Devoir à la maison n°04 : corrigé

Problème 1 -Équation fonctionnelle

Partie I -

- 1. D'après l'énoncé, f(0) = f(0+0) = f(0) + f(0) donc f(0) = 0. Puisque f est strictement monotone, elle est injective donc $f(1) \neq f(0) = 0$.
- **2.** Pour tout $(x, y) \in \mathbb{R}^2$,

$$g(x+y) = \frac{1}{c}f(x+y) = \frac{1}{c}f(x) + \frac{1}{c}f(y) = g(x) + g(y)$$

On en déduit que pour tout $(x, y) \in \mathbb{R}^2$

$$g(x) = g(x - y + y) = g(x - y) + g(y)$$

et donc que g(x-y) = g(x) - g(y).

- 3. On sait que $g(0) = \frac{1}{c}f(0) = 0$ et que $g(n+1) = g(n) + g(1) = g(n) + \frac{1}{c}f(1) = g(n) + 1$. La suite de terme général g(n) est donc arithmétique de raison 1 et de premier terme g(0) = 0. On en déduit que g(n) = n pour tout $n \in \mathbb{N}$.
- **4.** Pour tout $x \in \mathbb{R}$

$$g(x)+g(-x)=g(x-x)=g(0)=0$$

donc g est impaire.

- 5. Soit r∈ Q. La suite de terme général g(nr) est arithmétique de premier terme g(0) = 0 et de raison g(r). On en déduit que g(nr) = ng(r) pour tout n∈ N.
 Puisque r∈ Q, il existe (p,q)∈ Z×N* tel que r = p/q. D'une part, g(qr) = qg(r) et d'autre part, g(qr) = p puisque p∈ Z. Ainsi qg(r) = p puis g(r) = p/q = r.
- **6.** D'après l'énoncé, f est strictement monotone. Si f est strictement croissante c = f(1) > f(0) = 0 donc $g = \frac{1}{c}f$ est strictement croissante.
 - Si f est strictement décroissante c = f(1) < f(0) = 0 donc $g = \frac{1}{c}f$ est strictement croissante.
- 7. Supposons qu'il existe x ∈ ℝ tel que g(x) ≠ x. Alors il existe un rationnel r strictement compris entre x et g(x). Si x < r < g(x), alors par stricte croissance de g, g(x) < g(r) = r, d'où une contradiction. Si g(x) < r < x, alors par stricte croissance de g, g(x) > g(r) = r, d'où une contradiction à nouveau. On en déduit que g(x) = x pour tout x ∈ ℝ.
- **8.** On a montré que $g = \operatorname{Id}_{\mathbb{R}}$ donc $f = c g = c \operatorname{Id}_{\mathbb{R}}$.

Partie II –

- **1.** f est injective car strictement monotone.
- 2. D'après l'énoncé, $f(f(0)) = f(0+f(0)) = f(0) + 0^n = f(0)$. Or f est injective donc f(0) = 0.
- **3.** Pour tout $y \in \mathbb{R}$,

$$f(f(y)) = f(0+f(y)) = f(0) + y^n = y^n$$

4. a. Soit $(x, y) \in \mathbb{R}^2$. Puisque n = 1, $f(f(y)) = y^n = y$. Ainsi

$$f(x + y) = f(x + f(f(y))) = f(x) + f(y)$$

b. La partie précédente montre qu'en posant c = f(1), $f = c \operatorname{Id}_{\mathbb{R}}$. De plus, $1 = f(f(1)) = f(c) = c^2$ donc $c = \pm 1$. Ainsi $f = \pm \operatorname{Id}_{\mathbb{R}}$.

On vérifie aisément que, réciproquement, si $f = Id_{\mathbb{R}}$ ou $f = -Id_{\mathbb{R}}$, on a bien

$$\forall (x, y) \in \mathbb{R}^2, f(x + f(y)) = f(x) + y$$

Dans le cas où n = 1, les applications recherchées sont donc exactement $Id_{\mathbb{R}}$ et $-Id_{\mathbb{R}}$.

- **5. a.** Supposons n pair. Alors $f(f(1)) = 1^n = 1$ et $f(f(-1)) = (-1)^n = 1$ donc $f \circ f(1) = f \circ f(-1)$. Or f est injective donc $f \circ f$ l'est également. On en déduit une contradiction.
 - **b.** Puisque n est impair, le théorème de la bijection montre que l'application $\begin{cases} \mathbb{R} & \longrightarrow \mathbb{R} \\ y & \longmapsto y^n \end{cases}$ est bijective. Or cette application n'est autre que $f \circ f$.

Soit $(x, y) \in \mathbb{R}^2$ tel que f(x) = f(y). Alors f(f(x)) = f(f(y)) puis x = y par injectivité de $f \circ f$. Ainsi f est injective.

Soit $y \in \mathbb{R}$. Alors il existe $x \in \mathbb{R}$ tel que y = f(f(x)) par surjectivité de $f \circ f$. Ainsi $y \in \text{Im } f$ et f est surjective.

c. Puisque f est bijective, on peut considérer la bijection réciproque f^{-1} de \mathbb{R} . Soit $(x,y) \in \mathbb{R}^2$. Alors

$$f(x + y) = f(x + f(f^{-1}(y))) = f(x) + f^{-1}(y)^n$$

Or
$$f^{-1}(y)^n = f(f(f^{-1}(y))) = f(y)$$
 donc $f(x+y) = f(x) + f(y)$.

