Correction du Devoir Maison nº 16 bis

- 1. f est constante : $\forall (x,y) \in \mathbb{R}^2, f(x) = f(y)$ (ou, moins maniable : $\exists L \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = L$)
- 2. f n'est pas constante : $\exists (x,y) \in \mathbb{R}^2, f(x) \neq f(y)$.
- 3. f est strictement croissante : $\forall (x,y) \in \mathbb{R}^2, x < y \Rightarrow f(x) < f(y)$ (qu'on peut résumer en : $\forall x < y \in \mathbb{R}^2, f(x) < f(y)$)
- 4. f est décroissante : $\forall (x,y) \in \mathbb{R}^2, x \leq y \Rightarrow f(x) \leq f(y)$ (ou $\forall x \leq y \in \mathbb{R}^2, f(x) \leq f(y)$)
- 5. $(u_n)_{n\in\mathbb{N}}$ est constante : $\forall n\in\mathbb{N}, u_n=u_{n+1}$ (ou, moins maniable : $\exists L\in\mathbb{R}, \forall n\in\mathbb{N}, u_n=L$).
- 6. $(u_n)_{n\in\mathbb{N}}$ est croissante : $\forall n\in\mathbb{N}, u_n\leq u_{n+1}$.
- 7. $(u_n)_{n\in\mathbb{N}}$ n'est pas croissante : $\exists n\in\mathbb{N}, u_n>u_{n+1}$
- 8. $(u_n)_{n\in\mathbb{N}}$ est strictement décroissante : $\forall n\in\mathbb{N}, u_n>u_{n+1}$
- 9. Il y a une valeur que $(u_n)_{n\in\mathbb{N}}$ prend deux fois : $\exists n\neq p\in\mathbb{N}^2, u_n=u_p$ (ou : $\exists y\in\mathbb{R}, \exists n\neq p\in\mathbb{N}^2, y=u_n$ et $y=u_p$)
- 10. f admet un point fixe : $\exists x \in \mathbb{R}, f(x) = x$
- 11. f admet exactement un point fixe : $\exists!x \in \mathbb{R}, f(x) = x$
- 12. f admet deux points fixes: $\exists x_0 \neq x_1 \in \mathbb{R}^2, f(x_0) = x_0 \text{ et } f(x_1) = x_1$
- 13. f n'admet aucun point fixe : $\forall x \in \mathbb{R}, f(x) \neq x$
- 14. Il existe un réel ayant deux antécédents par $f: \exists x_0 \neq x_1 \in \mathbb{R}^2, f(x_0) = f(x_1)$ (ou : $\exists y \in \mathbb{R}, \exists x_0 \neq x_1 \in \mathbb{R}^2, f(x_0) = y$ et $f(x_1) = y$)
- 15. Il existe un réel n'ayant aucun antécédent par $f: \exists y \in \mathbb{R}, \forall x \in \mathbb{R}, y \neq f(x)$
- 16. Tout réel admet un unique antécédent par $f: \forall y \in \mathbb{R}, \exists ! x \in \mathbb{R}, y = f(x)$
- 17. f admet un minimum¹: $\exists x_0 \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) \geq f(x_0)$
- 18. f est à valeurs positives : $\forall x \in \mathbb{R}, f(x) \ge 0$
- 19. f n'est pas à valeurs positives : $\exists x \in \mathbb{R}, f(x) < 0$
- 20. f est à valeurs négatives : $\forall x \in \mathbb{R}, f(x) \leq 0$
- 21. f est bornée : $\exists M \in \mathbb{R}, \forall x \in \mathbb{R}, |f(x)| \leq M$ (ou : $\exists (m, M) \in \mathbb{R}^2, \forall x \in \mathbb{R}, m \leq f(x) \leq M$)
- 22. f n'est pas bornée : $\forall M \in \mathbb{R}, \exists x \in \mathbb{R}, |f(x)| > M$ (plus maniable que l'autre).
- 23. f n'est pas l'identité : $\exists x \in \mathbb{R}, f(x) \neq x$

Page 1/3 2023/2024

 $^{^1}$ Je ne veux pas lire : « $\exists x_0 \in \mathbb{R}, f(x_0) = \min f$ », je veux qu'on traduise le fait que c'est un minimum.

MP2I Lycée Faidherbe

- 24. f s'annule : $\exists x \in \mathbb{R}, f(x) = 0$
- 25. f s'annule deux fois : $\exists x_0 \neq x_1 \in \mathbb{R}^2, f(x_0) = 0$ et $f(x_1) = 0$
- 26. f ne s'annule pas : $\forall x \in \mathbb{R}, f(x) \neq 0$
- 27. f n'est pas la fonction nulle : $\exists x \in \mathbb{R}, f(x) \neq 0$
- 28. f est la fonction nulle : $\forall x \in \mathbb{R}, f(x) = 0$
- 29. $(u_n)_{n\in\mathbb{N}}$ est stationnaire : $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n = u_{n+1}$ (ou, moins maniable : $\exists L \in \mathbb{R}, \exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n = L$)
- 30. $(u_n)_{n\in\mathbb{N}}$ est positive à partir d'un certain rang : $\exists n_0 \in \mathbb{R}, \forall n \geq n_0, u_n \geq 0$
- 31. $(u_n)_{n\in\mathbb{N}}$ admet un terme positif : $\exists n\in\mathbb{N}, u_n\geq 0$
- 32. f(x) est positif pour x assez grand : $\exists B \in \mathbb{R}, \forall x \geq B, f(x) \geq 0$
- 33. f est majorée par 1 au voisinage de $0: \exists \eta > 0, \forall x \in [-\eta; \eta], f(x) \leq 1$
- 34. f n'est pas de signe constant : $\exists (x_0, x_1) \in \mathbb{R}^2, f(x_0) < 0$ et $f(x_1) > 0$
- 35. f est à valeurs dans $[-1;1]: \forall x \in \mathbb{R}, f(x) \in [-1;1]$
- 36. Tous les éléments de [-1;1] sont atteints par $f: \forall y \in [-1;1], \exists x \in \mathbb{R}, y = f(x)$
- 37. f n'est pas paire : $\exists x \in \mathbb{R}, f(-x) \neq f(x)$
- 38. f n'est ni paire ni impaire : $\exists (x_0, x_1) \in \mathbb{R}^2, f(-x_0) \neq f(x_0)$ et $f(-x_1) \neq -f(x_1)$
- 39. f est périodique : $\exists T \neq 0, \forall x \in \mathbb{R}, f(x+T) = f(x)$
- 40. f est continue en $0: \forall \varepsilon > 0, \exists \eta > 0, \forall x \in \mathbb{R}, |x| \leq \eta \Rightarrow |f(x) f(0)| \leq \varepsilon$.
- 41. f est uniformément continue : $\forall \varepsilon > 0, \exists \eta > 0, \forall (x,y) \in \mathbb{R}^2, |x-y| \leq \eta \Rightarrow |f(x) f(y)| \leq \varepsilon$.
- 42. f ne tend pas vers 0 en $+\infty$: $\exists \varepsilon > 0, \forall B \ge 0, \exists x \ge B, |f(x)| > \varepsilon$.
- 43. $(u_n)_{n\in\mathbb{N}}$ est arithmétique : $\exists a\in\mathbb{R}, \forall n\in\mathbb{N}, u_{n+1}=u_n+a$
- 44. $(u_n)_{n\in\mathbb{N}}$ est géométrique : $\exists a\in\mathbb{R}, \forall n\in\mathbb{N}, u_{n+1}=a\times u_n$
- 45. $(u_n)_{n\in\mathbb{N}}$ est arithmético-géométrique : $\exists (a,b)\in\mathbb{R}^2, \forall n\in\mathbb{N}, u_{n+1}=au_n+b$
- 46. $(u_n)_{n\in\mathbb{N}}$ converge : $\exists L\in\mathbb{R}, \forall \varepsilon>0, \exists n_0\in\mathbb{N}, \forall n\geq n_0, |u_n-L|\leq\varepsilon$
- 47. L'ensemble des réels en lesquels f s'annule n'est pas majoré : $\forall M \in \mathbb{R}, \exists x \in \mathbb{R}, x > M$ et f(x) = 0
- 48. r est rationnel : $\exists (n,p) \in \mathbb{Z} \times \mathbb{Z}^*, r = n/p$ (on pouvait prendre p dans \mathbb{N}^* ou n dans \mathbb{N}).
- 49. G est commutatif: $\forall (x,y) \in G^2, xy = yx$.
- 50. G n'est pas commutatif : $\exists (x,y) \in G^2, xy \neq yx$.
- 51. A est intègre : $\forall (a,b) \in A^2, ab = 0 \Rightarrow (a = 0 \text{ ou } b = 0)$. Ou, par contraposée : $\forall (a,b) \in A^2, (a \neq 0 \text{ et } b \neq 0) \Rightarrow ab \neq 0$.

Page 2/3 2023/2024

MP2I Lycée Faidherbe

- 52. A n'est pas intègre : $\exists (a,b) \in A^2, a \neq 0, b \neq 0$ et ab = 0.
- 53. P est de degré $3: \exists (a,b,c,d) \in \mathbb{R}^* \times \mathbb{R}^3, P = aX^3 + bX^2 + cX + d$.
- 54. P divise $Q: \exists A \in \mathbb{K}[X], Q = AP$.
- 55. M est diagonale : $\forall (i,j) \in [\![\,1\,;\,n\,]\!]^2, i \neq j \Rightarrow M_{i,j} = 0.$
- 56. M est triangulaire supérieure : $\forall (i,j) \in [\![\,1\,;\,n\,]\!]^2, i>j \Rightarrow M_{i,j}=0.$
- 57. M est nilpotente : $\exists k \in \mathbb{N}, M^k = 0_n$.

Page 3/3 2023/2024