Семинар 29

Ортогональные и ортонормированные базисы

Пусть V – евклидово пространство. Тогда

- Набор $v_1, \ldots, v_k \in V$ называется ортогональным, если $(v_i, v_j) = 0$ для всех $i \neq j$.
- Набор $v_1, \ldots, v_k \in V$ называется ортонормированным, если он ортогонален и $(v_i, v_i) = 1$ для любого i.

Если e_1, \ldots, e_n – базис V, то он называется ортогональным или ортонормированным базисом, если набор e_1, \ldots, e_n ортогонален или ортонормирован.

Замечания

- Базис является ортогональным тогда и только тогда, когда матрица скалярного произведения в нем лиагональная.
- Базис является ортонормированным тогда и только тогда, когда матрица скалярного произведения в нем единичная.
- Так как сигнатура скалярного произведения состоит только из плюсов, то всегда существуют ортонормированные базисы из общей теории диагонализации симметричных билинейных форм. Этот подход дает алгоритм симметричного Гаусса.
- Есть очень популярный алгоритм Грама-Шмидта для ортогонализации векторов. Это по сути метод Якоби для положительных симметричных билинейных форм.

По ортогональным и ортонормированным базисам удобно раскладывать произвольные векторы.

Утверждение. Пусть V – евклидово пространство, e_1, \ldots, e_n – базис и $v \in V$ – произвольный вектор. Тогда

1. Если e_1, \ldots, e_n ортогональный, то

$$v = \frac{(v, e_1)}{(e_1, e_1)} e_1 + \ldots + \frac{(v, e_n)}{(e_n, e_n)} e_n$$

2. Если e_1,\ldots,e_n ортонормированный, то

$$v = (v, e_1)e_1 + \ldots + (v, e_n)e_n$$

Доказательство. Вторая формула есть элементарное следствие первой, так как $(e_i,e_i)=1$ для ортонормированного базиса. Потому достаточно доказать первую формулу. Пусть $v=\alpha_1e_1+\ldots+\alpha_ne_n$. Умножим скалярно левую и правую часть на вектор e_k , тогда получим $(v,e_k)=\sum_{i=1}^n\alpha_i(e_i,e_k)=\alpha_k(e_k,e_k)$. Значит, $\alpha_k=\frac{(v,e_k)}{(e_k,e_k)}$, что и требовалось.

Утверждение. Пусть $A \in \mathrm{M}_n(\mathbb{R})$. Тогда следующие условия равносильны

- 1. $A^{T}A = E$.
- 2. $AA^T = E$.
- 3. $A^T = A^{-1}$.

Матрица $A \in M_n(\mathbb{R})$ называется ортогональной, если выполнено одно из эквивалентных свойств из предыдущего утверждения, например, $A^T A = E$.

Замечание Рассмотрим в \mathbb{R}^n стандартное скалярное произведение. Если $A \in \mathrm{M}_n(\mathbb{R})$, то условие $A^TA = E$ означает, что столбцы матрицы A образуют ортонормированный базис. Условие $AA^T = E$ означает, что строки матрицы A образуют ортонормированный базис. Важно понимать, что эти условия эквивалентны. А именно, если вы возьмете ортонормированный базис в \mathbb{R}^n и поставите эти векторы в столбцы матрицы A, то строки этой матрицы автоматически образуют некий другой ортонормированный базис в \mathbb{R}^n .

Утверждение. Пусть V – евклидово пространство. Тогда

- 1. Если e_1, \ldots, e_n и f_1, \ldots, f_n два ортонормированных базиса, то матрица перехода между ними будет ортогональна.
- 2. Если e_1, \ldots, e_n ортонормированный базис и $C \in M_n(\mathbb{R})$ ортогональная матрица, то базис $(e_1, \ldots, e_n)C$ будет ортонормированным.

Доказательство. (1) Пусть $(f_1, \ldots, f_n) = (e_1, \ldots, e_n)C$, где $C \in \mathrm{M}_n(\mathbb{R})$. Так оба базиса ортонормированные, то матрица скалярного произведения в каждом из этих базисов единичная. По правилу изменения матрицы билинейной формы при смене базиса получаем $E = C^T E C$. Значит C ортогональная.

