Probability

Arthur J. Redfern axr180074@utdallas.edu Sep 10, 2018

Outline

- Motivation
- Probability spaces
- Random variables
- Random processes
- Information theory
- References

Motivation

Information

- Probability is the math that describes information
 - This course uses xNNs to extract information from data
 - This course uses xNNs to generate data from information

Examples

- Understanding machine learning as information extraction from training data to apply to the problem of information extraction from testing data
- Understanding the flow of information through the network and implications of network design
- Weight initialization as the application of known information
- Error functions to quantify how well the information extraction process worked
- Compressing filter coefficients and feature maps towards an information bound

Probability Spaces

Probability Space Definition (S, E, P)

- A sample space S of all possible outcomes
 - Think: S is all possible outcomes of an experiment
 - Ex: flipping a coin 2x and recording heads (H) or tails (T) for each flip
 - S = {HH, HT, TH, TT}
- An event space E where each event is a set of 0 or more outcomes from the sample space
 - Think: E is all possible subsets of the sample space S (including nothing and everything)

```
    E = {
    Ø,
    {HH}, {HT}, {TH}, {TT},
    {HH, HT}, {HH, TH}, {HH, TT}, {HT, TT}, {TH, TT},
    {HH, HT, TH}, {HH, HT, TT}, {HH, TH, TT}, {HT, TT},
    {HH, HT, TH, TT}
    {HH, HT, TH, TT}
    // sample space subset
```

- A probability measure function P: $E \rightarrow [0, 1]$ that satisfies
 - $P(A) \in R$ and $P(A) \ge 0$ for all events $A \in E$
 - P(S) = 1
 - $P(U_i A_i) = \Sigma_i P(A_i)$ for mutually exclusive events A_i
 - Think: P is a function that assigns probabilities to subsets of the sample space

Notation

- 1 event A, 2 events A and B
- K events {A₀, ..., A_{K-1}}

Single

- The probability of an event occurring
- The probability of an event not occurring

$$P(A) \in [0, 1]$$

$$P(A^c) = 1 - P(A)$$

A^c denoting not A

also written as $P(A \cap B)$

• Joint

- The probability of events A and B occurring
- If A ⊆ B
- If A and B are independent

$$P(A, B) = P(A)$$

$$P(A, B) = P(A) P(B)$$

- The probability of event A or B occurring
- If A and B are mutually exclusive

$$P(A \cup B) = P(A) + P(B) - P(A, B)$$

$$P(A \cup B) = P(A) + P(B)$$

- Conditional
 - The probability of event A given event B
 If A and B are independent
 - Bayes' theorem
 - Chain rule of probability
 - Can recursively apply to 2nd term on RHS

$$P(A|B) = P(A, B) / P(B)$$

 $P(A|B) = P(A)$
 $P(A|B) = P(B|A) P(A) / P(B)$
 $P(A_0, ..., A_{K-1})$
 $= P(A_0|A_1, ..., A_{K-1})P(A_1, ..., A_{K-1})$

$$P(A | B) = P(A, B) / P(B)$$

 $P(B | A) = P(A, B) / P(A)$

- Law of total probability
 - Let $\{B_0, ..., B_{K-1}\}$ be a set of disjoint events whose union is the full event space
 - Let A be an event in the same event space
 - Marginal probability of A

$$P(A) = \sum_{k} P(A, B_{k}) = \sum_{k} P(A | B_{k}) P(B_{k})$$

$$P(A) = sum_k P(A, B_k)$$
$$= sum_k P(A | B_k) P(B_k)$$

Random Variables

Discrete

• A discrete random variable is a function X with a finite or countably infinite range that maps outcomes s from the sample space S to numbers $x \in R$

$$X(s) = x_k$$

- x_k is a realization of X
- Note that a random variable is not random and it's not a variable
 - The outcome of the experiment s is random
 - The mapping $X(s) = x_k$ by the random variable (function) to a real number is deterministic

Discrete

- A discrete random variable is described by it's probability mass function that specifies the probability that it takes on a specific value or it's cumulative distribution function that specifies the probability that it's value falls within an interval
- Probability mass function

$$\begin{array}{ll} \bullet \text{ Single} & p_X(x_k) = P(X(s) = x_k) \\ & \text{ where } \Sigma_k \ p_X(x_k) = 1 \\ \bullet \text{ Joint and conditional} & p_{X,Y}(x_j, \, y_k) = p_{X|Y}(x_j|\, y_k) \ p_Y(y_k) = p_{Y|X}(y_k|\, x_j) \ p_X(x_j) \\ \bullet \text{ Marginal} & p_X(x_j) = \Sigma_k \ p_{X,Y}(x_j, \, y_k) = \Sigma_k \ p_{X|Y}(x_j|\, y_k) \ p_Y(y_k) \\ \bullet \text{ Independent X and Y} & p_{X,Y}(x_j|\, y_k) = p_X(x_j) \ p_Y(y_k) \\ & p_{X|Y}(x_j|\, y_k) = p_X(x_j) \end{array}$$

