

Numération - Codage

Chapitre II

Des « 1 » et des « 0 »

- 1949, « BInary digiT »
- Bit est une unité de mesure en informatique désignant la quantité élémentaire d'information représentée par un chiffre binaire.
- Un bit ne peut prendre que deux valeurs : 0 ou 1. Selon le contexte, numérique, logique, ou électronique numérique, on les appelle « faux » et « vrai » ou « ouvert » et « fermé » ou « niveau HAUT » et « niveau BAS ».
- Le plus petit paquet traitable (ou adressable) est appelé byte (octet).
- Lorsqu'un microprocesseur est conçu pour traiter simultanément plusieurs bytes, on appelle « mot » le paquet de bytes.
- Les tailles de mot les plus courantes sont de 8, 16, 32 et 64 bits. On parlera alors par exemple de « microprocesseur 64 bits ».

Des « 1 » et des « 0 »

- Un octet peut prendre 2⁸=256 valeurs différentes, entre 00000000 et 11111111.
 - 1 kilo-octet (ko ou Ko) = 2¹⁰ octets = 1 024 octets
 → 1 kibioctet (Kio)
 - 1 méga-octet (Mo) = 2²⁰ octets = 1 024 ko
 - = 1 048 576 octets
 - → 1 **mébioctet** (Mio)
 - 1 giga-octet (Go) = 2^{30} octets = 1 024 Mo
 - = 1 073 741 824 octets
 - → 1 **gibioctet** (Gio)
 - 1 téra-octet (To) = 2⁴⁰ octets = 1 024 Go
 - = 1 099 511 627 776 octets
 - → 1 **tébioctet** (Tio)

Plan

• Système de numération et changements de base

- Système décimal
- Système binaire
- Systèmes octal et hexadécimal
- Changements de base

Les signes plus (+) et moins (-)

- Module et signe
- Complément à 2

• La virgule

- Virgule fixe
- Virgule flottante
- La norme IEEE 754

Codage

- Code DCB
- Code 2 parmi 5
- Code Gray
- Code ascii

Systèmes de numération

- Utilisation de codes pondérés
 - position (rang) du symbole (chiffre) dans le nombre détermine son poids
- Principe de numération : Juxtaposition de symboles appelés chiffres
- Nombre de symboles = Base de numération
 - Ex : Système décimal : {0, 1, 2, ..., 9} → 10 symboles

Base

- Soit une base b associée à b symboles {S₀, S₁, S₂, ..., S_{b-1}}
- Un nombre positif *N* dans un système de base *b* s'écrit sous forme polynomiale :

$$\begin{split} N &= \sum_{i=-m}^{n-1} a_i b^i \qquad a_i \in \{S_0, S_1, S_2, ..., S_{b-1}\} \\ &= a_{n-1} . b^{n-1} + a_{n-2} . b^{n-2} + ... + a_1 . b^1 + a_0 . b^0 + a_{-1} . b^{-1} + ... + a_{-m+1} . b^{-m+1} + a_{-m} . b^{-m} \end{split}$$

Représentation de position :

Chiffre le plus significatif En binaire : Most Significant Bit (MSB) Chiffre le moins significatif En binaire : Least Significant Bit (LSB)

Décimal (Base 10)

Dix chiffres: 0, 1, 2, ..., 9

$$N = \sum_{i=-m}^{n-1} a_i b^i = \sum_{i=-m}^{n-1} a_i \times 10^i$$

• Exemple:

$$1978,265 = \sum_{i=-3}^{3} a_i \times 10^i$$
$$= 1 \times 10^3 + 9 \times 10^2 + 7 \times 10^1 + 8 \times 10^0 + 2 \times 10^{-1} + 6 \times 10^{-2} + 5 \times 10^{-3}$$

Binaire (Base 2)

Deux chiffres : 0 et 1

$$N = \sum_{i=-m}^{n-1} a_i b^i = \sum_{i=-m}^{n-1} a_i \times 2^i$$

Exemple:

$$(1110)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = (14)_{10}$$

$$(1110,101)_2 = 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3} = (14,625)_{10}$$

Avec n bits on peut former 2^n nombres différents. Le plus petit est 0. Le plus grand est $(2^n - 1)$.

