

研华MAS控制器 Motion Basic编程手册

Version 1.3.2

第1章 研华 MOTION BASIC 介绍

1.1 MOTION BASIC 概述

Motion Basic是一种用于研华MAS控制器的多任务编程语言,它的语法与标准Basic相似。在装有windows操作系统的电脑上运行Motion Studio就可以进行开发和测试所有MAS控制器功能。Motion Studio提供了Basic程序编辑和丰富的调试工具来进行应用程序的调试,使设备应用程序开发变得简单高效。

1.2 特点

- 基本程序指令和Visual Basic兼容,运动控制指令十分简单,初学者也很容易上手。
- 支持10个任务独立执行、同时执行。
- 支持所有研华softmotion功能指令,并可整合进外部算法和函数到Motion Basic指令,非常适合设备整合控制和高效开发。
- 编译执行方式,使得在简单易用的前提下,同时具有高级语言高效执行的优点。
- 可以同时运行多个子任务 强大的多任务处理功能提高软件结构和易维护性。
- 稳定性高: 当用户程序出现错误时, 不会出现系统崩溃。

常见的三种指令特点比较表

	MOTION BASIC	G 代码	梯形图
可理解方式	较容易	容易	困难
执行方式	编译执行	解释执行	编译执行
执行速度	快	较慢	慢
功能	全	较少	全
操作硬件能力	所有	只支持电机、IO	所有
子程序	支持	支持	不支持
任务数	10	1主任务/3从任务	不支持
变量	支持	不支持	支持
数组	支持	不支持	不支持
数学函数	支持	不支持	支持

第2章 BASIC 指令详解

MOTION BASIC 规则说明

研华 Motion Basic 指令主要包含运动控制指令和其他指令两大类。根据研华运动控制的特点,我们把运动控制指令分为命令和属性两部分指令,在第 2 章 Basic 指令详解中有说明每条运动控制指令属于命令还是属性。其他指令的规则基本上类似于标准 Basic 指令规则。本节将研华 MOTION BASIC 指令说明的一些重要规则描述如下:

- 研华 MOTION BASIC 指令集不区分字母大小写
- 指令语法说明方法:语法说明中包含()的部分,必须要使用(),不可省略。说明中有[]的部分,表示[]中的内容根据实际需求可以填或不填,不会造成语法错误。

如下 LINE 指令说明:

LINE distance1, distance2 [, distance3]; 做两轴直线插补时, LINE 指令后面的参数填 distance1 和 distance2 就可以了。做三轴直线插补时, LINE 指令后面的参数就填 distance1, distance2, distance3。 [, distance3]这个部分是根据实际需求选填的,选填的部分我们用[]说明。

■ 运动控制属性类指令的赋值说明

运动控制属性类指令赋值是用"="来做赋值的,如要设置加速度,要用ACC=value 这样的语句,ACC value 这样的语句则不符合语法规则。

■ 运动控制指令中对指定轴的操作说明

运动控制指令对指定轴操作时,指定轴号时要使用"AX"这个关键字,仅用数字代表轴号不符合语法规则。如将锁存到的轴0理论位置值赋给一个变量A,会用到指令LDPOS,语句是A=LDPOS(AX(0)),A=LDPOS(0)则不符合语法规则。

系统已定义运动控制关键字

注意:用户自定义的变量名不能与以下表格中的关键字或枚举名一样,也不能与 Motion Basic 的所有指令名一样。

关键字或枚举	说明	例子
AX	指定轴号的关键字 ,AX(0)代表	MVOE AX(0),1000 表示命令轴 0 运动
AA	轴 0 , AX(5)代表轴 5	1000 个脉冲当量
CW	 顺时针方向	CIRC 0,5000,0,10000,0 可以用
CVV	川火中3 キーノン・ロー	CIRC CW,5000,0,10000,0 来代替
CCW	· 汝叶牡子白	CIRC 1,5000,0,10000,0 可以用
CCVV	逆时针方向 	CIRC CCW,5000,0,10000,0 来代替

S	S型曲线	JK=0 可以用 JK=T 来代替
Т	T型曲线	JK=1 可以用 JK=S 来代替
DONE	轴运动完成事件	WAIT DONE ; 参考 WAIT 指令说明
COMPARED	比较触发完成事件	WAIT COMPARED ; 参考 WAIT 指令 说明
LATCHED	锁存完成事件	WAIT LATCHED ;参考 WAIT 指令说 明
AXIS	系统内部定义的轴关键字	
RUN	系统内部定义的运行关键字	
STOP	系统内部定义的停止关键字	
TASK	系统内部定义的任务关键字	
DIR	系统内部定义的方向关键字	

2.1 流程控制语句

本节指令概览

章节	指令	说明	终端 工具	观察变量工具
2.1.1	DIMAs	定义数据类型	×	×
2.1.2	CONST	定义常量	×	×
2.1.3	IFTHENELSEIFELSEEND IF	IF 条件语句	×	×
2.1.4	FORTO STEPNEXT	FOR 循环语句	×	×
2.1.5	Select CaseEnd Select	CASE 语句	×	×
2.1.6	WHILEWEND	While 循环语句	×	×
2.1.7	WAIT	等待事件结束	×	×
2.1.8	CancelWAIT	退出事件的等待	×	×
2.1.9	SLEEP	延时	×	×
2.1.10	TYPE	定义类	×	×
2.1.11	EXIT	退出一个控制流语句块或函数体	×	×

2.1.1 DIM...As...

语 法1: DIM varname1 As DataType [,varname2 As DataType,...]

语 法 2: DIM As DataType varname1 [,varname2, ...]

描述: 定义变量,数组

参数: varname 变量名

注 意: 在一个 Task 里用 DIM 定义的局部变量只在该 Task 当前的程序段起到声明的作用,如果要声明到该 Task 的子程序段(如 SUB 段程序),那需要在DIM 后面加上关键字 shared,如这样定义一个变量 x: DIM shared x As Integer。

例 程

DIM a AS DOUBLE '定义一个变量名为 a 的 64 位浮点型变量

DIM text AS STRING =»Hi,MAS» '定义一个变量名为 text 的字符串,并赋值为 HI,MAS

DIM AS ULONG b,c,d,e '一次定义多个同类型变量

2.1.2 **CONST**

语 法: CONST varname = value

描述:定义常量。采用常量名可避免在程序中多处修改同一个数值

参数: varname 变量名

value 常数值

例 程

CONST max_speed=50000 '定义速度常量

CONST Distance=10000 '定义位移常量

BASE 0

SVON

VH = max_speed '将速度常量赋给运行速度属性

MOVE Distance '将位移常量赋给位移指令参数

— 19 **—**

2.1.3 IF...THEN...ELSEIF...ELSE...END IF

语 法: IF < condition1 > THEN

commands1

[ELSEIF < condition2 > THEN]

commands2

[ELSE commands3]

END IF

描述:该指令为条件语句。首先判断条件表达式1;如果条件表达式1成立,则执行指令块1,然后跳转至ENDIF,退出条件语句。如果条件表达式1不成立,则判断条件表达式2;如果条件表达式2成立,则执行指令块2,然后跳转至endif,退出条件语句。如果条件表达式2不成立,则执行指令块3

参数: condition 条件表达式

commands 指令块(可单条指令也可多条指令)

例 程

DIM a AS LONG

IF(a=0) THEN '判断条件 1: a 是否为 0

DOUT (2)=1 '条件 1 成立,则 DO2, DO6 分别赋值 1,1

DOUT (6)=1

DOUT(2)=0 '条件 2 成立,则 DO2, DO6 分别赋值 0,1

DOUT(6)=1

ELSE '条件 1、2 都不成立的情况,则 DO2, DO6 分别赋值 1,0

DOUT(2) = 1DOUT(6) = 0

END IF

2.1.4 FOR...TO...STEP...NEXT

语 法: For varname = startvalue TO endvalue [STEP stepvalue]

[comands]

NEXT varname

描述: FOR 循环语句。如果循环变量小于循环结束值,则执行指令块到 NEXT 时,循环变量自动加一个增量,再一次执行指令块;当循环变量大于等于循环结束值时,则停止循环。

参数: varname 循环体变量名

startvalue 循环起始值

endvalue 循环结束值

stepvalue 循环变量的增量,可选;缺省时,增量为 1。增量也可以

是小数或负数。增量为负数时,循环起始值要大于循环结

束值。

Comands 指令块

注 意: 该指令最多嵌套八层

例 程

DIM i AS ULONG

'将 DO0~DO7 全部置 1

FOR i=0 To 7

DOUT (i) =1

NEXT i

'将 DO0、DO2、DO4、DO6 置 0

FOR i=0 To 7 STEP 2

DOUT (i) =0

NEXT i

2.1.5 Select Case...End Select

语 法: Select Case expression

[Case expressionlist]

[commands]

.....

[Case expressionlist]

[commands]

[Case Else]

[commands]

End Select

描述: 类似 C 语言的 Switch...Case 条件语句。根据表达式的内容选择执行哪个指令块 A A 分支 CASE 表达式条件内容需互斥 表达式内容会逐一匹配各 CASE 的条件内容,直到匹配成功,一旦匹配成功,相应分支 CASE 下的指令块只执行一次,然后程序跳转到 End select,结束 CASE 条件语句。如果写了 Case Else,则等 Case Else 以上的各分支 CASE 都没有匹配成功时,就会执行 Case Else 下的指令块。

参数: expression 表达式

expressionlist case 分支表达式条件内容

comands 指令块

注 意: 各 case 分支表达式内容需互斥

例 程

Dim choice As LONG

Select Case choice

Case 1

Print «number is 1» 'choice 为 1 时,打印 number is 1

Case 2

Print «number is 2» 'choice 为 2 时,打印 number is 2

Case 3, 4

Print «number is 3 or 4» 'choice 为 3 或 4 时,打印 number is 3 or 4

Case 5 To 10

Print «number is 5 to 10»

'choice 为 5~10 时, 打印 number is 5 to 10

Case Else

2.1.6 WHILE...WEND

语 法: WHILE condition

commands

WEND

描述:循环语句。当 condition 条件成立时,执行循环体内的指令块;否则,结束循环体。

参数: condition 条件表达式

comands指令块

例 程

Dim i AS LONG

WHILE(i=5) '如果 i=5,则在 WHILE 和 WEND 之间的指令段循环执行

BASE 0

SVON

MOVE 1000

WAIT DONE

MOVE -1000

WAIT DONE

WEND

2.1.7 WAIT

语 法 1: WAIT [AX(no),]DONE

语 法 2: WAIT [AX(no),] LATCHED

语 法 3: WAIT [AX(no),] COMPARED

语 法4: WAIT [CYL(no),] CYLDONE

描述: WAIT 指令表示等待某个事件结束, WAIT 后面未指定轴或汽油缸时,等待的 是当前 BASE 列表中的所有轴或汽油缸的相应事件。WAIT 指令后面跟的事件。 件暂只支持 DONE、LATCHED、COMPARED、CYLDONE 四种事件。

参数: AX(no) 指定轴号, no 填轴号数字

DONE 指运动结束事件

LATCHED 指锁存发生事件

COMPARED 指比较触发事件

CYLDONE 指气缸动作完成事件

注 意:WAIT 指令使用时要小心,未等到事件发生,程序会一直停在 WAIT 这行。特别是等待多个事件时,要确保事件都会发生。

例 程

BASE 0,1,2

MOVE 10000,20000,30000

WAIT AX(2), DONE '等待轴 2 运动结束后,程序执行下一行,否则一直等在该行

BASE 0,1

MOVE 20000,5000

WAIT DONE '等待轴 0,1 运动都结束后,程序执行下一行,否则一直等在该行

BASE 0

MOVE 10000

WAIT DONE '等待轴 0 运动结束后,程序执行下一行,否则一直等在该行

DOUT (2) = 1

2.1.8 CancelWAIT

语 法 1: CancelWAIT [AX(no),]DONE

语 法 2: CancelWAIT [AX(no),] LATCHED

语 法 3: CancelWAIT [AX(no),] COMPARED

描述: CancelWAIT 指令表示退出等待某个事件结束,一般是对应 WAIT 指令来使用的。当执行了 CancelWAIT 指令后,当前系统所有 Task 正在执行的 Wait 事件语句会退出等待 各 Task 程序会立刻接着执行 Wait 语句后面的程序行。

参数: AX(no) 指定轴号, no 填轴号数字

DONE 指运动结束事件

LATCHED 指锁存发生事件

COMPARED 指比较触发事件

例 程

'下面例程有两个 Task 同时执行, Task 2 开始执行后会, 轴 0 一直处于正向连续运动状态,程序会等'待在 WAIT DONE 指令行。这时候如果 VR(0)值变为 1, Task 1 中会执行 CancelWAIT DONE',


```
'Task 2 中 WAIT DONE 指令就会退出等待,程序会继续执行 STOPDEC 这行指令,然后 DOUT(0)就
  '会置成 ON 状态
  '***Task 1***'
  While 1
   If(VR(0)=1) Then
       BASE 0
       CancelWAIT DONE
       VR(0) = 0
   End
   Sleep 10
Wend
'***Task 1***'
'***Task 2***'
BASE 0
SVON
FORWARD
             '执行正向连续运动
WAIT DONE
              '等待运动结束
STOPDEC
              '减速停止
DOUT(0)=1
              'DO0 ON
'***Task 2***'
2.1.9 SLEEP
语 法: SLEEP delay_time
描述:延时指令
参数: delay_time 延时时间,单位:ms
例 程
  BASE 0
  MOVE 10000
  WAIT DONE
  SLEEP 500
                 '延时 500 毫秒
  MOVE -10000
2.1.10 TYPE
```

语 法: TYPE type_name

数:type_name 类的名称 例 程 '最终打印出来的结果如下 ' Number of Values = 4 'Average = 19.2 '以下为例程 **Type Statistics** count As Single sum As Single Declare Sub AddValue(ByVal x As Single) Declare Sub ShowResults() **End Type** Sub Statistics.AddValue(ByVal x As Single) count += 1sum += x**End Sub** Sub Statistics.ShowResults() Print «Number of Values = «; count Print «Average If(count > 0) Then Print sum / count Else Print «N/A» End If **End Sub Dim stats As Statistics** stats.AddValue 17.5 stats.AddValue 20.1 stats.AddValue 22.3 stats.AddValue 16.9 stats.ShowResults

描述: 定义一个类(类似面向对象语言中的类)

2.1.11 EXIT

```
语 法: EXIT Do | For | While | Select
        EXIT Sub | Function
        EXIT DO[, DO[,...]]
        EXIT For[, For[,...]]
        EXIT While[, While[,...]]
        EXIT Select[, Select[,...]]
描述:退出一个控制流语句块或函数体。
例 程
DIM i AS USHORT
FOR i=0 To 7
     DOUT (i) = 1
     IF(i=5) THEN
       EXIT FOR '当 i 为 5 时,结束 FOR 循环体
     END IF
NEXT i
DIM As Integer i, j
For i = 1 To 10
 For j = 1 To 10
    Exit For, For '嵌套的控制流语句块退出指令,结束 FOR 嵌套循环体
 Next j
 Print «I will never be shown»
Next i
```


2.2 子程序、多任务控制语句

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.2.1	SUB	定义一个函数体	×	×
2.2.2	END	结束当前任务或程序	×	×
2.2.3	RUN_TASK	运行指定的 Task	√	×
2.2.4	STOP_TASK	停止运行指定的 Task	√	×
2.2.5	STOP_ALL	停止运行所有 Task ,并停止所有轴的 运动	√	×

2.2.1 SUB

语 法: SUB name

描述: 定义一个函数体

参数:name 函数体名

注 意:调用函数时, SUB 函数体必须要写在调用该函数之前, 否则编译时会出错。如果想将定义的 SUB 函数体写在任意位置,可以在 TASK 开头用 Declare Sub name 语句先定义。

Declare 指令特别说明如下:

Declare 为声明的指令,一般用于声明 SUB (无返回值的函数体)和 Function (有返回值的函数体),语法如下:

Declare <a>Sub name [param_list]

Declare Function name [param_list] As return_type

例 程

'定义一个函数体, 名为 abc

SUB abc

BASE 0

SVON

MOVE 50000

WAIT DONE

END SUB

BASE 1

SVON

MOVE 10000

WAIT DONE

abc '调用函数名为 abc 的函数体

BASE 1

MOVE -10000

2.2.2 END

语 法: END

描述:结束当前任务或程序, END 指令后面可以跟 SUB, IF 等

例 程

'可以参考 IF、SUB 等指令例程

2.2.3 RUN_TASK

所属:命令

语 法: RUN_TASK "task_name"

描述:运行指定的 Task

参数: task_name TASK 文本名称,此处名称不能加.bas 后缀,只需填.bas 前面

的名称

例 程

'如用户创建了 3 个 TASK,分别为 test1.bas, test2.bas,test3.bas,需在 test3.bas 里运行 test1.bas, test2.bas 这两个 TASK,可在 test3.bas 里写如下例程

RUN_TASK «test1»

RUN_TASK «test2»

2.2.4 STOP_TASK

所属:命令

语 法: STOP_TASK "task_name"

描述: 停止运行指定的 Task

参数: task_name TASK 文本名称,此处名称不能加.bas 后缀,只需填.bas 前面

的名称

例 程

STOP_TASK «test» ' 停止运行名为 test 的 TASK

2.2.5 STOP_ALL

所属:命令

语 法: STOP_ALL

描述: 停止运行所有 Task , 并停止所有轴的运动

例 程

RUN_TASK «test1» '运行名为 test1 的 TASK

RUN_TASK «test2» '运行名为 test2 的 TASK

Sleep 1000 '延时 1 秒

STOP_ALL ' 停止运行所有 TASK , 并停止所有轴运动

2.3 运算符及数学函数

2.3.1 运算符

当表达式包含多种运算符时,首先计算算术运算符,然后计算比较运算符,最后计算逻辑运算符。所有比较运算符的优先级相同,即按照从左到右的顺序计算比较运算符。

当乘号与除号同时出现在一个表达式中时,按从左到右的顺序计算乘、除运算符。 同样当加与减同时出现在一个表达式中时,按从左到右的顺序计算加、减运算符。

算术运算符说明如表 3.1 所示。

表 3.1 运算符说明

算术运算符		比较运算符		逻辑运算符	
描述	符号	描述	符号	描述	符号
加	+	等于	=	逻辑非	NOT
减	-	不等于	<>	逻辑与	AND
乘	*	小于	<	逻辑或	OR
除	/	大于	>	逻辑异或	XOR
整除	١	小于等于	<=	逻辑等价	EQV
求余数	Mod	大于等于	>=		
求相反数	-				
幂	٨				

算术运算符	
加	+
减	-
乘	*
除	/
整除	\
求余数	Mod
求相反数	-
幂	۸
比较运算符	

描述	符号
等于	=
不等于	<>
小于	<
大于	>
小于等于	<=
大于等于	>=
逻辑运算符	
逻辑运算符描述	符号
	符号 NOT
描述	
描述逻辑非	NOT
描述 逻辑非 逻辑与	NOT
描述 逻辑非 逻辑与 逻辑或	NOT AND OR

2.3.1.1 NOT

语 法: NOT expression

描述:对表达式的值按二进制的位进行"非"运算

参数: expression 表达式

注 意:只针对表达式的值的整数部分运算

2.3.1.2 AND

语 法: expression1 AND expression2

描述:将两个表达式的值按二进制的位进行"与"运算

参数: expression1 表达式1

expression2 表达式 2

注 意:只针对表达式的值的整数部分运算

2.3.1.3 OR

语 法: expression1 OR expression2

描述:将两个表达式的值按二进制的位进行"或"运算

参数: expression1 表达式1

expression2 表达式 2

注 意:只针对表达式的值的整数部分运算

2.3.1.4 XOR

语 法: expression1 XOR expression2

描述:将两个表达式的值按二进制的位进行"异或"运算

参数: expression1 表达式1

expression2 表达式 2

注 意:只针对表达式的值的整数部分运算

2.3.1.5 EQV

语 法: expression1 EQV expression2

描述:将两个表达式的值按二进制的位进行"同或"运算

参数: expression1 表达式1

expression2 表达式 2

注 意:只针对表达式的值的整数部分运算

2.3.2 数学函数

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.3.2.1	ABS	求绝对值	×	×
2.3.2.2	SIN	正弦函数	×	×
2.3.2.3	ASIN	反正弦函数	×	×
2.3.2.4	cos	余弦函数	×	×
2.3.2.5	ACOS	反余弦函数	×	×
2.3.2.6	TAN	正切函数	×	×
2.3.2.7	ATN	反正切函数	×	×
2.3.2.8	ATAN2	用比值求反正切函数	×	×

2.3.2.9	SQR	求平方根	×	×
2.3.2.10	LOG	自然对数	×	×
2.3.2.11	BITRESET	位操作置 0	×	×
2.3.2.12	BIT	位操作读值	×	×
2.3.2.13	BITSET	位操作置 1	×	×
2.3.2.14	FRAC	求小数部分的值	×	×
2.3.2.15	INT	求整数部分的值	×	×
2.3.2.16	SGN	判断值的符号	×	×

2.3.2.1 ABS

语 法: ABS(expression)

描述:求表达式的绝对值

参数: expression 表达式

2.3.2.2 SIN

语 法: SIN (expression)

描述: 计算表达式的正弦函数

参数:expression 表达式,单位:弧度

例程

CONST PI AS DOUBLE = 3.1415926535897932

a=90

sin_value=SIN (r)

PRINT r

PRINT sin_value

运行结果:r为1.570796326794897

sin_value 为 1

2.3.2.3 ASIN

语 法: ASIN (expression)

描述: 计算表达式的反正弦函数, 返回值单位: 弧度

参数: expression 表达式

2.3.2.4 COS

语 法: COS (expression)

描述:计算表达式的余弦函数

参数:expression 表达式,单位:弧度

2.3.2.5 ACOS

语 法: ACOS (expression)

描述: 计算表达式的反余弦函数 , 返回值单位: 弧度

参数: expression 表达式

2.3.2.6 TAN

语 法: TAN (expression)

描述:计算表达式的正切函数

参数:expression 表达式,单位:弧度

2.3.2.7 ATN

语 法: ATN (expression)

描述:计算表达式的反正切函数,返回值单位:弧度

参数: expression

2.3.2.8 ATAN2

语 法: ATAN2 (number1, number2)

描述: 计算 number1/number2 比值的反正切函数,返回值单位:弧度

参数: number1 比值分子

number2 比值分母

2.3.2.9 SQR

语 法: SQR (expression)

描述:计算表达式的平方根

参数: expression 表达式

2.3.2.10 LOG

语 法: LOG (expression)

描述: 计算表达式的自然对数 (以 e 为底的对数)

参数: expression 表达式

2.3.2.11 **BITRESET**

语 法: BITRESET(value, bit_num)

描述:将操作数的二进制的第 bit 位清 0

参数: bit num 位编号: 0~31 (二进制数的位, 从低(右)至高(左)排列)

value 操作数

注 意:只针对操作数的整数部分操作

例 程

DIM AS ULONG a,b

a=5

b=BITRESET(a,0) 'a 为 5 , 二进制即 101 , 清掉 0 位 , 即 b 得到 100

PRINT b 'b 为 100, 打印出来即为 4

b=BITRESET(a,2) 'a 为 5, 二进制即 101, 清掉 2 位,即 b 得到 001

PRINT b 'b 为 001 , 打印出来即为 1

2.3.2.12 BIT

语 法: BIT(value, bit num)

描述: 读取操作数的二进制的第 bit 位的值, 读到 bit 位为 0 值, 返回 0; 读到 bit

位为1值,返回-1

参数: bit num 位编号:0~31(二进制数的位,从低(右)至高(左)排列)

value 操作数

注 意:只针对操作数的整数部分操作

2.3.2.13 BITSET

语 法: BITSET(value, bit_num)

描述: 将操作数的二进制的第 bit 位的置 1

参数: bit num 位编号: 0~31 (二进制数的位, 从低(右)至高(左)排列)

value 操作数

注 意:只针对操作数的整数部分操作

2.3.2.14 FRAC

语 法: FRAC(expression)

描述:返回表达式的小数部分

参数: expression 表达式

注 意:此函数仅支持大于0的表达式

2.3.2.15 INT

语 法: INT(expression)

描述:返回表达式的整数部分

参数: expression 表达式

注 意: 当表达式的值小于0时, 返回值比其整数小1

2.3.2.16 SGN

语 法: SGN(expression)

描述:判断表达式是大于0、等于0,还是小于0。当表达式大于0,函数的返回值为1;当表达式等于0时,函数的返回值为0;当表达式小于0,函数的返回值为-1

参数: expression 表达式

2.4 控制器系统指令

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.4.1	BASE	该指令后面所有的轴指令和轴参数设置和读取都基于该指令选定的轴号	√	×
2.4.2	UNIT_NUM	脉冲当量分子	√	√
2.4.3	UNIT_DENOM	脉冲当量分母	√	√
2.4.4	POUT_MODE	指令脉冲输出类型	\checkmark	√
2.4.5	POUT_REVERSE	指令脉冲输出逻辑反相	√	√
2.4.6	PIN_MODE	编码器脉冲输入类型	√	√
2.4.7	PIN_MAXFREQ	编码器脉冲输入的最高频率限值	√	√
2.4.8	PIN_LOGIC	编码器脉冲输入逻辑反相	√	√
2.4.9	DPOS	理论位置值(指令脉冲)	√	√
2.4.10	MPOS	实际位置值 (编码器反馈脉冲)	√	√
2.4.11	SVON	使能伺服	√	×
2.4.12	SVOFF	禁用使能伺服	√	×
2.4.13	FILE_WRITEVR	写 VR 文件到本地	×	×
2.4.14	FILE_READVR	将本地 VR 文件载入项目	×	×
2.4.15	ERROR_AXIS	当前哪些轴发生了轴状态错误	√	×
2.4.16	RUN_ERROR	轴错误信息	√	×
2.4.17	SYSTEM_ERROR	系统级错误信息	√	×
2.4.18	CLEAR_ERROR	清除系统错误状态	√	×
2.4.19	PRINT	在 Motion Studio 中的信息输出 窗体打印信息	×	×
2.4.20	VR	实数型全局变量	√	√
2.4.21	DATE	获取当前控制器日期:月-日-年	×	×
2.4.22	TIME	获取当前控制器日期:小时:分	×	×

		钟:秒		
2.4.23	SETDATE	给控制器系统设置新的日期	×	×
2.4.24	SETTIME	给控制器系统设置新的时间	×	×
2.4.25	TIMER	返回程序段程序执行的时间	×	×

2.4.1 BASE

所属:命令

语 法: BASE axis no [,second axis][,third axis] ...

