B490 HOMEWORK 1: EQUATIONAL REASONING

This homework is due on Tuesday, January 19, 2016 by 11:15am. Submit online a plain text file titled username_hw1.txt, containing your name, your username, and your solutions to each of the exercises. Here's the grading policy for late homework: if you submit it by the next lecture, you get half credit; otherwise, you get no credit.

1. Beta-reductions and eta-reductions (50%)

Rewrite each expression below to its beta/eta-normal form. Show your work as a sequence of equations, each a single beta-reduction or eta-reduction.

```
(1) (\lambda x. \lambda y. x-y) 3
```

- (2) ((lambda (f) (lambda (x y) (f y x))) (lambda (x y) (-x y)))
- (3) $(\lambda f. \lambda x. \lambda y. (f y) x) (\lambda x. \lambda y. x-y) 3$
- (4) ((lambda (x) (lambda (y) (- x y))) y)
- (5) (λfx . f (f x)) (λfxy . f y x)
- (6) $(\lambda fx. f (f x)) (\lambda fxy. f y x) (\lambda x. \lambda y. x-y) 3$
- (7) $(\lambda f x. f (f x)) ((\lambda f x y. f y x) (\lambda x. \lambda y. x-y) 3)$
- (8) ((lambda (f) (f f)) y)
- (9) ((lambda (sqr) (lambda (x y) (sqrt (+ (sqr x) (sqr y))))) (lambda (x) (* x x)))

2. Equivalence (30%)

For each pair of terms below, are they equivalent? If yes, prove it by showing a sequence of equations. If no, prove it by showing a context that tells them apart.

- (11) the terms ($(\lambda x. \lambda y. x-y)$ 3) and $(\lambda y. y-3)$
- (12) the terms ($(\lambda x. \lambda y. x-y)$ 3) and $(\lambda y. 3-y)$
- (13) the terms (lambda (x) (lambda (y) x)) and (lambda (x) (lambda (x) x))
- (14) the terms (λx . x-y) and (λx . x-z)
- (15) the terms (lambda (x) ((f 3) x)) and (f 3)
- (16) the terms (λx . λy . x+y) and ((λf . λx . λy . (f y) x) (λx . λy . x+y))

3. Program calculation (20%)

Consider the following definitions of the list functions append and reverse in Scheme:

On a long list, reverse takes a long time. We can use equational reasoning to calculate a faster implementation of reverse. First, let's create a new function that combines append and reverse:

```
(define append-reverse
(lambda (xs ys)
        (append (reverse xs) ys)))
```

For each of the three calculations below, show your work as a sequence of equations, and justify each equation by a few words.

- (17) Calculate (append-reverse '() ys) to get a result that uses neither append nor reverse.
- (18) Calculate (append-reverse (cons x xs) ys) to get a result that uses neither append nor reverse.
- (19) Combine the two results above into a new implementation of append-reverse that uses neither append nor reverse but rather calls itself recursively.
- (20) Calculate (reverse xs) to get a result that uses neither append nor reverse but rather calls append-reverse. Finally, turn this result into a new and faster implementation of reverse.