Exercise 8. (This exercise depends on the Hahn-Banach theorem, which is stated without proof in appendix E.) Let V be the subspace of ℓ^{∞} consisting of those sequences $\{x_n\}$ for which $\lim_n x_n$ exists, and let $F_0: V \to \mathbb{R}$ be defined by $F_0(\{x_n\}) = \lim_n x_n$.

- (a) Show that F_0 is a bounded linear functional on V and that $||F_0|| = 1$.
- (b) Let F be a linear functional on ℓ^{∞} that satisfies ||F|| = 1 and agrees with F_0 on V (see Theorem E.7). Show that if $\{x_n\}$ is a nonnegative element of ℓ^{∞} (that is, if $\{x_n\}$ belongs to ℓ^{∞} and satisfies $x_n \geq 0$ for each n), then $F(\{x_n\}) \geq 0$. (Hint: consider the sequence $\{x'_n\}$ defined by $x'_n = x_n c$, where c is a suitably chosen constant.)
- (c) For each subset A of \mathbb{N} let $\{\chi_{A,n}\}_{n=1}^{\infty}$ be the sequence defined by

$$\chi_{A,n} = \begin{cases} 1 & \text{if } n \in A \\ 0 & \text{if } n \notin A \end{cases}$$

Show that the function $\mu \colon \mathscr{P} \to \mathbb{R}$ defined by $\mu(A) = F(\{X_{A,n}\})$ is a finitely additive measure, but is not countably additive.

For reference, theorem E.7 is:

Theorem (Hahn-Banach). Let E be a normed real or complex linear space, let F be a linear subspace of E, and let φ_0 be a continuous linear functional on F. Then there is a continuous linear functional φ on E such that $\|\varphi\| = \|\varphi_0\|$ and such that φ_0 is the restriction of φ to F. In other words, φ_0 can be extended to a continuous linear functional on all of E without increasing its norm.

Proof.

(a) The linearity of F_0 is an immediate consequence of the linearity of limits. Moreover, for all $\{x_n\} \in V$, $\{|x_n|\}$ converges since $\{x_n\}$ converges, and

$$\forall n \in \mathbb{N}, \quad x_n \le |x_n|$$

$$\lim_{n \to \infty} x_n \le \lim_{n \to \infty} |x_n|$$

$$\left|\lim_{n \to \infty} x_n\right| \le \lim_{n \to \infty} |x_n|$$

$$|F_0(\{x_n\})| \le \sup\{|x_n|, n \in \mathbb{N}\} = \|x_n\|_{\infty}$$

so that F_0 is bounded and $||F_0|| \le 1$. Since we also have

$$|F_0(\{1,1,\dots\})| = 1 = ||\{1,1,\dots\}||_{\infty}$$

we deduce that $||F_0|| = 1$.

(b) First suppose that for all $n \in \mathbb{N}$, $0 \le x_n \le 1$, $\inf_{n \in \mathbb{N}} = 0$ and $||x_n||_{\infty} = 1$. Then we have

$$\left\|x_n - \frac{1}{2}\right\|_{\infty} = \frac{1}{2}$$

From the linearity of F and the fact that ||F|| = 1, we deduce

$$\left\| x_n - \frac{1}{2} \right\|_{\infty} \ge \left| F\left(\left\{x_n - \frac{1}{2}\right\}\right) \right|$$

$$\frac{1}{2} \ge \left| F\left(\left\{x_n\right\}\right) - F\left(\left\{\frac{1}{2}\right\}\right\}_{n \in \mathbb{N}}\right) \right|$$

$$\frac{1}{2} \ge \left| F\left(\left\{x_n\right\}\right) - \frac{1}{2} \right|$$

$$-\frac{1}{2} \le F\left(\left\{x_n\right\}\right) - \frac{1}{2} \le \frac{1}{2}$$

which in turn gives us

$$F\left(\left\{x_{n}\right\}\right) \ge 0\tag{1}$$

Suppose now that $\{x_n\} \in \ell^{\infty}$ is such that $0 \le x_n$ for all $n \in \mathbb{N}$, and let $c = \inf_{n \in \mathbb{N}} \{x_n\} \ge 0$. If $\|x_n - c\|_{\infty} = 0$, then for all $n \in \mathbb{N}$, $x_n = c$, in which case $F(\{x_n\}) = F(\{c\}_{n \in \mathbb{N}}) = c \ge 0$. Otherwise, $\|x_n - c\|_{\infty} > 0$, and the sequence defined by

$$\forall n \in \mathbb{N}, \quad y_n = \frac{x_n - c}{\|x_n - c\|_{\infty}}$$

satisfies $y_n \ge 0$ for all $n \in \mathbb{N}$, $\inf_{n \in \mathbb{N}} \{y_n\} = 0$ and $||y_n||_{\infty} = 1$. We can then apply (1) to deduce that

$$F(\lbrace y_n \rbrace) \ge 0$$

$$F\left(\frac{x_n - c}{\|x_n - c\|_{\infty}}\right) \ge 0$$

$$\frac{1}{\|x_n - c\|_{\infty}} \left(F\left(\lbrace x_n \rbrace\right) - c\right) \ge 0$$

$$F\left(\lbrace x_n \rbrace\right) \ge c \ge 0$$

(c) $\mathscr{P}(\mathbb{N})$ is a σ -algebra on \mathbb{N} ; for all $A \subset \mathbb{N}$, the sequence $\{\chi_{A,n}\}$ is nonnegative and bounded. From the preceding points, we deduce that

$$\mu(A) = F(\{\chi_{A,n}\}) \ge 0$$

$$\mu(\varnothing) = F(\{0\}_{n \in \mathbb{N}}) = 0$$

Let A, B be disjoint subsets of \mathbb{N} . We have $\chi_{A \cup B, n} = \chi_{A, n} + \chi_{B, n}$, and, from the lineairy of F,

$$\mu(A \cup B) = F(\{\chi_{A \cup B,n}\}) = F(\{\chi_{A,n}\} + \{\chi_{B,n}\})$$
$$= F(\{\chi_{A,n}\}) + F(\{\chi_{B,n}\}) = \mu(A) + \mu(B)$$

so that μ is a finitely additive measure.

Let $A = \mathbb{N}$ and $A_n = \{n\}$ for all $n \in \mathbb{N}$. The A_n are pairwise disjoint and $A = \bigcup_{n \in \mathbb{N}} A_n$. However,

$$\mu(A) = \mu(\mathbb{N}) = F(\{1\}_{n \in \mathbb{N}}) = 1$$

$$\forall n \in \mathbb{N}, \quad \mu(A_n) = F(\{0, 0, \dots, n, 0, \dots\}) = 0$$

so that $\mu(A) \neq \sum_{n=0}^{\infty} \mu(A_n)$, and μ is not countably additive.