

How does network structure in Agent-Based Models affect epidemiological parameters?

Aníbal Olivera¹, George Vega Yon², Chong Zhang², Matthew Samore², Karim Khader², Alun Thomas²

Introduction

- ABM in networks is an important tool to **public health** [1]
- ullet Prevalence and R_0 are important epidemiological parameters
- SM topo. results in $R_0 < 1$ and still feature full propagation [2, 3]
- No studies about how structural features affect other epidemiological quantities [4, 5, 6]

Methods

• We constructed 1,000 networks of six topologies:

— Avg. degree — Avg. path length

— # Two paths — # Balance — # Triangles

— Transitivity — Modularity

- Scale-free Erdös Rényi ERGM
- Degree-sequence ERGM Small-World p=0.1, p=0.2
- We generated **20,000 SEIR outbreaks** using epiworldR [7]
- Epidemiological indicators:

Results

• In order to construct a general model, we select Q% best-performing models: $Q \in (10, 25, 50)$

References, all regression tables and PDF version of the poster!

Conclusions

- ◆ Recomended models
 → Non-trival forms
 → Role of balance and avg. path length
- Add more variables to refine work \rightarrow $\langle k^2 \rangle$