4 Proof by?

(a)

We proceed by contradiction. Assume that the proposition is false, which means that for some $x, y \in \mathbb{Z}$, $(10 \nmid xy)$, and that $((10 \mid x) \text{ or } (10 \mid y))$. Let our assertion R state that $10 \nmid xy$.

Without loss of generality, let $10 \mid x$, so let x = 10k, $k \in \mathbb{Z}$. So xy = 10ky = 10(ky) where $ky \in \mathbb{Z}$, which by definition, means that $10 \mid xy$. This implies $\neg R$.

We conclude that $R \wedge \neg R$ holds; thus, we have a contradiction, as desired. Q.E.D.

I used Proof by Contradiction.

(b)

Prove. The contrapositive proposition is: $(\forall x, y \in \mathbb{Z}) ((10 \mid x) \lor (10 \mid y)) \Longrightarrow (10 \mid xy)$.

As shown in part (a) above, if $((10 \mid x) \lor (10 \mid y))$, then $10 \mid xy$. Thus, the contrapositive is true. Q.E.D.

(c)

Disprove. The converse proposition is: $(\forall x, y \in \mathbb{Z}) ((10 \nmid x) \land (10 \nmid y)) \Longrightarrow (10 \nmid xy)$.

Consider x=2,y=5, so $x,y\in\mathbb{Z}$. Since there's no such integer m,n such that 10*m=2 or 10*n=5, so by definition, x,y is not divisble by 10. So $((10\nmid x)\land (10\nmid y))$ is true.

Now, xy = 2 * 5 = 10 = 1 * 10 where $1 \in \mathbb{Z}$, so by definition, $10 \mid xy$. So $(10 \nmid xy)$ is false.//[.1cm] So we have $True \Longrightarrow False$, which shows that the converse is false. Q.E.D.