# MAPSI — cours 5 : Tests d'indépendance

Pierre-Henri Wuillemin - Christophe Gonzales

LIP6 / ISIR - Sorbonne Université, France

### Motivations : réseaux bayésiens

#### Définition d'un réseau bayésien

un graphe sans circuit :



qui représente une décomposition de la loi jointe : P(A,B,C,D,E,F) = P(F|E)P(E|B,D)P(D|C)P(C)P(B|A)P(A)

À chaque noeud X du graphe est associé sa probabilité conditionnellement à ses parents.

### Motivations : réseaux bayésiens

- n variables aléatoires X<sub>1</sub>,..., X<sub>n</sub>
- $P(X_n,\ldots,X_1) = P(X_n|X_{n-1},\ldots,X_1)P(X_{n-1},\ldots,X_1)$
- Par récurrence :

$$P(X_n,...,X_1) = P(X_1) \times \prod_{i=2}^n P(X_i|X_1,...,X_{i-1})$$

- $\forall i, \{X_1, \dots, X_{i-1}\} = L_i \cup K_i$ , où  $L_i \cap K_i = \emptyset$  et  $X_i$  indépendant de  $L_i$  conditionnellement à  $K_i$
- Alors:

$$P(X_n,\ldots,X_1)=P(X_1)\times\prod_{i=2}^nP(X_i|K_i)$$

• Tables de proba  $P(X_i|K_i)$  plus petites que  $P(X_i|X_1,\ldots,X_{i-1})$ 

### Plan du cours n°5

- Tests d'hypothèses
- 2 Loi du  $\chi^2$
- Tests d'ajustement
- Tests d'indépendance

## Tests d'hypothèses en statistique classique (1/2)

#### Hypothèses

- $\bullet$   $\Theta$  = ensemble des valeurs du paramètre  $\theta$
- $\bullet$   $\Theta$  partitionné en  $\Theta_0$  et  $\Theta_1$
- hypothèses = assertions  $H_0 = "\theta \in \Theta_0"$  et  $H_1 = "\theta \in \Theta_1"$
- $H_0$  = hypothèse nulle,  $H_1$  = contre-hypothèse
- hypothèse H<sub>i</sub> est simple si Θ<sub>i</sub> est un singleton; sinon elle est multiple
- test *unilatéral* = valeurs dans  $\Theta_1$  toutes soit plus grandes, soit plus petites, que celles dans  $\Theta_0$ ; sinon test *bilatéral*

# Tests d'hypothèses en statistique classique (2/2)

|                   | hypothèse | test                                    |  |  |  |  |  |
|-------------------|-----------|-----------------------------------------|--|--|--|--|--|
| $H_0: \mu = 4$    | simple    | unilatéral                              |  |  |  |  |  |
| $H_1: \mu = 6$    | simple    | umatera                                 |  |  |  |  |  |
| $H_0: \mu = 4$    | simple    | test unilatéral                         |  |  |  |  |  |
| $H_1: \mu > 4$    | composée  |                                         |  |  |  |  |  |
| $H_0: \mu = 4$    | simple    | test bilatéral                          |  |  |  |  |  |
| $H_1: \mu \neq 4$ | composée  | test bilateral                          |  |  |  |  |  |
| $H_0: \mu = 4$    | simple    | formulation incorrecte : les hypothèses |  |  |  |  |  |
| $H_1: \mu > 3$    | composée  | ne sont pas mutuellement exclusives     |  |  |  |  |  |

# Exemples pratiques d'hypothèses

- association de consommateurs
- échantillon de 100 bouteilles de Bordeaux
- Pb: la quantité de vin est-elle bien égale à 75cl?



- paramètre  $\theta$  étudié =  $\mu = E(X)$
- X = quantité de vin dans les bouteilles
- rôle de l'association  $\Longrightarrow H_0: \mu = 75$ cl et  $H_1: \mu < 75$ cl
- le mois dernier, taux de chômage = 10%
- échantillon : 400 individus de la pop. active
- Pb: le taux de chômage a-t-il été modifié?



