

Connecting Gen Al models to the real world:

RAG

May 8, 2025

Google Cloud

Google Cloud

Let's get ready Startups!

If you haven't already, create a Qwiklabs account with your corporate email address by going to **explore.qwiklabs.com**.

Or share your email with us by filling in the form in chat!

Before we start

Learn more and apply at
cloud.google.com/startup

Get in touch with Team

A dedicated point of contact for questions and support

Fill the

form

Contents

Overview of RAG	01
Use Cases and Google products	02
Prototyping RAG systems	03
Building efficient RAG in production	04

What is RAG?

How the industry is using LLMs?

Typical LLM usage

LLMs are a phenomenal for knowledge generation and reasoning. They are pre-trained on large amounts of **publicly available data**.

But.... The Grounding Problem (aka Hallucinations)

LLMs can only understand the information

- That they were trained on
- That they are explicitly given in the prompt

Since they're trying to be helpful, they will often assume that the premise of a prompt is true.

LLMs don't have the capability to ask for more information and need some outside system.

Prompt

What is langchain?

Response

LangChain is a blockchain-based platform that allows users to create, share, and learn languages. It is a decentralized platform that is not controlled by any single entity. This means that users have complete control over their data and content. LangChain is also a secure platform, as all data is encrypted and stored on the blockchain. This makes it very difficult for hackers to access or steal data.

How do we best augment LLMs with our own private data?

Retrieval Augmented Generation (RAG)

The Problem:

- LLMs do not know your business's proprietary or domain specific data
- LLMs do not have real-time information
- LLMs find it challenging to provide accurate citations from their parametric knowledge

The Solution:

Feed the LLM *relevant* context in real-time, by using an information retrieval system

How is RAG used in the industry?

Inside the Enterprise: Ranking the Most Valuable Use Cases

Dominant Generative AI Use Cases

Example customer: Dow Jones

- Use case: Semantic search experience for analysts over billions of articles
 - E.g. query: "Recent advancements in clean energy technology"
- Building in-house using Vertex AI Embeddings and Vector Search (no ML expertise needed)
- Interested in maintaining control over tech stack and the ability to understand and granularly tune search relevance
- Can reuse Vector Search platform to support additional use cases (e.g. consumer semantic search) and repurpose embeddings for other use cases (e.g. recommendations)

News C

What Google Products can help?

OOTB path

The GCP RAG Ecosystem: All-in-one

Agent Builder Search Agent

The GCP RAG Ecosystem: Ingestion

OOTB path

DIY path

The GCP RAG Ecosystem: Retrieval

OOTB path

DIY path

The GCP RAG Ecosystem: Generation

OOTB path

Deep Dive

How can we use LLMs to answer business questions (Q&A)?

Historical approaches

- Pre-LLM: Nonparametric Q&A
- Methods: Lookup, matching
- Limitation: No synthesis
- Benefits: Easy, debuggable

LLMs

- LLMs: Parametric knowledge
- Answers: From parameters
- Updating: Difficult
- Retraining: Avoided often

Problems of language models

- Hallucination
- Attribution
- Staleness
- Revisions
- Customization

RAG is a semiparametric approach

- RAG: Semi-parametric
- LLM adapts DB knowledge
- Search context enables attribution
- Reduces staleness, hallucinations

LLM Fundamentals — What is a token?

