

Data rep(resentation and int numeric)

Data rep(resentation) - motivation 1/2

- Warum soll man sich mit Datenrepräsentation (Darstellung von Zahlen und Zeichen) detailierter beschäftigen?
- Um folgende (teure) Probleme zu vermeiden:

Ariane 5 (04.06.1996 37 s nach Start)
-Wert der Nutzlast 500 Mio \$
-Software teilweise von Ariane 4
übernommen
-Konvertierungsfehler 64-bit float →
16-bit int

Data rep - motivation 2/2

- Warum soll man sich mit Datenrepräsentation (Darstellung von Zahlen und Zeichen) detaillierter beschäftigen?
 - ■Um folgende Phänomene zu verstehen:

```
■int x = 200 * 300 * 400 * 500; //-> x = -884 901 888

■float y1 = (3.14 + 1e20) - 1e20; //-> y1 = 0, aber

■float y2 = 3.14 + (1e20-1e20); //-> y2 = 3.14
```


Data rep - Konventionen

• für uns soll gelten:

- ■1 KB = 1024 Byte, 1 MB = 1.048.576 Byte, 1 GB = 1.073.741.824 Byte ...
- ■1 kBit = 1000 Bit, 1 MBit/s = 1.000.000 Bit/s usw.

Data rep - Bit und Byte

- In Computersystemen werden alle Informationen z.B. ...
 - ■Texte (Zeichenketten) "Text"
 - ■**Zahlen** 42; 3,14; -123
- ... durch Folgen/Gruppen von Bits dargestellt
 - Bit
 - == binary digit (dt. Binärziffer)
 - ■= zweiwertig: 0 oder 1
 - ■Byte= Folge/Gruppe von 8 Bits: 0b0000001
 - ■Welche Bedeutung diese Bitfolge hat hängt von der interpretation ab (ob int, char, float, ...)

Data rep - Bit und Byte - Beispiele

Data rep - Binäre und Hexadezimale Darstellung

- Eine Folge von Bits kann als natürliche Zahl interpretiert werden
- Wiederholung klassisches Dezimal-System:
 - Beispiel: 125 =1*10^2+2*10^1+5*10^0
- Binärsystem/Dualsystem:
 - Stellen haben hier Zweierpotenzen die von rechts nach links ansteigen
 - Beispiel: 0b101= 1*2^2+0*2^1+1*2^0=5dez
- Hexadezimalsystem:
 - Bei großen Zahlen ist die Binärdarstellung unhandlich, weshalb oft die Hexadezimal zur Anwendung kommt
 - Stellen haben hier 16er-potenzen die von rechts nach links ansteigen
 - Beispiel: 0x21= 2*16^1+1*16^0=33dez

Data rep - Umwandlung bin -> dec und hex -> dec

- Umwandlung bin->dec
 - Einfach die Stellenwertigkeiten ausrechnen
 - Beispiel: 0b101= 1*2^2+0*2^1+1*2^0=5dez
- Umwandung hex->dec
 - Einfach die Stellenwertigkeiten ausrechnen
 - Beispiel: 0x21= 2*16^1+1*16^0=33dez

Data rep - Umwandlung bin <-> hex

• Eine Umwandlung zwischen **bin** <-> **hex** erfolgt mit folgender Tabelle:

Hex digit	0	1	2	3	4	5	6	7
Decimal value	0	1	2	3	4	5	6	7
Binary value	0000	0001	0010	0011	0100	0101	0110	0111
Hex digit	8	9	Α	В	С	D	Е	F
Decimal value	8	9	10	11	12	13	14	15
Binary value	1000	1001	1010	1011	1100	1101	1110	1111

 Bin ->hex: 4 bin Stellen werden durch 1 hex Stelle ersetzt (immer von rechts aus (vom niederwertigsten Teil) anfangen!)

