

This following is a current listing of claims for the application.

Listing of claims:

1. (original) A process for the production of an optically active amino alcohol represented by the following formula (I)

(wherein, R², R³, R⁴, R⁵, A¹, A², m, n and * have the same meanings which will be defined below where the relative configuration of hydroxyl group to amino group on each of asymmetric carbons marked * is trans) or a salt thereof, comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R¹ is an alkyl group having 1 to 6 carbon(s); R² to R⁵ each independently is hydrogen atom, a lower alkyl group or an optionally-substituted phenyl group; with proviso that R² and R⁴ or R² and R⁵ or R³ and R⁴ or R³ and R⁵ taken together with the carbon atoms to which they are attached optionally form a ring or fused ring; A¹ is - (CH₂)_m- while A² is - (CH₂)_n- (where m and n each is an integer of 0 to 3 and m + n is 1 to 3); and * is an asymmetric carbon atom where the relative

configuration of hydroxyl group to alkoxy carbonyl group on each of the asymmetric carbons marked * is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

(wherein, R² to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of asymmetric carbons marked * is trans), then conducting a Curtius reaction in the presence of an alcohol represented by the following formula

(VI)

(wherein, R⁶ is an alkyl group having 1 to 6 carbon(s) or an optionally-substituted benzyl group) to give an optically active alkoxy carbonylamino alcohol represented by the following formula (II)

(wherein, R² to R⁶, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonyl amino group on each of asymmetric carbons marked * is trans) and then deprotecting a protective group for the amino group.

2. (original) A process for the production of an optically active alkoxy carbonyl amino alcohol represented by the following formula (II)

(wherein, R² to R⁶, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonyl amino group on each of asymmetric carbons marked * is trans), comprising by reacting an optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R¹ to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxy carbonyl group on each of the asymmetric carbons marked* is trans) with hydrazine to prepare an optically-active hydroxycarboxylic hydrazide compound represented by the following formula (III)

(wherein, R² to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to hydrazinocarbonyl group on each of asymmetric carbons marked * is trans) and conducting to a Curtius reaction in the presence of an alcohol represented by the following formula (VI)

(wherein, R⁶ has the same meaning as defined already).

3. (original) The process for the production according to claim 1 or 2, wherein the

optically active hydroxycarboxylate represented by the following formula (IV)

(wherein, R¹ to R⁵, A¹, A², m, n and * have the same meanings as defined above where the relative configuration of hydroxyl group to alkoxycarbonyl group on each of the asymmetric carbons marked * is trans) is a product prepared by subjecting a β -keto ester represented by the following formula (V)

(wherein, R¹ to R⁵, A¹, A², m and n have the same meanings as defined above) to an asymmetric hydrogenation in the presence of a ruthenium complex including an optically active phosphine compound as a ligand.

4. (previously presented) The process for the production according to claims 1 or 2 , wherein R⁶ is an optionally substituted benzyl group.

5. (previously presented) The process for the production according to claims 1 or 2, wherein R⁶ is benzyl group.

6. (previously presented) The process of claim 3 wherein R⁶ is an optionally substituted benzyl group.
7. (previously presented) The process of claim 3 wherein R⁶ is a benzyl group.