Discrimination

Urban Economics

Ignacio Sarmiento-Barbieri

Universidad de los Andes

November 9, 2023

Discrimination

- ▶ Black people are less likely to find a house, be employed, more likely to be arrested by the police, and more likely to be incarcerated.
- ▶ Women are very scarce at the top echelon of the corporate, academic and political ladders despite the fact that (in rich countries at least) they get better grades in school and are more likely to graduate from college.
- While many in the media and public opinion circles argue that discrimination is a key force in driving these patterns, showing that it is actually the case is not simple.
- ▶ Indeed, it has proven elusive to produce convincing evidence of discrimination using standard regression analysis methods and observational data, in the sense in which we define discrimination: members of a minority group (women, Blacks, Muslims, immigrants, etc.) are treated differentially (less favorably) than members of a majority group with otherwise identical characteristics in similar circumstances.

Discrimination in Housing Markets

- ▶ Recent research has shown that the neighborhood where people live has important implications for short-run, long-run and even intergenerational outcomes.
- ▶ Observational data make it difficult to disentangle the multiple factors involved in the residential location choice.
 - ► Housing/neighborhood preferences that also affect residential sorting behavior (Depro et al., 2015, Banzhaf and Walsh, 2013).
 - Disparities in income, differences in information about neighborhood attributes (Banzhaf et al., 2019, Aliprantis et al., 2019, Logan, 2011),
 - Labor market opportunities (Hausman and Stolper, 2019, Currie and Walker, 2011), and
 - ▶ Racial discrimination (Ewens et al., 2014, Carlsson and Eriksson, 2014, Hanson and Hawley, 2011, Ahmed and Hammarstedt, 2008, Christensen and Timmins, 2018, Christensen et al., 2020).

2/34

Measuring Discrimination in the Field

- ► Earlier research on discrimination focused on individual-level outcome regressions, with discrimination estimated from the "minority" differential that remains unexplained after including as many proxies as possible.
- ► The limitations of this approach are well-known. The interpretation of the estimated "minority" coefficient is problematic due to OVB.
- ► The traditional answer has been to saturate the regression with as many relevant variables as are available.
- ▶ But, of course, ensuring that the re- searcher observes all that the decision-maker observes is a hopeless task.
- ➤ Saturating also changes the interpretation and may introduce "bad controls" (Guryan and Charles, 2013)
- ► Audit and correspondence methodologies were developed to address these core limitations of the regression approach to measuring discrimination.

3/34

Experiment Set up: Identifying Housing Discrimination

Audit Studies - HDS 1977, 1989, 2000, 2012

- 1 Paired-tester: Blind-matched actors trained to be identical in every respect except for characteristic of interest (e.g., race)
- 2 Send teams of actors (white & minority) to real estate offices and rental management companies and record differential treatment

Traditional Way: Audit

Experiment Set up: Identifying Housing Discrimination

Audit Studies - HDS 1977, 1989, 2000, 2012

- 1 Paired-tester: Blind-matched actors trained to be identical in every respect except for characteristic of interest (e.g., race)
- 2 Send teams of actors (white & minority) to real estate offices and rental management companies and record differential treatment
- 3 Strong evidence of discrimination in previous reports (Turner et al 2002, 2012)
 - 1 Most blatant forms (e.g., refusal to show a property) to have declined over time
 - Most persistent form: Steering (Ondrich et al 1998, 2003, 2005, Galster and Godfrey 2005)
 - ► Minority buyers are steered into neighborhoods with higher exposures to emissions from TRI facilities and Superfund sites (Christensen and Timmins, 2018)
- 4 Largest sample in 2012, 28 cities, 4,838 properties

6/34

Would a "Rose" by any other name get fewer callbacks?

- Correspondence Research Design (Bertrand and Mullainathan, 2004)
 - 1 Create fictitious identities
 - 2 Interact with retailers, employers, or housing brokers
 - 3 Randomly vary racial trait

Traditional Way: Correspondence

Would a "Rose" by any other name get fewer callbacks?

