In []:

i took dataset of suicide rate overview from 1985 to 2016

In [3]:

```
import numpy as np
import pandas as pd
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [4]:

```
#reading the file
df = pd.read_csv (r'master.csv')
```

In [5]:

df.head()

Out[5]:

	country	year	sex	age	suicides_no	population	suicides/100k pop	country- year	HDI for year	gdp
0	Albania	1987	male	15- 24 years	21	312900	6.71	Albania1987	NaN	2,15
1	Albania	1987	male	35- 54 years	16	308000	5.19	Albania1987	NaN	2,15
2	Albania	1987	female	15- 24 years	14	289700	4.83	Albania1987	NaN	2,15
3	Albania	1987	male	75+ years	1	21800	4.59	Albania1987	NaN	2,15
4	Albania	1987	male	25- 34 years	9	274300	3.28	Albania1987	NaN	2,15
4										•

In [4]:

print(print(df)								
0	country Albania	year 1987	sex male	15-24	age years	suicides_	_no 21	population \ 312900	
1	Albania	1987	male	35-54	years		16	308000	
2	Albania	1987	female	15-24	years		14	289700	
3	Albania	1987	male	75+	years		1	21800	
4	Albania	1987	male	25-34	years		9	274300	
 27815	 Uzbekistan		 female		years		 L07	 3620833	
27816	Uzbekistan		female		years		9	348465	
27817	Uzbekistan	2014	male		years		60	2762158	
27818	Uzbekistan		female		years		44	2631600	
27819	Uzbekistan	2014	female	55-74	years		21	1438935	
0	suicides/10	0k pop 6.71		try-yea ania198		for year NaN	gd	p_for_year (\$) 2,156,624,900	\ 9
1		5.19	Alb	ania198	37	NaN		2,156,624,900	9
2		4.83	Alb	ania198	37	NaN		2,156,624,900	9
3		4.59	Alb	ania198	37	NaN		2,156,624,900	9
4		3.28	Alb	ania198	37	NaN		2,156,624,900	
• • •		• • •		•	• •	•••		••	•
27815		2.96		stan20		0.675		63,067,077,179	
27816		2.58		stan20		0.675		63,067,077,179	
27817		2.17		stan20		0.675		63,067,077,179	
27818		1.67		stan20		0.675		63,067,077,179	
27819		1.46	Uzbeki	stan20	14	0.675		63,067,077,179	9
	gdp_per_cap			genera					
0		796		neratio					
1		796			lent				
2		796		neratio					
3		796		Genera					
4		796	,	Boor	ners				
 27815		2309		neratio					
27816		2309			lent				
27817		2309	Ge	neratio	on Z				
27818		2309	Ge	neratio	on Z				
27819		2309	1	Boor	ners				

[27820 rows x 12 columns]

In [6]:

#Here RV function will be suicide_no,population,suicides/100k pop,HDI for year,gdp_for_year #DVS will be {country,year,sex ,age,suicides_no,population,suicides/100k pop,country-year,H #Iam taking Three numerical features: suicides_no,population,gdp_per_capita (\$) import matplotlib.pyplot as plt

localhost:8888/notebooks/Untitled23.ipynb

In [7]:

```
df.columns
```

Out[7]:

In [8]:

```
df.describe()
```

Out[8]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_per_capita (\$)
count	27820.000000	27820.000000	2.782000e+04	27820.000000	8364.000000	27820.000000
mean	2001.258375	242.574407	1.844794e+06	12.816097	0.776601	16866.464414
std	8.469055	902.047917	3.911779e+06	18.961511	0.093367	18887.576472
min	1985.000000	0.000000	2.780000e+02	0.000000	0.483000	251.000000
25%	1995.000000	3.000000	9.749850e+04	0.920000	0.713000	3447.000000
50%	2002.000000	25.000000	4.301500e+05	5.990000	0.779000	9372.000000
75%	2008.000000	131.000000	1.486143e+06	16.620000	0.855000	24874.000000
max	2016.000000	22338.000000	4.380521e+07	224.970000	0.944000	126352.000000

In [9]:

df.shape

Out[9]:

(27820, 12)

In [10]:

```
df.isnull().any()
```

Out[10]:

country	False
year	False
sex	False
age	False
suicides_no	False
population	False
suicides/100k pop	False
country-year	False
HDI for year	True
<pre>gdp_for_year (\$)</pre>	False
<pre>gdp_per_capita (\$)</pre>	False
generation	False
dtype: bool	

In [11]:

```
df.isnull().values.any()
```

Out[11]:

True

In [12]:

```
df.isnull().sum()
```

Out[12]:

```
country
                            0
year
                            0
                            0
sex
age
                            0
                            0
suicides_no
population
                            0
                            0
suicides/100k pop
                            0
country-year
                       19456
HDI for year
gdp_for_year ($)
                            0
gdp_per_capita ($)
                            0
                            0
generation
dtype: int64
```

In [21]:

```
df.pivot_table('suicides_no', index='year', columns='sex', aggfunc='sum').plot()
plt.title('Total Number Of Suicides From 1985 To 2016 ')
plt.ylabel('Number of Suicides')
plt.xlabel('Years')
plt.xlim((df.year.min() - 1), (df.year.max() + 1))
plt.show()
```


In [26]:

```
plt.figure(figsize=(16,7))
bar_gen = sns.barplot(x = 'sex', y = 'suicides_no', hue = 'generation',data = df)
```


In [27]:

```
###we store a range of age group in variables so we can do easily lineplot
age_5 = df.loc[df.loc[:, 'age']=='5-14 years',:]
age_15 = df.loc[df.loc[:, 'age']=='15-24 years',:]
age_25 = df.loc[df.loc[:, 'age']=='25-34 years'
age_35 = df.loc[df.loc[:, 'age']=='35-54 years',:]
age_55 = df.loc[df.loc[:, 'age']=='55-74 years',:]
age_75 = df.loc[df.loc[:, 'age']=='75+ years',:]
### Set figure size
plt.figure(figsize=(16,7))
####Now lets plot a line plot
age_5_lp = sns.scatterplot(x='year', y='suicides_no', data=age_5)
age_15_lp = sns.scatterplot(x='year', y='suicides_no', data=age_15)
age_25_lp = sns.scatterplot(x='year', y='suicides_no', data=age_25)
age_35_lp = sns.scatterplot(x='year', y='suicides_no', data=age_35)
age_55_lp = sns.scatterplot(x='year', y='suicides_no', data=age_55)
age_75_lp = sns.scatterplot(x='year', y='suicides_no', data=age_75)
##Now make the Legend
leg = plt.legend(['5-14 years', '15-24 years', '25-34 years', '35-54 years', '55-74 years'
```


In [40]:

```
suicides_no=[]
for country in df.country.unique():
    suicides_no.append(sum(df[df['country']==country].suicides_no))
```

In [65]:

```
suicides_no=pd.DataFrame(suicidesNo,columns=['suicides_no'])
country=pd.DataFrame(df.country.unique(),columns=['country'])
data_suicide_countr=pd.concat([suicides_no,country],axis=1)
```

In [66]:

```
data_suicide_countr=data_suicide_countr.sort_values(by='suicides_no',ascending= False)
```

In [72]:

sns.barplot(y=data_suicide_countr.country[:20],x=data_suicide_countr.suicides_no[:20])
plt.show()

In [96]:

```
sns.countplot(df.generation)
plt.title('Count of Different Generation')
plt.xticks(rotation=100)
plt.show()
```


In [97]:

```
sns.countplot(df.generation,hue=df.age)
plt.title('Generation hue Age Counter')
plt.show()
```


In [16]:

```
plt.figure(figsize=(10,7))
sns.barplot(x="year", y='suicides/100k pop', data=df)
plt.title('No. Of Suicides/100k Population')
plt.xlabel('Year')
plt.ylabel('Suicides/100k Population')
plt.xticks(rotation=60)
plt.show()
```


In [34]:

In [6]:

```
df.keys()
```

Out[6]:

In [9]:

df.shape

Out[9]:

(27820, 12)

In [10]:

from sklearn.preprocessing import StandardScaler

In [18]:

df.drop(['country', 'sex', 'country-year', 'generation', 'HDI for year', 'age', 'year'], axis=1

Out[18]:

	suicides_no	population	suicides/100k pop	gdp_for_year (\$)	gdp_per_capita (\$)
0	21	312900	6.71	2,156,624,900	796
1	16	308000	5.19	2,156,624,900	796
2	14	289700	4.83	2,156,624,900	796
3	1	21800	4.59	2,156,624,900	796
4	9	274300	3.28	2,156,624,900	796
27815	107	3620833	2.96	63,067,077,179	2309
27816	9	348465	2.58	63,067,077,179	2309
27817	60	2762158	2.17	63,067,077,179	2309
27818	44	2631600	1.67	63,067,077,179	2309
27819	21	1438935	1.46	63,067,077,179	2309

27820 rows × 5 columns

In [36]:

In [50]:

In [51]:

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
from sklearn.model_selection import cross_val_predict
from sklearn.preprocessing import LabelEncoder
from sklearn.decomposition import PCA
```

```
In [52]:
```

```
le = LabelEncoder()
df['country'] = le.fit_transform(df['country'])
df['year'] = le.fit_transform(df['year'])
df['sex'] = le.fit_transform(df['sex'])
df['age'] = le.fit_transform(df['age'])
df['population'] = le.fit_transform(df['population'])
df['suicides/100k pop'] = le.fit_transform(df['suicides/100k pop'])
df['country-year'] = le.fit_transform(df['country-year'])
df['generation'] = le.fit_transform(df['generation'])
```

In [61]:

```
pca = PCA()
principalComponents_breast = pca.fit_transform(df[columns])
print(principalComponents_breast)
```

```
[[-2.31684505e+03 -4.53767702e+02 1.11999354e+03 ... -1.96117148e+00 -1.07058042e+00 -4.63567807e-01]
[-2.43358026e+03 -6.04235343e+02 1.11216061e+03 ... -2.28749710e+00 -1.02630525e+00 -5.09103315e-01]
[-2.91094103e+03 -6.34515173e+02 1.10626850e+03 ... -1.90114131e+00 -1.04977949e+00 5.03890558e-01]
...
[ 8.20582523e+03 -9.28808305e+02 -1.12575230e+03 ... 1.01996017e+00 -2.58438260e-01 -7.18348912e-01]
[ 8.08026418e+03 -9.77266079e+02 -1.12911135e+03 ... 1.06034728e+00 -2.37513236e-01 2.72296037e-01]
[ 6.25422584e+03 -9.76491580e+02 -1.14644126e+03 ... 3.69772770e+00 -2.39223403e-01 2.02973656e-01]]
```

In [54]:

```
clf = DecisionTreeClassifier()
clf.fit(df[columns], target)
```

Out[54]:

In [55]:

```
clf.feature_importances_
```

Out[55]:

```
array([0.02654578, 0.08812791, 0.01008352, 0.02727822, 0.2886141, 0.44604726, 0.08645713, 0.02684608])
```

In [58]:

```
target_pred = cross_val_predict(clf,df[columns],target,cv=6)
print('accuracy: ', accuracy_score(target, target_pred))
print('confusion matrix:')
print(confusion_matrix(target, target_pred))
print('classification report:')
print(classification_report(target, target_pred))
```

In [34]:

```
#scatter plot for suicides_no and population
y = df['population'];
x = df['suicides_no']
```

In [35]:

```
a =plt.xlabel('suicides_no');
b =plt.ylabel('population')
plt.scatter(x,y)
```

Out[35]:

<matplotlib.collections.PathCollection at 0x1a12decbd48>

In [37]:

```
#scatter plot for suicides_no and population
y = df['year'];
x = df['suicides_no']
```

In [38]:

```
a =plt.xlabel('suicides_no');
b =plt.ylabel('year')
plt.scatter(x,y)
```

Out[38]:

<matplotlib.collections.PathCollection at 0x1a130ee4448>

In [56]:

```
plt.xlabel('suicides_no');
plt.ylabel('gdp_per_capita ($)')
```

Out[56]:

Text(0, 0.5, 'gdp_per_capita (\$)')

In [57]:

```
plt.scatter(x,y)
```

Out[57]:

<matplotlib.collections.PathCollection at 0x2f214972f88>

In [28]:

```
#finding pearson coefficient for each of the features
import scipy
from scipy.stats.stats import pearsonr
```

```
In [83]:
y = df['population'];
x = df['gdp_per_capita ($)']
In [84]:
pearson_correlation,p_value =pearsonr(x, y)
In [85]:
pearson_correlation
Out[85]:
0.08150985822280538
In [76]:
y = df['population'];
x = df['suicides_no']
In [77]:
pearson_correlation,p_value =pearsonr(x, y)
In [78]:
pearson_correlation
Out[78]:
0.6161622675219284
In [79]:
x = df['gdp_per_capita ($)'];
y = df['suicides_no']
In [80]:
pearson_correlation,p_value =pearsonr(x, y)
In [81]:
pearson_correlation
Out[81]:
0.06132974884024557
In [52]:
#finding scatter matrix for RV functions
df_features=df[['age','suicides_no','population','suicides/100k pop','HDI for year',' gdp_f
```

In [21]:

```
sns.pairplot(df, hue="sex")
plt.show()
```


In [16]:

```
from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import mean_absolute_error, accuracy_score
from sklearn.metrics import classification_report, confusion_matrix

from sklearn.model_selection import train_test_split
```

In [17]:

```
df.rename(columns={'HDI for year': 'HDI_for_year', 'country-year':'country_year', 'suicides
```

In [18]:

```
data = df.copy()
```

```
In [19]:
```

In [20]:

```
data.drop(['country', 'year', 'country_year'], 1, inplace=True)
```

In [21]:

```
pd.to_numeric(data['generation']);
pd.to_numeric(data['sex']);
pd.to_numeric(data['gdp_for_year']);
```

In [22]:

In [23]:

```
data.head()
```

Out[23]:

	sex	age	suicides_no	population	suicides/100k_pop	HDI_for_year	gdp_for_year	gdp_per_
0	0	19.5	21	312900	6.71	NaN	2156624900	_
1	0	44.5	16	308000	5.19	NaN	2156624900	
2	1	19.5	14	289700	4.83	NaN	2156624900	
3	0	75.0	1	21800	4.59	NaN	2156624900	
4	0	29.5	9	274300	3.28	NaN	2156624900	
4								>

In [28]:

```
X = np.array(data.drop(['fatality_rate','HDI_for_year', 'suicides/100k_pop'], 1))
y = np.array(data.fatality_rate)
```

In [29]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42)
```

In [30]:

```
model = RandomForestClassifier(n_estimators=100, random_state=42)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```

In [31]:

```
print("Model accuracy is: {0:.2f}".format(accuracy_score(y_test, y_pred) * 100))
```

Model accuracy is: 98.56

In [32]:

```
mat = confusion_matrix(y_test, y_pred)
sns.heatmap(mat, square=True, annot=True, cbar=True)
plt.xlabel('predicted value')
plt.ylabel('true value');
```


In [33]:

```
print(classification_report(y_pred, y_test))
```

	precision	recall	f1-score	support
0	0.99	0.99	0.99	3865
1	0.97	0.98	0.98	1699
accuracy			0.99	5564
macro avg	0.98	0.98	0.98	5564
weighted avg	0.99	0.99	0.99	5564

In [87]:

```
#plotting of pearsion correlation of each feature
gf =df[['suicides_no','population','gdp_per_capita ($)']]
```

In [88]:

corr = gf.corr()

In [89]:

corr

Out[89]:

	suicides_no	population	gdp_per_capita (\$)
suicides_no	1.000000	0.616162	0.06133
population	0.616162	1.000000	0.08151
gdp_per_capita (\$)	0.061330	0.081510	1.00000

In [7]:

df.corr()

Out[7]:

	year	suicides_no	population	suicides/100k pop	HDI for year	gdp_per_capita (\$)
year	1.000000	-0.004546	0.008850	-0.039037	0.366786	0.339134
suicides_no	-0.004546	1.000000	0.616162	0.306604	0.151399	0.061330
population	0.008850	0.616162	1.000000	0.008285	0.102943	0.081510
suicides/100k pop	-0.039037	0.306604	0.008285	1.000000	0.074279	0.001785
HDI for year	0.366786	0.151399	0.102943	0.074279	1.000000	0.771228
gdp_per_capita (\$)	0.339134	0.061330	0.081510	0.001785	0.771228	1.000000

In [10]:

```
plt.figure(figsize=(16,10))
sb.heatmap(df.corr(),annot= True)
plt.show()
```


In []:

In []:		