

Этикетка

КСНЛ.431232.001 ЭТ

Микросхема 1564ИЕ6Т1ЭП

Микросхема интегральная 1564ИЕ6Т1ЭП

Функциональное назначение:

Двоично – десятичный реверсивный счётчик

Таблица назначения выводов

№	Обозначение	Назначение вывода	№	Обозначение	Назначение
вывода	вывода		вывода	вывода	вывода
1	D1	Вход первого разряда	9	D3	Вход третьего разряда
2	Q1	Выход первого разряда	10	D2	Вход второго разряда
3	Q0	Выход нулевого разряда	11	ED	Вход разрешения установки по входам D
4	-1	Вход тактовый на уменьшение	12	CR	Выход переноса при сложении
5	+1	Вход тактовый на увеличение	13	BR	Выход переноса при вычитании
6	Q2	Выход второго разряда	14	CLR	Вход установки в состояние «логический 0»
7	Q3	Выход третьего разряда	15	D0	Вход нулевого разряда
8	0V	Общий	16	V_{CC}	Питание

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = 25 \pm 10$ °C)

1.1 Основные электрические пар	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Максимальное выходное напряжение низкого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B } I_{O}=20 \text{ mKA}$	$U_{OL\;max}$	-	0,10
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		-	0,10
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		-	0,10
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 mA		-	0,26
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		-	0,26
2. Минимальное выходное напряжение высокого уровня, В, при:			
$U_{CC}=2.0 \text{ B}, U_{IL}=0.3 \text{ B}, U_{IH}=1.5 \text{ B}, I_{O}=20 \text{ MKA}$	$U_{ m OHmin}$	1,9	-
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} = 20 мкА		4,4	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 20 MKA		5,9	-
при:			
U_{CC} =4,5 B, U_{IL} =0,9 B, U_{IH} =3,15 B, I_{O} =4,0 MA		3,98	-
U_{CC} =6,0 B, U_{IL} =1,2 B, U_{IH} =4,2 B, I_{O} = 5,2 MA		5,48	-
3. Входной ток низкого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}$	${ m I}_{ m IL}$	-	/-0,1/
4. Входной ток высокого уровня, мкА, при:			
$U_{CC} = 6.0 \text{ B}, U_{IH} = U_{CC}$	I_{IH}	-	0,1
5. Ток потребления, мкА, при			
$U_{CC} = 6.0 \text{ B}, U_{IL} = 0 \text{ B}, U_{IH} = U_{CC}$	I_{CC}	-	4,0
6. Динамический ток потребления, мА, при:			
$U_{CC} = 6.0 \text{ B}, f = 10 \text{ M}\Gamma \text{II}, U_{IL} = 0, U_{IH} = U_{CC}$	I_{CCO}	-	20,0
7. Максимальная частота следования импульсов тактовых сигналов на			
входе + 1, МГц, при:	$f_{C max}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		3	-
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		18	-
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		20	-

8. Максимальная частота следования импульсов тактовых сигналов на			
входе - 1, МГц, при:	$f_{C max}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$		4	-
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		20	-
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ n}\Phi$		23	-
9. Время задержки распространения при включении (выключении), от	t_{PHL}		
входов +1 и -1 к выходам Q0, Q1, Q2, Q3, нс, при:	(t_{PLH})		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	275 (215)
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	55 (43)
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	47 (37)
10. Время задержки распространения при включении (выключении), от			
входа +1 к выходу CR, нс, при:	t_{PHL}		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \Pi\Phi$	(t_{PLH})	-	130 (140)
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	26 (28)
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	22 (24)
11. Время задержки распространения при включении и выключении, от			
входа -1 к выходу BR, нс, при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B, C}_{L} = 50 \text{ п}\Phi$	(t_{PLH})	-	130
$U_{CC} = 4.5 \text{ B}, C_L = 50 \Pi\Phi$		-	26
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		=	22
12. Время задержки распространения при включении от входа CLR к			
выходам Q0, Q1, Q2, Q3, нс, при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ п}\Phi$		-	265
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	53
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		-	45
13. Время задержки распространения при включении (выключении), от			
входа ED к выходам Q0, Q1, Q2, Q3, нс, при:	$t_{ m PHL}$		
$U_{CC} = 2.0 \text{ B}, C_L = 50 \text{ m}\Phi$	(t_{PLH})	-	290 (230)
$U_{CC} = 4.5 \text{ B}, C_L = 50 \text{ m}\Phi$		-	58 (46)
$U_{CC} = 6.0 \text{ B}, C_L = 50 \text{ m}\Phi$		=	49 (39)
14. Входная емкость, $\Pi\Phi$, Π ри: $U_{CC} = 0$ В	C_{I}	-	10

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г. серебро г. в том числе: г/мм на 16 выводах длиной мм.

2 НАДЕЖНОСТЬ

2.1 Наработка микросхем до отказа Тн в режимах и условиях эксплуатации, допускаемых

ТУ исполнения, при температуре окружающей среды (температуре эксплуатации) не более (65+5) $^{\circ}$ C не менее 100000ч., а в облегченном режиме: при $U_{CC} = 5B \pm 10\%$ - не менее 120000ч.

 $2.2~\Gamma$ амма – процентный срок сохраняемости ($T_{C\gamma}$) при γ = 99% при хранении в упаковке изготовителя в отапливаемом хранилище или хранилище с регулируемыми влажностью и температурой, или в местах хранения микросхем, вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Гамма – процентный срок сохраняемости в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0998.

3 ГАРАНТИИ ИЗГОТОВИТЕЛЯ

Изготовитель гарантирует соответствие качества данного изделия требованиям АЕЯР.431200.424-04ТУ при соблюдении потребителем условий и правил хранения, монтажа и эксплуатации, приведенных в ТУ на изделие. Срок гарантии исчисляется с даты изготовления, нанесенной на микросхему.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 1564ИЕ6Т1ЭП соответствуют техническим условиям АЕЯР.431200.424-04ТУ и признаны годными для эксплуатации.

Приняты по	(ОТ		_
(извещение, акт и др.)	(дата)	
Место для ш	тампа ОТК			Место для штампа ПЗ
Место для ш	тампа « Перепровер	ка прои	зведена	» (дата)
Приняты по	(извещение, акт и д	ір.)	(дата)	_
Место для ш	тампа ОТК	_		Место для штампа П

5. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 200 В.

Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – вывод общий, вход-вывод питание. Остальные указания по эксплуатации – в соответствии с АЕЯР.431200.424 ТУ.