- paramètre étudié = p = % de chômeurs
- $H_0: p = 10\%$  et  $H_1: p \neq 10\%$

### Tests d'hypothèse

#### Définition du test

- test entre deux hypothèses  $H_0$  et  $H_1$  = règle de décision  $\delta$
- o règle fondée sur les observations
- ensemble des décisions possibles =  $\mathcal{D} = \{d_0, d_1\}$
- $d_0 =$  "accepter  $H_0$ "
- $d_1 =$  "accepter  $H_1$ " = "rejeter  $H_0$ "

#### région critique

- échantillon  $\Longrightarrow$  *n*-uplet  $(x_1, \ldots, x_n)$  de valeurs (dans  $\mathbb{R}$ )
- $\delta$  = fonction  $\mathbb{R}^n \mapsto \mathcal{D}$
- région critique :  $W = \{n$ -uplets  $\mathbf{x} \in \mathbb{R}^n : \delta(\mathbf{x}) = d_1\}$
- région critique = région de rejet
- région d'acceptation =  $A = \{\mathbf{x} \in \mathbb{R}^n : \delta(\mathbf{x}) = d_0\}$

### Régions critiques

| Hypothèses            | Règle de décision                                                                               |
|-----------------------|-------------------------------------------------------------------------------------------------|
| $H_0: \mu = \mu_0$    | « rejeter $H_0$ si $\overline{x} > c$ », où $c$ est un nombre plus                              |
| $H_1: \mu > \mu_0$    | grand que $\mu_0$                                                                               |
| $H_0: \mu = \mu_0$    | « rejeter $H_0$ si $\overline{x} < c$ », où $c$ est un nombre plus                              |
| $H_1: \mu < \mu_0$    | petit que $\mu_0$                                                                               |
| $H_0: \mu = \mu_0$    | « rejeter $H_0$ si $\overline{x} < c_1$ ou $c_2 < \overline{x}$ », où $c_1$ et $c_2$            |
| $H_1: \mu \neq \mu_0$ | sont des nombres respectivement plus petit et plus grand que $\mu_0$ , et également éloignés de |
|                       | celui-ci                                                                                        |

Problème :

erreurs dans les décisions prises

### Erreurs dans les décisions

| Réalité<br>Décision prise        | H <sub>0</sub> est vraie             | H₁ est vraie                             |
|----------------------------------|--------------------------------------|------------------------------------------|
| H <sub>0</sub> est rejetée       | mauvaise décision : erreur de type I | bonne décision                           |
| H <sub>0</sub> n'est pas rejetée | bonne décision                       | mauvaise décision :<br>erreur de type II |

- $\alpha = \text{risque de première espèce}$ 
  - = probabilité de réaliser une erreur de type I
  - = probabilité de rejeter  $H_0$  sachant que  $H_0$  est vraie
  - $= P(\text{rejeter } H_0|H_0 \text{ est vraie}),$
- $\beta = \text{risque de deuxième espèce}$ 
  - = probabilité de réaliser une erreur de type II
  - = probabilité de rejeter  $H_1$  sachant que  $H_1$  est vraie
  - $= P(\text{rejeter } H_1|H_1 \text{ est vraie}).$

### Exemple de calcul de $\alpha$ (1/2)

#### Exemple

- échantillon de taille 25
- paramètre estimé :  $\mu$  d'une variable  $X \sim \mathcal{N}(\mu; 100)$
- hypothèses :  $H_0 : \mu = 10$   $H_1 : \mu > 10$

Sous 
$$H_0$$
:  $\frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \frac{\overline{X} - 10}{10/5} = \frac{\overline{X} - 10}{2} \sim \mathcal{N}(0; 1)$ 

Sous  $H_0$ : peu probable que  $\overline{X}$  éloignée de plus de 2 écarts-types de  $\mu$  (4,56% de chance)

- $\Longrightarrow$  peu probable que  $\overline{X}$  < 6 ou  $\overline{X}$  > 14
- $\implies$  région critique pourrait être « rejeter  $H_0$  si  $\overline{x} > 14$  »

### Exemple de calcul de $\alpha$ (2/2)

- échantillon de taille 25
- paramètre estimé :  $\mu$  d'une variable  $X \sim \mathcal{N}(\mu; 100)$
- hypothèses :  $H_0 : \mu = 10$   $H_1 : \mu > 10$
- région critique : « rejeter  $H_0$  si  $\overline{x} > 14$  »

$$lpha = P(\text{rejeter } H_0 | H_0 \text{ est vraie})$$

$$= P(\overline{X} > 14 | \mu = 10)$$

$$= P\left(\frac{\overline{X} - 10}{2} > \frac{14 - 10}{2} \middle| \mu = 10\right)$$

$$= P\left(\frac{\overline{X} - 10}{2} > 2\right) = 0,0228$$



en principe  $\alpha$  est fixé et on cherche la région critique

### Exemple de test d'hypothèses (1/2)

filtre de mails sur un serveur mail :



