PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-146471

(43)Date of publication of application: 28.05.1999

(51)Int.CI.

H04R 1/02 1/02 H04R

H04R 1/00

(21)Application number: 09-312141 (22)Date of filing:

13.11.1997

(71)Applicant: TIME DOMAIN:KK

(72)Inventor: YUI HIROYUKI

HIKOSAKA AKIHIRO

(54) SPEAKER

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a speaker with which sounds can be reproduced much closer to original sounds by reducing noises generated from a speaker cabinet and improving the sound quality of the speaker while suppressing the transmission of vibrations between the speaker cabinet and a speaker unit.

SOLUTION: A yoke 11a of a speaker unit 1a is directly supported by a supporting rod 3a, and the supporting rod 3a is fixed on a fixed stand 4a installed on a ground surface G. Besides, a speaker unit 2a is just abutted with a frame 14a but not bonded and supported by the supporting rod 3a while being separated from the ground surface G. As a result, the unwanted vibrations of a magnetic circuit composed of the yoke 11a, magnet 12a and plate 13 are suppressed, absorbed through the supporting rod 3a and the fixed stand 4 to the ground surface G and suppressed from being directly transmitted to the speaker cabinet 2a.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報 (A) (11) 特許出願公開番号

特開平11-146471

(43) 公開日 平成11年(1999) 5月28日

(51) Int. Cl. ⁶ H 0 4 R	識別記号 1/02 1 0 1 1 0 5 1/00 3 1 0		FI H04R	1/02
	審査請求 未請求 請求項の数18	OL		(全12頁)
(21)出願番号	特願平9-312141		(71)出願人	597159606 株式会社タイムドメイン
(22) 出願日	平成9年(1997)11月13日		(72)発明者	奈良県生駒市高山町8916番地12
			(72)発明者	彦坂 明宏 奈良県生駒市高山町8916番地12 株式会社 タイムドメイン内
			(74) 代理人	弁理士 三枝 英二 (外10名)

(54) 【発明の名称】 スピーカ

(57)【要約】

【課題】 スピーカキャビネット及びスピーカユニット 間の振動伝達を抑制し、スピーカキャビネットから発生 する雑音を低減できるとともに、スピーカの音質を向上 させることができ、原音により近い再生音を実現するこ とができるスピーカを提供する。

【解決手段】 スピーカユニット1aのヨーク11aが 支持棒3aにより直接支持され、支持棒3aは、接地面 Gに設置された固定台4aに固定される。また、スピー カユニット2 aは、フレーム14 aとは当接されるのみ で接合されず、支持棒3aにより接地面Gから離間され た状態で支持される。この結果、ヨーク11a、マグネ ット12a、及びプレート13からなる磁気回路の不要 な振動が、抑制されるとともに支持棒3a及び固定台4 a を介して接地面Gに吸収され、直接スピーカキャピネ ット2aに伝達されるのを抑制する。

【特許請求の範囲】

【請求項1】 振動板と、前記振動板の外周を固定する フレームと、オーディオ信号を前記振動板の機械的な振 動に変換する電気機械変換器とを備えるスピーカユニッ トと、

前記スピーカユニットの背面を覆い、接地面から離間さ れて配置されるスピーカキャビネットと、

一端が前記電気機械変換器に固定されて前記スピーカユ ニットを支持し、他端が前記スピーカキャビネットを貫 通して接地面に設置される支持部材とを備えるスピー 力。

【請求項2】 前記スピーカキャビネットは、前記支持 棒により支持される請求項1記載のスピーカ。

【請求項3】 前記スピーカキャビネットと前記支持部 材との間に配置され、前記スピーカキャビネットと前記 支持部材との間の振動伝達を防止する支持部材用防振部 材をさらに備える請求項2記載のスピーカ。

【請求項4】 前記支持部材用防振部材は、前記スピー カキャビネットの内部からの空気の流出を防止する請求 項3記載のスピーカ。

【請求項5】 前記支持部材は、前記スピーカボックス と離間された状態で前記スピーカボックスを貫通する請 求項1に記載のスピーカ。

【請求項6】 前記スピーカキャピネットを支持するキ ャピネット用支持部材をさらに備える請求項1から請求 項5までのいずれかに記載のスピーカ。

【請求項7】 前記キャビネット用支持部材は、前記支 持部材と離間された状態で接地面に設置される請求項6 記載のスピーカ。

【請求項8】 前記支持部材は、前記スピーカユニット 30 の重心を通る軸上で前記スピーカユニットを支持する請 求項1から請求項7までのいずれかに記載のスピーカ。

【請求項9】 前記スピーカユニットは、前記支持部材 が前記スピーカユニットの重心を支持するように前記ス ピーカユニットの重心位置を調整する調整部材をさらに 備える請求項8記載のスピーカ。

【請求項10】 前記スピーカキャビネットは、前記ス ピーカユニットを介して前記支持部材に支持され、 前記支持部材は、前記支持部材を除く前記スピーカ全体

の重心を通る軸上で前記スピーカユニットを支持する請 40 求項1記載のスピーカ。

【請求項11】 前記スピーカユニットは、前記支持 部材が前記支持部材を除くスピーカ全体の重心を支持す るように重心位置を調整する調整部材をさらに備える請 求項10記載のスピーカ。

【請求項12】 前記フレームの周縁は、前記スピーカ キャピネットに設けられたスピーカユニット用孔の周縁 と当接又は離間される請求項1から請求項9までのいず れかに記載のスピーカ。

ャピネットに設けられたスピーカユニット用孔の周縁と の間に配置され、前記フレームと前記スピーカキャビネ ットとの間の振動伝達を防止するフレーム用防振部材を さらに備える請求項1から請求項9までのいずれかに記 載のスピーカ。

