18 JAN 1990 AS 286 8

INTERNATIONAL JOURNAL

OF

TROPICAL AGRICULTURE

QUINQUENNIAL INDEX

Volumes: 1-5 (1983-1987)

Compiler: S. P. Goyal

Editor-in-Chief : Dr. R. D. Laura

CONTENTS

- 1. Author Index
- 2. Title Index
- 3. Subject Index

PUBLISHED BY:

VIDYA INTERNATIONAL PUBLISHERS,

8/16, New Campus, Haryana Agricultural University Hisar-125 004, Haryana, India.

Phone: 5354

Price :

For India : Rs. 1507-

(by ordinary mail)

For Foreign: US \$ 16/-

(by surface mail)

US \$ 18/-

(by airmail)

Dr. R. D. LAURA, M. Sc., Ph. D. (1ARI, New Delhi, India), D. Sc. (UCL, Louvain, Belgium), Post doc. (UG, Athens, USA)

8/16, New Campus,

Haryana Agricultural University, Hisar-125 004, Haryana, India Phone: 5354

EDITORIAL BOARD

Atanasiu, N., West Germany; Biswas, B. C., India; Cioos, P., Belgium; Dalal, R. C., Australia; Eswaran, H., USA; Fageria, N. K., Brazil; Greenland, D. J., Philippines; Kathpal, T. S., India; Kovda, V., USSR; Lal, R., Nigeria; Parmar, B. S., India; Raman, K. V., India; Randhawa, N. S., India; Rennie, D. A., Canada; Ristic, M., USA; Russell, E. W., UK; Syrstad, O., Norway; Szabolcs, I., Hungary; Tan, K. H., USA; Yariv, S., Israel; Zuxiang, Z., China.

INFORMATION FOR CONTRIBUTORS

AIMS AND SCOPE

The journal publishes papers on fundamental basic and applied aspects of tropical agriculture. The term "agriculture" includes the basic and applied science of soil and water management as well as crop and livestock production and management. Subjects covered in the journal include agricultural production, protection and basic sciences, and animal and veterinary sciences. Agronomists, plant, soil, animal, environmental and agricultural scientists, and others working on problems of crop and livestock production, protection and management in tropics will find the journal useful. Of immediate relevance to agriculturists—both industrial and academic—this unique publication also has long-range value for the betterment of rural people in tropics. Contributions are welcomed from scientists all over the world, particularly those working in tropical and sub-tropical countries.

TYPES OF PAPERS PUBLISHED

The journal publishes review articles, research papers, short notes and communications, letters to the Editor, and book reviews:

(i) Reviews are papers summarising the results of research in a particular field with conclusions arrived at and suggestions for future work.

(ii) Articles are original research papers with significant conclusions and findings.
 (iii) Notes are brief papers on experimental results or new experimental methods.

(iv) Short Communications are preliminary accounts of new experimental findings of immediate importance to other workers in the field. They will be published at the earnest possible. However, a letter of transmittal should be sent along with the manuscript explaining why rapid publication in this manner is advantageous.

(v) Letters to the Editor are comments on the paper (s) already published in the journal.

(vi) Book Reviews are the critical evaluation of the contents of books/monographs/proceedings with comments for further improvements. The publishers are required to send the copy of the publication directly to the publisher.

HINTS FOR WRITING A SCIENTIFIC PAPER

While writing a scientific paper, please take care of its language. As far as possible, please remove its verbosity, circumlocution, redundancy and repetitiveness, and bring in it brevity, clarity, directness and simplicity. Above all it must be grammatically correct. Your paper must justify its various sections. Broadly speaking they should answer the following questions: (i) Introduction—Why did you start?, (ii) Material and Methods—What did you use and do?, (iii) Results—What did you find?, (iv) Discussion—What do the results mean? and (v) Abstract—It must contain the essence of the introduction (the purpose of the study), the methods, the main findings (with specific results and their statistical significance) and main conclusions.

International Journal

E. A. M. Hamist Of

Tropical Agriculture

Volues 1-5 (1983-1987)

AUTHOR INDEX

Aasted, Bent, 4: 91-95

Achtnich, W, 4: 188-211

Adil, M. I., 4: 97-107

Agarwal, Arun K, 2: 227-232

Aggarwal, C.K., 1: 171-174

Agnihotri, N. P., 4: 168-174

Agnihotri, Y, 3: 187-191

Agrawal, M. P., 4: 23-29

5: 175-181

Agrawal, R. P., 4: 15-22

Ahlawat, V. P., 3: 192-195

5:56-61

Ahmed, A. H. M., 5: 110-113

Ahmed, I. U., 4: 238-244

Ahmed Khan, A. K. S., 4: 238-244

Ahmed, Masood, 5: 156-165

Ahmed, Muzahed Uddin, 4: 91-95

Ahuja, A. K., 4: 365-370

Alaku, O., 3: 304-312

Ali, F, 5: 110-113

Amalraj, V. A., 4: 346-350

Anand, G. R., 3: 206-213

Anand, I. J., 1: 273-278

4:154-159

Anand, Lalitha, 2: 183-187

Arora, A. K., 2: 345-354

3:55-62

Arora, C. L., 3: 82-90

Arora, K. L., 1: 167-169

Awasthi, M. D., 2: 183-187

4: 365-370

Bahl, G. S., 2: 143-150

Bahalo, M., 5: 122-126

Balaine, D. S., 2: 257-263,265-269

3: 206-213,214-219

Balakrishna Rao, M. J., 2: 311-313

3:146-150

Balan, J. S., 1: 259

Balbir Singh, 3: 214-219

4: 290-296

Balvinder Singh, 4: 221-227

Balwant Singh, 2: 159-165

Banerjee, S. K., 4: 116-125,221-227

Banerjee, S. P., 4: 116-125

Behl, R. K., 3: 265-272

Bhandari, A. L., 3: 76-81

4: 233-237

Bhandarkar, D. M., 5: 182-189

Bhandari, M. M., 2: 307-310

Bhanotor, R. K., 1: 331-332

Bhardwaj, R. M., 1: 338-344

Bhatia, S. K., 1: 239-244

5:131-149

Bhatt, D. M., 5: 199-202

Dahiya, S. S., 3: 192-195 Bhatti, R. S., 2: 205-210 5: 56-61 Bhuyan, M. S. R., 5: 62-67 Dalwadi, M. R., 5: 49-55 Bhupinder Singh, 2: 361-362 Das Kanungo, J. L., 1: 151-155, 299-307 Bishnoi, L. K., 1: 51-58 Das, P. K., 4: 221-227 Bishnoi, O. P., 1: 317-324 Deb. D. L., 3: 22-27 3: 47-51 Dev, Gautam, 4: 251-257 Biswas, C. R., 3: 47-51 5: 41-48 Dhar, S., 1: 91-93 Chakravorty, A. K., 1: 333-338 Dhilion, K.S., 2: 315-324 3: 28-34 Chandel, K. P. S., 2: 167-177 Dhillon, M. S., 4: 245-250 Chandra, S., 4: 351-359 Dhillon, S. K., 2: 315-324 Charan, S., 3: 63-65 3: 28-34 Chaudhary, A. L., 5: 240-246 Dhillon, Santosh, 5: 231-234 Chaudhary, B. S., 3: 151-157 Dhiman, S.D., 3: 9-21 Chaudhary, S. K., 4: 154:159 Dhindsa, Kuldip Singh, 2: 179-182,271-286 Chaudhary, Shri Ram, 1: 333-338. 3:1-8 Chhabra, B. S., 4: 160-163 Dhingra, K. K., 2: 151-158 5: 114-117 4: 245-250 Chhabra, M. B., 1: 159-165 Dubey, D. D., 3: 202-205 Chhibba, I. M., 3: 82-90 Dutta, Shiv, 5: 223-226 Chhikara, B. S., 2: 265-269 Essiet, E. U, 4: 323-334 4: 283-289 Fardeau, Jean-Claude, 1: 19-23, 25-39 Chopra, Parveen, 4: 137-142 Feller, C., 1: 123-130 Chopra, S. C., 2: 265-269 Gajbhiye, V. T., 4: 168-173 4: 283-289 Galhotra, A. P., 3: 313-317 Dabas, B. S., 2: 211-215 3:114-118 Ganesha Rao, R. S., 1:187-192 4: 85-87, 185-187 3: 123-127 Dabas, D. S., 1: 73-80 4: 341-345 Dahiya, B. S., 3: 219-235 Ganguly, S. K., 4: 221-227 Dahiya, I. S., 1: 81-90,131-138,193-202 Garg, P. K., 2: 279-287 2:1-102 3: 43-46, 279-287 3:66-75 Gaur, A. C., 4: 130-136 4: 212-220 Gautam, O. P. 1: 91-93, 159-165, 338-344

