Bihar Engineering University, Patna

B.Tech. 1st Semester Examination, 2023

Course: B. Tech. Code: 103102

Subject: Mathematics-I(Calculus & Differential Equations)

Time: 03 Hours Full Marks: 70

Instructions:-

1.1	71	7		indicated	in 1	lan	wiah	hand	margin
(i)	1 ne	marks	are	maicaiea	IIII	116	rigin	-//LI/ICI	11101. 0

- (ii) There are NINE questions in this paper.
- (iii) Attempt FIVE questions in all.
- (iv) Question No. 1 is compulsory.
- (v) Symbols used (if any) have their usual meanings

Choose the correct answer of the following (Any seven question only): Q.1

The solution of the given differential equation is:

$$(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0$$

(i) x3 + y3 - 6xy(x + y) = c

(ii)
$$2x^3 + 4y^3 - 4xy = c$$

(iv) $x^2 + y^2 - 6xy = c$

(iii) $x^3 + y^3 - 5xy(x + y) = c$

(iv)
$$x^2 + y^2 - 6xy = c$$

The complementary function for the given differential equation is: (b)

$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = x^2$$

(ii)
$$c_1 e^{-2x} + c_2 e^{-x}$$

(iii) $c_1 e^{-3x} + c_2 e^{-x}$

(ii) $c_1e^{-2x} + c_2e^{-x}$ (iv) None of the above.

The solution of the differential equation $\frac{dy}{dx} - y \cot(x) = 2x \sin(x) is$: (c)

(i) $y = x^2 + c$

(ii)
$$y \sin(x) = 2x + c$$

(iii) $y \csc(x) = x^2 + c$

(iv)
$$y \cot(x) = 3x + c$$

The wronskian of the functions $\{\sin(x), \cos(x)\}$ is: (d)

(i) 1

(iii) 0

(iv) 2

Suppose $\vec{A} = x^2 z^2 \hat{\imath} - 2y^2 z^2 \hat{\jmath} + xy^2 z \hat{k}$ then the divergence of \vec{A} at point P (1, -1, 1) (e)

(i) 4

(iv)7

A= $\int \int_R \sin(x+y) dx dy$, where the region R is given by $\{0 \le x \le \frac{\pi}{2}, 0 \le y \le \frac{\pi}{2}\}$ (f) then the value of A is:

(i) - 1

(ii) 1

(iv) 2

The series $1 + \frac{3}{2!} + \frac{5}{3!} + \frac{7}{4!} + \dots$ is:

(i) convergent

(ii) divergent

(iii) Neither convergent nor divergent

(iv) None

If f:R \rightarrow R be a function defined by $f(x) = \begin{cases} x^2 + \sin \frac{1}{x^2}, x \neq 0 \\ 0 \end{cases}$

(i) f is differentiable on R

(ii) f is differentiable on $R - \{0\}$

(iii) f is not differentiable at 0

(iv) None of these

If $f(x,y) = e^{x+y+1}$ then the value of $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$ is (i)

(i) $(x + y) e^{x+y+1}$

(ii) $xe^y + ye^x$

(iii) $2e^{x+y+1}$

(iv) None of the above

The value of $\Gamma\left(-\frac{3}{2}\right)$ is (j)

(i) 1

(iii) $\sqrt{\pi}$

Q.2 (a) Show that:
$$\int_0^1 [\ln x]^n dx = (-1)^n n!, \ n \in \mathbb{N}.$$
(b) If α and β are the roots of the equation $ax^2 + bx + c = 0$ the evaluate the following limit.
$$\lim_{x \to \infty} \frac{1 - \cos(\alpha x^2 + bx + c)}{(x - a)^2}$$
Q.3 (a) Test the convergence of
$$\frac{1}{2\sqrt{1}} + \frac{1}{3\sqrt{2}}x^2 + \frac{1}{4\sqrt{3}}x^4 + \frac{1}{5\sqrt{4}}x^6 + \dots$$
(b) Prove that
$$Curl(fv) = (grad f) \times v + f \ curl v$$
Q.4 (a) Use Taylor's theorem to prove that
$$1 + \frac{x}{2} - \frac{x^3}{3} < \sqrt{1 + x} < 1 + \frac{x}{2}, \ if \ x > 0.$$
(b) If $p(x)$ is a polynomial of degree > 1 and $k \in \mathbb{R}$, prove that between any two real roots of $p(x) = 0$ there exists a real root of $p'(x) + kp(x) = 0$.
Q.5 (a) Show that the function $f(x,y) = \begin{cases} \frac{x^2 + y^3}{2x}, x \neq y \\ 0, x \neq y \end{cases}$, is not continuous at origin. But $f_x \ and \ f_y \ exists \ at (0, 0).$
(b) Show that $\int_0^{\pi/2} \sin^m \theta \cos^n \theta d\theta = \frac{r(\frac{\pi + y}{2})r(\frac{\pi + y}{2})}{2r(\frac{\pi + y}{2})}$.
(c) Find the maxima and minima of the function $u = x^2 + 3xy^2 - 15x^2 - 15y^2 + 72x$.
(d) Find the maxima and minima of the function defined as
$$f(x) = \begin{cases} x + \frac{\pi}{2}, -\pi < x < 0 \\ \frac{\pi}{2} - x, 0 < x < \pi \end{cases}$$
(b) Solve the following differential equations.
(i) $(x + 2)^2 \frac{d^2y}{dx^2} - (x + 2) \frac{dy}{dx} - 3y = 0$
(ii) $(y - 1)dx + x(x + 1)dy = 0$

 $(D^3 + 1)y = e^{x/2} \sin \frac{x\sqrt{3}}{2}$

Using operator method solve the following differential equation. $(D^2 - 2D + 5) y = e^x \sin 2x$ [7]

0.9 Find a complete integral of the following equation (a) [7] $p^2x + q^2y = z$ Find the general solution of the partial differential equation [7]

 $x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x + y)z$