Kod ucznia	Liczba punktów	_

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 STOPIEŃ WOJEWÓDZKI– 02.03.2018

- 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie masz 90 minut. Sprawdź, czy test jest kompletny.
- 2. Zanim udzielisz odpowiedzi, uważnie przeczytaj treść zadania.
- 3. Wszystkie odpowiedzi czytelnie i wyraźnie wpisuj w wyznaczonych miejscach.
- 4. Przy rozwiązywaniu zadań zamkniętych wyboru wielokrotnego wybierz jedną, prawidłową odpowiedź i zaznacz ją krzyżykiem, np.:

A	×	С	D					
Jeżeli się pomylisz i zechcesz wybrać inną odpowiedź, to złe zaznaczenie otocz kó (R), po czym skreśl właściwą literę, np.:								
A	X	×	D					

- 5. W innych zadaniach samodzielnie sformułuj odpowiedź i wpisz ją lub wykonaj zadanie zgodnie z instrukcją zawartą w poleceniu. Przedstaw tok rozumowania prowadzący do wyniku.
- 6. Test wypełniaj długopisem, nie używaj korektora, ołówka ani gumki. Nie komunikuj się z innymi uczestnikami konkursu.
- 7. Podczas rozwiązywania zadań nie możesz korzystać z kalkulatora.
- 8. Sprawdź wszystkie odpowiedzi przed oddaniem testu.
- 9. Nie podpisuj testu, zostanie on zakodowany.
- 10. Brudnopis, dołączony do testu, nie podlega ocenie.

Numer zadania	1-15	16	17	18	19	20
Liczba						
punktów						

Zadanie 1. (1 p.)

Średnia arytmetyczna czterech liczb: x+3, -x+6, 2x+1, x-2 jest równa 17 dla

A. x = 3

B. x = 9

C. x = 17

D. x = 20

Zadanie 2. (1 p.)

Pasażer pociągu po przejechaniu połowy drogi usnął. Po przebudzeniu stwierdził, że pozostała mu do końca podróży połowa tej drogi, którą przespał. Jaką część całej podróży przespał?

B. $\frac{1}{4}$ C. $\frac{1}{5}$ D. $\frac{1}{6}$

Zadanie 3. (1 p.)

Liczba 0,00000909 leży na osi liczbowej pomiędzy liczbami

A. 10⁻⁵ i 10⁻⁶ B. 10⁻⁶ i 10⁻⁷ C. 10⁻⁷ i 10⁻⁸ D. 10⁻⁸ i 10⁻⁹

Zadanie 4. (1 p.)

Wartość wyrażenia $|2\sqrt{3} - 3\sqrt{2}|$ jest równa

A. $2\sqrt{3} - 3\sqrt{2}$ B. $3\sqrt{2} - 2\sqrt{3}$ C. $2\sqrt{3} + 3\sqrt{2}$ D. $-3\sqrt{2} - 2\sqrt{3}$

Zadanie 5. (1 p.)

W pudełku znajduje się 30 losów loterii. Pięć z tych losów jest wygrywających, a reszta przegrywających. Po wyciągnieciu los nie jest zwracany do pudełka. Pierwsza osoba, która brała udział w tej loterii, wyciągnęła los wygrywający. Jakie jest prawdopodobieństwo wylosowania losu wygrywającego przez druga osobę?

C. $\frac{4}{29}$ D. $\frac{2}{15}$

Zadanie 6. (1 p.)

Ania otrzymała w drugim półroczu następujące oceny z matematyki: 5, 4, 5, 5, 3, 4, 3, 5, 5, 3. Mediana tych ocen jest równa

A. 3,5

B. 4

C. 4,5

D. 5

Zadanie 7. (1 p.)

Wyrażenie $\frac{1}{\sqrt{-x+4}}$ ma sens liczbowy dla

A. x > 4

B. $x \ge 4$

C. x < 4

D. $x \le 4$

Zadanie 8. (1 p.)

