SERVICE MANUAL

COLOR VIDEO CAMERA

MODEL VC-X2E/U

COLOR VIDEO CAMERA (PAL/NTSC)

MODEL VC-X2E/U

SECTION 1	SERVICE MANUAL	3
SECTION 2	PARTS LIST	65
SECTION 3	SCHEMATIC DIAGRAM	76

SAFETY INSTRUCTIONS

SAFETY CHECK AFTER SERVICING

Confirm the specified insulation resistance between power cord plug prongs and externally exposed parts of the set is greater than 10 Mohms, but for equipment with external antenna terminals (tuner, receiver, etc.) and is intended for C or A, specified insulation resistance should be more than 2.2 Mohms (ground terminals, microphone jacks, headphone jacks, line-in-out jacks etc.)

PRECAUTIONS DURING SERVICING

- 1. Parts identified by the \(\Delta\) symbol parts are critical for safety. Replace only with parts number specified.
- 2. In addition to safety, other parts and assemblies are specified for conformance with such regulations as those applying to spurious radiation. These must also be replaced only with specified replacements.

 Examples: RF converters, tuner units, antenna selector switches, RF cables, noise blocking capacitors, noise

blocking filters, etc.

- 3. Use specified internal wiring. Note especially:
 - 1) Wires covered with PVC tubing
 - 2) Double insulated wires
 - 3) High voltage leads
- 4. Use specified insulating materials for hazardous live parts. Note especially:
 - 1) Insulation Tape
 - 2) PVC tubing
 - 3) Spacers (Insulating Barriers)
 - 4) Insulation sheets for transistors
- 5. When replacing AC primary side components (transformers, power cords, noise blocking capacitors, etc.), wrap ends of wires securely about the terminals before soldering.

- 6. Observe that wires do not contact heat producing parts (heatsinks, oxide metal film resistors, fusible resistors, etc.).
- 7. Check that replaced wires do not contact sharp edged or pointed parts.
- 8. Also check areas surrounding repaired locations.
- 9. Use care that foreign objects (screws, solder droplets, etc.) do not remain inside the set.

SECTION 1

SERVICE MANUAL

TABLE OF CONTENTS

I.	SPECIFICATIONS	. 4
II.	DISMANTLING OF UNIT	
III.	CONTROLS	
IV.	PRINCIPAL PARTS LOCATION	
V.	EXPLANATION OF VC-X2 CIRCUITRY	
	1. FEATURES OF VC-X2	
	2. EXPLANATION CIRCUITRY	
VI.	ADJUSTMENT	32
	1. REQUIRED JIGS FOR ADJUSTMENT	
	2. LOCATION OF POTENTIOMETERS AND TEST POINTS	
	3. ADJUSTING THE EVF BLOCK	. 50
VII.	CLASSIFICATION OF VARIOUS P.C BOARDS	52
	1. P.C BOARD TITLES AND IDENTIFICATION NUMBERS	. 52
	2. COMPOSITION OF VARIOUS P.C BOARDS	. 53

I. SPECIFICATIONS

Pickup Tube	Single tube, 2/3" SATICON
Pickup System	Uni-carrier Frequency Separation System
Scanning System	2:1 interfaced (525 lines: U type, 625 lines: E type)
Signal System	NTSC color system (U type), PAL color system (E type)
Horizontal Resolution	More than 300 lines (center)
Video S/N	More than 46 dB (AGC off)
Video Output	1.0 Vp-p, 75 ohms (Composit Video Signal)
Synchronization System	Internal Synchronization System (built-in Synchronization Signal Generator)
Automatic Sensitivity Adjustment Range	100 lux to 30,000 lux (ND filter: INDOOR position) 800 lux to 250,000 lux (ND filter: OUTDOOR position)
Color Temperature Auto	Incandescent lamp or Day light (automatically switchable)
Manual	Incandescent lamp, Fiuorescence lamp and Day light (switchable
Minimum Practical Illumination	More than 30 lux (F1.4)
Microphone	Uni-directional electret condenser microphone
Audio Output	-20 dB (low impedance)
External Microphone Input	2 kohms 3.5 mmφ jack
Lens	F1.4 × 8 zoom lens (f=11 mm to 70 mm) with MACRO, Manual/2-speed motor driven Zooming control, Switchable
View Finder	1.5" Electronic View Finder
Remote Control Jack	2.5 mmø
Special Features	One-touch fade-in and fade-out system, Switchable Iuminance and chrominance (color) signal polarities, Intermittent Recording
Operating Temperature	-10°C to 40°C (14°F to 104°F)
Power Requirement	12V DC
Power Consumption	7.6W (with Auto Focus at "MANU" position) 8.7W (with Auto Focus "AUTO" position)
Dimensions	8.4 (W) × 5.1 (H) × 13.0 (D) inches (213 × 130 × 330) mm (With lens and eye hood, auto focus unit hand grip and microphone retracted position)
Weight	5.3 lbs (2.4 kg) (with lens and eye hood, hand grip and microphone)

^{*} For improvement purposes, specifications and design are subject to change without notice.

II. DISMANTLING OF UNIT

In case of trouble, etc. necessitating dismantling, please dismantle in the order shown in the photographs. Reassemble in reverse order,

Fig. 3-1

Fig. 3-2

IV. PRINCIPAL PARTS LOCATION

Fig. 4-1

Fig. 4-2

Fig. 4-3

- 1. VIDEO (2) PC BOARD V3004 A501B
- 2. IRIS CONTROL VOLUME
- 3. WHITE BALANCE SELECTOR SWITCH
- 4. NORMAL/REVERSE SELECTOR SWITCH
- 5. PANEL PC BOARD V3004C5030
- 6. INTERVAL TIME SELECTOR SWITCH
- 7. VTR SELECTOR SWITCH
- 8. INTERMITTENT REC SWITCH
- REMOTO CONTROL JACK
- 10. EXTERNAL MICROPHONE JACK
- 11. ONE SHOT SWITCH

- 12. WIDE/TELE SWITCH
- 13. AUTO FOCUS TERMINAL
- 14. ND FILTER SELECTER LEVER
- 15. VIDEO (1) PC BOARD V3004A501A
- 16. CAMERA CONNECTOR
- 17. SOCKET PC BOARD V3004B502B
- 18. H & D PC BOARD V3004B502A
- 19. CENTERING MAGNET
- 20. DY ELY-15V101A
- 21. CRT 40CB4M
- 22. EVF PC BOARD V3003C5040

V. EXPLANATION OF VC-X2 CIRCUITRY

1. FEATURES OF VC-X2

1-1 Automatic Focus Control

Fig. 5-1

The automatic focus adjusting unit employed on the VC-X2 provides focus adjustment in digital control mode through the use of a solid-state triangulation system (SSTS). Its major advantages are high accuracy, high sensitivity and elimination of unwanted noises.

The distance of the subject is measured in the same manner as in triangulation. As illustrated in Fig. 5 the image of the subject O, passes through the windows W' and W' and then is captured as images O' and O' on the CCD image sensor. The signal at O' is read out by means of a clock and subsequently the number of clocks needed to read the signal at O'' is determined to calculate the angle O'-O-O'' or L θ , which then is used to compute the distance of the subject from the camera. Note that the longer the distance, the smaller the angle θ , or the shorter the distance, the larger the angle θ .* With VC-X2, for semi automatic focusing operating the ONE-SHOT control button is located on the upper portion of the camera case, which makes it possible for the user to hold the camera with both hands for greater stability.

1-2 Automatic White Balance Control

The adjustment of white balance poses the most difficult problem in shooting with a color camera. To overcome this difficulty, VC-X2 employes two photodiodes to measure the color temperature of ambient light so as to permit switching automatically between INDOOR (3000°K) and OUTDOOR (5500°K).

Use of the two-diode system helps to ensure "naturalness" especially in outdoor shooting and simplicity of circuit design.

On VC-X1, the two photodiodes are installed in a recess, whereas on VC-X2, they are situated on the upper part of

the case.

In addition, an opalescent plate is used as the diffuser in place of the conventional pyramidtype prism, resulting in improved capability of descrimination.

1-3 Automatic Iris Control

The VC-X2 is provided with a VOLUME CONTROL for backlight control (BLC) to permit shooting against the light. The IRIS control is normally set at NORMAL position. This causes AGC in the video circuit to operate in the manner described below:

When shooting a dark scene, the iris is fully opened and then if gain is found still insufficient, the gain is increased electrically by means of AGC.

1-4 Fade In/Fade Out

The VC-X2 permits both fade-in and fade-out through one-touch operation. Particularly, the fade-in operation is performed in "reserved" mode in which the fade-in operation is started as soon as recording is started.

During the Rec. OFF period, the fade-out operation is not accepted.

Further, establishing the STAND-BY mode after fadeout causes a fade-in operation to be performed automatically, thereby making it easier to shoot the next scene.

1-5 Negative/Positive Reversal

	Y Signal	Chroma Signal	Picture
1	l Normal Normal		Normal Picture
2	Normal	Reverse	Gradation of brightness is reversed.
3	Reverse	Normal Expression of complementary color	
4	Reverse	Reverse	Same picture as that of color negative film

Fig. 5-2

In addition to normal pictures, special pictures may be produced through the three possible signal combinations shown in Fig. 5-2 below:

The mode "4" in Fig. 5-2 permits a negative color film to be viewed as positive color on the TV monitor.

1-6 LED Display in the Viewfinder

* When the viewfinder is warming-up, all three indicators will flash on and off. All three indicators will continue to flash on and off for 20 seconds if there is no light entering the video camera (lens cap is left on for example).

RED

On: The video cassette recorder is in recording mode.

Off: The video cassette recorder is in stop or pause mode.

GREEN

Flashing on and off very quickly: The NORMAL/REVERSE selector is not set to the normal LUM/COLOR position.

Flashing on and off at medium speed: The IRIS control is not set to the NORMAL position.

Flashing on and off slowly: The WHITE BALANCE selector is not set to the AUTO position.

On: The NORMAL/REVERSE selector is set to the normal LUM/COLOR position, the IRIS control is set to the NORMAL position and the WHITE BALANCE selector is set to the AUTO position.

* NORMAL/REVERSE indication takes top priority and then the IRIS indication and then the WHITE BALANCE indication.

ORANGE

Flashing on and off: The portable video cassette recorder's battery level is low.

On: The FADE button is in fade-in standby, during the fade-out operation or during intermittent recording.

Off: Neither of the above is happening.

