基础物理实验原始数据记录

实验名称 _ 动态法测	验名称 _ 动态法测定良导体的热导率						地	_地点			
学生姓名	学号										
实验日期	年	月_	F	3	成约	责评定			教师签字	<u> ۲</u>	
1. 热波波速的测量 相邻热电偶间距								点的	J位置坐标	示。	
				动态法	测铜的	热导	率				
测量点n											
对应峰值时间 t (s)											
波速(m/s)											
波速平均值:	波速平均值:				热导	率:					
			3	动态法	测铝的	热导	率				
测量点n											
对应峰值时间 t (s)											
波速(m/s)											
波速平均值:					热导	率:					
2. 电位差计测热电偶 室温:t=									的温差 冷端温度		
温度 t (℃)											
电动势 Ex(mv	1)										
3. 平衡电桥测铜电际系数 a。)		要特性曲	<u></u> 线(Ė拟合求¦	出铜	可电阻温度
室温: t =	_ °C			电阻	: R _x =	= I	Ω				
温度 t (℃)											
电阻 R_x (Ω)											

4. 平衡电桥测热敏电阻温度特性曲线

绘制 R_{T} ~t 曲线,观察热敏电阻的温度特性;绘制 lnR_{T} ~1/T 曲线,线性拟合求出热敏电阻的特性常数 A 和 B(注意:T 为热力学温度)。

温度 t (℃)			
电阻 R _T (Ω)			

5. 非平衡电桥热敏电阻温度计的设计

温度区间:	30	\mathbb{C} —	50	$^{\circ}\! C$:
/~ E-1-1-1•	20	_		~ ,

实际值:
$$R_2$$
= ______ Ω , R_1 = _____ Ω , R_3 = _____000 ____ Ω 。

设定温度 t(℃)			
测试电压 Uo(mv)			
测试温度(℃)			

(

热敏电阻温度计: $U_0 = \lambda + m(t - t_1)$, 式中 $t_1 = 40$ °C(所测温度区间的中心值) 参数计算:

$$E = \left(\frac{4BT_1^2}{4T_1^2 - B^2}\right) m$$
,注意 $T_1 = 273 + 40 = 313K$

$$R_2 = \frac{B - 2T_1}{B + 2T_1} R_{xT1} \left(R_{xT1}$$
为在温度 T_1 时热敏电阻的电阻)

$$\frac{R_1}{R_3} = \frac{2BE}{\left(B + 2T_1\right)E - 2B\lambda} - 1$$

)