

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:
H04M 3/00
A2
(11) International Publication Number: WO 00/64132
(43) International Publication Date: 26 October 2000 (26.10.00)

(21) International Application Number: PCT/US00/10763
 (22) International Filing Date: 20 April 2000 (20.04.00)

(30) Priority Data: 09/294,563 20 April 1999 (20.04.99) US

(71) Applicant: TERADYNE, INC. [US/US]; 321 Harrison Avenue, Boston, MA 02118 (US).

(72) Inventors: GROESSL, David, J.; 306 Meridith Place, Vernon Hills, IL 60061 (US). SCHMIDT, Kurt, E.; 6444 Brever Road, Burlington, WI 53105 (US). ZHANG, Yun; 503 E. Manchester Drive #D, Wheeling, IL (US).

(74) Agent: WALSH, Edmund, J.; Teradyne, Inc., 321 Harrison Avenue, Boston, MA 02118 (US). (81) Designated States: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: PREDICTING PERFORMANCE OF TELEPHONE LINES FOR DATA SERVICES

(57) Abstract

A method characterizes a customer line for data transmission. The method includes measuring electrical properties of the customer line from a central location, identifying a line model from the measurements, and identifying a modem model for a modem selected for use with the customer line. The modem model gives performance data for the selected modem. The method also predicts performance data for the customer line when operated with the selected modem by combining the line and modem models.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
a	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakatan	RO	Romania		
cz	Czech Republic	LC	Saint Lucia	RU ·	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

PREDICTING PERFORMANCE OF TELEPHONE LINES FOR DATA SERVICES

Background of the Invention

This application relates generally to communications networks, and more particularly, to predicting the performance of telephone lines when transmitting data.

10

15

20

25

30

Public switched telephone networks, i.e., plain old telephone systems (POTS), were originally designed for voice communications having a limited frequency range. Today, the same POTS lines often carry data transmissions. Since data transmissions generally have different frequency properties, a POTS line that works well for transmitting voice may work poorly for transmitting data. Since POTS lines may not work well for data transmissions, both telephone operating companies (TELCO=s) and customers want tests for predicting which lines can transmit data.

the past, telephone In operating companies (TELCO=s) performed pre-qualification and disqualification tests on POTS lines prior to connecting data transmitters to them. These tests identified some situations where the line can or cannot support data transmissions without remedial actions. But, the prequalification and pre-disqualification tests both produced significant number of mispredictions, i.e., positives and false negatives.

More critically, current pre-qualification tests for POTS lines are frequently not automated and consequently labor intensive. Often, they demand skilled interpretations of high frequency parameters of a line to determine its data transmission capabilities at high speeds. The tests do not make full use of automated

testing systems, e.g., as described in U.S. patent 5,699,402, which is herein incorporated by reference in its entirety. At a network scale, such tests would be very expensive to implement.

5

Furthermore, as data transmission demands increase, simple pre-qualification or pre-disqualification is no Now, customers also want information longer sufficient. enabling them to choose between competing options for Instead of simple qualification or transmitting data. disqualification, the customer frequently wants to know which transmission medium and/or devices will work better. Simple pre-qualification does not provide customers with a the different way to compare viable options transmitting data.

The present invention is directed to overcoming or, at least, reducing the affects of one or more of the problems set forth above.

Summary of the Invention

In a first aspect, the invention provides a method of predicting the performance of a customer line for data transmission. The method includes measuring electrical properties of the customer line from a central location, identifying a line model from the measurements, and identifying a modem model for a modem selected for use with the customer line. The modem model gives performance data for the selected modem. The method also predicts performance data for the customer line when operated with the selected modem by combining the line and modem models.

In a second aspect, the invention provides a method of speed qualifying a customer line for data transmission. The method includes identifying a proxy line, performing one-ended electrical measurements on the proxy line, and

predicting a data rate for the customer line from the The customer line is unconnected to a measurements. central switch from which the one-ended measurements are performed. The proxy line is connected to the switch and is also located in the same cable carrying the customer line.

In a third aspect, the invention provides a system for speed qualifying customer lines for data transmission. The system includes a computer, a telephony switch coupled 10 to a portion of the lines, and a measurement unit coupled to both the switch and the computer. The switch is adapted to connect the portion of the lines to a network, perform one-ended electrical measurements portion, and to transmit the measurements to the computer. 15 The measurement unit orders the measurements on a selected line in response to receiving a command from the computer. The computer predicts a data rate for the selected line from the results of the measurements.

In a fourth aspect, the invention provides a method 20 of marketing telephone lines to customers. The method includes speed pre-qualifying a plurality of the lines using one-ended electrical measurements performed from a The method sets billing rates for, at central location. least, a portion of the lines at prices that depend on the speed qualification thereof.

25

30

In a fifth aspect, the invention provides a method of marketing telephone lines to customers. The method includes speed qualifying each customer line using oneended electrical measurements and offering high-speed service to a portion of the customers in response to the portion having lines qualified to support high-speed The speed qualification classifies each line for either high-speed service or low speed service.

In a sixth aspect, the invention provides a method of

marketing telephone lines to customers. The method includes using one-ended electrical measurements to speed pre-qualify each line for either high-speed service or low speed service. The method also includes selectively connecting at least a portion of the lines qualified for high-speed service to particular customers in response to receiving a request for high-speed service from the particular customers.

Brief Description of the Drawings

10

15

25

30

Other objects, features, and advantages of the invention will be apparent from the following description taken together with the drawings in which:

FIG. 1 illustrates a system to speed qualify customer telephone lines for data transmission;

FIG. 2 illustrates a test apparatus for performing one-ended admittance measurements on twisted-pair telephone lines;

FIG. 3 graphically represents the frequency 20 dependent attenuation both for an average twisted wire pair located in a standard telephony cable and for a particular customer line;

FIGs. 4A-4D are flow charts illustrating a method of finding the attenuation of a line from the attenuation for an average line of FIG. 3 and one-ended measurements;

FIG. 5 is a flow chart illustrating a method for speed qualifying a customer line for data transmission;

FIG. 6 is a flow chart illustrating a method for predicting the data rate of a line in the method of FIG. 5;

FIG. 7 is a flow chart illustrating a method for predicting the data rate from line and modem models;

FIG. 8 is a graphical representation of the method of FIG. 6 for a modem model in which the data rate depends on the line=s normalized noise level and average normalized line length;

5 FIG. 9 is a flow chart illustrating a method of finding a line model from one-ended measurements;

FIG. 10 is a flow chart illustrating the use of data mining to derive rules relating the line attenuation to one-ended measurements; and

10 FIG. 11 is a flow chart illustrating a method of marketing telephone lines for data transmission.

Description of the Preferred Embodiments

This application incorporates U.S Serial No. 15 60/106,845, filed November 3, 1998, by Roger Faulkner et al, by reference in its entirety.

