

FORMALE SYSTEME

ÜBUNG 14

Eric Kunze eric.kunze@tu-dresden.de

TU Dresden, 4. Februar 2022

ÜBUNGSBLATT 14

Aufgabe 1 Wiederholung

Aufgabe 2 Logisches Schließen

Aufgabe 3 Ziffernfolgen in π finden

Aufgabe 4 *Mengen-Constraint-Systeme*

Wiederholung

Stimmen die folgenden Aussagen? Begründen Sie.

- a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.
- b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal enthält.
- c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente.
- d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist.

Stimmen die folgenden Aussagen? Begründen Sie.

a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.

Falsch — Gegenbeispiel: Aus Falschem folgt Beliebiges.

$$\psi = (p \lor \neg p)$$
 ist tautologisch. $\Gamma = (p \land \neg p)$ ist unerfüllbar.

Dennoch gilt $\Gamma \models \psi$.

- b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal enthält.
- c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente.
- d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist.

Stimmen die folgenden Aussagen? Begründen Sie.

a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.

Falsch — Gegenbeispiel: Aus Falschem folgt Beliebiges.

$$\psi = (p \lor \neg p)$$
 ist tautologisch. $\Gamma = (p \land \neg p)$ ist unerfüllbar.

Dennoch gilt $\Gamma \models \psi$.

b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal enthält.

Falsch — Konjunktionen innerhalb von Disjunktionen → disjunktive Normalform

- c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente.
- d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist.

Stimmen die folgenden Aussagen? Begründen Sie.

a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.

Falsch — Gegenbeispiel: Aus Falschem folgt Beliebiges.

$$\psi = (p \lor \neg p)$$
 ist tautologisch. $\Gamma = (p \land \neg p)$ ist unerfüllbar.

Dennoch gilt $\Gamma \models \psi$.

b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal enthält.

Falsch — Konjunktionen innerhalb von Disjunktionen → disjunktive Normalform

- c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente. **Richtig** es können nur die Klauseln $\{b, c, \neg b\}$ und $\{a, c, \neg a\}$ entstehen.
- d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist.

Stimmen die folgenden Aussagen? Begründen Sie.

a) Wenn $\Gamma \models \psi$ und ψ eine Tautologie ist, dann ist Γ auch allgemeingültig.

Falsch — Gegenbeispiel: Aus Falschem folgt Beliebiges.

$$\psi = (p \lor \neg p)$$
 ist tautologisch. $\Gamma = (p \land \neg p)$ ist unerfüllbar.

Dennoch gilt $\Gamma \models \psi$.

b) Eine Formel φ ist eine Hornformel, wenn sie in NNF ist und aus Konjunktionen innerhalb von Disjunktionen von Literalen besteht, von denen jede höchstens ein positives Literal enthält.

Falsch — Konjunktionen innerhalb von Disjunktionen → disjunktive Normalform

- c) Für $K_1 = \{a, b, c\}$ und $K_2 = \{\neg a, \neg b\}$ ist $\{c\}$ keine Resolvente. **Richtig** es können nur die Klauseln $\{b, c, \neg b\}$ und $\{a, c, \neg a\}$ entstehen.
- d) Aus $\models \varphi$ folgt, dass φ allgemeingültig ist. **Richtig** — per Definition (siehe VL 22, Folie 17)

Logisches Schließen

Welche der folgenden Formeln sind erfüllbar? Welche der Formeln gehören zu dem Formeltyp, für den Erfüllbarkeit in polynomieller Zeit lösbar ist?

 $\left(\left(p_1 \vee \neg p_2 \right) \wedge \left(p_2 \vee \neg p_3 \right) \wedge \left(p_3 \vee \neg p_1 \right) \wedge \left(\neg p_2 \vee \neg p_3 \right) \wedge p_1 \right)$

$$\left(\left(\left((p_{1} \wedge p_{2}) \vee p_{3}\right) \wedge \left(\neg p_{1} \vee \neg p_{3}\right)\right) \vee \left(\neg p_{2} \wedge \neg p_{4}\right)\right) \tag{1}$$

$$\left(\neg \left(\neg p_{1} \wedge \neg \left(p_{2} \wedge \left(\neg p_{1} \rightarrow p_{2}\right)\right)\right) \wedge \neg p_{2}\right) \tag{2}$$

