Tutorial

WEEK 13

We will answer some questions from the problem set

1. Question 1

1.1. assumptions that should be made in this question. First we assume that D is an effective divisor that is "base-point free" i.e: For any $p \in C$ $L(D - [P]) \subsetneq L(D)$.

Notation: Given a principal divisor (f) (for $f \in Rat(C)$) we may represent (f) as the difference of 2 effective divisors $(f)_0 - (f)_{\infty}$ (poles minus zeros).

Secondly, given a hyperplane $H = \mathcal{Z}(\sum_{i=0}^n \lambda_i X_i) \subset \mathbb{P}^n$ we define the divisor $f^{-1}(H)$ to be the effective divisor defined by $(\sum_{i=0}^n \lambda_i f_i)_0$. (Try playing around with examples and see why this makes scene).

Solutions

- (1) If f would be contained in hyperplane then this would define a linear dependence of the bases f_i .
- (2) First we remark that for any two hyperplanes H, H' defined by linear forms S, S' (respectively) the divisor $f^{-1}(H)$ is equivalent so the divisor $f^{-1}(H')$ since $f^{-1}(H) - f^{-1}(H') = (S/S')$. Now by the assumption that D is base-point free we know that $\bigcup_i L(D-[p_i]) \subseteq L(D)$ (union over points in D). hence there exist $g \in L(D) \setminus cup_i L(D - [p_i])$ therefore we get the condition (*)

$$(g)_{\infty} \nleq (D - [p_i]).$$

Since $(g)_0$ and $(g)_{\infty}$ have disjoint support we obtain that (g) + $D = (g)_0 - (g)_\infty \ge 0 \Rightarrow D \ge (g)_\infty$ but together with (*) we obtain that $(g)_{\infty} = D$ thus $(g)_0 \sim (g)_{\infty} \sim D$.

Now since all pullback of hyperplane sections are equivalent what we do now is find the "correct" hyperplane. Since $g \in$ $L(D) g = \sum_{i=0}^{n} \lambda_i f_i$ so we just take the hyperplane to be $H = \sum_{i=0}^{n} \lambda_i f_i$ $\mathcal{Z}(\sum_{i=0}^{n} \lambda_i X_i)$ and we get by definition that $f^{-1}(H) = (g)_0$.

(3) The bijection: Given a divisor D as above we define $f: C \to C$ $\mathbb{P}(L(D))$ as defined in the question.

We show this map is well defined: Let $\{f_i\}_{i=0}^n$, be a basis for L(D), assume $D \sim D'$ then D - D' = (h), define the map $\hat{h}:L(D)\to L(D')$ $\hat{h}:g\mapsto hg$ is a linear bijection since 2 WEEK 13

 $(g) + D \ge 0 \iff (g) + (h) + D' = (gh) + D' \ge 0$. (we get that $L(D) \cong L(D')$)

So regarding L(D) with basis $\{f_i\}_{i=0}^n$ and L(D') with basis $\{hf_i\}_{i=0}^n$ as n+1 dimensional vector spaces we get a matrix $A \in GL(n+1)$ (that satisfies $hf_i = \sum_j A_{i,j} f_j$ as functions on C) let $\bar{A} \in PGL$ be its projective class. We obtain the commutative diagram

$$C \xrightarrow{\Phi_D} \mathbb{P}^n \\ \downarrow_{\bar{A}} \\ \mathbb{P}^n$$

So the map is well defined.

Injective:

Assume by contradiction that $D \nsim D'$ but there exist $\bar{A} \in$

$$PGL(n+1)$$
 such that $\bar{A}\begin{bmatrix}f_0(p)\\\vdots\\f_n(p)\end{bmatrix}=\begin{bmatrix}f_0'(p)\\\vdots\\f_n(p)\end{bmatrix}$ Then we obtain

that $D' \sim f'^{-1}(X_0 = 0) = (f'_0)_0 = (\sum_j A_{i,j} f_j)_0 = f^{-1}(\sum_j A_{i,j} X_j = 0) \sim D$ in contradiction. **surjective** Let $f: C \to \mathbb{P}^n$ be a map that does not intersect any hyperplane. $f(p) = [f_0(p): f_1(p): ...: f_n(p)]$ we show that $f_i \in L(D)$ for the divisor $(f_0 + f_1 + ... + f_n)_\infty$, this is just since $(f_i) + D = (f_i)_0 + (f_0 + ... + f_{i-1} + f_{i+1} + + f_n)_\infty \geq 0$. The fact that f_i are a basis comes from the assumption that the map does not intersect any hyperplane.