TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN TP.HCM ĐỀ THI CUỐI HỌC KÌ – MÔN ĐẠI SỐ B1

Các lớp ngành Vật Lý, Hải dương học, Điện tử - Viễn thông (Khóa 2009)

Thời gian làm bài: 90 phút (Sinh viên không được sử dụng tài liệu)

<u>Bài 1</u>: (2,0 điểm).

- a) Cho $A \in M_n(R)$. Chứng minh rằng A khả nghịch khi và chỉ khi adj(A) khả nghịch (trong đó adj(A) là ma trận phó của A).
- b) Cho A, B \in M_n(R). Chứng minh rằng AB khả nghịch khi và chỉ khi cà A và B cùng khả nghich.

<u>Bài 2</u>: (2,0 điểm). Trong R⁴ cho các vecto $u_1 = (1,1,2,1)$, $u_2 = (1,2,3,1)$, $u_3 = (2,3,4,5)$ và W là không gian con của R⁴ sinh bởi các vecto u_1, u_2, u_3 .

- a) Chứng minh rằng tập hợp $B = \{u_1, u_2, u_3\}$ là cơ sở của W.
- b) Tìm giá trị của tham số m để vecto $\mathbf{u}=(1,-3,m,m-1)$ thuộc W. Với giá trị của m vừa tìm được, hãy xác định $[\mathbf{u}]_B$.

- a) Hãy xác định $[u]_B$, với u = (2,1,-3).
- b) Hãy xác định các vectơ u₁, u₂, u₃ của cơ sở B.

<u>Bài 4</u>: (3,5 diểm). Cho ánh xạ tuyến tính f: $\mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z, t) = (x + y + 2z + t, x + 2y + z + 3t, x - 2y + 5z - 5t).$$

- a) Hãy xác định một cơ sở của Im f và một cơ sở của Ker f.
- b) Xác định ma trận biểu diễn f theo cặp cơ sở $B = \{u_1 = (1,0,1,0), u_2 = (0,1,0,1), u_3 = (1,1,0,0), u_4 = (1,0,1,1)\}$ (của R^4) và $B' = \{v_1 = (1,0,1), v_2 = (0,1,1), v_3 = (1,1,3)\}$ (của R^3).

Bài 1: a) A khả nghịch
$$\leftrightarrow |A| \neq 0$$
. Mà $|A| \cdot |A^{-1}| = |I_n| = 1 \rightarrow |A^{-1}| \neq 0$ (1)

Ta có:
$$A^{-1} = \frac{1}{|A|} adj(A) \rightarrow |A^{-1}| = \frac{1}{|A|} |adj(A)|.$$
 (2)

(1) và (2) \rightarrow |adj(A)| \neq 0 \rightarrow adj(A) khả nghịch.

Vậy: A khả nghịch ↔ adj(A) khả nghịch.

b) AB khả nghịch
$$\leftrightarrow$$
 $|AB| \neq 0 \leftrightarrow |A|$. $|B| \neq 0 \leftrightarrow \begin{cases} |A| \neq 0 \\ |B| \neq 0 \end{cases} \leftrightarrow \begin{cases} A \text{ khả nghịch.} \end{cases}$

Vậy: AB khả nghịch ↔ A và B cùng khả nghịch.

Bài 2: a) Ta có:
$$A = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \rightarrow A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 3 \end{pmatrix}.$$

 \rightarrow r(A) = 3 (bằng số vecto) nên B độc lập tuyến tính.

Mà B ⊂ W, dimW = 3 \rightarrow B là cơ sở của W.

b) Xét u = (1, -3, m, m - 1) ta có:

$$\begin{pmatrix} u_1^T & u_2^T & u_3^T & \mid u^T \end{pmatrix} = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 1 \\ 1 & 1 & 5 & m - 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & m+7 \\ 0 & 1 & 0 & m-2 \\ 0 & 0 & 1 & m-2 \\ -m-2 & 4m+4 \end{pmatrix}.$$

 \rightarrow u thuộc W \leftrightarrow Hệ có nghiệm \leftrightarrow 4m + 4 = 0 \leftrightarrow m = -1.

Suy ra:
$$[u]_B = \begin{pmatrix} m+7 \\ m-2 \\ -m-2 \end{pmatrix} = \begin{pmatrix} 6 \\ -3 \\ -1 \end{pmatrix}$$
.

Bài 3: Ta có:
$$P = (B \rightarrow B_0) = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
; $u = (2,1,-3)$.

a)
$$[u]_B = (B \to B_o)[u]_{B_o} = (B \to B_o). u^T = \begin{pmatrix} 1 & 2 & 1 \\ 1 & -1 & 2 \\ 2 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix}.$$

b)
$$(P|I_3) = \begin{pmatrix} 1 & 2 & 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 7 & 4 & -5 \\ 0 & 1 & 0 & -1 & -1 & 1 \\ 0 & 0 & 1 & -4 & -2 & 3 \end{pmatrix} \Rightarrow (B_o \rightarrow B) = \begin{pmatrix} 7 & 4 & -5 \\ -1 & -1 & 1 \\ -4 & -2 & 3 \end{pmatrix}$$
.

$$\rightarrow (B_0 \rightarrow B) = ([u_1]_{B_0} \quad [u_2]_{B_0} \quad [u_3]_{B_0}) = (u_1^T \quad u_2^T \quad u_3^T) = \begin{pmatrix} 7 & 4 & -5 \\ -1 & -1 & 1 \\ -4 & -2 & 3 \end{pmatrix}.$$

Suy ra: B = { $u_1 = (7, -1, -4)$; $u_2 = (4, -1, -2)$; $u_3 = (-5, 1, 3)$ }

<u>Bài 4:</u> a) Ta có ma trận biểu diễn f theo cặp cơ sở chính tắc của R⁴ và R³ là:

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 3 \\ 1 & -2 & 5 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & -1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{array}{l} \text{Hệ AX} = 0 \text{ có vô số nghiệm } (x_1, x_2, x_3, x_4) = (-3t + h; t - 2h; t; h) ; t, h \in \mathbb{R} \\ \text{Nghiệm căn bản là: } u = (1, -2, 0, 1) \text{ và } v = (-3, 1, 1, 0). \\ \text{Tập hợp C} = \{u, v\} \text{ là cơ sở của Kerf.} \end{array}$$

$$A^{T} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & -2 \\ 2 & 1 & 5 \\ 1 & 2 & 5 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow T\hat{a}p \text{ hợp } D = \{s = (1,1,1); w = (0,1,-3)\} \text{ là cơ sở của Imf.}$$

b) Ta có ma trận mở rộng sau:
$$(v_1^T \quad v_2^T \mid f(u_1)^T \quad f(u_2)^T \quad f(u_3)^T) = \begin{pmatrix} 1 & 0 & 1 & 3 & 2 & 2 \\ 0 & 1 & 1 & 2 & 5 & 3 \\ 1 & 1 & 3 & 6 & -7 & -1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 1 & 0 & 0 & 2 & 16 & 8 \\ 0 & 1 & 0 & 1 & 19 & 9 \\ 0 & 0 & 1 & 1 & -14 & -6 \end{pmatrix}. \quad \text{Vây: } [f]_{B,B}, = \begin{pmatrix} 2 & 16 & 8 \\ 1 & 19 & 9 \\ 1 & -14 & -6 \end{pmatrix}.$$

Jvanpham