1-7 Built-in ND Filter

Use of the larger-diameter, high-speed lens can often result in the automatic aperture control not being able to cover all conditions under which the camera is used outdoors. In view of this, VC-2 incorporates an ND-8 filter with a transmissivity of 12.5% so that shooting can be done even under quite-bright-light conditions.

1-8 Power Zooming

The VC-X2 is capable of continuous zooming from TELE to WIDE with zooming speed changeable in two steps: one for slow zooming and the other (further depression of the button) for fast zooming.

1-9 Boom Microphone

A boom microphone with a window screen (and with an additional window screen in case of a strong wind) is able to reduce significantly the sound of wind recorded.

1-10 Intermittent Recording

Two intermittent recording sequences with automatic repetition are available when using the INTERMITTENT REC button with the INTERVAL selector:

- a) 2 seconds recording followed by 10 seconds standby.
- b) 2 seconds recording followed by 90 seconds standby.

1-11 Saticon Tube

While VC-X1 uses the Vidicon, VC-X2 uses the Saticon, which helps to reduce the image persistence. Moreover the use of a Saticon with a stripe filter has increased the resolution to 300 lines (E Model) or 240 lines (U Model), making it possible to obtain very clear pictures.

1-12 Saticon Protection Circuit

The iris is closed during the waring-up period to prevent damage to the Satison by the incident light.

1-13 VTR Selector Switch

The VTR selector switch is used to provide compatibility with VHS-type machines offered by other manufacturers. The following describes functions associated with each

switch position and the currently available VTR types to which the VC-X2 may be connected:

Function S.W Position	1	2	3	4
VTR CONTROL	Tally	VTR Remote Control Terminal	Controlled on camera side only	Tally
REC Warning	- ,	0	_	· <u>-</u>
VTR Remote control Terminal	RUN at LOW	RUN at LOW	RUN at LOW	RUN at HIGH
Intermittent REC.	= 4 Sec	$_{0} = 2 \text{ Sec}$	= 4 Sec	= 4 Sec

Notes:

- 1. For Intermittent REC with switch positions 1, 3 and 4, recording time is 4 seconds, of which about 2 seconds are for rewinding as required by auto editing control (AEC); therefore, actual recording time is about 2 seconds.
- 2. The only difference between switch positions 1 and 4 is that the REC tape RUN on the VTR side is effected with either "LOW" or "HIGH".
- 3. Switch position 2 is dedicated to AKAI's VP7300-Series. All that must be done is to change the camera cable to the one intended for use with VC-X1U.
- 4. With switch position 3, tally check is not performed (i.e., it is not cheked whether VTR is in REC standby mode or not on camera), and thus the "REC tape RUN" control signal is merely output regardless of the mode established on the VTR whenever the REC switch on the camera is turned on or off. For this reason, it is necessary to check at REC time to see if the VTR is in the REC standby mode.

* VTRs applicable to each switch position

Switch position

1 Standardized

VHS-type 1 : AKAI (VP-88, VP-66)

Hitachi (VT-6500, VT-7000)

Mitsubishi (HV-7000)

Sharp

2 AKAI VP-7300

Series : AKAI (VP-7300, VP-7350)

Note that the camera cable must be changed to the one for VC-X1U.

3 Conventional

VHS-type

VTRs : AKAI(VP-77) VPテノ00

JVC (HR-2200)

4 Standardized

VHS-type 2 : Matsushita's VTRs

(NV-3000, NV-3200)

2. EXPLANATION OF CIRCUITRY

2-1 Panel P.C Board

The Various Features of VC-X2 are controlled by the microcomputer MP4523 (IC2), (Fig. 7)

 $R_0 \sim R_4$ R5

 $R6 \sim R8$

R9

: Key scan clock

: REC Trigger

: LED lighting output : Quick Fade out

 $O_0 \sim O_4$

: AGC output (5 bits)

OSC₁, OSC₂ Self-oscillation

HALT Microcomputer stops at "H" (GND'ed). INIT

Initialize

Fig. 5-3

Fig. 5-4 Key matrix & Diode matrix

2-1-1 Diode Matrix Switch

Fig. 5-5 Diode matrix

In Fig. 5-5, when R3 goes to "Positive" Diode D5 is tuned-off, permitting the window comparater output (over) signal to be supplied to K1 (I, C2). Similarly, the Battery warning signal is sent to K1 only when R4 is at "positive".

2-1-2 Window Comparater

Fig. 5-6 Window Comparater

Fig. 5-6 shows the comparator circuit used to operate the AGC circuit. If the AGC signal level (input to the window comparator) is higher than voltage E (A) at point (A), IC2-1 output goes to "H" level.

On the other hand, if the Y signal level is lower than vol-

tage E B at point B, then IC1-2 output goes to "H" level.

Thus, output goes to "L" if the input signal Ey is: $EB < EY \le EA$

2-1-3 Tally Check and VTR Selector Switch

Fig. 5-7 Tally Check & VTR Selector Switch

When the VTR SELECTOR switch is set to position ①, the key scan pulse from R1 (pin ②) of IC2 is supplied to K4 (pin ④), and R5 (pin ①) is set to "LOW" if the camera's REC switch is OFF. Tally check is then conducted to see if the VTR is in the REC standby mode.

Suppose that the VTR is found to be in the REC standby mode. The tally line goes to "LOW" (setting: impedance of 2K ohms or less or DC level of 1V or less), causing TR5 to be turned OFF and TR4 and TR3 to be turned ON. This in turn establishes "HIGH" between diodes in the diode matrix. The key scan pulse from R3 (pin ③) is then supplied to K3 (pin ③), making it possible for the microcomputer to accept the signal from the camera's REC switch.

On the other hand, if the VTR is not in the REC standby mode (i.e., the tally line is at "high"), TR5 is turned ON, TR4 OFF, and TR3 OFF.

As a result, "LOW" is established between diodes in the diode matrix. In this case, the key scan pulse from R3 (pin ③) is not supplied to K3 (pin ③), and thus the microcomputer (IC2) does not respond even if the camera's REC switch is set to ON; the REC LED located in

electric viewfinder (EVF) stays OFF, indicating that the VTR is not the REC standby mode.

Where REC is found to be acceptable upon tally check, setting the camera's REC switch to ON causes R5 (pin ①) to be changed from "LOW" to "HIGH", which in turn activates TR2. As a result, the "REC tape RUN" control signal goes to "LOW", changing the VTR mode from REC standby to REC-tape-RUN mode.

When the VTR selector switch is set to position ④, the tally check is performed in the same manner as with switch position ① except that the output signal from R5 (pin ①) is reversed (i.e., "high" with REC standby and "low" with camera REC switch "ON") since the REC-tape-RUN mode is established on the VTR when the "REC tape RUN" control signal goes to "high".

When the VTR selector switch is set to position ② (dedicated to AKAI's VP-7300 Series), R5 (pin ①) goes to "low". Then, if the camera's REC switch is set to "ON", R5 (Pin ①) goes to "high", activating TR2 and TR1. In this case, if the VTR is in the REC standby mode, the "REC tape Run" control terminal is at "high" level. Therefore, a potential difference produced by a resistance

connected to the collector of TR1 causes "high" to be established between diodes in the diode matrix. The key scan pulse from R3 (pin ③) is then supplied to K3 (pin ③). As a result, the signal from the camera's REC switch is accepted, the REC LED located in the EVF is activated, and the VTR is placed in the REC-tape-run mode. On the other hand, if the VTR is not in the REC standby mode, no voltage is supplied from the VTR to the "Rec tape Run" control terminal. Thus, even if TR1 is activated by setting the camera's REC switch to "ON", there is no potential difference developed by the resistor at the collector of TR1.

For this reason, "high" is not supplied to the diode matrix, resulting in the key scan pulse from R3 (pin ③) not being delivered to K3 (pin ③).

In this case, the microcomputer causes the REC LED to blink in the EVF, indicating that the VTR is not in the REC standby mode.

When the VTR selector switch is set to position ③, R5 (pin ①) is set to "low". Setting the camera's REC switch to "ON" causes R5 (pin ①) to switch to "high", causing TR2 to be activated. The REC tape Run terminal goes to "LOW" and thus the VTR is placed in the REC tape run mode. In this case, the REC tape Run terminal is set to "low" even when the VTR is not in the standby mode. Therefore, when depressing the camera's REC switch, it is necessary to check that the VTR is in the REC standby mode.

2-1-4 Beam Current Detection (Warm-up warning)

Fig. 5-8 Beam Detection Circuit

VC-X2 employs the Saticon, which will be more easily damaged than the Vidicon if exposed to a strong light when the beam current is not flowing. For this reason, the beam current detection circuit is incorporated to protect the Saticon by closing the auto iris during the warm-up period.

As soon as the beam current starts to flow due to the Saticon heater warming up, a voltage drop is developed across R19 (located on the panel P.C.B.) by the action of a current mirror circuit (TR5 on the High Voltage & Detection (H & D) P.C.B.). This causes the emitter potential of TR10 to fall. When this potential has fallen below the threshold level of the microcomputer, the warm-up warning (3 LEDs) is switched off.

At the same time, reduction of diode D1 current to zero increases the voltage on the top of VR1 which acts as a reference potential for the auto iris. This opens the iris. C3 is for smoothing the blanking pulse, and thermistor TH1 is for temperature compensation of TR3's base current.

2-1-5 Automatic Gain Control (AGC)

Output from the AGC output ports O0 – O4 of the microcomputer is converted to an analog voltage by the staircase D-A converter circuit.

Further, when the FADE IN or FADE OUT button is depressed, the fade-in or fade-out operation is performed

by changing the AGC output voltage as shown in Fig. 13. TR12 is for discharging C7 to reduce the AGC output to zero for quick fade-out (with fade-in reserved, to start the fade-in operation at the same time that recording is started, it is necessary to start at video out "O").

2-2 Saticon Tube

Fig. 5-10

The Saticon, which resembles a plumbicon, is a high-performance image pick-up tube almost always employed in a three-tube-type portable color TV camera intended for use at TV stations. The photo-conductive target of the Saticon is a film coating of amorphous materials primarily composed of Se (selenum), etc, departed by evaporation, as illustrated in Figure 5-10.

Since Se (selenium) itself is easily crystallized which causes damage to the film, and is insensitive to red light, As (arsenic) and Te (tellurium) are added to obtain the necessary improvement in properties.

However, if Se, As and Te are evenly distributed in the direction of film thickness to obtain sufficient "redsensitivity" image persistence and ghosting increase. For this reason, Te is applied only in the layer exposed to the incoming light.

