Warum Bayern?

Dr. Georg Wagener-Lohse, FEE e.V.

BAYERN

- ist mit 70.550 km² das größte Bundesland und steht damit für 1/5 von Deutschland.
- verfügt deshalb mit 34.800 km² (18,6%) landwirtschaftlicher Nutzfläche und 24.700 km² (21%) Forstflächen über die größten Naturressourcen in Deutschland.
- hat ein starkes Interesse, seine Bürger (15,3% von D) und Unternehmen mit heimischer Energie zu versorgen, um eine hohe Wertschöpfung im Land zu realisieren.

Von den 70.600 MW EE-Stromanlagen, die Ende 2012 in Deutschland installiert waren, befinden sich 17,3% in Bayern. Sie erzeugen 16,3% des deutschen EE-Stroms.

Dazu gehören auch 1.140 MW Biomasseanlagen, die mit rund 6.000 Vollbenutzungsstunden im Jahr 35% des BY EE-Stroms erzeugen (=6.800 GWh).

- kann für die Zukunft noch 35% seiner energetisch nutzbaren Forstressourcen (13.800 GWh -> 4.800 GWh Strom, 6.700 GWh Wärme) erschließen.
- Verfügt über ein Potenzial von LW-Flächen für den Non-Food-Bereich, das für 3.050 Biogasanlagen á 308 kW (aktueller Durschschnitt von 2.281 Anlagen) Ressourcen bietet und damit insgesamt 7.500 GWh Strom sowie 7.900 GWh Wärme liefern kann.
- könnte die aktuelle Strommenge aus Biomasseanlagen damit noch einmal um fast das Doppelte erhöhen (5.500 GWh) und 14% eines Stromverbrauchs decken.

DAS INNOVATIONSNETZWERK Fördergesellschaft Erneuerbare Energi Erneuerbare Energien

BIOSTROM IN DEUTSCHLAND

hat sich unterschiedlich entwickelt

hat Imageprobleme,

Wird für Systemdienstleistungen neben den fluktuierenden EE dringend benötigt,

hat noch ökologisch verträgliche Potenziale, die vor allem im Wald über ganz D bei 50% liegen,

Könnte noch einmal rund 3.000 mehr Biogasanlagen (á 500 kW) ermöglichen (also 1.500 MW)

Kann damit vor allem Leistung liefern und muss nicht im gleichen Masse Flächen beanspruchen.

Grafik: BDEW, Jahresstatistik, 2014, Potenzial: DBFZ, 2010

RESTHOLZPOTENZIALE

nach Bundesländern jeweils ungenutzt [%, GWh]

In Summe:

73.100 GWh Restholz

51% ungenutzte Ressourcen

BAYERN

 ist wegen seines enorm hohen Anteils von zentralen Kernkraftwerken (49% des Stromabsatzes und 38% der installierten Leitung von 14.600 GW) prädestiniert die Transformation zur dezen-

tralen Energieversorgung innerhalb eines sehr kurzen Zeitraums von knapp einem Jahrzehnt zum eigenen Vorteil zu organisieren.

- braucht dafür Randbedingungen, die Bürgerengagement in eine konstruktive Richtung statt in eine destruktive Richtung lenken.
- profitiert aktuell am stärksten in Deutschland durch seinem hohen EE-Anteil mit 4,76 Mrd. € Einspeisevergütungen, was 25% der Gesamtauszahlungen von 19,1 Mrd € im Jahr 2012 entspricht. Pro Kopf der Bevölkerung liegt Bayern jedoch mit 379 € nur an dritter Stelle nach Brandenburg (530 €) und Mecklenburg-Vorpommern (445 €) gleichauf mit Niedersachsen.
- Wegen des hohen Anteils von PV-Anlagen, die zwar nominell viel installierte Leistung bieten aber nur 990 Vollbenutzungsstunden erreichen, ist die damit erreichte Stromleiferung je Kopf der Bevölkerung nur bei 1.550 kWh im Mittelfeld der Bundesländer (Spitze: 4.700 kWh Brandenburg, 2.750 kWh in Niedersachsen).

STROMERZEUGUNG BAYERN 2011

¹⁾ Quelle: eigene Berechnungen. 2) Ohne Pumpspeicherwasser. 3) Bewertung des biogenen Anteils im Abfall in Bayern | 2009: Siedlungsabfälle 60 % und Industrieabfälle 60 % biogen | ab 2010: Siedlungsabfälle 50 % und Industrieabfälle 0 % biogen | In Deutschland: Siedlungsabfälle 50 % und Industrieabfälle 0 % biogen. 4) Quelle: AG Energiebilanzen e.V. (Stand 14.02.2013).

ANTEIL EE AN PRIMÄRENERGIE BAYERN

KRAFTWERKSLEISTUNG BAYERN 2010-2012

		MW (brutto) ²		
Energieträger		Dez 10	Dez 11	Dez 12
Wasserkraft		2.509	2.565	2.568
davon	Laufwasser	1.942	1.944	1.942
	Speicherwasser	177	229	235
	Pumpspeicherwasser	391	392	392
Windkraft		_	_	_
Photovoltaik		_	_	_
Geothermie		_	_	_
Abfall		245	245	242
Wärmekraft		12.224	11.775	11.828
davon	Kernenergie	6.430	5.518	5.518
	Steinkohlen	913	913	913
	Braunkohlen	-	-	-
	Heizöl/Dieselkraftstoff	1.071	1.070	1.041
	Erdgas, Erdölgas	3.724	4.204	4.287
	Sonstige Wärmekraft	86	70	69
Sonstige Energieträger		-	_	-
Insgesamt		14.978	14.585	14.637

100% EE-DECKUNG DES AKTUELLEN BEDARFS IST MÖGLICH

DAS INNOVATIONSNETZWERK

Leitungsbelastung

1 GW AC

5 GW DC

BAYERN KONKRET → 100%EE

Konkret 1.Feb 12:00 mit einer Spitzenlast in D von 80 GW, die zu 1/3 von der Industrie und zu rund 60% durch Haushalte und knapp 8% durch Gewerbe, Handel, DL benötigt wird.

