补充结论: "高低分解, 左右逆公式,左消法与右消法, 协调公式" 满秩分解(也叫高低分解)设 $\mathbf{A}_{m\times n}$ 的秩为 $r(\mathbf{A})=r$,则有分解 $\mathbf{A}=\mathbf{B}_{m\times r}\mathbf{C}_{r\times n}$

其中 $B = B_{mvr}$ 为列满秩(高阵), $C = C_{rvr}$ 为行满秩(低阵);

分解方法: ①用行变换把 $\mathbf{A}_{m \times n}$ 化为阶梯阵 $\mathbf{S} = \mathbf{S}_{m \times n}$, 在 \mathbf{S} 中有 r 个单位列向量 e_1, e_2, \cdots, e_r ;

②在原 $\mathbf{A}_{m \times n}$ 中取出与 $\mathbf{S}_{m \times n}$ 中 e_1, e_2, \cdots, e_r 位置对应的列: $\beta_1, \beta_2, \cdots, \beta_r$,

令 $\mathbf{B} = (\beta_1, \beta_2 \cdots \beta_r)$, \mathbf{C} 为 \mathbf{S} 中的前 r 行组成的矩阵,可得分解: $\mathbf{A} = \mathbf{BC}$;

引理 1: 设
$$A \xrightarrow{free ph} \begin{pmatrix} I_r & D \\ 0 & 0 \end{pmatrix} \stackrel{\text{记作}}{==} S$$
 (行阶梯形)

则 A 中前 r 列 α_1 ,…, α_r 为无关,可得分解 $A = (\alpha_1, \dots, \alpha_r)(I_r, D) = BC$ 证明如下:

Pf(证明): 由条件可知 $A=P\begin{pmatrix} I_r & D \\ 0 & 0 \end{pmatrix}$, (P 为初等阵之积, P 可逆)

$$\begin{array}{ccc}
\vdots \begin{pmatrix} I_r & D \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} I_r \\ 0 \end{pmatrix} (I_r, D) & & & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

同样,当 I_r 的单位列向量 e_1,e_2,\cdots,e_r 分布在其它位置时,也有相应的结论。特别有**秩 1** 分解

秋 1 分解: 若
$$rank(A)=1$$
, 则 $A=\begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}(b_1,\dots,b_n)=\alpha\beta$

Pf:
$$: A = A_{m \times n}, rank(A) = 1 \Rightarrow$$
 有一个非 0 列 $\alpha = \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix}$,其它列都为 α 的倍数。可写

$$\alpha_1 = b_1 \alpha, \dots, \alpha_n = b_n \alpha$$

$$\Rightarrow A = (\alpha_1, \dots, \alpha_n) = (b_1 \alpha, \dots, b_n \alpha) = (\alpha b_1, \dots, \alpha b_n) = \alpha (b_1, \dots, b_n) = \alpha \beta$$

Eg:
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} (1, 1, 1)$$

Eg:
$$A = \begin{pmatrix} 0 & 1 & -1 & -1 & 1 \\ 0 & -2 & 2 & -2 & 6 \\ 0 & 1 & -1 & -2 & 3 \end{pmatrix}_{3\times5} \xrightarrow{\text{free}} \begin{pmatrix} 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}, \mathbb{R}$$

$$B = (\beta_1, \beta_2) = \begin{pmatrix} 1 & -1 \\ -2 & -2 \\ 1 & -2 \end{pmatrix}, C = \begin{pmatrix} 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

$$\Rightarrow A = \begin{pmatrix} 1 & -1 \\ -2 & -2 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

例: 求满秩分解: ①
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
; ② $\mathbf{A} = \begin{pmatrix} 2 & 1 & 6 & 1 & 0 \\ 3 & 2 & 10 & 1 & 0 \\ 2 & 3 & 10 & -1 & 3 \\ 4 & 4 & 16 & 0 & -1 \end{pmatrix}$ (略讲);

解: ①
$$r(\mathbf{A}) = 2$$
, $\therefore \mathbf{A} = \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \xrightarrow{r_3 - r_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \hline 0 & 0 & 0 \end{pmatrix}$, $\therefore \mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

