

STIX Analytics-- From Threat Information Sharing to Automated Response

Secure and Resilient Cyber Ecosystem Industry Workshop Presentation for DHS

Dr. Ehab Al-Shaer (PI), Dr. Bill Chu (PI) University of North Carolina Charlotte

Ealshaer, billchu@{uncc.edu,ccaa-crc.org}

Agenda Outline

- Motivation of Cyber Threat Information (CTI) Sharing
- Background STIX (if needed)
- Challenges to Effective CTI Sharing
- Our Research Proejcts/Directions
 - STIXChecker
 - Logical Formalization of STIX (OWL/SMT) and configurations
 - Impact analysis
 - STIXAnalytics
 - Determining Network Relevance
 - Visual Analytics
 - Reputation Analysis
 - ThreatMitigation
 - Impact Analysis: Killing the Cyber Kill-Chain
 - From STIX to Actions

What is STIX

- A language to specify, capture, characterize and communicate
 Cyber Threat Information.
- A standardized and structured way to represent threat information
- Both human readable and machine parsable.
- Built upon active participation and feedback from a broad spectrum of organizations and experts linked with government, academia and industry.
- Initial implementation has been done in XML Schema and JSON.
 - Plan to iterate and refine with real-world use

STIX Concept

Example Cyber Kill Chain

- Proactive approach to resist adversary, preferably before the exploit stage.
- Only possible through adoption of Cyber Threat Intelligence

STIX Embedded with CTI

Consider these questions: What activity are we seeing? What threats should I look for on my networks and systems and why? Where has this threat been seen? What does it do?-What weaknesses does this threat exploit? ExploitTarget Why does it do this?-Who is responsible for this threat?-What can I do about it? -RSACONFERENCE 2013 @ 2013 The MITRE Corporation. All rights reserved

CHALLENGES TO EFFECTIVE CTI SHARING

Challenges

- ❖ Intelligence must be actionable otherwise it is useless. [CTI rules]
- ❖ Making Threat Intelligence Actionable. [RSA Conference 2015]
- ❖ Stix XML leads to interpretability and portability issues.
- ❖ Difficult to import as it is in existing analysis tools.
- Implementation independent solution is highly favourable.
- Automated inference and reasoning deficiency in XML.

Challenges

- For the Network Admin (use-case 1)
 - STIX feeds requires extensive analysis to extract elements relevant to the network.
 - Mapping threats to their counter measures is a manual process and lacks cost-benefit and impact analysis.
- For the Cyber-Security Analyst (use-case 2)
 - Visualization of the 'big picture' of the cyberthreats landscape

Challenges

- Identified Problems when Stix mapped or used for a particular network.
- Thousands of threats shared every day using Stix.
 - How to identify threats relevant to organization infrastructure?
 - ❖Which one is important?
 - ❖Which has higher impact or critical ?
 - ❖What is the likelihood of particular exploit ?
 - ❖ What could be the damage in terms of privacy, integrity, availability.
 - How much Cost will be affected?
 - What nodes will be affected, if particular threat occurs.

STIXCHECKER – FROM STIX TO ACTION

STIXChecker Objectives

- Extend and develop ontologies as a working model for STIX, network and vulnerabilities
- Identify relevance of prevalent STIX threats according to network architecture.
- Quantitative estimation of the **impact** induced by STIX threats to the enterprise mission, assets and security requirements.
- Automatic transition from CTI to mitigation actions.
- Cost-benefit mitigation analysis to achieve an optimal level of security when provided with a limited budget.

STIXAnalytics Objectives

Risk Analytics:

What is the impact of STIX-threats on the enterprise policy based on its network configuration and vulnerability scanning reports?

• Intelligence-Driven Proactive Cyber Defense:

What are the configuration changes and vulnerability fixes that will reduce the risk to an acceptable level without affecting the mission of the system?

Visual Analytics

What are the most prevalent threats? How are they related? Which ones are instances of the same attack? Which bots co-host multiple malwares?

Industrial and Business Relevance

- Proactive security: Ensuring that the current implementation of the network reserves its mission in the face of cyber threats.
- Automatic: Automatic transition from "threat intelligence" to "mitigation actions".
- Cost-effective: fixes of critical vulnerabilities and risky configurations are based on cost, usability and security requirements.

