

Sistemas de Informação

Bando de Dados 1

Prof. Dr. Ronaldo Castro de Oliveira

ronaldo.co@ufu.br

FACOM - 2022

Dependência Funcional e Normalização

Qualidade do Projeto Lógico

- Como avaliar a qualidade do esquema da relação?
 - Semântica;
 - □ Implementação/desempenho.
- Análise informal:
 - □ *Princípios* para um bom projeto.
- Análise formal:
 - Dependência funcional;
 - Normalização.

Qualidade do Projeto Lógico ...

- Análise Informal (princípios):
 - Semântica de atributos;
 - □ Redução de redundância em tuplas:
 - prevenção de anomalias de inserção;
 - prevenção de anomalias de remoção;
 - prevenção de anomalias de alteração.
 - □ Redução de valores nulos;
 - □ Prevenção de geração de tuplas espúrias (ilegítimas).

Exemplo:

- Emp_Dept={Nome, <u>CPF</u>, DataNasc, End, Dnum, Dnome, DGerCPF}
 - Combina informações de tipos diferentes de entidades;
 - Problema semântico;
 - Redundância em relação às informações armazenadas;
 - Dados do departamento (Dnome e DGerCPF);
 - Inserção:
 - Para inserir um empregado, é necessário cadastrar informações sobre o departamento (ou *nulls*). Tais informações podem gerar dados inconsistentes sobre o departamento.

Exemplo...

- □ Exclusão:
 - Apagar um empregado pode significar apagar as informações do departamento.
- Atualização:
 - Mudar o valor de um atributo de uma tupla de Emp_Dept pode implicar em ter de alterar outros valores correspondentes.
 - □ Ex.: mudar *Dnum*.
- □ Valores *null*:
 - Se muitos atributos não se aplicarem a muitas tuplas da relação, poderemos desperdiçar espaço de armazenamento. Ex:
 - Incluir nº escritório na relação "empregados", sendo que somente 10% destes possuem de fato um escritório.

Qualidade do Projeto Lógico ...

- Análise Formal:
 - □ Dependências Funcionais:
 - Restrições entre atributos:
 - □ Avaliação da qualidade dos esquemas de relação;
 - □ Garantia de consistência da base de dados.

Dependência Funcional (DF)

- É uma restrição entre dois subconjuntos de atributos (\mathbf{A} e \mathbf{B}) de \mathcal{R} , sendo denotada por $\mathbf{A} \rightarrow \mathbf{B}$.
- Especifica uma restrição nas possíveis tuplas de $\mathbf{R}(\mathcal{R})$: Se $\mathbf{t}_i[\mathbf{A}] = \mathbf{t}_i[\mathbf{A}]$ então $\mathbf{t}_i[\mathbf{B}] = \mathbf{t}_i[\mathbf{B}]$ para quaisquer i, j.
- Neste caso diz-se que **A** determina funcionalmente **B** (ou alternativamente que **B** depende funcionalmente de **A**).
- Alguns exemplos:

```
{MATR } → {Nome, Idade, Curso};
{Sigla, Sala, Hora} → {CódigoTurma, Professor}
{Sigla} → {NomeDisciplina, NCréditos}
```

Notação Diagramática para DF

- Propriedade semântica, identificada pelo projetista da(o) BDs;
- Pode ser verificada na instância do BDs mas não é definida a partir dela.
 - Exemplo: Seja a relação Alunos = {Nome, Curso, Idade} e um de seus possíveis estados:

A relação Alunos atende às seguintes DFs?

- \square Nome \rightarrow Curso;
- \square Nome \rightarrow Idade;
- \square Curso \rightarrow Idade;
- □ Idade \rightarrow Curso;

Alunos:

```
<Mario, Comp., 21>,
```

A relação Alunos atende às seguintes DFs?

