Análisis Matemático II

Lic. en Ciencias de la Computación

Práctico 1 - 2019 - Integración

1) Dar las primitivas de las siguientes funciones:

a)
$$g(x) = x^3 - 5x$$

b) $g(x) = e^{0.3x}$

c)
$$g(x) = \sin 2x$$

e)
$$g(x) = x^{3/2}$$

b)
$$g(x) = e^{0.3x}$$

c)
$$g(x) = \sin 2x$$

d) $g(x) = 2x \cos(x^2)$

e)
$$g(x) = x^{3/2}$$

f) $g(x) = \sqrt{x+2}$

2) Encuentra la primitiva de $f(x) = x + \cos x$ que pasa por el punto (0,4).

3) Encuentra la primitivas F(x) de $f(x) = \frac{3}{x}$ tal que F(1) = 5.

4) Calcular las derivadas de las siguientes funciones:

a)
$$f(x) = (33 - 2x)^{\frac{4}{3}}$$

d)
$$f(x) = \ln(7 - x)$$

a)
$$f(x) = (33 - 2x)^{\frac{4}{3}}$$
 d) $f(x) = \ln(7 - x)$ g) $f(x) = \ln(\cos(x) + \sin(x))$
b) $f(x) = e^{2x}$ e) $f(x) = \ln(x^2 + 3x + 4)$ h) $f(x) = \frac{\cos(x)}{\sin(x)}$

b)
$$f(x) = e^{2x}$$

e)
$$f(x) = \ln(x^2 + 3x + 4)$$

h)
$$f(x) = \frac{\cos(x)}{\cos(x)}$$

c)
$$f(x) = 2^x$$

f)
$$f(x) = \ln(e^x + e^{-x})$$

h)
$$f(x) = \frac{\cos(x)}{\sin(x)}$$

5) Calcular las siguientes integrales usando las primitivas (usa el ejercicio anterior):

a)
$$\int e^{2x} dx$$

$$d) \int \frac{dx}{7-x}$$

f)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

b)
$$\int_{0}^{\infty} 2^{x} dx$$

d)
$$\int \frac{dx}{7-x}$$

e)
$$\int \frac{2x+3}{x^2+3x+4} dx$$

f)
$$\int \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

g)
$$\int \frac{\cos x - \sin x}{\cos x + \sin x} dx$$

g)
$$\int \frac{e^x + e^{-x}}{\cos x - \sin x} dx$$

c)
$$\int_{0}^{3} \sqrt[3]{33 - 2x} \, dx$$

$$h) \int \frac{1}{\sin^2 x} \, dx$$

6) Sin realizar el cálculo de la integral justifica las siguientes igualdades y desigualdades:

a)
$$\int_{-\pi}^{\pi} \sin 2x \ dx = 0$$

d)
$$\int_{1}^{2} \sqrt{5-x} \, dx \ge \int_{1}^{2} \sqrt{x+1} \, dx$$

b)
$$\int_{-5}^{-\pi} x^4 dx = 2 \int_0^5 x^4 dx$$

e)
$$\pi/6 \le \int_{-16}^{\pi/2} \sin x \, dx \le \pi/3$$

c)
$$\int_{0}^{4} (x-2)^3 dx = 0$$

f)
$$\int_{-99}^{99} (ax^3 + bx^2 + cx) dx = 2 \int_{0}^{99} bx^2 dx$$

7) Calcular la derivada de las siguientes funciones donde sea posible:

a)
$$f(x) = \int_0^x \frac{\sin t^2}{1 + \cos^2 t} dt$$

a)
$$f(x) = \int_0^x \frac{\sin t^2}{1 + \cos^2 t} dt$$
 b) $f(x) = \int_0^{x^2} \frac{e^{t^2} + 1}{\sqrt{1 - t^2}} dt$ c) $f(x) = \int_{\sqrt{x}}^{x^3} \frac{t + 1}{\sqrt{1 + 2^t}} dt$