Fig. 5-11

The scanning face is coated with an arsenic trisulphide (Sb2S3) layer to prevent intrusion of beam electrons and reduce the dark current so as to permit high speed scanning.

The incident visible light is almost entirely absorbed by the mixed Se-As-Te layer. A positive hole produced as a result of photo-excitation from a hole-electron pins, moves to the scanning side, while the electron moves to the signal electrode side. The results in a signal charge being accumulated.

The target voltage must be fixed at 50V to ensure that sufficient signal current is made available and ghosting is reduced.

As can be seen from Figure 5-11, the spectro-sensitivity is characterized by a high "blue" sensitivity, which indicates that the Saticon has well-balanced characteristics as a color image pick-up tube. The gamma (γ) is almost 1 but slightly smaller than 1 and image persistence is nearly always capacitive. With a 2/3-inch tube, if the initial signal current is 200 nA, the rate of image persistence is about 3% or less in the 3rd field after the light is cut off.

Further, the use of a low-image-persistence electron gun can halve the capacitive image persistence.

Another feature of the Saticon is reduced flare, with the dark current being 1 nA or less.

The photo-conductive film has a very high resolution, and even a 2/3-inch tube can provide the resolution characteristics required by TV broadcasting.

This helps to reduce the size of a color TV camera.

2-3 Pre-amplifier Circuit

Fig. 5-12

The purpose of the pre-amprifier circuit is to amplify the very weak signals provided by the Saticon tube, and thereby facilitate signal handling in the circuitry that follows.

The Saticon tube output is equivalent to a noise-free constant current source. Therefore the signal/noise (S/N) ratio of the camera is dominated by the performance of this pre-amplifier.

To improve the S/N ratio, it is necessary:

- a) To provide a high load resistance for the Saticon tube.
- b) To minimize parallel capacitance.
- c) To employ a device with a large mutual conductance in the first stage.

These reduce the equivalent noise resistance. Normally, an FET with an adequate noise figure is used in the first stage of the pre-amplifier.

In addition, a circuit known as the Pericival circuit is often used with the pre-amplifier. As shown in Figure 5-12, this circuit has a coil (L) inserted between the output of the Saticon tube and the input of the pre-amplifier. With the Percival circuit, the S/N ratio can be improved a few dB by separating the output capacitance of the Saticon tube from the input capacitance of the pre-amplifier by means of the Percival coil L.

2-4 Amplifier Circuit Summary

Fig. 5-13 Block Diagram of Process Amplifier

Fig. 5-14 Stripe Filter

Fig. 5-15 Output Waveforms

Fig. 5-16 Color Separation Circuit

On the stripe filter, yellow and cyan stripes intersect at a specified angle from the vertical as illustrated in Figure 5-14. Scanning takes place horizontally from left to right.

Suppose that a white subject is being shot. Various voltage waveforms resulting from photoelectric conversion through the stripe filter in the Saticon are shown in Figure 5-15.

The waveform in Figure 5-15, (A) is produced when the repeated white/green portion on the stripe filter is scanned along a straight line.

Then, as the next scanning line passes over the repeated cyan/yellow portion, the waveform shown in Figure 5-15, (B) is generated.

Subsequently, the horizontal scanning is repeated, resulting in these two waveforms alternating, and the output is amplified by the pre-amplifier.

The pre-amplifier output includes the color component centered on 4.3 MHz, and the Y-signal.

This output is then routed to a band pass filter (4.3 MHz ± 0.5 MHz) to select only the color signal centered on 4.3 MHz or so, and supply it to the color separation circuit. The basic circuit used for the purpose is shown in Figure 5-16. With VC-X2, a signal which has its phase shifted 270° is produced in IC9 AN6031. If waveform A in Figure 5-15 is supplied to this color separation circuit, it will be shifted 90° by TR5, resulting in the waveform shown in Figure 5-15 C being produced. In addition,

after being inverted and shifted 270° within IC9 AN6031, the waveform should appear as shown in Figure 5-15 ②. When the waveform ③, obtained by delaying waveform ④ by 1H, is electrically subtracted from the waveforms ② and ⑤, the R-signal and B-signal are separated.

Subsequently, the signals are routed through the shading correction and gain adjustment circuits before being detected.

Since outputs appearing at pin ⑦ (red) and pin ⑩ (blue) of IC9 AN6031 have only undergone wave rectification during detection, TR6 and TR7 are converted in emitter-follower configuration and both serve as active filters. The color signals (blue and red) that have been AMdetected are then supplied to their respective white balance circuits, where the white balance control signals (by way of the selector switch on the panel PCB) are used to change the gain of both the blue and red channel amplifiers, thereby balancing the blue and red signals with reference to the color temperature.

The outputs from the white balance circuits are supplied to IC4 AN6045 (color signal encoder) through its pin ③ (red signal) and pin ④ (blue signal). At the same time, the YL signal is supplied to pin ②. Each of these signals is clamped to produce B-Y and R-Y signals.

The AN6045 is provided with a circuit of single carrier frequency separation tube type to emphasize red and green which can be used to achieve good color reproduction.

However, with VC-X2, emphasizing both red and green results in degraded S/N of the chroma signal and thus provision is made so that only red is emphasized when the camera is used outdoors.

The color difference signals (B-Y and R-Y) are then gamma-corrected by the color process gamma circuit which gives $\gamma = 0.6$ when 3.3V is made available at pin ①.

After this, the signals are supplied to a balanced modulator, where they are converted to the reference TV color difference signal with the use of the reference TV signal subcarrier (NTSC = 3.5794 MHz; PAL = 4.433619 MHz).

The purpose of the chroma clip circuit that follows is to detect the YL signal level and effect chroma suppression at "high" and "low" levels. In addition, the edge error (vertical color error) detection signal is also involved.

The signal sent out from IC4 AN6045 through pin ② is supplied to a comb filter, where an unnecessary luminance (Y-signal) component is removed (applicable only to NTSC, however).

The color subcarrier is then delivered to IC7 AN614 (chroma negative/positive reversal circuit) for reversal of the chroma signal by the negative/positive control signal from the panel PCB.

The output is mixed with the contour correction signal from the aperture circuit before being supplied to the AGC circuit to which the Y-signal is also supplied. After automatic gain control by control signals from the window comparator (panel PCB) and microcomputer, the signal is clamped and then supplied to the set-up circuit, where the blanking signal is added and the pedestal level is set. Then, in the SYNC signal mixing circuit, the

SYNC and color burst signals are injected, to form a complete reference TV signal which is made available as an output at VIDEO OUT.

The Y-signal circuit functions as follows:

The output signal from the pre-amplifier contains the color component (around the 4.3 MHz carrier) as well as the Y-component, and therefore this color component is removed by a low-pass filter. This filtered luminance signal YH is then routed to the luminance (Y) process and Y negative/positive reversal circuits (IC7 MK-2) before being supplied to the AGC circuit via the aperture correction circuit in IC5 AM6022 for mixing with the chroma signal.

2-4-1 Clamp Circuits

Fig. 5-17

Fig. 5-18

Fig. 5-19

The output level of the image pick-up tube includes a dark current. This is a beam current that flows even when there is no incident light. When the dark current fluctuates due to ambient temperature, etc, the black level also fluctuates. Also, since the DC component is lost as the video signal is passed through an AC circuit, black-level signals may fluctuate. The purpose of a clamp circuit is to ensure that the black level of the video signal always remains fixed at a specified level.

Clamp circuits are used at various places in video process circuitry because video processing, such as white-clip, γ – correction, etc., requires that the black level be stabilized.

To detect the dark current, a black mask is mounted on part of the image pick-up tube as illustrated in Figure 5-14. The purpose of the black mask is to prevent the incident light from entering the tube for part of the horizontal scanning time. A black current is the current that flows at the time the masked portion is scanned by the beam. The output waveform is shown in Figure 5-15. During the time when the dark current only is flowing, the black level of the video signal is maintained at a given level for a period of time during which the clamp pulse is supplied to the base of TR1, which forms part of a clamp circuit consisting of C1, C2, TR1, R1 and R2. (See Figure 5-16.)

2-4-2 Gamma Correction Circuit

The relationship between the luminosity of a fluorescent screen and the video input signal of a Braun tube is not "linear", with gamma (γ) being about 2.2, while the gamma characteristic of the Saticon tube itself is about "1". Therefore, to obtain a total system gamma characteristic of "1", it is necessary to make gamma correction on a circuit basis. It is further required that the gamma correction be made on the camera side.

A system's total gamma can be calculated using the equation:

 $\gamma = \gamma 1 \times \gamma 2 \times \gamma 3$

where γ is the total gamma of a system, γ 1 is the gamma of a color Braun tube, γ 2 is the gamma of Saticon, and γ 3 is the gamma of a correction circuit.

For example, if $y_1 = 2.2$ and $y_2 = 1$, then a color camera with a Saticon requires a gamma correction of 0.45.

On VC-X2, gamma correction is made in ICs AN6012 and AN6045. The YH and YL signals in AN6012 can have their γ -value changed by a voltage applied to pin ②. In AN6045, the γ -value which is the process γ value of the chroma signal, can be changed by a voltage made available at pin ①.

2-4-3 White Balance Circuit

Fig. 5-20

The quality of light that illuminates a subject varies, depending on several factors:

- a) Weather conditions (fine or cloudy)
- b) Time of day (morning, noon, or evening)
- c) Place (indoors or outdoors)
- d) Light source (fluorescent or tungsten lamp, etc.)

In other words, a light can be reddish, bluish, and so forth. These tints of light can be represented by color temperatures expressed in degrees kelvin (°K).

The color temperature under direct sunlight on a fine day is about 6,000°K. It is between 7,000°K and 9,000°K in the shade, and is about 8,000°K under a cloudy sky.

An incandescent lamp has a color temperature of 3,200°K, while a fluorescent lamp has a color temperature of 4,500°K.

A color camera is normally factory-adjusted so that the colors of objects illuminated by a light source with a color temperature of 3,200K° can be reproduced accur-

ately.

This means that the camera needs to be adjusted when shooting outdoors in sunlight.

The white balance circuit is employed to provide this adjustment by changing the gain of both red and blue signal circuits. As shown in Figure 5-17, control over color temperature is provided by changing the gain of both the RED signal amplifier (Q1 to Q3) and the BLUE signal amplifier (Q4 to Q6) through selection of resistors (R78 to R83). Switching between Fluorescent Lamp and 5,500°K (3,000°K with BLUE CH.) is made by means of a change-over switch on the panel PCB.

