(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum Internationales Büro

- I DOLLA BULLUK KAN BURKA KAN BAKA BAKA BAKA KAN BURKA KAN BURKA KAN BURKA KAN BURKA BURKA BURKA KAN BURKA KA

(43) Internationales Veröffentlichungsdatum 25. November 2004 (25.11.2004)

PCT

(10) Internationale Veröffentlichungsnummer $WO\ 2004/101415\ A1$

- (51) Internationale Patentklassifikation⁷: 54/78, 54/74, 54/28, 54/42
- B65H 54/38,
- (21) Internationales Aktenzeichen:

PCT/AT2004/000162

(22) Internationales Anmeldedatum:

10. Mai 2004 (10.05.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

A 770/2003

19. Mai 2003 (19.05.2003) A7

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): STARLINGER & CO GESELLSCHAFT M.B.H. [AT/AT]; Sonnenuhrgasse 4, A-1060 Wicn (AT).
- (72) Erfinder; und

WO 2004/101415 A1

(75) Erfinder/Anmelder (nur für US): SCHMALHOLZ, Peter [AT/AT]; Strandstrasse 111, A-2331 Vösendorf (AT).

- (74) Anwälte: MARGOTTI, Herwig usw.: Wipplingerstrasse 32/22, A-1010 Wien (AT).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfüghare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT,

[Fortsetzung auf der nächsten Seite]

- (54) Title: STRIP WINDING METHOD
- (54) Bezeichnung: BANDAUFWICKELVERFAHREN

- (57) Abstract: The invention relates to a method for winding a continuously fed strip (5) onto a reel (2) while turning said reel (2) and by moving the strip (5) in a to-and-fro manner by means of a traversing device (4) over the entire length of the reel (2) at a laying angle (a). The invention provides that, when the reel diameter has increased by a certain value, the laying ratio, which is the ratio between the rotational speed of the reel and the to-and-fro motion (cycle to-and-fro) of the traversing device, is changed step-by-step each time in such a manner that the laying ratio changes by, in essence, whole increments.
- (57) Zusammenfassung: Bei einem Verfahren zum Aufwickeln eines kontinuierlich zugeführten Bandes (5) auf eine Spule (2) unter Drehung der Spule (2) und Hin- und Herbewegen des Bandes (5) mittels einer Changiereinrichtung (4) über die gesamte Länge der Spule (2) in einem Verlegewinkel (α), wird jedesmal, wenn der Spulendurchmesser um einen bestimmmten Wert zugenommen hat, das Verlegeverhältnis, das ist das Verhältnis zwischen Spulendrehzahl und Hin- und Herbewegung (Doppelhub) der Changiereinrichtung, stufenweise solcherart geändert, dass sich das Verlegeverhältnis um im Wesentlichen ganzzahlige Schritte ändert.

WO 2004/101415 A1

RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

IAP15 Rec'd PCT/PTO 18 NOV 2005

WO 2004/101415

5

1

Bandaufwickelverfahren

Die Erfindung betrifft ein Verfahren zum Aufwickeln eines kontinuierlich zugeführten Bandes auf eine Spule unter Drehung der Spule und Hin- und Herbewegen des Bandes mittels einer Changiereinrichtung über die gesamte Länge der Spule in einem Verlegewinkel, wobei jedesmal, wenn der Spulendurchmesser um einen bestimmmten Wert zugenommen hat, das Verlegeverhältnis, das ist das Verhältnis zwischen Spulendrehzahl und Hin- und Herbewegung (Doppelhub) der Changiereinrichtung, stufenweise geändert wird.

- Ein solches Verfahren zum Aufwickeln eines kontinuierlich zugeführten Bandes wird in Fachkreisen als "gestufte Präzisionswicklung" bezeichnet und ist beispielsweise aus der DE 41 12 768 A, der DE 42 23 271 C1 und der EP 0 561 188 bekannt, wobei letztere einen ausführlichen Überblick über unterschiedlichste Arten von Spulenformen gibt.
- Das Aufspulen des Bandes erfolgt in Spulmaschinen auf zylindrische oder konische Spulenkerne, wobei die Zufuhrgeschwindigkeit des Bandes auf den Spulenkern relativ konstant ist, da von der Spulmaschine vorgeschalteten Banderzeugungsmaschinen vorgegeben.
- Das Aussehen, die Festigkeit und Qualität der Spulen wird wesentlich durch die folgenden Parameter beeinflusst:
 - 1) Der Verlegewinkel α, das ist jener Winkel zwischen einer Normalen auf die Spulen- Drehachse und der Längsrichtung des auf die Spule zugeführten Bandes.
 - 2) Das Verlegeverhältnis V, das ist die Anzahl an Spulenumdrehungen pro Changiereinrichtungs-Doppelhub.

Aus dem gewählten Verlegeverhältnis V stellt sich der Verlegewinkel α ein.

25

Eine gestufte Präzisionswicklung ist eine Mischform aus zwei grundlegenden Wickelverfahren, wie das zugeführte Band auf einen Spulenkern gewickelt werden werden kann, nämlich der "Wilden Wicklung" (Zufallswicklung) und der "Präzisionswicklung".

