Leture 32 - Design Considerations

Announcements:

- · Exam Corrections due Weds
 - · Office Hours today in Fitz B22
- · Robotics talk tomorrow: 1PM in Fitz 258

Today:

- · Manipulator Design
- · Wirkspace Analysis
- · Metric for workspace usability (Manipulability)

Recapi Fundamentals:

- · Forward (direct) kimematics position & 3D orientation
- · Inverse kinematics closed form & numerical
- · For word differential Kinematics velocity & acceleration
 - Jacobian $N = J\dot{o}$ $T = J^Tf$
 - · Dynamics T = M " + V (0,0) + 6/0) + JT f
 - · Recursive Newton Euler · Lagrangian

What's Next:

No HW, Short answers
on the Final

- · Design Considerations
- · Control

[HW] - Trajetorggenation [2 lectures]

[HW, Proj] - Linear & Nonlinear Gutral [4 lectures]

Mani	pulator Design		
(Caucat: A bit s	subjective	
		Optimization Problem	
	• Cost • Maintainence	• End Use (Adoption & Usability, user friendly) • Performance	\
to frautify	1 • Time	- Workspace - Energy Usage	
		- Aesthutics	
• [-	tll specific to tas	k @ hand	

(But at the same time we want robots to be versatile)

Performance Considerations

- # DOFS (# actuators sets overall cost ≥ \$112 DoF)

 Often don't need 6 DoF
- Workspace (influenced by prismatic us. revolute, joint)
 axis selection
- · Load capacity (Actuators & Structural elements)
- Speed
- · Repeatability & Accuracy

Choosing How +	o Arrange	Your Dof	5
Common Approac	ch		
	Structure -	3 inboard	joints Set position of volume of workspace
		wrist in a	volume of workspace
Orienting	Structure -	3 outboard	joints orient wrist
	point called	Concurrency	W common intersection point
16-2			
PPPRER			
CORTIST MI		4	GR Articulated Manipulator
CARTESIAN MANIR			Manipulator

Maximizing workspace Volume
• Maximize Volume in which concurrency point can be placed For a given "length" of manipulator structure. (Sphere)
3R Joint 1: Axis 1 vertical
Joint 2: Axis 2 intersects Axis 9 and is 1 to axis 9 Joint 3: Italiany between Axis 1 and concurrency point
Evaluating Workspace: L= Saintd; "Structural length Sum"
Evaluating Workspace: L= Zaintd; "Structural length Sum" Normalized: N= V/4/87718 Volume of workspace And Ax3 Volume index: N= V/4/87718 (Large N is good) Structural: L/3/V=QL (Small QL is good) Length index: L/3/V=QL
Structural: L/3/ = Q, (Small QL is good)
Length Length

Example: SCARA Monipulator

- · Uhat value For do maximizes
- Normalized Volume index?

$$N = \frac{\pi l^{2} d_{3}}{4 l^{2}} = \frac{3}{4} l^{2} \frac{d_{3}}{(l+d_{3})^{3}} = \frac{(l+d_{3})^{3} - 3(l+d_{3})^{2} d_{3}}{(l+d_{3})^{3}} = \frac{(l+d_{3})^{3} - 3(l+d_{3})^{2} d_{3}}{(l+d_{3})^{3}}$$

$$l+d_{3} - 3d_{3} = 0 \implies d_{3} = \frac{l}{2} \qquad \text{Symmetry } l$$

1/2 /2 /dg

$$N = \frac{3}{4} \ell^{2} \frac{d_{3}}{(\ell + d_{3})^{3}} = \frac{1}{9}$$

$$|d_{3} = \frac{1}{2}$$

$$N = \frac{(2/2)^{3}}{\sqrt{3}\pi(\frac{3\ell}{2})^{3}} = \frac{1}{36\pi}$$