Relatório Lab 3: IPV6 and Mobile IPV6

Mestrado Integrado em Engenharia Informática e Computação

Comunicações Móveis

4MIEIC02:

Luís Costa - 201203872 - ei
12008@fe.up.pt Mário Macedo - 201208066 - ei
12105@fe.up.pt

Faculdade de Engenharia da Universidade do Porto Rua Roberto Frias, sn, 4200-465 Porto, Portugal

2 de Abril de 2017

1 Pergunta 1

Como se pode constatar a partir das imagens abaixo o número de hopspara o Home Agent , Router e Correspondent Node foram respetivamente 0, 1 e 2, o que vai de encontro ao esperado uma vez que o pedido do Mobile Node para o Home Agent apenas passa pelo switch, já para o Router o pedido passa primeiro no router da bancada. Para o Correspondent Node o pedido para além de passar no router da bancada passa também no router do lado direito.

4	1.068790000	2000:0:0:6::1	2000:0:0:6::aa	ICMPv6	118 Echo (ping) request id=0x01d8, seq=1, hop limit=64 (reply in 5)
5	1.068964000	2000:0:0:6::aa	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x01d8, seq=1, hop limit=64 (request in 4)
6	1.648683000	fe80::221:5aff:fe61:2ddf	ff02::1	ICMPv6	126 Router Advertisement from 00:21:5a:61:2d:df
7	2.068491000	2000:0:0:6::1	2000:0:0:6::aa	ICMPv6	118 Echo (ping) request id=0x01d8, seq=2, hop limit=64 (reply in 8)
8	2.068635000	2000:0:0:6::aa	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x01d8, seq=2, hop limit=64 (request in 7)

Figura 1: Ping do Mobile Node para o Home Agent

556 400.761319	2000:0:0:6::1	2000:0:0:d::aa	ICMPv6	118 Echo (ping) request id=0x1162, seq=1, hop limit=64 (reply in 557)
557 400.761693	2000:0:0:d::aa	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x1162, seq=1, hop limit=63 (request in 556)
558 401.430795	fe80::221:5aff:fe61:2ddf	ff02::1	ICMPv6	126 Router Advertisement from 00:21:5a:61:2d:df
559 401.760336	2000:0:0:6::1	2000:0:0:d::aa	ICMPv6	118 Echo (ping) request id=0x1162, seq=2, hop limit=64 (reply in 560)
560 401.760633	2000:0:0:d::aa	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x1162, seg=2, hop limit=63 (request in 559)

Figura 2: Ping do Mobile Node para o Router

472 334.280727	2000:0:0:6::1	2000:0:0:d::c	ICMPv6	118 Echo (ping) request id=0x1130, seq=1, hop limit=64 (reply in 473)
473 334.281391	2000:0:0:d::c	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x1130, seq=1, hop limit=62 (request in 472)
474 334.549036	fe80::221:5aff:fe61:2ddf	ff02::1	ICMPv6	126 Router Advertisement from 00:21:5a:61:2d:df
475 335.279927	2000:0:0:6::1	2000:0:0:d::c	ICMPv6	118 Echo (ping) request id=0x1130, seq=2, hop limit=64 (reply in 476)
476 335,280279	2000:0:0:d::c	2000:0:0:6::1	ICMPv6	118 Echo (ping) reply id=0x1130, seg=2, hop limit=62 (request in 475)

Figura 3: Ping do Mobile Node para o Correspondent Node

2 Pergunta 2

Os endereços IPv6 associados à interface eth
0 são os apresentados na seguinte imagem:

```
eth0 Link encap:Ethernet HWaddr 00:22:64:19:01:f7
inet addr:172.16.2.64 Bcast:172.16.2.255 Mask:255.255.0
inet6 addr: fe80::222:64ff:fe19:1f7/64 Scope:Link
inet6 addr: 2000::6:222:64ff:fe19:1f7/64 Scope:Global
inet6 addr: 2000::0:6:11/64 Scope:Global
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:609 errors:0 dropped:0 overruns:0 frame:0
TX packets:610 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:71201 (69.5 KiB) TX bytes:79250 (77.3 KiB)
Interrupt:17
```

