Notion de nombre complexe

A La forme algébrique

DÉFINITION Nombre complexe

On appelle nombre complexe tout élément de la forme x+iy où x et y sont des réels et i un élément vérifiant $i^2=-1$.

THÉORÊME Forme algébrique

L'écriture z=x+iy (où x et y sont des réels) est appelée forme algébrique de z. Elle est unique.

DÉFINITION Parties réelle et imaginaire

Soit un nombre complexe z=x+iy (où x et y sont réels) :

- ullet On appelle partie réelle de z, notée $\mathrm{Re}\,(z)$, le réel x.
- ullet On appelle partie imaginaire de z, notée ${
 m Im}\,(z)$, le réel y.

THÉORÊME Nombres égaux

Deux nombres complexes sont égaux si et seulement s'ils ont même partie réelle et même partie imaginaire.

PROPRIÉTÉ

- Le nombre z est réel si et seulement si ${
 m Im}\,(z)=0$.
- ullet Le nombre z est imaginaire pur si et seulement si $\mathrm{Re}\,(z)=0$.

B Le conjugué

DÉFINITION Conjugué

Soit un nombre complexe sous forme algébrique z=x+iy.

On appelle conjugué de z, noté \overline{z} , le complexe :

$$x - iy$$

PROPRIÉTÉ

Soient z et z' deux nombres complexes tels que z=x+iy et z'=x'+iy'.

- $\overline{\overline{z}} = z$
- $z + \overline{z} = 2 \operatorname{Re}(z)$
- $z \overline{z} = 2i \operatorname{Im}(z)$
- z est réel $\Leftrightarrow z = \overline{z}$
- z est imaginaire pur $\Leftrightarrow z = -\overline{z}$
- $\overline{z+z'} = \overline{z} + \overline{z'}$
- $\overline{zz'} = \overline{z}\overline{z'}$
- Si z' non nul : $\overline{\left(\frac{z}{z'}\right)} = \frac{\overline{z}}{\overline{z'}}$
- ullet Pour tout entier relatif n (avec z
 eq 0 si n < 0) : $\overline{z^n} = (\overline{z})^n$

C Le module

DÉFINITION Module

Soit un nombre complexe z = x + iy.

On appelle module de z, noté |z|, le réel :

$$\sqrt{x^2+y^2}$$

PROPRIÉTÉ

Soient z et z' deux nombres complexes.

• $z\overline{z} = |z|^2$

• $|z| = |\overline{z}|$

 $\bullet |z| = |-z|$

• $|zz'| = |z| \times |z'|$ • Si z' non nul : $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

ullet Pour tout entier n : $|z^n| = |z|^n$

D La représentation analytique

THÉORÊME Affixe

Soit un repère orthonormal direct du plan $\left(O;\overrightarrow{u};\overrightarrow{v}\right)$.

À tout point M de coordonnées (x;y) on associe le nombre complexe z=x+iy :

ullet Le nombre complexe z est appelé affixe du point M (et du vecteur \overrightarrow{OM}).

ullet Le point M est appelé image du nombre complexe z. On définit ainsi le plan complexe.

PROPRIÉTÉ

Le module |z| du nombre complexe z, affixe du point M, est égal à la distance OM.

PROPRIÉTÉ

Deux vecteurs \overrightarrow{u} et \overrightarrow{v} sont égaux si, et seulement s'ils ont même affixe.

On peut se servir de la propriété précédente pour :

- ASTUCE Déterminer l'affixe d'un point D pour qu'un quadrilatère ABCD soit un parallélogramme, connaissant les affixes des points A,B et C.
 - Déterminer les coordonnées du milieu d'un segment.

Les équations dans $\mathbb C$

Les équations du premier degré d'inconnue z à coefficients réels se résolvent dans $\mathbb C$ comme dans \mathbb{R} .

Les équations du premier degré faisant intervenir un nombre complexe z et son conjugué \overline{z} se résolvent en remplaçant z et \overline{z} par leurs formes algébriques.