- $X = \text{score} \ge 18000 \Longrightarrow \text{spam}$ ; historiques des mails  $\Longrightarrow \sigma_X = 5000$
- le serveur reçoit un envoi en masse de n = 400 mails de xx@yy.fr Problème : xx@yy.fr est-il un spammeur?
- H<sub>0</sub>: xx@yy.fr = « spammeur » v.s. H<sub>1</sub>: xx@yy.fr ≠ « spammeur »
- ullet test :  $H_0$  :  $\mu =$  18000 v.s.  $H_1$  :  $\mu <$  18000 où  $\mu = E(X)$
- règle : si  $\overline{x} < c$  alors rejeter  $H_0$
- 400 mails  $\Longrightarrow$  théorème central limite  $\Longrightarrow$  sous  $H_0$ :

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X} - 18000}{5000 / \sqrt{400}} = \frac{\overline{X} - 18000}{250} \sim \mathcal{N}(0; 1)$$

### Exemple de test d'hypothèses (2/2)

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{\overline{X} - 18000}{5000 / \sqrt{400}} = \frac{\overline{X} - 18000}{250} \sim \mathcal{N}(0; 1)$$

• choix du risque de première espèce :  $\alpha = 0,01$ 

$$\begin{aligned} \bullet & \alpha = 0,01 = P(\overline{X} < c | \mu = 18000) \\ &= P\left(\frac{\overline{X} - 18000}{250} < \frac{c - 18000}{250} | \mu = 18000\right) \\ &= P\left(Z < \frac{c - 18000}{250}\right) \\ &= P(Z < -2,326) \\ &\Longrightarrow \frac{c - 18000}{250} = -2,326 \Longrightarrow c = 17418,5 \end{aligned}$$

règle de décision : si  $\overline{x}$  < 17418, 5, rejeter  $H_0 \Longrightarrow$  non spam

### Interprétation de $\alpha$ et $\beta$

- hypothèses :  $H_0 : \mu = 10$   $H_1 : \mu > 10$
- région critique : « rejeter  $H_0$  si  $\overline{x} > 14$  »



### Puissance du test

$$\alpha = P(\text{rejeter } H_0 | H_0 \text{ est vraie})$$

$$\beta = P(\text{rejeter } H_1|H_1 \text{ est vraie})$$

 $\alpha$  et  $\beta$  varient en sens inverse l'un de l'autre

⇒ test = compromis entre les deux risques

 $H_0$  = hypothèse privilégiée, vérifiée jusqu'à présent et que l'on n'aimerait pas abandonner à tort

 $\Longrightarrow$  on fixe un *seuil*  $\alpha_0$  :

- $\bullet$   $\alpha \leq \alpha_0$
- $\bullet$  test minimisant  $\beta$  sous cette contrainte
- $\bullet \min \beta = \max 1 \beta$

 $1 - \beta$  = puissance du test

### Exemple de calcul de $\beta$ (1/2)

- échantillon de taille 25
- paramètre estimé :  $\mu$  d'une variable  $X \sim \mathcal{N}(\mu; 100)$
- hypothèses :  $H_0$  :  $\mu = 10$   $H_1$  :  $\mu > 10$
- région critique : « rejeter  $H_0$  si  $\overline{x} > 14$  »

sous  $H_1$ : plusieurs valeurs de  $\mu$  sont possibles

 $\Longrightarrow$  courbe de puissance du test en fonction de  $\mu$ 

Supposons que  $\mu=$  11 :

$$\mu = 11 \Longrightarrow rac{\overline{X} - \mu}{\sigma / \sqrt{n}} = rac{\overline{X} - 11}{2} \sim \mathcal{N}(0; 1)$$

### Exemple de calcul de $\beta$ (2/2)

$$1 - \beta(11) = P(\text{rejeter } H_0 | H_1 : \mu = 11 \text{ est vraie})$$

$$= P(\overline{X} > 14 | \mu = 11)$$

$$= P\left(\frac{\overline{X} - 11}{2} > \frac{14 - 11}{2} | \mu = 11\right)$$

$$= P\left(\frac{\overline{X} - 11}{2} > 1, 5\right) = 0,0668$$

| $\mu_1$ | $z_1 = \frac{14 - \mu_1}{2}$ | $1-\beta(\mu_1)=P(Z>z_1)$ | $\beta(\mu_1)$ |
|---------|------------------------------|---------------------------|----------------|
| 10      | 2,0                          | 0,0228                    | 0,9772         |
| 11      | 1,5                          | 0,0668                    | 0,9332         |
| 12      | 1,0                          | 0,1587                    | 0,8413         |
| 13      | 0,5                          | 0,3085                    | 0,6915         |
| 14      | 0,0                          | 0,5000                    | 0,5000         |
| 15      | -0,5                         | 0,6915                    | 0,3085         |
| 16      | -1,0                         | 0,8413                    | 0,1587         |
| 17      | -1,5                         | 0,9332                    | 0,0668         |

