Función de hash

Definimos una función de hash h como una función

$$h: \mathbb{N}_0 \to [0, m-1]$$

Con m el largo de una tabla de hash

Pero una función de hash puede no estar ligada a una tabla

Función de hash

El dominio de las claves puede no ser \mathbb{N}_0 . Llamémoslo D

Una función de hash H se define entonces como sigue

$$H: D \to R$$
, $R \subseteq \mathbb{N}_0$

Y a la definición anterior la llamaremos método de ajuste

$$h: \mathbb{N}_0 \to [0, m-1]$$

Función cualquiera

Cualquier función $f: D \rightarrow R$ cumple con que

$$x = y \to f(x) = f(y)$$

Esto significa que

$$f(x) \neq f(y) \rightarrow x \neq y$$

Colisiones

Decimos que el hash H tiene una colisión cuando

$$x \neq y \quad \land \quad H(x) = H(y)$$

El ajuste h puede producir una colisión en la tabla si

$$x \neq y \quad \land \quad h(H(x)) = h(H(y))$$

Propiedades de una función

Una función cualquiera $f: D \rightarrow R$ puede ser:

- Inyectiva
- Sobreyectiva
- Biyectiva

¿Qué significa esto para una función de hash H?

Función Inyectiva

Función Inyectiva

Si la función de hash H es inyectiva, entonces

$$x \neq y \rightarrow H(x) \neq H(y)$$

¿Qué ventajas tiene esto? ¿Tiene alguna desventaja?

¿Es posible que la función de ajuste h sea inyectiva?

Función Perfecta

Una función de hash inyectiva se dice perfecta

La única posibilidad de colisiones es por el ajuste

Podemos comparar por hashes y olvidarnos de la clave

Función Sobreyectiva

Función Sobreyectiva

Si la función de hash H es sobreyectiva, entonces

$$\forall r \in R, \exists d \in D$$

$$H(d) = r$$

¿Qué ventajas tiene esto? ¿Tiene alguna desventaja?

¿Es posible que la función de ajuste h sea sobreyectiva?

Función Compacta

Una función de hash sobreyectiva se dice compacta

Una función puede ser más o menos compacta según cuantos elementos de R quedan sin preimagen

El ajuste h debe ser compacto sí o sí

Función Biyectiva

Función Biyectiva

Si la función de hash H es biyectiva, entonces

- Es inyectiva
- Es sobreyectiva

¿Qué significa esto?

Función Invertible

Para funciones continuas, una función biyectiva es invertible

Pero una función de hash es discreta

Basta con que sea inyectiva para poder invertirla

Propiedades de un hash

Una función de hash puede tener otras propiedades:

- Distribución uniforme
- Eficiente
- Incremental
- Efecto avalancha

También afectan al comportamiento de una tabla de hash

Distribución Normal

Distribución Normal

Distribución Exponencial

Distribución Exponencial

Distribución Uniforme

Distribución Uniforme

Distribución vs Tabla

¿Qué efecto tiene en la tabla la distribución del hash H?

¿Qué efecto tiene en la tabla la distribución del ajuste h?

Método de la división

Método de la división

Método de la división

Método de la multiplicación

Método de la multiplicación

Método de la multiplicación

Uniformidad de H

Es importante que *H* sea uniforme

Es difícil uniformizar los datos con el ajuste h

Si H es uniforme, entonces es muy fácil que h sea uniforme

Eficiencia

En una tabla se llama la función de hash para cada operación

La complejidad de la función de hash debe ser O(d),

con d el tamaño del dato hasheado

Hash Incremental

Si y tiene mucho en común con x, llamemos a z su diferencia

H se dice **incremental** si H(y) se puede expresar como

$$H(y) = G(z, H(x))$$

El costo de calcularlo es O(|z|)

Hash de strings

Sea $X = [x_1, x_2, x_3, \dots, x_n]$ un string de n datos

Si a cada dato x_i le damos una interpretación numérica,

Podemos interpretar X como un número en base b:

$$H(X) = x_1 b^{n-1} + x_2 b^{n-2} + \dots + x_{n-1} b^1 + x_n b^0$$

Hash de strings

$$H(X) = x_1 b^{n-1} + x_2 b^{n-2} + \dots + x_{n-1} b^1 + x_n b^0$$

$$H(X) = \sum_{i=1}^{n} x_i b^{n-i}$$

Rolling hash

¿Cómo obtener H(X[5:8]) a partir de H(X[4:7])?

$$X[4:7] = [x_4, x_5, x_6, x_7]$$

$$X[5:8] = [x_5, x_6, x_7, x_8]$$

Rolling hash

¿Cómo obtener H(X[5:8]) a partir de H(X[4:7])?

$$H(X[4:7]) = x_4b^3 + x_5b^2 + x_6b^1 + x_7b^0$$

$$H(X[5:8]) = x_5b^3 + x_6b^2 + x_7b^1 + x_8b^0$$

$$H(X[5:8]) = H(X[4:7]) \cdot b - x_4b^3 + x_8$$

Efecto avalancha

Para $x \in y$ muy similares, si f(x) es muy distinto a f(y)

Entonces la función f tiene efecto avalancha

¿Cuál de los ajustes estudiados cumple con esto?

Efecto avalancha

El método de la multiplicación tiene efecto avalancha

Esto es útil cuando se insertan muchas claves muy similares: estas se reparten a lo largo de la tabla

Para distribuciones muy concentradas, ayuda a uniformizar