С. В. Ветров

Черновик учебного пособия

Объектно-ориентированное программирование на C++

Оглавление

Bı	Введение 4					
1	Вве	едение в С++	5			
	1.1	Характеристика языка	5			
		1.1.1 Философия языка	7			
		1.1.2 Компиляторы	7			
	1.2	Основы	8			
		1.2.1 Алфавит	8			
		1.2.2 Структура программы	8			
		1.2.3 Типы данных	8			
		1.2.4 Числовые типы данных	9			
		1.2.5 Литералы	11			
		1.2.6 Числовые операторы	11			
		1.2.7 Символьный тип и строковые литералы	12			
		1.2.8 Константы и выражения времени компиляции	14			
		1.2.9 Перечисления (enum)	15			
		1.2.10auto	16			
		1.2.11Преобразования типов	17			
		1.2.12Приоритет операторов	18			
		1.2.13Подключение заголовочных файлов	18			
		1.2.14Ввод и вывод на экран	19			
		1.2.15Операторы	21			
		1.2.16Логические операции	21			
		1.2.17Цикл по коллекции	22			
	1.3	Компиляция программы	22			
		1.3.1 Компиляция программы из одного файла	22			
		1.3.2 Макросы препроцессора	23			
		1.3.3 Этапы компиляции	23			
		1.3.4 Компиляция нескольких файлов и статической библиотеки	24			
	1.4	Модули С++20	25			
	1.5	Динамическая память, указатели и ссылки	26			
		1.5.1 Указатели	26			
		1.5.2 new и delete	27			

		1.5.3 Ссылки	27
		1.5.4 Спецификатор const и указатели	28
		1.5.5 Проблемы динамической памяти	29
	1.6	Функции	30
		1.6.1 Перегрузка функций	33
		1.6.2 Значения параметров по умолчанию	34
		1.6.3 inline-функции	34
		1.6.4 static функции и локальные переменные	34
		1.6.5 Спецификатор constexpr	34
		1.6.6 Выводы и рекомендации	34
	1.7	Пространства имён (namepaces)	35
	1.8	Массивы	38
		1.8.1 Статические массивы	38
		1.8.2 Массив из символов	39
		1.8.3 Функции для работы с массивами	40
		1.8.4 Динамические массивы	40
	1.9	Устройство памяти программы	44
	1.10	Параметры командной строки	44
2	Про	одвинутые возможности языка	46
	2.1	Обработка исключительных ситуаций	46
		2.1.1 Условный оператор, try catch, assert	50
	2.2	Функции	51
		2.2.1 Статические локальные переменные	51
		2.2.2 Переменное число параметров функции (variadic arguments) 51
		2.2.3 Указатель на функцию	51
		2.2.4 Перегрузка операторов (operator overloading)	52
		2.2.5 Анонимные функции	53
		2.2.6 Автоматическое тестирование	55
	2.3	Шаблонные функции	60
	2.4	Ассемблерные вставки	62
3	Ста	ндартная библиотека	63
	3.1	string	63
		Умные указатели	64
	3.3	Контейнеры	64
		3.3.1 vector	64
		3.3.2 Сравнение	66
	3.4	Файловые потоки	66
1	Dno	ление в объектно-опиентипованное ппогламмипование	60

	4.1	Предпосылки появления ООП	69			
	4.2	Абстрактный тип данных	69			
	4.3	Классы в С++	72			
		4.3.1 Конструкторы и деструктор	78			
		4.3.2 Работа с экземплярами класса	83			
		4.3.3 Статические члены класса (static members)	87			
		4.3.4 Дружественные функции и классы	89			
		4.3.5 Перегрузка операторов	89			
		4.3.6 Представление класса в UML	90			
		Шаблонные классы				
	4.5	Модульное тестирование	92			
5	Отн	ношения между классами	95			
	5.1	Агрегация и композиция	95			
	5.2	Наследование	97			
	5.3	Динамический полиморфизм	97			
6	SOI	LID	98			
7	Ша	блоны проектирования	99			
3	клю	очение	100			
Б	Библиографический список					
П	редл	иетный указатель	102			

Введение

Пособие освещает только основы языка С++.

Примеры кода на языке C++ приведены для стандарта C++19, проверены компилятором G++11.2.

Материалы дисциплины: github.com/VetrovSV/OOP

1 Введение в С++

Си позволяет легко выстрелить себе в ногу; с C++ это сделать сложнее, но, когда вы это делаете, вы отстреливаете себе ногу целиком.

Ограничение возможностей языка с целью предотвращения программистских ошибок в лучшем случае опасно.

1.1 Характеристика языка

- Построен на основе С
- Общего назначения
- Компилируемый
- Статическая типизация
- Слабая типизация
- Объектно-ориентированный
- Ручное управление памятью (без сборщика мусора)

Статическая типизация (static type checking) – вид типизации, при которой переменная, аргумент функции или возвращаемое значение связываются с типов *во время компиляции* (compiler time). Противоположный поход к типизации – *динамическая типизация* (dynamic type checking), при которой тип переменной, аргумента или возвращаемого значения могут изменяться во время работы программы (run-time).

```
// C++
int i = 5;
i = "кря-кря"; // синтаксическая ошибка
```

```
// Python, динамическая типизация
i = 5; // тип определяется из значения: int
i = "кря-кря"; // тип переменной изменён: str
```

Слабая типизация (weak typing) – типизация, при которой возможно неявное преобразование типов, даже если возможна потеря точности. Такую типизация ещё называют не строгой. Она противопоставляется сильной типизации (строгой типизации), которая запрещает смешивать в выражениях разные типы, без явных вызовов преобразования. Понятия сильной и слабой типизации не имеют четкого определения и чаще используются для сравнения системы типизации в языках. Сильная типизация есть в языках программирования: Java, Hackell, Pyhton. Слабая: C, C++, JavaScript.

```
// Java
int i = 5 + true;
// error: bad operand types for binary operator '+'
// C++
int i = 5 + true;
// Код синтаксически верен
```

Сборщик мусора (garbage collector) – специальный процесс, работающий параллельно с программой, который освобождает выделенную программе, но более не используемую память. Сборщики мусора типичны для интерпретируемых (Pyhton) и компилируемых в байт-код (C#, Java) языков программирования.

Неформальная характеристика языка:

- Большое сообщество программистов, большая коллекция библиотек, справочной информации.
- Популярен в течении последних 30+ лет, развитая стандартная библиотека.
- Активно развивается: новые стандарты выходят каждые 2-3 года: C++98, C++03, C++11, C++14, C++17, C++19, C++20, C++23.
- Множество реализаций для всех популярных ОС.
- Поддерживает многие концепции программирования (ООП, динамическое управление памятью, анонимные функции, шаблоны ...) которые есть в других языках программирования.
- Особенно широко используется там, где высоки требования к производительности.

en.cppreference.com/w/cpp/ language/history – краткое описание стандартов

1.1.1 Философия языка

- Максимально возможная совместимость с С
- Поддержка многих парадигм программирования: процедурное, ООП, обобщенное, ...
- Не плати за то, что не используешь
- Максимально возможная независимость от платформ

1.1.2 Компиляторы

- G++ (MinGW-64)
- MSVC
- Clang
- Intel C++ Compiler
- ...

1.2 Основы

1.2.1 Алфавит

1.2.2 Структура программы

Минимальный вариант главной функции программы:

о параметрах командной строки и возвращаемом значении функции main см. раздел 1.10

рекомендуется отделять разные по смыслу и на-

В дальнейших примерах, для краткости, функция main будет опускаться. Подразумевается, что все объявления констант и переменных и операторы будут приведены внутри этой функции. Включение заголовочных файлов и директивы using будут всегда приводится до объявления функции main.

```
Типичная структура программы:
```

```
/// Краткое описание программы и указание автора

Значения участки кода одной и двумя пустыми строками

// Включение заголовочных файлов стандартной библиотеки. Например:

#include <iosream>
// Включение заголовочных файлов (собственных и из сторонних библиотек)

#include "my_unit.h" // пояснение, если необходимо

// Включение содержимого пространств имён в текущую область видимости. Например:
using namespace std;

int main(){
    // ...основной алгоритм...
}
```

1.2.3 Типы данных

Объявление (declaration) включает в себя указание идентификатора (имени), типа, а также других аспектов элементов языка, например, переменных и функций. Объявление используется, чтобы уведомить компилятор о существовании элемента.

Определение (definition) включает в себя объявление, дополняя его значением (для переменной или константы) или телом фунции или метода.

Рис. 1.1. Типы данных

В С++, в отличии от Паскаля, нет специального раздела программы для определения или объявления переменных. Синтаксис объявления переменной¹:

attr decl_specifier_seq init_declarator_list;

- attr набор атрибутов
- decl_specifier_seq спецификаторы типа
- init_declarator_list набор идентификаторов с необязательной инициализацией.

Инициализация – задание начального значения.

Примеры объявления переменных и констант:

```
int n; // объявление переменной int A = 42; // определение переменной (объявление + инициализация) // определение константы: const float x = 1.68;
```

Подробнее о простых типах: ru.cppreference.com/w/cpp/language/types

1.2.4 Числовые типы данных

Размер памяти, занимаемой, типами long, double, long double и другими многобайтовыми типами данных может отличаться в зависимости

¹en.cppreference.com/w/cpp/language/declarations

Data Type	Size (bytes)	Size (bits)	Value Range
unsigned char	1	8	0 to 255
signed char	1	8	-128 to 127
char	1	8	either
unsigned short	2	16	0 to 65,535
short	2	16	-32,768 to 32,767
unsigned int	4	32	0 to 4,294,967,295
int	4	32	-2,147,483,648 to 2,147,483,647
unsigned long	8	64	0 to 18,446,744,073,709,551,616
long	8	64	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
unsigned long long	8	64	0 to 18,446,744,073,709,551,616
long long	8	64	-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
float	4	32	3.4E +/- 38 (7 digits)
double	8	64	1.7E +/- 308 (15 digits)
long double	8	64	1.7E +/- 308 (15 digits)
bool	1	8	false or true

Рис. 1.2. Основные числовые типы данных [компилятор ??? для 64-разрядной OC]

от разрядности (32 ил 64 бита) платформы, для который компилируется программа. Размер значения типа **bool** – 1 байт, хотя, фактически, для такой переменной достаточно одного бита. Но ОС может адресовать память только по байтам, но не по битам.

en.cppreference.com/w/cpp/language/sizeof

```
// можно не задавать значение (объявление)
int n;
float x = -47.039;
                        // можно задавать (определение)
float y,z;
                     // константе задавать значение обязательно
const short N = 24;
char c = 'q';
                        // символ
char str1[] = "qwerty"; // строка (как массив символов)
// string - тоже строка, но лучше (удобнее в работе)
string str2 = "qwerty"; // нужно подключить модуль string
n = N;
N = n;
                        // Ошибка! Константу поменять нельзя
a = 42;
                         // Ошибка! Переменная а не объявлена
```

1.2.5 Литералы

Литерал (literal) или безымянная константа – запись в исходном коде, представляющая собой фиксированное значение. Литералами также называют представление значения некоторого типа данных. Например в примере выше "qwerty" – строковый литерал.

Целочисленные литералы:

```
// в десятичной системе счисления:
int d = 42;
// в других системах счисления:
int o = 052;  // восьмеричная, число должно начинаться с 0
int x = 0x2a;  // шестнадцатеричная
int X = 0x2A;  // шестнадцатеричная
int b = 0b101010;  // двоичная

// для лучшей читаемости допустимо разделять разряды знаком '
long l2 = 18'446'744;
```

Больше информации о целочисленных литералах, в том числе суффиксах: en.cppreference.com/w/cpp/language/integer literal.

В шестнадцатеричной записи для кодирования одной цифры достаточно ровно 4 бит. Соответственно любое двузначное число можно сохранить в один байт.

Вещественные литералы обязательно содержат точку в своей записи.

```
// веществ. литерал 1.0 float x1 = 1.0; // дробную часть можно опускать, если вместо неё можно подставить ноль float x2 = 1.; float x3 = 0.7; // аналогично можно пропускать целую часть числа, если она нулевая float x4 = .7; // 1 -- целочисленный литерал, неявно преобразовываемый к типу float // при инициализации переменной float y = 7;
```

Экспоненциальная запись числа $x=123.456\cdot 10^{-67}$ в программе может быть представлена как

```
double x = 123.456e-67;
```

todo: Мантисса + экспонента + порядок

Комплексные числа todo:

1.2.6 Числовые операторы

% – целочисленный оператор для взятия остатка от деления.

Отдельного оператора для возведения числа в степень в С++ нет.

Инкремент (++) и декремент (--) – унарные целочисленные операторы, увеличение и уменьшение значения переменной на единицу соответственно.

Документация: en.cppreference.com/w/cpp/language/operator_incdec

...

1.2.7 Символьный тип и строковые литералы

char – символьный тип, занимает один байт. В можно записать либо число (код символа) либо сам символ, но при выводе (например cout) всегда будет показан символ. Символьные литералы приводятся в одинарных кавычках:

```
char = '!';
cout << 'A';</pre>
```

ASCII – American standard code for information interchange) – таблица, в которой некоторым распространённым печатным и непечатным символам сопоставлены числовые коды (рис 1.3).

Dec	Chai	r	Dec	Char	Dec	Char	Dec	Char
0	MIII	- (null)	32	SPACE	64	@	96	`
1		(start of heading)	33	!	65	A	97	а
2		(start of text)	34		66	В	98	b
3		(end of text)	35	#	67	C	99	C
4		(end of transmission)	36	\$	68	D	100	d
5		(enquiry)	37	%	69	E	101	e
6		(acknowledge)	38	&	70	F	102	f
7		(bell)	39	1	71	G	103	g
8	BS	(backspace)	40	(72	Н	104	h
9	TAB	(horizontal tab)	41)	73	I	105	i
10	LF	(NL line feed, new line)	42	*	74	J	106	j
11	VT	(vertical tab)	43	+	75	K	107	k
12	FF	(NP form feed, new page)	44	,	76	L	108	l
13	CR	(carriage return)	45	-	77	М	109	m
14	S0	(shift out)	46		78	N	110	n
15	SI	(shift in)	47	/	79	0	111	0
16	DLE	(data link escape)	48	0	80	Р	112	p
17	DC1	(device control 1)	49	1	81	Q	113	q
18	DC2	(device control 2)	50	2	82	R	114	r
19		(device control 3)	51	3	83	S	115	S
20		(device control 4)	52	4	84	T	116	t
21		(negative acknowledge)	53	5	85	U	117	u
22		(synchronous idle)	54	6	86	V	118	V
23		(end of trans. block)	55	7	87	W	119	W
24		(cancel)	56	8	88	X	120	X
25	EM	(end of medium)	57	9	89	Υ	121	У
26		(substitute)	58	:	90	Z	122	Z
27		(escape)	59	;	91	[123	{
28	FS	(file separator)	60	<	92	\	124	
29	GS	(group separator)	61	=	93]	125	}
30	RS	(record separator)	62	>	94	^	126	~
31	US	(unit separator)	63	?	95	_	127	DEL

Рис. 1.3. первая половина ASCII. Dec – код символа (в десятичной система счисления)

en.cppreference.com/w/cpp/language/ascii.

