제 4 교시

과학탐구 영역(생명과학 II)

성명

수험 번호

제 [] 선택

1. 그림은 동물 세포의 구조를 나타낸 것이다. A~C는 리보솜, 미토콘드리아, 핵을 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

----<보 기>-

- 기. A는 미토콘드리아이다.
- L. B는 유전 물질을 갖는다.
- 다. C는 2중막을 갖는다.

2. 표는 식물을 구성하는 조직계의 특징을 나타낸 것이다. A와 B는 관다발 조직계와 표피 조직계를 순서 없이 나타낸 것이다.

조직계	특징
A	표면을 덮어 식물체를 보호한다.
В	?
기본 조직계	양분을 합성하고 저장한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- 기. A는 표피 조직계이다.
- L. B를 통해 물질이 이동한다.
- 다. 장미의 잎에는 기본 조직계가 있다.

① ¬

② L

(3) 7, 5 (4) 4, 5 (5) 7, 4, 5

3. 효소 E는 기질 A가 생성물 B로 전환되는 반응을 촉매한다. 표는 E에 의한 반응에서 실험 (가)~(다)의 조건을, 그림은 (가)~(다) 에서 A의 농도에 따른 초기 반응 속도를 나타낸 것이다. I~Ⅲ은 (가)~(다)의 결과를 순서 없이 나타낸 것이다. 물질 ⑦은 E의 활성 부위에 결합하여 E의 작용을 저해한다.

실험	(가)	(나)	(다)
E의 농도 (상댓값)	1	2	2
Э	없음	없음	있음

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외의 다른 조건은 동일하다.) [3점]

----<보 기>--

- □. S₁일 때 초기 반응 속도는 (나)에서가 (다)에서보다 빠르다.
- L. S₂일 때 효소·기질 복합체의 농도는 (나)에서가 (가)에서 보다 낮다.
- 다. (가)에서 E에 의한 반응의 활성화 에너지는 S₁일 때가 S₂일 때보다 작다.

 \bigcirc

② L

③ ⊏

47, 67, 6

4. 그림은 물질 ①이 들어 있는 배양액에 어떤 ③ 세포를 넣은 후 시간에 따른 ①의 세포 안 세포 농도를 나타낸 것이다. C는 □의 세포 안과 한 밖의 농도가 같아졌을 때 ①의 세포 밖 농도 *돋 C* 이다. ①의 이동 방식은 능동 수송과 촉진 확산 중 하나이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. ⑦의 이동 방식은 촉진 확산이다.
- L. 구간 I에서 □은 세포 밖에서 안으로 이동한다.
- □. 폐포에서 모세 혈관으로 02의 이동 방식은 □의 이동 방식과

 \bigcirc

② L ③ 口 ④ ヿ. ロ ⑤ L. ロ

5. 표는 광합성이 활발하게 일어나고 있는 어떤 녹조류에 (가)의 조건을 주었을 때 시간에 따른 물질 ③과 ⓒ의 농도를 상댓값으로 나타낸 것이다. (가)는 '빛 차단'과 'CO2 농도 감소' 중 하나이다. ③과 ⓒ은 3PG와 RuBP를 순서 없이 └──

시간(초)	\bigcirc	Ĺ)
0	0.4	1.0
20	0.5	0.8
40	0.8	0.6
60	1.2	0.5

나타낸 것이고, 1분자당 $\frac{$ 탄소 수}{인산기 수}는 \bigcirc 이 \bigcirc 보다 크다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, ᄀ라 ▷은 이 녹조류의 엽록체 내에 존재하며, 제시된 조건 이외의 다른 조건은 동일하다.)

-----<보 기>-

- ㄱ. ①은 RuBP이다.
- L. (가)는 '빛 차단'이다.
- □. 캘빈 회로에서 ○이 □으로 전환되는 과정에서 ATP가 사용된다.

① ¬

② L

37, 5 4 4, 5 57, 4, 5

생

명

과

학

- 6. 다음은 생물 $A \sim C$ 에 대한 자료이다. $A \sim C$ 는 최초의 광합성 세균. 최초의 단세포 진핵생물, 최초의 산소 호흡 세균을 순서 없이 나타낸 것이다.
 - A~C 중 A가 가장 나중에 출현하였다.
 - C는 빛에너지를 화학 에너지로 전환한다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>---

- ¬. A는 최초의 단세포 진핵생물이다.
- L. B는 핵막을 갖는다.
- 다. 코아세르베이트는 C에 해당한다.

