Importing the Libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Import the dataset

```
In [2]: dataset=pd.read_csv("C:/Users/navna/Downloads/Data_lab_exam.csv")
```

In [3]: dataset

	features	observ_features	price_per_square_foot
0	0.44	0.68	511.14
1	0.99	0.23	717.10
2	0.84	0.29	607.91
3	0.28	0.45	270.40
4	0.07	0.83	289.88
95	0.99	0.13	636.22
96	0.28	0.46	272.12
97	0.87	0.36	696.65
98	0.23	0.87	434.53
99	0.77	0.36	593.86

100 rows × 3 columns

In [4]: dataset.shape

(100, 3)

```
In [5]: dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 3 columns):
    Column
                         Non-Null Count Dtype
    -----
                         -----
 0
   features
                         100 non-null
                                        float64
    observ_features
                         100 non-null
                                        float64
price_per_square_foot 100 non-null
                                        float64
dtypes: float64(3)
memory usage: 2.5 KB
```

In [6]: dataset.isna()

	features	observ_features	price_per_square_foot
0	False	False	False
1	False	False	False
2	False	False	False
3	False	False	False
4	False	False	False
95	False	False	False
96	False	False	False
97	False	False	False
98	False	False	False
99	False	False	False

localhost:8888/notebooks/PML/ML Lab Exam.ipynb

100 rows × 3 columns

	features	observ_features	price_per_square_foot
count	100.000000	100.000000	100.000000
mean	0.550300	0.501700	554.214600
std	0.293841	0.307124	347.312796
min	0.010000	0.000000	42.080000
25%	0.300000	0.230000	278.172500
50%	0.570000	0.485000	514.285000
75%	0.822500	0.760000	751.752500
max	1.000000	0.990000	1563.820000

In [10]:

```
dataset["observ_features"].value_counts()
 0.23
        4
        3
 0.62
        3
 0.69
 0.40
        3
 0.64
        3
 0.04
        1
 0.44
        1
 0.93
        1
 0.60
        1
 0.80
        1
 Name: observ_features, Length: 61, dtype: int64
```

Checking Null Values

```
features 0
observ_features 0
price_per_square_foot 0
```

dtype: int64

dataset.isnull().sum()

Checking Outliers

```
plt.figure(figsize=(15,7))
    box_plot=sns.boxplot(data=dataset)
    #box_plot.set_xticklabels(box_plot.get_xticklabels(),rotation = 60)
```


plt.scatter(dataset['features'],dataset['price_per_square_foot'])
plt.show()

plt.scatter(dataset['observ_features'],dataset['price_per_square_foot'])
plt.show()

In [15]: sns.pairplot(dataset)

<seaborn.axisgrid.PairGrid at 0x1197f2f57f0>

Conclusion:-

As the number of features and its respective observed_features are incresed then the price is also increases respectively.

Preprocessing Scaling the data

```
In [19]: df.head()
```

	0	1	2
0	-0.377265	0.583471	-0.124647
1	1.503928	-0.889115	0.471350
2	0.990875	-0.692770	0.155381
3	-0.924521	-0.169184	-0.821290
4	-1.642794	1.074333	-0.764919

Identifying dependant and independant variables

```
# Independent Variable
X=dataset.iloc[:,0:2].values

# Dependent Variable
y=dataset.iloc[:,-1].values
```

```
In [21]: #Check the values of Independent Variable print(X)
```

[[0.44 0.68] [0.99 0.23] [0.84 0.29] [0.28 0.45] [0.07 0.83] [0.66 0.8] [0.73 0.92] [0.57 0.43] [0.43 0.89] [0.27 0.95] [0.43 0.06] [0.87 0.91] [0.78 0.69] [0.9 0.94] [0.41 0.06] [0.52 0.17] [0.47 0.66] [0.65 0.43] [0.85 0.64] [0.93 0.44] [0.41 0.93] [0.36 0.43] [0.78 0.85] [0.69 0.07] [0.04 0.52] [0.17 0.15] [0.68 0.13] [0.84 0.6] [0.38 0.4] [0.12 0.65] [0.62 0.17] [0.79 0.97] [0.82 0.04] [0.91 0.53] [0.35 0.85] [0.57 0.69] [0.52 0.22] [0.31 0.15]