ASCII ограничена 256 вариантами символов. Вторая половина (коды с 128 и далее) может использоваться для хранения кодов символов основного языка ОС (если он отличается от английского), например русского языка. см. кодировки Windows-

1251, СР866 и др.

```
// коды символов латинского алфавита
char c = 65;
                     // 'A'
c = c + 1
              // 'B'
cout << c;
```

Для хранения символов из таблицы Unicode, которая содержит знаки почти всех алфавитов и многие другие символы восьмитонного типа char недостаточно. Поэтому рекомендуется сохранять не ASCII символы не в символьной переменной, а в массиве (строке), где один символ может быть закодирован несколькими байтами. Символ можно написать непосредственно или привести его код в формате "\uX", где X – шестнадцатеричное число. I ♥ C++:

```
// 7 символов, 9 байт + 1 байт для обозначения конца строки char[] str2 = "I \u2665 C++";
// 2 байта + 1 байт для обозначения конца строки cout << sizeof("\u2665");
```

напомним, что для кодирования любой шестнадцатеричной цифры необходимо 4 бита

В конец любого строкового литерала всегда добавляется один нулевой байт, который служит признаком конца строки.

см. также раздел 1.8.2 Массив из символов.

Экранирование символов – замена в тексте управляющих символов на соответствующие текстовые подстановки. В C++ для экранирования используется слеш – \.

```
char str1[] = "a \\ b"; // результат: a / b
char str2[] = "Don\'t Tread On Me"; // результат: Don't Tread On Me
char str3[] = "tab\tseparated\tvalues"; // tab separated values
```

1.2.8 Константы и выражения времени компиляции

При объявление константы спецификатор типа **const** может быть указано слева или справа от самого типа:

см. также раздел 1.5.4 Спецификатор const и указатели

```
// эти определения констант равнозначны const int A = 42; int const N = 42;
```

todo: именование констант

Магические числа – числовые литералы (значения) приведённые в исходном коде программы смысл которых не очевиден. Стоит заменять такие значения на константы, так как имя константы может говорить о смысле значения. А если такие значения повторяются, то при из изменении будет достаточно изменить значение в одном месте.

Плохая практика:

```
int numbers[1024];
for (unsigned i = 0; i < 1024; i++)
   numbers[i] = rand();</pre>
```

Хорошая практика: константа вместо магического числа, имя с большой буквы, конвенциальное имя для размера массива

```
const unsigned N = 1024;  // размер массива
int numbers[N];

for (unsigned i = 0; i < N; i++)
    numbers[i] = rand();</pre>
```

Математические константы в C++20 В стандарте C++20 введена библиотека математических констант numbers: https://en.cppreference.com/w/cpp/numeric/constants.

```
#include <numbers>
using std::numbers::pi;

float pizza_area = pi * 35*35;
```

Вместо создания собственных констант стоит использовать аналогичные константы из математической библиотеки.

См. также [2] о константах.

1.2.9 Перечисления (enum)

Плохая практика – вводить не именованные условные обозначения

```
/// выводит текст на экран.
/// color = 0, 1, 2 -- обознач. цвет текста красный, зелёный, синий
void print_text( string text, int color){
// ...
}
```

Такие обозначения не несут прямого смысла, приходится запоминать или постоянно обращаться к документации. Это лишняя возможность допустить ошибку. Один из вариантов решения – ввод констант

```
const short COLOR_RED = 0;
const short COLOR_GREEN = 1;
const short COLOR_BLUE = 2;
```

Но в языке $C++^2$ есть специальный тип данных, который помогает вводить наборы однотипных обозначений – *перечисления* (enum).

²как и во многих других языках программирования

```
// объявление типа данных перечисление
enum Color {
    // и его значения для обозначения цветов:
    Red, Green, Blue
};
```

Значения типа enum неявно конвертируются в целочисленный тип, например при выводе в консоль. Можно говорить, что перечисление это набор целочисленных констант. Первое в объявлении значение равно 0, второе 1 и так далее.

Пример объявления переменных

```
// эти способы инициализации переменных равнозначны Color c1 = Red; Color c2 = Color::Red;
```

Перечислимый тип может использовать в операторе выбора

```
// пример использования
switch(r){
   case red : std::cout << "red\n"; break;
   case green: std::cout << "green\n"; break;
   case blue : std::cout << "blue\n"; break;
}</pre>
```

Приведём улучшенный вариант функции из примера выше

```
/// выводит текст на экран. color -- цвет текста void print_text( string text, Color color){
// ...
}
```

См. также табличные методы [2].

todo: enum class, or enum struct

Документация: en.cppreference.com/w/cpp/language/enum

1.2.10 auto

Указание **auto** вместо типа заставляет компилятор самостоятельно под- определение типа статическое, то есть до запуска программы!

```
auto z = "gues type"; // char*
auto a; // ошибка! Не задано значение!
```

1.2.11 Преобразования типов

Преобразования строкового типа

```
string s = std::to_string(123);
float f1 = stof("123.5");
```

см также stoi, stod и т.п. en.cppreference.com/w/cpp/string/basic_string/to_string

Типобезопасность(type safety) –

```
C-style cast - ...
```

. . .

static_cast безопасно (с проверкой соответствия типа) преобразовывает выражение одного типа в другой:

. . .

Пример:

```
static_cast < new-type > ( expression )
```

Неявное преобразование типов todo:

```
short a = 42;
int b = a;
int c = 12354;
short d = c;
```

Переполнение типа: todo

```
char a = 256;  // a = 0
char b = 42, c = 230;

short b + c;  // ok
todo: max_int etc
```

см. также преобразование объектов: ...

1.2.12 Приоритет операторов

todo: ...

1.2.13 Подключение заголовочных файлов

include

... todo: Рекомендации по использованию типов данных, переменных, включению файлов и включению пространств имён в заголовочные файлы:

- Типы данных объявлять в заголовочных
- Переменные объявлять с extern
- using namespace и include *только* при необходимости

• ...

Защита от повторного подключения

В результате включения файлов по схеме класс X будет объявлен дважды после обработки директив *#include* препроцессором:

```
// #include "a.h":
    class X{};

// #include "b.h":
/// #include "a.h":
    class X{
        };
    void bar(){};
    // ...

int main(){
}
```

Для защиты от повторного подключения используются директивы препроцессора.

Вариант 1. Директива #pragma once.

```
#pragma once
class X{};
// ...
```

ртадма – специальная директива для реализации не входящих в стандарт языка C++ возможностей. Изначально *#pragma once* использовалась только в компиляторе MSVC, но потом её поддержка появилась и в других компиляторах.

Вариант 2 include guards.

```
#ifndef unit_a_h
#define

class X{};
// ...
#endif
```

1.2.14 Ввод и вывод на экран

Вывод

Переменные и функции для ввода и вывода объявлены в заголовочном файле iostream.

```
#include <iostream>
using namespace std;
cout << "Hello, World!";</pre>
// endl - вывод символа конца строки и очистка буфера вывода
cout << "Hello, World!" << endl;</pre>
// Вывод переменной
float x;
cout << x << endl;</pre>
// Вывод данных нужно подписывать
cout << "x = " << x << endl;
cout – объект предназначенный для вывода на стандартный вывода. Этот
объект содержит оператор << для вывода данных в консоль. Левый опе-
ранд этого оператора – объект cout, правый операнд – выводимые данные.
Форматирование
#include <iomanip>
cout << 3000000.14159265 << ";";
                                                          // вывод: 3e+06;
// 12 позиций на всё число; человекочитаемый формат (без е); два знака после запятой
cout << setw(12) << fixed << setprecision(2);</pre>
```

cout << 3000000.14159265 << ";"; // вывод: 3000000.14; (2 пробела в начале)

// преобразование числа в строку с помощью функции форматирования строки // {:.3f} - формат вывода вещественного (f) числа с 3 знаками после запятой

string $s = format("{:.3f}", 3000000.14159265);$

include <string>

```
Ввод
cin – объект предназначенный для чтения данных с клавиатуры, объявлен
B iostream
<< - оператор чтения данных с клавиатуры.
Левый операнд – объект cin;
Правый операнд – переменная.
float x;
cin >> x;
```

Посимвольный ввод

```
char c = '\0';
while (cin.get(c)) {
    // ...
}
```

https://en.cppreference.com/w/cpp/utility/format/format

https://www.cplusplus.com/reference/iomanip/setprecision/

Про обработку ошибок при вводе значений идет речь в параграфе 2.1 Пример обработки исключений при консольном вводе.

1.2.15 Операторы

Оператор -

Операнд -

1.2.16 Логические операции

```
&& – И
|| – ИЛИ
```

! - He

Битовые операции

операторы!битовые & - И

```
| – ИЛИ
```

~ - HE

 $^{\wedge}$ – XOR

С помощью битовых операций можно получить значения отдельных байт в целом числе

```
int nint;
char byte1, byte2, byte3, byte4;

byte1 = nint & 0x000000ff

byte2 = (nint & 0x0000ff000) >> 8

byte3 = (nint & 0x00ff00000) >> 16

byte4 = (nint & 0xff000000) >> 24
```

Тернарный условный оператор

Тернарный оператор – оператор с тремя операндами. В C++ такой оператор приспособлен для сокращённой форму записи условного оператора.

```
a ? b : c
```

Если условие а верно, то выполняется b, если нет, то с.

Пример нахождения максимального числа из х и у:

```
float a, b, max;
// ...
max = (x>y) ? x : y
```

Документация: en.cppreference.com/w/cpp/language/operator_other

1.2.17 Цикл по коллекции

```
for (type &x: array) {
     ...
}
```

Пример.

```
int my_array[5] = {1, 2, 3, 4, 5};

for(int x : my_array)
        cout << x << " ";

// в x записывается ссылка на элемент, можно изменять массив
for(int &x : my_array)
        x = x*x;

int *d_array = new int[5];

// ошибка! число элементов массива не известно
for(int x : d_array)
        cout << x << " ";</pre>
```

1.3 Компиляция программы

1.3.1 Компиляция программы из одного файла

Скомпилируем нижеприведённую программу (хранится в файле main.cpp) компилятором G++.

```
#inlude <iostream>
int main(){
    std::cout << "Hello, World!\n";
    return 0; }

g++ main.cpp -o hello_world.exe</pre>
```

После ключа - о указывается имя исполняемого файла.

Полная поддержка стандартов языка C++ появляется в компиляторах часто спустя несколько месяцев или даже 1-2 года после публикации стандарта. Но отдельные, востребованные нововведения начинают поддерживаться относительно быстро. Иногда нововведения языка могут появится в компиляторе и раньше принятия стандарта, но это происходит редко. Однако по умолчанию компилятором используется не последний принятый стандарт, а более ранний. Для включения поддержки реализованных возможностей новых стандартов нужно отдельно указывать их название через праметр std:

```
g++ main.cpp -o hello_world.exe -std=C++20
```

1.3.2 Макросы препроцессора

en.cppreference.com/w/cpp/preprocessor/replace

__cplusplus – хранит имя используемого стандарта языка. Может принимать значения: 199711L, 201103L, 201402L, 201703L, 202002L или похожие, в зависимости от компилятора.

Maкpoc __cplusplus в MSVC: https://learn.microsoft.com/ru-ru/cpp/build/reference/zc-cplusplus?view=msvc-170

1.3.3 Этапы компиляции

- 1. **Препроцессинг** . Обработки директив *препроцессора* C++: include define, ifdef, и др. На этом этапе, в том числе, происходит вставка содержимого файлов указанных в директивах include.
- 2. Преобразование в Ассемблерный код.
- 3. Преобразование в машинный код. В результате создаются *объектные* файлы из всех срр фалов переданных компилятору.

4. **Компоновка**. Компоновщик (линкер) используя *таблицу символов* объединяет объектные файлы и файлы статических библиотек в исполняемый файл.

Таблица символов – это структура данных, создаваемая самим компилятором и хранящаяся в самих объектных файлах. Таблица символов хранит имена переменных, функций, классов, объектов и т.д., где каждому идентификатору (символу) соотносится его тип, область видимости. Также таблица символов хранит адреса ссылок на данные и процедуры в других объектных файлах. Именно с помощью таблицы символов и хранящихся в них ссылок линкер будет способен в дальнейшем построить связи между данными среди множества других объектных файлов и создать единый исполняемый файл из них.

Детальное описание процесса компиляции: en.cppreference.com/w/cpp/language/translation_phases

1.3.4 Компиляция нескольких файлов и статической библиотеки

Предположим, что исходный файл программы разбит на несколько файлов исходного кода:

- main.cpp основной файл, содержит функцию main.
- my unit1.h
- my unit1.cpp
- my unit2.h
- my unit2.cpp

Компиляция:

```
g++ main.cpp my uni1.cpp my unit2.cpp -o my prog.exe
```

Отметим, что имена заголовочных файлов не передаются компилятору потому, что их код будет вставлен препроцессором в те места, где из имена указаны в директивах include.

В программе, компилируемой GCC (MinGW), можно вывести версию последнего самого нового поддерживаемого стандарта [en.cppreference.com/w/cpp/preprocessor/replace]

```
std::cout << __cplusplus << std::endl; // 201703 // (C++17)
```

B MSVC __cplusplus = 119711 вне зависимости от поддерживаемого стандарта [docs.microsoft.com/en-us/cpp/build/reference/zc-cplusplus?view=msvc-160]

1.4 Модули С++20

единица трансляции –

1.5 Динамическая память, указатели и ссылки

1.5.1 Указатели

Указатель (pointer) — переменная, диапазон значений которой состоит из адресов ячеек памяти или специального значения — нулевого адреса (nullptr).

