```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from \ sklearn.linear\_model \ import \ LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
df = pd.read_csv('/content/HDFC.csv')
```

## ▼ EDA

#Dimention of dataset df.shape



**(**5306, 15)

df.head()

|   | Date           | Symbol | Series | Prev<br>Close | 0pen  | High   | Low   | Last  | Close  | VWAP   | Volume |          |
|---|----------------|--------|--------|---------------|-------|--------|-------|-------|--------|--------|--------|----------|
| 0 | 2000-<br>01-03 | HDFC   | EQ     | 271.75        | 293.5 | 293.50 | 293.5 | 293.5 | 293.50 | 293.50 | 22744  | 6.6      |
| 1 | 2000-<br>01-04 | HDFC   | EQ     | 293.50        | 317.0 | 317.00 | 297.0 | 304.0 | 304.05 | 303.62 | 255251 | 7.7      |
| 2 | 2000-          | HDFC   | EQ     | 304.05        | 290.0 | 303.90 | 285.0 | 295.0 | 292.80 | 294.53 | 269087 | 7.9<br>• |

#checking for null values and the types of data df.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 5306 entries, 0 to 5305 Data columns (total 15 columns):

| Data                                                | COTAMILIS (COCAT IS C | O1411113).     |         |  |  |  |  |  |
|-----------------------------------------------------|-----------------------|----------------|---------|--|--|--|--|--|
| #                                                   | Column                | Non-Null Count | Dtype   |  |  |  |  |  |
|                                                     |                       |                |         |  |  |  |  |  |
| 0                                                   | Date                  | 5306 non-null  | object  |  |  |  |  |  |
| 1                                                   | Symbol                | 5306 non-null  | object  |  |  |  |  |  |
| 2                                                   | Series                | 5306 non-null  | object  |  |  |  |  |  |
| 3                                                   | Prev Close            | 5306 non-null  | float64 |  |  |  |  |  |
| 4                                                   | 0pen                  | 5306 non-null  | float64 |  |  |  |  |  |
| 5                                                   | High                  | 5306 non-null  | float64 |  |  |  |  |  |
| 6                                                   | Low                   | 5306 non-null  | float64 |  |  |  |  |  |
| 7                                                   | Last                  | 5306 non-null  | float64 |  |  |  |  |  |
| 8                                                   | Close                 | 5306 non-null  | float64 |  |  |  |  |  |
| 9                                                   | VWAP                  | 5306 non-null  | float64 |  |  |  |  |  |
| 10                                                  | Volume                | 5306 non-null  | int64   |  |  |  |  |  |
| 11                                                  | Turnover              | 5306 non-null  | float64 |  |  |  |  |  |
| 12                                                  | Trades                | 2456 non-null  | float64 |  |  |  |  |  |
| 13                                                  | Deliverable Volume    | 4797 non-null  | float64 |  |  |  |  |  |
| 14                                                  | %Deliverble           | 4797 non-null  | float64 |  |  |  |  |  |
| <pre>dtypes: float64(11), int64(1), object(3)</pre> |                       |                |         |  |  |  |  |  |
|                                                     |                       |                |         |  |  |  |  |  |

df.describe()

memory usage: 621.9+ KB

|        |        |               |               |              |             |             | _           |             | _            |              |            |
|--------|--------|---------------|---------------|--------------|-------------|-------------|-------------|-------------|--------------|--------------|------------|
|        |        | Prev Close    | 0pen          | High         | Low         | Last        | Close       | VWAP        | Volume       | Turnover     | Trac       |
| (      | count  | 5306.000000   | 5306.000000   | 5306.000000  | 5306.000000 | 5306.000000 | 5306.000000 | 5306.000000 | 5.306000e+03 | 5.306000e+03 | 2456.0000  |
| Taking | out    | the Needed Da | atas          |              |             |             |             |             |              |              | 3          |
|        | std    | 709.395090    | 709.703665    | 721.308080   | 697.450309  | 709.250204  | 709.430515  | 709.109622  | 2.991387e+06 | 3.607844e+14 | 57948.6032 |
| =r = ( | df[['C | lose','Open'  | ,'High','Low' | ,'Last','Pre | v Close']]  |             |             |             |              |              | (          |
|        |        |               |               |              |             |             |             |             |              |              |            |
| r.des  | scribe | ()            |               |              |             |             |             |             |              |              | (          |
|        |        |               |               |              |             |             |             |             |              |              | (          |
|        |        | Close         | 0pen          | High         | Low         | Last        | Prev Close  |             |              |              | (          |
| C      | count  | 5306.000000   | 5306.000000   | 5306.000000  | 5306.000000 | 5306.000000 | 5306.000000 |             |              |              | (          |
| ı      | mean   | 1284.071005   | 1284.393074   | 1304.269732  | 1263.297842 | 1283.885017 | 1283.666114 |             |              |              |            |
|        | std    | 709.430515    | 709.703665    | 721.308080   | 697.450309  | 709.250204  | 709.395090  |             |              |              |            |
|        | min    | 283.850000    | 284.000000    | 290.500000   | 273.250000  | 282.850000  | 271.750000  |             |              |              |            |
|        | 25%    | 668.662500    | 669.712500    | 677.512500   | 660.000000  | 669.000000  | 668.650000  |             |              |              |            |
|        | 50%    | 1136.675000   | 1135.400000   | 1156.725000  | 1119.000000 | 1135.000000 | 1136.275000 |             |              |              |            |
|        | 75%    | 1811.787500   | 1813.812500   | 1835.000000  | 1783.075000 | 1812.000000 | 1811.475000 |             |              |              |            |
|        | max    | 3180.150000   | 3148.000000   | 3262.000000  | 3100.550000 | 3178.000000 | 3180.150000 |             |              |              |            |
|        |        |               |               |              |             |             |             |             |              |              |            |

