

Global United Technology Services Co., Ltd.

Report No.: GTSE15050080502

FCC REPORT

SHENZHEN COMISO DIGITAL TECHNOLOGY LIMITED **Applicant:**

Address of Applicant: 12/F, XinLong Technology Park, Song Gang Town, BaoAn

District, ShenZhen City, China.

Equipment Under Test (EUT)

Bluetooth Speaker **Product Name:**

C26, C36, C18, C19 Model No.:

FCC ID: 2AEZG-C26

FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014 **Applicable standards:**

Date of sample receipt: June 08, 2015

Date of Test: June 08-12, 2015

Date of report issued: June 12, 2015

PASS * Test Result:

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	June 12, 2015	Original

Prepared By:	Sam. Gao	Date:	June 12, 2015	
	Project Engineer			
Check By:	hank. yan	Date:	June 12, 2015	
	Reviewer			

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4		Г SUMMARY	
	4.1	MEASUREMENT UNCERTAINTY	
5		ERAL INFORMATION	
-	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	TEST FACILITY	
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES.	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	g
	7.2	CONDUCTED EMISSIONS	10
	7.3	CONDUCTED OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1		
	7.6.2 7.7		
	7.7.1	SPURIOUS EMISSION	
	7.7.1		
_			
8	TES	T SETUP PHOTO	31
9	FUT	CONSTRUCTIONAL DETAILS	32

Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)			
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)			
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)			
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

5 General Information

5.1 Client Information

Applicant:	SHENZHEN COMISO DIGITAL TECHNOLOGY LIMITED	
Address of Applicant:	12/F,XinLong Technology Park,SongGang Town, BaoAn District,ShenZhen City,China.	
Manufacturer:	SHENZHEN COMISO DIGITAL TECHNOLOGY LIMITED	
Address of Manufacturer:	12/F,XinLong Technology Park,SongGang Town, BaoAn District,ShenZhen City,China.	

5.2 General Description of EUT

Product Name:	Bluetooth Speaker			
Model No.:	C26, C36, C18, C19			
Test Mode No.	C26			
Remark: All above models are identical in the same PCB layout, interior structure and elect The only differences are the model name and appearance color for commercial purpose.				
Operation Frequency:	2402MHz~2480MHz			
Channel Numbers:	40			
Channel Separation:	2MHz			
Modulation Type:	GFSK			
Antenna Type:	PCB antenna			
Antenna Gain:	0dBi (declare by Applicant)			
Power Supply:	DC 3.7V Li-ion battery			
	Or DC 5V PC Charger			

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
•	. !!		. !	. :	• !	• !	•
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

5.3 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: The test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

5.4 Description of Support Units

None

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 28 2015	Mar. 27 2016		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Jul. 01 2014	Jun 30 2015		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 01 2014	Jun 30 2015		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Jul. 01 2014	Jun 30 2015		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 27 2014	June 26 2015		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 01 2014	Jun. 30, 2015		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 01 2014	Jun. 30, 2015		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 27 2014	June 26 2015		
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016		
17	Power Meter	Anritsu	ML2495A	GTS540	July 01 2014	June 30 2015		
18	Power Sensor	Anritsu	MA2411B	GTS541	July 01 2014	June 30 2015		

Cond	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	July 01 2014	June 30 2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015			
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015			
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015			
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015			
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Gen	General used equipment:							
Item Test Equipment Manufacturer Model No. Inventory Cal.Date						Cal.Due date		
				No.	(mm-dd-yy)	(mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	July 08 2014	July 07 2015		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

EUT Antenna:

The antenna is PCB antenna, the best case gain of the antenna is 0dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.4:2009					
Test Frequency Range:	150KHz to 30MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto				
Limit:	Frequency range (MHz)	Limit (c	dBuV)			
	, , ,	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
- , ,	* Decreases with the logarithm	•				
Test setup:	Reference Plane		_			
	AUX Equipment Test table/Insulation plane Remark: EUT: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted 					
	interference. In order to find positions of equipment and according to ANSI C63.4: 2	all of the interface cat 2009 on conducted me	oles must be changed			
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details	}				
Test results:	Pass					

Measurement data

Line:

