

Análisis Matemático A (para Ingeniería y Ciencias Exactas y Naturales) Ejercicio resueltos de Números Reales y Funciones

Silvina Del Duca Silvia Vietri

Índice general

1.	Ejer	rcicios resueltos	2
	1.1.	Números reales	2
	1.2.	Funciones	3

Práctica 1

Ejercicios resueltos

1.1. Números reales

Ejemplo 1.1. Escribir como un intervalo o una unión de intervalos los siguientes conjuntos y especificar, si existe, la menor de las cotas superiores y la mayor de las cotas inferiores.

a.
$$A = \left\{ x \in \mathbb{R} / \frac{x+1}{x-2} < -2 \right\}$$

a.
$$A = \left\{ x \in \mathbb{R} / \frac{x+1}{x-2} < -2 \right\}$$
 b. $B = \left\{ x \in \mathbb{R} / \frac{6x^2}{2x-5} \geqslant 3x \right\}$

Solución:

- a. En principio, debe ser $x-2\neq 0$, es decir, $x\neq 2$, pues el denominador no puede ser nulo.
 - Si x-2>0, es decir, si x>2 (primera condición sobre x), podemos multiplicar a ambos lados de la desigualdad por este término, sin que la desigualdad se invierta, porque estamos multiplicando por un número positivo. Entonces,

$$\begin{array}{rcl}
 x + 1 & < & -2(x - 2) \\
 x + 1 & < & -2x + 4 \\
 3x & < & 3 \\
 x & < & 1
 \end{array}$$

(segunda condición sobre x). La respuesta es la intersección de las dos condiciones anteriores $(x > 2 \ y \ x < 1)$ y en este caso es el conjunto vacío.

• Si x-2<0, es decir, si x<2, podemos multiplicar a ambos lados de la desigualdad por este término, pero como estamos multiplicando por un número negativo, debemos invertir la desigualdad. Entonces,

$$x+1 > -2(x-2)$$

$$x+1 > -2x+4$$

$$3x > 3$$

$$x > 1$$

La respuesta es la intersección de las dos condiciones anteriores (x < 2 y x > 1) y en este caso es el intervalo (1; 2).

- Finalmente, el conjunto A es la unión de las dos respuestas anteriores, es decir, A= (1; 2).
- La mayor cota inferior (ínfimo) del conjunto A es 1 y la menor cota superior (supremo) es 2.
- b. En principio, debe ser $2x 5 \neq 0$, es decir, $x \neq \frac{5}{2}$. Como el denominador puede ser negativo o positivo, hay que resolver la desigualdad para los dos casos.
 - Si 2x-5>0 $(x>\frac{5}{2})$, multiplicamos por este término positivo a ambos lados de la desigualdad. Entonces,

$$6x^{2} \geq 3x(2x - 5)$$

$$6x^{2} \geq 6x^{2} - 15x$$

$$15x \geq 0$$

$$x \geq 0$$

La respuesta es la intersección de las dos condiciones anteriores $(x > \frac{5}{2}$ y $x \ge 0)$, que es el intervalo $(\frac{5}{2}; +\infty)$.

• Si 2x - 5 < 0 $\left(x < \frac{5}{2}\right)$, se debe invertir la desigualdad porque multiplicamos por un término negativo. Entonces,

$$6x^{2} \leq 3x(2x - 5)$$

$$6x^{2} \leq 6x^{2} - 15x$$

$$15x \leq 0$$

$$x < 0$$

La respuesta es la intersección de las dos condiciones anteriores $(x < \frac{5}{2} y \ x \le 0)$, que es el intervalo $(-\infty; 0]$.

■ Finalmente, el conjunto B es la unión de las dos respuestas anteriores, $B = (-\infty; 0] \cup (\frac{5}{2}; +\infty)$ y en este caso no existe ni el supremo ni el ínfimo del conjunto .

1.2. Funciones

Ejemplo 1.2. Dada la siguiente función, hallar su Dominio y representarla gráficamente. Analizar también la monotonía e indicar las raíces.

$$f(x) = 2\ln(x^2 - 3x + 2)$$

Solución:

Para hallar el Dominio de la función, como se trata de una función logarítmica, pedimos que x verifique $x^2 - 3x + 2 > 0$, es decir, necesitamos hallar el conjunto de positividad de la cuadrática $x^2 - 3x + 2$. Si buscamos las raíces de dicha cuadrática, vemos que las mismas son x = 1 y x = 2.

Por lo tanto, la cuadrática se puede escribir como $x^2 - 3x + 2 = (x - 2)(x - 1)$ y es positiva en $(-\infty; 1) \cup (2; +\infty)$.

Entonces el $Dom(f) = (-\infty; 1) \cup (2; +\infty)$.

La función tiene asíntotas verticales en $x=1\,$ y $\,x=2.$ El gráfico es

../../../UBAXXI\protect \unhbox \voidb@x \protect \penalty

A partir del gráfico se ve que la función decrece en el intervalo $(-\infty; 1)$ y crece en $(2; +\infty)$, por lo tanto no es monótona.

Para hallar las raíces igualamos la función a cero: $2 \ln(x^2 - 3x + 2) = 0$. Si dividimos por 2 y usamos la definición de logaritmo natural, nos queda:

$$e^0 = 1 = x^2 - 3x + 2$$

Por lo tanto las raíces de f(x) son los x tales que $x^2-3x+1=0$, es decir, $x=\frac{3-\sqrt{5}}{2}$ y $x=\frac{3+\sqrt{5}}{2}$.

Ejemplo 1.3. Hallar la solución de la siguiente ecuación:

$$-2\cos(4x+\pi) = \sqrt{2} \quad \text{con } x\epsilon\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Solución:

En primer lugar, dividimos por -2 y nos queda $\cos(4x+\pi)=\frac{-\sqrt{2}}{2}$. Si llamamos $\alpha=4x+\pi$, buscamos los valores de α tal que $\cos(\alpha)=\frac{-\sqrt{2}}{2}$. Entonces $\alpha=(\pi-\frac{\pi}{4})+2k\pi$ y $\alpha=(\pi+\frac{\pi}{4})+2k\pi$, con $k\epsilon\mathbb{Z}$. Si reemplazamos α , nos queda $4x+\pi=\frac{3}{4}\pi+2k\pi$ y $4x+\pi=\frac{5}{4}\pi+2k\pi$. Despejando x, queda $x=(\frac{3}{4}\pi+2k\pi-\pi)/4$ y $x=(\frac{5}{4}\pi+2k\pi-\pi)/4$, es decir, hay dos familias de soluciones en \mathbb{R} , que son $x_1=-\frac{\pi}{16}+\frac{1}{2}k\pi$ y $x_2=\frac{\pi}{16}+\frac{1}{2}k\pi$, con $k\epsilon\mathbb{Z}$.

Como lo que pide el ejercicio es hallar las soluciones en el intervalo $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, debemos darle valores a $k \in \mathbb{Z}$, para hallar los x que pertenecen a dicho intervalo.

- Con k=0 se obtiene $x_1=-\frac{\pi}{16}$ y $x_2=\frac{\pi}{16}$, ambos pertenecen a dicho intervalo;
- Con k=1 se obtiene $x_1=\frac{7}{16}\pi$ y $x_2=\frac{9}{16}\pi$, pero este último no pertenece a dicho intervalo;
- Con k=-1 se obtiene $x_1=-\frac{9}{16}\pi$ y $x_2=-\frac{7}{16}\pi$, pero el primero no pertenece a dicho intervalo.
- ullet Para otros valores de k, ninguna solución pertenece al intervalo dado.

Por lo tanto ,el conjunto solución de la ecuación planteada es $\left\{-\frac{7}{16}\pi, -\frac{\pi}{16}, \frac{\pi}{16}, \frac{7}{16}\pi\right\}$.