Das Kennzeichen der Wilden Wicklung ist ein konstanter Verlegewinkel α, dafür ein 5 variables Verhältnis zwischen Spulendrehzahl und Changiergeschwindigkeit (=variables Verlegeverhältnis V). Im Verlegeverhältnis/Spulendurchmesser-Diagramm von Fig. 2 sind drei Graphen für Wilde Wicklungen mit den Verlegewinkeln $\alpha = 4^{\circ}$, 5°, 6° eingetragen. Vorteilhaft an der Wilden Wicklung ist der einfache Aufbau der zu ihrer Erzeugung notwendigen Spulmaschine, die in Fig. 3 in Seitenansicht und Draufsicht dargestellt ist. 10 Diese kann im einfachsten Fall einen Motor 10 umfassen, der eine Treibwalze 11 antreibt, die wiederum am Umfang der Spule 12 angreift und diese mit konstanter Umfangsgeschwindigkeit antreibt, dass so das Band 19 . mit konstanter Lineargeschwindigkeit aufgespult wird. Die Spulspindel 18 der Spule 12 kann freilaufend ausgebildet sein. Der Motor 10 treibt über ein Übersetzungsgetriebe, bestehend aus 15 Riemenscheiben 15, 16 und einem über die beiden Riemenscheiben laufenden Riemen 17 eine Changiereinrichtung 13 so an, dass sich der Changierbandführer 14, durch den das Band 19 läuft, mit konstanter Hubgeschwindigkeit (Changierungshub) hin- und herbewegt. Somit besteht ein festes Übersetzungsverhältnis zwischen der Umfangsgeschwindigkeit der Spule 12 und dem Changierungshub des Changierbandführers 14, das in einem konstanten 20 Verlegewinkel des Bandes 19 auf der Spule 12 resultiert. Das bedeutet, dass der Verlegewinkel zu Beginn des Wickelvorgangs auf einen leeren Spulenkern derselbe ist wie am Ende des Wickelvorgangs, wenn die Spule ihren größten Durchmesser erreicht hat. Nachteiligerweise nimmt dadurch die Anzahl der Windungen pro Wickellage mit zunehmendem Spulendurchmesser stetig ab, so dass eine Spule mit unterschiedlicher 25 Packungsdichte des Bandmaterials bei jedem Spulendurchmesser entsteht. Ein weiterer unangenehmer Effekt beim Aufspulen, der als "Bildwicklung" bezeic 1, tritt bei bestimmten Verhältnissen von Spulendurchmessern und Changiergeschwindigkeiten auf. indem bei diesen Verhältnissen mehrere Bändchen-Lagen fast genau übereinander zu liegen kommen, wodurch der Wickel instabil wird. Daher ist es erforderlich, Maßnahmen zur 30 "Bildstörung" zu ergreifen, z.B. Wobbelung.

15

20

25

30

Die Präzisionswicklung wiederum zeichnet sich durch ein konstantes Verlegeverhältnis über den gesamten anwachsenden Spulendurchmesser aus, was wiederum bedeutet, dass der Verlegewinkel mit zunehmendem Spulendurchmesser abnimmt. Im Diagramm von Fig. 2 ist eine Präzisionswicklung mit einem Verlegeverhältnis V = 35 als Gerade eingetragen. Der Vorteil der Präzisionswicklung liegt in der Erzielung einer Spule mit konstanter .5 Packungsdichte des Bandmaterials auf der Spule unabhängig vom Spulendurchmesser. Der der Präzisionswicklung liegt darin, dass ausgehend einem Anfangsverlegewinkel bei Beginn des Aufwickelns des Bandmaterials auf einen leeren Spulenkern - der Verlegewinkel mit zunehmendem Spulen-Durchmesser immer geringer und schließlich so klein wird (er geht theoretisch gegen Null), dass der Wickel instabil wird. Der Aufbau einer Spulmaschine zur Erzeugung einer Präzisionswicklung ist in Fig. 4 in Seitenansicht und Draufsicht dargestellt. Diese Spulmaschine umfasst einen Motor 20, der eine Spulspindel 21 dreht. Auf der Spulspindel 21 sitzt drehfest ein Spulenkern 26, auf den ein Band 27 zu einer Spule 22 aufgespult wird. Eine Changiereinrichtung 23 ist über ein Stirnradgetriebe 25 mit der Spulspindel 21 verbunden. Die Changiereinrichtung 23 verfügt über Rotations/Translations-Übersetzungsmittel, nicht. dargestellte . 1,22 um den Changierbandführer 24 in Changierungshüben hin- und herzubewegen. Durch den direkten Drehantrieb der Spulspindel 21 muss die Drehzahl des Motors 20 mit zunehmendem Durchmesser der sich bildenden Spule 22 stetig verringert werden, da das aufzuspulende Band von einer Banderzeugungseinrichtung mit konstanter Lineargeschwindigkeit zugeführt wird.