② (不讲)

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 6 & 1 & 0 \\ 3 & 2 & 10 & 1 & 0 \\ 2 & 3 & 10 & -1 & 3 \\ 4 & 4 & 16 & 0 & -1 \end{pmatrix} \xrightarrow{\begin{array}{c} 2r_1 - r_2 \\ r_4 - 2r_1 \\ r_2 - 3(2r_1 - r_2) \\ r_3 - 2(2r_1 - r_2) \\ \end{array}} \xrightarrow{\begin{pmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 2 & 4 & -2 & 0 \\ 0 & 3 & 6 & -3 & 3 \\ 0 & 2 & 4 & -2 & -1 \end{pmatrix}} \xrightarrow{\begin{array}{c} r_2 - r_4 \\ r_3 - r_4 - 4\tilde{r}_2 \\ r_4 - (2\tilde{r}_3 - \tilde{r}_2) \\ \tilde{r}_2 - \tilde{r}_3 \\ \end{array}} \xrightarrow{\begin{pmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ \hline{0 & 0 & 0 & 0 & 1 \end{pmatrix}}$$

$$\therefore \mathbf{A} = \begin{pmatrix} 2 & 1 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 3 \\ 4 & 4 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}; \quad r(\mathbf{A}) = 3$$

③
$$r(\mathbf{A}) = 1$$
, $\mathbf{A} = \begin{pmatrix} -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix} (1 -1 \ 1 \ -1) 秩 1 分解$

4

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 2 & 1 & 4 \\ 2 & 6 & 1 & 0 & 7 \\ 3 & 9 & 3 & 1 & 11 \end{pmatrix} \xrightarrow{\substack{r_3 - r_2 - r_1 \\ r_2 - 2r_1}} \begin{pmatrix} 1 & 3 & 2 & 1 & 4 \\ 0 & 0 & -3 & -2 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{\substack{r_1 + 4r_2 \\ (-1)r_2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}} \begin{pmatrix} 1 & 3 & -10 & -7 & 0 \\ 0 & 0 & 3 & 2 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

取A中1与5列,令

$$B = (\alpha_1, \alpha_5) = \begin{pmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 11 \end{pmatrix}, C = \begin{pmatrix} 1 & 3 & -10 & -7 & 0 \\ 0 & 0 & 3 & 2 & 1 \end{pmatrix}, r(\mathbf{A}) = 2$$

$$\therefore \mathbf{A} = BC = \begin{pmatrix} 1 & 4 \\ 2 & 7 \\ 3 & 11 \end{pmatrix} \begin{pmatrix} 1 & 3 & -10 & -7 & 0 \\ 0 & 0 & 3 & 2 & 1 \end{pmatrix}$$

(5)
$$r(\mathbf{A}) = 1$$
, $\mathbf{A} = \begin{pmatrix} 1 & -1 & 2 & 3 \\ 2 & -2 & 4 & 6 \\ 1 & -1 & 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} (1 & -1 & 2 & 3)$.

(b)
$$r(\mathbf{A}) = 1$$
, $\mathbf{A} = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} (1 & 2 & -2)$.

补充: 左右逆公式(高低阵性质)

引 理: ①若 $B = B_{m \times r}$ 为**高阵**(列满秩),则有左逆阵 B_L 使 st: $B_L B = I$

②若 $C = C_{rxm}$ 为左右逆公式阵(行满秩),则存在右逆阵 C_R 使得 $CC_R = I$

其中左右逆公式为: $B_L = (B^H B)^{-1} B^H$, $C_R = C^H (CC^H)^{-1}$

证: 条件可知 $r(B^HB) = r(B) = r$, $r(CC^H) = r(C) = r$, 故

 $(B^{H}B)$, (CC^{H}) 都是 r 阶满秩方阵(都可逆), $(B^{H}B)^{-1}$, $(CC^{H})^{-1}$ 都存在.