Другими словами: указатель – переменная которая хранит адрес памяти, в который был том числе может хранить адрес памяти, где находится другая переменная. _{директивой}

до C++11 вместо

nullptr использовался
идентификатор NULL,
который был определён
директивой
препроцессора:

##define NULL 0

При объявлении указателя после типа данных, на который он должен указывать, ставится *

```
// объявление указателя на тип int
int * ip;
// объявление указателя на тип float, инициализация пустым адресом
float *fp = nullptr;
```

Основные операции для работы с указателями:

- Взятие адреса. Оператор &; используется при записи адреса переменной в указатель.
- Разыменование. Оператор *
 - обращение к значению, адрес которого записан в указателе

```
// объявления и инициализация указателя
int * ip0 = 0;

// вместо 0 рекомендуется использовать nullptr
// объявление указателя на тип int, инициализация нулевым указателем
int * ip = nullptr;

// Ошибка: любые другие числовые значения для указателя недопустимы
ip = 1235489;

int i = 42;

// в указатель можно записать адрес переменной
// для этого используется оператор взятия адреса &
ip = &i;

// теперь можно обращаться к переменной і через указатель.
// используем разыменование (оператор *) чтобы обратится не к адресу,
// который записан в указателе, а к значению, на которое он указывает
*ip = 8; // переменная і теперь содержит 8
```

```
int *ip2;

// можно записывать в один указатель другой
// если типы данных, на которые они ссылаются, совпадают
ip2 = ip;
// *ip2 = 8
// *ip = 8
// i = 8

*ip2 = 1950;
// *ip = 1950
// i = 1950
```

В итоге имеем одну переменную і типа int, на которую в конце концов указывает два указателя ір и ір2.

Указатель на пустой тип (void *)

В С широко используется указатель на пустой тип (**void** *) для передачи разнородных данных в функции.

```
Пример
                                                                           здесь используется
                                                                           преобразование типов
                                                                           C-style cast; для
int x = 0x0a0b0c0d;
                             // int занимает 4 байта
                                                                           преобразования типов
// небезопасное преобразование типа:
                                                                           одинакового размера (в
void * vp = (void*) &x;
                                                                          том числе в массивы) см.
// теряется инф-я о размере области памяти, на которую указывает ур
// небезопасное преобразование типа:
char *bytes = (char*)vp;
// вывод
cout << (int)bytes[0] << " " << (int)bytes[1] << " "</pre>
         << (int)bytes[2] << " " << (int)bytes[3];
Результат: 13 12 11 10
```

В С++ рекомендуется избегать использование таких указателей, если есть альтернатива.

1.5.2 new и delete

todo: malloc vs new

1.5.3 Ссылки

Ссылки (reference) похожи на указатели, только с разницей

- Ссылка не может менять своё значение
- Следовательно при объявлении ссылки она обязательно инициализируется
- При обращении к значению по ссылке оператор * не требуется
- Для взятия адреса другой переменной оператор & не требуется

Про ссылку можно думать как про другое имя для объекта

См. также параграф 3.2 «Умные указатели» о типах данных, автоматически очищающих выделенную память.

1.5.4 Спецификатор const и указатели

```
Указатель на константу:
```

const int N = 512, M = 1024;

нет разницы, где указывать модификатор const до имени типа или после

Если модификатор **const** стоит справа от указателя, то он относится к указателю.

```
int *const p4 = &N;
```

Подобные объявления нужно читать справа налево: константный (const) указатель (*) на константу (int const).

Следующее объявление можно понимать как константный указатель *const на указатель на целое (int *).

```
int * *const p5 = ...;
```

Это может быть и массивом неизменных указателей (*const), каждый элемент которого может указывать (*) на одно или несколько значений целого типа (int).

см. раздел про динамические массивы

todo: константы + ссылки

1.5.5 Проблемы динамической памяти

перезаписывание указателя

потеря указателя

Утечка памяти (memory leak)

неосвобождённая память

см. также раздел про умные указатели

1.6 Функции

Общий вид определения (definition) функции.

В некоторых компиляторах возраст значения обязателен, если тип возвращаемого значения не пустой (void)

Если возвращаемый тип функции **void**, то после **return** не должно быть никакого выражения.

Формальные параметры -

Фактические параметры -

Возврат значения из функции

```
float foo( int x ) {
    return rand() % x; }

// вызов функции
int y = foo( 100 );

// Функция не возвращающая ничего
void bar( int x) {
    cout << rand() % x << endl; }</pre>
```

Если функция не должна возвращать значений (возвращаемый тип void), то оператор return просто завершает выполнение функции.

```
void foo() {
    cout << "1";
    return;
    // функция никогда не выполнит операцию:
    cout << "2";
}</pre>
```

См. примеры функций с аргументами массивами в разделе 1.8.4 Динамические массивы.

todo: Принцип единственной ответственности

Параметры-ссылки, параметры-значения и параметры-константы

Для фактического параметра переданного "*по значению*" внутри функции создаётся локальная копия. Изменение этой копии (формального параметра) не влияет на фактический параметр.

```
int a = 42;

// x - формальный параметр-переменная
void foo ( int x ) { x = 123; }

foo( a ); // a - фактический параметр
cout << a; // 42

// переменная а не изменилась</pre>
```

Для фактического параметра переданного в функцию "*по ссылке* на самом деле передаётся его *адрес*. Значит изменения формального параметра внутри функции означают изменения фактического параметра.

```
// x - формальный параметр-ссылка

void foo ( int &x ) { x = 123; }

int a = 42;
foo( a ); // a - фактический параметр

cout << a; // 123

// переменная а изменилась
```

Для изменения фактического параметра внутри функции можно сделать формальный параметр не ссылкой, а указателем. Однако это менее удобно.

```
// x - формальный параметр-указатель

void foo ( int *x ) {
    // требуется разыменование
    *x = 123;
}

int a = 42;
foo( &a ); // a - фактический параметр; требует операция обращения к адресу
cout << a; // 123
// переменная а изменилась
```

Но такой способ передачи данных в функцию хорошо подходит для массивов (см. раздел: 1.8.4 Динамические массивы)

Переменные, которые занимают достаточно много памяти (классы, структуры, объединения) стоит передавать по ссылке, чтобы избежать создания их копии при вызове функции.

Параметры-константы. Если такая переменная не должна менять значение внутри ссылки, то используйте модификатор **const**:

```
struct Coordinate{
    double latitude;
    double longitude;
};

void print_coordinate( const Coordinate& c){
    c.latitude = 51;  // οωμδκα!
    cout << c.latitude << ", " << c.longitude;
}

int main(){
    Coordinate c1{-19.949156, -69.633842};
    print_coordinate(c1);
}</pre>
```

Значения параметров по умолчанию

Когда параметр необходим, но функция часто вызывается с определённым его значением, то можно задать для него значение по умолчанию.

```
void foo( int y = 1950 ) {cout << x;}
foo( 123 ); // 123
foo() // 1950</pre>
```

Формальные параметры со значению по умолчанию должны быть последними.

- Используйте для аргументов, значения которых часто принимают одно и то же значение
- Приводите эти аргументы в последнюю очередь
- Не используйте неожиданных значений по умолчанию

Перегрузка функций (function overloading)

Функциям выполняющие одинаковую работу с разными по типу наборами данных можно давать одинаковые имена. Компилятор определит по набору фактических параметров, какая функция должна быть вызвана.

```
void foo(int x){ cout << "Перегрузка";}</pre>
```

```
void foo(float x){ cout << "Overloading";}

void foo(int x, int y){ cout << "Überanstrengung!!!";}

foo(20);  // Περετργ3κα
foo(20.0);  // Overloading
foo(1, 2);  // Überanstrengung!!!
foo(1, 2.0) // Überanstrengung!!!</pre>
```

- Функциям выполняющим одинаковую работу с разными данными можно давать одинаковые имена
- Перегруженные функции должны отличатся по типу и количеству параметров
- Перегруженные функции не отличаются по типу возвращаемого значения
- При компиляции перегруженным функциям даются разные имена.
- Какая из перегруженных функций будет вызвана также определяется на этапе компиляции

1.6.1 Перегрузка функций

Функциям выполняющие одинаковую работу с разными по типу наборами данных можно давать одинаковые имена. Компилятор определит по набору фактических параметров (но не по типу возвращаемого значения), какая функция должна быть вызвана.

```
void foo(int x){ cout << "Περετργ3κα";}
void foo(float x){ cout << "Overloading";}
void foo(int x, int y){ cout << "Überanstrengung!!!";}

foo(20);
// Περετργ3κα
foo(20.0); // Overloading
foo(1, 2); // Überanstrengung!!!
foo(1, 2.0) // Überanstrengung!!!</pre>
```

Функциям выполняющим одинаковую работу с разными данными можно давать одинаковые имена.

Перегруженные функции должны отличатся по типу и количеству параметров.

Перегруженные функции не отличаются по типу возвращаемого значения.

При компиляции перегруженным функциям даются разные имена. Решение о том, какой вариант функции должен быть вызван

Какая из перегруженных функций будет вызвана также определяется на этапе компиляции.

todo: Алгоритм поиска реализации перегруженной функции.

1.6.2 Значения параметров по умолчанию

1.6.3 inline-функции

...

1.6.4 static функции и локальные переменные

static функции доступны только в своей единице трансляции (срр файле, в котором приведены или в который включились директивой include). Если одна и та же статическая функция определена в разных срр файлах, то при компиляции не возникнет ошибка множественного определения (multiple definition).

Статическая локальная переменная хранится как глобальная переменная, инициализируется при первом вызове своей функции, сохраняет свою локальную область видимости.

1.6.5 Спецификатор constexpr

constexpr -

1.6.6 Выводы и рекомендации

- Функции делают возможным алгоритмическую декомпозицию
- Функции делают возможным повторное использование кода
- Для того чтобы пользоваться функцией не нужно обладать минимальными знаниями о её внутреннем устройстве
- Легче повторно использовать функцию служащую одной цели
- Следует стремится к чистоте функций
- Стоит избегать использования глобальных переменных в функциях
- Параметры, которые дорого копировать следует передавать по ссылке

• Параметры, переданные по ссылке, но не изменяющиеся в теле функции нужно делать константными.

Документирующие комментарии

```
// плохо:
// функция вычислений; возвращает float
float bmi(float m, float h);
// лучше:
// вычисляет индекс массы тела
float bmi(float m, float h);
// хорошо:
// вычисляет индекс массы тела по массе (m) в кг. и росту (h) в метрах
// бросает исключение ivalid argument если h==0
float bmi(float m, float h);
// отлично (машинно-читаемый комментарий для
// системы документирования Doxygen):
/// вычисляет индекс массы тела;
/// бросает исключение ivalid_argument если h==0
/// \param m масса тела в кг.
/// \param h рост в метрах
/// \return индекс массы тела
float bmi(float m, float h);
```

todo: Doxygen – система документирования для языков C++, Cu, Python, Java, C#, PHP и др.

См. также параграф Самодокументируемый код в [2].

См. также параграф 2.2 Функции.

1.7 Пространства имён (namepaces)

Объявление пространства имён:

```
namespace имя {
...
}
```

todo: Безымянные пространства имён

Оператор **using** может использоваться для включения указанного пространства имён в текущее пространство имён.

Синтаксис использования:

```
using ums_пu::member_name;
// теперь можно обращаться к только member_name непосредственно,
// без префикса имя_пи::

using namespace ums_пu;
// теперь можно обращаться ко всем именам, описанным в имя_пи, непосредственно,
// без префикса имя_пи::
```

Одно и то же пространство имён можно дополнять сколько угодно раз. Как в рамках одного файла исходных кодов, так и нескольких. Пример такого кусочного объявления — пространство имён std. Оно описано в разных файлах, например vector и string.

Обычно одно и то же пространство имён описывается в логически соответствующих друг другу заголовочном и срр файле.

geometry.h

```
namespace geometry{
    /// вычисляет площадь треугольника по сторонам
    float triangle_square(float a, float b, float c);

    // ...
}

geometry.cpp

namespace geometry{
    /// вычисляет площадь треугольника по сторонам
    float triangle_square(float a, float b, float c){
        // определение функции
    }
}
```

Аналогично определить члены пространства имён можно и указывая перед имя самого пространства имён: geometry.cpp

```
/// вычисляет площадь треугольника по сторонам

float geometry::triangle_square(float a, float b, float c){
    // определение функции
}
```

такой способ используется при определении методов класса, где вместо имени простого пространства имён используется имя класса

Одинаковые переменные, объявленные в разных пространствах имён (даже в одном файле) не создают конфликта имён.

Пространство имён помогают логически объединить схожие типы, функции константы и переменные. В одной файле может быть описано сколько

угодно пространств имён, в том числе сложенных в друг друга. Это поможет отделить разные по смыслу участки кода.

1.8 Массивы

1.8.1 Статические массивы

```
// объявление массива
int a[128];
int b[256];

// обращение к элементу по его индексу
a[0] = 42; // нумерация с нуля
```

Тип таких массивов описывается как Type[N], т.е. содержит количество элементов. Два статических массива с одинаковым типом элементов но разным их количеством (а и ь в примере) имеют разный тип.

Массивы, как и переменные остальных типов в С++, автоматически не инициализируются. Но можно вручную задать значения всех элементов:

```
int a[128] = {0}; // инициализация всего массива нулями int b[5] = {1,2,3}; // результат инициализации: 1, 2, 3, 0, 0 int days[12] = {31, 27, 31, 30, 31, 30, 31, 30, 31, 30, 31}; // если задаётся список значений, то их количество можно не указывать int days1[] = {31, 27, 31, 30, 31, 30, 31, 30, 31, 30, 31};
```

Обращение к несуществующим индексам массива (например a[128]) не обязательно в стандарте регламентируется как неопределённое поведение (undefined behavior, UB). Программа может аварийно завершится или продолжить выполнение с непредсказуемыми последствиями. Например, если в оперативной памяти после массива а будет располагаться массив b, то его первый элемент изменится:

```
int a[8] = {0};
int b[8] = {0};
// выстреливаем себе в ногу:
a[8] = 111;
b[-1] = 222;
cout << a[7] << "; " << b[0]; // 222; 111</pre>
```

Хорошей практикой считаемся задавать размер массива не через *магическое число* (magical number), а с помощью константы. Это упрощает модификацию и пониманию кода.

```
// храните размер статического массива в константе unsigned const N = 128;
float t[N];
t[N-1] = 36.6; // последний элемент массива

for (int i = 0; i < N; i++)
    cout << t[i];
```

Переменные, используемые для работы со статическими массивами, фактически являются указателями. Поэтому прямое обращение к ним выдаст адрес, где находится первый элемент массива

```
cout << "days_addr = " << days_c << "\n"; // 0x7ffc364faf90
// смещение на один элемент (int, 4 байта) относительно адреса начала массива
cout << "days_addr+1 = " << days_c+1 << "\n"; // 0x7ffc364faf94
```

Доступна и операция разыменования

```
cout << *days_c; // 31
cout << *(days_c+1); // 27
// аналогично:
cout << days_c[1]; // 27
```

1.8.2 Массив из символов

В C++ строки представляются массивом из символов. Но для удобства записи этот массив можно инициализировать строковым литералом (значением), не перечисляя отдельные символы через запятую:

```
char str1 [] = "Hello";
```

В символьных массивах принято обозначать конец строки символом с кодом 0 (обозначается '\0'). При инициализации строкой этот служебный символ добавляется в строку автоматически. Если в конце не поставлен ноль, то поведение программы при обращении к такому массиву не определено (undefined behavior).

