Prednášky z Matematiky (4) – Logiky pre informatikov

Ján Kľuka, Jozef Šiška

Katedra aplikovanej informatiky FMFI UK Bratislava

Letný semester 2015/2016

3. prednáška

Vyplývanie, ekvivalentné úpravy

7. marca 2016

Obsah 3. prednášky

Úyroková logika
Opakovanie – Základy sémantiky
Tautológie, splniteľnosť, ekvivalencia
Výrokovologické vyplývanie
Ekvivalentné úpravy
Konjunktívna a disjunktívna normálna forma

Ohodnotenie výrokových premenných

Definícia

Nech $\{t, f\}$ je množina dvoch rôznych pravdivostných hodnôt, pričom hodnota t predstavuje pravdu a f nepravdu.

Ohodnotením množiny výrokových premenných \mathcal{V} nazveme každé zobrazenie (funkciu) v množiny V do množiny $\{t, f\}$.

Výroková premenná p je pravdivá pri ohodnotení v, ak v(p) = t.

Výroková premenná p je nepravdivá pri ohodnotení v, ak v(p) = f.

Spĺňanie formúl pri ohodnotení premenných

Definícia

Nech v je ohodnotenie množiny výrokových premenných \mathcal{V} . Pre všetky výrokové premenné $p z \mathcal{V}$ a všetky formuly A, B nad \mathcal{V} definujeme:

- v spĺňa atomickú formulu p vtt v(p) = t;
- v spĺňa formulu ¬A vtt v nespĺňa A;
- v spĺňa formulu (A ∧ B) vtt v spĺňa A a v spĺňa B;
- v spĺňa formulu (A ∨ B) vtt v spĺňa A alebo v spĺňa B;
- v spĺňa formulu $(A \to B)$ vtt v nespĺňa A alebo v spĺňa B.

Vzťah ohodnotenie v spĺňa formulu X skrátene zapisujeme $v \models X$.

Spĺňanie formuly pri ohodnoteniach

Tvrdenie

Splnenie výrokovej formuly pri ohodnotení výrokových premenných závisí iba od ohodnotenia (konečného počtu) výrokových premenných, ktoré sa v nej vyskytujú.

Presnejšie: Pre každú formulu X a všetky ohodnotenia v_1 a v_2 , ktoré zhodujú na množine výrokových premenných vyskytujúcich sa v X, platí $v_1 \models X$ vtt $v_2 \models X$.

Dôsledok

Na preverenie všetkých možností splnenia a nesplnenia formuly X postačuje preveriť konečne veľa ohodnotení $(2^{|vars(X)|})$, ktoré sa vzájomne líšia iba na množine výrokových premenných vars(X) vyskytujúcich sa v X.

Tautológia, splniteľnosť, ekvivalencia

Definícia

Formulu X nazveme tautológiou (skrátene $\models X$) vtt je splnená pri každom ohodnotení výrokových premenných.

Definícia

Formulu X nazveme splniteľnou vtt je splnená pri aspoň jednom ohodnotení výrokových premenných.

Ekvivalencia formúl

Definícia

Dve formuly X a Y sú výrokovologicky ekvivalentné vtt ak pri každom ohodnotení výrokových premenných je X splnená vtt je splnená Y.

Tvrdenie

Formuly X a Y sú výrokovologicky ekvivalentné vtt formula $((X \to Y) \land (Y \to X))$ je tautológia.

Dohoda

Formulu $((X \to Y) \land (Y \to X))$ budeme skrátene zapisovať $(X \leftrightarrow Y)$.

Tautológie a (ne)splniteľnosť

Tyrdenie

Formula X je tautológia vtt keď $\neg X$ je nesplniteľná.

Dôkaz.

- (\Rightarrow) Nech X je tautológia, teda je splnená pri každom ohodnotení výrokových premenných. To znamená, že $\neg X$ je nesplnená pri každom boolovskom ohodnotení (podľa definície spĺňania pri ohodnotení) a teda neexistuje žiadne ohodnotenie, pri ktorom by $\neg X$ bola splnená, teda $\neg X$ nie je splniteľná.
- (\Leftarrow) Opačne, nech $\neg X$ je nesplniteľná. To znamená, že pri každom ohodnotení výrokových premenných je $\neg X$ nesplnená a podľa definície spĺňania je teda X pri každom ohodnotení splnená a teda je tautológia.

