Homework 1

MacMillan, Kyle

September 28, 2018

${\bf Contents}$

Title

Table of Contents			
Li	of Figures ii		
1	Problem 1	1	
2	Problem 2	1	
3	Problem 3 3.1 Problem 3a 3.2 Problem 3b 3.3 Problem 3c 3.4 Problem 3d 3.5 Problem 3e 3.6 Problem 3f 3.7 Problem 3g	3 3 3 3 4 4 4	
	3.8 Problem 3h	4 4	
-	Problem 5 Graduate Assignment	4	

List of Figures

1	Example debug output	3
2	Better performance without reduction.	.3

1 Problem 1

```
\&\& : 1 || : 0 | : 0 ^{\wedge} : 0
```

2 Problem 2

Suppose OpenMP did not have the reduction clause. Show how to implement an efficient parallel reduction by adding a private variable and using the critical pragma.

```
/* File: problem2.cpp
 * Purpose: Alternates sign of integer added to sum
                sum = 0 + 1 + -2 + 3 + -4...
  Compile: g++ -Wall -fopenmp -o problem2 problem2.cpp -std=c++11
            g++ -Wall -fopenmp -o problem2 problem2.cpp -DDEBUG -std=c++11
 * Run:
            ./problem2
 * Input:
           none
 * Output: Times for each of the three runs
 * Notes:
            If ran with the -DDEBUG flag you can see what the sum should
      1.
            be based on n
#include <inttypes.h>
                       // Better integer functionality
#include <stdio.h>
                       // Printing to console
#include <omp.h>
                        // Multithreading
#include <chrono>
                       // High precision clock
using namespace std::chrono;
// Global
uint8_t
            thrds
                   = omp_get_num_procs();
int main(int argc, char* argv[]) {
    uint8_t times = 20;
    high_resolution_clock::time_point t1 = high_resolution_clock::now();
   high_resolution_clock::time_point t2 = high_resolution_clock::now();
    duration<double> no_omp_time = duration_cast<duration<double>>\
        (high_resolution_clock::now() - high_resolution_clock::now());
    duration<double> omp_time = duration_cast<duration<double>>\
        (high_resolution_clock::now() - high_resolution_clock::now());
    duration<double> no_reduc_time = duration_cast<duration<double>>\
        (high_resolution_clock::now() - high_resolution_clock::now());
    for(uint8_t j = 0; j < times; ++j)
```

```
{
        uint64_t
                          = 80000000,
                    n
                             = 0;
                    k
        int64_t
                             = 0;
                    \operatorname{\mathtt{sum}}
        // RESET for baseline
        t1 = high_resolution_clock::now();
        for (k = 0; k < n; ++k)
            sum += ((k \& 1) == 0 ? 1.0 : -1.0) * k;
        }
        t2 = high_resolution_clock::now();
        no_omp_time += duration_cast<duration<double>>(t2 - t1);
#ifdef DEBUG
        if (j == 0){
            printf("No OMP sum : %" PRIi64 "\n", sum);
        }
#endif
        // RESET for reduction + omp
        sum = 0;
        t1 = high_resolution_clock::now();
        #pragma omp parallel for num_threads(thrds) reduction(+: sum) private(k)
        for (k = 0; k < n; ++k)
        {
            sum += ((k \& 1) == 0 ? 1.0 : -1.0) * k;
        }
        t2 = high_resolution_clock::now();
        omp_time += duration_cast<duration<double>>(t2 - t1);
#ifdef DEBUG
        if (j == 0){
                                  : %" PRIi64 "\n", sum);
            printf("OMP sum
#endif
        // RESET for no reduction
        sum = 0;
        k = 0;
        t1 = high_resolution_clock::now();
        #pragma omp parallel num_threads(thrds)
            int64_t thread_sum = 0;
            #pragma omp for
            for(uint64_t i = k; i < n; ++i){</pre>
                // Locally (privately) runs this
                thread_sum += ((i \& 1) == 0 ? 1.0 : -1.0) * i;
            }
```

```
      kyle@:HW1$ g++ -Wall -fopenmp -o problem2 problem2.cpp -DDEBUG -std=c++11

      kyle@:HW1$ ./problem2

      No OMP sum : -40000000

      OMP sum : -40000000

      No Reduc sum : -40000000

      Averages over 20 runs:

      No OMP : 0.40371242310000

      OMP : 0.06024930730000

      No Reduc : 0.06116008355000

      kyle@:HW1$
```

Figure 1: Example debug output.

```
yle@:HW1$ ./problem2
Averages over 20 runs:
No OMP
           : 0.40169680075000
OMP
           : 0.05187247365000
No Reduc : 0.05121839645000
kyle@:HW1$ ./problem2
Averages over 20 runs:
           : 0.40076352375000
No OMP
           : 0.05140341830000
OMP
No Reduc : 0.05126510895000
<mark>kyle@:HW1</mark>$ ./problem2
Averages over 20 runs:
No OMP
           : 0.40068608615000
OMP
           : 0.05138620015000
No Reduc
           : 0.05121338355000
```

Figure 2: Better performance without reduction.

```
#pragma omp critical
            sum += thread_sum;
        }
        t2 = high_resolution_clock::now();
        no_reduc_time += duration_cast<duration<double>>(t2 - t1);
#ifdef DEBUG
        if (i == 0){
            printf("No Reduc sum : %" PRIi64 "\n", sum);
#endif
    }
   printf("Averages over %" PRIu8 " runs:\n", times);
   printf("No OMP
                      : %.14f\n", no_omp_time.count() / times);
   printf("OMP
                      : %.14f\n", omp_time.count() / times);
   printf("No Reduc : %.14f\n", no_reduc_time.count() / times);
    return 0;
}
```

3 Problem 3

3.1 Problem 3a

asdf

3.2 Problem 3b

asdf

3.3 Problem 3c

asdf

3.4 Problem 3d

asdf

3.5 Problem 3e

 asdf

3.6 Problem 3f

 asdf

3.7 Problem 3g

asdf

3.8 Problem 3h

 asdf

4 Problem 4

 asdf

5 Problem 5

 asdf

6 Graduate Assignment

 asdf