If this switch is set to "AUTO" position, either 3,000°K (INDOOR) or 5,500°K (OUTDOOR) is selected automatically by the ON/OFF state of TR14 which is determined by the control signal from the auto-white balance circuit.

2-4-4 Auto-White Balance Circuit

Fig. 5-21

The reverse current (ISh) of a photodiode increases in step with the increase of incident light. (See Figure 5-18.) If the amount of incident blue (OUTDOOR) light increases, the output voltage (ISh \times R2) at pin (§) of IC1 increases. (See Figure 5-19.) This voltage is routed through a voltage follower (IC2) and is then compared in a comparator (IC6) with the output voltage derived from the incident red (INDOOR) light. In this case, since the blue (OUTDOOR) detection level is higher, the output at pin (¶) of IC6 goes to "H" and TR14 is activated. Pin (¶) of IC7 also goes to "H" and then pin (¶) gees to "L".

As a result, R80 goes to GND and the gain of the RED signal amplifier is increased. In this manner, the differ-

ence between OUTDOOR and INDOOR illumination can be detected.

When the camera is used under fluorescent lights, the blue output is accompanied by a flicker. If the flicker alone is amplified and routed to a buffer amplifier after deducting it from the blue output voltage, INDOOR may be selected because of reduced blue output voltage. (Note, however, that if there are many fluorescent lights, the flicker output is reduced, possibly resulting in OUTDOOR being selected.) IC4 is employed to serve this purpose.

IC3 is for sensing high luxes of illumination. At about 50,000 lux, OUTDOOR is selected automatically.

2-4-5 Luminance Y-Signal Negative/Positive Reversal Circuit

Fig. 5-23 Luminance (Y) Signal Negative/Positive Reversal Circuit

An hybrid IC MK-2 is used for Y-signal negative/positive reversal. This IC circuit includes YH white compression in addition to the reversal amplifier and the Sub-Carrier Blanking Pulse Mixer (SC-BLK PULSE MIX) for determining the pedestal level during "negative" periods. The common-emitter transistors for negative/positive switching are also included.

In Figure 5-10, the Y-signal is passed through the low pan filter (LPF) and then routed through two different paths.

FIRST PATH

The Y-signal which is routed to Q1 is then reversed by Q2 and γ -corrected by a γ (gamma) correction circuit consisting of D1 and Q3. Since clamping the reversed signal as it is causes the output to be lost, a Sub-Carrier Blanking (SC-BLK) pulse is injected at the emitter of Q2 (see Figure 5-22) to determine the pedestal level prior to clamping.

The reversed signal which has been gamma-corrected by D1 and Q3 is then supplied via eimitter-follower Q4 to the base of Q5.

SECOND PATH

The Y-signal that is routed to VR4 after being passed through the LPF, is then applied to the base of Q6 as a "positive" signal.

EXPLANATION OF SWITCHING

If the Negative/Positive control signal from the panel PCB is at "H" (Y-Positive). TR4 is activated, causing Q5 to be cut off. This in turn cuts off the negative videosignal and causes the "positive" video signal from pin (9) to be made available at pin (8) via the emitter-follower circuit of Q6.

On the other hand, if the control signal from the panel PCB is at "L", TR4 is deactivated and the "negative" video signal from Q4 is made available at pin ® via the emitter-follower circuit of Q5.

Since Q5 has a base bias higher than that of Q6 and its emitter current value is also higher, Q6 is automatically cut off, and so is the "positive" video signal.

Fig. 5-26 Chroma Negative/Positive Reversal Circuit

The chroma signal that has been modulated with the subcarrier (PAL = 4.433619 MHz; NTSC = 3.57954 MHz) in the balanced modulator (BM) within IC4 (AN6045) is then supplied to the input pin ③ of the chroma negative/positive reversal circuit (IC7 AN614).

Whether the phase of the chroma signal which is made available at pin ① of IC7 is to be reversed or not is determined by the negative/positive control signal from the panel PCB which is at either "H" or "L".

Suppose that the Normal/Reverse switch on the panel PCB is set to "COLOR NEGATIVE" position. The C-N/P control terminal goes to "H" and TR 21 is activated, which in turn causes pin ③ of IC7 to go to "L". Thus, Q5 within IC7 is turned off, Q6 is also turned off and as a result Q1 and Q4 are deactivated.

On the other hand, 3.3V is routed to pin ① of IC7 and therefore Q8 and Q7 within IC7 are both turned on,

activating Q2 and Q3. The chroma signal supplied through pin ③ of IC7 has its phase reversed 180° by Q2 and then is passed through the emitter-follower circuit of Q10 before being made available at pin ⑦ of IC7.

In contrast, when the Normal Reverse switch on the panel PCB is set to "COLOR NORMAL" position, the C-N/P control terminal goes to "L", causing TR21 to be turned off. As a result, pin ③ of IC7 goes to "H".

Thus, Q5 and Q6 are both turned on and Q9's collector potential is increased, turning Q7 off.

As a result Q1 and Q4 alone are activated, and the chroma signal from pin ③ of IC7 is passed through the emitter-follower circuit of Q1, the common base circuit of Q4, and then the emitter-follower circuit of Q10. From here the chroma signal is made available at pin ⑦ of IC7 without its phase being reversed.

2-4-7 Aperture Correction Circuit

Fig. 5-27

The spot formed by the scanning electron beam in the image pick-up tube must be finite in size, resulting in a reduced picture resolution of high frequency components. This is referred to as aperture distortion. The aperture correction circuit is employed to correct this aperture distortion.

With VC-X2, the delay line is unterminated on the load side so the signal is reflected back through the delay line from this end. The circuit shown in Figure 5-24 is used as a contour correction circuit. The contour correction signal generated by the amount of delay between pin ® and pin ① of IC5 (AN6022) is differentiated. The result is then passed through the base clip circuit in IC4 (AN60450). After being mixed with the chroma signal, it is supplied to the AGC amplifier, where it is mixed with the Y-signal. The inverted signal is then made available at pin ③ of IC5.

The AGC is intended to operate on TV signals after SYNC and COLOR BURST have been removed. Therefore, SYNC and color burst signals are added in the last stage after the AGC.

Figure 5-25 shows the block diagram of the AGC circuit. If pin (1) and pin (1) of IC5 AN6022 were connected together directly, a standard output would be made available at "AGC Full Gain". In view of this a + 6 dB amplifier (TR14 and TR15) is connected between these pins so that the AGC amplifier operates at -6 dB during NOR-

MAL operation and the output level is increased by +6 dB in low-illumination conditions. For this reason, AGC is applied to the video signal obtained from the point where it is amplified by +6 dB.

In addition, the video signal entering through pin ② is clamped and then passed through the set-up circuit. It is subsequently mixed with SYNC and COLOR BURST signals before being sent out from pin 9 as a standard TV signal.

2-4-9 Synchronizing (SYNC) Signal Generation Circuit

Fig. 5-29 Block Diagram of Sync Signal Generation

The purpose of this circuit to generate composite synchronizing signals to be mixed with the video signal as well as a variety of pulses to be supplied to various circuits.

The IC HD440072 is a one-chip IC used to generate synchronizing signals. Figure 5-26 shows the block diagram of the IC.

The portion A represents a crystal oscillator using a C-MOS inverter, which oscillates at 14.31000 MHz (NTSC) or a C-MOS inverter, which oscillates at 17.73000 MHz (PAL) which is four times the color subcarrier frequency. This frequency is divided by a factor of 4 to provide the color subcarrier. It is further divided by a factor of 162 and then this resultant output signal is subjected to phase comparison with the output

which is the result of dividing the frequency of the VCO (voltage conrolled oscillator) in portion B by a factor of 184.

The DC component of the phase comparator which is selected by a low pan filter in portion © is used to control the VCO in portion ®. This arrangement forms a PLL (phase locked loop) circuit.

Through the action of the PLL, the VCO frequency becomes 260 times the horizontal line frequency of 15.750 kHz (NTSC) or 15.625 kHz (PAL). This frequency is further divided by two and then applied as a clock pulse to the pulse forming counter, which generates horizontal drive (HD), vertical drive (VD) and synchronizing pulses required by the video circuitly.

2-4-10 Vertical Color Error Correction Circuit

Fig. 5-30 Vertical Color Error Correction Circuit

As described earlier, the image pick-up tube of this camera is the single carrier frequency separation type which uses vertical correlation during demodulation. This means that the red and blue signals are produced using a 1H delay in accordance with the description of sec-

tion 2.4.

The possibility exists that a false chroma signal will be generated if proper vertical correlation cannot be established. This error condition is corrected by suppressing the chroma signal where an error occurred.

2-4-11 Power Zoom

Fig. 5-31

The power zoom circuit is driven by IC8.

Depressing the contact switch slightly causes Common, A and C to be connected (first step).

Further depression of the switch causes all of Common, A, B and C to be brought into contact (Second step).

Thus, in the first step with the Wide Switch, voltage EW1 which is obtained by dividing 4.7V by R95 and R94 is applied to IC8 6. When the switch is further depressed, voltage EW2 which is obtained by dividing 4.7V by R95//R96 and R94 is applied.

Since EW₁ < EW₂, output voltage in the second step is lower than that in the first step, making zooming possible in the second step.

2-4-12 Auto Iris Control Circuit

The output signal available at pin (9) of IC6 is integrated by R28 and C11. The iris motor driven by IC5 is provided with a drive coil and a governor coil. The motor acceleration is detected by the governor coil and then supplied to pin (6) of IC5 to control speed of the iris motor.

Further, since a force is always applied, which tries to close the iris, there is always a balance current flowing through the drive coil to control the aperture. Therefore, when the power switch is turned off, the iris is automatically closed, thereby protecting the Saticon from incident light when not in use.

2-5 High Voltage & Deflection (H & D) Circuit

2-5-1 Horizontal Deflection (HD) Circuit

Fig. 5-32 Horizontal Deflection Circuit

The purpose of this circuit is to provide horizontal deflection of the electron beam in the Satison tube and to generate appropriate voltages for each electrode.

In Figure 5-29, the horizontal deflection transistor TR1 is driven by an HD pulse, which creates a flyback pulse of about 120 Vpp and 10 μ s in width at its collector. This pulse is supplied to a horizontal deflection

coil via horizontal scan width and linearity adjustment control circuits.

The flyback pulse is rectified for use as the saticon's cathode blanking power source and target voltage. In addition, the flyback pulse also is boosted by transformer T1 and then rectified by diodes. DC is obtained by smoothing and is supplied to the relevant electrodes.

