```
# Q1 File gross.dat contains gross national product y in real dollars for 26
recent years,
# x = 1,2,...,26. Use R expressions to do the followings

# a. Read data into R.
gross = read.table("gross.dat", header = TRUE)
grossProduct = gross$y;
grossProduct

## [1] 309.9 323.7 324.1 355.3 383.4 395.1 412.8 407.0 438.0 446.1 452.5
## [12] 447.3 475.9 487.7 497.2 529.8 551.0 581.1 617.8 658.1 675.2 706.6
## [23] 725.6 722.5 745.4 790.7

# b. Plot the histogram of y.
hist(grossProduct, col="red", xlab="Gross Rate", main="Histogram for 26 years gross national product ")
```

Histogram for 26 years gross national product


```
# c. Calculate the sample mean, the sample standard deviation1 and median of
y.
# i. Mean of gross product
meanGP = mean(grossProduct)
meanGP
## [1] 517.6846
```

```
# ii. Standard Deviation of Gross Product
varGP = sum((grossProduct - meanGP)^2)/(length(grossProduct) - 1)
sdGP = sqrt(varGP)
sdGP
## [1] 145.8477
# iii. median of Gross Product
medianGP = median(grossProduct)
medianGP
## [1] 481.8
# d. The coding of a data set refers to the operation of subtracting (or add
ing)
      a constant to each observation and then dividing (multiplying) by anoth
er constant.
     The coding by subtracting the sample mean of data and dividing by the s
ample
      standard deviation is called standardization and the coded data is call
ed standardized data.
# Standardize y and calculate the mean and the variance of the standardiz
ed y
## Standardize y
standardizedGP = (grossProduct - meanGP)/sdGP
standardizedGP
## [1] -1.42466833 -1.33004909 -1.32730650 -1.11338473 -0.92071801
## [6] -0.84049735 -0.71913789 -0.75890540 -0.54635492 -0.49081754
## [11] -0.44693615 -0.48258978 -0.28649483 -0.20558852 -0.14045209
## [16] 0.08306873 0.22842583 0.43480548 0.68643782 0.96275343
## [21] 1.07999901 1.29529207 1.42556494 1.40430990 1.56132299
## [26] 1.87192094
## Mean of Standardize y
meanStandardizedGP = mean(standardizedGP)
meanStandardizedGP
## [1] -2.910416e-16
## Variance of Standardize y
varianceStandardizedGP = var(standardizedGP)
varianceStandardizedGP
## [1] 1
```

```
# Q2 J.J. Thomson (1856-1940), discovered the electron while investigating th
e basic nature of cathode rays.
# In laboratory experiments Thomson isolated negatively charged particles for
which he could determine
# the mass-charge ratio. This ratio appeared to be constant over a wide varie
ty of experimental conditions
# and to be a characteristic of these new particles. Thomson obtained the fol
lowing results with two
# different cathode ray tubes, using air as the gas:
# Tube 1 | 0.57 0.34 0.43 0.32 0.48 0.40 0.40
# Tube 2 | 0.53 0.47 0.47 0.51 0.63 0.61 0.48
# (a) Do the two tubes appear to produce consistent results?
tube1 = c(.57, .34, .43, .32, .48, .40, .40)
tube2 = c(.53, .47, .47, .51, .63, .61, .48)
meanTube1 = mean(tube1)
meanTube2 = mean(tube2)
resultDiff = meanTube2 - meanTube1
## Result of 2 tubes mean
resultDiff
## [1] 0.1085714
allTogether = c(tube1, tube2)
result=0
for (i in 1:10000) {
  mixedTogether = sample(allTogether)
 tube1R = mixedTogether[1:7]
 tube2R = mixedTogether[8:14]
 result[i]= mean(tube1R) - mean(tube2R)
}
hist(result)
```

Histogram of result

After running above calculation, we came to conclusion that Results are NO T CONSISTENT,

Since the difference of both tube resulted 0.10857, while populating histo gram for 10000 values we found that

this is far too right in histogram.

