ОСНОВНІ ФОРМУЛИ ТЕОРІЇ ЙМОВІРНОСТЕЙ

Початкові визначення

Статистичне визначення ймовірності – граничне значення частоти:

$$P(A) = \lim_{n \to \infty} h_n(A) .$$

Ймовірність в скінченній схемі:

$$\forall A = \left\{ \omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k} \right\} \subseteq \Omega \quad P(A) = \sum_{j=1}^k p_{i_j}, \text{ Ta } P(\varnothing) = 0.$$

Ймовірність в зліченній схемі:

$$\forall A = \{\omega_{i_1}, \omega_{i_2}, \dots, \omega_{i_k}\} \subseteq \Omega \quad P(A) = \sum_{j=1}^k p_{i_j} \quad (k \le \infty), P(\varnothing) = 0$$

Класичне визначення ймовірності (коли всі елементарні насліди рівноможливі):

$$P(A) = \frac{|A|}{|\Omega|}.$$

Геометричне визначення ймовірності:

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Елементи комбінаторики

Основні позначення

Кількість сполук (k -елементних підмножин n -елементної множини):

$$C_n^k = \frac{n!}{k!(n-k)!}.$$

Кількість перестановок (*n* -елементної множини):

$$P_n = 1 \cdot 2 \cdot ... \cdot n = n!$$

Кількість розміщень (k-елементних підмножин n-елементної множини):

$$A_n^k = \frac{n!}{(n-k)!} = n(n-1)...(n-k+1).$$

Кількість перестановок з повтореннями ("слів" довжини n, які можна побудувати, маючи k_1 "букв" a_1, k_2 "букв" a_2, \ldots, k_m "букв" $a_m, \text{де } k_1 + k_2 + \ldots + k_m = n$):

$$C_n(k_1, k_2, ..., k_m) = \frac{n!}{k_1! k_2! ... k_m!}.$$

Кількість сполук з повтореннями (множин, що містять n елементів, кожен з яких належить одному з m типів):

$$f_m^n = C_{m+n-1}^n.$$

Основні властивості біноміальних коефіцієнтів

1.
$$C_n^k = \frac{n-k+1}{k} C_n^{k-1}$$

2.
$$C_n^k = \frac{k}{n} C_{n-1}^{k-1}$$

3.
$$C_n^k = C_{n-1}^k + C_{n-1}^{k-1}$$

4.
$$C_n^k = C_n^{n-k}$$

5.
$$C_r^m C_k^r = C_k^m C_{k-m}^{k-r}$$

6.
$$(a+b)^n = \sum_{k=0}^n C_n^k a^k b^{n-k}$$

Аксіоматика

Аксіоми

Якщо $\mathcal{F} \epsilon$ сигма-алгеброю подій, то мають місце:

- 1) Аксіома невід'ємності: $\forall A \in \mathcal{F} \ P(A) \ge 0$.
- **2)** Аксіома нормованості: $P(\Omega) = 1$.
- **3)** Aксіома σ -адитивності: Якщо $A_k \in \mathscr{F}(k \geq 1)$ та $A_i \cap A_j = \varnothing \ (i \neq j)$, то

$$P\left(\bigcup_{k=1}^{\infty} A_k\right) = \sum_{k=1}^{\infty} P(A_k).$$

Наслідки з аксіом

- 1) $A \subseteq B \Rightarrow P(B \setminus A) = P(B) P(A)$.
- 2) $A \subseteq B \implies P(A) \le P(B)$. Зокрема $0 \le P(A) \le 1$.
- 3) **Теорема суми**: $P(A \cup B) = P(A) + P(B) P(AB)$.
- 4) **Теорема заперечення** (доповнення): $P(\overline{A}) = 1 P(A)$.
- 5) $P(\emptyset) = 0$, але не кожна подія нульової ймовірності є неможливою.

Умовна ймовірність

Визначення та властивості

Визначення умовної ймовірності:

$$P(A \mid B) \stackrel{def}{=} \frac{P(AB)}{P(B)}$$
.

Теорема добутку:

- 1. Для двох подій: $P(AB) = P(A \mid B)P(B)$ (для $P(B) \neq 0$).
- 2. Загальний варіант: $P(A_1A_2...A_n) = P(A_1 \mid A_2...A_n)P(A_2 \mid A_3...A_n)...P(A_{n-1} \mid A_n)P(A_n)$ для $P(A_2...A_n) \neq 0$.