# Courbe de puissance du test



### Exemple: notes d'examen de MAPSI (1/3)

- lacktriangle les années précédentes, notes d'examen  $\sim \mathcal{N}(14,6^2)$
- ocette année, correction d'un échantillon de 9 copies :

| 10 | 8 | 13 | 20 | 12 | 14 | 9 | 7 | 15 |
|----|---|----|----|----|----|---|---|----|

#### Les notes sont-elles en baisse cette année?

- hypothèse H<sub>0</sub> = « la moyenne est égale à 14 »
   hypothèse H<sub>1</sub> = « la moyenne a baissé, i.e., elle est ≤ 14 »
   test d'hypothèse de niveau de confiance 1 α = 95%
- $\implies$  déterminer seuil c tel que  $\overline{x} < c \implies H_1$  plus probable que  $H_0$

### Exemple: notes d'examen de MAPSI (2/3)

10 8 13 20 12 14 9 7 15 
$$H_0: \mu = 14, \sigma = 6$$

- sous hypothèse  $H_0$ , on sait que  $\frac{\overline{X}-14}{\sigma/\sqrt{n}}=\frac{\overline{X}-14}{2}\sim\mathcal{N}(0;1)$
- o calcul du seuil c (région de rejet) :

$$P\left(\left.\frac{\overline{X}-14}{2}<\frac{c-14}{2}\right|\left.\frac{\overline{X}-14}{2}\sim\mathcal{N}(0;1)\right)=0,05$$

- Table de la loi normale :  $\frac{c-14}{2} \approx -1,645 \Longrightarrow c = 10,71$
- Règle de décision : rejeter  $H_0$  si  $\overline{x} < 10,71$
- tableau  $\Longrightarrow \overline{x} = 12$  $\Longrightarrow$  on ne peut déduire que la moyenne a diminué

### Exemple: notes d'examen de MAPSI (3/3)

Problème : le risque de 2ème espèce est-il élevé ?

#### Puissance du test pour une moyenne de 12

- H<sub>1</sub>: la moyenne est égale à 12
- Puissance du test =  $1 \beta(12)$ =  $P(\text{rejeter } H_0 | H_1)$ =  $P\left(\overline{X} < 10,71 \left| \frac{\overline{X}-12}{2} \sim \mathcal{N}(0;1) \right.\right)$ =  $P\left(\frac{\overline{X}-12}{2} < -0,645 \left| \frac{\overline{X}-12}{2} \sim \mathcal{N}(0;1) \right.\right)$  $\approx 25.95\%$ .

# Loi du $\chi^2$ (1/3)

lacktriangle population  $\Longrightarrow$  répartie en k classes

| _ |       |       |       |       |
|---|-------|-------|-------|-------|
|   | $p_1$ | $p_2$ | $p_3$ | $p_k$ |

- hypothèse : répartition dans les classes connues
  - $\implies$   $p_r =$  proba qu'un individu appartienne à la classe  $c_r$
- échantillon de n individus
- $N_r$  = variable aléatoire « nombre d'individus tirés de classe  $c_r$  »
- lacktriangle Chaque individu  $\Longrightarrow p_r$  chances d'appartenir à la classe  $c_r$ 
  - $\implies$   $X_i^r =$  v.a. succès si l'individu i appartient à la classe  $c_r$

$$\Longrightarrow X_i^r \sim \mathcal{B}(1, p_r)$$

$$\Longrightarrow N_r \sim \mathcal{B}(n, p_r)$$

 $\implies$   $N_r \sim$  loi normale quand n grand

## Loi du $\chi^2$ (2/3)

lacktriangle population  $\Longrightarrow$  répartie en k classes

| $p_1$ | $p_2$ | $p_3$ | $p_k$ |
|-------|-------|-------|-------|

- $p_r$  = proba qu'un individu appartienne à la classe  $c_r$
- échantillon de *n* individus
- $N_r = v.a.$  « nb d'individus tirés de classe  $c_r$  »  $\sim$  loi normale

$$D_{(n)}^{2} = \sum_{r=1}^{k} \frac{(N_{r} - n.p_{r})^{2}}{n.p_{r}}$$

 $\Longrightarrow D_{(n)}^2 =$  somme des carrés de k v.a.  $\sim$  lois normales

- $D_{(n)}^2$  = écart entre théorie et observation
- $D_{(n)}^2$  tend en loi, lorsque  $n \to \infty$ , vers une loi du  $\chi^2_{k-1}$

