MỤC LỤC

Tra.	U
PHẦN 1 : HỆ THỐNG THỦY LỰC6	
CHƯƠNG 1 : CƠ SỞ LÝ THUYẾT6	
1.1. Lịch sử phát triển và khả năng ứng dụng của HTTĐ thủy lực 6	
1.2. Những ưu điểm và nhược điểm của hệ thống điều khiển bằng thủy lực. 6	
1.1.1. Ưu điểm	
1.1.2. Nhược điểm6	
1.3. Định luật của chất lỏng6	
1.2.1. Áp suất thủy tỉnh	
1.2.2. Phương trình dòng chảy	
1.2.3. Phương trình Bernulli	
1.4. Đơn vị đo các đại lượng cơ bản	
1.3.1. Áp suất (p)	
1.3.2. Vận tốc (v)	
1.3.3. Thể tích và lưu lượng	
1.3.4. Lực (F)	
1.3.5. Công suất (N)	
1.5. Các dạng năng lượng9	
1.5.1. Sơ đồ thủy lực tạo chuyển động tịnh tiến9	
1.5.2. Sơ đồ thủy lực tạo chuyển động quay10	
1.6. Tổn thất trong hệ thống truyền động bằng thủy lực 11	
1.7. Độ nhớt và yêu cầu đối với dầu thủy lực	
CHƯƠNG 2 : CƠ CẤU BIẾN ĐỔI NĂNG LƯỢNG VÀ HỆ THỐNG	
$\mathbf{X}\mathbf{\mathring{U}}\mathbf{L}\mathbf{\acute{Y}}\mathbf{D}\mathbf{\mathring{A}}\mathbf{U}$ 17	
2.1. Bơm dầu và động cơ dầu	
2.1.1. Nguyên lý chuyển đổi năng lượng	
2.1.2. Các đại lượng đặc trưng	
2.1.3. Công thức tính toán bơm và động cơ dầu	
2.1.4. Các loại bơm	
2.1.5. Bơm bánh răng	
2.1.6. Born trục vít	
2.1.7. Bơm cánh gạt	
2.1.8. Bom pittông	
2.1.9. Tiêu chuẩn chon bơm	

2.2. Xilanh truyền động (cơ cấu chấp hành)	27
2.2.1. Nhiệm vụ	27
2.2.2. Phân loại	27
2.2.3. Cấu tạo xilanh	29
2.2.4. Một số xilanh thông dụng	30
2.2.5. Tính toán xilanh truyền lực	30
2.3. Bể dầu	32
2.3.1. Nhiệm vụ	32
2.3.2. Chọn kích thước bể dầu	32
2.3.3. Kết cấu của bể dầu	32
2.4. Bộ lộc dầu	33
2.4.1. Nhiệm vụ	33
2.4.2. Phân loại theo kích thước lọc	33
2.4.3. Phân loại theo kết cấu	34
2.4.4. Cách lắp bộ lọc trong hệ thống	35
2.5. Đo áp suất và lưu lượng	36
2.5.1. Đo áp suất	36
2.5.2. Đo lưu lượng	36
2.6. Bình trích chứa	37
2.6.1. Nhiệm vụ	37
2.6.2. Phân loại	37
CHƯƠNG 3 : CÁC PHẦN TỬ CỦA HỆ THỐNG ĐIỀU KHIỂN	
BằNG THỦY LỰC	41
3.1. Khái niệm	
3.1.1. Hệ thống điều khiển	
3.1.2. Sơ đồ cấu trúc hệ thống điều khiển bằng thủy lực	
3.2. Van áp suất	
3.2.1. Nhiệm vụ	
3.2.2. Phân loại	
3.2.2.1. Van tran va van an toan	
3.2.2.3. Van cån	
3.2.2.4. Role áp suất	
3.3. Van đảo chiều	
3.3.1. Nhiệm vụ	
3.3.2. Các khái niệm	
3.3.3. Nguyên lý làm việc	
3.3.4. Các loại tín hiệu tác đông	

3.3.5. Các loại mép điều khiển của van đảo chiều	. 49
3.4. Các loại van điện thủy lực ứng dụng trong mạch điều khiển tự động .	. 49
3.4.1. Phân loại	49
3.4.2. Công dụng	. 50
3.4.3. Van solenoid	. 50
3.4.4. Van tỷ lệ	. 51
3.4.3. Van servo.	52
3.5. Cơ cấu chỉnh lưu lượng	. 58
3.5.1. Van tiết lưu	. 58
3.5.2. Bộ ổn tốc	. 60
3.6. Van chặn	. 62
3.6.1. Van một chiều	. 62
3.6.2. Van một chiều điều khiển được hướng chặn	. 64
3.6.3. Van tác động khóa lẫn	. 64
3.7. ống dẫn, ống nối	. 65
3.7.1. ống dẫn	. 65
3.7.2. Các loại ống nối	
3.7.3. Vòng chắn	
CHƯƠNG 4 : ĐIỀU CHỈNH VÀ ỔN ĐỊNH VẬN TỐC	68
4.1. Điều chỉnh bằng tiết lưu	. 68
4.1.1. Điều chỉnh bằng tiết lưu ở đường vào	
4.1.2. Điều chỉnh bằng tiết lưu ở đường ra	. 69
4.2. Điều chỉnh bằng thể tích	70
4.3. ổn định vận tốc	. 71
. 4.3.1. Bộ ổn tốc lắp trên đường vào của cơ cấu chấp hành	
4.3.2. Bộ ổn tốc lắp trên đường ra của cơ cấu chấp hành	
4.3.3. ổn định tốc độ khi điều chỉnh bằng thể tích kết hợp với tiết lưu	
CHƯƠNG 5 : ỨNG DỤNG VÀ THIẾT KẾ HỆ THỐNG	
TRUYỀN ĐỘNG THỦY LỰC	76
5.1. Ứng dụng truyền động thủy lực	76
5.2. Thiết kế hệ thống truyền động thủy lực	
PHẦN 2 : HÊ THỐNG KHÍ NÉN	92
CHƯƠNG 6 : C Ơ SỞ LÝ THUYẾT	
~11~~11~0 U . ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~	ラム

6.1. Lịch lử phát triển và khả năng ứng dụng của HTTĐ khí nén	92
6.1.1. Lịch sử phát triển	92
6.1.2. Khả năng ứng dụng của khí nén	92
6.2. Những ưu điểm và nhược điểm của HTTĐ bằng khí nén	93
6.2.1. Ưu điểm	93
6.2.2. Nhược điểm	93
6.3. Nguyên lý truyền động	93
6.4. Sơ đồ nguyên lý truyền động	94
6.5. Đơn vị đo các đại lượng cơ bản	94
CHƯƠNG 7 : CÁC PHẦN TỬ KHÍ NÉN VÀ ĐIỆN KHÍ NÉN	96
7.1. Cơ cấu chấp hành	96
7.2. Van đảo chiều	97
7.2.1. Nguyên lý hoạt động của van đảo chiều	97
7.2.2. Ký hiệu van đảo chiều	97
7.2.3. Các tín hiệu tác động	
7.2.4. Van đảo chiều có vị trí "0"	100
7.2.5. Van đảo chiều không có vị trí "0"	102
7.3. Van chặn	103
7.3.1. Van một chiều	104
7.3.2. Van logic	104
7.3.3. Van OR	104
7.3.4. Van AND	
7.3.5. Van xả khí nhanh	104
7.4. Van tiết lưu	104
7.4.1. Van tiết lưu có tiết diện không thay đổi	104
7.4.2. Van tiết lưu có tiết diện thay đổi	105
7.4.3. Van tiết lưu một chiều	105
7.5. Van điều chỉnh thời gian	105
7.5.1. Role thời gian đóng chậm	105
7.5.2. Role thời gian ngắt chậm	105
7.6. Van chân không	105
7.7. Cảm biến bằng tia	106
7.7.1. Cảm biến bằng tia rẽ nhánh	106
7.7.2. Cảm biến bằng tia phản hồi	106
7.7.3. Cảm biến bằng tia qua khe hở	107
CHƯƠNG 8 : HỆ THỐNG ĐIỀU KHIỂN KHÍ NÉN VÀ ĐIỆN KHÍ	NÉN 108

8.1. Hệ thống điều khiển khí nén	108
8.1.1. Biểu đồ trạng thái	108
8.1.2. Các phương pháp điều khiển	108
a. Điều khiển bằng tay	108
b. Điều khiển theo thời gian	110
c. Điều khiển theo hành trình	
d. Điều khiển theo tầng	113
e. Điều khiển theo nhịp	115
8.2. Hệ thống điều khiển điện khí nén	117
8.2.1. Các phần tử điện	117
8.2.2. Mạch điều khiển khí nén	118
a. Mạch điều khiển có tiếp điểm tự duy trì	118
b. Mạch điều khiển có rơle thời gian tác động chậm	119
c. Mạch điều khiển theo nhịp có hai xilanh khí nén	120
TÀI LIÊU THAM KHẢO	121

PHẦN 1: HỆ THỐNG THỦY LỰC

CHƯƠNG 1: CƠ SỐ LÝ THUYẾT

1.1. LỊCH SỬ PHÁT TRIỂN VÀ KHẢ NĂNG ỨNG DỤNG CỦA HỆ THỐNG TRUYỀN ĐỘNG THỦY LỰC

- +/ 1920 đã ứng dụng trong lĩnh vực máy công cụ.
- +/ 1925 ứng dụng trong nhiều lĩnh vực công nghiệp khác như: nông nghiệp, máy khai thác mỏ, máy hóa chất, giao thông vân tải, hàng không, ...
- +/ 1960 đến nay ứng dụng trong tự động hóa thiết bị và dây chuyền thiết bị với trình độ cao, có khả năng điều khiển bằng máy tính hệ thống truyền động thủy lực với công suất lớn.

1.2. NHỮNG ƯU ĐIỂM VÀ NHƯỢC ĐIỂM CỦA HỆ THỐNG TRUYỀN ĐỘNG BẰNG THỦY LƯC

1.1.1. Ưu điểm

- +/ Truyền động được công suất cao và lực lớn, (nhờ các cơ cấu tương đối đơn giản, hoạt động với độ tin cây cao nhưng đòi hỏi ít về chăm sóc, bảo dưỡng).
- +/ Điều chỉnh được vận tốc làm việc tinh và vô cấp, (dễ thực hiện tự động hoá theo điều kiện làm việc hay theo chương trình có sẵn).
 - +/ Kết cấu gọn nhẹ, vị trí của các phần tử dẫn và bị dẫn không lệ thuộc nhau.
 - +/ Có khả năng giảm khối lượng và kích thước nhờ chọn áp suất thủy lực cao.
- +/ Nhờ quán tính nhỏ của bơm và động cơ thủy lực, nhờ tính chịu nén của dầu nên có thể sử dung ở vận tốc cao mà không sợ bị va đập manh (như trong cơ khí và điện).
- +/ Dễ biến đổi chuyển động quay của động cơ thành chuyển động tịnh tiến của cơ cấu chấp hành.
 - +/ Dễ đề phòng quá tải nhờ van an toàn.
 - +/ Dễ theo dõi và quan sát bằng áp kế, kể cả các hệ phức tạp, nhiều mạch.
- +/ Tự động hoá đơn giản, kể cả các thiết bị phức tạp, bằng cách dùng các phần tử tiêu chuẩn hoá.

1.1.2. Nhược điểm

- +/ Mất mát trong đường ống dẫn và rò rỉ bên trong các phần tử, làm giảm hiệu suất và hạn chế phạm vi sử dụng.
- +/ Khó giữ được vận tốc không đổi khi phụ tải thay đổi do tính nén được của chất lỏng và tính đàn hồi của đường ống dẫn.
- +/ Khi mới khởi động, nhiệt độ của hệ thống chưa ổn định, vận tốc làm việc thay đổi do đô nhớt của chất lỏng thay đổi.

1.3. ĐỊNH LUẬT CỦA CHẤT LỎNG

1.2.1. Áp suất thủy tĩnh

Trong chất lỏng, áp suất (do trọng lượng và ngoại lực) tác dụng lên mỗi phần tử chất lỏng không phụ thuộc vào hình dạng thùng chứa.

Hình 1.1. Áp suất thủy tĩnh

Ta có:

$$Hinh \ a: p_S = h.g.\rho + p_L \tag{1.1}$$

$$H \hat{n} h b : p_F = \frac{F}{A} \tag{1.2}$$

Hình c:
$$\frac{F_1}{A_1} = p_F = \frac{F_2}{A_2}$$
 và $\frac{l_2}{l_1} = \frac{A_2}{A_1} = \frac{F_1}{F_2}$ (1.3)

Trong đó:

ρ- khối lượng riêng của chất lỏng;

h- chiều cao của cột nước;

g- gia tốc trong trường;

 p_{S} - áp suất do lực trọng trường;

p_L- áp suất khí quyển;

p_F- áp suất của tải trọng ngoài;

A, A₁, A₂- diện tích bề mặt tiếp xúc;

F- tải trọng ngoài.

1.2.2. Phương trình dòng chảy liên tục

Lưu lượng (Q) chảy trong đường ống từ vị trí (1) đến vị trí (2) là không đổi (const). Lưu lượng Q của chất lỏng qua mặt cắt A của ống bằng nhau trong toàn ống (điều kiện liên tục).

Ta có phương trình dòng chảy như sau:

$$Q = A.v = h \text{ àng so (const)}$$
 (1.4)

Với v là vận tốc chảy trung bình qua mặt cắt A.

Nếu tiết diện chảy là hình tròn, ta có:

$$Q_1 = Q_2 \text{ hay } v_1.A_1 = v_2.A_2$$

 $\Leftrightarrow v_1.\frac{d_1^2.\pi}{4} = v_2.\frac{d_2^2}{4}$

Vận tốc chảy tại vị trí 2:

$$\mathbf{v}_2 = \mathbf{v}_1 \cdot \frac{\mathbf{d}_1^2}{\mathbf{d}_2^2}$$

(1.6) Hình 1.2. Dòng chảy liên tục

Trong đó:

 $Q_1[m^3/s]$, $v_1[m/s]$, $A_1[m^2]$, $d_1[m]$ lần lượt là lưu lượng dòng chảy, vận tốc dòng chảy, tiết diện dòng chảy và đường kính ống tại vị trí 1;

 $Q_2[m^3/s]$, $v_2[m/s]$, $A_2[m^2]$, $d_2[m]$ lần lượt là lưu lượng dòng chảy, vận tốc dòng chảy, tiết diện dòng chảy và đường kính ống tại vị trí 2.

1.2.3. Phương trình Bernulli

Theo hình 1.3 ta có áp suất tại một điểm chất lỏng đang chảy:

$$p_1 + \rho \cdot g \cdot h_1 + \frac{\rho \cdot v_1^2}{2} = p_2 + \rho \cdot g \cdot h_2 + \frac{\rho \cdot v_2^2}{2} = \text{const}$$
 (1.7)

Trong đó:

$$\left. \begin{array}{l} p_1 + \rho.g.h_1 \\ p_2 + \rho.g.h_2 \end{array} \right\}$$
 áp suất thủy tỉnh;

$$\frac{\rho . v_1^2}{2}, \frac{\rho . v_2^2}{2}$$
: áp suất thủy động;

 $\gamma = \rho.g$: trọng lượng riêng.

Hình 1.3. Phương trình Bernulli

1.4. ĐƠN VỊ ĐO CÁC ĐẠI LƯỢNG CƠ BẨN (Hệ mét)

1.3.1. Áp suất (p)

Theo đơn vi đo lường SI là Pascal (p_a)

$$1p_a = 1N/m^2 = 1m^{-1}kgs^{-2} = 1kg/ms^2$$

Đơn vị này khá nhỏ, nên người ta thường dùng đơn vị: N/mm², N/cm² và so với đơn vị áp suất củ là kg/cm² thì nó có mối liên hệ như sau:

$$1 \text{kg/cm}^2 \approx 0.1 \text{N/mm}^2 = 10 \text{N/cm}^2 = 10^5 \text{N/m}^2$$

(Trị số chính xác: $1 \text{kg/cm}^2 = 9.8 \text{N/cm}^2$; nhưng để dàng tính toán, ta lấy $1 \text{kg/cm}^2 = 10 \text{N/cm}^2$).

Ngoài ra ta còn dùng:

$$1bar = 10^5 \text{N/m}^2 = 1 \text{kg/cm}^2$$

$$1at = 9.81.10^4 \text{N/m}^2 \approx 10^5 \text{N/m}^2 = 1bar.$$

(Theo DIN- tiêu chuẩn Cộng hòa Liên bang Đức thì $1 \text{kp/cm}^2 = 0.980665 \text{bar} \approx 0.981 \text{bar}$; $1 \text{bar} \approx 1.02 \text{kp/cm}^2$. Đơn vi kG/cm² tương đương kp/cm²).

1.3.2. Vân tốc (v)

Đơn vi vận tốc là m/s (cm/s).

1.3.2. Thể tích và lưu lượng

a. Thể tích (V): m³ hoặc lít(l)

b. Lưu lượng (Q): m³/phút hoặc l/phút.

Trong cơ cấu biến đổi năng lượng dầu ép (bơm dầu, động cơ dầu) cũng có thể dùng đơn vị là m^3 /vòng hoặc l/vòng.

1.3.4. Luc (F)

Đơn vị lực là Newton (N) $1N = 1 \text{kg.m/s}^2$.

1.3.5. Công suất (N)

Đơn vị công suất là Watt (W) $1W = 1Nm/s = 1m^2.kg/s^3.$

1.5. CÁC DẠNG NĂNG LƯỢNG

+/ Mang năng lượng: dầu.

+/ Truyền năng lượng: ống dẫn, đầu nối.

+/ Tạo ra năng lượng hoặc chuyển đổi thành năng lượng khác: bơm, động cơ dầu(mô tơ thủy lực), xilanh truyền lực.

1.5.1. Sơ đồ thủy lực tạo chuyển động tịnh tiến

Hình 1.4. Sơ đồ mạch thủy lực chuyển động tịnh tiến

Tính toán sơ bộ:

+/ Thông số của cơ cấu chấp hành: F_t và $v(v_1, v_2)$

Chuyển động tịnh tiến (hành trình làm việc)

+/ Các phương trình:

Luu luong:
$$Q_1 = A_1 \cdot v_1$$
 (1.8)

$$Q_2 = A_2.v_1$$

Luc:
$$F_t = p_1.A_1$$
 (1.9)

Công suất của cơ cấu chấp hành:
$$N = \frac{F_t \cdot v_1}{60 \cdot 10^3} [kW]$$
 (1.10)

Công suất thủy lực:
$$N = \frac{p_1 \cdot Q_1}{60 \cdot 10^3} \left[kW \right] \tag{1.11}$$

Nếu bỏ qua tổn thất từ bơm đến cơ cấu chấp hành thì $N \approx N_{bom}$ Nếu tính đến tổn thất thì

$$N = N_{\text{dco diện}} = \frac{N}{\eta} \quad (\eta = 0.6 \div 0.8)$$
 (1.12)

Chuyển động lùi về (hành trình chạy không)

 $Q_2, p_2 \approx 0$ Q_1, p_2 Nếu tải $F_t = 0 \Rightarrow p_2$ chỉ thắng ma sát $p_2.A_2 \ge F_c$

Luru lượng:
$$Q_1 = A_2 \cdot v_2$$
 (1.13)

$$Q_2' = A_1.v_2 \neq Q_2$$

Do $A_1 > A_2 \Rightarrow v_2 > v_1$

1.5.2. Sơ đồ thủy lực tạo chuyển động quay

Hình 1.5. Sơ đồ mạch thủy lực chuyển động quay

Công suất của cơ cấu chấp hành:
$$N = \frac{M_x \cdot \Omega}{102} \quad (M_x = p.D_m)$$
 (1.14)

hoặc
$$N = \frac{M_x.2\pi.n}{102.60} = \frac{M_x.n}{975} [kW]$$

Công suất thủy lực:
$$N = \frac{p_1 \cdot Q}{60.10^3} [kW] \quad (Q = D_m \cdot \Omega)$$
 (1.15)

1.6. TỔN THẤT TRONG HỆ THỐNG TRUYỀN ĐÔNG BẰNG THỦY LỰC

Trong hệ thống thủy lực có các loại tổn thất sau:

1.6.1. Tổn thất thể tích

Loại tổn thất này do dầu thủy lực chảy qua các khe hở trong các phần tử của hệ thống gây nên.

Nếu áp suất càng lớn, vận tốc càng nhỏ và độ nhớt càng nhỏ thì tổn thất thể tích càng lớn.

Tổn thất thể tích đáng kể nhất là ở các cơ cấu biến đổi năng lượng (bơm dầu, động cơ dầu, xilanh truyền lực)

Đối với bơm dầu: tổn thất thể tích được thể hiện bằng hiệu suất sau:

$$\eta_{tb} = Q/Q_0 \tag{1.16}$$

Q- Lưu lượng thực tế của bơm dầu;

Q₀- Lưu lượng danh nghĩa của bơm.

Nếu lưu lượng chảy qua động cơ dầu là Q_{0d} và lưu lượng thực tế Q_d = $q_d.\eta_d$ thì hiệu suất của đông cơ dầu là:

$$\eta_{td} = Q_{0d}/Q_d \tag{1.17}$$

Nếu như không kể đến lượng dầu dò ở các mối nối, ở các van thì tổn thất trong hệ thống dầu ép có bơm dầu và động cơ dầu là:

$$\eta_t = \eta_{tb}. \, \eta_{td} \tag{1.18}$$

1.6.2. Tổn thất cơ khí

Tổn thất cơ khí là do ma sát giữa các chi tiết có chuyển động tương đối ở trong bơm dầu và đông cơ dầu gây nên.

Tổn thất cơ khí của bơm được biểu thi bằng hiệu suất cơ khí:

$$\eta_{cb} = N_0/N \tag{1.19}$$

 N_0 - Công suất cần thiết để quay bơm (công suất danh nghĩa), tức là công suất cần thiết để đảm bảo lưu lượng Q và áp suất p của dầu, do đó:

$$N_0 = \frac{p.Q}{6.10^4} \text{ (kW)} \tag{1.20}$$

N- Công suất thực tế đo được trên trục của bom (do mômen xoắn trên trục).