3: 313-317

Gautam, P. L., 1: 221-230

Ghabru, S. K., 1: 285-298

Ghonsikar, C. P., 2: 337-344

Ghosh, Sudhansu, K., 1: 285-298

2:117-127

3: 273-278

Ghuman, B. S., 3: 35-42

Gill, A. S., 2: 245-250

Gite, L. P., 5: 182-189

Gopinathan, K. K., 5: 122-126

Goswami, K. P., 1: 33-40

Govind Singh, 2: 227-232

Grewal, D. S., 4: 245-250

Grewal, M. S., 4: 212-220

Grewal, S. S., 3: 91-97,187-191

Guiraud, Gerard, 1: 19-23,123-130

Gulab, Singh, 1: 81-90

Gulati, K. L., 4: 126-129

Gunaseelan, T., 4: 258-267,268-278

Gupta, A. P., 2: 129-138

Gupta, M.P., 5: 209-214

Gupta, O. P., 4: 276-279

Gupta, R. L., 2: 299-305

Gupta, R. S. R., 1: 261-271

Gupta, Rajendra, 1: 139-144,203-209

3: 1-8

Gupta, S., 3: 202-205

Gupta, S.C., 1: 41-49

2:189-192, 345-354

3:55-62,133-136

Gupta, V.K., 1: 73-80

2:159-165

3:98-104

4: 297-299

Gupta, Y. P., 1: 175-185

5: 247-279

Gurmeet Singh, 2: 151-158

Halder, A.K., 1: 325-329

Hameed Khan, H., 4: 108-115

Hegde, D. M., 5: 166-174

Hetier, J. M., 1: 123-130

Hooda, J. S., 3: 219-235

Hoque, M. F., 4: 95-98

Hoque, S., 3: 180-186

Hossain, M. S. A., 3: 180-186

5: 93-101

Howladar, A. S., 5: 93-101

Imamul Huq, S. M., 5: 93-101

Islam, A., 1: 211-220

3: 180-188

5:93-101

Islam, K.S., 4: 96-98

Islam, R., 5: 93-101

Iyer, V, 2: 199-204

Jain, H. K., 4: 168-174

Jain, M. K., 1: 59-64

Jain, R. K., 5: 235-239

Johrar, B. S., 4: 15-22

Johal, C. S., 4: 188-211

Joshi, O. P., 4: 108-115

Joshi, P. K., 5: 199-202

Kalyane, V. L., 4: 280-282

Kapur, M. L., 3: 76-81

Kapoor, R. L., 1: 41-49

Kargbo, C. S, 4: 30-39

Karwasra, R. S., 1: 51-58

3:196-201

Karwasra, S. P. S., 2: 331-335

Kashyap, R. K., 5: 1-27

Kathpal, T. S., 1: 59-64

2: 205-210

Kaul, R. N., 3: 105-113

Kaushanskky, P., 3: 158-166

Kaushik, L. S., 1: 41-49

Kaushik, Mamta, 5: 190-198

Kaushik, R. K., 2: 345-354

3: 55-62

Kaushish, S. K., 1: 167-169

Kehar, Singh, 3: 91-97

Khan, A.K.S. Ahmed, 4: 238-244

Khan, S. I., 5: 110-113

Khan, T. H., 1: 211-220

3: 180-186

Khanna, S. S., 2: 129-135

4: 1-14,228-232

Kharb, R. P. S., 3: 219-235

Khazanchi, R., 2: 299-305

Khera, A. P., 3: 192-195

Khondaker, Z. H., 1: 211-220

Rrishnamoorthy, P. N., 2: 183-187

Krishnaswami, R., 4: 258-267, 268-275

Kuhad, M. S., 1: 131-138

4:1-14

Kuldeep Singh, 3: 288-292

Kulkarni, J. H., 5: 199-202

Kulshreshtha, R. C., 3: 345-354

2:55-62

Kumar, Aswani, 5: 41-48,

Kumbar, B. B., 4: 179-184

Kumar, R, 1: 145-150

Kumar, S., 3: 66-75

Kumari, G. Krishana, 2: 137-142

Lal, B., 2: 265-269

Lal, R., 3: 35-42

5:77-92

Lather, B. P. S., 4: 160-163

Laura, R. D., 2: 159-166

3:98-104

4: 277-299

Lekwa, G., 3: 167-173

Magu. S. P., 4: 137-142

Mahajan, V. M., 3: 63-65

Maheshwari, M. L., 1: 139-144,203-209

1: 231-238,325-329

Maitai, R. K., 4: 15-22

Malhotra, Sarla, 2: 271-286

Malik, D. S., 1: 51-58

3: !96-201

4: 40-45,55-62

Malik, R. K., 1: 65-72

4: 300-309

Malik, R. S., 1: 193-202,273-278

2:1-102

3: 66-75

Mandal, R., 5: 93-101; 110-113

Mandal, S., 1: 139-144

Mandvikar, S. S., 5: 182-189

Maniokam, T. S., 4: 335-340

Marol, C., 1: 123-130 Marwaha, R. S., 5: 227-230 Mathur, R. S., 4: 130-136 Maurva, R. P., 5: 209-214 Mavi, H. S., 2: 151-158 Mehar, Singh, 4: 175-178 Meisheri, M. S., 3: 22-27 Milap Chand, 4: 251-257 Milkh Raj, 2; 331-335 Minhas, P. S., 2: 245-250 Misra, B. K., 1: 111-121,279-284 3: 52-54 Misra, D. P., 2: 227-232 Mishra, M. M., 5: 190-199 Mittal, J. P., 3: 105-113 Mittal, S. P., 3: 91-97,187-191 Mohan Singh, 4: 23 29 Mor, B. R., 4: 160-163 5: 114-117 Moawad, A. M., 4: 188-2 1 Munnu Singh, 1: 187-192 3:123-127 Mushiri, S.M, 4: 30-39 Murty, V.V.N., 4: 300-309 Nagpaul, K. K., 4: 126-129 Naidu, Madupuri, R., 3: 265-272 Nainawatee, H. S., 2: 221-226 5: 231-234 Nand Lal, 5: 175-181 Nandal, D.S., 5: 62-67 Narasimha Rao, K., 4: 371-374

Narda, N.K., 4: 300-309

Narwal, S.S., 4: 40-45,55-62

Naresh, J. S., 1: 259

Nath. S., 4: 116-125,221-227 Nayyar, V. K., 3: 82-90 Nehra, S. C., 5: 240-246 Nelliat, E. V., 4: 108-115 Neog, Sabita Jyoti, 4: 164-167 Nooruddin, M., 4: 95-98 Oke, B. O., 3: 105-113 Oparaugo, S. M. C., 3: 167-179 Oswal, M. C., 4: 126-129 Pachauri, S. P., 3: 137-138 Pande, P. C., 1: 279-289 2:103-115 3:52-54 Pander, B. L., 4: 283-289 Pandya, B. P., 1: 221-230 Pant, K. C., 2: 167-177 Pareek, S. K., 1: 139-144,203-209 Parmar, B. S., 1: 7-17,325-329 2: 199-204 3: 139-145 4: 371-374 5 : 223-226 Paroda, R. S., 2: 179-182 Paroda, Shashi, 5: 190-198 Partap, P. S., 4: 164-167 Partap Singh, 3: 91-97,187-191 Pasricha, N. S., 2: 143-150,315-324 Patel, G. R., 5: 49-55 Patel, K. A., 5: 49-55 Patil, B. P., 4: 77-84 Patil, P. K., 2: 337-344 Patil, V. K., 2: 337-344 Peacock, J. M., 4: 15-22 Perumal, N. K., 4: 63-72 Pillai, R. N., 5: 137-142

Pozwal, M. K., 4: 276-279

Potalia, B. S., 3:98-104

4: 297-299

Prakasa Rao, E. V. S., 1: 187-192

3:123-127

4:341-345

Prasad, B. N., 4: 143-145

Prasad, D., 2: 290-305

Punia. M. S., 3: 151-157,255-264

Raghu Mohan, N. G., 2: 117-127

Rahman, Shafiqur, 1: 211

4:238-244

Raina, A. K., 2: 361-365

3:137-138

Raj Reddy, K., 5: 102-109

Raja, V., 5: 10?-109

Raj Kumar, 5: 227-230

Rajora, V. S., 2: 361-362

Raju, P. S., 4: 15-22

Rakha, N. K., 1: 339-344

Ram, C., 5: 118-121

Ram Singh, 1: 317-324

3: 47-51

Rana, R. S., 1: 131-138

Rana, D. S., 3: 76-81

4:233-237

Raman, R. S., 3: 236-254

Rana, M. S., 4: 290-296

Randhir Singh, 1: 145-150

2: 221-225,287-297

3:9-21

Ranvir Singh, 3: 114-118

4:85-87

Ranwa, R. S., 3: 196-201

Rao, A. R, 1: 65-72,261-271

Rao, A. S., 2: 217-220, 221-226

Rao, A. Subba, 2: 137-142

Rao, D S., 3: 128-137

Rao, G. S., Prasada5: 203-208

Rathi, S. S., 1: 253-258,333-338

2: 257-263

4: 290-296

Rattan, R. K., 1: 111-121,309-316

Raychaudhuri, S. P., 1: 1-6

Rayar, Antoni J., 4: 46-54

Richter, J., 1: 193-203

2:1-102

Rohtas Singh, 1: 333-338

Romero, Jean Jose, 1: 19-23,25-32

Roy, N. K., 2: 299-305

5:215-222

Rupa Kumar, K., 4: 146-153

Sachan, R. S, 3: 43-46,279,287

Saharan, M. R., 2: 287-297

3:9-21

Sahota, T. S., 2: 237-243

4: 63-72

Samsad, A., 2: 355-359

Sangwan, M. L., 3: 206-213, 214-218

Sangwan, Naresh K., 2: 179-182

3: 1-8

Sapra, R. L., 3: 119-122

4:73-76

Sardana, H.R., 5: 150-153

Sarkar, G. N., 1: 151-158,299-307 Shukia, U. C., 3: 288-292 Sarode, S. V., 2: 183-187 Singh, B. D., 4: 88-90 Sarup, S., 1: 91-93 Sihgh, D., 2: 221-226 Saxena, S. N., 2: 233-236,325-330 Singh, I. P., 5: 114-117 Saxena, V.S., 1: 331-332 Singh, K. D., 1: 203-209 Sebastian, M. K., 2: 307-310 Singh, M., 3: 351-355 Seth, Sunil, 4: 160-163 4: 341-345 5:114-117 Singh, O. S., 2: 151-158 Sethi, K. L., 3: 119-122 Singh, R., 2: 221-226, 287-298 4: 73-76 Singh, R. A., 1: 171-174 Shalid-Ullah, 2: 355-359 Singh, R. C., 4: 175-178 Shankar Kumar, D., 1: 230-252 Singh, R. P., 2: 361-362 5: 131-149 3:313-317 Shanwal, A. V., 3: 273-278 4:179-184 Sharda, D. P., 5: 68-76 Singh, S. B., 4:88-90 Sharma, G.D., 2: 179-182 Singh, S.P., 1: 279-284 3: 259-264 2:183-192 Sharma, J. P., 2: 233-236,325-330 3: 52-54, 132-136 Sharma, J. S., 2: 193-198 3; 128-131 Singh, V.P., 3: 265-272 Sharma. K. N., 4: 233-237 Sinha, M. K., 3: 28-34 Srinivasan, K., 5: 203-208 Sharma, O. P., 3: 202-205 Srinivaschar, D., 1: 273-278 Sharma, K. C., 2: 237-243 Srivastava, K. P., 4: 168-174 4:175-178 Srivastava, P. C., 3: 137-138 Sharma, R. D., 3: 137-138 Sharma, R. K., 1: 171-174 Srivastava, V. K., 1: 139-144,231:238 1: 325-329 Sharma, V. P., 5: 68-76 Srivastava, Y. N., 1: 331-332 Shivankar, V. J., 1: 59-64 Steinbach, J., 3: 304-312 Shri Ram, 2: 257-263 Subba Rao, A., 2: 137-142