# Loi du $\chi^2$ (3/3)

### Loi du $\chi^2$

- loi du  $\chi_r^2$  = la loi de la somme des carrés de r variables indépendantes et de même loi  $\mathcal{N}(0,1)$
- espérance = r
- variance = 2r

# Table de la loi du $\chi^2$

valeurs dans le tableau ci-dessous : les  $c_{n;\alpha}$  tels que  $P(Z > c_{n;\alpha}) = \alpha$ 



| $n \setminus \alpha$ | 0,995   | 0,99   | 0,975  | 0,95   | 0,90   | 0,10 0, | ,05 | 0,025 | 0,01 | 0,005 |
|----------------------|---------|--------|--------|--------|--------|---------|-----|-------|------|-------|
| 1                    | 0,00004 | 0,0002 | 0,001  | 0,0039 | 0,0158 | 2,71 3, | ,84 | 5,02  | 6,63 | 7,88  |
| 2                    | 0,0100  | 0,0201 | 0,0506 | 0,103  | 0,211  | 4,61 5, | ,99 | 7,38  | 9,21 | 10,6  |
| 3                    | 0,0717  | 0,115  | 0,216  | 0,352  | 0,584  | 6,25 7, | ,81 | 9,35  | 11,3 | 12,8  |
| 4                    | 0,207   | 0,297  | 0,484  | 0,711  | 1,06   | 7,78 9, | ,49 | 11,1  | 13,3 | 14,9  |
| 5                    | 0,412   | 0,554  | 0,831  | 1,15   | 1,61   | 9,24 1  | 1,1 | 12,8  | 15,1 | 16,7  |
| 6                    | 0,676   | 0,872  | 1,24   | 1,64   | 2,20   | 10,6 12 | 2,6 | 14,4  | 16,8 | 18,5  |
| 7                    | 0,989   | 1,24   | 1,69   | 2,17   | 2,83   | 12,0 14 | 4,1 | 16,0  | 18,5 | 20,3  |
| 8                    | 1,34    | 1,65   | 2,18   | 2,73   | 3,49   | 13,4 1  | 5,5 | 17,5  | 20,1 | 22,0  |
| 9                    | 1,73    | 2,09   | 2,70   | 3,33   | 4,17   | 14,7 16 | 6,9 | 19,0  | 21,7 | 23,6  |
| 10                   | 2,16    | 2,56   | 3,25   | 3,94   | 4,87   | 16,0 18 | 8,3 | 20,5  | 23,2 | 25,2  |

### Tests d'ajustement

#### Définition

- test d'ajustement = test ⇒ 2 issues possibles :
  - acceptation de l'hypothèse que l'échantillon observé est tiré selon une certaine loi
  - 2 rejet de l'hypothèse
- contre-hypothèse : ne précise pas de quelle autre loi l'échantillon aurait pu être tiré

# Tests d'ajustement II : le retour du $\chi^2$

- o population répartie en k classes
- échantillon de taille  $n \Longrightarrow$  répartition =  $(n_1, \ldots, n_k)$
- ullet supposons l'échantillon tiré selon la loi discrète  $(p_1,\ldots,p_k)$

$$\Longrightarrow (n_1,\ldots,n_k)\approx (n.p_1,\ldots,n.p_k)$$

Rappel: 
$$D_{(n)}^2 = \sum_{r=1}^{k} \frac{(N_r - n.p_r)^2}{n.p_r} \sim \chi_{k-1}^2$$

- $d^2$  valeur prise par  $D_{(n)}^2$ 
  - $\implies$  si échantillon tiré selon  $(p_1, \dots, p_k)$  alors  $d^2$  petit
- lacktriangle table de la loi du  $\chi^2 \Longrightarrow d_{\alpha}^2$  tel que  $P(\chi^2_{k-1} > d_{\alpha}^2) = \alpha$ 
  - $\implies$  règle de décision : si  $d^2 < d_{\alpha}^2$  alors OK

### Tests d'ajustement en pratique

#### Mise en place d'un test d'ajustement

- o population répartie en k classes
- ② échantillon de taille  $n \Longrightarrow$  répartition =  $(n_1, \ldots, n_k)$
- $\odot$  on vérifie si l'échantillon tiré selon la loi  $(p_1, \ldots, p_k)$ :
  - $oldsymbol{\Delta}$  choix du risque de première espèce  $\alpha$

**3** calcul de 
$$d^2 = \sum_{r=1}^{k} \frac{(n_r - n.p_r)^2}{n.p_r}$$

- **©** lecture dans une table de  $d_{\alpha}^2$  tel que  $P(\chi_{k-1}^2 > d_{\alpha}^2) = \alpha$
- si  $d^2 < d_{\alpha}^2$  alors règle de décision :  $(p_1, \dots, p_k)$  est la loi selon laquelle est tiré l'échantillon sinon l'échantillon est tiré selon une autre loi

## Exemple de test d'ajustement (1/3)

- observations = =  $\{(x_i, y_i)\}$
- Problème : les proviennent-ils de points situés sur la courbe y = sin(x) mais observés avec un bruit gaussien?

$$\Longrightarrow$$
 problème :  $T_i = Y_i - \sin(x_i) \sim \mathcal{N}(0,1)$ ?

observations des  $t_i$ , réparties en 8 classes :

| $t_i \mid ]$ | $-\infty$ ; $-3[$ | [-3; -2[ | [-2; -1[ | [-1;0[ | [0; 1[ | [1;2[ | [2;3[ | $[3; +\infty[$ |
|--------------|-------------------|----------|----------|--------|--------|-------|-------|----------------|
| $N_r$        | 1                 | 2        | 13       | 35     | 30     | 15    | 3     | 1              |

### Exemple de test d'ajustement (2/3)

Rappel:  $T_i \sim \mathcal{N}(0,1)$ 

| ti               | $]-\infty;-3[$ | [-3; -2[ | [-2; -1[ | [-1;0[ | [0; 1[ | [1;2[ | [2;3[ | $[3; +\infty[$ |
|------------------|----------------|----------|----------|--------|--------|-------|-------|----------------|
| $N_r$            | 1              | 2        | 13       | 35     | 30     | 15    | 3     | 1              |
| n.p <sub>r</sub> | 0.14           | 2.14     | 13.59    | 34.13  | 34.13  | 13.59 | 2.14  | 0.14           |

$$\implies d^2 = \sum_{r=1}^8 \frac{(n_r - n.p_r)^2}{n.p_r} \approx 11.61$$

pour 
$$\alpha = 0.05$$
,  $P(\chi_7^2 > d_\alpha^2) = \alpha \Longrightarrow d_\alpha^2 = 14.1$ 

$$\Longrightarrow d^2 < d_{\alpha}^2 \Longrightarrow$$
 règle de décision :

l'échantillon est bien tiré selon sin(x)+ un bruit gaussien

## Exemple de test d'ajustement (3/3)

#### Nouvel échantillon :

| ti               | $]-\infty;-3[$ | [-3; -2[ | [-2; -1[ | [-1;0[ | [0; 1[ | [1; 2[ | [2;3[ | $[3; +\infty[$ |
|------------------|----------------|----------|----------|--------|--------|--------|-------|----------------|
| N <sub>r</sub>   | 2              | 2        | 12       | 35     | 30     | 15     | 3     | 1              |
| n.p <sub>r</sub> | 0.14           | 2.14     | 13.59    | 34.13  | 34.13  | 13.59  | 2.14  | 0.14           |

$$\implies d^2 = \sum_{r=1}^8 \frac{(n_r - n.p_r)^2}{n.p_r} \approx 31.20$$

pour 
$$\alpha = 0.05$$
,  $P(\chi_7^2 > d_\alpha^2) = \alpha \Longrightarrow d_\alpha^2 = 14.1$ 

$$\Longrightarrow$$
  $d^2>d^2_lpha\Longrightarrow$  règle de décision :

l'échantillon n'est pas tiré selon sin(x)+ un bruit gaussien

### Exemple de test d'ajustement (1/2)

- péage d'autoroute : 10 cabines
- onombre de clients / cabine sur une heure :



| N° cabine  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 |
|------------|----|----|----|----|----|----|----|----|----|----|
| Nb clients | 24 | 14 | 18 | 20 | 23 | 13 | 23 | 24 | 23 | 18 |

