Valid Codes & Descriptions for ANNOTATED INFORMATION in 2003 PDP Analytical Results

Annotate Code	Annotated Information	
Q	Residue at below quantifiable level (BQL)	
QV	Residue at <bql> with presumptive violation - No Tolerance</bql>	
QX	Residue at <bql> with presumptive violation - Exceeds Tol.</bql>	
V	Residue with a presumptive violation - No Tolerance	
X	Residue with a presumptive violation - Exceeds Tolerance	

Valid Codes & Descriptions for COMMODITY MARKETING CLAIM on 2003 PDP Samples

Claim Code	Commodity Marketing Claim
NC	No Claim
OT	Other
PD	No Pesticides Detected
PO	Organic
PP	Pesticide Free

Valid Codes & Descriptions for COMMODITIES Sampled/Analyzed by PDP in 2003 (Fresh Product Unless Otherwise Noted)

Commodity		# of Samples
Code	Commodity Name	Analyzed
AA	Asparagus, Canned	354
AP	Apples	744
AS	Asparagus	351
BU	Butter	732
BY	Barley	452
CC	Peaches, Canned	751
CN	Cantaloupe	186
CS	Sweet Corn, Frozen	547
CU	Cucumbers	739
GC	Green Beans, Canned	743
MU	Mushrooms	552
ON	Onion	741
PC	Peaches	269
PE	Pears	187
PJ	Pear Juice, Conc./Puree	66
PP	Sweet Bell Peppers	741
PS	Sweet Peas, Frozen	549
SP	Spinach	736
SW	Sweet Potatoes	734
ТО	Tomatoes	742
WF	Wheat Flour	606
WR	Water, Finished	794

Valid Codes & Descriptions for COMMODITY TYPE in 2003 PDP Samples

Commod Type Code	Commodity Type
CA	Canned
CO	Liquid Concentrate
FR	Fresh
FZ	Frozen
GR	Grain, Raw
OT	Other

Valid Codes & Descriptions for Concentration/LOD Unit-of-Measure Code

Concen/LOD Unit Code	Concen/LOD Unit Description
В	Parts-per-Billion (ppb)
М	Parts-per-Million (ppm)
Т	Parts-per-Trillion (ppt)

Valid Codes & Descriptions for CONFIRMATION METHOD in 2003 PDP Analytical Results

ConfMethod Code	Confirmation Method
С	GC or LC Alternate Column
CD	GC or LC Alt. Column and Alt. Detector
D	GC or LC Alternate Detector
F	Liquid Chrom. w/Fluorescence Detector
I	GC/IT-Gas Chrom w/Ion Trap MS-single stg
L	LC/MS-Liq Chrom w/Mass Spec-single stage
LT	LC-MS/MS - Liq Chrom w/Tandem Mass Spec
М	GC/MS - single quadropole
MO	Quant. & Confirm. by GC/MS only
Р	LC-AMP - Liquid Chrom Alt. Mobile Phase
S	GC or LC -MS Alternate Detector
Т	GC/MS/MS - Gas Chrom w/Tandem Mass Spec

Valid Codes & Descriptions for COUNTRIES Where PDP 2003 Samples Originated

Country Code	Country Name
150	Argentina
160	Australia
190	Belgium
220	Brazil
260	Canada
275	Chile
280	China, Peoples Rep. (Com.)
281	China, Republic of (Taiwan)
285	Colombia
295	Costa Rica
320	Dominican Republic
325	Ecuador
400	Greece
415	Guatemala
430	Honduras
475	Israel
515	Korea, Republic of
595	Mexico
630	Netherlands
660	New Zealand
720	Peru
730	Poland
801	South Africa
830	Spain
UNK	Unknown

Valid Codes & Descriptions for DETERMINATIVE METHOD in 2003 PDP Analytical Results

Determin Code	Determinative Method	
	Determinative Method	
01	GC/ECD - Electron Capture Detector	
02	GC/FPD - Flame Photometric Detector in Phosphorus Mode	
05	GC/ELCD - Electrolytic Conductivity Detector in Halogen Mode	
07	GC/MS - Gas Chrom w/Mass Spec - single quadrupole	
08	GC/IT - Gas Chrom w/ Ion Trap Mass Spec - single stage	
11	LC/UV - Liquid Chromatography w/ UV Detector	
12	Liquid Chrom w/ POST-Column Derivatization & FL Detector	
19	Liquid Chrom w/ PRE-Column Derivatization & FL Detector	
34	GC/MS/MS - Gas Chrom w/ Tandem Mass Spectrometry	
60	GC/XSD - Halogen Specific Detector	
61	LC/MS - Liquid Chrom w/ Mass Spec - single stage	
62	LC-MS/MS - Liquid Chrom w/ Tandem Mass Spectrometry	
64	Second LC/MS/MS	
65	GC/Micro ECD - Micro Electronic Capture Detector	
66	GC/PFPD - Pulsed Flame Photometric Detector	
67	Third LC/MS/MS	
68	Second GC/ECD	

Valid Codes & Descriptions for COLLECTION/DISTRIBUTION FACILITY TYPE in 2003 PDP Samples

DistType Code	Collection Facility Type
В	Broker
D	Distribution Center
G	Grain Lot
Н	Wholesale
L	Wholesale and Retail
0	Other Market Type
Р	Processing Plant
R	Retail
S	Storage Facility
Т	Terminal Market
U	Unknown
W	Water Treatment Facility

Valid Codes & Descriptions for EXTRACTION METHOD in 2003 PDP Analytical Results

Extract	
Code	Extraction Method
015	Modified Luke Extraction Method without Cleanup for Multi-Residues & Carbamates
550	CDFA Lee et al C-18 Extraction Method
551	CDFA Chlorinated ACN Florisil SPE Extraction Method
552	CDFA MSD Aminopropyl Extraction Method
553	CDFA Carbamate SPE Extraction Method
800	FL-Modified CDFA C-18 Extraction Method (P-fraction)
801	FL-Modified CDFA C-18 Extraction Method Aminopropyl SPE Cleanup
802	FL-Modified CDFA C-18 Extraction Method w/ Florisil SPE Cleanup
803	GIPSA Modified Method for Extraction of Multi-Residues in Grains
804	GIPSA Modified Method for Determ. of Triazole Metab. in Wheat Flour (SPE, LC/MS-MS)
805	MDA Modified Quecher's Method
806	NYS Modified SPE Method (F&V)
807	NYS Modified Method for Determination of Triazoles & Metab. in Peaches (SPE, LC/MS-MS)
808	WSDA Modified Method for Determination of Triazoles & Metab. in Apples (SPE, LC/MS-MS)
809	NSL Butter Extraction Method
901	NYS Modification of USGS Method 2001/2002 (SPE/GC)
902	NYS Modification of USGS Method 9060 (SPE/LC)
903	NYS Modification of USGS Method for Chloroacetanilide (SPE/LC)
999	OTHER Multi-Residue Methods

Valid Codes & Descriptions for PDP Participating LABORATORIES in 2003

Lab Code	Lab Agency Name	Lab City/State
CA1	California Department of Food & Agriculture	Sacramento, CA
CO1	Colorado Department of Agriculture	Denver, CO
FL1	Florida Dept of Agriculture & Consumer Services	Tallahassee, FL
FL2	Florida Dept of Agriculture & Consumer Services #2	Winter Haven, FL
MI1	Michigan Department of Agriculture	East Lansing, MI
NY1	New York Department of Agriculture and Markets	Albany, NY
OH1	Ohio Department of Agriculture	Reynoldsburg, OH
TX1	Texas Department of Agriculture	College Station, TX
US2	USDA, AMS, National Science Laboratory	Gastonia, NC
US3	USDA, GIPSA, Technical Services Division	Kansas City, MO
WA1	Washington State Department of Agriculture	Yakima, WA

Valid Codes & Descriptions for MEAN RESULT in 2003 PDP Analytical Results (O, A, and R indicated Positive Detections)

Mean Code	Mean Result Finding
А	Detect - Avg of Original & Re-extract
N	Non-Detect - Original Analysis
NR	Non-Detect - Rerun Analysis
0	Detect - Original Analysis Value
R	Detect - Re-extraction Analysis Value

Valid Codes & Descriptions for Sample ORIGIN Code

Origin Code	Origin of Sample
1	Domestic (U.S.)
2	Imported
3	Unknown origin

Valid Codes & Descriptions for Compounds (PESTICIDES) Analyzed by PDP in 2003

Pest Code	D (11)	Test Class	# of Analysis Results
	Pesticide Name		
001	Allerin	A	4481
002	Allethrin	0	4533
011	Captan	A	6587
021	Dalapon	G	10
024	Diazinon	C	9382
026	2,4-D	G	321
028	Dieldrin	A	10835
031	Dinoseb	F	93
032	Diuron	A	788
033	Anilazine	A	1382
034	Endrin	A C	4508
042	Azinphos methyl		7352
044	Heptachlor Monuron	A	4243 692
050		A	9686
050	Lindane (BHC gamma) Malathion	C	10555
052	Methoxychlor Total	A	2794
055	Parathion methyl	C	4535
057	MGK-264	F	732
056	Neburon	A	582
065	Parathion ethyl	C	8963
069	Mevinphos Total	C	4444
070	Piperonyl butoxide	U	8685
083	O-Phenylphenol	<u>'</u>	7198
088	TEPP	C	741
102	Carbaryl	E	9068
102	Ethion	C	5438
107	Tetradifon	A	7516
114	Chlorpropham	E	5169
117	Disulfoton	C	7760
124	Coumaphos	C	2267
125	Diphenylamine (DPA)	F	4589
126	Folpet	A	3367
129	Linuron	A	3759
134	DCPA	A	8182
143	Heptachlor epoxide	A	10440
144	Dicloran	A	8152
147	Tecnazene	A	2725
148	Phorate	C	6749
149	Simazine	R	7174
151	Trifluralin	A	8876
152	Terbacil	A	6027
153	Bromacil	U	795
155	Dicamba	G	40
156	Ametryn	R	678
157	Thiabendazole	В	4927