- Correspondence Research Design (Bertrand and Mullainathan, 2004)
 - 1 Create fictitious identities
 - 2 Interact with retailers, employers, or housing brokers
 - 3 Randomly vary racial trait
- Advantages of Correspondence Studies (vs Audit Designs)
 - 1 Correspondence studies give more control to the analyst (Bertrand and Duflo, 2017)
 - 2 Hard to control for all differences between paired testers (Siegelman and Heckman, 1993, Heckman, 1998)
 - 3 Less expensive (large, geographically targeted samples)

(Aside) What we do: EARL

The Geography of Discriminatory Behavior in the US

Figure 1: Response Rates CBSAs

The Geography of Discriminatory Behavior in the US: The "Not" Top Ten

Discriminatory Behavior and Segregation

African American

Hispanic/LatinX

Discriminatory Behavior and the Income Mobility Gap

Source: https://www.opportunityatlas.org/

Discriminatory Behavior and the Income Mobility Gap

Source: https://www.opportunityatlas.org/

Discriminatory Behavior and the Income Mobility Gap

African American Hispanic/LatinX

- ▶ A key limitation of the correspondence method is that the researcher never directly observes the effects of constraints faced by fictitious applicants on actual housing outcomes Heckman (1998).
- ▶ However, recently-available data on the renter housing location choices provide an opportunity to link the listed rental properties sampled for the experiment to the racial/ethnic identities of households that subsequently rented them in 2020
 - ▶ InfoUSA's consumer database tracks 120 million households and 292 million individuals between 2006-2019, and is maintained using 29 billion records from 100 sources including census statistics, billing statements, telephone directory listings and mail order buyers/magazine subscriptions.
 - ► Household-level identifiers provide information on the gender, race/ethnicity, age, address, renter/owner status and estimated household income of renters.
- ▶ Of the sample of properties in the correspondence experiment, 12% are ultimately rented by African American households, 11% by LatinX renters, 71% by white households, and the remaining 6% by households from other groups.

17/34

Tests of Differential Treatment and Housing Outcomes

▶ We estimate the following a series of within-listing linear probability models

$$Same\ Race_{ij} = \beta_R Response_j + \alpha + \theta X_j + \delta_i + \epsilon_{ij}$$
 (1)

- Same Race_{ij} (SR) takes a value of one if the race/ethnicity of the renter observed to inhabit the property matches the race/ethnicity of experimental identity that sent the inquiry j to listing i; and zero otherwise.
- ightharpoonup *Response*; is an indicator that takes a value of one if the identity received a response.
- \triangleright X_j is a vector of identity-specific control variables: gender, education level, and the order in which the inquiry was sent.
- δ_i is a listing-specific fixed effect that controls for any within listing time-invariant characteristics.

Tests of Differential Treatment and Housing Outcomes

- ▶ Using all groups and the full sample, we estimate the relative probability that the racial/ethnic identity of the renter that inhabits the property is the same as the identity that sends the inquiry:
- ▶ We use coefficients from Eq. 1 to compare these probabilities under the two experimental response conditions.

$$\frac{P(Same\ Race|Response=0)}{P(Same\ Race|Response=1)} = \frac{\alpha}{\beta_R + \alpha}$$
 (2)

▶ It allows us to test the hypothesis that discriminatory constraints identified in the experiment also predict market outcomes outside the experiment.

<ロ > < @ > < 差 > < 差 > き の < や

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Sample of Markets

- 1 Markets: Zip codes with a high-emitting TRI plant within 1 mile of a residential neighborhood
 - ▶ High-emitting \rightarrow above 80th percentile of airborne emissions
 - ► More than 150 active listings

Zip Codes With TRI Toxic Plants within one mile

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Sample of Markets

- Markets: Zip codes with a high-emitting TRI plant within 1 mile of a residential neighborhood
 - ▶ High-emitting \rightarrow above 80th percentile of airborne emissions
 - ► More than 150 active listings
- Sample full set of advertised rental listings available on major online housing platform
 - ▶ Balanced sample of listings near and far TRI plants ($\approx 30\%$)

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Sample of Markets

- Markets: Zip codes with a high-emitting TRI plant within 1 mile of a residential neighborhood
 - ► High-emitting \rightarrow above 80th percentile of airborne emissions
 - ► More than 150 active listings
- Sample full set of advertised rental listings available on major online housing platform
 - ▶ Balanced sample of listings near and far TRI plants ($\approx 30\%$)
- 3 Use RSEI (Risk-Screening Environmental Indicators) within zip toxic concentrations from EPA

