Traditional Data Science Pipelines Fail to Adapt

As soon as we change the initial dataset, the whole pipeline fails.

Traditional Data Science Pipeline

- Data Discovery Relies on the user's knowledge and ability to search
- Data Preparation Requires trial and error, manual fine-tuning
- Data Analysis Fragile with respect to data distribution

Modern Adaptive Data Science Pipeline

- Data Discovery Automated without user input
- Data Preparation No fine tuning needed
- Data Analysis Robust to distribution shifts

Leveraging Context to Achieve Adaptivity

Ways to capture context:-

- Goal-oriented data management How dataset will be used can guide data discovery and prep
- Interactive data management Users can provide additional knowledge
- Historical executions

Goal-oriented Data Discovery

- Discover new attributes
 - Augmentation through database joins

Challenges to automate data discovery:-

- Scale
- Heterogeneity of formats
- Presence of noise
- Missing schema and key information
- Most attributes are useless for the given problem

Traditional Approaches for Discovery

- Identify different ways to generate a robust search index
- Search using keywords, examples, natural language
- How to go over millions of datasets manually?

Traditional techniques ignore the objective. What if we perform feature selection?

- Identify a robust search index
- Add all attributes to the initial dataset
 - Adding millions of attributes is unscalable

- Curse of dimensionality
- Perform feature selection

How to solve the problem?

- Exhaustive search
 - Sequentially calculate utility of every subset of the data and pick the best subset
 - Very high time complexity n^k queries
- Clustering helps to diversify the search process
 - o Similar datasets have similar utility
 - Approach 1: Diversify the search process
 - Cluster attributes by generating data properties to represent attributes
 - Goal: Minimize the distance between intra-cluster attributes
 - Solution: Bandit-based approach $O(|C|^k)$
 - Approach 2: Leverage monotonicity of utility metric
 - Monotonicity: Easy to guarantee
 - How to make the utility submodular: Greedily choose the best augmentation
 - Final approach: Combination of both

Applications:-

- Scalable System Design Allows users to interact whenever goal is not well defined
- Collaborations and Deployment Data Discovery to discover causally related attributes, Semantic feature annotation and discovery, Attributes for cancer research

Summary: Model Training as Context

What we want: Find datasets to perform data analysis

Traditional Techniques:-

- Rely on user's knowledge and searchability
- Highly manual

Our approach:-

• Uses model training component to guide data discovery

Deployment: How to explain the output?

Option 1: Change the attribute - wrong approach

Option 2: Look at the data - Simpson's Paradox (Statistical phenomenon where an association between two variables in a population emerges, disappears, or reverses when the population is divided into subpopulations)

Need to capture causal dependencies - use a causal graph

Ladder of causation

Using Causal Reasoning for Responsible Analytics - Opaque algorithm: How do we evaluate fairness of this algorithm?

Key Takeaways

- A novel framework for data discovery
 - Using downstream goal to provide context
 - Does not need to search queries
 - Adapts to varied tasks
 - Handles millions of input datasets
- Explanation Framework
 - Using causal inference for reliable explanations
 - Generates counterfactual explanations
 - Captures causal dependencies between attributes
 - Efficient mechanism to generate explanation

Future Work

Pillars of research

- Effective
 - Correct and easy to use
 - Robust to noise
- Efficient
 - Low runtime
 - Easy to deploy and develop
- Equitable
 - Accessible: Adapts to users with varied domain knowledge and applications
 - Uncovers unwanted biases injected by the pipeline and allows users to ensure fairness
- Make use of multimodal data
- Optimizing data science pipelines