> Surinder Singh, 1: 51-58 3:196-201

Subbaiah, G. V., 1: 51-58

4:335-340

5階: 240-246

Shukla L. M., 1: 111-121,309-316

4:360-364

Shri Ram, 5: 209-214

Shukla, R. P., 3: 293-303

uri, V. K., 1: 33-40
Sutton, P. M., 4: 30-39
Szabolcs, I., 1: 95-109
Takkar, P.N., 3: 85-90
Tandon, P. L., 3: 293-303
Taneja, A. D., 3: 151-157
Taneja, H. K., 5: 215-222
Tewari, G. C., 5: 150-153
Thomas, T. A., 4: 185-187
Tomar, N. K., 2: 129-135
Tomar, S. S., 1: 7-17
Tripathi, I. D., 4: 351-359
Tripathi, R. S., 2: 311-313
3: 146-150

Ugherughe, P. O., 5: 28-43 Umamaheswara Rao, V., 2: 251-256

> 3: 47-51 5: 127-130

Vanelslande, A., 3: 35-42 Varade, P. B., 3: 52-54 Varghese, P. T., 4: 108-115

Vaidya, P. K., 1: 221-230

Vashistha, R. N., 4: 164-167 Verma, A. N., 5: 1-27 Verma, L.N., 4: 97-107 Verma, O. P., 4: 97-107 Verma, P. K., 3: 255-264 Verma, P. S., 4: 88-90 Vidya Sagar, 1: 239-252 Vig, A. C., 5: 41-48

Vittal Murty, K. P. R., 2: 251-256 5: 127-130

Wagle, D. S., 2: 217-220
Wiesner, L. E., 5: 118-121
Yadav, D. V., 4: 228-232
Yadav, I. S., 1: 239-252
Yadav, K. N., 1: 253-258
Yadav, R.P.4: 228-232
Yadav, S. S., 3: 98-104
Yamdagni, R, 5: 56-61
Yariy, Shmuel, 3: 158-166

4: 310-322 Yashwant Singh, 5: 235-239

Zile Singh, 1: 81-90

TITLE INDEX

Volumes: 1-5 (1983 - 1987)Accumulation and depletion of available Blackgram (Vigna mungo) (L) Hepper) phosphorus and potassium in a continued breeding: a review 3:219-235. fertilizer experiment with a fixed crop Boron uptake by wheat as influenced by rotation 5:41-48. its profile distribution. 4:126-129 Activity and multiple molecular forms of peroxidase in artificially aged soybean Bovine babesiosis in Bangladesh I: Clinicoseeds. 2:217-220. haematological features under field conditions 2:355-359. Adsorption and desorption of sulphate by soils pretreated with different cations Breeding for salt resistance: concept and 2:143-150. strategy. Agro ecosystems water requirements for Carbon fertilization: Influence of a simu-5:127-130. crops lated field soil respiration on soybeen Aldicarb residues in soil and their transcrop in the tropics 1:33-40location into radish pods and seeds, 2:205-210. Changes in galactolipid content of maize chloroplasts as influenced by growth and Allelopathic influence of winter weeds on germination and growth of wheat some herbicides. 2:227-232 4:276-279. Chemical composition and other nutritive Angioarchitecture of kidney in goat. characteristics of bajra (Pennisetum 5: 235-239. typhiodes L.): A review 2:271-286 Applicability of empirical correlations for estimating global solar radiation Comparative performance of wheat. barley and oats for dry matter production 5: 122-126. and N uptake as affected by nitrogen Availability of phosphorus from different fertilization. 4:251-257. sources to rice crop as influenced by levels of calcium carbonate. 2:129-136 Copper adsorption characteristics of some selected alkaline soils. Azolla: a biofertilizer for rice, 4:168-211. Biochemical changes and therapeutic trials Correlation and path analysis studies in in experimental trypanosomiasis in dogs, cowpea (Vigna unquiculata (L) Walp.) 3:313-317. 3:114-118. Bio-ecology and management of mango weevil (Sternochetus mangiferae (Fabrici-Correlation studies between seedling and

settling in sugarcane.

cus) Coleoptera-Curculionidae, 3:293-303.

4:88-90

Cost structure of raising Hariana cattle.
4:290-296

Criteria of dry wind spell for the semi-

arid region of south India. 2:251-256.

Critical appraisal of macroscopic scale models of soil moisture dynamics under cropped conditions for soil moisture estimation. 4:300-309.

Diffusive flux of zinc to wheat roots in some light textured soils.

3: 22-27.

Distribution patterns of diamondback moth and cabbage leaf-webber larvae on cabbage. 5: 2203-208.

Economics of intercropping legumes in maize under rainfed conditions.

3:187-191.

Effect of adsorbent charge density on the exchange behaviour of Co (Pn)₃+3 in laponite and vermiculite by monovalent and bivalent inorganic ions. 1:299-307.

Effect of artificial ageing on emergence rate index, stand establishment and grain yield in wheat.

5: 118-121.

Effect of calcum carbonate and ethylene diamine tetra acetic acid (EDTA) on phosphorus supplying characteristics of soil. 2:325-330.

Effect of calixin and cytozyme on nodulation and nitrogenase activity of *Phaseolus mungo*. 4:143-145.

Effect of different levels of irrigation and nitrogen on leaf yield and chemical characteristics of blue-cured virginia tobacco,

4: 238-244.

Effect of different rates, methods and time of nitrogen application on dry matter and NPK accumulation in oat. forage.

5: 49-55.

Effect of dithane M-45 (Mancozeb) on the N requirements of potato (Solanum tuber-osum (L) in Shillong hills. 2:237-243.

Effect of drought stress on water yam.

3: 35-42

Effect of fertilizer and manure on yield, soil moisture and monetary returns from rainfed maize- wheat rotation. 3: 91-97 Effect of fertilizers application on double

cropping under rainfed conditions

4:233-237

Effect of glucosinolates in relation to aphid (*Lipaphis erysimi Kalt*) fecundity in crucifers. 1: 273-278,

Effect of intercropping on the growth and yield of rainfed sunflower and companion legumes.

4: 55-62,

Effect of irrigation and N fertilization on dry matter production, fruit yield, mineral uptake and field water use efficiency of watermelon 5: 166-174.

Effect of liming on soil pH, phosphorus availability and uptake and dry matter production of corn in some Sierra Leonean acid soils 4: 30-39.

Effect of mulches on soil temperature and sprouting of sugarcane rations 4:23-29.

Effect of N, P and K fertilizers on yield and nutrient uptake in lemongrass (Cymbopogon flexuosus Stapf) 3: 123-127.

Effect of nitrogen fertilizer on geranium (Pelargonium graveolens L. Her Ex Ait), cowpea and blackgram grown in sole cropping and intercropping systems

4: 341-345.

Effect of nitrogen and plant spacings on the growth, yield and nutrient uptake in davana (Artemisia pallens Wall),

1:187-191

Effect of plant population and row spacing on light interception and grain yield of chickpea under late sown conditions.

4:245-250.

Effect of rainfall variability on crop maturity in arid region of Haryana: a case study 1:317-324

Effect of restricted feeding in growing pullets on their subsequent performance.

5:68-76

Effect of salinity, zinc and phosphorus on growth, Zn and P nutrition of pigeonpea (Cajanus cajan).

3:98-104

Effect of season and period on first lactation weekly milk production in murrah buffaloes.

3:128-131.

Effect of size, shape and charge of quaternary ammonium and alkanediammonium ions in the exchange of Co $(Pn)_3^{3+}$ from Na-Co $(pn)_3$ bentonite and Na-Co $(pn)_3$ vermiculite³ 1:151-158.

Effect of soil salinity on growth and nutritional status of guava (*Psidium Guaj Ava* L) 2:337-344.

Effect of soil crusting on seedling emergence in sorghum genotypes 4:15-22

Effect of soil drying and wetting on CO₂ evolution, microbial population and nitrogen transformation 4:13-136.

Effect of sowing dates on summer mung (Vigna radiata (L) Wil Czek) varieties.

4:175-178.

Effect of sulphur on rice under flooded conditions. 5:93-101.

Effect of the body size of ewes on birth and weaning weights of lambs 3: 214-218

Effect of variety and growing location on the proximate and fatty acid composition of opium poppy (*Papaver somniferum* Linn) 3:1-8.

Effect of weights and measurements on placenta weight and number of cotyledons in *Nali* and *Lohi* sheep 1: 167-169

Effects of diffubenzuron on the pupae of okra shoot and fruit borer, Earias vittella F. 5: 150-153.

Efficacy of *Panacur* (R) against *haemon-chosis* in goats 2:361.362.

Efficiency of sparingly soluble, soluble and chelated zinc sources on yield, nutrient composition and nutrients ratios in berseem (Trifolium alexandrinum)

1: 73-80

Energy inputs to irrigation of paddy 1: 65-72

Enzymes of ammonia assimilation and total free amino acids as influenced by host genotype and rhizobial strain in mungbean (Vigna radiata (L) Wil Czek) nodules

2: 221-226
Enzyme of starch hydrolysis in developing grain of wheat (Triticum aestivum L)

1: 145-150

Epidemiological study of bovine stephanofilariasis in Bangladesh 4: 96-98

Equipment-related costs of cultivation on bullock-operated and tractor-operated farms 1: 261-271

Evaluating black gram (V. Mungo (L) Hepper) germplasm for yield components, quality characters and disease resistance 2: 167-17;

Evaluation of critial level of soil zinc for predicting response of maize to zinc fertilization in Aridisols 3:288-29.

Evaluation of dialkyl acyl phosphonates and their oximes as potential fungicid in 5: 215-2?

