PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-210924

(43)Date of publication of application : 29.07.2004

(51)Int.CI.

C08L101/14 A61F 5/44 A61F 13/15 A61F 13/49 CO8K 7/02

(21)Application number : 2002-381202

(71)Applicant: SUMITOMO SEIKA CHEM CO LTD

(22)Date of filing:

27.12.2002

(72)Inventor: HANDA MASAYOSHI

NAWATA YASUHIRO

(54) WATER ABSORBING RESIN COMPOSITION

PROBLEM TO BE SOLVED: To provide a water absorbing resin composition improved in stability of a gel to a body fluid such as urine or the like even if an amount of the water absorbing resin contained in the absorbent is much, and superior in coloring resistance under a high temperature and high humidity condition, and an absorbent and an absorbing article using

SOLUTION: The water absorbing resin composition contains an oxygen-containing reducing inorganic salt with iron content of ≤ 1 ppm, the absorbent having the water absorbing resin composition and a hydrophilic fiber, and the absorbing article holding the absorbent between a liquid permeable sheet and a liquid impermeable sheet.

LEGAL STATUS

[Date of request for examination]

11.10.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

BEST AVAILABLE COPY

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本国特許厅(JP)

(12)公開特許公報(A)

(11)特許出願公開番号

特開2004-210924 (P2004-210924A)

(43) 公開日 平成16年7月29日(2004.7.29)

			(42) A MI	一种10年1月2	D (2004.1.29)
(51) Int.C1. ⁷	F 1			テーマコー	ド (参孝)
CO8L 101/14	COSL	101/14		38029	(= 1)
A61F 5/44	A61F	5/44	н	4C003	
A61F 13/15	CO8K	3/00		4C098	•
A61F 13/49	C08K			4 J 0 0 2	
A 6 1 F 13/53	C08K	7/02		43002	
	審査請求 オ	•	頁の数 9 OL	(全 17 頁)	最終頁に続く
(21) 出願番号 (22) 出願日	特願2002-381202 (P2002-381202) 平成14年12月27日 (2002.12.27)	(71) 出願人	000195661 住友精化株式	会社	
			兵庫県加古郡	播磨町宮西34	6番地の1
		(74) 代理人	100095832		
,			弁理士 細田	芳徳	
		(72) 発明者	半田 昌良		
•	•	'	兵庫県姫路市	飾磨区入船町1	番地 住友精
			化株式会社機	能樹脂研究所内	1
		(72) 発明者	縄田 康博		
	·		兵庫県姫路市	飾磨区入船町1	番地 住友精
			化株式会社機	能樹脂研究所内	
		Fターム (参	考)3B029 BA18	3	
			4C003 AA24	1	
			4C098 AA09	CC02 DD04	DD05 DD14
		-	DD17	7	
	·			· 最	終頁に続く

(54) 【発明の名称】吸水性樹脂組成物

(57)【要約】

【課題】吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れた吸水性樹脂組成物、それが用いられた吸収体および吸収性物品を提供すること。

【解決手段】含酸素還元性無機塩および吸水性樹脂を含有してなり、鉄含有量が1ppm以下である吸水性樹脂組成物、前記吸水性樹脂組成物と親水性繊維とを有する吸収体、ならびに液体透過性シートと液体不透過性シートとの間に、前記吸収体が保持されてなる吸収性物品。

【選択図】 なし

【特許請求の範囲】

【請求項1】

含酸素還元性無機塩および吸水性樹脂を含有してなり、鉄含有量が1ppm以下である吸水性樹脂組成物。

【請求項2】

含酸素還元性無機塩が、 亜硫酸塩、 亜硫酸水素塩、 ピロ亜硫酸塩、 亜ニチオン酸塩および 亜硝酸塩からなる群より選ばれた少なくとも 1 種である請求項 1 記載の吸水性樹脂組成物

【請求項3】

含酸素還元性無機塩の量が、吸水性樹脂100重量部に対して0.01~5重量部である 10請求項1または2記載の吸水性樹脂組成物。

【請求項4】

さらに有機酸化防止剤を含有する請求項1~3いずれか記載の吸水性樹脂組成物。

【請求項5】

有機酸化防止剤が、アスコルビン酸類、エリソルビン酸類、没食子酸類、プロトカテキュ酸類、ベンズイミダゾール類およびアルキルヒドロキシアニソール類からなる群より選ばれた少なくとも1種である請求項4記載の吸水性樹脂組成物。

【請求項6】

有機酸化防止剤の量が、吸水性樹脂100重量部に対して、0.01~5重量部である請求項4または5記載の吸水性樹脂組成物。

【請求項7】

請求項1~6いずれか記載の吸水性樹脂組成物と親水性繊維とを有する吸収体。

【請求項8】

吸水性樹脂組成物の含有量が、40~95重量%である請求項7記載の吸収体。

【請求項9】

液体透過性シートと液体不透過性シートとの間に、請求項7または8記載の吸収体が保持されてなる吸収性物品。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、吸水性樹脂組成物に関する。さらに詳しくは、吸水性樹脂組成物、それが用いられた吸収体および吸収性物品に関する。吸収性物品は、紙オムツ、生理用ナプキン、失禁パッド等の衛生材料、ペット用の尿吸収材料等をはじめ、パッキング材等の土木建築用資材、ドリップ吸収剤、保冷剤等の食品鮮度保持用材料、土壌用保水材等の農園芸用物品等として好適に使用しうるものである。

[0002]

【従来の技術】

紙おむつや生理用ナプキン等の吸水性物品は、一般に、親水性繊維および吸水性樹脂で構成される吸収体を、身体に接する側に配される液体透過性シートとその反対側に配される液体不透過性シートとの間に挟むことによって形成されている。

[0003]

