Guía ejercicios - Repaso I2

Pedro Bahamondes

October 23, 2024

1 Teoría de conjuntos

- 1. Sea $C := \{(\varphi, \psi) \in \mathcal{L}(P) \times \mathcal{L}(P) \mid \varphi \to \psi\}$ y $D := \{(\varphi, \psi) \in \mathcal{L}(P) \times \mathcal{L}(P) \mid \varphi \leftrightarrow \psi\}$. Demuestre que $C \subsetneq D$.
- 2. Considere las relaciones usuales <, <, >, >,
 y = sobre los naturales. Demuestre que
 - (a) <⊊≤
 - (b) >⊊≥
 - $(c) < \cap > = \emptyset$
 - (d) $< \cap > = =$
 - (e) $\langle \cup \rangle = \mathbb{N}^2 \setminus =$
 - (f) $\langle \cup \rangle = \mathbb{N}^2$
- 3. Se
aAun conjunto y Runa relación refleja sobre
 A. Demuestre que = $\subseteq R \subseteq A^2.$

2 Relaciones

- 1. Sea P un conjunto de variables proposicionales y sea $\leq_{\rightarrow} := \{(\varphi, \psi) \in \mathcal{L}(P) \times \mathcal{L}(P) \mid \varphi \to \psi\}$. Demuestre que \leq_{\rightarrow} es una relación refleja y transitiva sobre $\mathcal{L}(P)$.
- 2. Sea P un conjunto de variables proposicionales, sea $\mathbb{L} := \mathcal{L}(P)/\equiv y$ sea \preceq_{\rightarrow} definida por

$$\preceq_{\rightarrow} := \{ (A, B) \in \mathbb{L}^2 \mid \exists \varphi \in A \quad \exists \psi \in B \quad \varphi \to \psi \}$$

Demuestre que \leq_{\rightarrow} es una relación de orden parcial sobre \mathbb{L} .

3. Sea $f: A \to B$ una función y definamos \equiv_f como la relación dada por

$$a \equiv_f a'$$
 si y sólo si $f(a) = f(a')$

Demuestre que \equiv_f es una relación de equivalencia.

4. Se
a $f:A\to B$ una función inyectiva, \leq un orden parcial sobre
 By definamos \leq_f como la relación dada por

$$a \leq_f a'$$
 si y sólo si $f(a) \leq f(a')$

Demuestre que \leq_f es una relación de orden parcial.

- 5. Demuestre que la relación \equiv sobre $\mathcal{L}(P)$ es una relación de equivalencia.
- 6. Demuestre que la relación ≈ (equinumerosidad) sobre conjuntos es una relación de equivalencia.
- 7. Defina \leq como la siguiente relación binaria sobre funciones de A en B:

$$f \leq g$$
 si y sólo si $f(A) \subseteq g(A)$

donde para una función h y un conjunto X se define $h(X) = \{h(x) \mid x \in X\}$. Demuestre que \leq es una relación refleja y transitiva. Demuestre que \leq no es antisimétrica.

1

- 8. Definimos el conjunto de rectas bidimensionales con coeficientes reales como el conjunto de funciones $R = \{f : \mathbb{R} \to \mathbb{R} \mid \exists m \in \mathbb{R} \quad \exists n \in \mathbb{R} \quad f = x \mapsto mx + n\}$. Diremos que dos rectas f y g en R son paralelas, lo que denotamos por $f \parallel g$ si existen m, n, n' en \mathbb{R} tales que $f = x \mapsto mx + n$ y $g = x \mapsto mx + n'$. Demuestre que \parallel es una relación de equivalencia sobre R.
- 9. Definimos el conjunto de triángulos en el plano cartesiano Δ como

$$\Delta := \{ \{(a,b), (c,d), (e,f)\} \subsetneq \mathbb{R}^2 \mid (a,b) \neq (c,d) \land (c,d) \neq (e,f) \land (a,b) \neq (e,f) \}$$

(es decir, un triángulo está definido por exactamente tres puntos distintos en el plano). Diremos que dos triángulos $T_1 = \{p_1, p_2, p_3\}$ y $T_2 = \{q_1, q_2, q_3\}$ son congruentes si el largo de sus aristas son iguales, es decir, si existen r_1, r_2 y r_3 en T_2 tales que $d(r_1, r_2) = d(p_1, p_2), d(r_2, r_3) = d(p_2, p_3)$ y $d(r_3, r_1) = d(p_3, p_1)$, donde d es la función de distancia euclidiana entre puntos dada por:

$$d((a,b),(c,d)) := \sqrt{(c-a)^2 + (d-b)^2}$$

Lo denotamos por $T_1 \approx T_2$. Demuestre que \approx es una relación de equivalencia sobre triángulos.

