

Computability and Complexity

Exam

Regular and context-free languages

Guidelines: read before anything!

This exam is divided in three sections, and will give you two grades: one for regular languages and one for context-free languages.

- 1. All exercises in Section 1 will count towards your grade for regular languages;
- 2. All exercises in Section 3 will count towards your grade for context-free languages;
- 3. The exercise in Section 2 will count towards both grades.

You can do any exercises as long as you are sure to get a passing grade for each part.

1 Regular languages

Exercise 1: Warmup (3 points).

For each of the following languages, construct a finite automata that recognizes them:

- 1. $\{w \in \{a,b\}^* \mid w \text{ contains an even number of } a \text{ and an odd number of } b\};$
- 2. $\{w \in \{a, b\}^* \mid w \text{ does not contain } bab\}.$

Answer:

1. In the following automata, q_0 is the state where there is an even number of both a's and b's, q_1 is the state where there is an odd number of a's and an even number of b's, q_2 is the state where there is an even number of a's and an odd number of b's, and q_3 is the state where there is an odd number of both a's and b's:

2.

Exercise 2: Opening by closing (2 points).

In the next questions, assume that all languages are over a common alphabet Σ .

- 1. Prove that the class of regular languages is closed under difference (i.e., if L_1 and L_2 are regular, then $L_1 \setminus L_2$ is regular).
- 2. Deduce from the previous result that the class of regular languages is closed under complementation.

Answer:

- 1. Let $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $A_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$ be two nondeterministic finite automatas that recognize, respectively, L_1 and L_2 . We construct $A = (Q, \Sigma, \delta, q_0, F)$ that recognizes $L_1 \setminus L_2$:
 - $Q = Q_1 \times Q_2$;
 - $\delta((q,r),a) = (\delta(q,a),\delta(r,a));$
 - $q_0 = (q_1, q_2);$
 - F = (q, r) such that $q \in F_1$ and $r \notin F_2$.
- 2. We know that $\overline{L} = \Sigma^* \setminus L$. Since Σ^* and L are both regular, by the above observation, \overline{L} is regular. Alternatively, given an automata $(Q, \Sigma, \delta, q_0, F)$ that recognizes L, the automata $(Q, \Sigma, \delta, q_0, Q \setminus F)$ recognizes \overline{L} .

Exercise 3: Finition (2 points).

Prove that if L is a finite language, then L is regular.

Answer: Let $L = \{w_1, \ldots, w_n\}$ with $w_i \in \Sigma^*$. For every i, we denote $w_i = w_i^1 w_i^2 \ldots w_i^{|w_i|}$. We construct a finite automata $A = (Q, \Sigma, \delta, q_0, F)$ that recognizes L.

We construct $\sum_{i=1}^{k} |w_i|$ states, that we denote by q_i^j with $j \in \{1, \ldots, |w_i|\}$, and let

$$Q = \bigcup_{i=1}^{k} \{q_i^j \mid j \in \{1, \dots, |w_i|\}\} \cup \{q_0\}$$

and

$$F = \bigcup_{i=1}^{k} \{ q_i^{|w_i|} \}.$$

As for the transition function, for every i and for every $j \in \{1, ..., |w_i| - 1\}$, we let $\delta(q_i^j, w_i^j) = q_i^{j+1}$. It is easy to verify that every word from L will be accepted by A: when reading the input w_i , the automata will follow the states $w_i^1, w_i^2, ...$ until reaching the final state $w_i^{|w_i|}$ and accepting the word. Thus, L is recognized by a (nondeterministic) finite automata, which implies it is regular.

Exercise 4: Mr. Pump (2 points).

Prove that the following languages are not regular:

- 1. $\{ww \mid w \in \{a, b\}^*\};$
- 2. $\{a^{2^n} \mid n \geq 0\}$ (the chains of 2^n consecutive a's for any nonnegative integer n).