c)
$$f(x) = \int_{\sqrt{x}}^{x^3} \frac{t+1}{\sqrt{1+2^t}} dx$$

8) Calcular las siguientes integrales usando el Teorema fundamental del cálculo:

a)
$$\int_{0}^{1} e^{2x} dx$$

d)
$$\int_{1}^{5} \frac{dx}{7-x}$$

g)
$$\int_0^{\pi/2} \frac{\cos x - \sin x}{\cos x + \sin x} dx$$

b)
$$\int_{1}^{2} 2^{x} dx$$

a)
$$\int_{0}^{1} e^{2x} dx$$
 d) $\int_{1}^{5} \frac{dx}{7 - x}$ g) $\int_{0}^{\pi/2} \frac{\cos x - \cos x}{\cos x + \cos x}$ b) $\int_{1}^{2} 2^{x} dx$ e) $\int_{0}^{1} \frac{2x + 3}{x^{2} + 3x + 4} dx$ h) $\int_{\pi/6}^{\pi/2} \frac{dx}{\sin^{2} x}$ c) $\int_{3}^{5} \sqrt[3]{33 - 2x} dx$ f) $\int_{\ln 2}^{\ln 3} \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}} dx$

h)
$$\int_{\pi/6}^{\pi/2} \frac{dx}{\sin^2 x}$$

c)
$$\int_{3}^{5} \sqrt[3]{33 - 2x} \, dx$$

f)
$$\int_{\ln 2}^{\ln 3} \frac{e^x - e^{-x}}{e^x + e^{-x}} dx$$

9) Calcular las siguientes integrales:

a)
$$\int x e^x dx$$
 d) $\int_{\pi/4}^{\pi/2} \frac{x dx}{\sin^2 x}$ g) $\int_0^2 x \ln(x^2 + 4) dx$
b) $\int_{-1}^1 (1 - 2x) e^{-2x} dx$ e) $\int_3^9 x \ln(x - 1) dx$ h) $\int_0^{2\pi} e^{-x} \sin 2x dx$
c) $\int x^2 \cos x dx$ f) $\int_0^{2\pi} \cos^4 x dx$

10) Calcular las siguientes integrales:

a)
$$\int_{0}^{1} e^{\sqrt{x}} dx$$
 d) $\int \frac{1}{x \ln x} dx$ g) $\int e^{x} (1 - e^{x})^{-1} dx$
b) $\int \sin \sqrt{x} dx$ e) $\int_{0}^{1} \arccos x dx$ h) $\int \frac{dx}{x\sqrt{x-1}}$
c) $\int_{0}^{1} (2x+1) \ln(x+1) dx$ f) $\int_{0}^{1} x^{3} e^{x^{2}} dx$ i) $\int \sin^{3} x dx$

11) Traza la región limitada por las curvas dadas y calcula su área:

a)
$$y = 4x^2$$
, $y = x^2 + 3$
b) $y = \cos x$, $y = \sin x$, $x = 0$, $x = \pi/2$
c) $y = |x|$, $y = (x+1)^2 - 7$, $x = -4$
d) $y = 1/x$, $y = 1/x^2$, $x = 1$, $x = 2$
e) $y = e^x$, $y = e^{-x}$, $x = -2$, $x = 1$
f) $y = x + 6$, $y = x^3$, $x = -2$, $2y + x = 0$

12) Usa el cálculo integral para calcular el área de los triángulos con vértices:

a)
$$(0,0)$$
; $(1,8)$; $(4,3)$. b) $(-2,5)$; $(0,-3)$; $(5,2)$.

