Additive Noise Models: Identifiability Theorems, Learning Algorithms, Hidden Variables and Time Series

Behrad Moniri

Sharif University of Technology bemoniri@ee.sharif.edu

Model Definition

We call the SCM, C, an additive noise model if each observed variable X_j is associated with a node j in a directed acyclic graph G, and the value of X_j is obtained as a function of its parents in G, plus independent additive noise N_j , i.e.

$$X_j = f_j(\mathbf{PA}_j) + N_j, \qquad j = 1, \dots, p \tag{1}$$

with jointly independent variables N_j . We will assume that the noise variables have strictly positive density.

Causal Minimality

For those models with strictly positive density, causal minimality reduces to the condition that each function f_i is not constant in any of its arguments.

Identifiability: The Bivariate Case

Hoyer et al. (2009) proves the following theorem about the identifiability of bivariate additive noise models.

Theorem

An additive noise model with two variables, i.e., $X_1 = N_1$ and $X_2 = f(X_1) + N_2$, with $N_1 \perp \!\!\! \perp N_2$, is identifiable if it does not solve the following differential equation for all x_i, x_j with $\nu''(x_j - f(x_i))f'(x_i) \neq 0$:

$$\xi''' = \xi'' \left(-\frac{\nu'''f'}{\nu''} + \frac{f''}{f'} \right) - 2\nu''f''f' + \nu'f''' + \frac{\nu'\nu'''f''f'}{\nu''} - \frac{\nu'(f'')^2}{f'},$$

Here $\xi := \log p_{X_1}$ and $\nu := \log p_{N_2}$ and we have skipped the arguments $x_2 - f(x_1)$, x_1 , and x_1 for ν , ξ , and f and their derivatives, respectively.

Corollary

Gaussian Noise: Assume that $\nu''' = \xi''' = 0$ everywhere. If a backward model exists, then f is linear.

Corollary

Assume that f(x) = x and $p_x(x) = e^{-x-e^{-x}}$ and $p_n(n) = e^{-n-e^{-n}}$. With $p_{\nu}(y) = e^{-y-2\log(1+e^{y})}$, $\tilde{p}_{n}(\tilde{n}) = e^{-2\tilde{n}-e^{-\tilde{n}}}$ and $g(y) = \log(1+e^{-y})$, one obtains:

$$p(x,y) = p_n(y - f(x))p_x(x) = \tilde{p}_n(x - g(y))p_y(y)$$

so the model is not identifiable.

Identifiability: From Bivariate to Multivariate

Definition

Consider an ANM with p variables. We call this SCM a *restricted additive* noise model if for all $j \in V$, $i \in PA_j$ and all sets $S \subseteq V$ with $PA_i \setminus \{i\} \subseteq S \subseteq ND_i \setminus \{i,j\}$, there is an x_S with $p_S(x_S) > 0$, such that

$$\left(f_j(x_{\mathsf{PA}_j\setminus\{i\}},X_i),P(X_i\,|\,X_{\mathsf{S}}=x_{\mathsf{S}}),P(N_j)\right)$$

satisfies the bivariate identifiability conditions.

We assume that the noise variables to have non-vanishing densities and the functions f_i are three times differentiable.

Identifiability: The Multivariate Case

Peters et al. (2014) proves a very interesting theorem. This theorem states how we can generalize a bivariate identifiability to the multivariate case, in this case ANM identifiability.

Theorem

Let $X_1, ..., X_p$ be generated by a restricted additive noise model with graph G_0 and assume that $P_{\mathbf{X}}$ satisfies causal minimality with respect to G_0 , i.e., the functions f_j are not constant. Then, G_0 is identifiable from the joint distribution.

