First-principles calculations of opto-electronic and thermoelectric properties double perovskite semiconductors $M_2ScInCl_6$ (M = Rb, Cs)

Mohammad Abdur Rashid

Md. Borhanul Asfia, Sahadat Jaman

Outline

- ➤ Lead-free double perovskite
- > Our systems of study: Rb₂ScInCl₆ and Cs₂ScInCl₆
- Computational details
- > Opto-electronic properties
- > Thermoelectric properties
- > Conclusions

Perovskite solar cells

https://news.mit.edu/2022/perovskites-solar-cells-explained-0715

Perovskite solar cells

- ➤ High power conversion efficiency (about 25%)
- > Easier manufacturing process
- ➤ Lower cost and greater flexibility

https://news.mit.edu/2022/perovskites-solar-cells-explained-0715

Perovskite solar cells

- ➤ High power conversion efficiency (about 25%)
- > Easier manufacturing process
- > Lower cost and greater flexibility
- > Perovskites degrade much faster
- ➤ Pb-based perovskites show better potential but they are toxic

https://news.mit.edu/2022/perovskites-solar-cells-explained-0715

Environmental sources of lead exposure

https://www.cdc.gov/nceh/lead/publications/refugeetoolkit/powerpoint_files/medicalservice.ppt

Lead-free double perovskites: A₂B⁺B³⁺X₆

https://pubs.acs.org/doi/10.1021/acsenergylett.6b00499

Structure of $M_2ScInCl_6$ (M = Rb, Cs)

Computational details

- $R_{MT}(Cs, In) = 2.50 a.u.$
- R_{MT} (Rb, Sc) = 2.35 a.u.
- R_{MT} (Cl) = 1.15 a.u.
- $R_{MT} \times K_{max} = 8.0$
- K-mesh = $10 \times 10 \times 10$
- EC = 0.00001 Ry & CC = 0.0001 e

Optimized Lattice parameters

Optimized Lattice parameters

System	Lattice parameter (Å)	Band gap (eV)	
		PBE-GGA	TB-mBJ
Rb ₂ ScInCl ₆	11.073	2.599	2.662
Cs ₂ ScInCl ₆	11.163	2.802	2.902

Electronic properties

Electronic properties

Optical properties

$$\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$$

Optical properties

Optical properties

Thermoelectric properties

Thermoelectric properties

Conclusions

- Opto-electronic and thermoelectric properties double perovskites M₂ScInCl₆ (M=Rb, Cs) using WIEN2k
- Both compounds show semiconductor like behavior
- Remarkable optical properties
- Good Seebeck coefficient and power factor
- Promising materials for different opto-electronic and thermoelectric applications

