Задача о погоне

ФИО: Жукова Виктория Юрьевна

Группа: НКНбд-01-19

Студ. билет: 1032196000

Прагматика

Для решения задачи о погоне

Цель

Научиться моделировать тракекторию движения и строить по ней графики

Задачи

- 1. Записать уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построить траекторию движения катера и лодки для двух случаев.
- 3. Найти точку пересечения траектории катера и лодки.

Результаты

Выведена формула

4. Чтобы найти расстояние x (расстояние после которого катер начнет двигаться вокруг полюса), необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер 6,9-x (или 6,9+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или 6,9-x/2v (во втором случае x+6,9/2v). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x можно найти из следующего уравнения:

$$\frac{x}{v} = \frac{6.9 - x}{2.9v}$$
 в первом случае или $\frac{x}{v} = \frac{x + 6.9}{2.9v}$ во втором

Отсюда мы найдем два значения

$$x_1 = \frac{6.9}{3.9}$$
 и $x_2 = \frac{6.9}{1.9}$

задачу будем решать для двух случаев.

5. После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: v_r - радиальная скорость и v_t - тангенциальная скорость (рис. 2). Радиальная скорость - это скорость, с которой катер удаляется от полюса,

$$v_r = \frac{dr}{dt}.$$

Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем

$$\frac{dr}{dt} = v.$$

Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости

$$\frac{d\theta}{dt}$$
 на радиус $r,\ v_r = \frac{d\theta}{dt}$

Рис. 2. Разложение скорости катера на

тангенциальную и радиальную составляющие

Из рисунка видно:

$$v_r = \sqrt{8.41v^2 - v^2} = \sqrt{7.41}v$$

Построена траектория и найдена точка

График 1

Построена траектория и найдена точка

График 2

Итоги

- 1. Записала уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Построила траекторию движения катера и лодки для двух случаев.
- 3. Нашла точку пересечения траектории катера и лодки.
- 4. Научилась моделировать траекторию с помощью scilab.

Спасибо за внимание