- \square Nome \rightarrow Curso;
- \square Nome \rightarrow Idade;
- \square Curso \rightarrow Idade;
- □ Idade \rightarrow Curso;

Alunos:

```
<Mario, Comp., 21>,
```

<Paulo, Eletr., 22>,

<Almir, Fisio., 22>,

<Marta, Comp., 21>,

<Vânia, Eletr., 22>

Exemplo de identificação de dependências funcionais:

N_funcionário	Nome_Próprio	Apelido	Departamento
1021	Sofia	Reis	900
1022	Afonso	Reis	700
1023	António	Cardoso	900

Departamento → N_funcionário ?

Não pois Departamento 900 => {1021,1023}

N_funcionário → Departamento ?

Sim pois se se conhecer o N_funcionário (atributo unívoco) é possível determinar o Departamento (um funcionário só pode pertencer a um departamento)

Nome_próprio → N_funcionário ?

Não pois podem existir funcionários com o mesmo nome => podem haver múltiplos valores de N_funcionário para o mesmo Nome_próprio

N funcionário → Apelido ?

Apesar de dois funcionários terem o mesmo apelido, se se conhecer o N_funcionário determina-se um só Apelido

∴ N_funcionário → todos os restantes atributos

Outro exemplo de identificação de dependências funcionais:

Papelaria	Artigo	Preço
Colmeia	Caneta bic fina	150
Central	Fita cola	300
Aguarela	Borracha	215
Silva	Caneta bic fina	175

- O preço é funcionalmente dependente de artigo (Artigo → Preço) ?
 Não; o mesmo artigo pode ter preços distintos em diferentes papelarias
- O preço é funcionalmente dependente de papelaria (Papelaria → Preço) ?
 Não; para cada papelaria há tantos valores para Preço quantos os artigos vendidos nessa papelaria.

Preço depende funcionalmente de ambos {Papelaria, Artigo} → Preço

Exercícios

- Dada a relação Cliente (<u>n_cliente</u>, nome, endereço), as seguintes dependências são corretas?
 - a) $n_{\text{cliente}} \rightarrow \text{nome}$;
 - b) $n_{\text{cliente}} \rightarrow \text{endereço};$
 - c) nome → endereço;
 - d) endereço → nome.

Exercícios

- Dada a relação Cliente (<u>n_cliente</u>, nome, endereço), as seguintes dependências são corretas?
 - a) $n_{cliente} \rightarrow nome;$
 - $n_{\text{cliente}} \rightarrow \text{endereço};$
 - c) nome → endereço;
 - d) endereço → nome.

2. Dada a seguinte relação, deseja-se saber se as dependências listadas são verdadeiras:

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3	30,00
101	P02	4	70,00
102	P01	8	80,00
102	P02	3	20,00

- a) nro_pedido → qtidade_comprada;
- b) nro_peça → qtidade_comprada;
- c) nro_pedido → preço_cotado;
- d) nro_peça → preço_cotado;
- e) {nro_pedido, nro_peça} → qtidade_comprada;
- f) {nro_pedido, nro_peça} → preço_cotado;
- g) {nro_pedido, nro_peça} → {qtidade_comprada, preço_cotado}.

2. Dada a seguinte relação, deseja-se saber se as dependências listadas são verdadeiras:

nro_pedido	nro_peça	qtidade_ comprada	preço_cotado
101	P01	3	30,00
101	P02	4	70,00
102	P01	8	80,00
102	P02	3	20,00

- a) nro_pedido → qtidade_comprada;
- b) nro_peça → qtidade_comprada;
- c) nro_pedido → preço_cotado;
- d) nro_peça → preço_cotado;
- e) {nro_pedido, nro_peça} → qtidade_comprada;
- f) {nro_pedido, nro_peça} → preço_cotado;
- g) $\{nro_pedido, nro_peça\} \rightarrow \{qtidade_comprada, preço_cotado\}.$

- Controle de consistência:
 - Necessário conhecer todas as dependências funcionais - informação semântica fornecida pelo projetista;
 - Algumas dependências funcionais (DFs)
 podem ser inferidas a partir de DFs existentes
 ⇒ regras de inferência.

