

DNESP32S3M 硬件参考手册 V1.0

-正点原子 DNESP32S3M 最小系统板教程

修订历史:

版本	日期	修改内容
V1.0	2024/6/15	第一次发布

②正点原子

正点原子公司名称 : 广州市星翼电子科技有限公司

原子哥在线教学平台: www.yuanzige.com

开源电子网/论坛: www.openedv.com

正点原子官方网站: www.alientek.com

正点原子淘宝店铺 : https://openedv.taobao.com

正点原子 B 站视频 : https://space.bilibili.com/394620890

电话: 020-38271790 传真: 020-36773971

请下载原子哥 APP,数千讲视频免费学习,更快更流畅。请关注正点原子公众号,资料发布更新我们会通知。

扫码下载"原子哥"APP

扫码关注正点原子公众号

内容简介	1
第一章 实验平台简介	2
1.1, DNESP32S3M 最小系统板资源初探;	2
1.1.1 DNESP32S3 硬件设计特点	
1.1.2 DNESP32S3 硬件基本参数	2
1.1.3 DNESP32S3 硬件资源分布	2
1.1.4 DNESP32S3 硬件资源列表	3
1.2, DNESP32S3M 最小系统板资源说明;	3
1.2.1 硬件资源说明	3
1.2.2 DNESP32S3 IO 引脚分配	4
第二章 实验平台硬件资源详解	6
2.1 开发板原理图详解	6
2.1.1 模组	6
2.1.2 引出 IO 口	
2.1.3 USB 串口/串口 1 选择接口	
2.1.4 LCD 模块&WIRELESS 接口	
2.1.5 复位电路	
2.1.6 LED	
2.1.7 按键	
2.1.8 TF 卡接口	
2.1.9 电源	
2.1.10 USB 通信接口	
2.1.11 USB 串口	
2.2 开发板使用注意事项	10

内容简介

本手册主要介绍 DNESP32S3M 最小系统板的硬件资源,包括:实验平台简介、实验平台硬件资源详解以及使用注意事项等。通过本手册的学习,大家将会对 DNESP32S3M 最小系统板的硬件有一个比较全面的了解,对后续的软件学习及程序设计非常有帮助。

本手册是《DNESP32S3M 使用指南(IDF 版、Arduino 和 MicroPython 版)》的重要补充教程,强烈建议大家在学习相关例程前,先学习本手册!

第一章 实验平台简介

本章主要介绍我们的实验平台:正点原子 DNESP32S3M 最小系统板。通过本章的学习,您将对我们后面使用的实验平台有个大概了解,为后面的学习做铺垫。

本章将分为如下几个小节:

- 1.1, DNESP32S3M 底板资源初探;
- 1.2, DNESP32S3M 底板资源说明;

1.1, DNESP32S3M 最小系统板资源初探;

ESP32 系列芯片自 2016 年发布以来,经过多年的发展,已经成为了物联网领域的重要选择。该系列芯片不断升级和完善,支持更多的应用场景和功能,因此受到广泛欢迎。最新的 ESP32-S 系列芯片进一步丰富了该系列的产品线,满足了不同领域的需求。为了满足大家对 AIOT 功能的需求,正点原子推出了 DNESP32S3M 最小系统板,为开发者提供了一个全面、易用的开发环境。下面我们开始介绍 DNESP32S3M。

1.1.1 DNESP32S3M 硬件设计特点

DNESP32S3M 最小系统板硬件设计特点包括:

