SLLS101B - JULY 1985 - REVISED JUNE 1999

- Bidirectional Transceivers
- Meet or Exceed the Requirements of ANSI Standards TIA/EIA-422-B and TIA/EIA-485-A and ITU Recommendations V.11 and X.27
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- 3-State Driver and Receiver Outputs
- Individual Driver and Receiver Enables
- Wide Positive and Negative Input/Output Bus Voltage Ranges
- Driver Output Capability . . . ±60 mA Max
- Thermal Shutdown Protection
- Driver Positive and Negative Current Limiting
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operate From Single 5-V Supply

D OR P PACKAGE (TOP VIEW) R 1 8 V_{CC} RE 2 7 B DE 3 6 A D 4 5 GND

description

The SN65176B and SN75176B differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus transmission lines. They are designed for balanced transmission lines and meet ANSI Standards TIA/EIA-422-B and TIA/EIA-485-A and ITU Recommendations V.11 and X.27.

The SN65176B and SN75176B combine a 3-state differential line driver and a differential input line receiver, both of which operate from a single 5-V power supply. The driver and receiver have active-high and active-low enables, respectively, that can be connected together externally to function as a direction control. The driver differential outputs and the receiver differential inputs are connected internally to form differential input/output (I/O) bus ports that are designed to offer minimum loading to the bus when the driver is disabled or $V_{CC} = 0$. These ports feature wide positive and negative common-mode voltage ranges, making the device suitable for party-line applications.

The driver is designed for up to 60 mA of sink or source current. The driver features positive and negative current limiting and thermal shutdown for protection from line-fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The receiver features a minimum input impedance of 12 k Ω , an input sensitivity of ± 200 mV, and a typical input hysteresis of 50 mV.

The SN65176B and SN75176B can be used in transmission-line applications employing the SN75172 and SN75174 quadruple differential line drivers and SN75173 and SN75175 quadruple differential line receivers.

The SN65176B is characterized for operation from -40° C to 105° C and the SN75176B is characterized for operation from 0° C to 70° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Function Tables

DRIVER

INPUT	ENABLE	OUTI	PUTS
D	DE	Α	В
Н	Н	Н	L
L	Н	L	Н
Х	L	Z	Z

RECEIVER

DIFFERENTIAL INPUTS A-B	EN <u>AB</u> LE RE	OUTPUT R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{1D} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 V$	L	L
X	Н	Z
Open	L	?

H = high level, L = low level, ? = indeterminate,

logic symbol†

logic diagram (positive logic)

X = irrelevant, Z = high impedance (off)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	\ldots –10 V to 15 V
Enable input voltage, V _I	5.5 V
Package thermal impedance, θ _{JA} (see Note 2): D package	197°C/W
P package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	
Storage temperature range, T _{stg}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential input/output bus voltage, are with respect to network ground terminal.

recommended operating conditions

		MIN	TYP	MAX	UNIT
Supply voltage, V _{CC}			5	5.25	V
Voltage at any bus terminal (separately or common mode), V _I or V _{IC}				12	V
				-7	V
High-level input voltage, V _{IH}	D, DE, and RE	2			V
Low-level input voltage, V _{IL}	D, DE, and RE			0.8	V
Differential input voltage, V _{ID} (see Note 3)	-			±12	V
High level output ourroot I	Driver			-60	mA
High-level output current, I _{OH}	Receiver			-400	μΑ
Low lovel output ourrent lov	Driver			60	A
Low-level output current, IOL	Receiver			8	mA
On exercises from a circumstance of the	SN65176B	-40		105	00
Operating free-air temperature, T _A	SN75176B	0		70	°C

NOTE 3: Differential-input/output bus voltage is measured at the noninverting terminal A with respect to the inverting terminal B.

^{2.} The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONI	DITIONS†	MIN	TYP‡	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
٧o	Output voltage	I _O = 0		0		6	V
V _{OD1}	Differential output voltage	I _O = 0		1.5	3.6	6	V
Vod2	Differential output voltage	R _L = 100 Ω,	See Figure 1	1/2 V _{OD1} or 2¶			V
		$R_L = 54 \Omega$,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See Note 4		1.5		5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			+3 -1	٧
Δ V _{OC}	Change in magnitude of common-mode output voltage§]			±0.2	V
l-	Output ourment	Output disabled,	V _O = 12 V			1	mA
10	Output current	See Note 5	V _O = -7 V			-0.8	IIIA
lιΗ	High-level input current	V _I = 2.4 V				20	μА
I _{IL}	Low-level input current	V _I = 0.4 V				-400	μА
		V _O = -7 V				-250	
1	Short-circuit output current	V _O = 0				150	mA
los		$V_O = V_{CC}$				250	mA
		V _O = 12 V				250	
loo	Supply current (total package)	No load	Outputs enabled		42	70	mA
ICC	Supply current (total package)	INU IUdu	Outputs disabled		26	35	IIIA

[†] The power-off measurement in ANSI Standard TIA/EIA-422-B applies to disabled outputs only and is not applied to combined inputs and outputs. ‡ All typical values are at $V_{CC} = 5 \text{ V}$ and $T_A = 25^{\circ}\text{C}$.

