Правильные ответы на мини-тест

- Задача про открытки: 9/49, доля верно ответивших 68,2%
- Задача на комбинаторику: 3628800,3628800, доля верно ответивших 64,5%
- Ссылка: https://forms.gle/vqRd6HSVnfWkFzNo7

FeedBack по занятию ABT-1:

- Что понравилось:
 - Много времени уделяется ответам на вопросы;
 - Новый практический материал из реальных проектов;
 - Узнал, зачем вообще матстат в реальной жизни;
- Что хотелось бы улучшить:
 - Слишком быстро, не были понятны некоторые моменты;
 - Больше кода для практики, перешли к теории;
 - Только одна неделя на ДЗ;
- Доходчивость и простота: среднее 7,45, max 50% ответов 8;
- Полнота: 8,45, max 30% ответов 7;
- Новизна: 5,23, max 30% ответов 5.

ТЕХНОАТОМ: Продуктовая аналитика. А/В-тестирование

Лекция №2:

Методы оценки статистической значимости Классические подходы

План лекции

- **1.** Виды статистических критериев. Параметрические и непараметрические критерии.
- **2. Оценка дисперсии**: критерии равенства дисперсий.
- **3. Критерии нормальности**. Q-Q plot.
- 4. Проверка статистической значимости: t- и z-статистики, p-value, alpha-уровень и статистическая значимость, beta-уровень и мощность критерия. Классические методы оценки стат.значимости.
- 5. Генеральная совокупность и ожидаемый эффект. Расчёт размера выборки для достижения статистически значимых результатов. Оценка времени проведения теста.

1. Виды статистических критериев

Основы математической статистики

- Выборочное среднее:
- Среднеквадратичное отклонение:
- На основании смещённой оценки дисперсии:
- На основании несмещённой оценки:
- Математическое ожидание:
- Дисперсия генеральной совокупности:

$$ar{x}=rac{1}{n}\sum_{i=1}^n x_i=rac{1}{n}(x_1+\ldots+x_n)$$

$$S = \sqrt{rac{1}{n}\sum_{i=1}^n \left(x_i - ar{x}
ight)^2}.$$

$$S_0 = \sqrt{rac{n}{n-1}S^2} = \sqrt{rac{1}{n-1}\sum_{i=1}^n \left(x_i - ar{x}
ight)^2}$$

$$M[X] = \sum^\infty x_i \, p_i$$

$$\sigma_X^2 \ = \sum_{i=1}^n p_i (x_i - M[X])^2$$

Основы математической статистики

Квантиль Q - значение, которое заданная случайная величина не превышает с фиксированной вероятностью;

IQR — межквартильный размах (InterQuartile Range)

Виды статистических критериев по исследуемой метрике

Критерии согласия (проверка соответствия распределения метрики в выборке определенному виду эталонному распределению):

- 1) Критерий Колмогорова-Смирнова;
- 2) х2-Критерий Пирсона (хи-квадрат);
- 3) Критерий Шапиро-Уилкса;

Критерии сдвига (проверка равенства групп):

- 1) Т-Критерий Стьюдента;
- 2) Т-Критерий Уилкоксона;
- 3) U-Критерий Манна-Уитни;

Критерии однородности (например, проверка равенства дисперсий):

- 1) Критерий Бартлетта;
- 2) Критерий Левена

Виды статистических критериев по применяемому алгоритму

Параметрические – основаны на конкретном типе распределения:

- 1) Т-Критерий Стьюдента;
- 2) Z-критерий Фишера;
- 3) F-критерий Фишера;
- 4) х2-критерий Пирсона;

Непараметрические – не базируется на предположении о типе распределения генеральной совокупности и не использует параметры этой совокупности (ранговые критерии):

- 1) Т-Критерий Уилкоксона;
- 2) U-Критерий Манна-Уитни;
- 3) Критерий Колмогорова;
- 4) Q-Критерий Розенбаума

2. Оценка дисперсии: теория

Оценка дисперсии: критерии равенства дисперсий

ANOVA – ANalysis Of Variance, дисперсионный анализ:

- F-критерий Фишера для 2-х выборок;
- Критерий Бартлетта для выборок, имеющих вид нормального распределения;
- Критерий Левена;
- Критерий или среднее Тьюки на основе внутригрупповой дисперсии;
- Критерий Хартли для выборок равного объема;
- G-критерий Кохрена для выборок равного объема;
- Dozens of them...