Genetic variability correlation and path Evaluation of o-methyl-p-(dichloromethyl) phosphonamidates and diamides 3:119-122 analysis in celery against M. incognita causing root knot Grain and straw yields and the uptake 2:299-305 of N. P and K in sorghum (CSH-5) as disease affected by micronutrients under various Evaluation of probable breeding values levels of nitrogen 5:102-109 of Murrah bulls for efficiency of milk 1:333-338 Groundnut root nodulation as affected by production micro-nutrients and Rhizobium inocula-Evaluation of some ne-oils as malathion 5:199-202 tion 5:223-226 synergists Group composition of humus in some Factors affecting calving interval and lactforest and adjoining cultivated soils of ation length in Friesian X Sahiwal crosses Bangladesh 3:180-186 5: 240-246 Growth and yield responses of sunflower Flyash as a carrier for phorate granules cultivars to row spacing and nitrogen 4:371-374 4: 40-45 Forage production in sorghum oats rota-Growth characteristics of field grown wheat genotypes differing in grain yid tion as affected by tillage and method of fertilizer application under rainfed 2:245-250 conditions Heptachlor residues in soil and their movement into maize plants/grains First record of Pyroderces simplex Wal-1:59-54 singham (Lepidoptera: Momphidae) infest-Heterosis and maternal effect in live ing cotton in Haryana 1: 259 traits (objective measurements) of lambs Genetic analysis of characters associated 2:193-198 with yield in G. hirsutum L. 4:258-267 Improved DDT emulsifiable concetrates Genetic analysis of heterosis in desi 3: 139-145 cotton (Gossypium arboreum L) 5: 114-117 Improvement in the drought resistance of Gentic analysis of maturity in guar (Cyamcrops for the arid and semi arid tropics. opsis tetragonoloba (L) Taub.) 2:211-216 Improvement of soil structure in tropical Genetic analysis of some useful characters in G. hirsutum L. 4:268-275 and sub-tropical areas: a review 4: 97-107 Genetic analysis of yield and its compon-Incroporation of sucrose-C14 in different 1:221-230 ents in Kabuli gram lipid fractions of developing cereal endo-Genetics and breeding of Prantago Ouata sperm 3:52-54 Forsk. - a review 3:255-264. Indexing boll development and retention Genetic divergence in hexaploid triticale in cotton varieties for estimating yield of 3:265,272 seed cotton 4: 77-84 Genetic group differences and relationships Influence of Azotobacter inoculation on among udder and teat conformation traits the availability of phosphorus in soil in crossbred dairy cattle 4:283-289 5:110-113

Influence of climate on bone growth in pigs reared in the humid equatorial tropics of southern Nigeria 3:.04-312

Influence of long term cultural operations on physical and water retention characters of a red sandy loam soil 4:108-115

Influence of Mo. Zn and Rhizobium inoculation on dry matter yield and nitrogen content in chickpea (Cicer arietinum L)

2:159-165

Influence of soil moisture stress on yield,

grain quality, availability and uptake of N, P and K by wheat 1:211-220 Inheritance of leaf size index in mid season cauliflower (*Brassica oleracea* Var. botrytis) 4:164-167

Interactions of minerals of the kaolin group with cesium chloride and deuteration of the complexes 4:310-322

Inheritance of nodal rooting in rice

2:311-313

Inheritance of yield and its components in cowpea (Vigna unguiculata L) Walp)

4: 85-87

Interaction between calcite crystal and aqueous solution of ferrous and manganese sulphate 3:158-166

Investigation in agronomic parameters of senno (Cassia angustifolia Vahl.) as grown in north-western India 1:139-144

Investigation of chemical methods of assay of sennosides in senna (Cassia Anguztifolia Vahl.)

1:231-238

Investigations on growth and tuberization of potato at different planting dates and nitrogen levels 4: 63-72

Isomalathion problem: a review

2: 199-204

Java citronella oil from aged grass

2:179-182

Kinetics of immolilization of 15 N-labelled nitrate-N in the organic matter of a calcareous soil 1: 19-23

Line x tester analysis of seed yield and other important characters in sunflower 4:154-159

Management of spotted bollworms (Earlas spp) in cotton: a review 5:1-27

Micronutrient contents of chlorotic and normal plants of pigeonpea (Cajanus cajan) 4:297-299

Mixed model maximum likelihood approach for evaluating bulls for milk production 2:257-263

Modelling cobalt and phosphorus responses in some legumes 4: 228-232

Modified method of iodine determination by cerimetry method 3:137-138

Nature of pore-size distribution in some alluvial soils 3: 66:75

Neurotoxin in khesari dal (Lathyrus sativus) 1:175-185

Nitrogen transformations in a 15 N-labelled ryegross when mixed to a calcareous soil

1: 25-32

Non-heirarchical euclidean cluster analysis in cherry 4: 73-76

Note on amplification of immune response to Newcastle disease vaccine 3: 63-63

1:331-332 of desert locust Part II. Fungal, parasitic, nutritional and other diseases 3: 55-62 Nutrient uptake and dry matter production of palmarosa oil grass under different Possible links between grain filling and levels of N,P and K fertilizers 1: 203-209 prolamin synthesis in high lysine and normal crop plants 2:103-115 Nutritional quality of Hibiscus seed protein 4:280-282 Potassium supplying power of some tropical soils 2:137-142 Nutritional status of some guava orchards in Haryana 5: 56-61 Prevalence of enteric colibacillosis in laboratory rabbits (Oryctolagus cuniculus) Nutritive value of soybean: a review 4:179-184 5:247-279 N. P and K requirements for targetted yield Problems of soil salinity and alkalinity in of forage sorghum (Sorghum bicolor L) tropical agriculture 1:95-109 in Mollisol of Uttar Pradesh 3: 43-46 Production potential of wheat and lentil Occurrence of talk and clay mineral assem under constraints of fertilizers and irrigablage in the ferruginous soils of Goa, India tion 3: 76-81 2:117-127 Public health aspects of toxoplasmosis Pedo-chemical characterozation of soils 1:159-165 of Haryana Persistence pattern and safety evaluation Rainfall anaysis for crop planning in for monocrotophos and quinalphos in Bhopal region 5:182-189 4:365-370 french bean Rapid and sensitive method of protein Phenotypic correlations of external body estimation in legume grains 5:231-234 measurements with egg production and body weights in white pekin ducks Rapid decline in cellular sulphydryl level 1:171-174 and ADP-glucose linked starch synthetase Phenotypic stability in upland cotton activity in maturing wheat grain 4:160-163 1: 279-284 Photosynthesis, dark respiration, photo Regeneration studies in Balanites roxrespiration and related enzymes in flag burgil Pl. 4:346-350 leaf of field grown wheat genotypes 2:287-297 Relationship between specific gravity and Phytosociology and soil characterietics of dry matter content of potato tubers forests in the eastern Himalayas 4:116-125 5:227-230

Note on pedogenic oxides in salt affected

Novel DDT formulation for the control

Aridisols

3:202-205

Pig diseases in India: a review

Part I. Bacterial and viral diseases

2:345-354

Relative efficacy of some synthetic pyrethroids and other commonly used insecticides against bollworms and their residues in cotton. 4: 163-174

Relative selection efficiencies of various part period production 2:265-279

Removal of soil fertility constraints for efficient fertiliser use 1 1-6

Reproduction profiles of murrah buffaloes under progeny testing programme

1:253-258

Respiration as influenced by urea herbicides in soil amended with compost

4:137-142

Response of forage sorghum (Sorghum bicolor L) to soil and applied N, P and K in a Mollisol of Uttar Pradesh 3: 279-287

Response of groundnut (Arachis hypogaea L) to application of farmyard manure, and N and P on light sandy savanna soil of northern Nigeria 4:46-54

Response of maize (Zee mays) and cassava (Manihot esculenta) to removal of surface soil from an Alfisol in Nigeria 5: 77-92

Response of pearlmillet hybrids to levels of nitrogen under rainfed conditions of Haryana 3:196-201

Review of research on insecticide synergists in India: retrospect and prospect
1:7-17

Review on the germination, morphology and reproduction of bathua (Chenopodium album L.) 5:156-165

Role of cobalt in soil and plant nutrition

—a review 1:111-127

Role of immunoglobulins in calf survivability: a review 3:206-218

Role of major plant nutrients (N, P & K) in the management of insect-pests of cowpea (Vigna unguiculata L) Walp.)

5: 209-214

Role of phosphorus availability parameters for crop yeild and P utilization in wheat $(Triticum\ aestivum\ L)$ 2: 233-236

Rumen metabolism and nutrient utilization as influenced by nitrogen and sulphur inputs: a review 5:131-149

Ruminal microbiota and ammonia anabolizing enzymes as influenced by dietary regimens: a review 1: 239-252

Selected engineering properties of grains of two sorghum varieties 3:105-113

Seroprevalence of *Theileria annulata* infection among Indian water buffalo (*Bubalus bubalis*) 1:91-93

Shattering in guar (Cyamopsis tetragenoloba (L) Taub) and its significance

4:185-187

Smectite formation in a catena of soils derived from micaceous alluvium

3:273-279

Soil characteristics and nutrient indexing of wheat in alkali fields under reclamation

3 82-90

Soil characteristics of conifer plantations versus natural forest in the eastern Himaaya 4:221-222

Soil-landscape relationships in the Kafanchanpiedmont, northern Nigeria

3:167-17

Testing of simple leaching models in a Soil mineralogy and clay mineral for- $1:193-20^2$ mation in low hill zone of Kangra, field soil 1:285-298 Himachal Pradesh Thin layer chromatographic and high performance liquid chromatographic determi-Soil spatial variability: a review nation of S-methyl isomer of malathion 2:1-1021:325-329 Soil versus foliar nutrition of ber trees with Toxicity of isoproturon in livestock 3:19?-195 urea 1:339-344 Some biochemical changes in Tok E-25 Translocation of some soil insecticides toxicity in calves 2:189-192 2:183-187 into onion Some microclimatic aspects of pigeonpea Triple test cross analysis in F, populations 2:151-158 crop of two barley crosses 4:351-359 Some observations of herbicide toxicity in Uniformity trial in pearlmillet 1: 41-49 3:132-138 calves Use of immune blotting technique for Some physico-chemical properties and the detection of aleutian disease virus protein in infected mink 4:91-95 fertility status of soils under three different cultivution systems around Nsukka, Nigeria Use of pyrite, press-mud, ammonium sulphate and sulphur for the amelioration 4: 323-334 of lime-induced chlorosis of sugarcane in Some plants used as veterinary medicine Vertisols 5:175-181 2:307-310 by Bhils Utilization of correlation and path coeffi-Sources of income of farm families with cient analysis in surgarcane breeding varied size-tenurial characters in Banglaprogrammes 3 - 151-157 5:62-67 desh Water managment practices affecting leaching of phorate in soil 1:81-90 Spatial variation of some chemical and physical properties within single conti-Water retention characteristics of some guous delineations of two soil sampling Vertisols of Andhra Pradesh in relation to units of a salt-affected soil 1: 131-138 soil properties 4:335-340 Within plant distribution of leaf hopper, Studies on dew in Haryana 3: 47-51 Amrasca biguttula biguttula Ishida (Homo-Studies on nodal differentiation in rice ptera Cicadellidae) on brinjal 4: 360-364 and nature of its inheritance 3:146-150 Yield and sulphur uptake of green gram Studies on relative efficiency of important as affected by sources and levels of sulphur crops for seed yield in rainfed conditions 2:331-335 Yield-weather relationships of finger millet Studies on zineb as nitrification inhibitor under different manurial treatments 5:190-198 4:146-153 Study by size fractionation of organic Zinc adsorption characteristics of the soil matter in a cultivated tropical soil fertilised as influenced by some exchangeable cations with labelled crop residues (14, 15,1) 2: 315-324 and urea (15_n) 1:123-133 Zinc-magnesium interactions in soil and Testing of Burns medel in a salt affected plants as measured by crop response 4:212-220 1:3 9-316