Đối với dầu:
$$N_{0d} = (p.Q_d)/6.10^4$$
 (1.21)

Do đó:
$$\eta_{cd} = N_d/N_{0d}$$
 (1.22)

Từ đó, tổn thất cơ khí của hệ thống thủy lực là:

$$\eta_{c} = \eta_{cb}. \, \eta_{cd} \tag{1.23}$$

1.6.3. Tổn thất áp suất

Tổn thất áp suất là sự giảm áp suất do lực cản trên đường chuyển động của dầu từ bơm đến cơ cấu chấp hành (động cơ đầu, xilanh truyền lực).

Tổn thất này phụ thuộc vào các yếu tố sau:

- +/ Chiều dài ống dẫn
- +/ Độ nhẵn thành ống
- +/ Độ lớn tiết diện ống dẫn
- +/ Tốc độ chảy
- +/ Sự thay đổi tiết diện
- +/ Sự thay đổi hướng chuyển động
- +/ Trọng lượng riêng, độ nhớt.

Nếu p_0 là áp suất của hệ thống, p_1 là áp suất ra, thì tổn thất được biểu thị bằng hiệu suất:

$$\eta_{a} = \frac{p_{0} - p_{1}}{p_{0}} = \frac{\Delta p}{p_{0}} \tag{1.24}$$

Hiệu áp Δp là trị số tổn thất áp suất.

Tổn thất áp suất do lực cản cục bộ gây nên được tính theo công thức sau:

$$\Delta p = 10.\xi. \frac{\rho}{2g}.v^2. \frac{1}{d} \left[\frac{N}{m^2} \right] = 10^{-4}.\xi. \frac{\rho}{2g}.v^2. \frac{1}{d} [bar]$$
 (1.25)

Trong đó:

- ρ- khối lương riêng của dầu (914kg/m³);
- g- gia tốc trọng trường (9,81m/s²);
- v- vận tốc trung bình của dầu (m/s);
- ξ hệ số tổn thất cục bộ;
- l- chiều dài ống dẫn;
- d- đường kính ống.

1.6.4. Ảnh hưởng các thông số hình học đến tổn thất áp suất

a. Tiết diện dạng tròn

Nếu ta gọi:

Δp- Tổn thất áp suất;

l- Chiều dài ống dẫn;

ρ- Khối lượng riêng của chất lỏng;

Q- Luu luong;

D- Đường kính;

v- Độ nhớt động học;

λ- Hệ số ma sát của ống;

Hình 1.6. Dạng tiết diện tròn

 λ_{LAM} - Hệ số ma sát đối với chảy tầng;

 λ_{TURB} - Hệ số ma sát đối với chảy rối.

$$\Rightarrow$$
 Tổn thất: $\Delta p = \frac{8}{\pi^2} . \lambda . \frac{1.\rho . Q^2}{D^5}$

$$\lambda = \lambda_{LAM} - \frac{256}{\pi}.\frac{D.\nu}{Q}$$

$$\lambda = \lambda_{\text{TURB}} \cdot \frac{0.316}{\sqrt[4]{\frac{4}{\pi} \cdot \frac{Q}{D.\nu}}}$$

Số Reynold:
$$\frac{4}{\pi} \cdot \frac{Q}{D.v} > 3000$$
.

b. Tiết diện thay đổi lớn đột ngột

Tổn thất:
$$\Delta p = \left(1 - \frac{D_1^2}{D_2^2}\right)^2 \cdot \frac{8}{\pi^2} \cdot \frac{\rho \cdot Q^2}{D_1^4}$$

Trong đó:

D₁- đường kính ống dẫn vào;

 D_2 - đường kính ống dẫn ra.

c. Tiết diện nhỏ đột ngột

Tổn thất:
$$\Delta p = 0.5 \cdot \left(1 - \frac{D_2^2}{D_1^2}\right) \cdot \frac{8}{\pi^2} \cdot \frac{\rho \cdot Q^2}{D_1^4}$$

D₁- Đường kính ống dẫn ra;

 D_2 - Đường kính ống dẫn vào.

d. Tiết diện thay đổi lớn từ từ

Tổn thất:
$$\Delta p = \left[0,12 \div 0,2\right] \left(1 - \frac{D_1^4}{D_2^4}\right) \cdot \frac{8}{\pi^2} \cdot \frac{\rho \cdot Q^2}{D_1^4}$$

d. Tiết diện nhỏ từ từTổn thất: $\Delta p = 0$

Hình 1.7. Chảy tầng và chảy rối trong ống dẫn

Hình 1.8. Tiết diện thay đổi lớn đột ngột

Hình 1.9. Tiết diện nhỏ đột ngột

Hình 1.10. Tiết diên thay đổi lớn từ từ

Hình 1.11. Tiết diên nhỏ từ từ

f. Vào ống dẫn

Tổn thất áp suất được tính theo công thức sau:

$$\Delta p = \xi_E . \frac{8}{\pi^2} . \frac{\rho . Q^2}{D^4}$$

Trong đó hệ số thất thoát $\,\xi_{\scriptscriptstyle E}\,$ được chia thành hai trường hợp như ở bảng sau:

	Cạnh	Hệ số thất thoát ξ_E	
	Sắc	0,5	
a	Gãy khúc	0,25	
	Tròn	0,06	
b	Có trước	< 3	

Hình 1.12. Dầu vào ống dẫn

g. Ra ống dẫn

Tổn thất áp suất được tính theo công thức sau:

$$\Delta p = \xi_{\rm U}.\frac{8}{\pi^2}.\frac{\rho.Q^2}{D^4}$$

	Hệ số thất thoát ξ_U
$\frac{4}{\pi} \cdot \frac{Q}{D.\nu} < 3000$	2
$\frac{4}{\pi} \cdot \frac{Q}{D.\nu} > 3000$	1

$$\frac{R}{D} \approx 4$$

$$\Delta p = \xi_{\rm U}.\frac{8}{\pi^2}.\frac{\rho.Q^2}{D^4}$$

Góc α, β	Hệ số thất thoát ξ_U	
$\alpha = 20$	0,06	
$\alpha = 40$	0,2	
$\alpha = 60$	0,47	
β = 20	0,04	

Hình 1.13. Dầu ra ống dẫn

Hình 1.14. Ống dẫn gãy khúc

$\beta = 40$	0,07
$\beta = 60$	0,1
$\beta = 80$	0,11
$\beta = 90$	0,11

i. Tổn thất áp suất ở van

k. Tổn thất trong hệ thống thủy lực

1.7. ĐỘ NHỚT VÀ YÊU CẦU ĐỐI VỚI DẦU THỦY LỰC

1.7.1. Độ nhớt

Độ nhớt là một trong những tính chất quan trọng nhất của chất lỏng. Độ nhớt xác định ma sát trong bản thân chất lỏng và thể hiện khả năng chống biến dạng trượt hoặc biến dạng cắt của chất lỏng. Có hai loại độ nhớt:

a. Độ nhớt động lực

Độ nhớt động lực η là lực ma sát tính bằng 1N tác động trên một đơn vị diện tích bề mặt 1m^2 của hai lớp phẳng song song với dòng chảy của chất lỏng, cách nhau 1m và có vân tốc 1m/s.

Độ nhớt động lực η được tính bằng [Pa.s]. Ngoài ra, người ta còn dùng đơn vị poazơ (Poiseuille), viết tắt là P.

$$1P = 0.1N.s/m^2 = 0.010193kG.s/m^2$$

1P = 100cP (centipoiseuilles)

Trong tính toán kỹ thuật thường số quy tròn:

$$1P = 0.0102 kG.s/m^2$$

b. Độ nhớt động

Độ nhớt động là tỷ số giữa hệ số nhớt động lực η với khối lượng riêng ρ của chất lỏng:

$$v = \frac{\eta}{\rho} \tag{1.26}$$

Đơn vị độ nhớt động là [m²/s]. Ngoài ra, người ta còn dùng đơn vị stốc (Stoke), viết tắt là St hoặc centistokes, viết tắt là cSt.

$$1St = 1cm^2/s = 10^{-4}m^2/s$$

$$1cSt = 10^{-2}St = 1mm^2/s$$
.

c. Độ nhớt Engler (E^0)

Độ nhớt Engler (E^0) là một tỷ số quy ước dùng để so sánh thời gian chảy 200cm^3 dầu qua ống dẫn có đường kính 2,8mm với thời gian chảy của 200cm^3 nước cất ở nhiệt độ 20^0C qua ống dẫn có cùng đường kính, ký hiệu: $E^0 = t/t_n$

Độ nhớt Engler thường được đo khi đầu ở nhiệt độ 20, 50, 100^{0} C và ký hiệu tương ứng với nó: E_{20}^{0} , E_{50}^{0} , E_{100}^{0} .

1.7.2. Yêu cầu đối với dầu thủy lực

Những chỉ tiêu cơ bản để đánh giá chất lượng chất lỏng làm việc là độ nhớt, khả năng chịu nhiệt, độ ổn định tính chất hoá học và tính chất vật lý, tính chống rỉ, tính ăn mòn các chi tiết cao su, khả năng bôi trơn, tính sủi bọt, nhiệt độ bắt lữa, nhiệt độ đông đặc.

Chất lỏng làm việc phải đảm bảo các yêu cầu sau:

- +/ Có khả năng bôi tron tốt trong khoảng thay đổi lớn nhiệt độ và áp suất;
- +/ Độ nhớt ít phụ thuộc vào nhiệt độ;
- +/ Có tính trung hoà (tính trơ) với các bề mặt kim loại, hạn chế được khả năng xâm nhập của khí, nhưng dễ dàng tách khí ra;
- +/ Phải có độ nhớt thích ứng với điều kiện chắn khít và khe hở của các chi tiết di trượt, nhằm đảm bảo độ rò dầu bé nhất, cũng như tổn thất ma sát ít nhất;
- +/ Dầu phải ít sủi bọt, ít bốc hơi khi làm việc, ít hoà tan trong nước và không khí, dẫn nhiệt tốt, có môđun đàn hồi, hệ số nở nhiệt và khối lượng riêng nhỏ.

Trong những yêu cầu trên, dầu khoáng chất thoả mãn được đầy đủ nhất.

CHƯƠNG 2: CƠ CẤU BIẾN ĐỔI NĂNG LƯỢNG VÀ HỆ THỐNG XỬ LÝ DẦU

2.1. BOM VÀ ĐỘNG CO DẦU (MÔ TO THỦY LỰC)

2.1.1. Nguyên lý chuyển đổi năng lượng

Bơm và động cơ dầu là hai thiết bị có chức năng khác nhau. Bơm là thiết bị tạo ra năng lượng, còn động cơ dầu là thiết bị tiêu thụ năng lượng này. Tuy thế kết cấu và phương pháp tính toán của bơm và động cơ dầu cùng loại giống nhau.

a. Bơm dầu: là một cơ cấu biến đổi năng lượng, dùng để biến cơ năng thành năng lượng của dầu (dòng chất lỏng). Trong hệ thống dầu ép thường chỉ dùng bơm thể tích, tức là loại bơm thực hiện việc biến đổi năng lượng bằng cách thay đổi thể tích các buồng làm việc, khi thể tích của buồng làm việc tăng, bơm hút dầu, thực hiện chu kỳ hút và khi thể tích của buồng giảm, bơm đẩy dầu ra thực hiện chu kỳ nén.

Tuỳ thuộc vào lượng dầu do bơm đẩy ra trong một chu kỳ làm việc, ta có thể phân ra hai loại bơm thể tích:

- +/ Bom có lưu lượng cố định, gọi tắt là bom cố định.
- +/ Bom có lưu lượng có thể điều chỉnh, gọi tắt là bom điều chỉnh.

Những thông số cơ bản của bom là lưu lượng và áp suất.

b. Đông cơ dầu: là thiết bị dùng để biến năng lượng của dòng chất lỏng thành động năng quay trên trục động cơ. Quá trình biến đổi năng lượng là dầu có áp suất được đưa vào buồng công tác của động cơ. Dưới tác dụng của áp suất, các phần tử của động cơ quay.

Những thông số cơ bản của động cơ dầu là lưu lượng của 1 vòng quay và hiệu áp suất ở đường vào và đường ra.

2.1.2. Các đai lương đặc trưng

a. Thể tích dầu tải đi trong 1 vòng (hành trình)

Hình 2.1. Bơm thể tích

Nếu ta gọi:

V- Thể tích dầu tải đi trong 1 vòng (hành trình);

A- Diên tích mặt cắt ngang;

h- Hành trình pittông;

V_{ZL}- Thể tích khoảng hở giữa hai răng;

Z- Số răng của bánh răng.

Ở hình 2.1, ta có thể tích dầu tải đi trong 1 vòng (hành trình):

$$V = A.h + 1 hành trình$$
 (2.1)

$$V \approx V_{ZL}.Z.2$$
 1 vòng (2.2)

b. Áp suất làm việc

Áp suất làm việc được biểu diễn trên hình 2.2. Trong đó:

+/ Áp suất ổn định p₁;

+/ Áp suất cao p₂;

+/ Áp suất đỉnh p_3 (áp suất qua van tràn). p_1

Hình 2.2. Sự thay đổi áp suất làm việc theo thời gian

c. Hiệu suất

Hiệu suất của bơm hay đông cơ dầu phu thuộc vào các yếu tố sau:

+/ Hiệu suất thể tích η_v

+/ Hiệu suất cơ và thủy lực η_{hm}

Như vậy hiệu suất toàn phần:
$$\eta_t = \eta_v$$
. η_{hm} (2.3)

O hình 2.3, ta có:

+/ Công suất động cơ điện: $N_E = M_E$. Ω_E

+/ Công suất của bơm: $N = p.Q_v$ (2.5) Như vậy ta có công thức sau:

(2.4)

 $N_{E} = \frac{N}{\eta_{tb}} = \frac{p.Q_{v}}{\eta_{tb}} (2.6)^{N_{E} \begin{cases} N_{I} \\ n_{E} \end{cases}}$ +/ Công suất của động cơ dầu:

 $N_A = M_A$. Ω_A hay $N_A = \eta_{tMotor}$. $p.Q_v$ (2.7) Hinh~2.3. Ånh hưởng của hệ số tổn thất

+/ Công suất của xilanh:

đến hiệu suất

$$N_A = F.v \text{ hay } N_A = \eta_{txilanh}.p.Q_v$$
 (2.8)

Trong đó:

 N_E , M_E , Ω_E - công suất, mômen và vận tốc góc trên trục động cơ nối với bơm;

 $N_A,\,M_A,\,\Omega_A$ - công suất, mômen và vận tốc góc trên động cơ tải;

N_A, F, v - công suất, lực và vận tốc pittông;

N, p, Q_v - công suất, áp suất và lưu lượng dòng chảy;

η_{txilanh}- hiệu suất của xilanh;

η_{tMotor}- hiệu suất của động cơ dầu;

 η_{tb} - hiệu suất của bơm dầu.

2.1.3. Công thức tính toán bơm và động cơ dầu

a. Lưu lượng Q_v , số vòng quay n và thể tích dầu trong một vòng quay V

Ta có: $Q_v = n.V$

+/ Lưu lượng bơm: $Q_v = n.V. \eta_v. 10^{-3}$

+/ Động cơ dầu: $Q_v = \frac{n.V}{\eta_v}.10^{-3}$

Hình 2.4. Lưu lương, số vòng quay, thể tích

Trong đó:

Q_v- lưu lượng [lít/phút];

n- số vòng quay [vòng/phút];

V- thể tích dầu/vòng [cm³/vòng];

 η_v - hiệu suất [%].

b. Áp suất, mômen xoắn, thể tích dầu trong một vòng quay V

Theo đinh luât Pascal, ta có:

$$p = \frac{M_x}{V} \tag{2.12}$$

Áp suất của bơm:
$$p = \frac{M_x \cdot \eta_{hm}}{V} \cdot 10$$
 (2.13)

Áp suất động cơ dầu:
$$p = \frac{M_x}{V.\eta_{hm}}.10$$
 (2.14)

Trong đó:

p [bar];

 M_x [N.m];

V [cm³/vòng];

 η_{hm} [%].

 M_x V V M_x

Hình 2.5. áp suất, thể tích, mômen xoắn

c. Công suất, áp suất, lưu lượng

Công suất của bơm tính theo công thức tổng quát là: $N = p.Q_v$ (2.15)

+/ Công suất để truyền đông bơm:

$$N = \frac{p.Q_{v}}{6.\eta_{t}}.10^{-2} \tag{2.16}$$

+/ Công suất truyền động động cơ dầu:

$$N = \frac{p.Q_v.\eta_t}{6}.10^{-2} \tag{2.17}$$

Trong đó:

N [W], [kW];

p [bar], [N/m²];

 Q_v [lít/phút], [m³/s];

 η_t [%].

Lưu lượng của bơm về lý thuyết không phụ thuộc và áp suất (trừ bơm ly tâm), mà chỉ phụ thuộc vào kích thước hình học và vận tốc quay của nó. Nhưng trong thực tế do sự rò rỉ qua khe hở giữa các khoang hút và khoang đẩy, nên lưu lượng thực tế nhỏ hơn lưu lượng lý thuyết và giảm dần khi áp suất tăng.

Một yếu tố gây mất mát năng lượng nữa là hiện tượng hỏng. Hiện tượng này thường xuất hiện, khi ống hút quá nhỏ hoặc dầu có độ nhớt cao.

Khi bộ lọc đặt trên đường hút bị bẩn, cùng với sự tăng sức cản của dòng chảy, lưu lượng của bơm giảm dần, bơm làm việc ngày một ồn và cuối cùng tắc hẳn. Bởi vậy cần phải lưu ý trong lúc lắp ráp làm sao để ống hút to, ngắn và thẳng.

2.1.4. Các loại bơm

- a. Bom với lưu lượng cố định
- +/ Bom bánh răng ăn khớp ngoài;
- +/ Bơm bánh răng ăn khớp trong;
- +/ Bom pittông hướng trục;
- +/ Bom truc vít;
- +/ Bom pittông dãy;
- +/ Bom cánh gat kép;
- +/ Bom rôto.
- b. Bom với lưu lượng thay đổi
- +/ Bom pittông hướng tâm;
- +/ Bom pittông hướng trục (truyền bằng đĩa nghiêng);
- +/ Bơm pittông hướng trục (truyền bằng khớp cầu);
- +/ Bom cánh gat đơn.

Hình 2.6. Nguyên lý làm việc của bơm bánh răng

Nguyên lý làm việc của bơm bánh răng là thay đổi thể tích: khi thể tích của buồng hút A tăng, bơm hút dầu, thực hiện chu kỳ hút; và nén khi thể tích giảm, bơm đẩy dầu

ra ở buồng B, thực hiện chu kỳ nén. Nếu như trên đường dầu bị đẩy ra ta đặt một vật cản (ví dụ như van), dầu bị chặn sẽ tạo nên một áp suất nhất định phụ thuộc vào độ lớn của sức cản và kết cấu của bơm.

b. Phân loai

Bơm bánh răng là loại bơm dùng rộng rãi nhất vì nó có kết cấu đơn giản, dễ chế tạo. Phạm vi sử dụng của bơm bánh răng chủ yếu ở những hệ thống có áp suất nhỏ trên các máy khoan, doa, bào, phay, máy tổ hợp,.... Phạm vi áp suất sử dụng của bơm bánh răng hiện nay có thể từ $10 \div 200$ bar (phụ thuộc vào độ chính xác chế tao).

Bơm bánh răng gồm có: loại bánh răng ăn khớp ngoài hoặc ăn khớp trong, có thể là răng thẳng, răng nghiêng hoặc răng chử V.

Loại bánh răng ăn khớp ngoài được dùng rộng rãi hơn vì chế tạo dễ hơn, nhưng bánh răng ăn khớp trong thì có kích thước gọn nhẹ hơn.

Hình 2.7. Bơm bánh răng

a. Bơm bánh răng ăn khớp ngoài; b. Bơm bánh răng ăn khớp trong; c. Ký hiệu bơm.

c. Luu luong bom bánh răng

Khi tính lưu lượng dầu, ta coi thể tích dầu được đẩy ra khỏi rãnh răng bằng với thể tích của răng, tức là không tính đến khe hở chân răng và lấy hai bánh răng có kích thước như nhau. (Lưu lượng của bơm phụ thuộc vào kết cấu)

Nếu ta đặt:

- m- Modul của bánh răng [cm];
- d- Đường kính chia bánh răng [cm];
- b- Bề rộng bánh răng [cm];
- n- Số vòng quay trong một phút [vòng/phút];
- Z Số răng (hai bánh răng có số răng bằng nhau).

Thì lượng dầu do hai bánh răng chuyển đi khi nó quay một vòng:

$$Q_v = 2.\pi.d.m.b \text{ [cm}^3/\text{vong] hoặc [l/ph]}$$
 2.18)

Nếu gọi Z là số răng, tính đến hiệu suất thể tích η_t của bơm và số vòng quay n, thì lưu lượng của bơm bánh răng sẽ là:

$$Q_b = 2.\pi.Z.m^2.b.n. \ \eta_t \ [cm^3/phút] \ hoặc \ [l/ph]$$
 (2.19)

 $\eta_t = 0.76 \div 0.88$ hiệu suất của bơm bánh răng

d. Kết cấu bơm bánh răng

Kết cấu của bơm bánh răng được thể hiện như ở hình 2.8.

2.1.6. Bom truc vít

Bơm trục vít là sự biến dạng của bơm bánh răng. Nếu bánh răng nghiêng có số răng nhỏ, chiều dày và góc nghiêng của răng lớn thì bánh răng sẽ thành trục vít.

Bom trục vít thường có 2 trục vít ăn khớp với nhau (hình 2.9).

Bơm trục vít thường được sản xuất thành 3 loại:

- +/ Loại áp suất thấp: $p = 10 \div 15bar$
- +/ Loại áp suất trung bình: $p = 30 \div 60bar$
- +/ Loại áp suất cao: $p = 60 \div 200bar$.

Bơm trục vít có đặc điểm là dầu được chuyển từ buồng hút sang buồng nén theo chiều trục và không có hiện tượng chèn dầu ở chân ren.

