

CSE 473: Pattern Recognition

Non-Linear Classifier

Training of a Multi Layer Perceptron (MLP)

 use rationale and develop a structure that classifies correctly all the training patterns.

OR

 choose a structure and compute the synaptic weights to optimize a cost function.

computes the weights iteratively, subject to a cost function is optimized

Assume:

- Multiple layers
- more than one neurons in each layer
- any number of classes

Let:

Data set has 4 classes

Training Sample#	Class#
Sample#1	1
Sample#2	3
Sample#3	2
Sample#4	4
Sample#5	2

Let:

Data set has 4 classes

Training Sample#	Class#	Class Vector
Sample#1	1	1000
Sample#2	3	0010
Sample#3	2	0100
Sample#4	4	0001
Sample#5	2	0100

- Recall the perceptron algorithm:
 - We update with this

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

- Recall the perceptron algorithm:
 - We update with this

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

 Backpropagation updates multiple nodes for a number of layers:

$$w_j^r(\text{new}) = w_j^r(\text{old}) + \nabla w_j^r$$

- Recall the perceptron algorithm:
 - We update with this

$$\underline{w}(\text{new}) = \underline{w}(\text{old}) + \Delta \underline{w}$$

 Backpropagation updates multiple nodes for a number of layers:

- Another difference is the activation function:
- Perceptron algorithm uses unit activation function:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

This function is not differentiable at x=0.

- Another difference is the activation function:
- Perceptron algorithm uses unit activation function:

$$f(x) = \begin{cases} 1 & x > 0 \\ 0 & x < 0 \end{cases}$$

- This function is not differentiable at x=0.
- Backpropagation uses logistic function:

$$f(x) = \frac{1}{1 + \exp(-ax)}$$

Logistic function

The Logistic function

$$f(x) = \frac{1}{1 + \exp(-ax)}$$

 Similar to perceptron algorithm: Backpropagation also iteratively updates weights

$$w_j^r(\text{new}) = w_j^r(\text{old}) + \nabla w_j^r$$

where,
$$\nabla w_j^r = -\mu \frac{\partial J}{\partial w_j^r}$$

and
$$J = \sum_{i=1}^{N} \mathcal{E}(i)$$

- L layers of neurons
- k_r neurons in r^{th} layer
- k_0 nodes in the input layer = input feature dimension = l
- k_L nodes in the output layer = output class dimension

- Remember: The number of classes is more than 2, it is K_L
- Class value of a sample is no longer a single variable, rather it is a vector of k_L dimension.

- N training samples: $(\mathbf{x}(i), \mathbf{y}(i))$, for i = 1, 2, 3, ..., N
- Features of *i*th training sample: $\mathbf{x}(i) = [x_1(i), \dots, x_{k_0}(i)]^T$
- Class of *i*th training sample: $\mathbf{y}(i) = [y_1(i), \dots, y_{k_I}(i)]^T$

• During training, apply i^{th} training vector $\mathbf{x}(i)$, and output is $\hat{\mathbf{y}}(i)$, instead of $\mathbf{y}(i)$)

• During training, apply i^{th} training vector $\mathbf{x}(i)$, and output is $\hat{\mathbf{y}}(i)$, instead of $\mathbf{y}(i)$)

• During training, apply i^{th} training vector $\mathbf{x}(i)$, and output is $\hat{\mathbf{y}}(i)$, instead of $\mathbf{y}(i)$)

• During training, apply i^{th} training vector $\mathbf{x}(i)$, and output is $\hat{\mathbf{y}}(i)$ instead of $\mathbf{y}(i)$)

- During training, apply i^{th} training vector $\mathbf{x}(i)$, and output is $\hat{\mathbf{y}}(i)$, instead of $\mathbf{y}(i)$)
- Error for *i*th vector:

$$\mathcal{E}(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (y_m(i) - \hat{y}_m(i))^2, \quad i = 1, 2, \dots, N$$

Total Error:

$$J = \sum_{i=1}^{N} \mathcal{E}(i)$$

• We need to calculate
$$\nabla \mathbf{w}_{j}^{r} = -\mu \frac{\partial J(i)}{\partial \mathbf{w}_{j}^{r}} = -\mu \sum_{i=1}^{N} \frac{\partial \mathcal{E}(i)}{\partial \mathbf{w}_{j}^{r}}$$

