MATH 105: Homework 13

William Guss 26793499 wguss@berkeley.edu

May 6, 2016

81. Stronger Average Value Theorem.

Theorem 1. If f is a measurable function then for all most every p in its domain we have that

$$\lim_{Q\downarrow p} \frac{1}{mQ} \int_{Q} |f - fp| \ d\mu(x) = 0 \tag{1}$$

Proof. Get an enumeration of \mathbb{Q} , say $\{a_n\}$ there is a sequence $a_n^{fp} \to fp$. Finally consider that for every n the function $|f - a_n|$ is measurable. So we let $f_n^{fp}(x) = |f(x) - a_n^{fp}|$. The limit is measurable. By the average value theorem

$$\lim_{Q \downarrow p} \frac{1}{mQ} \int_{Q} |f_n - a_n^{fp}| \ d\mu(x) = |f_p - a_n^{fp}|. \tag{2}$$

As $a_n^{fp} \to fp$ the right hand side tends towards to 0 and therefore

$$0 = \lim_{n \to \infty} \lim_{Q \downarrow p} \frac{1}{mQ} \int_{Q} |f - a_n^{fp}| d\mu(x)$$

$$= \lim_{Q \downarrow p} \frac{1}{mQ} \int_{Q} \lim_{n \to \infty} |f - a_n^{fp}| d\mu(x)$$

$$= \lim_{Q \downarrow p} \frac{1}{mQ} \int_{Q} |f - fp| d\mu(x).$$
(3)

We can bring the limit inside by the measurability and uniform convergence of the functions. This completes the proof.

84. Almost Absolutely Continuous Functions.

Lusin's Lemma extends to absolute continuity for the falling reasons. Take an f satisfying the conditions in Lusin's Lemma. Then $f:[a,b]\to\mathbb{R}$ restricted to $E\subset[a,b]$ is continuous and E is a bounded compact set. Since $f_{|E}$ is continuous on a bounded compact subset, then it is absolutely continuous on that subset. So f satisfying Luzin's lemma is almost absolutely continuous. The lemma used in this reasoning does not require that f be bounded! ''

87. Density Theoretic Boundries

(a) Measure theoretic boarder.

Theorem 2. If E is a subset of \mathbb{R}^n and ∂E is its boarder then

$$\partial_m E \subset \partial E$$
.

Proof. If $p \in Ext_m(E)$ then clearly $d(p, E^c) = 1$ and therefore $p \in E^c$. Conversely $\partial_m E \cup Int_m(E) = E$. Suppose for the sake of contradiction that there exists a $p \in \partial_m E$ such that $p \in E^o = Int(E)$. Then there exists an r > 0 such that all $x \in B(p,r)$ are in E. Therefore d(p,E) = 1. This a contradiction to $p \in \partial_m E$, so $p \in \partial E$. This completes the proof.

(b) Consider the following construction. Let $f:[-1,1] \to [0,2]$ such that $x \mapsto x^{2/3} + 1$. This function has a cusp at x = 0 whose walls get sharper and sharper. Imagine the point on the border of the completed undergraph at x = 0. As you shrink the ball it encompasses more of the area on the graph. Untill eventually the limit is one. See the picture:

88. Topological Riemann Integrability

Theorem 3. Let X be a compact hypercube in \mathbb{R}^n . A function $f: X \to [0, M]$ is Riemann integrable if and only if $m(\partial \mathcal{U}f) = 0$.

Proof. Recall that Lemma 69 holds for any arbitrary metric space. Therefore,

$$Uf = int(Uf) \wedge \hat{U}\bar{f} = \overline{Uf}$$
(4)

Since open sets and closed set are measurable in \mathbb{R}^n , then \underline{f} and \overline{f} are measurable functions. Thus

$$m(\partial(\mathcal{U}f)) = m(\overline{\mathcal{U}f} \setminus int(\mathcal{U}f)) = m(\hat{\mathcal{U}}\bar{f}) - m(\mathcal{U}\underline{f}) = \int_{X} \bar{f} - \underline{f}.$$
 (5)

Lebesgue theory tells us that the integral is zero if and only if $\bar{f} = \underline{f}$ almost everywhere, i.e. f is continuous if and only if f is continuous everywhere $(\lim_{t\to x} f(t).)$, i.e. by the Multivariate Riemann-Lebesgue Theorem if and only if f is Riemann integrable.