106 學年度學生專題報告競賽

超聲波心動圖 預測心臟病患者短期死亡風險

國立台北大學統計學系 陳庭安國立台北大學統計學系 張庭瑋國立台北大學統計學系 藍睿豪

國立台北大學統計學系 黃佳慧助理教授 指導

目錄

1	研究背景	3
2	研究動機與目的	3
	2.1 研究動機	3
	2.2 研究目的	3
3	資料說明	4
	3.1 資料來源	
	3.2 變數說明	4
	一、患者資料	
	二、心臟狀況	5
4	資料處理	
	4.1 遺失值插補	
	4.1.1 遺失值分布	
	4.1.2 KNN-插補法	
	4.2 資料探索與變數轉換	
	4.2.1 心包積水與短期存活情況的關係	8
	4.2.2 其他變數與短期存活情況的關係	8
	4.2.3 變數轉換	10
	4.2.4 解釋變數間的關係與離群值	11
5	資料分析	
	5.1 變數選擇	11
	5.2 模型選擇	12
	5.3 模型預測結果	13
	結論	
7	參考資料與文獻	15
8	分工	15

圖目錄

啚	1 存活率	4
昌	2 患者術後追蹤結果類型	5
昌	3 心包積液示意圖-正常(左)、異常(右)	5
昌	4 排序後資料中遺失值分布	6
昌	5 遺失值插補流程	7
昌	6 模擬遺失值的插補結果	8
昌	7 心包積水情況下存活與否的患者各項數值分布圖	9
昌	8 無心包積水情況下存活與否的患者各項數值分布圖	9
啚	9 變數轉換概念	.10
啚	10 轉換後有心包積水情況下存活與否分布圖	
啚	11 轉換後無心包積水情況下存活與否分布圖	.11
啚	12 心包有積水患者死亡風險預測(一)	
昌	13 心包有積水患者死亡風險預測(二)	
啚	14 心包有積水患者死亡風險預測(三)	
啚	15 心包無積水患者死亡風險預測	.14
	表目錄	
表	1 有無心包積水現象患者存活情形	8
表	2 變數排序後 Wilks' Lambda	.12
表	3 預測有心包積水現象患者存活準確率	.13
表	4 預測無心包積水現象患者存活準確率	.13

1 研究背景

根據我國衛生福利部(Ministry of Health and Welfare)於 2016年公告的國人十大死因統計,心臟疾病死亡人數位居第二,僅次於癌症(惡性腫瘤)[1]。另外,世界衛生組織(World Health Organization)於同年 2016年的數據顯示,全球年死亡總數約 5600萬人,其中高達 30%的人死於心血管疾病,為全球死亡人數最高的疾病[2]。

2 研究動機與目的

2.1 研究動機

心臟疾病的不可忽視除了在於每年死亡人數居高不下,還有高復發率。罹患心臟病以前預防當然重要,一旦罹患,防止復發的「二度預防」更是不容輕視,術後追蹤尤為重要。

目前常用於檢測心臟狀況的醫療設備,超聲波心動圖(Echocardiogram),是一種運用超聲波來顯示心臟結構的檢查方法,具有無侵入性、無放射性與即時提供影像等優點,可用於檢測心臟腔室的大小、肌肉的厚薄、收縮舒張功能的好壞等[3]。

2.2 研究目的

圖一為資料中 132 位患者追蹤期間的存活率,術後一年內情況還算穩定,年底存活率逾 90%。第二年年底存活率不到 70%左右,且與術後 2 年內存活率的跌幅相比,2 年以後有更大的下降幅度,復發情形更為嚴重,因此,若能提前評估患者在邁入第三年前的復發風險,並提早做術後保養,期望能避免心臟再次損傷,以做到二次預防。

故此研究欲透過超聲波心動圖量化患者術後心臟的狀況,進而運用該數值有效預測患者兩年內復發死亡風險,並探究復發風險因子的影響程度,以協助醫師及早做出適當醫療處置,預防疾病的復發。

Survival Rate (Kaplan-Meier Curve)

3 資料說明

3.1 資料來源

資料取自 UCI 數據平台的超聲波心動圖資料集(Echocardiogram Dataset),為 美國邁阿密的心臟病學專家 Dr. Evlin Kinney, 蒐集自 132 位心臟疾病患者,其術 後追蹤的結果 [4]。

