Задача 1 (1 т.). Дайте определение на операцията разлика на множества A и B, която означаваме с $A \setminus B$.

$$A \setminus B = \{x \in A \mid x \notin B\}$$

или

$$(\forall x)[x \in A \setminus B \leftrightarrow x \in A \land x \notin B].$$

Определение 1. За произволни множества A и B,

$$A \triangle B = (A \setminus B) \cup (B \setminus A).$$

Задача 2 (2 т.). Докажете или дайте контрапример, че

$$A \cup B = (A \triangle B) \cup (A \cap B).$$

Решение. Ще разгледаме две подзадачи.

- i) Нека $x \in A \cup B$. Имаме два случая.
 - а) $x \in A \cap B$. Тогава е очевидно, че $x \in (A \triangle B) \cup (A \cap B)$.
 - б) $x \notin A \cap B$, т.е. $x \notin A$ или $x \notin B$.
 - $x \notin A$, но $x \in A \cup B$. Тогава

$$x \notin A \land (x \in A \lor x \in B) \Rightarrow x \in B \land x \notin A \Rightarrow x \in B \setminus A.$$

Ясно е, че в този случай $x \in A \triangle B$.

• $x \notin B$, но $x \in A \cup B$. Тогава

$$x \notin B \land (x \in A \lor x \in B) \Rightarrow x \in A \land x \notin B \Rightarrow x \in A \setminus B.$$

Ясно е, че в този случай $x \in A \triangle B$.

И в двата случая получаваме, че $x \in A \triangle B \cup (A \cap B)$.

- іі) Нека $x \in (A \triangle B) \cup (A \cap B)$. Отново разглеждаме два случая.
 - а) $x \in A \triangle B$. Тогава

$$x \in A \setminus B \lor x \in B \setminus A \implies x \in A \lor x \in B \implies x \in A \cup B.$$

б) $x \in A \cap B$. Тогава

$$x \in A \land x \in B \ \Rightarrow \ x \in A \lor x \in B \ \Rightarrow x \in A \cup B.$$

И в двата случая получаваме, че $x \in A \cup B$.

Задача 3 (2 т.). Докажете или дайте контрапример, че

$$C \setminus (A \cup B) = (C \setminus A) \cap (C \setminus B).$$

Решение.

$$x \in C \setminus (A \cup B) \Leftrightarrow x \in C \land x \notin A \cup B$$

$$\Leftrightarrow x \in C \land \neg (x \in A \lor x \in B)$$

$$\Leftrightarrow x \in C \land x \notin A \land x \notin B$$

$$\Leftrightarrow x \in C \land x \notin A \land x \in C \land x \notin B$$

$$\Leftrightarrow x \in C \setminus A \land x \in C \setminus B$$

$$\Leftrightarrow x \in (C \setminus A) \cap (C \setminus B)$$

Задача 4 (1 т.). Докажете или дайте контрапример, че

$$A \setminus B = B \setminus A$$
.

Решение. Например, нека $A=\{1,2\}$ и $B=\{2\}$. Тогава $A\setminus B=\{1\}$, но $B\setminus A=\emptyset$.

Задача 5 (1 т.). Дайте определение на понятието функция $f: A \to B$.

 $f:A\to B$ е изображение (или релация в $A\times B$), което съпоставя на всеки елемент от $a\in A$ точно един елемент от $b\in B$, който означаваме b=f(a).

Задача 6 (2 т.). Нека е дадена функцията $f: \mathbf{N} \to \mathbf{N}$, определена като:

$$f(x) = 2x + 1$$
.

Нека е дадено множеството $A = \{2n+1 \mid n \in \mathbb{N}\}$. Намерете $f^{-1}(A)$.

Решение.

$$f^{-1}(A) = \{x \in \mathbf{N} \mid f(x) \in A\} = \{x \in \mathbf{N} \mid f(x) \text{ е нечетно}\} = \mathbf{N}.$$

Задача 7 (2 т.). Нека са дадени биективните функции $f:A\to B$ и $g:B\to C$. Докажете или дайте контрапример, че

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Решение.

$$(g \circ f)^{-1}(x) = y \Leftrightarrow (g \circ f)(y) = x$$

$$\Leftrightarrow g(f(y)) = x$$

$$\Leftrightarrow (\exists z)[f(y) = z \land g(z) = x]$$

$$\Leftrightarrow (\exists z)[f^{-1}(z) = y \land g^{-1}(x) = z]$$

$$\Leftrightarrow (\exists z)[g^{-1}(x) = z \land f^{-1}(z) = y]$$

$$\Leftrightarrow (f^{-1} \circ g^{-1})(x) = y]$$

Контролно по ДС, спец. ИС, гр. 3, 05.11.2013 г.