Identifiability: Post Non Linear (PNL) Models

Definition

PNL Models are introduced in Zhang and Hyvärinen (2009). A PNL is an SCM where each expresses each variable X_i as

$$X_i = g_i(f_i(\mathbf{PA}_i) + N_i), \quad i = 1, ..., n$$

Theorem (Bivariate Identifiability)

Assume that $x_2 = f_2(f_1(x_1) + e2)$ and $x_1 = g_2(g_1(x_2) + e1)$. Densities and nonlinear functions are three times differentiable. We then have the following equation for every (x_1, x_2) satisfying $\eta''h' \neq 0$:

$$t_1 = g_2^{-1}(x_1), \ z_2 = f_2^{-1}(x_2), \ h = f_1 \circ g_2, \ h_1 = g_1 \circ f_2$$

$$\eta_1(t_1) = \log p_{t_1}(t_1) \ \eta_2(e_2) = \log p_{e_2}(e_2)$$

$$\eta_1''' - \frac{\eta_1''h''}{h'} = (\frac{\eta_2'\eta_2'''}{\eta_2''} - 2\eta_2'').h'h'' - \frac{\eta_2'''}{\eta_2''}.h'\eta_1'' + \eta_2'.(h''' - \frac{h''^2}{h'})$$

and h_1 depends on η_1 , η_2 , and h in the following way:

$$\frac{1}{h_1'} = \frac{\eta_1'' + \eta_2'' h'^2 - \eta_2' h''}{\eta_2'' h'}$$

	p_{e_2}	$p_{t_1} (t_1 = g_2^{-1}(x_1))$	$h = f_1 \circ g_2$	Remark
I	Gaussian	Gaussian	linear	h_1 also linear
II	log-mix-lin-exp	log-mix-lin-exp	linear	h_1 strictly monotonic, and $h'_1 \rightarrow$
				0, as $z_2 \to +\infty$ or as $z_2 \to -\infty$
III	log-mix-lin-exp	one-sided asymptoti-	h strictly monotonic,	_
		cally exponential (but	and $h' \to 0$, as $t_1 \to 0$	
		not log-mix-lin-exp)	$+\infty$ or as $t_1 \rightarrow -\infty$	
IV	log-mix-lin-exp	generalized mixture of	Same as above	_
		two exponentials		
V	generalized mixture	two-sided asymptoti-	Same as above	_
	of two exponentials	cally exponential		

Figure: All unidentifiable cases with the assumptions made above

Learning Algorithms: Score Based Method

• The score proposed by Peters et al. (2014):

$$\hat{G} = \operatorname{argmin}_{G} \sum_{i=1}^{n} \operatorname{DM}(\operatorname{res}_{i}^{G,\operatorname{RM}}, \operatorname{res}_{-i}^{G,\operatorname{RM}}) + \lambda \#\operatorname{edges}$$

- DM = Dependence Method
 RM = Regression Method
- Idea: Noises are independent
- They do not prove (or even claim) that the minimizing of the above score is a consistent estimator for the correct DAG.
- Learning Algorithm: Greedy DAG Search or Brute Force (Only for small graphs)

Learning Algorithms: RESIT Algorithm

- First proposed in Peters et al. (2014)
- Assumption : Multivariate ANM + Causal Sufficiency
- Idea : X_i is sink $\iff N_i \perp \!\!\! \perp \mathbf{X} \setminus \{X_i\}$
- The are two stages in the algorithm:
 - Stage 1 : Finding a causal order
 - Stage 2: Estimating DAG by removing edges
- Number of Tests (Less than PC)
 - Stage 1 : $O(n^2)$
 - Stage 2 : *O*(*n*)

Learning Algorithms: RESIT Algorithm

```
Algorithm 1 Regression with subsequent independence test (RESIT)
 1: Input: I.i.d. samples of a p-dimensional distribution on (X_1, \ldots, X_n)
 2: S := \{1, \dots, p\}, \pi := []
 3: PHASE 1: Determine topological order.
 4: repeat
       for k \in S do
         Regress X_k on \{X_i\}_{i \in S \setminus \{k\}}.
         Measure dependence between residuals and \{X_i\}_{i \in S \setminus \{k\}}.
 7:
       end for
       Let k^* be the k with the weakest dependence.
       S := S \setminus \{k^*\}
       pa(k^*) := S
11.
       \pi := [k^*, \pi]
                          (\pi will be the topological order, its last component being a sink)
13: until \#S = 0
14: PHASE 2: Remove superfluous edges.
15: for k \in \{2, ..., p\} do
       for \ell \in pa(\pi(k)) do
16:
         Regress X_{\pi(k)} on \{X_i\}_{i \in pa(\pi(k)) \setminus \{\ell\}}.
         if residuals are independent of \{X_i\}_{i\in\{\pi(1),\dots,\pi(k-1)\}} then
18:
            pa(\pi(k)) := pa(\pi(k)) \setminus \{\ell\}
19-
         end if
20 \cdot
       end for
22: end for
23: Output: (pa(1),...,pa(p))
```

