DATA252/DATA551: Modeling and Simulation

Lecture 6: Intro to model-based inference: Estimating the incubation period of COVID-19¹

March 16, 2020

¹Materials based on *The Incubation Period of Coronavirus Disease 2019* (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application, Lauer and Grantz, et. al., published at Annals.org on March 10, 2020. Data and code available at https://github.com/HopkinsIDD/ncov_incubation.

Set-up

Our goal is to estimate the <u>incubation period</u> of COVID-19, or, more precisely, the **distribution** of the incubation period.

- Why is this important?
- What properties of this distribution are especially of interest?

```
[ocation: mean, median

Spread: SD, IQR, Range? → max incubation period? 99% perentite?

Stewness → right skewed?
```

Data

On Moodle, **nCoV_simple.csv** contains the incubation periods of 50 patients. Download this file, read in the data to R and convert it to a numeric vector of length 50.

```
ncov simple=read.csv(file.choose())
ncov simple=ncov simple$days
ncov simple
##
    [1]
         9.06
               9.50
                    4.00
                           0.31
                                 2.50
                                       5.00 11.00
                                                   4.00
                                                         1
                                                   3.50
##
   [12]
        2.79
               2.79
                    5.50
                           4.00 5.50
                                       0.50 4.00
                                                         0
##
   [23]
        3.00
               3.50 4.50
                           3.50 4.00
                                       8.00 4.15
                                                   1.50
                                                         2
##
   [34]
        2.85
               2.50 6.65
                           3.00
                                 4.00
                                       2.50 2.50
                                                   2.00
                                                         6
   [45]
         5.50
               6.00
                     2.99
                           5.00
                                 5.50
                                       6.50
##
```

Statistical inference

Print some **summary statistics** of this dataset:

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.310 2.562 4.000 4.108 5.375 11.000
```

- ▶ Does this mean the true median of incubation period is 4 days? N₀ Does this mean the true maximum of the incubation period is 11 days? N₀
- What is statistical inference?

Inference on the true distribution

- ► Step 1: Choose a model (say, normal)
- ► Step 2: Estimate parameters of the model² (For normal: Mean so

²Sometimes people estimate key parameters (like mean, median, SD) without assuming a model. For instance, we can use the sample mean to estimate the population mean.

Parameter Estimation

Incubation periods of 50 patients

What is your "best estimates" of the population mean and standard deviation?

days

Best estimate for mean: 4.11 -> sample mean mean (noon_simple)

(Ocation

Parameter Estimation

```
Use R to perform parameter estimation
```

Add estimated density to histogram

```
hist(ncov_simple,main='Incubation periods of 50 patients',

col='lightblue',freq=F,xlab='days',nclass=10)

curve(dnorm(x,mean=4.1076,sd=2.3166),

add=T)col='red',lwd=2,lty='dashed')
```

Incubation periods of 50 patients

Maximum likelihood estimators (MLE) $f(x) = \int_{2\pi}^{L} \frac{1}{2.3} e^{-\frac{1}{2.2.3^2}(x-4)^2}$

Calculate (log) likelihood in R

the bigger, the better

Recall, dnorm evaluates the density function of a normal distribution

[1] 0.07003351 0.11384808 0.15361038

estimates produced by R

(Log) Likelihood of the normal model:

Try changing the parameters to any other number: does the (log) likelihood increase or decrease?

-> The estimates by R are called Maximum likelihood estimates (MLE)

Some other models

These distributions have the correct sample space of $[0, \infty)$ and allow more flexibility in shape (doesn't have to be symmetric)

- ► Lognormal (in R: dlnorm) → example
- ► Gamma (in R: dgamma) → «xercise
- ► Weibull (in R: dweibull) → Nonework

Recall:

- ▶ Step 1: Choose a model
- ▶ Step 2: Estimate the parameters

Lognormal

Estimate the parameters of the lognormal distribution

```
## meanlog sdlog
## 1.20925432 0.73077736
## (0.10334753) (0.07307774)

based on maximizing the likelihood
```

Add the estimated density to histogram

```
hist(ncov_simple,main=NA,

col='lightblue',freq=F,xlab='days',nclass=10)

_curve(dlnorm(x,meanlog=1.21,sdlog=0.73),add=T,

col='darkgreen',lwd=2,lty='dashed')
```


Lognormal

Calculate the (log) likelihood

```
log(prod(dlnorm(ncov_simple,meanlog=1.21,sdlog=0.73)))
## [1] -115.7274
```

► Based on likehihood, which model better fits data? Lognormal or normal?

Log normal: -115.7274

normal: -112.95

Fits borrer

- ► In addition, using this model and estimated parameters, we can do many things... (ognormal (meaning=1.21, saling=0.73)
 - ► What is the probability that the incubation period is shorter than 14 days? Plnorm (14, meanlog=1.21, salog=0.73) 0.975
 - ► What is the probability that the incubation period is longer than 5 days? |- plnorm (5 meanleg=1.21, sdlog=0.73) 0.29
 - Simulate incubation periods of future patients:

Exercise: gamma

```
= Curuz ( dgamma (x, shape = 2.61, rate = 0.64), add = T)
                                                 shape = 2.6105974
```

- Estimate the parameters of the gamma distribution.
- Add the estimated density to the histogram.
- 3. Calculate the (log) likelihood of the gamma model. Based on likelihood, does the gamma model fit data better or worse than the normal and lognormal models?
- 4. Using the gamma model and estimated parameters, what is the probability that the incubation period is shorter than 14 days?

Discussion on model selection

Incubation periods of 50 patients

- "Modeling is more of an art than a science"
- "All models are wrong; some models are useful"
- Some formal statistical procedures can be used: Compare libelihood, Chi-square
- ► People also consider: Context, assumptions, test for model filting existing literature