【請求項14】 前記フレーム用防振部材は、前記スピ ーカキャビネットの内部からの空気の流出を防止する請 求項13記載のスピーカ。

【請求項15】 前記スピーカキャビネットは、発泡ス 10 チロール、バルサ、桐の少なくとも一つからなる請求項 1から請求項14までのいずれかに記載のスピーカ。

【請求項16】 前記スピーカキャビネットの他の部材 と接合される部分は、重量材からなり、前記スピーカキ ャピネットの他の部材と接合されない部分は、軽量材か らなる請求項1から請求項14までのいずれかに記載の スピーカ。

【請求項17】 -前記重量材の比重は、0.5以上であ り、前記軽量材の比重は、0.3以下である請求項16 記載のスピーカ。

【請求項18】 前記重量材は、マホガニー、ローズウ 20 ッド、エボニー、樫、楢、楓、チーク、松、スプルース のうちの少なくとも一つを含み、前記軽量材は、発泡ス チロール、バルサ、桐のうちの少なくとも一つを含む請 求項17記載のスピーカ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、スピーカに関し、 特に、スピーカユニットとスピーカキャビネットとの間 の振動伝達を抑制するスピーカに関するものである。

[0002]

【従来の技術】従来のスピーカでは、スピーカユニット をスピーカユニットのフレームを介してスピーカキャビ ネットに固定し、このスピーカキャピネットを接地面に 設置して使用するのが一般的である。しかしながら、ス ピーカユニットが音を発生するとき、振動板を振動させ るマグネット等からなる磁気回路部は、片側だけがフレ ームによって支えられた宙吊り状態にあるため、振動板 に接続されたコイルの反作用を受けて磁気回路部が振動 する。この振動がフレームを介してスピーカキャピネッ トに伝達され、スピーカキャビネットから雑音が発生さ れ、スピーカの音質を劣化させていた。

【0003】このような問題点を解決するため、例え ば、特開平7-30990号公報に開示されるスピーカ では、スピーカユニットをフランジ側と磁気回路側から 挟み込み圧迫してスピーカキャピネットの前面に固定 し、スピーカキャビネットの振動を防止している。

[0004]

【発明が解決しようとする課題】しかしながら、上記の ようなスピーカユニットの固定方法では、磁気回路を完 【請求項13】 前記フレームの周縁と前記スピーカキ 50 全には固定できず、振動がフレームを介してスピーカキ

ャビネットに伝達され、スピーカキャビネットの振動に よる雑音が再生信号に混入するとともに、スピーカキャ ビネットの振動自体が雑音となり、視聴環境を害すると いう問題があった。

【0005】また、スピーカキャビネットに伝達された 振動は、フレームを介して再びスピーカユニットに伝達 され、スピーカユニット全体に不要な振動を発生させ、 伝達された振動が結果的に振動板の本来の振動にさらに 重畳され、スピーカの音質をさらに劣化させていた。

ような機械的な振動は、オーディオ再生装置、オーディ オアンプ等の他のオーディオ機器にも伝達され、各機器 の電気信号に畳み込まれ、再生音を劣化させるという問 題点もあった。

【0007】本発明の目的は、スピーカキャピネット及 びスピーカユニット間の振動伝達を抑制し、スピーカキ ャピネットから発生する雑音を低減できるとともに、ス ピーカの音質を向上させることができ、原音により近い 再生音を実現することができるスピーカを提供すること である。

[0008]

【課題を解決するための手段】本発明のスピーカは、振 動板と、前記振動板の外周を固定するフレームと、オー ディオ信号を前記振動板の機械的な振動に変換する電気 機械変換器とを備えるスピーカユニットと、前記スピー カユニットの背面を覆い、接地面から離間されて配置さ れるスピーカキャビネットと、一端が前記電気機械変換 器に固定されて前記スピーカユニットを支持し、他端が 前記スピーカキャピネットを貫通して接地面に設置され る支持部材とを備える。

【0009】上記の構成により、スピーカユニットの電 気機械変換器は、接地面に設置された支持部材により直 接支持され、スピーカキャビネットが接地面から離間さ れるので、振動板の振動に伴う電気機械変換器の不要な 振動が、抑制されるとともに支持部材により接地面に吸 収され、直接スピーカキャピネットに伝達されるのを抑 制することができる。さらに、スピーカユニットからス ピーカキャピネットに振動が伝達されたとしても、スピ ーカユニットは、支持部材により直接支持されているた め、スピーカキャビネットからスピーカユニットへ伝達 40 される振動を抑制することができる。従って、スピーカ キャピネット及びスピーカユニット間の振動伝達を抑制 し、スピーカキャピネットから発生する雑音を低減でき るとともに、スピーカの音質を向上させることができ、 原音により近い再生音を実現することができる。なお、 本明細書において接地面とは、機械的なグランドとなる 面を意味し、支持部材を接地面に設置するとは、支持部 材を単に接地面上に置く場合、及び支持部材を接地面に 固定する場合の双方を意味する。

【0010】また、前記スピーカキャピネットは、前記 50 部材が前記支持部材を除くスピーカ全体の重心を支持す

支持棒により支持されることが好ましい。この場合、ス ピーカキャビネット用の特別な支持部材が不要となり、 全体の構成が簡略化される。

【0011】また、前記スピーカキャピネットと前記支 持部材との間に配置され、前記スピーカキャビネットと 前記支持部材との間の振動伝達を防止する支持部材用防 振部材をさらに備えることが好ましい。この場合、支持 部材を介したスピーカユニットの振動は、支持部材用防 振部材により減衰されてスピーカキャピネットに伝達さ 【0006】さらに、高忠実度再生を行った場合、この 10 れ、スピーカキャビネットの振動を抑制することができ

> 【0012】また、前記支持部材用防振部材は、前記ス ピーカキャピネットの内部からの空気の流出を防止する ことが好ましい。この場合、スピーカキャビネットから 空気が漏れることがなく、より原音に近い再生音を実現 することができる。

【0013】また、前記支持部材は、前記スピーカボッ クスと離間された状態で前記スピーカボックスを貫通す ることが好ましい。この場合、スピーカユニットの振動 20 が支持部材を介してスピーカキャビネットに伝達される ことがない。