NOTES: 4. See ANSI Standard TIA/EIA-485-A, Figure 3.5, Test Termination Measurement 2.

switching characteristics, V_{CC} = 5 V, R_L = 110 k Ω , T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
t _d (OD)	Differential-output delay time	Pt = 54.0 Soc	Figure 2		15	22	ns
t _t (OD)	Differential-output transition time	$R_L = 54 \Omega$, See Figure 3			20	30	ns
^t PZH	Output enable time to high level	See Figure 4			85	120	ns
tPZL	Output enable time to low level	See Figure 5			40	60	ns
tPHZ	Output disable time from high level	See Figure 4			150	250	ns
tPLZ	Output disable time from low level	See Figure 5			20	30	ns

^{§ ∆|}VOD| and ∆|VOC| are the changes in magnitude of VOD and VOC, respectively, that occur when the input is changed from a high level to a low

 $[\]P$ The minimum $V_{\mbox{OD2}}$ with a 100- Ω load is either 1/2 $V_{\mbox{OD1}}$ or 2 V, whichever is greater.

^{5.} This applies for both power on and off; refer to ANSI Standard TIA/EIA-485-A for exact conditions. The TIA/EIA-422-B limit does not apply for a combined driver and receiver terminal.

SLLS101B - JULY 1985 - REVISED JUNE 1999

SYMBOL EQUIVALENTS

DATA-SHEET PARAMETER	TIA/EIA-422-B	TIA/EIA-485-A
Vo	V _{oa} , V _{ob}	V _{oa,} V _{ob}
IVOD1I	Vo	V _O
IV _{OD2} I	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
IVOD3I		V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
∆ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	$ I_{Sa} , I_{Sb} $	
lo	$ I_{xa} , I_{xb} $	I _{ia} , I _{ib}

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST C	ONDITIONS	MIN	TYP†	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$V_0 = 2.7 V$,	$I_{O} = -0.4 \text{ mA}$			0.2	V
V _{IT} _	Negative-going input threshold voltage	$V_0 = 0.5 V$,	I _O = 8 mA	-0.2‡			V
V _{hys}	Input hysteresis voltage (V _{IT+} - V _{IT-})				50		mV
VIK	Enable Input clamp voltage	I _I = -18 mA				-1.5	V
Vон	High-level output voltage	V _{ID} = 200 mV, See Figure 2	$I_{OH} = -400 \mu A,$	2.7			V
VOL	Low-level output voltage	V _{ID} = -200 mV, See Figure 2	I _{OL} = 8 mA,			0.45	V
loz	High-impedance-state output current	V _O = 0.4 V to 2.4 V		T		±20	μΑ
ΙΙ	Line input current	Other input = 0 V, See Note 6	$V_{I} = 12 \text{ V}$ $V_{I} = -7 \text{ V}$			1 -0.8	mA
lін	High-level enable input current	V _{IH} = 2.7 V				20	μΑ
I _{IL}	Low-level enable input current	V _{IL} = 0.4 V				-100	μΑ
rį	Input resistance	V _I = 12 V		12			kΩ
los	Short-circuit output current			-15		-85	mA
loo	Complete source of (feetal months and	Natard	Outputs enabled		42	55	m A
ICC	Supply current (total package)	No load	Outputs disabled		26	35	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 6: This applies for both power on and power off. Refer to EIA Standard TIA/EIA-485-A for exact conditions.

[‡] The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

SLLS101B - JULY 1985 - REVISED JUNE 1999

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	V _{ID} = 0 to 3 V, See Figure 6		21	35	ns
tPHL	Propagation delay time, high- to low-level output	V _{ID} = 0 t0 3 V, See Figure 6		23	35	ns
^t PZH	Output enable time to high level	See Figure 7		10	20	ns
tPZL	Output enable time to low level	See Figure 7		12	20	ns
tPHZ	Output disable time from high level	See Figure 7		20	35	ns
tPLZ	Output disable time from low level	See Figure 7		17	25	ns

PARAMETER MEASUREMENT INFORMATION

Figure 1. Driver V_{OD} and V_{OC}

TEST CIRCUIT

Figure 2. Receiver $V_{\mbox{OH}}$ and $V_{\mbox{OL}}$

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{f} \leq$ 6 ns, $t_{O} = 50 \Omega$.

Figure 3. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\Gamma} \leq$ 6 ns, $t_{\Gamma} \leq$ 8 ns, $t_{\Gamma} \leq$ 9 ns, $t_{\Gamma} \leq$

Figure 4. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_I includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.

Figure 5. Driver Test Circuit and Voltage Waveforms

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.

Figure 6. Receiver Test Circuit and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. C_L includes probe and jig capacitance.

B. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 6 ns, $Z_O = 50 \Omega$.

Figure 7. Receiver Test Circuit and Voltage Waveforms

DRIVER

TYPICAL CHARACTERISTICS

LOW-LEVEL OUTPUT VOLTAGE **LOW-LEVEL OUTPUT CURRENT** 5 $V_{CC} = 5 V$ 4.5 T_A = 25°C VoL - Low-Level Output Voltage - V 4 3.5 3 2.5 2 1.5 1 0.5 0 0 20 40 60 80 100 120 I_{OL} – Low-Level Output Current – mA

Figure 8

Figure 9

DRIVER DIFFERENTIAL OUTPUT VOLTAGE

Figure 10

TYPICAL CHARACTERISTICS

Figure 11

RECEIVER

LOW-LEVEL OUTPUT VOLTAGE LOW-LEVEL OUTPUT CURRENT 0.6 $V_{CC} = 5 V$ T_A = 25°C Vol - Low-Level Output Voltage - V 0.5 0.4 0.3 0.2 0.1 0 0 5 15 10 20 25 30 IOL - Low-Level Output Current - mA

Figure 13

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE†

 † Only the 0°C to 70°C portion of the curve applies to the SN75176B.

Figure 12

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Figure 14

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

NOTE A: The line should be terminated at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 17. Typical Application Circuit

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated