#### MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY

# Bakalářská práce

BRNO 2015 JAN PLHÁK



#### MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY



# Název práce na titulní list

Bakalářská práce

Jan Plhák

Vedoucí práce: Bc. Lukáš Vokřínek, PhD. Brno 2015

#### Bibliografický záznam

**Autor:** Jan Plhák

Přírodovědecká fakulta, Masarykova univerzita

Ústav matematiky a statistiky

**Název práce:** Název práce

**Studijní program:** Matematika

**Studijní obor:** Obecná matematika

**Vedoucí práce:** Bc. Lukáš Vokřínek, PhD.

Akademický rok: 2014/2015

**Počet stran:** ?? + ??

Klíčová slova: Klíčové slovo; Klíčové slovo; Klíčové slovo;

Klíčové slovo; Klíčové slovo; Klíčové slovo

### **Bibliographic Entry**

**Author:** Jan Plhák

Faculty of Science, Masaryk University Department of Mathematics and Statistics

**Title of Thesis:** Title of Thesis

**Degree Programme:** Mathematics

Field of Study: Mathematics

**Supervisor:** Bc. Lukáš Vokřínek, PhD.

Academic Year: 2014/2015

Number of Pages: ?? + ??

**Keyword**; Keyword; Keyword; Keyword; Keyword; Keyword;

Keyword; Keyword; Keyword

#### **Abstrakt**

V této bakalářské/diplomové/rigorózní práci se věnujeme ...

#### **Abstract**

In this thesis we study ...



### Poděkování

| Na tomto místě bych chtěl(-a) poděkovat                                                                             |           |
|---------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                     |           |
|                                                                                                                     |           |
|                                                                                                                     |           |
|                                                                                                                     |           |
|                                                                                                                     |           |
|                                                                                                                     |           |
| D1-1-4 X                                                                                                            |           |
| Prohlášení                                                                                                          |           |
| Prohlašuji, že jsem svoji bakalářskou/diplomovou/rigo<br>mostatně s využitím informačních zdrojů, které jsou v prác |           |
| Brno xx. měsíce 20xx                                                                                                | Jan Plhák |

### Obsah

| Úvod                                            | viii |
|-------------------------------------------------|------|
| Přehled použitého značení                       | ix   |
| Kapitola 1. Smithův normální tvar               |      |
| 1.1 Podkapitola                                 | 4    |
| 1.1.1 Odstavec                                  | 4    |
| Kapitola 2. Triangularizace celočíselných matic | 5    |
| 2.1 GCD redukce                                 | 6    |
| 2.2 Sloupcová redukce                           | 8    |
| Závěr                                           | 11   |
| Příloha                                         | 12   |
| Seznam použité literatury                       | 13   |

## Úvod

Cílem této práce je seznámit čtenáře s efektivním algoritmem pro výpočet Smithova normálního tvaru celočíselných matic.

#### Přehled použitého značení

Pro snažší orientaci v textu zde čtenáři předkládáme přehled základního značení, které se v celé práci vyskytuje.

- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- $\mathbb{Z}$  množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel

- C množina všech komplexních čísel
- $\mathbb{R}$  množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- $\mathbb{C}$  množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- $\mathbb{C}$  množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- $\mathbb{N}$  množina všech přirozených čísel
- $\mathbb{C}$  množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- $\mathbb{R}$  množina všech reálných čísel

- Z množina všech celých čísel
- $\mathbb{N}$  množina všech přirozených čísel
- $\mathbb{C}$  množina všech komplexních čísel
- $\mathbb{R}$  množina všech reálných čísel
- $\mathbb{Z}$  množina všech celých čísel
- N množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- $\mathbb{N}$  množina všech přirozených čísel
- C množina všech komplexních čísel
- R množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- ${\mathbb C}$  množina všech komplexních čísel
- $\mathbb{R}$  množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel
- $\mathbb{C}$  množina všech komplexních čísel
- $\mathbb{R}$  množina všech reálných čísel
- Z množina všech celých čísel
- N množina všech přirozených čísel

#### Kapitola 1

#### Smithův normální tvar

V této kapitole se budeme zbývat definicí Smithova normálního tvaru (budeme značit SNF ) celočíselných matic  $Mat_{n\times m}\mathbb{Z}$ , dokážeme jeho existenci pro libovolnou  $A\in Mat_{n\times m}\mathbb{Z}$  a konečně uvedeme souvislost mezi SNF a konečně generovanými komutativními grupami.

