霍尔效应

2024年6月12日

摘要

霍尔效应具有广泛的运用。本实验通过对霍尔元件参量的测量,了解了霍尔效应的原理 及相关参数的测量方式,并掌握了利用霍尔元件测试磁感应强度的办法,并进一步研究了半 导体元件的磁电阻效应。

1 霍尔元件的输出电压与输入电流

1.1 原理

霍尔电压与有关参数有如下关系: $U_H = R_H \frac{IB}{d} = K_H$,其中, R_H 为霍尔系数, K_H 为霍尔片的灵敏度。在测量时会产生一些副效应,我们通过测量不同磁场方向和不同电流方向下的 B,I 来消除副效应。具体的实现方法是测量 $U_1(+B,+I)$, $U_2(+B,-I)$, $U_3(-B,-I)$, $U_4(-B,+I)$,可推导: $U_H = \frac{1}{4}(U_1 - U_2 + U_3 - U_4)$ 。在霍尔元件中,霍尔电压的产生是由于磁场作用下载流子受洛伦兹力作用而迁移,故载流子浓度十分重要。可推导有: $R_H = \frac{1}{ne}$,其中 n 为载流子浓度。

1.2 实验过程及数据分析

按原理部分,通过多次改变磁场与电流方向测量来减少副效应的影响。实验进行中,保持激励电流 $I_M = 500mA$,我们通过开关使电流反向从而达到让磁场和电流反向的效果。测量多组数据,结果见附表 1。根据原理的描述,计算 U_H 并将其与 I 进行线性拟合,结果如下图:

图 1: 输出电压与输入电流的关系

得到斜率为 22.514,有标准差 0.121。由于本仪器 $I_M = 500mA$ 时,B = 127.1mT。故可计算得到: $K_H = 177.138V \cdot (A \cdot T)^{-1}$ (注:单位为伏每安特斯拉)。进一步进行不确定度分析,认为 B 的不确定度为 0,则 K_H 的相对不确定度 $U_{K_H} = 0.53\%$ 。根据原理,我们还可以得到霍尔系数 $R_H = 5.314 \times 10^{-4} m \cdot V \cdot (A \cdot T)^{-1}$ 以及载流子浓度 $n = 1.174 \times 10^{22} m^{-3}$ 。另外,由方向关系可知,霍尔元件的载流子是是电子而不是空穴。

最终我们消除了 U_0 。但是有的时候,我们需要测定不等位效应 U_0 。由于 U_0 源于材料的不均匀等原因,其并不会随着电流或磁场方向反转而反转。故只需要比较正向和反向电流测定的霍尔电压,正向与方向磁场测定的霍尔电压,就可以计算出 U_0 。

2 激励电流与磁极间磁场的关系

另外一个重要的关系式是激励电流与磁极间磁场的关系,这是另一种获得磁场的方法。 前面我们已经得到了一种测定磁场的方法。我们保持工作电流 I = 4.00mA,改变 I_M ,测定 相应的 B,结果如附表 2。画图,观察到数据呈线性,进行拟合,如下图:

图 2: 激励电流与磁极间磁场的关系

最终结果为斜率 k=0.0002533,截距为 0.0002971T,由于磁感应强度的量级在 0.01T 到 0.20T 左右,截距相比起来很小,近似认为截距为零,此时就有关系式: I=4.00mA 时, $B=0.0002533I_M$ (式中 I_M 的单位为 mA,B 的单位为 T)。

3 磁极间隙水平方向磁场的分布曲线

有了前述的测量磁感应强度的方法,我们可以测量磁极间隙水平方向磁场的分布曲线。保持工作电流 I=4.00mA,激励电流 $I_M=500mA$,不断移动霍尔元件的水平位置,按照上述的方法测量并计算出磁场。测量数据如附表 3。计算后画图,得到下面的磁感应强度分布图:

图 3: 磁极间隙水平方向磁场的分布曲线

图中灰色虚线为 $I_M = 500mA$ 时实验室给出的磁感应强度。由图可知, 磁场在电磁铁中间较为稳定, 实验室给出的磁感应强度便是从这里测出来的。在电磁铁的边界处磁感应强度迅速衰减, 这是一个很自然的物理图像。

4 计算载流子迁移率

4.1 原理

载流子在磁场中受到洛仑兹力的作用,在磁场和电场下漂移,形成电流。在电场下,载流子的平均漂移速度 v 与电场强度 E 成正比,比例系数就是载流子迁移率。经过推导,有:载流子迁移率 $\mu = \frac{K_H \Pi}{bU}$,其中 l 沿外加电流方向,b 垂直于外加电流与磁场方向。

