### Trabajo de Laboratorio

### Física Electrónica - 2019

Grupo 2:
Díaz, Ian Cruz
Mestanza, Nicolás
Müller, Malena
Rodríguez Turco, Martín
Scala, Tobías

24 de junio de 2019

### EJERCICIO 1: MEDICIÓN DE CURVAS CARACTERÍSTICAS DE DIODOS



Figura 0.1: Circuitos empleados para medir la curva característica de un diodo rectificador, de un diodo zener y de un LED; respectivamente.

#### DIODO RECTIFICADOR

A continuación se presentan los gráficos de la corriente vs. tensión para el caso del diodo rectificador 1N4148.



Figura 0.2: Simulación corriente vs. tensión del diodo rectificador.



Figura 0.3: Medición de la corriente vs. tensión del diodo rectificador: Datos obtenidos y datos procesados; respectivamente.



Figura 0.4: Corriente vs. tensión del diodo rectificador obtenida de la hoja de datos.

### DIODO ZENER



Figura 0.5: Simulación corriente vs. tensión del diodo zener.



Figura 0.6: Medición de la corriente vs. tensión del diodo zener: Datos obtenidos y datos procesados; respectivamente.

### **LED**

## EJERCICIO 2: CÁLCULO Y SIMULACIÓN DE UNA FUNCIÓN TRANSFERENCIA DE TENSIÓN



Figura 0.7: Circuito empleado para medir la curva característica de un transistor NPN BC547B.

#### Siendo

### CÁLCULO DE LA FUNCIÓN TRANSFERENCIA DE TENSIÓN

Para calcular la función transferencia de tensión del circuito 0.7, se utiliza el modelo híbrido  $\pi$  como circuito equivalente del transistor NPN en pequeña señal, pasivando la fuente de tensión contínua. Además, a muy bajas frecuencias se considera que los capacitores se comportan como cortocircuitos. El siguiente circuito es el equivalente correspondiente al circuito 0.7:



Figura 0.8: Circuito equivalente empleado para el cálculo de la función transferencia de tensión.

A partir del circuito 0.8, surge que:

$$\frac{V_{OUT}}{V_{IN}} = \frac{\left(R_0//R_C//R_L\right)\beta}{R_\pi} = \frac{R_L \cdot \left(R_0 + R_C\right) \cdot \beta}{R_\pi \cdot \left(R_0 R_C R_L + R_0 + R_C\right)}$$

### SIMULACIÓN DE LA FUNCIÓN TRANSFERENCIA DE TENSIÓN



Figura 0.9: Simulación del circuito circ20.7

# EJERCICIO 3: SIMULACIÓN DE LA RESPUESTA EN FRECUENCIA DE UN CIRCUITO EN CONDICIONES INICIALES



Figura 0.10: Circuito empleado para medir la curva característica de un diodo.

Siendo  $R = 200k\Omega$ .