

## Huawei LiteOS 与 Linux 开发包差异说明

文档版本 00B04

发布日期 2017-01-20

#### 版权所有 © 深圳市海思半导体有限公司 2015-2017。保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何 形式传播。

#### 商标声明



(上) HISILICON、海思和其他海思商标均为深圳市海思半导体有限公司的商标。

本文档提及的其他所有商标或注册商标,由各自的所有人拥有。

#### 注意

您购买的产品、服务或特性等应受海思公司商业合同和条款的约束,本文档中描述的全部或部分产 品、服务或特性可能不在您的购买或使用范围之内。除非合同另有约定,海思公司对本文档内容不做 任何明示或默示的声明或保证。

由于产品版本升级或其他原因,本文档内容会不定期进行更新。除非另有约定,本文档仅作为使用指 导,本文档中的所有陈述、信息和建议不构成任何明示或暗示的担保。

#### 深圳市海思半导体有限公司

地址: 深圳市龙岗区坂田华为基地华为电气生产中心 邮编: 518129

网址: http://www.hisilicon.com

客户服务电话: +86-755-28788858

客户服务传真: +86-755-28357515

客户服务邮箱: support@hisilicon.com



## 前言

i

### 概述

Hi35xx Huawei LiteOS 的产品开发包与海思之前推出 Hi35xx Linux 开发包大体一致,仅是将底层使用的操作系统从 Linux 更换成了 Huawei LiteOS。本文主要描述了操作系统的更换对应用程序使用上的差异。

#### 产品版本

与本文档相对应的产品版本如下。

| 产品名称    | 产品版本 |
|---------|------|
| Hi3516A | V100 |
| Hi3516D | V100 |
| Hi3518E | V200 |
| Hi3518E | V201 |
| Hi3519  | V100 |
| Hi3519  | V101 |
| Hi3516C | V300 |

### 读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师



## 修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

| 修订日期       | 版本    | 修订说明                                       |  |
|------------|-------|--------------------------------------------|--|
| 2017-01-20 | 00B04 | 新增 Hi3516CV300 相关内容,修改表 1-1                |  |
| 2016-06-15 | 00B03 | 第 3 次临时版本发布<br>新增 Hi3519V101 内容。           |  |
| 2016-05-10 | 00B02 | 第 2 次临时版本发布<br>删除表 2-3 和表 2-4, 修改 3.1.1 小节 |  |
| 2015-11-30 | 00B01 | 第1次临时版本发布                                  |  |



## 目录

| 1 | SDK 包的主要差异                    | 1 |
|---|-------------------------------|---|
| 2 | 做体从TAND 文拟的之两关目               | _ |
| 2 | 媒体处理 MPP 文档的主要差异              | 4 |
| 3 | 媒体处理 FAQ 的主要差异                | 3 |
|   | 3.1 系统控制                      | 3 |
|   | 3.1.1 加何杏看 MPP 的日志信息和 Proc 信息 | - |



## 表格目录

| 表 1-1 SDK 的主要差异                               | 1 |
|-----------------------------------------------|---|
| 表 2-1 Huawei LiteOS 与 Linux 驱动加载的使用差异         | 2 |
| 表 2-2 VENC 模块使用的差异                            |   |
| 表 3-1 Huawei LiteOS 与 Linux 的 proc 和 log 使用差异 |   |



# 【 SDK 包的主要差异

SDK 的主要差异如表 1-1 所示。

#### 表1-1 SDK 的主要差异

| 组成部分                         | Linux                                                   | Huawei LiteOS                                                              |
|------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------|
| Kernel                       | linux-3.x.y                                             | Huawei LiteOS                                                              |
| 工具链<br>(Hi3516A/<br>Hi3516D) | arm-hisiv300-linux-<br>arm-hisiv400-linux-<br>gcc 4.8   | arm-hisiv500-linux-<br>gcc 4.8<br>Huawei LiteOS 内部实现了 C 库,不<br>需要标准的 C 库   |
| 工具链<br>(Hi3516CV<br>300)     | arm-hisiv500-linux-<br>arm-hisiv600-linux-<br>gcc 4.9.4 | arm-hisiv500-linux-<br>gcc 4.9.4<br>Huawei LiteOS 内部实现了 C 库,不<br>需要标准的 C 库 |
| 烧写 image                     | u-boot, kernel, rootfs                                  | u-boot,用户程序 bin 文件                                                         |
| MPP 驱动                       | Linux 驱动 ko 文件;<br>加载驱动的 load35xx 脚本;                   | 静态库.a 文件;<br>加载驱动的 sdk_init.c 文件;                                          |

## **2** 媒体处理 MPP 文档的主要差异

Huawei LiteOS 与 Linux 驱动加载的使用差异如表 2-1 所示。

#### 表2-1 Huawei LiteOS 与 Linux 驱动加载的使用差异

| 组成部分 | Linux              | Huawei LiteOS                     |
|------|--------------------|-----------------------------------|
| 驱动加载 | 通过 insmod 加载驱动的 ko | 在 sdk_init.c 中显式调用驱动的初始化<br>函数    |
| 模块参数 | Load 驱动 ko 时设置;    | 在 sdk_init.c 中通过驱动初始化函数的<br>参数设置; |

VENC 模块使用差异如表 2-2 所示。

#### 表2-2 VENC 模块使用的差异

| 组成部分          | Linux            | Huawei LiteOS                                                                                                                  |
|---------------|------------------|--------------------------------------------------------------------------------------------------------------------------------|
| VENC 码<br>流获取 | 码流的回绕由 SDK 内部来处理 | 由于没有虚拟地址,码流 buffer 的回绕,需要用户自己处理。处理方法请参考《HiMPP IPC V3.0 媒体处理软件开发参考》文档中HI_MPI_VENC_GetStreamBufInfo 接口的描述。或者参考 venc 的 sample 代码。 |

# **3** 媒体处理 FAQ 的主要差异

本章简要描述了 Huawei LiteOS 的媒体处理 FAQ 与 Linux 系统的使用差异。

### 3.1 系统控制

#### 3.1.1 如何查看 MPP 的日志信息和 Proc 信息

Huawei LiteOS 与 Linux 的 proc 和 log 使用差异如表 3-1 所示。

表3-1 Huawei LiteOS 与 Linux 的 proc 和 log 使用差异

| 组成部分        | Linux                                                                 | Huawei LiteOS                                            |
|-------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| proc/logmpp | 1、修改某个模块的日志等级,<br>可以使用命令 echo                                         | 1、修改某个模块的日志等级,可以<br>使用命令 writeproc                       |
|             | "venc=4" >                                                            | "venc=4" >                                               |
|             | /proc/umap/logmpp                                                     | /proc/umap/logmpp                                        |
|             | 2、修改所有模块的日志等级,<br>可以使用命令 echo                                         | 2、修改所有模块的日志等级,可以<br>使用命令 writeproc                       |
|             | "all=4" >                                                             | "all=4" >                                                |
|             | /proc/umap/logmpp                                                     | /proc/umap/logmpp                                        |
|             | 3、获取日志记录,可以使用命<br>令 <b>cat</b> / <b>dev/logmpp</b> ,可使用<br>Ctrl+c 退出。 | 3、获取日志记录,可以使用命令 <b>cat_logmpp</b> ,可使用 q 或者 <b>Q</b> 退出。 |