3.2 變數說明

一、患者資料

- 1. Age at heart attack: 患者病發年齡,分布年齡 55~65 歲。
- 2. Survival: 術後追蹤時間。
- 3. Still Alive: 追蹤結果,死亡或存活。
- 4. Alive: 術後兩年內死亡或存活,屬新增變數。 為達成第 2.2 節提及的研究目的,藉由前兩個變數,術後追蹤時間與追 蹤結果,將資料中患者分為四類如圖 2。A 類病患不到兩年死亡, Alive 記作 0; C、D 類病患術後兩年仍存活, Alive 記作 1; B 類病患術後追 蹤不到兩年存活,滿兩年時是否存活未可知,且追蹤時間長度也不足, 故此類病患不在此研究探討範圍內,扣除此類患者,資料樣本數為90。

● 病發.手術時點 追蹤結果: × 死亡 O 存活 ■ 2 年期間

▲ 圖 2 患者術後追蹤結果類型

二、心臟狀況

1. PE(Pericardial effusion):是否有過多心包積液。

在心臟外面有兩層薄膜覆蓋,醫學上稱之為心包,兩層心包間的間隙含有少量液體便是心包積液。少量積水能保護心臟,過多液體積聚會使心包不易伸展,進而使心臟受壓迫,嚴重恐危及生命[5]。

▲ 圖 3 心包積液示意圖-正常(左)、異常(右)

- FS(Fractional shortening):縮短分率,衡量左心室的收縮程度。
 FS=(LVEDD-LVESD)/LVEDDx100%
 LVEDD(left ventricular end-diastolic dimension): 左心室舒張末期內徑
 LVESD(left ventricular end-systolic dimension): 左心室收縮末期內徑
- 3. **EPSS**(E-point septal separation): 舒張早期二尖瓣前葉與室間隔之間的距離,與左心室擴張、收縮力有關。
- 4. LVDD (left ventricular end-diastolic dimension): 左心室舒張末期內徑。
- 5. Wall motion index: 左心室壁運動指標,衡量心跳強弱程度。

上述衡量心臟狀的指標多與左心室有關,原因是左心室負責體循環,負責把 血送到全身,承載的血壓較大,故當心臟病發時,左心室是最容易觀察到異常的 部位[6]。

4 資料處理

4.1 遺失值插補

4.1.1 遺失值分布

由圖 4,資料中共有 4%遺失值,有 20%的資料有部分欄位的值有缺失,80% 無任何欄位有缺失。

4.1.2 KNN-插補法

此資料採 2003 年提出的 K 近鄰插補法(KNN Imputation)插補遺失值[7];藉由與遺失資料性質最為相似的 K 筆資料,去推估遺失的資訊。

主要影響插補結果準確性的因素包含參考資料的數目、相似的定義、遺失值的估計方式。若參考資料數目 K 值取過大,參考對象太多,將模糊化資訊的特

徵;若 K 值取太小,則易受到雜訊影響,或因過度依賴樣本資料而失真。資料間相似度的衡量會影響到取到哪些相似的參考對象的數值, 進而影響到插補結果。此研究對於資料間相似性的定義為先將資料集標準化之後, 再以歐幾里德距離計算其相似程度。

插補流程如圖 5,為了採取適當的 K 值,在此以 80%無遺失值的資料,隨機模擬出具有 4%遺失值的資料,經標準化後計算資料間的歐式距離,對於每個遺失資訊取 K 個與該筆資料最相似的對象,K 值在此研究分別取 1 至 50。若插補對象屬於類別資料,則以 K 個參考對象的數值之眾數補之;若屬連續型資料,則分別考慮以 K 個參考對象的數值之中位數、加權平均數補之。中位數可避免掉離群值所帶來的雜訊影響,而加權平均法在此給予的權重大小算法定義為 exp (-Euclidean distance),取決於相似度,即標準化後的歐式距離,越是與有遺失值的資料相似的參考對象,給予其值越大的權重。距離與權重的反比關係,使得在此定義的權重公式為一遞減函式。當插補完模擬資料後的結果,與原來完整的資料比較,以 RMSE(Root mean square error)衡量插補的誤差,此研究採用誤差最小的 K 值與估計遺失資訊的算法進行遺失值插補。

▲ 圖 5 遺失值插補流程

圖 6 為重複 500 次模擬遺失值資料並進行上述插補流程的結果,藍線、紅線分別是以 K 個參考對象值的中位數、加權平均數插補而得的估計誤差。

整體而言加權平均法的誤差明顯較中位數算法來的要小,因此選擇加權平均 算法。在 K 值小於 7 時,誤差隨著參考對象個數增加而急速下降,表示在此階 段插補的正確資訊不斷上升; K 值取到 7 之後緩慢下降、趨於平緩,代表能獲得的正確資訊幾乎可以由最接近的 7 個資料點提供,因而在此將取 K 值為 7,且以考慮相似度的加權平均法估計整份資料的遺失值。