- Cumulative distribution function
 - Single $F_X(x_k) = P(X(s) \le x_k) = \sum_{x_j \le x_k} p_X(x_j)$

Continuous

• A continuous random variable is a function X with an uncountably infinite range that maps outcomes s from the sample space S to numbers $x \in R$

$$X(s) = x$$

- x is a realization of X
- Note that a random variable is (still) not random and it's (still) not a variable
 - The outcome of the experiment s is random
 - The mapping X(s) = x by the random variable (function) to a real number is deterministic

Continuous

- A continuous random variable is described by it's cumulative distribution function that specifies the probability that it's value falls within an interval
 - If the cumulative distribution function is absolutely continuous then it also has a probability density function (this set of slides will assume this is true so we don't have to use the word measure and weird looking integrals)
- Probability density function

• Marginal
$$p_X(x) = \int p_{X,Y}(x, y) dy = \int p_{X|Y}(x|y) p_Y(y) dy$$

• Independent X and Y
$$p_{X,Y}(x, y) = p_X(x) p_Y(y)$$
$$p_{X|Y}(x|y) = p_X(x)$$

- Cumulative distribution function
 - Single $F_X(x) = \int^x p_X(t) dt$

 Expected value is a linear operator that maps functions of random variables to a probability weighted average of all events (shown here for a discrete random variable)

$$E[f(X(s))] = \sum_{k} p_{X}(x_{k}) f(x_{k})$$

Scalar examples

• Mean $\mu_{x} = E[X(s)]$

• Variance $\sigma_X^2 = E[(X(s) - \mu_X)^2]$

Standard deviation

• nth order moment about the mean $E[(X(s) - \mu_x)^n]$

• Covariance (units of X(s)*Y(s)) $\text{cov}(X(s), Y(s)) = E[(X(s) - \mu_y) (Y(s) - \mu_y)] = E[X(s) Y(s)] - \mu_y \mu_y$

 σ_{x}

• Correlation ([-1, 1]) $\operatorname{corr}(X(s), Y(s)) = \operatorname{cov}(X(s), Y(s)) / (\mu_X \mu_Y)$

• Independent X(s) and Y(s) cov(X(s), Y(s)) = corr(X(s), Y(s)) = 0

cov(X(s), Y(s)) = corr(X(s), Y(s)) = 0 does not imply

independent X(s) and Y(s)18

- Vector examples
 - Notation
 - Mean vector

- Matrix examples
 - Covariance matrix

$$\mathbf{x} = [X_0(s), ..., X_{K-1}(s)]^T$$

 $\mathbf{\mu}_{\mathbf{x}} = E[\mathbf{x}] = [E[X_0(s)], ..., E[X_{K-1}(s)]]^T$

$$\begin{split} \boldsymbol{\Sigma}_{\mathbf{x},\mathbf{x}} &= \mathsf{E}[(\mathbf{x} - \boldsymbol{\mu}_{\mathsf{X}}) \; (\mathbf{x} - \boldsymbol{\mu}_{\mathsf{X}})^{\mathsf{T}}] \\ \boldsymbol{\Sigma}_{\mathbf{x},\mathbf{x}}(\mathsf{m},\; \mathsf{k}) &= \mathsf{E}[(\mathsf{X}_{\mathsf{m}}(\mathsf{s}) - \boldsymbol{\mu}_{\mathsf{X}\mathsf{m}}) \; (\mathsf{X}_{\mathsf{k}}(\mathsf{s}) - \boldsymbol{\mu}_{\mathsf{X}\mathsf{k}})] \end{split}$$

- Linear regression
 - y = Ax + e, e is a 0 mean vector random variable representing measurement error
 - e = y Ax
 - $\min_{\mathbf{v}} \mathbf{e}^{\mathsf{T}} \mathbf{e} = (\mathbf{v} \mathbf{A} \mathbf{x})^{\mathsf{T}} (\mathbf{v} \mathbf{A} \mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A} \mathbf{x} 2 \mathbf{v}^{\mathsf{T}} \mathbf{A} \mathbf{x} + \mathbf{v}^{\mathsf{T}} \mathbf{v}$
 - $x^{hat} = (A^T A)^{-1} A^T y$
- Estimator mean

•
$$E[x^{hat}]$$
 = $E[(A^T A)^{-1} A^T y]$
= $E[(A^T A)^{-1} A^T (A x + e)]$
= $E[(A^T A)^{-1} (A^T A) x] + E[(A^T A)^{-1} A^T e]$
= $E[x] + (A^T A)^{-1} A^T E[e]$
= x