Site

: Shielded room : FCC PART15 CLASSC QP LISN-2013 LINE Condition

: 0805RF

Job No. Test mode : Bluetooth4.0 mode

Test Engineer: Qing

	Freq		LISN Factor					Remark
_	MHz	dBu₹	dB	d₿	dBuV	dBuV	dB	
1 2 3 4 5	0.839 1.487 2.474 4.574	43. 38 43. 82 44. 05 45. 27	0.12 0.14 0.12 0.13 0.21 0.53	0.13 0.13 0.15 0.15	43.65 44.07 44.33 45.63	56.00 56.00 56.00 56.00	-12.35 -11.93 -11.67 -10.37	QP QP QP QP

Neutral:

Site : Shielded room

Condition : FCC PART15 CLASSC QP LISN-2013 NEUTRAL

Job No. : 0805RF

Test mode : Bluetooth4.0 mode

Test Engineer: Qing

	Freq	Read	LISN Factor				Over Limit	Remark
	MHz	dBuV	dB	dB	dBu₹	dBuV	dB	
1 2	0.161 0.435	45.79 46.33		0.12 0.11				
3	0.521	44.96	0.06	0.11	45.13	56.00	-10.87	QP
4 5	2. 422 4. 622		0.10	0.15 0.15				
6	17, 755	38, 29	0.40	0.22	38. 91	60.00	-21.09	QP

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Output Power

Measurement Data

Test channel	Peak Output Power (dBm)	Limit(dBm)	Result	
Lowest	2.86		Pass	
Middle	3.75	30.00		
Highest	3.72			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.4 Channel Bandwidth

Measurement Data

Test channel	Channel Bandwidth (KHz)	Limit(KHz)	Result	
Lowest	704.555			
Middle	687.720	>500	Pass	
Highest	695.183			

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.5 Power Spectral Density

Measurement Data

Test channel	Power Spectral Density (dBm)	Limit(dBm/3kHz)	Result
Lowest	2.29		
Middle	3.37	8.00	Pass
Highest	3.51		

Test plot as follows:

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	·					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Test plot as follows:

Highest channel

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.4: 20							
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.						
Test site:	Measurement D	Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above IGHZ	RMS	1MHz	3MHz	Average			
Limit:	Freque	ency	Limit (dBuV/	/m @3m)	Value			
	Above 1	IGHz -	54.0		Average			
	Above	TOTIZ	74.0	0	Peak			
Test setup:	Table	4m Spectrum Analyzer Turn 0.8m lm						
Test Procedure:	determine th 2. The EUT wa antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emissio the limit spec of the EUT w have 10dB n peak or aver sheet. 7. The radiatior And found th	B meter camber e position of the set 3 meters che was mount the management of the set of	er. The table was he highest race away from the ed on the toped from one naximum value rizations of the on, the EUT tuned to heighed from 0 degrees set to Peal Maximum Hole EUT in peak ting could be sed. Otherwise re-tested on a specified arts are performoning which is set on the set of the country on the set of the s	was rotated diation. The interference of a variable of the field the antenna at the was arranged hts from 1 mgrees to 360 at Detect Full diagnostic Mode. The mode was arranged and the emissione by one und then report the worse of the worse	ace-receiving le-height antenna meters above the strength. Both are set to make the ed to its worst case meter to 4 meters degrees to find unction and and lodB lower than d the peak values ions that did not sing peak, quasi-			
Test Instruments:	Refer to section							
Test mode:	Refer to section	5.3 for details	3					
Test results:	Pass							

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test channel:	Lowest
---------------	--------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	45.35	27.91	5.30	30.37	48.19	74.00	-25.81	Vertical
2390.00	44.99	27.59	5.38	30.18	47.78	74.00	-26.22	Vertical
2400.00	49.43	27.58	5.39	30.18	52.22	74.00	-21.78	Vertical
2310.00	45.41	27.91	5.30	30.37	48.25	74.00	-25.75	Horizontal
2390.00	45.39	27.59	5.38	30.18	48.18	74.00	-25.82	Horizontal
2400.00	46.64	27.58	5.39	30.18	49.43	74.00	-24.57	Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	34.92	27.91	5.30	30.37	37.76	54.00	-16.24	Vertical
2390.00	34.57	27.59	5.38	30.18	37.36	54.00	-16.64	Vertical
2400.00	36.69	27.58	5.39	30.18	39.48	54.00	-14.52	Vertical
2310.00	34.91	27.91	5.30	30.37	37.75	54.00	-16.25	Horizontal
2390.00	34.64	27.59	5.38	30.18	37.43	54.00	-16.57	Horizontal
2400.00	35.40	27.58	5.39	30.18	38.19	54.00	-15.81	Horizontal

