UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSTITUTO DE FÍSICA

Segunda lista complementar de Eletromagnetismo 1Abril de 2025

> Prof. João Torres de Mello Neto Monitor: Pedro Khan

Eletromagnetismo I

André V. Silva

Sunday 27th April, 2025

Problema 1

Uma esfera inicialmente carregada com uma carga total Q e colocada em contato momentâneo com uma esfera idêntica inicialmente descarregada.

- a) Qual é a carga em cada esfera após o contato?
- b) Esse processo é repetido com N esferas identicas inicialmente descarregadas. Qual é a carga em cada uma das N+1 esferas, incluindo a esfera que originalmente possuia a carga?
- c) Qual é a carga total no sistema após N contatos?

Solução:

a) Quando duas esferas idênticas entram em contato, a carga total se redistribui igualmente entre elas. Assim, a carga em cada esfera será:

$$q = \frac{Q}{2} \tag{1}$$

b) O processo se repete: a esfera originalmente carregada (agora com carga $\frac{Q}{2}$) entra em contato com uma nova esfera descarregada, dividindo novamente sua carga por dois.

Após cada contato, a carga da esfera carregada será dividida pela metade. Assim, após N contatos, a carga da esfera original será:

$$q_N = \frac{Q}{2^N} \tag{2}$$

Cada nova esfera tocada recebe metade da carga da esfera carregada no momento do contato. Portanto:

- $1^{\underline{a}}$ esfera tocada: $\frac{Q}{2}$
- $2^{\underline{a}}$ esfera tocada: $\frac{Q}{4}$
- $3^{\underline{a}}$ esfera tocada: $\frac{Q}{8}$
- :
- N-ésima esfera tocada: $\frac{Q}{2^N}$
- original: $\frac{Q}{2^N}$
- c) A carga total do sistema após os N contatos será a soma das cargas de todas as esferas:

$$Q_{\text{total}} = \left(\frac{Q}{2} + \frac{Q}{4} + \frac{Q}{8} + \dots + \frac{Q}{2^N}\right) + \frac{Q}{2^N}$$
 (3)

O somatório $\frac{Q}{2} + \frac{Q}{4} + \frac{Q}{8} + \cdots + \frac{Q}{2^N}$ é uma progressão geométrica de razão $r = \frac{1}{2}$.

A soma dos N primeiros termos é:

$$S = \frac{\frac{Q}{2} \left(1 - \left(\frac{1}{2} \right)^N \right)}{1 - \frac{1}{2}} = Q \left(1 - \left(\frac{1}{2} \right)^N \right) \tag{4}$$

Somando com a carga restante na esfera original:

$$Q_{\text{total}} = Q\left(1 - \left(\frac{1}{2}\right)^N\right) + \frac{Q}{2^N} \tag{5}$$

$$Q_{\text{total}} = Q \tag{6}$$

Portanto, a carga total do sistema permanece constante e igual a Q, respeitando a da carga elétrica.

Problema 2

Uma placa infinita nos eixos x e y possui a seguinte distribuição superficial de carga:

$$\sigma(x,y) = \frac{\sigma_0 e^{-|x|/a}}{1 + (y/b)^2} \tag{7}$$

onde a e b são constantes.

Solução:

A carga total Q na placa é dada pela integral da densidade superficial de carga $\sigma(x,y)$ sobre toda a área da placa:

$$Q = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sigma(x, y) \, dx \, dy \tag{8}$$

Substituindo a expressão de $\sigma(x, y)$, temos:

$$Q = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\sigma_0 e^{-|x|/a}}{1 + (y/b)^2} \, dx \, dy \tag{9}$$

Passo 1: Integral sobre x

Calculamos a integral sobre x:

$$\int_{-\infty}^{\infty} e^{-|x|/a} \, dx \tag{10}$$

Dividindo a integral em duas partes (por causa da função |x|), temos:

$$\int_{-\infty}^{\infty} e^{-|x|/a} \, dx = 2 \int_{0}^{\infty} e^{-x/a} \, dx \tag{11}$$

