2. Un proyecto requiere de una inversión inicial de \$100.000 y se cree que generará unos ingresos de \$65.000 al final del primer año y de \$75.000 al final del segundo año. Evaluar el proyecto para el inversionista A cuya tasa es del 20% pav, y para el inversionista B cuya tasa es del 40% pav.

1. Asignación de fecha focal ff= 0 pav

2. Declaración de variables		
$i_A = TIO_A = 20\% \text{ pav} \equiv 0.2 \text{ pav}$ $i_B = TIO_B = 40\% \text{ pav} \equiv 0.4 \text{ pav}$	$n_0 = 0$ pav $n_1 = 1$ pav $n_2 = 2$ pav	

4. Declaración de fórmulas

 $VPN = \sum F_n(1+i)^{-n}$ Valor presente neto

5. Desarrollo matemático $VPN_A = -100.000 (1 - 0.2)^0 + 65.000 (1 - 0.2)^{-1} + 75.000 (1 - 0.2)^{-1$

6. Respuesta

Para el inversionista A el proyecto puede ser ejecutado, en cambio para el inversionista B no puede ser ejecutado.

3. Una fábrica produce actualmente en forma manual 1.000 unidades de un determinado artículo, para ello utiliza artesanos a los cuales les paga \$8.400.000 al año y, es costumbre que cada año se les aumente el sueldo en aproximadamente un 20%. El precio de venta de cada artículo es de \$9.000 y se estima que este precio podrá ser aumentado todos los años en un 21%. Ahora se ha presentado la oportunidad de adquirir una máquina a un costo de \$10 millones con una vida útil de 5 años; un valor de salvamento de \$2 millones la cual requiere de 2 técnicos para su operación, el sueldo anual de cada uno de los técnicos puede ser de \$600.000 con aumentos anuales de sueldo del 20% ¿Cuál de las dos alternativas es mejor suponiendo que la tasa del inversionista es del 30% pav?

1. Asignación de fecha focal		
ff = 0 pav		

2. Declaración de variables			
$R_1 = $9.000.000$ $R_2 = $8.400.000$ $g_1 = 0.21$ $g_2 = 0.2$	i = 0,3 pav n = 5 pav		

4. Declaración de fórmulas

 $VPN = \sum F_n (1+i)^{-n}$ Valor presente neto

5. Desarrollo matemático

$$VPN_A = \frac{9[(1+0,21)^5(1+0,3)^{-5}-1]}{0,21-0,3} - \frac{8.4[(1-0,2)^5(1+0,3^{-5}-1)]}{0,2-0,3}$$

$$VPN_A = \$2.437.836$$

$$VPN_B = \frac{9[(1+0.21)^5(1+0.3)^{-5}]}{0.21-0.3} + 2(1.3)^{-5} - \frac{1.2[(1-0.2)^5(1+0.3^{-5}-1)]}{0.2-0.3}$$

$$VPN_B = \$16.723.756$$

6. Respuesta

La decisión correcta es comprar la máquina

4. El jefe de producción de una fábrica debe decidir entre el motor A y el motor B, con una tasa del 36% período año vencido; determinar la mejor alternativa.

Las características de cada uno son:

-	Motor A	Motor B	
С	\$800.000	\$600.000	
Р	3 pav	2 pav	
S	\$200.000	\$150.000	
CAO	\$25.000	\$30.000	

Análisis:

El mínimo común múltiplo de la vida útil de las dos alternativas es 6 años, así que el horizonte de planeación será de 6 años.

Para la alternativa A, tendríamos después de 3 años tener que adquirir otra máquina de las mismas características y, en la alternativa B, tendríamos que adquirir 3 máquinas; la primera el día de hoy, la segunda a los 2 años y la tercera al final de 4 años.

1. Asignación de fecha focal		
ff = 0 pav		

2. Declaración de variables			
$F_A = \$200.000$	F_B = \$150.000		
$C_A = \$800.000$	C_B = \$600.000		
$P_A = 3 \text{ pav}$	P_B = 2 pav		
$CAO_A = \$25.000$	CAO_B =\$30.000		
$n_A = 6 \text{ pav}$	n_B = 6 pav		
$i_A = 36\% \equiv 0,36 \text{ pav}$	i_B = 36% = 0,36 pav		
$i_B = 0 \text{ pav}$	ff= 0 pav		

3. Diagrama de flujo de caja		
Alternativa A	Alternativa B	

4. Declaración de fórmulas

 $VPN = \sum F_n(1+i)^{-n}$ Valor presente neto

5. Desarrollo matemático

$$VPN_A = -800.000 - 800.000 (1 + 0, 36)^{-3} + 200.000 (1 + 0, 36)^{-3} - 25.000 (1 + 0, 36)^{-6} + 200.000 (1 + 0, 36)^{-6}$$

 $VPN_A = -\$1.065.338$

$$\begin{split} VPN_B = &-600.000 - 300.000(\frac{1 - ((1 + 0.36)^{-3})}{0.36}) - 450.000 \ (1 + 0.36)^{-2} \\ &-450.000 \ (1 + 0.36)^{-4} + 150.000 \ (1 + 0.36)^{-6} \\ VPN_B = &-\$1.021.293 \end{split}$$

6. Respuesta

Se debe llevar a cabo la alternativa B ya que es en la que se incurre en menores pérdidas.

