

Varianta 012

Subjectul I.

$$\mathbf{a)} \quad \left| \frac{4+5i}{5+4i} \right| = 1$$

- **b)** Distanța căutată este $5\sqrt{2}$
- c) Ecuatia tangentei este: x-2y+3=0
- **d**) Punctele L, M, N sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.
- e) $V_{ABCD} = 4$.
- **f**) a = -46 și b = -9.

Subjectul II.

- 1.
- a) Calcul direct
- b) Se folosește punctul a).
- c) Probabilitatea căutată este p=1.
- **d**) x = 1.
- **e)** $x_1^2 + x_2^2 + x_3^2 = 2$.
- 2
- a) $f'(x) = 2^x \ln 2 + 5^x \ln 5$, pentru $x \in \mathbf{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{1}{\ln 2} + \frac{4}{\ln 5}.$$

- c) f''(x) > 0, pentru $x \in \mathbf{R}$, deci f este convexă pe \mathbf{R} .
- **d**) $\lim_{x \to 1} \frac{f(x) f(1)}{x 1} = 2 \ln 2 + 5 \ln 5$.
- e) Dreapta Ox: y = 0 este asimptotă orizontală spre $-\infty$ la graficul funcției.

Subjectul III.

a)
$$C+D=\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $(C+D)^2=I_2$.

- **b**) $\det(C) = 0$, rang(C) = 1.
- c) Calcul direct.
- d) Se demonstrează prin reducere la absurd.
- e) Punând în afirmația de la c) $x = \det(A + B)$, $y = \det(A B)$, $a = \det(A)$ și
- $b = \det(B)$ şi folosind **d**), obţinem concluzia.
- f) Demonstrația este imediată, folosind primul principiu de inducție și punctul e).

g) Alegem matricele
$$A_k = \begin{pmatrix} \cos k & -\sin k \\ \sin k & \cos k \end{pmatrix}$$
, unde $k \in \{1, 2, ..., 10\}$.

Avem $\det(A_k) = 1$, $\forall k \in \{1, 2, ..., 10\}$.

Din **f**) rezultă că există cel puțin o alegere a semnelor pentru care avem: $\det(A_1 \pm A_2 \pm ... \pm A_{10}) \leq \det(A_1) + \det(A_2) + ... + \det(A_{10}) = 10$, de unde obținem concluzia.

Subjectul IV.

a)
$$f'(x) = \frac{1}{\sqrt[4]{x}}$$
, pentru $x \in (0, \infty)$.

- **b)** f''(x) < 0, $\forall x \in (0, \infty)$, deci f' este strict descrescătoare pe $(0, \infty)$.
- c) Pentru k > 0, aplicând teorema lui Lagrange funcției f pe intervalul [k, k+1], deducem că există $c \in (k, k+1)$ astfel încât $f(k+1) f(k) = f'(c) = \frac{1}{4\sqrt{a}}$.
- **d)** Deoarece f' este strict descrescătoare pe $(0,\infty)$, avem : $k < c < k+1 \iff f'(k+1) < f'(c) < f'(k) \iff \frac{1}{\sqrt[4]{k+1}} < f(k+1) f(k) < \frac{1}{\sqrt[4]{k}}, \forall k > 0.$
- e) Pentru $n \in \mathbb{N}^*$, $b_{n+1} b_n \stackrel{\text{d}}{<} 0$, deci şirul $(b_n)_{n \ge 1}$ este strict descrescător şi $c_{n+1} c_n \stackrel{\text{d}}{>} 0$, deci şirul $(c_n)_{n \ge 1}$ este strict crescător.
- **f**) Deoarece f'(x) > 0, $\forall x \in (0, \infty)$, obținem că f este strict crescătoare pe $(0, \infty)$, de unde rezultă că $\forall n \in \mathbb{N}^*$, $c_n < b_n$.

Folosind monotonia celor două șiruri, deducem $\forall n \in \mathbf{N}^*, c_1 < b_n$ și $c_n < b_1$. Şirul $(b_n)_{n \geq 1}$ este strict descrescător și mărginit inferior, deci este convergent. Şirul $(c_n)_{n \geq 1}$ este strict crescător și mărginit superior, deci este convergent.

g) Deoarece şirul $(b_n)_{n\geq 1}$ e convergent, $\lim_{n\to\infty} a_n = \lim_{n\to\infty} (b_n + f(n)) = \lim_{n\to\infty} \left(b_n + \frac{4}{3} \cdot n^{\frac{3}{4}}\right) = +\infty$.

$$\lim_{n \to \infty} \left(\frac{1}{\sqrt[4]{n+1}} + \frac{1}{\sqrt[4]{n+2}} + \dots + \frac{1}{\sqrt[4]{2n}} \right) \cdot \frac{1}{\sqrt[4]{n^3}} = \lim_{n \to \infty} \cdot \frac{a_{2n} - a_n}{\sqrt[4]{n^3}} = \lim_{n \to \infty} \frac{b_{2n} - b_n + (f(2n) - f(n))}{\sqrt[4]{n^3}} = \\
= \frac{4}{3} \cdot (\sqrt[4]{8} - 1).$$