See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290169623

Evaluating Deep Scattering Spectra with Deep Neural Networks on Large Scale Spontaneous Speech Task

	nce Paper · April 2015 I/ICASSP.2015.7178832	
CITATIONS		READS
0		12
3 author	Petr Fousek IBM 29 PUBLICATIONS 514 CITATIONS	

Evaluating Deep Scattering Spectra with Deep Neural Networks on Large Scale Spontaneous Speech Task

Petr Fousek, Pierre Dognin, Vaibhava Goel

Abstract

- Take a Deep Neural Network (**DNN**) acoustic model, replace common log mel features on its input with with Deep Scatering Spectral features (**DSS**) and look how they compare on spontaneous speech.
- Study how to present DSS features to the DNN and find out which features perform the best.
- To be fair, compare models of the same size.
- → DSS features outperform log mels in all conditions though by a small margin.

Deep Scatering Spectrum. Why?

- DSS decomposes audio into frequency band-limited signals by wavelet transform.
- Wavelets produce logarithmic frequency output which is what we want (because it works well for log mel or MFCC.).
- No information is lost by binning linear DFT spectra by a filter bank like it is in log mel.
- Wavelet filters for DSS provide features robust to temporal (and frequency) distortions*.
- Depending on the order of the transform, DSS allows for perfect reconstruction so it can encode arbitrary level of detail.

DNN Acoustic Model

• Feed-forward MLP, sigmoids on 5 layers, linear bottleneck, softmax on CD phone targets.

$$[N-5*hidN-100-9000]$$

Hybrid setup (DNN gives emission probs. for HMMs).

• Growing layer by layer (x-entropy), then MPE (sequence-level).

Data

- Mobile queries & messages, 3 sec on average, 16 kHz Speex.
- 622 hrs or 125 hrs train set, 11 hrs dev set (for DNN), 7 hrs test set.

Features

 $\begin{array}{l} \begin{array}{l} \text{log mel} \\ 31\text{-dim} + \Delta + \Delta^2 \\ \pm 5 \text{ frames context} = 1023 \text{ features} \\ \hline \textbf{DSS} \\ \text{feature set as described here} \\ (\textbf{S}_1 \text{ by default go with } \Delta, \Delta^2) \\ \pm 5 \text{ frames context of all} \end{array}$ First order LDA applied on DSS features 2nd order DSS, retain 26 bases $\begin{array}{l} \text{First order DSS,} \\ \text{Filter density } \# \textbf{S}_1 \text{ features} \# \textbf{S}_2 \text{ features} \\ \hline \textbf{Q1} & 10 & 36 \\ \textbf{Q4} & 27 & 86 \\ \hline \end{array}$ $[\textbf{S}_1 + \text{LDA}_{26}, \textbf{Q8}, \textbf{1}] = 3^*(45+10)+26 = 191 \text{ features} \\ \hline \end{array}$

What DSS Features To Use

Do we need delta features for DSS? Or equivalent longer context?

148

- Do second-order DSS (S₂) help?
- Can we compress S₂ with LDA?

features	dim to DNN	PER	WER	hidN*			
S ₁ (no delta), Q8	45*11	49.6 (49.5)	13.8 (13.7)	1084			
S ₁ (no delta), Q8	45*15	45.0 (44.9)	13.3 (13.3)	1063	* for <i>same-size</i> DNNs		
S ₁ , Q8	135*11	44.7 (44.8)	13.3 (13.1)	975	101 Sallie-Size Divins		
$S_1 + S_2$, Q8	255*11	44.9 (45.1)	13.0 (13.3)	848			
S ₁ +LDA ₁₃ , Q8	148*11	44.4 (44.5)	13.2 (13.2)	960			
Table: Values in parentheses are for same-size DNNs. 125-h task, CE training.							

Feature normalization

- We always apply global mean&var normalization (for DNN).
- log mel per-utterance mean normalization by default (uttMN)
- **DSS** per-utterance L2-normalization on PCM by default (**L2 PCM**) PCM scaled by inverse of $\sqrt{\frac{1}{N}\sum_N x_n^2}$

features	norm.	PER	WER				
S ₁ + LDA ₁₃ , Q8	L2 PCM	44.4 (44.5)	13.2 (13.2)				
S ₁ + LDA ₁₃ , Q8	raw	44.6 (44.6)	13.3 (13.2)				
S ₁ + LDA ₁₃ , Q8	uttMN	43.8 (43.9)	13.4 (13.6)				
S ₁ + LDA ₁₃ , Q8	uttMVN	44.2 (43.9)	13.7 (13.6)				
log mel (base)	uttMN	46.2	13.7				
log mel	raw	47.3	13.6				
log mel	L2 PCM	46.9	13.4				
' DNN '							

Table: same-size DNNs in parentheses have hidN=960. 125-h task, CE training.