**Definice 1.1.** Řekneme že matice  $A \in Mat_{n \times m}\mathbb{Z}$  je ve Smithově normálním tvaru jestliže

$$A = \begin{pmatrix} q_1 & 0 & \cdots & \cdots & \cdots & 0 \\ 0 & q_2 & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & \ddots & & \vdots \\ \vdots & & \ddots & q_k & \ddots & \vdots \\ \vdots & & & \ddots & 0 & \ddots & \vdots \\ \vdots & & & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & \cdots & 0 & 0 \end{pmatrix}$$

a platí  $q_i|q_{i+1}$  kde  $i \in \{1, ..., k-1\}$ . Čísla  $q_i$  pak nazýváme *invariantními faktory*.

**Věta 1.2** (O Smithově normálním tvaru). *Pro libovolnou celočíselnou matici*  $B \in Mat_{n \times m} \mathbb{Z}$  existují invertibilní matice  $P, Q \in Mat_{n \times m} \mathbb{Z}$  a matice A ve Smithově normálním tvaru takové, že platí

$$B = P \cdot A \cdot Q$$

Smithův normální tvar je jednoznačný až na znaménka invariantních faktorů.

Než se pustíme do samotného důkazu této věty, je dobré si uvědomit, jak vlastně vypadají invertibilní celočíselné matice. To popisuje následující lemma.

**Lemma 1.3.** Buď  $A \in Mat_{n \times m}\mathbb{Z}$ . Pak je A invertiblní, právě tehdy když je čtvercová a  $det(A) = \pm 1$ .

 $D\mathring{u}kaz$ . Buď  $A \in Mat_{n \times m}\mathbb{Z}$  invertibilní. Existuje tedy matice  $A^{-1} \in Mat_{n \times m}\mathbb{Z}$  taková, že  $AA^{-1} = E$ . Pak je ovšem  $A^{-1}$  inverzí pro A také nad  $\mathbb{Q}$ . Proto A musí být čtvercová, neboť každá invertiblní matice nad  $\mathbb{Q}$  je čtvercová a má nenulový determinant. Navíc platí

$$det(A) \cdot \det(A^{-1}) = det(AA^{-1}) = det(E) = 1$$

a protože determinant celočíselné matice je z definice determinantu také celočíselný, musí platit  $det(A) = det(A^{-1}) = \pm 1$  neboť v okruhu  $\mathbb Z$  máme pouze dvě jednotky a to právě  $\pm 1$ .

Buď naopak  $A \in Mat_{n \times m}\mathbb{Z}$  čtvercová s determinantem  $\pm 1$ . Pak inverzní matici  $A^{-1}$  můžeme spočítat z algebraických doplňků jako

$$A^{-1} = \frac{1}{det(A)} \cdot A_{adj} = \pm A_{adj}$$

nicméně prvky matice  $A_{adj}$  - algebraické doplňky - se vypočítají ze subdeterminantů (minorů) matice A a musí být proto celočíselné. Matice  $A^{-1}$  je tedy celočíselná.

Z tohoto lemmatu tedy plyne, že pokud chceme celočíselnou matici B převést do SNF pomocí invertibilních matic, musíme tak činit pouze prostřednictvím matic majících determinant  $\pm 1$ . Nyní tedy můžeme přikročit k důkazu samotné věty o SNF .

*Důkaz.* (*Věty o Smithově normálním tvaru*). Nejprve dokážeme existenci SNF . Pro tento účel budeme potřebovat Euklidův algoritmus. Ten funguje následujícím způsobem.

Pro libovolná  $a,b\in\mathbb{Z}$  taková, že |a|>|b| vydělíme číslo a číslem b se zbytkem. Tedy a=qb+c. Pak ovšem platí, že  $\gcd(a,b)=\gcd(b,c)$  neboť

$$gcd(a,b) = d \Rightarrow d|(a-qb) \Rightarrow d|c \Rightarrow d|gcd(b,c)$$

a naopak

$$gcd(b,c) = e \Rightarrow e|(qb+c) \Rightarrow e|a \Rightarrow e|gcd(a,b).$$

Takto můžeme postupovat rekurzivně a po konečném počtu kroků bude c=0 a b příslušné danému kroku bude právě hledaný největší společný dělitel. Poznamenejme, že užití Euklidova algoritmu je z výpočetního hlediska výhodně, neboť má logaritmickou složitost.

Dále protože výsledné transformační matice P,Q musí být invertibilní nad  $\mathbb{Z}$ , plyne z předchozího lemmatu, že jejich determinant musí být roven  $\pm 1$ . Evidentně tedy nemůžeme násobit řádek či sloupec matice jiným číslem než  $\pm 1$ . Můžeme však prohodit libovolné dva řádky, protože to lze realizovat pomocí transformační matice,

$$\begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & \\ & & 1 & & 0 & & \\ & & & & \ddots & & \\ & & & & 0 \end{pmatrix}$$

která má evidentně determinant roven -1. Analogicky můžeme prohazovat prohazovat libovolné dva sloupce. A konečně pomocí transformační matice

$$\begin{pmatrix} 1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & & \\ & & \vdots & \ddots & & & \\ & m & \dots & 1 & & \\ & & & \ddots & & \\ & & & & 1 \end{pmatrix}$$

můžeme k libovolnému řádku přičíst *m*-násobek jiného řádku.

Nyní budeme postupovat následujícím způsobem. Na pozici (1,1) přesuneme libovolný nenulový prvek matice B (Pokud B=0, pak je již ve SNF a žádné operace provádět nemusíme). Pak postupně pro každý prvek pod a napravo od prvku  $b_1^1$  aplikujeme Euklidův algoritmus (konkrétně jeho implementaci pomocí řádkových a sloupcových operací, která potřebuje pouze operace násobení řádku/sloupce číslem -1, přičítání násobku řádku/sloupce k jinému a prohazování dvou řádků/sloupců), čímž na pozici (1,1) vyrobíme největší společný prvků v prvním sloupci a řádku. Tyto prvky můžeme tedy snadno vyeliminovat, čímž získáme matici ve tvaru

$$B = \begin{pmatrix} b_1^1 & 0 & \dots & 0 \\ 0 & * & \dots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \dots & * \end{pmatrix}.$$

Pokud nyní existuje nějaký prvek  $b^i_j$ , který ještě není dělitelný  $b^1_1$ , můžeme přičíst j-tý sloupec k prvnímu sloupci a opět vyrobit na pozici (1,1) prvek  ${b'}^1_1$  takový, že  ${b'}^1_1|b^1_1$  a zároveň  ${b'}^1_1|b^i_j$ , který jej již dělit bude. Poznamenejme, že tento prvek bude nutně menší než původní  $b^1_1$ , díky čemuž náš algoritmus skončí po konečném počtu kroků.

Celkem máme algoritmus, který převede matici B do výše uvedeného tvaru a navíc  $b_1^1|b_j^i$ . Označme takto vzniklou matici C a nechť  $q_k=c_1^1$ . Nyní můžeme postupovat indukcí a aplikovat tento algoritmus na submatici, která vznikne vynecháním prvního sloupce a řádku matice C. Neboť  $q_k$  dělil všechny prvky matice C, bude dělit i prvek v levém horním rohu submatice (označme jej  $q_{k+1}$ ) po aplikaci výše uvedeného algoritmu. Dostáváme, že  $q_k|q_{k+1}$ , což jsme měli dokázat.

