Constraining MLP

Suppose the input is a 2-dimensional tensor \mathbf{X} representing an image, and the immediate hidden layer is also a 2-dimensional tensor \mathbf{H} having the same shape as \mathbf{X} , and each element of \mathbf{H} is generated by all pixels of \mathbf{X} , then for each element $[\mathbf{H}]_{i,j}$, we need a 2-dimential weight metrix $\mathbf{W}_{i,j}$, and each $\mathbf{W}_{i,j}$ has the same shape as \mathbf{X} . So in all we need a 4th-ordered weight tensor \mathbf{W} .

In mathematics, suppose ${f U}$ contains biases, we can generate ${f H}$ by:

$$\left[\mathbf{H}
ight]_{i,j} = \left[\mathbf{U}
ight]_{i,j} + \sum_{k} \sum_{l} \left[\mathsf{W}
ight]_{i,j,k,l} \left[\mathbf{X}
ight]_{i,j}$$

If we do some modifications on the above formula, let k = i + a and l = j + b where a and b are offsets that can be both positive and negtive and 0, covering the whole image:

$$[\mathbf{U}]_{i,j} + \sum_a \sum_b [\mathsf{V}]_{i,j,a,b} [\mathbf{X}]_{i+a,j+b}$$

The above formula is like summing over weighted pixels around $[\mathbf{X}]_{i,j}$.

translation invariance

For object recognition task, if we shift an object to another position, we should still be able recognize it. It means, for a CNN doing object recognition, the hidden layers should not rely on its location.

So for the above formula, V and U do not actually depend on (i,j), this only happens when $[V]_{i,j,a,b} = [V]_{a,b}$ and U is a constant. Thus we can simplify the definition of H:

$$[\mathbf{H}]_{i,j} = u + \sum_a \sum_b [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}.$$

And this is convolution. We shrink the scale of ${f V}$ by 2 order.

locality

We should not go to far away from $[\mathbf{X}]_{i,j}$ to assess want is going on at $[\mathbf{H}]_{i,j}$, which means a and b should have a limited range.

So we can rewrite the definition of $[\mathbf{H}]_{i,j}$ as

$$[\mathbf{H}]_{i,j} = u + \sum_{a=-\Delta}^{\Delta} \sum_{b=-\Delta}^{\Delta} [\mathbf{V}]_{a,b} [\mathbf{X}]_{i+a,j+b}$$

And this is a convolutional layer. ${f V}$ is the convolution kernel.