Second-order features are more sensitive to L2-norm.
$$S_1 + S_2$$
, Q8: norm. WER
L2 PCM 13.0 (13.3) *hidN = 848
raw 13.4 (13.5)

Acknowledgment: We thank Steven Rennie and Tara Sainath for valuable insights.

Filter bank resolution

- Previous study on S_1 features [Sainath et al. '14] says Q=8 (45-dim) is enough.
- Does $S_1 + LDA$ show a different trend?

features	dim	PER	WER
S ₁ +LDA ₅ , Q1	35	51.1	16.5
S ₁ +LDA ₉ , Q4	90	44.5	13.2
S ₁ +LDA ₁₃ , Q8	148	44.4 (44.5)	13.2 (13.2)
S ₁ +LDA ₂₁ , Q13	210	44.8 (44.9)	13.3 (13.3)

... log mel behaves similarly, best performance between Q=4 and Q=8.

Multi-resolution filter banks

- Multi-resolution for DSS makes sense (sparser temporal resolution ←⇒ finer frq. resolution) → complementarity.
- Concatenate S_1 features, apply LDA on merged S_2 features.
- log mel has limited complementarity (same DFT input).

fea	dim	PER	WER	hidN*		
log mel (uttMN)	93	46.2	13.7	1024		
L2-norm on audio						
log mel	93	46.9	13.4	1024		
log mel, Q8,4,1	246	46.8 (47.1)	13.3 (13.4)	857		
S ₁ +LDA ₅ , Q1	35	51.1	16.5			
S ₁ +LDA ₉ , Q4	90	44.5	13.2			
S ₁ +LDA ₁₃ , Q8	148	44.4 (44.5)	13.2 (13.2)	960		
S ₁ +LDA ₁₁ , Q4,1	122	44.5 (44.4)	13.1 (13.0)	990		
S ₁ +LDA ₁₅ , Q8,1	180	44.1 (44.3)	12.8 (13.0)	925		
S ₁ +LDA ₂₈ , Q8,4	244	44.0 (44.2)	12.6 (13.0)	859		
S ₁ +LDA ₂₆ , Q8,4,1	272	43.8 (44.1)	12.7 (12.9)	832		
	lo no	ormalization	1			
log mel	93	47.3	13.6	1024		
log mel, Q8,4,1	246	47.2 (47.5)	13.6 (13.7)	857		
S ₁ +LDA ₅ , Q1	35	51.5	16.8			
S ₁ +LDA ₉ , Q4	90	44.7	13.3			
S ₁ +LDA ₁₃ , Q8	148	44.6 (44.6)	13.3 (13.2)	960		
S ₁ +LDA ₁₁ , Q4,1	122	44.6 (44.6)	13.4 (13.3)	990		
S ₁ +LDA ₁₅ , Q8,1	180	44.5 (44.2)	13.1 (13.1)	925		
S ₁ +LDA ₂₈ , Q8,4	244	44.3 (44.2)	13.0 (13.1)	859		
S ₁ +LDA ₂₆ , Q8,4,1		44.2 (44.3)	,	832		
* for same-size DNNs						

Results on Full Data Set

- log-mel baseline carefully tuned, hidN=2048, 20M parameters.
- On cross-entropy, DSS is better by 4% relative than log mel, on sequence-training by 3% relative.

fea	dim	PER		WER	ST WER		
log mel (uttMN)	93	39.3		11.5	10.0		
L2-norm on audio							
S ₁ +LDA ₂₆ , Q8,4,1	272	39.5	(38.8)	11.2 (11.1)	9.7 (9.7)		
S ₁ +LDA ₁₅ , Q8,1	180	39.1	(39.3)	11.0 (11.2)	9.8 (9.8)		
No normalization							
S ₁ +LDA ₂₆ , Q8,4,1	272	39.5	(39.2)	11.3 (11.3)	10.0 (9.9)		
Table: 622-h data set.	WER	for Cro	ss-Entr	opy and Sequ	ence-Training		