Beispiel: 0b11_1100_1010_1101_1011_0011 -> 0x3CADB3

■ Hex -> bin: 1 hex Stelle wird durch 4 bin Stellen ersetzt

Beispiel: 0x173A4C -> 0b0001_0111_0011_1010_0100_1100

Data rep - Umwandlung dec -> bin

- Algorithmus dec2bin(d):
 - 1. Suche größte 2er Potenz p=2^i <= d; (i=floor(log2(d))
 - 2. Setze i-te Binärstelle in Ergebn. = 1
 (!!!Rechteste Stelle ist 2^0!!!)
 - 3. Bilde den Rest d = d 2^i
 - 4. Wenn d==0 -> STOP; ansonsten gehe wieder zu ->1

- Beispiel: dec2bin(17)
 - A1.: p=2^i<=17 -> 2^4=16
 - 2.: res=0b1xxxx
 - 3.: d=17-16=1
 - 4.: d != 0: -> weitermachen
 - B1.: p=2^i<1 ->2^0=1
 - 2.: res=0b10001
 - 3.: d=1-1=0
 - 4.: d==0: -> STOP

Data rep - Umwandlung dec -> bin

- Algorithmus dec2bin(d):
 - Quotientenmethode
 - Dividiere d und quotient fortlaufend durch 2 und notiere Rest bis quotient =0 (d div 2=0)
 - Rest von unten nach oben gelesen ergibt das Ergebnis

Beispiel: dec2bin(17)

d	d div 2	d mod2
17	8	1
8	4	0
4	2	0
2	1	0
1	0	1

Dec2bin(17) =0b10001

Data rep - Umwandlung dec -> bin - Übung

- Algorithmus dec2bin(d):
 - Quotientenmethode
 - Dividiere d und quotient fortlaufend durch 2 und notiere Rest bis quotient =0 (d div 2=0)
 - Rest von unten nach oben gelesen ergibt das Ergebnis

■ Übung: dec2bin(78)

d	d div 2	d mod2

Data rep - multi-byte Darstellungen

- Computersysteme verwenden typischerweise Bytes als kleinste (logisch) adressierbare Einheit
- Praktisch werden Daten in größeren Blöcken (32Bit platform typ. 4Byte / 32Bit oder 64Bit platform 8Byte / 64Bit) adressiert
- Solche multi-byte Datenblöcken werden im Speicher als zusammenhängende Bytesequenz gespeichert, die durch die kleinste Adresse adressiert werden
 - Beispiel: int ivar hat Adresse 0x100 -> int ist gespeichert in Adresse 0x100, 0x101, 0x102 und 0x103

Data rep - multi-byte Darstellungen - little /big endian 1/2

- Wie allerdings die einzelnen Bytes in den Adressen 0x100 bis 0x103 angeordnet sind sind, ist Architektur-/Herstellerabhängig
- **Beispiel**: int ivar=0x01234567; //&ivar=0x100
 - Variante Big Endian

Variante Little Endian

Big Endian= höherwertigstes Byte auf niedrigster Adresse -> PPC (IBM), SPARC (SUN / ORACLE)

Little Endian= niederwertiges Byte auf niedrigster Adresse -> x86 (Intel, AMD)

Data rep - multi-byte Darstellungen - little / big endian 2/2

- Die endianness ist insbesondere auch bei Netzwerkübertragungen zwischen Systemen mit unterschiedlicher endianess wichtig
- Das Berücksichtigen von little / big endian Darstellung ist insbesondere beim Disassemblieren (Befehl objdump -d) wichtig:

Maschinencode

Assemblerbefehl

80483bd:

01 05 64 94 04 08 add %eax, 0x8049464

 $08 \ 04 \ 94 \ 64 = 8049464$

Data rep - multi-byte Darstellungen Übersicht Datentypen

■ Übersicht Datentypen und Breite von Datentypen

C - Deklaration	32Bit	64Bit
char	1	1
short int	2	2
int	4	4
long int	4	8
long long int	8	8
char *	4	8
float	4	4
double	8	8

