练习卷(3)

一、填空题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)

1. 极限
$$\lim_{x\to 0} \left(\frac{2^x + 8^x}{2}\right)^{\frac{1}{x}} = \underline{\hspace{1cm}}$$
.

3. 参数方程 $\begin{cases} x = a \cos t \\ y = b \sin t \end{cases}$ 所确定的函数的二阶导数 $\frac{d^2 y}{dx^2} = \underline{\qquad}.$

4. 函数 $y = e^{2x+1}$ 的 n 阶导数 $y^{(n)} = ______$.

5. 设 $f'(\sin^2 x) = \cos^2 x$,则 f(x) =

二、单项选择题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)

1. 下列函数在自变量 $x \to \infty$ 过程中,极限不存在的是(

A.
$$\frac{1}{x}\arctan\frac{1}{x}$$
 B. $x\arctan x$ C. $\frac{1}{x}\arctan x$ D. $x\arctan\frac{1}{x}$

B.
$$x \arctan x$$

C.
$$\frac{1}{x} \arctan x$$

D.
$$x \arctan \frac{1}{x}$$

2. 函数 $f(x) = \frac{|x|\sin(x-2)}{x(x-1)(x-2)}$ 的可去间断点为(

A.
$$x = -1$$
 B. $x = 0$ C. $x = 1$

B.
$$x = 0$$

C.
$$x=1$$

D.
$$x = 2$$

3. 设 $x+y=\ln x$, 则 $\frac{dx}{dy}=$ ()

A.
$$\frac{x-1}{x}$$
 B. $\frac{x}{x-1}$ C. $\frac{1-x}{x}$ D. $\frac{x}{1-x}$

B.
$$\frac{x}{x-1}$$

$$C. \quad \frac{1-x}{x}$$

$$D. \quad \frac{x}{1-x}$$

4. 设 f(x) 在 x = 0 的某邻域内可导,且 $\lim_{x \to 0} \frac{f(x)}{\sin x} = -2$,则有 ()

A. f(0)为 f(x)的一个极大值

B. f(0)为 f(x)的一个极小值

C. f(x) 在 x=0 的某邻域内单调增加 D. f(x) 在 x=0 的某邻域内单调减少

5. 已知广义积分 $\int_0^{+\infty} e^{kx} dx = 2$,则 k 的值为 ()

A.
$$-\frac{1}{2}$$
 B. -2 C. 2

B.
$$-2$$

D.
$$\frac{1}{2}$$

三、计算题(要求写出主要计算步骤及结果:每小题7分,共42分.)

L.求极限 $\lim_{x\to 0} \frac{\left(1-\frac{x}{\sin x}\right)}{\ln\left(1+\frac{x^2}{2}\right)}$.

- 2. 求过原点且与曲线 $y = e^x$ 相切的切线方程.
- 3. 设 $\int_0^{-x} y e^t dt + \int_0^y x \cos t dt = 0$,求dy.
- 4.求定积分 $\int_{1}^{e} \frac{dt}{t\sqrt{1+\ln t}}$.

5. 设
$$f(x) = \frac{2}{x(1+x^2)} + \frac{1}{2} \int_1^2 f(x) dx$$
,求 $\int_1^2 f(x) dx$.

- 6. 求不定积分 $\int e^{\sqrt{2x+1}} dx$.
- 四、解答题(要求写出主要计算步骤及结果;每小题7分,共14分.)

I.确定
$$a,b$$
 的值,使 $\lim_{x\to\infty} \left[(x-2)e^{\frac{1}{x}} - (ax+b) \right] = 0$.

- 2. 已知 $f(x) = x^3 + ax^2 + bx$ 在 x = -1 处有极值 2,试确定常数 a,b,并求出 f(x) 的极值点、拐点.
- 五、证明题(要求写出主要证明步骤;每小题7分,共14分.)

L证明: $a\cos x + b\cos 2x = 0$ 在 $(0,\pi)$ 内存在根,其中a,b为常数.

2. 证明: 当 $x \neq 0$ 时, $e^x > 1 + x$.