目录

第	一部分	数学期望 mathematic expectation	2
1	"期望":	是对长期价值的数字化衡量.	2
2	"离散型"	随机变量的"数学期望": $E(X) = \sum_{k=1}^{\infty} (x_k P_k)$	2
3	"连续型" 率 (密度)	随机变量的"数学期望": $E(X) = \int_{-\infty}^{\infty} \left[x \cdot f(x)\right] dx$ — 其中的 $\mathbf{f(x)}$ 是"概) 函数".	3

文件名

第一部分 数学期望 mathematic expectation

1 "期望":是对长期价值的数字化衡量.

各个股票的价格有涨有跌, 那你怎么判断它们各自的价值, 到底几何? 方法就是 — 数学期望. "期望"是对长期价值的数字化衡量.

2 "离散型"随机变量的"数学期望": $E(X) = \sum_{k=1}^{\infty} (x_k P_k)$

该公式的意思就是: 将该随机变量的一切可能的 "取值", 各自乘以其对应的 "概率", 然后将这些乘积 "求总和". 如果该求和, 能得到一个 "绝对收敛" 的数, 那么这个收敛数, 就是该 "离散型随机变量" 的"数学期望 E". 记为 E(x).

它其实是简单算术平均的一种推广,类似"加权平均"。

具体就是:

离散型随机变量 X 的取值为: $X_1, X_2, ... X_n$, 其每个 X 的取值, 对应的概率为 $p(X_1), p(X_2), ..., p(X_n)$. 这些概率, 也可理解为数据 $X_1, X_2, ... X_n$ 出现的频率 $f(X_i)$. 则:

$$X_1 \cdot p(x_1) + X_2 \cdot p(x_2) + \dots + X_n \cdot p(x_n) = \sum_{k=1}^n (x_k \cdot p_k) = \underbrace{E(X)}_{\text{随机变量X的期望}}$$

← 这个公式和"加权平均数"的公式很像,只不过是把"权重"换成了"概率".

例

某城市, 家庭中拥有孩子的数量, 是一个随机变量 X, 取值为 0,1,2,3.

	孩子数量 X=0	x=1	x=2	x=3
概率	P=0.01	P=0.9	P=0.06	P=0.03

该城市的家庭, 孩子数量的期望就是:

$$E(X) = \sum_{k=1}^{n} (x_k \cdot p_k) = (0 \cdot 0.01) + (\underbrace{1}_{1 \uparrow \cancel{8} \cancel{7}} \cdot \underbrace{0.9}_{\text{max} \not= 0.9}) + (2 \cdot 0.06) + (3 \cdot 0.03) = 1.11$$

例

有甲乙两人,

- 甲会生产出"次品的数量"和"相应概率"的数据为:

次品数量 X_1	0	1	2	3
概率 P	0.3	0.3	0.2	0.2

- 乙会生产出"次品的数量"和"相应概率"的数据为:

次品数量 X2	0	1	2	3
概率 P	0.2	0.5	0.3	0

问: 两人谁的技术水平高? 那么我们就来看他们两人各自的"期望":

- "甲生产出次品的数量"的期望是:

$$E(X_1) = \sum_{k=1}^{n} (x_k \cdot p_k) = (0 \cdot 0.3) + (1 \cdot 0.3) + (2 \cdot 0.2) + (3 \cdot 0.2) = 1.3$$

- "乙生产出次品的数量"的期望是:

$$E(X_2) = \sum_{k=1}^{n} (x_k \cdot p_k) = (0 \cdot 0.2) + (1 \cdot 0.5) + (2 \cdot 0.3) + (3 \cdot 0) = 1.1$$

所以, 甲的次品期望 > 乙的. 即乙的水平高.

3 "连续型"随机变量的"数学期望":

$$E(X) = \int_{-\infty}^{\infty} [x \cdot f(x)] dx \leftarrow$$
 其中的 $f(x)$ 是 "概率 (密度) 函数".

如果这个积分: $E(X) = \int_{-\infty}^{\infty} \left[x \cdot \underbrace{f(x)}_{\text{概率函数}} \right] dx$ 的值, 是绝对收敛的. 则, 该积分的值, 就是"连

续型"随机变量的"数学期望".

例

求概率函数
$$f(x) = \begin{cases} 2x & (0 < x < 1) \\ 0 & (else) \end{cases}$$
 的期望值.

$$\begin{split} E(X) &= \int_{-\infty}^{\infty} \left[x \cdot \underbrace{f(x)}_{\text{概率函数}} \right] dx \\ &= \int_{x \text{的 FR}=0}^{x \text{的 LR}=1} \left[x \cdot \underbrace{2x}_{\text{即本例的概率函数}f(x)} \right] dx \\ &= \int_{0}^{1} 2x^{2} dx = 2 \int_{0}^{1} x^{2} dx \ \leftarrow \text{根据公式:} \int x^{n} dx = \frac{x^{n+1}}{n+1} \\ &= 2 \cdot \left(\frac{x^{2+1}}{2+1} \right) \mid_{0}^{1} \\ &= \frac{2}{3} x^{3} \mid_{0}^{1} = \frac{2}{3} \end{split}$$

例

某产品, 根据寿命长短 (用随机变量 X 表示), 分为三档, 每档有不同的定价. 该随机变量 X(寿命), 符合 $\lambda=\frac{1}{10}$ 的 "指数分布".

(别忘了, 指数分布的"概率函数"公式是:
$$f(x) = \begin{cases} \lambda e^{-\lambda x} & (x \ge 0) \\ 0 & (x < 0) \end{cases}$$
)

根据寿命, 分档的价格是:

寿命 (年)	$X \leq 1$	$1 \le X \le 2$	$2 \le X \le 3$	X > 3
价格 (元)	1500	2000	2500	3000

我们要先算出,产品在"每个价格区间"的概率是多少?因为下面求"价格期望"时,要用到这些概率数值.

指数分布的概率函数
$$f(x)$$

$$P\{1 < X \le 2\} = \int_{1}^{2} \left(\lambda e^{-\lambda x}\right) dx = \int_{0}^{1} \left(\frac{1}{10}e^{-\frac{1}{10}x}\right) dx = 0.0861$$

$$P\{2 < X \le 3\} = \int_{2}^{3} \left(\lambda e^{-\lambda x}\right) dx = \int_{2}^{3} \left(\frac{1}{10}e^{-\frac{1}{10}x}\right) dx = 0.0779$$

$$P\{X > 3\} = \int_{3}^{+\infty} \left(\lambda e^{-\lambda x}\right) dx = \int_{3}^{+\infty} \left(\frac{1}{10}e^{-\frac{1}{10}x}\right) dx = 0.7408$$

现在就有:

2011年7011年1							
寿命 X(年)	(0-1]	(1-2]	(2-3]	>3			
价格 Y(元)	1500	2000	2500	3000			
概率 P	0.0952	0.0861	0.0779	0.7408			

 $+ (2500 \cdot 0.0779)$ $+ (3000 \cdot 0.7408)$

=2732.15元