- 1)接口丰富。板子提供十来种标准接口,可以方便的进行各种外设的实验和开发。
- 2) **设计灵活。**板上很多资源都可以灵活配置,以满足不同条件下的使用。我们引出了数十个 **IO** 口,可以极大的方便大家扩展及使用。
- 3)**资源充足。**主控模组采用正点原子提供的 ATK-MWS3S(和乐鑫官方 ESP32S3-WOOD-N16R8 对应),自带 384K ROM(存储官方启动固件,开发者无法使用)、512K SRAM、16MB FLASH 和 8MB PSRAM,满足大数据存储需求。
- 4) **人性化设计。**各个接口都有丝印标注,且用方框框出,使用起来一目了然;部分常用外设大丝印标出,方便查找;接口位置设计合理,方便顺手。资源搭配合理,物尽其用。
- 5) **国产化程度高。**为了支持国产芯片的发展和推广,正点原子优选国产好芯, DNESP32S3M 最小系统板上凡是能用国产替代的芯片,全部使用国产芯片,国产化率达到 100%(数量)。

1.1.2 DNESP32S3M 硬件基本参数

DNESP32S3M 硬件基本参数如表 1.1.2.1 所示:

项目	说明
产品型号	ATK-DNESP32S3M V1
模组	ATK-MWS3S, WROOM
引出 IO	36个
外形尺寸	64mm*28mm
工作电压	5V (USB)
工作电流	42mA~180mA ¹ (@5V)
工作温度	0°C~+70°C

表 1.1.2.1 DNESP32S3M 硬件基本参数

注 1: 42mA 对应 CPU 在复位情况下,裸板的工作电流; 180mA 对应 CPU 正常运行时裸板的工作电流。

1.1.3 DNESP32S3M 硬件资源分布

DNESP32S3M 的硬件资源分布如下图所示:

图 1.1.3.1 DNESP32S3M 的硬件资源分布图

1.1.4 DNESP32S3M 硬件资源列表

DNESP32S3M 的硬件资源列表如下表所示:

资源	数量	说明		
				
		ATK-MWS3S;		
模组	1个	ROM:384KB; SRAM:512KB;		
		FLASH:16MB;PSRAM:8MB;		
电源指示灯	1个	蓝色		
状态指示灯	1个	红色 (LED)		
复位按键	1个	用于 Module&LCD 的复位		
功能按键	1个	BOOT		
USB 转串口	1个	用于 USB 转 TTL 串口通信、下载程序		
USB 从机接口(JTAG)	1个	用于 USB SLAVE (从机)通信、仿真调试和下载程序		
TF卡接口	1个	用于接 TF 卡		
5V 电源输入/输出口	1组	用于 5V 电源接入/对外提供 5V 电压		
3.3V 电源输入/输出口	1组	用于 3.3V 电源接入/对外提供 3.3V 电压		
引出 IO	36个	用于扩展使用(注: 35~37 IO 不可用)		

表 1.1.4.1 DNESP32S3 的硬件资源列表

1.2, DNESP32S3M 最小系统板资源说明;

DNESP32S3M 资源说明,我们将分为两个部分:硬件资源说明和 DNESP32S3M IO 引脚分配。

1.2.1 硬件资源说明

这里我们详细介绍 DNESP32S3M 最小系统板的各个部分(图 1.1.3.1 中的标注部分)的硬件资源,我们将按逆时针的顺序依次介绍。

1, ATK-MWS3S 模组

这是开发板的核心模组(U1),型号为:ATK-MWS3S模组。该模组内部资源非常丰富,详见下表:

ATK-MWS3S 内部资源					
内核	2				
主频	240Mhz	ADC 通道数	20		
ROM	384KB	SPI	4		
SRAM	512KB	I2S	2		
FLASH	16MB	IIC	2		