Zbývá dokázat jednoznačnost. Označme

$$gcd_{i\times i}(A) = gcd\{det(X)|X \text{ je submatice } A \text{ tvaru } i\times i\}$$

Prvně ukážeme, že platí rovnost

$$q_1 \dots q_i = gcd_{i \times i}(A)$$

kde A je matice ve SNF . Pokud submatice X obsahuje k-tý řádek, ale neobsahuje k-tý sloupec matice A, bude její determinant evidentně nulový, neboť A je diagonální a X tak bude obsahovat nulový řádek. Stačí tedy uvažovat submatice jejichž diagonála leží na hlavní diagonále matice A. To znamená, že platí

$$gcd_{i \times i}(A) = gcd\{q_{k_1} \dots q_{k_i} | 1 \le k_1 < \dots < k_i \le r\}.$$

Navíc A je ve SNF , proto  $q_i|q_{i+1}$  z čehož plyne

$$gcd\{q_{k_1} \dots q_{k_i} | 1 \le k_1 < \dots < k_i \le r\} = q_1 \dots q_i,$$

což jsme chtěli dokázat.

Konečně ukážeme, že největší společný dělitel subdeterminantů je invariantní vzhledem k elementárním řádkovým operacím (invariance vzhledem k sloupcovým operacím pak plyne ze symetrie).

Invariance vzhledem k násobení řádku číslem -1 a vzhledem k prohození řádků je zřejmá, neboť tyto operace maximálně změní znaménko některých subdeterminantů. To ovšem nemá žádný vliv na výsledného největšího společného dělitele. Pro přičítání násobku řádku je situace ovšem poněkud složitější. Každý nový subdeterminant je pak celočíselnou kombinací subdeterminantů předchozí matice. Z toho plyne, že

$$gcd_{i\times i}(A)|gcd_{i\times i}(A').$$

Jak jsme ale ukázali dříve, operace přičtení řádku je invertibilní. Můžeme tedy celý proces zopakovat opačným směrem a stejnou argumentací dostáváme

$$gcd_{i\times i}(A')|gcd_{i\times i}(A).$$

Největší společný dělitel subdeterminantů se tedy nezmění.

Předpokládejme nyní, že SNF není jednoznačný a existují matice A, C a P, Q, T, U takové, že platí  $B = P \cdot A \cdot Q = T \cdot C \cdot U$ , kde A, C jsou různé a ve SNF a P, Q, T, U jsou celočíselné invertibilní matice. Pak násobení invertibilními maticemi P, Q, T, U odpovídá postupnému provádění elemntárních řádkových a sloupcových úprav, o kterých jsme ovšem dokázali, že nemění největšího společného dělitele subdeterminantů. To speciálně znamená, že hlavní minory matic A, C ve Smithově normálním tvaru jsou si rovny a proto i invariatní faktory musí být stejně. To je spor s předpokladem. Smithův normální tvar je tedy jednoznačný.

1.1 Podkapitola

#### 1.1.1 Odstavec

#### Kapitola 2

#### Triangularizace celočíselných matic

V této kapitole se budeme zabývat popisem algoritmu pro výpočet redukovaného schodovitého tvaru celočíselných matic. Tento algoritmus představil Arne Storjohann v článku nazvaném "A fast+practial+deterministic algorithm for triangularizing integer matrices" [6]. Definujme nejdříve tvar matice, jehož vytvoření bude našim cílem.

**Definice 2.1.** Řekneme že matice  $A \in Mat_{n \times m} \mathbb{Z}$  je v redukovaném schodovitém tvaru (RST) jestliže splňuje následující podmínky:

- (c1) Buď r hodnost matice A. Pak prvních r řádků je nenulových.
- (c2) Pro každé  $1 \le i \le r$  buď  $A[i,j_i]$  první nenulový prvek v i-tém řádku. Pak  $j_1 < j_2 < \cdots < j_r$ .
- (c3) Pro každé  $1 \le i \le r$  platí  $A[i, j_i] > 0$ .
- (c4) Pro každé  $1 \le k < i \le r$  platí  $A[i, j_i] > A[k, j_i] \ge 0$ .

**Poznámka 2.2.** Poznamenejme, že první a druhá podmínka nám zaručují schodovitý tvar matice A. Tento však zjevně není jednoznačný. Proto je nutné přidat ještě podmínky (c3) a (c4). (c3) zajišťuje, že členy nad pivoty budou kladné a (c4) říká, že prvky nad pivoty budou pivoty omezeny. Tyto podmínky pak určují tvar matice A jednoznačně vzhledem k elementárním operacím.

**Příklad 2.3.** Pro ilustraci uvádíme následující matici v RST:

$$\begin{pmatrix}
2 & 33 & 6 & 0 & 39 & 73 \\
0 & 0 & 24 & 0 & 444 & 8 \\
0 & 0 & 0 & 1 & 22 & 23 \\
0 & 0 & 0 & 0 & 0 & 75 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

V následujících podkapitolách nejdříve popíšeme několik klíčových procedur, které budou upravovat vstupní matici A, pomocí unimodulárních (mající determinant roven  $\pm 1$ , tedy invertibilních) matic. Tyto procedury postupně propojíme a v poslední podkapitole pak obdržíme samotný algoritmus pro výpočet RST .

#### 2.1 GCD redukce

Jak jsme viděli již v důkazu věty o Smithově normálním tvaru, častou operací, kterou s maticí při převodu do SNF provádíme, je eliminace všech prvků nacházejících se pod nějakým námi zvoleným pivotem. Takováto eliminace je poměrně náročná, neboť pro každý prvek musíme vytvářet největší společný dělitel s pivotem. Bylo by proto výhodné, kdybychom mohli nějakým způsobem upravit prvky ve sloupci tak, že největší společný dělitel nějakých dvou prvků daného sloupce bude zároveň největším společným dělitelem všech prvků daného sloupce. A přesně to je obsahem následující věty.

**Věta 2.4** (GCD redukce). *Nechť*  $B \in Mat_{n \times m} \mathbb{Z}$  *je matice*  $(k+2) \times k$  *a rank*(B) = 2, *kterou můžeme zapsat jako* 

$$B = egin{pmatrix} N & ar{N} \ a_0 & ar{a}_0 \ b_1 & ar{b}_1 \ dots & dots \ b_k & ar{b}_k \end{pmatrix},$$

kde N je kladné. Pak existuje deterministický algoritmus, který pro matici B vypočte unimodulární matici

$$C = \begin{pmatrix} 1 & & & & \\ & 1 & c_1 & \cdots & c_k \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

takovou, že bude platit

$$CB = \begin{pmatrix} N & \bar{N} \\ a_k & \bar{a}_k \\ b_1 & \bar{b}_1 \\ \vdots & \vdots \\ b_k & \bar{b}_k \end{pmatrix} \qquad kde \qquad \begin{array}{l} a_k &= a_0 + c_1 b_1 + \dots + c_k b_k \\ \bar{a}_k &= \bar{a}_0 + c_1 \bar{b}_1 + \dots + c_k \bar{b}_k \end{array}$$

a navíc CB bude splňovat následující podmínky:

(c1) hlavní submatice 
$$\begin{pmatrix} N & \bar{N} \\ a_k & \bar{a}_k \end{pmatrix}$$
 je regulární a

(c2) 
$$gcd(N,a_k) = gcd(N,a_0,b_1,b_2,\ldots,b_k).$$

 $D\mathring{u}kaz$ . Bez újmy na obecnosti můžeme předpokládat, že k>0. Pokud by k bylo nulové, můžeme zřejmě za C zvolit identitu, které splní naše požadavky. Dále můžeme předpokládat, že hlavní submatice je regulární a tedy platí  $N\bar{a}_0 - \bar{N}a_0 \neq 0$ . Pokud by tomu tak nebylo, přičteme k druhému řádku nějaký řádek  $2 < s \le k+2$ , pro který platí  $N\bar{b}_s - \bar{N}b_s \neq 0$ . Takový řádek jistě bude existovat, neboť matice B má plnou hodnost. Výsledná matice pak

bude mít hlavní submatici regulární. Pro takto upravenou matici můžeme spočítat hledané koeficienty  $c_i$  a konečně ke koeficientu  $c_s$  přičteme 1, což bude přesně odpovídat onomu přičtení s-tého řádku, které jsme provedli na začátku.

Nyní ukážeme, jak iterativně vypočítat  $c_l$  pro  $l=1,\ldots,k$ . Označme mezivýsledky našeho výpočtu následujícím způsobem:

$$a_{l} = a_{0} + c_{1}b_{1} + \dots + c_{l}b_{l}$$
  

$$\bar{a}_{l} = \bar{a}_{0} + c_{1}\bar{b}_{1} + \dots + c_{l}\bar{b}_{l}$$
(2.1)

Po provedení kroku l-1 a na začátku kroku l jsou vypočítány koeficienty  $c_1,\ldots,c_{l-1}$  a jsou splněny podmínky

(1) 
$$gcd(N, a_i) = gcd(N, a_0, b_1, b_2, \dots, b_i)$$

(2) 
$$N\bar{a}_i - \bar{N}a_i \neq 0$$

pro i = l - 1. Poznamenejme, že pro i = 0 jsou podmínky (1) a (2) splněny triviálně. Teď musíme provést indukční krok - najít vhodné  $c_l$  takové, že budou splněny podmínky (1) a (2) pro i = l.

Nechť  $g=\gcd(a_{l-1},b_l)$ . Pak můžeme dělením se zbytkem najít celá čísla  $q_1,q_2$  a  $0\leq \tilde{a}_{l-1},\tilde{b}_l < N$  taková, že platí

$$a_{l-1}/g = q_1 N + \tilde{a}_{l-1}$$
  
 $b_l/g = q_2 N + \tilde{b}_l$  (2.2)

Čísla  $\tilde{a}_{l-1}$  a  $\tilde{b}_l$  jsou nesoudělná (snadno plyne z Bezoutovy rovnosti). Pomocí algoritmu uvedeného v TODO můžeme najít nejmenší kladné číslo t takové, že bude platit

$$gcd(\tilde{a}_{l-1} + t\tilde{b}_l, N) = 1 \tag{2.3}$$

a volbou  $c_l \leftarrow t$  zajistíme splnění podmínky (1). Skutečně:

$$\begin{split} gcd(a_{l},N) &= gcd(a_{l-1} + tb_{l},N) \\ &= gcd(g(q_{1}N + \tilde{a}_{l-1}) + tg(q_{2}N + \tilde{b}_{l}),N) \\ &= gcd(g(\tilde{a}_{l-1} + t\tilde{b}_{l}) + g(q_{1} + tq_{2})N,N) \\ &= gcd(g(\tilde{a}_{l-1} + t\tilde{b}_{l}),N) \\ &= gcd(g,N) \\ &= gcd(g,N) \\ &= gcd(n,n), \\ &$$

přičemž poslední rovnost plyne z indukčního předpokladu.

Nakonec musíme zajistit splnění i druhé podmínky (2). Buď *l* index aktuálního kroku a předpokládejme, že platí

$$\begin{vmatrix} N & \bar{N} \\ a_{l-1} + xb_l & \bar{a}_{l-1} + x\bar{b}_l \end{vmatrix} = 0 \tag{2.4}$$

pak ovšem z indukčního předpokladu plyne, že  $N\bar{b}_l - \bar{N}b_l \neq 0$ . To implikuje, že prvek x je určen jednoznačně a můžeme jej vyjádřit jako

$$x = -\frac{N\bar{a}_{l-1} - \bar{N}a_{l-1}}{N\bar{b}_l - \bar{N}b_l}$$
 (2.5)

Poznamenejme, že z indukčního předpokladu také plyne, že  $x \neq 0$ .