- Regras de Inferência de DFs:
 - Reflexiva: se B \subseteq A \Rightarrow A \rightarrow B (**DF trivial**)
 - Aumentativa: se A \rightarrow B \Rightarrow AC \rightarrow BC
 - Decomposição: se $A \rightarrow BC \Rightarrow A \rightarrow B, A \rightarrow C$
 - Aditiva: se $A \rightarrow B$, $A \rightarrow C \Rightarrow A \rightarrow BC$
 - Transitiva: se A \rightarrow B, B \rightarrow C \Rightarrow A \rightarrow C
 - Pseudo-Transitiva: se A \rightarrow B, BC \rightarrow D \Rightarrow AC \rightarrow D

Observação: AB representa $\{A,B\}$.

Controlando a consistência

- Na construção de um SGBD baseado no modelo relacional:
 - Definição das relações baseada na análise de DFs;
 - Formas normais;
 - Uma relação está em uma determinada forma normal quando satisfaz certas propriedades baseadas nas DFs;
 - Colocar uma relação em uma forma normal ⇒ Normalização.

Normalização

- Normalização de Relações:
 - Baseada nas DFs;
 - Garante consistência na construção do sistema:
 - redução de anomalias.
 - redução de redundância;
- Formas Normais (FNs) baseadas em DFs:
 - □ baseadas em chave primária: 2ª FN, 3ª FN;
 - baseadas em chaves candidatas: FN de Boyce-Codd (FNBC ou, em Inglês, BCNF).
- FN baseada em dependências multivaloradas:
 - □ 4^a FN.

Definições iniciais

- Dados os conjuntos de atributos X e Y, e um atributo A ∈ X :
 - $\square X \to Y$ é dependência funcional parcial se $(X \{A\}) \to Y$.
 - $\square X \to Y$ é dependência funcional total se $(X \{A\}) \to Y$.
 - $\square X \to Y$ é uma dependência funcional trivial se $Y \subseteq X$.
 - □ $X \rightarrow Y$ é uma dependência funcional transitiva se existe $X \rightarrow Z$ e $Z \rightarrow Y$, e Z não é parte da chave primária.
 - □ Atributo primário: atributo que faz parte de alguma chave candidata em \mathcal{R} .

1ª Forma Normal (1FN)

- R está na 1FN se:
 - □ todo valor em R for atômico;
 - R não contém grupos de repetição.
- Considerações:
 - geralmente considerada parte da definição de R;
 - não permite atributos multivalorados, compostos ou suas combinações.

Atributos Multivalorados e Compostos (lembrete)

- Atributos multivalorados:
 - cor do carro;
 - □ título acadêmico, etc.
- Atributos compostos:
 - □ endereço {rua, número, ap.}, etc.
- IFN não permite tais atributos, nem suas combinações.

1FN...

Exemplo

□ cliente (<u>nro_cli</u>, nome, {end_entrega})

nro_cli	nome	end_entrega
124	João dos Santos	Rua 10, 1024 Rua 24, 1356
311	José Ferreira Neves	Rua 46, 1344 Rua 98, 4456

Métodos para corrigir o problema

Método 1:

- gerar uma nova relação contendo o grupo de repetição e a chave primária da relação original;
- determinar a chave primária da nova relação:
 - {chave primária da relação original, chave para o grupo de repetição};
- abordagem mais genérica e que não causa redundância.

Métodos para corrigir o problema ...

Método 2:

- □ remover o grupo de repetição;
- expandir a chave primária.
- abordagem que causa redundância.

Método 3:

- substituir o grupo de repetição pelo número máximo de valores estabelecido para o grupo.
- abordagem menos genérica e que pode introduzir muitos valores *null*.

Métodos para corrigir o problema ...

- Voltando ao caso em estudo:
 - □ cliente (<u>nro_cli</u>, nome, {end_entrega})

Corrigindo o problema ...

- Solução 1:
 - cliente_nome (nro_cli, nome);
 - cliente_entrega (<u>nro_cli</u>, <u>rua</u>, <u>numero</u>).
- □ Solução 2:
 - cliente (<u>nro_cli</u>, nome, <u>rua, numero</u>).
- Solução 3:
 - cliente (nro_cli, nome, rua1, numero1, rua2, numero2).