- 10. Defina de manera similar el conjunto de círculos en el plano y la relación compuesta por los pares de círculos de igual radio. Demuestre que dicha relación es una relación de equivalencia.
- 11. Sea A un conjunto y \prec una relación binaria sobre A. Decimos que \prec es una relación de orden estricto si es una relación asimétrica y transitiva.
 - (a) Dé ejemplos de conjuntos con relaciones de orden estricto.
 - (b) Demuestre que $\leq = \prec \cup =$ es una relación de orden parcial.
 - (c) ¿Qué condiciones hay que exigir sobre \prec para que \preceq sea un orden total? Demuéstrelo. Cuando ello ocurre, diremos que la relación es una relación de orden estricto total.

3 Elementos extremos

- 1. Encuentre elementos minimales y mínimos para los siguientes subconjuntos de $\mathbb{N} \setminus \{0\}$ sobre el orden parcial $(\mathbb{N} \setminus \{0\}, |)$:
 - (a) Los números pares
 - (b) Los números impares
 - (c) Los números primos
 - (d) Las potencias de 2
- 2. Sea A un conjunto. Demuestre que en el orden parcial $(\mathcal{P}(A),\subseteq)$, $\mathcal{P}(A)$ tiene mínimo y máximo.
- 3. Sea k un número natural y $\mathcal{P}(\mathbb{N}, k)$ el conjunto de todos los subconjuntos de \mathbb{N} con exactamente k elementos. Demuestre que todos los elementos de $\mathcal{P}(\mathbb{N}, k)$ son a la vez minimales y maximales.
- 4. Sea P un conjunto de variables proposicionales y considere la relación de equivalencia \equiv sobre $\mathcal{L}(P)$. Sobre $\mathcal{L}(P)/\equiv$, definimos la relación \preceq dada por

$$\varphi \leq \psi$$
 si y sólo si para toda valuación σ , se tiene que $\sigma(\varphi) \leq \sigma(\psi)$

Demuestre que \leq es una relación de orden parcial sobre $\mathcal{L}(P)/\equiv$ y encuentre los elementos mínimo y máximo para el conjunto $\mathcal{L}(P)$ en el orden parcial que define $(\mathcal{L}(P), \leq)$.

4 Cardinalidad

- 1. Sea N un conjunto no enumerable y $E\subseteq N$ un conjunto enumerable. Demuestre que $N\setminus E$ es no enumerable.
- 2. Demuestre que $\bigcup_{n\in\mathbb{N}}\mathbb{N}^n$ es enumerable.

- 3. Demuestre que el conjunto $C:=\mathbb{Q}\cup\{\pi+n\mid n\in\mathbb{Q}\}$ es enumerable.
- 4. Sea $\mathcal{R} = \{R \mid R \text{ es una relación binaria sobre } \mathbb{N}\}$. Demuestre que \mathcal{R} es no enumerable.
- 5. Sean A, B y C conjuntos tales que $A \subseteq B \subseteq C$. Demuestre que si $A \approx C$ entonces $B \approx C$.
- 6. Sea $\mathcal{F} := \{f : \mathbb{N} \to \mathbb{N}\}$. Demuestre que $\mathcal{F} \approx \mathbb{R}$.
- 7. Sea $\mathcal{B} := \{f : \mathbb{N} \to \{0,1\}\}$. Demuestre que \mathcal{B} es no enumerable.
- 8. Sea $f: \mathbb{N} \to \mathbb{N}$. Demuestre que $f(\mathbb{N}) := \{y \mid \exists x \in \mathbb{N} \mid f(x) = y\}$ es enumerable.
- 9. Sea k un número natural y $\mathcal{P}(\mathbb{N}, k)$ el conjunto de todos los subconjuntos de \mathbb{N} con exactamente k elementos. Demuestre que $\mathcal{P}(\mathbb{N}, k)$ es enumerable.
- 10. Considere el juego de 'cachipún' o 'piedra-papel-o-tijera' (PPT), con repetición en caso de empate. Un turno de PPT se puede representar como un elemento del conjunto

$$\mathcal{T} = \{PP, PT, PR, TP, TT, TR, RP, RT, RR\}$$

(donde cada letra representa la tirada del respectivo jugador, siendo P papel, T tijera y R roca o piedra). Una jugada de PPT se puede representar como una secuencia de turnos $(t_1, t_2, ...)$, la que será finita en caso de que alguno de los jugadores gane en alguno de sus turnos, o infinita en caso de que la secuencia consista de infinitos empates sucesivos. Demuestre que las secuencias posibles de 'cachipún' son no enumerables.