证明:

易知 $orall n \in \mathbb{N}^*, \; a_n > 0$

则有

$$a_{n+1}=rac{1}{2}igg(a_n+rac{1}{a_n}igg)\geq rac{1}{2}\cdot 2=1, \quad orall n=1,2,\ldots$$

 $abla a_1=2\geq 1$

所以 $orall n \in \mathbb{N}^*, \ a_n \geq 1$

则有

$$a_{n+1}=rac{1}{2}igg(a_n+rac{1}{a_n}igg)\geq rac{1}{2}(a_n+a_n)=a_n, \quad orall n=1,2,\ldots$$

所以 $\{a_n\}$ 单调减,则 $\lim_{n o +\infty} a_n$ 存在,设 $a_n o a$

则对
$$a_{n+1}=rac{1}{2}igg(a_n+rac{1}{a_n}igg)$$
 两边求极限

得
$$a = \frac{1}{2} \left(a + \frac{1}{a} \right)$$

解得 $a=\pm 1$

又因为 $\forall n \in \mathbb{N}^*, \ a_n \geq 1$ 所以 $a \geq 1$

综上所述,a=1 即 $\lim_{n \to +\infty} a_n = 1$