Figura 4: Endereços IPv6 associados à interface eth0

Para criar o link-local, insere-se "ff:fe"no meio do endereço MAC, inverte-se o 2º bit (LSB) do 1º octeto e acrescenta-se o prefixo "fe80::". No nosso caso, o processo é:

- 1. 00:22:64:19:01:f7 (MAC original)
- 2. 0022:64ff:fe19:01f7 (inserção de "ff:fe")
- 3. 0222:64ff:fe
19:01f7 (inversão do 2º LSB)

4. fe80::222:64ff:fe19:1f7 (resultado final)

Para o global link, o prefixo "fe80::"muda para o prefixo da rede (no nosso caso, 2000:0:0:6::).

- 1. 00:22:64:19:01:f7 (MAC original)
- 2. 0022:64ff:fe19:01f7 (inserção de "ff:fe")
- 3. 0222:64ff:fe19:01f7 (inversão do 2° LSB)
- 4. 2000::6:222:64ff:fe19:1f7 (resultado final)

3 Pergunta 3

Na figura abaixo é possível ver a tabela de rotas no $Home\ Agent\ quando$ o $Mobile\ Node\ está$ na rede visitada.

Figura 5: Tabela de rotas no Home Agent

Sabendo que no trabalho realizado apenas a interface eth0 foi utilizada, as rotas associadas a esta interface são as seguintes:

- $\bullet\,$ fe
80::/64 Link Local endereços locais que apenas são válidos dentro da LAN /
link onde o Home~Agentse encontra
- \bullet 2000::/128 Unicast Global (2000:0:0:6::/64) endereços globais visíveis interna e externamente
- ff00::/8 Endereços únicos a nível global

Na tabela acima é possível uma entrada para cada um destes prefixos. É possíve ver também algumas entradas referentes a outras interfaces locais e também entradas para o router do laboratório que interliga os lados esquerdo e direito.

4 Pergunta 4

Na imagem abaixo é possível ver a troca de mensagens necessárias para o $Mobile\ Node$ se registar na rede local.

42 34.	.476216	**	ff02::1:ff19:1f7	ICMPv6	78 Neighbor Solicitation for fe80::222:64ff:fe19:1f7
43 34.	.556202	**	ff02::1:ff19:1f7	ICMPv6	78 Neighbor Solicitation for 2000::3:222:64ff:fe19:1f7
44 35.	.136211	::	ff02::16	ICMPv6	210 Multicast Listener Report Message v2
45 35.	.476250	fe80::222:64ff:fe19:1f7	ff02::16	ICMPv6	210 Multicast Listener Report Message v2
47 35.	.557569	2000:0:0:6::1	2000:0:0:6::aa	MIPv6	110 Binding Update
54 36.	.493638	fe80::221:5aff:fe5a:7db7	ff02::1	ICMPv6	126 Router Advertisement from 00:21:5a:5a:7d:b7
56 36.	.572077	fe80::221:5aff:fe5a:7db7	ff02::1:ff19:1f7	ICMPv6	86 Neighbor Solicitation for 2000::3:222:64ff:fe19:1f7 from 00:21:5a:5a:7d:b7
57 36.	.572134	2000::3:222:64ff:fe19:1f7	fe80::221:5aff:fe5a:7db7	ICMPv6	86 Neighbor Advertisement 2000::3:222:64ff:fe19:1f7 (rtr, sol, ovr) is at 00:22:64:19:01:f7
58 36.	.572294	2000:0:0:6::aa	2000:0:0:6::1	MIPv6	94 Binding Acknowledgement
59 37.	.360277	2000:0:0:6::1	2000:0:0:e::c	ICMPv6	158 Echo (ping) request id=0x0656, seq=172, hop limit=64 (reply in 62)
60 37.	.360541	2000:0:0:6::1	2000:0:0:e::c	MIPv6	110 Home Test Init
61 37.	.360645	2000::3:222:64ff:fe19:1f7	2000:0:0:e::c	MIPv6	70 Care-of Test Init
62 37.	.361028	2000:0:0:e::c	2000:0:0:6::1	ICMPv6	158 Echo (ping) reply id=0x0656, seq=172, hop limit=62 (request in 59)
63 37.	.361092	2000:0:0:e::c	2000::3:222:64ff:fe19:1f7	MIPv6	78 Care-of Test
64 37.	.361262	2000:0:0:e::c	2000:0:0:6::1	MIPv6	118 Home Test
65 37.	361463	2000:0:0:6::1	2000:0:0:0:0:::	MTPv6	110 Binding Undate