Spĺňanie množín výrokových formúl

Pojem spĺňania sa jednoducho rozšíri na množiny výrokových formúl.

Definícia

Nech S je množina formúl. Ohodnotenie v spĺňa množinu formúl S (alebo je modelom S; skrátene $v \models S$) práve vtedy, keď v spĺňa každú formulu X z množiny S.

Tvrdenie

Splnenie množiny výrokových formúl S pri ohodnotení výrokových premenných závisí iba od ohodnotenia výrokových premenných, ktoré sa vyskytujú vo formulách v S.

Presná formulácia je podobná ako pri spĺňaní formúl. Dôkaz sporom, lebo množina formúl môže byť nekonečná. Cvičenia?

Definícia

Množina formúl S je súčasne výrokovologicky splniteľná vtt existuje aspoň jedno ohodnotenie výrokových premenných, pri ktorom sú všetky formuly z S splnené.

Príklad

Párty príklad

$$P = \{ ((\mathsf{kim} \lor \mathsf{jim}) \lor \mathsf{sara}), \qquad (\mathsf{kim} \to \neg \mathsf{sara}),$$
$$(\mathsf{jim} \to \mathsf{kim}), \qquad (\neg \mathsf{jim} \to \neg \mathsf{sara}) \}$$

je súčasne splniteľná množina formúl.

 $P \cup \{\text{sara}\}$ – súčasne nesplniteľná množina formúl.

Splniteľnosť a výrokovologické vyplývanie

Všimnime si, že v *každom* ohodnotení, ktoré spĺňa *P*, je premenná kim pravdivá.

Definícia (Výrokovologické vyplývanie)

Z množiny formúl S výrokovologicky vyplýva formula X (X je výrokovologickým dôsledkom S, skrátene $S \models X$) ak X je pravdivá pri každom ohodnotení výrokových premenných, ktoré spĺňa S.

Vyplývanie a (ne)splniteľnosť

Tvrdenie

Formula X výrokovologicky vyplýva z množiny formúl $S = \{X_1, X_2, \dots, X_n\}$ vtt keď je množina $S_1 = \{X_1, X_2, \dots, X_n, \neg X\}$ nesplniteľná.

Dôkaz.

- (⇒) Predpokladajme, že X vyplýva z množiny S. Nech v je nejaké ohodnotenie V. Potrebujeme ukázať, že v nespĺňa S_1 . Máme dve možnosti:
 - Ak v nespĺňa S, tak nespĺňa ani S₁.
 - Ak v spĺňa S, tak v musí spĺňať aj X (definícia vyplývania). To znamená, že $\neg X$ je nesplnená pri v, a teda v nespĺňa S_1 .
- (\Leftarrow) Opačne, nech S_1 je nesplniteľná a nech v je nejaké ohodnotenie \mathcal{V} . v teda nespĺňa S_1 . Potrebujeme ukázať, že ak v spĺňa S, tak potom v spĺňa aj X. Ak v spĺňa S_1 , potom spĺňa každé X_i . Keďže ale v nespĺňa S_1 , v musí nespĺňať $\neg X$ (jediná zostávajúca formula z S_1), čo znamená, že v spĺňa X.

Nezávislosť.

Definícia

Formula X je nezávislá od množiny formúl S, ak existuje dvojica ohodnotení v_1 , v_2 spĺňajúcich S, pričom v_1 spĺňa X, ale v_2 nespĺňa X.

Príklad

Atomická formula jim je nezávislá od P.

Asociativita a komutativita konjunkcie a disjunkcie

Zjednodušenie zápisu formúl

Tvrdenie

Nech A_1 , A_2 , A_3 sú formuly. Nasledujúce dvojice formúl sú ekvivalentné:

- $((A_1 \land A_2) \land A_3) \ a \ (A_1 \land (A_2 \land A_3)), \ \bullet \ (A_1 \land A_2) \ a \ (A_2 \land A_1),$
- $((A_1 \lor A_2) \lor A_3) \ a \ (A_1 \lor (A_2 \lor A_3))$. $(A_1 \lor A_2) \ a \ (A_2 \lor A_1)$.

Dohoda

Nech A_1, A_2, \ldots, A_n sú formuly.