Data rep - char / C-string 1/2

ASCII	ASCII	char									
Hex	Dec										
00	0	NULL	20	32	SP	40	64	@	60	96	`
01	1	SOH	21	33	!	41	65	Α	61	97	а
02	2	STX	22	34	"	42	66	В	62	98	b
03	3	ETX	23	35	#	43	67	С	63	99	С
04	4	EOT	24	36	\$	44	68	D	64	100	d
05	5	ENQ	25	37	%	45	69	E	65	101	e
06	6	ACK	26	38	&	46	70	F	66	102	f
07	7	BEL	27	39		47	71	G	67	103	g
08	8	BS	28	40	(48	72	Н	68	104	h
09	9	TAB	29	41)	49	73	1	69	105	i
0A	10	LF	2A	42	*	4A	74	J	6A	106	j
ОВ	11	VT	2B	43	+	4B	75	K	6B	107	k
OC	12	FF	2C	44	,	4C	76	L	6C	108	1
0D	13	CR	2D	45	-	4D	77	М	6D	109	m
0E	14	so	2E	46		4E	78	N	6E	110	n
OF	15	SI	2F	47	/	4F	79	0	6F	111	0
10	16	DLE	30	48	0	50	80	Р	70	112	р
11	17	DC1	31	49	1	51	81	Q	71	113	q
12	18	DC2	32	50	2	52	82	R	72	114	r
13	19	DC3	33	51	3	53	83	s	73	115	s
14	20	DC4	34	52	4	54	84	Т	74	116	t
15	21	NAK	35	53	5	55	85	U	75	117	u
16	22	SYN	36	54	6	56	86	V	76	118	v
17	23	ETB	37	55	7	57	87	w	77	119	w
18	24	CAN	38	56	8	58	88	х	78	120	x
19	25	EM	39	57	9	59	89	Υ	79	121	у
1A	26	SUB	ЗА	58	:	5A	90	z	7A	122	z
1B	27	Esc	3B	59	;	5B	91	[7B	123	{
1C	28	FS	3C	60	<	5C	92	١	7C	124	1
1D	29	GS	3D	61	=	5D	93	1	7D	125	}
1E	30	RS	3E	62	>	5E	94	۸	7E	126	~
1F	31	US	3F	63	?	5F	95		7F	127	DEL

- char ("Buchstaben Zeichen") werden traditionell durch den ASCII Code dargestellt (7-Bit Code)
- Ein C-String ist eine folge aus einzelnen char, die durch ein NULL-byte (0x00) abgeschlossen werden
- Zahlen: 0x30-39
- Großbuchstaben: 0x41-5A
- Kleinbuchstaben: 0x61-7A

Data rep - char / C-string 2/2

- Nicht alle Buchstaben-Zeichen lassen sich damit darstellen (z.B. €, ä, ö, ...)
 - -> Unicode (32bit, 4 Bytes pro Buchstabe)
 - --> jedes Zeichen benötigt 4 Byte statt 1 Byte
 - ■-> UTF-8
 - häufig verwendete Zeichen sind kurz (1 Byte) codiert (ASCII kompatibel!)
 - seltene Zeichen sind lang codiert (3+ Bytes)

Data rep - unsigned int

- Interpretation als natürliche Zahl mit Addition der jeweiligen Bitpositionen
 - Dezimalwert(x) =

$$B2U(x) = \sum_{i=0}^{w-1} x_i \ 2^i$$

- B2U = Binary to unsigned decimal
- Veranschaulichung als Vektor: Gesamtlänge(=Zahlenwert)
 Addition der Teillängen

- Beispiele
 - Bin 0b0001, 0b0101, 0b1011, 0b1111
 - Dec 1, 5, 11, 15

Data rep - unsigned int - Übung

- Dezimalwert(x) = $B2U(x) = \sum_{i=0}^{w-1} x_i 2^i$
 - ■B2U = Binary to unsigned decimal

- Übung: 8bit bin -> dec
 - 0x7A ->dec?
 - 0xFF ->dec?

Data rep - signed int 1/2

- Zweierkomplement Darstellung
 - Dezimalzahl $(x) = B2T(x) = -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$
 - B2T = Binary to -Two's Complement
- Veranschaulichung als Vektor:
 - Gesamtlänge(=Zahlenwert)Addition der Teillängen
 - Höchstwertige Bitposition entspricht einem negativen Basisvektor (sign (Vorzeichen) ist enthalten!)

- Beispiele
 - Bin 0b0001, 0b0101, 0b1011, 0b1111
 - Dec 1, 5, -5, -1

Data rep - signed int 2/2

- Zweierkomplement Darstellung
 - Dezimalzahl(x) = $B2T(x) = -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$
 - $\blacksquare B2T$ = Binary to Two's Complement
- Eigenschaften:
 - kleinste mit w Stellen darstellbare Zahl: -2^{w-1}
 - größte mit w Stellen darstellbare Zahl: $2^{w-1} 1$
 - höchstwertiges Bit zeigt das Vorzeichen an $(x_{w-1} = 1 \rightarrow -)$
 - unveränderte Darstellung für nichtnegative Zahlen

Data rep - conversion unsigned -> signed ((tw)o's (c)omplement) 2/3

- Berechnung two's complement
 - 0. Wenn positiv -> keine Änderung nötig -> fertig
 - 1. Wenn negativ, ermittle das Bitmuster für den positiven Zahlenwert
 - 2. Negiere alle Bitstellen (0 -> 1, 1 -> 0)
 - 3. Addiere 1.