Nhược điểm của bơm trục vít là chế tạo trục vít khá phức tạp. Ưu điểm căn bản là chạy êm, độ nhấp nhô lưu lượng nhỏ.

2.1.7. Bom cánh gạt

a. Phân loai

Bơm cánh gạt cũng là loại bơm được dùng rộng rãi sau bơm bánh răng và chủ yếu dùng ở hệ thống có áp thấp và trung bình.

So với bơm bánh răng, bơm cánh gạt bảo đảm một lưu lượng đều hơn, hiệu suất thể tích cao hơn.

Kết cấu Bơm cánh gạt có nhiều loại khác nhau, nhưng có thể chia thành hai loại chính:

- +/ Bom cánh gat đơn.
- +/ Bơm cánh gạt kép.
- b. Bom cánh gat đơn

Bơm cánh gạt đơn là khi trục quay một vòng, nó thực hiện một chu kỳ làm việc bao gồm một lần hút và một lần nén.

Lưu lượng của bơm có thể điều chỉnh bằng cách thay đổi độ lệch tâm (xê dịch vòng trượt), thể hiện ở *hình* 2.10.

Hình 2.10. Nguyên tắc điều chỉnh lưu lượng bơm cánh gạt đơn

- a. Nguyên ký và ký hiêu;
- b. Điều chính bằng lò xo;
- c. Điều chỉnh lưu lượng bằng thủy lực.

c. Bom cánh gạt kép

Bơm cánh gạt kép là khi trục quay một vòng, nó thực hiện hai chu kỳ làm việc bao gồm hai lần hút và hai lần nén, *hình* 2.11.

Hình 2.11. Bơm cánh gạt kép

d. Luu lượng của bơm cánh gạt

Nếu các kích thước hình học có đơn vị là [cm], số vòng quay n [vòng/phút], thì lưu lương qua bơm là:

$$Q = 2.10^{-3}.\pi.e.n.(B.D + 4.b.d) [lit/phút]$$
(2.20)

Trong đó:

D- đường kính Stato; B- chiều rộng cánh gạt; b- chiều sâu của rãnh; e- độ lệch tâm; d- đường kính con lăn.

2.1.8. Bom pittông

a. Phân loại

Bơm pittông là loại bơm dựa trên nguyên tắc thay đổi thể tích của cơ cấu pittông - xilanh. Vì bề mặt làm việc của cơ cấu này là mặt trụ, do đó dễ dàng đạt được độ chính xác gia công cao, bảo đảm hiệu suất thể tích tốt, có khả năng thực hiện được với áp suất làm việc lớn (áp suất lớn nhất có thể đạt được là p = 700bar).

Bơm pittông thường dùng ở những hệ thống dầu ép cần áp suất cao và lưu lượng lớn; đó là máy truốt, máy xúc, máy nén,....

Dựa trên cách bố trí pittông, bơm có thể phân thành hai loại:

- +/ Bom pittông hướng tâm.
- +/ Bom pittông hướng truc.

Bom pittông có thể chế tao với lưu lương cố định, hoặc lưu lương điều chỉnh được.

b. Bom pittông hướng tâm

Lưu lượng được tính toán bằng việc xác định thể tích của xilanh. Nếu ta đặt d- là đường kính của xilanh [cm], thì thể tích của một xilanh khi rôto quay một vòng:

$$q = \frac{\pi . d^2}{4} . h \ [cm^3/vong]$$
 (2.21)

Trong đó: h- hành trình pittông [cm]

Vì hành trình của pittông h = 2e (e là độ lệch tâm của rôto và stato), nên nếu bơm có z pittông và làm việc với số vòng quay là n [vòng/phút], thì lưu lượng của bơm sẽ là:

$$Q = q.z.n.10^{-3} [lít/phút] = \frac{10^{-3}.\pi}{2}.d^{2}.e.z.h [lít/phút]$$
 (2.22)

Hành trình của pittông th
ớng thường là h = $(1,3 \div 1,4)$.d và số vòng quay n_{max} = 1500vg/ph.

Lưu lượng của bơm pittông hướng tâm có thể điều chỉnh bằng cách thay đổi độ lệch tâm (xê dịch vòng trươt), hình 2.12.

Hình 2.12. Bơm pittông hướng tâm

Pittông (3) bố trí trong các lỗ hướng tâm rôto (6), quay xung quanh trục (4). Nhờ các rãnh và các lỗ bố trí thích hợp trên trục phân phối (7), có thể nối lần lượt các xilanh trong một nữa vòng quay của rôto với khoang hút nữa kia với khoang đẩy.

Sau một vòng quay của rôto, mỗi pittông thực hiện một khoảng chạy kép có lớn bằng 2 lần độ lệch tâm e.

Trong các kết cấu mới, truyền động pittông bằng lực ly tâm. Pittông (3) tựa trực tiếp trên đĩa vành khăn (2). Mặt đầu của pittông là mặt cầu (1) đặt hơi nghiêng và tựa trên mặt côn của đĩa dẫn.

Rôto (6) quay được nối với trục (4) qua ly hợp (5). Để điều khiển độ lệch tâm e, ta sử dung vít điều chỉnh (8).

c. Bom pittông hướng trục

Bơm pittông hướng trục là loại bơm có pittông đặt song song với trục của rôto và được truyền bằng khớp hoặc bằng đĩa nghiêng. Ngoài những ưu điểm như của bơm

pittông hướng tâm, bơm pittông hướng trục còn có ưu điểm nữa là kích thước của nó nhỏ gọn hơn, khi cùng một cỡ với bơm hướng tâm.

Ngoài ra, so với tất cả các loại bơm khác, bơm pittông hướng trục có hiệu suất tốt nhất, và hiệu suất hầu như không phụ thuộc và tải trọng và số vòng quay.

Hình 2.13. Bơm pittông hướng truc

Nếu lấy các ký hiệu như ở bơm pittông hướng tâm và đường kính trên đó phân bố các xilanh là D [cm], thì lưu lượng của bơm sẽ là:

$$Q = 10^{-3} \cdot \frac{\pi \cdot d^2}{4} \cdot h.z.n = 10^{-3} \cdot \frac{\pi \cdot d^2}{4} \cdot z.n.D.tg\alpha \text{ [lít/phút]}$$
 (2.23)

Loại bơm này thường được chế tạo với lưu lượng $Q = 30 \div 640$ l/ph và áp suất p = 60bar, số vòng quay thường dùng là 1450vg/ph hoặc 950vg/ph, nhưng ở những bơm có rôto không lớn thì số vòng quay có thể dùng từ $2000 \div 2500$ vg/ph.

Bom pittông hướng truc hầu hết là điều chỉnh lưu lương được, hình 2.15.

Hình 2.14. Điều chỉnh lưu lượng bơm pittông hướng trục

Trong các loại bơm pittông, độ không đồng đều của lưu lượng không chỉ phụ thuộc vào đặc điểm chuyển động của pittông, mà còn phụ thuộc vào số lượng pittông. Độ không đồng đều được xác định như sau:

$$k = \frac{Q_{\text{max}} - Q_{\text{min}}}{Q_{\text{max}}}$$
 (2.24)

Độ không đồng đều k còn phụ thuộc vào số lượng pittông chắn hay lẻ.

2.1.9. Tiêu chuẩn chọn bơm

Những đại lượng đặc trưng cho bơm và động cơ dầu gồm có:

a. Thể tích nén (lưu lượng vòng): là đại lượng đặc trưng quan trọng nhất, ký hiệu V[cm³/vòng]. Ở loại bơm pittông, đại lượng này tương ứng chiều dài hành trình pittông.

Đối với bơm: Q ~ n.V [lít/phút],

và động cơ dầu: $p \sim M/V$ [bar].

b. Số vòng quay n [vg/ph]

c. Áp suất p [bar]

d. Hiệu suất [%]

e. Tiếng ồn

Khi chọn bơm, cần phải xem xét các yếu tố về kỹ thuật và kinh tế sau:

- +/ Giá thành;
- +/ Tuổi thọ;
- +/ Áp suất;
- +/ Phạm vi số vòng quay;
- +/ Khả năng chịu các hợp chất hoá học;
- +/ Sự dao động của lưu lượng;
- +/ Thể tích nén xố định hoặc thay đổi;
- +/ Công suất;
- +/ Khả năng bơm các loại tạp chất;
- +/ Hiệu suất.

2.2. XILANH TRUYỀN ĐỘNG (CƠ CẤU CHẤP HÀNH)

2.2.1. Nhiệm vụ

Xilanh thủy lực là cơ cấu chấp hành dùng để biến đổi thế năng của dầu thành cơ năng, thực hiện chuyển động thẳng.

2.2.2. Phân loại

Xilanh thủy lực được chia làm hai loại: xilanh lực và xilanh quay (hay còn gọi là xilanh mômen).

Trong xilanh lực, chuyển động tương đối giữa pittông với xilanh là chuyển động tinh tiến.

Trong xilanh quay, chuyển động tương đối giữa pittông với xilanh là chuyển động quay (với góc quay thường nhỏ hơn 360°).

Pittông bắt đầu chuyển động khi lực tác động lên một trong hai phía của nó (lực đó thể là lực áp suất, lực lò xo hoặc cơ khí) lớn hơn tổng các lực cản có hướng ngược lại chiều chuyển động (lực ma sát, thủy động, phụ tải, lò xo,...).

Ngoài ra, xilanh truyền động còn được phân theo:

- a. Theo cấu tạo
- +/ Xilanh đơn
- Lùi về nhờ ngoại lực

• Lùi về nhờ lò xo

- +/ Xilanh kép
- Lùi về bằng thủy lực

• Lùi về bằng thủy lực có giảm chấn

• Tác dụng cả hai phía

• Tác dụng quay

- +/ Xilanh vi sai
- Tác dụng đơn

• Tác dụng kép

- b. Theo kiểu lắp ráp
- +/ Lắp chặt thân
- +/ Lắp chặt mặt bích
- +/ Lắp xoay được
- +/ Lắp gá ở 1 đầu xilanh

2.2.3. Cấu tạo xilanh

Hình 2.15. Cấu tạo xilanh tác dung kép có cần pittông một phía

- 1. Thân; 2. Mặt bích hông; 3. Mặt bích hông;
- 4. Cần pittông; 5. Pittông; 6. ổ trượt;
- 7. Vòng chắn dầu; 8. Vòng đệm; 9. Tấm nối;
- 10. Vòng chắn hình O; 11. Vòng chắn pittông; 12. Ống nối;
- 13. Tấm dẫn hướng; 14. Vòng chắn hình O; 15. Đai ốc;
- 16. Vít vặn; 17. Ống nối.

Ở hình 3.29 là ví dụ xilanh tác dụng kép có cần pittông một phía. Xilanh có các bộ phận chính là thân (gọi là xilanh), pittông, cần pittông và một số vòng làm kín.

2.2.4. Một số xilanh thông dụng

a. Xilanh tác dụng đơn

Chất lỏng làm việc chỉ tác động một phía của pitrông và tạo nên chuyển động một chiều. Chiều chuyển động ngược lại được thực hiện nhờ lực lò xo.

b. Xilanh tác dụng kép

Chất l<mark>ỏng làm việc tác động vào hai phía của pitt</mark>ông và tạo nên chuyển động hai chiều.

Hình 2 16. Xilanh tác dụng đơn (chiều ngược lại bằng lò xo) và ký hiệu

Hình 2.17. Xilanh tác dụng kép

a. Xilanh tác dụng képkhông có giảm chấn cuối hành trình và ký hiệu;

b. Xilanh tác dụng kép có giảm chấn cuối hành trình và ký hiệu.

2.2.5. Tính toán xilanh truyền lực

a. Diện tích A, lực F, và áp suất p

+/ Diện tích pittông

$$A_1 = \frac{\pi \cdot D^2}{4}; \quad A_2 = \frac{\pi \cdot (D^2 - d^2)}{4}$$
 (2.25)

Hình 2.18. Áp suất p, lực F trong xilanh

+/ Luc

$$F_t = p.A \tag{2.26}$$

+/ Áp suất

$$p = \frac{F_t}{A} \tag{2.27}$$

Trong đó:

A - diện tích tiết diện pittông [cm²];

D - đường kính của xilanh [cm];

d - đường kính của cần [cm];

p - áp suất [bar];

F_t - lực [kN].

Nếu tính đến tổn thất thể tích ở xilanh, để tính toán đơn giản, ta chọn:

• Áp suất:
$$p = \frac{F_t}{A.\eta}.10^4$$
 (2.28)

• Diện tích pittông:
$$A = \frac{\pi . d^2}{4} . 10^{-2}$$
 (2.29)

d - đường kính của pittông [mm];

η- hiệu suất, lấy theo bảng sau:

Bảng 3.5

p (bar)	20	120	160
η (%)	85	90	95

Như vậy pittông bắt đầu chuyển động được, khi lực $F_t > F_G + F_A + F_R$ Trong đó:

F_G- trong luc;

F_A- lực gia tốc;

F_R- lực ma sát.

b. Quan hệ giữa lưu lượng Q, vận tốc v và diện tích A

Lưu lượng chảy vào xilanh tính theo công thức sau:

$$Q = A.v \tag{3.16}$$

Để tính toán đơn giản, ta chọn:

$$Q = A.v.10^{-1}$$

$$A = \frac{\pi.D^2}{4}.10^{-2}$$

(3.17)

Trong đó:

D - đường kính [mm];

A - diện tích của xilanh [cm²];

Q - lưu lượng [lít/phút];

v - vận tốc [m/phút].

Hình 2.19. Quan hệ giữa Q, v và A

2.3. BỂ DẦU

2.3.1. Nhiệm vụ

Bể dầu có nhiệm vụ chính sau:

- +/ Cung cấp dầu cho hệ thống làm việc theo chu trình kín (cấp và nhận dầu chảy về).
- +/ Giải tỏa nhiệt sinh ra trong quá trình bơm dầu làm việc.
- +/ Lắng đong các chất can bã trong quá trình làm việc.
- +/ Tách nước.

2.3.2. Chọn kích thước bể dầu

Đối với các loại bể dầu di chuyển, ví dụ bể dầu trên các xe vận chuyển thì có thể tích bể dầu được chọn như sau:

$$V = 1,5.Q_v$$
 (2.30)

Đối với các loại bể dầu cố định, ví dụ bể dầu trong các máy, dây chuyền, thì thể tích bể dầu được chọn như sau:

$$V = (3 \div 5).Q_{v} \tag{2.31}$$

Trong đó: V[lít];

 $Q_v[1/ph]$.

2.3.3. Kết cấu của bể dầu

Hình 2.16. là sơ đồ bố trí các cụm thiết bị cần thiết của bể cấp dầu cho hệ thống điều khiển bằng thủy lưc.

- 1. Động cơ điện;
- 2. Ông nén;
- 3. *Bô lọc*;
- 4. Phía hút;
- 5. Vách ngăn;
- 6. Phía xả;
- 7. Mắt dầu:
- 8. Đổ dầu;
- 9. Ông xả.

Bể dầu được ngăn làm hai ngăn bởi một màng lọc (5). Khi mở động cơ (1), bơm dầu làm việc, dầu được hút lên qua bộ lộc (3) cấp cho hệ thống điều khiển, dầu xả về được cho vào một ngăn khác.

Dầu thường đổ vào bể qua một cửa (8) bố trí trên nắp bể lọc và ống xả (9) được đặt vào gần sát bể chứa. Có thể kiểm tra mức dầu đạt yêu cầu nhờ mắt dầu (7).

Nhờ các màng lọc và bộ lọc, dầu cung cấp cho hệ thống điều khiển đảm bảo sạch. Sau một thời gian làm việc định kỳ thì bộ lọc phải được tháo ra rữa sạch hoặc thay mới. Trên đường ống cấp dầu (sau khi qua bơm) người ta gắn vào một van tràn điều chỉnh áp suất dầu cung cấp và đảm bảo an toàn cho đường ống cấp dầu.

Kết cấu của bể dầu trong thực tế như ở *hình 2.17*.

Hình 2.21. Kết cấu và ký hiệu bể dầu

2.4. BÔ LOC DẦU

2.4.1. Nhiệm vụ

Trong quá trình làm việc, dầu không tránh khỏi bị nhiễm bẩn do các chất bẩn từ bên ngoài vào, hoặc do bản thân dầu tạo nên. Những chất bẩn ấy sẽ làm kẹt các khe hở, các tiết diện chảy có kích thước nhỏ trong các cơ cấu dầu ép, gây nên những trở ngại, hư hỏng trong các hoạt động của hệ thống. Do đó trong các hệ thống dầu ép đều dùng bộ lọc dầu để ngăn ngừa chất bẩn thâm nhập vào bên trong các cơ cấu, phần tử dầu ép.

Bộ lọc dầu thường đặt ở ống hút của bơm. Trường hợp dầu cần sạch hơn, đặt thêm một bộ nữa ở cửa ra của bơm và một bộ ở ống xả của hệ thống dầu ép.

Ký hiệu:

2.4.2. Phân loại theo kích thước lọc

Tùy thuộc vào kích thước chất bẩn có thể lọc được, bộ lọc dầu có thể phân thành các loại sau:

a. Bộ lọc thô: có thể lọc những chất bẩn đến 0,1mm.

- b. Bộ lọc trung bình: có thể lọc những chất bẩn đến 0,01mm.
- c. Bộ lọc tinh: có thể lọc những chất bẩn đến 0,005mm.
- d. Bộ lọc đặc biệt tinh: có thể lọc những chất bẩn đến 0,001mm.

Các hệ thống dầu trong máy công cụ thường dùng bộ lọc trung bình và bộ lọc tinh. Bộ lọc đặc biệt tinh chủ yếu dùng các phòng thí nghiệm.

2.4.3. Phân loai theo kết cấu

Dựa vào kết cấu, ta có thể phân biệt được các loại bộ lọc dầu như sau: bộ lọc lưới, bộ lọc lá, bộ lọc giấy, bộ lọc nỉ, bộ lọc nam châm, ...

Ta chỉ xét một số bộ lọc dầu thường nhất.

a. Bộ lọc lưới

Bộ lọc lưới là loại bộ lọc dầu đơn giản nhất. Nó gồm khung cứng và lưới bằng đồng bao xung quanh. Dầu từ ngoài xuyên qua các mắt lưới và các lỗ để vào ống hút. Hình dáng và kích thước của bộ lọc lưới rất khác nhau tùy thuộc vào vị trí và công dung của bô loc.

Do sức cản của lưới, nên dầu khi qua bộ lọc bị giảm áp. Khi tính toán, tổn thất áp suất thường lấy $\Delta p = 0.3 \div 0.5$ bar, trường hợp đặc biệt có thể lấy $\Delta p = 1 \div 2$ bar.

Nhược điểm của bộ lọc lưới là chất bẩn dễ bám vào các bề mặt lưới và khó tẩy ra. Do đó thường dùng nó để lọc thô, như lắp vào ống hút của bơm. trường hợp này phải dùng thêm bộ lọc tinh ở ống ra.

Hình 2.22. Màng lọc lưới

b. Bô loc lá, sơi thủy tinh

Bộ lọc lá là bộ lọc dùng những lá thép mỏng để lọc dầu. Đây là loại dùng rộng rãi nhất trong hệ thống dầu ép của máy công cụ.

Kết cấu của nó như sau: làm nhiệm vụ lọc ở các bộ lọc lá là các lá thép hình tròn và những lá thép hình sao. Nhưng lá thép này được lắp đồng tâm trên trục, tấm nọ trên tấm kia. Giữa các cặp lắp chen mảnh thép trên trục có tiết diện vuông.

Số lượng lá thép cần thiết phụ thuộc vào lưu lượng cần lọc, nhiều nhất là $1000 \div 1200$ lá. Tổn thất áp suất lớn nhất là p = 4bar. Lưu lượng lọc có thể từ $8 \div 100$ l/ph.

Bộ lọc lá chủ yếu dùng để lọc thô. Ưu điểm lớn nhất của nó là khi tẩy chất bẩn, khỏi phải dùng máy và tháo bộ lọc ra ngoài.

Hiện nay phần lớn người ta thay vật liệu của các lá thép bằng vật liệu sợi thủy tinh, độ bền của các bộ lọc này cao và có khả năng chế tạo dễ dàng, các đặc tính vật liệu không thay đổi nhiều trong quá trình làm việc do ảnh hưởng về cơ và hóa của dầu.

Hình 2.23. Màng lọc bằng sợi thủy tinh

Để tính toán lưu lượng chảy qua bộ lọc dầu, người ta dùng công thức tính lưu lượng chảy qua lưới lọc:

$$Q = \alpha \cdot \frac{A \cdot \Delta p}{\eta} [l/ph]$$
 (2.32)

Trong đó:

A- diện tích toàn bộ bề mặt lọc [cm²];

 $\Delta p = p_1 - p_2$ - hiệu áp của bộ lọc [bar];

η- độ nhớt động học của dầu [P];

α- hệ số lọc, đặc trung cho lượng dầu chảy qua bộ lọc trên đơn vị diện tích

và thời gian
$$\left[\frac{\text{lít}}{\text{cm}^2.\text{phút}}\right]$$

Tùy thuộc vào đặc điểm của bộ lọc, ta có thể lấy trị số như sau:

$$\alpha = 0,006 \div 0,009 \left[\frac{lít}{cm^2.phút} \right]$$

2.4.4. Cách lắp bộ lọc trong hệ thống

Tùy theo yêu cầu chất lượng của dầu trong hệ thống điều khiển, mà ta có thể lắp bộ lọc dầu theo các vị trí khác nhau như sau:

a. Lắp bộ lọc ở đường hút

b. Lắp bộ lọc ở đường nén

c. Lắp bộ lọc ở đường xả

Hình 2.24. Cách lắp bộ lọc trong hệ thống

2.5. ĐO ÁP SUẤT VÀ LƯU LƯỢNG

2.5.1. Đo áp suất

a. Đo áp suất bằng áp kế lò xo

Nguyên lý đo áp suất bằng áp kế lò xo: dưới tác dụng của áp lực, lò xo bị biến dạng, qua cơ cấu thanh truyền hay đòn bẩy và bánh răng, độ biến dạng của lò xo sẽ chuyển đổi thành giá trị được ghi trên mặt hiện số.