描述: 为了简化编程,可以用该指令选择要参与运动的轴号,其后的指令就没必要填写所有轴的参数,只填写参与运动的轴参数即可。轴号要按顺序填写,轴号可以是1个,也可以是2个、3个...

参数: axis no 轴号; 范围: 根据控制器实际硬件决定。

例 程

BASE 0,1,2,3

VH=8000 '轴 0,1,2,3 的最大运行速度都设置为 8000

MOVE 10000, 4000, 2000, 6000 '轴 0,1,2,3 都执行单轴相对点位运动

BASE 1

MOVE 10000 '轴 1 执行单轴相对点位运动

2.4.2 UNIT_NUM

所属:属性

语 法: UNIT_NUM = value

类型: ULONG

描述:设置/读取脉冲当量分子

范 围:大于0,默认值1

例 程

BASE 0

UNIT_NUM =10 '设置軸 0 的脉冲当量分子

2.4.3 UNIT_DENOM

所属:属性

语 法: UNIT_DENOM = value

类型: ULONG

描述:设置/读取脉冲当量分母

范 **围**:(0, MAX_PULSE), 默认值1

例 程

BASE 0

UNIT_DENOM=40 '设置軸 0 的脉冲当量分母为 40

2.4.4 POUT_MODE

所属:属性

语 法: POUT_MODE= value

类型: ULONG

描述:设置/读取指令脉冲输出类型

范 围:如下设定值,默认值5

0: OUT/DIR

1: OUT/DIR, OUT 负逻辑

2:OUT/DIR, DIR 负逻辑

3:OUT/DIR,OUT&DIR 负逻辑

4: CW/CCW

5: CW/CCW, CW&CCW 负逻辑

例 程

BASE 0

POUT_MODE = 2 '设置指令脉冲输出类型为 OUT/DIR, DIR 负逻辑

2.4.5 POUT_REVERSE

所属:属性

语 法: POUT_REVERSE = value

类型: ULONG

描述: 启用/禁用指令脉冲输出端口信号对调

范 围:如下设定值,默认值0

0:禁用

1:启用

例 程

BASE 0

POUT_REVERSE =1;'启用指令脉冲输出端口信号对调

2.4.6 PIN_MODE

所属:属性

语 法: PIN_MODE= value

类型: ULONG

描述:设置/读取编码器输入脉冲类型

范 围:如下设定值,默认值2

0:1XAB

1:2XAB

2:4XAB

3: CCW/CW

例 程

BASE 0

PIN_MODE = 3 '设置编码器输入脉冲类型为 CCW/CW

2.4.7 PIN_MAXFREQ

所属:属性

语 法: PIN_MAXFREQ = value

类型: ULONG

描述:设置/读取编码器输入脉冲的最高频率

范 围:如下设定值,默认值0

0:500KHz

1:1MHz

2:2MHz

3:4MHz

例 程

BASE 0

PIN_MAXFREQ =1 '设置编码器输入脉冲的最高频率为 1MHz

2.4.8 PIN_LOGIC

所属:属性

语 法: PIN_LOGIC = value

类型: ULONG

描述:设置/读取编码器输入脉冲的逻辑

范 围:如下设定值,默认值0

0:不反转方向

1:反转方向

例 程

BASE 0

PIN_LOGIC =1 '设置编码器输入脉冲逻辑为反转方向

2.4.9 **DPOS**

所属:属性

语 法: DPOS = value

类型: DOUBLE

描述:设置/读取轴当前的理论位置

范 围:64 位浮点数据类型范围

例 程

BASE 0

DIM A AS DOUBLE

A=DPOS '将轴 0 的当前理论位置赋值给变量 A

BASE 1

VR(10)=DPOS '将轴 1 的当前理论位置赋值给全局变量 VR (10)

DPOS=0 '将轴 1 的当前理论位置计数器赋 0

2.4.10 MPOS

所属:属性

语 法: MPOS = value

类型: DOUBLE

描述:设置/读取轴当前的编码器反馈位置

范 围:64 位浮点数据类型范围

例 程

BASE 0

DIM A AS DOUBLE

A=MPOS '将轴 0 的当前实际位置赋值给变量 A

BASE 1

VR(10)=MPOS '将轴 1 的当前实际位置赋值给全局变量 VR (10)

MPOS=0 '将轴 1 的当前实际位置计数器赋 0

2.4.11 SVON

所属:命令

语法 1: SVON

语法 2: SVON AX(axis no)

描述: BASE 轴列表的轴或指定轴,使能轴

参数: axis no 轴号; 范围:根据控制器实际硬件决定

例 程

'对 BASE 列表中的轴使能,即使能伺服

BASE 2

SVON '使能轴 2

BASE 0,1,3,5

SVON '使能轴 0、1、3、5

'指定轴使能

SVON AX(2) '使能轴 2

2.4.12 SVOFF

所属:命令

语法 1: SVOFF

语法 2: SVOFF AX(axis no)

描述: BASE 轴列表的轴或指定轴,禁用轴使能

参数: axis no 轴号; 范围:根据控制器实际硬件决定

例 程

'对 BASE 列表中的禁用轴使能

BASE 2

SVOFF '禁用轴 2 使能

BASE 0,1,3,5

SVOFF '禁用轴 0、1、3、5 使能

SVOFF AX(2) '禁用轴 2 使能

2.4.13 FILE WRITEVR

所属:命令

语 法: FILE_WRITEVR file_name, vr_start no, vr_end no

描述:将一段 VR 的数据保存到本地文本,目前仅支持 bas 和 csv 两种文件类型。

参数: file name 保存到本地文本的文件名

vr start no VR 起始编号

vr_end no VR 结束编号

例 程

'将 VR(0)~VR(20)的数据写到本地名为 VR_data 的 bas 文件

FILE WRITEVR «VR data.bas»,0,20

'将 VR(0)~VR(100)的数据写到本地名为 P data 的 csv 文件

FILE_WRITEVR «P_data.csv»,0,100

2.4.14 FILE READVR

所属:命令

语 法: FILE READVR file name

描述: 将本地 VR 文本的数据写到当前工程的 VR 变量中

参数: file name 保存到本地文本的文件名

例 程

'将本地名为 VR_d data 的 bas 文件 VR 数据读到控制器里 ,该 bas 文件里的 VR 数据将覆盖控制器里对应的 VR 数据

FILE READVR «VR data.bas»

'将本地名为 P_data 的 csv 文件 VR 数据读到控制器里,该 csv 文件里的 VR 数据将覆盖控制器里对应的 VR 数据

FILE_READVR «P_data.csv»

2.4.15 ERROR_AXIS

所属:属性(只读)

语 法: value=ERROR AXIS

类型: ULONG

描述:读取当前哪些轴发生了轴状态错误。该属性为32位寄存器,每一位代表一个轴。位值为0表示该轴无错误发生,位值为1表示该轴发生了轴状态错误。当发生轴状态错误时,可以用RESETERR指令清除轴状态错误。

返回值:0:无错误发生;1:发生了轴状态错误

例 程

DIM ErrorReturn As ULONG

ErrorReturn=ERROR_AXIS

IF (ErrorReturn=4) THEN 'ErrorReturn 为 4 时,表示轴 2 发生了轴状态错误

RESETERR AX(2) 清除轴 2 的轴状态错误

End if

2.4.16 RUN_ERROR

所属:属性(只读)

语 法: value=RUN_ERROR

类型: ULONG

描述:根据 BASE 轴列表中的轴,读取轴错误信息。错误代码信息请参照章节 2.15

RUN ERROR 错误代码信息表。

返回值:错误代码

例 程

DIM ErrorCode As ULONG

BASE 0

ErrorCode = RUN_ERROR

2.4.17 SYSTEM_ERROR

所属:属性(只读)

语 法: value=SYSTEM_ERROR

类型: ULONG

描述:读取系统级错误信息。错误代码信息请参考章节 2.15 SYSTEM ERROR 错误

代码信息表

返回值:错误代码

例 程

DIM ErrorCode As ULONG

ErrorCode = SYSTEM ERROR

2.4.18 CLEAR_ERROR

所属:命令

语 法: CLEAR_ERROR

描述:清除系统错误状态。该命令仅用于清除 SYSTEM ERROR 对应的系统错误状态

2.4.19 PRINT

所属:命令

描述:在 Motion Studio 中的信息输出窗体打印信息。

例 程

Dim A As ULONG

A=42

Print «Hello» '打印字符串

Print VL ′打印初速度属性值

Print A '变量值

Print 3*4 '打印一个表达式结果, 打印结果为 12

2.4.20 VR

语 法: VR(no)=value

类型:Double

描述: VR 变量是实数型全局变量。软件平台共提供 10000 个 VR 变量给用户操作: VR(0)~VR(9999)。当 VR 变量用于 Modbus 通讯的自定义变量时,可以选择将 VR 变量对应一个 16 位数据类型寄存器或 32 位数据类型寄存器。

参数: no VR 变量的索引号;范围:0~9999,共10000个

例 程

Dim A As ULONG

A=15

BASE 0

VR(25)=1000

VL=VR(25) '将 VR(15)的数值赋给轴 0 的初速度。

2.4.21 DATE

语 法:value=DATE

类型:String

描述:获取当前控制器日期:月-日-年

例 程

DIM str1 AS string

str1=DATE

print str1 '如现在是 2016 年 3 月 15 日, 打印结果为: 03-15-2016

Print «the current date is: «; DATE '打印结果: the current date is: 03-15-2016

2.4.22 TIME

语 法:value=TIME

类型:String

描述:获取当前控制器日期:小时:分钟:秒

例 程

DIM str1 AS string

str1=TIME

Print «the current time is: «; TIME '打印结果: the current date is: 14:22:51

2.4.23 SETDATE

语 法: SETDATE(newdate)

描述:给控制器系统设置新的日期

参数: newdate 新的日期, 类型为 string

例 程

SETDATE «03/15/2016» '将当前控制器系统日期设置为 2016 年 3 月 15 号

2.4.24 SETTIME

语 法:SETTIME(newtime)

描述: 给控制器系统设置新的时间

参数: newtime 新的时间,类型为 string

例 程

2.4.25 TIMER

语 法: value=TIMER

描述:以秒为单位,返回开始参考的时间到现在消逝的时间总和。该功能主要用于计算 TASK 里一个程序段跑了多少时间,从而去找出从程序一行执行到另一行所花的时间。

例 程

Dim Start As Double

Print «Wait 2.5 seconds.»

Start = Timer

Do

Sleep 1, 1

Loop Until (Timer – Start) > 2.5

Print «Done.»

2.5 单轴点位运动

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.5.1	VL	单轴初速度	√	√
2.5.2	VH	单轴运行速度	√	√
2.5.3	ACC	单轴加速度	√	√
2.5.4	DEC	单轴减速度	√	√
2.5.5	JK	单轴速度曲线类型	√	√
2.5.6	DSPEED	当前轴指令速度值	√	√
2.5.7	STATE	轴当前运动状态	√	√
2.5.8	MOVE	单轴相对点位运动	√	×
2.5.9	MOVEABS	单轴绝对点位运动	√	×
2.5.10	PCHANGE	单轴运动过程中改变终点位置	√	×
2.5.11	STOPDEC	减速停止	√	×
2.5.12	STOPEMG	立即停止	√	×
2.5.13	BACKLASH_EN	背隙补偿功能使能	√	×
2.5.14	BACKLASH_PULSE	背隙补偿距离	√	√
2.5.15	BACKLASH_VEL	背隙补偿过程运动速度	√	√
2.5.16	MAXVEL	单轴最大速度限值	√	√
2.5.17	MAXACC	单轴最大加速度限值	√	√
2.5.18	MAXDEC	单轴最大减速度限值	√	√
2.5.19	RESETERR	清除当前轴错误状态	√	×

2.5.1 VL

所属:属性

语 法: VL = value

类型: DOUBLE

描述:设置/读取轴的初速度, VL 的单位为脉冲当量/s

范 **围**:【0, MAXVEL】, 默认值 2000

例 程

BASE 0

VL=2000 '设置軸 0 的初速度为 2000 个脉冲当量/s

2.5.2 VH

所属:属性

语 法: VH = value

类型: DOUBLE

描述:设置/读取轴的最大运行速度, VH 的单位为脉冲当量/s

范 围: (VL, MAXVEL), 默认值 8000

例 程

BASE 0

VH=2000 '设置軸 0 的运行速度为 2000 个脉冲当量/s

2.5.3 ACC

所属:属性

语 法: ACC = value

类型: DOUBLE

描述:设置/读取軸的加速度, ACC 的单位为脉冲当量/s^2

范 围:(0, MAXACC), 默认值 10000

例 程

BASE 0

ACC=20000 '设置軸 0 的加速度为 20000 个脉冲当量/s^2

2.5.4 DEC

所属:属性

语 法: DEC = value

类型: DOUBLE

描述:设置/读取軸的减速度, DEC 的单位为脉冲当量/s^2

范 围:(0, MAXDEC), 默认值 10000

例 程

BASE 0

DEC=20000 '设置軸 0 的减速度为 20000 个脉冲当量/s^2

2.5.5 JK

所属:属性

语 法: JK = value

类型: ULONG

描述:设置/读取单轴点位运动的速度曲线类型

范 围:【0,1】,0:T型曲线;1:S型曲线,默认值0

例 程

BASE 0

JK=1 '设置軸 0 单轴点位运动的速度曲线类型为 S 型曲线

2.5.6 DSPEED

所属:属性(只读)

语 法: value = DSPEED

类型: DOUBLE

描述:根据当前 BASE 列表中的轴,读取轴当前指令理论速度

例 程

BASE 0

DIM A AS DOUBLE

A=DSPEED '将轴 0 的当前指令速度赋值给变量 A

2.5.7 STATE

所属:属性(只读)

语 法: value = STATE

类型: ULONG

描述:读取当前轴运动状态。

返回值:如下

0:轴不可用状态

1: Ready 状态

2:轴停止状态,但未Ready

3:轴处于错误状态,轴被停止运动

4:轴正在执行回原点运动中

5:轴正在执行单轴点位运动中

6:轴正在执行单轴连续运动中

7:轴正在参与插补运动中或同步运动中

8:轴处于外部 JOG 模式中

9:轴处于外部 MPG 模式中

例 程

BASE 0

DIM A AS ULONG

A=STATE '将轴 0 的当前轴运动状态对应的值赋值给变量 A

A=STATE(AX(2)) '将轴 2 的当前轴运动状态对应的值赋值给变量 A

2.5.8 MOVE

所属:命令

语 法1: MOVE distance1[,distance2][,distance3]......

语 法 2: MOVE AX(axis no), distance

描述: BASE 轴列表的轴,以当前位置为原点,在相对坐标下运动到指定距离的位置。

参数: distance 相对移动距离; 类型: DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

'选择要操作的軸, 並設定速度等相关参数

BASE 0,1,2

VL=2000

VH=8000

ACC=10000

DEC=10000

'开始轴 1 的相对运动

BASE 0

MOVE 1000

WAIT DONE

'开始轴 2,3 的相对运动

BASE 1,2

MOVE 2000, 3000

WAIT DONE

'指定轴 1,开始相对运动

MOVE AX(1),5000

2.5.9 MOVEABS

所属:命令

语 法1: MOVEABS position1[, position2][, position3]......

语 法 2: MOVEABS AX(axis no), positon

描述:BASE 轴列表的轴,在绝对坐标下运动到的指定位置。

参数: position 绝对位置; 类型: DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

'选择要操作的軸, 並設定速度等相关参数

BASE 0,1,2

VL=2000

VH=8000

ACC=10000

DEC=10000

'开始轴 1 的绝对运动

BASE 0

MOVEABS 1000

WAIT DONE

'开始轴 2,3 的绝对运动

BASE 1,2

MOVEABS 2000, 3000

WAIT DONE

'指定轴 1,开始绝对运动

MOVEABS AX(1),5000

2.5.10 PCHANGE

所属:命令

语 法1: PCHANGE distance

语 法 2: PCHANGE AX(axis no), distance

描述:修改当前运动的终点位置,如果当前轴不在运动中,下该指令会报错。

参数: distance 改变相对运动距离; 类型: DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0

MOVE 20000

SLEEP 200

PCHANGE 25000 '改变位移为 25000

WAIT DONE

BASE 0,1

SVON

MOVE 10000,10000

SLEEP 200

PCHANGE AX(1),5000 '改变位移为 5000

WAIT DONE

2.5.11 STOPDEC

所属:命令

语 法1:STOPDEC

语 法2:STOPDEC AX(axis no), dec

语 法 3: STOPDEC dec1, dec2, dec3,, dec32

描述: BASE 轴列表中的轴或指定轴、指定减速度对轴下减速停止运动命令

参 数: dec 减速度; 类型: DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1,2 **SVON** VL=1000 VH=10000 ACC=50000 DEC=50000 '多个轴下减速停止运动命令 MOVE 40000,20000,35000 **SLEEP 1000 STOPDEC** WAIT DONE '指定轴下减速停止运动命令 FORWARD AX(0) **SLEEP 2000** STOPDEC AX(0) WAIT AX(0), DONE '指定多个轴用新的减速度下减速停止运动命令 MOVE 40000,30000,35000 **SLEEP 2000** STOPDEC 200000,200000,200000 **2.5.12 STOPEMG** 所属:命令 语 法1:STOPEMG 语 法2: STOPEMG AX(axis no) 描述: BASE 轴列表中的轴或指定轴对轴下立即停止运动命令 参数: axis no 轴号; 范围:根据控制器实际硬件决定。 例 程 BASE 0,1,2 **SVON**

VL=1000

VH=10000

ACC=50000

DEC=50000

'多个轴下立即停止运动命令

MOVE 40000,20000,35000

SLEEP 1000

STOPEMG

WAIT DONE

'指定轴下立即停止运动命令

FORWARD AX(0)

SLEEP 2000

STOPEMG AX(0)

WAIT AX(0), DONE

2.5.13 BACKLASH_EN

所属:属性

语 法: BACKLASH_EN = value

类型: ULONG

描述: 启用/禁用背隙补偿功能

范 围:如下设定值,默认值0

0:禁用

1:启用

例 程

BASE 0

BACKLASH_EN=1 '启用轴 0 的背隙补偿功能

2.5.14 BACKLASH_PULSE

所属:属性

语 法: BACKLASH_PULSE = value

类型: ULONG

描述:设置/读取背隙补偿的脉冲个数

范 围:【0,4095】,默认值10

例 程

BASE 0

BACKLASH PULSE=10 '设置轴 0 的背隙补偿的脉冲个数为 10 个

2.5.15 BACKLASH_VEL

所属:属性

语 法: BACKLASH VEL = value

类型: ULONG

描述:设置/读取进行补偿距离移动时的速度,单位为脉冲/s

范 围:(0, MAXVEL), 默认值 1000

例 程

BASE 0

BACKLASH_VEL=1000 '设置轴 0 的背隙补偿速度为 1000 个脉冲/s

2.5.16 MAXVEL

所属:属性

语 法: MAXVEL = value

类型: DOUBLE

描述:设定/读取运动轴的运行速度限值,单位为脉冲当量/s。VL、VH、HOME_VH

等跟轴速度相关的设定值都不能超过该限值,否则设定会不成功。

范 围:【1,5000000】, 默认值 1000000

例 程

MAXVEL=200000 '设置軸的最大运行速度限值为 200000 脉冲当量/s

2.5.17 MAXACC

所属:属性

语 法: MAXACC = value

类型: DOUBLE

描述:设定/读取运动轴的加速度限值,单位为脉冲当量/s^2。ACC、HOME_ACC等跟轴加速度相关的设定值都不能超过该限值,否则设定会不成功。

范 围:【1,500000000】, 默认值 500000000

例 程

MAXACC=200000 '设置軸的加速度限值为 200000 脉冲当量/s^2

2.5.18 MAXDEC

所属:属性

语 法: MAXDEC = value

类型: DOUBLE

描述:设定/读取运动轴的减速度限值,单位为脉冲当量/s^2。DEC、HOME_DEC等跟轴减速度相关的设定值都不能超过该限值,否则设定会不成功。

范 围:【1,500000000】,默认值500000000

例 程

MAXDEC=200000 '设置軸的减速度限值为 200000 脉冲当量/s^2

2.5.19 RESETERR

所属:命令

语 法1: RESETERR

语 法2: RESETERR AX(axis no)

描述: BASE 轴列表的轴或指定轴,清除轴错误

参数:axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1,2

RESETERR '清除轴 0、1、2 的错误

RESETERR AX(1) '清除轴 1 的错误

2.6 单轴定速运动

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.6.1	FORWARD	正向恒速连续运动	√	×
2.6.2	REVERSE	反向恒速连续运动	√	×
2.6.3	VCHANGE	运动中改变速度	√	×
2.6.4	VCHANGE_RATE	运动中改变速度(百分比)	√	×

2.6.1 FORWARD

所属:命令

语 法1: FORWARD

语 法 2: FORWARD AX(axis no)

语 法 3: FORWARD dir1[, dir2][, dir3]...... dir 为 0 时,方向与 FORWARD 同

向 dir 为 1 时,方向与 FORWARD 反向

描述: BASE 轴列表的轴或指定轴,开始正向连续运动

参数: dir 方向; 类型: ULONG

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1

SVON

VL=1000 '设置初速度

VH=10000 '设置运行速度

ACC=100000 '设置加速度

DEC=ACC '设置减速度

'单轴或多轴同方向执行连续运动

FORWARD '轴 0,1 都执行正向连续运动

SLEEP 2000 '延时 2000ms

STOPDEC '减速停止轴 0,1 运动

WAIT DONE '等待运动停止,如运动未停止的状态,下面语句再对该轴操作会执行不成功

REVERSE '轴 0,1 都执行负向连续运动

SLEEP 2000

STOPDEC '减速停止轴 0,1 运动

WAIT DONE '等待运动停止

'指定多个轴按不同方向执行连续运动

FORWARD 0,1 '轴 0 正向连续运动,轴 1 负向连续运动

SLEEP 2000

STOPEMG '立即停止轴 0,1 运动

WAIT DONE

'指定一个轴执行连续运动

FORWARD AX(0) '轴 0 执行正向连续运动

SLEEP 1000

STOPDEC AX(0) 指定轴 0 下减速停止命令

WAIT AX(0),DONE '指定轴等待运动停止

2.6.2 REVERSE

所属:命令

语 法1: REVERSE

语 法 2: REVERSE AX(axis no)

语 法 3: REVERSE dir1[, dir2][, dir3]..... dir 为 0 时, 方向与 REVERSE 同向

dir 为 1 时,方向与 REVERSE 反向

描述: BASE 轴列表的轴或指定轴,开始反向连续运动

参 数: dir 方向; 类型: ULONG

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1

SVON

VL=1000 '设置初速度

VH=10000 '设置运行速度

ACC=100000 '设置加速度

DEC=ACC '设置减速度

'单轴或多轴同方向执行连续运动

FORWARD '轴 0,1 都执行正向连续运动

SLEEP 2000 '延时 2000ms

STOPDEC '减速停止轴 0,1 运动

WAIT DONE '等待运动停止,如运动未停止的状态,下面语句再对该轴操作会执行不成功

REVERSE '轴 0,1 都执行负向连续运动

SLEEP 2000

STOPDEC '减速停止轴 0,1 运动

WAIT DONE '等待运动停止

'指定多个轴按不同方向执行连续运动

REVERSE 0,1 '轴 0 负向连续运动,轴 1 正向连续运动

SLEEP 2000

STOPEMG '立即停止轴 0,1 运动

WAIT DONE

'指定一个轴执行连续运动

REVERSE AX(0) '轴 0 执行负向连续运动

SLEEP 1000

STOPDEC AX(0) 指定轴 0 下减速停止命令

WAIT AX(0),DONE '指定轴等待运动停止

2.6.3 VCHANGE

所属:命令

语 法1: VCHANGE vel

语 法2: VCHANGE AX (axis no), vel

语 法 3: VCHANGE vel, acc, dec

语 法4: VCHANGE AX (axis no), vel, acc, dec

描述: BASE 轴列表的第一个轴,开始更改速度运动;或指定轴和新的速度开始更改速度运动。该指令可以对 MOVE、MOVEABS、FORWARD、REVERSE 起作用,如果当前轴不在运动中,下该指令会报错

参 数: vel 运行速度; 类型: DOUBLE

acc 改变速度时的加速度;类型:DOUBLE

dec 改变速度时的减速度;类型:DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定

例 程

BASE 0,1

SVON

VL=1000 '设置初速度

VH=10000 '设置运行速度

ACC=100000 '设置加速度

DEC=ACC '设置减速度

FORWARD '轴 0,1 都执行正向连续运动

SLEEP 2000 '延时 2000ms

VCHANGE 30000 '对 BASE 列表中第一个轴起作用,将轴 0 的速度改为 30000

SLEEP 2000

SLEEP 2000

VCHANGE 20000,10000,10000 '将轴 0 的速度改为 20000,加、减速度都改为 10000

SLEEP 3000

VCHANGE AX(1),20000,50000,50000 '将轴 1 的速度改为 20000,加、减速度都改为 50000

SLEEP 2000

STOPDEC

2.6.4 VCHANGE_RATE

所 属:命令

语 法1: VCHANGE_RATE rate

语 法2: VCHANGE_RATE AX (axis no), rate

语 法 3: VCHANGE RATE rate, acc, dec

语 法4: VCHANGE RATE AX (axis no), rate, acc, dec

描述: BASE 轴列表的第一个轴,开始按百分比更改速度运动;或指定轴和新的百分比速度开始更改速度运动。该指令可以对 MOVE、MOVEABS、FORWARD、REVERSE 起作用,如果当前轴不在运动中,下该指令会报错

