.2502    | 250200  |                | 10.00%       | 250200 | 100.00% NOT MEASURED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3            | 0.04008   | 40080   | 5.42E+04       | 10.00%       | 14102  | 35.18% Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sr85         | 0.04834   | 48340   | 4.29E+04       | 10.00%       | 5417   | 11.21% Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7            | 0.03344   | 33440   | 3.45E+04       | 2.00%        | 1013   | 3.03% <b>PASS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Y88          | 0.07737   | 77370   | 7.72E+04       | 10.00%       | 145    | 0.19% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0900         | 0.04132   | 41320   | 4.04E+04       | 5.00%        | 948    | 2.29% PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

ARS1-23-01973 Page 147 of 311 Calibration Data from file: 250mL tuna can poly 1948-64-2 calib.Clb

Energy Calibration Date: 12/19/17 Time: 09:01:57 Efficiency Calibration Date: 12/19/17 Time: 10:15:29

Calibration Description:

250mL tuna can poly 1948-64-2

12-19-17 EEC

Energy Calibration Fit

Energy = 0.3823 +0.250027\*Channel -2.90278e-008\*Channel\*\*2
FWHM (ch) = 3.3907 +0.001038\*Channel -4.27492e-009\*Channel\*\*2

## Energy/FWHM Table

| Channel | Energy(keV) | Fit(keV) | Delta  | FWHM(keV) | Fit(keV) | Delta  |
|---------|-------------|----------|--------|-----------|----------|--------|
| 184.87  | 46.52       | 46.60    | -0.18% | 0.88      | 0.90     | -2.29% |
| 236.83  | 59.54       | 59.59    | -0.09% | 0.89      | 0.91     | -2.66% |
| 350.71  | 88.03       | 88.06    | -0.03% | 0.93      | 0.94     | -0.56% |
| 486.76  | 122.07      | 122.08   | -0.01% | 0.98      | 0.97     | 0.77%  |
| 634.34  | 159.00      | 158.97   | 0.02%  | 1.04      | 1.01     | 3.18%  |
| 1564.56 | 391.69      | 391.49   | 0.05%  | 1.27      | 1.25     | 1.83%  |
| 2054.24 | 513.99      | 513.87   | 0.02%  | 1.37      | 1.38     | -0.05% |
| 2645.74 | 661.66      | 661.69   | -0.00% | 1.52      | 1.53     | -0.25% |
| 3591.86 | 898.02      | 898.07   | -0.01% | 1.76      | 1.76     | -0.01% |
| 4693.79 | 1173.24     | 1173.32  | -0.01% | 2.06      | 2.04     | 0.84%  |
| 5331.53 | 1332.50     | 1332.58  | -0.01% | 2.16      | 2.20     | -1.97% |
| 7347 71 | 1836.01     | 1835.94  | 0.00%  | 2.71      | 2.69     | 0.54%  |

Efficiency Calibration Fit

Polynomial Uncertainty = 1.0072 %

Coefficients:

-0.406222 -4.708818 0.336784 -0.027319 0.000788 -0.000008

## Efficiency Table

| Energy                                                                                                    | Efficiency                                                                                                                                                        | Fit                                                                                                                                                               | Delta                                                                                      |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 46.52<br>59.54<br>88.03<br>122.07<br>159.00<br>391.69<br>513.99<br>661.66<br>898.02<br>1173.24<br>1332.50 | 1.9845E-002<br>2.5558E-002<br>3.3425E-002<br>3.2303E-002<br>2.7831E-002<br>1.5862E-002<br>1.2789E-002<br>1.0975E-002<br>8.6514E-003<br>7.2127E-003<br>6.5224E-003 | 1.9790E-002<br>2.5734E-002<br>3.2820E-002<br>3.2253E-002<br>2.8672E-002<br>1.5400E-002<br>1.2777E-002<br>1.0799E-002<br>8.8143E-003<br>7.3158E-003<br>6.6548E-003 | 0.27%<br>-0.69%<br>1.81%<br>0.16%<br>-3.02%<br>2.91%<br>0.09%<br>1.61%<br>-1.88%<br>-1.43% |
| 1836.01                                                                                                   | 5.2046E-003                                                                                                                                                       | 5.0966E-003                                                                                                                                                       | 2.08%                                                                                      |

# Calibration Certificate Table

| Pb-210 46.52 4.18 8.14E+003 0.22 346.75 4.10% 06/01/17 14:00:00                                                                                                                                         | & Time                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Cr-51 320.07 9.86 2.71E+001 0.26 949.99 3.00% 06/01/17 14:00:00                                                                                                                                         | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 |
| Co-60 1173.24 99.86 1.92E+003 0.04 1586.93 3.10% 06/01/17 14:00:<br>Co-60 1332.50 99.98 1.92E+003 0.04 1588.83 3.10% 06/01/17 14:00:<br>Y-88 1836.01 99.40 1.07E+002 0.08 2994.46 3.00% 06/01/17 14:00: | 00<br>00                                           |

ARS1-23-01973 Page 148 of 311

```
ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:27:13 Page
American Radiation Services
                                Spectrum name: ARS02069.An1
Sample description
     Batch ID: Cal Ver
     SDG ID: 1948-64-2 Tech: EEC
Spectrum Filename: C:\User\ARS02069.An1
Acquisition information
       Start time:
                                   19-Dec-2017 10:16:53
       Live time:
                                 600
       Real time:
                                 610
                                   1.57 %
       Dead time:
                                       1
       Detector ID:
Detector system
     (ARS02) MCB 131
Calibration
                                   250mL tuna can poly 1948-64-2 calib.Clb
     250mL tuna can poly 1948-64-2
     12-19-17 EEC
       Energy Calibration
            Created:
                                   19-Dec-2017 09:01:57
                                  0.382 keV
            Zero offset:
                                   0.250 keV/channel
            Gain:
                                  -2.903E-08 keV/channel^2
            Ouadratic:
       Efficiency Calibration
                                   19-Dec-2017 10:15:29
            Created:
                                  Polynomial
            Type:
            Uncertainty:
                                  1.007 %
                                  -0.406222 -4.708818
                                                        0.336784
            Coefficients:
                                  -0.027319 0.000788 -0.000008
Library Files
                                   northamericancal.Lib
       Main analysis library:
                                   0.500
       Library Match Width:
       Peak stripping:
                                   Library based
Analysis parameters
                                  Env32 G53W4.22
       Analysis engine:
       Start channel:
                                           0.38keV )
                                   0 (
                                8000 ( 1998.74keV )
       Stop channel:
       Peak rejection level:
                               40.000%
       Peak search sensitivity:
                                   3
                                   1.0000E+00
       Sample Size:
                                  1.0000E+06/( 1.0000E+00* 1.0000E+00) =
       Activity scaling factor:
                                   1.0000E+06
       Detection limit method: Reg. Guide 4.16 Method
                                  1.0000000E+00
       Random error:
       Systematic error: 1.0000 Fraction Limit: 60.000% Background width: best multiple Half lives decay limit: 12.000
                                   1.0000000E+00
                                1.0000
60.000%
                                  best method (based on spectrum).
```

ARS1-23-01973 Page 149 of 311

13-Dec-2017 09:58:21

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:27:13 Page 2 American Radiation Services Spectrum name: ARS02069.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 01-Jun-2017 14:00:00

Decay during acquisition: NO

Decay during collection: NO

True coincidence correction: NO

Peaked background correction: YES pbc NorthAmericancal.pbc

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 13 cutoff 20.00000 %

Energy Calibration

Normalized diff: 0.0468

SUMMARY OF PEAKS IN RANGE \*\*\*\* \*\*\*\* Area Uncert FWHM Corrctn Nuclide Brnch. Nuc Act. Peak Ratio pCi/g Factor Energy Energy 89. 28.01 1.01 5.273E-03 13.32 651. 6.69 0.87 9.205E-03 22.35 494. 9.44 0.87 1.043E-02 25.13 252. 21.73 1.21 1.354E-02 32.16 4.000 2.313E+05 PB210 46.52 3999. 2.43 0.87 1.984E-02 46.64 59.54 36.300 2.101E+04 AM241 4353. 2.33 0.84 2.576E-02 59.59 3.610 2.132E+05 CD109 88.03 4074. 2.51 0.95 3.282E-02 88.06 122.07 85.600 8.070E+03 CO57 2.88 0.98 3.225E-02 2967. 122.07 407. 13.84 1.10 3.096E-02 136.36 159.00 83.500 1.107E+04 TE123M 1839. 3.76 1.01 2.868E-02 158.97 PBC<MDA CR51 105. 39.54 1.18 1.777E-02 320.07 9.830 319.64 391.69 64.160 4.069E+04 SN113 2663. 2.74 1.21 1.541E-02 391.48 513.99 99.280 5.097E+04 SR85 661.66 85.210 3.554E+04 CS137 1671. 3.68 1.38 1.278E-02 513.99 1.38 1.60 1.080E-02 7170. 661.65 111. 29.65 0.72 1.050E-02 690.65 898.02 95.000 8.143E+04 Y88 4104. 2.27 1.81 8.814E-03 897.99 6355. 1.42 1.96 7.316E-03 1173.24 99.900 4.211E+04 CO60 1173.28 42. 30.30 0.68 6.947E-03 1258.75 5791. 1.42 2.19 6.655E-03 1332.50 99.982 4.215E+04 CO60 2578. 2.04 2.55 5.097E-03 1836.01 99.350 8.457E+04 Y88 1332.50 99.982 4.215E+04 CO60 1332.54 1835.81

|         |         | DENTI<br>ackground Ne<br>Counts |      |       | S U M M<br>Uncert<br>Sigma % | ARY<br>FWHM<br>keV | ******<br>Suspect<br>Nuclide | eđ |
|---------|---------|---------------------------------|------|-------|------------------------------|--------------------|------------------------------|----|
| 51.73   | 13.32   | 213.                            | 89.  | 0.148 | 56.02                        | 1.012              | SE-75                        | s  |
| 87.57   | 22.28   | 772.                            | 670. | 1.116 | 17.01                        | 0.992              | RH-106                       |    |
| 98.71   | 25.06   | 896.                            | 633. | 1.055 | 19.01                        | 1.344              | RH-106                       | s  |
| 127.10  | 32.16   | 821.                            | 252. | 0.419 | 43.45                        | 1.211              | J-131                        | s  |
| 543.89  | 136.36  | 828.                            | 407. | 0.678 | 27.68                        | 1.101              | HF-181                       |    |
| 2761.65 | 690.65  | 243.                            | 111. | 0.185 | 59.30                        | 0.715              | _                            | S  |
| 5035.89 | 1258.75 | 30.                             | 42.  |       | 60.61                        | 0.677              | -                            | s  |

ARS1-23-01973 Page 150 of 311

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:27:13 Page
American Radiation Services Spectrum name: ARS02069.An1

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

This section based on library: northamericancal.Lib

| *****   | ***** I | DENTI    | FIED P     | EAK S    | SUMMAR    | A *****   | ***** |
|---------|---------|----------|------------|----------|-----------|-----------|-------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert    | FWHM  |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec   | 2 Sigma % | keV   |
|         |         |          |            |          |           |           |       |
| PB-210  | 185.00  | 46.64    | 1634.      | 3989.    | 6.648     | 4.85      | 0.874 |
| AM-241  | 236.83  | 59.59    | 1550.      | 4353.    | 7.255     | 4.66      | 0.835 |
| CD-109  | 350.71  | 88.06    | 1599.      | 4074.    | 6.790     | 5.02      | 0.947 |
| CO-57   | 486.72  | 122.07   | 1450.      | 2967.    | 4.945     | 5.77      | 0.984 |
| TE-123M | 634.31  | 158.97   | 982.       | 1838.    | 3.064     | 7.52      | 1.008 |
| CR-51   | 1277.09 | 319.64   | 809.       | 105.     | 0.175     | 79.09     | 1.177 |
| SN-113  | 1564.49 | 391.48   | 778.       | 2663.    | 4.438     | 5.47      | 1.214 |
| SR-85   | 2054.69 | 513.99   | 563.       | 1671.    | 2.785     | 7.36      | 1.377 |
| CS-137  | 2645.62 | 661.65   | 575.       | 7170.    | 11.950    | 2.77      | 1.598 |
| Y-88    | 3591.55 | 897.99   | 512.       | 4104.    | 6.840     | 4.55      | 1.808 |
| CO-60   | 4693.67 | 1173.28  | 281.       | 6355.    | 10.592    | 2.84      | 1.964 |
| CO-60   | 5331.35 | 1332.54  | 132.       | 5791.    | 9.652     | 2.83      | 2.185 |
| Y-88    | 7347.20 | 1835.81  | 22.        | 2577.    | 4.295     | 4.07      | 2.552 |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| - Nuclide - | M M A R Y<br>Average<br>Activity<br>pCi/g | OF LIBRARY PEAK USAGE                   | *****<br>NTS |
|-------------|-------------------------------------------|-----------------------------------------|--------------|
| PB-210      | 2.3126E+05                                | 46.52 2.313E+05 (P 1.108E+04 2.43E+00 G |              |
| AM-241      | 2.1007E+04                                | 59.54 2.101E+04 (P 8.986E+02 2.33E+00 G |              |
| CD-109      | 2.1315E+05                                | 88.03 2.132E+05 ( 9.891E+03 2.51E+00 G  |              |
| CO-57       | 8.0700E+03                                | 122.07 8.070E+03 ( 4.900E+02 2.88E+00 G |              |

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:27:13 Page 4
American Radiation Services Spectrum name: ARS02069.An1

Nuclide Ave activity Energy Activity Code Peak MDA Comments

| Nuclide | Ave activity | Energy | Activity               | Code Peak MDA Comments                            |  |
|---------|--------------|--------|------------------------|---------------------------------------------------|--|
| TE-123M | 1.1066E+04   | 159.00 | 1.107E+04              | (P 8.953E+02 3.76E+00 G                           |  |
| CR-51   | 4.1207E+05   | 320.07 | 4.121E+05              | &( 5.310E+05 3.95E+01 G                           |  |
| SN-113  | 4.0690E+04   | 391.69 | 4.069E+04              | (P 2.028E+03 2.74E+00 G                           |  |
| SR-85   | 5.0970E+04   | 513.99 | 5.097E+04              | ( 3.456E+03 3.68E+00 G                            |  |
| CS-137  | 3.5545E+04   | 661.66 | 3.554E+04              | ( 5.675E+02 1.38E+00 G                            |  |
| CO-60   | 4.2126E+04   |        | 4.211E+04<br>4.215E+04 | (P 5.355E+02 1.42E+00 G<br>( 4.094E+02 1.42E+00 G |  |
| Y-88    | 8.3036E+04   |        | 8.457E+04<br>8.143E+04 | (P 8.020E+02 2.04E+00 G<br>( 2.146E+03 2.27E+00 G |  |

898.02 8.143E+04 ( 2.146E+03 2.27E+00

( - This peak used in the nuclide activity average.

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.

D - Double-Escape

P - Peakbackground subtraction

P - Photon Reaction

} - Peak is too close to another for the activity to be found directly.

| Nuclide Codes:                  | Peak Codes:        |
|---------------------------------|--------------------|
| T - Thermal Neutron Activation  | G - Gamma Ray      |
| F - Fast Neutron Activation     | X - X-Ray          |
| I - Fission Product             | P - Positron Decay |
| N - Naturally Occurring Isotope | S - Single-Escape  |
|                                 |                    |

ARS1-23-01973 Page 152 of 311

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:27:13 Page 5 American Radiation Services Spectrum name: ARS02069.Anl

C - Charged Particle Reaction K - Key Line M - No MDA Calculation A - Not in Average

M - No MDA Calculation

R - Coincidence Corrected H - Halflife limit exceeded

C - Coincidence Peak

| ****    | SUMMARY                            | OF NUCLI                      |                | SAMPLE     | ****         |  |  |  |
|---------|------------------------------------|-------------------------------|----------------|------------|--------------|--|--|--|
| Nuclide | Time of Count<br>Activity<br>pCi/g | Time Corrected Activity pCi/g | Counting pCi/g |            | MDA<br>pCi/g |  |  |  |
|         |                                    |                               |                |            |              |  |  |  |
| PB-210  | 2.2698E+05                         | 2.3126E+05                    | 1.1250E+04     | 2.5448E+04 | 1.108E+04    |  |  |  |
| AM-241  | 2.0989E+04                         | 2.1007E+04                    | 9.7934E+02     | 1.9605E+03 | 8.986E+02    |  |  |  |
| CD-109  | 1.5489E+05                         | 2.1315E+05                    | 1.0707E+04     | 2.0064E+04 | 9.891E+03    |  |  |  |
| CO-57   | 4.8408E+03                         | 8.0700E+03                    | 4.6532E+02     | 7.2081E+02 | 4.900E+02    |  |  |  |
| TE-123M | 3.4586E+03                         | 1.1066E+04                    | 8.3257E+02     | 1.1500E+03 | 8.953E+02    |  |  |  |
| CR-51   | A 2.7057E+03                       | 4,1207E+05                    | 3.2590E+05     | 3.2719E+05 | 5.310E+05    |  |  |  |
| SN-113  | 1.2138E+04                         | 4,0690E+04                    | 2.2267E+03     | 3.7702E+03 | 2.028E+03    |  |  |  |
| SR-85   | 5.9330E+03                         | 5.0970E+04                    | 3.7525E+03     | 4.9436E+03 | 3.456E+03    |  |  |  |
| CS-137  | 3.5099E+04                         | 3.5545E+04                    | 9.8304E+02     | 1.7459E+03 | 5.675E+02    |  |  |  |
| CO-60   | 3.9187E+04                         | 4.2126E+04                    | 8.4455E+02     | 1.7735E+03 | 5.355E+02    |  |  |  |
| Y-88    | 2.2512E+04                         | 8.3036E+04                    | 2.5346E+03     | 5.4612E+03 | 8.020E+02    |  |  |  |
|         | DA value printed                   | •                             |                |            |              |  |  |  |
| A - A   | ctivity printed,                   | but activity <                | MDA.           |            |              |  |  |  |
| B - A   | ctivity < MDA an                   | d failed test.                |                |            |              |  |  |  |
|         | rea < Critical l                   |                               |                |            |              |  |  |  |
|         |                                    |                               |                |            |              |  |  |  |
|         | alflife limit ex                   |                               |                |            |              |  |  |  |
| **      | <u> </u>                           | C                             | . 70 D V       |            |              |  |  |  |

S U M M A R Y -----

Total Activity ( 0.4 to 1998.7 keV) 5.287E+05 pCi/g Total Decayed Activity ( 0.4 to 1998.7 keV) 1.1489919E+06 pCi/g

ARS1-23-01973 Page 153 of 311

```
ORTEC q v - i (3263) Env32 G53W4.22 19-DEC-2017 10:58:20 Page
                                                                                 1
American Radiation Services
                                  Spectrum name: ARS02071.Anl
Sample description
     Batch ID: Calibration Verification
     SDG ID: 1891-50-3 Tech: EEC
Spectrum Filename: C:\User\ARS02071.Anl
Acquisition information
                                       19-Dec-2017 10:48:05
        Start time:
                                     600
        Live time:
                                     607
        Real time:
                                      1.09 %
        Dead time:
                                            1
        Detector ID:
Detector system
      (ARS02) MCB 131
Calibration
                                        250mL tuna can poly 1948-64-2 calib.Clb
      250mL tuna can poly 1948-64-2
      12-19-17 EEC
        Energy Calibration
                                       19-Dec-2017 09:01:57
              Created:
             Zero offset:
                                      0.382 keV
                                       0.250 keV/channel
              Gain:
                                      -2.903E-08 keV/channel^2
              Quadratic:
        Efficiency Calibration
                                       19-Dec-2017 10:15:29
              Created:
                                      Polynomial
              Type:
             Uncertainty:
Coefficients:
                                       1.007 %
                                       -0.406222 -4.708818
                                                               0.336784
                                       -0.027319 0.000788 -0.000008
Library Files
        Main analysis library: northamericancal.Lib Library Match Width: 0.500
        Library Match Width:
                                        Library based
        Peak stripping:
Analysis parameters
        Analysis engine: Env32 G53W4.22
Start channel: 0 ( 0.38keV)
Stop channel: 8000 ( 1998.74keV)
Peak rejection level: 40.000%
        Peak search sensitivity: 3
                                        1.0000E+00
        Sample Size:
        Activity scaling factor: 1.0000E+06/( 1.0000E+00* 1.0000E+00) =
                                       1.0000E+06
        Detection limit method: Reg. Guide 4.16 Method Random error: 1.0000000E+00
        Systematic error: 1.00000
Fraction Limit: 60.000%
Background width: best me
Half lives decay limit: 12.000
                                       1.0000000E+00
                                       best method (based on spectrum).
```

ARS1-23-01973 Page 154 of 311

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:58:20 Page 2
American Radiation Services Spectrum name: ARS02071.An1

Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 01-Aug-2016 14:00:00

Decay during acquisition: NO

Decay during collection: NO

True coincidence correction: NO

Peaked background correction: YES pbc NorthAmericancal.pbc 13-Dec-2017 09:58:21

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 11 cutoff 20.00000 %

Energy Calibration

Normalized diff: 0.0493

| ***** S U<br>Peak<br>Energy | J M M A F<br>Area | Y O<br>Uncert | F PE<br>FWHM | A K S I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E S<br>Brnch.<br>Ratio | *****<br>Act.<br>pCi/g | Nuc   |
|-----------------------------|-------------------|---------------|--------------|------------------------------|----------------------------|--------------------------|------------------------|-------|
| 13.37                       | 60.               | 32.82         | 0.88         | 5.295E-03                    |                            |                          |                        |       |
| 22.39                       | 400.              | 8.34          | 0.87         | 9.228E-03                    |                            |                          |                        |       |
| 25.17                       | 281.              | 11.86         | 0.87         | 1.045E-02                    |                            |                          |                        |       |
| 32.25                       | 230.              | 18.82         | 0.87         | 1.358E-02                    |                            |                          |                        |       |
| 36.59                       | 167.              | 25.50         | 0.83         | 1.549E-02                    |                            |                          |                        |       |
| 46.60                       | 3596.             | 2.49          | 0.86         | 1.983E-02                    | 46.52                      | 4.000                    |                        |       |
| 59.58                       | 4182.             | 2.15          | 0.89         | 2.575E-02                    | 59.54                      | 36.300                   |                        |       |
| 88.11                       | 2583.             | 3.80          | 0.89         | 3.283E-02                    | 88.03                      | 3.610                    |                        |       |
| 122.07                      | 1293.             | 4.21          | 0.95         | 3.225E-02                    | 122.07                     | 85.600                   | 7.623E+03              | CO57  |
| 136.62                      | 214.              | 22.76         | 0.97         | 3.094E-02                    |                            |                          |                        |       |
| 158.88                      | 337.              | 14.63         | 0.85         | 2.868E-02                    | 159.00                     | 83.500                   |                        |       |
| 391.45                      | 569.              | 8.11          | 1.18         | 1.541E-02                    | 391.69                     | 64.160                   |                        |       |
| 661.65                      | 6818.             | 1.33          | 1.51         | 1.080E-02                    | 661.66                     | 85.210                   | 3.445E+04              | CS137 |
| 786.48                      | 65.               | 29.08         | 0.49         | 9.632E-03                    |                            |                          |                        |       |
| 898.26                      | 518.              | 13.66         | 1.90         | 8.813E-03                    | 898.02                     | 95.000                   |                        |       |
| 1173.28                     | 5524.             | 1.48          | 1.93         | 7.316E-03                    | 1173.24                    | 99.900                   |                        |       |
| 1332.52                     | 4916.             | 1.47          | 2.16         | 6.655E-03                    | 1332.50                    | 99.982                   |                        |       |
| 1835.87                     | 339.              | 5.43          | 1.65         | 5.097E-03                    | 1836.01                    | 99.350                   | 8.017E+04              | X88   |

|         | ntroid Ba | DENTI<br>ackground Ne<br>Counts | et Area | PEAK<br>Intensity<br>Cts/Sec 2 | S U M M<br>Uncert<br>Sigma % | ARY<br>FWHM<br>keV | *******<br>Suspecte<br>Nuclide |   |
|---------|-----------|---------------------------------|---------|--------------------------------|------------------------------|--------------------|--------------------------------|---|
| 51.93   | 13.37     | 134.                            | 60.     | 0.101                          | 65.64                        | 0.885              | SE-75                          | s |
| 87.78   | 22.33     | 386.                            | 430.    | 0.717                          | 18.89                        | 0.836              | RH-106                         |   |
| 98.88   | 25.11     | 380.                            | 316.    | 0.527                          | 24.15                        | 0.743              | RH-106                         | s |
| 127.46  | 32.25     | 495.                            | 230.    | 0.384                          | 37.64                        | 0.874              | XE-138                         |   |
| 144.82  | 36.59     | 520.                            | 167.    | 0.278                          | 51.00                        | 0.834              | XE-138                         |   |
| 544.93  | 136.62    | 564.                            | 214.    | 0.357                          | 45.52                        | 0.971              | LU-177                         |   |
| 3145.22 | 786.48    | 89.                             | 65.     | 0.109                          | 58.15                        | 0.495              | PA-234M                        | s |

ARS1-23-01973 Page 155 of 311

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:58:20 Page American Radiation Services Spectrum name: ARS02071.An1

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

This section based on library: northamericancal.Lib

| ******  | ***** I | DENTI    | FIED P     | EAK      | SUMMAR    | A *****   | *****  |
|---------|---------|----------|------------|----------|-----------|-----------|--------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert    | FWHM   |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec 2 | 2 Sigma % | keV    |
| PB-210  | 184.86  | 46.60    | 1273.      | 3586.    | 5.977     | 4.98      | 0.864  |
| AM-241  | 236.77  | 59.58    | 1059.      | 4182.    | 6.970     | 4.29      | 0.893  |
| CD-109  | 350.90  | 88.11    | 784.       | 2583.    | 4.305     | 7.60      | 0.894  |
| CO-57   | 486.74  | 122.07   | 581.       | 1293.    | 2.155     | 8.42      | 0.955  |
| TE-123M | 633.97  | 158.88   | 548.       | 336.     | 0.560     | 29.26     | 0.855s |
| SN-113  | 1564.40 | 391.45   | 361.       | 568.     | 0.947     | 16.22     | 1.176s |
| CS-137  | 2645.62 | 661.65   | 306.       | 6818.    | 11.363    | 2.67      | 1.514  |
| Y-88    | 3592.64 | 898.26   | 461.       | 518.     | 0.864     | 27.32     | 1.900  |
| CO-60   | 4693.66 |          | 150.       | 5523.    | 9.206     | 2.95      | 1.928  |
| CO-60   | 5331.27 | 1332.52  | 32.        | 4916,    | 8.193     | 2.93      | 2.161  |
| Y-88    | 7347.42 |          | 0.         | 339.     | 0.565     | 10.86     | 1.647s |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| ***** S U - Nuclide - Name Code | M M A R Y<br>Average<br>Activity<br>pCi/g |        | BRARY Peak Activity pCi/g |     |           | SAGE *****  COMMENTS |  |
|---------------------------------|-------------------------------------------|--------|---------------------------|-----|-----------|----------------------|--|
| PB-210                          | 2.1389E+05                                | 46.52  | 2.139E+05                 | (P  | 1.008E+04 | 2.49E+00 G           |  |
| AM-241                          | 2.0210E+04                                | 59.54  | 2.021E+04                 | (P  | 7.460E+02 | 2.15E+00 G           |  |
| CD-109                          | 2.1913E+05                                | 88.03  | 2.191E+05                 | (   | 1.130E+04 | 3.80E+00 G           |  |
| CO-57                           | 7.6231E+03                                | 122.07 | 7.623E+03                 | (   | 6.782E+02 | 4.21E+00 G           |  |
| TE-123M                         | 1.1768E+04                                | 159.00 | 1.177E+04                 | @(P | 3.913E+03 | 1.46E+01 G           |  |

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:58:20 Page American Radiation Services Spectrum name: ARS02071.An1

| Nuclide | Ave activity | Energy | Activity               | Cod | le Peak MDA            | A Comment | cs |
|---------|--------------|--------|------------------------|-----|------------------------|-----------|----|
| CR-51   | 0.0000E+00   | 320.07 | 0.000E+00              | & ( | 0.000E+00              | 4.51E+02  | G  |
| SN-113  | 5.4182E+04   | 391.69 | 5.418E+04              | ( P | 8.700E+03              | 8.11E+00  | G  |
| SR-85   | 4.2923E+04   | 513.99 | 4.292E+04              | 왕 ( | 7.941E+04              | 5.63E+01  | G  |
| CS-137  | 3.4453E+04   | 661.66 | 3.445E+04              | (   | 4.256E+02              | 1.33E+00  | G  |
| CO-60   | 4.0372E+04   |        | 4.083E+04<br>3.992E+04 |     | 4.412E+02<br>2.360E+02 |           |    |
| Y-88    | 7.7225E+04   |        | 8.017E+04<br>7.415E+04 | . – | 1.744E+03<br>1.470E+04 |           |    |

( - This peak used in the nuclide activity average.

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction

} - Peak is too close to another for the activity to be found directly.

| Nuclide Codes:                  | Peak Codes:        |
|---------------------------------|--------------------|
| T - Thermal Neutron Activation  | G - Gamma Ray      |
| F - Fast Neutron Activation     | X - X-Ray          |
| T - Fission Product             | P - Positron Decay |
| N - Naturally Occurring Isotope | S - Single-Escape  |
| P - Photon Reaction             | D - Double-Escape  |
| C - Charged Particle Reaction   | K - Key Line       |
| M - No MDA Calculation          | A - Not in Average |

ARS1-23-01973 Page 157 of 311

ORTEC g v - i (3263) Env32 G53W4.22 19-DEC-2017 10:58:20 Page American Radiation Services Spectrum name: ARS02071.An1

R - Coincidence Corrected

C - Coincidence Peak

H - Halflife limit exceeded

SUMMARY OF NUCLIDES IN SAMPLE \*\*\*\*\* Time of Count Time Corrected Uncertainty 2 Sigma MDA Activity Activity Counting Total Nuclide pCi/g pCi/g pCi/q pCi/g pCi/q 2.1389E+05 1.0679E+04 2.3659E+04 1.008E+04 PB-210 2.0407E+05 2.0165E+04 2.0210E+04 8.6795E+02 1.8501E+03 7.460E+02 AM-241 9.8203E+04 2.1913E+05 1.6658E+04 2.4120E+04 1.130E+04 CD-109 2.1096E+03 7.6231E+03 6.4188E+02 8.2608E+02 6.782E+02 CO-57 6.3248E+02 1.1768E+04 3.4539E+03 3.5555E+03 3.913E+03 TE-123M# CR-51 #A -1.9011E+02 >12 Halflives 1.7134E+03 1.7134E+03 2.883E+03 2.5901E+03 5.4182E+04 8.8005E+03 9.6882E+03 8.700E+03 1.9266E+02 4.2923E+04 4.8325E+04 4.8401E+04 7.941E+04 SN-113 # SR-85 #A 3.3376E+04 3.4453E+04 9.1916E+02 1.6735E+03 4.256E+02 CS-137 3.3662E+04 4.0372E+04 8.4023E+02 1.7146E+03 4.412E+02 CO-60 2.9031E+03 7.7225E+04 8.3947E+03 9.5242E+03 1.744E+03

- # All peaks for activity calculation had bad shape.
- \* Activity omitted from total
- & Activity omitted from total and all peaks had bad shape.
- < MDA value printed.

Y-88

- A Activity printed, but activity < MDA.
- B Activity < MDA and failed test.
- C Area < Critical level.
- F Failed fraction or key line test.
- H Halflife limit exceeded

SUMMARY -----

Total Activity ( 0.4 to 1998.7 keV) 3.977E+05 pCi/g

Total Decayed Activity ( 0.4 to 1998.7 keV) 6.7885075E+05 pCi/g

ARS1-23-01973 Page 158 of 311 1.68% PASS

1094

5.00%

6.63E+04

65200

0.0652

0900

# Gamma Calibration Verification (uCi)

12-11-21 not 10-11-11 Ap

Instrument ID: ARS06

BEC 12.8.71

**ARS Aleut Analytical** 

Calibration Verification

Pass/Fail 0.70% PASS 4.76% PASS 4.29% PASS 1.83% PASS 0.56% PASS 7.70% PASS 3.68% PASS 2.11% PASS 1.25% PASS 2.50% PASS 7830 755 12890 243 15300 533 356 434 1369 9500 12/8/2021 Dif. 10.00% 10.00% 10.00% 5.00% 5.00% 10.00% 10.00% 10.00% 10.00% 10.00% Ver. Date 3.63E+05 3.46E+04 3.37E+05 1.19E+04 1.65E+04 4.36E+05 6.10E+04 7.75E+04 5.61E+04 1.33E+05 Meas. Act to 10017 12410 60240 77030 123300 34800 16840 54760 2275-19-5 Geometry 350000 321300 428600 0.35 0.0348 0.3213 0.05476 0.06024 0.1233 0.4286 0.07703 0.01241 0.01684 Nuclide

Fe123m

Sn113

Sr85

Cr51

Cs137

488

Am241

Pb210

Cd109

Co57

Independent Standard

2079-79-6 Geometry

to 10014

494 18480 Dif. 10.00% Criteria 2.40E+05 Meas. Act. 221400 0.2214 rC: Nuclide Pb210 Am241 STD#

Pass/Fail

2.32% PASS

8.35% PASS

3.57% PASS

88.35% FAIL

15.00% FAIL

31720

302.1

10540.4 252300

10.00% 10.00% 5.00% 5.00% 10.00% 10.00% 10.00% 10.00% 10.00% 2.18E+04 2.43E+05 8.76E+03 1.39E+03 1.24E+04 3.74E+04 1.03E+05 211500 11930 40360 36070 81050 42070 8461 48980 21280 252300 0.2115 0.08105 0.02128 0.01193 0.2523 0.04036 0.04898 0.04207 0.008461 0.03607 Fe123m Cd109 Sn113 Cs137 Co57 Cr51 Sr85 **V88** 

100.00% NOT MEASURED

48980

1322

22210

3.67% PASS 27.40% FAIL 3.70% PASS

1557

2.00%

4.36E+04

0900

100.00% NOT MEASURED

69.26% FAIL

27954

Revision Date: 08/21/2018 ARS-038-002 r1.0

ARS1-23-01973

Page 159 of 311

```
Calibration Data from file: 2275-19-5 250mL tc poly 12-8-21.Clb
      Energy Calibration Date: 12/8/2021 Time: 10:48:48 AM
  Efficiency Calibration Date: 12/8/2021 Time: 11:58:07 AM
Calibration Description:
  2275-19-5 250mL tc poly
  12-8-21 EEC
Energy Calibration Fit
   Energy = 0.1003 +0.250034*Channel -3.09474e-008*@hannel**2
 FWHM (ch) = 3.7306 +0.001192*Channel -3.52632e-008*Channel**2
Energy/FWHM Table
 Channel Energy (keV) Fit (keV) Delta FWHM (keV) Fit (keV)
                                             Delta
------
Efficiency Calibration Fit
Polynomial
         Uncertainty = 1.2536 %
  Coefficients:
   -0.502841 -4.041766 0.314910 -0.026798 0.000803 -0\frac{1}{2}000009
Efficiency Table
  Energy Efficiency Fit Delta
_____
   46.52 2.8835E-002 2.8708E-002 0.44% 59.54 3.9219E-002 3.9685E-002 -1.19%
   88.03 5.4780E-002 5.3174E-002
  122.07 5.3339E-002 5.3962E-002 -1.17%
  159.00 4.7614E-002 4.9045E-002 -3.00%
  320.07 3.0994E-002 3.1532E-002 -1.73%
  391.69 2.8452E-002 2.7422E-002
                              3.62%
  513.99 2.3347E-002 2.2750E-002
                              2.56%
  661.66 1.9865E-002 1.9120E-002
                              3.75%
  898.02 1.4855E-002 1.5378E-002 -3.53%
  1173.24 1.1951E-002 1.2497E-002 -4.57%
  1332.50 1.0932E-002 1.1218E-002 -2.62%
  1836.01 8.5589E-003 8.2192E-003
                              3.97%
Calibration Certificate Table
Isotope Energy Pct Halflife Activity GPS Error Date & Time
______
```

ARS1-23-01973 Page 160 of 311

```
ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM
AAA
                                 Spectrum name: 2275-19-5 250mL tc poly eft 12-8
Sample description
     2275-19-5 250mL tc poly
Spectrum Filename: C:\User\Calibrations\2021\2275-19-5 250mL tuna can
                   \2275-19-5 250mL tc poly eft 12-8-21.Anl
Acquisition information
                                    12/8/2021 8:41:24 AM
       Start time:
       Live time:
                                 7200
       Real time:
                                 7641
       Dead time:
                                    5.77 %
       Detector ID:
                                       21
Detector system
     ARS06 MCB 133
Calibration
       Filename:
                                    2275-19-5 250mL tuna can calib 12-7-21.C
                                    ٦b
     2275-19-5 250mL tuna can
     12-7-21 EEC
       Energy Calibration
                                    12/7/2021 2:01:12 PM
            Created:
            Zero offset:
                                   0.115 keV
                                    0.250 keV/channel
            Gain:
                                   -3.130E-08 keV/channel^2
            Ouadratic:
       Efficiency Calibration
            Created:
                                    12/7/2021 2:13:04 PM
            Knee Energy:
                                 150.00 keV
            Above the Knee:
                                  Quadratic
                                                     Uncertainty =
                                   -1.559890E+00 + (-8.275593E-04*Log(E)) +
            Log(Eff):
                                   ( -5.657383E-02*Log(E)^2 )
            Below the Knee:
                                   Quadratic
                                                     Uncertainty =
                                                                      0.76 %
            Log(Eff):
                                   -2.264008E+01 + (8.441602E+00*Log(E)) +
                                   ( -9.021915E-01*Log(E)^2 )
Library Files
       Main analysis library:
                                    northamericancal.Lib
       Library Match Width:
                                    0.500
       Peak stripping:
                                    Library based
Analysis parameters
       Analysis engine:
                                   Env32
                                            G800W064
       Start channel:
                                10 ( 2.62keV)
8000 ( 1998.28keV)
       Stop channel:
       Peak rejection level:
                                   40.000%
       Peak search sensitivity:
                                    1
       Sample Size:
                                    1.0000E+00 +/- 0.000E+00%
1.0000E+06/( 1.0000E+00* 1.0000E+00) =
       Activity scaling factor:
                                    1.0000E+06
```

ARS1-23-01973 Page 161 of 311

ORTEC q v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM AAA Spectrum name: 2275-19-5 250mL tc poly eft 12-8

YES

Detection limit method: Reg. Guide 4.16 Method Random error: 1.000000E+00 1.0000000E+00 Systematic error:

0.000% Fraction Limit:

Background width: best method (based on spectrum).

Half lives decay limit: 12.000 Activity range factor: 2.000 Min. step backg. energy 0.000 Multiplet shift channel 2.000

Corrections Status Comments 11/1/2021 2:00:00 PM

Decay during acquisition: NO Decay during collection: NO True coincidence correction: NO

Decay correct to date:

Peaked background correction: YES cal solids.Pbc

11/15/2021 8:26:58 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0429

| **** S<br>Peak<br>Energy | U M M A I<br>Area | R Y O<br>Uncert | F PE<br>FWHM | A K S I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio | *****<br>Act.<br>pCi/g | Nuc    |
|--------------------------|-------------------|-----------------|--------------|------------------------------|----------------------------|------------------------|------------------------|--------|
| 12.13                    | 5663.             | 3.64            | 1.20         | 7.061E-04                    |                            |                        |                        |        |
| 22,17                    | 16802.            | 1.77            | 0.96         | 5.800E-03                    |                            | 1                      |                        |        |
| 24.94                    | 17709.            | 1.84            | 0.96         | 8.021E-03                    | j                          | 1                      |                        |        |
| 27.61                    | 7048.             | 4.00            | 0.96         | 1.039E-02                    | ‡                          |                        |                        |        |
| 32.12                    | 5970.             | 4.70            | 0.97         | 1.478E-02                    | ļ                          |                        |                        |        |
| 46.65                    | 110523.           | 0.58            | 0.98         | 2.949E-02                    | 46.52                      | 4.000                  | 3.544E+05              | PB210  |
| 59.64                    | 135324.           | 0.49            | 0.98         | 4.044E-02                    | 59.54                      | 36.300                 | 3.466E+04              | AM241  |
| 83.62                    | 4252.             | 8.91            | 1.03         | 5.229E-02                    | ì                          | Ì                      |                        |        |
| 88.08                    | 158766.           | 0.34            | 1.03         | 5.341E-02                    | 88.03                      | 3.610                  | 3.277E+05              | CD109  |
| 122.07                   | 135123.           | 0.51            | 1.07         | 5.459E-02                    | 122.07                     | 85.600                 | 1.192E+04              | CO57   |
| 136.47                   | 15910.            | 2.82            | 1.08         | 5.263E-02                    |                            | i.                     |                        |        |
| 158.97                   | 143930.           | 0.48            | 1.14         | 4.892E-02                    | 159.00                     | 83.500                 | 1.637E+04              | TE123M |
| 254.95                   | 9504.             | 4.18            | 1.12         | 3.683E-02                    |                            | 1                      |                        |        |
| 310.06                   | 632.              | 38.29           | 1.28         | 3.249E-02                    |                            | ĺ                      |                        |        |
| 315.37                   | 758.              | 37.47           | 1.29         | 3.214E-02                    |                            |                        |                        |        |
| 319.93                   | 138081.           | 0.35            | 1.29         | 3.184E-02                    | 320.07                     | 9.830                  | 4.158E+05              | CR51   |
| 391.55                   | 232986.           | 0.29            | 1.37         | 2.784E-02                    | 391.69                     | 64.160                 | 6.112E+04              | SN113  |
| 513.92                   | 318199.           | 0.23            | 1.51         | 2.307E-02                    | 513.99                     | 99.280                 | 7.734E+04              | SR85   |
| 526.94                   | 691.              | 39.15           | 0.39         | 2.271E-02                    | 1                          |                        |                        |        |
| 526.94                   | 691.              | 39.15           | 0.39         | 2.271E-02                    |                            |                        |                        |        |
| 661.67                   | 245798.           | 0.28            | 1.66         | 1.922E-02                    | 661.66                     | 85.210                 | 5.646E+04              | CS137  |

ARS1-23-01973 Page 162 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM

AAA Spectrum name: 2275-19-5 250mL tc poly eft 12-8

| pk energy | area    | uncert | fwhm | corr      | nuclide | brnch.   | act.      | nuc  |
|-----------|---------|--------|------|-----------|---------|----------|-----------|------|
| 771.42    | 684.    | 38.38  | 5.12 | 1.715E-02 |         | 11       |           |      |
| 813.77    | 4069.   | 6.66   | 2.61 | 1.647E-02 |         | []       |           |      |
| 821.45    | 779.    | 34.99  | 2.03 | 1.635E-02 |         | 11       |           |      |
| 859.86    | 615.    | 23.26  | 1.85 | 1.579E-02 |         |          |           |      |
| 863.48    | 576.    | 30.01  | 1.85 | 1.574E-02 |         | .        |           |      |
| 866.03    | 504.    | 35.30  | 1.85 | 1.570E-02 |         | [}<br>1¢ |           |      |
| 868.40    | 637.    | 27.35  | 1.85 | 1.567E-02 |         |          |           |      |
| 872.38    | 376.    | 38.42  | 1.86 | 1.562E-02 |         | 1        |           |      |
| 898.04    | 363140. | 0.20   | 1.88 | 1.527E-02 | 898.02  | 95.000   | 1.193E+05 | Y88  |
| 1075.46   | 618.    | 39.74  | 0.33 | 1.327E-02 |         |          |           |      |
| 1173.22   | 216388. | 0.26   | 2.12 | 1.238E-02 | 1173.24 | 99.900   | 6.655E+04 | CO60 |
| 1324.98   | 6318.   | 2.77   | 2.26 | 1.122E-02 |         | H        |           |      |
| 1332.64   | 185401. | 0.25   | 2.26 | 1.117E-02 | 1332.50 | 99.982   | 6.314E+04 | CO60 |
| 1581.39   | 639.    | 39.48  | 1.30 | 9.702E-03 |         |          |           |      |
| 1688.68   | 437.    | 34.67  | 2.41 | 9.181E-03 |         |          |           |      |
| 1825.90   | 450.    | 21.04  | 2.63 | 8.595E-03 |         |          |           |      |
| 1836.03   | 217266. | 0.23   | 2.64 | 8.555E-03 | 1836.01 | 99.350   | 1.219E+05 | Y88  |
| 1935.80   | 192.    | 32.57  | 0.24 | 8.174E-03 |         |          |           |      |
| 1993.79   | 124.    | 28.70  | 0.26 | 7.971E-03 |         |          |           |      |
|           |         |        |      |           |         | 1        |           |      |

| ***** U N      |               |               |             |       | A ********* |
|----------------|---------------|---------------|-------------|-------|-------------|
| Peak Centroid  | Background Ne | t Area Effici | ency Uncërt | FWHM  | Suspected   |
| Channel Energy | Counts        | Counts * Are  | ea 2 Sigma  | % keV | Nuclide     |
|                |               |               | Ŋ           |       |             |

|   |         |         |         |        |           | η      |       |   |    |
|---|---------|---------|---------|--------|-----------|--------|-------|---|----|
| - | 48.04   | 11.94   | 16706.  | 5663.  | 8.019E+06 | 7.27   | 1.196 | - | s  |
|   | 88.20   | 22.13   | 35971.` | 16802. | 2.897E+06 | 3.55   | 0.957 | - | D  |
|   | 99.29   | 24.90   | 44106.  | 17709. | 2.208E+06 | 3.68   | 0.961 | - | sD |
|   | 109.95  | 27.57   | 36226.  | 7048.  | 6.781E+05 | 8.00   | 0.964 | - | D  |
|   | 128.03  | 32.09   | 36439.  | 5970.  | 4.039E+05 | 9.41   | 0.969 | - | sD |
|   | 334.18  | 83.62   | 64670.  | 4330.  | 8.281E+04 | 16.89  | 1.029 | - | sD |
|   | 545.39  | 136.47  | 68892.  | 15910. | 3.023E+05 | 5.65   | 1.083 | - |    |
|   | 1019.39 | 254.96  | 52924.  | 9504.  | 2.581E+05 | 8.36   | 1.120 | - |    |
|   | 1239.88 | 310.20  | 29003.  | 632.   | 1.947E+04 | 76.58  | 1.284 | - | sD |
|   | 1260.44 | 315.34  | 42080.  | 1094.  | 3.403E+04 | 53.39  | 1.290 |   | sD |
|   | 2107.68 | 525.32  | 22649.  | 691.   | 3.043E+04 | 78.29  | 0.388 | - | s  |
|   | 3086.13 | 771.49  | 18419.  | 684.   | 3.987E+04 | 76.76  | 5.124 | - | s  |
|   | 3255.69 | 813.64  | 18259.  | 4069.  | 2.471E+05 | 13.32  | 2.605 | - | s  |
|   | 3286.44 | 821.55  | 18847.  | 779.   | 4.764E+04 | 69.98  | 2.032 | - |    |
|   | 3440.17 | 859.92  | 9918.   | 615.   | 3.893E+04 | 46.52  | 1.845 | - | sD |
|   | 3454.68 | 863.54  | 14668.  | 576.   | 3.662E+04 | 60.01  | 1.848 | - | sD |
|   | 3464.87 | 866.09  | 15554.  | 504.   | 3.208E+04 | 70.59  | 1.851 | - | sD |
|   | 3474.35 | 868.46  | 14875.  | 637.   | 4.067E+04 | 54.70  | 1.853 | - | sD |
|   | 3490.31 | 872.45  | 10267.  | 376.   | 2.410E+04 | 76.83  | 1.857 | - | sD |
|   | 4303.33 | 1075.46 | 15324.  | 618.   | 4.661E+04 | 7,9.47 | 0.334 | - | ន  |
|   | 5302.49 | 1324.83 | 12128.  | 6315.  | 5.627E+05 | 5.54   | 2.255 |   | D  |
|   | 6329.59 | 1580.96 | 13709.  | 639.   | 6.588E+04 | 78.97  | 1.300 | - | s  |
|   |         |         |         |        |           |        |       |   |    |

ARS1-23-01973 Page 163 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM

AAA Spectrum name: 2275-19-5 250mL tc poly eft 12-8

| Channel | Energy  | Background | Net area | Eff*Area   | Uncert | FWHM  | Susp | ected |
|---------|---------|------------|----------|------------|--------|-------|------|-------|
| 6759.43 | 1688.56 | 5490.      | 437.     | 4.758E+04  | 69.34  | 2.406 | -    | s     |
| 7309.20 | 1825.60 | 4258.      | 450      | -2.676E+04 | 42.08  | 2.631 | -    | 1D    |
| 7749.60 | 1936.20 | 951.       | 192.     | 2.347E+04  | 65.13  | 0.241 | -    | s     |
| 7982.01 | 1993.79 | 418.       | 124.     | 1.560E+04  | 57.39  | 0.262 | -    | s     |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

This section based on library: northamericancal.Lib

\*\*\*\*\*\*\* IDENTIFIED PEAK S U M M A R Y \*\*\*\*\*\*\*\*\*\* Nuclide Peak Centroid Background Net Area Intensity Uncert FWHM Counts Counts Cts/Sec 2 Sigma % keV Channel Energy 186.14 46.65 100222. 110523.  $15\sqrt{3}$ 50 1.16 PB-210 0.981 59.64 97121. 135324. 18 795 0.98 

 238.08
 59.64
 97121.
 135324.
 18 795
 0.98
 0.980

 351.66
 88.03
 69978.
 158766.
 22 051
 0.69
 1.034D

 487.81
 122.07
 101727.
 135123.
 18 767
 1.02
 1.074

 635.42
 158.97
 99610.
 143930.
 19 990
 0.97
 1.135

 1279.92
 320.07
 46640.
 138192.
 19 193
 0.70
 1.295D

 1565.91
 391.55
 55226.
 232986.
 32 359
 0.58
 1.374

 2055.60
 513.92
 53445.
 318199.
 44 194
 0.47
 1.507

 2646.89
 661.67
 44955.
 245798.
 34 139
 0.55
 1.659

 3593.01
 898.04
 34881.
 363140.
 50 436
 0.41
 1.883

 4694.77
 1173.22
 19458.
 216388.
 30 54
 0.53
 2.119

 5332.66
 1332.50
 18596.
 185401.
 25 750
 0.51
 2.261D

 7348.65
 1835.74
 6022.
 237918.
 33.044
 0.44
 238.08 0.980 AM-241 CD-109 CO-57 TE-123M 635.42 158.97 CR-51 SN-113 SR-85 CS-137 Y-88 CO-60 CO-60 Y-88 7348.65 1835.74

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| **** S U - Nuclide - Name Code | M M A R Y<br>Average<br>Activity<br>pCi/g | OF LI<br><br>Energy<br>keV | Peak      | PEAK Code MDA Value | USAGE ****<br>-<br>e<br>COMMENTS |
|--------------------------------|-------------------------------------------|----------------------------|-----------|---------------------|----------------------------------|
| PB-210                         | 3.5438E+05                                | 46.52                      | 3.544E+05 | ( 4.739E+03         | 7.45E+03<br>5.80E-01 4.00E+00 G  |
| AM-241                         | 3.4662E+04                                | 59.54                      | 3.466E+04 |                     | 1.58E+05<br>4.88E-01 3.63E+01 G  |

ARS1-23-01973 Page 164 of 311

ORTEC q v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM AAA Spectrum name: 2275-19-5 250mL tc poly eft 12-8 Nuclide Ave activity Activity Code Peak MDA Comments Energy CD-109 3.2774E+05 4.36E+02 88.03 3.277E+05 2.550E+03 3.44E-01 3.61E+00 G CO-57 1.1919E+04 2.72E+02 122.07 1.192E+04 ( 1.313E#02 5.08E-01 8.56E+01 G TE-123M 1.6368E+04 1.20E+02 159.00 1.637E+04 1.676E#02 4.83E-01 8.35E+01 G CR-51 4.1610E+05 2.77E+01 3.038E#03 3.48E-01 9.83E+00 G 320.07 4.161E+05 ( SN-113 6.1115E+04 1.15E+02 2.880E+02 2.91E-01 6.42E+01 G 391.69 6.112E+04 SR-85 7.7339E+04 6.47E+012.625E±02 2.35E-01 9.93E+01 G 513.99 7.734E+04 CS-137 5.6460E+04 1.10E+04 2.276E\(\frac{1}{2}\)02 2.75E-01 8.52E+01 G 661.66 5.646E+04 1.93E+03 6.6547E+04 CO-60 1173.24 6.655E+04 ( 2.007E402 2.63E-01 9.99E+01 G 1332.50 6.314E+04 -2.173E+02 2.54E-01 1.00E+02 G Y-88 1.3347E+05 1.07E+02 1836.01 1.335E+05 @( 2.044E+02 2.21E-01 9.93E+01 G 898.02 1.193E+05 -2.868E+02 2.03E-01 9.50E+01 G

( - This peak used in the nuclide activity average.

