```
In [27]:
           import pandas as pd
           import seaborn as sns
           import matplotlib.pyplot as plt
           from sklearn.model_selection import train_test_split
           from sklearn.preprocessing import StandardScaler
           from sklearn.linear model import LogisticRegression
           from sklearn.tree import DecisionTreeClassifier
           from sklearn.ensemble import RandomForestClassifier
           from sklearn.neighbors import KNeighborsClassifier
           from sklearn.svm import SVC
           from sklearn.metrics import confusion_matrix
           from sklearn.metrics import accuracy score
In [28]:
           df = pd.read_csv(r"C:\Users\Praneal\OneDrive\Desktop\breast cancer.csv")
           print(df)
                      id diagnosis
                                     radius mean texture mean perimeter mean
                                                                                    area mean
                                                                                                \
          0
                  842302
                                            17.99
                                                           10.38
                                                                           122.80
                                                                                       1001.0
                                            20.57
                                                           17.77
          1
                 842517
                                  Μ
                                                                           132.90
                                                                                       1326.0
          2
               84300903
                                  Μ
                                            19.69
                                                           21.25
                                                                           130.00
                                                                                       1203.0
          3
               84348301
                                  Μ
                                            11.42
                                                           20.38
                                                                            77.58
                                                                                        386.1
                                            20.29
          4
               84358402
                                                                                       1297.0
                                  Μ
                                                           14.34
                                                                           135.10
                     . . .
                                              . . .
                                                             . . .
                                                                               . . .
                                                                                           . . .
          . .
                                . . .
          564
                 926424
                                  Μ
                                            21.56
                                                           22.39
                                                                           142.00
                                                                                       1479.0
          565
                 926682
                                  Μ
                                            20.13
                                                           28.25
                                                                           131.20
                                                                                       1261.0
          566
                 926954
                                  Μ
                                            16.60
                                                           28.08
                                                                           108.30
                                                                                        858.1
                                                           29.33
          567
                 927241
                                  Μ
                                            20.60
                                                                           140.10
                                                                                       1265.0
          568
                   92751
                                  В
                                             7.76
                                                           24.54
                                                                            47.92
                                                                                        181.0
                                  compactness_mean concavity_mean concave points_mean
                smoothness_mean
          0
                        0.11840
                                            0.27760
                                                             0.30010
                                                                                    0.14710
          1
                        0.08474
                                            0.07864
                                                             0.08690
                                                                                    0.07017
          2
                        0.10960
                                            0.15990
                                                             0.19740
                                                                                    0.12790
          3
                        0.14250
                                            0.28390
                                                             0.24140
                                                                                    0.10520
          4
                        0.10030
                                                             0.19800
                                                                                    0.10430
                                            0.13280
                             . . .
                                                . . .
                                                                  . . .
                                                                                         . . .
          . .
          564
                        0.11100
                                            0.11590
                                                             0.24390
                                                                                    0.13890
          565
                        0.09780
                                            0.10340
                                                             0.14400
                                                                                    0.09791
          566
                        0.08455
                                            0.10230
                                                             0.09251
                                                                                    0.05302
          567
                        0.11780
                                            0.27700
                                                             0.35140
                                                                                    0.15200
                                                             0.00000
          568
                        0.05263
                                            0.04362
                                                                                    0.00000
                     texture_worst perimeter_worst
                                                       area_worst
                                                                   smoothness_worst
          0
                              17.33
                                               184.60
                                                            2019.0
                                                                              0.16220
                . . .
                              23.41
          1
                                               158.80
                                                            1956.0
                                                                              0.12380
          2
                              25.53
                                               152.50
                                                            1709.0
                                                                              0.14440
                . . .
          3
                                                98.87
                                                                              0.20980
                . . .
                              26.50
                                                             567.7
          4
                              16.67
                                               152.20
                                                            1575.0
                                                                              0.13740
                                                   . . .
          . .
                . . .
                                . . .
                                                                . . .
                                                                                   . . .
                                               166.10
          564
                              26.40
                                                            2027.0
                                                                              0.14100
          565
                              38.25
                                               155.00
                                                            1731.0
                                                                              0.11660
          566
                              34.12
                                               126.70
                                                            1124.0
                                                                              0.11390
                                               184.60
          567
                              39.42
                                                            1821.0
                                                                              0.16500
                . . .
                              30.37
                                                59.16
                                                             268.6
                                                                              0.08996
          568
               . . .
                compactness_worst concavity_worst concave points_worst
                                                                              symmetry worst
                          0.66560
                                              0.7119
                                                                      0.2654
                                                                                       0.4601
```

```
1
                0.18660
                                    0.2416
                                                             0.1860
                                                                               0.2750
2
                0.42450
                                    0.4504
                                                             0.2430
                                                                               0.3613
3
                0.86630
                                    0.6869
                                                             0.2575
                                                                               0.6638
4
                0.20500
                                    0.4000
                                                             0.1625
                                                                               0.2364
                     . . .
                                        . . .
                                                                . . .
                                                                                  . . .
                                    0.4107
564
                0.21130
                                                             0.2216
                                                                               0.2060
565
                0.19220
                                    0.3215
                                                             0.1628
                                                                               0.2572
566
                                                                               0.2218
                0.30940
                                    0.3403
                                                             0.1418
567
                0.86810
                                    0.9387
                                                             0.2650
                                                                               0.4087
568
                0.06444
                                    0.0000
                                                             0.0000
                                                                               0.2871
```

```
fractal_dimension_worst
                                Unnamed: 32
0
                       0.11890
                                         NaN
1
                       0.08902
                                         NaN
2
                       0.08758
                                         NaN
3
                       0.17300
                                         NaN
4
                       0.07678
                                         NaN
                           . . .
                                         . . .
564
                       0.07115
                                         NaN
565
                       0.06637
                                         NaN
566
                       0.07820
                                         NaN
567
                       0.12400
                                         NaN
568
                       0.07039
                                         NaN
```

