Group-16 Elements: Chalcogens

SINGLE CORRECT CHOICE TYPE QUESTIONS

- Which of the following is incorrect regarding O₃?
 - (A) It is an allotrope of oxygen.
 - (B) d_{O-O} is in between that of O₂ and H₂O₂.
 - (C) It is an angular-shaped molecule.
 - (D) It is paramagnetic like O₂.
- 2. Fluidity of Hg is lost on reaction with O3 due to the formation of
 - (A) Hg,O
 - (B) Hg₂O₂
 - (C) HgO,
 - (D) HgO
- 3. Dry I, and moist I, on reaction with O, produces compounds A and B, respectively. Then A and B are
 - (A) HIO, and I,Oo
 - (B) I,O, and HIO,
 - (C) HIO, and HIO,
 - (D) HIO, and HIO,
- 4. The compounds of sulphur obtained by reaction of sulphur and conc. hot KOH, when reacted separately with dil. HCl produce
 - (A) different gases, SO, and H,S.
 - (B) the same gas SO₂.
 - (C) sulphur back.
 - (D) the same gas H₂S.

- 5. The best yield of H2O2 is obtained from BaO2 on acidification with which of the following acids?
 - (A) H₂SO₄
 - (B) HNO,
 - (C) H₃PO₄
 - (D) HOCI
- 6. H2O2 is used for detection of Ti4+ ions and the yellow solution obtained has the formula and oxidation state
 - (A) H_2TiO_4 and +6
 - (B) H,TiO, and + 4
 - (C) H2TiO4 and + 4
 - (D) TiSO₄ and + 2
- 7. Which of the following species does not contain S-S linkage?
 - (A) S₂O₂
 - (B) S₂O₃
 - (C) $S_2O_5^2$
 - (D) None of these.

(A) S–O–O–S linkage.

(B) –O–O–linkage.

(D) S-O-S linkage.

(C) S-S linkage.

MULTIPLE CORRECT CHOICE TYPE QUESTIONS

- 1. Oxygen shows several differences from the rest of the elements of the group. This is because
 - (A) it has small size.
 - (B) it has high electronegativity.
 - (C) of the lack of suitable d-orbitals.
 - (D) it can form strong π-bonds.
- 2. The weaker π -bond formation is responsible for the non-existence of which of the following compounds as discrete molecule?
 - (A) CO₂
- (B) CS.
- (C) CSe,
- (D) CTe,
- 6. In which of the following cases, the element is oxidized into its highest oxidation state when it reacted with O₃ under moist conditions?

5. The final product obtained from the electrolysis of

50% H,SO, with high current density has a

- (A) S
- (B) L
- (C) P
- (D) As

- 3. SO, pollution (from coal fired power station) can be
 - (A) passing the flue gas through slurry of Ca(OH)₂.
 - (B) reduction of SO2 into S using H2S and activated Al₂O₃ catalyst.
 - (C) passing through saturated solution of SO₂.
 - (D) passing through acidified KMnO₄ solution.
- 4. Gun powder is a mixture of
 - (A) NaNO,
 - (B) KNO,
 - (C) charcoal powder
 - (D) sulphur

- 7. Which of the following compounds can be used for drying of H2S gas?
 - (A) Conc. H,SO,
 - (B) P₂O₅
 - (C) Fused CaCl,
 - (D) Anhydrous Al₂O₃
- Ozone gas can be absorbed by
 - (A) olive oil.
 - (B) turpentine oil.
 - (C) mustard oil.
 - (D) oil of cinnamon

COMPREHENSION TYPE QUESTIONS

Passage 1: For Questions 1 to 3

Ozone is an allotrope of oxygen. It can be prepared by several methods but always a very small amount of conversion is observed. It forms an important layer in the upper atmosphere as it can absorb UV rays from sun. It is also a powerful oxidizing agent.

