Homework Set 1, CPSC 8420, Fall 2020

Reference Solution

Due 09/28/2020, Monday, 11:59PM EST

Problem 1

For PCA, from the perspective of minimizing reconstruction error, please derive the solution to minimize $\sum_{i=1}^{N} \|\mathbf{X}_i - \boldsymbol{\mu} - \mathbf{U}_q \mathbf{v}_i\|_2^2$, s.t. $\mathbf{U}_q^T \mathbf{U}_q = \mathbf{I}_q$, where $\mathbf{X} \in \mathbb{R}^{p \times N}$, $\boldsymbol{\mu} \in \mathbb{R}^p$, $\mathbf{U} \in \mathbb{R}^{p \times q}$, $\mathbf{v}_i \in \mathbb{R}^q$.

Denote $\mathbf{J} = \sum_{i=1}^{N} \|\mathbf{X}_i - \boldsymbol{\mu} - \mathbf{U}_q \mathbf{v}_i\|_2^2$, taking the derivative w.r.t. $\boldsymbol{\mu}$ and set it to be 0:

$$\frac{\partial \mathbf{J}}{\partial \boldsymbol{\mu}} = -\sum_{i=1}^{N} 2 * (\mathbf{X}_i - \boldsymbol{\mu} - \mathbf{U}_q \mathbf{v}_i) = 0$$

$$\implies \boldsymbol{\mu} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{X}_i - \mathbf{U}_q \mathbf{v}_i) = \bar{\mathbf{X}} - \mathbf{U}_q \frac{\sum_{i=1}^{N} \mathbf{v}_i}{N}$$
(1)

In addition, by taking the derivative w.r.t. $\mathbf{v_i}$ and set it to be 0:

$$\frac{\partial \mathbf{J}}{\partial \mathbf{v}_{i}} = -2\mathbf{U}_{q}^{T} * (\mathbf{X}_{i} - \boldsymbol{\mu} - \mathbf{U}_{q}\mathbf{v}_{i}) = 0$$

$$\implies \mathbf{v}_{i} = \mathbf{U}_{q}^{T} * (\mathbf{X}_{i} - \boldsymbol{\mu})$$
(2)

Now plug in Eq. (2) to Eq. (1), we will have:

$$(\mathbf{I} - \mathbf{U}_q \mathbf{U}_q^T)(\bar{\mathbf{X}} - \boldsymbol{\mu}) = 0$$
(3)

where we come the conclusion that $\boldsymbol{\mu} = \bar{\mathbf{X}}$ optimizes the objective, then $\mathbf{v_i} = \mathbf{U}_q^T * (\mathbf{X}_i - \bar{\mathbf{X}})$. Therefore, the we can reformulate the objective as $\sum_{i=1}^N \|\mathbf{X}_i - \bar{\mathbf{X}} - \mathbf{U}_q \mathbf{U}_q^T * (\mathbf{X}_i - \bar{\mathbf{X}})\|_2^2$, now denote $\tilde{\mathbf{X}}_i = \mathbf{X}_i - \bar{\mathbf{X}}$, we have $\sum_{i=1}^N \|\mathbf{X}_i - \bar{\mathbf{X}} - \mathbf{U}_q \mathbf{U}_q^T * (\mathbf{X}_i - \bar{\mathbf{X}})\|_2^2 = \sum_{i=1}^N \|\tilde{\mathbf{X}}_i - \mathbf{U}_q \mathbf{U}_q^T \tilde{\mathbf{X}}_i\|_2^2 = \|\tilde{\mathbf{X}} - \mathbf{U}_q \mathbf{U}_q^T \tilde{\mathbf{X}} \tilde{\mathbf{X}}^T \mathbf{U}_q$, assume $[\mathbf{U}, \mathbf{\Lambda}, \mathbf{U}] = svd(\tilde{\mathbf{X}}\tilde{\mathbf{X}}^T)$, then $\mathbf{U}_q = \mathbf{U}[:, 1:q]$.

Problem 2

For PCA, from the perspective of maximizing variance, please show that the sotution of ϕ to maximize $\|\mathbf{X}\phi\|_2^2$, s.t. $\|\phi\|_2 = 1$ is exactly the first column of \mathbf{U} , where $[\mathbf{U}, \mathbf{S}, \mathbf{U}] = svd(\mathbf{X}^T\mathbf{X})$. (Note: you need prove why it is optimal than any other reasonable combinations of \mathbf{U}_i , say $\hat{\phi} = 0.8 * \mathbf{U}(:,1) + 0.6 * \mathbf{U}(:,2)$ which also satisfies $\|\hat{\phi}\|_2 = 1$.)

