Optimization methods. Seminar 10. Optimality conditions.

Alexandr Katrutsa

Moscow Institute of Physics and Technology Department of Control and Applied Mathematics

April 30, 2018

Remainder

- Conjugate function
- Young-Fenchel inequality
- Examples

Motivation

Question # 0

When does solution of the optimization problem exist?

Question # 1

How to check that a point is a solution of the optimization problem?

Question # 2

What conditions can give solution of the optimization problem?

Existence of the solution

Weierstrass theorem

Let $X \subset R^n$ be a compact set and $f: X \to \mathbb{R}$ be a continuous function on its domain. Then the global minimizer of f exists.

This theorem guarantees existence of the solution for most meaningful optimization problems

Optimality conditions

Definition

Optimality condition is a statement that gives necessary and/or sufficient condition for point to be local minimizer

Class of problems:

- General minimization problem
- Unconstrained minimization problem
- Equality constrained minimization problems
- Equality and inequality constrained minimization problem

General minimization problem

Problem

$$f(x) \to \min_{x \in X}$$

Optimality criterion

Assume f(x) has domain dom $f = X \subset \mathbb{R}^n$. Then

- 1. if x^* is a local minimizer of f(x), then $0 \in \partial_X f(x^*)$
- 2. if subdifferential $\partial_X f(x^*)$ exists in some point $x^* \in X$ and $0 \in \partial_X f(x^*)$, then x^* is a local minimizer of f(x).

What drawbacks have this criterion?

$$\bullet \ \mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{x} - \mathbf{c}\|_2 \to \min_{\mathbf{x} \in \mathbb{R}^n}, \ \alpha > 0$$

•
$$\mathbf{x}^{\mathsf{T}}\mathbf{x} + \alpha \|\mathbf{c}^{\mathsf{T}}\mathbf{x} - b\|_2 \to \min_{\mathbf{x} \in \mathbb{R}^n}, \ \alpha > 0$$

Constraint on feasible set

$$(x+2)^2 + |y+3| \to \min_{(x,y) \in \mathbb{R}^2}$$

s.t. $8 + 2x - y \le 0$

Alexandr Katrutsa

Unconstrained minimization problem

Problem: $f(x) \to \min_{x \in \mathbb{R}^n}$.

Optimality criterion for convex functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function. Then x^* is a solution of the unconstrained minimization problem iff $0 \in \partial f(x^*)$.

Corollary

If f(x) is convex and differentiable, then x^* is a solution of the problem iff $\nabla f(x^*) = 0$.

Sufficient condition for non-convex functions

Let $f: \mathbb{R}^n \to \mathbb{R}$ be twice differentiable and x^* such that $\nabla f(x^*) = 0$. If $\nabla^2 f(x^*) \succ 0$, then x^* is a strict local minimizer.

Alexandr Katrutsa Seminar 10 8 / 17

- $x_1e^{x_1} (1 + e^{x_1})\cos x_2 \to \min$
- Rosenbrock function:

$$(1-x_1)^2 + \alpha \sum_{i=2}^{n} (x_i - x_{i-1}^2)^2 \to \min, \ \alpha > 0$$

• $x_1^2 + x_2^2 - x_1x_2 + e^{x_1 + x_2} \rightarrow \min$

Equality constrained minimization problem

Minimization problem

$$f(x) o \min_{x \in \mathbb{R}^n}$$

s.t. $g_i(x) = 0, i = 1, ..., m$

Lagrangian

$$L(x, \lambda) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x)$$

Optimality condition (sufficient)

Let f(x) and $g_i(x)$ be twice differentiable functions in x^* and continuously differentiable in some neighbourhood of x^* . Assume that $\nabla_x L(x^*, \lambda) = 0$. The if $\mathbf{h}^\mathsf{T} \nabla^2 L(x^*, \lambda) \mathbf{h} > 0$, where $\mathbf{h} \in T(\mathbf{x}^*|G)$ — tangent cone, then x^* — point of the local minimum.

200

Possible options

Figure is from

http://www.offconvex.org/2016/03/22/saddlepoints/

•
$$x_1 + 4x_2 + 9x_3 \to \text{extr}_{\mathbf{x} \in G}, \ G = \left\{ \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = 1 \right\}$$

Equality and inequality constrained minimization problem

Minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$
s.t. $g_i(x) = 0, i = 1, ..., m$

$$h_i(x) \le 0, j = 1, ..., p$$

Lagrangian

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Optimality conditions

Necessary condition (Karush - Kuhn - Tucker)

Пусть x^* решение задачи математического программирования, и функции f,h_j,g_i дифференцирумы. Тогда найдутся такие μ^* и λ^* , что выполнены следующие условия:

- $g_i(x^*) = 0$, i = 1, ..., m
- $h_j(x^*) \leq 0, j = 1, \ldots, p$
- $\mu_j^* \geq 0$, $j = 1, \dots, p$
- $\mu_i^* h_j(x^*) = 0$, $j = 1, \ldots, p$

If the minimization problem is convex, then the necessary optimality condition is also sufficient.

Optimality conditions (cont'd)

If the problem in non-convex, then

First order sufficient condition

If a stationary point (x^*, λ^*, μ^*) gives number of active constraints |J| such that n = m + |J| and $\mu_j > 0$, $j \in J$, then this point is local minimizer.

Second order sufficient condition

If the number of active constraints is less than the dimension of the, then x^* is a local minimizer if the following conditions hold

$$\mathbf{z}^{\mathsf{T}} \nabla_{xx}^2 L(x^*) \mathbf{z} > 0$$

for

- $\mathbf{z} \neq 0$ и $\nabla g_i^\mathsf{T}(x^*)\mathbf{z} = 0$
- $j \in J$ and $\mu_j > 0$, $\nabla h_i^{\mathsf{T}}(x^*)\mathbf{z} = 0$
- $j \in J$ and $\mu_j = 0$, $\nabla h_j^\mathsf{T}(x^*)\mathbf{z} \leq 0$

- 4 ロ ト 4 部 ト 4 差 ト 4 差 ト 9 Q (C)

• Example 1

$$extr(x_1-3)(x_2-2)$$

s.t.
$$x_1 + 2x_2 = 4$$

 $x_1^2 + x_2^2 \le 5$
 $x_1 \ge 0, x_2 \ge 0$
 $\operatorname{extr} \sum_{i=1}^{n} \frac{c_i}{x_i}$

s.t.
$$\sum_{i=1}^{n} a_i x_i \le b$$

$$x_i > 0, \ b > 0, \ c_i > 0, \ a_i > 0$$

Example 3

$$\operatorname{extr}(x_1x_3-2x_2)$$

s.t.
$$2x_1 - x_2 - 3x_3 \le 10$$

$$3x_1 + 2x_2 + x_3 = 6$$

$$x_2 > 0$$

Recap

- Existence of the solution of the minimization problem
- Optimality conditions for
 - general minimization problem
 - unconstrained minimization problem
 - equality constrained minimization problem
 - equality and inequality constrained minimization problem