Graduação em Ciências Econômicas

Disciplina: Econometria II
Professor: João Victor Issler
Aluno: Lucas Rafael de Andrade

Trabalho Empírico – 2022.2

Impacto do preço do petróleo em dólar sobre a taxa de desemprego do Brasil- Uma proposta de estudo econométrico

Este trabalho se propõe a construir um modelo do tipo VEC para estimar os impactos que as variáveis preço de petróleo e desemprego no Brasil, passando por uma análise de cada passo na construção e análise do modelo. Por fim, encontra-se um VECM que não tem coeficientes estatisticamente significativos, porém ainda capaz de fazer previsões relevantes à conjuntura econômica

Rio de Janeiro

Estudos anteriores

De acordo com o <u>lpea</u>, o petróleo corresponde a uma parcela muito significativa do PIB brasileiro, cerca de 12%, e o Brasil <u>sendo uma das economias que mais dependem do petróleo para crescer</u>. Dessa maneira, se esperava que a importância dada ao preço do petróleo fosse ser mais evidenciada pela literatura, alguns serão descritos abaixo.

Bicalho (2014) descreve que apenas a quantidade de mão de obra empregada no setor já é bastante expressiva, superando 600 mil, sem contar com as indústrias correlacionadas. Bone(2018) mostra que o crescimento da Petrobrás está intimamente ligado ao crescimento da economia brasileira como um todo, com uma correlação de 86% entre a FBKF e o PIB, bem como sugere que o crescimento da empresa está associado a uma queda na taxa de desemprego. Souza(2022) testa um modelo SVAR para mostrar que a apreciação do Brent tem efeitos positivos sobre o câmbio. Cavalcanti(2013) mostra que a volatilidade do preço do petróleo explica a inflação e crescimento americanas, mas o mesmo não se aplica ao Brasil.

Por fim, <u>Salles(2017)</u> demonstra que os indicadores de produção industrial do Brasil podem ser estimados a partir das variações dos preços do petróleo

Importação de dados

Ambas as séries foram baixadas do site FRED Economic Data (fred.stlouisfed.org), em escala mensal. O intervalo de tempo escolhido foi de Janeiro de 1990 até Novembro de 2015, que é o intervalo de tempo disponível para o desemprego no Brasil e é conveniente porque não chega a incluir os efeitos da pandemia e dos Choques de Petróleo, incluindo um período de relativa estabilidade nas duas séries, excluso a Crise de 2008. Para amenizar as distorções geradas pela Crise e outros períodos de maior volatilidade, deuse preferência à utilização de variáveis em escala logarítmica. O software utilizado foi o Eviews 12 Student Lite

Metodologia:

Em primeiro lugar se faz uma inspeção visual dos gráficos das séries temporais que estamos incluindo no modelo:

No caso do desemprego brasileiro, o que se nota é que parece ter havido um período de alta volatilidade em tono de 9% até 1997 (explicável pelas mudanças estruturais na economia, como a implementação do Plano Real), seguido de uma alta da taxa de desemprego entre 1998 e 2000, e a partir desse ano a taxa de desemprego pareceu estar em tendência de queda até 2014, quando se tem uma alta brusca no desemprego¹.

_

¹ A posição exposta em https://agenciabrasil.ebc.com.br/economia/noticia/2016-05/crise-internacional-e-problemas-internos-sao-causas-do-desemprego-no-brasil foi de que o Brasil foi afetado pela queda no preço das commodities, e essa queda revelou fraquezas estruturais no país, como baixa produtividade

Nota-se que o preço do Brent de Petróleo se manteve estável até o começo dos anoso 2000, passando por uma tendência de alta até a Crise de 2008, passando por uma queda abrupta em nível e se recuperando nos 3 anos seguintes, e com relativa estabilidade nos próximos 3 anos até uma queda abrupta a partir de 2014 2

Testes de raízes unitárias

Uma vez analisadas as séries, precisamos analisar estatisticamente sobre a possibilidade da presença de raízes unitárias nelas. Para isso, primeiro pegamos o autocorrelograma de cada uma:

_

² De acordo com Mead(2015), isso aconteceu por causa de um excesso de extração de petróleo, e segundo o mesmo autor a relação de demanda/oferta explica melhor a precificação do petróleo do que fatores geopolíticos hoje em dia.

