Math 1200 Fall 2023 Section A Tutorial 02 Cardinality of Sets (Practice)

Feel free to reach out to me by email if you have any questions about the problems below.

- (1) Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are infinite, exhibit a bijection between the set of positive integers and that set.
 - (a) The integers greater than 10.
 - (b) The odd negative integers.
 - (c) The integers with absolute value less than 1,000,000.
 - (d) The set $A \times \mathbb{Z}^+$ where $A = \{2, 3\}$.
 - (e) The integers that are multiples of 10.
- (2) Determine whether each of these sets is countable, or uncountable. For those that are countably infinite, exhibit a bijection between the set of positive integers and that set.
 - (a) All positive rational numbers that cannot be written with denominators less than 4.
 - (b) The real numbers not containing 0 in their decimal representation.
 - (c) The real numbers containing only a finite number of 1s in their decimal representation.
- (3) Give an example of two uncountable sets A and B such that $A \setminus B$ is
 - (a) Finite
 - (b) Countably infinite
 - (c) Uncountable.
- (4) Give an example of two uncountable sets A and B such that $A \cap B$ is
 - (a) Finite
 - (b) Countably infinite
 - (c) Uncountable.
- (5) Show that if A and B are sets and $A \subset B$, then $|A| \leq |B|$.
- (6) Show that a subset of a countable set is countable.
- (7) Show that if A and B are sets such that |A| = |B|, then $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.
- (8) Show that if A, B, C, D are sets with |A| = |B| and |C| = |D|, then $|A \times C| = |B \times D|$.
- (9) Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
- (10) Show that (0,1) and [0,1] have the same cardinality.