#### HOUSEHOLD AGGREGATION

Juan Herreño Johannes Wieland

UCSD, Spring 2024

## **REMINDERS**

• First project draft due May 4.

## **O**UTLINE

## **O**UTLINE

#### WHAT IS THE MPC?

- MPC = marginal propensity to consume.
- Very important parameter in old Keynesian models.
- In standard New Keynesian models  $\approx 0$ .

► Euler equation ⇒ Permanent income consumer.

• TANK and HANK models.

#### **IDENTIFICATION PROBLEM**

$$c_{it} = \alpha + \beta y_{it} + \varepsilon_{it}$$

• What could go wrong?

#### JONATHAN PARKER OEUVRE

- Johnson, Parker, Souleles, AER 2003: 20-40% of 2001 Rebate spent on nondurable goods within 3 months.
- Parker, Souleles, Johnson, McClelland, AER 2008: 50-90% of 2008
   Rebate spent on nondurable and durable goods within 3 months.
- Broda, Parker, JME 2014: 2008 rebate caused 10% increase in spending in first week.
- Parker, Schild, Erhard, Johnson, WP 2022: 10% of 2020 stimulus was spent within 3 months.

## THE 2008 EXPERIMENT



#### **SPECIFICATION**

$$C_{i,t+1} - C_{i,t} = \sum_{s} \beta_{0s} \times month_{s,i} + \beta'_1 X_{i,t} + \beta_2 ESP_{i,t+1} + u_{i,t+1}$$

Comments? Concerns?

## **EFFECTS ON EXPENDITURE**



## SUB-SAMPLES

figures/PSMJTAB3.png

### **PERSISTENCE**



### HETEROGENEOUS TREATMENT EFFECTS



## CONVINCING?

#### MORE MPCS

 Shapiro and Slemrod (AER 2003, AER, 2009): self-reported MPC of 25-30% out of rebates in 2001 / 2008.

 Japielli and Pistaferri (AEJ-Macro, 2014): self-reported MPC of 48% out of hypothetical transitory income shock.

• Faegereng, Holmn, and Natvick (AEJ-Macro, 2021): 50% MPC within one year of large lottery winnings in Norway. Consumption is resiaul from budget constraint:  $C = Y - \Delta A$ .

## **O**UTLINE

## DE CHAISEMARTIN AND D'HAULTFŒUILLE, AER 2020

- Panel, binned into cells g, t (g=group).
- $Y_{i,g,t}$  outcome of unit i in cell g,t.
- D<sub>g,t</sub> treatment indicator.
- Expectation of OLS 2-way FE estimator:

$$eta_{\mathsf{fe}} = E\left(\sum_{(g,t):D_{g,t}=1} W_{g,t} \Delta_{g,t}\right)$$

- $W_{g,t}$  are weights,  $\sum_{(g,t):D_{g,t}=1}W_{g,t}=1$ .
- $\Delta_{g,t}$  is the group-specific ATE.

#### WHAT IS THE PROBLEM?

• With homogeneous treatment effects, no problem:

$$\Delta_{g,t} = \Delta \implies \beta_{fe} = \Delta$$

• With heterogenous treatment effects  $\beta_{fe}$  may be poor guide to average ATE since weights  $W_{g,t}$  may be negative.

## **O**UTLINE

## BORUSYAK, JARAVEL, AND SPIESS, WP 2022

figures/BJSTAB1.png

2-way FE OLS population coefficient is:

$$eta_{\sf fe} = au_{\sf A2} + rac{1}{2} au_{\sf B3} - rac{1}{2} au_{\sf A3}$$

- Not an ATE!
- What is OLS doing here?

#### TEST FOR PRE-TRENDS



• Pre-trend coefficient for lag 2:

$$eta_{fe,-2} = au_{A3} - au_{B3}$$

- What is OLS doing here?
- Identified?

#### NOTATION

- Binary treatment Dit, outcome Yit
- Event date  $E_{it}$  where  $D_{it}$  switches from 0 to 1.
- Observations  $\Omega_1 = \{it \in \Omega : D_{it} = 1\}$  and not-yet-treated  $\Omega_0$  (includes never treated).
  - ▶ Treated:  $\Omega_1 = \{it \in \Omega : D_{it} = 1\}, |\Omega_1| = N_1$
  - ▶ Not-yet-treated:  $\Omega_0 = \{it \in \Omega : D_{it} = 0\}, |\Omega_0| = N_0$
- $Y_{it}(0)$  potential outcome if never treated.
- Causal effect  $\tau_{it} = E[Y_{it} Y_{it}(0)]$ .

#### START FROM FIRST PRINCIPLES

• Estimation target:

$$au_w = \sum_{it \in \Omega_1} w_{it} au_{it} = w' au$$

• Assumption 1: Parallel trends

$$E[Y_{it}(0)] = \alpha_i + \beta_t \quad \forall it \in \Omega$$

Assumption 2: No anticipation

$$Y_{it} = Y_{it}(0) \quad \forall it \in \Omega_0$$

Assumption 3': Restricted causal effects

$$\tau = \Gamma \theta$$

- ▶  $\theta$  is unknown  $N_1 M \times 1$ ,  $\Gamma$  is known  $N_1 \times (N_1 M)$
- ▶ *M* restrictions on treatment effect.  $M = N_1 1$  = homogenous effects.