#### Clients distribués uniformément sur l'ensemble des cabines?

 $\implies$  test d'ajustement, niveau de confiance : 1 –  $\alpha$  = 95%

● H<sub>0</sub> = « la répartition des clients est uniforme »

 $H_1$  = « la répartition n'est pas uniforme »

 $\bullet$   $H_0 \Longrightarrow$  20 clients / cabine (uniforme)

## Exemple de test d'ajustement (2/2)

- X<sub>i</sub>: variable « effectif » recensé pour la ième cabine
- Statistique d'ajustement :  $D^2 = \sum_{i=1}^{10} \frac{(X_i 20)^2}{20}$
- $D^2 \sim \chi_9^2$
- $\alpha=0,05=P(\text{rejeter }H_0|H_0\text{ est vraie})$   $=P\left(D^2>d_\alpha\mid D^2\sim\chi_9^2\right)$   $\Longrightarrow d_\alpha=16,9$
- calcul de la valeur de d observée sur l'échantillon :

$$\begin{split} d^2 &= \tfrac{1}{20}[(14-20)^2 + (24-20)^2 + (18-20)^2 + (20-20)^2 + \\ &(23-20)^2 + (13-20)^2 + (23-20)^2 + (18-20)^2 + \\ &(24-20)^2 + (23-20)^2] = 7,6. \end{split}$$

⇒ estimation : répartition uniforme

## Tests d'indépendance (1/3)

- 2 caractères X et Y
- classes de  $X: A_1, A_2, \ldots, A_l$
- classes de  $Y: B_1, B_2, \ldots, B_J$
- échantillon de taille n
- tableau de contingence :

| $X \setminus Y$ | <i>B</i> <sub>1</sub> | $B_2$                  | <br>Bj              | <br>$B_J$           |
|-----------------|-----------------------|------------------------|---------------------|---------------------|
| $A_1$           | n <sub>11</sub>       | <i>n</i> <sub>12</sub> | <br>٠,              | <br>$n_{1J}$        |
| $A_2$           | n <sub>21</sub>       | $n_{22}$               | <br>$n_{2j}$        | <br>$n_{2J}$        |
| :               | :                     | ÷                      | ÷                   | :                   |
| $A_i$           | n <sub>i1</sub>       | $n_{i2}$               | <br>n <sub>ij</sub> | <br>n <sub>iJ</sub> |
| ÷               | :                     | :                      | ÷                   | :                   |
| $A_{l}$         | n <sub>/1</sub>       | $n_{l2}$               | <br>n <sub>Ij</sub> | <br>$n_{IJ}$        |

### Tests d'indépendance (2/3)

| $X \setminus Y$       | <i>B</i> <sub>1</sub>  | <i>B</i> <sub>2</sub> | <br>Вј              | <br>$B_J$         | total                   |
|-----------------------|------------------------|-----------------------|---------------------|-------------------|-------------------------|
| <i>A</i> <sub>1</sub> | n <sub>11</sub>        | $n_{12}$              | <br>$n_{1j}$        | <br>$n_{1J}$      | <i>n</i> <sub>1</sub> . |
| $A_2$                 | n <sub>21</sub>        | $n_{22}$              | <br>$n_{2j}$        | <br>$n_{2J}$      | <i>n</i> <sub>2</sub> . |
| :                     | :                      | :                     | ÷                   | ÷                 | :                       |
| $A_i$                 | n <sub>i1</sub>        | $n_{i2}$              | <br>n <sub>ij</sub> | <br>$n_{iJ}$      | n <sub>i</sub> .        |
| :                     | :                      | :                     | ÷                   | ÷                 | :                       |
| $A_{l}$               | <i>n</i> <sub>/1</sub> | $n_{l2}$              | <br>n <sub>Ij</sub> | <br>$n_{IJ}$      | n <sub>I</sub> .        |
| total                 | n. <sub>1</sub>        | n. <sub>2</sub>       | <br>n. <sub>j</sub> | <br>$n_{\cdot J}$ | n                       |

$$\frac{n_{ij}}{n} = P(X \in A_i, Y \in B_j)$$

$$P(X \in A_i) = \frac{n_{i.}}{n} = \frac{\sum_{j=1}^{J} n_{ij}}{n}$$
 et  $P(Y \in B_j) = \frac{n_{.j}}{n} = \frac{\sum_{i=1}^{J} n_{ij}}{n}$ 

