Examenul național de bacalaureat 2023 Proba E. c) Matematică *M_tehnologic*

Varianta 6

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Toate subiectele sunt obligatorii. Se acordă zece puncte din oficiu.
- Timpul de lucru efectiv este de trei ore.

SUBIECTUL I (30 de puncte)

- **5p** 1. Calculați termenul a_3 al progresiei aritmetice $(a_n)_{n\geq 1}$, știind că $a_1=10$ și $a_2=20$.
- **5p** 2. Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 4. Arătați că f(0) + f(1) = 10.
- **5p 3.** Rezolvați în mulțimea numerelor reale ecuația $\log_2(x-4) = \log_2 4$.
- **5p 4.** Un produs costă 80 de lei. Determinați prețul produsului după o ieftinire cu 20%.
- **5p 5.** În reperul cartezian xOy se consideră punctele M(0,2) și N(3,6). Arătați că distanța dintre punctele M și N este egală cu S.
- **5p 6.** Se consideră triunghiul ABC dreptunghic în A, cu AB = 4 și măsura unghiului C egală cu 45° . Arătați că aria triunghiului ABC este egală cu 8.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricele $I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a & a+3 \\ -1 & 2 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(2)) = 9$.
- **5p b**) Arătați că A(a) + A(-a) = 2A(0), pentru orice număr real a.
- **5p** c) Determinați numerele reale a pentru care $\det(A(a) \cdot A(-1) aI_2) = 0$.
 - **2.** Se consideră polinomul $f = X^3 + 3X^2 + mX 4$, unde *m* este număr real.
- **5p** a) Arătați că f(0) = -4, pentru orice număr real m.
- **5p b**) Determinați numărul real m, știind că -1 este rădăcină a polinomului f.
- **5p** c) Determinați numerele naturale m pentru care $x_1^2 + x_2^2 + x_3^2 > 5$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f:(0,+\infty) \to \mathbb{R}$, $f(x) = x^2 3x + 4 + \ln x$
- **5p** a) Arătați că $f'(x) = \frac{(2x-1)(x-1)}{x}, x \in (0,+\infty)$.
- **5p b**) Determinați ecuația tangentei la graficul funcției f în punctul de abscisă x=1, situat pe graficul funcției f.
- **5p** c) Demonstrați că $f(x) \le \frac{11}{4} \ln 2$, pentru orice $x \in (0,1]$.
 - **2.** Se consideră funcția $f: \left(-\frac{3}{2}, +\infty\right) \to \mathbb{R}$, $f(x) = e^x + \frac{6}{2x+3}$.
- **5p** a) Arătați că $\int_{1}^{3} \left(f(x) \frac{6}{2x+3} \right) dx = e(e^{2} 1).$
- **5p b)** Arătați că $\int_{-1}^{0} (f(x) e^x) dx = 3 \ln 3$.
- **5p** c) Arătați că suprafața plană delimitată de graficul funcției $g: \left(-\frac{3}{2}, +\infty\right) \to \mathbb{R}, g(x) = \left(2x^2 + 3x\right)f(x),$ axa Ox și dreptele de ecuații x = 0 și x = 1 are aria egală cu 2(e+1).