Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Cancelled).

2. (Currently Amended) A compound represented by formula [2]

fFormula 21

$$X^3$$
 X^4
 F
 F
 F
 X^8
 X^9
 X^2
 X^1
 F
 F
 F
 F
 X^8
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted annual group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9

is bonded to \mathbf{X}^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

3. (Currently Amended) A compound represented by Formula [3]

{Formula 3}

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{2}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

Claim 4 (Cancelled).

5. (Currently Amended) A method of producing a compound represented by formula [13]

{Formula 7}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group), comprising the step of

producing a compound represented by formula [13] by reacting a compound represented by formula [11]

[Formula 5]

$$X^3$$
 X^4
OH O
 X^3
 X^4
OH O
 X^3
 X^4
OH O
 X^3

(wherein X^1 , X^2 , X^3 , and X^4 represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or

unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group) with a compound represented by formula [12]

[Formula 6]

(wherein X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) in the presence of a Lewis acid.

6. (Original) The production method according to claim 5, wherein the Lewis acid comprises aluminum chloride.

7. (Currently Amended) A method of producing a compound represented by formula [14]

[Formula 9]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [14] by reacting a compound represented by formula [13]

[Formula 8]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

8. (Currently Amended) A method of producing a compound represented by formula [15]

{Formula 11}

$$X^{3}$$
 X^{4}
 F
 F
 O
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [15] by reacting a compound represented by formula [13]

[Formula 8]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9

is bonded to \mathbf{X}^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

9. (Currently Amended) A method of producing a compound represented by formula [14]

{Formula 13}

$$X^{3}$$
 X^{4}
 X^{7}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [15]), comprising the step of

producing a compound represented by formula [14] by reacting a compound represented by formula [15]

{Formula 12}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a

monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

10. (Currently Amended) A method of producing a compound represented by formula [16]

[Formula 15]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [13]), comprising the step of

producing a compound represented by formula [16] by reacting a compound represented by formula [13]

[Formula 14]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted annual group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and

may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

- 11. (Original) The production method according to any of claims 7 to 10, wherein the fluorinating agent comprises sulfur tetrafluoride.
- 12. (Currently Amended) A method of producing a compound represented by formula [2]

[Formula 17]

$$X^{3}$$
 X^{4}
 F
 F
 F
 F
 X^{8}
 X^{9}
 X^{2}
 X^{1}
 F
 F
 F
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [14]), comprising the step of

producing a compound represented by formula [2] by reacting a compound represented by formula [14]

{Formula 16}

$$X^{3}$$
 X^{4}
 X^{4}
 X^{5}
 X^{7}
 X^{1}
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{1}
 X^{1}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{1}
 X^{2}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{1}
 X^{2}
 X^{3}
 X^{4}
 X^{2}
 X^{3}
 X^{4}
 X^{5}
 X^{5

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent.

13. (Currently Amended) A method of producing a compound represented by formula [2]

[Formula 19]

$$X^{3}$$
 X^{4}
 F
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} are defined as for formula [16]), comprising the step of

producing a compound represented by formula [2] by reacting a compound represented by formula [16]

{Formula 18}

$$X^{3}$$
 X^{4}
 F
 F
 F
 F
 F
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent.

- 14. (Original) The production method according to claim 12 or 13, wherein the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof.
- 15. (Currently Amended) A compound represented by formula [13]

{Formula 20}

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

16. (Currently Amended) A compound represented by formula [14]

[Formula 21]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted annual group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a

monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

17. (Currently Amended) A compound represented by formula [15]

[Formula 22]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted or anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

18. (Currently Amended) A compound represented by formula [16]

[Formula 23]

(wherein X^1 , X^2 , X^3 , X^4 , X^8 , X^9 , X^{10} , and X^{11} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anaphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

19. (Currently Amended) A method of producing a compound represented by formula [22]

[Formula 25]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{15}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} are defined as for formula [21]), comprising the step of

producing a compound represented by formula [22] by reacting a compound represented by formula [21]

[Formula 24]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

20. (Currently Amended) A method of producing a compound represented by formula [23]

{Formula 27}

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} are defined as for formula [21]), comprising the step of

producing a compound represented by formula [23] by reacting a compound represented by formula [21]

[Formula 26]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
[21]

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

21. (Currently Amended) A method of producing a compound represented by formula [22]

[Formula 29]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} are defined as for formula [23]), comprising the step of

producing a compound represented by formula [22] by reacting a compound represented by formula [23]

[Formula 28]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

22. (Original) The production method according to any of claims 19 to 21, wherein the fluorinating agent comprises sulfur tetrafluoride.

