Differentialgleichungen

Eine gewöhnliche Differentialgleichung (ODE) des Grades n hat die Form

$$F\left(x,y,\frac{\partial y}{\partial x},\ldots,\frac{\partial^n y}{\partial x^n}\right)=0$$

wobei F stetig und y eine n-fach nach x differenzierbare, unbekannte Funktion darstellt.

Lineare ODE (LODE)

Eine ODE ist linear, falls sie in Form

$$\underbrace{\frac{\partial^n y}{\partial x^n} + \sum_{k=0}^{n-1} \alpha_k \frac{\partial^k y}{\partial x^k}}_{(*)} = b$$

mit $a_i, b \in C^0(I, \mathbb{E}), i \in [n]$ über ein offenes Intervall $I \subset \mathbb{R}$ darstellbar ist. Gilt $b \equiv 0$, so ist die Gleichung homogen.

Die Lösungsmenge

$$\mathcal{S}_b = \{y \in C^n(I,\mathbb{E}) \mid (*) = b\}$$

hat $dim(\mathcal{S}_b) = n$. \mathcal{S}_0 ist ein Vektorraum. Im inhomogenen Fall genügt das Finden einer Lösung $\psi_0 \in \mathcal{S}_b$. Dann ist

$$S_b = \{y_0 + y \mid y \in S_0\}$$

Für beliebige $x_0 \in \mathbb{E}, \ z_0 \in \mathbb{E}^n$ existiert eine eindeutige Lösung $y_e \in \mathcal{S}_b$, so dass

$$\left(y_e(x_0), \dots \frac{\partial y_e}{\partial x}(x_0), \frac{\partial^{n-1}y_e}{\partial x^{n-1}}(x_0)\right) = z_0$$

LODE, Grad 1, homogen. Alle Lösungen von $y + a \frac{\partial y}{\partial x} = 0$ haben die Form $z \exp(-A)$, wobei $z \in \mathbb{C}$, $A = \int a \, dx$. Nur $y_e(x) = z_0 \exp(A(x_0) - A(x))$ erfüllt zudem $y_e(x_0) = z_0$.

LODE, Grad 1, inhomogen. Eine Lösung y_0 von $y + a \frac{\partial y}{\partial x} = b$, die $y_0(x_0) = 0$

erfüllt, ist

$$\begin{aligned} y_0(x) &= \exp\left(-\int_{x_0}^x a(t) \, dt\right) \\ &\cdot \left(\int_{x_0}^x b(t) \exp\left(\int_{x_0}^t a(u) \, du\right) \, dt\right) \end{aligned}$$

LODE Grad n, konstante Koeffizienten, homogen. Sind alle $a_i \in \mathbb{E}, i \in [n]$ und hat das charakteristische Polynom die Nullstellen $(\alpha_1, \ldots, \alpha_l) \in \binom{\mathbb{C}}{l}, l \leq n$, also

$$x^{n} + \sum_{k=0}^{n-1} a_{k} x^{k} = \prod_{j=1}^{l} (x - \alpha_{j})^{m_{j}}$$

so ist

$$\begin{split} \mathcal{S}_0 &= \left\{ x \mapsto \sum_{j=1}^l \sum_{q=0}^{m_j-1} \xi_{(j,q)} \exp(\alpha_j x) x^q \right. \\ &+ \left. \left\{ \xi_{(j,q-1)} \in \mathbb{C}, \ q \in [m_j], \ j \in [l] \right\} \end{split}$$

Im reellen Fall, also mit $\alpha_i \in \mathbb{R}$ kommen alle komplexen Nullstellen paarweise, also in Form $\beta_i \pm \gamma_i i$ vor. Ihre beigetragenen Basisfunktionen lassen sich in der Definition von \mathcal{S}_0 ersetzen durch die reellen

$$\begin{aligned} \exp(\beta_i x) \cos(\gamma_i x) x^q \\ und \\ \exp(\beta_i x) \sin(\gamma_i x) x^q \end{aligned}$$

LODE Grad 2, konstante Koeffizienten, inhomogen. Eine inhomogene Lösung $y_0 \in \mathcal{S}_b$ der Form $y_0 = z_1 f_1 + z_2 f_2$ mit Basisfunktionen $f_1, f_2 \in C^1(I, \mathbb{C})$ von \mathcal{S}_0 sowie Funktionen $z_1, z_2 \in C^1(I, \mathbb{C})$, welche

$$\begin{pmatrix} f_1 & f_2 \\ \frac{\partial f_1}{\partial x} & \frac{\partial f_2}{\partial x} \end{pmatrix} \begin{pmatrix} \frac{\partial z_1}{\partial x} \\ \frac{\partial z_2}{\partial x} \end{pmatrix} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

erfüllt, ist durch Variation der Konstanten

$$y_0(x) = -f_1(x) \int_{x_0}^x \frac{f_2(t)b(t)}{W(t)} dt + f_2(x) \int_{x_0}^x \frac{f_1(t)b(t)}{W(t)} dt,$$

$$W(t) = f_1(t) \frac{\partial f_2}{\partial t}(t) - f_2(t) \frac{\partial f_1}{\partial t}(t)$$

Differential rechnung in \mathbb{R}^n

Skalarprodukt. Für $x, y \in \mathbb{R}^n$ definiert $\langle x, y \rangle := x^T y = \sum_{i=1}^n x_i y_i$.

