U.S. Census Data Income Prediction & Socioeconomic Insights Analysis 04/01/2025

Problem Statement

Data Wrangling

Removed Features

Imputed Features (Using KNN)

Deduplication

Feature	Missing
migration code-change in msa	49%
migration code-change in reg	49%
migration code-move within reg	49%
migration prev res in sunbelt	49%

Feature	Missing
country of birth father	4.1%
country of birth mother	3.7%
country of birth self	2.1%
hispanic origin	0.5%
state of previous residence	0.4%

Issue	Learn %	Test %
Duplicates (Dropped)	23.4%	20.9%
Target/Label Conflicts (Resolved via Weighted Majority Vote)	0.0004%	0.0003%

Exploratory Data Analysis: Continuous Features

Key Insights:

- Most people don't have access to capital gains whilst those who do are strongly associated with higher income
 possibly due to investment activities
- People under the age bracket of 18-20 are solely in lower income class implying no or low income (through part time work) as they are kids
- Most people who earn more than \$50,000 tend to work for 52 weeks of the year
- Dividends from stocks over \$40,000 are mainly received by people earning over \$50,000

Exploratory Data Analysis: Nominal Features

Key Insights:

- Higher education levels like Bachelors, Doctorate, Masters and Prof school degrees show higher proportion of records with income above \$50,000
- Clerical, managerial and professional specialties have higher proportion of incomes above 50,000, while lower income proportions are observed for farming, cleaning and labor-intensive roles
- Despite females outnumbering the males in the census study, males have a higher proportion of income above \$50,000 highlighting gender income disparity
- Householders are dominant in the income class earning more than \$50,000 whilst other relatives are not in the class
- Self employed people with their own businesses and people working for the government dominate the income class earning more than \$50,000 as well

Preprocessing

- New features:
 - \circ is full time: If weeks worked in a year > 40
 - has capital gains: If capital gains > 0
 - o income potential: age x weeks worked x wage per hour
 - o wage_per_age: Wage per hour / age
- Nominal features with high cardinalities grouped & target encoded
- Nominal features with low cardinalities label encoded
- Highly skewed continuous features like capital gains, losses, dividends from stocks log transformed
- All continuous features standard scaled
- Shortlisted features based on Cramer's V for nominal & Mann-Whitney for continuous features
- Class imbalance addressed via hybrid approach combining:
 - Synthetic Minority Oversampling Technique: Upto 50% of majority class to maintain generalization capability of models
 - Tomek Links (undersamples majority class)

Modelling

Logistic Regression

Class	Precision	Recall	F1 Score
<50k	98%	92%	95%
>50k	44%	75%	55%
AVG	71%	83%	75%

XGBoost

Class	Precision	Recall	F1 Score
<50k	96%	98%	97%
>50k	66%	56%	61%
AVG	81%	77%	79%

LightGBM

Class	Precision	Recall	F1 Score
<50k	96%	98%	97%
>50k	73%	51%	60%
AVG	84%	75%	79%

Ranking

Top Features - LightGBM

- Education
- Detailed Occupation Recode
- Detailed Industry Recode
- Age
- Major Occupation Code
- Age x Persons Worked for Employer
- Age x Weeks Worked in Year
- Major Industry Code

Potential Improvements

- Enhanced Hyperparameter Tuning Explore a broader range of parameters to optimize model performance.
- Feature Selection with Mutual Information Scores Identify and eliminate noisy variables.
- Interaction Features for Categorical Variables Create new features to capture relationships between categories.
- Advanced Binning Techniques Apply more granular binning for continuous features to improve data representation.
- Exploring Neural Networks Test models like Multi-Layer Perceptron (MLP) for capturing complex patterns.
- Outlier Detection and Removal Refine preprocessing by identifying and removing outliers to improve model robustness.