

全集成 UHF 无线麦克风发射芯片 Wireless-Mic-on-a-Chip™

KT0623

■ 功能特性

单芯片无线解决方案 内建 MCU

电位器选择 16 个预置频道

全集成

低噪声射频前端 高保真音频处理 低噪声频率合成器 大功率输出 PA

支持全球波段范围

UHF: 470MHz~960MHz

专业的性能:

音频动态范围≥ 100 dB 超平坦的音频频响 20Hz~18KHz 失真度 <0.5% 杂散发射<-60dBc 发射功率 ≥10mW

低功耗:

工作电流< 80 mA 待机电流< 10 μA

高级功能:

可配置的咪头灵敏度 发射功率可调 可配置的压缩时间常量 内置 75us 去加重滤波器 内置电池低电压检测电路 无开关机噪声,无干扰噪声

小体积封装

QFN24 封装

简单接口

单电源供电 (2.2V- 3.6V) 标准 2-wire MCU 接口

绿色环保

符合 Pb-free 和 RoHS 标准

应用领域

无线麦克风、会议系统、无线音箱

Rev. 1.0

昆腾微电子股份有限公司提供的信息均为准确可靠的信息,但是昆腾微电子股份有限公司并不对任何第三方就其他使用或可能引起的专利或其他权利的侵权行为承担责任。昆腾微电子股份有限公司不默认或以任何形式就任何专利或专利性权利授

KT0623 系统框图

■ 整体描述

KT0623 是革命性无线麦克风芯片家族——KT06xx 成员之一。使用该产品方案,相比传统方案,可以节省数以百计的电子器件,同时仍然保持了高水准的声音质量和功能。

KT0623 是 UHF 波段发射芯片,它内建音频放大器、预加重滤波器、压缩器、锁相环和可编程的功率放大器。 KT0623 采用调频方式传输麦克风的音频信号,工作在 UHF 波段。

KT0623 由于内置稳压器,因此仅需要一个低电压供电。使用 KT0623 设计产品,可以免去繁琐的外部调试,节省大量的开发投入。

KT0623 仅需要简单的电路实现机械化调优,还可以使用低成本的 EEPROM 配置电台设置和以满足客户个性化需求。不需要 MCU,它的封装是 QFN24。

昆腾微电子股份有限公司

版权 © 2015, 昆腾微电子股份有限公司

目录

1. 电气特性	4
2. 引脚描述	5
3. 功能描述	7
3.1. 概述	7
3.2. 上电	7
3.3. 晶振	
3.4. 麦克风接口	
3.5. 扩展器	
3.6. 预加重	
3.7. 静音	
3.8. 导频发生器	
3.9. 频道选择	
3.10. 发射功率	
3.11. 低电池电压检测	
3.12. 低电池备用	
3.13. 芯片设置	
3.14. 寄存器组	
3.14.1. CHIP_ID (Address 0x01)	
3.14.2. SYS_CFG (Address 0x03)	
3.14.3. LOWBAT_CFG (Address 0x16)	
3.14.4. MUTE_CFG (Address 0x18)	.13
3.14.5. LOWBAT_TH (Address 0x19)	.13
3.14.6. AUDIO_CFG (Address 0x1C)	14
3.14.8. GPIO_CFG (Address 0x14)	
3.14.9. DSP_CFG (Address 0x2B)	15
3.14.10.CHAN REGA 0 (Address 0x40)	
3.14.11.CHAN_REGB_0 (Address 0x41)	
3.14.12.CHAN_REGA_1 (Address 0x42)	
3.14.13.CHAN_REGB_1 (Address 0x43)	.16
3.14.14.CHAN_REGA_2 (Address 0x44)	
3.14.15.CHAN_REGB_2 (Address 0x45)	
3.14.16.CHAN_REGA_3 (Address 0x46)	
3.14.17.CHAN_REGB_3 (Address 0x47)	
3.14.18.CHAN_REGA_4 (Address 0x48)	
3.14.19.CHAN_REGB_4 (Address 0x49)	
3.14.21.CHAN_REGA_5 (Address 0x4A)	
3.14.22.CHAN_REGB_5 (Address 0x4E)	
3.14.23.CHAN REGB 6 (Address 0x4C)	
3.14.24.CHAN_REGA_7 (Address 0x4E)	
3.14.25.CHAN_REGB_7 (Address 0x4F)	
3.14.26.CHAN_REGA_8 (Address 0x50)	
3.14.27.CHAN_REGB_8 (Address 0x51)	
3.14.28.CHAN_REGA_9 (Address 0x52)	
3.14.29.CHAN_REGB_9 (Address 0x53)	
3.14.30.CHAN_REGA_10 (Address 0x54)	
3.14.31.CHAN_REGB_10 (Address 0x55)	
3.14.32.CHAN_REGA_11 (Address 0x56)	
3.14.33.CHAN_REGB_11 (Address 0x57)	.19

