

Strategic Thinking – CA2 Semester 2

CCT College Dublin

Predicting Churn in Telecommunication

Arthur Claudino Gomes de Assis (2023146)

©CCT College Dublin 2023

Business understanding and data visualization

Churn is a common problem in the telecommunications business and refers to customers who cancel or do not renew their contract with a telecommunications company in a given period. Churn is a very important indicator for telecommunications companies since it is much more expensive to attract new customers than to retain existing ones.

- Price
- Product/Market Fit
- User Experience
- Customer Experience
- Other Causes

The dataset

df_churn.info() <class 'pandas.core.frame.DataFrame'> RangeIndex: 7043 entries, 0 to 7042 Data columns (total 21 columns): Non-Null Count Dtype Column 7043 non-null object customerID gender 7043 non-null object SeniorCitizen 7043 non-null int64 7043 non-null object Partner 7043 non-null Dependents object 7043 non-null int64 tenure 7043 non-null PhoneService object 7043 non-null MultipleLines object InternetService 7043 non-null object **OnlineSecurity** 7043 non-null obiect OnlineBackup 7043 non-null object DeviceProtection 7043 non-null object TechSupport 7043 non-null object StreamingTV 7043 non-null object StreamingMovies 7043 non-null object Contract 7043 non-null object PaperlessBilling 7043 non-null object PaymentMethod 7043 non-null object MonthlyCharges 7043 non-null float64 TotalCharges 7043 non-null object Churn 7043 non-null object 20 dtypes: float64(1), int64(2), object(18)

memory usage: 1.1+ MB

df_churn.head()

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	 DeviceProtection	TechSu
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	 No	
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	 Yes	
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	 No	
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	 Yes	
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	 No	

Security	 DeviceProtection	TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	Churn
No	 No	No	No	No	Month- to-month	Yes	Electronic check	29.85	29.85	No
Yes	 Yes	No	No	No	One year	No	Mailed check	56.95	1889.5	No
Yes	 No	No	No	No	Month- to-month	Yes	Mailed check	53.85	108.15	Yes
Yes	 Yes	Yes	No	No	One year	No	Bank transfer (automatic)	42.30	1840.75	No
No	 No	No	No	No	Month- to-month	Yes	Electronic check	70.70	151.65	Yes

 Dataset was very much clean, only the column Total Charges had some blank spaces identified in the same rows where tenure was 0. Therefore, they was replaced by 0 also.

Exploratory data Analysis

- Extra services reduces the chances of churn.
- 2/3 of customer that have churned had fiber optic service.
- Online Security, Tech Support and Device Protection seem to influence churn the most.

Exploratory Data Analysis

- Total loss for churn: 139,131.
- Loss just in customer with Phone Service, DSL internet and Electronic Check: 68,282. (49%)

Data Structure

Correlation Matrix

····-··	
StreamingMovies_Yes	0.061382
MultipleLines_Yes	0.040102
PhoneService	0.011942
DiscountsorExtra	-0.000307
gender	-0.008612
MultipleLines_No	-0.032569
DeviceProtection_Yes	-0.066160
OnlineBackup_Yes	-0.082255
PaymentMethod_Mailed check	-0.091683

Correlation with Churn

Correlation with Total Charges

TotalCharges	1.000000
tenure	0.826178
MonthlyCharges	0.651174
DeviceProtection_Yes	0.521983
StreamingMovies_Yes	0.520122
StreamingTV_Yes	0.514973
OnlineBackup Yes	0.509226

Modelling

Changing on business understanding

Accuracy Score: 0.8105039034776437

Classificatio	n Report: precision	recall	f1-score	support
0	0.86	0.89	0.88	1061
1	0.63	0.58	0.60	348
accuracy			0.81	1409
macro avg	0.75	0.73	0.74	1409
weighted avg	0.81	0.81	0.81	1409

- Reduce Churn!
- Focus on false negatives.
- Focus on Recall
- False positives are target

Accuracy Score: 0.7416607523066004

Classification	Report: precision	recall	f1-score	support
0 1	0.93 0.49	0.71 0.83	0.81 0.61	1061 348
accuracy macro avg weighted avg	0.71 0.82	0.77 0.74	0.74 0.71 0.76	1409 1409 1409

Modelling – Applying Smote

0

Predicted

Accuracy Score: 0.7295954577714692

Classification	Report: precision	recall	f1-score	support
0	0.89	0.73	0.80	1061
1	0.47	0.72	0.57	348
accuracy			0.73	1409
macro avg	0.68	0.73	0.69	1409
weighted avg	0.78	0.73	0.75	1409

Modelling – Hyperparameter Tunning

Accuracy Score: 0.7196593328601846

Classification	Report:

	precision	recall	f1-score	support	
0	0.94	0.67	0.78	1061	
1	0.46	0.86	0.60	348	
accuracy			0.72	1409	
macro avg	0.70	0.77	0.69	1409	
weighted avg	0.82	0.72	0.74	1409	

Features Importance

Conclusion and next steps

- Most important features to churn:
 - Type of internet
 - Contract
 - Payment type
 - Extra service
- Best model: Gaussian Naïve Bayes optimized with Grid Search
- Split the dataset by internet type and analyze it separately.
- Correlations among variables.
- Verify Another models.

References

- Dino, L., 2022. Medium. [Online]
 Available at: https://medium.com/@24littledino/two-sample-chi-square-test-in-python-b9f2db89dc2b [Accessed 16 11 2023].
- Jain, K., 2021. Analytics Vidhya. [Online]
 Available at: https://medium.com/analytics-vidhya/how-to-improve-naive-bayes-9fa698e14cba [Accessed 18 11 2023]
- Jain, R., 2020. *Medium*. [Online] Available at: https://medium.com/@ritesh.110587/correlation-between-categorical-variables-63f6bd9bf2f7 [Accessed 15 11 2023].
- Kübler, R., 2021. *Towards Data Science*. [Online] Available at: https://towardsdatascience.com/learning-by-implementing-gaussian-naive-bayes-3f0e3d2c01b2 [Accessed 17 11 2023].
- Sharma, A., 2021. Analytics Vidhya. [Online]
 Available at: https://www.analyticsvidhya.com/blog/2021/01/gaussian-naive-bayes-with-hyperpameter-tuning/ [Accessed 15 11 2023].
- Stack Overflow [online] (May 10, 2021) Available at: https://stackoverflow.com/questions/67474348/how-do-i-create-a-bar-chart-with-percentage-values-in-python-plotly-express
- GeeksforGeeks [online] (16 Jul, 2020) Available at: https://www.geeksforgeeks.org/python-binomial-distribution/?ref=gcse
- Scribbr [online] Published on November 5, 2020 by Pritha Bhandari. Available at: https://www.scribbr.com/statistics/standard-normal-distribution/
- Kaggle, Updated 5 Years Ago by Blastchar [online] Available at: https://www.kaggle.com/datasets/blastchar/telco-customer-churn
- W3Schools, Copyright 1999-2023 by Refsnes Data [online] Available
 at: https://www.w3schools.com/statistics/statistics_standard_normal_distribution.php

Thank you!