- **d.** D'après la partie précédente, $f = c \operatorname{Id}_{\mathbb{R}}$ en posant c = f(1). On a donc $f(f(y)) = c^2 y$ pour tout $y \in \mathbb{R}$. Or on sait également que $f(f(y)) = y^n$ pour tout $y \in \mathbb{R}$. On en déduit par exemple que $c^2 = y^{n-1}$ pour tout $y \neq 0$. Mais puisque n > 1, y^{n-1} prend une infinité de valeurs lorsque y décrit \mathbb{R}^* . Ceci est absurde.
- **e.** Dans le cas où n > 1, il n'existe aucune application f de \mathbb{R} dans \mathbb{R} strictement monotone telle que

$$\forall (x, y) \in \mathbb{R}^2, f(x + f(y)) = f(x) + y^n$$

SOLUTION 1.

1. f(z) est défini si et seulement si $e^z + e^{-z} \neq 0$. Or

$$e^z + e^{-z} = 0 \iff e^{2z} = -1 \iff \exists k \in \mathbb{Z}, \, 2z = (2k+1)i\pi \iff \exists k \in \mathbb{Z}, \, z = i\frac{\pi}{2} + ik\pi$$

Donc f(z) est défini pour $z \notin i \frac{\pi}{2} + i \pi \mathbb{Z}$.

2. f(z) = 0 équivaut à $e^z - e^{-z} = 0$. Or

$$e^z - e^{-z} = 0 \iff e^{2z} = 1 \iff \exists k \in \mathbb{Z}, 2z = 2ik\pi \iff \exists k \in \mathbb{Z}, z = ik\pi$$

L'ensemble des solutions est donc $i\pi\mathbb{Z}$.

3. Posons z = x + iy avec $(x, y) \in \mathbb{R}^2$.

$$\begin{split} |f(z)| < 1 &\iff \left| e^z - e^{-z} \right|^2 < \left| e^z + e^{-z} \right|^2 \\ &\iff \left(e^z - e^{-z} \right) \overline{\left(e^z - e^{-z} \right)} < \left(e^z + e^{-z} \right) \overline{\left(e^z + e^{-z} \right)} \\ &\iff \left(e^z - e^{-z} \right) \left(e^{\overline{z}} - e^{-\overline{z}} \right) < \left(e^z + e^{-z} \right) \left(e^{\overline{z}} + e^{-\overline{z}} \right) \\ &\iff -e^{z - \overline{z}} - e^{\overline{z} - z} < e^{z - \overline{z}} + e^{\overline{z} - z} \\ &\iff e^{2iy} + e^{-2iy} > 0 \\ &\iff \cos(2y) > 0 \end{split}$$

Donc
$$\begin{cases} |\operatorname{Im} z| < \frac{\pi}{2} \\ |f(z)| < 1 \end{cases} \iff \begin{cases} |y| < \frac{\pi}{2} \\ \cos(2y) > 0 \end{cases} \iff |y| < \frac{\pi}{4}.$$

4. Soit $z \in \Delta$. D'après la question précédente, |f(z)| < 1 i.e. $f(z) \in \mathcal{D}$. Ainsi tout élément de Δ a pour image par f un élément de \mathcal{D} , c'est-à-dire que $f(\Delta) \subset \mathcal{D}$.

5. Existence : Puisque Z est non nul, Z possède des arguments. De plus, les arguments de Z étant égaux à un multiple de 2π près, il existe un argument θ de Z appartenant à $]-\pi,\pi]$. On ne peut avoir $\theta=\pi$ sans quoi Z serait un réel négatif. Considérons également le module r de Z, qui est strictement positif puisque Z est non nul. On peut alors poser $z=\ln r+i\theta$ de sorte que $e^z=Z$ et $\mathrm{Im}(z)=\theta\in]-\pi,\pi[$.

Unicité: Supposons qu'il existe deux complexes z et z' tels que $e^z = e^{z'} = \mathbb{Z}$ et les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$. Puisque $e^z = e^{z'}$, il existe $k \in \mathbb{Z}$ tel que $z' = z + 2ik\pi$. En partiulier, $\mathrm{Im}(z') - \mathrm{Im}(z) = 2k\pi$. Mais comme les réels $\mathrm{Im}(z)$ et $\mathrm{Im}(z')$ soient dans l'intervalle $]-\pi,\pi[$, $-2\pi < \mathrm{Im}(z') - \mathrm{Im}(z) < 2\pi$, de sorte que -1 < k < 1. Puisque k est entier k est nul puis z' = z.

6. Remarquons que

$$\frac{1+u}{1-u} = \frac{(1+u)(1-\overline{u})}{|1-u|^2} = \frac{1-|u|^2 + 2i\operatorname{Im}(u)}{|1-u|^2}$$

On en déduit que si $\frac{1+u}{1-u} \in \mathbb{R}_-$, alors $1-|u|^2 \le 0$ i.e. $|u| \ge 1$. Par contraposition, si $u \in \mathcal{D}$, $\frac{1+u}{1-u} \notin \mathbb{R}_-$.

7. Montrons que tout élément de \mathscr{D} admet un unique antécédent dans Δ . Soit $u \in \mathscr{D}$ et $z \in \mathbb{C}$. On a facilement $f(z) = u \iff e^{2z} = \frac{1+u}{1-u}$. D'après la question $\mathbf{6}$, $\frac{1+u}{1-u} \notin \mathbb{R}_-$. D'après la question $\mathbf{5}$, cette équation admet une unique solution telle que $\operatorname{Im}(2z) \in]-\pi,\pi[$ i.e. $\operatorname{Im}(z) \in]-\frac{\pi}{2},\frac{\pi}{2}[$. Notons encore z cette solution. Comme on a également |f(z)| < 1, la question $\mathbf{3}$ montre que $|\operatorname{Im} z| < \frac{\pi}{4}$ i.e. $z \in \Delta$. L'équation f(z) = u admet donc une unique solution dans Δ .

Puisqu'on a également montré que $f(\Delta) \subset \mathcal{D}$, f réalise bien une bijection de Δ sur \mathcal{D} .