Q3 An orbiting satellite has 3 panels of solar cells, all of which must be active to provide an adequate

power output. The panels function independently of one another. The chance that a single panel will

fail during the mission is 0.02. What is the probability that there will be adequate power output during

the entire mission time? (This probability is called the reliability of the system.)

success probability out of failure for one cell
successProb = 1 - .02

if any one fails, it will not have adequate power, So the answer is
dbinom(3, 3, successProb)

[1] 0.941192

```
# Q4 In a study of the coexistence of two types of insects, let X and Y denot
e the number of type A and type
# B insects, respectively, that reside on the same plant. From observations o
f a large number of plants,
# suppose that the following joint probability distribution is assessed for t
he insect counts per plant.
\# x \rightarrow y \downarrow / 1 2 3 4
# 0 | 0 0.05 0.05 0.10
# 1 | 0.08 0.15 0.10 0.10
# 2 | 0.20 0.12 0.05 0
# marginal X | .28 .32 .20 .20
# marginal Y | .20 .43 .37
# (a) Find the probability that there are more type B insects than type A ins
ects on a plant.
# Omitting (0,1) (2,4) Plants, since they both are 0 for Type B and Type A in
sects
\# P(Y|X) for (1, 1) = X intersection Y / X
.08/.28 > .28
## [1] TRUE
# P(Y|X) for (2, 1) = X intersection Y / X
.20/.28 > .28
## [1] TRUE
# P(Y|X) for (0, 2) = X intersection Y / X
.05/.32 > .32
## [1] FALSE
\# P(Y|X) for (1, 2) = X intersection Y / X
.15/.32 > .32
## [1] TRUE
\# P(Y|X) for (2, 2) = X intersection Y / X
.12/.32 > .32
## [1] TRUE
# P(Y|X) for (0, 3) = X intersection Y / X
.05/.20 > .20
```

```
## [1] TRUE
\# P(Y|X) for (1, 3) = X intersection Y / X
.10/.20 > .20
## [1] TRUE
\# P(Y|X) for (2, 3) = X intersection Y / X
.05/.20 > .20
## [1] TRUE
# P(Y|X) for (2, 2) = X intersection Y / X
.12/.32 > .32
## [1] TRUE
# P(Y|X) for (0, 4) = X intersection Y / X
.10/.20 > .20
## [1] TRUE
\# P(Y|X) for (1, 4) = X intersection Y / X
.10/.20 > .20
## [1] TRUE
## Since only a plant (0,2) has more Type A insects Probability then Type B
insects indicated by False in results, While Rest of the plants have Type B
insects Probability indicated by TRUE in results
# (b) Compute \mu x, \mu y, \sigma x, \sigma y and Cov(X, Y).
xi = 1:4
x = c(.28, .32, .20, .20)
yj = 0:2
y = c(.20, .43, .37)
# µx
mx = sum(xi*x)
mx
## [1] 2.32
# µy
my = sum(yj*y)
```

[1] **1.17**

```
# σx
varx = sum((xi^2)*x) - mx^2
varx
## [1] 1.1776
\# \sigma y
vary = sum((yj^2)*y) - my^2
## [1] 0.5411
mxy = sum(
 1*1*.08, 1*2*.20,
 2*1*.15, 2*2*.12,
 3*1*.10, 3*2*.05,
 4*1*.10, 4*2*0
)
# Cov(X, Y)
covXY = mxy - mx*my
covXY
## [1] -0.4544
# Q5 The medical records of the male diabetic patents reporting to a clinic d
uring one year provide the
# following percentage:
# | Light case | Serious case
# Age of | Diabetes in parents | Diabetes in parents
# patient | Yes | No | Yes | No
# Below 40 | 15
                            10 | 8 |
# Above 40 | 15
                            20 | 20 | 10
# Suppose a patient is chosen at random from this group, and the events A, B
and C are defined
# A: He has a serious case.
# B: He is below 40.
# C: His parents are diabetic
## Total number of patients are 100, so every element divided by 100 to get P
robability
```

```
# (a) Find the probabilities P(A), P(B), P(A \cap B), P(A \cap B \cap C).
## P(A)
.4
## [1] 0.4
## P(B)
.35
## [1] 0.35
## P(A ∩ B)
.1
## [1] 0.1
## P(A n B n C)
.08
## [1] 0.08
# (b) Describe the following events verbally and find their probabilities:
## (i) A' ∩ B'
## patients that are not serious and not below 40
## [1] 0.35
## (ii) A'∪C'
## Patient that are not serious or with parents that are not diabetic
.72
## [1] 0.72
## (iii) A' n B n C'
## patients that are not serious, below 40 and parents are not diabetic
. 1
## [1] 0.1
```