Non-Gaussian Structural Vector Autoregressions

Sascha Alexander Keweloh

October 22, 2020

TU Dortmund University

Structural Vector Autoregression

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

In matrix notation:

$$\underbrace{u}_{\text{observed mixtures}} = \underbrace{B_0}_{\text{mixing matrix signals}} \underbrace{\epsilon}_{\text{mixing matrix signals}}$$

The Cocktail-Party-Problem

Structural Vector Autoregression

$$u = B_0 \epsilon$$

Unmixed innovations

$$e_t(B) := B^{-1}u_t$$
 (1)

Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Mixing B_0 is recursive

Shocks ϵ are uncorrelated

Moment conditions

$$E[e_1(B)e_2(B)] = 0$$

 $E[e_1(B)e_3(B)] = 0$
 $E[e_2(B)e_3(B)] = 0$

Identified

Keweloh, Sascha. "A Generalized Method of Moments Estimator for Structural Vector Autoregressions Based on Higher Moments." *Journal of Business & Economic Statistics* (2019)

Non-Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & b_{12} & b_{13} \\ b_{21} & 1 & b_{23} \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Shocks ϵ are independent Shocks ϵ are non-Gaussian Moment conditions

$$E[e_1^2(B)e_2(B)] = 0$$

$$E[e_1(B)e_2^2(B)] = 0$$

$$E[e_1(B)e_2(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3^2(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3^2(B)] = 0$$

$$E[e_2(B)e_3^2(B)] = 0$$

$$E[e_1(B)e_2(B)e_3(B)] = 0$$

Identified

✓

Block-Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & b_{23} \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Assumptions:

Shocks ϵ are independent Shocks ϵ are non-Gaussian Moment conditions

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)] = 0$$

$$E[e_{1}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{3}(B)] = 0$$

$$E[e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)e_{3}(B)] = 0$$

$$E[e_{1}(B)e_{2}(B)e_{3}(B)] = 0$$

Identified 🗸

Simulated recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0.5 & 1 & 0 & 0 \\ 0.5 & 0.5 & 1 & 0 \\ 0.5 & 0.5 & 0.5 & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \epsilon_4 \end{bmatrix}$$

$$\varepsilon_i = z\phi_1 + (1-z)\phi_2$$
 with $\phi_1 \sim \mathcal{N}(-0.2, 0.7), \ \phi_2 \sim \mathcal{N}(0.75, 1.5), \ z \sim \mathcal{B}(0.79),$

 $\mathcal{B}(p)$ indicates a Bernoulli distribution and $\mathcal{N}(\mu, \sigma^2)$ indicates a normal distribution. The structural shocks have mean zero, unit variance, skewness equal to 0.91 and an excess kurtosis of 2.51.

	Non-Recursive SVAR					Recursive SVAR					
	w. higher moments					w. second moments					
		(Cholesky)									
Limit (Avar)	1 (1.033) 0.5 (2.585) 0.5 (3.265) 0.5 (4.010)	0 (2.450) 1 (1.522) 0.5 (3.265) 0.5 (4.010)	0 (2.450) 0 (3.192) 1 (2.076) 0.5 (4.010)	0 (2.450) 0 (3.192) 0 (3.999) 1 (2.695)		$\begin{bmatrix} 1\\ (1.128)\\ 0.5\\ (1.282)\\ 0.5\\ (1.532)\\ 0.5\\ (1.782) \end{bmatrix}$	0 (0) 1 (1.128) 0.5 (1.282) 0.5 (1.532)	0 (0) 0 (0) 1 (1.128) 0.5 (1.282)	0 (0) 0 (0) 0 (0) 1 (1.128)		

Keweloh, Seepe "Monetary policy and the stock market"

Keweloh, Seepe "Monetary policy and the stock market"

Figure 1:

Block-Recursive SVAR

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ b_{21} & 1 & 0 \\ b_{31} & b_{32} & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Moment conditions

$$E[e_1(B)e_2(B)] = 0$$

 $E[e_1(B)e_3(B)] = 0$
 $E[e_2(B)e_3(B)] = 0$

Moment conditions

$$E[e_1^2(B)e_2(B)] = 0$$

$$E[e_1(B)e_2^2(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_1(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_2(B)e_3(B)] = 0$$

$$E[e_1(B)e_2(B)e_3(B)] = 0$$

Question:

Are higher moments non-redundant?

