NeuLAND calibration revisit: Millepede algorithm and error analysis of map2cal calibration

Yanzhao Wang¹

¹ University of Cologne, Institute for Nuclear Physics, Germany

NeuLAND weekly meeting 05.04.2024

Email: ywang@ikp.uni-koeln.de

Overview

Statistical error analysis of TDC calibration

Millepede algorithm principle

Millepede algorithm application to NeuLAND

Preliminary results

NeuLAND TDC calibration

TDC calibration relation:

f(x): Channel number \Longrightarrow Time value (ns)

Two time components:

- coarse time (\pm 5 ns)
- fine time (\pm 10 ps)

Fine time Calibration procedures:

- Collection of of all TDC values
- Calculation of cumulative distribution of TDC values
- **3** Scaling of CFD to $0 \sim 5$ ns

Statistical error analysis of TDC calibration

Convolution of two distributions:

- Uniform distribution: fine time $\sim \mathcal{U}(f(n), f(n+1))$
- Multinomial distribution: $f(n), f(n+1) \sim \mathcal{M}_k(3, p_a, p_b), \ p_a = \mathsf{CDF}(n), p_b = \mathsf{PDF}(n)$

Statistical error analysis of TDC calibration

Convolution of two distributions:

- Uniform distribution: fine time $\sim \mathcal{U}(f(n), f(n+1))$
- Multinomial distribution: $f(n), f(n+1) \sim \mathcal{M}_k(3, p_a, p_b), \ p_a = \mathsf{CDF}(n), p_b = \mathsf{PDF}(n)$

Mathematical derivation:

Mean:

$$E(X) = \sum_{n_a, n_b} \mathcal{M}(n_a, n_b; 3, p_a, p_b) \cdot \int_{n_a}^{n_b} x f(x) \, dx = \bar{n_a} + \bar{n_b}/2$$

Variance:

$$\begin{aligned} Var(X) &= E(X^2) - E^2(X) \\ E(X^2) &= \sum_{n_a, n_b} \mathcal{M}(n_a, n_b; 3, p_a, p_b) \cdot \int_{n_a}^{n_b} x^2 f(x) \ dx = \sum_{n_a, n_b} \mathcal{M}(n_a, n_b; 3, p_a, p_b) (n_a^2 n_b + n_a n_b^2 + n_b^2/3) \\ &= Var(N_a) + E^2(N_a) + Cov(N_a, N_b) + E(N_a)E(N_b) + \left(Var(N_a) + E^2(N_b)\right)/3 \\ Var(X) &= N^2 p_b^2/12 + N\left(-(p_a - \frac{1 - p_b}{2})^2 + 1/4 - p_b/6 - p_b^2/12\right) \end{aligned}$$

Validation of the error analysis

Exact solution (no approximation):

$$\delta = \sqrt{\frac{N^2 p_b^2}{12} + N \left(-(p_a - \frac{1 - p_b}{2})^2 + \frac{1}{4} - \frac{p_b}{6} - \frac{p_b^2}{12} \right)}$$

Approximate solution:

$$\delta = \frac{Np_b}{\sqrt{12}} + \frac{\sqrt{3}}{p_b} \left(-(p_a - \frac{1}{2})^2 + \frac{1}{4} \right) \quad (p_b \neq 0)$$

Base solution:

$$\delta = \frac{Np_b}{\sqrt{12}}$$

Comparison to Monte-Carlo data:

 $p_b : 0.01$

N:100'000

NeuLAND time and position calibration

Time relation:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot C_e} + t_{\mathsf{sync}}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l + t_{\text{offset}} \right)$$

Calibration parameters:

- C_e : effective speed of light
- t_{sync}: time synchronization among scintillators
- t_{offset}: time offset between adjacent **PMTs**

NeuLAND time and position calibration

Time relation:

$$t = \frac{t_r + t_l}{2} - \frac{L}{2 \cdot C_e} + t_{\mathsf{sync}}$$

Position relation:

$$x = \frac{C_e}{2} \left(t_r - t_l + t_{\text{offset}} \right)$$

Calibration parameters:

- t_{sync}: time synchronization among scintillators
- t_{offset}: time offset between adjacent PMTs

Calibration using muon tracks:

Time and position relation for muon tracks:

$$x_{\mu} = a_x^i \cdot z_{\mu} + b_x^i \tag{1}$$

$$y_{\mu} = a_y^i \cdot z_{\mu} + b_y^i \tag{2}$$

$$t_{\mu} = a_t^i \cdot z_{\mu} + b_t^i \tag{3}$$

Calibration parameters for the jth muon track in ith bar:

$$C_e^i, t_{\mathsf{sync}}^i, t_{\mathsf{offset}}^i, a_x^j, a_y^j, a_t^j, b_x^j, b_y^j, b_t^j$$

Total number of calibration parameters for n muon tracks: 3900+6n

Linear regression

Residual minimization

$$\partial \sum_{j=1}^{n} \sum_{i=1}^{b(j)} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 \mathcal{Z}_i^j : Residual values (linear) for jth track and ith bar

 $g_{1...m}: m$ global parameters

 $p_{1...l}^{j}: l$ local parameters for the jth μ track

n : the total number of μ tracks

b(j) : the total number of bars for the $j{\rm th}~\mu$ track

Linear regression

Residual minimization

$$\partial \sum_{j=1}^{n} \sum_{i=1}^{b(j)} \frac{(\mathcal{Z}_{i}^{j}(g_{1}, ..., g_{m}, p_{1}^{j}, ..., p_{l}^{j}))^{2}}{2(\sigma_{i}^{j})^{2}} = 0$$

 \mathcal{Z}_i^j : Residual values (linear) for jth track and ith bar $q_1 \quad m$: m global parameters

 p_1^j , : l local parameters for the jth μ track

n : the total number of μ tracks

b(j) : the total number of bars for the $j{\rm th}~\mu$ track

Newton's method

• Single variable:

• Multivariable:

$$\nabla f(\vec{x}_n) \cdot \delta \vec{x} = -f(\vec{x}_n)$$

Residual minimization:

$$\nabla \vec{f}(\vec{x}_n) = \nabla(\nabla \mathcal{F}(g_1, ..., g_m, p_1^j, ..., p_l^j))$$

= H\mathcal{F}(g_1, ..., g_m, p_1^j, ..., p_l^j))

Hessian operation (second derivative matrix)

$$[H\mathcal{F}(x_1, x_2, \cdots, x_n)]_{ij} = \frac{\partial^2 \mathcal{F}}{\partial x_i \partial x_j} \sim \sum \frac{\partial \mathcal{Z}}{\partial x_i} \frac{\partial \mathcal{Z}}{\partial x_j}$$

Using Newton's method:

$$[H\mathcal{F}(\mathbf{x})]\,\Delta\mathbf{x} = -\nabla\mathcal{F}(\mathbf{x})$$

Hessian operation (second derivative matrix)

$$[H\mathcal{F}(x_1, x_2, \cdots, x_n)]_{ij} = \frac{\partial^2 \mathcal{F}}{\partial x_i \partial x_j} \sim \sum \frac{\partial \mathcal{Z}}{\partial x_i} \frac{\partial \mathcal{Z}}{\partial x_j}$$

Using Newton's method:

$$[H\mathcal{F}(\mathbf{x})]\,\Delta\mathbf{x} = -\nabla\mathcal{F}(\mathbf{x})$$

$$\leftarrow m \rightarrow \leftarrow \sim n \cdot l \rightarrow$$

Schur complement method:

$$\tilde{\mathcal{C}} \cdot \Delta \mathbf{g} = \mathcal{D}$$

where

$$egin{aligned} ilde{\mathcal{C}} &= \sum_{j} \mathcal{C}_{j} + \sum_{j} \left(-\mathcal{G}_{j} \Gamma_{j}^{-1} \mathcal{G}_{j}^{T}
ight) \ \mathcal{D} &= \sum_{j} \partial_{\mathbf{g}} \mathcal{F}_{j} - \sum_{j} \mathcal{G}_{j} \Gamma_{j}^{-1} \partial_{\mathbf{p}^{j}} \mathcal{F} \end{aligned}$$

Advantages

- Simultaneous fitting of all parameters
- Computation complexity independent of local parameter size
- No muon track reconstruction

