The group G is isomorphic to the group labelled by [52,3] in the Small Groups library. Ordinary character table of $G\cong C13:C4$:

	1a	13a	13b	13c	4a	2a	4b
χ_1	1	1	1	1	1	1	1
χ_2	1	1	1	1	E(4)	-1	-E(4)
χ_3	1	1	1	1	-1	1	-1
χ_4	1	1	1	1	-E(4)	-1	E(4)
χ_5	4	$E(13) + E(13)^5 + E(13)^8 + E(13)^{12}$	$E(13)^2 + E(13)^3 + E(13)^{10} + E(13)^{11}$	$E(13)^4 + E(13)^6 + E(13)^7 + E(13)^9$	0	0	0
χ_6	4	$E(13)^2 + E(13)^3 + E(13)^{10} + E(13)^{11}$	$E(13)^4 + E(13)^6 + E(13)^7 + E(13)^9$	$E(13) + E(13)^5 + E(13)^8 + E(13)^{12}$	0	0	0
χ_7	4	$E(13)^4 + E(13)^6 + E(13)^7 + E(13)^9$	$E(13) + E(13)^5 + E(13)^8 + E(13)^{12}$	$E(13)^2 + E(13)^3 + E(13)^{10} + E(13)^{11}$	0	0	0

Trivial source character table of $G \cong C13$: C4 at p = 13:

Normalisers N_i

$NOTHIALISETS N_i$		I v ₁				IV_2			
p-subgroups of G up to conjugacy in G	P_1				P_2				
Representatives $n_j \in N_i$	1 <i>a</i>	4a	2a	4b	1a	4a	2a	4l	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	13	-1	1	-1	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	13	E(4)	-1	-E(4)	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	13	1	1	1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7$	13	-E(4)	-1	E(4)	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	-1	1	-1	1	-1	1	<u> </u>	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	E(4)	-1	-E(4)	1	E(4)	-1	-E	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	-E(4)	-1	E(4)	1	-E(4)	-1	$E(\cdot$	

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1, 36, 20, 4, 40, 24, 8, 44, 28, 12, 48, 32, 16)(2, 38, 22, 6, 42, 26, 10, 46, 30, 14, 50, 34, 18)(3, 39, 23, 7, 43, 27, 11, 47, 31, 15, 51, 35, 19)(5, 41, 25, 9, 45, 29, 13, 49, 33, 17, 52, 37, 21)]) \cong C13$

 $N_1 = Group([(1,2,3,5)(4,34,51,25)(6,35,52,20)(7,37,48,22)(8,14,47,45)(9,32,50,23)(10,15,49,40)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47)(9,50)(10,49)(11,17,44,42)(12,46,43,13)(16,26,39,33)(18,27,41,28)(19,29,36,30)(21,24,38,31), (1,3)(2,5)(4,51)(6,52)(7,48)(8,47,48)(13,48$