 \bigcirc

② L

③ ⊏

47, 65 4, 5

2 (생명과학 Ⅱ)

과학탐구 영역

7. 그림은 효모의 알코올 발효에서 물질 전환 과정 【~Ⅲ을, 표는 I~Ⅲ에서 생성되는 물질 ⑦~② 중 2개의 분자 수를 더한 값을 나타낸 것이다. A~D는 과당 2인산, 아세트알데하이드, 에탄올, 포도당을 순서 없이 나타낸 것이고, ①~②은 ADP, ATP, CO2, NAD⁺를 순서 없이 나타낸 것이다.

[피루브산] <u>I</u> A
$\begin{array}{c c} C & \xrightarrow{\coprod} 2 & D \end{array}$

과정	분자 수를 더한 값			
46	7+0	7+0	Û+€	
I	2	?	1	
П	?	2	0	
Ш	2	2	4	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>-

- ¬. ╚은 NAD⁺이다.
- ㄴ. 1분자당 $\frac{C의 탄소 수}{B의 탄소 수 + D의 탄소 수} = \frac{3}{4}$ 이다.
- ㄷ. Ⅲ에서 탈수소 반응이 일어난다.
- \bigcirc
- ② ⊏

- (3) 7, L (4) L, L (5) 7, L, L
- 8. 그림은 어떤 식물에서 ①과 心의 조건을 달리했을 때 시간에 따른 광합성 속도를, 표는 이 식물의 광합성 과정의 명반응에서 일어나는 반응 (가)와 (나)를 나타낸 것이다. ①과 ①은 빛과 CO2를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 빛과 CO₂ 이외의 조건은 동일하다.) [3점]

------<보 기>---

- ㄱ. L은 CO2이다.
- L. 틸라코이드 내부의 pH는 t_1 일 때가 t_2 일 때보다 높다.
- ㄷ. 구간 Ⅱ에서 (가)와 (나)가 모두 일어난다.
- ① ¬

- 9. 그림은 동물의 줄기세포 (가)와 (나)를 만드는 과정을 나타낸 것이다. (가)와 (나)는 성체 줄기세포와 유도 만능 줄기세포(역분화 줄기세포)를 순서 없이 나타낸 것이다.

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

- ㄱ. (가)는 성체 줄기세포이다.
- ㄴ. (나)가 만들어지는 과정에서 체세포의 역분화가 일어났다.
- ㄷ. (가)와 (나)는 모두 분화가 완료된 세포이다.
- ① ¬ ② L
- (3) 7, L (4) 7, L (5) L, L

- 10. 다음은 미토콘드리아의 ATP 합성에 대한 실험이다.
 - 물질 X는 미토콘드리아 내막에 있는 인지질을 통해 H⁺을 새어 나가게 하고, 물질 Y는 ATP 합성 효소를 통한 H⁺의 이동을 차단한다.

[실험 과정 및 결과]

- (가) 미토콘드리아가 들어 있는 시험관에 4탄소 화합물, ADP와 P_i, 물질 ¬, □을 순차적으로 첨가한다. ¬과 □은 X와 Y를 순서 없이 나타낸 것이다.
- (나) 그림은 시험관에 남아 있는 O_2 총량을 시간에 따라 측정한 결과를, 표는 구간 I~Ⅲ에서의 ATP 합성 여부를 나타낸 것이다.

구간	ATP 합성 여부		
I	합성됨		
П	합성 안 됨		
Ш	합성 안 됨		

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 4탄소 화합물, ADP, P:는 충분히 첨가되었다.) [3점]

----<보 기>-

- ㄱ. ⓑ은 Y이다.
- ㄴ. 단위 시간당 미토콘드리아의 전자 전달계를 통해 이동하는 전자의 수는 Ⅰ에서가 Ⅱ에서보다 많다.
- □ 미토콘드리아의 기질의 H⁺ 농도
 □ 마토콘드리아의 막사이 공간의 H⁺ 농도 보다 크다.
- \bigcirc

- 2 L 3 7, L 4 L, L 5 7, L, L
- 11. 다음은 이중 가닥 DNA X와 mRNA Y에 대한 자료이다.
 - 그림은 서로 상보적인 단일 가닥 Ⅰ과 Ⅱ로 구성된 X를 나타낸 것이다. X는 5개의 염기쌍으로 구성되고, ①은 아데닌(A), 사이토신(C), 구아닌(G), 타이민(T) 중 하나이다. ② 이외에는 염기 사이의 수소 결합을 표시하지 않았다.