Массив из примера выше можно инициализировать посимвольною:

см. также класс string.

1.8.3 Функции для работы с массивами

Функции копирования (strcpy) и др. функции преобразования строковых массивов: en.cppreference.com/w/cpp/header/cstring.

Функции копирования и перемещения участков памяти, объявленные в файле cstring:

```
void* memcpy( void* dest, const void* src, std::size_t count );
void* memmove( void* dest, const void* src, std::size_t count );
```

dest – приёмник, src – источник, count – количество байт для копирования или перемещений. Эти функции обеспечивают наилучшую производительность для своих задач.

Пример копирования данных их массива arr1 в arr2:

```
float arr1[] = {1,2,3,4,5,6,7,8,9,0};
float arr2[10] {99};

memcpy(arr2, arr1, 10 * sizeof(float));

for (unsigned i = 0; i < 10; i++)
        cout << arr2[i] << " ";</pre>
```

Результат работы программы:

```
1 2 3 4 5 6 7 8 9 0
```

1.8.4 Динамические массивы

Адрес начала динамического массива в памяти хранится указателе (как и для одиночного значения), а память под них выделяется оператором **new** в *куче* во время выполнения программы (динамически).

Пример.

```
a[0] = 42;
int x = a[2];
// аналогично
x = *(a+2);

// после окончания работы с массивом обязательно освобождаем его память
delete[] a;
delete[] b;
delete[] c;
```

При том, что в C++ нельзя через указатель узнать количество памяти занимаемой массивом, операция **delete**[] а освободит ровно такое количество памяти, какое занимает весь массив. Это количество изначально сохраняется при вызове оператора **new** и хранится в памяти прямо перед данными.

В отличии от одиночных значений, хранящихся в куче, освобождать память занимаемую массивом нужно оператором **delete**[] a;. Вызов оператора **delete** для массива не считается синтаксической ошибкой, но освободит только память занимаемую указателем.

В статическом массиве размер был частью типа, поэтому было возможно с помощью оператора **sizeof** вычислить размер массива. Так как переменная динамического массива не отличима от указателя, для динамических массивов аналогичное вычисление размера невозможно:

Поэтому для каждого динамического массива программист должен сохранять размер в отдельной переменной.

Указатель vs динамический массив vs статический массив из указателей:

```
int a;

// указатель
int *y;
y = &a

// статический массив из 128 указателей:
int * x[128];
```

```
x[0] = &a;
x[1] = new int; // выделение памяти под одно значение типа int
// динамический массив
int *z = new int[128]
```

Передача массивов в функции. Статические массивы в функции передавать проблематично, из-за того что их тип содержит информацию о количестве элементов. А значит функция будет способна принимать массив только одного фиксированного размера.

Динамические массивы в функции передаются как указатели. При этом нужно передавать размер через отдельный параметр.

```
void array_rnd_fill(int* arr, unsigned n){
    for (unsigned i = 0; i<n; i++)
        arr[i] = 1;  }

int sum_array(const int * arr, unsigned n){
// const int * -- массив из констант, запрещает изменение элементов массива
    int s = 0;
    for (unsigned i = 0; i<n; i++)
        s += arr[i];
    return s; }

int main(){
    unsigned n = 20;
    int *a = new int[ n ];
    array_rnd_fill(a, n);
    cout << sum_array(a, n);
}</pre>
```

Хорошая практика: передавать в функцию массив, где он не должен изменятся, через константный формальный параметр. Он запретит непреднамеренное изменение элементов массива внутри функции.

При передаче массива в функцию array_rnd_fill, формальный параметр arr будет содержать копию адреса, где расположен массив.

```
void foo(int* arr, unsigned n){
    // изменение элементов массива -- это изменение фактического параметра
    arr[0] = 10;
    *(arr+1) = 20;    // изменение второго элемента массива
    arr = nullptr;    // изменение формального параметра массива (адреса)
}
int main(){
```

Возврат массивов из функций

```
// функция выстреливает в ногу
int* bar(){
    int arr[128];
    // логическая ошибка: возврат указателя на локальную переменную
    // после завершения функции память, на которую указывает arr освободится
    return arr;
}
// возвращает массив случайного размера п
// не выстреливает в ногу
int* foo(unsigned &n){
    n = rand()+1;
    int* arr = new int[n];
    return arr;
}
int main(){
    unsigned n;
    int *a = foo(n);
    int *b = bar();
    // b ссылается на область памяти, которая уже освобождена
    b[0] = 42;
                  // Undefined behavior!
}
```

Двумерные массивы

```
int main(){
    const unsigned N = 3;
                                               // число строк
    const unsigned M = 4;
                                                   // число столбцов
    // выделение памяти под двумерный массив:
    int * *matr = new int*[N]; // память под массив указателей (массивов)
    // выделение памяти под двумерные массивы (строки матрицы)
    for (int i = 0; i < N; ++i)</pre>
        matr[i] = new int[M]; // память под отдельные массивы
        // matr[i] можно воспринимать как строки матрицы
    print_matr(matr, N, M);
    // освбождение памяти
    for (int i = 0; i < N; ++i)</pre>
        delete[] matr[i];
    delete[] matr;
    return 0;
}
```

1.9 Устройство памяти программы

- Статическая память (data на рис.)
- Динамическая память (heap, куча)
- Автоматическая паять (stack, стек)
- Сегмент кода (text на рис.)

не стоит путать область памяти *стек*, с одноимённым типом данных и стеком процессора

access violation, segmentation fault -

Стек вызовов (call stack) – ...

1.10 Параметры командной строки

Полный вариант объявления функции main имеет параметры: количество аргументов командной строки (argc) и массив из строк (argv), который хранит эти аргументы.

```
int main(int argc, char* argv[])
```


Рис. 1.4. Устройство памяти программы

Задание значений параметров командной строки для проекта Visual Studio: project, choose Properties, go to the Debugging section – there is a box for "Command Arguments"

todo: ...

2 Продвинутые возможности языка

2.1 Обработка исключительных ситуаций

Обработка исключительных ситуаций (exception handling) – механизм языков программирования, предназначенный для описания реакции программы на ошибки времени выполнения и другие возможные проблемы (исключения), которые могут возникнуть при выполнении программы и приводят к невозможности (бессмысленности) дальнейшей отработки программой её базового алгоритма.

Примеры исключительных ситуаций

- Не выполнено предусловие например функция ожидает в параметре положительное вещественное число, но передано отрицательное
- Невозможно создать объект (завершить выполнение конструктора)
- Ошибки типа "индекс вне диапазона"
- Невозможно получить ресурс например нет доступа к файлу (файл удалён или не хватает прав доступа)

Исключительные ситуации можно обрабатывать используя коды возврата из функции:

```
/// сортирует массив; возвращает. 1 если а - пустой указатель
int sort_array(float *a, unsigned n){
   if (a == nullptr) // проверка предусловий
        return 1; // если возникла искл.ситуация возвратим 1
   // do sort
   return 0; // если всё хорошо, возвращаем 0
}
//...
```

```
int main(){
    float *data = nullptr;

    // ...

    int res = sort_array(data, n);
    // обработка кода возврата:
    if ( res != 0 ){
        cout << "Ошибка!";
        }
    // ...
}</pre>
```

Однако использование кодов возврата не всегда возможно или оправдано. Если функция должна возвращать другие данные тогда нужно либо менять возвращаемый тип либо предусмотреть другой способ сообщения об исключительной ситуации внутри функции - например через параметр. Если исключительная ситуация и возможность её обработки возникают на разном уровне вложенности вызова функций:

```
int foo(float x){
    // ТУТ МОЖЕТ ВОЗНИКНУТЬ ИСКЛЮЧЕНИЕ
}
void bar(){
    //...
    foo();
    //...
}
void baz(){
    //...
    bar();
    // обработка искл. ситуации должна быть здесь
    //...
}
```

Пример 1. Приведём пример программы, которая вычисляет итоговую сумму вклада по формуле сложных процентов. Вынесем вычисления в отдельную функцию. Заранее нельзя быть уверенным в том, что эта функция всегда будет вызвана с корректными значениями аргументов. Поэтому предварим вычисления проверкой предусловий. Согласно принципу единственной ответственности функция не должна решать иных задач, кроме вычисления. Поэтому в ней не стоит сообщать пользователю (например выводом сообщения на экран) о возможной исключительной ситуации.

```
/// возвр. сумму вклада после t начислений процента p, для исходной суммы s
float compound_interest(float s, float p, unsigned t){
    // проверка предусловий:
    if (s <= 0) throw 1;
    if (p <= 0) throw 2;
    if (t == 0) throw 3;
```

```
// вычисления:
return s * pow(1 + p/100, t);
}
```

Цифрами 1,2 и 3 обозначены исключительные ситуации, которые могут возникнуть внутри функции.

Обработку этих исключительных ситуаций опишем в той части программы, где понятно как реагировать на исключительную ситуацию. В этом примере, это участок кода где можно вывести сообщение пользователю:

```
#include <iostream>
#include <cmath>
using namespace std;
int main(){
    float S, S0, percent, tn;
    // ввод данных...
    // ...
    try {
        // защищённый блок кода
        S = compound interest(S0, percent, tn);
        std::cout << "compound interest =" << S << "\n";</pre>
    } catch (int e) {
        // блок обработки исключительных ситуаций
        switch (e) {
            case 1: cout << "Error: S must be greater then zero"; break;</pre>
            case 2: cout << "Error: p must be greater then zero"; break;</pre>
            case 3: cout << "Error: t must be greater then zero"; break;</pre>
        }
    }
    // ...
}
```

Если в функции compound_interest возникнет исключительная ситуация, например из-за отрицательного значения аргумента р, то её выполнение прервётся в месте вызова **throw** 2. Выполнение основной программы в секции try тоже прервётся, в месте вызова функции compound_interest. Выполнение перейдёт в секцию **catch**. В переменную е будет записано созданное оператором **throw** значение 2. Наконец, будет выведено соответствующее сообщение на экран.

Если бы оператор **throw** был вызван вне секции **try**, то программа бы завершилась аварийно:

terminate called after throwing an instance of 'int'

Улучшение примера. Обозначение исключительных ситуаций числами требует от программиста документирования и запоминания их смысла, усложняет понимание программы. Одно из решений – создание перечислений (enum) для обозначения таких ситуаций. Но предпочтительнее использовать специальные типы данных [en.cppreference.com/w/cpp/error] из стандартной библиотеки, описанный в заголовочном файле (stdexcept).

Для рассматриваемого примера подходит тип (invalid_argument). Он, как и другие аналогичные типы, может содержать текстовое сообщение, поясняющее исключительную ситуацию. Значение этого типа данных создаётся вызовом одноимённо функции.

Приведём пример модифицированной программы:

```
#include <iostream>
#include <stdexcept>
#include <cmath>
using namespace std;
/// возвр. сумму вклада после t начислений процента p, для исходной суммы s
float compound_interest(float s, float p, unsigned t){
    if (s <= 0) throw invalid_argument("S <= 0");</pre>
    if (p <= 0) throw invalid argument("p <= 0");</pre>
    if (t == 0) throw invalid_argument("t = 0");
    return s * pow(1 + p/100, t);
}
int main(){
    float S, S0, percent, tn;
    // ввод данных...
    try {
        // защищуный блок кода
        S = compound_interest(S0, percent, tn);
        std::cout << "compound interest =" << S << "\n";</pre>
    } catch (const invalid_argument &e) {
        // блок обработки исключительных ситуаций
        std::cout << "Error: " << e.what();</pre>
    }
    // ...
}
```

Хорошей практикой считается ловить брошенные значения в константные ссылочные переменные: const invalid_argument &e. Благодаря ссылке, в блоке catch вместо создания копии брошенного значения, будет записан только его адрес. Модификатор const обеспечит дополнительную строгость программе, запретив непреднамеренное изменение брошенного значения.

Функция what возвращает строковое значение, записанное в значение типа invalid_argument.

Пример обработки исключений при консольном вводе

Алгоритм выбора подходящего обработчика catch

• • •

Вызов throw внутри обработчика исключительных ситуаций throw

• • •

Производительность и throw

• • •

2.1.1 Условный оператор, try ... catch, assert

Оператор throw совместно с операторами try...catch стоит использовать только если исключительная ситуация (и соответственно вызов throw) и код её обработки должны находится на разных уровнях вложенности вызова функций. Т.е. исключительная ситуация может возникнуть внутри функции (или внутри функции, которая вызвана в другой функции и т.д.), а обработка по логике алгоритма возможна только вне этой функции. В остальных случаях для обработки исключительных ситуаций стоит использовать условный оператор.

Oператор assert используется для автоматических тестов, т.е. проверки корректности кода, а не данных.

2.2 Функции

2.2.1 Статические локальные переменные

...