SUBJECT INDEX

Vol : 1-5			(1983-87)
Acid soils-effect of liming	4:30-39	Amrasca biguttula biguttula Isl leaf hopper	nida see
Adsorption of salphate-by soils	2:142-150	Aphid fecundity-in crucifers	1:273-278
Aged grass-java citronella oil	2:179-182	Aqueous solution of ferrous Arachis hypojea see groundnus	
Aged soybean seeds-peroxidas	se in 2:217-220	Artemisla pallen Wall see dau	ana
Agro-ecosytems water require	ements-for 5: 127-130	Artificial aging-in wheat Assay of sennosides-in senna	5:118-121 1:231-238
Agronomic parameters-of sen		Azolla	4:198-211
Aldicarb residues-in radish 2	: 139-144 : 205-210	Azotobacter inoculation-in so	oils 5:110-113
—in soil	2:205-210	Bacterial diseases-of pigs	2 : 345-354
Aleutian disease virus proteinmink	in infected 4:91-95	Ba _j ra -chemical composition	2:271-286
Alkali fields-reclamation of	3: 82-90	- nutritive characteristics of	2:271-286
Alkaline soils-copper adsorper recteristies of	3: 28-34	Balanites roxbughil P.L	
Alkalinity-in tropical agricultu	re 1:95-109	- regeneration studies in	4 :346-350
Alleopathic influence of weeds Alluvial soils-pore size distrib	bution in	- dry matter production	4:251-257
	3:66-75	-nitrogen uptake	4:251-257
Amelioration-of lime-induced c of sugarcane	hlorosis 5:175-181	nitrogen fertilizationperformance of population	
Ammonia assimilation-in mung	bean 2:221-226	-tripletest cross analysis of	4:351-359
Ammonium sulphate-in sugar c	ane	Bathua	
5	5: 175-181	—germination	5:156-165
Angio-architecture of kidney-	in goat	-morphology	5:156-165
	5:235-239	-reproduction	5:156-165

Berseem		Brassica oleracea var Botrtyti	s
-efficiency of zinc sources	1: 73-80	see cauliflower	
- nutrient composition	1: 73-80	Brcediug	
-nutrient ratios	1: 73-80	blackgram	3:219-235
—yield	1: 73-80	-plantago ovata Forsh	3: 256-264
Biochemical changes		•	3:236-255
-in experimental trypanoso	omiasis-in	-for salt resistance	3:230-233
dogs	3:313-317	Breeding values of murrah bu	
-in Tok E-25 toxicity in ca			1:333-338
	2:189-192	Brinjal-leaf hopper of	4:360-364
Bio-elology		Bubalus bubalis see buffalo	
-of mango weevil	3:289-303	Buffalo-milk production	3:128-131
Biofertilizer for rice-azolla	4:198-211	—reproduction in	1:253-258
Blackgram		-seroprevalance of theileria infection	annulata 1:91-92
-breeding	3:219-235	Bullock operated farms-cost	of cultivation
-disease resistance	2:167-177	panoon operator turing coop	1: 261 271
—germ plasm	2:167-177	Bulls	
-nitrogen fertilization	4:341-345	—evuluation for milk produ	ection
-quality characters	2 i 167-177	or areastron for mina proge	2:257-263
—yield	2:167-177	Bunrs model	
Body size of ewes-lambs		-testing in a salt-affected fi	eld
	3:214-218		4:212 220
Bollworms-in cotton	4:168-174	Cabbage	
Bonegrowth in pigs	3:304-313	-diamondback moth	5:203-208
Boron uptake by wheet	4: 126-129	—leaf-webber larvae	5:203-208
Bovine babesiosis		Cajanus cajan see pigeonpea	
—clinical features	2:355-359	Calcareous soil-nitrogen im	
haematological features	2:355-359	-organic matter of	1; 18-23 1: 18-23
Bovine stephanofilariasis —epidemiological study of	4:96-98	-nitrogen transformation	
-cprocurorogical study of	7 . 70-70	-minogen fransformation	1:25-32

Calcite crystal, interaction	3:158-66	Cesium chloride-of the kaolin	group
Calcium carbonate-effect on	soil		4:310-322
	2:325-330	Chemical characterization-of	
Calf survivability-immunoglo		-of tobacco	4:238-244
	3:206-213	Chemical composition-of bajr	a 2:271-285
Calixin-of phaseolus mungo	4:143-145	Chemical properties — of soiles	4:323-334
Calves			
-biochemical changes in	2:189-192	-spatial variation	1:131-133
-herbicide toxicity in	3:132-138	Chenopodium allbum L. see Ba Chlorosis-of sugarcane	thua 5:175-181
—Tok-E-25 toxicity	2:189-192	Chlorotic-micronutrint conten	ts of
Calving interval-in Friesian	r Sahiwal	Cicerarietinum L see chickpea	4:297-299
•	s 5 : 240-246	Chickpea-grain yield of	4:245-250
Carbon fertilization-on soyb	1: 33-40	—influence of Mo	2:159-165
Carrier-for phorate granules	4:371-374	-influence of Zn	2:159-165
Cassava-removal of surface so		-nitrogen content in	1:159-165
-response of		-rhizobium inoculation	2: 159-165
	0.1,72	row spacing	4:245-250
Cassia angustifolia Vahl see se		•	
Catena-smectite formation in	3:273-278	-sown conditions	4:245-250
Cauliflower-leaf size index	4:164-167	Clays-quaternary ions on	T: 153+158
Cattle-cost structure of raising	g 4 : 290-296	Clay mineral assemblage-in	ferruginous
		soils	2:117-127
Celery		Clay mineral formation	1:285-298
-correlation in	3:119-122	· ·	4:228-232
-path analysis in	3:119-122	- in plant nutrition	1:111-121
-non-hierarchical eucliden o		-in soil nutrition	1:111-121
analysis	1: 72- 75	Components-in cowpea	4:85-87
Cereal endosperm-incorporation	3: 52-54	—in kabuli gram	1:221-230
linia Constituto d		Compost-soil amended with	4:137-142
- lipid fractions of	3: 52-54	Conifer plantations-natural for	
Cerimetery method-of iodine	0 105 100		4:221-227
determination	3:137-138	—soil characteristics of	4:221-227

Constraints of fertiliser in lentil produc-		Crop planning-rainfall analysis for	
tion	3: 75-81		5:182-189
—in wheat production Constaints of irrigation	3: 75-81	Crops-agro ecosytems water for	requirements 5:127-130
- in lentil production - in wheat production	3:75-81 3:75-81	-drought resistance of	5:29-40
Copper adsorption characteri	stics-of	Crop yields-surface soil remo	oval 5:77-92
alkaline soils	3: 28-34	Crop response-magnesium	1:309-316
Correlation-in celeryin cowpea	3:119-122 3:114-118	-zinc	1:309-316
—in sugar cane breeding pro	ogrammes	Crop water requirements	5:127-130
	3:151-157	Crossbred dairy cattle-teat	
	4: 88-90	traits	4:283-289
Cost of cultivation-on farms	1:261-271	-udder conformation traits	4:283-289
Cost structure of raising-cattl	e 4:290-296	Cultivated soils-humus in	100 100
Cotton-bollworms	4:168-174	Cultivated solls-numus in	3:180-186
-genetic analysis	5:119-117	Cultural operations-of red	
-heterosis in	5:114-117	soil	4:108-115
-phenotypic stability	4:160-163	Cyamopsis tetragonaloba (L) Taub see gua	
-spotted bollworms	5: 1-27	Cyamopsis tetragonaloba (L)	see guar
-synthetic pyrethroids	4:168-174	Cymbopopogon flexuosis	(Staff) see
Cowpea-components in	4: 85-87	lemongrass	
—correlation in	3:114-118	Cytozyme-of Phaseolus mung	0 4 1 1 4 2 1 4 5
-inheritance of yield	4: 85-87		0 4 . 143-143
path analysis	3: 114-118	Davana-growth	1:187-192
—plant nutrients in	5: 209-214	-nitrogen	1:187-192
-nitrogen fertilization	4:341-345	- nutrient uptake	1:187-192
Criteria-of dry wind spell	2:251-256		1.107-192
Crop maturity-rainfall variab	1: 317-324	—yield	1:187-192
Crop rotation-available phosp		Dark respiration-in wheat	2:287-297
y common a ranaote phosp	5: 41-58	D D T emulsifiable concentrates	
-available potassium	5: 41-48	- 2 1 cmolsinable concenti	3:139-145

D D T formulations-contr	ol of desert 1:331-332	Earias spp see spotted bollwo	
Desert locust-of control	1:331-332	Earias vittella F diflubenzuro	n on 5: 150-153
Desorption of sulphate by so	ils 2:142-150	Ecosystems water requirement	its-for crops
Detection-of aleutian disease	virus protein		5:12730
	4: 91-95	Efficiency of kharif crops-in r	ainfed condi- 1: 51-58
Dew-studies in	3: 47-54		1: 1-6
Dialkyl acyl phosphates-ev	valuation of 5: 215-222	Emergence rate-in wheat	5: 118-121
Diamondback moth of cabba	age 4:203-208	Empirical correlations-for so	
Dietary regimens and enzyme	es 1 : 239-252		5:122-126
Diflubenzuron-on Farias vitt	ella	Energy inputs-to paddy	1: 65-72
	5:150-153	Engineering properties-of sorg	
Disease resistance-in blackgra		E-Auda and a Mark to Line	3:105-113
	2:167-177	Enteric colibacillosis-in labor	4:179-184
Dithane M-45 (Mancozeb)-o.	n potato 2:237-243	Enzymes and dietary regimens	I: 239-252
Dogs-experimental trypanoso		Enzymes of starch hydrolyiss	1:145-150
	3:313-317	Enzymes in flag leaf of wheat	2:287-297
Double cropping-fertilizer ap	4: 233-237	Epidemiological study of bovin ariasis	ne step hanifil ³ 4: 96- 9 8
Drought resistance-of crops	5: 29-40	Ethylene diamine tetra acetic a	cid (EDTA)
Drought stress-on water yam	3: 35-45	-effect on soils	2:325-330
Dry matter content-of potato	5:227-230	Exchangeable cations-zinc ac	•
Dry matter production-of barl	•	soil	2:315-324
	4: 251-257	Exchange behaviour-of laponite	e 1 : 299-307
— of palmarosa oil grass	1:203-209	-of vermiculite	1:299-307
-of oat	4:251-257	Expermintal trypanosomiasis-	
—of water melon	5: 166-174		3:313-317
- of wheat	4: 251-257	Foliar versus soil nutrition of	
Dry wind spell-criteria for	2:251-258		3:192-195