Formulu $(((A_1 \land A_2) \land A_3) \land \cdots \land A_n)$ budeme skrátene zapisovať $(A_1 \wedge A_2 \wedge A_3 \wedge \cdots \wedge A_n)$, prípadne $\bigwedge_i A_i$.

Formulu $(((A_1 \lor A_2) \lor A_3) \lor \cdots \lor A_n)$ budeme skrátene zapisovať $(A_1 \lor A_2 \lor A_3 \lor \cdots \lor A_n)$, prípadne $\bigvee_i A_i$.

Vzťahy vyplývania, implikácií a tautológií

Tvrdenia

- $T \cup \{A\} \models B \text{ vtt } T \models A \rightarrow B$
- $\{\} \models A \text{ vtt } \models A \text{ } (A \text{ je tautológia})$
- Nasledujúce tvrdenia sú ekvivalentné:
 - $\blacktriangleright \{A_1, A_2, \dots, A_n\} \models B$
 - $\blacktriangleright \{(A_1 \land A_2 \land \cdots \land A_n)\} \models B$
 - \blacktriangleright {} \models (($A_1 \land A_2 \land \cdots \land A_n$) \rightarrow B)
 - $\blacktriangleright \models ((A_1 \land A_2 \land \cdots \land A_n) \rightarrow B)$

Ekvivalentné úpravy

Ekvivalentné úpravy formúl ste robili na diskrétnej matematike.

Definícia

Zobrazenie $u \colon \mathcal{E} \to \mathcal{E}$ nazveme *ekvivalentnou úpravou* vtt, keď pre každú formulu A platí, že formuly A a u(A) sú ekvivalentné.

Cieľom je zvyčajne formulu zjednodušiť alebo upraviť do požadovaného tvaru, prípadne ukázať, že je tautológia upravením na známu tautológiu.

Príklad syntaktickej manipulácie formúl s predvídateľným sémantickým výsledkom.

Ekvivalentné úpravy

Ekvivalentné úpravy zvyčajne pozostávajú z kombinácie:

 nahradenia podformuly A vo formule X formulou B, ktorá je ekvivalentná s A:

Príklad

$$A = \neg \neg p$$
 $B = p$ $(q \rightarrow \neg \neg \neg p) \rightsquigarrow (q \rightarrow \neg p)$

 nahradenia formuly, ktorá vznikne dosadením formuly A za nejakú výrokovú premennú p vo formule X, formulou, ktorá vznikne dosadením A za rovnakú premennú vo formule Y ekvivalentnej s X.

Príklad

$$(\neg (r \to s) \land \neg q) \quad \rightsquigarrow \quad \boxed{\neg ((r \to s) \lor q)}$$

$$X = (\neg p \land \neg q) \qquad Y = \boxed{\neg (p \lor q)}$$

$$A = (r \to s)$$

Substitúcia a ekvivalentné úpravy

Definícia (Substitúcia)

Nech X, A, B sú formuly.

Substitúciou B za A v X (skrátene X[A|B])) nazývame formulu, ktorá vznikne nahradením každého výskytu A v X formulou B.

Veta (Ekvivalentné úpravy)

Nech X je formula, A a B sú ekvivalentné formuly. Potom X a X[A|B] sú tiež ekvivalentné.

Tvrdenie

Nech X je tautológia, a výroková premenná a Y ľubovoľná formula. Potom X[a|Y] je tiež tautológia.

Veta

 $\neg \neg A$

Nech A, B, C sú ľubovoľné formuly. Nasledujúce dvojice formúl sú ekvivalentné:

$$\begin{array}{lll} (A \wedge (B \wedge C)) & ((A \wedge B) \wedge C) & asociatívne \ pravidlá \\ (A \vee (B \vee C)) & ((A \vee B) \vee C) \\ \\ (A \wedge (B \vee C)) & ((A \wedge B) \vee (A \wedge C)) & distributívne \ pravidlá \\ (A \vee (B \wedge C)) & ((A \vee B) \wedge (A \vee C)) \\ \\ \neg (A \wedge B) & (\neg A \vee \neg B) & de \ Morganove \ pravidlá \\ \neg (A \vee B) & (\neg A \wedge \neg B) \\ \end{array}$$

J. Kľuka. J. Šiška

Α

Logika pre informatikov

dvojitá negácia

Konjunktívna a disjunktívna normálna forma

Definícia

- Premennú alebo negáciou premennej nazývame *literál*. Disjunkciu literálov nazývame klauzula (tiež klauza).
- Hovoríme, že formula X je v disjunktívnom normálnom tvare (DNF), ak X je disjunkciou formúl, z ktorých každá je konjunkciou literálov.
- Hovoríme, že formula X je v konjunktívnom normálnom tvare (CNF), ak X je konjunkciou klauz (formúl, z ktorých každá je disjunkciou literálov).

