Assignment 6

VADHRI VENKATA RATNAM

17.06.2023

```
In [1]: from qiskit import *
    from qiskit.quantum_info import *
    from qiskit.extensions import *
    from random import randrange
    import numpy
    from qiskit.circuit.library import CPhaseGate
    import pennylane as qml
    import numpy as np

    from qiskit.extensions import HamiltonianGate
    from qiskit.quantum_info import Statevector

    np.set_printoptions(precision=3)
    import math
```

1. Fixed point Binary notation of decimal numbers.

Number	Fixed point binary								
53	0 110101								
26.5	0 11010.1								
-43.625	1 101011.101								
0.6875	0 0.1011								
55.66	0 110111.101010001111010111								

2. no of qubits required for basis encoding

F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17	F18	F19	F20
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6

1200 (6 10 20) qubits for 10 features, 20 data points 6 bits each (assumig that 6 bits contain the full representation.)

3. Superposition can improve the number of qubits required.

One training iteration data would be loaded at one shot which is one row of the table in problem #2.

That is 6*20 = 120 qubits.

Loading and storage two branches – 2*120 = 240. Two aniclla bits, 242 Qubits.

4. Produce |0101> + |1110> using basis encoding technique.

Method 1: Initialize

```
In [2]: from qiskit import *
    from qiskit.quantum_info import Statevector
    import math
    import random

data = [0,0,0,0,0, 1/math.sqrt(2), 0,0,0,0,0,0,0, 1/math.sqrt(2), 0]
    total = math.sqrt(sum([i*i for i in data]))
    normalized_data = [i/total for i in data]

num_qubits = 4
    circ = QuantumCircuit(num_qubits)
    circ.prepare_state(normalized_data, [0, 1, 2, 3])
    circ.draw(output="mpl", scale=0.5)
```

Out[2]:


```
In [3]: state = Statevector(circ)
    state.draw(output="Latex")
```

Out[3]:

$$rac{\sqrt{2}}{2}|0101
angle+rac{\sqrt{2}}{2}|1110
angle$$

Method 2: Superposition

- A. If the number of bits of training data is 6 bits of a feature, then Processing branch + Storage branch + Ancilla Qubits = 6 + 6 + 2 = 14
- B. Split the branches by using H gate on A2.
- C. Load the training vector (all features of one training vector) into the processing branch.
- D. Move the data to storage branch.
- E. Split the processing branch with Unitary gate which calculates $U(\mu)=\begin{bmatrix}\sqrt{rac{\mu-1}{\mu}}&rac{1}{\sqrt{\mu}}\\ rac{-1}{\sqrt{\mu}}&\sqrt{rac{\mu-1}{\mu}}\end{bmatrix}$
- F. Flip A1 for branch where loading register == storage register.
- G. Reset the storage register and loading register of both both branches.
- H. Repeat from C, until all vectors are loaded.

```
In [4]: ## Load the first training vector
        from qiskit.circuit.library import MCXGate
        from qiskit import *
        from qiskit.quantum_info import *
        from qiskit.extensions import
        from random import randrange
        import numpy
        from qiskit.circuit.library import CPhaseGate
        L = QuantumRegister(4, name="L")
        A = QuantumRegister(2, name="A")
        S = QuantumRegister(4, name="S")
        C = ClassicalRegister(4)
        QC = QuantumCircuit(S,A,L,C)
        OC.barrier()
         # data = [format(randrange(1,100), "#010b")[6:] for _ in range(2)]
        data = ['0101', '1110']
        QC.h(A[0])
        m = 1
        M = 2**len(data[0])
        for d in data:
            print (d[::-1])
            QC.barrier()
```

```
for i, v in enumerate(d):
                                             if v == '1':
                                                         QC.x(L[i])
                                   for i in range(4):
                                              if d[i] == '1':
                                                         QC.ccx(A[0], L[i], S[i])
                                   QC.barrier()
                                   QC.cx(A[0], A[1])
                                    \label{eq:continuous} UMu = UnitaryGate([[math.sqrt((Mu-1)/(Mu)),1/math.sqrt((Mu)],[-1/math.sqrt((Mu),math.sqrt((Mu-1)/(Mu))]], \\ label = 0. \\ la
                                   QC.append(UMu, [A[1], A[0]])
                                   QC.barrier()
                                   gate = MCXGate(8)
                                    # ## reset the first training vector
                                   for i, v in enumerate(d):
                                             if v == '0':
                                                        QC.x(L[i])
                                                         QC.x(S[i])
                                   OC.barrier()
                                   QC.append(gate, [0,1,2,3,6,7,8,9,5])
                                   QC.barrier()
                                   # ## reset the first training vector
                                   for i, v = in  enumerate(d):
                                             if v == '0':
                                                         QC.x(L[i])
                                                         QC.x(S[i])
                                   for i, v in enumerate(d):
                                              if v == '1':
                                                         QC.x(L[i])
                                   for i, v in enumerate(d):
                                                        QC.cx(A[0], S[i])
                        state = Statevector(QC)
                       state.draw(output="Latex")
                       1010
                       0111
Out[4]:
                                                      In [5]: QC.barrier()
                        for i in range(4):
                                   QC.measure(S[i], C[i])
                        QC.draw(output="mpl", scale=0.5, fold=1000)
                             51
                             52
                             53
                             L1 -
                             L2 -
In [6]: backend = Aer.get_backend("aer_simulator")
                        result = execute(QC, backend=backend, shots=10000).result()
                        from IPython.display import Latex
                        from qiskit.visualization import *
```

