Creative Component

Taikgun Song

Abstract

Write abstract. It is known that the performance of Laten Dirichlet Allocation based topic models over short texts. In this paper, we would like to compare LDA methods with different 'parameter' under experimental setting.

1 Introduction

Then the following R packages were utilized to conduct Latent Dirichlet Allocation(Blei, Ng, and Jordan 2003) method: openNLP(Hornik 2016a), NLP (Hornik 2016b), topicmodels (Bettina Grün 2016).

2 Data Cleaning

Datasets. In order to compare different LDA processes, a collection of short user-generated online reviews from a popular website, the Trip Advisor, was used for evaluation. Among all restaurants in Honolulu, Hawaii registered on the Trip Advisor, the latest 10 reviews were scrapped and read into R (R Core Team 2014) using the RCurl (Lang 2015) package. This dataset includes the following information of the 7700 Honolulu restaurants: restaurant name, number total reviews, average star rating, individual review title, individual review entry, individual star rating, and the date visited. In this paper, we are particularly interested in individual review entry. The raw data scrapped from the web are noisy and preperation process is necessary to minimize this noise. The initial step for this cleaning process is to remove all non-latin characters, and change all characters to lower case letters.

Removing Stop Words The second step is to remove meaningless words and words with low frequency by utilizing the tm (Ingo Feinerer 2015) and the RTextTools (Timothy P. Jurka 2014) packages in R. The listed results in Table 1 shows the importance of removing stop words prior to running LDA method.

	Topic.1	Topic.2	Topic.3	Topic.4		Topic.1	Topic.2	Topic.3	Topic.4
1	the	the	the	the	1	food	food	good	food
2	and	and	and	and	2	service	good	place	great
3	for	you	was	with	3	good	place	food	good
4	you	for	were	was	4	restaurant	like	great	place
5	food	this	for	for	5	$_{ m just}$	just	also	service
6	$_{ m this}$	are	had	but	6	one	one	chicken	get
7	are	they	our	this	7	ordered	service	$_{ m just}$	one
8	but	was	but	they	8	back	get	ordered	restaurant
9	good	great	that	had	9	like	restaurant	really	can
10	with	have	not	you	10	really	will	get	best

⁽a) Table LDA output before removing the stop words

Table 1: Difference of LDA output between with and without stop words

Stemming.

• LDA, documents are repsented as random mixtures over latent topics, where each topic is characerized by a distirbution over words. (Need paraphrasing)

⁽b) Table LDA output after removing the stop words

LDA assumse that words are generated by topics.

Therefore, retrieving information by reducing the inflected words to its original word stem may increase the probability of the joint distribution of topic mixture leading (thus increasing the probability of a document and a corpus).

	Topic.1	Topic.2	Topic.3	Topic.4	_		Topic.1	Topic.2	Topic.3	Topic.4
1	food	food	good	food	_	1	good	food	good	food
2	service	good	place	great		2	food	place	food	good
3	good	place	food	good		3	place	good	order	great
4	restaurant	like	great	place		4	great	restaur	servic	restaur
5	$_{ m just}$	just	also	service		5	get	great	place	place
6	one	one	chicken	get		6	breakfast	servic	one	delici
7	ordered	service	just	one		7	servic	order	just	tri
8	back	get	ordered	restaurant		8	$_{ m time}$	price	great	like
9	like	restaurant	really	can		9	price	eat	time	one
10	really	will	get	best		10	wait	time	like	love

⁽a) Table LDA output before stemming

Table 2: Difference of LDA output between with and without stop words

3 Sequential bigram

Wallach

⁽b) Table LDA output after stemming

References

Bettina Grün, Kurt Hornik. 2016. $Topic\ Models$. https://cran.r-project.org/web/packages/topicmodels/topicmodels.pdf.

Blei, David M, Andrew Y Ng, and Michael I Jordan. 2003. "Latent Dirichlet Allocation." *Journal of Machine Learning Research* 3 (Jan): 993–1022.

Hornik, Kurt. 2016a. Apache OpenNLP Tools Interface. https://cran.r-project.org/web/packages/openNLP/openNLP.pdf.

——. 2016b. Natural Language Processing Infrastructure. https://cran.r-project.org/web/packages/NLP/NLP.pdf.

Ingo Feinerer, Artifex Software, Kurt Hornik. 2015. Text Mining Package. https://cran.r-project.org/web/packages/tm/tm.pdf.

Lang, Ducan Temple. 2015. General Network Client Interface for R. http://cran.r-project.org/web/packages/RCurl/RCurl.pdf.

R Core Team. 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

Timothy P. Jurka, Amber E. Boydstun, Loren Collingwood. 2014. Automatic Text Classification via Supervised Learning. https://cran.r-project.org/web/packages/RTextTools/RTextTools.pdf.