2.2.2 Переменное число параметров функции (variadic arguments)

- Документация: en.cppreference.com/w/cpp/language/variadic_arguments
- Описание и примеры: ravesli.com/urok-111-ellipsis-pochemu-ego-ne-sleduet-ispolzovat/

2.2.3 Указатель на функцию

Общий синтаксис описания типа указателя на функцию:

```
return_type (*) (arg1_type, arg2_type);
```

Например, функциональный тип указывающий на любую функцию, которая принимает один аргумент типа int и возвращает значение типа float:

```
float (*) (int);
```

Для упрощения записи подобных типов создают синонимы

```
using FuncIntFloat = float (*) (int);
// FuncIntFloat -- синоним
```

Эти функции соответствуют типу FuncIntFloat:

```
float sqrt(int x){return pow(x,0.5);}

float foo(int x){return x*x * 22.0/7; }

// адреса функций можно записать в переменные типа FuncIntFloat
FuncIntFloat sq_root = &sqrt;
FuncIntFloat bar = &foo;
```

Функциональный тип может быть аргументом другой функции

```
/// выводит элементы массива, преобразуя их функцией f
void array_apply_n_print(int *arr, unsigned n, FuncIntFloat f){
```

```
for (unsigned i=0; i<n; i++) {</pre>
        cout << f(arr[i]) << " ";
    }
}
int main()
{
        unsigned N = 8;
    int* a = new int[N] {1,2,3,4,5,6,7,8};
    cout << endl;</pre>
    array_apply_n_print(a, N, sqrt);
    cout << endl;</pre>
    array_apply_n_print(a, N, foo);
        cout << endl;</pre>
    // вместо адреса созданной функции, можно передать анонимную функцию
    array_apply_n_print(a, N, [](int x)->float{return x;} );
    // функция \lceil \rceil (int x)->float{return x;} возвращает свой аргумент неизменным
    cout << endl;</pre>
    array_apply_n_print(a, N, [](int x)->float{return x*x;} );
    // функция \lceil \rceil (int x)->float{return x*x;} возвращает квадрат числа
    return 0:
}
Вывод программы:
1 1.41421 1.73205 2 2.23607 2.44949 2.64575 2.82843
0.318182 1.27273 2.86364 5.09091 7.95455 11.4545 15.5909 20.3636
1 2 3 4 5 6 7 8
1 4 9 16 25 36 49 64
2.2.4 Перегрузка операторов (operator overloading)
Оператор – это функция со специальным, символьным именем.
Операторы доступные для перегрузки: + - *
Для сложения комплексных чисел описанных структурой
struct ComplexNumber{
    double re, im;
};
можно создать отельную функцию:
/// возвращает результат сложения комплексных чисел
ComplexNumber complex_plus(const ComplexNumber& a, const ComplexNumber& b){
    ComplexNumber c;
```

```
c.re = a.re + b.re;
c.im = a.im + b.im;
return c; }
```

Тогда вычисления с этой функцией могут выглядеть так:

```
ComplexNumber c1{1,2}, c2{3,-6};
ComplexNumber s1 = complex_plus(c1, c2);
```

Однако более естественной была бы запись сложения с оператором +. Но оператор сложения не имеет реализаций для работы с нестандартным типом ComplexNumber.

Создадим новую функцию вместо старой – оператор сложения, заменив только название старой функции на обозначение оператора сложения: **operator** +.

```
ComplexNumber operator +(const ComplexNumber& a, const ComplexNumber& b){
   ComplexNumber c;
   c.re = a.re + b.re;
   c.im = a.im + b.im;
   return c; }
```

Первый параметр это функции – левый операнд, второй – правый операнд. Тогда вычисления можно записывать так:

```
ComplexNumber c1\{1,2\}, c2\{3,-6\};
ComplexNumber s1 = c1 + c2;
```

Таким образом, добавлена новая реализация оператора сложения, помимо существующих реализаций для стандартных типов вроде float или int. Вызов оператора сложения отличается от аналогичной функции только способом записи операндов при вызове.

2.2.5 Анонимные функции

```
[захват](параметры) mutable исключения атрибуты -> возвращаемый тип {тело}
```

Захват - глобальные переменные используемые функцией (по умолчанию не доступны),

параметры - параметры функции; описываются как для любой функции, **mutable** - указывается, если нужно поменять захваченные переменные,

исключения - которые может генерировать функция, **атрибуты** - те же что и для обычных функций.

Возведение аргумента в квадрат

```
[](auto x) {return x*x;}
```

Сумма двух аргументов

```
[](auto x, auto y) {return x + y;}
```

Возведение аргумента в квадрат

```
[](auto x) {return x*x;}
```

Сумма двух аргументов

```
[](auto x, auto y) {return x + y;}
```

Вывод в консоль числа и его квадрата

```
[](float x) {cout << x << " " << x*x << endl;}
```

Тело лямбда-функции описывается также как и обычной функции

```
[](int x) { if (x % 2) cout << "H"; else cout << "4";}}
```

Использование захвата.

- = захватить все переменные.
- & захватить переменную по ссылке.

Чтобы изменять переменную захваченную по ссылке нужно добавить **mutable** к определению функции.

```
float k = 1.2;
float t = 20;
```

```
[k](float x) {return k*x;}
```

```
[k,&c](float x) mutable {if (k*x > 0) c = 0; else c=k*x;}
```

Когда использовать лямбда функции?

Когда не требуется объявлять функцию заранее.

Функция очень короткая.

Функция нужна один раз.

Функцию лучше всего описать там, где она должна использоваться.

Примеры использования decltype и auto для указателей на функции

...

std::function

• • •

2.2.6 Автоматическое тестирование

Программист должен быть уверен в корректности программы. Тестирование всех функций – один из способов повысить качество кода. Тестирование большинства функций можно автоматизировать. Выполнять эти функции (на этапе компиляции или на этапе запуска программы) с заранее заданными параметрами и сравнивать их результат с заранее вычисленным и гарантированно правильным результатом.

Для примера создадим тесты для функции вычисления среднеквадратичного отклонения выборочных данных: $std = \sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-m)^2}$, где m – среднее значение выборки X.

Заранее подготовим тестовые данные:

```
\begin{split} x_1 &= (1,2,3,4,5,6), std = 1.707825127659933 \\ x_2 &= (216.68167942, -472.1980655, -155.84417437, 641.71416684, -330.48466343, \\ 426.13143811, -565.02650103, 730.202725, -655.47498993, -336.26766006), \\ std &= 486.51128339480533 \\ x_3 &= (42), std &= 0 \\ x_4 &= (100, 200), std &= 50 \end{split}
```

Тестируемая функция:

```
/// возвращает с.к.о значений из массива а размером n
double array_std(double *a, unsigned long n){
    double s = 0.0;
    double m = 0.0;

// вычисление среднего значения
    for (unsigned long i = 0; i < n; i++) m += a[i];
    m /= n;

for (unsigned long i = 0; i < n; i++) s += pow(a[i] - m,2);
    s = sqrt(s/n);

return s; }</pre>
```

Из-за погрешностей в вычислениях, результат функции и ожидаемый результат могут незначительно отличаться. Например в десятой значащей цифре. Поэтому прямое сравнение этих двух вещественных оператором == скорее всего даст отрицательный результат. Будем считать, что функция выдала правильный результат если он по модулю отличается от ожидаемого не более чем на заранее заданную величину ε . Эту величину будем считать допустимой ошибкой и положим равной 10^{-8} .

Тогда сравнение будет иметь вид

```
const double EPS = 10^{-8};
abs( f - 1.707825127659933 ) < EPS</pre>
```

Для тестирования вместо обычного условного оператора используем макрос assert. Если переданное в макрос логическое выражение ложно, то он аварийно завершает программу и выводит диагностическое сообщение. Например:

```
#include <cassert>
// ...
assert( 2+2 == 5);
```

Сообщение в консоли об ложном условие в строке 5 файла main.cpp

```
main: main.cpp:5: int main(): Assertion `2+2 == 5' failed.
Aborted (core dumped)
```

Пример 1. Тестирования функции:

```
#include <iostream>
#include <cassert>
#include <math.h>
#include "stats.h" // файл с тестируемой функцией array_std
using namespace std;
int main(){
    const double EPS = 10E-8; // допустимая ошибка
    // тестовые данные:
    double *x1 = new double[6] {1,2,3,4,5,6}; // std = 1.707825127659933
    double *x2 = new double[10] {216.68167942, -472.1980655, -155.84417437,
                                 641.71416684, -330.48466343, 426.13143811.
                                 -565.02650103, 730.202725, -655.47498993,
                                 -336.26766006}; // std = 486.51128339480533
                                                // std = 0
    double *x3 = new double[10] {42};
    double *x4 = new double[10] \{100, 200\};
                                                // std = 50
    // тестирование:
    assert( abs(array_std(x1,6) - 1.707825127659933) < EPS );
    assert( abs(array std(x2,10) - 486.51128339480533) < EPS );
    assert( abs(array std(x3,1)) < EPS );</pre>
    assert( abs(array_std(x4,2) - 50.0) < EPS );
    // если все тестовые случаи завершились успешно, то:
    cout << "Test array_std OK\n";</pre>
}
```

Тестирование должно выполнятся автоматически при каждом запуске программы, пока она находится в разработке, и не должен требовать от программиста или пользователя дополнительных действий. Вызов тестовых функций должен предварять код основной логики программы. Ведь если функции в программе работают неправильно, то скорее всего не имеет смысла выполнять программу дальше. Тестовые данные должны быть как можно разнообразнее, в том числе затрагивать крайние случаи. Имеет смысл вынести тестирующий код в отдельную функцию, отдельный файл исходного кода.

Пример 2. Тестирования функции:

```
// main.cpp:
#include <iostream>
#include <cassert>
#include <math.h>
#include "stats.h"
#include "test.h" // файл с функцией тестирования
using namespace std;
int main(){
    const double EPS = 10E-8; // допустимая ошибка
    // тестовые данные:
    double *x1 = new double[6] {1,2,3,4,5,6}; // std = 1.707825127659933
    double *x2 = new double[10] {216.68167942, -472.1980655, -155.84417437,
                                 641.71416684, -330.48466343, 426.13143811,
                                 -565.02650103, 730.202725, -655.47498993,
                                 -336.26766006}; // std = 486.51128339480533
                                                 // std = 0
    double *x3 = new double[10] {42};
    double *x4 = new double[10] {100, 200};
                                                // std = 50
    // тестирование:
    assert( abs(array_std(x1,6) - 1.707825127659933) < EPS );
    assert( abs(array_std(x2,10) - 486.51128339480533) < EPS );
    assert( abs(array_std(x3,1)) < EPS );</pre>
    assert( abs(array_std(x4,2) - 50.0) < EPS );
    // если все тестовые случаи завершились успешно, то:
    cout << "Test array_std OK\n";</pre>
}
todo: выключение assert
todo: assert с выводом сообщения (и оператор,)
todo: TDD
Итоговый пример тестирования функции:
// test.h:
#include <assert.h>
#include <iostream>
#include "stats.h"
/// тестирует функцию array_std
void test_array_std(){
    const double EPS = 10E-8; // допустимая ошибка
    // тестовые данные:
    double *x1 = new double[6] {1,2,3,4,5,6};
                                               // std = 1.707825127659933
    double *x2 = new double[10] {216.68167942, -472.1980655, -155.84417437,
                                 641.71416684, -330.48466343, 426.13143811,
                                 -565.02650103, 730.202725, -655.47498993,
```

```
-336.26766006}; // std = 486.51128339480533
                                                  // std = 0
    double *x3 = new double[10] {42};
    double *x4 = new double[10] \{100, 200\};
                                                  // std = 50
    static_assert( abs(array_std(x1,6) - 1.707825127659933) < EPS );</pre>
    assert( abs(array std(x2,10) - 486.51128339480533) < EPS );
    assert( abs(array_std(x3,1)) < EPS );</pre>
    assert( abs(array_std(x4,2) - 50.0) < EPS );
    std::cout << "Test array_std OK\n";</pre>
}
// stats.h:
#pragma once
/// возвращает с.к.о значений из массива а размером п
double array_std(double *a, unsigned long n);
// stats.cpp:
#include <math.h>
/// возвращает с.к.о значений из массива а размером п
double array_std(double *a, unsigned long n){
    double s = 0.0;
    double m = 0.0;
    // вычисление среднего значения
    for (unsigned long i = 0; i < n; i++)
        m += a[i];
    m /= n;
    for (unsigned long i = 0; i < n; i++)</pre>
        s += pow(a[i] - m, 2);
    s = sqrt(s/n);
    return s;
}
// main.cpp:
#include <assert.h>
#include <math.h>
#include "test.h"
#include "stats.h"
int main(){
    // вызов тестирующей функции
    test_array_std();
    // основной алгоритм программы:
    // ...
}
```

См. также static_assert, google test, тестовый проект в VS

Ссылки

- 1. О тестировании: github.com/VetrovSV/OOP/blob/master/unit_test/unit_test.md
- 2. Совершенный код (2-е издание, 2005 г.) Стив Макконнел

2.3 Шаблонные функции

Документация: en.cppreference.com/w/cpp/language/function template

Обобщённое программирование – todo

Статический полиморфизм – todo

Синтаксис определения шаблонной функции:

```
template < parameter_list >
function_declaration
```

описание шаблонных типов может быть на оджной строке с заголовком функции, но это ухудшает читаемость

parameter_list - шаблонные параметры;

При описание шаблонного типа возможно указывать:

```
typename - todo
```

class - todo

Пример объявления шаблонной функции:

```
// шаблонная функция

template < typename Element >

Element sum_array(Element* arr, unsigned n){

Element sum = 0;

for (unsigned i = 0; i < n; ++i)

sum += arr[i];
}
```

часть стандартной библиотеки STD – Standard Template Library содержит большое количество шаблонных функци и классов

Пример вызова шаблонной функции:

```
int main() {
    unsigned N1 = 6;
    int *arr1 = new int[N1] {42, 43, 44, 45, 46, 47};

    unsigned N2 = 4;
    double *arr2 = new double[N2] {5./7, 5./11, 5./13, 5./17};
```

```
// компилятор создаст вариант функции с Element = int
int S1 = sum_array(arr1, N1);

// компилятор создаст вариант функции с Element = double
cout << sum_array(arr2, N2) << "\n";

// тип для шаблона можно указывать явно:
cout << sum_array<double>(arr2, N2);

unsigned N3 = 128;
Point *arr3 = new Point[N3];

// ошибки: невозможно инициализировать значение типа Point нулём
// оператор + не определён для типа Point
// невозможно создать вариант функции с Element = Point:
Point S3 = sum_array(arr3, N3);
```

Шаблонный тип данных несовместимый с функцией создаёт ошибку компиляции

```
struct Point{
    float x;
    float y;
};

int main() {
    unsigned N3 = 128;
    Point *arr3 = new Point[N3];

    // ошибки: невозможно инициализировать значение типа Point нулём
    // оператор + не определён для типа Point
    // невозможно создать вариант функции с Element = Point
    Point S3 = sum_array(arr3, N3);
}
```

Если для данного типа компилятор не может реализовать функцию, то можно определить *специализированную шаблонную функцию*:

```
template <>
Point sum_array(Point* arr, unsigned n){
   Point sum {0,0};
   for (unsigned i = 0; i < n; ++i) {
        sum.x = sum.x + arr[i].x;
        sum.y = sum.y + arr[i].y;
   }
   return sum; }</pre>
```

Компилятор просматривает все вызовы шаблонной функции, и если код сложения (о перегрузке функции позволяет подставить указанный в шаблоне тип данных, то со- операторов см. 2.2.4).