- [0.6 0.02]
- [0.99 0.91]
- [0.48 0.76]
- [0.3 0.19]
- [0.58 0.62]
- [0.65 0.17]
- [0.03 0.1,]
- [0.6 0.69]
- [0.95 0.76]
- [0.47 0.23]
- [0.15 0.96]
- [0.01 0.03]
- [0.26 0.23]
- [0.01 0.11]
- [0.45 0.87]
- [0.09 0.97]
- [0.05 0.57]
- [0.96 0.25]
- [0.63 0.58]
- [0.06 0.42]
- [0.1 0.24]
- [0.26 0.62]
- [0.41 0.15]
- [0.91 0.95]
- [0.83 0.64]
- [0.44 0.64]
- [0.2 0.4]
- [0.43 0.12]
- [0.21 0.22]
- [0.88 0.4]
- [0.31 0.87]
- [0.99 0.99]
- [0.23 0.26]
- [0.79 0.12]
- [0.02 0.28]
- [0.89 0.48]
- [0.02 0.56]
- [0.92 0.03]
- [0.72 0.34]
- [0.3 0.99]
- [0.86 0.66]
- [0.47 0.65]
- [0.79 0.94]
- [0.82 0.96]
- [0.9 0.42]

```
[0.19 0.62]
[0.7 0.57]
[0.7 0.61]
[0.69 0.]
[0.98 0.3]
[0.3 0.08]
[0.85 0.49]
[0.73 0.01]
[1. 0.23]
[0.42 0.94]
[0.49 0.98]
[0.89 0.68]
[0.22 0.46]
[0.34 0.5]
[0.99 0.13]
[0.28 0.46]
[0.87 0.36]
[0.23 0.87]
[0.77 0.36]]
```

```
In [22]: #Check the values of dependent Variable print(y)
```

```
[ 511.14 717.1
                607.91 270.4
                               289.88 830.85 1038.09 455.19 640.17
 511.06 177.03 1242.52 891.37 1339.72 169.88 276.05 517.43 522.25
 932.21 851.25 640.11 308.68 1046.05 332.4
                                              171.85 109.55 361.97
                                              895.54 518.25 638.75
 872.21
         303.7
                256.38 341.2 1194.63
                                     408.6
 301.9
         163.38
                240.77 1449.05 609.
                                      174.59 593.45 355.96 671.46
1193.7
         278.88
                411.4
                        42.08
                              166.19
                                       58.62
                                              642.45 368.14
                                                            702.78
 615.74 143.79
               109.
                        328.28 205.16 1360.49 905.83 487.33 202.76
 202.01 148.87 745.3
                       503.04 1563.82 165.21 438.4
                                                      98.47 819.63
 174.44 483.13 534.24 572.31 957.61 518.29 1143.49 1211.31 784.74
         684.38 719.46 292.23 775.68 130.77 801.6
                                                     323.55 726.9
 661.12 771.11 1016.14 237.69 325.89 636.22 272.12 696.65 434.53
 593.86]
```