近年、吸収体やそれが用いられた紙おむつや生理用ナプキン等は、携帯時の利便性や快適な装着感を達成するために、薄型化される傾向がある。その薄型化に伴い、多量の液体を吸収した場合であっても逆戻りや漏れを減少させるために、吸収体に用いられる親水性繊維の量を減らし、吸水性樹脂の量を増やした吸収体の開発が検討されている。

[0004]

しかし、吸水性樹脂が人尿等の体液を吸収することによって生成したゲルは、一般に、経時的に劣化するため、その吸収性が低下するようになる。また、ゲルの劣化がさらに進行すると、吸水性樹脂自体が部分的に分解するため、ゲルから水溶性溶解物が溶出するようになる。

20

30

A

[0005]

したがって、この吸水性樹脂が用いられた製品を人体と接触させて使用した場合には、溶出した水溶性溶解物が皮膚に付着し、かぶれ等が発生するおそれがある。

[0006]

さらに、吸水性樹脂量が多い吸収体では、吸水性樹脂同士が互いに接触した状態でゲルが 劣化するため、溶出した水溶性溶解物がゲル粒子間の隙間を閉塞し、液が吸水性樹脂に浸 透するのが妨げられる現象、いわゆる「ゲルブロッキング」が生じやすくなる。このゲル ブロッキングは、吸収体の液漏れの要因の1つとして考えられている。

[0007]

ゲルの劣化が生じる機構は複雑なため、その原因を特定することは難しいが、その原因の 1 つとして、人尿中の鉄分や吸水性樹脂中の鉄分が関係しているものと推測されている。 【 0 0 0 8 】

そこで、ゲルの安定性を向上させるために、含酸素還元性無機塩を含有する吸水性樹脂組成物(例えば、特許文献 1 参照)、ラジカル連鎖禁止剤および金属キレート剤を含有する吸水性樹脂組成物(例えば、特許文献 2 参照)等が提案されている。

しかしながら、これらの吸水性樹脂組成物には、吸収体に含まれる吸水性樹脂量が多い場合に、十分なゲルの安定性を発現させることができないという欠点がある。

[0010]

[0009]

また、吸水性樹脂は、高温高湿の雰囲気中で長時間保存された場合、部分的に変性するた 20 め、着色が発生する。吸水性樹脂が着色した場合、その吸水性樹脂が用いられた吸収体や吸収性物品の外観が損なわれるため、製品的価値の低下を招くことになる。特に、吸水性樹脂量が多い吸収体および吸収性物品においては、吸水性樹脂の着色が目立ちやすくなる

[0011]

したがって、近年、吸水性樹脂の耐着色性の改良が望まれている。吸水性樹脂の着色の機構は、前記ゲルの劣化、分解が生じる機構と同じように非常に複雑であるため、その着色の原因を特定することは困難であるが、その原因の1つとして、吸水性樹脂中に含有されている鉄分が関係しているものと推測されている。

[0012]

吸水性樹脂の耐着色性が改善されたものとしては、吸水性樹脂と有機カルボン酸類および/またはその塩からなる吸水剤組成物(例えば、特許文献 3 参照)、着色防止剤および/または酸化防止剤および/またはホウ素化合物を含む吸水剤組成物(例えば、特許文献 4 参照)等が知られている。

[0013]

しかしながら、これらの組成物には、吸水性樹脂量が多い吸収体では、十分な耐着色性を 発現させることができないという欠点がある。

[0014]

したがって、吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れた吸水性樹脂組成物、それが用いられた吸収体および吸収性物品の開発が待ち望まれている。

[0015]

【特許文献1】

特開昭63-118375号公報

【特許文献2】

特 開 平 1 - 2 1 0 4 6 3 号 公 報

【特許文献3】

特 開 2 0 0 0 - 3 2 7 9 2 6 号 公 報

【特許文献4】

特 開 2 0 0 0 - 2 3 0 1 2 9 号 公 報

[0016]

【発明が解決しようとする課題】

本発明は、前記従来技術に鑑みてなされたものであり、吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れた吸水性樹脂組成物、それが用いられた吸収体および吸収性物品を提供することを課題とする。

[0017].

【課題を解決するための手段】

本発明は、

- (1) 含酸素還元性無機塩および吸水性樹脂を含有してなり、鉄含有量が1 p p m 以下 1(である吸水性樹脂組成物、
 - (2) さらに有機酸化防止剤を含有する前記吸水性樹脂組成物、
- (3) 前記吸水性樹脂組成物と親水性繊維とを有する吸収体、ならびに
- (4) 液体透過性シートと液体不透過性シートとの間に、前記吸収体が保持されてなる 吸収性物品

に関する。

[0018]

【発明の実施の形態】

本発明の吸水性樹脂組成物は、含酸素還元性無機塩および吸水性樹脂を含有し、鉄含有量が 1 p p m 以下である点に、 1 つの大きな特徴がある。本発明の吸水性樹脂組成物は、かかる特徴を有するので、吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れるという効果が発現される。

 $[0 \ 0 \ 1 \ 9]$

また、本発明の吸水性樹脂組成物が、さらに有機酸化防止剤を含有する場合には、人尿等の体液のみならず、電解質水溶液に対するゲルの安定性にも優れ、高温高湿下であっても耐着色性に優れるという効果が発現される。

[0020]

本発明に用いられる吸水性樹脂としては、例えば、アクリル酸塩重合体の架橋物、デンプンーアクリル酸塩グラフト共重合体の加水分解生成物の架橋物、ピニルアルコールーアクリル酸塩共重合体の架橋物、無水マレイン酸グラフトポリピニルアルコールの架橋物、架橋イソプチレンー無水マレイン酸共重合体、ポリアクリル酸部分中和物架橋体、酢酸ビニルーアクリル酸エステル共重合体のケン化物等が挙げられる。これらの中では、大量の水を吸収することができ、多少の荷重をかけても吸収した水を分子内に保持することができるので、アクリル酸塩重合体の架橋物が好ましい。

[0021]