RESIT Algorithm : Performance (Linear Setting)

$$\beta_{jk} \sim [-2, -0.1] \cup [0.1, 2] \qquad N_j \sim K_j \cdot \mathrm{sign}(M_j) \cdot |M_j|^{\alpha_j} \text{ such that } M_j \sim \textit{N}(0, 1), \\ K_j \sim \textit{U}(0.1, 0.5) \text{ and } \alpha_j \sim \textit{U}([2, 4]).$$

	GDS	BF	RESIT	LiNGAM	PC	CPC	GES	RAND		
	p = 4, n = 100									
DAG	0.7 ± 0.9	0.6 ± 0.8	1.2 ± 1.3	1.9 ± 1.2	3.5 ± 1.5	3.6 ± 1.4	3.1 ± 1.7	4.4 ± 1.0		
CPDAG	1.1 ± 1.5	0.9 ± 1.4	1.5 ± 1.7	2.4 ± 1.5	2.4 ± 1.7	2.3 ± 1.6	2.0 ± 2.0	4.3 ± 1.4		
	p = 4, n = 500									
DAG	0.2 ± 0.6	0.1 ± 0.3	0.6 ± 0.8	0.5 ± 0.8	3.1 ± 1.4	3.2 ± 1.4	2.9 ± 1.6	4.1 ± 1.2		
CPDAG	0.3 ± 0.9	0.2 ± 0.5	0.9 ± 1.3	0.8 ± 1.2	1.9 ± 1.8	1.6 ± 1.7	1.6 ± 1.9	3.9 ± 1.4		
	p = 15, n = 100									
DAG	12.2 ± 5.3	_	25.2 ± 8.3	11.1 ± 3.7	13.0 ± 3.6	13.7 ± 3.7	12.7 ± 4.2	57.4 ± 26.4		
CPDAG	13.2 ± 5.4	_	27.0 ± 8.5	12.4 ± 3.9	10.7 ± 3.5	10.8 ± 3.8	12.4 ± 4.9	58.5 ± 27.1		
	p = 15, n = 500									
DAG	6.1 ± 6.4	_	51.2 ± 17.8	3.4 ± 2.8	10.2 ± 3.8	10.8 ± 4.2	8.7 ± 4.6	57.6 ± 24.2		
CPDAG	6.8 ± 6.9	_	54.5 ± 18.5	4.5 ± 3.8	8.2 ± 4.6	7.5 ± 4.4	7.1 ± 5.6	58.9 ± 25.0		

Figure: Structural Hamming Distance of Estimated Graph

RESIT Algorithm : Performance (Non Linear Setting)

Functions sampled from a Gaussian process with BW=1. Gaussian Noise with random variance.

