Vettori

Paolo Bettelini

Contents

1	Definitione	2
2	Addizione vettoriale	2
3	Prodotto scalare	2
4	Combinazione lineare	2
5	Intensità vettore	2
6	Distanza	3
7	Vettore dati punti	3
8	Vettore unitario	3
9	Base	3
10	Base ortonomata	3
11	Vettore posizione	4

1 Definitione

Un vettore è un oggetto geometrico possedente un verso, una direzione ed una intensità.

Il vettore non possiede un punto di origine e può essere rappresentato in qualsiasi posizione dello spazio.

Un vettore può essere espresso mediante le sue componenti

$$\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix}$$

In caso di un vettore n-dimensionale

$$\vec{a} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \\ \vdots \\ \vec{a}_n \end{pmatrix}, \quad \vec{a} \in \mathbb{R}^n$$

2 Addizione vettoriale

$$\vec{a} + \vec{b} = \vec{c}$$

3 Prodotto scalare

Un vettore \vec{a} può essere moltiplicato da un valore scalare k

$$k \cdot \vec{a} = \begin{pmatrix} k \cdot \vec{a}_x \\ k \cdot \vec{a}_y \end{pmatrix}, \quad k \in \mathbb{R}$$

4 Combinazione lineare

Una combinazione lineare è una somma di due o più vettori, ognuno con un proprio coefficiente

$$\vec{c} = a \cdot \vec{a} + b \cdot \vec{b}, \quad a, b \in \mathbb{R}$$

5 Intensità vettore

Per trovare l'intensità di un vettore possiamo applicare il teorema di pitagora

$$||\vec{a}|| = \sqrt{a_x^2 + a_y^2}$$

In caso di un vettore n-dimensionale

$$||\vec{a}|| = \sqrt{a_1^2 + a_1^2 + \dots + a_n^2}, \quad \vec{a} \in \mathbb{R}^n$$

6 Distanza

La distanza tra due punti descritti dai vettori \vec{a} e \vec{b} è data da

$$||\vec{a} - \vec{b}||$$

7 Vettore dati punti

Possiamo trovare un vettore dati 2 punti A e B.

$$A(A_x; A_y)$$
$$B(B_x; B_y)$$

Il vettore dal punto A al punto B è dato da

$$\begin{pmatrix} B_x - A_x \\ B_y - A_y \end{pmatrix}$$

8 Vettore unitario

Il vettore unitario è un vettore di lunghezza 1.

$$||\hat{a}|| = 1$$

Per rendere un vettore unitario è sufficiente dividere le sue componenti per la propria lunghezza.

$$\frac{\vec{a}}{||\vec{a}||} = \hat{a}$$

 \vec{a} non può essere il vettore nullo.

9 Base

Una base permette di esprimere qualsiasi vettore nel piano con una combinazione lineare dei vettori della base.

10 Base ortonormale

Una base ortonormale è una base con vettori unitari e ortogonali fra di loro.

$$\vec{a} = a \cdot \hat{i} + b \cdot \hat{j}, \quad a, b \in \mathbb{R}$$

- 1. \hat{i} è perpendicolare a \hat{j}
- 2. \hat{i} e \hat{j} sono unitari
- 3. $\hat{i} \neq a \cdot \hat{j}, \quad a \in \mathbb{R}$

11 Vettore posizione

Il vettore posizione è un vettore che parte dall'origine e va in un punto P. Questo vettore permette di rappresentare un punto nello spazio cartesiamo con un vettore.