1.	The curve <i>C</i> has equation		
		$y = (2x - 3)^5$	
	The	e point P lies on C and has coordinates $(w, -32)$.	
	Fin	d	
	(a)	the value of w ,	(2)
	(b)	the equation of the tangent to C at the point P in the form $y = mx + c$, where m a c are constants.	and (5)

2.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
	The curve C has equation $y = f(x)$ where $x \in \mathbb{R}$	
	Given that	
	$\bullet f'(x) = 2x + \frac{1}{2}\cos x$	
	• the curve has a stationary point with x coordinate α	
	• α is small	
	(a) use the small angle approximation for $\cos x$ to estimate the value of α to 3 decimal places.	(3)
	The point $P(0, 3)$ lies on C	
	(b) Find the equation of the tangent to the curve at P , giving your answer in the form $y = mx + c$, where m and c are constants to be found.	
		(2)

3.	(a)	Express
J.	(a)	Express

$$\frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)}$$

as a single fraction in its simplest form.

(4)

Given that

$$f(x) = \frac{4x-1}{2(x-1)} - \frac{3}{2(x-1)(2x-1)} - 2, \quad x > 1,$$

(b) show that

$$f(x) = \frac{3}{2x - 1}$$

(2)

(c) Hence differentiate f(x) and find f'(2).

(3)

(a) $x^2 \ln(3x)$	
(a) $x^2 \ln(3x)$	(4)
(b) $\frac{\sin 4x}{x^3}$	
(b) $\frac{1}{x^3}$	(5)

Differentiate with respect to x	
(a) $\ln(x^2 + 3x + 5)$	
	(2)
(b) $\frac{\cos x}{x^2}$	(3)

6.	$y = \frac{5x^2 + 10x}{(x+1)^2} \qquad x \neq -1$	
	(a) Show that $\frac{dy}{dx} = \frac{A}{(x+1)^n}$ where A and n are constants to be found.	(4)
	(b) Hence deduce the range of values for x for which $\frac{dy}{dx} < 0$	(1)
_		
_		
_		
_		
_		

The curve C has equation $y = f(x)$ where	
$f(x) = \frac{4x+1}{x-2}, x > 2$	
(a) Show that $f'(x) = \frac{-9}{(x-2)^2}$	
	(3)
Given that P is a point on C such that $f'(x) = -1$,	
(b) find the coordinates of <i>P</i> .	(3)

8.	(a) By writing $\sec x$ as $\frac{1}{\cos x}$, show that $\frac{d(\sec x)}{dx} = \sec x \tan x$.	
	$\cos x$ dx	(3)
	Given that $y = e^{2x} \sec 3x$,	
	(b) find $\frac{dy}{dx}$.	
		(4)
	The curve with equation $y = e^{2x} \sec 3x$, $-\frac{\pi}{6} < x < \frac{\pi}{6}$, has a minimum turning point at (a, b) .	
	(c) Find the values of the constants a and b, giving your answers to 3 significantly figures.	cant
	riguies.	(4)

The curve C has equation	
$y = \frac{3 + \sin 2x}{2 + \cos 2x}$	
(a) Show that $\frac{dy}{dx} = \frac{6\sin 2x + 4\cos 2x + 2}{(2 + \cos 2x)^2}$	
	(4)
(b) Find an equation of the tangent to C at the point on C where $x = \frac{\pi}{2}$. Write your answer in the form $y = ax + b$, where a and b are exact constant	ts. (4)

10.
$$h(x) = \frac{2}{x+2} + \frac{4}{x^2+5} - \frac{18}{(x^2+5)(x+2)}, \qquad x \geqslant 0$$

(a) Show that
$$h(x) = \frac{2x}{x^2 + 5}$$
 (4)

(b) Hence, or otherwise, find h'(x) in its simplest form. (3)

Figure 2 shows a graph of the curve with equation y = h(x).

(c) Calculate the range of h(x).

11.

Figure 2

Figure 2 shows a sketch of the curve C with equation y = f(x) where

$$f(x) = 4(x^2 - 2)e^{-2x} \qquad x \in \mathbb{R}$$

(a) Show that $f'(x) = 8(2 + x - x^2)e^{-2x}$

(3)

(b) Hence find, in simplest form, the exact coordinates of the stationary points of C.

(3)

The function g and the function h are defined by

$$g(x) = 2f(x)$$
 $x \in \mathbb{R}$

$$h(x) = 2f(x) - 3 \qquad x \geqslant 0$$

- (c) Find (i) the range of g
 - (ii) the range of h

(3)

12.

Figure 1 shows a sketch of the curve C which has equation

$$y = e^{x\sqrt{3}} \sin 3x , \quad -\frac{\pi}{3} \leqslant x \leqslant \frac{\pi}{3}$$

(a) Find the x coordinate of the turning point P on C, for which x > 0 Give your answer as a multiple of π .

(6)

(b) Find an equation of the normal to C at the point where x = 0

(3)

(3)

13.	$f(x) = \frac{x^4 + x^3 - 3x^2 + 7x - 6}{x^2 + x - 6}, x > 2, x \in \mathbb{R}$	
(a)	Given that	
	$\frac{x^4 + x^3 - 3x^2 + 7x - 6}{x^2 + x - 6} \equiv x^2 + A + \frac{B}{x - 2}$	
	find the values of the constants A and B . (4))
(b)	Hence or otherwise, using calculus, find an equation of the normal to the curve with equation $y = f(x)$ at the point where $x = 3$	ı
	(5))

Find an equation of the normal to the curve at <i>P</i> .	(7)
	(1)

(6)
(0)
(5)

6. (a) Differentiate with respect to x ,	
(i) $x^{\frac{1}{2}} \ln(3x)$	
(ii) $\frac{1-10x}{(2x-1)^5}$, giving your answer in its simplest form.	(6)
(b) Given that $x = 3 \tan 2y$ find $\frac{dy}{dx}$ in terms of x.	(5)

17.	(a)	Given	that
1/.	(a)	Olvell	mai

$$\frac{\mathrm{d}}{\mathrm{d}x}(\cos x) = -\sin x$$

show that $\frac{d}{dx}(\sec x) = \sec x \tan x$.

(3)

Given that

$$x = \sec 2y$$

(b) find $\frac{dx}{dy}$ in terms of y.

(2)

(c) Hence find $\frac{dy}{dx}$ in terms of x.

(4)

(ii) Given that $x = \tan y$, show that $\frac{dy}{dx} = \frac{1}{1+x^2}$.	(4)
$oxdot{u}\lambda = 1 \pm \lambda$	
	(5)

19. (i) Find, using calculus, the x coordinate of the turning point of the curve w	ith equation
$y = e^{3x} \cos 4x, \frac{\pi}{4} \leqslant x < \frac{\pi}{2}$	
Give your answer to 4 decimal places.	(5)
(ii) Given $x = \sin^2 2y$, $0 < y < \frac{\pi}{4}$, find $\frac{dy}{dx}$ as a function of y.	
Write your answer in the form	
$\frac{\mathrm{d}y}{\mathrm{d}x} = p \mathrm{cosec}(qy), \qquad 0 < y < \frac{\pi}{4}$	
where p and q are constants to be determined.	
	(5)

The point <i>P</i> has coordinates $\left(\pi, \frac{\pi}{8}\right)$	
(a) Verify that <i>P</i> lies on <i>C</i> .	(1)
	(1)
(b) Find the equation of the tangent to C at P in the form $ay = C$	x + b, where the constants
a and b are to be found in terms of π .	,
	(7)

21. The point <i>P</i> lies on the curve with equation	
$x = (4y - \sin 2y)^2$	
Given that <i>P</i> has (x, y) coordinates $\left(p, \frac{\pi}{2}\right)$, where <i>p</i> is a constant,	
(a) find the exact value of <i>p</i> .	(1)
The tangent to the curve at P cuts the y -axis at the point A .	
(b) Use calculus to find the coordinates of A.	(6)

22. The curve C , in the standard Cartesian plane, is defined by the equation	
$x = 4\sin 2y \qquad \frac{-\pi}{4} < y < \frac{\pi}{4}$	
The curve C passes through the origin O	
(a) Find the value of $\frac{dy}{dx}$ at the origin.	(2)
(b) (i) Use the small angle approximation for sin 2y to find an equation linking x and y for points close to the origin.	
(ii) Explain the relationship between the answers to (a) and (b)(i).	(2)
(c) Show that, for all points (x, y) lying on C ,	
$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{a\sqrt{b-x^2}}$	
where a and b are constants to be found.	(3)

23. The function g is defined by	
$g(x) = \frac{3\ln(x) - 7}{\ln(x) - 2} \qquad x > 0 \qquad x \neq k$	
where k is a constant.	
(a) Deduce the value of k .	(4)
(b) Prove that	(1)
g'(x) > 0	
for all values of x in the domain of g .	(3)
(c) Find the range of values of a for which	
g(a) > 0	
	(2)

24. The function f is defined by	
$f(x) = \frac{e^{3x}}{4x^2 + k}$	
where k is a positive constant.	
(a) Show that	
$f'(x) = (12x^2 - 8x + 3k)g(x)$	
where $g(x)$ is a function to be found.	(3)
Given that the curve with equation $y = f(x)$ has at least one stationary point,	(5)
(b) find the range of possible values of k.	
	(3)

25.

Figure 5

Figure 5 shows a sketch of the curve with equation y = f(x), where

$$f(x) = \frac{4\sin 2x}{e^{\sqrt{2}x-1}}, \quad 0 \leqslant x \leqslant \pi$$

The curve has a maximum turning point at P and a minimum turning point at Q as shown in Figure 5.

(a) Show that the x coordinates of point P and point Q are solutions of the equation

$$\tan 2x = \sqrt{2}$$

(4)

(b) Using your answer to part (a), find the *x*-coordinate of the minimum turning point on the curve with equation

(i)
$$y = f(2x)$$
.

(ii)
$$y = 3 - 2f(x)$$
.

(4)

26. A curve has equation y = f(x), where

$$f(x) = \frac{7xe^x}{\sqrt{e^{3x} - 2}} \qquad x > \ln \sqrt[3]{2}$$

(a) Show that

$$f'(x) = \frac{7e^x(e^{3x}(2-x) + Ax + B)}{2(e^{3x} - 2)^{\frac{3}{2}}}$$

where A and B are constants to be found.

(5)

(b) Hence show that the x coordinates of the turning points of the curve are solutions of the equation

$$x = \frac{2e^{3x} - 4}{e^{3x} + 4} \tag{2}$$

The equation $x = \frac{2e^{3x} - 4}{e^{3x} + 4}$ has two positive roots α and β where $\beta > \alpha$

A student uses the iteration formula

$$x_{n+1} = \frac{2e^{3x_n} - 4}{e^{3x_n} + 4}$$

in an attempt to find approximations for α and β

Diagram 1 shows a plot of part of the curve with equation $y = \frac{2e^{3x} - 4}{e^{3x} + 4}$ and part of the line with equation y = x

Using Diagram 1 on page 42

(c) draw a staircase diagram to show that the iteration formula starting with $x_1 = 1$ can be used to find an approximation for β

(1)

Use the iteration formula with $x_1 = 1$, to find, to 3 decimal places,

(d) (i) the value of x,

(ii) the value of
$$\beta$$

Using a suitable interval and a suitable function that should be stated

(e) show that $\alpha = 0.432$ to 3 decimal places. (2)