吸水性樹脂における鉄含有量は、得られる吸水性樹脂組成物における鉄含有量を低減させる観点から、1 p p m 以下、好ましくは 0 . 5 p p m 以下であることが望ましい。

[0022]

吸水性樹脂の製造法には、特に限定がない。その代表的な製造法としては、鉄含有量が少ない原料を用いて、逆相懸濁重合法、水溶液重合法等により、吸水性樹脂を製造する方法 40等が挙げられる。

[0023]

なお、本明細書にいう「鉄含有量」とは、以下の測定方法にしたがって試料における鉄の含有量を測定したときの値である。本発明においては、試料として、具体的には、吸水性樹脂、含酸素還元性無機塩、有機酸化防止剤または吸水性樹脂組成物が用いられる。

[0024]

〔鉄含有量の測定方法〕

試料1gを精秤した後、200mL容のビーカーに入れ、濃硫酸3mLおよび濃硝酸5m Lをビーカー内に添加して試料を十分に溶解させ、得られた溶液をその沸点付近まで加熱 して試料を分解させる。

[0025]

次に、得られた黒色の液体が透明となるまで硝酸を攪拌下で添加しつつ、加熱を継続する。透明になった液体をさらに350℃で加熱することにより、蒸発乾固し、固形物を回収する。

[0026]

得られた固形物を25℃にまで冷却した後、その固形物全量と濃塩酸1mLとを50mL容のメスフラスコ内に入れ、全量が50mLとなるように蒸留水を添加して、試料溶液を調製する。

[0027]

得られた試料溶液の吸光度を、原子吸光分析機〔(株)島津製作所製、品番:AA-67 100〕を用いて測定する。

[0028]

これとは別に、前記と同様の操作により鉄標準溶液の吸光度を測定して検量線を作成しておき、その検量線から試料中の鉄合有量(ppm)を算出する。

[0029]

[0030]

含酸素還元性無機塩における鉄含有量は、得られる吸水性樹脂組成物中における鉄含有量 を低減させる観点から、10ppm以下、好ましくは5ppm以下、より好ましくは3p pm以下であることが望ましい。

[0031]

含酸素還元性無機塩の量は、ゲルの安定性および耐着色性を高める観点から、吸水性樹脂100重量部に対して、0.01重量部以上、好ましくは0.05重量部以上であることが望ましい。また、含酸素還元性無機塩をあまり多量に使用しても、その量に見合うだけのゲルの安定性および耐着色性が発現されず、却って経済的でなくなるだけでなく、吸水性樹脂組成物における鉄含有量が高くなることから、含酸素還元性無機塩の量は、吸水性樹脂100重量部に対して、5重量部以下、好ましくは3重量部以下であることが望ましい。したがって、これらの事項を考慮すれば、含酸素還元性無機塩の量は、吸水性樹脂1400重量部に対して、0.01~5重量部、好ましくは0.05~3重量部であることが望ましい。

[0032]

本発明の吸水性樹脂組成物は、例えば、吸水性樹脂と含酸素還元性無機塩とを混合することにより得ることができる。その混合方法には、特に限定がない。

[0033]

吸水性樹脂と含酸素還元性無機塩とを混合する方法の例としては、(イ)吸水性樹脂を構成する重合前の単量体水溶液に含酸素還元性無機塩を添加して混合する方法;(ロ)吸水性樹脂の含水ゲル状物に含酸素還元性無機塩を添加して混合する方法;(ハ)吸水性樹脂を乾燥させている間または乾燥させた後に、含酸素還元性無機塩を吸水性樹脂に添加して

混合する方法等が挙げられる。これらの方法の中では、その操作が簡便であることから、 前記(ハ)の方法が好ましい。

[0034]

なお、含酸素還元性無機塩は、ゲルの安定性が損なわれることがないのであれば、粉体および水溶液のいずれの形態でも用いることができる。製造の際の操作性を考慮すれば、含酸素還元性無機塩は、粉体であることが好ましい。

[0035]

吸水性樹脂と含酸素還元性無機塩とを混合する際に用いられる混合機としては、例えば、 ナウターミキサー、リボン型プレンダー、クロスロータリーミキサー、コニカルプレンダー、 ストリューダー、スクリュー型プレンダー、V字型プレンダー、W字型プレンダー、 ターピュライザー等が挙げられるが、本発明は、かかる例示のみに限定されるものではない。

. [0036]

かくして得られる本発明の含酸素還元性無機塩および吸水性樹脂を含有する吸水性樹脂組成物における鉄含有量は、1 p p m 以下、好ましくは 0 . 5 p p m 以下とされ、このように鉄含有量を調整した場合には、満足しうるゲルの安定性および耐着色性を発現させることができる。

[0037]

なお、本発明においては、前記吸水性樹脂組成物には、さらに有機酸化防止剤を含有させることができる。このように、吸水性樹脂組成物に有機酸化防止剤を含有させた場合には 20、電解質水溶液に対するゲルの安定性を高めることができる。

[0038]

有機酸化防止剤には、特に限定がない。有機酸化防止剤としては、例えば、L-アスコルビン酸、L-アスコルビン酸ナトリウム、D-アスコルビン酸、D-アスコルビン酸、D-アスコルビン酸、D-アスコルビン酸、D-アスコルビン酸類;エリソルビン酸、エリソルビン酸カトリウム等のエチル、没食子酸メチル、没食子酸カプロトカテキュ酸類;プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸素・プロトカテキュ酸が半げられ、これらは、それぞれ単独でまたは2種以上を混合して用いることがアスール類が挙げられ、これらは、それぞれ単独でまたは2種以上を混合して用いることがアスコルビン酸類、エリソルビン酸類、プロトカテキュ酸類、ベンズイミダソルビン酸類、エリソルビン酸類、プロトカテキュ酸類、エリソルビン酸類、プロトカテキュ酸類、エリソルビン酸類、プロトカテキュ酸類、エリソルビン酸類、プロトカテキュ酸類、エリソルビン酸類、プロトカテキュ酸類、エリソルビン酸類および没食子酸類がより好ましく、L-アスコルビン酸、エリソルビン酸ナトリウムおよび没食子酸 カープロビルがさらに好ましい。

