

DC circuits

DC circuits

Kirchhoff's Rules

Kirchhoff's junction rule (valid at any junction):

The sum of the currents into any junction ...

$$\sum I = 0 \quad ... \text{ equals zero.}$$

Kirchhoff's loop rule (valid for any closed loop):

The sum of the potential differences around any loop ...

$$\sum V = 0 \qquad ... \text{ equals zero.}$$

RC circuits

(a) Capacitor initially uncharged

(b) Charging the capacitor

When the switch is closed, the charge on the capacitor increases over time while the current decreases.

Energy:

50% -> resistor

50% ->capacitor

Refer to lecture notes

Important models

A charge moving at an angle ϕ to a magnetic field experiences a magnetic force with magnitude $F = |q|v_{\perp}B = |q|vB \sin \phi$.

A charge moving at right angles to a uniform \vec{B} field moves in a circle at constant speed because \vec{F} and \vec{v} are always perpendicular to each other.

The total magnetic flux through any closed surface ...

Gauss's law for magnetism:

$$\oint \vec{B} \cdot d\vec{A} = 0 \quad ... \text{ equals zero.}$$

$$\overline{B}(\overline{r}) = \frac{\mu_0}{4\pi} \int \frac{1}{|\overline{r} - \overline{r}'|^3} = \frac{\mu_0}{|\overline{r} - \overline{r}'|^3} = \frac{\mu_0}{|\overline{r} - \overline{r}'|^2} \int \frac{1}{|\overline{r} -$$

(* Not mentioned in lecture notes)

Solenoid: n turns per unit length

Electromagnetic induction

- Flux is positive ($\Phi_B > 0$) ...
- ... and becoming more positive $(d\Phi_R/dt > 0)$.
- Induced emf is negative ($\mathcal{E} < 0$).

- Flux is negative ($\Phi_R < 0$) ...
- ... and becoming more negative $(d\Phi_R/dt < 0)$.
- Induced emf is positive ($\mathcal{E} > 0$).

- Flux is positive ($\Phi_B > 0$) ...
- ... and becoming less positive $(d\Phi_R/dt < 0)$.
- Induced emf is positive ($\mathcal{E} > 0$).

- Flux is negative ($\Phi_R < 0$) ...
- ... and becoming less negative $(d\Phi_R/dt > 0)$.
- Induced emf is negative ($\mathcal{E} < 0$).

Magnetic field generated by induced EMF is in opposite direction to dΦ

Lenz's Law

The direction of any magnetic induction effect is such as to oppose the cause of the effect.

Slide-wire Generator

$$\mathcal{E} = -\frac{d\Phi_B}{dt} = -B\frac{dA}{dt}$$
$$= -B\frac{Lv\ dt}{dt} = -BLv$$

Faraday's disk

Displacement Current

