Circle Drawing

- 1. Polynomial Method
- 2. Trigonometric Method

Polynomial Method

$$OP = r$$

 $OA = OP \cos\Theta = r. \cos 45 = r/1.414$

$$r^2 = x^2 + y^2$$

$$Y = Sqrt (r^2 - x^2)$$

Algorithm

1. Read (h , k)

End while

- 2. X=0, y=r, end = r/1.414
- 3. While(x<=end)</pre>

```
// plot 8 points, each point of 1 octant y = Sqrt(r^2 - x^2) plot(x+h,y+k) plot(-x+h, y+k) ........ x = x+1
```

Trigonometric Method

Algorithm:

- Read r & angle of increment
 (Φ)
- 2. Plot (0,r) so $\Theta = 90$ degree
- 3. $X = r \cos \Theta$, $y = r \sin \Theta$
- 4. Reflect point in 8 ways
- 5. $\Theta = \Theta + \Phi$
- 6. If Θ < 45 degree, then go to step 3
- 7. stop

DDA for Circle Drawing

- Can plot Circle by 2 methods
 - 1. trigonometric method(polar eq / parametric)
 - 2. geometric method(polynomial eq. / Direct)

DDA

- 1. Read r, calculate ε
- 2.Initialize : st-x=r, st-y=0
- 3. x1=st-x, y1=st-y
- 4. do{
 - X2=x1+ **\epsilon**y1
 - Y2=y1- **€**x2
 - Plot(x2,y2)
 - X1 = x2, y1 = y2
 - While((y1-st-y)< ϵ || (st-x-x1)> ϵ)

Bresenham's circle generation

Circle in first quadrant

- Radius $\rightarrow 8$
- Start pt \rightarrow (0,8)
- End pt. \rightarrow (8,0)
- X is incrementing
- 0\=====8
- Y is decreasing
- 8**>....>**0

Circle in first quadrant

Algorithm selects pixel which minimizes the sq of distance between one of the 3 pixel and true circle.

Cases depends upon position of diagonal point

- Δi=Diff Bet the Sq of the dist from center of circle to diagonal pixel & dist to a point on circle R²
- $\Delta i = | (xi+1)^2 + (yi-1)^2 (R)^2 |$
- If Δi <0 Then diagonal pt is inside the circle


```
δ=mH-mD [case 1]
=| (xi+1)²+yi²-R²|-|(xi+1)²+(yi-1)²-R²|

If (δ<=0)
choose pt (xi+1,yi) // horizontal pt

Else
choose pt (xi+1,yi-1) // diagonal pt
```

Cont...

mD is always inside the circle & mH is outside. Thus (mH-mD)

$$δ = ((xi+1)^2+yi^2-R^2) + ((xi+1)^2+(yi-1)^2-R^2)$$

$$= 2(xi+1)^2 + yi^2 + (yi-1)^2 - 2R^2$$

$$= [2(xi+1)^2 + (yi^2-2yi+1) + (yi-1)^2 - 2R^2] + 2yi-1$$

$$= [2(xi+1)^2 + (yi-1)^2 + (yi-1)^2 - 2R^2] + 2yi-1$$

$$= [2(xi+1)^2 + 2(yi-1)^2 - 2R^2] + 2yi-1$$

$$= 2 * [(xi+1)^2 + (yi-1)^2 - R^2] + 2yi-1$$

$$= 2 * Δi + 2yi-1$$

Cases depends upon position of diagonal point [case 3]

- $\Delta i = | (xi+1)^2 + (yi-1)^2 (R)^2 |$
- If Δi >0 Then diagonal pt is outside the circle


```
\delta=\text{mD-mV}
=|(xi+1)^2+(yi-1)^2-R^2|-|(xi)^2+(yi-1)^2-R^2|
If (\delta <=0)
\text{choose pt } (xi+1,y1-1) \text{ // diagonal pt}
Else
\text{choose pt } (xi,yi-1) \text{ // vertical pt}
```

Cont..

As mD is outside the Circle while mV is inside for case 3, this allows to rewrite (mD-mV)

$$\Delta = ((xi+1)^2 + (yi-1)^2 - R^2) + ((xi)^2 + (yi-1)^2 - R^2)$$
to complete the term of $(Xi)^2$, +& - $(2Xi+1)$

$$= (xi+1)^2 + xi^2 + 2(yi-1)^2 - 2R^2$$

$$= [(xi+1)^2 + (xi^2 + 2xi+1) + 2(yi-1)^2 - 2R^2] - 2xi-1$$

$$= [(xi+1)^2 + (xi+1)^2 + 2(yi-1)^2 - 2R^2] - 2xi-1$$

$$= [2(xi+1)^2 + 2(yi-1)^2 - 2R^2] - 2xi-1$$

$$= 2 * [(xi+1)^2 + (yi-1)^2 - R^2] - 2xi-1$$

$$= 2 * \Delta i - 2xi-1$$

Cases depends upon position of diagonal point [case 5]

