COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

March 20, 2023

Lecture 23: Turing Machines: Variants, CT Thesis (Part 2)

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let M = $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$ be the k-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$ be the k-tape Turing machine. Let $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{acc},q_{rej},)$ be the k-tape Turing machine. Let $M'=(Q',\Sigma,\Gamma',\delta',q_0,q_{acc},q_{rej})$ be such that, $\overline{\Gamma}=\{\overline{a}\mid a\in\Gamma\}$

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Let
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$$
 be the k -tape Turing machine. Let $M' = (Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that,
$$\overline{\Gamma} = \{\overline{a} \mid a \in \Gamma\}, \ \Gamma' = \Gamma \cup \overline{\Gamma} \cup \{\#\}.$$

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

Let
$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej},)$$
 be the k -tape Turing machine.

Let
$$M'$$
 = $(Q', \Sigma, \Gamma', \delta', q_0, q_{acc}, q_{rej})$ be such that,

$$\overline{\underline{\Gamma}} = \{ \overline{a} \mid a \in \Gamma \}, \ \Gamma' = \Gamma \cup \overline{\Gamma} \cup \{ \# \}.$$

 $\overline{\Gamma}$ symbols used to denote tape head positions.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again to update marked symbols.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

To simulate 1 step of M, M' works follows:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again

Theorem

Every k-tape Turing machine has an equivalent 1-tape Turing machine.

Proof sketch:

reads the tape left to right once, remembering the marked symbols in its states,

uses δ to determine the next state,

sweeps the input left to right again to update marked symbols.

- ► Turing machine with an attached printer.
- **Exercise:** Formally define it!

- Turing machine with an attached printer.
- Exercise: Formally define it!
- An enumerator E starts with a blank input on its work tape.
- ▶ If the enumerator doesn't halt, it may print an infinite list of strings.

- Turing machine with an attached printer.
- Exercise: Formally define it!
- lacktriangle An enumerator E starts with a blank input on its work tape.
- ▶ If the enumerator doesn't halt, it may print an infinite list of strings.
- lacktriangle The language enumerated by E is the collection of all the strings that it eventually prints out.

- Turing machine with an attached printer.
- Exercise: Formally define it!
- An enumerator E starts with a blank input on its work tape.
- ▶ If the enumerator doesn't halt, it may print an infinite list of strings.
- lacktriangle The language enumerated by E is the collection of all the strings that it eventually prints out.
- lacktriangleright E may generate the strings of the language in any order, possibly with repetitions.

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

Proof.

 (\Rightarrow) On input w:

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

- (\Rightarrow) On input w:
 - f Q Run E. Every time that E outputs a string, compare it with w.

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

- (\Rightarrow) On input w:
 - **Q** Run E. Every time that E outputs a string, compare it with w.
 - f 2 If w ever appears in the output of E, accept.

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

- (\Rightarrow) On input w:
 - **Q** Run E. Every time that E outputs a string, compare it with w.
 - $\ensuremath{\mathbf{2}}$ If w ever appears in the output of E, accept.
- (⇐)

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

- (\Rightarrow) On input w:
 - **Q** Run E. Every time that E outputs a string, compare it with w.
 - $oldsymbol{0}$ If w ever appears in the output of E, accept.
- (\Leftarrow) Ignore the input. Repeat the following for $i = 1, 2, 3, \ldots$

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

- (\Rightarrow) On input w:
 - **Q** Run E. Every time that E outputs a string, compare it with w.
 - $oldsymbol{0}$ If w ever appears in the output of E, accept.
- (\Leftarrow) Ignore the input. Repeat the following for $i = 1, 2, 3, \ldots$
 - \bigcirc Run M for i steps on each input, s_1, s_2, \ldots, s_i .

Theorem

A language is Turing-recognizable if and only if some enumerator enumerates it.

Proof.

- (\Rightarrow) On input w:
 - **Q** Run E. Every time that E outputs a string, compare it with w.
 - $\ensuremath{ ext{0}}$ If w ever appears in the output of E, accept.
- (\Leftarrow) Ignore the input. Repeat the following for $i = 1, 2, 3, \ldots$
 - \bigcirc Run M for i steps on each input, s_1, s_2, \ldots, s_i .
 - ② If any computations accepts, print out the corresponding s_j .

Remark: Turing Recognizable = Recursively Enumerable languages.