Since columns of U span the space, thus we assume $\phi = \sum_{i=1}^{p} \lambda_i \mathbf{U}(:,i)$, and the constraint $\|\phi\|_2 = 1$ is equivalent to $\sum_{i=1}^{p} \lambda_i^2 = 1$. Also we can rewrite $\mathbf{X}^T \mathbf{X} = \sum_{i=1}^{p} \mathbf{S}(i,i)\mathbf{U}(:,i)\mathbf{U}(:,i)^T$, therefore $\|\mathbf{X}\phi\|_2^2 = \sum_{i=1}^{p} \mathbf{S}(i,i)\lambda_i^2 \leq \mathbf{S}(1,1)\sum_{i=1}^{p} \lambda_i^2 = S(1,1)$, the equation holds iff $\lambda_1 = 1$.

Problem 3

For vanilla linear regression model: $\min \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2$, we denote the solution as $\hat{\boldsymbol{\beta}}_{LS}$; for ridge regression model: $\min \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2 + \lambda * \|\boldsymbol{\beta}\|_2^2$, we denote the solution as $\hat{\boldsymbol{\beta}}_{\lambda}^{Ridge}$; for Lasso model: $\min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2 + \lambda * \|\boldsymbol{\beta}\|_1$, we denote the solution as $\hat{\boldsymbol{\beta}}_{\lambda}^{Lasso}$; for Subset Selection model: $\min \frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_2^2 + \lambda * \|\boldsymbol{\beta}\|_0$, we denote the solution as $\hat{\boldsymbol{\beta}}_{\lambda}^{Subset}$, now please derive each $\hat{\boldsymbol{\beta}}$ given \mathbf{y} , $\mathbf{A}(s.t. \mathbf{A}^T \mathbf{A} = \mathbf{I})$, λ . Also, show the relationship of (each element in) $\hat{\boldsymbol{\beta}}_{\lambda}^{Ridge}$, $\hat{\boldsymbol{\beta}}_{\lambda}^{Lasso}$, $\hat{\boldsymbol{\beta}}_{\lambda}^{Subset}$ with (that in) $\hat{\boldsymbol{\beta}}_{LS}$ respectively. (up to 5 bonus points will be given if you illustrate the relationship with figures appropriately.)

- 1. **Least Squares**: Denote $\mathbf{J} = \|\mathbf{y} \mathbf{A}\boldsymbol{\beta}\|_2^2$, then taking the derivative of \mathbf{J} w.r.t. $\boldsymbol{\beta}$ and set it to be 0, we will get $\hat{\boldsymbol{\beta}}_{LS} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{y} = \mathbf{A}^T \mathbf{y}$.
- 2. Ridge Regression: Following Least Squares by taking the derivative, we have: $\hat{\boldsymbol{\beta}}_{\lambda}^{Ridge} = (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{y} = \frac{\mathbf{A}^T \mathbf{y}}{\lambda + 1} = \frac{\hat{\boldsymbol{\beta}}_{LS}}{\lambda + 1}$.
- 3. Lasso: Since minimize $\frac{1}{\beta} \|\mathbf{y} \mathbf{A}\boldsymbol{\beta}\|_2^2 + \lambda * \|\boldsymbol{\beta}\|_1$ is equivalent to minimize $\frac{1}{2} \|\boldsymbol{\beta} \mathbf{A}^T \mathbf{y}\|_2^2 + \lambda * \|\boldsymbol{\beta}\|_1$, now for element in $\hat{\boldsymbol{\beta}}_{\lambda}^{Lasso}$, we divide into cases whether it is positive or negative. After some reformulation we have:

$$\hat{\beta}^{Lasso} = \begin{cases} \mathbf{A}^T \mathbf{y} - \lambda = \hat{\boldsymbol{\beta}}_{LS} - \lambda & \text{if } \hat{\boldsymbol{\beta}}_{LS} > \lambda, \\ \mathbf{A}^T \mathbf{y} + \lambda = \hat{\boldsymbol{\beta}}_{LS} + \lambda & \text{if } \hat{\boldsymbol{\beta}}_{LS} \le -\lambda, \\ 0 & \text{else.} \end{cases}$$
(4)