- X에서 염기 간 수소 결합의 총개수는 13개이다.
- I 에서 <u>A</u> = 2이다.
- [과 [] 중 하나로부터 Y가 전사되었고,
 - 염기 개수는 X가 Y의 2배이다. Y의 3' 말단 염기는 C이다.
- 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

- ㄱ. ⑦은 아데닌(A)이다.
- L. Y는 I 로부터 전사되었다.
- 다. Y에서 유라실(U)의 개수는 1개이다.
- \bigcirc
- ② L
- ③ ⊏
- (4) 7, L (5) L, L

과학탐구 영역

생명과학 Ⅱ

12. 생명 과학자들의 주요 성과에 대한 설명으로 옳은 것만을 <보기> 에서 있는 대로 고른 것은? [3점]

- ㄱ. 파스퇴르는 생물 속생설을 입증하였다.
- L. 왓슨과 크릭은 DNA의 이중 나선 구조를 알아내었다.
- ㄷ. 하비는 인체에서 혈액이 순환한다는 사실을 알아내었다.

① ¬ ② ⊏

3) 7, 4 4 4, 5 7, 4, 5

- 13. 다음은 동물 집단 Ⅰ과 Ⅱ에 대한 자료이다.
 - I 에서 대립유전자 B의 DNA 염기 서열에 변화가 생겨 새로운 대립유전자 B*가 나타났고, ¬ 자연 선택에 의해 I 에서 B*의 빈도가 증가하였다.
 - Ⅰ의 일부 개체가 새로운 지역으로 이주하여 Ⅱ를 형성하였다. 이때 Û 창시자 효과에 의해 Ⅱ에서 B*의 빈도가 Ⅰ과 달라졌다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ㄱ. ⑦과 ▷은 모두 유전자풀의 변화 요인이다.
- 나. 그은 환경 변화에 대한 개체의 적응 능력과 무관하게 일어난다.
- ㄷ. 으은 유전적 부동의 한 현상이다.

① ¬

(2) L

③ ⊏

4) 7, 5 5 4, 5

- 14. 다음은 어떤 세포에서 복제 중인 이중 가닥 DNA에 대한 자료이다.
 - 이중 가닥 DNA를 구성하는 단일 가닥 I과 II는 각각 26개의 염기로 구성되며, 서로 상보적이다. [을 주형으로 하여 선도 가닥 ∄가 합성되었고, Ⅱ를 주형으로 하여 지연 가닥이 합성 되는 과정에서 가닥 따와 따가 합성되었다.
 - ⑦는 26개의 염기로, 윤와 ⑤는 각각 13개의 염기로 구성된다. ⑦는 프라이머 X를, 따는 프라이머 Y를, 따는 프라이머 Z를 가진다.
 - X~Z는 각각 4개의 염기로 구성되고, X와 Z는 서로 상보적이다.
 - ⑦의 염기 서열은 다음과 같다. ③과 ⑥은 구아닌(G)과 사이토신(C)을 순서 없이 나타낸 것이다.
 - 5'- ¬QC¬AATATGQ¬G¬CTCACTCQ¬G¬C-3'
 - \circ \oplus 와 \oplus 를 구성하는 염기를 모두 합쳐서 구한 $\frac{C}{C}$ 의 값은 $\frac{1}{2}$ 이다.
 - 이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 돌연변이는 고려하지 않는다.) [3점]

----<보 기>-

- ㄱ. 따가 따보다 먼저 합성되었다.
- L. X와 Y의 염기 서열은 같다.
- ㄷ. I에서 $\frac{C}{A+T} = \frac{3}{4}$ 이다.

 \bigcirc ② L

3 7, 5 4 4, 5 7, 6, 5

15. 표 (가)는 생물의 3가지 특징을, (나)는 생물 4종류의 3역 6계 분류 체계에 따른 계명과 (가)의 특징 중 각 생물이 가지는 특징의 개수를 나타낸 것이다.

> 특징 • rRNA가 있다.

• 세포벽이 있다. • 엽록소 a가 있다.

