Al Summer Camp: Linear Algebra

Elsiddig Elsiddig

King Abdullah University of Science and Technology, Saudi Arabia

July 10, 2023

Vectors

A vector is a quantity that has a magnitude and direction.

Figure: Representations of the same vector

In the plane we can represent a vector by a pair of real numbers (x, y). The set of such pairs are denoted \mathbb{R}^2 .

It is staight forward to generalize to \mathbb{R}^n for any integer $n \geq 1$. A **vector x** in \mathbb{R}^n is a sequence of n real numbers $\mathbf{x} = (x_1, ..., x_n)$. n is called the dimension of the space or of the vector. The numbers x_i 's are called the components of the vector \mathbf{x} .

Although a vector is independent from its starting point is we can sill represent a vector by a starting point and an end point. The vector in this case will just be the vector represented by the subtraction of the components of the points.

Example: The vector that starts at (3,1) and ends at (0,5) is represented by

$$(0-3,5-1)=(-2,4)$$

.

Vector Operations

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$.

By definition we can write $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$.

- We say that $\mathbf{x} = \mathbf{y}$ if and only if $x_1 = y_1, x_2 = y_2, ..., x_n = y_n$.
- Addition: $\mathbf{x} + \mathbf{y} = (x_1 + y_1, ..., x_n + y_n).$
- Scalar Multiplication: $c\mathbf{x} = (cx_1, ..., cx_n)$.
- Length (Norm): $\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + ... + x_n^2}$.
- Dot (Scalar) Product: $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + ... + x_n y_n$.

Notice that some operations return a vector while some return a real number.

The vector (4,3) has length

$$\|(4,3)\| = \sqrt{4^2 + 3^2} = 5$$

and its angle $\theta \approx 36.87$ which is the angle that satisfies $\cos(\theta) = 4/5$ and $\sin(\theta) = 3/5$.

Angle between two vectors

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. The angle θ between the vectors \mathbf{x} and \mathbf{y} is defined as the unique angle in the interval $[0, \pi]$ that satisfies

$$\cos(\theta) = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}$$

Why do only define the angle on $[0, \pi]$?

Unit Vectors

A vector $\mathbf{x} \in \mathbb{R}^n$ that satisfies $\|x\| = 1$ is called a unit vector. Writing this using the vector components

$$x_1^2 + x_2^2 + \dots + x_n^2 = 1$$

This is called the n-dimensional unit sphere equation.

Matrix

An $n \times m$ matrix is a sequence of length n of m-vectors written as rows. A matrix can be viewed as a sequence of length m of n-vectors written as columns.

$$\begin{bmatrix} 2 & 5 & 0.3 \\ 5 & 6 & 10 \\ -100 & \frac{5}{3} & 0 \\ -2 & 1 & 1 \end{bmatrix}$$

Addition of matrices and scalar multiplication are defined analogously to way they were defined for vectors.

Matrix Operations

Matrix Multiplication:

Transpose:

$$\begin{bmatrix} 2 & 5 & 0.3 \\ 5 & 6 & 10 \\ -100 & \frac{5}{3} & 0 \\ -2 & 1 & 1 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 5 & -100 & -2 \\ 5 & 6 & \frac{5}{3} & 1 \\ 0.3 & 10 & 0 & 1 \end{bmatrix}$$