Задача 1 (1 т.). Дайте определение на множеството ∅.

$$(\forall x)[x \notin \emptyset]$$

или

$$\neg(\exists x)[x \in \emptyset].$$

Задача 2 (2 т.). Докажете или дайте контрапример, че

$$C \setminus (A \cap B) = (C \setminus A) \cup (C \setminus B).$$

Решение.

$$x \in C \setminus (A \cap B) \Leftrightarrow x \in C \lor x \notin A \cap B$$

$$\Leftrightarrow x \in C \land \neg (x \in A \land x \in B)$$

$$\Leftrightarrow x \in C \land (x \notin A \lor x \notin B)$$

$$\Leftrightarrow (x \in C \land x \notin A) \lor (x \in C \land x \notin B)$$

$$\Leftrightarrow x \in C \setminus A \lor x \in C \setminus B$$

$$\Leftrightarrow x \in (C \setminus A) \cup (C \setminus B)$$

За едно множество A, определяме $\mathscr{P}(A) = \{B \mid B \subseteq A\}$.

Задача 3 (1 т.). Намерете $\mathscr{P}(\{\{\emptyset\},\emptyset\})$.

Решение.
$$\mathscr{P}(\{\{\emptyset\},\emptyset\}) = \{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\emptyset,\{\emptyset\}\}\}.$$

Задача 4 (2 т.). Докажете или дайте контрапример, че

$$A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C).$$

Решение.

$$\begin{split} x \in A \setminus (B \setminus C) &\Leftrightarrow x \in A \ \land \ x \not\in (B \setminus C) \\ &\Leftrightarrow x \in A \ \land \ \neg(x \in B \ \land \ x \not\in C) \\ &\Leftrightarrow x \in A \ \land \ (x \not\in B \ \lor \ x \in C) \\ &\Leftrightarrow (x \in A \ \land \ x \not\in B) \ \lor \ (x \in A \ \land \ x \in C) \\ &\Leftrightarrow x \in (A \setminus B) \cup (A \cap C) \end{split}$$

Задача 5 (1 т.). Докажете или дайте контрапример, че $A \backslash B = \emptyset \ \leftrightarrow \ A \subseteq B$. **Решение.**

$$A \setminus B = \emptyset \Leftrightarrow (\forall x)[x \notin A \setminus B]$$

$$\Leftrightarrow (\forall x)[\neg(x \in A \land x \notin B)]$$

$$\Leftrightarrow (\forall x)[x \notin A \lor x \in B]$$

$$\Leftrightarrow (\forall x)[x \in A \to x \in B]$$

$$\Leftrightarrow A \subseteq B$$

 \Box

Задача 6 (1 т.). Нека е дадена функцията $f: \mathbf{Z} \to \mathbf{Z}$, определена като:

$$f(x) = |x|.$$

Нека е дадено множеството $A = \{2n+1 \mid n \in \mathbb{N}\}$. Намерете $f^{-1}(A)$.

Решение.

$$\begin{split} f^{-1}(A) &= \{x \in \mathbf{Z} \mid f(x) \in A\} \\ &= \{x \in \mathbf{Z} \mid f(x) \in \mathbf{N} \text{ и е нечетно}\} \\ &= \{x \in \mathbf{Z} \mid |x| \in \mathbf{N} \text{ и е нечетно}\} \\ &= \{2x+1 \mid x \in \mathbf{Z} \ \land \ 2|x|+1 \geq 0\} \\ &= \{2x+1 \mid x \in \mathbf{Z}\} \end{split}$$

Задача 7 (2 т.). Нека са дадени биективните функции $f:A\to B$ и $g:B\to C$. Докажете или дайте контрапример, че функцията $g\circ f$ също е биективна.

Решение.

1. Ще докажем, че $g\circ f$ е инективна.

Нека $x_1 \neq x_2$. Тогава

$$f(x_1) = y_1 \neq y_2 = f(x_2).$$

Получаваме, че

$$(g \circ f)(x_1) = g(f(x_1)) = g(y_1) \neq g(y_2) = g(f(x_2)) = (g \circ f)(x_2).$$

Следователно, $g \circ f$ е инективна.

2. Ще докажем ,че $g \circ f$ е сюрективна.