参数: rate 原设置速度的百分比速度;类型: DOUBLE

acc 改变速度时的加速度;类型:DOUBLE

dec 改变速度时的减速度;类型:DOUBLE

axis no 轴号; 范围:根据控制器实际硬件决定

例 程

BASE 0,1

SVON

VL=1000 '设置初速度

VH=10000 '设置运行速度

ACC=100000 '设置加速度

DEC=ACC '设置减速度

FORWARD '轴 0,1 都执行正向连续运动

'运动中改变速度的功能应用中:新设定的速度要高于 VL

SLEEP 2000

VCHANGE_RATE AX(1),30 '将轴 1 的速度改为设定的 VH 的 30%

SLEEP 2000

VCHANGE_RATE 50,10000,10000 '将轴 0 的速度改为 VH 的 50%,加、减速度都改为 10000

SLEEP 3000

VCHANGE_RATE AX(1),400,50000,50000 '将轴 1 的速度改为 VH 的 400%,加、减速度都改为 50000

SLEEP 2000

STOPDEC

2.7 多轴插补运动

本节指令概览

章节	指令	说明	终端 工具	观察变量工具
2.7.1	GVL	插补初速度	×	×
2.7.2	GVH	插补运行速度	×	×
2.7.3	GACC	插补加速度	×	×
2.7.4	GDEC	插补减速度	×	×
2.7.5	GJK	插补速度曲线类型	×	×
2.7.6	GDSPEED	当前插补运动指令速度值	×	×
2.7.7	GSTATE	当前插补运动状态	×	×
2.7.8	LINE	2-3 轴直线相对插补运动	×	×
2.7.9	LINEABS	2-3 轴直线绝对插补运动	×	×
2.7.10	DIRECT	2-8 轴线性相对插补运动	×	×
2.7.11	DIRECTABS	2-8 轴线性绝对插补运动	×	×
2.7.12	CIRC	2 轴相对圆弧插补(指定圆心、终点)	×	×
2.7.13	CIRCABS	2 轴绝对圆弧插补(指定圆心、终点)	×	×
2.7.14	CIRC_3P	2轴相对圆弧插补(指定圆上3点)	×	×
2.7.15	CIRCABS_3P	2 轴绝对圆弧插补(指定圆上3点)	×	×
2.7.16	CIRC_A	2 轴相对圆弧插补(指定圆弧角度、终点)	×	×
2.7.17	CIRCABS_A	2 轴相对圆弧插补(指定圆弧角度、终点)	×	×
2.7.18	HELIX	3 轴相对螺旋插补(指定圆弧中心、终点、高度)	×	×
2.7.19	HELIXABS	3 轴绝对螺旋插补(指定圆弧中心、终点、高度)	×	×

2.7.20	HELIX_3P	3 轴相对螺旋插补(指定螺旋线上3 点)	×	×
2.7.21	HELIXABS_3P	3 轴绝对螺旋插补(指定螺旋线上3 点)	×	×
2.7.22	HELIX_A	3 轴相对螺旋插补(指定圆弧角度、终点、高度)	×	×
2.7.23	HELIXABS_A	3 轴绝对螺旋插补(指定圆弧角度、终点、高度)	×	×
2.7.24	GPAUSE	插补运动暂停指令	×	×
2.7.25	GRESUME	插补运动暂定后恢复运动指令	×	×

2.7.1 GVL

所属:属性

语 法: GVL = value

类型: DOUBLE

描述:设置/读取插补运动的初速度, GVL 的单位为脉冲当量/s

范 围:(0, MAXVEL), 默认值 2000

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=2000 '设置轴 0,1 的插补运动的初速度为 2000 个脉冲当量/s

2.7.2 GVH

所属:属性

语 法: GVH = value

类型: DOUBLE

描述:设置/读取插补运动的最大运行速度, GVH 的单位为脉冲当量/s

范 围:(GVL, MAXVEL), 默认值 8000

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVH=10000 '设置轴 0,1 的插补运动的最大运行速度为 10000 个脉冲当量/s

2.7.3 GACC

所属:属性

语 法: GACC = value

类型: DOUBLE

描述:设置/读取插补运动的加速度, GACC 的单位为脉冲当量/s^2

范 围:(0, MAXACC), 默认值 10000

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GACC=20000 '设置軸 0,1 的插补运动的加速度为 20000 个脉冲当量/s^2

2.7.4 GDEC

所属:属性

语 法: GDEC = value

类型: DOUBLE

描述:设置/读取插补运动的减速度, GDEC 的单位为脉冲当量/s^2

范 围:(0, MAXDEC), 默认值 10000

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GDEC=20000 '设置軸 0,1 的插补运动的减速度为 20000 个脉冲当量/s^2

2.7.5 GJK

所属:属性

语 法:GJK = value

类型: ULONG

描述: 设置/读取插补运动的速度曲线类型

范 围:【0,1】,0:T型曲线;1:S型曲线,默认值0

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GJK=1 '设置軸 0、1的插补运动的速度曲线类型为 S型曲线

2.7.6 GDSPEED

所属:属性(只读)

语 法: value = GDSPEED

类型: DOUBLE

描述:读取当前插补指令理论速度

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

DIM A AS DOUBLE

A=GDSPEED '将轴 0,1 插补运动的当前指令速度赋值给变量 A

2.7.7 GSTATE

所属:属性(只读)

语 法: value = GSTATE

类 型: ULONG

描述:读取当前插补运动状态。

返回值:如下

0:插补不可用状态

1:插补运动处于 Ready 状态

2:插补运动处于停止状态,但未 Ready

3:插补运动处于错误状态,插补运动被停止运动

4:BASE 轴正在执行插补运动中

5:保留

6:BASE 轴正在执行连续插补运动中

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

DIM A AS USHORT

A=GSTATE '将轴 0、1 当前的插补运动状态对应的值赋值给变量 A

2.7.8 LINE

所属:命令

语 法: LINE distance1, distance2 [, distance3]

描述: 指定插补轴的移动距离,开始2轴或3轴的相对直线插补运动。LINE 指令仅

支持 2 轴或 3 轴的直线插补运动, 3 轴以上不支持。

参数: distance 各轴的相对移动距离; 类型: DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

SVON

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

'绝对直线插补运动

LINEABS 0,5000 '运动到目标位置(0,5000)

WAIT DONE '等待 LINEABS 运动走完

'相对直线插补运动

LINE 8000,-15000 '轴 0、1 方向的运动距离分别为 8000、-15000

2.7.9 LINEABS

所属:命令

语 法: LINEABS position1, position2[,position3]

描述:指定插补轴的终点,开始 2 轴或 3 轴的绝对直线插补运动。LINEABS 指令仅

支持2轴或3轴的直线插补运动,3轴以上不支持。

参数: position 各轴的终点位置; 类型: DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

SVON

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

'绝对直线插补运动

LINEABS 0,5000 '运动到目标位置 (0,5000)

WAIT DONE '等待 LINEABS 运动走完

'相对直线插补运动

LINE 8000,-15000 '轴 0、1 方向的运动距离分别为 8000、-15000

2.7.10 DIRECT

所属:命令

语 法: DIRECT distance1, distance2[, distance3]... [, distance8]

描 述:指定插补轴的移动距离,开始2轴-8轴的相对线性插补运动。最多支持到8

个轴的 DIRECT 线性插补运动

参数: distance 各轴的相对移动距离; 类型: DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2,3

SVON

'DIRECT 插补运动中,以下速度、加减速参数设置的是参与插补运动中移动距离最长轴的参数

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

'绝对线性插补

DIRECTABS 0,5000,-500,1000 '运动到目标位置 (0,5000,-500,1000)

WAIT DONE '等待 DIRECTABS 运动走完

'相对线性插补

DIRECT 8000,-15000,0,2000 '轴 0、1、2、3 方向的运动距离分别为 8000、-15000、0、2000

2.7.11 DIRECTABS

所属:命令

语 法: DIRECTABS position1, position2[,position3]... [,position8]

描述:指定插补轴的终点,开始2轴-8轴的绝对线性插补运动。最多支持到8个轴

的 DIRECTABS 线性插补运动

参数: position 各轴的终点位置; 类型: DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2,3

SVON

'DIRECT 插补运动中,以下速度、加减速参数设置的是参与插补运动中移动距离最长轴的参数

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

'绝对线性插补

DIRECTABS 0,5000,-500,1000 '运动到目标位置 (0,5000,-500,1000)

WAIT DONE '等待 DIRECTABS 运动走完

'相对线性插补

DIRECT 8000,-15000,0,2000 '轴 0、1、2、3 方向的运动距离分别为 8000、-15000、0、2000

2.7.12 CIRC

所属:命令

语 法: CIRC dir,center1,center2,end1,end2

描述:指定圆方向、圆心、终点,开始两轴的相对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

center1 第一个轴圆心的相对坐标 ; 类型: DOUBLE

center2 第二个轴圆心的相对坐标;类型:DOUBLE

end1 第一个轴圆弧终点的相对坐标;类型:DOUBLE

end2 第二个轴圆弧终点的相对坐标;类型:DOUBLE

注 意: 该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC 0,5000,0,10000,0 '顺时针,圆心相对距离为(5000,0),圆弧终点相对距离为(10000,0)

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS 1,5000,0,0,0 '逆时针,圆心位置为(5000,0),圆弧终点位置为(0,0)

WAIT DONE

2.7.13 CIRCABS

所属:命令

语 法: CIRCABS dir,center1,center2,end1,end2

描述:指定圆方向、圆心、终点,开始两轴的绝对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

center1 第一个轴圆心的绝对坐标 ; 类型: DOUBLE

center2 第二个轴圆心的绝对坐标;类型:DOUBLE

end1 第一个轴圆弧终点的绝对坐标;类型:DOUBLE

end2 第二个轴圆弧终点的绝对坐标;类型:DOUBLE

注 意: 该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC 0,5000,0,10000,0 '顺时针,圆心相对距离为(5000,0),圆弧终点相对距离为(10000,0)

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS 1,5000,0,0,0 '逆时针,圆心位置为(5000,0),圆弧终点位置为(0,0)

WAIT DONE

2.7.14 CIRC_3P

所属:命令

语 法: CIRC 3P dir,ref1,ref2,end1,end2

描述:指定圆方向和圆上3点,开始两轴的相对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

ref1 第一个轴中间点的相对坐标 ; 类型: DOUBLE

ref2 第二个轴中间点的相对坐标;类型:DOUBLE

end1 第一个轴圆弧终点的相对坐标;类型:DOUBLE

end2 第二个轴圆弧终点的相对坐标;类型:DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC 3P 0,10000,10000,20000,0 '顺时针, 圆上第二点相对距离为(10000,10000),圆弧终点相对

距离为(20000,0)

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS 3P 1,10000,10000,0,0 '逆时针,圆心第二点位置为(10000,10000),圆弧终点位置为(0,0)

WAIT DONE

2.7.15 CIRCABS_3P

所属:命令

语 法: CIRC 3P dir,ref1,ref2,end1,end2

描述:指定圆方向和圆上3点,开始两轴的绝对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

ref1 第一个轴中间点的绝对坐标 ; 类型: DOUBLE

ref2 第二个轴中间点的绝对坐标;类型:DOUBLE

end1 第一个轴圆弧终点的绝对坐标;类型:DOUBLE

end2 第二个轴圆弧终点的绝对坐标;类型:DOUBLE

注 意: 该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC_3P 0,10000,10000,20000,0 '顺时针,圆上第二点相对距离为(10000,10000),圆弧终点相对

距离为(20000,0)

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS 3P 1,10000,10000,0,0 '逆时针,圆心第二点位置为(10000,10000),圆弧终点位置为(0,0)

WAIT DONE

2.7.16 CIRC_A

所属:命令

语 法: CIRC_A dir,center1,center2,degree

描述:指定圆方向、圆心、角度,开始两轴的相对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

center1 第一个轴圆心的相对坐标 ; 类型: DOUBLE

center2 第二个轴圆心的相对坐标;类型:DOUBLE

degree 圆弧角度,单位为角度;类型:DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC_A 0,10000,0,180 '顺时针,圆心相对距离为(10000,0),圆弧角度为 180 度

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS_A 1,10000,0,90 '逆时针,圆心位置为(10000,0),圆弧角度为90度

WAIT DONE

2.7.17 CIRCABS_A

所属:命令

语 法: CIRC A dir,center1,center2,degree

描述:指定圆方向、圆心、角度,开始两轴的绝对圆弧插补运动

参数: dir 圆弧运动方向: 0-顺时针; 1-逆时针; 类型: ULONG

center1 第一个轴圆心的绝对坐标 ; 类型: DOUBLE

center2 第二个轴圆心的绝对坐标;类型:DOUBLE

degree 圆弧角度,单位为角度;类型:DOUBLE

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

SVON

'执行相对圆弧插补运动

CIRC A 0,10000,0,180 '顺时针, 圆心相对距离为(10000,0),圆弧角度为 180 度

WAIT DONE

'执行绝对圆弧插补运动

CIRCABS A 1,10000,0,90 '逆时针,圆心位置为(10000,0),圆弧角度为90度

WAIT DONE

2.7.18 HELIX

所属:命令

语法: HELIX dir,center1,center2,end1,end2,distance

描述:指定螺旋旋转方向、中心、螺旋高度,开始3轴的相对螺旋插补运动

参 数: dir 螺旋运动方向: 0: 顺时针; 1: 逆时针

center1 第一个轴圆心的相对坐标 ;

center2 第二个轴圆心的相对坐标;

end1 第一个轴螺旋终点的相对坐标;

end2 第二个轴螺旋终点的相对坐标;

distance 螺旋高度,单位为脉冲当量

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补,顺时针,圆心相对坐标为(5000,0),圆弧终点相对坐

标为 (10000,0),螺旋高度为 5000

HELIX 0,5000,0,10000,0,5000

WAIT DONE

'绝对螺旋插补,逆时针,圆心绝对坐标为(5000,0),圆弧终点绝对坐标为(0,0),螺旋 Z 轴终点位置为 0

HELIXABS 1,5000,0,0,0,0

WAIT DONE

2.7.19 HELIXABS

所属:命令

语 法: HELIXABS dir,center1,center2,end1,end2,position

描述:指定螺旋方向、中心、终点,开始3轴的绝对螺旋插补运动

参 数: dir 螺旋运动方向: 0: 顺时针; 1: 逆时针

center1 第一个轴圆心的绝对坐标

center2 第二个轴圆心的绝对坐标

end1 第一个轴螺旋终点的绝对坐标

end2 第二个轴螺旋终点的绝对坐标

position 第三个轴终点位置坐标

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补,顺时针,圆心相对坐标为(5000,0),圆弧终点相对坐标为(10000,0),螺旋高度为5000

HELIX 0,5000,0,10000,0,5000

WAIT DONE

'绝对螺旋插补,逆时针,圆心绝对坐标为(5000,0),圆弧终点位置为(0,0),螺旋Z轴终点位置为0

HELIXABS 1,5000,0,0,0,0

WAIT DONE

2.7.20 HELIX_3P

所属:命令

语 法: HELIX_3P dir,ref1,ref2,ref3,end1,end2,end3

描述:指定螺旋方向和螺旋线上的3点,开始3轴的相对螺旋插补运动

参数: dir 螺旋运动方向:0: 顺时针;1:逆时针

ref1 第一个轴中间点的相对坐标 ;

ref2 第二个轴中间点的相对坐标;

ref3 第三个轴中间点的相对坐标;

end1 第一个轴螺旋终点的相对坐标;

end2 第二个轴螺旋终点的相对坐标;

end3 第三个轴螺旋终点的相对坐标;

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补。顺时针,中间参考点相对坐标为(0,5000,0),终点相对坐标为(10000,0,5000)

HELIX 3P 0,0,5000,0,10000,0,5000

WAIT DONE

'绝对螺旋插补。逆时针,中间参考点绝对坐标为(0,5000,2500),终点绝对坐标为(0,0,0)

HELIXABS 3P 1,0,5000,2500,0,0,0

WAIT DONE

2.7.21 HELIXABS_3P

所属:命令

语 法: HELIXABS_3P dir,ref1,ref2,ref3,end1,end2,end3

描述:指定螺旋方向和螺旋线上的 3 点,开始 3 轴的绝对螺旋插补运动

参数: dir 螺旋运动方向:0: 顺时针;1:逆时针

ref1 第一个轴中间点的绝对坐标 ;

ref2 第二个轴中间点的绝对坐标;

ref3 第三个轴中间点的绝对坐标;

end1 第一个轴螺旋终点的绝对坐标;

end2 第二个轴螺旋终点的绝对坐标;

end3 第三个轴螺旋终点的绝对坐标;

注 意:该指令不能在 Motion Studio 中的"终端"和"观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为 T 型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补。顺时针,中间参考点相对坐标为(0,5000,0),终点相对坐标为(10000,0,5000)

HELIX_3P 0,0,5000,0,10000,0,5000

WAIT DONE

'绝对螺旋插补。逆时针,中间参考点绝对坐标为(0,5000,2500),终点绝对坐标为(0,0,0)

HELIXABS_3P 1,0,5000,2500,0,0,0

WAIT DONE

2.7.22 **HELIX_A**

所属:命令

语 法: HELIX A dir,center1,center2,degree,distance

描述:指定螺旋方向、螺旋圆面上的旋转角度、螺旋高度,开始3轴的相对螺旋插补运动

数:dir 螺旋运动方向:0: 顺时针;1:逆时针

center1 第一个轴圆心的相对坐标

center2 第二个轴圆心的相对坐标

degree 螺旋线形成的圆柱截面上的投影圆弧运动的圆心角度

distance 螺旋高度,单位为脉冲当量

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补,顺时针,圆心相对坐标为(5000,0),运动的圆心角度为 180 度 , ,螺旋高度为 5000

HELIX_A 0,5000,0,180,5000

WAIT DONE

'绝对螺旋插补, 逆时针, 圆心绝对坐标为(5000,0),运动的圆心角度为180度, 螺旋 Z轴终点位置为0

HELIXABS_A 1,5000,0,180,0

WAIT DONE

2.7.23 HELIXABS_A

所属:命令

语 法: HELIXABS A dir,center1,center2,degree,position

描述:指定螺旋方向、螺旋圆面上的旋转角度、终点位置,开始3轴的绝对螺旋插补

运动

参数: dir 螺旋运动方向: 0: 顺时针; 1: 逆时针

center1 第一个轴圆心的绝对坐标

center2 第二个轴圆心的绝对坐标

degree 螺旋线形成的圆柱截面上的投影圆弧运动的圆心角度

position 第三个轴终点位置坐标

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1,2

GVL=1000 '设置插补初速度

GVH=10000 '设置插补运行速度

GACC=100000 '设置插补加速度

GDEC=GACC '设置插补减速度

GJK=0 '设置插补速度曲线为T型

DPOS=0 '当前理论位置清零

MPOS=0 '当前反馈位置清零

SVON

'相对螺旋插补,顺时针,圆心相对坐标为(5000,0),运动的圆心角度为180度,螺旋高度为5000

HELIX_A 0,5000,0,180,5000

WAIT DONE

'绝对螺旋插补,逆时针,圆心绝对坐标为(5000,0),运动的圆心角度为180度,,螺旋Z轴终点位置为0

HELIXABS_A 1,5000,0,180,0

WAIT DONE

2.7.24 GPAUSE

所属:命令

语 法: GPAUSE

描述: 暂定当前 TASK 的插补运动。该指令对插补运动和连续插补运动都起作用。

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

LINE 11000,20000

SLEEP 500

GPAUSE '暂停插补运动

IF(DIN(1)=1) THEN

GRESUME '恢复插补运动,继续执行未执行的插补运动

END IF

2.7.25 GRESUME

所属:命令

语 法: GRESUME

描述:恢复当前 TASK 的插补运动暂定状态。该指令对插补运动和连续插补运动都起

作用。

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

BASE 0,1

LINE 11000,20000

SLEEP 500

GPAUSE '暂停插补运动

IF(DIN(1)=1) THEN '如果 DIN(1)为 1 时,恢复插补运动

GRESUME '恢复插补运动,继续执行未执行的插补运动

END IF

2.8 多轴连续插补运动

本节指令概览

章节	指令	说明	终端 工具	观察变量工具
2.2.1	PATHBEGIN	开始进入连续插补状态	×	×
2.2.2	PATHEND	结束连续插补状态	×	×
2.2.3	MERGEON	用 fly mode 交接模式执行连续插补运动	×	×
2.2.4	MERGEOFF	用buffer mode 交接模式执行连续插补 运动	×	×
2.2.5	DELAY	连续插补路径中的延时段指令	×	×

2.8.1 PATHBEGIN

所属:命令

语 法: PATHBEGIN [num]

描述:指定路径缓存里添加多少段插补指令后,开始进入连续插补模式。Num 值不填或 0 时,会将 PATHBEGIN 与 PATHEND 间所有的段都添加到缓存区里,再开始执行连续插补运动。

参数: num 预先添加到连续插补缓存区段数;类型: ULONG;范围【0,10000】

注 意:连续插补段不允许存在点位运动指令的段 该指令不能在 Motion Studio 中的"终端"和"观察变量"工具中使用

例 程

BASE 0,1

SVON

 GVL=1000
 '设置插补初速度

 GVH=10000
 '设置插补运行速度

 GACC=100000
 '设置插补加速度

 GDEC=ACC
 '设置插补减速度

LINEABS 0,0 '运动到目标位置 (0,0)

WAIT DONE

'PATHBEGIN 开始到 PATHEND 之前的路径段为连续插补运动

'PATHBEGIN 后面跟的编号不写或写 0 时,表明路径添加完再开始执行连续插补,其他数值代表添加该数

值段后开始执行运动

PATHBEGIN '进入连续插补状态

MERGEON '连续插补模式设置为 fly mode

CIRCABS 1,10000,0,10000,-10000 '圆弧插补段

LINEABS 25000,-10000 '直线插补段

DELAY=500 '延时段, 延时 500ms

CIRCABS 1,25000,0,35000,0 '圆弧插补段

CIRCABS 1,25000,0,25000,10000 '圆弧插补段

LINEABS 10000,10000 '直线插补段

CIRCABS 1,10000,0,0,0 '圆弧插补段

PATHEND '连续插补路径段结束指令,退出连续状态

2.8.2 PATHEND

所属:命令

语 法: PATHEND

描述: 当前插补运动退出连续插补状态

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

请参考 PATHBEGIN 指令中例程。

2.8.3 MERGEON

所属:命令

语 法: MERGEON

描述: 使能 Blending,用 fly mode 交接模式执行连续插补运动

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

请参考 PATHBEGIN 指令中例程。

2.8.4 MERGEOFF

所属:命令

语 法: MERGEOFF

描述:禁用 Blending,用 buffer mode 交接模式执行连续插补运动

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

请参考 PATHBEGIN 指令中例程。

2.8.5 DELAY

所属:命令

语 法: DELAY= time

描述:连续插补中,延时段指令。表示 DELAY 指令上一段完成与 DELAY 指令下一段 开始间延时的事件,该延时时间非常精准,单位为 ms。

注 意:该指令不能在 Motion Studio 中的 "终端"和 "观察变量"工具中使用

例 程

请参考 PATHBEGIN 指令中例程。

2.9 同步运动

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.9.1	STA_SRC	同步启/停触发源	√	√
2.9.2	SETSTA	以单轴相对运动模式状态等待同步启动信号	√	×
2.9.3	SETSTA_ABS	以单轴绝对运动模式状态等待同步启动信号	√	×
2.9.4	SETSTA_VEL	以恒速连续运动模式状态等待同步 启动信号	√	×
2.9.5	STARTSTA	STA 或同张板卡同步轴开始启动运动	√	×
2.9.6	STOPSTA	STA 或同张板卡同步轴开始停止运动	√	×
2.9.7	GANTRY	龙门运动	√	×
2.9.8	GEAR	电子齿轮运动	√	×
2.9.9	PHASE	电子齿轮运动过程中超前或落后相 位运动	√	×
2.9.10	TANGENT	切向跟随运动	√	×
2.9.11	MODULO	切向跟随运动中旋转刀轴旋转一周 的指令脉冲数	√	√

2.9.1 STA_SRC

所属:属性

语 法: STA_SRC=value

类型: ULONG

描述:设置/读取轴的同步启停运动的触发源,触发源被触发后,处于等待同步启/停

的轴会根据等待的模式,开始执行相应的运动。STA 信号可以由运动控制卡上硬件 STA 针脚触发产生,也可以由 STARTSTA 指令触发产生。

范 围:设定值和返回值如下,默认值1

0:禁用

1: 板卡 STA 信号

2:轴0的比较信号

3:轴1的比较信号

4:轴2的比较信号

5:轴3的比较信号

6:轴4的比较信号

7:轴5的比较信号

8:轴6的比较信号

9:轴7的比较信号

10:轴0的停止信号

11:轴1的停止信号

12:轴2的停止信号

13:轴3的停止信号

14:轴4的停止信号

15:轴5的停止信号

16:轴6的停止信号

17:轴7的停止信号

例 程

BASE 1

STA_SRC = 1 '设置轴 1 的同步启停运动触发源为板卡 STA 信号

2.9.2 SETSTA

所属:命令

语 法: SETSTA distance 1[,distance 2] [,distance 3]......

描述:设置同步轴为点位运动模式并处于等待触发状态,同时设置同步轴的相对移动 距离。

参数: distance 相对移动距离;类型: DOUBLE

例 程

BASE 0,1,2,3

STA_SRC=1 '设置同步源为板卡 STA 信号

SETSTA 10000,5000,30000,-8000 '设置轴 0,1,2,3 处于等待同步相对运动状态,并设置运动距离

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA_ABS 0,2000,5000,20000 '设置轴 0,1,2,3 处于等待同步绝对运动状态,并设置目标位置

SLEEP 500

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA_VEL 0,1,0,1 '设置轴 0,1,2,3 处于等待同步连续运动状态,并设置各轴方向

STARTSTA '同步启,同时启动4轴运动

Sleep 3000

STOPSTA '同步停,同时停止4轴运动

2.9.3 SETSTA ABS

所属:命令

语 法: SETSTA ABS position1[,position2] [,position3]......

描述:设置同步轴为点位运动模式并处于等待触发状态,同时设置同步轴绝对移动位

置

参数: position 绝对位置; 类型: DOUBLE

例 程

BASE 0,1,2,3

STA_SRC=1 '设置同步源为板卡 STA 信号

SETSTA 10000,5000,30000,-8000 '设置轴 0,1,2,3 处于等待同步相对运动状态,并设置运动距离

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA ABS 0,2000,5000,20000 '设置轴 0,1,2,3 处于等待同步绝对运动状态,并设置目标位置

SLEEP 500

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA_VEL 0,1,0,1 '设置轴 0,1,2,3 处于等待同步连续运动状态,并设置各轴方向

STARTSTA '同步启,同时启动4轴运动

Sleep 3000

STOPSTA '同步停,同时停止4轴运动

2.9.4 SETSTA_VEL

所属:命令

语 法: SETSTA_VEL dir1[,dir2][,dir3]......

