Concept Hierarchies

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific
 - ◆ e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 are indicative of association between milk and bread
 - Rules at higher level of hierarchy may be too generic
 - e.g., food->electronics

- How do support and confidence vary as we traverse the concept hierarchy?
 - If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - If $\sigma(X1 \cup Y1) \ge \text{minsup}$, and X is parent of X1, Y is parent of Y1 then $\sigma(X \cup Y1) \ge \text{minsup}$ $\sigma(X1 \cup Y) \ge \text{minsup}$ $\sigma(X \cup Y) \ge \text{minsup}$
 - If conf(X1 ⇒ Y1) ≥ minconf,
 then conf(X1 ⇒ Y) ≥ minconf

Approach 1:

Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data
- Produce redundant rules

Approach 2:

- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

Issues:

- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Data Mining Association Analysis: Advanced Concepts

Sequential Patterns

Sequence Data

Sequence Database:

Object	Timestamp	Events
А	10	2, 3, 5
Α	20	6, 1
Α	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 8, 7

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at time t	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor after a single mouse click	Home page, index page, contact info, etc
Event data	History of events generated by a given sensor	Events triggered by a sensor at time t	Types of alarms generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

 A sequence is an ordered list of elements (transactions)

$$s = < e_1 e_2 e_3 ... >$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, ..., i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the <u>number</u> of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

• Web sequence:

< {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera}
{Shopping Cart} {Order Confirmation} {Return to Shopping} >

Sequence of books checked out at a library:

<{Fellowship of the Ring} {The Two Towers} {Return of the King}>

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2, 3, 5
А	20	1,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

Market- basket Data

Events
2, 3, 5
1,6
1
4,5,6
2
1,2,7,8
1,6
1,7,8

Sequence Data vs. Market-basket Data

Sequence Database:

Customer	Date	Items bought
А	10	2 , 3, 5
А	20	1,6
А	23	1
В	11	4, 5, 6
В	17	2
В	21	1,2,7,8
В	28	1, 6
С	14	1,7,8

Market- basket Data

Events
2, 3, 5
1,6
1
4,5,6
2
1,2,7,8
1,6
1,7,8

Formal Definition of a Subsequence

- A sequence <a₁ a₂ ... a_n> is contained in another sequence <b₁ b₂ ... b_m> (m ≥ n) if there exist integers
 i₁ < i₂ < ... < i_n such that a₁ ⊆ b_{i1}, a₂ ⊆ b_{i2}, ..., a_n ⊆ b_{in}
- Illustrative Example:

s: b_1 b_2 b_3 b_4 b_5 t: a_1 a_2 a_3

t is a subsequence of s if $a_1 \subseteq b_2$, $a_2 \subseteq b_3$, $a_3 \subseteq b_5$.

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {8} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {4} >	Yes
<{2,4} {2,5}, {4,5}>	< {2} {4} {5} >	No
<{2,4} {2,5}, {4,5}>	< {2} {5} {5} >	Yes
<{2,4} {2,5}, {4,5}>	< {2, 4, 5} >	No

Sequential Pattern Mining: Definition

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)
- Given:
 - a database of sequences
 - a user-specified minimum support threshold, minsup
- Task:
 - Find all subsequences with support ≥ minsup

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

 How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Object	Timestamp	Events		
Α	1	1,2,4		
Α	2	2,3		
Α	3	5		
В	1	1,2		
В	2	2,3,4		
С	1	1, 2		
С	2	2,3,4		
С	3	2,4,5		
D	1	2		
D	2	3, 4		
D	3	4, 5		
E	1	1, 3		
Е	2	2, 4, 5		

Minsup = 50%

Examples of Frequent Subsequences:

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

$$\{i_1\}>, \{i_2\}>, \{i_3\}>, ..., \{i_n\}>$$

Candidate 2-subsequences:

$$\{i_1, i_2\} >, \{i_1, i_3\} >, ..., \{i_1\} \{i_1\} >, \{i_1\} \{i_2\} >, ..., \{i_{n-1}\} \{i_n\} >, \{i_n\} >, ..., \{i_n\} \{i_n\} =, ..., [i_n] \{i_n\} =, ..., [i_$$

Candidate 3-subsequences:

- 1. An event can appear more than once in a sequence
- 2. Order matters in sequences

Extracting Sequential Patterns: Simple example

- Given 2 events: a, b
- Candidate 1-subsequences: <{a}>, <{b}>.