## BSJ THEOREM 1 [SIMPLIFIED]

- Suppose Assumptions 1, 2, 3', and 4 [homoscedastic errors] hold. Then among linear unbiased estimators of  $\tau_w$ , the (unique) efficient estimator  $\hat{\tau}_w^*$  can be obtained with the following steps:
  - **1** Estimate  $\theta$  by  $\hat{\theta}$  from the linear regression

$$Y_{it} = \alpha_i + \beta_t + D_{it}\Gamma'_{it}\theta + \varepsilon_{it}.$$

- **2** Estimate the vector of treatment effects  $\tau$  by  $\hat{\tau} = \Gamma \hat{\theta}$ .
- **3** Estimate the target  $au_t$  by  $\hat{ au}_w^* = w'\hat{ au}$

## BSJ THEOREM 2 [SIMPLIFIED]

- With unrestricted treatment effects (M=0), the unique efficient linear unbiased estimator  $\hat{\tau}_w^*$  of  $\tau_w$  from Theorem 1 can be obtained via an imputation procedure:
  - **1** Within the untreated observations only  $(it \in \Omega_0)$ , estimate by OLS:

$$Y_{it} = \alpha_i + \beta_t + \varepsilon_{it}$$
.

- ② For each treated observations ( $it \in \Omega_1$ ) with  $w_{it} \neq 0$ , set  $\hat{Y}_{it}(0) = \hat{\alpha}_i + \hat{\beta}_t$  and  $\hat{\tau}_{it} = \hat{Y}_{it} \hat{Y}_{it}(0)$ .
- **6** Estimate the target  $au_w$  by a weighted sum  $\hat{ au}_w^* = w'\hat{ au}$

#### **INFERENCE**

• Inference problem for treated units:

$$Y_{it} = \alpha_i + \beta_t + \tau_{it} + \varepsilon_{it}$$
.

- How to distinguish between unrestricted  $\tau_{it}$  and  $\varepsilon_{it}$ ?
- "Conservative" standard errors: impose some homogeneity, so attribute some variance to  $\varepsilon_{it}$  that belongs to  $\tau_{it}$ .
- Yields asymptotically weakly conservative standard errors.

#### PRE-TRENDS

 To test for pre-trends augment model for untreated observations with additional pre-determined variables and test that the coefficients are zero.

• Does not distort inference conditional on test passing.

• What happens if we then include these variables in the regression model? Do we satisfy parallel trends?

## APPLICATION TO BRODA AND PARKER, JME 2014

figures/BJSTAB3a.png

### DYNAMIC TREATMENT EFFECTS

figures/BJSFIG2b.png

## **WEIGHTS**

figures/BJSFIG3.png

## **O**UTLINE

## EXPENDITURES ON NEW MOTOR VEHICLES: ACTUAL VS. COUNTERFACTUAL

figures/fig\_sss\_mv\_counter.pdf

Update of Sahm, Shapiro, Slemrod (2012) calculation, no general equilibrium feedbacks.

### G.E. EFFECTS CAN INCREASE PUZZLE

• Direct micro effect - governed by micro MPC .

 Induced macro effect - governed by general equilibrium MPC (GE-MPC)

 $\mathsf{GE}\mathsf{-MPC} = \mathsf{micro}\;\mathsf{MPC}\;+\;\mathsf{induced}\;\mathsf{macro}\;\mathsf{effect}$   $\equiv \mathsf{the}\;\mathsf{multiplier}\;\mathsf{in}\;\mathsf{a}\;\mathsf{closed}\;\mathsf{economy}\;\mathsf{with}\;\mathsf{no}\;\mathsf{capital}.$ 

## METHODOLOGY FOR CREATING MACRO COUNTERFACTUALS

- Construct a medium-scale two-good, two-agent New Keynesian model with nondurables and durables (interpreted as motor vehicles).
- Calibrate fraction of hand-to-mouth households to match micro MPCs.
- Simulate response of consumption to rebates.
- Subtract simulated responses from actual consumption data from 2008 to derive the counterfactual path with no rebate.

# COUNTERFACTUAL CONSUMPTION EXPENDITURE: BASELINE MODEL

| Real PCE: Micro MPCs            | Real PCE GE: Baseline                                         |         |
|---------------------------------|---------------------------------------------------------------|---------|
| figures/Real_PCEfc_micro_baseli | in <del>ef-iggsræss/flæailgRCH.ic</del> p <b>GH</b> _baseline | e-eps-c |
| Motor Vehicles: Micro MPCs      | Motor Vehicles: GE Baseline                                   |         |
|                                 |                                                               |         |

#### RECONCILING IMPLAUSIBLE MACRO G.E. EFFECTS

#### G.E. Dampening

- ► Key: 2/3 (or more) of estimated micro-mpc from new vehicle purchases
- ▶ Durable good demand is elastic and if supply is less elastic, G.E. effects can dampen micro-effects

#### Micro MPCs

- Apply B.J.S. method to CEX data
- ▶ Resulting micro-mpc is .3 (compared to .52 in Parker et. al.)
- ▶ Why? Mostly explained by negative weights on past treated units

#### DECOMPOSING OLS V.DID IMPUTATION

Period Weights Period Coefficients

Decomposed Coefficient Relative Contributions

# COUNTERFACTUAL: LESS ELASTIC DURABLE SUPPLY MODEL

| Real PCE: Micro MPCs            | Real PCE: GE Less Elastic                                      |
|---------------------------------|----------------------------------------------------------------|
| figures/Real_PCEfc_micro_durabl | Lepfriign <del>er esp/st-exohyRdH.fed_dE</del> _фddfableprice- |
| Motor Vehicles: Micro MPCs      | Motor Vehicles: GE Less Elastic                                |
|                                 |                                                                |