Um die jeweiligen Nachteile der Wilden Wicklung und der Präzisionswicklung zu mildern und um ihre Vorteile zu kombinieren, wurde in der Vergangenheit die "gestufte Präzisionswicklung" vorgeschlagen. Diesem Wickelverfahren liegt der Gedanke zugrunde, dass das Verlegeverhältnis zwischen vordefinierten Grenzdurchmessern einer Spule konstant gehalten wird und bei Erreichen eines jeweiligen Grenzdurchmessers st e auf einen anderen Wert verändert wird, wobei die Werte der Verlegeverhältnisse so gewahlt werden, dass ein Graph des Verlegeverhältnisses über den Spulendurchmesser ungefähr dem Graph einer Wilden Wicklung für einen bestimmten Verlegewinkel folgt. Der Vorteil der gestuften Präzisionswicklung liegt darin, dass einerseits "Bildwicklungen" vermieden werden, da das sprunghafte Ändern des Verlegeverhältnisses eine "Bildstörungsmaßnahme" darstellt.

10

15

20

Andererseits wird der Verlegewinkel auch bei wachsendem Spulendurchmesser nicht wesentlich kleiner als der Anfangsverlegewinkel.

Während die gestufte Präzisionswicklung für die Herstellung von Garn- und Fadenspulen das erwartete gute Ergebnis liefert, werden bei der Herstellung von Bandspulen mit gestufter Präzisionswicklung oftmals überraschend schlechte Ergebnisse erzielt. Die Unzulänglichkeiten dieser Bandspulen reichen von unansehnlichem, weil unregelmäßigem optischen Erscheinungsbild über Spulen mit variierendem, z.B. welligem Durchmesser über ihre Länge, über unregelmäßige Stirnflächen der Spule, bis hin zu instabilem Wicklungsaufbau.

Da solche Spulen meist in schnelllaufenden Maschinen, wie Rundwebstühlen, Verwendung finden, kann jede Unregelmäßigkeit des Spulenaufbaues fatale Folgen haben, die als geringste Auswirkung zum Bruch des Bandes beim Abziehen von der Spule führen, im schlechtesten Fall die Zerstörung eines Teils der Maschine nach sich ziehen. Herbeigeführt werden solche Schäden durch Unwucht an unregelmäßigen Spulen, durch Vibrieren der Bänder beim Abziehen, das sich sukzessive aufschaukelt, etc. Weiters erwärmen sich unregelmäßige Spulen beim schnellen Abziehen der Bänder rasch und führen dadurch zur Ermüdung und Schwächung des Bandmaterials, insbesondere wenn es sich dabei um gereckte Kunststoffbändchen handelt.

Aus diesem Grund besteht in der Industrie ein starkes Bedürfnis nach einem verbesserten gestuften Präzisionswickelverfahren.

25 vorliegende Erfindung stellt Die ein solches verbessertes gestuftes Präzisionswickelverfahren bereit, das sich dadurch auszeichnet, dass bei der stufenweisen Änderung des Verlegeverhältnisses dieses um im Wesentlichen ge e Schritte geändert wird. Die Erfinder haben nämlich erkannt, dass der Junu für einen unzufriedenstellenden Aufbau von Spulen in gestufter Präzisionswicklung die sich durch die stufenweise Änderung des Verlegeverhältnisses ergebende plötzliche Veränderung des 30 Lagenbilds der Bänder ist, die eine Unstetigkeitsstelle für den Gesamtaufbau der Spule darstellt. Im ungünstigen Fall akkumulieren sich diese veränderten Lagenbilder und führen zu den erwähnten Unregelmäßigkeiten oder ungleicher Packungsdichte. Durch die erfindungsgemäße Maßnahme jedoch bleibt auch nach der stufenweisen Änderung des Verlegeverhältnisses das Lagenbild im Wesentlichen unverändert, so dass sich eine Spule mit hervorragendem Aufbau, d.h. regelmäßigem Erscheinungsbild und hoher Packungsdichte ergibt. Stufenweise Änderung des Verlegeverhältnisses um im Wesentlichen ganzzahlige Schritte ist so zu verstehen, dass sich der Nachkommaanteil des Verlegeverhältnisses bei jeder Änderung höchstens um 0,1, bevorzugt höchstens um 0,03, noch bevorzugter um höchstens 0,01 verändert.

Gemäß einer bevorzugten Ausgestaltung der Erfindung wird bei einer jeden Änderung des Verlegeverhältnisses der Nachkommaanteil dieses Verhältnisses in dem Ausmaß verändert, dass sich eine konstante Teilüberdeckung mit einer darunter liegenden Bandspur ergibt, wie weiter unten anhand eines Beispiels erläutert wird. Man erzielt dadurch einen sehr stabilen Spulenaufbau.