From this Discriptive statistics we can find that when the Opening price is 1625, High price is 1655 ,low price is 1610 , last price is 1630 and privious close is 1633 the closing price will at 1694 Rs.

cor\_matrix = dfr.corr()
cor\_matrix

|            | Close    | 0pen     | High     | Low      | Last     | Prev Close |
|------------|----------|----------|----------|----------|----------|------------|
| Close      | 1.000000 | 0.998928 | 0.999466 | 0.999403 | 0.999960 | 0.997699   |
| Open       | 0.998928 | 1.000000 | 0.999306 | 0.999326 | 0.998897 | 0.998656   |
| High       | 0.999466 | 0.999306 | 1.000000 | 0.998895 | 0.999428 | 0.998095   |
| Low        | 0.999403 | 0.999326 | 0.998895 | 1.000000 | 0.999365 | 0.998008   |
| Last       | 0.999960 | 0.998897 | 0.999428 | 0.999365 | 1.000000 | 0.997662   |
| Prev Close | 0.997699 | 0.998656 | 0.998095 | 0.998008 | 0.997662 | 1.000000   |

sns.heatmap(cor\_matrix , cmap = 'coolwarm' , annot = False)
plt.title('Correlation of Variables ')

Text(0.5, 1.0, 'Correlation of Variables ')



<sup>&#</sup>x27;\nFrom this Discriptive statistics we can find that when the Opening price is 1625,\nHigh price is 1655 ,low price is 1610 , last p

...

From this correlation analysis we can find that the every independent variable is having a high correlation with the dependent variable.

'\nFrom this correlation analysis we can find that the every independent variable\nis having a high correlatiion with the dependent

#Checking the relationship of each variable with Dependent variable

sns.regplot(x = df[['Close']], y = df[['Open']], data= df)
plt.title("Relationship of Closing and Opening price")

Text(0.5, 1.0, 'Relationship of Closing and Opening price')



sns.regplot(x = df[['Close']], y = df[['High']], data= df)
plt.title("Relationship of Closing and High price")

Text(0.5, 1.0, 'Relationship of Closing and High price')



sns.regplot(x = df[['Close']], y = df[['Low']], data= df)
plt.title("Relationship of Closing and Low price")

 ${\sf Text}({\tt 0.5},\ {\tt 1.0},\ {\tt 'Relationship\ of\ Closing\ and\ Low\ price'})$ 



 $sns.regplot(x = df[['Close']], \ y = df[['Last']], \ data= \ df) \\ plt.title("Relationship of Closing and Last price")$ 

Text(0.5, 1.0, 'Relationship of Closing and Last price')



 $sns.regplot(x = df[['Close']], \ y = df[['Prev \ Close']], \ data= \ df) \\ plt.title("Relationship of \ Closing \ and \ Previouse \ close \ price")$ 

Text(0.5, 1.0, 'Relationship of Closing and Previouse close price')



Each independent variable has a positve realtionship with the dependent variable, and Previous closing price have some outliers.