- Estimator covariance
 - Substitute y = Ax + e into the x^{hat} formula to get $x^{hat} = x + (A^TA)^{-1}A^Te$ or $x^{hat} x = (A^TA)^{-1}A^Te$
 - $E[(\mathbf{x}^{hat} \mathbf{x})(\mathbf{x}^{hat} \mathbf{x})^T] = E[((\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{e})((\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{e})^T] = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T E[\mathbf{e} \mathbf{e}^T] \mathbf{A} (\mathbf{A}^T \mathbf{A})^{-1} = \sigma_e^2 (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{e})$

Examples Of Discrete PMFs

• Bernoulli

•
$$p_X(x_k)$$
 = 1-p, $x_k = 0, p \in [0, 1]$
= p, $x_k = 1$
= 0, elsewhere

- Expectations
 - Mean = p
 - Variance = p (1 p)

Uniform

•
$$p_X(x_k)$$
 = 1 / N, $x_k \in \{a, a + 1, ..., b\}, b - a + 1 = N$ = 0, elsewhere

- Expectations
 - Mean = (a + b) / 2
 - Variance = $(N^2 1) / 12$

Examples Of Continuous PDFs

- Uniform
 - $p_X(x)$ = 1 / (b a), $x \in [a, b]$, a and b finite elsewhere
 - Expectations
 - Mean = (a + b) / 2
 - Variance = $(b-a)^2/12$ Side note: this leads to a famous SNR formula for quantizers
- Gaussian (or normal)
 - $p_x(x)$ = $(1/(2\pi\sigma^2)^{1/2}) \exp(-(x-\mu_x)^2/2\sigma_x^2)$
 - Expectations
 - Mean $= \mu_x$
 - Variance = σ_x^2
- xNN use: filter coefficient initialization
 - For initialization with a Gaussian distribution it's frequently truncated (limited)

Experiment

A class generated discrete probability mass function

- Experiment
 - Think of a 2 digit number between 10 and 50
 - Both digits are odd
 - Both digits are different from each other

Experiment

A class generated discrete probability mass function

- Experiment
 - Think of a 2 digit number between 10 and 50
 - Both digits are odd
 - Both digits are different from each other
- How many people thought of the number 37?

Normalization

Purpose

- Take a random variable with an arbitrary distribution and normalize it to 0 mean and unit variance
 - Note that other variations of normalization exist
- This is used by batch norm layers in CNNs to improve training
- Note: CNNs use the word norm and normalization a lot for different operations
 - Input data normalization (a variant of what is described here)
 - Normalization layer (operates across feature maps, famous in AlexNet, rarely used now)
 - Batch normalization layer (a variant of what is described here, used in many places to improve training, can frequently be absorbed into convolution for deployment)
 - Group normalization layer (similar purpose to batch normalization, different operation)
 - ...

Normalization

- $Y(s) = (X(s) \mu_x) / \sigma_x$
- $E[Y(s)] = E[(X(s) \mu_x) / \sigma_x] = (1 / \sigma_x)(E[X(s)] \mu_x) = (1 / \sigma_x)(\mu_x \mu_x) = 0$
- $E[(Y(s))^2] = E[((X(s) \mu_x) / \sigma_x)^2] = (1 / \sigma_x^2) E[(X(s) \mu_x)^2] = (1 / \sigma_x^2) \sigma_x^2 = 1$

Law Of Large Numbers

• Let $X_0(s)$, $X_1(s)$, ... be a sequence of independent identically distributed random variables with $E[X_i(s)] = \mu_X$ and let the sample average be

$$X_{0:K-1}^{bar}(s) = (X_0(s) + ... + X_{K-1}(s))/K$$

- $X_{0:K-1}^{bar}(s)$ converges to μ_X as $K \rightarrow \infty$
 - In probability for the weak law (unlikely outcome probability reduces as $K \rightarrow \infty$)
 - Almost surely for the strong law (pointwise)
- Variants exist that replace the independence constraint with a variance constraint
- The law of large numbers allows the expected value of a random variable with a finite mean to be estimated from it's sample average
 - Note that the sample average is a random variable

Central Limit Theorem

- The central limit theorem describes the distribution of the sample average on the previous slide (a random variable) about μ as $K \rightarrow \infty$
- Let $\{X_0(s), ..., X_{K-1}(s)\}$ be a set of independent identically distributed random variables each with mean μ_X and finite variance σ_X^2 , then

$$K^{1/2} (X_{0:K-1}^{bar}(s) - \mu_X) \rightarrow N(0, \sigma_X^2)$$

- N(0, σ^2) is 0 mean σ^2 variance Gaussian distribution
 - So $X_{0:K-1}^{bar}(s)$ is "close" to $N(\mu_x, \sigma_x^2/K)$
- Convergence is in distribution (the cdf converges as $K \rightarrow \infty$)
- Variants exist that replace the independent identically distributed condition

