LoanTap_Logistic_Regression

```
In [ ]:
```

Importing Libraries

```
In [1]: import pandas as pd
import numpy as np
import seaborn as sns
from scipy import stats
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
In []:
```

Importing modules or packages for Logistic Regression.

```
In [2]: from sklearn.linear_model import LogisticRegression
    from sklearn import metrics
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    from sklearn.metrics import roc_auc_score
    from sklearn.metrics import roc_curve
    from sklearn.metrics import precision_recall_curve
    from sklearn.model_selection import train_test_split, KFold, cross_val_score
    from sklearn.preprocessing import MinMaxScaler
    from sklearn.metrics import (
        accuracy_score, confusion_matrix, classification_report,
        roc_auc_score, roc_curve, auc,
        ConfusionMatrixDisplay, RocCurveDisplay
)
from statsmodels.stats.outliers_influence import variance_inflation_factor
    from imblearn.over_sampling import SMOTE
```

```
In [ ]:
```

Downloading the Dataset

In [3]: df=pd.read_csv('logistic_regression.csv')
 df.head()
Out[3]:

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title	emp_length	hom
0	10000.0	36 months	11.44	329.48	В	В4	Marketing	10+ years	
1	8000.0	36 months	11.99	265.68	В	B5	Credit analyst	4 years	
2	15600.0	36 months	10.49	506.97	В	В3	Statistician	< 1 year	
3	7200.0	36 months	6.49	220.65	Α	A2	Client Advocate	6 years	
4	24375.0	60 months	17.27	609.33	С	C5	Destiny Management Inc.	9 years	

5 rows × 27 columns

In []:

In [4]: df.shape

Out[4]: (396030, 27)

In [5]: # Checking the distribution of the outcome labels

df.loan_status.value_counts(normalize=True)*100

Out[5]: Fully Paid 80.387092 Charged Off 19.612908

Name: loan_status, dtype: float64

In [6]: # Statistical summary of the dataset

df.describe(include='all')

Out[6]:

	loan_amnt	term	int_rate	installment	grade	sub_grade	emp_title
count	396030.000000	396030	396030.000000	396030.000000	396030	396030	373103
unique	NaN	2	NaN	NaN	7	35	173105
top	NaN	36 months	NaN	NaN	В	В3	Teacher
freq	NaN	302005	NaN	NaN	116018	26655	4389
mean	14113.888089	NaN	13.639400	431.849698	NaN	NaN	NaN
std	8357.441341	NaN	4.472157	250.727790	NaN	NaN	NaN
min	500.000000	NaN	5.320000	16.080000	NaN	NaN	NaN
25%	8000.000000	NaN	10.490000	250.330000	NaN	NaN	NaN
50%	12000.000000	NaN	13.330000	375.430000	NaN	NaN	NaN
75%	20000.000000	NaN	16.490000	567.300000	NaN	NaN	NaN
max	40000.000000	NaN	30.990000	1533.810000	NaN	NaN	NaN

11 rows × 27 columns

```
In [7]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 396030 entries, 0 to 396029 Data columns (total 27 columns):

	columns (cocal 27 con	•				
#	Column	Non-Null Count	Dtype			
0	loan_amnt	396030 non-null	float64			
1	term	396030 non-null	object			
2	int_rate	396030 non-null	float64			
3	installment	396030 non-null	float64			
4	grade	396030 non-null	object			
5	sub_grade	396030 non-null	object			
6	emp_title	373103 non-null	object			
7	emp_length	377729 non-null	object			
8	home_ownership	396030 non-null	object			
9	annual_inc	396030 non-null	float64			
10	verification_status	396030 non-null	object			
11	issue_d	396030 non-null	object			
12	loan_status	396030 non-null	object			
13	purpose	396030 non-null	object			
14	title	394275 non-null	object			
15	dti	396030 non-null	float64			
16	earliest_cr_line	396030 non-null	object			
17	open_acc	396030 non-null	float64			
18	pub_rec	396030 non-null	float64			
19	revol_bal	396030 non-null	float64			
20	revol_util	395754 non-null	float64			
21	total_acc	396030 non-null	float64			
22	<pre>initial_list_status</pre>	396030 non-null	object			
23	application_type	396030 non-null	object			
24	mort_acc	358235 non-null	float64			
25	<pre>pub_rec_bankruptcies</pre>	395495 non-null	float64			
26	address	396030 non-null	object			
dtype	es: float64(12), objec	t(15)	•			
memor	ry usage: 81.6+ MB					

We noticed almost perfect correlation between "loan_amnt" the "installment" feature.

installment: The monthly payment owed by the borrower if the loan originates.

loan_amnt: The listed amount of the loan applied for by the borrower. If at some point in time, the credit department reduces the loan amount, then it will be reflected in this value.

So, we can drop either one of those columns.

