

An Approach for Identifying Microservices using Clustering on Control Flow and Data Flow

Supervisor: Dr. rer. nat. Robert Heinrich

Student: Niko Benkler

SOFTWARE DESIGN AND QUALITY GROUP
INSTITUTE FOR PROGRAM STRUCTURES AND DATA ORGANIZATION, FACULTY OF INFORMATICS

Microservice Architecture

- Benefits
 - Availability, Resilience, Fault Isolation
 - Scalability, Resource Utilisation
 - Neutral Development Technology
- Challenges
 - Expensive Communication
 - Organizational Challenges
 - Microservice Identification

23/04/2019

Foundation

Related Work

Approach

Evaluation

PIBA

Problem

Identify Microservices form System requirements without detailed knowledge and manual effort
Idea

Identify microservices using clustering on control flow and data flow

Benefit

- Faster identification process
- Reduce required expertise and manual effort
- Create adequate microservices

<u>Action</u>

- Extract control flow (activities) and data flow (data object) dependencies from BPMN models
- Create two weighted graphs based on the dependencies
- Identify highly cohesive sets of activities and data objects
- Match clusters to generate microservice candidates

Foundation

Related Work

Approach

Evaluation

Research Questions

??? Ja nein?

Motivation

Foundation

Related Work

Approach

Evaluation

State of the Art I

Approach/Criterion	Munezero et al. [22]	Chen et al. [5]	Alwis et al. [6]	Gysel et al. [11]
Basic Concept	define business capabil- ities by using domain- driven design patterns	algorithmic identifica- tion of microservices using data flows	cation process using	service decomposition based on 16 coupling criteria
Prerequisites	domain defined by ubiq- uitous language	systems's data flows constructen on users' natural langugae de- scription	Log files of legacy system	various System Specifi- cation Artifacts (SSAs) in specified format
Input	well defined domain model	Data Flow Diagrams (DFD)	Call Graphs, Source Code, System Database	instances of SSAs (e.g. ERM models, use cases)
Tool support	n/a	n/a	External tool for generating call graphs	implementation and wiki available
Degree of human involvement	domain experts define boundaries for business responsibilities	manual construction of purified DFD	no interaction needed	priorization of coupling criteria
Granularity	depends on the size of the defined business ca- pability	most fine-grained ms candidates in terms of data operations		n/a
Validation	demonstrated on sam- ple domain	two case studies ver- ified against relevant microservice principles and results of [11]		mentation and two case
Limitation	only conceptional ap- proach, requires vast amount of expertise	transforming puri- fied DFD not trivial (identifying same data operations requires expertise)	requires expressive log files to generate call graphs and iden- tify business object relationships	generating SSAs in specified format is work intense

Motivation

Foundation

Related Work

Approach

Evaluation

State of the Art II

Approach/Criterion	Mazlami et al. [20]	Amiri [2]	Baresi et al. [3]	Tyszberowicz et al. [24]
Basic Concept	meta-data aided graph clustering	business process ori- ented graph clustering	semantic similarity of OpenApi specification	functional decomposi- tion of sw requirements
Prerequisites	applications with mean- ingful VCS data	business processes and entities available	well-defined Api with proper naming	specification of software requirements
Input	Source Code and VCS meta data	BPMN business pro- cesses with data object reads and writes	reference vocabulary (fitness function), OpenApi specifications	use cases
Tool support	prototype available (https://github.com/gmaz frontend)	Clustering tool "Bunch"	experimental prototype (https://github.com/mgar riga/decomposer)	use external graph visu- alize and analyse tools
Degree of human involvement	choose amount of clus- ters that will represent the microservices	no interaction needed	user defines level of hierachy	manual elimination of synonyms, irrelevant nouns and verbs
Granularity	depends on choosen amount of clusters	depends on iteration of genetic algorithm for convergence of fitness function	erachy lebel, varies from	depends on size of busi- ness capability
Validation	experiements using open-source projects with VCS data (200 to 25000 commits, 1000 to 500000 LOC, 5 to 200 authors)	multiple experiments, results compared with domain experts knowledge	452 OpenApi specifica- tion, 5 samples com- pared with results of sw- engineers and [11]	case study, compared to three manual imple- mentations
Limitation	need meaningful VCS data and ORM model for its data entities	2	depends on reference vocabulary and well-defined interfaces	manual revision of oper- ations (nouns) and state variable (verbs)

Motivation

Foundation

Related Work

Approach

Evaluation

Basic Strategy

- Inspired by "Object-Aware Identification of Microservices" [1]
 - Clustering on structural and data object dependencies
 - Aggregation of dependencies vague
 - Results highly influenced if large amount of data accesses
 - Data flow only implicitly
- Strategy:
 - Extract control flow and data flow from business process models
 - Create two separate sets of clusters (activity and data object clusters)
 - Match clusters

Foundation

Related Work

Approach

Evaluation

Approach

Divided in nine steps

Motivation

Foundation

Related Work

Approach

Evaluation

Specify BPMN Models

- System requirements in various forms
- Transformation into BPMN models
 - Workshops
 - Use Case Transformation
 - Others: BPMN Miner[5] ...