- Which of the following substances can cause depletion of O₃ layer?
 - (A) Chlorofluorocarbons
 - (B) Oxides of nitrogen like NO
 - (C) Halogens
 - (D) All of these
- 2. O3 can be prepared by
 - (A) action of silent electric discharge upon O₂ in an ozonizer.
 - (B) UV irradiation of O₂.
 - (C) passing F₂ in water.
 - (D) All of these.
- 3. In which of following cases, the products formed are incorrect considering the oxidizing properties of O₃?
 - (A) $2K_2MnO_4 + O_3 + H_2O \rightarrow 2KMnO_4 + 2KOH + O_3$
 - (B) $2Ag + O_3 \rightarrow Ag_2O + O_2$
 - $(C) SO₂ + O₃ \rightarrow SO₃ + O₂$
 - (D) PbS + $4O_3 \rightarrow PbSO_4 + 4O_2$

Passage 2: For Questions 4 and 5

SO₂ can act as oxidizing agent as well as reducing agent and the major source of obtaining SO₂ is roasting of sulphide ores and by burning sulphur.

SO₂ is very soluble in water; 39 cc of SO₂ gas is dissolved in 1 cc of water. In this solution SO₂ is mostly present as

- (A) H,SO,
- (B) various hydrates like SO₂·6H₂O.
- (C) Both (A) and (B) in equal amount.
- (D) H₂SO₄
- 5. Which of the following statements is incorrect regarding SO₂?
 - (A) It can be detected by turning of moist starch iodate paper blue.
 - (B) It can be estimated calorimetrically by reacting with K₂[HgCl₄] followed by the reaction with the dye pararosanilline.
 - (C) SO₂ can be used to bleach wool and silk.
 - (D) SO₂ reduces FeCl₂ into Fe in strongly acidic medium.

Passage 3: For Questions 6 and 7

Contact process is used to convert SO₂ into SO₃ in the presence of platinum catalyst and the reaction is exothermic.

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = (-)ve$

- Now-a-days a cheaper catalyst is used instead of platinum and that catalyst is
 - (A) V,O, and K,O
 - (B) V2O4 and K2O
 - (C) V2O5 and K2O
 - (D) VO3 and K2O
- During the conversion of SO₃ into H₂SO₄ on commercial scale, the intermediate compound is
 - (A) H₂S₂O₃
 - (B) H,S,O,
 - (C) H₂S₂O₆
 - (D) H,S,O,

ASSERTION-REASONING TYPE QUESTIONS

In the following set of questions, a Statement I is given and a corresponding Statement II is given below it. Mark the correct answer as:

- (A) If both Statement I and Statement II are true and Statement II is the correct explanation of Statement I.
- (B) If both Statement I and Statement II are true but Statement II is not the correct explanation for Statement I
- (C) If Statement I is true but Statement II is false.
- (D) If Statement I is false and Statement II is true.
- Statement I: HNO₃ oxidizes S to H₂SO₄ while Se is oxidized to H₂SeO₃.

Statement II: The presence of ten electrons in 3*d*-subshell, causes poor shielding and finally attracts the outermost electron more strongly for Se.

 Statement I: Conc. H₂SO₄ can be used for drying H₂S gas. Statement II: Conc. H₂SO₄ shows very good dehydrating property.

 Statement I: H₂O₂ can be used as good rocket propellant when mixed with N₂H₄.

Statement II: H_2O_2 and N_2H_4 both exist in the gauche form.

4. Statement I: O3 has a fishy smell.

Statement II: It absorbs red part of the visible light.

 Statement I: In most of the reactions of O₃, O₂ is one of the products formed.

Statement II: Only one O atom comes out easily from O₃ when it undergoes reduction accepting two electrons.

INTEGER ANSWER TYPE QUESTIONS

The answer to each of the following is a non-negative integer.