STIXChecker Process Flow

LOGICAL FORMALIZATION OF STIX (OWL/SMT)

Ontology

- Leveraged
 - Existing work from Vistology
 - NVD Database
- Domains and Restrictions

 $Indicator \equiv STIX \cup$

 $\in hasObservable\ has\ Observables \cup$

 $\exists \ hasIndicators \ some \ Indicators \cup$

 $\exists \ hasRelatedTTP \ some \ TTP$

 $Host \equiv Network \cup$

 $\exists \ hasFirewall \ some \ Firewall \cup$

- $> hasConnectedHost some Host \cup$
- > hasRouter min 1∪
- $\geq hasHostName\ min\ 1 \cup$
- $\geq hasHostIP min 1 \cup$

 $\exists \ has Vulnerable Software \ some \ Installled S$

 $CVE \equiv owl : Thing \cup$

 $\leq hasCVE_ID\ max\ 1 \cup$

 $\leq hasCVSS_baseScore\ max\ 1$

 $\geq hasVulnerableSoftware min 1 \cup$

 $\geq hasAdvisory min 1$

DETERMINING NETWORK RELEVANCE

Relevance Factors and Associated Weights

Relevance Scoring

$$S_{i} = \frac{E_{s} \cap E_{n}}{\bar{E}}$$

where:

 E_s is set of relevance elements found in STIX E_n is set of relevance elements received in network \bar{E} is set of all available relevance elements

Threat Likelihood

$$L = \max_{0 \le S_i \le 1} \frac{\sum_{i=0}^{N} S_i \times W_i}{\sum_{i=0}^{N} \bar{S}_i \times W_i}$$

where:

N is number of relevance factors F S_i is received relevance score for F_i \bar{S}_i is maximum relevance score for F_i W_i is assigned weight for F_i

F	W_i
hasCVE_Relevance	5
hasAssetsRelevance	4
hasCIA_Relevance	4
hasTargetedLocationRelevance	3
hasMotivationRelevance	2
hasOrganizationRelevance	1
hasImpactRelevance	1
hasTargetedLanguageRelevance	1
hasSecurityCompromiseRelevance	1

Example Case study—Red October APT & Ashley Madisor

Installed Software: Microsoft Office Word 2003

	Red October	Network Ele-	Relevance
	STIX Elemenets	ments (E_n)	$Score(S_i)$
	(E_s)		
hasCVE_Relevance	CVE-2012-0158,	CVE-2009-	1
	CVE-2010-3333,	3129, CVE-	
	CVE-2009-3129	2010-3333,	
		CVE-2012-	
		0158	
hasAssetsRelevance	Servers, Routers,	Servers,	0.66
	Switches,	Routers,	
	Persons, PCs	Switches and	
	and Mobile	PCs	
	Phones		
hasTargetedLocation Rel-	USA	USA	0.25
evance			
hasTargetedLanguage	English	English	1
Relevance			
hasCIA_Relevance	Confidentiality,	Confidentiality,	1
	Integrity,	Integrity,	
	Availability	Availability	

Network-STIX Relevance

F	$S_i \times W_i$	$ar{S} imes oldsymbol{W_i}$	
hasCVE_Relevance	5	5	
hasAssetsRelevance	2.64	4	
hasCIA_Relevance	4	4	
hasTargetedLocationRelevance	0.75	3	
hasMotivationRelevance	0	2	
hasOrganizationRelevance	0	1	
hasImpactRelevance	0	1	
hasTargetedLanguageRelevance	1	1	
hasSecurityCompromiseRelevance	0	1	
SUM	13.39	22	
L		13.39/22	=

Threat Likelihood

0.60

IMPACT ANALYSIS & KILLING THE CYBER KILL-CHAIN

STIX threat Modeling

- STIX feeds can be generically formalized as steps within a kill chain.
- A phase can be decomposed into one or multiple TTPs

Kill chain-phase=
$$\forall_i^{p-1} TTP_i \longrightarrow TTP_{i+1}$$

- TTPs can further be broken up into:
 - Attack Patterns given through CAPEC
 - Exploit Targets given through CVE
 - Malwares behavior using MAEC

CAPEC can be broken into CWEs

CAPEC =
$$\bigvee_{i}^{n} CWE_{i}$$

Proposed Impact Metric

 Measures the damage inflicted by STIX threats and the contribution of each kill chain phase to the total damage.

$$\mathsf{Impact}\,(\mathsf{d},\mathcal{S}) \,=\, \begin{cases} V_d \, *A_d * \mathsf{progress} \\ V_d \, *A_d * \mathsf{progress} + (w * \sum_{i \in \mathbb{F}} Impact(i,\mathcal{S}-1)) \end{cases} \qquad \qquad \mathcal{S} = 0 \text{ or } \mathbb{F} = 0$$

$$\mathcal{S} > 0 \text{ or } \mathbb{F} > 0$$

Where

 V_d : vulnerability score of the host (likelihood *severity).

 A_d : the asset value of the host d.

 \mathbf{r} : set of the reachable hosts which are vulnerable to the next **kill chain phase.** (i.e., hosts that have vulnerabilities which enable the next phase).

S: the number of maximum recursion steps (recursion threshold) S = 0 means a leaf node.

W: a weight variable (keeps getting smaller with every recursive call due to indirect damage) progress: the percentage of completed attack phases upon successfully compromising the selected host.

Network Impact – Red October Example

FROM STIX TO ACTIONS

Inside the Reasoning Engine -- From STIX To Actions

DATA-DRIVEN VISUAL ANALYTICS: REPUTATION ... ETC

Visualization: Initial Exploratory Experiments

- Initial Dataset
 - 2 categories polled from Hailataxii
 - MalwareDomainList
 - CyberCrime_Tracker
 - 10-minute time window
 - 2015-06-25T13:00 2015-06-25T13:10
 - 158,510 STIX Documents retrieved
 - -~ 482 MB Size

Problem: Dealing with a Huge Dataset

- Experiment 1: Grouping of 158,510 documents
 - Considered XML structures
 - 6 different groups
 - Considered content
 - 5,623 different groups (attacks)
 - 96.5 % reduction
 - Each group represents an attack
 - Avg docs in each group: 28

Problem: Dealing with a Huge Dataset (Continued)

- Experiment 2: Richness of attack information
 - Avg: 16.3 words
 - Excluding: stop words

- Word Cloud (created from contents)
 - To explore the content of the dataset and to see what is relevant to INW
 - http://cyberdna.uncc.edu/inw/stix/words.php

- Keyword correlation
 - Intensity of blue => Stronger relationship
 - Gray without border => Not a related word

Urls related to each keyword (co-occurrence)

Related STIX Documents

- User-friendly sampling of files for each attack (group)
- Number of STIX documents in each attack
- Attack Duration

PONY

Attack ID	Sample File	Start Date	End Date	Count
13	guest.CyberCrime Tracker STIX111 12015 06 25T17 00 00 889585 00 00.xml	2015-06-25 17:00:00	2015-06-25 17:09:38	13
14	quest.CyberCrime Tracker STIX111 t2015 06 25T17 00 00 916096 00 00.xml	2015-06-25 17:00:00	2015-06-25 17:09:40	494
22	guest-CyberCrime Tracker STIX111 12015 06 25T17 00 00 915034 00 00.xml	2015-06-25 17:00:00	2015-06-25 17:09:38	13
62	quest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 019254 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
65	quest.CyberCrime Tracker STIX111 12015 06 25T17 00 01 026258 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
71	quest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 040738 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
77	quest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 056161 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
91	quest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 130903 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
93	guest.CyberCrime Tracker STIX111 12015 06 25T17 00 01 137958 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
96	guest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 144995 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
104	guest.CyberCrime_Tracker_STIX111_t2015_06_25T17_00_01_166655_00_00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
106	guest.CyberCrime Tracker STIX111 t2015 06 25T17 00 01 173758 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
108	guest CyberCrime Tracker STIX111 12015 06 25T17 00 01 180305 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:38	13
128	guest CyberCrime Tracker STIX111 12015 06 25T17 00 01 306155 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:43	39
144	guest CyberCrime Tracker STIX111 12015 06 25T17 00 01 363733 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:43	26
208	guest CyberCrime Tracker STIX111 12015 06 25T17 00 01 523118 00 00.xml	2015-06-25 17:00:01	2015-06-25 17:09:44	26
222	TO COLOR TO THE CONTRACT OF STREET OF STREET OF STREET	2015 20 25 17 20 21	2015 22 25 17 22 15	

Initial Exploratory Experiments

- Initial Dataset
 - -1 Channels in Hailataxii
 - CyberCrime_Tracker
 - -8-hour time window
 - 2015-06-25T12:00 2015-06-25T19:00
 - -3,476,792 STIX Documents
 - -About ~10GB

