

Lecture 4: Edge Based Vision

Dr Carole Twining
Tuesday 10th March 2020
15:00pm – 16:00pm

COMP61342

MANCHESTER

Slide 3 of 39

Overview:

- Why Edges Matter:
 - Edges in images correspond to physical events: edge of object, change in colour, change of surface orientation
- Edges and Derivatives
 - Convolution and filters (to detect changes)
- Edges and Scale
 - Physical edges persist across scales
- Edge Detection
 - Problem with noise, and accurate edge location
- Edge growing
 - Thresholding with hysteresis
 - Edge relaxation
- Hough Transform
 - Finding lines

Edges and Derivatives

COMP61342

First Derivative Filters: Sobel

Verticals

 $\overline{\mathcal{I}_{x} \doteq S_{x} * \mathcal{I}} \ \overline{\mathcal{I}_{y} \doteq S_{y} * \mathcal{I}}$ Edge strength: $g = |\overrightarrow{\nabla}\mathcal{I}| = \sqrt{\mathcal{I}_x^2 + \mathcal{I}_y^2}$

Ridges of g at edges, but noisy.

Normal to Edge:
$$\underline{\hat{n}} = \frac{\overrightarrow{\nabla} \mathcal{I}}{|\overrightarrow{\nabla} \mathcal{I}|}$$

COMP61342

MANCHESTER

Slide 7 of 39

COMP61342, 10th March, Edge-Based Vision

Second-Derivative Edge Filters

Laplacian: scalar operator

$$\triangle = \nabla^2 = \partial_x^2 + \partial_y^2$$

- Difference of Gaussian, Laplacian of Gaussian: includes gaussian smoother
- False edges: every peak/trough of gradient gives a zero-crossing, not just big peaks
- Doesn't tell us the direction of the edge (scalar operator)
- Tends to create closed loops of edges ('plate of spaghetti' effect)

MANCHESTER 1824

The University of Manchester

Edges and Scale

Edges and Scale

- Edge filters enhance noise
- What is a 'real' edge and what noise?
- Edges exist at many different scales
- What scales matter depends on application
- Sensible approach: use many different scales
 - Edges persist across scales, allows fusion across scales
- Gaussian gives scale & smoothing separable filter

Slide 11 of 39

Edges and Scale Marr-Hildreth:

- ullet Convolve with gaussian ${\mathcal C}$
- Take Laplacian ∇^2 of result: Take gradient $\overrightarrow{\nabla}$ of result
 - combine into single stage LoG
- Edges at zero-crossings
- Edges move with scale if curved
- No information on direction
- 'Plate of spaghetti' problem

Canny:

- Convolve with gaussian C

$$\overrightarrow{\nabla}(\mathcal{G}*\mathcal{I}), g = |\overrightarrow{\nabla}(\mathcal{G}*\mathcal{I})|$$

• Find gradient direction:

$$\widehat{\underline{n}} = \overrightarrow{\nabla} (\mathcal{G} * \mathcal{I}) / g$$

- Create gaussian-smoothed derivative tuned to this direction
- Take another derivative in that direction to find local maximum, zero-crossing
- Stable across scales

Marr-Hildreth vs Canny

- Both involve pre-smoothing with gaussian
- Both involve second-derivative BUT:

Marr-Hildreth:

- No information on direction
- By adding second-derivative in other direction, increases effect of noise

Canny:

- Create tuned derivative given estimated gradient direction
- Only compute second derivative in gradient direction
- Check that it really is local maximum of edge strength in that direction (see nonmaximum suppression)

COMP61342

COMP61342, 10th March, Edge-Based Vision

The University of Mancheste

Marr-Hildreth Edge Detection

 $\sigma = 10$

- Some edges not well localized
- 'Plate of spaghetti' effects

Trace zero crossings in image +ve -ve

Keeps going until meets edge or closes the loop

COMP61342

The University of Manchester

Edge Detection

Edge Detection: First Derivatives

- Position of maximum can be difficult to locate:
 - second-derivative, zero crossing more precise
- Simple threshold:
 - thick edges, need to apply thinning
 - missed edges, streaking (see thresholding with hysteresis)

COMP61342

MANCHESTER 1824

Slide 17 of 39

COMP61342, 10th March, Edge-Based Vision

Edge Detection:

- Zero-crossing more precisely located than maximum
 - Sub-pixel accuracy?
- Thresholding in Marr-Hildreth (LoG):
 - Threshold at ~zero, but what about noise?
 - Doesn't use directional information
 - Other second derivative increases noise
- 'Plate of spaghetti':
 - continuity => closed loops or meets boundary
- Thresholding & Thinning 1st Derivative
 - Incorporates neighbourhood information
 - Still doesn't use all available information
- If we had the edge direction as well......

