Linear Algebra Assignment 6

Hanseul Kim

Dec 2024

Exercise 1(Problem 6.6):

definition might be wrong

An $n \times n$ matrix H is upper Hessenberg if $h_{jk} = 0$ for all (j,k) such that $j-k \geq 0$. An upper Hessenberg matrix is unreduced if $h_{i+1i} \neq 0$ for $i = 1, \ldots, n-1$ Prove that if H is a singular unreduced upper Hessenberg matrix, then dim(Ker(H)) = 1

A example unreduced upper Hessenberg matrix is

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \cdots & h_{1n} \\ h_{21} & h_{22} & h_{23} & \cdots & h_{2n} \\ 0 & h_{32} & h_{33} & \cdots & h_{3n} \\ 0 & 0 & h_{43} & \cdots & h_{4n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & h_{nn} \end{bmatrix}$$

Proof:

a) The first n-1 columns are linearly independent. Let,

$$H = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \cdots & h_{1n} \\ h_{21} & h_{22} & h_{23} & \cdots & h_{2n} \\ 0 & h_{32} & h_{33} & \cdots & h_{3n} \\ 0 & 0 & h_{43} & \cdots & h_{4n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & h_{nn} \end{bmatrix} = \begin{bmatrix} v_1, v_2, \dots, v_n \end{bmatrix}$$

$$\begin{bmatrix} \sum_{i=1}^{n-1} \alpha_i h_{1i} \\ \sum_{i=1}^{n-1} \alpha_i h_{2i} \\ \sum_{i=2}^{n-1} \alpha_i h_{3i} \\ \sum_{i=3}^{n-1} \alpha_i h_{4i} \\ \vdots \\ \alpha_{n-2} h_{n-1n-2} + \alpha_{n-1} h_{n-1n-1} \\ \alpha_{n-1} h_{nn-1} \end{bmatrix}$$

Since $h_{nn-1} \neq 0, \alpha_{n-1} = 0$

and by proof by strong induction, $\alpha_i = 0$ for all i = 1, 2, ..., n-1

Hence, v_1, \ldots, v_n column vectors are linearly independent.

b)

$$dim(H) = n$$

dim(Ker(H)) > 0 because it's singular.

 $dim(Img(H)) \ge n-1$ because it has least n-1 linearly independent column vectors.

by rank nulity theorm $dim(Ker(H)) = n - dim(Img(H)) \le n - (n-1) = 1$

$$0 < \dim(Ker(H)) \leq 1$$

$$\therefore \dim(Ker(H)) = 1$$

Exercise 2(Problem 6.7):

Let A be any $n \times k$ matrix

1) Prove that the $k \times k$ matrix A^TA and the matrix A have the same nullspace. Use this to prove that $rank(A^TA) = rank(A)$. Similarly, prove that the $n \times n$ matrix AA^T and the matrix A^T have the same nullspace. and conclude that $rank(AA^T) = rank(A^T)$.

Proof:

- 1) $Ker(A) = Ker(A^T A)$
- a) forward case $Ker(A) \to Ker(A^T A)$

$$\forall u \in Ker(A), Au = 0$$
$$A^{T}Au = A^{T}(Au) = A^{T}0 = 0$$
$$\therefore u \in Ker(A^{T}A)$$

b) backward case $Ker(A^TA) \to Ker(A)$

$$v \in Ker(A^T A), A^T A v = 0$$
$$v^T (A^T A v) = v^T (0) = 0$$

$$0 = v^T A^T A v = ||Av||^2$$

$$Av = 0$$

$$\therefore v \in Ker(A)$$
by a), b) $Ker(A) = Ker(A^T A)$
Let $B = A^T$ then, $Ker(B) = Ker(B^T B)$

$$\therefore Ker(A^T) = Ker(AA^T)$$

2-1) Let a_1, \ldots, a_k be k linearly independent vectors in $\mathbb{R}^n (1 \leq k \leq n)$, and let A be the $n \times k$ matrix whose ith column is a_i . Prove that $A^T A$ has rank k, and that it is invertible.

Proof:

$$A^T A$$
 is a $k \times k$ matrix.

 $\dim(Ker(A^TA)) = \dim(Ker(A)) = 0 \text{ (since, columns of } A \text{ are linearly independent.)}$ $\dim(A^TA) = \dim(Img(A^TA)) + \dim(Ker(A^TA)) \text{ (rank nullity theorem)}$ $\therefore rank(A^TA) = \dim(Img(A^TA)) = k - 0 = k$ $\text{Since } A^TA : V \to V \text{ } (V \in \mathbb{R}^k)$ $\text{Since } \dim(Img(A^TA)) = k = \dim(V)$ $A^TA \text{ is surjective.}$ $\dim(Ker(A^TA)) = 0, \ A^TA \text{ is injective.}$ $\therefore A^TA \text{ is a isomorphism thus invertible.}$

2-2) Let $P = A(A^TA)^{-1}A^T$ (an $n \times n$ matrix) Prove that

$$P^2 = P$$

$$P^T = P$$

What is the matrix P when k = 1? **Proof:**

$$P^{2} = A(A^{T}A)^{-1}A^{T}A(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}(A^{T}A)(A^{T}A)^{-1}A^{T}$$

$$= A(A^{T}A)^{-1}A^{T} = P$$

$$P^{T} = (A(A^{T}A)^{-1}A^{T})^{T}$$
$$= A((A^{T}A)^{-1})^{T}A^{T}$$

inverse of a symmetric matrix is symmetric.

Let,
$$B^T = B$$
, $(B^{-1})^T = (B^{-1})^T B B^{-1}$
 $= (B^T B^{-1})^T B^{-1} = (B B^{-1})^T B^{-1}$
 $= (I)^T B^{-1} = B^{-1}$
So, $A((A^T A)^{-1})^T A^T = A(A^T A)^{-1} A^T = P$

When k = 1,

$$P = v(v^T v)^{-1} v^T = v \cdot \frac{v^T}{||v||^2}$$

is a vector projection.

Exercise 3(Problem 6.10):

(Affine subspaces) A subset \mathcal{A} of \mathbb{R}^n is called an *affine subspace* if either $\mathcal{A} = \emptyset$, or there is some vector $a \in \mathbb{R}^n$ and some subspace U of \mathbb{R}^n such that,

$$\mathcal{A} = a + U = \{a + u | u \in U\}$$

We define the dimension $\dim(\mathcal{A})$ of \mathcal{A} as the dimension $\dim(U)$ of U.

1) If A = a + U, why is $a \in A$?

Proof:

Since U is a subspace, $0 \in U$

$$a+0 \in \mathcal{A}$$

What are affine subspaces of dimension 0?

 $\mathcal{A} = \{a\}$

What are affine subspaces of dimension 1 (begin with \mathbb{R}^2)

a line in \mathbb{R}^n that passes a

What are affine subspaces of dimension 2 (begin with \mathbb{R}^3)

a plane in \mathbb{R}^n that passes a

2) Prove that if $\mathcal{A}=a+U$ is any nonempty affine subspace, then $\mathcal{A}=b+U$ for any $b\in\mathcal{A}$

Proof:

Since
$$b \in \mathcal{A}$$
,
 $b = a + u$, for some $u \in U$
 $b - a \in U$
 $\forall v \in \mathcal{A}, v = a + w \text{ (for some } w \in U)$
 $v = a + w = b - b + a + w = b + u + w$
 $u + w \in U$
 $\therefore \mathcal{A} = b + U \text{ for any } b \in \mathcal{A}$

3) Let \mathcal{A} be any nonempty subset of \mathbb{R}^n closed under affine combinations. For any $a \in \mathcal{A}$, prove that

$$U_a = \{x - a \in \mathbb{R}^n | x \in \mathcal{A}\}$$

is a (linear) subspace of \mathbb{R}^n such that

$$\mathcal{A} = a + U_a$$

Proof:

Since U_a is a subset of \mathbb{R}^n , we only need to proof that U_a is closed under addition and scalar multiplication.

$$\text{for } u_1, u_2 \in U_a$$

$$u_1 = -a + x_1 \text{ for some } x_1 \in \mathcal{A}$$

$$u_1 = -a + a + v_1 \text{ for some } v_1 \in U$$

$$u_2 = a + x_2 \text{ for some } x_2 \in \mathcal{A}$$

$$u_2 = -a + a + v_2 \text{ for some } v_2 \in U$$

$$u_1 + u_2 = v_1 + v_2 = -a + a + (v_1 + v_2) \in U_a$$

$$cu_1 = -a + a + cu_1 \in U_a$$

$$\therefore U_a \text{ is a subspace.}$$

Remark: The subspace U is called the *direction* of A

4) Two nonempty affine subspaces \mathcal{A} and \mathcal{B} are said to be *parallel* iff they have the same direction. Prove that if $\mathcal{A} \neq \mathcal{B}$ and \mathcal{A} and \mathcal{B} are parallel, then $\mathcal{A} \cap \mathcal{B} = \emptyset$

Proof:

Proof by contradiction

Let two parallel affine subspace, \mathcal{A}, \mathcal{B} where, $\mathcal{A} \neq \mathcal{B}$

$$v \in \mathcal{A} \cap \mathcal{B}$$

 $v = a + u_1$ for some $u_1 \in U$
 $v = b + u_2$ for some $u_2 \in U$
 $a + u_1 = b + u_2$
 $a - b = u_2 - u_1 \in U$
 $a - b = 0$, contradiction.

 $\therefore A \neq B$ and A and B are parallel, then $A \cap B = \emptyset$