Farms		Flue-cured virgina tobacco	
-cost of cultivation	1:261-271	-see tobacco	
Fatty acid composition		Forests	
- of poppy	3:1-8	-humus in	3:180-186
Feeding		Forests soils	
-in pullets	5:68-76	- phytosociology	4:116-125
Ferrous, aqueous	2 150 166	-soil characters	4:116-126
-solution of	3:158-166	French Bean	
Ferruginous soils		-monocrotophos in	4:365-370
-clay mineral assemblage in	n 2:117-127	-quinalphos in	4:362-370
-occurrence of talc	2:117-127	Friesian x Sahiwal crosses	
Fertility status		-calving interval	5:240-246
-of soils	4:323-334	-lactation length	5:240-246
Fertilizer application		Fungal diseases	
—for double cropping	4:233-237	—of pigs	3:55-62
Fertilizer		Galactolipid content	
- effect in maize-wheat rotat	ion 3:91-97	—of maize	2:227-232
Finger millet		Genetic analysis	
-manurial treatments	4:146-153	-in cotton	5:114-117
-weather-yield relationship	4:146-153	- in guar	2:211-215
-yield-weather relationship	4:146-153	- in G. Hirsutum	
Fixed crop rotation		-in <i>G. Hirsulum</i> -in <i>Kabuli</i> gram	4: 258-267
-available phosphorus	5:41-48	•	1:221-230
-available potassium	5:41-48	Genetic divergence	
•	5. 41-40	—in hexaploid triticale	3:265-272
Flooded conditions		Genetic variability correlation	
—sulphur on rice	5:93-101	-in celery	3:119-122
Flyash	4 . 071 074	- in cowpea	3:114-118
—career for phorate granules	3 4 : 3/1-3/4	Geranium	
Forage production —in oats	2:245-250	-nitrogen fertilizer	4:341-345
-in sorghum	2: 245-250		
		Germination	
Forage sorghum	3 : 43-48	— of Bathua	5:156-165
-response to soil	3:279-287	-of wheat	4:276-279

Germplasm for yield		-in wheat	3 : 9-21
-of blackgram	2:167-177	Guar	
Goats		- genetic analysis of	2:211-216
-angioarchiecture of kidney	5:235-239	- maturity in	2:211-216
-haemonchosis in	2:361-362	-shattering in	4:185-187
G. Hirsutum L.		Guava	
—genetic analysis	4:258-267	- nutritional status	2:337-344
	4:268-274		5: 56-61
- yield 4: 254-	267, 268-274	Haemonchosis	
Grain filling		·-in goats	2:361-362
- in high lysine plants	2:103-115	Heptachlor residues	
Grain quality		-in maize grains	1:59-69
-in wheat	1:211-220	-in maize plants	1:59-69
	3:9-21	- in soils	1:59-69
Grain yield		Herbicides—in maize	2:227-232
- in wheat	4:118-121	Herbicide toxicity	
Green gram		—in calves	3:137-138
-sulphur uptake	2:331-335	Hexaploid triticale	
- yield	2:331-335	- genetic divergence in	3:265-272
Group composition		Heterosis	
- of humus	3:180-186	-in cotton	5:114-117
Groundnut		—in lambs	2:193-198
-micronutrients applications	5: 199-202	Hibiscus seed protein	
- response to farm yard man	ure	- nutritional quality of	4:280-282
	4:46-54	High lysine plants	
—response to fertilizer	4:46-54	-grain filling in	2.102.115
-Rhizobium inoculation	5:199-202	— prolamin synthesis in	2:103-115
-root nodulation	5: 199-202		2:103-115
Growth		Humus	
in guara	2:337-344	-in Bangla Desh soils	3:180-186
—in maize	2:227-232	Immune blotting technique	
—pigeonpea	3:91-104	- use in mink	4:91-95

Immune response		Irrigation	
-to Newcastle disease vacc	ine 3:63-65	—of watermelon	5:166-174
Immunoglobulins		Irrigation energy inputs	
-in A calf survivability	3:2 6-213	—in paddy	1:65-72
Improvement of soil structure	4:97-107	Isomalathion problem	2:199-204
Income of farm families		Isoproturan in livestock	
-sources of	5:62-67	toxicity of	1:339-344
Incorporation of sucrose		Java citronella oil	
-of cereal endosperm	3:52-54	-from aged grass	2 : 179-182
Index		Kabuli gram	
—in wheat	5:118-121	components	1:221-230
Indexing boll development		-genetic analysis in	1:221-230
-in cotton	4:77-84	—yield	1:221-230
Cotton		Kaolin group	
Indexing boll development	4:77-84	-interactions of minerals	4:310-322
-Pyroderces simplex	1:259	Kaolin minerals	
-retention in	4:77-84	-interaction	4:310-322
Indian water buffalo		Khesri dal	
-see buffalo		-neurotoxin in	1:175-184
Inheritance		Kharif crops	
—in cowpea	4:85-87	-efficiency of	1:51-58
—of model rooting in rice	2:311-313	Kinetics	
Insecticide synergists —research in India	1:7-17	- of nitrogen immobilization	1:18-23
Insect-pests	- • • • • •	Laboratory rabbits	
-of cowpea	5:209-214	-enteric colibacillosis in	4: 179-184
Interactions of minerals	4:310-322	Lactation length	
Inter cropping		-in Friesion x Sahiwal cross	
-legumes in maize	3:187-191		5:240-246
-sunflower with legumes	4:55-62	-body size of ewes	3:214-218
Iodine determination		Lambs	
-by cerimetry method	3:137-138	-hetecosis in	1:193-198

Landscape-soil relationship	3:167-179	Line x tester analysis	
Laponite		-in sunflower	4:154-159
exchange behaviour of	1:299-307	Lipaphis Erysimi Kalt	
Larvae		—in crucifers	1:273-278
-on cabbage	5:203-208	Lipid fractions	
Lathyrus Sativus		-of cereal endosperm	3:52-54
-see Khuseri Dal		Livestock	
Leaching models		-toxicity of isoproturon in	1:339-344
—testing of	1:193-202	Locust	
Leaf hopper		-control of	1:331-332
of brinjal	4:360-364	Macroscopic scale models	
Leaf size index		-of soil moisture dynamics	4:300-309
-in cauliflower	4 . 164 165	Magnesium interactions	
	4:164-167	—in plants	1:309-316
Leaf yield		-in soils	1:309-316
-of tobacco	4:238-244	Maize	
Legumes		-galactolipid content of	2:227-232
-modelling cobalt	4: 228-232	-growth	2:227-232
-phosphorus responses	4:228-232	-herbicides	2: 227-232
- protein estimation	5:231-234	-heptachlor residue in	5:77-92
Legumes		-response of	2:59-64
-intercropping with sunflow	er 4:55-62	- soil-zine for	3:288.292
Legumes in maize		Maize in legumes	
-inter cropping	3:187-191	Malathion —intercropping	3:187-191
Lemongrass		Maize-wheat rotation	3:91-97
	3:123-127	-S-methyl isomer of	1:325-329
-nutrient uptake in	3:123-127	Malathion synergists	1 . 323-329
Light interception		-Ne-oils	5 000 006
-chickpea	4:245-250		5:223-226
Lime-induced chlorosis	6 . 175 101	Mollisol	
—of sugarcane	5:175-181	-forage production	3:43-48
Liming		Management	
-effect on acid soils	4:30-39	-of mango weevil	3:293-303

Manganese sulphate	3:158-166	—for evaluating bulls	2:257-263
Manihot esculenta		Modified method of iodine d	etermination
see Cassava		- by cerimetry method	3:137-138
		Moisture	
Mango weevil —Bio-ecology	3:293-303	-effect on maize-wheat rota	tion
-management of	3:293-303		3:91-97
		Monocrotophos	
Manure -effect on maize-wheat rota	tion	-persistence pattern on Free	nch bean
-enect on maize-wheat for	3:91-97		4:365-370
		-safety evaluation for	3:365-370
Manurial treatments	4:146-153	Monetary returns	
—finger millet	4 ; 140-155	- from rainfed maize-wheat	rotation
Maturity			3:91-97
—in guar	2:211-216	Morphology	
Method of iodine determinati		—of Bathua	5:156-165
—by cerimetry method	3: 137-138	Mulches	
Microbial population		-effect on soil temperature	4:23-29
—in soil	4:130-135	-effect on sprouting o	f sugarcane
Microclimatic aspects		ratoons	4:23-29
—of pigeonpea	2:151-158	Mungbean	
Micronutrient contents		—ammonia assimilation	2:221-228
-of chlorotic pigeonpea	4:297-299	-production	4: 176-178
- of normal plant of pigeon	pea	-sowing dates	4:176-178
	4:297-299	- symbiotic association	2:221-228
Milk production		Murrah bulls	
- in buffaloes	3:128-131	-breeding values of	1:333-338
Mineral uptake of watermelon	5:166-174	Natural forests	, . JJJ-JJG
	3:100-174	-conifer plantations	4:221-227
Mink		Ne-oils	
—aleutian disease virsus pro	tein 4:91-95	-malathion synergists	5:223-226
Mixed Model Maximum		Neurotoxin	
approach	LACHHOOD	—in Khesri Dal	1:175-185