Existencia DNF, CNF

Veta

- 1 Ku každej formule X existuje ekvivalentná formula A v disjunktívnom normálnom tvare.
- 2 Ku každej formule X existuje ekvivalentná formula B v konjunktívnom normálnom tvare.

Dôkaz.

- 1 Predstavme si pravdivostnú tabuľku pre X. Zoberme všetky boolovské ohodnotenia v_i také, že $v_i \models X$. Pre každé v_i zostrojme formulu C_i ako konjunkciu obsahujúcu a ak $v_i(a) = t$ pre premennú a, alebo $\neg a$, ak $v_i(a) = f$. Očividne formula $A = \bigvee C_i$ je v DNF a je ekvivalentná s X (vymenuváva všetky možnosti, kedy je X pravdivá).
- 2 K $\neg X$ teda existuje ekvivalentná formula A_1 v DNF. Znegovaním A_1 (a aplikáciou de Morganových pravidiel) dostaneme formulu B v CNF, ktorá je ekvivalentná s X.

Algoritmus

- Prepíšeme implikácie:
 - \blacktriangleright $(A \rightarrow B) \rightsquigarrow (\neg A \land B).$
- 2 Presunieme dovnútra pomocou de Morganových pravidiel a dvojitej negácie.
- 3 Roznásobíme ∧ s ∨ podľa distributívneho pravidla:
 - \blacktriangleright $((A \land B) \lor C) \quad \leadsto \quad ((A \lor B) \land (A \lor C))$
- Prezátvorkujeme na požadovaný tvar pomocou asociatívnych pravidiel.

Všetky úpravy sú ekvivalentné, takže:

Tvrdenie

Výsledná formula algoritmu je ekvivalentná s pôvodnou a je v CNF.

Algoritmus

- 1 Vytvoríme vytvárajúci strom pre formulu X.
- 2 Pre každú formulu X_i vo vytvárajúcom strome pre X vytvoríme novú výrokovú premennú x_i , ktorá bude "reprezentovať" formulu X_i (nech x_0 reprezentuje celkovú formulu X).
- 3 Vytvoríme formuly, ktoré popisujú vzťah medzi X_i a jej priamymi podformulami prostredníctvom "reprezentačných" premenných:
 - ▶ ak X_i je tvaru $\neg X_i$ pre nejaké X_i , pridáme $(x_i \leftrightarrow \neg x_i)$,
 - ▶ ak X_i je tvaru $(X_i \wedge X_k)$, pridáme $(x_i \leftrightarrow (x_i \wedge x_k))$,
 - ▶ ak X_i je tvaru $(X_i \lor X_k)$, pridáme $(x_i \leftrightarrow (x_i \lor x_k))$,
 - ▶ ak X_i je tvaru $(X_i \to X_k)$ pridáme $(x_i \leftrightarrow (x_i \to x_k))$,
 - ▶ ak X_i je premenná a, pridáme $(x_i \leftrightarrow a)$.

Všetky uvedené formuly idú jednoducho prepísať do CNF.

4) Pridáme formulu x_0 (chceme aby celková formula X bola pravdivá).

CNF – iný prístup

Definícia

Formuly X a Y sú rovnako splniteľné (ekvisplniteľné, equisatisfiable) vtt, keď X je splniteľná vtt Y je splniteľná.

Tvrdenie

Výsledná formula predchádzajúceho algoritmu je v CNF, jej veľkosť je lineárna voči veľkosti X a je ekvisplniteľná s X.

Literatúra

PAPADIMITRIOU, C. H. *Computational complexity*. Addison-Wesley, 1994. ISBN 978-0-201-53082-7.

SMULLYAN, R. M. *Logika prvého rádu*. Alfa, 1979. Z angl. orig. *First-Order Logic*, Berlin-Heidelberg: Springer-Verlag, 1968 preložil Svätoslav Mathé.