Randomized Algorithms

— P, NP, RP, PP, ZPP, BPP, ...

Joseph Chuang-Chieh Lin

Department of Computer Science & Information Engineering, Tamkang University

Fall 2023

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- 3 Transformation of Probability Distributions

Outline

- RAMs & Turing Machines
- 2 Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- 3 Transformation of Probability Distributions

RAM (Random Access Machine)

- RAM is a model of computation used when describing and analyzing algorithms.
- A machine can perform operations involving registers and main memory.
- The unit-cost RAM: each instruction can be performed in one time step.
 - Too powerful; no known polynomial time simulation of this type of model by Turing machines.
- The *log-cost* RAM: each instruction requires time proportional to the logarithm of the size of its operands.

Turing Machine

A physical Turing machine (with finite amount of tape).

Deterministic Turing Machine

A deterministic Turing machine is a quadruple $M = (S, \Sigma, \delta, s)$.

- S: a finite set of states (s: the initial state)
- Σ: A finite set of symbols (including special symbols BLANK and FIRST).
- δ : the transition function.
 - $S \times \Sigma \mapsto (S \cup \{\mathsf{HALT}, \mathsf{YES}, \mathsf{NO}\}) \times \Sigma \times \{\leftarrow, \rightarrow, \mathsf{STAY}\}.$
 - HALT, YES, NO: The three halting states not in S.

Turing Machine (Input & Tape)

- The input to the TM: written on a tape.
- The TM, as an algorithm, may read from and write on this tape.
- Assume that HALT, YES, NO as well as the symbols \leftarrow , \rightarrow , and STAY are not in $S \cup \Sigma$.
- The TM begins in the initial state s with its cursor at the first symbol FIRST of input x.
- The input is a string of $(\Sigma \setminus \{BLANK, FIRST\})^*$.
 - The left-most BLANK on the tape: the end of the input string.

Turing Machine (Transition)

- The transition function δ : can be thought as a *program*.
- In each step, the TM reads the symbol α pointed by the cursor;
- Based on α and the current state, choose:
 - a next state;
 - a symbol β to be overwritten on α ;
 - a cursor motion direction from $\{\leftarrow, \rightarrow, \mathsf{STAY}\}$.
- The cursor never falls off the left end of the input: FIRST.
- The BLANK symbol can be overwritten.

Turing Machine (Acceptance & Reject)

- The TM has accepted the input x: if the TM halts in the YES state.
- The TM has rejected the input x: if the TM halts in the NO state.
- State HALT: for the computation of functions whose range is not Boolean (output of the function is written on the tape).

Probabilistic Turing Machine

A probabilistic Turing machine is a Turing machine augmented with the ability to generate an unbiased coin flip in one step.

• This corresponds to a randomized algorithm.

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- 3 Transformation of Probability Distributions

SAT

An instance of satisfiability (SAT):

$$(x_1 \wedge \neg x_2 \wedge x_4) \vee (\neg x_3 \wedge \neg x_4 \wedge x_5) \vee (\neg x_1 \wedge x_2 \wedge x_4 \wedge \neg x_5)$$

- x_1, x_2, \ldots : variables
- $\neg x_1, x_2$: literals
- (···): clauses

Deterministic Classes

Language Recognition Problems

Language Recognition Problems

Any decision problem can be treated as a language recognition problem.

- Σ^* : the set of all possible strings over Σ .
- |S|: length of string s.

A language $L \subseteq \Sigma^*$ is any collection of strings over Σ .

A Language Recognition Problem

Decide whether a given string $x \in \Sigma^*$ belongs to L.

Complexity Class

A collection of languages all of whose recognition problems can be solved under prescribed bounds on the computational resources.

P & NP

P

The class P consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow A(x)$ accepts;
- $x \notin L \Rightarrow A(x)$ rejects.

NP

The class **NP** consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow \exists y \in \Sigma^*$, A(x,y) accepts for $|y| \le \text{poly}(|x|)$;
- $x \notin L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects..

A Useful, Alternative Viewpoint

The class P consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be found and verified in polynomial time.