проблему перегрузки функции можно решить ещё и определив конструктор преобразования для типа Point, чтобы операция Point sum = 0; стала возможной (о конструкторах преобразования см. раздел 4.3.1) и создать реализацию оператора сложения (о перегрузке операторов см. 2.2.4).

здаётся функция с данным типом. Если функций больше одной, то они будут перегружены.

Такая генерации функций возможна только если функция определена в той же единице трансляции (срр файле), где происходит вызов. Связывание же скомпилированных файлов происходит на последнем этапе компиляции, до этого компилятор обрабатывает срр файлы и библиотеки практически независимо.

Таким образом Шаблонные функции могут быть объявлены только в том же месте, где определены, т.е. в заголовочных файлах, которые, в конце концов, включаются в срр файлы где вызываются.

Если шаблонная функции не вызвана, то и не создаётся ни одного варианта этой функции.

Возможно описать шаблонную функцию с несколькими шаблонными типами, в том числе вложенными.

См. также раздел 4.4 Шаблонные классы.

2.4 Ассемблерные вставки

Общий синтаксис вставки ассемблерного кода для компилятора MSVC:

```
__asm {
    asm_code
};
Пример:
#include <iostream>
int main()
    int x = 42;
    short y = 100;
    __asm
        mov x, 10
        mov ax, 99
        mov y, ax
    }
    std::cout << x << "\n";
                                // 10
    std::cout << y << "\n";
                                // 99
}
```

пример приведён для проекта MSVC, который компилируется для процессоров x86; используется Intel-синтаксис ассемблерного кода (см. также AT&T синтаксис)

3 Стандартная библиотека

Стандартная библиотека C++ содержит многое, что необходимо для хранения и обработки данных (динамический массив, список, и т.д.), для работы с файлами, сетью, потоками и др. Модули для создания приложений с GUI в состав библиотеки не входят.

Набор классов и функций ...

- для хранения данных контейнеры (строки, список, динамический массив, словарь, ...)
- для обработки данных алгоритмы (сортировка, поиск, поэлементная обработка, ...)
- для ввода и вывода на экран
- для файлов и файловой системы
- для параллельного программирования
- ...

3.1 string

```
#include <string>
string s = "Hello!";
string s2("Hello");
string s1 = string("Hello");
s[ 0 ];
s.at(0);
s.insert(0,"xx");
cout << s << endl;
s.size();
s.length();
s.empty();
s.clear();
const char *ss = s.c_str();
string s3 = s1 + s2;
s1 += s2;</pre>
```

3.2 Умные указатели

Эти шаблонный класс, который автоматически освобождает память объекта, которым владеет.

```
#include <memory>
std::unique_ptr
std::make_unique
```

3.3 Контейнеры

3.3.1 vector

```
#include <iostream>
#include <vector>
using namespace std;
// создание синонима для типа vector<int>
using vector_int = vector<int>;
// vector -- класс-обёртка для динамического массива
// vector -- шаблонный класс, поэтому поддерживает задание типа
// для вложенных в него значений (здесь это элементы массива).
// Тип вложенных значений указывается внутри угловых скобок
// < > при объявлении переменой типа vector
/// вывод динамического массива
void print_vector(const vector_int &v ){
    // вектор передаётся по ссылке чтобы избежать лишнего копирования
    // т.к. эта функция не должна менять вектор, то делаем формальный параметр константой
    // фактический параметр не обязательно должен быть константой
    for (int i = 0; i < v.size(); ++i)</pre>
       cout << v[i] << " ";}
int main(int argc, char const *argv[]){
   arr.resize( 100 );
                              // динамический массив (пока пустой)
                               // изменение размера.
    unsigned n = arr.size();
                              // -> размер
    // обращение к элементам
    arr[0] = 42;
    print_vector( arr );
    arr.clear();
                                // освобождение памяти
    // функция clear вызывается автоматически при уничтожении переменной
    // матрица - вектор из векторов
```

Container	Overhead	Iterators	Insert	Erase	Find
list	8	Bidirectional	amortized constant	amortized constant	N
deque	12	Random	amortized constant at	amortized constant at	N
vector	0	Random	begin or end; else N/2 amortized constant at end; else N	begin or end; else N amortized constant at end; else N	N
set	12	Bidirectional	log N	log N	log N
multiset	12	Bidirectional	log N	d log (N+d)	log N
map	16	Bidirectional	log N	log N	log N
multimap	16	Bidirectional	log N	d log (N+d)	log N

Рис. 3.1. Overhead – дополнительное количество байт для хранения одного элемента внутри контейнера. Например для списков требуется дополнительная память для хранения указателей. Столбец Iteratos обозначает способ доступа к элементам. Bidirectional – для доступа к произвольному элементу требуется пройти от начала или конца контейнера, Random – произвольный доступ (по индексу). Эффективность операций вставки (insert), удаления (erase) и поиска обозначена функцией числа элементов. Например LogN означает, что операция занимает время пропорциональное логарифму числа элементов N контейнера. Реализации некоторых операций оптимизирована на случай частого вызова. Например время добавления нового элемента в конец динамического массива – константа, т.е. почти не зависит от количества элементов массива. Это происходит из-за того, что vector при добавлении нового элемента резервирует дополнительное место в массиве, на случай если будут добавлены ещё элементы. Источник

```
vector< vector<int> > matr;
  // выделение памяти под 10 элементов (с типом vector<int> )
matr.resize(10);
  // выделение памяти под строки матрицы
  // 25 столбцов или элементов в каждой строке
  for (int i = 0; i < matr.size(); ++i)
      matr[i].resize(25);

return 0;
}</pre>
```

3.3.2 Сравнение

3.4 Файловые потоки

```
#include <fstream>
using namespace std;

// класс ifstream -- для чтения файлов (input filestream)
ifstream in;

// класс ofstream -- для записи в файлы (output filestream)
ofstream out;

// класс fstream -- для чтения и записи
in_out;
```

Запись в файл

```
#include <fstream>
using namespace std;
...
// создать объект для записи в файл
// и открыть текстовый файл для записи
ofstream f("myfile");
// запись в файл
// здесь все данные будут записаны слитно. так лучше не делать
f << "qwerty";
f << 123;
f << 3.14;
f << endl; // записать символ перехода на новую строку
f << 42.5;
f.close();</pre>
```

Содержимое созданного файла:

```
qwerty1233.14
```

https://en.cppreference.com/w/cpp/io/basic ofstream

Чтение из файла

```
#include <fstream>
using namespace std;

// создать экземпляр класса ifstream (для чтения файлов)
ifstream f1;
// открыть текстовый файл
f1.open("myfile");
if (f1.is_open()){
```

```
string s;
f1 >> s; // s = "qwerty1233.14"
...
f1 >> s; // s = "42.5"
float number = stof(s); // строка -> число
f1.close();
}
```

https://en.cppreference.com/w/cpp/io/basic ifstream

Построчное чтение файла

```
#include <fstream>
using namespace std;

// ...
ifstream f;
f.open(filename);
if (f.is_open()){
    string buf;
    while ( getline(f,buf) ){
        cout << buf << endl;
    }
f.close();}</pre>
```

getline проигнорирует последнюю пустую строку в файле, но прочитает пустую строку в начале или середине.

Перемещение по файлу при чтении

```
ifstream f;
f.open(filename);
if (f.is open()){
    string buf;
    // первая строка будет прочитана два раза
    getline(f,buf);
    cout << "buf = " << buf << endl;</pre>
    f.clear();
    f.seekg(0); // сбросить бит конца файла, чтобы переместить указатель в файле
    f.tellg(); // = 0; вернёт позицию в файле
    // некоторые символы, например из кириллицы,
    // занимают больше одного байта
    cout << "buf = " << buf << endl;</pre>
    while (getline(f,buf)); // чтение файла до конца
    // после попытки чтения строки, когда конец файла уже достигнут,
    // в файловой переменной f будет установлен флаг fail
    // seekg с этим флагом не работает
    // поэтому нужно очистить все флаги перед перемещением
    f.clear();
    f.seekg(0); // в начало
    cout << "buf = " << buf << endl; }</pre>
```

Бинарные файлы: https://github.com/VetrovSV/OOP/blob/master/2021-fall/bin-files.md

4 Введение в объектно-ориентированное программирование

4.1 Предпосылки появления ООП

...

4.2 Абстрактный тип данных

Абстрактный тип данных (АТД, Abstract Data Type – ADT) – это математическая модель для типов данных, где тип данных определяется поведением (семантикой) с точки зрения пользователя данных, а именно в терминах возможных значений, возможных операций над данными этого типа и поведения этих операций.

АТД позволяет описать тип данных независимо от языка программирования.

Но как и в языках программирования, в описании АДТ существуют договорённости по структуре и стилю описания

ADT Наименование Абстрактного Типа Данных

• Данные

... перечисление данных ...

• Операции

- Конструктор

Начальные значения:

Процесс:

– Операция...

Вход:

Предусловия:

Процесс:

Выход:

Постусловия:

Операция...

Конец ADT Наименование Абстрактного Типа Данных

- Данные набор из общих свойств для описываемой общности объектов
- Операции действия которые можно совершать над данными
 - Вход необходимые входные данные для совершения операции.
 Могут отсутствовать.
 - Предусловия требования к входным данным, при соблюдении которых операция может быть произведена.
 - Процесс совершаемые действия.
 - Выход выходные данные, получаемые после совершения действия. Могут отсутствовать.
 - Постусловия требования к данным, которые должны быть соблюдены после выполнения действия.

Пример. Опишем АТД для простого секундомера, способного измерять время в на отрезке от 0 до 59 секунд.

ADT Секунды

- **Данные** *s* число секунд
- Операции
 - Конструктор

Начальные значения: 0

Процесс: s = 0

- Операция «Задать число секунд»

Вход: s1

Предусловия: $0 \le s1 \le 59$

Процесс: s = s1

Выход: -

Постусловия: -

- Операция «Прочитать число секунд»

Вход: -

Предусловия: -

Процесс: прочитать s

Выход: s

Постусловия: -

- Операция «Увеличить число секунд на единицу»

Вход: -

Предусловия: -

Процесс: s = (s + 1)%60

Выход: -

Постусловия: -

% – операция

вычисления остатка от

деления

Конец ADT Секунды

Абстрагирование. При описание АТД следует абстрагироваться от несущественных свойств описываемой сущности, не добавлять лишних данных. Какие свойства считать существенными зависит от предметной области. Например, с точки зрения геоинформационной системы (например гуглкарт) магазин должен иметь адрес, режим работы работы, может иметь контактные данные (номерт телефона, сайт, адрес электронной почты) и фотографии. С точки зрения владельца магазина имеет более сложное устройство, включающее ассортимент, сотрудников, бухгалтерскую информацию и так далее.

Рис. 4.1. Метафора абстрагирования с точки зрения разных предметных областей

4.3 Классы в С++

Метод -

Поле –

Общий синтаксис объявления класса:

```
class_key attr(optional) ClassName
  final(optional) base_clause(optional) {
    private:
        and\or
        protected:
        or\and:
        private:

        member-specification
};
```

объявление класса в документации языка: en.cppreference.com/ /w/cpp/language/class

В конце объявления класса должна стоять либо точка с запятой, либо объявлены объекты или указатели на объекты данного класса.

- class key class, struct или union.
- attr атрибуты (не обязательно).
- ClassName идентификатор (имя) класса.
- final если присутствует, то от класса нельзя наследоваться.
- base clause имена базовых классов (для наследования).
- private, protected, private области видимости: открытая (доступна всем), защищённая (доступна классу и потомкам), private (доступна классу).

• member-specification - ОПИСАНИЕ ЧЛЕНОВ КЛАССА

Стоит избегать избыточности при создании полей класса. Если значения некоторых полей можно определить на основе остальных, то стоит вместо этих полей создать методы. Например, в примере модуль комплексного числа mod может быть вычислен по известной действительной и мнимой частям. Кроме того, при изменении комплексного числа придётся каждый раз вычислять модуль, чтобы значения полей оставались непротиворечивыми, а отдельное изменение этого поля пришлось бы запретить.

Пример 1. Избыточные поля

```
/// Комплексное число
class ComplexNumber{
pubclic:
    double real, imag; // действительная и мнимая часть числа
    double mod; // модуль комплексного числа -- избыточное поле
    // ...
};
```

Пример 2. Метод вместо поля

```
/// Комплексное число
class ComplexNumber{
pubclic:
    double real, imag; // действительная и мнимая часть числа
    // ...

/// модуль
    double mod() const {return pow(real*real + imag*imag, 0.5) };

// ...
};
```

В C++ разница между **struct** и **class** не существенна. В **struct** область видимость по умолчанию – public, в **class** – private.

Класс Секунд. Пример 1

Пример класса:

```
/// Класс для отсчёта секунд на отрезке от 0 до 59 с переполнением
class Seconds{
    // поле класса (по умолчанию private)
    /// количество секунд
    short s;
public: // открытый раздел класса
    // Методы:
    // конструктор по умолчанию
    Seconds() \{s = 0;\}
    // конструктор с параметром
    Seconds(short s1) {
        setSeconds(s1);
        }
    /// сеттер секунд
    void setSeconds(short s1){
        if ( (s1 >= 0) && (s1 <=59) ) // проверка предусловия
            s = s1;
    }
    /// геттер секунд
    short seconds() const {return s;}
    /// возвращает строковое представление данных класса
    std::string toString() const {return std::to string(s);}
    /// увеличение секунд на 1.
    /// при переполнении возвращает результат по модулю 60
    short tick() {
        s = (s+1) \% 60;
        return s;
};
```

Поле класса **short** s; объявлено в закрытой области видимости (private) для его защиты от непосредственного доступа и записи некорректных значений (приницип сокрытия). Для чтения и изменения (с проверкой предусловий) этого поля создаются отдельные методы – геттер и сеттер соответственно.