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity

```
ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:02:20 PM
 AAA
                                    Spectrum name: 2275-19-5 250mL tc poly eft 12-8
       to be found directly.
   Nuclide Codes:
                                          Peak Codes:
                                      G - Gamma Ray
   T - Thermal Neutron Activation
   F - Fast Neutron Activation
                                         X - X-Ray
   L - Fission Product
P - Positron Decay
N - Naturally Occurring Isotope
P - Photon Reaction
S - Single-Escape
   r - Photon Reaction D - Double-Escape
C - Charged Particle Reaction K - Key Line 
M - No MDA Calculation
   M - No MDA Calculation
R - Coincidence Corrected
                                         A - Not in Averäge
                                      C - Coincidence Peak
   H - Halflife limit exceeded
 ******* D I S C A'R D E D I S O T O P E P E A K S **********
 Nuclide Centroid Background Net Area Intensity Uncert Activity
                                              Cts/Sec 2 Sigma %
             Energy
                       Counts Counts
   P - Peakbackground subtraction
         SUMMARY OF NUCLIDES IN SAMPLE
Time of Count Time Corrected Uncertainty 2 Sigma
                                                           2 Sigma
Total
              Activity
 Nuclide
                              Activity Counting
                                                                             MDA
                 pCi/q
                                 pCi/g
                                               pCi/g
                                                              pCi/g
                                                                            pCi/g
               3.5317E+05
3.4656E+04
3.4662E+04
3.2774E+05
                                                           4.1122E+03
 PB-210
 AM-241
                                             3.3841E+02
 CD-109
                                             2.2565E+03
              1.0855E+04
1.3228E+04
1.6577E+05
4.8973E+04
5.2163E+04
5.6329E+04
6.5672E+04
1.0510E+05
                              1.1919E+04
 CO-57
                                             1.2106E+02
 TE-123M
                              1.6368E+04
                                             1.5800E+02
                              1.0308E+04
4.1610E+05
6.1115E+04
7.7339E+04
                                                           2.6313E+04 3.038E+03
 CR-51
                                             2.8973E+03
                                                            4.4179E+03 2.880E+02
 SN-113
                                             3.5559E+02
                                                            4.9185E+03 2.625E+02
2.3140E+03 2.276E+02
 SR-85
                                             3.6335E+02
                             5.6460E+04
 CS-137
                                             3.1059E+02
                             6.6547E+04
 CO-60
                                                             2.4811E+03 2.007E+02
                                             3.4978E+02
                             1.3347E+05 5.9058E+02
                                                            7.1436E+03 2.044E+02
 Y-88
   < - MDA value printed.
   A - Activity printed, but activity < MDA.
   B - Activity < MDA and failed test.
   C - Area < Critical level.
   F - Failed fraction or key line test.
   H - Halflife limit exceeded
 _____
                                   SUMMARY ----
 Total Activity ( 2.6 to 1998.3 keV) 1.215E+06 pCi/g
Total Decayed Activity ( 2.6 to 1998.3 keV) 1.556 082E+06 pCi/g
Analyzed by: ____
                     Countroom
 Reviewed by: _
                 Supervisor
Laboratory: AAA
```

ARS1-23-01973 Page 166 of 311

```
ORTEC q v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM
AAA
                                 Spectrum name: ARS06690.An1
Sample description
     Batch ID: Cal Ver
     SDG ID: 2275-19-5 Tech: EEC
Spectrum Filename: C:\User\ARS06690.An1
Acquisition information
       Start time:
                                   12/8/2021 12:02:49 PM
       Live time:
                                 600
       Real time:
                                 637
       Dead time:
                                   5.78 %
       Detector ID:
                                      21
Detector system
     ARS06 MCB 133
Calibration
       Filename:
                                    2275-19-5 250mL tuna can calib 12-7-21.C
     2275-19-5 250mL tuna can
     12-7-21 EEC
       Energy Calibration
                                   12/7/2021 2:01:12 PM
            Created:
            Zero offset:
                                   0.115 keV
                                   0.250 keV/channel
            Gain:
                                  -3.130E-08 keV/channel^2
            Quadratic:
       Efficiency Calibration
                                   12/7/2021 2:13:04 PM
            Created:
            Knee Energy:
                                 150.00 keV
                                                     Uncertainty = 1.43 %
            Above the Knee:
                                  Quadratic
                                  -1.559890E+00 + (-8)275593E-04*Log(E) ) +
            Log(Eff):
                                  ( -5.657383E-02*Log(E)^2 )
            Below the Knee:
                                   Ouadratic
                                                     Uncertainty =
                                  -2.264008E+01 + (8.441602E+00*Log(E)) +
            Log(Eff):
                                   (-9.021915E-01*Log(E)^2)
Library Files
       Main analysis library:
                                   northamericancal.Lib
       Library Match Width:
                                   0.500
       Peak stripping:
                                   Library based
Analysis parameters
       Analysis engine:
                                   Env32
                                            G800W064
                                10 ( 2.62keV)
8000 ( 1998.28keV)
       Start channel:
                                            2.62keV )
       Stop channel:
       Peak rejection level:
                                  40.000%
       Peak search sensitivity:
                                   1.0000E+00 +/- 0.000E+00%
1.0000E+06/( 1.0000E+00* 1.0000E+00) =
       Sample Size:
       Activity scaling factor:
                                   1.0000E+06
                                   Reg. Guide 4.16 Method
       Detection limit method:
```

ARS1-23-01973 Page 167 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM AAA Spectrum name: ARS06690.An1

Random error: 1.0000000E+00
Systematic error: 1.0000000E+00
Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000
Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES
Decay during acquisition: NO
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES cal solids.Pbc

11/15/2021 8:26:58 AM

11/1/2021 2:00:00 PM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0387

| **** S  | UMMA   | RY O   | F PE | AKS I     | N RAN   | GE      | ****      |        |
|---------|--------|--------|------|-----------|---------|---------|-----------|--------|
| Peak    | Area   | Uncert | FWHM | Corrctn   | Nuclide | Brnch.  | Act.      | Nuc    |
| Energy  |        |        |      | Factor    | Energy  | Ratio   | pCi/g     |        |
|         |        |        |      |           |         |         |           |        |
| 11.93   | 1021.  | 5.01   | 0.95 | 7.202E-04 |         |         |           |        |
| 15.19   | 496.   | 14.68  | 0.95 | 1.768E-03 |         | `F      |           |        |
| 22.19   | 1622.  | 5.41   | 0.96 | 5.812E-03 |         | 1       |           |        |
| 24.87   | 1733.  | 5.21   | 0.96 | 7.952E-03 |         |         |           |        |
| 27.55   | 722.   | 11.74  | 0.96 | 1.034E-02 |         |         |           |        |
| 32.15   | 593.   | 13.79  | 0.97 | 1.480E-02 |         | }<br>!: |           |        |
| 46.67   | 9431.  | 1.91   | 1.00 | 2.948E-02 | 46.52   | 4.000   | 3.629E+05 | PB210  |
| 59.66   | 11243. | 1.70   | 0.99 | 4.046E-02 | 59.54   | 36.300  | 3.456E+04 | AM241  |
| 88.08   | 13585. | 1.52   | 1.03 | 5.342E-02 | 88.03   | 3.610   | 3.366E+05 | CD109  |
| 122.07  | 11216. | 1.71   | 1.09 | 5.459E-02 | 122.07  | 85.600  | 1.188E+04 | CO57   |
| 136.39  | 1217.  | 10.74  | 1.10 | 5.264E-02 |         |         |           |        |
| 158.98  | 12070. | 1.69   | 1.16 | 4.892E-02 | 159.00  | 83.500  | 1.648E+04 | TE123M |
| 254.89  | 851.   | 13.29  | 1.13 | 3.681E-02 |         | i       |           |        |
| 319.91  | 12036. | 1.55   | 1.35 | 3.185E-02 | 320.07  | 9.830   | 4.364E+05 | CR51   |
| 391.54  | 19361. | 0.97   | 1.38 | 2.784E-02 | 391.69  | 64.160  | 6.099E+04 | SN113  |
| 513.93  | 26520. | 0.81   | 1.52 | 2.307E-02 | 513.99  | 99.280  | 7.746E+04 | SR85   |
| 661.69  | 20363. | 0.92   | 1.68 | 1.922E-02 | 661.66  | 85.210  | 5.613E+04 | CS137  |
| 813.52  | 387.   | 18.96  | 1.86 | 1.647E-02 |         |         |           |        |
| 898.04  | 30319. | 0.68   | 1.86 | 1.527E-02 | 898.02  | 95.000  | 1.196E+05 | Y88    |
| 1173.21 | 17963. | 0.93   | 2.05 | 1.238E-02 | 1173.24 | 99.900  | 6.629E+04 | CO60   |
| 1325.01 | 479.   | 10.24  | 2.26 | 1.122E-02 |         | 1       |           |        |
| 1332.66 | 15443. | 0.89   | 2.26 | 1.117E-02 | 1332.50 | 99.982  | 6.312E+04 | CO60   |
|         |        |        |      |           |         | · L     |           |        |

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM AAA Spectrum name: ARS06690.An1

| pk energy | area   | uncert | fwhm | corr      | nuclide | brnch. | act.      | nuc |
|-----------|--------|--------|------|-----------|---------|--------|-----------|-----|
| 1742.75   | 103.   | 27.90  | 2.18 | 8.940E-03 |         |        |           |     |
| 1835.75   | 19708. | 0.79   | 2.74 | 8.553E-03 | 1836.01 | 99.350 | 1.328E+05 | Y88 |
| 1947.41   | 84.    | 22.67  | 0.45 | 8.134E-03 |         | 1      |           |     |

|         |          | DENTI         |           | PEAK      | SUMN      | A R Y | ****  | ***** |
|---------|----------|---------------|-----------|-----------|-----------|-------|-------|-------|
| Peak Ce | ntroid E | Background Ne | et Area E |           | Uncert    |       | Suspe | cted  |
| Channel | Energy   | Counts        | Counts    | * Area    | 2 Sigma % | keV   | Nucl  | ide   |
|         |          |               |           |           |           |       |       |       |
| 47.27   | 11.99    | 800.          | 1021.     | 1.418E+06 | 10,02     | 0.945 | -     | D     |
| 60.28   | 15.25    | 2409.         | 496.      | 2.809E+05 | 29.37     | 0.949 | -     | sD    |
| 88.31   | 22.15    | 3037.         | 1622.     | 2.791E+05 | 10.81     | 0.957 | -     | D     |
| 99.00   | 24.82    | 3202.         | 1733.     | 2.179E+05 | 10.41     | 0.961 | _     | sD    |
| 109.74  | 27.51    | 3234.         | 722.      | 6.987E+04 | 23.48     | 0.964 | -     | sD    |
| 128.14  | 32.10    | 3047.         | 593.      | 4.006E+04 | 27.58     | 0.969 | -     | sD    |
| 545.11  | 136.41   | 5879.         | 1217.     | 2.313E+04 | 21.48     | 1.103 | -     |       |
| 1019.15 | 255.14   | 4262.         | 851.      | 2.311E+04 | 26[.59    | 1.128 | -     |       |
| 3254.67 | 813.46   | 1353.         | 387.      | 2.351E+04 | 37.92     | 1.861 | -     |       |
| 5302.57 | 1324.83  | 964.          | 478.      | 4.263E+04 | 20.50     | 2.255 | -     | D     |
| 6976.05 | 1742.70  | 173.          | 103.      | 1.154E+04 | 55.80     | 2.182 | -     | s     |
| 7796.14 | 1947.41  | 38.           | 84.       | 1.033E+04 | 45.34     | 0.450 | -     | s     |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

This section based on library: northamericancal.Lib

| ******  | ***** I | DENTI    | FIED P     | EAK      | SUMMAR    | Y ***** | *****  |
|---------|---------|----------|------------|----------|-----------|---------|--------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert  | FWHM   |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec 2 | Sigma % | keV    |
|         |         |          |            |          | <u> </u>  |         |        |
| PB-210  | 186.20  | 46.67    | 7887.      | 9431.    | 15 718    | 3.81    | 0.998s |
| AM-241  | 238.15  | 59.66    | 8104.      | 11243.   | 18 738    | 3.39    | 0.993  |
| CD-109  | 351.84  | 88.08    | 9020.      | 13585.   | 22.642    | 3.03    | 1.034  |
| CO-57   | 487.81  | 122.07   | 7977.      | 11216.   | 18 693    | 3.42    | 1.091  |
| TE-123M | 635.45  | 158.98   | 8408.      | 12070.   | 20, 116   | 3.38    | 1.155  |
| CR-51   | 1279.27 | 319.91   | 5812.      | 12036.   | 20 061    | 3.10    | 1.346s |
| SN-113  | 1565.86 | 391.54   | 4183.      | 19361.   | 32.268    | 1.94    | 1.377  |
| SR-85   | 2055.60 | 513.93   | 4336.      | 26520.   | 44,199    | 1.62    | 1.520  |
| CS-137  | 2646.94 | 661.69   | 3422.      | 20363.   | 33 938    | 1.84    | 1.676  |
| Y-88    | 3593.03 | 898.04   | 2603.      | 30319.   | 50 532    | 1.36    | 1.861  |
| CO-60   | 4694.76 | 1173.21  | 1705.      | 17963.   | 29 938    | 1.86    | 2.054  |
| CO-60   | 5332.66 | 1332.50  | 1675.      | 15443.   | 25, 739   | 1.78    | 2.261D |
| Y-88    | 7348.69 | 1835.75  | 624.       | 19708.   | 32.847    | 1.58    | 2.738s |

ARS1-23-01973 Page 169 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM AAA Spectrum name: ARS06690.An1

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| **** S U<br>- Nuclide - | M M A R Y<br>Average | OF L      | BRAR<br>Peak           |            | PEAK              | បន     | A G E           | ****            |   |
|-------------------------|----------------------|-----------|------------------------|------------|-------------------|--------|-----------------|-----------------|---|
|                         | Activity<br>pCi/g    |           |                        | Code       | e MDA Va<br>pCi/g | lue    | COI             | iments          |   |
| PB-210                  | 3.6289E+05           | 46.52     | 3.629E+05              | <b>@</b> ( | 1.603E            |        | 7.45E+<br>1E+00 |                 | G |
| AM-241                  | 3.4557E+04           | 59.54     | 3.456E+04              | (          | 1.298E+           |        | 1.58E+<br>0E+00 |                 | G |
| CD-109                  | 3.3660E+05           | 88.03     | 3.366E+05              | (          | 1.103E+           |        | 4.36E+<br>2E+00 | -02<br>3.61E+00 | G |
| CO-57                   | 1.1877E+04           | 122.07    | 1.188E+04              | (          | 4.436E            |        | 2.72E+<br>1E+00 | -02<br>8.56E+01 | G |
| TE-123M                 | 1.6484E+04           | 159.00    | 1.648E+04              | (          | 5.873E            |        | 1.20E+<br>9E+00 |                 | G |
| CR-51                   | 4.3643E+05           | 320.07    | 4.364E+05              | @(         | 1.298E            |        | 2.77E+<br>5E+00 |                 | G |
| SN-113                  | 6.0995E+04           | 391.69    | 6.099E+04              | (          | 9.581E            |        | 1.15E+<br>0E-01 | -02<br>6.42E+01 | G |
| SR-85                   | 7.7464E+04           | 513.99    | 7.746E+04              | (          | 9.043E+           |        | 6.47E+<br>9E-01 | -01<br>9.93E+01 | G |
| CS-137                  | 5.6129E+04           | 661.66    | 5.613E+04              | (          | 7.589E            |        | 1.10E+<br>0E-01 | -04<br>8.52E+01 | G |
| CO-60                   | 6.6294E+04           |           | 6.629E+04<br>6.312E+04 |            |                   | 02 9.3 |                 | 9.99E+01        |   |
| Y-88                    | 1.3280E+05           |           | 1.328E+05<br>1.196E+05 |            |                   | 02 7.9 |                 | 9.93E+01        |   |
| ( - This                | peak used in         | the nucl: | ide activi             | ty a       | verage.           |        | _               |                 |   |

<sup>\* -</sup> Peak is too wide, but only one peak in library.

<sup>! -</sup> Peak is part of a multiplet and this area went;

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM AAA Spectrum name: ARS06690.An1

negative during deconvolution.

- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.

  P - Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

| Nuclide Codes:                  | Peak Codes:          |
|---------------------------------|----------------------|
| T - Thermal Neutron Activation  | G - Gamma Ray        |
| F - Fast Neutron Activation     | X - X-Ray            |
| I - Fission Product             | P - Positron Decay   |
| N - Naturally Occurring Isotope | S - Single-Escape    |
| P - Photon Reaction             | D - Double-Escape    |
| C - Charged Particle Reaction   | K - Key Line         |
| M - No MDA Calculation          | A - Not in Average   |
| R - Coincidence Corrected       | C - Coincidence Peak |
| H - Halflife limit exceeded     | 1                    |

\*\*\*\*\*\*\*\*\* DISCARDED ISOTOPE PEAKS \*\*\*\*\*\*\*\*\*\* Intensity Uncert
Cts/Sec 2 Sigma % Nuclide Centroid Background Net Area Activity Energy Counts Counts

P - Peakbackground subtraction \*\*\*\* SUMMARY O F NUCLIDES I N SAMPLE Time of Count Time Corrected Uncertainty 2 Sigma Nuclide Activity Activity MDA Counting Total pCi/g pCi/g pCi/g pCi/g pCi/g 1.603E+04 PB-210 # 3.6164E+05 3.6289E+05 1.3831E+04 3.5033E+04 AM-241 3.4552E+04 3.4557E+04 1.1723E+03 2.6421E+03 1.298E+03 2.7273E+04 CD-109 3.1741E+05 3.3660E+05 1.0210E+04 1.103E+04 8.8543E+02 4.436E+02 CO-57 1.0812E+04 1.1877E+04 4.0595E+02 1.4250E+03 5.873E+02 TE-123M 1.3311E+04 5.5642E+02 1.6484E+04 CR-51 # 1.7326E+05 4.3643E+05 1.3509E+04 3.0577E+04 1.298E+04 4.5513E+03 9.581E+02 SN-113 4.8834E+04 6.0995E+04 1.1831E+03 5.0703E+03 9.043E+02 SR-85 5.2168E+04 7.7464E+04 1.2534E+03 CS-137 5.6129E+04 1.0325E+03 2.5026E+03 7.589E+02 5.5998E+04 CO-60 6.6294E+04 1.2356E+03 2.7412E+03 7.202E+02 6.5419E+04 Y-88 1.0447E+05 1.3280E+05 2.0991E+03 7.3876E+03 8.024E+02

ARS1-23-01973 Page 171 of 311

| ORTEC g v - i (3263) Env32 G800W064 12/8/2021 12:13:33 PM       |
|-----------------------------------------------------------------|
| AAA Spectrum name: ARS06690.An1                                 |
| - II                                                            |
|                                                                 |
| # - All peaks for activity calculation had bad shape.           |
| * - Activity omitted from total                                 |
| & - Activity omitted from total and all peaks had bad shape.    |
| < - MDA value printed.                                          |
| A - Activity printed, but activity < MDA.                       |
| B - Activity < MDA and failed test.                             |
| C - Area < Critical level.                                      |
| F - Failed fraction or key line test.                           |
| H - Halflife limit exceeded                                     |
|                                                                 |
| Total Activity ( 2.6 to 1998.3 keV) 1.238E+06 pCi/g             |
| Total Decayed Activity ( 2.6 to 1998.3 keV) 1.5925074E+06 pCi/g |
|                                                                 |
| Analyzed by:                                                    |
| Countroom                                                       |
|                                                                 |
| Reviewed by:                                                    |
| Supervisor                                                      |
|                                                                 |
| Laboratory: AAA                                                 |

ARS1-23-01973 Page 172 of 311

```
ORTEC g v - i (3263) Env32 G800W064 12/8/2021 1:22:20 PM
AAA
                                Spectrum name: ARS06694.An1
Sample description
     Batch ID: Calibration Verification
     SDG ID: 2079-79-6 Tech: EEC
Spectrum Filename: C:\User\ARS06694.An1
Acquisition information
       Start time:
                                   12/8/2021 1:12:02 PM
       Live time:
                                 600
       Real time:
                                 609
       Dead time:
                                   1.48 %
      Detector ID:
                                      21
Detector system
     ARS06 MCB 133
Calibration
       Filename:
                                   2275-19-5 250mL tuna can calib 12-7-21.C
     2275-19-5 250mL tuna can
     12-7-21 EEC
       Energy Calibration
            Created:
                                   12/7/2021 2:01:12 PM
            Zero offset:
                                   0.115 keV
            Gain:
                                   0.250 keV/channel
            Quadratic:
                                  -3.130E-08 keV/channel^2
       Efficiency Calibration
            Created:
                                  12/7/2021 2:13:04 PM
            Knee Energy:
                                 150.00 keV
                                Quadratic
            Above the Knee:
                                                    Uncertainty = 1.43 %
           Log(Eff):
                                  -1.559890E+00 + (-8)275593E-04*Log(E) +
                                  ( -5.657383E-02*Log(E)^2 )
                                  Quadratic
           Below the Knee:
                                                    Uncertainty =
                                  -2.264008E+01 + ( 8,441602E+00*Log(E) ) +
           Log(Eff):
                                  ( -9.021915E-01*Log(E)^2 )
Library Files
       Main analysis library:
                                   northamericancal.Lib
       Library Match Width:
                                   0.500
       Peak stripping:
                                   Library based
Analysis parameters
       Analysis engine:
                                   Env32
                                           G800W064
       Start channel:
                                10 ( 2.62keV)
8000 ( 1998.28keV)
       Stop channel:
       Peak rejection level:
                                  40.000%
       Peak search sensitivity:
                                   1.0000E+00 +/- 0.000E+00%
1.0000E+06/( 1.0000E+00* 1.0000E+00) =
       Sample Size:
       Activity scaling factor:
                                   1.0000E+06
      Detection limit method:
                                   Reg. Guide 4.16 Method
```

ARS1-23-01973 Page 173 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 1:22:20 PM ΔΔΔ Spectrum name: ARS06694.An1

> Random error: 1.000000E+00 Systematic error: 1.000000E+00 Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000 Activity range factor: 2.000 Min. step backg. energy 0.000 Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 10/1/2019 2:00:00 PM Decay during acquisition: NO

Decay during collection: NO True coincidence correction: NO Peaked background correction: YES

cal solids.Pbc

11/15/2021 8:26:58 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0980

| Peak Energy         Area Energy         Uncert FWHM Factor         Corrctn Factor         Nuclide Energy         Brnch. Ratio         Act. Nuc pCi/g           11.71         118.         19.86         0.95         6.211E-04         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96         0.96 | **** S U | MMAE   | R Y O  | F PE | AKS I     | N RAN   | GE     | ****      |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|--------|------|-----------|---------|--------|-----------|------------|
| 11.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Peak     | Area   | Uncert | FWHM | Corrctn   | Nuclide | Brnch. | Act.      | Nuc        |
| 12.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Energy   |        |        |      | Factor    | Energy  | Ratio  | pCi/g     |            |
| 12.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |        |        |      |           |         | )      |           |            |
| 22.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.71    | 118.   | 19.86  | 0.95 | 6.211E-04 |         |        |           |            |
| 25.21 317. 12.02 0.96 8.264E-03<br>32.35 323. 11.70 0.97 1.508E-02<br>36.22 208. 21.13 0.97 1.904E-02<br>46.59 5808. 1.96 0.89 2.943E-02 46.52 4.000 2.399E+05 PB210<br>59.55 7060. 1.64 0.90 4.039E-02 59.54 36.300 2.177E+04 AM241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.85    | 114.   | 25.29  | 0.95 | 8.993E-04 |         |        |           |            |
| 32.35 323. 11.70 0.97 1.508E-02<br>36.22 208. 21.13 0.97 1.904E-02<br>46.59 5808. 1.96 0.89 2.943E-02 46.52 4.000 2.399E+05 PB210<br>59.55 7060. 1.64 0.90 4.039E-02 59.54 36.300 2.177E+04 AM241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.19    | 368.   | 10.25  | 0.96 | 5.830E-03 |         |        |           |            |
| 36.22 208. 21.13 0.97 1.904E-02<br>46.59 5808. 1.96 0.89 2.943E-02 46.52 4.000 2.399E+05 PB210<br>59.55 7060. 1.64 0.90 4.039E-02 59.54 36.300 2.177E+04 AM241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25.21    | 317.   | 12.02  | 0.96 | 8.264E-03 |         |        |           |            |
| 46.59 5808. 1.96 0.89 2.943E-02 46.52 4.000 2.399E+05 PB210 59.55 7060. 1.64 0.90 4.039E-02 59.54 36.300 2.177E+04 AM241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32.35    | 323.   | 11.70  | 0.97 | 1.508E-02 |         |        |           |            |
| 59.55 7060. 1.64 0.90 4.039E-02 59.54 36.300 2.177E+04 AM241                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36.22    | 208.   | 21.13  | 0.97 | 1.904E-02 |         |        |           |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46.59    | 5808.  | 1.96   | 0.89 | 2.943E-02 | 46.52   | 4.000  | 2.399E+05 | PB210      |
| 87.98 2923. 2.65 1.01 5.339E-02 88.03 3.610 2.432E+05 CD109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 59.55    | 7060.  | 1.64   | 0.90 | 4.039E-02 | 59.54   | 36.300 | 2.177E+04 | AM241      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 87.98    | 2923.  | 2.65   | 1.01 | 5.339E-02 | 88.03   | 3.610  | 2.432E+05 | CD109      |
| 122.03 1190. 6.11 1.01 5.460E-02 122.07   85.600 8.763E+03 CO57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 122.03   | 1190.  | 6.11   | 1.01 | 5.460E-02 | 122.07  | 85.600 | 8.763E+03 | CO57       |
| 136.33 237. 20.11 1.51 5.266E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 136.33   | 237.   | 20.11  | 1.51 | 5.266E-02 | !       |        |           |            |
| 391.46 107. 27.43 1.10 2.785E-02 391.69 64.160 3.306E+04 SN113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 391.46   | 107.   | 27.43  | 1.10 | 2.785E-02 | 391.69  | 64.160 | 3.306E+04 | SN113      |
| 661.60 12931. 0.95 1.56 1.922E-02 661.66   85.210 3.739E+04 CS137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 661.60   | 12931. | 0.95   | 1.56 | 1.922E-02 | 661.66  | 85.210 | 3.739E+04 | CS137      |
| 677.30 81. 34.86 0.42 1.889E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 677.30   | 81.    | 34.86  | 0.42 | 1.889E-02 |         |        |           |            |
| 897.47 189. 21.87 1.54 1.528E-02 898.02 $\parallel$ 95.000 1.054E+05 Y88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 897.47   | 189.   | 21.87  | 1.54 | 1.528E-02 | 898.02  | 95.000 | 1.054E+05 | X88        |
| 1173.15 9007. 1.15 2.03 1.238E-02 1173.24   99.900 4.374E+04 CO60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1173.15  | 9007.  | 1.15   | 2.03 | 1.238E-02 | 1173.24 | 99.900 | 4.374E+04 | CO60       |
| 1332.40 8093. 1.17 2.06 1.117E-02 1332.50 $  99.982 $ 4.352E+04 CO60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1332.40  | 8093.  | 1.17   | 2.06 | 1.117E-02 | 1332.50 | 99.982 | 4.352E+04 | CO60       |
| 1548.25 26. 27.74 3.15 9.872E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1548.25  | 26.    | 27.74  | 3.15 | 9.872E-03 | j       |        |           |            |
| 1688.65 23. 25.72 0.36 9.181E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1688.65  | 23.    | 25.72  | 0.36 | 9.181E-03 |         | ĺ      |           |            |
| 1724.82 15. 25.82 0.31 9.019E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1724.82  | 15.    | 25.82  | 0.31 | 9.019E-03 |         |        |           |            |
| 1835.77 105. 10.69 2.56 8.555E-03 1836.01 99.350 1.000E+05 Y88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1835.77  | 105.   | 10.69  | 2.56 | 8.555E-03 | 1836.01 | 99.350 | 1.000E+05 | <b>Y88</b> |
| 1875.41 14. 35.75 0.42 8.407E-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1875.41  | 14.    | 35.75  | 0.42 | 8.407E-03 |         |        |           |            |

ARS1-23-01973 Page 174 of 311

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 1:22:20 PM AAA Spectrum name: ARS06694.An1

nuclide brnch. pk energy uncert fwhm area corr act. nuc

\*\*\*\*\*\*\*\* U N I D E N T I F I E D S U M M A R Y \*\*\*\*\*\*\*\* PEAK Peak Centroid Background Net Area Efficiency Uncert FWHM Suspected 2 Sigma % keV Channel Energy Counts Counts \* Area Nuclide 46.38 11.56 215. 118. 1.896E+05 39.73 0.945 sD357. 50.59 50.93 12.70 114. 1.264E+05 0.946 sD 20.51 88.31 22.17 528. 368. 6.313E+04 0.957 D 100.38 25.19 567. 317. 3.836E+04 24.03 0.961 D 128.92 32.38 552. 323. 2.142E+04 23.41 0.969 D 144.41 36.25 858. 208. 1.091E+04 42.25 0.974 sD 40.23 544.85 136.30 786. 237. 4.509E+03 1.515 sM 1565.56 391.43 356. 107. 4.956E+03 54.86 1.099 1 231. 69.71 2709.44 677.55 81. 4.288E+03 0.421 s 6. 26. 2.613E+03 6196.81 1548.42 55.48 3.152 s 3. 23. 2.505E+03 0.363 6759.28 1688.65 51.44 s 6904.20 1724.82 0. 15. 1.663E+03 51.64 0.312 s 7507.59 1873.58 14. 1.677E+03 71.50 0.419 -

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.
- M Peak is close to a library peak.

This section based on library: northamericancal.Lib

| ******  | ***** I | DENTI    | FIED P     | EAK      | SUMMAR    | Y *********   |
|---------|---------|----------|------------|----------|-----------|---------------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert FWHM   |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec   | 2 Sigma % keV |
|         |         |          |            |          | i)        |               |
| PB-210  | 185.87  | 46.59    | 2552.      | 5808.    | 9 679     | 3.92 0.888    |
| AM-241  | 237.71  | 59.55    | 2071.      | 7060.    | 11,767    | 3.29 0.903    |
| CD-109  | 351.46  | 87.98    | 1105.      | 2923.    | 4,871     | 5.31 1.006    |
| CO-57   | 487.65  | 122.03   | 1240.      | 1190.    | 1,984     | 12.21 1.015   |
| CS-137  | 2646.60 | 661.60   | 550.       | 12931.   | 21,551    | 1.91 1.563    |
| Y-88    | 3590.64 | 897.45   | 448.       | 191.     | 0 318     | 45.56 1.554   |
| CO-60   | 4694.50 | 1173.15  | 320.       | 9007.    | 15,012    | 2.29 2.026    |
| CO-60   | 5332.23 | 1332.40  | 130.       | 8093.    | 13 (488   | 2.33 2.058    |
| Y-88    | 7348.78 | 1835.77  | 4.         | 105.     | 0 175     | 21.39 2.559   |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

ARS1-23-01973 Page 175 of 311 ORTEC g v - i (3263) Env32 G800W064 12/8/2021 1:22:20 PM AAA Spectrum name: ARS06694.An1

| **** S U<br>- Nuclide - | MMARY             | OF LIBRARY PEAK USAGE *****                                                                                        |
|-------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------|
| Name Code               | Activity<br>pCi/g | Energy Activity Code MDA Value keV pCi/g pCi/g COMMENTS                                                            |
| PB-210                  | 2.3988E+05        | 7.45E+03<br>46.52 2.399E+05 ( 9.836E+03 1.96E+00 4.00E+00 G                                                        |
| AM-241                  | 2.1774E+04        | 1.58E+05<br>59.54 2.177E+04 ( 6.623E+02 1.64E+00 3.63E+01 G                                                        |
| CD-109                  | 2.4322E+05        | 4.36E+02<br>88.03 2.432E+05 ( 1.312E+04 2.65E+00 3.61E+00 G                                                        |
| CO-57                   | 8.7631E+03        | 2.72E+02<br>122.07 8.763E+03 ( 1.228E+03 6.11E+00 8.56E+01 G                                                       |
| TE-123M                 | 1.3896E+03        | 1.20E+02<br>159.00 1.390E+03 %( 1.866E+04 5.31E+02 8.35E+01 G                                                      |
| CR-51                   | -9.6583E+02       | 2.77E+01<br>320.07-9.658E+02 %( 2.118E+03 9.13E+01 9.83E+00 G                                                      |
| SN-113                  | 1.2406E+04        | 1.15E+02<br>391.69 1.241E+04 %( 4.567E+04 1.59E+02 6.42E+01 G                                                      |
| SR-85                   | -8.2621E+01       | 6.47E+01<br>513.99-8.262E+01 %( 2.597E+02 1.41E+02 9.93E+01 G                                                      |
| CS-137                  | 3.7392E+04        | 1.10E+04<br>661.66 3.739E+04 ( 3.240E+02 9.55E-01 8.52E+01 G                                                       |
| CO-60                   | 4.3627E+04        | 1.93E+03<br>1173.24 4.374E+04 ( 4.178E+02 1.15E+00 9.99E+01 G<br>1332.50 4.352E+04 ( 3.003E+02 1.17E+00 1.00E+02 G |
| Y-88                    | 1.0326E+05        | 1.07E+02<br>1836.01 1.000E+05 ( 1.158E+04 1.07E+01 9.93E+01 G<br>898.02 1.067E+05 ( 5.659E+04 2.28E+01 9.50E+01 G  |

<sup>( -</sup> This peak used in the nuclide activity average.

<sup>\* -</sup> Peak is too wide, but only one peak in library.
! - Peak is part of a multiplet and this area went

negative during deconvolution.

<sup>? -</sup> Peak is too narrow.

<sup>@ -</sup> Peak is too wide at FW25M, but ok at FWHM.

ORTEC g v - i (3263) Env32 G800W064 12/8/2021 1:22:20 PM AAA Spectrum name: ARS06694.An1

- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity
  to be found directly.

| Nuclide Codes:                  | Peak Codes:          |
|---------------------------------|----------------------|
| T - Thermal Neutron Activation  | G - Gamma Ray        |
| F - Fast Neutron Activation     | X - X-Ray            |
| I - Fission Product             | P - Positron Decay   |
| N - Naturally Occurring Isotope | S - Single-Escape    |
| P - Photon Reaction             | D - Double-Escape    |
| C - Charged Particle Reaction   | K - Key Line         |
| M - No MDA Calculation          | A - Not in Average   |
| R - Coincidence Corrected       | C - Coincidence Peak |
| H - Halflife limit exceeded     | İ                    |

#### P - Peakbackground subtraction

| **** S Nuclide | U M M A R Y<br>ime of Count<br>Activity<br>pCi/g | OF NUCLI<br>Time Corrected<br>Activity<br>pCi/g | D E S I N<br>Uncertainty<br>Counting<br>pCi/g | SAMPLE<br>2 Sigma<br>Total<br>pCi/g | ****<br>MDA<br>pCi/g |
|----------------|--------------------------------------------------|-------------------------------------------------|-----------------------------------------------|-------------------------------------|----------------------|
| PB-210         | 2.2270E+05                                       | 2.3988E+05                                      | 9.4023E+03                                    | 2.3262E+04                          | 9.836E+03            |
| AM-241         | 2.1698E+04                                       | 2.1774E+04                                      | 7.1610E+02                                    | 1.6548E+03                          | 6.623E+02            |
| CD-109         | 6.8291E+04                                       | 2.4322E+05                                      | 1.2910E+04                                    | 2.2374E+04                          | 1.312E+04            |
| CO-57          | 1.1474E+03                                       | 8.7631E+03                                      | 1.0700E+03                                    | 1.2174E+03                          | 1.228E+03            |
| TE-123M A      | 1.3602E+01                                       | 1.3896E+03                                      | 1.4763E+04                                    | 1.4763E+04                          | 1.866E+04            |
| CR-51 #A       | -9.6583E+02                                      | >12 Halflives                                   | 1.7629E+03                                    | 1.7639E+03                          | 2.118E+03            |
| SN-113 #A      | 1.0089E+02                                       | 1.2406E+04                                      | 3.9469E+04                                    | 3.9479E+04                          | 4.567E+04            |
| SR-85 #A       | -8.2621E+01                                      | >12 Halflives                                   | 2.3299E+02                                    | 2.3305E+02                          | 2.597E+02            |
| CS-137         | 3.5559E+04                                       | 3.7392E+04                                      | 7.1403E+02                                    | 1.6781E+03                          | 3.240E+02            |
| CO-60          | 3.2721E+04                                       | 4.3627E+04                                      | 7.1286E+02                                    | 1.7610E+03                          | 4.178E+02            |
| Y-88           | 5.7409E+02                                       | 1.0326E+05                                      | 2.2082E+04                                    | 2.2759E+04                          | 1.158E+04            |

- # All peaks for activity calculation had bad shape.
- \* Activity omitted from total
- & Activity omitted from total and all peaks had bad shape.

ARS1-23-01973 Page 177 of 311

| ORTEC g V - 1 (3263) ENV32 G800W064 12/8/2021 1:22:20 PM                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AAA Spectrum name: ARS06694.An1                                                                                                                                                                                          |
| <pre>&lt; - MDA value printed. A - Activity printed, but activity &lt; MDA. B - Activity &lt; MDA and failed test. C - Area &lt; Critical level. F - Failed fraction or key line test. H - Halflife limit exceeded</pre> |
| Total Activity ( 2.6 to 1998.3 keV) 3.827E+05 pCi/g Total Decayed Activity ( 2.6 to 1998.3 keV) 6.9791431E+05 pCi/g                                                                                                      |
| Analyzed by:Countroom                                                                                                                                                                                                    |
| Courteroom                                                                                                                                                                                                               |
| Reviewed by:                                                                                                                                                                                                             |
| Supervisor                                                                                                                                                                                                               |
| Laboratory: AAA                                                                                                                                                                                                          |

ARS1-23-01973 Page 178 of 311



## ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

Gamma Spec - CCV

ARS1-23-01973 Page 179 of 311

| Detector:  Acceptable per                      | ARS03<br>formance | rules: durin            | g baseline de               | Calibrat                                 | -             |                         |                             | of known, FWHM ≤                             | 125% of kno    |                         | 1595-98-4<br>baseline       |
|------------------------------------------------|-------------------|-------------------------|-----------------------------|------------------------------------------|---------------|-------------------------|-----------------------------|----------------------------------------------|----------------|-------------------------|-----------------------------|
| ,                                              |                   |                         | •                           | Energy ≤ ± 0.5 keV of                    |               | •                       | •                           | •                                            |                |                         |                             |
|                                                | Am-24             | 11                      |                             |                                          | Cs-13         | 7                       |                             |                                              | Co-60          | )                       |                             |
| Max FWHM/Known Act<br>Average<br>Std Deviation | 59.598            | 1.074<br>0.860<br>0.022 | 22747.75<br>20316<br>381.69 | Max FWHM/Known Act Average Std Deviation | 661.816       | 1.718<br>1.375<br>0.027 | 35450.45<br>32006<br>507.09 | Max FWHM/Known A<br>Average<br>Std Deviation | ct<br>1332.786 | 2.249<br>1.800<br>0.102 | 42792.79<br>21576<br>307.27 |
| Analysis Date                                  | Energy<br>keV     | FWHM<br>keV             | Activity pCi                | Analysis Date                            | Energy<br>keV | FWHM<br>keV             | Activity pCi                | Analysis Date                                | Energy<br>keV  | FWHM<br>keV             | Activity pC                 |
| 09/05/2023                                     | 59.59             | 0.840                   | 20430                       | 09/05/2023                               | 661.67        | 1.285                   | 32439                       | 09/05/2023                                   | 1332.48        | 1.719                   | 21625                       |
| 09/05/2023                                     | 59.54             | 0.881                   | 20749                       | 09/05/2023                               | 661.68        | 1.302                   | 31674                       | 09/05/2023                                   | 1332.50        | 1.632                   | 20747                       |
| 09/06/2023                                     | 59.59             | 0.845                   | 19880                       | 09/06/2023                               | 661.69        | 1.279                   | 31383                       | 09/06/2023                                   | 1332.57        | 1.805                   | 21706                       |
| 09/07/2023                                     | 59.58             | 0.879                   | 20310                       | 09/07/2023                               | 661.62        | 1.364                   | 31480                       | 09/07/2023                                   | 1332.39        | 1.731                   | 20899                       |
| 09/08/2023                                     | 59.59             | 0.852                   | 20093                       | 09/08/2023                               | 661.66        | 1.327                   | 32203                       | 09/08/2023                                   | 1332.42        | 1.763                   | 20956                       |
| 09/09/2023                                     | 59.59             | 0.829                   | 20117                       | 09/09/2023                               | 661.60        | 1.457                   | 31387                       | 09/09/2023                                   | 1332.34        | 1.830                   | 21503                       |
| 09/10/2023                                     | 59.58             | 0.878                   | 20038                       | 09/10/2023                               | 661.57        | 1.354                   | 31555                       | 09/10/2023                                   | 1332.35        | 1.795                   | 21275                       |
| 09/11/2023                                     | 59.59             | 0.844                   | 19986                       | 09/11/2023                               | 661.55        | 1.359                   | 31972                       | 09/11/2023                                   | 1332.27        | 1.785                   | 21875                       |
| 09/11/2023                                     | 59.60             | 0.839                   | 19838                       | 09/11/2023                               | 661.73        | 1.363                   | 31958                       | 09/11/2023                                   | 1332.63        | 1.925                   | 20922                       |
| 09/11/2023                                     | 59.60             | 0.889                   | 19825                       | 09/11/2023                               | 661.75        | 1.328                   | 31744                       | 09/11/2023                                   | 1332.65        | 1.709                   | 21434                       |
| 09/12/2023                                     | 59.59             | 0.854                   | 20330                       | 09/12/2023                               | 661.74        | 1.344                   | 31730                       | 09/12/2023                                   | 1332.63        | 1.648                   | 20951                       |
| 09/13/2023                                     | 59.59             | 0.892                   | 20813                       | 09/13/2023                               | 661.73        | 1.325                   | 31861                       | 09/13/2023                                   | 1332.59        | 1.816                   | 21753                       |
| 09/14/2023                                     | 59.58             | 0.843                   | 20330                       | 09/14/2023                               | 661.71        | 1.350                   | 31292                       | 09/14/2023                                   | 1332.55        | 1.767                   | 21695                       |
| 09/15/2023                                     | 59.59             | 0.860                   | 19828                       | 09/15/2023                               | 661.76        | 1.323                   | 32020                       | 09/15/2023                                   | 1332.64        | 1.775                   | 21810                       |
| 09/18/2023                                     | 59.58             | 0.895                   | 19901                       | 09/18/2023                               | 661.64        | 1.354                   | 32435                       | 09/18/2023                                   | 1332.43        | 1.715                   | 21932                       |
| 09/19/2023                                     | 59.54             | 0.881                   | 21148                       | 09/19/2023                               | 661.61        | 1.325                   | 32387                       | 09/19/2023                                   | 1332.41        | 1.830                   | 21552                       |
| 09/20/2023                                     | 59.58             | 0.877                   | 19930                       | 09/20/2023                               | 661.65        | 1.398                   | 31451                       | 09/20/2023                                   | 1332.48        | 1.698                   | 21338                       |
| 09/21/2023                                     | 59.58             | 0.888                   | 19982                       | 09/21/2023                               | 661.55        | 1.445                   | 32310                       | 09/21/2023                                   | 1332.28        | 1.831                   | 21492                       |
| 09/21/2023                                     | 59.60             | 0.867                   | 19824                       | 09/21/2023                               | 661.74        | 1.414                   | 31790                       | 09/21/2023                                   | 1332.65        | 1.711                   | 21528                       |
| 09/21/2023                                     | 59.60             | 0.876                   | 20224                       | 09/21/2023                               | 661.75        | 1.395                   | 31405                       | 09/21/2023                                   | 1332.66        | 1.766                   | 21545                       |
| 09/22/2023                                     | 59.60             | 0.858                   | 20211                       | 09/22/2023                               | 661.80        | 1.371                   | 32009                       | 09/22/2023                                   | 1332.74        | 1.731                   | 21559                       |
| 09/24/2023                                     | 59.54             | 0.881                   | 20811                       | 09/24/2023                               | 661.73        | 1.350                   | 31650                       | 09/24/2023                                   | 1332.63        | 1.695                   | 21081                       |
| 09/25/2023                                     | 59.60             | 0.848                   | 20710                       | 09/25/2023                               | 661.73        | 1.405                   | 31828                       | 09/25/2023                                   | 1332.58        | 1.668                   | 21371                       |
| 09/26/2023                                     | 59.61             | 0.854                   | 20078                       | 09/26/2023                               | 661.83        | 1.344                   | 32146                       | 09/26/2023                                   | 1332.78        | 1.621                   | 22115                       |
| 09/27/2023                                     | 59.58             | 0.831                   | 19910                       | 09/27/2023                               | 661.79        | 1.359                   | 31431                       | 09/27/2023                                   | 1332.76        | 1.680                   | 21496                       |
| 09/28/2023                                     | 59.61             | 0.849                   | 19600                       | 09/28/2023                               | 661.77        | 1.329                   | 31714                       | 09/28/2023                                   | 1332.66        | 1.808                   | 21153                       |
| 09/29/2023                                     | 59.62             | 0.864                   | 20302                       | 09/29/2023                               | 661.82        | 1.398                   | 31841                       | 09/29/2023                                   | 1332.83        | 1.731                   | 21503                       |
| 09/30/2023                                     | 59.59             | 0.895                   | 20015                       | 09/30/2023                               | 661.76        | 1.327                   | 31929                       | 09/30/2023                                   | 1332.69        | 1.678                   | 21374                       |
| 10/01/2023                                     | 59.59             | 0.855                   | 20352                       | 10/01/2023                               | 661.76        | 1.312                   | 31738                       | 10/01/2023                                   | 1332.64        | 1.713                   | 21145                       |
| 10/02/2023                                     | 59.60             | 0.830                   | 19854                       | 10/02/2023                               | 661.73        | 1.378                   | 31930                       | 10/02/2023                                   | 1332.56        | 1.722                   | 22465                       |

ARS1-23-01973 Page 180 of 311



















| Detector:                                                                                        | ARS06         |                         |                             | Calibrat                                       | ion V         | erifica                 | tion                        |                                               |               | CalVer:                 | 119600                       |
|--------------------------------------------------------------------------------------------------|---------------|-------------------------|-----------------------------|------------------------------------------------|---------------|-------------------------|-----------------------------|-----------------------------------------------|---------------|-------------------------|------------------------------|
| Acceptable pe                                                                                    | rformance     |                         | ~                           | velopment - Energy ≤ :                         |               |                         | •                           | •                                             | 125% of kno   | wn; after               | baseline                     |
| development - Energy ≤ ± 0.5 keV of known, Activity ≤ ± 3σ, FWHM ≤ 125% of known.  Am-241  Co-60 |               |                         |                             |                                                |               |                         |                             |                                               |               |                         |                              |
| Max FWHM/Known Ac<br>Average<br>Std Deviation                                                    |               | 1.136<br>0.909<br>0.014 | 40000.00<br>36527<br>436.05 | Max FWHM/Known Act<br>Average<br>Std Deviation | 661.714       | 1.964<br>1.571<br>0.032 | 57270.27<br>57796<br>403.80 | Max FWHM/Known Ac<br>Average<br>Std Deviation |               | 2.566<br>2.053<br>0.126 | 67189.19<br>67742<br>1168.59 |
| Analysis Date                                                                                    | Energy<br>keV | FWHM<br>keV             | Activity pCi                | Analysis Date                                  | Energy<br>keV | FWHM<br>keV             | Activity pCi                | Analysis Date                                 | Energy<br>keV | FWHM<br>keV             | Activity po                  |
| 09/09/2023                                                                                       | 59.61         | 0.923                   | 36075                       | 09/09/2023                                     | 661.70        | 1.560                   | 58683                       | 09/09/2023                                    | 1332.62       | 2.123                   | 66291                        |
| 09/10/2023                                                                                       | 59.60         | 0.903                   | 36899                       | 09/10/2023                                     | 661.72        | 1.611                   | 57423                       | 09/10/2023                                    | 1332.57       | 2.167                   | 67340                        |
| 09/11/2023                                                                                       | 59.59         | 0.913                   | 37337                       | 09/11/2023                                     | 661.72        | 1.607                   | 58210                       | 09/11/2023                                    | 1332.55       | 2.004                   | 68131                        |
| 09/12/2023                                                                                       | 59.61         | 0.914                   | 37072                       | 09/12/2023                                     | 661.66        | 1.585                   | 57265                       | 09/12/2023                                    | 1332.44       | 2.066                   | 68439                        |
| 09/13/2023                                                                                       | 59.61         | 0.908                   | 36159                       | 09/13/2023                                     | 661.66        | 1.546                   | 57518                       | 09/13/2023                                    | 1332.46       | 2.036                   | 67450                        |
| 09/14/2023                                                                                       | 59.60         | 0.909                   | 36213                       | 09/14/2023                                     | 661.64        | 1.635                   | 57177                       | 09/14/2023                                    | 1332.45       | 2.198                   | 68298                        |
| 09/15/2023                                                                                       | 59.61         | 0.894                   | 35939                       | 09/15/2023                                     | 661.69        | 1.528                   | 56945                       | 09/15/2023                                    | 1332.50       | 2.006                   | 65946                        |
| 09/18/2023                                                                                       | 59.61         | 0.935                   | 36453                       | 09/18/2023                                     | 661.62        | 1.529                   | 58564                       | 09/18/2023                                    | 1332.40       | 1.909                   | 67036                        |
| 09/19/2023                                                                                       | 59.54         | 0.944                   | 37878                       | 09/19/2023                                     | 661.63        | 1.544                   | 57400                       | 09/19/2023                                    | 1332.35       | 2.061                   | 68541                        |
| 09/19/2023                                                                                       | 59.61         | 0.904                   | 36428                       | 09/19/2023                                     | 661.70        | 1.492                   | 57138                       | 09/19/2023                                    | 1332.51       | 2.121                   | 67199                        |
| 09/19/2023                                                                                       | 59.61         | 0.930                   | 36457                       | 09/19/2023                                     | 661.70        | 1.575                   | 57528                       | 09/19/2023                                    | 1332.51       | 2.057                   | 67247                        |
| 09/20/2023                                                                                       | 59.54         | 0.944                   | 37508                       | 09/20/2023                                     | 661.69        | 1.506                   | 57096                       | 09/20/2023                                    | 1332.48       | 2.043                   | 67813                        |
| 09/21/2023                                                                                       | 59.61         | 0.903                   | 36644                       | 09/21/2023                                     | 661.70        | 1.547                   | 57458                       | 09/21/2023                                    | 1332.52       | 2.145                   | 67321                        |
| 09/22/2023                                                                                       | 59.61         | 0.904                   | 36277                       | 09/22/2023                                     | 661.68        | 1.590                   | 58446                       | 09/22/2023                                    | 1332.51       | 2.055                   | 66734                        |
| 09/24/2023                                                                                       | 59.61         | 0.902                   | 36896                       | 09/24/2023                                     | 661.70        | 1.540                   | 56987                       | 09/24/2023                                    | 1332.46       | 2.085                   | 67051                        |
| 09/25/2023                                                                                       | 59.54         | 0.944                   | 37056                       | 09/25/2023                                     | 661.70        | 1.509                   | 56199                       | 09/25/2023                                    | 1332.54       | 2.064                   | 65626                        |
| 09/25/2023                                                                                       | 59.62         | 0.891                   | 36276                       | 09/25/2023                                     | 661.68        | 1.538                   | 57317                       | 09/25/2023                                    | 1332.51       | 1.963                   | 65718                        |
| 09/25/2023                                                                                       | 59.61         | 0.899                   | 35517                       | 09/25/2023                                     | 661.69        | 1.555                   | 56557                       | 09/25/2023                                    | 1332.50       | 2.024                   | 68136                        |
| 09/25/2023                                                                                       | 59.61         | 0.912                   | 36997                       | 09/25/2023                                     | 661.70        | 1.541                   | 58104                       | 09/25/2023                                    | 1332.57       | 1.916                   | 65832                        |
| 09/25/2023                                                                                       | 59.62         | 0.909                   | 36713                       | 09/25/2023                                     | 661.69        | 1.571                   | 57168                       | 09/25/2023                                    | 1332.51       | 1.988                   | 68038                        |
| 09/26/2023                                                                                       | 59.60         | 0.886                   | 36734                       | 09/26/2023                                     | 661.69        | 1.502                   | 57886                       | 09/26/2023                                    | 1332.50       | 2.078                   | 67083                        |
| 09/27/2023                                                                                       | 59.63         | 0.906                   | 35920                       | 09/27/2023                                     | 661.70        | 1.563                   | 56906                       | 09/27/2023                                    | 1332.52       | 2.068                   | 68210                        |
| 09/28/2023                                                                                       | 59.62         | 0.878                   | 36296                       | 09/28/2023                                     | 661.68        | 1.539                   | 56323                       | 09/28/2023                                    | 1332.54       | 2.195                   | 66695                        |
| 09/28/2023                                                                                       | 59.62         | 0.902                   | 36403                       | 09/28/2023                                     | 661.68        | 1.584                   | 56163                       | 09/28/2023                                    | 1332.53       | 2.263                   | 67567                        |
| 09/28/2023                                                                                       | 59.61         | 0.919                   | 36420                       | 09/28/2023                                     | 661.70        | 1.533                   | 58155                       | 09/28/2023                                    | 1332.50       | 2.295                   | 66637                        |
| 09/28/2023                                                                                       | 59.60         | 0.920                   | 36796                       | 09/28/2023                                     | 661.69        | 1.596                   | 57124                       | 09/28/2023                                    | 1332.58       | 1.824                   | 67230                        |
| 09/29/2023                                                                                       | 59.63         | 0.901                   | 36796                       | 09/29/2023                                     | 661.73        | 1.479                   | 57502                       | 09/29/2023                                    | 1332.58       | 1.926                   | 65065                        |
| 09/30/2023                                                                                       | 59.54         | 0.944                   | 37814                       | 09/30/2023                                     | 661.70        | 1.565                   | 57851                       | 09/30/2023                                    | 1332.51       | 1.875                   | 65973                        |
| 10/01/2023                                                                                       | 59.62         | 0.899                   | 36533                       | 10/01/2023                                     | 661.69        | 1.547                   | 57299                       | 10/01/2023                                    | 1332.54       | 2.231                   | 67447                        |
| 10/02/2023                                                                                       | 59.62         | 0.904                   | 36592                       | 10/02/2023                                     | 661.69        | 1.511                   | 57474                       | 10/02/2023                                    | 1332.51       | 2.367                   | 69165                        |

ARS1-23-01973 Page 182 of 311



















(225) 228-1394

### **ARS Aleut Analytical, LLC Analytical Reports**

for

**GES-AIS, LLC** 

## **Gamma Spec - Daily Source Checks Raw Data**

ARS1-23-01973 Page 184 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 7:14:59 AM
AAA
                               Spectrum name: ARS03244.An1
Sample description
    Batch ID: Calver
    SDG ID: 1595-98-4 Tech:
Spectrum Filename: C:\User\ARS03244.An1
Acquisition information
      Start time:
                                  9/29/2023 7:04:44 AM
      Live time:
                                600
      Real time:
                               604
      Dead time:
                                 0.58 %
      Detector ID:
                                    17
Detector system
     (ARS03) MCB 129
Calibration
      Filename:
                                  1948-64-2 250mL tuna can cal 11-30-17.Cl
     250mL tuna can 1948-64-2
    EEC 11-30-17
      Energy Calibration
           Created:
                                 11/29/2017 9:57:33 AM
           Zero offset:
                                 0.260 keV
           Gain:
                                 0.250 keV/channel
           Quadratic:
                                -1.893E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                11/30/2017 9:51:22 AM
           Knee Energy:
                                150.00 keV
           Above the Knee:
                               Quadratic
                                                 Uncertainty = 0.74 %
                                -8.414671E-01 + (-2.995631E-01*Log(E)) +
           Log(Eff):
                                 (-3.378341E-02*Log(E)^2)
           Below the Knee:
                                                  Uncertainty = 0.80 %
                                Ouadratic
                                 -2.146319E+01 + (7.916197E+00*Log(E)) +
           Log(Eff):
                                 (-8.522452E-01*Log(E)^2)
Library Files
      Main analysis library:
                              LCS Fission.Lib
      Library Match Width:
                                 0.500
      Peak stripping:
                                 Library based
Analysis parameters
      Analysis engine:
                                 Env32
                                         G800W064
      Start channel:
                                         28.98keV )
                                115 (
      Stop channel:
                               8000 ( 1996.70keV )
      Peak rejection level:
                                 40.000%
      Peak search sensitivity:
                                  2
      Sample Size:
                                 1.0000E+00 +/- 0.000E+00%
      Activity scaling factor:
                                 1.0000E+06/(1.0000E+00*1.0000E+00) =
                                 1.0000E+06
      Detection limit method:
                                 Reg. Guide 4.16 Method
```

ARS1-23-01973 Page 185 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 7:14:59 AM AAA Spectrum name: ARS03244.An1

Random error: 1.0000000E+00 Systematic error: 1.0000000E+00

Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000
Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: YES 6/1/2017 2:00:00 PM Decay during acquisition: NO

Decay during acquisition: NO
Decay during collection: NO
True coincidence correction: NO
Peaked background correction: YES

Peaked background correction: YES LCS.LCSD.Pbc

9/21/2023 8:27:04 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1243

| ***** S<br>Peak<br>Energy | S U M M .<br>Area | ARY O<br>Uncert |      | Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E<br>Brnch.<br>Ratio | ***** Act. Nuc pCi/g |
|---------------------------|-------------------|-----------------|------|-------------------|----------------------------|------------------------|----------------------|
| 32.04                     | 23                | 4. 14.58        | 0.95 | 1.415E-02         |                            |                        |                      |
| 36.79                     | 10                | 9. 30.37        | 0.66 | 1.819E-02         |                            |                        |                      |
| 46.60                     | 350               | 4. 2.42         | 0.83 | 2.653E-02         |                            |                        |                      |
| 59.62                     | 570               | 7. 1.59         | 0.86 | 3.527E-02         | 59.54                      | 36.300                 | 2.030E+04 AM241      |
| 661.82                    | 771               | 6. 1.16         | 1.40 | 1.481E-02         | 661.66                     | 85.210                 | 3.184E+04 CS137      |
| 1173.51                   | 202               | 6. 2.31         | 1.73 | 9.597E-03         | 1173.24                    | 99.900                 | 2.187E+04 CO60       |
| 1332.83                   | 177               | 4. 2.37         | 1.73 | 8.688E-03         | 1332.50                    | 99.982                 | 2.113E+04 CO60       |

| *****   | *** U N I | DENTI        | FIED      | PEAK       | SUM       | MARY  | ******    |
|---------|-----------|--------------|-----------|------------|-----------|-------|-----------|
| Peak Ce | ntroid B  | ackground Ne | et Area I | Efficiency | Uncert    | FWHM  | Suspected |
| Channel | Energy    | Counts       | Counts    | * Area     | 1 Sigma % | keV   | Nuclide   |
| ·       |           |              |           |            |           |       | ·         |
| 127.27  | 32.10     | 370.         | 234       | . 1.651E+0 | 4 14.58   | 0.953 | XE-138    |
| 146.31  | 36.66     | 466.         | 109       | . 5.971E+0 | 3 30.37   | 0.663 | CE-141    |
| 185.60  | 46.61     | 1424.        | 3504      | . 1.321E+0 | 5 2.42    | 0.827 | PB-210    |

s - Peak fails shape tests.

ARS1-23-01973 Page 186 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 7:14:59 AM AAA Spectrum name: ARS03244.An1

\_\_\_\_\_

This section based on library: LCS Fission.Lib

| *****   | ***** I | DENTI    | FIED P     | E A K S  | SUMMAR    | Y *****   | ***** |
|---------|---------|----------|------------|----------|-----------|-----------|-------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert    | FWHM  |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec 1 | . Sigma % | keV   |
| AM-241  | 237.71  | 59.62    | 973.       | 5707.    | 9.512     | 1.59      | 0.864 |
| CS-137  | 2649.89 | 661.82   | 94.        | 7716.    | 12.861    | 1.16      | 1.398 |
| CO-60   | 4700.21 | 1173.51  | 40.        | 2026.    | 3.377     | 2.31      | 1.731 |
| CO-60   | 5338.69 | 1332.83  | 0.         | 1774.    | 2.957     | 2.37      | 1.731 |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| *****<br>- Nucli |      | JMMARY<br>Average | -             |                   |       | PEAK (               | -                 |   |
|------------------|------|-------------------|---------------|-------------------|-------|----------------------|-------------------|---|
| Name             | Code | Activity<br>pCi/g | Energy<br>keV | Activity<br>pCi/g | Code  | e MDA Value<br>pCi/g | COMMENTS          |   |
| AM-241           |      | 2.0302E+04        |               |                   |       |                      | 1.58E+05          |   |
|                  |      |                   | 59.54         | 2.030E+04         | (     | 5.267E+02            | 1.59E+00 3.63E+01 | G |
| CS-137           |      | 3.1841E+04        |               |                   |       |                      | 1.10E+04          |   |
|                  |      |                   | 661.66        | 3.184E+04         | (     | 1.972E+02            | 1.16E+00 8.52E+01 | G |
| CO-60            |      | 2.1503E+04        |               |                   |       |                      | 1.93E+03          |   |
|                  |      |                   | 1173.24       | 2.187E+04         | (     | 3.458E+02            | 2.31E+00 9.99E+01 | G |
|                  |      |                   | 1332.50       | 2.113E+04         | (     | 8.780E+01            | 2.37E+00 1.00E+02 | G |
| ( -              | This | peak used in      | the nucl:     | ide activit       | ty av | verage.              |                   |   |

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction

ARS1-23-01973 Page 187 of 311

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 7:14:59 AM AAA Spectrum name: ARS03244.An1 } - Peak is too close to another for the activity to be found directly. Nuclide Codes: Peak Codes: Nuclide Codes:

T - Thermal Neutron Activation
F - Fast Neutron Activation

I - Fission Product
N - Naturally Occurring Isotope
P - Photon Reaction
C - Charged Particle Reaction
M - No MDA Calculation
R - Coincidence Corrected

V - If the limit organized H - Halflife limit exceeded \*\*\*\*\*\*\* D I S C A R D E D I S O T O P E P E A K S \*\*\*\*\*\*\*\*\*\* Nuclide Centroid Background Net Area Intensity Uncert Activity Energy Counts Cts/Sec 1 Sigma % P - Peakbackground subtraction SUMMARY OF NUCLIDES IN SAMPLE \*\*\*\*\* Time of Count Time Corrected Uncertainty 1 Sigma Nuclide Activity Activity Counting Total pCi/q pCi/q pCi/q pCi/g pCi/q AM-241 2.0097E+04 2.0302E+04 3.2284E+02 7.7178E+02 5.267E+02 CS-137 2.7534E+04 3.1841E+04 3.6987E+02 7.3799E+02 1.972E+02 CO-60 9.3580E+03 2.1503E+04 3.5637E+02 5.1962E+02 3.458E+02 < - MDA value printed. A - Activity printed, but activity < MDA. B - Activity < MDA and failed test. C - Area < Critical level. F - Failed fraction or key line test. H - Halflife limit exceeded

----- S U M M A R Y ------- S U M M A R Y

Total Activity ( 29.0 to 1996.7 keV) 5.699E+04 pCi/g

Total Decayed Activity ( 29.0 to 1996.7 keV) 7.3645086E+04 pCi/g

Analyzed by: \_\_\_\_

Countroom

Reviewed by: \_\_\_\_

Supervisor

Laboratory: AAA