The class **NP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in polynomial time.

Obviously,

P NP.

A Useful, Alternative Viewpoint

The class P consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be found and verified in polynomial time.

The class **NP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in polynomial time.

Obviously,

$$P \subseteq NP$$
.

Complementary Classes

For any complexity class \mathcal{C} , the complementary class co- \mathcal{C} is the set of languages whose complement is in \mathcal{C} . That is,

$$\operatorname{co-}\mathcal{C} = \{L \mid \overline{L} \in \mathcal{C}\}.$$

Examples: co-P & co-NP

P

The class co-P consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \notin L \Rightarrow A(x)$ accepts;
- $x \in L \Rightarrow A(x)$ rejects.

NP

The class NP consists of all languages L which has a polynomial time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \notin L \Rightarrow \exists y \in \Sigma^*$, A(x,y) accepts for $|y| \leq \text{poly}(|x|)$;
- $x \in L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects..

Open Questions: $P = NP \cap \text{co-}NP$? NP = co-NP?

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ □ 9000

Complexity Classes

Deterministic Classes

Similarly, . . .

EXP & NEXP

EXP

The class **EXP** consists of all languages L which has an exponential time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow A(x)$ accepts;
- $x \notin L \Rightarrow A(x)$ rejects.

NEXP

The class **NEXP** consists of all languages L which has an exponential time algorithm A s.t. for any input $x \in \Sigma^*$,

- $x \in L \Rightarrow \exists y \in \Sigma^*$, A(x,y) accepts for $|y| \le \text{poly}(|x|)$;
- $x \notin L \Rightarrow \forall y \in \Sigma^*$, A(x, y) rejects..

A Useful, Alternative Viewpoint

The class **EXP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be found and verified in exponential time.

The class **NEXP** consists of all language L such that for any $x \in L$, a proof of $x \in L$ (represented by the string y) can be verified in exponential time.

Obviously,

$$EXP \subseteq NEXP$$
.

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- Transformation of Probability Distributions

Space

- The space used by a TM: the number of distinct positions on the tape that are scanned during an execution.
 - For RAMs, its the number of words of memory required by an algorithm.
- **PSPACE** and **NPSPACE**: resembles the settings of **P** and **NP** but requiring polynomial space.
- A **PSPACE** algorithm may run for super-polynomial time (e.g., $2^{\text{poly}(n)}$).
- Known results: **PSPACE** = **NPSPACE**, **PSPACE** = co-**PSPACE**.
 - Savitch's theorem: a deterministic Turing machine can simulate a nondeterministic Turing machine without needing much more space.

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- 3 Transformation of Probability Distributions

Reduction

Polynomial Reduction

A polynomial reduction from a language $L_1 \subseteq \Sigma^*$ to a language $L_2 \subseteq \Sigma^*$ is a function $f: \Sigma^* \mapsto \Sigma^*$ such that

- ullet \exists a polynomial time algorithm that computes f
- $\forall x \in \Sigma^*$, $x_1 \in L_1$ if and only if $f(x) \in L_2$.

Completeness

NP-hard

A language L is **NP**-hard if, for all $L' \in \mathbf{NP}$, there is a polynomial reduction from L' to L.

NP-complete

A language L is NP-complete if it is in NP and is NP-hard.

The first NP-complete problem: SAT (Cook-Levin Theorem (1971)).

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- 3 Transformation of Probability Distributions

RP

The class RP (i.e., Randomized Polynomial time) consists of all languages L that have a randomized algorithm A which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{1}{2}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] = 0$.
- Err only when $x \in L$. \Rightarrow one-sided error.

co-RP

RP

The class co-RP (i.e., complement Randomized Polynomial time) consists of all languages L that have a randomized algorithm A which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{1}{2}$.
- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] = 0$.
- Err only when $x \notin L$. \Rightarrow one-sided error.

Exercise (3%)

Assume that we have the following class:

RP'

The class RP' consists of all languages L that have a randomized algorithm A which runs in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{1}{n^2}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] = 0$.

Prove that $\mathbf{RP}' = \mathbf{RP}$.

