Problema NP-Completo Ejercicio 1m - Relación 6

Alejandro Manzanares Lemus

Numeración Grundy en Grafos (GRUNDY):

Dado un grafo dirigido G = (V, A), ¿existe una numeración $L : V \to N$, donde el mismo número puede asignarse a más de un vértice y tal que cada L(u) es igual al mínimo de todos los valores enteros que no están en $\{L(v) : (u, v) \in A\}$.

1 GRUNDY está en NP

Para demostrar que el problema **GRUNDY** pertenece a NP, diseñaremos una Máquina de Turing (MT) no determinista tal que $MT \in L$.

El procedimiento de la MT será el siguiente: Dado un grafo dirigido G = (V, A), elegiremos un vértice k de forma no determinista. Si k no tiene valor asignado, asignaremos el valor entero mínimo distinto de todo valor L(v) tal que existe una arista (v,k) —asignaremos a k el valor entero mínimo distinto a el valor de todos sus vecinos—. Una vez asignado el valor de k, comprobaremos para todo vértice w tal que existe la arista (k,w), que el valor L(w) es menor o igual que el valor L(k). Si esto no se cumple, la numeración L no es una numeración grundy y MT rechaza. Si hemos seleccionado todos los vértices, entonces L es una numeración grundy y MT acepta.

1.1 Máquina de turing

```
Entrada: Conjunto de (V,A) con n vertices:

Seleccionar un vertice k de manera no determinista:

Si k no tiene valor asignado:

Asignar el valor entero minimo distinto de todo valor L(v) tal que existe (k,v)

Comprobar todos los vertices w para los que existe una arista (w,k)

Si L(w) <= L(k):

Rechazar

No quedan vertices sin valor asignado:

Aceptar
```

La MT previamente definida pertenece a L, dado que, solo es necesario almacenar el valor de la asignación L para cada vértice k, por tanto, como máximo se almacenarán $\log(n)$ números y esto nos lleva a que $MT \in L$.

2 Reducción de un problema NP-Completo

Para demostrar que **GRUNDY** es un problema NP-Completo, estableceremos una reducción de un problema que sabemos que es NP-Completo. En nuestro caso estableceremos la reducción del problema **3-SAT exacto**.

3-SAT exacto:

Dado un conjunto de variables U y un conjunto de cláusulas C de longitud exactamente igual a 3, determinar si se le puede asignar un valor de verdad a cada variable, de tal forma que en cada cláusula haya un literal que es cierto.

Primero, veamos una manera de convertir una instancia del problema **3-SAT** en una instancia del problema **GRUNDY**. Dada una instancia α del problema 3-SAT con n variables y m clausulas, generaremos un grafo $(G_{\alpha}) = (V, A)$ tal que |V| = 8n + 3m. Para cada variable x_i de α generaremos el grafo H_i :

Figure 1: Grafo H_i

El valor de $y_i = \bar{x_i}$, por tanto, las unicas posibles numeraciones grundy para H_i con $x_i = 0$ o $x_i = 1$ son:

Figure 2: Numeraciones grundy para H_i

Además, para cada clausula C_j de creamos el siguiente grafo:

Figure 3: Subgrafo correspondiente a cada ${\cal C}_j$

Crearemos una arista que una C_j con y_i si en C_j aparece x_i o $\bar{y_1}$ si en C_j aparece $\bar{x_i}$.

En la siguiente figura puede verse un ejemplo del procedimiento para transformar la instancia α de **3-SAT** en la instancia G_{α} de **GRUNDY** con $\alpha = (\bar{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \bar{x_2} \vee \bar{x_3}).$

Figure 4: G_{α} correspondiente a $(\bar{x_1} \lor x_2 \lor x_3) \land (x_1 \lor \bar{x_2} \lor \bar{x_3})$

Un caso positivo para **3-SAT** implica que α es satisfacible. Si construimos el grafo G_{α} , tendremos tantos subgrafos H_i como variables x_i distintas haya en α . Estos subgrafos H_i serán de la forma que se pudo ver en la figura 2, dependiendo de la asignación verdadero-falso que hace a α ser satisfacible (la numeración de grundy de cada H_i no se ve afectada por los arcos procedentes de cada C_j). Cada clausula C_j de α debe contener al menos un literal cierto, es decir, que al menos un x_i o $\bar{x_i}$ debe ser 1. Por tanto, cada vértice C_j de G_{α} esta conectado con un vértice cuya numeración es L=0 (dado que $y_i=\bar{x_i}$). Por tanto, se puede establecer una numeración grundy para el subgrafo correspondiente a cada C_j de manera que $L(C_j)=2$ dado que C_j puede estar conectado con vertices con L=1 o L=0 (como minimo uno debe ser L=0 y por tanto $L(C_j)\neq 0$).

Siendo $L(C_j) = 2$, solo cabe que $L(A_j) = 1$ y $L(B_j) = 0$ y por tanto, existe una numeración grundy para el grafo G_{α} si y solo si α es satisfacible.

Un caso positivo para **GRUNDY** implica que para un grafo G_{α} existe una numeración grundy. Supongamos que cada nodo C_j esta conectado con vertices L = 1.

Si $L(A_j) = 0$ entonces $L(C_j) = 2$ y $L(B_j) = 0$, lo que nos lleva a que la numeración L no constituye una numeración grundy.

Si $L(A_j) \ge 1$ encontes $L(C_j) = 0$ y $L(B_j) = 1$, lo que nos lleva a que $L(A_j)$ debe ser 0 para que L constituya una numeración grundy.

Como no es posible establecer una numeración grundy en el subgrafo asociado a C_j , la suposición de que cada nodo C_j esta conectado con vertices L=1 es falsa. Al ser falsa esta afirmación, esto quiere decir que al menos un vertice conectado a C_j debe ser L=0. Esto quiere decir que al menos un literal de cada clausula C_j debe ser verdadero (debe ser 1) y por tanto α es satisfacible si y solo si existe una numeración grundy para el grafo G_{α} .

Una vez visto que un caso positivo de **3-SAT** se transforma en un caso positivo de **GRUNDY** y viceversa. El problema **GRUNDY** se reduce a **3-SAT** y como sabemos que **3-SAT** es un problema NP-Compelto, queda demostrado que **GRUNDY** es un problema NP-Completo.