Goldschmidt Integer Divider User Guide

Jose R. Garcia 2021-09-01

Contents

1	Abstract	2
2	Syntax and Abbreviations	2
3	Design	2
4	Clocks and Resets	3
5	Interfaces 5.1 WB4 Write Slave	3 3 3
6	Configurable Parameters	3

1 Abstract

The Goldschmidt integer divider written in verilog. Similar to Newton-Raphson but the division step can be pipelined. This document contains and overview of the design and guidance on the usage and integration of this component.

2 Syntax and Abbreviations

Term	Definition
0b0	Binary number syntax
0x0000_0000	Hexadecimal number syntax
bit	Single binary digit (0 or 1)
BYTE	8-bits wide data unit
DWORD	32-bits wide data unit
FPGA	Field Programmable Gate Array
GCD	Goldschmidt Convergence Division
LSB	Least Significant bit
MSB	Most Significant bit
WB	Wishbone Interface

3 Design

The Goldschmidt division is an special application of the Newton-Raphson method. This iterative divider computes:

$$d(i) = d[i-1].(2-d[i-1])$$

$$D(i) = D[i-1].(2 - d[i-1])$$

were d is the divisor; D is the dividend; i is the step. D converges toward the quotient and d converges toward 1 at a quadratic rate. For the divisor to converge to 1 it must obviously be less than 2 therefore integers greater than 2 must be multiplied by 10 to the negative powers to shift the decimal point.

Consider the following example: $\frac{16}{4}$

Step	D	d	2-d
inputs	16	4	-
0	1.6	0.4	1.6
1	2.56	0.64	1.36
2	3.4816	0.8704	1.1296
3	3.93281536	0.98320384	1.01679616
4	3.99887155603702	0.999717889009254	1.00028211099075
5	3.99999968165356	0.999999920413389	1.00000007958661
6	3.99999999999997	0.99999999999994	1.000000000000001
7	4	1	1

The code implementation compares the size of the divisor against $2 * 10^n$ were n is a natural number. The result of the comparison indicates against which 10^m , were m is a negative integer, to multiply the divisor. Then the Goldschmidt division is performed until the divisor converges to degree indicated by **P_GCD_ACCURACY**. The quotient returned is the rounded up value to which the dividend converged to. Each Goldschmidt step is performed in to two half steps in order use only half the multipliers and save resources.

The remainder calculation requires an extra clock which is why the address tag is used to make the decision on whether to do the calculation or skip it. The calculation simply takes the value after the decimal point of the quotient a multiplies it by the divisor.

4 Clocks and Resets

5 Interfaces

The divider and divisor are received through i_master_div0_read_data and i_master_div1_read_data and qualified by the i_slave_stb. The i_slave_stb signal could be managed in different ways. It can be a pulse with the width of a singe clock to operate as a pipelined Wishbone interface and the o_master_div_write_stb can be considered as a Wishbone o_ACK. I can also be operated as a Wishbone standard using those same signals.

When the division concludes the o_master_div_write_stb is asserted and writes the result to the address received through i_slave_addr.

- 5.1 WB4 Write Slave
- 5.2 WB4 Write Slave
- 5.3 WB4 Write Slave
- 6 Configurable Parameters