Hình 2.25. Áp kế lò xo

b. Nguyên lý hoạt động của áp kế lò xo tấm

Dưới tác dụng của áp suất, lò xo tấm (1) bị biến dạng, qua trục đòn bẩy (2), chi tiết hình đáy quạt (3), chi tiết thanh răng (4), kim chỉ (5), giá trị áp suất được thể hiện trên mặt số.

- 1. Kim chi;
- 2. Thanh răng;
- 3. Chi tiết hình đáy quạt;
- 4. Đòn bẩy;
- 5. Lò xo tấm.

Hình 2.26. Áp kế lò xo tấm

2.5.2. Do luu luong

a. Đo lưu lượng bằng bánh hình ôvan và bánh răng

Hình 2.27. Đo lưu lượng bằng bánh ôvan và bánh răng

Chất lỏng chảy qua ống làm quay bánh ôvan và bánh răng, độ lớn lưu lượng được xác định bằng lượng chất lỏng chảy qua bánh ôvan và bánh răng.

b. Đo lưu lương bằng tuabin và cánh gạt

Chất lỏng chảy qua ống làm quay cánh tuabin và cánh gạt, độ lớn lưu lượng được xác định bằng tốc độ quay của cánh tuabin và cánh gạt.

Hình 2.28. Đo lưu lương bằng tuabin và cánh gạt

c. Đo lưu lượng theo nguyên lý độ chênh áp

Hai áp kế được đặt ở hai đầu của màng ngăn, độ lớn lưu lượng được xác định bằng đô chênh lệch áp suất (tổn thất áp suất) trên hai áp kế p_1 và p_2 . $Q_V = \sqrt{\Delta p}$

Hình 2.29. Đo lưu lượng theo nguyên lý đô chênh áp

d. Đo lưu lượng bằng lực căng lò xo

Chất lỏng chảy qua ống tác động vào đầu đo, trên đầu đo có gắn lò xo, lưu chất chảy qua lưu lượng kế ít hay nhiều sẽ được xác định qua kim chỉ.

Hình 2.30. Đo lưu lượng bằng lực căng lò xo

2.6. BÌNH TRÍCH CHÚA

2.6.1. Nhiệm vụ

Bình trích chứa là cơ cấu dùng trong các hệ truyền dẫn thủy lực để điều hòa năng lượng thông qua áp suất và lưu lượng của chất lỏng làm việc. Bình trích chứa làm việc theo hai quá trình: tích năng lượng vào và cấp năng lượng ra.

Bình trích chứa được sử dụng rộng rãi trong các loại máy rèn, máy ép, trong các cơ cấu tay máy và đường dây tự động,... nhằm làm giảm công suất của bơm, tăng độ tin cậy và hiệu suất sử dụng của toàn hệ thủy lực.

2.6.2. Phân loai

Theo nguyên lý tạo ra tải, bình trích chứa thủy lực được chia thành ba loại, thể hiện ở hình 2.31

Hình 2.31. Các loại bình trích chứa thủy lực

- a. Bình trích chứa trọng vật;
- b. Bình trích chứa lò xo;
- c. Bình trích chứa thủy khí;
- d. Ký hiệu.

a. Bình trích chứa trọng vật

Bình trích chứa trọng vật tạo ra một áp suất lý thuyết hoàn toàn cố định, nếu bỏ qua lực ma sát phát sinh ở chổ tiếp xúc giữa cơ cấu làm kín và pittông và không tính đến lực quán của pittông chuyển dịch khi thể tích bình trích chứa thay đổi trong quá trình làm việc.

Bình trích chứa loại này yêu cầu phải bố trí trọng vật thật đối xứng so với pittông, nếu không sẽ gây ra lực thành phần ngang ở cơ cấu làm kín. Lực tác dụng ngang này sẽ làm hỏng cơ cấu làm kín và ảnh hưởng xấu đến quá trình làm việc ổn định của bình trích chứa.

Bình trích chứa trọng vật là một cơ cấu đơn giản, nhưng cồng kềnh, thường bố trí ngoài xưởng. Vì những lý do trên nên trong thực tế ít sử dụng loại bình này.

b. Bình trích chứa lò xo

Quá trình tích năng lượng ở bình trích chứa lò xo là quá trình biến năng lượng của lò xo. Bình trích chứa lo xo có quán tính nhỏ hơn so với bình trích chứa trọng vật, vì vậy nó được sử dụng để làm tắt những va đập thủy lực trong các hệ thủy lực và giữ áp suất cố định trong các cơ cấu kẹp.

c. Bình trích chứa thủy khí

Bình trích chứa thủy khí lợi dụng tính chất nén được của khí, để tạo ra áp suất chất lỏng. Tính chất này cho bình trích chứa có khả năng giảm chấn. Trong bình trích chứa trọng vật áp suất hầu như cố định không phụ thuộc vào vị trí của pittông, trong bình

trích chứa lo xo áp suất thay đổi tỷ lệ tuyến tính, còn trong bình trích chứa thủy khí áp suất chất lỏng thay đổi theo những định luật thay đổi áp suất của khí.

Theo kết cấu bình trích chứa thủy khí được chia thành hai loại chính:

+/ Loại không có ngăn: loại này ít dùng trong thực tế (Có nhược điểm: khí tiếp xúc trực tiếp với chất lỏng, trong quá trình làm việc khí sẽ xâm nhập vào chất lỏng và gây ra sự làm việc không ổn định cho toàn hệ thống. Cách khắc phục là bình trích chứa phải có kết cấu hình trụ nhỏ và dài để giảm bớt diện tích tiếp xúc giữa khí và chất lỏng).

+/ Loại có ngăn

Hình 2.32. Bình trích chứa thủy khí có ngăn

Bình trích chứa thủy khí có ngăn phân cách hai môi trường được dùng rộng rãi trong những hệ thủy lực di động. Phụ thuộc vào kết cấu ngăn phân cách, bình loại này được phân ra thành nhiều kiểu: kiểu pittông, kiểu màng,...

Cấu tạo của bình trích chứa có ngăn bằng màng gồm: trong khoang trên của bình trích chứa thủy khí, được nạp khí với áp suất nạp vào là p_n, khi không có chất lỏng làm việc trong bình trích chứa.

Nếu ta gọi p_{min} là áp suất nhỏ nhất của chất lỏng làm việc của bình trích chứa, thì $p_n \approx p_{min}$. áp suất p_{max} của chất lỏng đạt được khi thể tích của chất lỏng trong bình có được ứng với giá trị cho phép lớn nhất của áp suất khí trong khoang trên.

Khí sử dụng trong bình trích chứa thường là khí nitơ hoặc không khí, còn chất lỏng làm việc là dầu.

Việc làm kín giữa hai khoang khí và chất lỏng là vô cùng quan trọng, đặc biệt là đối với loại bình làm việc ở áp suất cao và nhiệt độ thấp. Bình trích chứa loại này có thể làm việc ở áp suất chất lỏng 100kG/cm².

Đối với bình trích chứa thủy khí có ngăn chia đàn hồi, nên sử dụng khí nitơ, còn không khí sẽ làm cao su mau hỏng.

Nguyên tắc hoạt động của bình trích chứa loại này gồm có hai quá trình đó là quá trình nạp và quá trình xả.

Hình 2.33. Quá trình nạp

Hình 2.34. Quá trình xả

CHƯƠNG 3: CÁC PHẦN TỬ CỦA HỆ THỐNG ĐIỀU KHIỂN BẰNG THỦY LỰC

3.1. KHÁI NIÊM

3.1.1. Hệ thống điều khiển

Hệ thống điều khiển bằng thủy lực được mô tả qua sơ đồ hình 3.1, gồm các cụm và phần tử chính, có chức năng sau:

- a. Cơ cấu tạo năng lượng: bom dầu, bộ lọc (...)
- b. Phần tử nhận tín hiệu: các loại nút ấn (...)
- c. Phần tử xử lý: van áp suất, van điều khiển từ xa (...)
- d. Phần tử điều khiển: van đảo chiều (...)
- e. Co cấu chấp hành: xilanh, động cơ dầu.

Hình 3.1. Hệ thống điều khiển bằng thủy lực

3.1.2. Sơ đồ cấu trúc hệ thống điều bằng thủy lực

Cấu trúc hệ thống điều khiển bằng thủy lực được thể hiện ở sơ đồ *hình 3.2*.

Hình 3.2. Cấu trúc thống điều khiển bằng thủy lực

3.2. VAN ÁP SUẤT

3.2.1. Nhiêm vu

Van áp suất dùng để điều chỉnh áp suất, tức là cố định hoặc tăng, giảm trị số áp trong hệ thống điều khiển bằng thủy lực.

3.2.2. Phân loại

Van áp suất gồm có các loại sau:

- +/ Van tràn và van an toàn
- +/ Van giảm áp
- +/ Van cản
- +/ Van đóng, mở cho bình trích chứa thủy lực.

3.2.2.1. Van tràn và an toàn

Van tràn và van an toàn dùng để hạn chế việc tăng áp suất chất lỏng trong hệ thống thủy lực vượt quá trị số quy định. Van tràn làm việc thường xuyên, còn van an toàn làm việc khi quá tải.

Ký hiệu của van tràn và van an toàn:

Có nhiều loại: +/ Kiểu van bi (trụ, cầu)

+/ Kiểu con trượt (pittông)

+/ Van điều chỉnh hai cấp áp suất (phối hợp)

Hình 3.3. Kết cấu kiểu van bi

Giải thích: khi áp suất p_1 do bơm dầu tạo nên vượt quá mức điều chỉnh, nó sẽ thắng lực lò xo, van mở cửa và đưa dầu về bể. Để điều chỉnh áp suất cần thiết nhờ vít điều chỉnh ở phía trên.

Ta có: $p_1.A = C.(x + x_0)$ (bỏ qua ma sát, lực quán tính, $p_2 \approx 0$)

Trong đó:

 x_0 - biến dạng của lò xo tạo lực căng ban đầu;

C - độ cứng lò xo;

 $F_0 = C.x_0$ - lực căng ban đầu;

x - biến dạng lò xo khi làm việc (khi có dầu tràn);

p₁ - áp suất làm việc của hệ thống;

A - diện tích tác động của bi.

Kiểu van bi có kết cấu đơn giản nhưng có nhược điểm: không dùng được ở áp suất cao, làm việc ồn ào. Khi lò xo hỏng, dầu lập tức chảy về bể làm cho áp suất trong hệ thống giảm đột ngột.

b. Kiểu van con trượt

Hình 3.4. Kết cấu kiểu van con trươt

Giải thích: Dầu vào cửa 1, qua lỗ giảm chấn và vào buồng 3. Nếu như lực do áp suất dầu tạo nên là F lớn hơn lực điều chỉnh của lò xo F_{lx} và trọng lượng G của pittông, thì pittông sẽ dịch chuyển lên trên, dầu sẽ qua cửa 2 về bể. Lỗ 4 dùng để tháo dầu rò ở buồng trên ra ngoài.

Ta có: p_1 . A = F_{lx} (bỏ qua ma sát và trọng lượng của pittông)

$$F_{1x} = C.x_0$$

Khi p_1 tăng \Rightarrow $F = p_1^*.A > F_{lx} \Rightarrow$ pittông đi lên với dịch chuyển x.

$$\Rightarrow p_1^*.A = C.(x + x_0)$$

Nghĩa là: $p_1 \uparrow \Rightarrow$ pittông đi lên một đoạn $x \Rightarrow$ dầu ra cửa 2 nhiều $\Rightarrow p_1 \downarrow$ để ổn định.

Vì tiết diện A không thay đổi, nên áp suất cần điều chỉnh p_1 chỉ phụ thuộc vào F_{lx} của lò xo.

Loại van này có độ giảm chấn cao hơn loại van bi, nên nó làm việc êm hơn. Nhược điểm của nó là trong trường hợp lưu lượng lớn với áp suất cao, lò xo phải có kích thước lớn, do đó làm tăng kích thước chung của van.

c. Van điều chỉnh hai cấp áp suất

Trong van này có 2 lò xo: lò xo 1 tác dụng trực tiếp lên bi cầu và với vít điều chỉnh, ta có thể điều chỉnh được áp suất cần thiết. Lò xo 2 có tác dụng lên bi trụ (con trượt), là

loại lò xo yếu, chỉ có nhiệm vụ thắng lực ma sát của bi trụ. Tiết diện chảy là rãnh hình tam giác. Lỗ tiết lưu có đường kính từ 0,8 ÷ 1 mm.

Hình 3.5. Kết cấu của van điều chỉnh hai cấp áp suất

Dầu vào van có áp suất p_1 , phía dưới và phía trên của con trượt đều có áp suất dầu. Khi áp suất dầu chưa thắng được lực lò xo 1, thì áp suất p_1 ở phía dưới và áp suất p_2 ở phía trên con trượt bằng nhau, do đó con trượt đứng yên.

Nếu áp suất p_1 tăng lên, bi cầu sẽ mở ra, dầu sẽ qua con trượt, lên van bi chảy về bể. Khi dầu chảy, do sức cản của lỗ tiết lưu, nên $p_1 > p_2$, tức là một hiệu áp $\Delta p = p_1 - p_2$ được hình thành giữa phía dưới và phía trên con trượt. (Lúc này cửa 3 vẫn đóng)

$$A_2.p_1 > C_1.x_2^0 \text{ và } C_2.x_3^0 > p_1.A_3$$

Khi p_1 tăng cao thắng lực lò xo $2 \Rightarrow$ lúc này cả 2 van đều hoạt động.

Loại van này làm việc rất êm, không có chấn động. Áp suất có thể điều chỉnh trong phạm vi rất rộng: từ $5 \div 63$ bar hoặc có thể cao hơn.

3.2.2.2. Van giảm áp

Trong nhiều trường hợp hệ thống thủy lực một bơm dầu phải cung cấp năng lượng cho nhiều cơ cấu chấp hành có áp suất khác nhau. Lúc này ta phải cho bơm làm việc với áp suất lớn nhất và dùng van giảm áp đặt trước cơ cấu chấp hành nhằm để giảm áp suất đến một giá trị cần thiết.

Ký hiệu:

Hình 3.6. Kết cấu của van giảm áp

Ví dụ: mạch thủy lực có lắp van giảm áp

Hình 3.7. Sơ đồ mạch thủy lực có lắp van giảm áp

Trong hệ thống này, xilanh 1 làm việc với áp suất p_1 , nhờ van giảm áp tạo nên áp suất $p_1 > p_2$ cung cấp cho xilanh 2. Áp suất ra p_2 có thể điều chỉnh được nhờ van giảm áp.

Ta có lực cân bằng của van giảm áp: $p_2.A = F_{lx} (F_{lx} = C.x)$

$$\Rightarrow$$
 $p_2 = \frac{C.x}{A} \Rightarrow A = const, x thay $d\vec{o}i \Rightarrow p_2$ thay $d\vec{o}i$.$

3.2.2.3. Van cản

Van cản có nhiệm vụ tạo nên một sức cản trong hệ thống ⇒ hệ thống luôn có dầu để bôi tron, bảo quản thiết bị, thiết bị làm việc êm, giảm va đập.

Ký hiệu:

Hình 3.8. Mạch thủy lực có lắp van cản

Trên hình 3.8, van cản lắp vào cửa ra của xilanh có áp suất p_2 . Nếu lực lò xo của van là F_{lx} và tiết diện của pittông trong van là A, thì lực cân bằng tĩnh là:

$$p_2.A - F_{lx} = 0 \Rightarrow p_2 = \frac{F_{lx}}{A}$$
 (3.1)

Như vậy ta thấy rằng áp suất ở cửa ra (tức cản ở cửa ra) có thể điều chỉnh được tùy thuộc vào sự điều chỉnh lực lò xo F_{lx} .

3.2.2.4. Role áp suất (áp lực)

Rơle áp suất thường dùng trong hệ thống thủy lực. Nó được dùng như một cơ cấu phòng quá tải, vì khi áp suất trong hệ thống vượt quá giới hạn nhất định, role áp suất sẽ ngắt dòng điện \Rightarrow Bơm dầu, các van hay các bộ phận khác ngưng hoạt động.

3.3. VAN ĐẢO CHIỀU

3.3.1. Nhiệm vụ

Van đảo chiều dùng đóng, mở các ống dẫn để khởi động các cơ cấu biến đổi năng lượng, dùng để đảo chiều các chuyển động của cơ cấu chấp hành.

3.3.2. Các khái niêm

+/ Số cửa: là số lỗ để dẫn dầu vào hay ra. Số cửa của van đảo chiều thường 2, 3 và 4, 5. Trong những trường hợp đặc biệt số cửa có thể nhiều hơn.

+/ Số vị trí: là số định vị con trượt của van. Thông thường van đảo chiều có 2 hoặc 3 vị trí. Trong những trường hợp đặc biệt số vị trí có thể nhiều hơn.

3.3.3. Nguyên lý làm việc

a. Van đảo chiều 2 cửa, 2 vị trí (2/2)

Hình 3.9. Van đảo chiều 2/2

b. Van đảo chiều 3 cửa, 2 vị trí (3/2)

Hình 3.10. Van đảo chiều 3/2

c. Van đảo chiều 4 cửa, 2 vị trí (4/2)

Hình 3.11. Van đảo chiều 4/2

Ký hiệu: P- cửa nối bơm;

T- cửa nối ống xả về thùng dầu;

A, B- cửa nối với cơ cấu điều khiển hay cơ cấu chấp hành;

L- cửa nối ống dầu thừa về thùng.

3.3.4. Các loại tín hiệu tác động

Loại tín hiệu tác động lên van đảo chiều được biểu diễn hai phía, bên trái và bên phải của ký hiệu. Có nhiều loại tín hiệu khác nhau có thể tác động làm van đảo chiều thay đổi vị trí làm việc của nòng van đảo chiều.

a. Loại tín hiệu tác động bằng tay

Hình 3.12. Các ký hiệu cho tín hiệu tác động bằng tay

b. Loại tín hiệu tác động bằng cơ

Hình 3.13. Các ký hiệu cho tín hiệu tác động bằng cơ

3.3.5. Các loại mép điều khiển của van đảo chiều

Khi nòng van dịch chuyển theo chiều trục, các mép của nó sẽ đóng hoặc mở các cửa trên thân van nối với kênh dẫn dầu.

Van đảo chiều có mép điều khiển dương (*hình 3.14a*), được sử dụng trong những kết cấu đảm bảo sự rò dầu rất nhỏ, khi nòng van ở vị trí trung gian hoặc ở vị trí làm việc nào đó, đòng thời độ cứng vững của kết cấu (độ nhạy đối với phụ tải) cao.

Van đảo chiều có mép điều khiển âm (hình 3.14b), đối với loại van này có mất mát chất lỏng chảy qua khe thông về thùng chứa, khi nòng van ở vị trí trung gian. Loại van này được sử dụng khi không có yêu cầu cao về sự rò chất lỏng, cũng như độ cứng vững của hê.

Van đảo chiều có mép điều khiển bằng không (*hình 3.14c*), được sử dụng phần lớn trong các hệ thống điều khiển thủy lực có độ chính xác cao (ví dụ như ở van thủy lực tuyến tính hay cơ cấu servo. Công nghệ chế tao loại van này tương đối khó khăn.

Hình 3.14. Các loại mép điều khiển của van đảo chiều

- a. Mép điều khiển dương;
- b. Mép điều khiển âm;
- c. Mép điều khiển bằng không.

3.4. CÁC LOẠI VAN ĐIỆN THỦY LỰC ỨNG DỤNG TRONG MẠCH ĐIỀU KHIỂN TƯ ĐÔNG

3.4.1. Phân loai

Có hai loai:

- +/ Van solenoid
- +/ Van tỷ lệ và van servo

3.4.2. Công dụng

a. Van solenoid

Dùng để đóng mở (như van phân phối thông thường), điều khiển bằng nam châm điện. Được dùng trong các mạch điều khiển logic.

b. Van tỷ lệ và van servo

Là phối hợp giữa hai loại van phân phối và van tiết lưu (gọi là van đóng, mở nối tiếp), có thể điều khiển được vô cấp lưu lượng qua van. Được dùng trong các mạch điều khiển tư động.

3.4.3. Van solenoid

Cấu tạo của van solenoid gồm các bộ phận chính là: loại điều khiển trực tiếp (hình 3.15) gồm có thân van, con trượt và hai nam châm điện; loại điều khiển gián tiếp (hình 3.16) gồm có van sơ cấp 1, cấu tạo van sơ cấp giống van điều khiển trực tiếp và van thứ cấp 2 điều khiển con trượt bằng dầu ép, nhờ tác động của van sơ cấp.

Con trượt của van sẽ hoạt động ở hai hoặc ba vị trí tùy theo tác động của nam châm. Có thể gọi van solenoid là loại van điều khiển có cấp.

Hình 3.15. Kết cấu và ký hiệu của van solenoid điều khiển trực tiếp

- 1, 2. Cuộn dây của nam châm điện;
- 3, 6. Vít hiệu chỉnh của lõi sắt từ;
- 4, 5. Lò xo.

Hình 3.16. Kết cấu và ký hiệu của van solenoid điều khiển gián tiếp 1. Van sơ cấp;
2. Van thứ cấp.

3.5.4. Van tỷ lệ

Cấu tạo của van tỷ lệ có gồm ba bộ phận chính (hình 3.17) là : thân van, con trượt, nam châm điện.

Để thay đổi tiết diện chảy của van, tức là thay đổi hành trình của con trượt bằng cách thay đổi dòng điện điều khiển nam châm. Có thể điều khiển con trượt ở vị trí bất kỳ trong phạm vi điều chỉnh nên van tỷ lệ có thể gọi là loại van điều khiển vô cấp.

Hình 3.17. Kết cấu và ký hiệu của van tỷ lệ

Hình 3.17 là kết cấu của van tỷ lệ, van có hai nam châm 1, 5 bố trí đối xứng, các lò xo 10 và 12 phục hồi vị trí cân bằng của con trượt 11.