Pokud nám tedy v kroku 2.3 výjde  $c_l$  různé od x, je vše v pořádku. Pokud ovšem  $c_l = t = x$ , nebyla by podmínka (2) splněna. To ale můžeme snadno napravit. Předpokládejme tedy, že 0 < x = t. Nechť  $\bar{t}$  je nejmenší nezáporné číslo, pro které platí  $\gcd(\tilde{a}_{l-1} + \bar{t}(-\tilde{b}_l), N) = 1$ . Volbou  $c_l \leftarrow -\bar{t}$  zajistíme splnění podmínky (2), protože  $c_l = -\bar{t} \le 0 < x$ . Platnost podmínky (1) pro takovouto volbu  $c_l$  se pak dokáže zcela analogicky, jako jsme to již provedli výše pro  $c_l = t$ .

#### 2.2 Sloupcová redukce

V této části si ukážeme, jak využít výsledků předcházející věty 2.4 k eliminaci prvků ve sloupečku. Mějme tedy jako v předchozím  $n \times 2$  vstupní matici B, kteroužto můžeme zapsat následujícím způsobem:

$$B = \begin{pmatrix} N & \bar{N} \\ a_0 & \bar{a}_0 \\ b_1 & \bar{b}_1 \\ \vdots & \vdots \\ b_k & \bar{b}_k \end{pmatrix}, \tag{2.6}$$

kde  $k \ge 0$ , N > 0 a trailing  $(k+2) \times 2$  submatrix má plnou hodnost (nejsme si vědomi českého ekvivalentu pro výraz trailing (sub)matrix, a budeme jej proto v následujícím textu používát v nezměněné původní podobě).

Našim cílem bude nalézt  $n \times n$  unimodulární matice

které budou reprezentovat příslušné invertibilní operace takové, že součin matic QCB

můžeme psát jako

$$QCB = \begin{pmatrix} * & * \\ \vdots & \vdots \\ * & * \\ t_1 & * \\ & t_2 \\ & * \\ & \vdots \\ & * \end{pmatrix}$$
 (2.8)

a budou splněny podmínky následující věty.

**Věta 2.5** (Sloupcová redukce). *Mějme matici*  $B \in Mat_{n \times 2}\mathbb{Z}$ , kterou můžeme zapsat jako v 2.6 s tím, že  $k \geq 0$ , N > 0 a trailing  $(k+2) \times 2$  submatrix má plnou hodnost. Pak existuje algoritmus **ColumnReduction**(B,k), který na vstupu vezme B a k, a jako výstup vrátí  $n \times n$  matice C a Q, které lze vyjádřit jako v 2.7. Navíc bude platit, že součin QCB lze psát jako 2.8 a bude splňovat následující podmínky:

- (c1)  $t_1 > 0$  a  $t_2 > 0$ ,
- (c2) prvky nad  $t_1$  v prvním sloupci jsou nezáporné a shora omezené číslem  $t_1 1$ ,
- (c3) prvky nad a pod  $t_2$  ve druhém sloupci jsou nezáporné a shora omezené číslem  $t_2 1$ .

 $D\mathring{u}kaz$ . Nejprve aplikujeme algoritmus věty 2.4 o GCD redukci na submatici matice B tvořenou posledními k+2 řádky. Tím získáme transformační  $(k+2)\times(k+2)$  matici C', kterou když vhodně vložíme do jednotkové matice  $n\times n$ , získáme hledanou matici C, která bude splňovat naše požadavky. Konkrétně:

$$C = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & C' \end{pmatrix}.$$

Aplikací matice C na vstupní matici B dostáváme

s tím, že  $gcd(N, a_k) = gcd(N, a_k, b_1, b_2, \dots, b_k)$  a navíc submatice

$$\begin{pmatrix} N & \bar{N} \\ a_k & \bar{a}_k \end{pmatrix}$$

bude regulární.