【0014】また、前記スピーカキャピネットを支持す るキャピネット用支持部材をさらに備えることが好まし い。この場合、支持部材とは別体のキャビネット用支持 部材によりスピーカキャビネットが支持されるので、ス ピーカキャビネットをより強固に支持することができ る。

【0015】また、前記キャビネット用支持部材は、前 記支持部材と離間された状態で接地面に設置されること 30 が好ましい。この場合、スピーカキャビネットが支持部 材から離間された状態で接地面上で支持されているの で、支持部材からスピーカキャビネットに伝達される振 動をさらに抑制することができる。

【0016】また、前記支持部材は、前記スピーカユニ ットの重心を通る軸上で前記スピーカユニットを支持す ることが好ましい。この場合、より安定にスピーカユニ ットを支持することができる。

【0017】また、前記スピーカユニットは、前記支持 部材が前記スピーカユニットの重心を支持するように前 記スピーカユニットの重心位置を調整する調整部材をさ らに備えることが好ましい。この場合、支持部材と電気 機械変換器との接合位置の選択が容易となる。

【0018】また、前記スピーカキャピネットは、前記 スピーカユニットを介して前記支持部材に支持され、前 記支持部材は、前記支持部材を除く前記スピーカ全体の 重心を通る軸上で前記スピーカユニットを支持すること が好ましい。この場合、より安定にスピーカ全体を支持 することができる。

【0019】また、前記スピーカユニットは、前記支持

るように重心位置を調整する調整部材をさらに備えるこ とが好ましい。この場合、支持部材と電気機械変換器と の接合位置の選択が容易となる。

【0020】また、前記フレームの周縁は、前記スピー カキャビネットに設けられたスピーカユニット用孔の周 縁と当接又は離間されることが好ましい。この場合、フ レームとスピーカキャビネットとは接合されていないた め、フレームからスピーカキャビネットへの振動の伝達 を抑制することができる。

【0021】また、前記フレームの周縁と前記スピーカ 10 用した他の電気機械変換器を用いてもよい。 キャビネットに設けられたスピーカユニット用孔の周縁 との間に配置され、前記フレームと前記スピーカキャビ ネットとの間の振動伝達を防止するフレーム用防振部材 をさらに備えることが好ましい。この場合、スピーカユ ニットの振動は、フレーム用防振部材により減衰されて スピーカキャビネットに伝達され、スピーカキャビネッ トの振動を抑制することができる。

【0022】また、前記フレーム用防振部材は、前記ス ピーカキャビネットの内部からの空気の流出を防止する ことが好ましい。この場合、スピーカキャビネットから 空気が漏れることがなく、より原音に近い再生音を実現 することができる。

【0023】また、前記スピーカキャビネットは、発泡 スチロール、パルサ、桐の少なくとも一つからなること が好ましい。この場合、スピーカキャビネットを軽量化 することができる。

【0024】また、前記スピーカキャビネットの他の部 材と接合される部分は、重量材からなり、前記スピーカ キャピネットの他の部材と接合されない部分は、軽量材 からなることが好ましい。この場合、接合部の強度を確 30 保しながらスピーカキャビネットを軽量化することがで きる。

【0025】また、前記重量材の比重は、0.5以上で あり、前記軽量材の比重は、0.3以下であることが好 ましい。

【0026】また、前記重量材は、マホガニー、ローズ ウッド(紫檀)、エポニー(黒檀)、樫、楢、楓、チー ク、松、スプルースのうちの少なくとも一つを含み、前 記軽量材は、発泡スチロール、バルサ、桐のうちの少な くとも一つを含むことが好ましい。なお、重量材の形態 40 は、上記の各材料からなる天然木の単板、合板、又はパ ーティクルボード等の集成材のいずれであってもよい。 [0027]

【発明の実施の形態】以下、添付図面を参照しつつ本発 明の実施の形態について説明する。図1は、本発明の第 一の実施の形態のスピーカの構成を概略的に示す縦断側 面図である。

【0028】図1に示すように、スピーカは、スピーカ ユニット1a、スピーカキャピネット2a、支持棒3

ーク11a、マグネット12a、ブレート13、フレー ム14a、振動板15、ボイスコイル16、エッジ1 7、ダンパー18を備える。ここで、支持棒3a及び固 定台4 aにより支持部材が構成され、ヨーク11 a、マ グネット12a、プレート13、及びボイスコイル16 から電気機械変換器が構成されている。なお、支持部材 の構成は、上記の例に特に限定されず、種々の構成を採 用することができる。また、電気機械変換器も上記の磁 気回路等による構成に特に限定されず、圧電素子等を使

【0029】マグネット12aがヨーク11aに固定さ れ、ブレート13がマグネット12aに固定され、ヨー ク11a、マグネット12a、及びプレート13により 磁気回路が構成され、ヨーク111aとプレート13との 間に磁界が形成される。振動板15のボイスコイル16 の近傍は、ダンパー18を介してフレーム14aに接続 され、振動板15の外周は、エッジ17を介してフレー ム14aの外周に接続され、これらの支持方法により振 動板15が振動可能に支持されている。ヨーク11aと プレート13との間のギャップ部分にボイスコイル16 が配置され、ボイスコイル16にオーディオ信号に対応 した電流を流すと、ギャップの磁束により電流値に応じ てボイスコイル16が振動する。ボイスコイル16は、 振動板15に接続され、ボイスコイル16の振動に応じ て振動板15が振動し、オーディオ信号に対応した音が 再生される。

【0030】スピーカユニット1aのうち、ヨーク11 a、マグネット12a、ブレート13、及びボイスコイ ル16から構成される電気機械変換器のヨーク11a は、支持棒3aと接合されて支持され、支持棒3aは、 接地面Gに置かれた固定台4aに固定される。また、支 持棒3aは、スピーカユニット1aの重心を通る中心軸 上でヨーク11 aと接合されている。