A integral da exponencial é dada por:

$$\int_0^\infty e^{-x/a} \, dx = a \tag{12}$$

Portanto, temos:

$$\int_{-\infty}^{\infty} e^{-|x|/a} dx = 2a \tag{13}$$

Passo 2: Integral sobre y

Agora, calculamos a integral sobre y:

$$\int_{-\infty}^{\infty} \frac{1}{1 + (y/b)^2} \, dy \tag{14}$$

Essa é uma integral padrão, conhecida como a integral de Cauchy, que resulta em:

$$\int_{-\infty}^{\infty} \frac{1}{1 + (y/b)^2} \, dy = \pi b \tag{15}$$

Passo 3: Cálculo da carga total

Agora que temos as integrais sobre x e y, podemos calcular a carga total:

$$Q = \sigma_0 \cdot 2a \cdot \pi b \tag{16}$$

Portanto, a carga total na placa é:

$$Q = \sigma_0 2\pi ab \tag{17}$$

Problema 3

Considere uma linha de carga com densidade linear uniforme λ_0 , de comprimento total 2L, centrada no eixo z. Calcule o potencial elétrico em um ponto de campo localizado a uma distância r do eixo z (por exemplo, no plano xy) e a uma altura z. Calcule o campo elétrico no mesmo ponto a partir do potencial. Calcule os limites quando $L\gg r$ e calcule também o limite quando $r\gg L$.

Solução:

Considere uma linha de carga com densidade linear uniforme λ_0 , de comprimento total 2L, centrada no eixo z.

Potencial Elétrico

Um elemento infinitesimal de carga é dado por:

$$dq = \lambda_0 \, dz' \tag{18}$$

Figure 1: Linha de carga com densidade linear uniforme λ_0 , de comprimento total 2L, centrada no eixo z.

O potencial devido a esse elemento no ponto (r, z) é:

$$dV = \frac{1}{4\pi\varepsilon_0} \frac{dq}{\sqrt{r^2 + (z - z')^2}} \tag{19}$$

Substituindo dq:

$$dV = \frac{\lambda_0}{4\pi\varepsilon_0} \frac{dz'}{\sqrt{r^2 + (z - z')^2}} \tag{20}$$

O potencial total é a integral de dV de z' = -L até z' = L:

$$V(r,z) = \frac{\lambda_0}{4\pi\varepsilon_0} \int_{-L}^{L} \frac{dz'}{\sqrt{r^2 + (z - z')^2}}$$
 (21)

Fazendo a substituição u=z-z', com du=-dz', temos:

$$V(r,z) = \frac{\lambda_0}{4\pi\varepsilon_0} \int_{z+L}^{z-L} \frac{-du}{\sqrt{r^2 + u^2}} = \frac{\lambda_0}{4\pi\varepsilon_0} \int_{z-L}^{z+L} \frac{du}{\sqrt{r^2 + u^2}}$$
(22)

Integrando:

$$\int \frac{du}{\sqrt{r^2 + u^2}} = \ln\left(u + \sqrt{r^2 + u^2}\right) + C \tag{23}$$

Aplicando os limites:

$$V(r,z) = \frac{\lambda_0}{4\pi\varepsilon_0} \left[\ln\left(z + L + \sqrt{r^2 + (z+L)^2}\right) - \ln\left(z - L + \sqrt{r^2 + (z-L)^2}\right) \right]$$
(24)

$$V(r,z) = \frac{\lambda_0}{4\pi\varepsilon_0} \ln \left(\frac{z + L + \sqrt{r^2 + (z+L)^2}}{z - L + \sqrt{r^2 + (z-L)^2}} \right)$$
 (25)

Campo Elétrico

O campo elétrico é dado por:

$$\vec{E} = -\nabla V \tag{26}$$

Em coordenadas cilíndricas (r, θ, z) e considerando a simetria do problema:

$$E_r = -\frac{\partial V}{\partial r}, \quad E_z = -\frac{\partial V}{\partial z}, \quad E_\theta = 0$$
 (27)

Limites

1. Quando $L \gg r$

Neste caso, a linha de carga se comporta como um fio infinito. Aproximadamente:

$$V(r) \sim \frac{\lambda_0}{2\pi\varepsilon_0} \ln\left(\frac{2L}{r}\right) \tag{28}$$

$$E_r \sim \frac{\lambda_0}{2\pi\varepsilon_0 r}, \quad E_z \sim 0$$
 (29)