Pest	1	T	# of Analysis
Code	Pesticide Name	Test Class	Results
159	Methomyl	E	8411
160	Chlorpyrifos	C	10317
161	Pebulate	P	1243
162	Propoxur	E	654
163	Fonofos	C	5421
164	Chlorothalonil	A	4917
165	Phosmet	C	6839
166	Phosalone	C	4503
167	Aldicarb	E	5063
168	Aldicarb sulfone	E	4930
169	Aldicarb sulfoxide	E	5038
170	Methamidophos	C	6896
171	Dimethoate	C	8092
172	Chlordane trans	A	5673
173	Chlordane cis	A	5891
174	Captafol	A	3713
175	Ethoprop	C	4692
176	Tetrachlorvinphos	C	4907
177	Fenthion	C	2794
178	Omethoate	C	7275
180	Carbofuran	E	5927
181	Metribuzin	F	7671
189	Phorate sulfone	C	6992
190	Phorate sulfoxide	C	2389
190	Benfluralin	A	607
191	Benomyl	В	1026
192	Methiocarb	E	1834
193	Methidathion	C	5759
200	EPTC	P	
200	Vernolate	P	2058 2127
		C	1929
202	Carbophenothion	C	4859
203	Phosphamidon	C	
204	Acephate Terbufos	C	5793 4614
		C	
208	Malathion oxygen analog	C	9890
209	Dicrotophos Carboxin		509
210	Disulfoton sulfone	F C	3253
216			7168
217	DEF (Tribufos)	С	1526
219	Oxydemeton methyl	С	1135
222	Permethrin cis	0	5079
223	Permethrin trans	0	4951
224	Profenofos	С	3298
226	Demeton-S sulfone	C	560
227	Alachlor	A	2770
228	Cyanazine	R	1221
230	Pendimethalin	F	4408
231	Iprodione metabolite isomer	A	1135
232	Cycloate	P	1413

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
235	Chlorpyrifos methyl	С	2584
236	Fenamiphos	С	6907
245	Oxydemeton methyl sulfone	С	3071
249	Prometryn	R	3481
253	Dicofol o,p'	A	1135
254	Dicofol p,p'	Α	7338
255	Cyromazine	F	767
258	Isofenphos	С	794
264	Propiconazole	L	7149
271	Fenarimol	A	2323
275	Methoxychlor p,p'	A	7631
276	Methoxychlor olefin	A	1408
283	Metolachlor	A	8995
297	Fluvalinate	0	732
299	Diclofop methyl	G	1033
304	Quintozene (PCNB)	A	5718
305	Atrazine	R	6754
310	Propham	E	1013
311	Sulfotep	C	794
312	2,4,5-T	G	321
316	Pentachlorophenol	A	10
317	2,4-DB	G	40
317	MCPA	G	321
321	Hexachlorobenzene (HCB)	A	4007
324	Dichlobenil	T	2235
329	Picloram	G	321
330	Diphenamid	F	7626
	· ·		
338	Dichlorvos (DDVP)	C	8922
341	Propanil	A	2551
343	Monocrotophos	С	1351
349	Oxychlordane	A	1899
351	Pentachloroaniline (PCA)	A	2301
370	Parathion oxygen analog	С	7564
377	Phenthoate	l	1406
382	1-Naphthol	E	317
387	Pentachlorobenzene (PCB)	A	4860
388	Pentachlorophenyl methyl sulfide	A	1559
391	Fenitrothion	С	2141
395	Diazinon oxygen analog	С	8880
512	3-Hydroxycarbofuran	E	5900
529	Vinclozolin	A	6269
537	Oxamyl	E	6003
538	Ethion di oxon	С	969
539	Permethrin Total	0	3553
540	Pronamide	A	6050
546	Fenvalerate	0	3650
556	Resmethrin	0	5334
562	Pirimiphos methyl	C	6683
579	Mevinphos E	C	1404

Pest Code	Pesticide Name	Test Class	# of Analysis Results
580	Pirimicarb	E	1406
593	Procymidone	A	1009
593	Napropamide	F	5514
594	Norflurazon	A	4831
597	Cypermethrin Imazalil	0	8209
604		N	4251
607	Metalaxyl	F	9947
608	Triadimefon	L	8313
609	Sulprofos	С	1929
612	Deltamethrin (includes parent Tralomethrin)	0	5070
614	Coumaphos oxygen analog	С	2376
617	Chlorfenvinphos beta	С	634
620	МСРВ	G	321
621	Tri Allate	Р	2380
623	Propargite	I	5063
624	Tetrahydrophthalimide (THPI)	A	1122
625	Oxadiazon	A	1242
626	Iprodione	A	6513
636	Propetamphos	С	2296
638	Triadimenol	L	2816
648	Fenitrothion oxygen analog	С	509
651	Diflubenzuron	A	1255
655	Isofenphos oxygen analog	С	237
658	Bendiocarb	E	768
660	Fenthion sulfone	С	732
666	Carbendazim (MBC)	В	133
675	Propachlor	А	1526
679	Myclobutanil	L	11144
691	Fenthion-O analog	С	794
692	Fonofos oxygen analog	С	77
699	Clofentezine	Α	120
701	Fluometuron	Α	518
713	Oxyfluorfen	Α	3349
714	Esfenvalerate	0	3106
716	Barban	Е	237
717	Chlorimuron ethyl	K	30
719	Clomazone	A	4432
720	Norflurazon desmethyl	A	4934
721	Ethalfluralin	A	2959
722	Etridiazole	A	3542
725	Nitrapyrin	A	1354
726	Thiobencarb	P	1814
727	Acifluorfen	A	40
729	Bromoxynil	G	310
731	Triclopyr	G	310
736	Fluridone	A	5783
737	Oryzalin	F	173
745	Fenamiphos sulfone	C	6622
745	Fenamiphos sulfoxide	C	2742
7 4 0	ו בוומוווויווטט שווטאועט		2142

Pest			# of Analysis
Code	Pesticide Name	Test Class	Results
753	Imazamethabenz methyl	J	583
755	Tralomethrin	0	237
758	Bentazon	F	321
772	Chlorpyrifos oxygen analog	С	509
777	Fenoxaprop ethyl	G	732
778	Molinate	Р	510
779	Parathion methyl oxygen analog	С	1995
780	Tebuthiuron	F	583
781	Cyfluthrin	0	8719
783	Butylate	Р	1568
785	Desisopropyl atrazine	R	510
786	Desmedipham	E	496
791	Phenmedipham	E	1713
793	TCMTB	F	999
806	Butachlor	A	273
807	Acetochlor	A	1081
808	Fenpropathrin	0	4914
833	Prochloraz	N	639
840	Fenuron	F	583
848	Phenothrin	0	1763
858	Ethiofencarb		1268
	Endosulfan I	A	10588
900	Endosulfan II		
901		A	10718
902	Endosulfan sulfate	A	10509
903	BHC alpha	A	3353
904	BHC beta	A	2533
906	DDT p,p'	A	4975
907	DDT o,p'	A	1397
908	DDD p,p'	A	5216
909	DDD o,p'	A	1406
910	DDE p,p'	A	11180
911	DDE o,p'	A	237
915	Triforine	A	246
928	Phorate oxygen analog	С	1929
929	Phosalone oxygen analog	С	509
930	Bifenthrin	0	7238
942	Prometon	R	773
947	Tetramethrin	0	1677
952	Chloramben	A	280
953	Cadusafos	С	153
954	Hexaconazole	L	3426
963	Terbufos sulfone	С	5428
964	Desethyl Atrazine	R	522
966	Phorate oxygen analog sulfone	С	732
967	Imidacloprid	A	2478
A15	Chlorethoxyfos	С	1353
A22	Cyproconazole	L	2901
A25	Dichlorprop	G	281
A30	Fenbuconazole	L	3836

Pest Code	Pesticide Name	Test Class	# of Analysis Results
A38	Lactofen	A	109
A36 A42	Mecoprop (MCPP)	G	30
A42 A46	,	F	4910
A46 A47	Oxadixyl Oxamyl oxima	E F	133
	Oxamyl oxime		
A54	RH 9129 (fenbuconazole metab.)	L	1990
A55	RH 9130 (fenbuconazole metab.) Tebuconazole	L L	1930 7231
A58			_
A59	Tebupirimfos	С	794
A60	Terbufos-O analog	С	794
A61	Triflumizole	L	1225
A68	1,2,4-Triazole	L	1958
A82	Fipronil	A	732
AAK	Chlorfenvinphos total	С	693
AAU	Flumetsulam	A	321
AAX	Ethion mono oxon	С	2661
AAZ	Chlorpyrifos methyl O-analog	С	732
ABC	Spinosad A	I	500
ABD	Spinosad D	I	500
ABF	Pymetrozine	F	1161
ABG	Tebufenozide	F	1894
ABH	Propiconazole I	L	583
ABI	Propiconazole II	L	583
ABM	3,5-Dichloroaniline	A	109
ABN	Acetochlor ethanesulfonic acid (ESA)	A	316
ABO	Acetochlor oxanilic acid (OA)	A	518
ABP	Alachlor ethanesulfonic acid (ESA)	A	409
ABQ	Alachlor oxanilic acid (OA)	A	514
ABR	Bensulfuron methyl	K	300
ABV	DCPA monoacid	A	281
ABY	Imazameth	J	272
ACA	Imazamox	J	542
ACB	Imazapyr	J	553
ACC	Imazaquin	J	574
ACD	Imazethapyr	J	583
ACE	Methidathion oxygen analog	С	794
ACG	Metolachlor ethanesulfonic acid (ESA)	A	518
ACH	Metolachlor oxanilic acid (OA)	A	518
ACI	Metsulfuron methyl	K	204
ACK	N-(3-hydroxy)propyl EPTC	P	109
ACL	Niclosamide	A	10
ACM	Nicosulfuron	K	281
ACO	S-(2-hydroxy)propyl EPTC	P	237
ACP	Sulfometuron methyl	K	30
ACQ	Sulprofos oxygen analog	C	509
ACR	Tebupirimfos oxygen analog	C	794
ACT	Siduron	F	281
ACV	Methoprene	1	2961
ACV	Imazapic	J	2901
ADC	Prallethrin	0	3347
ADC	FIANGUINI	l O	J 3347

Pest		T 10	# of Analysis
Code	Pesticide Name	Test Class	Results
ADD	Dimethenamid	F	1200
ADE	Esfenvalerate+Fenvalerate Total	0	6081
ADG	Indoxacarb	I	875
ADH	Cyphenothrin	0	732
ADI	Etofenprox	0	732
ADJ	Fluroxypyr 1-methylheptyl ester	G	731
ADL	MGK-326 (dipropyl isocinchomeronate)	F	732
ADR	Triticonazole	L	2901
ADU	Bromuconazole 46	L	2702
ADV	Bromuconazole 47	L	1920
ADW	Triazole alanine (TA)	L	1959
ADX	Triazole acetic acid (TAA)	L	1960
ADY	RPA 406341 (triticonazole metab.)	L	1563
ADZ	RPA 404886 (triticonazole metab.)	L	1384
AEA	HWG 2061 (tebuconazole metab.)	L	1384
AEB	Dimethenamid/Dimethenamid P	F	128
AEJ	Resmethrin-c	0	90
AEK	Resmethrin-t	0	90
AEL	Cyhalothrin, Total (Cyhalothrin-L + R157836 epimer)	0	3591
AEM	Cyhalothrin, Lambda	0	4969
B13	Chlorfenapyr	A	732
B15	Isoxaflutole	A	732
B18	Naptalam	1	252
B20	Bromuconazole	<u>'</u>	179
B21	Carfentrazone ethyl	A	1481
B22	Cyprodinil	V	995
B23	Fludioxonil	A	5921
B23	Pyriproxyfen	F	3428
			1122
B26 B28	Tefluthrin	O B	
	5-Hydroxythiabendazole Flufenacet		133
B30	Forchlorfenuron	A	599
B32		A	230
B41	Fenhexamid	l	742
B42	Kresoxim-methyl	I	200
B43	Thiamethoxam	A	1333
B44	Zoxamide	A	252
B46	Clopyralid	G	292
B48	Azoxystrobin	F	176
B51	Acibenzolar S methyl	F	742
B52	Buprofezin	F	2324
B53	Epoxiconazole	L	2901
B56	Pyridaben	Α	796
B58	Difenoconazole	L	3789
B63	Flutolanil	А	732
B70	Tolclofos methyl	А	237
B72	Tetraconazole	L	1791
B77	Dimethomorph	W	2716
B79	Trifloxystrobin	F	732
B82	Bifenazate	F	54

Valid Codes & Descriptions for QUANTITATION METHOD in 2003 PDP Analytical Results

Quantitate Code	Quantitation Method
Н	Standard NOT In Matrix
HU	Standard NOT in Matrix (Unvalidated Residue)
M	Standard In Matrix
MU	Standard In Matrix (Unvalidated Residue)
PH	Standard Prepared Using Analyte Protectants - NOT in Matrix
PM	Standard Prepared Using Analyte Protectants - In Matrix
SH	Internal Standard - NOT in Matrix
SM	Internal Standard - In Matrix
U	Unvalidated Residue

Valid Codes & Descriptions for All 50 STATES (plus Washington D.C. and Puerto Rico)

State	
Code	State
AK	Alaska
AL	Alabama
AR	Arkansas
AZ	Arizona
CA	California
СН	Check Sample
CK	Check Sample
CO	Colorado
CT	Connecticut
DC	Washington D.C.
DE	Delaware
FL	Florida
GA	Georgia
HI	Hawaii
IA	lowa
ID	Idaho
IL	Illinois
IN	Indiana
KS	Kansas
KY	Kentucky
LA	Louisiana
MA	Massachusetts
MD	Maryland
ME	Maine
MI	Michigan
MN	Minnesota
MO	Missouri
MS	Mississippi
MT	Montana
NC	North Carolina
ND	North Dakota
NE	Nebraska
NH	New Hampshire
NJ	New Jersey
NM	New Mexico
NV	Nevada
NY	New York
OH	Ohio
OK	Oklahoma
OR	Oregon
PA	Pennsylvania
PR	Puerto Rico

State Code	State
RI	Rhode Island
SC	South Carolina
SD	South Dakota
TN	Tennessee
TX	Texas
US	United States (exact State not available)
UT	Utah
VA	Virginia
VT	Vermont
WA	Washington
WI	Wisconsin
WV	West Virginia
WY	Wyoming

Valid Codes & Descriptions for TEST (COMPOUND) CLASS in 2003 PDP Analytical Results

Test Class Code	Test (Compound) Class
А	Halogenated
В	Benzimidazole
С	Organophosphorus
Е	Carbamate
F	Organonitrogen
G	2,4-D / Acid Herbicides
I	Other Compounds
J	Imidazolinone
K	Sulfonyl Urea Herbicides
L	Conazoles / Triazoles
N	Imidazoles
0	Pyrethroids
Р	Thiocarbamates
R	Triazines
Т	Nitrile
U	Uracil
V	Pyrimidone
W	Morpholine

EPA Tolerance Levels for Commodity/Pesticide Pairs Analyzed by PDP in 2003

Tolerance Level Code: NT = No Tolerance Established

EX = Exempt from Tolerance Requirement

Ex2 = Exempt for growing crops

SU = Safe Use in spot/crack/crevice treatment

Commod	Pest	EPA Tolerance	Units		
Code	Code	Level	pp_	Note	Comment
AA	001	0.03	М	AL	Action Level
AA	002	NT	М		
AA	024	NT	М		
AA	028	0.03	М	AL	Action Level
AA	033	NT	М		
AA	034	0.05	М	AL	Action Level
AA	042	NT	М		
AA	044	0.05	М	AL	
AA	050	1	М		
AA	052	8	М		
AA	057	NT	М		
AA	065	NT	М		
AA	070	Ex2	М		Exempt for growing crops
AA	083	NT	М		
AA	102	10	М		
AA	107	NT	М		
AA	108	NT	М		
AA	114	NT	М		
AA	117	0.1	М		Regional Tolerance
AA	125	NT	М		
AA	126	NT	М		
AA	129	7.0	М		
AA	134	NT	М		
AA	143	0.05	М	AL	
AA	144	NT	М		
AA	147	NT	М		
AA	148	NT	М		
AA	149	NT	М		
AA	151	0.05	М		
AA	152	0.4	М		
AA	159	2	М		
AA	160	5.0	М		Regional Tolerance
AA	161	NT	М		
AA	163	NT	М		
AA	164	0.1	М		
AA	165	NT	М		
AA	166	NT	М		
AA	170	0.02	М		

AA	171	0.15	М		Regional Tolerance
AA	172	0.1	M	AL	Action Level
AA	173	0.1	M	AL	Action Level
AA	176	NT	M	7 (2	7 (01/01/1 2010)
AA	178	0.15	M		Regional Tolerance
AA	181	0.1	M		rtogional Folorando
AA	189	NT	M		
AA	197	NT	M		
AA	203	NT	M		
AA	204	0.02	M		
AA	205	NT	М		
AA	208	8	М		
AA	216	0.1	М		Regional Tolerance
AA	219	NT	М		Ü
AA	222	1.0	М		
AA	223	1.0	М		
AA	224	NT	М		
AA	230	NT	М		
AA	236	0.02	М		Regional Tolerance
AA	254	NT	М		
AA	275	NT	М		
AA	283	NT	М		
AA	304	NT	М		
AA	305	NT	М		
AA	321	NT	М		
AA	330	NT	М		
AA	338	NT	М		
AA	351	NT	M		
AA	387	NT	M		
AA	388	NT	M		
AA	529	NT	M		
AA	539	1.0	M		
AA	540	NT	M		
AA	556	3.0	М		
AA	562	NT	M		
AA	593	NT	M		
AA	594	0.1	M		
AA	596	0.05	M		
AA	597	NT	M		
AA	607	7.0	M		
AA	608	NT	M		
AA	612	0.05	M		
AA	621	NT	M		
AA	624	NT	M		
AA	626	NT	M		
AA	679	0.02	M		
AA	719	NT	M		

AA	720	0.05	М		
AA	722	NT	M		
AA	736	NT	M		
AA	745	0.02	М		Regional Tolerance
AA	781	0.05	М		
AA	808	NT	M		
AA	848	NT	M		
AA	900	NT	M		
AA	901	NT	M		
AA	902	NT	M		
AA	906	0.5	M	AL	Action Level
AA	908	0.5	M	AL	Action Level
AA	910	0.5	М	AL	Action Level
AA	930	0.05	М		
AA	947	NT	М		
AA	963	NT	М		
AA	A46	NT	М		
AA	A58	NT	М		
AA	ADC	1.0	М		
AA	ADE	0.05	М		
AA	AEM	0.01	М		
AA	B24	0.10	М		
AA	B52	NT	М		
AP	264	NT	М		
AP	608	1.0	М		
AP	638	NT	М		
AP	679	0.5	М		
AP	954	NT	М		
AP	A22	NT	М		
AP	A30	NT	М		
AP	A54	NT	М		
AP	A55	NT	М		
AP	A58	NT	M		
AP	A68	NT	M		
AP	ADR	NT	M		
AP	ADU	NT	M		
AP	ADV	NT	M		
AP	ADW	NT	M		
AP	ADX	NT	M		
AP	ADY	NT	M		
AP	ADZ	NT	M		
AP	AEA	NT	M		
AP	B53	NT	M		
AS	001	0.03	M	AL	Action Level
	002	NT	M	/	71011011 E0701
AS I	UUL	1 7 1	IVI	1 1	
AS AS	024	NT	М		

AS	033	NT	М		
AS	034	0.05	М	AL	Action Level
AS	042	NT	М		
AS	044	0.05	М	AL	
AS	050	1	М		
AS	052	8	М		
AS	057	NT	М		
AS	065	NT	M		
AS	070	Ex2	M		Exempt for growing crops
AS	083	NT	M		Zampi ioi groming oropo
AS	102	10	M		
AS	107	NT	M		
AS	108	NT	M		
AS	114	NT	M		
AS	117	0.1	M		Regional Tolerance
AS	125	NT	M		. tog.onar rololarioo
AS	126	NT	M		
AS	129	7.0	M		
AS	134	NT	M		
AS	143	0.05	M	AL	
AS	144	NT	M	AL	
AS	147	NT	M		
AS	148	NT	M		
AS	149	NT	M		
AS	151	0.05	M		
AS	152	0.05	M		
AS	157	0.4 NT	M		
AS		2	M		
	159				Denienal Talananaa
AS	160	5.0	M		Regional Tolerance
AS	161	NT	M		
AS	163	NT	M		
AS	164	0.1	M		
AS	165	NT	M		
AS	166	NT	M		
AS	170	0.02	M		Davis LT L
AS	171	0.15	M		Regional Tolerance
AS	172	0.1	M	AL	Action Level
AS	173	0.1	M	AL	Action Level
AS	176	NT	M		
AS	178	0.15	M		Regional Tolerance
AS	181	0.1	M		
AS	189	NT	M		
AS	197	NT	M		
AS	203	NT	М		
AS	204	0.02	М		
AS	205	NT	М		
AS	208	8	М		

AS	216	0.1	M		Regional Tolerance
AS	219	NT	M		Regional Tolerance
AS	222	1.0	M		
AS	223	1.0	M		
AS	224	NT	M		
AS	230	NT	M		
AS	236	0.02	M		Regional Tolerance
AS	254	NT	M		
AS	275	NT	M		
AS	283	NT	M		
AS	304	NT	M		
AS	305	NT	M		
AS	321	NT	M		
AS	330	NT	М		
AS	338	NT	M		
AS	351	NT	М		
AS	387	NT	M		
AS	388	NT	M		
AS	529	NT	M		
AS	539	1.0	M		
AS	540	NT	M		
AS	546	0.05	M		
AS					
	556	3.0	M		
AS	562	NT	M		
AS	593	NT	M		
AS	594	0.1	M		
AS	596	0.05	M		
AS	597	NT	M		
AS	607	7.0	M		
AS	608	NT	M		
AS	612	0.05	M		
AS	621	NT	M		
AS	624	NT	M		
AS	626	NT	М		
AS	679	0.02	М		
AS	714	0.05	М		
AS	719	NT	M		
AS	720	0.05	M		
AS	722	NT	M		
AS	745	0.02	M		Regional Tolerance
AS	781	0.05	M		1.109.01.31.10.01.01.00
AS	808	NT	M		
AS	848	NT	M		
AS	900	NT	M		
AS	901	NT	M		
AS	902	NT	M		A atiana I
AS	906	0.5	M	AL	Action Level