New castle disease vaccine		Nitrogen uptake	
-immune response to	3:63-65	-barley	4:251-257
Nitrification inhibitor		- oats	4:251-257
-zineb	5:190-198	-wheat	4:251-257
Nitrogen		Nitrogenase activity	
- immobilization in soil	1:18-23	—of phaseolus mungo	4:143-145
-transformation	1:25-32	Nodal differentiation	
Nitrogen content		—in rice	3:146-150
- in chickpea	2:159-165	Nodal rooting	
Nitrogen fertilization		—in rice	2:311-313
- barley	4:251-257	Nodulation	
-blackgram	4:341-345	—in groundnut	5: 199-202
cowpea	4:341-345	Nodulation	
—geranium	4:341-345	-of Phaseolus mungo	4 • 1/13.1/15
-oats	4:251-257		
-wheat	4:251-257	Non-hierarchical cluster a	
Nitrogen immobilization		—in celery	4:73-76
-kinetics of	1:18-23	Non-edible oils	
Nitrogen in rumen metabolis	m 5 · 131-141	-see Ne-oils	
	m 5 . 151-141	Nutrient composition	
Nitrogen levels		—in Berseem	1:73-80
- of pearlmillet	3:196-201	Nutrient indexing	
-of potato	4:63-72	-of wheat	3:82-90
— of sunflower	4:40-45	Nutrients rations	
- of tobacco	4:238-244	-in Berseem	1:73-80
—of watermelon	5:166-174	Nutrient uptake	
Nitrogen requirement		—in Davana	1:187-192
- of potato	2:237-243	—in lemargrass	3: 123-127
Nitrogen transformation		-in palmrosa oil grass	1:203-207
- in soil	1:25-32	—in wheat	1:211-220
	4:130-135	Nutrient utilization	5:131-149

Nutritional diseases		Oryctolagus caniculus	
-of pigs	3:55-62	-see rabbits	
Nutritional quality		Oxides	
- of Hibiscus seed protein	4:280-282	-in salt affected arid soils	3:201-205
Nutritional status		Paddy	
— of guava	2:337-344	-irrigation energy inputs	1:65-72
-of guava orchards	5 : 56-61	Palmrosa oil grass	
Nutritive characteristics		-dry matter production	1:203-209
—of bajra	2:271-286	- nutrient uptake	1:203-209
Nutritive value		Panacur (R) efficacy	
—of soybean	5:247-279	- against haemonchosis	2:361-362
Oats		Papaver somniferum Linn	
-dry matter production	4:251-257	-see poppy	
—forage production	5:49-55	Parasitic diseases	
-nitrogen fertilization	4:251-257	- of pigs	3:55-62
	5:49-55	Part perion production	
-nitrogen uptake	4:251-257	-selection efficiencies of	2:265-270
	5:49-55		2.2002.0
-performance of	4:251-257	Path analysis —in celery	3: 119-122
Occurrence of talc		-in cowpea	3:114-118
—in ferruginous soils	2:117-127		3,114-110
Onion		Path co-efficient analysis	
-translocation of insecticid	es in	- sugarcane breeding progra	
	2: 183-187	Pearl millet	3:151-157
Opium poppy		-chemical composition of	2:271-286
-fatty acid composition	3:1-8	-nitrogen levels of	3:196-201
-proximate composition	3:1-8	-untritive characteristics of	2: 271-286
		-uniformity trial in	1:41-49
Organic matter of a calcareous soil	1 . 10 00	Pedo-chemical characterization	1
	1:18-23	-of soils	4:1-14
Organic matter		Pecogenic oxides	
-size fractionation of	1:123-130	-in salt affected arid soils	3:202-205

Pelargonium gravcolens L Her	Ex Ait	Phosphorus utilization	
-see geranium		-in wheat	2:233-236
Pennisetum typhoides L.		Photorespiration	
-see Bajra		-in wheat	2:287-297
Peroxidase		Photosynthesis	
-in aged soybean seeds	2:217-120	- in wheat	2:287-298
Phaseolus mungo		Physical properties	
- calcium	4: 143-145	- of red sandy loam soil	4:108-115
-cytozyme	4:143-145	- of soil	4:323-334
-nitrogenase activity	4 . 143-145		4:335-354
-nodulation	4:143-145	Pig diseases	
Phenotypic correlations		- bacterial diseases	2:345-354
—in white pekin ducks	1:171-174	-bone growth in	3: 304-312
•		-viral diseases	2:345-354
Phenotypic stability —in cotton	4 .160 162	-fungal diseases	3:55-62
	4 :160-163	- nutritional diseases	3:55-62
Phorate granules		- parasitic diseases	3:55-62
flyash as a carrier	4:371-374	Pigeonpea	
Phorate leaching		- growth	3:98-104
-water management practic	ces	- microclimatic aspects of	2:151-158
	1:81-90	- micronutrient contents of	4:297-299
Phosphonamidates		-phosphorus	3:98-104
-evaluation of	2 : 299-305	- salinity	3:98-104
Phosphonates		- zinc	3:98-104
-evaluation of	5:215-222	Plantago ovata Forsh	
Phosphorus .		-breeding	3:255-264
-availability to rice crop	2:129-135	-genetics of	3:255-264
-availability to wheat	2:233-236	Plant nutrition	
-fixed crop rotation -in soils	5:41-48 5:110-113	-cobalt in	1:111-121
- pigeonpea	3:98-104	Planting dates	
-response in legumes	4:228-232	- of potato	4:63-72
Phosphorus supplying charact	eristics	Plant population	
—of soil	2: 325-330	-effect of	4:245-250

Plant nutrients		Protein estimation	
-of cowpea	5:209-214	-in legume grains	5:231-234
P ants		Proximate	
- used as veterinary medici	nes	of poppy	3:1.8
about the following the date.	2:307-3:0	Psidium Guojava L	
Plasmocytosis see mink		- see guava	
Populations		Public health aspects	
- of barley crosses	4:351-358	-of toxoplasmosis	1:159-165
Pore-size distribution		Pullets	
- in alluvial soils	3:66-75	-restricted feeding in	5:68-76
Potassium		Pyroderces simplex	
- in fixed crop rotation	5:41-48	- infesting cotton	1:259
Potassium snpplying power		Quality characters	
-of soils	2 : 137-142	-of black gram	2:167-177
	2.101-142	Quaternary ions	
Potato		—on clays	1:15 -158
- Dithane M. 45 (Mancozel	p)	Quinalphos	
	2:237-243	—persistence pattern	4: 365-370
- dry matter content	5:227-230	-safety evaluation for	4:365-370
- nitrogen levels	4:63-72	Rabbit	
—planting dates	4:63-72	-enteric colibacillosis in	4:179-184
- specific gravity - tuberization	5 : 227-230 4 : 63-72	Radish	
	4.03-72	—Aldicarb residues	2:205-210
Production potential of lentil			
-Of lettin	2 . 75 0 .	Rainfall variability	
- of muno	3:75-8i 4:175-178	Rainfall variability —on crop maturity	1:317-324
- of mung	4:175-178	-on crop maturity	1:317-324
-of wheat		—on crop maturity Rainfall analysis	
- of wheat Progeny Testing Programme	4: 175-178 3: 75-81	-on crop maturity Rainfall analysis -for crop planning	1:317-324 5:182-189
- of wheat Progeny Testing Programme of buffaloes	4:175-178	-on crop maturity Rainfall analysis -for crop planning Rainfed conditions	5:182-189
- of wheat Progeny Testing Programme	4: 175-178 3: 75-81	-on crop maturity Rainfall analysis -for crop planning	

Raising cattle		Rhizobium inoculation	
- cost structure of	4:290-296	- in chickpea	2:159-165
Reclamation		Rhizobium inoculation	
- of alkali soils	3:82-90	-in groundnut	5:199-202
Red sandy loam soil		Rice	
—cultural operations	4:108-115	-availability of phosphorus	2:129-135
- physical properties	4: 108-115	-inheritance of nodel rooting	ng in
- water retention	4:108-115		2:311-313
Regenration studies		- nodel differentiation in	3:146.150
-in Balanites Roxburghii PI	4:346-350	Sulphur uptake	5:93-101
Removal		Root knot disease	2:299-305
-of soil fertility constraints	1:1-6	Root nodulation	
Removal of surface soil		—in groundnut	4:199-202
—cassava	5:77-92	Row spacing	
- maize	5:77-92	- chickpea	4: 245-250
Reproduction			5:131 149
-of Bathua	5:156-165	Russell, Edward	1:1
Reproduction		Rye-grass	
- in buffaloes	1:253-258	- nitrogen transformation in	1:25-32
Research		Sahiwal x Freisian crosses	
-on insecticide synergists	1:7-17	- celving interval	5:240-246
Response		-lactation length	5:240-246
—of cassava	5:77-92	Salinity	
—of maize	5:77-92	- pigeonpea	3: 98-104
Respiration		-in tropical agriculture	1:95-109
-as influenced by urea hecbi	icides	Salt affected arid soild	
	4:137-142	- pedogenic oxides in	3:202-205
Restricted feeding		Salt affected fiield	
-in pullets	5:68-75	- testing of Burnsmodel	4:212-220
Retention		Salt resistance	
—in cotton	4:77-84	-breeding for	3:236-254

S-Methyl isomer		Soil characteristics	
- of malathion	1:325-329	-in alkali fields	3:82-90
Seed cotton		—of forest soils	4:116-125
- yield	4:77-84	Soil crusting	
Seedling		- effect on sorghum emerger	ice 4:15-22
in sugarcane	4 { 8-90	Soil drying	4:130-135
Seed yield		Soil fertility constraints	
-in rainfed conditions	1:51-58	- removal of	1:1-6
Selection efficiencies		Soil	
—of part period production	2:265-270	-landscape relationship	3:167-179
Senna	2 1 200 270	Soil minerology	1:285-298
-agronomic parameters in	1: 139-144	Soil moisture dynamics	
-chemical methods of assa		macroscopic scale models	4:300-309
des in	1:231-238	Soil moisture estimation	
Sennosides		- macroscopic scale models	for
—in senna	1:231-238		2:300-309
Settling		Soil moisture stress	
—in sugarcane	4:88-89	—in wheat	1:2 1-220
Shattering		Soil nutrition	
-in guar	4: 185-187	- cobalt in	1:111-121
Sheep		Soil properties	
- cotyledons in	1: 167-169	- spatial variation of	1: 131-138
-placenta in	1:167-169	Soil respiration	
Simulated field soil respiratio		- on soybean crop	1:33-40
-influence on soybean	1:33-40	Soil salinity	
Size fractionation		in tropical agriculture	1:95-109
- of organic matter	1:123-130	Soil spatial variability Soils	2:1-102
Smectite formation		aldicarb residues	2:205-210
- in Catena of soils	3:273-278	- chemical characterization	4:1-14
Soil amended with compost	4:137-142	- potassium supplying power of	of 2:127-142