We need to calculate

$$\nabla \mathbf{w}_{j}^{r} = -\mu \frac{\partial J(i)}{\partial \mathbf{w}_{j}^{r}} = -\mu \sum_{i=1}^{N} \frac{\partial \mathcal{E}(i)}{\partial \mathbf{w}_{j}^{r}}$$

• J depends on w_j^r and passes through v_j^r

$$\upsilon_{j}^{r}(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i) + w_{jo}^{r} \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i)$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$
Recall,
$$v_{j}^{r}(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i) + w_{jo}^{r} \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^{r} y_{k}^{r-1}(i)$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

Therefore,
$$\frac{\partial}{\partial \textbf{\textit{w}}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}^{r}}} \upsilon_{j}^{r}(i) \end{bmatrix}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

Therefore,
$$\frac{\partial}{\partial \textbf{\textit{w}}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}}^{r}} \upsilon_{j}^{r}(i) \end{bmatrix} = \begin{bmatrix} +1 \\ y_{1}^{r-1}(i) \\ \vdots \\ y_{k_{r-1}}^{r-1}(i) \end{bmatrix}$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)} \frac{\partial \boldsymbol{v}_{j}^{r}(i)}{\partial \boldsymbol{w}_{j}^{r}}$$

Recall,
$$v_j^r(i) = \sum_{k=1}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i) + w_{jo}^r \equiv \sum_{k=0}^{k_{r-1}} w_{jk}^r y_k^{r-1}(i)$$

Therefore,
$$\frac{\partial}{\partial \boldsymbol{w}_{j}^{r}} \upsilon_{j}^{r}(i) \equiv \begin{bmatrix} \frac{\partial}{\partial w_{j0}^{r}} \upsilon_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial w_{jk_{r-1}}^{r}} \upsilon_{j}^{r}(i) \end{bmatrix} = \boldsymbol{y}^{r-1}(i)$$

$$\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{w}_{j}^{r}} = \underbrace{\frac{\partial \mathcal{E}(i)}{\partial \boldsymbol{v}_{j}^{r}(i)}}_{\begin{array}{c} \partial \boldsymbol{w}_{j}^{r}(i) \\ \\ \partial \boldsymbol{w}_{j}^{r}(i) \end{array} = \underbrace{\begin{bmatrix} \frac{\partial}{\partial \boldsymbol{w}_{j0}^{r}} \boldsymbol{v}_{j}^{r}(i) \\ \vdots \\ \frac{\partial}{\partial \boldsymbol{w}_{jk_{r-1}}^{r}} \boldsymbol{v}_{j}^{r}(i) \end{bmatrix}}_{} = \boldsymbol{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{i}^{r}(i)}$$

$$\Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \frac{\partial \varepsilon(i)}{\partial \mathbf{w}_{j}^{r}(i)} \longrightarrow \Delta \mathbf{w}_{j}^{r} = -\mu \sum_{i=1}^{N} \delta_{j}^{r}(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• For $r = L$

$$\delta_j^L(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^L(i)}$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• For $r = L$

• For
$$r = L$$

$$\delta_j^L(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^L(i)}$$

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• For $r = L$

$$\delta_j^L(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^L(i)}$$

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

$$\delta_j^L(i) = \frac{1}{2} \times 2 \times (f(v_m^L(i)) - y_m(i)) \times f'(v_j^L(i))$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• For $r = L$

• For
$$r = L$$

$$\delta_j^L(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^L(i)}$$

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

$$\delta_j^L(i) = \frac{1}{2} \times 2 \times (f(v_m^L(i)) - y_m(i)) \times f'(v_j^L(i))$$

$$\delta_j^L(i) = e_j(i) f'(v_j^L(i))$$

• Calculate
$$\delta_j^r(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^r(i)}$$

• For $r = L$

• For
$$r = L$$

$$\delta_j^L(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^L(i)}$$

$$\varepsilon(i) = \frac{1}{2} \sum_{m=1}^{k_L} e_m^2(i) \equiv \frac{1}{2} \sum_{m=1}^{k_L} (f(v_m^L(i)) - y_m(i))^2$$

$$\delta_j^L(i) = \frac{1}{2} \times 2 \times (f(v_m^L(i)) - y_m(i)) \times f'(v_j^L(i))$$

$$\delta_j^L(i) = e_j(i) f'(v_j^L(i))$$

- For *r* < *L*
- Calculate $\delta_{i}^{r-1}(i)$ from $\delta_{j}^{r}(i)$

- For *r* < *L*
- Calculate $\delta_j^{r-1}(i)$ from $\delta_j^r(i)$

We know,

$$\delta_j^{r-1}(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)}$$

We need to calculate,

$$\delta_j^{r-1}(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)}$$

• However, $v_j^{r-1}(i)$ influences all $v_k^r(i)$, for $k = 1, 2, 3, ..., k_r$

We need to calculate,

$$\delta_j^{r-1}(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)}$$

- However, $v_j^{r-1}(i)$ influences all $v_k^r(i)$, for $k = 1, 2, 3, ..., k_r$
- Therefore,

$$\frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)} = \sum_{k=1}^{k_r} \frac{\partial \mathcal{E}(i)}{\partial v_k^r(i)} \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

- For *r* < *L*

• For
$$r < L$$
• Calculate $\delta_j^{r-1}(i) = \frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)}$

$$\frac{\partial \mathcal{E}(i)}{\partial v_j^{r-1}(i)} = \sum_{k=1}^{k_r} \frac{\partial \mathcal{E}(i)}{\partial v_k^r(i)} \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

• For
$$r < L$$
• Calculate $\delta_{j}^{r-1}(i) = \frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)}$

$$\frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)} = \sum_{k=1}^{k_{r}} \frac{\partial \varepsilon(i)}{\partial v_{k}^{r}(i)} \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\delta_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \delta_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

• For
$$r < L$$
• Calculate $\delta_{j}^{r-1}(i) = \frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)}$

$$\frac{\partial \varepsilon(i)}{\partial v_{j}^{r-1}(i)} = \sum_{k=1}^{k_{r}} \frac{\partial \varepsilon(i)}{\partial v_{k}^{r}(i)} \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\delta_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \delta_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = \frac{\partial \left[\sum_{m=0}^{k_{r-1}} w_{km}^r y_m^{r-1}(i)\right]}{\partial v_j^{r-1}(i)}$$

where,
$$y_m^{r-1}(i) = f(v_m^{r-1}(i))$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = \frac{\partial \left[\sum_{m=0}^{k_{r-1}} w_{km}^r y_m^{r-1}(i)\right]}{\partial v_j^{r-1}(i)} \text{ where, } y_m^{r-1}(i) = f(v_m^{r-1}(i))$$

then,

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = w_{kj}^r f'(v_j^{r-1}(i))$$

$$\delta_j^{r-1}(i) = \sum_{k=1}^{k_r} \delta_k^r(i) \frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)}$$

$$\frac{\partial v_k^r(i)}{\partial v_j^{r-1}(i)} = w_{kj}^r f'(v_j^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$
$$\frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = w_{kj}^{r} f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) \frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)}$$

$$\frac{\partial v_{k}^{r}(i)}{\partial v_{j}^{r-1}(i)} = w_{kj}^{r} f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_{j}^{r-1}(i) = \left[\sum_{k=1}^{k_{r}} \mathcal{S}_{k}^{r}(i) w_{kj}^{r}\right] f'(v_{j}^{r-1}(i))$$

$$\mathcal{S}_j^{r-1}(i) = \left[\sum_{k=1}^{k_r} \mathcal{S}_k^r(i) w_{kj}^r\right] f'(v_j^{r-1}(i))$$

$$\delta_j^{r-1}(i) = e_j^{r-1}(i) f'(v_j^{r-1}(i))$$

where,
$$e_j^{r-1}(i) = \sum_{k=1}^{\kappa_r} \delta_k^r(i) w_{kj}^r$$

Only remaining is the derivative of the logistic function:

$$f'(x) = \alpha f(x)(1 - f(x))$$

The Algorithm

- Initialization:
 - Start with small random weights
- Forward Computations: $v_j^r(i)$, $y_j^r(i) = f(v_j^r(i))$,
- Backward Computation: $\delta_j^L(i)$ and $\delta_j^{r-1}(i)$
- Update weight:

$$\boldsymbol{w}_{j}^{r}(\text{new}) = \boldsymbol{w}_{j}^{r}(\text{old}) + \Delta \boldsymbol{w}_{j}^{r}$$

$$\Delta \mathbf{w}_j^r = -\mu \sum_{i=1}^N \delta_j^r(i) \mathbf{y}^{r-1}(i)$$