3.4.5. Van servo

a. Nguyên lý làm việc

Hình 3.18. Sơ đồ nguyên lý của bộ phận điều khiển con trượt của van servo

Bộ phận điều khiển con trượt của van servo (torque motor) thể hiện trên hình~3.18 gồm các ở bộ phận sau:

+/ Nam châm vĩnh cửu;

+/ Phần ứng và hai cuộn dây;

- +/ Cánh chặn và càng đàn hồi; +/ Ống đàn hồi;
- +/ Miêng phun dầu.

Hai nam châm vĩnh cửu đặt đối xứng tạo thành khung hình chữ nhật, phần ứng trên đó có hai cuộn dây và cánh chặn dầu ngàm với phần ứng, tạo nên một kết cấu cứng vững. Định vị phần ứng và cánh chặn dầu là một ống đàn hồi, ống này có tác dụng phục hồi cụm phần ứng và cánh chặn về vị trí trung gian khi dòng điện vào hai cuộn dây cân bằng. Nối với cánh chặn dầu là càng đàn hồi, càng này nối trực tiếp với con trượt. Khi dòng điện vào hai cuộn dây lệch nhau thì phần ứng bị hút lệch, do sự đối xứng của các cực nam châm mà phần ứng sẽ quay. Khi phần ứng quay, ống đàn hồi sẽ biến dạng đàn hồi, khe hở từ cánh chặn đến miệng phun dầu cũng sẽ thay đổi (phía này hở ra và phía kia hẹp lại). Điều đó dẫn đến áp suất ở hai phía của con trượt lệch nhau và con trượt được di chuyển. Như vây:

+/ Khi dòng điện điều khiển ở hai cuộn dây bằng nhau hoặc bằng 0 thì phần ứng, cánh, càng và con trượt ở vị trí trung gian (áp suất ở hai buồng con trượt cân bằng nhau).

+/ Khi dòng $i_1 \neq i_2$ thì phần ứng sẽ quay theo một chiều nào đó tùy thuộc vào dòng điện của cuộn dây nào lớn hơn. Giả sử phần ứng quay ngược chiều kim đồng hồ, cánh chặn dầu cũng quay theo làm tiết diện chảy của miệng phun dầu thay đổi, khe hở miệng phun phía trái rộng ra và khe hở ở miệng phun phía phải hẹp lại. áp suất dầu vào hai buồng con trượt không cân bằng, tạo lực dọc trục, đẩy con trượt di chuyển về bên trái, hình thành tiết diện chảy qua van (tạo đường dẫn dầu qua van). Quá trình trên thể hiện ở hình 3.19b. Đồng thời khi con trượt sang trái thì càng sẽ cong theo chiều di chuyển của con trượt làm cho cánh chặn dầu cũng di chuyển theo. Lúc này khe hở ở miệng phun trái hẹp lại và khe hở miệng phun phải rộng lên, cho đến khi khe hở của hai miệng phun bằng nhau và áp suất hai phía bằng nhau thì con trượt ở vị trí cân bằng. Quá trình đó thể hiện ở hình 3.19c.

Mômen quay phần ứng và mômen do lực đàn hồi của càng cân bằng nhau. Lượng di chuyển của con trượt tỷ lệ với dòng điện vào cuộn dây.

+/ Tương tự như trên nếu phần ứng quay theo chiều ngược lại thì con trượt sẽ di chuyển theo chiều ngược lai.

Hình 3.19. Sơ đồ nguyên lý hoạt động của van servo

- a. So đồ giai đoạn van chưa lam việc;
- b. Sơ đồ giai đoạn đầu của quá trình điều khiển;
- c. Sơ đồ giai đoạn hai của quá trình điều khiển.

b. Kết cấu của van servo

Ngoài những kết cấu thể hiện ở *hình 3.18* và *hình 3.19*, trong van còn bố trí thêm bộ lọc dầu nhằm đảm bảo điều kiện làm việc bình thường của van. Để con trượt ở vị trí trung gian khi tín hiệu vào bằng không, tức là để phần ứng ở vị trí cân bằng, người ta đưa vào kết cấu vít điều chỉnh.

Các *hình* 3.20, 3.21, 3.22, 3.23, 3.24 là kết cấu của một số loại van servo được sử dụng hiện nay.

Hình 3.20. Bản vẽ thể hiện kết cấu và ký hiệu của van servo a, b. Bản vẽ thể hiện các dạng kết cấu của van servo; c. Ký hiệu của van servo.

Hình 3.21. Kết cấu của van servo một cấp điều khiển

- 1. Không gian trống;
- 2. ống phun;
- 3. Lõi sắt của nam châm;
- 4. ống đàn hồi;
- 5. Càng điều khiển điện thủy lực;
- 6. Vít hiệu chỉnh;
- 7. Thân của ống phun;
- 8. Thân của nam châm;
- 9. Không gian quay của lõi sắt nam châm;
- 10. Cuộn dây của nam châm;
- 11. Con trượt của van chính;
- 12. Buồng dầu của van chính.

Hình 3.22. Kết cấu của van servo 2 cấp điều khiển

1. Cụm nam châm; 2. Ống phun; 3. Càng đàn hồi của bộ phận điều khiển điện thủy lực; 4. Xylanh của van chính; 5. Con trượt của van chính; 6. Càng điều khiển điện-thủy lực; 7. Thân của ống phun.

Hình 3.23. Kết cấu của van servo 2 cấp điều khiển có cảm biến

Van tiết lưu có thể đặt ở đường dầu vào hoặc đường ra của cơ cấu chấp hành.

Van tiết lưu có hai loai:

+/ Tiết lưu cố định

+/ Tiết lưu thay đổi được lưu lượng

Ví dụ: *hình 3.25* là sơ đồ của van tiết lưu được lắp ở đường ra của hệ thống thủy lực. Cách lắp này được dùng phổ biến nhất, vì van tiết lưu thay thế cả chức năng của van cản, tạo nên một áp suất nhất định trên đường ra của xilanh và do đó làm cho chuyển động của nó được êm.

Hình 3.25. Sơ đồ thủy lực có lắp van tiết lưu ở đường dầu ra

Ta có các phương trình:

 $Q_2 = A_2.v$: lưu lượng qua van tiết lưu

 $\Delta p = p_2 - p_3$: hiệu áp qua van tiết lưu

Lưu lượng dầu Q₂ qua khe hở được tính theo công thức Torricelli như sau:

$$Q_2 = \mu A_x \cdot \sqrt{\frac{2.g}{\rho}} \cdot \sqrt{\Delta p} \ [m^3/s]$$
 (3.3)

hoặc
$$A_2.v = \mu.A_x.c.$$
 $\sqrt{\Delta p}$ $(c = \sqrt{\frac{2.g}{\rho}} = const)$

$$\Rightarrow v = \frac{\mu \cdot A_x \cdot c \cdot \sqrt{\Delta p}}{A_2}$$
 (3.4)

Trong đó:

μ - hệ số lưu lượng;

$$A_x$$
 - diện tích mặt cắt của khe hở: $A_1 = \frac{\pi \cdot d^2}{4}$ [m²];

 $\Delta p = (p_2 - p_3)$ - áp suất trước và sau khe hở [N/m²]; ρ - khối lượng riêng của dầu [kg/m³].

Khi A_x thay đổi $\Rightarrow \Delta p$ thay đổi và v thay đổi.

Hình 3.26. Độ chênh lệch áp suất và lưu lượng dòng chảy qua khe hở

Dựa vào phương thức điều chỉnh lưu lượng, van tiết lưu có thể phân thành hai loại chính: van tiết lưu điều chỉnh dọc trục và van tiết lưu điều chỉnh quanh trục.

a. Van tiết lưu điều chỉnh dọc trực

Hình 3.27. Tiết lưu điều chỉnh dọc trục

b. Van tiết lưu điều chỉnh quanh truc

Hình 3.28. Tiết lưu điều chỉnh quanh trực

3.5.2. Bộ ổn tốc

Bộ ổn tốc là cấu đảm bảo hiệu áp không đổi khi giảm áp ($\Delta p = const$), và do đó đảm bảo một lưu lượng không đổi chảy qua van, tức là làm cho vận tốc của cơ cấu chấp hành có giá trị gần như không đổi.

Như vậy để ổn định vận tốc ta sử dụng bộ ổn tốc.

Bộ ổn tốc là một van ghép gồm có: một van giảm áp và một van tiết lưu. Bộ ổn tốc có thể lắp trên đường vào hoặc đường ra của cơ cấu chấp hành như ở van tiết lưu, nhưng phổ biến nhất là lắp ở đường ra của cơ cấu chấp hành.

Hình 3.29. Kết cấu bộ ổn tốc

Điều kiện để bộ ổn tốc có thể làm việc là: $p_1 > p_2 > p_3 > p_4$ Ta có phương trình cân bằng tĩnh:

$$A.p_3 = p_4.A + F_{1x} \Rightarrow \Delta p = p_3 - p_4 = \frac{F_{1x}}{A}$$
 (3.5)

$$Q_2 = \mu.A_x.c.\sqrt{\Delta p} = k.\sqrt{\frac{F_{lx}}{A}}$$
(3.6)

 Q_2 không phụ thuộc vào tải mà chỉ phụ thuộc vào $F_{lx} \Longrightarrow v$ ổn định

Hình 3.30. Sơ đồ thủy lực có lắp bộ ổn tốc

3.6. VAN CHĂN

Van chặn gồm các loại van sau:

- +/ Van một chiều.
- +/ Van một chiều điều điều khiển được hướng chặn.
- +/ Van tác động khoá lẫn.

3.6.1. Van một chiều

Van một chiều dùng để điều khiển dòng chất lỏng đi theo một hướng, và ở hướng kia dầu bị ngăn lại.

Trong hệ thống thủy lực, thường đặt ở nhiều vị trí khác nhau tùy thuộc vào những muc đích khác nhau.

Van một chiều gồm có: van bi, van kiểu con trượt.

Hình 3.31. Kết cấu van bi một chiều

Úng dụng của van một chiều:

- +/Đặt ở đường ra của bơm (để chặn dầu chảy về bể).
- +/Đặt ở cửa hút của bơm (chặn dầu ở trong bơm).
- +/ Khi sử dụng hai bơm dầu dùng chung cho một hệ thống.

Ví dụ: sơ đồ thủy lực sử dụng hai bơm dầu nhằm giảm tiêu hao công suất.

Hình 3.32. Sơ đồ mạch thủy lực sử dụng hai bơm dầu

Khi thực hiện vận tốc công tác v_1 , bơm 1 (Q_1) hoạt động: $Q_1 = A_1.v_1$.

Khi thực hiện vận tốc chạy không v_2 (pittông lùi về) thì cả hai bơm cùng cung cấp dầu $(Q_1,\,Q_2)$:

$$Q_1 + Q_2 = A_2.v_2 (Q_2 >> Q_1).$$

Giải thích nguyên lý:

+/ Khi có tải F_L và thực hiện $v_1 \Rightarrow p_1 > p_2$, van một chiều bị chặn \Rightarrow $v_1 = \frac{Q_1}{A_1}$ và Q_2 về bể dầu.

 $(A.p_1 > F_{lx} \Rightarrow$ pittông đi lên cửa P và T thông nhau $\Rightarrow Q_2$ về bể dầu).

+/ Khi chạy nhanh với v_2 (không tải): $p_1^* \downarrow \Rightarrow F_{lx} \ge p_1^*.A \Rightarrow$ pittông đi xuống mở cửa P, đóng cửa T, lúc này $p_2 > p_1 \Rightarrow$ van một chiều mở \Rightarrow cung cấp Q_2 và Q_1 cho xilanh để thực hiện v_2 .

$$\mathbf{v}_2 = \frac{\mathbf{Q}_1 + \mathbf{Q}_2}{\mathbf{A}_2}$$

3.6.2. Van một chiều điều khiển được hướng chặn

a. Nguyên lý hoạt động

Khi dầu chảy từ A qua B, van thực hiện theo nguyên lý của van một chiều. Nhưng khi dầu chảy từ B qua A, thì phải có tín hiệu điều khiển bên ngoài tác động vào cửa X.

Hình 3.33. Van một chiều điều khiển được hướng chặn a. Chiều A qua B, tác dụng như van một chiều; b. Chiều B qua A có dòng chảy, khi có tác dụng tín ngoài X; c. Ký hiệu.

3.6.3. Van tác động khoá lẫn

a. Nguyên lý hoạt động

Kết cấu của van tác động khoá lẫn, thực ra là lắp hai van một chiều điều khiển được hướng chặn. Khi dòng chảy từ A_1 qua B_1 hoặc từ A_2 qua B_2 theo nguyên lý của van một chiều. Nhưng khi dầu chảy từ B_2 về A_2 thì phải có tín hiệu điều khiển A_1 hoặc khi dầu chảy từ B_1 về A_1 thì phải có tín hiệu điều khiển A_2 .

a. Dòng chảy từ A₁ qua B₁ hoặc từ A₂ qua B₂
(như van một chiều);
b. Từ B₂ về A₂ thì phải có tín hiệu điều khiển A₁;
c. Ký hiệu.

$$\Rightarrow v = \frac{Q}{6.d^2 \cdot \frac{\pi}{4}} \cdot 10^2 \tag{3.10}$$

$$\Rightarrow$$
 Kích thước đường kính ống dẫn là: d = 10. $\sqrt{\frac{2.Q}{3.\pi.v}}$ [mm] (3.11)

3.7.2. Các loại ống nối

a. Yêu cầu

Trong hệ thống thủy lực, ống nối có yêu cầu tương đối cao về độ bền và độ kín. Tùy theo điều kiện sử dụng ống nối có thể không tháo được và tháo được.

b. Các loại ống nối

Để nối các ống dẫn với nhau hoặc nối ống dẫn với các phần tử thủy lực, ta dùng các loại ống nối được thể hiển như ở *hình* 3.36

Hình 3.36. Các loại ống nối a. Ống nối vặn ren; b. Ống nối siết chặt bằng đại ốc.

3.7.3. Vòng chắn

a. Nhiệm vụ

Chắn dầu đómg vai trò quan trọng trong việc đảm bảo sự làm việc bình thường của các phần tử thủy lực.

Chắn dầu không tốt, sẽ bị rò dầu ở các đầu nối, bị hao phí dầu, không đảm bảo áp suất cao dẫn đến hệ thống hoạt động không ổn định.

b. Phân loai

Để ngăn chặn sự rò dầu, người ta thường dùng các loại vòng chắn, vật liệu khác nhau, tùy thuộc vào áp suất, nhiệt độ của dầu.

Dựa vào bề mặt cần chắn khít, ta phân thành hai loại:

- +/ Loại chắn khít phần tử cố định.
- +/ Loại chắn khít phần tử chuyển động.
- c. Loại chắn khít phần tử cố định

Chắn khít những phần tử cố định tương đối đơn giản, dùng các vòng chắn bằng chất dẻo hoặc bằng kim loại mềm (đồng, nhôm). Để tăng độ bền, tuổi thọ của vòng chắn có tính đàn hồi, ta thường sử dụng các cơ cấu bảo vệ chế tạo từ vật liệu cứng hơn (cao su nền vải, vòng kim loại, cao su lưu hóa cùng lõi kim loại).

d. Loại chắn khít các phần tử chuyển động tương đối với nhau

Loại này được dùng rộng rãi nhất, để chắn khít những phần tử chuyển động. Vật liệu chế tạo là cao su chịu dầu, để chắn dầu giữa 2 bề mặt có chuyển động tương đối (giữa pittông và xilanh).

Để tăng độ bền, tuổi thọ của vòng chắn có tính đàn hồi, tương tự như loại chắn khít những phần tử cố định, thường ta sử dụng các cơ cấu bảo vệ chế tạo từ vật liệu cứng hơn (vòng kim loại).

Để chắn khít những chi tiết có chuyển động thẳng (cần pittông, cần đẩy điều khiển con trượt điều khiển với nam châm điện,...), thường dùng vòng chắn có tiết diện chử V, với vật liệu bằng da hoặc bằng cao su.

Trong trường hợp áp suất làm việc của dầu lớn thì bề dày cũng như số vòng chắn cần thiết càng lớn.

CHƯƠNG 4: ĐIỀU CHỈNH VÀ ỔN ĐỊNH VẬN TỐC

Điều chỉnh vận tốc chuyển động thẳng hoặc chuyển động quay của cơ cấu chấp hành trong hệ thống thủy lực bằng cách thay đổi lưu lượng dầu chảy qua nó với hai phương pháp sau:

+/ Thay đổi sức cản trên đường dẫn dầu bằng van tiết lưu. Phương pháp điều chỉnh này gọi là điều chỉnh bằng tiết lưu.

+/ Thay đổi chế độ làm việc của bơm dầu, tức là điều chỉnh lưu lượng của bơm cung cấp cho hệ thống thủy lực. Phương pháp điều chỉnh này gọi là điều chỉnh bằng thể tích.

Lựa chọn phương pháp điều chỉnh vận tốc phụ thuộc vào nhiều yếu tố như công suất truyền động, áp suất cần thiết, đặc điểm thay đổi tải trọng, kiểu và đặc tính của bơm dầu,...

Để giảm nhiệt độ của dầu, đồng thời tăng hiệu suất của hệ thống dầu ép, người ta dùng phương pháp điều chỉnh vận tốc bằng thể tích. Loại điều chỉnh này được thực hiện bằng cách chỉ đưa vào hệ thống dầu ép lưu lượng dầu cần thiết để đảm bảo một vận tốc nhất định. Do đó, nếu như không tính đến tổn thất thể tích và cơ khí thì toàn bộ năng lượng do bơm dầu tao nên đều biến thành công có ích.

4.1. ĐIỀU CHỈNH BẰNG TIẾT LƯU

Do kết cấu đơn giản nên loại điều chỉnh này được dùng nhiều nhất trong các hệ thống thủy lực của máy công cụ để điều chỉnh vận tốc của chuyển động thẳng cũng như chuyển động quay.

Ta có:

$$Q=\mu.A_{_X}.c.\sqrt{\Delta p}$$

Khi A_x thay đổi \Rightarrow thay đổi Δp \Rightarrow thay đổi Q \Rightarrow v thay đổi.

Ở loại điều chỉnh này bơm dầu có lưu lượng không đổi, và với việc thay đổi tiết diện chảy của van tiết lưu, làm thay đổi hiệu áp của dầu, do đó thay đổi lưu lượng dẫn đến cơ cấu chấp hành để đảm bảo một vận tốc nhất định. Lượng dầu thừa không thực hiên công có ích nào cả và nó được đưa về bể dầu.

Tuỳ thuộc vào vị trí lắp van tiết lưu trong hệ thống, ta có hai loại điều chỉnh bằng tiết lưu sau:

- +/ Điều chỉnh bằng tiết lưu ở đường vào.
- +/ Điều chỉnh bằng tiết lưu ở đường ra.

4.1.1. Điều chỉnh bằng tiết lưu ở đường vào

Hình 4.1 là sơ đồ điều chỉnh vận tốc bằng tiết lưu ở đường vào. Van tiết lưu (0.4) đặt ở đường vào của xilanh (1.0). Đường ra của xilanh được dẫn về bể dầu qua van cản (0.5). Nhờ van tiết lưu (0.4), ta có thể điều chỉnh hiệu áp giữa hai đầu van tiết lưu, tức là điều chỉnh được lưu lượng chảy qua van tiết lưu vào xilanh, do đó làm thay đổi vận tốc của pittông. Lượng dầu thừa chảy qua van tràn (0.2) về bể dầu.

Van cản (0.5) dùng để tạo nên một áp nhất định (khoảng 3÷8bar) trong buồng bên phải của xilanh (1.0), đảm bảo pittông chuyển động êm, ngoài ra van cản (0.5) còn làm giảm chuyển động giật mạnh của cơ cấu chấp hành khi tải trọng thay đổi ngột.

Nếu như tải trọng tác dụng lên pittông là F và lực ma sát giữa pittông và xilanh là F_{ms} , thì phương trình cân bằng lực của pittông là:

$$p_1.A_1 - p_2.A_2 - F_L - F_{ms} = 0 \Rightarrow p_1 = p_2.\frac{A_2}{A_1} + \frac{F_L + F_{ms}}{A_1}$$
 (4.1)

Hiệu áp giữa hai đầu van tiết lưu: $\Delta p = p_0 - p_1$ (4.2)

Trong đó: p_0 là áp suất do bơm dầu tạo nên, được điều chỉnh bằng van tràn (0.2). Phương trình lưu lượng: Q qua van tiết lưu cũng là Q qua xilanh (bỏ qua rò dầu)

$$Q = A_1 \cdot v = \mu \cdot A_x \cdot c \cdot \sqrt{\Delta p}$$
(4.3)

Qua đây ta thấy: khi F_L thay đổi \Rightarrow p_1 thay đổi \Rightarrow Δp thay đổi \Rightarrow Q thay đổi \Rightarrow V không ổn định.

Hình 4.1. Sơ đồ mạch thủy lực điều chính bằng tiết lưu ở đường vào

4.1.2. Điều chỉnh bằng tiết lưu ở đường ra

Hình 4.2. Sơ đồ mạch thủy lực điều chỉnh bằng tiết lưu ở đường ra

*Hình 4.2 l*à sơ đồ điều chỉnh vận tốc bằng tiết lưu ở đường ra. Van tiết lưu đảm nhiệm luôn chức năng của van cản là tạo nên một áp suất nhất định ở đường ra của xilanh. Trong trường hợp này, áp suất ở buồng trái xilanh bằng áp suất của bơm, tức là $p_1=p_0$.

Phương trình cân bằng tĩnh là:

$$p_0.A_1 - p_2.A_2 - F_L - F_{ms} = 0 (4.4)$$

Vì cửa van của tiết lưu nối liền với bể dầu, nên hiệu áp của van tiết lưu:

$$\Delta p = p_2 - p_3 = p_2$$

$$\Rightarrow \Delta p = p_2 = p_0 \cdot \frac{A_1}{A_2} - \frac{F_L + F_{ms}}{A_2}$$
 (4.5)

$$Q_2 = v.A_2 = \mu.A_x.c\sqrt{p}_2$$
 (4.6)

Ta cũng thấy: F_L thay đổi \Rightarrow p_2 thay đổi \Rightarrow Q_2 thay đổi và v thay đổi.

