记号说明 约定一切 Λ 是复对角矩阵, $(-)^H$ 是共轭转置, U 是酉矩阵. 以下总结一些常见矩阵的谱分解.

注: 两个实矩阵正交相似等价于酉相似, 见上周作业. 因此, 以下结果与实情形是统一的.

1.正规矩阵 (normal matrix)

 $A = U^H \Lambda U$, Λ 是对角矩阵.

2. 自伴矩阵 (self-adjoint matrix), Hermite 矩阵 (Hermitian matrix)

 $A = U^H \Lambda U$, Λ 是实对角矩阵.

3. 半正定 Hermite 矩阵 (Hermitian semi-positive definite matrix)

 $A=U^H\Lambda U$, Λ 是实半正定对角矩阵.

4.正定 Hermite 矩阵 (Hermitian positive-definite matrix)

 $A = U^H \Lambda U$, Λ 是实正定对角矩阵.

自主练习 反对称 Hermite 矩阵, 复投影矩阵, 以及酉矩阵的谱分解如何?

自主练习 对方阵的奇异值分解 $A=U^H\Sigma V$, 定义 A 的谱分解为酉矩阵与半正定厄米矩阵的乘积 $(U^HV)\cdot(V^H\Sigma V)$. 对于上述几类矩阵, 其极分解有无特殊性质?

注 若术语与西文人名相关, 英文或以形容词作定语, 但中文必然以名词作定语. 例如

- Abel 群 (Abelian group);
- Bool 代数 (Boolean algebra);
- O Hermite 矩阵 (Hermitian matrix);
- Laplace 算符 (Laplacian);
- O Pfaff (Pfaffian).

也有一些例外, 例如 Jacobi matrix 和 Jacobian matrix 就是两个名词.

记号说明 每题的相对难度用 * 的数量描述.

∅直接推论,定义默写等.

- *考试难度的上界.
- ★★ 值得思考, 属于不难也不简单的题目.
- ***可以选择放弃.

Ex 1 复 (半) 正定 Hermite 矩阵是实对称 (半) 正定矩阵在 \mathbb{C} 上的推广.

ullet 称 M 是复 (半) 正定 Hermite 的,当且仅当存在酉对角化 $U^H\Lambda U=M$,其中 Λ 是 (半) 正定的实对角矩阵.

今假定
$$M = \begin{pmatrix} S & R \\ R^H & T \end{pmatrix}$$
 复半正定 Hermite 矩阵.

- $\mathbf{1}.(\star)$ 证明: $Mx=\mathbf{0}$ 当且仅当 $x^HMx=0$.
- 2. $(\star\star)$ 证明: (S R) 与 S 有相同的列空间 (等价地, 两个矩阵的秩相同).
- $^{3.}(\star)$ 证明: M 合同于某个 $egin{pmatrix} S & O \ O & \widetilde{T} \end{pmatrix}$.
- 4.(**) 反复利用上述打洞,归纳地证明惯性指数公式 $\mathrm{I}(M)=\mathrm{I}(S)+\mathrm{I}(\widetilde{T})$.
- 5. $(\star\star)$ 检查上述每步,证明: 两个实对称正定矩阵 A 与 B 通过某个复可逆方阵 P 合同,当且仅当它们通过某个实可逆方阵 Q 合同. 即,

$$\exists P \in \mathrm{GL}_n(\mathbb{R}), \ A = P^T B P \iff \exists Q \in \mathrm{GL}_n(\mathbb{C}), \ A = Q^H B Q.$$

Ex 2 取定 \mathbb{R}^n 中的单位向量 v_0 . 定义线性变换

$$arphi: \mathbb{R}^n o \mathbb{R}^n, \quad v \mapsto v - ig(2 \cdot v^T \cdot v_0ig) v_0.$$

几何意义: 关于 v_0 的镜面反射.

- $1.(\star)$ 任取 \mathbb{R}^n 的单位正交基. 记 arphi 在这组基下的矩阵表示为 A. 证明 A 是正交矩阵, 且 $A^2=I$.
- 2.(* * *) 对任意正交矩阵 Q, 证明 $1 \in \sigma(Q) \cup \sigma(AQ)$.

提示: 可以用不动点理解此题, 尽管这对解题没有太大帮助.

Ex 3 称 $A\in \mathrm{M}_n(\mathbb{C})$ 是正规的,当且仅当 $AA^H=A^HA$,此处 A^H 是共轭转置. 以下是正规的等价条件.

- $\mathbf{1}.(\emptyset)$ 存在酉相似 $A=U^H\Lambda U,\Lambda$ 是某一对角矩阵.
- 2.(\star) 存在酉矩阵 U 使得 $AU=A^H$.
- $3.(\star)$ A 的奇异值恰好是特征值的绝对值.
- $4.(\star\star\star)$ A 与 $[A,A^H]$ 可交换.

[A,B]:=AB-BA 是一个惯常记号.

 $5.(\star\star)\operatorname{tr}(AAA^HA^H)=\operatorname{tr}(AA^HAA^H).$

对任意 $k \geq 2$, $\mathrm{tr}(A^k(A^H)^k) = \mathrm{tr}((AA^H)^k)$ 均是等价条件. 证明似乎较复杂.

 $6.(\star\star)$ 存在唯一的分解 $A=A_1+iA_2$,使得 $A_1=A_1^H, A_2=A_2^H$,且 $[A_1,A_2]=O$.

作为类比, 若一个实矩阵可以正交对角化, 当且仅当...

Ex 4 (\star \star \star) 证明: $A\in \mathrm{M}_n(\mathbb{C})$ 是两个自伴矩阵的乘积, 当且仅当 A 与 A^H 相似.

Ex 5 以下 A 与 B 是实对称半正定矩阵.

 $oxed{1.}(\star)$ 证明: $\mathrm{tr}(AB)\geq 0$. 若 A 正定, 则取等当且仅当 B=O.

2.(*) 证明: $\operatorname{tr}(A) \cdot \lambda_{\min}(B) \leq \operatorname{tr}(AB) \leq \operatorname{tr}(A) \cdot \lambda_{\max}(B)$.

Ex 6 任取实多项式 $f(x)=(x-x_0)(x-x_1)\cdots(x-x_n)$, 以及 $g(y)=(y-y_1)\cdots(y-y_n)$. 若有 $x_0\leq y_1\leq x_1\leq y_2\leq x_2\leq\cdots\leq x_{n-1}\leq y_n\leq x_n.$

则称 f 与 g 的根是交错的.

- $1.(\star)$ 证明: 任意实线性组合 af + bg 的根都在 \mathbb{R} 内.
- 2.(**) 证明逆命题: 若 f 与 g 满足 $\deg f = \deg g + 1$, 且任意实线性组合 af + bg 的根全是实数, 则 f 与 g 的根交错.

提示: 对 $t \in [0,1]$, tf + (1-t)g 的所有实根在 $\mathbb C$ 上的轨迹如何?

- ${\bf 3}$.(\emptyset) 若 n-阶复方阵满足 $A=A^H$,记 B 是任意 (n-1)-阶主子式 (B 有 n 种取法). 证明: A 与 B 的特征根交错.
- 4.(**) 这一具有组合性质的结论可以推得 Schur-Horn 定理.
 - igcolumn (Schur-Horn) 给定 n 阶Hermite 矩阵 ($A=A^H$). 若 $d_1\geq d_2\geq \cdots \geq d_n$ 是 A 的所有对角元, $\lambda_1\geq \lambda_2\geq \cdots \geq \lambda_n$ 是 A 的所有特征值,则对任意 $1\leq k\leq n$,都有

$$d_1+d_2+\cdots+d_k\leq \lambda_1+\lambda_2+\cdots+\lambda_k.$$

特别地, k=n 时取等号 (考虑迹).

通常的证明方法是将之视作 Atiyah 凸性定理 (一个来自辛几何的定理) 的推论.

5.(*) (Courant-Fischer) 以下是谱分解的推论, 之前作业证过. Hermite 矩阵 $A\in \mathrm{M}_n(\mathbb{C})$ 的第 k 大特征值是

$$\max_{V\subset \mathbb{R}^n, \dim V=k} \left(\min_{x\in V, \|x\|=1} x^H Ax
ight)$$
 .

第k小特征值表述类似.

6. (★★) 作为推论, 得 Hermite 矩阵的 Weyl 不等式

$$\lambda_{i+j-1}(A+B) \leq \lambda_i(A) + \lambda_j(B) \leq \lambda_{i+j-n}(A+B).$$

提示: 将 min, max 转化做 "先 \forall 再 \exists "-式的逻辑命题. 若遇到不等号 \leq , 将不等号左侧的 λ 改述作 $\max\min$, 将不等号右侧的 λ 改述作 $\min\max$. 最后比较子空间维数即可.

楔: $\mathbb{R}^2\simeq\mathbb{C}$ 上的单位圆周 $S^1:=\{z\in\mathbb{C}\ |\ |z|=1\}$ 不是线性空间, 但可以舍弃一个点 (1,0), 使得有双射

$$\mathbb{R} \stackrel{ \overrightarrow{\mathbb{R}} ext{ } \longrightarrow }{\sim} (S^1 \setminus \{(0,i)\}), \quad x \mapsto rac{x-i}{x+i}$$

这一双射的逆映射也可以直接写出. 以上一对互逆有理映射建立了 \mathbb{R} 与 S^1 的双有理等价.

类似地,全体正交矩阵不构成线性空间. 试问:能否舍弃一些体积为0的正交矩阵,使得剩下的正交矩阵通过某个有理多项式双射对应于线性空间?

- $1.(\star)$ 若 $A \in \mathrm{M}_n(\mathbb{C})$ 是自伴矩阵,则 $(A-iI) \cdot (A+iI)^{-1}$ 是酉矩阵.
- 2.(*)证明以上建立了全体自伴矩阵与不以1为特征值的酉矩阵的双射对应.试求逆映射?
- 3.(**) 正交矩阵 (实矩阵) 也是酉矩阵. 试问: 以上哪类自伴矩阵的像是正交矩阵?

提示: 反对称实矩阵恰好是正规矩阵的 i 倍.

推论: 反对称矩阵与不以 1 为特征值的正交矩阵双射对应. 记 M 是反对称矩阵, 则 $(I+M)(I-M)^{-1}$ 是正交矩阵.

例子: n=2 时, 得半角公式:

$$egin{pmatrix} 0 & anrac{ heta}{2} \ - anrac{ heta}{2} & 0 \end{pmatrix} \leftrightarrow egin{pmatrix} \cos heta & -\sin heta \ \sin heta & \cos heta \end{pmatrix}.$$

例子: n=3 时, 得某次作业的行列式计算 (w=1):

$$\begin{pmatrix} 0 & z & -y \\ -z & 0 & x \\ y & -x & 0 \end{pmatrix} \leftrightarrow 常数 \cdot \begin{pmatrix} w^2 + x^2 - y^2 - z^2 & 2(xy - wz) & 2(wy + xz) \\ 2(xy + wz) & w^2 - x^2 + y^2 - z^2 & 2(yz - wx) \\ 2(xz - wy) & 2(wx + yz) & w^2 - x^2 - y^2 + z^2 \end{pmatrix}.$$

- 4.(**) 正交矩阵的行列式是 $\pm 1.$ 这表明反对称矩阵也能分作两类, 如何描述这一分类?
- $5.(\star\star)$ 记 $\operatorname{Sp}(2n):=\{A\in\operatorname{M}_{2n}(\mathbb{R})\mid A^TJA=J\}$ $((\star\star)$ 某 次 作 业 证 明 了 $\det A\neq -1$),以 及 $\operatorname{H}(2n):=\{A\in\operatorname{M}_{2n}(\mathbb{R})\mid A^TJ+JA=O\}$ (即考试题的 $\operatorname{sp}(2n)$). 证明:

$$\{X\in \mathrm{Sp}(2n)\mid 1
otin\sigma(X)\} o \mathrm{H}(2n),\quad X\mapsto (I+X)(I-X)^{-1}$$

是双射对应.

Ex8 $(\star\star\star)$ 若 $A^2+B^2=2AB$, 证明: A与B的特征多项式相等.

这和本节作业没有关系, 但还是留做习题.