T.11.		
Title:		
	Relationships between mesoscale organisation of precipitation	
	and the large-scale atmospheric state in the tropics	
Rese	ech Questian:	
	How is the spatial structure of precipitation on mesoscales	
	related to the large-scale atmospheric state (both dynamic and thermodynam	vic
Нуро	theses:	
	1) Larger precipitation objects are associated with lower effective	+
	entrainment rates	_
	=) Larger precipitation objects will occur at lower humidity	
	(for a given mean precipitation rate	
	=> Larger precipitation objects will have a shallower	
	instability - humidity relationship	
	2) Larger precipitation objects correspond have larger stratiform componen	1
	=) Lorger precipitation objects are associated with more top-heav	
	rertical motion	$\frac{1}{1}$
	=> Larger precipitation objects are more common in the	
	East Pacific than the West	+
	3) Local precipitation intensity is more sensitive to instability/CAPE than	
	area-mean precipitation	

=) At fixed mean precipitation, local precipitation intensity increases with instability and is

of instability/CAPE than humidity

=) Maximum precipitation intensity is a stronger function

insensitive to humidity

Additional guestions:

- Does the mean area of objects have the same environmental dependencies as "organisation" metrics such as Ioaa?
- · Does the mesosale structure of precipitation depend on Shear?
- What weather systems are associated with more or less organised mesoscale structures?
- 15 there a relationship between organisation and clouds/radiation

Approach:

Overall idea is to relate different measures of the spatial distribution of precipitation on mesoscales to the large-scale atmospheric state.

key aspect is to control for the mean precipitation rolle over mesoscale domains; we are interested in the effect of different amounts of organisation for a given value of mean precipitation

Previous relevant work:

Tobin et. al. (2012) JClim

Takes a similar approach using brightness temperature at 0.5° to quantify ocquisation. Focuses on radiation impacts

We will use higher resolution data (0.1°) consider stability & entraument, as somewhat different questions

Louf et al. (2019), GRL

Similar approach from cadar data. Ones not stratify by mean rainfall

Can make similar figures for entire tropics

Retsch et. al (2022), JUR

Also from radar, obes not stratify by mean rainfall

Hsiao et. al (2024), JClim

Quantifies organisation using clustering on TRMM data.
Focusses on S41 relationships

			Ser	Jim	4	Box	лц	(20,	20)	GR	L											
					Int	લ ૯૬	ing	sh	dy	of	prec	cipito	itian,	ex	rem	es i		both	area	-au	raged	
					pe	eci	pito	Ltion	, a	ud	local	pre	cipit	atia	,	and	ocga	nisati	an			
					R	ટોશ	ant	ю	Ηų	poM	usis	3.										
																						_
Mel	thod	ŧ	Do	ıta	:																	_
																						+
	Λ.					. ,	•				. (.)	-										
	rieso	oscal	<u></u>	org	ani	sat	100	ot	pre	حديه	itall	an:										
		L)a		1 1	160) _				La	2.1	do .>0		C4 0		hia	2-4	unala	over	40.		
		US	e	11	IEI	-4	> (יי כ	NINU		011	regre	P	احدر) 4	2110-	esi	io de la	OVE	πα	3165	
		Do	Cine		71	00	id	of	la	eso	c do	d	One Cil	IAC	60.0	, 2		- 50				
			.(1)			9	101	0	- 70					<u> </u>	(6.5)., 2			7			
																			4	5° -	->	
		شيد		1		1	W	W									A CONTRACT		1 5		م_ ا	
				5		4			24	1						1	- Constant	Mi		9		
									N							1		"				
			1					1									N A					
		A	e	idh	9	rid	Ca	lcalo	He	prec	ipite	utiun	øbj	ecks	bo	used	on	a	baby	utin	thresho	d
																						_
		Foo	e	ach	0	levy		(48	sk	rpsh	sks)	Calc	ulak	1	he	toll	Paring	st	History	:		_
											-0											
				P.				mea	N	prec	ipita	ha										
				PI				pre	cipil	wha	· In	heusi	7			-th		enfile				
				Pm	ax_			max	lmu	^-	prec	pitat	70_	or	99	.5	pero	entile				
				0						L	6			<i>i</i>								+
				a c	ĺ			areo	, 4	COCTI	مہ ر سا	of pi	recip	itatiu	L							+
				A	ly.			mea	u (irea	or	obje	COL									+
				T	RG			800		ha	hat	trics										
				70	RG			or you	vii5a	بالمر												
1	D CO	e-sc	ala	0	hmi	x oh	eac	্ব	nte.													
	~~ <u>y</u>					Ť																
		Ave	104	2	the	2	fo	lowi	NG	ERI	5 v	ariab	les	to	the		5 75	o v	nesosa	ale	gird	
		for	ead	~ d	lau	•															9	
				20:	_																	
						- (ساحت	my	wal	ન	rapo											
						- (colu	Mh	sah	wahio	~ R	radiu	_									

- 1) Calculate mesoscale precipitation statistics on 5×5° daily grid (Philip)

 2) Calculate ERAS averages on 5×5° daily grid (Morty)

 3) Relate precipitation statistics to large-scale thermodynamic (Donggi)

 conditions (Fig 2, 5, 6)

 4) Relate precipitation statistics to large-scale dynamical conditions (Fig 7)

 4) Plot Spatial distribution of Precipitation statistics (Fig 1) (Y; -Xian)

 5) Plot large-scale vertical velocity as a function of (Y; -Xian) mean precipitation and organisation vertices (Fig 3)

 6) Plot Stability humidity phase space (Fig 4 (Marty))
 - G) Plot Grability humidity phase space (Fig 4 (Marty)

 7) Pot organisation as function of mean (Fig 8) (Reyton)

 precipitation for different weather systems