```
In [10]: plt.figure(figsize=(12, 8))
    sns.heatmap(df.corr(method='spearman'), annot=True, cmap='viridis')
    plt.show()
```


In []:

Data Exploration

In [11]: ## No. of people who have paid fully and the no. of people who are charged o
df.groupby(by='loan_status')['loan_amnt'].describe()

Out[11]:

	count	mean	std	min	25%	50%	75%	max	
loan_status									
Charged Off	77673.0	15126.300967	8505.090557	1000.0	8525.0	14000.0	20000.0	40000.0	
Fully Paid	318357.0	13866.878771	8302.319699	500.0	7500.0	12000.0	19225.0	40000.0	

```
In [12]: ### Majority of ownership
          df['home_ownership'].value_counts()
Out[12]: MORTGAGE
                       198348
                       159790
          RENT
          OWN
                        37746
          OTHER
                          112
          NONE
                           31
          ANY
                            3
          Name: home_ownership, dtype: int64
          Majority of ownership is with Mortgage and Rent
 In [ ]:
In [14]: ## Combining the minority classes as 'OTHERS'
          df.loc[(df.home_ownership == 'ANY') | (df.home_ownership == 'NONE'), 'home_ownership == 'NONE'), 'home_ownership == 'NONE')
          df.home_ownership.value_counts()
Out[14]: MORTGAGE
                       198348
          RENT
                       159790
          OWN
                        37746
          OTHER
                          146
          Name: home ownership, dtype: int64
In [15]: df['home_ownership'].value_counts()
Out[15]: MORTGAGE
                       198348
          RENT
                       159790
          OWN
                        37746
          OTHER
                          146
          Name: home_ownership, dtype: int64
 In [ ]:
In [16]: ## Checking the distribution of 'Other'
          df.loc[df['home_ownership']=='OTHER','loan_status'].value_counts()
Out[16]: Fully Paid
                          123
          Charged Off
                           23
          Name: loan_status, dtype: int64
 In [ ]:
In [17]: ### Converting string to date-time format
          df['issue_d']=pd.to_datetime(df['issue_d'])
          df['earliest cr line']=pd.to datetime(df['earliest cr line'])
 In [ ]:
```

```
In [18]: ### Some issues in title (It was filled manually and needs some fixing).
         df['title'].value_counts()[:20]
Out[18]: Debt consolidation
                                        152472
         Credit card refinancing
                                         51487
         Home improvement
                                         15264
          Other
                                         12930
          Debt Consolidation
                                         11608
          Major purchase
                                          4769
          Consolidation
                                          3852
                                          3547
          debt consolidation
          Business
                                          2949
          Debt Consolidation Loan
                                          2864
          Medical expenses
                                          2742
          Car financing
                                          2139
          Credit Card Consolidation
                                          1775
          Vacation
                                          1717
          Moving and relocation
                                          1689
          consolidation
                                          1595
          Personal Loan
                                          1591
          Consolidation Loan
                                          1299
          Home Improvement
                                          1268
          Home buying
                                          1183
          Name: title, dtype: int64
In [19]: |df['title']=df.title.str.lower()
In [20]: df['title'].value_counts()[:20]
Out[20]: debt consolidation
                                        168108
          credit card refinancing
                                         51781
          home improvement
                                         17117
          other
                                         12993
          consolidation
                                          5583
          major purchase
                                          4998
          debt consolidation loan
                                          3513
          business
                                          3017
          medical expenses
                                          2820
          credit card consolidation
                                          2638
          personal loan
                                          2460
          car financing
                                          2160
          credit card payoff
                                          1904
          consolidation loan
                                          1887
          vacation
                                          1866
          credit card refinance
                                          1832
          moving and relocation
                                          1693
          consolidate
                                          1528
          personal
                                          1465
          home buying
                                          1196
          Name: title, dtype: int64
 In [ ]:
```

Visualisation