【0031】ヨーク11aと支持棒3aとの接合および 支持棒3aと固定台4aとの接合の方法は、溶接、ねじ 固定、圧入、接着等の種々の方法を用いることができ、 ヨーク11aと支持棒3a及び固定台4aとを強固に接 合できる方法であれば特に限定されない。支持棒3a及 び固定台4aの材質は、金属、プラスチック、木材等の 種々の材質を用いることができ、ヨーク11 a すなわち 電気機械変換器を強固に支持することができるものであ れば特に限定されない。支持棒3a及び固定台4aの形 状も特に限定されず、種々の形状を採用することができ る。支持棒3a及び固定台4aは、別体のものに特に限 られず、これらを一体に形成することもでき、さらにヨ ーク11aを含めて一体に形成してもよい。

【0032】スピーカキャビネット2aは、支持棒3a に接合され、接地面Gから離問されている。スピーカキ ャピネット2aと支持棒3aとの接合方法は、圧入、接 a、閻定台4aを備える。スピーカユニット1aは、ヨ 50 着等の種々の方法を用いることができ、支持権3aに対

するスピーカキャビネット2aの位置を規制できる方法であれば特に限定されない。スピーカキャビネット2aに設けられたスピーカユニット用孔の外周とフレーム14aの外周とは、当接するのみで、接着又はねじ止め等により接合されていない。すなわち、フレーム14aの外周部は、スピーカキャビネット2aを保持する程の接合力を持たず、スピーカキャビネット2aは、支持棒3aにより保持される。スピーカキャビネット2aの材質としては、一般にスピーカキャビネットに使用される種々の材料を用いることができ、特に限定されないが、スローカキャビネットの軽量化を図るため、発泡スチロール、バルサ、桐、又はこれらを組合せたものを用いても

よい。

【0033】上記の構成により、スピーカユニット1a のヨーク11 aは、フレーム14 aを介してスピーカキ ャピネット2aの前面で支持されるのではなく、支持棒 3 a により直接支持され、さらに、スピーカキャビネッ ト2aが接地面Gから離間されている。従って、振動板 15の振動に伴う電気機械変換器の不要な振動が抑制さ れるとともに、支持棒3a及び固定台4aを介して接地 面Gに吸収され、フレーム14aを介して直接スピーカ キャピネット2 aに伝達されるのを抑制することができ る。さらに、スピーカユニット1aからスピーカキャビ ネット2aに振動が伝達され、又は背面音圧によりスピ 一カキャピネット2aが振動したとしても、スピーカユ ニット1 a は、支持棒3 a により直接支持されているた め、スピーカキャビネット2aからスピーカユニット1 aへ伝達される振動を抑制することができる。この結 果、スピーカキャピネット2a及びスピーカユニット1 a間の振動伝達を抑制し、スピーカキャビネット2 aか ら発生する雑音を低減できるとともに、スピーカの音質 を向上させることができ、原音により近い再生音を実現 することができる。

【0034】次に、本発明の第二の実施の形態のスピーカについて説明する。図2は、本発明の第二の実施の形態のスピーカの構成を概略的に示す縦断側面図である。図2に示すスピーカと図1に示すスピーカとで同一部分については同一符号で示し、詳細な説明は省略する。

【0035】図2に示すスピーカと図1に示すスピーカとで異なる点は、支持棒3bがスピーカキャビネット2bの背面を貫通し、スピーカキャビネット2bの背面が支持棒3bと接合され、支持棒3bが直接接地面Gに固定されている点である。

【0036】この場合でも、上記と同様に、スピーカユニット1aのヨーク11aは、フレーム14aを介してスピーカキャビネット2bの前面で支持されるのではなく、支持棒3bにより直接支持され、さらに、スピーカキャビネット2bが接地而Gから離間されている。従って、振動板15の振動に伴う電気機械変換器の不要な振動が抑制されるとともに、支持棒3bを介して接地面G

8

に吸収され、フレーム14aを介して直接スピーカキャビネット2bに伝達されるのを抑制することができる。さらに、スピーカユニット1aからスピーカキャビネット2bに振動が伝達され、又は背面音圧によりスピーカキャビネット2bが振動したとしても、スピーカユニット1aは、支持棒3bにより直接支持されているため、スピーカキャビネット2bからスピーカユニット1aの伝達される振動を抑制することができる。この結果、スピーカキャビネット2bからスピーカユニット1a間の振動伝達を抑制し、スピーカキャビネット2bから発生する雑音を低減できるとともに、スピーカの音質を向上させることができ、原音により近い再生音を実現することができる。

【0037】次に、本発明の第三の実施の形態のスピーカについて説明する。図3は、本発明の第三の実施の形態のスピーカの構成を概略的に示す縦断側面図である。図3に示すスピーカと図1に示すスピーカとで同一部分については同一符号で示し、詳細な説明は省略する。

【0038】図3に示すスピーカと図1に示すスピーカとで異なる点は、支持棒3cがスピーカキャビネット2cの上面を貫通し、スピーカキャビネット2cの上面が支持棒3cと接合され、支持棒3cが直接接地面Gに固定されている点である。

【0039】この場合でも、上記と同様に、スピーカユ ニット1aのヨーク11aは、フレーム14aを介して スピーカキャピネット2 cの前面で支持されるのではな く、支持棒3cにより直接支持され、さらに、スピーカ キャピネット2cが接地面Gから離間されている。従っ て、振動板15の振動に伴う電気機械変換器の不要な振 動が抑制されるとともに、支持棒3cを介して接地面G に吸収され、フレーム14aを介して直接スピーカキャ ビネット2cに伝達されるのを抑制することができる。 さらに、スピーカユニット1 aからスピーカキャビネッ ト2cに振動が伝達され、又は背面音圧によりスピーカ キャビネット2cが振動したとしても、スピーカユニッ ト1 a は、支持棒 3 c により直接支持されているため、 スピーカキャビネット2cからスピーカユニット1aへ 伝達される振動を抑制することができる。この結果、ス ピーカキャビネット2c及びスピーカユニット1a間の 振動伝達を抑制し、スピーカキャビネット2cから発生 する雑音を低減できるとともに、スピーカの音質を向上 させることができ、原音により近い再生音を実現するこ とができる。