AS	908	0.5	М	AL	Action Level
AS	910	0.5	M	AL	Action Level
AS	930	0.05	M	AL	ACIION Level
AS	947	NT	M		
AS			M		
	963	NT			
AS	A58	NT	M		
AS	ADE	0.05	M		
AS	AEM	0.01	M		
AS	B24	0.10	M		
AS	B52	NT	M		
BU	002	NT	В		
BU	028	300	В	AL	Action Level
BU	052	500	В		
BU	058	300	В		
BU	102	NT	В		
BU	107	500	В		
BU	108	400	В	AL	Action Level
BU	114	NT	В		
BU	124	500	В		
BU	143	NT	В		
BU	148	NT	В		
BU	149	NT	В		
BU	152	NT	В		
BU	157	NT	В		
BU	160	250	В		
BU	167	NT	В		
BU	168	NT	В		
BU	169	NT	В		
BU	170	20	В		
BU	171	NT	В		
BU	176	500	В		
BU	177	NT	В		
BU	178	NT	В		
BU	180	NT	В		
BU	181	NT	В		
BU	189	NT	В		
BU	190	NT	В		
BU	197	NT	В		
BU	204	20	В		
BU	208	500	В		
BU	210	NT	В		
BU	217	NT	В		
BU	224	NT	В		
BU	227	NT	В		
ВU					
BU	235	1250	B		
BU	236	NT			
DU	264	NT	В		

BU	271	NT	В		
BU	275	NT	В		
BU	283	NT	В		
BU	297	NT	В		
BU	305	NT	В		
BU	310	NT	В		
BU	330	NT	В		
BU	338	NT	В		
BU	341	NT	В		
BU	512	NT	В		
BU	529	NT	В		
BU	538	500	В		
BU	539	6250	В		
BU	540	NT	В		
BU	556	3000	В		
BU	562	NT	В		
BU	596	NT	В		
BU	597	2500	В		
BU	607	NT	В		
BU	608	NT	В		
BU	612	50	В		
BU	614	500	В		
BU	623	2000	В		
BU	625	NT	В		
BU	626	NT	В		
BU	660	NT	В		
BU	675	NT	В		
BU	679	NT	В		
BU	713	NT	В		
BU	722	NT	В		
BU	726	NT	В		
BU	745	NT	В		
BU	746	NT	В		
BU	777	NT	В		
BU	781	30000	В		
BU	808	2000	В		
BU	848	NT	В		
BU	900	500	В		
BU	901	500	В		
BU	901	500	В		
BU	910	1250	В	AL	Action Level
BU	930	1000		\\rangle \	ACIION LEVEI
BU	930	NT	B		
BU	954	NT	В		
BU	966	NT	В		
BU	A22	NT	В		
BU	A58	NT	В		

BU	A61	NT	В		
BU	A82	1250	В		
BU	AAX	500	В		
BU	AAZ	1250	В		
BU	ACV	NT	В		
BU	ACV				
		1000	В		
BU	ADE	7000	В		
BU	ADH	NT	В		
BU	ADI	NT	В		
BU	ADJ	NT	В		
BU	ADL	NT	В		
BU	ADR	NT	В		
BU	ADU	NT	В		
BU	AEL	5000	В		
BU	B13	NT	В		
BU	B15	NT	В		
BU	B26	NT	В		
BU	B52	NT	В		
BU	B53	NT	В		
BU	B58	NT	В		
BU	B63	NT	В		
BU	B72	NT	В		
BU	B79	NT	В		
BY	002	2000	В		
BY	028	20	В	AL	Action Level
BY	050	100	В	AL	Action Level
BY	052	8000	В		
BY	065	1000	В		
BY	070	20000	В		
BY	102	200	В	AL	
BY	117	750	В		
BY	143	NT	В		
BY	151	50	В		
BY	159	1000	В		
BY	167	NT	В		
BY	168	NT	В		
BY	169	NT	В		
BY	170	20	В		
BY	180	100	В		Carbamate portion only
BY	181	750	В		Januariato portion only
BY	208	8000	В		
BY	210	200	В		
BY	216	750	В		
BY	235	6000	В		
BY	264	100			
BY		NT	B		
	275				
BY	283	100	В		

BY	299	100	В		
BY	338	500	В		
BY	341	200	В		
BY	370	1000	В		
BY	512	100	В		Carbamate portion only
BY	537	NT	В		, , , , , , , , , , , , , , , , , , ,
BY	556	3000	В		
BY	604	50	В		
BY			В		
	607	200			
BY	612	50	В		
BY	621	50	В		
BY	638	50	В		
BY	679	30	В		
BY	736	100	В		
BY	781	4000	В		Sect18 crisis exempt
BY	793	100	В		
BY	900	100	В		
BY	901	100	В		
BY	902	100	В		
BY	910	500	В	AL	Action Level
				AL	ACTION Level
BY	967	50	В		
BY	A46	100	В		
BY	A58	2000	В		Sect18 crisis exempt
BY	ACV	5000	В		
BY	ADE	50	В		
BY	AEM	50	В		
BY	B23	20	В		
BY	B58	100	В		
BY	B77	50	В		Interim Tolerance
CC	001	0.02	M	AL	Action Level
	001	0.02	IVI	AL	
CC	002	EV	N 4		Exempt from Tol
CC	002	EX	M		requirements
CC	011	50	M		
CC	024	0.7	M		
CC	028	0.02	M	AL	Action Level
CC	042	2.0	M		
CC	050	1	М		
CC	052	8	М		
CC	065	NT	М		
CC	070	8	М		
CC	083	20	M		
CC	102	10	M		
CC	108	5	M	A.	A - (
CC	143	0.05	M	AL	Action Level
CC	144	20	M		
CC	149	0.25	M		
CC	151	0.05	M		

00	450	0.0	N 4		
CC	152	0.2	M		
CC	159	5	M		
CC	160	0.05	M		
CC	164	0.5	M		
CC	165	10	М		
CC	166	15.0	М		
CC	170	0.02	М		
CC	172	0.1	M	AL	Action Level
CC	173	0.1	M	AL	Action Level
CC	197	0.05	M	AL	Action Level
CC	208	8	M		
CC	222	5.0	M		
CC	223	5.0	М		
CC	236	0.25	M		
CC	254	10	M		
CC	264	1.0	М		
CC	275	NT	М		
CC	283	0.1	М		
CC	324	0.15	М		
CC	330	NT	M		
CC	338	NT	M		
CC	370	NT	M		
CC	395	NT	M		
CC	540	0.1	M		
CC	546	10.0	М		
CC	594	0.1	M		
CC	607	1.0	M		
CC	608	NT	M		
CC	626	20.0	М		
CC	638	NT	М		
CC	679	2.0	М		
CC	714	0.05	М		
CC	720	0.1	M		
CC	745	0.25	M		
CC	745	0.25	M		
CC	900	2.0	M		
CC	901	2.0	M		
CC	902	2.0	M		
CC	903	0.05	M	AL	Action Level
CC	904	0.05	M	AL	Action Level
CC	910	0.2	М	AL	Action Level
CC	954	NT	М		
CC	A22	NT	М		
CC	A30	2.0	М		Interim Tolerance
CC	A54	2.0	М		Interim Tolerance
CC	A55	NT	M		
CC	A58	1.0	M		
	730	1.0	IVI		

00	A C O	NIT.	N 4		
CC	A68	NT	M		
CC	ADR	NT	M		
CC	ADU	NT	M		
CC	ADV	NT	M		
CC	ADW	NT	M		
CC	ADX	NT	M		
CC	ADY	NT	M		
CC	ADZ	NT	М		
CC	AEA	1.0	М		
CC	B22	2.0	М		
CC	B23	5.0	М		
CC	B24	1.0	М		
CC	B41	6.0	M		
CC	B53	NT	M		
CC	B56	2.5	M		
CC	B58	NT	M		
CC	B72	NT	M		
CN	001	0.1	M	AL	Action Level
CN	001	4	M	AL	Action Level
CN	011	25	M		
CN	024	0.75	M	A 1	A 11 1
CN	028	0.1	M	AL	Action Level
CN	034	0.05	M	AL	Action Level
CN	042	2.0	M		
CN	044	0.05	M	AL	
CN	050	3	M		
CN	052	8	M		
CN	057	NT	M		
CN	065	NT	M		
CN	069	0.5	M		
CN	070	8	M		
CN	083	10	M		
CN	102	10	М		
CN	107	NT	М		
CN	108	1	М		
CN	114	NT	М		
CN	117	NT	М		
CN	125	NT	M		
CN	126	15	M		
CN	134	1	M		
CN	143	0.05	M	AL	
CN	144	NT	M	, .L	
CN	148	NT	M		
CN	149	NT	M		
CN					
	151	0.05	M		
CN	152	NT 15.0	M		
CN	157	15.0	M		

011	150				
CN	159	0.2	M		
CN	160	0.1	M		
CN	164	5	M		
CN	165	NT	M		
CN	167	NT	M		
CN	168	NT	М		
CN	169	NT	М		
CN	170	0.5	М		
CN	171	1	M		
CN	172	0.1	M	AL	Action Level
CN	173	0.1	M	AL	Action Level
CN	173	NT	M	AL	Action Level
CN	175	NT	M		
CN	176	NT	M		
CN	178	1	M		
CN	180	0.2	M		Carbamate portion only
CN	181	NT	M		
CN	189	NT	M		
CN	197	NT	М		
CN	201	NT	М		
CN	203	NT	M		
CN	204	0.02	M		
CN	205	NT	M		
CN	208	8	M		
CN	210	NT	M		
CN	216	NT	M		
CN	222	3.0	M		
CN	223	3.0	M		
CN	227	NT	M		
CN	230	NT	M		
CN	232	NT	M		
CN	236	NT	М		
CN	245	0.3	М		
CN	249	NT	М		
CN	254	5	М		
CN	264	NT	M		
CN	275	NT	M		
CN	283	NT	M		
CN	304	NT	M		
		NT			
CN	305		M		
CN	321	NT	M		
CN	330	NT	M		
CN	338	NT	M		
CN	343	NT	M		
CN	370	NT	M		
CN	382	10	M		
CN	387	NT	М		