(フト)

생물	계명	특징의 개수
메테인 생성균	고세균계	?
대장균	?	a
소나무	식물계	(b)
불가사리	9	1
	(나)	

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? [3점]

---<보 기>-

- ㄱ. ⑦은 동물계이다.
- ㄴ. ⓐ+ⓑ=4이다.
- ㄷ. 메테인 생성균과 대장균은 같은 역에 속한다.

① ¬

② L

③ ⊏

47, 67, 6

16. 다음은 이중 가닥 DNA x와 제한 효소에 대한 자료이다.

○ *x*는 34개의 염기쌍으로 이루어져 있고, *x* 중 한 가닥의 염기 서열은 다음과 같다. ①은 4개의 염기로, ①과 ②은 각각 10개의 염기로 구성되어 있다.

5'- AAC AC TAC E

GAC - 3'

○ 그림은 제한 효소 Bgl II, Kpn I, Xho I 이 인식하는 염기 서열과 절단 위치를 나타낸 것이다.

> 5'-AGATCT-3' 5'-GGTACC-3' 5'-CTCGAG-3' 3'-TCTAGA-5' 3'-CCATGG-5' 3'-GAGCTC-5'

Bgl∏

Kpn I : 절단 위치

○ x를 시험관 I~IV에 넣고 제한 효소를 첨가하여 완전히

Xho I

자른 결과 생성된 DNA 조각 수와 각 DNA 조각의 염기 수는 표와 같다. @는 🕒보다 작다.

시험관	I	П	III	IV
첨가한 제한 효소	Bgl∏	Kpn I	Xho I	BglⅡ, Kpn I
생성된 DNA 조각 수	3	2	4	4
생성된 각 DNA 조각의 염기 수	12, ⓐ, ⓑ	30, 38	?	12, 18, 18, 20

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

----<보 기>--

- ¬. ¬의 5′ 말단 염기는 사이토신(C)이다.
- ㄴ. I 에서 생성된 DNA 조각 중 염기 개수가 @개인 조각에서 아데닌(A)의 개수는 5개이다.
- □. III에서 염기 개수가 18개인 DNA 조각이 생성된다.

 \bigcirc

4 (생명과학 Ⅱ)

과학탐구 영역

- 17. 다음은 어떤 진핵생물의 유전자 x와, x에서 돌연변이가 일어난 유전자 y의 발현에 대한 자료이다.
 - *x*와 *y*로부터 각각 폴리펩타이드 X와 Y가 합성된다.
 - 36개의 염기쌍으로 구성된 x의 DNA 이중 가닥 중 전사 주형 가닥의 염기 서열은 5'-(가)-(나)-3'이며, 표의 Ⅰ과 Ⅱ는 (가)와 (나)를 순서 없이 나타낸 것이다. (a)는 5' 말단과 3' 말단 중 하나이다. 그은 3개의 피리미딘 계열 염기와 2개의 퓨린 계열 염기로 구성된다.

구분	염기 서열	
I	5'-CGCTACGTCACGCATGCG	
П	@-CTTACGACTAG ¬ AT	

- X는 8개의 아미노산으로 구성되고, 1개의 세린, 1개의 아스파트산을 가진다.
- y는 x의 전사 주형 가닥에서 연속된 2개의 동일한 염기가 1회 결실된 것이다.
- Y는 9개의 아미노산으로 구성된다.
- X와 Y의 합성은 개시 코돈 AUG에서 시작 하여 종결 코돈에서 끝나며, 표는 유전 부호를 나타낸 것이다.

UUU _{페닐알라닌} UUC	UCU UCC 세린	UAU UAC 타이로신	UGU UGC 시스테인
UUA 류신	UCA	UAA 종결 코돈	UGA 종결 코돈
UUG πΔ	UCG	UAG 종결 코돈	UGG 트립토판
CUU CUC 류신	CCU CCC CCA ^{프롤}	CAU CAC 히스티딘	CGU CGC 아르지닌
CUA		CAA Jecini	CGA OF
CUG	CCG	CAG = THE	CGG
AUU	ACU	AAU	AGU 세린
AUC 아이소류신	ACC 트레오	AAC	AGC ALL
AUA	ACA	· ^리 AAA 라이신	AGA 아르지닌
AUG 메싸이오닌	ACG	AAG LIVIZI	AGG OFFAIR
GUU	GCU	GAU	GGU
GUC 발린	GCC 알라	J GAC	GGC 글리신
GUA ^{크린}	GCA ^{□□}	GAA 글루탐산	GGA ^{□□121}
GUG	GCG	GAG 플루덤션	GGG