Нека да вземем произволен елемент $z\in C$. Тогава съществува $y\in B$, такова че g(y)=z. Накрая, съществува $x\in A,$ f(x)=y. Заключаваме, че

$$z = g(y) = g(f(x)) = (g \circ f)(x).$$

Контролно по ДС, спец. ИС, гр. 1, 06.11.2013 г.

Задача 1 (2 т.). а) Вярно ли е, че $\{\emptyset\} \in \{\emptyset, \{\{\emptyset\}\}\}\$?

б) Вярно ли е, че $\{\emptyset\} \subseteq \{\emptyset, \{\{\emptyset\}\}\}\}$?

Решение.

- a) He.
- б) Да.

Задача 2 (2 т.). Докажете или дайте контрапример, че

$$A \cup B = B \iff A \cap B = A.$$

Решение.

а) Нека $A \cup B = B$, т.е. $(\forall x)[x \in B \iff x \in A \cup B]$. Нека $x \in A$. Тогава

$$x \in A \ \Rightarrow x \in A \cup B \ \Rightarrow \ x \in B.$$

Следователно, $x\in A\cap B$ и тогава $A\subseteq A\cap B$. Очевидно е, че $A\cap B\subseteq A$. Заключаваме, че $A=A\cap B$.

б) Нека $A \cap B = A$, т.е. $(\forall x)[x \in A \Leftrightarrow x \in A \cap B]$. Очевидно е, че $B \subseteq A \cup B$. Да допуснем, че има елемент $x \in A \cup B$ и $x \notin B$. Тогава $x \in A$.

$$x \in A \implies x \in A \cap B \implies x \in B.$$

Достигаме до противоречие. Следователно, $A \cup B \subseteq B$. Заключаваме, че $A = A \cup B$.

Задача 3 (1 т.). Докажете или дайте контрапример, че $A \setminus B = A \setminus (A \cap B)$.

Решение. Използваме, че:

$$p \wedge (\neg p \vee q) \leftrightarrow (p \wedge \neg p) \vee (p \wedge q) \leftrightarrow p \wedge q.$$

В нашата задача, $p=x\in A, q=x\not\in B.$ Тогава

$$\begin{aligned} x \in A \setminus B &\Leftrightarrow x \in A \ \land \ x \not\in B \\ &\Leftrightarrow x \in A \ \land \ (x \not\in A \ \lor \ x \not\in B) \\ &\Leftrightarrow x \in A \ \land \ x \not\in (A \cap B) \\ &\Leftrightarrow x \in A \setminus (A \cap B). \end{aligned}$$

Задача 4 (1 т.). Докажете или дайте контрапример, че

$$A \setminus (B \setminus C) = (A \setminus B) \setminus C.$$

Решение. Да вземем множества $A=B=C\neq\emptyset$. Тогава $B\setminus C=\emptyset$ и $A\setminus (B\setminus C)=A$, но $A\setminus B=\emptyset$ и $(A\setminus B)\setminus C=\emptyset$.

Задача 5 (1 т.). Нека $f: \mathbf{Z} \to \mathbf{Z}$ е определена като

$$f(x) = x^2.$$

Нека $A = \{1, 2, 3, 4\}$. Намерете $f^{-1}(A)$.

Решение.
$$f^{-1}(A) = \{-1, 1, -2, 2\}.$$

Задача 6 (1 т.). Нека е дадена функция $f:A\to B$. Докажете или дайте контрапример, че $(\forall X,Y\subseteq B)[f^{-1}(X)\setminus f^{-1}(Y)=f^{-1}(X\setminus Y)]$.

Решение.

$$\begin{split} x \in f^{-1}(X) \setminus f^{-1}(Y) &\Leftrightarrow \ x \in f^{-1}(X) \ \land \ x \not\in f^{-1}(Y) \\ &\Leftrightarrow f(x) \in X \ \land f(x) \not\in Y \\ &\Leftrightarrow f(x) \in X \setminus Y \\ &\Leftrightarrow x \in f^{-1}(X \setminus Y) \end{split}$$

Задача 7 (2 т.). Докажете или дайте контрапример, че за произволни функции $f:A\to B$ и $g:B\to C$, ако $g\circ f$ е сюрективна, то g е сюрективна.

Решение. Нека $z \in C$. Ще покажем, че съществува $y \in B, g(y) = z$. Щом $g \circ f$ е сюрективна, то съществува $x \in A$,

$$(g \circ f)(x) = g(f(x)) = z.$$

Тогава за това y = f(x) имаме, че g(y) = z. Следователно, g е сюрективна.