$$\diamondsuit B_L = (B^H B)^{-1} B^H, \quad C_R = C^H (CC^H)^{-1} (都有定义)$$

则有 $B_L B = (B^H B)^{-1} B^H B = I$, $CC_R = CC^H (CC^H)^{-1} = I$ 证毕

推论: ①若 B 为列满秩(高阵),则左消法成立: $BX=BY \Rightarrow X=Y$

②若 C 为行满秩(低阵),则**右消法**成立: $PC=QC \Rightarrow P=Q$

证: ①若 B 列满秩(高阵), 且 BX = BY, 则

$$B_{t}BX = B_{t}BY \implies X = Y$$
, \mathbb{L}^{\sharp}

定理(协调公式): 任给 \mathbf{A} 的 2 个高低分解: $\mathbf{A} = \mathbf{BC}$, $\mathbf{A} = \tilde{\mathbf{BC}}$ 则有

协调公式 $\tilde{B} = BP$, $\tilde{C} = P^{-1}C$, P 为可逆阵

证: 条件可得 $\tilde{B}\tilde{C} = BC \Rightarrow \tilde{B}\tilde{C}\tilde{C}_R = BC\tilde{C}_R \Rightarrow \tilde{B} = B(C\tilde{C}_R)$

同理
$$\tilde{B}_L \tilde{B} \tilde{C} = \tilde{B}_L B C \implies \tilde{C} = (\tilde{B}_L B) C$$

设 $rank(\mathbf{A}) = r$,可知 $(\tilde{B}_L B)$, $(C\tilde{C}_R)$ 都是 r 阶方阵,且有

$$(\tilde{B}_L B)(C\tilde{C}_R) = \tilde{B}_L(BC)\tilde{C}_R = \tilde{B}_L(\tilde{B}\tilde{C})\tilde{C}_R = (\tilde{B}_L\tilde{B})(\tilde{C}\tilde{C}_R) = I$$

故 $(\tilde{B}_L B)$, $(C\tilde{C}_R)$ 都是可逆方阵,且 $(C\tilde{C}_R) = (\tilde{B}_L B)^{-1}$,

$$\diamondsuit P = (C\tilde{C}_R)$$
 ,则 $(\tilde{B}_L B) = P^{-1}$,可得 $\tilde{B} = BP$, $\tilde{C} = P^{-1}C$ 证毕

例 1:
$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix}$$
, 求左逆 A_L , 验证 $A_L A = I$. 若 $AX = AY$ 是否有 $X = Y$?

解:可知 $\mathbf{A} \in C^{3\times 2}$ 为列满秩(高阵), $r(\mathbf{A}) = 2$,用左逆公式

$$\mathbf{A}_{L} = (\mathbf{A}^{H} \mathbf{A})^{-1} \mathbf{A}^{H}, \quad \sharp \div \mathbf{A}^{H} \mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}, \quad \mathbf{A}^{H} = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{A}_{L} = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 5 & 0 \end{pmatrix}$$

可验证
$$A_L A == \frac{1}{5} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 5 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

利用高阵左消法则,可知 $AX = AY \Rightarrow X = Y$

补充习题 Ex

1.
$$\mathbf{A} = \begin{pmatrix} 0 & i \\ 1 & 0 \\ 0 & i \end{pmatrix}$$
, $i^2 = -1$, 求左逆 A_L , 验证 $A_L A = I$. 若 $AX = AY$ 是否有 $X = Y$?

2.
$$\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 (是否高阵),求**B**的左逆 $\mathbf{B}_L = ?$ 验证 $B_L B = I$

3.
$$\mathbf{C} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (是否低阵),求 \mathbf{C} 的右逆 $\mathbf{C}_R = ?$ 验证 $\mathbf{CC}_R = I$

提示:
$$\mathbf{C}_L = \mathbf{C}^H (\mathbf{C} \mathbf{C}^H)^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$$

4. 思考题: 已知乘积
$$BC = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 3 & -1 \\ 2 & 0 & 1 \end{pmatrix}$$
,其中 $B = B_{3\times 2}$, $C = B_{2\times 3}$

求CB=?(且用协调公式判断:乘积CB是否唯一?)