```
ORTEC q v - i (3263) Env32 G800W064 9/29/2023 7:13:09 AM
AAA
                               Spectrum name: ARS06045.An1
Sample description
     Batch ID: Calver
     SDG ID: 119600 Tech: SDW
Spectrum Filename: C:\User\ARS06045.An1
Acquisition information
      Start time:
                                  9/29/2023 7:02:58 AM
      Live time:
                                600
      Real time:
                                604
                                  0.70 %
      Dead time:
      Detector ID:
                                     21
Detector system
    ARS06 MCB 133
Calibration
                                  2199-26-1 250mL jar cal 7-6-21.Clb
      Filename:
     2199-26-1 250mL jar
     EEC 7-6-21
      Energy Calibration
           Created:
                                  7/6/2021 3:23:54 PM
           Zero offset:
                                  0.147 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -3.188E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 7/7/2021 6:24:21 AM
           Knee Energy:
                                130.00 keV
                                Quadratic
           Above the Knee:
                                                 Uncertainty = 1.54 %
                                 -1.869416E+00 + (-3.968678E-02*Log(E)) +
           Log(Eff):
                                 (-5.049798E-02*Log(E)^2)
           Below the Knee:
                                 Quadratic Uncertainty =
                                                                  2.03 %
                                 -1.168008E+01 + (3.811151E+00*Log(E)) +
           Log(Eff):
                                  (-4.269526E-01*Log(E)^2)
Library Files
      Main analysis library:
                                  LCS Fission.Lib
      Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
                                         G800W064
      Analysis engine:
                                 Env32
      Start channel:
                                115 (
                                         28.90keV )
      Stop channel:
                               8000 ( 1998.06keV )
      Peak rejection level:
                                 40.000%
      Peak search sensitivity:
                                  1
                                  1.0000E+00 +/- 0.000E+00%
      Sample Size:
      Activity scaling factor:
                                  1.0000E+06/(1.0000E+00*1.0000E+00) =
                                  1.0000E+06
      Detection limit method:
                                  Req. Guide 4.16 Method
```

ARS1-23-01973 Page 189 of 311

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 7:13:09 AM Spectrum name: ARS06045.An1 AAA

> 1.000000E+00 Random error: 1.000000E+00 Systematic error:

Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000 Activity range factor: 2.000 Min. step backq. energy 0.000 Multiplet shift channel 2.000

Corrections Status Comments

> Decay correct to date: 10/1/2007 2:00:00 PM YES

Decay during acquisition: NO Decay during collection: NO True coincidence correction: NO Peaked background correction:

YES LCS.LCSD.Pbc

9/21/2023 8:04:19 AM

Absorption (Internal): NO Geometry correction: NO Random summing:

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

146.01

186.22

36.69

46.65

Normalized diff: 0.0579

| ***** S<br>Peak<br>Energy | U M M A I<br>Area |           | P E<br>FWHM | A K S I<br>Corrctn<br>Factor | N RAN<br>Nuclide<br>Energy | G E * Brnch. Ratio | ****<br>Act.<br>pCi/g | Nuc   |
|---------------------------|-------------------|-----------|-------------|------------------------------|----------------------------|--------------------|-----------------------|-------|
| 32.23                     | 1040.             | 5.06      | 0.97        | 2.749E-02                    |                            |                    |                       |       |
| 36.65                     | 339.              | 13.90     | 1.07        | 3.046E-02                    |                            |                    |                       |       |
| 46.70                     | 1871.             | 3.60      | 0.93        | 3.545E-02                    |                            |                    |                       |       |
| 49.65                     | 243.              | 24.68     | 0.93        | 3.657E-02                    |                            |                    |                       |       |
| 59.63                     | 11368.            | 1.15      | 0.90        | 3.935E-02                    | 59.54                      | 36.300             | 3.680E+04             | AM241 |
| 661.73                    | 10667.            | 1.00      | 1.48        | 1.416E-02                    | 661.66                     | 85.210             | 5.750E+04             | CS137 |
| 945.29                    | 38.               | 37.77     | 0.44        | 1.098E-02                    |                            |                    |                       |       |
| 954.49                    | 62.               | 35.19     | 0.45        | 1.090E-02                    |                            |                    |                       |       |
| 1048.46                   | 26.               | 39.55     | 0.57        | 1.017E-02                    |                            |                    |                       |       |
| 1173.36                   | 1626.             | 2.61      | 1.79        | 9.350E-03                    | 1173.24                    | 99.900             | 6.423E+04             | CO60  |
| 1186.91                   | 21.               | 28.59     | 0.29        | 9.270E-03                    |                            |                    |                       |       |
| 1332.58                   | 1516.             | 2.61      | 1.93        | 8.488E-03                    | 1332.50                    | 99.982             | 6.590E+04             | CO60  |
|                           |                   |           |             |                              |                            |                    |                       |       |
| *****                     | *** U N I         | DENT      | IFI         | ED PE                        | AK S                       | U M M A            | R Y ****              | ***** |
| Peak Cen                  | ntroid Ba         | ackground | Net A       | rea Effici                   | ency Unc                   | ert FW             | HM Suspect            | ted   |
| Channel                   | Energy            | Counts    | Cour        |                              |                            | gma % k            | eV Nuclio             | de    |
| 128.34                    | 32.23             | 692       | •           | 1040. 3.78                   | 1E+04 1                    | 0.12 0             | .967 -                |       |

339. 1.113E+04

1871. 5.277E+04

27.81

7.21

1.068

0.929

s

ARS1-23-01973 Page 190 of 311

753.

1337.

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 7:13:09 AM AAA Spectrum name: ARS06045.An1

| Channel | Energy  | Background | Net area | Eff*Area  | Uncert | FWHM  | Susp | ected |
|---------|---------|------------|----------|-----------|--------|-------|------|-------|
| 198.02  | 49.60   | 1673.      | 243.     | 6.638E+03 | 49.36  | 0.932 | -    | sD    |
| 3782.47 | 945.29  | 56.        | 38.      | 3.461E+03 | 75.54  | 0.444 | -    | s     |
| 3819.32 | 954.40  | 90.        | 62.      | 5.687E+03 | 70.38  | 0.454 | -    | s     |
| 4195.59 | 1048.77 | 31.        | 26.      | 2.596E+03 | 79.10  | 0.574 | -    | s     |
| 4750.04 | 1186.86 | 4.         | 21.      | 2.22E+03  | 57.17  | 0.290 | _    | s     |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- L Peak written from unknown list.
- C Area < Critical level.

\_\_\_\_\_\_

This section based on library: LCS Fission.Lib

| *****   | ***** I | DENTI    | FIED P     | EAK      | SUMMAR    | Y *****   | ***** |
|---------|---------|----------|------------|----------|-----------|-----------|-------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert    |       |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec 2 | ? Sigma % | keV   |
|         |         |          |            |          |           |           |       |
| AM-241  | 237.93  | 59.63    | 1938.      | 11368.   | 18.947    | 2.29      | 0.901 |
| CS-137  | 2647.29 | 661.73   | 157.       | 10667.   | 17.779    | 2.00      | 1.479 |
| CO-60   | 4695.79 | 1173.36  | 35.        | 1626.    | 2.710     | 5.22      | 1.790 |
| CO-60   | 5333.48 | 1332.58  | 6.         | 1516.    | 2.526     | 5.22      | 1.926 |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| **** S U - Nuclide - Name Code | Average      |           | Peak                   | PEAK US<br>Code MDA Value<br>pCi/g | S A G E ****  COMMENTS                               |
|--------------------------------|--------------|-----------|------------------------|------------------------------------|------------------------------------------------------|
| AM-241                         | 3.6796E+04   | 59.54     | 3.680E+04              | ( 6.728E+02 1.                     | 1.58E+05<br>.15E+00 3.63E+01 G                       |
| CS-137                         | 5.7502E+04   | 661.66    | 5.750E+04              | ( 3.292E+02 9.                     | 1.10E+04<br>.98E-01 8.52E+01 G                       |
| CO-60                          | 6.5065E+04   | 1332.50   | 6.423E+04<br>6.590E+04 | ( 6.344E+02 2                      | 1.93E+03<br>.61E+00 9.99E+01 G<br>.61E+00 1.00E+02 G |
| ( - This                       | peak used in | the nucli | de activit             | y average.                         |                                                      |

<sup>\* -</sup> Peak is too wide, but only one peak in library.

ARS1-23-01973 Page 191 of 311

<sup>! -</sup> Peak is part of a multiplet and this area went negative during deconvolution.

<sup>? -</sup> Peak is too narrow.

ORTEC q v - i (3263) Env32 G800W064 9/29/2023 7:13:09 AM Spectrum name: ARS06045.An1 AAA

- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

#### Nuclide Codes:

- T Thermal Neutron Activation
- F Fast Neutron Activation

- C Charged Particle Reaction K Key Line M No MDA Calculation A Not in Average
- R Coincidence Corrected
- H Halflife limit exceeded

#### Peak Codes:

- G Gamma Ray
- X X-Ray

- C Coincidence Peak

Nuclide Centroid Background Net Area Intensity Uncert Cts/Sec 2 Sigma % Counts Energy Counts

#### P - Peakbackground subtraction

| ****    | SUMMARY       | OF NUCLI       | DES IN      | SAMPLE     | ****      |
|---------|---------------|----------------|-------------|------------|-----------|
|         | Time of Count | Time Corrected | Uncertainty | 2 Sigma    |           |
| Nuclide | Activity      | Activity       | Counting    | Total      | MDA       |
|         | pCi/g         | pCi/g          | pCi/g       | pCi/g      | pCi/g     |
|         |               |                |             |            |           |
| AM-241  | 3.5863E+04    | 3.6796E+04     | 8.4376E+02  | 2.7288E+03 | 6.728E+02 |
| CS-137  | 3.9821E+04    | 5.7502E+04     | 1.1473E+03  | 2.5688E+03 | 3.292E+02 |
| CO-60   | 7.9417E+03    | 6.5065E+04     | 2.4005E+03  | 3.3159E+03 | 1.198E+03 |
|         |               |                |             |            |           |

- < MDA value printed.
- A Activity printed, but activity < MDA.
- B Activity < MDA and failed test.
- C Area < Critical level.
- F Failed fraction or key line test.
- H Halflife limit exceeded

\_\_\_\_\_ S U M M A R Y -----

Total Activity ( 28.9 to 1998.1 keV) 8.363E+04 pCi/g

Total Decayed Activity ( 28.9 to 1998.1 keV) 1.5936234E+05 pCi/g

Analyzed by: \_\_\_\_

Countroom

#### Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 215 of 384

ORTEC g v - i (3263) Env32 G800W064 9/29/2023 7:13:09 AM

AAA Spectrum name: ARS06045.An1

Reviewed by:

Supervisor

Laboratory: AAA

ARS1-23-01973 Page 193 of 311





## ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

# Gamma Spec - Monthly Backgrounds

ARS1-23-01973 Page 194 of 311

| AnalysisDate | Activity | Units | LCL       | LWL      | Mean     | UWL      | UCL     | CountTime |
|--------------|----------|-------|-----------|----------|----------|----------|---------|-----------|
| 05/28/2021   | 664.8    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 06/30/2021   | 60.63    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 07/26/2021   | 628.8    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 08/27/2021   | 635.8    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 09/30/2021   | 662.1    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 10/31/2021   | 694.5    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 11/13/2021   | 633.3    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 12/10/2021   | 178.1    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 01/14/2022   | 191.5    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 02/23/2022   | 164.7    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 04/01/2022   | 192.4    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 05/02/2022   | 185.9    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 06/02/2022   | 136.6    | pCi/g | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 07/01/2022   | 191.3    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 08/01/2022   | 150.2    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 08/31/2022   | 177      | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 09/30/2022   | 136.2    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 10/27/2022   | 194.9    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 11/28/2022   | 193      | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 12/28/2022   | 162      | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 01/25/2023   | 146.8    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 02/24/2023   | 172.9    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 03/24/2023   | 196.2    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 04/24/2023   | 181.5    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 05/24/2023   | 193.8    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 06/23/2023   | 178.5    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 07/22/2023   | 175      | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 |           |
| 08/20/2023   | 183.3    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 | 60000     |
| 09/20/2023   | 182.7    | pCi/L | -332.5258 | -131.518 | 270.4976 | 672.5132 | 873.521 | 60000     |

ARS1-23-01973 Page 195 of 311

#### Population Statistic

 Population
 29

 Average
 270.4976

 Std. Deviation
 201.0078

 + 3-sigma value
 873.5210

 - 3-sigma value
 -332.5258



ARS1-23-01973 Page 196 of 311

| AnalysisDate | Activity Units | LCL       | LWL       | Mean     | UWL      | UCL      | CountTime |
|--------------|----------------|-----------|-----------|----------|----------|----------|-----------|
| 07/23/2021   | 4.3 pCi/g      | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 08/27/2021   | 11220 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 09/01/2021   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 09/30/2021   | 64.8 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 10/31/2021   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 11/13/2021   | 10.9 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 12/10/2021   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 12/15/2021   | 52.2 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 01/14/2022   | 19.7 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 02/23/2022   | 8.3 pCi/g      | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 04/01/2022   | 6 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 05/02/2022   | 8.9 pCi/g      | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 06/02/2022   | 68.9 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 06/02/2022   | 68.91 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 07/01/2022   | 72.4 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 08/01/2022   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 08/31/2022   | 71.53 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 09/30/2022   | 18.04 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 10/27/2022   | 77.26 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 11/28/2022   | 92.59 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 12/28/2022   | 47.18 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 01/25/2023   | 47.91 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 02/24/2023   | 11.57 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 03/24/2023   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 04/24/2023   | 44.63 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 05/24/2023   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 06/23/2023   | 7.48 pCi/g     | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 07/22/2023   | 12.45 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 |           |
| 08/20/2023   | 11.02 pCi/g    | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 | 60000     |
| 09/20/2023   | 0 pCi/g        | -5728.914 | -3685.421 | 401.5657 | 4488.552 | 6532.046 | 60000     |

ARS1-23-01973 Page 197 of 311

#### Population Statistic

 Population
 30

 Average
 401.5657

 Std. Deviation
 2043.4933

 + 3-sigma value
 6532.0457

 - 3-sigma value
 -5728.9143



ARS1-23-01973 Page 198 of 311



(225) 228-1394

## ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

# Gamma Spec - Monthly Backgrounds Raw Data

ARS1-23-01973 Page 199 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM
AAA
                               Spectrum name: ARS03173.An1
Sample description
     Batch ID: Long Bkg
     SDG ID:
            Tech: CDW
Spectrum Filename: C:\User\ARS03173.An1
Acquisition information
      Start time:
                                  9/20/2023 2:32:30 PM
      Live time:
                              60000
                              60052
      Real time:
      Dead time:
                                  0.09 %
      Detector ID:
                                     17
Detector system
     (ARS03) MCB 129
Calibration
                                  117495 47mm AF cal 1-6-21.Clb
      Filename:
     47mm AF 117495
     1-6-21 EEC
      Energy Calibration
           Created:
                                  1/6/2021 9:40:20 AM
           Zero offset:
                                  0.213 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -2.204E-08 keV/channel^2
      Efficiency Calibration
           Created:
                                 1/6/2021 9:47:25 AM
           Knee Energy:
                                130.00 keV
                                                 Uncertainty = 0.96 %
                                Quadratic
           Above the Knee:
                                 -3.057202E-01 + (1.575027E-01*Log(E)) +
           Log(Eff):
                                 (-8.666885E-02*Log(E)^2)
           Below the Knee:
                                 Quadratic Uncertainty = 1.63 %
                                 -4.598458E+00 + (1.629076E+00*Log(E)) +
           Log(Eff):
                                  (-2.077827E-01*Log(E)^2)
Library Files
      Main analysis library:
                                  NORM.Lib
      Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
      Analysis engine:
                                        G800W064
                                 Env32
      Start channel:
                                120 (
                                         30.19keV )
      Stop channel:
                               8000 ( 1997.15keV )
      Peak rejection level:
                                 40.000%
      Peak search sensitivity:
                                  1
                                  1.0000E+00 +/- 0.000E+00%
      Sample Size:
      Activity scaling factor:
                                  1.0000E+06/(1.0000E+00*1.0000E+00) =
                                  1.0000E+06
      Detection limit method:
                                  Req. Guide 4.16 Method
```

ARS1-23-01973 Page 200 of 311

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1

Random error: 1.0000000E+00 Systematic error: 1.0000000E+00

Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000
Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES norm.Pbc

8/21/2023 8:55:30 AM

Absorption (Internal): NO Geometry correction: NO Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.1713

| **** S | U | M M A | R Y O   | F P E | A K S I   | N RAN   | GE     | ****                                  |       |
|--------|---|-------|---------|-------|-----------|---------|--------|---------------------------------------|-------|
| Peak   |   | Area  | Uncert  | FWHM  | Corrctn   | Nuclide | Brnch. | Act.                                  | Nuc   |
| Energy |   |       |         |       | Factor    | Energy  | Ratio  | pCi/g                                 |       |
|        |   |       |         |       |           |         |        |                                       |       |
| 46.65  |   | 836.  | 6.55    | 0.96  | 2.450E-01 | 46.52   | 4.000  | PBC <mda< td=""><td>PB210</td></mda<> | PB210 |
| 63.18  |   | 739.  | 7.68    | 0.92  | 2.427E-01 | 63.29   | 3.900  | PBC <mda< td=""><td>U238</td></mda<>  | U238  |
| 72.89  |   | 119.  | . 35.88 | 0.89  | 2.385E-01 |         |        |                                       |       |
| 74.85  |   | 337.  | . 13.42 | 0.89  | 2.375E-01 |         |        |                                       |       |
| 77.27  |   | 267.  | . 15.74 | 0.89  | 2.362E-01 |         |        |                                       |       |
| 84.44  |   | 226.  | . 20.96 | 1.47  | 2.320E-01 |         |        |                                       |       |
| 92.58  |   | 951.  | 6.39    | 1.15  | 2.271E-01 | 92.38   | 2.570  | 4.595E+01                             | U238  |
|        |   |       |         |       |           | 92.80   | 3.000  | 2.984E+01                             | U238  |
| 185.76 |   | 529.  | 9.92    | 1.02  | 1.575E-01 | 186.10  | 3.500  | PBC <mda< td=""><td>RA226</td></mda<> | RA226 |
| 198.30 |   | 113.  | . 33.28 | 0.55  | 1.500E-01 |         |        |                                       |       |
| 238.50 |   | 407.  | . 10.70 | 1.05  | 1.299E-01 | 238.63  | 43.100 | PBC <mda< td=""><td>PB212</td></mda<> | PB212 |
| 241.89 |   | 106.  | . 32.74 | 1.04  | 1.284E-01 | 241.98  | 7.500  | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |
| 295.05 |   | 204.  | . 20.41 | 1.01  | 1.094E-01 | 295.21  | 18.500 | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |
|        |   |       |         |       |           | 296.00  | 80.000 | 1.054E+00                             | TL210 |
| 351.94 |   | 360.  | . 13.09 | 1.07  | 9.423E-02 | 351.92  | 35.800 | PBC <mda< td=""><td>PB214</td></mda<> | PB214 |
| 433.98 |   | 98.   | . 32.29 | 1.72  | 7.838E-02 |         |        |                                       |       |
| 511.05 |   | 2009. | . 3.57  | 2.63  | 6.758E-02 | 510.72  | 22.500 | 5.947E+01                             | TL208 |
| 583.31 |   | 146.  | . 21.96 | 1.85  | 5.972E-02 | 583.14  | 86.000 | PBC <mda< td=""><td>TL208</td></mda<> | TL208 |
| 609.17 |   | 246.  | . 11.78 | 1.35  | 5.732E-02 | 609.31  | 44.791 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 614.73 |   | 79.   | . 32.06 | 1.35  | 5.682E-02 |         |        |                                       |       |
| 802.80 |   | 79.   | . 29.48 | 1.50  | 4.376E-02 |         |        |                                       |       |
| 825.21 |   | 70.   | . 27.68 | 2.09  | 4.256E-02 |         |        |                                       |       |
|        |   |       |         |       |           |         |        |                                       |       |

ARS1-23-01973 Page 201 of 311

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1

| pk energy | area | uncert | fwhm | corr      | nuclide | brnch. | act.                                  | nuc   |
|-----------|------|--------|------|-----------|---------|--------|---------------------------------------|-------|
| 911.47    | 124. | 18.80  | 1.75 | 3.850E-02 | 911.07  | 29.000 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 916.76    | 40.  | 38.88  | 1.58 | 3.825E-02 |         |        |                                       |       |
| 934.22    | 42.  | 39.81  | 2.31 | 3.752E-02 | 934.06  | 3.029  | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 969.09    | 78.  | 26.48  | 1.66 | 3.613E-02 | 968.90  | 17.460 | PBC <mda< td=""><td>Ra228</td></mda<> | Ra228 |
| 1014.63   | 63.  | 35.51  | 1.59 | 3.444E-02 |         |        |                                       |       |
| 1120.59   | 79.  | 21.90  | 1.23 | 3.103E-02 | 1120.29 | 14.797 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 1249.61   | 31.  | 37.01  | 0.93 | 2.762E-02 |         |        |                                       |       |
| 1461.14   | 208. | 11.00  | 1.88 | 2.328E-02 | 1460.75 | 10.700 | PBC <mda< td=""><td>K40</td></mda<>   | K40   |
| 1764.46   | 107. | 21.65  | 2.36 | 1.884E-02 | 1764.49 | 15.357 | PBC <mda< td=""><td>BI214</td></mda<> | BI214 |
| 1873.53   | 27.  | 38.16  | 0.52 | 1.759E-02 |         |        |                                       |       |

| *******<br>Peak Ce |         | DENTI<br>Background No |       | PEAK<br>fficiency | S U M N<br>Uncert |       | ******<br>Suspecte |    |
|--------------------|---------|------------------------|-------|-------------------|-------------------|-------|--------------------|----|
| Channel            | Energy  | Counts                 |       | _                 | Sigma %           | keV   | Nuclide            |    |
| 185.90             | 46.61   | 862.                   | 836.  | 3.566E+03         | 13.09             | 0.963 | PB-210             | 1  |
| 252.07             | 63.25   | 957.                   | 739.  | 3.148E+03         | 15.37             | 0.916 | TH-234             | 1  |
| 290.94             | 72.85   | 846.                   | 119.  | 4.974E+02         | 71.77             | 0.889 | TL-208             | D  |
| 298.81             | 74.81   | 856.                   | 337.  | 1.420E+03         | 26.84             | 0.891 | TH-234             | D  |
| 308.51             | 77.23   | 752.                   | 267.  | 1.132E+03         | 31.48             | 0.893 | PB-212             | sD |
| 337.20             | 84.53   | 879.                   | 226.  | 9.749E+02         | 41.92             | 1.467 | HG-203             | s  |
| 369.79             | 92.59   | 1013.                  | 951.  | 4.218E+03         | 12.77             | 1.147 | TH-234             | 1  |
| 742.85             | 185.74  | 856.                   | 529.  | 3.581E+03         | 19.84             | 1.022 | U-235              | 1  |
| 793.04             | 198.23  | 589.                   | 113.  | 7.522E+02         | 66.56             | 0.551 | SE-75              | sM |
| 1180.45            | 294.97  | 568.                   | 204.  | 2.103E+03         | 40.82             | 1.008 | RU-103             | 1  |
| 1408.25            | 351.97  | 598.                   | 360.  | 3.982E+03         | 26.18             | 1.069 | PB-214             | 1  |
| 1736.79            | 434.22  | 333.                   | 98.   | 1.248E+03         | 64.59             | 1.722 | RH-106             | sM |
| 2045.41            | 511.10  | 589.                   | 2009. | 2.973E+04         | 7.13              | 2.633 | NA-22              | M  |
| 2334.79            | 583.36  | 294.                   | 146.  | 2.638E+03         | 43.92             | 1.848 | TL-208             | 1  |
| 2460.09            | 614.73  | 272.                   | 85.   | 1.490E+03         | 59.28             | 1.350 | SB-122             | sD |
| 3213.92            | 802.71  | 149.                   | 79.   | 1.803E+03         | 58.97             | 1.496 | CS-134             | M  |
| 3303.70            | 825.29  | 110.                   | 70.   | 1.649E+03         | 55.36             | 2.090 | CO-60              | sM |
| 3650.80            | 911.94  | 224.                   | 60.   | 1.558E+03         | 75.24             | 1.579 | AC-228             | sD |
| 3670.39            | 916.83  | 101.                   | 40.   | 1.046E+03         | 77.75             | 1.583 | XE-138             | sD |
| 3740.33            | 934.23  | 98.                    | 42.   | 1.133E+03         | 79.62             | 2.307 | BI-214             | sM |
| 3880.02            | 969.09  | 122.                   | 78.   | 2.427E+03         | 52.96             |       | AC-228             | 1  |
| 4062.47            | 1014.70 | 125.                   | 63.   | 1.829E+03         | 71.02             | 1.587 | _                  | S  |
| 4487.00            | 1120.41 | 76.                    | 79.   | 3.158E+03         | 43.81             | 1.227 | BI-214             | 1  |
| 5003.93            | 1249.35 | 44.                    | 31.   | 1.108E+03         | 74.03             | 0.926 |                    | sM |
| 5851.57            | 1461.16 | 78.                    | 208.  |                   | 22.00             | 1.885 | K-40               | 1  |
| 7504.43            | 1873.53 | 19.                    | 27.   | 1.535E+03         | 76.32             | 0.516 | _                  | s  |

s - Peak fails shape tests.

ARS1-23-01973 Page 202 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

M - Peak is close to a library peak.

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1

-----

This section based on library: NORM.Lib

| *****   | ***** I | DENTI    | FIED P     | EAK      | SUMMAR    | Y *****   | *****  |
|---------|---------|----------|------------|----------|-----------|-----------|--------|
| Nuclide | Peak    | Centroid | Background | Net Area | Intensity | Uncert    | FWHM   |
|         | Channel | Energy   | Counts     | Counts   | Cts/Sec 2 | ! Sigma % | keV    |
| PB-214  | 967.95  | 241.98   | 546.       | 106.     | 0.002     | 65.48     | 1.039D |
| BI-214  | 2438.93 | 609.31   | 1185.      | -240.    | -0.004    | 45.56     | 1.346  |
| Ra-228  | 3647.61 | 911.07   | 664.       | -149.    | -0.002    | 53.50     | 1.579s |
| BI-214  | 7067.36 | 1764.49  | 262.       | -96.     | -0.002    | 75.50     | 2.142  |

- s Peak fails shape tests.
- D Peak area deconvoluted.
- A Derived peak area.

| **** S T<br>- Nuclide - | J M M A R Y<br>Average | OF LIBRARY PEAK USAGE *****                                |
|-------------------------|------------------------|------------------------------------------------------------|
|                         |                        | Energy Activity Code MDA Value<br>keV pCi/g pCi/g COMMENTS |
| RA-226                  | -2.3187E+00            | 5.84E+05                                                   |
|                         |                        | 186.10-2.319E+00 %(P 1.608E+01 3.38E+02 3.50E+00 G         |
| Ra-228                  | -6.0259E+00            | 2.10E+03                                                   |
| 110 220                 | 0.02372.00             | 911.07-6.026E+00 *(P 4.956E+00 2.67E+01 2.90E+01 G         |
|                         |                        | 968.90-4.095E+00 % P 6.323E+00 9.32E+01 1.75E+01 G         |
|                         |                        | 338.40-3.220E+00 % P 5.251E+00 7.70E+01 1.20E+01 G         |
|                         |                        | 964.60 8.210E+00 % 2.127E+01 7.81E+01 5.45E+00 G           |
| PB-210                  | -3.2334E+00            | 7.45E+03                                                   |
|                         | 0.20012.00             | 46.52-3.233E+00 %(P 9.842E+00 1.32E+02 4.00E+00 G          |
| U-238                   | -4.3235E+00            | 1.63E+12                                                   |
|                         |                        | 63.29-4.324E+00 %(P 1.018E+01 1.12E+02 3.90E+00 G          |
|                         |                        | 92.80-6.882E-01 } P 1.446E+01 9.07E+02 3.00E+00 G          |
|                         |                        | 92.38 6.384E+00 } P 1.836E+01 6.87E+01 2.57E+00 G          |
| U-235                   | -2.2994E+00            | 1.39E+09                                                   |
| 0 233                   | 2.20012.00             | 143.76-2.299E+00 %(P 3.907E+00 1.21E+02 1.05E+01 G         |
|                         |                        | 205.31-4.161E+00 % 1.112E+01 1.06E+02 4.70E+00 G           |
|                         |                        | 163.35-3.977E+00 % P 9.052E+00 2.07E+02 4.70E+00 G         |
| K-40                    | -1.4823E+01            | 4.68E+11                                                   |
| IC TO                   | I.4023E:01             | 1460.75-1.482E+01 %(P 1.698E+01 5.26E+01 1.07E+01 G        |

ARS1-23-01973 Page 203 of 311

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1

|         |              | -                                                                                                    |                                                                                       |                                                                                                                                                                    |
|---------|--------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide | Ave activity | Energy Activity                                                                                      | Code Peak MDA                                                                         | Comments                                                                                                                                                           |
| PB-214  | 1.2373E+00   | 295.21-1.236E+00                                                                                     | % P 3.309E+00 1                                                                       | 5.84E+05<br>.91E+02 3.58E+01 G<br>.24E+02 1.85E+01 G<br>.27E+01 7.50E+00 G                                                                                         |
| BI-214  | -4.2170E+00  | 211.00 1.0131.00                                                                                     | ( 3.2201.00 3                                                                         | 5.84E+05                                                                                                                                                           |
| D1-214  | -4.21/0E+00  | 1764.49-1.495E+01<br>1120.29-8.239E+00<br>1238.11-3.524E+01<br>768.36-1.204E+00<br>1377.67-5.029E+00 | - P 1.217E+01 3 % P 8.235E+00 5 % P 2.427E+01 4 & P 1.925E+01 9 % 2.792E+01 2         | 3.84E+03<br>.28E+01 4.48E+01 G<br>.77E+01 1.54E+01 G<br>.20E+01 1.48E+01 G<br>.14E+01 5.86E+00 G<br>.74E+02 4.80E+00 G<br>.60E+02 3.92E+00 G<br>.78E+01 3.03E+00 G |
| BI-212  | -6.3160E+00  | 1620.56 2.237E+00                                                                                    | % P 3.747E+01 1                                                                       | 2.10E+03<br>.04E+02 1.18E+01 G<br>.09E+03 2.75E+00 G<br>.27E+04 2.00E+00 G                                                                                         |
| PB-212  | 9.5446E-01   |                                                                                                      |                                                                                       | 2.10E+03<br>.72E+01 4.31E+01 G<br>.40E+01 3.27E+00 G                                                                                                               |
| RA-223  | -4.4038E-01  | 154.18 6.250E-01                                                                                     | % 7.084E+00 4                                                                         | 1.20E+07<br>.62E+02 1.36E+01 G<br>.26E+02 5.59E+00 G<br>.51E+02 3.90E+00 G                                                                                         |
| RA-224  | -5.2835E+00  | 241.00-5.283E+00                                                                                     | %(P 1.898E+01 2                                                                       | 2.10E+03<br>.00E+02 3.90E+00 G                                                                                                                                     |
| TL-208  | -6.0785E-01  | 510.72-2.527E+00<br>860.47-1.298E+00<br>277.36 2.148E+00                                             | % 7.360E+00 8<br>% 7.859E+00 2<br>% 8.367E+00 1                                       | 2.10E+03<br>.61E+01 8.60E+01 G<br>.81E+01 2.25E+01 G<br>.68E+02 1.20E+01 G<br>.54E+02 6.50E+00 G<br>.82E+02 1.70E+00 G                                             |
| TL-210  | 1.4272E-01   | 296.00-9.121E-02<br>1310.00-5.175E+00<br>1210.00-7.723E-01                                           | % 7.467E-01 3<br>& P 6.268E+00 1<br>% 6.559E+00 4<br>& P 1.627E+01 8<br>& 1.219E+01 8 | 5.84E+05<br>.55E+02 1.00E+02 G<br>.23E+02 8.00E+01 G<br>.19E+02 2.10E+01 G<br>.00E+02 1.70E+01 G<br>.33E+01 7.00E+00 G<br>.69E+01 7.00E+00 G<br>.33E+02 5.00E+00 G |

ARS1-23-01973 Page 204 of 311

ORTEC q v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1 Nuclide Ave activity Energy Activity Code Peak MDA Comments BE-7 -2.7498E+00 5.34E+01 477.56-2.750E+00 %( 6.686E+00 1.01E+02 1.03E+01 G NA-22 -4.1570E-01 9.50E+02 1274.54-4.157E-01 %(P 1.113E+00 2.60E+02 9.99E+01 G 1.5509E-01 PA-234 98.44 1.551E-01 %(P 1.370E+00 4.52E+02 2.51E+01 G 946.00-3.446E+00 % P 5.125E+00 1.29E+02 2.00E+01 G 131.28-6.796E-01 % 1.832E+00 1.02E+02 2.00E+01 G 94.67-1.520E+00 % P 3.771E+00 1.17E+02 1.55E+01 G 883.24-3.730E+00 % 7.881E+00 9.44E+01 1.20E+01 G 926.70-1.552E+00 % 8.664E+00 2.47E+02 1.10E+01 G 569.26-1.859E+00 % P 7.399E+00 2.25E+02 1.04E+01 G 111.00 8.801E-01 % 4.094E+00 1.76E+02 8.55E+00 G 733.00-7.139E+00 & P 9.953E+00 1.49E+02 8.50E+00 G 949.00 3.536E+00 % P 1.169E+01 1.98E+02 7.80E+00 G 1.352E+01 3.67E+02 6.50E+00 G 880.51-1.623E+00 % 226.87 2.895E+00 & 7.374E+00 1.01E+02 6.50E+00 G 831.10-2.005E+00 % 1.992E+01 2.95E+02 5.60E+00 G 808.10-9.707E+00 % P 2.326E+01 1.49E+02 4.90E+00 G 99.70-8.025E-01 & 7.072E+00 3.32E+02 4.70E+00 G 699.10-9.771E+00 % 1.974E+01 8.73E+01 4.60E+00 G 898.60 2.404E+00 % 2.111E+01 3.86E+02 4.00E+00 G 1394.10-8.794E+00 & P 2.858E+01 1.95E+02 3.90E+00 G IR-192 5.0178E-03 7.40E+01 316.49 5.018E-03 %( 6.561E-01 5.14E+03 8.70E+01 G K 468.06 3.684E-01 % 1.183E+00 1.32E+02 5.18E+01 G K 308.44-7.230E-01 & 1.788E+00 9.82E+01 3.18E+01 G K 604.40-4.578E+00 % 1.731E+01 1.14E+02 8.90E+00 G K 612.45 3.151E-01 % P 2.035E+01 2.86E+03 5.80E+00 G K 588.60-1.013E+01 & P 1.952E+01 1.34E+02 4.60E+00 G K 1.415E+01 3.73E+02 3.49E+00 G 205.78-1.501E+00 % 2.148E+01 1.05E+02 3.35E+00 G 484.54-8.450E+00 % SC-46 2.4531E-01 8.38E+01 889.26 2.453E-01 %( 8.457E-01 1.53E+02 1.00E+02 G 2.5952E-02 TL-201 3.06E+00 70.82 2.595E-02 %( 1.202E+00 1.39E+03 4.90E+01 G 68.89 4.283E-01 & 2.134E+00 1.50E+02 2.89E+01 G 80.20-7.716E-01 % 4.349E+00 1.70E+02 1.69E+01 G 167.43 6.175E-01 % 3.806E+00 2.44E+02 1.19E+01 G ( - This peak used in the nuclide activity average.

ARS1-23-01973 Page 205 of 311

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM AAA Spectrum name: ARS03173.An1

- \* Peak is too wide, but only one peak in library.
- ! Peak is part of a multiplet and this area went negative during deconvolution.
- ? Peak is too narrow.
- @ Peak is too wide at FW25M, but ok at FWHM.
- % Peak fails sensitivity test.
- \$ Peak identified, but first peak of this nuclide failed one or more qualification tests.
- + Peak activity higher than counting uncertainty range.
- - Peak activity lower than counting uncertainty range.
- = Peak outside analysis energy range.
- & Calculated peak centroid is not close enough to the library energy centroid for positive identification.
- P Peakbackground subtraction
- } Peak is too close to another for the activity to be found directly.

| Nuclide Codes:                  | Peak Codes:          |
|---------------------------------|----------------------|
| T - Thermal Neutron Activation  | G - Gamma Ray        |
| F - Fast Neutron Activation     | X - X-Ray            |
| I - Fission Product             | P - Positron Decay   |
| N - Naturally Occurring Isotope | S - Single-Escape    |
| P - Photon Reaction             | D - Double-Escape    |
| C - Charged Particle Reaction   | K - Key Line         |
| M - No MDA Calculation          | A - Not in Average   |
| R - Coincidence Corrected       | C - Coincidence Peak |
| H - Halflife limit exceeded     |                      |

| Nuclide Centroid Ba            | S C A R D E D I S<br>ckground Net Area<br>Counts Counts | Intensity  |                    | * |  |  |  |  |  |
|--------------------------------|---------------------------------------------------------|------------|--------------------|---|--|--|--|--|--|
| BI-214 609.31                  | 1185240                                                 | -0.004     | 45.56 -4.217E+00 P |   |  |  |  |  |  |
| Ra-228 911.07                  | 664149                                                  | 0.002      | 53.50 -6.026E+00 P |   |  |  |  |  |  |
| BI-214 1764.49                 | 26296                                                   | 0.002      | 75.50 -1.495E+01 P |   |  |  |  |  |  |
| P - Peakbackground subtraction |                                                         |            |                    |   |  |  |  |  |  |
| **** SUMMAR Time of Cou        | nt Uncertainty                                          | 2 Sigma    |                    |   |  |  |  |  |  |
| Nuclide Activity               |                                                         |            | MDA                |   |  |  |  |  |  |
| pCi/g                          | pCi/g                                                   | pCi/g      | pCi/g              |   |  |  |  |  |  |
| RA-226 #A -2.3187E             | +00 1.5695E+01                                          | 1.5698E+01 | 0.161E+02          |   |  |  |  |  |  |
| Ra-228 #A -6.0259E             | +00 3.2237E+00                                          | 3.2561E+00 | 0.496E+01          |   |  |  |  |  |  |
| PB-210 #A -3.2334E             | +00 8.5563E+00                                          | 8.5623E+00 | 0.984E+01          |   |  |  |  |  |  |
| U-238 #A -4.3235E              | +00 9.7021E+00                                          | 9.7082E+00 | 0.102E+02          |   |  |  |  |  |  |
| U-235 #A -2.2994E              | +00 5.5720E+00                                          | 5.5941E+00 | 0.391E+01          |   |  |  |  |  |  |
| K-40 #A -1.4823E               | +01 1.5586E+01                                          | 1.5620E+01 | 0.170E+02          |   |  |  |  |  |  |
| PB-214 #A 1.2373E              | +00 8.1011E-01                                          | 8.1765E-01 | 0.195E+01          |   |  |  |  |  |  |
| BI-214 #A -4.2170E             | +00 1.9211E+00                                          | 1.9480E+00 | 0.286E+01          |   |  |  |  |  |  |

ARS1-23-01973 Page 206 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/21/2023 8:20:00 AM
AAA
                                Spectrum name: ARS03173.An1
                                        1.3188E+01 0.804E+01
BI-212 #A -6.3160E+00 1.3178E+01
BI-212 #A -6.3160E+00 1.3178E+01 1.3188E+01 0.804E+01
PB-212 A 9.5446E-01 1.2824E+00 1.2862E+00 0.163E+01
RA-223 #A -4.4038E-01 3.1921E+00 3.1924E+00 0.404E+01
RA-224 #A -5.2835E+00 2.1148E+01 2.1155E+01 0.190E+02
TL-208 #A -6.0785E-01 1.0467E+00 1.0478E+00 0.103E+01
TL-210 #A 1.4272E-01 7.2772E-01 7.2781E-01 0.823E+00
BE-7 #A -2.7498E+00 5.5401E+00 5.5439E+00 0.669E+01
NA-22 #A -4.1570E-01 2.1650E+00 2.1652E+00 0.111E+01
PA-234 #A 1.5509E-01 1.4007E+00 1.4008E+00 0.137E+01
# - All peaks for activity calculation had bad shape.
  * - Activity omitted from total
  & - Activity omitted from total and all peaks had bad shape.
  < - MDA value printed.
  A - Activity printed, but activity < MDA.
  B - Activity < MDA and failed test.
  C - Area < Critical level.
  F - Failed fraction or key line test.
  H - Halflife limit exceeded
                                S U M M A R Y -----
Total Activity ( 30.2 to 1997.2 keV) 0.000E+00 pCi/g
Analyzed by: ____
                   Countroom
Reviewed by: ____
                   Supervisor
```

Laboratory: AAA

ARS1-23-01973 Page 207 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/21/2023 7:56:51 AM
AAA
                               Spectrum name: ARS06962.An1
Sample description
     Batch ID: Long Bkg
     SDG ID: Tech: CDW
Spectrum Filename: C:\User\ARS06962.An1
Acquisition information
      Start time:
                                  9/20/2023 2:33:28 PM
      Live time:
                              60000
                              60039
      Real time:
      Dead time:
                                  0.06 %
       Detector ID:
                                     21
Detector system
    ARS06 MCB 133
Calibration
                                  2199-26-1 250mL jar cal 7-6-21.Clb
      Filename:
     2199-26-1 250mL jar
     EEC 7-6-21
       Energy Calibration
           Created:
                                  7/6/2021 3:23:54 PM
           Zero offset:
                                  0.147 keV
           Gain:
                                  0.250 keV/channel
           Quadratic:
                                 -3.188E-08 keV/channel^2
       Efficiency Calibration
           Created:
                                 7/7/2021 6:24:21 AM
           Knee Energy:
                                130.00 keV
                                 Quadratic
           Above the Knee:
                                                 Uncertainty = 1.54 %
                                 -1.869416E+00 + (-3.968678E-02*Log(E)) +
           Log(Eff):
                                  (-5.049798E-02*Log(E)^2)
           Below the Knee:
                                 Quadratic
                                                  Uncertainty =
                                                                  2.03 %
                                 -1.168008E+01 + (3.811151E+00*Log(E)) +
           Log(Eff):
                                  (-4.269526E-01*Log(E)^2)
Library Files
      Main analysis library:
                                  NORM.Lib
       Library Match Width:
                                  0.500
      Peak stripping:
                                  Library based
Analysis parameters
       Analysis engine:
                                  Env32
                                          G800W064
      Start channel:
                                120 (
                                         30.15keV )
       Stop channel:
                               8000 ( 1998.06keV )
      Peak rejection level:
                                 40.000%
       Peak search sensitivity:
                                  1
                                  1.0000E+00 +/- 0.000E+00%
       Sample Size:
       Activity scaling factor:
                                  1.0000E+06/(1.0000E+00*1.0000E+00) =
                                  1.0000E+06
       Detection limit method:
                                  Req. Guide 4.16 Method
```

ARS1-23-01973 Page 208 of 311

Random error: 1.0000000E+00 Systematic error: 1.0000000E+00

Fraction Limit: 0.000%

Background width: best method (based on spectrum).

Half lives decay limit: 12.000
Activity range factor: 2.000
Min. step backg. energy 0.000
Multiplet shift channel 2.000

Corrections Status Comments

Decay correct to date: NO
Decay during acquisition: YES
Decay during collection: NO
True coincidence correction: NO

Peaked background correction: YES norm.Pbc

8/21/2023 8:35:50 AM

Absorption (Internal): NO
Geometry correction: NO
Random summing: NO

total peaks alloc. 0 cutoff: 0.00E+00 %

Energy Calibration

Normalized diff: 0.0741

| **** S  | UMMAF | 0 Y S  | F PE | AKS I     | N RAN   | GE     | ****      |       |
|---------|-------|--------|------|-----------|---------|--------|-----------|-------|
| Peak    | Area  | Uncert | FWHM | Corrctn   | Nuclide | Brnch. | Act.      | Nuc   |
| Energy  |       |        |      | Factor    | Energy  | Ratio  | pCi/g     |       |
|         |       |        |      |           |         |        |           |       |
| 35.66   | 200.  | 30.19  | 0.66 | 2.980E-02 |         |        |           |       |
| 44.44   | 297.  | 16.71  | 1.29 | 3.458E-02 |         |        |           |       |
| 140.32  | 108.  | 35.33  | 1.61 | 3.689E-02 |         |        |           |       |
| 198.20  | 141.  | 29.65  | 0.48 | 3.046E-02 |         |        |           |       |
| 510.95  | 2196. | 3.91   | 2.54 | 1.690E-02 | 510.72  | 22.500 | 2.602E+02 | TL208 |
| 558.73  | 130.  | 24.56  | 1.20 | 1.590E-02 |         |        |           |       |
| 694.70  | 115.  | 34.57  | 4.41 | 1.369E-02 |         |        |           |       |
| 898.89  | 61.   | 32.26  | 1.47 | 1.139E-02 | 898.60  | 4.000  | 6.021E+01 | PA234 |
| 962.46  | 94.   | 28.64  | 0.40 | 1.083E-02 |         |        |           |       |
| 1043.31 | 73.   | 35.14  | 0.32 | 1.021E-02 |         |        |           |       |
| 1063.51 | 56.   | 29.87  | 1.95 | 1.007E-02 |         |        |           |       |
| 1067.72 | 54.   | 31.74  | 1.96 | 1.004E-02 |         |        |           |       |
| 1210.69 | 75.   | 27.49  | 1.11 | 9.125E-03 | 1210.00 | 17.000 | 2.175E+01 | TL210 |
| 1326.85 | 52.   | 34.10  | 1.22 | 8.517E-03 |         |        |           |       |
| 1460.92 | 56.   | 32.29  | 1.24 | 7.908E-03 | 1460.75 | 10.700 | 2.954E+01 | K40   |
| 1764.72 | 96.   | 15.73  | 1.27 | 6.818E-03 | 1764.49 | 15.357 | 4.130E+01 | BI214 |

ARS1-23-01973 Page 209 of 311

| ******  | *** U N I | DENTIF                                | I E D    | PEAK      | SUMN      | MARY   | ***   | ***** |
|---------|-----------|---------------------------------------|----------|-----------|-----------|--------|-------|-------|
| Peak Ce | ntroid B  | ackground Ne                          | t Area E | fficiency | Uncert    | FWHM S | Suspe | cted  |
| Channel | Energy    | Counts                                | Counts   | * Area    | 2 Sigma % | keV    | Nucl  | ide   |
|         |           | · · · · · · · · · · · · · · · · · · · |          |           |           |        |       |       |
| 142.06  | 35.63     | 1492.                                 | 200.     | 6.698E+03 | 60.39     | 0.662  | _     | sM    |
| 177.20  | 44.57     | 903.                                  | 297.     | 8.590E+03 | 33.43     | 1.289  | _     | sM    |
| 560.76  | 140.32    | 544.                                  | 108.     | 2.941E+03 | 70.67     | 1.611  | _     | sM    |
| 792.33  | 197.97    | 614.                                  | 141.     | 4.616E+03 | 59.30     | 0.479  | _     | sM    |
| 2043.78 | 510.87    | 760.                                  | 2196.    | 1.300E+05 | 7.81      | 2.537  | _     | sM    |
| 2235.02 | 558.79    | 269.                                  | 130.     | 8.168E+03 | 49.12     | 1.200  | _     | sM    |
| 2779.27 | 694.70    | 397.                                  | 115.     | 8.409E+03 | 69.15     | 4.409  | _     | sM    |
| 3596.71 | 899.00    | 112.                                  | 61.      | 5.348E+03 | 64.52     | 1.466  | _     | sM    |
| 3851.23 | 962.61    | 170.                                  | 94.      | 8.668E+03 | 57.28     | 0.401  | _     | sM    |
| 4174.99 | 1043.77   | 154.                                  | 73.      | 7.153E+03 | 70.29     | 0.325  | _     | sM    |
| 4255.85 | 1063.29   | 114.                                  | 56.      | 5.602E+03 | 59.74     | 1.955  | -     | sD    |
| 4272.72 | 1067.50   | 119.                                  | 54.      | 5.361E+03 | 63.47     | 1.958  | _     | sD    |
| 4845.29 | 1211.86   | 100.                                  | 75.      | 8.219E+03 | 54.97     | 1.106  | _     | sM    |
| 5310.53 | 1326.83   | 75.                                   | 52.      | 6.106E+03 | 68.21     | 1.223  | -     | sM    |
| 5847.58 | 1460.85   | 80.                                   | 56.      | 7.988E+03 | 64.58     | 1.237  | _     | 1     |
| 7064.84 | 1764.68   | 33.                                   | 96.      | 1.408E+04 | 31.46     | 1.265  | -     | sM    |

s - Peak fails shape tests.

------

This section based on library: NORM.Lib

A Derived peak area.

| **** S U    | MMARY             | OF LI         | BRARY I             | PEAK U:              | SAGE **** |
|-------------|-------------------|---------------|---------------------|----------------------|-----------|
| - Nuclide - | Average           |               | Peak                |                      |           |
| Name Code   | Activity<br>pCi/g | Energy<br>keV | Activity Code pCi/g | e MDA Value<br>pCi/g | COMMENTS  |

RA-226 -1.7200E+01 5.84

186.10-1.720E+01 &( 5.772E+01 1.33E+02 3.50E+00 G

ARS1-23-01973 Page 210 of 311

D - Peak area deconvoluted.

L - Peak written from unknown list.

C - Area < Critical level.

M - Peak is close to a library peak.

s - Peak fails shape tests.

D - Peak area deconvoluted.

| Nuclide | Ave activity | Energy Activity                                                                                                                              | Code Peak MDA                                                                     | Comments                                                                                                                                                           |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ra-228  | -3.6728E-02  | 911.07-3.673E-02<br>968.90 5.982E-01<br>338.40-2.039E+00<br>964.60 2.070E+01                                                                 | % 2.440E+01 1<br>% 1.986E+01 4                                                    | 2.10E+03<br>.45E+04 2.90E+01 G<br>.21E+03 1.75E+01 G<br>.01E+02 1.20E+01 G<br>.44E+01 5.45E+00 G                                                                   |
| PB-210  | -1.1982E+01  | 46.52-1.198E+01                                                                                                                              | %( 6.615E+01 1                                                                    | 7.45E+03<br>.66E+02 4.00E+00 G                                                                                                                                     |
| U-238   | -1.6160E+01  | 63.29-1.616E+01<br>92.80-1.428E+01<br>92.38-2.121E+01                                                                                        | % 4.999E+01 1                                                                     | 1.63E+12<br>.03E+02 3.90E+00 G<br>.39E+02 3.00E+00 G<br>.13E+02 2.57E+00 G                                                                                         |
| U-235   | 6.1582E+00   | 143.76 6.158E+00<br>205.31 1.510E+01<br>163.35-3.294E+00                                                                                     | & 4.182E+01 1                                                                     | 1.39E+09<br>.01E+02 1.05E+01 G<br>.10E+02 4.70E+00 G<br>.83E+02 4.70E+00 G                                                                                         |
| K-40    | -1.4018E+01  | 1460.75-1.402E+01                                                                                                                            | %( 3.942E+01 1                                                                    | 4.68E+11<br>.46E+02 1.07E+01 G                                                                                                                                     |
| PB-214  | 8.7654E-01   | 351.92 8.765E-01<br>295.21-6.060E+00<br>241.98-7.982E+00                                                                                     | % 1.444E+01 9                                                                     | 5.84E+05<br>.19E+02 3.58E+01 G<br>.90E+01 1.85E+01 G<br>.64E+02 7.50E+00 G                                                                                         |
| BI-214  | -7.5191E+00  | 609.31-7.519E+00<br>1764.49-8.031E+00<br>1120.29 7.023E+00<br>1238.11 3.194E+01<br>768.36-1.473E+00<br>1377.67 1.389E+01<br>934.06 2.014E+01 | % 2.673E+01 9<br>% 2.207E+01 1<br>% 5.076E+01 7<br>% 6.299E+01 1<br>% 7.981E+01 2 | 5.84E+05<br>.19E+01 4.48E+01 G<br>.94E+01 1.54E+01 G<br>.54E+02 1.48E+01 G<br>.81E+01 5.86E+00 G<br>.96E+03 4.80E+00 G<br>.85E+02 3.92E+00 G<br>.23E+02 3.03E+00 G |
| BI-212  | 8.9279E+00   | 727.17 8.928E+00<br>1620.56 6.738E+00<br>785.42-8.771E+01                                                                                    | & 1.178E+02 8                                                                     | 2.10E+03<br>.19E+02 1.18E+01 G<br>.86E+02 2.75E+00 G<br>.42E+01 2.00E+00 G                                                                                         |
| PB-212  | 1.5943E-01   | 238.63 1.594E-01<br>300.09-3.249E+01                                                                                                         |                                                                                   | 2.10E+03<br>.36E+03 4.31E+01 G<br>.54E+01 3.27E+00 G                                                                                                               |

ARS1-23-01973 Page 211 of 311

|         |              | -                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nuclide | Ave activity | Energy Activity                                                                                                                                                                                                                                                              | Code Peak MDA Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RA-223  | 3.7814E+00   | 154.18-1.378E+01                                                                                                                                                                                                                                                             | 1.20E+07<br>&( 1.693E+01 1.85E+02 1.36E+01 G<br>& 3.535E+01 1.02E+02 5.59E+00 G<br>% 6.040E+01 3.09E+02 3.90E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RA-224  | -2.0842E+01  | 241.00-2.084E+01                                                                                                                                                                                                                                                             | 2.10E+03<br>%( 6.104E+01 1.22E+02 3.90E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TL-208  | -1.8976E+00  | 583.14-1.898E+00<br>510.72-1.603E+00<br>860.47-1.435E+01<br>277.36 1.111E+00<br>763.30-2.276E+01                                                                                                                                                                             | % 3.081E+01 5.78E+02 2.25E+01 G<br>& 2.775E+01 8.97E+01 1.20E+01 G<br>% 3.567E+01 1.32E+03 6.50E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TL-210  | -1.8305E+00  | 795.00-1.831E+00<br>296.00 5.609E-01<br>1310.00 3.991E+00<br>1210.00-1.005E+01<br>1110.00 7.922E+00<br>860.00-2.435E+01<br>1410.00-1.884E+01                                                                                                                                 | % 2.889E+00 2.13E+02 8.00E+01 G % 1.491E+01 1.87E+02 2.10E+01 G & 2.331E+01 7.01E+01 1.70E+01 G & 4.573E+01 2.81E+02 7.00E+00 G % 5.026E+01 9.57E+01 7.00E+00 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BE-7    | 1.0481E+01   | 477.56 1.048E+01                                                                                                                                                                                                                                                             | 5.34E+01<br>%( 2.156E+01 8.86E+01 1.03E+01 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NA-22   | -1.2830E+00  | 1274.54-1.283E+00                                                                                                                                                                                                                                                            | 9.50E+02<br>%( 3.605E+00 1.41E+02 9.99E+01 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PA-234  | -1.7800E+00  | 98.44-1.780E+00 946.00-9.257E+00 131.28 3.052E+00 94.67-7.209E-01 883.24 1.085E+00 926.70 5.760E+00 569.26-1.522E+01 111.00-2.803E+00 733.00-6.433E+00 949.00-8.655E+00 880.51-8.892E+00 226.87-1.354E+01 831.10-2.191E+01 808.10-3.504E+01 99.70-2.428E+00 699.10-4.007E+01 | %       1.788E+01       9.25E+01       2.00E+01       G         %       7.797E+00       1.01E+02       2.00E+01       G         &       9.507E+00       5.20E+02       1.55E+01       G         &       2.651E+01       1.15E+03       1.20E+01       G         &       2.694E+01       2.21E+02       1.10E+01       G         %       3.371E+01       9.95E+01       1.04E+01       G         %       1.794E+01       2.53E+02       8.55E+00       G         &       3.518E+01       2.51E+02       8.50E+00       G         %       3.955E+01       2.16E+02       7.80E+00       G         %       3.281E+01       9.63E+01       6.50E+00       G         %       3.281E+01       9.63E+01       6.50E+00       G         %       7.204E+01       9.54E+01       4.90E+00       G         &       3.142E+01       5.10E+02       4.70E+00       G |

ARS1-23-01973 Page 212 of 311

```
ORTEC q v - i (3263) Env32 G800W064 9/21/2023 7:56:51 AM
 AAA
                                 Spectrum name: ARS06962.An1
                                   Activity Code Peak MDA Comments
Nuclide Ave activity
                         Energy
                           898.60-4.738E+01 %
                                                9.132E+01 5.86E+01 4.00E+00 G
                                                7.012E+01 1.54E+02 3.90E+00 G
                          1394.10 2.254E+01 &
IR-192
            -7.3839E-01
                                                             7.40E+01
                           316.49-7.384E-01 &( 2.767E+00 1.55E+02 8.70E+01 G K
                           468.06-1.069E+00 %
                                                4.823E+00 1.93E+02 5.18E+01 G K
                           308.44-2.973E+00 %
                                                7.751E+00 1.08E+02 3.18E+01 G K
                                                4.142E+01 9.12E+01 8.90E+00 G K
                           604.40-2.043E+01 %
                           612.45-3.180E+01 %
                                                6.654E+01 9.41E+01 5.80E+00 G K
                           588.60 2.337E+01 %
                                                6.308E+01 1.21E+02 4.60E+00 G K
                           205.78-2.495E+01 %
                                                6.055E+01 9.64E+01 3.49E+00 G
                           484.54 1.434E+01 &
                                              7.318E+01 2.18E+02 3.35E+00 G
SC-46
            -6.8693E-01
                                                             8.38E+01
                           889.26-6.869E-01 &( 3.001E+00 2.07E+02 1.00E+02 G
TL-201
            -1.4170E+00
                                                             3.06E+00
                            70.82-1.417E+00 &( 3.812E+00 1.02E+02 4.90E+01 G
                            68.89-2.567E+00 %
                                                6.911E+00 1.02E+02 2.89E+01 G
                            80.20-2.373E+00 %
                                                1.017E+01 1.62E+02 1.69E+01 G
                           167.43 6.640E+00 %
                                                1.643E+01 9.83E+01 1.19E+01 G
   ( - This peak used in the nuclide activity average.
   * - Peak is too wide, but only one peak in library.
   ! - Peak is part of a multiplet and this area went
      negative during deconvolution.
   ? - Peak is too narrow.
   @ - Peak is too wide at FW25M, but ok at FWHM.
   % - Peak fails sensitivity test.
   $ - Peak identified, but first peak of this nuclide
      failed one or more qualification tests.
   + - Peak activity higher than counting uncertainty range.
   - - Peak activity lower than counting uncertainty range.
   = - Peak outside analysis energy range.
   & - Calculated peak centroid is not close enough to the
       library energy centroid for positive identification.
   P - Peakbackground subtraction
   } - Peak is too close to another for the activity
       to be found directly.
  Nuclide Codes:
                                       Peak Codes:
   T - Thermal Neutron Activation
                                       G - Gamma Ray
   F - Fast Neutron Activation
                                       X - X-Ray
   I - Fission Product
                                       P - Positron Decay
  N - Naturally Occurring Isotope
                                      S - Single-Escape
  P - Photon Reaction
                                      D - Double-Escape
  C - Charged Particle Reaction
                                     K - Key Line
```

