

Intro to Embedded Microp & AVR

ENEE 3582 Microp

General Purpose vs Embedded

- Microprocessors in computers
- Processes information
- Runs many apps
- Software and OS
- Newer (started in 1980)
- Lots of RAM
- Many pins
- Power hungry
- Non-RT apps
- Advanced, expensive, large die
- Multicore
- Multiple human interfaces
- Not typically rated

- Microcontrollers for devices
- Controls mech/elect/electronic
- Runs single/limited apps
- Firmware, no OS
- Older (1970)
- Tiny RAM
- Limited pins
- Low power
- RT apps
- Simple, cost-effective, small die
- Peripheral support, System-on-a-chip(SoC)
- No/limited human interface
- Rated for temp/pressure/vibration

CPU	RAM	ROM
I/O ADC	Timer	Serial COM Port

Choices of Microcontrollers

- Choose a microcontroller based on:
 - Speed/computation power
 - Peripheral support (sub-systems in SoC)
 - Power consumption
 - RAM/ROM needs
 - Number of IO pins needed
 - Packaging: DIP vs QFP
 - https://www.eesemi.com/ic-package-types.htm
 - Cost

Choices of Microcontrollers

- 4-bit: E.g. COP400, EM73201, W741E260, HD404358
- * 8-bit: E.g. 6502, Z80, 8051, AVR, PIC
 - A few bytes to a few hundred KB of RAM
 - Software is in asm and C
 - Still dominate both numbers and dollar volume
 - > Two kinds:
 - Old-style CISC, E.g. 6502, Z80, 8051
 - These are >20 years old and doing well
 - Newer style RISC, E.g. AVR, PIC
- ❖ 16-bit: E.g. ARM, MIPS, MN10300, PPC
- * 32-bit: E.g. 386, AVR32

AVR

- Designed by two students of Norwegian Institute of Technology (NTH)
 - ➤ Bought and developed by Atmel in 1996. Atmel bought by Microchip in 2016
- * AVR 8-bit family:
 - Classic AVR (AT90Sxxxx)
 - Replaced. Not recommended for new design
 - Mega AVR (ATmegaxxxx)
 - 120 instructions, expandable
 - Extensive peripheral sets
 - Tiny AVR (ATtinyxxxx)
 - Smaller, limited, low power, low cost
 - Special AVR
 - Unique peripherals: USB, ethernet, Zigbee, CAN
- ❖ AVR32: 32bit

ATmega 2560

- Datasheets: https://www.microchip.com/en-us/product/ATmega2560#document-table
- AVR CPU Core:
 - ➤ 32, 8-bit registers: R0-R31
 - > 3, 16-bit indexing registers: X, Y, Z
- ❖ 4KB EEPROM, 8KB RAM
- Data registers: address 0x0000-0x001F
- ❖ Internal data RAM (IRAM): address 0x0200-0x21FF
- External data RAM (XRAM): address 0x2200-0xFFFF
- ❖ EEPROM: address 0x0000
- ❖ FLASH address 0x000000-

https://www.microchip.com/en-us/product/ATmega2560#document-table

ENEE 3582

Device	Flash	EEPROM	RAM	General Purpose I/O pins	16 bits resolution PWM channels	Serial USARTs	ADC Channels
ATmega640	64KB	4KB	8KB	86	12	4	16
ATmega1280	128KB	4KB	8KB	86	12	4	16
ATmega1281	128KB	4KB	8KB	54	6	2	8
ATmega2560	256KB	4KB	8KB	86	12	4	16
ATmega2561	256KB	4KB	8KB	54	6	2	8

J

Speed (MHz) ⁽²⁾	Power Supply	Ordering Code	Package ⁽¹⁾⁽³⁾	Operation Range
8	1.8V - 5.5V	ATmega2560V-8AU ATmega2560V-8AUR ⁽⁴⁾ ATmega2560V-8CU ATmega2560V-8CUR ⁽⁴⁾	100A 100A 100C1 100C1	Industrial (-40°C to 85°C)
16	4.5V - 5.5V	ATmega2560-16AU ATmega2560-16AUR ⁽⁴⁾ ATmega2560-16CU ATmega2560-16CUR ⁽⁴⁾	100A 100A 100C1 100C1	111dd3t11d1 (=40 0 t0 03 0)

RAM

- Random-access memory (RAM):
 - Allows read and writing of memory
 - Same amount of time is required to access any location on the same chip
 - Volatile: information is lost without power.
 - Used to store user's programs
- Dynamic RAM (DRAM):
 - Uses 1 transistor and 1 capacitor for 1 bit.
 - Periodic refresh is required to maintain the contents of chip.
 - Asynchronous
 - SDRAM: synchronous DRAM (edge triggered)
- Static RAM (SRAM):
 - No periodic refresh is required
 - Uses 4-6 transistors for 1 bit

ROM

- Read-only memory (ROM):
 - Can only be read but not written by the processor
 - Nonvolatile
- Mask-programmed ROM (MROM):
 - Programmed when being manufactured
- Programmable ROM (PROM):
 - Programmed by the end user
- Erasable programmable ROM (EPROM)
 - Electrically programmable many times
 - Erased by ultraviolet light
 - Erasable in bulk (whole chip in one erasure operation)

ROM

- Electrically erasable programmable ROM (EEPROM)
 - Electrically programmable many times
 - Electrically erasable many times
 - Erased one location, one row, or whole chip in one operation
 - Erased without removing unit from device.
- Flash EEPROM
 - Electrically programmable many times
 - Electrically erasable many times
 - Erased in bulk/large blocks => faster than EEPROM

Harvard vs Princeton Memory Architectures

- Von Neumann (Princeton) architecture
 - One memory, one bus
 - Code and Data accessed on the same bus
 - Memory "collisions"
- Harvard architecture
 - Separate memory for code and data memory
 - Separate busses
 - Expensive: Double memory pins for external memory
- * AVR Solution:
 - Harvard internal memory
 - Von Neumann for external memory

Memory Organization

- Memory is organized by addresses
 - Each address points to a memory location
 - \triangleright n bit address = 2^n locations
- Memory is grouped (measured) into byte locations
- Program Memory:
 - Mega2560: 256KB Flash
 - Address in PC (17bits)
 - Each location is 2B
 - Starting location = 0x00000
- Data Memory:
 - Mega2560: 8KB internal SRAM, 0-64KB external SRAM
 - Each location is a 1B
 - Starting address = 0x0200 (internal), 0x2200 (external)

Mega 2560

Address (HEX)

0000 - 001F	32 Registers
0020 - 005F	64 I/O Registers
0060 - <u>01FF</u>	416 External I/O Registers
0200 21FF	Internal SRAM (8192 × 8)
2200	
	External SRAM (0 - 64K × 8)
FFFF	