[0039]

有機酸化防止剤における鉄含有量は、得られる吸水性樹脂組成物における鉄含有量を低下させる観点から、5ppm以下、好ましくは3ppm以下であることが望ましい。

[0040]

有機酸化防止剤の量は、電解質水溶液に対して十分なゲルの安定性を発現させる観点から、吸水性樹脂100重量部に対して、0.001重量部以上、好ましくは0.005重量部以上であることが望ましい。また、有機酸化防止剤をあまり多量に使用しても、その量に見合うだけのゲルの安定性および耐着色性が発現されず、却って経済的でなくなるだけでなく、吸水性樹脂組成物における鉄含有量が高くなることから、有機酸化防止剤の量は、吸水性樹脂100重量部に対して、5重量部以下、好ましくは2重量部以下であることが望ましい。これらの事項を考慮すれば、有機酸化防止剤の量は、吸水性樹脂100重量部に対して、0.001~5重量部、好ましくは0.005~2重量部であることが望ましい。

[0041]

なお、有機酸化防止剤は、ゲルの安定性および耐着色性を高める観点から、通常、含酸素 50

還元性無機塩と組み合わせて用いることが好ましい。

[0042]

吸水性樹脂と含酸素還元性無機塩と有機酸化防止剤とを混合することにより、有機酸化防 止剤を含有する吸水性樹脂組成物を得ることができる。これらの成分を混合する方法およ び混合する際の添加順序には、特に限定がない。

[0043]

有機酸化防止剤を含有する吸水性樹脂組成物を製造する方法の例としては、(イ)吸水性 樹脂を構成する重合前の単量体水溶液に有機酸化防止剤を添加する方法;(ロ)吸水性樹 脂の含水ゲル状物に有機酸化防止剤を添加する方法;(ハ)吸水性樹脂を乾燥させている 間または乾燥させた後、有機酸化防止剤を吸水性樹脂に添加する方法等が挙げられる。こ れらの方法の中では、その操作が簡便であることから、前記(ハ)の方法が好ましい。

[0044]

なお、有機酸化防止剤は、ゲルの安定性が損なわれないのであれば、粉体および水溶液の いずれの形態でも用いることができる。製造の際の操作性を考慮すれば、有機酸化防止剤 は、粉体であることが好ましい。

[0045]

吸水性樹脂と含酸素還元性無機塩と有機酸化防止剤とを混合する際に用いられる混合機と しては、例えば、ナウターミキサー、リボン型プレンダー、クロスロータリーミキサー、 コニカルプレンダー、双腕型ニーダー、スクリュー型プレンダー、 V 字型プレンダー、W 字型プレンダー、タービュライザー等が挙げられるが、本発明は、かかる例示のみに限定 20 されるものではない。

[0046]

かくして得られる本発明の含酸素還元性無機塩、吸水性樹脂及び有機酸化防止剤を含有す る吸水性樹脂組成物における鉄含有量は、1 p p m 以下、好ましくは、0 . 5 p p m 以下と され、このように鉄含有量を調整した場合には、満足しうるゲルの安定性および耐着色性 を発現させることができる。

[0047]

本発明においては、前記吸水性樹脂組成物を用いて、吸収体を得ることができる。

吸収体は、吸水性樹脂組成物と親水性繊維とを有するものである。

親 水 性 繊 維 に は 、 特 に 限 定 が な い 。 親 水 性 繊 維 の 例 と し て は 、 セ ル ロ ー ス 繊 維 、 人 工 セ ル ロース繊維等が挙げられる。なお、親水性繊維には、本発明の目的が阻害されない範囲内 であれば、疎水性を有する合成繊維が含有されていてもよい。

[0049]

本発明の吸収体には、吸収体の形態保持性を高めるために、熱融着性合成繊維、ホットメ ルト接着剤、接着性エマルジョン等の接着性バインダーを添加してもよい。

[0050]

吸収体における吸水性樹脂組成物の含有量は、尿等の体液を十分に吸収し、快適な装着感 を付与する観点から、好ましくは40重量%以上、より好ましくは50重量%以上である また、吸収体における吸水性樹脂組成物の含有量は、得られる吸収体の形態保持性を高 めるために、親水性繊維や接着性バインダーを含有させることを考慮して、好ましくは9 5 重量%以下、より好ましくは90重量%以下である。これらの事項を考慮すれば、吸収 体における吸水性樹脂組成物の含有量は、好ましくは40~95重量%、より好ましくは 50~90重量%である。

[0051]

本発明の吸収体は、吸水性樹脂組成物と親水性繊維とを有するものであればよく、その態 様には特に限定がない。

[0052]

好適な吸収体の態様としては、例えば、吸水性樹脂組成物と親水性繊維とを均一な組成と なるように混合することによって得られた混合分散体、2枚の層状の親水性繊維の間に吸 50

水性樹脂組成物が挟まれたサンドイッチ構造体等が挙げられる。

[0053]

前記吸収体を、例えば、液体透過性シートと、液体不透過性シートとの間に保持すること により、吸収性物品とすることができる。

[0054]

液体透過性シートとしては、特に限定されないが、ポリエチレン、ポリプロピレン、ポリエステル等の繊維からなる、エアスルー型、スパンボンド型、ケミカルボンド型、ニードルパンチ型等の不織布等が挙げらる。

[0055]

液体不透過性シートとしては、特に限定されないが、ポリエチレン、ポリプロピレン、ポ 10 リ塩化ビニル等の樹脂からなる合成樹脂フィルム等が挙げられる。

[0056]