Aplikací rozšířeného Euklidova algoritmu na dvojici  $(N, a_k)$  obdržíme uspořádanou trojici  $(t_1, m_1, m_2)$  takovou, že  $m_1N + m_2a_k = t_1 = \gcd(N, a_k)$ . Nyní můžeme vytvořit matici

$$U = \begin{pmatrix} m_1 & m_2 \\ -sa_k/t_1 & sN/t_1 \end{pmatrix},$$

kde  $s \in \{1, -1\}$  je zvoleno tak, aby  $t_2 = (-sa_k/t_1)\bar{N} + (sN/t_1)\bar{a}_k$  bylo kladné. Matice U je unimodulární, neboť

$$\det U = \begin{vmatrix} m_1 & m_2 \\ -sa_k/t_1 & sN/t_1 \end{vmatrix} = \frac{s(m_1N + m_2a_k)}{t_1} = \frac{st_1}{t_1} = \pm 1.$$

A konečně můžeme zkonstruovat matici

která, jak plyne z předchozího, bude také unimodulární. Aplikací Q na matici CB dostáváme

$$QCB = \begin{pmatrix} * & * \\ \vdots & \vdots \\ * & * \\ t_1 & * \\ t_2 \\ b_1 & \bar{b}_1 \\ \vdots & \vdots \\ b_k & \bar{b}_k \end{pmatrix}$$

a platí  $t_1 \mid b_i$  kde  $i=1,\ldots,k$ . Můžeme tedy snadno vyeliminovat prvky pod  $t_1$ . Následně snadno provedeme redukci prvků nad  $t_1$  a konečně i prvků nad a pod  $t_2$ . To lze provést pomocí elementárních řádkových operací, které můžeme odpovídajícím způsobem zapsat do matice Q. Takto upravená matice Q již bude splňovat podmínky věty a důkaz je tak hotov.

#### Závěr

#### Příloha

Sem můžete přidat přílohu. Pokud chcete "přílohy", tak upravte definici záhlaví v souboru sci.muni.thesis.sty, viz řádek 644.

#### Seznam použité literatury

- [1] S. J. Monaquel a K. M. Schmidt, *On M-functions and operator theory for non-self-adjoint discrete Hamiltonian systems*, v "Special Issue: 65th birthday of Prof. Desmond Evans", J.Comput. Appl. Math. **208** (2007), č. 1, 82–101.
- [2] M. Murata, Positive solutions and large time behaviors of Schrödinger semigroups, Simon's problem, J. Funct. Anal. **56** (1984), č. 3, 300–310.
- [3] J. Qi a S. Chen, *Strong limit-point classification of singular Hamiltonian expressions*, Proc. Amer. Math. Soc. **132** (2004), č. 6, 1667–1674 (elektronicky).
- [4] Z. Pospíšil, *An inverse problem for matrix trigonometric and hyperbolic functions on measure chains*, v "Colloquium on Differential and Difference Equations CDDE 2002" (Brno, 2002), Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. **13**, str. 205–211, Masarykova univerzita, Brno, 2003.
- [5] R. Šimon Hilscher a P. Zemánek, *Friedrichs extension of operators defined by linear Hamiltonian systems on unbounded interval*, v "Equadiff 12", Proceedings of the Conference on Differential Equations and their Applications (Brno, 2009), J. Diblík, O. Došlý, P. Drábek a E. Feistauer, editoři, Math. Bohem. **135** (2010), č. 2, 209–222.
- [6] A. Storjohann, A Fast+Practical+Deterministic Algorithm for Triangularizing Integer Matrices, Cosi, Springer-Verlag, Zurich, 1996.