Correlogram of L_DES					Correlogram of L_OIL								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob	Autocorrelation	Partial Correlation	IIIO	AC	PAC	Q-Stat	Prob
		1	0.982	0.982	302.83	0.000	-	-	1	0.991	0.991	308.65	0.000
	1 !!!	2		-0.013	595.55	0.000	ı	□ '	2			610.12	
	1 1	3	0.947	0.037	879.29	0.000	ı	1 1	3			903.75	
	<u> </u>	4		-0.036	1153.6	0.000	1	'¶'	4		-0.025	1189.3	
		5	0.920	0.189	1422.6 1685.1	0.000		'E	5	0.936	0.102	1467.7	0.000
	" ;	6		-0.074	1938.9	0.000	1	'[!	6	0.923	0.015	1739.7	0.000
	1 %	′	0.890	0.089	2186.2			<u> </u>	7	0.913	0.109	2006.8	0.000
	17	9		-0.064	2425.4			:P	8	0.906	0.088		
	1 31	10		-0.064	2656.1			:¦!:	9	0.900		2531.9	
	1 35	11	0.832	0.088	2880.9	0.000		11.	10	0.896	0.004	2791.3	
		12			3096.7			9:	11		-0.133	3047.7	
	1 7:	13	0.797	0.004	3304.0	0.000		9: 1	12 13		-0.106 0.005	3299.3 3545.3	
	in	14	0.782	0.055	3504.5	0.000		ili I	14	0.857		3786.1	
	1 in	15	0.770	0.113	3699.4			ir. I	15	0.847	0.093	4022.0	0.000
	1 15	16	0.762	0.113	3891.2			ili l	16	0.838	0.026		0.000
	1 1	17	0.756	0.014	4080.2			15	17			4481.7	
1	1 161	18		-0.031	4264.7	0.000		idi	18			4706.5	
1	l _d i,	19	0.732	-0.099	4443.6	0.000		ili l	19		-0.002	4928.4	
1	1 70	20	0.719	-0.013	4616.3	0.000		in i	20			5147.3	
ı	1 1	21	0.705	-0.004	4782.9	0.000		ili l	21			5362.7	
1		22	0.690	-0.110	4943.3	0.000		i hi	22		0.051		
1		23	0.672	-0.101	5096.0	0.000	1	ufu l	23		-0.025	5781.7	0.000
ı	1 1/1	24	0.654	-0.010	5241.2	0.000		ւի, 1	24	0.773	0.029	5984.5	0.000
ı		25	0.637	-0.003	5379.1	0.000	1	ı [i	25	0.765	0.034	6183.5	0.000
1		26	0.621	0.039	5510.9	0.000	ı	□ ·	26	0.754	-0.143	6377.9	0.000
1		27	0.608	0.036	5637.6	0.000	ı	1 11	27	0.745	0.025	6568.0	0.000
1	1 1/1	28	0.595	0.011	5759.2	0.000		1 🗓	28	0.737	0.079	6754.9	0.000
1	ibi	29	0.581	0.043	5875.9	0.000	ı	1 j i	29	0.730	0.040	6939.0	0.000
	14	30	0.565	-0.059	5986.5	0.000		ı b ı	30	0.725	0.047	7121.1	0.000
	'bi	31	0.550	0.068	6091.5	0.000		□ I	31	0.718	-0.099	7300.6	0.000
	1 1	32	0.536	-0.017	6191.5	0.000		ı þi	32	0.712	0.028	7477.3	0.000
	'()	33	0.521	-0.047	6286.8	0.000			33	0.705	0.000	7651.3	0.000
1	1 1	34	0.509	-0.005	6377.7	0.000		uþ l	34	0.698	-0.018	7822.4	0.000
1	1 10	35		-0.017	6464.4	0.000		ւիւ [35	0.691	0.030	7990.8	0.000
	I ili	36			6546 9			ul i	36			8156.2	
		Pat	:h = c:\u	isers\len	ovo\docu	ıments	Path = c:\user	s\lenovo\documents	DE	3 = none	e WF :	= untitled	(write