Norm. $||x|| := \sqrt{\langle x, x \rangle}$ erfüllt $||x|| \ge 0$, $||\lambda x|| = |\lambda| \cdot ||x||$ für $\lambda \in \mathbb{R}$, $||x + y|| \le ||x|| + ||y||$ sowie $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ nach Cauchy-Schwarz.

Konvergenz

Eine Folge $(x_k)_{k\geq 1}$ in \mathbb{R}^n konvergiert mit Grenzwert l, falls

$$\forall \varepsilon > 0 \ \exists N \ge 1 \ \forall k \ge N : ||x_k - y|| < \varepsilon$$

Existiert ein Grenzwert, so definiert dieser $\lim_{k\to\infty} x_k := y$.

Äquivalent gilt

$$\lim_{k\to\infty}x_k=y\Longleftrightarrow\lim_{k\to\infty}x_{k,j}=y_j\ \forall j\in\mathbb{N}^+$$

Stetigkeit

Eine Funktion $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ ist in $x_0 \in X$ stetig, falls

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in X :$$

$$||x - x_0|| < \delta \Longrightarrow ||f(x) - f(x_0)|| < \varepsilon$$

und stetig, falls obiges $\forall x_0 \in D$ gilt.

f ist genau dann in x_0 stetig, falls für jede konvergente Folge $(x_k)_{k\geq 1}$ in X gilt, dass

$$\lim_{k \to \infty} x_k = x_0 \Longrightarrow \lim_{k \to \infty} f(x_k) = f(x_0)$$

Grenzwert einer Funktion. Eine Funktion $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ hat den Grenzwert $\lim_{\substack{x \to x_0 \\ x \neq x_0}} f(x) = l$ genau dann wenn

$$x \mapsto \begin{cases} f(x) \text{ für } x \in X \setminus \{x_0\} \\ 1 \text{ für } x = x_0 \end{cases}$$

stetig ist.

Konvexe Menge. $K \subset \mathbb{R}^n$ ist konvex $\Leftrightarrow \forall x, y \in K \ \forall \lambda \in [0, 1] : \lambda x + (1 - \lambda)y \in K$.

Beschränkte Menge. $X \subset \mathbb{R}^n$ ist beschränkt $\Leftrightarrow \exists R > 0 \ \forall x \in X : ||x|| < R$

Abgeschlossene Menge. $X \subset \mathbb{R}^n$ ist abgeschlossen $\Leftrightarrow X$ enthält die Grenzwerte seiner konvergenten Folgen.

Kompakte Menge. $X \subset \mathbb{R}^n$ ist kompakt $\Leftrightarrow X$ ist beschränkt und abgeschlossen.

Offene Menge. $X \subset \mathbb{R}^n$ is offen $\Leftrightarrow \forall x \in X \exists \delta > 0 : \sum_{i=1}^n]x_i - \delta, x_i + \delta[\subset X]$

Offen \leftrightarrow Geschlossen. $X \subset \mathbb{R}^n$ ist offen $\Leftrightarrow \mathbb{R}^n \setminus X$ ist abgeschlossen.

Stetigkeit über Urbild. $f: \mathbb{R}^n \to \mathbb{R}^m$ ist genau dann stetig, falls für jede abgeschlossene / offene Menge $M \subset \mathbb{R}^m$ das Urbild $\{x \in \mathbb{R}^n \mid f(x) \in M\}$ abgeschlossen / offen ist.

Partielle Differentiation

Für $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ offen, ist die partielle Ableitung nach der j-ten Variablen an der Stelle $x_0 \in X$, falls existent,

$$\partial_{j} f(x_{0}) = \lim_{h \to 0} \frac{f(x_{0} + he_{j}) - f(x_{0})}{h}$$

Existieren alle partiellen Ableitungen, fasst die m × n Jacobi-Matrix

$$J_f(x) := (\partial_j f_i(x))_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$

diese zusammen.

Gradient. Im Spezialfall m=1 bezeichnet $\nabla f(x):=J_f^T(x)=(\partial_i f(x))_{1\leq i\leq n}$ den Gradienten, falls alle partiellen Ableitungen existieren.

Divergenz. Im Spezialfall m=n bezeichnet $tr(J_f(x))=\sum_{i=0}^n \partial_i f_i(x)$ die Divergenz, falls alle partiellen Ableitungen existieren.

