A Book of Abstract Algebra (2nd Edition)

De Moivre's theorem: $\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$ is a complex fifth root of unity.

Since $x^5 - 1 = (x - 1)(x^4 + x^3 + x^2 + x + 1)$. ω is a root of $P(x) = (x^4 + x^3 + x^2 + x + 1)$

Comment

Step 3 of 5

Consider
$$\omega = \cos \frac{2\pi}{5} + i \sin \frac{2\pi}{5}$$

$$\frac{1}{\omega} = \cos\frac{2\pi}{5} - i\sin\frac{2\pi}{5}$$

$$\left(\omega + \frac{1}{\omega}\right) = 2\cos\frac{2\pi}{5}$$

Comment

Step 4 of 5

Consider ω is a root of $P(x) = (x^4 + x^3 + x^2 + x + 1)$

Then,

$$(\omega^4 + \omega^3 + \omega^2 + \omega + 1) = 0$$

$$\omega^2 + \omega + 1 + \omega^{-1} + \omega^{-2} = 0$$

$$\left(\omega + \frac{1}{\omega}\right)^2 + \left(\omega + \frac{1}{\omega}\right) - 1 = 0$$

$$\left(2\cos\frac{2\pi}{5}\right)^2 + \left(2\cos\frac{2\pi}{5}\right) - 1 = 0$$

$$4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1 = 0$$

Comment

Step 5 of 5

Consider the polynomial $4x^2 - 2x - 1$

put $x = 2\cos\frac{2\pi}{5}$ in above equation, then

$$4x^2 - 2x - 1 =$$

$$=4\cos^2\frac{2\pi}{5} + 2\cos\frac{2\pi}{5} - 1$$

= (

Hence, $\cos \frac{2\pi}{5}$ is a root of quadratic polynomial $4x^2 - 2x - 1 = 0$, then $\cos \frac{2\pi}{5} \in D$

Therefore, $\cos \frac{2\pi}{5}$ is a constructible from $\{O, I\}$.

Hence, proved.

Comment

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center
Site Map

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Cheap Textbooks
Chegg Coupon
Chegg Play
Chegg Study Help
College Textbooks
eTextbooks
Flashcards
Learn
Chegg Math Solver

Mobile Apps
Sell Textbooks
Solutions Manual
Study 101
Textbook Rental
Used Textbooks
Digital Access Codes
Chegg Money

CHEGG NETWORK

EasyBib Customer Service
Internships.com Give Us Feedback
Thinkful Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy

CUSTOMER SERVICE