Let (X, \mathcal{M}, μ) be a finite measure space. Show the following:

a. If $E, F \in \mathcal{M}$ and $\mu(E \triangle F) = 0$, then $\mu(E) = \mu(F)$.

b. Say that $E \sim F$ if $\mu(E \triangle F) = 0$; then \sim is an equivalence relation on \mathcal{M} .

c. For $E, F \in \mathcal{M}$, define $\rho(E, F) = \mu(E \triangle F)$. Then $\rho(E, G) \leq \rho(E, F) + \rho(F, G)$ for all $G \in \mathcal{M}$, and hence ρ defines a metric on the space \mathcal{M}/\sim of equivalence classes.

Solution. A note about the interpretation of this exercise. The statement " (X, \mathcal{M}, μ) is a finite measure space" could be ambiguous: does it mean that the space X is finite? The collection \mathcal{M} ? One can try to complete this exercise using one of these assumptions, but will quickly find that the correct interpretation is that μ is in fact a finite measure on (X, \mathcal{M}) , an arbitrary measurable space.

a. Let $E, F \in \mathcal{M}$ so that $\mu(E \triangle F) = 0$. Since $\mu(X) < \infty$, $\mu(E \cup F) < \infty$. Also $E \cap F \subset E \cup F$ and all are measurable. Then by the lemma in Exercise 8,

$$0 = \mu(E \triangle F) = \mu((E \cup F) \setminus (E \cap F)) = \mu(E \cup F) - \mu(E \cap F),$$

meaning $\mu(E \cup F) = \mu(E \cap F)$. Then

$$\mu(E) \le \mu(E \cup F) = \mu(E \cap F) \le \mu(F)$$

and
$$\mu(F) \le \mu(E \cup F) = \mu(E \cap F) \le \mu(E)$$

so
$$\mu(E) = \mu(F)$$
.

b. For $E \in \mathcal{M}$, $E \sim E$ since $\mu(E \triangle E) = \mu(\emptyset) = 0$. Suppose $E, F \in \mathcal{M}$ are such that $E \sim F$. Then $F \sim E$ since $E \triangle F = F \triangle E$. Now suppose $E \sim F$ and $F \sim G$ for $E, F, G \in \mathcal{M}$. Then showing $E \sim G$ amounts to showing that $\mu(E \triangle G) = \mu((E \setminus G) \cup (G \setminus E)) = \mu(E \setminus G) + \mu(G \setminus E) = 0$. But since μ is positive, this can only happen if $\mu(E \setminus G) = \mu(G \setminus E) = 0$. Since $E \sim F$ and $F \sim G$ we have

$$\mu(E \setminus F) = \mu(F \setminus E) = \mu(F \setminus G) = \mu(G \setminus F) = 0.$$

But

$$E \setminus G \subset (E \setminus F) \cup (F \setminus G)$$
 and $G \setminus E \subset (G \setminus F) \cup (F \setminus E)$,

so
$$\mu(E \setminus G) = \mu(G \setminus E) = 0$$
.

c. To be pedantic here, the question is asking the reader to show that ρ^* defined as $\rho^*([E], [F]) = \rho(E, F)$ for $[E], [F] \in \mathcal{M}/\sim$ is a metric, so that's what we will do. The triangle inequality is proven to be satisfied using the same method as when showing transitivity in

part **b**: for $[E], [F], [G] \in \mathcal{M}/\sim$,

$$\rho^*([E], [G]) = \rho(E, G) = \mu(E \triangle G) = \mu(E \setminus G) + \mu(G \setminus E)$$

$$\leq \mu(E \setminus F) + \mu(F \setminus G) + \mu(G \setminus F) + \mu(F \setminus E)$$

$$= \mu(E \setminus F) + \mu(F \setminus E) + \mu(F \setminus G) + \mu(G \setminus F)$$

$$= \mu(E \triangle F) + \mu(F \triangle G)$$

$$= \rho(E, F) + \rho(F, G) = \rho^*([E], [F]) + \rho^*([F], [G]).$$

The remaining conditions of being a metric are now shown. - $\rho^*([E], [E]) = \rho(E, E) = \mu(E \triangle E) = 0$. - $\rho^*([E], [F]) = \mu(E \triangle F) = \mu(F \triangle E) = \rho^*([F], [E])$. - For $[E] \neq [F]$, we have $\mu(E \triangle F) \neq 0$, so $\rho^*([E], [F]) \neq 0$. (This condition is really the whole point of modding out by \sim . The symmetric difference of two sets might be null set if we aren't dealing with equivalence classes.)