Number system and conversions (section 1.4 of textbook)

Vikas Dhiman for ECE275

September 2, 2022

6 Signed binary numbers

Signed numbers include both negative and positive numbers. There three common signed number representations

- 1. Sign magnitude representation
- 2. One's complement
- 3. Two's complement

6.1 Sign-magnitude representation

The Most significant (left most) bit (binary digit) represents sign (0 = + and 1 = -), the rest represent the magnitude. Example, a 5-bit number $(11010)_2$ in signed magnitude representation has the value of $(-1010)_2 = -10$. Note that +10 has to be represented by a leading 0 at the most significant bit (MSB) $+10 = (01010)_2$. Hence, the number of bits have to be specified.

Problem 5 • Write down all possible 4-digit binary numbers and corresponding decimal values if they are in signed magnitude format? What is the minimum and maximum value?

• What is the minimum and maximum value of n-digit signed binary number in sign-magnitude format?

4-dight Brians

Detrinal

$$0000 = +0$$
 $0000 = +1$
 $0000 = +1$
 $0000 = +2$
 $0000 = +4$
 $0100 = +4$
 $0100 = +4$
 $0100 = +4$
 $0100 = +6$
 $0110 = +7$
 $0110 = +7$
 $0110 = -2$
 $1000 = -2$
 $1000 = -4$
 $1100 = -5$
 $1100 = -5$
 $1100 = -5$
 $1100 = -5$
 $1110 = -5$
 $1110 = -76$ Min $-(2-1)$

6.2 One's complement negation

You can convert a positive number (say +10) to negative number by applying a negative sign in front of it (-(+10) = -10). It is more evident from taking negative of a negative number (-(-10) = +10). In case of sign-magnitude representation, the "negative operator" flips the sign bit. The next two signed number representations (1's complement and 2's complement) are designed around specific negative operator definitions.

Negate -13_{10} using 5-bit one's complement.

6.3 One's complement binary numbers

In one's complement representation, the negative operation is obtained by flipping all the bits of the binary number. Example, a 5-bit one's complement of $+10 = (01010)_2$ is $(10101)_2 = -10$. Note that flipping bits is equivalent to subtracting the number from $(11111)_2$, hence the name. You can also confirm that double negative operator yields back the same number.

Problem 6 • Write down all possible 4-digit binary numbers and corresponding decimal values if they are in sign magnitude format? What is the minimum and maximum value?

• What is the minimum and maximum value of n-digit signed binary number in one's complement?

Problem 10 Convert the decimal numbers -17 and +23 into the 6-digit two's complement binary numbers and try adding them. What adjustments will you need to make to get the right result's $(23-17=6)$ in binary representation.
Problem 11 Convert the decimal numbers 73, 23, -17, and -163 into signed 8-bit numbers in the following representations:
1. Sign and magnitude
2. 1's complement
3. 2's complement

6.6 Arithmetic overflow

Problem 12 Consider addition of 4-digit two's complement binary numbers

- 1. $1010_2 + 1101_2$
- $2. 1011_2 + 1100_2$

In which of the two case overflow happens? Can you come up with a rule to "easily" detect overflow?

7 Binary coded decimal

In Binary coded decimal (BCD), each decimal digit is represented by 4 bits. For example, $1047 = (0001_0000_0100_0111)_{BCD}$. It is useful in input-output applications where the number has to be either displayed as decimal or received as decimal.

Problem 13 Convert 11, 23, 35, 57 and 103897 to BCD?

8 Gray code

A sequence of binary numbers where only one bit changes when the number increases by 1. It is helpful in applications like wheel encoders

Problem 14 Write all possible 3-bit binary numbers in gray-code