Your Next Week

Saturday May 9	Sunday May 10	Monday May 11	Tuesday May 12
9:00 AM — DUE Class 16 Code Challenge — DUE Class 16 Lab — DUE Class 17 Reading — Class 17 — Interview Prep 03 MIDNIGHT — DUE Class 17 Learning Journal	MIDNIGHT — Class 16-17 Feedback		6:30 PM — DUE Class 17 Code Challenge — DUE Class 17 Lab — DUE Class 18 Reading — Class 18A
Wednesday May 13	Thursday May 14	Friday May 15	Saturday May 16
6:30 PM — Class 18B MIDNIGHT — DUE Class 18 Learning Journal	6:30 PM — Co-working		9:00 AM — DUE Class 18 Code Challenge — DUE Class 18 Lab — DUE Class 19 Reading — Class 19 — Interview Prep 04 MIDNIGHT
			— DUE Class 19 Learning Journal

What We've Covered

Module 01 Javascript Fundamentals and Data Models C01 — Node Ecosystem, TDD,	Module 02 API Servers C06 — HTTP and REST C07 — Express	Module 03 Auth/Auth C10 — Authentication C12 — OAuth	Module 04 Realtime C16 — Event Driven Applications
COT — Node Ecosystem, TDD, CI/CD CO2 — Classes, Inheritance, Functional Programming CO3 — Data Modeling & NoSQL Databases CO4 — Advanced Mongo/Mongoose CO5 — DSA: Linked Lists	CO8 — Express Routing & Connected API CO9 — API Server C11 — DSA: Stacks and Queues	C12 — OAuth C13 — Bearer Authorization C14 — Access Control (ACL) C15 — DSA: Trees	C17 — TCP Server C18 — Socket.io C19 — Message Queues C20 — Midterms Prep Midterms
Module 05 React Basics	Module 06 Advanced React	Module 07 Redux State Management	Module 08 UI Frameworks
C21 — Component Based UI C22 — React Testing and Deployment C23 — Props and State C24 — Routing and Component Composition C25 — DSA: Sorting and HashTables	C26 — Hooks API C27 — Custom Hooks C28 — Context API C29 — Application State with Redux C30 — DSA: Graphs	C31 — Combined Reducers C32 — Asynchronous Actions C33 — Additional Topics C34 — React Native C35 — DSA: Review	C36 — Gatsby and Next C37 — JavaScript Frameworks C38 — Finals Prep Finals

Lab 16 Review

Code Challenge 16 Review

Class 17

TCP Server

seattle-javascript-401n16

Data Transfer

- We've seen one layer of data transfer - the HTTP layer
- What are the other layers?
- Each follows a protocol
- Some layers aren't always
 needed (HTTP layer is for
 client web app to server app)

Protocol Suites

- A collection of protocols and layers
- What layers should execute
 - Which protocols are available for each layer
- Two major ones we focus on:
 - Open Systems Interconnection
 Reference Model (OSI)
 - Internet Protocol Suite (TCP/IP)

OSI

- Seven layers
- Very detailed guidelines on how to transfer data
- We can simplify to TCP/IP by only using four fundamental steps

#	Layer	Description	Protocol Examples	Notes
7	Application	User action or application action initiates some data transfer (either a request or a response). Data asks to be sent from the current application (origin) to another URL (endpoint).		
6	Presentation	Before data is sent, we need to make sure it looks correct so that it can be understood by anyone. In this step, data is encrypted, encoded, compressed or transformed to make it easier to transfer.		
5	Session	Before data is sent, we need to make sure that we are able to connect to the endpoint. This step attempts to establish a connection with the endpoint using any required credentials		
4	Transport	The data that is being sent from origin to endpoint is broken up into small <i>packets</i> of 1 Kilobyte each. This makes it easy to send data quickly and efficiently. When the data is broken up into packets, each packet gets a header that specifies how to reassemble the packets into the original full data.	TCP and UDP	
3	Network	Individual packets are then marked with the endpoint's IP address. This is a more detailed location than a simple URL. Now that the packets are marked with where they should go, packets can be sent individually instead of as a group. The Network layer also determines the best routes for each packet to use when traveling from origin to endpoint.	IP and ICMP	
2	Data Link	The most complex of the layers, this layer handles the actual bit-by-bit transmission of data from the origin to the endpoint.	Ethernet and IEEE 802.11 wireless LAN	
1	Physical	This layer is the actual physical device that is receiving or sending data. This could be a modem that is maintaining your WiFi connection, an Ethernet cord plugged into your machine, a Bluetooth device that is receiving data, etc. Any issues in these physical cables or devices can interrupt the data transfer. This is why there is the famous phrase "have you tried turning it off and on again?"		

TCP/IP

Layer	Description	
Application	User action or application action initiates some data transfer (either a request or a response). Data asks to be sent from the current application (origin) to another URL (endpoint).	
Transport	The data that is being sent from origin to endpoint is broken up into small <i>packets</i> of 1 Kilobyte each. This makes it easy to send data quickly and efficiently. When the data is broken up into packets, each packet gets a header that specifies how to reassemble the packets into the original full data.	TCP, UDP, μTP
Internet	Individual packets are then marked with the endpoint's IP address. This is a more detailed location than a simple URL. Now that the packets are marked with where they should go, packets can be sent individually instead of as a group.	IPv4, IPv6, ICMP
Network / Link	The network takes any random collection of packets from any data transfer requests. It checks each packet's IP address and finds a route over the internet to quickly get that packet to the right endpoint.	

TCP and UDP

- The two major protocols for the transport layer
- Both create packets with headers
- Transmission Control Protocol (TCP)
 headers are very complex and rigorous
 - More common and more secure
- User Datagram Protocol (UDP)
 doesn't care about a strong connection
 with the destination, it just sends data
 out

TCP

UDP

Lab 17 Overview