THÉORÊME Équations du second degré

Soit une équation du second degré à coefficients réels du type az^2+bz+c , avec a
eq 0.

ullet Si $\Delta>0$, cette équation admet deux solutions réelles :

$$z_1=rac{-b-\sqrt{\Delta}}{2a}$$
 et $z_2=rac{-b+\sqrt{\Delta}}{2a}$

• Si $\Delta=0$, cette équation admet une solution (double) réelle :

$$z_0=rac{-b}{2a}$$

ullet Si $\Delta < 0$, cette équation admet deux solutions complexes conjuguées :

$$z_1=rac{-b-i\sqrt{-\Delta}}{2a}$$
 et $z_2=rac{-b+i\sqrt{-\Delta}}{2a}$

Dans le cas où $\Delta < 0$, on aurait pu écrire :

$$z_1=rac{-b-i\sqrt{|\Delta|}}{2a}$$
 et $z_2=rac{-b+i\sqrt{|\Delta|}}{2a}$

Les formes trigonométriques et exponentielles

A La forme trigonométrique

DÉFINITION Argument

On appelle argument de z, noté ${
m arg}\,(z)$ la mesure en radians de l'angle orienté $\left(\overrightarrow{u};\overrightarrow{OM}\right)$:

$$rg\left(z
ight)=\left(\overrightarrow{u};\overrightarrow{OM}
ight)\left[2\pi
ight]$$

THÉORÊME Forme trigonométrique

Soit un nombre complexe z non nul d'argument θ .

Alors
$$z = |z| (\cos(\theta) + i\sin(\theta))$$
.

 $|z| (\cos(\theta) + i\sin(\theta))$ est appelée forme trigonométrique du nombre complexe z.

Réciproquement, si $z=r\left(\cos\left(\theta\right)+i\sin\left(\theta\right)\right)$, avec r>0 et θ réel quelconque, alors :

$$|z|=r$$

$$\mathrm{arg}\left(z\right)=\theta\left[2\pi\right]$$

PROPRIÉTÉ

Soit z un nombre complexe non nul d'argument heta et de forme algébrique x+iy, avec x et y réels. Alors:

$$x=|z|\cos{(heta)}$$
 et $y=|z|\sin{(heta)}$

Autrement dit:

$$\cos\left(heta
ight) = rac{x}{|z|} \operatorname{et} \sin\left(heta
ight) = rac{y}{|z|}$$

PROPRIÉTÉ

Soient z et z' deux nombres complexes non nuls.

- $\operatorname{arg}\left(zz'\right) = \operatorname{arg}\left(z\right) + \operatorname{arg}\left(z'\right) \left[2\pi\right]$
- $\operatorname{arg}\left(\frac{1}{z}\right) = -\operatorname{arg}\left(z\right)\left[2\pi\right]$ $\operatorname{arg}\left(\frac{z}{z'}\right) = \operatorname{arg}\left(z\right) \operatorname{arg}\left(z'\right)\left[2\pi\right]$
- Pour tout entier naturel n : $rg(z^n) = n rg(z) [2\pi]$
- ullet z est réel $\Leftrightarrow rg\left(z
 ight) = 0 \left[2\pi
 ight]$ ou $rg\left(z
 ight) = \pi \left[2\pi
 ight]$
- z est imaginaire pur $\Leftrightarrow rg(z) = rac{\pi}{2} \left[2\pi
 ight]$ ou $rg(z) = -rac{\pi}{2} \left[2\pi
 ight]$

B La forme exponentielle

DÉFINITION Exponentielle complexe

Pour tout réel θ , on pose :

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

THÉORÊME Forme exponentielle

Soit un nombre complexe z non nul d'argument θ .

Alors
$$z=|z|e^{i\theta}$$
.

 $|z|e^{i\theta}$ est appelée forme exponentielle du nombre complexe z.