Splitting the dataset(Training and Testing)

```
In [23]: from sklearn.model_selection import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25, random_state=28)

In [24]: X_train.shape,X_test.shape,y_train.shape,y_test.shape
    ((75, 2), (25, 2), (75,), (25,))
```

```
In [25]: # Check the values of X_train data
X_train
```

```
array([[0.3 , 0.99],
       [0.47, 0.65],
       [0.42, 0.94],
       [0.27, 0.95],
       [0.31, 0.87],
       [0.19, 0.62],
       [0.41, 0.93],
       [0.89, 0.68],
       [0.01, 0.03],
       [0.86, 0.66],
       [0.06, 0.42],
       [0.26, 0.23],
       [0.87, 0.91],
       [0.93, 0.44],
       [0.34, 0.5],
       [0.63, 0.58],
       [0.88, 0.4],
       [0.96, 0.25],
       [0.3, 0.19],
      [0.98, 0.3],
       [0.23, 0.87],
       [0.79, 0.97],
       [0.7, 0.57],
       [0.84, 0.6],
       [0.6, 0.02],
       [0.47, 0.66],
       [0.1, 0.24],
       [0.87, 0.36],
       [0.89, 0.48],
       [0.15, 0.96],
       [0.17, 0.15],
       [0.84, 0.29],
       [0.91, 0.95],
       [0.9, 0.42],
       [0.44, 0.64],
       [0.65, 0.43],
       [0.43, 0.06],
       [0.43, 0.12],
```

[0.7, 0.61], [0.41, 0.15], [0.26, 0.62], [0.73, 0.01], [0.28, 0.46], [0.6, 0.69], [1. , 0.23], [0.69, 0.], [0.07, 0.83], [0.68, 0.13], [0.52, 0.17], [0.38, 0.4], [0.23, 0.26], [0.02, 0.28], [0.31, 0.15], [0.49, 0.98], [0.35, 0.85],[0.83, 0.64], [0.95, 0.76], [0.79, 0.94], [0.77, 0.36],[0.57, 0.43],[0.65, 0.17], [0.04, 0.52], [0.43, 0.89], [0.79, 0.12], [0.22, 0.46], [0.69, 0.07], [0.45, 0.87], [0.21, 0.22], [0.78, 0.69], [0.85, 0.49], [0.28, 0.45],

[0.82, 0.04], [0.78, 0.85], [0.66, 0.8], [0.99, 0.23]])

localhost:8888/notebooks/PML/ML Lab Exam.ipynb

```
In [26]: # Check the values of X_train data
y_train
```

```
array([ 572.31, 518.29, 661.12, 511.06, 503.04, 283.7, 640.11, 1016.14, 42.08, 957.61, 143.79, 166.19, 1242.52, 851.25, 325.89, 615.74, 745.3, 702.78, 174.59, 775.68, 434.53, 1194.63, 684.38, 872.21, 240.77, 517.43, 109. , 696.65, 819.63, 411.4 , 109.55, 607.91, 1360.49, 784.74, 487.33, 522.25, 177.03, 202.01, 719.46, 205.16, 328.28, 323.55, 272.12, 671.46, 726.9 , 292.23, 289.88, 361.97, 276.05, 303.7 , 165.21, 98.47, 163.38, 771.11, 518.25, 905.83, 1193.7 , 1143.49, 593.86, 455.19, 355.96, 171.85, 640.17, 438.4 , 237.69, 332.4 , 642.45, 148.87, 891.37, 801.6 , 270.4 , 408.6 , 1046.05, 830.85, 717.1 ])
```

In [27]: y_train

```
array([ 572.31, 518.29, 661.12, 511.06, 503.04, 283.7, 640.11, 1016.14, 42.08, 957.61, 143.79, 166.19, 1242.52, 851.25, 325.89, 615.74, 745.3, 702.78, 174.59, 775.68, 434.53, 1194.63, 684.38, 872.21, 240.77, 517.43, 109., 696.65, 819.63, 411.4, 109.55, 607.91, 1360.49, 784.74, 487.33, 522.25, 177.03, 202.01, 719.46, 205.16, 328.28, 323.55, 272.12, 671.46, 726.9, 292.23, 289.88, 361.97, 276.05, 303.7, 165.21, 98.47, 163.38, 771.11, 518.25, 905.83, 1193.7, 1143.49, 593.86, 455.19, 355.96, 171.85, 640.17, 438.4, 237.69, 332.4, 642.45, 148.87, 891.37, 801.6, 270.4, 408.6, 1046.05, 830.85, 717.1 ])
```

Multiple Linear Regression Model

Checking R_2 score of model

As r_2 score is very close to 1 our model is prefectly build using Multiple Linear regression model.

