Package 'psfofr'

August 6, 2025

Type Package
Title Penalized Spatial Function-on-Function Regression Model
Version 1.0
Depends R (>= 3.5.0), fda, MASS, Matrix, matrixStats, methods
LazyLoad yes
ByteCompile TRUE
Encoding UTF-8
Maintainer Ufuk Beyaztas <ufukbeyaztas@gmail.com></ufukbeyaztas@gmail.com>
Description Functions for implementing methods for penalized spatial function-on-function regression mode
License GPL-3
Contents
predict_sffr2SLS
Index
predict_sffr2SLS Out-of-sample prediction for Penalised Spatial FoFR models

Description

Given a fitted model returned by sffr_pen2SLS, this function produces predicted functional responses at new spatial units whose functional covariates and spatial weight matrix are supplied by the user. A fixed-point solver enforces the spatial autoregressive feedback implicit in the SFoFR model.

Usage

```
predict_sffr2SLS(object, xnew, Wnew)
```

2 predict_sffr2SLS

Arguments

object An object of class "sffr2SLS": the list produced by sffr_pen2SLS. At mini-

mum it must contain gpx, gpy, K0, Ky, Kx, and the B-spline coefficient matrices

b0_mat, b_mat, r_mat.

xnew Numeric matrix of dimension $n_{\text{new}} \times |\text{gpx}|$, holding the functional covariate for

the new spatial units, evaluated on the same predictor grid used during model

fitting.

Wnew Row-normalised $n_{\rm new} \times n_{\rm new}$ spatial weight matrix that captures proximity

among the new units. Its definition should mirror that of the training matrix

(e.g.\ inverse distance, k-nearest neighbours, etc.).

Details

Let $\widehat{\beta}_0(t)$, $\widehat{\beta}(t,s)$, and $\widehat{\rho}(t,u)$ be the estimated surfaces stored in object. For each new unit i the algorithm first forms the non–spatial regression prediction

$$\widehat{G}_i(t) = \widehat{\beta}_0(t) + \int_0^1 X_i(s) \, \widehat{\beta}(t,s) \, ds,$$

computed efficiently by pre-evaluated B-spline bases. Spatial feedback is then introduced by iterating

$$Y_i^{(\ell+1)}(t) = \widehat{G}_i(t) + \sum_{j=1}^{n_{\text{new}}} w_{ij} \int_0^1 Y_j^{(\ell)}(u) \, \widehat{\rho}(t, u) \, du,$$

until the sup–norm difference between successive curves falls below 1e-3 or 1,000 iterations are reached. Convergence is guaranteed when $\|\widehat{\rho}\|_{\infty} < 1/\|Wnew\|_{\infty}$, a condition typically satisfied by the fitted model if the training weight matrix met it during estimation.

Value

A numeric matrix of dimension $n_{\text{new}} \times |\text{gpy}|$ containing the predicted functional responses evaluated on gpy. Row i corresponds to the i-th row of xnew.

Note

If the new weight matrix induces very strong dependence, the fixed-point iterations may converge slowly. Consider scaling Wnew to have $||Wnew||_{\infty} \leq 1$ or relaxing the tolerance.

Author(s)

Ufuk Beyaztas, Han Lin Shang, and Gizel Bakicierler Sezer

References

Beyaztas, U., Shang, H. L., and Sezer, G. B. (2025). *Penalised Spatial Function—on–Function Regression*. Journal of Agricultural, Biological, and Environmental Statistics (in-press).

See Also

sff_dgp for simulated data generation; sffr_pen2SLS for model fitting.

sffr_pen2SLS 3

Examples

```
## Not run: ------
## 1. Fit a model on small simulated data
# train <- sff_dgp(n = 500, rf = 0.5)
# lam <- list(lb = c(10^{-3}, 10^{-2}, 10^{-1}),
                      lrho = c(10^{-3}, 10^{-2}, 10^{-1}))
# fit <- sffr_pen2SLS(train$Y, train$X, train$W,</pre>
                    gpy = seq(0, 1, length = 101),
#
                    gpx = seq(0, 1, length = 101),
                    K0 = 10, Ky = 10, Kx = 10,
#
#
                    lam\_cands = lam)
## 2. Simulate NEW covariates and a compatible weight matrix
# test <- sff_dgp(n = 1000, rf = 0.5) ## we keep only X and W
# pred <- predict_sffr2SLS(fit, xnew = test$X, Wnew = test$W)</pre>
## End(Not run)
```

sffr_pen2SLS

Penalised Spatial Two-Stage Least Squares for SFoFR

Description

Fits the penalised spatial function-on-function regression (SFoFR) model via the two-stage least-squares (Pen2SLS) estimator introduced by Beyaztas, Shang and Sezer (2025). It selects optimal smoothing parameters, estimates regression and spatial autocorrelation surfaces, and (optionally) builds percentile bootstrap confidence bands.

