

LECTURE 9 OF 42

Game Tree Search: Minimax and Alpha-Beta $(\alpha - \beta)$ Pruning

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Section 7.1 – 7.4, p. 194 - 210, Russell & Norvig 2^{nd} edition

Outside reference:

University of Alberta GAMES page - http://www.cs.ualberta.ca/~games/

ION SCIENCES

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 9 OF 42

LECTURE OUTLINE

- Reading for Next Class: 7.1 7.4 (p. 194 210), R&N 2^e
- Last Class, 5.4-5.5, p. 151-158; Games Intro, 6.1-6.3, p. 161-174
 - * Third CSP algorithm: constraint propagation by arc consistency (AC-3)
 - * "One-step" vs. "all-steps" lookahead
- Today: Game Tree Search
 - * Rudiments of game theory
 - * Minimax with alpha-beta (α β) pruning
 - * Perfect information vs. imperfect information
- Need for Expectiminimax
 - * Games of chance: dealing with nondeterminism
 - * Imperfect information
- Game Analysis
 - * Quiescence
 - * Horizon effect
 - * "Averaging over clairvoyance" and when/why it fails
- Next Class: From Search to Knowledge Representation

MINIMAX WITH α - β PRUNING — ALGORITHM: REVIEW

```
 \begin{array}{l} {\rm function~ALPHa\text{-}BETa\text{-}DECISION}(state)~{\rm returns~an~action} \\ {\rm return~the}~a~{\rm in~ACTIONS}(state)~{\rm maximizing~MIN\text{-}Value}({\rm RESULT}(a,state)) \end{array}
```

```
function Max-Value (state, \alpha, \beta) returns a utility value inputs: state, current state in game \alpha, \text{ the value of the best alternative for} \quad \text{MAX along the path to } state \beta, \text{ the value of the best alternative for} \quad \text{MIN along the path to } state if Terminal-Test(state) then return Utility(state) v \leftarrow -\infty for a, s in Successors(state) do
```

 $v \leftarrow -\infty$ for a, s in Successors(state) do $v \leftarrow \text{Max}(v, \text{Min-Value}(s, \alpha, \beta))$ if $v \geq \beta$ then return v $\alpha \leftarrow \text{Max}(\alpha, v)$ return v

function MIN-VALUE(state, α , β) returns a utility value same as MAX-VALUE but with roles of α , β reversed

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

ECTURE 9 OF 42

WHY IS IT CALLED $\alpha - \beta$?

 α is the best value (to MAX) found so far off the current path If V is worse than α , MAX will avoid it \Rightarrow prune that branch Define β similarly for MIN

Figure 6.6 p. 169 R&N 2e

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES
KANSAS STATE UNIVERSITY

DEPTH LIMIT RATIONALE: REVIEW

Pruning does not affect final result

Good move ordering improves effectiveness of pruning

With "perfect ordering," time complexity = $O(b^{m/2})$ \Rightarrow doubles solvable depth

A simple example of the value of reasoning about which computations are relevant (a form of metareasoning)

Unfortunately, 35^{50} is still impossible!

- Can We Do Better?
- Idea: Adapt Resource-Bounded Heuristic Search Techniques
 - * Depth-limited
 - * Iterative deepening
 - * Memory-bounded

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 330 / 730 Artificial Intelligence LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES

RESOURCE LIMITS AND LIMITED-PLY SEARCH

Standard approach:

- Use CUTOFF-TEST instead of TERMINAL-TEST e.g., depth limit (perhaps add quiescence search)
- Use EVAL instead of UTILITY

i.e., evaluation function that estimates desirability of position

Suppose we have 100 seconds, explore 10^4 nodes/second

- $\Rightarrow 10^6$ nodes per move $\approx 35^{8/2}$
- $\Rightarrow \alpha \beta$ reaches depth 8 \Rightarrow pretty good chess program

Based on slide © 2004 S. Russell & P. Norvig. Reused with permission.

Black to move

White slightly better

White to move

Black winning

For chess, typically linear weighted sum of features

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

e.g., $w_1 = 9$ with

Figure 6.8 p. 173 R&N 2e

 $f_1(s) =$ (number of white queens) – (number of black queens), etc.

QUIESCENCE AND THE HORIZON EFFECT

Issues

- * Quiescence
 - ⇒ Play has "settled down"
 - ⇒ Evaluation function unlikely to exhibit wild swings in value in near future
- * Horizon effect
 - ⇒ "Stalling for time"
 - ⇒ Postpones inevitable win or damaging move by opponent
 - ⇒ See: Figure 6.9, p. 175 R&N 2e

Solutions?

- * Quiescence search: expand non-quiescent positions further
- * No general solution to horizon problem at present

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 330 / 730 Artificial Intelligence LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES

KANSAS STATE I INVERSITY

DETERMINISTIC GAMES IN PRACTICE

Checkers: Chinook ended 40-year-reign of human world champion Marion Tinsley in 1994. Used an endgame database defining perfect play for all positions involving 8 or fewer pieces on the board, a total of 443,748,401,247 positions.

Chess: Deep Blue defeated human world champion Gary Kasparov in a six-game match in 1997. Deep Blue searches 200 million positions per second, uses very sophisticated evaluation, and undisclosed methods for extending some lines of search up to 40 ply.

Othello: human champions refuse to compete against computers, who are too good.

Go: human champions refuse to compete against computers, who are too bad. In go, b>300, so most programs use pattern knowledge bases to suggest plausible moves.