	GDS	BF	RESIT	LiNGAM	PC	CPC	GES	RAND	
	p = 4, n = 100								
DAG	1.5 ± 1.4	1.0 ± 1.0	1.7 ± 1.3	3.5 ± 1.2	3.5 ± 1.5	3.8 ± 1.4	3.5 ± 1.3	4.0 ± 1.3	
CPDAG	1.7 ± 1.7	1.2 ± 1.4	2.0 ± 1.6	3.0 ± 1.4	2.9 ± 1.5	2.7 ± 1.4	3.4 ± 1.7	3.9 ± 1.4	
	p = 4, n = 500								
DAG	0.5 ± 0.9	0.3 ± 0.5	0.8 ± 0.9	3.7 ± 1.2	3.5 ± 1.5	3.8 ± 1.5	3.3 ± 1.5	4.1 ± 1.2	
CPDAG	0.6 ± 1.1	0.6 ± 1.0	1.0 ± 1.3	3.0 ± 1.7	3.1 ± 1.9	2.8 ± 1.8	3.4 ± 1.9	3.8 ± 1.6	
	p = 15, n = 100								
DAG	14.3 ± 4.9	_	15.4 ± 5.7	15.4 ± 3.6	14.2 ± 3.5	15.5 ± 3.6	24.8 ± 6.3	56.8 ± 24.1	
CPDAG	15.1 ± 5.4	_	16.5 ± 5.9	15.3 ± 4.0	13.3 ± 3.6	13.3 ± 4.0	26.4 ± 6.5	58.0 ± 24.7	
	p = 15, n = 500								
DAG	13.0 ± 8.4	_	10.1 ± 5.7	21.4 ± 6.9	13.9 ± 4.5	15.1 ± 4.8	26.8 ± 8.5	56.1 ± 26.8	
CPDAG	14.2 ± 9.2	-	11.3 ± 6.3	21.1 ± 7.3	13.7 ± 4.9	13.4 ± 5.1	28.6 ± 8.8	57.0 ± 27.3	

Figure: Structural Hamming Distance of Estimated Graph

Real Dataset?

Average Temperature, Altitude, Duration of Sunlight from 349 German weather stations.

Figure: Scatter plot of the data

Real Dataset!

Output graph of different algorithms:

Method	Graph				
1 1010 4 4 4	—				
LiNGAM	T o A				
PC	$T o A \leftarrow DS$				
CPC	$T \rightarrow A \leftarrow DS$				
GDS	$T \leftarrow A \rightarrow DS$				
BF	$T \leftarrow A \rightarrow DS$				
RESIT	$T \leftarrow A \rightarrow DS$				

Confounder Detection in The Bivariate Case

$$\begin{cases} X = f(T) + N_X \\ Y = g(T) + N_Y \end{cases}$$

Naive Method: Dimension Reduction

$$\hat{T}_k = \operatorname{argmin}_{t \in [0,1]} || (X_k, Y_k) - \mathbf{s}(t) ||_2$$

find $\hat{\mathbf{s}}$ that minimizes $\sum_{k=1}^{n}||(X_k,Y_k)-\mathbf{s}(\hat{T}_k)||_2$. Then test the independence of noise variables

Confounder: ICAN Algorithm

Algorithm 1 Identifying Confounders using Additive Noise Models (ICAN)

- 1: **Input:** $(X_1, Y_1), \dots, (X_n, Y_n)$ (normalized)
- 2: Initialization:
- 3: Fit a curve ŝ to the data that minimizes ℓ₂ distance: ŝ := argmin_{s∈S} ∑_{k=1}ⁿ dist(s, (X_k, Y_k)).
- 4: repeat
- 5: Projection:
- 6: $\hat{T} := \operatorname{argmin}_T \operatorname{DEP}(\hat{N}_X, \hat{N}_Y) + \operatorname{DEP}(\hat{N}_X, T) + \operatorname{DEP}(\hat{N}_Y, T)$ with $(\hat{N}_{X,k}, \hat{N}_{Y,k}) = (X_k, Y_k) \hat{\mathbf{s}}(T_k)$
- 7: **if** $\hat{N}_X \perp \hat{N}_Y$ and $\hat{N}_X \perp \hat{T}$ and $\hat{N}_Y \perp \hat{T}$ **then**
- 8: **Output:** $(\hat{T}_1, \dots, \hat{T}_n)$, $\hat{u} = \hat{\mathbf{s}}_1$, $\hat{v} = \hat{\mathbf{s}}_2$, and $\frac{\mathbb{Var}\hat{N}_X}{\mathbb{Var}\hat{N}_Y}$.
- 9: Break.
- 10: **end if**
- 11: Regression:
- 12: Estimate $\hat{\mathbf{s}}$ by regression $(X,Y) = \hat{\mathbf{s}}(\hat{T}) + \hat{\mathbf{N}}$. Set $\hat{u} = \hat{\mathbf{s}}_1, \hat{v} = \hat{\mathbf{s}}_2$.
- 13: **until** K iterations
- 14: Output: Data cannot be fitted by a CAN model.