```
In [21]: plt.figure(figsize=(15, 10))
         plt.subplot(2, 2, 1)
         grade = sorted(df.grade.unique().tolist())
         sns.countplot(x='grade', data=df, hue='loan_status', order=grade)
         plt.subplot(2, 2, 2)
         sub_grade = sorted(df.sub_grade.unique().tolist())
         g = sns.countplot(x='sub_grade', data=df, hue='loan_status', order=sub_grade')
         g.set_xticklabels(g.get_xticklabels(), rotation=90)
Out[21]: [Text(0, 0, 'A1'),
          Text(1, 0, 'A2'),
          Text(2, 0, 'A3'),
          Text(3, 0, 'A4'),
           Text(4, 0, 'A5'),
          Text(5, 0, 'B1'),
          Text(6, 0, 'B2'),
          Text(7, 0, 'B3'),
          Text(8, 0, 'B4'),
          Text(9, 0, 'B5'),
          Text(10, 0, 'C1'),
           Text(11, 0, 'C2'),
          Text(12, 0, 'C3'),
          Text(13, 0, 'C4'),
          Text(14, 0, 'C5'),
           Text(15, 0, 'D1'),
           Text(16, 0, 'D2'),
          Text(17, 0, 'D3'),
          Text(18, 0, 'D4'),
           Text(19, 0, 'D5'),
           Text(20, 0, 'E1'),
           Text(21, 0, 'E2'),
           Text(22, 0, 'E3'),
           Text(23, 0, 'E4'),
           Text(24, 0, 'E5'),
           Text(25, 0, 'F1'),
           Text(26, 0, 'F2'),
           Text(27, 0, 'F3'),
           Text(28, 0, 'F4'),
           Text(29, 0, 'F5'),
           Text(30, 0, 'G1'),
           Text(31, 0, 'G2'),
           Text(32, 0, 'G3'),
           Text(33, 0, 'G4'),
           Text(34, 0, 'G5')]
```


The grade of majority of people those who have fully paid the loan is 'B' and have subgrade 'B3'.

So from that we can infer that people with grade 'B' and subgrade 'B3' are more likely to fully pay the loan.

```
In [22]:
           plt.figure(figsize=(15,20))
            plt.subplot(4,2,1)
            sns.countplot(x='term',data=df,hue='loan_status')
            plt.subplot(4,2,2)
            sns.countplot(x='home_ownership',data=df,hue='loan_status')
            plt.subplot(4,2,3)
            sns.countplot(x='verification_status',data=df,hue='loan_status')
            plt.subplot(4,2,4)
            g=sns.countplot(x='purpose',data=df,hue='loan_status')
            g.set_xticklabels(g.get_xticklabels(),rotation=90)
Out[22]: [Text(0, 0, 'vacation'),
                          'debt_consolidation'),
             Text(1, 0,
             Text(2, 0, 'credit_card'),
             Text(3, 0, 'home_improvement'),
             Text(4, 0, 'small_business'),
             Text(5, 0, 'major_purchase'),
             Text(6, 0, 'other'),
             Text(7, 0, 'medical'),
             Text(8, 0,
                            'wedding'),
             Text(9, 0, 'car'),
             Text(10, 0, 'moving'),
             Text(11, 0, 'house'),
             Text(12, 0, 'educational'),
             Text(13, 0, 'renewable_energy')]
                                                                                                    loan status
                                                               160000
                                                                                                   Fully Paid

    Fully Paid

                                                  Charged Off
                                                                                                   Charged Off
              200000
                                                               100000
              150000
                                                               80000
                                                                40000
               50000
                                                                20000
                                                                       RENT
                                                                                MORTGAGE
                           36 months
                                                                                                      OTHER
                                      term
                                                                                   home ownership
                                                   loan status
                                                                                                    loan status
                                                    Fully Paid
                                                               175000
              100000
                                                   Charged Off
                                                                                                   Charged Off
                                                               150000
               80000
               60000
                                                              100000
                                                                75000
               40000
                                                                50000
               20000
                                                                25000
                       Not Verified
                                    Source Verified
                                                   Verified
                                                                        debt_consolidation
                                                                          credit_card
                                                                             home_improvement
                                                                                small business
                                   verification status
                                                                                      purpose
```


Manager and Teacher are the most afforded loan on titles

In []:

Feature Engineering

In [24]: ## Detecting the high outlier columns. (Not deleting these records since son ## have low bankruptucy record. Therefore just flagging anything more than 0

