Department of (ECE) & (CS), Florida Institute of Technology, Melbourne, Florida

Wake-Up-Word Speech Recognition in FPGA

ECE 5570 1st December 2019

By: Adolf A D'costa Prof: Dr. Veton Kepuska

ID: 9035384040

Index

1. Project Goal	3
2. Results Archived	3
3. Pre-requisites to run the code	3
4. FPGA	4
5. Operational Block Diagram	4
6. Description of Code	4
7. Pin Planner in Cyclone 4	
8. Resources Used	7
9. Concept to Implement Project	8
10. Result	9
11. Conclusion	10
12. Reference.	10

Project Goal –

The objective of this course was to a system that can detect human voice. The signal is processed on the FPGA to deliver an output. The system is designed to capture a small window speech signal; this signal is processed in several steps to deliver an output.

Results Archived –

Successfully recognized "One" and "Zero" on an FPGA and displayed results on a seven-segment display, the microphone connected to a computer captured speech signal. The entire system is divided into two parts front-end consist of a computer connected to a microphone running a MATLAB code, and the back-end consists of a DE2i-150 FPGA running a code. The front and back end is connected via RS232 Serial port.

Pre-Requisites-

Front-End MATLAB "Recorder.m" is the file running in MATLAB

Back-End
DE2i-150 (Development Kit – Hardware)
"Voice_Recognition" is the main file running on the FPGA
UART
UART_parity
UART_Tx
UART_Rx

FPGA-

In this project, we are using the DE2i-150 Development Board. This development board consists of two sections one containing an Intel Atom processor Cedarview (N2600), which is not used. However, on the other side, it has Altera Cyclone 4 (EP4CGX150DF31). The Altera Cyclone 4 is configured to process the signal received via a serial port.

Operational Block Diagram -

Description of Code –

This code is executed, and the speech signal is analyzed in real-time. The system is divided into two parts front-end and back-end. The front-end has a MATLAB GUI that a "Capture Voice" button, when pressed, picks up a voice sample of 1 second, either "One" or "Zero" from the microphone spoken by the user, which is connected on the computer. The data is stored in a double precession array, Fourier Transform and windowing technique is applied to the signal using MATLAB. Only the first 1000 samples are sent from the entire data for processing and comparison in the FPGA. MATLAB displays a graph of Human voice (Time vs. Amplitude) and Frequency response of the voice signal, i.e.

(Frequency vs. Amplitude). USB to Serial converter is used to establish serial communication between the computer and the FPGA. Below is the configuration used for serial communication.

Criteria	Value
Baud Rate	9600
Parity Bit	None
Stop Bit	1
Flow Control	Hardware

The FPGA receives the data is compared with the stored vector. FPGA processes the Euclidian distance, and the weight is calculated. The result is displayed on the seven-segment display. The back-end system runs on four steps Receiving, Calculating distance, Decision making, and Displaying results.

Pin Planner in Cyclone 4 –

Top View - Wire Bond Cyclone IV GX - EP4CGX150DF31C7

			VREF	Filter
Node Name	Direction	Location	Group	location
BUSY	Output	PIN_J25	B6_N0	PIN_J25
		PIN_AJ		
CLK	Input	16	B4_N2	PIN_AJ16
		PIN_AA		PIN_AA2
data_led[7]	Output	22	B5_N1	2
		PIN_Y2	D5 370	DDV 1/05
data_led[6]	Output	5	B5_N2	PIN_Y25
4-4- 1-4(5)	Ontrod	PIN_Y2 2	DE MI	DIN V22
data_led[5]	Output		B5_N1	PIN_Y22
data_led[4]	Output	PIN_W2	B5 N0	PIN W26
	· · · · · · · · · · · · · · · · · · ·	PIN F26		
data_led[3]	Output		B6_N0	PIN_F26
data_led[2]	Output	PIN_F27	B6_N0	PIN_F27
1		PIN_AB	D5 370	PIN_AB2
data_led[1]	Output	25	B5_N2	5
4-4- 1-400	Ontrod	PIN_AA 25	DE NO	PIN_AA2
data_led[0]	Output		B5_N2	5
equal[6]	Output	PIN_G1 0	B8_N2	PIN_G10
equal[5]	Output	PIN_J9	B8_N2	PIN_J9
equai[3]	Output	PIN_G1	Bo_INZ	FIN_J9
equal[4]	Output	2	B8_N1	PIN_G12
equal[3]	Output	PIN F12	B8_N1	PIN_F12
equai[5]	Output	PIN_G1	B0_111	1111_112
equal[2]	Output	3	B8_N0	PIN_G13
-4[-]		PIN_B1		
equal[1]	Output	3	B8 N0	PIN_B13
	1	PIN_G1		_
equal[0]	Output	4	B8_N0	PIN_G14
FRAME_ER				
R	Output			PIN_L30
n[6]	Output	PIN_D4	B8_N1	PIN_D4
n[5]	Output	PIN D5	B8_N2	PIN_D5