Vemos que em nivel ambas as séries indicam ter raízes unitárias, que podemos comprovar com o teste de Dickey- Fuller:

Augmented Dickey-Fuller Unit Root Test on DESEMPREGO_BR									
• • • • • • • • • • • • • • • • • • • •	EMPREGO_BR has a u	nit root							
Exogenous: Constant		vlan=15)							
Lag Length: 0 (Automatic - based on SIC, maxlag=15)									
		t-Statistic	Prob.*						
Augmented Dickey-Fu	Iller test statistic	-1.869884	0.3464						
Test critical values:	-3.451283								
	-2.870651								
	10% level	-2.571695							
*MacKinnon (1996) or	ne-sided p-values.								
Iull Hypothesis: L_OIL xogenous: Constant,	_ has a unit root	lag=15)							
Iull Hypothesis: L_OIL xogenous: Constant,	_ has a unit root Linear Trend	lag=15) t-Statistic	Prob.*						
Iull Hypothesis: L_OIL xogenous: Constant,	- has a unit root Linear Trend tic - based on SIC, max		Prob.* 0.2795						
lull Hypothesis: L_OIL xogenous: Constant, ag Length: 1 (Automa	- has a unit root Linear Trend tic - based on SIC, max	t-Statistic							
Jull Hypothesis: L_OIL ixogenous: Constant, ag Length: 1 (Automa ugmented Dickey-Ful	has a unit root Linear Trend tic - based on SIC, max ler test statistic	t-Statistic							

^{*}MacKinnon (1996) one-sided p-values.

Por outro lado, olhando para o autocorrelograma da primeira diferença se tem algo como:

Correlogram of D(DESEMPREGO_BR)					Correlogram of D(L_OIL)				
Date: 11/04/22 Time Sample (adjusted): 1 Included observation Autocorrelation		ents	AC	PAC	Q-Stat	Prob			1 0.288 0.288 25.913 0.00 2 0.064 -0.020 27.211 0.00 3 0.018 0.006 27.317 0.00 4 -0.121 -0.138 31.911 0.00
Autocorrelation	Partial Correlation	2 3 4 5 6 7 8 9 10 11 12 13 14 15	-0.084 0.001 0.157 -0.181 0.050 0.108 -0.157 0.078 0.038 -0.135 -0.215 -0.016 -0.132 -0.014 -0.146 -0.033	-0.084 -0.006 0.158 -0.160 0.026 0.097 -0.102 0.024 0.035 -0.075 0.156 0.012 -0.093 -0.093 -0.093 -0.008 -0.015 0.085	2.2151 2.2154 9.9679 20.379 21.175 24.921 32.796 34.764 35.219 41.052 55.936 56.016 61.727 61.788	0.137 0.330 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			5 -0.106 -0.037 35.456 0.00 6 -0.132 -0.096 40.999 0.00 7 -0.074 -0.004 42.734 0.00 8 -0.047 -0.037 43.432 0.00 9 -0.044 -0.034 44.052 0.01 10 0.123 0.132 48.890 0.00 11 0.136 0.056 54.837 0.00 12 0.042 -0.036 55.418 0.00 13 -0.085 -0.135 57.733 0.00 14 -0.048 0.023 58.544 0.00 15 -0.081 -0.054 60.694 0.00 15 -0.081 -0.054 60.694 0.00 16 -0.096 -0.027 63.716 0.00 17 -0.041 -0.011 64.281 0.00 18 -0.036 -0.023 64.704 0.00 19 0.021 0.032 64.844 0.00 20 0.075 0.041 66.699 0.00 21 0.040 -0.043 67.221 0.00 22 0.076 0.028 69.138 0.00 22 -0.076 0.028 69.138 0.00 23 -0.026 -0.050 69.369 0.00 24 -0.066 -0.030 70.845 0.00 25 0.083 0.142 73.163 0.00
		21 22 23 24 25 26 27 28 29 30	0.035 0.153 0.020 -0.058 0.096 -0.128 -0.025 0.068 -0.011 -0.023	0.104 0.118 0.033 -0.041 0.082 -0.080 -0.067 -0.019 0.043 -0.100	74.559 82.399 82.536 83.673 86.797 92.380 92.591 94.174	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000			26 -0.043 -0.085 73.784 0.0 27 -0.102 -0.077 77.350 0.0 28 -0.067 -0.035 78.899 0.0 29 -0.074 -0.034 80.778 0.0 30 0.069 0.092 82.445 0.0 31 0.013 -0.059 82.499 0.0 32 -0.011 -0.051 82.545 0.0 33 0.029 0.023 82.847 0.0 34 -0.037 -0.018 83.331 0.0 35 0.028 0.037 83.612 0.0 36 0.116 0.088 88.396 0.0