VI. ADJUSTMENT

1. REQUIRED JIGS FOR ADJUSTMENT

1) Linearity Checker Circuit

Fig. 6-1

It is necessary to build a linearity checker circuit which is required in adjustment step 11. Note that the major parts and their numbers are as follows:

Parts No.

Description

EI-704201

IC M5144P

ET-632204

TR 2SC945L K, P, Q

EC-700214

Trimmer/C. MCV50D1H200YZ VC-65

Method of Adjusting TCI and VR1

Supply a sine wave of 43 MHz to INPUT and adjust TC1 so that the waveform on the oscilloscope is at 5.5V (center). Then, adjust VR1 so that a difference of $\pm 1V$ can be obtained with 4.3 MHz ± 100 kHz.

2) Extension Cords

Extension Cable 8P (VC-X2) Parts No. AJ-751233

Extension Cable 4P (VC-X2) Parts No. AJ-751234

Fig. 6-2

VI. ADJUSTMENT

1. REQUIRED JIGS FOR ADJUSTMENT

1) Linearity Checker Circuit

Fig. 6-1

It is necessary to build a linearity checker circuit which is required in adjustment step 11. Note that the major parts and their numbers are as follows:

Parts No.

Description

EI-704201

IC M5144P

ET-632204

TR 2SC945L K, P, Q

EC-700214

Trimmer/C. MCV50D1H200YZ VC-65

Method of Adjusting TC1 and VR1

Supply a sine wave of 43 MHz to INPUT and adjust TC1 so that the waveform on the oscilloscope is at 5.5V (center). Then, adjust VR1 so that a difference of \pm 1V can be obtained with 4.3 MHz \pm 100 kHz.

2) Extension Cords

Extension Cable 8P (VC-X2) Parts No. AJ-751233

Extension Cable 4P (VC-X2) Parts No. AJ-751234

Fig. 6-2

3) Resistance for heaters

Fig. 6-3

Since the heaters for the Saticon and EVF's CRT are connected in series, if adjustment is made with the EVF BLK removed, a resistance of 36 ohms must be installed as il-

lustrated above.

Note that a resistance of 1 kohm serves as a video circuit's output impedance.

4) Light Box (3,200 K°)

Note:

When make an adjustment with 5,100°K Light Box, please put the Lens Filter W10 to the VC-X2 Lens.

2. LOCATION OF POTENTIOMETERS AND TEST POINTS

1) H & D PCB

Fig. 6-4 H & D PCB Adjustment Points

2) VIDEO (1) PCB

Volume Marked With * Have Been Adjusted In Our Factory Do Not Adjust Accordingly.

Fig. 6-5 Video (1) PCB Adjustment Points

3) VIDEO (2) PCB

가는 사람들은 교육 중요한 기술을 하는 것 같은 사람들이 되었다. 그는 사람들은 사람들이 가장 하는 것 같은 것이다. 그는 것이다.

Fig. 6-6 Video (2) PCB Adjustment Points

4) PANEL PCB

Fig. 6-7 Panel PCB Adjustment Points

5) MECHANICAL ADJUSTMENT POINTS

Fig. 6-8 Mechanical Adjustment Points (Right Side)

Fig. 6-9 Mechanical Adjustment Points (Left Side)

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
1	Setting					Set each switch to proper position IRIS CLICK (NORMAL) NEGA/POSI SWITCH NORMAL WHITE BALANCE SWITCH (3000°K) AUTO-FOCUS SWITCHMANUAL ND FILTER OFF VTR SELECTOR SWITCH 3
2	DC Power Supply			Power TR TR6 (Collector) Refer to the Fig. 6-9)	VR19 (DC Power supply) H & D PCB	Connect DC Digital Voltmeter between TR6 (Collector) and GND. Adjust VR19 so that the Digital Voltmeter Readings 9.00V.
3	Clock osc frequency check			IC2 Pin ⑤ panel PCB	VR4 (clock osc) panel PCB	f = 800KHz 1. Connect an oscilloscope between pin ⑤ of IC2 (MP4523) and GND. 2. Adjust VR4 so that the waveform becomes as shown above.
4	Beam	Fluorescent lamp or Bright object	Open	TP6	VR6 (Beam) H & D PCB	DARK MONITOR SCREEN
						Adjust VR6 so that saturation level of the output waveform is 550 mV. * If level A is more than 709 mV, adjustment of above is set to 500 mV.
5	Checking for dirt	White	Open	Monitor screen		Upon replacement of the saticon tube, make certain that there is no adhering dirt or dust.
6	Target voltage			Connector P5 pin 3 (target out pin) of the H & D PCB	Confirmation	Connect digital voltmeter between connector (P5 pin ③) of the H & D PCB and GND, confirm the Digital Voltmeter Readings is within 50V ± 3V.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
				TP6 Video (2) PCB	Saticon tube (Loosen retaining screw	CARRIER N.G O.K
						(H-RATE) 1. Turn the tube so that the carrier waveform minimum, as shown above. [V-rate]
7	Turning tube	White		IC6 Pin 3 Video (2) PCB	VR16 (V-size) H & D PCB	(V-RATE) 2. Adjust VR16 (V-size) so that the
					Saticon tube	Beat is minimum. [H-rate]
						3. Turn the tube again so that the Beat is minimum.
8	Horizontal adjustment	Resolution		Monitor screen	Deflection coil	 Loosen retaining screw of the Deflection coil and turn the Deflection coil so that the picture is made level. After this tighten the retaining screw.
9	FOCUS	White	5.6	TP6 Video 2 PCB	VR5 (Focus)	MONIXAM THE PROPERTY OF THE PR
				rcs ,	H & D PCB	Adjust so that the modulated wave in the waveform becomes maximum.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
10	Back focus			Monitor screen	Back focus adjustment screw	 Set the Focus ring to "∞", Zoom to WIDE, and then shoot a distant object. Loosen the fixation screw and adjust Focus by means of the adjusting screw. Zoom to TELE and Focus by means of the Focus ring. Zoom ONCE again to WIDE and adjust to get the right Focus by means of the adjusting screw. Repeat the above step 1 through 4 until the object focused upon zooming to WIDE is found to be still in focus upon zooming to TELE. After this tighten the fixation screw.
11	H deflection	White		Connect linearity checker input to TP6 (Video (2) PCB) and its output to oscilloscope.	L1 (H-size) VR13 VR18 (H-linea- rity) H & D PCB	OV (H-Rate) Obtain an average output of 5.5V by means of L1, adjust VR13, and VR18 alternately to flatten the waveform. Repeat the adjustment until the satisfactory results are obtained.
12	H center	White		TP6	VR14 (H-center) H & D PCB	Adjust VR14 so that the rising edge of the video signal is 11 μ s from the start of the blanking period.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
13	V deflection	Resolution		Monitor screen	VR16 (V-size) H & D PCB	1. Zoom up so that the right-hand wedges for H-direction are as near to the edge of the monitor screen as possible. Note that the left-hand wedges must be hidden by the black mask. 2. Adjust by means of VR16 so that the wedges for V-direction are as near to the edges of the monitor screen as possible.
14	V center	Resolution		Monitor screen	VR15 (V-center) H & D PCB	Zoom to TELE and adjust the camera direction so that the center of the pattern is at the center of the monitor screen. Zoom to WIDE and adjust VR15 so that the center of the pattern coincides with the center of the monitor screen.
15	Beam				Readjust step 3	
			Click (Normal position)	TP6 Video 2 PCB	VR2 (Iris set) panel PCB	1. Set the IRIS to click position and adjust VR2 so that the white peak (Center) stands at 150 mV.
16			Open		VR3 (Damping) Video 2 PCB	TIME 1.4 Open 3 to 4 sec 2. Turn VR3 counterclockwise from
			Spen			parts side all the way and set IRIS to open, pick-up Gray scale interrupt light with hand. (Iris Open), and the EXPOSE to light. At this time adjust VR3 so that the IRIS METER moved like figure in above.
			Click (Nor- mal posi- tion)			3. Set the IRIS to click position again, and check level 1 (150 mV at center peak).