(2) Пусть $(f_1,\ldots,f_n)=(e_1,\ldots,e_n)C$. В базисе e_1,\ldots,e_n матрица билинейной формы E, так как он ортонормированный. Матрица в базисе f_1,\ldots,f_n будет C^TEC . Так как C ортогональная, то это будет E, то есть f_1,\ldots,f_n – ортонормированный базис.

Таким образом за переход между ортонормированными базисами отвечают только ортогональные матрицы.

Ортогонализация симметричным Гауссом

Дано Набор векторов $v_1, \ldots, v_k \in V$, где V – евклидово пространство.

Задача Найти ортогональный базис $\langle v_1, \dots, v_k \rangle$.

Алгоритм

1. Построить матрицу попарных скалярных произведений

$$G = \begin{pmatrix} (v_1, v_1) & (v_1, v_2) & \dots & (v_1, v_k) \\ (v_2, v_1) & (v_2, v_2) & \dots & (v_2, v_k) \\ \vdots & \vdots & \ddots & \vdots \\ (v_k, v_1) & (v_k, v_2) & \dots & (v_k, v_k) \end{pmatrix}$$

- 2. Составить матрицу (G|E). Теперь нужно диагонализовать G симметричным Гауссом. При этом действия со строками делаются над всей матрицей (G|E), а действия со столбцами только над матрицей G. При этом добьемся того, чтобы все ненулевые диагональные элементы стояли в начале после диагонализации.
- 3. Пусть матрица G привелась к виду:

$$\begin{pmatrix} d_1 & & & & \\ & \ddots & & & \\ & & d_r & & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$$

где d_r – последний ненулевой элемент на диагонали. И пусть матрица E привелась к матрице C. Выберем в матрице C первые r строк и транспонируем. Полученную матрицу обозначим за $D \in M_{kr}(\mathbb{R})$.

4. Искомый ортогональный базис будет содержать r векторов, которые можно вычислить так $(v_1|\dots|v_k)D$.

Пример Пусть нам задано пространство линейных многочленов $\mathbb{R}[x]_{\leqslant 1}$ со скалярным произведением

$$(f,g) = \int_{0}^{1} f(x)g(x) dx$$

Рассмотрим систему 1, x, 1 + x. Матрица попарных скалярных произведений будет

$$G = \begin{pmatrix} 1 & 1/2 & 3/2 \\ 1/2 & 1/3 & 5/6 \\ 3/2 & 5/6 & 7/3 \end{pmatrix}$$

Воспользуемся симметричным Гауссом:

$$\begin{pmatrix} 1 & 1/2 & 3/2 & | & 1 & 0 & 0 \\ 1/2 & 1/3 & 5/6 & | & 0 & 1 & 0 \\ 3/2 & 5/6 & 7/3 & | & 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 3/2 & | & 1 & 0 & 0 \\ 0 & 1/12 & 1/12 & | & -1/2 & 1 & 0 \\ 3/2 & 1/12 & 7/3 & | & 0 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1/12 & 1/12 & | & -1/2 & 1 & 0 \\ 0 & 1/12 & 1/12 & | & -3/2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 1/12 & 0 & | & -1/2 & 1 & 0 \\ 0 & 0 & 0 & | & -1 & -1 & 1 \end{pmatrix}$$

Тогда матрица D будет

$$D = \left(\begin{array}{cc} 1 & -1/2 \\ 0 & 1 \\ 0 & 0 \end{array}\right)$$

И нужные векторы будут

$$\begin{pmatrix} 1 & x & 1+x \end{pmatrix} D = \begin{pmatrix} 1 & -\frac{1}{2}+x \end{pmatrix}$$

При этом в базисе 1, -1/2 + x матрица скалярного произведения будет иметь вид

$$\begin{pmatrix} 1 & 0 \\ 0 & \frac{1}{12} \end{pmatrix}$$

Главный плюс этого метода в том, что он позволяет уйти от абстрактных векторных пространств и работать сугубо с матрицами.

