Clicks Activation Study

Pradeep Arkachar February 2021

Executive Summary

Objectives

- Develop probability of activation per click model to optimize/maximize the user activation rate arising from the Google Adwords impressions
- Recommend strategy to improve marketing ROI
- Propose engineering architecture for model deployment and discuss limitations

Rank ordering of the model **Activation Rate** 12% 10.1% 66% 10% 11.4% 10.7% 8% 9.2% 6% Cumulative 0% 100% All in Best Cum Activatin Rate Cum % of Activation

The chart displays the ranking power of the model by showing the cumulative activation rate from the best 10% (left) to 100% of the population (right)

Recommendations

- Developed a probability of activation model that can be used to rank order customers for an efficient marketing dialer strategy shown in the chart above
- This framework can be further enhanced by combining with profitability model to go after the most profitable and converting customers
- Proposed a cloud-based engineering architecture

Insights

- 83% of the customers seek debt settlement 61% via mobile and 21% via Desktop (higher activation)
- 98% of the customers are not prime 50/50 split city vs non-city
- High converters in GA, PA, MD and CO; Philadelphia, Honolulu and Denver
- Cash loans have lowest conversion rate (3.8%)

Model Development

Data Summary

Total	Activated	Activation Rate
94,194	6,787	7.21%

Variable name	Total Missing	% Missing		
category_debt_type	9859	10.5%		
location_in_query	15	0.0%		
campaign_state	6	0.0%		
is_activated (target)	0	0.0%		
is_hardship	0	0.0%		
is_prime	0	0.0%		
in_city	0	0.0%		
platform	0	0.0%		
created_date	0	0.0%		

Daily and Weekly Seasonality

Weekday Activation Rate

- Mondays showed lower activation rate than other weekdays
- However, given that the data only spans for a month (4 data points per weekday) and the lower activity during the last week of the year, this feature was dropped from consideration
- With more data points, assessment can be made if there is weekly and monthly seasonality

Activation Rates by features

Activation Rates by Debt Type

debt_type Activation Rate

Activation Rates by State and Location

- The states and locations with total counts less than 1000 were grouped together
- High conversion GA, PA, MD and CO; Philadelphia, Honolulu and Denver
- Low conversion MO; Saint Petersburg, West Park and Saint Louis

Modeling Consideration

Data

- 12/12/2017 to 01/12/2018 (~ 1 month)
- Model development data first 3 weeks (~ 75%) train/test 80%/20%
- Out of time validation last week (~ 25%)

Feature Engineering

- Location, State Group categories < 25
 Counts into 'Others'
- Missing values of Debt Category was its own group
- N-1 dummy variables for each categorical variable

Algorithm

 XGBoost algorithm was chosen because of its fast development and outperformance, while offering some transparency

Validation

- K-Fold Cross validation and hyperparameter tuning was performed to avoid overfitting
- Expected VS actuals plot showed that the model fit the actual data well

Modeling Evaluation

• As seen in the distribution chart below, as well as the AUC and F1 scores, the model is weak in terms of separating activations from non-activations, however, it rank orders properly as demonstrated by the rank ordering table on the next slide

Rank Ordering Table

group_10	Activation Probability Range	Total	 	Total Predicted Activation	Total Actual Activation	_	·	% Cum Activatin Rate		% of Non- activation	Cum % of Activation	Cum % Non Activation	Difference
(Best) 9	(0.105, 1]	8082	8.6%	974	1044	12.05%	12.92%	12.92%	15.4%	8.1%	15.4%	8.1%	7.3%
8	(0.0956, 0.105]	10748	20.0%	1078	1103	10.03%	10.26%	11.40%	16.3%	11.0%	31.6%	19.1%	12.5%
7	(0.0866, 0.0956]	8064	28.6%	733	740	9.08%	9.18%	10.73%	10.9%	8.4%	42.5%	27.5%	15.1%
6	(0.0826, 0.0866]	10781	40.0%	923	924	8.56%	8.57%	10.12%	13.6%	11.3%	56.2%	38.7%	17.4%
5	(0.0769, 0.0826]	8151	48.7%	649	635	7.97%	7.79%	9.70%	9.4%	8.6%	65.5%	47.3%	18.2%
4	(0.0694, 0.0769]	10383	59.7%	761	698	7.33%	6.72%	9.15%	10.3%	11.1%	75.8%	58.4%	17.4%
3	(0.0621, 0.0694]	6613	66.7%	436	450	6.60%	6.80%	8.90%	6.6%	7.1%	82.4%	65.5%	16.9%
2	(0.0523, 0.0621]	12516	80.0%	760	631	6.07%	5.04%	8.26%	9.3%	13.6%	91.7%	79.1%	12.6%
1	(0.0331, 0.0523]	8111	88.6%	381	370	4.70%	4.56%	7.90%	5.5%	8.9%	97.2%	87.9%	9.2%
(Worst) 0	(0.0, 0.0331]	10745	100.0%	224	192	2.08%	1.79%	7.21%	2.8%	12.1%	100.0%	100.0%	0.0%
Total		94194		6920	6787	7.35%	7.21%					KS	18.2%

Comparing Algorithms and Sampling Methods

• Given the imbalance between the minority and majority class, the following algorithms and sampling methods were considered improve performance

Algorithms

- XGBoost
- Random Forest
- LGBM
- CatBoost

Sampling Methods

- No Sampling
- SMOTE (Oversampling Minority)
- SMOTE ENN (Hybrid)
- SMOTE Tomek (Hybrid)
- However, the performance of the algorithms were very similar in terms of AUC ROC
- The sampling methods also didn't have any significant improvement in the performance
- The chart on the next slide shows the comparison between different algorithms
- A probability threshold of 0.09+ was set for activation

Algorithms and Sampling Methods

Comparison between Algorithms/Sampling methods

Proposed Next Steps To Improve Performance

- Explore additional data that can be obtained systematically
 - ➤ Credit bureau data
 - ➤ Social media data from third party data aggregators
- Assess trade off between model execution speed/ease of execution and performance
- Side by side with Call Center associates can provide additional insights into the key features they look for in a prospect; Bringing those features into modeling dataset will improve the prediction

Model Performance Tracking Post Implementation

- Model performance monitoring and tracking
 - ➤ Periodic cadence (weekly, monthly)
 - Check for population stability (PSI), rank ordering reversals, AUC, F Score
- Define and monitor KPIs In this case activation rate
 - ➤ A model developed with rigor will significantly improve activation rate thus increasing marketing ROI
- Evaluate additional data/features to improve model prediction on an ongoing basis

Engineering Architecture

Proposed Engineering Architecture on Cloud

Workflow

- Data scientist puts together model package – init(), pre-process(), predict()
- 2. Model gets deployed by generic API provided by engineering team. Many platforms such as Google, Amazon offer these services
- Upstream process invokes Model and gets prediction

Limitations

- In case of complex machine learning algorithm, model packaging may become hard
- 2. The platform may not optimally tuned for the workload and will likely be hard to tune to a specific use-case. If this is critical, then bringing some parts of the service in-house would be a part of the solution

Appendix

Feature Importance (Partial list)

Information Values

• State and Location have IV indicating that targeting certain geographies can lead to high conversion rate