- 13) Calcular el área de la región limitada por la parábola $y = x^2$, la tangente a ella en el punto (1,1) y el eje x.
- 14) Calcular las siguientes integrales:

a)
$$\int_{2}^{4} \frac{x^{2} + 4x + 24}{x^{2} - 4x + 8} dx$$
 c) $\int_{0}^{2} \frac{x - 1}{x^{2} + 4} dx$ e) $\int_{2}^{4} \frac{x}{x^{3} - 3x + 2} dx$ b) $\int_{0}^{1} \frac{2x + 1}{x^{2} + 1} dx$ d) $\int_{2}^{3} \frac{1}{x^{2} + 3x + 2} dx$ f) $\int \frac{x^{3}}{(x^{2} + 1)^{3}} dx$

Ayuda: En f) sustituya $x^2 + 1 = t$.

15) La sustitución $t = \tan \frac{x}{2}$, o equivalentemente, $x = 2 \arctan t$, transforma cualquier integral que involucre sólo senos y cosenos vinculados por suma, producto o cociente, en la integral de una función racional. Verificar que con esta sustitución resulta

$$\cos x = \frac{1 - t^2}{1 + t^2}, \quad \text{sen } x = \frac{2t}{1 + t^2} \quad \text{y} \quad dx = \frac{2}{1 + t^2} dt.$$

Utilizar esta sustitución en los siguientes casos:

a)
$$\int_0^{\pi/2} \frac{2}{1 + \cos x} dx$$
 b) $\int_{\pi/3}^{\pi/2} \frac{1}{\sin x} dx$

16) Calcular las siguientes integrales.

a)
$$\int \tan^2 x \ dx$$

c)
$$\int \frac{dx}{\sqrt{9-4x^2}}$$

a)
$$\int \tan^2 x \ dx$$

b) $\int_{4}^{9} \frac{\sqrt{x+1}}{\sqrt{x-1}} \ dx$
c) $\int \frac{dx}{\sqrt{9-4x^2}}$
e) $\int \frac{x+1}{\sqrt{1-x^2}} \ dx$
f) $\int_{0}^{100\pi} \sqrt{1-\cos 2x} \ dx$

b)
$$\int_4 \frac{1}{\sqrt{x}-1} dx$$

17) Determinar si las siguientes integrales impropias convergen y en tal caso calcularlas.

a)
$$\int_{0}^{+\infty} \frac{1}{\sqrt{s+1}} ds$$
 c) $\int_{-\infty}^{0} x e^{-x^{2}} dx$ e) $\int_{-\infty}^{\infty} \frac{dx}{1+x^{2}}$ b) $\int_{0}^{2} \frac{1}{(1-y)^{2/3}} dy$ d) $\int_{1}^{7} \frac{dx}{\sqrt[3]{x+1}}$ f) $\int_{0}^{1} \ln(x) dx$

c)
$$\int_{-\infty}^{0} x e^{-x^2} dx$$

e)
$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2}$$

b)
$$\int_0^2 \frac{1}{(1-y)^{2/3}} dy$$

d)
$$\int_{-1}^{7} \frac{dx}{\sqrt[3]{x+1}}$$

f)
$$\int_0^1 \ln(x) dx$$

18) Determinar si cada una de las siguientes integrales impropias converge o no.

a)
$$\int_{4}^{+\infty} \frac{1}{\sqrt{s} - 1} ds$$

c)
$$\int_0^4 \frac{dx}{(x-3)^{2/3}}$$

e)
$$\int_0^4 \frac{dx}{x^2 - x - 2}$$

a)
$$\int_{4}^{+\infty} \frac{1}{\sqrt{s} - 1} ds$$
 c) $\int_{0}^{4} \frac{dx}{(x - 3)^{2/3}}$ e) $\int_{0}^{4} \frac{dx}{x^{2} - x - 2}$ b) $\int_{0}^{\infty} e^{-x} \cos x dx$ d) $\int_{0}^{1} x \ln(x) dx$ f) $\int_{1}^{\infty} \frac{\sin x}{x^{2}} dx$

d)
$$\int_0^1 x \ln(x) \ dx$$

f)
$$\int_{1}^{\infty} \frac{x^2 - x - 2}{x^2} dx$$