描述:设置同步轴为连续运动模式并处于等待触发状态,同时设置同步轴的连续运动

方向。

参数: dir 方向, 0: 正向, 1: 反向; 类型: ULONG

例 程

BASE 0,1,2,3

STA_SRC=1 "设置同步源为板卡 STA 信号

SETSTA 10000,5000,30000,-8000 '设置轴 0,1,2,3 处于等待同步相对运动状态,并设置运动距离

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA_ABS 0,2000,5000,20000 '设置轴 0,1,2,3 处于等待同步绝对运动状态,并设置目标位置

SLEEP 500

STARTSTA '同步启,同时启动4轴运动

WAIT DONE

SETSTA_VEL 0,1,0,1 '设置轴 0,1,2,3 处于等待同步连续运动状态,并设置各轴方向

STARTSTA '同步启,同时启动4轴运动

Sleep 3000

STOPSTA '同步停,同时停止4轴运动

2.9.5 STARTSTA

所属:命令

语 法: STARTSTA

描述: 当轴的同步启/停触发源为 STA 信号时,使用该指令开始同步启动运动

例 程

请参考 SETSTA、SETSTA_ABS、SETSTA_VEL 等指令例程

2.9.6 STOPSTA

所属:命令

语 法: STOPSTA

描述: 当轴的同步启/停触发源为 STA 信号时, 使用该指令开始同步停止运动

例 程

请参考 SETSTA、SETSTA_ABS、SETSTA_VEL 等指令例程

2.9.7 GANTRY

所属:命令

语 法: GANTRY AX(slave axis no),refsrc,dir[,max_diffvalue]

描述:以 BASE 轴列表中的第一个轴为主轴,指定龙门运动从轴、参考源、龙门运动方向,建立龙门同步关系

参数: slave axis no 从轴的轴号;范围:根据控制器实际硬件决定

refsrc 从轴跟随主轴的位置源;范围:0:理论位置,1:实际位置(暂不支持)

dir 从轴与主轴的运动方向一致性;范围:0:相同,1:相反

max_diffvalue 主轴和从轴读到的编码器位置误差值限值,该值可以不设定。
如果设定值后,控制器会实时比对误差值,一旦超过
max diffvalue值,控制器会控制马达停止。

注 意:龙门一旦建立龙门关系,主从轴状态会变成同步状态,要解除龙门关系,需对 从轴下 STOPDEC 或 STOPEMG 命令,龙门关系即解除。

例 程

BASE 0,1

SVON

'龙门轴的速度等参数由主轴参数决定

VL=1000

VH=40000

ACC=200000

DEC=200000

STOPDEC AX(1) '龙门运动中,对从轴下 STOPDEC 或 STOPEMG 可以解除龙门关系

'如果已有龙门关系存在,再下GANTRY命令,会报无效轴状态错误

GANTRY AX(1),0,0 '设定龙门关系:从轴为轴 1,参考源为主轴的理论位置,从轴方向与主轴同向

BASE 0 '设定轴 0 为龙门主轴

MOVE 20000 '主轴执行距离为 20000 的正向相对运动,从轴这时会与跟随主轴一起执行龙门运动

2.9.8 **GEAR**

所属:命令

语 法: GEAR AX(slave axis no), numerator, denominator, refsrc, mode

描述:以 BASE 轴列表中的第一个轴为主轴,指定电子齿轮运动从轴、齿轮分子、齿轮分母、参考源、运动模式。建立齿轮同步关系

参数: slave axis no 从轴的轴号;范围:根据控制器实际硬件决定

numerator 电子齿轮比分子;类型 ULONG

denominator 电子齿轮比分子; 类型 ULONG

refsrc 从轴跟随主轴的位置源;范围:0:理论位置,1:实际位置

mode 主从轴齿轮关系模式;范围:0:相对位置主从模式,1:绝对位置主 从模式

注 意:一旦建立电子齿轮关系,主从轴状态会变成同步状态,要解除电子齿轮关系,需对从轴下 STOPDEC 或 STOPEMG 命令,齿轮关系即解除。

例 程

BASE 0,1

SVON

'齿轮关系的所有轴速度等参数由主轴参数决定

VL=1000

VH=40000

ACC=200000

DEC=200000

STOPDEC AX(1) '电子齿轮运动中,对从轴下 STOPDEC 或 STOPEMG 可以解除齿轮关系

'如果已有齿轮关系存在,再下 GEAR 命令,会报无效轴状态错误

GEAR AX(1),1,1,0,0 '从轴为轴 1, 齿轮分子分母分别为 1,1, 从轴参考主轴理论位置,相对位置模式

BASE 0

MOVE 20000 '主轴执行距离为 20000 的正向相对运动,从轴这时会与跟随主轴一起执行齿轮运动

2.9.9 PHASE

所属:命令

语 法: PHASE AX(slave axis no), acc, dec, phase_speed, phase_dist

描述: 电子齿轮过程中使从轴进行相位超前或落后运动

参数: slave axis no 从轴的轴号;范围:根据控制器实际硬件决定

acc 相位运动的加速度;类型 DOUBLE

dec 相位运动的减速度;类型 DOUBLE

phase speed 相位运动的运行速度; 类型 DOUBLE

phase_dist 相位运动的超前或落后距离;类型 DOUBLE。Phase_dist > 0,

从轴做相位超前运动; phase_dist < 0,从轴做相位落后运动。

例 程

BASE 0,1

SVON

'齿轮关系的所有轴速度等参数由主轴参数决定

VL=1000

VH=40000

ACC=200000

DEC=200000

STOPDEC AX(1) '电子齿轮运动中,对从轴下 STOPDEC 或 STOPEMG 可以解除齿轮关系

'如果已有齿轮关系存在,再下 GEAR 命令,会报无效轴状态错误

BASE 0

MOVE 80000 '主轴执行距离为 20000 的正向相对运动,从轴这时会与跟随主轴一起执行齿轮运动

Sleep 1000

Phase AX(1),50000,50000,30000,10000 '轴 1 进行距离为 10000 个脉冲当量的相位超前运动。

2.9.10 TANGENT

所属:命令

语 法: TANGENT AX(axis no), start_vector*, working_plane, dir[,module_range]

描述:指定切向跟随轴、起始切向向量、参考源平面、运动方向,建立切向跟随关系

参数: AX(axis no) 切向跟随轴的轴号

start vector* 起始切向向量数组地址

working_plane 切向跟随轴跟随的参考平面;范围:0:轴0和轴1组成的平

面(该值暂只支持赋值0)

dir 跟随轴旋转方向;范围:0:与切向方向相同,1:与切向方向相反 module range 刀向旋转轴旋转一周的指令脉冲数

注 意:一旦建立切向跟随,主从轴状态会变成同步状态,要解除切向跟随关系,需对 从轴下 STOPDEC 或 STOPEMG 命令,切向跟随关系即解除。

例 程

BASE 0,1

DIM StartArray(3) as SHORT

StartArray(0)=0

StartArray(1)=1

StartArray(2)=0

'跟随的旋转刀控制轴为轴 2 , 起始刀向向量为(0,1,0),参考平面为轴 0 , 轴 1 组成的平面,旋转方向与刀向方向相同,旋转刀轴运动一圈需要 3600 个脉冲

TANGENT AX(2), StartArray(), 0, 0, 3600

CIRC 0,8000, 0,16000, 0 '轴0,轴1进行圆弧插补运动,这时轴2会同时执行刀向跟随运动

WAIT DONE

STOPDEC AX(2)

2.9.11 MODULO

所属:属性

语 法: MODULO=value

类型: ULONG

描述:设置/读取 ModuleRange 值。切向跟随功能中,该值为刀向旋转轴旋转一周

的指令脉冲数

范 围:【0,8000000】,该值必须为4的倍数;默认值为0

例 程

BASE 0

MODULO =10000 '設定軸 0 的 MODULO 值为 10000

2.10 输入输出端口控制

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.10.1	DIN	数字量输入	√	√
2.10.2	DOUT	数字量输出	√	√
2.10.3	ALM_EN	伺服报警使能	√	×
2.10.4	ALM_FILTER	伺服报警端口滤波	√	√
2.10.5	ALM_LOGIC	伺服报警端口逻辑电平	√	√
2.10.6	ALM_MODE	伺服报警触发后运动停止模式	√	√
2.10.7	IN1STOP_EN	IN1STOP 功能使能	√	×
2.10.8	IN1_FILTER	IN1 端口滤波	√	√
2.10.9	IN1STOP_EDGE	IN1STOP 功能的触发条件	√	√
2.10.10	IN1STOP_MODE	IN1STOP 触发后运动停止模式	√	√
2.10.11	IN2STOP_EN	IN2STOP 功能使能	√	×
2.10.12	IN2_FILTER	IN2 端口滤波	√	√
2.10.13	IN2STOP_EDGE	IN2STOP 功能的触发条件	√	√
2.10.14	IN2STOP_MODE	IN2STOP 触发后运动停止模式	√	√
2.10.15	IN4STOP_EN	IN4STOP 功能使能	√	×
2.10.16	IN4_FILTER	IN4 端口滤波	√	√
2.10.17	IN4STOP_EDGE	IN4STOP 功能的触发条件	√	√
2.10.18	IN4STOP_MODE	IN4STOP 触发后运动停止模式	√	√
2.10.19	IN5STOP_EN	IN5STOP 功能使能	√	×
2.10.20	IN5_FILTER	IN5 端口滤波	√	√
2.10.21	IN5STOP_EDGE	IN5STOP 功能的触发条件	√	√
2.10.22	IN5STOP_MODE	IN5STOP 触发后运动停止模式	√	√
2.10.23	INSTOP_DEC	INSTOP 功能触发后减速停止	√	×

2.10.24	INP_EN	伺服到位功能使能	√	×
2.10.25	INP_LOGIC	伺服到位端口逻辑电平	√	√
2.10.26	LTC_EN	锁存功能使能	√	×
2.10.27	LTC_LOGIC	锁存端口逻辑电平	√	√
2.10.28	LDPOS	锁存到的理论位置	√	×
2.10.29	LMPOS	锁存到的实际位置	√	×
2.10.30	TRIGLTC	软件触发锁存功能	√	×
2.10.31	LTC_FLAG	轴锁存信 号 标志	√	×
2.10.32	RESETLTC	清除锁存位置和标识	√	×
2.10.33	CMP_EN	比较触发功能使能	√	×
2.10.34	CMP_LOGIC	比较触发端口逻辑电平	√	√
2.10.35	CMP_METHOD	比较触发功能比较方法	√	√
2.10.36	CMP_MODE	比较触发的 DO 输出模式	√	√
2.10.37	CMP_SRC	比较触发的比较源	√	√
2.10.38	CMP_WIDTH	比较触发的 DO 输出模式为脉 冲模式时的电平宽度	√	√
2.10.39	CPOS	当前比较位置数据	√	×
2.10.40	СМР	比较触发模式选择	√	×
2.10.41	CMP_FLAG	比较触发信号标志	√	×
2.10.42	RESETCMP	清除比较触发信号标志	√	×
2.10.43	CAMDO_EN	CAMDO 功能使能	√	×
2.10.44	CAMDO_LOGIC	CAMDO 端口逻辑电平	√	√
2.10.45	CAMDO_LPOS	CAMDO 低限位位置值	√	√
2.10.46	CAMDO_HPOS	CAMDO 高限位位置值	√	√
2.10.47	CAMDO_SRC	CAMDO 比较触发源	√	√
2.10.48	MIO	运动控制相关的 I/O 状态	×	×

2.10.1 DIN

所属:命令(只读)

语 法: DIN (no)

描述:读取一个通用数字量输入端口的状态

参数:no,数字量输入的编号,在控制器配置时,系统会根据控制器硬件分配对应的

编号;类型:ULONG

返回值:0:低电平,1:高电平

例 程

WHILE 1

DOUT (0)=1 'DO0,DO1 置 1, DO2 置 0

DOUT (1)=1

DOUT (2) = 0

ELSE

DOUT (2)=1

END IF

WEND

2.10.2 DOUT

所属:命令

语 法: DOUT (no)=value

描述:设置/读取一个通用数字量输出端口的状态

参数:no 数字量输出的编号,在控制器配置时,系统会根据控制器硬件分配对应的

编号;类型:ULONG

value 数字量输出端口的状态,范围:0或1

返回值:输出口的电平,0或1

例 程

WHILE 1

IF DIN (0)=1 THEN '判断 DIO 信号是否有信号

DOUT (0)=1 'DO0,DO1 置 1, DO2 置 0

DOUT (1)=1

DOUT (2)=0

ELSE

DOUT (2)=1

END IF

WEND

2.10.3 ALM_EN

所属:属性

语 法: ALM_EN = value

类型: ULONG

描述: 启用/禁用运动报警功能,报警是当电机驱动处于报警状态时,电机驱动器生

成的信号

范 围:设定值和返回值如下,默认值0

0:禁用(默认值)

1:启用

例 程

BASE 0

ALM_EN=1 '启用轴 0 检测报警功能

2.10.4 ALM_FILTER

所属:属性

语 法: ALM_FILTER = value

类型: ULONG

描述: 设置/读取軸的报警(ALM) 輸入端口的滤波参数

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

ALM_FILTER=1 '设定轴 0 的 ALM 输入端口滤波时间为 100us

2.10.5 ALM_LOGIC

所属:属性

语 法: ALM_LOGIC = value

类型: ULONG

描述: 设置/读取报警輸入信号的有效逻辑电平

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

ALM_LOGIC = 1 '设置轴 0 的报警输入信号高电平有效

2.10.6 ALM_MODE

所属:属性

语 法: ALM_MODE = value

类型: ULONG

描述:设置/读取接收报警信号时电机的停止模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

ALM_MODE=1 '设置接收到报警信号后电机减速停止

2.10.7 IN1STOP_EN

所属:属性

语 法: IN1STOP_EN = value

类型: ULONG

描述: 启用/禁用 IN1 的触发停止功能, 该功能启动用后, IN1 信号—旦有效, 在运

动

中的指定电机会被控制停止运动。研华运动控制的每个轴都关联着4个DI端口,分别称为IN1,IN2,IN4,IN5。4个端口都可以指定启用INSTOP功能。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

IN1STOP_EN =1 '启用轴 0 的 IN1 触发停止功能

2.10.8 IN1_FILTER

所属:属性

语 法: IN1_FILTER = value

类型: ULONG

描述:设置/读取 IN1 端口的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

IN1_FILTER =1 '设置轴 0 的 IN1 信号滤波时间 100us

2.10.9 IN1STOP_EDGE

所属:属性

语 法: IN1STOP EDGE = value

类型: ULONG

描述: 设置/读取 IN1STOP 功能的触发条件。设置上升沿触发时, IN1 端口有上升沿

信号时 , IN1STOP 功能被触发。设置下降沿触发时 , IN1 端口有下降沿信号时 ,

IN1STOP 功能被触发。

范 围:设定值和返回值如下,默认值0

0:上升沿

1:下降沿

例 程

BASE 0

IN1STOP EDGE =1 '设置 IN1STOP 功能的触发条件为下降沿触发有效。

2.10.10 IN1STOP_MODE

所属:属性

语 法: IN1STOP MODE = value

类型: ULONG

描述:设置/读取 IN1 触发时电机的停止模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

IN1STOP MODE =1 '设置 IN1 触发时电机作减速停止运动

2.10.11 IN2STOP_EN

所属:属性

语 法: IN2STOP EN = value

类型: ULONG

描述: 启用/禁用 IN2 的触发停止功能,该功能启动用后,IN2 信号一旦有效,在运动中的指定电机会被控制停止运动。研华运动控制的每个轴都关联着4个DI端口,分别称为IN1,IN2,IN4,IN5。4个端口都可以指定启用INSTOP功能。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

IN2STOP_EN =1 '启用轴 0 的 IN2 触发停止功能

2.10.12 IN2_FILTER

所属:属性

语 法: IN2 FILTER = value

类型: ULONG

描述:设置/读取 IN2 端口的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

IN2_FILTER =1 '设置轴 0 的 IN2 信号滤波时间 100us

2.10.13 IN2STOP_EDGE

所属:属性

语 法: IN2STOP_EDGE = value

类型: ULONG

描述:设置/读取IN2STOP功能的触发条件。设置上升沿触发时,IN2端口有上升沿

信号时 , IN2STOP 功能被触发。设置下降沿触发时 , IN2 端口有下降沿信号时 ,

IN2STOP 功能被触发。

范 围:设定值和返回值如下,默认值0

0:上升沿

1:下降沿

例 程

BASE 0

IN2STOP_EDGE =1 '设置 IN2STOP 功能的触发条件为下降沿触发有效。

2.10.14 IN2STOP_MODE

所属:属性

语 法: IN2STOP_MODE = value

类型: ULONG

描述:设置/读取 IN2 触发时电机的停止模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

IN2STOP_MODE =1 '设置 IN2 触发时电机作减速停止运动

2.10.15 IN4STOP_EN

所属:属性

语 法: IN4STOP EN = value

类型: ULONG

描述: 启用/禁用 IN4 的触发停止功能,该功能启动用后,IN4 信号一旦有效,在动中的指定电机会被控制停止运动。研华运动控制的每个轴都关联着4个 DI端、口,分别称为 IN1,IN2,IN4,IN5。4个端口都可以指定启用 INSTOP 功能。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

IN4STOP_EN =1 '启用轴 0 的 IN4 触发停止功能

2.10.16 IN4_FILTER

所属:属性

语 法: IN4 FILTER = value

类型: ULONG

描述:设置/读取 IN4 端口的滤波时间

范 围:设定值和返回值如下,默认值0

0:5us

1:100us

2:200us

3:500us

例 程

BASE 0

IN4_FILTER =1 '设置轴 0 的 IN4 信号滤波时间 100us

2.10.17 IN4STOP_EDGE

所属:属性

语 法: IN4STOP_EDGE = value

类型: ULONG

描述: 设置/读取 IN4STOP 功能的触发条件。设置上升沿触发时, IN4 端口有上升沿

信号时 , IN4STOP 功能被触发。设置下降沿触发时 , IN4 端口有下降沿信号时 ,

IN4STOP 功能被触发。

范 围:设定值和返回值如下,默认值0

0:上升沿

1:下降沿

例 程

BASE 0

IN4STOP_EDGE =1 '设置 IN4STOP 功能的触发条件为下降沿触发有效。

2.10.18 IN4STOP_MODE

所属:属性

语 法: IN4STOP_MODE = value

类型: ULONG

描述: 设置/读取 IN4 触发时电机的停止模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

IN4STOP_MODE =1 '设置 IN4 触发时电机作减速停止运动

2.10.19 IN5STOP_EN

所属:属性

语 法: IN5STOP_EN = value

类型: ULONG

描述: 启用/禁用 IN5 的触发停止功能,该功能启动用后,IN5 信号—旦有效,在运动中的指定电机会被控制停止运动。研华运动控制的每个轴都关联着4个 DI端口,分别称为 IN1,IN2,IN4,IN5。4个端口都可以指定启用 INSTOP 功能。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

IN5STOP_EN =1 '启用轴 0 的 IN5 触发停止功能

2.10.20 IN5_FILTER

所属:属性

语 法: IN5 FILTER = value

类型: ULONG

描述:设置/读取 IN5 端口的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

IN5_FILTER =1 '设置轴 0 的 IN5 信号滤波时间 100us

2.10.21 IN5STOP_EDGE

所属:属性

语 法: IN5STOP EDGE = value

类型: ULONG

描述: 设置/读取 IN5STOP 功能的触发条件。设置上升沿触发时, IN5 端口有上升沿

信号时 , IN5STOP 功能被触发。设置下降沿触发时 , IN5 端口有下降沿信号时 ,

IN5STOP 功能被触发。

范 围:设定值和返回值如下,默认值0

0: 上升沿

1:下降沿

例 程

BASE 0

IN5STOP_EDGE =1 '设置 IN5STOP 功能的触发条件为下降沿触发有效。

2.10.22 IN5STOP_MODE

所属:属性

语 法: IN5STOP MODE = value

类型: ULONG

描述:设置/读取 IN5 触发时电机的停止模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

IN5STOP MODE =1 '设置 IN5 触发时电机作减速停止运动

2.10.23 INSTOP_DEC

所属:属性

语 法: INSTOP_DEC = value

类型: DOUBLE

描述:设置/读取 INSTOP 用减速停止模式时的减速度,单位为脉冲当量/s^2

范 围: (0, MAXDEC), 默认值 10000

例 程

BASE 0

INSTOP DEC=20000 '设置轴 0 的 INSTOP 减速度为 20000 个脉冲当量/s^2

2.10.24 INP_EN

所属:属性

语 法: INP EN = value

类型: ULONG

描述: 启用/禁用检测电机运动到位功能, 到位信号是当电机运动到位时, 电机驱动

器生成到位信号。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

INP EN =1 '启用轴 0 的到位检测功能

注 意

启用到位检测功能后,控制轴进行运动时,脉冲命令输出完后,轴状态不会立即变为 ready,要等到轴的 INP 端口接收到伺服送出的到位信号,轴状态才会变为 ready。轴 状态未变为 ready 时,对该轴下运动指令将不成功。

2.10.25 INP LOGIC

所属:属性

语 法: INP_LOGIC = value

类型: ULONG

描述: 设置/读取到位输入信号的有效逻辑电平

范 围:设定值和返回值如下,默认值1

0: 低电平

1: 高电平

例 程

BASE 0

INP_LOGIC =1 '设置轴 0 的到位输入信号高电平有效

2.10.26 LTC_EN

所属:属性

语 法:LTC EN = value

类型: ULONG

描述: 启用/禁用轴的锁存功能,研华运动控制的每个轴都关联着4个DI端口,分别称为IN1,IN2,IN4,IN5,每个轴的锁存信号由IN1输入端口产生,启用锁存功能后,一旦IN1端口接收到有效电平,控制器会立即锁存指令理论位置值和编码器实际位置值。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

LTC_EN=1 '启用轴 0 锁存功能

2.10.27 LTC_LOGIC

所属:属性

语 法: LTC LOGIC = value

类型: ULONG

描述: 设置/读取锁存输入信号的有效逻辑电平

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

LTC_LOGIC = 0 '设置轴 0 锁存输入信号低电平有效

2.10.28 LDPOS

所属:命令

语 法: value=LDPOS(AX(no))

类型: DOUBLE

描述:读取触发锁存得到的理论位置值

返回值:轴指令理论位置值

例 程

'完整例程可参考 TrigLTC 指令

DIM B AS DOUBLE

B=LDPOS(AX(1)) '获取轴 1 的锁存理论位置值

2.10.29 LMPOS

所属:命令

语 法: value=LMPOS(AX(no))

类型: DOUBLE

描述:读取触发锁存得到的编码器实际位置值

返回值:轴编码器实际位置值

例 程

'完整例程可参考 TrigLTC 指令

DIM B AS DOUBLE

B=LMPOS(AX(1)) '获取轴 1 的锁存编码器实际位置值

2.10.30 TrigLTC

所属:命令

语 法: TrigLTC AX(axis no)

描述:用软件命令触发产生锁存信号。实际应用中,锁存信号基本上由硬件信号触发, 该命令多用于测试。

参数:axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

DIM LTC_CmdDATA AS DOUBLE

DIM LTC FBDATA AS DOUBLE

BASE 1

SVON

LTC EN=1

MOVE 50000

SLEEP 2000

PRINT LTC_CmdDATA

PRINT LTC FBDATA

RESETLTC AX(1) 清除锁存标记,锁存位置值

2.10.31 LTC_Flag

所属:命令

语 法: value=LTC_Flag(AX(no))

类型: ushort

描 述:读取轴锁存标志,捕捉到锁存信号时,LTC Flag 会置 1。要清除锁存标志,

需要用 ResetLTC 指令清除。

返回值:锁存标志信号

例 程

DIM B AS USHORT

B= LTC Flag(AX(1)) '获取轴 1 的锁存标志信号

2.10.32 RESETLTC

所属:命令

语 法: RESETLTC AX(axis no)

描述:清除锁存数据、锁存标记。未清除锁存标记,下次接收到锁存信号时,将不进

行位置值的锁存。

参数:axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

'参考 TrigLTC 指令例程

2.10.33 CMP_EN

所属:属性

语 法: CMP_EN = value

类型: ULONG

描述: 启用/禁用轴比较触发功能,研华运动控制的每个轴都关联着4个DO端口, 分别称为OUT4,OUT5,OUT6,OUT7,每个轴的比较触发输出由OUT5 输出端口产生,启用比较触发功能后,一旦比较触发产生,OUT5即输出信号。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

CMP EN =1 '启用轴 0 比较触发功能

2.10.34 CMP_LOGIC

所属:属性

语 法: CMP_LOGIC = value

类型: ULONG

描述:设置/读取轴比较触发有效输出时的 DO 逻辑电平

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

CMP_LOGIC =0 '设置比较触发输出的 DO 逻辑电平为低电平

2.10.35 CMP_METHOD

所属:属性

语 法: CMP METHOD = value

类 型: ULONG

描述:设置/读取轴比较触发的比较方法

范 围:设定值和返回值如下,默认值0

0:>= 位置计数器

1: <= 位置计数器

2:= 计数器 (无方向)

例 程

BASE 0

CMP_METHOD =1'设置轴 0 的比较方法为小于等于位置计数器

2.10.36 CMP_MODE

所属:属性

语 法: CMP_MODE = value

类型: ULONG

描述:设置/读取轴比较触发的 DO 输出模式, DO 输出模式说明如下图。

比较触发 DO 输出模式说明

范 围:设定值和返回值如下,默认值0

0:脉冲模式

1: 开关模式

例 程

BASE 0

CMP_MODE =1 '设置軸 0 的比较触发 DO 输出模式为开关模式

2.10.37 CMP_SRC

所属:属性

语 法: CMP_SRC = value

类型: ULONG

描述:设置/读取轴比较触发的比较源

范 围:设定值和返回值如下,默认值0

0:理论位置

1:实际位置

例 程

BASE 0

CMP_SRC =1 '设置轴 0 的位置比较源为实际位置

2.10.38 CMP_WIDTH

所属:属性

语 法: CMP_WIDTH = value

类型: ULONG

描述:设置/读取轴比较触发的 DO 输出模式为脉冲模式时的电平宽度,单位为微秒

范 围:设定值和返回值如下,默认值0

0: 5 Microsecond(us)

1: 10 Microsecond(us)

2: 20 Microsecond(us)

3: 50 Microsecond(us)

4: 100 Microsecond(us)

5: 200 Microsecond(us)

6: 500 Microsecond(us)

7: 1000 Microsecond(us)

例 程

BASE 0

CMP_WIDTH =1 '设置轴 0 比较触发的 DO 电平宽度为 10us

2.10.39 CPOS

所属:命令

语 法: value=CPOS(AX(no))

