Digital Logic Design Assignment 9 - EC2018-31

Priyansh Agrahari

December 15, 2020

1 Question:

A four-variable Boolean function is realized using 4x1 multiplexers as shown in the figure:

The minimized expression for F(U,V,W,X) is

- (A) $(U V + \overline{U} \overline{V}) \overline{W}$
- (B) $(U V + \overline{U} \overline{V}) (\overline{W} \overline{X} + \overline{W} \overline{X})$
- (C) $(U \overline{V} + \overline{U} V) \overline{W}$
- (D) $(U \overline{V} + \overline{U} V) (\overline{W} \overline{X} + \overline{W} X)$

2 Solution:

Figure 1: Logic circuit equivalent of $4x1\ MUX$ used to solve this problem

Since we have I_0 and I_3 grounded, we can take their boolean equivalents to be 0. Then, we get the following equation:

$$Output = \overline{(U + \overline{V})(\overline{U} + V)} \tag{1}$$

which can be further simplified (using de Morgan's law) to obtain:

$$Output = U\overline{V} + \overline{U}V \tag{2}$$

Moving further, the same logic can be used to obtain the result of the second MUX. Since in this case, I_2 and I_3 are grounded; hence by taking their boolean equivalents to be 0, we get the following equation from the second MUX:

$$F = \overline{\overline{(Output.\overline{W}.\overline{X}).\overline{(Output.\overline{W}.X)}}}$$
(3)

simplifying, we get:

$$F = Output.\overline{W}.\overline{X} + Output.\overline{W}.X \tag{4}$$

after placing the value of Output from eq.(2), and performing a few more manipulations, we get:

$$F = (U\overline{V} + \overline{U}V)\overline{W}(X + \overline{X}) \tag{5}$$

Since $X+\overline{X}=1$, we finally get the desired equation:

$$F = (U\overline{V} + \overline{U}V)\overline{W} \tag{6}$$

Hence, the answer the given question is (C).

3 Truth Table

$oxed{U}$	$oxed{V}$	W	X	$oldsymbol{F}$	Term
0	0	0	0	0	_
0	0	0	1	0	_
0	0	1	0	0	_
0	0	1	1	0	_
0	1	0	0	1	$\overline{U} \ V \overline{W} \overline{X}$
0	1	0	1	1	$\overline{U} V \overline{W} X$
0	1	1	0	0	_
0	1	1	1	0	_
1	0	0	0	1	$U \overline{V} \overline{W} \overline{X}$
1	0	0	1	1	$U \overline{V} \overline{W} X$
1	0	1	0	0	_
1	0	1	1	0	_
1	1	0	0	0	_
1	1	0	1	0	_
1	1	1	0	0	_
1	1	1	1	0	_

Table 1: Truth Table for eq.(6)

4 K-map for the function F(U,V,W,X)

WX U	00	01	11	10
00	0	1	0	1
01	0	1	0	1
11	0	0	0	0
10	0	0	0	0

The expression obtained using the K-map is the same as the one obtained earlier in eq.(6). Alternatively, we can also make a K-map for obtaining the POS expression:

WX UV	00	01	11	10
00	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	1
01	0	1	0	1
11	0	0	0	0
10	0	0	0	0

The POS expression hence obtained is:

$$F = (U+V)(\overline{U}+\overline{V})\overline{W} \tag{7}$$

5 C implementation to verify Table 1

5.1 C code:

```
#include <stdio.h>
int main(void)

{
    unsigned char U = 0x00, V = 0x01, W = 0x00, X = 0x00;
    unsigned char F, one = 0x01;

F = (~W) & ( (U & (~V)) | ((~U) & V) );
    printf("Using SOP form: F = %x\n", (F & one));

F = (U | V) & ((~U) | (~V)) & (~W);
    printf("Using POS form: F = %x\n", (F & one));

}
```

5.2 Output:

```
Using SOP form: F = 1
Using POS form: F = 1
```