Конструктор Seconds() {s = 0} - специальный метод класса, который инициализирует его поля. Этот метод вызывается после создания экземпляра класса. Для него не указывается возвращаемый тип данных (в от-

личии от остальных методов), так как этот метод всегда возвращает тип соответствующий своему классу (Seconds).

Конструктор с параметром Seconds(**short** s1) полезен, если нужно сразу задать значения полей класса. В таких конструкторах стоит вызывать другие методы – сеттеры, так как они уже содержат проверки предусловий.

void setSeconds(**short** s1) – сеттер для секунд. Принимает новое значение для секунд, проверяет его (проверка предусловия) и задёт, если новое значение не противоречит логике класса.

short seconds() **const** – геттер для секунд. **const** означает, что метод не изменяет поля класса. Такой метод можно вызывать для объекта константы.

std::string toString() const. Для вывода объектов на экран в частности и для преобразования объекта в строку стоит создавать в классе отдельный метод, возвращающий в том или ином виде текстовое представление состояния класса.

Пример работы с экземплярами класса

```
// создание экземпляра класса, вызов конструктора по умолчанию Seconds s1;

// создание экземпляра класса, вызов конструктора с параметром Seconds s2(42);

// Динамическое создание экземпляра класса Seconds *s3 = new Second(); Seconds *s4 = new Second(42);

s3.setSeconds(20);

cout << s1.seconds() << endl; // 0 cout << s2.seconds() << endl; // 42 cout << s3->seconds() << endl; // 20 cout << s4->seconds() << endl; // 42
```

Классы принято объявлять в заголовочных файлах, а реализацию методов в срр файле. Имена этих файлов как правило совпадают с именем класса. При определении метода в отдельном файле его полное имя состоит из имени класса и имени метода внутри класса:

```
// определение метода return type ClassName::method name(args) attributes;
```

Изменим пример из параграфа 4.3, разделив объявления на два файла.

```
Класс Секунд. Пример 2.
```

```
// определение ранее объявленного метода
return-type ClassName::method name(args) attributes;
seconds.h – объявление класса:
#pragma once
#include <string>
/// Класс для отсчёта секунд на отрезке от 0 до 59 с переполнением
class Seconds{
    // поле класса (по умолчанию private)
    /// количество секунд
    short s;
public: // открытый раздел класса
    // Методы:
    // конструктор по умолчанию
    Seconds();
    // конструктор с параметром
    Seconds(short s1);
    /// сеттер секунд
    void setSeconds(short s1);
    /// геттер секунд
    short seconds() const;
    /// возвращает строковое представление данных класса
    std::string toString() const;
    /// увеличение секунд на 1.
    /// при переполнении возвращает результат по модулю 60
    short tick();
};
seconds.cpp – определения методов класса:
#include "seconds.h"
                           // файл с объявлением класса Seconds
// конструктор по умолчанию
Seconds::Seconds() {
    s = 0;
// конструктор с параметром
Seconds::Seconds(short s1) {
        setSeconds(s1);
        }
```

```
/// сеттер секунд
void Seconds::setSeconds(short s1){
    if ( (s1 >= 0) && (s1 <=59) ) // проверка предусловия
        s = s1;}

/// геттер секунд
short Seconds::seconds() const {
    return s;}

    /// возвращает строковое представление данных класса
std::string Seconds::toString() const {
    return std::to_string(s);}

    /// увеличение секунд на 1.
    /// при переполнении возвращает результат по модулю 60
short Seconds::tick() {
        s = (s+1) % 60;
        return s;}</pre>
```

Локальный класс – класс, определённый внутри функции.

Объекты-константы

Объекты, которые занимают память большую чем размер указателя, эффективно передавать в функции по ссылке. Если изменение формального параметра внутри функции не требуется, то для защиты от непреднамеренного изменения такие объекты стоит делать константами внутри функции.

Например

```
Seconds seconds_plus(const Seconds& a, const Seconds& b){
    Seconds c;
    c.setSeconds( ( a.seconds() + b.seconds() ) % 60 );
    return c; }
```

Если метод seconds() объявлен как без спецификатора const:

```
short Seconds::seconds() { ... }
```

то его вызов для объекта-константы запрещён, ибо компилятор не может гарантирвать, что этот метод не изменяет объект.

Все методы со спецификатором const можно вызывать для объектов констант

```
short Seconds::seconds() const { ... }
```

4.3.1 Конструкторы и деструктор

Конструктор – это особый метод, инициализирующий экземпляр своего класса.

- Имя конструктора совпадает с именем класса¹.
- Тип возвращаемого значения не указывается.
- У конструктора может быть любое число параметров.
- У класса может быть любое число конструкторов.
- Конструкторы могут быть доступными (public), защищенными (protected) или закрытыми (private).
- Если не определено ни одного конструктора, компилятор создаст конструктор по умолчанию, не имеющий параметров (а также некоторые другие к. и оператор присваивания)

Виды конструкторов

- Конструктор умолчания (default constructor): ClassName()
- Конструктор с параметрами:
 - конструктор преобразования (conversion constructor):ClassName(arg)
 - конструктор с двумя и более параметрами (parameterized constructors):
 ClassName(arg1, arg2, ...)
- конструктор копирования (copy constructor):
 ClassName(const ClassName&)
- конструктор перемещения (move constructor): ClassName(const ClassName &&)

Конструктор с параметрами (parameterized constructor)

Конструктор с несколькими параметрами упрощает создание и инициализацию объекта. При этом такой конструктор должен не допускать задания некорректных значений полей, поэтому в нём нужно вызывать сеттеры, а не напрямую задавать значения:

 $^{^{1}}$ конструктор в python называется init

```
/// Книга
class Book{
    string title; // заглавие unsigned pages; // количество страниц
    // ...
    Book(){ title = ""; pages = 0;}
    // конструктор с параметрами
    Book(string title1, unsigned pages1) {
        set title(title1);
        set_pages(pages1);
    }
    // ...
};
Book b1;
           // вызов конструктора по умолчанию
// вызов конструктора с параметрами:
Book b2("Незнайка на Луне", 600);
Book b3 = Book("1984", 300);
```

Конструктор преобразования (Conversion constructor)

Общий вид:

ClassName(T t)

Т – некоторый тип

- Принимает один параметр
- Тип параметра должен отличатся от самого класса
- Такой конструктор как бы преобразует один тип данных в экземпляр данного класса
- Может вызываться при инициализации объекта значением принимаемого типа

 $ClassName\ c = t$

Примеры вызова конструктора (для класса описанного в разделе 4.3):

```
// способы вызова конструктора преобразования
Seconds s1(42);
Seconds s2 = Seconds(42);
Seconds s3 = 42;
Seconds s4 {42};

// Ошибка: нет конструктора с параметром типа double
Seconds s5 = 42.0;
```

На месте типа, который передаётся в конструктор может быть в том числе другой класс.

Правило пяти

Если класс или структура определяет один из следующих методов, то нужно явным образом определить все методы:

- Конструктор копирования
- Конструктор перемещения
- Оператор присваивания копированием
- Оператор присваивания перемещением
- Деструктор

Поверхностное копирование (shallow copy) – копирует только объект, а состояние является разделяемым. Автоматически сгенерированный конструктор копирования способен выполнить только поверхностное копирование.

Глубокое копирование (deep copy) – копирует объект и состояние, если нужно — рекурсивно.

Пример. Приведём частичную реализацию класса, реализующего динамический массив (аналог vector).

```
/// Динамический массив

class Array{
    float *arr;
    unsigned n; // размер массива

public:
    // конструктор по умолчанию
    Array(){ n = 0; arr = nullptr;}

    /// констр. создающий массив из n1 нулевых элементов
    Array(unsigned n1){
```

```
// проверка предусловия

if (n1 < 0) throw std::length_error("Error: size <= 0");

n = n1;

arr = new float[n] {0}; }

// ...

~Array(){

if (arr != nullptr)

delete []arr;

}
};
```

Такой класс упростит работу с динамическими массивами. Не придётся заботится об освобождении памяти массива. Перед завершением функции process она очистит память, занимаемую всеми локальными переменными. Перед удалением локального объекта а будет вызван её деструктор для деинициализации. Деструктор освободит память, занимаемую массивом.

```
void process(){
    Array a(10); // вызов констр, выделение памяти под 10 элементов
    // работа с массивом
    // ...
    // неявный вызов деструктора: a.~Array()
}
```

Согласно правилу пяти, нужно реализовать несколько дополнительных методов, которые обычно создаются компилятором. Конструктор копирования. При создании копии экземпляра Аггау нужно чтобы новый экземпляр имел свою область памяти отведённую под массив во избежание конфликтов. Если оба объекта будут ссылать на один и тот же массив, то, например при удалении, первого объекта, вызовется его деструктор. Который освободит память, на которую ссылается указатель внутри второго объекта. Значит нужно реализовать конструктор копирования, который будет выделять память под свой массив и копировать туда значения из существующего.

```
Array a(10);
Array b = a;
```

По тем же причинам нужно реализовать **оператор присваивания копированием**. В дополнении, объект, которому присваивают новое значение должен освободить память, занимаемую своим массивом чтобы избежать её утечки.

```
Array a(10);
Array b(20);
b = a; // утечка памяти из b;
```

...

Порядок вызова конструкторов и деструкторов

В момент выполнения собственного конструктора все информационные поля должны быть уже проинициализированы.

После создания объекта, порядок вызова конструкторов:

- 1. **Конструкторы базовых классов** в порядке их появления в описании класса. Если в списке инициализации описываемого класса присутствует вызов конструктора преобразования или конструктора с двумя и более параметрами) базового класса, то вызывается конструктор преобразования (link)или конструктор с двумя и более параметрами), иначе вызывается конструктор умолчания базового класса.
- 2. **Конструкторы** умолчания всех **полей**, которые не перечислены в списке инициализации, и конструкторы преобразования, копирования и конструкторы с двумя и более параметрами всех полей, из списка инициализации. Все перечисленные в данном пункте конструкторы умолчания, преобразования, копирования, с двумя и более параметрами) вызываются в порядке описания соответствующих информационных членов в классе.
- 3. Собственный конструктор.

Условия вызова деструктора:

- 1. свёртка стека при выходе из блока описания объекта, в частности, при обработке исключений при выходе из try-блока по оператору throw, try-блоки описываются далее), завершении работы функций;
- 2. при уничтожении временных объектов сразу, как только завершится конструкция, в которой они использовались;
- 3. при выполнении операции delete для указателя, получившего значение в результате выполнения операции new. После выполнения деструктора освобождается выделенный для объекта участок памяти;
- 4. при завершении работы программы при уничтожении глобальных и статических объектов.

Порядок вызова деструкторов:

- 1. Собственный деструктор. В момент начала его работы поля класса еще не очищены, и их значения могут быть использованы в теле деструктора.
- 2. Деструкторы вложенных объектов в порядке, обратном порядку их описания.
- 3. Деструкторы базовых классов в обратном порядке их задания.

Инициализация членов класса

```
class Example1{
   float x = 0.0;
   int *y = nullptr;
   const int z = 42;

   public:
        Example1() { }
};
```

Списки инициализации полей класса. Присваивание значений константным или ссылочным переменным-членам в теле конструктора в некоторых случаях невозможно.

спецификаторы default и delete

4.3.2 Работа с экземплярами класса

```
// создание объектов
Seconds s1, s2(12);
// объект s1 создаётся с вызовом конструктора по умолчанию
// объект s2 создаётся с вызовом конструктора преобразования (с одним параметром)
```

```
Seconds s1234 = 12; // к. преобразования
// вызов операторов
Seconds s3 = s1 + s2++;
cout << "секунды: " << s3.toString() << endl;
Seconds *s = new Seconds; // динамическое создание
s->setSeconds(10);
delete s;
Массивы из объектов:
// Массив из 128 объектов. Для каждого вызван к. по умолчанию
Seconds ss1[128];
// Массив из 3 объектов. Вызваны конструкторы: по молчанию, преобразования, по умолчанию
Seconds ss2[] = \{Seconds(), Seconds(2), Seconds\};
// Обращение к членам класса через массив
ss1[42].setSeconds(15);
// Статический массив из указателей на объекты
Seconds * ss3[2];
// Выделение памяти под каждый объект
ss3[0] = new Seconds();
ss3[1] = new Seconds();
// Обращение к членам класса:
ss3[0]->setSeconds(15);
int n = ss3[0]->getSeconds();
// Освобождение памяти
delete ss3[0];
delete ss3[1];
Динамические массивы из объектов:
// Выделение памяти под 512 объектов, для каждого вызывается коструктор по умолчанию
Seconds *ss4 = new Seconds[512];
ss4[5].setSeconds(16);
vector<Seconds> vec1; // динамический массив из объектов
// добавлени объектов в массив
vec1.push_back(s1);
vec1.push_back(s2);
for (int i=0; i<10; i++){</pre>
    Seconds s( rand() % 60 );
    vec1.push_back(s);
}
```

```
cout << "Секунды:"<< endl;
for (Seconds s : vec1){
    cout << s.toString() << endl;</pre>
}
vec1[1].setSeconds(20); // обращение к отдельному элементу вектора. вызов метода
Seconds s5 = vec1[1];
vector<Seconds*> vec2; // набор из указателей на объекты
// создание одного объекта и вызов конструктора с параметром
Seconds *s4 = new Seconds(42);
vec2.push_back(s4);
vec2.push_back(new Seconds(43));
for (int i=0; i<10; i++){</pre>
    Seconds *s = new Seconds( rand() % 60 );
    vec2.push back(s);
}
cout << "Секунды:"<< endl;
for (Seconds *s : vec2){
    cout << s->toString() << endl;</pre>
}
vec2[1]->setSeconds(20); // обращение к отдельному элементу вектора. вызов метода
Seconds *s6 = vec2[1];
// удаление динамически созданных объектов
for (int i=0; i<vec2.size(); i++){</pre>
    delete vec2[i];
}
Временные безымянные объекты
// Создание объекта без имени, вызов метода, вывод на экран, уничтожение объекта
cout << Seconds(17).to_string();</pre>
// динамическое создание объекта без имени, вызов конструктора с параметром,
// вызов метода, утечка памяти!
cout << ( new Seconds(17) )->to_string();
// указатель на созданный объект нигде не сохранён, поэтому нельзя освободить занимаемую им п
Временные безымянные объекты, возвращаемые из функции
Seconds get_some_seconds(){
    return Seconds();
// вызов метода to_string для временного безымянного объекта типа Seconds
string s = get_some_seconds().to_string();
```

```
Seconds s1(18); // вызов метода c_str для временного безымянного объекта типа string char * str = s.to_string().c_str();
```

Безымянные объекты в работе со стандартными контейнерами

Простая структура данных (англ. plain old data, POD) – тип данных, имеющий жёстко определённое расположение полей в памяти, не требующий ограничения доступа и автоматического управления. Переменные такого типа можно копировать простыми процедурами копирования участков памяти наподобие memcpy. Противоположность – управляемая структура данных.