类型: DOUBLE

描述:读取比较触发中的当前比较位置数据

返回值:轴当前设定的比较位置数据值

例 程

DIM B AS DOUBLE

2.10.40 CMP

所属:命令

语 法1: CMP AX(axis no), position

语 法2: CMP AX(axis no), start_position, end_position, interval

语 法 3: CMP AX(axis no), tablearray(),array_num

描述:比较触发的模式分3种。

- ◇ 语法 1 用于单点比较触发,设置一个比较点的比较位置值。
- ◆ 语法2用于等距间隔多点比较触发,设置起始比较点位置,终点比较点位置,间隔 距离。
- ◇ 语法 3 用于随机点多点比较触发,设置多个要比较的位置值。

参数:axis no 轴号; 范围:根据控制器实际硬件决定。

Position 比较触发的位置值

start_position 起始比较点位置值,用于等距间隔多点比较模式 end_position 终点比较点位置值,用于等距间隔多点比较模式 interval 间隔距离,用于等距间隔多点比较模式

tablearray () 随机比较点数组,将要比较的点依次赋值到一个数组里,用于随机点多点比较模式

array_num 比较点个数,用于随机点多点比较模式

例 程

BASE 0

SVON

DIM cmp_table(3) AS double

cmp_table(0)=70000

 $cmp_table(1)=73400$

cmp_table(2)=79424

CMP_EN=1

CMP_METHOD=0 '大于等于位置源时触发

CMP_LOGIC=0 '触发电平为低电平

CMP_SRC=0 '参考源为理论位置

CMP_WIDTH=4 '脉冲模式输出脉宽为 100us

CMP_MODE=0 'DO 输出模式脉冲模式

'单点比较触发

CMP AX(0),10000 '设置比较位置为 10000

MOVEABS 0 '先运动到位置 0

WAIT DONE

MOVEABS 20000 '运到到 10000 的瞬间, 比较触发的 DO 输出

WAIT Done

'均匀间隔比较触发

CMP AX(0),30000,50000,4000 '比较位置从 30000 到 50000,每隔 4000,触发一次 DO

MOVEABS 60000

WAIT DONE

'随机表格位置比较触发

CMP AX(0),cmp_table(),3

MOVEABS 80000

2.10.41 CMP_Flag

所属:命令

语 法: value=CMP_Flag(AX(no))

类型: ushort

描述:读取轴比较触发标志,发生轴比较触发时,CMP Flag 会置 1。要清除锁存标

志,需要用 ResetCMP 指令清除。

返回值:比较触发标志信号

例 程

DIM B AS USHORT

B= CMP_Flag(AX(1)) '获取轴 1 的比较触发标志信号

2.10.42 RESETCMP

所属:命令

语 法: RESETCMP AX(axis no)

描述:清除比较触发标志。

参数:axis no 轴号; 范围:根据控制器实际硬件决定。

2.10.43 CAMDO_EN

所属:属性

语 法: CAMDO EN = value

类型: ULONG

描述: 启动/禁用 CAMDO 功能,研华运动控制的每个轴都关联着 4 个 DO 端口,分别称为 OUT4, OUT5, OUT6, OUT7,每个轴的 CAMDO 输出由 OUT4输出端口产生,启用 CAMDO 功能后,一旦触发产生,OUT4 即输出信号。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

CAMDO_EN=1 '启用轴 0 上的 CAMDO 功能

2.10.44 CAMDO_LOGIC

所属:属性

语 法: CAMDO_LOGIC = value

类型: ULONG

描述:设置/读取 CAMDO 有效输出时 DO 的电平逻辑

范 围:设定值和返回值如下,默认值1

0: 低电平

1: 高电平

例 程

BASE 0

CAMDO_LOGIC =1 '设置 CAMDO 有效输出时的电平为高电平

2.10.45 CAMDO_LPOS

所属:属性

语 法: CAMDO_LPOS = value

类型: ULONG

描 述: 设置/读取 CAMDO 低限位位置值,单位为脉冲当量

范 围:设定值和返回值为【-2147483647, 2147483647】, 默认值 10000

例 程

BASE 0

CAMDO_LPOS=1000 '设置 CAMDO 低限位位置值为 1000

2.10.46 CAMDO_HPOS

所属:属性

语 法: CAMDO HPOS = value

类型: ULONG

描述:设置/读取 CAMDO 高限位位置值,单位为脉冲当量

范 围:设定值和返回值为【-2147483647, 2147483647】, 默认值 20000

例 程

BASE 0

CAMDO_HPOS=1000 '设置 CAMDO 高限位位置值为 1000

2.10.47 CAMDO_SRC

所属:属性

语 法: CAMDO_SRC = value

类型: ULONG

描述:设置/读取 CAMDO 的位置比较源

范 围:设定值和返回值如下,默认值0

0:理论位置

1:实际位置

例 程

BASE 0

CAMDO_SRC=1 '设置轴 0 的 CAMDO 位置比较源为实际位置

2.10.48 MIO

所属:属性(只读)

语 法:如下枚举

- ♦ value=MIO.RDY, 读取伺服驱动器 Ready 信号
- → value=MIO.ALM, 读取伺服驱动器报警信号
- → value=MIO.PEL, 读取正方向硬极限信号
- → value=MIO.NEL, 读取负方向硬极限信号
- → value=MIO.ORG, 读取硬件原点信号
- → value=MIO.DIR, 读取轴运动方向信号
- → value=MIO.EMG, 读取轴卡上 EMG 信号
- → value=MIO.PCS, 暂不支持
- ♦ value = MIO.ERC, 暂不支持
- → value = MIO.EZ, 读取编码器 Z 相输入信号
- ♦ value = MIO.CLR, 暂不支持
- ♦ value = MIO.LTC, 读取锁存信号
- → value = MIO.SD, 暂不支持
- → value = MIO.INP, 读取伺服驱动器到位信号
- → value = MIO.SVON, 读取伺服使能输出信号
- ♦ value= MIO.ALRM, 读取报警复位信号输出状态

- → value = MIO.SPEL , 读取正方向软极限信号
- → value = MIO.SNEL , 读取负方向软极限信号
- → value = MIO.CMP, 读取比较触发输出信号
- → value = MIO.CAMDO , 读取 CAM DO 输出信号

类型: ULONG

描述:读取跟运动控制相关的 I/O 状态

返回值:0或1

2.11 回原点与限位

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.11.1	HOME_VL	原点运动初速度	\checkmark	√
2.11.2	HOME_VH	原点运动运行速度	√	√
2.11.3	HOME_ACC	原点运动加速度	√	√
2.11.4	HOME_DEC	原点运动减速度	√	√
2.11.5	HOME_JK	原点运动速度曲线类型	√	√
2.11.6	HOME_MODE	原点运动模式	√	√
2.11.7	НОМЕР	正向原点运动	√	×
2.11.8	HOMEN	反向原点运动	√	×
2.11.9	HOME_CROSS	原点运动跨越距离	√	√
2.11.10	HOME_OFFSETDIST	原点运动完成后再移动的 偏移距离	√	√
2.11.11	HOME_OFFSETVEL	原点运动完成后移动偏移 距离的速度	√	√
2.11.12	HOME_RESET	原点运动后清零位置值功 能	√	×
2.11.13	ORG_LOGIC	原点端口逻辑电平	√	√
2.11.14	ORG_MODE	原点运动结束时的停止模 式	√	√
2.11.15	ORG_FILTER	原点端口的滤波	√	√
2.11.16	EZ_LOGIC	Z相端口逻辑电平	√	√
2.11.17	EL_EN	硬限位功能使能	√	×
2.11.18	EL_LOGIC	硬限位端口逻辑电平	√	√
2.11.19	EL_MODE	硬限位触发时的停止模式	√	√
2.11.20	PEL_FILTER	正方向硬限位端口滤波	√	√

2.11.21	NEL_FILTER	负方向硬限位端口滤波	√	√
2.11.22	SPEL	正方向软限位值	√	√
2.11.23	SPEL_EN	正方向软限位功能使能	√	×
2.11.24	SPEL_MODE	正方向软限位触发时的停 止模式	√	√
2.11.25	SNEL	负方向软限位值	√	√
2.11.26	SNEL_EN	负方向软限位功能使能	√	×
2.11.27	SNEL_MODE	负方向软限位触发时的停 止模式	√	√
2.11.28	PEL_TOL_EN	正方向硬极限容差功能使 能	√	×
2.11.29	PEL_TOL	正方向硬极限容差值	√	√
2.11.30	NEL_TOL_EN	负方向硬极限容差功能使 能	√	×
2.11.31	NEL_TOL	负方向硬极限容差值	√	√
2.11.32	SPEL_TOL_EN	正方向软极限容差功能使 能	√	×
2.11.33	SPEL_TOL	正方向软极限容差值	√	√
2.11.34	SNEL_TOL_EN	负方向软极限容差功能使 能	√	×
2.11.35	SNEL_TOL	负方向软极限容差值	√	√

2.11.1 HOME_VL

所属:属性

语 法: HOME_VL = value

类型: DOUBLE

描述:设置/读取回原点运动的初速度,单位为脉冲当量/s

范 围:(0, MAXVEL), 默认值 2000

例 程

BASE 0

HOME_VL=1000 '設定軸 0 回原点运动的初速度为 1000 个脉冲当量/s

2.11.2 HOME_VH

所属:属性

语 法: HOME VH = value

类型: DOUBLE

描述:设置/读取回原点运动的最大运行速度,单位为脉冲当量/s

范 围: (HOME VL, MAXVEL), 默认值 8000

例 程

BASE 0

HOME_VH=5000 '設定軸 0 回原点运动的运行速度为 5000 个脉冲当量/s

2.11.3 HOME_ACC

所属:属性

语 法: HOME ACC = value

类型: DOUBLE

描述:设置/读取回原点运动的加速度,单位为脉冲当量/s^2

范 围:(0, MAXACC), 默认值 10000

例 程

BASE 0

HOME_ACC=20000 '设置轴 0 回原点的加速度为 20000 个脉冲当量/s^2

2.11.4 HOME_DEC

所属:属性

语 法: HOME DEC = value

类型: DOUBLE

描述:设置/读取回原点运动的减速度,单位为脉冲当量/s^2

范 围:(0, MAXDEC), 默认值 10000

例 程

BASE 0

HOME_DEC=20000 '设置轴 0 回原点的减速度为 20000 个脉冲当量/s^2

2.11.5 HOME_JK

所属:属性

语 法: HOME_JK = value

类型: ULONG

描述:设置/读回原点运动的速度曲线类型

范 围:【0,1】,0:T型曲线;1:S型曲线,默认值0

例 程

BASE 0

HOME_JK=1 '设置軸 0 回原点的速度曲线为 S 型曲线

2.11.6 HOME_MODE

所属:属性

语 法: HOME MODE = value

类型: ULONG

描述:设置/读取回原点运动的模式

范 围:设定值和返回值如下,默认值0

0: MODE1_Abs

1: MODE2_Lmt

2: MODE3_Ref

3: MODE4_Abs_Ref

4: MODE5_Abs_NegRef

5: MODE6_Lmt_Ref

6: MODE7_AbsSearch

7: MODE8_LmtSearch

8: MODE9_AbsSearch_Ref

9: MODE10_AbsSearch_NegRef

10: MODE11_LmtSearch_Ref

11: MODE12_AbsSearchReFind

12: MODE13_LmtSearchReFind

13: MODE14_AbsSearchReFind_Ref

14 : MODE15_AbsSearchReFind_NegR

15: MODE16 LmtSearchReFind Ref

例 程

BASE 0

HOME_MODE=7 '設定軸 0 的回原点模式未 MODE8_LmtSearch

2.11.7 HOMEP

所属:命令

语 法1: HOMEP

语 法2: HOMEP AX(axis no)

语 法 3: HOMEP dir1[, dir2][, dir3]......

描述: BASE 轴列表的轴或指定轴、方向,开始正向回原点运动。HOMEP 分 3 种方法使用如下。

◇ 语法 1 用于对 BASE 轴列表的轴执行正向回原点运动

◇ 语法 2 用于指定某个轴执行正向回原点运动

◆ 语法 3 用于对 BASE 轴列表的轴,指定不同方向,执行回原点运动。Dir 为 0 时, 方向与 HOMEP 同向; dir 为 1 时,方向与 HOMEP 反向

参数: dir 0: 正向; 1: 反向

axis no 轴号; 范围:根据控制器实际硬件决定。

相关指令参考: HOME MODE; HOME CROSS; HOME RESET

例 程

BASE 0,1,2

HOME_VL=500

HOME_VH=10000

HOME ACC=50000

HOME_DEC=50000

HOME_CROSS=2000 '设置原点运动中跨越距离

HOME_RESET=1 '原点运动结束后清零理论位置、实际位置

HOME_MODE=6 '6: MODE7_AbsSearch

HOMEP AX(1) '指定轴 1 执行正向回原点运动

WAIT AX(1),DONE '等待轴 1 运动停止

BASE 0,1 '基于轴 0,轴 1

HOMEP '轴 0, 轴 1 都执行正向回原点运动

WAIT DONE '等待两个轴的回原点运动停止

HOMEN '轴 0, 轴 1 都执行负向回原点运动

WAIT DONE

HOMEP 0,1 '轴 0 执行正向回原点运动,轴 1 执行反向回原点运动

WAIT DONE

MOVE 5000,5000 '原点运动停止后, 执行两轴相对点位运动

2.11.8 HOMEN

所属:命令

语 法1: HOMEN

语 法 2: HOMEN AX(axis no)

语 法 3: HOMEN dir1[, dir2][, dir3]......

描述: BASE 轴列表的轴或指定轴、方向,开始负向回原点运动。HOMEN 分 3 种方法使用如下。

- ◇ 语法 1 用于对 BASE 轴列表的轴执行负向回原点运动
- ◇ 语法 2 用于指定某个轴执行负向回原点运动
- ◆ 语法 3 用于对 BASE 轴列表的轴,指定不同方向,执行回原点运动。Dir 为 0 时, 方向与 HOMEN 同向; dir 为 1 时,方向与 HOMEN 反向

参数: dir 0:反向;1:正向

axis no 轴号; 范围:根据控制器实际硬件决定。

相关指令参考: HOME MODE; HOME CROSS; HOME RESET

例 程

BASE 0,1,2

HOME_VL=500

HOME_VH=10000

HOME_ACC=50000

HOME_DEC=50000

HOME_CROSS=2000 '设置原点运动中跨越距离

HOME RESET=1 '原点运动结束后清零理论位置、实际位置

HOME_MODE=6 '6: MODE7_AbsSearch

HOMEP AX(1) 指定轴 1 执行正向回原点运动

WAIT AX(1),DONE '等待轴 1 运动停止

BASE 0,1 '基于轴 0,轴 1

HOMEP '轴 0, 轴 1 都执行正向回原点运动

WAIT DONE '等待两个轴的回原点运动停止

HOMEN '轴 0, 轴 1 都执行负向回原点运动

WAIT DONE

HOMEP 0,1 '轴 0 执行正向回原点运动,轴 1 执行反向回原点运动

WAIT DONE

MOVE 5000,5000 '原点运动停止后, 执行两轴相对点位运动

2.11.9 HOME_CROSS

所属:属性

语 法: HOME_CROSS= value

类型: DOUBLE

描述:设置/读取回原点运动时的跨越距离。HOME MODE 里有几种模式会用到

HOME_CROSS, 请参考HOME_MODE 指令说明。

例 程

BASE 0

HOME_CROSS=100 '設定軸 0 回原点运动时的跨越距离为 100 个脉冲当量

2.11.10 HOME_OFFSETDIST

所属:属性

语 法: HOME OFFSETDIST = value

类型: DOUBLE

描述:设置/读取回原点运动完成后再移动的偏移距离。

例 程

BASE 0

HOME_OFFSETDIS =1000 '设置軸 0 的回原点偏移距离为 1000 个脉冲当量

2.11.11 HOME_OFFSETVEL

所属:属性

语 法: HOME_OFFSETVEL = value

类型: DOUBLE

描述: 设置/读取回原点运动完成后移动偏移距离的速度

范 **围**:(0, MAXVEL), 默认值8000

例 程

BASE 0

HOME_OFFSETVEL =1000 '设置軸 0 的回原点偏移速度为 1000 个脉冲当量/s

2.11.12 HOME_RESET

所属:属性

语 法: HOME_RESET= value

类型: ULONG

描述: 启用或禁用回原点后清零位置值功能

范 围:设定值和返回值如下,默认值1

0:禁用

1:启用

例 程

BASE 0

HOME_RESET=1 '启用轴 0 回完原点后清零位置值功能

2.11.13 ORG_LOGIC

所属:属性

语 法: ORG LOGIC = value

类型: ULONG

描述:设置/读取 ORG 信号的有效逻辑电平。ORG 专用数字量输入端口用于回原点运动中的几种用到 ORG 信号的模式,请参考 HOME_MODE 指令说明。

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

ORG_LOGIC =1 '设置轴 0 的 ORG 输入信号高电平有效

2.11.14 ORG_MODE

所属:属性

语 法: ORG_MODE = value

类型: ULONG

描述:设置/读取回原点运动结束时的停止模式。

范 围:设定值和返回值如下,默认值0

0:立即停止

1:减速停止

例 程

BASE 0

ORG_MODE = 1 '设置轴 0 的回原点运动停止模式未减速停止模式

2.11.15 ORG_FILTER

所属:属性

语 法: ORG_FILTER = value

类型: ULONG

描述: 设置/读取轴的 ORG 输入信号的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

ORG_FILTER =1 '设置 ORG 信号的滤波时间为 100us

2.11.16 EZ_LOGIC

所属:属性

语 法: EZ LOGIC = value

类型: ULONG

描述:设置/读取电机编码器 Z 相输入信号的有效逻辑电平。运动控制中, Z 相信号

常常用于回原点运动中,请参考 HOME_MODE 的指令说明。

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

EZ_LOGIC =0 '设置轴 0 的 Z 相输入信号低电平有效

2.11.17 EL_EN

所属:属性

语 法: EL EN = value

类型: ULONG

描述: 启用/禁用硬件限位功能, 启用后限位开关被触发, 相应方向上运动的电机会

被控制停下来

范 围:设定值和返回值如下,默认值1

0:禁用

1:启用

例 程

BASE 0

EL_EN =1 '启用硬件限位功能

2.11.18 EL LOGIC

所属:属性

语 法: EL LOGIC = value

类型: ULONG

描述: 设置/读取硬件限位输入信号的有效逻辑电平

范 围:设定值和返回值如下,默认值0

0: 低电平

1: 高电平

例 程

BASE 0

EL_LOGIC = 1 '设置轴 0 的硬极限输入信号高电平有效

2.11.19 EL_MODE

所属:属性

语 法: EL MODE = value

类型: ULONG

描述:设置/读取接收报警信号时电机的停止模式

范 围:设定值和返回值如下,默认值0

0:立即停止

1:减速停止

例 程

BASE 0

EL MODE =0 '设置轴 0 碰到硬极限时电机立即停止

2.11.20 PEL_FILTER

所属:属性

语 法: PEL_FILTER = value

类型: ULONG

描述:设置/读取轴的正方向硬限位输入信号的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

PEL_FILTER =1;设置轴 0 的正方向硬限位信号滤波时间为 100us

2.11.21 NEL_FILTER

所属:属性

语 法: NEL_FILTER = value

类型: ULONG

描述:设置/读取轴的负方向硬限位输入信号的滤波时间

范 围:设定值和返回值如下,默认值0

0 : 5us

1:100us

2:200us

3:500us

例 程

BASE 0

NEL FILTER =1;设置轴 0 的负方向硬限位信号滤波时间为 100us

2.11.22 SPEL

所属:属性

语 法: SPEL = value

类型:LONG

描述:设置/读取正方向软限位的值,单位为脉冲

例 程

BASE 0

SPEL =100 '设置正方向软件限位的值为 100

2.11.23 SPEL_EN

所属:属性

语 法: SPEL EN = value

类型: ULONG

描述: 启用/禁用正方向软限位功能, 启用正方向软限位功能后, 正向移动的电机指令位置到达 SPEL 设定的值后, 马达会被控制停止运动。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

SPEL_EN =1 '启用轴 0 的正方向软限位功能

2.11.24 SPEL_MODE

所属:属性

语 法: SPEL MODE = value

类型: ULONG

描述:设置/读取正方向软件限位功能被触发时电机被控制停止的模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

SPEL MODE = 1 '设置轴 0 的正方向软件限位被触发时, 电机被控制的停止模式为减速停止

2.11.25 SNEL

所属:属性

语 法: SNEL = value

类 型:LONG

描述:设置/读取负方向软限位的值,单位为脉冲

例 程

BASE 0

SNEL =100 '设置负方向软件限位的值为 100

2.11.26 SNEL_EN

所属:属性

语 法: SNEL EN = value

类型: ULONG

描述: 启用/禁用负方向软限位功能, 启用负方向软限位功能后, 负向移动的电机指

令位置到达 SNEL 设定的值后,马达会被控制停止运动。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

SNEL_EN =1 '启用轴 0 的负方向软限位功能

2.11.27 SNEL_MODE

所属:属性

语 法: SNEL MODE = value

类型: ULONG

描述:设置/读取负方向软件限位功能被触发时电机被控制停止的模式

范 围:设定值和返回值如下,默认值1

0:立即停止

1:减速停止

例 程

BASE 0

SNEL MODE = 1 '设置轴 0 的负方向软件限位被触发时, 电机被控制的停止模式为减速停止

2.11.28 PEL_TOL_EN

所属:属性

语 法: PEL_TOL_EN = value

类型: ULONG

描述: 启用/禁用正方向硬极限容差功能。该功能仅在外部手轮操作时使用。当手轮控制电机运动时,碰到极限信号后,由于极限会限制某方向的运动,而且触碰极限会发生轴错误报警,导致手轮不能正常控制电机移出极限。该指令功能开启后,会允许在极限附近的某段范围,触碰极限不产生轴错误报警,使得手轮可以正常控制电机。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

PEL_TOL_EN =1 '启用正方向硬极限容差功能

2.11.29 PEL_TOL

所属:属性

语 法: PEL_TOL = value

类型: ULONG

描述:设置/读取轴的正方向硬极限容差值。

范 围:设定值和返回值为【0,2147483647】,默认值5000

例 程

BASE 0

PEL_TOL =100 '设置轴 0 的正方向硬极限容差值为 100 个脉冲

2.11.30 NEL TOL EN

所属:属性

语 法: NEL TOL EN = value

类型: ULONG

描述: 启用/禁用负方向硬极限容差功能。该功能仅在外部手轮操作时使用。当手轮控制电机运动时,碰到极限信号后,由于极限会限制某方向的运动,而且触碰极限会发生轴错误报警,导致手轮不能正常控制电机移出极限。该指令功能开启后,会允许在极限附近的某段范围,触碰极限不产生轴错误报警,使得手轮可以正常控制电机。

范 围:设定值和返回值如下,默认值0

0:禁用

1: 启用

例 程

BASE 0

NEL_TOL_EN =1 '启用负方向硬极限容差功能

2.11.31 NEL TOL

所属:属性

语 法: NEL_TOL = value

类型: ULONG

描述: 设置/读取轴的负方向硬极限容差值。

范 围:设定值和返回值为【0,2147483647】,默认值5000

例 程

BASE 0

NEL_TOL =100 '设置轴 0 的负方向硬极限容差值为 100 个脉冲

2.11.32 SPEL_TOL_EN

所属:属性

语 法: SPEL_TOL_EN = value

类型: ULONG

描述: 启用/禁用正方向软极限容差功能。该功能仅在外部手轮操作时使用。当手轮控制电机运动时,碰到极限信号后,由于极限会限制某方向的运动,而且触碰极限会发生轴错误报警,导致手轮不能正常控制电机移出极限。该指令功能开启后,会允许在极限附近的某段范围,触碰极限不产生轴错误报警,使得手轮可以正常控制电机。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

SPEL_TOL_EN =1 '启用正方向软极限容差功能

2.11.33 SPEL_TOL

所属:属性

语 法: SPEL TOL = value

类型: ULONG

描述: 设置/读取轴的正方向软极限容差值。

范 围:设定值和返回值为【0,2147483647】,默认值5000

例 程

BASE 0

SPEL_TOL =100 '设置轴 0 的正方向软极限容差值为 100 个脉冲

2.11.34 SNEL_TOL_EN

所属:属性

语 法: SNEL TOL EN = value

类型: ULONG

描述: 启用/禁用负方向软极限容差功能。该功能仅在外部手轮操作时使用。当手轮控制电机运动时,碰到极限信号后,由于极限会限制某方向的运动,而且触碰极限会发生轴错误报警,导致手轮不能正常控制电机移出极限。该指令功能开启后,会允许在极限附近的某段范围,触碰极限不产生轴错误报警,使得手轮可以正常控制电机。

范 围:设定值和返回值如下,默认值0

0:禁用

1:启用

例 程

BASE 0

SNEL TOL EN =1 '启用负方向软极限容差功能

2.11.35 SNEL_TOL

所属:属性

语 法: SNEL_TOL = value

类型: ULONG

描述: 设置/读取轴的负方向软极限容差值。

范 围:设定值和返回值为【0,2147483647】,默认值5000

例 程

BASE 0

SNEL TOL =100 '设置轴 0 的负方向软极限容差值为 100 个脉冲

2.12 **JOG** 与手轮

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.12.1	JOG_VL	JOG 运动低速段速度	√	√
2.12.2	JOG_VH	JOG 运动高速段速度	√	√
2.12.3	JOG_ACC	JOG 运动加速度	√	√
2.12.4	JOG_DEC	JOG 运动减速度	√	√
2.12.5	JOG_VLTIME	JOG 运动低段速度运行的时间	√	√
2.12.6	JOGP	正向软件 JOG 运动	√	×
2.12.7	JOGN	负向软件 JOG 运动	√	×
2.12.8	JOGON	使能外部驱动的 JOG 功能	√	×
2.12.9	JOGOFF	禁用外部驱动的 JOG 功能	√	×
2.12.10	MPGON	使能外部驱动的手轮功能	√	×
2.12.11	MPGOFF	禁用外部驱动的手轮功能	√	×
2.12.12	EXT_MODE	手轮模式外部驱动的脉冲输入模 式	√	√
2.12.13	EXT_PULSE	手轮模式外部驱动时,每个手轮脉 冲输入对应多少个指令脉冲输出 值	V	V
2.12.14	EXT_SRC	外部驱动的信号接入哪个轴的外 部驱动输入端口	√	√

2.12.1 JOG_VL

所属:属性

语 法: JOG_VL = value

类型: DOUBLE

描述:设置/读取 JOG 运动的低速段速度,单位为脉冲当量/s。当 JOG_VLTIME 值

不为 0 时, JOG_VL 将起作用。

范 围:(0, MAXVEL), 默认值 2000

例 程

BASE 0

JOG_VL=1000 '设置軸 0 的 JOG 运动低速段速度为 1000 个脉冲当量/s

2.12.2 JOG_VH

所属:属性

语 法: JOG_VH = value

类型: DOUBLE

描述:设置/读取 JOG 运动的高速段速度,单位为脉冲当量/s

范 **围**: (JOG VL, MAXVEL), 默认值 8000

例 程

BASE 0

JOG_VH=1000 '设置軸 0 的 JOG 运动高速段速度为 1000 个脉冲当量/s

2.12.3 JOG_ACC

所属:属性

语 法: JOG ACC = value

类型: DOUBLE

描述:设置/读取 JOG 运动的加速度,单位为脉冲当量/s^2

范 围:(0, MAXACC), 默认值 10000

例 程

BASE 0

JOG_ACC=20000 '设置轴 0 的 JOG 运动加速度为 20000 个脉冲当量/s^2

2.12.4 JOG_DEC

所属:属性

语 法: JOG_DEC = value

类型: DOUBLE

描述: 设置/读取 JOG 运动的减速度,单位为脉冲当量/s^2

范 围: (0, MAXDEC), 默认值 10000

例 程

BASE 0

JOG_DEC=20000 '设置轴 0 的 JOG 运动减速度为 20000 个脉冲当量/s^2

2.12.5 JOG_VLTIME

所属:属性

语 法: JOG VLTIME =value

类型: ULONG

描述:设置/读取 JOG 运动低段速度运行的时间,单位为 ms。研华规划的 JOG 运动分两段速度。JOG 指令下达后,先控制电机的速度为 JOG_VL, JOG_VL 运动 JOG_VLTIME 值的时间后,控制电机加速到 JOG_VH。如果 JOG_VLTIME 值设置为 0, JOG 指令下达后,直接控制电机加速到 JOG_VH, JOG_VL 将不起作用。

范 围: 大于等于 0, 默认值 5000

例 程

BASE 0

JOG_VLTIME=1000 '设置軸 0 的 JOG 运动高低速切换时间为 1000ms

2.12.6 JOGP

所属:命令

语 法1: JOGP

语 法 2: JOGP AX(axis no)

语 法 3: JOGP dir1[, dir2][, dir3]......