23. (Currently Amended) A method of producing a compound represented by formula [3]

{Formula 31}

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} are defined as for formula [22]), comprising the step of

producing a compound represented by formula [3] by reacting a compound represented by formula [22]

[Formula 30]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to

 \mathbf{X}^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent.

- 24. (Original) The production method according to claim 23, wherein the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof.
- 25. (Currently Amended) A compound represented by formula [22]

[Formula 32]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

26. (Currently Amended) A compound represented by formula [23]

[Formula 33]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{7}
 X^{8}
 X^{9}
 X^{1}
 X^{14}
 X^{14}
 X^{12}
 X^{11}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^5 , X^7 , X^8 , X^9 , X^{10} , X^{11} , X^{12} , and X^{14} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).

27. (Currently Amended) A method of producing a compound represented by formula [32]

{Formula 35}

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} are defined as for formula [31]), comprising the <u>stepmethod</u> of

producing a compound represented by formula [32] by reacting a compound represented by formula [31]

[Formula 34]

$$X^{3}$$
 X^{4}
 X^{6}
 X^{6}
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{11}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

28. (Currently Amended) A method of producing a compound represented by formula [33]

[Formula 37]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} are defined as for formula [31]), comprising the <u>stepmethod</u> of

producing a compound represented by formula [33] by reacting a compound represented by formula [31]

[Formula 36]

$$X^{3}$$
 X^{4}
 X^{6}
 X^{6}
 X^{6}
 X^{7}
 X^{10}
 X^{10}
[31]

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to

 X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

29. (Currently Amended) A method of producing a compound represented by formula [32]

[Formula 39]

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} are defined as for formula [33]), comprising the <u>stepmethod</u> of

producing a compound represented by formula [32] by reacting a compound represented by formula [33]

[Formula 38]

$$X^{3}$$
 X^{4}
 X^{5}
 X^{6}
 X^{7}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or

different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a fluorinating agent.

- 30. (Original) The production method according to any of claims 27 to 29, wherein the fluorinating agent comprises sulfur tetrafluoride.
- 31. (Currently Amended) A method of producing a compound represented by formula [4]

[Formula 41]

$$X^{3}$$
 X^{4}
 F
 X^{6}
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} are defined as for formula [32]), comprising the <u>stepmethod</u> of

producing a compound represented by formula [4] by reacting a compound represented by formula [32]

[Formula 40]

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 F
 X^{8}
 X^{9}
 X^{2}
 X^{1}
 F
 F
 X^{13}
 F
 F
 X^{11}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group) with a reducing agent.

32. (Original) The production method according to claim 31, wherein the reducing agent comprises zinc, iron, copper, nickel, palladium, or a combination thereof.

Claim 33 (Cancelled).

34. (Currently Amended) A compound represented by formula [32]

[Formula 43]

$$X^{3}$$
 X^{4}
 F
 F
 X^{6}
 F
 F
 X^{8}
 X^{9}
 X^{10}
 X^{10}
 X^{10}

(wherein X^1 , X^2 , X^3 , X^4 , X^6 , X^8 , X^9 , X^{10} , X^{11} , and X^{13} represent fluorine, hydrogen, a substituted or unsubstituted C_{1-8} alkyl group, a substituted or unsubstituted phenyl group, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted anthracenyl group, or a substituted or unsubstituted naphthacenyl group, or a substituted or unsubstituted pentacenyl group, and may be the same or different; or X^2 is bonded to X^3 to form a monocyclic or condensed polycyclic hydrocarbon group and/or X^9 is bonded to X^{10} to form a monocyclic or condensed polycyclic hydrocarbon group).