Usage

```
sffr_pen2SLS(
  y, x, W, gpy, gpx,
  K0, Ky, Kx,
  lam_cands,
  boot = FALSE,
  nboot = NULL,
  percentile = NULL)
```

Arguments

У	n x length(gpy) matrix of functional responses evaluated on grid gpy.
X	n x length(gpx) matrix of functional predictors evaluated on grid gpx.
W	n x n row-normalised spatial weight matrix, typically inverse-distance.
gpy	Numeric vector of response evaluation points $t \in [0, 1]$.
gpx	Numeric vector of predictor evaluation points $s \in [0, 1]$.
K0	Integer; number of basis functions for the intercept $\beta_0(t)$.
Ку	Integer; number of basis functions in the <i>response</i> direction of the bivariate surfaces $\rho(t,u)$ and $\beta(t,s)$.

4 sffr_pen2SLS

Kx Integer; number of basis functions in the *predictor* direction of the regression

surface $\beta(t, s)$.

lam_cands Two-column matrix or data frame whose rows contain candidate smoothing

pairs $(\lambda_{\rho}, \lambda_{\beta})$ to be ranked by BIC.

boot Logical; if TRUE percentile bootstrap confidence intervals are produced.

nboot Number of bootstrap resamples. Required when boot = TRUE.

percentile Desired CI nominal width in percent (e.g., 95). Required when boot = TRUE.

Details

The estimator minimises the penalised objective

$$||Z^* \{ \operatorname{vec}(Y) - \Pi \theta \}||^2 + \frac{1}{2} \lambda_{\rho} P(\rho) + \frac{1}{2} \lambda_{\beta} P(\beta),$$

where $\theta=(\operatorname{vec}\rho,\operatorname{vec}\beta)$ are tensor-product B-spline coefficients, Z^* is the projection onto instrumental variables, and $P(\cdot)$ are Kronecker-sum quadratic roughness penalties in both surface directions. Candidate smoothing pairs are scored by the Bayesian Information Criterion

$$BIC = -2\log \mathcal{L} + \omega \log n,$$

with log-likelihood based on squared residuals and ω equal to the effective degrees of freedom.

If boot = TRUE, residuals are centred, resampled, and the entire estimation procedure is repeated nboot times. Lower and upper percentile bounds are then extracted for $\beta(t,s)$, $\rho(t,u)$, and $\widehat{Y}_i(t)$.

Value

A named list:

b0hat Estimated intercept curve $\widehat{\beta}_0(t)$.

bhat Matrix of $\widehat{\beta}(t,s)$ values.

rhohat Matrix of $\widehat{\rho}(t, u)$ values.

b0_mat, b_mat, r_mat Raw coefficient matrices of B-spline basis weights for β_0 , β , and ρ .

fitted.values $\widehat{Y}_i(t)$ matrix.

residuals $\widehat{\varepsilon}_i(t)$ matrix.

CI_bhat Two-element list with lower/upper percentile surfaces (NULL unless boot = TRUE).

CI_rhohat Analogous list for ρ .

CIy Percentile bands for the fitted responses.

gpy, gpx, K0, Ky, Kx Returned for convenience.

Author(s)

Ufuk Beyaztas, Han Lin Shang, and Gizel Bakicierler Sezer

References

Beyaztas, U., Shang, H. L., and Sezer, G. B. (2025). *Penalised Spatial Function—on–Function Regression*. Journal of Agricultural, Biological, and Environmental Statistics (in-press).

sff_dgp 5

Examples

```
## Not run: ------
## 1. simulate data
\# sim <- sff_dgp(n = 100, rf = 0.7)
## 2. candidate smoothing grid (four pairs)
# lam <- list(lb = c(10^{-3}), 10^{-2}, 10^{-1}),
                      lrho = c(10^{-3}, 10^{-2}, 10^{-1}))
## 3. fit model without bootstrap
# fit <- sffr_pen2SLS(</pre>
             = sim Y,
             = sim$X,
#
             = sim$W,
#
   W
#
             = seq(0, 1, length.out = 101),
   gpy
#
             = seq(0, 1, length.out = 101),
   gpx
   K0
             = 10,
             = 10,
   Кy
   Κx
             = 10,
  lam_cands = lam,
  boot
            = FALSE
# )
## End(Not run)
```

sff_dgp

 $Simulate\ data\ from\ a\ Spatial\ Function-on-Function\ Regression\ model$

Description

Generates synthetic functional predictors and responses from the spatial function-on-function regression (SFoFR) data-generating process described in Beyaztas, Shang and Sezer (2025). The model embeds spatial autoregression on the functional response, Fourier–type basis structure for the covariate, and user-controlled Gaussian noise.