[569 rows x 33 columns]

In [29]:

df.head()

Out[29]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	co
0	842302	М	17.99	10.38	122.80	1001.0	0.11840	
1	842517	М	20.57	17.77	132.90	1326.0	0.08474	
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960	
3	84348301	М	11.42	20.38	77.58	386.1	0.14250	
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 33 columns

In [30]:

for analysis purposes, will look to determine the count of the number of 'empty'
#(for example NA, NaN)
#values in this data set

df.isna().sum()

Out[30]:

id0diagnosis0radius_mean0texture_mean0perimeter_mean0area_mean0smoothness_mean0

compactness_mean	0
concavity_mean	0
concave points_mean	0
symmetry_mean	0
fractal_dimension_mean	0
radius_se	0
texture_se	0
perimeter_se	0
area_se	0
smoothness_se	0
compactness_se	0
concavity_se	0
concave points_se	0
symmetry_se	0
<pre>fractal_dimension_se</pre>	0
radius_worst	0
texture_worst	0
perimeter_worst	0
area_worst	0
smoothness_worst	0
compactness_worst	0
concavity_worst	0
concave points_worst	0
symmetry_worst	0
<pre>fractal_dimension_worst</pre>	0
Unnamed: 32	569
dtype: int64	

In [31]:

#drop the empty columns with missing values from the dataset.
#Will look to drop the column with all missing values

df=df.dropna(axis=1)
df

Out[31]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
0	842302	М	17.99	10.38	122.80	1001.0	0.11840
1	842517	М	20.57	17.77	132.90	1326.0	0.08474
2	84300903	М	19.69	21.25	130.00	1203.0	0.10960
3	84348301	М	11.42	20.38	77.58	386.1	0.14250
4	84358402	М	20.29	14.34	135.10	1297.0	0.10030
•••							
564	926424	М	21.56	22.39	142.00	1479.0	0.11100
565	926682	М	20.13	28.25	131.20	1261.0	0.09780
566	926954	М	16.60	28.08	108.30	858.1	0.08455
567	927241	М	20.60	29.33	140.10	1265.0	0.11780
568	92751	В	7.76	24.54	47.92	181.0	0.05263