Central Limit Theorem

- A few places where the central limit theorem sort of sometimes comes up
 - Viewing the inner product in matrix vector or matrix matrix multiplication as a weighted sum of random variables
 - Viewing the DFT operation as a (rotated) sum of random variables
- Why this matters
 - Input can have ~ arbitrary distribution, maybe nicely bounded
 - But the output of the operation starts to look Gaussian
 - Gaussian random variables have long tails
 - With finite precision arithmetic this affects accuracy
- More on precision when CNN performance and implementation is discussed

Random Processes

- A random process X(s, n) maps events s from the sample space S to functions x(n)
 where the domain of the function is the index set and the range of the function is the
 state space
 - X(s, n) is a random variable at a fixed n
 - By considering all times n this leads to the observation that a random process can be considered a collection of random variables $\{X(s, n_0), ..., X(s, n_{N-1})\}$
 - X(s, n) is a deterministic function of n for a fixed s
 - This is referred to as a realization of the random process
 - The set of all possible functions is referred to as the ensemble
 - X(s, n) is a number for a fixed s at a fixed n
- Names
 - If n refers to time then X(s, n) is called a random process
 - If n has multiple dimensions like width and height of an image then X(s, n) is called a random field

- Non stationary
 - Using the view of a random process as a collection of random variables, a random process is defined by is joint CDF $F_{X_0,...,X_{N-1}}(x_{n_0},...,x_{n_{N-1}})$ which in general is a function of n_k
 - Informally, a non stationary random process has a CDF that changes with n (and doesn't fit neatly into 1 of the less restrictive stationary categorizations)
- (Strictly) stationary
 - Random processes X(s, n) for which the joint CDF does not change with time

$$\mathsf{F}_{\mathsf{X}_0,...,\mathsf{X}_\{\mathsf{N}-1\}}(\mathsf{x}_{\mathsf{n}_0+\tau},\,...,\,\mathsf{x}_{\mathsf{n}_(\mathsf{K}-1)+\tau}) = \mathsf{F}_{\mathsf{X}_0,...,\mathsf{X}_\{\mathsf{N}-1\}}(\mathsf{x}_{\mathsf{n}_0},\,...,\,\mathsf{x}_{\mathsf{n}_(\mathsf{K}-1)}) \text{ for all K, n and } \tau$$

- Weakly (wide sense or second order) stationary
 - Random processes X(s, n) for which the mean and auto covariance do not change with time
 - Autocorrelation only depends on time difference $\tau = n_1 n_2$
- Other types of stationarity exist (e.g., cyclostationary)

- The expected value of a random process is found by viewing the random process as a random variable at a fixed n and applying the expected value operator as before
 - Conceptually, it operates across many realizations s of a random process at a single n
 - Mean, variance and higher order moments are defined as in the case of a random variable
- Let $p_x(x_i, n) = P(X(s, n) = x_i)$ at a fixed n, then

$$E[f(X(s, n))] = \sum_{i} p_{X}(x_{i}, n) f(x_{i})$$

Which in general is a function of n

Time Average

- The time average of a random process is found by viewing the random process as a deterministic function for a fixed s and applying the time average operator
 - Conceptually, it operates across 1 realization s of a random process at many points n
 - Different time averages are defined similar to the expected value of a random variable
 - The time average itself is a random variable as it depends on the chosen s

$$\langle f(X(s, n)) \rangle = 1/N \Sigma_n f(X(s, n))$$

Time Average

Ergodicity

- Ergodicity: when time averages converge to expectations
 - In some sense (e.g., mean square)
 - For some orders of moments for which the process is stationary
- Example: mean ergodic
 - (X(s, n)) converges in the mean and in the mean square sense to E[X(s, n)]
 - $\lim_{N\to\infty} E[((1/N \Sigma_n f(X(s, n))) \mu_X)] = 0$
 - $\lim_{N\to\infty} E[((1/N \Sigma_n f(X(s, n))) \mu_X)^2] = 0$

References

List

- Random
 - http://www.randomservices.org/random/index.html
- StatLect
 - https://www.statlect.com
- · Lecture notes on probability, statistics and linear algebra
 - http://www.math.harvard.edu/~knill/teaching/math19b 2011/handouts/chapters1-19.pdf
- A mathematical theory of communication
 - http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
- Joint entropy, conditional entropy, relative entropy, and mutual information
 - http://octavia.zoology.washington.edu/teaching/429/lecturenotes/lecture3.pdf
- Visual information theory
 - http://colah.github.io/posts/2015-09-Visual-Information/
- Computational optimal transport
 - https://arxiv.org/abs/1803.00567