```
In [25]: def pub_rec(number):
             if number == 0.0:
                 return 0
             else:
                 return 1
         def mort_acc(number):
             if number == 0.0:
                 return 0
             elif number >= 1.0:
                 return 1
             else:
                 return number
         def pub_rec_bankruptcies(number):
             if number == 0.0:
                 return 0
             elif number >= 1.0:
                 return 1
             else:
                 return number
```

```
In [26]: df['pub_rec']=df.pub_rec.apply(pub_rec)
    df['mort_acc']=df.mort_acc.apply(mort_acc)
    df['pub_rec_bankruptcies']=df.pub_rec_bankruptcies.apply(pub_rec_bankruptcies)
```

```
In [27]:
            plt.figure(figsize=(12,30))
            plt.subplot(6,2,1)
            sns.countplot(x='pub_rec',data=df,hue='loan_status')
            plt.subplot(6,2,2)
            sns.countplot(x='initial_list_status',data=df,hue='loan_status')
            plt.subplot(6,2,3)
            sns.countplot(x='application_type',data=df,hue='loan_status')
            plt.subplot(6,2,4)
            sns.countplot(x='mort_acc',data=df,hue='loan_status')
            plt.subplot(6,2,5)
            sns.countplot(x='pub_rec_bankruptcies',data=df,hue='loan_status')
            plt.show()
                                                                200000
                                                   loan_status
                                                                          loan_status
                                                    Fully Paid
                                                                          Fully Paid
               250000
                                                                 175000
                                                     Charged Off
                                                                           Charged Off
                                                                 150000
               200000
                                                                 125000
               150000
                                                                100000
                                                                 75000
               100000
                                                                 50000
                50000
                                                                 25000
                   0
                                                                                     initial_list_status
                                       pub_rec
                                                   loan_status
                                                                          loan_status
                                                                 175000
               300000
                                                     Fully Paid
                                                                           Fully Paid
                                                     Charged Off
                                                                          Charged Off
                                                                150000
               250000
                                                                125000
               200000
                                                              100000
              count
               150000
                                                                 75000
               100000
                                                                 50000
                50000
                                                                 25000
                   0
                        INDIVIDUAL
                                                   DIRECT_PAY
                                        JOINT
                                                                                0.0
                                                                                                    1.0
                                    application_type
                                                                                        mort_acc
                                                   loan_status
                                                    Fully Paid
               250000
                                                     Charged Off
               200000
               150000
               100000
                50000
                               0.0
                                                   1.0
                                  pub_rec_bankruptcies
```

```
In [ ]:
In [28]: # Mapping of target variable
         df['loan_status']=df.loan_status.map({'Fully Paid':0, 'Charged Off':1})
         df.isnull().sum()/len(df)*100
Out[29]: loan_amnt
                                  0.000000
          term
                                  0.000000
          int_rate
                                  0.000000
          grade
                                  0.000000
          sub_grade
                                  0.000000
          emp_title
                                  5.789208
          emp_length
                                  4.621115
          home_ownership
                                  0.000000
          annual_inc
                                  0.000000
          verification_status
                                  0.000000
          issue_d
                                  0.000000
          loan_status
                                  0.000000
          purpose
                                  0.000000
         title
                                  0.443148
          dti
                                  0.000000
          earliest_cr_line
                                  0.000000
          open_acc
                                  0.000000
          pub rec
                                  0.000000
          revol_bal
                                  0.000000
          revol_util
                                  0.069692
          total_acc
                                  0.000000
          initial_list_status
                                  0.000000
          application_type
                                  0.000000
          mort_acc
                                  9.543469
          pub_rec_bankruptcies
                                  0.135091
                                  0.000000
          address
          dtype: float64
In [ ]:
```

Mean Target Imputation