<u>Answer</u>:

- 1. Assume by contradiction that L is regular. We apply the pumping lemma. Let p be the pumping length of L. We consider $w = a^p b a^p b = xyz$. Since $y = a^k$, we have $xy^2z = a^{p+k}ba^pb \notin L$, a contradiction.
- 2. Assume by contradiction that L is regular. We apply the pumping lemma. Let p be the pumping length of L. We consider $w=a^{2^p}=xyz$. We have $y=a^k$, with $1\leq k\leq p$, and as such $xy^2z=a^{2^p+k}$. However, $2^p<2^p+1\leq 2^p+k\leq 2^p+p<2^{p+1}$ since $p<2^p$. Thus, $xy^2z\notin L$, a contradiction.

2 Transition

Exercise 5: An irregular with no context (3 points). Let $L = \{a^m b^n \mid m \neq n; m, n \geq 0\}.$

- 1. Prove that L is not regular.
- 2. Prove that L is context-free by constructing a pushdown automata that recognizes it.

Answer:

- 1. Assume by contradiction that L is regular, we use the pumping lemma. Let p be the pumping length of L. Let $w = a^p b^{p!+p} = xyz$. Since $|y| = k \in \{1, ..., p\}$, we have that k divides p!. Now, consider the word $w' = xy^{k(\frac{p!}{k}+1)}z$. By definition, $x = a^{p-k}$ and $y = a^k$, which implies that $xy^{k(\frac{p!}{k}+1)} = a^{p-k}a^{p!+k} = a^{p!+p}$, but then $w' \notin L$, a contradiction.
 - Alternatively, let $L_0 = \{a^nb^n \mid n \geq 0\}$. It is easy to see that $\overline{L_0} = \{w \mid ba \in w\} \cup L$. By Exercise 2, $\overline{L_0}$ cannot be regular (since otherwise, L_0 would be regular). Now, it is easy to construct a finite automata that recognizes $\{w \mid ba \in w\}$. Hence, if L was regular, then $\overline{L_0}$ would be the union of two regular languages, and thus would be regular. So L cannot be regular.
- 2. In the following automata, if there are no a then we will go through q₅; if there are no b then we will go through q₂ and q₄; if there are more a than b then we will go through q₂, q₃ and q₄; and if there are more b than a we will go through q₂, q₃ and q₅. Also note that if there are as many a as b, then we will either reach q₆ without having finished reading the input (leading to rejecting it) or be stuck in q₃.

3 Context-free languages

Exercise 6: Elementary grammars (2 points).

For each of the following languages, give a context-free grammar that generates it:

- 1. $\{a^m b^{m+n} a^n \mid m, n \ge 0\};$
- 2. $\{w \in \{a,b\}^* \mid w \text{ contains more } a \text{'s than } b \text{'s}\};$
- 3. The complement of $\{a^nb^n \mid n \geq 0\}$.

Answer:

1.
$$S \rightarrow \epsilon \mid AB$$

 $A \rightarrow \epsilon \mid aAb$
 $B \rightarrow \epsilon \mid bBa$

2.
$$S \rightarrow TaT$$

 $T \rightarrow \epsilon \mid a \mid TT \mid aTb \mid bTa$

3. It is easy to see that this language is the union of three languages: a^mb^n with m > n or m < n, and any word with a ba. So we have to generate those languages:

$$\begin{split} S \rightarrow A \mid B \mid RbaR \\ A \rightarrow a \mid aA \mid aAb \\ B \rightarrow b \mid Bb \mid aBb \\ R \rightarrow \epsilon \mid aR \mid bR \end{split}$$

Exercise 7: Regulars don't have context (3 points).

Prove that every regular language is context-free, by showing how to convert a regular expression to an equivalent context-free grammar.

Answer: Let e be a regular expression over an alphabet Σ . We use induction on its number of symbols. If e contains 1 symbol a, then it is equivalent to the context-free grammar with rule $S \to a$. If e contains 2 or 3 symbols, then it is of the form a^* , $a \cup b$ or ab. For each of those, we can construct the rules of a context-free grammar generating them: $S \to \epsilon \mid aS$ for a^* , $S \to a \mid b$ for $a \cup b$ and $S \to ab$ for ab.

