

Title Page

Contents

Page 6 of 30

Go Back

Full Screen

Close

Quit

Perceptron Learning Criterion

- 2-class classifier, i'th training point \mathbf{x}^i : $t_i = \pm 1$
- $y(\mathbf{x}^i) = h(\mathbf{w}^T \mathbf{x}^i) = h(a) = +1 (a \ge 0), = -1 (a < 0)$
- Declare Class $\mathscr{C}_1(t_i = +1)$ if $\mathbf{w}^T \mathbf{x}^i \geq 0$
- Declare Class $\mathscr{C}_2(t_i = -1)$ if $\mathbf{w}^T \mathbf{x}^i < 0$
- Combined: (SVM-like!) Correct, if $t_i \mathbf{w}^T \mathbf{x}^i \geq 0$
- Perceptron penalty: 0 if correct, else sum
- Simple criterion: $E(\mathbf{w}) \stackrel{\triangle}{=} -\sum_{\forall i \in \mathscr{M}} t_i \mathbf{w}^T \mathbf{x}^i$
- no penalty for 'how much' misclassification
- Solved numerically, Cauchy's weight update rule

Title Page

Contents

Page 7 of 30

Go Back

Full Screen

Close

Quit

Iterative Weight Update: Learning

https://upload.wikimedia.org/wikipedia/commons/d/d3/Augustin-Louis_Cauchy_1901.jpg

- A.-L. Cauchy [1789-1857]
- Cauchy's Rule[1849]

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \boldsymbol{\eta} \nabla E(\mathbf{w})$$

- dim cons?
- Step 'η'?
- why '-'?[00:44]

- $\mathbf{SI} = \frac{E(w + \delta w) E(w)}{(w + \delta w) (w)} = \frac{E(w + \delta w) E(w)}{\delta w}$
- $\lim_{\delta w \to 0} : \partial E / \partial w \Longrightarrow \nabla E(\mathbf{w})$
- w: $[w_j]$, $\nabla E(\mathbf{w}) = [\partial E/\partial w_j]$
- $w+\delta w$ '-' sign: go against the gradient!
- ' η ': step size or learning rate, tuning (adaptive?)
- small η : small steps, longer attain local min
- large η : large steps, may miss local min

Title Page

Contents

Page 8 of 30

Go Back

Full Screen

Close

Quit

Multi-Layer Perceptron

Title Page

Contents

Page 9 of 30

Go Back

Full Screen

Close

Quit

Activation Functions

- Neuron input: scalar, sum of weighted inputs
- Activation fn: possible non-linearity, scalar output

sigmoid, tanh, ReIU, Leaky ReLU, eLU, swish

• LeakyRelU $(a, \alpha) \stackrel{\triangle}{=} \max(\alpha a, a), \ \alpha \in (0, 1)$

•
$$eLU(a, \alpha) \stackrel{\triangle}{=} \left\{ \begin{array}{l} a, a > 0 \\ \alpha(e^a - 1), a \le 0 \end{array} \right\}$$
 [00:50, 03:32]

Title Page

Contents

Page 10 of 30

Go Back

Full Screen

Close

Quit

Multi-Layer Perceptron

- h'layer activ'n fn: t_j : $h(a_j^{(1)})$: sigmoid/tanh
- o'layer activ'n fn: y_k : $\sigma(a_k^{(2)})$: prob specs
- Regression: Identity $y_k = a_k^{(2)}$
- Classification: sigmoid/softmax; sigmoid: 2-class softmax: multi-class
- $softmax = exp / \sum exp$
- Sgn: harsh $tanh(\cdot)$; \bullet 0/1 step: harsh $\sigma(\cdot)$

Title Page

Contents

Page 11 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: Logistic Sigmoid

• $\sigma(a) \stackrel{\triangle}{=} \frac{1}{1+e^{-a}}$ softer unit step; differentiable

•
$$a \to -\infty$$
, $\sigma(a) \to 0$; $a \to +\infty$, $\sigma(a) \to 1$; $a = 0$, $\sigma(a) = 0.5$

• (-) Computation with exponentials is difficult!

Title Page

Contents

Page 12 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: tanh

• $\tanh(a) \stackrel{\triangle}{=} \frac{e^{+a} - e^{-a}}{e^{+a} + e^{-a}}$ soft signum; differentiable

•
$$a \to -\infty$$
, $\sigma(a) \to -1$; $a \to +\infty$, $\sigma(a) \to +1$; $a = 0$, $\sigma(a) = 0$!

- (-) computation with exponentials is difficult!
- (-) grad \rightarrow 0 as curve saturates! Vanishing grad

Title Page

Contents

Page 13 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: tanh: Development

• $2\sigma(a) - 1$: stretch to [0, 2], then shift down by 1

•
$$\frac{2}{1+e^{-a}} - 1 = \frac{2-1-e^{-a}}{1+e^{-a}} = \frac{(1-e^{-a})e^{+a/2}}{1+e^{-a})e^{+a/2}} = \frac{e^{+a/2}-e^{-a/2}}{e^{+a/2}+e^{-a/2}} = \tanh(\frac{a}{2})$$

Title Page

Contents

Page 14 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: ReLU

- $ReLU(a) \stackrel{\triangle}{=} a, a \ge 0; 0$, otherwise Easy to compute
 - (+) no vanishing gradient as no saturation!
 - (-) negative inputs, no gradient

Title Page

Contents

Page 15 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: Leaky ReLU

- LeakyRelU $(a, \alpha) \stackrel{\triangle}{=} \max(\alpha a, a), \ \alpha \in (0, 1)$
 - $a \ge 0$: $\max(\alpha a, a) = a \ (\alpha \in (0, 1))$
 - a < 0: $\ln a$: fraction of more neg: $\ln a > a$, $\ln a > a$
 - (-) Not diff at a = 0: handled algorithmically

Title Page

Contents

Page 16 of 30

Go Back

Full Screen

Close

Quit

Activation Fns: eLU

•
$$eLU(a, \alpha) \stackrel{\triangle}{=} \left\{ egin{array}{l} a, a > 0 \\ \alpha(e^a - 1), a \leq 0 \end{array}
ight\}$$
 $a = 0: eLU = 0$

•
$$a \to -\infty$$
: $PLU \to \alpha(\frac{1}{e^{\infty}} - 1) \longrightarrow -\alpha$ (α : deg of sat'n)

• (-) Computation with exponentials is difficult!