X et Y indépendants  $\Longrightarrow P(X \in A_i, Y \in B_j) = P(X \in A_i) \times P(Y \in B_j)$ 

## Tests d'indépendance (3/3)

| $X \setminus Y$ | B <sub>1</sub>  | <i>B</i> <sub>2</sub>  | <br>Bj              |       | $B_J$           | total                   |
|-----------------|-----------------|------------------------|---------------------|-------|-----------------|-------------------------|
| $A_1$           | n <sub>11</sub> | <i>n</i> <sub>12</sub> | <br>$n_{1j}$        |       | $n_{1J}$        | <i>n</i> <sub>1</sub> . |
| $A_2$           | n <sub>21</sub> | $n_{22}$               | <br>$n_{2j}$        | • • • | $n_{2J}$        | <i>n</i> <sub>2</sub> . |
| ÷               | :               | :                      | :                   |       | :               | :                       |
| $A_i$           | n <sub>i1</sub> | $n_{i2}$               | <br>n <sub>ij</sub> |       | n <sub>iJ</sub> | n <sub>i</sub> .        |
| :               | :               | :                      | :                   |       | ÷               | :                       |
| $A_I$           | n <sub>/1</sub> | $n_{l2}$               | <br>n <sub>Ij</sub> |       | $n_{IJ}$        | n <sub>I</sub> .        |
| total           | n. <sub>1</sub> | n. <sub>2</sub>        | <br>n.j             |       | n.J             | n                       |

$$X$$
 et  $Y$  indépendants  $\Longrightarrow \frac{n_{ij}}{n} = \frac{n_{i.}}{n} \times \frac{n_{.j}}{n} \Longrightarrow n_{ij} = \frac{n_{i.} \times n_{.j}}{n}$ 

$$\chi^{2}_{(l-1)\times(J-1)} = \sum_{i=1}^{J} \sum_{j=1}^{J} \frac{(n_{ij} - \frac{n_{i}, n_{.j}}{n})^{2}}{\frac{n_{i}, n_{.j}}{n}}$$

### Exemple de test d'indépendance (1/2)

● notes d'examen de MAPSI ⇒ 3 classes :

| <i>C</i> <sub>1</sub> | <i>C</i> <sub>2</sub> | <i>C</i> <sub>3</sub> |  |
|-----------------------|-----------------------|-----------------------|--|
| note < 8              | note ∈ [8, 12[        | $note \geq 12$        |  |



- X : variable aléatoire « note 1ère session »
- Y : variable aléatoire « note 2ème session »

X et Y sont-elles des variables aléatoires indépendantes?

sélection d'un échantillon de 100 notes :

| $X \setminus Y$       | C <sub>1</sub> | <b>C</b> 2 | <i>c</i> <sub>3</sub> |
|-----------------------|----------------|------------|-----------------------|
| C <sub>1</sub>        | 2              | 13         | 6                     |
| <b>c</b> <sub>2</sub> | 11             | 27         | 13                    |
| <b>c</b> <sub>3</sub> | 3              | 17         | 8                     |

### Exemple de test d'indépendance (2/2)

#### Test d'indépendance de niveau de confiance 90%

o calcul des marginales :

| $X \setminus Y$       | C <sub>1</sub> | <b>C</b> <sub>2</sub> | <b>C</b> 3 | total |
|-----------------------|----------------|-----------------------|------------|-------|
| C <sub>1</sub>        | 2              | 13                    | 6          | 21    |
| <i>C</i> <sub>2</sub> | 11             | 27                    | 13         | 51    |
| <b>c</b> <sub>3</sub> | 3              | 17                    | 8          | 28    |
| total                 | 16             | 57                    | 27         |       |

tableau obtenu si X et Y sont indépendants :

| $X \setminus Y$       | <i>C</i> <sub>1</sub> | <i>C</i> <sub>2</sub> | <i>c</i> <sub>3</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|
| C <sub>1</sub>        | 3.36                  | 11.97                 | 5.67                  |
| <i>C</i> <sub>2</sub> | 8.16                  | 29.07                 | 13.77                 |
| <i>c</i> <sub>3</sub> | 4.48                  | 15.96                 | 7.56                  |

- 3 calcul de la statistique  $d^2$ :  $d^2 = 2,42$
- $\bigcirc$   $D^2 \sim \chi_4^2 \Longrightarrow d_\alpha^2 = 7,78 \Longrightarrow d^2 < d_\alpha^2 \Longrightarrow \text{indépendance}$