Indicando que as séries de primeira diferença são estacionárias, que podemos comprovar com o teste de Dickey-Fuller novamente:

Augmented Di	ckey-Fuller Unit Root Te	st on D(DESEMPREG	iO_BR)					
Null Hypothesis: D(DESEMPREGO_BR) has a unit root Exogenous: Constant Lag Length: 0 (Automatic - based on SIC, maxlag=15)								
		t-Statistic	Prob.*					
Augmented Dickey-Full		-19.06699	0.0000					
Test critical values:	1% level 5% level 10% level	-3.451351 -2.870682 -2.571711						
*MacKinnon (1996) one-sided p-values.								
Null Hypothesis: D(L_OIL) has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=15)								
		t-Statistic	Prob.*					
Augmented Dickey-Ful								

^{*}MacKinnon (1996) one-sided p-values.

Portanto temos forte evidência de que ambas as séries são integradas de ordem, o que é um resultado importante para o modelo que iremos desenvolver.

Para fazer a modelagem do VAR, usamos um dos critérios abaixo para determinar a quantidade de lags:

VAR Lag Order Selection Criteria Endogenous variables: L_OIL L_DES

Exogenous variables: C Date: 11/04/22 Time: 15:07 Sample: 1990M01 2016M11 Included observations: 295

Lag	LogL	LR	FPE	AIC	SC	HQ
0	-278.9524	NA	0.023029	1.904762	1.929758	1.914771
1	803.9850	2143.849	1.53e-05	-5.410068	-5.335078*	-5.380040
2	813.4709	18.65019	1.48e-05	-5.447260	-5.322278	-5.397214*
3	816.5602	6.032109	1.49e-05	-5.441086	-5.266111	-5.371022
4	822.3988	11.32090	1.47e-05	-5.453551	-5.228583	-5.363468
5	828.1153	11.00666	1.45e-05	-5.465188	-5.190227	-5.355087
6	828.7689	1.249583	1.48e-05	-5.442501	-5.117547	-5.312381
7	831.9038	5.951021	1.49e-05	-5.436636	-5.061689	-5.286498
8	835.0675	5.962811	1.50e-05	-5.430966	-5.006027	-5.260810
9	836.6911	3.037993	1.53e-05	-5.414855	-4.939922	-5.224680
10	839.7424	5.668217	1.54e-05	-5.408423	-4.883498	-5.198230
11	844.9167	9.541866	1.52e-05	-5.416385	-4.841467	-5.186173
12	852.1613	13.26125	1.49e-05	-5.438382	-4.813471	-5.188152
13	852.9731	1.474987	1.52e-05	-5.416767	-4.741863	-5.146518
14	862.0361	16.34407	1.47e-05	-5.451092	-4.726195	-5.160825
15	868.9082	12.29986*	1.45e-05*	-5.470564*	-4.695674	-5.160279
16	871.7237	5.001195	1.46e-05	-5.462534	-4.637651	-5.132230