- Beispiel (8 bit):
 - Dec -17 -> TWC?
 - **1.:** 0001 0001
 - **2.:** 1110 1110
 - *3.: 1110_1110 + 1 1110 1111

Achtung! Nur dann möglich wenn mit der eingeschränkten Darstellung des twcs möglich (betraglich nur noch 2^(w-1) statt 2^w)

Data rep - conversion signed (twc) -> unsigned 3/3

- conversion signed (twc) -> unsigned
 - 0. Wenn positiv -> keine Änderung nötig -> fertig
 - 1. Wenn negativ, ermittle das Bitmuster für den negativen Zahlenwert
 - 2. Negiere alle Bitstellen(0 -> 1, 1 -> 0)
 - 3. Addiere 1.

- Beispiel (8 bit):
 - 0xEF TWC -> Dec?
 - **1.:** 1110 1111
 - **2.:** 0001 0000
 - 3.: 0001_0000 + 1

0001_0001

Data rep - conversion signed (twc) -> unsigned / dec - Übung

- a) Zweierkomplement Darstellung
 - Dezimalzahl(x) = B2T(x) = $-x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$
 - B2T = Binary to Two's Complement
- b) conversion signed (twc) -> unsigned
 - 0. Wenn positiv -> keine Änderung nötig -> fertig
 - 1. Wenn negativ, ermittle das Bitmuster für den negativen Zahlenwert
 - 2. Negiere alle Bitstellen (0 -> 1, 1 -> 0)
 - 3. Addiere 1.

- Übung 8bit twc -> dec
 - 0x7A ->dec?
 - 0xFF ->dec?

Data rep - conversion between different sizes (type casting in C/C++) 1/3

 Grundregel 1: Beim Verkleinern von Ganzzahltypen wird das Bitmuster im übernommenen Teil beibehalten

■ Beispiel:

```
int x = 53191; // 00000000 00000001 11001111 11000111

short sx = x; // 11001111 11000111

// \rightarrow -12345
```


Data rep - conversion between different sizes (type casting in C/C++) 2/3

- Grundregel 2: Beim Vergrößern von Ganzzahltypen wird das Vorzeichenbit nach links erweitert (=sign extension; wenn 1-> Erweiterung mit 1; wenn 0 -> Erweiterung mit 0)
- Beispiel (sign extension):

```
short sx = -12345; // 11001111 11000111
int x = sx; // 1111111 1111111 11000111 11000111
// \rightarrow -12345
```


Data rep - conversion between different sizes (type casting in C/C++) 3/3

 Grundregel 3: Beim Wandeln signed <-> unsigned bleibt das Bitmuster erhalten

Beispiel:

Data rep - Bit manipulations - not, and, or, xor 1/2

- Da die binär Werte 0 und 1 die Kernwerte sind, wie Computer Daten kodieren, speichern und manipulieren hat die Boolsche Algebra eine gewisse Bedeutung
- Die Boolsche Algebra definiert Operationen, die mit Werten von 0 und 1 arbeiten, z.B.

	NOT	AND	OR	XOR (excl. or)
Funktions gleichung	$y = \overline{x1}$	$y = x1 \wedge x2$	$y = x1 \lor x2$	$y=x1\oplus x2$
C bit-level	y= ~x1;	y= x1 & x2;	y= x1 x2;	$y = x1 \wedge x2;$
Wahrheitstabelle	x1 y 0 1 1 0	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 0 \\ \end{array}$

Data rep - Bit manipulations - not, and, or, xor 2/2

- Diese Operationen lassen sich auf Bit-Vektoren erweitern, bei denen auf jedem einzelnen Bit dann diese Operation ausgeführt wird.
- Beispiele:

Data rep - Bit manipulations - logical operations 1/2

- Da die binär Werte 0 und 1 die Kernwerte sind, wie Computer Daten kodieren, speichern und manipulieren hat die Boolsche Algebra eine gewisse Bedeutung
- Die Boolsche Algebra definiert Operationen, die mit Werten von 0 und 1 arbeiten, z.B.

	NOT	AND	OR		
Funktions gleichung	$y = \overline{x1}$	$\mathbf{y} = x1 \wedge x2$	$y = x1 \lor x2$		
C logical (0=false; 1=true)	y= !x1;	y= x1 && x2;	y= x1 x2;		
Wahrheitstabelle	x1 y 0 1 1 0	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 1 & 0 & 0 \\ \hline 1 & 1 & 1 \\ \end{array}$	$\begin{array}{c cccc} x_2 & x_1 & y \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ \hline 1 & 0 & 1 \\ \hline 1 & 1 & 1 \\ \end{array}$		

Data rep - Bit manipulations - logical operations 2/2

■ Beispiel:

Expression	Result
!0x41	0x00
!0x00	0x01
!!0x41	0x01
0x69 && 0x55	0x01
0x69 0x55	0x01

Data rep - Bit manipulations - shift operations 1/2

- Left shift: x << k; //x um k stellen nach links schieben (und mit Nullen nachfüllen)
- Right shift: x >> k; //x um k stellen nach rechts schieben
 - •2 Varianten: logical shift und arithmetical shift
 - Logical shift: x um k stellen nach rechts schieben (und mit Nullen nachfüllen); wird für unsigned Datentypen verwendet
 - •Arithmetical shift: x um k stellen nach rechts schieben (und mit 1-sen nachfüllen); wird für signed Datentypen verwendet (Vorzeichen muss erhalten bleiben!)

Data rep - Bit manipulations - shift operations 2/2

■ Beispiel:

Operation	Value 1	Value 2
Argument x	[01100011]	[10010101]
x << 4	[0011 <i>0000</i>]	[0101 <i>0000</i>]
x >> 4 (logical)	[00000110]	[00001001]
x >> 4 (arithmetic)	[00000110]	[11111001]

Int arithmetic - unsigned - addition

 Die Binäre Addition kann ähnlich wie die klassische dezimale Addition per Hand durchgeführt werden

Beispiel:

Int arithmetic - unsigned - addition - Übung

Binäre Addition

```
0100 0100 0111 0010
+ 1000 0110 0011 0101
```

:

Int arithmetic - unsigned - multiplication

- Multiplikation = w-1 Additionen des verschobenen Multiplikators
- Achtung! Zwei w breite Zahlen können ein 2 w breites Produkt ergeben
- Beispiel (3*11=33): //3= Multiplikant, 11= Multiplikator

```
0011 * 1011

0011

0000

0011

0011

1111
```

= **00100001** //bin2dec(00100001)=32+1=33

Int arithmetic - unsigned - multiplication - Übung

■ 5dez * 26dez in Binärsystem berechnen:

*

=

Int arithmetic - signed (twc) - addition

- Die Regeln für die Binäre Addition für unsigned int kann genauso auf die Binäre Addition für signed int (twc) verwendet werden
- -> Großer Vorteil -> weite Verbreitung des two's complement
- Beispiel:

```
0001 0010 0011 0100 ( 4660)
+ 1000 0111 0110 0101 (-30875)

11 11 1
= 1001 1001 1001 1001 (-26215)
```

Anm: Achtung overflow mit Vorzeichenwechsel!

```
-0x7F + 0x01 -> 0x80
```

■ (127 + 1 -> -128)

Int arithmetic - signed (twc) - addition - Übung

■ Berechnen Sie im Binärsystem durch Addition des TWCs 33dec - 7dec mit 16 Bit:

Int arithmetic - signed (twc) - multiplication

- Multiplikand und Multiplikator werden links mit Vorzeichenbit auf 2w Stellen aufgefüllt
- vom Ergebnis werden die 2w niederwertigsten Stellen verwendet
- Beispiel (3*(-5)=-15): //-5: 5=0101 ->1010 +1 -> 1011 ->11111011

Rückblick 1/2

Warum ist nun

```
int x = 200 * 300 * 400 * 500; //-> x = -884 901 888
```

- Rein mathematisch: x = 12'000'000'000
- Binärdarstellung:
 - x = 10'11001011'01000001'01111000'00000000

$$T2U(x) = -2^{31} + 2^{30} + 2^{27} + 2^{25} + 2^{24} + 2^{22} + 2^{16} + 2^{14} + 2^{13} + 2^{12} + 2^{11}$$
$$= -884901888$$

Rückblick 2/2

- Lösung/ Vermeidung:
 - Verwendung ausreichend großer Variablen UND AUCH richtige Suffix Angabe der Literale
 - unsigned long x = 200lu * 300lu * 400lu * 500lu; //64bit
 - unsigned long long x = 2001lu * 3001lu * 4001lu * 5001lu; //32bit