【0040】上記のように、第一乃至第三の実施の形態では、スピーカキャビネットに対する支持棒の貫通位置を変化させた種々の例を説明したが、この貫通位置の差による影響は少なく、支持棒が直接電気機械変換器を支持すれば同様の効果を得ることができ、以下の各実施の形態でも同様である。

【0041】次に、本発明の第四の実施の形態のスピー

カについて説明する。図4は、本発明の第四の実施の形態のスピーカの構成を概略的に示す縦断側面図である。図4に示すスピーカとで同一部分については同一符号で示し、詳細な説明は省略する。

【0042】図4に示すスピーカと図1に示すスピーカとで異なる点は、支持棒3aが、スピーカキャビネット2dと離間された状態で、スピーカキャビネット2dの下面に設けられた貫通孔に挿入され、スピーカキャビネット2dが、スピーカユニット1aのフレーム14aと接合されて支持されている点である。

【0043】スピーカキャビネット2dとフレーム14 aとの接合方法は、ねじ固定、接着等の種々の方法を用いることができ、スピーカキャビネット2dの位置を規制できる程度に接合できる方法であれば特に限定されない。また、スピーカキャビネット2dと支持棒3aとの間隔は、スピーカキャビネット2dから外部への空気漏れをできるだけ抑制するためにできるだけ狭いことが好ましい。なお、本実施の形態では、スピーカユニット2dは、スピーカユニット1aに接合されて支持されているため、支持棒3a及び固定台4aを除 20 くスピーカ全体の重心を通り、水平面に平行な軸上でヨーク11aと接合されている。

【0044】上記の構成により、スピーカユニット1a のヨーク11 aは、接地面Gに配置された支持棒3 aに より直接支持されているので、振動板15の振動に伴う 電気機械変換器の振動を抑制することができる。また、 スピーカキャビネット2dが支持棒3a及び接地面Gか ら離間されているので、支持棒3aを介して電気機械変 換器の不要な振動がスピーカキャビネット2dに伝達さ れることがない。さらに、スピーカユニット1 aからス ピーカキャビネット2dに振動が伝達され、又は背面音 圧によりスピーカキャビネット2dが振動したとして も、スピーカユニット1 aは、支持棒3 cにより直接支 持されているため、スピーカキャビネット2dからスピ ーカユニット1aへ伝達される振動を抑制することがで きる。この結果、スピーカキャピネット2d及びスピー カユニット1 a間の振動伝達を抑制し、スピーカキャビ ネット2 dから発生する雑音を低減できるとともに、ス ピーカの音質を向上させることができ、原音により近い 再生音を実現することができる。

【0045】次に、本発明の第五の実施の形態のスピーカについて説明する。図5は、本発明の第五の実施の形態のスピーカの構成を概略的に示す縦断側面図である。図5に示すスピーカと図2に示すスピーカとで同一部分については同一符号で示し、詳細な説明は省略する。

【0046】図5に示すスピーカと図2に示すスピーカとで異なる点は、スピーカキャビネット2eの背面に設けられた貫通孔に挿入された支持棒3bとスピーカキャビネット2eとの間に支持部材用防振部材である防振部材22が備えられ、防振部材22を介してスピーカキャ50

ビネット2 e が支持棒3 bに接合されて支持されている点である。

10

【0047】防振部材22としては、防振ゴム、フェルト、綿等を用いることができ、例えば、ソルボセイン (発売元、三進興業株式会社)等を用いることができる。また、防振ゴムを用いた場合は、防振部材22を介したスピーカキャビネット2eからの外部への空気の漏れを完全に防止することができ、フェルト及び綿を用いた場合でも空気の漏れをある程度防止することができる。

【0048】防振部材22と支持棒3b及びスピーカキャビネット2eとの接合方法は、ねじ固定、圧入、接着等の種々の方法を用いることができ、スピーカキャビネット2eの位置を規制できる程度に接合できる方法であれば特に限定されない。

【0049】上記の構成により、スピーカユニット1a のヨーク11aは、支持棒3bにより直接支持されてい るので、振動板15の振動に伴う電気機械変換器の振動 を抑制することができる。また、スピーカキャビネット 2 e が、接地面 Gから離間されるとともに、防振部材 2 2を介して支持棒3bに接合されているので、電気機械 変換器の不要な振動が、支持棒3bを介してスピーカキ ャピネット2eへ伝達されるのを抑制することができ る。さらに、スピーカユニット1 aからスピーカキャビ ネット2 eに振動が伝達され、又は背面音圧によりスピ 一カキャピネット2 e が振動したとしても、スピーカユ ニット1aは、支持棒3bにより直接支持されているた め、スピーカキャビネット2eからスピーカユニット1 aへ伝達される振動を抑制することができる。この結 果、スピーカキャビネット2e及びスピーカユニット1 a間の振動伝達を抑制し、スピーカキャビネット2eか ら発生する雑音を低減できるとともに、スピーカの音質 を向上させることができ、原音により近い再生音を実現 することができる。なお、上記の支持部材用防振部材の 適用は、本実施の形態だけでなく、他の実施の形態にも 同様に適用することができる。

【0050】次に、本発明の第六の実施の形態のスピーカについて説明する。図6は、本発明の第六の実施の形態のスピーカの構成を概略的に示す縦断側面図である。図6に示すスピーカと図1に示すスピーカとで同一部分については同一符号で示し、詳細な説明は省略する。