$$\left(\begin{array}{c} \left(\neg p_{1} \vee \neg p_{2} \vee \neg p_{3} \vee p_{4}\right) \wedge \\ \left(\neg p_{5} \vee \neg p_{6}\right) \wedge \\ \left(\neg p_{5} \vee \neg p_{6}\right) \wedge \\ \left(\neg p_{7} \vee \neg p_{2} \vee p_{6}\right) \wedge \\ \left(\neg p_{6} \vee \neg p_{2}\right) \wedge \\ \left(\neg p_{6} \vee \neg p_{3} \vee p_{2}\right) \wedge \\ \left(\neg p_{3} \vee \neg p_{4} \vee p_{5}\right) \wedge \\ \left(\neg p_{1} \vee p_{7}\right) \wedge \\ \left(\neg p_{1} \vee \neg p_{7} \vee p_{4}\right) \wedge \\ p_{3} \wedge \\ p_{1} \end{array}\right)$$

3

- (a) erfüllbar, z.B. via Transformation in DNF und Entscheidung, ob Monome gegensätzliche Literale enthalten erfüllende Wertzuweisung: $w(p_2)=0$ und $w(p_4)=0$ reicht
- Sowohl (a) als auch (b) sind keine Horn-Formel und daher ist ihre Erfüllbarkeit nicht in **P** entscheidbar.
 - (c) Horn-Regelmenge: Hyperresolution:

(b) erfüllbar mit $w(p_1) = 1$ und $w(p_2) = 0$

 $op p_3$ $op p_1$

$$p_1 \wedge p_2 \wedge p_3 \rightarrow p_4$$
 $V_0 = \{p_3, p_1\}$
 $p_5 \wedge p_6 \rightarrow \bot$ $V_1 = V_0 \cup \{p_7\}$
 $p_7 \wedge p_2 \rightarrow p_6$ $V_2 = V_1 \cup \{p_4\}$
 $p_6 \wedge p_2 \rightarrow \bot$ $V_3 = V_2 \cup \{p_5\} = V_4 = V$
 $p_6 \wedge p_3 \rightarrow p_2$ Es gibt keine Regel $q_0 \wedge \cdots \wedge q_m \rightarrow \bot$ mit $q_0, \ldots, q_m \in V$. Daher ist die Formel $p_1 \rightarrow p_7$ erfüllbar.
 $p_1 \wedge p_7 \rightarrow p_4$

(d) Horn-Regelmenge: Hy

Hyperresolution:

$$p_2 o p_1$$
 $V_0 = \{p_1\}$ $p_3 o p_2$ $V_1 = V_0 \cup \{p_3\}$ $V_2 = V_1 \cup \{p_2\} = V_3 = V$ $p_2 \wedge p_3 o \bot$ Da $(p_2 \wedge p_3 o \bot)$ eine Horn-Regel mit $p_2, p_3 \in V$ ist, ist die Formel unerfüllbar.

Da (c) und (d) jeweils Horn-Formeln sind, kann deren Erfüllbarkeit in polynomieller Zeit entschieden werden.

Ziffernfolgen in π finden

Begründen Sie die Semientscheidbarkeit des folgenden Problems:

- ► Gegeben ist eine Zahlenfolge $s = s_1 s_2 \dots s_n \in \{0, 1, \dots, 9\}^n$ ($n \ge 1$).
- Gefragt: Kommt in dem Nachkommateil der Dezimaldarstellung von π die Sequenz s vor?

Hinweis:

Sie dürfen als bekannt voraussetzen, dass es beliebig genaue Näherungsverfahren für π gibt. Skizzieren Sie die Arbeitsweise eines Semientscheidungsverfahrens für das genannte Problem unter Verwendung eines Algorithmus Pi-Näherungsverfahren(k), das als Eingabe eine natürliche Zahl $k \geq 1$ hat und als Ausgabe die k ersten Ziffern des Nachkommateils der Dezimaldarstellung von π zurückgibt.

```
Eingabe: s = s_1 s_2 \dots s_n \in \{0, 1, \dots, 9\}^n mit n \ge 1

FOR k = n, n + 1, \dots:

Berechne a_1 \dots a_k = \text{Pi-N\"aherungsverfahren}(k)

Falls a_{k-n+1} \dots a_k = s_1 \dots s_n: akzeptiere

Sonst: wähle nächstes k
```