Exemple: Avec 8 bits \rightarrow 2ⁿ=2⁸=256 nombres différents.

Le plus petit
$$\rightarrow$$
 (00000000)₂=(0)₁₀

Le plus grand \rightarrow (11111111)₂ = (255)₁₀

Octal (Base 8)

• 8 chiffres: 0, 1, 2, 3, 4, 5, 6, 7

• Exemple:

$$(370)_8 = 3 \times 8^2 + 7 \times 8^1 + 0 \times 8^0 = 248$$

Hexadécimal (Base 16)

16 chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Tableau de correspondance :

Hex.	Décimal	
A	10	
В	11	
С	12	
D	13	
E	14	
F	15	

Exemple:

$$(AC53)_{16} = A \times 16^{3} + C \times 16^{2} + 5 \times 16^{1} + 3 \times 16^{0}$$
$$= 10 \times 16^{3} + 12 \times 16^{2} + 5 \times 16^{1} + 3 \times 16^{0} = (44115)_{10}$$

Tableau

	Décimal	Binaire	Octal	Hexadécimal
Base b	10	2	8	16
	0	0000	00	0
	1	0001	01	1
	2	0010	02	2
	3	0011	03	3
	4	0100	04	4
	5	0101	05	5
	6	0110	06	6
	7	0111	07	7
	8	1000	10	8
	9	1001	11	9
	10	1010	12	Α
	11	1011	13	В
	12	1100	14	С
	13	1101	15	D
	14	1110	16	E
	15	1111	17	F

 De base b à base 10 : La somme du développement en polynôme du nombre dans la base b.

$$N = \sum_{i=-m}^{n-1} a_i b^i$$

$$(1101)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = (13)_{10}$$

$$(1A7)_{16} = 1 \times 16^2 + A \times 16^1 + 7 \times 16^0 = 16^2 + 10 \times 16 + 7 = (423)_{10}$$

$$(1101,10)_2 = 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 1 \times 2^{-1} + 0 \times 2^{-2} = (13,625)_{10}$$

$$(43,2)_5 = 4 \times 5^1 + 3 \times 5^0 + 2 \times 5^{-1} = 20 + 3 + 0,4 = (23,4)_{10}$$

- De base 10 à base b
 - Méthode 1 : Soustraction
 - Exemple : $(363)_{10} = (?)_2$ Recherche de la puissance 2 juste supérieure : $2^9 = 512$

$$363 = 1 \times 2^8 + 107$$
 — MSB

$$107 = 0 \times 2^7 + 107$$

$$107 = 1 \times 2^6 + 43$$

$$43 = 1 \times 2^5 + 11$$

$$11 = 0 \times 2^4 + 11$$

$$11 = 1 \times 2^3 + 3$$

$$3 = 0 \times 2^2 + 3$$

$$3 = 1 \times 2^1 + 1$$

$$1 = 1 \times 2^0 + 0$$

 $(363)_{10} = (101101011)_2$

De base 10 à base b

- Méthode 2 : divisions successives par b
- Division par b : $N = q \cdot b + r \longrightarrow \text{reste}$

$$N = a_{n-1} \cdot b^{n-1} + a_{n-2} \cdot b^{n-2} + \dots + a_1 \cdot b^1 + a_0$$

• 1ère division par b :
$$q = a_{n-1} \cdot b^{n-2} + a_{n-2} \cdot b^{n-3} + ... + a_1 \quad r$$

• 1ère division par b :
$$q = a_{n-1} \cdot b^{n-2} + a_{n-2} \cdot b^{n-3} + ... + a_1 \quad r = a_0$$
• 2ème division par b :
$$q = a_{n-1} \cdot b^{n-3} + a_{n-2} \cdot b^{n-4} + ... + a_2 \quad r = a_1$$