15

20

25

30

3

5

Bei einem ganzzahligen Verlegeverhältnis, d.h. einem Verlegeverhältnis ohne Kommaanteil stellen sich Bildwicklungen auf der Spule ein. Um solche den Spulenaufbau instabil machenden Bildwicklungen auszuschließen, wird erfindungsgemäß weiters vorgeschlagen, die Verlegeverhältnisse so zu wählen, dass ihr Nachkommaanteil zumindest zweistellig ist. Weiters ist es für Spulen mit Kunststoffbändchen bevorzugt, die Verlegeverhältnisse nahe 0 oder 0,50 oder 0,33 oder 0,25 zu wählen, wodurch die Umkehrpunkte des Bandes an der Stirnseite der Spule nach ein, zwei, drei bzw. vier Doppelhüben des Changierbandführers wieder nahe beieinander zu liegen kommen. In Abhängigkeit von der Breite der aufzuspulenden Bänder kann das Verlegeverhältnis jeweils so geändert werden, dass sich eine vor- oder rückwärtslaufende Bandverlegung ergibt bzw. beibehalten wird.

Weiters lassen sich empirisch für jeweilige Breiten der 1 und ihre Materialeigenschaften bestimmte Verlegewinkelbereiche angeben, die 1 und optimalen Aufbau der Spule sorgen. Um diesen optimalen Spulenaufbau zu erreichen, ist vorgesehen, dass das Verlegeverhältnis so geändert wird, dass der resultierende Verlegewinkel innerhalb dieses vorbestimmten Bereichs bleibt. Für gereckte Kunststoffbändchen mit einer Breite

10

zwischen 2 und 10 mm hat sich beispielsweise ein Verlegewinkelbereich von 4 bis 6° als vorteilhaft erwiesen.

Um die erfindungsgemäßen Verlegeverhältnisse mit der erforderlichen Genauigkeit einstellen zu können, hat es sich als günstig erwiesen, wenn die Spule von einem eigenen Motor und die Changiereinrichtung ebenfalls von einem eigenen Motor angetrieben wird und die Änderung des Verlegeverhältnisses elektronisch durch stufenweise Änderung des Verhältnisses der Geschwindigkeiten der beiden Motoren zueinander erfolgt. Besonders gut steuern lassen sich Motoren, die als Drehstromantriebe mit Frequenzumrichter, oder als Gleichstromantriebe aufgebaut sind.

Mit hoher Präzision lässt sich weiters der momentane Spulendurchmesser aus einem Soll/Ist-Vergleich von Bandlineargeschwindigkeit und Spulendrehzahl errechnen.

- Die Erfindung wird nun anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. In den Zeichnungen zeigen:
 - Fig. 1 den prinzipiellen Aufbau einer Spulmaschine zur Durchführung des erfindungsgemäßen Verfahrens;
 - Fig. 2 ein Diagramm, in dem Graphen des Verlegeverhältnisses über dem Spulendurchmesser für drei Wilde Wicklungen mit Verlegewinkeln $\alpha = 4^{\circ}$, $\alpha = 5^{\circ}$ und $\alpha = 6^{\circ}$, für eine Präzisionswicklung V = 35 und für eine gestufte Präzisionswicklung SPW eingetragen sind;
 - Fig. 3 die eingangs erklärte Spulmaschine nach dem Stand der Technik zur Erzeugung einer Wilden Wicklung;
 - Fig. 4.die eingangs erklärte Spulmaschine nach dem Stand der Technik zur Erzeugung einer Präzisionswicklung;
 - Fig. 5 zeigt die Lage von Umkehrpunkten des Bandmaterials an der Stirn r Spule; Fig. 6 bis Fig. 9 zeigen verschiedene Konfigurationen übereinanderliegender Bandspuren; und
 - Fig. 10 und Fig. 11 zeigen eine vorwärtslaufende bzw. rückwärtslaufende Bandgutverlegung.

10

Eine Spulmaschine zur Durchführung des erfindungsgemäßen Verfahrens, die in Fig. 1 vereinfacht dargestellt ist, weist zumindest eine, in der Regel aber eine Vielzahl von antreibbaren Spulspindeln 1 in einer Drehlagerung auf. Auf die Spulspindel 1 wird drehfest ein nicht dargestellter Spulenkern aufgesteckt, auf den Bandmaterial 5 aufgespult wird. Das Bandmaterial 5 wird mit im Wesentlichen konstanter Lineargeschwindigkeit von einer Banderzeugungseinrichtung zugeführt. Solche Banderzeugungseinrichtungen sind für sich bekannt und nicht Teil der Erfindung, so dass keine nähere Erläuterung erforderlich ist. Jede Spulspindel 1 bzw. die sich auf dem Spulenkern aufbauende Bandspule 2 wird von einer um die eigene Achse drehbaren und mit der Spule 2 in Umfangskontakt befindlichen Kontaktwalze 3, die von einem Motor M1 angetrieben wird, gedreht. Weiters ist eine über die Länge der Spulspindel hin- und herbewegliche Changiereinrichtung 4 vorgesehen, die einen ösenförmigen Changierbandführer 6 aufweist, durch den das Band 5 hindurchläuft und der das Band 5 in einem Verlegewinkel α auf die Spule 2 zuführt. Der Verlegewinkel α ist dabei als der Winkel zwischen dem zugeführten Band 5 und einer Normalen S auf die Spulenachse A definiert. Die Bewicklungslänge L ist jene axiale Länge, in der die 15 Spulspindel 1 mit dem Band 5 bewickelt wird. In anderen Worten entspricht die Bewicklungslänge L der Spulenlänge und zwei Bewicklungslängen stellen die Länge eines Doppelhubes der Changiereinrichtung 4 dar.