NONDETERMINISTIC GAMES: BACKGAMMON

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCE
KANSAS STATE LINIVERSE

NONDETERMINISTIC GAMES IN GENERAL

In nondeterministic games, chance introduced by dice, card-shuffling Simplified example with coin-flipping:

© 2004 S. Russell & P. Norvig. Reused with permission.

6

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES
KANSAS STATE I INVERSITY

EXPECTIMINIMAX: ALGORITHM FOR NONDETERMINISTIC GAMES

EXPECTIMINIMAX gives perfect play

Just like $\operatorname{Minimax}$, except we must also handle chance nodes:

. . .

if state is a MAX node then

 ${\bf return} \ {\bf the} \ {\bf highest} \ {\bf EXPECTIMINIMAX-VALUE} \ {\bf of} \ {\bf SUCCESSORS} ({\it state}) \\ {\bf if} \ {\it state} \ {\bf is} \ {\bf a} \ {\bf MIN} \ {\bf node} \ {\bf then} \\$

return the lowest EXPECTIMINIMAX-VALUE of SUCCESSORS(state) if state is a chance node then

return average of ExpectiMinimax-Value of Successors(state)

. . .

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence ECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES

NONDETERMINISTIC GAMES IN PRACTICE

Dice rolls increase b: 21 possible rolls with 2 dice Backgammon \approx 20 legal moves (can be 6,000 with 1-1 roll)

depth
$$4=20\times(21\times20)^3\approx1.2\times10^9$$

As depth increases, probability of reaching a given node shrinks \Rightarrow value of lookahead is diminished

 $\alpha\text{--}\beta$ pruning is much less effective

TDGAMMON uses depth-2 search + very good $EVAL \approx world$ -champion level

Figure 6.12 p. 178 R&N 2e

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 ARTIFICIAL INTELLIGENCE ECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCE

GAMES OF IMPERFECT INFORMATION [1]: SOLUTION APPROACH

E.g., card games, where opponent's initial cards are unknown

Typically we can calculate a probability for each possible deal

Seems just like having one big dice roll at the beginning of the game*

Idea: compute the minimax value of each action in each deal, then choose the action with highest expected value over all deals*

Special case: if an action is optimal for all deals, it's optimal.*

GIB, current best bridge program, approximates this idea by

- 1) generating 100 deals consistent with bidding information
- 2) picking the action that wins most tricks on average

COMMONSENSE EXAMPLE [1]: STATEMENT

Day 1 Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll find a mound of jewels; take the right fork and you'll be run over by a bus.

Day 2 Road A leads to a small heap of gold pieces Road B leads to a fork:

take the left fork and you'll be run over by a bus; take the right fork and you'll find a mound of jewels.

Day 3
Road A leads to a small heap of gold pieces
Road B leads to a fork:

guess correctly and you'll find a mound of jewels; guess incorrectly and you'll be run over by a bus.

Adapted from slides © 2004 S. Russell & P. Norvig. Reused with permission.

COMMONSENSE EXAMPLE [2]: PROPER ANALYSIS

* Intuition that the value of an action is the average of its values in all actual states is **WRONG**

With partial observability, value of an action depends on the information state or belief state the agent is in

Can generate and search a tree of information states

Leads to rational behaviors such as

- ♦ Acting to obtain information
- ♦ Signalling to one's partner
- ♦ Acting randomly to minimize information disclosure

© 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730 Artificial Intelligence LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES

GAMES: SUMMARY

Games are fun to work on! (and dangerous)

They illustrate several important points about AI

- ♦ perfection is unattainable ⇒ must approximate
- good idea to think about what to think about
- uncertainty constrains the assignment of values to states
- ♦ optimal decisions depend on information state, not real state

Games are to AI as grand prix racing is to automobile design

© 2004 S. Russell & P. Norvig. Reused with permission.

JIS 530 / 730 Artificial Intelligence LECTURE 9 OF 42

COMPUTING & INFORMATION SCIENCES
KANSAS STATE I INIVERSITY

TERMINOLOGY

- Game Tree Search
 - * Zero-sum games
 - * 2-player vs. n-player
- Minimax Algorithm: Alternates between MAX and MIN Players
- Alpha-Beta Pruning (α-β Pruning)
 - * $\underline{\alpha}$: best value to MAX found so far off current path (v worse than $\alpha \Rightarrow$ prune)
 - * <u>B</u>: best value to MIN found so far off current path
- Resource-Bounded Minimax
 - * Static evaluation function
 - * Limited-ply search (compare: depth-limited search aka DLS)
 - * Iterative deepening search (compare: ID-DFS, IDA*)
- Expectiminimax
 - * Based on expectation
 - * Games with chance
 - * Games with imperfect information

CIS 530 / 730 ARTIFICIAL INTELLIGENCE LECTURE 9 OF 42

COMPUTING & INFORMATI

SUMMARY POINTS

- Game Theory Continued
 - * Game tree representation
 - * Perfect play: Minimax algorithm, speedup with alpha-beta (α-β) pruning
 - * Resource-bounded Minimax: static evaluation functions, iterative deepening
 - * Emphasis: two-player (with exceptions), zero-sum, perfect info
- Alpha-Beta Pruning (α-β Pruning)
- Resource-Bounded Minimax
 - * Need for static evaluation (compare: heuristics)
 - * Limited-ply search (compare: depth-limited search aka DLS)
 - * Iterative deepening search (compare: ID-DFS, IDA*)
- Expectiminimax
 - * Based on expectation
 - * Games with chance
 - * Games with imperfect information
- Significance of Games to Al
 - * Understanding representation, reasoning, and learning
 - * Finding out what approximations, refinements, abstractions work