CN	395	NT	М		
CN	512	0.2	M		Carbamate portion only
CN	529	NT	M		Carbarnate portion only
CN	537	2.0	M		
CN	539	3.0	M		
CN	540	NT	M		
CN	546	1.0	M		
CN	556	3.0	M		
CN	562	NT	M		
CN	594	0.1	M		
CN	596	NT	M		
CN	597	NT	M		
CN	604	NT	M		
CN	607	1.0	M		
CN	608	0.3	M		
CN	612	0.05	M		
CN	623	NT	M		
CN	624	25 NT	M		
CN	626	NT	M		
CN	636	0.1	M		
CN	638	NT	M		
ON	050	011			Safe Use in
CN	658	SU	M		spot/crack/crevice
CN	679	0.20	M		
CN	719	0.05	M		
CN	720	NT	M		
CN	721	0.05	M		
CN	725	NT	M		
CN	736	0.1	M		
CN	745	NT	M		
CN	781	0.05	M		
CN	783	NT	M		
CN	791	NT	М		
CN	808	0.5	M		
CN	900	2.0	M		
CN	901	2.0	M		
CN	902	2.0	М		
CN	903	0.05	М	AL	Action Level
CN	906	0.1	М	AL	Action Level
CN	908	0.1	М	AL	Action Level
CN	910	0.1	М	AL	Action Level
CN	930	0.4	М		
CN	963	NT	М		
CN	967	0.5	М		
CN	A15	NT	М		
CN	A46	0.1	М		
CN	A61	0.5	М		

CNI	ADC	4.0	N 4		
CN	ADC	1.0	M		
CN	ADD	NT	M		
CN	ADE	1.0	M		
CN	AEL	0.01	M		
CN	AEM	0.01	M		
CN	B18	0.1	М		
CN	B23	0.01	M		
CN	B24	0.10	M		
CN	B44	1.0	M		
CN	B52	0.50	M		Interim Tolerance
CN	B58	NT	M		
CN	B77	1.0	М		Sect18 crisis exempt
CS	011	2	М		
CS	024	0.7	М		
CS	028	0.02	М	AL	Action Level
CS	042	NT	М		
CS	044	NT	М		
CS	050	0.5	M	AL	Action Level
CS	052	2	M		7.000.00
CS	057	1.0	M		
CS	065	1.0	M		
CS	069	NT	M		
CS	070	20	M		
CS	083	NT	M		
CS	102	5	M		
CS	102	NT	M		
CS	107	NT	M		
CS	114	NT	M		
CS	117	0.3	M		
CS	125	NT	M		
CS	126	NT	M		
CS	129	0.25	M		
CS	134	0.05	M		
CS	143	NT	M		
CS	144	NT	M		
CS	148	0.1	M		
CS	149	0.25	M		
CS	151	NT	М		
CS	152	NT	М		
CS	156	0.25	М		
CS	157	NT	М		
CS	159	0.1	М		
CS	160	0.1	М		
CS	163	NT	М		
CS	164	1	М		
CS	165	NT	M		
CS	167	NT	M	 	
			. • •		

CS	168	NT	M	
CS	169	NT	M	
CS	170	0.02	М	
CS	171	NT	М	
CS	174	NT	M	
CS	175	0.02	M	
CS	176	NT	M	
CS	178	NT	M	
CS	180	0.2	M	Carbamate portion only
CS	181	0.05	M	
CS	189	0.1	M	
CS	197	NT	М	
CS	201	NT	М	
CS	203	NT	М	
CS	204	0.02	M	
CS	205	0.05	M	
CS	208	2	M	
CS	210	0.2	M	
CS	216	0.3	M	
CS	222	0.1	M	
CS	223	0.1	M	
CS	227	0.05	М	
CS	228	0.05	М	
CS	230	0.1	М	
CS	232	NT	M	
CS	236	NT	M	
CS				
	245	0.5	M	
CS	249	NT	M	
CS	254	NT	M	
CS	264	0.1	M	Interim Tolerance
CS	275	NT	M	
CS	283	0.1	М	
CS	304	NT	М	
CS	305	0.25	M	
CS	321	NT	M	
CS	330	NT	M	
CS	338	NT	M	
CS	343	NT	M	
CS	370	1.0	M	
CS	387	NT	M	
CS	395	NT	M	
CS	512	0.2	M	Carbamate portion only
CS	529	NT	М	
CS	537	NT	М	
CS	539	0.1	M	
CS	540	NT	M	
CS	546	0.1	M	
	340	U. 1	IVI	

CS	556	3.0	М		
CS	562	8.0	M		
CS	596	NT	M		
CS	597	0.05	M		
CS	604	NT	M		
CS	607	0.1	M		
CS	608	NT	M		
					Designal Taleranas
CS	623	0.1	M		Regional Tolerance
CS	626	NT	M		
CS	638	0.05	M		
CS	679	0.03	M		
CS	714	0.05	M		
CS	720	NT	M		
CS	725	0.1	M		
CS	736	0.1	M		
CS	745	NT	M		
CS	781	0.05	М		
CS	783	0.1	М		
CS	791	NT	M		
CS	900	0.2	М		
CS	901	0.2	М		
CS	902	0.2	М		
CS	906	0.1	М	AL	Action Level
CS	908	0.1	М	AL	Action Level
CS	910	0.1	М	AL	Action Level
CS	930	0.05	М		
CS	963	0.05	М		
CS	A15	0.01	М		
CS	A46	0.1	М		
CS	ABH	0.1	M		Interim Tolerance
CS	ABI	0.1	M		Interim Tolerance
CS	ADD	0.01	M		
CS	ADE	0.1	M		
CS	AEL	0.05	M		
CS	AEM	0.05	M		
CS	B23	0.03	M		
CS	B26	0.02	M		
CS	B58	0.06	M		Sec18 crisis exempt
CS					Interim Tolerance
	B77	0.05	M		intenin rolerance
CU	011	25	M		
CU	024	0.75	M	Δ1	Antina Laval
CU	028	0.1	M	AL	Action Level
CU	034	0.05	M	AL	Action Level
CU	042	2.0	M		
CU	050	3	M		
CU	052	8	M		
CU	055	NT	M		

CU	065	NT	M		
CU	069	0.2	M		
CU	070	Ex2	M		Exempt for growing crops
CU	083	10	M		
CU	102	10	M		
CU	108	1	M		
CU	114	NT	M		
CU	117	NT	M		
CU	125	NT	M		
CU	126	15	M		
CU	134	1	M		
CU	143	0.05	M	AL	
CU	144	5	M		
CU	148	NT	M		
CU	149	NT	М		
CU	151	0.05	М		
CU	152	NT	М		
CU	153	NT	М		
CU	156	NT	М		
CU	157	NT	М		
CU	159	0.2	М		
CU	160	0.05	М		
CU	163	NT	М		
CU	164	5	М		
CU	165	NT	М		
CU	166	NT	М		
CU	167	NT	М		
CU	168	NT	М		
CU	169	NT	М		
CU	170	1.0	М		
CU	171	NT	М		
CU	175	0.02	М		
CU	176	NT	М		
CU	178	NT	М		
CU	180	0.2	М		Carbamate portion only
CU	181	NT	М		
CU	189	NT	М		
CU	195	NT	М		
CU	203	NT	M		
CU	204	0.02	М		
CU	205	NT	М		
CU	208	8	M		
CU	216	NT	M		
CU	222	3.0	M		
CU	223	3.0	M		
CU	230	NT	M		
CU	236	NT	M		

CU	245	1	М		
CU	249	NT	М		
CU	254	5	М		
CU	264	NT	М		
CU	275	NT	М		
CU	283	NT	М		
CU	304	NT	М		
CU	305	NT	М		
CU	330	NT	М		
CU	338	0.5	М		
CU	370	NT	М		
CU	382	10	М		
CU	395	0.75	М		
CU	512	0.2	М		Carbamate portion only
CU	529	NT	М		. ,
CU	537	2.0	М		
CU	546	0.5	М		
CU	562	NT	М		
CU	594	0.1	М		
CU	596	NT	М		
CU	597	NT	М		
CU	604	NT	М		
CU	607	1.0	М		
CU	608	0.3	М		
CU	612	0.05	М		
CU	623	NT	М		
CU	624	25	М		
CU	626	NT	М		
CU	636	0.1	М		
CU	638	NT	М		
CU	679	0.20	М		
CU	713	NT	М		
CU	714	0.05	М		
CU	719	0.1	М		
CU	720	NT	М		
CU	721	0.05	М		
CU	726	NT	М		
CU	736	0.1	М		
CU	745	NT	М		
CU	781	0.05	М		
CU	808	0.5	М		
CU	900	2.0	М		
CU	901	2.0	М		
CU	902	2.0	М		
CU	906	0.1	М	AL	Action Level
CU	908	0.1	М	AL	Action Level
CU	910	0.1	М	AL	Action Level

CU	930	0.4	М		
CU	953	NT	M		
CU	954	NT	М		
CU	963	NT	М		
CU	A30	NT	M		
CU	A46	0.1	M		
CU	A58	NT	M		
CU	ADE	0.5	M		
CU	AEM	0.01	M		
CU	B23	0.01	М		
CU	B52	0.50	М		Interim Tolerance
CU	B77	1.0	М		Sect18 crisis exempt
GC	001	0.05	М	AL	Action Level
GC	011	25	М		Interim Tolerance
GC	024	0.5	М		
GC	028	0.05	М	AL	Action Level
GC	033	NT	M		-
GC	034	0.05	М	AL	Action Level
GC	042	2.0	М		
GC	044	0.05	М	AL	
GC	050	0.5	М	AL	Action Level
GC	052	8	М		
GC	055	NT	М		
GC	057	NT	М		
GC	065	NT	М		
GC	069	NT	М		
GC	070	8	М		
GC	083	NT	М		
GC	102	10	М		
GC	107	NT	М		
GC	108	NT	М		
GC	114	NT	М		
GC	117	0.75	М		
GC	125	NT	М		
GC	129	NT	М		
GC	134	2	М		
GC	143	0.05	М	AL	
GC	144	20	М		
GC	147	NT	М		
GC	148	0.1	М		
GC	149	NT	М		
GC	151	0.05	М		
GC	159	2	М		
GC	160	0.05	М		
GC	163	NT	М		
GC	164	5	М		
GC	165	NT	М		

	400	NIT			
GC	166	NT	M		
GC	167	NT	M		
GC	168	NT	M		
GC	169	NT	M		
GC	170	1	M		
GC	171	2	M		
GC	172	0.1	M	AL	Action Level
GC	173	0.1	M	AL	Action Level
GC	174	NT	M		
GC	175	0.02	M		
GC	178	2	M		
GC	180	NT	М		
GC	189	0.1	М		
GC	195	NT	М		
GC	203	NT	М		
GC	204	3	М		
GC	208	8	М		
GC	210	0.2	М		
GC	216	0.75	М		
GC	230	NT	М		
GC	236	NT	М		
GC	245	0.5	М		
GC	254	5	М		
GC	275	NT	М		
GC	283	0.3	М		
GC	304	0.1	М		Interim Tolerance
GC	305	NT	М		
GC	321	0.1	М		Interim Tolerance
GC	330	NT	M		
GC	338	NT	M		
GC	351	0.1	M		Interim Tolerance
GC	387	0.1	M		Interim Tolerance
GC	388	0.1	M		Interim Tolerance
GC	395	0.5	M		merim reletance
GC	512	NT	M		
GC	529	2.0	M		
GC	537	NT	M		
GC	539	NT	M		
GC	540	NT	M		
GC	546	2.0	M		
GC	562	NT	M		
GC	597	0.5	M		
GC	607	0.5	M		
GC	608	NT	M		
GC	626	2.0	M		
GC		1.0	M		
	679				
GC	719	0.05	M		