Отртогонализация Грама-Шмидта

Дано Множество векторов $v_1, \ldots, v_k \in \mathbb{R}^n$.

Задача Найти множество u_1, \ldots, u_s такое, что u_i попарно ортогональны и $\langle v_1, \ldots, v_k \rangle = \langle u_1, \ldots, u_s \rangle$.

Алгоритм

- 1. Берем первый ненулевой вектор среди v_i . Пусть это будет v_1 . Тогда полагаем $u_1 = v_1$.
- 2. Рассмотрим $v_2 \frac{(v_2, u_1)}{(u_1, u_1)} u_1$. Если этот вектор не ноль, то обозначим его за u_2 . Если ноль, то выкинем v_2 и перенумеруем вектора так, что v_3 теперь будет вектором v_2 . Повторяем этот шаг до тех пор, пока не найдем u_2 или пока не закончатся вектора v_i .
- 3. Рассмотрим $v_3 \frac{(v_3, u_1)}{(u_1, u_1)} u_1 \frac{(v_3, u_2)}{(u_2, u_2)} u_2$. Если он не ноль, то обозначим его за u_3 . Иначе как и в предыдущем пункте переходим к следующему вектору и повторяем этот шаг.
- 4. Для поиска u_i надо рассмотреть вектор $v_i \frac{(v_i, u_1)}{(u_1, u_1)} u_1 \ldots \frac{(v_i, u_{i-1})}{(u_{i-1}, u_{i-1})} u_{i-1}$. Аналогично предыдущему пункту, если этот вектор не ноль, то это u_i . Если ноль, то рассматриваем следующий v_{i+1} вместо него и повторяем этот шаг.

Пример Пусть у нас заданы векторы

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 3 \\ 3 \\ 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \end{pmatrix} \text{ if } v_4 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} \in \mathbb{R}^4$$

Первый вектор не ноль, значит $u_1 = v_1$. Теперь рассмотрим

$$v_2 - \frac{(v_2, u_1)}{(u_1, u_1)} u_1 = \begin{pmatrix} 3\\3\\1\\1 \end{pmatrix} - \frac{3+3+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}$$

Значит $u_2 = v_2 - 2u_1$. Теперь рассмотрим

$$v_3 - \frac{(v_3, u_1)}{(u_1, u_1)} u_1 - \frac{(v_3, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2\\2\\1\\1 \end{pmatrix} - \frac{2+2+1+1}{1+1+1+1} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} - \frac{2+2-1-1}{1+1+1+1} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = 0$$

Значит забываем про v_3 и переходим к следующему вектору.

$$v_4 - \frac{(v_4, u_1)}{(u_1, u_1)} u_1 - \frac{(v_4, u_2)}{(u_2, u_2)} u_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \\ -1 \end{pmatrix} - \frac{2+1-1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} - \frac{2-1+1}{1+1+1+1} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

Таким образом ответ

$$u_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} \text{ if } u_3 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}$$

Важно понимать, что этот алгоритм численно не устойчив и численно применяют совсем другой метод ортогонализации.

Дополнение до ортогонального базиса

Дано Набор векторов $v_1, \ldots, v_k \in \mathbb{R}^n$ со скалярным произведением $(x, y) = x^T B y$.

Задача Проверить является ли система v_1, \ldots, v_k ортогональной. И если является, то дополнить до ортогонального базиса \mathbb{R}^k .

Алгоритм

- 1. Составим матрицу $A = (v_1 | \dots | v_k)$.
- 2. Чтобы система была ортогональной надо, что матрица A^TBA была диагональной.
- 3. Если система ортогональна, решим систему $A^TBx=0$. И пусть z_1,\ldots,z_{n-k} ФСР системы. Это будет базис ортогонального дополнения к $\langle v_1,\ldots,v_k\rangle$.
- 4. Применим какой-нибудь алгоритм ортогонализации к z_1, \ldots, z_{n-k} и получим v_{k+1}, \ldots, v_n искомое дополнение.