Die Spulmaschine wird in einem gestuften Präzisionswickelverfahren betrieben. Das heißt, 20 dass ausgehend von einem Start-Verlegewinkel beim Aufspulen des Bandes auf einen Spulenkern zunächst ein bestimmtes Verlegeverhältnis beibehalten wird (wodurch sich der Verlegewinkel ändert). Erreicht der Durchmesser der Spule einen vorbestimmten Wert, so wird das Verlegeverhältnis stufenweise auf einen neuen Wert eingestellt, und dieser wiederum beibehalten, bis der Spulendurchmesser auf einen weiteren vorgegebenen Wert 25 angewachsen ist, woraufhin das Verlegeverhältnis wiederum stufenweise auf einen neuen Wert eingestellt wird.

Die Anpassung des Verlegeverhältnisses erfolgt durch ein "elektronisches Getriebe", d.h. eine elektronische Regelung des Verhältnisses der Geschwindigkeiten des die Spule 2 antreibenden Motors M1 und eines die Changiereinrichtung 4 hin und her bewegenden Motors M2. Das virtuelle "Übersetzungsverhältnis" der beiden Motoren wird elektronisch

15

20

25

30

bei Erreichen eines bestimmten Durchmessers immer wieder stufenweise geändert, indem dem Changierantrieb M2 eine geänderte Geschwindigkeit verliehen wird. Die Antriebe M1, M2 sind vorzugsweise Drehstromantriebe mit Frequenzumrichter, oder Gleichstromantriebe.

Der momentane Spulendurchmesser wird beispielsweise aus einem Soll/Ist-Vergleich von Fadenlineargeschwindigkeit und Spulendrehzahl errechnet.

Im Diagramm von Fig. 2 zeigt der Graph SPW den stufenformigen Verlauf bei der Stufenpräzisionswicklung, wobei erfindungsgemäß das Verlegeverhältnis stufenweise um im Wesentlichen ganzzahlige Schritte geändert wird. Ausgehend vom Beginn des Aufwickelns eines Bandes auf einen Spulenkern mit 45 mm Durchmesser wird zunächst ein voreingestelltes Verlegeverhältnis V = 30,557 beibehalten, bis der Spulendurchmesser 50 mm erreicht, woraufhin das Verlegeverhältnis V auf 27,551 eingestellt wird, bis der Spulendurchmesser 55 mm erreicht, woraufhin das Verlegeverhältnis V zu 24,546 geändert stufenweise Änderung des Verlegeverhältnisses wird. Diese erfolgt bei jeder Spulendurchmesser zunahme um 5 mm, bis zu einem Durchmesser von 95 mm (V = 13.525). Ab dann erfolgt die Änderung des Verlegeverhältnisses nur mehr nach jeweils 10 mm Spulendurchmesserzunahme, ab 125 mm Spulendurchmesser nur mehr alle 15 mm Spulendurchmesserzunahme, und ab 155 mm Spulendurchmesser schließlich nur mehr alle 20 mm Spulendurchmesserzunahme. Man erkennt aus dem Diagramm von Fig. 2, dass der gesamte Verlauf des Graphs SPW innerhalb der durch die Graphen der Wilden Wicklungen mit den Verlegewinkeln $\alpha = 4^{\circ}$ bzw. $\alpha = 6^{\circ}$ vorgegebenen Grenzen bleibt, d.h. der Verlegewinkel schwankt zwar bei der Sufenpräzisionswicklung, jedoch nur innerhalb der geringen Bandbreite zwischen 4 und 6°. Tatsächlich folgt der Verlauf des Graphs SPW angenähert jenem einer Wilden Wicklung mit $\alpha = 5^{\circ}$, ohne aber auch nur abschnittsweise mit diesem Graph zusammenzufallen oder parallel zu laufen, da in einem solchen Abschnitt dann die Spule die Eigenschaften einer Wilden Wicklung mit der Problemen von "Bildwicklungen" hätte. Tabelle 1 zeigt die Wickelverhältnisse des Graphs SPW, wobei in Spalte 1 die jeweiligen Spulendurchmesser angegeben sind, bei denen eine Änderung des Verlegeverhältnisses auf die in Spalte 2 stehenden Werte erfolgt. Spalte 3 zeigt den Vorkommaanteil des Verlegeverhältnisses, der angibt, wie viele ganze Umdrehungen die Spule pro Doppelhub der Changiereinrichtung vollführt. Spalte 4 zeigt

15

den Nachkommaanteil des Verlegeverhältnisses, aus dem sich der in Spalte 6 gezeigte Versatzwinkel errechnen lässt, der angibt, um wie viele Winkelgrade der Umkehrpunkt des Bandes nach einem Doppelhub der Changiereinrichtung gegenüber dem vorigen Umkehrpunkt versetzt ist. Spalte 5 wiederum zeigt die Nachkomma-Differenz zwischen aufeinanderfolgenden Verlegeverhältnissen. Man erkennt, dass diese Nachkomma-Differenz im Tausendstel-Bereich liegt, d.h., dass die Änderungen des Verlegeverhältnisses im Wesentlichen ganzzahlig erfolgen.