【0051】図6に示すスピーカと図1に示すスピーカとで異なる点は、支持棒3aが、スピーカキャビネット2fと離問された状態で、スピーカキャビネット2fの下面に設けられた貫通孔に挿入され、スピーカキャビネット2fが、スピーカキャビネット用支持部材であるキャビネット用支持棒5aに支持され、固定台4bが支持棒3a及びキャビネット用支持棒5aを固定して接地面Gに配置されている点である。

【0052】スピーカキャビネット21とキャビネット

用支持棒5aとの接合方法は、ねじ固定、圧入、接着等 の種々の方法を用いることができ、スピーカキャビネッ ト2 fの位置を規制できる程度に接合できる方法であれ ば特に限定されない。また、キャピネット用支持棒5a と固定台4 b との接合方法は、第一の実施の形態の支持 棒3aと固定台4aとの接合方法と同様であり、スピー、 カキャビネット2fと支持棒3aとの間隔は、上記の第 四の実施の形態と同様である。

【0053】上記の構成により、スピーカユニット1a のヨーク11aは、接地面Gに配置された支持棒3aに 10 より直接支持されているので、振動板15の振動に伴う 電気機械変換器の振動を抑制することができる。また、 スピーカキャビネット2fは接地面G及び支持棒3aか ら離間され、キャビネット用支持棒5aに直接支持され ているので、支持棒3aを介して電気機械変換器の不要 な振動がスピーカキャビネット2fに直接伝達されるこ とがない。さらに、スピーカユニット1 aからスピーカ キャビネット2fに振動が伝達され、又は背面音圧によ りスピーカキャビネット2fが振動したとしても、スピ 一カユニット1aは、支持棒3aにより直接支持されて いるため、スピーカキャビネット2fからスピーカユニ ットlaへ伝達される振動を抑制することができる。こ の結果、スピーカキャピネット2f及びスピーカユニッ ト1a間の振動伝達を抑制し、スピーカキャビネット2 f から発生する雑音を低減できるとともに、スピーカの 音質を向上させることができ、原音により近い再生音を 実現することができる。

【0054】次に、本発明の第七の実施の形態のスピー 力について説明する。図7は、本発明の第七の実施の形 態のスピーカの構成を概略的に示す縦断側面図である。 図7に示すスピーカと図6に示すスピーカとで同一部分 については同一符号で示し、詳細な説明は省略する。

【0055】図7に示すスピーカと図6に示すスピーカ とで異なる点は、固定台4 bが分離され、支持棒3 a 専 用の固定台4 c 及びキャビネット用支持棒5 b専用の固 定台4 dがそれぞれ設けられた点である。

【0056】キャピネット用支持棒5bとスピーカキャ ピネット2gとの接合方法は、上記の第六の実施の形態 と同様であり、支持棒3aと固定台4cとの接合及びキ ャピネット用支持棒5bと固定台4dとの接合方法も、 上記の第一の実施の形態と同様である。

【0057】上記の構成により、スピーカユニット1a のヨーク11aは、接地面Gに配置されている支持棒3 aにより直接支持されているので、振動板15の振動に 伴う電気機械変換器の振動を抑制することができる。ま た、スピーカキャピネット2gは、支持棒3aから完全 に離問され、専用のキャピネット用支持棒 5 b及び固定 台4dにより支持されているので、支持棒3aを介した 電気機械変換器の不要な振動のスピーカキャピネット2 gへの伝達をさらに少なくすることができる。さらに、

スピーカユニット1 aからスピーカキャビネット2gに 振動が伝達され、又は背面音圧によりスピーカキャビネ ット2gが振動したとしても、スピーカユニット1 a は、支持棒3aにより直接支持されているため、スピー カキャビネット2gからスピーカユニット1aへ伝達さ れる振動を抑制することができる。この結果、スピーカ キャピネット2g及びスピーカユニット1a間の振動伝 達を抑制し、スピーカキャビネット2gから発生する雑 音を低減できるとともに、スピーカの音質を向上させる ことができ、原音により近い再生音を実現することがで きる。

【0058】次に、本発明の第八の実施の形態のスピー 力について説明する。図8は、本発明の第八の実施の形 態のスピーカの構成を概略的に示す縦断側面図である。 図8に示すスピーカと図2に示すスピーカとで同一部分 については同一符号で示し、詳細な説明は省略する。

【0059】図8に示すスピーカと図2に示すスピーカ とで異なる点は、スピーカキャビネット2hが支持棒3 bだけでなく、キャビネット用支持棒5cに支持され、 キャビネット用支持棒5c及び固定台4eにより固定さ れている点である。ここで、スピーカキャピネット2h とキャピネット用支持棒5cとの接合及びキャピネット 用支持棒 5 c と固定台 4 e との接合の方法は、上記の第 七の実施の形態と同様である。

【0060】上記の構成により、スピーカユニット1a のヨーク11aは、接地面Gに配置された支持棒3bに より直接支持されているので、振動板15の振動に伴う 電気機械変換器の振動を抑制することができる。また、 スピーカキャビネット2hは、支持棒3b、並びにキャ 30 ビネット用支持棒5c及び固定台4eにより支持されて いるので、支持棒3bのみによる支持よりも、より強固 に支持され、より振動伝達を抑制することができる。さ らに、スピーカユニット1 aからスピーカキャビネット 2 h に振動が伝達され、又は背面音圧によりスピーカキ ャピネット2hが振動したとしても、スピーカユニット 1 a は、支持棒 3 b により直接支持されているため、ス ピーカキャピネット2hからスピーカユニット1aへ伝 達される振動を抑制することができる。この結果、スピ ーカキャピネット2h及びスピーカユニット1a間の振 40 動伝達を抑制し、スピーカキャピネット2hから発生す る雑音を低減できるとともに、スピーカの音質を向上さ せることができ、原音により近い再生音を実現すること ができる。

【0061】次に、本発明の第九の実施の形態のスピー カについて説明する。図9は、本発明の第九の実施の形 態のスピーカの構成を概略的に示す縦断側面図である。 図9に示すスピーカと図1に示すスピーカとで同一部分 については同一符号で示し、詳細な説明は省略する。