• (N-1)^{ème} division par b :
$$q = a_{n-1}$$
 $r = a_{n-1}$

• Nème division par b :
$$q=0$$
 $r=a_{n-1}$

- De base 10 à base b
 - Méthode 2 : divisions successives par b
 - Exemple 1: $(35)_{10} = (?)_2$

• Exemple 2: $(363)_{10} = (?)_{16}$

• Conversions $b^p \leftrightarrow b^k$

- Dans le cas général, on passe d'abord par la base b.

Conversion: octal → binaire

- Octal → Binaire (2³ → 2)
- 8 symboles en octal : 0, 1, 2, 3, ...,7
- Chaque symbole en octal s'écrit sur 3 bits en binaire.
- Éclatement en 3 bits
- Exemples:

$$(345)_8 = (011\ 100\ 101)_2$$
 $(65,76)_8 = (110\ 101,\ 111\ 110)_2$
 $(35,34)_8 = (011\ 101,\ 011\ 100)_2$
Ce 0 peut être supprimé.

Ce 0	ne	peut	pas	être	supp	orim	é.
------	----	------	-----	------	------	------	----

Octal	Binaire
0	000
1	001
2	010
3	011
4	100
5	101
6	110
7	111

Conversion: binaire → octal

- Binaire \rightarrow Octal (2 \rightarrow 2³)
- Chaque symbole en octal s'écrit sur 3 bits en binaire.
- Regroupement de 3 bits, à partir du poids faible
- Exemple:

$$(11001010010110)_2 = (011 \ 001 \ 010 \ 010 \ 110)_2 = (31226)_8$$

$$(110010100,10101)_2 = (\overline{110} \ \overline{010} \ \overline{100}, \ \overline{101} \ \overline{010})_2 = (624,52)_8$$

Remarque : Le regroupement se fait de droite à gauche pour la partie entière et de gauche à droite pour la partie fractionnaire .

Conversion: hexadécimal → binaire

- Binaire → Hexadécimal (2 → 2⁴)
- 16 symboles en hexadécimal : 0, 1, ..., 9, A, B, C, D, E, F
- Chaque symbole en hexadécimal s'écrit sur 4 bits en binaire.
- Éclatement en 4 bits
- Exemples:

 $(AB3,4F6)_{16}$ = (1010 1011 0011, 0100 1111 0110)₂

Hex.	Binaire
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001
A	1010
В	1011
С	1100
D	1101
E	1110
F	1111

Conversion: binaire → hexadécimal

- Hexadécimal → Binaire (2⁴ → 2)
- Chaque symbole en octal s'écrit sur 4 bits en binaire.
- Regroupement de 4 bits, à partir du poids faible
- Exemple:

Changement de base – Partie fractionnaire

• Décomposition en puissances négatives de b

$$N = a_1 \cdot b^{-1} + a_2 \cdot b^{-2} + a_3 \cdot b^{-3} + \dots + a_{n-1} \cdot b^{-(n-1)} + a_n \cdot b^{-n}$$

• 1ère division par b^{-1} (multiplication par b):

$$\frac{a_1 \cdot b^{-1} + a_2 \cdot b^{-2} + a_3 \cdot b^{-3} \dots + a_n \cdot b^{-n}}{b^{-1}} = a_1 + a_2 \cdot b^{-1} + a_3 \cdot b^{-2} \dots + a_n \cdot b^{-n+1}$$

• 2^e division par b^{-1} (multiplication par b):

$$\frac{a_2 \cdot b^{-1} + a_3 \cdot b^{-2} \dots + a_n \cdot b^{-n+1}}{b^{-1}} = a_2 + a_3 \cdot b^{-1} + \dots + a_n \cdot b^{-n+2}$$

