Definitions from the Humphreys Book

Elliot Costi

June 2006

1

Let \mathbb{K} be an algebraicly closed field. The set \mathbb{K}^n it called the affine n-space and denoted A^n . An affine variety is the set of common zeroes in A^n of a finite collection of polynomials.

The Zariski topology on A^n is defined to be the topology whose closed sets are the sets

$$V(I) := \{ x \in A^n \mid f(x) = 0, \forall f \in I \} \subset A^n,$$

where $I \subset K[X_1, ..., X_n]$ is any ideal in the polynomial ring $K[X_1, ..., X_n]$. For any affine variety $V \subset A^n$, the Zariski topology on V is defined to be the subspace topology induced on V as a subset of A^n . So we are saying that the closed sets under the Zariski topology are the affine varieties.

An algebraic group G is a variety endowed with the structure of a group and the maps $\mu: G \times G \to G$, where $\mu(x,y) = xy$ and $\iota: G \to G$, where $\iota(x) = x^{-1}$ are morphisms of varieties.

A topological space X is irreducible if it cannot be written as the union of two proper, nonempty, closed subsets.

A noetherian space X can be written as a union of finitely many of its maximal irreducible subspaces. These are called the irreducible components of X.

The identity component of G, denoted G° , is the unique irreducible component of e. It normal subgroup of finite index in G whose cosets are the connected as well as irreducible components of G.

G is connected if $G = G^{\circ}$.

A rational representation ϕ is one that maps from some group to $GL(n, \mathbb{K})$.

Let M be a subset of the algebraic group G. The group closure of M is the smallest closed subgroup containing M.

A derivation $\delta : \mathbb{E} \to \mathbb{L}$ (\mathbb{E} a field, \mathbb{L} an extension field of \mathbb{E}) is a map satisfying $\delta(x+y) = \delta(x) + \delta(y)$ and $\delta(xy) = x\delta(y) + \delta(x)y$. If \mathbb{F} is a subfield of \mathbb{E} then δ is called an \mathbb{F} -derivation if in addition $\delta(x) = 0$ for all $x \in \mathbb{F}$. So δ is \mathbb{F} -linear. The space $Der_{\mathbb{F}}(\mathbb{E}, \mathbb{L})$ of all \mathbb{F} -derivations $\mathbb{E} \to \mathbb{L}$ is a vectorspace over \mathbb{L} .

Let G be an algebraic group and $A = \mathbb{K}[G]$. G acts on A by left translation: $(\lambda_x f)(y) = f(x^{-1}y), f \in A$. $\lambda : G \to \mathrm{GL}(A)$ and $\lambda(x) = \lambda_x$. λ_x is the comorphism attached to the morphism $y \mapsto x^{-1}y$.

Let Der A be the set of all K-derivations of A. The Lie Algebra of G is $L(G) = \{\delta \in \text{Der } A | \delta \lambda_x = \lambda_x \delta \text{ for all } x \in G\}.$