GC	700	NIT	N 4		
	722	NT	M		
GC	736	0.1	M		
GC	745	NT	M		
GC	781	0.05	M		
GC	833	NT	M		
GC	900	2.0	M		
GC	901	2.0	M		
GC	902	2.0	M		
GC	903	0.05	М	AL	Action Level
GC	904	0.05	М	AL	Action Level
GC	906	0.2	М	AL	Action Level
GC	908	0.2	М	AL	Action Level
GC	910	0.2	М	AL	Action Level
GC	930	0.6	М		
GC	963	NT	М		
GC	A58	NT	M		
GC	ADE	2.0	M		
GC	AEM	0.20	M		
GC	B23	0.01	M		
GC	B24	0.10	M		Sect18 crisis exempt
MU		NT			Sect to crisis exempt
	011		M		
MU	024	0.75	M		
MU	028	NT	M		
MU	042	NT	M		
MU	044	NT	M		
MU	050	3	M		
MU	052	8	М		
MU	055	NT	M		
MU	057	NT	M		
MU	065	NT	M		
MU	070	Ex2	M		Exempt for growing crops
MU	083	NT	M		
MU	107	NT	М		
MU	108	NT	М		
MU	114	NT	М		
MU	117	NT	М		
MU	125	NT	М		
MU	134	NT	М		
MU	143	NT	M		
MU	144	NT	M		
MU	147	NT	M		
MU	148	NT	M		
MU	149	NT	M		
MU	151	NT	M		
MU	151	NT			
			M		
MU	157	40.0	M		
MU	160	0.1	M		

NAL I	400	NIT	NA I	
MU	163	NT	M	
MU	164	1.0	M	
MU	165	NT	M	
MU	166	NT	M	
MU	170	0.02	M	
MU	171	NT	M	
MU	173	NT	M	
MU	176	NT	M	
MU	177	NT	M	
MU	178	NT	M	
MU	181	NT	M	
MU	189	NT	M	
MU	190	NT	M	
MU	197	NT	M	
MU	200	NT	M	
MU	202	NT	M	
MU	203	NT	M	
MU	204	0.02	M	
MU	205	NT	M	
MU	208	8	M	
MU	222	6.0	M	
MU	223	6.0	M	
MU	231	NT	M	
MU	236	NT	M	
MU	249	NT	М	
MU	253	NT	М	
MU	254	NT	М	
MU	255	1.0	М	
MU	264	0.1	M	
MU	271	NT	M	
MU	275	NT	M	
MU	276	NT	M	
MU	283	NT	M	
MU	304	NT	M	
MU	305	NT	M	
MU	330	NT	M	
MU	338	0.5	M	Expressed as Naled
MU	349	NT	M	Expressed as ivaled
MU	370	NT	M	
MU	377	NT	M	
MU		NT		
	387		M	
MU	395	NT	M	
MU	529	NT	M	
MU	540	NT	M	
MU	556	3.0	M	
MU	562	NT	M	
MU	579	NT	M	

MU	580	NT	M		
MU	594	NT	M		
MU	596	NT	M		
MU	597	NT	M		
MU	604	NT	M		
MU	607	NT	M		
MU	608	NT	M		
MU	609	NT 0.05	M		
MU	612	0.05	M		
MU	614	NT	M		
MU	623	NT	M		
MU	626	NT	M		
MU	651	0.2	M		
MU	679	NT	M		
MU	713	NT	M		
MU	720	NT	M		
MU	721	NT	M		
MU	745	NT	M		
MU	746	NT	M		
MU	779	NT	М		
MU	781	0.05	M		
MU	786	NT	M		
MU	808	NT	M		
MU	858	NT	M		
MU	900	NT	M		
MU	901	NT	M		
MU	902	NT	M		
MU	906	0.5	M	AL	Action Level
MU	907	0.5	M	AL	Action Level
MU	908	0.5	M	AL	Action Level
MU	909	0.5	M	AL	Action Level
MU	910	0.5	M	AL	Action Level
MU	928	NT	М		
MU	930	0.05	М		
MU	963	NT	М		
MU	A30	NT	М		
MU	A46	NT	М		
MU	A58	NT	М		
MU	AAX	NT	М		
MU	ABH	0.1	М		
MU	ABI	0.1	М		
MU	ACV	1.0	М		
MU	ADC	1.0	M		
MU	ADE	0.05	M		
MU	AEL	0.01	M		
MU	AEM	0.01	M		
MU	B23	NT	M		
0	320				

ON	011	25	М		
ON	024	0.75	M		
ON	028	0.1	М	AL	Action Level
ON	050	1	М		
ON	052	8	М		
ON	065	NT	М		
ON	134	1	М		
ON	143	NT	М		
ON	144	10	М		
ON	160	0.5	М		
ON	174	0.1	M		
ON	208	8	М		
ON	222	0.1	M		
ON	223	0.1	M		
ON	264	NT	M		
ON	338	NT	M		
ON	370	NT	M		
ON	395	0.75	M		
ON	556	3.0	M		
ON ON	597	0.10	M		
ON	612 636	0.05 0.1	M		
ON	781	0.05	M		
ON	900	NT	M		
ON	901	NT	M		
ON	902	NT	M		
ON	910	0.2	M	AL	Action Level
ON	ADC	1.0	M	, . <u> </u>	7.00.00.1 =0.10.
ON	ADE	0.05	М		
ON	AEL	0.1	М		
ON	AEM	0.1	М		
ON	B23	0.2	М		
PC	264	1.0	М		
PC	608	NT	М		
PC	638	NT	М		
PC	679	2.0	М		
PC	954	NT	М		
PC	A22	NT	М		
PC	A30	2.0	M		Interim Tolerance
PC	A54	2.0	М		Interim Tolerance
PC	A55	NT	М		
PC	A58	1.0	М		
PC	A68	NT	M		
PC	ADR	NT	M		
PC	ADU	NT	М		
PC	ADV	NT	M		
PC	ADW	NT	M		

PC	ADX	NT	М		
PC	ADY	NT	M		
PC	ADZ	NT	M		
PC	AEA	1.0	М		
PC	B53	NT	М		
PC	B58	NT	М		
PC	B72	NT	М		
PE	001	0.05	М	AL	Action Level
					Exempt from Tol
PE	002	EX	М		requirements
PE	011	25	М		·
PE	024	0.5	М		
PE	028	0.03	М	AL	Action Level
PE	034	NT	M		, 1011011 20101
PE	042	1.5	M		
PE	044	0.05	M	AL	Action Level
PE	050	1	M	/12	AUGUIT LEVEI
PE	050	8	M		
PE	052	NT	M		
PE	065	NT	M		
PE PE	069	NT	M		
PE	070	8	M		
PE	083	25.0	M		
PE	102	10.0	M		
PE	107	NT	M		
PE	108	5	M		
PE	114	NT	M		
PE	117	NT	M		
PE	125	NT	М		
PE	126	NT	М		
PE	129	NT	М		
PE	134	NT	М		
PE	143	0.05	М	AL	Action Level
PE	144	NT	М		
PE	147	NT	М		
PE	148	NT	М		
PE	149	0.25	М		
PE	151	NT	М		
PE	152	NT	М		
PE	157	10	М		
PE	159	4	М		Regional Tolerance
PE	160	0.05	М		<u> </u>
PE	163	NT	M		
PE	164	NT	M		
PE	165	10	M		
PE	166	10.0	M		
PE					
PE	167	NT	M		

PE	169	NT	М		
PE	170	0.02	M		
PE	171	2	М		
PE	172	0.1	М	AL	Action Level
PE	173	0.1	M	AL	Action Level
PE	174	NT	М		
PE	177	NT	M		
PE	178	2	М		
PE	180	NT	M		
PE	181	NT	M		
PE	189	NT	М		
PE	195	NT	М		
PE	197	0.05	M		
PE	203	NT	M		
PE	204	0.02	М		
PE	205	NT	М		
PE	208	8	М		
PE	216	NT	М		
PE	222	3.0	М		
PE	223	3.0	М		
PE	224	NT	М		
PE	230	NT	М		
PE	236	NT	М		
PE	245	0.3	М		
PE	254	5	М		
PE	271	0.1	М		
PE	275	NT	М		
PE	283	NT	М		
PE	304	NT	М		
PE	305	NT	М		
PE	321	NT	М		
PE	324	0.5	М		
PE	338	NT	М		
PE	343	NT	М		
PE	351	NT	М		
PE	387	NT	М		
PE	388	NT	М		
PE	395	NT	М		
PE	512	NT	М		
PE	529	NT	М		
PE	537	2.0	М		
PE	539	3.0	М		
PE	540	0.1	М		
PE	546	2.0	М		
PE	556	3.0	М		
PE	562	NT	М		
PE	593	NT	М		

PE	594	0.1	M		
PE	596	0.1	M		
PE	597	NT	M		
PE	604	NT	M		
PE	607	NT	М		
PE	608	1.0	М		
PE	612	0.05	М		
PE	621	NT	М		
PE	623	NT	М		
PE	624	25	М		
PE	626	NT	М		
PE	636	0.1	М		
PE	638	NT	M		
PE	651	0.50	M		
<u> </u>	001	0.50	IVI		Safe Use in
PE	658	SU	М		spot/crack/crevice
PE	666	7.0	M		Interim Tolerance
PE	679	NT	M		Interim Polerance
PE	699	0.5	M		
PE					
	713	0.05	M		
PE	719	NT	M		
PE	720	0.1	M		
PE	722	NT	M		
PE	736	0.1	M		
PE	737	0.05	M		
PE	745	NT	М		
PE	746	NT	M		
PE	781	0.05	M		
PE	808	5.0	M		
PE	833	NT	M		
PE	848	NT	M		
PE	858	NT	М		
PE	900	2.0	М		
PE	901	2.0	М		
PE	902	2.0	М		
PE	903	0.05	М	AL	Action Level
PE	906	0.1	М	AL	Action Level
PE	908	0.1	M	AL	Action Level
PE	910	0.1	M	AL	Action Level
PE	930	0.5	M		
PE	947	NT	M		
PE	963	NT	M		
PE	967	0.6	M		
PE	A30	NT	M		
PE					
	A47	2.0	M		
PE	A58	NT	M		
PE	A61	0.5	M		