Usage

```
sff_dgp(
    n,
    nphi = 10,
    gpy = NULL,
    gpx = NULL,
    rf = 0.9,
    sd.error = 0.01,
    tol = 0.001,
    max_iter = 1000
)
```

Arguments

gpy

n Number of spatial units (curves) to generate.

nphi Number of sine *and* cosine basis functions used to build each functional predictor. Total latent scores generated are therefore 2 * nphi.

Numeric vector of evaluation points for the response domain $t \in [0, 1]$. Defaults

to an equally-spaced grid of 101 points.

6 sff_dgp

gpx	Numeric vector of evaluation points for the predictor domain $s \in [0, 1]$. Defaults to an equally–spaced grid of 101 points.
rf	Scalar in $(0,1)$ controlling the strength of spatial autocorrelation through the surface $\rho(t,u)$. Values closer to 1 yield stronger dependence.
sd.error	Standard deviation of the i.i.d. Gaussian noise $\varepsilon_i(t)$ added to the latent regression part.
tol	Absolute tolerance used in the fixed-point iteration that solves the spatial autoregressive operator equation (stopping rule on the sup-norm of successive iterates).
max_iter	Maximum number of fixed-point iterations. Prevents infinite looping when strong spatial feedback and small tol interact.

Details

The generator mimics the penalised SFoFR set-up:

$$Y_i(t) = \sum_{j=1}^n w_{ij} \int_0^1 Y_j(u) \, \rho(t,u) \, du + \int_0^1 X_i(s) \, \beta(t,s) \, ds + \varepsilon_i(t),$$

where

- w_{ij} are row-normalised inverse-distance weights,
- $X_i(s)$ is built from Fourier scores $\xi_{ijk} \sim \mathcal{N}(0,1)$ and damped basis functions $\phi_k^{\cos}(s) = (k^{-3/2})\sqrt{2}\cos(k\pi s)$ and $\phi_k^{\sin}(s) = (k^{-3/2})\sqrt{2}\sin(k\pi s)$,
- the regression surface is $\beta(t,s)=2+s+t+0.5\sin(2\pi st)$,
- the spatial autocorrelation surface is $\rho(t, u) = rf(1 + ut)/(1 + |u t|)$,
- $\varepsilon_i(t) \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$, with $\sigma = \text{sd.error}$.

Given the contraction condition $\|\rho\|_{\infty} < 1/\|W\|_{\infty}$, the Neumann series defining $(\mathbb{I} - \mathcal{T})^{-1}$ converges and the solution is obtained by simple fixed-point iterations until the change is below tol. Full details are in Beyaztas, Shang and Sezer (2025).

Value

A named list with components

Y n x length(gpy) matrix of observed functional responses on the grid gpy.

Y_true Same dimension as Y; noise–free latent responses before adding $\varepsilon_i(t)$.

X n x length(gpx) matrix of functional predictors.

W n x n row-normalised spatial weight matrix based on inverse distances.

rho length(gpy) x length(gpy) matrix containing $\rho(t, u)$ evaluated on the response grid.

beta length(gpx) x length(gpy) matrix containing $\beta(t,s)$ evaluated on the Cartesian product of the predictor and response grids.

Author(s)

Ufuk Beyaztas, Han Lin Shang, and Gizel Bakicierler Sezer

sff_dgp 7

References

Beyaztas, U., Shang, H. L., and Sezer, G. B. (2025). *Penalised Spatial Function—on–Function Regression*. Journal of Agricultural, Biological, and Environmental Statistics (in-press).

Examples

```
## Not run: ------
## generate a toy data set
# dat <- sff_dgp(n = 250, rf = 0.5)
## End(Not run)</pre>
```

Index

```
predict_sffr2SLS, 1
sff_dgp, 2, 5
sffr_pen2SLS, I, 2, 3
```