【0062】図9に示すスピーカと図1に示すスピーカ 50 とで異なる点は、スピーカキャピネット2iがフレーム

50

用防振部材である防振膜6を介してスピーカユニット1 bのフレーム14bに接合されている点である。

【0063】スピーカキャビネット2iと防振膜6との 接合及びフレーム14bと防振膜6との接合の方法は、 ねじ固定、接着等の種々の方法を用いることができ、ス ピーカキャビネット2iとフレーム6との間に防振膜6 を固定できる程度に接合できる方法であれば特に限定さ れない。防振膜6としては、防振ゴム、フェルト、綿等 を用いることができ、例えば、ソルボセイン(発売元、 三進興業株式会社)等を用いることができる。また、防 振ゴムを用いた場合は、防振膜6を介したスピーカキャ ビネット2iから外部への空気の漏れを完全に防止する ことができ、フェルト及び綿を用いた場合でも空気の漏 れをある程度防止することができる。

【0064】上記の構成により、スピーカユニット1b のヨーク11 aは、接地面Gに配置された支持棒3 aに より直接支持されているので、振動板15の振動に伴う 電気機械変換器の振動を抑制することができる。また、 スピーカキャビネット2iが防振膜6を介してフレーム 14 bに接合されているので、フレーム14 bを介した 20 スピーカキャビネット2 i 及びスピーカユニット1 b間 の振動伝達を抑制することができる。この結果、スピー カキャピネット2i及びスピーカユニット1b間の振動 伝達を抑制し、スピーカキャビネット2iから発生する 雑音を低減できるとともに、スピーカの音質を向上させ ることができ、原音により近い再生音を実現することが できる。

【0065】次に、本発明の第十の実施の形態のスピー カについて説明する。図10は、本発明の第十の実施の 形態のスピーカの構成を概略的に示す縦断側面図であ る。図10に示すスピーカと図1に示すスピーカとで同 一部分については同一符号で示し、詳細な説明は省略す る。

【0066】図10に示すスピーカと図1に示すスピー カとで異なる点は、スピーカキャビネット2 j とスピー カユニット1aのフレーム14aとの間が離間されてい る点である。

【0067】上記の構成により、スピーカユニット1a のヨーク11aは、接地面Gに配置された支持棒3aに より直接支持されているので、振動板15の振動に伴う 40 電気機械変換器の振動を抑制することができる。また、 スピーカキャビネット2 j がスピーカユニット l a のフ レーム14aから離問されているので、フレーム14a を介したスピーカキャピネット2j及びスピーカユニッ ト1 a 間の振動伝達がなくなる。この結果、スピーカキ ャピネット2 j 及びスピーカユニット1 a 間の振動伝達 を抑制し、スピーカキャピネット2jから発生する雑音 を低減できるとともに、スピーカの音質を向上させるこ とができ、原音により近い再生音を実現することができ る。

【0068】次に、本発明の第十一の実施の形態のスピ ーカについて説明する。図11は、本発明の第十一の実 施の形態のスピーカの構成を概略的に示す縦断側面図で ある。図11に示すスピーカと図1に示すスピーカとで 同一部分については同一符号で示し、詳細な説明は省略

【0069】図11に示すスピーカと図1に示すスピー 力とで異なる点は、他の部材との接合面であるスピーカ キャビネット2kの下面28bが重量材から構成され、 他の面25a~27a(図示されていない両側面も含 む)が軽量材から構成されている点である。ここで、重 量材の比重は、0.5以上であり、軽量材の比重は、 0. 3以下であることが好ましく、重量材としては、マ ホガニー、ローズウッド(紫檀)、エボニー(黒檀)、 樫、楢、楓、チーク、松、スプルース等の天然木の単 板、合板、又はパーティクルボード等の集成材等を用い ることができ、軽量材としては、発泡スチロール、バル サ、桐、又はこれらを組合せたものを用いことができ る。

【0070】上記の構成により、第十一の実施の形態で も、第一の実施の形態と同様の効果が得られるととも に、さらに、スピーカキャビネット2kの他の部材と接 合される下面28bのみが重量材で構成され、他の部分 が軽量材で構成されているため、接合部の強度を確保し ながらスピーカキャビネットを軽量化することができ

【0071】次に、本発明の第十二の実施の形態のスピ ーカについて説明する。図12は、本発明の第十二の実 施の形態のスピーカの構成を概略的に示す縦断側面図で ある。図12に示すスピーカと図2に示すスピーカとで 同一部分については同一符号で示し、詳細な説明は省略 する。

【0072】図12に示すスピーカと図2に示すスピー カとで異なる点は、他の部材との接合面であるスピーカ キャビネット2mの背面27bが重量材から構成され、 他の面 2 5 a 、 2 6 a 、 2 8 a (図示されていない両側 面も含む)が軽量材から構成されている点である。重量 材及び軽量材の材質は、第十一の実施の形態と同様であ る。

【0073】上記の構成により、第十二の実施の形態で も、第二の実施の形態と同様の効果が得られるととも に、さらに、スピーカキャビネット2mの他の部材と接 合される背面27bのみが重量材で構成され、他の部分 が軽量材で構成されているため、接合部の強度を確保し ながらスピーカキャビネットを軽量化することができ る。

【0074】次に、本発明の第十三の実施の形態のスピ 一力について説明する。図13は、本発明の第十三の実 施の形態のスピーカの構成を概略的に示す縦断側面図で ある。図13に示すスピーカと図3に示すスピーカとで

同一部分については同一符号で示し、詳細な説明は省略 する。

【0075】図13に示すスピーカと図3に示すスピーカとで異なる点は、他の部材との接合部であるスピーカキャビネット2nの上面の中心部29が重量材から構成され、他の部分25a、27a、28a、30(図示されていない両側面も含む)が軽量材から構成されている点である。重量材及び軽量材の材質は、第十一の実施の形態と同様である。