Test channe	Test channel: Highest								
Peak value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	47.75	27.53	5.47	29.93	50.82	74.00	-23.18	Vertical	
2500.00	45.73	27.55	5.49	29.93	48.84	74.00	-25.16	Vertical	
2483.50	45.45	27.53	5.47	29.93	48.52	74.00	-25.48	Horizontal	
2500.00	45.92	27.55	5.49	29.93	49.03	74.00	-24.97	Horizontal	
Average va	lue:	-		-	-	•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization	
2483.50	35.64	27.53	5.47	29.93	38.71	54.00	-15.29	Vertical	
2500.00	34.55	27.55	5.49	29.93	37.66	54.00	-16.34	Vertical	
2483.50	35.79	27.53	5.47	29.93	38.86	54.00	-15.14	Horizontal	

2500.00 Remark:

34.49

27.55

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

5.49

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

29.93

37.60

54.00

-16.40

Horizontal

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.4:2009 and KDB558074 D01 DTS Meas Guidance V03						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Pass						

R T Peak Search

Next Peak

Test plot as follows:

Lowest channel

30MHz~10GHz

Atten 20 dB

Ref 10 dBm

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.4: 2009							
Test Frequency Range:	30MHz to 25GHz							
Test site:	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	30MHz-1GHz Quasi-pe		120KHz	300KHz	Quasi-peak			
	Above 1GHz	Peak	1MHz	3MHz	Peak			
	Above 1G112	RMS	1MHz	3MHz	Average			
Limit:	Frequen	су	Limit (dBuV	/m @3m)	Value			
	30MHz-88	MHz	40.0	0	Quasi-peak			
	88MHz-216	6MHz	43.5	0	Quasi-peak			
	216MHz-96	0MHz	46.0	0	Quasi-peak			
	960MHz-1	GHz	54.0	0	Quasi-peak			
	Above 10	NU	54.0	0	Average			
	Above 10	סחב	74.0	0	Peak			
	Below 1GHz Antenna Tower Antenna RF Test Receiver Ground Plane Antenna Tower Antenna Tower							

Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the X-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
39.02	26.29	15.34	0.65	30.05	12.23	40.00	-27.77	Vertical
75.18	25.74	9.86	0.99	29.82	6.77	40.00	-33.23	Vertical
145.35	30.79	10.23	1.54	29.43	13.13	43.50	-30.37	Vertical
173.21	35.64	11.16	1.70	29.30	19.20	43.50	-24.30	Vertical
279.04	35.67	14.63	2.27	29.86	22.71	46.00	-23.29	Vertical
597.22	25.45	20.40	3.71	29.30	20.26	46.00	-25.74	Vertical
36.00	26.89	14.58	0.62	30.06	12.03	40.00	-27.97	Horizontal
75.18	28.25	9.86	0.99	29.82	9.28	40.00	-30.72	Horizontal
125.01	34.21	11.70	1.40	29.54	17.77	43.50	-25.73	Horizontal
170.79	49.66	11.03	1.69	29.31	33.07	43.50	-10.43	Horizontal
208.58	50.20	12.84	1.89	29.29	35.64	43.50	-7.86	Horizontal
399.03	26.73	17.06	2.85	29.51	17.13	46.00	-28.87	Horizontal

Above 1GHz

Test channel	nnel: Lowest							
Peak value:				·				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.69	31.78	8.60	32.09	43.98	74.00	-30.02	Vertical
7206.00	37.83	36.15	11.65	32.00	53.63	74.00	-20.37	Vertical
9608.00	35.88	37.95	14.14	31.62	56.35	74.00	-17.65	Vertical
12010.00	28.30	39.08	15.03	35.51	46.90	74.00	-27.10	Vertical
14412.00	*					74.00		Vertical
4804.00	35.24	31.78	8.60	32.09	43.53	74.00	-30.47	Horizontal
7206.00	41.45	36.15	11.65	32.00	57.25	74.00	-16.75	Horizontal
9608.00	29.67	37.95	14.14	31.62	50.14	74.00	-23.86	Horizontal
12010.00	27.98	39.08	15.03	35.51	46.58	74.00	-27.42	Horizontal
14412.00	*					74.00		Horizontal
Average valu	ue:	•	•	•			•	•