```
df.groupby(by='total_acc').mean()
Out[30]:
                       loan amnt
                                    int rate
                                                annual_inc loan_status
                                                                                 open acc
                                                                                            pub re
           total acc
                      6672.22222
                                   15.801111
                                                             0.222222
                                                                        2.279444
                                                                                   1.611111 0.00000
                 2.0
                                              64277.777778
                      6042.966361 15.615566
                                             41270.753884
                                                             0.220183
                                                                        6.502813
                                                                                  2.611621 0.03363
                 3.0
                 4.0
                      7587.399031 15.069491
                                             42426.565969
                                                             0.214055
                                                                        8.411963
                                                                                  3.324717 0.03311
                      7845.734714 14.917564
                                              44394.098003
                                                             0.203156
                                                                       10.118328
                                                                                  3.921598 0.05572
                 5.0
                 6.0
                      8529.019843 14.651752
                                              48470.001156
                                                             0.215874
                                                                       11.222542
                                                                                  4.511119 0.07663
                     23200.000000 17.860000
               124.0
                                             66000.000000
                                                             1.000000 14.040000 43.000000 0.00000
               129.0
                     25000.000000
                                   7.890000
                                             200000.000000
                                                             0.000000
                                                                        8.900000
                                                                                 48.000000 0.00000
                     24000.000000 15.410000
               135.0
                                              82000.000000
                                                             0.000000
                                                                       33.850000
                                                                                 57.000000 0.00000
                     35000.000000
                                   8.670000
                                             189000.000000
                                                             0.000000
                                                                        6.630000
                                                                                 40.000000 0.00000
               150.0
                     35000.000000 13.990000
                                                             1.000000 12.650000 26.000000 0.00000
               151.0
                                             160000.000000
           118 rows × 11 columns
 In [ ]:
In [31]: # saving mean of mort_acc according to total_acc_avg
           total acc avg=df.groupby(by='total acc').mean().mort acc
In [32]: | def fill_mort_acc(total_acc,mort_acc):
               if np.isnan(mort_acc):
                    return total_acc_avg[total_acc].round()
               else:
                    return mort_acc
In [33]: df['mort acc']=df.apply(lambda x: fill mort acc(x['total acc'],x['mort acc']
```

```
In [34]: df.isnull().sum()/len(df)*100
Out[34]: loan_amnt
                                  0.000000
         term
                                  0.000000
                                  0.000000
         int_rate
                                  0.000000
         grade
         sub_grade
                                  0.000000
         emp_title
                                  5.789208
         emp_length
                                  4.621115
         home_ownership
                                  0.000000
         annual_inc
                                  0.000000
         verification_status
                                  0.000000
         issue d
                                  0.000000
         loan_status
                                  0.000000
         purpose
                                  0.000000
         title
                                  0.443148
         dti
                                  0.000000
         earliest_cr_line
                                  0.000000
         open_acc
                                  0.000000
         pub_rec
                                  0.000000
         revol_bal
                                  0.000000
         revol_util
                                  0.069692
         total_acc
                                  0.000000
         initial_list_status
                                  0.000000
         application_type
                                  0.000000
         mort_acc
                                  0.000000
         pub_rec_bankruptcies
                                  0.135091
         address
                                  0.000000
         dtype: float64
In [35]: # Current no. of rows
         df.shape
Out[35]: (396030, 26)
In [36]: # Dropping rows with null values
         df.dropna(inplace=True)
In [37]: # Remaining no. of rows
         df.shape
Out[37]: (370622, 26)
In [ ]:
```

Outlier Detection & Treatment

```
In [38]: numerical_data=df.select_dtypes(include='number')
    num_cols=numerical_data.columns
    len(num_cols)
```

Out[38]: 12

```
In [39]: def box_plot(col):
             plt.figure(figsize=(5,5))
             sns.boxplot(x=df[col])
             plt.title('Boxplot')
             plt.show()
         for col in num_cols:
             box_plot(col)
                                 Boxplot
 In [ ]:
In [40]: for col in num_cols:
             mean=df[col].mean()
             std=df[col].std()
             upper_limit=mean+3*std
             lower_limit=mean-3*std
             df=df[(df[col]<upper_limit) & (df[col]>lower_limit)]
```

```
df.shape
```

Out[40]: (354519, 26)

In []:

Data Preprocessing

```
In [41]: # Term
         df.term.unique()
Out[41]: array([' 36 months', ' 60 months'], dtype=object)
```