Differential

 $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ offen, ist in $x_0 \in X$ differenzierbar, falls eine lineare Abbildung

$$L:\mathbb{R}^n\to\mathbb{R}^m$$

$$v \mapsto Av, \ A \in \mathbb{R}^{n \times n}$$

existiert, so dass $\forall v \in X - x_0$:

$$f(x_0 + v) = f(x_0) + L(v) + R(x_0, v)$$

$$\min_{\substack{\nu \to 0 \\ \nu \neq 0}} \frac{||R(x_0, \nu)||}{||\nu||} = 0.$$

Das Differential an der Stelle x_0 wird als $df(x_0) := L$ bezeichnet. Es gilt

$$df(x_0) = J_f(x_0)$$

Differenzierbarkeit erkennen. Sind alle $\partial_j f_i \in C^1(X,\mathbb{R}), \ j \in [n], \ i \in m$, so ist f differenzierbar.

Differenzierbar \rightarrow Stetig. Jede in x_0 differenzierbare Funktion ist in x_0 stetig.

Kombinationen. Für differenzierbare $f, g \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ offen, sind

- i) $d(f+g)(x_0) = df(x_0) + dg(x_0)$
- ii) für m = 1, $d(fg)(x_0) = f(x_0)dg(x_0) + df(x_0)g(x_0)$
- iii) für m = 1, $\frac{f}{g}$ differenzierbar, falls $g(x) \neq 0 \ \forall x \in X$

Verknüpfung. Für die Verknüpfung zweier differenzierbarer Funktionen $f \in Y^X$, $g \in (\mathbb{R}^p)^Y$, $(X,Y) \in \mathbb{R}^m \times \mathbb{R}^n$ offen, erfüllt

$$d(g \circ f)(x_0) = dg(f(x_0)) \circ df(x_0)$$

Tangentialraum. Die affine Approximation einer differenzierbaren $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ offen, ist gegeben durch die Menge $\{(x,y) \in \mathbb{R}^n \times \mathbb{R}^m \mid y = f(x_0) + df(x_0)(x - x_0)\}$.

Richtungsableitung

Für $f \in (\mathbb{R}^m)^X$, $X \subset \mathbb{R}^n$ offen, ist die Richtungsableitung an der Stelle $x_0 \in X$ in die Richtung $\sigma \in \mathbb{R}^n$, falls existent,

$$\lim_{\substack{t\to 0\\t\neq 0}}\frac{f(x_0+t\sigma)-f(x_0)}{t}$$

Existiert df, so ist obiger Ausdruck äquivalent zu $df(x_0) \cdot \sigma$.

Der Gradient als Maximalmass. Ist m = 1, so hat f maximalen Zuwachs in die Richtung $\nabla f(x_0)$.

Höhere Ableitungen

Ist $f \in C^k(X, \mathbb{R}^n)$, $X \subset R^n$, so hängt eine partielle Ableitung k-ter Ordnung nicht von der Reihenfolge der Einzelableitungen ab. Der ∂ -Operator kommutiert.

Für $f \in C^2(X,\mathbb{R})$ fasst die symmetrische $n \times n$ *Hesse-Matrix* alle partiellen Ableitungen zweiter Ordnung zusammen:

$$H_f(x) := (\partial_i \partial_j f(x))_{1 \le i, j \le n}$$

Multiindex. Zur vereinfachten Notation definiere für MI $m = (m_1, ..., m_n)$

- i) $m! := \prod_{i=1}^{n} (m_i!)$
- ii) $|m| := \sum_{i=1}^{n} m_i$
- iii) $y^m := \prod_{i=1}^n y_i^{m_i}$ für $y \in \mathbb{E}^n$

Taylorapproximation

 $f\in C^k(X,\mathbb{R})$ wird durch das Taylorpolynom der k-ten Ordnung

$$T_k f(y; x_0) := \sum_{\substack{MI \ m \\ |m| \le k}} \frac{1}{m!} \frac{\partial^{|m|} f}{\prod_{i=1}^n \partial x_i^{m_i}} (x_0) y^m$$

approximiert. Hierbei gilt

$$f(x) = T_k f(x - x_0; x_0) + E_k f(x; x_0)$$

$$\min \lim_{\substack{x \to x_0 \\ x \neq x_0}} \frac{E_k f(x; x_0)}{||x - x_0||^k} = 0.$$

Für k = 1 ist

$$T_1 f(y; x_0) = f(x_0) + \langle \nabla f(x_0), y \rangle$$

Für k = 2 ist

$$T_2 f(y; x_0) = T_1 f(y; x_0) + \frac{1}{2} \langle H_f(x_0) y, y \rangle$$

Hypercubus. Um jedes $x \in \mathbb{R}^n$ herum definiert

$$C(x,\delta) := \times_{i=1}^{n}]x_i - \delta, x_i + \delta[$$

einen Hypercubus mit Kantenlänge $2\delta > 0$.