吸収性物品の種類には、特に限定がされない。その代表例としては、紙オムツ、生理用ナプキン、失禁パッド等の衛生材料、ペット用の尿吸収材料等をはじめ、パッキング材等の土木建築用資材、ドリップ吸収剤、保冷剤等の食品鮮度保持用材料、土壌用保水材等の農園芸用物品等が挙げられる。

[0057]

【実施例】

以下、実施例および比較例により本発明をさらに詳しく説明するが、本発明はこれら実施 例により何ら限定されるものではない。

20

[0058]

なお、吸水性樹脂、含酸素還元性無機塩、有機酸化防止剤および吸水性樹脂組成物における各鉄含有量は、前述した方法によって測定されたときの値である。

[0059]

また、各実施例および各比較例で得られた吸水性樹脂組成物および該吸水性樹脂組成物を用いて得られた吸収性物品の物性は、以下の方法に従って評価した。

[0060]

(1) 人尿吸収時のゲル安定性

成人男性から採取した人尿39gを100mLビーカーに分取し、吸水性樹脂組成物1gを添加して、人尿吸収ゲルを作製した。この人尿吸収ゲルを40℃の恒温槽内に24時間 30放置した後、以下の評価基準に従って、ゲルの安定性を評価した。

[0061]

〔評価基準〕

- ◎:ゲルの弾力性があり、強く押してもつぶれない。
- 〇:ゲルの弾力性はあるが、強く押すとつぶれる。
- △:ゲルの形状はあるが、軽くつまむとつぶれる。
- ×:ゲルの形状が崩れている。

[0062]

(2) 生理食塩水吸収時のゲル安定性

0. 9重量%生理食塩水39gを100mL容のビーカーに分取し、これに吸水性樹脂組 40成物1gを添加して、生理食塩水吸収ゲルを作製した。この生理食塩水吸収ゲルを40℃の恒温槽内に24時間放置した後、以下の評価基準に従って、ゲルの安定性を評価した。〔評価基準〕

◎:ゲルの弾力性があり、強く押してもつぶれない。

〇:ゲルの弾力性はあるが、強く押すとつぶれる。

△:ゲルの形状はあるが、軽くつまむとつぶれる。

×:ゲルの形状が崩れている。

[0063]

(3) モニター試験

吸水性樹脂組成物13gと解砕された木材パルプ7gを乾式混合し、縦40cm、横12 50

cmの大きさに成形した。得られた混合分散体の上部と下部をそれぞれ 0.5gのティッシュペーパーで挟み、全体に荷重を加えて吸収体を作製した。

[0064]

市販の赤ちゃん用オムツ(Lサイズ)内部の吸収体を液体不透過性シート(バックシート)側から完全に除去したのち、前記吸収体を注意深く挿入し、テープで封をしてモニター試験用吸収性物品を作製した。

[0065]

得られた吸収性物品を子供数名に使用してもらった後、その吸収性物品を回収した。 次に、回収された吸収性物品のゲル不良率、平均吸収量および漏れ率を以下の方法に従っ て調べた。

10

[0066]

▲1▼ゲル不良率

ゲル不良を以下の評価基準に従って評価し、ゲル不良が認められた吸収性物品の枚数を回収した吸収性物品の枚数で除した値に100を乗じることにより、ゲル不良率を算出した

〔評価基準〕

×:ゲル形状が崩れている(ゲル不良とする)。

〇:ゲル形状が崩れていない。

[0067]

▲2▼平均吸収量

20

回収した吸収性物品の尿吸収量を積算した値を回収した吸収性物品の枚数で除することにより、平均吸収量を算出した。

[0068]

▲ 3 ▼ 洩 れ 率

漏れのあった吸収性物品の枚数を回収した吸収性物品の枚数で除し、その値に100を乗じることにより、洩れ率を算出した。

[0069]

(4) 吸収性物品の耐着色性

吸水性樹脂組成物13gと解砕された木材パルプ7gとを乾式混合し、縦40cm、横12cmの大きさに成形した。得られた混合分散体の上部と下部をそれぞれ0.5gのティ 30ッシュペーパーで挟み、全体に荷重を加えて吸収体を作製した。この吸収体を、その上部から坪量20g/m² の液体透過性ポリエチレン製エアスルー型不織布で、また下部から液体不透過性ポリエチレンシートで挟みつけることにより、耐着色性試験用吸収性物品を作製した。

[0070]

得られた吸収性物品を温度 5 0 ± 2 ℃、相対湿度 9 0 ± 2 %に設定された恒温恒湿槽内に2 0 日間放置した後、吸収性物品中の吸水性樹脂組成物の着色を目視で観察し、吸収性物品の耐着色性を以下の基準に基づいて評価した。

[007.1]

〔評価基準〕

4

A:不織布を取り除き、吸収体をほぐして見ても、内部の吸水性樹脂は着色していない。 B:不織布の上部から見たとき、吸水性樹脂による着色が認められないが、不織布を取り除き、吸収体をほぐすと、一部の吸水性樹脂に着色が認められる。

C:不織布の上部から見て、吸水性樹脂による着色が認められる。

[0072]

製造例1

撹拌機、還流冷却器、滴下ロート、温度計および窒素ガス導入管を備えた1000mL容の五つ口円筒型丸底フラスコに、n-ヘプタン500mLを加えた。これに、界面活性剤としてHLBが3.0のショ糖脂肪酸エステル〔三菱化学(株)製、商品名:S-370〕0.92gを添加して分散させ、昇温して界面活性剤を溶解させた後、55℃まで冷却

した。

[0073]

上記とは別に、500mL容の三角フラスコに80重量%アクリル酸水溶液92gを加えた。外部から冷却しながら、この三角フラスコに30重量%水酸化ナトリウム水溶液102.2g(鉄含有量:0.2ppm)を滴下し、アクリル酸の75モル%を中和し、アクリル酸の部分中和物を調製した。さらに、水50.2g、重合開始剤の過硫酸カリウム0.11gおよび架橋剤としてエチレングリコールジグリシジルエーテル9.2mgを添加し、1段目重合用の単量体水溶液を調製した。

