AMENDMENTS TO THE CLAIMS:

Kindly amend claims 1, 3, 4, 7, 22, 25, 29, 33, 40 and 41, as shown below.

This listing of claims will replace all prior versions and listings of claims in the Application:

Claim 1 (currently amended): An interferometric system, comprising: a source module configured to generate for generating mutually orthogonally polarized beams of light

from spatially separated sources; an interferometry module for receiving said mutually

 $orthogonally\ polarized\ \underline{and\ temporally\ synchronized}\ \underline{beams}\ from\ said\ source\ module\ \underline{where},$

and having at least a reference object and a test object for interaction with said beams; and a

simultaneous phase shifting module for receiving a portion of said beams from said

interferometry module for generating at least two phase-shifted interferograms substantially

simultaneously from said beams.

Claim 2 (cancelled).

Claim 3 (currently amended): An interferometric system of claim 1, wherein said

portion of said beams comprises mutually orthogonally polarized reference and test beams.

Claim 4 (currently amended): An interferometric system of claim 3, wherein said

 $reference\ beam\ \underline{eminates}\ from\ one\ of\ said\ spatially\ separated\ sources\ and\ said\ test$

beam emanated eminates from another of said spatially separated sources.

Claim 5 (original): An interferometric system of claim 3, wherein said reference and

test beams received by said simultaneous phase shifting module substantially overlap each

other.

Claim 6 (original): An interferometric system of claim 1, wherein the mutually

orthogonally polarized beams are coherent.

175 CANAL STREET MANCHESTER, NH 03101 TEL. 603.668.1400 FAX. 603.668.8567

HAYES SOLOWAY P.C.

3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718

> TEL. 520.882.7623 FAX. 520.882.7643

> > 2

Claim 7 (currently amended): An interferometric system of claim 1, wherein there are two of said spatially separated sources.

Claim 8 (original): An interferometric system of claim 1, further comprising an alignment module.

Claim 9 (original): An interferometric system of claim 1, further comprising an imaging module.

Claim 10 (original): An interferometric system of claim 1, wherein the source module includes a linearly polarized light source and a polarization beamsplitter configured to split linearly polarized light into said two mutually orthogonally polarized beams.

Claim 11 (original): An interferometric system of claim 1, wherein said sources are virtual.

Claim 12 (original): An interferometric system of claim 1, wherein said sources are real.

Claim 13 (original): An interferometric system of claim 1, wherein the interferometry module further includes a nonpolarizing beamsplitter.

Claim 14 (original): An interferometric system of claim 13, wherein the nonpolarizing beamsplitter is positioned substantially between the source module and the reference object.

Claim 15 (original): An interferometric system of claim 1, wherein the interferometry module further includes a quarter waveplate positioned between the source module and the reference object.

Claim 16 (original): An interferometric system of claim 15, wherein the quarter waveplate is positioned substantially between the nonpolarizing beamsplitter and a collimator.

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643

Claim 17 (original): An interferometric system of claim 1, wherein the interferometry module is of a Fizeau configuration.

Claim 18 (original): An interferometric system of claim 8, wherein the alignment module is positioned to intercept the beams between the interferometry module and the simultaneous phase-shifting module.

Claim 19 (original): An interferometric system of claim 9, wherein the imaging module is positioned to intercept the beams between the interferometry module and the simultaneous phase shifting module.

Claim 20 (original): An interferometric system of claim 1, wherein the source module includes a polarization beamsplitter configured to interact with a beam from a source to provide said mutually orthogonally polarized beams.

Claim 21 (original): An interferometric system of claim 20, wherein said polarization beamsplitter comprises a prism.

Claim 22 (currently amended): An interferometric system of claim 20, wherein said polarization beamsplitter comprises a calcite beam displacer,

Claim 23 (original): An interferometric system of claim 20, wherein said polarization beamsplitter comprises two calcite beam displacers and a half waveplate.

Claim 24 (previously presented): An interferometric system of claim 20, wherein the polarization beamsplitter comprises two fiber optics and a cube polarizing beamsplitter.

Claim 25 (currently amended): An interferometric system of claim 20, wherein the polarization beamsplitter comprises a polarizing lateral displacement beamsplitter.

Claim 26 (original): An interferometric system of claim 20, wherein the polarization beamsplitter comprises a cube polarizing beamsplitter and mirror.