state_to_latex = result.get_counts()
removing for better visualization

plot_histogram(state_to_latex, figsize=(3,2))

del state_to_latex['0000']

5. How many Qubits may be required for the state preparation in amplitude encoding?

Total number of data points for all rows of data = 10*20 = 200

Number of qubits required = math.ceil(math.log(200,2)) = 8 qubits

6. Product the state below in amplitude encoding.

{0.2, 0.5}, {0.2, 0.1}

The following is an example of mottgen state preparration circuit with uniform rotation.

3 Qubit implementation

Qiskit

```
In [7]: QC = QuantumCircuit(3)
        QC.ry(1.15928, 0)
        QC.ry(2.57765, 1)
        QC.ry(0.30774, 2)
        QC.barrier()
        QC.cx(0,1)
        QC.ry(-0.56394, 1)
        QC.cnot(0,1)
        QC.cnot(1,2)
        QC.ry(-0.30774, 2)
        QC.barrier()
        QC.cnot(0,2)
        QC.ry(0.30774, 2)
        QC.cnot(1,2)
        QC.ry(-0.30774, 2)
        QC.cnot(0,2)
        QC.draw(output="mpl", scale=0.75)
```

Out[7]:


```
In [8]: S = Statevector(QC)
S.draw(output="Latex")
```

Out[8]:

Pennylane

2 Qubit implementation

(<Figure size 700x300 with 1 Axes>, <Axes: >)


```
In [13]: QC = QuantumCircuit(2)
   QC.ry(1.15928, 0)
   QC.ry(1.62233, 1)
   QC.barrier()
   QC.cx(0,1)

QC.ry(0.39137, 1)
   QC.cnot(0,1)

QC.draw(output="mpl", scale=0.75)
```

Out[13]

```
q_0 - \frac{R_Y}{116}
q_1 - \frac{R_Y}{162}
q_1 - \frac{R_Y}{0391}
```

```
In [14]: S = Statevector(QC)
S.draw(output="Latex")
```

7. For a given matrix A, Do hamiltonian encoding.

Provided matrix A is not hermitian, hence we need to convert matrix as below,

$$data = egin{bmatrix} 0 & 0 & 0.073 & -0.438 \ 0 & 0 & 0.73 & 0 \ 0.073 & 0.73 & 0 & 0 \ -0.438 & 0 & 0 & 0 \end{bmatrix}$$