Using Polynomial regression

```
In [38]:
           array([1227.5851301 , 146.08456401, 565.59687469, 65.81689213,
                  1119.72212936, 886.73801098, 393.52668936, 340.78389756,
                  454.10622055, 680.85607985, 1176.7266138 , 558.11237933,
                  867.52516976, 650.2671368, 586.130401, 681.84236308,
                  134.28576935, 276.03096469, 963.30758064, 339.04051965,
                   645.79409776, 1064.81326684, -160.24632129, 304.87652985,
                  184.72159285])
          from sklearn import metrics
          r2 score=metrics.r2 score(y test,y predict)
          r2_score
           0.9222052976343534
          metrics.mean squared error(y test,y predict)
```

14133.650472082853

Using Linear regression model hence we can say both are good models to predict house prices

Problem Statement 2

```
In [41]: data=pd.read_csv("C:/Users/navna/Downloads/Data_cust_problem.csv")
```

In [42]: data

	cust_id	age	income	gender	marital_status	buys
0	1	< 21	High	male	single	no
1	2	< 21	High	male	marrid	no
2	3	21 - 35	High	male	single	yes
3	4	> 35	Medium	male	single	yes
4	5	> 35	Low	female	single	yes
5	6	> 35	Low	female	marrid	no
6	7	21 - 35	Low	female	marrid	yes
7	8	< 21	Medium	male	single	no
8	9	< 21	Low	female	marrid	yes
9	10	> 35	Medium	female	single	yes
10	11	< 21	Medium	female	marrid	yes
11	12	21 - 35	Medium	male	marrid	yes
12	13	21 - 35	High	female	single	yes
13	14	> 35	Medium	male	marrid	no

In [43]: data.shape

(14, 6)

```
In [44]: data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14 entries, 0 to 13
Data columns (total 6 columns):
```

#	Column	Non-Null Count	Dtype
0	cust_id	14 non-null	int64
1	age	14 non-null	object
2	income	14 non-null	object
3	gender	14 non-null	object
4	marital_status	14 non-null	object
5	buys	14 non-null	object

dtypes: int64(1), object(5)
memory usage: 800.0+ bytes

```
In [45]: data.isna()
```

	cust_id	age	income	gender	marital_status	buys
0	False	False	False	False	False	False
1	False	False	False	False	False	False
2	False	False	False	False	False	False
3	False	False	False	False	False	False
4	False	False	False	False	False	False
5	False	False	False	False	False	False
6	False	False	False	False	False	False
7	False	False	False	False	False	False
8	False	False	False	False	False	False
9	False	False	False	False	False	False
10	False	False	False	False	False	False
11	False	False	False	False	False	False
12	False	False	False	False	False	False
13	False	False	False	False	False	False

```
In [46]: data.isna().sum()
```

cust_id	0
age	0
income	0
gender	0
marital_status	0
buys	0
dtype: int64	

	age	count
0	21 - 35	4
1	< 21	5
2	> 35	5

In [50]:

sns.barplot(df["age"],df["count"],data=df)

C:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='age', ylabel='count'>

from above graph we can conclude that age>35 and age<25 having higher no. of buying lipstick

```
df_income=data.groupby(["income"],as_index=False).agg(count_I=("buys",'count'))
df_income
```

	income	count_
0	High	4
1	Low	4
2	Medium	6

```
In [52]:
```

sns.barplot(df_income["income"],df_income["count_I"],data=df_income)

C:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='income', ylabel='count_I'>

from above graph we can conclude that medium income having higher no. of buying lipstick

df_gen=data.groupby(["gender"],as_index=False).agg(count_G=("buys",'count'))
df_gen

	gender	count_G
0	female	7
1	male	7

```
In [54]
```

sns.barplot(df_gen["gender"],df_gen["count_G"],data=df_gen)

C:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='gender', ylabel='count_G'>


```
df_marital_status=data.groupby(["marital_status"],as_index=False).agg(count_M=("buys",'count'))
df_marital_status
```

	marital_status	count_M
0	marrid	7
1	single	7

```
In [56]: sns.barplot(df_marital_status["marital_status"],df_marital_status["count_M"],data=df_marital_status)
```

C:\Anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='marital status', ylabel='count M'>

Lable Encoding

	cust_id	age	income	gender	marital_status	buys
0	1	1	0	1	1	0
1	2	1	0	1	0	0
2	3	0	0	1	1	1
3	4	2	2	1	1	1
4	5	2	1	0	1	1

```
age<21 == 1 , age 21-35 == 0 , age>35 == 2
income High == 0 , income medium == 2 , income low == 1
Gender Male == 1 , Gender FeMale == 0
Marital Status Married == 0 , Marital Status Single == 1
Buying Yes == 1 , Buying No == 0
```

Below we are traning the whole data and according to question's test data we are predicting the output

```
X_t=data.drop(['buys','cust_id'],axis=1)
         y t=data.buys
In [60]:
         from sklearn.tree import DecisionTreeClassifier
         dts=DecisionTreeClassifier(criterion='entropy')
         dts.fit(X_t,y_t)
          DecisionTreeClassifier(criterion='entropy')
           test data: [Age < 21, Income = Low, Gender = Female, Marital Status =
           Married]
         dts.predict([[1,1,0,0]])
          C:\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitte
          d with feature names
            warnings.warn(
          array([1])
```

```
from sklearn.tree import plot_tree

fig=plt.figure(figsize=(16,12))
a= plot tree(dts,feature names=X t.columns,fontsize=12,filled=True,class names=['Not Buys','Buys'])
```


Root Node for Desicion tree is Age

In [63]: sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x11902121490>

Using Test train split

```
X_t_train,X_t_test,Y_t_train,Y_t_test=train_test_split(X_t,y_t , test_size=0.35 , random_state=7)
In [65]:
         from sklearn.tree import DecisionTreeClassifier
         dt=DecisionTreeClassifier(criterion='entropy')
         dt.fit(X_t_train,Y_t_train)
           DecisionTreeClassifier(criterion='entropy')
         y_pred_dt=dt.predict(X_t_test)
         dt.predict([[1,1,0,0]])
          C:\Anaconda3\lib\site-packages\sklearn\base.py:450: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitte
           d with feature names
            warnings.warn(
           array([1])
```

```
In [68]:
         from sklearn.metrics import classification_report
         print(classification_report(Y_t_test,y_pred_dt))
                      precision
                                 recall f1-score support
                    0
                           0.33
                                   0.50
                                            0.40
                                                       2
                    1
                           0.50
                                   0.33
                                            0.40
                                                       5
                                            0.40
              accuracy
                                            0.40
             macro avg
                           0.42
                                   0.42
          weighted avg
                           0.43
                                   0.40
                                            0.40
         from sklearn.metrics import confusion_matrix, accuracy_score
         cm=confusion_matrix(Y_t_test,y_pred_dt)
         cm
          array([[1, 1],
                [2, 1]], dtype=int64)
In [70]:
         ### What is the probability of buy
         probability_of_buy = data['buys']
         probability_of_buy.groupby(probability_of_buy).size()
          buys
               5
          Name: buys, dtype: int64
```

```
total_cust=data.buys.count()
        total_cust
         14
        total_buy=9
        total_buy
         9
        percent_buy=(total_buy/total_cust)*100
        percent_buy
         64.28571428571429
In [ ]:
```