Общая информация

Во всех задачах входные данные следует читать из стандартного потока ввода («с клавиатуры»), а выводить следует в стандартный поток вывода («на экран»), причём только то, что требуется в задаче.

В каждой задаче работа решения на каждом тесте оценивается отдельно. Чтобы пройти тест, программа должна не только вывести правильный ответ, но и успеть сделать это за 2 секунды, используя не более 256 мебибайт памяти.

Задача А. Рукопожатия

На собрание Общества Молчунов пришли n человек. В традициях Общества здороваться, пожимая друг другу руки: каждые два разных человека, пришедших на собрание, пожали друг другу руки ровно один раз. Сколько всего произошло рукопожатий, пока все они здоровались?

Формат входных данных

В первой строке записано целое число n- количество участников собрания (2 $\leqslant n \leqslant 100$).

Формат выходных данных

В первой строке выведите одно целое число— общее количество рукопожатий.

Примеры

стандартный ввод	стандартный вывод
2	1
4	6

Задача В. Краткое имя

Анабелла и Аделаида, а также все их друзья, называют друг друга исключительно краткими именами. Друзья считают краткое имя человека *особенно*

красивым, если выполнены следующие два условия:

- Можно получить это краткое имя, если взять полное имя, стереть сколько-то (возможно, нисколько) букв в начале и сколько-то (возможно, нисколько) букв в конце.
- Краткое имя состоит из трёх букв, причём первая буква совпадает с последней, но не совпадает со средней буквой.

Например, в имени «anabella» можно стереть 0 букв в начале и 5 букв в конце, и получится «ana». А вот из имени «adelaida» нельзя таким способом получить особенно красивое краткое имя.

По заданному имени выясните, можно ли из него получить особенно красивое краткое имя, и если можно, выведите любое такое имя.

Формат входных данных

В первой строке записано полное имя— последовательность из маленьких английских букв длиной от 2 до 10 букв. Строка входных данных заканчивается переводом строки.

Формат выходных данных

Выведите любое особенно красивое краткое имя, которое можно получить из заданного полного име-

ни, или же слово «none», если такое имя подобрать не удастся.

Примеры

стандартный ввод	стандартный вывод
anabella	ana
adelaida	none

Задача С. Тип треугольника

Даны координаты трёх точек на плоскости. Нарисуем треугольник с вершинами в этих точках. Определите тип этого треугольника: остроугольный, прямоугольный, тупоугольный или вырожденный.

- Если все углы треугольника строго меньше 90 градусов, это остроугольный треугольник.
- Если один из углов треугольника равен 90 градусам, это прямоугольный треугольник.
- Если один из углов треугольника строго больше 90 градусов, это тупоугольный треугольник.
- Если все три точки лежат на одной прямой, критерии об углах не применяются, и треугольник считается вырожденным.

Формат входных данных

В первой строке записаны два числа x_1 и y_1 — координаты первой точки. Во второй строке записаны два числа x_2 и y_2 — координаты второй точки. В третьей строке записаны два числа x_3 и y_3 — координаты третьей точки. Все числа целые и лежат в пределах от -100 до +100.

Формат выходных данных

Выведите одно слово:

- «acute», если треугольник остроугольный,
- «right», если треугольник прямоугольный,
- «obtuse», если треугольник тупоугольный,
- «degenerate», если треугольник вырожденный.

Примеры

стандартный ввод	стандартный вывод
0 0	acute
3 4	
6 0	
6 0	obtuse
3 1	
0 0	

Задача D. Две страны

С пустыней Сушь граничат две страны: Алевтиния и Бенджаминия. Недавно в пустыне нашли полезные ископаемые, и теперь эти две страны понемногу распространяют своё влияние на эту территорию.

Карта пустыни — это прямоугольник, расчерченный на квадратные клетки. Каждая клетка либо уже принадлежит какой-то из стран, либо свободна.

Какие-то клетки, в частности, северо-западный угол карты, объявлены территорией Алевтинии. Какие-то другие клетки, в частности, юго-восточный угол, объявлены собственностью Бенджаминии. Все оставшиеся клетки считаются ничейной территорией.

Территория каждой из стран в пустыне связна. Это значит, что можно начать в любой клетке страны и, не покидая страну и перемещаясь по пустыне между соседними клетками, попасть в любую другую клетку этой же страны. Две клетки считаются соседними, когда они имеют общую сторону.

Вы — рыцарь Алевтинии, и ваша задача — установить флаг в пустыне Сушь на какой-нибудь клетке ничейной территории, чтобы объявить её территорией Алевтинии во славу монархии. После этого территория Алевтинии должна остаться связной. Найдите любую такую клетку или выясните, что это сделать невозможно.

Формат входных данных

В первой строке записаны два целых числа rows и cols — количество строк и столбцов в решётке карты $(2\leqslant rows, cols\leqslant 10)$. Далее задана сама карта: каждая из следующих rows строк содержит ровно cols символов и заканчивается переводом строки. Каждый символ — это либо заглавная английская буква «А» или «В», означающая территорию соответствующей страны, либо точка («.»), означающая ничейную территорию.

Формат выходных данных

Выведите rows строк, по cols символов в каждой, в том же формате, в котором задана карта во входных данных. Если к территории Алевтинии можно добавить ничейную клетку так, чтобы её территория осталась связной, сделайте это: поменяйте символ «.» в этой клетке на заглавную английскую букву «А». Иначе просто оставьте карту без изменений. Если возможных ответов несколько, выведите любой из них.

Примеры

стандартный ввод	стандартный вывод
3 4	AAA.
AA	.ABB
.ABB	BBBB
BBBB	
2 2	AB
AB	BB
ВВ	

Задача Е. Сообщение на сервере

Марк — шпион страны Бенджаминия, отправленный в страну Алевтинию с секретным заданием. Глубоко на территории чужой страны он пробрался в исследовательский центр и заполучил информацию, которую записал как сообщение из n двоичных цифр.

У Марка есть передатчик, который может загрузить на специальный сервер в интернете пакет ровно из 3n двоичных цифр. К сожалению, передатчик барахлит: известно, что он передаст только 2n+2 циф-

ры, потеряв сколько-то (возможно, нисколько) цифр в начале пакета и сколько-то (возможно, нисколько) цифр в его конце. Сколько именно цифр передатчик потеряет в начале, а сколько в конце—неизвестно.

Позже, когда Марк вернётся в родную страну, он сможет скачать получившиеся 2n+2 цифры с сервера. Помогите ему придумать, какой сформировать пакет из 3n цифр, чтобы потом по оставшимся от него 2n+2 идущим подряд цифрам Марк смог в точности восстановить исходное сообщение из n двоичных цифр.

Протокол взаимодействия

В этой задаче ваше решение будет запущено на каждом тесте два раза.

При первом запуске в первой строке будет записано слово «upload». Вторая строка будет содержать целое число n ($2 \le n \le 50$). Третья строка будет содержать исходное сообщение из n двоичных цифр: символов «0» и «1». Вывести нужно одну строку из 3n двоичных цифр — пакет, передаваемый на сервер.

При втором запуске в первой строке будет записано слово «download». Вторая строка будет содержать целое число n ($2 \le n \le 50$) — то же, что и при первом запуске. Третья строка будет содержать 2n+2 символа — ту часть пакета, которую удалось передать на сервер при первом запуске. Нужно восстановить и вывести исходное сообщение из n двоичных цифр.

При всех запусках каждая строка входных данных, включая последнюю, завершается переводом строки.

Примеры

На каждом тесте входные данные при втором запуске зависят от того, что вывело решение при первом запуске. В примерах мы рассмотрим решение, которое просто повторяет каждую цифру сообщения трижды. К сожалению, при n>4 такое решение не всегда сможет восстановить сообщение.

Далее приведены два запуска этого решения на первом тесте. В этом тесте n=2, поэтому 2n+2=6, и все шесть цифр пакета передаются на сервер.

стандартный ввод	стандартный вывод
upload	000111
2	
01	
	0.1
download	01
2	
000111	

Ниже показаны два запуска того же решения на втором тесте. В этом тесте n=4, так что 2n+2=10. Тест устроен так, что при передаче теряются первая и последняя цифры.

стандартный ввод	стандартный вывод
upload	111000000111
4	
1001	
download	1001
4	
1100000011	