Randomized Algorithm - Complexities

Complexity Classes

Randomized Complexity Classes

 $RP \cap \text{co-}RP$

ZPP (Zero-error Probabilistic Polynomial time

The class **ZPP** is the class of languages that have Las Vegas algorithms running in expected polynomial time.

Why **ZPP**?

- Suppose we have a language $L \in \mathbf{RP} \cap \text{co-}\mathbf{RP}$.
- L can be recognized by an RP algorithm A and a co-RP algorithm B.

A Las Vegas algorithm

Given the input x, perform the following procedure in iterations.

- If A(x) accepts, then x must be a YES-instance;
- ② Otherwise, if B(x) rejects, then x must be a NO-instance.
- 3 If neither of above occurs, continue to next iteration.
 - The expected number of iterations is bounded!

PP

PP

The class **PP** (i.e., Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] > \frac{1}{2}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] < \frac{1}{2}$.

PP

The class **PP** (i.e., Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] > \frac{1}{2}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] < \frac{1}{2}$.
- To reduce the error probability of a two-sided error algorithm, we can perform several independent iterations on the same input.
- Output the majority answer of these iterations.

BPP

BPP

The class BPP (i.e., Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{3}{4}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \leq \frac{1}{4}$.

BPP

BPP

The class BPP (i.e., Bounded-error Probabilistic Polynomial time) consists of all languages L that have a randomized algorithm A running in worst-case polynomial time such that for any input $x \in \Sigma^*$:

- $x \in L \Rightarrow \Pr[A(x) \text{ accepts}] \ge \frac{3}{4}$.
- $x \notin L \Rightarrow \Pr[A(x) \text{ accepts}] \leq \frac{1}{4}$.
- To reduce the error probability of a two-sided error algorithm, we can perform several independent iterations on the same input.
- Output the majority answer of these iterations.

Randomized Complexity Classes

Source: Wikipedia

Outline

- RAMs & Turing Machines
- Complexity Classes
 - Deterministic Classes
 - Space Complexity Classes
 - Reduction & Completeness
 - Randomized Complexity Classes
- Transformation of Probability Distributions

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is called a p-to-q transformation.

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is called a p-to-q transformation.

Easy cases:

• p-to-0 and p-to-1..

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is called a p-to-q transformation.

Easy cases:

- *p*-to-0 and *p*-to-1..
- p-to-(1-p)

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is called a p-to-q transformation.

Easy cases:

- p-to-0 and p-to-1..
- p-to-(1-p)
- p-to- p^2 .

p-coin

A coin is called a p-coin if it shows HEAD after one coin-flipping.

Probability Distribution Transformations

A function that transforms a p-coin to get a q-coin, for 0 < p, q < 1, is called a p-to-q transformation.

Easy cases:

- *p*-to-0 and *p*-to-1..
- p-to-(1-p)
- p-to- p^2 .
- p-to- $\binom{n}{k}p^k(1-p)^k$, for $n \in \mathbb{N}$ and $k \in \{0, 1, \dots, n\}$.

Exercise (2%)

Given a p-coin, where 0 .

- Repeat the following steps until it returns YES or NO.
 - flip the p-coin twice.
 - if the results are HEAD-TAIL, return YES;
 - else if the results are TAIL-HEAD, return NO;
 - 4 otherwise, continue to next iteration
- Please prove that the above procedure is a p-to- $\frac{1}{2}$ transformation (i.e., deriving a fair coin).
- Please compute the expected number of coin-flips of the above procedure.

Concatenation Rule

Concatenation Rule

Given a p-coin and a q-coin, we can derive a pq-coin as follows.

- First, simulate the p-coin. If it is TAIL, output TAIL
- ② Otherwise, simulate the *q*-coin and output the outcome.

Concatenation Rule

Concatenation Rule

Given a p-coin and a q-coin, we can derive a pq-coin as follows.

- First, simulate the p-coin. If it is TAIL, output TAIL
- ② Otherwise, simulate the *q*-coin and output the outcome.
- By the Concatenation Rule & the exercise, we can derive a p/2-coin when we are given a p-coin.

Discussions