[0074]

この1段目重合用の単量体水溶液の全量を上記の五つ口円筒型丸底フラスコに撹拌下で加 10 えて分散させ、系内を窒素ガスで十分に置換した後、昇温し、浴温を70℃に保持して、 重合反応を1時間行った後、室温まで冷却して重合スラリー液を得た。

[0075]

さらに別の500mL容の三角フラスコに、80重量%アクリル酸水溶液119.1gを加え、冷却しながら30重量%水酸化ナトリウム水溶液132.2g(鉄含有量:0.2ppm)~を滴下し、アクリル酸の75モル%を中和し、水27.4g、過硫酸カリウム0.14gおよびエチレングリコールジグリシジルエーテル35.7mgを添加し、2段目重合用の単量体水溶液を調製し、氷水浴内で冷却した。

[0076]

この2段目重合用の単量体水溶液の全量を前記で得られた重合スラリー液に添加した後、再び系内を窒素ガスで十分に置換した後に昇温し、浴温を70℃に保持して、2段目の重合反応を2時間行った。重合反応終了後、n-ヘプタンに分散させた含水ゲル状物から共沸蒸留により水分のみを系外に除去した。得られたゲル状物に2重量%エチレングリコールジグリシジルエーテル水溶液8.44gを添加し、さらに水分およびn-ヘプタンを蒸留により除去して乾燥し、吸水性樹脂215.5gを得た。この吸水性樹脂中の鉄含有量は0.3ppmであった。

[0077]

製造例2

製造例1において、30重量%水酸化ナトリウム水溶液(鉄含有量:0.2 p p m)の代わりに30重量%水酸化ナトリウム水溶液(鉄含有量:0.5 p p m)を用いた以外は、製造例1と同様の操作を行い、吸水性樹脂216.9 g を得た。この吸水性樹脂中の鉄含有量は0.6 p p m であった。

[0078]

製造例3

製造例1において、30重量%水酸化ナトリウム水溶液(鉄含有量:0.2 p p m)の代わりに30重量%水酸化ナトリウム水溶液(鉄含有量:3.3 p p m)を用いた以外は、製造例1と同様な操作を行い、吸水性樹脂216.9 g を得た。この吸水性樹脂中の鉄含有量は3.5 p p m であった。

[0079]

製造例4・

40

製造例1において、30重量%水酸化ナトリウム水溶液(鉄含有量:0.2 p p m)の代わりに30重量%水酸化ナトリウム水溶液(鉄含有量:6.5 p p m)を用いた以外は、製造例1と同様な操作を行い、吸水性樹脂216.9 g を得た。この吸水性樹脂中の鉄含有量は7.0 p p m であった。

[0080]

実施例1

2 L 容のポリエチレン容器に、製造例 1 と同様の方法で得られた吸水性樹脂 1 0 0 重量部を仕込み、亜硫酸ナトリウム A 〔大東化学工業(株)製、商品名:無水亜硫酸ソーダ・食品添加物用、鉄含有量: 1 . 4 p p m) 2 重量部を添加し、クロスロータリーミキサー〔明和工業(株)製、品番: C M - 3 〕を用いて、ポリエチレン容器を自転速度 3 0 r p m 50

、公転速度30rpmで1時間混合し、吸水性樹脂組成物を得た。この吸水性樹脂組成物中の鉄含有量は0.3ppmであった。

[0081]

得られた吸水性樹脂組成物 1 3 g と解砕された木材パルプ 7 g とを乾式混合し、縦 4 0 c m、横 1 2 c mの大きさに成形した。得られた混合分散体の上部と下部をそれぞれ 0 . 5 g のティッシュペーパーで挟み、全体に荷重を加えて吸収体を作製した。

[0082]

市販の赤ちゃん用オムツ(レサイズ)内部の吸収体を液体不透過性シート(バックシート)側から完全に除去したのち、前記吸収体を注意深く挿入し、テープで封をしてモニター試験用吸収性物品を作製した。

10

[0083]

一方、前記吸収体を、その上部から坪量 2 0 g / m² の液体透過性ポリエチレン製エアスルー型不織布で、また下部から液体不透過性ポリエチレン製シートで挟みつけることにより、耐着色性試験用吸収性物品を作製した。

[00.84]

得られた吸水性樹脂組成物の物性として、前述の方法に従い、(1)人尿吸収時のゲル安定性、(2)生理食塩水吸収時のゲル安定性を評価した。また、モニター試験用吸収性物品を用いて前述の(3)モニター試験を実施した。さらに、耐着色性試験用吸収性物品を用いて前述の(4)吸収性物品の耐着色性を評価した。その結果を表2に示す。

[0.085]

20

実施例2~6および比較例1~3

実施例1において、吸水性樹脂として、表1に示す製造例番号で得られた吸水性樹脂100重量部を用い、含酸素還元性無機塩として、表1に示す含酸素還元性無機塩を表1に示す添加量で用いたほかは、実施例1と同様にして吸水性樹脂組成物を得た。得られた吸水性樹脂組成物中の鉄含有量を表1に示す。

[0086]

なお、表 1 および後述する表 3 に記載の含酸素還元性無機塩の詳細は、以下のとおりである。

- ・ 亜 硫 酸 ナト リ ウ ム A : 大 東 化 学 工 業 (株) 製 、 商 品 名 : 無 水 亜 硫 酸 ソ ー ダ ・ 食 品 添 加 物 用 、 鉄 含 有 量 : 1 . 4 p p m
- ・ 亜 硫 酸 ナトリウム B : 大東化学工業 (株) 製、商品名 : 無水亜硫酸 ソーダの 9 0 、 鉄含有量 : 2 3 p p m
- ・亜硫酸水素ナトリウムA:大東化学工業(株)製、商品名:無水重亜硫酸ソーダ、鉄含有量:1.5ppm