【0076】上記の構成により、第十三の実施の形態で 10 も、第三の実施の形態と同様の効果が得られるとともに、さらに、スピーカキャビネット2mの他の部材と接合される上面の中心部29のみが重量材で構成され、他の部分が軽量材で構成されているため、接合部の強度を確保しながらスピーカキャビネットをさらに軽量化することができる。

【0077】次に、支持部材が、支持部材を除くスピーカ全体の重心又はスピーカユニットの重心を支持するように重心位置を調整する調整部材について説明する。図14は、調整部材の一例を説明するためのスピーカユニ 20ットの断面図である。

【0078】図14に示すように、支持部材である支持棒が挿入される凹部H1の先端部分に、スピーカユニットの重心Cが位置するように、調整部材として後端部を拡大したヨーク11bを用いている。従って、このようにヨークの形状を変更することにより、スピーカユニットの重心位置を容易に調整することができ、支持棒を協力との接合位置の選択が容易となる。なお、支持棒をの種々の方法を用いることができ、ねじ固定の場合は、支持棒に直接雄ねじ部を、ヨーク11bの凹部H1に直接雌ねじ部を設けてもよい。また、支持部材が支持を除くスピーカ全体の重心を支持するように重はできる場合は、ヨーク11bをさらに大きくすることができ、以下の各例でも同様である。

【0079】次に、調整部材の他の例について説明する。図15は、調整部材の他の例を説明するためのスピーカユニットの断面図である。

【0080】図15に示すように、スピーカユニットの 40 重心Cが中心部に位置するように、調整部材として、凸部T1を有し、後端部を拡大したヨーク11cを用いている。この場合も上記と同様に、スピーカユニットの重心位置を容易に調整することができ、支持棒とヨークとの接合位置の選択が容易となる。なお、支持棒とヨークとの接合方法は、上記と同様であり、ねじ固定の場合は、支持棒に直接雌ねじ部を、ヨーク11cの凸部T1に直接雄ねじ部を設けてもよい。

【0081】次に、調整部材のさらに他の例について説 切する。図16は、調整部材のさらに他の例を説明する 50 ためのスピーカユニットの断面図である。

【0082】図16に示すように、スピーカユニットの重心Cが中心部に位置するように、調整部材として、凹部H2を有し、磁気回路部を覆うように拡大したフレーム14cを用いている。なお、磁気回路部がそのままフレーム14cに納まるようにマグネットを小径のマグネット12bに変更している。この場合も上記と同様に、スピーカユニットの重心位置を容易に調整することができ、支持棒とヨークとの接合位置の選択が容易となる。なお、支持棒とフレームとの接合方法は、上記と同様であり、ねじ固定の場合は、支持棒に直接雄ねじ部を、フレーム14cの凹部H2に直接雌ねじ部を設けてもよい。

【0083】なお、調整部材は、上記のように他の部品と一体にされたものに特に限定されず、別部品で構成してもよい。また、上記の各実施の形態では、ヨークと支持棒とを接合しているが、図16のように、電気機械変換器付近の他の部材と支持棒とを接合するようにしてもよい。

【0084】また、上記各実施の形態を任意に組み合わせることもでき、その場合も同様の効果を得ることができ、本発明は、ハイエンド用のオーディオ用スピーカのみならず、一般用スピーカ、車載用スピーカ等の種々のスピーカに適用することができる。

[0085]

【発明の効果】本発明によれば、スピーカユニットの電 気機械変換器は、接地面に設置された支持部材により直 接支持され、スピーカキャビネットが接地面から離間さ れるので、振動板の振動に伴う電気機械変換器の不要な 30 振動が、抑制されるとともに支持部材により接地面に吸 収され、直接スピーカキャビネットに伝達されるのを抑 制することができる。さらに、スピーカユニットからス ピーカキャピネットに振動が伝達されたとしても、スピ ーカユニットは、支持部材により直接支持されているた め、スピーカキャビネットからスピーカユニットへ伝達 される振動を抑制することができる。従って、スピーカ キャビネットに対するスピーカユニットの独立性を高め ることができ、スピーカキャビネット及びスピーカユニ ット間の振動伝達を抑制し、スピーカキャビネットから 発生する雑音を低減できるとともに、スピーカの音質を 向上させることができ、原音により近い再生音を実現す ることができる。

【図面の簡単な説明】

【図1】本発明の第一の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図2】本発明の第二の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図3】本発明の第三の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図4】本発明の第四の実施の形態のスピーカの構成を

概略的に示す縦断側面図である。

【図5】本発明の第五の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

17

【図6】本発明の第六の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図7】本発明の第七の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図8】本発明の第八の実施の形態のスピーカの構成を 概略的に示す縦断側面図である。

【図9】本発明の第九の実施の形態のスピーカの構成を 10 概略的に示す縦断側面図である。

【図10】本発明の第十の実施の形態のスピーカの構成を概略的に示す縦断側面図である。

【図11】本発明の第十一の実施の形態のスピーカの構成を概略的に示す縦断側面図である。

【図12】本発明の第十二の実施の形態のスピーカの構成を概略的に示す縦断側面図である。

【図13】本発明の第十三の実施の形態のスピーカの構成を概略的に示す縦断側面図である。

【図14】調整部材の一例を説明するためのスピーカユ 20 ニットの断面図である。

【図15】調整部材の他の例を説明するためのスピーカユニットの断面図である。

【図16】調整部材のさらに他の例を説明するためのスピーカユニットの断面図である。

【符号の説明】

1 a ~ 1 b スピーカユニット

2a~2n スピーカキャビネット

3 a ~ 3 c 支持棒

4 a ~ 4 e 固定台

) 5a~5c キャビネット用支持棒

6 防振膜

11a~11c ヨーク

12a、12b マグネット

13 プレート

14a~14c フレーム

15 振動板

16 ボイスコイル

17 エッジ

18 ダンパー

0 21 貫通孔

22 防振部材

[図1]

【図2】

【図3】

【図14】

【図15】

[図16]

