Computação Embarcada - Aula 4 - PIO

Rafael Corsi - rafael.corsi@insper.edu.br Março - 2018

Introdução

Pinos - PIO

I/O Trabalhar com microcontroladores implica diretamente em acessar entradas e saídas reais (I/O).

Pinos - PIO

I/O Trabalhar com microcontroladores implica diretamente em acessar entradas e saídas reais (I/O).

· USB, Ethernet, Wifi, SDCard, LED

Configuração

Um pino pode ser configurado para operar em três estados :

- · Entrada (In)
- · Saída (Out)
- · Alta impedância (Z)

Podemos configurar o pino para operar com:

- · PULL-UP
- · PULL-DOWN
- · Debouncing

SAME70

I/O Cada desenvolvedor de uC especifica o PIO de uma maneira diferente. O uC que iremos trabalhar possui 5 PIOs :

· PIOA, PIOB, PIOC, ...

Cada um responsável por gerenciar uma gama de pinos.

PIO / Periféricos

- Os PIOs s\(\tilde{a}\)o respons\(\tilde{a}\)veis por associar o pino do microcontrolador ao perif\(\tilde{e}\)rico espec\(\tilde{f}\)ico.
- · Cada PIO pode mapear o pino para 4 diferentes periféricos (SAME70)
- · O PIO pode controlar o pino de forma independente.

PIO / Periféricos

Periféricos

PIO / Periféricos

PIO Interno mux

14	E1	G4	VDDIO	GPIO_AD	PC31	VO	AFE1_AD6 ⁽³⁾	1	A13	0	TCLK5	1	-	-	-	-	PIO, I, PU, ST
1	D4	B1	VDDIO	GPIO_AD	PD0	NO	DAC1 ⁽¹¹⁾	1	GTXCK	1	PWMC1_PWML0	0	SPI1_NPCS1	NΟ	DCD0	1	PIO, I, PU, ST
132	85	B6	VDDIO	GPIO	PD1	VO	-	-	GTXEN	0	PWMC1_PWMH0	0	SPI1_NPCS2	NO	DTR0	0	PIO, I, PU, ST
131	A5	A6	VDDIO	GPIO	PD2	NO	-	-	GTX0	0	PWMC1_PWML1	0	SPI1_NPCS3	νo	DSR0	1	PIO, I, PU, ST

SAME70 Pinos

Diagrama de blocos

Diagrama de blocos, PIO?

PIO Overview

PIO Detalhado

PIO Interno - Periféricos

PIO - Registradores

Verificamos que existem diversos registradores que fazem o controle do PIO, esses registradores são configurados na forma de Enable e Disable, exemplo:

• PIO_PER : PIO Pin **Enable** Register

· PIO_PDR: PIO Pin Disable Register

O registrador Status contém o valor efetivo desse registrador.

PIO_PSR : PIO Pin Status Register

PIO Interno - Registradores

Cada bit desse registrador (32) representa o controle de um pino. Por exemplo, o PIOA1 é controlador pelo bit 0, PIOA12 pelo bit 12, e assim por diante.

PIO Output

PIO Interno - Output

PIO Interno - Output

PIO Interno - Output

Controla o pino

Input

Pisca LED - SAME70-XPLD

SAME70 Manual - pg. 31

Etapas:

- · Ativar o periférico via PMC (Power management controller)
- · Configurar o pino como saida (PIO OUTPUT REGISTERS)
- · Tornar o pino acionado via PIO (PIO PERIPHERAL REGISTERS)
- · Desativar o multidriver no pino (PIO MULTI-DRIVE REGISTERS)
- · Configurar o pino (PIO OUTPUT DATA REGISTERS)