SPEED QUALIFICATION SYSTEM

FIG. 1 illustrates a portion of a POTS telephone 20 network 10 for speed qualifying customer telephone lines 12-14, 19, 21. The network 10 includes the customer lines 12-14 that connect customer units 16-18, i.e., modems and/or telephones, to a switch 15 located in a TELCO central office 20. Each line 12-14 is a standard twisted two-wire copper line adapted for telephone 25 communications. The two wires are generally referred to as the ring AR≅ and tip AT≅ wires. The switch 15 may be a POTS switch or any other device for connecting the lines 12-14 to a telephone network, e.g., a digital subscriber loop access multiplexer (DSLAM) (not shown). A very large 30 portion of the length of each customer line 12-14 is housed in a standard telephone cable 23 that caries a number of the customer lines 12-14 i.e., more than a

dozen. The telephone cable 23 is an environment, which changes the electrical and transmission properties of the The standard cable individual customer lines 12-14. 23 also houses customer lines 19, 21, i.e., standard 5 twisted pair telephony wires, that are not connected either to the switch 15 or to the customer units 16-18. These lines 19, 21 have been fabricated into the cable in anticipation of increased customer demand at future times. Some of the unconnected lines 19, 21 go to customer 10 residences already having a connected POTS line, e.g., the line 19 goes to the customer connected to the line 14. The other unconnected lines 21 are not routed to a particular customer=s residence. But, all the lines 12-14, 19, 21, i.e., connected or unconnected, have a very large portion of their length confined to the telephony cable 23, which similarly influences the transmission properties of each line 12-14, 19, 21 therein.

A measurement unit 22 couples to the switch 15 in the central office 20 via a test bus 25. The measurement unit 22 controls one-ended electrical measurements from 20 central office 20, which are used admittances and noise levels for the lines 12-14 being To perform a measurement, the measurement unit 22 signals the switch 15 to disconnect a selected line 12-25 14 from the telephone network and to connect the selected line 12-14 to measurement apparatus (not shown) within the Then, the measurement unit 22 signals the switch 15. perform selected measurements. apparatus to measurement unit 22 signals the switch 15 to reconnect the network after measurements the 30 line 12-14 to 25 returns completed. The bus results from the unit 22. the measurement Such measurements to measurements are described in more detail U.S. Application Serial No. 60/106,845.

The measurement unit 22 is controlled by the computer 26, which selects the type of measurements to be performed and the lines 12-14 upon which the measurements will be performed. The computer 24 sends control signals to the measurement unit 22 through the line 26 and receives data the measurement results from the measurement unit 22 via the same line 26. An executable software program, encoded on storage medium 28, coordinates the tests by the measuring unit 22 and the processing of test data to predict data rates.

10

15

20

The measurement unit 22 and computer 24 speed qualify and/or disqualify the customer lines 12-14 and associated modems for selected data transmission speeds. To speed qualify, the computer 28 must determine, with a high degree of certainty, that the qualified line and associated modems will support data transmissions at a specified data rate without remedial measures. To speed disqualify, the computer 28 must determine, with a high degree of certainty, that the disqualified line and associated modems will not support data transmissions at the specified data rate without remedial measures.

Various embodiments make speed qualification determinations either before the line is in service or while the line is in service. Before a line is transmitting data, the determinations are speed prequalifications or pre-disqualifications. After a line is transmitting data, determinations are referred to as speed path testing.

5

10

15

20

25

30

ONE-ENDED MEASUREMENTS ON CUSTOMER LINE

FIG. 2 illustrates an apparatus 27 for performing one type of one-ended electrical measurement used for speed qualifying and/or speed disqualifying of the lines The apparatus 27 measures the FIG. 1. 12-14 of admittances of the tip and ring wires T, R of the selected customer line under measurement. The tip and ring wires T, R of the line 12-14 being measured couple to driving voltage sources V_1 and V_2 , respectively, through known conductances G_t and G_r . The tip T and ring R wires also connect to voltmeters V_t and V_r for reading the voltage between the tip wire T and ground and between the ring wire R and ground, respectively. The readings from the voltmeters V_t and V_r enable the computer 24 to determine effective admittances Y_{tg} , Y_{tr} , Y_{rg} between the tip wire T, ring wire R, and ground for the customer line 12-14 being measured.

To determine the admittances Y_{tg} , Y_{tr} , Y_{rg} , the switch 15 connects the voltage sources V_1 and V_2 and the voltmeters V_T and V_R to the tip and ring wires T, R as shown in FIG. 2. After connecting the apparatus 27, the measurements needed to determine the admittances Y_{tg} , Y_{tr} , Y_{rg} entail three steps. First, the measurement unit 22 grounds the point 29 and applies voltage V_2 while measuring the voltages across the voltmeters V_r and V_t . Next, the measurement unit 22 grounds the point 30 and applies voltage V_1 while measuring the voltages across the voltmeters V_r and V_t . Finally, the unit 22 applies both voltages V_1 and V_2 and measures voltages across the voltmeters V_r and V_t . From these three measurements, the computer 24 determines the admittances Y_{tg} , Y_{tr} , Y_{rg} at various frequencies.

During measurements for the admittances Y_{tg} , Y_{tr} , Y_{rg} , the apparatus 27 may apply complex driving voltages V_1 and V_2 that superimpose several frequencies. For example, the driving voltages V_1 , V_2 may take the form: $V(N) = A\Sigma_{i=1-45} \cos(2\Pi_f_iNT + ^P_{M_i})$. The frequencies f_i , sampling cycle values N (at 152.6 Hz), and phases $^P_{M_i}$ are shown in Appendix 1. The computer 24 Fourier transforms both the driving and measured voltages V_1 , V_2 , V_t , V_r to separate frequency components. From the Fourier transform, the computer 24 finds the real and imaginary parts of the admittances Y_{tg} , Y_{tr} , Y_{rg} by well-known circuit-analysis techniques.

5

10

15

20

25

From the admittances Y_{tg} , Y_{tr} , Y_{rg} , several derived properties of the lines 12-14 may be determined. First, a line length can be derived from the capacitances C_{tg} and C_{rg} of the tip wire T to ground and of the ring wire R to ground. For standard bundled telephony cables with twisted tip and ring wire T, R pairs, both capacitances are about 17.47×10^{-9} Farads per 1,000 feet regardless of the gauge. Thus, the one-ended measurement of capacitances gives a measure of the apparent length of the measured line 12-14. Second, the existence of a bridged tap in one of the lines 12-14 can be derived from the existence of an above-threshold peak in the ratio:

$$\begin{array}{c|c} \text{IM} \left(\underline{M^2 Y_{tg}(f)} \right) & / & \text{RE} \left(\underline{M^2 Y_{tg}(f)} \right) \\ Mf^2 & / & Mf^2 \end{array}$$

The presence of a bridged tap substantially effects the capacative measurement of the length of the line. Third, the admittances Y_{tg} , Y_{tr} , Y_{rg} can also be used to predict the gauge mix of the measured lines 12-14. The gauge mix of a line is the ratio of the sum of lengths of the line, which are fat wire, over the full length of the line. Typically, fat wire is 22 and 24 gauge wire, and thin wire

is 26 gauge wire. The customer lines 12-14, 19, 21 of FIG. 1 may have segments of fat wire and segments of thin wire. Fourth, a frequency dependent attenuation up to high frequencies can be derived.