[0087]

- ・ 亜 硫 酸 水 素 ナ ト リ ウ ム B : 関 東 化 学 (株) 製 、 商 品 名 : 亜 硫 酸 水 素 ナ ト リ ウ ム 1 級 、 鉄 含 有 量 : 1 5 p p m
- ・ピロ亜硫酸カリウム:大東化学工業(株)製、商品名:ピロ亜硫酸カリ、鉄含有量:1.3ppm
- ・亜ニチオン酸ナトリウム:日産化学工業(株)製、商品名:ハイドロサルファイト・食 40 品添加物用、鉄含有量:1.9pm
- ・亜硝酸ナトリウム:日産化学工業(株)製、商品名:亜硝酸ソーダ、鉄含有量:2.5 ppm

[0088]

【表 1】

実施例	· 吸水性	生樹脂	含酸素還元	吸水性樹脂組成物		
番号	種類	鉄含有量 (ppm)	種 類	鉄含有盤 (ppm)	添加 <u>量</u> (重量部)	鉄含有盤 (ppm)
1	製造例1	0. 3	亜硫酸ナトリウムA	1. 4	2	0.3
2	製造例 2	0.6	亜硫酸ナトリウムA	1.4	2	0.6
3	製造例1	0. 3	亜硫酸水素ナトリウムA	1.5	2	0.3
4	製造例1	0.3	ピロ亜硫酸カリウム	1. 3	3	0.3
5.	製造例1	0.3	亜二チオン酸ナトリウム	1.9	2	0.3
6	製造例 1	0, 3	亜硝酸ナトリウム	2.5	2	0.3
比較例 1	製造例 2	0.6	亜硫酸ナトリウムB	23	3	1.3
2	製造例3	3. 5	亜硫酸ナトリウムB	23	2	3. 9
3	製造例 4	7.0	亜硫酸水素ナトリウムB	15	2	7. 2

10

(}±\

「吸水性樹脂」の「種類」の欄に記載の製造例番号は、その製造例で得られた吸水性樹脂を用いたことを意味する。

20

[0089]

次に、各実施例または各比較例で得られた吸水性樹脂組成物を用いて、実施例1と同様にして吸収体および吸収性物品を作製し、その物性を評価した。その結果を表2に示す。

[0090]

【表2】

実施例	人尿吸 収時の	生理食塩 水吸収時		モニタ	一試験		吸収性 物品の
番号	がル安 定性	が吸収時 のゲル安 定性	回収 枚数	ゲル不良率 (%)	平均吸収量 (g/枚)	洩れ率 (%)	耐着色性
1	0	0	154	1. 3	182	1.9	A
2	Ö	0	150	5. 3	160	8.0	A
3	0	0	148	2. 7	158	2.7	Α
4	0	Δ	155	3. 2	142	3. 9	Α
- 5	0	Δ	159	3.8	168	4. 4	A
6	0	Δ	157	3.8	143	5. 1	Α .
比較例 1	Δ	×	133	12. 8	135	14.3	В
2	Δ	×	140	19. 3	149	17. 1	С
3	Δ	×	149	23. 5	169	20. 1	С

30

40

[0091]

表 2 に示された結果から、各実施例によれば、吸水体に含まれている吸水性樹脂量が多く ても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れた 50 吸水性樹脂組成物が得られることがわかる。

[0092]

実施例7

2 L 容のポリエチレン容器に、製造例1 と同様の方法で得られた吸水性樹脂100重量部を仕込み、亜硫酸ナトリウム〔大東化学工業(株)製、商品名:無水亜硫酸ソーダ・食品添加物用、鉄含有量:1.4 p p m 〕2 重量部およびL ーアスコルビン酸(ロシュ・ピタミン・ジャパン社製の商品名:L ーアスコルビン酸、鉄含有量:0.8 p p m)0.02 重量部を添加し、クロスロータリーミキサー〔明和工業(株)製、品番:C M ー 3 〕を用いて、ポリエチレン容器を自転速度30 r p m で 1 時間混合し、吸水性樹脂組成物を得た。得られた吸水性樹脂組成物中の鉄含有量を表3に示す。

[0093]

得られた吸水性樹脂組成物 1 3 g と解砕された木材パルプ 7 g とを乾式混合し、縦 4 0 c m、横 1 2 c mの大きさに成形した。得られた混合分散体の上部と下部をそれぞれ 0 . 5 g のティッシュペーパーで挟み、全体に荷重を加えて吸収体を作製した。

[0094]

市販の赤ちゃん用オムツ(Lサイズ)内部の吸収体を液体不透過性シート(バックシート)側から完全に除去したのち、前記吸収体を注意深く挿入し、テープで封をしてモニター試験用吸収性物品を作製した。

[0095]

一方、前記吸収体を、その上部から坪量20g/m² の液体透過性ポリエチレン製エア 20スルー型不織布で、また下部から液体不透過性ポリエチレン製シートで挟みつけることにより、耐着色性試験用吸収性物品を作製した。

[0096]

得られた吸水性樹脂組成物の物性として、前述の方法に従い、(1)人尿吸収時のゲル安定性、(2)生理食塩水吸収時のゲル安定性を評価した。また、モニター試験用吸収性物品を用いて前述の(3)モニター試験を実施した。さらに、耐着色性試験用吸収性物品を用いて前述の(4)吸収性物品の耐着色性を評価した。その結果を表4に示す。

[0097]

実施例8~13および比較例4~6

実施例 7 において、吸水性樹脂として、表 3 に示す製造例番号で得られた吸水性樹脂 1 0 0 重量部を用い、含酸素還元性無機塩および有機酸化防止剤として、表 3 に示す含酸素還元性無機塩および有機酸化防止剤を表 3 に示す添加量で用いたほかは、実施例 7 と同様にして吸水性樹脂組成物を得た。得られた吸水性樹脂組成物中の鉄含有量を表 3 に示す。