F-критерий Фишера

- Равенство (гомогенность) дисперсий 2-х выборок;
- Параметрический, основан на предположении о равенстве выборок нормальному закону;
- Критерий Фишера проверяет гипотезу о том, что дисперсии 2-х выборок одинаковы:

$$H_0$$
: $\sigma_1 = \sigma_2$

- Альтернативная гипотеза: $H_1: \sigma_1 \neq \sigma_2$
- Статистика критерия:
 - одномерный случай: $F = \frac{S_{10}}{S_{20}} = \frac{\sigma_1}{\sigma_2}$
 - случай для нескольких групп: $F = \frac{MS_b}{MS_w}$, где

 MS_w – средний квадрат суммы внутригрупповых отклонений,

 MS_b — средний квадрат суммы межгрупповых отклонений;

• H0 отклоняется, если $F > F_{cr}$, где F_{cr} — верхнее критическое значение F - распределения, с соответствующими степенями свободы числителя и знаменателя, соответственно, при выбранном уровне стат. значимости.

Критерий Бартлетта

- Равенство дисперсий 2х и более выборок;
- Параметрический, основан на предположении о равенстве выборок нормальному закону;
- Объём каждой выборки должен быть больше трёх;
- Объемы выборок могут отличаться;
- Критерий Бартлетта проверяет гипотезу о том, что дисперсии всех выборок одинаковы:

$$H_0:\sigma_1^2=\sigma_2^2=\ldots=\sigma_k^2$$

• Альтернативная гипотеза: существует, по крайней мере, две выборки i,j, где $i\neq j$ с несовпадающими дисперсиями:

$$\exists i, j: H_1: \sigma_i \neq \sigma_j$$

Критерий Бартлетта

• Статистика:
$$T=rac{(N-k)\cdot \ln(s_p^2)-\sum_{i=1}^k(n_i-1)\cdot \ln(s_i^2)}{1+rac{1}{3\cdot (k-1)}\cdot \left(\sum_{i=1}^k\left(rac{1}{n_i-1}
ight)-rac{1}{(N-k)}
ight)}$$
 , где

$$N = \sum_{i=1}^k n_i$$
 — суммарный объём всех групп,

$$s_p^2 = rac{1}{N-k} \sum_{i=1}^k (n_i - 1) \cdot s_i^2 \;\;$$
 — суммарная оценка дисперсий, k — количество групп,

• Условие отвержения H0 на уровне стат. α :

$$T>\chi^2_{k-1,lpha}$$
, где $\;\chi^2_{k-1,lpha}$ - $lpha$ -квантиль распределения Пирсона

с
$$k-1$$
 степенью свободы

Критерий Левена

- Равенство дисперсий 2х и более выборок;
- Менее чувствителен к отклонению распределения от нормального;
- Уступает критерию Бартлетта по уровню мощности (выше вероятность принять H_0 ложно);
- Тест выполняется над преобразованными данными;
- Критерий Левена проверяет гипотезу о том, что дисперсии всех выборок одинаковы:

$$H_0:\sigma_1^2=\sigma_2^2=\ldots=\sigma_k^2$$

• Альтернативная гипотеза: существует, по крайней мере, две выборки i,j, где $i \neq j$ с несовпадающими дисперсиями:

$$\exists i, j: H_1: \sigma_i \neq \sigma_j$$

Критерий Левена

• Статистика:

$$W = \frac{(N-k)\sum_{i=1}^{k} (\bar{Z}_{i} - \bar{Z})}{(k-1)\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (Zi_{j} - \bar{Z}_{i})},$$

где n_i – объём i-й выборки, $N = \sum_{i=1}^k n_i$, X_{ij} – j-е наблюдение в i-й выборке, $Z_{ij} = |X_{ij} - \overline{X}_i|$ или $Z_{ij} = |X_{ij} - median(X_i)|$

• H0 отклоняется, если W>F, где F- верхнее критическое значение F- распределения, с m-1 и N-m степенями свободы числителя и знаменателя, соответственно, при выбранном уровне стат.значимости.