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	26.25	31.78	8.60	32.09	34.54	54.00	-19.46	Vertical
7206.00	28.05	36.15	11.65	32.00	43.85	54.00	-10.15	Vertical
9608.00	21.58	37.95	14.14	31.62	42.05	54.00	-11.95	Vertical
12010.00	18.41	39.08	15.03	35.51	37.01	54.00	-16.99	Vertical
14412.00	*					54.00		Vertical
4804.00	25.67	31.78	8.60	32.09	33.96	54.00	-20.04	Horizontal
7206.00	25.49	36.15	11.65	32.00	41.29	54.00	-12.72	Horizontal
9608.00	20.48	37.95	14.14	31.62	40.95	54.00	-13.05	Horizontal
12010.00	17.24	39.08	15.03	35.51	35.84	54.00	-18.16	Horizontal
14412.00	*					54.00		Horizontal

Remark:

Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor
 "*", means this data is the too weak instrument of signal is unable to test.

Test channel: Middle									
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	37.84	31.86	8.67	32.1	2	46.25	74.00	-27.75	Vertical
7320.00	36.46	36.41	11.72	31.8	9	52.70	74.00	-21.30	Vertical
9760.00	31.33	38.35	14.27	31.6	2	52.33	74.00	-21.67	Vertical
12200.00	29.01	38.89	15.16	35.6	5	47.41	74.00	-26.59	Vertical
14652.00	*						74.00		Vertical
4880.00	35.52	31.86	8.67	32.1	2	43.93	74.00	-30.07	Horizontal
7320.00	40.13	36.41	11.72	31.8	9	56.37	74.00	-17.63	Horizontal
9760.00	29.46	38.35	14.27	31.6	2	50.46	74.00	-23.54	Horizontal
12200.00	27.21	38.89	15.16	35.6	5	45.61	74.00	-28.39	Horizontal
14652.00	*						74.00		Horizontal
Average val	ue:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prear Facto (dB	or	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	27.53	31.86	8.67	32.1	2	35.94	54.00	-18.06	Vertical
7320.00	29.25	36.41	11.72	31.8	9	45.49	54.00	-8.51	Vertical
9760.00	20.41	38.35	14.27	31.6	2	41.41	54.00	-12.59	Vertical
12200.00	18.48	38.89	15.16	35.6	5	36.88	54.00	-17.12	Vertical
14652.00	*						54.00		Vertical
4880.00	27.14	31.86	8.67	32.1	2	35.55	54.00	-18.45	Horizontal
7320.00	25.88	36.41	11.72	31.8	9	42.12	54.00	-11.88	Horizontal
9760.00	21.03	38.35	14.27	31.6	2	42.03	54.00	-11.97	Horizontal
12200.00	18.34	38.89	15.16	35.6	5	36.74	54.00	-17.26	Horizontal
14652.00	*						54.00		Horizontal

Remark:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test channe	l:			Hi	ghest			
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.59	31.93	8.73	32.16	43.09	74.00	-30.91	Vertical
7440.00	33.51	36.59	11.79	31.78	50.11	74.00	-23.89	Vertical
9920.00	32.71	38.81	14.38	31.88	54.02	74.00	-19.98	Vertical
12400.00	28.31	38.76	15.27	35.27	47.07	74.00	-26.93	Vertical
14880.00	*					74.00		Vertical
4960.00	32.82	31.93	8.73	32.16	41.32	74.00	-32.68	Horizontal
7440.00	38.24	36.59	11.79	31.78	54.84	74.00	-19.16	Horizontal
9920.00	27.88	38.81	14.38	31.88	49.19	74.00	-24.81	Horizontal
12400.00	28.58	38.76	15.27	35.27	47.34	74.00	-26.66	Horizontal
14880.00	*					74.00		Horizontal
Average val	ue:		•	•			•	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.66	31.93	8.73	32.16	33.16	54.00	-20.84	Vertical
7440.00	24.19	36.59	11.79	31.78	40.79	54.00	-13.21	Vertical
9920.00	23.34	38.81	14.38	31.88	44.65	54.00	-9.35	Vertical
12400.00	18.85	38.76	15.27	35.27	37.61	54.00	-16.39	Vertical
14880.00	*					54.00		Vertical
4960.00	22.67	31.93	8.73	32.16	31.17	54.00	-22.83	Horizontal
7440.00	26.79	36.59	11.79	31.78	43.39	54.00	-10.61	Horizontal
9920.00	18.47	38.81	14.38	31.88	39.78	54.00	-14.22	Horizontal
12400.00	18.50	38.76	15.27	35.27	37.26	54.00	-16.74	Horizontal
14880.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTSE15050080501

-----End-----