KTMicro

	3.14.34.CHAN_REGA_12 (Address 0x58)	19
	3.14.35.CHAN_REGB_12 (Address 0x59)	19
	3.14.36.CHAN_REGA_13 (Address 0x5A)	
	3.14.37.CHAN_REGB_13 (Address 0x5B)	
	3.14.38.CHAN_REGA_14 (Address 0x5C)	
	3.14.39.CHAN_REGB_14 (Address 0x5D)	19
	3.14.40.CHAN_REGA_15 (Address 0x5E)	20
	3.14.41.CHAN_REGB_15 (Address 0x5F)	20
4.	. 典型应用电路	21
5.	. 封装尺寸	23
6.	. 焊盘图形	24
7.	7. 回流焊曲线	25
8.	. 订购指南	26
9.	. 历史版本	26
	0. 联系我们	

1. 电气特性

表 1: 工作条件

参数	符号	测试条件	最小值	标准值	最大	单位
					值	
模拟电源	AVDD	Relative to GND	2.2		3.6	V
数字电源	DVDD		2.2		3.6	V
环境温度	T_A		-30	25	70	$^{\circ}$
放电量的最大限度	Vmax				2000	V
MIL-标准 883 C 方法						
3015						

表 2: 直流特性

			- b4 = 1 TTOID 14 ITT				
参数		符号	测试/操作条件	最小值	标准值	最 大 值	单位
工作电流	P _{OUT} =10dBm	I_{VDD}		-	80	-	mA
	P _{OUT} =0dBm	I_{VDD}			60		mA
待机电流		I_{APD}			5	10	μΑ

Table 3: UHF 发射器特性

(除有其他声明均认为 Ta=-30~70℃, AVDD= 2.2V ~3.6V)

参数	符号	测试/操作条件	最小 值	标准 值	最 大 值	単位
频率范围	F_{tx}		470		960	MHz
音频动态范围 1,2,3	DR	加重		100		dB
音频总谐波失真 1,2,3	THD	$V_{in} = 1 V_{p-p}$	-	0.3	0.5	%
音频输入幅度	V _{in}		-		0.5	V_{RMS}
音频输入阻抗	R _{in}			5		kΩ
音频频率响应	Fin	在 3dB 范围	20	-	18k	Hz
最大发射功率	Pout			10		dBm
杂散发射	P _{out}				-60	dBc
频道步进	STEP	T	-	25		KHz
导频频率		24MHz 晶振	-	30	-	KHz
		24.576MHz 晶振	-	30.72	-	KHz
导频频偏			2.5		10	KHz
最大频偏					75	KHz
预加重时间常数	T_{pre}	PHTCNST = 1	-	75	-	μs
晶振	CLK	输入时钟		24/ 24.576		MHz
2-线时钟	SCL			50		KHz

注:

- 1. 调制信号为 1KHz
- 2. △F=50KHz
- 3. V_{EMF}=1mV, 频率在 470MHz~960MHz 范围

2. 引脚描述

表 4: 引脚描述

引脚序号	名称	I/O 类型	功能
1	XI	模拟 I/O	晶体输入
2	XO	模拟 I/O	晶体输出
3	VREF	模拟输出	参考电压,需要接 1uF 的去耦电容
4	MICIN	模拟输入	麦克风信号输入
5	VCM	模拟输出	共模参考电压,需要接 10uF 的去耦电容
6	BAT_IN	模拟输入	电池输入
7	СН	模拟输入	频道调节信号输入
8	SDA/LOW_BAT	模拟 I/O	功能 1:串口数据 I/O. 功能 2: 低电压指示器输出
9	SCL	数字 I/O	串口时钟
10	DVDD	电源	数字电源
11	CHIP_EN	数字输入	芯片启动,0表示掉电,1表示上电
12	MUTE	数字输入	静音信号输入
13	AVSS	地	模拟地
14	OUTP	模拟输出	射频信号正输出
15	OUTN	模拟输出	射频信号负输出
16	AVSS	地	模拟地
17	AVDD	电源	模拟电源
18	VREF	模拟输出	参考电压,需要接 1uF 的去耦电容
19	AVSS	地	模拟地
20	INDN	模拟 IO	连接 VCO 电感
21	INDP	模拟 IO	连接 VCO 电感
22	AVSS	地	模拟地
23	AVSS	地	模拟地
24	AVDD	电源	模拟电源

图 1: KT0623 引脚图 (顶视图)

3. 功能描述

3.1. 概述

KT0623 提供了一个真正的单芯片 UHF 波段无线麦克风发射机方案。该芯片只需要简单的外围电路,并且兼容传统方案的麦克风接收机。KT0623 集成了低噪声麦克风前置放大器、高保真音频前端,同时拥有独立知识产权的压扩技术使得音频动态范围可以达到 100dB。全集成的 PLL 可以直接将音频信号调制到载波上,该 PLL具有出色的表现,它的相位噪声和杂散辐射都非常低。可以降低对其他设备的干扰,也可以确保多台设备可以同时工作。KT0623 可以配置导频信号,这使得 KT0623 可以兼容传统方案的高端接收机。

3.2. 上电

KT0623 在上电后可以快速进入工作状态,上电后 100ms,提供被添加到 AVDD 和 DVDD,工作时钟到达稳定,CHIP_EN 引脚使 DVDD 停下来。

3.3. 晶振

KT0623 支持 24MHz/24.576MHz 两种频率的晶体为系统提供工作时钟。

3.4. 麦克风接口

KT0623 集成低噪声麦克风接口,如图 2 所示。麦克风输入的音频信号通过管脚 MICIN 进入 KT0623。如果外部的 DC 偏置电压和内部的 VCM 电压(大约是 0.9V)不等时,需要在 MICIN 引脚上串联一个 AC 耦合电容。耦合电容的值需要恰当的选择,以保证在音频的低频端保持较好的频率响应。同时在 VCM 引脚外应该加相同的去耦电容。通过设置寄存器 MIC_SENS。麦克风的灵敏度可以调节在较宽的范围内进行调节。

3.5. 扩展器

KT0623 的内建扩展器可以将接收到的音频先后进行扩展,最大限度的保证了音频信号的质量。音频信号的动态范围按照 2:1 的比例被放大。解压扩时间常数由寄存器 COMP TC<2:0>决定。寄存器 COMP DIS 置 1,将关闭扩展器。

3.6. 预加重

KT0623 支持 75us 预加重时间常数。预加重能通过设置寄存器 PRE_DIS 被禁用。 预加重和压缩扩展器顺序由寄存器 PRE FIRST 设置。

3.7. 静音

KT0623 通过 MUTE 脚使 DVDD 停下来,静音接口电路如图 3 所示。当寄存器 MUTE_PILOT_EN 置 1,导频将被禁用,MUTE 脚停下。

图 3: 静音接口

3.8. 导频发生器

KT0623 具有导频功能,通过将导频信号叠加到音频信号上,使得该产品可以兼容广泛使用静噪算法的高端产品。导频功能可以通过设置寄存器 PILOT_EN 置 1,导频的频偏可以通过设置寄存器 PILOT_FDEV<1:0>来决定。

3.9. 频道选择

KT0623 支持电位计模式电路,如图 4 所示的应用电路。

电位计可以实现将可变电阻器的中心抽头连接到芯片。KT0623 的两部分比可变电阻器和将结果映射到信道。KT0622 可以通过寄存器 CHAN_REGA_x<15:0>和 CHAN REGB x<15:0>配置 16 个载波频率。

如果可变电阻器的中心抽头位于 16 分之一,调频道可以由寄存器 CHAN_REGA_x<15:0>和 CHAN_REGB_x<15:0>进行设置。

图 4: 在电位计模式 CH 引脚接法

KT0623 支持 UHF 470MHz~960MHz 的频率范围。连接到引脚 INDN 和 INDP 的片外电感决定了用户设置频段的中心频率。当电感值确认后,实际的载波频率可以在中心频率的±24MHz 范围进行配置。为了保证噪声性能,建议使用高 Q 值多层的片式电感。

实际的载波频率通过寄存器 CHAN_REGA_x<15:0>和 CHAN_REGB_x<15:0>配置,可以通过 KT Micro 提供配置软件得到相应的值。一旦 CH 脚写入不同于之前的值,PLL 将从新锁定新的载波频率。

关于片外电感和信道配置的更多信息,请参阅 APP NOTE。

3.10.发射功率

KT0623 的发射功率是可以调节的,调节的精度是 3dB。可以通过设置寄存器 PA GAIN<3:0>的值来设定发射功率。

KT0623 的 PA 输出信号通过两个不同的引脚 OUTP 和 OUTN 来输出。为了能够通过单端天线发射 RF 信号,需要加一个巴伦来将差分接口转为单端端口。如果天线为双极型,则不必加此巴伦。

3.11.低电池电压检测

KT0623 集成了低电池电压检测,可以由寄存器 BATT_EN 和 LOWBAT_EN 进行设置。 当 BAT_IN 低于阈值电压,可以通过设置寄存器 LOWBAT_FLASH_TH<6:0>1, SDA/LOW_BAT 将在 0 和 1 之间交替变化,

SDA/LOW_BAT 将保持漏极输出。SDA/LOW_BAT 输出 0, 当电池电压低于 LOWBAT_LIGHT_TH<6:0>1。接口电路如图 5 所示。

图 5: 电池电压检测接口电路

注 1: LOWBAT_FLASH_TH 必须高于 LOWBAT_LIGHT_TH<6:0>.

3.12.低电池备用

KT0623 集成了低电池电压检测,可以由寄存器 BATT_EN 和 LOWBAT_STB_EN 进 行 设 置 。 当 BAT_IN 低 于 阈 值 电 压 , 可 以 通 过 设 置 寄 存 器 LOWBAT_STB_TH $<6:0>^2$,KT0623 将进入待机模式。

注 2: LOWBAT_STB_TH 必须低于 LOWBAT_FLASH_TH<6:0> 和 LOWBAT_LIGHT_TH<6:0>.

3.13.芯片设置

KT0623 集成了 I2C 接口可以在上电初始化的时候读取外部 EEPROM(e.g. 24C02)中的内容。初始化信息先存储于该 EEPROM 中。上电后 KT0623 将读取存储于 EEPROM 中的所有数据并写入内部存储器。24C02 和 KT0623 的寄存器对应关系可以通过表 5 查询。EEPROM 的有效地址从 000(A2:A0) 到 110。

24C	102	KT	0623
地址	位	地址	位
0x00	D7:D0	0x00	D15:D8
0x01	D7:D0	UXUU	D7:D0
0x02	D7:D0	0x01	D15:D8
0x03	D7:D0	UXU1	D7:D0
•••	•••		•••
•••	•••	•••	• • •
0xFE	D7:D0	0x7F	D15:D8
0xFF	D7:D0	UX/I	D7:D0

表 5: 24C02 和 KT0623 寄存器对应表

3.14.寄存器组

表 6: 寄存器表

地址	寄存器	描述
0x01	CHIP_ID	芯片地址寄存器
0x03	SYS_CFG	系统配置寄存器
0x16	LOWBAT_CFG	低电压指示配置寄存器
0x18	MUTE_CFG	静音配置寄存器
0x19	LOWBAT_TH	低电压指示配置寄存器
0x1C	AUDIO_CFG	音频配置寄存器
0x1F	PILOT_CFG	导频配置寄存器
0x24	GPIO_CFG	GPIO 配置寄存器
0x2B	DSP_CFG	DSP 配置寄存器
0x40	CHAN_REGA_0	通道0配置寄存器A
0x41	CHAN_REGB_0	通道 0 配置寄存器 B
0x42	CHAN_REGA_1	通道1配置寄存器 A
0x43	CHAN_REGB_1	通道1配置寄存器B
0x44	CHAN_REGA_2	通道2配置寄存器A
0x45	CHAN_REGB_2	通道2配置寄存器B
0x46	CHAN_REGA_3	通道3配置寄存器A
0x47	CHAN_REGB_3	通道3配置寄存器B
0x48	CHAN_REGA_4	通道4配置寄存器A
0x49	CHAN_REGB_4	通道4配置寄存器B
0x4A	CHAN_REGA_5	通道 5 配置寄存器 A
0x4B	CHAN_REGB_5	通道 5 配置寄存器 B
0x4C	CHAN_REGA_6	通道 6 配置寄存器 A
0x4D	CHAN_REGB_6	通道 6 配置寄存器 B
0x4E	CHAN_REGA_7	通道7配置寄存器A
0x4F	CHAN_REGB_7	通道7配置寄存器B
0x50	CHAN_REGA_8	通道8配置寄存器A
0x51	CHAN_REGB_8	通道8配置寄存器B
0x52	CHAN_REGA_9	通道9配置寄存器A
0x53	CHAN_REGB_9	通道9配置寄存器B
0x54	CHAN_REGA_10	通道 10 配置寄存器 A
0x55	CHAN_REGB_10	通道 10 配置寄存器 B
0x56	CHAN_REGA_11	通道 11 配置寄存器 A
0x57	CHAN_REGB_11	通道 11 配置寄存器 B
0x58	CHAN_REGA_12	通道 12 配置寄存器 A
0x59	CHAN_REGB_12	通道 12 配置寄存器 B
0x5A	CHAN_REGA_13	通道 13 配置寄存器 A
0x5B	CHAN_REGB_13	通道 13 配置寄存器 B
0x5C	CHAN_REGA_14	通道 14 配置寄存器 A
0x5D	CHAN_REGB_14	通道 14 配置寄存器 B
0x5E	CHAN_REGA_15	通道 15 配置寄存器 A

	0x5F	CHAN_REGB_15	通道 15 配置寄存器 B
--	------	--------------	---------------

3.14.1. CHIP_ID (Address 0x01)

Bit	名称	默认值	功能描述
15:0	KT_MARK	0x4B54	ASCII 码组成"KT"字符

3.14.2. **SYS_CFG** (Address 0x03)

Bit	名称	默认值	功能描述
15:5	Reserved	0000_0000_000	保留位
4:1	PA_GAIN<3:0>	0_000	输出功率控制
			0000: 最小功率
			1100: 最大功率
			1101: 保留位
			,
			1111: 保留位
0	Reserved	0	保留位

3.14.3. LOWBAT_CFG (Address 0x16)

Bit	名称	默认值	功能描述
15	Reserved	0	保留位
14:8	LOWBAT_FLASH_	000_0000	SDA 引脚将闪存,当电池电压低于
	TH<6:0>		LOWBAT_FLASH_TH.
			LOWBAT_FLASH_TH 必须高于
			LOWBAT_LIGHT_TH.
			000 0000: 0/128 * 1.2V
			000 0001: 1/128 * 1.2V
			111 1111: 127/128 * 1.2V
7	Reserved	0	保留位
6:0	LOWBAT_LIGHT_	000_0000	SDA 引脚输出 0, 当电池电压低于
	TH<6:0>		LOWBAT_LIGHT_TH.
			LOWBAT_LIGHT_TH 必须高于
			LOWBAT_STB_TH.
			000 0000: 0/128 * 1.2V
			000 0001: 1/128 * 1.2V

	•••••
	111 1111: 127/128 * 1.2V

3.14.4. MUTE_CFG (Address 0x18)

Bit	名称	默认值	功能描述
15:12	Reserved	0000	保留位
11	MUTE_PILOT_EN	0	导频使能控制
			0: 禁用
			1: 使能
10	MUTE_PIN_EN	1	静音使能输入
			0: 禁用
			1: 使能
9:0	Reserved	00_0000_0000	保留位

3.14.5. LOWBAT_TH (Address 0x19)

Bit	名称	默认值	功能描述
15	LOWBAT_EN	0	低电压指示使能
			0: 低电压指示器使能
			1: 低电压指示器禁用, SDA 引脚将闪存或
			输出 0, 当电池电压低于
			LOWBAT_LIGHT_TH.
			LOWBAT_FLASH_TH >
			LOWBAT_LIGHT_TH >
			LOWBAT_STB_TH.
14:9	Reserved	000_000	保留位
8	LOWBAT_STB_EN	0	低电压指示使能
			0: 低电压指示使能
			1: 低电压指示器禁用,KT0623 将工作在
			待机模式, 当电池电压低于
			LOWBAT_STB_TH.
7	Reserved	0	保留位
6:0	LOWBAT_STB_TH<	000 0000	低电压指示使能阈值
	6:0>		000 0000: 0/128 * 1.2V
			000 0001: 1/128 * 1.2V
			111 1111: 127/128 * 1.2V

3.14.6. AUDIO_CFG (Address 0x1C)

Bit	名称	默认值	功能描述
15:10	Reserved	0000_00	保留位
9	PRE_DIS	0	预加重禁用
			0: 使能预加重
			1: 禁用预加重
8:5	MIC_SENS<3:0>	0000	麦克风灵敏度调整
			0000: 0dB
			0001: 4dB
			0010: 7dB
			0011: 10dB
			0100: 12dB
			0101: 16dB
			0110: 19dB
			0111: 22dB
			1000: 24dB
			1001: 28dB
			1010: 31dB
			1011: 34dB
			1100: 36dB
			1101: 40dB
4	COMP DIS	0	1110: 43dB1111: 46dB
4	COMP_DIS	U	压缩器功能关闭
			0: 打开压缩器
			1: 关闭压缩器
3:1	COMP_TC<2:0>	000	压缩器的时间常数
			000: 6ms
			001: 12ms
			010: 24ms
			011: 48ms
			100: 93ms 101: 199ms
			110: 199ms 110: 398ms
			110: 398ilis 111: 796ms
0	Reserved	0	Rad
U	Reserveu	U	

3.14.7. PILOT_CFG (Address 0x1F)

Bit	名称	默认值	功能描述
15	PILOT_EN	1	导频使能位
			0: 禁用

			1: 使能
14:9	Reserved	000_000	保留位
8:7	PILOT_FDEV<1:0>	0_0	导频信号的频偏选择位
			00: 2.5KHz
			01: 5KHz
			10: 7.5KHz
			11: 10KHz
6:0	Reserved	000_0000	保留位

3.14.8. GPIO_CFG (Address 0x24)

Bit	名称	默认值	功能描述
15:13	Reserved	001	保留位
12	BATT_EN	0	电池电压检测使能位
			0: 美闭
			1: 打开
11:0	Reserved	0000_0000_0000	保留位

3.14.9. DSP_CFG (Address 0x2B)

Bit	名称	默认值	功能描述
15:1	Reserved	0000_0000_0000_000	保留位
0	PRE_FIRST	1	预加重滤波器和压缩器顺序选择位 0: 压缩器→预加重
			1: 预加重→压缩器

3.14.10. CHAN_REGA_0 (Address 0x40)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_0<15:0>	0x0000	频道选择寄存器 A

3.14.11. CHAN_REGB_0 (Address 0x41)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_0<15:0>	0x0000	频道选择寄存器 B

3.14.12. CHAN_REGA_1 (Address 0x42)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_1<15:0>	0x0000	频道选择寄存器 A

3.14.13. CHAN_REGB_1 (Address 0x43)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_1<15:0>	0x0000	频道选择寄存器 B

3.14.14. CHAN_REGA_2 (Address 0x44)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_2<15:0>	0x0000	频道选择寄存器 A

3.14.15. CHAN_REGB_2 (Address 0x45)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_2<15:0>	0x0000	频道选择寄存器 B

3.14.16. CHAN_REGA_3 (Address 0x46)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_3<15:0>	0x0000	频道选择寄存器 A

3.14.17. CHAN_REGB_3 (Address 0x47)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_3<15:0>	0x0000	频道选择寄存器 B

3.14.18. CHAN_REGA_4 (Address 0x48)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_4<15:0>	0x0000	频道选择寄存器 A

3.14.19. CHAN_REGB_4 (Address 0x49)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_4<15:0>	0x0000	频道选择寄存器 B

3.14.20. CHAN_REGA_5 (Address 0x4A)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_5<15:0>	0x0000	频道选择寄存器 A

3.14.21. CHAN_REGB_5 (Address 0x4B)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_5<15:0>	0x0000	频道选择寄存器 B

3.14.22. CHAN_REGA_6 (Address 0x4C)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_6<15:0>	0x0000	频道选择寄存器 A

3.14.23. CHAN_REGB_6 (Address 0x4D)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_6<15:0>	0x0000	频道选择寄存器 B

3.14.24. CHAN_REGA_7 (Address 0x4E)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_7<15:0>	0x0000	频道选择寄存器 A

3.14.25. CHAN_REGB_7 (Address 0x4F)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_7<15:0>	0x0000	频道选择寄存器 B

3.14.26. CHAN_REGA_8 (Address 0x50)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_8<15:0>	0x0000	频道选择寄存器 A

3.14.27. CHAN_REGB_8 (Address 0x51)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_8<15:0>	0x0000	频道选择寄存器 B.

3.14.28. CHAN_REGA_9 (Address 0x52)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_9<15:0>	0x0000	频道选择寄存器 A

3.14.29. CHAN_REGB_9 (Address 0x53)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_9<15:0>	0x0000	频道选择寄存器 B

3.14.30. CHAN_REGA_10 (Address 0x54)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_10<15:0>	0x0000	频道选择寄存器 A

3.14.31. CHAN_REGB_10 (Address 0x55)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_10<15:0>	0x0000	频道选择寄存器 B

3.14.32. CHAN_REGA_11 (Address 0x56)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_11<15:0>	0x0000	频道选择寄存器 A

3.14.33. CHAN_REGB_11 (Address 0x57)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_11<15:0>	0x0000	频道选择寄存器 B

3.14.34. CHAN_REGA_12 (Address 0x58)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_12<15:0>	0x0000	频道选择寄存器 A

3.14.35. CHAN_REGB_12 (Address 0x59)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_12<15:0>	0x0000	频道选择寄存器 B

3.14.36. CHAN_REGA_13 (Address 0x5A)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_13<15:0>	0x0000	频道选择寄存器 A

3.14.37. CHAN_REGB_13 (Address 0x5B)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_13<15:0>	0x0000	频道选择寄存器 B

3.14.38. CHAN_REGA_14 (Address 0x5C)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_14<15:0>	0x0000	频道选择寄存器 A

3.14.39. CHAN_REGB_14 (Address 0x5D)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_14<15:0>	0x0000	频道选择寄存器 B.

3.14.40. CHAN_REGA_15 (Address 0x5E)

Bit	名称	默认值	功能描述
15:0	CHAN_REGA_15<15:0>	0x0000	频道选择寄存器 A

3.14.41. CHAN_REGB_15 (Address 0x5F)

Bit	名称	默认值	功能描述
15:0	CHAN_REGB_15<15:0>	0x0000	频道选择寄存器 B

4. 典型应用电路

元器件	描述	参数值	供应商
C1,C3	晶体负载电容	33pF	
C2,C6,C9,C15	电源去耦电容	0.1uF	
C4	去耦电容	0.1uF	
C5	去耦电容	1uF	
C7,C8	去耦电容	10uF	
C10	电源去耦电容	47pF	
C11,C13	去耦电容	100pF	
C12,C14	电容	TBD	
D1	低电池指示器	LED	
E1	天线		
FB1,FB2,FB3	磁珠	331@100MHz	
L1	电感	TBD	Murata LQG 系列
L2,L3	电感	68nH	Murata LQG 系列
L4,L5	电感	TBD	Murata LQG 系列
R1,R2	电阻	TBD	
R3	电阻	1K	
RV1	可变电阻器	10K	
SW1	开关	2P-3W	
U1	UHF段发射	KT0623	
U2	EEPROM	AT24C02	
Y1	晶振	24MHz	

频率(MHz)	C12 (pF)	C14 (pF)	L1 (nH)	L4 (nH)	L5 (nH)
500	2.2	2.2	4.7	18	18
600	1.0	1.0	3.9	15	15
700	0.5	0.5	2.7	12	12
800	0.3	0.3	1.5	9.1	9.1
900	0.3	0.3	1.0	9.1	9.1

5. 封装尺寸

Top View

Bottom Vlew

Side View

	7			
名称	毫米		英寸	
	最小值	最大值	最小值	最大值
A	0.700/0.800	0.800/0.900	0.028/0.031	0.031/0.035
A1	0.000	0.050	0.000	0.002
A3	0.203	REF.	0.008	REF.
D	3.900	4.100	0.154	0.161
Е	3.900	4.100	0.154	0.161
D1	2.600	2.800	0.102	0.110
E1	2.600	2.800	0.102	0.110
k	0.200MIN.		0.008MIN.	
b	0.180	0.300	0.007	0.012
e	0.500TYP.		0.020TYP.	
L	0.300	0.500	0.012	0.020

6. 焊盘图形

7. 回流焊曲线

回流焊曲线应遵循锡膏制造商的推荐和JEDEC/IPC标准J-STD-20指南。熔点为217℃的锡银铜焊锡膏通常采用无铅回流焊的条件。图7所示为J-STD-20标准的温度范围。元器件参数和元件的峰值温度指南列于表7。注意表7中所提到的温度是指在芯片封装片上表面测量的温度。

控制好回流焊的峰值温度是非常重要的,一定要保证最高温度不要超过表7中列出的温度以确保芯片不会受到损坏。

图 7: 典型的回流曲线

表 7: 回流曲线参数

参数	无铅
平均上升速度 (TsMAX~Tp)	最快3℃/秒
预加热:	
最低温度(TsMIN)	+150℃
最高温度(TsMAX)	+200℃
从tsMIN 到tsMAX的时间	60~180 秒
保持时间:	
温度(TL)	+217℃
时间 (tL)	60~150 秒
峰值温度(Tp)	+260°C
在+5℃ 峰值温度保持时间 (tp)	20 ~40 秒
温度下降速度	最高+6℃/秒
+25℃ 峰值温度保持时间	最长8 分钟

8. 订购指南

型号	描述	封装,最小订单数量
KT0623	全集成 UHF 无线麦克风发射芯片	QFN24, Pb free , 4000pcs

9. 历史版本

10.联系我们

昆腾微电子股份有限公司

中国北京市海淀区北坞村路23号北坞创新园中区4号楼

邮编: 100195

电话: +86-10-88891955 传真: +86-10-88891977 邮箱: <u>sales@ktmicro.com</u>

KT Micro, Inc. (US Office)

999 Corporate Drive, Suite 170 Ladera Ranch, CA 92694

USA

Tel: 949-713-4000 Fax: 949-713-4004 Email: sales@ktmicro.com