Symbolic Fault Diagnosis of Discrete-Event Systems Based on State-Tree Structures

Deguang Wang, Xi Wang, Member, IEEE, Jing Yang, Qiwei Tang, and Zhiwu Li, Fellow, IEEE

APPENDIX

We need the following definitions and lemmas for the proofs later.

Definition 1. [Observation-Adjacency] For any two basic state-trees $b, b' \in \mathcal{B}(\mathbf{ST}), b'$ is said to be observation-adjacent to b (write as $b \xrightarrow{\sigma} b'$) if there exists a string $s\sigma t$ in which $s, t \in \Sigma_{uo}^*$ and $\sigma \in \Sigma_o$ such that $b' = \Delta(b, s\sigma t)$. \diamondsuit

Assume in the diagnoser $\mathbf{G}_d = (\mathcal{A}_d, \Sigma_o, \Delta_d, A_{d0}, \hat{\kappa})$ $cl = (A_1, -1) \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_{n-2}} (A_{n-1}, -1) \xrightarrow{\sigma_{n-1}} (A_n, -1) \xrightarrow{\sigma_n} (A_1, -1)$ with $n \geq 1$ is an F-indeterminate cycle. A cycle $cl' = b_1 \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_{n-2}} b_{n-1} \xrightarrow{\sigma_{n-1}} b_n \xrightarrow{\sigma_n} b_1$ is called an underlying faulty cycle of cl if $b_i \in A_i$ and $b_i \in B_F$. Intuitively, if there is an F-indeterminate cycle, then the system has a cycle in the faulty mode F such that when it evolves on the cycle, it will generate the event sequence periodically. The cycle in the mode F and the corresponding event sequence keeps the diagnoser in the F-uncertain cycle indefinitely, and in this case, the system is not diagnosable.

Lemma 1. Let $p = (A_1, -1) \xrightarrow{\sigma_1} \cdots \xrightarrow{\sigma_{n-2}} (A_{n-1}, -1) \xrightarrow{\sigma_{n-1}} (A_n, -1)$ ($n \ge 2$) be a path in the diagnoser G_d . For any $b_n \in A_n$, there exist $b_i \in A_i$ ($1 \le i \le n-1$) such that $b_i \xrightarrow{\sigma_i} b_{i+1}$.

A. Proof of Theorem 2 in Section III

31

Proof: (only if): Suppose that G is diagnosable, but there exists an F-indeterminate cycle cl in the diagnoser $G_d = (\mathcal{A}_d, \Sigma_o, \Delta_d, A_{d0}, \hat{\kappa})$. Since G_d is reachable, there exists an event sequence that can take the diagnoser into a BSTA A_k belonging to cl. Let $b_n \in A_n$ belong to an underlying faulty cycle of cl. By Lemma 1, there exist basic state-trees b_1, \cdots, b_{n-1} such that $b_i \stackrel{\sigma_i}{\rightarrowtail} b_{i+1}$ $(1 \le i \le n-1)$. After reaching b_n , the system may remain on the underlying faulty cycle causing the diagnoser to stay on the F-indeterminate cycle indefinitely. Therefore, there exists a trajectory for the system leading to basic state-trees in B_F such that the corresponding event

D. Wang is with the School of Electrical Engineering, Guizhou University, Guiyang 550025, China (e-mail: dgwang@gzu.edu.cn, wdeguang1991@163.com).

X. Wang is with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China and also with the Lehrstuhl für Regelungstechnik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 7, 91058 Erlangen, Germany. (e-mail: wangxi@xidian.edu.cn, xi.wang@fau.de).

J. Yang is with the School of Electrical Engineering, Guizhou University, Guiyang 550025, China (e-mail: jyang7@gzu.edu.cn).

Q. Tang is with the Hitachi Building Technology (Guangzhou) Co., Ltd, Guangzhou 510700, China (e-mail: tangqiwei@hitachi-helc.com).

Z. Li is with the Institute of Systems Engineering, Macau University of Science and Technology, Taipa, Macau and also with the School of Electro-Mechanical Engineering, Xidian University, Xi'an 710071, China (e-mail: zhwli@xidian.edu.cn).

sequence throws the diagnoser into a cycle of F-uncertain BSTA and keeps it there indefinitely. Hence, the system is not diagnosable, which leads to a contradiction. So the necessity holds.

(if): Assume that no F-indeterminate cycle exists in the diagnoser G_d . After the occurrence of F and the generation of a new observable event, the diagnoser reaches either F-certain or F-uncertain BSTA. If it is an F-certain BSTA, then it will remain F-certain (because fault is permanent) and the system is diagnosable. If it is an F-uncertain BSTA, then the number of F-uncertain BSTA is bounded. After the generation of a bounded number of observable events, the diagnoser will reach an F-certain BSTA (the diagnoser gets trapped indefinitely in a cycle of F-uncertain states only if the cycle is F-indeterminate).

Let n denote the number of events that it takes the diagnoser to detect and isolate. After the occurrence of F, the diagnoser can visit an F-uncertain BSTA (A,-1) at most $|A\cap B_F|$ times. Then we have $n \leq c \times m+m$, where $c = \sum\limits_{(A,-1)\in \mathcal{A}_d} |A\cap B_F|$ and m is the length of the longest path of faulty basic state-trees. Since $m \leq |B_F|$ and $c \leq |B_F| \cdot |\mathcal{A}_d|$, $n \leq c \times m+m \leq |B_F| \cdot |\mathcal{A}_d| \cdot |B_F| + |B_F| = |B_F|(|B_F| \cdot |\mathcal{A}_d| + 1)$. Consequently, the system is diagnosable with a finite delay $n = |B_F|(|B_F| \cdot |\mathcal{A}_d| + 1)$. So the sufficiency holds.

B. Proof of Proposition 1 in Section IV.B

Proof: Suppose no fault-free cycle exists in G. Since faults are permanent, a cycle in G composed of several faulty basic state-trees and normal basic state-trees can not exist. Hence, at least one faulty cycle exists in G, which leads to the F-uncertain cycle cl. In this case, event σ_n is not eligible at normal basic state-trees satisfying M_n . Hence, after the occurrence of σ_n the successor predicate of M_n must be faulty, which leads to a contradiction.

C. Proof of Proposition 2 in Section IV.B

Proof: From Proposition 1, there exists at least one fault-free cycle formed by basic state-trees in \mathbf{G} that has the same observation $(\sigma_1\sigma_2\cdots\sigma_n)^*$. Then, we only need to show that a corresponding faulty cycle formed by basic state-trees in \mathbf{G} also shares the same observation as cl. Suppose $(\forall i \in [1,n], \forall \sigma_f \in \Sigma_f) \ \Delta(M_i \land P_N, \sigma_f) \equiv \mathit{false}$. Then, we have $M_{(i+1)mod_n} \land P_F = \langle \Delta(M_i \land P_F, \sigma_i) \rangle$. Based on Lemma 1, for any $b_{n+1} \models M_1 \land P_F$, there exist $b_i \models M_i \land P_F$ ($1 \le i \le n$) such that $b_i \stackrel{\sigma_i}{\rightarrowtail} b_{i+1}$. Let $b_{n+1} = b_1$. Then b_1, \cdots, b_n forms an underlying faulty cycle, we can infer that a corresponding faulty cycle formed by basic state-trees in \mathbf{G} with the same observation as cl exists. Hence, the cycle cl is an F-indeterminate one as well.

1

36

40

42

46

47

53

54

56

59

61

63

65

70

74

77

80

D. Proof of Proposition 3 in Section IV.B

Proof: It can be proved using mathematical induction. BASIS STEP: For k=1, $S_{n+1}^{cl} \preceq S_1^{cl}$ is true because $S_1^{cl} = M_1 \wedge P_F$ and $S_2^{cl} = \langle \Delta(S_1^{cl}, \sigma_1) \rangle \preceq M_2 \wedge P_F = \langle \Delta(M_2 \wedge P_N, \Sigma_f) \cup \Delta(M_1 \wedge P_F, \sigma_1) \rangle$, with the same reasoning along the event sequence $\sigma_1, \ldots, \sigma_n$, we have $S_n^{cl} = \langle \Delta(S_{n-1}^{cl}, \sigma_{n-1}) \rangle \preceq M_n \wedge P_F = \langle \Delta(M_n \wedge P_N, \Sigma_f) \cup \Delta(M_{n-1} \wedge P_F, \sigma_{n-1}) \rangle$. Hence, $S_{n+1}^{cl} = \langle \Delta(S_n^{cl}, \sigma_n) \rangle \preceq M_1 \wedge P_F = \langle \Delta(M_1 \wedge P_N, \Sigma_f) \cup \Delta(M_n \wedge P_F, \sigma_n) \rangle = S_1^{cl}$. INDUCTIVE STEP: Suppose $S_{1+kn}^{cl} \preceq S_{1+(k-1)n}^{cl}$. We need to show $S_{1+(k+1)n}^{cl} \preceq S_{1+kn}^{cl}$. Since $S_{1+kn}^{cl} = \langle \Delta(S_{kn}^{cl}, \sigma_n) \rangle$ and $S_{(k+1)n}^{cl} \preceq S_{kn}^{cl}$, $S_{(k+1)n}^{cl} = \langle \Delta(S_{kn}^{cl}, \sigma_n) \rangle = S_1^{cl}$.

95 E. Proof of Theorem 4 in Section IV.B

gg

Proof: (only if): Suppose that cl is an F-indeterminate cycle. Then we need to show that the fixed point reached by sequence S'^{cl} associated with cl is no-empty.

Since cl is an F-indeterminate cycle, at least one faulty cycle formed by basic state-trees in ${\bf G}$ exists. Assume there exist exactly m faulty cycles $(m \geq 1)$. There exist a string s_i^j in Σ_{uo}^* and a basic state-tree b_i^j satisfying $M_i \wedge P_F$ such that $b_{(i+1)_{mod_n}}^j = \Delta(b_i^j, s_i^j \sigma_i)$ and $b_i^j = \Delta(b_n^j, s_n^j \sigma_n)$ $(1 \leq i \leq n, 1 \leq j \leq m)$. Thus, $(\forall k \in \mathbb{N}^*)$ $b_i^j \models S_{i+nk}^{cl}$, indicating that all the terms of S'^{cl} are non-empty. Clearly, the reached fixed point is also non-empty.

(if): Suppose that sequence S'^{cl} associated with cl has a non-empty fixed point. Now, we need to show that cl is an F-indeterminate cycle. From Proposition 1, the existence of a faulty cycle sharing the same observation with cl is sufficient.

We know that there exists an integer $k \in \mathbb{N}^*$ such that $S_{1+kn}^{cl} = S_{1+(k-1)n}^{cl}$. Due to $S_{1+kn}^{cl} \not\equiv false$, we assume that the predicate S_{1+kn}^{cl} holds exactly on the basic state-tree subset $B_{S_{1+kn}^{cl}} = \{b_1, \ldots, b_m\}$. According to the definition of sequence S^{cl} , there exist $b_i, b_j \in B_{S_{1+kn}^{cl}}$, and $t = s_1\sigma_1s_2\sigma_2\ldots s_{n-1}\sigma_{n-1}s_n\sigma_n$ with $s_l \in \Sigma_{uo}^*$ such that $b_i = \Delta(b_j, t)$ $(1 \le l \le n, 1 \le i, j \le m)$. By repeating this procedure to b_i at least m times, we can infer that b_i is certainly visited twice, which indicates the existence of at least one faulty cycle. Therefore, the cycle cl is F-indeterminate.