<sup>&</sup>quot;\nEach independent variable has a positve realtionship with the dependent\nvariable,and Previous closing price have some outliers.\

```
#Alloting the Dependent and Independent Variable
y = df[['Close']]
x = df[['Open','High','Low','Last','Prev Close']]
#Spiliting the Dependent and Independet Variables in Training and Testings values
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.3 , random_state = 0)
#dimentions of training models
x_train.shape
     (3714, 5)
#dimentions of testing models
x_test.shape
     (1592, 5)
#Training the model
lm = LinearRegression()
lm.fit(x_train,y_train)
print('Intercept: ' , lm.intercept_)
print('coefficient : ' , lm.coef_)
     Intercept: [-0.03689152]
coefficient : [[-0.0942522    0.13722122    0.13469509    0.82435532 -0.00180514]]
'''From this Regression anaalysis we can see that two variables are negatively
related while training the model that are Previous close price and open price.'''
     'From this Regression anaalysis we can see that two variables are negatively\nrelated while training the model that are Previous clo
MODEL
Close = 0.4633596 - (0.06695249 Open) + (0.10075534 High) + (0.09384975 Low) + (0.8748669 Last) - (0.0028351 * Perv Close)
     "\nMODEL\nClose = 0.4633596 - (0.06695249 Open) + (0.10075534 High) + (0.09384975 Low) + (0.8748669 Last) - (0.0028351 * Perv Close)
#Predicting the model
yhat = lm.predict(x_test)
print(yhat)
     [[1047.19614859]
      [ 354.90371574]
      [1830.30233441]
      [ 935.87265321]
      [ 811.4431188 ]
      [ 730.30187364]]
print({'Actual': y_test, 'Predicted': yhat})
     {'Actual':
                         Close
     3655 1044.60
            359.15
     29
     5135 1829.85
     3671 1017.80
     4681 1658.30
     4442 1762.25
     4181 1301.95
           938.95
     3534
            810.25
     3169
            729.40
     [1592 rows x 1 columns], 'Predicted': array([[1047.19614859],
             [ 354.90371574],
             [1830.30233441],
             [ 935.87265321],
             [ 811.4431188 ],
             [ 730.30187364]])}
```

```
axl = sns.distplot(y_test, hist = False , color = 'r')
sns.distplot(yhat, hist = False , color = 'b', ax = axl)
```

<Axes: ylabel='Density'>



#In comparing the predicted values with actual values, the values are same. let's justify by evaluating the model.

```
#Model Evalutation
```

From the above two model evaluation matrix we can find that the goodness of fit is 0.9999 which explians that the independent variable explians the 99.99% of the dependent variable and The average error between the predictions and actuals in this dataset is 16.03, which is likely a good value considering the average closing price is 1694.

...

"\nFrom the above two model evaluation matrix we can find that the goodness of fit\nis 0.9999 which explians that the independent va and actuals\nin this dataset is 16.03, which is likely a good value considering the average\nclosing price is 1694.\n"

```
sns.regplot( x = y_test, y = yhat , data = df)
plt.title('Relatioship of Y_test and Yhat')
plt.ylabel('y_test')
plt.xlabel('yhat')
```

Text(0.5, 0, 'yhat')

## Relatioship of Y test and Yhat

3000 -

. . .

ANALYSING WITH THE MODEL

We will take some relevant unseen values of independent variable to predict the dependent variable closing price.

Open : 3326 High : 3335 Low : 3302 Last : 3308 Prev Close : 3324

"\nANALYSING WITH THE MODEL\nWe will take some relevant unseen values of independent variable to predict the dependent variable clos

l
values = [[3326,3335,3302,3308,3324]]

closep = lm.predict(values)

print('Closing Price :', closep)

Closing Price : [[3309.84338735]]

...
If the Open pirce is 3326, High price is 3335 , Low price is 3302 ,
Last price is 3308 and Prev Close price is 3324 the closing price will be 3308.

"\nIf the Open pirce is 3326, High price is 3335 , Low price is 3302 ,\nLast price is 3308 and Prev Close price is 3324 the closing

. . .

## CONCLUSION

According to the descriptive statistics, the closing price will be 1694 Rs. while the opening price is 1625, the high price is 1655, the low price is 1610, the last price was 1630, and the previous closure was 1633. Each independent variable and the dependent variable have high correlations according to the correlation analysis, which suggests a favourable association. There are some anomalies in the prior closing price, though. The model's open price and preceding closing price have a negative association, according to the regression analysis.

Close = 0.4633596 - (0.06695249 Open) + (0.10075534 High) + (0.09384975 Low) + (0.8748669 Last) - (0.0028351 \* Prev Close) is the formula

The expected values and actual values are very similar. The dependent variable is explained by the independent variables in 99.99% of the cases when the goodness of fit is 0.9999. Given the average closing price of 1694, the average difference between projections and actuals is 16.03, which is fair. Therefore this Machine learning Model is Valid.

"\nCONCLUSION\nAccording to the descriptive statistics, the closing price will be 1694 Rs.\nwhile the opening price is 1625, the hig 3. Each independent\nvariable and the dependent variable have high correlations according to the\ncorrelation analysis, which sugges l's open price and preceding\nclosing price have a negative association, according to the regression analysis.\n\nClose = 0.4633596 lose) is the formula for the model.\n\nThe expected values and actual values are very similar. The dependent variable\nis explained average closing price of 1694, the average\ndifference between projections and...'