

Chemical Bonding and Molecular Structure

Chemical bond:

Chemical bond is the attractive force, which holds various constituents (such as atoms, ions) together in different chemical species.

Octet rule:

Atoms tend to gain, lose, or share electrons so as to have eight electrons in their valence shells.

Lewis dot Structure:

Representation of molecules and ions in terms of the shared pairs of electrons and the octet rule

$$NO_2 \rightarrow \left[\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array} \right] \begin{array}{c} 0 \\ 0 \end{array} \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \begin{array}{c} 0 \\ 0 \end{array} \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \begin{array}{c} 0 \\ 0 \end{array} \right]$$

Formal charge:

Lewis structure of $O_3 \rightarrow 0$

F.C on the O⁻¹ =
$$6 - 2 - \frac{1}{2}(6) = +1$$

F.C on the O⁻² = $6 - 4 - \frac{1}{2}(4) = 0$
F.C on the O⁻³ = $6 - 6 - \frac{1}{2}(2) = -1$

Limitations of the octet rule:

Incomplete octet of the central atom
 E.g. BeH₂, LiCl, BCl₃

Odd electron molecules
 E.g. NO, NO₂

$$\ddot{N} = \ddot{Q}$$
 $\ddot{Q} = \ddot{N} - \ddot{Q}$

Expanded octet

- Some other drawbacks:
- 1. It is based upon chemical inertness of noble gases. However, some noble gases can combine to form compounds such as XeF₂, KrF₂, XeOF₂, etc.
- 2. Does not account for the shape of molecules
- 3. Does not explain the relative stability of molecules

lonic or Electrovalent Bond: Formation of ionic compound depends upon ease of formation of positive and negative ions

and also on arrangement of positive and negative ions.

Ionisation enthalpy $(\Delta_i H)$ and electron gain enthalpy $(\Delta_{eq} H)$:

The ionisation enthalpy is the enthalpy change when a gas phase atom in its ground state loses an electron and the electron gain enthalpy is the enthalpy change when a gas phase atom in its ground state gains an electron.

Lattice enthalpy:

The energy required to separate completely one mole of a solid ionic compound into gaseous constituent ions is called the lattice enthalpy of the solid.

Bond parameters:

Bond length → Equilibrium distance between the nuclei of two bonded atoms in a molecule

Bond length (R) = $r_A + r_B$

Bond angle → Angle between the bonds around the central atom in a molecule/complex ion

- Bond enthalpy → Energy required to break one mole of a particular type of bond between two atoms in gaseous state
- Bond order → Number of bonds between two atoms in a molecule
- Resonance structures → Equivalent Lewis structures (example: ozone)

Here, I and II are resonance structures while III is the resonance hybrid.

Polarity of bonds →

Dipole moment (μ) = Charge (Q) × Distance of separation (r)

Dipole moment is usually expressed in Debye units (D).

$$1D = 3.33564 \times 10^{-30} C m$$

VSEPR Theory:

The repulsive interaction of electron pairs decrease in the order:

Lone pair (lp) – Lone pair (lp) > Lone pair (lp) – Bond pair (bp) > Bond pair (bp) – Bond pair (bp)

Valence bond theory:

It considers the formation of a chemical bond by the overlapping of atomic orbitals of the participating atoms.

Types of overlapping and nature of covalent bonds:

There are two types of covalent bonds – Sigma (σ) and Pi (Π) .

• Sigma (σ) bond (formed by head-on overlapping)

s-s overlapping

• *s*–*p* overlapping

• *p*–*p* overlapping

• Pi (Π) bond (formed by sidewise overlapping)

ond is stronger than $Pi(\Pi)$ bond.

n: Process of intermixing of the orbitals of slightly different energies

Hybridisation type	Shape of molecules/ions	Example
sp	Linear	BeCl ₂
sp ²	Trigonal planar	BCl ₃
sp ³	Tetrahedral	CH ₄
dsp ²	Square planar	[Ni(CN) ₄] ²⁻
sp ³ d	Trigonal bipyramidal	PCI ₅
sp ³ d ²	Square pyramidal	BrF ₅
d ² sp ³	Octahedral	SF ₆

Molecular orbital theory

Linear combination of Atomic Orbitals (LCAO)

Energy levels for molecular orbitals -

• Increasing order of energies of various molecular orbitals for O₂ and F₂:

$$\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < \sigma 2p_z < (\pi 2p_x = \pi 2p_v) < (\pi^* 2p_x = \pi^* 2p_v) < \sigma^* 2p_z$$

Increasing order of energies of various molecular orbitals for Li₂, Be₂, B₂, C₂, and N₂:

$$\sigma 1s < \sigma^* 1s < \sigma 2s < \sigma^* 2s < (\pi 2p_x = \pi 2p_v) < \sigma 2p_z < (\pi^* 2p_x = \pi^* 2p_v) < \sigma^* 2p_z$$

Where,

N_b= Number of electrons occupying bonding orbitals

N_a= Number of electrons occupying antibonding orbitals.

Integral bond order values of 1, 2 or 3 correspond to single, double or triple bonds respectively.

- The bond length decreases as bond order increases.
- If all the molecular orbitals in the molecule are doubly occupied, then the molecule is diamagnetic; and if one or more of the molecular orbitals are singly occupied, then the molecule is paramagnetic.

Hydrogen Molecule (H₂)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{2 - 0}{2} = 1$$

Helium Molecule (He2)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{2 - 2}{2} = 0$$

Lithium Molecule (Li₂)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{4 - 2}{2} = 1$$

Beryllium Molecule (Be2)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{4 - 4}{2} = 0$$

Carbon Molecule (C2)

Bond order =
$$\frac{N_b - N_a}{2} = \frac{8 - 4}{2} = 2$$

Oxygen Molecule (O2)

Bond order
$$\frac{N_b - N_a}{2} = \frac{10 - 6}{2} = 2$$

Hydrogen bonding:

Two types of hydrogen bonds:

- Intermolecular hydrogen bond → Exists between two different molecules of the same or different compounds
- Intramolecular hydrogen bond → Present within the same molecule