^{*} indicates lag order selected by the criterion

LR: sequential modified LR test statistic (each test at 5% level)

FPE: Final prediction error AIC: Akaike information criterion SC: Schwarz information criterion HQ: Hannan-Quinn information criterion

oo n

Como o critério de Akaike está recomendando uma quantidade grande demais de lags, escolhemos a quantidade escolhida pelo Critério de Hannan Quinn. Portanto a quantidade recomendada é de 2 lags, porém como iremos estimar o modelo VEC, temos que usar apenas 1 Lag, pois ess modelo se baseia em diferenças.

Sample (adjusted): 1990M02 2015M11 Included observations: 310 after adjustments Standard errors in () & t-statistics in []

	L_OIL	L_DES	
L_OIL(-1)	1.000339	-0.019005	
	(0.00946)	(0.00510)	
	[105.788]	[-3.72403]	
L_DES(-1)	0.031823	0.950177	
	(0.02362)	(0.01275)	
	[1.34711]	[74.5315]	
_			
С	-0.068265	0.178445	
	(0.07902)	(0.04264)	
	[-0.86395]	[4.18465]	
R-squared	0.985199	0.972961	
Adj. R-squared	0.985103	0.972784	
Sum sq. resids	2.418476	0.704378	
S.E. equation	0.088757	0.047900	
F-statistic	10217.38	5523.393	
Log likelihood	312.4114	503.6161	
Akaike AIC	-1.996203	-3.229781	
Schwarz SC	-1.960042	-3.193621	
Mean dependent	3.609752	2.185360	
S.D. dependent	0.727186	0.290352	
Determinant resid covaria	nce (dof adi)	1.77E-05	
Determinant resid covaria		1.74E-05	
Log likelihood		818.9299	
Akaike information criterio	n	-5.244709	
Schwarz criterion		-5.172388	
Number of coefficients		6	

Vemos que o R² é bastante elevado, mas que o efeito do desemprego sobre o preço futuro do petróleo não é estatisticamente significativo.

Podemos ver ainda a autocorrelação serial dos erros, onde se percebe que a seleção de apenas

Null hype	Null hypothesis: No serial correlation at lag h								
Lag	LRE* stat	df	Prob.	Rao F-stat	df	Prob.			
1	4.604398	4	0.3303	1.153581	(4, 604.0)	0.3303			
2	6.759748	4	0.1491	1.696604	(4,604.0)	0.1491			
3	7.977882	4	0.0924	2.004360	(4,604.0)	0.0924			
4	20.79804	4	0.0003	5.281171	(4,604.0)	0.0003			
5	3.291887	4	0.5102	0.823851	(4,604.0)	0.5102			
6	8.078074	4	0.0888	2.029701	(4,604.0)	0.0888			
7	8.369529	4	0.0789	2.103440	(4,604.0)	0.0789			
8	3.605893	4	0.4620	0.902671	(4,604.0)	0.4620			
9	5.893690	4	0.2072	1.478175	(4,604.0)	0.2072			
10	10.56352	4	0.0319	2.659667	(4, 604.0)	0.0319			
11	25.91126	4	0.0000	6.607594	(4, 604.0)	0.0000			

Um lag, ou no máximo 3 lags seria a ideal, pois o teste LM não consegue rejeitar a hipótese de que não há correlação serial a nível de 5% de significância.

Abaixo analisaremos a distribuição de resíduos do modelo, onde percebe-se que

os resíduos são relativamente bem comportados e não violam o intervalo de confiança, exceto nos momentos de crise

Relativamente bem comportados, exceto em momentos de crise.

