STELLAR PROPERTY FORMULAS:

Distance:
$$D = \frac{1}{n}$$

Luminosity:
$$L_{star} = (9.94 \times 10^6) \pi \frac{Flux}{n^2}$$

Temperature:
$$T_{star} = \frac{2,897,768.5}{\lambda_{peak}}$$

Stellar Radius:
$$R_{star} = \frac{L^{\frac{1}{2}}}{(\frac{T}{5800})^{2}}$$

Mass:
$$M_{star} = L^{\Lambda \frac{1}{3.5}}$$

Frostline:
$$FL(in AU) = 131(\frac{L}{16\pi\sigma T_{ice}^4})^{\Lambda(\frac{1}{2})}$$
 where $T_{ice} = 150 K$

Conversion Factors:

$$\begin{array}{l} 1\,M_E = 5.97 \times 10^{27}g \\ 1\,R_E = 6.37\,\times 10^8 cm \\ 1\,year = 365\,days \\ 1\,L_s = 3.827\,\times 10^{26}\,Watts \\ 1\,AU = 1.496\,\times \,10^{11}meters \\ \sigma = 5.67\,\times \,10^{-8}\,W\,m^{-2}K^{-4} \end{array}$$

Densities:

Gas: $0.5 \frac{g}{cm^3}$ Ice: $1.0 \frac{g}{cm^3}$ Rock: $3.0 \frac{g}{cm^3}$ Metal: $8.0 \frac{g}{cm^3}$

PLANETARY PROPERTY FORMULAS:

Orbital radius:
$$A = (MP^2)^{(\frac{1}{3})}$$

Planet Radius in Earth radii:
$$R_p = (\frac{\%drop}{100})^{\Lambda^{\frac{1}{2}}} \times R_{star} \times 109$$

Planet Radius in Jupiter radii: $R_p = 0.0892 \times R_p (in Earth \ radii)$

Doppler velocity:
$$v = \left(\frac{\Delta \lambda}{\lambda_{rost}}\right) * (300,000,000)$$

Planet Classes:

Gas Giant:

$$den. < 1 \frac{g}{cm^3}$$

Ice Giant:

$$1\frac{g}{cm^3} < den. > 3 \frac{g}{cm^3}$$

Terrestrial

$$den. > 3 \frac{g}{cm^3}$$

Planet mass: $M_P(in\ Earth\ masses) = (v^2 * orbital\ radius * M_{star})^{\Lambda_2^{\frac{1}{2}}} * 11.177$

$$M_P(in \, Jupiter \, masses) = (v^2 * orbital \, radius * M_{star})^{\frac{1}{2}} * 0.0352$$

Volume:
$$V = \frac{4}{3}\pi R_p^3$$
 with R_p in cm

Density :
$$Density = \frac{M_p}{Volume}$$
 with M_p in grams

Flux:
$$Flux = \frac{L}{(4\pi (orbital \ radius^2))}$$
 with L in Watts and Orbital Radius in meters

Effective Temperature:
$$T_{eff} = (\frac{Flux (1-albedo)}{4 \sigma})^{0.25}$$

Age Dating:
$$Time = \frac{\tau \ln{(\frac{D}{P}+1)}}{\ln{(2)}}$$

238
U- 206 Pb = 4.47 billion years
 235 U- 207 Pb = 704 million years
 40 K- 40 Ar = 1.25 billion years
 87 Rb- 87 Sr = 49 billion years
 14 C- 14 N = 5.730 years

Greenhouse Effect Strengths:

Absorption:	Add:
None (0%)	+ 0 K
Weak (0 - 40%)	+10 K
Moderate (40 - 60%)	+30 K
Strong (60 - 100%)	+100 K