```
In [42]: term_values={' 36 months': 36, ' 60 months':60}
         df['term'] = df.term.map(term_values)
In [43]: # Initial List Status
         df['initial_list_status'].unique()
Out[43]: array(['w', 'f'], dtype=object)
In [44]: list status = {'w': 0, 'f': 1}
         df['initial_list_status'] = df.initial_list_status.map(list_status)
In [45]: # Fetching ZIP from address and then dropping the remaining details -
         df['zip_code'] = df.address.apply(lambda x: x[-5:])
In [46]: | df['zip_code'].value_counts(normalize=True)*100
Out[46]: 70466
                  14.382022
         30723
                  14.277373
                  14.268347
         22690
                  14.127028
         48052
         00813
                  11.610097
         29597
                  11.537322
         05113
                  11.516731
         93700
                   2.774746
         11650
                   2.772771
                   2.733563
         86630
         Name: zip_code, dtype: float64
 In [ ]:
In [47]: # Dropping few variables() which we can let go for now )
         df.drop(columns=['issue_d', 'emp_title', 'title', 'sub_grade', 'address', 'ea
 In [ ]:
```

One-hot Encoding

```
In [48]: dummies=['purpose', 'zip_code', 'grade', 'verification_status', 'application'
df=pd.get_dummies(df,columns=dummies,drop_first=True)
```

```
In [49]: pd.set_option('display.max_columns', None)
pd.set_option('display.max_rows', None)

df.head()
```

Out[49]:

	loan_amnt	term	int_rate	annual_inc	loan_status	dti	open_acc	pub_rec	revol_bal	r
0	10000.0	36	11.44	117000.0	0	26.24	16.0	0	36369.0	_
1	8000.0	36	11.99	65000.0	0	22.05	17.0	0	20131.0	
2	15600.0	36	10.49	43057.0	0	12.79	13.0	0	11987.0	
3	7200.0	36	6.49	54000.0	0	2.60	6.0	0	5472.0	
4	24375.0	60	17.27	55000.0	1	33.95	13.0	0	24584.0	
4										

```
In [50]: df.shape
```

Out[50]: (354519, 49)

In []:

Data Preparation for Modelling

```
In [51]: ## Splitting the data in x & y variable
    X=df.drop('loan_status',axis=1)
    y=df['loan_status']

In [52]: X_train, X_test, y_train, y_test =train_test_split(X,y,test_size=0.30,strat)
In [53]: X_train.shape,X_test.shape
Out[53]: ((248163, 48), (106356, 48))
In [54]: y_train.shape,y_test.shape
Out[54]: ((248163,), (106356,))
In []:
In [55]: ## Scaling the data(MinMaxScaler)
In [56]: scaler = MinMaxScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
In []:
```

Logistic Regression

Confusion Matrix

Classification Report

```
In [60]: print(classification_report(y_test,y_pred))
                        precision
                                      recall f1-score
                                                          support
                                        0.99
                     0
                             0.88
                                                  0.94
                                                            85888
                     1
                             0.95
                                        0.46
                                                  0.62
                                                            20468
                                                  0.89
                                                           106356
              accuracy
                             0.92
                                        0.73
                                                  0.78
                                                           106356
             macro avg
         weighted avg
                             0.90
                                        0.89
                                                  0.87
                                                           106356
In [ ]:
```

ROC(Receiver operating characteristic) Curve and AUC (Area under the ROC) Curve

```
In [61]: logit_roc_auc=roc_auc_score(y_test,logreg.predict(X_test))
    fpr,tpr,thresholds=roc_curve(y_test,logreg.predict_proba(X_test)[:,1])
    plt.figure()
    plt.plot(fpr,tpr,label='Logistic Regression (area = %0.2f)' % logit_roc_auc)
    plt.plot([0,1],[0,1],'r--')
    plt.xlim([0.0,1.0])
    plt.ylim([0.0,1.05])
    plt.xlabel('False Positive Rate')
    plt.ylabel('True Positive Rate')
    plt.title('Receiver operating characteristic')
    plt.legend(loc="lower right")
    plt.show()
```

Receiver operating characteristic

Precission_recall_curve_plot

