Problem (Problem 1): Given $z = x + iy \in \mathbb{C}$, define

$$z^* = \left(\frac{2x}{x^2 + y^2 + 1}, \frac{2y}{x^2 + y^2 + 1}, \frac{x^2 + y^2 - 1}{x^2 + y^2 + 1}\right).$$

- (a) Show that $z^* \in S^2$.
- (b) Prove that if $(x_1, x_2, x_3) \in S^2 \setminus \{(0, 0, 1)\}$, then there exists a unique $z \in \mathbb{C}$ such that $z^* = (x_1, x_2, x_3)$.
- (c) A circle in S^2 is the intersection of a plane in \mathbb{R}^3 with S^2 , provided this intersection is nonempty. Prove that if C is a circle in S^2 , then there exists a set $\widetilde{C} \subseteq \mathbb{C}$ that is either a circle or a straight line such that $C \setminus \{(0,0,1)\} = \left\{z^* \in \mathbb{R}^3 \mid z \in \widetilde{C}\right\}$.

Solution:

(a) Via brute force calculation, we see that

$$\frac{4x^{2}}{(x^{2}+y^{2}+1)^{2}} + \frac{4y^{2}}{(x^{2}+y^{2}+1)^{2}} + \frac{(x^{2}+y^{2}-1)^{2}}{(x^{2}+y^{2}+1)^{2}} = \frac{(x^{2}+y^{2})^{1}+1-2(x^{2}+y^{2})+4(x^{2}+y^{2})}{(x^{2}+y^{2}+1)^{2}}$$

$$= \frac{(x^{2}+y^{2})^{1}+1+2(x^{2}+y^{2})}{(x^{2}+y^{2}+1)^{2}}$$

$$= 1.$$

(b) Let $z^* = (x_1, x_2, x_3) \in S^2 \setminus \{(0, 0, 1)\}$, and let L: $[0, \infty) \to \mathbb{R}^3$ be the line parametrized such that $L(1) = (x_1, x_2, x_3)$ and L(0) = (0, 0, 1), which is given by

$$L(t) = (tx_1, tx_2, tx_3 + (1 - t)).$$

Note then that ||L(t)|| = 1 only when t = 0 or t = 1, meaning that L(t) intersects $S^2 \setminus \{(0,0,1)\}$ exactly once. By identifying \mathbb{C} with $x + iy \mapsto (x,y,0)$, we may find $z \in \mathbb{C}$ that uniquely maps to (x_1,x_2,x_3) under the z^* identification by taking

$$tx_3 + (1 - t) = 0$$

 $1 + t(x_3 - 1) = 0$
 $t = \frac{1}{1 - x_3}$

so that

$$x + iy = \frac{x_1}{1 - x_3} + i \frac{x_2}{1 - x_3}$$

maps to z^* under the given identification.

(c)

Problem (Problem 2): Define $f: \mathbb{C} \setminus \{1\} \to \mathbb{C}$ by $f(z) = \left(\frac{z+1}{z-1}\right)^2$.

- (a) Is f injective on D? Why or why not?
- (b) Determine $f(\mathbb{D})$.

Solution:

(a) We consider $q(z) = \frac{z+1}{z-1}$ as a fractional linear transformation on $\hat{\mathbb{C}}$. We see that

$$\begin{split} q\left(e^{i\theta}\right) &= \frac{e^{i\theta}+1}{e^{i\theta}-1} \\ &= \frac{(1+\cos(\theta))+i\sin(\theta)}{(\cos(\theta)-1)+i\sin(\theta)} \\ &= \frac{((\cos(\theta)+1)+i\sin(\theta))((\cos(\theta)-1)-i\sin(\theta))}{(1-\cos(\theta))^2+\sin^2(\theta)} \\ &= \frac{\left(\cos^2(\theta)-1\right)+\sin^2(\theta)+i\sin(\theta)(\cos(\theta)-1-(\cos(\theta)+1)\right)}{2-2\cos(\theta)} \\ &= i\frac{\sin(\theta)}{\cos(\theta)-1}, \end{split}$$

and since $\frac{\sin(\theta)}{\cos(\theta)-1}$ maps $(0,2\pi)\to\mathbb{R}$ bijectively, we see that q maps the unit circle into the imaginary axis. We also see that q(0)=-1, so \mathbb{D} maps \mathbb{D} bijectively onto the left half-plane, $\mathbb{L}=\{z\mid \mathrm{Re}(z)<0\}.$

Now, notice that the function $h(z) = z^2$ is injective when defined on a half-plane (the arguments $(\pi/2, 3\pi/2)$ map injectively to $(\pi, 3\pi)$, and the function $|z|^2$ is clearly injective on $(0, \infty)$), so since $f = h \circ q$ is injective on \mathbb{D} .

(b) Since $f = h \circ q$, where q maps \mathbb{D} to the left half-plane, and h maps the left half-plane to the full complex plane save for $(-\infty, 0]$, we have that f maps \mathbb{C} to $\mathbb{C} \setminus (-\infty, 0]$.

Problem (Problem 3): Prove that there exists a linear fractional transformation that maps the first quadrant in \mathbb{C} bijectively to the top half of the unit disc, and satisfies f(2) = i.

Solution: We start from the Cayley transform,

$$f_1(z) = \frac{z - i}{z + i},$$

which maps the upper half-plane to the unit disc.