- 1. A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the distributions and expected value of X.
- 2. A fair coin is tossed four times. Let X denote the longest string of heads. Find the distribution and expectation of X.
- 3. A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the distributions and expected value of X.
- 4. A fair coin is tossed four times. Let X denote the longest string of heads. Find the distribution and expectation of X.
- 5. A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.
- 6. A coin is weighted so that P(H) = 0.75 and P(T) = 0.25The coin is tossed three times. Let X denote the number of heads that appear.
 - (a) Find the distribution f of X.
 - (b) Find the expectation E(X).
- 7. A box contains two gold balls and three silver balls.
 - You are allowed to choose successively balls from the box at random.
 - You win 1 dollar each time you draw a gold ball and lose 1 dollar each time you draw a silver ball.
 - After a draw, the ball is not replaced.

Show that, if you draw until you are ahead by 1 dollar or until there are no more gold balls, this is a favorable game.

- 8. A pair of dice is thrown. Let X denote the minimum of the two numbers which occur. Find the distributions and expected value of X.
- 9. A fair coin is tossed four times. Let X denote the longest string of heads. Find the distribution and expectation of X.
- 10. A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.
- 11. A player tosses two fair coins. He wins \$2 if two heads occur, and \$1 if one head occurs. On the other hand, he loses \$3 if no heads occur.

Find the expected value E(X) of the game. Is the game fair?

- 12. Suppose X has the following probability mass function: p(0) = 0.2, p(1) = 0.5, p(2) = 0.3. Calculate E[X] and $E[X^2]$
- 13. A coin is weighted so that P(H) = 0.75 and P(T) = 0.25.

The coin is tossed three times. Let X denote the number of heads that appear.

- (a) Find the distribution f of X.
- (b) Find the expectation E(X).
- 14. A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.
- 15. On a roulette wheel there are 37 numbers $\{0, 1, \ldots, 36\}$. 18 numbers are black. If I bet 1 on black, I win 1 if a black number comes up, otherwise I lose my stake. Let X denote my winnings on one bet.
 - (i) Calculate E(X) and Var(X)

Suppose I make 6 such bets. Let Y denote my total winnings.

- (ii) Derive the distribution of Y.
- (iii) Calculate E(Y) and Var(Y)
- 16. The probability distribution of discrete random variable X is tabulated below. There are 6 possible outcome of X, i.e. 0, 1, 2, 4, 8 and 10.

x_i	0	1	2	4	8	10
$P(x_i)$	0.25	0.15	0.25	0.15	k	0.10

- (a) Compute the value for k.
- (b) Determine the expected value E(X).
- (c) Evaluate $E(X^2)$.
- (d) Compute the variance of random variable X.

[(a)]

17. The probability distribute of discrete random variable X is tabulated below. There are 5 possible outcome of X, i.e. 1, 2, 3, 4 and 5.

x_i	1	2	3	4	5
$p(x_i)$	0.30	0.20	k	0.10	0.20

- (a) Compute the value of k.
- (b) What is the expected value of X?
- (c) Compute the value of $E(X^2)$
- (d) Given that $E(X^2) = 9.5$, compute the variance of X.
- 18. Suppose X has the following probability mass function: p(0) = 0.2, p(1) = 0.5, p(2) = 0.3. Calculate E[X] and $E[X^2]$
- 19. Consider the random variables X and Y. Both X and Y take the values 0, 1 and 2. The joint probabilities for each pair are given by the following table.

	X = 0	X = 1	X=2
Y = 0	0.1	0.15	0.1
Y=1	0.1	0.1	0.1
Y=2	0.2	0.05	0.1

Compute the E(U) expected value of U, where U = X - Y.

- 20. Suppose X is a random variable with
 - $E(X^2) = 3.6$
 - P(X=2) = 0.6
 - P(X=3)=0.1
 - (a) The random variable takes just one other value besides 2 and 3. This value is greater than 0. What is this value?
 - (b) What is the variance of X?
- 21. For a particular Java assembler interface, the operand stack size has the following probabilities:

Stack Size	0	1	2	3	4
Probability	0.15	0.05	0.10	0.20	0.50

- (i) Calculate the expected stack size.
- (ii) Calculate the variance of the stack size.
- 22. The probability distribute of discrete random variable X is tabulated below. There are 5 possible outcome of X, i.e. 1, 2, 3, 4 and 5.

x_i	1	2	3	4	5
$p(x_i)$	0.30	0.20	k	0.10	0.20

- (a) Compute the value of k.
- (b) What is the expected value of X?
- (c) Compute the value of $E(X^2)$
- (d) Given that $E(X^2) = 9.5$, compute the variance of X.
- 23. The probability distribution of discrete random variable X is tabulated below. There are 6 possible outcome of X, i.e. 0, 1, 2, 4, 8 and 10.

x_i	0	1	2	4	8	10
$P(x_i)$	0.25	0.15	0.25	0.15	k	0.10

- (a) Compute the value for k.
- (b) Determine the expected value E(X).
- (c) Evaluate $E(X^2)$.

- (d) Compute the variance of random variable X.
- 24. Suppose X is a random variable with
 - (a) $E(X^2) = 3.6$
 - (b) P(X=2) = 0.6
 - (c) P(X=3) = 0.1
 - (a) The random variable takes just one other value besides 2 and 3. This value is greater than 0. What is this value?
 - (b) What is the variance of X?