Extremalstellen

 $x_0 \in X$ ist für $f \in \mathbb{R}^X$, $X \subset \mathbb{R}^n$ offen, eine lokale Maximalstelle / Minimalstelle, falls

$$\begin{split} \exists \delta > 0 : C(x_0, \delta) \subset X \wedge \forall y \in C(x_0, \delta) : \\ f(y) \leq f(x_0) \ / \ f(y) \geq f(x_0) \end{split}$$

Kritische Punkte

 $x_0 \in X$ ist für differenzierbare $f \in \mathbb{R}^X$, $X \subset \mathbb{R}^n$ offen, ein kritischer Punkt, falls $df(x_0) = 0$ (also $\nabla f(x_0) = 0$).

Allgemein gilt: x_0 ist eine Extremalstelle von $f \Rightarrow x_0$ ist ein kritischer Punkt. Eine notwendige Bedingung für Extremalstellen ist also, dass sie kritische Punkte sind.

Nichtdegenerierte kritische Punkte. Ist x_0 ein kritischer Punkt, f zweimal differenzierbar und $\det(H_f(x_0)) \neq 0$, so ist x_0 nichtdegeneriert.

Definitheit. Eine Matrix $A \in \mathbb{E}^{n \times n}$ ist positiv / negativ definit, falls $\forall y \in \mathbb{E} \setminus \{0\}$: $\langle y, Ay \rangle > 0$ / $\langle y, Ay \rangle < 0$. Unter Einbezug von Gleichheit ergibt sich Semidefinitheit.

Ist A hermitesch, so bestimmt das Vorzeichen der Eigenwerte $\lambda_i,\ i\in[n],$ die (Semi)Definitheit.

Hauptminorenkriterium. Eine hermitesche Matrix $A \in \mathbb{E}^{n \times n}$ mit Hauptminoren $h_q := \det((A)_{1 \leq i,j \leq q}), \ q \in [n],$ ist genau dann

- i) positiv definit, falls $\forall q \in [n] : h_q > 0.$
- ii) negativ definit, falls $\forall q \in [n] \setminus (2 \cdot \mathbb{N}^+) : h_q < 0 \text{ und}$ $\forall q \in [n] \cap (2 \cdot \mathbb{N}^+) : h_q > 0$

Eigenwerte. Alle Eigenwerte einer Matrix $A \in \mathbb{R}^{n \times n}$ bilden die Menge $\{\lambda \in \mathbb{C} \mid \det(A - \lambda I) = 0\}$.

Hinreichende Bedingungen für Extremalstellen

Für zweimal differenzierbare $f \in \mathbb{R}^X$, $X \subset \mathbb{R}^n$ offen, ist ein nichtdegenerierter kritischer Punkt $x_0 \in X$ eine Maximalstelle / Minimalstelle, falls $H_f(x_0)$ negativ / positiv definit ist. Ist $H_f(x_0)$ semioder indefinit, so ist x_0 kein lokales Extremum.

Da $H_f(x_0)$ symmetrisch ist, gilt obiges genau dann, falls alle Eigenwerte negativ / positiv sind.

Extrema im kompakten Intervall

Ziel: Finde lokale Maxima und Minima

$$f:\mathbb{R}^n\supset K \text{ kompakt} \to \mathbb{R}$$

Zerlege zunächst $K = X \uplus B$ in das offene Innere X und den Rand B.

Bestimme die kritischen Punkte von $f|_X$ und gegebenenfalls ihren Typ mittels H_f .

Bestimme die lokalen Extremalstellen von $f|_B$. Für n=2 kann B durch parametrisierte Kurven konstruiert und das Problem auf den eindimensionalen Fall reduziert werden.

Vergleiche die Funktionswerte an allen Stellen und fasse zusammen.

Extrema mit Nebenbedingungen

Ziel: Maximiere oder minimiere

$$f:\mathbb{R}^n\supset Y\to\mathbb{R}$$

wobei $Y = \{x \in X \mid g(x) = 0\}$ und $f, g \in C^1(X, \mathbb{R}), X \subset \mathbb{R}^n$ offen.

Beachte folgendes, um potentielle Extremalstellen zu finden:

$\mathsf{Nebenbedingungen} \leftrightarrow \mathsf{Gradient}$

Falls $x_0 \in Y$ eine lokale Extremalstelle von $f|_Y$ ist, gilt entweder $\nabla g(x_0) = 0$ oder $\nabla f(x_0) = \lambda_0 \nabla g(x_0)$ für ein $\lambda_0 \in \mathbb{R}$.

Integral rechnung in \mathbb{R}^n

Parametrisierte Kurve. Eine stetige Abbildung $\gamma:[a,b] \to \mathbb{R}^n$, für welche $a=t_0 < t_1 < \ldots < t_k = b$ existieren, so dass $\forall i \in [k]: \gamma|_{]t_{i-1},t_i[} \in C^1(]t_{i-1},t_i[,\mathbb{R}^n)$ gilt, parametrisiert eine Kurve in \mathbb{R}^n .