A - Not in Average

ARS1-23-01973 Page 213 of 311

M - No MDA Calculation

```
ORTEC q v - i (3263) Env32 G800W064 9/21/2023 7:56:51 AM
AAA
                               Spectrum name: ARS06962.An1
 R - Coincidence Corrected
                                     C - Coincidence Peak
 H - Halflife limit exceeded
******* D I S C A R D E D I S O T O P E P E A K S **********
Nuclide Centroid Background Net Area Intensity Uncert
                                                            Activity
                                       Cts/Sec 2 Sigma %
          Energy Counts
                             Counts
 P - Peakbackground subtraction
        SUMMARY
                      OF NUCLIDES
                                               IN SAMPLE
        Time of Count Uncertainty 2 Sigma
                          Counting
Nuclide
          Activity
                                       Total
                                                    MDA
                                         pCi/g
              pCi/g
                            pCi/g
                                                      pCi/g
RA-226 #A -1.7200E+01 4.5767E+01 4.5780E+01 0.577E+02

      -3.6728E-02
      1.0669E+01
      1.0669E+01
      0.113E+02

      -1.1982E+01
      3.9817E+01
      3.9832E+01
      0.661E+02

      -1.6160E+01
      3.3412E+01
      3.3432E+01
      0.442E+02

Ra-228 #A -3.6728E-02 1.0669E+01
                                       1.0669E+01 0.113E+02
PB-210 #A
U-238 #A
U-235 #A
           6.1582E+00 1.2420E+01 1.2432E+01 0.206E+02
K-40
     #A
           -1.4018E+01 4.0839E+01 4.0849E+01 0.394E+02
           8.7654E-01 5.5952E+00 5.5957E+00 0.680E+01
PB-214 #A
BI-214 #A
           -7.5191E+00 9.3057E+00 9.3166E+00 0.793E+01
BI-212 #A
          8.9279E+00 2.1243E+01 2.1250E+01 0.230E+02
PB-212 #A
           1.5943E-01 4.3475E+00 4.3475E+00 0.527E+01
RA-223 #A
           3.7814E+00 1.3998E+01 1.4000E+01 0.169E+02
RA-224 #A
         -2.0842E+01 5.0678E+01
                                     5.0697E+01 0.610E+02
TL-208 #A -1.8976E+00 3.3562E+00 3.3584E+00 0.374E+01
TL-210 #A
           -1.8305E+00 3.0640E+00
                                    3.0660E+00 0.330E+01
                                    1.8591E+01 0.216E+02
3.6299E+00 0.360E+01
BE-7 #A
           1.0481E+01 1.8579E+01
NA-22 #A
           -1.2830E+00 3.6290E+00
PA-234 #A -1.7800E+00 4.7990E+00
                                     4.8007E+00 0.605E+01
IR-192 #B -7.3839E-01
                       2.2886E+00
                                       2.2891E+00 0.277E+01
SC-46 #A
                                       2.8436E+00 0.300E+01
           -6.8693E-01
                         2.8433E+00
TL-201 #A
                       2.8854E+00
                                       2.8874E+00 0.381E+01
           -1.4170E+00
  # - All peaks for activity calculation had bad shape.
  * - Activity omitted from total
  & - Activity omitted from total and all peaks had bad shape.
  < - MDA value printed.
 A - Activity printed, but activity < MDA.
 B - Activity < MDA and failed test.
 C - Area < Critical level.
 F - Failed fraction or key line test.
 H - Halflife limit exceeded
_____
                               SUMMARY -----
Total Activity ( 30.1 to 1998.1 keV) 0.000E+00 pCi/g
```

ARS1-23-01973 Page 214 of 311

Countroom

Analyzed by: \_

## Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 237 of 384

ORTEC g v - i (3263) Env32 G800W064 9/21/2023 7:56:51 AM AAA Spectrum name: ARS06962.An1

Reviewed by:

Supervisor

Laboratory: AAA

ARS1-23-01973 Page 215 of 311

(225) 228-1394

## **ARS Aleut Analytical, LLC Analytical Reports**

for

**GES-AIS, LLC** 

Sr-90 - Raw Data

ARS1-23-01973 Page 216 of 311

ARS Aleut Analytical, LLC Port Allen Laboratory

**Analytical Batch Report** 

Printed: 9/11/2023 9:23 AM Page 1 of 1

| :AICHT            |      | Procedure   | PALA-RAD-032       | Analysis            | GPC-S  | R90-S   | 0        | Prep                | N/A                  |                          |              |
|-------------------|------|-------------|--------------------|---------------------|--------|---------|----------|---------------------|----------------------|--------------------------|--------------|
| ALLUI             |      | Description | Strontium-90 in (S | oil, Sludge, Biota, | Sedime | ent [SC | ), BI, V | G])                 |                      |                          |              |
| ABatch Sample ID  | Туре | В           | linds              | SDG                 | FR     | Run     | Matrix   | Holding<br>Deadline | Client ID            | Group Name               | Lab Deadline |
| ARS1-B23-01624-01 | LCS  |             |                    |                     |        |         |          | 9:22                |                      |                          |              |
| ARS1-B23-01624-02 | LCSD |             |                    |                     |        |         |          | 9:24                |                      |                          |              |
| ARS1-B23-01624-03 | MBL  |             |                    |                     |        |         |          | 9:26                |                      |                          |              |
| ARS1-B23-01624-04 | TRG  |             |                    | ARS1-23-01973       | 003    | 1       | SO       | 9.28                | HPPC-ESU-315A-033    | Parcel C Rad<br>Sampling | 10/02/23     |
| ARS1-B23-01624-05 | DUP  |             |                    | Parent: ARS1-23-    | 01973- | 003     |          | 9:32                |                      |                          |              |
| ARS1-B23-01624-06 | TRG  |             |                    | ARS1-23-01973       | 004    | 1       | so       | 9:28                | HPPC-ESU-315A-033-FD | Parcel C Rad<br>Sampling | 10/02/23     |

on9.13.23

ARS1-23-01973 Page 217 of 311 Case 3:24-cv-03899-VC

Document 28-3 Filed 12/06/24 Page 240 of 384

Printed: 9/19/2023 2:13 PM

Page 1 of 1

ARS Aleut Analytical, LLC Port Allen Laboratory

## **LCS** Report

Analytical Batch: ARS1-B23-01624

| Bli | nd ID | ABatch Sample ID  | Blind Group | Std ID | Isotope | Exp Addition<br>(g) | Expected Value (pCi/g) | Empty Wt<br>(g) | Gross Wt<br>(g) | Net Wt<br>(g) | Expected Value CT (pCi/g) | Mid Point Count Date | Known Value<br>(pCi) | User ID  | Mod Date   |
|-----|-------|-------------------|-------------|--------|---------|---------------------|------------------------|-----------------|-----------------|---------------|---------------------------|----------------------|----------------------|----------|------------|
| B-3 | 33266 | ARS1-B23-01624-01 | B-Sr90      | S-0370 | Sr-90   | 1                   | 19.63025               | 127.238         | 128.26          | 1.0220        | 19.62114                  | 09/13/2023           | 20.05280             | KEASTMAN | 09/12/2023 |
| B-3 | 33267 | ARS1-B23-01624-02 | B-Sr90      | S-0370 | Sr-90   | 1                   | 19.63025               | 124.662         | 125.678         | 1.0160        | 19.62114                  | 09/13/2023           | 19.93507             | KEASTMAN | 09/12/2023 |

Page 218 of 311 ARS1-23-01973

Page 241 of 384

Printed: 9/19/2023 2:13 PM Page 1 of 5

## Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation

PALA-RAD-032

Preparation Date: 09/12/2023 07:27

Prepared By: **DWILLIAMS** 

ARS Aleut Analytical, LLC Port Allen Laboratory

| Procedure Data    | 1    |                   |         |                | Aliquot Units | Strontium<br>Carrier<br>(5mg/ml) |                                    |                         |             |               |                     |            |
|-------------------|------|-------------------|---------|----------------|---------------|----------------------------------|------------------------------------|-------------------------|-------------|---------------|---------------------|------------|
| ABatch Sample ID  | Туре | SDG/Fraction      | ICOC ID | Aliquot Vol/Wt |               |                                  | Strontium<br>Verified Mass<br>(mg) | Y Ingrowth<br>Date 1    | Disk Wt (g) | Disk Wt 2 (g) | Net Disk Wt<br>(mg) | % Recovery |
| ARS1-B23-01624-01 | LCS  |                   |         | 1.0000         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:22:00 AM | 7.6471      | 7.6584        | 11.3000             | 95.600     |
| ARS1-B23-01624-02 | LCSD |                   |         | 1.0000         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:24:00 AM | 7.6511      | 7.6623        | 11.2000             | 94.754     |
| ARS1-B23-01624-03 | MBL  |                   |         | 3.0090         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:26:00 AM | 7.6741      | 7.6849        | 10.8000             | 91.370     |
| ARS1-B23-01624-04 | TRG  | ARS1-23-01973-003 | 447712  | 3.0110         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:28:00 AM | 7.6647      | 7.6756        | 10.9000             | 92.216     |
| ARS1-B23-01624-05 | DUP  | ARS1-23-01973-003 |         | 3.0050         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:32:00 AM | 7.6704      | 7.6815        | 11.1000             | 93.9086    |
| ARS1-B23-01624-06 | TRG  | ARS1-23-01973-004 | 447713  | 3.0100         | g             | R23-00294                        | 11.8200                            | 9/13/2023<br>9:28:00 AM | 7.6620      | 7.6729        | 10.9000             | 92.216     |

ARS1-23-01973 Page 219 of 311

Document 28-3 Filed 12/06/24 Page 242 of 384

Printed: 9/19/2023 2:13 PM

Page 2 of 5

ARS Aleut Analytical, LLC Port Allen Laboratory

## Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation

PALA-RAD-032

| Procedure Data    | Ì    |           |                      |
|-------------------|------|-----------|----------------------|
| ABatch Sample ID  | Туре | Pass/Fail | Y Ingrowth<br>Date 2 |
| ARS1-B23-01624-01 | LCS  | PASS      |                      |
| ARS1-B23-01624-02 | LCSD | PASS      |                      |
| ARS1-B23-01624-03 | MBL  | PASS      |                      |
| ARS1-B23-01624-04 | TRG  | PASS      |                      |
| ARS1-B23-01624-05 | DUP  | PASS      |                      |
| ARS1-B23-01624-06 | TRG  | PASS      |                      |

ARS1-23-01973 Page 220 of 311

Printed: 9/19/2023 2:13 PM

Page 3 of 5

ARS Aleut Analytical, LLC Port Allen Laboratory

#### PALA-RAD-032

## Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation

#### **Reagent Amounts**

| _                 |      |                   |                                                            |
|-------------------|------|-------------------|------------------------------------------------------------|
| ABatch Sample ID  | Туре | SDG/Fraction      | 14.3.4.<br>Condition Sr<br>Column - Nitric<br>Acid 8N (mL) |
| ARS1-B23-01624-01 | LCS  |                   | 5.00                                                       |
| ARS1-B23-01624-02 | LCSD |                   | 5.00                                                       |
| ARS1-B23-01624-03 | MBL  |                   | 5.00                                                       |
| ARS1-B23-01624-04 | TRG  | ARS1-23-01973-003 | 5.00                                                       |
| ARS1-B23-01624-05 | DUP  | ARS1-23-01973-003 | 5.00                                                       |
| ARS1-B23-01624-06 | TRG  | ARS1-23-01973-004 | 5.00                                                       |

ARS1-23-01973 Page 221 of 311

Document 28-3 Filed 12/06/24 Page 244 of 384

ARS Aleut Analytical, LLC Port Allen Laboratory

## Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation

PALA-RAD-032

| Reagent Tracking                          |            |
|-------------------------------------------|------------|
| Procedure Section                         | Reagent ID |
| 14.0. Leach Solid Sample-A                | R23-00441  |
| 14.0. Leach Solid Sample-B                | R23-00545  |
| 14.1.4. Add Carrier                       | R23-00294  |
| 14.3.1. Set Up Vacuum Box System          | R23-00498  |
| 14.3.4. Condition Sr Column               | R23-00601  |
| 14.4.1. Dissolve Residue in Load Solution | R23-00671  |
| 14.4.3. Beaker Rinse                      | R23-00671  |
| 14.4.4. Elute Interferants                | R23-00605  |
| 14.4.5. Final Column Rinse                | R23-00671  |
| 14.4.8. Elute Strontium                   | R23-00606  |
| 14.6.6. Rinse Collection Tube             | R23-00606  |

ARS1-23-01973 Page 222 of 311 Printed: 9/19/2023 2:13 PM Page 4 of 5

Document 28-3 Filed 12/06/24 Page 245 of 384

Printed: 9/19/2023 2:13 PM

Page 5 of 5

ARS Aleut Analytical, LLC Port Allen Laboratory

#### PALA-RAD-032

## Strontium 89, 90 and Total Strontium in Water, Soil and Vegetation Matrices by Eichrom Resin Separation

| Support Equipment    |                           |          |
|----------------------|---------------------------|----------|
| Equipment Type       | Serial/Batch/Lot          | Comments |
| Balance              | B738690243 (Wet Lab)      |          |
| Balance              | T0350192 (Soil LAB)       |          |
| Eichrom Outer Tip    | 23032441161               |          |
| Eichrom Support Tube | 23013040521               |          |
| Fume Hood            | 030807173-B (WET LAB)     |          |
| Hot Block            | #11 SN 143475 (Radiochem) |          |
| Pipette              | SH39912                   |          |
| Pipette Tip          | 5mL Finn 22220L0          |          |
| Planchette           | Lot 08-03-2023 (2 inch)   |          |
| QC Sand              | R23-00057                 |          |
| Pipette              | 5mL Finn 22220L0          |          |

ARS1-23-01973 Page 223 of 311

Printed: 9/19/2023 2:13 PM Page 1 of 6



Analytical Batch ID ARS1-B23-01624

Analysis Code GPC-SR90-SO

Procedure No PALA-RAD-032

|                   |                |               |         | 301/3011                 | u/ 31 | uuge    |          |         |         |         |         |         |         |     |              |
|-------------------|----------------|---------------|---------|--------------------------|-------|---------|----------|---------|---------|---------|---------|---------|---------|-----|--------------|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | Client ID                | Run   | Isotope | ACT      | CSU 1s  | CSU 2s  | MDA     | DLC     | CU 1s   | CU 2s   | MCL | Result Units |
| ARS1-B23-01624-01 | LCS            |               |         |                          |       | SR-90   | 22.03883 | 1.71931 | 3.36984 | 0.38785 | 0.17815 | 0.51791 | 1.01510 |     | pCi/g        |
| ARS1-B23-01624-01 | LCS            |               |         |                          |       | Sr      | 0.01130  |         |         |         |         |         |         |     | g            |
| ARS1-B23-01624-02 | LCSD           |               |         |                          |       | SR-90   | 20.04430 | 1.56700 | 3.07133 | 0.37003 | 0.17004 | 0.48187 | 0.94446 |     | pCi/g        |
| ARS1-B23-01624-02 | LCSD           |               |         |                          |       | Sr      | 0.01120  |         |         |         |         |         |         |     | g            |
| ARS1-B23-01624-03 | MBL            |               |         |                          |       | SR-90   | 0.16647  | 0.05598 | 0.10973 | 0.16950 | 0.07950 | 0.05460 | 0.10701 |     | pCi/g        |
| ARS1-B23-01624-03 | MBL            |               |         |                          |       | Sr      | 0.01080  |         |         |         |         |         |         |     | g            |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     | HPPC-ESU-315A-033        | 1     | SR-90   | -0.00363 | 0.03930 | 0.07703 | 0.14042 | 0.06494 | 0.03930 | 0.07703 |     | pCi/g        |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     | HPPC-ESU-315A-033        | 1     | Sr      | 0.01090  |         |         |         |         |         |         |     | g            |
| ARS1-B23-01624-05 | DUP            |               |         |                          |       | SR-90   | 0.06317  | 0.04151 | 0.08136 | 0.13606 | 0.06270 | 0.04125 | 0.08084 |     | pCi/g        |
| ARS1-B23-01624-05 | DUP            |               |         |                          |       | Sr      | 0.01110  |         |         |         |         |         |         |     | g            |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     | HPPC-ESU-315A-033-<br>FD | 1     | SR-90   | 0.13013  | 0.04415 | 0.08654 | 0.13151 | 0.06053 | 0.04308 | 0.08444 |     | pCi/g        |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     | HPPC-ESU-315A-033-<br>FD | 1     | Sr      | 0.01090  |         |         |         |         |         |         |     | g            |

Printed: 9/19/2023 2:13 PM Page 2 of 6



Analytical Batch ID ARS1-B23-01624

Analysis Code GPC-SR90-SO

Procedure No PALA-RAD-032

|                   |                |               |         | Matrix 2011/2   | ona/Siuage    |               |                   |             |                |         |       |                  |                         |
|-------------------|----------------|---------------|---------|-----------------|---------------|---------------|-------------------|-------------|----------------|---------|-------|------------------|-------------------------|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | Tracer Recovery | Chem Recovery | Sample Counts | Sample Count Mins | BKG Counts  | BKG Count Mins | EFF     | ALIQ  | Sample Coll Date | Mid Point Count<br>Date |
| ARS1-B23-01624-01 | LCS            |               |         |                 | 95.6%         | 1970.000000   | 120               | 573.000000  | 900            | 0.32770 | 1     | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-01 | LCS            |               |         |                 |               |               |                   |             |                |         | 1     | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-02 | LCSD           |               |         |                 | 94.8%         | 1891.000000   | 120               | 579.000000  | 900            | 0.34832 | 1     | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-02 | LCSD           |               |         |                 |               |               |                   |             |                |         | 1     | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-03 | MBL            |               |         |                 | 91.4%         | 180.000000    | 120               | 1028.000000 | 900            | 0.34220 | 3.009 | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-03 | MBL            |               |         |                 |               |               |                   |             |                |         | 3.009 | 9/12/2023        | 9/13/2023               |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     |                 | 92.2%         | 90.000000     | 120               | 682.000000  | 900            | 0.33795 | 3.011 | 9/6/2023         | 9/13/2023               |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     |                 |               |               |                   |             |                |         | 3.011 | 9/6/2023         | 9/13/2023               |
| ARS1-B23-01624-05 | DUP            |               |         |                 | 93.9%         | 99.000000     | 120               | 622.000000  | 900            | 0.32914 | 3.005 | 9/6/2023         | 9/13/2023               |
| ARS1-B23-01624-05 | DUP            |               |         |                 |               |               |                   |             |                |         | 3.005 | 9/6/2023         | 9/13/2023               |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     |                 | 92.2%         | 114.000000    | 120               | 602.000000  | 900            | 0.34079 | 3.01  | 9/6/2023         | 9/13/2023               |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     |                 |               |               |                   |             |                |         | 3.01  | 9/6/2023         | 9/13/2023               |

Printed: 9/19/2023 2:13 PM Page 3 of 6



| Analytical Batch ID | ARS1-B23-01624 |
|---------------------|----------------|
| Analysis Code       | GPC-SR90-SO    |

Procedure No PALA-RAD-032

|                   |                |               | Matrix   Soil/Solid/Sludge |      |     |                  |                |                |                  |             |                |                      |                |                 |
|-------------------|----------------|---------------|----------------------------|------|-----|------------------|----------------|----------------|------------------|-------------|----------------|----------------------|----------------|-----------------|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton                    | UCF  | ACF | Gross Count Rate | BKG Count Rate | Net Count Rate | Plating Recovery | Detector ID | Instrument keV | Nuclide<br>Abundance | Tracer Isotope | Tracer Ref Date |
| ARS1-B23-01624-01 | LCS            |               |                            | 2.22 | 1   | 16.41667         | 0.63667        | 15.78000       | 1                | A3          |                |                      |                |                 |
| ARS1-B23-01624-01 | LCS            |               |                            | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |
| ARS1-B23-01624-02 | LCSD           |               |                            | 2.22 | 1   | 15.75833         | 0.64333        | 15.11500       | 1                | A4          |                |                      |                |                 |
| ARS1-B23-01624-02 | LCSD           |               |                            | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |
| ARS1-B23-01624-03 | MBL            |               |                            | 2.22 | 1   | 1.50000          | 1.14222        | 0.35778        | 1                | B1          |                |                      |                |                 |
| ARS1-B23-01624-03 | MBL            |               |                            | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        | 2.22 | 1   | 0.75000          | 0.75778        | -0.00778       | 1                | B2          |                |                      |                |                 |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |
| ARS1-B23-01624-05 | DUP            |               |                            | 2.22 | 1   | 0.82500          | 0.69111        | 0.13389        | 1                | В3          |                |                      |                |                 |
| ARS1-B23-01624-05 | DUP            |               |                            | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        | 2.22 | 1   | 0.95000          | 0.66889        | 0.28111        | 1                | B4          |                |                      |                |                 |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        | 2.22 | 1   |                  |                |                | 1                |             |                |                      |                |                 |

ARS Aleut Analytical, LLC Port Allen Laboratory

## **Calculation Report** ARS1-B23-01624

Printed: 9/19/2023 2:13 PM Page 4 of 6



Analytical Batch ID ARS1-B23-01624

Analysis Code GPC-SR90-SO

Procedure No PALA-RAD-032

|                   |                |               | matrix   Soli/Solid/Siudge |           |           |           |          |          |          |     |     |     |     |         |     |
|-------------------|----------------|---------------|----------------------------|-----------|-----------|-----------|----------|----------|----------|-----|-----|-----|-----|---------|-----|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton                    | Halflife1 | Halflife2 | Halflife3 | Delta T1 | Delta T2 | Delta T3 | DF1 | DF2 | DF3 | DF4 | IF1     | IF2 |
| ARS1-B23-01624-01 | LCS            |               |                            | 2.66667   |           |           | 0.11528  |          |          |     |     |     |     | 1.02952 |     |
| ARS1-B23-01624-01 | LCS            |               |                            |           |           |           |          |          |          |     |     |     |     |         |     |
| ARS1-B23-01624-02 | LCSD           |               |                            | 2.66667   |           |           | 0.11389  |          |          |     |     |     |     | 1.02917 |     |
| ARS1-B23-01624-02 | LCSD           |               |                            |           |           |           |          |          |          |     |     |     |     |         |     |
| ARS1-B23-01624-03 | MBL            |               |                            | 2.66667   |           |           | 0.11319  |          |          |     |     |     |     | 1.02899 |     |
| ARS1-B23-01624-03 | MBL            |               |                            |           |           |           |          |          |          |     |     |     |     |         |     |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        | 2.66667   |           |           | 0.11181  |          |          |     |     |     |     | 1.02864 |     |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        |           |           |           |          |          |          |     |     |     |     |         |     |
| ARS1-B23-01624-05 | DUP            |               |                            | 2.66667   |           |           | 0.10903  |          |          |     |     |     |     | 1.02794 |     |
| ARS1-B23-01624-05 | DUP            |               |                            |           |           |           |          |          |          |     |     |     |     |         |     |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        | 2.66667   |           |           | 0.11181  |          |          |     |     |     |     | 1.02864 |     |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        |           |           |           |          |          |          |     |     |     |     |         |     |

ARS Aleut Analytical, LLC Port Allen Laboratory

## **Calculation Report** ARS1-B23-01624

Printed: 9/19/2023 2:13 PM Page 5 of 6



| Analytical Batch ID | ARS1-B23-01624 |
|---------------------|----------------|
| Analysis Code       | GPC-SR90-SO    |

Procedure No PALA-RAD-032

|                   |                |               | II.     | viatrix   Soli | /5011 <b>a/51</b> u | age     |         |        |        |         |         |           |       |        |    |
|-------------------|----------------|---------------|---------|----------------|---------------------|---------|---------|--------|--------|---------|---------|-----------|-------|--------|----|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton | TPU F1         | TPU F2              | TPU F3  | TPU F4  | TPU F5 | TPU F6 | Sys Err | K Val   | K MDA     | BP_DL | BP_MDC | Sb |
| ARS1-B23-01624-01 | LCS            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 0.71601 | 85.92110  |       |        |    |
| ARS1-B23-01624-01 | LCS            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |
| ARS1-B23-01624-02 | LCSD           |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 0.75408 | 90.48956  |       |        |    |
| ARS1-B23-01624-02 | LCSD           |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |
| ARS1-B23-01624-03 | MBL            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 2.14921 | 257.90465 |       |        |    |
| ARS1-B23-01624-03 | MBL            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 2.14287 | 257.14477 |       |        |    |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003     | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |
| ARS1-B23-01624-05 | DUP            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 2.11959 | 254.35090 |       |        |    |
| ARS1-B23-01624-05 | DUP            |               |         | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      | 0.07439 | 2.16015 | 259.21810 |       |        |    |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004     | 0.04133        | 0.02                | 0.05831 | 0.00505 | 0      | 0      |         |         |           |       |        |    |

Printed: 9/19/2023 2:13 PM Page 6 of 6



Analytical Batch ID ARS1-B23-01624

Analysis Code GPC-SR90-SO

Procedure No PALA-RAD-032

|                   |                |               | Matrix   Soli/Solid/Siudge |           |                 |                  |      |         |         |  |  |  |  |
|-------------------|----------------|---------------|----------------------------|-----------|-----------------|------------------|------|---------|---------|--|--|--|--|
| ABatch Sample ID  | Sample<br>Type | SDG           | Fracton                    | Qualifier | Expected Result | Percent Recovery | RPD  | RER     | DER     |  |  |  |  |
| ARS1-B23-01624-01 | LCS            |               |                            |           | 20.05280        | 109.9%           |      |         |         |  |  |  |  |
| ARS1-B23-01624-01 | LCS            |               |                            |           | 0.01182         | 95.6%            |      |         |         |  |  |  |  |
| ARS1-B23-01624-02 | LCSD           |               |                            |           | 19.93507        | 100.5%           | 9.5% | 0.60692 | 0.85739 |  |  |  |  |
| ARS1-B23-01624-02 | LCSD           |               |                            |           | 0.01182         | 94.8%            |      |         |         |  |  |  |  |
| ARS1-B23-01624-03 | MBL            |               |                            | U         |                 |                  |      |         |         |  |  |  |  |
| ARS1-B23-01624-03 | MBL            |               |                            |           | 0.01182         | 91.4%            |      |         |         |  |  |  |  |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        | U         |                 |                  |      |         |         |  |  |  |  |
| ARS1-B23-01624-04 | TRG            | ARS1-23-01973 | 003                        |           | 0.01182         | 92.2%            |      |         |         |  |  |  |  |
| ARS1-B23-01624-05 | DUP            |               |                            | U         |                 |                  |      | 0.82656 | 1.16850 |  |  |  |  |
| ARS1-B23-01624-05 | DUP            |               |                            |           | 0.01182         | 93.9%            |      |         |         |  |  |  |  |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        | U         |                 |                  |      |         |         |  |  |  |  |
| ARS1-B23-01624-06 | TRG            | ARS1-23-01973 | 004                        |           | 0.01182         | 92.2%            |      |         |         |  |  |  |  |





## **Assignment Summary**

| Drawer        | Batch ID | Detector | Batch     | Sample      | Procedure       | Standard | Count Time | Run Date & Time       |
|---------------|----------|----------|-----------|-------------|-----------------|----------|------------|-----------------------|
| LB 4200 A     | 8537     | A3       | B23-01624 | 23-01624-01 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |
| LB 4200 A     | 8537     | A4       | B23-01624 | 23-01624-02 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |
| LB 4200 B     | 8537     | B1       | B23-01624 | 23-01624-03 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |
| LB 4200 B     | 8537     | B2       | B23-01624 | 23-01624-04 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |
| <br>LB 4200 B | 8537     | B3       | B23-01624 | 23-01624-05 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |
| LB 4200 B     | 8537     | B4       | B23-01624 | 23-01624-06 | Sr-90, Sr-89/90 |          | 7200       | 9/13/2023 11:08:23 AM |

ARS1-23-01973 Page 230 of 311

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 253 of 384

### GPC D 1155921 Batch Report

Batch Name: B23-01624

Calibration: Fitted Efficiency

Procedure: Sr-90, Sr-89/90

Preset Count Time (min): 120

Batch ID: 8537

Count Mode: Simultaneous

| Sample ID   | Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity<br>(uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time       |
|-------------|-------------|-----------------------------|----------------------------|-------------------------|------------------------|-------------------|----------------|-----------------------|
| 23-01624-01 | А3          | 38                          | 1970                       | 0.25209370710514        | 41.2444222043186       | 7200              | 1230           | 9/13/2023 11:08:32 AM |
| 23-01624-02 | A4          | 42                          | 1891                       | 0.304257401715750       | 39.7221810265689       | 7200              | 1230           | 9/13/2023 11:08:32 AM |
| 23-01624-03 | B1          | 22                          | 180                        | 0.87018190096630        | 3.68764576432893       | 7200              | 1230           | 9/13/2023 11:08:32 AM |
| 23-01624-04 | B2          | 16                          | 90                         | 0.67768097743269        | 1.79394653502855       | 7200              | 1230           | 9/13/2023 11:08:32 AM |
| 23-01624-05 | B3          | 14                          | 99                         | 0.59275017115421        | 2.02159807257009       | 7200              | 1230           | 9/13/2023-11:08:32-AM |
| 23-01624-06 | B4          | 12                          | 114                        | 0.47030405320868        | 2.33136906825801       | 7200              | 1230           | 9/13/2023 11:08:32 AM |

| Date       | Time  | Batch ID | Fraction | Procedure | Gen File      | Detector | Tech |
|------------|-------|----------|----------|-----------|---------------|----------|------|
| 09-12-2023 | 15:02 | 23-01615 | 5        | GAGB      | 8524          | C1       | SDW  |
| 09-12-2023 | 15:02 | 23-01615 | 6        | GAGB      | 8524          | C2       | SDW  |
| 09-12-2023 | 15:02 | 23-01615 | 7        | GAGB      | 8524          | C3       | SDW  |
| 09-13-2023 | 7:08  | Daily    | QA       | bkg       | 8525-<br>8528 | all      | SDW  |
| 09-13-2023 | 9:23  | Daily    | QA       | eff       | 8529-<br>8536 | all      | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 1        | Sr-90     | 8537          | A3       | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 2        | Sr-90     | 8537          | A4       | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 3        | Sr-90     | 8537          | B1       | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 4        | Sr-90     | 8537          | B2       | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 5        | Sr-90     | 8537          | В3       | SDW  |
| 09-13-2023 | 11:08 | 23-01624 | 6        | Sr-90     | 8537          | B4       | SDW  |
| 09-14-2023 | 7:11  | Daily    | QA       | bkg       | 8538-<br>8541 | all      | SDW  |
| 09-14-2023 | 9:27  | Daily    | QA       | eff       | 8542-<br>8549 | all      | SDW  |
| 09-14-2023 | 10:39 | 23-01636 | 1        | Sr-90     | 8550          | B1       | SDW  |

CE-22 Tennelec LB4200 Low Background System Counting Logbook

ARS1-23-01973 Page 232 of 311

2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394



**ARS Aleut Analytical, LLC Analytical Reports** 

for

**GES-AIS, LLC** 

Sr-90 - Standards & Carrier

ARS1-23-01973 Page 233 of 311

### Standard Verification Calculation (without plating recovery)

|                                        |                                           |                         |                                                                |                       | Decay Corrected<br>Activity Result<br>(DCI/0) |           |           | 22.13     | 20.93   |                       |                                                   |                 | 4.98%  |                               |   |                        |                        |   |             |
|----------------------------------------|-------------------------------------------|-------------------------|----------------------------------------------------------------|-----------------------|-----------------------------------------------|-----------|-----------|-----------|---------|-----------------------|---------------------------------------------------|-----------------|--------|-------------------------------|---|------------------------|------------------------|---|-------------|
|                                        |                                           |                         |                                                                |                       | Decay Corrected Activity Result               | 45.85     | 44.43     | 49.14     | 46.47   | 4.73                  | 5.46%                                             | 44.27           | 4.98%  |                               |   |                        |                        |   |             |
| 12:26 date counted                     | Half Life, Days<br>1.04E+04<br>1.0410E+04 | 1/24/2022 0:00          |                                                                |                       | Net Weight                                    | 1.0090    | 1.0020    | 1.0010    | Average | Two Sigma Uncertainty | Standard Deviation percent of known concentration | Target Activity | ∭µiQ % | January 12, 2024              |   | 1-90-93                | 1-10-13                |   | 1-20-23     |
| 1/12/2023 12:26<br>S-0370              | OR                                        | Dilution Reference Date | 45.33                                                          | Required              | Bkg. (cpm)                                    | 0.80      | 0.73      | 0.80      |         | 1                     | eviation percent of                               |                 | PASS   | Verification Expiration Date: |   | Date:                  | Date:                  |   | Date:       |
| VERIFICATION DATE STANDARD REFERENCE # | Half Life, Years                          | Dilut                   | 6/mdb <===                                                     | Minimum of 3 Required | Efficiency                                    | 0.3898    | 0.3898    | 0.3789    |         |                       | Standard D                                        |                 | 5% Max | Verification                  |   |                        | 1                      |   |             |
| VERIFICATION DATE<br>STANDARD REFEREI  | ENTER>                                    |                         | 20.42 pCi per gram ===> dpm/g<br>19.94 pCi per gram ===> dpm/g |                       | Detector                                      | C4        | D1        | D3        |         |                       | PASS                                              |                 |        |                               |   | 0                      | *                      | - | 1           |
|                                        | ionuclide                                 | Sr-90                   | 20.42                                                          |                       | Sample Counts Count Time (min)                | 120       | 120       | 120       |         |                       | 10% Max                                           |                 |        | 1.3                           | C | 5                      | 2                      | 7 | K           |
|                                        | Principal Radionuclide<br>Sr-90           | Radionuclide            | Dilution Activity<br>Verif. Date Decay Corrected               |                       | Sample Counts                                 | 2260.00   | 2170.00   | 2332.50   |         |                       |                                                   |                 |        |                               |   | Prepared & Counted By_ | Verified & Approved By |   | QC Approval |
|                                        |                                           |                         | I<br>Verif. Date D                                             |                       | Trial ID                                      | S-0370-V1 | S-0370-V2 | S-0370-V4 |         |                       |                                                   |                 |        |                               |   | Prepared               | Verified               |   |             |

ML-QA-038-FM-07 r01.0 Standard Verification Calculation (without plating recovery)\_S0370\_Strontium\_011223 Revision Date: 12.20.2022

ARS1-23-01973 Page 234 of 311

# GPC D 1155921 Batch Report

Batch Name: S-0370 Verification

Calibration: Fitted Efficiency

| Pro       | Procedure: Sr-90, Sr-89/90 | Sr-89/90                    |         |                            | ۵                    | Preset Count Time (min): 120 | 1): 120                  |                |                       |
|-----------|----------------------------|-----------------------------|---------|----------------------------|----------------------|------------------------------|--------------------------|----------------|-----------------------|
| ш         | Batch ID: 6111             |                             |         |                            |                      | Count Mod                    | Count Mode: Simultaneous |                |                       |
| mple ID   | Sample ID Detector ID      | Gross Alpha<br>Counts (cpm) |         | Gross Beta<br>Counts (cpm) | Alpha activity (uCi) | Beta activity (uCi)          | Count Time<br>(s)        | Voltage<br>(V) | Run Date & Time       |
| S-0370-V1 | C4                         | 7.1                         | 71 2360 | 4520                       | -0,4740662694326£    | 89.4422228238273             | 7200                     | 1290           | 1/12/2023 12:26:46 PM |
| S-0370-V2 | DI                         | 99                          | 2170    | 4340                       | -0.92098952608744    | 84,4415770675348             | 7200                     | 1290           | 1/12/2023 12:26:46 PM |
| S-0370-V3 | D2                         | 85                          | 2511.5  | 5023                       | -0.62087739064570    | 97.1395950724782             | 7200                     | 1290           | 1/12/2023 12:26:46 PM |
| S-0370-V4 | D3                         | 62                          | 2332.5  | 4665                       | -0.99864904833991    | 95,7133963061854             | 7200                     | 1290           | 1/12/2023 12:26:46 PM |
| S-0370-V5 | D4                         | 61                          | 2359.5  | 4719                       | -1,34532316853981    | 96.8047137352219             | 7200                     | 1290           | 1/12/2023 12:26:46 PM |

Unknown Batch Report

ARS1-23-01973 Page 235 of 311



## **Assignment Summary**

| <b>చ</b>           | /12/2023 12:26:37 PM   |
|--------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Run Date &<br>Time | 1/12/2023              | 1/12/2023              | 1/12/2023              | 1/12/2023              | 1/12/2023              |
| Count Time         | 7200                   | 7200                   | 7200                   | 7200                   | 7200                   |
| Standard           |                        |                        |                        |                        |                        |
| Procedure          | Sr-90, Sr-89/90        |
| Sample             | S-0370-V1              | S-0370-V2              | S-0370-V3              | S-0370-V4              | S-0370-V5              |
| Batch              | S-0370<br>Verification | S-0370<br>Verification | S-0370<br>Verification | S-0370<br>Verification | S-0370<br>Verification |
| Detector           | 25                     | 70                     | D2                     | D3                     | 75                     |
| Batch ID           | 6111                   | 6111                   | 6111                   | 6111                   | 6111                   |
| Drawer             | LB 4200 C              | LB 4200 D              | LB 4200 D              | LB 4200 D              | LB 4200 D              |

ARS1-23-01973 Page 236 of 311 Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 259 of 384 **Weight Spreadsheet for** 

### **Two Standards Verification**

| ,  | S-0370 Verificati | on Weights     |
|----|-------------------|----------------|
|    | Tech:             | KE             |
|    | Pippete:          | TU30597        |
| i. | Scale ID:         | TO350192       |
| *  | Standard 1 ID:    | S-0370         |
|    | Standard 2 ID:    | N/A            |
|    |                   |                |
| į  | Sample ID         | Std. Weight(g) |
| (  | S-0370-V1         | 1.009          |
| i  | S-0370-V2         | 1.002          |
|    | S-0370-V3         | 1.002          |
|    | S-0370-V4         | 1.001          |
|    | S-0370-V5         | 1.002          |
|    | N/A-V1            |                |
|    | N/A-V2            |                |
| 1  | N/A-V3            |                |
| 1  | N/A-V4            |                |
|    | N/A-V5            |                |

ML-QA-038-FM-10 r01.0 Weight Spreadsheet for Two Standards Verification Revision Date: 12.20.2022

ARS1-23-01973 Page 237 of 311

| DetectorID | AnalysisDate | BKG_CountMins | BKG_Count_ALPHA | BKG_Count_BETA | BETA         |
|------------|--------------|---------------|-----------------|----------------|--------------|
| A1         | 01/06/2023   | 3 900         |                 | 42.00          | 00.609       |
| A2         | 01/06/2023   | 3 900         |                 | 35.00          | 674.00       |
| A3         | 01/06/2023   | 3 900         |                 | 34.00          | 622.00       |
| A4         | 01/06/2023   | 3 900         |                 | 39.00          | 00.999       |
| 81         | 01/06/2023   | 3 900         |                 | 48.00          | 1058.00      |
| B2         | 01/06/2023   | 3 900         |                 | 54.00          | 715.00       |
| 83         | 01/06/2023   | 3 900         |                 | 47.00          | 682.00       |
| B4         | 01/06/2023   | 3 900         |                 | 43.00          | 722.00       |
| C1         | 01/06/2023   | 3 900         |                 | 42.00          | 624.00       |
| C2         | 01/06/2023   | 3 900         |                 | 44.00          | 688.00       |
| 8          | 01/06/2023   | 3 900         |                 | 40.00          | 672.00       |
| C4         | 01/06/2023   | 3 900         |                 | 35.00          | 718.00 /900  |
| D1         | 01/06/2023   | 3 900         |                 | 38.00          | 659.00/900 = |
| D2         | 01/06/2023   | 3 900         |                 | 41.00          | 784.00       |
| D3         | 01/06/2023   | 3 900         |                 | 25.00          | 719.00/460   |
| D4         | 01/06/2023   | 3 900         |                 | 37.00          | 712.00       |
|            |              |               |                 |                |              |

ARS1-23-01973 Page 238 of 311

### PALA-RAD-032-FM-04 r00.0 Sr-90 Carrier Verification

| Tech:       | LC        |
|-------------|-----------|
| Date:       | 5/5/2023  |
| Pipette:    | TU30597   |
| Reagent ID: | R23-00294 |

| Acceptak | ole Range |
|----------|-----------|
| Low (mg) | High (mg) |
| 11.495   | 12.705    |

| Sample ID    | Empty Weight (g) | Filled Weight (g) | Yield (mg) |
|--------------|------------------|-------------------|------------|
| R23-00294-01 | 7.7125           | 7.7242            | 11.7       |
| R23-00294-02 | 7.7289           | 7.7404            | 11.5       |
| R23-00294-03 | 7.7234           | 7.7356            | 12.2       |
| R23-00294-04 | 7.702            | 7.7136            | 11.6       |
| R23-00294-05 | 7.7926           | 7.8047            | 12.1       |

ARS1-23-01973 Page 239 of 311

### CERTIFICATE OF CALIBRATION

### **CUSTOM BETA PLANCHET STANDARDS**

Radionuclide: Sr-90<sup>(1)</sup>

| Half Life <sup>(2)</sup> : | 28.5 ± 0.2 years     | Reference Date: | 1200 PST September 1, 1999                  |
|----------------------------|----------------------|-----------------|---------------------------------------------|
| Serial Number              | Activity             | Mass            | Total Uncertainty<br>(99% Confidence Level) |
| J589                       | 351.7 Bq (9.505 nCi) | 0.0001 grams    | 1.81%                                       |
| J590                       | 392.9 Bq (10.62 nCi) | 0.0199 grams    | 1.79%                                       |
| J591                       | 370.7 Bq (10.02 nCi) | 0.0390 grams    | 1.80%                                       |
| J592                       | 358.0 Bq (9.677 nCi) | 0.0614 grams    | 1.81%                                       |
| J593                       | 398.1 Bq (10.76 nCi) | 0.0782 grams    | 1.79%                                       |
| J594                       | 385.5 Bq (10.42 nCi) | 0.1036 grams    | 1.80%                                       |
| J595                       | 374.1 Bq (10.11 nCi) | 0.2690 grams    | 1.80%                                       |

### PRINCIPAL EMISSIONS(2)

| <u>Type</u>  | Energy (keV)                                     | Intensity (%) |
|--------------|--------------------------------------------------|---------------|
| beta (Sr-90) | E <sub>max</sub> = 546<br>E <sub>avg</sub> = 196 | 100           |
| beta (Y-90)  | E <sub>max</sub> = 2282                          | 100           |

### SOURCE DESCRIPTION

Thickness:

| Active Diameter:  | 49.7 mm | Backing: | Stainless steel |
|-------------------|---------|----------|-----------------|
| Overall Diameter: | 50.8 mm | Cover:   | none            |

3 mm

### **METHOD OF CALIBRATION**

The source was calibrated by dispensing a gravimetric aliquot of a solution calibrated by liquid scintillation using an efficiency established through ongoing intercomparisons with the National Institute of Standards and Technology. Gravimetric aliquots of this master solution were uniformly mixed in epoxy and transferred to the planchets. This standard is indirectly (implicitly) traceable to the National Institute of Standards and Technology.

North American Scientific, Inc. actively participates in the Radioactivity Measurements Assurance Program conducted by the National Institute of Standards and Technology in cooperation with the Nuclear Energy Institute.

Calibration Laboratory

December 27, 1999

Date

### **REFERENCES**

Y-90 daughter in equilibrium. Activity value is for Sr-90 only. (1)

(2) Table of Radioactive Isotopes, 7th edition, 1986.

### LEAK TEST CERTIFICATION ON REVERSE

North American Scientific, Inc. 7435 Greenbush Ave., North Hollywood, CA 91605 (818) 734-8600 Fax (818) 734-8606

### CERTIFICATE OF CALIBRATION

### **CUSTOM ALPHA PLANCHET STANDARDS**

Radionuclide: Th-230<sup>(1)</sup>

|     |      | (2)                  |
|-----|------|----------------------|
| Hal | It I | ife <sup>(2)</sup> : |

 $(7.54 \pm 0.03) \times 10^4 \text{ years}$ 

Reference Date:

1200 PST September 1, 1999

| Serial Number | Activity             | Mass         | Total Uncertainty<br>(99% Confidence Level) |
|---------------|----------------------|--------------|---------------------------------------------|
| J596          | 379.3 Bq (10.25 nCi) | 0.0002 grams | 3.18%                                       |
| J597          | 374.1 Bq (10.11 nCi) | 0.0217 grams | 3.18%                                       |
| J598          | 367.1 Bq (9.921 nCi) | 0.0435 grams | 3.18%                                       |
| J599          | 362.8 Bq (9.805 nCi) | 0.0629 grams | 3.18%                                       |
| J600          | 354.2 Bq (9.573 nCi) | 0.0791 grams | 3.19%                                       |
| J601          | 361.4 Bq (9.767 nCi) | 0.1003 grams | 3.19%                                       |
| J602          | 359.2 Bq (9.709 nCi) | 0.2448 grams | 3.19%                                       |

### PRINCIPAL EMISSIONS(2)

| <u>Type</u> | Energy (keV) | Intensity (%) |
|-------------|--------------|---------------|
| alpha       | 4621.1       | 23.4          |
| alpha       | 4687.6       | 76.3          |

### SOURCE DESCRIPTION

Active Diameter:

49.7 mm

Backing:

Stainless steel

Overall Diameter:

50.8 mm

Cover:

none

Thickness:

3 mm

### METHOD OF CALIBRATION

The source was calibrated by dispensing a gravimetric aliquot of a solution calibrated by liquid scintillation using an efficiency established through ongoing intercomparisons with the National Institute of Standards and Technology. Gravimetric aliquots of this master solution were uniformly mixed in epoxy and transferred to the planchets. This standard is indirectly (implicitly) traceable to the National Institute of Standards and Technology.

North American Scientific, Inc. actively participates in the Radioactivity Measurements Assurance Program conducted by the National Institute of Standards and Technology in cooperation with the Nuclear Energy Institute.

Calibration Laboratory

December 23, 1999

Date

### REFERENCES

The source contains 0.29% Ra-226 as of September 22, 1996. (1)

(2) Table of Radioactive Isotopes, 7th edition, 1986.

### LEAK TEST CERTIFICATION ON REVERSE

North American Scientific, Inc. 7435 Greenbush Ave., North Hollywood, CA 91605 (818) 734-8600 Fax (818) 734-8606



2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

### **ARS Aleut Analytical, LLC Analytical Reports**

for

**GES-AIS, LLC** 

**Sr-90 - ICAL** 

ARS1-23-01973 Page 242 of 311



Case 3:24-cv-03899-VC



### **Background Report**

Batch Name: Batch\_2843 ' Count Date: 2/18/2022 12:25:16 PM Procedure: Background Preset Count Time: 54000 Calibration: Background Count Mode: Simultaneous Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) A1 6.5111E-001 +/- 2.6897E-002 4.4444E-002 +/- 7.0273E-003 Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) A2 3.8889E-002 +/- 6.5734E-003 6.4111E-001 +/- 2.6690E-002 Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) **A3** 3.7778E-002 +/- 6.4788E-003 6.7444E-001 +/- 2.7375E-002 Calculated Background (cpm) Beta Bkg Rate (cpm) **Detector Name** Alpha Bkg Rate (cpm) A4 6.3000E-001 +/- 2.6458E-002 6.0000E-002 +/- 8.1650E-003 Batch Name: Batch\_2844 Count Date: 2/18/2022 12:25:17 PM Preset Count Time: 54000 Procedure: Background Calibration: Background Count Mode: Simultaneous Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) **B1** 6.4444E-002 +/- 8.4620E-003 8.9222E-001 +/- 3.1486E-002 Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) B2 5.3333E-002 +/- 7.6980E-003 7.6333E-001 +/- 2.9123E-002 Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) В3 7.7556E-Q01 +/- 2.9355E-002 5.5556E-002 +/- 7.8567E-003 Calculated Background (cpm) **Detector Name** Alpha Bkg Rate (cpm) Beta Bkg Rate (cpm) **B4** 6.7556E-001 +/- 2.7397E-002 4.6667E-002 +/- 7.2008E-003 Count Date: 2/18/2022 12:25:14 PM Batch Name: Batch\_2845 Preset Count Time: 54000 Procedure: Background Count Mode: Simultaneous Calibration: Background Page 1 of 2

**Background Report** 







Drawer: LB 4200 A

Batch Name: A1 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Detector: A1

Count Date: 12/23/2021 9:02:50 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2265

Device: LB 4200 A

**Efficiency Coefficients** 

C0 = 4.0408E+001 +/- 2.8752E-001

C1 = -2.8180E+001 +/- 2.2003E+000

Chi^2 = 1.4509E+001

Spillover Coefficients

Spill C0 = 1.9967E+000 +/- 7.3634E-002

Spill C1 = -1.0768E+000 +/- 5.9821E-001

Chi^2 = 2.0761E+000

|           |                             |          |          | Decay Corrected |                     |            |           |
|-----------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iteration | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1         | 9.1752E+003 +/- 9.1748E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 37.42      | 1.91      |
| 1         | 1.1494E+004 +/- 1.1494E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 41.96      | 2.03      |
| 1         | 1.0871E+004 +/- 1.0870E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 42.06      | 1.76      |
| 1         | 9.8039E+003 +/- 9.8039E+001 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 39.28      | 1.99      |
| 1         | 1.0526E+004 +/- 1.0526E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 37.92      | 1.87      |
| 1         | 9.8039E+003 +/- 9.8039E+001 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.48      | 2.29      |
| 1         | 8.5479E+003 +/- 8.5474E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 32.77      | 1.62      |

### **Efficiency Coefficients**

C0 = 4.0711E+001 +/- 3.0232E-001

C1 = -7.9690E+001 +/- 6.3779E+000

Chi^2 = 1.4847E+001

### Spillover Coefficients

Spill C0 = 2.0151E+000 +/- 7.8306E-002

Spill C1 = -5.2700E+001 +/- 3.5162E+001

Chi^2 = 2.1443E+000

| Exponential FEI 12              | rpopulatial FET 127871 |          |                |                     |            |           |
|---------------------------------|------------------------|----------|----------------|---------------------|------------|-----------|
| Iteration Beta Count Rate (cpm) | Standard               | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
| 1 9.1752E+003 +/- 9.1748E+001   | J589                   | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 37.42      | 1.91      |
| 1 1.1494E+004 +/- 1.1494E+002   | J590                   | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 41.96      | 2.03      |
| 1 1.0871E+004 +/- 1.0870E+002   | J591                   | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 42.06      | 1.76      |
| 9.8039E+003 +/- 9.8039E+001     | J592                   | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 39.28      | 1.99      |
| 1 1.0526E+004 +/- 1.0526E+002   | J593                   | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 37.92      | 1.87      |
| 1 9.8039E+003 +/- 9.8039E+001   | J594                   | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 36.48      | 2.29      |
| 1 8.5479E+003 +/- 8.5474E+001   | J595                   | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 32.77      | 1.62      |





Batch Name: A2 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Detector: A2

Count Date: 12/23/2021 9:02:50 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2266

Drawer: LB 4200 A Device: LB 4200 A

**Efficiency Coefficients** 

C0 = 4.1302E+001 +/- 2.9359E-001

C1 = -2.9318E+001 +/- 2.2434E+000

Chi^2 = 9.3177E+000

**Spillover Coefficients** 

Spill C0 = 1.7462E+000 +/- 6.7266E-002

Spill C1 = -2.1954E+000 +/- 5.0885E-001

Chi^2 = 2.1387E+000

|         |                             |          |          | Decay Corrected |                     |            |           |
|---------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1       | 9.5238E+003 +/- 9.5238E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 38.84      | 1.76      |
| 7       | 1.1628E+004 +/- 1.1628E+002 | J590     | 19,9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 42.45      | 1.70      |
| 1       | 1.0989E+004 +/- 1.0989E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 42.52      | 1.39      |
| 1       | 9.9020E+003 +/- 9.9015E+001 | J592     | 61.4 mg  | 2,4960E+004     | 9/1/1999 3:00:31 PM | 39.67      | 1.61      |
| 1       | 1.0638E+004 +/- 1.0638E+002 | J593     | 78.2 mg  | 2,7756E+004     | 9/1/1999 3:00:31 PM | 38.33      | 1.83      |
| 1       | 1 0204F+004 +/- 1 0204F+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 37.96      | 1.69      |

269 mg

### Efficiency Coefficients

C0 = 4.1543E+001 +/- 3.0850E-001

C1 = -8.0432E+001 +/- 6.3781E+000

Chi^2 = 9.5705E+000

8.6957E+003 +/- 8.6957E+001

### Spillover Coefficients

9/1/1999 3:00:31 PM

Spill C0 = 1.7808E+000 +/- 7.5646E-002

Spill C1 = -1.4689E+002 +/- 4.1134E+001

Chi^2 = 2.3348E+000

2.6083E+004

| EXY     | lovential eer 1218 1        | 1        | Decay Corrected |                |                     |            |           |
|---------|-----------------------------|----------|-----------------|----------------|---------------------|------------|-----------|
| Iterati |                             | Standard | Mass            | Activity (dpm) | Reference Date      | Efficiency | Spillover |
| 1       | 9.5238E+003 +/- 9.5238E+001 | J589     | 0.1 mg          | 2.4521E+004    | 9/1/1999 3:00:31 PM | 38.84      | 1.76      |
| 1       | 1.1628E+004 +/- 1.1628E+002 | J590     | 19.9 mg         | 2.7394E+004    | 9/1/1999 3:00:31 PM | 42.45      | 1.70      |
| 1       | 1.0989E+004 +/- 1.0989E+002 | J591     | 39 mg           | 2.5846E+004    | 9/1/1999 3:00:31 PM | 42.52      | 1.39      |
| 1       | 9.9020E+003 +/- 9.9015E+001 | J592     | 61.4 mg         | 2.4960E+004    | 9/1/1999 3:00:31 PM | 39.67      | 1.61      |
| 4       | 1.0638E+004 +/- 1.0638E+002 | J593     | 78.2 mg         | 2.7756E+004    | 9/1/1999 3:00:31 PM | 38.33      | 1.83      |
| 1       | 1.0204E+004 +/- 1.0204E+002 | J594     | 103.6 mg        | 2.6878E+004    | 9/1/1999 3:00:31 PM | 37.96      | 1.69      |
| 1       | 8.6957E+003 +/- 8.6957E+001 | J595     | 269 mg          | 2.6083E+004    | 9/1/1999 3:00:31 PM | 33.34      | 1.10      |

Fitted Efficiency Report Page 1 of 1





Batch Name: A3 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:02:51 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2267

Detector: A3 Drawer: LB 4200 A Device: LB 4200 A

**Efficiency Coefficients** 

C0 = 3.9578E+001 +/- 2.8246E-001 C1 = -2.4656E+001 +/- 2.1878E+000

Chi^2 = 9.1236E+000

Spillover Coefficients

Spill C0 = 1.6660E+000 +/- 6.7388E-002 Spill C1 = -1.1467E+000 +/- 5.4590E-001

Chi^2 = 2.3602E-001

Decay Corrected

|        |                             |          |          | Decay corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| terati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 9.0918E+003 +/- 9.0914E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 37.08      | 1.57      |
| 1      | 1.1111E+004 +/- 1.1111E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 40.56      | 1.69      |
| 4      | 1.0529E+004 +/- 1.0528E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 40.74      | 1.67      |
| . 1    | 9.6163E+003 +/- 9.6159E+001 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 38.53      | 1.61      |
| 1      | 1.0309E+004 +/- 1.0309E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 37.14      | 1.63      |
| 7      | 9.9010E+003 +/- 9.9010E+001 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.84      | 1.50      |
| 1      | 8.5479E+003 +/- 8.5474E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 32.77      | 1.35      |
|        |                             |          |          |                 |                     |            |           |

### **Efficiency Coefficients**

C0 = 3.9775E+001 +/- 2.9536E-001

C1 = -6.9600E + 001 + /-6.3779E + 000

Chi^2 = 9.3936E+000

### Spillover Coefficients

Spill C0 = 1.6735E+000 +/- 7.0849E-002

Spill C1 = -7.6733E+001 +/- 3.8499E+001

Chi^2 = 2.4568E-001

| Exponential For im              | 3.21     |          | Decay Corrected |                     |            |           |
|---------------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iteration Beta Count Rate (cpm) | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1 9.0918E+003 +/- 9.0914E+001   | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 37.08      | 1.57      |
| 1 1.1111E+004 +/- 1.1111E+002   | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 40.56      | 1.69      |
| 1 1.0529E+004 +/- 1.0528E+002   | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 40.74      | 1.67      |
| 1 9.6163E+003 +/- 9.6159E+001   | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 38.53      | 1.61      |
| 1 1.0309E+004 +/- 1.0309E+002   | J593     | 78,2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 37.14      | 1.63      |
| 1 9.9010E+003 +/- 9.9010E+001   | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.84      | 1.50      |
| 1 8.5479E+003 +/- 8.5474E+001   | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 32.77      | 1.35      |





Batch Name: A4 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:02:52 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2268

Detector: A4 Drawer: LB 4200 A Device: LB 4200 A

**Efficiency Coefficients** 

C0 = 3.9352E+001 +/- 2.8129E-001

C1 = -2.5774E+001 +/- 2.1743E+000

Chi^2 = 1.3660E+001

Spillover Coefficients

Spill C0 = 1.8883E+000 +/- 7.2706E-002

Spill C1 = -6.6096E-001 +/- 6.0756E-001

Chi^2 = 3.6241E-001

| Decay | Corrected |
|-------|-----------|
|-------|-----------|

|   |        |                             |          |          | pacal acreas   |                     |            |           |
|---|--------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1 | terati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|   | 1      | 9.0090E+003 +/- 9.0090E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 36.74      | 1.95      |
|   | 1      | 1.1364E+004 +/- 1.1364E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 41.48      | 1.86      |
|   | 1      | 1.0527E+004 +/- 1.0527E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 40.73      | 1.84      |
|   | 1      | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004    | 9/1/1999 3:00:31 PM | 37.80      | 1.72      |
|   | 1      | 1.0204E+004 +/- 1.0204E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 36.76      | 1.86      |
|   | 1      | 9.6173E+003 +/- 9.6163E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 35.78      | 1.93      |
|   | -1     | 8.4746E+003 +/- 8.4746E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 32.49      | 1.70      |
|   |        |                             |          |          |                |                     |            |           |

### **Efficiency Coefficients**

C0 = 3.9634E+001 +/- 2.9432E-001

C1 = -7.4702E+001 +/- 6.3781E+000

Chi^2 = 1.3822E+001

### Spillover Coefficients

Spill C0 = 1.8939E+000 +/- 7.4441E-002

Spill C1 = -3.7082E+001 +/- 3.4671E+001

Chi^2 = 3.6392E-001

| EX     | Donential Etc 1226          | n        |          |                |                     |            |           |
|--------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| Iterat |                             | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
| 1      | 9.0090E+003 +/- 9.0090E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 36.74      | 1.95      |
| 1      | 1.1364E+004 +/- 1.1364E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 41.48      | 1.86      |
| 1      | 1.0527E+004 +/- 1.0527E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 40.73      | 1.84      |
| 1      | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004    | 9/1/1999 3:00:31 PM | 37.80      | 1.72      |
| 1      | 1.0204E+004 +/- 1.0204E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 36.76      | 1.86      |
| 1      | 9.6173E+003 +/- 9.6163E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 35.78      | 1.93      |
| 1      | 8.4746E+003 +/- 8.4746E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 32.49      | 1.70      |

