

# LSTM Multi-modal UNet for Brain Tumor Segmentation

ICIVC 2019, Xiamen China

Fan Xu, <u>Haoyu Ma</u>, Junxiao Sun, Rui Wu, Xu Liu, Youyong Kong\* Southeast University



### Brain Tumor Segmentation: Dataset and Task

- BraTS: Annual brain tumor segmentation challenge
- Generate segmentation of Whole Tumor, Tumor Core and Enhancing Tumor





# Brain Tumor Segmentation: Challenging points

- Different shape, size and location of brain tumor
- 3D images (size 155 x 240 x 240)
- Multi-modal Magnetic Resonance Imaging (MRI)





# Biomedical Image Segmentation Baseline



• Down sample and up sample.

• capture low and high level features.

- Skip-connections.
  - transfer information during the compression process





### Treatment of 3D Image

- Split 3D data into several 2D slices
  - Use 2D image based model
  - Neglect the depth information
- Apply 3D Convolution
  - Model correlation between slices
  - Require larger number of parameters



- Use RNN/LSTM to capture the temporal information
  - Regard depth as temporal
  - 3D image = 2D video



# Fusion strategies of multi-modal images

Early fusion



Late fusion



Hyper dense connection



Performance

Hyper dense connection > late fusion > early fusion



#### What is LSTM multi-modal UNet?

- LSTM multi-modal UNet = Hyper Dense Connection UNet + convLSTM
- Hyper Dense connections
  - Leverage multi-modal data
- convLSTM
  - Exploit depth information





#### Multi-modal UNet Architecture

- UNet-based encoder and decoder
- Multiple encoding paths for multimodal data
- Hyper dense connections





# Hyper Dense Connections

• ResNets:

$$x_l = H_l(x_{l-1}) + x_{l-1}$$

 $H_l$  mapping function

 $x_l$  output of  $l^{ ext{th}}$  layer



- Dense Net:
  - Concatenate all previous layers features

$$x_l = H_l([x_{l-1}, x_{l-2}, ..., x_0])$$



- Hyper Dense Net:
  - Concatenate all previous layers features in all paths

$$\boldsymbol{x}_{l}^{p} = H_{l}^{p}([x_{l-1}^{1}, x_{l-1}^{2}, x_{l-2}^{1}, x_{l-2}^{2}, ..., x_{0}^{1}, x_{0}^{2}])$$





# Slice Sequence Learning: convolutional LSTM

- Regard depth as temporal information
- Replace the matrix multiplication by a convolution operator
  - Reserves the spatial information for sequences
- Share weights for different slices





#### Model details

- Half channel number of UNet
  - Less number of model parameters
  - To prove parameters are not the decisive factor

#### COMPARE OF NETWORK SIZE

|       | Number of parameters | model size |
|-------|----------------------|------------|
| U-Net | 34530437             | 138.2MB    |
| Ours  | 28713450             | 115.6MB    |

#### DETAIL INFORMATION OF NETWORK CHANNELS

|                     | Name          | Feat maps(input) | Feat maps(output)  |  |
|---------------------|---------------|------------------|--------------------|--|
|                     |               | U Net            |                    |  |
| Encoding            | Conv layer 1  | 4×240×240        | <b>64</b> ×240×240 |  |
|                     | Max pooling 1 | 64×240×240       | 64×120×120         |  |
|                     | Conv layer 2  | 64×120×120       | 128×120×120        |  |
|                     | Max pooling 2 | 128×120×120      | 128×60×60          |  |
|                     | Conv layer    | 128×60×60        | <b>256</b> ×60×60  |  |
|                     | Max pooling 3 | 256×60×60        | 256×30×30          |  |
|                     |               |                  |                    |  |
|                     | Mult          | ti-modal UNet    |                    |  |
| Encoding (each mod) | Conv layer1   | 1×240×240        | <b>32</b> ×240×240 |  |
|                     | Max pooling 1 | 32×240×240       | 32×120×120         |  |
|                     | Conv layer 2  | 32×120×120       | <b>64</b> ×120×120 |  |
|                     | Max pooling 2 | 64×120×120       | 64×60×60           |  |
|                     | Conv layer 3  | 64×60×60         | 128×60×60          |  |
|                     | Max pooing 3  | 128×60×60        | 128×30×30          |  |
|                     |               | •••              | •                  |  |



#### Experiments

- Dataset:
  - BraTS 2015 (224 subjects for training, 50 for testing)
- Optimizer:
  - Adam (default parameters)
- Loss:
  - cross entropy loss with median frequency balance
- Contrast model:
  - vanilla UNet
- Train from scratch
  - Same hyper parameters for both UNet and our model



### Results

#### **EVALUATION CRITERIA OF BRATS-2015**

|      | Network | Complete | Core   | Enhancing |
|------|---------|----------|--------|-----------|
| Dice | UNet    | 0.7171   | 0.5989 | 0.5022    |
| Dice | ours    | 0.7309   | 0.6235 | 0.4254    |





#### Conclusion

- LSTM multi-modal UNet = Hyper Dense Connection UNet + convLSTM
- Exploit correlations between multimodal data and depth information
- Better performance on Brats 2015 with less parameters than UNet





# Thanks for listening

Q & A