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
17	B signal	Gray scale	Click (Nor- mal posi- tion)	TP8	VR8 (Phase) VR9 (Balance) VR10 (B-gain) Video (2) PCB	1. Adjust VR8 and VR9 alternately so that a satisfactory staircase waveform is obtained. 2. Adjust VR10 so that the shite peak (Center) stand at 500 mV.
18	R signal	Gray scale	Click (Nor- mal posi- tion)	TP7	VR11 (R-gain) Video (2) PCB	1. Confirm a satisfactory staircase waveform is obtaind. 2. Adjust VR11 so that the white peak (Center) stands at 500 mV.
19	Alignment	Gray scale		Monitor screen	Alignment ring	MONITOR SCREEN 1. Adjust the alignment ring so that the black portions along the edges of lthe monitor screen do not move vertically/horizontally when VR5 (focus) is adjusted on the pannel PCB.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
			Click (Nor- mal posi- tion)		VR12 (Set-up) Video (2) PCB	3. Set IRIS to click (Normal) position, and adjust VR12 so that the rising curve obtained is identical to the one with TP8 (B-signal).
						1. Adjust VR10, VR9, VR7 and VR11 so that TP10 (YL signal) and TP8 (B-Signal) are same.
					VR10 (B-gain) Video (2) PCB VR9 (H-para) VR7 (H-saw) V11	VR10 → Total size of the waveform. VR9 → Linearity of the staircase waveform. VR7 → Incline of left and right. VR11 → Incline of left and
24	Shading	Gray scale	Click (Nor- mal posi- tion)	TP10 (YL-signal) TP8 (B-signal) Video (2) PCB	(V-saw) H & D PCB	right at V rate. 2. Adjust the follwing VRs so that the TP10 (YL-signal) waveform becomes identical to the TP7 (R-signal) waveform.
					VR11 (R-gain) Video (2) PCB VR10 (H-para) VR8 (H-saw) VR12 (V-saw) H & D PCB	VR10 → Linearity of the stair- case waveform. VR8 → Incline of left and right. VR12 → Incline of left and right at V rate. After finishing above adjustments, pick-up white pattern, and check co- lor phase irregularity. If it is found, take step again.
25	H center				Readjust step 13	
26	Yн white compression				VR4 (YH-WHT compression) Video (2) PCB	* Do not tamper with this adjust- ment (VR4), since it is factory ad- justed by a PCB tester. If it is tampered with, turn it com- pletely counterclockwise because it is originally set to almost maxi- mum position.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
27	White balance	Gray scale		TP2 Video (1) PCB	VR10 (B-gain) VR11 (R-gain) VR12 (YL-set up)	1. Adjust VR10 and VR11 so that the modulated carrier wave is minimized. UPPER SIDE LOWER SIDE (H-RATE)
					VC1 (YL-phase) Video (2) PCB	Upper side: adjust by means of VR10 and VR11. Lower side: Fine-adjust by means of VR12. 2. Adjust VC1 while wathcing screen so that smear from white to black (fall) and from black to white (rise) will be minimized.
28	AGC	Gray scale		TP2 Video (1) PCB	VR3 (AGC gain) Panel PCB VR22 (AGC fade out) Video (2) PCB	1. Turn IRIS slightly toward OPEN from "Click" position, and adjust VR23 so that the video output signal is available at 650 mV. 2. Reset IRIS to "Click" position and adjust VR3 so that the video output signal is 650 mV. 3. Set tha fade-out switch to ON to cause the picture to disappear on the monitor screen, and then adjust VR22 so that 7.0V is made available at pin 4 of IC5 (AN-6022).
29	Y-Sensitivity check	Grat scale	Click (Normal position)	TP2		1. Set IRIS to "Click" position. 2. Adjust the field angle so that the waveform of the video output is as shown above. 3. Set the ND filter to ON position. 4. Verify that the center white peak level is 400 mV or more. 5. If less than 400 mV, re-adjust or change the Saticon tube.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
						 Set IRIS to "Click" position. Adjust the field angle so that "full-size" can be obtained with respect to V-size. Try to attain the best in-focus condition.
					VR6 (Aperture) Video (1) PCB	3. Watching the TP2 (video ouput) waveform, adjust VR6 so that the peak of the modulated wave corresponding to a resolution of 200 lines coincides with the white
30	Aperture	Resolution chart	Click	TP2_		peak.
						PART OF RESOLUTION 200 LINES. WHITE PEAK LEVEL
					VR13 (Hi-clip) Video (2) PCB	
31	Chroma supress	Gray scale		TP2	VR5 (Chroma base clip) (Hi-clip)	 Turn VR5 all the way clockwise. Set IRIS so that the video output is 800 mV, and adjust VR13 so that a little of the white peak (Center, B point) is cliped. Further, shoot an ordinary picture and verify that colors are all reproduced properly.
					VR9 (Burst phase) Video (1) PCB	 Connect the vector scope between video output (TP2) and GND. Adjust VR9 and VR17 so that the chroma phase is in correct position.
32	Chroma phase	Color bar		TP2	VR17 (B-correct) Video (2) PCB	tion.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
33	Chroma gain	Color bar	Click	TP2	VR10 (Chroma gain) Video (1) PCB	 Set IRIS to "Click" position. Adjust the field angle so that "Full Size" can be obtained. Adjust VR10 so that a yellow vector is within the ⊕ mark on a vector scope. Then, verify that the subcarrier waveform is not saturated at all hues on an oscilloscope.
					VR5 (Base clip) Video (1) PCB VR14 (Chroma supress low) Video (2) PCB	STICK THE ACETATE TAPE FOR STANDARD BLACK LEVEL. STICK THE ACETATE TAPE FOR STANDARD BLACK LEVEL. (H-RATE)
34	Chroma low supress	Gray scale	Clip (Nor- mal posi- tion)	TP2 Video (1) PCB		 Set IRIS to "Click" position. Turn VR5 (chrom base clip) clockwise to "OFF" Adjust VR14 so that the carrier component on the reference black level is made available at 30 mV p-p. If less than 30 mV p-p, slight clipping is required.
						4. Adjust the fields as illustrated above. 5. Set the ND filter to ON position. 6. Verify that the colors B and G do not disappear completely. Note: If B and G have disappeared, check Y-sensitivity, etc. once again, and readjust or change the Saticon tube.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks
35	Vertical color error correction	Gray scale		FL-1 "hot" side Video (1) PCB	VR1 (V-color error correct) VR2 (Edge correct gain) Video (1) PCB	(NO GOOD) (H-RATE) 1. Confirm the correction signal is balanced as shown above. WATCH THIS STRAIGHT PART 2. Adjust VR2 so that colored shades are no more present in the straight portions. 3. Shoot an ordinary scene and verify that the picture is free from an edge error (color missing in particular). *Note: When a return is made to the previous step after completion of the adjustment, be sure to set VR2 to OFF (the top to GND).
36	Burst	Gray scale		TP2 Video (1) PCB	VR7 (Brust gain) VR8 (Burst carri balance)	1. Adjust VR17 so that the Burst level is 0.3V p-p, as shown above. 2. Adjust VR8 so that the Carrire leak is minimum as shown above.

Step	Adjustment Item	Pattern	Iris	Test Point	Adjustment Point	Result & Remarks		
37	Red stimulator	Color bar		TP2 Video (1) PCB	VR4 (Red stimulator) Video (1) PCB	 Connect a vector scope between video output (TP2) and GND. Set white balance selector S.W. to (5500°K) position and put on the lens filter W12. Watching the vector scope, adjust VR4 so that red level is increased 130%. 		
38	Assembling		1					
39	White balance	 Perform Step 26 (check or readjust). Other associated checking. 						

Note:

The follwing adjustments are made at the factory using a printed circuit board tester.

If readjustment becomes necessary or VRs, etc. are turned inadvertently, then necessary adjustments should be made as follows:

1. Video (1) PCB VC2 $(4 \times fsc)$

Adjust VC2 so that the subcarrier at pin ③ or ⑤ of IC2 (TC4049BP) is:

 $3.57945 \text{ MHz} \pm 50 \text{ Hz}$ (NTSC Model), or $4.433619 \text{ MHz} \pm 50 \text{ Hz}$ (PAL Model).

VL1 (PLL Center)

Adjust VL1 so that 3.5V is made available at pin ⑤ of IC1 (HD440072).

VR5 (Chroma Base Clip)

Turn VR5 all the way counterclockwise (as viewed from the parts side) and set there.

2. Video (2) PCB

VR1 (Off Set)

VR2 (AW Balance)

Darken AW sensor, measure TP4 with digital voltmeter, and take the measured value as "X", then measure TP3 with digital voltmeter, and adjust VR1 to "X" + 10 mV. Then bring the sensor close to light box, put lens filter C2 on, and adjust VR2 until the voltages on TP3 and TP4 agree.

VR4 (YH White Compression)

Turn VR4 completely clockwise (as viewed from the parts side) and set there.

VR5 (YH Gain)

Turn VR5 all the way counterclockwise (as viewed from the parts side) and set there.

$VR7 (YN \gamma)$

Turn VR7 completely clockwise (as viewed from the parts side) and set there.

3. Pre-Amp PCB

1) VC2

Shoot the APL 20 percent pattern and connect an oscilloscope to the TP6.

Adjust VC2 so that the carrier which part of falling down (White to Black) is flat.

Fig. 6-10

2) VC1

Shoot the APL 20 percent pattern and connect an oscilloscope to the TP6. Adjust VC1 so that the component of Low frequency which part of falling down (White to Black) is flat.

Fig. 6-11

3) VR1

Shoot the Resolution pattern and watching the monitor screen. Adjust VR1 so that the Resolution 200 lines are clear, and then adjust white Balance (step 27)

3. ADJUSTING THE EVF BLOCK

To adjust the EVF Block, it is necessary to connect it to the camera body that has been thoroughly adjusted.

Fig. 6-12 EVF Block

Step	Adjustment Item	Pattern	Test Point	Adjustment Point	Result & Remarks
1	H-Hold	Resolution	EVF screen	VR1 (H- hold)	Fix at point at which the picture synchronizes into one picture.
2	V-Hold	Resolution	EVF screen	VR2 (V- hold)	Fix at position at which the picture is stationary.
3	CRT yoke	Resolution	Monitor screen EVF screen	L1 (DY)	Monitor Screen Set the camera so that the wedges found in the upper and lower portions of the pattern align with the boundary of the monitor screen. Then, turn the zoom ring to bring the wedges onto the boundary of the EVF screen, at which time the deflecting yoke must be adjusted so that a picture slope of 0 ± 0.8 mm is obtained.

Step	Adjustment Item	Pattern	Test Point	Adjustment Point	Result & Remarks
					(a)Monitor Screen
					(b) EVF Screen
4	H deflection size & V deflection Size	Resolution	Monitor screen & EVF screen	L2 (H-size) VR3 (V-size)	(c)EVF Screen
					 Set the camera so that the wedges under each side of the pattern align with the boundary of the monitor screen. It is also necessary to make the following adjustment so that 85% ± 5% of the resolution pattern is displayed on the EVF screen. Adjust L2 (H-deflection size) so that the pattern displayed is as shown in (b) above. Adjust VR3 (V-deflection size) so that the circles within the resolution pattern are free of distortions. Verify that the picture displayed on the EVF screen is 85% ± 5% of the picture displayed on the monitor screen.

Step	Adjustment Item	Pattern	Test Point	Adjustment Point	Result & Remarks
5	Contrast	Gray scale	EVF screen	VR4	Adjust VR4 so that No. 9 and No. 10 of gray scale chart attached to the resolution pattern can be distinguished.
6	Brightness	Gray scale	EVF screen	VRS	Adjust VR5 to such a brightness that facilitates focusing.
7	Focus	Resolution	EVF screen	VR6	Adjust VR6 so that the highest resolution can be obtained: Verify that the resolution obtained is at least 330 lines (Horizontal) by 270 lines (Vertical).
8	Centering	Resolution	Monitor screen & EVF screen	Centering magnet	Adjust centering magnet so that the center of the resolution pattern reflected on monitor screen comes to the center of screen.

VII. CLASSIFICATION OF VARIOUS P.C BOARDS

1. P.C BOARD TITLES AND IDENTIFICATION NUMBERS

	P.C Board Title	P.C Board Number
Video (1)	P.C Board	V3004A501A
Video (2)	P.C Board	V3004A501B
Pre Amp	P.C Board	V3004A501C
AW	P.C Board	V3004A501D
H & D	P.C Board	V3004B502A
Socket	P.C Board	V3004B502B
Panel	P.C Board	V3004C5030
Fade	P.C Board	V3004D504A
Rec	P.C Board	V3004D504B
EVF	P.C Board	V3003C5040

2. COMPOSITION OF VARIOUS P.C BOARDS

1) VIDEO (1) P.C BOARD V3004A501A (VC-X2E)

TR1 to 4, TR7 to 10, 15, 19 ---- 2SA 1115 (E,F)
TR5,6,11 to 14,17,18,20,21 ---- 2SC 2603(E,F)
TR16 ---- 2SK 117 (GR,BL)

MARKED WITH & HAVE BEEN ALREADY ABJUSTED IN OUR FACTORY.