Question:

Are higher moments non-redundant?

Proposition

In a block-recursive SVAR with non-Gaussian and independent shocks, higher moments are non-redundant.

Corollary

In a non-Gaussian recursive SVAR with independent shocks, the frequently used estimator obtained by applying the Cholesky decomposition to the variance covariance matrix of the reduced form shocks is inefficient.

Asymptotic performance

	Recursive SVAR w. second moments (Cholesky)						Recursiv . higher		
Limit (Avar)	0.5 (1.282) 0.5 (1.282) 0.5 (1.532) 0.5 (1.782)	0 (0) 1 (1.128) 0.5 (1.282) 0.5 (1.532)	0 (0) 0 (0) 1 (1.128) 0.5 (1.282)	0 (0) 0 (0) 0 (0) 1 (1.128)		$\begin{bmatrix} 1\\ (1.021)\\ 0.5\\ (1.033)\\ 0.5\\ (1.232)\\ 0.5\\ (1.438) \end{bmatrix}$	0 (0) 1 (1.019) 0.5 (1.033) 0.5 (1.232)	0 (0) 0 (0) 1 (1.017) 0.5 (1.033)	0 (0) 0 (0) 0 (0) 1 (1.016)

Small sample performance - Many moments problem

	Recu	ırsive SVAF	Recursive SVAR							
	w. sec	ond mome	nts	W.	w. higher moments					
T=150	((Cholesky)		2-step						
mean (std)	$\begin{bmatrix} 1 & 0 \\ (1.138) & (0) \\ 0.5 & 1 \\ (1.300) & (1.0) \\ 0.5 & 0. \\ (1.499) & (1.2) \\ 0.5 & 0. \\ (1.784) & (1.5) \\ \end{bmatrix}$	0 48) (0) 5 1 63) (1.126) 5 0.5	0 (0) 0 (0) 0 (0) 0 (0) 0.99 (1.096)	$\begin{bmatrix} 0.95 \\ (7.50) \\ 0.47 \\ (49.2) \\ -19.9 \\ (-) \\ -287 \\ (-) \end{bmatrix}$	0 (0) 1.00 (828) -26.2 (-) 31 (-)	0 (0) 0 (0) 158 (-) -145 (-)	0 (0) 0 (0) 0 (0) 506 (-)			

Optimal weighting

The GMM estimator with $W=S^{-1}$ has the smallest asymptotic variance.

$$S = E \begin{bmatrix} e_1(B_0)e_2(B_0) \\ e_1(B_0)e_3(B_0) \\ e_2(B_0)e_3(B_0) \\ \vdots \end{bmatrix} \begin{bmatrix} e_1(B_0)e_2(B_0) \\ e_1(B_0)e_3(B_0) \\ e_2(B_0)e_3(B_0) \\ \vdots \end{bmatrix}'$$

$$\rightarrow \hat{S}_{T} = \frac{1}{T} \sum_{t=1}^{T} \begin{bmatrix} e_{1,t}(\hat{B})e_{2,t}(\hat{B}) \\ e_{1,t}(\hat{B})e_{3,t}(\hat{B}) \\ e_{2,t}(\hat{B})e_{3,t}(\hat{B}) \\ \vdots \end{bmatrix} \begin{bmatrix} e_{1,t}(\hat{B})e_{2,t}(\hat{B}) \\ e_{1,t}(\hat{B})e_{3,t}(\hat{B}) \\ e_{2,t}(\hat{B})e_{3,t}(\hat{B}) \\ \vdots \end{bmatrix}'$$

(3)

The true mixing matrix B_0 is unknown, but a B_0 it holds: $e(B_0) = \epsilon$

$$S = E \begin{bmatrix} \epsilon_{1}\epsilon_{2} \\ \epsilon_{1}\epsilon_{3} \\ \epsilon_{2}\epsilon_{3} \\ \epsilon_{1}^{2} - 1 \\ \vdots \end{bmatrix} \begin{bmatrix} \epsilon_{1}\epsilon_{2} \\ \epsilon_{1}\epsilon_{3} \\ \epsilon_{2}\epsilon_{3} \\ \epsilon_{1}^{2} - 1 \\ \vdots \end{bmatrix}^{\prime} \xrightarrow{\epsilon \text{ independent}} \begin{bmatrix} 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & \dots \\ 0 & 0 & 0 & E[\epsilon_{1}^{4}] - 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$
 (5)

Parametric estimator

 $\hat{S}_T^{\it para} o$ use (5) and replace values like $E[\epsilon_1^4]$ with estimates $1/T\sum_{t=1}^T e_1(\hat{B}^4)$.