Olhando para os correlogramas dos erros, vemos que apenas nos lags 4 e 11 os erros saem do intervalo de confiança, o que sugere que possamos incluir mais lags no modelo. Como o desvio é pequeno, ainda manteremos para não ter problema de overfitting, o que iria tornar a previsão menos eficiente

Agora faremos o teste de cointegração para ver se é possível estimar o VECM:

15.49471

3.841465

0.0120

0.0822

Unrestricted Cointegration Rank Test (Trace) Hypothesized Trace 0.05 No. of CE(s) Eigenvalue Statistic Critical Value Prob.**

19.46094

3.020367

Trace test indicates 1 cointegrating eqn(s) at the 0.05 level

0.051815

0.009727

None *

At most 1

Unrestricted Cointegration Rank Test (Maximum Eigenvalue)

Hypothesized No. of CE(s)	Eigenvalue	Max-Eigen Statistic	0.05 Critical Value	Prob.**
None *	0.051815	16.44058	14.26460	0.0223
At most 1	0.009727	3.020367	3.841465	0.0822

Max-eigenvalue test indicates 1 cointegrating eqn(s) at the 0.05 level

Como o modelo rejeita a 5% a hipótese de que não há cointegração, mas não rejeita que há no máximo uma cointegração, será adotada apenas um vetor de cointegração no modelo VEC

Esse vetor de cointegração serão, então, dados por:

1 Cointegrating Equation(s): Log likelihood 829.7740

Normalized cointegrating coefficients (standard error in parentheses)

L_OIL L_DES
1.000000 2.415718
(0.47367)

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

^{*} denotes rejection of the hypothesis at the 0.05 level

^{**}MacKinnon-Haug-Michelis (1999) p-values

VECM: utilizando apenas um vetor de cointegração, como foi estimado, temos que:

Vect	Vector Error Correction Estimates								
Cointegrating Eq:	CointEq1								
L_OIL(-1)	1.000000								
L_DES(-1)	2.415718 (0.47367) [5.09996]								
С	-8.889142								
Error Correction:	D(L_OIL)	D(L_DES)							
CointEq1	-0.002674 (0.00871) [-0.30697]	-0.019464 (0.00486) [-4.00290]							
D(L_OIL(-1))	0.282559 (0.05605) [5.04133]	-0.053512 (0.03128) [-1.71049]							
D(L_DES(-1))	-0.111671 (0.10011) [-1.11550]	-0.036631 (0.05588) [-0.65557]							
С	0.002025 (0.00487) [0.41614]	0.001339 (0.00272) [0.49324]							
R-squared Adj. R-squared Sum sq. resids S.E. equation F-statistic Log likelihood	0.087128 0.078149 2.227190 0.085453 9.703430 323.6348	0.066674 0.057494 0.693885 0.047697 7.262812 503.8111							

Esse é o modelo vetorial que obtemos.

Vemos que os coeficientes não são muito significativos estatisticamente, e isso se deve muito provavelmente às distorções que crises têm sobre o modelo. Percebemos que o Petróleo traz uma relação negativa com o desemprego

futuro, ou seja, um aumento do preço do petróleo deve levar a uma redução do desemprego do Brasil

Podemos fazer algumas análises do modelo, Olhando para o gráfico de cointegração, temos que:

Que fazendo o teste de raiz unitária,

Null Hypothesis: D(COINT) has a unit root

Exogenous: Constant, Linear Trend

Lag Length: 0 (Automatic - based on SIC, maxlag=15)

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic Test critical values: 1% level 5% level		-17.90933 -3.988036 -3.424435	0.0000
	10% level	-3.135264	

^{*}MacKinnon (1996) one-sided p-values.

Que rejeita fortemente que a série tem raiz unitária, mostrando que essa série de cointegração é estacionária

Para fazer a estimativa de resposta a impulso, é importante saber qual a variável mais exógena do modelo, para impor na decomposição de Cholensky no modelo estrutural. Nesse caso, uma forma de fazer essa estimativa é através da Causalidade de Granger, iremos impor que o resíduo da variável

que Granger-causa a outra é a que deve estar inclusa como coeficiente diferente de zero na Decomposição.