Cả hai điều chỉnh bằng tiết lưu có ưu điểm chính là kết cấu đơn giản, nhưng cả hai cũng có nhược điểm là không đảm bảo vận tốc của cơ cấu chấp hành ở một giá trị nhất định, khi tải trọng thay đổi.

Thường người ta dùng hai loại điều chỉnh này trong những hệ thống thủy lực làm việc với tải trọng thay đổi nhỏ, hoặc trong hệ thống không yêu cầu có vận tốc không đổi.

Nhược điểm khác của hệ thống điều chỉnh bằng tiết lưu là một phần năng lượng không dùng biến thành nhiệt trong quá trình tiết lưu, nhiệt lượng ấy làm giảm độ nhớt của dầu, có khả năng làm tăng lượng dầu rò, ảnh hưởng đến sự ổn định vận tốc của cơ cấu chấp hành.

Vì những lý do đó, điều chỉnh bằng tiết lưu thường dùng trong những hệ thống thủy lực có công suất nhỏ, thường không quá 3÷3,5 kw. Hiệu suất của hệ thống điều chỉnh này khoảng 0,65÷0,67.

4.2. ĐIỀU CHỈNH BẰNG THỂ TÍCH

Để giảm nhiệt độ dầu, đồng thời tăng hệu suất của hệ thống thủy lực, người ta dùng phương pháp điều chỉnh vận tốc bằng thể tích. Loại điều chỉnh này được thực hiện bằng cách chỉ đưa vào hệ thống thủy lực lưu lượng dầu cần thiết để đảm bảo một vận tốc nhất định.

Lưu lượng dầu có thể thay đổi với việc dùng bơm dầu pittông hoặc cánh gạt điều chỉnh lưu lượng.

Đặc điểm của hệ thống điều chỉnh vận tốc bằng thể tích là khi tải trọng không đổi, công suất của cơ cấu chấp hành tỷ lệ với lưu lượng của bơm. Vì thế, loại điều chỉnh này được dùng rộng rãi trong các máy cần thiết một công suất lớn khi khởi động, tức là cần thiết lực kéo hoặc mômen xoắn lớn. Ngoài ra nó cũng được dùng rộng rãi trong những hệ thống thực hiện chuyển động thẳng hoặc chuyển động quay khi vận tốc giảm, công suất cần thiết cũng giảm.

Tóm lại: Ưu điểm của phương pháp điều chỉnh bằng thể tích là đảm bảo hiệu suất truyền động cao, dầu ít bị làm nóng, nhưng bơm dầu điều chỉnh lưu lượng có kết cấu phức tạp, chế tạo đắt hơn là bơm dầu có lưu lượng không đổi.

Hình 4.3. Sơ đồ thủy lực điều chỉnh bằng thể tích

Thay đổi Q bằng cách thay đổi q_b của bơm

$$Q_b = q_b.n$$

Trên hình 4.3 ta thấy:

Thay đổi độ lệch tâm e (xê dịch vòng trượt) \Rightarrow q_b sẽ thay đổi \Rightarrow Q_b thay đổi.

4.3. ỔN ĐINH VÂN TỐC

Trong những cơ cấu chấp hành cần chuyển động êm, độ chính xác cao, thì các hệ thống điều chỉnh đơn giản như đã trình bày ở trên không thể đảm bảo được, vì nó không khắc phục được những nguyên nhân gây ra sự không ổn định chuyển động, như tải trọng không thay đổi, độ đàn hồi của dầu, độ rò dầu cũng như sự thay đổi nhiệt độ của dầu.

Ngoài những nguyên nhân trên, hệ thống thủy lực làm việc không ổn định còn do những thiếu sót về kết cấu (như các cơ cấu điều khiển chế tạo không chính xác, lắp ráp không thích hợp,...). Do đó, muốn cho vận tốc được ổn định, duy trì được trị số đã điều chỉnh thì trong các hệ thống điều chỉnh vận tốc kể trên cần lắp thêm một bộ phận, thiết bị để loại trừ ảnh hưởng của các nguyên nhân làm mất ổn định vận tốc.

Ta xét một số phương pháp thường dùng để ổn định vận tốc của cơ cấu chấp hành.

Để giảm ảnh hưởng thay đổi tải trọng, phương pháp đơn giản và phổ biến nhất là dùng bộ ổn định vận tốc (gọi tắt là bộ ổn tốc). Bộ ổn tốc có thể dùng trong hệ thống điều chỉnh vận tốc bằng tiết lưu, hay ở hệ thống điều chỉnh bằng thể tích và nó có thể ở đường vào hoặc đường ra của cơ cấu chấp hành. (Như ta đã biết lắp ở đường ra được dùng rộng rãi hơn).

4.3.1. Bộ ổn tốc lắp trên đường vào của cơ cấu chấp hành

Hình 4.4. Sơ đồ mạch thủy lực có lắp bộ ổn tốc trên đường vào

Tại van giảm áp ta có:

$$p_3 \cdot \frac{\pi \cdot D^2}{4} - p_1 \cdot \frac{\pi \cdot D^2}{4} - F_{lx} = 0$$
 (4.7)

$$\Rightarrow \Delta p = p_3 - p_1 = F_{lx} \cdot \frac{4}{\pi D^2} \text{ hiệu áp qua van tiết lưu.}$$
 (4.8)

mà
$$v = \frac{Q}{A_1} = \frac{c.\mu.A_x}{A_1}.\sqrt{\Delta p} = const$$
 (4.9)

Giải thích: giả sử $F_L \uparrow \Rightarrow p_1 \uparrow \Rightarrow$ pittông van giảm áp sang trái \Rightarrow cửa ra của van giảm áp mở rộng \Rightarrow $p_3 \uparrow$ để dẫn đến $\Delta p = const.$

Trên đồ thị:
$$p_1 \ge p_2 + p_{ms} (p_{ms} = \frac{F_{ms}}{A_1})$$
 (4.10)

+/ Khi $p_1 \uparrow \Rightarrow p_3 \uparrow \Rightarrow \Delta p = \text{const } \Rightarrow v = \text{const.}$

+/ Khi $p_3 = p_0$, tức là cửa ra của van mở hết cở (tại A trên đồ thị), nếu tiếp tục \uparrow $F_L \Rightarrow p_1 \uparrow$ mà $p_3 = p_1$ không tăng nữa $\Rightarrow \Delta p = p_3 - p_1$ $(p_3 = p_0) \downarrow \Rightarrow v \downarrow v$ à đến khi $p_1 = p_3 = p_0 \Rightarrow \Delta p = 0 \Rightarrow v = 0$.

4.3.2. Bộ ổn tốc lắp trên đường ra của cơ cấu chấp hành

Hình 4.5. Sơ đồ mạch thủy lực có lắp bộ ổn tốc trên đường ra

+/ Tại van giảm áp ta có:
$$p_3 \cdot \frac{\pi \cdot D^2}{4} - F_{lx} = 0$$
 (4.11)

$$\Delta p = p_3 - 0 = F_{lx} \cdot \frac{4}{\pi \cdot D^2} = \text{const}.$$
 (4.12)

+/ Giả sử: $F_L \uparrow \Rightarrow p_2 \downarrow \Rightarrow p_3 \downarrow \Rightarrow$ pittông van giảm áp sang phải \Rightarrow cửa ra mở rộng $\Rightarrow p_3 \uparrow$ để $\Delta p = const.$

Trên đồ thi:

Khi $F_L = 0 \Rightarrow p_2 = p_0 - p_{ms} \Rightarrow v = v_0$.

Khi $F_L \uparrow \Rightarrow p_2 \downarrow \Rightarrow$ van giảm áp duy trì p_3 để $\Delta p = const \Rightarrow v = const$.

Nếu tiếp tục \uparrow $F_L \Rightarrow p_2 = p_3$ (tại A trên đồ thị), nếu tăng nữa $\Rightarrow p_2 = p_3 \downarrow = 0 \Rightarrow \Delta p = 0 \Rightarrow v = 0$.

4.3.3. Ốn định tốc độ khi điều chỉnh bằng thể tích kết hợp với tiết lưu ở đường vào

Lưu lượng của bơm được điều chỉnh bằng cách thay đổi độ lệch tâm e. Khi làm việc, stato của bơm có xu hướng di động sang trái do tác dụng của áp suất dầu ở buồng nén gây nên.

Hình 4.6. ổn định tốc độ khi điều chỉnh bằng thể tích kết hợp với tiết lưu ở đường vào

Ta có phương trình cân bằng lực của stato (bỏ qua ma sát):

$$F_{1x} + p_1.F_1 - p_0.F_2 - k.p_0 = 0$$
 (k: hệ số điều chỉnh bơm) (4.13)

Nếu ta lấy hiệu tiết diện F_1 - F_2 = $k \Leftrightarrow F_1$ = F_2 + k

$$(4.13) \Leftrightarrow F_{1x} + p_1 \cdot (F_2 + k) - p_0 \cdot F_2 - k \cdot p_0 = 0$$

$$\Leftrightarrow$$
 $F_{1x} = F_2 \cdot (p_0 - p_1) + k \cdot (p_0 - p_1)$

$$\Leftrightarrow F_{1x} = (F_2 + k).(p_0 - p_1)$$

$$\Rightarrow p_0 - p_1 = \frac{F_{lx}}{F_2 + k} = \frac{F_{lx}}{F_1}$$
 (4.14)

Ta có lưu lượng qua van tiết lưu:

$$Q = \mu.A_{x}.c.\sqrt{\Delta p} \tag{4.15}$$

$$\Delta p = p_0 - p_1 = \frac{F_{lx}}{F_2 + k} = \frac{F_{lx}}{F_1}$$
(4.16)

$$\Rightarrow Q = \mu.A_x.c.\sqrt{\frac{F_{lx}}{F_l}} = \mu.A_x.c.\sqrt{\Delta p}$$
 (4.17)

Từ công thức (4.17) ta thấy:

Lưu lượng Q không phụ thuộc vào tải trọng (đặc trưng bằng $p_{\scriptscriptstyle 1},\,p_{\scriptscriptstyle 0}).$

Giả sử: $F_L \uparrow \Rightarrow p_1 \uparrow \Rightarrow$ pittông điều chỉnh sẽ đẩy stato của bơm sang phải \Rightarrow e $\uparrow \Rightarrow p_0 \uparrow \Rightarrow \Delta p = p_0$ - p_1 = const.

CHƯƠNG 5: ÚNG DỤNG VÀ THIẾT KẾ HỆ THỐNG TRUYỀN ĐỘNG THỦY LỰC

5.1. ÚNG DỤNG TRUYỀN ĐỘNG THỦY LỰC

5.1.1. Muc đích

Trong hệ thống truyền động bằng thủy lực, phần lớn do các nhà chế tạo, sản xuất ra và có những yêu cầu về các thông số kỹ thuật được xác định và tiêu chuẩn hóa.

Mục đích của chương này là giới thiệu cho sinh viên các sơ đồ lắp của hệ thống thủy lực trong các máy.

5.1.2. Các sơ đồ thủy lực

Hình 5.1. Máy dập điều khiển bằng tay

0.1 Bom; 0.2 Van tràn; 0.3 Áp kế;

1.1 Van một chiều;

1.2 Van đảo chiều 3/2, điều khiển bằng tay gạt;

1.0 Xilanh.

Khi có tín hiệu tác động bằng tay, xilanh A mang đầu dập đi xuống. Khi thả tay ra, xilanh lùi về.

5.1.2.2. Cơ cấu rót tự động cho quy trình công nghệ đúc

Hình 5.2. Sơ đồ mạch thủy lực cơ cấu rót phôi tự động

0.1 Bom; 0.2 Van tràn; 0.3 Áp kế;

1.3 Van một chiều;

1.1 Van đảo chiều 4/2, điều khiển bằng tay gạt;

1.0 Xilanh; 1.2 Van cản.

Để chuyển động của xilanh, gàu xúc đi xuống được êm, ta lắp thêm một van cản 1.2 vào đường xả dầu về.

5.1.2.3. Cơ cấu nâng hạ chi tiết sơn trong lò sấy

Hình 5.3. Cơ cấu nâng hạ chi tiết sơn trong lò sấy

Hình 5.4. Sơ đồ mạch thủy lực nâng hạ chi tiết được sơn trong lò sấy

0.1 Bơm; 0.2 Van tràn; 0.3 Áp kế;

1.1 Van đảo chiều 4/3, điều khiển bằng tay gạt;

1.2 Van một chiều điều khiển được hướng chặn;

1.0 Xilanh.

Để cho chuyển động của xilanh đi xuống được êm và có thể dừng lại vị trí bất kỳ, ta lắp thêm van một chiều điều khiển được hướng chặn 1.2 vào đường nén của xilanh.

5.1.2.4. Co cấu kẹp chặt chi tiết gia công

Hình 5.5. Cơ cấu kẹp chặt chi tiết gia công 1. Xilanh; 2. Chi tiết; 3. Hàm kẹp.

Khi tác động bằng tay, pittông mang hàm kẹp di động đi ra, kẹp chặt chi tiết. Khi gia công xong, gạt bằng tay cần điều khiển van đảo chiều, pittông lùi về, hàm kẹp mở ra.

Để cho xilanh chuyển động đi tới kẹp chi tiết với vận tốc chậm, không va đập với chi tiết, ta sử dụng van tiết lưu một chiều.

Trên sơ đồ, van tiết lưu một chiều đặt ở trên đường ra và van tiết lưu đặt ở đường vào (hãy so sánh hai cách này).

Hình 5.6. Sơ đồ mạch thủy lực cơ cấu kẹp chặt chi tiết gia công

0.1 Bơm; 0.2 Van tràn; 0.3 Áp kế;

1.1. Van đảo chiều 4/2, điều khiển bằng tay gạt;

1.2 Van tiết lưu một chiều; 1.0 Xilanh.

5.1.2.5. Máy khoan bàn

Hình 5.7. Máy khoan bàn

Hệ thống thủy lực điều khiển hai xilanh. Xilanh A mang đầu khoan đi xuống với vận tốc đều được điều chỉnh trong quá trình khoan, xilanh B làm nhiệm vụ kẹp chặt chi tiết trong quá trình khoan.

Khi khoan xong, xilanh A mang đầu khoan lùi về, sau đó xilanh B lùi về mở hàm kẹp, chi tiết được tháo ra.

Hình 5.8. Sơ đồ mạch thủy lực cơ cấu kẹp chặt chi tiết gia công

- 0.1 Bom; 0.2 Van tràn;
- 1.1. Van đảo chiều 4/2, điều khiển bằng tay gạt;
- 1.2. Van giảm áp; 1.0 Xilanh A;
- 1.3. Van một chiều;
- 2.1. Van đảo chiều 4/3, điều khiển bằng tay gạt;
- 2.2. Bộ ổn tốc; 2.3. Van một chiều;
- 2.4. Van cản; 2.5. Van một chiều;
- 2.6. Van tiết lưu; 2.0. Xilanh B.

Để cho vận tốc trong quá trình không đổi, mặc dù trọng thay có thể tải đổi, ta dùng bộ ổn tốc 2.2.

Áp suất cần để kẹp chi tiết nhỏ, ta sử dụng van giảm áp 1.2.

5.2. THIẾT KẾ HỆ THỐNG TRUYỀN ĐỘNG THỦY LỰC

5.2.1. Muc đích

Tất cả các bộ phận trong hệ thống thủy lực đều có những yêu cầu kỹ thuật nhất định. Những yêu cầu đó chỉ có thể được thỏa mãn, nếu như các thông số cơ bản của các bộ phận ấy được lựa chọn thích hợp.

Các cơ cấu chấp hành, cơ cấu biến đổi năng lượng, cơ cấu điều khiển và điều chỉnh, cũng như các phần lớn các thiết bị phụ khác trong hệ thống thủy lực đều được tiêu chuẩn hóa.

Do đó, việc thiết kế hệ thống thủy lực thông thường là việc tính toán lựa chọn thích hợp các cơ cấu trên.

5.2.2. Thiết kế hệ thống truyền động thủy lực

Trình tự: có những số liệu ban đầu và các yêu cầu sau

- +/ Chuyển động thẳng: tải trọng F, vận tốc (v, v'), hành trình x,...;
- +/ Chuyển động quay: momen xoắn M_X , vận tốc (n, Ω) ;
- +/ Thiết kế sơ đồ thiết bi;
- +/ Tính toán p, Q của cơ cấu chấp hành dựa vào tải trọng và vận tốc;
- +/ Tính toán lưu lượng và áp suất của bơm;
- +/ Chọn các phần tử thủy lực (p_b, Q_b) ;
- +/ Xác định công suất động cơ điện.

5.2.2.1. Tính toán thiết kế hệ thủy lưc chuyển đông tinh tiến

Hình 5.9. Sơ đồ mạch thủy lực chuyển động tịnh tiến

Từ sơ đồ thủy lực ta có:

+/ Lực quán tính:
$$F_a = m.a$$
 (5.1)
$$(F_a = \frac{W_L}{g}.a \text{ theo hệ Anh})$$

+/ Lực ma sát:
$$F_{ms} = m.g.f$$
 (5.2)

 $(F_{ms} = W_L.f$ theo hệ Anh)

+/ Lực ma sát trong xilanh F_s thường bằng 10% lực tổng cộng, tức là:

$$F_{ms} = 0.10.F \tag{5.3}$$

+/ Lực tổng cộng tác dụng lên pittông sẽ là:

$$F = \frac{m.a}{1000} + F_{ms} + F_{s} + F_{t} \text{ [daN]}$$
 (5.4)

Theo hệ Anh:
$$F = \frac{W_L.a}{32.2.12} + F_{ms} + F_s + F_t$$
 [lbf]

Trong đó:

F_t - lực do tải trọng ngoài gây ra (ngoại lực), daN (lbf);

m - khối lượng chuyển động, kg.s²/cm;

W_L - trong lực, (lbf);

a - gia tốc chuyển động, cm/s²;

 F_{ms} - lực ma sát của bộ phận chuyển động, daN (lbf);

F_s - lực ma sát trong pittông - xilanh, daN (lbf).

Ta có phương trình cân bằng tĩnh của lực tác dung lên pittông

$$p_1.A_1 = p_2.A_2 + F (5.5)$$

Đối với xilanh không đối xứng thì lưu lượng vào ≠ lưu lượng ra

$$Q_1 = Q_2.R \text{ với } R = \frac{A_1}{A_2} \text{ (hệ số diện tích)}$$
 (5.6)

Từ đó ta xác định được đường kính của xilanh (D), đường kính của cần pittông (d) Cu thể:

• Đường kính của xilanh:
$$D = 2.\sqrt{\frac{A_1}{\pi}}$$
 (5.7)

• Đường kính của cần pittông:
$$d = 2.\sqrt{\frac{A_1 - A_2}{\pi}}$$
 (5.8)

Độ sụt áp qua van sẽ tỷ lệ với bình phương hệ số diện tích R, tức là:

$$p_0 - p_1 = (p_2 - p_T).R^2$$
 (5.9)

Trong đó:

p₀ - áp suất dầu cung cấp cho van;

p₁, p₂ - áp suất ở các buồng của xilanh;

p_T - áp suất dầu ra khỏi van;

 A_1 , A_2 - diện tích hai phía của pittông.

Từ công thức (5.5), (5.9) ta tìm được p_1 và p_2

$$p_1 = \frac{p_0.A_2 + R^2.(F + p_T.A_2)}{A_2.(1 + R^3)}$$
(5.10)

$$p_2 = p_T + \frac{p_0 - p_1}{R^2} \tag{5.11}$$

Tương tự, khi pittông làm việc theo chiều ngược lại thì:

$$p_1 = p_T + (p_0 - p_2).R^2$$
 (5.12)

$$p_2 = \frac{p_0.A_2.R^3 + F + p_T.A_2.R}{A_2.(1+R^3)}$$
 (5.13)

Lưu lượng dầu vào xilanh để pittông chuyển động với vận tốc cực đại là:

$$Q_{1\text{max}} = v_{\text{max}}.A_1 \text{ [cm}^3/\text{s]}$$
 (5.14)

$$Q_{1\text{max}} = \frac{v_{\text{max}}}{16.7}.A_1 \text{ [l/ph]}$$
 (5.15)

Lưu lượng dầu ra khỏi hệ thống khi làm việc với v_{max} là:

$$Q_{2\text{max}} = v_{\text{max}}.A_2 \text{ [cm}^3/\text{s]}$$
 (5.16)

$$Q_{2\text{max}} = \frac{V_{\text{max}}}{16.7}.A_2 [l/ph]$$
 (5.17)

Lưu lương qua van tiết lưu và van đảo chiều được xác định theo công thức Torricelli:

$$Q = \mu.A_x.\sqrt{\frac{2.g}{\rho}}.\sqrt{\Delta p} \ [cm^3/s]$$
 (5.18)

Trong đó:

 μ - hệ số lưu lượng;

 A_x - diết diện mặt cắt của khe hở [cm²];

 $\Delta p = (p_1 - p_2) - \acute{a}p$ suất trước và sau khe hở [N/cm²];

 ρ - khối lượng riêng của dầu [kg/cm³].

Lưu lượng của bơm: chọn bơm dựa vào p và $Q \Rightarrow N_{\text{dco diện}}$

$$Q_b = n. V. \eta_v.10^{-3} [l/ph]$$
 (5.19)

Trong đó:

n - số vòng quay [vg/ph];

V - thể tích dầu/vòng [cm³/vg];

 η_v - hiệu suất thể tích [%].

Áp suất của bơm:

$$p_b = \frac{M.\eta_{hm}}{V}.10 \text{ [bar]}$$
 (5.20)

Công suất để truyền động bơm:

$$N = \frac{p_b \cdot Q_b}{6 \cdot \eta_t} \cdot 10^{-2} \text{ [kW]}$$
 (5.21)

Trong đó:

M - Mômen trên trục động cơ nối với bơm [Nm];

 η_{hm} - hiệu suất cơ và thủy lực [%];

 η_t - hiệu suất toàn phần [%].