Page 6 of 44
ARS1-23-01973 Page 248 of 311





### Plateau Report

Plateau: Plateau 1015 Plateau Date: 8/9/2021 1:43:22 PM

Decay Mode: Beta Drawer: LB 4200 A

Device: LB 4200 A Operating Voltage: 1230



|           | A1    |           | A2   |           |      | A3        |       | A4        | Voltage |
|-----------|-------|-----------|------|-----------|------|-----------|-------|-----------|---------|
| Iteration | cpm   | Slope (%) | cpm  | Slope (%) | cpm  | Slope (%) | cpm   | Slope (%) | voitage |
| 1         | 0     |           | 0    |           | 0    |           | 0     |           | 300     |
| 2         | 0     |           | 0.5  |           | 0    |           | 0     |           | 330     |
| 3         | 0     | 0         | 0.5  | 0         | 0    | 0         | 0     | 0         | 360     |
| 4         | 0     | 0         | 0.5  | -100      | 0    | 0         | 0     | 0         | 390     |
| 5         | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 420     |
| 6         | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 450     |
| 7         | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 480     |
| 8         | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 510     |
| 9         | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 540     |
| 10        | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 570     |
| 11        | 0     | 0         | 0    | 0         | 0    | 0         | 0     | 0         | 600     |
| 12        | 0     | 0         | 0    | 0         | 0    | 0         | 0.5   | 100       | 630     |
| 13        | 0     | 0         | 0    | 0         | 0    | 0         | 0.5   | 1333      | 660     |
| 14        | 1.5   | 2822      | 1.5  | 4589      | 1.5  | 3789      | 0.5   | 1.017E+04 | 690     |
| 15        | 8     | 2271      | 14.5 | 1776      | 14.5 | 1670      | 10    | 1892      | 720     |
| 16        | 59.5  | 945.9     | 96   | 702.6     | 78   | 843.4     | 72    | 791.4     | 750     |
| 17        | 243.5 | 479.5     | 339  | 389.4     | 325  | 398.4     | 248.5 | 442.8     | 780     |
| 18        | 728   | 257.2     | 851  | 233.5     | 833  | 228.3     | 736   | 237.7     | 810     |
| 19        | 1425  | 180       | 1617 | 166.2     | 1579 | 163.6     | 1329  | 184.4     | 840     |
| 20        | 2278  | 142.7     | 2437 | 140.7     | 2304 | 142.9     | 2157  | 147.9     | 870     |

Plateau Review

### Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 272 of 384

|           | A1        |           | A2        |                    | A         | A3        |           | A4        |         |
|-----------|-----------|-----------|-----------|--------------------|-----------|-----------|-----------|-----------|---------|
| Iteration | срт       | Slope (%) | cpm       | Slope (%)          | cpm       | Slope (%) | cpm       | Slope (%) | Voltage |
| 21        | 3316      | 124.3     | 3578      | 120.1              | 3464      | 119.2     | 3212      | 123.3     | 900     |
| 22        | 4658      | 111       | 5012      | 107.9              | 4830      | 108.8     | 4580      | 108.4     | 930     |
| 23        | 6415      | 101.1     | 6776      | 98.08              | 6508      | 98.34     | 6059      | 100.7     | 960     |
| 24        | 8481      | 90.01     | 8949      | 88.34              | 8668      | 87.38     | 8182      | 89.29     | 990     |
| 25        | 1.113E+04 | 67.23     | 1.158E+04 | 63.24              | 1.114E+04 | 66.37     | 1.056E+04 | 72.54     | 1020    |
| 26        | 1.375E+04 | 40.99     | 1.447E+04 | 35.77              | 1.387E+04 | 39.7      | 1.329E+04 | 45.35     | 1050    |
| 27        | 1.724E+04 | 19.99     | 1.775E+04 | 16.39              | 1.714E+04 | 19.65     | 1.648E+04 | 23.53     | 1080    |
| 28        | 2.055E+04 | 5.551     | 2.098E+04 | 2.364              | 2.041E+04 | 5.021     | 2E+04     | 7.62      | 1110    |
| 29        | 2.381E+04 | 0.005556  | 2.439E+04 | 0.001111           | 2.381E+04 | 0.001111  | 2.326E+04 | 0.005556  | 1140    |
| 30        | 2.703E+04 | 0.001111  | 2.727E+04 | -0.001111          | 2.679E+04 | -0.003333 | 2.632E+04 | 0.008889  | 1170    |
| 31        | 2.941E+04 | 0.01      | 2.941E+04 | -0.001111          | 2.913E+04 | -0.002222 | 2.857E+04 | 0.002222  | 1200    |
| 32        | 3.093E+04 | 0.005556  | 3.061E+04 | 0.01111            | 3.03E+04  | 0.005555  | 2.971E+04 | 0.01555   | 1230    |
| 33        | 3.192E+04 | 0.11      | 3.158E+04 | 0.1911             | 3.093E+04 | 0.1533    | 3.061E+04 | 0.1578    | 1260    |
| 34        | 3.226E+04 | 0.7633    | 3.192E+04 | 0.9287             | 3.126E+04 | 0.8532    | 3.126E+04 | 0.8664    | 1290    |
| 35        | 3.266E+04 | 2.357     | 3.235E+04 | 2.721 <sup>,</sup> | 3.199E+04 | 2.609     | 3.165E+04 | 2.575     | 1320    |
| 36        | 3.332E+04 | 4.91      | 3.266E+04 | 5.62               | 3.195E+04 | 5.525     | 3.162E+04 | 5.25      | 1350    |
| 37        | 3.288E+04 | 8.349     | 3.302E+04 | 9.404              | 3.196E+04 | 8.857     | 3.162E+04 | 8.587     | 1380    |
| 38        | 3.348E+04 | 12.43     | 3.274E+04 | 13.69              | 3.205E+04 | 12.68     | 3.194E+04 | 12.62     | 1410    |
| 39        | 3.351E+04 | 18.27     | 3.263E+04 | 19.29              | 3.237E+04 | 18.18     | 3.23E+04  | 18.26     | 1440    |
| 40        | 3.344E+04 |           | 3.304E+04 |                    | 3.267E+04 |           | 3.235E+04 |           | 1470    |
| 41        | 3.394E+04 |           | 3.331E+04 |                    | 3.234E+04 |           | 3.23E+04  |           | 1500    |

Page 2 of 2 Plateau Review Page 8 of 44 Page 250 of 311

Instrument:

D 1155921



### Sr 90

| RDW | 1-4-22 |
|-----|--------|
|-----|--------|

| Source ID | Decay corrected activity (DPM) | Weight |
|-----------|--------------------------------|--------|
| J589      | 21102.00                       | 0.0001 |
| J593      | 23886.00                       | 0.0782 |
| J595      | 22446.00                       | 0.269  |

FFI

| Detector | Source ID | Weight | Act (pCi)   | CSU 2s     | Low        | High        | Pass/Fail |
|----------|-----------|--------|-------------|------------|------------|-------------|-----------|
| A1       | J589      | 0.0001 | 11422.07657 | 2687.55665 | 8734.51992 | 14109.63322 | 9505.41   |
| A2       | J593      | 0.0782 | 12314.27276 | 2897.49926 | 9416.77350 | 15211.77202 | 10759.46  |
| А3       | J595      | 0.269  | 11551.26467 | 2718.10843 | 8833.15624 | 14269.37310 | 10110.81  |
| A4       | J589      | 0.0001 | 11017.07918 | 2592.21824 | 8424.86094 | 13609.29742 | 9505.41   |
| A1       | J593      | 0.0782 | 12216.19380 | 2874.39128 | 9341.80252 | 15090.58508 | 10759.46  |
| A2       | J595      | 0.269  | 11967.00046 | 2815.84257 | 9151.15789 | 14782.84303 | 10110.81  |
| А3       | J589      | 0.0001 | 11101.40642 | 2612.07633 | 8489.33009 | 13713.48275 | 9505.41   |
| A4       | J593      | 0.0782 | 12459.71539 | 2931.64630 | 9528.06909 | 15391.36169 | 10759.46  |
| A1       | J595      | 0.269  | 12147.08521 | 2858.47781 | 9288.60740 | 15005.56302 | 10110.81  |
| A2       | J589      | 0.0001 | 10788.70609 | 2538.54015 | 8250.16594 | 13327.24624 | 9505.41   |
| А3       | J593      | 0.0782 | 12459.71539 | 2931.64630 | 9528.06909 | 15391.36169 | 10759.46  |
| A4       | J595      | 0.269  | 11824.86018 | 2782.67284 | 9042.18734 | 14607.53302 | 10110.81  |

### Activity (pCi)

|            |          |          | the state of the s |          |  |  |  |
|------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|--|
| Weight (g) | A1       | A2       | A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A4       |  |  |  |
| 0.0001     | 11422.08 | 10788.71 | 11101.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11017.08 |  |  |  |
| 0.0782     | 12216.19 | 12314.27 | 12459.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12459.72 |  |  |  |
| 0.269      | 12147.09 | 11967.00 | 11551.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11824.86 |  |  |  |



ARS-014-009 r0.0 Revision Date: 2/02/2021

### GPC D 1155921 Batch Report

Batch Name: B21-01741 3 Calibration: Fitted Efficiency

Procedure: Attenuation Curve check Preset Count Time (min): 3

Batch ID: 2295 Count Mode: Simultaneous

| L            | aten ib. 2235 | 2233 Gourt Mode. Simultaneous |                            |                         |                     |                   |                |                       |  |
|--------------|---------------|-------------------------------|----------------------------|-------------------------|---------------------|-------------------|----------------|-----------------------|--|
| Sample ID    | Detector ID   | Gross Alpha<br>Counts (cpm)   | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity (uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time       |  |
| B21-01741-04 | A1            | 98                            | 5000                       | -29.5567561479378       | 23174.8098529675    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-05 | A2            | 81                            | 5001                       | -94.8534781823619       | 25088.8436197349    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-06 | A4            | 0                             | 4                          | -1.19508021653397       | 1.21630179051268    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-07 | А3            | 60                            | 5000                       | -237.79443845330€       | 20976.3977937965    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-08 | <b>A</b> 1    | 0                             | 14                         | -0.97552374264221       | 9.9739967932399     | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-09 | A2            | 102                           | 5001                       | 134.455355892983        | 22274.1614316225    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-10 | А3            | 65                            | 5000                       | -229.699571537084       | 25678.760411831     | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-11 | A4            | 87                            | 5000                       | -78.0314738352567       | 21389.0539297487    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-12 | <b>A</b> 1    | 84                            | 5000                       | -165.089585246863       | 21565.5278873617    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-13 | A2            | 0                             | 3                          | -0.48591772632677       | 0.46876174445190    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-14 | А3            | 90                            | 5000                       | 68.5157991346159        | 22845.6014538385    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-15 | A4            | 77                            | 5000                       | -218.63489315121        | 26306.1689410904    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-16 | A1            | 76                            | 5003                       | -284.110358401531       | 25113.1952637614    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-17 | A2            | 52                            | 5001                       | -366.203383917655       | 21162.222057301     | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-18 | А3            | 1                             | 7                          | 1.14126030146588        | 3.56093693674032    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |
| B21-01741-19 | A4            | 85                            | 5001                       | -103.434318444941       | 22542.1065346217    | 180               | 1230           | 12/28/2021 7:34:22 AM |  |





Batch Name: B1 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:02:47 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2269

Detector: B1 Drawer: LB 4200 B Device: LB 4200 B

**Efficiency Coefficients** 

C0 = 3.9289E+001 +/- 2.7922E-001

C1 = -2.7825E+001 +/- 2.1324E+000

Chi^2 = 1.1838E+001

Spillover Coefficients

Spill C0 = 2.2162E+000 +/- 7.7361E-002

Spill C1 = -2.0110E+000 +/- 6.1344E-001

Chi^2 = 9.0092E-002

| Ç. | De | cay | C | orr | ect | ed |  |
|----|----|-----|---|-----|-----|----|--|
|    |    |     |   |     |     |    |  |

| Iterati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|---------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1       | 9.0090E+003 +/- 9.0090E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 36.74      | 2.20      |
| 1       | 1.1111E+004 +/- 1.1111E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 40.56      | 2.11      |
| 1       | 1.0526E+004 +/- 1.0526E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 40.73      | 2.17      |
| 1       | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004    | 9/1/1999 3:00:31 PM | 37.80      | 2.10      |
| 1       | 1.0000E+004 +/- 1.0000E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 36.03      | 2.12      |
| 1       | 9.8049E+003 +/- 9.8044E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 36.48      | 2.01      |
| 4       | 8.2653E+003 +/- 8.2649E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 31.69      | 1.66      |
|         |                             |          |          |                |                     |            |           |

### Efficiency Coefficients

C0 = 3,9548E+001 +/- 2,9368E-001

C1 = -8.0504E+001 +/- 6.3780E+000

Chi^2 = 1.2155E+001

### Spillover Coefficients

Spill C0 = 2.2261E+000 +/- 8.2568E-002

Spill C1 = -1.0342E+002 +/- 3.4386E+001

Chi^2 = 1.1273E-001

| FXX     | overtral Etc 12             | 78 71    |          | Decay Corrected |                     |            |           |
|---------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterati |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1       | 9.0090E+003 +/- 9.0090E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 36.74      | 2.20      |
| 1       | 1.1111E+004 +/- 1.1111E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 40.56      | 2.11      |
| 1       | 1.0526E+004 +/- 1.0526E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 40.73      | 2.17      |
| 1       | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004     | 9/1/1999 3:00:31 PM | 37.80      | 2.10      |
| 1       | 1.0000E+004 +/- 1.0000E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 36.03      | 2.12      |
| 1       | 9.8049E+003 +/- 9.8044E+001 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.48      | 2.01      |
| 1       | 8.2653E+003 +/- 8.2649E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 31.69      | 1.66      |





Batch Name: B2 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:02:48 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2270

Device: LB 4200 B Detector: B2 Drawer: LB 4200 B

Spillover Coefficients

Spill C0 = 2.0745E+000 +/- 7.4528E-002 Spill C1 = -2.4534E+000 +/- 5.7911E-001

Chi^2 = 1.9145E+000

**Efficiency Coefficients** 

C0 = 3.9699E+001 +/- 2.8191E-001

C1 = -2.8167E+001 +/- 2.1509E+000

Chi^2 = 1.0309E+001

Decay Corrected

|          |                             |          |          | the second contract of the second contract of |                     |            |           |
|----------|-----------------------------|----------|----------|-----------------------------------------------|---------------------|------------|-----------|
| Iteratio | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm)                                | Reference Date      | Efficiency | Spillover |
| 1        | 9.0909E+003 +/- 9.0909E+001 | J589     | 0.1 mg   | 2.4521E+004                                   | 9/1/1999 3:00:31 PM | 37.07      | 2.33      |
| 1        | 1.1364E+004 +/- 1.1364E+002 | J590     | 19.9 mg  | 2.7394E+004                                   | 9/1/1999 3:00:31 PM | 41.48      | 1.86      |
| 1        | 1.0417E+004 +/- 1.0417E+002 | J591     | 39 mg    | 2.5846E+004                                   | 9/1/1999 3:00:31 PM | 40.30      | 1.86      |
| 1        | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004                                   | 9/1/1999 3:00:31 PM | 37.80      | 2.20      |
| 1        | 1.0309E+004 +/- 1.0309E+002 | J593     | 78.2 mg  | 2.7756E+004                                   | 9/1/1999 3:00:31 PM | 37.14      | 1.74      |
| 1        | 9.9010E+003 +/- 9.9010E+001 | J594     | 103.6 mg | 2.6878E+004                                   | 9/1/1999 3:00:31 PM | 36.84      | 1.79      |
| 1        | 8.3342E+003 +/- 8.3337E+001 | J595     | 269 mg   | 2.6083E+004                                   | 9/1/1999 3:00:31 PM | 31.95      | 1.44      |
|          |                             |          |          |                                               |                     |            |           |

### **Efficiency Coefficients**

C0 = 3.9943E+001 +/- 2.9662E-001

C1 = -8.0529E+001 +/- 6.3780E+000

Chi^2 = 1.0662E+001

Spillover Coefficients

Spill C0 = 2.1293E+000 +/- 8.1361E-002

Spill C1 = -1.5191E+002 +/- 3.6305E+001

Chi^2 = 1.8916E+000

| 6 | RUI  | nentral EER 12/1871         |          |          | Decay Corrected |                     |            |           |
|---|------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
|   | rati |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
|   | 1    | 9.0909E+003 +/- 9.0909E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 37.07      | 2.33      |
|   | 1    | 1.1364E+004 +/- 1.1364E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 41.48      | 1.86      |
|   | 1    | 1.0417E+004 +/- 1.0417E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 40.30      | 1.86      |
|   | 1    | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004     | 9/1/1999 3:00:31 PM | 37.80      | 2.20      |
|   | 1    | 1.0309E+004 +/- 1.0309E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 37.14      | 1.74      |
|   | 1    | 9.9010E+003 +/- 9.9010E+001 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.84      | 1.79      |
|   | 4    | 8.3342E+003 +/- 8.3337E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 31.95      | 1,44      |
|   |      |                             |          |          |                 |                     |            |           |





Batch Name: B3 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:02:48 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2271

Detector: B3 Drawer: LB 4200 B Device: LB 4200 B

**Efficiency Coefficients** 

C0 = 3.9100E+001 +/- 2.7911E-001

C1 = -2.5210E+001 +/- 2.1560E+000

Chi^2 = 1.3852E+001

Spillover Coefficients

Spill C0 = 1.7960E+000 +/- 7.1725E-002

Spill C1 = -1.7845E-001 +/- 6.1407E-001

Chi^2 = 7.5698E-001

|          |                             |          |          | <b>Decay Corrected</b> |                     |            |           |
|----------|-----------------------------|----------|----------|------------------------|---------------------|------------|-----------|
| Iteratio | n Beta Count Rate (cpm)     | Standard | Mass     | Activity (dpm)         | Reference Date      | Efficiency | Spillover |
| 1        | 8,9286E+003 +/- 8.9286E+001 | J589     | 0.1 mg   | 2.4521E+004            | 9/1/1999 3:00:31 PM | 36.41      | 1,87      |
| 1        | 1.1237E+004 +/- 1.1237E+002 | J590     | 19.9 mg  | 2.7394E+004            | 9/1/1999 3:00:31 PM | 41.02      | 1.67      |
| 1        | 1.0526E+004 +/- 1.0526E+002 | J591     | 39 mg    | 2.5846E+004            | 9/1/1999 3:00:31 PM | 40.73      | 1.98      |
| 1        | 9.2602E+003 +/- 9.2597E+001 | J592     | 61,4 mg  | 2.4961E+004            | 9/1/1999 3:00:31 PM | 37.10      | 1.80      |
| 1        | 1.0101E+004 +/- 1.0101E+002 | J593     | 78.2 mg  | 2.7756E+004            | 9/1/1999 3:00:31 PM | 36.39      | 1,68      |
| 1        | 9.8039E+003 +/- 9.8039E+001 | J594     | 103.6 mg | 2.6878E+004            | 9/1/1999 3:00:31 PM | 36.48      | 1.73      |
| 1        | 8.4042E+003 +/- 8.4038E+001 | J595     | 269 mg   | 2.6083E+004            | 9/1/1999 3:00:31 PM | 32.22      | 1.78      |
|          |                             |          |          |                        |                     |            |           |

### **Efficiency Coefficients**

C0 = 3.9373E+001 +/- 2.9238E-001

C1 = -7.3262E+001 +/- 6.3779E+000

Chi^2 = 1.4130E+001

Spillover Coefficients

Spill C0 = 1.8084E+000 +/- 7.1932E-002

Spill C1 = -1.2746E+001 +/- 3.4311E+001

Chi^2 = 7.6303E-001

| Fa    | pountial Et 12:             | 78n      |          | Decay Corrected |                     |            |           |
|-------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Itera |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1     | 8.9286E+003 +/- 8.9286E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 36.41      | 1.87      |
| 1     | 1.1237E+004 +/- 1.1237E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 41.02      | 1.67      |
| 1     | 1.0526E+004 +/- 1.0526E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 40.73      | 1.98      |
| 4     | 9.2602E+003 +/- 9.2597E+001 | J592     | 61.4 mg  | 2.4961E+004     | 9/1/1999 3:00:31 PM | 37.10      | 1.80      |
| 1     | 1.0101E+004 +/- 1.0101E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 36.39      | 1.68      |
| 1     | 9.8039E+003 +/- 9.8039E+001 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 36.48      | 1.73      |
| 1     | 8.4042E+003 +/- 8.4038E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 32.22      | 1.78      |
|       |                             |          |          |                 |                     |            |           |





Batch Name: B4 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Detector: B4

Count Date: 12/23/2021 9:06:45 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2272

Drawer: LB 4200 B Device: LB 4200 B

**Efficiency Coefficients** 

C0 = 3.9546E+001 +/- 2.8131E-001

C1 = -2.8251E+001 +/- 2.1508E+000

Chi^2 = 8.4750E+000

Spillover Coefficients

Spill C0 = 2.0217E+000 +/- 7.3596E-002

Spill C1 = -1.8304E+000 +/- 5.8126E-001

Chi^2 = 6.3875E-001

| Iterati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|---------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1       | 9.1743E+003 +/- 9.1743E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 37.41      | 1.98      |
| 1       | 1.1111E+004 +/- 1.1111E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 40.56      | 1.92      |
| 1       | 1.0526E+004 +/- 1.0526E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 40.73      | 1.90      |
| 1       | 9.4340E+003 +/- 9.4340E+001 | J592     | 61.4 mg  | 2.4961E+004    | 9/1/1999 3:00:31 PM | 37.80      | 2.08      |
| 1       | 1.0205E+004 +/- 1.0205E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 36.77      | 1.80      |
| 1       | 9.7087E+003 +/- 9.7087E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 36.12      | 1.97      |
| 1       | 8.3333E+003 +/- 8.3333E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 31.95      | 1.49      |
|         |                             |          |          |                |                     |            |           |

### **Efficiency Coefficients**

C0 = 3.9772E+001 +/- 2.9535E-001

C1 = -8.0985E+001 +/- 6.3781E+000

Chi^2 = 8.6400E+000

### Spillover Coefficients

Spill C0 = 2.0344E+000 +/- 7.9201E-002

Spill C1 = -1.0113E+002 +/- 3.6213E+001

Chi^2 = 6.8958E-001

| 001 until Etc. 12 18 3      |                                                                                                                                                                                        |                                                                                                                                                                                                       | Decay Corrected                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | Standard                                                                                                                                                                               | Mass                                                                                                                                                                                                  | Activity (dpm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Reference Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spillover                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 9.1743E+003 +/- 9.1743E+001 | J589                                                                                                                                                                                   | 0.1 mg                                                                                                                                                                                                | 2.4521E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.1111E+004 +/- 1.1111E+002 | J590                                                                                                                                                                                   | 19.9 mg                                                                                                                                                                                               | 2.7394E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0526E+004 +/- 1.0526E+002 | J591                                                                                                                                                                                   | 39 mg                                                                                                                                                                                                 | 2.5846E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9.4340E+003 +/- 9.4340E+001 | J592                                                                                                                                                                                   | 61.4 mg                                                                                                                                                                                               | 2.4961E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1.0205E+004 +/- 1.0205E+002 | J593                                                                                                                                                                                   | 78.2 mg                                                                                                                                                                                               | 2.7756E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9.7087E+003 +/- 9.7087E+001 | J594                                                                                                                                                                                   | 103.6 mg                                                                                                                                                                                              | 2.6878E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 8.3333E+003 +/- 8.3333E+001 | J595                                                                                                                                                                                   | 269 mg                                                                                                                                                                                                | 2.6083E+004                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/1/1999 3:00:31 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                             | 9.1743E+003 +/- 9.1743E+001<br>1.1111E+004 +/- 1.1111E+002<br>1.0526E+004 +/- 1.0526E+002<br>9.4340E+003 +/- 9.4340E+001<br>1.0205E+004 +/- 1.0205E+002<br>9.7087E+003 +/- 9.7087E+001 | 9.1743E+003 +/- 9.1743E+001 J589 1.1111E+004 +/- 1.1111E+002 J590 1.0526E+004 +/- 1.0526E+002 J591 9.4340E+003 +/- 9.4340E+001 J592 1.0205E+004 +/- 1.0205E+002 J593 9.7087E+003 +/- 9.7087E+001 J594 | fion         Beta Count Rate (cpm)         Standard         Mass           9.1743E+003 +/- 9.1743E+001         J589         0.1 mg           1.1111E+004 +/- 1.1111E+002         J590         19.9 mg           1.0526E+004 +/- 1.0526E+002         J591         39 mg           9.4340E+003 +/- 9.4340E+001         J592         61.4 mg           1.0205E+004 +/- 1.0205E+002         J593         78.2 mg           9.7087E+003 +/- 9.7087E+001         J594         103.6 mg | ion         Beta Count Rate (cpm)         Standard         Mass         Activity (dpm)           9.1743E+003 +/- 9.1743E+001         J589         0.1 mg         2.4521E+004           1.1111E+004 +/- 1.1111E+002         J590         19.9 mg         2.7394E+004           1.0526E+004 +/- 1.0526E+002         J591         39 mg         2.5846E+004           9.4340E+003 +/- 9.4340E+001         J592         61.4 mg         2.4961E+004           1.0205E+004 +/- 1.0205E+002         J593         78.2 mg         2.7756E+004           9.7087E+003 +/- 9.7087E+001         J594         103.6 mg         2.6878E+004 | ion         Beta Count Rate (cpm)         Standard         Mass         Activity (dpm)         Reference Date           9.1743E+003 +/- 9.1743E+001         J589         0.1 mg         2.4521E+004         9/1/1999 3:00:31 PM           1.1111E+004 +/- 1.1111E+002         J590         19.9 mg         2.7394E+004         9/1/1999 3:00:31 PM           1.0526E+004 +/- 1.0526E+002         J591         39 mg         2.5846E+004         9/1/1999 3:00:31 PM           9.4340E+003 +/- 9.4340E+001         J592         61.4 mg         2.4961E+004         9/1/1999 3:00:31 PM           1.0205E+004 +/- 1.0205E+002         J593         78.2 mg         2.7756E+004         9/1/1999 3:00:31 PM           9.7087E+003 +/- 9.7087E+001         J594         103.6 mg         2.6878E+004         9/1/1999 3:00:31 PM | ion         Beta Count Rate (cpm)         Standard         Mass         Activity (dpm)         Reference Date         Efficiency           9.1743E+003 +/- 9.1743E+001         J589         0.1 mg         2.4521E+004         9/1/1999 3:00:31 PM         37.41           1.1111E+004 +/- 1.1111E+002         J590         19.9 mg         2.7394E+004         9/1/1999 3:00:31 PM         40.56           1.0526E+004 +/- 1.0526E+002         J591         39 mg         2.5846E+004         9/1/1999 3:00:31 PM         40.73           9.4340E+003 +/- 9.4340E+001         J592         61.4 mg         2.4961E+004         9/1/1999 3:00:31 PM         37.80           1.0205E+004 +/- 1.0205E+002         J593         78.2 mg         2.7756E+004         9/1/1999 3:00:31 PM         36.77           9.7087E+003 +/- 9.7087E+001         J594         103.6 mg         2.6878E+004         9/1/1999 3:00:31 PM         36.12 |

Page 14 of 44
ARS1-23-01973 Page 256 of 311





### Plateau Report

Plateau: Plateau 1009 Plateau Date: 8/6/2021 2:01:50 PM

Decay Mode: Beta Drawer: LB 4200 B

Device: LB 4200 B Operating Voltage: 1230



| _         | ]     | B1        |       | B2        |      | B3        |       | B4        | Voltage |
|-----------|-------|-----------|-------|-----------|------|-----------|-------|-----------|---------|
| Iteration | срт   | Slope (%) | срт   | Slope (%) | cpm  | Slope (%) | cpm   | Slope (%) |         |
| 1         | 0     |           | 0     |           | 0    |           | 0     |           | 300     |
| 2         | 0     |           | 0     |           | 0    |           | 0     |           | 330     |
| 3         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 360     |
| 4         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 390     |
| 5         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 420     |
| 6         | 0.5   | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 450     |
| 7         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 480     |
| 8         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 510     |
| 9         | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 540     |
| 10        | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 570     |
| 11        | 0     | 0         | 0     | 0         | 0    | 0         | 0     | 0         | 600     |
| 12        | 0     | 0         | 0     | 0         | 0.5  | 400       | 0     | 0         | 630     |
| 13        | 0.5   | 2667      | 0.5   | 2867      | 0    | 0         | 0.5   | 3367      | 660     |
| 14        | 0     | 0         | 2     | 3917      | 3    | 1767      | 1.5   | 5222      | 690     |
| 15        | 20    | 1172      | 20.5  | 1321      | 11   | 1877      | 24.5  | 1008      | 720     |
| 16        | 87    | 691       | 107.5 | 618.8     | 74.5 | 728.9     | 105.5 | 578.7     | 750     |
| 17        | 308.5 | 383.5     | 354   | 343.7     | 274  | 407       | 319   | 357.1     | 780     |
| 18        | 757.5 | 238.3     | 833   | 222.6     | 686  | 253.4     | 770   | 232,6     | 810     |
| 19        | 1460  | 165.4     | 1483  | 171.1     | 1378 | 168.4     | 1401  | 171.5     | 840     |
| 20        | 2219  | 139.5     | 2325  | 134.6     | 2130 | 140.9     | 2251  | 135.8     | 870     |

Plateau Review

### Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 280 of 384

|           | B         | 1         | В          | 2         | В         | 3         | В         | 4         | Voltage |
|-----------|-----------|-----------|------------|-----------|-----------|-----------|-----------|-----------|---------|
| Iteration | срт       | Slope (%) | cpm        | Slope (%) | cpm       | Slope (%) | cpm       | Slope (%) | voitage |
| 21        | 3198      | 119.5     | 3414       | 115.8     | 3034      | 122.6     | 3183      | 119.3     | 900     |
| 22        | 4532      | 106.4     | 4562       | 108.6     | 4361      | 106.8     | 4463      | 108       | 930     |
| 23        | 6037      | 99.74     | 6292       | 96.54     | 5840      | 99.87     | 5993      | 98.46     | 960     |
| 24        | 8033      | 88.61     | 8316       | 87.42     | 7716      | 91.01     | 8075      | 87.07     | 990     |
| 25        | 1.048E+04 | 72.79     | 1.065E+04  | 70.09     | 1.011E+04 | 77.08     | 1.023E+04 | 74.41     | 1020    |
| 26        | 1.299E+04 | 47.37     | 1.329E+04  | 44.45     | 1.276E+04 | 50.84     | 1.289E+04 | 48.15     | 1050    |
| 27        | 1.604E+04 | 24.57     | 1.648E+04  | 23.15     | 1.639E+04 | 26.73     | 1.587E+04 | 25.9      | 1080    |
| 28        | 1.948E+04 | 8.945     | 1.961E+04  | 7.612     | 1.961E+04 | 9.951     | 1.923E+04 | 9.374     | 1110    |
| 29        | 2.29E+04  | -0.001111 | 2.29E+04   | 0.001111  | 2,29E+04  | 0         | 2.222E+04 | 0.004444  | 1140    |
| 30        | 2.586E+04 | 0.001111  | 2.564E+04  | -0.001111 | 2.564E+04 | 0         | 2.543E+04 | 0.006666  | 1170    |
| 31        | 2.83E+04  | 0         | 2.804E+04  | -0.003333 | 2.804E+04 | 0.006667  | 2.752E+04 | 0.002222  | 1200    |
| 32        | 2.97E+04  | 0.004444  | 2.97E+04   | 0.002222  | 2.97E+04  | 0.003333  | 2.913E+04 | -0.005555 | 1230    |
| 33        | 3.093E+04 | 0.02666   | 3.061E+04  | 0.04222   | 3.062E+04 | 0.08221   | 3.03E+04  | 0.01556   | 1260    |
| 34        | 3.158E+04 | 0.2       | 3.125E+04  | 0.2555    | 3.125E+04 | 0.4489    | 3.093E+04 | 0.2589    | 1290    |
| 35        | 3.193E+04 | 1.046     | 3.127E+04  | 1.215     | 3.129E+04 | 1.695     | 3.126E+04 | 1.177     | 1320    |
| 36        | 3.235E+04 | 2.937     | 3.169E+04  | 3.185     | 3.177E+04 | 3.895     | 3.17E+04  | 3.135     | 1350    |
| 37        | 3.203E+04 | 5.811     | 3.21E+04   | 6.276     | 3.195E+04 | 6.827     | 3.174E+04 | 6.029     | 1380    |
| 38        | 3.242E+04 | 9.054     | 3.184E+04  | 9.658     | 3.242E+04 | 10.38     | 3.182E+04 | 9.134     | 1410    |
| 39        | 3.281E+04 | 12.99     | 3.202E+04  | 14.02     | 3.255E+04 | 14.39     | 3.16E+04  | 13.13     | 1440    |
| 40        | 3.312E+04 |           | 3.21E+04   |           | 3.191E+04 |           | 3.222E+04 |           | 1470    |
| 41        | 3.32E+04  |           | `3.247E+04 |           | 3.246E+04 |           | 3.213E+04 |           | 1500    |

Plateau Review Page 2 of 2
Page 16 of 44

Page 258 of 311

Instrument:

D 1155921

|     | Committee of |
|-----|--------------|
| C   | $\alpha$     |
| ~ r | un           |
| 3   |              |

| T T       |                                | 1      |
|-----------|--------------------------------|--------|
| Source ID | Decay corrected activity (DPM) | Weight |
| J589      | 21102.00                       | 0.0001 |
| J593      | 23886.00                       | 0.0782 |
| J595      | 22446.00                       | 0.269  |

FFT 1278 1

| Detector | Source ID | Weight | Act (pCi)   | CSU 2s     | Low        | High        | Pass/Fail |
|----------|-----------|--------|-------------|------------|------------|-------------|-----------|
| B1       | J589      | 0.0001 | 11218.94124 | 2639.74131 | 8579.19993 | 13858.68255 | 9505.41   |
| B2       | J593      | 0.0782 | 12699.68570 | 2988.27647 | 9711.40923 | 15687.96217 | 10759.46  |
| В3       | J595      | 0.269  | 11946.11482 | 2811.08880 | 9135.02602 | 14757.20362 | 10110.81  |
| B4       | J589      | 0.0001 | 11000.52235 | 2588.39179 | 8412.13056 | 13588.91414 | 9505.41   |
| B1       | J593      | 0.0782 | 12586.78423 | 2961.66022 | 9625.12401 | 15548.44445 | 10759.46  |
| B2       | J595      | 0.269  | 12238.26123 | 2879.93721 | 9358.32402 | 15118.19844 | 10110.81  |
| В3       | J589      | 0.0001 | 11105.61304 | 2613.08076 | 8492.53228 | 13718.69380 | 9505.41   |
| B4       | J593      | 0.0782 | 12576.09655 | 2959.15434 | 9616.94221 | 15535.25089 | 10759.46  |
| B1       | J595      | 0.269  | 11772.50512 | 2770.21530 | 9002.28982 | 14542.72042 | 10110.81  |
| B2       | J589      | 0.0001 | 11320.98268 | 2663.74388 | 8657.23880 | 13984.72656 | 9505.41   |
| В3       | J593      | 0.0782 | 12687.08644 | 2985.34981 | 9701.73663 | 15672.43625 | 10759.46  |
| B4       | J595      | 0.269  | 11878.23704 | 2794.99513 | 9083.24191 | 14673.23217 | 10110.81  |

### Activity (pCi)

| Weight (g) | B1       | B2       | В3       | B4       |
|------------|----------|----------|----------|----------|
| 0.0001     | 11218.94 | 11320.98 | 11105.61 | 11000.52 |
| 0.0782     | 12586.78 | 12699.69 | 12687.09 | 12576.10 |
| 0.269      | 11772.51 | 12238.26 | 11946.11 | 11878.24 |



ARS-014-009 r0.0

Revision Date: 2/02/2021

### GPC D 1155921 Batch Report

Batch Name: B21-01745 2 Calibration: Fitted Efficiency

Procedure: Attenuation Curve check Preset Count Time (min): 3

|            | Batch ID: 2297   |                             |                            |                         | Count Mod           | e: Simultaneous   |                |                       |
|------------|------------------|-----------------------------|----------------------------|-------------------------|---------------------|-------------------|----------------|-----------------------|
| Sample     | e ID Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity (uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time       |
| *_B21-0174 | 15-04 A1         | 0.                          | 10                         | -0.82502949262840       | 6.68017813280358    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| ₩B21-0174  | 15-05 A2         | 0                           | 4                          | -0.51931768160980       | 1.27522948249643    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| ¥-B21-0174 | 15-06 A3         | 1                           | 2                          | 1.30891296527968        | -0.64867137086119   | 180               | 1230           | 12/28/2021 8:32:59 AM |
| +B21-0174  | 15-07 A4         | -3                          | 7                          | 0,66051331830339        | 3,51359327640178    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-08 B1         | 1                           | 7                          | 0.30474149660644        | 3.71669627820273    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-09 B2         | 90                          | 5001                       | -176.967015809591       | 23205.5810314945    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-10 B3         | 107                         | 5000                       | 196.566949194018        | 25889.8948317281    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-11 B4         | 56                          | 5000                       | -445.070190582535       | 21004.0031970738    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 45-12 B1         | 69                          | 5000                       | -403.815636103744       | 20772.8395457981    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 45-13 B2         | 1                           | 4                          | 1.09239979971143        | 1.39778969860025    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 45-14 B3         | 96                          | 5000                       | 57.4911998329694        | 22667.6250350177    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-15 B4         | 92                          | 5000                       | -116.485838171923       | 25667.6929558305    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 45-16 B1         | 93                          | 5001                       | -214.054845874469       | 25314.699853023     | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-17 B2         | 87                          | 5001                       | -194.675089409105       | 21608.7663786575    | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 45-18 B3         | 1                           | 8                          | 1.08765596577466        | 4.3855491011429     | 180               | 1230           | 12/28/2021 8:32:59 AM |
| B21-0174   | 15-19 B4         | 107                         | 5000                       | 55.1215857255281        | 22847.9151353455    | 180               | 1230           | 12/28/2021 8:32:59 AM |

\* Gamples revocated





Batch Name: C1 beta attenuation curve

Preset Count Time: 300

Procedure: Beta Fitted Efficiency

Count Mode: Simultaneous

Count Date: 12/23/2021 9:09:54 AM

Calibration: Fitted Efficiency

Decay Mode: Beta

Batch ID 2273

Detector: C1 Drawer: LB 4200 C Device: LB 4200 C

Efficiency Coefficients

C0 = 4.2822E+001 +/- 3.0593E-001

Spillover Coefficients

C1 = -2.9046E+001 +/- 2.3576E+000

Spill C0 = 1.7963E+000 +/- 7.0852E-002 Spill C1 = -9.5086E-001 +/- 5.8683E-001

Chi^2 = 1.4842E+001

Chi^2 = 1.5199E+000

|           |                             |          |          | Decay Corrected |                     |            |           |
|-----------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iteration | Beta Count Rate (cpm)       | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1         | 9.8039E+003 +/- 9.8039E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 39.98      | 1.90      |
| 1         | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 45.07      | 1.73      |
| 1         | 1.1497E+004 +/- 1.1495E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 44.48      | 1.78      |
| 1         | 1.0309E+004 +/- 1.0309E+002 | J592     | 61.4 mg  | 2.4961E+004     | 9/1/1999 3:00:31 PM | 41.30      | 1.91      |
| 1         | 1.1111E+004 +/- 1.1111E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 40.03      | 1.45      |
| 1         | 1.0309E+004 +/- 1.0309E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 38.36      | 1.77      |
| 1         | 9.1743E+003 +/- 9.1743E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 35.17      | 1.57      |
|           |                             |          |          |                 |                     |            |           |

### **Efficiency Coefficients**

Spillover Coefficients

C0 = 4.3153E+001 +/- 3.2045E-001 C1 = -7.7693E+001 +/- 6.3781E+000 Spill C0 = 1,8191E+000 +/- 7.3150E-002 Spill C1 = -5.9535E+001 +/- 3.5861E+001

Chi^2 = 1.4967E+001

Chi^2 = 1.5301E+000

| EX      | ponential EFE 1210          | H        |          | <b>Decay Corrected</b> |                     |            |           |
|---------|-----------------------------|----------|----------|------------------------|---------------------|------------|-----------|
| Iterati |                             | Standard | Mass     | Activity (dpm)         | Reference Date      | Efficiency | Spillover |
| 1       | 9.8039E+003 +/- 9.8039E+001 | J589     | 0.1 mg   | 2.4521E+004            | 9/1/1999 3:00:31 PM | 39.98      | 1.90      |
| 1       | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004            | 9/1/1999 3:00:31 PM | 45.07      | 1.73      |
| 1       | 1.1497E+004 +/- 1.1495E+002 | J591     | 39 mg    | 2.5846E+004            | 9/1/1999 3:00:31 PM | 44.48      | 1.78      |
| 1       | 1.0309E+004 +/- 1.0309E+002 | J592     | 61.4 mg  | 2.4961E+004            | 9/1/1999 3:00:31 PM | 41.30      | 1.91      |
| 1       | 1.1111E+004 +/- 1.1111E+002 | J593     | 78.2 mg  | 2.7756E+004            | 9/1/1999 3:00:31 PM | 40.03      | 1.45      |
| 1       | 1.0309E+004 +/- 1.0309E+002 | J594     | 103.6 mg | 2.6878E+004            | 9/1/1999 3:00:31 PM | 38.36      | 1.77      |
| 4       | 9.1743E+003 +/- 9.1743E+001 | J595     | 269 mg   | 2.6083E+004            | 9/1/1999 3:00:31 PM | 35.17      | 1.57      |
|         |                             |          |          |                        |                     |            |           |





Batch Name: C2 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:13:39 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2274

Drawer: LB 4200 C Device: LB 4200 C Detector: C2

**Efficiency Coefficients** 

C0 = 4.3756E+001 +/- 3.1086E-001

C1 = -3.1643E+001 +/- 2.3692E+000

Chi^2 = 1.2153E+001

Spillover Coefficients

Spill C0 = 2.0410E+000 +/- 7.5337E-002

Spill C1 = -9.5215E-001 +/- 6.2310E-001

Chi^2 = 5.1393E-001

|        |                             |          |          | Decay Corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterat | ion Beta Count Rate (cpm)   | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 1.0000E+004 +/- 1.0000E+002 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 40.78      | 2.18      |
| 1      | 1.2500E+004 +/- 1.2500E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 45.63      | 1.92      |
| 1      | 1.1628E+004 +/- 1.1628E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 44.99      | 1.91      |
| 1      | 1.0526E+004 +/- 1.0526E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 42.17      | 1.93      |
| 1      | 1.1236E+004 +/- 1.1236E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 40.48      | 2.03      |
| 1      | 1.0754E+004 +/- 1.0753E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 40.01      | 2.03      |
| .5     | 9.1743E+003 +/- 9.1743E+001 | J595     | 269 mg   | 2,6083E+004     | 9/1/1999 3:00:31 PM | 35.17      | 1.77      |

### **Efficiency Coefficients**

C0 = 4,4063E+001 +/- 3.2721E-001

C1 = -8.2651E+001 +/- 6.3781E+000

Chi^2 = 1.2455E+001

### Spillover Coefficients

Spill C0 = 2.0518E+000 +/- 7.7884E-002

Spill C1 = -5.1634E+001 +/- 3.3820E+001

Chi^2 = 5.1825E-001

| FIRE   | ponential per win           |          |          | Decay Corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterat |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 1.0000E+004 +/- 1.0000E+002 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 40.78      | 2.18      |
| 1      | 1.2500E+004 +/- 1.2500E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 45.63      | 1.92      |
| 1      | 1.1628E+004 +/- 1.1628E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 44.99      | 1.91      |
| વે     | 1.0526E+004 +/- 1.0526E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 42.17      | 1.93      |
| 1      | 1.1236E+004 +/- 1.1236E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 40.48      | 2.03      |
| 1      | 1.0754E+004 +/- 1.0753E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 40.01      | 2.03      |
| 1      | 9.1743E+003 +/- 9.1743E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 35.17      | 1.77      |
|        |                             |          |          |                 |                     |            |           |

Fitted Efficiency Report Page 1 of 1

Page 20 of 44 ARS1-23-01973 Page 262 of 311





Batch Name: C3 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:16:50 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2275

Drawer: LB 4200 C Device: LB 4200 C Detector: C3

Efficiency Coefficients

C0 = 4.1205E+001 +/- 2.9279E-001

C1 = -2.8369E+001 +/- 2.2392E+000

Chi^2 = 1.3336E+001

**Spillover Coefficients** 

Spill C0 = 1.7263E+000 +/- 6.7559E-002

Spill C1 = -2.0103E+000 +/- 5.2211E-001

Chi^2 = 2.5743E-001

| De | cay | U | orre | cted |  |
|----|-----|---|------|------|--|
|    | 100 |   | 0.00 |      |  |

| Itera | tion Beta Count Rate (cpm)  | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|-------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1     | 9.3458E+003 +/- 9.3458E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 38.11      | 1.62      |
| 1     | 1.1766E+004 +/- 1.1765E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 42.95      | 1.75      |
| 4     | 1.0991E+004 +/- 1.0990E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 42.53      | 1.72      |
| 11    | 9.9010E+003 +/- 9.9010E+001 | J592     | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 39.67      | 1.60      |
| 4     | 1.0638E+004 +/- 1.0638E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 38.33      | 1.59      |
| 1     | 1.0309E+004 +/- 1.0309E+002 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 38.36      | 1.49      |
| 1     | 8.6965E+003 +/- 8.6961E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 33.34      | 1.18      |
|       |                             |          |          |                |                     |            |           |

### **Efficiency Coefficients**

C0 = 4.1490E+001 +/- 3.0810E-001

C1 = -7.8264E + 001 + / -6.3779E + 000

Chi^2 = 1.3776E+001

### **Spillover Coefficients**

Spill C0 = 1.7440E+000 +/- 7.3738E-002

Spill C1 = -1.4045E+002 +/- 4.0256E+001

Chi^2 = 2.9001E-001

| FRI     | ponential FER 121871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          | <b>Decay Corrected</b> |                     |            |           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------------------|---------------------|------------|-----------|
| Iterati | The state of the s | Standard | Mass     | Activity (dpm)         | Reference Date      | Efficiency | Spillover |
| 1       | 9.3458E+003 +/- 9.3458E+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J589     | 0.1 mg   | 2.4521E+004            | 9/1/1999 3:00:31 PM | 38.11      | 1.62      |
| 1       | 1.1766E+004 +/- 1.1765E+002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J590     | 19.9 mg  | 2.7394E+004            | 9/1/1999 3:00:31 PM | 42.95      | 1.75      |
| 1       | 1.0991E+004 +/- 1.0990E+002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J591     | 39 mg    | 2.5846E+004            | 9/1/1999 3:00:31 PM | 42.53      | 1.72      |
| 1       | 9.9010E+003 +/- 9.9010E+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J592     | 61.4 mg  | 2.4960E+004            | 9/1/1999 3:00:31 PM | 39.67      | 1.60      |
| 1       | 1.0638E+004 +/- 1.0638E+002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J593     | 78.2 mg  | 2.7756E+004            | 9/1/1999 3:00:31 PM | 38.33      | 1.59      |
| 1       | 1.0309E+004 +/- 1.0309E+002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J594     | 103.6 mg | 2.6878E+004            | 9/1/1999 3:00:31 PM | 38.36      | 1.49      |
| 1       | 8.6965E+003 +/- 8.6961E+001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | J595     | 269 mg   | 2,6083E+004            | 9/1/1999 3:00:31 PM | 33.34      | 1.18      |

Page 1 of 1 Fitted Efficiency Report

> Page 21 of 44 Page 263 of 311





Batch Name: C4 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:27:06 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2276

Detector: C4 Drawer: LB 4200 C Device: LB 4200 C

**Efficiency Coefficients** 

C0 = 4.1849E+001 +/- 2.9691E-001

C1 = -3.1583E+001 +/- 2.2524E+000

Chi^2 = 1.0965E+001

Spillover Coefficients

Spill C0 = 1.7807E+000 +/- 6.9009E-002

Spill C1 = -1.4719E+000 +/- 5.4759E-001

Chi^2 = 8.6755E-001

|        |                             |          |          | Decay Corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterat | ion Beta Count Rate (cpm)   | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 9.6154E+003 +/- 9.6154E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 39,21      | 1.78      |
| 1      | 1.1905E+004 +/- 1.1905E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 43.46      | 1.68      |
| -1     | 1.1113E+004 +/- 1.1112E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00;31 PM | 43.00      | 1.60      |
| 1      | 1.0000E+004 +/- 1.0000E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 40.06      | 1.76      |
| 1      | 1.0753E+004 +/- 1.0753E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 38.74      | 1.67      |
| 1      | 1.0206E+004 +/- 1.0205E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00;31 PM | 37.97      | 1.85      |
| -1     | 8.6965E+003 +/- 8.6961E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 33.34      | 1.33      |

### Efficiency Coefficients

C0 = 4.2140E+001 +/- 3.1293E-001

C1 = -8.6488E+001 +/- 6.3779E+000

Chi^2 = 1.1211E+001

Spillover Coefficients

Spill C0 = 1.7911E+000 +/- 7.4196E-002

Spill C1 = -8.8725E+001 +/- 3.8325E+001

Chi^2 = 9.2281E-001

| UR     | povential BEL 12-12-12      |          |          | Decay Corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterat |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 9.6154E+003 +/- 9.6154E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 39.21      | 1.78      |
| 1      | 1.1905E+004 +/- 1.1905E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 43.46      | 1.68      |
| 1      | 1.1113E+004 +/- 1.1112E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 43.00      | 1,60      |
| -1     | 1.0000E+004 +/- 1.0000E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 40.06      | 1.76      |
| 1      | 1.0753E+004 +/- 1.0753E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 38.74      | 1,67      |
| 1      | 1.0206E+004 +/- 1.0205E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 37.97      | 1.85      |
| 1      | 8.6965E+003 +/- 8.6961E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 33,34      | 1,33      |
|        |                             |          |          |                 |                     |            |           |

Fitted Efficiency Report Page 1 of 1





### **Plateau Report**

Plateau: Plateau 1021

Plateau Date: 10/21/2021 1:05:29 PM

Decay Mode: Beta

Drawer: LB 4200 C

Device: LB 4200 C

Operating Voltage: 1290



|           |      | C1        |      | C2        |      | C3        |      | C4        | Voltage |
|-----------|------|-----------|------|-----------|------|-----------|------|-----------|---------|
| Iteration | cpm  | Slope (%) | Voltage |
| 1         | 0    |           | 0    |           | 0    |           | 0    |           | 300     |
| 2         | 0    |           | 0    |           | 0    |           | 0    |           | 330     |
| 3         | 0    | 0         | 0    | 0         | 0    | 0         | 0 `  | 0         | 360     |
| 4         | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 390     |
| 5         | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 420     |
| 6         | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 450     |
| 7         | 0    | Q         | 0    | 0         | 0    | 0         | 0    | 0         | 480     |
| 8         | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 510     |
| 9         | 0    | 0         | 0    | 0         | 1    | 0         | 0 *  | 0         | 540     |
| 10        | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 570     |
| 11        | 0    | 0         | 0    | 0         | 0    | 0         | 0    | 0         | 600     |
| 12        | 0    | 0         | 0    | ο .       | 0    | 0         | 0    | 0         | 630     |
| 13        | 2    | 1233      | 1    | 2633      | 0    | 0         | 1    | 1567      | 660     |
| 14        | 4    | 3142      | 5    | 2920      | 0    | 0         | 3    | 3300      | 690     |
| 15        | 35   | 1059      | 37   | 1162      | 12   | 2289      | 22   | 1283      | 720     |
| 16        | 172  | 482.8     | 201  | 469.5     | 90   | 756.7     | 138  | 509.4     | 750     |
| 17        | 474  | 312.9     | 548  | 278.8     | 367  | 335.9     | 357  | 369.9     | 780     |
| 18        | 1030 | 207.9     | 1165 | 189.8     | 844  | 220.6     | 890  | 235.4     | 810     |
| 19        | 1831 | 149.9     | 1847 | 152.9     | 1484 | 171.7     | 1627 | 173.3     | 840     |
| 20        | 2706 | 128.7     | 2869 | 125.9     | 2324 | 140.1     | 2646 | 135.5     | 870     |

Plateau Review

### Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 288 of 384

|           | Ċ         | 1         | C2        |           | C3        |           | C         | 4         | Voltage |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| Iteration | cpm       | Slope (%) | срт       | Slope (%) | срт       | Slope (%) | cpm       | Slope (%) | voitage |
| 21        | 3754      | 118.8     | 3933      | 115.1     | 3449      | 117.3     | 3708      | 120.4     | 900     |
| 22        | 5292      | 110.8     | 5539      | 101       | 4747      | 105.2     | 5227      | 106.2     | 930     |
| 23        | 7229      | 98.21     | 7304      | 93.98     | 6340      | 102.2     | 7034      | 96.4      | 960     |
| 24        | 9763      | 85.98     | 9577      | 84.57     | 8370      | 91.66     | 9312      | 87.64     | 990     |
| 25        | 1.217E+04 | 78.31     | 1.221E+04 | 74.53     | 1.136E+04 | 77.62     | 1.184E+04 | 80.19     | 1020    |
| 26        | 1.541E+04 | 67.57     | 1.524E+04 | 65.33     | 1.375E+04 | 72.5      | 1.507E+04 | 70.39     | 1050    |
| 27        | 1.87E+04  | 59.33     | 1.813E+04 | 57.24     | 1.688E+04 | 61.32     | 1.84E+04  | 61.56     | 1080    |
| 28        | 2.212E+04 | 48.58     | 2.155E+04 | 46.92     | 2.056E+04 | 51.35     | 2.194E+04 | 50.94     | 1110    |
| 29        | 2.545E+04 | 37.51     | 2.461E+04 | 37.4      | 2.347E+04 | 41.23     | 2.539E+04 | 38.87     | 1140    |
| 30        | 2.816E+04 | 24.04     | 2.716E+04 | 25.69     | 2.629E+04 | 29.94     | 2.834E+04 | 24.39     | 1170    |
| 31        | 3.062E+04 | 12.15     | 2.913E+04 | 15.3      | 2.853E+04 | 19.41     | 3.03E+04  | 12.11     | 1200    |
| 32        | 3.125E+04 | 4.119     | 2.976E+04 | 7.382     | 2.983E+04 | 9.972     | 3.158E+04 | 3.709     | 1230    |
| 33        | 3.226E+04 | 0.2133    | 3.061E+04 | 2.473     | 3.093E+04 | 3.639     | 3.192E+04 | 0.1667    | 1260    |
| 34        | 3.262E+04 | 1.08      | 3.127E+04 | 1.748     | 3.126E+04 | 1.231     | 3.297E+04 | 0.871     | 1290    |
| 35        | 3.271E+04 | 2.848     | 3.104E+04 | 3.264     | 3.166E+04 | 2.572     | 3.342E+04 | 2.631     | 1320    |
| 36        | 3.382E+04 | 5.698     | 3.176E+04 | 5.53      | 3.161E+04 | 5.306     | 3.336E+04 | 5.227     | 1350    |
| 37        | 3.341E+04 | 9.297     | 3.156E+04 | 4.588     | 3.195E+04 | 6.153     | 3.371E+04 | 8.731     | 1380    |
| 38        | 3.346E+04 | 9.387     | 3.198E+04 | 3.4       | 3.229E+04 | 5.71      | 3.432E+04 | 10.28     | 1410    |
| 39        | 3.392E+04 | 7.237     | 3.151E+04 | 1.485     | 3.213E+04 | 3.524     | 3.404E+04 | 8.001     | 1440    |
| 40        | 3.371E+04 |           | 3.198E+04 |           | 3.252E+04 |           | 3.411E+04 |           | 1470    |
| 41        | 3.393E+04 |           | 3.194E+04 |           | 3.242E+04 |           | 3.392E+04 |           | 1500    |

Plateau Review Page 2 of 2
Page 24 of 44

Instrument:

D 1155921

| Cu | nn |
|----|----|
| >r | 90 |
| _  |    |

|   | 1 0 |        |
|---|-----|--------|
| V | ROW | 1-4-22 |

| Source ID | Decay corrected activity (DPM) | Weight |
|-----------|--------------------------------|--------|
| J589      | 21102.00                       | 0.0001 |
| J593      | 23886.00                       | 0.0782 |
| J595      | 22446.00                       | 0.269  |

PER 12787

| Detector | Source ID | Weight | Act (pCi)   | CSU 2s     | Low        | High        | Pass/Fail |
|----------|-----------|--------|-------------|------------|------------|-------------|-----------|
| C1       | J589      | 0.0001 | 11118.73374 | 2616.10699 | 8502.62675 | 13734.84073 | 9505.41   |
| C2       | J593      | 0.0782 | 12735.50732 | 2996.59603 | 9738.91129 | 15732.10335 | 10759.46  |
| C3       | J595      | 0.269  | 11973.91867 | 2817.42306 | 9156.49561 | 14791.34173 | 10110.81  |
| C4       | J589      | 0.0001 | 11113.88219 | 2614.97053 | 8498.91166 | 13728.85272 | 9505.41   |
| C1       | J593      | 0.0782 | 12311.74140 | 2896.88765 | 9414.85375 | 15208.62905 | 10759.46  |
| C2       | J595      | 0.269  | 11951.53583 | 2812.44143 | 9139.09440 | 14763.97726 | 10110.81  |
| C3       | J589      | 0.0001 | 11212.23109 | 2638.10723 | 8574.12386 | 13850.33832 | 9505.41   |
| C4       | J593      | 0.0782 | 12995.81876 | 3057.88308 | 9937.93568 | 16053.70184 | 10759.46  |
| C1       | J595      | 0.269  | 11739.00418 | 2762.32478 | 8976.67940 | 14501.32896 | 10110.81  |
| C2       | J589      | 0.0001 | 11111.17459 | 2614.38690 | 8496.78769 | 13725.56149 | 9505.41   |
| C3       | J593      | 0.0782 | 12870.03429 | 3028.15178 | 9841.88251 | 15898.18607 | 10759.46  |
| C4       | J595      | 0.269  | 11973.30847 | 2817.31532 | 9155.99315 | 14790.62379 | 10110.81  |

|            |          | Activ    | rity (pCi) |          |
|------------|----------|----------|------------|----------|
| Weight (g) | C1       | C2       | C3         | C4       |
| 0.0001     | 11118.73 | 11111.17 | 11212.23   | 11113.88 |
| 0.0782     | 12311.74 | 12735.51 | 12870.03   | 12995.82 |
| 0.269      | 11739.00 | 11951.54 | 11973.92   | 11973.31 |