KNN Imputation Measure (N= 500) Median Weighted Average 1.10 1.05 1.00 0.95 0.90 10 15 20 25 30 35 40 45

▲ 圖 6 模擬遺失值的插補結果

4.2 資料探索與變數轉換

4.2.1 心包積水與短期存活情況的關係

表 1 為有無心包積水(PE)現象患者短期內存活情形。有無心包積水的患者短期內死亡的比例分別為 31%與 27%,此資料在兩獨立母體比例差的檢定下,無足夠證據支持有心包積水患者的死亡比例高於無積水的患者。

	有心包積水	無心包積水
存活	9 (69%)	56 (73%)
死亡	4 (<u>31%</u>)	21 (27%)

▼ 表 1 有無心包積水現象患者存活情形

4.2.2 其他變數與短期存活情況的關係

圖7及圖8分別是考慮患者心包有無積水現象情況下,存活與否的數值分布。 心包有積水現象、存活與否的患者,其年齡、心臟狀況差異較無心包積水現象的 患者大,故預期心包有積水的患者判斷短期死亡風險的可能較容易,因而在後續 資料探索、預測分類時將是否有心包積水現象的患者分開探討。

由圖 7 知心包有積水的患者,短期死亡的患者群,整體發病時的年齡(Age)、心室壁運動指標(Wall.Motion)較大;左心室收縮程度(FS)較小;舒張早期二尖瓣前葉與室間隔距離(EPSS)與舒張末期左心室直徑(LVDD)較集中於中間值。無心包積水現象的患者,短期死亡群的舒張早期二尖瓣前葉與室間隔距離(EPSS)較集中於中間值、心室壁運動指標(Wall.Motion)則較大,與心包有積水患者的結果類似,其他數值並無明顯差異(圖 8)。

▲ 圖 7 心包積水情況下存活與否的患者各項數值分布圖

▲ 圖 8 無心包積水情況下存活與否的患者各項數值分布圖

4.2.3 變數轉換

前一小節有提到圖 7 及圖 8 中舒張早期二尖瓣前葉與室間隔距離(EPSS),與圖 7 中舒張末期左心室直徑(LVDD)值較集中於中間區段,且無明顯左偏或右偏,類似圖 9 左方圖形。為了使之後分類模型(第 5 章)能夠更有效地預測病患死亡的風險,在此考慮做變數轉換,使得兩群數值分布如圖 9 右圖。作法為先將原分布平移至中軸為 0 處,再藉由平方轉換,使得兩端數值映射到大值,中間區段的值則對應至相對小的值。

▲ 圖 9 變數轉換概念

圖 7、圖 8 利用平方轉換後,也對部分右偏的變數做對數轉換,轉換後的分布圖如圖 10 及圖 11,經過轉換的變數名稱後方加上「_t」。

▲ 圖 10 轉換後有心包積水情況下存活與否分布圖

Density plot after Transformation (without PE)

▲ 圖 11 轉換後無心包積水情況下存活與否分布圖

4.2.4 解釋變數間的關係與離群值

忽略掉離群值後,轉換後有無心包積水的資料集中,年齡(Age)、左心室收縮程度(FS)、舒張早期二尖瓣前葉與室間隔距離(EPSS)、舒張末期左心室直徑(LVDD)與心室壁運動指標(Wall.Motion)彼此之間無高度相關或完全相關性,因而建模時無須考慮可能出現共線性的問題。

5 資料分析

5.1 變數選擇

分別計算變數轉換前後、有無心包積水的資料集中,每個解釋變數對短期內存活與否的 Wilks' Lambda(式一),分子為群內變異,分母為群內變異與群間變異的總和,計算結果排序後如表 2。選入具有良好區別不同類別能力的變數,即群間差異越大或群內差異越小、Wilks' Lambda 越小的變數到模型中。

Wilks' Lambda = SSwithin / (SSwithin+ SSbetween) (式一)

▼ 表 2 變數排序後 Wilks' Lambda

變數轉換前/心包積水							
******	Age	FS	EPSS	LVDD	Wall.Motion		
Wilks' Lambda	0.693	0.945	0.956	0.985	0.998		
Wilks'	Wall.Motion	Age	LVDD	EPSS	FS		
Lambda	0.961	0.994	0.998	0.998	1.000		
變數轉換後/心包積水							
Wilks'	LVDD	Age	FS	Wall.Motion	EPSS		
Lambda	0.567	0.693	0.945	0.945	0.946		
	變數轉換後/無心包積水						
Wilks'	EPSS	Wall.Motion	Age	LVDD	FS		
Lambda	0.831	0.959	0.996	0.996	1.000		

