实验四 秒表设计及验证

一、功能介绍

本指导设计一个具有秒表功能的模块,功能描述如下:

- 秒表计时功能。当rst_n无效时(rst_n=0,有效, rst_n=1,无效), sw_en使能后(sw_en=1), 从00:00开始计时,当计时到达预设的定时时间,产生time out高电平信号,计时继续;
- sw en置低时计时停止,当前时间保持不变,内部计时停止;
- pause信号有效时(pause=1),当前显示时间不变(输出不变),但内部计时仍继续。当pause 信号无效后,恢复输出当前计时时间。
- clear信号有效时, 计时清零。
- 计时到达59'99时,从零重新计时并且将time out信号置为无效(time out=0,无效);
- 输出当前计时的秒数,精度为0.01秒(显示毫秒数的百位和个位);
- 全局rst_n信号(低电平有效)发生时,秒表清零,计时停止,并且将之前的time_out信号置低。
- 产生time out的内部预设值,在代码里自行设定
- 输入时钟100Mhz

二、端口定义

表 1 秒表端口定义

portname	I/O	描述
clk	I	系统输入时钟 100Mhz
rst_n	I	异步复位信号,低电平有效(复位),高电平无效(电路正
		常工作)
sw_en	Ι	高电平有效,高电平是电路计时,低电平电路计时停止
pause	I	高电平有效,有效时电路计时输出保持不变,内部计时不停
		止,低电平时电路正常输出内部计时
clear	I	高电平有效,有效时内部计时清 0,注意 clear 和 rst_n 的区别
clk_out	О	输出时钟, 25Mhz
time_sec_h[2:0]	О	当前计时, 秒数的十位, 0~5
time_sec_l[3:0]	О	当前计时, 秒数的个位, 0~9
time_msec_h[3:0]	О	当前计时,毫秒数的十位,0~9
time_msec_l[3:0]	О	当前计时,毫秒数的个位,0~9
time_out	О	闹钟标记信号,高电平有效,当计时到达预设定时后,该信
		号有效,当计时到达59.99后清零
		产生time_out的内部预设值,在代码里自行设定

二、实验要求

完成 Verilog 代码编写

完成 testbench,实现对于秒表功能的验证,要求验证所有功能实验报告里详细描述如何实现,如何验证代码功能的正确性

三、 实验报告

实验报告按照要去递交 canvas,如果有困难递交的同学请向老师和助教说明。

报告中需附上完整的 verilog 源代码 (添加适当的注释), testbench 代码以及生成的波形图(请压缩成一个文件,文件名为 LABn_学号_姓名,如 LAB3_5092119058_李雷)。