## GPC D 1155921 Batch Report

Batch Name: B21-01749 5 Calibration: Fitted Efficiency

Procedure: Attenuation Curve check Preset Count Time (min): 3

Batch ID: 2299 Count Mode: Simultaneous

|                           |                   | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity (uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time         |
|---------------------------|-------------------|-----------------------------|----------------------------|-------------------------|---------------------|-------------------|----------------|-------------------------|
| Sample ID<br>B21-01749-04 | Detector ID<br>C1 | 73                          | 5000                       | -189.020989240271       | 22741.4658921404    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| D21-01749-04              | O1                | 73                          | 3000                       | -109.020909240271       | 22741.4050921404    | 160               | 1290           | 12/20/2021 9.37.20 AIVI |
| B21-01749-05              | C2                | 82                          | 5001                       | -246.776382269969       | 25822.2771109535    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-06              | C3                | 46                          | 5001                       | -410.982886788373       | 21191.1874921864    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-07              | C4                | 0                           | 7                          | -1.14385099806883       | 3.84533903666523    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-08              | C1                | 0                           | 1                          | -0.70536955337241       | -0.66574059794377   | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-09              | C2                | 96                          | 5000                       | -69.8262164140349       | 22701.1014563158    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-10              | С3                | 56                          | 5000                       | -385.509248780949       | 26239.8480316951    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-11              | C4                | 51                          | 5001                       | -387.53514889956€       | 20865.374614435     | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-12              | C1                | 68                          | 5000                       | -223.955348424194       | 21093.550970303     | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-13              | C2                | 0                           | 7                          | -0.79072087060104       | 3.21429001372922    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-14              | С3                | 82                          | 5000                       | -56.014153516275€       | 22742.5532568311    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-15              | C4                | 82                          | 5000                       | -96.8152310207472       | 26377.111716796     | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-16              | C1                | 76                          | 5000                       | -174.60514354246€       | 25209.1344497442    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-17              | C2                | 84                          | 5001                       | -181.707833248127       | 21037.6437669907    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-18              | С3                | 2                           | 6                          | 3.29808748823179        | 2.75582012306986    | 180               | 1290           | 12/28/2021 9:37:26 AM   |
| B21-01749-19              | C4                | 80                          | 5001                       | -106.075885591667       | 22833.3555217949    | 180               | 1290           | 12/28/2021 9:37:26 AM   |





Batch Name: D1 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:35:07 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2277

Detector: D1 Drawer: LB 4200 D Device: LB 4200 D

**Efficiency Coefficients** 

C0 = 4.2528E+001 +/- 3.0223E-001

C1 = -3.0408E+001 +/- 2.3042E+000

Chi^2 = 1.6574E+001

Spillover Coefficients

Spill C0 = 1.9398E+000 +/- 7.1515E-002

Spill C1 = -2.6233E+000 +/- 5.4455E-001

Chi^2 = 9.5874E-001

| Decay | Corrected |
|-------|-----------|
| 100 M |           |

| 1 | Iterati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|---|---------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
|   | 1       | 9.6154E+003 +/- 9.6154E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 39.21      | 2.09      |
|   | 1       | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 45.07      | 1.93      |
|   | 1       | 1.1364E+004 +/- 1.1364E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 43.97      | 1.61      |
|   | 1       | 1.0204E+004 +/- 1.0204E+002 | J592     | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 40.88      | 1.87      |
|   | 1       | 1.0870E+004 +/- 1.0870E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 39.16      | 1.73      |
|   | 1       | 1.0526E+004 +/- 1.0526E+002 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 39.16      | 1,65      |
|   | 1       | 8.9286E+003 +/- 8.9286E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 34.23      | 1.25      |
|   |         |                             |          |          |                |                     |            |           |

#### **Efficiency Coefficients**

C0 = 4.2890E+001 +/- 3.1850E-001

C1 = -8.2393E+001 +/- 6.3781E+000

Chi^2 = 1.6990E+001

8.9286E+003 +/- 8.9286E+001

ARS1-23-01973

#### **Spillover Coefficients**

Spill C0 = 1.9827E+000 +/- 7.9000E-002

Spill C1 = -1.7503E+002 +/- 3.8564E+001

9/1/1999 3:00:31 PM

34.23

Chi^2 = 9.1239E-001

2.6083E+004

| R      | 100 NOTH OR 127871          |          |          | Decay Corrected |                     |            |           |
|--------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterat |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1      | 9.6154E+003 +/- 9.6154E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 39.21      | 2.09      |
| 1      | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 45.07      | 1.93      |
| 1      | 1.1364E+004 +/- 1.1364E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 43.97      | 1.61      |
| 1      | 1.0204E+004 +/- 1.0204E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 40.88      | 1.87      |
| 1      | 1.0870E+004 +/- 1.0870E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 39.16      | 1.73      |
| 1      | 1.0526E+004 +/- 1.0526E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 39.16      | 1.65      |

269 mg

Fitted Efficiency Report Page 1 of 1





Batch Name: D2 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Count Date: 12/23/2021 9:38:21 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2278

Detector: D2 Drawer: LB 4200 D Device: LB 4200 D

**Efficiency Coefficients** 

C0 = 4.2784E+001 +/- 3.0483E-001

C1 = -2.9286E+001 +/- 2.3390E+000

Chi^2 = 1.5659E+001

Spillover Coefficients

Spill C0 = 1.9715E+000 +/- 7.3870E-002

Spill C1 = -1.0233E+000 +/- 6.0797E-001

Chi^2 = 4.5874E-001

|          |                       |          |      | Decay Corrected |
|----------|-----------------------|----------|------|-----------------|
| teration | Beta Count Rate (cpm) | Standard | Mass | Activity (dpm)  |
|          |                       |          |      |                 |

| iteration | Beta Count Rate (cpm)       | Standard | Wass     | Activity (apm) | Reference Date      | Emclency | Spillover |
|-----------|-----------------------------|----------|----------|----------------|---------------------|----------|-----------|
| 1         | 9.7087E+003 +/- 9.7087E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 39.59    | 2.09      |
| 1         | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 45.07    | 1.87      |
| 1         | 1.1494E+004 +/- 1.1494E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 44.47    | 1.81      |
| 1         | 1.0309E+004 +/- 1.0309E+002 | J592     | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 41.30    | 1.92      |
| 1         | 1.0990E+004 +/- 1.0990E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 39.59    | 1.91      |
| 1         | 1.0526E+004 +/- 1.0526E+002 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 39.16    | 1.96      |
| 1         | 9.0918E+003 +/- 9.0914E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 34.86    | 1.68      |
|           |                             |          |          |                |                     |          |           |

#### **Efficiency Coefficients**

C0 = 4.3125E+001 +/- 3.2025E-001

C1 = -7.8507E+001 +/- 6.3780E+000

Chi^2 = 1.5976E+001

#### **Spillover Coefficients**

Spill C0 = 1.9815E+000 +/- 7.6666E-002

Spill C1 = -5.7334E+001 +/- 3.4632E+001

Chi^2 = 4.6370E-001

| FX      | ponential OFC INBU          |          |          | Decay Corrected |                     |            |           |
|---------|-----------------------------|----------|----------|-----------------|---------------------|------------|-----------|
| Iterati |                             | Standard | Mass     | Activity (dpm)  | Reference Date      | Efficiency | Spillover |
| 1       | 9.7087E+003 +/- 9.7087E+001 | J589     | 0.1 mg   | 2.4521E+004     | 9/1/1999 3:00:31 PM | 39.59      | 2.09      |
| 1       | 1.2346E+004 +/- 1.2346E+002 | J590     | 19.9 mg  | 2.7394E+004     | 9/1/1999 3:00:31 PM | 45.07      | 1.87      |
| 1       | 1.1494E+004 +/- 1.1494E+002 | J591     | 39 mg    | 2.5846E+004     | 9/1/1999 3:00:31 PM | 44.47      | 1.81      |
| 1       | 1.0309E+004 +/- 1.0309E+002 | J592     | 61.4 mg  | 2.4960E+004     | 9/1/1999 3:00:31 PM | 41.30      | 1.92      |
| 1       | 1.0990E+004 +/- 1.0990E+002 | J593     | 78.2 mg  | 2.7756E+004     | 9/1/1999 3:00:31 PM | 39.59      | 1.91      |
| 1       | 1.0526E+004 +/- 1.0526E+002 | J594     | 103.6 mg | 2.6878E+004     | 9/1/1999 3:00:31 PM | 39.16      | 1.96      |
| 1       | 9.0918E+003 +/- 9.0914E+001 | J595     | 269 mg   | 2.6083E+004     | 9/1/1999 3:00:31 PM | 34.86      | 1.68      |





Batch Name: D3 beta attenuation curve

Procedure: Beta Fitted Efficiency

Calibration: Fitted Efficiency

Decay Mode: Beta

Detector: D3

Count Date: 12/23/2021 9:49:52 AM

Preset Count Time: 300

Count Mode: Simultaneous

Batch ID 2279

Drawer: LB 4200 D Device: LB 4200 D

**Efficiency Coefficients** 

C0 = 4.0366E+001 +/- 2.8836E-001

C1 = -2.7732E+001 +/- 2.2204E+000

Chi^2 = 1.3698E+001

Spillover Coefficients

Spill C0 = 2.1139E+000 +/- 7.5345E-002

Spill C1 = -2.3424E+000 +/- 5.8913E-001

Chi^2 = 1.3565E+000

**Decay Corrected** 

| Iterati | on Beta Count Rate (cpm)    | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|---------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1       | 9.3467E+003 +/- 9.3463E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 38.12      | 2.15      |
| 1       | 1.1628E+004 +/- 1.1628E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 42.45      | 2.01      |
| 1       | 1.0871E+004 +/- 1.0870E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 42.06      | 2.01      |
| 1       | 9.5238E+003 +/- 9.5238E+001 | J592     | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 38.16      | 2.01      |
| 1       | 1.0204E+004 +/- 1.0204E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 36.76      | 2.20      |
| 1       | 1.0000E+004 +/- 1.0000E+002 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 37.21      | 1.64      |
| 1       | 8.6207E+003 +/- 8.6207E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 33.05      | 1.51      |
|         |                             |          |          |                |                     |            |           |

#### **Efficiency Coefficients**

C0 = 4.0668E+001 +/- 3.0199E-001

C1 = -7.8668E+001 +/- 6.3780E+000

Chi^2 = 1.3756E+001

Spillover Coefficients

Spill C0 = 2.1449E+000 +/- 8.1471E-002

Spill C1 = -1.3155E+002 +/- 3.5806E+001

Chi^2 = 1.3467E+000

| E       | THOONERTIAN GET 1220m       |          |          | <b>Decay Corrected</b> |                     |            |           |
|---------|-----------------------------|----------|----------|------------------------|---------------------|------------|-----------|
| Iterati |                             | Standard | Mass     | Activity (dpm)         | Reference Date      | Efficiency | Spillover |
| 1       | 9.3467E+003 +/- 9.3463E+001 | J589     | 0.1 mg   | 2.4521E+004            | 9/1/1999 3:00:31 PM | 38.12      | 2.15      |
| 1       | 1.1628E+004 +/- 1.1628E+002 | J590     | 19.9 mg  | 2.7394E+004            | 9/1/1999 3:00:31 PM | 42.45      | 2.01      |
| 1       | 1.0871E+004 +/- 1.0870E+002 | J591     | 39 mg    | 2.5846E+004            | 9/1/1999 3:00:31 PM | 42.06      | 2,01      |
| 1       | 9.5238E+003 +/- 9.5238E+001 | J592     | 61.4 mg  | 2.4960E+004            | 9/1/1999 3:00:31 PM | 38.16      | 2.01      |
| 1       | 1.0204E+004 +/- 1.0204E+002 | J593     | 78.2 mg  | 2.7756E+004            | 9/1/1999 3:00:31 PM | 36.76      | 2.20      |
| 1       | 1.0000E+004 +/- 1.0000E+002 | J594     | 103.6 mg | 2.6878E+004            | 9/1/1999 3:00:31 PM | 37.21      | 1.64      |
| 1       | 8.6207E+003 +/- 8.6207E+001 | J595     | 269 mg   | 2.6083E+004            | 9/1/1999 3:00:31 PM | 33,05      | 1.51      |
|         |                             |          |          |                        |                     |            |           |





Drawer: LB 4200 D

Batch Name: D4 beta attenuation curve

Count Date: 12/23/2021 9:53:18 AM

Procedure: Beta Fitted Efficiency

Preset Count Time: 300

Calibration: Fitted Efficiency

Count Mode: Simultaneous

Decay Mode: Beta

Batch ID 2280

Detector: D4

Device: LB 4200 D

**Efficiency Coefficients** 

Spillover Coefficients

C0 = 4.0307E+001 +/- 2.8660E-001 C1 = -3.0668E+001 +/- 2.1762E+000 Spill C0 = 1.8697E+000 +/- 7.2084E-002 Spill C1 = -1.2520E+000 +/- 5.9078E-001

Chi^2 = 1.7639E+001

Chi^2 = 7.0274E-001

| Iteration | Beta Count Rate (cpm)       | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
|-----------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| 1.        | 9.1743E+003 +/- 9.1743E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 37.41      | 2.00      |
| 1         | 1.1765E+004 +/- 1.1765E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 42.95      | 1.95      |
| 1         | 1.0754E+004 +/- 1.0753E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 41.61      | 1.72      |
| 1         | 9,7097E+003 +/- 9.7092E+001 | J592     | 61.4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 38.90      | 1.64      |
| 1         | 1.0309E+004 +/- 1.0309E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 37.14      | 1.80      |
| 1         | 9.6163E+003 +/- 9.6159E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 35.78      | 1.73      |
| 1         | 8.4042E+003 +/- 8.4038E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 32.22      | 1.57      |

#### **Efficiency Coefficients**

Spillover Coefficients

C0 = 4.0691E+001 +/- 3.0217E-001 C1 = -8.8600E+001 +/- 6.3779E+000

Spill C0 = 1.8885E+000 +/- 7.4676E-002 Spill C1 = -7.8402E+001 +/- 3.5612E+001

Chi^2 = 1.7816E+001

Chi^2 = 6.8295E-001

| EX                              | DONENTIAL BER 12 10         | 71       |          |                |                     |            |           |
|---------------------------------|-----------------------------|----------|----------|----------------|---------------------|------------|-----------|
| Iteration Beta Count Rate (cpm) |                             | Standard | Mass     | Activity (dpm) | Reference Date      | Efficiency | Spillover |
| 1                               | 9.1743E+003 +/- 9.1743E+001 | J589     | 0.1 mg   | 2.4521E+004    | 9/1/1999 3:00:31 PM | 37.41      | 2.00      |
| -1                              | 1.1765E+004 +/- 1.1765E+002 | J590     | 19.9 mg  | 2.7394E+004    | 9/1/1999 3:00:31 PM | 42,95      | 1.95      |
| 1                               | 1.0754E+004 +/- 1.0753E+002 | J591     | 39 mg    | 2.5846E+004    | 9/1/1999 3:00:31 PM | 41.61      | 1.72      |
| 1                               | 9.7097E+003 +/- 9.7092E+001 | J592     | 61,4 mg  | 2.4960E+004    | 9/1/1999 3:00:31 PM | 38.90      | 1.64      |
| 1                               | 1.0309E+004 +/- 1.0309E+002 | J593     | 78.2 mg  | 2.7756E+004    | 9/1/1999 3:00:31 PM | 37.14      | 1.80      |
| 1                               | 9.6163E+003 +/- 9.6159E+001 | J594     | 103.6 mg | 2.6878E+004    | 9/1/1999 3:00:31 PM | 35.78      | 1.73      |
| 1                               | 8.4042E+003 +/- 8.4038E+001 | J595     | 269 mg   | 2.6083E+004    | 9/1/1999 3:00:31 PM | 32.22      | 1.57      |
|                                 |                             |          |          |                |                     |            |           |





## Plateau Report

Plateau: Plateau 1013 Plateau Date: 8/9/2021 12:00:44 PM

Decay Mode: Beta Drawer: LB 4200 D

Device: LB 4200 D Operating Voltage: 1230



|           |      | D1        |      | D2        |       | D3        |       | D4        | Voltage |
|-----------|------|-----------|------|-----------|-------|-----------|-------|-----------|---------|
| Iteration | cpm  | Slope (%) | cpm  | Slope (%) | cpm   | Slope (%) | cpm   | Slope (%) | voitage |
| 1         | 0    |           | 0    |           | 0     |           | 0     |           | 300     |
| 2         | 0.5  |           | 0    |           | 0     |           | 0     |           | 330     |
| 3         | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 360     |
| 4         | 0    | 0         | 0    | 0         | 0.5   | 0         | 0     | 0         | 390     |
| 5         | 0.5  | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 420     |
| 6         | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 450     |
| 7         | 0    | 0         | 0    | 0         | 0     | 0         | 0.5   | 0         | 480     |
| 8         | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 510     |
| 9         | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 540     |
| 10        | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 570     |
| 11        | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0′        | 600     |
| 12        | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 630     |
| 13        | 0    | 0         | 0    | 0         | 0     | 0         | 0     | 0         | 660     |
| 14        | 2    | 4725      | 11.5 | 1491      | 4     | 3525      | 2     | 4475      | 690     |
| 15        | 29.5 | 1165      | 60.5 | 833.9     | 36    | 1197      | 31.5  | ,1069     | 720     |
| 16        | 127  | 654.5     | 227  | 478.5     | 193.5 | 473.8     | 118.5 | 689       | 750     |
| 17        | 453  | 329.3     | 649  | 270.2     | 551.5 | 283.9     | 447   | 316.3     | 780     |
| 18        | 1037 | 214.9     | 1347 | 185.6     | 1122  | 201.9     | 1019  | 207.7     | 810     |
| 19        | 1812 | 157.8     | 2131 | 155.5     | 1921  | 153.8     | 1702  | 163       | 840     |
| 20        | 2791 | 131.9     | 3236 | 127.7     | 2905  | 126.6     | 2665  | 131.8     | 870     |

Plateau Review Page 1 of 2

## Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 296 of 384

|           | D         | 1         | D         | 2         | D         | 3         | D         | 4         | Voltage |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|
| Iteration | cpm       | Slope (%) | Voltage |
| 21        | 3866      | 120.8     | 4675      | 110.7     | 4089      | 114.2     | 3785      | 116.3     | 900     |
| 22        | 5533      | 106.2     | 6275      | 100.6     | 5556      | 106       | 5247      | 104.5     | 930     |
| 23        | 7446      | 97.84     | 8371      | 92.53     | 7602      | 94.79     | 7012      | 95.9      | 960     |
| 24        | 9811      | 82.03     | 1.086E+04 | 70.87     | 9979      | 80.08     | 9280      | 86.74     | 990     |
| 25        | 1.265E+04 | 53.47     | 1.4E+04   | 41.43     | 1.269E+04 | 52.07     | 1.185E+04 | 60.74     | 1020    |
| 26        | 1.587E+04 | 28.28     | 1.714E+04 | 20.64     | 1.563E+04 | 27.46     | 1.49E+04  | 32.64     | 1050    |
| 27        | 1.923E+04 | 10.43     | 2.083E+04 | 4.441     | 1.923E+04 | 10.29     | 1.807E+04 | 14.2      | 1080    |
| 28        | 2.273E+04 | 0.001111  | 2.439E+04 | 0.002222  | 2.256E+04 | 0.005555  | 2.19E+04  | 0.45      | 1110    |
| 29        | 2.632E+04 | 0.01444   | 2.752E+04 | 0         | 2.586E+04 | 0.001111  | 2.479E+04 | -0.001111 | 1140    |
| 30        | 2.885E+04 | 0.005555  | 3E+04     | 0         | 2.83E+04  | -0.003333 | 2.753E+04 | 0.001111  | 1170    |
| 31        | 3.093E+04 | 0.005554  | 3.158E+04 | 0         | 3E+04     | -0.002222 | 2.913E+04 | 0.007778  | 1200    |
| 32        | 3.191E+04 | 0.008889  | 3.261E+04 | 0.06      | 3.125E+04 | 0.02556   | 3.03E+04  | 0.02222   | 1230    |
| 33        | 3.334E+04 | 0.2266    | 3.297E+04 | 0.4322    | 3.192E+04 | 0.3433    | 3.093E+04 | 0.3033    | 1260    |
| 34        | 3.334E+04 | 1.108     | 3.336E+04 | 1.704     | 3.227E+04 | 1.418     | 3.126E+04 | 1.336     | 1290    |
| 35        | 3.383E+04 | 3.074     | 3.354E+04 | 3.996     | 3.207E+04 | 3.595     | 3.206E+04 | 3.446     | 1320    |
| 36        | 3.383E+04 | 6.098     | 3.409E+04 | 7.342     | 3.252E+04 | 6.767     | 3.181E+04 | 6.742     | 1350    |
| 37        | 3.388E+04 | 9.817     | 3.422E+04 | 11.54     | 3.266E+04 | 10.59     | 3.227E+04 | 10.48     | 1380    |
| 38        | 3.432E+04 | 14.88     | 3.448E+04 | 16.65     | 3.318E+04 | 15.25     | 3.219E+04 | 14.87     | 1410    |
| 39        | 3.448E+04 | 21        | 3.425E+04 | 23.77     | 3.349E+04 | 22.06     | 3.213E+04 | 21.42     | 1440    |
| 40        | 3.494E+04 |           | 3.454E+04 |           | 3.327E+04 | •         | 3.251E+04 |           | 1470    |
| 41        | 3.489E+04 |           | 3.433E+04 |           | 3.356E+04 |           | 3.25E+04  |           | 1500    |

Page 2 of 2 Plateau Review Page 32 of 44 Page 274 of 311

Instrument:

D 1155921

Sr 90

75-4-12 25-4-1- MOS

| Source ID | Decay corrected activity (DPM) | Weight |
|-----------|--------------------------------|--------|
| J589      | 21102.00                       | 0.0001 |
| J593      | 23886,00                       | 0.0782 |
| J595      | 22446.00                       | 0.269  |

| Detector | Source ID | Weight | Act (pCi)   | CSU 2s     | Low        | High        | Pass/Fail |
|----------|-----------|--------|-------------|------------|------------|-------------|-----------|
| D1       | J589      | 0.0001 | 11122.22189 | 2616.91112 | 8505.31077 | 13739.13301 | 9505.41   |
| D2       | J593      | 0.0782 | 12720.73329 | 2993.14007 | 9727.59322 | 15713.87336 | 10759.46  |
| D3       | J595      | 0.269  | 11862.40289 | 2791.37945 | 9071.02344 | 14653.78234 | 10110.81  |
| D4       | J589      | 0.0001 | 11205.44072 | 2636.58122 | 8568.8595  | 13842.02194 | 9505.41   |
| D1       | J593      | 0.0782 | 12570.37427 | 2957.81273 | 9612.56154 | 15528.187   | 10759.46  |
| D2       | J595      | 0.269  | 12077.174   | 2841.8857  | 9235.2883  | 14919.0597  | 10110.81  |
| D3       | J589      | 0.0001 | 10797.62707 | 2540.65363 | 8256.97344 | 13338.2807  | 9505.41   |
| D4       | J593      | 0.0782 | 12983.41643 | 3054.95714 | 9928.45929 | 16038.37357 | 10759.46  |
| D1       | J595      | 0.269  | 12044.56995 | 2834.31451 | 9210.25544 | 14878.88446 | 10110.81  |
| D2       | J589      | 0.0001 | 11208.51511 | 2637.33123 | 8571.18388 | 13845.84634 | 9505,41   |
| D3       | J593      | 0.0782 | 12844.12556 | 3022.22361 | 9821.90195 | 15866.34917 | 10759.46  |
| D4       | J595      | 0.269  | 12134.90937 | 2855.62021 | 9279.28916 | 14990.52958 | 10110.81  |

### Activity (pCi)

| D1       | D2                   | D3                                     | D4                                                                          |
|----------|----------------------|----------------------------------------|-----------------------------------------------------------------------------|
| 11122.22 | 11208.52             | 10797.63                               | 11205.44                                                                    |
| 12570.37 | 12720.73             | 12844.13                               | 12983.42                                                                    |
| 12044.57 | 12077.17             | 11862.40                               | 12134,91                                                                    |
|          | 11122.22<br>12570.37 | 11122.22 11208.52<br>12570.37 12720.73 | 11122.22     11208.52     10797.63       12570.37     12720.73     12844.13 |



ARS-014-009 r0.0

Revision Date: 2/02/2021

## GPC D 1155921 Batch Report

Batch Name: B21-01757 3 Calibration: Fitted Efficiency

Procedure: Attenuation Curve check Preset Count Time (min): 3

Batch ID: 2301 Count Mode: Simultaneous

| Sample ID    | Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity<br>(uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time        |
|--------------|-------------|-----------------------------|----------------------------|-------------------------|------------------------|-------------------|----------------|------------------------|
| B21-01757-04 | D1          | 68                          | 5000                       | -314.786835081579       | 22456.965376398        | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-05 | D4          | 0                           | 5                          | -0.66043525028448       | 2.46871921223085       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-06 | D2          | 87                          | 5000                       | -137.941150842681       | 25780.1330753865       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-07 | D3          | 69                          | 5000                       | -375.768279809988       | 21241.6388990689       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-08 | D1          | 1                           | 6                          | 1.12702065141495        | 2.70667282342385       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-09 | D2          | 111                         | 5000                       | 119.569754691734        | 22717.0560910785       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-10 | D3          | 90                          | 5000                       | -204.973141808604       | 25637.1347783541       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-11 | D4          | 81                          | 5000                       | -133.369026547035       | 21200.0539133435       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-12 | D2          | 0                           | 7                          | -0.59624081207084       | 3.6680996281069        | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-13 | D1          | 79                          | 5000                       | -192.632002961603       | 21218.6193410319       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-14 | D3          | 110                         | 5000                       | 27.9809687468218        | 22348.857606585        | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-15 | D4          | 82                          | 5000                       | -152.254670111202       | 26160.6851525756       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-16 | D3          | 0                           | 27                         | -1.63467416496161       | 20.3920561391137       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-17 | D1          | 95                          | 5001                       | -47.8446575258261       | 25352.3569348239       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-18 | D2          | 68                          | 5000                       | -295.445784903571       | 21505.5134408925       | 180               | 1230           | 12/28/2021 10:24:26 AM |
| B21-01757-19 | D4          | 100                         | 5000                       | 58.8055652210289        | 22746.250488281        | 180               | 1230           | 12/28/2021 10:24:26 AM |



## Sr-90 (Sr-90, Y-90) Calibration Verification

| Sr-90      |             |          |           |           |            |            |          |          |           |        |          |          |                |                 |                  |           |             |
|------------|-------------|----------|-----------|-----------|------------|------------|----------|----------|-----------|--------|----------|----------|----------------|-----------------|------------------|-----------|-------------|
|            |             |          |           |           | Total      |            |          |          |           |        |          |          |                |                 |                  |           |             |
|            |             |          |           |           | Activtiy   |            |          |          |           |        |          |          |                |                 |                  |           |             |
|            |             |          |           |           | Added (Sr- |            |          |          |           |        |          |          |                |                 |                  |           |             |
|            |             | Standard |           |           | 90 in      |            |          | carrier  |           |        |          |          |                |                 |                  |           | Sr-90 decay |
|            |             | Specific |           |           | DPM) on    | carrier    |          | expected |           |        |          |          |                |                 |                  | Sr-90     | days to     |
|            |             | Activity | reference | Mass      | reference  |            | g SrNO3/ |          | planchet  | •      | -        | Chemical | separation     |                 |                  | half-life | count       |
| ID         | Standard ID | (dpm/g)  | date      | added (g) |            | (mg as Sr) |          | SrNO3)   | gross (g) | (g)    | net (mg) | Yield    | date/time      | count date/time |                  | days      | midpoint    |
| Sr- CAL-01 | S-0121      | 7662.422 | 2/25/2022 | 1.012     | 7754.371   | 5.0000     | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854   | 2/25/2022 8:44 | 2/25/22 12:32   |                  | 10515.51  | 0.53        |
| Sr- CAL-02 | S-0121      | 7662.422 | 2/25/2022 | 1.007     | 7716.059   | 5.0000     | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937   | 2/25/2022 8:37 | 2/25/22 12:32   |                  |           | 0.53        |
| Sr- CAL-03 | S-0121      | 7662.422 | 2/25/2022 | 1.006     | 7708.397   | 5.0000     | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019   | 2/25/2022 8:49 | 2/25/22 12:32   |                  | 10515.51  | 0.53        |
| Sr- CAL-04 | S-0121      | 7662.422 | 2/25/2022 | 1.004     | 7693.072   | 5.0000     | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102   | 2/25/2022 8:35 | 2/25/22 12:32   | 2/25/22 12:37 PM | 10515.51  | 0.53        |
| Sr- CAL-01 | S-0121      | 7662.422 | 2/25/2022 | 1.012     | 7754.371   | 5.0000     | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854   | 2/25/2022 8:44 | 2/25/22 12:44   | 2/25/22 12:49 PM | 10515.51  | 0.53        |
| Sr- CAL-02 | S-0121      | 7662.422 | 2/25/2022 | 1.007     | 7716.059   | 5.0000     | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937   | 2/25/2022 8:37 | 2/25/22 12:44   | 2/25/22 12:49 PM | 10515.51  | 0.53        |
| Sr- CAL-03 | S-0121      | 7662.422 | 2/25/2022 | 1.006     | 7708.397   | 5.0000     | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019   | 2/25/2022 8:49 | 2/25/22 12:44   | 2/25/22 12:49 PM | 10515.51  | 0.53        |
| Sr- CAL-04 | S-0121      | 7662.422 | 2/25/2022 | 1.004     | 7693.072   | 5.0000     | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102   | 2/25/2022 8:35 | 2/25/22 12:44   | 2/25/22 12:49 PM | 10515.51  | 0.53        |
| Sr- CAL-01 | S-0121      | 7662.422 | 2/25/2022 | 1.012     | 7754.371   | 5.0000     | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854   | 2/25/2022 8:44 | 2/25/22 13:00   | 2/25/22 1:05 PM  | 10515.51  | 0.55        |
| Sr- CAL-02 | S-0121      | 7662.422 | 2/25/2022 | 1.007     | 7716.059   | 5.0000     | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937   | 2/25/2022 8:37 | 2/25/22 13:00   | 2/25/22 1:05 PM  | 10515.51  | 0.55        |
| Sr- CAL-03 | S-0121      | 7662.422 | 2/25/2022 | 1.006     | 7708.397   | 5.0000     | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019   | 2/25/2022 8:49 | 2/25/22 13:00   | 2/25/22 1:05 PM  | 10515.51  | 0.55        |
| Sr- CAL-04 | S-0121      | 7662.422 | 2/25/2022 | 1.004     | 7693.072   | 5.0000     | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102   | 2/25/2022 8:35 | 2/25/22 13:00   | 2/25/22 1:05 PM  | 10515.51  | 0.55        |
| Sr- CAL-01 | S-0121      | 7662.422 | 2/25/2022 | 1.012     | 7754.371   | 5.0000     | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854   | 2/25/2022 8:44 | 2/25/22 13:12   | 2/25/22 1:17 PM  | 10515.51  | 0.55        |
| Sr- CAL-02 | S-0121      | 7662.422 | 2/25/2022 | 1.007     | 7716.059   | 5.0000     | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937   | 2/25/2022 8:37 | 2/25/22 13:12   | 2/25/22 1:17 PM  | 10515.51  | 0.55        |
| Sr- CAL-03 | S-0121      | 7662.422 | 2/25/2022 | 1.006     | 7708.397   | 5.0000     | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019   | 2/25/2022 8:49 | 2/25/22 13:12   | 2/25/22 1:17 PM  | 10515.51  | 0.55        |
| Sr- CAL-04 | S-0121      | 7662.422 | 2/25/2022 | 1.004     | 7693.072   | 5.0000     | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102   | 2/25/2022 8:35 | 2/25/22 13:12   | 2/25/22 1:17 PM  | 10515.51  | 0.55        |

| Y-90      |             |          |            |           |            |        |          |          |           |        |          |        |                 |               |                 |       |               |
|-----------|-------------|----------|------------|-----------|------------|--------|----------|----------|-----------|--------|----------|--------|-----------------|---------------|-----------------|-------|---------------|
|           |             |          |            |           | Total      |        |          |          |           |        |          |        |                 |               |                 |       |               |
|           |             | Standard |            |           | Activtiy   |        |          |          |           |        |          |        |                 |               |                 |       |               |
|           |             | Specific |            |           | Added (Sr- |        |          | carrier  |           |        |          |        |                 |               |                 | Sr-90 | Sr decay      |
|           |             | Activity | collection | Mass      | 90 in      | added  | g SrNO3/ | expected | planchet  | •      |          |        |                 |               | Sr-90 half-life | decay | correction to |
| ID        | Standard ID | (dpm/g)  | date       | added (g) | DPM)       | (mg)   | g Sr     | (mg)     | gross (g) | (g)    | net (mg) | Yield  | separation date | count date    | days            | days  | separation    |
| Yt CAL-01 | S-0121      | 7662.422 | 2/25/2022  | 1.012     | 7754.371   | 5.0000 | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854 | 2/25/2022 8:44  | 2/25/22 13:12 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-02 | S-0121      | 7662.422 | 2/25/2022  | 1.007     | 7716.059   | 5.0000 | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937 | 2/25/2022 8:37  | 2/25/22 13:12 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-03 | S-0121      | 7662.422 | 2/25/2022  | 1.006     | 7708.397   | 5.0000 | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019 | 2/25/2022 8:49  | 2/25/22 13:12 | 10515.51        | 0.37  | 0.99998       |
| Yt CAL-04 | S-0121      | 7662.422 | 2/25/2022  | 1.004     | 7693.072   | 5.0000 | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102 | 2/25/2022 8:35  | 2/25/22 13:12 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-01 | S-0121      | 7662.422 | 2/25/2022  | 1.012     | 7754.371   | 5.0000 | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854 | 2/25/2022 8:44  | 2/25/22 13:00 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-02 | S-0121      | 7662.422 | 2/25/2022  | 1.007     | 7716.059   | 5.0000 | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937 | 2/25/2022 8:37  | 2/25/22 13:00 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-03 | S-0121      | 7662.422 | 2/25/2022  | 1.006     | 7708.397   | 5.0000 | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019 | 2/25/2022 8:49  | 2/25/22 13:00 | 10515.51        | 0.37  | 0.99998       |
| Yt CAL-04 | S-0121      | 7662.422 | 2/25/2022  | 1.004     | 7693.072   | 5.0000 | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102 | 2/25/2022 8:35  | 2/25/22 13:00 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-01 | S-0121      | 7662.422 | 2/25/2022  | 1.012     | 7754.371   | 5.0000 | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854 | 2/25/2022 8:44  | 2/25/22 12:44 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-02 | S-0121      | 7662.422 | 2/25/2022  | 1.007     | 7716.059   | 5.0000 | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937 | 2/25/2022 8:37  | 2/25/22 12:44 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-03 | S-0121      | 7662.422 | 2/25/2022  | 1.006     | 7708.397   | 5.0000 | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019 | 2/25/2022 8:49  | 2/25/22 12:44 | 10515.51        | 0.37  | 0.99998       |
| Yt CAL-04 | S-0121      | 7662.422 | 2/25/2022  | 1.004     | 7693.072   | 5.0000 | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102 | 2/25/2022 8:35  | 2/25/22 12:44 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-01 | S-0121      | 7662.422 | 2/25/2022  | 1.012     | 7754.371   | 5.0000 | 2.4153   | 12.077   | 7.9511    | 7.9392 | 11.9     | 0.9854 | 2/25/2022 8:44  | 2/25/22 12:32 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-02 | S-0121      | 7662.422 | 2/25/2022  | 1.007     | 7716.059   | 5.0000 | 2.4153   | 12.077   | 7.9694    | 7.9574 | 12.0     | 0.9937 | 2/25/2022 8:37  | 2/25/22 12:32 | 10515.51        | 0.36  | 0.99998       |
| Yt CAL-03 | S-0121      | 7662.422 | 2/25/2022  | 1.006     | 7708.397   | 5.0000 | 2.4153   | 12.077   | 7.8872    | 7.8751 | 12.1     | 1.0019 | 2/25/2022 8:49  | 2/25/22 12:32 | 10515.51        | 0.37  | 0.99998       |
| Yt CAL-04 | S-0121      | 7662.422 | 2/25/2022  | 1.004     | 7693.072   | 5.0000 | 2.4153   | 12.077   | 7.8317    | 7.8195 | 12.2     | 1.0102 | 2/25/2022 8:35  | 2/25/22 12:32 | 10515.51        | 0.36  | 0.99998       |

PALA-RAD-032-FM-05 r00.0 Sr90-Y90 Eff CalVer

Effective Date: 10.25.2022



## Sr-90 (Sr-90, Y-90) Calibration Verification

| Sr-90      |                                 |                                           |                   |                                      |          |                   |        |             |            |          |           |          |           |
|------------|---------------------------------|-------------------------------------------|-------------------|--------------------------------------|----------|-------------------|--------|-------------|------------|----------|-----------|----------|-----------|
|            | Sr decay<br>correction to count | Sr-90<br>activtiy at<br>count<br>midpoint | Y-90<br>half-life | Y-90<br>ingrowth<br>days to<br>count | Y-90     | Y-90 Eff<br>(from | sample |             |            | bkg time |           |          |           |
| ID         | midpoint                        | (DPM)                                     | days              | midpoint                             | ingrowth | below)            | counts | sample time | bkg counts | min      | net CPM   | Detector | Sr-90 Eff |
| Sr- CAL-01 | 0.99997                         | 7640.7                                    | 2.667             | 0.1618                               | 0.04119  | 0.43397           | 28089  | 10.0        | 585.999    | 900.0    | 2808.2489 | A1       | 0.34966   |
| Sr- CAL-02 | 0.99997                         | 7666.9                                    | 2.667             | 0.1667                               | 0.04240  | 0.44561           | 27778  | 10.0        | 576.999    | 900.0    | 2777.1589 | A2       | 0.34334   |
| Sr- CAL-03 | 0.99997                         | 7723.1                                    | 2.667             | 0.1583                               | 0.04032  | 0.42272           | 26415  | 10.0        | 606.996    | 900.0    | 2640.8256 | A3       | 0.32489   |
| Sr- CAL-04 | 0.99997                         | 7771.4                                    | 2.667             | 0.1681                               | 0.04274  | 0.42507           | 28314  | 10.0        | 567        | 900.0    | 2830.7700 | A4       | 0.34608   |
| Sr- CAL-01 | 0.99996                         | 7640.7                                    | 2.667             | 0.1701                               | 0.04326  | 0.41611           | 27391  | 10.0        | 806.998    | 900.0    | 2738.2033 | B1       | 0.34006   |
| Sr- CAL-02 | 0.99996                         | 7666.9                                    | 2.667             | 0.1750                               | 0.04447  | 0.42890           | 27176  | 10.0        | 686.997    | 900.0    | 2716.8367 | B2       | 0.33535   |
| Sr- CAL-03 | 0.99996                         | 7723.1                                    | 2.667             | 0.1667                               | 0.04240  | 0.42004           | 26597  | 10.0        | 698.004    | 900.0    | 2658.9244 | В3       | 0.32660   |
| Sr- CAL-04 | 0.99996                         | 7771.4                                    | 2.667             | 0.1764                               | 0.04481  | 0.42015           | 27758  | 10.0        | 608.004    | 900.0    | 2775.1244 | B4       | 0.33852   |
| Sr- CAL-01 | 0.99996                         | 7640.7                                    | 2.667             | 0.1812                               | 0.04602  | 0.39014           | 27310  | 10.0        | 576        | 900.0    | 2730.3600 | C1       | 0.33920   |
| Sr- CAL-02 | 0.99996                         | 7666.9                                    | 2.667             | 0.1861                               | 0.04722  | 0.48124           | 29696  | 10.0        | 651.996    | 900.0    | 2968.8756 | C2       | 0.36420   |
| Sr- CAL-03 | 0.99996                         | 7723.1                                    | 2.667             | 0.1778                               | 0.04516  | 0.45234           | 27793  | 10.0        | 561.996    | 900.0    | 2778.6756 | C3       | 0.33958   |
| Sr- CAL-04 | 0.99996                         | 7771.4                                    | 2.667             | 0.1875                               | 0.04757  | 0.45142           | 29175  | 10.0        | 627.003    | 900.0    | 2916.8033 | C4       | 0.35414   |
| Sr- CAL-01 | 0.99996                         | 7640.7                                    | 2.667             | 0.1896                               | 0.04808  | 0.40224           | 30110  | 10.0        | 610.002    | 900.0    | 3010.3222 | D1       | 0.37443   |
| Sr- CAL-02 | 0.99996                         | 7666.9                                    | 2.667             | 0.1944                               | 0.04929  | 0.38513           | 29501  | 10.0        | 604.998    | 900.0    | 2949.4278 | D2       | 0.36546   |
| Sr- CAL-03 | 0.99996                         | 7723.1                                    | 2.667             | 0.1861                               | 0.04722  | 0.32948           | 27011  | 10.0        | 566.001    | 900.0    | 2700.4711 | D3       | 0.33427   |
| Sr- CAL-04 | 0.99996                         | 7771.4                                    | 2.667             | 0.1958                               | 0.04963  | 0.30668           | 28636  | 10.0        | 613.998    | 900.0    | 2862.9178 | D4       | 0.35337   |

| Y-90      |                  |             |        |            |            |          |        |             |         |          |           |          |          |
|-----------|------------------|-------------|--------|------------|------------|----------|--------|-------------|---------|----------|-----------|----------|----------|
|           |                  | Sr-90       |        |            |            |          |        |             |         |          |           |          |          |
|           |                  | activtiy at |        |            |            |          |        |             |         |          |           |          |          |
|           |                  | count       | Y-90   |            |            |          |        |             |         |          |           |          |          |
|           |                  | separation  | decay  | Y-90 half- |            | Y-90     | sample |             |         | bkg time |           |          |          |
| ID        | count midpoint   | (DPM)       | days   | life days  | Y-90 Decay | Activity | counts | sample time | -       | min      | net CPM   | Detector | Y-90 Eff |
| Yt CAL-01 | 2/25/22 1:17 PM  | 7640.8      | 0.1896 | 2.667      | 0.951916   | 7273.587 | 31572  | 10.0        | 585.999 | 900.0    | 3156.5489 | A1       | 0.43397  |
| Yt CAL-02 | 2/25/22 1:17 PM  | 7667.0      | 0.1944 | 2.667      | 0.950714   | 7289.254 | 32488  | 10.0        | 576.999 | 900.0    | 3248.1589 | A2       | 0.44561  |
| Yt CAL-03 | 2/25/22 1:17 PM  | 7723.2      | 0.1861 | 2.667      | 0.952776   | 7358.621 | 31113  | 10.0        | 606.996 | 900.0    | 3110.6256 | A3       | 0.42272  |
| Yt CAL-04 | 2/25/22 1:17 PM  | 7771.5      | 0.1958 | 2.667      | 0.950371   | 7385.997 | 31402  | 10.0        | 567     | 900.0    | 3139.5700 | A4       | 0.42507  |
| Yt CAL-01 | 2/25/22 1:05 PM  | 7640.8      | 0.1812 | 2.667      | 0.953980   | 7289.359 | 30341  | 10.0        | 806.998 | 900.0    | 3033.2033 | B1       | 0.41611  |
| Yt CAL-02 | 2/25/22 1:05 PM  | 7667.0      | 0.1861 | 2.667      | 0.952776   | 7305.061 | 31339  | 10.0        | 686.997 | 900.0    | 3133.1367 | B2       | 0.42890  |
| Yt CAL-03 | 2/25/22 1:05 PM  | 7723.2      | 0.1778 | 2.667      | 0.954842   | 7374.578 | 30984  | 10.0        | 698.004 | 900.0    | 3097.6244 | В3       | 0.42004  |
| Yt CAL-04 | 2/25/22 1:05 PM  | 7771.5      | 0.1875 | 2.667      | 0.952432   | 7402.013 | 31106  | 10.0        | 608.004 | 900.0    | 3109.9244 | B4       | 0.42015  |
| Yt CAL-01 | 2/25/22 12:49 PM | 7640.8      | 0.1701 | 2.667      | 0.956739   | 7310.442 | 28527  | 10.0        | 576     | 900.0    | 2852.0600 | C1       | 0.39014  |
| Yt CAL-02 | 2/25/22 12:49 PM | 7667.0      | 0.1750 | 2.667      | 0.955531   | 7326.189 | 35264  | 10.0        | 651.996 | 900.0    | 3525.6756 | C2       | 0.48124  |
| Yt CAL-03 | 2/25/22 12:49 PM | 7723.2      | 0.1667 | 2.667      | 0.957603   | 7395.907 | 33461  | 10.0        | 561.996 | 900.0    | 3345.4756 | C3       | 0.45234  |
| Yt CAL-04 | 2/25/22 12:49 PM | 7771.5      | 0.1764 | 2.667      | 0.955186   | 7423.422 | 33518  | 10.0        | 627.003 | 900.0    | 3351.1033 | C4       | 0.45142  |
| Yt CAL-01 | 2/25/22 12:37 PM | 7640.8      | 0.1622 | 2.667      | 0.958727   | 7325.633 | 32421  | 11.0        | 610.002 | 900.0    | 2946.6859 | D1       | 0.40224  |
| Yt CAL-02 | 2/25/22 12:38 PM | 7667.0      | 0.1674 | 2.667      | 0.957430   | 7340.750 | 33934  | 12.0        | 604.998 | 900.0    | 2827.1611 | D2       | 0.38513  |
| Yt CAL-03 | 2/25/22 12:38 PM | 7723.2      | 0.1594 | 2.667      | 0.959420   | 7409.938 | 31747  | 13.0        | 566.001 | 900.0    | 2441.4480 | D3       | 0.32948  |
| Yt CAL-04 | 2/25/22 12:39 PM | 7771.5      | 0.1694 | 2.667      | 0.956912   | 7436.834 | 31940  | 14.0        | 613.998 | 900.0    | 2280.7464 | D4       | 0.30668  |

PALA-RAD-032-FM-05 r00.0 Sr90-Y90 Eff CalVer

Effective Date: 10.25.2022

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 301 of 384

## GPC D 1155921 Batch Report

Batch Name: Sr-90 LB4200 calibration A & B - 2-25-22 Calibration: Background

Procedure: Sr-90/Y-90 Calibration Preset Count Time (min): 10

Batch ID: 2913 Count Mode: Simultaneous

|              |             | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity<br>(uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time       |
|--------------|-------------|-----------------------------|----------------------------|-------------------------|------------------------|-------------------|----------------|-----------------------|
| Sample ID    | Detector ID |                             |                            |                         |                        |                   |                |                       |
| Sr-90 cal-01 | A1          | 235                         | 28089                      | 132.543923910145        | 6872.98877721911       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-02 | A2          | 257                         | 27778                      | 142.941053260257        | 6660.28235000946       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-03 | А3          | 213                         | 26415                      | 126.698936057707        | 6620.78230461453       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-04 | A4          | 247                         | 28314                      | 142.666787872403        | 7147.31445262781       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-05 | B1          | 482                         | 27391                      | 278.752598117741        | 6920.71350579457       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-06 | B2          | 448                         | 27176                      | 255.851590890306        | 6647.40743586032       | 600               | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-07 | В3          | 394                         | 26597                      | 229.381156488721        | 6782.30200996277       | 600 -             | 1230           | 2/25/2022 12:32:27 PM |
| Sr-90 cal-08 | В4          | 442                         | 27758                      | 252.637319711151        | 6938.35524427931       | 600               | 1230           | 2/25/2022 12:32:27 PM |

Page 37 of 44 Page 279 of 311

The second secon

## GPC D 1155921 Batch Report

Batch Name: Sr-90 LB4200 calibration C & D - 2-25-22 Calibration: Background

Procedure: Sr-90/Y-90 Calibration Preset Count Time (min): 10

Batch ID: 2914 Count Mode: Simultaneous

| Sample ID    | Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity<br>(uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time      |
|--------------|-------------|-----------------------------|----------------------------|-------------------------|------------------------|-------------------|----------------|----------------------|
| Sr-90 cal-01 | C1          | 130                         | 27310                      | 70.8893028383472        | 6303.43817884813       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-02 | C2          | 573                         | 29696                      | 327.076257051308        | 7124.71229135114       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-03 | СЗ          | 424                         | 27793                      | 240.638148786547        | 6647.31074520444       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-04 | C4          | 485                         | 29175                      | 248.379848884315        | 6601.12233456405       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-05 | D1          | 482                         | 30110                      | 254.956379645119        | 7011.74389408193       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-06 | D2          | 549                         | 29501                      | 283.426695487347        | 6727.52938002495       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-07 | D3          | 506                         | 27011                      | 288,2068539221          | 6609.09324848414       | 600               | 1290           | 2/25/2022 1:00:39 PM |
| Sr-90 cal-08 | D4          | 546                         | 28636                      | 310.660703828033        | 7094.09329005772       | 600               | 1290           | 2/25/2022 1:00:39 PM |

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 303 of 384

## GPC D 1155921 Batch Report

Batch Name: Y-90 LB4200 calibration A & B - 2-25-22 2

Calibration: Background

Procedure: Sr-90/Y-90 Calibration

Preset Count Time (min): 10

Batch ID: 2915

Count Mode: Simultaneous

| Sample ID   | Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity<br>(uCi) | Beta activity<br>(uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time      |
|-------------|-------------|-----------------------------|----------------------------|-------------------------|------------------------|-------------------|----------------|----------------------|
| Y-90 cal-01 | A1          | 279                         | 31572                      | 157.360658599704        | 7725.23057689351       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-02 | A2          | 214                         | 32488                      | 119.024845905428        | 7789.59079080954       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-03 | А3          | 196                         | 31113                      | 116.586814400519        | 7798.31155947272       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-04 | A4          | 265                         | 31402                      | 153.063557838813        | 7926.81953950055       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-05 | В1          | 261                         | 30341                      | 150.94279690608         | 7666.07164686624       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-06 | B2          | 281                         | 31339                      | 160,478341607536        | 7665.70141420469       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-07 | В3          | 255                         | 30984                      | 148.457347473665        | 7900.99806281484       | 600               | 1230           | 2/25/2022 1:00:42 PM |
| Y-90 cal-08 | B4          | 227                         | 31106                      | 129.748125734007        | 7775.21717085353       | 600               | 1230           | 2/25/2022 1:00:42 PM |

Page 39 of 44 Page 281 of 311 Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 304 of 384

## GPC D 1155921 Batch Report

Batch Name: Y-90 LB4200 calibration C & D - 2-25-22 2

Calibration: Background

Procedure: Sr-90/Y-90 Calibration

Preset Count Time (min): 10

Batch ID: 2916

Count Mode: Simultaneous

| _           |             |                             |                            |                      |                     |                   |                |                       |
|-------------|-------------|-----------------------------|----------------------------|----------------------|---------------------|-------------------|----------------|-----------------------|
| Sample ID   | Detector ID | Gross Alpha<br>Counts (cpm) | Gross Beta<br>Counts (cpm) | Alpha activity (uCi) | Beta activity (uCi) | Count Time<br>(s) | Voltage<br>(V) | Run Date & Time       |
| Y-90 cal-01 | <b>C</b> 1  | 60                          | 28527                      | 32.7181397715449     | 6584.33470992313    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-02 | C2          | 251                         | 35264                      | 143.274241744989     | 8460.59584597948    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-03 | СЗ          | 185                         | 33461                      | 104.995418692243     | 8002.93832422861    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-04 | C4          | 231                         | 33518                      | 118.3005053449       | 7583.76755475297    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cai-05 | D1          | 81                          | 32421                      | 42.8453667038478     | 7549.90862803156    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-06 | D2          | 120                         | 33934                      | 61.9511902704583     | 7738.44893331638    | . 600             | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-07 | D3          | 95                          | 31747                      | 54.1099824557302     | 7767.90505200199    | 600               | 1290           | 2/25/2022 12:32:27 PM |
| Y-90 cal-08 | D4          | 95                          | 31940                      | 54.0526865634856     | 7912.60440300473    | 600               | 1290           | 2/25/2022 12:32:27 PM |
|             |             |                             |                            |                      |                     |                   |                |                       |

Page 40 of 44 Page 282 of 311 Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 305 of 384 **Sr Yield Calculation Sheet** 



| Sample | Empty  | Filled | Yield(mg) | % Recovery |
|--------|--------|--------|-----------|------------|
| 1      | 7.9392 | 7.9511 | 11.9000   | 99         |
| 2      | 7.9574 | 7.9694 | 12.0000   | 99         |
| 3      | 7.8751 | 7.8872 | 12.1000   | 100        |
| 4      | 7.8195 | 7.8317 | 12.2000   | 101        |
| 5      |        |        |           |            |
| 6      |        |        |           |            |
| 7      |        |        |           |            |
| 8      |        |        |           |            |
| 9      |        |        |           |            |
| 10     |        |        |           |            |
| 11     |        |        |           |            |
| 12     |        |        |           |            |
| 13     |        |        |           |            |
| 14     |        |        |           |            |
| 15     |        |        |           |            |
| 16     | 7      |        |           |            |
| 17     |        |        |           |            |
| 18     |        |        |           |            |
| 19     |        |        |           |            |
| 20     |        |        |           |            |
| 21     |        |        |           |            |
| 22     |        |        |           |            |
| 23     |        |        |           |            |
| 24     |        |        |           |            |
| 25     |        |        |           |            |
| 26     |        |        |           |            |

| ST ( CO21) |          |         | Folorica   | Pipette |
|------------|----------|---------|------------|---------|
|            | 12-00122 | 2-25-22 | 1114341663 | Ru07688 |
| 1.012 9    |          | 8 44    |            |         |
| 1.007 0    | mL       | 8.37    |            |         |
| 1,006 0    |          | 8:49    |            |         |
| 1.004 5    |          | 9.35    |            |         |
|            | 4        |         |            |         |

Printed: 3/22/2023 11:21 AM

Page 1 of 1

STD ID: S-0121



## Add / Edit Secondary Standards

|                                        | Planning                                                               | Pa                                 | arent Standard       | Data                  |          |    |
|----------------------------------------|------------------------------------------------------------------------|------------------------------------|----------------------|-----------------------|----------|----|
| Planning Comments                      | Dilute intermediate solution from S-0120 for use as calibration stock. | Parent Solution Reference #        | 7090 1189-4-2        |                       |          |    |
| Target dpm/g (on dil. date)            | 11282                                                                  | Parent Solution #                  | S-0120               |                       |          |    |
| Target Final Volume mL                 | 2000.00                                                                | Parent Principal Radionuclide      | Sr-90                | Half Life<br>(Days)   | 10409.62 | !5 |
| Appx mass g of Parent Sol'n            | 4.96012064284138                                                       | Parent Reference Date              | 04/01/2006 0:00      |                       |          |    |
| Appx vol ml of Parent Sol'n            | 4.96210548503539                                                       | Parent Certified Act               | 2.049                | Cert Act/Vol<br>Units | uCi      | g  |
| Expected Addition for Analysis g       | 1                                                                      | Parent Cert Act Uncert 1 Sigma     | 0.03                 |                       |          |    |
| Standard                               | s Preparation / Dilution                                               | Parent Sp. Gravity G/ML            | 0.9996               |                       |          |    |
| Secondary Solution #                   | S-0121                                                                 | Parent Supplier                    | Isotope Products Lab | oratories             |          |    |
| Dilution Date (New Ref Date)           | 03/31/2006 0:00                                                        | Parent Date Recvd                  | 03/20/06             |                       |          |    |
| Ampoule, Empty (g)                     |                                                                        | Parent Received By                 | A Bessix             |                       |          |    |
| Ampoule/Solution Gross (g)             |                                                                        | Parent Cert Exp Date               | 04/01/11             |                       |          |    |
| Net Wt Removed (g)                     |                                                                        | Parent Matrix                      | .1M HCL              |                       |          |    |
| Transfer Container, empty (g)          | 0                                                                      | Certified dpm/g At Ref Date        | 4548780              |                       |          |    |
| Container Plus Solution(g)             | 4.97                                                                   | Certified dpm/g On 03/31/2006 0:00 | 4549082.90034541     |                       |          |    |
| Net Wt Transferred (g)                 | 4.97                                                                   | Parent Comments                    | Primary Sr-90 Stand  | ard                   |          |    |
| DPM Xferred On03/31/2006 0:00          | 22608942.0147167                                                       | Parent Tech                        | B Steffens           |                       |          |    |
| Diluent/matrix                         | .1M HCL                                                                | Is Primary                         | TRUE                 |                       |          |    |
| Diluent Density Cont, empty (g)        |                                                                        | Is LCS                             | FALSE                |                       |          |    |
| Test Mass of 5 ml of Diluent (g)       |                                                                        | Is Tracer                          | FALSE                |                       |          |    |
| Diluent Density Test - (g/mL)          |                                                                        | Is Calib                           | TRUE                 |                       |          |    |
| Dilution Empty Container Mass (g)      | 1                                                                      |                                    |                      |                       |          |    |
| Dilution Full Cont g (if measured)     | 2005.002                                                               |                                    |                      |                       |          |    |
| Dilution Final Volume ml (if measured) | 2000                                                                   |                                    |                      |                       |          |    |
| Final Dilution Density (g/mL)          | 1.002001                                                               |                                    |                      |                       |          |    |
| Final Dilution Measured Mass g         | 2004.002                                                               |                                    |                      |                       |          |    |
| Comments                               | Solution for use as calibration stock standard.                        |                                    |                      |                       |          |    |
| Final Dilution dpm/g                   | 11281.8959335952                                                       |                                    |                      |                       |          |    |
| Final Dil New Ref Date/Time            | 03/31/2006 0:00                                                        |                                    |                      |                       |          |    |



Document 28-3 Filed 12/06/24

24937 Avenue Tibbitts Valencia, California 91355

Tel 661 309 1010

An Eckert & Ziegler Company

Fax 661 257 8303

## **CERTIFICATE OF CALIBRATION BETA STANDARD SOLUTION**

Radionuclide:

Catalog No.:

Half-life:

Sr-90

7090

28.5 ± 0.2 years

**Customer:** 

(Sr-90 only)

AMERICAN RADIATION SERVICE

Page 307 of 384

P.O. No.:

Reference Date:

06-0088 1-Apr-06 12:00 PST

Source No.: 1189-4-2 Contained Radioactivity:

10.25

379.3 иCi

kBq

**Physical Description:** 

A. Mass of solution:

5.00125 g in 5 mL V-Vial

B. Chemical form:

SrCl<sub>2</sub> in 0.1M HCl

C. Carrier content:

(10 µg Sr + 50 µg Y)/mL of solution

D. Density:

0.9996 g/mL @ 20°C

#### Radioimpurities:

None detected (Y-90 daughter in equilibrium)

**Radionuclide Concentration:** 

2.049

μCi/g,

75.81

kBq/g

#### Method of Calibration:

This source was prepared from a weighed aliquot of solution whose activity in µCi/g was determined using a liquid scintillation counter.