Kurvenintegral

Für stetige $f: X \to \mathbb{R}^n$, $X \subset \mathbb{R}^n$, ist das Kurvenintegral entlang einer parametrisierten Kurve $\gamma: [a,b] \to \mathbb{R}^n$ mit $\gamma([a,b]) \subset X$ definiert als

$$\int_{\gamma} f(s) ds := \int_{a}^{b} \langle (f \circ \gamma)(t), \gamma'(t) \rangle dt$$

Physikalischer Zusammenhang. Die verrichtete Arbeit durch Bewegen eines Massepunktes entlang der durch γ parametrisierten Kurve im Kraftfeld f entspricht dem Kurvenintegral.

Reparametrisierung. Wird eine parametrisierte Kurve $\gamma:[a,b] \to \mathbb{R}^n$ durch eine streng monoton wachsende, auf]c,d[differenzierbare, stetige Funktion $\varphi:[c,d] \to [a,b]$ mit $\varphi(c)=a$ und $\varphi(d)=b$ zu $\gamma \circ \varphi$ reparametrisiert, so ist

$$\int_{\gamma} f(s) \, ds = \int_{\gamma \circ \varphi} f(s) \, ds$$

Konkatenation. Für parametrisierte Kurven $\gamma_1:[a,b]\to\mathbb{R}^n,\;\gamma_2:[c,d]\to\mathbb{R}^n$ mit $\gamma_1(b)=\gamma_2(c)$ ist

$$\int_{\gamma_1 * \gamma_2} f(s) \, ds = \int_{\gamma_1} f(s) \, ds + \int_{\gamma_2} f(s) \, ds$$

Potential. Existiert $g \in \mathbb{R}^X$, $X \subset \mathbb{R}^n$ offen, so dass $\nabla g = f$, so bezeichnet g ein Potential von f und es gilt

$$\int_{\gamma} f(s) ds = (g \circ \gamma)(b) - (g \circ \gamma)(a)$$

Wegzusammenhängend. Eine Menge $X \subset \mathbb{R}^n$ ist wegzusammenhängend \Leftrightarrow Alle Punkte in X können durch eine parametrisierte Kurve über X verbunden werden.

Konservatives Vektorfeld

Ein stetiges Vektorfeld $f: X \to \mathbb{R}^n$, $X \subset \mathbb{R}^n$, ist konservativ, falls das Kurvenintegral ausschliesslich von den Endpunkten der Kurve abhängt.

f ist genau dann konservativ, wenn für alle parametrisierten Kurven $\sigma: [\mathfrak{a},\mathfrak{b}] \to \mathbb{R}^n$ mit $\sigma(\mathfrak{a}) = \sigma(\mathfrak{b})$

$$\int_{\sigma} f(s) ds = 0$$

gilt. Dies ist äquivalent zur Existenz eines Potentials g von f. Ist X wegzusammenhängend, so ist g bis auf eine additive Konstante eindeutig.

Sternförmig. Eine Menge $X \subset \mathbb{R}^n$ ist sternförmig $\Leftrightarrow \exists x_0 \in X \ \forall x \in X \ \forall t \in [0,1]: (1-t)x_0+tx \in X$

Notwendige Bedingung für Konservativität. Damit f konservativ ist, muss $\forall i, j \in [n] : \partial_j f_i \equiv \partial_i f_j$ gelten. Ist X sternförmig, so ist diese Bedingung hinreichend.

Ober- und Untersummen. Für Abbildungen der Signatur $f: R \to \mathbb{R}$ über einen Hypercubus $R \subset \mathbb{R}^n$ werden Partitionen $P_i, i \in [n],$ mit Indexraum $N := \times_{i=1}^n [|P_i|]$ definiert, die R in Hypercuben I_α , $\alpha \in N$, der Volumina $\mu(I_\alpha)$ teilen.

Dann definieren

$$s\left(\bigotimes_{i=1}^n P_i \right) := \sum_{\alpha \in N} \inf_{s \in I_\alpha} (f(s)) \cdot \mu(I_\alpha)$$

$$S\left(\underset{i=1}{\overset{n}{\times}} P_i \right) := \sum_{\alpha \in \mathbb{N}} \sup_{s \in I_{\alpha}} (f(s)) \cdot \mu(I_{\alpha})$$

Unter- und Obersumme für das Riemannintegral.