DO NOT ADJUST, ACCORDINGLY.

TR1 to 4, TR7 to 10, 15, 19 ---- 2SA 1115 (E,F)
TR5,6,11 to 14,17,18,20,21 --- 2SC 2603(E,F)
TR16 --- 2SK 117 (GR,BL)

MARKED WITH & HAVE BEEN ALREADY ADJUSTED IN OUR FACTORY.

DO NOT ADJUST, ACCORDINGLY.

4) HIGH VOLTAGE & DEFLECTION (H & D) P.C BOARD V3004B502A AND SOCKET P.C BOARD V3004B502B

5) PANEL P.C BOARD V3004C5030, FADE P.C BOARD V3004D504A, REC P.C BOARD V3004D504B AND AW P.C BOARD V3004A501D

AW PC BOARD V3004A50ID

6) PRE AMP P.C BOARD V3004A501C

7) EVF P.C BOARD V3003C5040

DO NOT ADJUST, ACCORDINGLY.

SECTION 2

PARTS LIST

TABLE OF CONTENTS

RE	COMMENDED SPAR	E PA	RTS		 17 11	67
1.	VIDEO P.C BOARD F	SLOC	K	 	 	68
2.	H & D P.C BOARD B	LOCE	C		 	69
	PANEL P.C BOARD	100	A 14 14 14 14 14 14 14 14 14 14 14 14 14		 7777	69
	EVF P.C BOARD BLO				 	69
	ASSEMBLY BLOCK.	0.000.04	Marine Salah Sa			70
	FINAL ASSEMBLY H		K			7 3
		Sales I				
IN	DEX			157751		74
100		200000	1.00	(H)		

Please refer to COMMON LIST FOR SERVICE PARTS, for Resistor and Capacitor which are not listed in this parts list.

65

ATTENTION

- 1. When placing an order for parts, be sure to list the parts no. model no., and description. There are instances in which if any of this information is omitted, parts cannot be shipped or the wrong parts will be delivered.
- 2. Please be careful not to make a mistake in the parts no. If the parts no. is in error, a part different from the one ordered may be delivered.
- 3. Because parts number and parts unit supply in the Preliminary Parts List may be partially changed, please use this parts list for all future reference.

HOW TO USE THIS PARTS LIST

- 1. This Parts List shows the parts that are considered necessary for repairs. Other parts, such as resistors and capacitors, are shown in the "Common List for Service Parts". Select and order such parts from the "Common List for Service Parts".
- 2. The Recommended Spare Parts shows those parts in the Parts List which are considered particularly important for service.
- 3. Parts not shown in the Parts List and "Common List for Service Parts" will not be supplied in principle.
- 4. How to read list
 - a) Mechanism Block

b) P.C Board Block

2. HEAD BASE BLOCK

REF. PARTS NO. DESCRIPTION 2-1x BH-T2023A320A HEAD BASE BLOCK GX-F66R 2-2 HP-H2206A010A HEAD R/P PR4-8FU C 2-3 ZS-477876 PAN20x03STL CMT

ZS-477876 ZS-536488 ZG-402895

2-4

BID20x08STL CMT
CS ANGLE ADJUST SPRING

SP (Service Parts) Classification

A small "x" indicates the inability to show that particular part in the Photo or Illustration.

This number corresponds with the individual parts index number in that figure

 This number corresponds with the Figure – Number

6. SYS. CON. P.C BOARD BLOCK

REF. NO.	PARTS NO.	DESCRIPTION
6-1	BA-T2034A070	A PC SYS CON BLK GX-F44R
6-IC1	EI-324536	IC HD14049BP
6-IC2	EI-336801	IC MB8841-564M
6-IC3	EI-331661	IC SN7405N
6-IC4	EI-336725	IC M54527P
6-TR1to4	ET-200985	TR 2SC2603 F,G
6-TR5to28	ET-554657	TR 2SA733A P,Q
6-D1	ED-318292	D SILICON H 1S2473T-77 T26
6-D2to4	ED-308952	D GERMA V 1K34A-LR F07
6-D5to10	ED-318292	D SILICON H 1S2473T-77 T26
6-X1	EI-318384	OSC X'TAL NC-18C
		3.579545MHZ
	SP (Serv	rice Parts) Classification
		erence numbers corresponds nbol numbers of Schematic s.

5. Both the kind of part and installation position can be determined by the Parts Number. To determine where a parts number is listed, utilize Parts Index at end of Parts List. It is necessary first of all to find the Parts Number. This can be accomplished by using the Reference Number listed at right of parts number in the Parts Index.

WARNING

△ INDICATES SAFETY CRITICAL COMPONENTS. FOR CONTINUED SAFETY, REPLACE SAFETY CRITICAL COMPONENTS ONLY WITH MANUFACTURER'S RECOMMENDED PARTS.

AVERTISSEMENT

⚠ IL INDIQUE LES COMPOSANTS CRITIQUES DE SURETE. POUR MAINTENIR LE DEGRE DE SECURITE DE L'APPAREIL NE REMPLACER LES COMPOSANTS DONT LE FONCTIONNEMENT EST CRITIQUE POUR LA SECURITE QUE PAR DES PIECES RECOMMANDEES PAR LE FABRICANT.

		PARE PARTS	REF. NO.	PARTS NO.	DESCRIPTION
. 37	71.4	sted below are on hand, almost			
		omplished, we suggest that you ed Spare Parts Items.	63	EO-307409	⚠ COIL CA. TV LINEARITY CANS-466
ck me	se Recommend	ta spate raits items.	64	EO-201965	COIL CA. TV LINEARITY LCH-
F.			65	ER-326169	⚠ R FUSE ERD2FC F10 1/4W
r. F.	PARTS NO.	DESCRIPTION	Í		22R
•			66	ER-318235	CR COMP EXR-P100K-474C
	BM-307613	⚠ MOTOR T16056-M0827¥	67	ER-309996	CR COMP EXR-P101K-103C
	EC-332222	C S-FIX H TZ03R300E 5,2-30	68	ER-309982	CR COMP EXR-P221K-102C
	EC-307634	C S-FIX V ECV-1ZW10×60	69	ER-341519	CR COMP 10-0056
	ED-201967	D LED LN26RP RED	70	ER-338309	CR COMP 10-0062
	ED-201968	D LED LN36BP GRN	71	ER-338560	CR COMP 10-0068
	ED-201969	D LED LN46YP ORG	72	ER-300068	FILTER CE TPS3.58MA 3.580MF
	ED-300143	D PHOTO BS-500B			(VC-X2
	ED-301911	D SILICON H DS448	73	ER-338339	FILTER CE TPS4.43 MA 4.430 M
	ED-200212	D SILICON H DS448F×2 F07			(VC-X
	ED-522472	D SILICON HF-1Z 200/0.6A	74	ER-341518	FILTER LC BP 221FCCS-2219
	ED-309859	D SILICON RH-1S 600/0.2A	1		4.3 M
	ED-523618	D SILICON SF-1-8 800/0.2A	75	ER-341517	FILTER LC LP 236LVS-1635
	ED-325016 ED-306732	D SILICON \$5277D 200/1.0A	76	ER-341533	R COMP RGSD10A0306
		D SILICON V DS448-VB6	77	ER-341535	R COMP 1D-0005
	ED-200468		78	ER-338584	R THERMO H 3900PPM 1/4W 27
	ED-307645	D VARACTOR 1S2688 D ZENER H HZ6L A2	79	ER-337745	R THRMO H 2700PPM 1/4W 103
	ED-310025		80	ER-341534	RD COMP 3D-0007
	ED-307752	D ZENER H HZ6L B2	81	ES-341532	SW SLIDE MSS-P-1-2 01-2
	ED-307690	D ZENER H HZ7L A1	82	ES-307659	SW SLIDE MSS-P-2-4
	EF-318608	△ FUSE GGS A 250V 1A (C, A)	83	ES-341531	SW SLIDE MSS-P-2-4 02-4
		(F1)	84	ES-300122	SW TACT EVQ-QBR08K
	EF-309387	⚠ FUSE TSC A 250V 1A (J)(F1)	85	ES-332277	SW TACT EVQ-QJ104K
	EF-623103	FUSE SEMKO T 250V 1A	86	ES-307404	SW TACT KHC10014
		(VC-X2E) (F1)	87	ET-321016	TR FET 2SK117 GR, BL
	EI-341521	DL DL102151D-326	88	ET-307630	TR FET 2SK218 P
	EI-341524	DL DL102401D-325	89	ET-200558	TR 2SA1115 E, F
	EI-341522	DL DL102701D-327	90	ET-341603	TR 2SA1123 R, S
	EI-341623	DL EFD-MN645A13A (VC-X2E)	91	ET-554657	TR 2SA7123 K, 3
	EI-341523	DL EFD-MN645K15E (VC-X2U)	92	ET-328436	TR 2SA937 Q, R
	EI-341512	DL EFD-PN645B85B (VC-X2U)	93	ET-330427	TR 2SB772 E, P
	EI-341595	DL MS-19P (VC-X2E)	94	ET-328435	TR 2SC2021 R, S
	EI-201970	IC AN5750	95	ET-305468	TR 2SC2264
	EI-201972	IC AN5760	96	ET-338594	TR 2SC2291 F, G, H
	EI-341525	IC AN6012	97	ET-338595	TR 2SC2291 F, G, H
	EI-341513	IC AN6022	98	ET-330526	TR 2SC2377 C, D
	EI-341528	IC AN6031	99	ET-200480	TR 2SC2577 C, D
	EI-341516	IC AN6041	100	ET-200480	TR 2SC2603 E, F
	EI-341514	IC AN6045	101	ET-515733	TR 2SC2003 E, F TR 2SC945L P, Q, R
	EI-300128	IC AN612	102	ET-307571	TR 2SD781
	EI-300141	IC AN614	103	EU-307635	△ CRT 40CB4M
	EI-300130	IC HD440072	104	EU-341599	△ IMAGE-T SATICON H4100
	EI-341501	IC LA3210	104	EU-341399	(VC-X
	EI-341527	IC MA7220	105	TTT 241700	
	E1-341500	IC MK-1	105	EU-341600	△ IMAGE-T SATICON H4103
	EI-341526	IC MK-2	106	EN 220074	(VC-X
	EI-341536	IC MP4523	106	EV-338074	R S-FIX H EVNB3AAOO 3P 302
	EI-341529	IC M5414P	107	EV-338583	R S-FIX H H0621A 3P 0.30W 101
	EI-307644	IC NJM4556D	108	EV-307623	R S-FIX H H0621A 3P.0.30W 102
	EI-213390	IC NJM4558D	109	EV-341561	R S-FIX H H0621A 3P 0.30W 105
	EI-305456	IC TC4049BP	110	EV-307629	R S-FIX H H0621A 3P 0.30W 223
	EI-324255	IC TL082CP	111	EV-307655	R S-FIX H H0621A 3P 0.30W 225
	EI-311392	IC UPC358C	112	EV-307652	R S-FIX H H0621A 3P 0.30W 474
	EI-310031	IC UPC78L05	113	EV-332404	R S-FIX H H0651A 3P 0.05W 101
	E1-300840	OSC X'TAL HC-18/U	114	EV-307653	R S-FIX H H0651A 3P 0.05W 103
		14.31818 OMHz (VC-X2U)	115	EV-307621	R S-FIX H H0651A 3P 0.05W 103
	EI-341511	OSC X'TAL HC-18/U	116	EV-341560	R S-FIX H H0651A 3P 0.05W 105
	24-244211	17.734475MHz (VC-X2E)	117	EV-332319	R S-FIX H H0651A 3P 0.05W 221
	EJ-341598	DIN J TCS0819-0601 L 8P	118	EV-307620	R S-FIX H H0651A 3P 0.05W 222
	EJ-307693	PHONE J 2P HSJ0289-050 2.5	119	EV-307709	R S-FIX H H0651A 3P 0.05W 223
	EJ-464995	PHONE J 2P SJ296-1-15 3.5	120	EV-332321	R S-FIX H H0651A 3P 0.05W 331
	EJ-341601	PLUG CONNECTOR D8-102N-100	121	EV-307706	R S-FIX H H0651A 3P 0.05W 471
	13-341001	PLOG CONNECTOR D8-102N-100 8P	122	EV-307694	R S-FIX H H0651A 3P 0.05W 472
	E1 211202		123	EV-336770	R S-FIX H H0651A 3P 0.05W 473
	EJ-311393	SOCKET CRT SPECIAL-7P	124	EV-338360	R S-FIX V EVM-31G 3P 0.30W 50
	E1 311305	\$7-506P-44	125	EV-338359	R S-FIX V EVN-31C 3P 102
	EJ-311395	SOCKET VIDICON MT-7P	126	EV-338358	R S-FIX V EVN-31C 3P 103
	FO 2011	\$8-612J-02 P	127	EV-338388	R S-FIX V RVS0707H 3P 0.33W 1
	EO-301630	△ COIL CA. TV FLYBACK VHT-4	128	EV-522404	R S-FIX V V8K1-1 3P 102
	EO-341502		1	EV-475470	R S-FIX V V8K1-1 3P 103
	EO-341302				
		HVT-7	129		
	EO-311396		130	EV-522663 EV-522652	R S-FIX V V8K1-1 3P 104 R S-FIX V V8K1-1 3P 105