4. **Best Subset**: Since minimize $\frac{1}{2} \|\mathbf{y} - \mathbf{A}\boldsymbol{\beta}\|_{2}^{2} + \lambda * \|\boldsymbol{\beta}\|_{0}$ is equivalent to minimize $\frac{1}{2} \|\boldsymbol{\beta} - \mathbf{A}^{T}\mathbf{y}\|_{2}^{2} + \lambda * \|\boldsymbol{\beta}\|_{0}$, now for element in $\hat{\boldsymbol{\beta}}_{\lambda}^{Subset}$, we divide into cases whether it is 0 or not. After some reformulation we have:

$$\hat{\beta}^{Subset} = \begin{cases} \hat{\beta}_{LS} & if \quad |\hat{\beta}_{LS}| > \sqrt{2\lambda} := \hat{\beta}_{(M)}, \\ 0 & else. \end{cases}$$
 (5)

In the figure below, the grey line represents Least Squares while red dash line denotes its variation in each section respectively.

Problem 4

Why might we prefer to minimize the sum of absolute residuals instead of the residual sum of squares for some data sets? Recall clustering method K-means when calculating the controid, it is to take the mean value of the datapoints belonging to the same cluster, so what about K-medians? What is its advantage over of K-means? Please use a synthetic (toy) experiment to illustrate your conclusion.

Since in real-world datasets, some data is noise or even outliers. By calculating the mean value may lead the centroid close to the outlier to avoid huge loss cost. However, the K-medians will take the median instead of mean. Assume we have data $\{-3, -2, 5, 6, 7, 20\}$, where point 20 is an outlier and positive or negative sign data should be in the same cluster respectively. Assume 0,11 are the initial centroids, then $\{-3, -2, 5\}$ will be in the same cluster, while the rest in another cluster via K-means. However, the clustering result is not correct. But if by making use of K-meadians, after several iterations $\{-3, -2\}$ will be in the same cluster, while the rest in another. This is the correct clustering in accordance to our preassumption.

Problem 5

Please show that:

1. if a matrix is symmetric, denote its eigenvalue and singular value as λ , σ respectively (descending order in magnitude), then we have: $\lambda^2 = \sigma^2$.

```
Assume \mathbf{X} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^T, then \mathbf{X}^T = \mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^T, then \mathbf{X}^T\mathbf{X} = \mathbf{V}\boldsymbol{\Sigma}^2\mathbf{V}^T, which implies \mathbf{X}^2\mathbf{V} = \mathbf{V}\boldsymbol{\Sigma}^2, apparently each column of \mathbf{V} is an eigenvector of \mathbf{X}^2, thus should be also eigenvector of \mathbf{X}, assume \mathbf{X}\mathbf{V} = \mathbf{V}\boldsymbol{\Lambda}, then \mathbf{X}^2\mathbf{V} = \mathbf{V}\boldsymbol{\Lambda}^2, then \boldsymbol{\lambda}^2 = \boldsymbol{\sigma}^2.
```

- 2. if the matrix is symmetric and positive definite, then $\lambda = \sigma$.
 - Consider $\mathbf{v}^T \mathbf{X} \mathbf{v} = \mathbf{v} * \lambda \mathbf{v} = \lambda ||\mathbf{v}||^2$. Since \mathbf{X} is positive definite, then $\lambda ||\mathbf{v}||^2 = \mathbf{v}^T \mathbf{X} \mathbf{v} > 0$, therefore $\lambda > 0$, as singuar value is always positive, and $\lambda^2 = \sigma^2$, then $\lambda = \sigma$.
- 3. for PCA, the loading vectors can be directly computed from the q columns of \mathbf{U} where $[\mathbf{U}, \mathbf{S}, \mathbf{U}] = svd(\mathbf{X}^T\mathbf{X})$, please show that any $[\pm \mathbf{u}_1, \pm \mathbf{u}_2, \dots, \pm \mathbf{u}_q]$ will be equivalent to $[\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_q]$ in terms of the same variance while satisfying the orthonormality constraint.

```
Obviously \|\pm \mathbf{u}_i\|^2 = \|\mathbf{u}_i\|^2 = 1. For i \neq j, \langle \pm \mathbf{u}_i, \pm \mathbf{u}_j \rangle = \pm \langle \mathbf{u}_i, \mathbf{u}_j \rangle = 0, that is the orthonormality constraint still holds. For variance \|\mathbf{X}\mathbf{u}\|^2, one can verify that \|\mathbf{X}\mathbf{u}\|^2 = tr(\mathbf{u}^T\mathbf{X}^T\mathbf{X}\mathbf{u}) = tr((-\mathbf{u})^T\mathbf{X}^T\mathbf{X}(-\mathbf{u})) = \|\mathbf{X}(-\mathbf{u})\|^2, thus variance remains the same.
```