Solutions to Math 1013 (Tutorial 2)

1)
$$h(x) = \sqrt{4-x^2}$$
. Let $y = \sqrt{4-x^2}$

$$y^2 = 4 - x^2$$
, $x^2 + y^2 = 4$.

So the graph is the top half of a circle of $x^2 + y^2 = 2^2$.

For
$$4 - x^2 = -(x+2)(x-2) \ge 0$$

Implies
$$(x+2)(x-2) \le 0$$
, $-2 \le x \le 2$.

The Domain of $h(x) = \begin{bmatrix} -2 & 2 \end{bmatrix}$, the range of $h(x) = \begin{bmatrix} 0 & 2 \end{bmatrix}$.

2)
$$g(x) = \sin^{-1}(3x+1)$$
, $\sin(g(x)) = 3x+1$

Let $f(x) = sin\theta$, The inverse function $f^{-1}(\theta) = sin^{-1}(\theta)$ exists iff the domain of $f(x) = sin\theta$ is defined in the region such that $f(x) = sin\theta$ is bijective (one to one and onto).

As we know $-1 \le sin\theta \le 1$,

imply
$$-1 \le sin(g(x)) = 3x + 1 \le 1$$
.

$$\Rightarrow -1 \le 3x + 1 \le 1$$
 $\Rightarrow -2 \le 3x \le 0$ $\Rightarrow \frac{-2}{3} \le x \le 0$

Therefore the domain of g(x) is $\left[\frac{-2}{3}, 0\right]$.

The range of g(x) is $[\sin^{-1}(-1), \sin^{-1} 1] = \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$.

3(a)

$$g(x)=\sqrt{x-5}$$
 is defined when $x-5\geq 0$ or $x\geq 5$, so the domain is $[5,\infty)$.

Since
$$y=\sqrt{x-5} \Rightarrow$$

$$y^2 = x - 5 \Rightarrow x = y^2 + 5$$
, we see that g is the top half of a parabola.

Solutions to Math 1013 (Tutorial 2)

3(b)

$$G(x) = \frac{3x + |x|}{x} \text{ . Since } |x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}, \text{ we have}$$

$$G(x) = \begin{cases} \frac{3x + x}{x} & \text{if } x > 0 \\ \frac{3x - x}{x} & \text{if } x < 0 \end{cases} = \begin{cases} \frac{4x}{x} & \text{if } x > 0 \\ \frac{2x}{x} & \text{if } x < 0 \end{cases} = \begin{cases} 4 & \text{if } x > 0 \\ 2 & \text{if } x < 0 \end{cases}$$

Note that G is not defined for x=0.

The domain is $(-\infty,0) \cup (0,\infty)$.

3(c)
$$g(x) = \frac{|x|}{x^2}$$
. Since $|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases}$,

we have
$$g(x) = \begin{cases} \frac{x}{x^2} & if & x \ge 0 \\ \frac{-x}{x^2} & if & x < 0 \end{cases} = \begin{cases} \frac{1}{x} & if & x \ge 0 \\ \frac{-1}{x} & if & x < 0 \end{cases}$$

Note that g is not defined for x=0. The domain is $(-\infty,0) \cup (0,\infty)$.