Funkcja y = (m+1)x + 3 jest funkcją rosnącą dla

A. m = -1

B. *m*< 0

C. m < -1

D. m > -1

Zadanie 9. (1 p.)

Liczbą, która <u>nie należy</u> do zbioru rozwiązań nierówności $(x+1)^2 > (x+2)(x-2)$ jest

A. -2,5

B. 0

C. 0.5

D. $\sqrt{3}$

Zadanie 10. (1 p.)

Układ
$$\begin{cases} 3x - 2y = 4\\ 9x - 6y = 5 - \alpha \end{cases}$$

jest układem nieoznaczonym dla a równego

A. -7

B. -1

C. 4

D. 7

Zadanie 11. (1 p.)

Trapez zbudowany jest z pięciu trójkątów równobocznych. Obwód trapezu jest równy 42 cm. Jaka jest długość przekatnej tak zbudowanego trapezu?

A. $3\sqrt{21} \ cm$

B. $6\sqrt{7}$ cm

C. $7\sqrt{6} \, cm$ D. $6\sqrt{21} \, cm$

Zadanie 12. (1 p.)

W pudełku znajduje się 6 kulek zielonych, 8 czerwonych i 4 niebieskie. Wszystkie kulki są tej samej wielkości. Beata z zawiązanymi oczami wyjmuje kulkę z pudełka. Ile co najmniej kulek powinna wyjąć, aby mieć pewność, że wyjęła przynajmniej jedną kulkę czerwoną?

A. 8

B. 10

C. 11

D. 17

Zadanie 13. (1 p.)

Przekatna sześcianu ma długość $4\sqrt{6}$ cm. Pole przekroju zawierającego dwie krawędzie boczne, nienależące do jednej ściany, jest równe

A. $16 \, \text{cm}^2$

B. $16\sqrt{2} \text{ cm}^2$

C. 32 cm^2 D. $32\sqrt{2} \text{ cm}^2$

Zadanie 14. (1 p.)

Suma krawędzi czworościanu foremnego jest równa 60 cm. Pole powierzchni tego czworościanu jest równe

A. $100\sqrt{3} \text{ cm}^2$

B. $75\sqrt{3} \text{ cm}^2$ C. $50\sqrt{3} \text{ cm}^2$ D. $25\sqrt{3} \text{ cm}^2$

Zadanie 15. (1 p.)

Kulę przecięto płaszczyzną w odległości 8 cm od środka kuli i otrzymano koło o średnicy 12 cm. Powierzchnia tej kuli jest równa

A. π cm²

B. 4π cm²

C. $144\pi \text{ cm}^2$

D. $400\pi \text{ cm}^2$

Zadanie 16. (3 p.)

Uzasadnij, że punkty (-13, 46); (11, -26); $\left(\frac{2}{3}, 5\right)$ są współliniowe.

Zadanie 17. (3 p.)

Złotnik miał dwa różne stopy złota z miedzią. W pierwszym stopie stosunek masy złota do miedzi wynosi 2:3, a w drugim 3:7. Ile musi wziąć każdego z tych stopów, aby otrzymać 24 gramy nowego stopu, w którym stosunek masy złota do miedzi wynosiłby 5:11?

Zadanie 18. (3 p.)

W prostokącie ABCD punkt E jest środkiem boku BC, zaś F środkiem boku CD. Pole trójkąta AEF jest równe $3\sqrt{3}$ cm². Oblicz pole prostokąta ABCD.

Zadanie 19. (3 p.)

Średnica koła jest podstawą trójkąta równobocznego o boku długości a. Oblicz pole powierzchni części wspólnej koła i tego trójkąta.

Zadanie 20. (3 p.)

Trójkąt prostokątny o przyprostokątnych długości 15 cm i 20 cm obraca się wokół prostej zawierającej przeciwprostokątną. Oblicz pole powierzchni całkowitej bryły otrzymanej w wyniku tego obrotu.