```
In [62]: def precission_recall_curve_plot(y_test,pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test,pred_pro

    threshold_boundary = thresholds.shape[0]
    #plot precision
    plt.plot(thresholds,precisions[0:threshold_boundary],linestyle='--',labe
    #plot recall
    plt.plot(thresholds,recalls[0:threshold_boundary],label='recalls')

    start,end=plt.xlim()
    plt.xticks(np.round(np.arange(start,end,0.1),2))

    plt.xlabel('Threshold Value')
    plt.ylabel('Precision and Recall Value')
    plt.legend()
    plt.grid()
    plt.show()

precission_recall_curve_plot(y_test,logreg.predict_proba(X_test)[:,1])
```



```
In [ ]:
```

Multicollinearity check using Variance Inflation Factor (VIF)

```
In [63]: def calc_vif(X):
    # Calculating the VIF
    vif=pd.DataFrame()
    vif['Feature']=X.columns
    vif['VIF']=[variance_inflation_factor(X.values,i) for i in range(X.shape vif['VIF']=round(vif['VIF'],2)
    vif=vif.sort_values(by='VIF',ascending=False)
    return vif

calc_vif(X)[:5]
```

Out[63]:

	Feature	VIF
43	application_type_INDIVIDUAL	156.97
2	int_rate	122.82
14	purpose_debt_consolidation	51.00
1	term	27.30
13	purpose_credit_card	18.48

```
In [64]: ## Dropping 'application_type_INDIVIDUAL' column

X.drop(columns=['application_type_INDIVIDUAL'],axis=1,inplace=True)
calc_vif(X)[:5]
```

Out[64]:

	Feature	VIF
2	int_rate	103.43
14	purpose_debt_consolidation	27.49
1	term	24.31
5	open_acc	13.75
9	total acc	12.69

```
In [65]: ## Dropping 'int_rate' column

X.drop(columns=['int_rate'], axis=1, inplace=True)
calc_vif(X)[:5]
```

Out[65]:

	reature	VIF
1	term	23.35
13	purpose_debt_consolidation	22.35
4	open_acc	13.64
8	total_acc	12.69
7	revol util	9.06

Out[66]:

	Feature	VIF
12	purpose_debt_consolidation	18.37
3	open_acc	13.64
7	total_acc	12.65
6	revol_util	9.04
1	annual_inc	8.03

In [67]: ## Dropping 'purpose_debt_consolidation' column

X.drop(columns=['purpose_debt_consolidation'], axis=1, inplace=True)
calc_vif(X)[:5]

Out[67]:

	Feature	VIF
3	open_acc	13.09
7	total_acc	12.64
6	revol_util	8.31
1	annual_inc	7.70
2	dti	7.58

In [68]: ## Dropping 'open_acc' column

X.drop(columns=['open_acc'], axis=1, inplace=True)
calc_vif(X)[:5]

Out[68]:

	Feature	VIF
6	total_acc	8.23
5	revol_util	8.00
1	annual_inc	7.60
2	dti	7.02
0	loan_amnt	6.72

Cross Validation accuracy - (Validation using KFold)

```
In [69]: X=scaler.fit_transform(X)
         kfold=KFold(n_splits=5)
         accuracy=np.mean(cross_val_score(logreg,X,y,cv=kfold,scoring='accuracy',n_jd
         print("Cross Validation accuracy : {:.3f}".format(accuracy))
         Cross Validation accuracy : 0.891
In [70]: ## Cross Validation accuracy and testing accuracy is almost same which infer
In [ ]:
```

Oversampling using SMOTE

```
In [71]: sm=SMOTE(random state=42)
         X_train_res,y_train_res=sm.fit_resample(X_train,y_train.ravel())
         print('After OverSampling, the shape of train_X: {}'.format(X_train_res.shape)
         print('After OverSampling, the shape of train_y: {} \n'.format(y_train_res.s
         print("After OverSampling, counts of label '1': {}".format(sum(y_train_res =
         print("After OverSampling, counts of label '0': {}".format(sum(y_train_res =
         After OverSampling, the shape of train_X: (400810, 48)
         After OverSampling, the shape of train_y: (400810,)
         After OverSampling, counts of label '1': 200405
         After OverSampling, counts of label '0': 200405
In [73]:
        lr1 = LogisticRegression(max iter=1000)
         lr1.fit(X_train_res, y_train_res)
         predictions = lr1.predict(X_test)
         # Classification Report
         print(classification_report(y_test, predictions))
                        precision
                                     recall f1-score
                                                        support
                            0.95
                                       0.80
                    0
                                                 0.87
                                                          85888
                    1
                            0.49
                                       0.81
                                                 0.61
                                                          20468
                                                 0.80
                                                         106356
             accuracy
                                                 0.74
                            0.72
                                       0.80
                                                         106356
            macro avg
         weighted avg
                            0.86
                                       0.80
                                                 0.82
                                                         106356
```