Незалежність подій

Основне визначення двох незалежних подій А та В:

$$\begin{cases} P(A \mid B) = P(A) \\ P(B \mid A) = P(B) \end{cases}$$

Еквівалентне визначення двох незалежних подій А та В:

$$P(AB) = P(A)P(B)$$
.

Події A_1, \dots, A_n називаються **незалежними у сукупності**, якщо $\forall k_1 < k_2 < \dots < k_r \leq n$

$$P\left(\bigcap_{i=1}^{r} A_{k_i}\right) = \prod_{i=1}^{r} P(A_{k_i}).$$

Якщо ж серед подій A_1, \dots, A_n довільні дві ϵ незалежними, то кажуть, що події A_1, \dots, A_n попарно незалежні.

Спадковість незалежності: якщо A та B незалежні, то незалежними також ϵ такі пари:

а)
$$\overline{A}$$
 та B , б) \overline{B} та A , в) \overline{A} та \overline{B} .

Формула повної ймовірності:

$$P(B) = \sum_{k=1}^{n} P(B \mid H_k) P(H_k),$$

де $\{H_k\}$ — повна група подій, тобто: 1) $A_i \cap A_j = \emptyset$ $(i \neq j);$ 2) $\bigcup_{k=1}^n A_k = \Omega$.

Формула Байсса:

$$P(H_{j} | B) = \frac{P(B | H_{j})P(H_{j})}{P(B)} = \frac{P(B | H_{j})P(H_{j})}{\sum_{k=1}^{n} P(B | H_{k})P(H_{k})}.$$

Схема незалежних випробувань Бернуллі

Основна формула

$$P_n(k) \equiv P\{\xi(\omega) = k\} = C_n^k p^k q^{n-k}, \quad k = 0,...,n.$$

Граничні теореми в СНВБ

Теорема (Пуассона) Якщо в СНВБ ймовірність успіху $p_n \in (0, 1), \lim_{n \to \infty} p_n = 0, \lim_{n \to \infty} np_n = \lambda$, то

при
$$n \to \infty$$
 $P_n(k) \equiv P\{\mu_n = k\} \to \frac{\lambda^k e^{-\lambda}}{k!}$.

Теорема (локальна теорема Муавра-Лапласа) В СНВБ із ймовірністю успіху $p \in (0, 1) \ \forall k \in \mathbb{N}$

при
$$n \to \infty$$
 $P_n(k) \equiv P\{\mu_n = k\} \sim \frac{1}{\sqrt{npq}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \quad \left(x = \frac{k - np}{\sqrt{npq}}\right).$

Теорема (інтегральна теорема Муавра-Лапласа) В СНВБ із ймовірністю успіху $p \in (0, 1)$

$$\forall a \leq b$$
 при $n \to \infty$ $P\left\{a < \frac{\mu_n - np}{\sqrt{npq}} \leq b\right\} \to \frac{1}{\sqrt{2\pi}} \int\limits_a^b e^{-x^2/2} dx = \Phi(b) - \Phi(a)$,

де
$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$
 — функція Лапласа (табульована).

Дискретні розподіли

- $m{f ext{f E}}$ Бернулієвський розподіл. $\xi \sim Be(p)\,, \quad Pig\{\xi=1ig\}=p\,, \quad Pig\{\xi=0ig\}=1-p=q\,, \quad M\xi=p\,,$ $D\xi=pq\,.$
- Біноміальний розподіл. $\xi \sim Bi(n,p)\,, \quad P\big\{\xi(\omega)=k\big\}=C_n^k\,p^k\,q^{n-k}\,, \quad (k=0,\ldots,n), \quad q=1-p\,,$ $M\,\xi=np\,,\; D\,\xi=npq\,.$
- Гіпергеометричний розподіл. $\xi \sim GG(N,M,n), \ P\{\xi=m\} = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n},$ де

$$m = \overline{m_0, m_1} \; , \; m_o = \max \left\{ 0, \, n - (N - M) \right\} \; , \; m_1 = \min \left\{ M, n \right\} \; ; \;$$

