Jedenáctá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Jedenáctá přednáška

Program

- korektnost rezoluce
- lifting lemma a úplnost rezoluce
- LI-rezoluce a Prolog
- elementární ekvivalence

Materiály

Zápisky z přednášky, Sekce 8.6-8.7 z Kapitoly 8, Sekce 9.1 z Kapitoly 9

-

8.6 Korektnost a úplnost

Korektnost rezolučního kroku

Tvrzení: Mějme klauzule C_1 , C_2 a jejich rezolventu C. Platí-li v nějaké struktuře A klauzule C_1 a C_2 , potom v ní platí i C.

Důkaz: Buď $C_1=C_1'\sqcup\{A_1,\ldots,A_n\}$, $C_2=C_2'\sqcup\{\neg B_1,\ldots,\neg B_m\}$, a $C=C_1'\sigma\cup C_2'\sigma$, kde $S\sigma=\{A_1\sigma\}$ (a σ je nejobecnější). Klauzule jsou otevřené formule, proto platí i jejich instance:

$$\mathcal{A} \models \mathcal{C}_1 \sigma$$
 a $\mathcal{A} \models \mathcal{C}_2 \sigma$

Po aplikaci unifikace máme:

$$C_1 \sigma = C_1' \sigma \cup \{A_1 \sigma\}$$

$$C_2 \sigma = C_2' \sigma \cup \{\neg A_1 \sigma\}$$

Chceme ukázat, že $A \models C[e]$ pro lib. ohodnocení e.

- Je-li $\mathcal{A} \models A_1\sigma[e]$, potom $\mathcal{A} \not\models \neg A_1\sigma[e]$ a musí $\mathcal{A} \models C_2'\sigma[e]$. Tedy i $\mathcal{A} \models C[e]$.
- Je-li $\mathcal{A} \not\models A_1 \sigma[e]$, musí být $\mathcal{A} \models C_1' \sigma[e]$ a opět $\mathcal{A} \models C[e]$. \square

Korektnost rezoluce

Věta (O korektnosti rezoluce): Pokud je CNF formule *S* rezolucí zamítnutelná, potom je nesplnitelná.

Důkaz: Víme, že $S \models_R \square$, vezměme tedy nějaký rezoluční důkaz
\square z S . Kdyby existoval model $\mathcal{A} \models S$, díky korektnosti rezolučního
pravidla bychom dokázali (indukcí podle délky důkazu) i $\mathcal{A} \models \Box$,
což ale není možné.

Lifting lemma

úplnost rezoluce dokážeme převedením na případ výrokové logiky: rezoluční důkaz 'na úrovni VL' je možné 'zvednout' na úroveň PL

Lifting lemma: Buďte C_1 a C_2 klauzule s disj. množ. proměnných, C_1^* a C_2^* jejich základní instance, C^* rezolventa C_1^* a C_2^* . Potom C_1 a C_2 mají rezolventu C takovou, že C^* je základní instance C. (důkaz na příštím slidu)

Důsledek: Buď S CNF formule a označme S^* množinu všech jejích základních instancí. Pokud $S^* \vdash_R C^*$ pro nějakou základní klauzuli C^* ('na úrovni VL'), potom existuje klauzule C a základní substituce σ taková, že $C^* = C\sigma$ a $S \vdash_R C$ ('na úrovni PL').

Důkaz: Snadno z Lifting lemmatu indukcí dle délky důkazu. □

Důkaz Lifting lemmatu

Nechť $C_1^* = C_1 \tau_1$ a $C_2^* = C_2 \tau_2$, τ_1 a τ_2 zákl. substituce nesdílející žádnou proměnnou. Najdeme rezolventu C, že $C^* = C \tau_1 \tau_2$.

Buď C^* rezolventa C_1^* a C_2^* přes literál $P(t_1,\ldots,t_k)$. Víme, že:

$$C_1 = C_1' \sqcup \{A_1, \dots, A_n\}, \text{ kde } \{A_1, \dots, A_n\} \tau_1 = \{P(t_1, \dots, t_k)\}$$

$$C_2 = C_2' \sqcup \{\neg B_1, \dots, \neg B_m\}, \{\neg B_1, \dots, \neg B_m\} \tau_2 = \{\neg P(t_1, \dots, t_k)\}$$

Tedy $(\tau_1\tau_2)$ unifikuje $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$. Buď σ nejob. unifikace pro S z Unifikačního algoritmu. Zvolme $C = C'_1\sigma \cup C'_2\sigma$.

$$C\tau_{1}\tau_{2} = (C'_{1}\sigma \cup C'_{2}\sigma)\tau_{1}\tau_{2} = C'_{1}\sigma\tau_{1}\tau_{2} \cup C'_{2}\sigma\tau_{1}\tau_{2} = C'_{1}\tau_{1}\tau_{2} \cup C'_{2}\tau_{1}\tau_{2}$$

$$= C'_{1}\tau_{1} \cup C'_{2}\tau_{2} = (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2}$$

$$= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}$$

Zde = plyne z vlastnosti 'navíc' Unif. algoritmu $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$, a = z toho, že jde o základní substituce nesdílející proměnnou.

Úplnost rezoluce

Věta (O úplnosti rezoluce): Je-li CNF formule <i>S</i> nesplnitelná, potom je zamítnutelná rezolucí.
Důkaz: Množina S^* všech základních instancí klauzulí z S je také nesplnitelná (důsledek Herbrandovy věty). Úplnost výrokové rezoluce dává $S^* \vdash_R \Box$ ('na úrovni VL').
Z důsledku Lifting lemmatu dostáváme klauzuli C a základní substituci σ takové, že $C\sigma = \square$ a $S \vdash_R C$ ('na úrovni PL').
Ale protože prázdná klauzule \square je instancí C , musí být $C = \square$. Tím jsme našli rezoluční zamítnutí $S \models_R \square$. \square

8.7 LI-rezoluce

ČÁST III – POKROČILÉ PARTIE

Kapitola 9: Teorie modelů

9.1 Elementární ekvivalence