• 3^{e} division par b^{-1} (multiplication par b) :

$$\frac{a_3 \cdot b^{-1} + \dots + a_n \cdot b^{-n+2}}{b^{-1}} = a_3 + \dots + a_n \cdot b^{-n+3}$$

• n^e division par b^{-1} (multiplication par b):

$$\frac{a_n \cdot b^{-1}}{b^{-1}} = a_n$$

Changement de base – Partie fractionnaire

- Exemple: $(0,25)_{10} = (?)_2$
 - Partie entière : $(0)_{10} = (0)_{2}$
 - Partie fractionnaire: (0,25)₁₀

$$(0,25)_{10} = (0,01)_2$$

- Exemple: $(27,3)_{10} = (?)_2$
 - Partie entière : $(27)_{10} = (11011)_2$
 - Partie fractionnaire: (0,3)₁₀

$$0,25 \times 2 = 0,5$$

$$0,5 \times 2 = 1,0$$

$$0,3 \times 2 = 0,6$$

$$0.6 \times 2 = 1.2$$

$$0.2 \times 2 = 0.4$$

$$0.4 \times 2 = 0.8$$

$$0.8 \times 2 = 1.6$$

erreur=0.05

erreur= 0,01875

erreur= 0,003125

$$0.6 \times 2 = 1$$

 $0.6 \times 2 = 1.2$ Cyclique

$$(27,3)_{10} = (11011,0 \ 1001 \ 1001 \ 1001...)_2$$

On s'arrête à
$$2^{-2} \rightarrow 11011,01 = 27,25$$
 erreur= 0,05
On s'arrête à $2^{-5} \rightarrow 11011,01001 = 27,28125$ erreur= 0,01875
On s'arrête à $2^{-6} \rightarrow 11011,010011 = 27,296875$ erreur= 0,003125
On s'arrête à $2^{-9} \rightarrow 11011,010011001 = 27,298828125$ erreur= 0,001171875

Conversion d'un nombre réel : décimal → binaire

$$\begin{array}{c|c}
35 & 2 \\
1 & 7 & 2 \\
1 & 8 & 2 \\
2 & 4 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 0
\end{array}$$

$$0,625 \times 2 = 1,25$$

 $0,25 \times 2 = 0,5$
 $0,5 \times 2 = 1,0$
 $0 \times 2 = 0$

 $(100011,101)_{2}$

Format nombre de bits utilisés

Convention protocole de codage

Dynamique différence entre le max et le min

Résolution différence entre deux niveaux consécutifs

• Exemple:

- format 8 bits
- convention entiers positifs
- dynamique 2⁸-1
- résolution 1 (constante sur la dynamique)
- $(255)_{10} = (1111\ 1111)_2$ $(7)_{10} = (0000\ 0111)_2$

- Il existe 3 méthodes pour représenter les nombres négatifs :
 - Signe et valeur absolue
 - ► Un bit de signe (0 pour + et 1 pour -)
 - ▶ Bits de norme
 - ► Exemple sur 8 bits: $(47)_{10} = (00101111)_2$ $(-47)_{10} = (10101111)_2$
 - Complément à 1 (complément restreint)
 - ► Remplacer les 0 par les 1 et les 1 par les 0
 - \triangleright Exemple: $(-47)_{10} = (11010000)_2$
 - Complément à 2 (complément à vrai)
 - ► Ajouter 1 au complément à 1
 - ► Exemple : $(-47)_{10}$
 - Complément à 1 de $(00101111)_2 = (11010000)_2$
 - Ajouter 1 au $(11010000)_2 = (11010001)_2$

Complément vrai (complément à b)

complément
$$\widetilde{N} = b^n - N$$
bits

base

nombre

- Avec n bits, le « 1 » déborde.
 Le nombre bⁿ est interprété comme 0.
- Nous avons donc : $\tilde{N} = 0 N = -N$

$$b^{n} = 1 00...0$$
 b^{n-1}
 b^{0}

Complément vrai en base 2 (complément à 2):

$$\begin{cases} \widetilde{N}=2^n-N=(2^n-1)-N+1\\ \widetilde{N}=-N \end{cases}$$
 Les « 1 » sont remplacés par les « 0 » et réciproquement = Complément à 1

