

February 27-28th, 2014

Hydrogen Home Refueling

Status, Key Issues, and Challenges

Giner, Inc. 89 Rumford Ave, Newton, Ma. 02466

Home Refueling Costs

Based on Forecourt H2A Model (Ver. 3.0)

H ₂ Production Cost Contribution	DOE Target	Home Refueler
	(2020)	(2013)
Capital Costs	\$0.50	\$1.05
Fixed O&M	\$0.20	\$0.50
Feedstock Costs System Efficiency: 65 kWh _e /kg -H ₂	\$1.60 (\$0.037/kW)	\$2.40 (\$0.037/kW)
Other Variable Costs (including utilities)	<\$0.10	\$0.02
Total Hydrogen Production Cost (\$/kg)	2.30	3.98
Delivery (CSD)	\$1.70	\$0.66 (5,000 psig output, no Storage or Forecourt Station Requirements)
Total Hydrogen Production Cost (\$/kg)	<4.00	4.64

- H2A Ver. 3 includes higher installation costs and higher pressure requirement for H70 hydrogen refueling
 - Hydrogen pressure requirement 12,688 psig (previously 6,250 psig)
- Progress inline with achieving new 2020 Target of <\$4.00/kg-H₂
 - Delivery: No Storage (or *forecourt* station costs)
 - Can achieve <\$4.00 kg/H₂ for 5,000 psig vehicle refuefing
 - Improving stack output pressure to 12,000 psig is required to meet 2020 target for H70 refueling

Home Refueling Issues: Technical Challenges

- Components
 - Membrane
 - Permeability
 - Creep (Sealing)
 - Degradation
 - □ Catalyst
 - Anode Dissolution
 - □ Separators
 - H₂ Embrittlement
- Safety

Membrane operated under 5000 pisd

Ir shown to be unstable in NSTF catalysts

Debe et al. Journal of The Electrochemical Society, 159(6) K165-K176 (2012)

Home Refueling Issues: Cost

0.2 kg/hr System 5000 psi with no further compression

High utilization and energy contracts securing low-cost overnight are essential

Home Refueling: Technical Needs

- Better Membrane
 - PFSA membranes developed for automotive fuel cells are a poor match
 - Permeability is too high
 - Mechanical Properties are too week
 - Low EW not nearly as critical
- Lower catalyst cost
 - Increased Catalyst Activity
 - Higher Temperature
 - More important than in large scale electrolyzers
- Failure Testing
 - Develop methods to reduce, quantify risks
- Accelerated Testing Methods

Home Refueling: Fundamental Questions

In general these things are well qualified for PEM fuel cells, but just touching surface for electrolysis

- How does Temperature effect OER kinetics
 - High activation energy up to 80°C then changes
- Hydrocarbon Membranes
 - Stable in full hydration
 - Better (lower) Permeability?
 - Effect on Electrode Kinetics
- AEMs?
 - Potential of negligible catalyst costs
 - Permeability/conductivity ratio?
- Catalyst Stability Factors
 - Temperature
 - Pressure
 - Voltage Cycling

