

Algorithm-Data Driven Optimization of Adaptive

Communication Networks

IEEE ICNP 2017, ML@AI Workshop, Toronto, Oct. 10, 2017

Mu He

Mu.he@tum.de

Patrick Kalmbach, Andreas Blenk,

Patrick.kalmbach@tum.de. Andreas.blenk@tum.de

Stefan Schmid, Wolfgang Kellerer

Schmiste@cs.aau.dk, Wolfgang.kellerer@tum.de

Communication Networks are ...

Traffic Patterns

Mobility

Resource Demands

... in constant flux.

Motivation 1/2

 SDN, NV, NFV claim to provide more flexibility in communication networks, especially in terms of resource allocation.

- New challenges
 - Fast management of resources → need for fast decision making
 - More possibilities to manage resources → growing solution space
 - Resource adaptation in dynamic systems → frequent algorithm rerunning

Motivation 2/2

- New challenges
 - Fast mare gement of resources → need for far decision making
 - More possibilitie → manage resoules → growing solution pace
 - Repurce adaptation dynamic system frequent algorithm running

Time

Repeatedly solve problem instances with similar structure

- We need fast and efficient design of optimization systems
 - Can we leverage algorithm data?

The Optimization Problem

- Weighted Controller Placement Problem
- Objective

$$\min \sum_{n \in \mathcal{N}, c \in \mathcal{C}} \mathcal{R}(n) \cdot \mathcal{L}(n, c) \cdot a_{n, c}$$

Constraints

$$\sum_{c \in \mathcal{C}} p_c = \mathbf{k}$$

$$\sum_{c \in \mathcal{C}} a_{n,c} = 1, \forall n \in \mathcal{N}$$

$$\sum_{c \in \mathcal{N}} a_{n,c} \le |\mathcal{N}| \cdot p_c, \forall c \in \mathcal{C}$$

$$p_c, a_{n,c} \in \{0, 1\}, \forall c \in \mathcal{C}, n \in \mathcal{N}$$

Total number of controllers to be placed are *k*.

A switch is only assigned to one controller. A switch is only assigned to one controller if that Binaroller riais bearingles. One for controller location, the other for switch-controller association.

The Limitation

Algorithm always starts from random initial solution (from scratch). And prior solutions are wasted.

The Opportunity

Proposed System Architecture

- Little modification to existing system architecture
- Training happens offline

The Machine Learning Approach 1/2

Prediction Per Node – Former Approach [1]

[1] A. Blenk, P. Kalmbach, S. Schmid, and W. Kellerer, o'zapft is: Tap your network algorithms big data!," in Proc. of ACM SIGCOMM Big-DAMA, ACM, 2017.

The Machine Learning Approach 2/2

• What is our feature vector?

How do we represent the multiple labels?

[1] A. Blenk, P. Kalmbach, S. Schmid, and W. Kellerer, o'zapft is: Tap your network algorithms big data!," in Proc. of ACM SIGCOMM Big-DAMA, ACM, 2017.

Evaluation Settings

ML Algorithms	Decision Tree [1], Logistic Regression [1], Neural Network [2]
Data Samples	6500 for training, 500 for evaluation
Evaluation Metrics	Hamming Loss, Objective Function Value
Topologies	From Topology Zoo [3], 25 – 180 nodes
# of Controllers	5, 10, 15, 20
Traffic Distribution	Uniform (1, 100)

^[1] Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.

^[2] TensorFlow: https://www.tensorflow.org

^[3] Knight et al., The Internet Topology Zoo. IEEE J. on Sel. Areas in Communica-tions 29, 9 (2011).

Could we improve the solution quality?

- Local search with neural network achieves similar performance as plain local search
- Better than reference greedy algorithm

Could we speed up the search?

- Local search with neural network needs only 1/3 the number of searches of plain local search of most samples.
- Efficient search space reduction applies to all tested topologies and different ks.

Conclusion

- Learn from past executions of network algorithms
- Multi-label classification → predict initial solutions
 - Different ways to apply ML to a problem with trade-offs
- Algorithm-data driven optimization → performance boost (same solution quality with shorter runtime)

Future Work

- Explore more representative feature vector
- Generalize topologies
- Investigate the performance of more advanced machine learning algorithms
- Apply to other network optimization use cases

Heuristic: Local Search

- Algorithm intuition
 - Two lists: controller list C and non-controller list N-C
 - Random initialization: C and N C
 - Swap one element in C and one element in $N C \rightarrow$ One local search move
 - Stop condition: no more swaps can further improve the objective

The Machine Learning Approach - Backup

- What machine learning algorithms can be used?
 - Decision tree, logistic regression, neural network, etc.
- Which cost function?
 - Bernoulli cross entropy loss
- How do we train the classifiers?

Problem instances solved by the heuristic as training data

Could we learn from the past solutions?

- Prediction is more accurate for more samples.
- ML evaluation metrics do not fully represent performance.
 - Mispredictions lead to different obj. function values.
- Neural network performs the best in most cases.

Evaluation Results

What are the benefits of applying machine learning in heuristics?

- Neural network prediction does not always guarantee good performance.
 - (a): 60% percent good solutions
 - (b): only 25% are good