569 rows × 32 columns

4

In [32]: #checking on the new number of rows and columns #after any empty values/columns have been dropped #from the dataset.

df.shape

Out[32]: (569, 32)

In [33]:

#after the data has been cleaned,
#the next step is to determine
#what is the number of 'Benign' and 'Malignant' cases in the dataset.

df['diagnosis'].value_counts()

Out[33]:

B 357 M 212

Name: diagnosis, dtype: int64

In [34]:

Out[34]:

#after determing the number values of the Benign and Malignant cases in the dataset, #the next step will be to visualize these statistics to further understand difference #in the dataset between number of patients with a Malignant and Benign diagnosis.

sns.countplot(df['diagnosis'], label='Number of cases')

C:\Users\Praneal\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: P ass the following variable as a keyword arg: x. From version 0.12, the only valid positi onal argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(

<AxesSubplot:xlabel='diagnosis', ylabel='count'>

In [35]:

#another useful step will be to view the data type of each category
#and decide if there needs to be any transformation
#for any of the categories to make it easier for further data analysis

df.dtypes

```
int64
          id
Out[35]:
          diagnosis
                                       object
          radius_mean
                                      float64
          texture_mean
                                      float64
                                      float64
          perimeter mean
          area mean
                                      float64
          smoothness mean
                                      float64
          compactness_mean
                                      float64
          concavity_mean
                                      float64
                                      float64
          concave points mean
          symmetry_mean
                                      float64
          fractal dimension mean
                                      float64
                                      float64
          radius_se
                                      float64
          texture_se
          perimeter se
                                      float64
                                      float64
          area se
          smoothness_se
                                      float64
          compactness_se
                                      float64
          concavity se
                                      float64
                                      float64
          concave points se
                                      float64
          symmetry_se
          fractal_dimension_se
                                      float64
          radius worst
                                      float64
          texture worst
                                      float64
          perimeter worst
                                      float64
                                      float64
          area_worst
                                      float64
          smoothness_worst
                                      float64
          compactness worst
          concavity_worst
                                      float64
          concave points_worst
                                      float64
          symmetry worst
                                      float64
          fractal_dimension_worst
                                      float64
          dtype: object
```

```
In [36]:
#to make it easier for data analysis purposes,
#the diagnosis category will be converted to numerical values as well.

df['diagnosis']= df['diagnosis'].map({'M':1, 'B':0})

df
```

\sim		1	г	-	_	п.	
()	11	Τ.		~	6	- 1	۰
\cup	u	·		\sim	\cup	- 1	

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
0	842302	1	17.99	10.38	122.80	1001.0	0.11840
1	842517	1	20.57	17.77	132.90	1326.0	0.08474
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960
3	84348301	1	11.42	20.38	77.58	386.1	0.14250
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030
•••							
564	926424	1	21.56	22.39	142.00	1479.0	0.11100
565	926682	1	20.13	28.25	131.20	1261.0	0.09780
566	926954	1	16.60	28.08	108.30	858.1	0.08455

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean
567	927241	1	20.60	29.33	140.10	1265.0	0.11780
568	92751	0	7.76	24.54	47.92	181.0	0.05263

569 rows × 32 columns

→

In [37]:

#after cleaning up the data,
#the next step is to determine the level of correlation between the different categorie

df.corr()

#based on the correlation values,
#it appears that categories such as radius mean, perimeter mean
#and area means are correlated with diagnosis.