描述: BASE 轴列表的轴或指定轴、方向, 开始正向 JOG 运动。JOGP 分 3 种方法使用如下。

- ◇ 语法 1 用于对 BASE 轴列表的轴执行正向 JOG 运动
- ◇ 语法 2 用于指定某个轴执行正向 JOG 运动
- ◆ 语法 3 用于对 BASE 轴列表的轴,指定不同方向,执行 JOG 运动。Dir 为 0 时,方
 向与 JOGP 同向; dir 为 1 时,方向与 JOGP 反向

参数: dir 0: 正向; 1: 反向

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1,2

JOG_VL=500

JOG_VH=10000

JOG_ACC=50000

JOG_DEC=50000

JOG_VLTIME=2000 '设定低段速度运行的时间为 2 秒

SLEEP 5000

STOPDEC

JOGP '轴 0、1、2 都执行正向 JOG 运动

SLEEP 3000

STOPDEC JOGP AX(1) '指定轴1执行正向 JOG 运动 轴速度会先加速到 JOG_VL 运行2秒,

再加速到 JOG_VH

WAIT DONE

JOGP 0,1,0 '轴 0,2 执行正向 JOG 运动,轴 1 执行负向 JOG 运动

SLEEP 4000

STOPDEC

2.12.7 JOGN

所属:命令

语 法1: JOGN

语 法2: JOGN AX(axis no)

语 法 3: JOGN dir1[, dir2][, dir3]......

描述: BASE 轴列表的轴或指定轴、方向, 开始负向 JOG 运动。 JOGN 分 3 种方法使用如下。

- ◇ 语法 1 用于对 BASE 轴列表的轴执行负向 JOG 运动
- ◇ 语法 2 用于指定某个轴执行负向 JOG 运动
- ◆ 语法 3 用于对 BASE 轴列表的轴,指定不同方向,执行 JOG 运动。Dir 为 0 时,方
 向与 JOGN 同向; dir 为 1 时,方向与 JOGN 反向
- 参数: dir 0: 反向; 1: 正向

axis no 轴号; 范围:根据控制器实际硬件决定。

例 程

BASE 0,1,2

JOG_VL=500

JOG_VH=10000

JOG_ACC=50000

JOG_DEC=50000

JOG_VLTIME=2000 '设定低段速度运行的时间为 2 秒

JOGN AX(1) '指定轴 1 执行负向 JOG 运动,轴速度会先加速到 JOG VL 运行 2 秒,再加速到 JOG VH

SLEEP 5000

STOPDEC

JOGN '轴 0、1、2 都执行负向 JOG 运动

SLEEP 3000

STOPDEC

WAIT DONE

JOGN 0,1,0 '轴 0,2 执行负向 JOG 运动,轴 1 执行正向 JOG 运动

SLEEP 4000

STOPDEC

2.12.8 **JOGON**

所属:命令

语 法: JOGON

描述: BASE 轴列表的第一个轴,使能外部驱动的 JOG 功能。该指令对外部硬件接线控制的 JOG 运动起作用。研华运动控制的每个轴都关联着4个 DI 端口,分别称为 IN1, IN2, IN4, IN5。当使用外部驱动的 JOG 功能时, IN4和 IN5分别控制 JOG+和 JOG-。

2.12.9 **JOGOFF**

所属:命令

语 法: JOGOFF

描述: BASE 轴列表的第一个轴, 禁用外部驱动的 JOG 功能。该指令对外部硬件接线

控制的 JOG 运动起作用。研华运动控制的每个轴都关联着 4 个 DI 端口,分别称为 IN1, IN2, IN4, IN5。当使用外部驱动的 JOG 功能时, IN4和 IN5分别控制 JOG+和 JOG-。

2.12.10 MPGON

所属:命令

语 法: MPGON

描述: BASE 轴列表的第一个轴,使能外部驱动的 MPG 功能。该指令对外部硬件接线控制的 MPG 运动起作用。研华运动控制的每个轴都关联着4个 DI 端口,分别称为 IN1, IN2, IN4, IN5。当使用外部驱动的 MPG 功能时, IN4和 IN5分别控制对应手轮脉冲输入的A相和B相。

2.12.11 MPGOFF

所属:命令

语 法: MPGOFF

描述: BASE 轴列表的第一个轴,禁用外部驱动的 MPG 功能。该指令对外部硬件接线控制的 MPG 运动起作用。研华运动控制的每个轴都关联着 4 个 DI 端口,分别称为 IN1, IN2, IN4, IN5。当使用外部驱动的 MPG 功能时, IN4和 IN5分别控制对应手轮脉冲输入的 A 相和 B 相。

2.12.12 EXT_MODE

所属:属性

语 法: EXT MODE = value

类型: ULONG

描述: 设置/读取手轮模式外部驱动的脉冲输入模式

范 围:设定值和返回值如下,默认值2

0:1XAB

1:2XAB

2:4XAB

3: CCW/CW

例 程

EXT_MODE = 1 '设置手轮外部驱动的脉冲输入模式为 2XAB

2.12.13 EXT_PULSE

所属:属性

语 法: EXT_PULSE = value

类型: ULONG

描述:设置/读取手轮模式外部驱动时,每个手轮脉冲输入对应多少个指令脉冲输出

值

范 围:【1,1000】;默认值为1

例 程

EXT_PULSE = 2 '设置手轮脉冲输入对应 2 个指令脉冲输出

2.12.14 EXT_SRC

所属:属性

语 法: EXT SRC = value

类型: ULONG

描述:设置/读取外部驱动的信号接入哪个轴的外部驱动输入端口

范 围:设定值和返回值如下,默认值0

0:0轴

1: 1轴(暂不支持)

2: 2轴(暂不支持)

3: 3轴(暂不支持)

例 程

BASE 0

EXT_SRC = 0 '设置外部驱动信号接到轴 0 的外部驱动端口

2.13 通信指令

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.13.1	COM_OPEN	打开串口	×	×
2.13.2	COM_CLOSE	关闭串口	×	×
2.13.3	COM_SET	设置串口通讯参数	×	×
2.13.4	COM_ReadStream	串口自由协议读操作,通过 串口读数据	×	×
2.13.5	COM_WriteStream	串口自由协议写操作,通过 串口写数据	×	×
2.13.6	COM_ResetBuf	清除串口缓存区数据	×	×
2.13.7	TCP_OPEN	打开一个 TCP 通讯连接	×	×
2.13.8	TCP_CLOSE	关闭一个 TCP 通讯连接	×	×
2.13.9	TCP_STATUS	检查 TCP 连接状态	×	×
2.13.10	TCP_WAIT	等待 TCP 连接完成	×	×
2.13.11	TCP_Check	获取 TCP 通信接收到的字符个数	×	×
2.13.12	TCP_ ReadSTR	控制器接收字符串指令	×	×
2.13.13	TCP_WriteSTR	控制器发送字符串指令	×	×
2.13.14	TCP_Read	控制器接收数据	×	×
2.13.15	TCP_Write	控制器发送数据	×	×
2.13.16	TCP_ReadVR	控制器用 VR 变量接收数据	×	×
2.13.17	TCP_WriteVR	控制器把 VR 变量中的数据 发送出去	×	×
2.13.18	TCP_ResetBuf	清除 TCP 缓存区数据	×	×

2.13.1 COM_OPEN

所属:命令

语 法: COM_OPEN port

描述:指定串口编号,打开串口。相应串口端口被打开后,才可以对该串口操作。该指令需要根据本地串口资源进行操作。

参数:port 串口端口号

注 意:打开串口操作仅适用于未打开的串口,如果串口资源已经被打开,下该指令操 会执行不成功,并返回错误。

例 程

COM_OPEN 2 '打开串口 2

COM SET 2, 9600, 0, 1, 8 '设置串口波特率 9600, 校验位无, 停止位 1 位, 数据位 8 位

COM CLOSE 2 '关闭串口 2

2.13.2 COM CLOSE

所属:命令

语 法: COM_CIOSE port

描述:指定串口编号,关闭串口。

参数: port 串口端口号

例 程

COM_OPEN 2 '打开串口 2

COM SET 2, 9600, 0, 1, 8 '设置串口波特率 9600, 校验位无, 停止位 1 位, 数据位 8 位

COM_CLOSE 2 '关闭串口 2

2.13.3 COM SET

所属:命令

语 法: COM SET port, baudrate, parity, stopbits, databits

描述:设置串口通讯参数。

参 数: port 串口端口号;

Baudrate 波特率; 范围:4800、9600、19200、38400、57600、115200

Parity 校验方式; 范围:无(NONE)、奇(ODD)、偶(EVEN)

Stopbits 停止位; 范围:1、2

Databits 数据位; 范围:7、8

例 程

COM OPEN 2 '打开串口 2

COM_SET 2, 9600, 0, 1, 8 '设置串口波特率 9600, 校验位无, 停止位 1 位, 数据位 8 位

COM CLOSE 2

'关闭串口2

2.13.4 COM_ReadStream

所属:命令

语 法: COM_READSTREAM port, *strarray, num

描述: 串口自由协议读操作,通过串口读数据。执行到该指令时,控制器程序会等在该行,直到读到的字节个数和 num 参数指定的个数一致时,程序才会执行到下一行。

参数: port 串口端口号;

*strarray 存放读到的数据变量地址,一般为数组的地址或字符串地址

num 读取的字节个数或字符个数

例 程

DIM WriteArray(2) AS BYTE={1,2}

DIM ReadArray(2) AS BYTE

DIM WriteStr AS STRING= "OK"

DIM ReV AS ULONG

COM Open 2 '打开串口 2

COM SET 2,9600,0,1,8 '设置串口波特率 9600,校验位无,停止位1位,数据位8位

BASE 0,1

SVON

MOVE 2000,30000

WAIT DONE

COM_WriteStream 2, WriteArray(), 2 '控制器发出数组 WriteArray()里的 2 个字节数据

COM_WriteStream 2,WriteStr,2 '控制器写出 WriteStr 中字符串

COM_ReadStream 2,ReadArray(),2 '控制器读两个字节数据,未读到2个字节,程序会停在该行读

MOVEABS 0,0

END IF

COM_Close 2 '关闭串口 2

2.13.5 COM_WriteStream

所属:命令

语 法: COM_WriteStream port, *strarray, num

描述: 串口自由协议写操作, 通过串口写数据。

参数: port 串口端口号;

*strarray 存放写出的数据变量地址,一般为数组的地址或字符串地址

num写出的字节个数或字符个数

例 程

DIM WriteArray(2) AS BYTE={1,2}

DIM ReadArray(2) AS BYTE

DIM WriteStr AS STRING= "OK"

DIM ReV AS ULONG

COM_Open 2 '打开串口 2

COM_SET 2,9600,0,1,8 '设置串口波特率 9600,校验位无,停止位1位,数据位8位

BASE 0,1

SVON

MOVE 2000,30000

WAIT DONE

COM_WriteStream 2, WriteArray(), 2 '控制器发出数组 WriteArray()里的 2 个字节数据

COM_WriteStream 2, WriteStr, 2 '控制器写出 WriteStr 中字符串

COM_ReadStream 2,ReadArray(),2 '控制器读两个字节数据,未读到2个字节,程序会停在该行读

MOVEABS 0,0

END IF

COM_Close 2 '关闭串口 2

2.13.6 COM_ResetBuf

所属:命令

语 法: COM ResetBuf port

描述:清除串口缓存区数据。

参数: port 串口端口号

2.13.7 TCP_OPEN

所属:命令

语 法: TCP OPEN no, mode, port[, ipaddress]

描述:指定 TCP/IP 通讯编号、模式、网络端口号[、IP 地址], 打开一个 TCP 通信连接。相应 TCP 通信端口被打开后, 才可以对该网口操作。该指令需要根据本地网口资源进行操作。

参数: no TCP 通讯编号。用于控制器内部识别不同 TCP/IP 连接。类型为 ULONG , 没用过的编号可以随意指定 , 比如 0,1,2,3,4,5......

mode 连接模式;范围:0:控制器作为服务器,1:控制器作为客户端。

Port 网络端口号

ipaddress :IP 地址,控制器作为服务器时,不需要填该参数。控制器作为客

户端时,该参数填服务器端网口 IP 地址

例 程

TCP_Open 2,1,5024,»192.168.0.11» '打开一个 TCP 客户端连接,对接 IP 为 192.168.0.11 的服务器

TCP_Close 2 '关闭编号为 2 的网络客户端

TCP Open(1,0,5025) '打开一个 TCP 服务器连接, 服务器处于监听状态

TCP_Close 1 '关闭编号为 1 的网络服务器

2.13.8 TCP_CLOSE

所属:命令

语 法: TCP ClOSE no

描述:指定TCP通讯编号,关闭对应TCP通信端口

参数: no TCP 通讯编号; 类型: ULONG

例 程

TCP_Open 2,1,5024, > 192.168.0.11 > '打开一个 TCP 客户端连接,对接 IP 为 192.168.0.11 的服务器

TCP Close 2 '关闭编号为 2 的网络客户端

TCP Open(1,0,5025) '打开一个 TCP 服务器连接, 服务器处于监听状态

TCP_Close 1 '关闭编号为 1 的网络服务器

2.13.9 TCP STATUS

所属:命令

语 法: value=TCP STATUS (no)

类型: ULONG

描述: 检查 TCP 通讯连接状态

参数: no TCP 通讯编号

返回值:0:连接不成功;1:连接成功

例 程

'请参考 TCP_ReadSTR 或 TCP_WriteSTR 指令

2.13.10 TCP_WAIT

所属:命令

语 法: TCP_WAIT no [,timeout]

描述:等待TCP连接完成。执行该指令时,程序会等待在该行直到TCP通讯连接成

功或 timeout 超时,程序才会继续下一行的执行。

参数: no TCP 通讯编号;

timeout 等待超时时间,单位为 ms。Timeout 时间到后, TCP 通讯连接还

未成功,程序会继续下一行的执行。

例 程

'请参考 TCP_ReadSTR 或 TCP_WriteSTR 指令

2.13.11 TCP_Check

所属:命令

语 法: value=TCP Check(no)

描述: 获取 TCP 通讯接收到的字符串字符个数。

参数: no TCP 通讯编号;

返回值:字符个数;类型:ULONG

例 程

'请参考 TCP_ReadSTR 或 TCP_WriteSTR 指令

2.13.12 TCP_ReadSTR

所属:命令

语 法: TCP_ReadSTR no ,strData ,numChars [,strEnd] [,timeout]

描述:TCP/IP 自由协议读操作,控制器接收字符串指令。执行到该指令时,程序会等在该指令行,直到接收到字符或 timeout 超时,程序才会继续下一行的执行。

参数: no TCP 通讯编号; 类型: ULONG

strData 存放接收的字符串;类型:String

numChars 接收的字符个数;类型: ULONG。接收字符个数可由 TCP_check 指令获取得到。

StrEnd 接收字符串的结束符。类型: String 该参数不填时, 控制器会根据 参数 numChars 来确定接收多少个字符。指定结束符时, 控制器 接收到结束符就会停止这一次接收。

Timeout 接收的超时时间,单位为 ms。Timeout 时间到后,还未接收到字符,系统会断开当前通讯编号的 TCP 连接。如还需要进行通讯,需重新创建 TCP 连接。

例 程

Dim NumChars as ULONG = 0

Dim StrData as string

TCP Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接,对接 IP 为»127.0.0.1»的服务器

TCP_Wait 0 '等待连接完成

If TCP STATUS(0) > 0 Then '确认通讯编号为 0 的连接是否连接成功

TCP_WriteSTR 0,»I'm ready» '连接成功后,控制器发送出 I'm ready

WHILE(1)

If NumChars > 0 Then

Print «charNum = «, NumChars '打印出接收到的字符个数

TCP_ReadSTR(0, StrData, NumChars) '将接收到字符放入 StrData

Print StrData '打印出接到到的字符串

If(StrData=»ok») THEN '确认接收到的字符串是否是 ok

EXIT WHILE 'ok: 退出接收字符;不是 ok: 继续接收字符

END If

End If

SLEEP 10

WEND

End If

TCP_CLOSE 0 '断开通讯编号为 0 的 TCP 连接

2.13.13 TCP_WriteSTR

所属:命令

语 法: TCP WriteSTR no, strData

描述: TCP/IP 自由协议写操作, 控制器发送出字符串指令

参数: no TCP 通讯编号;

strData 发送出去的字符串;类型:String

例 程

Dim NumChars as ULONG = 0

Dim StrData as string

TCP_Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接, 对接 IP 为»127.0.0.1»的服务器

TCP_Wait 0 '等待连接完成

If TCP STATUS(0) > 0 Then '确认通讯编号为 0 的连接是否连接成功

TCP_WriteSTR 0,»I'm ready» '连接成功后,控制器发送出 I'm ready

WHILE(1)

If NumChars > 0 Then

Print «charNum = «, NumChars '打印出接收到的字符个数

TCP_ReadSTR(0, StrData, NumChars) '将接收到字符放入 StrData

Print StrData '打印出接到到的字符串

If(StrData=»ok») THEN '确认接收到的字符串是否是 ok

EXIT WHILE 'ok: 退出接收字符; 不是 ok: 继续接收字符

END If

End If

SLEEP 10

WEND

End If

TCP_CLOSE 0

'断开通讯编号为 0 的 TCP 连接

2.13.14 TCP_Read

所属:命令

语 法: TCP_Read no ,array() ,arrayCnt [,timeout]

描述: TCP/IP 自由协议读操作,控制器接收数据。控制器会根据 array()定义的数据类型(byte 或 short 或 long),将每接收到的数据按1个字节或2个字节或4个字节为一个数据依次放入 array()中。执行到该指令时,程序会等在该指令行,直到接收到数据或 timeout 超时,程序才会继续下一行的执行。

参数: no TCP 通讯编号; 类型: ULONG

Array() 存放接收数据的数组;类型:byte、short、long

arrayCnt 接收的数据个数;类型:ULONG。

Timeout 接收的超时时间,单位为ms。Timeout时间到后,还未接收到数

据,系统会断开当前通讯编号的 TCP 连接。如还需要进行通讯,

需重新创建 TCP 连接。

例 程

Dim R ByteArray(0 to 1) as BYTE

Dim R_ShortArray(0 to 1) as SHORT

Dim R_LongArray(0 to 1) as LONG

TCP Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接, 对接 IP 为»127.0.0.1»的服务器

TCP_Wait 0 '等待连接完成

If TCP_STATUS(0) > 0 Then '确认通讯编号为 0 的连接是否连接成功

'接收到的 2 个 Byte 数据分别存入 R_ByteArray(0), R_ByteArray(1)

TCP READ 0,R ByteArray(),2

PRINT R ByteArray(0),R ByteArray(1)

'接收到的前 2 个 Byte 数据组成 Short 类型数据存入 R_ShortArray(0)

'接收到的后 2 个 Byte 数据组成 short 类型数据存入 R ShortArray(1)

TCP_READ 0,R_ShortArray(),2

PRINT R_ShortArray(0),R_ShortArray(1)

'接收到的前4个Byte 数据组成long 类型数据存入R_LongArray(0)

'接收到的后 4 个 Byte 数据组成 long 类型数据存入 R LongArray(1)

TCP_READ 0,R_LongArray(),2

PRINT R_LongArray(0),R_LongArray(1)

End If

TCP CLOSE 0 '断开通讯编号为 0 的 TCP 连接

2.13.15 TCP Write

所属:命令

语 法: TCP_Write no, array(),arrayCnt

描述:TCP/IP 自由协议写操作 控制器发送出数据。发送的数据可以选择 byte、short、long 三种数据类型。控制器会根据数据类型按 byte 的数据送出。如果是 short、long 类型,发出去的 byte 会以低字节到高字节的顺序发送。

参数: no TCP 通讯编号;

Array() 发送出去数据的数组;类型:byte,short,long

ArrayCnt 发送出去的数据个数。

例 程

Dim W_ByteArray(0 to 1) as BYTE ={-75,121}

Dim W ShortArray(0 to 1) as SHORT ={135,32753}

Dim W LongArray(0 to 1) as LONG={-24,175024}

TCP_Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接,对接 IP 为»127.0.0.1»的服务器

TCP Wait 0 '等待连接完成

'相隔 3 秒,依次发送 W_ByteArray(),W_ShortArray(),W_LongArray()

If TCP STATUS(0) > 0 Then '确认通讯编号为 0 的连接是否连接成功

'服务器端收到的数据为十六进制数: B5 79。对应-75,121

TCP_Write 0,W_ByteArray(),2

SLEEP 3000

'服务器端收到的数据为十六进制数: 87 00 F1 7F。对应 135,32753

TCP_Write 0,W_ShortArray(),2

SLEEP 3000

'服务器端收到的数据为十六进制数: E8 FF FF FF B0 AB 02 00。对应-24,175024

TCP Write 0,W LongArray(),2

End If

TCP_CLOSE 0 '断开通讯编号为 0 的 TCP 连接

2.13.16 TCP_ReadVR

所属:命令

语 法: TCP_ReadVR no, VR_StartIndex, VRCnt, format [,timeout]

描述: TCP/IP 自由协议读操作,控制器用 VR 变量接收数据。控制器会根据 format 指定的数据类型(byte 或 short 或 long),将每接收到的数据按 1 个字节或 2 个字节或 4 个字节为一个数据依次放入 VR 变量中。执行到该指令时,程序会等在该指令行,直到接收到数据或 timeout 超时,程序才会继续下一行的执行。

参数: no TCP 通讯编号; 类型: ULONG

VR_StartIndex 存放接收数据的起始 VR; 类型: byte、short、long

VRCnt 接收的数据个数;类型:ULONG

format 指定存放接收数据的类型。

0: byte

1: short

2: long

timeout 接收的超时时间,单位为 ms。Timeout 时间到后,还未接

收

到数据,系统会断开当前通讯编号的 TCP 连接。如还需要进

行通讯,需重新创建 TCP 连接。

例 程

TCP Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接,对接 IP 为»127.0.0.1»的服务器

TCP Wait 0 '等待连接完成

If TCP_STATUS(0) > 0 Then

'确认通讯编号为 0 的连接是否连接成功

'接收到的 2 个 Byte 数据分别存入 VR(0), VR(1)

TCP_ReadVR 0,0,2,0

PRINT VR(0),VR(1)

'接收到的前 2 个 Byte 数据组成 Short 类型数据存入 VR(2)

'接收到的后 2 个 Byte 数据组成 short 类型数据存入 VR(3)

TCP ReadVR 0,2,2,1

PRINT VR(2), VR(3)

'接收到的前 4 个 Byte 数据组成 long 类型数据存入 VR(4)

'接收到的后 4 个 Byte 数据组成 long 类型数据存入 VR(5)

TCP_ReadVR 0,4,2,2

PRINT VR(4),VR(5)

End If

TCP_CLOSE 0

'断开通讯编号为 0 的 TCP 连接

2.13.17 TCP_WriteVR

所属:命令

语 法: TCP WriteVR no, VR StartIndex, VRCnt, format

描述: TCP/IP 自由协议写操作,控制器把 VR 变量中的数据发送出去。发送的数据可以选择 byte、short、long 三种数据类型。控制器会根据数据类型按 byte 的数据送出。

参数: no TCP 通讯编号;

VR_StartIndex 发送数据的起始 VR; 类型: byte、short、long

VRCnt 发送的数据个数;类型:ULONG

format 指定发送数据的类型。

0: byte

1 : short

2: long

注 意 如果发送出去的 VR 变量数据是浮点型数据,接收端接收到的数据会失真。如 要发送浮点数据,请用 TCP_WriteSTR 指令,用字符串形式发送出去,接收端 接收到字符串后再转数据类型来接收浮点数据。

例 程

VR(0) = -75

VR(1) = 121

VR(2)=135

VR(3) = 32753

VR(4) = -24

VR(5)=175024

TCP_Open (0, 1, 8080, «127.0.0.1») '创建一个客户端连接, 对接 IP 为»127.0.0.1»的服务器

TCP_Wait 0 '等待连接完成

'相隔 3 秒,依次发送 VR(0)、VR(1); VR(2)、VR(3); VR(4)、VR(5)

If TCP STATUS(0) > 0 Then '确认通讯编号为 0 的连接是否连接成功

'将 VR(0), VR(1) 发送出去,服务器端收到的数据为十六进制数: B5 79。对应-75,121

TCP_WriteVR 0,0,2,0

SLEEP 3000

'将 VR(2), VR(3) 发送出去,服务器端收到的数据为十六进制数:87 00 F1 7F。对应 135,32753

TCP_WriteVR 0,2,2,1

SLEEP 3000

'将 VR(4),VR(5)发送出去,服务器端收到的数据为十六进制数:E8 FF FF FF B0 AB 02 00。对应-24,175024

TCP_WriteVR 0,4,2,2

End If

TCP_CLOSE 0 '断开通讯编号为 0 的 TCP 连接

2.13.18 TCP_ResetBuf

所属:命令

语 法: TCP ResetBuf no

描述:清除TCP缓存区数据。

参数:no TCP 通讯连接编号

2.14 字符串处理

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.14.1	ASC	返回字符串中字符的 ASCII 码	×	×
2.14.2	CHR	返回用 ASCII 码表达的值对应的字符	×	×
2.14.3	HEX	返回数值的十六进制结果	×	×
2.14.4	INSTR	查找字符串中第一次出现的字符或 者字串	×	×
2.14.5	LCASE	将字符串中的字母全部转变成小写 字母返回	×	×
2.14.6	LEFT	返回字符串从左开始指定字符个数的子串	×	×
2.14.7	LEN	返回字符串的长度(字符个数)或 者数据类型的长度(字节数)	×	×
2.14.8	MID	返回一个字符串的子字符串	×	×
2.14.9	RIGHT	返回字符串从右开始指定字符个数的子串	×	×
2.14.10	STR	将一个数转换成字符串	×	×
2.14.11	UCASE	将字符串中的字母全部转变成大写 字母返回	×	×
2.14.12	VAL	将字符串转换成一个数值	×	×
2.14.13	PARSESTR	按用户指定的分隔符解析字符串	×	×

2.14.1 ASC

语 法: value=ASC(string [,position])

描述:返回字符串中字符的 ASCII 码

参数: string 字符串

position 需返回 ASCII 码字符在字符串中的位置,缺省值为1

例 程

PRINT ASC(«A») '结果为 65

PRINT ASC(«ABC»,1) '打印第一个字母 A 的 ASCII 码,结果为 65

PRINT ASC(«ABC»,2) '打印第二个字母 B 的 ASCII 码,结果为 66

PRINT ASC(«ABC»,3) '打印第三个字母 C 的 ASCII 码,结果为 65

2.14.2 CHR

语 法: value=CHR(number)

描述:返回用 ASCII 码表达的值对应的字符

参数: number ASCII 码值

例 程

PRINT CHR(97) '97 对应的字符为 a , 打印结果为 a

PRINT CHR(65) '65 对应的字符为 A, 打印结果为 A

ASCII 码表

32₊	空格↵	64₊	@₊	96₊	٠,
33₊	ļ⊎.	65₊	A	97₊	a⊬
34₊	له"	66₊	B⊌	98₊	b₊
35₽	#₽	67₊	C⊬	99₊	C↔
36₊	\$⊷	68₊	D↩	100⊷	d⊷
37₊	%⊷	69↩	E₽	101↩	e⊬
38₊	&	70₊	F↔	102↩	f⊬
39₊	' -	71⊬	G⊬	103₽	g⊷
40₽	(4)	72₊/	H₽	104₽	h₊
41₊)⊬	73₊	₽	105⊷	į₊
42₽	*,	74₊	J⊬	106⊬	j₊
43₽	++	75₊	K⊬	107↩	k⊬
44₊	, ⁽¹⁾	76₊	L⊬	108↩	ŀ
45₽	-4·	774	M↔	109⊬	m₊
46₊	٠,٠	78₊	N↔	110↩	n⊬
47₊	/↔	79₊	O←	111⊬	0 ← ¹
48₽	0⊷	40€	P↔	112↩	p⊬
49₽	1⊬	81₊/	Q₊	113₽	q⊷
50₽	2₊/	82₊	R⊬	114₽	r⊬
51₽	3⊷	83₊	S⊬	115⊬	S⊬
52₽	4₊/	84₊/	T⊬	116⊬	t⊬
53₽	5⊬	85₊	U₊	117₽	u⊬
54₊/	6⊬	86₊	V٠	118₽	V↔
55₽	7₊	87₊/	W₊	119₽	W↩
56₽	8⊷	984	X↔	120↩	X←
57₊	9₊/	89₊	Y⊬	121↩	y₊
58↩	:+:	90√	Z₊	122↩	Z↔
59₊	;↔	91₊	[↔	123₊	{ ←¹
60₽	< +	92↩	/ 4J	124⊬	₩.
61₊	=+-	93₊]↓	125↩	}⊷
62↩	>+	94₊	٧ ⁴	126↩	~+
63↩	?⊬	95₊	_4	127₽	

2.14.3 HEX

语 法: value=HEX(number [,digits])

描述:返回数值的十六进制结果

参数:number 数值

digits 返回由低位到高位的位数

例 程

'十进制 54321 对应的十六进制数为 D431

Print Hex(54321) '打印结果为 D431

Print Hex(54321, 2) '打印结果为 31

Print Hex(54321, 5) '打印结果为 0D431

2.14.4 INSTR

语法: value=INSTR([start,] string, [Any] substring)

描述:查找字符串中第一次出现的字符或者字串

参数:start 从第几个字符开始查找

string 在 string 这个字符串中查找字符或字串

Any 加上这个关键字后, string 中先找到 substring 中的任意一个字符就会

返回相应值

substring 需查找的字符或字串

例 程

Print InStr(2, »abcdefg», «a») '打印信息为 0, 因从字符串的第 2 位开始找,找不到 a,返回 0

Print InStr(«abcdefg», «de») '打印信息为 4, 第 4 位找到 de

Print InStr(«abcdefg», «h») '打印信息为 0, 字符串中没有 h

Print InStr(«abcdefg», Any «fbc») '打印信息为 2, 因加了 any 关键字, 所以先找到 b, b 为第 2 位

2.14.5 LCASE

语 法: value=LCASE(string)

描述:将字符串中的字母全部转变成小写字母返回

参数:string 需要转换的字符串

例 程

Print Lcase(«AeeE») '打印结果为 aeee

2.14.6 LEFT

语 法: value=LEFT(string,number)

描述:返回字符串从左开始指定字符个数的子串

参数: string 需要转换的字符串

number 字符个数

例 程

Print LEFT(«Hello Advantech»,5) '打印信息为 Hello

2.14.7 LEN

语 法: value=LEN(expression)

描述:返回字符串的长度(字符个数)或者数据类型的长度(字节数)

参数:expression 如果是字符串,返回字符个数;如果是数据类型,返回字节数

例 程

Print Len(«hello world») '打印结果为 11, 共 11 个字符

Print Len(Integer) '打印结果为 4, integer 这个数据类型为 4个字节

2.14.8 MID

语 法: value=MID(string, start [,number])

描述:返回一个字符串的子字符串

参数:string 需要转换的字符串

start 返回的子字符串的起始转换位

number 子字符串的字符个数。如不填,则返回从 start 位后的所有字符

例 程

Print Mid(«abcdefg», 3, 2) '打印结果为 cd

Print Mid(«abcdefg», 3) '打印结果为 cdefg

Print Mid(«abcdefg», 2, 1) '打印结果为 b

2.14.9 RIGHT

语 法: value=RIGHT(string,number)

描述:返回字符串从右开始指定字符个数的子串

参数:string 需要转换的字符串

number 字符个数

例 程

Print RIGHT(«Hello Advantech»,9) '打印信息为 Advantech

2.14.10 STR

语 法: value=STR(Numeric)

描述:将一个数转换成字符串

参数:Numeric 数值表达式

例 程

VR(100)=100.32

PRINT STR(VR(100)) '打印结果为字符串»100.32»

2.14.11 UCASE

语 法: value=UCASE(string)

描述:将字符串中的字母全部转变成大写字母返回

参数:string 需要转换的字符串

例 程

Print Ucase(«AeeE») '打印结果为 AEEE

2.14.12 VAL

语 法: value=VAL(string)

描述:将字符串转换成一个数值,字符串转换将从左到右按字符转换,如果先遇到非

数值的字符,转换出来的数值将是0。

参数:string 字符串

例 程

DIM AS STRING str1,str2

str1=»e3t» '因先遇到非数值字符 e , 所有打印结果为 0

str2=»325.32»

2.14.13 PARSESTR

语 法: NumStr=ParseSTR(StrInput, StrTokens(), StrDelimits)

描述:按用户指定的分隔符解析字符串。

参数: StrInput 输入的需分隔的字符串

StrTokens() 存放分隔出的有效字符串数组

StrDelimits 指定的分隔符

返回值: NumStr 分隔出的有效字符串个数。类型: ULONG

例 程

Dim StrInput as string = «Hi,MAS,Controller,!»

Dim StrDelimits as string = «,»

Dim NumStr as ULONG

Dim StrTokens(0 to 3) as string

NumStr = ParseStr(StrInput, StrTokens(), StrDelimits)

print «num = «, NumStr '打印出 num=4, 有效分隔出 4 个字串

Dim i as Integer = 0

for i= 0 to (NumStr-1)

print StrTokens(i) '字符串数组依次打印出 Hi MAS Controller!

next i

2.15 工艺模块指令

2.15.1 汽油缸控制

汽油缸在自动化设备中非常常见,很好的对汽油缸进行控制在系统开发中显得很重要。本章节介绍了 Motion Basic 简单易使用的汽油缸控制指令,通过简单配置,可以很方便的实现设备中常见的汽油缸控制。为简要说明,本章节指令说明中统一用"气缸"来代替"汽油缸","用气缸前进"、"气缸后退来"表示气缸动作的两个方向运动。

本节指令概览

章节	指令	说明	终端 工具	观察变量 工具
2.15.1.1	CYL_BASE	该指令后面所有的气缸指令和参数设置、读取都基于该指令选定的气缸	√	×
2.15.1.2	CYL_FwDoneType	气缸前进到位方式	√	×
2.15.1.3	CYL_BwDoneType	气缸后退到位方式	√	×
2.15.1.4	CYL_FwTime	CYL_FwDoneType 中涉及到延时到位方式的延时时间	√	×
2.15.1.5	CYL_BwTime	CYL_BwDoneType 中涉及到延时到位方式的延时时间	√	×
2.15.1.6	CYL_FwAlmTime	气缸前进开始到到位的最大时间	~	×
2.15.1.7	CYL_BwAlmTime	气缸后退开始到到位的最大时间	√	×
2.15.1.8	CYL_FwEncValue	气缸前进到位编码器值	√	×
2.15.1.9	CYL_BwEncValue	气缸后退到位编码器值	√	×
2.15.1.10	CYL_Status	气缸当前状态	√	×
2.15.1.11	CYL_AlmReset	复位气缸的状态到复位状态	√	×
2.15.1.12	CYL_Move	执行气缸前进或后退动作	√	×
2.15.1.13	CYL_Stop	停止气缸动作	√	×

2.15.1.1 CYL_BASE

语 法: CYL_BASE (cyl_no) [,second cyl][,third cyl] ...

描述: 为了简化编程,可以用该指令选择要参与运动的气缸号,其后的指令就没必要填写所有气缸控制的参数,只填写参与运动的气缸参数即可。气缸号要按顺序填写,气缸号可以是1个,也可以是2个、3个...

参数: cyl_no 汽缸号,由硬件配置决定对应的实体汽缸控制;范围:根据控制器实际硬件决定

例 程

CYL BASE 0,1,2,3

Cyl_FwDoneType=0 '设置 4 个气缸前进到位方式为延时到位
Cyl_BwDoneType=1 '设置 4 个气缸后退到位方式为限位到位

CYL MOVE 1,0,1,1 '气缸 0,1,2,3 分别执行前进、后退、前进、前进动作

Wait CYLDONE '等待气缸 0,1,2,3 动作到位完成

CYL BASE 1

CYL_MOVE 1 '气缸 1 执行前进动作

2.15.1.2 CYL_FwDoneType

语 法: CYL FwDoneType= value

类型: ULONG

描述:设置/读取气缸前进到位方式

范 围:如下设定值,默认值0

0:延时到位:气缸动作后,延时指定时间到,即认为气缸动作到位

1:限位到位:气缸动作后,遇到指定限位有效,即认为气缸动作到位

2:(限位+延时)到位:气缸动作后,遇到指定限位有效,再延时指定时间后,即认为气缸动作到位

3: (延时+限位)到位:气缸动作后,延时指定时间后,再检测到指定限位有效,即认为气缸动作到位

4: 编码器到位:气缸动作后,编码器到限定数值后,即认为气功动作到位

例 程

CYL BASE 0

CYL_FwDoneType=0 '设置气缸 0 前进到位方式为延时到位

2.15.1.3 CYL_BwDoneType

语 法: CYL BwDoneType= value

类型: ULONG

描述:设置/读取气缸后退到位方式

范 围:如下设定值,默认值0

0:延时到位:气缸动作后,延时指定时间到,即认为气缸动作到位

1:限位到位:气缸动作后,遇到指定限位有效,即认为气缸动作到位

2:(限位+延时)到位:气缸动作后,遇到指定限位有效,再延时指定时间后,即认为气缸动作到位

3: (延时+限位)到位:气缸动作后,延时指定时间后,再检测到指定限位有效,即认为气缸动作到位

4: 编码器到位:气缸动作后,编码器到限定数值后,即认为气功动作到位

例 程

CYL BASE 0

CYL BwDoneType=0 '设置气缸 0 后退到位方式为延时到位

2.15.1.4 CYL_FwTime

语 法: CYL FwTime= value

类型: ULONG

描述:设置/读取 CYL FwDoneType 中涉及到延时到位方式的延时时间。

范 围:ULONG 类型范围,默认值 5000 (ms)

例 程

CYL_BASE 0

CYL FwTime =1000 '设置气缸 0 前进到位方式中的延时时间为 1000 毫秒

2.15.1.5 CYL_BwTime

语 法: CYL BwTime= value

类型: ULONG

描述:设置/读取 CYL BwDoneType 中涉及到延时到位方式的延时时间。

范 围: ULONG 类型范围,默认值 5000 (ms)

例 程

CYL_BASE 0

CYL_BwTime =1000 '设置气缸 0 后退到位方式中的延时时间为 1000 毫秒

2.15.1.6 CYL_FwAlmTime

语 法: CYL FwAlmTime= value

类型: ULONG

描述:设置/读取气缸前进开始到到位的最大时间,如超过该时间前进动作还未到位,

会发生内部报警, CYL Status 属性值变为9:气缸到位超时。

范 围:ULONG 类型范围,默认值 20000 (ms)

例 程

CYL_BASE 0

CYL_FwAlmTime = 1000 '设置气缸 0 前进最大到位时间为 1000 毫秒

2.15.1.7 CYL_BwAlmTime

语 法: CYL BwAlmTime= value

类型: ULONG

描述:设置/读取气缸后退开始到到位的最大时间,如超过该时间前进动作还未到位,

会发生内部报警, CYL Status 属性值变为9:气缸到位超时。

范 **围**:ULONG 类型范围,默认值 20000 (ms)

例 程

CYL_BASE 0

CYL_BwAlmTime = 1000 '设置气缸 0 后退最大到位时间为 1000 毫秒

2.15.1.8 CYL_FwEncValue

语 法: CYL_FwEncValue= value

类型: Double

描述:设置/读取气缸前进动作的到位方式为编码器到位时,指定的到位编码器值。

范 围: Double 类型范围, 默认值 0

例 程

CYL_BASE 0

CYL_FwEncValue = 1000 '设置气缸 0 前进到位编码器值为 1000 个脉冲当量

2.15.1.9 CYL_BwEncValue

语 法: CYL BwEncValue= value

类型: Double

描述:设置/读取气缸后退动作的到位方式为编码器到位时,指定的到位编码器值。

范 **围**: Double 类型范围, 默认值 0

例 程

CYL_BASE 0

CYL_BwEncValue = 1000 '设置气缸 0 后退到位编码器值为 1000 个脉冲当量

2.15.1.10 CYL_Status

语 法: value=CYL_Status(只读)

类型: ULONG

描述:读取气缸当前状态。状态为9时,气缸不能再正常执行动作。

返回值:如下

0:复位:原始状态。执行 CYL_Stop、CYL_AlmReset 后的气缸状态都为复位状态

1:前进到位:

2:后退到位

3:前进中

4:后退中

5:保留

6:保留

7:保留

8:保留

9:超过到位时间报警

例 程

Dim A As ULONG

CYL_BASE 0

 $A = CYL_Status$ '将气缸 0 的当前状态赋值给变量 A

2.15.1.11 CYL_AlmReset

语 法1: CYL_AlmReset

语 法2: CYL AlmReset CYL(no)

描述:BASE 气缸列表的气缸或指定气缸,复位气缸的状态到复位状态。

参数:no 气缸号; 范围:根据控制器实际硬件决定。

例 程

CYL_BASE 0,1,2

CYL_AlmReset '复位气缸 0、1、2 的状态

CYL AlmReset cyl(1) '复位气缸 1 的状态

2.15.1.12 CYL_Move

语 法1: CYL_Move dir

语 法2: CYL Move CYL(no), dir

描述:BASE 气缸列表的气缸或指定气缸,执行气缸动作。

参数:dir 气缸动作方向。0:气缸后退; 1:气缸前进

no 气缸号; 范围:根据控制器实际硬件决定。

例 程

CYL BASE 0,1,2,3

CYL MOVE 1,0,1,1 '气缸 0,1,2,3 分别执行前进、后退、前进、前进动作

Wait CYLDONE '等待气缸 0,1,2,3 动作到位完成

CYL_Move cyl(1),1 '气缸 1 执行前进动作

2.15.1.13 CYL_Stop

语 法1: CYL Stop [,mode]

语 法2: CYL Stop CYL(no) [,mode]

描述:BASE 气缸列表的气缸或指定气缸,停止气缸动作。

参数: mode 控制气缸停止时,两个DO输出是0还是1。默认值为0.

0:两个 DO 输出为 0; 1:两个 DO 输出为 1

no 气缸号; 范围:根据控制器实际硬件决定。

注 意:该指令仅适用对双线圈电磁阀控制的气缸控制。

例 程

CYL_BASE 0,1,2,3

CYL_Stop '停止气缸 0,1,2,3 的动作

CYL Stop cyl(6),1 '停止气缸 6 的动作

第3章 附录

3.1 错误代码说明

3.1.1 RUN_ERROR 错误代码表

错误代码	说明
0x00000000	SUCCESS
0x80000000	InvalidDevNumber
0x80000001	DevRegDataLost
0x80000002	LoadDllFailed
0x80000003	GetProcAddrFailed
0x80000004	MemAllocateFailed
0x80000005	InvalidHandle
0x80000006	CreateFileFailed
0x80000007	OpenEventFailed
0x80000008	EventTimeOut
0x80000009	InvalidInputParam
0x8000000a	PropertyIDNotSupport
0x8000000b	PropertyIDReadOnly
0x8000000c	ConnectWinIrqFailed
0x8000000d	InvalidAxCfgVel
0x8000000e	InvalidAxCfgAcc
0x8000000f	InvalidAxCfgDec
0x80000010	InvalidAxCfgJerk
0x80000011	InvalidAxParVelLow
0x80000012	InvalidAxParVelHigh
0x80000013	InvalidAxParAcc
0x80000014	InvalidAxParDec
0x80000015	InvalidAxParJerk
0x80000016	InvalidAxPulseInMode

0x80000017	InvalidAxPulseOutMode
0x80000018	InvalidAxAlarmEn
0x80000019	InvalidAxAlarmLogic
0x8000001a	InvalidAxInPEn
0x8000001b	InvalidAxInPLogic
0x8000001c	InvalidAxHLmtEn
0x8000001d	InvalidAxHLmtLogic
0x8000001e	InvalidAxHLmtReact
0x8000001f	InvalidAxSLmtPEn
0x80000020	InvalidAxSLmtPReact
0x80000021	InvalidAxSLmtPValue
0x80000022	InvalidAxSLmtMEn
0x80000023	InvalidAxSLmtMReact
0x80000024	InvalidAxSLmtMValue
0x80000025	InvalidAxOrgLogic
0x80000026	InvalidAxOrgEnable
0x80000027	InvalidAxEzLogic
0x80000028	InvalidAxEzEnable
0x80000029	InvalidAxEzCount
0x8000002a	InvalidAxState
0x8000002b	InvalidAxInEnable
0x8000002c	InvalidAxSvOnOff
0x8000002d	InvalidAxDistance
0x8000002e	InvalidAxPosition
0x8000002f	InvalidAxHomeModeKw
0x80000030	InvalidAxCntInGp
0x80000031	AxInGpNotFound
0x80000032	AxIsInOtherGp
0x80000033	AxCannotIntoGp

0x80000034	GpInDevNotFound
0x80000035	InvalidGpCfgVel
0x80000036	InvalidGpCfgAcc
0x80000037	InvalidGpCfgDec
0x80000038	InvalidGpCfgJerk
0x80000039	InvalidGpParVelLow
0x8000003a	InvalidGpParVelHigh
0x8000003b	InvalidGpParAcc
0x8000003c	InvalidGpParDec
0x8000003d	InvalidGpParJerk
0x8000003e	JerkNotSupport
0x8000003f	ThreeAxNotSupport
0x80000040	DevlpoNotFinished
0x80000041	InvalidGpState
0x80000042	OpenFileFailed
0x80000043	InvalidPathCnt
0x80000044	InvalidPathHandle
0x80000045	InvalidPath
0x80000046	loctlError
0x80000047	AmnetRingUsed
0x80000048	DeviceNotOpened
0x80000049	InvalidRing
0x8000004a	InvalidSlaveIP
0x8000004b	InvalidParameter
0x8000004c	InvalidGpCenterPosition
0x8000004d	InvalidGpEndPosition
0x8000004e	InvalidAddress
0x8000004f	DeviceDisconnect
0x80000050	DataOutBufExceeded

0x80000051	SlaveDeviceNotMatch
0x80000052	SlaveDeviceError
0x80000053	SlaveDeviceUnknow
0x80000054	FunctionNotSupport
0x80000055	InvalidPhysicalAxis
0x80000056	InvalidVelocity
0x80000057	InvalidAxPulseInLogic
0x80000058	InvalidAxPulseInSource
0x80000059	InvalidAxErcLogic
0x8000005a	InvalidAxErcOnTime
0x8000005b	InvalidAxErcOffTime
0x8000005c	InvalidAxErcEnableMode
0x8000005d	InvalidAxSdEnable
0x8000005e	InvalidAxSdLogic
0x8000005f	InvalidAxSdReact
0x80000060	InvalidAxSdLatch
0x80000061	InvalidAxHomeResetEnable
0x80000062	InvalidAxBacklashEnable
0x80000063	InvalidAxBacklashPulses
0x80000064	InvalidAxVibrationEnable
0x80000065	InvalidAxVibrationRevTime
0x80000066	InvalidAxVibrationFwdTime
0x80000067	InvalidAxAlarmReact
0x80000068	InvalidAxLatchLogic
0x80000069	InvalidFwMemoryMode
0x8000006a	InvalidConfigFile
0x8000006b	InvalidAxEnEvtArraySize
0x8000006c	InvalidAxEnEvtArray
0x8000006d	InvalidGpEnEvtArraySize
	·

0x8000006e	InvalidGpEnEvtArray
0x8000006f	InvalidIntervalData
0x80000070	InvalidEndPosition
0x80000071	InvalidAxisSelect
0x80000072	InvalidTableSize
0x80000073	InvalidGpHandle
0x80000074	InvalidCmpSource
0x80000075	InvalidCmpMethod
0x80000076	InvalidCmpPulseMode
0x80000077	InvalidCmpPulseLogic
0x80000078	InvalidCmpPulseWidth
0x80000079	InvalidPathFunctionID
0x8000007a	SysBufAllocateFailed
0x8000007b	SpeedFordFunNotSpported
0x8000007c	InvalidNormVector
0x8000007d	InvalidCmpTimeTableCount
0x8000007e	InvalidCmpTime
0x8000007f	FWDownLoading
0x80000080	FWVersionNotMatch
0x80000081	InvalidAxParHomeVelLow
0x80000082	InvalidAxParHomeVelHigh
0x80000083	InvalidAxParHomeAcc
0x80000084	InvalidAxParHomeDec
0x80000085	InvalidAxParHomeJerk
0x80000086	InvalidAxCfgJogVelLow
0x80000087	InvalidAxCfgJogVelHigh
0x80000088	InvalidAxCfgJogAcc
0x80000089	InvalidAxCfgJogDec
0x8000008a	InvalidAxCfgJogJerk

0x8000008b	InvalidAxCfgKillDec
0x8000008c	NotOpenAllAxes
0x8000008d	NotSetServoComPort
0x8000008e	OpenComPortFailed
0x8000008f	ReadComPortTimeOut
0x80000090	SetComPortStateFailed
0x80000091	SevroTypeNotSupport
0x80000092	ReadComBufFailed
0x80000096	SlavelOUpdateError
0x80000097	NoSlaveDevFound
0x80000098	MasterDevNotOpen
0x80000099	MasterRingNotOpen
0x800000c8	InvalidDIPort
0x800000c9	InvalidDOPort
0x800000ca	InvalidDOValue
0x800000cb	CreateEventFailed
0х800000сс	CreateThreadFailed
0x800000cd	InvalidHomeModeEx
0x800000ce	InvalidDirMode
0x800000cf	AxHomeMotionFailed
0x800000d0	ReadFileFailed
0x800000d1	PathBuflsFull
0x800000d2	PathBuflsEmpty
0x800000d3	GetAuthorityFailed
0x800000d4	GpIDAllocatedFailed
0x800000d5	FirmWareDown
0x800000d6	InvalidGpRadius
0x800000d7	InvalidAxCmd
0x800000d8	InvalidaxExtDrv

0x800000d9	InvalidGpMovCmd
0x800000da	SpeedCurveNotSupported
0x800000db	InvalidCounterNo
0x800000dc	InvalidPathMoveMode
0x800000dd	PathSelStartCantRunInSpeedForwareMode
0x800000de	InvalidCamTableID
0x800000df	InvalidCamPointRange
0x800000e0	CamTableIsEmpty
0x800000e1	InvalidPlaneVector
0x800000e2	MasAxIDSameSlvAxID
0x800000e3	InvalidGpRefPlane
0x800000e4	InvalidAxModuleRange
0x800000e5	DownloadFileFailed
0x800000e6	InvalidFileLength
0x800000e7	InvalidCmpCnt
0x800000e8	JerkExceededMaxValue
0x800000e9	AbsMotionNotSupport
0x800000ea	invalidAiRange
0x800000eb	AlScaleFailed
0x800000ec	AxInRobot
0x800000ed	Invalid3DarcFlat
0x800000ee	InvalidIpoMap
0x800000ef	DataSizeNotCorrect
0x800000f0	AxisNotFound
0x800000f1	InvalidPathVelHigh
0x80002000	HlmtPExceeded
0x80002001	HlmtNExceeded
0x80002002	SImtPExceeded
•	

0x80002004 AlarmHappened 0x80002005 EmgHappened 0x80002006 TimeLmtExceeded 0x80002007 DistLmtExceeded 0x80002008 InvalidPositionOverride 0x80002009 OperationErrorHappened 0x80002000 SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNetSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_DataOutBufExceeded 0x80005006 Dsp_FunctionNotSupport	0.0000000	CL INE L L
0x80002005 EmgHappened 0x80002006 TimeLmtExceeded 0x80002007 DistLmtExceeded 0x80002008 InvalidPositionOverride 0x80002009 OperationErrorHappened 0x80002000 SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002003	SlmtNExceeded
0x80002006 TimeLmtExceeded 0x80002007 DistLmtExceeded 0x80002008 InvalidPositionOverride 0x80002009 OperationErrorHappened 0x8000200a SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertylDNotSupport 0x80005003 Dsp_PropertylDReadOnly 0x80005005 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002004	AlarmHappened
0x80002007 DistLmtExceeded 0x80002008 InvalidPositionOverride 0x80002009 OperationErrorHappened 0x8000200a SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002005	EmgHappened
0x80002008 InvalidPositionOverride 0x80002009 OperationErrorHappened 0x8000200a SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002006	TimeLmtExceeded
0x80002009 OperationErrorHappened 0x8000200a SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002007	DistLmtExceeded
0x8000200a SimultaneousStopHappened 0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002008	InvalidPositionOverride
0x8000200b OverflowInPAPB 0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80002009	OperationErrorHappened
0x8000200c OverflowInIPO 0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200a	SimultaneousStopHappened
0x8000200d STPHappened 0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertylDNotSupport 0x80005003 Dsp_PropertylDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200b	OverflowInPAPB
0x8000200e SDHappened 0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200c	OverflowInIPO
0x8000200f AxisNoCmpDataLeft 0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200d	STPHappened
0x10000001 Warning_AxWasInGp 0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200e	SDHappened
0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x8000200f	AxisNoCmpDataLeft
0x10000002 Warning_GpInconsistRate 0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded		
0x10000003 Warning_GpInconsistPPU 0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x10000001	Warning_AxWasInGp
0x10000004 Warning_GpMoveDistanceCanntBeZero 0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x10000002	Warning_GpInconsistRate
0x80004001 DevEvtTimeOut 0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x10000003	Warning_GpInconsistPPU
0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x10000004	Warning_GpMoveDistanceCanntBeZero
0x80004002 DevNoEvt 0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded		
0x80005001 ERR_SYS_TIME_OUT 0x80005002 Dsp_PropertyIDNotSupport 0x80005003 Dsp_PropertyIDReadOnly 0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80004001	DevEvtTimeOut
0x80005002Dsp_PropertyIDNotSupport0x80005003Dsp_PropertyIDReadOnly0x80005004Dsp_InvalidParameter0x80005005Dsp_DataOutBufExceeded	0x80004002	DevNoEvt
0x80005002Dsp_PropertyIDNotSupport0x80005003Dsp_PropertyIDReadOnly0x80005004Dsp_InvalidParameter0x80005005Dsp_DataOutBufExceeded		
0x80005003Dsp_PropertyIDReadOnly0x80005004Dsp_InvalidParameter0x80005005Dsp_DataOutBufExceeded	0x80005001	ERR_SYS_TIME_OUT
0x80005004 Dsp_InvalidParameter 0x80005005 Dsp_DataOutBufExceeded	0x80005002	Dsp_PropertyIDNotSupport
0x80005005 Dsp_DataOutBufExceeded	0x80005003	Dsp_PropertyIDReadOnly
	0x80005004	Dsp_InvalidParameter
0x80005006 Dsp_FunctionNotSupport	0x80005005	Dsp_DataOutBufExceeded
		B
0x80005007 Dsp_InvalidConfigFile	0x80005006	Dsp_FunctionNotSupport

0x80005008	Dsp_InvalidIntervalData
0x80005009	Dsp_InvalidTableSize
0x8000500a	Dsp_InvalidTableID
0x8000500b	Dsp_DataIndexExceedBufSize
0x8000500c	Dsp_InvalidCompareInterval
0x8000500d	Dsp_InvalidCompareRange
0x8000500e	Dsp_PropertyIDWriteOnly
0x8000500f	Dsp_NcError
0x80005010	Dsp_CamTableIsInUse
0x80005011	Dsp_EraseBlockFailed
0x80005012	Dsp_ProgramFlashFailed
0x80005013	Dsp_WatchdogError
0x80005014	Dsp_ReadPrivateOverMaxTimes
0x80005015	Dsp_InvalidPrivateID
0x80005016	Dsp_DataNotReady
0x80005017	Dsp_LastOperationNotOver
0x80005018	Dsp_WritePrivateTimeout
0x80005019	Dsp_FwlsDownloading
0x80005020	Dsp_FwDownloadStepError
0x80005101	Dsp_InvalidAxCfgVel
0x80005102	Dsp_InvalidAxCfgAcc
0x80005103	Dsp_InvalidAxCfgDec
0x80005104	Dsp_InvalidAxCfgJerk
0x80005105	Dsp_InvalidAxParVelLow
0x80005106	Dsp_InvalidAxParVelHigh
0x80005107	Dsp_InvalidAxParAcc
0x80005108	Dsp_InvalidAxParDec
0x80005109	Dsp_InvalidAxParJerk
· · · · · · · · · · · · · · · · · · ·	

0x8000510a	Dsp_InvalidAxPptValue
0x8000510b	Dsp_InvalidAxState
0x8000510c	Dsp_InvalidAxSvOnOff
0x8000510d	Dsp_InvalidAxDistance
0x8000510e	Dsp_InvalidAxPosition
0x8000510f	Dsp_InvalidAxHomeMode
0x80005110	Dsp_InvalidPhysicalAxis
0x80005111	Dsp_HlmtPExceeded
0x80005112	Dsp_HlmtNExceeded
0x80005113	Dsp_SImtPExceeded
0x80005114	Dsp_SlmtNExceeded
0x80005115	Dsp_AlarmHappened
0x80005116	Dsp_EmgHappened
0x80005117	Dsp_CmdValidOnlyInConstSec
0x80005118	Dsp_InvalidAxCmd
0x80005119	Dsp_InvalidAxHomeDirMode
0x8000511a	Dsp_AxisMustBeModuloAxis
0x8000511b	Dsp_AxIdCantSameAsMasId
0x8000511c	Dsp_CantResetPosiOfMasAxis
0x8000511d	Dsp_InvalidAxExtDrvOperation
0x8000511e	Dsp_AxAccExceededMaxAcc
0x8000511f	Dsp_AxVelExceededMaxVel
0x80005120	Dsp_NotEnoughPulseForChgV
0x80005121	Dsp_NewVelMustGreaterThanVelLow
0x80005122	Dsp_InvalidAxGearMode
0x80005123	Dsp_InvalidGearRatio
0x80005124	Dsp_InvalidPWMDataCount
0x80005125	Dsp_InvalidAxPWMFreq
0x80005126	Dsp_InvalidAxPWMDuty

0x80005127	Dsp_AxGantryExceedMaxDiffValue
0x80005128	Dsp_ChanellsDisable
0x80005129	Dsp_ChanelBufferIsFull
0x80005130	Dsp_ChanelBufferIsEmpty
0x80005131	Dsp_InvalidDoChanelID
0x80005132	Dsp_LatchHappened
0x80005201	Dsp_InvalidAxCntInGp
0x80005202	Dsp_AxInGpNotFound
0x80005203	Dsp_AxIsInOtherGp
0x80005204	Dsp_AxCannotIntoGp
0x80005205	Dsp_GpInDevNotFound
0x80005206	Dsp_InvalidGpCfgVel
0x80005207	Dsp_InvalidGpCfgAcc
0x80005208	Dsp_InvalidGpCfgDec
0x80005209	Dsp_InvalidGpCfgJerk
0x8000520a	Dsp_InvalidGpParVelLow
0x8000520b	Dsp_InvalidGpParVelHigh
0x8000520c	Dsp_InvalidGpParAcc
0x8000520d	Dsp_InvalidGpParDec
0x8000520e	Dsp_InvalidGpParJerk
0x8000520f	Dsp_JerkNotSupport
0x80005210	Dsp_ThreeAxNotSupport
0x80005211	Dsp_DevIpoNotFinished
0x80005212	Dsp_InvalidGpState
0x80005213	Dsp_OpenFileFailed
0x80005214	Dsp_InvalidPathCnt
0x80005215	Dsp_InvalidPathHandle
0x80005216	Dsp_InvalidPath

0x80005217	Dsp_GpSlavePositionOverMaster
0x80005218	Dsp_GpPathBufferOverflow
0x80005219	Dsp_InvalidPathFunctionID
0x8000521a	Dsp_SysBufAllocateFailed
0x8000521b	Dsp_InvalidGpCenterPosition
0x8000521c	Dsp_InvalidGpEndPosition
0x8000521d	Dsp_InvalidGpCmd
0x8000521e	Dsp_AxHasBeenInInGp
0x8000521f	Dsp_ThreeAxNotSupport
0x80005220	Dsp_InvalidPathRange
0x80005221	Dsp_InvalidNormVector

3.1.2 SYSTEM_ERROR 错误代码表

错误代码	说明
0	SUCCESS
0x90000000	AMI_NULL_PROJECT_EXIST
0x90000001	AMI_INVALID_INPUT_PARAMS
0x90000002	AMI_INVALID_RETURN
0x90000003	AMI_INVALID_CTRL_MODE
0x90000004	AMI_CONTROLLER_LOCKED
0x90000005	AMI_GET_MAC_FAILED
0x90000006	AMI_INVALID_COMMAND
0x90000007	AMI_SET_MEM_FAILED
0x90000008	AMI_GET_VERSION_FAILED
0x9000000a	AMI_CTRL_ENCODED_ALREADY
0x9000000b	AMI_CTRL_INVALID_PASSWORD
0x9000000c	AMI_GET_VARIABLE_FAILED
0x900000d	AMI_NUM_CONVERT_FAILED
0x90000032	AMI_ACTION_NOT_ALLOWED

0x90000064	AMI_SOCK_TIME_OUT	
0x90000065	AMI_LOAD_FILE_FAILED	
0x90000066	AMI_DOWN_FILE_FAILED	
0x90000067	AMI_LOAD_PROJECT_FAILED	
0x90000068	AMI_DOWN_PROJECT_FAILED	
0x90000069	AMI_SOCK_ALREADY_CONNECTED	
0x9000006A	AMI_SOCK_COMMU_FAILED	
0x90000096	AMI_CONNECTION_FAILED	
0x90000097	AMI_DISCONNECTION_FAILED	
0x90000098	AMI_SEND_COMMAND_TIMEOUT	
0x900000C8	AMI_OPEN_FILE_FAILED	
0x900000C9	AMI_CREATE_FILE_FAILED	
0x900000CA	AMI_REMOVE_FILE_FAILED	
0x900000CB	AMI_PATH_NOT_EXIST	
0x900000CC	AMI_SET_NON_BLOCK_FAILED	
0x900000CD	AMI_SET_BLOCK_FAILED	
0x900000CE	AMI_CFG_FILE_NOT_EXISTS	
0x900000CF	AMI_REF_FILE_NOT_EXISTS	
0x900000D0	AMI_HEAD_FILE_NOT_EXISTS	
0x900000D1	AMI_FILE_NOT_EXISTS	
0x900000D2	AMI_FILE_INVALID_FORMAT	
0x900000DC	AMI_PRJ_FILE_LOAD_FAILED	
0x900000DD	AMI_SOURCE_FILE_NOT_EXISTS	
0x900000DE	AMI_DST_FILE_EXISTS_ALREADY	
0x900000FA	AMI_XML_LOAD_FAILED	
0x900000FB	AMI_XML_CHECK_FAILED	
0x900000FC	AMI_XML_SAVE_FAILED	

0x900000FD	AMI_XML_ADD_FAILED
0x900000FE	AMI_XML_DELETE_FAILED
0x900000FF	AMI_XML_CREATE_FAILED
0x90000100	AMI_XML_INVALID_ELEMENT
0x9000012C	AMI_TASK_NOT_EXIST
0x9000012D	AMI_FORK_PROCESS_FAILED
0x9000012E	AMI_POPEN_FILE_FAILED
0x9000012F	AMI_STILL_RUNNING
0x90000130	AMI_NOT_IN_IDLE
0x90000131	AMI_GET_NO_ERROR
0x90000132	AMI_GET_NO_INFO
0x90000133	AMI_GET_MSG_NOTFINISHED
0x90000134	AMI_CREAT_PIPE_FAILED
0x90000136	AMI_RUN_FAILED
0x90000137	AMI_STOP_FAILED
0x90000138	AMI_NOT_RUNNING
0x90000140	AMI_DB_INIT_FAILED
0x90000141	AMI_DB_COMPILE_FAILED
0x90000142	AMI_DB_BREAKPOINT_FAILED
0x90000143	AMI_DB_CLEARPOINT_FAILED
0x90000144	AMI_DB_DELETEPOINTS_FAILED
0x90000145	AMI_DB_RUN_FAILED
0x90000146	AMI_DB_CONTINUE_FAILED
0x90000147	AMI_DB_NEXT_FAILED
0x90000148	AMI_DB_PROGRAM_NOT_RUN
0x90000149	AMI_DB_STOP_FAILED
0x9000014A	AMI_DB_OUT_OF_RANGE
0x9000014B	AMI_DB_EXIT_NOMARLLY

0x9000014C	AMI_DB_GET_LOCAL_VAR_FAILED
0x9000014D	AMI_DB_NOT_READY
0x9000014E	AMI_DB_ALREADY_PAUSED
0x9000014F	AMI_GET_RUNNING_TASKLIST_FAILED
0x90000190	AMI_MB_ILLEGAL_FUNCTION
0x90000191	AMI_MB_CRC_FAILED
0x90000192	AMI_MB_ILLEGAL_LENGTH
0x900001F4	AMI_MEM_UPDATE_VR_MBADDR_ERROR
0x900001F5	AMI_MEM_UPDATE_TABLE_MBADDR_ERROR
0x900001F6	AMI_MEM_UPDATE_DO_INIT_VALUE_ERROR
0x90000258	AMI_BASIC_RESET_ERROR
0x90000259	AMI_BASIC_INITIAL_ERROR
0x9000025A	AMI_BASIC_REFRESH_ERROR
0x9000025B	AMI_BASIC_GET_OFFSET_VALUE_FAILED
0xb0000000	AMI_GetSharedMemFailed
0xb0000001	AMI_GetTaskNameFailed
0xb0000002	AMI_lsNotInitialized
0xb0000003	AMI_lsAlreadyInitialized
0xb0000004	AMI_LoadXMLFailed
0xb0000005	AMI_ParseXMLFailed
0xb0000006	AMI_CreateDevListFailed
0xb0000007	AMI_InitializeDeviceFailed
0xb0000008	AMI_InitializeSharedMemFailed
0xb0000009	AMI_RefreshSharedMemFailed
0xb000000a	AMI_SetDeviceCfgFailed

0xb00000b AMI_IncorrectCommand 0xb00000c AMI_DeviceLargerList 0xb000000d AMI_SerialPortError 0xb000000e AMI_EthernetError 0xb000000f AMI_LogOpenFailed 0xb0000010 AMI_StartTaskFailed 0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEventFailed 0xb0000013 AMI_CreatEVentFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001001 AMI_AsiledCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhylDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_OutputBoardIDNotFound 0xb0001000 <th></th> <th></th>			
0xb000000d AMI_SerialPortError 0xb000000e AMI_EthernetError 0xb000000f AMI_LogOpenFailed 0xb0000010 AMI_StartTaskFailed 0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEventFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhylDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_InputBoardIDNotFound 0xb0001007 AMI_InputDeviceCountError 0xb0001008 AMI_InputBoardIDNotFound 0xb0001009 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputBoardIDNotFound 0xb000100	0xb000000b	AMI_IncorrectCommand	
0xb000000e AMI_EthernetError 0xb000000f AMI_LogOpenFailed 0xb0000010 AMI_StartTaskFailed 0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEventFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputBoardIDNotFound 0xb0001009 AMI_InDAQdeviceCountError 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000d AMI_OutputDeviceCountError <t< td=""><td>0xb000000c</td><td>AMI_DeviceLargerList</td></t<>	0xb000000c	AMI_DeviceLargerList	
0xb000000f AMI_LogOpenFailed 0xb0000010 AMI_StartTaskFailed 0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEVentFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_ActualDeviceCountError	0xb000000d	AMI_SerialPortError	
0xb0000010 AMI_StartTaskFailed 0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEVentFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError	0xb000000e	AMI_EthernetError	
0xb0000011 AMI_StopTaskFailed 0xb0000012 AMI_CreatEventFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutpAQdeviceCountError 0xb0001000d AMI_ActualDeviceCountError	0xb000000f	AMI_LogOpenFailed	
0xb0000012 AMI_CreatEventFailed 0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000010	AMI_StartTaskFailed	
0xb0000013 AMI_CreatEThreadsFailed 0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb00001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputBoardIDNotFound 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb0001000 AMI_OutputDeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000011	AMI_StopTaskFailed	
0xb0000014 AMI_AllocatePMotionInfoFiled 0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb00001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_OutputBoardIDNotFound 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError 0xb000100d AMI_OutputDeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000012	AMI_CreatEventFailed	
0xb0000015 AMI_FAILEDTOCHECKEVENT 0xb0000016 AMI_FailedCloseCheckingEventThread 0xb00001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError 0xb000100d AMI_OutputDeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000013	AMI_CreatEThreadsFailed	
0xb0000016 AMI_FailedCloseCheckingEventThread 0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000014	AMI_AllocatePMotionInfoFiled	
0xb0001000 AMI_CardsNotFound 0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError	0xb0000015	AMI_FAILEDTOCHECKEVENT	
0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0000016	AMI_FailedCloseCheckingEventThread	
0xb0001001 AMI_MotionBoardIDNotFound 0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError			
0xb0001002 AMI_AxesOrGroupCountNotFound 0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001000	AMI_CardsNotFound	
0xb0001003 AMI_AxisIDorPhyIDNotFound 0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutputDeviceCountError 0xb000100d AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001001	AMI_MotionBoardIDNotFound	
0xb0001004 AMI_GroupNotFound 0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001002	AMI_AxesOrGroupCountNotFound	
0xb0001005 AMI_AxisInfoError 0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001003	AMI_AxisIDorPhyIDNotFound	
0xb0001006 AMI_MotionDeviceCountError 0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001004	AMI_GroupNotFound	
0xb0001007 AMI_InputBoardIDNotFound 0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001005	AMI_AxisInfoError	
0xb0001008 AMI_InputDeviceCountError 0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutpAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001006	AMI_MotionDeviceCountError	
0xb0001009 AMI_InDAQdeviceCountError 0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutDAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001007	AMI_InputBoardIDNotFound	
0xb000100a AMI_OutputBoardIDNotFound 0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutDAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001008	AMI_InputDeviceCountError	
0xb000100b AMI_OutputDeviceCountError 0xb000100c AMI_OutDAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb0001009	AMI_InDAQdeviceCountError	
0xb000100c AMI_OutDAQdeviceCountError 0xb000100d AMI_ActualDeviceCountError	0xb000100a	AMI_OutputBoardIDNotFound	
0xb000100d AMI_ActualDeviceCountError	0xb000100b	AMI_OutputDeviceCountError	
	0xb000100c	AMI_OutDAQdeviceCountError	
0xb0002000 AMI_WrongAxisIndex	0xb000100d	AMI_ActualDeviceCountError	
0xb0002000 AMI_WrongAxisIndex			
	0xb0002000	AMI_WrongAxisIndex	

0xb0002001	AMI_WrongDoIndex
0xb0002002	AMI_WrongDilndex
0xb0002003	AMI_NoAxis
0xb0002004	AMI_AxisInDifferentDevice
0xb0002005	AMI_WaitModeNotMatch
0xb0002006	AMI_MasterAxisIndexError
0xb0002007	AMI_GANTRYAxisNotInSameDev
0xb0002008	AMI_GEARAxisNotInSameDev
0xb0002009	AMI_AddPathAxisCntError
0xb000200a	AMI_AddPathHELIX3PnotSupport
0xb0003000	AMI_EthernetModeError
0xb0003001	AMI_EthernetOpened
0xb0003002	AMI_EthernetOpenFailed
0xb0003003	AMI_EthernetCloseFailed
0xb0003004	AMI_EthernetWrongNum
0xb0003005	AMI_EthernetNotOpen
0xb0003006	AMI_EthernetReadFailed
0xb0003007	AMI_EthernetResetFailed
0xb0003008	AMI_EthernetWriteFailed
0xb0003009	AMI_EthernetReadVRFailed
0xb000300a	AMI_EthernetWriteVRFailed
0xb0003100	AMI_SerialPortWrongID
0xb0003101	AMI_SerialPortOpenFailed
0xb0003102	AMI_SerialPortCloseFailed
0xb0003103	AMI_SerialPortNotOpen
0xb0003104	AMI_SerialPortWrongCfg
0xb0003105	AMI_SerialPortSetCfgFailed
0xb0003106	AMI_SerialPortWriteFailed

0xb0003107	AMI_SerialPortReadFailed
0xb0003108	AMI_SerialPortResetFailed
0xb0003109	AMI_SerialPortWriteVRFailed
0xb000310a	AMI_SerialPortReadVRFailed

3.2 MAS 控制器运动功能支持列表

项目	说明	PCI-1245L -MAS	PCI-1245- MAS	PCI-1285- MAS	MVP-3245 -MAS
	点到点运动	✓	✓	✓	✓
	定速运动	✓	✓	✓	✓
	变位运动	✓	✓	✓	✓
	变速运动	✓	✓	✓	✓
	背隙补偿	✓	✓	✓	✓
	T&S 形速度曲線	✓	✓	✓	✓
单轴 运动	运动中重设轴的加速度和 减速度	✓	✓	✓	✓
	同步起、同步停运动	不支持	✓	✓	✓
	叠加运动	不支持	不支持	不支持	不支持
	JOG 运动	✓	✓	✓	✓
	手轮运动	✓	✓	✓	✓
	原点复归(16 种模式)	✓	✓	✓	✓
	DI 触发停止	✓	✓	✓	✓
	直线插补	2轴	2~3轴	2~3 轴	2~3轴
	直接线性插补	2轴	2~4轴	2~8轴	2~4轴
插补	2 轴圆弧插补	不支持	✓	✓	✓
功能	3 轴圆弧插补	不支持	不支持	不支持	不支持
	螺旋插补	不支持	✓	✓	✓
	运动中改变组的运行速度	不支持	✓	✓	✓
	电子齿轮	不支持	✓	✓	✓
n= n+	电子凸轮	不支持	不支持	不支持	不支持
跟随运动	龙门	不支持	✓	✓	✓
	CAM DO	不支持	✓	✓	✓
	切向跟随	不支持	✓	✓	✓

	加载路径功能	不支持	支持最多 10000 个点	支持最多 7000 个点	支持最多 10000 个点
	添加直线运动	不支持	✓	✓	✓
	添加圆弧运动	不支持	✓	✓	✓
路径	添加螺旋运动	不支持	✓	✓	✓
拉勒	延迟功能	不支持	✓	✓	✓
	添加 DO 开关运动	不支持	✓	✓	✓
	路径速度交接功能	不支持	✓	✓	✓
	路径速度前瞻功能	不支持	不支持	不支持	不支持
比较	单点比较	不支持	✓	✓	✓
触发	等距线性比较	不支持	✓	✓	✓
功能	不等距随机点比较	不支持	✓	✓	✓
等待	单轴/插补运动的停止运 行功能	✓	✓	✓	√
事件	轴的比较	不支持	✓	✓	✓
	轴的锁存	不支持	✓	✓	✓
	DI	16	16	32	32
输入/输出	DO	16	16	32	32
功能	Al	不支持	不支持	不支持	不支持
, 3.5-	AO	不支持	不支持	不支持	不支持

3.3 数据类型及类型转换指令

Motion Basic 常用数据类型说明

数据类型	说明
BOOLEAN	布尔数据类型, True 或者 False
ВҮТЕ	长度为 8 位的整数数据类型
UBYTE	长度为8位的无符号整数数据类型
DOUBLE	长度为 64 位的双精度浮点数据类型
INTEGER	长度为 32 位或 64 位的整数数据类型
UINTEGER	长度为 32 位或 64 位的无符号整数数据类型
LONG	长度为 32 位的整数数据类型
ULONG	长度为 32 位的无符号整数数据类型
SHORT	长度为 16 位的整数数据类型
USHORT	长度为 16 位的无符号整数数据类型
UNSIGNED	整数类型有无符号的修饰符
STRING	字符串类型
SINGLE	长度为 32 位的单精度浮点数据类型

数据类型转换指令

指令	说明
СВҮТЕ	将数字或字符串的表达式转换成字节类型数据
CDBL	将数字或字符串的表达式转换成双精度浮点数
CHR	返回用 ASCII 码表达的值对应的字符
CINT	将数字或字符串表达式转换成整型数据
CLNG	将数字或字符串表达式转换成长整型数据
CLNGINT	将数字或字符串表达式转换成 64 位长整型数据
CSNG	将数字或字符串的表达式转换成单精度浮点数
CUBYTE	将数字或字符串表达式转换为无符号字节类型数据
CUINT	将数字或字符串表达式转换为无符号整型数据
CULNG	将数字或字符串表达式转换为无符号长整型数据

CULNGINT	将数字或字符串表达式转换为无符号 64 位长整型数据
CUNSG	将一个表达式转换成对应的无符号类型
CUSHORT	将数字或字符串表达式转换为无符号短整型数据
VALINT	将一个字符串转换为一个 INTEGER 类型数据
VAL	将一个字符串转换为一个浮点数
HEX	将一个数用十六进制数返回
ОСТ	将一个数用八进制数返回
VALLNG	将一个字符串转换为一个 LONG 类型数据
VALUINT	将一个字符串转换为一个 UINTEGER 类型数据
VALULNG	将一个字符串转换为一个 ULONG 类型数据
ASC	返回字符串中字符的 ASCII 码