Le nombre le plus grand avec *n* bits = Tous les bits sont à « 1 »

- Complément à 2 = Complément à 1 + 1 (LSB)
- Rappel: addition de 2 bits

Addition binaire	Retenue	Somme
0 + 0 = 0	0	0
0 + 1 = 1	0	1
1+0=1	0	1
1 + 1 = 10	1	0

• Exemple : (-12)₁₀ sur 8 bits

$$(12)_{10} = (00001100)_2$$

11110011 Complément à 1 de 12

+ 1

11110100 Complément à 2 de 12

$$(-12)_{10} = (11110100)_2$$

Contrôle

$$(-(-12))_{10} = (12)_{10} = (00001100)_2$$

Sur 4 bits

Décimal	Binaire	Binaire
signé	Module + signe	Complément à 2
8	_	_
7	0111	0111
6	0110	0110
5	0101	0101
4	0100	0100
3	0011	0011
2	0010	0010
1	0001	0001
0	0000 ou 1 000	0000
-1	1 001	1111
-2	1 010	1110
-3	1 011	1101
-4	1 100	1100
-5	1 101	1011
-6	1 110	1010
-7	1 111	1001
-8	_	1000
	De -7 à +7	De -8 à +7

Dynamique sur n bits?

Virgule fixe

- Par convention, on place la virgule quelque part et on interprète.
- Binaire: n bits

- Résolution : différence entre deux valeurs consécutives = 2-k
- Dynamique : différence entre les valeurs minimale et maximale = 2^{n-1-k}

Virgule fixe

Bon format pour l'addition :

Mauvais format pour la multiplication :

Dépassement à gauche (débordement)

Dépassement à droite (arrondi)

Virgule flottante

- On stocke la chaine de bits ME dans le calculateur.
- Exemple : Codage de Pi sur 5 chiffres de mantisse et 2 chiffres d'exposant en base 10

 $0,3141\times10^{1}$

 $0,0003 \times 10^4$

L'exposant augmente → La précision diminue

Précision maximale → Virgule à l'extrême gauche de la mantisse

• La représentation de la virgule flottante est normalisée, quand la virgule est à l'extrême gauche de la mantisse.

Virgule flottante

En binaire :

$$N = M \times b^E$$
 p bits n bits 2

Dynamique : N_{max} - N_{min}

La représentation en virgule flottante utilise la plus grande dynamique.

presentation en virgule flottante
$$N_{\text{max}} = 0,11...1 \times 2^{11...1} = 2^{2^{p}-1}$$
 n fois
$$N_{\text{min}} = 0,100...0 \times 2^{-11...1} = 2^{-2^{p}}$$

• **Résolution :** $0,00...1 \times 2^E = 2^{-n+E}$

• La représentation en virgule flottante a été normalisée par IEEE 754.

Taille de mots :

- 32 bits (simple précision)
- 64 bits (double précision)

Le but de la norme IEEE 754 :

- Garantir un comportement identique d'une machine à l'autre
- Définir le comportement en cas de dépassement de capacité (exceptions)
- Garantir un arrondi exact pour les opérations élémentaires $(+,-,\times,\div,\sqrt)$

Simple précision (sur 32 bits)

Nombre de bits \rightarrow 1 8 23 $N = (-1)^s \times 2^{e-127} \times \left(1 + \sum_{i=1}^{23} m_i 2^{-i}\right)$ E = e - 127 $E_{\min} < E < E_{\max} \qquad E_{\min} = -126 \qquad E_{\max} = 127$

Exemple :

1 10000010 00110000000000000000000

- s=1 → nombre négatif
- $e=1\times2^1+1\times2^7=130 \rightarrow e-127=130-127=3$
- $m=1+(1\times 2^{-3}+1\times 2^{-4})=1,1875$
- $N=-2^3\times1,1875=-9,5$

