

Looking at Associations with **Multivariate Quantitative Data**

Tim NeCamp

Statistics with Python Course Developer

0:02 / 7:32

Gathering Multivariate Quantitative Data

What is your age?

Let's measure your:

- Body mass index (BMI)
- Blood pressure
- Cholesterol level

their blood pressure, their cholesterol level.

What is Multivariate Quantitative Data?

Multivariate

more than one trait recorded per unit

Quantitative

takes on a measured numeric value

and its quantitative because the numbers we measure take on measure

Recording Multivariate Quantitative Data

our sample or the characteristics of the people within our sample.

•

Displaying with Univariate Histograms

But what if we are interested in the association between these two variables?

Displaying with a Scatterplot

Correlation: R: 0.58

R2: 0.34

Joint Distribution

Marginal Distribution of X

Association- Type

Linear association-

the pattern is a line

Systolic Blood Pressure vs Age 150 100 20 40 Age

Quadratic association-

the pattern is parabolic

No association-

there is no pattern

so that's no association.

Association-Direction

Positive linear association - pattern has a positive slope, when x increases, y increases

Negative linear association - pattern has a negative slope, when x increases, y decreases

Association-Strength

Weak linear association-

Moderate linear association-

Strong linear association-

points are largely scattered along a line

points are partially scattered along a line

points are minimally scattered along a line

which is the strongest association we see here.

Correlation

Pearson correlation (R or ρ): number between -1 and 1 indicating the strength and sign of association between 2 variables

The sign of the correlation is the sign of the association

R = 0.58

The closer the number is to I or -I, the stronger the association

 $_{0}R = -0.99$

$$R = -.01$$

Correlation Does Not Imply Causation

·· 🔅 ,

Outliers in Multivariate Quantitative Data

Outliers - extreme data points that deviate from patterns in the rest of the data

Displaying Quantitative and Categorical Data

and the increase in blood pressure as people get older is more prominent in females.

What we've learned for Multivariate Quantitative Data

- Scatterplots for visualization
- Describing association through
 - Type
 - Direction
 - Strength
- Correlation as a way to numerically describe association
- Identifying potential outliers

