CompOrg HW2:

3.13. 62x12 - 0011110 x 1100

Iter	Step	Mulhplier	Multiplicad	Product
0	Initial values	1100	0011 1110	0000 0000
1	1a: 0 => no operation 2: 51 multiplier 3: 55 multiplier	1100 1100 0110	01111100	0000 0000
2	La: 0=> no op: 2: " 3: "	0110 0110	11111000	0000 0000
3	1a: 1 => prod += moond 2: " 3: "	0001	1111 0000	1111 1000
4,	1a:1=) prod += mcad 2: " 3: "	0001	11100000	11110 1000

Final product -> 11110 1000 = 744,0

3.18. 74:21 -> 0100 1010 % 010101 (b.64)

iter	Step	Quotient	Divisor	Remainder
0	inital values	000000	01010100	01001010
1	1: rem = rem -div.	000000	01010100	(1111 0110
	26: remco = + Div, 5110, Q0=0	000000	01010100	0100 1010
	31 Shift div right	000000	00101010	01001010
2	1: rem = rem - div	000000	00101010	00100000
	26: rem 3,0=> 511 a, 80=1	900001	00101010	0000000
	3, shift div right	000001	00010101	00100000
3	1: rem = rem -div	0.0000)	00010101	0000 1011
	26: rem30= 311 a, Q0=1	000011	00010101	0000 1011
	3; shift-div right	000011	00001010	0000 1011
Li Li	1: romerom-div	000011	2000 1010	0000 0001
Ε	26: rem>,0=> 310, 00=1	000111	0000 1010	0000 0001
	31 shift-div right	0.0111	0 000 0101	0000 0001
5	1: rem=rem-div	000111	0000 0101	1111 1100
	26: rem(0 => +Div, Quil, Q0=0	001110	0000 0101	2000 0001
	3; shift div right	001110	0000 0010	0000 0001

6 ,,,

but we must end at iter 3 because we have correct values for Q=3 and remainder = 11 then,

```
3.27. half precision of 16-645
```

$$110000000000$$
, the range is smaller than of single precision bas numbers through 2^{-14} to 2^{15} , whereas Single precusion has 2^{-126} to 2^{127} range.

exp=12 -> 1100

Accuracy is 10 bits while single prec. Mas 27 bits.

3,29, sum of floating point numbers

$$A = 26.125 \rightarrow 11010 + 0.175 \times 2 0.250 0 \rightarrow 11010.001_{2}$$
 exp=4 +bias=19

0.25 × 2 0.5 0

0.5 × 2 1.0 1 \rightarrow 1.1010001_{2} × 2 1010001...

A = 0 10011 101 0001 000

B: 0.4150390625 \rightarrow 0110101001 using above method \rightarrow 1,10101001 x 2^{-2} \rightarrow exp=-2 +bias = 13 \rightarrow 011012

B = 0 01101 1010100100

19-13 = 6 bits alignment needed - align to higher now. - shift B's mant, right by 6

B=> 0.00000110101 -> with 3 GRS 615 -> 0.0000011010 / 101

Add martissas $\rightarrow 1.1010001000 \\ + 0.0000011010 \\ \hline 1.1010100010 | 000 | 000 | 100011 | 1010100010$