Analisando A causalidade de Granger, temos que para quase qualquer número

Lags: 1

Null Hypothesis:	Obs	F-Statistic	Prob.
L_DES does not Granger Cause L_OIL	310	1.81471	0.1789
L_OIL does not Granger Cause L_DES		13.8684	0.0002

de lags,

Lags: 2

Null Hypothesis:	Obs	F-Statistic	Prob.
L_DES does not Granger Cause L_OIL	309	0.90487	0.4057
L_OIL does not Granger Cause L_DES		9.03116	0.0002

Lags: 3

Null Hypothesis:	Obs	F-Statistic	Prob.
L_DES does not Granger Cause L_OIL	308	2.68770	0.0466
L_OIL does not Granger Cause L_DES		5.54961	0.0010

Lags: 11

Null Hypothesis:	Obs	F-Statistic	Prob.
L_DES does not Granger Cause L_OIL	300	1.16973	0.3080
L_OIL does not Granger Cause L_DES		2.03674	0.0252

Lags: 13

Null Hypothesis:	Obs	F-Statistic	Prob.
L_DES does not Granger Cause L_OIL	298	0.82038	0.6384
L_OIL does not Granger Cause L_DES		1.82356	0.0395

Nos tornamos confiantes de que o preço do petróleo afeta o nível de desemprego, enquanto que o contrário não é verdade, no caso brasileiro

Comparando com os Estados Unidos, vemos uma relação diferente:

Lags: 13

Null Hypothesis:	Obs	F-Statistic	Prob.
L_OIL does not Granger Cause UNEMPLOY_US UNEMPLOY_US does not Granger Cause L_OIL	298	1.61529 1.45435	0.0806 0.1346

Lags: 3

Null Hypothesis:	Obs	F-Statistic	Prob.
L_OIL does not Granger Cause UNEMPLOY_US UNEMPLOY_US does not Granger Cause L_OIL	308	1.75983 2.05467	0.1549 0.1063

Mostrando que o desemprego americano é menos sensitivo a essa commoditie.

Analisando a resposta ao impulso em nível, seguindo o que foi des temos que:

Percebe-se, nos gráficos, que a resposta é sobre o nível e, portanto, acumulativa. Assim sendo, o efeito do desemprego sobre o preço do petróleo é contido e desprezível, porém a resposta do desemprego ao petróleo é muito persistente.

