

Introduction to Recommendation System

Content

Overview of Recsys
KNN-based collaborative filtering
User-based collaborative filtering
Item-based collaborative filtering

Introduction to Recsys

Overview of Recsys

Why needs recsys?

Applications of recsys

Recommendation approaches

Recommendation evaluations

Introduction to Recsys
Overview of recsys
Why needs recsys?

- Too much information
- The paradox of choice
- Traditional recommendation
 - Ask friends
 - Ask sellers

Introduction to Recsys Overview of recsys Why needs recsys?

- Recsys vs Information retrieval
 - Information retrieval: User need is provided
 - Recsys: Users don't know what they want

Introduction to Recsys Overview of recsys

- E-commerce
 - Hi-tech
 - Fashion
 - Foods
 - etc

Introduction to Recsys Overview of recsys Why needs recsys?

- Customers vs sellers
- Sellers:
 - Customer satisfaction
 - Keep customers
 - Sell goods
- Customers:
 - Show me things like what I've purchased
 - Show me things people like me purchase

Introduction to Recsys Overview of recsys **Applications of recsys**

- Entertainments
 - Movies
 - Photo
 - Books
 - Online game
- News
- Question-answering

Applications of recsys

5

Introduction to Recsys Overview of recsys Applications of recsys

- · Research activities
 - Article recommendation
- Service
 - Tourism
 - Restaurants, hotels, flights
- Educations
 - E-learning
- Software applications
- Sourcecode

Introduction to Recsys
Overview of recsys
Applications of recsys

- User-user recommendation
 - Research collaboration
 - Friend recommendation
 - Dating

9

10

Introduction to Recsys
Overview of recsys
Applications of recsys

- Amazon: increases 30% revenue
- Netflix: increases \$1B per year
- Google news: increases 40% traffic

Introduction to Recsys
Overview of recsys
Recommendation approaches

- Content-based recommendation
- Collaborative filtering
- Session-based recommendation
- Hybrid approach

Introduction to Recsys Overview of recsys Recommendation approaches

Introduction to Recsys
Overview of recsys
Recommendation approaches

from Recommender Systems: An Introduction

from Recommender Systems: An Introduction

Introduction to Recsys Overview of recsys

Recommendation approaches

- Collaborative filtering (CF):
 - KNN
 - Matrix factorization
 - Latent models

Introduction to Recsys
Overview of recsys
Recommendation approaches

- Main challenges
 - Sparse data
 - Cold-start
 - Stream data
 - Scale-up

Introduction to Recsys Overview of recsys

Recommendation evaluations

- Problem statement: Predicting rating of user u for item i: r_{ii}
- Offline evaluation
- Online evaluation

17

Introduction to Recsys Overview of recsys

Recommendation evaluations

- Offline evaluation
 - Rating: Likert scale
 - 1: very bad
 - 2: bad
 - 3: neutral
 - 4: good
 - 5: very good
 - Binary
 - · Based on likert scale
 - · Based on implicit feedbacks (click, view, like/dislike, comment, purchase)

18

Introduction to Recsys Overview of recsys

Recommendation evaluations

- Sử dụng dữ liệu lịch sử của người dùng (người dùng, sản phẩm, đánh giá)
- Chia thành dữ liệu train/dev/test
- So sánh dữ liệu kết quả của hệ thống với dữ liệu test
 - $-r_{ij}$: Đánh giá thực sự của người dùng i với sản phẩm *j*
 - $-p_{ij}$: Dự đoán của hệ thống

Introduction to Recsys Overview of recsys

Recommendation evaluations

Mean Absolute Error

$$MAE = \frac{\sum_{\{i,j\}} \left| p_{i,j} - r_{i,j} \right|}{n},$$

Introduction to Recsys Overview of recsys

Recommendation evaluations

Normalized Mean Absolute Error

$$NMAE = \frac{MAE}{r_{\text{max}} - r_{\text{min}}},$$

Introduction to Recsys Overview of recsys **Recommendation evaluations**

Root Mean Square Error

$$RMSE = \sqrt{\frac{1}{n} \sum_{\{i,j\}} \left(p_{i,j} - r_{i,j} \right)^2},$$

21 22

Introduction to Recsys Overview of recsys

Recommendation evaluations

Precision/Recall/F-score

Actual	Predicted		
	Positive	Negative	
Positive	TruePositive	FalseNegative	
Negative	FalsePositive	TureNegative	

Introduction to Recsys Overview of recsys **Recommendation evaluations**

- Precision = TP / (TP + FP)
- Recall = TP / (TP + FN)
- F = 2PR / (P + R)

Introduction to Recsys Overview of recsys Recommendation evaluations

Online evaluation: A/B Testing

from Online Controlled Experiments...

Introduction to Recsys
Overview of recsys
Recommendation evaluations

- Recommendation based on similar users
- Approaches
 - K-nearest neighbors (KNN)
 - Matrix factorization
 - Latent models

25

26

Introduction to recsys KNN-based collaborative filtering Collaborative filtering

Introduction to recsys
KNN-based collaborative filtering
KNN

- A machine learning method for
 - Classification
 - Regression
- Non-parametric, memory-based
- Hyper-param
 - K
 - Similarity (distance) metric

27 28

from Recommender Systems: An Introduction

Introduction to recsys KNN-based collaborative filtering KNN

from Wikipedia

Introduction to recsys
KNN-based collaborative filtering
KNN

- Cosine
- Euclide
- Manhattan
- Jaccard
- Pearson

Introduction to recsys
KNN-based collaborative filtering
KNN

• Given:

29

- An item vector
- A similarity matric between a pair of items sim(item_i, item_i)
- **B1.** Find k nearest neighbor items
- **B2.** Find class/regression values

30

Introduction to recsys
KNN-based collaborative filtering
KNN

• cosine(A,B) = AB / (||A||₂ ||B||₂)

Introduction to recsys
KNN-based collaborative filtering
KNN

• Euclide(A,B) = $||A - B||_2$

Introduction to recsys
KNN-based collaborative filtering
KNN

• Jaccard(A,B) = $A \cap B / A \cup B$

Introduction to recsys
KNN-based collaborative filtering
KNN

• Manhattan(AB) = $||A - B||_1$

34

33

Introduction to recsys
KNN-based collaborative filtering
KNN

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}}$$

• Pearson correlation:

X, Y are random variables *n*: number of samples

 x_i : i^{th} sample

Introduction to recsys User-based CF

- Utility matrix contains user-item ratings $r_{u,i}$
- Predict rating of user u for item i: $p_{u,i}$
- User-based CF:
 - **B0**. Calculate *u* vector
 - **B1**. Find k nearest users
 - **B2**. Calculate $p_{u,i}$

Introduction to recsys
User-based CF
Utility matrix

37

from B. Sarwar et al 2010

Introduction to recsys
User-based CF

Pearson correlation

$$sim(\mathbf{u}, \mathbf{v}) = \frac{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})}{\sqrt{\sum_{i \in C} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{i \in C} (r_{\mathbf{v},i} - \overline{r}_{\mathbf{v}})^2}},$$

u: user

C: Set of common items that u and v both rated $r_{u,i}$: rating of user u for item i

 \bar{r}_u : Averaged rating of u

Introduction to recsys
User-based CF
Rating prediction

$$p(\mathbf{u}, i) = \overline{r}_{\mathbf{u}} + \frac{\sum_{\mathbf{v} \in V} sim(\mathbf{u}, \mathbf{v}) \times (r_{\mathbf{v}, i} - \overline{r}_{\mathbf{v}})}{\sum_{\mathbf{v} \in V} |sim(\mathbf{u}, \mathbf{v})|},$$

V: k-nearest neighbors of user u

Example (user-based, k = 2)

	item_1	item_2	item_3	item_4	
user_1	5	4	4	1	
user_2	2	1			
user_3	5	4	4	?	
user_4		1	2	5	

$$\begin{array}{ll} \bar{r}_1 = 14/4 & \text{sim}(u_3, u_1) = -0.492 & \text{p}(u_3, i_4) = -5.481 \\ \bar{r}_2 = 3/2 & \text{sim}(u_3, u_2) = -0.948 \\ \bar{r}_3 = 13/3 & \text{sim}(u_3, u_4) = -0.919 \\ \bar{r}_4 = 8/3 & \end{array}$$

Introduction to recsys User-based CF **Shortcomings**

- Sparse data
 - VD: The most active user in Amazon just rates 1% of books (1% of 2M books is 20,000)
- Usually re-calculates user vectors
- Scaling-up: Calculate over all users

42

Introduction to recsys Item-based CF

- Utility matrix
- Predict $p_{u,i}$
- Item-based recommendation
 - **B0**. Represent item vectors
 - **B1**. Find k-nearest neighbor items
 - **B2**. Calculate $p_{u,i}$

Introduction to recsys Item-based CF

41

- Suitable for system with #users >> #items
- Dense item vectors
- Calculate offline item-item similarity

Introduction to recsys Item-based CF

Introduction to recsys Item-based CF

$$sim(i,j) = \frac{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})(r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})}{\sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},i} - \overline{r}_{\mathbf{u}})^2} \sqrt{\sum_{\mathbf{u} \in U} (r_{\mathbf{u},j} - \overline{r}_{\mathbf{u}})^2}},$$

i, j: item

U: set of common users both rated i and j

from B. Sarwar et al 2010

Introduction to recsys
Item-based CF

$$p(\mathbf{u},i) = \frac{\sum_{j \in J} r_{\mathbf{u},j} \times sim(i,j)}{\sum_{j \in J} sim(i,j)},$$

J: k nearest neighbor items of i

Introduction to recsys
Item-based CF
Example

Introduction to recsys Item-based CF **Evaluations**

• Mean Absolute Error

$$MAE = \frac{\sum_{\{i,j\}} \left| p_{i,j} - r_{i,j} \right|}{n},$$

Introduction to recsys Item-based CF **Evaluations**

Introduction to recsys Item-based CF Evaluations

49

Item-item vs. User-user at Selected Neighborhood Sizes (at x=0.8)

50

Q&AMail to: hieunk@soict.hust.edu.vn