A two step procedure is used to derive the high frequency attenuation of the measured lines 12-14. First, the attenuation of the lines is approximated by the frequency (f) dependent average attenuation, AT(f). AT(f) is the attenuation of an Aaverage \cong mixed gauge twisted copper line in a standard telephony cable. The average attenuation AT(f) is known to approximately be:

AT(xMHz) = A(xMHz)C_{tg} with

(A(.1MHz),A(.3MHz),A(.4MHz),A(.5MHz))

=(.173,.24,.263,.288)DB/10-9F

(A(.1MHz),A(.3MHz),A(.4MHz),A(.5MHz))

=(.173,.24,.263,.288)DB/10-9F

5

10

20

A solid curve 32, shown in FIG. 3, graphically illustrates the equation for AT(f) as a function of frequency. Second, for each customer line, the frequency dependent values of the AT(f) are adjusted using a method found through data mining. The second step produces the attenuation, ATT(f), for each customer line. ATT(f) is generally an improved value of the line=s attenuation compared to the AT(f) for an average line.

A solid curve 32, shown in FIG. 3, graphically illustrates the equation for AT(f) as a function of frequency. Second, for each customer line, the frequency dependent values of the AT(f) are adjusted using a method found through data mining. The second step produces the attenuation, ATT(f), for each customer line. ATT(f) is generally an improved value of the line=s attenuation compared to the AT(f) for an average line.

PCT/US00/10763 WO 00/64132

Data mining produces a set of logical decision trees, which are used to find ATT(f). For each customer line, the computer 24 of FIG. 1 works through the set of logical decision trees. Each decision tree determines whether or not ATT(f), at one frequency, is shifted from the value of AT(f) at that frequency. At frequencies between those associated with logical decision trees, the computer 24 finds the value of ATT(f) by performing a smooth interpolation. The dashed line 34 of Fig. 3 shows the ATT(f) of one customer line, which was found by the logical decision tree analysis (M = 10^6 , K = 10^3 , and DB = Data mining produces a set of logical decision trees, which are used to find ATT(f). For each customer line, the computer 24 of FIG. 1 works through the set of logical decision trees. Each decision tree determines whether or not ATT(f), at one frequency, is shifted from the value of AT(f) at that frequency. At frequencies between those associated with logical decision trees, the computer 24 finds the value of ATT(f) by performing a smooth interpolation. The dashed line 34 of Fig. 3 shows 20 the ATT(f) of one customer line, which was found by the logical decision tree analysis (M = 10^6 , K = 10^3 , and DB = decibels).

10

15

FIGs. 4A, 4B, 4C, and 4D are flow charts showing the decision trees for finding the values of ATT(.1MHz), 25 ATT(.3MHz), ATT(.4MHz), and ATT(.5MHz), respectively. FIG. 3 shows the ATT(.1MHz), ATT(.3MHz), ATT(.4MH), and ATT(.5MHz) (triangles) of one customer line, which were from the AT(.1MHz), AT(.3MHz), **AT**(.4MH), AT(.5MHz) values (dots). Each decision tree uses logical 30 tests based on lower frequency derived quantities, which are listed in Appendix 2. In Appendix 2, admittances are given in siemens, capacitances are given in Farads, and frequencies are given in Hertz unless otherwise indicated.

The result from each decision tree provides a value of $\mathbf{ATT}(f)$ at a higher frequency than the frequency used to measure the admittances Y_{tg} , Y_{tr} , and Y_{rg} . Thus, the logical decision trees enable the computer 24 to improve $\mathbf{ATT}(f)$ for each customer line, at frequencies higher than the frequencies at which measurements are performed on the line.

From a line=s attenuation ATT(f), the computer 24 can derive a normalized line length (NLL). NLL(f) is the equivalent length of 26 gauge twisted copper telephony line to produce the attenuation ATT(f). The value of NLL(f) is approximately:

10

20

NLL(f) = ATT(f)/ $\{\Sigma^{7}_{j=0} P_{j} (\log(f))^{j}\}$ where the P_{j} are:NLL(f) = ATT(f)/ $\{\Sigma^{7}_{j=0} P_{j} (\log(f))^{j}\}$ where the P_{j} are:

15 $(P_0, ..., P_7) = 10^3(-1.81718846839515, 2.3122218679438, -1.25999060284948, .38115981179243, -.06912909837418, .00751651855434, -.00045366936261, .00001172506721)$

Averaging NLL(f) over frequencies between 100KHz and 1Mhz provides a averaged normalized line length. The averaged normalized line length and a normalized noise define properties of a line model for the measured customer line 12-14, which allow the prediction of data transmission rates.

The one-ended measurements on the selected customer

25 line 12-14 also include noise power spectra and impulse
noise. Noise power spectra are determined directly
through one-ended measurements using a spectrum analyzer
(not shown) located in the measurement unit 22. Impulse
noise measurements employ a differential comparator (not
30 shown) also located in the switch 15. The comparator has
an adjustable threshold and produces a digital output
pulse for each above-threshold spike on the tip or ring T,
R wires. The output digital signal goes to a counter (not

PCT/US00/10763 WO 00/64132

shown), which sums the number of counts to produce a rate for above-threshold noise impulses.

Noise measurements may both disqualify and correct predicted data rates of the lines 12-14 being qualified. For high noise levels, synchronization of the line 12-14 for ADSL or ISDN data transmissions becomes impossible. and the noisy line 12-14 must be disqualified. impulse noise rates above about 150 example, millivolt-counts-per-second disqualify a line for ADSL 10 transmissions. When noise is not a disqualifier, it still can lower the predicted data rates for the customer line in a manner that generally depends on the modem used with the selected line 12-14.

Referring again to FIG. 1, the customer lines 19, 21 do not connect to the switch 15 and thus, cannot be 15 automatically tested by the measurement unit 22. speed qualification or disqualification of these lines 19, 21 requires indirect measurements henceforth referred to Aproxy measurements≅.

measurements are one-ended electrical measurements on a Aproxy2 line located in the same cable 23 as the unconnected line 19, 21 to be qualified or The proxy line connects to the switch 15 disqualified. tested by one-ended electrical thus, can be measurements made from the switch 15. For example, the 25 line 14 is a potential proxy line for the line 19 going to the same customer.

20

The proxy line 14 is located in the same cable 23 as the unconnected lines 19, 21 to be qualified. both types of lines have undergone the same handling after fabrication of the cable 23. Similarly, if the cable 23 has more than 12 different customer lines, standard telephony cable, the various lines 12-14, 19, 21 are in very similar cable environments. Then, electrical

measurements on the proxy line 14 can, in some cases, provide a reliable measure of the same electrical properties for the unconnected lines 19, 21. The reliability of proxy measurements may further increase if the proxy line goes to the same residence as the unconnected line, e.g., lines 14 and 19. But, proxy measurements may still be reliable if the proxy line is simply in the same cable 23, e.g., the line 13 as a proxy for the line 19.