#### **Uncertainty of Measurement:**

A. Type A (random) uncertainty: % 0.4 B. Type B (systematic) uncertainty: 3.0 % C. Uncertainty in aliquot weighing: % 0.0 D. Total uncertainty at the 99% confidence level: 3.0

#### Notes:

- See reverse side for leak test(s) performed on this source.
- IPL participates in a NIST measurement assurance program to establish and maintain implicit traceability for a number of nuclides, based on the blind assay (and later NIST certification) of Standard Reference Materials (as in NRC Regulatory Guide 4.15).
- Nuclear data was taken from NCRP Report No. 58, 1985.
- This solution has a working life of 5 years.

IPL Ref. No.:

1189-4

THE LEAK TEST(S) INDICATED BY THE CHECKED BOX(ESPINAS (WERE) A FINED TO DETERMINE PROJECT 308 OF 384 INTEGRITY OF THE SOURCE(S) DESCRIBED ON THE FRONT SIDE. THE LEAK TEST(S) INDICATED BELOW WERE EITHER TAKEN DIRECTLY FROM ISO 9978:1992 OR DERIVED FROM THE LEAK TEST METHODS LISTED IN ISO 9978:1992 WHEN AN APPROPRIATE TEST WAS NOT SPECIFICALLY LISTED.

| Χ      | Standard Wipe Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | The source was wiped over its entire surface with a moistened filter paper disk. After drying, the disk was checked for activity using a scintillation detector. There was <0.001 $\mu$ Ci beta-gamma and <0.0001 $\mu$ Ci alpha of removable activity.                                                                                                                                                                                                                                                                                                                  |
| $\Box$ | Special Wipe Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | The source was wiped over its entire surface with moistened polystyrene. The polystyrene was then dissolved in a liquid scintillation counter. There was $<0.001 \mu Ci$ beta-gamma and $<0.0001 \mu Ci$ alpha of removable activity.                                                                                                                                                                                                                                                                                                                                    |
|        | Distilled Water Soak Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|        | The source was immersed in distilled water and maintained at $50^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for a minimum of four hours or room temperature ( $20^{\circ}\text{C} \pm 5^{\circ}\text{C}$ ) for 24 hours. After removal of the source, the liquid was <b>a)</b> checked for activity using a liquid scintillation counter, or <b>b)</b> evaporated in a planchet and the residue checked for activity using a windowless proportional counter or end-window G.M. tube. There was <0.001 $\mu$ Ci beta-gamma and <0.0001 $\mu$ Ci alpha of removable activity. |
|        | Liquid Scintillation Soak Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | The source was immersed for a minimum of 3 hours at room temperature in a liquid scintillation cocktail, which does not attack the source's outer surface material. The source was stored away from light to avoid photoluminescence. The sealed source was then removed and the activity of the liquid scintillation cocktail was measured. There was <0.001 µCi beta-gamma and <0.0001 µCi alpha of removable activity.                                                                                                                                                |
|        | Gas Source Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | The source was placed in a vacuum desiccator and maintained at a pressure of <10 mm Hg for not less than 12 hours. The activity was checked by introducing air into the desiccator and monitoring the air with an end-window G.M. tube. There was <0.001 $\mu$ Ci beta-gamma of removable activity.                                                                                                                                                                                                                                                                      |
|        | Ampoule Leak Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | The ampoule was kept in an inverted position on a filter paper disk or polystyrene wipe for a minimum of 16 hours. The wipe was then checked for activity using a scintillation detector or liquid scintillation counter. There was $<0.001 \mu Ci$ beta-gamma and $<0.0001 \mu Ci$ alpha of removable activity.                                                                                                                                                                                                                                                         |
|        | Bubble Leak Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | The container was pressurized to its fill pressure; then soapy water was applied over its valve and neck or, the valve and neck of the vessel were immersed in water. If no growing bubbles were observed, the container was considered leak free.                                                                                                                                                                                                                                                                                                                       |
|        | Wipe Test for Industrial Ni-63 Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| _      | The sources were wipe tested by an approved sampling plan, which called for either 100% of the batch to be individually wipe tested, or, a subset thereof. The wipe test(s) used to test for removable contamination and the results of those tests are recorded on the front of this form.                                                                                                                                                                                                                                                                              |
| _      | Pressure Test for Triotech Kr-85 Sources                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | Prior to filling the vessel with Kr-85 gas, the vessel was evacuated to <5 mm Hg, the gas manifold system shut off and the system allowed to stand for a minimum of 30 minutes. A vacuum difference not greater than the known vacuum loss of the manifold system itself signified the vessel did not leak.                                                                                                                                                                                                                                                              |
|        | Leak Test Not Applicable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | The active area of the source is uncovered or is protected by a very thin coating. Although the deposit is adherent, it is not designed or certified to pass a standard leak test. The inactive portions of the source have been checked using the standard wipe test or special wipe test depending on the nuclide. There was <0.001 $\mu$ Ci beta-gamma and <0.0001 $\mu$ Ci alpha of removable activity.                                                                                                                                                              |
|        | Other Leak Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



# ARS Aleut Analytical, LLC Analytical Reports

for

**GES-AIS, LLC** 

**Sr-90 - CCV** 

ARS1-23-01973 Page 287 of 311

#### Beta Long BKG - ARS1-B23-01624-01

| Printed: 9/13/20 | 23 1:31 PM  |
|------------------|-------------|
|                  | Page 1 of 1 |

| Population Statistic | Statistics |            |          | Trending Analysis                                         |    |  |
|----------------------|------------|------------|----------|-----------------------------------------------------------|----|--|
| Population Size      | 30         | Date       | 9/8/2023 | Most recent point outside of the 3-sigma values.          | OK |  |
| Average              | 0.6726     | СРМ        | 0.6367   | 8 consecutive most recent points on one side of the mean. | OK |  |
| Standard Deviation   | 0.0300     | Count Mins | 900.00   | 2 of 3 most recent points above 2 sigma.                  | OK |  |
| + 3-sigma value      | 0.7627     | Date       | 9/1/2023 | 4 of 5 most recents points beyond the 1-sigma.            | OK |  |
| - 3-sigma value      | 0.5825     | СРМ        | 0.6600   | 7 trending most recent points in a row.                   | OK |  |
|                      |            | Count Mins | 900.00   | 15 most recent points inside 1 sigma.                     | OK |  |
|                      |            |            |          | 8 most recent points outside 1 sigma.                     | OK |  |





| Bin              | Frequency |
|------------------|-----------|
| 0.5825 to 0.6126 | 1         |
| 0.6126 to 0.6426 | 4         |
| 0.6426 to 0.6726 | 9         |
| 0.6726 to 0.7027 | 10        |
| 0.7027 to 0.7327 | 5         |
| 0.7327 to 0.7627 | 1         |
| 0.7327 to 0.7027 | '         |



#### Beta Daily BKG - ARS1-B23-01624-01

| Population Statistics |        |             | Trending Analysis |                                                           |    |
|-----------------------|--------|-------------|-------------------|-----------------------------------------------------------|----|
| Population Size       | 30     | Long B Date | 9/8/2023          | Most recent point outside of the 3-sigma values.          | OK |
| Average               | 0.6343 | Long B CPM  | 0.6367            | 8 consecutive most recent points on one side of the mean. | OK |
| Standard Deviation    | 0.0911 | Count Mins  | 900.00            | 2 of 3 most recent points above 2 sigma.                  | ОК |
| + 3-sigma value       | 0.9076 | Date        | 9/12/2023         | 4 of 5 most recents points beyond the 1-sigma.            | OK |
| - 3-sigma value       | 0.3611 | CPM         | 0.8917            | 7 trending most recent points in a row.                   | OK |
| DER                   | 2.8267 | Count Mins  | 120.00            | 15 most recent points inside 1 sigma.                     | ОК |
| DER Analysis          | OK     |             |                   | 8 most recent points outside 1 sigma.                     | OK |





| Bin              | Frequency |
|------------------|-----------|
| 0.3611 to 0.4521 | 0         |
| 0.4521 to 0.5432 | 4         |
| 0.5432 to 0.6343 | 13        |
| 0.6343 to 0.7254 | 9         |
| 0.7254 to 0.8165 | 2         |
| 0.8165 to 0.9076 | 2         |



Printed: 9/13/2023 1:31 PM

### Beta Daily EFF - ARS1-B23-01624-01

| Population Statistics |        |         |           | Trending Analysis                                         |    |
|-----------------------|--------|---------|-----------|-----------------------------------------------------------|----|
| Population Size       | 30     | Date    | 9/13/2023 | Most recent point outside of the 3-sigma values.          | ОК |
| Average               | 0.7351 | CPM/DPM | 0.7356    | 8 consecutive most recent points on one side of the mean. | ОК |
| Standard Deviation    | 0.0028 |         |           | 2 of 3 most recent points above 2 sigma.                  | OK |
| + 3-sigma value       | 0.7433 |         |           | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
| - 3-sigma value       | 0.7268 |         |           | 7 trending most recent points in a row.                   | ОК |
|                       |        |         |           | 15 most recent points inside 1 sigma.                     | ок |
|                       |        |         |           | 8 most recent points outside 1 sigma.                     | OK |





| Bin    | Frequency |
|--------|-----------|
| 0.7307 | 1         |
| 0.7327 | 7         |
| 0.7346 | 2         |
| 0.7366 | 10        |
| 0.7386 | 7         |
| More   | 3         |
|        |           |



Printed: 9/13/2023 1:31 PM

#### Beta Long BKG - ARS1-B23-01624-02

| Printed: | 9/13/2023 1:31 PM |
|----------|-------------------|
|          | Page 1 of 1       |

| Population Statistics |        |            |          | Trending Analysis                                         |    |
|-----------------------|--------|------------|----------|-----------------------------------------------------------|----|
| Population Size       | 30     | Date       | 9/8/2023 | Most recent point outside of the 3-sigma values.          | ОК |
| Average               | 0.6608 | СРМ        | 0.6433   | 8 consecutive most recent points on one side of the mean. | ОК |
| Standard Deviation    | 0.0512 | Count Mins | 900.00   | 2 of 3 most recent points above 2 sigma.                  | ОК |
| + 3-sigma value       | 0.8143 | Date       | 9/1/2023 | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
| - 3-sigma value       | 0.5073 | СРМ        | 0.5933   | 7 trending most recent points in a row.                   | ОК |
|                       |        | Count Mins | 900.00   | 15 most recent points inside 1 sigma.                     | ОК |
|                       |        |            |          | 8 most recent points outside 1 sigma.                     | OK |





| Bin              | Frequency |
|------------------|-----------|
| 0.5073 to 0.5585 | 0         |
| 0.5585 to 0.6096 | 4         |
| 0.6096 to 0.6608 | 16        |
| 0.6608 to 0.7119 | 5         |
| 0.7119 to 0.7631 | 3         |
| 0.7631 to 0.8143 | 2         |
|                  |           |



15 most recent points inside 1 sigma.

8 most recent points outside 1 sigma.

ARS Aleut Analytical, LLC Port Allen Laboratory

Population Statistics

Population Size

Standard Deviation

+ 3-sigma value

- 3-sigma value

**DER Analysis** 

Average

DER

30

0.6750

0.0905

0.9465

0.4035

1.4633

OK

Long B Date Long B CPM

Count Mins

Count Mins

Date

CPM

120.00

#### Beta Daily BKG - ARS1-B23-01624-02

| buny bito i | ANOT DEC 01024 02                                         | Page 1 of 1 |  |  |  |  |
|-------------|-----------------------------------------------------------|-------------|--|--|--|--|
|             | Trending Analysis                                         |             |  |  |  |  |
| 9/8/2023    | Most recent point outside of the 3-sigma values.          | ОК          |  |  |  |  |
| 0.6433      | 8 consecutive most recent points on one side of the mean. | ОК          |  |  |  |  |
| 900.00      | 2 of 3 most recent points above 2 sigma.                  | OK          |  |  |  |  |
| 9/12/2023   | 4 of 5 most recents points beyond the 1-sigma.            | OK          |  |  |  |  |
| 0.7667      | 7 trending most recent points in a row.                   | ОК          |  |  |  |  |

Printed: 9/13/2023 1:31 PM

OK

OK





| Bin              | Frequency |
|------------------|-----------|
| 0.4035 to 0.4940 | 1         |
| 0.4940 to 0.5845 | 4         |
| 0.5845 to 0.6750 | 9         |
| 0.6750 to 0.7655 | 13        |
| 0.7655 to 0.8560 | 3         |
| 0.8560 to 0.9465 | 0         |



#### Beta Daily EFF - ARS1-B23-01624-02

| Population Statistics |        |         |           | Trending Analysis                                         |             |
|-----------------------|--------|---------|-----------|-----------------------------------------------------------|-------------|
| Population Size       | 30     | Date    | 9/13/2023 | Most recent point outside of the 3-sigma values.          | ОК          |
| Average               | 0.7321 | CPM/DPM | 0.7319    | 8 consecutive most recent points on one side of the mean. | OK          |
| Standard Deviation    | 0.0021 |         |           | 2 of 3 most recent points above 2 sigma.                  | OK          |
| + 3-sigma value       | 0.7383 |         |           | 4 of 5 most recents points beyond the 1-sigma.            | INVESTIGATE |
| - 3-sigma value       | 0.7259 |         |           | 7 trending most recent points in a row.                   | ОК          |
|                       |        |         |           | 15 most recent points inside 1 sigma.                     | ОК          |
|                       |        |         |           | 8 most recent points outside 1 sigma.                     | OK          |





| Bin    | Frequency |  |
|--------|-----------|--|
| 0.7277 | 1         |  |
| 0.7293 | 2         |  |
| 0.7308 | 4         |  |
| 0.7324 | 12        |  |
| 0.7339 | 4         |  |
| More   | 7         |  |



Printed: 9/13/2023 1:31 PM

#### Beta Long BKG - ARS1-B23-01624-03

| Population Statistics |        |            |          | Trending Analysis                                         |             |
|-----------------------|--------|------------|----------|-----------------------------------------------------------|-------------|
| Population Size       | 30     | Date       | 9/8/2023 | Most recent point outside of the 3-sigma values.          | ОК          |
| Average               | 1.3623 | CPM        | 1.1422   | 8 consecutive most recent points on one side of the mean. | INVESTIGATE |
| Standard Deviation    | 0.3336 | Count Mins | 900.00   | 2 of 3 most recent points above 2 sigma.                  | OK          |
| + 3-sigma value       | 2.3631 | Date       | 9/1/2023 | 4 of 5 most recents points beyond the 1-sigma.            | OK          |
| - 3-sigma value       | 0.3615 | CPM        | 1.1089   | 7 trending most recent points in a row.                   | OK          |
|                       |        | Count Mins | 900.00   | 15 most recent points inside 1 sigma.                     | OK          |

8 most recent points outside 1 sigma.





| Bin              | Frequency |
|------------------|-----------|
| 0.3615 to 0.6951 | 0         |
| 0.6951 to 1.0287 | 5         |
| 1.0287 to 1.3623 | 7         |
| 1.3623 to 1.6959 | 15        |
| 1.6959 to 2.0295 | 2         |
| 2.0295 to 2.3631 | 1         |



Printed: 9/13/2023 1:31 PM

**OK** 

#### Beta Daily BKG - ARS1-B23-01624-03

| Population Statistics |        | Population Statistics |           |                                                           |    | Trending Analysis |  |
|-----------------------|--------|-----------------------|-----------|-----------------------------------------------------------|----|-------------------|--|
| Population Size       | 30     | Long B Date           | 9/8/2023  | Most recent point outside of the 3-sigma values.          | ОК |                   |  |
| Average               | 1.1400 | Long B CPM            | 1.1422    | 8 consecutive most recent points on one side of the mean. | ОК |                   |  |
| Standard Deviation    | 0.1808 | Count Mins            | 900.00    | 2 of 3 most recent points above 2 sigma.                  | ОК |                   |  |
| + 3-sigma value       | 1.6825 | Date                  | 9/12/2023 | 4 of 5 most recents points beyond the 1-sigma.            | ОК |                   |  |
| - 3-sigma value       | 0.5975 | CPM                   | 1.0833    | 7 trending most recent points in a row.                   | OK |                   |  |
| DER                   | 0.5803 | Count Mins            | 120.00    | 15 most recent points inside 1 sigma.                     | ок |                   |  |
| DER Analysis          | OK     |                       |           | 8 most recent points outside 1 sigma.                     | OK |                   |  |





|   | Bin              | Frequency |
|---|------------------|-----------|
| ( | 0.5975 to 0.7783 | 0         |
| ( | 0.7783 to 0.9592 | 3         |
| ( | 0.9592 to 1.1400 | 14        |
| , | 1.1400 to 1.3208 | 8         |
| , | 1.3208 to 1.5017 | 4         |
| • | 1.5017 to 1.6825 | 1         |
|   |                  |           |



Printed: 9/13/2023 1:31 PM

### Beta Daily EFF - ARS1-B23-01624-03

| Population Statistics |        | Population Statistics |           | Trending Analysis                                         | ig Analysis |  |
|-----------------------|--------|-----------------------|-----------|-----------------------------------------------------------|-------------|--|
| Population Size       | 30     | Date                  | 9/13/2023 | Most recent point outside of the 3-sigma values.          | ОК          |  |
| Average               | 0.7253 | CPM/DPM               | 0.7289    | 8 consecutive most recent points on one side of the mean. | OK          |  |
| Standard Deviation    | 0.0027 |                       |           | 2 of 3 most recent points above 2 sigma.                  | OK          |  |
| + 3-sigma value       | 0.7334 |                       |           | 4 of 5 most recents points beyond the 1-sigma.            | ОК          |  |
| - 3-sigma value       | 0.7173 |                       |           | 7 trending most recent points in a row.                   | OK          |  |
|                       |        |                       |           | 15 most recent points inside 1 sigma.                     | ОК          |  |
|                       |        |                       |           | 8 most recent points outside 1 sigma.                     | ОК          |  |





| Bin    | Frequency |
|--------|-----------|
| 0.7204 | 1         |
| 0.7222 | 4         |
| 0.7239 | 3         |
| 0.7257 | 7         |
| 0.7274 | 7         |
| More   | 8         |



Printed: 9/13/2023 1:31 PM

### Beta Long BKG - ARS1-B23-01624-04

| Population Statistics |        | atistics   |          | Trending Analysis                                         |    |
|-----------------------|--------|------------|----------|-----------------------------------------------------------|----|
| Population Size       | 30     | Date       | 9/8/2023 | Most recent point outside of the 3-sigma values.          | OK |
| Average               | 0.7646 | СРМ        | 0.7578   | 8 consecutive most recent points on one side of the mean. | OK |
| Standard Deviation    | 0.0331 | Count Mins | 900.00   | 2 of 3 most recent points above 2 sigma.                  | OK |
| + 3-sigma value       | 0.8639 | Date       | 9/1/2023 | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
| - 3-sigma value       | 0.6652 | СРМ        | 0.6944   | 7 trending most recent points in a row.                   | ОК |
|                       |        | Count Mins | 900.00   | 15 most recent points inside 1 sigma.                     | ОК |
|                       |        |            |          | 8 most recent points outside 1 sigma.                     | OK |





| Bin              | Frequency |
|------------------|-----------|
| 0.6652 to 0.6984 | 2         |
| 0.6984 to 0.7315 | 2         |
| 0.7315 to 0.7646 | 11        |
| 0.7646 to 0.7977 | 11        |
| 0.7977 to 0.8308 | 4         |
| 0.8308 to 0.8639 | 0         |



Printed: 9/13/2023 1:31 PM

### Beta Daily BKG - ARS1-B23-01624-04

| Printed: 9/13/2023 1:31 PM |  |
|----------------------------|--|
| Page 1 of 1                |  |

| <b>Population Statistics</b> |        |             |           | Trending Analysis                                         |    |
|------------------------------|--------|-------------|-----------|-----------------------------------------------------------|----|
| Population Size              | 30     | Long B Date | 9/8/2023  | Most recent point outside of the 3-sigma values.          | ОК |
| Average                      | 0.7672 | Long B CPM  | 0.7578    | 8 consecutive most recent points on one side of the mean. | ОК |
| Standard Deviation           | 0.0914 | Count Mins  | 900.00    | 2 of 3 most recent points above 2 sigma.                  | OK |
| + 3-sigma value              | 1.0413 | Date        | 9/12/2023 | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
| - 3-sigma value              | 0.4931 | СРМ         | 0.7167    | 7 trending most recent points in a row.                   | ОК |
| DER                          | 0.4980 | Count Mins  | 120.00    | 15 most recent points inside 1 sigma.                     | ОК |
| DER Analysis                 | OK     |             |           | 8 most recent points outside 1 sigma.                     | OK |





| В   | in            | Frequency |
|-----|---------------|-----------|
| 0.4 | 931 to 0.5845 | 1         |
| 0.5 | 845 to 0.6759 | 5         |
| 0.6 | 759 to 0.7672 | 10        |
| 0.7 | 672 to 0.8586 | 10        |
| 0.8 | 586 to 0.9500 | 4         |
| 0.9 | 500 to 1.0413 | 0         |
|     |               |           |



### Beta Daily EFF - ARS1-B23-01624-04

| Port Allen Laboratory |        |         |           |                                                           | Page 1 of 1 |  |
|-----------------------|--------|---------|-----------|-----------------------------------------------------------|-------------|--|
| Population Statisti   | cs     |         |           | Trending Analysis                                         |             |  |
| Population Size       | 30     | Date    | 9/13/2023 | Most recent point outside of the 3-sigma values.          | OK          |  |
| Average               | 0.7264 | CPM/DPM | 0.7280    | 8 consecutive most recent points on one side of the mean. | OK          |  |
| Standard Deviation    | 0.0029 |         |           | 2 of 3 most recent points above 2 sigma.                  | OK          |  |
| + 3-sigma value       | 0.7349 |         |           | 4 of 5 most recents points beyond the 1-sigma.            | OK          |  |
| - 3-sigma value       | 0.7178 |         |           | 7 trending most recent points in a row.                   | OK          |  |
|                       |        |         |           | 15 most recent points inside 1 sigma.                     | OK          |  |
|                       |        |         |           | 8 most recent points outside 1 sigma.                     | ОК          |  |





| Bin    | Frequency |
|--------|-----------|
| 0.7215 | 1         |
| 0.7239 | 6         |
| 0.7263 | 6         |
| 0.7286 | 12        |
| 0.7310 | 3         |
| More   | 2         |



Printed: 9/13/2023 1:31 PM

#### Beta Long BKG - ARS1-B23-01624-05

| Port Allen Laboratory |        | Deta Long DNO - ANOT-D25-01024-03 |           |                                                           | Page 1 of 1 |  |
|-----------------------|--------|-----------------------------------|-----------|-----------------------------------------------------------|-------------|--|
| Population Statistics |        |                                   |           | Trending Analysis                                         |             |  |
| Population Size       | 30     | Date                              | 9/11/2023 | Most recent point outside of the 3-sigma values.          | OK          |  |
| Average               | 0.7266 | CPM                               | 0.6911    | 8 consecutive most recent points on one side of the mean. | OK          |  |
| Standard Deviation    | 0.0326 | Count Mins                        | 900.00    | 2 of 3 most recent points above 2 sigma.                  | OK          |  |
| + 3-sigma value       | 0.8244 | Date                              | 9/8/2023  | 4 of 5 most recents points beyond the 1-sigma.            | OK          |  |
| - 3-sigma value       | 0.6288 | CPM                               | 0.7211    | 7 trending most recent points in a row.                   | OK          |  |
|                       |        | Count Mins                        | 900.00    | 15 most recent points inside 1 sigma.                     | OK          |  |
|                       |        |                                   |           | 8 most recent points outside 1 sigma.                     | ок          |  |





| Bin              | Frequency |
|------------------|-----------|
| 0.6288 to 0.6614 | 0         |
| 0.6614 to 0.6940 | 6         |
| 0.6940 to 0.7266 | 10        |
| 0.7266 to 0.7592 | 10        |
| 0.7592 to 0.7918 | 3         |
| 0.7918 to 0.8244 | 1         |



Printed: 9/13/2023 1:31 PM

### Beta Daily BKG - ARS1-B23-01624-05

| Population Statistics |        |             |           | Trending Analysis                                         |    |
|-----------------------|--------|-------------|-----------|-----------------------------------------------------------|----|
| Population Size       | 30     | Long B Date | 9/11/2023 | Most recent point outside of the 3-sigma values.          | ок |
| Average               | 0.7225 | Long B CPM  | 0.6911    | 8 consecutive most recent points on one side of the mean. | OK |
| Standard Deviation    | 0.0843 | Count Mins  | 900.00    | 2 of 3 most recent points above 2 sigma.                  | ОК |
| + 3-sigma value       | 0.9754 | Date        | 9/12/2023 | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
| - 3-sigma value       | 0.4696 | CPM         | 0.7417    | 7 trending most recent points in a row.                   | ОК |
| DER                   | 0.6065 | Count Mins  | 120.00    | 15 most recent points inside 1 sigma.                     | ОК |
| DER Analysis          | OK     |             |           | 8 most recent points outside 1 sigma.                     | OK |





| Bin              | Frequency |
|------------------|-----------|
| 0.4696 to 0.5539 | 1         |
| 0.5539 to 0.6382 | 2         |
| 0.6382 to 0.7225 | 12        |
| 0.7225 to 0.8068 | 10        |
| 0.8068 to 0.8911 | 4         |
| 0.8911 to 0.9754 | 1         |



Printed: 9/13/2023 1:31 PM

### Beta Daily EFF - ARS1-B23-01624-05

| oratory               |        |         | -         |                                                           | Page 1 of 1 |
|-----------------------|--------|---------|-----------|-----------------------------------------------------------|-------------|
| Population Statistics |        |         |           | Trending Analysis                                         |             |
| Population Size       | 30     | Date    | 9/13/2023 | Most recent point outside of the 3-sigma values.          | ОК          |
| Average               | 0.7211 | CPM/DPM | 0.7244    | 8 consecutive most recent points on one side of the mean. | OK          |
| Standard Deviation    | 0.0028 |         |           | 2 of 3 most recent points above 2 sigma.                  | OK          |
| + 3-sigma value       | 0.7295 |         |           | 4 of 5 most recents points beyond the 1-sigma.            | INVESTIGATE |
| - 3-sigma value       | 0.7128 |         |           | 7 trending most recent points in a row.                   | ОК          |
|                       |        |         |           | 15 most recent points inside 1 sigma.                     | OK          |

8 most recent points outside 1 sigma.





| Bin    | Frequency |
|--------|-----------|
| 0.7157 | 1         |
| 0.7179 | 2         |
| 0.7201 | 9         |
| 0.7223 | 9         |
| 0.7245 | 4         |
| More   | 5         |



Printed: 9/13/2023 1:31 PM

**OK** 

ARS Aleut Analytical, LLC Port Allen Laboratory

#### Beta Long BKG - ARS1-B23-01624-06

| Printed: 9/13/2023 1:31 PM |  |
|----------------------------|--|
| Page 1 of 1                |  |
|                            |  |

| Population Statistic                                                                                          |  |            | Trending Analysis |                                                           |    |
|---------------------------------------------------------------------------------------------------------------|--|------------|-------------------|-----------------------------------------------------------|----|
| Population Size 30  Average 0.7342  Standard Deviation 0.0417  + 3-sigma value 0.8594  - 3-sigma value 0.6090 |  | Date       | 9/8/2023          | Most recent point outside of the 3-sigma values.          | ОК |
|                                                                                                               |  | СРМ        | 0.6689            | 8 consecutive most recent points on one side of the mean. | ОК |
|                                                                                                               |  | Count Mins | 900.00            | 2 of 3 most recent points above 2 sigma.                  | OK |
|                                                                                                               |  | Date       | 9/1/2023          | 4 of 5 most recents points beyond the 1-sigma.            | ОК |
|                                                                                                               |  | СРМ        | 0.6933            | 7 trending most recent points in a row.                   | ОК |
|                                                                                                               |  | Count Mins | 900.00            | 15 most recent points inside 1 sigma.                     | ОК |
|                                                                                                               |  |            |                   | 8 most recent points outside 1 sigma.                     | ОК |





| 0  |
|----|
| 5  |
| 10 |
| 11 |
| 2  |
| 2  |
|    |



ARS Aleut Analytical, LLC Port Allen Laboratory

#### Beta Daily BKG - ARS1-B23-01624-06

|         | T Timed: 0/ T | Page 1 of 1 |
|---------|---------------|-------------|
| llysis  |               |             |
|         | ОК            |             |
| e mean. | OK            |             |
|         | ОК            |             |
|         | OK            |             |

Printed: 9/13/2023 1:31 PM

| Population Statistic                                                     |                                          |            | Trending Analysis |                                                           |    |
|--------------------------------------------------------------------------|------------------------------------------|------------|-------------------|-----------------------------------------------------------|----|
| Population Size                                                          | Population Size 30                       |            | 9/8/2023          | Most recent point outside of the 3-sigma values.          | OK |
| Average                                                                  | Average 0.7553 Standard Deviation 0.0741 |            | 0.6689            | 8 consecutive most recent points on one side of the mean. | OK |
| Standard Deviation                                                       |                                          |            | 900.00            | 2 of 3 most recent points above 2 sigma.                  | OK |
| + 3-sigma value 0.9777 - 3-sigma value 0.5329 DER 0.6809 DER Analysis OK |                                          | Date       | 9/12/2023         | 4 of 5 most recents points beyond the 1-sigma.            | OK |
|                                                                          |                                          | СРМ        | 0.6167            | 7 trending most recent points in a row.                   | OK |
|                                                                          |                                          | Count Mins | 120.00            | 15 most recent points inside 1 sigma.                     | OK |
|                                                                          |                                          |            |                   | 8 most recent points outside 1 sigma.                     | OK |





| Bin              | Frequency |
|------------------|-----------|
| 0.5329 to 0.6070 | 0         |
| 0.6070 to 0.6811 | 4         |
| 0.6811 to 0.7553 | 11        |
| 0.7553 to 0.8294 | 11        |
| 0.8294 to 0.9035 | 4         |
| 0.9035 to 0.9777 | 0         |



ARS Aleut Analytical, LLC Port Allen Laboratory

#### Beta Daily EFF - ARS1-B23-01624-06

| Population Statistic                                                        | cs     |         |           | Trending Analysis                                         |             |
|-----------------------------------------------------------------------------|--------|---------|-----------|-----------------------------------------------------------|-------------|
| Population Size 30                                                          |        | Date    | 9/13/2023 | Most recent point outside of the 3-sigma values.          | ОК          |
| Average                                                                     | 0.7238 | CPM/DPM | 0.7262    | 8 consecutive most recent points on one side of the mean. | INVESTIGATE |
| Standard Deviation 0.0033   + 3-sigma value 0.7336   - 3-sigma value 0.7140 |        |         |           | 2 of 3 most recent points above 2 sigma.                  | OK          |
|                                                                             |        |         |           | 4 of 5 most recents points beyond the 1-sigma.            | OK          |
|                                                                             |        |         |           | 7 trending most recent points in a row.                   | OK          |
|                                                                             |        |         |           | 15 most recent points inside 1 sigma.                     | OK          |
|                                                                             |        |         |           | 8 most recent points outside 1 sigma.                     | ОК          |





| Bin    | Frequency |
|--------|-----------|
| 0.7183 | 1         |
| 0.7207 | 6         |
| 0.7232 | 7         |
| 0.7256 | 7         |
| 0.7281 | 7         |
| More   | 2         |



Printed: 9/13/2023 1:31 PM

Page 1 of 1

Page 328 of 384



2609 North River Road • Port Allen, Louisiana 70767 (225) 228-1394

## **ARS Aleut Analytical, LLC Analytical Reports**

for

**GES-AIS, LLC** 

### **Technical Review Checklists**

ARS1-23-01973 Page 306 of 311

### Project Manager Report Checklist

| Data Package:  | ARS1-23-01973   | Client:  | GES-AIS, LLC |  |
|----------------|-----------------|----------|--------------|--|
| Bata i achago. | 711101 20 01070 | Ollorit. | 0207110, 220 |  |

| Report Compilation Checklist:                          | Review |
|--------------------------------------------------------|--------|
| COMPONENTS: Stage 1                                    |        |
| Title Page and Cover Sheet                             | Yes    |
| Table Of Contents                                      | Yes    |
| Case Narrative (including Correspondence/Notes Page)   | Yes    |
| Form 1s (including all Samples and Tests)              | Yes    |
| Sample Receipt Records (COC/SDG/DQO/Survey/Shipping)   | Yes    |
| COMPONENTS: Stage 2                                    |        |
| All Stage 1 Components                                 | Yes    |
| A) QC Results (including All Tests)                    | Yes    |
| B) Instrument QC Forms                                 | Yes    |
| B) Instrument Runlong/Preparation Logs                 | Yes    |
| COMPONENTS: Stage 3                                    |        |
| All Stage 2A/B Components                              | Yes    |
| Instrument Quantitation Reports and Raw Data           | Yes    |
| LIMS Generated Reports                                 | Yes    |
| Standards Tracability                                  | Yes    |
| COMPONENTS: Stage 4                                    |        |
| All Stage 3 Components                                 | Yes    |
| RAD Instrument Data (Eff/Cal/Back/Spec/Control Charts) | Yes    |
| Chemistry Data (Cal/CVV/Spectrums)                     | N/A    |
| Technical Review Checklists                            | Yes    |

| AHOOVER          | 10/2/2023 11:21 | SLEESE             | 10/2/2023 12:03 |
|------------------|-----------------|--------------------|-----------------|
| Primary Reviewer | Date            | Secondary Reviewer | Date            |

#### Comments:

No comments were added to this technical review.

#### **SDG Comments:**

Priority sample per email.

Report Checklist: ARS1-23-01973

Page 307 of 311

Secondary Reviewer

Date

### **GPC Technical Review Checklist**

| SDG: ARS1-23-01973                                      |              |            |                     | Batch:       |        | ARS1-B23-01624 | 4 (GPC-SR9    | 0-SO) |                 |
|---------------------------------------------------------|--------------|------------|---------------------|--------------|--------|----------------|---------------|-------|-----------------|
| Aliquot:                                                | <b>(</b> ) D | )ry        | As Received         |              | ○ Filt | ered           | Other:        |       |                 |
| QC Samples:                                             | <b>√</b> E   | Blank      | ✓ LCS               | $\checkmark$ | LCSD   | $\checkmark$   | Sample Dup    | MS    | MSD             |
|                                                         |              |            |                     |              |        |                |               |       |                 |
| Sample Preparation                                      | on Revie     | ew:        |                     |              |        |                | Primary Revie | w S   | econdary Review |
| 100% of manual transc                                   | criptions v  | verified?  |                     |              |        |                | Yes           |       | Yes             |
| QC and samples are ali                                  | iquoted/     | traced?    |                     |              |        |                | Yes           |       | Yes             |
| QC (LCS and LCSD) sam                                   | nples are p  | present a  | nd match ID to ba   | tch ID       | 1      |                | Yes           |       | Yes             |
| Tracer Recorded / Carr                                  | ier Recor    | ded corre  | ct standard         |              |        |                | Yes           |       | Yes             |
| Gravimetric Yield is wit                                | thin accep   | otance lim | its?                |              |        |                | Yes           |       | Yes             |
| Deviations from proce                                   | dure are o   | document   | ed and verified?    |              |        |                | N/A 1         |       | N/A             |
| Preparation anomaly?                                    |              |            |                     |              |        |                | No            |       | N/A             |
| DVA/III I I A A A C                                     |              |            | 112/2022 11 04      |              |        | CVA/AI         | DDOD          | 0/12  | /2022 44 00     |
| DWILLIAMS                                               |              |            | 9/13/2023 11:04     |              |        |                | _DROP         | 9/13  | /2023 11:09     |
| Primary Reviev                                          | ver          |            | Date                |              | Se     | condar         | y Reviewer    |       | Date            |
| Sample Analysis R                                       | eview:       |            |                     |              |        |                | Primary Revie | w S   | econdary Review |
| Calibrations/Backgroun                                  | nds valid a  | and curre  | nt?                 |              |        |                | Yes           |       | Yes             |
| Source Checks comple                                    | ted and a    | cceptable  | eptable? Yes Yes    |              |        | Yes            |               |       |                 |
| Background Checks co                                    | mpleted a    | and accep  | table?              |              |        |                | Yes           |       | Yes             |
| 100% of manually ente                                   | ered parar   | meters ve  | verified accurate?  |              | Yes    |                |               |       |                 |
| Appropriate QC samples initiated at required frequency? |              |            |                     |              |        | Yes            |               | Yes   |                 |
| Test/Sample specific p                                  | arameter     | rs (See AR | S-059 for details)  |              |        |                |               |       |                 |
| Physical configuratio                                   | n of samp    | ole equiva | lent to calibration | ?            |        |                | Yes           |       | Yes             |
| Analysis anomaly?                                       |              |            |                     |              |        |                | No            |       | N/A             |
| SWALDROP                                                |              | Ç          | 9/13/2023 13:37     |              |        | BSTE           | FFENS         | 9/19  | /2023 12:04     |

Batch Checklist: ARS1-B23-01624 / ARS1-23-01973

Date

Page 308 of 311

**Primary Reviewer** 



| Project Management and Laboratory Management Review: | Primary Review | Secondary Review |
|------------------------------------------------------|----------------|------------------|
| RDL criteria met?                                    | Yes            | Yes              |
| Activity + 3xCSU a negative number?                  | No             | No               |
| Method Blank criteria met?                           | Yes            | Yes              |
| LCS/LCSD criteria met?                               | Yes            | Yes              |
| Duplicate (DUP, LCSD, MSD) criteria met?             | Yes            | Yes              |
| MS/MSD criteria met?                                 | N/A            | N/A              |
| Chemical yield results meet acceptance criteria?     | Yes            | Yes              |
| Batch QC anomaly?                                    | No             | N/A              |

| AHOOVER          | 10/2/2023 11:20 | SLEESE             | 10/2/2023 12:03 |
|------------------|-----------------|--------------------|-----------------|
| Primary Reviewer | Date            | Secondary Reviewer | Date            |

#### Comments:

No comments were added to this technical review.

#### **Technical Notes:**

No tech notes were entered.

Batch Checklist: ARS1-B23-01624 / ARS1-23-01973

ARS1-23-01973 Page 309 of 311



## Gamma Spec Technical Review Checklist

| SDG: ARS1-23-01973 Batch:                                        | ARS1-B23-01775 (GAN | /I-IG21-SO)      |
|------------------------------------------------------------------|---------------------|------------------|
| Aliquot: Ory As Received Filtered                                | Other:              |                  |
| QC Samples: V Blank V LCS V LCSD                                 | Sample Dup          | MS MSD           |
|                                                                  |                     |                  |
| Sample Preparation and Analysis Review:                          | Primary Review      | Secondary Review |
| Sample Prep anomaly?                                             | No                  | N/A              |
| Prepped sample homogeneity acceptable?                           | Yes                 | N/A              |
| Physical integrity of equipment verified?                        | Yes                 | N/A              |
| Cleanliness of equipment verified?                               | Yes                 | N/A              |
| Test/Sample specific parameters (See ARS-059 for details)        |                     |                  |
| Calibration applied matches sample geometry?                     | Yes                 | Yes              |
| Nuclide Identification Report correlates within expected ranges? | Yes                 | Yes              |
| FWHM / Peak Activity Correlation is satisfactory?                | Yes                 | Yes              |
| Library Identified Peaks are correctly identified?               | Yes                 | Yes              |
| Spectral Anomalies addressed & appropriate action taken?         | N/A                 | N/A              |
| Peak Background Correction is activated?                         | Yes                 | Yes              |
| Calibrations/Backgrounds valid and current?                      | Yes                 | Yes              |
| Source Checks completed and acceptable?                          | Yes                 | Yes              |
| Background Checks completed and acceptable?                      | Yes                 | Yes              |
| Sample IDs correspond to LIMS SDG information?                   | Yes                 | Yes              |
| 100% of manual transcriptions verified?                          | Yes                 | Yes              |
| Sample prepped in valid geometry? (Sample Prep Information)      | Yes                 | Yes              |
| Prepped sample density acceptable?                               | Yes                 | Yes              |

| SWALDROP         | 10/2/2023 08:05 | BSTEFFENS          | 10/2/2023 10:39 |
|------------------|-----------------|--------------------|-----------------|
| Primary Reviewer | Date            | Secondary Reviewer | Date            |

Yes

Yes

No

Yes

Yes

N/A

Batch Checklist: ARS1-B23-01775 / ARS1-23-01973

ARS1-23-01973 Page 310 of 311

Appropriate QC samples initiated at required frequency?

100% of manually entered parameters verified accurate?

Analysis anomaly?

| Project Management and Laboratory Management Review: | Primary Review | Secondary Review |
|------------------------------------------------------|----------------|------------------|
| RDL criteria met?                                    | Yes            | Yes              |
| Activity + 3xCSU a negative number?                  | No             | No               |
| Method Blank criteria met?                           | Yes            | Yes              |
| LCS/LCSD criteria met?                               | Yes            | Yes              |
| Duplicate (DUP, LCSD) criteria met?                  | Yes            | Yes              |
| Batch QC anomaly?                                    | No             | N/A              |

| AHOOVER          | 10/2/2023 11:21 | SLEESE             | 10/2/2023 12:03 |
|------------------|-----------------|--------------------|-----------------|
| Primary Reviewer | Date            | Secondary Reviewer | Date            |

#### Comments:

No comments were added to this technical review.

#### **Technical Notes:**

ARS1-23-01973

No tech notes were entered.

Batch Checklist: ARS1-B23-01775 / ARS1-23-01973

Page 311 of 311

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 334 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

## APPENDIX B HPNS PARCEL C FACT SHEET

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank



#### FACT SHEET **Hunters Point Naval Shipyard**

Parcel C Radiological Deck Marker Recovery September 2023



This fact sheet discusses information about the recent recovery of a deck marker in a secured area on Parcel C at Hunters Point Naval Shipyard (HPNS).

#### Radiological Retesting at HPNS

In late 2017, Navy completed an evaluation of past radiological data in identified areas at HPNS and determined this data to be unreliable. Since 2020, the Navy has been collecting new radiological data in those identified areas to ensure cleanup is protective of public health and the environment. The data includes soil samples from trench excavations, soil borings, and former building areas. Retesting fieldwork at Parcel C began in August 2022 and is ongoing. To date, 40% of the planned trenches in Parcel C have been excavated and sampled.

#### Recovery at Parcel C

On August 24, 2023, a reading was detected during a routine scan conducted of excavated material from trench unit (TU) - 315 at Parcel C. A mobile radiation detection system identified the reading in excavated soil from TU-315 on a radiological screening yard (RSY) pad in a secure area. In compliance with established work plans, the location was marked off for further investigation.

#### How was the deck marker found?

Upon further investigation, a historical deck marker, approximately 1.5-inches in diameter, was found intact 2-inches below the surface in loose soil on the RSY pad. Surrounding soil samples were taken for further analysis. Static gamma counts and dose-rate readings were collected before the item was bagged, labeled, and placed in a lead-lined safe inside a secure, on-site trailer.

#### Is the community at risk?

No. Parcel C is not accessible to the public. The deck marker was found in a radiologically-controlled area within a secure, active cleanup site at HPNS and does not pose a risk to members of the community. The Navy's health and safety protocols ensured worker safety during recovery and removal of the deck marker.

The relative dose of radiation from the deck marker is low, at 1.9 millirem annually if a person were to sit or lay down on top of the location for 8 hours per day for 1 year. This annual exposure is roughly equivalent to a single six-hour flight from New York to California.

#### How can you get answers to your radiological health and safety questions?

Dr. Kathryn Higley is an internationally recognized expert in radiological health and safety. She is a resource to the community for radiological health and safety information, especially as it relates to HPNS.

Members of the community may contact Dr. Higley directly by phone (541-737-0675) or email (kathryn.higley@oregonstate.edu). She is also available during scheduled office hours (scan the QR code to register).

This image shows the location where the deck marker was identified before it was removed. It is located on an RSY pad within a restricted area.



#### Scan the **QR** code for **HPNS** resources

- Join the mailing list
- Link to the Navy website
- Register for guided bus tours
- Sign up for Technical Advisor office hours



#### **Historical Use of Deck Markers**

#### What is a deck marker?

To mark the edges of aircraft carrier ship decks at night, glowing discs that provided low level light sources were attached to the ship at regular intervals by two screws. The Navy historically used these discs, known as "deck markers," on ships that came to the Hunters Point drydocks during World War II.

#### What is radium?

Radium is a chemical element with the symbol "Ra" and atomic number 88. It is included in the Periodic Table of Elements in the alkaline earth metals group. It is naturally present in the environment in small amounts in rocks and soil and is also present in manmade sources. During the early 1900s through midcentury, it was common practice to add radium to paint to make items glow in the dark.

Before the effects of radiation exposure were well understood, radium was used in everyday items, including toys, nightlights, wristwatch dials, and clock faces.

#### How did deck markers get onto HPNS property?

Radioluminescent (glow-in-the-dark) items that were typically used by the Navy included switches, volt meters, deck markers, and safety ropes. While ships were in dry dock at HPNS, deck markers and other items were removed and/or replaced during normal ship maintenance activities.

#### How is the public affected by deck markers?

The amount of radiation exposure from a deck marker on a ship or on the ground is very low. Direct exposure to deck markers on HPNS today is unlikely.

有关海军在猎人角海军造船厂的清理活动方案的更多信息, 请拨打 (833) 350-6222 并留言。 Para más información sobre el programa de limpieza de la Marina en Hunters Point Naval Shipyard, favor de dejar un mensaje en (833) 202-5888.

www.bracpmo.navy.mil/hpns

info@sfhpns.com

(415) 295-4742

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 338 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

## APPENDIX C HPNS PARCEL C PHASE I DAILY PRODUCTION REPORT FOR 08.24.23 - GES REPORT

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank



#### **DAILY PRODUCTION REPORT**

(Attach Continuation Page as Needed)

|           | CONTRACT NO                    | . / TO NO.                      |                                            | PROJECT TI     | TLE / LOC   | ATION    |                                                           | REPORT DATE      | REPORT NO  |
|-----------|--------------------------------|---------------------------------|--------------------------------------------|----------------|-------------|----------|-----------------------------------------------------------|------------------|------------|
| Project   | N62473-17-D-0                  | 0005                            |                                            | Pa             | rcel C      |          |                                                           |                  |            |
| 5         | GES<br>Project No.             | J31000.600                      | Hunters P                                  | Point Naval Sh |             | an Fran  | ncisco, CA                                                | 24-Aug-23        | 150        |
| Ŧ         |                                | Weather 0                       | conditions                                 |                | Tem         | ) (F)    | G                                                         | round Conditions |            |
| ja l      | AM                             | Partly cloudy                   | PM Partly Se                               | unny           | Low<br>High | 63<br>86 |                                                           | Dry              |            |
| O I       | Additional Com<br>23 MPH max w |                                 |                                            |                |             |          |                                                           |                  |            |
| 1         | Scheduled<br>Activity No.      | GES<br>Staff Name               | Trade/Duty Position                        | Number         |             |          | Description of Work Pe                                    | erformed         | Hr         |
| ŀ         |                                | Henery Ng                       | Project Engineer                           | 1              | Project     | oversig  | ht                                                        |                  |            |
|           |                                | Federico DeLeon                 | Laborer                                    | 1              | Laborer     |          |                                                           |                  | 1          |
|           |                                | Mohammad-Qasim<br>Pacha         | QC Manager                                 | 1              | Quality     | Control  |                                                           |                  |            |
|           |                                | Tony Olmstead                   | Senior Superintendent                      | 1              | Project i   | nanage   | ement/Alt QC/Alt H&S                                      |                  |            |
|           |                                | Randy Jackson                   | Site Superintendent                        | 1              |             |          | tendent                                                   |                  |            |
| 9         |                                | Charles Halvorson               | Laborer/ Operator                          | 1              | Laborer     | Opera    | tor                                                       |                  |            |
| e Site    |                                | Giovanny Alfaro                 | Operator / superviser                      | 1              | Oversig     | ht / sup | erintendent                                               |                  |            |
| e C       |                                | Kim Tom                         | Air monitoring                             | 1              | Air equi    |          |                                                           |                  | 1          |
| Personnel |                                | Mike Chindavong Erick Gutierrez | Air monitoring                             | 1              | Air equi    | pment    |                                                           |                  | 1          |
| Ď         |                                | Frankie Hernandez               | Laborer<br>Laborer                         | 1              | Laborer     | Opera    | tor                                                       |                  |            |
| S L       |                                | Andre Galloway                  | Laborer                                    | 1              | Laborer     | Орега    | toi                                                       |                  |            |
|           |                                | Dusty Herteman                  | Operator                                   | 1              | Operato     | r        |                                                           |                  | 1          |
|           |                                | Chanthachone Alexander          | H&S                                        | 1              | 1 -         |          | ety oversight                                             |                  |            |
|           |                                | Zach McFarland                  | Labor                                      | 1              | Labor       |          |                                                           |                  | 1          |
|           |                                | Mark Henry                      | Operator                                   | 1              | Equipme     | ent Ope  | erator                                                    |                  | 1          |
|           |                                | Teresah Ruha                    | Site Geologist                             | 1              | Site ge     | ologis   | t                                                         |                  |            |
|           |                                | Harry Obregon                   | Labor                                      | 1              | Labor       |          |                                                           |                  |            |
|           |                                | Logan Schwing                   | Air monitoring                             | 1              | Air equ     |          |                                                           |                  |            |
| 4         |                                | Andy Alexander                  | Radiation Manager                          | 1              | Radiolog    | gical Su | upport                                                    |                  |            |
|           | Scheduled Activity<br>No.      | Employer                        | Trade/Duty/Position                        |                |             |          | Description of Work Pe                                    | erformed         | Hr         |
| Site      |                                | Envirachem                      | Chris Bryson/RSO                           | 1              |             |          | ipport/RSO                                                |                  |            |
| 5         |                                | Envirachem                      | James Vorasane/Rad Te<br>Buress Swayze/RSO |                | Radiolog    |          | ipport<br>ipport/RSO                                      |                  |            |
|           |                                | Envirachem<br>Envirachem        | Danny Bullian/Rad Tech                     | 1 1            | Radiolog    |          | <u>''</u>                                                 |                  |            |
| Personnel |                                | Envirachem                      | Jaime Pena/Rad Tech                        | 1              | Radiolo     |          | • •                                                       |                  | 1          |
| Ē         |                                | Envirachem                      | Paul Dannenberg/Rad To                     |                | Radiolo     |          |                                                           |                  |            |
| ntractor  |                                | Envirachem                      | Kenny Enabenter/ Rad T                     |                | Radiolog    |          | **                                                        |                  |            |
| 5         |                                |                                 | Henry Lawson/Driver                        | 1              | Dump tr     |          |                                                           |                  | 1          |
| sancor    |                                | Lawson Trucking                 | Maurice Wysinger/Drive                     |                | Dump tr     |          |                                                           |                  |            |
| '         |                                | Lawson Trucking                 | Kevin Lawson/Driver                        | 1              | Water Ti    |          |                                                           |                  |            |
|           |                                | Envirachem<br>Envirachem        | Rhys Davidson  Journey Coughman            | 1              | Radiolog    |          | • •                                                       |                  |            |
|           |                                | Envirachem                      | Trever Rizzo                               | 1              |             |          | support                                                   |                  |            |
|           |                                | Envirachem                      | Devin Lewis                                | 1              |             |          | support                                                   |                  | 1          |
|           |                                | Envirachem                      | Ray Blaine                                 | 1              | Radiolo     | gical    | support                                                   |                  |            |
|           |                                |                                 |                                            |                |             |          |                                                           |                  |            |
|           |                                | <u> </u>                        |                                            |                | <u> </u>    |          | Total Gilbane Work-Ho                                     | •                | 9          |
|           |                                |                                 |                                            |                |             |          | otal Subcontractor Work-Ho                                | •                |            |
| J         |                                |                                 |                                            |                |             |          |                                                           |                  | 1 44       |
|           |                                |                                 |                                            |                | Subtot      |          | ne + Subcontractor Work-Ho<br>nulative Total Work-Hours F | •                | 14<br>1754 |

#### **DAILY PRODUCTION REPORT**

(Attach Continuation Page as Needed)

| <b>-</b> | CONTRACT NO        | . / TO NO. | PROJECT TITLE / LOCATION                        | REPORT DATE | REPORT NO. |
|----------|--------------------|------------|-------------------------------------------------|-------------|------------|
| ojec     | N62473-17-D-0      | 0005       | Parcel C                                        |             |            |
| 4        | GES<br>Project No. | J31000.600 | Hunters Point Naval Shipyard, San Francisco, CA | 24-Aug-23   | 150        |

|     | Was a job safety meeting held this date? (If "yes," attach copy of meeting minutes.)                                                      | No |   | Yes | X |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|----|---|-----|---|
|     | Were there any lost time accidents this date? (If "yes" attach copy of completed OSHA report)                                             | No | X | Yes |   |
| ety | Was Crane/Man lift/Scaffolding/HV Elec/High Work/Hazmat work done? (If "yes" attach statement or checklist showing inspection performed.) | No |   | Yes | X |
| Saf | Was hazardous material/waste released into the environment? (If "yes" attach description of incident and proposed action)                 | No | X | Yes |   |
|     | Description of Health & Safety Actions Taken Today / Safety Inspections Conducted Safety tailgate meeting, see log.                       |    |   |     |   |

Equipment/material received today to be used on job site:

Genie 45' man lift from JRM rentals.

Construction and field equipment on job site today (include field instruments):

525 gallon water trailer, two cat skid steers, 335 CAT excavator, 308 Cat excavator, 2 dump trucks, Topcon GPS system, 2 out houses, Volvo wheel loader.

Genie 45' man lift from JRM rentals.

- Description of work performed today:
   Safety Tailgate with all personnel building 400.
- Maintaining BMP's.
- TU-238, 0 loads 0 +/- yard of ESU, 3 loads 25 +/- yards of SFU were placed in the RSY laydown area.
- ESU TU-315 pad area drive-over with RSI 700 was started from the east side.
- Excavation was stopped early due to issues with GPS equipment. The trenches are surrounded by tall buildings, so therefore we are having ongoing issues connecting to the satelites. After troubleshooting for a while, we stop to give us enough time to put all the equipment away for the weekend.

Description of work planned for next working day or next working week: Continue RSY pad construction.

Continue excavation TU-238. Drive-over with RSI 700.

Discussion of issues / concerns encountered on site:

Today a Radiological object was found on TU-315 ESU during drive-over with RSI 700, Envirachem RSO,s and GES team removed the found item with Battelle and navy oversight.

|          | Name                              | Organization                 |                | Purpose of Visit |
|----------|-----------------------------------|------------------------------|----------------|------------------|
|          | Basi Basi                         | ROICC                        | Navy oversight |                  |
|          | Hamid Naime                       | ROICC                        | Navy oversight |                  |
| Visitors | Minh Chi                          | Battelle                     | oversight      |                  |
| Vis      |                                   |                              |                |                  |
|          |                                   |                              |                |                  |
|          |                                   |                              |                |                  |
| Signed   | Gilbane Superintendent Signature: | Randy 1                      | ham            | Date: 24-Aug-23  |
| Siç      | Printed Name and Title:           | Randy Jackson Superintendent |                | _                |

NOTE: ATTACH PERTINENT INFORMATION TO THIS REPORT.



### DAILY PRODUCTION REPORT PHOTO LOG

| СТ  | Project No./Contract No.      | Project Title / Location                        | Day of Report | Report No. |
|-----|-------------------------------|-------------------------------------------------|---------------|------------|
| OLE | N62473-17-D-0005              | Parcel C Removal Site Evaluation work plan      | 24-Aug-23     | 150        |
| PR  | PROJECT NO. <b>J31000.600</b> | Hunters Point Naval Shipyard, San Francisco, CA | 24-Aug-23     | 150        |



GES checking points with GPS, TU-238.

DAILY PHOTOS



Envirachem RSO labling bag with item for placment in storage after removal from RSY ESU from TU-315.



GES and Envirachem setting up for removal of item from RSY pad.