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643

Serial No. 10/536,576 Docket No. TROLOGY 02.02

Amendment D

Claim 27 (original): An interferometric system of claim 1, further comprising a filter to block said other portion of the beams from entering the simultaneous phase shifting module.

Claim 28 (original): An interferometric system of claim 27, wherein said filter is configured with an aperture to permit passage of said portion of the beams received by the simultaneous phase shifting module.

Claim 29 (currently amended): An interferometric system, comprising: a source module having a source of polarized light and a polarization beamsplitter eenfigured-to-aet for acting on said polarized light to generate mutually orthogonally polarized and temporally synchronized beams of light emanating from spatially separate source points; an interferometry module for receiving said orthogonally polarized beams from said source, having optical elements, a reference object and a test object, where said optical elements are configured to define a substantially common pathway for said beams said interferometry module further comprising means for overlapping a test beam and a reference beam; and a phase shifting module for receiving a portion of said beams from said interferometry module to generate at least two phase-shifted interferograms substantially simultaneously from said test and reference beams.

Claim 30 (original): An interferometric system of claim 29, wherein said polarized light from said source module is linearly polarized.

Claim 31 (original): An interferometric system of claim 29, further comprising means for viewing said test and reference beams.

Claim 32 (original): An interferometric system of claim 29, further comprising means for selecting said test and reference beams.

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643

Claim 33 (currently amended): An interferometric system, comprising: a source module having a source of linearly polarized light, and a polarization beamsplitter eonfigured to generate for generating mutually orthogonally polarized and temporally synchronized wavefronts as emanating from two spatially separated sources; an interferometry module for receiving said orthogonally polarized wavefronts, said interferometry module having a test object and a reference, a beam splitter and a collimator, wherein orthogonally polarized reference wavefronts and orthogonally polarized test wavefronts exit the interferometry module; means for overlapping one of said orthogonally polarized reference wavefront with one of said orthogonally polarized test wavefronts; and a simultaneous phase shifting module for receiving said overlapping one reference wavefront and said one test wavefront from said interferometry module for generating at least two phase-shifted interferograms substantially simultaneously.

Claim 34 (cancelled)

Claim 35 (previously presented): An interferometric system of claim 1, wherein a variable phase retarder is inserted between said source module and said interferometry module.

Claim 36 (withdrawn): An interferometric system, comprising: a source module having a source of polarized light and a polarization beamsplitter configured to act on said polarized light to generate mutually orthogonally polarized beams of light; an interferometry module receiving said orthogonally polarized beams from said source, having optical elements, a reference object and a test object, said interferometry module further comprising a mechanism for manipulating a test beam and a reference beam into an overlapping position; a phase shifting module receiving a portion of said beams from said interferometry module to generate at least two phase-shifted interferograms substantially simultaneously from said test

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643

and reference beams, and an alignment camera which provides a view of relative positioning of the wavelengths and degree of overlap between them.

Claim 37 (withdrawn): An interferometric system of claim 36, wherein said polarized light from said source module is linearly polarized.

Claim 38 (withdrawn): An interferometric system of claim 36, wherein the mechanism for manipulating comprises a tip-tilt mechanism.

Claim 39 (withdrawn): An interferometric system, comprising: a source module having a source of linearly polarized light, and a polarization beamsplitter configured to generate mutually orthogonally polarized wavefronts as emanating from two spatially separated sources; an interferometry module receiving said orthogonally polarized wavefronts, said interferometry module having a test object and a reference, a beam splitter and a collimator, wherein orthogonally polarized reference wavefronts and orthogonally polarized test wavefronts exit the interferometry module; a tip-tilt mechanism for overlapping one of said orthogonally polarized rest wavefronts; a simultaneous phase shifting module receiving said overlapping one reference wavefront and said one test wavefront from said interferometry module for generating at least two phase-shifted interferograms substantially simultaneously, wherein said wavefronts follow a substantially common path through said interferometric system.

Claim 40 (currently amended): An interferometric system of claim 1, further comprising: wherein said beams follow a substantially common path through said interferometric system.

Claim 41 (currently amended): [[In]] A interferometric system comprising:

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140 TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643

a Fizeau interferometer comprising a source of two polarized beams having polarization rotated with respect to each other emanating from spatially separate origins.

HAYES SOLOWAY P.C. 3450 E. SUNRISE DRIVE, SUITE 140

TUCSON, AZ 85718 TEL. 520.882.7623 FAX. 520.882.7643