Оценка дисперсии:Практическая часть

F-критерий Фишера: scipy.stats.f_oneway

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
from time import time
import numpy as np
from scipy.stats import f oneway
np.random.seed(int(time()))
series 1 = (np.random.rand(50)*100).astype(int)
series 2 = (np.random.normal(size=50)*100).astype(int)
alpha = 0.05
p value = f oneway(series 1, series 2)[1]
print(\ } the H0: Var(X1) == Var(X2) \n'.format(
{True: 'Reject', False: 'Confirm' } [p value > alpha]))
```

Критерий Бартлетта: scipy.stats.bartlett

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import bartlett
alpha = 0.05
def bartlett test(df1, df2, df3, p value = alpha):
       st = bartlett(df1, df2, df3)
       print('Variances of distributions is {}equal\n'.format( {True: 'not ',
False:'' | [st[1] 
series 1 = (np.random.rand(50)*100).astype(int)
series 2 = (np.random.normal(size=50)*100).astype(int)
shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
series 3 = (np.random.gamma(shape, scale, 100)).astype(int)
bartlett test (series 1, series 2, series 3)
```

Критерий Левена: scipy.stats.levene

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
from scipy.stats import levene
alpha = 0.05
def levene test(df1, df2, df3, p value = alpha):
       st = levene(df1, df2, df3)
       print('Variances of distributions is {}equal\n'.format( {True: 'not ',
False: '' | [st[1] < p value]))
series 1 = (np.random.rand(50)*100).astype(int)
series 2 = (np.random.normal(size=50)*100).astype(int)
shape, scale = 2., 2. # mean=4, std=2*sqrt(2)
series 3 = (np.random.gamma(shape, scale, 100)).astype(int)
levene test (series 1, series 2, series 3)
```


3. Критерии нормальности: теория

Критерии нормальности

- Критерий Шапиро-Уилка;
- Критерий Колмогорова-Смирнова;
- Критерий ассиметрии и эксцесса;
- Критерий Пирсона χ²;
- Dozens of them...

Визуализация: Q-Q plot

- По оси Y квантили (кумулятивным итогом начиная с наименьшего значения);
- По оси X значения (отсортированные в порядке начиная с наименьшего)

Критерий Колмогорова-Смирнова

- Непараметрический критерий согласия;
- Проверяет соответствие закона распределения заданному:

H0:
$$F_n \sim F$$

• Статистика — на основе максимума разности между кумулятивным распределением выборки $F_n(x)$ и предполагаемым кумулятивным распределением эмпирического распределения F(x):

$$D_n = \sup_{x \in \mathbb{R}} |F_n(x) - F(x)|$$

• Если статистика $\sqrt{n}D_n$ превышает квантиль K_{α} заданного уровня распределения Колмогорова, то H0 отвергается.

Критерий Шапиро-Уилка

- Обладает большей мощностью;
- Проверяет соответствие закона распределения нормальному:

H0:
$$F_n \sim N(\mu, \sigma^2)$$

• Статистика критерия:

$$W = rac{\left(\sum_{i=1}^n a_i x_{(i)}
ight)^2}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

где a_i берутся из таблицы значений по α и i.

• Рассчитанная статистика сравнивается с критическим табличным значением $W(\alpha)$.

3. Критерии нормальности: Практическая часть

Критерий Колмогорова-Смирнова: scipy.stats.kstest

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from scipy.stats import kstest
alpha = 0.05
series = (np.random.normal(size=50)*100).astype(int)
st = kstest(pd.Series(series), 'norm')
print('Distributions is {}normal\n'.format( {True: 'not ',
False: '' | [st[1] < alpha]))
```