Soil structure		- physical properties	1:131-138
- improvement of	. 4:97:107	-soil properties	1:131-138
Soil temperature		Specific gravity	
- effect of mulches	4:23-29	-of potash	5:227-230
Soil versus foliar nutrition		Spotted bollworms	
-of ber trees	3:192-195	-in cotton	5:1-27
Soil-zinc		Sprouting of sugarcane rat	none
-for maize	2:288-292	-effect of mulches	4:23-29
Solar radiation	5 :122-126		
Sorghum		Stand establishment —in wheat	5:118-121
- engineering properties of	3: 105-113		3.110-121
-Fertilizer requirements of	3: 43-48	Starch hydrolysis enzyme	1 145 150
-Forage production in	2:245-250	-in wheat	1: 145-150
-Grain yield 5:102-10		Starch synthtase activity	
-Response to soil	3: 279-287	—in wheat	1:279-284
soil crusting effect	4:15-22	Sternochetus mangiferae	(Fabricius) see
-straw yield	5:102-109	Mango weevil	
Solanum Tuberosum L		Sugarcane breeding progra	mmes
-see potato		-Amelioration of	5 : 175-181
Sorghum bicolor L		-Correlation in	3:151-157
-see sorghum		-lime induced chlorosis	5:175-181
Sources of income	•		4:88-90
	5 . 60 67	-pathanalysis in	3:151-157
-of farm families	5:62-67	—pressmud	5:175-181
Sowing dates		-use of pyrite	5:175-181
- of mung	4:175-178	Sugarcane ratoons	
Sown conditions	4:245-250	-sprouting of	4 1 23-29
Soybean			
-carbon fertilization	1:33-40	Sulphur	5 : 175-181
-Nutritive value of	5: 247-279	in sugarcane	J. 1/34101
Spatial variation		Sulphur in rumen	
-chemical properties	1:131-138	-metabolism	5: 131-149

Sulphate		- irrigation levels of	4:238-244
-adsorption of	2:142-150	-leaf yield of	4:238-244
-desorption of	2:142-150	-nitrogen levels of	4:238-244
Sulphur uptake		Toxicity	
of green gram	2:331-335	-in calves	3: 132-138
— of rice	5:93-101	-of isoproturn livestock	1:339-344
Sunflower		Toxoplasmosis	
-growth	4:40-45	- public health aspects of	1:159-165
-line x tester analysis	4:154-159	Tractor operated farms	
-nitrogen levels	4:40-45	-cost of cultivation	1:261-271
-intercropping with legume	es 4:55-62		1 . 201-271
—row spacing	4:40-45	Translocation of insecticides	A 100 Cm
-seed yield	4: 154-159	—in onion	2:183-187
—yield 4:40-5	4: 55-62	Trifolium Alexandrinum	
Surface soil removal		see Berseem	
—for crop yield	5:77-92	Trpiple test cross analysis	
Symbiotic association		- of barley	4:351-359
-in mungbean	2:221-221	Triticum Aestivum L	
Synthetic pyrethroides		see wheat	
—in cotton	4:168-174	Tropical agriculture	
Teat conformation traits		-Alkalinity in	1:95-109
- in crossbred dairy cattle	4:2 83-288	—soil salinity in	1:95-109
Testing		Trypanosomiasis	
-Burns model	4: 212-220	—in dogs	3:313-317
- of leaching models - · ·	1:193-202	Tuberization	
Theilerra Annulata infection			4 (0.00
-in buffalo	1:91-92	- of potato	4:63-72
Therapeutic trials		Udder conformation traits	
- in experimental trypanosor	niasis	- in crossbred dairy cattle	4:283-288
in dogs	3:313-317	Uniformity trial	
Tobacco		-in pearl millet	1:41-48
-chemical characteristics of	4:238-244	Urea herbicides	4:137-142

Use of immune blotting tech	The second second	-fruit yield	5:166-174
—in milk	4:91-96		5:166-174
Use of press-mud			5: 166-174
-in sugarcane	5:175-181	—water use efficiency of	5:166-174
Use of pyrite		Water requirement	
-in sugarcane	5:175-181	—for crops	5:127-130
Vermiculite		Water retention characters	
-exchange behaviour of	1:299-307	of red sandy loam soil	4:108-115
Vertisols		Water retention characteristi	cs
-sugarcane in	5:175-181	—of vertisols	4:335-340
-water retention characteri	stics of	Water yam	la budah -
	4:335-340	-drought stress on	3:35-42
Vetrinary medicines		Water use efficiency	13.48
-plants used for	2:307-310	- of water melon	5:166-174
Vigna radiata (L.)		Weeds	
see Mungbean		-allelopathic influence of	4:276-279
Vigna unquiculata (L) walp		Wheat	
see cowpea		-availability	1:211-220
Viral diseases		- boron uptake	4:126-129
of pigs	2:345-354	-crop yield	2:233-236
Virginia tobacco		-grain quality	1:211-229
see tobacco		-nutrient uptake	1:211-220
V. mungo (L) Hepper		- performance of	4:251-257
- see black gram		- phosphorus availability	2:233-236
		-scil moisture stress	1:211-220
Water buffalo		- starch hydrolysis enzyme	1:145-150
-see buffalo		- starch synthetase activity	1:279-284
Water management practices		- weeds	4:276-279
-phorate leaching	1:81-90	-yield	1:211-220
Water melon			3:9-21
-Dry matter production	5:166-174	Wheat-maize rotation	3:91-97

Weather-yield relationship		Yield-weather relationship	
-of finger millet	4:146-153	-of finger-millet	4:146-153
White pekin ducks		Zea Mays-see maize	
-phenotypic correlations	1:171-174	Zinc adsorption of soil	
Yield		-exchangeable cations	2:315-324
-berseem	1:73-80	Zinc diffustion in soils	3:22-27
- black gram	2:167-177	Zinc interaction	
-darana	1:187-192	-in plants	1:309-316
-green gram	2:331-337	—in soils	1:309-316
– kabuli gram	1:221-230		
-sunflower	4:41-45	Zinc sources	
	4:55-62	efficiency in Berseem	1:73-80
-wheat	1:211-220	Zineb	
	3:1-8	-as nitrification inhibitor	5:190-198

INSTRUCTIONS TO AUTHORS

The journal accepts manuscripts describing original work, not published elsewhere. All manuscripts will be pre-reviewed for quality and acceptability before publication. It will be presumed that the authors have obtained the official approval, wherever necessary, and the papers are understood to be offered to the IJTA exclusively. The responsibility for the statements, whether of fact or opinion, would rest entirely with the authors thereof.

The manuscript, typed in double space on one side of a good quality bond paper (30 cm \times 20 cm) with at least 4 cm margin and thoroughly revised, should be sent in *triplicate* (the original and two copies) to the Editor-in-Chief.

The sub-division of the articles into Title, Abstract, Introduction, Material and Methods, Results, Discussion, Acknowledgements and References is recommended. The results and discussion often may be considered profitably into a single section. In addition, a short title should be provided on the title page.

The tables should be typed with double spacing on separate pages and should be provided with headings. The figures should be drawn in Indian ink and the photographs should be of good quality. The legends for figures should be typed on a separate page.

The references should include the author's name (surname precedes initials), year of publication, title of the article, title of the publication (abbreviated in accordance with the latest edition of the World List of Scientific Periodicals), volume number and the first and the last page numbers. The references to books, in addition, should include the editor's name, the edition number, where appropriate, and the publisher's name and place.

- Important Notes: 1. We have planned in such a way that the publication of an article should not be delayed beyond six months. Therefore, to ensure an immediate review of the manuscript by a specialist in the field, the author is advised to submit the names and addresses of any three scientists concerned with his work along with the manuscript.
 - 2. The membership of the journal is not obligatory for the submission of an article or a paper. However, the authors are required to purchase at least 100 reprints of their articles at the nominal price which can be had from the publishers.
 - 3. For invited articles, the author is entitled to get 50 reprints of his article free of charge.
 - 4. Papers for publication, business correspondence, advertisement, books for reviews and all other communications and enquiries should be sent to the Editor-in-Chief on the following address:

Dr. R. D Laura, Editor-in-Chief, International Journal of Tropical Agriculture, 8/16, New Campus, Haryana Agricultural University, Hisar-125 004, Haryana, India.

BIBLIOGRAPHIC INFORMATION

- 1. Regn. No. 42240/83 (with the Registrar of Newspapers for India)
- 2. ISSN: 0254-8755 3. Language: English
- 4. Inaugural issue: March 1983, Volume I, Number 1
- 5. Current volume: VIII, 1990
- 6. Frequency: Quarterly; four issues published in March, June, September and December every year comprise one volume.

SUBSCRIPTION INFORMATION FOR VOLUME VIII. 1990

	Indian*	Indian* Foreign		ostage	Trade discount
			Airmail	Surface	to agencies
Individual rate	Rs. 150/-	U.S. \$ 30	\$ 12	\$ 6	10, 15, 20, and
Institutional rate	Rs. 300/-	U.S. \$ 60	\$ 12	\$ 6	25% upto 10,
Commercial rate	Rs. 900/-	U.S. \$ 60	\$ 12	\$ 6	20,50 and more
*There are no posta registered delivery la a single address, irre	Rs. 25/- per vo	lume will be	charged for		than 50 copies, respectively.

TERMS AND CONDITIONS

- 1. Individual rate is available to scientists only and the journal is to be mailed to their personal address.
- 2. Institutional rate is available to institutions and subscription agencies subscribing on behalf of institutions and the journal is to be mailed to the institutional address only.
- 3. Commercial rate is available to subscription agencies in India for direct purchase without giving the address of the institution, in India or abroad, for which they are subscribing. The journal is mailed to the agency address.
- 4. Subscriptions are entered on an annual basis, i. e. January to December. US dollar price applies to subscribers in all countries excluding India, Bangladesh, Nepal and Bhutan.
- 5. Claim for the missing issue will be entertained upto 6 months from Indian subscribers and upto 12 months from foreign subscribers after the date of its listing in the Current Contents.
- 6. The discount is only on the price of the journal. There is no discount on postal charges
- 7. The price of the journal, postal charges and the rate of discount all are liable to be changed by the publisher without any prior notice.
- 8. All the Back Volumes (from I (1983) to VII (1989)) are available and can be purchased in any number from the publisher at the current price quoted above for Volume VIII, 1990. However, a special discount of 20% will be given if all the seven volumes are ordered along with the current subscription for 1990.
- 9. All payments should be on bill basis and made in cash/money order/bank draft/ cheque payable at Hisar to:

Vidya International Publishers, 8/16, New Campus, Haryana Agricultural University, Hisar-125 004 Haryana, India

Note: -For a bank draft/cheque other than at Hisar, rupees ten per draft/cheque should be added towards bank collection charges.