Please check the examination details bel	ow before enterir	ng your candidate information									
Candidate surname		Other names									
Centre Number Candidate No	umber										
Pearson Edexcel International Advanced Level											
Time 1 hour 20 minutes	Paper reference	WPH16/01									
Physics											
International Advanced Le	evel										
OWIT O. Fractical Skills III	UNIT 6: Practical Skills in Physics II										
You must have:		Total Marks									
Scientific calculator, ruler											
		JL J									

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Show all your working out in calculations and include units where appropriate.

Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

1 A student investigated the magnetic field produced by a current-carrying coil, coil A.

She made coil A by wrapping a wire around a plastic tube. Coil A was connected to an alternating current (a.c.) power supply.

A second coil, coil B, was placed in the magnetic field and connected to an oscilloscope as shown.

(ัล)	Describe of	one safety	issue	and how	tit should	he de	alt with
۱	a_{j}	Describe (one salety	133 u C	and now	it siloulu	oc uc	an wnu

(2)

(b) The distance r between the two coils varied between 2 cm and 10 cm.

Explain why using Vernier calipers would be better than a metre rule to measure r.

You should include calculations in your answer.

(3)

(c) When the a.c. power supply was switched on, an e.m.f. E was induced across coil B. The variation in E is shown on the oscilloscope screen below.

The y-scale was set to 100 mV per division.

Describe how an accurate maximum value for E can be determined from the oscilloscope screen.

(3)

(d) The student measured values of r with Vernier calipers and determined corresponding maximum values of E.

The student's values are shown in the table.

<i>r</i> / cm	2	4	6	8
E/V	320	40	11.9	5

Criticise the recording of this data.

(2)

(Total for Question 1 = 10 marks)

2 A student used a transparent tube to measure a volume of liquid, as shown. Opening the tap allows liquid to flow out of the tube at a controlled rate.

When the tap is open, the volume V of liquid inside the tube decreases with time t according to the relationship

$$V = V_0 e^{-bt}$$

where V_0 is the initial volume of liquid in the tube and b is a constant.

(a) Explain why a graph of $\ln V$ against t should be used to test this relationship.

1	$^{\circ}$	1
ı	L	
٧.	_	,

Describe how the student could obtain an accurate set of values for	V and t to test
this relationship.	(4)
	(1)
(c) Explain a source of uncertainty in this investigation.	(2)
	(2)
/T-4-1 f O	uestion 2 = 8 marks)

3 A liquid is placed inside a closed container. Some of the liquid evaporates.

The pressure of the vapour above the surface of the liquid increases to a maximum value. This maximum pressure is called the saturated vapour pressure.

(a) The table shows data for the saturated vapour pressure P at different absolute temperatures T.

<i>P</i> / kPa	T / K	
7.8	308	
17.0	323	
34.6	338	
66.1	353	
120.1	368	
208.1	383	

(i) Plot a graph of $\log P$ against $\frac{1}{T}$ on the grid opposite. Use the additional columns for your processed data.

(6)

(ii)	Determine	the	gradient	of the	graph.

(3)

Gradient =

(iii) The gradient of the graph of $\log P$ against $\frac{1}{T}$ is given by

gradient =
$$-\frac{X}{2.30k}$$

where X is a constant with unit joules, and k is the Boltzmann constant.

Determine the value of X in joules.

(3)

X =	 J

(b) Liquids boil when the saturated vapour pressure is equal to atmospheric pressure.

Determine the boiling point of the liquid in ${}^{\circ}$ C when the atmospheric pressure is $100\,kPa$.

(3)

Boiling point =°C

(Total for Question 3 = 15 marks)

4	A student had two pieces of o	onstantan	wire, X ar	ıd Y.							
Wires X and Y had different diameters.											
	(a) The student measured the diameter d_X of wire X several times using a micrometer screw gauge.										
	(2)										
	(ii) The student recorded	the follow	ing measu	rements.							
	$d_{\rm X}$ / mm	0.31	0.32	0.31	0.33	0.30					
	(3)										
	Mean value of $d_X = \dots mm \pm \dots$										

(3)

(b) The student measured the diameter d_Y of wire Y as $0.22 \,\mathrm{mm} \pm 0.01 \,\mathrm{mm}$.

He connected part of wire Y in a circuit as shown.

The student measured the potential difference V across the wire in the circuit and the current I in the wire.

He recorded the following values

$$V = 4.990 \text{ V} \pm 0.005 \text{ V}$$

 $I = 0.4570 \text{ A} \pm 0.0005 \text{ A}$

The length of wire Y in the circuit was $89.4\,\text{cm} \pm 0.1\,\text{cm}$.

(i) Show that the resistivity ρ of the metal is about $5 \times 10^{-7} \Omega$ m.

(ii) Show that the percentage uncertainty in ρ is about 9%.

(c) The student measured the resistances R_1 and R_2 of different lengths of wire Y using an ohmmeter. Each resistance was measured once.

The student's values are given in the table.

	Length / cm	Resistance / Ω
R_1	40.0	4.5
R_2	90.0	10.2

He calculated the resistance R_L for one metre of wire using the formula

$$R_L = 2 \times (R_2 - R_1)$$

Show that the percentage uncertainty in R_L is about 2%.

$$R_L = 11.4 \,\Omega$$

(3)

|
 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
|
 |
|
 |
|
 |
| | | | | | | | | | | | | | | | | | | |

(d) The student wanted to confirm that the metal of the wire is constantan.

The student compared his calculated values of ρ and R_L to published values for constantan.

The values are shown in the table below.

	$ ho$ / $10^{-7}\Omega$ m	R_L / Ω
Calculated	4.6 ± 9%	11.4 ± 2%
Published	4.9	11.2

Comment on how well the student's calculated values confirm that the metal of the wire is constant.

You must include calculations in your answer.	
	(3)
(Total for Question 4 = 17 mar)	ks)

TOTAL FOR PAPER = 50 MARKS