Out[37]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
id	1.000000	0.039769	0.074626	0.099770	0.073159	0.096893
diagnosis	0.039769	1.000000	0.730029	0.415185	0.742636	0.708984
radius_mean	0.074626	0.730029	1.000000	0.323782	0.997855	0.987357
texture_mean	0.099770	0.415185	0.323782	1.000000	0.329533	0.321086
perimeter_mean	0.073159	0.742636	0.997855	0.329533	1.000000	0.986507
area_mean	0.096893	0.708984	0.987357	0.321086	0.986507	1.000000
smoothness_mean	-0.012968	0.358560	0.170581	-0.023389	0.207278	0.177028
compactness_mean	0.000096	0.596534	0.506124	0.236702	0.556936	0.498502
concavity_mean	0.050080	0.696360	0.676764	0.302418	0.716136	0.685983
concave points_mean	0.044158	0.776614	0.822529	0.293464	0.850977	0.823269
symmetry_mean	-0.022114	0.330499	0.147741	0.071401	0.183027	0.151293
fractal_dimension_mean	-0.052511	-0.012838	-0.311631	-0.076437	-0.261477	-0.283110
radius_se	0.143048	0.567134	0.679090	0.275869	0.691765	0.732562
texture_se	-0.007526	-0.008303	-0.097317	0.386358	-0.086761	-0.066280
perimeter_se	0.137331	0.556141	0.674172	0.281673	0.693135	0.726628
area_se	0.177742	0.548236	0.735864	0.259845	0.744983	0.800086
smoothness_se	0.096781	-0.067016	-0.222600	0.006614	-0.202694	-0.166777
compactness_se	0.033961	0.292999	0.206000	0.191975	0.250744	0.212583
concavity_se	0.055239	0.253730	0.194204	0.143293	0.228082	0.207660
concave points_se	0.078768	0.408042	0.376169	0.163851	0.407217	0.372320

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean
symmetry_se	-0.017306	-0.006522	-0.104321	0.009127	-0.081629	-0.072497
fractal_dimension_se	0.025725	0.077972	-0.042641	0.054458	-0.005523	-0.019887
radius_worst	0.082405	0.776454	0.969539	0.352573	0.969476	0.962746
texture_worst	0.064720	0.456903	0.297008	0.912045	0.303038	0.287489
perimeter_worst	0.079986	0.782914	0.965137	0.358040	0.970387	0.959120
area_worst	0.107187	0.733825	0.941082	0.343546	0.941550	0.959213
smoothness_worst	0.010338	0.421465	0.119616	0.077503	0.150549	0.123523
compactness_worst	-0.002968	0.590998	0.413463	0.277830	0.455774	0.390410
concavity_worst	0.023203	0.659610	0.526911	0.301025	0.563879	0.512606
concave points_worst	0.035174	0.793566	0.744214	0.295316	0.771241	0.722017
symmetry_worst	-0.044224	0.416294	0.163953	0.105008	0.189115	0.143570
fractal_dimension_worst	-0.029866	0.323872	0.007066	0.119205	0.051019	0.003738

32 rows × 32 columns

```
In [38]:

#to further understand the levels of correlation of individual characteritics,
#it may be helpful to visualize the correlations as well.

plt.figure(figsize=(25,25))
sns.heatmap(df.iloc[:,0:31].corr(), annot=True)
```

Out[38]: <AxesSubplot:>


```
In [39]:
          #after seeing the correlation values displayed on a correlation plot,
          #it is useful to plot the coreelations graphically
          #to further understand the strength of correlation of different characteristics with di
          #Plotting just the 'mean' characteristics displayed the following:
          cols= ['diagnosis',
                  'radius mean',
                  'texture_mean',
                  'perimeter_mean',
                  'area mean',
                  'smoothness_mean',
                  'compactness mean',
                  'concavity_mean',
                  'concave points_mean',
                  'symmetry mean',
                  'fractal dimension mean']
```

#based on the scatterplots displayed, it can be said that
#radius mean, perimeter mean and area mean
#have a highly linear correlation with the diagnosis of breast cancer.
sns.pairplot(data=df[cols], hue='diagnosis', palette='flare')

Out[39]: <seaborn.axisgrid.PairGrid at 0x24fbe6ce3a0>

In [40]: #the next step as a part of the data analysis #will be to split the data set into 70% training and 30% testing.

X=df.drop(['diagnosis'],axis=1) #X will be independent variables from the data set, whi
Y= df['diagnosis'] #Y will be the dependent variable ('diagnosis')
X_train, X_test, Y_train, Y_test =train_test_split(X, Y, test_size=0.30, random_state=0

#After establishing the train and testing sets, the next step will be to scale the data #Scaling is done to bring all the values to a consistent standard #which makes further data analysis easier.

```
ss=StandardScaler()
          X train=ss.fit transform(X train)
          X_test=ss.fit_transform(X_test)
          X train
         array([[-0.232028 , -0.74998027, -1.09978744, ..., -0.6235968 ,
Out[41]:
                  0.07754241, 0.45062841],
                [-0.23217735, -1.02821446, -0.1392617, ..., -0.7612376]
                 -1.07145262, -0.29541379],
                [-0.17081111, -0.53852228, -0.29934933, ..., -0.50470441,
                  0.34900827, -0.13371556],
                . . . ,
                [6.83303935, -1.3214733, -0.20855336, ..., -0.98621857,
                 -0.69108476, -0.13148524],
                [-0.23231516, -1.24245479, -0.23244704, ..., -1.7562754]
                 -1.55125275, -1.01078909],
                [-0.2319212, -0.74441558, 1.13188181, ..., -0.28490593,
                 -1.2308599 , 0.20083251]])
In [42]:
          #Logistic Regression
          LR= LogisticRegression()
          model1=LR.fit(X train,Y train)
          prediction1=model1.predict(X test)
          model1
          prediction1
         array([1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1,
Out[42]:
                0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
                0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0,
                1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0,
                1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
                0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0,
                0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
                0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0], dtype=int64)
In [62]:
          CM=confusion matrix(Y test,prediction1)
          #The confusion matrix determines that this model
          #is currently predicting 104 cases correctly (True Positive).
          #4 cases incorrectly identified (False Positive),
          #2 cases that are False Negative,
          #and 61 cases which are True Negative.
         array([[103,
                        5],
Out[62]:
                [ 2, 61]], dtype=int64)
In [44]:
          TP=CM[0][0]
          TN=CM[1][1]
          FN=CM[1][0]
          FP=CM[0][1]
          print('Testing accuracy:',(TP+TN)/(TP+TN+FN+FP))
         Testing accuracy: 0.9590643274853801
```

```
#create a classification report to display the metrics for the model
In [45]:
          #for the basis of comparison
          #the classification report will provide precision and recall
          #for both benign (0) and malignant(1) cases in the dataset.
          #The precision value represents all positive cases, which includes false positives.
          #The recall value represents all of the correct positive predictions
          #that have been made out of all the positive predictions.
          from sklearn.metrics import classification report
          print(classification report(Y test,prediction1))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.98
                                       0.95
                                                 0.97
                                                             108
                     1
                             0.92
                                       0.97
                                                 0.95
                                                             63
             accuracy
                                                 0.96
                                                            171
                             0.95
                                       0.96
                                                 0.96
                                                            171
            macro avg
         weighted avg
                             0.96
                                       0.96
                                                 0.96
                                                            171
In [46]:
          dtc=DecisionTreeClassifier()
          model2= dtc.fit(X train,Y train)
          prediction2=model2.predict(X_test)
          cm2=confusion_matrix(Y_test,prediction2)
          cm2
         array([[97, 11],
Out[46]:
                 [ 4, 59]], dtype=int64)
In [47]:
          TP=cm2[0][0]
          TN=cm2[1][1]
          FN=cm2[1][0]
          FP=cm2[0][1]
          print('Testing accuracy:',(TP+TN)/(TP+TN+FN+FP))
         Testing accuracy: 0.9122807017543859
In [48]:
          #create a classification report
          #to display the metrics for the model for the basis of comparison
          from sklearn.metrics import classification report
          print(classification report(Y test,prediction2))
                        precision
                                     recall f1-score
                                                        support
                     0
                             0.96
                                       0.90
                                                 0.93
                                                            108
                     1
                             0.84
                                       0.94
                                                 0.89
                                                             63
             accuracy
                                                 0.91
                                                            171
                                                 0.91
            macro avg
                             0.90
                                       0.92
                                                            171
         weighted avg
                             0.92
                                       0.91
                                                 0.91
                                                            171
In [49]:
          rfc=RandomForestClassifier()
```

```
model3=rfc.fit(X_train,Y_train)
prediction3=model3.predict(X test)
```

```
cm3=confusion matrix(Y test,prediction3)
          cm3
         array([[102,
                         6],
Out[49]:
                 [ 0, 63]], dtype=int64)
In [50]:
          TP=cm3[0][0]
          TN=cm3[1][1]
          FN=cm3[1][0]
          FP=cm3[0][1]
          print('Testing accuracy:',(TP+TN)/(TP+TN+FN+FP))
         Testing accuracy: 0.9649122807017544
In [51]:
          #create a classification report
          #to display the metrics for the model for the basis of comparison
          from sklearn.metrics import classification_report
          print(classification report(Y test,prediction3))
                        precision
                                     recall f1-score
                                                         support
                     0
                             1.00
                                       0.94
                                                 0.97
                                                             108
                     1
                             0.91
                                       1.00
                                                 0.95
                                                              63
                                                 0.96
                                                             171
              accuracy
                                       0.97
             macro avg
                             0.96
                                                 0.96
                                                             171
         weighted avg
                             0.97
                                       0.96
                                                  0.97
                                                             171
In [52]:
          knn=KNeighborsClassifier()
          model4=knn.fit(X train,Y train)
          prediction4=model4.predict(X test)
          cm4=confusion_matrix(Y_test,prediction4)
          cm4
         array([[105,
                         3],
Out[52]:
                       58]], dtype=int64)
                 [ 5,
In [53]:
          TP=cm4[0][0]
          TN=cm4[1][1]
          FN=cm4[1][0]
          FP=cm4[0][1]
          print('Testing accuracy:',(TP+TN)/(TP+TN+FN+FP))
         Testing accuracy: 0.9532163742690059
In [54]:
          from sklearn.metrics import classification report
          print(classification_report(Y_test,prediction4))
                        precision
                                     recall f1-score
                                                         support
                     0
                             0.95
                                       0.97
                                                  0.96
                                                             108
                     1
                             0.95
                                       0.92
                                                  0.94
                                                              63
              accuracy
                                                 0.95
                                                             171
```

```
macro avg 0.95 0.95 0.95 171 weighted avg 0.95 0.95 0.95 171
```

Testing accuracy: 0.9532163742690059

```
In [57]:
```

#create a classification report
#to display the metrics for the model for the basis of comparison

from sklearn.metrics import classification_report
print(classification_report(Y_test,prediction5))

	precision	recall	f1-score	support
0	0.97	0.98	0.98	108
1	0.97	0.95	0.96	63
accuracy			0.97	171
macro avg	0.97	0.97	0.97	171
weighted avg	0.97	0.97	0.97	171

```
In [58]:
```

#As a part of this initial data analysis,
#it appears as though the Support Vector Machine model
#is the best model to work with this data set to help determine the characteristics
#that predict benign and malignant cancer diagnosis in cancer patients.
#With the highest precision, recall and accuracy scores,
#this may be the model to use for further data analysis.
#Further data analysis may be needed to confirm that the SVM
#is the best model to be using for this data set.