Millepede algorithm for NeuLAND

Residual equations for NeuLAND

For horizontal bars

$$0 = b_x + C_e^i t_{\text{offset}}^i / 2 + C_e^i \Delta t / 2 + a_x z_i \quad (1)$$

$$t_{\mathsf{sum}}/2 = b_t + \frac{L}{2C_e^i} + t_{\mathsf{sync}}^i + a_t z_i \tag{2}$$

$$y_i = b_y + a_y z_i \tag{3}$$

For vertical bars

$$0 = b_y + C_e^i t_{\text{offset}}^i / 2 + C_e^i \Delta t / 2 + a_y z_i$$
 (4)

$$t_{\mathsf{sum}}/2 = b_t + \frac{L}{2C_e^i} + t_{\mathsf{sync}}^i + a_t z_i \tag{5}$$

$$y_i = b_x + a_x z_i \tag{6}$$

Millepede algorithm for NeuLAND

Residual equations for NeuLAND

For horizontal bars

$$0 = b_x + C_e^i t_{\text{offset}}^i / 2 + C_e^i \Delta t / 2 + a_x z_i \quad (1)$$

$$t_{\mathsf{sum}}/2 = b_t + \frac{L}{2C_e^i} + t_{\mathsf{sync}}^i + a_t z_i \tag{2}$$

$$y_i = b_y + a_y z_i \tag{3}$$

For vertical bars

$$0 = b_y + C_e^i t_{\text{offset}}^i / 2 + C_e^i \Delta t / 2 + a_y z_i$$
 (4)

$$t_{\mathsf{sum}}/2 = b_t + \frac{L}{2C_e^i} + t_{\mathsf{sync}}^i + a_t z_i \tag{5}$$

$$y_i = b_x + a_x z_i \tag{6}$$

Linearization

• Parameter redefinition $C^i_t \equiv C^i_e t^i_{\rm offset}$ in Eq. (1, 4):

$$0 = b_x + C_e^i t_{\mathsf{offset}}^i / 2 + C_e^i t_{\mathsf{diff}} / 2 + a_x z_i$$

= $b_x + C_t^i / 2 + C_e^i t_{\mathsf{diff}} / 2 + a_x z_i$

 \bullet Taylor expansion of C_e^i near C_{e0}^i in Eq. (2, 5):

$$t_{\text{sum}}/2 = b_t + \frac{L}{2C_e^i} + t_{\text{sync}}^i + a_t z_i$$

$$\sim b_t + L \left(\frac{1}{C_{e0}^i} - \frac{C_e^i}{2(C_{e0}^i)^2} \right) + t_{\text{sync}}^i + a_t z_i$$

First order derivatives of residual equations

Derivatives of all parameters for ith bar:

Eq.	$ a_x $	a_y	$ a_t $	b_x	b_y	b_t	$t_{sync^{(H)}}^i$	$t_{sync^{(V)}}^i$	C_t^i (H)	$C_t^{i}({\bf V})$	C_e^i (H)	C_e^i (V)	meas	err
(1)	$ z_i $	0	0	1	0	0	0	0	$\frac{1}{2}$	0	$rac{t_{diff}}{2}$	0	0	$rac{C_{e0}^i}{2}\delta t_{diff}$
(4)	0	z_i	0	0	1	0	0	0	0	$\frac{1}{2}$	0	$\frac{t_{diff}}{2}$	0	$ rac{C_{e0}^{i}}{2}\delta t_{diff} $
(2)	0	0	z_i	0	0	1	1	0	0	ō	$-\frac{L}{2(C_{e0}^i)^2}$	Ō	$\frac{t_{sum}}{2} - \frac{L}{C_{-0}^i}$	$rac{1}{2}\delta \mathit{t}_{sum}$
(5)	0	0	z_i	0	0	1	0	1	0	0	0	$-\tfrac{L}{2(C_{e0}^i)^2}$	$\frac{t_{sum}}{2} - \frac{\overset{C}{L}^{e0}}{\overset{C}{C}^{i}_{e0}}$	$rac{1}{2}\delta \mathit{t}_{sum}$
(3)	0	z_i	0	0	1	0	0	0	0	0	0	0	y_i	$w_{\sf bar}$
(6)	$ z_i $	0	0	1	0	0	0	0	0	0	0	0	x_i	$w_{\sf bar}$

Variable names:

 t_{sum} : Summation of the adjacent PMT times

 $t_{\rm diff}$: Difference of the adjacent PMT times

 δt_{sum} : Error value of t_{sum} δt_{diff} : Error value of t_{diff} w_{bar} : Width of the *i*th bar

 $x_i, y_i, z_i : x$, y, z positions of the ith bar

Integration with R3BROOT

Preliminary results from Millepede algorithm

Comparison of the PMT time offset parameter

Preliminary results from Millepede algorithm

Comparison of the scintillator time synchronization

Preliminary results from Millepede algorithm

Comparison of the scintillator effective of c