PE	ABG	1.5	М		
PE	ADC	1.0	М		
PE	ADE	2.0	М		
PE	ADG	0.20	М		
PE	AEM	0.30	М		
PE	B21	NT	M		
PE	B22	0.1	М		
PE	B23	NT	М		
PE	B24	0.2	М		
PE	B28	10	М		
PE	B48	NT	М		
PE	B52	NT	М		
PE	B56	0.75	M		
PE	B82	0.75	M		
PJ	011	25	M		
PJ	024	0.5	M		
PJ	028	0.03	M	AL	Action Level
PJ	042	1.5	M		
PJ	050	1	M		
PJ	052	8	M		
PJ	057	NT	M		
PJ	065	NT	M		
PJ	070	8	M		
PJ	083	25.0	M		
PJ	102	10.0	M		
PJ	108	5	M		
PJ	125	NT	M		
PJ	143	0.05	M	AL	Action Level
PJ	149	0.05	M	/\L	Action Level
PJ	152	0.23 NT	M		
PJ	157	10	M		
PJ	159	4	M		Regional Tolerance
PJ	160	0.05	M		Tregional Tolerance
PJ	165	10	M		
PJ	166	10.0	M		
PJ	170	0.02	M		
PJ	170	2	M		
PJ	171	2	M		
PJ	197	0.05	M		
PJ	204	0.05	M		
PJ		8			
PJ	208		M		
	222	3.0	M		
PJ PJ	223	3.0	M		
	245	0.3	M		
PJ	254	5 NT	M		
PJ	275	NT 0.5	M		
PJ	324	0.5	M		

PJ	370	NT	М		
PJ	395	NT	М		
PJ	537	2.0	М		
PJ	540	0.1	М		
PJ	546	2.0	М		
PJ	594	0.1	М		
PJ	596	0.1	М		
PJ	597	NT	М		
PJ	608	1.0	М		
PJ	651	0.50	М		
PJ	699	0.5	М		
PJ	713	0.05	М		
PJ	714	0.05	М		
PJ	720	0.1	М		
PJ	736	0.1	М		
PJ	779	NT	М		
PJ	808	5.0	М		
PJ	900	2.0	М		
PJ	901	2.0	М		
PJ	902	2.0	М		
PJ	906	0.1	М	AL	Action Level
PJ	908	0.1	М	AL	Action Level
PJ	910	0.1	М	AL	Action Level
PJ	967	0.6	М		
PJ	ABG	1.5	М		
PJ	ADE	2.0	М		
PJ	AEM	0.30	М		
PJ	B22	0.1	М		
PJ	B24	0.2	М		
PP	001	0.05	М	AL	Action Level
					Exempt from Tol
PP	002	EX	М		requirements
PP	011	25	М		•
PP	024	0.5	М		
PP	028	0.05	М	AL	Action Level
PP	032	NT	М		
PP	042	0.3	М		
PP	044	NT	M		
PP	050	1	M		
PP	052	8	M		
PP	055	NT	M		
PP	057	NT	M		
PP	065	NT	M		
PP	070	Ex2	M		Exempt for growing crops
PP	083	10	M		=pt ioi gionning cropo
	000	10	IVI		
PP	088	NT	М		

PP	107	NT	M		
PP	107	NT	M		
PP	114	NT	M		
PP	117				
PP		0.1	M		
	124	NT	M		
PP	125	NT	M		
PP	129	NT	M		
PP	134	2	M		
PP	143	NT	M		
PP	144	NT	M		
PP	147	NT	M		
PP	148	NT	M		
PP	149	NT	M		
PP	151	0.05	M		
PP	152	NT	M		
PP	157	NT	М		
PP	159	2	М		
PP	160	1.0	М		
PP	163	NT	М		
PP	165	NT	M		
PP	166	NT	М		
PP	167	NT	М		
PP	168	NT	М		
PP	169	NT	М		
PP	170	1.0	М		
PP	171	2	М		
PP	172	0.1	М	AL	Action Level
PP	173	0.1	М	AL	Action Level
PP	175	NT	М		
PP	176	NT	М		
PP	177	NT	М		
PP	178	2	М		
PP	180	0.2	M		Carbamate portion only
PP	181	NT	M		Carbamate pertient emy
PP	189	NT	M		
PP	190	NT	M		
PP	192	0.2	M		Interim Tolerance
PP	195	NT	M		IIIIGIIIII TOIGIAITOG
PP	193	NT	M		
PP	200	0.1	M		
PP	200	NT	M		
PP		NT			
PP PP	203		M		
	204	4.0	M		
PP	205	NT	M		
PP	208	8	M		
PP	216	0.1	M		
PP	222	1.0	M		

PP	223	1.0	M	
PP	224	NT	М	
PP	226	NT	M	
PP	231	NT	М	
PP	236	NT	М	
PP	245	0.75	М	
PP	249	NT	М	
PP	253	5	М	
PP	254	5	М	
PP	255	1.0	М	
PP	264	NT	М	
PP	271	NT	М	
PP	276	NT	М	
PP	283	0.1	М	
PP	304	0.1	M	Interim Tolerance
PP	305	NT	M	
PP	324	NT	M	
PP	330	NT	M	
PP	338	NT	M	
PP	349	NT	M	
PP	370	NT	M	
PP	377	NT	M	
PP	387	0.1	M	Interim Tolerance
PP	391	NT	M	internit i diditalida
PP	395	0.5	M	
PP	512	0.2	M	Carbamate portion only
PP	529	NT	M	Carbamate portion only
PP	537	3	M	
PP	540	NT	M	
PP	546	1.0	M	
PP	556	3.0	M	
PP	562	NT	M	
PP	579	0.25	M	
PP	580	0.25 NT	M	
PP	594	0.1	M	
PP	594	NT	M	
PP				
	597	0.2	M	
PP	604	NT 1.0	M	
PP	607	1.0	M	
PP	608	NT	M	
PP	609	NT	M	
PP	612	0.05	M	
PP	614	NT	M	
PP	617	NT	M	
PP	623	NT	M	
PP	626	NT	M	
PP	636	0.1	M	

PP	651	1.0	M		
PP	679	1.0	М		Sect18 crisis exempt
PP	713	NT	M		
PP	719	0.05	M		
PP	720	NT	M		
PP	721	NT	M		
PP	736	0.1	M		
PP	745	NT	М		
PP	746	NT	М		
PP	779	NT	M		
PP	781	0.50	M		
PP	786	NT	М		
PP	791	NT	М		
PP	808	NT	М		
PP	858	NT	M		
PP	900	2.0	M		
PP	901	2.0	M		
PP	902	2.0	M		
PP	903	0.05	M	AL	Action Level
PP	906	0.1	M	AL	Action Level
PP	907	0.1	M	AL	Action Level
PP	908	0.1	M	AL	Action Level
PP	909	0.1	M	AL	Action Level
PP	910	0.1	M	AL	Action Level
PP			M	AL	Action Level
	915	5.0			
PP	928	NT	M		
PP PP	930	0.5	M		
	963	NT	M		
PP	967	1.0	M		
PP	A30	NT	M		
PP	A46	0.1	M		
PP	A58	NT	M		
PP	AAK	NT	M		
PP	AAX	NT	M		
PP	ABF	0.2	M		
PP	ABG	1.0	M		
PP	ACV	NT	M		
PP	ADC	1.0	M		
PP	AEJ	3.0	M		
PP	AEK	3.0	M		
PP	AEL	0.20	M		
PP	B23	0.01	M		
PP	B24	0.2	М		
PP	B32	NT	М		
PP	B42	NT	М		
PP	B43	0.25	М		
PP	B77	NT	М		

D0	004	0.00	D.4	Δ1	A - Cara Lavral
PS	001	0.03	M	AL	Action Level
PS	002	NT	M		
PS	011	2	M		
PS	024	0.5	M	A 1	
PS	028	0.03	M	AL	
PS	033	NT	M	A 1	Λ (' Ι Ι
PS	034	0.05	M	AL	Action Level
PS	042	NT	M		
PS	044	NT	M		A (' 1 1
PS	050	0.5	M	AL	Action Level
PS	052	8	M		
PS	057	NT	M		
PS	065	NT	M		
PS	069	0.25	M		
PS	070	8	M		
PS	083	NT	M		
PS	102	10	M		
PS	107	NT	M		
PS	108	NT	M		
PS	114	NT	M		
PS	117	0.75	М		
PS	125	NT	М		
PS	129	NT	М		
PS	134	NT	M		
PS	143	NT	М		
PS	144	NT	М		
PS	147	NT	М		
PS	148	NT	M		
PS	149	NT	M		
PS	151	0.05	M		
PS	152	NT	М		
PS	159	5	M		
PS	160	0.05	М		
PS	161	NT	М		
PS	163	NT	М		
PS	164	NT	М		
PS	165	0.5	М		
PS	166	NT	М		
PS	170	0.02	М		
PS	171	2	М		
PS	172	0.1	М	AL	Action Level
PS	173	0.1	М	AL	Action Level
PS	174	NT	М		
PS	175	NT	М		
PS	178	2	М		
PS	181	0.1	М		
PS	189	NT	M		

PS	197	NT	M	
PS	203	NT	M	
PS	204	0.02	М	
PS	205	NT	M	
PS	208	8	M	
PS	210	NT	М	
PS	216	0.75	M	
PS	219	NT	М	
PS	224	NT	M	
PS	230	0.1	М	
PS	236	NT	М	
PS	245	NT	М	
PS	254	NT	М	
PS	275	NT	М	
PS	283	0.3	M	
PS	304	NT	М	
PS	305	NT	M	
PS	321	NT	М	
PS	330	NT	M	
PS	338	NT	М	
PS	351	NT	M	
PS	387	NT	M	
PS	388	NT	M	
PS	395	0.5	М	
PS	529	NT	M	
PS	539	NT	М	
PS	540	NT	М	
PS	556	3.0	M	
PS	562	NT	М	
PS	593	NT	M	
PS	597	0.1	М	
PS	607	0.2	M	
PS	608	NT	М	
PS	612	0.05	М	
PS	621	0.05	M	
PS	623	NT	М	
PS	624	2	M	
PS	626	NT	М	
PS	636	0.1	М	
PS	679	0.03	M	
PS	719	0.05	M	
PS	722	NT	M	
PS	736	0.1	M	
PS	745	NT	М	
PS	781	0.25	М	
PS	808	NT	М	
PS	848	NT	M	