Initial Exploratory Experiments

- Grouping
 - 6 different templates
 - Repeated chunks of text
 - Descriptions
 - [This domain <domain_name> has been identified as a command and control site for <malware_name> malware by cybercrime-tracker.net. For more detailed infomation about this indicator go to [CAUTION!!Read-URL-Before-Click] [http://cybercrimetracker.net/index.php].</indicator:Description>]
 - Term_of_use
 - Statement

Initial Exploratory Experiments

- Visualization of Related domains
 - https://public.tableau.com/profile/hu4869#!/vizhome/stix/Sheet2

Treemap view Identifies which attacks are Important

^{*} each color represents an attack

OBJECTIVE REPUTATION OF CYBER THREAT INTELLIGENCE SOURCES—

TOWARD PURIFICATION AND CLASSIFICATION

Motivation and Goals

- STIX will include noisy and possible malicious sources
- How do you know which CTI sources to consider:
 - Removing noise: duplication, bogus etc
 - Priority-based classification
- Creating community self-awareness and accountability consuming
- Allow customers to narrow their search and act faster
- Proposed Ranking Service is based on:
 - 1. Threat-source profiling based on time-series and information theatric analysis
 - 2. Multi-Source correlation using clustering and visualization for STIX inter-relationship and source inter-dependency analysis
 - 3. Sentiment Analysis and Consumer Reports
 - 4. Integrating **Cyber Intelligence** information to enrich the reputation analysis

Time-

Key Features in selection of Reputable CTI sources

- Number of entries (signal/noise)
- Certainty (blind aggregation, lack of context)
- Type of badness (only certain types e.g. C&C)
- Standards followed (direct input to network FW?)
- Update Frequency (daily, hourly, real-time)
- Varying level of detail
- Frequency of false positives
- Threat Querying by application and features

Recommended Sources Exclusive Ratings Rating of over xx Sources				
	Coverage	Dependency	Standards	Trustworthiness
Source 1				
Source 2				

Consumer Reports Best & Worst CTI Sources 2015

Development of scores/metrics

- Detect faster: How much will feed reduce time to detect?
- Detect Better: How much will feed enable me to detect what I would otherwise miss?
- Dependency Score: for decision making about independence of source

Value Proposition

- Ability to rank source reputation and purchase source based on:
 - The specialization of the threat source
 - Quantitative/qualitative scoring
 - Feature wish-list search
 - Partially ordered (ranked) lists
 - Coverage
 - Suggestions based on user requirements
 - Single best source of threat intelligence
 - Customization of services from multiple sources

PRELIMINARY RESULTS

Validation Experiments of our Preliminary Results

- We used 20 different case studies of various attack represented in STIX
 - X are already made ones including Red October
 APT attack
 - Y are created by our team based on CTI sources such as ThreatConnect including Ashley Madison attack
- Validation Methodology

Reasoning Time and CPU Utilization

(a) Relevance Score (S_i) & Threat Likelihood (L)

(b) Quantitative Assets Loss (A_n) & Qualitative Assets Loss (A_l)

(b) Quantitative Assets Loss (A_n) & Qualitative Assets Loss (A_l)

(c) Threat Reachability (R) & Threat Actors Attribution

Loss (A_n) & (c) Threat Reachability (R) & Threat Actors Attribution

(a) Relevance Score (S_i) & Threat Likelihood (L)

Memory Consumption

(a) Relevance Score (S_i) & Threat Likeli-(b) Quantitative Assets Loss (A_n) & Qual-(c) Threat Reachability (R) & Threat Achood (L) itative Assets loss (A_l) tors Attribution

51

Fig. 10: Relevance Factors (F) found in STIX

Fig. 11: Threat Actor's Attributes found in STIX

Conclusion

- STIX Threat Information Sharing is the right step in the right direction for cybersecurity automation
- But many others steps have to follow to create incentive (usability and effectiveness) of STIX-based CTI.
- Our experience shows both formal- and data-driven approaches to address critical challenges and bridge this gab between CTI sharing and usability/effectiveness
- This is the tip of the iceberg: More research and development is needed in this direction ...
- Relevance: Invitation visit and join the NSF Center on [Security] Configuration Analytics and Automation (www.ccaa-nsf.org);

Questions