6. Se plantea la construcción de un puente y se han presentado dos proyectos, el primero es un puente colgante a un costo de \$850 millones y, cada año habrá que darle mantenimiento a la plataforma de asfalto a un costo de \$3 millones; se estima que las reparaciones serán cada vez mayores y que éstas aumentarán de precio en \$2 millones cada año, además, cada 5 años habrá que cambiar los cables que sostienen el puente y su costo será de \$100 millones y, no se prevé que éste valor vaya a cambiar. La segunda alternativa es un puente en concreto a un costo de \$900 millones y, cada 3 años habrá que re-acondicionar las bases a un costo fijo de \$25 millones; el costo anual de mantenimiento se puede considerar fijo en \$5 millones. Con una tasa del 25%, determinar la mejor alternativa.

1. Asignación de fecha focal

2. Declaración de variables			
Puente colgante i ₁ = 0,25 pav i ₂ = ? pav	Puente en concreto i₁= 0,25 pav i₂= ? pav		

3. Diagrama de flujo de caja

4. Declaración de fórmulas

 $VPN = \sum F_n (1+i)^{-n}$ Valor presente neto $(1+i_1)^{m_1} = (1+i_2)^{m_2}$ Equivalencia de tasas

5. Desarrollo matemático

$$(1+0,25)^5 = (1+i_2)^1$$

 $i_2 = 205,1757812\% pav$

$$VPN_A = -850 - \frac{100}{2,051757812} - (\frac{3}{0,25} - \frac{2}{0,0625})$$

 $VPN_A = -\$942, 7$

$$(1+0,25)^3 = (1+i_2)^1$$

 $i_2 = 95.3125\% pav$

$$VPN_B = -900 - \frac{5}{0,25} - \frac{25}{0,953125}$$

 $VPN_B = -\$946,23$

6. Respuesta

La mejor elección es construir el puente colgante ya que se minimizan las pérdidas.

7. Una industria puede adquirir una máquina a un costo de \$6 millones, tendrá una vida útil de 5 años y prácticamente no tendrá valor de salvamento, la máquina será depreciada totalmente en 3 años por partes iguales; el estudio de mercados indica que los ingresos del primer año serán aproximadamente de \$3 millones y aumentarán todos los años un 30%, por otra parte se estima que el costo de producción del primer año será de \$800.000 y cada año aumentará en \$200.000. Suponiendo una tasa impositiva del 38%, determinar la viabilidad del proyecto con un horizonte de planeación de 5 años y que la tasa del inversionista es del 40%.

1. Asignación de fecha focal

$$ff = 0 \text{ pav}$$

2. Declaración de variables

F= \$ 6.000.000 VF= \$0 n= 5 pav IngresoS =\$3.000.000 pav i_i = 30% $\equiv 0,3$ pav C= \$800.000 pav

Aumento de C= \$200.000 pav $i_{impositiva}$ = 38% $\equiv 0,38$ pav $i_{inversionista}$ = 40% $\equiv 0,4$ pav

4. Declaración de fórmulas

Flujo neto de caja = Ingresos - Costos - Impuestos Impuestos = Tasa impositiva*Base Base = Ingreso - Costos - Depreciación $VPN = \sum F_n(1+i)^{-n}$ Valor presente neto

5. Desarrollo matemático

Periodo	Ingreso	Costo	Depreciación	Base	Impuesto	FNC
0	\$6.000.000	\$0	\$0	\$0	\$0	\$6.000.000
1	\$3.000000	\$800.000	\$2.000.000	\$200.000	\$7.600	\$2.124.000
2	\$3.900.000	\$1.000.000	\$2.000.000	\$900.000	\$342.000	\$2.558.000
3	\$5.070.000	\$1.200.000	\$2.000.000	\$1.870.000	\$710.600	\$3.159.400
4	\$6.591.000	\$1.400.000	-	\$5.191.000	\$1.972.580	\$3.218.420
5	\$8.568.300	\$1.600.000	-	\$6.968.300	\$2.647.954	\$4.320.346

Teniendo ya todos los FNC para cada periodo se procede a calcular el VPN:

```
VPN = -6.000.000 + 2.124.000 (1 + 0, 4)^{-1} + 2.558.000 (1 + 0, 4)^{-2} + 3.129.400 (1 + 0, 4)^{-3} + 
+ 3.218.420 (1 + 0, 4)^{-4} + 4.320.346 (1 + 0, 4)^{-5}
VPN = -\$385.288
```

6. Respuesta

El proyecto no resulta ser viable, ya que en la ventana de tiempo dado resultaría en pérdidas.