Figura 6: Troca de mensagens do Mobile Node ao registar-se na rede local

- Binding Update- usado por um Mobile Node para notificar outros nós do seu novo endereço Care-of.
- $Binding\ Acknowledgement$ usado para notificar a receção de um $Binding\ Update$.
- Home Test Init- usado por um Mobile Node para iniciar o procedimento de return routabilitye pedir um home keygen token a um Correspondent Node .
- Care-of Test Init- usado por um Mobile Node para iniciar o procedimento de return routabilitye pedir um care-of keygen token a um Correspondent Node .
- Home Test- é a resposta de um Correspondent Node para um Mobile Node a um Home Test Init.
- Care-of Test- é a resposta de um Correspondent Node para um Mobile Node a um Care-of Test Init.

5 Pergunta 5

No final do Care-of Test, o Mobile Node e o Correspondent Node já se conhecem e já trocaram mensagens encriptadas de forma a no futuro trocarem mensagens diretamente sem terem de usar o Home Agent como mediador.

Depois de uma rota estar optimizada é possível verificar que quando o $Mobile\ Node$ envia uma mensagem o seu IP passa a ser um IP pertencente à rede onde se encontra, quando antes da rota estar optimizada o seu IP era o da rede original e que na rede onde se encontrava só era conhecido pelo respetivo $Home\ Agent$. Através dos headers da mesma mensagem é possível verificar uma entrada $Home\ Address\ 2000:0:0:6::1$, ou seja, o endereço original do $Mobile\ Node$.

```
142 Echo (ping) request
70 38.360251 2000:0:0:6::1
                                                    2000:0:0:e::c
                                                                          ICMPv6
Frame 70: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits) on interface 0
Ethernet II, Src: HewlettP_19:01:f7 (00:22:64:19:01:f7), Dst: HewlettP_5a:7d:b7 (00:21:5a:5a:7d:b7)
Internet Protocol Version 6, Src: 2000::3:222:64ff:fe19:1f7, Dst: 2000:0:0:e::c

▼ Destination Options for IPv6

      Next Header: ICMPv6 (58)
     Length: 2
[Length: 24 bytes]
      PadN

✓ Home Address

      > Type: Home Address (0xc9)
Length: 16
MIPv6 Home Address: 2000:0:0:6::1
71 38.360671 2000:0:0:e::c
                                                                            ICMPv6
                                                    2000:0:0:6::1
                                                                                                 142 Echo (ping) reply
Frame 71: 142 bytes on wire (1136 bits), 142 bytes captured (1136 bits) on interface 0
Ethernet II, Src: HewlettP_5a:7d:b7 (00:21:5a:5a:7d:b7), Dst: HewlettP_19:01:f7 (00:22:64:19:01:f7)
Internet Protocol Version 6, Src: 2000:0:0:e::c, Dst: 2000::3:222:64ff:fe19:1f7

▼ Routing Header for IPv6 (Mobile IP)

      Next Header: ICMPv6 (58)
      Length: 2
      [Length: 24 bytes]
      Type: Mobile IP (2)
      Segments Left: 1
      Reserved: 00000000
      Address[1]: 2000:0:0:6::1
```

Figura 7: Conteúdo do pedido (cima) e resposta (baixo) das mensagens de ping