4.2 实验过程及数据分析

与上面类似,进行测量,不过需要测量知道工作电流正向方向的电压。I=4.00mA, $I_M=500mA$,工作电流正向方向电压 U=3.005V。 K_H 采用前面的计算数据,最终带入得 到 $\mu=0.7074kg^{-1}sC$

5 锑化铟磁阻元件的磁电阻效应

5.1 原理

在一定条件下,导电材料的电阻在外加磁场中发生变化的现象称为磁电阻效应。设磁阻器件在零磁场时电阻及电阻率分别为 R(0), $\rho(0)$, 磁场为 B 时电阻及电阻率分别为 R(B), $\rho(B)$ 。 通常以电阻率的相对改变量 $\Delta\rho/\rho(0)$ 表示磁阻, $\Delta\rho=\rho(B)-\rho(0)$, 而 $\Delta R/R(0)\propto\Delta/\rho(0)$, 其中 $\Delta R=R(B)-R(0)$ 。 为看到磁阻的变化,只需做出 $\Delta R/R(0)$ 与 B 的关系曲线即可。

5.2 实验过程及数据分析

使用锑化铟作为研究对象。其中的 AB 端短路,CD 端外加恒流。为测 R_0 ,先空载,电流 $I_{CD}=1.50mA$,电压 U=0.5274V。随后测定不同磁场下的锑化铟电压来计算阻值。通过调控 I_M 调控磁场。(在前面我们已经计算出了 I_M 与 B 的关系式)测量数据如附表 4。画出 $\Delta R/R(0)$ 与 B 的关系曲线,如下图:

图 4: ΔR/R(0) 与 B 的关系曲线

可看出,有明显的磁电阻效应。且由线性部分和非线性部分组成。磁场较弱时为非线性区,较强时为线性区。

A 附录

所有原始数据列在了下面的表格中: (表格内容与电子化原始数据截图一致,故不列出截图)

I(mA)	$U_1(mV)$	$U_2(mV)$	$U_3(mV)$	$U_4(mV)$
2.00	46.0	-45.9	44.6	-44.5
3.00	69.1	-68.9	66.8	-66.6
4.00	92.3	-92.0	89.2	-88.8
5.00	115.2	-114.7	111.3	-110.7
6.00	138.2	-137.6	133.5	-132.8
7.00	161.2	-160.3	155.6	-154.6
8.00	184.1	-183.0	177.8	-176.5

表 附表 1: 输出电压与输入电流的关系

$I_m(mA)$	$U_1(mV)$	$U_2(mV)$	$U_3(mV)$	$U_4(mV)$
20	5.7	-5.4	1.8	-1.6
100	19.8	-19.5	16.8	-16.5
200	37.6	-37.3	34.8	-34.5
300	55.7	-55.4	52.8	-52.5
400	73.9	-73.6	71.0	-70.6
500	91.6	-91.3	89.0	-88.6
600	109.5	-109.2	106.8	-106.4
700	127.3	-127.0	124.7	-124.3
800	145.1	-144.7	142.5	-142.0

表 附表 2: 激励电流与磁极间磁场的关系

x(cm)	$U_1(mV)$	$U_2(mV)$	$U_3(mV)$	$U_4(mV)$
5.14	48.5	-48.2	45.8	-45.5
5.00	51.7	-51.4	48.6	-48.3
4.80	68.1	-67.8	65.0	-64.6
4.60	84.5	-84.2	81.3	-81.0
4.55	87.6	-87.3	84.4	-84.1
4.30	91.7	-91.4	88.6	-88.2
4.04	92.3	-91.9	89.1	-88.8
3.56	92.2	-91.9	89.0	-88.7
2.67	92.0	-91.7	88.9	-88.5
2.05	91.9	-91.6	88.7	-88.4
1.50	91.7	-91.4	88.6	-88.2
1.00	90.3	-90.0	87.2	-86.8
0.80	85.9	-85.5	82.7	-82.4
0.60	72.4	-72.1	69.2	-68.9
0.40	55.1	-54.8	51.9	-51.6
0.20	42.6	-42.3	39.5	-39.2

表 附表 3: 磁极间隙水平方向磁场的分布

T (A)	T7/T7)
$I_M(mA)$	U(V)
50	0.5393
100	0.5677
150	0.6142
200	0.6591
250	0.7091
300	0.7446
350	0.7676
400	0.7881
500	0.8268
600	0.8642
700	0.8977
800	0.9300
900	0.9625
1000	0.9959

表 附表 4: $\Delta R/R(0)$ 与 B 的关系曲线的测量数据