Задачи к лабораторной работе №1

Токарева Ульяна

01.04.2016

Теоретические основы

Сложность алгоритмов определяется для больших объемов обрабатываемых данных, т.е. при $n \to \infty$. В связи с этим, при сравнении трудоемкости двух алгоритмов, можно рассмотреть предел отношения функций их сложности: $\lim_{n \to \infty} \frac{f(n)}{g(n)}$

В зависимости от значения предела возможно сделать вывод относительно скоростей роста функций:

- Предел равен константе и не равен нулю, значит, функции растут с одной скоростью: $f(n) = \Theta(g(n))$;
- Предел равен нулю, следовательно g(n) растет быстрее, чем f(n): $f(n) = \mathcal{O}(g(n))$;
- Предел равен бесконечности, g(n) растет медленнее, чем f(n): $f(n) = \Omega(g(n))$;

1 Задание 5

- $100n \log_2 n = \Theta(n + (\log_2 n)^2)$ Пусть $f(n) = 100n \log_2 n$, $g(n) = n + (\log_2 n)^2$, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$ Утверждение неверно;
- $2^n = \Theta(2^{n+1})$ Пусть $f(n) = 2^n$, $g(n) = 2^{n+1}$, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \frac{1}{2} \Rightarrow f(n) = \Theta(g(n))$ Утверждение верно;
- $n^2/\log_3 n = \mathcal{O}(n(\log_2 n)^2)$ Пусть $f(n) = n^2/\log_3 n$, $g(n) = n(\log_2 n)^2$, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$ Утверждение неверно;

•
$$n! = \Omega(2^n)$$

Пусть $f(n) = n!$, $g(n) = 2^n$, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$
Утверждение верно;

•
$$n\log_2 n = \Theta(n)$$
 Пусть $f(n) = n\log_2 n$, $g(n) = n$, тогда
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$$
 Утверждение неверно;

•
$$n! = \mathcal{O}(2^n)$$

Пусть $f(n) = n!$,
 $g(n) = 2^n$, тогда
 $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$
Утверждение неверно;

•
$$n^2/\log_4 n = \Theta(n(\log_3 n)^2)$$

Пусть $f(n) = n^2/\log_4 n$, $g(n) = n(\log_3 n)^2$, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty \Rightarrow f(n) = \Omega(g(n))$
Утверждение неверно;

2 Задание 8.а

Какая функция растёт быстрее? $n^{n^{\sqrt{n}}}$ или $(n!)^{2^n}$?

Очевидно, что n! растёт быстрее, чем n; Докажем, что 2^n растёт быстрее, чем $n^{\sqrt{n}}$:

Пусть
$$f(n) = n^{\sqrt{n}}, g(n) = 2^n$$
, тогда $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0 \Rightarrow f(n) = \mathcal{O}(g(n))$

 $\Rightarrow (n!)^{2^n}$ растёт быстрее, чем $n^{n^{\sqrt{n}}}$