[0098]

なお、表3に記載の有機酸化防止剤の詳細は、以下のとおりである。

- ・L-アスコルビン酸 A: ロシュ・ビタミン・ジャパン社製の商品名: L-アスコルビン酸、鉄含有量: 0.8ppm
- ・没食子酸 n プロピルA: 大日本製薬 (株) 製、商品名: 没食子酸 n プロピル・食品添加物用、鉄含有量: 0. 4 p p m
- ・没食子酸 n プロピルB:ミドリ化学(株)製、商品名:没食子酸 n プロピル飼料級 40、鉄含有量: 5. 5 p p m

[0099]

- ・エリソルビン酸ナトリウム:藤沢薬品工業(株)製、商品名:エリソルビン酸ナトリウム、鉄含有量:1.2ppm
- ・ 2 メルカプトベンズイミダゾール: 大内振興化学 (株) 製、商品名: ノクラック M B 、 鉄 含 有 量 : 1 . 8 p p m
- ・プロトカテキュ酸エチル:関東化学 (株) 製、商品名:プロトカテキュ酸エチル、鉄含有量:1.8ppm
- ・ブチルヒドロキシアニソール:和光純薬工業(株)製、商品名:ブチルヒドロキシアニソール、鉄含有量:2.0ppm

・L-アスコルビン酸 B:和光純薬工業(株)製、商品名:L-アスコルビン酸 1 級、鉄含有量:6.2ppm【0100】【表3】

7	. I								- 1-14-	
吸水性樹脂	生樹脂		含酸素還元	含酸素還元性無機塩	•	有機配	有機酸化防止剤		· 安水田 梅脂組成物	•
種類 鉄合有量 (ppm)	鉄合有量 (ppm)		種類	鉄合有量 (ppm)	添加量 (重量部)	種類	鉄含有量 (ppm)	添加量 (重量部)	鉄含有量 (ppm)	
1	1	山田	亜硫酸+IIかい	1.4	2	L-7XJME/酸A	0.8	0.02	0.3	
製造例2 0.6 亜硫	0.6	圍	范酸于FIIウLA	1.4	2	L-7x3MC/酸A	0.8	0.01	0.6	
製造例 1 0.3 亜硫	0.3	田田	SERTI 194A	1.4	,t	没食子酸n-70tMA	0.4	0.1	0.3	· · · · · · · · · · · · · · · · · · ·
製造例1 0.3 亜硫		開	亜硫酸水素+1·1/1/A	1.5	. 2	エリアルビン酸ナトリウム	1.2	0.05	0.3	
製造例 1 0.3 七中田		品	硫酸初外	1.3	ന	2ーメルカプトベンズイミダゾール	T. 8	0.1	0.3	
製造例 1 0.3 垂三:		H	计划数刊机	1.9	2	加炸地酸堆	1.8	0.5	0.3	
製造例1 0.3 亜硝	0.3	圖	育酸ナトリウム	2.5	2	ブチルとドロキシアニソール	2.0	-	0.4	
製造例 2 0.6 亜硫	9.0	崩	布酸ナバウムB	23	က	L-7スコルヒン酸B	6.2	0.02	1.3	
製造例3 3.5 亜硫	3.5		流酸+NJ+AB	23	2	L-7スフルヒン酸B	6.2	0.02	6 %	
製造例 4 7.0 車	7.0	H	亜硫酸水素HI94B	15	2	没食子酸0-70比/18	5.5	0.1	7.2	
		1						*		

(注)「吸水性樹脂」の「種類」の欄に記載の製造例番号は、その製造例で得られた吸水性樹脂を用いたことを意味する。

20

40

品を作製し、その物性を評価した。その結果を表 4 に示す。 【 0 1 0 2】 【表 4】

実施例 番号	人尿吸 収時の	生理食塩 水吸収時		モ ニ タ	一試験		吸収性
Д 3	ゲル安定性	のゲル安 定性	回収 枚数	ゲル不良率 (%)	平均吸収量 (g/枚)	洩れ率 (%)	物品の 耐着色 性
7	0	• ©	165	1.2	171	1.2	A
8	0	0	170	4.7	152	5. 9	A
9	(O	159	1. 9	180	1.9	A
10	· (0	151	2. 6	175	2.6	Α
11	0	0	152	3, 3	177	3.9	A
12	0	0	159	3. 1	146	4. 4	A
13	0	· 0	159	3. 8	183	5.0	• A
比較例 4	Δ	Δ	135	11. 1	153	13.3	В
5	Δ	Δ	142	17. 6	148	20.4	С
6	Δ	Δ_{x}	158	20. 3	159	22.2	С

10

20

[0103]

表4に示された結果から、各実施例によれば、吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、更には生理食塩水等の電解質水溶液に対するゲルの安定性にも優れており、高温高湿下であっても耐着色性に優れた吸水性樹脂組成物が得られることがわかる。

[01.04]

【発明の効果】

本発明の吸水性樹脂組成物は、吸収体に含まれる吸水性樹脂量が多くても人尿等の体液に対するゲルの安定性に優れ、高温高湿下であっても耐着色性に優れたものであり、該吸水性樹脂組成物を用いれば、これらの物性に優れた吸収体および吸収性物品を得ることができる。

フロントページの続き

(51) Int. Cl.7

C 0 8 K 3/00

A 4 1 B 13/02

C 0 8 K 5/00

A 6 1 F 13/18 307B

C 0 8 K 7/02

Fターム(参考) 4J002 BB181 BE021 BF021 BG011 BG041 BH011 BN011 BN201 DF036 DG036 DG046 EJ027 EJ047 EL067 EV087 FD077 FD206 GD03

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.