有限差分法 Finite Difference Methods

昀騰金融科技

技術長

董夢雲 博士

dongmy@ms5.hinet.net

目 錄

- 一、由樹(Tree)到晶格(Grid)
- 二、顯式差分法(Explicit FDM)
- 三、隱式差分法(Implicit FDM)
- 四、完全中心法(Crank-Nicolson Method)

一、由樹(Tree)到晶格(Grid)

◆ 考慮一個三元樹如下,

▶ 往上、下擴展後,形成有 2Nj+1 個節點的晶格體,Nj>=N,如下圖。

- ◆ 只有在實線上的點,選擇權之值才可求得,用折現法由後推算。
- ▶ 需要額外邊界條件(Boundary Conditions),極高、極低價格時選擇權價值,才可求得其他點價值。

◆ 對歐式選擇權,BC為:

$$\frac{\partial C}{\partial S} = 1, \quad S >> 0$$

$$\frac{\partial C}{\partial S} = 0, \quad S \approx 0$$

▶ 以差分表示,

$$\frac{C_{i,N_j} - C_{i,N_{j-1}}}{S_{i,N_j} - S_{i,N_{j-1}}} = 1, \quad S >> 0$$

$$\frac{C_{i,N_j} - C_{i,N_{j-1}}}{S_{i,N_j} - S_{i,N_{j-1}}} = 0, \quad S \approx 0$$

- ▶ 可以由內部向外部上、下兩方(C_{i,-Nj}與 C_{i,Nj})計算。
 - ✓ 內部的選擇權值($C_{i,-Nj+1}$,..., $C_{i,Nj-1}$),可由三元樹折現公式求得。

一、顯式差分法(Explicit FDM)

- ◆ 以有限差分取代偏微分的方法,簡化 PDE(Partial Differential Equation),以求得其解。
 - ▶ 回到 Black-Scholes PDE 如下式。

$$-\frac{\partial C}{\partial t} = \frac{1}{2}S^2\sigma^2\frac{\partial^2 C}{\partial S^2} + (r - y)S\frac{\partial C}{\partial S} - rC \tag{1}$$

- ▶ 不同的選擇權有其各自的邊界條件(Boundary Conditions)。
- ◆ 以 x = ln(S)表示,(1)式改寫如下,

$$-\frac{\partial C}{\partial t} = \frac{1}{2}\sigma^2 \frac{\partial^2 C}{\partial x^2} + \upsilon \frac{\partial C}{\partial x} - rC$$
(2)

▶ (2)式為一常數係數的 PDE,與 X、t 無關,容易求解。

- ◆ 使用前向差分的方法來處理 t 的微分,使用中央差分的方法來處理 x 的微分。
- ▶ 對於使用中央差分的方法來處理 X 的微分,取值於 t = i+1。可以得到下式,

$$-\frac{\partial C}{\partial t} = \frac{C_{i+1,j} - C_{i,j}}{\Delta t}$$

$$\frac{\partial C}{\partial x} = \frac{C_{i+1,j+1} - C_{i+1,j-1}}{2\Delta x} \quad \frac{\partial^2 C}{\partial x^2} = \frac{C_{i+1,j+1} - 2C_{i+1,j} + C_{i+1,j-1}}{\Delta x^2}$$

▶ (2)式可以改寫成下式。

$$-\frac{C_{i+1,j} - C_{i,j}}{\Delta t} = \frac{1}{2}\sigma^2 \frac{C_{i+1,j+1} - 2C_{i+1,j} + C_{i+1,j-1}}{\Delta x^2} + \upsilon \frac{C_{i+1,j+1} - C_{i+1,j-1}}{2\Delta x} - rC_{i+1,j}$$
(3)

▶ 進一步改寫成下式。

$$C_{i,j} = p_u C_{i+1,j+1} + p_m C_{i+1,j} + p_d C_{i+1,j-1}$$
(4)

$$p_{u} = \Delta t \left(\frac{\sigma^{2}}{2\Delta x^{2}} + \frac{\upsilon}{2\Delta x} \right), \quad p_{m} = 1 - \Delta t \frac{\sigma^{2}}{\Delta x^{2}} - r\Delta t, \quad p_{u} = \Delta t \left(\frac{\sigma^{2}}{2\Delta x^{2}} - \frac{\upsilon}{2\Delta x} \right)$$

FIGURE 3.6 The Explicit Finite Difference Method

FIGURE 3.7 Pseudo-code for a European Call Option by Explicit Finite Difference Method

```
initialise_parameters ( K, T, S, sig, r, div, N, Nj, dx )
{ precompute constants }
dt = T/N
nu = r - div - 0.5 * sig^2
edx = exp(dx)
pu = 0.5*dt*((sig/dx)^2 + nu/dx)
pm = 1.0 - dt*(sig/dx)^2 - r*dt
pd = 0.5*dt*((sig/dx)^2 - nu/dx)
{ initialise asset prices at maturity }
St[-Nj] = S*exp(-Nj*dx)
for j = -Nj+1 to Nj do St[j] = St[j-1]*edx
{ initialise option values at maturity }
for j = -Nj to Nj do C[N,j] = max(0, St[j] - K)
{ step back through lattice }
for i = N-1 downto 0 do
 for j = -Nj+1 to Nj-1 do
   C[i,j] =
     pu*C[i+1,j+1] + pm*C[i+1,j] + pd*C[i+1,j-1]
 ( boundary conditions )
 C[i,-Nj] = C[i,-Nj+1]
 C[i,Nj] = C[i,Nj-1] + (St[Nj]-St[Nj-1])
next i
European_call = C[0,0]
```

FIGUR! Method		umerical	Example	for a Eu	ropean Call	Option	by Explici	t Finite	Difference
K	Т	s	sig	r	div	N	Nj	dx	
100	1	100	0.2	0.06	0.03	3	3	0.2	
dt	nu	edx	pu	pm	pd				
0.3333	0.0100	1.2214	0.1750	0.6467	0.1583				
	1		0		1		2		3
1	St, t		0		0.3333		0.6667		1
3	182.21		83.9151		83.2738		82.7267		82.2119
2	149.18		50.8857		50.2444		49.6973		49.1825
1	122.14		25.4319		24.1349		22.9243		22.1403
0	100.00		8.5455		6.5173		3.8745		0.0000
-1	81.87		1.5790		0.6780		0.0000		0.0000
-2	67.03		0.1187		0.0000		0.0000		0.0000
-3	54.88		0.1187		0.0000	Ī	0.0000		0.0000

FIGURE 3.9 Pseudo-code for an American Put Option by Explicit Finite Difference Method

```
initialise parameters { K, T, S, sig, r, div, N, Nj, dx }
{ precompute constants }
dt = T/N
nu = r - div - 0.5 * sig^2
edx = exp (dx)
pu = 0.5*dt*((sig/dx)^2 + nu/dx)
pm = 1.0 - dt*(sig/dx)^2 - r*dt
pd = 0.5*dt*((sig/dx)^2 - nu/dx)
{ initialise asset prices at maturity }
St[-Nj] = S*exp(-Nj*dx)
for j = -Nj+1 to Nj do St[j] = St[j-1]*edx
{ initialise option values at maturity }
for j = -Nj to Nj do C[0,j] = max(0, K - St[j])
{ step back through lattice }
for i = N-1 downto 0 do
  for j = -Nj+1 to Nj-1 do
    C[1,j] = pu*C[0,j+1] + pm*C[0,j] + pd*C[0,j-1]
  { boundary conditions }
  C[1,-Nj] = C[1,-Nj+1] + (St[-Nj+1]-St[-Nj])
  C[1,Nj] = C[1,Nj-1]
  { apply early exercise condition }
  for j = -Nj to Nj do
    C[0,j] = max(C[1,j], K - St[j])
next i
American_put = C[0,0]
```

K	T	S	sig	r	div	N	Nj	dx	
100	1	100	0.2	0.06	0.03	3	3	0.2	
dt 0.3333	nu 0.0100	edx 1.2214	pu 0.1750	pm 0.6467	pd 0.1583				
	- 1		0		1		2		3
j	St, t		0		0.3333		0.6667		1
3	182.21		0.0720		0.0000		0.0000		
			0.0720		0.0000		0.0000		0.0000
2	149.18		0.0720	1	0.0000		0.0000		
			0.0720	3	0.0000		0.0000		0.0000
1	122.14		1.0422		0.4544		0.0000		
			1.0422		0.4544		0.0000		0.0000
0	100.00		6.0058		4.7261		2.8701		
			6.0058		4.7261		2.8701		0.0000
-1	81.87		17.7691		17.4443		16.9420		
			18.1269		18.1269		18.1269		18.1269
-2	67.03		31.6353		31.6353		31.6353		
		9	32.9680		32.9680		32.9680		32.9680
-3	54.88		43.7862		43.7862		43.7862		
			45.1188		45.1188		45.1188		45.1188

◆ 穩定度的要求, $p_u \setminus p_m \setminus p_d$,皆大於零,

$$\Delta x \ge \sigma \sqrt{3\Delta t}$$

ightarrow 到期日通常考慮上、下 3 個標準差的資產價格, $\sigma = 0.25$,T = 1.0,令價格為 100(2Nj+1=100),

$$\Delta x = \frac{6\sigma\sqrt{\Delta T}}{100} = 0.015$$

$$\Delta t \le \frac{1}{3} \left(\frac{\Delta x}{\sigma} \right)^2 = 0.0012$$

- ✓ 每一年要833步。
- ▶ 以 n_{SD} 取代 6, 可得

$$N = \frac{T}{\Delta t} \ge 3 \left(\frac{2N_j + 1}{n_{SD}} \right)^2$$

▶ 通常要求晶格上,資產價格數目對標準差數目之比大於 15。

$$\left(\frac{2N_j+1}{n_{SD}}\right) \ge 15$$

✓ 每一年要 675 步。

二、隱式差分法(Implicit FDM)

◆ 在 Black-Scholes PDE,對於使用中央差分的方法來處理 x 的微分,取值於 t=i 而非 i+1。可以得到下式,

$$-\frac{C_{i+1,j} - C_{i,j}}{\Delta t} = \frac{1}{2}\sigma^2 \frac{C_{i,j+1} - 2C_{i,j} + C_{i,j-1}}{\Delta x^2} + \upsilon \frac{C_{i,j+1} - C_{i,j-1}}{2\Delta x} - rC_{i,j}$$
(5)

▶ 改寫成下式。

$$p_{u}C_{i,j+1} + p_{m}C_{i,j} + p_{d}C_{i,j-1} = C_{i+1,j}$$
(6)

$$p_{u} = -\frac{1}{2}\Delta t \left(\frac{\sigma^{2}}{\Delta x^{2}} + \frac{\upsilon}{\Delta x}\right), \quad p_{m} = 1 + \Delta t \frac{\sigma^{2}}{\Delta x^{2}} + r\Delta t, \quad p_{u} = -\frac{1}{2}\Delta t \left(\frac{\sigma^{2}}{\Delta x^{2}} - \frac{\upsilon}{\Delta x}\right)$$

▶ (6)式無法直接求得。需配合邊界條件,

$$C_{i,N_{i}} - C_{i,N_{i-1}} = \lambda_{U}$$

$$C_{i,-N_i+1} - C_{i,-N_i} = \lambda_L$$

✓ 2N_i+1個線性聯立方程式,可求得 i 時點 2N_i+1個選擇權價值。

◆ 對於 Vanilla Call, 邊界條件為,

$$C_{i,N_{j}} - C_{i,N_{j-1}} = \lambda_{U} = S_{i,N_{j}} - S_{i,N_{j-1}}$$
$$C_{i,-N_{j}+1} - C_{i,-N_{j}} = \lambda_{L} = 0$$

▶ 線性方程組可表式為,

$$\begin{bmatrix} 1 & -1 & 0 & \dots & \dots & 0 \\ p_u & p_m & p_d & 0 & \dots & \dots & 0 \\ 0 & p_u & p_m & p_d & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & p_u & p_m & p_d & 0 \\ 0 & \dots & 0 & p_u & p_m & p_d & 0 \\ 0 & \dots & \dots & 0 & p_u & p_m & p_d \\ 0 & \dots & \dots & 0 & 1 & -1 \end{bmatrix} \bullet \begin{bmatrix} C_{i,N_j} \\ C_{i,N_j-1} \\ C_{i,N_j-2} \\ \dots \\ C_{i,N_j-2} \\ \dots \\ C_{i,-N_j+2} \\ C_{i,-N_j+1} \\ C_{i,-N_j+1} \\ \lambda_L \end{bmatrix}$$

▶ 由下往上,逐步遞歸求解,或反矩陣求解。

FIGURE 3.13 Pseudo-code for an American Put Option by Implicit Finite Difference Method

```
initialise_parameters { K, T, S, sig, r, div, N, Nj, dx }
{ precompute constants }
dt = T/N
nu = r - div - 0.5 * sig^2
edx = exp(dx)
pu = -0.5*dt*((sig/dx)^2 + nu/dx)
pm = 1.0 + dt*(sig/dx)^2 + r*dt
pd = -0.5*dt*((sig/dx)^2 - nu/dx)
{ initialise asset prices at maturity }
St[-Nj] = S*exp(-Nj*dx)
for j = -Nj+1 to Nj do St[j] = St[j-1]*edx
{ initialise option values at maturity }
for j = -Nj to Nj do C[0,j] = max(0, K - St[j])
{ compute derivative boundary condition }
lambda_L = -1 * (St[-Nj+1] - St[-Nj])
lambda_U = 0.0
{ step back through lattice }
for i = N-1 downto 0 do
  solve_implicit_tridiagonal_system( C, pu, pm, pd,
   lambda L, lambda U )
 { apply early exercise condition }
 for j = -Nj to Nj do
   C[0,j] = max(C[1,j], K - St[j])
next i
American_put = C[0,0]
                                                                  (continues)
```

FIGURE 3.13 (continued)

```
subroutine solve_implicit_tridiagonal_system( C, pu, pm, pd,
  lambda L, lambda U )
{ substitute boundary condition at j = Nj into j = -Nj+1 }
pmp[-Nj+1] = pm + pd
pp[-Nj+1] = C[0,-Nj+1] + pd*lambda_L
{ eliminate upper diagonal }
for j = -Nj+2 to Nj-1 do
 pmp[j] = pm - pu*pd/pmp[j-1]
 pp[j] = C[0,j] - pp[j-1]*pd/pmp[j-1]
next j
{ use boundary condition at j = Nj and equation at j = Nj-1 }
C[1,Nj] = (pp[Nj-1] + pmp[Nj-1]*lambda_U)/(pu + pmp[Nj-1])
C[1,Nj-1] = C[1,Nj] - lambda_U
{ back-substitution }
for j = Nj-2 downto -Nj do
 C[1,j] = (pp[j] - pu*C[1,j+1])/pmp[j]
next j
return
```

K	T	S	sig	r	div	N	Nj	dx	
100	1	100	0.2	0.06	0.03	3	3	0.2	
dt).3333	nu 0.0100	edx 1.2214	pu -0.1750	pm 1.3533	pd -0.1583				
	1		0		1		2		3
j	St, t		0		0.3333		0.6667		1
3	182.21		0.2386 0.2386		0.1120 0.1120		0.0330 0.0330		0.0000
2	149.18		0.2386 0.2386	1.3325 0.2762	0.1120 0.1120	1.3325 0.1296	0.0330 0.0330	1.3325	0.0000
1	122.14		1.0684 1.0684	1,3819	0.6248 0.6248	1.3325 0.8129	0.2458 0.2458	1.3325 0.3218	0.0000
0	100.00		4.9221 4.9221	1.3325 6.3718	3.6637 3.6637	1.3325 4.7726	2.0646 2.0646	1.3325 2.7060	0.0000
-1	81.87		17.7509 18.1269	1,3301 22,7500	17.5854 18.1269	1.3301 22:7500	17.3750 18.1269	1.3301 22.7500	18.1269
-2	67.03		31.7977 32.9680	1.1950 34.8919	31.7735 32.9680	1,1950 34.8919	31.7427 32.9680	1.1950 34.8919	32.9680
-3	54.88		43.9486 45.1188		43.9243 45.1188		43.8935 45.1188		45.1188

三、Crank-Nicolson FDM

◆ 又稱為完全中心法(Full Centered Method),是隱式 FDM 法的修正版。時間與空間的微分皆取在 t=i+1/2 上。

FIGURE 3.16 Pseudo-code for an American Put Option by the Crank-Nicolson Finite Difference Method

```
initialise parameters ( K, T, S, sig, r, div, N, Nj, dx )
{ precompute constants }
dt = T/N
nu = r - div - 0.5 * sig^2
edx = exp(dx)
pu = -0.25*dt*((sig/dx)^2 + nu/dx)
pm = 1.0 + 0.5*dt*(sig/dx)^2 + 0.5*r*dt
pd = -0.25*dt*((sig/dx)^2 - nu/dx)
{ initialise asset prices at maturity }
St[-Ni] = S*exp(-Ni*dx)
for j = -Nj+1 to Nj do St[j] = St[j-1]*edx
{ initialise option values at maturity }
for j = -Nj to Nj do C[0,j] = max(0, K - St[j])
{ compute derivative boundary condition }
lambdaL = -1 * (St[-Nj+1] - St[-Nj])
lambda_U = 0.0
{ step back through lattice }
for i = N-1 downto 0 do
  solve_Crank_Nicolson_tridiagonal_system( C, pu, pm, pd,
    lambda_L, lambda_U )
 { apply early exercise condition }
 for j = -Nj to Nj do
```

FIGURE 3.16 (continued)

```
C[0,j] = max(C[1,j], K - St[j])
next i
American_put = C[0,0]
(-------
subroutine solve_Crank_Nicolson_tridiagonal_system( C,
  pu, pm, pd, lambda L, lambda U)
{ substitute boundary condition at j = -Nj into j = -Nj+1 }
pmp[-Nj+1] = pm + pd
pp[-Nj+1] = -pu*C[0,-Nj+2]-(pm-2)*C[0,-Nj+1]-pd*C[0,-Nj]
           + pd*lambda_L
{ eliminate upper diagonal }
for j = -Nj+2 to Nj-1 do
 pmp[j] = pm - pu*pd/pmp[j-1]
 pp[j] = -pu*C[0,j+1]-(pm-2)*C[0,j]-pd*C[0,j-1]
         - pp[j-1]*pd/pmp[j-1]
next j
{ use boundary condition at j = Nj and equation at j = Nj-1 }
C[1,Nj] = (pp[Nj-1] + pmp[Nj-1]*lambda_U)/(pu + pmp[Nj-1])
C[1,Nj-1] = C[1,Nj] - lambda_U
{ back-substitution }
for j = Nj-2 downto -Nj do
 C[1,j] = (pp[j] - pu*C[1,j+1])/pmp[j]
next j
return
```

		Example	for an	American	Put	Option by	the Cra	ank-Nicols
т	S	sig	r	div	N	Nj	dx	
1	100	0.2	0.06	0.03	3	3	0.2	
nu 0.0100	edx 1.2214	pu -0.0875	pm 1.1767	pd -0.0792				
i St/t		0		1 0.3333		2 0.6667		3
182.21		0.1686 0.1686		0.0620 0.0620		0.0117 0.0117]	0.0000
149.18		0.1686 0.1686	TO S	0.0620 0.0620		0.0117 0.0117		0.0000
122.14		1.0488 1.0488		0.5568 0.5568		0.1616 0.1616	STATE OF	0.0000
100.00		5.4184 5.4184		4.1237 4.1237		2.3896 2.3896		0.0000
81.87		17.7458 18.1269		17.5193 18.1269	1	17.2110 18.1269	S. I.	18.1269
67.03		31.7233 32.9680		31.7053 32.9680	100	31.6807 32.9680		32.9680
54.88		43.8742 45.1188		43.8561 45.1188		43.8315 45.1188		45.1188
	T 1 nu 0.0100 i St/t 182.21 149.18 122.14 100.00 81.87	1 100 nu edx 0.0100 1.2214 i St/t 182.21 149.18 122.14 100.00 81.87	T S sig 1 100 0.2 nu edx pu -0.0875 i 0 St/t 0 0 182.21 0.1686 0.1686 149.18 0.1686 122.14 1.0488 1.0488 100.00 5.4184 5.4184 81.87 17.7458 18.1269 67.03 31.7233 32.9680 54.88 43.8742	T S sig r 0.06 nu edx pu pm 0.0100 1.2214 -0.0875 1.1767 i 0 St/t 0 0 182.21 0.1686 0.1686 149.18 0.1686 122.14 1.0488 1.0488 100.00 5.4184 5.4184 81.87 17.7458 18.1269 67.03 31.7233 32.9680 54.88 43.8742	T S sig r div 1 100 0.2 0.06 0.03 nu edx pu pm pd 0.0100 1.2214 -0.0875 1.1767 -0.0792 i 0 1 1 St/t 0 0.3333 0.3333 182.21 0.1686 0.0620 0.0620 149.18 0.1686 0.0620 0.0620 122.14 1.0488 0.5568 0.5568 100.00 5.4184 4.1237 4.1237 81.87 17.7458 17.5193 18.1269 67.03 31.7233 31.7053 32.9680 54.88 43.8742 43.8561	T S sig r div N 1 100 0.2 0.06 0.03 3 nu edx pu pm pd 0.0100 1.2214 -0.0875 1.1767 -0.0792 i 0 1 0 0.3333 182.21 0.1686 0.0620 0.0620 149.18 0.1686 0.1686 0.0620 122.14 1.0488 0.5568 1.0488 0.5568 100.00 5.4184 4.1237 4.1237 81.87 17.7458 18.1269 67.03 31.7233 32.9680 54.88 43.8742 43.8561	T S sig r div N Nj 1 100 0.2 0.06 0.03 3 3 nu edx pu pm pd 0.0100 1.2214 -0.0875 1.1767 -0.0792 i 0 1 2 St/t 0 0.3333 0.6667 182.21 0.1686 0.0620 0.0117 149.18 0.1686 0.0620 0.0117 149.18 0.1686 0.0620 0.0117 122.14 1.0488 0.5568 0.1616 100.00 5.4184 4.1237 2.3896 100.00 5.4184 4.1237 2.3896 81.87 17.7458 17.5193 17.2110 18.1269 18.1269 18.1269 67.03 31.7233 31.7053 32.9680 54.88 43.8742 43.8561 43.8315	T S sig r div N Nj dx 1 100 0.2 0.06 0.03 3 3 0.2 nu edx pu pm pd 0.0100 1.2214 -0.0875 1.1767 -0.0792 i 0 1 2 St/t 0 0.1686 0.0620 0.0117 0.1686 0.1686 0.0620 0.0117 149.18 0.1686 0.0620 0.0117 0.1686 0.1686 0.0620 0.0117 122.14 1.0488 0.5568 0.1616 100.00 5.4184 4.1237 2.3896 1.0488 1.0488 1.269 18.1269 81.87 17.7458 17.5193 17.2110 18.1269 18.1269 18.1269 67.03 31.7233 32.9680 32.9680 54.88 43.8742 43.8561 43.8315