10

20

5

LINE PERFORMANCE PREDICTIONS

FIG. 5 is a flow chart illustrating a method 40 of speed qualifying or disqualifying a selected one of the customer lines 12-14 of FIG. 1 for data transmissions. The method has two parts. In a first part, the computer 24 and measurement unit 22 of FIG. 1 rapidly determine whether the selected line 12-14 is pre-disqualified for data transmissions. In the second part, the computer 24 predicts the speed for data transmissions if the selected line 12-14 is not disqualified in the first part.

To determine whether the selected customer line 12-14 is disqualified for transmitting data, the computer 24 or an operator selects the type of data service to be implemented on the selected customer line 12-14 (step 42). determines the qualification the computer 24 25 requirements for the selected type of data service on the selected line 12-14 (step 44). Next, the computer 24 and perform one-ended electrical 22 measurement unit measurements on the selected customer line (step 46). Then, the computer 24 determines from the one-ended 30 measurements whether the selected customer line 12-14 is disqualified for the selected type of data transmissions (step 48). If the selected customer line 12-14 is

5

10

15

20

25

30

disqualified, the computer reports the disqualification status and stops.

The pre-disqualification part of the method 40 is generally more rapid than predicting the actual data rates obtainable. U.S. Patent Application Serial No. 60/106,845, filed November 3, 1998, provides detailed account of some types of measurements and determinations performed in pre-disqualification steps 42, 44, 46, 48. These steps may also include further tests specific to the type of termination at the customer units 16-18. For example, for ADSL-lite data transmissions the fact that a customer unit 16-18 attenuates high frequencies could be used as a disqualifier test.

If the selected customer line 12-14 is not predisqualified at step 48, the computer 24 will predict the line 12-14 for rate of the selected data transmissions. First, the computer 24 creates a line model for the selected customer line 12-14, e.g., by performing more one-ended measurements on the line 12-14 and deriving the line model therefrom (step 52). At substantially the same time, the computer 24 identifies a modem model to be used with the selected customer line 12-14 (step 54). modem model may correspond to the modem in the central office 20 and/or the modem at the customer=s residence. Next, the computer 24 uses the line model for the selected customer line 12-14 in the modem model to predict the line=s performance, e.g., the data rate. - Some modem models are a data file stored in the computer 24 and indexed by properties of the line model. Finally, the computer 24 reports the line performance when used with the identified modem (step 58).

FIG. 6 is a flow chart illustrating a method 60 for predicting the performance of the selected customer line 12-14, which was not pre-disqualified for data

PCT/US00/10763 WO 00/64132

transmissions at step 48 of FIG. 5. The computer 24 and unit 24 measurement control one-ended electrical measurements carried out by apparatus 27 on the twisted pair T and R of the selected customer line 12-14 (step 62). The measurements determine the three admittances Y_{tq} , Y_{tr} , Y_{rg} of the tip and ring wires T, R and the noise levels in the selected customer line 12-14. Next, the computer derives a number of other properties of the selected customer line 12-14 from the one-ended measurements (step As discussed above, the derived properties may 10 64). include a line length, the existence or absence of one or more bridged taps, the gauge mix of the line, impulse noise level, frequency dependent attenuation, normalized line length, and the noise spectrum.

From these derived properties, the computer 24 calculates a second-level derived propertyXthe average normalized line length. The average normalized line length is the length of 26 gauge paired twisted copper wires, located in a telephony cable 23 with at least 12 other twisted wire pairs, which would have substantially 20 the same transmission properties.

15

25

30

The computer 24 also selects a modem, e.g., in response to a customer=s request or a TELCO=s command to speed qualify or disqualify the line for a particular modem type (step 66). Next, the computer 24 looks up a modem model for the selected modem in a database (step The modem model is a table of performance data, i.e., data transmission rates, indexed by the averaged normalized line length and the line noise level. computer 24 may leave the modem model in active memory while waiting for data on the line model associated with the selected customer line 12-14. Next, the computer uses the line model data in the modem model to find a predicted data rate for the selected modem in association with the

5

10

15

20

25

30

selected customer line 12-14 (step 70). Finally, the computer 24 reports the predicted data rate to the customer or to a readable storage device (step 72).

FIG. 7 is a flow chart illustrating one method for predicting the data rate of the selected customer line 12-14 as shown in step 70 of FIG. 6. The line model is either a set of rules or a file for the properties characterizing the model. From the line model, the computer 24 reads the average normalized line length (step 82). Similarly, the line model or one-ended measurements determine a normalized noise level associated with the selected customer line 12-14 (step 84). Finally, the computer 24 performs a look up of a predicted data rate in a table defining the modem model (step 86). model=s table is indexed by the averaged normalized line length and the normalized noise level. The table is a tabular form representing the modem model for the modem to be used with the selected customer line 12-14.

FIG. 8 graphically illustrates one modem model 90 as a set of curves 92-95 for the predicted data rate. The values from the curves 92-95 depend on, i.e., are indexed by, a line=s normalized noise level and averaged normalized line length. The separate curves 92-95 give the predicted data rate for four values of the normalized noise level of the line model. Each curve 92-95 is also dependent on the averaged normalized line length, which is plotted along the horizontal axis.

The predicted data rate can be obtained from the modem model 90 of FIG. 8 by performing a look up with the parameters of the line model. To predict the data rate, the computer 24 looks up one of the curves 92-95 using the normalized noise value from the line model, e.g., normalized noise value 2. Next the computer 24 finds the predicted value of the data rate by looking up the

averaged normalized line length, given by the line model, on the horizontal axis, e.g., value 97. The value 101 of curve 93 at the intersection 99 with the value 97 of the averaged normalized line length is the predicted data rate. Of course, the computer does the look ups in a data base indexed by the normalized noise level and the average normalized line length instead of graphically.

Some modem models also depend on parameters such as impulse noise compensation, noise floor, echo compensation and phase instability compensation. The impulse noise compensation is the ability of the modem to resychronize or to remain synchronized in the presence of impulse noise on the customer line. The noise floor is the noise level below which the modem does not resolve data signals. The echo compensation is the ability of the modem to compensate for reflected signals in the customer line. The phase instability compensation is the ability of the modem to compensate for time-dependent imbalances in the customer line, e.g., time-dependent reflections.

10

15

20

25

30

Using the values of each of these parameters, the computer 24 of FIG. 1 adjusts the predicted data rate from the rate predicted by FIG. 8. The modem models attach a figure-of-merit or quality rating to each of the above parameters. For each parameter, the quality rating may, for example, be excellent, good, or bad. The quality ratings determine whether the predicted data rate, e.g., the rate from FIG. 8, is adjusted up, down or not adjusted by the computer 24 to obtain a final predicted data rate. For example, some embodiments adjust the predicted data rate from FIG. 8 up by 10 percent and down by 10 percent for quality ratings of excellent and bad, respectively.

Similarly, some line models include a gauge mix parameter, which is given a quality rating, i.e., high, average, or low. Data mining techniques can be used to

infer a test for the gauge mix of a line from the oneended electrical measurements. The computer 24 of FIG. 1 adjusts the predicted data rate from the rate predicted by FIG. 8 according to the quality rating of the gauge mix.

5

10

FIG. 9 is a flow chart illustrating a method 110 of finding a line model for any selected customer line 12-14, 19, 21, i.e. either connected or unconnected to the switch First, the computer 24 determines whether 15 of FIG. 1. the selected line is connected to the switch 15 (step 112). If the selected line is connected, the computer 24 chooses the selected line itself for one-ended electrical measurements (step 114). If the selected line e.g., the lines 19, 21 of FIG. 1, unconnected, computer 24 chooses a proxy line in the same cable 23 for the one-ended electrical measurements (step 116). 15 the computer 24 and measurement unit 22 perform the oneended measurements of the chosen line=s admittances Yta, Y_{rr} , Y_{rg} and noise levels as described above (step 118). Next, the computer 245 determines the above-described derived properties for the chosen line from the measured 20 admittances and noise levels as described above (step The derived properties include the frequency 120). dependent attenuation, the absence or existence of a bridged tap, the mix, the frequency-dependent normalized line length, and the averaged normalized line length. From 25 the derived properties, the computer 24 determines the averaged normalized line length using the described below (step 122). Similarly, from the measured the chosen levels of line, the computer determines the chosen line=s normalized noise level. 30 computer 24 stores the one-ended measurements, the derived electrical properties (step 120), normalized noise level (step 124), and averaged normalized line length (step 122) as the line model for the originally selected line 12-14,

PCT/US00/10763 WO 00/64132

19, 21 (step 126). These stored quantities form a footprint that characterizes the customer line.

The footprint is stored data on the condition of the line when operating well. Later, the computer 24 can 5 call up the footprint to perform speed path testing. When called up, the footprint is useful for fault detection as described in U.S. Patent 5,699,402, which is herein incorporated by reference in its entirety.

The derived properties characterizing the selected customer line 12-14 and modem models used by the methods of FIGs. 4A-4D are found through methods referred to as Adata mining . Data mining produces derived properties that are well correlated with the data produced by the models, e.g., high frequency attenuation.

10

15

25

FIG. 10 illustrates a method 130 for using data mining to find derived properties correlating well with the high frequency attenuation. Data mining starts by selecting a sample line having a known attenuation from a sample pool (step 132). Next, one-ended measurements are performed on the selected sample line and a selected set 20 of derived properties, e.g., low frequency admittances, are found from the measurements (step 134). values of the selected derived properties are stored in a file indexed by the attenuation of the sample line (step Next, the data mining system determines whether 136). other sample lines remain (step 138). If sample lines remain, the system repeats steps 132, 134, 136, and 138. Otherwise, the system compares the values of the derived properties for the sample lines to determine which properties or sets of properties correlate well with the attenuation (step 140). Finally, the system uses the values of the derived properties correlating well to formulate a set of rules, which determine the attenuation in terms of the well-correlating derived properties (step

PCT/US00/10763 WO 00/64132

142). The Arules≅ are represented by the methods of FIGs. 4A-4D.

FIG. 11 is a flow chart illustrating a method of marketing customer lines for data transmission. 5 the computer 24 of FIG. 1 speed pre-qualifies a plurality of the lines 12-14, 19, 21 using one-ended electrical measurements and speed qualification methods described above (step 152). The speed pre-qualification, at least, classifies each line for either high-speed service or low speed service. Next, the TELCO offers high-speed service to a portion of the customers who have lines qualified for the high-speed service (step 154). Next, the TELCO selectively connects at least a portion of the lines qualified for high-speed service to customers requesting the high-speed service (step 156). The TELCO also sets billing rates for, at least, a portion of the lines at prices that depend on the speed qualification (step 158).

10

15

Other embodiments are within the scope of the following claims.

PCT/US00/10763

\$\frac{1}{5}\$.

150, 600, 1050, 1500, 1950, 2400, 2850, 3300, 3750, 4200, 4650, 5100, 5550, 6000, 6450, 6900, 7350, 7800, 8250, 8700, 9150, 9600, 10050, 10500, 10950, 11400, 11850, 12300, 12750, 13200, 13650, 14100, 14550, 15000, 15450, 15900, 16350, 16800, 17250, 17700, 18150, 18600, 19050, 19500, 19950.

N₃ 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133 respectively.

5.9738, 1.3564, 2.4683, 4.8575, 4.7424, 2.2972, 4.6015, 1.9156, 2.5660, 4.5986, 4.6452, 3.4542, 3.6341, 0.8848, 4.3410, 2.1606, 4.2342, 4.2147, 3.1058, 5.9049, 5.2782, 5.1159, 5.4354, 5.6124, 0.5751, 3.8940, 3.3812, 6.0230, 2.3239, 2.7284, 4.8032, 4.1488, 2.3427, 4.6362, 0.9163, 2.9335, 1.0363, 2.3272, 3.2040, 4.0025, 2.0028, 5.8444, 2.4525, 1.4760, 1.1770

•

```
30HZ Raw Measurements:
     Ytr(30) - Admittance tip-to-ring measured at 30Hz
     Ytg(30) - Admittance tip-to-ground measured at 30Hz
     Yrg(30) - Admittance ring-to-ground measured at 30Hz
30Hz Derived Measurements:
     30Gtr - Conductance tip-to-ring measured at 30Hz = real(Ytr(30))
      30Str - Susceptance tip-to-ring measured at 30H2 = imag(Ytr(30))
      30Gtg - Conductance tip-to-ground measured at 30Hz = real(Ytg(30:)
      30Stg - Susceptance tip-to-ground measured at 30Hz = imag(Yt(30))
      30Ctr - Capacitance tip-to-ring measured at 30Hz = Str(30)/(2*pi'30)
      30Ctg - Capacitance tip-to-ground measured at 30Hz = St(30)/(2*p1*30)
      Lmeas - Length in kft measured at 30Hz = 30Ctg/17.47
150Hz-20KHz Raw Measurements:
      Ytr(f) - Admittance tip-to-ring where f=150Hz.600Hz.1C50Hz.1500Hz....19950Hz
      Ytg(f) - Admittance tip-to-ground where =150Hz,600Hz,1050Hz,1500Hz...19950Hz
      Yrg(f) - Admictance ring-to-ground where f=150Hz.600Hz.1050Hz.1530Hz....19950Hz
 150Hz-20KHz Derived Measurements:
      150Gtr - Conductance tip-to-ring measured at 150Hz = real(Ytr(150))
      600Gtr - Conductance tip-to-ring measured at 600Hz = real(Ytr(600))
      19950Gtr - Conductance tip-to-ring measured at 19950Hz = real(Ytr(19950))
      150Str - Susceptance tip-to-ring measured at 150Hz = imag(Ytr(150))
       600Str - Susceptance tip-to-ring measured at 600Hz = imag(Ytr(600))
       19950Str - Susceptance tip-co-ring measured at 19950Hz = imag(Ytg(19950))
       150Gtg - Conductance tip-to-ground measured at 150Hz = real(Ytg(150))
       600Gtg - Conductance tip-to- ground measured at 600Hz = real(Ytg(600))
       19950Gtg - Conductance tip-to- ground measured at 19950Hz = real(Ytg(19950))
       150Stg - Susceptance tip-to- ground measured at 150Hz = imag(Ytc(150))
       600Stg - Susceptance tip-to- ground measured at 600Hz = imag(Ytc(600))
       .
19950Stg - Susceptance tip-to- ground measured at 19950Hz = imac(Ytg(19950))
       150Ctr - Capacitance tip-to-ring measured at 150Hz = 150Str/(2*pi*150)
       600Ctr - Capacitance tip-to-ring measured at 600Hz = 600Str/(2*pi*600)
       19950Ctr - Capacitance tip-to-ring measured at 19950Hz = 19950Str/(2*pi*19950)
       150Ctg - Capacitance tip-to-ground measured at 150Hz = 150Stg/(2*pi*150)
       600Ctg - Capacitance tip-to-ground measured at 600Hz = 600Stg/(2*p1*600)
        .
19950Ctg - Capacitance tip-to-ground measured at 19950Hz = 19950Stg/(2*pi*19950)
```

```
150Hz-20KHz Secondary Derived Measurements:
     C30/C4K - Ratio of tip-to-ground Capacitance at 30Hz to 4200Hz
     C4K/C10K - Ratio of tip-to-ground Capacitance at 4200Hz to 10050Hz
     Cslope - Tip-to-ground Capacitance ratio slope = (C4K/C10K)/(C30/C4K)
     C30-C4K - Difference in tip-to-ground Capacitance at 30Hz and 4200Hz
     C4K-C10K - Difference in tip-to-ground Capacitance at 4200Hz and 10050Hz
     Cdelta - Tip-to-ground Capacitance difference delta = (C4K-C10K)/(C30-C4K)
     G4K/G30 - Ratio of tip-to-ground Conductance at 4200Hz to 30Hz
     G10K/G4K - Ratio of tip-to-ground Conductance at 10050Hz to 4200Hz
      Gslope - Tip-to-ground Conductance ratio slope = (G10K/G4K)/(G4K/G30)
      G4K-G30 - Difference in tip-to-ground Conductance at 30Hz and 4230Hz
      G10K-G4K - Difference in tip-to-ground Conductance at 4200Hz and 10050Hz
      Gdelta - Tip-to-ground Conductance difference delta = (G10K-G4K)/(G4K-G30)
      C30/G30 - Ratio of Tip-to-ground Capacitance to Conductance at 30Hz
      C30/G4K - Ratio of Tip-to-ground Capacitance at 30Hz to Conductance at 4200Hz
      C4K/G4K - Ration of Tip-to-ground Capacitance to Conductance at 4200Hz
      Gtr_dmax - Maximum positive slope of Gtr(f) = max(derivative(Gtr(f)/df))
      Gtr_fmax - Frequency at which Gtr_dmax occurs
      Gtr_dmin - Maximum negative slope of Gtr(f) = min(derivative(Gtr(f)/df))
      Gtr_fmin - Frequency at which Gtr_cmin occurs
      Gtr_fpk - Frequency of first peak (local maxima)in Gtr(f)
       Gtr_fval - Frequency of first valley(local minima)in Gtr(f)
       Gtr_d_delta - Gtr Max/Min Derivative difference = Gtr_dmax-Gtr_cmin
       Gtr_pk_delta - Gtr peak/vailey frequency difference = Gtr_fval-Gtr_fpk
       Gtr_pk - Value of Gtr(f) at frequency Gtr_fpk
       Gtr_val - Value of Gtr(f) at frequency Gtr_fval
       Gtr_delta - Gtr peak/valley difference = Gtr_pk-Gtr_val
       Gtg_dmax - Maximum positive slope of Gtg(f) = max(derivative(Gtg(f)/df))
       Gtg_imax - Frequency at which Gtg_imax occurs
       Gtg_dmin - Maximum negative slope of Gtg(f) = min(derivative(Gtg(f)/df))
       Gtg_imin - Frequency at which Gtg_dmin occurs
       Gtg_d_delta - Gtg Max/Min Derivative difference = Gtg_dmax-Gtg_dmin
       Ctr_dmax - Maximum positive slope of Ctr(f) = max(derivative(Ctr(f)/df))
        Ctr_fmax - Frequency at which Ctr_dmax occurs
        Ctr_dmin - Maximum negative slope of Ctr(f) = min(derivative(Ctr(f)/df))
        Ctr_fmin - Frequency at which Ctr_dmin occurs
        Ctr_fpk - Frequency of first peak (local maxima) in Ctr(f)
        Ctr_fval - Frequency of first valley(local minima)in Ctr(f)
        Ctr_d_delta - Ctr Max/Min Derivative difference = Ctr_dmax-Ctr_imin
        Ctr_pk_delta - Ctr peak/valley frequency difference = Ctr_fval-:tr_fpk
        Ctr_val - Value of Ctr(f) at frequency Ctr_fval
        Ctg_dmax - Maximum positive slope of Ctg(f) = max(derivative(Ctg(f)/df))
        Ctg_fmax - Frequency at which Ctg_cmax occurs
        Ctg_dmin - Maximum negative slope of Ctg(f) = min(derivative(Ctg(f)/df))
        Ctg_fmin - Frequency at which Ctg_dmin occurs
        Ctg_d_delta - Ctg Max/Min Derivative difference = Ctg_dmax-Ctg_dmin
        Str_dmax - Maximum positive slope of Str(f) = max(derivative(Str(f)/df))
         Str_imax - Frequency at which Str_cmax occurs
         Str_dmin - Maximum negative slope of Str(f) = min(derivative(Str(f)/df))
         Str_fmin - Frequency at which Str_dmin occurs
```

150Hz-20KHz Secondary Derived Measurements:

Str_fpk - Frequency of first peak (local maxima) in Str(f) Str_fval - Frequency of first valley(local minima) in Str(f) Str_d_delta - Str Max/Min Derivative difference = Str_dmax-Str_dmin Str_pk_delta - Str peak/valley frequency difference = Str_fval-Str_fpk Str_pk - Value of Str(f) at frequency Str_fpk Str_val - Value of Str(f) at frequency Str_fval Str_delta - Str peak/valley difference = Str_pk-Str_val Stg_dmax - Maximum positive slope of Stg(f) = max(derivative(Stg(f)/df)) Stg_fmax - Frequency at which Stg_dmax occurs Stg_dmin - Maximum negative slope of Stg(f) = min(derivative(Stg(f)/df)) Stg_fmin - Frequency at which Stg_dmin occurs Stg_fpk - Frequency of first peak (local maxima) in Stg(f) Stg_fval - Frequency of first valley(local minima) in Stg(f) Stg_d_delta - Stg Max/Min Derivative difference = Stg_dmax-Stg_druin Stg_pk_delta - Stg peak/valley frequency difference = Stg_fval-Stg_ipk Gtg20k/Gtg8k - Ratio of Gtg at 19950Hz and 8250Hz Gtg20k/Gtg4k - Ratio of Gtg at 19950Hz and 4200Hz Cgt30/Cgt20k - Ratio of Ctg at 30Hz and 19950Hz Cgt30/Cgt8k - Ratio of Ctg at 30Hz and 8250Hz

What is claimed is:

1. A method of predicting performance of a customer

- 2 line for data transmission, comprises:
- 3 measuring electrical properties of the customer line
- 4 from a central location;
- identifying a line model for the customer line from the
- 6 measurements;
- 7 identifying a modem model for a modem selected for use
- 8 with the line, the modem model providing performance data on
- 9 the selected modem; and
- 10 predicting performance data for the customer line when
- 11 operated with the selected modem by combining the line and
- 12 modem models.
- 1 2. The method of claim 1, wherein the performance data
- 2 comprises a data transmission rate.
- The method of claim 2, further comprising:
- 2 predicting whether the customer line is disqualified for
- 3 data transmission; and
- 4 wherein the act of predicting performance data is in
- 5 response to predicting that the line is not disqualified.
- The method of claim 1, wherein the act of measuring
- 2 includes using the measurements to evaluate at least one
- 3 admittance of the customer line at a plurality of
- 4 frequencies.
- The method of claim 4, wherein the act of measuring
- 2 includes finding at least two of Y_{tr} , Y_{rg} , and Y_{tg} for the
- 3 customer line.

1 6. The method of claim 5, wherein the act of 2 identifying a line model comprises:

- determining a frequency dependent attenuation from the
- 4 admittances; and
- determining a normalized line length from the frequency
- 6 dependent attenuation.
- 7. The method of claim 4, wherein the act of
- 2 identifying a line model comprises:
- determining whether the customer line has a bridged tap.
- 1 8. The method of claim 1, wherein the act of
- 2 identifying a line model includes finding a frequency
- 3 dependent line attenuation from the measurements.
- 1 9. The method of claim 1,
- wherein the act of measuring includes driving the
- 3 customer line with a signal at a plurality of frequencies;
- 4 and
- the act of identifying a line model includes evaluating
- 6 a property of the customer line for frequencies high with
- 7 respect to the frequencies of the signal.
- 1 10. The method of claim 1, wherein the act of measuring
- 2 includes finding a noise level, a capacitance, and frequency
- 3 dependent admittances for the customer line.
- 1 11. The method of claim 2, wherein the modem model
- 2 indexes predicted data rates by an averaged normalized line
- 3 length and a noise level of the customer line.
- 1 12. A method of speed qualifying a customer line for
- 2 data transmission, comprises:

identifying a proxy in a cable carrying the customer

- 4 line;
- 5 performing one-ended electrical measurements on the
- 6 proxy line; and
- 7 predicting a data rate for the customer line from the
- 8 measurements.
- 1 13. The method of claim 12, wherein the act of
- 2 predicting a data rate further comprises:
- identifying a line model for the proxy line from the
- 4 measurements;
- j identifying a modem model for a modem to use with the
- 6 customer line; and
- 7 combining the modem model with the line model to obtain
- 8 the data rate.
- 1 14. The method of claim 13, wherein the act of
- 2 identifying a line model includes finding at least two of
- 3 Y_{tr} , Y_{rg} , and Y_{tg} for the proxy line at a plurality of
- 4 frequencies.
- 1 15. The method of claim 14, further comprising one of
- 2 inferring a mix of wire gauges and inferring the presence of
- 3 a bridged tap from the found admittances.
- 1 16. The method of claim 14, wherein the act of
- 2 identifying a line model includes finding a frequency
- 3 dependent line attenuation from the measurements.
- 1 17. The method of claim 12,
- wherein the act of performing includes driving the proxy
- 3 line with a signal having a plurality of frequencies; and

the act of identifying a line model includes evaluating a property of the proxy line for frequencies high with respect to the frequencies of the signal.

- 18. The method of claim 12, wherein the modem model
- 2 indexes predicted data rates by an averaged normalized line
- 3 length and a noise level of the customer line.
- 19. A method of marketing telephone lines to customers, 2 comprising:
- 3 speed pre-qualifying a plurality of the customer lines
- 4 using one-ended electrical measurements performed from a
- 5 central location; and
- 6 setting billing rates of at least a portion of the lines
- 7 at prices that depend on the speed qualification of the
- 8 portion.
- 1 20. The method of claim 19, wherein at least a portion
- 2 of the acts of speed qualification include performing
- 3 electrical measurements on a proxy line.
- 1 21. The method of claim 19, further comprising:
- 2 monitoring a portion of the customer lines after being
- 3 placed in service by
- 4 repeatedly performing one-ended electrical measurements
- on the portion; and
- 6 determining new data rates of each line of the portion
- 7 from the repeated measurements.
- 1 22. The method of claim 19, wherein each act of speed
- 2 pre-qualifying, comprises:
- measuring electrical properties of one of the lines from
- 4 the central location;

identifying a line model for the one of the lines from the measured electrical properties;

identifying a modem model for a modem to use with the one of the lines, the modem model to provide rate data on the selected modem; and

predicting a data rate for the one of the lines when operated with the selected modem by combining the line and modem models.

- 1 23. The method of claim 22, the act of speed pre-2 qualifying the one of the lines further comprising:
- 3 predicting whether the one of the lines is disqualified
 4 for data transmission; and
- wherein the act of predicting a data rate is in response to predicting that the one of the lines is not disqualified.
- 1 24. A method of marketing telephone lines to customers,
 2 comprising:
- speed qualifying each customer line from one-ended electrical measurements, the speed qualifying classifying the lines for either high speed service or low speed service; and offering the high-speed service to at least a portion of the customers in response to the portion having lines qualified to support high-speed service.
- 25. The method of claim 24, wherein each act of speed qualifying comprises:
- measuring electrical properties of one of the lines from the central location;
- identifying a line model for the one of the lines from the electrical properties;

7 identifying a modem model for use with the one of the

- 8 lines, the modem model providing data rates for the selected
- 9 modem; and
- 10 predicting a data rate for the one of the lines when
- 11 operated with the selected modem by combining the line and
- 12 modem models.
- 1 26. A method of marketing telephone lines to customers,
- 2 comprising:
- speed pre-qualifying each line for high-speed service or
- 4 low-speed service by using one-ended electrical measurements;
- 5 and
- 6 connecting at least a portion of the lines qualified for
- 7 high-speed service to customers requesting high-speed service
- 8 in response to receiving said requests.
- 1 27. The method of claim 26, wherein each act of speed
- pre-qualifying comprises:
- measuring electrical properties of one of the lines from
- 4 the central location;
- j identifying a line model for the one of the lines from
- 6 the electrical properties;
- identifying a modem model for use with the one of the
- 8 lines, the modem model providing transmission rate data on
- 9 the selected modem; and
- 10 predicting a data rate for the one of the lines when
- 11 operated with the selected modem by combining the line and
- 12 modem models.
- 1 28. The method of claim 27, wherein at least a portion
- of the measurements are performed on a proxy line.

29. A system for characterizing performance of customer lines for data transmission, comprising:

- 3 a computer;
- a telephony switch coupled to a portion of the lines and
- 5 adapted to connect the portion to a network, to perform one-
- 6 ended electrical measurements on the portion, and to transmit
- 7 the measurements to the computer;
- a measurement unit coupled to the switch and computer,
- 9 the unit to make the measurements on a selected line in
- 10 response to receiving a command from the computer, the
- 11 computer to predict data rates for the selected line from the
- 12 measurements.
- 30. The system of claim 29, wherein the computer is adapted to:
- 3 identify a line model for the selected line from the
- 4 measurements thereon;
- identify a modem model for use with the selected line;
- 6 and
- 7 predict a data rate for the selected line when operated
- 8 with the selected modem by combining the line and modem
- 9 models.
- 1 31. The system of claim 30, the computer being further
- 2 adapted to:
- 3 predict whether the selected line is disqualified for
- 4 data transmission from the measurements thereon.
- 1 32. The system of claim 30, wherein the computer is
- 2 adapted to:
- 3 determine a frequency dependent attenuation from the
- 4 measurements; and

determine a normalized line length from the frequency dependent attenuation.

1 33. The system of claim 30, wherein the computer is 2 adapted to command the measurement unit to order measurements 3 on proxy lines and to predict data rates for a portion of the 4 customer lines by using the measurements on the proxy lines

5

- 34. A program storage device encoding an executable program for a method of speed qualifying telephone lines for data transmission, the method comprising:
- measuring electrical properties of a customer line from a central location;
- identifying a line model for the customer line from the measurements;
- identifying a modem model for use with the line, the modem model providing data rates of the selected modem; and predicting a data rate for the customer line when operated with the selected modem by combining the line and
- 12 modem models.
- 1 35. The device of claim 34, the method further
 2 comprising:
- predicting whether the customer line is disqualified for
 data transmission; and
- wherein the act of predicting a data rate is performed in response to predicting that the line is not disqualified.
- 1 36. The device of claim 34, wherein the act of 2 measuring includes finding at least one admittance of the 3 customer line at a plurality of frequencies by using the 4 measurements.

1 37. The device of claim 36, wherein the act of

- 2 measuring includes finding at least two of $Y_{\text{tr}},\ Y_{\text{rg}},\ \text{and}\ Y_{\text{tg}}$
- 3 for the customer line.
- 1 38. The device of claim 36, wherein the act of
- 2 identifying a line model includes finding a frequency
- 3 dependent line attenuation from the measurements.
- 1 39. The device of claim 36, wherein the act of
- 2 identifying a line model comprises:
- determining a frequency dependent attenuation from the
- 4 admittances; and
- determining a normalized line length from the frequency
- 6 dependent attenuation.
- 1 40. The device of claim 34, wherein the modem model
- lists predicted data rates by averaged normalized line length
- 3 and noise level of the customer line.
- 1 41. The device of claim 40, the method further
- 2 comprising:
- modifying the predicted data rate in response to a value
- 4 of one or more quality parameters, the values characterizing
- 5 the selected modem.
- 1 42. The device of claim 41, wherein the parameters are
- 2 selected from the group consisting of impulse noise
- 3 compensation, noise floor, echo compensation and phase
- 4 instability compensation.
- 1 43. The device of claim 34, the method further
- 2 comprising:

identifying the customer line as a proxy line for a second telephone line; and

- predicting a data rate for the second line from the data rate predicted for the proxy line.
- 1 44. A method of determining the attenuation of a 2 customer=s telephony line, comprising:
- performing a plurality of one-ended measurements of frequency dependent admittances of the customer=s telephony line, the measurements being performed in a first frequency range;
- processing the measurements by a set of logical decision
 trees; and
- adjusting values of a frequency-dependent attenuation for an average telephony line to predict an attenuation of the customer=s telephony line in a second frequency range, the act of adjusting being responsive to results from the logical decision trees.
- 1 45. The method of claim 44, wherein the act of 2 performing includes finding at least two of $Y_{\rm tr}$, $Y_{\rm rg}$, and $Y_{\rm tg}$ 3 for the customer=s telephony line.
- 1 46. A method of determining performance of a customer 2 telephone line, the line having both a tip wire and a ring 3 wire, comprising:
- driving one of the two wires with a first alternating voltage at one end and the other of the two wires with a second voltage at the same end and measuring voltages between each wire and ground while driving the two wires;
- driving the other of the two wires with a third
 alternating voltage at the same end and the one of the two
 wires with a fourth voltage at the same end and measuring

11 voltages between each wire and ground while driving the two

- 12 wires;
- driving both the tip and the ring wires with a fifth
- 14 alternating voltage from the same end and measuring voltages
- 15 at the tip and ring wires while driving both wires; and
- determining admittance Y_{tg} at a plurality of frequencies
- 17 from the measured voltages.
- 1 47. The method of claim 46, further comprising:
- determining an apparent length of the customer line from
- 3 values of said admittance at a plurality of frequencies.
- 1 48. The method of claim 46, further comprising:
- 2 determining whether the customer line has a bridged tap
- 3 from values of said admittance at a plurality of frequencies.
- 1 49. The method of claim 46, further comprising:
- 2 determining the remaining admittances Y_{rg} and the
- 3 admittance Y_{rt} at a plurality of frequencies from the
- 4 measured voltages.
- 1 50. The method of claim 49, further comprising:
- 2 determining a frequency-dependent attenuation of the
- 3 line from the measured admittances.
- 1 51. The method of claim 50, further comprising:
- 2 predicting a data rate for the line from the
- 3 attenuation; and
- 4 adjusting the predicted data rate in response to a
- 5 rating of a gauge mix of the line.
- 1 52. The method of claim 50, further comprising:
- 2 determining whether the customer line has a bridged tap

3 from values of said admittances at a plurality of

- 4 frequencies;
- 5 predicting a data rate for the line from the
- 6 attenuation; and
- 7 adjusting the predicted data rate in response to
- 8 determining that the customer line has a bridged tap.

2/13

FIG. 2

FIG. 3

PCT/US00/10763

FIG. 6

FIG. 7

FIG. 8

11/13

FIG.10

FIG. 11