- LLMs: Process tokens
- Tokens: Words, subwords
- Abilities: Token-defined
- Limits: Increasingly larger

https://platform.openai.com/tokenizer

Frozen RAG

- Popular RAG: Not original
- No fine-tuning: Frozen weights
- Semantic search: Chunked data
- Uses off-the-shelf LLM

Chunking

- Chunking: Small searchable pieces
- Methods: Length, separators, structure
- Chunks: Individually meaningful
- Size: Relates model limits

Offline Data Processing

Simplified Serving — request flow

Embeddings

- Embeddings: Input to vectors
- Capture: Semantic similarity
- Limitation: Lossy, length issues
- Multimodal: Cross-modal search

Vector Search

- Semantic search: Embeddings, vectors
- Small data: Exhaustive search
- Large data: ANN (fast, approximate)
- Vector DBs common (Vertex)

One-stage vs two-stage retrieval

- Basic: Vector DB chunks
- Issue: Independent embeddings
- Solution: Two-stage retrieval
- Example: Cloud reranking model

Two stage retrieval continued

Two stage retrieval can allow you to combine results from diverse **sources**

- Lexical + Semantic Search -> Hybrid Search
- Could use a public search engine
 - + an internal search

Two stage retrieval diagram

Prototyping with large context

- Large context: Holds all data
- All-context: Enough, cheap prototype
- RAG: For larger/dynamic data
- Production RAG: Much costlier

Prototyping with large context

- Large space of design
- Feedback early
- Optimize

Potholes - things to watch out for

- Does you embedding model understand your domain?
- Are you retrieving the correct chunks for a given query?
- Is your reranking model working as you would want?
- Are your chunks meaningful?
- Do you have useless chunks, duplicate chunks?
- Is your model hallucinating or is the information provided wrong?
- Do you have any degenerate chunks?
- Do you have disembodied chunks?

Google Cloud Proprietary & Confidential

Learn more about RAG

Great Podcast series on all facets of Search and RAG: https://www.youtube.com/@howaiisbuilt

Amazing YouTube video from Stanford on the Research of RAG: https://www.youtube.com/watch?v=mE7IDf2SmJg

Excellent blog post by Anthropic on Contextual Retrieval https://www.anthropic.com/news/contextual-retrieval

Google Cloud Proprietary & Confidential

Google Cloud for Startup Program

Providing resources to help early stage startups **build and scale**

Financial

Google Cloud credits (up to \$350k) and other discounts to help startups build their products and early infrastructure

Business

Help with navigating Google resources for startups to build and grow their business

Technical

Educational resources and workshops led by Google Cloud Customer Engineers

Community

Access to Google Cloud experts and peers on Google Cloud Community and at local events

Apply Now

or reach at cloudstartupsupport@google.com

Meeting startups where they are in their

Founding & Bootst-apped
1-5 founders in ideation and
prototyping stage

MVP & Fundraising
Small team building MVP, testing
in the market, and iterating

Launched & Scaling

Product in market, increasing customer base, and planning for rapid growth post-funding

Start tier \$2,000 USD credits / 1 year

For startups just getting started

Pre-Funding

Ecosystem tier \$25,000 USD credits / 2 years

Private offer available through the Startup Success Manager

Accelerators, Incubators & Angel

Scale tier Year 1: Up to \$100,000 USD credits

Year 2: 20% of usage covered up to \$100,000 USD

For institutionally funded startups ready to scale

Scale AI Year 1: Up to \$250,000 USI

> Year 2: 20% of usage covered up to \$100,000 USD

For **Al-first startups** that are institutionally funded

Institutionally funded (up to recent Series A)

Learn more and apply at cloud.google.com/startup

Get in touch with Team

A dedicated point of contact for questions and support

Fill the

form

Hands-on Lab

Google Cloud

Let's get ready Startups!

If you haven't already, create a Qwiklabs account with your corporate email address by going to **explore.qwiklabs.com**.

Or share your email with us by filling in the form in chat!

Hands-on lab

How to start the lab

- Visit <u>explore.qwiklabs.com</u>
- Log in using the account you provided when you registered to this classroom
- Click on the scheduled class in your home page (if you don't see any class, please raise your hand)
- Click on the lab
- Start the lab as shown on the right
- Follow lab instructions

① 2 hours ① 1 Credit

Learn more and apply at cloud.google.com/startup

Get in touch with Team

A dedicated point of contact for questions and support

Fill the

form

Thank you