Критерий Шапиро: scipy.stats.shapiro

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from scipy.stats import shapiro
alpha = 0.05
series = (np.random.normal(size=50)*100).astype(int)
st = shapiro(pd.Series(series))
print('Distributions is {}normal\n'.format( {True: 'not ',
False: '' | [st[1] < alpha]))
```


4. Проверка статистической значимости

Ошибки первого и второго рода

H0, **H**_o, или **основная** (гипотеза о сходстве): $\mu(A) == \mu(B)$ **H1**, **H**_a, **альтернативная** (гипотеза о сходстве): $\mu(A) == \mu(B)$

		Верная гипотеза		
		НО	H1	
Результат применения критерия	НО	H0 верно принята (true positive)	H0 неверно принята (ошибка второго рода – «пропуск цели», false positive)	
	H1	H0 неверно отвергнута (ошибка первого рода – «ложная тревога», false negative)	H0 верно отвергнута (true negative)	

Уровень значимости и мощность критерия на гистограмме

α-уровень - пороговый уровень статистической значимости; вероятность ошибочно отклонить нулевую гипотезу.

β-уровень - вероятность ошибочного не отклонения нулевой гипотезы об отсутствии различий.

Мощность (критерия) - вероятность (правильного) отбрасывания нулевой гипотезы, т. е. отбрасывания (непринятия) нулевой гипотезы в случае, когда на самом деле верна альтернативная гипотеза.

 H0 – основная гипотеза (о сходстве):

 $\mu(A) == \mu(B);$

• **H1** — **альтернативная** гипотеза (о различии):

 $\mu(A) != \mu(B);$

#030

α-уровень статистической значимости

С-уровень - пороговый уровень статистической значимости; вероятность ошибочно отклонить нулевую гипотезу — вероятность **ошибки І-го рода** «Ложная тревога».

Стандартный: 0,01

Высокий: 0,05

Низкий: 0,1

#031

Принцип принятия и отвержения гипотезы

р-уровень - рассчитанная в ходе статистического теста вероятность ошибочного отклонения нулевой гипотезы.

H0 отклонена: p-value < α -level

H0 принята: p-value $\geq \alpha$ -level

t- и z-статистики

Базовые статистики, используемые при тестировании гипотез.

Z-статистика: $z_x = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}}$

t-статистика: $t_x = \frac{\bar{x} - \mu_0}{s_x/\sqrt{n}}$

Известно

Одновыборочный Z-тест Фишера

Одновыборочный тест исследует равенство мат.ожидания выборки заданному значению мат.ожидания;

Z-статистика:
$$Z_{\chi}=rac{ar{x}-\mu_0}{\sigma/\sqrt{n}}$$
 ,

 \bar{x} – выборочное среднее;

 μ_0 – математическое ожидание;

 σ/\sqrt{n} – стандартная ошибка среднего, где:

 σ — заведомо известная величина среднеквадратичного отклонения генеральной совокупности, n — размер выборки;

По таблице для заданного α -уровня выбирается критическое значение z, например, при $\alpha = 0.05$ при привышении $|z_x| > 1.96$ отвергается H0 и отличие считается стат.значимой:

Одновыборочный критерий Стьюдента

Одновыборочный тест исследует равенство мат.ожидания выборки заданному значению мат.ожидания;

t-статистика:
$$t_{\chi}=rac{ar{x}-\mu_0}{s_{\chi}/\sqrt{n}}$$
,

 \bar{x} – выборочное среднее;

 μ_0 – математическое ожидание;

 s_x/\sqrt{n} – стандартная ошибка среднего, где:

 s_x – величина стандартного отклонения по выборке, s_x =

n — размер выборки;

По таблице для заданного α -уровня выбирается критическое значение t, при привышении которого отвергается H0:

Двухвыборочный критерий Стьюдента

t-статистика:
$$t=\frac{\bar{X}_1-\bar{X}_2}{\sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}}$$
,

 $ar{X}_i$ – выборочное среднее i –й выборки;

 μ_0 – математическое ожидание для генеральной совокупности;

 s_i – стандартная ошибка среднего, где:

 n_i – размер выборки;

По таблице для заданного α -уровня выбирается критическое значение t, при привышении которого отвергается H0

Парный критерий Стьюдента для зависимых выборок

Переход от двух групп со связанными наблюдениями к выборке попарных разностей этих наблюдений и применения к ним одновыборочного t-критерия:

t-статистика:
$$t=rac{ar{X}_1-ar{X}_2}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$$
 \to $t_\chi=rac{ar{x}-\mu_0}{s_\chi/\sqrt{n}}$,

 \bar{x} — выборочное среднее в выборке попарных наблюдений;

 μ_0 – математическое ожидание;

 s_x/\sqrt{n} – стандартная ошибка среднего, где:

 s_x — заведомо известная величина стандартного отклонения по выборке,

n — размер выборки;

U-критерий Манна-Уитни

- Непараметрический ранговый тест для независимых выборок;
- Нет требований нормальности и однородности дисперсий;
- Ограничения:
- 1. В каждой из выборок должно быть не менее 3 значений признака. Допускается, чтобы в одной выборке было два значения, но во второй тогда не менее пяти.
- 2. В выборочных данных не должно быть совпадающих значений (все числа разные) или таких совпадений должно быть очень мало (до 10).

U-критерий Манна-Уитни

• Алгоритм:

- 1. Составить единый ранжированный ряд из обеих сопоставляемых выборок, расставив их элементы по степени нарастания признака и приписав меньшему значению меньший ранг r_i (при наличии повторяющихся элементов в выборке использовать средний ранг). Общее количество рангов получится равным $N=n_1+n_2$, где n_1 , n_2 количество элементов в 1-й и 2-й выборках, соответственно;
- 2. Разделить единый ранжированный ряд на два, состоящие соответственно из рангов первой и второй выборок. Подсчитать отдельно суммы рангов, пришедшихся на долю элементов первой и второй выборок: $R_1 = \sum_{i=1}^{n_1} r_{1i}$ и $R_2 = \sum_{i=1}^{n_2} r_{2i}$
- 3. Вычислить U-статистику $U=min\{U_1,U_2\}$: $U_1=n_1\cdot n_2+rac{n_1\cdot (n_1+1)}{2}-R_1$, $U_2=n_1\cdot n_2+rac{n_2\cdot (n_2+1)}{2}-R_2$, где $U_1+U_2=n_1\cdot n_2$
- 4. Полученная U-статистика сравнивается с критическим табличным значением по n_1 , n_2 для заданного уровня стат. значимости, если значение больше, то H0 отклоняется.

Прочие критерии

1. Т-критерий Уилкоксона:

- Непараметрический ранговый критерий для проверки парных выборок;
- Нет требований нормальности и однородности дисперсий;
- Ранжируются сдвиги попарных величин, рассчитывается статистика критерия T и вычисляется граница критической области $T(\alpha)$;
- Применяется так же к сериям из двух опытов (W-статистика).

2. Н-критерий Краскела-Уоллиса:

- Непараметрический ранговый критерий для проверки независимых выборок;
- Равенство медиан нескольких выборок;
- Можно сравнивать более 2-х выборок.

4. Проверка статистической значимости: практическая часть

t-критерий Стьюдента: scipy.stats.ttest_ind

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from scipy.stats import ttest ind
alpha = 0.05
series1 = (np.random.normal(size=50)*100).astype(int)
series2 = (np.random.normal(size=50)*100).astype(int)
st = ttest ind(pd.Series(series1), pd.Series(series2))
print('Diffs is {} significant\n'.format( {True: 'not ',
False: '' } [st[1] < alpha]))</pre>
```

Парный t-критерий Стьюдента: scipy.stats.ttest_rel

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from scipy.stats import ttest rel
alpha = 0.05
series1 = (np.random.normal(size=50)*100).astype(int)
series2 = (np.random.normal(size=50)*100).astype(int)
st = ttest rel(pd.Series(series1), pd.Series(series2))
print('Diffs is {} significant\n'.format( {True: 'not ',
False: '' } [st[1] < alpha]))</pre>
```

U-критерий Манна-Уитни: scipy.stats.mannwhitneyu

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
from scipy.stats import mannwhitneyu
alpha = 0.05
series1 = (np.random.gamma(size=50)*100).astype(int)
series2 = (np.random.gamma(size=50)*100).astype(int)
st = mannwhitneyu(pd.Series(series1), pd.Series(series2))
print('Diffs is {} significant\n'.format( {True: 'not ',
False: '' } [st[1] < alpha]))</pre>
```


5. Размер выборки и ожидаемый эффект

Расчёт необходимого объёма выборки

• При заданной мощности и известной функции распределения Ф (cumulative distribution function, CDF):

$$n \geq \left(rac{z_lpha + \Phi^{-1}(1-eta)}{\mu^-/\sigma}
ight)^2$$

• При заданных ожидаемом эффекте Δ , α -уровне и мощности:

$$n = \frac{2(Za + Z_{1-\beta})^2 \sigma^2}{\Lambda^2}$$

Расчёт необходимого времени проведения теста

- Обычно от 2-х недель, но что делать, если не стат.значимо?
- Оценить необходимое время для накопления данных, достаточных для получения стат.значимых различий:
 - 0) по опыту набору экспериментов;
 - 1) аналитик принимает решение: либо по прокраске смежных метрик, либо по иным показателям, в соответствии с тем, чего добивается данным экспериментом бизнес и менеджеры, катить или откатывать, или продолжать эксперимент (и если продолжать, то сколько);
 - 2) посмотреть, за какой период времени накапливаются данные и дать приблизительную оценку.

5. Размер выборки и ожидаемый эффект: Практическая часть

Расчёт необходимого объёма выборки для **t-критерия Стьюдента**

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
from statsmodels.stats.power import TTestIndPower
                                                           Power of Test
# calculate power curves
# for varying sample and effect size
                                                  0.8
analysis = TTestIndPower()
                                                  0.6
analysis.plot power(nobs=np.arange(5, 100),
      effect size=np.array([0.2, 0.5, 0.8]))
```


Расчёт необходимого объёма выборки для **t-критерия Стьюдента**

```
#!/usr/local/bin/python3
# -*- coding: utf-8 -*-
import numpy as np
from statsmodels.stats.power import TTestIndPower
# parameters for power analysis
effect = 0.08
alpha = 0.05
power = 0.8
# perform power analysis
analysis = TTestIndPower()
result = analysis.solve power(effect, power=power,
nobs1=None, ratio=1.0, alpha=alpha)
print('Sample Size: %.3f' % result)
```

Домашнее задание

ABT-2

#051

15 баллов

Срок сдачи: **02.12.2020**

Полезные ссылки и литература в помощь:

- Татьяна Мелехина: «Лекции по теории вероятностей и математической статистике»
- Wes McKinney: "Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython"
- https://pandas.pydata.org/
- https://matplotlib.org/
- https://jupyter.org/

Домашнее задание: ABT-2. Описание case'a

- 1. На сайте проводится некоторый эксперимент. Время проведения эксперимента 2 недели. Всего на сайте DAU около 500 000 и WAU около 850 000. Всего за время работы на сайте образовалась аудитория из около 1 500 000 не уходящих в отток посетителей.
- 2. В файле https://cloud.mail.ru данные о результатах эксперимента. В колонке group_id вы видите bucket'ы с номерами от 1 до 16. К группе 'A', контрольной, относятся bucket'ы 1..8, к группе 'B', экспериментальной 9..16. Колонки:

metric_value – сумма целевых действий пользователей в рамках bucket'а – например, просмотров рекламного баннера, телефона на сайте classified-сервиса или покупок в retail/FMCG;

users – кол-во пользователей, совершивших целевое действие, visits – кол-во целевых сессий,

churn_users и *churn_visits* – кол-во пользователей в рамках bucket'a, отказавшихся сделать заказ, и сессий, не закончившихся успешным целевым действием.

3. Менеджера продукта интересует, какие позитивные и негативные эффекты вызвало нововведение. Продумайте метрики, которые стоит исследовать в рамках имеющихся данных для ответа на вопрос менеджера.

Домашнее задание: АВТ-2

- 1. Загрузите данные из файла в структуру pandas. DataFrame().
- 2. Проведите оценку равенства дисперсий исследуемых метрик в группах и исследуйте распределение на нормальность. Какими критериями вы воспользовались и почему?
- 3. Оцените статистическую значимость различий исследуемых метрик в выборках. Какой критерий вы выбрали для оценки и почему?
- 4. Размер генеральной совокупности составляет 1 500 000. Достаточен ли размер выборок для представления достоверных выводов? Если нет, сколько ещё по времени следует проводить тест и/или на какую долю пользователей его раскатывать, чтобы результаты можно было считать достоверными?
- 5. Изобразите гистограммы и диаграммы размаха.
- 6. Результат работы пришлите в формате IPython Jupyter Notebook на сервисе Google Colab.

Spoiler: normalize or die, modern algorithms of statistical analysis...