Hamiltonian encoding of above is to convert the data to the form e^{iHt}

```
e^{iHt} = \sum_i \lambda_i |i
angle \langle i|
```

Note: The example below uses the time evolution of 0.05

Method 1: Eigen values and vectors

```
In [15]: data = [[0,0,0.073,0.-0.438],
                                                                 [0,0,0.730,0],
                                                                 [0.073,0.730,0,0],
                                                                 [-0.438,0,0,0]]
                                   eigval, eigvec = np.linalg.eig(data)
                                   A = np.array(eigvec[0])
                                   AT = np.atleast_2d(A).transpose()
                                  11 = numpy.kron(A, AT)
                                   A = np.array(eigvec[1])
                                   AT = np.atleast_2d(A).transpose()
                                  12 = numpy.kron(A, AT)
                                   A = np.array(eigvec[2])
                                  AT = np.atleast_2d(A).transpose()
                                  13 = numpy.kron(A, AT)
                                   A = np.arrav(eigvec[3])
                                  AT = np.atleast_2d(A).transpose()
                                  14 = numpy.kron(A, AT)
                                   Z = np.exp(1j*eigval[0]*0.05)*11 + np.exp(1j*eigval[1]*0.05)*12 + np.exp(1j*eigval[2]*0.05)*13 + np.exp(1j*eigval[3]*0.05)*14 + np.exp(1j*eigval[1]*0.05)*15 + np.exp(1j*eigval[1]*0.05)*16 + np.exp(1j*eigval[1]*0.05)*17 + np.exp(1j*eigval[1]*0.05)*18 + np.exp(1j*eigval[1]*0.05)*19 + np.exp(1j*eigval[1]*0.05)
                                   print(numpy.matrix.round(Z, 3))
                                                          -0.j 0. +0.j 0. +0.002j 0. +0.022j]
+0.j 0.999+0.j 0. -0.037j -0. -0.002j]
                                   [[ 1.
                                                         +0.002j -0. -0.002j -0. -0.j | -0.02j | +0.002j -0. -0.002j | -0.002j -0. -0.j |
                                      [ 0.
                                       [ 0.
```

Method 2: Use internal qiskit support for HamiltonianGate.

8. Construct a swap gate using CNOT gates.

The method below is from Nielsen Fig 1.7 and also in the following research paper.

https://www.researchgate.net/publication/216778423_The_cost_of_quantum_gate_primitives

Swap gate with 3 CNOT gates

```
circuit.ry(pi / 3, qreg_q[0])
circuit.ry(pi / 6, qreg_q[1])
circuit.barrier(qreg_q[0], qreg_q[1])
circuit.cx(qreg_q[0], qreg_q[1])
circuit.cx(qreg_q[1], qreg_q[0])
circuit.cx(qreg_q[0], qreg_q[1])
circuit.draw(output="mpl", scale=0.5)
```

Out[17]:

```
In [18]: state = Statevector(circuit)
    state.draw(output="Latex")
```

Out[18]:

 $0.836516303738|00\rangle + 0.224143868042|01\rangle + 0.482962913145|10\rangle + 0.129409522551|11\rangle$

Swap gate primitive

Out[19]:

 $0.836516303738|00\rangle + 0.224143868042|01\rangle + 0.482962913145|10\rangle + 0.129409522551|11\rangle$

9. Construct the control swap gate matrix using bra-ket notation.

A general swap gate, is like the one below.

```
\begin{aligned} \text{SWAP} &= |00\rangle\langle 00| + |01\rangle\langle 10| + |10\rangle\langle 01| + |11\rangle\langle 11| \\ \\ \text{CSWAP} &= (|0\rangle\langle 0| \otimes I \otimes I) + (|1\rangle\langle 1| \otimes SWAP) \end{aligned}
```

