Lista de exercícios 2

Aluno: Pedro Lucas Silva Haga Torres

Matrícula: 16/0141575 Matéria: Estrutura de Dados Turma: B

1. Apresente uma definição de algoritmo.

"Informalmente, um algoritmo é qualquer processo computacional bem definido que recebe um conjunto de valores como *entrada* e produz algum valor, ou conjunto de valores, como *saída*. Um algoritmo é, portanto, uma sequência de passos computacionais que transforma a *entrada* na *saída*". (CORMEN, et al. 2009, tradução minha)

- 2. Cite quatro características de um algoritmo.
 - 1. Corretude:

3. Possui fim;

2. Não ambíguo;

- 4. Independência de qualquer linguagem computacional.
- 3. Quais as diferenças entre ordenação em bolha, merge sort e quick sort?

O algoritmo *bubble sort* varre todo o vetor comparando pares de elementos adjacentes (elemento 0 e 1, 1 e 2, 2 e 3, etc.) e troca os elementos de acordo com a regra de ordenação. Como o último elemento sempre será posicionado corretamente, a cada varredura o algoritmo percorre n-1 elementos, até a sua condição de parada.

O *merge sort* divide a entrada em n listas menores, até que cada uma seja uma lista unitária. A partir dessas listas unitárias, o algoritmo funde-as (*merge*) ordenando seus elementos, em listas de 2, 4, 8, ..., elementos, até chegar a lista original, que estará ordenada.

No algoritmo *quick sort* escolhe-se um pivô e posiciona-se ele no centro do vetor, os elementos maiores que o pivô devem ficar a sua direita, enquanto os menores ficam à esquerda. Pode-se repetir essa operação quantas vezes for conveniente, para, então, ordenar-se os subconjuntos divididos previamente.

4. Dado um vetor de tamanho n, elabore um pseudocódigo para encontrar um elemento utilizando busca binária. Utiliza uma chamada de rotina para garantir que a entrada esteja ordenada. Qual a complexidade do seu algoritmo? Compare o resultado com um algoritmo de busca linear. Se fosse necessário ordenar sempre a entrada, qual seria mais vantajoso?

Função buscBin

```
Entrada: vetor[], n, procurado;
Variaveis inteiras: i, j, comp;
Saída: i ou -1 em caso de erro.

merge_sort(vetor)

i = 0;
j = n-1;

Enquanto (i <= j)
    comp = (i+j)/2;
    Se (vetor[comp] == procurado)
        Retorne (comp)
    Caso contrário, se (procurado < vetor[comp])
    j = m - 1</pre>
```

```
Caso contrário

i = m+1

Retorne(-1)

Fim do pseudocódigo
```

A complexidade do meu algoritmo é O(n * log(n) + log(n)) = O(n * log(n)). A complexidade do algoritmo de busca linear é O(n) < O(n * log(n)), logo, usar apenas um algoritmo de busca linear seria mais vantajoso. Porém, supondo a necessidade de sempre ordenar a entrada, o algoritmo de busca binária é mais vantajoso, pois a comparação ficaria entre O(log(n) e O(n); e O(log(n) < O(n)).

5. Suponha que você tenha um sistema que receba tarefas via clientes de vários locais do mundo e que um processo as realize em momento agendados, na ordem de chegada das mesmas. Qual seria a estrutura de dados mais adequada para esse sistema controlar as tarefas? Qual a complexidade dela para inserir e remover tarefas? Justifique.

A estrutura de dados mais adequada seria uma fila, pois ela segue o parâmetro FIFO (primeiro a entrar, primeiro a sair). A complexidade seria O(1) porque tanto a cabeça, quanto a cauda da lista, ficam guardadas em parâmetros controlados pelo programa.

6. Elabore um pseudocódigo para inserir um elemento no final de uma lista.

Função inserir

7. Considerando que uma lista possui apenas o ponteiro para o primeiro elemento, qual a complexidade, no pior caso, para inserir um novo elemento? Justifique.

A complexidade, nesse caso, seria O(n), pois seria necessário varrer todos os elementos da lista para chegar ao último e encadeá-lo.

8. Qual a diferença entre pilha e fila?

O critério de saída dos dados, pilha segue o parâmetro LIFO (último a entrar, primeiro a sair) e fila o critério FIFO (primeiro a entrar, primeiro a sair). A fila também exige uma variável a mais, pois é necessário guardar o primeiro elemento da fila, o que não é necessário no caso de uma pilha.