n[4]	Output	PIN_E3	B8_N2	PIN_E3
n[3]	Output	PIN_E4	B8_N2	PIN_E4
n[2]	Output	PIN_E6	B8_N2	PIN_E6
	· · · · · · · · · · · · · · · · · · ·			
n[1]	Output	PIN_D7 PIN_D1	B8_N1	PIN_D7
n[0]	Output	0	B8_N2	PIN_D10
o[6]	Output	PIN_F10	B8_N2	PIN_F10
o[5]	Output	PIN F4	B8_N2	PIN_F4
o[4]	Output	PIN_F6	B8_N2	PIN_F6
		PIN_AG		PIN_AG3
o[3]	Output	30	B5_N2	0
o[2]	Output	PIN_F7	B8_N2	PIN_F7
o[1]	Output	PIN_G7	B8_N2	PIN_G7
o[0]	Output	PIN_G8	B8_N2	PIN_G8
result[6]	Output	PIN_F14	B8_N0	PIN_F14
		PIN_D1		
result[5]	Output	6	B8_N0	PIN_D16
result[4]	Output	PIN_F16	B8_N0	PIN_F16
result[3]	Output	PIN_F11	B8_N1	PIN_F11
		PIN_G1		
result[2]	Output	1	B8_N1	PIN_G11
	0-4	PIN_E1 2	B8_N1	PIN_E12
result[1]	Output	PIN_E1	B8_INI	PIN_E12
result[0]	Output	5	B8_N0	PIN E15
	·	PIN_AA		PIN_AA2
RST_N	Input	26	B5_N2	6
		PIN_W2		
state_four	Output	5	B5_N0	PIN_W25
state_one	Output	PIN_T2	B5_N0	PIN_T23
state_one	Output	PIN_V2	B3_N0	FIIN_123
state_three	Output	7	B5_N0	PIN_V27
	i i	PIN_T2		
state_two	Output	4	B5_N0	PIN_T24
		PIN_B2		
UART_RXD	Input	7	B7_N0	PIN_B27
UART_TXD	Output	PIN_H2 4	B7_N0	PIN_H24

Resources Used –

- RAM consumption approx. 380MB
- Approximately 13,757 Logic Elements Consumed.
- 9144 Registers
- 10,450 Logic Function used
- Accuracy is not static but approx. 60%
- Can detect a speech of either ("One" or "ZERO") [6]

Concepts Used to Implement Project –

- Discrete Fourier Transform (DFT) It is important in signal processing. (DFT) is used to converts a finite sequence of equally-spaced samples of a function into an equivalent-length sequence of identically-spaced samples of the discrete-time Fourier transform (DTFT).[1]
- Hamming Window Fourier transform applies an infinite number of repeating signals. If the start and the end of the signals did not match, it will generate discontinuity and result in noise. Windowing helps match the edges and keep the waveform smooth, which reduces spectral leakage.
- Euclidian Distance It is an ordinary straight line distance between two points in Euclidian Space.
- Hamming Distance It is the distance between two strings of equal length. It is the minimum number of substitutions required to change one string into another.
- FFT- It is a O[N log(N)] is used to compute Discrete Fourier Transform. It converts a signal from (time or space domain) to the frequency domain. [2]

Result –

"Zero" was detected by the FPGA

"One" was detected by the FPGA

Conclusion –

Successfully was able to detect speech signals using the Altera DE2i-150. This FPGA has many constraints and incapability. The software was used to overcome this hardware incapability; that's the reason why the system had to be divided into two front-end and the back-end. The system was successful in recognizing speech signal i.e., "One" and "Zero," the efficiency of the system was not as good as a processor-based system. The availability of powerful hardware with powerful ADC chips can record more pure sound resulting in more accurate results; powerful chips can run robust algorithms like Hidden Markov models.

Reference –

- [1] "Discrete Fourier Transform." Wikipedia, Wikimedia Foundation, 6 Dec. 2019, https://en.wikipedia.org/wiki/Discrete_Fourier_transform.
- [2] "Fast Fourier Transform." Wikipedia, Wikimedia Foundation, 16 Nov. 2019, https://en.wikipedia.org/wiki/Fast_Fourier_transform.
- [3] "Field-Programmable Gate Array." Wikipedia, Wikimedia Foundation, 30 Nov. 2019, https://en.wikipedia.org/wiki/Field-programmable_gate_array.
- [4] "Choosing a Wake Word Tips & Considerations." Picovoice, https://picovoice.ai/docs/choose-wake-word/index.html.
- [5] Kepuska, Veton. "Wake-Up-Word Speech Recognition." IntechOpen, IntechOpen, 13 June 2011, https://www.intechopen.com/books/speech-technologies/wake-up-word-speech-recognition.
- [6] "Altera DE2 Board Mạch Thí Nghiệm FPGA." Altera DE2 Board Mạch Thí Nghiệm FPGA, http://kitboardmach.blogspot.com/2017/11/altera-de2-board-machthi-nghiem-fpga.html.
- [7] DE2i-150 FPGA Development Kit, 17 May 2019, https://www.intel.com/content/www/us/en/programmable/solutions/partners/partne r-profile/terasic-inc-/board/de2i-150-fpga-development-kit.html.
- [8] MohammedRashad. "MohammedRashad/FPGA-Speech-Recognition." GitHub, https://github.com/MohammedRashad/FPGA-Speech-Recognition.