Mengen-Constraint-Systeme

Gegeben sei eine endliche Menge E von Elementen und eine Menge V von Variablen. Ein Mengen-Constraintsystem C über E und V ist eine endliche Menge von Constraints der Form:

$$a \in X, a \notin X, a \in X \cup Y$$
, oder $X \subseteq Y \cup Z$

für $a \in E$ und $X, Y, Z \in V$. Eine Lösung L eines Mengen-Constraintsystems C über E und V ist eine Abbildung $L: V \to 2^E$, so dass

für alle Ausdrücke der Form
$$(a \in X) \in C$$
 gilt : $a \in L(X)$, für alle Ausdrücke der Form $(a \notin X) \in C$ gilt : $a \notin L(X)$, für alle Ausdrücke der Form $(a \in X \cup Y) \in C$ gilt : $a \in L(X) \cup L(Y)$, für alle Ausdrücke der Form $(X \subseteq Y \cup Z) \in C$ gilt : $L(X) \subseteq L(Y) \cup L(Z)$.

a) Hat das folgende Mengen-Constraintsystem eine Lösung?

$$V = \{M_1, M_2, M_3, M_4\} \quad \text{und} \quad E = \{a, b, c, d\}$$

$$C = \left\{ \begin{array}{l} M_2 \subseteq M_1 \cup M_3, M_4 \subseteq M_3 \cup M_2, \\ a \in M_1, a \notin M_3, b \in M_4, b \in M_1, b \notin M_3, \\ c \in M_4, c \notin M_1, c \notin M_3, d \in M_4, d \notin M_1, d \notin M_2 \end{array} \right\}$$

Teil (a)

- ▶ Aus $M_4 \subseteq M_3 \cup M_2$ wissen wir, dass $c \in L(M_2)$, da $c \in L(M_4)$ und $c \notin L(M_3)$ gelten muss.
- ▶ Daraus folgernd muss wegen $M_2 \subseteq M_1 \cup M_3$ auch $c \in L(M_1)$ oder $c \in L(M_3)$ gelten (da $c \in L(M_4)$ gilt).

Die Forderung $c \in L(M_1)$ kann aber wegen des Constraints $c \notin M_1$ nicht erfüllt werden. Analog kann $c \in L(M_3)$ durch $c \notin M_3$ nicht erfüllt werden. Damit ist $M_2 \subseteq M_1 \cup M_3$ nicht haltbar und das System kann keine Lösung besitzen.

Gegeben sei eine endliche Menge E von Elementen und eine Menge V von Variablen. Ein Mengen-Constraintsystem C über E und V ist eine endliche Menge von Constraints der Form:

$$a \in X, a \notin X, a \in X \cup Y$$
, oder $X \subseteq Y \cup Z$

für $a \in E$ und $X, Y, Z \in V$. Eine Lösung L eines Mengen-Constraintsystems C über E und V ist eine Abbildung $L: V \to 2^E$, so dass

```
für alle Ausdrücke der Form (a \in X) \in C gilt : a \in L(X), für alle Ausdrücke der Form (a \notin X) \in C gilt : a \notin L(X), für alle Ausdrücke der Form (a \in X \cup Y) \in C gilt : a \in L(X) \cup L(Y), für alle Ausdrücke der Form (X \subseteq Y \cup Z) \in C gilt : L(X) \subseteq L(Y) \cup L(Z).
```

b) Geben Sie ein allgemeines Verfahren an, das Lösungen eines Mengen-Constraintsystems in polynomieller Zeit entscheidet. Hinweis: Übersetzen Sie C in eine endliche Menge von Hornformeln – entscheidend ist die Kodierung der Mengenzugehörigkeit von Elementen. **Teil (b):** Wir wollen das Problem auf **Horn-SAT** \in **P** reduzieren, d.h. eine Horn-Formel (bzw. eine Horn-Regelmenge) finden, deren Erfüllbarkeit die Lösbarkeit eines Mengen-Constraint-Systems zeigt.

Gegeben sei also eine Mengen-Constraint-System $\it C$ über Elementen $\it E$ und Variablen $\it V$.

Wir verwenden die aussagenlogischen Variablen

$$\mathcal{P} = \{p_{a,X} : (a \notin X) \in C\}$$

sowie die Regelmenge

$$\Gamma = \{ (\top \to p_{a,X}) : (a \notin X) \in C \}$$

$$\cup \{ (p_{a,X} \to \bot) : (a \in X) \in C \}$$

$$\cup \{ (p_{a,X} \land p_{a,Y} \to \bot) : (a \in X \cup Y) \in C \}$$

$$\cup \bigcup_{a \in E} \{ ((p_{a,Y} \land p_{a,Z}) \to p_{a,X}) : (X \subseteq Y \cup Z) \in C \}.$$

Dann ist das Mengen-Constraint-System \mathcal{C} genau dann erfüllbar, wenn Γ erfüllbar ist. Die Erfüllbarkeit der Horn-Regelmenge kann gemäß Vorlesung in polynomieller Zeit entschieden werden.