Now let e be a regular expression of length k with $k \ge 4$. There are three possible forms for e, for which we will construct a rule for a context-free grammar generating the same language:

- 1. If $e = e_1^*$ for some expression e_1 , then by induction hypothesis there is a context-free grammar G_1 equivalent to e_1 . Let S_1 be the starting rule of G_1 . We add the following rule to $G: S \to \epsilon \mid S_1S$, and let S be the new starting rule. Now G is equivalent to e.
- 2. If e = e₁ ∪ e₂ for some expressions e₁ and e₂, then by induction hypothesis there are two context-free grammars G₁ and G₂ equivalent to, respectively, e₁ and e₂. Let S₁ and S₂ be their starting rules. We create G as the union of G₁ and G₂, and adding the following starting rule: S → S₁ | S₂. Now G is equivalent to e₁ ∪ e₂.
- 3. If $e = e_1e_2$ for some expressions e_1 and e_2 , then by induction hypothesis there are two context-free grammars G_1 and G_2 equivalent to, respectively, e_1 and e_2 . Let S_1 and S_2 be their starting rules. We create G as the union of G_1 and G_2 , and adding the following starting rule: $S \to S_1S_2$. Now G is equivalent to e_1e_2 .

This concludes the induction.

Thus, we can represent a regular language by a regular expression, that we can then convert into a context-free grammar, which proves that regular languages are also context-free.

Exercise 8: Pumping in context (2 points).

Prove that the language $\{ww \mid w \in \{a,b\}^*\}$ is not context-free.

<u>Answer:</u> Assume by contradiction that L is context-free. We apply the pumping lemma. Let p be the pumping length, and let us consider $s = a^p b^p a^p b^p = uvxyz$. Note that vxy has to contain the middle point of s. Indeed, if vxy is only in the first part of s, then in $w' = uv^2xy^2z$ the first letter after the middle point is necessarily a b, so $w' \notin L$, a contradiction. A symmetric argument proves that vxy cannot be only in the second part of s.

So, vxy contains the middle part of s. Now, consider $w' = uv^0xy^0z = uxz$. We have removed some a and b in the middle, but not in the edges. Furthermore, we necessarily removed a positive number of letters. Thus, $w' = a^pb^ia^jb^p$ where either i < p, j < p or both. This implies that $w' \notin L$, a contradiction.

Exercise 9: Challenging grammars (4 points).

For each of the following languages, give a context-free grammar that generates it:

- 1. $\{w \in \{a, b\}^* \mid w = xy \text{ with } |x| = |y| \text{ but } x \neq y\};$
- 2. $\{w \# x \mid w^R \text{ is a substring of } x; w, x \in \{a, b\}^*\}.$

Answer:

1. Let G be the context-free grammar with the following rules:

It is easy to see that L(G) is comprised of all words that can be written $v_1\ell v_2w_1\ell'w_2$, with $\ell \neq \ell'$ and $|v_1| + |w_2| = |v_2| + |w_1|$. Now, we can arrange the characters in v_2w_1 such that ℓ and ℓ' are in the same position in their respective parts, which are each of length half the total length of the word. This proves that L(G) = L, and thus that L is context-free.

2. This is more convoluted: we create a rule that will ensure that w^R is a substring of x, and a rule that allows us to add whatever we want in x. We also need to make sure that the two substrings are separated by a #.

$$S \to TX$$

$$T \to aTa \mid bTb \mid \#X$$

$$X \to \epsilon \mid aX \mid bX$$

It is easy to check that, when doing a derivation, we will have w^R in x thanks to the use of the rule T, that they will be separated by # (after which it will be impossible to change w), and that we can add whatever characters we want in x. Also notice that this works even if $w = \epsilon$.