```
In [74]: ## After making the dataset balanced, the precision and recall score are san
         ## There is still room for improvement.
```

```
In [ ]:
```

```
In [75]: ## Precision_recall_curve_plot

def precision_recall_curve_plot(y_test, pred_proba_c1):
    precisions, recalls, thresholds = precision_recall_curve(y_test, pred_pr

    threshold_boundary = thresholds.shape[0]
    # plot precision
    plt.plot(thresholds, precisions[0:threshold_boundary], linestyle='--', ]
    # plot recall
    plt.plot(thresholds, recalls[0:threshold_boundary], label='recalls')

    start, end = plt.xlim()
    plt.xticks(np.round(np.arange(start, end, 0.1), 2))

    plt.xlabel('Threshold Value'); plt.ylabel('Precision and Recall Value')
    plt.legend(); plt.grid()
    plt.show()

precision_recall_curve_plot(y_test, lr1.predict_proba(X_test)[:,1])
```


Tradeoff Questions

1. How can we make sure that our model can detect real defaulters and there are less false positives?

(This is important as we can lose out on an opportunity to finance more individuals and earn interest on it.)

Answer - Since data is imbalanced, we can balance the data and can try to avoid false positives.

For evaluation metrics, we should be focusing on the macro average f1-score because we

don't want to make false positive prediction and at the same we want to detect the defualters.

2. Since NPA (non-performing asset) is a real problem in this industry, it's important we play safe and shouldn't disburse loans to anyone

Answer - Below are the most features and their importance while making the prediction.

So these variables can help the managers to identify which are customers who are more likely to pay the $\,$

loan amount fully.

Out[85]:

	Variable	Coeficient
27	27	13.969023
34	34	13.965646
33	33	13.961654
31	31	6.208743
32	32	6.166388
28	28	6.161188
30	30	6.148002
40	40	1.287924
39	39	1.248181
38	38	1.239945
43	43	1.230186
4	4	1.107999
37	37	1.096884
36	36	0.882708
5	5	0.866036
23	23	0.754095
0	0	0.679283
8	8	0.639293
2	2	0.569135
35	35	0.516077
1	1	0.450707
15	15	0.422355
16	16	0.308721
21	21	0.292368
14	14	0.269560
19	19	0.256942
41	41	0.198143
47	47	0.183624
13	13	0.176496
18	18	0.173316
20	20	0.086791
12	12	0.047302
42	42	0.035817
10	10	0.008257
46	46	-0.009349
6	6	-0.031071
22	22	-0.033563
11	11	-0.048097

	Variable	Coeficient
24	24	-0.064988
17	17	-0.257004
44	44	-0.326725
45	45	-0.401579
7	7	-0.698505
25	25	-0.699964
9	9	-0.777163
3	3	-1.729116
29	29	-2.929288
26	26	-2.931778
n []:		

Actional Insights and Recommendations

In []: 1. 80% of the customers have paid the loan fully.
 2. 20% of the customers are the defaulters.
 3. The organization can train model to make prediction for whether a person he will be a defaulter.

- 4. Model achieves the 94% f1-score for the negative class (Fully Paid). 5. Model achieves the 62% f1-score for the positive class (Charged off).
- 5. Model achieves the 62% firscore for the positive class (charged off).

 6. Choss Validation accuracy and testing accuracy is almost same which in
- 6. Cross Validation accuracy **and** testing accuracy **is** almost same which infer We can trust this model **for** unseen data.
- 7. By collecting more data, using a more complex model, or tuning the hyperrimprove the model's performance.
- 8. ROC-AUC curve area of 0.73, the model **is** correctly classifying about 73% This **is** a good performance, but there **is** still room **for** improvement.
- 9. The precision-recall curve allows us to see how the precision and recall A higher threshold will result in higher precision, but lower recall, ar is the one that best meets the needs of the specific application.
- 10. After balancing the dataset, there is significant change observed in the
- 11. Accuracy of Logistic Regression Classifier on test set: 0.891 which is

In []:	
In []:	

In	[]:	
In	[]:	
]:	
]:	
In		,	