- Le bit de signe est « 1 » pour négatif et « 0 » pour positif.
- La mantisse vaut toujours 1,xxxx et on ne stocke que xxxx
- L'exposant est en excédent 127
- La valeur 0 correspond à des 0 partout (en fait 2⁻¹²⁷)
- Exemple:
- $s=0 \rightarrow nombre positif$
- $e=1\times2^{0}+1\times2^{1}+...+1\times2^{6}=127 \rightarrow e-127=127-127=0$
- m=1+0=1
- $N=2^0 \times 1=1$

• Convertisseur:

http://ajdesigner.com/fl ieee 754 word/ieee 32 bit word.php

Exemple: N=-5

Méthode 1

- Méthode 2
 - ► s=1 (car N<0)
 - ► Conversion binaire de |N| = (101)₂
 - ► Représentation au format : 1,01x2⁺²
 - ► M=010 00000 00000 00000 00000
 - ▶ e-127=2 → e=129 → 10000001

Codage

- Le codage est une opération qui établit une correspondance entre les éléments de deux ensembles
- Choix de code → Application (Codes détecteurs, codes correcteurs, ...)
- Codes pondérés : La position de chaque symbole dans chaque mot est affectée d'un poids fixe.
 - Binaire et dérivés
 - ▶ Les poids fixes de droite à gauche : 1, 2, 4, 8, ...
 - DCB (Décimal Codé Binaire) ou BCD (Binary Coded Decimal) : Chaque chiffre d'un nombre décimal (de 0 à 9) est codé à l'aide de 4 bits (de 0000 à 1001)
 - ▶ Les poids fixes de gauche à droite : 8, 4, 2, 1
 - ▶ Le code DCB n'utilise que 10 mots de codes de 4 bits

Code pondéré – DCB

Décimal	DCB		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		
10	0001 0000		
11	0001 0001		
12	0001 0010		
13	0001 0011		
14	0001 0100		
15	0001 0101		

• L'apparition des combinaisons suivantes signifie qu'une erreur s'est produite :

Décimal	Binaire
10	1010
11	1011
12	1100
13	1101
14	1110
15	1111

• Exemple: $(1995)_{10} = (?)_{DCB}$

(0001 1001 1001 0101)_{DCB}

Codes non pondérés – Code de Gray

• Binaire réfléchi (Gray) : Seul un bit change entre deux nombres consécutifs.

Sur 4 bits

 Application : Télécom, codeur rotatif, tableau de Karnaugh, etc.

Codes non pondérés – p parmi n

- Chaque chiffre est codé sur n bits dont uniquement p sont « 1 ».
 - Le nombre de combinaisons de p éléments sélectionnés dans un ensemble de n éléments est donné par :

$$C_n^p = \frac{n!}{p!(n-p)!}$$

- Exemple : Code 2 parmi 5
 - 5 bits dont 2 sont « 1 »
 - Positions des «1 » :
 - **▶** 01236
 - **▶** 74210

Dans 01236: 5=2+3

On prend les positions 2 et 3 pour les «1 »

Dans 74210:5=4+1

On prend les positions 4 et 1 pour les «1 »

Chiffre	01236	74210
0	01100	11000
1	11000	00011
2	10100	00101
3	10010	00110
4	01010	01001
5	00110	01010
6	10001	01100
7	01001	10001
8	00101	10010
9	00011	10100

Application : Codes-barres

Code non pondéré – Code ASCII

 Le code ASCII restreint représente 128 caractères sur 7 bits, le 8^e bit étant un bit de parité.

Le code ASCII de « / » est $2F \rightarrow 010\ 1111 \rightarrow$ parité paire 1010 1111 Le code ASCII de « r » est $72 \rightarrow 111\ 0010 \rightarrow$ parité paire 0111 0010