PSRAM	8MB	LED PWM	1
封装	WROOM	RMT	1
IO 数量	36	UART	3
工作电压	3.0 ~ 3.6 V	SD/MMC	2
USB OTG	1	RTC	1
TIMG	2组	TWAI	1

表 1.2.1.1 ATK-MWS3S 内部资源表

2, 复位按钮

这是开发板板载的复位按键(RESET),用于复位ATK-MWS3S模组。

3,1个按键

这是开发板板载的 1 个机械式输入按键(BOOT)。.BOOT 按键可用来切换启动模式,当启动完成后,可当普通按键来使用,此按键也是低电平有效。

4, 0.96 寸 SPILCD 显示屏

这是最小系统板板载的一个 0.96 寸 SPILCD 显示屏,它用来显示和绘画图片等功能。

5, 电源指示灯

这是开发板板载的一颗蓝色的 LED 灯 (PWR),用于指示电源状态。在电源开启的时候(通过板上的电源开关控制),该灯会亮,否则不亮。通过这个 LED,可以判断开发板的上电情况。

6, USB SLAVE

这是开发板板载的一个 Type C USB 头(JTAG/USB_SLAVE),用于 USB 从机(SLAVE) 通信,一般用于 ATK-MWS3S 模组与电脑的 USB 通信和 JTAG 下载调试。

7, USB 转串口

这是开发板板载的另外一个 Type C USB 头(USB_UART),用于 USB 连接 CH343P 芯片,从而实现 USB 转 TTL 串口。同时,此接头也是开发板电源的主要提供口

8, LED

这是开发板板载的一个红色的 LED 灯, 主要是方便大家识别。

在调试代码的时候,使用 LED 来指示程序状态,是非常不错的一个辅助调试方法。 DNESP32S3M 最小系统板几乎每个实例都使用了 LED 来指示程序的运行状态。

9, 引出 IO 口(总共有 2 处)

这是开发板 IO 引出端口,总共两组主 IO 引出口: P1、P2。P1 采用 1*22 单排针引出, P2 也是采用 1*22 单排针引出,除去电源等相关管脚,能做普通 IO 的只有 36 个(注: 35~37 IO 不可用)。

10, TF 卡接口

这是开发板板载的一个 TF 卡接口(也叫 Micro SD 卡,在板子背面), SPI 方式驱动, TF 卡容量选择范围非常宽(最大可达 TB 级),有了这个接口,就可以满足海量数据存储的需求。

1.2.2 DNESP32S3 IO 引脚分配

为了让大家更快更好的使用我们的 DNESP32S3M 最小系统板,这里特地将 DNESP32S3M 最小系统板主控模组: ATK-MWS3S 模组的 IO 资源分配做了一个总表,以便大家查阅。 DNESP32S3M 的 IO 引脚分配总表如下表所示:

	DNESP32S3M IO 资源分配表						
引脚编 号	GPI0	连接资	源	完全 独立	连接关系说明		
4	I04			Y			
5	105			Y			
6	I06			Y			
7	107			Y			
8	I015			Y			

			П	点原子 DNESP32S3M 系统板教程
9	I016		Y	
10	I017		Y	
11	I018		Y	
12	I08		Y	
13	I019	USB_D-	N	HCD
14	1020	USB_D+	N	- USB
15	I03		Y	
16	I046		Y	
17	I09		Y	
18	I010		Y	
19	I011	SPI_MOSI	N	SPI2口的MOSI信号
20	I012	SPI_SCK	N	SPI2 口的 SCK 信号
21	I013	SPI_MISO	N	SPI2 口的 MISO 信号
22	I014		Y	
23	I021		Y	
24	I047		Y	
25	I048		Y	
26	I045		Y	
27	100	BOOT	N	BOOT 按键信号
28	I035		Y	
29	I036		Y	不可用
30	1037		Y	
31	1038	LCD_RST	N	LCD 复位信号
32	1039	LCD_CS	N	LCD 片选信号
33	I040	LCD_DC	N	LCD 数据/命令信号
34	I041	LCD_BL	N	LCD 背光信号
35	I042		Y	
36	RXD0	UORXD	N	UARTO
37	TXD0	UOTXD	N	
38	I02	TF_CS	N	TF 卡的 CS 信号
39	I01	LED	N	LED 信号