1 GW Erzeugung

3 GW Verbrauch

Erzeugung < Verbrauch

Bioenergie

Solarenergie

Windenergie

0.5 GW Verbrauch

6 GW Erzeugung

inkls. Biomethan

Fluktuierende EE liefern dann etwa 60% der benötigten Menge zu etwa gleichen Anteilen. Biomasse und BioMethan müssen zusammen mit EE-Methan (aus Speichern) die entstehende Residuallast absichern.

Für Bayern sind die Verhältnisse an den jeweiligen Netzknoten dargestellt.

Abschaltung Grafenreinfeld 2015, Gundremmingen B 2017, Gundremmingen C 2021 und Isar 2 2022 Bedeutet den sukzessiven Verlust von 5.500 MW, die bis 2022 ersetzt werden müssen.

ÜBERSICHT STROMNETZSTRUKTUR BAYERN

DAS INNOVATIONSNETZWERK FEE

Fördergesellschaft Erneuerbare Energien e.V.

3,6

3,0

2,6

Gesamt

dena VERTEILNETZSTUDIE

- Auf der Basis des Netzentwicklungsplans B 2012 liegen die Kosten für den Netzausbau in Deutschland bei 27,5 Mrd. € für die Jahre 2010-2030.
- Mit 16,1 Mrd. € liegt die Hälfte im Bereich der Hochspannugs-Trassen (HS), 7,8 Mrd. € im Bereich der Mittelspannung (MS) und nur 3,6 Mrd. € in der Niederspannung (NS).
- Der größte Teil im Bereich der NS(MS)-Netze liegt mit 3,1 (7,0) Mrd. € im ländlichen Raum.
- Für Bayern liegen die Gesamtkosten für alle drei Spannungsebenen bei 4,7 Mrd. €
 (17% von D)
- Sollen die Ziele der Bundesländer erreicht werden, müssen 42,5 Mrd. € investiert werden, von denen 4,2 Mrd. € für NS, 12,0 Mrd. € für Mittelspannung und 26,3 Mrd. € für HS eingesetzt werden müssen.
- In diesem Fall würde in Bayern die installierte Leistung von Wind 5,4 und PV 12,8 GW betragen. Mit durchschnittlichen Jahresvollbenutzungsstunden (Wind:1.800, PV:950) ergeben sich daraus 21,2 TWh Strom, was 23,8% des heutigen Stromverbrauchs entspricht (+248%).
- Zusammen mit den anderen 2012 vorhandenen Quellen ergeben sich damit 41,4
 TWh oder 46% der heutigen Erzeugung.
- Welchen Aufwand des Deutschen HS-Ausbaus könnte By vermeiden, wenn es im Bereich des NS- und MS-Netz mehr Leistung installiert?

PARADIGMENWECHSEL

Freies Spiel der Kräfte

vs. Strenge Hierarchie

setzt engagierte Netzbetreiber mit Interesse an Integration voraus

TATORT Allgäuer Überlandwerke (31.12.2012)

- Freileitungen Länge HS: 359,9 km, Länge MS: 742,2 km, Länge NS: 848,4 km (mit HA)
- Kabel Länge HS: 25,1 km, Länge MS: 921,5 km, Länge NS: 2.605,1 km (mit HA, darin ohne HA 889,7 km)
- 137.035 Entnahmestellen im NS
- 193.479 Einwohner im Netzgebiet (97,03 km² ohne nicht versorgte Flächen wie Wälder, Seen, Flüsse 1.635 km² mit HS, 1.399 km² MS)
- Jahreshöchstlast NS 113,6 MW, HS/MS 194,4 MW
- Einspeisungen 395 GWh (=36%) auf verschiedenen Netzebenen: 109 GWh (HS/MS), 135 GWh (MS), 47 GWh (MS/NS), 104 GWh (NS)
- Bezug von vorgelagerter Netzebene: 848 GWh, Höchstentnahmelast 199 MW
- Gesamtverbrauch ca. 1.100 GWh

NETZGEBIET Allgäuer Überlandwerk AÜW

	AÜW	(von)D
Netz [km²]	1.635	0,5%
Netzlänge [km]	5.501*	0,3%
EE [GW]	0,320	67**
Je Fläche [GW/km²]	196	189
Ausbauziel [GW]	0,630	155***
Netzzubau [km]	?	132.000
Von Statusquo	?	8%
Je EE [km/GW]	?	1.500
Kosten [T€/km]	?	205

^{*} Ähnlich ganz (D): 63% NS, 30% MS (32%), 7% HS (5%) **2010 ***Bundesländer 2020, Bund 2030

^{0 10 20} km

NOTWENDIGER ZUBAU NACH 3 SZENARIOS [km]

1: Dach-PV→NS, Wind →MS; 2: große PV und Wind →MS;

3: PV+Wind →MS/HS, für Ausbau von 320 MW auf 630 MW (70%EE)

VIELEN DANK FÜR IHR INTERESSE

Dr. Georg Wagener-Lohse

Achtung neue Adresse:

Invalidenstr. 91, 10115 Berlin, gewalo@yahoo.de, 0173 53 53 105

www.fee-ev.de