If ϵ has mutually independent components with zero mean and unit variance, it holds that

$$\hat{S}_T^{para} \stackrel{T \to \infty}{\to} S.$$

Small sample performance - Many moments problem (Solution part 1)

	Recursive S	VAR	Recursive SVAR					
	w. second mo	oments	w. higher moments					
T=150	(Cholesk	y)	2-step parametric					
mean (std)	$ \begin{vmatrix} 0.5 & 1 \\ (1.300) & (1.048) & (\\ 0.5 & 0.5 \\ (1.499) & (1.263) & (1.\\ 0.5 & 0.5 & 0 \end{vmatrix} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{bmatrix} 1.14 & 0 \\ (2.609) & (0) \\ 0.57 & 1.13 \\ (1.914) & (2.687) \\ 0.57 & 0.56 \\ (2.157) & (1.785) \\ 0.56 & 0.56 \\ (2.686) & (2.204) \\ \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ (0) & (0) \\ 0 & 0 \\ (0) & (0) \\ 1.12 & 0 \\ (2.289) & (0) \\ 0.56 & 1.12 \\ (1.786) & (2.307) \end{bmatrix}$				

Small sample performance - Many moments problem (Solution part 2)

	Recursive SVAR						Recursive SVAR					
		W.	second	momer	nts		w. higher moments					
T=150	(Cholesky)						2-step parametric (scaled)					
mean (std)		$\begin{bmatrix} 1\\ (1.138)\\ 0.5\\ (1.300)\\ 0.5\\ (1.499)\\ 0.5\\ (1.784) \end{bmatrix}$	0 (0) 1 (1.048) 0.5 (1.263) 0.5 (1.539)	0 (0) 0 (0) 1 (1.126) 0.5 (1.275)	0 (0) 0 (0) 0 (0) 0,99 (1.096)		$\begin{bmatrix} 1.00 \\ (1.136) \\ 0.50 \\ (1.209) \\ 0.50 \\ (1.414) \\ 0.50 \\ (1.726) \end{bmatrix}$	0 (0) 1.00 (1.051) 0.50 (1.185) 0.50 (1.478)	0 (0) 0 (0) 1.00 (1.131) 0.50 (1.208)	0 (0) 0 (0) 0 (0) 0,99 (1.104)		

Summary

Keweloh, Hetzenecker "Soft restrictions in SVARs via Lasso"

Keweloh, Hetzenecker "Soft restrictions in SVARs via Lasso"

T=5000	w. secon	e SVAR non-Recursive SVAR moments w. higher moments esky)					Soft-Restrictions SVAR w. higher moments (Lasso)				
mean (std)	$\begin{bmatrix} 1 & 0 \\ (1.1) & (0) \\ 0.5 & 1 \\ (1.3) & (1.1) \\ 0.5 & 0.5 \\ (1.5) & (1.3) \\ 0.5 & 0.5 \\ (1.8) & (1.5) \end{bmatrix}$	0 (0) 1 (1.1) 0.5	0 (0) 0 (0) 0 (0) 1	$\begin{bmatrix} 1\\ (1.0)\\ 0.5\\ (2.7)\\ 0.5\\ (3.4)\\ 0.5\\ (4.2) \end{bmatrix}$	0 (2.7) 1 (1.6) 0.5 (3.4) 0.5 (4.3)	0 (2.6) 0 (3.4) 1 (2.2) 0.5 (4.4)	0 (2.6) 0 (3.6) 0 (4.4) 1 (2.9)	$\begin{bmatrix} 1\\ (1.0)\\ 0.5\\ (1.1)\\ 0.5\\ (1.4)\\ 0.5\\ (1.6) \end{bmatrix}$	0 (0.1) 1 (1.1) 0.5 (1.3) 0.5 (1.3)	0 (0.1) 0 (0.1) 1 (1.0) 0.5 (1.2)	0 (0.1) 0 (0.0) 0 (0.1) 1

References