CS 188: Artificial Intelligence

Adversarial Search II

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Minimax Example

Resource Limits

Game Tree Pruning

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node *n*
 - We're looping over *n*'s children
 - *n*'s estimate of the childrens' min is dropping
 - O Who cares about *n*'s value? MAX
 - O Let *a* be the best value that MAX can get at any choice point along the current path from the root
 - O If *n* becomes worse than *a*, MAX will avoid it, so we can stop considering *n*'s other children (it's already bad enough that it won't be played)

MAX MIN MAX MIN

MAX version is symmetric

Alpha-Beta Implementation

α: MAX's best option on path to root β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
 initialize v = -\infty
 for each successor of state:
     v = \max(v, value(successor, \alpha, \beta))
     if v \ge \beta return v
     \alpha = \max(\alpha, v)
 return v
```

```
def min-value(state, \alpha, \beta):
 initialize v = +\infty
 for each successor of state:
     v = \min(v, value(successor, \alpha, \beta))
     if v \le \alpha return v
     \beta = \min(\beta, v)
 return v
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - O Important: children of the root may have the wrong value
 - O So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - O Time complexity drops to $O(b^{m/2})$
 - O Doubles solvable depth!
 - O Full search of, e.g. chess, is still hopeless...

O This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - O Instead, search only to a limited depth in the tree
 - O Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - O Suppose we have 100 seconds, can explore 10K nodes / sec
 - O So can check 1M nodes per move
 - \circ α-β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Depth Matters

- Evaluation functions are always imperfect
- O The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s) = \text{(num white queens - num black queens)}$, etc.

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - O Explicit randomness: rolling dice
 - O Unpredictable opponents: the ghosts respond randomly
 - O Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - Max nodes as in minimax search
 - O Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - O I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertainresult problems as Markov Decision Processes

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

```
def value(state):
if the state is a terminal state: return the state's utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)
```

def max-value(state):

return v

initialize $v = -\infty$ for each successor of state: v = max(v, value(successor)) def exp-value(state): initialize v = 0for each successor of state: p = probability(successor)

v += p * value(successor)

return v

Expectimax Pseudocode

def exp-value(state): initialize v = 0 for each successor of state: p = probability(successor) v += p * value(successor) return v

$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

Probabilities

Reminder: Probabilities

- O A random variable represents an event whose outcome is unknown
- O A probability distribution is an assignment of weights to outcomes

- O Random variable: T = whether there's traffic
- Outcomes: T in {none, light, heavy}
- O Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

- O Probabilities are always non-negative
- O Probabilities over all possible outcomes sum to one

- P(T=heavy) = 0.25, $P(T=heavy \mid Hour=8am) = 0.60$
- O We'll talk about methods for reasoning and updating probabilities later

0.25

0.50

0.25

Reminder: Expectations

O The expected value of a function of a random variable is the average, weighted by the probability distribution over outcomes

• Example: How long to get to the airport?

Time:

Probability:

20 min

0.25

.

30 min

0.50

ı

60 min

X

0.25

35 min

What Probabilities to Use?

In expectimax search, we have a probabilist model of how the opponent (or environment) behave in any state

O Model could be a simple uniform distribution (roll a die)

Model could be sophisticated and require a great deal of computation

O We have a chance node for any outcome out of our control: opponent or environment

O The model might say that adversarial actions are likely!

• For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax, which has the nice property that it all collapses into one game tree

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Other Game Types

Mixed Layer Types

- E.g. Backgammon
- Expectiminimax
 - O Environment is an extra "random agent" player that moves after each min/max agent
 - Each node
 computes the
 appropriate
 combination of its
 children

Example: Backgammon

- O Dice rolls increase *b*: 21 possible rolls with 2 dice
 - O Backgammon ≈ 20 legal moves
 - O Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - O So usefulness of search is diminished
 - O So limiting depth is less damaging
 - O But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play

Image: Wikipedia

• What if the game is not zero-sum, or has multiple players?

- Terminals have utility tuples
- O Node values are also utility tuples
- Each player maximizes its own component

O Can give rise to cooperation and competition dynamically...