В С++ класс должны удовлетворять нескольким условиям (все поля открыты, нет виртуальных методов и д.р. [cppreference]), чтобы считаться простой структурой данных. В большинстве, созданные классы не подходят под эти требования. Поэтому обращение к области памяти, в которой расположен объект, как к набору байт, не тождественна аналогичному обращению к данным класса:

```
// преобразование объекта в массив байт:

char* c = (char*)&o1;

// обращение к полю х, которое следует за полем z и y:

cout << c[2+4] << endl; // Undefined Behavior!
```

При этом, для ОС разной разрядности (например 32 или 64 бита) и в зависимости от параметров компиляции объекты могут занимать больше памяти, чем чем их поля в сумме:

```
sizeof(o1);  // 12
sizeof(float)  // 4
sizeof(short)  // 2
sizeof(char)  // 1
```

Это может происходить из-за выравнивания полей в памяти. В данном примере каждому полю выделено 4 байта памяти.

Память, которую занимает объект определяется

- полями класса + остаток для выравнивания (по умолчанию выравнивание 4 байта)
- указателем на vtable (если есть виртуальные функции)
- указателями на базовые классы, от которых было сделано виртуальное наследование (размер указателя * количество классов)

4.3.3 Статические члены класса (static members)

Статические члены класса доступны без объявления объекта.

Ключевое слово **static** приводится только при объявлении члена класса:

```
использования
ключевого слова static
см. раздел 2.2.1
Статические локальные
переменные
```

про другие способы

```
static data-member;
static data-member;

документация:
en.cppreference.com/w/cpp//la
```

```
class X
{
    public: // объявление статических членов
        static void foo();
        static int N;

    // Ошибка: определять значения в классе нельзя
        static double e = 2.718281828459045;
```

```
// простое поле
               double tau= 1.618033988749895;
        // статическое поле-константа
        const static double Tau;
        //
        constexpr static double A = 42;
};
// определение статического поля
int X::N = 0;
// определение статического поля-константы (static в определении не указан)
const double X::Tau = 1.618033988749895;
 // определение статического метода
void X::foo()
  // обращение к статическому полю из статического метода
    N = rand();
    // образение Х::п здесь запрещено
}
void bar()
     // вызов статического метода
    X::foo();
    X.foo(); // ошибка!
    // создание объекта, вызов статического метода, уничтожение объекта
    X().foo();
    X x;
    x.foo(); // ошибка!
    X::N = 42;
    X().N = 43;
    X::A = 0; // ошибка!
}
```

Static member functions cannot be virtual, const, volatile, or ref-qualified.

The address of a static member function may be stored in a regular pointer to function, but not in a pointer to member function.

There is only one instance of the static data member in the entire program with static storage duration

Класс со статическим полем например может отслеживать количество своих экземпляров.

Метод или поле имеет смысл сделать статическим, если они не должны зависеть от обычных методов и полей.

4.3.4 Дружественные функции и классы

class A{

Дружественные данному классу функция или другие имеют полный доступ к его закрытым членам.

```
int data; // private data member
    // предварительное объявление класса X,
    // который имеет доступ к закрытым членам класса А
    friend class X;
    // Ү -- дружественный для Х класс
    friend Y;
};
Дружественные функции
class A{
    float x;
    // объявление дружественной функции
    friend void foo(A& a);
};
// определение дружественной функции
void foo(A& a){
    // функция-друг имеет доступ к закрытым членам класса
    a.x = 22./7;
};
```

4.3.5 Перегрузка операторов

О перегрузке оператором см. также раздел 2.2.4 Перегрузка операторов (operator overloading).

Перегрузка оператора сложения для класса Seconds 2 . Оператор сложения может быть определён как 3 :

²полный пример: github.com/VetrovSV/OOP/tree/master/examples/simple class

³en.cppreference.com/w/cpp/language/operator_arithmetic

```
T operator+(const T &a, const T2 &b);
```

Он принимает два аргумента (операнда), типы которых могут отличаться и возвращает новое значение, тип которого совпадает с первым операндом.

seconds.h

```
/// Класс для отсчёта секунд на отрезке от 0 до 59 с переполнением
class Seconds{
    /// количество секунд
    short s;
    // ...
    friend Seconds operator + (const Seconds& s1, const Seconds &s2);
};
seconds.cpp
#include "seconds.h"
// ...
friend Seconds operator + (const Seconds& s1, const Seconds &s2);
Пример вызова оператора:
Seconds sa(55), sb(13), sc;
sc = sa + sb;
cout << sc.toString(); // 8</pre>
Оператор сложения как член класса seconds.h
class Seconds{
    /// количество секунд
    short s;
    // ...
Seconds Seconds::operator +(const Seconds& s2) const;
```

4.3.6 Представление класса в UML

Полный исходный код: github.com/VetrovSV/OOP/tree/master/examples/simple_class.

```
Seconds

- s: SecType

+ Seconds()
+ Seconds(s1: SecType)
+ setSeconds(s1: SecType): void
+ seconds(): SecType
+ toString() const : string
+ operator + (s2: const Seconds&) const: Seconds
+ operator ++ (int): Seconds
```

Рис. 4.2. Диаграмма класса в нотации UML. Обозначения:

- + открытый член класса,
- закрытый член класса

Порядок вызова конструкторов и деструкторов

4.4 Шаблонные классы

```
template < parameter list >
class-declaration
Пример:
/// Шаблонный класс-обёртка для динамического массива
template <typename Element>
class Array{
    Element *arr = nullptr;
    unsigned n = 0;
public:
    Array(){};
    Array(unsigned n1){
        if (n1 > 0) {
            n = n1;
            arr = new Element[n]; }
        // ...
    }
    // геттер для элемента массива
    Element get(unsigned i) const {
        if (i < n) return arr[i];</pre>
    // сеттер для элемента массива
            set(unsigned i, Element el){
        if (i < n) arr[i] = el;
```

```
}

// ...
};

int main(){

// компилятор создает реализация класса с Element = int
Array<int> arr1 (128);
arr1.set(0, 1729);

// компилятор создает реализация класса с Element = int
Array<double> arr2;

// Ошибка: имя шаблонного типа не указано!
Array arr0;
}
```

См. также раздел 2.3 Шаблонные функции.

4.5 Модульное тестирование

Модульный автоматический тест (unit test) – Пример тестирования класса github.com/VetrovSV/OOP/tree/master/examples/simple_class

Интеграция модульных тестов Google Test в Visual Studio

- 1. Открыть решение, для которого нужно сделать модульное тестирование
- 2. Добавить проект теста в решение:
 - (a) Файл > Добавить > Создать проект > Выбрать шаблон Google Test (фильтр проектов Тестирование)
 - (b) Задать название проекта тестов, выбрать проект, для которого будут написаны тесты
- 3. В созданном проекте будет один файл исходных текстов с примером тестового макроса (функции):

```
TEST(TestCaseName, TestName) {
    // примеры макросов:
    EXPECT_EQ(1, 1); // макрос проверки равенства
    EXPECT_TRUE(true); // макрос проверки истинности
}
```

TestCaseName – идентификатор тестируемого класса или модуля
TestName – идентификатор, объясняющий назначение теста

- 4. Подключите зависимые файлы из основного проекта в тестовый проект (добавить > существующие ...), подключите заголовочные файлы в файл с тестами
- 5. Создайте тестовые макросы для вашего класса. В каждом тестовом макросе сделайте несколько проверок одного, или нескольких, логически связанных методов класса. Пример:

```
// проверка конструкторов
TEST(Seconds, Constructor) {
    Seconds s1;
        EXPECT_EQ(s1.get_s(), 0);

    Seconds s2(17);
        EXPECT_EQ(s2.get_s(), 17);
        // ...
}
// проверка сеттера и геттара секунд
TEST(Seconds, AddSeconds) {
    Seconds s;
    s.add_seconds(19)
    EXPECT_EQ(s.get_s(), 19);

    // todo: -1, 0, 59, 60
}
```

Создавайте отдельные экземпляры класса для разных тестов, чтобы упростить тестирование и избежать перекрёстного влияния методов друг на друга

6. Откройте список тестов и запустите их: меню Тест > Обозреватель тестов

Проверка брошенного исключения

Дополнительно: - https://doc.qt.io/qtcreator/creator-autotest.html – тестирование в Qt Creator

- youtube.com/watch?v=6pp8S56sS2Y — Настройка и использование Google Test в Qt Creator

См. также

- Статические анализаторы кода: cppcheck, PVS-studio, встроенные в Qt Creator, Visual Studio, CLion
- Контрактное программирование (появилось в С++20)
- Метаморфное тестирование https://habr.com/ru/post/454458/

5 Отношения между классами

5.1 Агрегация и композиция

Композиция — отношение при котором один класс (часть, Part) является неотъемлемой частью другого класса (целое, Whole). В классе Whole может быть поле типа Part:

В классе Whole может быть поле типа указатель на Part, но при этом класс Whole также владеет объектами Part создавая их в конструкторе и уничтожая в деструкторе:

```
class Part{
    // ...
};

class Whole{
    Part *filed1;
    // ...

public:
    Whole(){ filed1 = new Part();}

    ~Whole(){ delete filed1;}
};
```

Агрегация – более слабый вариант композиции, когда время жизни части и целого не связаны. Можно создать объект Whole не создавая объекта Part.

Рис. 5.1. Отношение Композиция

```
class Part{
    // ...
};

class Whole{
    Part *filed1;
}
```

Класс Whole может хранить в себе указатель на Part, но экземпляр класса Whole можно создать и отдельно; Время жизни Part не привязано к Whole.

Мощность отношения – todo

Композиция:

```
class Part{
    // ...
};

class Whole1{
    Part filed1[10];
}
```

Композиция:

Рис. 5.2. Отношение Агрегация

5.2 Наследование

Диаграмма классов в UML

5.3 Динамический полиморфизм

6 SOLID

SOLID

7 Шаблоны проектирования

Заключение

Библиографический список

- 1. Буч, Г. Язык UML. Руководство пользователя / Г. Буч, Д. Рамбо, И. Якобсон; пер. с англ. Н. Мухин. 2-е изд Москва: ДМК Пресс, 2006. 496 с.: ил.
- 2. Совершенный код (2-е издание, 2005 г.) Стив Макконнел
- 3. stepik.org/course/7/syllabus stepik: Программирование на языке С++

Предметный указатель

access violation, 44 ASCII, 12 asm, 62 assert, 50, 56 auto, 16	memcpy, 40, 86 memmove, 40 memory leak, 29 MSVC, 23
cast C-style, 17, 27 catch, 48 char, 12 cin, 50 class, 72 agragation, 95 composition, 95	namespace, 35 new, 27, 40 nullptr, 26 plain old data, 86 POD, 86 pointer, 26 pragma, 19
compiler-time, 5 const, 14, 32 copy deep, 80	reference, 27 return, 30 run-time, 5
declaration, 8 default, 83 define, 19 definition, 8 delete, 27, 83 delete [], 41 double, 10 Doxygen, 35	segmentation fault, 44 sizeof, 41 SOLID, 98 stack call, 44 standard library, 63 static, 87 static_cast, 17 stod, 17
enum, 15 exception handling, 46 float, 10, 11 function overloading, 32	stof, 17 stoi, 17 strcpy, 40 string, 39 struct, 73
garbage collertor, 6 Google Test, 92 ifndef, 19 include guards, 19 int, 11	template, 60 throw, 47 to_string, 17 try, 48 type safety, 17

type checking	целый, 11
dynamic, 5	целый восьмеричный, 11
static, 5	целый двоичный, 11
typing	целый шестнадцатеричный, 11
weak, 6	макрос, 23
•	мантисса, 11
undefined behavior, 38, 39	массив, 38
Unicode, 13	динамический, 40
unit test, 92	статический, 41
Vigual Studio 02	метод, 72
Visual Studio, 92	методы
vtable, 87	виртуальные, 87
Комплексные числа, 11	таблица виртуальных, 87
абстрагирование, 71	модуль
абстрактный тип данных, 69	cstring, 40
автоматическое тестирование, 50	наследование, 87
ассемблер, 62	неопределённое поведение, 38
библиотека	объект
стандартная, 63	константа, 77
геттер, 75	массив, 84
декремент, 12	объявление, 8
директивы препроцессора, 19	операнд, 21
единица трансляции, 25, 34	оператор, 21
запись	тернарный условный, 22
экспоненциальная, 11	операторы
инициализация, 9	логические, 21
списки, 83	определение, 8
инкремент, 12	память, 87
исключительная ситуация, 46	утечка, 29
класс, 72	параметр-константа, 32
базовый, 87	перечисление, 15
дружественный, 89	поле, 72
дружественный, оэ локальный, 77	•
локальный, <i>11</i> отношение агрегации, 95	полиморфизм статический, 60
отношение композиция, 95	•
отношение композиция, эз шаблонный, 64	предусловия, 47 препроцессор, 23
•	
экземпляр, 75, 83	принцип
компоновщик, 24	единственной
константа	ответственности, 30, 47
безымянная, 11	сокрытия, 74
математическая, 15	программирование
конструктор, 78	обобщённое, 60
копирование	сборщик мусора, 6
глубокое, 80	сеттер, 75
поверхностное, 80	символ
куча, 40	экранирование, 14
линкер, 24	ссылка, 27
литерал, 11	COMING, 21

```
стек
   вызовов, 44
строка, 39
структура данных
   простая, 86
тест
   автоматический модульный,
тестирование
   автоматическое, 55
ТИП
   символьный, 12
   строковый, 13
типизация
   слабая, 6
   динамическая, 5
   сильная, 6
   статическая, 5
типобезопасность, 17
типы данных, 10
указатель, 26, 41
   void *, 40
   на void, 27
   умный, 64
утечка памяти, 81
файлы
   бинарные, 68
   заголовочные, 75
   объектные, 23
функция
   дружественная, 89
   перегрузка, 32, 62
   шаблонная, 60
числа
   магические, 14
```