- The sum of the oxidation states of sulphur atoms in H₂S₂O₅ is _____.
- When SO₂ is dissolved in water, then number of ions that will be in equilibrium is _____.
- The sum of oxidation states of sulphur atoms in H₂S_aO₆ is ______.
- Find the number of reactions, among the following, where H₂O₂ acts as reducing agent.
 - (i) $KMnO_4 + H_2O_2 \xrightarrow{H^+}$
 - (ii) $NaOCl_2 + H_2O_2 \rightarrow$
 - (iii) $H_2S + H_2O_2 \rightarrow$
 - (iv) $K_4[Fe(CN)_6] + H_2O_2 \xrightarrow{H^+}$
 - (v) $C_2O_4^{2-} + H_2O_2 \xrightarrow{Amyl \ alcohol}$

In the following reaction, find the number of d-orbitals involved in bonding of compound A.

$$PCl_5 + SO_2 \rightarrow A + POCl_3$$

- 6. H₂S gas can be dried by how many of the following reagents? Anhydrous CaCl₂, conc. H₂SO₄, P₂O₅, KOH solution, Na,CO₃ solution.
- 7. How many of the following properties increase regularly from H₂O to H₃Te?
 - (i) Acidic strength
 - (ii) Bond angle
 - (iii) Boiling point
 - (iv) Bond length
- The oxidation state of sulphur atom in H₂S₂O₇ is ____.
- 9. The number of lone pairs in O3 molecule is ____.
- The sum of oxidation state of all sulphur atoms in pentathionate ion is ____.

MATRIX-MATCH TYPE QUESTIONS

In each of the following questions, statements are given in two columns, which have to be matched. The statements in Column I are labelled as (A), (B), (C) and (D), while those in Column II are labelled as (P), (Q), (R), (S) and (T). Any given statement in Column I can have correct matching with *one or more* statements in Column II.

1. Match the compounds with their uses.

Column I	Column II
(A) O ₃	(P) Very good fluorinating agent.
(B) H ₂ O ₂	(Q) Used for preparing mustard gas.
(C) SF ₄	(R) Used as rocket fuel.
(D) SCl ₂	(S) Used to purify drinking water.

Match the compounds with the correct statement about them.

Column I	Column II
(A) 7-SO ₃	(P) Consists of S-O-S linkage.
(B) Na ₂ S ₄ O ₆	(Q) S is in the maximum oxidation state.

Column I	Column II
(C) Caro's acid (H ₂ SO ₅)	(R) Peroxy linkage is present.
(D) Oleum (H ₂ S ₂ O ₇)	(S) S-S linkage is present.
	(T) It is not a ring system.

3. Match the compounds with their properties.

Colu	mn I	Column II
(A)	O_3	(P) Acts as reducing agent.
(B)	H_2O_2	(Q) Acts as oxidising agent.
(C)	SO ₂	(R) Molecule is polar.
(D)	H ₂ S	(S) Molecule is planar.

ANSWERS

Single Correct Choice Type Questions

1. (D)

3. (B)

5. (C)

7. (D)

2. (A)

4. (A)

6. (C)

Multiple Correct Choice Type Questions

1. (A), (B), (C), (D)

3. (A), (B)

5. (A), (B)

7. (B), (C), (D)

2. (C), (D)

4. (A), (C), (D)

6. (A), (C), (D)

8. (B), (D)

Comprehension Type Questions

1. (D)

3. (C)

5. (D)

7. (D)

2. (D)

4. (B)

6. (C)

Assertion-Reasoning Type Questions

1. (A)

2. (D)

3. (B)

4. (B)

5. (A)

Integer Answer Type Questions

1.8

3. 10

5. 1

7.2

9.6

2.3

4.2

6.2

8.6

10.10

Matrix-Match Type Questions

1. $(A) \rightarrow (S)$

 $(B) \rightarrow (R)$ (C) → (P)

 $(D) \rightarrow (Q)$

2. $(A) \rightarrow (P), (Q)$

 $(B) \rightarrow (S), (T)$

 $(C) \rightarrow (Q), (R), (T)$

 $(D) \rightarrow (P), (Q), (T)$

3. $(A) \rightarrow (Q), (R), (S)$

 $(B) \rightarrow (P), (Q), (R)$

 $(C) \rightarrow (P), (Q), (R), (S)$

 $(D) \rightarrow (P), (R), (S)$