Podemos analisar essa relação através das decomposições de variância do modelo

				Variance Decomposition using Cholesky (d.f. adjusted)			
Variance Decomposition of L_DES:			Variance Decomposition of L_OIL:				
Period	S.E.	L_OIL	L_DES	Period	S.E.	L_OIL	L_DES
1	0.047697	1.495543	98.50446	1	0.085453	100.0000	0.000000
2	0.065505	3.918650	96.08135	2	0.139451	99.83919	0.160815
3	0.079057	5.955298	94.04470	3	0.182446	99.75903	0.240966
4	0.090152	7.806580	92.19342	4	0.218280	99.71430	0.285704
5	0.099646	9.583357	90.41664	5	0.249309	99.68650	0.313500
6	0.108008	11.34424	88.65576	6	0.276948	99.66745	0.332547
7	0.115531	13.11659	86.88341	7	0.302074	99.65334	0.346658
8	0.122412	14.91127	85.08873	8	0.325254	99.64225	0.357754
9	0.128789	16.73044	83.26956	9	0.346877	99.63312	0.366880
10	0.134764	18.57168	81.42832	10	0.367215	99.62536	0.374645
11	0.140413	20.43015	79.56985	11	0.386473	99.61858	0.381422
12	0.145797	22.29979	77.70021	12	0.404804	99.61254	0.387456
13	0.150961	24.17407	75.82593	13	0.422330	99.60709	0.392912
14	0.155945	26.04643	73.95357	14	0.439149	99.60209	0.397905
15	0.160776	27.91052	72.08948	15	0.455338	99.59748	0.402520
16	0.165481	29.76038	70.23962	16	0.470963	99.59318	0.406817
17	0.170078	31.59055	68.40945	17	0.486079	99.58915	0.410846
18	0.174584	33.39613	66.60387	18	0.500732	99.58536	0.414642
19	0.179013	35.17281	64.82719	19	0.514962	99.58177	0.418234
20	0.183375	36.91685	63.08315	20	0.528803	99.57835	0.421646
21	0.187680	38.62509	61.37491	21	0.542286	99.57510	0.424897
22	0.191934	40.29492	59.70508	22	0.555437	99.57200	0.428002
23	0.196145	41.92421	58.07579	23	0.568278	99.56902	0.430975
24	0.200316	43.51134	56.48866	24	0.580832	99.56617	0.433827
25	0.204452	45.05511	54.94489	25	0.593116	99.56343	0.436567
26	0.208557	46.55469	53.44531	26	0.605147	99.56080	0.439204
27	0.212633	48.00961	51.99039	27	0.616939	99.55826	0.439204
28	0.216682	49.41971	50.58029				0.441744
29	0.220706	50.78510	49.21490	28	0.628507	99.55581	
30	0.224706	52.10608	47.89392	29	0.639863	99.55344	0.446560
31	0.228683	53.38319	46.61681	30	0.651018	99.55115	0.448846
32	0.232638	54.61712	45.38288	31	0.661982	99.54894	0.451057
33	0 226572	55 20262	AA 10122	32	0.672765	99.54680	0.453198

Olhando para a decomposição de variância, vemos que estruturalmente temos que para o desemprego, choques permanentes no preço do petróleo têm efeito maior no longo prazo, assumindo que este esteja seguindo a uma tendência.

Previsão:

Quando se trata de previsões, o modelo apresenta resultados muito interessantes. Fazendo uma previsão a partir de 1995, acertadamente ele estima que o desemprego iria passar por um salto para então entrar em tendência de queda.

Convertendo a escala logarítmica, o modelo previa um pico de 12% de desemprego, contra 14%, acertando o mesmo ano (1998). O modelo previa 10% em 2015, contra 8% real.

Para o preço do Brent, temos que ele previa uma tendência de alta, atingindo o valor de \$30 em 2015, contra os \$45 realizados, apesar de ter superado 130 no período. Olhando para dados recentes, também temos resultados bastante expressivos:

O modelo previa que o desemprego atualmente estaria próximo de 8%, se compararmos com o desemprego real temos algo em torno de 8,3%

Olhando para a Previsão do Brent, temos ainda algo muito importante a notar: Fazendo a razão Preço(2021m10)/Preço(2015m10), temos o valor 59/49= 1,204. Olhando a razão PIB do mundo 2021/2015, temos a razão 1,27, comparado com 1,26 dos Estados Unidos.

PIB MUNDO

Conclusões

Através desse trabalho pode-se chegar a um modelo que, embora não apresente testes de significância muito fortes, é capaz de postular alguns resultados. Primeiro que se obtém uma relação negativa entre o preço do Brent e a taxa de desemprego brasileira, porém com o primeiro impactando a segunda variável, em especial no longo prazo, mas não contrário- e essa relação está ligada ao fato de o Brasil ser uma economia dependente de petróleo, já que nos Estados Unidos não se apresenta a Causalidade de Granger, por exemplo. O modelo prevê no geral uma tendência de crescimento do preço do barril, com previsões próximas das observadas, e a uma taxa que no curto prazo se assemelha àquela do crescimento da economia global, e uma trajetória do desemprego sensível às condições iniciais. Em trabalhos futuros espera-se a inclusão de outras variáveis fundamentais da economia brasileira, tais como o preço do minério de ferro e a taxa de juros.