$$M\xi = \frac{nM}{N}, D\xi = \frac{nM(N-M)(N-n)}{N^2(N-1)}.$$

- Пуассонівський розподіл. $\xi \sim \Pi(\lambda)$, $P\{\xi=m\}=rac{\lambda^m}{m!}e^{-\lambda}$, $m=0,1,\ldots$; $M\xi=D\xi=\lambda$.
- Геометричний розподіл. $\xi \sim G(p)$, $P\{\xi = m\} = q^m p$, m = 0, 1, ...; $M\xi = \frac{q}{p}$, $D\xi = \frac{q}{p^2}$.

(інколи розглядають ще такий варіант: $P\{\xi=m\}=q^{m-1}p$, m=1,2,... тоді $M\xi=\frac{1}{p}$, $D\xi=\frac{q}{p^2}$).

Математичне сподівання та дисперсія

Визначення:
$$M\xi = \int\limits_{\Omega} \xi(\omega) dP(\omega)$$
, $D\xi = M \left(\xi - M\xi\right)^2$.

Основні властивості $M\xi$:

- $M\chi_A(\omega) = P(A)$.
- $M(\xi + \eta) = M\xi + M\eta$.
- $\forall c \in R$ Mc = c Ta $Mc\xi = cM\xi$.
- Якщо $\xi \ge \eta$, то $M\xi \ge M\eta$.
- Якщо $\xi \ge 0$ і $M\xi = 0$ то $P\{\xi = 0\} = 1$.
- Якщо ξ дискретна, то $M\xi = \sum_k x_k p_k$.
- Якщо ξ має абсолютно неперервний розподіл, то $M\xi = \int_{\mathbb{R}} x f_{\xi}(x) dx$.
- Якщо ξ_1, \dots, ξ_n незалежні, то $M \xi_1 \dots \xi_n = M \xi_1 \dots M \xi_n$.

${\it O}$ сновні властивості $D\xi$:

- $D\xi = M\xi^2 M^2\xi$
- $D\xi \ge 0$, причому $D\xi = 0 \iff P\{\xi = M\xi\} = 1$.
- $\forall c \in R$
 - a) $Dc\xi = c^2D\xi$,
 - δ) D(ξ + c) = Dξ,
 - B) Dc = 0.
- Якщо $\xi_1, ..., \xi_n$ незалежні дискретні в.в. та $\forall i \ M \xi_i^2 < \infty$, то $D \sum_{i=1}^n \xi_i = \sum_{i=1}^n D \xi_i$.

Незалежність випадкових величин

Дискретні в.в. $\xi_1, ..., \xi_n$ називаються **незалежними в сукупності**, якщо для довільного набору їх значень $\left(x_{j_1}^{(1)}, x_{j_2}^{(2)}, ..., x_{j_n}^{(n)}\right)$ має місце рівність

$$P\left\{\xi_1 = x_{j_1}^{(1)}, \dots, \xi_n = x_{j_n}^{(n)}\right\} = \prod_{k=1}^n P\left(\xi_k = x_{j_k}^{(k)}\right).$$

Існує також *еквівалентне* визначення: дискретні в.в. $\xi_1, ..., \xi_n$ називаються **незалежними в сукупності**, якщо для довільних числових множин $B_1, ..., B_n$

$$P\{\xi_1 \in B_1, \dots, \xi_n \in B_n\} = \prod_{k=1}^n P(\xi_k \in B_k).$$

В загальному випадку в.в. $\xi_1,...,\xi_n$ називають **незалежними**, якщо $\forall B_1,...,B_n \in \mathbf{B}_R$

$$P\{\xi_1 \in B_1, ..., \xi_n \in B_n\} = \prod_{i=1}^n P\{\xi_i \in B_i\},$$

або що те саме, що

$$F_{\xi_1,...,\xi_n}(x_1,...,x_n) = F_{\xi_1}(x_1)...F_{\xi_n}(x_n).$$

Якщо випадковий вектор $\xi = (\xi_1, ..., \xi_n)'$ має щільність, а його компоненти **незалежні**, то

$$f_{\xi_1,...,\xi_n}(x_1,...,x_n) = f_{\xi_1}(x_1)...f_{\xi_n}(x_n).$$

Міри лінійної залежності

Коваріація $cov(\xi, \eta) = M(\xi - M\xi)(\eta - M\eta).$

Властивості коваріації:

- 1) $cov(\xi, \eta) = cov(\eta, \xi)$,
- 2) $cov(\xi, \eta) = M\xi\eta M\xi M\eta$,
- 3) $cov(\xi, \xi) = D\xi$.