Công suất cần thiết của động cơ điện là:

$$N_{d} = \frac{N}{\eta_{t}} [kW] \tag{5.22}$$

Tính và chọn ống dẫn (ống hút, ống nén, ống xả)

+/ Chọn vận tốc chảy qua ống:

- \vec{O} ống hút: $v = 0.5 \div 1.5 \text{ m/s}$
- \mathring{O} ống nén: p < 50bar thì v = 4 ÷ 5 m/s

$$p = 50 \div 100bar thi v = 5 \div 6 m/s$$

$$p > 100bar thi v = 6 \div 7 m/s$$

• Ở ống xả: $v = 0.5 \div 1.5 \text{ m/s}$

+/ Chọn kích thước đường kính ống:

Ta có phương trình lưu lương chảy qua ống dẫn:

$$Q = A.v (5.23)$$

Trong đó:

Tiết diện:
$$A = \frac{\pi \cdot d^2}{4}$$
 (5.24)

$$\Leftrightarrow Q = \frac{\pi . d^2}{4} . v \tag{5.25}$$

Trong đó: d [mm];

Q [lít/phút];

v [m/s].

$$\Rightarrow v = \frac{Q}{6.d^2 \cdot \frac{\pi}{4}} \cdot 10^2 \tag{5.26}$$

⇒ Kích thước đường kính ống dẫn là:
$$d = 10.\sqrt{\frac{2.Q}{3.\pi.v}}$$
 [mm] (5.27)

5.2.2.2. Tính toán thiết kế hệ thủy lực chuyển động quay

Hệ thủy lực thực hiện chuyển động quay cũng được phân tích như hệ thủy lực chuyển động thẳng.

Mômen xoắn tác đông lên truc đông cơ dầu bao gồm:

+/ Mômen do quán tính

$$M_a = J.\theta [Nm]$$
 (5.28)

J - mômen quán tính khối lượng trên trục động cơ dầu [Nms²];

 θ - gia tốc góc của trục động cơ dầu [rad/s²].

- +/ Mômen do ma sát nhớt trên trục động cơ dầu $M_{\scriptscriptstyle D}$ [Nm].
- +/ Mômen do tải trọng ngoài M_L [Nm].
- +/ Mômen xoắn tổng cộng M_x sẽ là:

$$M_x = J. \theta + M_D + M_L [Nm]$$
 (5.29)

Hình 5.10. Sơ đồ mạch thủy lực chuyển động quay

Theo phương pháp tính toán như hệ chuyển động thẳng, áp suất p_1 và p_2 trong hệ chuyển động quay được xác định theo công thức

$$p_{1} = \left(\frac{p_{0} + p_{T}}{2}\right) + \left(\frac{10.\pi M}{D_{m}}\right) [bar]$$
 (5.30)

$$p_2 = p_0 - p_1 + p_T [bar]$$
 (5.31)

Lưu lượng để làm quay trục động cơ dầu với n_{max}

$$Q_1 = Q_2 = \frac{n_{\text{max}}.D_m}{1000} [1/ph]$$
 (5.32)

Trong đó:

 n_{max} - số vòng quay lớn nhất của trục động cơ dầu [vg/ph];

D_m - thể tích riêng của động cơ dầu [cm³/vg].

Công suất truyền động động cơ dầu

$$N = \frac{p_1 \cdot Q_1 \cdot \eta_t}{6.10^2} \text{ [kW]}$$
 (5.33)

(Phần tính toán bơm và đường ống tương tự hệ chuyển động thẳng)

□Trong hai bài toán trên, quá trình tính toán chưa tính (quan tâm) đến tổn thất áp suất và lưu lượng trong các phần tử và trong toàn hệ thống.□

5.2.2.3. Các ví du

Ví dụ 1: thiết kế hệ thống thủy lực với các số liệu cho trước:

+/ Tải trong: 100 tấn

+/ Trong luong G = 3000 KG

- +/ Vận tốc công tác: $v_{max} = 320 \text{ (mm/phút)}$
- +/ Vận tốc chạy không: $v_{max} = 427 \text{ (mm/phút)}$
- +/ Pittông đặt thẳng đứng, hướng công tác từ dưới lên
- +/ Điều khiển khiển tốc độ bằng van servo.

Hình 5.11. Sơ đồ mạch thủy lực

Bài giải:

- ① Chọn các phần tử thủy lực:
 - +/ Xilanh tải trọng
 - +/ Van servo
 - +/ Ác quy thủy lực
 - +/ Loc cao áp (loc tinh)
 - +/ Đồng hồ đo áp suất
 - +/ Van tràn
 - +/ Bơm dầu (bơm bánh răng)
 - +/ Van cản.
- 2 Phương trình cân bằng lực của cụm xilanh tạo tải trọng

Ta viết phương trình cân bằng lực của cụm pittông xét ở hành trình công tác (hành trình đi từ dưới lên trên của pittông)

$$p_1.A_1 - p_2.A_2 - F_t - F_{msc} - F_{msp} - G - F_{qt} = 0$$
 (5.34)

Trong đó:

p₁: áp suất dầu ở buồng công tác

p₂: áp suất ở buồng chạy không

 A_1 : diện tích pittông ở buồng công tác $A_1 = \frac{\pi \cdot D^2}{4}$

A₂: diện tích pittông ở buồng chạy không $A_2 = \frac{\pi \cdot \left(D^2 - d^2\right)}{4}$

 F_t : tải trọng công tác $F_t = 1000 \text{ (kN)}$

G: trong lượng của khối lượng m, G = 300 (KG)

F_{msp}: lực ma sát của pittông và xilanh

F_{msc}: lực ma sát giữa cần pittông và vòng chắn khít

F_{mst}: lực ma sát giữa khối lượng m và bạc trượt

 F_{qt} : lực quán tính sinh ra ở giai đoạn pittông bắt đầu chuyển động.

+/ Ta có lực ma sát của pittông và xilanh:

$$F_{msp} = \mu.N \tag{5.35}$$

Trong đó:

 μ : hệ số ma sát. Đối với cặp vật liệu xilanh là thép và vòng găng bằng gang thì $\mu = (0.09 \div 0.15)$, chọn $\mu = 0.1$.

N: lực của các vòng găng tác động lên xilanh và được tính:

$$N = \pi.D.b.(p_2 + p_k) + \pi.D.b.(z - 1).p_k$$
(5.36)

D: đường kính pittông (cm), theo dãy giá trị đường kính tiêu chuẩn ta chọn D = 27 (cm)

b: bề rông của mối vòng găng, chon b = 1 (cm)

 p_2 : áp suất của buồng mang cần pittông, chọn p_2 = 5 (KG/cm²)

z: số vòng găng, chọn z = 3

 p_k : áp suất tiếp xúc ban đầu giữa vòng găng và xilanh, $p_k = (0.7 \div 0.14)$ (KG/cm²), chọn $p_k = 1$ (KG/cm²)

 π .D.b. $(p_2 + p_k)$: lưc của vòng găng đầu tiên

 π .D.b.(z - 1).p_k: lực tiếp xúc của vòng găng tiếp theo

$$\Rightarrow F_{msp} = 0.5.D \tag{5.37}$$

+/ Lực ma sát giữa cần pittông và vòng chắn khít

$$F_{\text{msc}} = 0.15.f.\pi.d.b.p$$
 (5.38)

f: hệ số ma sát giữa cần và vòng chắn, đối với vật liệu làm bằng cao su thì f=0.5.D

d: đường kính cần pittông, chọn d = 0.5.D

b: chiều dài tiếp xúc của vòng chắn với cần, chon d = b

p: áp suất tác dụng vào vòng chắn, chính là áp suất $p_2 = 5$ (KG/cm²)

0,15: hệ số kể đến sự giảm áp suất theo chiều dài của vòng chắn.

$$\Rightarrow F_{\text{msc}} = 0.029.D^2 \tag{5.39}$$

+/ Lực ma sát giữa khối lượng m và bạc trượt

$$F_{mst} = 2.\pi.d.l.k$$
 (5.40)

d: đường kính trụ trượt

1: chiều dài của bạc trượt

k: hệ số phụ thuộc vào cặp vật liệu của trụ và bạc trượt

Lực này có thể bỏ qua, vì để bảo đảm chế độ lắp ghép và làm việc.

+/ Lực quán tính

$$F_{qt} = \frac{G.v}{g.t_0} \tag{5.41}$$

g: gia tốc trọng trường, $g = 9.81 \text{ (m/s}^2)$

G: khối lượng của bộ phận chuyển động, G = 300 (KG)

v: vận tốc lớn nhất của cơ cấu chấp hành, $v_{max} = 320 \text{ (mm/ph)} \approx 5,3 \text{ (mm/s)}$

 t_0 : thời gian quá độ của pittông đến chế độ xác lập, t_0 =(0,01 ÷ 0,5)(s), chọn t_0 = 0,1(s)

$$\Rightarrow$$
 F_{at} = 1,62 (KG)

Thay các giá trị vừa tính vào (5.34) ta có:

$$p_1 = 179,56 \text{ (KG/cm}^2), \text{ chọn } p_1 = 180 \text{ (KG/cm}^2).$$

3 Phương trình lưu lượng

+/ Xét ở hành trình công tác

$$Q_1 = v_{ct}.A_{ct}$$

$$\Leftrightarrow Q_1 = v_{ct}.D^2.\frac{\pi}{4}$$
(5.42)

Q₁: lưu lương cần cung cấp trong hành trình công tác

 v_{ct} : vận tốc chuyển động trong hành trình công tác

(ở đây ta lấy giá trị $v_{max} = 320 \text{mm/ph}$)

D: diện tích bề mặt làm việc của pittông (D= 270 mm)

$$\Rightarrow$$
 Q₁ \approx 18312480 (mm³/ph) \approx 18,3 (l/ph).

+/ Xét ở hành trình lùi về (tương tự)

4 Tính và chọn các thống số của bơm

+/ Lưu lượng của bom: Q_b

Ta có: $Q_b = Q_1$ (bỏ qua tổn thất)

$$\Leftrightarrow$$
 $Q_b = Q_{ct} = Q_1 = 18,3 (1/ph)$

+/ Áp suất bơm: p_b

$$p_b = p_0 = p_1 = 180 \text{ (KG/cm}^2)$$

+/ Công suất bơm:
$$N_b = \frac{p_b \cdot Q_b}{612}$$
 (KW) (5.43)

$$\Rightarrow$$
 N_b = $\frac{180.18,3}{612} \approx 5,38$ (KW)

+/ Công suất động cơ điện dẫn động bơm

Ta có:
$$N_{dc} = \frac{N_b}{\eta_d, \eta_b}$$
 (5.44)

N_{dc}: công suất của động cơ điện

 η_b : hiệu suất của bơm, $\eta_b = (0.6 \div 0.9)$, chọn $\eta_b = 0.87$

 η_d : hiệu suất truyền động từ động cơ qua bơm, chọn η_d = 0,985 (theo giáo trình "chi tiết máy" tập 2 của Nguyễn Trọng Hiệp)

$$\Rightarrow$$
 N_{dc} = $\frac{5.38}{0.985.0,87} \approx 6,24$ (KW)

S Tính toán ống dẫn

Ta có lưu lượng chảy qua ống:

$$Q = \frac{\pi . d^2 . v}{4} \tag{5.45}$$

Q: lưu lượng chảy qua ống (l/ph)

d: đường kính trong của ống (mm)

v: vận tốc chảy qua ống (m/s)

C.thức
$$(5.45) \Leftrightarrow \frac{\pi \cdot (10^{-3} \cdot d)^2}{4} = \frac{Q}{10^3 \cdot 60} \Rightarrow d = 4,6.\sqrt{\frac{Q}{v}}$$
 (5.46)

Đối với ống nén thì $v = (6 \div 7 \text{ m/s})$, chọn v = 6 m/s

$$\Rightarrow$$
 d_n = 4,6. $\sqrt{\frac{18,3}{6}}$ = 8,03(mm)

Đối với ống hút thì $v = (0.5 \div 1.5 \text{ m/s})$, chọn v = 1.5 m/s

$$\Rightarrow$$
 d_h = 4,6. $\sqrt{\frac{18,3}{1,5}}$ = 16,06 (mm)

Đối với ống xả thì $v = (0.5 \div 1.5 \text{ m/s})$, chọn v = 1.5 m/s

$$\Rightarrow$$
 d_x = 4,6. $\sqrt{\frac{18,3}{1,5}}$ = 16,06(mm)

Ví dụ 2: Để thực hiện lượng chạy dao của máy tổ hợp, trong trường hợp tải trọng không đổi, người ta dùng hệ thống thủy lực như sau

Số liêu cho trước:

Lưc chay dao lớn nhất:

$$F_{\text{max}} = 12000$$
N.

Lương chạy dao nhỏ nhất:

$$s_{min} = v_{min} = 20 \text{ mm/ph.}$$

Lương chay dao lớn nhất:

$$s_{max} = v_{max} = 500 \text{ mm/ph}.$$

Trọng lượng bàn máy:

$$G = 4000 N.$$

Đây là hệ thống thủy lực điều chỉnh bằng tiết lưu. Lượng dầu chảy qua hệ thống được điều chỉnh bằng van tiết lưu đặt ở đường ra, và lượng dầu tối thiểu chảy qua van tiết lưu ta chọn là $Q_{\text{min}}=0,1$ l/ph.

Tính toán và thiết kế hệ thống trên.

Ví dụ 3: Trong trường hợp tải trọng của máy thay đổi, hoặc dao động với tần số thấp; cần phai lắp bộ ổn tốc. Ta xét trường hợp lắp bộ ổn tốc trên đường vào của hệ thống thủy lực

Các số liệu cho trước:

Tải trọng lớn nhất:

$$F_{\text{max}} = 20000 \text{ N}.$$

Lượng chạy dao nhỏ nhất:

$$s_{min} = v_{min} = 20 \text{ mm/ph}.$$

Lượng chạy dao lớn nhất:

$$s_{max} = v_{max} = 1000 \text{ mm/ph}.$$

Trọng lượng bàn máy:

$$G = 5000 \text{ N}.$$

Hệ số ma sát:

$$f = 0.2$$

Lượng chạy dao cần thiết được điều chỉnh bằng van tiết lưu của bộ ổn tốc và ta cũng chọn lượng dầu nhỏ nhất chảy qua van tiết lưu là:

$$Q_{min} = 0.1 \text{ l/ph}.$$

Tính toán và thiết kế hệ thống trên.

Ví dụ 4: Trên máy mài, thường dùng hệ thống thủy lực để thực hiện chuyển động thẳng đi về của bàn máy bằng phương pháp điều chỉnh tiết lưu.

Các số liêu cho trước:

Tải trong lớn nhất:

$$F_{max} = 800 \text{ N}.$$

Vận tốc nhỏ nhất của bàn máy:

$$v_{min} = 100 \text{ mm/ph}.$$

Vận tốc lớn nhất của bàn máy:

$$v_{max} = 20000 \text{ mm/ph}.$$

Trọng lượng bàn máy:

$$G = 3000 \text{ N}.$$

Hệ số ma sát:

$$f = 0.2$$

Ta chọn lượng dầu tối thiểu qua van tiết lưu là:

$$Q_{min} = 0.2 \text{ l/ph}.$$

Tính toán và thiết kế hệ thống trên.

Ví dụ 5: Thiết kế hệ thống thủy lực thực hiện chuyển động quay với các số liệu cho trước:

Mômen lớn nhất:

M = 20 Nm

Số vòng quay lớn nhất:

 $n_{\text{max}} = 500 \text{ v/ph}$

Số vòng quay nhỏ nhất:

 $n_{min} = 5 \text{ v/ph}$

Lưu lượng riêng của động cơ dầu:

 $Q_d = 0.03 \text{ l/ph}$

Mômen riêng của động cơ dầu:

 $M_d = 0.41 \text{ N/bar.}$

PHẦN 2: HỆ THỐNG KHÍ NÉN CHƯƠNG 6: CƠ SỐ LÝ THUYẾT

6.1. LỊCH SỬ PHÁT TRIỂN VÀ KHẢ NĂNG ỨNG DỤNG CỦA HỆ THỐNG TRUYỀN ĐÔNG KHÍ NÉN

6.1.1. Lịch sử phát triển

Năng lượng khí nén được sử dụng trong các máy móc thiết bị vào những năm của thế kỷ 19, cụ thể

+/ Năm 1880 sử dụng phanh bằng khí nén

+/

6.1.2. Khả năng ứng dụng của khí nén

- a. Trong lĩnh vực điều khiển
- +/ Vào những thập niên 50 và 60 của thế kỷ 20, là thời gian phát triển mạnh mẽ của giai đoạn tự động hóa quá trình sản xuất, kỹ thuật điều khiển bằng khí nén được phát triển rộng rãi và đa dạng trong nhiều lĩnh vực khác nhau.
- +/ Hệ thống điều khiển bằng khí nén được sử dụng trong các lĩnh vực như: các thiết bị phun sơn, các loại đồ gá kẹp chi tiết hoặc là sử dụng trong lĩnh vực sản xuất các thiết bị điện tử vì điều kiện vệ sinh môi trường rất tốt và an toàn cao.
- +/ Ngoài ra hệ thống điều khiển bằng khí nén được sử dụng trong các dây chuyền rửa tự động, trong các thiết bị vận chuyển và kiểm tra của thiết bị lò hơi, thiết bị mạ điện, đóng gói, bao bì và trong công nghiệp hóa chất.
 - b. Hệ thống truyền động
- +/ Các dụng cụ, thiết bị máy va đập: các thiết bị, máy móc trong lĩnh vự khai thác đá, khai thác than, trong các công trình xây dựng (xây dựng hầm mỏ, đường hầm,...).
- +/ Truyền động thẳng: vận dụng truyền động bằng áp suất khí nén cho chuyển động thẳng trong các dụng cụ, đồ gá kẹp chặt chi tiết, trong các thiết bị đóng gói, trong các loại máy gia công gỗ, trong các thiết bị làm lạnh cũng như trong hệ thống phanh hãm của ôtô.
- +/ Truyền động quay: truyền động xilanh, động cơ quay với công suất lớn bằng năng lượng khí nén.
- +/ Trong các hệ thống đo và kiểm tra: được dùng trong các thiết bị đo và kiểm tra chất lượng sản phẩm.

6.2. NHỮNG ƯU ĐIỂM VÀ NHƯỢC ĐIỂM CỦA HỆ THỐNG TRUYỀN ĐỘNG BẰNG KHÍ NÉN

6.2.1. Ưu điểm

- +/ Có khả năng truyền năng lượng đi xa, bởi vì độ nhớt động học của khí nén nhỏ và tổn thất áp suất trên đường dẫn nhỏ.
- +/ Do khả năng chịu nén (đàn hồi) lớn của không khí, nên có thể trích chứa khí nén rất thuận lợi. Vì vậy có khả năng ứng dụng để thành lập một trạm trích chứa khí nén.
- +/ Không khí dùng để nén, hầu như có số lượng không giới hạn và có thể thải ra ngược trở lại bầu khí quyển.
- +/ Hệ thống khí nén sạch sẽ, dù cho có sự rò rỉ không khí nén ở hệ thống ống dẫn, do đó không tồn tai mối đe doa bi nhiễm bẩn.
- +/ Chi phí nhỏ để thiết lập một hệ thống truyền động bằng khí nén, bởi vì phần lớn trong các xí nghiệp, nhà máy đã có sẳn đường dẫn khí nén.
- +/ Hệ thống phòng ngừa quá áp suất giới hạn được đảm bảo, nên tính nguy hiểm của quá trình sử dụng hệ thống truyền động bằng khí nén thấp.
- +/ Các thành phần vận hành trong hệ thống (cơ cấu dẫn động, van, ...) có cấu tạo đơn giản và giá thành không đắt.
- +/ Các van khí nén phù hợp một cách lý tưởng đối với các chức năng vận hành logic, và do đó được sử dụng để điều khiển trình tự phức tạp và các móc phức hợp.

6.2.2. Nhược điểm

- +/ Lực để truyền tải trọng đến cơ cấu chấp hành thấp.
- +/ Khi tải trọng trong hệ thống thay đổi, thì vận tốc truyền cũng thay đổi theo, bởi vì khả năng đàn hồi của khí nén lớn. (Không thể thực hiện được những chuyển động thẳng hoặc quay đều).
 - +/ Dòng khí thoát ra ở đường dẫn ra gây nên tiếng ồn.

6.3. NGUYÊN LÝ TRUYỀN ĐỘNG

6.4. SƠ ĐỔ NGUYÊN LÝ TRUYỀN ĐỘNG

Hình 6.1. Sơ đồ nguyên lý của mạch điều khiển và các phần tử

6.5. ĐƠN VỊ ĐƠ CÁC ĐẠI LƯỢNG CƠ BẨN

6.5.1. Áp suất

Đơn vi đo cơ bản của áp suất theo hệ đo lường SI là pascal.

1 pascal là áp suất phân bố đều lên bề mặt có diện tích 1 m^2 với lực tác dụng vuông góc lên bề mặt đó là 1 N.

 $1 \text{ Pa} = 1 \text{ N/m}^2$

 $1 \text{ Pa} = 1 \text{ kgm/s}^2/\text{m}^2 = 1 \text{ kg/ms}^2$

 $1 \text{ Pa} = 10^{-6} \text{ Mpa}$

Ngoài ra ta còn dùng đơn vị là bar.

$$1 \text{ bar} = 10^5 \text{ Pa}$$

6.5.2. Luc

Đơn vi của lưc là Newton (N).

1 N là lực tác dụng lên đối trọng có khối lượng 1 kg với gia tốc 1 m/s².

$$1 N = 1 kg.m/s^2$$

6.5.3. Công suất

Đơn vị của công suất là Watt.

1 Watt là công suất trong thời gian 1 giây sinh ra năng lượng 1 Joule.

$$1 \text{ W} = 1 \text{ Nm/s}$$

$$1 W = 1 \frac{m}{s} \cdot \frac{kg \cdot m}{s^2}$$

CHƯƠNG 7: CÁC PHẦN TỬ KHÍ NÉN VÀ ĐIỆN KHÍ NÉN

7.1. CƠ CẤU CHẤP HÀNH

Cơ cấu chấp hành có nhiệm vu biến đổi năng lương khí nén thành năng lương cơ học. Cơ cấu chấp hành có thể thực hiện chuyển đông thẳng (xilanh) hoặc chuyển đông quay (đông cơ khí nén).

