Congruence dans Z

l Définition

Soit m un entier naturel non nul

Deux entiers a et b sont **congrus modulo** m si a et b ont le même reste dans la division euclidienne par m .

On dit aussi que a est congru à b modulo m , ou b est congru à a modulo m On note : $a\equiv b\,(m)$, ou bien $a\equiv b\,[m]$ ou encore : $a\equiv b\,(mod\,m)$

Exemple: Déterminer des entiers congrus à 11 modulo 5.

	11	6		21	-4	31		
- 2	5×2+1	Sx1+1	5×3+1	5×4+1	5x-1+1	5x0 11	L2	
On additionne (ou soustrait) des multiples de 5								
Il es a une infinite d'entiers congrus o 11 modulo 5								
Exercices: • At'on $24 \equiv 4(2)$? $24 = 2 \times 12 + 0$ et $0 \le 0 \le 2$								
4=2x2+0 et 06062 Qui								
· Aton 24=4(6)? 24=4x6+0 dt 06066								
			4=0	x6+4 e	1 05466	Um 24	74(6)	
	• Déterminer un entier a tel que $24 \equiv a(6)$ of the graph $a \equiv 6 \times 9 + 0$ order $a \in 7$ be $a = 6 \times 9 + 0$ order $a \in 7$ be $a = 6 \times 9 + 0$ order $a \in 7$ o							
	• Déterminer un entier a tel que $25 \equiv 4(a)$ four $a = 3$ $25 \equiv 3 \times 4 + 1$ et $4 \equiv 3 \times 1 + 1$ $25 \Rightarrow 4 \Rightarrow $							
	W 45.3	X (* (20140	It is memy	CV 1	ALL III	2)	
100000	Propriété				la división en	chiduenne		

Deux entiers a et b sont **congrus modulo** m si et seulement si la différence de a par b est un

multiple de *m*Démonstration :

Soit *m* un entier naturel non nul.

Remarques

- a) Symétrie $a \equiv b(m) \Leftrightarrow b \equiv a(m)$
- b) Réflexivité : $a \equiv a(m)$
- c) $a \equiv 0 \ (m) \Leftrightarrow \alpha \text{ ext. un. multiple} \ de m \ (propriete)$
- d) $a \equiv b(m) \Leftrightarrow \text{il existe } k \in \mathbb{Z} \text{ tel que}: a k = km$ $a = k + km \qquad (a k \text{ ext un multiple de m})$

Propriétés

Soit m un entier naturel non nul, et soient a , b , c , a'' b'' des entiers.

- 1) Transitivité : Si $a \equiv b(m)$ et $b \equiv c(m)$ alors : $a \equiv c(m)$
- 2) Compatibilité Si $a \equiv b(m)$ et , $a' \equiv b'(m)$ alors $a+a' \equiv b+b'(m)$ $a-a' \equiv b-b'(m)$ $a a' \equiv bb'(m)$ $a+c \equiv b+c(m)$ $ac \equiv bc(m)$
- 3) Conséquence : Soit $n \in \mathbb{N}^*$, $a^n \equiv b^n(m)$

remarque : Attention les réciproques sont fausses ! Contre-exemples :

- $13+12\equiv 10+9$ (6) est de la forme $a+a'\equiv b+b'(m)$ mais on n'a aucune congruence modulo 6 entre le termes.
- $2 \times 11 \equiv 2 \times 9(4)$. Mais 11 n'est pas congru à 9 modulo 4.
- $16 \equiv 81(5)$ soit : $2^4 \equiv 3^4(5)$ Mais 2 n'est pas congru à 3 modulo 5.

Conclusion, les congruences sont compatibles avec l'addition, la soustraction, la multiplication , les puissances mais PAS avec la division.

|| Exercices || Exercice1 || Démontrez que : 214=25(9) |
| Puthod $25 = 9 \times 1 + 7$ || 214×25 || 214×25 || $214 = 9 \times 15 + 7$ || $214 = 9 \times 13 + 7$ || $214 = 9 \times 13 + 7$ || $214 = 9 \times 13 + 7$ || $214 = 14 \times 15 \times 15 \times 15$ ||
| Exercice2 : (methode5 p. 99) |
| Montrer que pour tout entier n, 3 divise n(n+4)(n-4) |
| Cot $n \in \mathbb{Z}$ || 3 during n(n+4)(n-4) || 3 during n(n+4)

Exercice 3 (53p 105)

Résoudre dans \mathbb{Z} , $2+x\equiv 4(6)$ $4x\equiv 5(9)$

. 2+xe = 4(6) (= x = 2(6)

S= {6k+2, ke Z}

. 4 sc = 5(9) Methode 1: tolleau

5c = -61 0 1 2 3 4 5 6 7 8 4 2 = 5(9) (=) = 3 = 8(9) $4x = -61 0 4 8 12 = 30 + 6 = 70 2 6 1 5 3 = 59 k + 8, k \in \mathbb{Z}$

Methode 2

4x=5(9)(=)4x7x=5x7(9) . 28 se = 35(9) se =8(9)