Коефіцієнтом кореляції $r=r(\xi,\eta)=rac{\mathrm{cov}(\xi,\eta)}{\sqrt{D\xi D\eta}}$.

Випадкові величини ξ та η називаються **некорельованими**, якщо $r(\xi,\eta)=0$.

Властивості кореляції:

- 1) $|r| \le 1$.
- 2) Якщо |r| = 1, то $\xi = a\eta + b$ (з ймовірністю 1).
- 3) Якщо ξ та η незалежні, то вони некорельовані, а обернене твердження в загальному випадку невірне.

Генератриси

Генератриса цілочисельної випадкової величини $\Psi_{\xi}(s) = \sum_{n=0}^{\infty} p_n s^n$

Властивості генератрис:

1)
$$p_n = \frac{1}{n!} \Psi^{(n)}(0)$$
.

$$2) \qquad M\xi^{[r]} = \Psi_{\xi}^{(r)}(1) \quad \forall r \in Z^{+} \,, \quad \text{зокрема} \qquad M\xi = \Psi_{\xi}^{'}(1) \,, \quad D\xi = \Psi_{\xi}^{''}(1) + \Psi_{\xi}^{'}(1) - \left[\Psi_{\xi}^{'}(1)\right]^{2} \,, \quad \text{де}$$

$$\xi^{[0]} = 1 \,, \; \xi^{[r]} = \xi(\xi - 1) ... [\xi - (r - 1)] \quad (r \geq 1)$$

8

Основні генератриси:

1)
$$\xi \sim Bi(n, p) \Rightarrow \Psi(s) = (ps + 1 - p)^n$$
.

2)
$$\xi \sim \Pi(\lambda) \Rightarrow \Psi(s) = e^{-\lambda(1-s)}$$
.

3)
$$\xi \sim G(p) \Rightarrow \Psi(s) = \frac{p}{1 - (1 - p)s}$$
.

Випадкові величини (загальний випадок)

Функція розподілу

$$F(x) = F_{\xi}(x) = P\{\xi \le x\}$$

Властивості ф.р.:

1)
$$P\{a < \xi \le b\} = F(b) - F(a)$$

2)
$$P\{\xi < x\} = F(x-0)$$

3)
$$P\{\xi = x\} = F(x) - F(x - 0)$$

4)
$$P{a \le \xi \le b} = F(b) - F(a - 0)$$

5)
$$P{a < \xi < b} = F(b-0) - F(a)$$

6)
$$P{a \le \xi < b} = F(b-0) - F(a-0)$$

7) Функція розподілу неспадна, неперервна справа, нормована: $F(-\infty) = 0$, $F(+\infty) = 1$.

Щільність

Розподіл випадкової величини ξ називається **абсолютно неперервним**, якщо $\exists f_{\xi}(x) \geq 0$ (яка називається **щільністю розподілу**) така, що $F_{\xi}(x) = \int\limits_{-\infty}^{x} f_{\xi}(t) dt$.

Властивості щільності:

- а) $\frac{d}{dx}F_{\xi}(x) = f_{\xi}(x)$ у точках неперервності $f_{\xi}(x)$.
- $6) \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1.$
- $P\{\xi \in B\} = \int_B f_{\xi}(x) dx.$

Основні абсолютно неперервні розподіли

1) Рівномірний на відрізку $[a, b] \ (\xi \sim U[a, b])$

$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & a \leq x \leq b \\ 0, & \text{інакше.} \end{cases}, \quad F_{\xi}(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \leq x \leq b \text{ , } M\xi = \frac{a+b}{2}, \quad D\xi = \frac{(b-a)^2}{12}. \\ 1, & x > b \end{cases}$$

