

Minimar Algorithm:	
Convention: Suppose that we're playing then then white tries to reasoninize the score while blow	ek
tites to minimize it. Leaf nodes -> static evaluation of modes.	
Minimor (pos, depth, playerone)	
if depth == 0 or game Over in pos: . This is for the leaf noder.	
return static evaluation of pu	
it player One:	
mage Eval = - 00	
for each dried of pus:	
erul = minimar (child, depth-1, False)	
man End = mon (eval, man Eval)	
rehun man bral.	
elre:	
min Eral > +∞	
Fur each child of nos:	
eral: minimax (child, depth-1, True)	
mun Eval, min (eval, min Eval)	
retrun min Eral	

marimising Mayer:

$$\alpha = \max (q, eval)$$

break

if a > β

break

Constraint Satisfaction Roblems: ('Put-j) Map Coloring: We want to color each of the countries but we don't want neighbouring

countries to have the came esture.

State: Ik a black box Goal test: It is a function that checks if a particular state is a goal state or not.

Stule - raviable X: with values from domain D.

Gual fest -> set of countraint specifying allowable combinations of values for subset of rotables.

Each country - variables.

May Coloring:

Domain : D = { color set }

Constraint : Adjacent regions should have different colors.

<u>lapticit</u>: Combraint in terms of termain

<u>Implicit</u>: Direct inequalities.

N-Queens:

<u>doll .</u> Assignment of variables that paves all constraints.

Variables: Position of queen in each raw Qu

umain :	[1, 2, n³→ row number	
brutraink:		
	+i,j (li, li) ⇒ mon-threatening.	(Implicit)
	(Q,Q) t { ? (bylicit)	

Combaint Graph: Binary ClP: Each construint relates at most 2 variables

Cryptarithmetic Puzzlee:

**, **, **

TWO

+ TWO

Approach:

Noder are reviables k edges are constraints.

Waltz Algorithm: Ctrample of CSP)

Each intercession is a raxiable.

Adjacent intersections impose combraints on each other.

of an physically realizable 3D intemprebations.

Wed for the interpretation of line drawings of solid polyhedra as 3D objects.

Domain: {0,1, ... 9}

Combrains

G Graph wan't he binary

You'ables: X, X2, X3, T, W, O, F, V, R

Type of CBPe:	
a) Discrete Voriables	h) Contirous Vareables
finite domain infinite domains	y: linear constraints cotrable in
d → U(d") integer, things	polynemial time by LP methods.
eg: Boolean Cele eg: Tob Schedulin	7
Types of Contrainte:	, value.
Vnery Constraints: eg: var +	i
Binary Combains: eg: var, \neq v	
Higher ordered: (Involving 3 or	. The state of the
Preferences = 2 is better than y.	
Solving U.R.:	Cuz we hacktrack only we don't have more
	ophianu !!
- One variable at a time! Worky	need to consider assignments to one variable
at a time elt that doesn't break th	•
-> Check constraints con the go!	
Prendo code:	

function Backbrack (cep) initially o	uni grament is empty.	
return recurive Search ({ }, cep)		
function recursive-Sewith (augn, cep)		
if angon is complete => punes all con	ahruinh.	
var - relect un-anigned-variable (v		
for each value in Order-demain-values	var, augn, up):	
if value == consistent given	Constraint [csp]:	
add of non = value & h		
result \to recurive.	•	
if result \neq failure	f Normal backba	ukr
return result	2 Normal backtra S with this che	L.
	ue! from angr	
rehim failure.		
cuz of this		
•		
Improving:		
	Ruling out suspects.	
Filtering: Can we detect a failure early on.	J	
Shusture: Can we exploit the problem smusture.		

Filtering:
We keep a track of demains for unanigned variables & cross-off the bad option.

Forward Checking: (Ik re-filtering of all variables after each anignment)
We cross-off values that could vidate a combraint when added to exciting anignment

 $(0,3) \times (2,3) \times (2,3$

Essentially bornard checking doesn't contribute to early detection of bailures which is precisely what we want!! It doesn't core about re!" I've consigned & unanigned variables

Constraint Propagation: Rea on from constraint to constraint.

Convistency of a single Arc:

Def": An anc $X \to Y$ is consistent if and only if for every so in the tail,

there is some y in the head which could be an igned without violating a constraint.

To make 8 - Y consistent, we need to delete south from the tail.

A simple form of propagation makes sure that all area (or edges) are consistent.

I forward filtering, we are just cheeking the constitency of all redu with the
ole:
X lover a value, then neighbour of X need to be re-cheeked!
Limitation: Those can 1, 0 or multiple colors
Abording hre Consistency in a CSP: $T=O(n^2d^3) \Rightarrow O(n^2d^2)$
neum MC-9 (77 h.)e.min (71)
g → queue of once Cinitrally all once in UPs)
while q \neq \delta do:
Lx, zy) ← remore-fixt (q)
if re-more-incomistent-values (20, 24) then:
for each zu in Neighbour [zi] do:
add (2i, 2n) to the q.
nchian re-move- Priomistent-values (re. 71;)

removed - false (a,4) to satisfy for each a in Domain Cail if no value y in Domain [2] allows) 2i \rightarrow 2j remove a from Domain [Ti] remove - hue return removed

Claim: Strong n-consistency means we can other without bushtracking! Why! Choose any anignment to a variable By 2-consistent, the given choice is consistent with the first

!

K=3 => m. U ... ? ! k= 3 => path comistery. How to utilize the structure of problems to goin advantages? Dividing a given problem into smaller sub-problems. eq: If originally we have on variables -> divided into sub-problems of only T= 0 (m/c) dc), linear in n. variables Theorem: If constitent graph has no loops, then CSP can be solved in o(nd2) Compared to general one, T= 0(d") Tree-Smuhured CSP

· Order: Choose a root, order the variables so that partent preceed distinct

Remore hadrward: for i= n to 1: Remore Inconsistent (Par(Is), Xs)

or Topological Surling

Algo:

Strong k-curvistency: \Rightarrow also $k-1 \Rightarrow k-2 \dots \Rightarrow 1$ -consistent

 Ascign 	forward:	For i = 1 !	ton : us	ign Xi con	clistently voi	th Parent (l ;)
		- Relu					

