

ONE SAMPLE T-CONFIDENCE INTERVALS

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

• **Goal:** use the t-distribution to identify the confidence interval for the average height of 18 year olds (in inches) in a certain population, using a random sample of size 25.

n	Sample mean	S	Sample min	Sample max
25	67.73	2.00	63.48	71.80

- Question: Are the independence and normality conditions satisfied?
- Answer:
- Independence is satisfied since the sample is random.
- n < 30, but we do not see any clear outliers (rule of thumb: all observations within 2.5 standard deviations of the mean), so it is reasonable to conclude that the normality condition is satisfied.

n	Sample mean	S	Sample min	Sample max
25	67.73	2.00	63.48	71.80

• Question: What is the standard error SE for the average height in our sample?

Answer:

$$SE = \frac{s}{\sqrt{n}} = \frac{2.0}{\sqrt{25}} = 0.4$$

• Question: What is the appropriate degrees of freedom df in this example?

Answer:

$$df = n - 1 = 25 - 1 = 24$$

• We now know that $\bar{x} = 67.73$, SE = 0.4, and df = 24. We'd like to now construct a 95% confidence interval around \bar{x} .

Categorical Data

$$I = (\hat{p} - z^* \times SE, \quad \hat{p} + z^* \times SE)$$

Found z^* as the number for which $\mathbb{P}(|x| \le z^*) = 0.95$ under a standard normal distribution

Numerical Data

$$I = (\bar{x} - t_{df}^{\star} \times SE, \quad \bar{x} + t_{df}^{\star} \times SE)$$

 t_{df}^{\star} is the number for which $\mathbb{P}(|x| \le t_{df}^{\star}) = 0.95$ under a t-distribution with df degrees of

• Using software, or tables, we find that $t_{df}^{\star}=2.1$

- Question: Having found $\bar{x}=67.73$, SE=0.4, and df=24, compute and interpret the 95% confidence interval for the average height in our sample of 18 year olds.
- Answer: We can construct the confidence interval as

$$\bar{x} \pm t_{24}^{\star} \times SE = 67.73 \pm 2.10 \times 0.4$$

So

$$I = (66.89, 68.57)$$

• We are 95% confident that the average height of 18 year olds in a population that resembles our sample is between 66.89 and 68.57 inches.

- There are 4 steps to constructing a confidence interval for a one sample mean:
 - **Prepare:** Identify or calculate \bar{x} , s, n, and determine the confidence level to be used.
 - Check: Verify the conditions that \bar{x} is nearly normal.
 - Calculate: If \bar{x} is nearly normal, calculate $SE = \frac{s}{\sqrt{n}}$, and identify the value of t_{df}^{\star} to use. This should depend on df = n 1, and on the confidence level.
 - Conclude: Interpret the confidence interval in the context of the problem.