Indikatorfunktionen. Für B $\subset \mathbb{R}^n$ definiert

$$\begin{split} \chi_B : \mathbb{R}^n &\to \{0,1\} \\ \chi &\mapsto \begin{cases} 1, \text{ falls } x \in B \\ 0, \text{ sonst} \end{cases} \end{split}$$

Riemannintegral

Ist $g:A\to\mathbb{R},\ A\subset$ Hypercubus R, beschränkt und existiert

$$\int_{R} \underbrace{g(s)\chi_{A}(s)}_{=:f(s)} ds$$

also Partitionen P_i , $i \in [n]$, so dass $s\left(\times_{i=1}^n P_i \right) = S\left(\times_{i=1}^n P_i \right)$, so bezeichnet dieser gemeinsame Wert

$$\int_A g(s) ds$$

Kombinationen. Für auf A integrierbare $f,g\in\mathbb{R}^A$ gilt

- i) $\forall \alpha, \beta \in \mathbb{R} : \int_A (\alpha f(s) + \beta g(s)) ds$ = $\alpha \int_A f(s) ds + \beta \int_A g(s) ds$ (Linearität)
- ii) für $f \le g : \int_A f(s) ds \le \int_A g(s) ds$ (Positivität)
- iii) $\left| \int_A f(s) ds \right| \le \int_A |f(s)| ds$ (Dreiecksungleichung)

Satz von Stolz. Für über $R = [a, b] \times [c, d]$ integrierbare $f \in \mathbb{R}^R$ gilt

$$\int_{R} f(s) ds = \int_{a}^{b} \int_{c}^{d} f(x, y) dy dx$$

falls $y \mapsto f(x,y)$ für alle $x \in [a,b]$ auf [c,d] integrierbar ist.

Stetigkeit \rightarrow Integrabilität. $f \in \mathbb{R}^R$, $R = [a,b] \times [c,d]$, ist stetig \Rightarrow f ist auf R integrierbar.

Nullmenge. $X \subset R \subset \mathbb{R}^2$ ist eine Nullmenge, falls für alle $\epsilon > 0$ Rechtecke $R_k = [\alpha_k, b_k] \times [c_k, d_k], \ k \in [n]$, existieren, so dass $X \subset \bigcup_{k=1}^n R_k$ und $\sum_{k=1}^n \mu(R_k) < \epsilon$.

Unstetigkeit. $f \in \mathbb{R}^R$, beschränkt, $R = [a,b] \times [c,d]$, ist auf R integrierbar, falls die Menge der Unstetigkeitspunkte von f in R eine Nullmenge ist.

Satz von Fubini

Mit stetigen $\phi_1,\phi_2:[a,b]\to\mathbb{R}$ sind stetige $f\in\mathbb{R}^A$ über $A:=\{(x,y)\in\mathbb{R}^2\mid a\le x\le b,\ \phi_1(x)\le y\le \phi_2(x)\}$ integrierbar. Es gilt

$$\int_A f(s) ds = \int_a^b \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy dx$$

Im umgekehrten Fall, also für stetige $\phi_1,\phi_2:[c,d]\to\mathbb{R}$ und $B:=\{(x,y)\in\mathbb{R}^2\mid c\le y\le d,\ \phi_1(y)\le x\le \phi_2(y)\}$ gilt entsprechend

$$\int_A f(s) ds = \int_c^d \int_{\varphi_1(y)}^{\varphi_2(y)} f(x, y) dx dy$$

Rand. Für eine Menge $A \subset \mathbb{R}^2$ definiert $\partial A := \{s \in \mathbb{R}^2 \mid \forall \delta > 0 : C(s, \delta) \cap A \neq \emptyset \land C(s, \delta) \cap (\mathbb{R}^n \setminus A) \neq \emptyset \}$ den Rand.

Variablensubstitution

Für eine geeignete $\varphi \in C^1(U,\mathbb{R}^2)$, $U \subset \mathbb{R}^2$ offen, mit $\varphi(B) = A$ und $f \in C^0(A,\mathbb{R})$, wobei A,B kompakt, $\partial A, \partial B$ Nullmengen, $\varphi|_{B \setminus N \to A}$ injektiv für Nullmengen $N \subset B$ gilt

$$\int_A f(s) ds = \int_B (f \circ \phi)(s) |\det J_{\phi}(s)| ds$$

Polarkoordinaten

Verwendet man

$$\begin{split} \varphi : \overbrace{]0, \infty[\times]0, 2\pi[}^{\mathbb{S}:=} & \to \mathbb{R}^2 \\ \begin{pmatrix} r \\ \theta \end{pmatrix} & \mapsto \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} \end{split}$$

ist wegen $det(J_{\Phi}) = r$ beispielsweise

$$\int_{x^2+y^2 < R^2} f(s) ds$$

$$= \int_0^{2\pi} \int_0^R f \begin{pmatrix} r\cos(\theta) \\ r\sin(\theta) \end{pmatrix} r dr d\theta$$

Sphärische Koordinaten

Verwendet man

$$\begin{split} \varphi: \mathbb{S} \times]0, \pi[& \to \mathbb{R}^3 \\ \begin{pmatrix} r \\ \theta \\ \phi \end{pmatrix} \mapsto \begin{pmatrix} r\cos(\theta)\sin(\phi) \\ r\sin(\theta)\cos(\phi) \\ r\cos(\phi) \end{pmatrix} \\ \text{ist } \det(J_\Phi) = r^2\sin(\theta). \end{split}$$

Jordan-Kurve. Eine parametrisierte Kurve $\gamma:[a,b]\to\mathbb{R}^2$ mit $\gamma(a)=\gamma(b)$, die auf]a,b] injektiv ist, beschreibt eine Jordan-Kurve.