2. Quando $r \gg L$

Aqui, o sistema se comporta como uma carga pontual de carga total $Q=2L\lambda_0$. Portanto:

$$V(r) \sim \frac{Q}{4\pi\varepsilon_0 r} = \frac{2L\lambda_0}{4\pi\varepsilon_0 r} \tag{30}$$

$$\vec{E} \sim \frac{Q}{4\pi\varepsilon_0 r^2} \hat{r} \tag{31}$$

Problema 4

Considere um elétron em um átomo de hidrogênio a uma distância de $0.53 \times 10^{-10}\,\mathrm{m}$ do próton. Sabendo que o próton tem carga +e e o elétron -e, resolva:

- a) Calcule a energia potencial eletrostática do elétron em eV.
- b) Sabendo que a velocidade do elétron é $v=2{,}189\times10^6\,\mathrm{m/s}$, calcule a energia total do elétron no átomo de hidrogênio em eV.

Solução:

Letra (a): Energia Potencial Eletrostática

A fórmula da energia potencial eletrostática U entre duas cargas q_1 e q_2 separadas por uma distância r é dada por:

$$U = \frac{k \cdot q_1 \cdot q_2}{r} \tag{32}$$

onde:

$$k = 8,99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}$$
 (constante eletrostática), (33)

$$q_1 = e = 1,6 \times 10^{-19} \,\text{C}$$
 (carga do próton), (34)

$$q_2 = -e = -1, 6 \times 10^{-19} \,\text{C}$$
 (carga do elétron), (35)

$$r = 0.53 \times 10^{-10} \,\mathrm{m}$$
 (distância entre as cargas). (36)

Substituindo os valores na fórmula:

$$U = \frac{(8,99 \times 10^9) \cdot (1,6 \times 10^{-19}) \cdot (-1,6 \times 10^{-19})}{0,53 \times 10^{-10}}$$
(37)

Calculando:

$$U \approx \frac{(8,99 \times 10^9) \cdot (-2,56 \times 10^{-38})}{0,53 \times 10^{-10}} \approx -4,32 \times 10^{-18} \,\mathrm{J}$$
 (38)

Convertendo para eV, usando $1\,\mathrm{eV} = 1,602 \times 10^{-19}\,\mathrm{J}$:

$$U \approx \frac{-4,32 \times 10^{-18}}{1,602 \times 10^{-19}} \approx -27 \,\text{eV}$$
 (39)

Portanto, a energia potencial eletrostática é:

$$U \approx -27 \,\text{eV} \tag{40}$$

Letra (b): Energia Total do Elétron

A energia total E do elétron é a soma da energia cinética E_{cinet} e da energia potencial U. A energia cinética é dada por:

$$E_{\text{cinet}} = \frac{1}{2}mv^2 \tag{41}$$

onde:

$$m = 9,11 \times 10^{-31} \,\mathrm{kg}$$
 (massa do elétron), (42)

$$v = 2,189 \times 10^6 \,\mathrm{m/s}$$
 (velocidade do elétron). (43)

Substituindo os valores:

$$E_{\text{cinet}} = \frac{1}{2} \cdot (9, 11 \times 10^{-31}) \cdot (2, 189 \times 10^{6})^{2}$$
 (44)

Calculando:

$$E_{\text{cinet}} \approx \frac{1}{2} \cdot 9,11 \times 10^{-31} \cdot 4,79 \times 10^{12} \approx 2,18 \times 10^{-18} \,\text{J}$$
 (45)

Convertendo para eV:

$$E_{\text{cinet}} \approx \frac{2,18 \times 10^{-18}}{1,602 \times 10^{-19}} \approx 13,6 \,\text{eV}$$
 (46)

Agora, a energia total do elétron é a soma da energia cinética e da energia potencial:

$$E = E_{\text{cinet}} + U \tag{47}$$

$$E = 13,6 \,\text{eV} + (-27 \,\text{eV}) \approx -13,6 \,\text{eV}$$
 (48)

Portanto, a energia total do elétron no átomo de hidrogênio é:

$$E \approx -13, 6 \,\text{eV} \tag{49}$$

Problema 5

Imagine que a Terra tenha densidade uniforme e que um túnel seja escavado ao longo de um diâmetro.