Outros exemplos

```
Aluno = {Nome, Idade, DataNasc., DataMatricula}

Aluno = {Nome, Idade, DiaN, MesN, AnoN, DiaM, MesM, AnoM}

Aluno = {MATR, Idade, Disciplinas}
```

```
Aluno = { MATR , Idade }

Disciplinas = { MATR, Disciplina}
```

Exercício

- Considere a relação emp_proj (nro_emp, nome_emp,{ projeto (nro_proj, nome_proj)}).
 Como normalizá-la para a 1FN?
 - □ Representação:
 - { } indica que o atributo projeto é multivalorado;
 - {projeto ()} indica os atributos componentes do atributo multivalorado projeto.

2ª Forma Normal (2FN)

- Definição. O esquema de relação R está na 2FN se todo atributo não primário* A em R tem dependência funcional total da chave primária de R.
 - □ 1FN;
 - □ X → A é dependência funcional total se (X {B}) não determina funcionalmente A para qualquer atributo B ∈ X.
 - "Teste para 2FN": verificar se atributos do lado esquerdo das DFs fazem parte da chave primária. Exemplos:

Pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição, qtdade_comprada, preço_cotado)

- nro-pedido → data
- nro-peça → descrição
- {nro-pedido, nro-peça} → {qtdade_comprada, preço_cotado}

^{*}Atributo é dito primário quando é membro de uma chave candidata.

2FN ...

- Para corrigir o problema:
 - Para cada sub-conjunto de atributos da chave primária, gerar uma relação com esse sub-conjunto como sua chave primária;
 - Incluir os atributos da relação original na relação correspondente à chave primária apropriada:
 - colocar cada atributo junto com a coleção mínima da qual ele depende, atribuindo um nome a cada relação.
- Levando em conta nosso exemplo anterior:
 - Pedido (<u>nro-pedido</u>, data, <u>nro-peça</u>, descrição, qtdade_comprada, preço_cotado)
 - pedido (nro-pedido, data)
 - peça (<u>nro peça</u>, descrição)
 - pedido_peça (<u>nro_pedido</u>, <u>nro_peça</u>, qtdade_comprada, preço_cotado)

2FN ...

- Outro exemplo:
 - □ DFs identificadas pelo desenvolvedor:
 - {Professor, Sigla} → LivroTexto;
 - {NúmeroT, Sigla} → Sala;
 - Sigla → No.Horas;
 - LivroTexto \rightarrow LivroExerc.
 - Ministra={Professor, Sigla, LivroTexto, LivroExerc}
 - □ Está na 2FN, mesmo que LivroTexto → LivroExerc.
 - Turma={NúmeroT, Sigla, Sala, No.Horas}
 - □ Viola a 2FN, pois Sigla \rightarrow No. Horas.

2FN ...

- Corrigindo o problema para atender à 2FN:
 - □ Turma={NúmeroT, Sigla, Sala, No.Horas};
 - {NumeroT, Sigla} \rightarrow Sala;
 - Sigla → No.Horas;

Então:

- Turma = {NumeroT, Sigla, Sala};
- Disciplina = {Sigla, No.Horas}.
- 2FN evita:
 - Inconsistência e anomalias causadas por redundância de informação;
 - Perda de informação em operações de remoção/alteração na relação.

3ª Forma Normal (3FN)

- Definição. R está na 3FN se:
 - (i) Está na 2FN;
 - (ii) Nenhum atributo não primário de R for transitivamente dependente da chave primária.
- Dependência transitiva:
 - □ Dependência transitiva $X \rightarrow Y$ em \mathcal{R} acontece se:
 - (i) X→Z e Z→Y e;
 - (ii) \mathbf{Z} não for chave candidata nem subconjunto de qualquer chave de \mathcal{R} .

3FN ...

- Em outras palavras, todos os atributos não primários devem possuir dependência total, não transitiva, da chave primária.
- Se X→Y é não transitiva, então não pode haver no conjunto de DFs: X→Z e Z→Y.
- Exemplo:
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nrovendedor, nome-vendedor);
 - nro-vendedor → nome_vendedor.

3FN ...

- Corrigindo o problema:
 - Para cada determinante que não é uma chave candidata, remover da relação os atributos que dependem desse determinante;
 - Criar uma nova relação contendo todos os atributos da relação original que dependem desse determinante;
 - □ Tornar o determinante a chave primária da nova relação.
 - □ Levando em conta nosso exemplo anterior:
 - cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor, nomevendedor):
 - □ cliente (<u>nro-cliente</u>, nome-cliente, end-cliente, nro-vendedor);
 - □ vendedor (<u>nro-vendedor</u>, nome-vendedor).

Chave estrangeira

3FN ...

- Assim como a 2FN, a 3FN evita:
 - Inconsistência e anomalias causadas por redundância de informações;
 - Perda de informação em operações de remoção/alterações na relação.

Definições Gerais de 2FN e 3FN

- Definição de 1FN não é diretamente dependente do conceitos de chaves e de DFs;
- 2FN e 3FN discutidas até agora desaprovam somente dependências parciais e transitivas em relação à chave primária;
- Definições gerais levam em conta todas as chaves candidatas de uma relação.

Definição geral de 2FN

- R está na 2FN se cada atributo não primário* de R não for parcialmente dependente de nenhuma chave em R.
- Alternativamente: R está na 2FN se todo atributo não primário A de R possuir dependência funcional total de cada chave do esquema R.

^{*} Atributo primário é um atributo que faz parte de qualquer chave candidata.

Definição geral de 3FN

- Um esquema de relação R está na 3FN se para cada dependência funcional X → A, X é uma superchave de Rou A é um atributo primário de R.
- Alternativamente, um esquema de relação R está na 3FN se todo atributo não primário apresentar ambas as seguintes condições:
 - □ Ter dependência funcional total para todas as chaves (2FN);
 - Não ser transitivamente dependente de nenhuma chave.
- Ilustrando as definições gerais de 2FN e 3FN:

3FN

Exercícios

Nos exercícios seguintes, normalize as relações de forma que todas as relações resultantes estejam na forma normal mais restrita. Considere a 1FN, a 2FN e a 3FN. Para cada FN:

- Se necessário, identifique quais as dependências funcionais que se aplicam sobre R;
- Identifique e justifique se Rencontra-se ou não na forma normal em questão; e
- Caso R sendo analisada não se encontre na forma normal em questão, normalize-a, especificando as relações originadas.
- vendedor (<u>nro_vend</u>, nome_vend, {cliente (<u>nro_cli</u>, nome_cli)})
 As seguintes dependências funcionais devem ser garantidas na normalização:
- \neg nro_vend \rightarrow nome_vend;
- □ $nro_cli \rightarrow nome_cli$.

Observação: considere que um vendedor pode atender diversos clientes, e um cliente pode ser atendido por diversos vendedores.

 aluno (<u>nro_aluno</u>, cod_depto, nome_depto, sigla_depto, cod_orient, nome_orient, fone_orient, cod_curso)
 As seguintes dependências funcionais devem ser

As seguintes dependências funcionais devem ser garantidas na normalização:

- \neg cod_depto \rightarrow {nome_depto, sigla_depto};
- □ cod_orient → {nome_orient, fone_orient};
- □ nro_aluno → {cod_depto, cod_orient, cod_curso};

Observações adicionais:

- um aluno somente pode estar associado a um departamento;
- um aluno cursa apenas um único curso;
- um aluno somente pode ser orientado por um único orientador.

 aluno (<u>nro_aluno</u>, nome_aluno, {curso (nro_curso, descrição_curso, ano_ingresso, nro_depto, nome_depto)})
 As seguintes dependências funcionais devem ser garantidas na normalização:

- □ nro_aluno → nome_aluno;
- □ nro_curso → descrição_curso;
- □ nro_depto → nome_depto;
- □ {nro_aluno, nro_curso} → ano_ingresso;
- \square nro_curso \rightarrow nro_depto.

Observações adicionais:

- um aluno pode cursar mais do que um curso;
- um curso somente pode ser oferecido por um único departamento.