CSWAP matix representation is as below.

```
In [20]: ZB = np.array([[1],[0]])
    ZK = np.atleast_2d(ZB).transpose()

OB = np.array([[0],[1]])
    OK = np.atleast_2d(OB).transpose()

S00 = np.kron(ZB, ZB)
    S01 = np.kron(ZB, OB)
    S10 = np.kron(OB, ZB)
    S11 = np.kron(OB, OB)

S00x00 = np.kron(S00, S00.T)
    S01x10 = np.kron(S01, S10.T)
    S10x01 = np.kron(S10, S01.T)
    S10x01 = np.kron(S11, S11.T)

SWAP = S00x00 + S01x10 + S10x01 + S11x11
    Z = np.kron(np.kron(DB, ZK), np.eye(2)), np.eye(2))
    O = np.kron(np.kron(OB, OK), SWAP)

Z + O
```

10. SWAP test

+, 0

Out[21]:


```
In [22]: nShots = 5000
backend = Aer.get_backend('aer_simulator_statevector')
result = backend.run(transpile(circuit, backend), shots=nShots).result()
counts = result.get_counts()
if '0' in counts:
    b = counts['0']
else:
    b = 0

s = round(abs(1 - (2*(b/nShots))),1)
print("Squared Inner Product:",str(s), 'Inner product :', math.sqrt(s))
```

Squared Inner Product: 0.5 Inner product : 0.7071067811865476

+, +

Out[23]:


```
Squared Inner Product: 1.0 Inner product : 1.0
          +, -
In [25]: qreg_q = QuantumRegister(3, 'q')
         creg c = ClassicalRegister(1, 'c')
         circuit = QuantumCircuit(qreg_q, creg_c)
         circuit.h(qreg_q[0])
         circuit.x(qreg_q[1])
         circuit.h(qreg_q[1])
         circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2])
         circuit.h(qreg_q[2])
         circuit.cswap(qreg_q[2], qreg_q[0], qreg_q[1])
         circuit.h(qreg_q[2])
         circuit.measure(qreg_q[2], creg_c[0])
         circuit.draw(output="mpl", scale=0.5)
In [26]: nShots = 5000
          backend = Aer.get_backend('aer_simulator_statevector')
          result = backend.run(transpile(circuit, backend), shots=nShots).result()
          counts = result.get_counts()
          if '0' in counts:
             b = counts['0']
          else:
             b = 0
          s = round(abs(1 - (2*(b/nShots))),1)
         print("Squared Inner Product:",str(s), 'Inner product :', math.sqrt(s))
         Squared Inner Product: 0.0 Inner product: 0.0
In [27]: qreg_q = QuantumRegister(3, 'q')
creg_c = ClassicalRegister(1, 'c')
         circuit = QuantumCircuit(qreg_q, creg_c)
          circuit.initialize([3/5, 4/5], 0)
         circuit.h(qreg_q[1])
         circuit.barrier(qreg_q[0], qreg_q[1], qreg_q[2])
          circuit.h(qreg_q[2])
          circuit.cswap(qreg_q[2], qreg_q[0], qreg_q[1])
         circuit.h(qreg_q[2])
          circuit.measure(qreg_q[2], creg_c[0])
         circuit.draw(output="mpl", scale=0.5)
Out[27]:
In [28]: nShots = 5000
          backend = Aer.get_backend('aer_simulator_statevector')
          result = backend.run(transpile(circuit, backend), shots=nShots).result()
          counts = result.get_counts()
          if '0' in counts:
             b = counts['0']
          else:
             b = 0
          s = round(abs(1 - (2*(b/nShots))), 10)
         print("Squared Inner Product:",str(s), 'Inner product :', math.sqrt(s))
         Squared Inner Product: 0.9796 Inner product: 0.9897474425326898
```

print("Squared Inner Product:",str(s), 'Inner product:', math.sqrt(s))