Reguläres Gebiet. A $\subset \mathbb{R}^2$ ist ein reguläres Gebiet, falls

- i) A offen und beschränkt ist
- ii) $\partial A = \biguplus_{i=1}^{k} Im(\gamma_i)$ für Jordan-Kurven γ_i , $i \in [k]$

Orientierung einer Basis. In \mathbb{R}^2 ist eine Basis (b_1, b_2) positiv orientiert, falls die Basiswechselmatrix T von (e_1, e_2) zu (b_1, b_2) det(T) > 0 erfüllt.

Orientierung einer Kurve. Eine parametrisierte Jordan-Kurve γ ist bezüglich des Gebiets A positiv orientiert, falls

 (n, γ') eine positiv orientierte Basis von \mathbb{R}^2 bilden, wobei $n \perp \gamma'$ nicht in A hinein zeigt.

"Aussen" verläuft die Kurve gegen den, "Innen" mit dem Uhrzeigersinn.

Satz von Green

Ist $A\subset\mathbb{R}^2$ kompakt oder ein reguläres Gebiet mit Randkurven $\gamma_i,\ i\in[k],$ positiv orientiert, und $F\in C^1(U,\mathbb{R}^2)$ mit $A\cup\partial A\subset U\subset\mathbb{R}^2,$ offen, gilt

$$\int_{\partial A} F(s) ds = \int_{A} (\partial_{1} f_{2} - \partial_{2} f_{1}) (s) ds$$

$$\text{für } \int_{\partial A} F(s) ds := \sum_{i=1}^{k} \int_{\gamma_{i}} F(s) ds.$$

Diverses

Binomialsatz

$$\forall x,y \in \mathbb{C} \ \forall n \geq 1$$
:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

Binomialkoeffizient. Mit "n choose k" bezeichnet man

$$\binom{n}{k} := \frac{n!}{(n-k)! \ k!}$$

Differentiations regeln. $\forall f, g \in \mathbb{R}^D$, $D \subseteq \mathbb{R}$, in x_0 differenzier bar,

i)
$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

ii)
$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

iii)
$$(f/g)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$$
, falls $g(x_0) \neq 0$.

Partielle Integration. Für stetig differenzierbare $f, g \in \mathbb{R}^{[a,b]}$ gilt

$$\int_{a}^{b} (fg')(x) dx$$

$$= \underbrace{\left[(fg)(x) \right]_{a}^{b}}_{(fg)(b)-(fg)(a)} - \int_{a}^{b} (f'g)(x) dx$$

Substitution. Für stetige $f \in \mathbb{R}^I$ auf dem Intervall $I \subseteq \mathbb{R}$ und stetig differenzierbarer $\varphi \in D^{[\alpha,b]}$ auf $D \subseteq I$ gilt

$$\int_{\Phi(\alpha)}^{\Phi(b)} f(x) dx = \int_{\alpha}^{b} (f \circ \phi)(t) \phi'(t) dt$$

Angewandt heisst dies z.B.

i)
$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

ii)
$$\int_{\alpha}^{b} f(ct) dt = \frac{1}{c} \int_{\alpha c}^{bc} f(x) dx$$

Die trigonometrischen Funktionen

S3.41 sin:
$$\mathbb{C} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$
 und

$$\cos: \mathbb{C} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

sind in $\mathbb R$ stetige Funktionen. Es gelten

S3.42 $\forall z, w \in \mathbb{C}, \forall x \in \mathbb{R},$

i)
$$\exp(iz) = \cos(z) + i\sin(z)$$

ii)
$$\sin(-z) = -\sin(z)$$
,
 $\cos(-z) = \cos(z)$

iii)
$$\sin(z) = \frac{\exp(iz) - \exp(-iz)}{2i},$$

 $\cos(z) = \frac{\exp(iz) + \exp(-iz)}{2},$

$$iv) \sin(z+w)$$

$$= \sin(z)\cos(w) + \cos(z)\sin(w),$$

$$\cos(z+w)$$

$$= \cos(z)\cos(w) - \sin(z)\sin(w)$$

v)
$$\cos^2(z) + \sin^2(z) = 1$$

vi)
$$\sin(2z) = 2\sin(z)\cos(z)$$

vii)
$$\cos(2z) = \cos^2(z) - \sin^2(z)$$

viii)
$$\sin(x + \pi/2) = \cos(x)$$
,
 $\cos(x + \pi/2) = -\sin(x)$

ix)
$$\sin(x + \pi) = -\sin(x)$$
,
 $\sin(x + 2\pi) = \sin(x)$

x)
$$cos(x + \pi) = -cos(x)$$
,
 $cos(x + 2\pi) = cos(x)$

xi) $\{k\pi : k \in \mathbb{Z}\}$ Nullstellen von sin

xii)
$$\{\pi/2 + k\pi : k \in \mathbb{Z}\}$$
 Nullstellen von cos

deg	x	sin(x)	cos(x)	tan(x)
0°	0	0	1	0
30°	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$
90°	$\frac{\pi}{2}$	1	0	

