Antibiotic Resistance

Every time you use an antibiotic you exert selection pressure for resistance on pathogens and commensals

resistance

- · in the animal being treated
- · in contact animals
- · in the owner
- in the environment / NZ population

resistance mechanisms

- · drug does not reach its target
 - Pseudomonas
- · drug is inactivated
 - Staph aureus
 - E.coli
- · target is changed
 - MRSA
 - streps

resistance

- intrinsic
- · acquired

resistance genes

- chromosomes
- plasmids
- transposons
- integrons
- · gene cassettes

acquired resistance

- · conjugation
 - -coliforms
 - -cocci
- transduction
 - -Staphs
- transformation
 - -cocci?

resistance

- pathogens
- commensals

human pathogens

- · MRSA
 - Methicillin resistant Staph. aureus
- · VRE
 - Vancomycin resistant enterococci

MRSA

- · 14% SA isolates 2001
- · Western Samoan phage pattern
 - -39% MRSA isolates 2001
 - community acquired
 - Pacific islanders
 - Auckland
- epidemic MRSA 15
 - 40%MRSA isolates 2001
 - from UK
 - acquired in hospital

MRSA 2002

- EMRSA 15 (UK)
 - 67.5% isolates
- · AKh4 (Aus)
 - 12.3%
- · WR/AK1
 - -7.1%
- · WSPP (Samoa)
 - -2.1%
- EMRSA 16 (UK)
 - -1.9%

VISA

- vancomycin intermediate Staphylococcus aureus
 - -2 isolates this year
 - –MRSA patients treated with vancomycin

VRE

- 15 human isolates in NZ so far
- · chickens in Otago

animal Staph aureus

- · more resistant than human to
 - -clindamycin / licomycin
 - -co-trimoxazole
 - -fluoroquinolones
 - -gentamicin
 - -tetracyclines

animal Staph aureus

- fluoroquinolone resistance
 - -1999 0%
 - -2000 6.6%
 - -2001 12.5%
 - -mostly dogs

food poisoning

- · Salmonella spp (DT104)
 - -rare in NZ
 - 39 human & 3 animal isolates 1992 2001
- Campylobacter
- E.coli O157
- · (Shigella)

fluoroquinolone resistance

- Salmonella spp (DT104)
 - NZ 1998 0%
- Campylobacter
 - no figures
- E.coli (all)
 - animals 2000/1 2.4%, 1999 0.9%
 - · 2001 4.3% dog isolates
 - people 2000 1.3%
- · (Shigella)

TB

- 2002 0.6% MDR, 13% single drug resistant
- most cases in people born overseas

TB drugs

- · rifampicin
- clarithromycin / azithromycin
- ethambutol
- isoniazid
- pyrazinamide
- streptomycin

veterinary pathogens

- · Pseudomonas aeruginosa
 - -large genome
 - -lots of drug efflux pumps
 - -lots of redundant systems
 - -common after inappropriate antibiotics
 - -causes problems in people too

controlling resistance

- use drugs to which significant resistance is unlikely to develop
- · infection control

4 yr old bull terrier

- · scratching ears
- previously treated
 - -broad spectrum antibiotics
 - -steroids
 - -acaricides

What do you do?

antibiotic treatment

- are the bacteria sensitive to the drug?
- does the drug get to where the bacteria are?
- is significant resistance likely to develop?

What do you do?

- · check for generalised skin disease
- · culture and sensitivity?
- · flush and check ear
- parenteral antibiotics?
- · parenteral steroids?
- · non-antibiotic treatment?
- alter environment?

reducing resistance

- · Choose a drug on resistance testing, where practicable.
- · Use narrow spectrum antimicrobials whenever possible.
- Use the full effective dose for as short a period as possible.
- Isolate the patient (and wash your hands / gumboots!).
- Use antibacterials not prone to producing resistance.
- Restrict the prophylactic use of antimicrobials to high risk patients only.
- In chronic care patients, regularly (but not frequently) change antimicrobial drugs.
- With aminoglycosides, use the longest effective dosage interval.