- The Naive method does not work even in simple cases.
- ICAN was first introduced in Janzing et al. (2009).
- Idea: Minimizing dependence instead of the I₂ norm.
- Proof of consistency only for the low noise regime. The algorithm seems to work in large noise regime as well.

Time Series: TiMINo

Definition

Consider a time series $\mathbf{X}_t = (X_t^i)_{i \in V}$. We say the time series satisfies a TiMINo if there is a p > 0 and if $\forall i \in V$ there are sets $\mathbf{PA}_0^i \subset X^{V \setminus \{i\}}$, $\mathbf{PA}_L^i \subset X^V$, s.t. $\forall t$

$$X_{t}^{i} = f_{i}((\mathbf{PA}_{p}^{i})_{t-p}, \dots, (\mathbf{PA}_{1}^{i})_{t-1}, (\mathbf{PA}_{0}^{i})_{t}, N_{t}^{i}),$$
(2)

with N_t^i (jointly) independent and for each i, N_t^i identically distributed in t and the full time graph is acyclic.

Peters et al. (2013)

Time Series: TiMINo

Algorithm 1 TiMINo causality

- 1: **Input:** Samples from a d-dimensional time series of length $T: (\mathbf{X}_1, \dots, \mathbf{X}_T)$, maximal order p
- 2: $S := (1, \ldots, d)$
- 3: repeat
- 4: for k in S do
- 5: Fit TiMINo for X_t^k using $X_{t-p}^k, \ldots, X_{t-1}^k, X_{t-p}^i, \ldots, X_{t-1}^i, X_t^i$ for $i \in S \setminus \{k\}$
- 6: Test if residuals are indep. of X^i , $i \in S$.
- 7: end for
- 8: Choose *k** to be the *k* with the weakest dependence. (If there is no *k* with independence, break and output: "I do not know bad model fit").
- 9: $S := S \setminus \{k^*\}; \quad pa(k^*) := S$
- 10: **until** length(S)= 1
- 11: For all k remove all parents that are not required to obtain independent residuals.
- 12: **Output:** (pa(1), ..., pa(d))

TiMINo causality has to be provided with a fitting method. e.g. VAR fitting, generalized additive models (gam) and GP regression.

Time Series: Granger Causality vs. TiMINo

- TiMINo allows instantaneous effects.
- Shifted Time Series $(\tilde{X}_t^i = X_{t-l_i}^i)$ for example in fMRI Data. There might be causal relations backwards in time and Granger Causality might fail in these cases. In TiMINo, the summary graph is identifiable.
- in some cases, TiMINo output is "Can't Decide"

• a simple case with confounder:

confounder parameter a

$$\begin{cases} X_t = 0.8X_{t-1} + 0.3N_{X,t} \\ Y_t = 0.4Y_{t-1} + (X_{t-1} - 1)^2 + 0.3N_{Y,t} \\ Z_t = 0.4Z_{t-1} + 0.5\cos(Y_{t-1}) + \sin(Y_{t-1}) + 0.3N_{Z,t} \end{cases}$$

	DAG	Granger _{lin}	Granger _{nonlin}	TiMINo _{lin} TiMINo _{gam}		TiMINo _{GP}	TS-LiNGAM
	correct	69%	0%	0%	95%	94%	12%
	wrong	31%	100%	0%	1%	1%	88%
1	no dec.	0%	0%	100%	4%	5%	0%

References

- Patrik O. Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal discovery with additive noise models. In *Advances in Neural Information Processing Systems 21*, pages 689–696. 2009.
- Dominik Janzing, Jonas Peters, Joris M. Mooij, and Bernhard Schölkopf. Identifying confounders using additive noise models. In *UAI*, 2009.
- Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Causal inference on time series using restricted structural equation models. In *Advances in Neural Information Processing Systems* 26, pages 154–162. 2013.
- Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. Causal discovery with continuous additive noise models. *J. Mach. Learn. Res.*, 15(1):2009–2053, 2014.
- Kun Zhang and Aapo Hyvärinen. On the identifiability of the post-nonlinear causal model. In *Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence*, UAI '09, pages 647–655, 2009.