Use Case Transformation based on [2]

Related Work

Approach

Evaluation

Extract Control Flow

 Delete Data Objects and accompanying associations

Original:

Extracted
Control Flow:

Motivation

Foundation

Related Work

Approach

Evaluation

Extract Data Flow

- Approximate Data Flow
- Delete control flow related parts
- Connect pair of tasks if connected by control flow arc
- Replace Gates
 - Replace by two data flow arcs
 - No distinction between XOR and parallel Gateway
- Delete unnecessary tasks

Motivation

23/04/2019

Foundation

Related Work

Approach

Evaluation

Create a weighted Graph using Control Flow

- Generate one Graph by using all BPMN models
- Connect pair of activities
 - if directly connected in BPMN models
 - if only gateways in between
- Assign a weight of 1 to all dependencies
- Multiple occurrences: Add weights

Foundation

Related Work

Approach

Evaluation

Create a weighted Graph using Data Flow

- Generate one Graph by using all BPMN models
- Connect pair of data objects
 - if both data objects are read by the same task
 - if a data object is used to update another data object
- max. *n* tasks in between a task that reads the first data object and another tasks that updates the other data object
- Determine parameter n depending on the granularity of the BPMN models
- Assign a weight of 1 to all dependencies
- Multiple occurrences: Add weights

Motivation

Foundation

Related Work

Approach

Evaluation

Identify Clusters

- Bunch Software [3]
 - Genetic Algorithm: Randomly picks k cluster
 - Fitness Function: Turbo-MQ
 - Cluster Factor: Rewards intra-cluster coupling
- Input: List of edges with weights
- Output: DOT format
- Visualization: GraphViz [4]
- Two sets of cluster
 - Activity cluster
 - Data Object Cluster

$$Turbo - MQ = \sum_{i=1}^{k} CF_i$$

$$CF_i = \begin{cases} 0 & \mu_i = 0 \\ \frac{\mu_i}{\mu_i + \epsilon_i} & otherwise \end{cases}$$

Foundation

Related Work

Approach

Evaluation

Matching of Clusters

- Count data object access between activity clusters and data object cluster
- Use amount as weight
- Use Bunch to identify compound cluster

15

Foundation

Related Work

Approach

Evaluation

Extract Microservice Candidates

Each compound cluster correspond to a microservice candidate

Approach

Related Work

Foundation

Motivation

Application of the Approach

Besser implizit bei der Evaluation!?????

Motivation

Foundation

Related Work

Approach

Evaluation

Evaluation

- Goal: Determine the accuracy of the approach
- CoCoME as running example
- Comparison to two Reference Sets
 - Decomposition by approach in "Identifying Microservices Using Functional Decomposition" [4]
 - Manual Decomposition
- Questions: What is the Precision and Recall regarding the identified
 - microservices?
 - functionalities of the microservices?
 - data objects of the microservices?

Motivation

Foundation

Related Work

Approach

Evaluation

Evaluation Results

- Reference Set 1 does not contain all functionalities
 - focus is on Reference Set 2 (Manual Decomposition)

- $Recall_{microservice} = \frac{3}{4} = 0.75$
- Precision_{microservice} = $\frac{3}{2}$ = 1
- Recall_{functionality} = $\frac{12}{18} \approx 0.67$
- Precision_{functionality} = $\frac{12}{13} \approx 0.92$
- Recall_{dataObject} = $\frac{5}{7} \approx 0.71$ Precision_{dataObject} = $\frac{5}{7} \approx 0.71$

Satisfying results

Foundation

Related Work

Approach

Evaluation

Conclusion

- State of the Art
- Strategy inspired by "Object-Aware Identification of Microservices" [1]
 - Acquired: Using control flow information to identify clusters of highly cohesive activities
 - Added: Using data flow information to identify clusters of highly cohesive data objects
- Approach elaborated
 - Using clustering on control flow and data flow
 - Input: System specifications in form of BPMN models
- Evaluation conducted
 - Approach applied to CoCoME
 - Precision and Recall to determine accuracy of the approach
 - Satisfying results

Foundation

Related Work

Approach

Evaluation

Limitations and Future Work

Limitations

- Transformation of system specifications into BPMN models not trivial
- Same granularity for all BPMN models required
- Parameter n needs knowledge about granularity

Future Work

- Additional data flow diagram needed?
- Different clustering algorithms to achieve variable microservice sizes
- Approach capable of identifying different microservice sizes?
- Cluster matching: Elaborate white box approach
- Apply on other systems

Foundation

Related Work

Approach

Evaluation

Bibliography

- [1] M. J. Amiri. "Object-Aware Identification of Microservices". In: (July 2018), pp. 253–256
- [2] D. Lubke, K. Schneider, and M. Weidlich. "Visualizing Use Case Sets as BPMN Processes"
- [3] Bunch Software, https://www.cs.drexel.edu/~spiros/bunch/, Accessed on 15.04.2019
- [4] Shmuel Tyszberowicz et al. "Identifying Microservices Using Functional Decomposition"
- [5] Raaele Conforti et al. "BPMN Miner: Automated discovery of BPMN processmodels with hierarchical structure"

Motivation

23/04/2019

Foundation

Related Work

Approach

Evaluation

Motivation

Foundation

Related Work

Approach

Evaluation