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 돌연변이 이외의 핵산 염기 서열 변화는 고려 하지 않는다.) [3점]

---<보 기>-

- ㄱ. @는 5' 말단이다.
- L. X의 세린을 암호화하는 코돈의 3' 말단 염기는 구아닌(G)이다.
- 다. Y의 5번째 아미노산은 세린이다.
- ① ¬
- (2) L
- 3 = 4 = 5 = =
- 18. 표는 생물의 4가지 특징과 생물 A~D 중 각 특징을 가지는 생물을 나타낸 것이다. A~D는 갯지렁이, 창고기, 해삼, 해파리를 순서 없이 나타낸 것이다.

특징	특징을 가지는 생물
촉수담륜동물에 속한다.	A
원구가 항문이 된다.	В, С
척삭을 형성한다.	С
?	D

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은?

-----<보 기>---

- ¬. B는 창고기이다.
- L. D의 몸의 대칭성은 방사 대칭성이다.
- 다. A와 C는 모두 중배엽을 형성한다.

- 19. 다음은 어떤 동물에서 세포 P의 분화와 관련된 유전자 (가)와 (나)의 전사 조절에 대한 자료이다.
 - P는 (가)와 (나) 중 (가)만 발현되면 세포 I로, (가)와 (나) 중 (나)만 발현되면 세포 Ⅱ로, (가)와 (나)가 모두 발현되면 세포 Ⅲ 으로 분화된다.
 - (가)와 (나)의 프로모터와 전사 인자 [A|B| 프로모터 유전자(가) 결합 부위 A~C는 그림과 같다. A C 프로모터 유전자(나)
 - 전사 인자 X, Y, Z는 (가)와 (나)의 전사 촉진에 관여한다. X는 B에만 결합하며, Y는 A와 C 중 어느 하나에만 결합하고, Z는 그 나머지 하나에만 결합한다.
 - (가)와 (나) 각각의 전사는 각 유전자의 전사 인자 결합 부위 모두에 전사 인자가 결합했을 때 촉진된다.
 - P에서 발현된 전사 인자에 따른 ①~ ©의 형성 결과는 표와 같다. □~□은 [~Ⅲ을 순서 없이 나타낸 것이다.

발현된	세포		
전사 인자		(L)	╚
X, Y	a	?	×
X, Z	×	×	0
Y, Z	0	×	?
(○: 형성	석됨. ×	: 형성	아 됨)

이에 대한 설명으로 옳은 것만을 <보기>에서 있는 대로 고른 것은? (단, 제시된 조건 이외는 고려하지 않는다.)

-----<보 기>---

- ¬. ⓐ는 '×'이다.
- ㄴ. ▷은 Ⅱ이다.
- ㄷ. Y는 C에 결합한다.

- 20. 다음은 동물 종 P의 두 집단 I과 Ⅱ에 대한 자료이다.
 - I 과 Ⅱ는 각각 하디·바인베르크 평형이 유지되는 집단이며, I 과 Π 를 구성하는 개체 수는 각각 2N과 3N 중 하나이다.
 - P의 유전 형질 (가)와 (나)를 결정하는 유전자는 서로 다른 상염색체에 있다.
 - (가)는 대립유전자 A와 a에 의해, (나)는 대립유전자 B와 b에 의해 결정된다. A는 a에 대해, B는 b에 대해 각각 완전 우성이다.
 - \circ A를 가진 개체들을 합쳐서 구한 a의 빈도는 I 에서 $\frac{3}{9}$ 이고, \square 에서 $\frac{4}{9}$ 이다. \square 에서 A의 빈도와 \square 에서 B의 빈도는 같다.
 - $\circ \frac{I \text{ 에서 b를 가진 개체 수}}{I \text{ 에서 B를 가진 개체 수}} = \frac{7}{15}$ 이다.
 - $\frac{I \text{ 에서 } (r)}{I \text{ 에서 } (r)}$ 발현된 개체 수 = $\frac{3}{8}$ 이다.

I 에서 (나)가 발현된 개체 수는? [3점]

- ① $\frac{1}{16}N$ ② $\frac{1}{8}N$ ③ $\frac{3}{16}N$ ④ $\frac{15}{16}N$ ⑤ $\frac{15}{8}N$
- * 확인 사항
- 답안지의 해당란에 필요한 내용을 정확히 기입(표기)했는지 확인