- $\Delta i = | (xi+1)^2 + (yi-1)^2 (R)^2 |$
- If $\Delta i = 0$ Then diagonal pt is on the circle

Summary

```
If Δi <0
   δ=mH-mD
   If (\delta <=0)
      choose pt (xi+1,yi) // horizontal pt
   Else
      choose pt (xi+1,yi-1) // diagonal pt
Else If \Delta i > 0
   δ=mD-mV
   If (\delta <=0)
          choose pt (xi+1,yi-1) // diagonal pt
   Else
          choose pt (xi,yi-1)// vertical pt
Else // \Delta i = 0
   Choose diagonal pt
```

Mh

$$x_{i+1} = x_i + 1$$

 $y_{i+1} = y_i$

$$\Delta_{i+1} = (x_{i+1} + 1)^{2} + (y_{i+1} - 1)^{2} - R^{2}$$

$$= (x_{i+1})^{2} + 1 + 2 x_{i+1} + (y_{i+1})^{2} + 1 - 2 y_{i+1} - R^{2}$$

$$= (x_{i} + 1)^{2} + 1 + 2 x_{i+1} + (y_{i})^{2} + 1 - 2 y_{i} - R^{2}$$

$$= \Delta_{i} + 2 x_{i+1} + 1$$

Md

$$x_{i+1} = x_i + 1$$

 $y_{i+1} = y_i - 1$

$$\Delta_{i+1} = (x_{i+1} + 1)^{2} + (y_{i+1} - 1)^{2} - R^{2}$$

$$= (x_{i+1})^{2} + 1 + 2 x_{i+1} + (y_{i+1})^{2} + 1 - 2 y_{i+1} - R^{2}$$

$$= (x_{i} + 1)^{2} + 1 + 2 x_{i+1} + (y_{i} - 1)^{2} + 1 - 2 y_{i+1} - R^{2}$$

$$= \Delta_{i} + 2 x_{i+1} - 2 y_{i+1} + 2$$

Mv

$$x_{i+1} = x_i$$

$$y_{i+1} = y_i - 1$$

$$\Delta_{i+1} = (x_{i+1} + 1)^{2} + (y_{i+1} - 1)^{2} - R^{2}$$

$$= (x_{i+1})^{2} + 1 + 2 x_{i+1} + (y_{i+1})^{2} + 1 - 2 y_{i+1} - R^{2}$$

$$= (x_{i})^{2} + 1 + 2 x_{i} + (y_{i} - 1)^{2} + 1 - 2 y_{i+1} - R^{2}$$

$$= \Delta_{i}^{2} - 2 y_{i+1} + 1$$

Draw circle for radius =8

$$X=0, y=R; \Delta=2(1-R), limit=0$$

- X=0
- Y=R=8
- $\Delta = 2(1-8) = 2*(-7) = -14$
- Limit=0

Plot(x,y)

• Plot (0,8)

Sr.no.	Setpixel	Δ	δ	δ'	X	y
1	(0,8)	-14			0	8

Sr.no.	Setpixel	Δ	Δ	δ'	X	y
1	(0,8)	-14			0	8

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(0,8)	-14			0	8
			=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13			

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(8,0)	-14			0	8
			=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13			
					=0+1=1	
		=-14+(2*1)+1 =-11				

Plot(x,y)

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(0,8)	-14			0	8
		=-14+(2*1)+1 =-11	=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13		=0+1=1	
2	(1,8)					

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(0,8)	-14			0	8
		=-14+(2*1)+1 =-14+3=-11	=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13		=0+1=1	
2	(1,8)					

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(0,8)	-14			0	8
		=-14+(2*1)+1 =-11	=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13		=0+1=1	
2	(1,8)					
			=-22+16-1=-7			

Sr.no.	Setpixel	Δ	δ	δ'	Х	у
1	(0,8)	-14			0	8
			=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13		=0+1=1	
		=-14+(2*1)+1 =-11				
2	(1,8)		=-22+16-1=-7			
					=1+1=2	
		=-11+(2*2)+1 =-6				

Plot(x,y)

Sr.no.	Setpixel	Δ	δ	δ'	х	у
1	(0,8)	-14			0	8
		=-14+(2*1)+1 =-11	=2*(-14)+2*8-1 =-28+16-1 =-12-1=-13		=0+1=1	
2	(1,8)					
			=-26+16-1=-9			
					=1+1=2	
		=-11+(2*2)+1 =-6				
3	(2,8)					

Selected pixel

10)8 2

11)8 1

12) 8 0

Complete circle generation

 To generate the next part, multiply the coordinate matrix of selected pixel by transformation matrix for reflection through y axis and then by transformation matrix used for reflection through x-axis

Example

 Plot the circle using bresenham's algo with R=3 & center is (0,0).