Reg. No.:						
O						

Question Paper Code: 4021473

M.E. / M.Tech. DEGREE EXAMINATIONS, NOV/ DEC 2024

Time:	Three Hours	(Regulation 2020)	Maximum: 100 Marks
		Answer ALL questions	
		PART – A	$(10 \times 2 = 20 \text{ Marks})$
1.	Define stress and strain		
2.	State Hooks law.		
3.	Define deflection.		
4.	State shear flow.		
5.	Define buckling.		
6.	List the various stresses	s in circular and rectangula	ar plates.
7.	Define torsion.		
8.	State Prandtl's stress fu	nction.	
9.	State tangential stress.		
10.	List the methods of com	puting contact stress.	

11. (a)	Develop the compatibility equation in terms of stress function for polar co-ord system and write the equilibrium equation in polar coordinate system.	linate (16)
	(OR)	
(b)	Explain St.Venant's principle.	(16)
12. (a)	Explain location of shear center for sections.	(16)
	(OR)	
(b)	Discuss kern of a section.	(16)
13. (a)	Explain curved beam with suitable Examples.	(16)
	(OR)	
(b)	Discuss various types of loading and end conditions.	(16)
14. (a)	Explain elastic membrane analogy.	(16)
	(OR)	
(b)	Using Prandtl's stress function method derive the expression for (i) twist perlength, (ii) torsional rigidity and (iii) the resultant stress for elliptical cross secunder torsion.	
15. (a)	Discuss the different stresses in disc and ring.	(16)
	(OR)	
(b)	Construct various methods of computing contact stress.	(16)

-----XXXX-----