- a) Se um objeto for solto no túnel, mostre que ele oscilaria com um período P igual ao período de um satélite em órbita na superfície da Terra.
- b) Calcule P.

Solução:

(a) Movimento do objeto no túnel

A força gravitacional sentida a uma distância r do centro é devida apenas à massa dentro da esfera de raio r, e é dada por:

$$M_{\text{interna}} = M \left(\frac{r^3}{R^3} \right) \tag{50}$$

Assim, a força gravitacional é:

$$F = -G\frac{M_{\text{interna}}m}{r^2} = -G\frac{M\left(\frac{r^3}{R^3}\right)m}{r^2}$$
(51)

Simplificando:

$$F = -G\frac{Mm}{R^3}r\tag{52}$$

Esta força é proporcional a r e dirigida para o centro, característica típica de um movimento harmônico simples (MHS).

A equação do movimento é:

$$m\frac{d^2r}{dt^2} = -G\frac{Mm}{R^3}r\tag{53}$$

Dividindo por m:

$$\frac{d^2r}{dt^2} = -\left(G\frac{M}{R^3}\right)r\tag{54}$$

Portanto, a frequência angular ω do movimento é:

$$\omega^2 = G \frac{M}{R^3} \tag{55}$$

e o período P é:

$$P = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{R^3}{GM}} \tag{56}$$

Para um satélite em órbita na superfície da Terra, o período também é dado por:

$$P = 2\pi \sqrt{\frac{r^3}{GM}} \tag{57}$$

com r = R, portanto:

$$P = 2\pi \sqrt{\frac{R^3}{GM}} \tag{58}$$

Assim, o período do objeto no túnel é igual ao período do satélite em órbita rasante.

(b) Cálculo do período

Sabemos que:

$$g = \frac{GM}{R^2} \quad \Rightarrow \quad GM = gR^2 \tag{59}$$

Substituindo:

$$P = 2\pi \sqrt{\frac{R^3}{gR^2}} = 2\pi \sqrt{\frac{R}{g}} \tag{60}$$

Substituindo os valores:

$$R = 6.37 \times 10^6 \,\mathrm{m}, \quad g = 9.8 \,\mathrm{m/s^2}$$
 (61)

$$P = 2\pi \sqrt{\frac{6,37 \times 10^6}{9,8}} \tag{62}$$

$$P = 2\pi\sqrt{650000} \tag{63}$$

$$P = 2\pi \times 806,2\tag{64}$$

$$P \approx 5065 \text{ segundos}$$
 (65)

Convertendo para minutos:

$$P \approx \frac{5065}{60} \approx 84.4 \,\text{minutos} \tag{66}$$

Resposta final:

$$P \approx 84.4 \,\mathrm{minutos}$$
 (67)

Problema 6

Dois cilindros condutores longos e concêntricos são isolados entre si e carregados. Longe das extremidades, o cilindro interno possui densidade de carga linear $+\lambda_1$, e o cilindro externo possui densidade de carga linear $+\lambda_2$.

O cilindro interno apresenta raios interno r_1 e externo r_2 , enquanto o cilindro externo apresenta raios interno r_3 e externo r_4 .

- (a) Encontre o campo elétrico E(r):
 - (1) Em um ponto próximo ao meio dos cilindros (desprezando efeitos de borda).
 - (2) Logo fora do cilindro externo.
- (b) Encontre a diferença de potencial $\Delta \phi$ entre os dois cilindros.
- (c) Descreva qualitativamente as mudanças nos campos elétricos e nos potenciais se:
 - (1) O raio interno r_1 do cilindro interno for diminuído.
 - (2) O raio externo r_2 do cilindro interno for aumentado.
 - (3) A seção transversal externa do cilindro interno for transformada em quadrado de lado $2r_2$ (assumindo $2r_2 < r_3$).

Solução:

Problema 7

Solução:

Problema 8

Solução:

Problema 9

Solução:

Problema 10

Solução:

Problema 11

Solução: