Computergestützte Methoden der exakten Naturwissenschaften

Computerphysik

Carlos Martín Nieto

Wintersemester 2013/2014

1 Fehler

Ziel der Naturwissenschaften: Beschreibung der natur durch (einfache) Gleichungen und deren Lösungen

Gleichungen typischerweise nicht lösbar mit Papier und Bleistift.

Lösung 1 Gleichungen vereinfachen $\hat{=}$ Näherung/Approximation

Lösung 2 Numerische Lösung von Gleichungen ⇒ diese Vorlesung

in Naturwissenschaften wichtig: Genauigkeit (den Fehler) von numerischen Rechenergebnissen beurteilen! Es gibt verschiedene Fehlerquellen

- 1. Eingabefehler durch Ungenauigkeiten in den Eingabedaten.
- 2. Näherungsfehler wenn statt exakten mathematische Ausdrücke vereinfachte Ausdrücke benutzt werden.
- 3. Modelfehler durch vereinfachte physikalische Modelle.
- 4. Rundungsfehler durch die numerische Darstellung von Zahlen und der damit verbundenden endlichen Genauigkeiten.

1.1 Näherungsfehler

Viele mathemiatische Ausdrücke, die in der Physik auftreten sind in der exakten Formulierung nicht oder sehr aufwendig zu berechnen \rightarrow Approximation \rightarrow Näherungsfehler. Häufig: Funktionen definiert durch unendliche Reihen.

Bsp 1 Exponenzialfunktionen

Die Funktion ist
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. Die Näherung $e^x = \sum_{n=0}^{N} \frac{x^n}{n!}$

$$\frac{df(x)}{dx} = F(x)$$
 werden durch e-Funktion gelöst.

Bsp 2 Lösung einer Differenzialgleichung im Kontinuum wird ersetzt durch Lösung der diskretisierten Gleichung.

Ausgangs-DG:
$$\frac{d}{dx}f(x) = a \cdot f(x)$$
, Lösung $f(x) = e^{ax}$.
Lösung durch Beschränkung auf diskrete Gitterpunkte. x_i mit $x_{i+1} - x_i = \Delta x \rightarrow$

$$f(x) = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = a \cdot \frac{f(x_{i+1}) - f(x_i)}{2}$$

Verbesserung der Näherung durch Verfeinerung der Diskretisierung, also $\Delta x \to 0$. Nachteil: mehr Rechenoperationen und damit mehr Rechenzeit, außerdem mehr Rundingsfehler (mehr in ??).

Ziel der Numerik: optimaler Kompromiss zwischen Fehler und Rechenzeit finden.

1.2 Modellfehler

Beispiel Planetenbewegung

Erster Keppler Gesetzt: Planeten bewegen sich auf elyptischen Bahnen, in einem Brennpunkt steht die Sonne.

Neutonische Bewegungsgleichung

$$\vec{F} = m \cdot \vec{a} = m \cdot \frac{d^2 \vec{r}(t)}{dt^2} = -G \frac{Mm\vec{r}}{|r|^3}$$

Modelnäherungen

- 1. Sonnenmass $M \gg \text{Planetenmasse } m$ (leicht korrigierbar)
- 2. Reibungskraft $\vec{F}_R = -\gamma \frac{d\vec{r}(t)}{dt}$ vernachlässigt. OK für Planeten, wichtig für kleine Objekte.
- 3. Gravitationsgesetzt in der einfachen Form gilt nur für Kugeln!
- 4. Relativistische Effekte \rightarrow Merkur-Perikeldrehung.
- 5. Mehrkörperproblem $r_i(t)$, i = 1, ..., N

$$m_i \frac{d^2 r_i(t)}{dt^2} = \vec{F}_i = -\sum_{j \neq i} G m_i m_j \frac{\vec{r}_i(t) - \vec{r}_j(t)}{|v_i(t) - r_j(t)|^3}$$

Gleichung für N>2 wechselwirkende Massen kann leicht hingeschrieben werden (durch Summatia der Knüpfe). Lösung aber nur nummerisch möglich! Annahme: N=3 Dreikörperproblem als 3-Stöße!