Simulationsergebnisse P-N-Übergang

Vincent Kiefer

June 20, 2024

Inhalt

1	Dio	oden-Parameter			
2	Verläufe von Kenngrößen				
	2.1	Symbolisch			
	2.2	Numerisch			
3	Strom-Spannungs-Kennlinie				
4	Anhang				
	4.1	Naturkonstanten			
	12	Material parameter			

Entstanden im Rahmen des Projekts PySaar2024 Generiert durch Code von Vincent Kiefer, 7031439. Siehe GitHub Repository

1 Dioden-Parameter

Die folgenden Parameter wurden zur Simulation verwendet:

Halbleiter Substrat: Si

Durchmesser der Diode: $2.5 \ mm$

Querschnittsfläche der Diode: 19.625 mm^2

Donator Atomsorte: As

Donator Dotierungsdichte: $5 \cdot 10^{17} \ cm^{-3}$

Akzeptor Atomsorte: B

Akzeptor Dotierungsdichte: $2.5 \cdot 10^{17}~cm^{-3}$

Trap Energieniveaus (Halbleiter Verunreinigung): $0.5 \cdot W_g$

Temperatur: 300 K

2 Verläufe von Kenngrößen

Die hier dargestellten Kenngrößen beinhalten die Ortsverläufe der Raumladungsdichte, Feldstärke, des elektr. Potentials und Bandkanten. Im Falle der numerischen Simulation außerdem die (logarithmierten) Ladungsträgerdichten. Die hier dargestellten Verläufe (symbolisch und numerisch) gelten nur im thermodynamischen Gleichgewicht, also ohne externer Spannung!

2.1 Symbolisch

Nach Rechtecknäherung der Raumladungsdichte ergeben sich folgende Verläufe

Figure 1: Kenngrößen des pn-Übergangs, symbolisch

Numerisch 2.2

Durch numerisches lösen der Bestimmungsgleichungen des Drift-Diffusions-Modells (DDM) ergeben sich folgende Verläufe

Figure 2: Kenngrößen des pn-Übergangs, numerisch

Mit folgenden (berechneten) Parametern:

 $x_p = -111.7 \text{ nm}$ $x_n = 11.7 \text{ nm}$

 $w_{RLZ} = 123.4 \text{ nm}$ $W_F = W_V(-w_p) + 0.1035 \text{ eV}$

3 Strom-Spannungs-Kennlinie

Die gegebenen Parameter erzeugen die folgende Kennlinie, mit einer Flussspannung von $U_F=0.6\ V$

Figure 3: Strom-Spannungs-Kennlinie der Diode

4 Anhang

4.1 Naturkonstanten

Die folgenden Werte wurden für Naturkonstanten substituiert

Naturkonstanten	Symbol	Koeffizient	Ordnung	Einheit
Ruhemasse eines Elektrons	m_e	9.100	10^{-31}	kg
Elementarladung	e	1.600	10^{-19}	As
Dielektrizitätskonstante des Vakuums	ϵ_0	8.854	$10^{-12} \\ 10^{-34}$	$\frac{As}{Vm} \ Js$
Plank'sches Wirkungsquantum	h	6.626	10^{-34}	Js
Boltzmann-Konstante	k	1.380	10^{-23}	$\frac{J}{K}$

Table 1: Naturkonstanten

4.2 Materialparameter

Die folgenden Werte wurden für Materialparameter substituiert

Materialparameter Si	Symbol	Koeffizient	Ordnung	Einheit
Eigenleitungsdichte	n_i	1.450	10^{10}	cm^{-3}
Relative Permittivität	ϵ_r	12.000	1	1
Bandlücke	W_q	1.080	1	eV
Effektive Ladungsträgerdichte im Leitungsband	N_C	2.810	10^{19}	cm^{-3}
Effektive Ladungsträgerdichte im Valenzband	N_V	1.830	10^{19}	cm^{-3}
Effektive Zustandsdichte-Massen für Elektronen	m_{ed}^*/m_e	1.080	1	1
Effektive Zustandsdichte-Massen für Löcher	m_{hd}^*/m_e	0.811	1	1
Effektive Leitfähigkeits-Massen für Elektronen	m_{ec}^*/m_e	0.260	1	1
Effektive Leitfähigkeits-Massen für Löcher	m_{hc}^*/m_e	0.386	1	1

Table 2: Materialparameter Si

Die folgenden Werte wurden, je nach Dotierung, für die Beweglichkeit μ_p bzw. μ_n substituiert, für Si-Halbleiter:

N/cm^3	As	Р	В
10^{15}	1359	1362	462
10^{16}	1177	1184	429
10^{17}	727	721	317
10^{18}	284	277	153
10^{19}	108	115	71

Table 3: Beweglichkeiten von Majoritätsträgern, μ in $\frac{cm^2}{Vs}$

Der Mittelwert folgender Intervalle wurde, je nach Halbleiter Substrat, als Lebensdauer τ_n bzw. τ_p substituiert

Halbleiter	Von	Bis	Einheit
Si	10^{-10}	10^{-3}	s
Ge	10^{-6}	10^{-3}	\mathbf{S}
GaAs	10^{-10}	10^{-8}	S

Table 4: Lebensdauer Zeitkonstanten der Minoritäten