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Sample of Markets

- 1 Markets: Zip codes with a high-emitting TRI plant within 1 mile of a residential neighborhood
 - ► High-emitting \rightarrow above 80th percentile of airborne emissions
 - ► More than 150 active listings
- Sample full set of advertised rental listings available on major online housing platform
 - ▶ Balanced sample of listings near and far TRI plants ($\approx 30\%$)
- 3 Use RSEI (Risk-Screening Environmental Indicators) within zip toxic concentrations from EPA
- 4 Distinguish between 3 areas in the zip code
 - ► Lowest quartile (0-25)
 - ► The interquartile range (25-75)
 - ► Highest quartile of ambient emissions (75-100)

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Sample of Markets

- Markets: Zip codes with a high-emitting TRI plant within 1 mile of a residential neighborhood
 - ► High-emitting \rightarrow above 80th percentile of airborne emissions
 - ► More than 150 active listings
- 2 Sample full set of advertised rental listings available on major online housing platform
 - ▶ Balanced sample of listings near and far TRI plants ($\approx 30\%$)
- 3 Use RSEI (Risk-Screening Environmental Indicators) within zip toxic concentrations from EPA
- 4 Distinguish between 3 areas in the zip code
 - ► Lowest quartile (0-25)
 - ► The interquartile range (25-75)
 - ► Highest quartile of ambient emissions (75-100)
- We also distinguish between those listings within/more than 1 mile of a TRI plant

26 / 34

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Estimation

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

- Each rental apartment receives an inquiry from each of the racial groups in three separate days.
 - The manager of the unit could receive an inquiry from the White identity,
 - 2 then from an African American identity,
 - 3 and from a Hispanic/LatinX identity .

Estimation

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Based on this design, we observe a sequence of binomial decisions, where the landlord-listing i decides whether to respond ($y_{ij} = 1, j = 1, 2, 3$) or not if her underlying utility is positive:

$$u_{i1}^{*} = \sum_{k} (\psi_{k} + \beta_{k1}Minority_{1}) Z_{i \in k} + \theta X_{1} + \delta_{i} + \epsilon_{i1}$$

$$u_{i2}^{*} = \sum_{k} (\psi_{k} + \beta_{k2}Minority_{2}) Z_{i \in k} + \theta X_{2} + \delta_{i} + \epsilon_{i2}$$

$$u_{i3}^{*} = \sum_{k} (\psi_{k} + \beta_{k3}Minority_{3}) Z_{i \in k} + \theta X_{3} + \delta_{i} + \epsilon_{i3}$$

$$(3)$$

Where ϵ_{ij} follows a logistic distribution. Where we assume that ϵ_{ij} are independent across j but may be correlated across ZIP codes

◆□ > ◆□ > ◆ = > ◆ = > ● の Q ○

Estimation

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Therefore:

$$P(y_{ij} = 1 | X, Z, \delta) = F(\sum_{k} (\psi_k + \beta_{kj} Minority_j) Z_{i \in k} + \theta X_j + \delta_i)$$
(4)

- ► *F* is the logistic cumulative distribution function.
- Minority_j is an indicator that takes the value one if the race group associated with the identity is either African American or Hispanic/LatinX; and is zero if it is the White identity.
- \triangleright X_j is a vector of renter-specific control variables: gender, education level and the order in which the inquiry was sent.
- Assuming that names are drawn randomly and balanced across gender, education level, and inquiry order, estimates of $β_{kj}$ should be robust to the inclusion/omission of X_j .
- \triangleright δ_i is a landlord-property specific fixed effect.
- \triangleright $Z_{i \in k}$ are indicators denoting the bin (k) of within-ZIP code percentile of pollution exposure of the listing.

◆□ → ◆□ → ◆重 → ◆重 → ● ◆ ◆ ◆ ◆ ◆

Results: Discrimination by RSEI Concentration

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Figure 2: Odds Ratio by Within-ZIP Toxic Concentration

Percentile of Within-Zip Toxic Concentration

(a) African American

Percentile of Within-Zip Toxic Concentration

(b) Hispanic/LatinX

Sarmiento-Barbieri (Uniandes)

Results: Discrimination by Distance to Emissions Source

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Figure 4: Odds Ratio by Proximity to Closest TRI Plant

Heterogeneity in Discriminatory Constraints

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Figure 6: Odds Ratio by Within-ZIP Toxic Concentration

Panel A: Demographic Composition, Above vs Below Minority Shares

Percentile of Within-Zip Toxic Concentration

(A.1) Above Median Minority Share

Percentile of Within-Zip Toxic Concentration

(A.2) Below Median Minority Share

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ◆ りへぐ

Heterogeneity in Discriminatory Constraints

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Figure 8: Odds Ratio by Within-ZIP Toxic Concentration