PS	000	2.0	M		
	900	2.0			
PS	901	2.0	M		
PS	902	2.0	M	Α.Ι	A attack Lavial
PS	906	0.2	M	AL	Action Level
PS	908	0.2	M	AL	Action Level
PS	910	0.2	M	AL	Action Level
PS	930	0.05	M		
PS	947	NT	M		
PS	963	NT	M		
PS	967	NT	M		
PS	A46	0.1	M		
PS	A58	NT	M		
PS	ABG	NT	M		
PS	ADC	1.0	M		
PS	ADE	1.0	M		
PS	AEM	0.01	М		
PS	B23	0.01	М		
PS	B24	0.10	М		
PS	B52	NT	М		
PS	B77	NT	М		
					Exempt from Tol
SP	002	EX	M		requirements
SP	011	100	М		
SP	024	0.7	М		
SP	028	0.05	М	AL	Action Level
SP	034	0.05	М	AL	Action Level
SP	042	2.0	М		
SP	044	0.05	М	AL	
SP	050	1	М		
SP	052	8	М		
SP	057	NT	M		
SP	065	NT	M		
SP	069	1.0	M		
SP	070	Ex2	M		Exempt for growing crops
SP	083	NT	M		Exempt for growing crops
SP	102	12	M		
SP	107	NT	M		
SP	107	NT	M		
SP	114	0.3	M		Interim Tolerance
SP	117	0.3	M		intenin roleidile
SP		0.75 NT	M		
	125				
SP	126	NT	M		
SP	129	NT	M		
SP	134	NT	M	Δ.	
SP	143	0.05	M	AL	
SP	144	NT	M		
SP	148	NT	M		

SP	149	NT	M		
SP	151	0.05	M		
SP	152	NT	M		
SP	157	NT	M		
SP	159	6	M		
SP	160	0.1	M		
SP	163	NT	M		
SP	164	NT	M		
SP	165	NT	M		
SP	167	NT	M		
SP	168	NT	M		
SP	169	NT	М		
SP	170	0.02	М		
SP	171	2	М		
SP	172	0.1	М	AL	Action Level
SP	173	0.1	М	AL	Action Level
SP	174	NT	М		-
SP	175	NT	М		
SP	176	NT	М		
SP	178	2	М		
SP	180	NT	М		
SP	181	NT	M		
SP	189	NT	M		
SP	197	NT	M		
SP	201	NT	M		
SP	203	NT	M		
SP	203	0.02	M		
SP	205	NT	M		
SP	208	8			
			M		
SP	210	NT 0.75	M		
SP	216	0.75	M		
SP	227	NT	M		
SP	230	NT	M		
SP	232	0.05	M		
SP	236	NT	M		
SP	245	NT	M		
SP	249	NT	M		
SP	254	NT	М		
SP	264	NT	M		
SP	275	NT	М		
SP	283	0.5	M		Sect18 crisis exempt
SP	304	NT	М		
SP	305	NT	М		
SP	321	NT	М		
SP	330	NT	М		
SP	338	NT	М		
SP	343	NT	М		

SP	270	NIT	N A		
	370	NT	M		
SP	382	12	M		
SP	387	NT	M		
SP	395	0.7	M		
SP	512	NT	M		
SP	529	NT	M		
SP	537	NT	M		
SP	539	20.0	M		
SP	540	NT	M		
SP	546	0.05	М		
SP	556	3.0	M		
SP	562	NT	M		
SP	594	NT	M		
SP	596	NT	M		
SP	597	10.00	M		
SP	604	NT	М		
SP	607	10.0	М		
SP	608	NT	М		
SP	612	0.05	М		
SP	623	NT	М		
SP	626	NT	M		
SP	636	0.1	М		
SP	679	0.03	М		
SP	714	0.05	М		
SP	719	NT	М		
SP	720	NT	М		
SP	721	NT	М		
SP	725	NT	М		
SP	736	0.1	М		
SP	745	NT	М		
SP	781	0.05	М		
SP	783	NT	М		
SP	791	0.5	М		
SP	808	NT	M		
SP	900	2.0	M		
SP	901	2.0	M		
SP	902	2.0	M		
SP	903	0.05	M	AL	Action Level
SP	908	0.5	M	AL	Action Level
SP	910	0.5	M	AL	Action Level
SP	930	0.2	M	AL	AUTON FEACT
SP	963	NT	M		
SP	963 A15	NT	M		
SP	A15 A46	0.1	M		
SP	A61	NT 1.0	M		
SP	ADC	1.0	M		
SP	ADD	NT	M		

SP	ADE	0.05	M		
SP	AEL	0.01	М		
SP	B18	NT	М		
SP	B23	0.01	М		
SP	B44	NT	М		
SP	B58	NT	М		
SP	B77	NT	М		
SW	001	0.1	М	AL	Action Level
SW	024	0.1	М		
SW	028	0.1	М	AL	Action Level
SW	034	0.05	М	AL	Action Level
SW	050	0.5	М	AL	Action Level
SW	052	1	М		
SW	055	NT	М		
SW	065	NT	М		
SW	070	0.25	М		
SW	083	15	М		
SW	102	0.2	М		
SW	134	2	М		
SW	144	10	М		
SW	151	0.05	М		
SW	157	0.02	М		
SW	159	0.2	М		
SW	160	0.05	М		
SW	163	NT	М		
SW	165	10	М		
SW	167	0.1	М		
SW	168	0.1	М		
SW	169	0.1	М		
SW	170	0.02	М		
SW	172	0.1	М	AL	Action Level
SW	173	0.1	М	AL	Action Level
SW	175	0.02	М		
SW	192	0.2	М		Interim Tolerance
SW	201	NT	М		
SW	204	0.02	М		
SW	208	1	М		
SW	275	NT	М		
SW	330	NT	М		
SW	370	NT	М		
SW	395	0.1	М		
SW	537	0.1	М		
SW	556	3.0	М		
SW	594	0.1	М		
SW	597	NT	М		
SW	607	0.5	М		
SW	612	0.05	М		

CVA	070	0.00	N 4		
SW	679	0.03	M		
SW	714	0.05	M		
SW	719	0.05	M		
SW	736	0.1	M		
SW	900	0.2	M		
SW	901	0.2	M		
SW	902	0.2	M		
SW	903	0.05	М	AL	Action Level
SW	904	0.05	М	AL	Action Level
SW	906	1	М	AL	Action Level
SW	908	1	М	AL	Action Level
SW	910	1	М	AL	Action Level
SW	930	0.05	M		Sect18 crisis exempt
SW	967	0.40	M		
SW	A46	0.1	M		
SW	ABC	0.10	M		
SW	ABD	0.10	M		
SW	ABF	0.02	M		
SW	ABG	0.02	M		Sect18 crisis exempt
SW	ADE		M		Sect to crisis exempt
		0.05			
SW	AEM	0.01	M		
SW	B43	0.02	M		
SW	B48	0.03	M		
ТО	001	0.05	M	AL	Action Level
ТО	002	EX	М		Exempt from Tol requirements
TO	011	25	M		requirements
TO	024	0.75	M		
TO	024	0.75	M	AL	Action Level
TO	028		M	AL	
		0.05		AL	Action Level
TO	042	2.0	M		
TO	050	3	M		
TO	052	8	M		
TO	065	NT	M		
TO	069	0.2	M		
TO	070	8	M		
ТО	083	10	M		
TO	102	10	M		
TO	108	1	M		
TO	117	0.75	M		
TO	126	25	M		
TO	134	1	М		
TO	143	NT	М		
TO	144	5	М		
TO	151	0.05	М		
TO	159	1	М		
TO	160	0.5	M		
	100	0.0	171		

ТО	163	NT	М		
TO	164	5	М		
ТО	170	1.0	М		
ТО	171	2	М		
TO	172	0.1	М	AL	Action Level
ТО	173	0.1	М	AL	Action Level
ТО	174	15	М		
TO	178	2	М		
ТО	181	0.1	М		
ТО	200	0.1	М		
TO	208	8	М		
TO	216	0.75	М		
TO	222	2	М		
TO	223	2	М		
TO	254	5	М		
TO	275	NT	М		
TO	283	0.1	М		
TO	304	0.1	М		Interim Tolerance
TO	321	0.1	М		Interim Tolerance
TO	330	NT	М		
TO	338	0.05	М		Expressed as Naled
TO	351	0.1	М		Interim Tolerance
TO	370	NT	М		
TO	387	0.1	М		Interim Tolerance
TO	395	0.75	М		
TO	537	2	М		
TO	546	1.0	М		
TO	594	0.1	М		
TO	597	0.2	М		
TO	607	1.0	M		
TO	626	NT	М		
TO	679	0.30	М		
TO	714	0.05	М		
TO	722	0.15	М		
TO	781	0.20	М		
TO	808	0.6	M		
TO	900	2.0	М		
TO	901	2.0	М		
TO	902	2.0	М		
TO	903	0.05	М	AL	Action Level
TO	904	0.05	М	AL	Action Level
TO	910	0.05	М	AL	Action Level
TO	ADG	0.50	М		
TO	AEM	0.20	М		
TO	B21	0.10	М		Sect18 crisis exempt
TO	B24	0.2	М		
TO	B51	1.0	М		

WF	002	2000	В		
WF	024	50	В		
WF	028	20	В	AL	Action Level
WF	050	100	В	AL	Action Level
WF	052	8000	В	7 (=	7.00.011 20101
WF	065	1000	В		
WF	070	20000	В		
WF	102	3000	В		
WF	117	300	В		
WF	129	250	В		
WF	143	NT	В		
WF	148	50	В		
WF	151	50	В		
WF	157	1000	В		
WF	160	500	В		
WF	171	40	В		
WF	178	40	В		
WF	180	100	В		Carbamate portion only
WF	181	750	В		режением режини
WF	189	50	В		
WF	208	8000	В		
WF	210	200	В		
WF	216	300	В		
WF	228	100	В		
WF	235	6000	В		
WF	264	100	В		
WF	275	NT	В		
WF	283	100	В		
WF	299	100	В		
WF	305	250	В		
WF	341	200	В		
WF	370	1000	В		
WF	391	NT	В		
WF	395	50	В		
WF	512	100	В		Carbamate portion only
WF	562	NT	В		. ,
WF	604	50	В		
WF	607	1000	В		
WF	608	1000	В		
WF	621	50	В		
WF	638	50	В		
WF	679	30	В		
WF	722	50	В		
WF	736	100	В		
WF	781	4000	В		
WF	793	100	В		
WF	807	20	В		

WF	900	100	В		
WF	901	100	В		
WF	902	100	В		
WF	910	500	В	AL	Action Level
WF	954	NT	В		
WF	A22	NT	В		
WF	A30	NT	В		
WF	A54	NT	В		
WF	A55	NT	В		
WF	A58	50	В		
WF	A68	NT	В		
WF	ACV	5000	В		
WF	ADR	50	В		
WF	ADU	NT	В		
WF	ADV	NT	В		
WF	ADW	NT	В		
WF	ADX	NT	В		
WF	AEM	50	В		
WF	B21	100	В		
WF	B23	20	В		
WF	B30	1000	В		Sect18 crisis exempt
WF	B43	20	В		
WF	B53	NT	В		
WF	B58	100	В		
WF	B72	NT	В		
WF	B77	50	В		Interim Tolerance