Item-set patterns

Candidate 2-subsequences:

Candidate 3-subsequences:

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1element frequent sequences

Step 2:

Repeat until no new frequent sequences are found

– Candidate Generation:

 Merge pairs of frequent subsequences found in the (k-1)th pass to generate candidate sequences that contain k items

– Candidate Pruning:

◆ Prune candidate *k*-sequences that contain infrequent (*k*-1)-subsequences

– Support Counting:

 Make a new pass over the sequence database D to find the support for these candidate sequences

Candidate Elimination:

◆ Eliminate candidate *k*-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k=2):
 - Merging two frequent 1-sequences
- General case (k>2):
 - A frequent (k-1)-sequence w₁ is merged with another frequent (k-1)-sequence w₂ to produce a candidate k-sequence if the subsequence obtained by removing the first event in w₁ is the same as the subsequence obtained by removing the last event in w₂
 - The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2 .
 - If the last two events in w₂ belong to the same element, then the last event in w₂ becomes part of the last element in w₁
 - Otherwise, the last event in w₂ becomes a separate element appended to the end of w₁

Candidate Generation Examples

- Merging the sequences
 w₁=<{1} {2 3} {4}> and w₂ =<{2 3} {4 5}>
 will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w₂ (4 and 5) belong to the same element
- Merging the sequences
 w₁=<{1} {2 3} {4}> and w₂ =<{2 3} {4} {5}>
 will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w₂ (4 and 5) do not belong to the same element
- We do not have to merge the sequences
 w₁ =<{1} {2 6} {4}> and w₂ =<{1} {2} {4 5}>
 to produce the candidate < {1} {2 6} {4 5}> because if the latter is a viable candidate, then it can be obtained by merging w₁ with < {1} {2 6} {5}>

Candidate Generation: Examples (ctd)

- Can <{a},{b},{c}> merge with <{b},{c},{f}> ?
- Can <{a},{b},{c}> merge with <{b,c},{f}>?
- Can <{a},{b},{c}> merge with <{b},{c,f}>?
- Can <{a,b},{c}> merge with <{b},{c,f}> ?
- Can <{a,b,c}> merge with <{b,c,f}>?
- Can <{b}{a}{b}> merge with <{a}{b}{a}> ?

Candidate Generation: Examples (ctd)

- <{a},{b},{c}> can be merged with <{b},{c},{f}> to produce<{a},{b},{c},{f}>
- <{a},{b},{c}> cannot be merged with <{b,c},{f}>
- <{a},{b},{c}> can be merged with <{b},{c,f}> to produce <{a},{b},{c,f}>
- <{a,b},{c}> can be merged with <{b},{c,f}> to produce <{a,b},{c,f}>
- <{a,b,c}> can be merged with <{b,c,f}> to produce <{a,b,c,f}>
- <{b}{a}{b}> can be merged with <{a}{b}{a}> to produce<{b},{a},{b},{a}>

GSP Example

Frequent 3-sequences

GSP Example

Frequent 3-sequences

Candidate Generation

< {1} {2 5} {3} >

Data Mining Association Analysis: Advanced Concepts

Subgraph Mining

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

Representing Transactions as Graphs

Each transaction is a clique of items

Transaction Id	Items
1	$\{A,B,C,D\}$
2	{A,B,E}
3	{B,C}
4	${A,B,D,E}$
5	{B,C,D}

Representing Graphs as Transactions

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

Frequent subgraph mining

- Input:
 - A set of graphs
 - A support threshold, minsup
- Output:
 - Find all connected subgraphs such that s(g)≥ minsup

Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - ◆What is k?

Challenges...

Graph Data Set

Support:

number of graphs that contain a particular subgraph

support = 40%

subgraph vs. itemset mining

Frequent itemset mining:

Search space:2^d

Frequent subgraph mining

Search space:

$$\sum_{i}^{d} {d \choose i} * 2^{i(i-1)/2}$$

Table 7.8. A comparison between number of itemsets and subgraphs for different dimensionality, d.

Number of entities, d	1	2	3	4	5	6	7	8
Number of itemsets	2	4	8	16	32	64	128	256
Number of subgraphs	2	5	18	113	1,450	40,069	2,350,602	28,619,2513

Frequent subgraph mining

(a) Example of a graph data set.

- A vertex label can appear more than once
- The same pair of vertex labels can have multiple choices of edge labels

(b) List of connected subgraphs.