Panel B: Above vs Below Median Rent

Mean Response (White) = 0.39 Mean Response (White) = 0.42 Mean Response (Mean Response (White) = 0.39 Mean Response (White) = 0.42 Mean Response (White) = 0.59 Mean Response (White) = 0.42 Mean Response (White) = 0.50 M

Percentile of Within-Zip Toxic Concentration

(B.1) Above Median Rent

Percentile of Within-Zip Toxic Concentration

(B.2) Below Median Rent

4 D L 4 A L 4 E L E L OO O

Heterogeneity in Discriminatory Constraints

Christensen, Sarmiento-Barbieri, Timmins (2022) RESTAT

Figure 10: Odds Ratio by Within-ZIP Toxic Concentration

Panel C: Full vs Matched Sample

Mean Response (White) = 0.39 Mean Response (White) = 0.42 Mean Response (Mean Response (White) = 0.40 Mean Response (White) = 0.40 Mean Response (White) = 0.50 M

Percentile of Within-Zip Toxic Concentration

(C.1) Full Sample

Percentile of Within-Zip Toxic Concentration

(C.2) Matched Sample

4 D L 4 D L

References I

- Ahmed, A. M. and Hammarstedt, M. (2008). Discrimination in the Rental Housing Market: A Field Experiment on the Internet. *Journal of Urban Economics*, 64(2):362–372.
- Aliprantis, D., Carroll, D., Young, E., et al. (2019). What explains neighborhood sorting by income and race? FRB of Cleveland WP 18-08R.
- Banzhaf, H. S. and Walsh, R. P. (2013). Segregation and tiebout sorting: The link between place-based investments and neighborhood tipping. *Journal of Urban Economics*, 74:83–98.
- Banzhaf, S., Ma, L., and Timmins, C. (2019). Environmental Justice: The Economics of Race, Place, and Pollution. *Journal of Economic Perspectives*, 33(1):185–208.
- Bertrand, M. and Duflo, E. (2017). Field Experiments on Discrimination. In *Handbook of Economic Field Experiments*, volume 1, pages 309–393. Elsevier.
- Bertrand, M. and Mullainathan, S. (2004). Are Emily and Greg More Employable than Lakisha and Jamal? *American Economic Review*, 94(4):991–1013.
- Carlsson, M. and Eriksson, S. (2014). Discrimination in the Rental Market for Apartments. *Journal of Housing Economics*, 23:41–54.
- Christensen, P., Sarmiento-Barbieri, I., and Timmins, C. (2020). Housing discrimination and pollution exposures in the united states. NBER Working Paper No. w26805.
- Christensen, P. and Timmins, C. (2018). Sorting or Steering: Experimental Evidence on the Economic Effects of Housing Discrimination. *NBER Working Paper No. w24826*.

◆□▶◆□▶◆■▶◆■▶ ■ 夕久で

34 / 34

References II

- Currie, J. and Walker, R. (2011). Traffic Congestion and Infant Health: Evidence from E-ZPass. *American Economic Journal: Applied Economics*, 3(1):65–90.
- Depro, B., Timmins, C., and O'Neil, M. (2015). White Flight and Coming to the Nuisance: Can Residential Mobility Explain Environmental Injustice? *Journal of the Association of Environmental and resource Economists*, 2(3):439–468.
- Ewens, M., Tomlin, B., and Wang, L. C. (2014). Statistical Discrimination or Prejudice? A Large Sample Field Experiment. *Review of Economics and Statistics*, 96(1):119–134.
- Hanson, A. and Hawley, Z. (2011). Do Landlords Discriminate in the Rental Housing Market? Evidence from an Internet Field Experiment in US Cities. *Journal of Urban Economics*, 70(2-3):99–114.
- Hausman, C. and Stolper, S. (2019). Information and inequity: An Application to Environmental Quality. Working Paper.
- Heckman, J. J. (1998). Detecting Discrimination. Journal of Economic Perspectives, 12(2):101–116.
- Logan, J. R. (2011). Separate and Unequal: The Neighborhood Gap for Blacks, Hispanics and Asians in Metropolitan America. *Project US2010 Report*, pages 1–22.
- Siegelman, P. and Heckman, J. (1993). The Urban Institute Audit Studies: Their Methods and Findings. Clear and Convincing Evidence: Measurement of Discrimination in America, Washington, 187:258.