Spulendurch-	Verlege-	Vorkomma-	Nachkomma-	Nachkomma-	Versatzwinkel
messer [mm]	verhältnis	anteil	anteil	Differenz	[°]
45	30,557	30	0,557		200,52
50	27,551	. 27:	0,551	0,006	198,36
55	24,546	24	0,546	0,005	196,56
60	22,542	22	0,542	0,004	195,12
65	20,538	20	0,538	0,004	193,68
70	18,534	18	0,534	0,004	192,24
75	17,533	17	0,533	0,001	191,88
80	16,531	16	0,531	0,002	191,16
85	15,529	15	0,529	0,004	190,44
90	14,527	14	0,527	0,002	189,72
95	13,525	13	0,525	0,002	189
105	12,523	12	0,523	0,002	188,28
115	11,522	11	0,522	0,001	187,92
125	10,52	10	0,52	0,002	187,2
140	9,518	9	0,518	0,002	186,48
155	8,516	8	0,516	0,002	185,76
175	7,514	7.	0,514	0,002	185,04

10 <u>Tabelle 1</u>

Um "Bildwicklungen" auszuschließen wurde der Nachkommaanteil aller Verlegeverhältnisse so gewählt, dass jeweils mindestens zwei Kommastellen vorgesehen sind; tatsächlich weisen die Verlegeverhältnisse mit Ausnahme im Bereich des Spulendurchmessers von 125 mm sogar drei Kommastellen auf. Der Nachkommaanteil liegt

nahe 0,5 (tatsächlich zwischen 0,557 und 0,514), so dass nach zwei Doppelhüben der Changiereinrichtung der Umkehrpunkt des Bandes wieder nahe dem vorherigen Umkehrpunkt zu liegen kommt. Weitere bevorzugte Wertebereiche den Nachkommaanteil des Verlegeverhältnisses befinden sich nahe 0 oder 0,33 oder 0,25. Allerdings sollte keiner dieser Werte selbst Verwendung finden, da sonst Bildwicklungen bei 5 jedem Doppelhub bzw. nach drei oder vier Doppelhüben der Changiereinrichtung entstehen würden. Zum besseren Verständnis des Zusammenhangs zwischen dem Nachkommaanteil des Verlegeverhältnisses und dem Versatzwinkel ist in Fig. 5 schematisch eine Spule 2 von der Stirnseite dargestellt, die aus Bandmaterial besteht, das auf einen Spulenkern 8 mit 10 einem Verlegeverhältnis aufgewickelt ist, das einen Nachkommaanteil von etwas mehr als 0,25, z.B. 0,26 aufweist. Daraus lässt sich ein Versatzwinkel von etwas mehr als 90° errechnen. Ausgehend von Punkt 30, der einen Umkehrpunkt einer Bandwindung repräsentiert, wird das Bandmaterial bei jedem Doppelhub der Changiereinrichtung so auf der Spule abgelegt, dass sich der Umkehrpunkt um ca. 90° auf dem Spulenumfang verschiebt, wodurch sich eine Abfolge der Umkehrpunkte $30 \rightarrow 31 \rightarrow 32 \rightarrow 33 \rightarrow 34$ ergibt, 15 wie durch die strichlierten Pfeile dargestellt. Man erkennt, dass der Umkehrpunkt 34 nahe dem Umkehrpunkt 30 liegt, d.h. dass nach vier Doppelhüben der Changiereinrichtung die Bandlagen nebeneinander zu liegen kommen.

Weiters ist es bevorzugt, das Verlegeverhältnis jeweils so einzustellen, dass sich eine konstante Teilüberdeckung des aufzuwickelnden Bandes mit einer darunter liegenden Bandspur ergibt. Beim Aufwickeln von Bändern auf Spulen können sich die folgenden Konfigurationen übereinanderliegender Bandspuren ergeben, die in den Figuren 6 bis 9 dargestellt sind. Diese Konfigurationen hängen außer vom Verlegeverhältnis vom Verlegewinkel α, der Breite b der Bänder 5 und ihrem axialen Versatz d ab. In Fig. 6 liegen die Bänder exakt Kante an Kante. In Fig. 7 liegen die Bänder mit einem Abstand dazwischen. In Fig. 8 und Fig. 9 überdecken sich die Bandspuren ; wie dies erfindungsgemäß bevorzugt ist. Dabei ergibt sich in Fig. 8 eine rückwärtslaufende Bandgutverlegung und in Fig. 9 eine vorwärtslaufende Bandgutverlegung.

30

In bevorzugter Ausgestaltung des erfindungsgemäßen Wickelverfahrens wird bei einer jeden Änderung des Verlegeverhältnisses der Nachkommaanteil dieses Verhältnisses in dem

Ausmaß verändert, dass sich eine konstante Teilüberdeckung mit einer darunter liegenden Bandspur ergibt. Das Verhältnis zwischen dem axialen Versatz d und dem Verlegeverhältnis V lässt sich aus der nachfolgenden Formel bestimmen:

$$\mathbf{V} = \frac{\text{na} \times 2\text{L} \times (\text{V}_z + 1/\text{na})}{\text{na} \times 2\text{L} - \text{d}}$$

wobei gilt:

5

20

25

30

V = Verlegeverhältnis (z.B. auf vier Kommastellen gerundet)

Vz = Verlegeverhältniszahl (ganzzahlig, gewählter Vorkommaanteil des Verlegeverhältnisses V)

na = Abbindungszahl (ganzzahlig, jene Anzahl Doppelhübe bei der es zu dem definierten Versatz d kommen soll)

L = Bewicklungslänge der Spule in mm (2L → Doppelhub)

d = Versatz in mm (entlang der Wickelachse)

Mit obiger Formel kann der Fachmann aus einem gewünschten Versatz d das dazu notwendige Verlegeverhältnis V bestimmen. In der Praxis hat es sich für einen Aufbau einer Spule mit hervorragender Stabilität bewährt, den Versatz d so zu wählen, dass sich eine Überdeckung der Bändchen von ca. einer ½ Bändchenbreite b einstellt (siehe Fig. 8 und Fig. 9). Ein negatives Vorzeichen des Versatzes bedeutet "vorwärtslaufende" Verlegung.

Bei einer "vorwärtslaufenden" Bandgutverlegung wird das auf die Spule 2 auflaufende Band 5 vor dem auf der sich in Pfeilrichtung 9 drehenden Spule 2 befindlichen Bandgut 5a abgelegt, wie in Fig. 10 dargestellt. Bei einer "rückwärtslaufenden" Bar egung wird das auf die Spule 2 auflaufende Band 5 hinter dem auf der sich in Pfeilrichtung 3 drehenden Spule 2 befindlichen Bandgut 5a abgelegt, wie in Fig. 11 dargestellt. Vorwärts- und rückwärtslaufende Bandgutverlegung betrifft aber nicht nur benachbarte Lagen. Gemäß der Erfindung ist es auch bevorzugt, das Verlegeverhältnis beim Erreichen einer Durchmessergrenze stets so zu ändern, dass sich bei dieser stufenweisen Veränderung

ebenfalls eine vor- oder rückwärtslaufende Bandverlegung ergibt oder beibehalten wird. Dies bedeutet auch, dass die Änderung des Versatzwinkels so erfolgt, dass der Versatzwinkel entweder immer größer oder – wie in Tabelle 1 angeführt – immer kleiner wird, was zu einem besonders regelmäßigen Aufbau der Spule beiträgt.

5

10

Die obige Formel lässt sich auch so umformulieren, dass in Kenntnis des Verlegeverhältnisses der Versatz d errechnet werden kann:

$$\mathbf{d} = \text{na} \times 2\text{L} - \frac{\text{na} \times 2\text{L} \times (\text{V}_z + 1/\text{na})}{\text{V}}$$

20

Ansprüche:

- Verfahren zum Aufwickeln eines kontinuierlich zugeführten Bandes (5) auf eine Spule (2) unter Drehung der Spule (2) und Hin- und Herbewegen des Bandes (5) mittels einer
 Changiereinrichtung (4) über die gesamte Länge der Spule (2) in einem Verlegewinkel (α), wobei jedesmal, wenn der Spulendurchmesser um einen bestimmmten Wert zugenommen hat, das Verlegeverhältnis, das ist das Verhältnis zwischen Spulendrehzahl und Hin- und Herbewegung (Doppelhub) der Changiereinrichtung, stufenweise geändert wird, dadurch gekennzeichnet, dass bei der stufenweisen Änderung das Verlegeverhältnis um im Wesentlichen ganzzahlige Schritte geändert wird.
 - 2. Aufwickel-Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass bei einer jeden Änderung des Verlegeverhältnisses der Nachkommaanteil dieses Verhältnisses in dem Ausmaß verändert wird, dass sich eine konstante Teilüberdeckung mit einer darunter liegenden Bandspur ergibt.
 - 3. Aufwickel-Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Nachkommaanteil des Verlegeverhältnisses zumindest zweistellig ist und vorzugsweise in der Nähe von entweder 0 oder 0,50 oder 0,33 oder 0,25 liegt.
 - 4. Aufwickel-Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verlegeverhältnis so geändert wird, dass sich eine vor- oder rückwärtslaufende Bandverlegung ergibt.
- 5. Aufwickel-Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verlegeverhältnis so geändert wird, dass der resultierende Verlegewinkel (α) innerhalb einer vorbestimmten Bandbreite bleibt.
- Aufwickel-Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass
 die Spule (2) von einem eigenen Motor (M1) und die Changiereinrichtung (4) ebenfalls von einem eigenen Motor (M2) angetrieben wird, und die Änderung des Verlegeverhältnisses

elektronisch durch stufenweise Änderung des Verhältnisses der Geschwindigkeiten der beiden Motoren zueinander erfolgt.

- 7. Aufwickel-Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Motoren (M1,
 M2) Drehstromantriebe mit Frequenzumrichter oder Gleichstromantriebe sind.
 - 8. Aufwickel-Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der momentane Spulendurchmesser aus einem Soll/Ist-Vergleich von Bandlineargeschwindigkeit und Spulendrehzahl errechnet wird.

9. Aufwickel-Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass ein axialer Versatz d im Ausmaß der gewünschten konstanten Teilüberdeckung gewählt wird und das Verlegeverhältnis aus folgender Formel errechnet wird:

$$V = \frac{n_a \times 2L \times (V_z + 1/n_a)}{n_a \times 2L - d}$$

wobei gilt:

10

V = Verlegeverhältnis (z.B. auf vier Kommastellen gerundet)

20 Vz = Verlegeverhältniszahl (ganzzahlig, gewählter Vorkommaanteil des Verlegeverhältnisses V)

na = Abbindungszahl (ganzzahlig, jene Anzahl Doppelhübe bei der es
 zu dem definierten Versatz d kommen soll)

L = Bewicklungslänge der Spule in mm ($2L \rightarrow Doppelhub$)

d = Versatz in mm (entlang der Wickelachse).

10. Aufwickel-Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der n Versatz d in Abhängigkeit vom Verlegewinkel (α) so gewählt wird, dass sich eine Überdeckung der Bänder von ca. einer ½ Bändchenbreite b einstellt.

25

Fig. 1

Durchmesser der Spule [mm]

Wickelverhältnisse im Grenz-Verlegewinkelbereich zwischen 4° und 6°

ERSATZBLATT (REGEL 26)

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 11

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B65H54/38 B65H B65H54/78 B65H54/74 B65H54/28 B65H54/42 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. EP 0 561 188 A (SAHM GEORG FA) 1.4 - 722 September 1993 (1993-09-22) cited in the application the whole document Υ DE 39 20 374 A (SCHLAFHORST & CO W) 1,4-73 January 1991 (1991-01-03) column 1, line 33 - column 8, line 8; figure 5 Α EP 0 194 524 A (BARMAG BARMER MASCHF) 1,3,5-717 September 1986 (1986-09-17) column 1, line 23 - column 7, line 19; figure 1 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled *O* document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 23 August 2004 03/09/2004 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Kising, A

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
I V / AT2004/000162

Patent document cited in search report		Public ati on date	Patent family member(s)		Publication date	
EP 0561188	А	22-09-1993	DE AT DE EP JP JP US	4208395 A1 126170 T 59300439 D1 0561188 A1 3285405 B2 6200429 A 5439184 A	23-09-1993 15-08-1995 14-09-1995 22-09-1993 27-05-2002 19-07-1994 08-08-1995	
DE 3920374	Α.	03-01-1991	DE	3920374 A1	03-01-1991	
EP 0194524	A .	17-09-1986	CN DE EP US	86100703 A ,B 3663931 D1 0194524 A2 4667889 A	03-09-1986 20-07-1989 17-09-1986 26-05-1987	

INTERNATIONALER RECHERCHENBERICHT

a. Klassifizierung des anmeldungsgegenstandes IPK 7 B65H54/38 B65H54/78 B65H54/38 B65H54/74 B65H54/78 B65H54/28 B65H54/42 Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Kategories Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Betr. Anspruch Nr. Υ EP 0 561 188 A (SAHM GEORG FA) 1,4-722. September 1993 (1993-09-22) in der Anmeldung erwähnt das ganze Dokument Υ DE 39 20 374 A (SCHLAFHORST & CO W) 1,4-7 Januar 1991 (1991-01-03)
 Spalte 1, Zeile 33 - Spalte 8, Zeile 8; Abbildung 5 Α EP 0 194 524 A (BARMAG BARMER MASCHF) 1,3,5-717. September 1986 (1986-09-17) Spalte 1, Zeile 23 - Spalte 7, Zeile 19; Abbildung 1 Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Siehe Anhang Patentfamilie entnehmen Besondere Kalegorien von angegebenen Veröffentlichungen *T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der 'A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist E' älteres Dokument, das jedoch erst am oder nach dem internationalen Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist Anmeldedatum veröffentlicht worden ist Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Täligkeit beruhend betrachtet werden *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdalum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie Veröffentlichung von besonderer Bedeulung; die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist ausgeführt) ausgerunn) Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Priorilätsdatum veröffentlicht worden ist *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts 23. August 2004 03/09/2004 Name und Postanschrift der Internationalen Recherchenbehörde Bevollmächtigter Bediensteter Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Kising, A Formblatt PCT/ISA/210 (Blatt 2) (Januar 2004)

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentligungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
7/AT2004/000162

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung		
EP	0561188	A	22-09-1993	DE AT DE EP JP JP US	4208395 126170 59300439 0561188 3285405 6200429 5439184	T D1 A1 B2 A	23-09-1993 15-08-1995 14-09-1995 22-09-1993 27-05-2002 19-07-1994 08-08-1995
DE	3920374	A	03-01-1991	DE	3920374	A1	03-01-1991
EP	0194524	Α	17-09-1986	CN DE EP US	86100703 3663931 0194524 4667889	D1 A2	03-09-1986 20-07-1989 17-09-1986 26-05-1987