Ó trạng thái làm việc ổn định, thì khả năng truyền năng lượng có phương pháp tính toán giống thủy lực.

Ví du:

Công suất: N = p.Q (khí nén)

Vận tốc: $v = \frac{N}{F_t}$ (cơ cấu chấp hành) $\begin{cases} p.A = F_{lx} + F_t \Rightarrow p = \frac{F_{lx} + F_t}{A} \\ v = \frac{Q}{A} \end{cases}$

Một số xilanh, động cơ khí nén thường gặp:

Xilanh tác dung đơn (tác dung một chiều)

Xilanh tác dung hai chiều (tác dung kép)

Xilanh tác dung hai chiều có cơ cấu giảm chấn không điều chỉnh được

Xilanh tác dụng hai chiều có cơ cấu giảm chấn điều chỉnh được

Xilanh quay bằng thanh răng

Động cơ khí nén 1 chiều, 2 chiều

7.2. VAN ĐẢO CHIỀU

Van đảo chiều có nhiệm vụ điều khiển dòng năng lượng bằng cách đóng, mở hay chuyển đổi vị trí, để thay đổi hướng của dòng năng lượng.

7.2.1. Nguyên lý hoạt động của van đảo chiều

Hình 7.1. Nguyên lý hoạt động của van đảo chiều

Khi chưa có tín hiệu tác động vào cửa (12), thì cửa (1) bị chặn và cửa (2) nối với cửa (3).

Khi có tín hiệu tác động vào cửa (12) (khí nén), lúc này nòng van sẽ dịch chuyển về phía bên phải, cửa (1) nối với cửa (2) và cửa (3) bị chặn.

Trường hợp tín hiệu tác động vào cửa (12) mất đi, dưới tạc dụng của lực lò xo, nòng van trở về vị trí ban đầu.

7.2.2. Ký hiệu van đảo chiều

Chuyển đổi vị trí của nòng van được biểu diễn bằng các ô vuông liền nhau với các chữ cái 0, a, b, c, ... hay các số 0, 1, 2, ...

a	0	b		a	b
---	---	---	--	---	---

Vị trí "0" được ký hiệu là vị trí, mà khi van chưa có tác động của tín hiệu ngoài vào.

Đối với van có 3 vị trí, thì vị trí giữa là vị trí "0", còn đối với van có 2 vị trí, thì vị trí "0" có thể là a hoặc b, thường vị trí b là vị trí "0".

Cửa nối van được ký hiệu như sau:	Theo t/c ISO5599	Theo t/c ISO1219
Cửa nối với nguồn khí	1	P
Cửa nối làm việc	2, 4, 6,	A, B, C,
Cửa xả khí	3, 5, 7,	R, S, T,
Cửa nối với tín hiệu điều khiển	12, 14,	X, Y,

Bên trong ô vuông của mỗi vị trí là các đường thẳng có hình mũi tên, biểu diễn hướng chuyển động của dòng khí qua van. Trường hợp dòng bị chặn, được biểu diễn bằng dấu gach ngang.

Hình 7.2. Ký hiệu các cửa của van đảo chiều

Một số van đảo chiều thường gặp:

Hình 7.3. Các loại van đảo chiều

7.2.3. Các tín hiệu tác đông

Nếu ký hiệu lò xo nằm ngay phía bên phải của ký hiệu của van đảo chiều, thì van đảo chiều đó có vị trí "0". Điều đó có nghĩa là chừng nào chưa có tác dụng vào nòng van, thì lò xo tác động giữ vị trí đó.

Tác đông phía đối diện của van, ví dụ: tín hiệu tác động bằng cơ, bằng khí nén hay bằng điện giữ ô vuông phía trái của van và được ký hiệu "1".

a. Tín hiệu tác động bằng tay

d. Tín hiệu tác động bằng nam châm điện

Hình 7.4. Các tín hiệu tác động

7.2.4. Van đảo chiều có vị trí "0"

Van đảo chiều có vị trí "0" là loại van có tác động bằng cơ - lò xo lên nòng van.

a. Van đảo chiều 2/2: tín hiệu tác động bằng cơ - đầu dò. Van có 2 cửa P và R, 2 vị trí "0" và "1". Vị trí "0" cửa P và R bị chặn.

Hình 7.5. Van đảo chiều 2/2

Nếu đầu dò tác động vào, từ vị trí "0" van sẽ được chuyển đổi sang vị trí "1", như vậy cửa P và R sẽ nối với nhau. Khi đầu dò không tác động nữa, thì van sẽ quay trở về vị trí ban đầu (vị trí "0") bằng lực nén lò xo.

b. Van đảo chiều 3/2:

+/ Tín hiệu tác động bằng cơ - đầu dò. Van có 3 cửa P, A và R, có 2 vị trí "0" và "1". Vị trí "0" cửa P bị chăn.

Cửa A nối với cửa R, nếu đầu dò tác động vào, từ vị trí "0" van sẽ được chuyển sang vị trí "1", như vậy cửa P và cửa A sẽ nối với nhau, cửa R bị chặn. Khi đầu dò không tác động nữa, thì van sẽ quay về vị trí ban đầu (vị trí "0") bằng lực nén lò xo.

Hình 7.6. Kết cấu van đảo chiều 3/2

+/ Tín hiệu tác động bằng tay - nút ấn

+/ Tín hiệu tác động bằng nam châm điện qua van phụ trợ

Hình 7.7. Ký hiệu và kết cấu van đảo chiều 3/2, tác động bằng nam châm điện qua van phụ trợ

Tại vị trí "0" cửa P bị chặn, cửa A nối với R. Khi dòng điện vào cuôn dây, pittông trụ bị kéo lên, khí nén sẽ theo hướng P_1 , 12 tác động lên pittông phụ, pittông phụ bị đẩy xuống, van sẽ chuyển sang vị trí "1", lúc này cửa P nối với A, cửa R bị chặn.

Khi dòng điện mất đi, pittông trụ bị lò xo kéo xuống và khí nén ở phần trên pittông phụ sẽ theo cửa Z thoát ra ngoài.

c. Van đảo chiều 4/2:

+/ Tín hiệu tác động bằng tay - bàn đạp

Ký hiêu:

+/ Tín hiệu tác động trực tiếp bằng nam châm điện

Ký hiệu:

Tại vị trí "0" cửa P nối với cửa B, cửa A với R. Khi có dòng điện vào cuộn dây, van sẽ chuyển sang vị trí "1", lúc này cửa P nối với cửa A, cửa B nối với cửa R.

d. Van đảo chiều 5/2

+/ Tín hiệu tác động bằng cơ - đầu dò

Ký hiệu:

Tại vị trí "0" cửa P nối với cửa B, cửa A nối với R và cửa S bị chặn. Khi đầu dò tác động, van sẽ chuyển sang vị trí "1", lúc này cửa P nối với cửa A, cửa B nối với cửa S và cửa R bị chăn.

+/ Tín hiệu tác động bằng khí nén

Ký hiệu:

Tại vị trí "0" cửa P nối với cửa A, cửa B nối với R và cửa S bị chặn. Khi dòng khí nén Z tác động vào, van sẽ chuyển sang vị trí "1", lúc này cửa P nối với cửa B, cửa A nối với cửa S và cửa R bị chặn.

7.2.5. Van đảo chiều không có vị trí "0"

Van đảo chiều không có vị trí "0" là van mà sau khi tín hiệu tác động lần cuối lên nòng van không còn nữa, thì van sẽ giữ nguyên vị trí lần đó, chừng nào chưa có tác động lên phía đối diện nòng van. Ký hiệu vị trí tác động là a, b, c, ...

Tín hiệu tác động lên nòng van có thể là:

- Tác động bằng tay, bàn đạp.
- Tín hiệu tác động bằng dòng khí nén điều khiển đi vào hay đi ra từ 2 phía của nòng van.
- Tín hiệu tác động trực tiếp bằng điện từ hay gián tiếp bằng dòng khí nén đi qua van phụ trợ. Loại van này được gọi là van đảo chiều xung, vì vị trí của van được thay đổi khi có tín hiệu xung tác đông lên nòng van.

a. Van đảo chiều 3/2

Tín hiệu tác động bằng tay, được ký hiệu:

Khi ở vị trí a, cửa P nối vối cửa A và cửa R bị chặn. Vị trí b, cửa A nối với cửa R và cửa P bị chặn.

b. Van xoay đảo chiều 4/3

Tín hiệu tác động bằng tay, được ký hiệu:

Nếu vị trí xoay nằm tại vị trí a, thì cửa P nối với cửa A và cửa B nối với R. Vị trí xoay nằm tại vị trí b, thì các cửa nối A, B, P, R đều bị chặn. Vị trí xoay nằm tại vị trí c, thì cửa P nối với B và cửa A nối cửa R.

c. Van đảo chiều xung 4/2

Tín hiệu tác động bằng dòng khí nén điều khiển đi ra từ 2 phía nòng van.

Ký hiêu:

Khi xả cửa X, nòng van sẽ dịch chuyển sang vị trí b, cửa P nối với với cửa A và cửa B nối với cửa R.

Khi cửa X ngừng xả khí, thì vị trí cửa nòng van vẫn nằm ở vị trí b cho đến khi có tín hiệu xả khí ở cửa Y.

7.3. VAN CHĂN

Van chặn là loại van chỉ cho lưu lượng khí đi qua một chiều, chiều ngược lại bị chặn. Van chặn gồm các loại sau:

- +/ Van một chiều
- +/ Van logic OR
- +/ Van logic AND
- +/ Van xả khí nhanh.

7.3.1. Van một chiều

Van một chiều có tác dụng chỉ cho lưu lượng khí đi qua một chiều.

Ký hiêu:

7.3.2. Van logic OR

Van logic OR có chức năng là nhận tín hiệu điều khiển ở những vị trí khác nhau trong hệ thống điều khiển.

Ký hiêu:

Khi có dòng khí nén qua cửa P_1 , sẽ đẩy pittông trụ của van sang phải, chắn cửa P_2 \Rightarrow P_1 nối với cửa A và ngược lại.

7.3.3. Van logic AND

Van logic AND có chức năng là nhận tín hiệu điều khiển cùng một lúc ở những vị trí khác nhau trong hệ thống điều khiển.

Ký hiệu:

Khi dòng khí qua $P_1 \Rightarrow P_1$ bị chặn. Ngược lại dòng khí qua $P_2 \Rightarrow P_2$ bị chặn.

Nếu dòng khí đồng thời qua P_1 , $P_2 \Rightarrow$ cửa A sẽ nhận được tín hiệu \Rightarrow khí qua A.

7.3.4. Van xả khí nhanh

Van xả khí nhanh thường lắp ở vị trí gần cơ cấu chấp hành (pittông), có nhiệm vụ xả khí nhanh ra ngoài.

Ký hiệu:

7.4. VAN TIẾT LƯU

Van tiết lưu dùng để điều chỉnh lưu lượng dòng khí.

7.4.1. Van tiết lưu có tiết diện không thay đổi

Ký hiêu:

7.4.2. Van tiết lưu có tiết diện thay đổi

Ký hiệu:

7.4.3. Van tiết lưu một chiều

Ký hiêu:

7.5. VAN ĐIỀU CHỈNH THỜI GIAN

7.5.1. Role thời gian đóng chậm

Khí nén qua van một chiều, cần thời gian t_1 để làm đầy bình chứa, sau đó tác động lên nòng van đảo chiều, van đảo chiều chuyển đổi vị trí, cửa P nối với cửa A.

7.5.2. Role thời gian ngắt châm

Role thời gian ngắt chậm, nguyên lý, cấu tạo cũng tương tự như role thời gian đóng châm, nhưng van tiết lưu một chiều có chiều ngược lai.

7.6. VAN CHÂN KHÔNG

Van chân không là cơ cấu có nhiệm vụ hút và giữ chi tiết bằng lực chân không, chân không được tạo ra bằng bơm chân không hay bằng nguyên lý ống venturi.

Ký hiệu:

Ta có lực hút chân không:

$$F = \frac{\pi . D^2}{4} . \Delta p \quad (\Delta p = p_a - p_u)$$

Trong đó: F - lực hút chân không (N);

D - đường kính đĩa hút (m);

 p_a - áp suất không khí ở đktc (N/m²);

p_u - áp suất chân không tại cửa U (N/m²).

Lực F phụ thuộc vào D và p_u.

7.7. CẨM BIẾN BẰNG TIA

Cảm biến bằng tia là loại cảm biến không tiếp xúc, tức là quá trình cảm biến không có sự tiếp xúc giữa bộ phận cảm biến và chi tiết.

Cảm biến tia có 3 loại: cảm biến bằng tia rẽ nhánh, cảm biến bằng tia phản hồi và cảm biến bằng tia qua khe hở.

7.7.1. Cảm biến bằng tia rẽ nhánh

Áp suất nguồn p, áp suất rẽ nhánh X và khoảng cách S.

Nếu không có cữ chặn thì dòng khí đi thẳng (X=0)

Nếu có cữ chặn thì dòng khí rẽ nhánh X (X=1).

7.7.2. Cảm biến bằng tia phản hồi

Nếu không bị chặn thì dòng khí đi thẳng (X=0) Nếu bị chặn thì dòng khí phản hồi (X=1).

7.7.3. Cảm biến bằng tia qua khe hở

Gồm hai bộ phận: bộ phận phát và bộ phận nhận, thường bộ phận phát và bộ phận nhận có cùng áp suất p.

Khi chưa có vật chắn (X=0) Khi có vật chắn (X=1).

CHƯƠNG 8: HỆ THỐNG ĐIỀU KHIỂN KHÍ NÉN VÀ ĐIỆN KHÍ NÉN

8.1. HÊ THỐNG ĐIỀU KHIỂN KHÍ NÉN

8.1.1. Biểu đồ trạng thái

- +/ Biểu đồ trạng thái biểu diễn trạng thái các phần tử trong mạch, mối liên giữa các phần tử và trình tự chuyển mạch của các phần tử.
- +/ Trục tọa độ thẳng đứng biểu diễn trạng thái (hành trình chuyển động, áp suất, góc quay, ...), trục tọa độ nằm ngang biểu diễn các bước thực hiện hoặc thời gian hành trình. Hành trình làm việc được chia thành các bước, sự thay đổi trạng thái trong các bước được biểu diễn bằng đường đậm, sự liên kết các tín hiệu được biểu diễn bằng đường nét mảnh và chiều tác động biểu diễn bằng mũi tên.
 - +/ Xilanh đi ra ký hiệu dấu (+), lùi về ký hiệu (-).
 - +/ Các phần tử điều khiển ký hiệu vị trí "0" và vị trí "1" (hoặc "a", "b").
 - +/ Một số ký hiệu biểu diễn biểu đồ trạng thái:

8.1.2. Các phương pháp điều khiển

Bao gồm các phương pháp sau

- +/Điều khiển bằng tay: điều khiển trực tiếp và điều khiển gián tiếp
- +/ Điều khiển theo thời gian
- +/ Điều khiển theo hành trình
- +/ Điều khiển theo tầng
- +/ Điều khiển theo nhịp.
- a. Điều khiển bằng tay
- +/ Điều khiển trực tiếp

Biểu đồ trạng thái

Ký hiệu	Tên gọi	Vị trí			Tı	rạng tl	hái		
IXy IIIÇU	Ten gọi	vi ui	1	2	3	4	5	6	
1.0	Xilanh một	(+)							
1.0	chiều	(-)		_<			\rightarrow		
1.2	Van đảo	1		7		-			
1.2	chiều 3/2	0		———) 		
1.1	Nút ấn 3/2	1		\vdash		-1/			
1.1	INULAII 5/2	0				/_			

+/ Điều khiển gián tiếp

Biểu đồ trạng thái

Ký hiệu	Tên gọi	Vị trí	Trạng thái
Ky męu	Ten gọi	vi ui	1 2 3 4 5 6
1.0	Xilanh một	(+)	
1.0	chiều	(-)	
1.3	Van đảo	1	
1.5	chiều 3/2	0	
1.2	Nút ấn 3/2	1	
1.2	1 Nut all 3/2	0	
1.1	Nút ấn 3/2	1	
1.1	Trut all 3/2	0	

b. Điều khiển theo thời gian

Biểu đồ trạng thái

Ký hiệu	Tên gọi	Vị trí	Trạng thái
11) III o	1011 891	, ; 411	1 2 3 4 5 6
1.0	Xilanh hai	(+)	
1.0	chiều	(-)	
1.3	Van đảo	1	
1.3	chiều 5/2	0	
1.2	Phần tử thời	1	
1.2	gian	0	
1.1	Nút ấn 3/2	1	
1.1	INULAII 3/2	0	

Điều khiển theo thời gian có chu kỳ tự động

Biểu đồ trạng thái

Ký hiệu	Tên gọi	Vį	Trạng thái			
	8;-	trí	1 2 3 4 5 6 7			
1.0	Xilanh hai	(+)				
1.0	chiều	(-)				
1.4	Van đảo	1				
1.4	chiều 5/2	0				
1.3	Phần tử	1				
1.5	thời gian	0				
1.2	Phần tử	1				
1.2	thời gian	0				
1.1	Nút ấn 3/2	1 0				

c. Điều khiển theo hành trình

Biểu đồ trạng thái

Ký hiệu	Tên gọi	Vị trí	Trạng thái 1 2 3 4 5 6 7
1.0	Xilanh hai chiều	(+) (-)	
1.4	Van đảo chiều 5/2	1 0	
1.3	Công tắc hành trình 3/2	1 0	
1.2	Công tắc hành trình 3/2	1 0	
1.1	Nút ấn 3/2	1 0	

d. Điều khiển theo tầng

+/ Mạch điều khiển 2 tầng

e₁, e₂ là tín hiệu điều khiển vào

 $\mathbf{a}_1,\,\mathbf{a}_2$ là tín hiệu điều khiển ra

Khi tầng I có khí nén, thì tầng II sẽ không có khí nén và ngược lại.

Tầng

Ш

+/ Mạch điều khiển 3 tầng

 e_1 , e_2 , e_3 là tín hiệu điều khiển vào

a₁, a₂, a₃ là tín hiệu điều khiển ra Tầng II

Khi tầng I có khí thì tầng II và III không có khí, nghĩa là khi 1 tầng có khí thì 2 tầng còn lại không có khí.

+/ Mạch điều khiển 4 tầng

Biểu đồ trạng thái

Tên gọi	Vị trí	Trạng thái
Ten gọi	vi tii	1 2 3 4 5 6 7
Xilanh A	(+) (-)	S ₂ S ₁
Xilanh B	(+) (-)	S ₄ S ₃

e. Điều khiển theo nhịp

Mạch logic của chuổi điều khiển theo nhịp

Biểu diễn đơn giản chuổi điều khiển theo nhịp

Biểu đồ trạng thái

Tên gọi	Vị trí	Trạng thái						
Ten gọi	v i til	1 2 3 4 5 6 7						
Xilanh A	(+)	S_2 S_1						
	(-)							
Xilanh B	(+)	S ₃						

8.2. HỆ THỐNG ĐIỀU KHIỂN ĐIỆN KHÍ NÉN

8.2.1. Các phần tử điện

a. Công tắc

Công tắc chuyển mạch

 $\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$

Công tắc đóng - mở

Nút ấn đóng - mở

Nút ấn chuyển mach

c. Role

+/ Role điều khiển

+/ Role thời gian tác động muộn

+/ Role thời gian nhả muôn

$$K \xrightarrow{B_2} \xrightarrow{A_2} \xrightarrow{A_2$$

d. Công tắc hành trình

d. Đèn báo hiệu

8.2.2. Mạch điều khiển khí nén

a. Mạch điều khiển có tiếp điểm tự duy trì

+/ Mạch khí nén

+/ Biểu đồ trạng thái

Tên gọi	Vi trí	Trạng thái						
Ten gọi	vi III	1	2	3	4			
Xilanh	(+)							
1.0	(-)							

+/ Mạch điệu khiển

b. Mạch điều khiển có rơle thời gian tác động chậm

+/ Mạch khí nén

+/ Biểu đồ trạng thái

Vi trí		Trạng thái					
vi m	1		2		3		1
(+)						/	
0				*			
0 .							
0							
	(-) 1 0 1 0·	(+) (-) 1 0 1 0	(+) (-) 1 0 1 0 1	(+) (-) 1 0 1 0 1	(+) (-) 1 0 1 1 0 1	(+) (-) 1 0 1 0 1	(+) (-) 1 0 1 0 1

+/ Mạch điện điều khiển

c. Mạch điều khiển theo nhịp có 2 xilanh khí nén

Xilanh	A ⁺	B ⁺	B ⁻	A-	KT
Công tắc hành trình	S_5	S_2	S_4	S_3	S_1
Nam châm điện	\mathbf{Y}_1	\mathbf{Y}_2	0	0	

Mạch điện điều khiển

TÀI LIỆU THAM KHẢO

- [1]. Hệ thống điều khiển bằng thủy lực Nguyễn Ngọc Phương, Huỳnh Nguyễn Hoàng, nhà XBGD, 2000.
- [2]. Truyền động dầu ép trong máy cắt kim loại Nguyễn Ngọc Cẩn, ĐHBK HN, 1974.
- [3]. Điều khiển bằng khí nén trong tự động hóa kỹ nghệ Nguyễn Thành Trí biên dịch, nhà xuất bản Đà Nắng.
- [4]. Hệ thống điều khiển tự động thủy lực *Trần Xuân Tùy*, nhà XBKH và KT, HN 2002.
- [5]. Hệ thống điều khiển bằng khí nén Nguyễn Ngọc Phương, nhà XBGD, 1999.
- [6]. Herbert E.Merritt, Hydraulic control systems, Printed in USA, 1967.
- [7]. Claude Ducos. Oléo Hydraulique. Technique et documentation, Lavoisier, Paris 1988.
- [8]. M.Guillon, Hydraulic servo systems analysis and design, London, Butterworths, 1969.
- [9]. Pneumatics, Basic Level TP 101, Festo Didactic, 1989.