Lower semi-continuity and upper semi-continuity

Tong Zhou

JHU

DEFINITION 1 (lower semi-continuity). Suppose (\mathbb{S}, ρ) is a metric space. A function $g: \mathbb{S} \to [-\infty, \infty]$ is called <u>lower semi-continuous (l.s.c.)</u> if $\liminf_{\rho(y,x)\downarrow 0} g(y) \geqslant g(x)$, for all $x \in \mathbb{S}$. A function g is said to be upper semi-continuous (u.s.c.) if -g is l.s.c.

EXERCISE 1 (1.2.20.).

- 1. Show that if g is l.s.c. then $\{x: g(x) \leq b\}$ is closed for each $b \in \mathbb{R}$.
- 2. Conclude that semi-continuous functions are Borel measurable.
- 3. Conclude that continuous functions are Borel measurable.
- 4. Show that q is l.s.c. at x if and only if

$$g(x) = \lim_{\delta \searrow 0} \left[\inf_{y \in \mathbb{S}, \rho(x,y) < \delta} g(y) \right].$$

5. Show that g is l.s.c. at x if and only if for any given $\varepsilon > 0$ there is $\delta > 0$ such that $q(y) > q(x) - \varepsilon$, if $\rho(y, x) < \delta$.

Proof.

1. • Sequence method: suppose a sequence $(x_n)_{n\in\mathbb{N}}\subseteq\{g\leqslant b\}$ with $x_n\to x$ for $n\to\infty$. It suffices to show $x\in\{g\leqslant b\}$, i.e., $g(x)\leqslant b$. By definition, the l.s.c of g implies

$$\liminf_{n\to\infty} g(x_n) \geqslant g(x).$$

Also, since $g(x_n) \leq b$, for all $b \in \mathbb{R}$, the following inequality immediately follows

$$g(x) \leq \liminf_{n \to \infty} g(x_n) \leq b, \forall b \in \mathbb{R}.$$

Thus, $x \in \{g \le b\}$ holds.

- 2. Consider the set $\{g \leq b\}$ for any $b \in \mathbb{R}$. If g is l.s.c., the set $\{g \leq b\}$ is closed and hence a Borel set, i.e., $\{g \leq b\} \in \mathcal{B}(\mathbb{S})$. It is then concluded that g is Borel measurable.
- 3. A continuous function g is also lower semi-continuous, so it must be also Borel measurable.
- 4. Show RHS ⇒ LHS. If $g(x) = \lim_{\delta \searrow 0} \left[\inf_{\rho(x,y) < \delta} g(y)\right]$ holds, define $\delta_k = \frac{1}{k}$. Then the condition $\delta \to 0$ is equivalent to $k \to \infty$. Now fixing $k \in \mathbb{N}$, for any y_k with $\rho(x, y_k) < \delta_k$, it is obvious that

$$\inf_{\rho(x,y)<\delta_k}g(y)\leq g(y_k).$$

Taking lim inf on both sides yields

$$g(x) = \lim_{k \to \infty} \inf_{\rho(x,y) < \delta_k} g(y) \le \liminf_{k \to \infty} g(y_k).$$

Thus, we proved g is l.s.c.

• Show LHS \implies RHS. If g is l.s.c., i.e., $\liminf_{k\to\infty}g(y_k)\geq g(x)$, where $\rho(x,y_k)<\delta_k=1/k$.

Since $\rho(x, x) = 0 < \delta_k$, then the following holds

$$g(x) \ge \inf_{\rho(x,y) < \delta_k} g(y)$$
, for any $k \in \mathbb{N}$

and let $k \to \infty$, then

$$g(x) \geqslant \lim_{k \to \infty} \inf_{\rho(x,y) < \delta_k} g(y).$$

It then suffices to show

$$g(x) \le \lim_{k \to \infty} \inf_{\rho(x,y) < \delta_k} g(y).$$

Define $\alpha_k:=\inf_{\rho(x,y)<\delta_k}g(y).$ Then for any $\varepsilon>0,\ \exists y_k$ with $\rho(x,y_k)<\delta_k$ such that

$$\alpha_k + \varepsilon > q(y_k)$$
.

Since this holds for any $k \in \mathbb{N}$, $y_k \to x$ as $k \to \infty$. Bring the sequence $(y_k)_{k \in \mathbb{N}}$ to the definition of g is l.s.c.:

$$\lim_{k\to\infty}\inf_{\rho(x,y)<\delta_k}g(y)+\varepsilon=\lim_k\alpha_k+\varepsilon\geqslant \liminf_kg(y_k)\geqslant g(x).$$

Letting $\varepsilon \searrow 0$, then we have the desired inequality:

$$\lim_{k\to\infty}\inf_{\rho(x,y)<\delta_k}g(y)\geqslant g(x).$$

Combine those inequalities for the two directions, then it is concluded that

$$\lim_{k\to\infty}\inf_{\rho(x,y)<\delta_k}g(y)=g(x).$$

5. Simply use 4. Since $\inf_{\rho(x,y)<\delta}g(y)\nearrow g(x)$ for $\delta\to 0$, given $\varepsilon>0$, there exists $\delta>0$ such that for any y with $\rho(x,y)<\delta$,

$$g(y) \ge \inf_{\rho(x,y) < \delta} g(y) > g(x) - \varepsilon.$$

For the other direction, it suffices to show

$$g(x) \le \lim_{\delta \searrow 0} \left[\inf_{\rho(x,y) < \delta} g(y) \right].$$

By the assumption that $q(y) + \varepsilon > q(x)$, for any y with $\rho(y, x) < \delta$, then

$$\inf_{\rho(x,y)<\delta}g(y)+\varepsilon\geqslant g(x).$$

Letting $\delta \setminus 0$, then we have

$$\lim_{\delta \searrow 0} \inf_{\rho(x,y) < \delta} g(y) + \varepsilon \geq g(x).$$

Finally, letting $\varepsilon \searrow 0$, we have the desired inequality

$$\lim_{\delta \searrow 0} \inf_{\rho(x,y) < \delta} g(y) \geq g(x).$$

1. APPLICATIONS

EXAMPLE 1.1. If $F \in \mathcal{B}(\mathbb{R})$ is a closed set, the indicator function $\mathbb{1}_F(x)$ is upper semi-continuous bounded by one.

Proof.

It suffices to show that for any $x_n \to x$ for $n \to \infty$, then $\mathbb{1}_F(x) \ge \limsup_{n \to \infty} \mathbb{1}_F(x_n)$. If $\{x_n\}_{n \in \mathbb{N}} \subseteq F$, then $x \in F$.

Remark 1.

It can be used to prove one result in the Portmanteau Theorem : $v_n \stackrel{w}{\Rightarrow} v_{\infty} \implies For \ every \ closed \ set \ F, \ one \ has \ \lim\sup_{n\to\infty} v_n(F) \leqslant v_{\infty}(F).$

Proof: By Fatou's lemma

$$\limsup_{n\to\infty} v_n(F) = \limsup_{n\to\infty} \mathbb{E}[\mathbb{1}_F(Y_n)] \leq \mathbb{E}[\limsup_{n\to\infty} \mathbb{1}_F(Y_n)] \leq \mathbb{E}[\mathbb{1}_F(Y_\infty)] = v_\infty(F).$$