Tangens. Für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ ist $\tan(z) := \frac{\sin(z)}{\cos(z)}$ und für $z \notin \pi \cdot \mathbb{Z}$ ist $\cot(z) := \frac{\cos(z)}{\sin(z)}$ definiert.

Die reelle Exponentialfunktion

S3.24 exp:
$$\mathbb{R} \to]0, \infty[$$

$$\chi \mapsto \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

ist streng monoton wachsend, stetig und surjektiv (also bijektiv). Es gelten

i)
$$exp(x + y) = exp(x) exp(y)$$

ii)
$$\exp(x) > 0 \ \forall x \in \mathbb{R}$$

iii)
$$\exp(x) \ge 1 + x \ \forall x \in \mathbb{R}$$

iv)
$$\exp(i\pi) = -1, \exp(2i\pi) = 1$$

Der natürliche Logarithmus

K3.28 Die Umkehrabbildung von exp, ln:]0, ∞ [$\to \mathbb{R}$, ist streng monoton wachsend, stetig und bijektiv. Ferner gilt

$$ln(ab) = ln(a) + ln(b) \ \forall a, b \in]0, \infty[$$

Hyperbelfunktionen

5

Tangens hyperbolicus. Wie auch bei den trigonometrischen Funktionen existiert

$$\tanh(x) := \frac{\sinh(x)}{\cosh(x)}$$

Ansätze zum Finden einer inhomogenen Lösung bei LODEs. Abhängig von b lohnt sich oftmals Ausprobieren. Für $\alpha, \beta \in \mathbb{E}$ und $A, B, C \in \mathbb{E} \cup \mathcal{P}_n$,

$\begin{array}{ccc} b(x) & \text{potenzielles } y_0(x) \\ \hline A \exp(\alpha x) & B \exp(\alpha x) \\ A \sin(\alpha x) / & B \sin(\alpha x) + \\ A \cos(\alpha x) & C \cos(\alpha x) \end{array}$

$$\begin{array}{ll} A \exp(\alpha x) \sin(\beta x) \ / & \exp(\alpha x) (B \sin(\beta x) + \\ A \exp(\alpha x) \cos(\beta x) & C \cos(\beta x)) \end{array}$$

Differentiationstabelle

f'(x)	f(x)	$\int f(x) dx - C$
kx^{k-1} für $k \neq 0$	χ^k	$\begin{cases} \frac{x^{k+1}}{k+1} & \text{für } k \neq -1\\ \ln(x) & \text{sonst } (x > 0) \end{cases}$
ke ^{kx}	e ^{kx}	$\frac{1}{k}e^{kx}$
$-\cos(x)$	sin(x)	$\cos(x)$
$\cosh(x)$	sinh(x)	cosh(x)
$2\sin(x)\cos(x)$	$\sin^2(x)$	$\frac{x-\sin(x)\cos(x)}{2}$
$-2\sin(x)\cos(x)$	$\cos^2(x)$	$\frac{x + \sin(x)\cos(x)}{2}$
$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	tan(x)	$-\ln \cos(x) $
$-\frac{1}{\sin^2(x)}$	$\cot(x)$	$-\ln \sin(x) $
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$x \arcsin(x) + \sqrt{1 - x^2}$
$-\frac{1}{\sqrt{1-x^2}}$	arcos(x)	$ \begin{array}{c} x \arccos(x) \\ -\sqrt{1-x^2} \end{array} $
$\frac{1}{1+x^2}$	arctan(x)	$\begin{array}{l} x \arctan(x) \\ -\frac{\ln(x^2+1)}{2} \end{array}$
$\frac{1}{\sqrt{x^2+1}}$	$\operatorname{arcsinh}(x)$	$\begin{array}{c} x \operatorname{arcsinh}(x) \\ -\sqrt{x^2 + 1} \end{array}$
$\frac{1}{\sqrt{x^2-1}}$	arcosh(x)	$ \begin{array}{c} x \operatorname{arcosh}(x) \\ -\sqrt{x^2 - 1} \end{array} $
$\frac{1}{\sqrt{1-x^2}}$	$\operatorname{arctanh}(x)$	$\begin{array}{l} x \operatorname{arctanh}(x) \\ + \frac{\ln(1-x^2)}{2} \end{array}$