Non-Maximum Suppression

- Start from edge-strength signal g
- Locate possible edge point P
- ullet Identify gradient direction $\widehat{\underline{n}}$
- ullet Interpolate g at P_1 and P_2
- P is local maximum provided: $g(P) > g(P_1)$ & $g(P) > g(P_2)$
- Only accepts as edge if proper maximum, rejects if not
- In practise, only allow a set of discrete possible directions

Object & pixel positions

COMP61342

MANCHESTER 1824

Slide 19 of 39

The University

Canny Edge Detector

 $\sigma = 1$

 $\sigma = 1.5$

white, all 3 scales

Canny Edge Detector:

$$\sigma = 10$$

COMP61342

MANCHESTER 1824

Slide 21 of 39

COMP61342, 10th March, Edge-Based Vision

Marr-Hildreth vs Canny at $\sigma=10$

COMP61342, 10th March, Edge-Based Vision

The University of Manchester

From Edge Pixels to Edges

- Have candidate edge pixels
- Have information on edge direction and strength
- Want connected edges:

Edge growing

 Going from individual edge pixels, to entire, connected edges – curves that are boundaries of objects

COMP61342

The University of Manchester

Edge Growing

Edge Thresholding with Hysteresis

- Edge strength image, two thresholds T_H & T_L
- Only edges have points g> T_H
- Edges have all points g> T₁
- Start at point $g>T_H$, and trace connected points with $g>T_I$

 \mathcal{I}

 $\overline{g} > T_L \ \overline{g} > T_H \ Result$

COMP61342

MANCHESTER 1824

Slide 25 of 39

COMP61342, 10th March, Edge-Based Vision

The University

Edge Relaxation

- Use context to resolve ambiguity (as in segmentation)
- g(i): Edge strength at pixel i
- $\underline{e}(i)$: Edge direction at pixel i

Normalise edge strengths $g(i) \Rightarrow P(\underline{e}, i) \leq 1$

Compatibility

Pixels i and j,

edge directions \underline{e} and \underline{e}' :

$$c_{i,j}(\underline{e},\underline{e}') = 0$$
 not neighbours

$$c_{i,j}(\underline{e},\underline{e}') = |\cos(\alpha)|$$

As before, update probabilities based on support

Edge Relaxation

weak and strong edges

- Supporting each other
- Many refinements and alternatives in the literature, but all applying same basic ideas

COMP61342

The University of Manchester

Hough Transform

The University

Aside: Lines in human vision

See lines where we have only minimal information

COMP61342

Actually straight, but we don't see them as that!

MANCHESTER 1824

Slide 29 of 39

COMP61342, 10th March, Edge-Based Vision

The University

Hough Transform (1)

- Have some set of points, parts of edges etc
- Want to put them together into continuous lines
- Strategy:
 - Transform to parameter space
 - Let points vote for lines that could pass through them
 - Look for clusters
- Finding the right parameter space
- Can be extended if you can find such a space for shape of interest

Hough Transform (2)

Set of points $\{P_i = (x_i, y_i)\}$ in image plane. Any and all straight lines thro' P_i :

$$y_i = mx_i + c$$
 \Rightarrow $c = -x_i m + y_i$

 L_i : line in (c,m) plane, intercept y_i , gradient $-x_i$

MANCHESTER 1824

Slide 31 of 39

COMP61342, 10th March, Edge-Based Vision

The University of Manchester

Hough Transform (3)

- ullet Repeat for all points $\{P_i=(x_i,y_i)\}$ in image plane
- Look for points in (c,m) plane where lots of lines cross
- Lines which pass thro' lots of points in image plane

Hough Transform (4)

 Verticals, m is infinite! Need better parameter space COMP61342

MANCHESTER 1824

Slide 33 of 39

The University

Hough Transform (5)

- Single point $P_i = (x_i, y_i)$
- ullet All possible heta : allowed values of r, sinusoid curve
- Extend to other than lines, generalised Hough transform COMP61342

Slide 34 of 39

The University of Manchester

Example: Integrated Circuit

Image

Edge Pixels

COMP61342

MANCHESTER

Slide 35 of 39

The Universit of Manchest

Example: Integrated Circuit

Each edge pixel
= 1 sinusoid

Each peak
= 1 line in image
Set of peaks at
approx 90°

Another at
approx 0°

Example: Finding Lines under Noise

Broken Line

Hidden under noise

Edge Strength Image

COMP61342

MANCHESTER 1824

Slide 37 of 39

COMP61342, 10th March, Edge-Based Vision

The University

Example: Finding Lines under Noise

Hough Space

...thresholded

COMP61342, 10th March, Edge-Based Vision

Summary:

- Edges and Derivatives
 - Convolution and filters (first & second derivatives, gaussians)
- Edges and Scale
 - Physical edges persist across scales
- Edge Detection
 - Problems with noise, and accurate edge location
 - Non-maximum suppression
- Edge Growing
 - Thresholding with hysteresis
 - Edge relaxation
- Hough Transform
 - Finding lines/circles etc even when occluded

COMP61342