#### Welcome...

Classification: Performance Metrics-Confusion Matrix, ROC, AUC, Macro and Micro Averages

CS 797Q Fall 2024

09/30/2024



# Categories of Data Analysis Techniques

| Category             | Techniques Covered                                                                                                       | Problem to be solved                                                    |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--|--|
| Association Rules    | Apriori                                                                                                                  | Relationships between items                                             |  |  |
| Clustering           | K-Means Clustering<br>DB Scan                                                                                            | Grouping of similar items Identification of structures                  |  |  |
| Classification       | K-nearest Neighbor Decision Trees Random Forests Logistic Regression Naive Bayes Support Vector Machines Neural Networks | Assignment of labels to objects                                         |  |  |
| Regression           | Linear Regression<br>Ridge<br>Lasso                                                                                      | Relationship between outcome and inputs                                 |  |  |
| Time Series Analysis | ARMA                                                                                                                     | Identification of temporal structures Forecasting of temporal processes |  |  |
| Text Mining          | Bag-of-Words<br>Stemming/Lemmatization<br>TF-IDF                                                                         | Analysis of textual data                                                |  |  |



# Example of Classification









This is a bear

## The General Problem



#### The Formal Problem

- Object space
  - $O = \{object_1, object_2, \dots\}$
  - Often infinite
- Representations of the objects in a feature space
  - $\mathcal{F} = \{ \phi(o), o \in O \}$
- Set of classes
  - $C = \{class_1, ..., class_n\}$
- A target concept that maps objects to class
  - $h^*: O \rightarrow C$
- Classification
  - Finding an approximation of the target conce,

How do you get  $h^*$ ?



## The "Whale" Hypothesis

Why do we know this is a whale?

Has a fin

Black top, white bottom

Oval body



Blue background

**Hypothesis:** 

Objects with fins, an oval general shape that are black on top and white on the bottom in front of a blue background are whales.



## The Hypothesis

- A hypothesis maps features to classes
  - $h: \mathcal{F} \to \mathcal{C}$
  - $h: \phi(o) \to C$

- ullet Approximation of the target concept  $h^*$ 
  - $h^*(o) \approx h(\phi(o))$

• Hypothesis = Classifier = Classification Model

What if I am not sure about the class?



### Classification using Scores

- A numeric score for each class  $c \in C$
- Often a probability distribution
  - $h': \phi(o) \to [0,1]^{|C|}$
  - $||h'(\phi(o))||_1 = 1$
- Example
  - Three classes: "whale", "bear", "other"
  - $h'(\phi("whalepicture")) = (0.7,0.1,0.2)$



- Standard approach:
  - Classification is class with highest score

#### Thresholds for Scores

Different thresholds also possible



Threshold of 0.2 would miss "Spam" but better identify "No Spam"

Many "No Spam" incorrectly detected as spam if "highest" score is used

## Quality of Hypothesis

Goal: Approximation of the targ

•  $h^*(o) \approx h(\phi(o))$ 

How do you evaluate  $h^*(o) \approx h(\phi(o))$ 

- → Use Test Data
  - Structure is the same as training data
  - Apply hypothesis



|        |           | $\phi(o)$ |                 |                | $h^*(o)$ | $h(\phi(o))$ |
|--------|-----------|-----------|-----------------|----------------|----------|--------------|
| hasFin | shape     | colorTop  | colorBotto<br>m | backgroun<br>d | class    | prediction   |
| true   | oval      | black     | black           | blue           | whale    | whale        |
| false  | rectangle | brown     | brown           | green          | bear     | whale        |
|        |           |           | •••             |                |          |              |

#### The Confusion Matrix

Table of actual values versus prediction



### Binary Classification

- Many problems are binary
  - Will I get my money back?
  - Is this credit card fraud?
  - Will my paper be accepted?
  - ...
- Can all be formulated as either being in a class or not
- → Labels *true* and *false*

### The Binary Confusion Matrix



- False positives are also called Type I error
- False negatives are also called Type II error

# Binary Performance Metrics (1)

- Rates per actual class
  - True positive rate, recall, sensitivity
    - Percentage of actually "True" that is predicted correctly

• 
$$TPR = \frac{TP}{TP + FN}$$

- True negative rate, specificity
  - Percentage of actually "False" that is predicted correctly

• 
$$TNR = \frac{TN}{TN+FP}$$

- False negative rate
  - Percentage of actually "True" that is predicted wrongly

• 
$$FNR = \frac{FN}{FN+TP}$$

- False positive rate
  - Percentage of actually "False" that is predicted wrongly

• 
$$FPR = \frac{FP}{FP + TN}$$





## Binary Performance Metrics (2)

- Rates per predicted class
  - Positive predictive value, precision
    - Percentage of predicted "True" that is predicted correctly

• 
$$PPV = \frac{TP}{TP + FP}$$

- Negative predictive value
  - Percentage of predicted "False" that is predicted correctly

• 
$$NPV = \frac{TN}{TN + FN}$$

- False discovery rate
  - Percentage of predicted "True" that is predicted wrongly

• 
$$FDR = \frac{FP}{TP + FP}$$

- False omission rate
  - Percentage of predicted "False" that is predicted wrongly

• 
$$FOR = \frac{FN}{FN + TN}$$



## Binary Performance Metrics (3)

- Metrics that take "everything" into account
  - Accuracy
    - Percentage of data that is predicted correctly

• 
$$accuracy = \frac{TP+TN}{TP+TN+FP+FN}$$



Harmonic mean of precision and recall

• 
$$F_1 = 2 \frac{precision \times recall}{precision + recall}$$

- Matthews correlation coefficient (MCC)
  - Chi-squared correlation between prediction and actual values

• 
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$



## Receiver Operator Characteristics (ROC)

 Plot of true positive rate (TPR) versus false positive rate (FPR)

 Different TPR/FPR values possible due to thresholds for scores



### Area Under the Curve (AUC)

• Large Area = Good Performance

Accounts for tradeoffs between TPR and FPR



### Micro and Macro Averaging

- Metrics not directly applicable for more than two classes
  - Accuracy is the exception
- Micro Averaging
  - Expand formulas to use individual positive, negative examples for each class
- Macro Averaging
  - Assume one class as true, combine all other as false
  - Compute metrics for all such combinations
  - Take average
- Example for the true positive rate:

• 
$$TPR_{micro} = \frac{\sum_{c \in C} TP_c}{\sum_{c \in C} TP_c + \sum_{c \in C} FN_c}$$
  
•  $TPR_{macro} = \frac{\sum_{c \in C} \frac{TP_c}{TP_c + FN_c}}{|C|}$