Réciproquement, si $z=re^{i heta}$, avec r>0 et heta réel quelconque, alors :

$$|z|=r$$
 $arg\left(z
ight)= heta\left[2\pi
ight]$

PROPRIÉTÉ

Soient θ et θ' deux réels.

$$ullet \ \overline{e^{i heta}} = e^{-i heta}$$

$$ullet e^{i\left(heta+ heta'
ight)}=e^{i heta}e^{i heta'}$$

$$\bullet \ \frac{1}{e^{i\theta}} = e^{-i\theta}$$

ullet Pour tout entier relatif n : $\left(e^{i heta}
ight)^n=e^{in heta}$ (Cette formule s'appelle "formule de Moivre".)

PROPRIÉTÉ

Formule d'Euler

Soit θ un réel. Alors :

$$\cos\left(heta
ight)=rac{e^{i heta}+e^{-i heta}}{2} \operatorname{et}\sin\left(heta
ight)=rac{e^{i heta}-e^{-i heta}}{2i}$$

Ces formules permettent de linéariser $\left[\cos\left(\theta\right)\right]^n$ (ou $\left[\sin\left(\theta\right)\right]^n$) où n est un entier naturel et θ un réel quelconque, c'est-à-dire écrire $\left[\cos\left(\theta\right)\right]^n$ (ou $\left[\sin\left(\theta\right)\right]^n$) en fonction de $\cos\left(\theta\right)$, $\sin\left(\theta\right)$, $\cos\left(2\theta\right)$, $\sin\left(2\theta\right)$, ..., $\cos\left(n\theta\right)$ et $\sin\left(n\theta\right)$.

C L'interprétation géométrique

THÉORÊME Distance

Soient A et B deux points d'affixes respectives z_A et z_B :

$$AB = |z_B - z_A|$$

PROPRIÉTÉ

Soient A et B deux points d'affixes respectives a et b.

L'ensemble des points M (d'affixe z) du plan complexe vérifiant |z-a|=|z-b| est la médiatrice du segment [AB].

Autrement dit, si A, B et M sont des points du plan complexe d'affixes respectives a, b et z. Alors M appartient à la médiatrice du segment [AB] si, et seulement si, |z-a|=|z-b|.

PROPRIÉTÉ

Soit Ω (d'affixe ω) un point du plan complexe et r un réel positif.

L'ensemble des points M (d'affixe z) tels que $|z-\omega|=r$ est le cercle de centre Ω et de rayon r.

Autrement dit, si Ω (d'affixe w) est un point du plan complexe et r un réel positif, alors un point M d'affixe z appartient au cercle de centre Ω et de rayon r si, et seulement si, $|z-\omega|=r$.

Soit Ω (d'affixe w) un point du plan complexe et r un réel positif.

L'ensemble des points M (d'affixe z) tels que $|z-\omega| < r$ est le disque ouvert de centre Ω et de rayon r.

L'ensemble des points M (d'affixe z) tels que $|z-\omega|>r$ est le plan entier privé du disque de centre Ω et de rayon r.

THÉORÊME Angle

Soient A et B deux points d'affixes respectives z_A et z_B :

$$\left(\overrightarrow{u};\overrightarrow{AB}
ight)=rg\left(z_{B}-z_{A}
ight)\left[2\pi
ight]$$

THÉORÊME Argument d'un quotient (1)

Soient $\overrightarrow{v_1}$ et $\overrightarrow{v_2}$ deux vecteurs non nuls d'affixes respectives z_1 et z_2 :

$$\left(\overrightarrow{v_1};\overrightarrow{v_2}
ight)=rg\left(rac{z_2}{z_1}
ight)[2\pi]$$

THÉORÊME Argument d'un quotient (2)

Soient A, B et C trois points distincts d'affixes respectives z_A , z_B et z_C :

$$\left(\overrightarrow{AB};\overrightarrow{AC}
ight)=rg\left(rac{z_C-z_A}{z_B-z_A}
ight)[2\pi]$$