5.2 模型選擇

此研究分別採線性判別分析 LDA(Linear Discriminant Analysis)與支持向量機 SVM(Support Vector Machine)分類方法預測短期死亡風險,並以交互驗證 Leave-one-out CV(Cross Validation)方法訓練、測試資料,提高模型可信度。

依前一小節 Wilks' Lambda 小到大排序後的變數,一一加入到分類模型中訓練、測試。考慮變數轉換前後、不同變數選取、分類模型的預測結果準確率如表 3 及表 4。由此二個表格,對於有心包積水的患者最好的預測模型為,經變數轉換後,取 Wilks' Lambda 最小的前三個變數作 LDA,預測準確率近 85%;而對於無心包積水的患者最好的預測模型則是,經變數轉換後,取 Wilks' Lambda 最小的前兩個變數作 LDA,預測準確率達 72%。

▼ 表 3 預測有心包積水現象患者存活準確率

預測準確率(%)					
心包有積水	變數轉換前		心包有積水 變數轉換前 變數轉換		專換後
變數個數	LDA	SVM	LDA	SVM	
1	69	62	69	62	
2	77	46	77	69	
3	69	62	<u>85</u>	62	
4	69	62	77	62	
5	53	62	69	62	

▼ 表 4 預測無心包積水現象患者存活準確率

預測準確率(%)						
心包無積水變數轉換前		變數轉換前		專換後		
變數個數	LDA	SVM	LDA	SVM		
1	69	28	70	65		
2	69	71	<u>72</u>	64		
3	69	28	69	65		
4	69	28	68	68		
5	71	28	66	69		

5.3 模型預測結果

圖 12 至 14 為 LDA 藉由 LVDD 左心室舒張末期內徑(cm)、Age 發病年齡、FS 縮短分率,預測不同年齡階段且心包有積水的患者短期死亡的風險的等值線圖。橫軸左心室舒張末期內徑衡量心臟舒張能力,值小表示舒張不完全;縱軸收縮程度顧名思義為衡量心臟的收縮能力,值小則表示收縮不完全。

當患者術後心臟舒張、收縮力越不足,無論發病年齡大小,短期復發致死的 風險都越高。當考慮患者病發時的年齡,即使同樣的心臟收縮力,越年長的患者 越難以再次承受負荷與損傷,短期死亡風險較高。

圖 15 則是 LDA 藉由 EPSS 舒張早期二尖瓣前葉與室間隔距離(mm)、Wall Motion 左心室壁運動指標,預測無心包積水的患者短期死亡風險的等值線圖,

模型所取的變數與心包有積水患者的模型的截然不同。圖中橫軸二尖瓣前葉與室間隔距離過大或過小,隱含左室擴張和收縮力減退;縱軸室壁運動指標衡量心臟跳動強弱,值為1左右仍屬正常,值越大,表示跳動程度減弱。當左心室擴張和收縮力減退、心臟跳動程度減弱,患者死亡風險高。

6 結論

適合心包有無積水患者的預測指標有所不同,但同樣都考慮了左心室的擴張、收縮能力,另外風險因子還分別包含患者發病年齡與心臟跳動強度。

手術後心臟收縮力弱或心臟跳動強度不夠的患者,心臟較難以承載高壓高速

的血流,若沒有適當保養,復發死亡的可能性很高。另外年長的患者身體狀況較不堪負荷,所以儘管術後心臟收縮力與壯年患者相同,心臟遇到損傷後的結果會 比壯年人嚴重。

因此,年長者或心臟功能原本就較弱的族群平時就要特別注意保養,若心臟 曾受過損傷或手術,術後的保養更加不得輕忽,以免心臟負荷過重,導致疾病復 發。

7 參考資料與文獻

- 1 Ministry of Health and Welfare of the Republic of China, https://www.mohw.gov.tw/cp-16-33598-1.html
- World Health Organization, http://www.who.int/cardiovascular_diseases/zh/
- 3 陳偉光、王泰鴻等(2007)。深知你心:心臟檢查面面觀。香港。知出版。
- 4 UCI Machine Learning Repository
- 5 健康猴: 心包積液的症狀和治療方法, http://www.jiankanghou.com/jibing/33368.html
- 6 中亞健康網: 心臟血管, https://www.ca2-health.com/cvd
- Patista, G. E. & Monard, M. C. (2003). An analysis of four missing data treatment methods for supervised learning. *Journal of Applied Artificial Intelligence*, 17:519-533

8 分工

- 陳庭安-研究動機與目的,資料處理,分析,結論,參考資料與文獻蒐集
- 張庭瑋-研究背景,研究動機與目的,資料說明,參考資料與文獻蒐集
- 藍睿豪-研究動機與目的,分析方法,參考資料與文獻蒐集