Complex coordination: How power dynamics and task demands shape interpersonal motor synchrony

Alexandra Paxton^{1*}, Lucien Brown², & Bodo Winter³

¹ University of California, Berkeley; ² Monash University; ³ University of Birmingham

*paxton.alexandra@gmail.com

INTRODUCTION

- · Interpersonal coordination captures the ways that interacting with other people influences emotion, behavior, and cognition over time.
- Most studies analyze coordination by analyzing how similar interacting individuals become over time.
- · Research is increasingly interested in understanding how coordination is shaped by interpersonal pressures and contextual constraints. For example, when studying partners in different kinds of interactions, previous work finds that
 - overall body movements become less similar during arguments [1],
 - overall body movements become more similar during friendly conversations and game-like competition [2],
 - · ostracized individuals will mimic specific body movements of the person who ostracized them [3]
- One such contextual factor could be power (or social status).
- Previous work on perspective-taking (proposed to be linked to synchrony [4]) shows that people accommodate the perspective of high-power individuals more than low-power individuals [5].
- Previous work on social psychology documents a host of ways that power influences nonverbal behavior [6].
- · Here, we examine how power dynamics shape interpersonal movement synchrony during interactions with higher-status versus same-status partners among native Korean speakers.
- Korean has a well-studied system of grammatical honorific markers [7], but nonverbal signatures of power, politeness, and deference are highly understudied.
- Because of the very salient cues to "doing deference" [6] in Korean, it provides a well-scoped case to study coordination and power.

METHOD

Participants

- N = 14 participants (M = 22.15 years; range: 19-27 years; female=7; male=7)
- Recruited from students at University of Konkuk (Seoul, South Korea)
- All speakers of standard Korean

- Each participant attended 2 data collection sessions with a different partner (order counterbalanced):
- A session with a friend
- A friend who they had known for at least 1 year
- Instructed to be a friend of the same gender, but 2 male participants did not follow this instruction
- · A session with a professor of English literature from the university
- Same professor for all conversations
- Not affiliated with the research (paid ~\$177 USD)
- · Each session included 4 interaction tasks (fixed order):
- 1. Conversation: Participant and partner discussed a recent movie
- 2. Tweety: Participant described a "Tweety Bird" cartoon to partner [8]
- 3. Map: Two rounds of the map task (participant-leading then partner-
- 4. Role-play: Participant role-played giving an apology to partner

Figure 1. Example interaction setup. Stills from friend (top) and professor (bottom) videos during the Conversation task for a single participant.

Body movement synchrony by partner type and task Friend Professor 0.15 -5.0 -2.5 0.0 2.5 5.0 -5.0 -2.5 0.0 2.5 5.0 Lag (in sec; 20 Hz) Lag (in sec; 20 Hz)

Figure 2. Diagonal recurrence profile (DRP) for interaction tasks performed with friend (left panel) and professor (right panel). Negative lags indicate participant-leading dynamics; positive lags indicate partner-leading dynamics.

Model results: Professor-only

Model results: Friend-only

	Estimate	Std. Error	t-value	p-value			Estimate	Std. Error	t-value	p-value	
(Intercept)	0.06663	0.007154	9.313	0.0001	***	(Intercept)	0.05582	0.009126	6.117	0.0001	***
LL	-0.07444	0.0247	-3.014	0.003	**	LL	-0.0357	0.02607	-1.37	0.171	
QL	-0.2246	0.04312	-5.208	0.0001	***	QL	-0.02808	0.02254	-1.246	0.213	
Мар	0.02594	0.01766	1.469	0.142		Мар	0.01906	0.0149	1.279	0.201	
Role-play	-0.01391	0.01125	-1.237	0.216		Role-play	-0.005873	0.01615	-0.3638	0.72	
Tweety	-0.008415	0.007923	-1.062	0.29		Tweety	0.001525	0.0103	0.148	0.88	
LL x QL	0.3117	0.1345	2.317	0.02	*	LL x QL	-0.295	0.07427	-3.972	0.0001	***
LL x Map	0.1704	0.01809	9.42	0.0001	***	LL x Map	0.06567	0.009287	7.072	0.0001	***
LL x Role-play	-0.1982	0.01682	-11.78	0.0001	***	LL x Role-play	0.01619	0.009287	1.744	0.081	
LL x Tweety	0.2193	0.01682	13.04	0.0001	***	LL x Tweety	-0.06963	0.009287	-7.498	0.0001	***
QL x Map	-0.01445	0.01281	-1.128	0.26		QL x Map	0.007867	0.006506	1.209	0.227	
QL x Role-play	0.02769	0.01178	2.35	0.019		QL x Role-play	0.04745	0.006506	7.292	0.0001	***
QL x Tweety	-0.02538	0.01178	-2.153	0.031	*	QL x Tweety	0.007844	0.006506	1.206	0.228	
LL x QL x Map	-1.172	0.2028	-5.779	0.0001	***	LL x QL x Map	0.09376	0.105	0.8926	0.37	
LL x QL x Role-play	1.332	0.1902	7.001	0.0001	***	LL x QL x Role-play	0.000673	0.105	0.006408	1	
LL x QL x Tweety	-1.695	0.1902	-8.91	0.0001	***	LL x QL x Tweety	0.4932	0.105	4.696	0.0001	***

Table 1. Model results for follow-up models exploring higher-level interaction terms for friend conversations (left panel) and professor conversations (right panel). Factor for tasks are compared against the Conversation task as a reference category. LL captures leading/following. QL captures time-locked synchrony.

ANALYSES & RESULTS

- Automatically extracted overall body movement from videos using a frame-differencing method [BRM], implemented in Python
- Quantified interpersonal synchrony of overall movement with diagonal recurrence profiles from cross-recurrence quantification analysis (CRQA) within 5-sec window and growth curve models
- → Linear lag (LL; first-order orthogonal lag) captures leading/following
- Quadratic lag (QL; second-order orthogonal lag) captures time-locked
- Created a linear mixed-effects model in R with participant identity and partner order condition as random intercepts with maximal random slopes
- · Due to higher-order interactions with partner type, complete results of the follow-up models broken down by partner type are presented in Table 1.
- Code and results from our models (including the full model with both partner types) are available on our project's GitHub repository:

http://github.com/a-paxton/politeness-and-coordination

Discussion

- · Broadly, we find marked differences in dynamics depending on
- Intriguingly, we find no evidence of time-locked synchrony with the professor, although we see similar levels of coordination overall.
- However, there was no difference in overall levels of coordination within the 5-second window.
- · However, we do see some signatures of task constraints across
- Follow-up work will compare difference among conversation types between partner types.
- · Our work demonstrates...
- that—like other contextual social constraints [1,2,3]—power dynamics can shape the emergence of interpersonal coordination.
- that power and deference have **verbal** and **nonverbal signatures in** Korean, suggesting that the constraints of politeness shape the entire dyadic system in powerful, multileveled ways.

REFERENCES

- [1] Paxton & Dale (2013). Argument decreases interpersonal synchrony. Quarterly Journal of Experimental Psychology.
- [2] Tschacher, Rees, & Ramseyer (2014). Nonverbal synchrony and affect in dyadic interactions. Frontiers in Psychology [3] Lakin, Chartrand, & Arkin (2008). I am too just like you: Nonconscious mimicry as an automatic behavioral response
- to social exclusion. Psychological Science. [4] Lakin, Jefferis, Cheng, & Chartrand (2003). The chameleon effect as social glue: Evidence for the evolutionary
- significance of nonconscious mimicry. Journal of Nonverbal Behavior. [5] Duran & Dale (2011). Spatial cognition adapts to social context. Proceedings of the Cognitive Science Society. [6] Brown & Winter (in press). Multimodal indexicality in Korean: "Doing deference" and "performing intimacy"
- through nonverbal behavior. Journal of Politeness Research Study. [7] Winter & Grawunder (2012), The phonetic profile of Korean formal and informal speech registers. Journal of
- [8] https://www.dailymotion.com/video/x6dsl4d