表 1.2.2.1 DNESP32S3M IO 资源分配总表

上表中,引脚栏即 ATK-MWS3S 模组的引脚编号;GPIO 栏则表示 GPIO;连接资源栏表示了对应 GPIO 所连接到的网络;独立栏,表示该 IO 是否可以完全独立(不接其他任何外设和上下拉电阻)使用,通过一定的方法,可以达到完全独立使用该 IO,Y表示可做独立 IO,N表示不可做独立 IO;连接关系栏,则对每个 IO 的连接做了简单的介绍。

该表在: A 盘 3, 原理图文件夹下有提供 Excel 格式,并注有详细说明和使用建议,大家可以打开该表格的 Excel 版本,详细查看。

第二章 实验平台硬件资源详解

本章,我们将节将向大家详细介绍正点原子 DNESP32S3M 各部分的硬件原理图,让大家对该开发板的各部分硬件原理有个深入理解,并向大家介绍开发板的使用注意事项,为后面的学习做好准备。

本章将分为如下两节:

- 2.1, 开发板原理图详解;
- 2.2, 开发板使用注意事项;

2.1 开发板原理图详解

2.1.1 模组

正点原子 DNESP32S3M 最小系统板选择的是 ATK-MWS3S 模组作为主控模组,该模组功能非常强大,它拥有的资源包括: 384KB ROM、512KB SRAM、16MB FLASH、8MB PSRAM、高达 240MHz 主频、支持 KPU 神经网络等,详见 1.2 节的表 1.2.1.1。

模组的原理如下图所示:

图 2.1.1.1 模组原理图

图中 U1 为我们的主控模组: ATK-MWS3S 模组。

2.1.2 引出 IO 口

正点原子 DNESP32S3M 通过排针引出了 3	36 个 IO 口,	如下图所示:
---------------------------	------------	--------

			1	,
VCC3.3 1	- 1	GND	1	1
VCC3.3 2	2	U0_TXD	2	1
RESET 3	3	U0_RXD	3	2
IO4 4		IO1	4	3
IO5 5	4 5	IO2	5	4
IO6 6	6	IO42	6	5
IO7 7		IO41	7	6
IO15 8	7 8	IO40	8	7
IO16 9	9	IO39	9	8
IO17 10	10	IO38	10	9
IO18 11	11	IO37	11	10
IO8 12	12	IO36	12	11
IO3 13	13	IO35	13	12
IO46 14	14	IO0	14	13
IO9 15	15	IO45	15	14
IO10 16	16	IO48	16	15
IO11 17	17	IO47	17	16
IO12 18	18	IO21	18	17
IO13 19	19	IO20	19	18
IO14 20	20	IO19	20	19
5V 21	21	GND	21	20
GND 22	22	GND	22	21
	22			22
	HDR-12	X22		HDR-1X2

图 2.1.2.1 引出 IO 口

这是开发板 IO 引出端口,总共两组主 IO 引出口: P1、P2。P1 和 P2 均采用 1*22 单排针引出,除去电源等相关管脚,能做普通 IO 的只有 36 个。

2.1.3 USB 串口/串口 1 选择接口

正点原子 DNESP32S3M 板载的 USB 串口和 ATK-MWS3S 模组的串口连接起来的,如下图所示:

图 2.3.1.1 USB 串口/串口 1 选择接口

图中 CH343_D+/CH343_D-是相对 CH343P 来说的,也就是 USB 串口的发送和接收脚。而 U0_RXD 和 U0_TXD 则是相对于 ATK-MWS3S 模组来说的。这样,通过对接,就可以实现 USB 串口和 ATK-MWS3S 模组的串口通信了。

2.1.4 LCD 模块&WIRELESS 接口

正点原子 DNESP32S3M 板载的 LCD 模块接口电路如下图所示:

图 2.1.4.1 LCD 模块接口

图中LCD是一个液晶模块接口,DNESP32S3M板载了0.96寸的SPILCD模块。

2.1.5 复位电路

正点原子 DNESP32S3 的复位电路如下图所示:

图 2.1.5.1 复位电路

因为 ATK-MWS3S 模组是低电平复位的,所以我们设计的电路也是低电平复位的,这样这个复位按钮可以用来复位 ATK-MWS3S 模组了。

2.1.6 LED

正点原子 DNESP32S3M 板载只有 1 个红色的 LED, 其原理图如下图所示:

8

其中 PWR 是系统电源指示灯,为蓝色。LED 接在 IO1 上。

2.1.7 按键

正点原子 DNESP32S3M 板载总共有 1 个输入按键,其原理图如下图所示:

图 2.1.7.1 输入按键

复位之前, BOOT 按键可用来选择启动模式。复位之后, BOOT 按键可用于普通按键使用。

2.1.8 TF 卡接口

正点原子 DNESP32S3M 板载了一个 TF 卡 (小卡/Micro SD 卡) 接口,其原理图如下图所示:

图 2.1.8.1 TF卡接口

图中 TF_CARD 为 TF 卡接口,采用 SPI 方式驱动,理论上最大速度可以达到 24MB/S,非常适合需要高速存储的情况。

注意: TF卡接口和 SPILCD接口共用一个 SPI接口。

2.1.9 电源

正点原子 DNESP32S3M 最小系统板板载的电源供电部分,其原理图如下图所示:

图 2.1.9.1 电源

图中 U2 是一款稳压芯片(LDO), 型号为: RT9013-33GB, 作用是将 5V 电压稳压成 3.3V。

2.1.10 USB 通信接口

正点原子 DNESP32S3M 板载了 USB 通信接口(USB_Slave/JTAG), 其原理图如下图所示:

图 2.1.10.1 USB_Slave 接口

USB_Slave 是 USB 从机接口,使用的是 Type C USB 座,通过 USB 线连接电脑可以用于 USB 从机通信,如: USB CDC、USB MSC、USB HID 等。

注意: USB Slave 可以作为 JTAG 接口,用来下载和调试代码。

2.1.11 USB 串口

正点原子 DNESP32S3MM 最小系统板板载了一个 USB 串口,其原理图如下图所示:

图 2.1.11.1 USB 串口

USB 转串口芯片,我们选择的是 CH343P,无需外部晶振,非常好用。USB_UART 是一个 Type C USB 座,提供 CH343P 和电脑通信的接口,同时可以给开发板供电,VUSB 就是来自电脑 USB 的电源,USB_UART 是本开发板的主要供电口。

2.2 开发板使用注意事项

为了让大家更好的使用正点原子 DNESP32S3M 最小系统板,我们在这里总结该开发板使用的时候尤其要注意的一些问题,希望大家在使用的时候多多注意,以减少不必要的问题。

- 1, 1 个 USB 供电最多 500mA,且由于导线电阻存在,供到开发板的电压,一般都不会有 5V,如果使用了很多大负载外设,比如 SPILCD 和多个外设一起工作,那么可能引起 USB 供电不够,所以作者建议可以同时插 2 个 USB 口,这样供电可以更足一些。
- 2, 当你想使用某个 IO 口用作其他用处的时候,请先看看开发板的原理图,该 IO 口是否

DNESP32S3M 硬件参考手册

正点原子 DNESP32S3M 系统板教程

有连接在开发板的某个外设上,如果有,该外设的这个信号是否会对你的使用造成干扰,先确定无干扰,再使用这个 IO。

至此,本手册的实验平台(正点原子 DNESP32S3M 最小系统板)的硬件部分就介绍完了,了解了整个硬件对我们后面的学习会有很大帮助,有助于理解后面的代码,在编写软件的时候,可以事半功倍,希望大家细读!另外正点原子开发板的其他资料及教程更新,都可以在技术论坛 www.openedv.com/forum.php 下载到,大家可以经常去这个论坛获取更新的信息。