2) Показниковий (експоненційний) розподіл $(\xi \sim Exp(\lambda))$

$$f_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ \lambda e^{-\lambda x}, & x > 0 \end{cases}, \quad F_{\xi}(x) = \begin{cases} 0, & x \le 0 \\ 1 - e^{-\lambda x}, & x > 0 \end{cases}, \quad M\xi = \frac{1}{\lambda}, \quad D\xi = \frac{1}{\lambda^2}.$$

3) Нормальний (гауссівський) розподіл $(\xi \sim N(m,\sigma^2), m \in \mathbb{R}, \ \sigma^2 > 0)$

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-m)^2}{2\sigma^2}}, \quad F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t) dt, \quad F_{\xi}(x) = \Phi\left(\frac{x-m}{\sigma}\right), \quad M\xi = m, \quad D\xi = \sigma^2.$$

Характеристичні функції

Основні визначення

Характеристична функція

$$\varphi_{\xi}(t) = Me^{it\xi} = M(\cos \xi t + i\sin \xi t) = M\cos \xi t + iM\sin \xi t,$$
$$\varphi_{\xi}(t) = \int_{\mathbb{R}} e^{itx} dF_{\xi}(x).$$

У випадку дискретного розподілу

$$\varphi_{\xi}(t) = Me^{it\xi} = \sum_{x_k} e^{itx_k} P\{\xi = x_k\},\,$$

в абсолютно неперервному випадку

$$\varphi_{\xi}(t) = \int_{R} e^{itx} f_{\xi}(x) dx, \qquad f_{\xi}(x) = \frac{1}{2\pi} \int_{R} e^{-itx} \varphi_{\xi}(t) dt.$$

Властивості характеристичних функцій

- 1) $\forall t \in R \mid \varphi(t) \mid \leq 1, \ \varphi(0) = 1.$
- 2) $\varphi(t)$ рівномірно неперервна по t.
- 3) Якщо $\eta=a\xi+b$, де a і b константи, то $\varphi_{\eta}(t)=e^{itb}\varphi_{\xi}(at)$.
- 4) Якщо ξ_1, \dots, ξ_n незалежні, то $\varphi_{\xi_1 + \dots + \xi_n}(t) = \prod_{k=1}^n \varphi_{\xi_k}(t)$.
- 5) $\varphi_{\varepsilon}(-t) = \varphi_{-\varepsilon}(t) = \overline{\varphi}_{\varepsilon}(t)$.
- 6) Якщо $m_n=M\xi^n<\infty$, то існують всі похідні $\varphi^{(k)}(t)$ $(k\leq n)$ і має місце $\varphi^{(k)}(0)=i^kM\xi^k$ та крім того $\varphi(t)=\sum_{k=0}^n\frac{\left(it\right)^k}{k!}m_k+R_n(t)$, де $R_n(t)=o\left(\mid t^n\mid\right),\ t\to 0$.
- 7) Х.ф. $\varphi_{\xi}(t)$ однозначно визначає розподіл в.в. ξ .
- 8) $F_n(x) \Rightarrow F(x) \Leftrightarrow \varphi_n(t) \to \varphi(t)$ (Це так звана теорема про неперервну відповідність між множиною характеристичних функцій та множиною функцій розподілу)

Основні характеристичні функції

1. Якщо
$$\xi = c$$
 , то $\varphi_{\xi}(t) = e^{itc}$.

2.
$$\xi \sim U([a,b]), \ \varphi_{\xi}(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}.$$

3.
$$\xi \sim Exp(\lambda)$$
, $\varphi_{\xi}(t) = \left(1 - \frac{it}{\lambda}\right)^{-1}$.

4.
$$\xi \sim G(p)$$
, $\varphi(t) = \frac{p}{1 - e^{it}q}$.

5.
$$\xi \sim Be(p)$$
, $\varphi(t) = e^{it} p + 1 - p$.

6.
$$\xi \sim Bi(n, p), \ \varphi(t) = (e^{it} p + 1 - p)^n$$

7.
$$\xi \sim \Pi(\lambda)$$
, $\varphi(t) = \exp\{\lambda(e^{it} - 1)\}$.

8.
$$\xi \sim N(0,1)$$
, $\varphi(t) = e^{-t^2/2}$; $\xi \sim N(m,\sigma^2)$, $\varphi(t) = e^{itm - \frac{\sigma^2 t^2}{2}}$.