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 343 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

## APPENDIX D HPNS PARCEL C RADIOLOGICAL HPNS 3rd PARTY QA REPORT 08.24.23

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank

### Quality Assurance Surveillance Report

| Surveillance Checklist Number(s) HPNS-QAS-2023-0162 Surveillance Date 8/24/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Surveillance Report Number HPNS-QAR-2023-0162 Surveillance Report Generation Date 8/24/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Number of Surveillance Photographs Taken 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Describe the work event, contractor, site location, date and weather:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This surveillance observed a LLRO extraction performed by GES. Approximately 20 minutes of GES staff time was taken to accommodate this surveillance. The weather was 77 °F and sunny.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Describe what was observed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The Battelle QA team arrived at Parcel C to observe extraction of an LLRO identified during a RS-700 drive-over survey performed on RSY Pad ESU TU-315A with the soil originating from Phase I TU-315. The area was delineated (Figure 1). Prior to extracting the LLRO, an RCT performed a gamma static measurement on contact and at 30 cm away from the LLRO location (Figure 2). The RCT also performed an exposure rate survey at the same distances (Figure 3). The LLRO location was then carefully excavated with a shovel and the soil was placed on plastic sheeting to find the LLRO (Figure 4). The LLRO identified appeared to be a disc shaped deck marker measuring approximately 2 inches in diameter (Figure 5). A gamma scan was conducted around the area where the LLRO was discovered; no elevated activity was identified. Another RCT then performed a gamma static measurement and exposure rate both on contact and at 30 cm of the LLRO (Figures 6 and 7). The Ludlum 2221 w/44-10 and Ludlum Model 19 instruments were used within the calibration window (Figures 8 and 9). The LLRO was then double bagged with the survey information written on the outer Ziploc bag (Figure 10).  All observed aspects of GES radioactive material handling were in compliance with all approved work documentation. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Describe any contractor deficient conditions observed with reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Describe any contractor deficient conditions observed with reference:  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| None.  Recommendations, Process Improvements, or Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| None.  Recommendations, Process Improvements, or Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| None.  Recommendations, Process Improvements, or Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| None.  Recommendations, Process Improvements, or Suggestions:  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| None.  Recommendations, Process Improvements, or Suggestions:  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| None.  Recommendations, Process Improvements, or Suggestions:  None.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Recommendations, Process Improvements, or Suggestions:  None.  Battelle Project Signatories  Minhsec Chi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Recommendations, Process Improvements, or Suggestions:  None.  Battelle Project Signatories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

#### Surveillance Photographs HPNS-QAR-2023-0162



Figure 1 – LLRO area was isolated with orange delineators



Figure 2 – Gamma static measurement performed on contact of the soil surface



Figure 3 – Exposure rate measurement 30 cm away from the LLRO location



Figure 4 – GES employee extracting the LLRO and soil with a shovel



Figure 5 – A 2-inch disc shape deck marker was identified from the extraction



Figure 6 - Gamma static measurement performed on contact of the LLRO



Figure 7 – Exposure rate measurement performed 30 cm away from the LLRO



Figure 8 – Ludlum 2221, serial #152186, calibration due date 2/25/2024



Figure 9 - Ludlum Model 19, serial #167156, calibration due date 1/27/2024



Figure 10 - LLRO was double bagged with survey information written on the outer Ziploc bag

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 351 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

## APPENDIX E HPNS PARCEL C RADIOLOGICAL INVESTIGATION AND SURVEY – ROICC DAILY REPORT 08.24.23

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 352 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank

#### Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 353 of 384

|                                                                              |                                                                             |           |                |                     |              | CE (QA) REPORT                                        |                        | · · · · · · · · · · · · · · · · · · · |  |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------|----------------|---------------------|--------------|-------------------------------------------------------|------------------------|---------------------------------------|--|
|                                                                              |                                                                             | RO        | DATE           | 8/24/2023           |              |                                                       |                        |                                       |  |
| CONTRACT NO:                                                                 |                                                                             | TITLE A   | ND LOCATION    |                     |              |                                                       |                        |                                       |  |
| N62473-17-D-0005                                                             |                                                                             |           | Hunt           | ters F              | oint         | Parcel C Removal site Evaluation                      | CONTRACTOR             | Gilbane (GES)                         |  |
| CTO No:                                                                      | CTO No: N6247318F5305                                                       |           |                |                     |              |                                                       |                        |                                       |  |
| Status                                                                       |                                                                             | YES       | NO             | IF N<br>WH          | io,<br>Y NO  | Γ:                                                    |                        |                                       |  |
|                                                                              | WORKING?                                                                    |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              | WEATHER                                                                     |           | 1: Sunny       |                     |              |                                                       |                        |                                       |  |
|                                                                              | CONDITIONS: PM: Sunn                                                        |           |                | High 74ºF, Low 63ºF |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                | VE                  |              | T                                                     |                        |                                       |  |
| Point                                                                        |                                                                             |           |                | YE<br>S             | NO           | REMARKS (REQUIRED FIELD):                             |                        |                                       |  |
|                                                                              | SUPERINTENDENT ON SITE                                                      |           |                | $\boxtimes$         |              | Randy Jackson                                         |                        |                                       |  |
|                                                                              | QC MANAGER ON SITE                                                          |           |                |                     | П            | Mohammad Qasim Pacha                                  |                        |                                       |  |
|                                                                              | NAVY QASP CURRENT                                                           |           |                |                     |              |                                                       |                        |                                       |  |
| Che                                                                          | CONTRACTOR QC R                                                             | EPORTS (  | CURRENT        | $\boxtimes$         | $\bar{\Box}$ | Contractor will submit QC report for today.           |                        |                                       |  |
|                                                                              | DUST / AIR MONITORING COMPLIANT                                             |           |                |                     | ī            | Upwind and downwind air monitoring stations as        | e operating during s   | site work.                            |  |
|                                                                              | DEFICIENCY LIST REVIEWED                                                    |           |                |                     | $\boxtimes$  | No deficiency observed during the site visit          |                        |                                       |  |
| WORK C                                                                       | BSERVED/DEFICIEN                                                            | CIES NOT  | ED/SAFETY IS:  | SUES                | DISC         | USSED/QA TESTS AND RESULTS:                           |                        |                                       |  |
| Sched                                                                        | ule DESCRIBE OBS                                                            | SERVATIO  | INIS           |                     |              |                                                       |                        |                                       |  |
| Activity                                                                     | / NO                                                                        |           |                |                     |              | and at Cillians (CEC) in heart for the Bound C Budish |                        | No deficiencia                        |  |
| 1                                                                            | A quality assurance (QA) site visit was con observed during the site visit. |           |                |                     |              | ed at Glibane (GES) Job site for the Parcel C Radiol  | ogical investigation s | survey. No deficiencies were          |  |
| 2                                                                            |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
| 3                                                                            |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
| 4                                                                            | Gamma drive                                                                 | over surv | vey of RSY pac | TU-                 | 315A-        | ESU was observed.                                     |                        |                                       |  |
| 5 Continued preparation of placed soil in RSY pads for radiological process. |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
| 6                                                                            | _                                                                           |           |                |                     |              | gical object (Deck Marker) has been found on RSY      | pad TU-315A ESU. T     | he soil of this RSY pad excavated     |  |
| from TU-315.The object was remove properly.                                  |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
| MEETIN                                                                       | G/CONFERENCE NO                                                             |           |                |                     | NTS):        |                                                       |                        |                                       |  |
|                                                                              | No safety or 0                                                              | 2A issues | were observe   | d.                  |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              | CTIONS GIVEN OR RE                                                          | CEIVED/   | CONTROVERS     | IES P               | ENDI         | NG:                                                   |                        |                                       |  |
| Sched<br>Activity                                                            | HNISTRIJCTION                                                               | S/CONTR   | OVERSIES       |                     |              |                                                       |                        |                                       |  |
| 7.00.7.07                                                                    |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              |                                                                             |           |                |                     |              |                                                       |                        |                                       |  |
|                                                                              | Н                                                                           | amid Nai  | mi             |                     |              | 8-24-2023                                             |                        |                                       |  |
| QA / ROICC REPRESENTATIVE                                                    |                                                                             |           |                |                     |              |                                                       | JPV INITIALS DA        | ATE                                   |  |



Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 355 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

## APPENDIX F HPNS PARCEL C RADIOLOGICAL OBJECT LABORATORY RESULTS

Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 356 of 384

FINAL SUMMARY REPORT, RADIOLOGICAL OBJECT RECOVERY PARCEL C RADIOLOGICAL CONFIRMATION SAMPLING AND SURVEY HUNTERS POINT NAVAL SHPYARD, SAN FRANCISCO CA

This page intentionally left blank



2609 North River Road Port Allen, Louisiana 70767 (225) 372-4748

## ARS Laboratory Analytical Report ARS1-24-00469

GES-AIS, LLC Evelyn Dawson 1501 West Fountainhead Parkway Suite 550 Tempe, AZ 94520 480-212-3768

chemdm-hpns@ges-ais.com, edawson@ges-ais.com, SynecticsDM-HPNS@ges-ais.com

COC Number: **022924WA3301** PO Number: **J310006600** 

Job Location: Hunters Point Shipyard, Parcel C Removal Site Evaluation

Questions regarding this analytical report should be addressed to ARS project manager, Abigail Hoover, who can be reached by email at <a href="mailto:projectmanagers@ars-analytical.com">projectmanagers@ars-analytical.com</a>.

I certify that the test results presented in this report (in either hardcopy or electronic file (EDD)) meet the requirements of the laboratory's certifications and other applicable contract terms and conditions. A full list of the Port Allen, LA laboratory's certifications is provided with this report. Any exceptions to the certification or contract will be noted within the case narratives presented in the report. Any subcontracted sample results will be identified within the case narratives presented in the report. In the event this report is an amendment to a previously released report, the case narrative will clearly identify the original report as well as the reason(s) for reissuance. I authorize release and issuance of this report on the date signed below.

|           |      | Laboratory Management, ARS |
|-----------|------|----------------------------|
| Signature | Date | Title                      |

This report provides analytical results of the requested analysis and does not include any opinions or interpretations. ARS assumes no liability for the use or interpretation of analytical results. Results relate only to items tested. A partial reproduction of this test report is prohibited. Reproduction of this report in full requires the written approval of the laboratory.





ARS1-24-00469 Page 1 of 28



(225) 372-4748

#### **Table Of Contents**

| Cover Sheet               | 1  |
|---------------------------|----|
| Table Of Contents         | 2  |
| Certifications            | 3  |
| Case Narrative            | 4  |
| Analytical Results        | 7  |
| Batch QC                  | 9  |
| QC Summary                | 12 |
| Sample Management Records | 19 |

ARS1-24-00469 Page 2 of 28

#### **Certifications and Accreditations List**

| State or Accrediting Body (AB) | Certificate Number        |
|--------------------------------|---------------------------|
| AIHA LAP, LLC                  | 209312                    |
| California                     | 3085                      |
| ANAB DoD                       | ADE-1489                  |
| ANAB DOE                       | ADE-1489.01               |
| Louisiana DEQ - NELAC          | 01949                     |
| Nevada                         | LA011312024-04            |
| New Jersey                     | LA009                     |
| New York                       | 68261 (NPW) / 68262 (SHW) |
| Texas                          | T104704447-23-19          |
| Utah                           | LA011312023-14            |
| Washington                     | C1010                     |

For additional information related to the specific matrices, methods, and analytes recognized by each accrediting body, contact our Quality Assurance Department <a href="mailto:qa@ars-analytical.com">qa@ars-analytical.com</a> for additional information.

ML-QAM-001-FM-13 r4.1 Revision Date: 02/07/2024

ARS1-24-00469 Page 3 of 28



(225) 372-4748

# ARS Analytical Reports

for

**GES-AIS, LLC** 

**Case Narrative** 

ARS1-24-00469 Page 4 of 28



(225) 372-4748

# PROJECT SAMPLE IDENTIFICATION CROSS-REFERENCE TO ARS SAMPLE LABORATORY IDs

| Client            | ARS               |
|-------------------|-------------------|
| Sample ID         | Sample ID         |
| HPPC-ESU-315A-RO1 | ARS1-24-00469-001 |

| Sample | Date<br>Collected | Date<br>Received | Analysis | Basis          | TCLP<br>Date/Time | Prep<br>Date/Time | Analysis<br>Date/Time |
|--------|-------------------|------------------|----------|----------------|-------------------|-------------------|-----------------------|
| 001    | 08/24/23<br>12:35 | 03/01/24         | GAM-A-SO | As<br>Received |                   | 03/01/24<br>12:36 | 03/04/24<br>09:44     |

#### **SAMPLE RECEIPT/PREP**

The samples arrived in good condition. The samples were screened for radioactive contamination as per procedure **PALA-SR-001-SOP Sample Receiving**. Sample date(s) and time(s) are listed as provided by the client. Turnaround time was set at 1 calendar days.

#### **ANALYTICAL METHODS**

Am-241, Be-7, Bi-212, Bi-214, Co-60, Cs-134, Cs-137, Ir-192, K-40, Pa-234, Pb-210, Pb-214, Ra-223, Ra-224, Ra-226, Ra-228, Sc-46, Th-228, Tl-208, Tl-210, Total NORM Activity, Total NORM Gamma, U-235, and U-238 analyses were performed using **PALA-RAD-007**, "Modified Gamma Emitting Radionuclides in Soil, Air, and Biota Matrices (EPA 901.1 Mod, SM 7120B, & HASL-300 Ga-01-R)".

#### **ANALYTICAL RESULTS**

ARS1-24-00469: The Method Blank for GAM-A-SO had a detect for Tl-208. All fractions were non-detects, therefore the activity in the Method Blank did not contribute to the concentration in client samples.

ARS1-24-00469 Page 5 of 28

#### **Definitions:**

**CRDL** Contract Required Detection Limit CSU Combined Standard Uncertainty

Decision Level Concentration (ANSI N42.23) DLC

DO **Duplicate Original DUP** Sample Duplicate

LCS/LCSD Laboratory Control Sample/Laboratory Control Sample Duplicate

Limit of Detection LOD LOQ Limit of Quantitation **MBL** Method Blank

MCL Maximum Contaminant Level Minimum Detectable Activity MDA MDL Method Detection Limit

MS/MSD Matrix Spike/Matrix Spike Duplicate

Not Applicable N/A Not Calculated NC NP Not Provided Not Referenced NR

Practical Quantitation Limit **PQL SDG** Sample Deliverable Group

#### **Data Qualifiers:**

В The result of both the method blank and the target sample are above the MDL.

D Sample analysis accomplished through dilution.

The reported result is an estimated value above the LOD but below the LOQ, or above the MDL but below the PQL. J

Q One or more quality control criteria failed.

U \* Result is below the MDA, MDL, PQL, LOD, or LOQ LCS/LCSD or Sample DUP fails all Duplicate criteria.

s

SC Subcontracted out to another qualified laboratory.

Н Holding time exceeded

Exceeds MCL Ε

Reporting Limit is higher than MCL; Target cannot be detected Method/Matrix/Analyte not accredited for this certification

#### Radiochemistry Comments:

- All MDA values are calculated on a sample specific basis. 1.0)
- Data in this report are within the limits of uncertainty specified in the reference method unless otherwise specified. 2.0)
- 3.0) Total activity is actually total gamma activity and is determined utilizing the prominent gamma emitters from the naturally occurring radioactive decay chains and other prominent radioactive nuclides. Total activity may be lower than the actual total activity due to the extent of secular equilibrium achieved in the various decay chains at the time of analysis. The total activity is not representative of nuclides that emit solely alpha or beta particles.
- 4.0) Ra-226 after a 21-day ingrowth period is determined via secular equilibrium with its daughter, Bismuth 214 (Gamma Spectroscopy only).
- 5.0) Ra-228 is determined via secular equilibrium with its daughter, Actinium 228 (Gamma Spectroscopy only).
- 6.0) U-238 is determined via secular equilibrium with its daughter. Thorium 234 (Gamma Spectroscopy only).
- 7.0) All gamma spectroscopy was performed utilizing high purity germanium detectors (HPGe).
- 8.0) ARS makes every attempt to match sample density to calibrated density; however, in some cases, it is not practical or possible to do so and data results may be affected (Gamma Spectroscopy only).
- 9.0) Gamma spectroscopy results are calculated values based on the ORTEC® GammaVision ENV32 Analysis Engine.
- DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in Non-Potable Water: 10.0) Gross Alpha and Gross Beta (EPA 900.0, EPA 9310); Radium 226 (EPA 903.0, EPA 903.1, EPA 9315); Radium 228 (EPA 904.0, EPA 9320); ICP/MS (EPA 6020B); ICP-OES (EPA 6010D); Mercury CVAA (EPA 7470A); Strontium-89 (EPA 905.0, Eichrom SRW01, HASL 300 Sr-01); Strontium-90 (EPA 905.0, Eichrom SRW01, HASL 300 Sr-02-RC); Tritium (EPA 906.0); Enriched Tritium (ARS-040), Gamma Emitters (EPA 901.1, SM 7120B, HÀSL 300 Ga-01-R); Americium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HÀSL 300 Ám-03); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 Pu-10); Thorium-228, Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Technetium-99 (Eichrom TCW02)
- DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in Solid and Chemical Materials: 11.0) Gross Alpha and Gross Beta (EPA 900.0 Mod, EPA 9310); ICP/MS (EPA 6020B); ICP-OES (EPA 6010D); Mercury CVAA (EPA 7471B); Strontium-89 (EPA 905.0 Mod, Eichrom SRW01, HASL 300 Sr-01); Strontium-90 (EPA 905.0 Mod, Eichrom SRW01, HASL 300 Sr-02); Tritium (EPA 906.0 Mod); Gamma Emitters (EPA 901.1, HASL 300 Ga-01-R); Americium-241 (Eichrom ACW03, HASL 300 Se-03, HASL 300 Am-01-RC); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 Pu-02-RC, HASL 300 Pu-03-RC); Thorium-228, Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW10); ACW03, Eichrom ACW16, HASL 300 Se-03, HASL 300 U-02, HASL 300 U-04); Technetium-99 (Eichrom TCS01)
- 12.0) DoD/DOE and ISO 17025 certifications through ANAB apply only to the following methods in Air and Emissions: Gross Alpha and Gross Beta (EPA 900.0 Mod, EPA 9310); Strontium-89 (Eichrom SRW01, HASL 300 Sr-01-RC); Strontium-90 (Eichrom SRW01, HASL 300 Sr-02-RC); Gamma Emitters (EPA 901.1, HASL 300 Ga-01-R); Americium-241 (Eichrom ACW03, HASL 300 Se-03); Neptunium 237 (Eichrom ACW16); Plutonium 238, Plutonium 239/240, Plutonium-241 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Thorium-228, Thorium 230, Thorium-232 (Eichrom ACW10); Uranium-234, Uranium-235, Uranium-238 (Eichrom ACW03, Eichrom ACW16, HASL 300 Se-03); Technetium-99 (Eichrom TCW02, Eichrom TCS01)

#### General Comments:

- Modified analysis procedures are procedures that are modified to meet certain specifications. An example may be the use of a water method to 1.0 analyze a solid matrix due to the lack of an officially recognized procedure for the analysis of the solid matrix. Modified analyses are indicated by the subsequent addition of "M" or "Mod" to the procedure number (i.e. 901.1M, 901.1 Mod).
- All NIOSH method results are reported without blank corrections applied. 2.0
- 3.0 Basis: "As Received" = analyzed as received from client; "Dry" = dried prior to being analyzed; "Dry Weight Corrected" = analyzed as received; result corrected for percent moisture.

ARS1-24-00469 Page 6 of 28 Revision Date: 1.11.2024

ML-QA-059-FM-010 r14.22



2609 North River Road • Port Allen, Louisiana 70767 (225) 372-4748

# **ARS Analytical Reports**

for

**GES-AIS, LLC** 

# **Analytical Results**

ARS1-24-00469 Page 7 of 28



(225) 372-4748

ARS Sample Delivery Group: ARS1-24-00469

Client Sample ID: HPPC-ESU-315A-RO1

Sample Collection Date: 08/24/23 12:35
Sample Matrix: Soil/Solid/Sludge

Percent Solids: N/A

Request or PO Number: J310000600

**ARS Sample ID:** ARS1-24-00469-001

**Date Received:** 03/01/24 **Report Date:** 03/04/24

#### Radiochemistry

Analysis Method: EPA 901.1M ABatch Sample ID: ARS1-B24-00453-04

| Analysis<br>Description | Analysis<br>Results | CSU +/- 2 s | MDA       | DLC       | CRDL | Qual | Analysis Units | Analysis<br>Date/Time | Analysis<br>Technician | Tracer/Chem<br>Recovery |
|-------------------------|---------------------|-------------|-----------|-----------|------|------|----------------|-----------------------|------------------------|-------------------------|
| Am-241                  | -1150.300           | 8857.600    | 11700.000 | 5850.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Be-7                    | 19027.000           | 38323.000   | 63400.000 | 31700.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Bi-212                  | -10136.000          | 1.165E+5    | 39800.000 | 19900.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Bi-214                  | 2.439E+6            | 1.491E+5    | 12400.000 | 6200.000  | NP   |      | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Co-60                   | -2730.500           | 5760.700    | 5990.000  | 2995.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Cs-134                  | -476.260            | 5440.100    | 6080.000  | 3040.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Cs-137                  | -366.480            | 5106.800    | 8500.000  | 4250.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Ir-192                  | -1610.900           | 4264.600    | 7050.000  | 3525.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| K-40                    | -9147.900           | 77923.000   | 59500.000 | 29750.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Na-22                   | -3420.600           | 11347.000   | 10700.000 | 5350.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Pa-234                  | 4309.000            | 8954.200    | 11800.000 | 5900.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Pb-210                  | 43288.000           | 95880.000   | 1.260E+5  | 63000.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Pb-212                  | 3932.400            | 12277.000   | 20300.000 | 10150.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Pb-214                  | 2.390E+6            | 2.002E+5    | 15600.000 | 7800.000  | NP   |      | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Ra-223                  | -8228.200           | 33744.000   | 31600.000 | 15800.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Ra-224                  | 4.224E+5            | 1.323E+5    | 2.100E+5  | 1.050E+5  | NP   |      | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Ra-226                  | 2.373E+6            | 1.817E+5    | 1.200E+5  | 60000.000 | NP   |      | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Ra-228                  | -9780.000           | 15751.000   | 28800.000 | 14400.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Sc-46                   | -3120.600           | 5439.800    | 6030.000  | 3015.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Th-228                  | 3932.400            | 12277.000   | 20300.000 | 10150.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| Th-234                  | 3693.000            | 63185.000   | 1.080E+5  | 54000.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| TI-208                  | -990.390            | 15513.000   | 6820.000  | 3410.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| TI-210                  | -2254.200           | 4406.900    | 4890.000  | 2445.000  | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| U-235                   | -13484.000          | 23669.000   | 34700.000 | 17350.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |
| U-238                   | 3693.000            | 63185.000   | 1.080E+5  | 54000.000 | NP   | U    | pCi/g          | 03/04/24 9:44         | KE                     | N/A                     |

ARS1-24-00469 Page 8 of 28



2609 North River Road • Port Allen, Louisiana 70767 (225) 372-4748

## **ARS Analytical Reports**

for

**GES-AIS, LLC** 

**Batch QC** 

ARS1-24-00469 Page 9 of 28



#### **QC Results per Analytical Batch**

| Ment 28-3 Filed 12/0<br>Analytical Batch | ARS1-B24-00453                                                              |
|------------------------------------------|-----------------------------------------------------------------------------|
| SDG                                      | ARS1-24-00469                                                               |
| Analysis                                 | Gamma Spec (Short) in (Soil, Sludge, Waste,<br>Sediment,Biota [SO, BI, VG]) |
| Method                                   | EPA 901.1M                                                                  |
| Analysis Code                            | GAM-A-SO                                                                    |
| Report Units                             | pCi/g                                                                       |

| Acce                                        | Acceptable QC Performance Ranges |                          |       |  |  |  |  |  |  |  |
|---------------------------------------------|----------------------------------|--------------------------|-------|--|--|--|--|--|--|--|
| QC Sample Type Performance Items and Ranges |                                  |                          |       |  |  |  |  |  |  |  |
| Laboratory Control Sample                   | Recovery (%):                    | < 125                    |       |  |  |  |  |  |  |  |
| Matrix Spike                                | Recovery (%):                    | > 60                     | < 140 |  |  |  |  |  |  |  |
| Duplicate                                   | Du                               | < 3                      |       |  |  |  |  |  |  |  |
|                                             | Relative Pero                    | cent Difference (RPD %): | ≤ 40  |  |  |  |  |  |  |  |

| Laboratory Control Sample |         |         | Analysis<br>Date | 03/04/24 09:42 | Analysis<br>Technician | K           | E       |
|---------------------------|---------|---------|------------------|----------------|------------------------|-------------|---------|
| Analysis Batch Sample ID  | QC Type | Analyte | Results          | CSU (2s)       | Expected Value         | LCS Rec (%) | MDA     |
| ARS1-B24-00453-01         | LCS     | AM-241  | 2.195E+4         | 1.894E+3       | 2.275E+4               | 96.5        | 527.400 |
| ARS1-B24-00453-01         | LCS     | CO-60   | 4.439E+4         | 2.716E+3       | 4.279E+4               | 103.7       | 607.700 |
| ARS1-B24-00453-01         | LCS     | CS-137  | 3.678E+4         | 2.070E+3       | 3.545E+4               | 103.8       | 237.900 |

| Duplicate RER/DER/RPD |             | Analysis<br>Date | 03/04/24 09:53 | Analysis<br>Technician | К     | E   |
|-----------------------|-------------|------------------|----------------|------------------------|-------|-----|
| Analyte               | Results LCS | CSU LCS (2s)     | Results LCSD   | CSU LCSD (2s)          | DER   | RPD |
| AM-241                | 2.195E+4    | 1.894E+3         | 2.230E+4       | 1.920E+3               | 0.257 | 1.6 |
| CO-60                 | 4.439E+4    | 2.716E+3         | 4.484E+4       | 2.763E+3               | 0.230 | 1.0 |
| CS-137                | 3.678E+4    | 2.070E+3         | 3.753E+4       | 2.109E+3               | 0.493 | 2.0 |

| thod Blank               |         | Analysis<br>Date | 03/01/24 13:18 | Analysis<br>Technician | CDW   |     |  |
|--------------------------|---------|------------------|----------------|------------------------|-------|-----|--|
| Analysis Batch Sample ID | QC Type | Analyte          | Results        | CSU (2s)               | MDA   | Qua |  |
| ARS1-B24-00453-03        | MBL     | AM-241           | 0.013          | 0.075                  | 0.100 | U   |  |
| ARS1-B24-00453-03        | MBL     | BE-7             | -0.093         | 0.311                  | 0.376 | U   |  |
| ARS1-B24-00453-03        | MBL     | BI-212           | 0.430          | 0.326                  | 0.635 | U   |  |
| ARS1-B24-00453-03        | MBL     | BI-214           | -0.204         | 0.955                  | 1.150 | U   |  |
| ARS1-B24-00453-03        | MBL     | CO-60            | 0.003          | 0.040                  | 0.048 | U   |  |
| ARS1-B24-00453-03        | MBL     | CS-134           | 0.006          | 0.030                  | 0.038 | U   |  |
| ARS1-B24-00453-03        | MBL     | CS-137           | 0.015          | 0.057                  | 0.066 | U   |  |
| ARS1-B24-00453-03        | MBL     | IR-192           | -0.010         | 0.032                  | 0.041 | U   |  |
| ARS1-B24-00453-03        | MBL     | K-40             | 0.176          | 0.499                  | 0.545 | U   |  |
| ARS1-B24-00453-03        | MBL     | PA-234           | -0.068         | 0.225                  | 0.261 | U   |  |
| ARS1-B24-00453-03        | MBL     | PB-210           | -0.167         | 2.367                  | 3.980 | U   |  |
| ARS1-B24-00453-03        | MBL     | PB-214           | 0.039          | 0.107                  | 0.130 | U   |  |
| ARS1-B24-00453-03        | MBL     | RA-223           | -0.089         | 0.194                  | 0.330 | U   |  |
| ARS1-B24-00453-03        | MBL     | RA-224           | -0.182         | 0.548                  | 0.703 | U   |  |
| ARS1-B24-00453-03        | MBL     | RA-226           | 0.243          | 0.618                  | 0.781 | U   |  |
| ARS1-B24-00453-03        | MBL     | RA-228           | -0.048         | 0.178                  | 0.203 | U   |  |
| ARS1-B24-00453-03        | MBL     | SC-46            | 0.000          | 0.006                  | 0.049 | U   |  |
| ARS1-B24-00453-03        | MBL     | TH-228           | 0.311          | 1.405                  | 1.890 | U   |  |
| ARS1-B24-00453-03        | MBL     | TL-208           | 0.035          | 0.018                  | 0.017 |     |  |
| ARS1-B24-00453-03        | MBL     | TL-210           | -0.015         | 0.050                  | 0.057 | U   |  |
| ARS1-B24-00453-03        | MBL     | U-235            | 0.057          | 0.135                  | 0.180 | U   |  |

ARS1-24-00469 Page 10 of 28



#### **QC Results per Analytical Batch**

| Case 3:24-cv-03899-VC   | Document 28-3 Filed 12/<br>Analytical Batch | 0 <del>6/24 Page 367 of 384</del><br>ARS1-B24-00453                         |
|-------------------------|---------------------------------------------|-----------------------------------------------------------------------------|
|                         | SDG                                         | ARS1-24-00469                                                               |
|                         | Analysis                                    | Gamma Spec (Short) in (Soil, Sludge, Waste,<br>Sediment,Biota [SO, BI, VG]) |
|                         | Method                                      | EPA 901.1M                                                                  |
|                         | Analysis Code                               | GAM-A-SO                                                                    |
| Its per Analytical Batc | h Report Units                              | pCi/q                                                                       |

| Method Blank             |         | Analysis<br>Date | 03/01/24 13:18 | Analysis<br>Technician | CE    | DW . |
|--------------------------|---------|------------------|----------------|------------------------|-------|------|
| Analysis Batch Sample ID | QC Type | Analyte          | Results        | CSU (2s)               | MDA   | Qual |
| ARS1-B24-00453-03        | MBL     | U-238            | 0.230          | 0.505                  | 0.667 | U    |

ARS1-24-00469 Page 11 of 28



2609 North River Road • Port Allen, Louisiana 70767 (225) 372-4748

## **ARS Analytical Reports**

for

**GES-AIS, LLC** 

**QC Summary** 

ARS1-24-00469 Page 12 of 28



(225) 372-4748

#### **QC Sample Results**

Analytical Batch: ARS1-B24-00453

Sample Type: LCS

**Lab Sample ID:** ARS1-B24-00453-01

Matrix: Soil/Solid/Sludge

Method: EPA 901.1M

**Analysis Date:** 03/04/24 9:42

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|
| Am-241  | 2.275E+4       | 2.195E+4           |      | pCi/g             | 96.5  | 75 - 125        |
| Co-60   | 4.279E+4       | 4.439E+4           |      | pCi/g             | 103.7 | 75 - 125        |
| Cs-137  | 3.545E+4       | 3.678E+4           |      | pCi/g             | 103.8 | 75 - 125        |

ARS1-24-00469 Page 13 of 28



(225) 372-4748

#### **QC Sample Results**

Analytical Batch: ARS1-B24-00453

Sample Type: LCSD

**Lab Sample ID:** ARS1-B24-00453-02

Matrix: Soil/Solid/Sludge

Method: EPA 901.1M

**Analysis Date:** 03/04/24 9:53

| Analyte | Spike<br>Added | Analysis<br>Result | Qual | Analysis<br>Units | % Rec | % Rec<br>Limits | RPD | RPD<br>Limit | DER   | DER<br>Limit |
|---------|----------------|--------------------|------|-------------------|-------|-----------------|-----|--------------|-------|--------------|
| Am-241  | 2.275E+4       | 2.230E+4           |      | pCi/g             | 98.0  | 75 - 125        | 1.6 | 40           | 0.257 | 3            |
| Co-60   | 4.279E+4       | 4.484E+4           |      | pCi/g             | 104.8 | 75 - 125        | 1.0 | 40           | 0.230 | 3            |
| Cs-137  | 3.545E+4       | 3.753E+4           |      | pCi/g             | 105.9 | 75 - 125        | 2.0 | 40           | 0.493 | 3            |

ARS1-24-00469 Page 14 of 28



(225) 372-4748

#### **QC Sample Results**

Analytical Batch: ARS1-B24-00453

**Lab Sample ID:** ARS1-B24-00453-03

Method: EPA 901.1M

Sample Type: MBL

Matrix: Soil/Solid/Sludge **Analysis Date:** 03/01/24 13:18

| Analyte | Analysis<br>Result | CSU +/- 2 s | MDA   | DLC   | Qual | Analysis<br>Units |
|---------|--------------------|-------------|-------|-------|------|-------------------|
| Am-241  | 0.013              | 0.075       | 0.100 | 0.050 | U    | pCi/g             |
| Be-7    | -0.093             | 0.311       | 0.376 | 0.188 | U    | pCi/g             |
| Bi-212  | 0.430              | 0.326       | 0.635 | 0.318 | U    | pCi/g             |
| Bi-214  | -0.204             | 0.955       | 1.150 | 0.575 | U    | pCi/g             |
| Co-60   | 0.003              | 0.040       | 0.048 | 0.024 | U    | pCi/g             |
| Cs-134  | 0.006              | 0.030       | 0.038 | 0.019 | U    | pCi/g             |
| Cs-137  | 0.015              | 0.057       | 0.066 | 0.033 | U    | pCi/g             |
| Ir-192  | -0.010             | 0.032       | 0.041 | 0.020 | U    | pCi/g             |
| K-40    | 0.176              | 0.499       | 0.545 | 0.273 | U    | pCi/g             |
| Pa-234  | -0.068             | 0.225       | 0.261 | 0.131 | U    | pCi/g             |
| Pb-210  | -0.167             | 2.367       | 3.980 | 1.990 | U    | pCi/g             |
| Pb-214  | 0.039              | 0.107       | 0.130 | 0.065 | U    | pCi/g             |
| Ra-223  | -0.089             | 0.194       | 0.330 | 0.165 | U    | pCi/g             |
| Ra-224  | -0.182             | 0.548       | 0.703 | 0.352 | U    | pCi/g             |
| Ra-226  | 0.243              | 0.618       | 0.781 | 0.391 | U    | pCi/g             |
| Ra-228  | -0.048             | 0.178       | 0.203 | 0.102 | U    | pCi/g             |
| Sc-46   | 0.000              | 0.006       | 0.049 | 0.024 | U    | pCi/g             |
| Th-228  | 0.311              | 1.405       | 1.890 | 0.945 | U    | pCi/g             |
| TI-208  | 0.035              | 0.018       | 0.017 | 0.009 |      | pCi/g             |
| TI-210  | -0.015             | 0.050       | 0.057 | 0.028 | U    | pCi/g             |
| U-235   | 0.057              | 0.135       | 0.180 | 0.090 | U    | pCi/g             |
| U-238   | 0.230              | 0.505       | 0.667 | 0.334 | U    | pCi/g             |

ARS1-24-00469 Page 15 of 28



(225) 372-4748

#### **QC Association Summary**

ARS Sample Delivery Group: ARS1-24-00469 Analytical Batch: ARS1-B24-00453

**Analysis:** Gamma Spec (Short) in (Soil, Sludge, Waste, Sediment,Biota [SO, BI, VG])

| Batch Sample ID   | Lab Sample ID     | Client Sample ID             | Matrix            | Method     | Prep Method |
|-------------------|-------------------|------------------------------|-------------------|------------|-------------|
| ARS1-B24-00453-01 |                   | Lab Control Sample           | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B24-00453-02 |                   | Lab Control Sample Duplicate | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B24-00453-03 |                   | Method Blank                 | Soil/Solid/Sludge | EPA 901.1M | N/A         |
| ARS1-B24-00453-04 | ARS1-24-00469-001 | HPPC-ESU-315A-RO1            | Soil/Solid/Sludge | EPA 901.1M | N/A         |

ARS1-24-00469 Page 16 of 28



#### **Z Values per Analytical Batch**

| IMENT 28-3 FIIEO 12/C<br>Analytical Batch | ARS1-B24-00453                       |
|-------------------------------------------|--------------------------------------|
| SDG                                       | ARS1-24-00469                        |
| Analysis                                  | Gamma Spec (Short) in (Soil, Sludge, |
| Analysis Test Method                      | PALA-RAD-007/EPA 901.1M              |
| Analysis Code                             | GAM-A-SO                             |
| Report Units                              | pCi/g                                |

| Acceptable QC Per         | formance Ranges              |
|---------------------------|------------------------------|
| QC Sample Type            | Performance Items and Ranges |
| Laboratory Control Sample | ZLCS <= 3                    |
| Matrix Spike              | ZMS <= 3                     |
| Method Blank              | ZBLANK <= 3                  |
| Duplicate                 | ZDUP <= 3                    |

| <b>Laboratory Control Sample</b> | Analysis Date | 03/04/24 09:42 | Analysis<br>Technician | KE                      |                         |       |
|----------------------------------|---------------|----------------|------------------------|-------------------------|-------------------------|-------|
| QC Type                          | Analyte       | Results        | CSU (1s)               | Expected Value          | CSU (1s)                | z     |
| LCS                              | AM-241        | 2.195E+4       | 966.071                | 2.275E+4                | 682.432                 | 0.676 |
| LCSD                             | AM-241        | 2.230E+4       | 979.439                | 2.275E+4                | 682.432                 | 0.374 |
| LCS                              | CO-60         | 4.439E+4       | 1.386E+3               | 4.279E+4 1.284E+3 0.844 |                         | 0.844 |
| LCSD                             | CO-60         | 4.484E+4       | 1.410E+3               | 4.279E+4                | 4.279E+4 1.284E+3 1.074 |       |
| LCS                              | CS-137        | 3.678E+4       | 1.056E+3               | 3.545E+4                | 1.064E+3                | 0.889 |
| LCSD                             | CS-137        | 3.753E+4       | 1.076E+3               | 3.545E+4                | 1.064E+3                | 1.372 |

| Method Blank | Analysis Date | 03/01/24 13:18 | Analysis<br>Technician | CDW   |
|--------------|---------------|----------------|------------------------|-------|
| QC Type      | Analyte       | Results        | CSU (1s)               | z     |
| MBL          | CS-134        | 0.006          | 0.015                  | 0.383 |
| MBL          | CS-137        | 0.015          | 0.029                  | 0.509 |
| MBL          | IR-192        | -0.010         | 0.016                  | 0.641 |
| MBL          | K-40          | 0.176          | 0.255                  | 0.691 |
| MBL          | PB-210        | -0.167         | 1.208                  | 0.138 |
| MBL          | PB-214        | 0.039          | 0.055                  | 0.708 |
| MBL          | PA-234        | -0.068         | 0.115                  | 0.591 |
| MBL          | RA-223        | -0.089         | 0.099                  | 0.898 |
| MBL          | RA-224        | -0.182         | 0.280                  | 0.650 |
| MBL          | RA-226        | 0.243          | 0.315                  | 0.770 |
| MBL          | RA-228        | -0.048         | 0.091                  | 0.523 |
| MBL          | SC-46         | 0.000          | 0.003                  | 0.000 |
| MBL          | TH-228        | 0.311          | 0.717                  | 0.434 |
| MBL          | TL-208        | 0.035          | 0.009                  | 3.767 |
| MBL          | TL-210        | -0.015         | 0.026                  | 0.591 |
| MBL          | U-235         | 0.057          | 0.069                  | 0.824 |
| MBL          | U-238         | 0.230          | 0.257                  | 0.894 |
| MBL          | BI-212        | 0.430          | 0.166                  | 2.584 |
| MBL          | BI-214        | -0.204         | 0.487                  | 0.420 |
| MBL          | CO-60         | 0.003          | 0.021                  | 0.163 |
| MBL          | AM-241        | 0.013          | 0.038                  | 0.341 |

ARS1-24-00469 Page 17 of 28

Case 3:24-cv-03899-VC Document 28-3
An
Analysis

#### **Z** Values per Analytical Batch

| Ment 28-3 Filed 12/0<br>Analytical Batch | ARS1-B24-00453                       |
|------------------------------------------|--------------------------------------|
| SDG                                      | ARS1-24-00469                        |
| Analysis                                 | Gamma Spec (Short) in (Soil, Sludge, |
| <b>Analysis Test Method</b>              | PALA-RAD-007/EPA 901.1M              |
| Analysis Code                            | GAM-A-SO                             |
| Report Units                             | pCi/g                                |

| Method Blank | Analysis Date | 03/01/24 13:18 | Analysis<br>Technician | CDW   |
|--------------|---------------|----------------|------------------------|-------|
| QC Туре      | Analyte       | Results        | CSU (1s)               | Z     |
| MBL          | BE-7          | -0.093         | 0.159                  | 0.586 |

| <b>Duplicate Sample</b> | Analysis Date | 03/04/24 09:53 | Analysis<br>Technician |            | KE       |       |
|-------------------------|---------------|----------------|------------------------|------------|----------|-------|
| QC Туре                 | Analyte       | Results Dup    | CSU (1s)               | Results DO | CSU (1s) | z     |
| LCSD                    | AM-241        | 2.230E+4       | 979.439                | 2.195E+4   | 966.071  | 0.257 |
| LCSD                    | CO-60         | 4.484E+4       | 1.410E+3               | 4.439E+4   | 1.386E+3 | 0.230 |
| LCSD                    | CS-137        | 3.753E+4       | 1.076E+3               | 3.678E+4   | 1.056E+3 | 0.493 |

ARS1-24-00469 Page 18 of 28



2609 North River Road • Port Allen, Louisiana 70767 (225) 372-4748

## **ARS Analytical Reports**

for

**GES-AIS, LLC** 

# Sample Management Records

ARS1-24-00469 Page 19 of 28

# CHAIN-OF-CUSTODY RECORD

COC # 022924WA3301

Gilbane Federal Brett Womack 1501 W Fountainhead Parkway, Suite 550, Tempe, Arizona 85282 bwomack@ges-ais.com

| Sumple Date   Time   Sumple   Time   T   | Project Number: 1310000600                                    | Project Number: 1310000600 |              |          |               | Point of Contact: K | act: Keith Greene Keith Greene@aaa aleut | ene@aaa aleutfed  | aral com                     |                  |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|--------------|----------|---------------|---------------------|------------------------------------------|-------------------|------------------------------|------------------|--------------------------------|
| Party-cepy required.   Party   | observation: solutions                                        |                            |              |          |               | our of contract.    | and organization                         | circ @aga.ancanca | in contra                    |                  |                                |
| Name      | VBS Code: J310000600                                          |                            |              |          |               | Ship to: 2609 North | River Road, Port Alle                    | n, LA 70767-3469  |                              |                  |                                |
| hard-copy required.   Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                               |                            |              |          |               |                     | Analytical Test Me                       | thod              |                              |                  |                                |
| 12-02-12-09   12-02-12-02-02-02-02-02-02-02-02-02-02-02-02-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | comments: 1,348,930 CPM/Conf                                  | act                        |              |          |               |                     |                                          |                   |                              |                  |                                |
| Sample   Date   Time   Samp   Time   Time   Samp   Time    | 16,161 CPM @ 30cn                                             | -                          |              |          |               | liua -              |                                          |                   |                              |                  |                                |
| Lovel 2 Reporting, Only hard-copy required.   Continue   Sample   Continue   Sample   Continue   Sample   Continue   Sample   Continue   Cont   | 1,20042,000 uR/hr Contac<br>mio<br>2/29/23<br>32 uR/hr @ 30cm | #                          |              |          |               | uus Spec            |                                          |                   |                              |                  |                                |
| Sample   Date   Time   Samp   Samp   Samp   Samp   Sample   Sample   Samp   Sample   Sample   Samp   Sample   Samp   Sample   Samp   Samp   Sample   Samp    | Level 2 Reporting. (                                          | Only hard-co               | py required. |          |               | Library             |                                          |                   |                              |                  |                                |
| HPPC_ESU_315A-RO1   Matrix   Date   Time   Samp   Figure   Time   Samp   Figure   Time   Samp   Figure   Figu   | Work Area 33 Phase 1                                          |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| HPPC_ESU_315A_RO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sample ID                                                     | Matrix                     |              | Time     | Samp<br>Init. |                     |                                          |                   | Location ID                  |                  | Depth (ft bgs)<br>Top - Bottom |
| Turn Around Time:   Turn Around Time:   Time   Received by: (Signature)   Date   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               |                            | 8/24/23      | 12:35 PS | _             | ×                   |                                          |                   | HPPC-ESU-31                  |                  |                                |
| Turn Around Time:   Turn Around Time:   Time   Received by: (Signature)   Date   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                             |                            | MJB 3/1      |          |               |                     |                                          |                   |                              |                  |                                |
| ished by: (Signature)  Turn Around Time:  Turn Aro  | en                                                            |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| ished by: (Signature)  Turn Around Time:  Turn Around Time:  Date Time Received by: (Signature)  Color And And 1630  Foof Ax 1630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                             |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| Turn Around Time:   Turn   | 5                                                             |                            |              |          |               | 7                   |                                          |                   |                              |                  |                                |
| Turn Around Time:   Turn Around Time:   Turn Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9                                                             |                            |              |          |               | 2/0                 |                                          |                   |                              |                  |                                |
| Turn Around Time:   Turn Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7                                                             |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| Turn Around Time:   Turn Around Time:   Date   Time   Received by: (Signature)   Date   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                             |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| Turn Around Time:   Turn Around Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                             |                            |              |          |               |                     |                                          |                   |                              |                  |                                |
| ished by: (Signature)  Date Time Received by: (Signature)  Date Time Time  Color of the teacher of the teacher of the teacher the teacher of the teacher the teacher the teacher the teacher of the teacher the te | 10                                                            |                            |              |          |               |                     |                                          |                   |                              |                  | /                              |
| Date   Time   Received by: (Signature)   Date   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ooler:                                                        | Turn                       | Around Time: |          |               |                     |                                          |                   |                              |                  |                                |
| 1830 FedEx 02/24/24/1630                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | elinquished by: (Signature)                                   |                            |              |          | d by: (Sig    | mature)             | Date                                     |                   | ing Date / Carrier / Airbill | Number           |                                |
| Recevied by Laboratory: (Signature, Date, Time) & condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 211                                                           |                            | 134          |          | )Ex           |                     | 12/15/40                                 | 0891              | 45/PE/KO                     | 153              |                                |
| XXXXX 3-1-34/730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                               | -                          |              | -        |               |                     |                                          | Rece              | vied by Laboratory: (Sign    | ature, Date, Tim | e) & condition                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                               | +                          |              | -        |               |                     |                                          |                   | Less                         | 3-1-24           | 130                            |

Printed: 3/4/2024 11:52 AM

Page 1 of 2

ARS Port Allen Laboratory

**SDG Report - Samples and Containers** 

|                |                | SDG Spe           | cific Data      |              |                                     |
|----------------|----------------|-------------------|-----------------|--------------|-------------------------------------|
| SDG            | ARS1-24-00469  | TAT Days          | 1 Calendar Days | Project Type | Environmental                       |
| Sample Count   | 1 Rpt Level 2a | Date Received     | 03/01/2024      | COC Number   | 022924WA3301                        |
| Client         | GES-AIS, LLC   | Discrepancy Resol | N/A             | PO Number    | J310000600                          |
| Client Code    | 1138           | Client Deadline   | 03/04/2024      | Job Number   |                                     |
| Profile Number | PN-01440       |                   |                 | Job Location | Hunters Point Shipyard,             |
|                |                |                   |                 |              | Parcel C Removal Site<br>Evaluation |

#### Comment

|     |                   |                           |                | Samples and Co   | ntainers | Checked I | n Thus   | Far     |                        |
|-----|-------------------|---------------------------|----------------|------------------|----------|-----------|----------|---------|------------------------|
| FR  | Name              | Matrix                    | Start Date     | End Date         | Disp     | Hold      | Arch     | Storage | Comments               |
| 001 | HPPC-ESU-315A-RO1 | Soil/Sol<br>id/Slud<br>ge |                | 08/24/2023 12:35 | R        | 30        | 10       | PrePrep |                        |
|     | IC_ID             | Cnt                       | Container Type | Container Size   | pH Orig  | pH Final  | Temp (C) |         | Comments               |
|     | 455935            | 1                         | Other          | N/A              |          |           |          |         | 1,200 ur/hr on contact |

ARS1-24-00469 Page 21 of 28 ARS Port Allen Laboratory

#### **SDG Report - Analysis Assignments**

| SDG    | ARS1-24-00469 | Sample Count   | 1   |
|--------|---------------|----------------|-----|
| Client | GES-AIS, LLC  | Analysis Count | 1-1 |

| Sample Count Totals Per Analysis |                                                                           |        |               |  |  |  |  |  |  |  |
|----------------------------------|---------------------------------------------------------------------------|--------|---------------|--|--|--|--|--|--|--|
| Analysis Code                    | Analysis Description                                                      | In/Out | Samples Count |  |  |  |  |  |  |  |
| GAM-A-SO                         | Gamma Spec (Short) in (Soil, Sludge, Waste, Sediment, Biota [SO, BI, VG]) | I      | 1             |  |  |  |  |  |  |  |

| Analyses Assigned Per Fraction |               |              |  |  |  |  |  |  |  |
|--------------------------------|---------------|--------------|--|--|--|--|--|--|--|
| Fraction                       | Analysis Code | X = Assigned |  |  |  |  |  |  |  |
| 001                            | GAM-A-SO      | X            |  |  |  |  |  |  |  |

Printed: 3/4/2024 11:52 AM

Page 2 of 2

ARS1-24-00469 Page 22 of 28

Document 28-3 Filed 12/06/24 Page 379 of 384

Printed: 3/4/2024 11:52 AM

Page 1 of 2

Port Allen Laboratory

ARS

**DQO Report for SDG** ARS1-24-00469

Profile Name: Parcel C Rad Sampling Client Name: GES-AIS, LLC

Report Level: 2a

| Analysis Code | Prep Type           | Units  | Aliquot   | Prep Code  | Procedure        | Count Time  |        |        |            |     |     |
|---------------|---------------------|--------|-----------|------------|------------------|-------------|--------|--------|------------|-----|-----|
| GAM-A-SO      | WGAM                | pCi    | g         | N/A        | PALA-RAD-<br>007 |             |        |        |            |     |     |
|               |                     | RDL    | LCS LL/UL | MS LL/UL   | RadY LL/UL       | GravY LL/UL | RER    | RPD    | Surr LL/UL |     |     |
|               | Am-241 (14596       | -10-2) | 0.7 pCi/g | 75/125     | 60/140           | 30/110      | 40/110 | 1      | 40         | N/A |     |
|               | Be-7 (13966-02      | -4)    |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Bi-212 (14913-4     | 19-6)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Bi-214 (14733-0     | 03-0)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Co-60 (10198-4      | 0-0)   |           | 0.1 pCi/g  | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Cs-134 (13967-      | 70-9)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Cs-137 (10045-      | 97-3)  |           | 0.07 pCi/g | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Ir-192 (14694-6     | 9-0)   |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | K-40 (13966-00-2)   |        |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Pb-210 (14255-      | pCi/g  | 75/125    | 60/140     | 30/110           | 40/110      | 1      | 40     | N/A        |     |     |
|               | Pb-214 (15067-      | pCi/g  | 75/125    | 60/140     | 30/110           | 40/110      | 1      | 40     | N/A        |     |     |
|               | Ra-223 (15623-      | 45-7)  | pCi/g     | 75/125     | 60/140           | 30/110      | 40/110 | 1      | 40         | N/A |     |
|               | Ra-224 (13233-32-4) |        | pCi/g     | 75/125     | 60/140           | 30/110      | 40/110 | 1      | 40         | N/A |     |
|               | Ra-226 (13982-      | 63-3)  |           | 1 pCi/g    | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Ra-228 (15262-      | 20-1)  |           | 5 pCi/g    | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Sc-46 (13967-6      | 3-0)   |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Th-228 (14274-      | 82-9)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | TI-208 (14913-5     | 50-9)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | TI-210              |        |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | U-235 (15117-9      | 6-1)   |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | U-238 (7440-61      | -1)    |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Pa-234 (15100-      | 28-4)  |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Total NORM Acti     | vity   |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |
|               | Total NORM Gan      | nma    |           | pCi/g      | 75/125           | 60/140      | 30/110 | 40/110 | 1          | 40  | N/A |

User: SLEESE Last Modified: 3/4/2024 11:51:31 AM Page 23 of 28

Printed: 3/4/2024 11:52 AM

Page 2 of 2

ARS Port Allen Laboratory

#### **DQO Report for SDG**

ARS1-24-00469

| Analysis Code | Fraction | Units               | Aliquot | Conductivity        | Analyte Count |  |  |
|---------------|----------|---------------------|---------|---------------------|---------------|--|--|
| GAM-A-SO      | 001      | pCi                 | g       | N/A                 | 24            |  |  |
|               |          | Group               |         | Analyt              | e             |  |  |
|               |          | NORM + AM + CS + CO |         | Am-241              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Be-7                |               |  |  |
|               |          | NORM + AM + CS + CO |         | Bi-212              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Bi-214              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Co-60               |               |  |  |
|               |          | NORM + AM + CS + CO |         | Cs-134              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Cs-137              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Ir-192              |               |  |  |
|               |          | NORM + AM + CS + CO |         | K-40                |               |  |  |
|               |          | NORM + AM + CS + CO |         | Pa-234              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Pb-210              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Pb-214              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Ra-223              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Ra-224              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Ra-226              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Ra-228              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Sc-46               |               |  |  |
|               |          | NORM + AM + CS + CO |         | Th-228              |               |  |  |
|               |          | NORM + AM + CS + CO |         | TI-208              |               |  |  |
|               |          | NORM + AM + CS + CO |         | TI-210              |               |  |  |
|               |          | NORM + AM + CS + CO |         | Total NORM Activity |               |  |  |
|               |          | NORM + AM + CS + CO |         | Total NORM Gamma    |               |  |  |
|               |          | NORM + AM + CS + CO |         | U-235               |               |  |  |
|               |          | NORM + AM + CS + CO |         | U-238               |               |  |  |

Page 381 of 384

Case 3:24-cv-03899-**VALA SAMPLE RELEIGHT Inspected of 26066**24

Client Name: 665

SDG: ARS1-24 - 00469

| Sample Custodian: Jacus l<br>Thermometer ID: E10540              |                                          |       |                                    | Date: 3-1-24           | Survey Start Time: <u>C</u><br>pH Paper Lot#              |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|------------------------------------------|-------|------------------------------------|------------------------|-----------------------------------------------------------|---------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure Rate Meter + Probe                                      |                                          |       |                                    |                        |                                                           |                                 |              | μR/hr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Count Rate Meter + Probe Uni                                     |                                          |       |                                    |                        |                                                           |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Delivery Type (circle one): D                                    |                                          |       |                                    |                        |                                                           |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Delivery Type (circle one): D                                    | irect Loc                                | к вох | Commercial Cal                     |                        |                                                           |                                 |              | 10 to |
| External Shipping<br>Container Tracking:                         | Exposure Rat<br>(μR/hr)<br>(limit <500 μ |       | Max External Swipe<br>Counts (cpm) |                        | rue temperature is recorded of<br>ESC True<br>Temps* (°C) | TRAX Matrix<br>(See Section 4.3 | ID (circle a |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A: 775373509790                                                  | 5                                        |       | 40                                 | 40                     |                                                           | AQ I                            | ND W         | g wo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| В:                                                               | -                                        |       |                                    |                        |                                                           | ws v                            | vw s         | UR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C:                                                               | 1                                        |       |                                    |                        |                                                           | SO                              | OL B         | I VG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| D:                                                               |                                          |       |                                    |                        |                                                           | WP S                            | SM A         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| E:                                                               |                                          |       |                                    |                        |                                                           |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  | _                                        | _     | -                                  |                        |                                                           |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Visual Inspection: (Circle response) External Shipping Container |                                          |       | nse)                               | COC/Sample Inspect     | (Circle response)                                         |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Good Condition                                                   |                                          |       |                                    | Sample Containers in   | good condition                                            | res                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| with no Leaks or Tears                                           | res                                      | No    | -                                  | No spills or leaks     |                                                           | Yes                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Marked Radioactive                                               | Yes                                      | NO    |                                    | Marked Radioactive     |                                                           | (Yes                            | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| UN2910                                                           | Yes                                      | No    |                                    | Durable labels w/ind   | elible ink                                                | res                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Security Seals                                                   | Fes                                      | No    |                                    | COC reliquished/rece   | eived correctly                                           | Fes                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| If yes, intact?                                                  | (es                                      | No    | N/A                                | Adequate volume/fill   | led correctly                                             | Es                              | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| nternal Shipping Container                                       |                                          |       |                                    | Hold Time sufficient   | for analysis                                              | (es                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COC's Present                                                    | Pes                                      | No    |                                    | For VOC/Radon, Hea     | d space?                                                  | Yes                             | No           | N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Well packaged container with                                     | Ves .                                    | No    |                                    | If yes, <6mm?          |                                                           | Yes                             | No           | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| no signs of leakage                                              |                                          |       |                                    | # of containers receiv | ved matches # on CO                                       | C (Yes                          | ) No         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Comments:                                                        |                                          |       |                                    | Samples received on    | ice?                                                      | Yes                             | No           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                  |                                          |       |                                    | Type (circle one):     | : Bagged Ice                                              | Loose Ice                       | Blue I       | ce NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Case 3:24-cv-03899-VC

Document 28-3 Filed 12/06/24 PALA Sample Survey Fo

Page 382 of 384

| Pipette ID: HA Tip                        | o Lot#:       | 191                         |                              | pH <2 is<br>Acceptable |                |                                              | <pre>Limits &lt;100 cpm/cm</pre> |        |
|-------------------------------------------|---------------|-----------------------------|------------------------------|------------------------|----------------|----------------------------------------------|----------------------------------|--------|
| Sample ID from Client on COC or Sample    | ESC<br>Letter | Sample<br>Container<br>Type | Approx.<br>Fill Level<br>(%) | pH<br>As Rec'd         | pH<br>Adjusted | Acid Lot # or Ind container temp ('C)        | Vol. of<br>Acid Used<br>(mL)     | сртуст |
| HPC-ESU-315A-1801                         | A             | asone                       | 90                           | MA                     | NA             | NA                                           | 14                               | 1400   |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           | 1 -1          |                             | 11                           |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              | \I                               |        |
|                                           |               |                             | 1                            |                        |                |                                              |                                  |        |
|                                           |               |                             | 1==1                         |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              | 77 17                  | -              |                                              |                                  |        |
|                                           |               |                             |                              | - 1                    |                |                                              | - 11                             |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              |                                  |        |
|                                           |               |                             |                              |                        |                |                                              | - 1                              | -      |
| nple Custodian: Jumbult                   |               | Survey End C                | Date: 3-1-2                  | ч                      | Survey/ph      | End Time: 9:50                               |                                  |        |
| re-check required? YES or NO              | NOTE: Any     | metals sample aci           | dified at sample             | receiving              | must be re-    | checked after a 24 hour hold                 |                                  |        |
| ES: pH re-check date/time:                | /_            |                             | Analyst:                     |                        |                | pH strip lot #                               | :                                |        |
| re all re-checked samples' pH < 2? YES or | NO*           |                             |                              |                        |                | ject Management:<br>05 (24 Hour Hold pH Read | djustment)                       |        |

PALA-SR-001-FM-02 r 00.3 Sample Survey Form Effective Date: 7/7/2023 11:53 A M

Page \_\_\_\_ of \_\_\_\_



#### After printing this label:

1. Use the 'Print' button on this page to print your label to your laser or inkjet printer.

2. Fold the printed page along the horizontal line.

3. Place label in shipping pouch and affix it to your shipment so that the barcode portion of the label can be read and scanned.

Warning: Use only the printed original label for shipping. Using a photocopy of this label for shipping purposes is fraudulent and could result in additional billing charges, along with the cancellation of your FedEx account number.

Use of this system constitutes your agreement to the service conditions in the current FedEx Service Guide, available on fedex.com.FedEx will not be responsible for any claim in excess of \$100 per package, whether the result of loss, damage, delay, non-delivery, misdelivery, or misinformation, unless you declare a higher value, pay an additional charge, document your actual loss and file a timely claim.Limitations found in the current FedEx Service Guide apply. Your right to recover from FedEx for any loss, including intrinsic value of the package, loss of sales, income interest, profit, attorney's fees, costs, and other forms of damage whether direct, incidental, consequential, or special is limited to the greater of \$100 or the authorized declared value. Recovery cannot exceed actual documented loss.Maximum for items of extraordinary value is \$1,000, e.g. jewelry, precious metals, negotiable instruments and other items listed in our ServiceGuide. Written claims must be filed within strict time limits, see current FedEx Service Guide.

ARS1-24-00469 Page 27 of 28

# Case 3:24-cv-03899-VC Document 28-3 Filed 12/06/24 Page 384 of 384 Discrepant Sample Receipt Report

| For Sample Receiving Use                                         |
|------------------------------------------------------------------|
| SDG: ARSI-24-00469 Receipt Date/Time: 3-1-24 1953 Matrix: 90     |
| Client Name: GES-AIS                                             |
| Problem Description:                                             |
| No collection time                                               |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
| For Project Manager Use                                          |
| Client Notified (Y N): Date/Time Client Notified: 3-1-24 11032   |
| Client DM Descritions                                            |
| emailed Matt + Audy                                              |
| enailed Matt + Audy<br>Verised Chain sent by Matt                |
|                                                                  |
|                                                                  |
|                                                                  |
|                                                                  |
| Client Notified that TAT Starts from Resolution of DSRR (Y N):   |
| Date/Time DSRR Resolved: 3-1-24 / 130   PM Initials: SXL         |
| Date/Time DSRR Resolved: 10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |
| For Sample Receiving Use                                         |
| Action Taken:                                                    |
| Gan verised chair into Tray                                      |
|                                                                  |
|                                                                  |
| 111 - 21211 1200                                                 |
| Signature: Date/Time: 7-1-24 / 1305                              |

PALA-SR-001-FM-03 r 00.1 Discrepant Sample Receipt Report Effective Date: 12/21/2022

Sample Custodian