REF. NO.	PARTS NO.	DESCRIPTION	REF.	PARTS NO.	DESCRIPTION
133 134		VR ROTARY 16W10S0A B102 CORD VC-X2 CAMERA CABLE	1-R80	ER-338584	R THERMO H 3900PPM 1/4W 271J
135		LENS J6×11 – 14IG AF-2 PART	1-C9	EC-338596	C EC V NP 100M 16DC
136		MIC EMU-4628A 2.00K	1-C41	EC-300193	C EC V F05 NP SM 100M 16DC
				VIDEO (2) P.C	
			1-IC1, 2	EI-324255	IC TL082CP
			1-IC3	EI-311392	IC UPC358C
			1-IC4	EI-341529	IC M5414P
		· ·	1-IC5	EI-307644	IC NJM4556D
			1-IC6	EI-341525	IC AN6012
			1-IC7	EI-341526	IC MK-2
1. VIDE	O P.C BOARI	D BLOCK	1-IC8	EI-307644	IC NJM4556D
			1-IC9	EI-341528	IC AN6031
REF.	PARTS NO.	DESCRIPTION	l-IC10 l-TR1	EI-341527	IC MA7220
NO.	TAR 13 NO.	DESCRIPTION	1-TR1	ET-321016	TR FET 2SK117 GR, BL
			1-TR2	ET-200505 ET-200558	TR 2SC2603 E, F
1-1	BA-V3004A170A	PC VIDEO (I) BLK VC-X2E	1-TR5 to 8	ET-200505	TR 2SA1115 E, F TR 2SC2603 E, F
1-2	BA-V3004A170B	PC VIDEO (1) BLK VC-X2U	1-TR9	ET-321016	TR 25C2603 E, F TR FET 2SK117 GR, BL
			1-TR10 to 12		TR 2SA1115 E, F
	VIDEO (1) P.C		1-TR13	ET-338594	TR 2SC2291 F, G, H
1-IC1	EI-300130	IC HD440072	1-TR13	ET-200505	TR 2SC2291 F, G, H TR 2SC2603 E, F
1-IC2	EI-305456	IC TC4049BP	1-D1 to 6	ED-200212	D SILICON H DS448F×2 F07
1-IC3	ET-341516	IC AN6041	1-D1 to 0	ED-200212 ED-200212	D SILICON H DS448Fx2 F07
1-IC4	EI-341514	IC AN6045	1-SW1, 2	ES-300122	SW TACT EVQ-QBR08K
1-IC5	EI-341513	IC AN6022	1-SW3	ES-332277	SW TACT EVQ-QJ104K
1-IC6	EI-300128	IC AN612	I-VRI	EV-307620	R S-FIX H H0651A 3P 0.05W 222
1-IC7	EI-300141	IC AN614	1-VR2	EV-307652	R S-FIX H H0621A 3P 0.30W 474
1-TR1 to 4 1-TR5,6	ET-200558	TR 2SA1115 E,F	1-VR3	EV-307621	R FIX H H0651A 3P 0.05W 103
1-TR3,6 1-TR7 to 10	ET-200505	TR 2SC2603 E,F	1-VR4	EV-332319	R S-FIX H H0651A 3P 0.05W 221
1-TR/1010	ET-200558	TR 2SA1115 E,F	1-VR5	EV-307653	R S-FIX H H0651A 3P 0.05W 102
1-TR11 to 14	ET-200558	TR 2SC2603 E,F TR 2SA1115 E,F	1-VR6, 7	EV-307621	R S-FIX H H0651A 3P 0.05W 103
1-TR16	ET-321016		1-VR8	EV-307623	R S-FIX H H0621A 3P 0.30W 102
1-TR17, 18	ET-200505	TR FET 2SK117 GR, BL TR 2SC2603 E,F	1-VR9	EV-332321	R S-FIX H H0651A 3P 0.05W 331
1-TR19	ET-200558	TR 2SC2003 E,F	1-VR10, 11	EV-307620	R S-FIX H H0651A 3P 0.05W 222
1-TR20, 21	ET-200505	TR 2SC2603 E,F	1-VR12	EV-307706	R S-FIX H H0651A 3P 0.05W 471
1-TR22	ET-200558	TR 2S62003 E,F	1-VR13	EV-307653	R S-FIX H H0651A 3P 0.05W 102
1-D1	ED-307645	D VARACTOR 1S2688	1-VR14	EV-307706	R S-FIX H H0651A 3P 0.05W 471
1-VC1, 2	EC-332222	C S-FIX H TZ03R300E 5.2 – 30	1-VR17	EV-307621	R S-FIX H H0651A 3P 0.05W 103
I-VR1, 2	EV-307620	R S-FIX H H0651A 3P 0.05W 222	1-VR19, 20	EV-307620	R S-FIX H H0651A 3P 0.05W 222
1-VR4	EV-307694	R S-FIX H H0651A 3P 0.05W 472	1-VR21	EV-307653	R S-FIX H H0651A 3P 0.05W 102
1-VR5	EV-332404	R S-FIX H H0651A 3P 0.05W 101	1-VR22	EV-307709	R S-FIX H H0651A 3P 0.05W 223
1-VR6	EV-307621	R S-FIX H H0651A 3P 0.05W 103	1-VR23	EV-307620	R S-FIX H H0651A 3P 0.05W 222
1-VR7	EV-336770	R S-FIX H H0651A 3P 0.05W 473	1-L1, 2 1-L3, 4	EO-330252	COIL FIX 1 EL0606SKI 100µH K
1-VR8	EV-307621	R S-FIX H H0651A 3P 0.05W 103	1-L5, 4 1-L5, 6	EO-341579	COIL FIX 1 L-5 8.2µH J
1-VR9	EV-338583	R S-FIX H H0621A 3P 0.30W 101	1-E5, 0 1-FL1	EO-485278 ER-341518	COIL FIX 1 FL05H 220µH K FILTER LC BP 221FCCS-2219
1-VR10	EV-307621	R S-FIX H H0651A 3P 0.05W 103	1121	ER-341316	4.30 MHz
1-L1, 2	EO-330252	COIL FIX 1 EL0606SKI 100µH K	1-FL2	ER-341517	FILTER LC LP 236LVS-1635
1-L3	EO-322395	COIL FIX 1 EL0810SKI 100µH K	1-CR1, 2	ER-338560	CR COMP 10-0068
1-L4	EO-341579	COIL FIX 1 L-5 8.2μH J (VC-X2E)	1-CR3	ER-338309	CR COMP 10-0062
1-L4	EO-341586	COIL FIX 1 L-5 15μH J (VC-X2U)	1-DL1	EI-341524	DL DL102401D-325
1-L5	EO-341579	COIL FIX 1 L-5 8.2 μ H J (VC-X2E)	1-DL2	EI-341623	DL EFD-MN645A13A (VC-X2E)
1-L5 1-L6	EO-341586 EO-357287	COIL FIX 1 L-5 15 µH J (VC-X2U)	1-DL	EI-341523	DL EFD-MN645K15E (VC-X2U)
1-F0	LO-331201	COIL FIX 1 FL05H 100µH K	1-VC1	EC-332222	C S-FIX H TZ03R300E 5.2-30
1-L6	EO-241380	(VC-X2E) COIL FIX 1 FL05H 120µH K	1-R2	ER-341550	R MF H F10 1/4W 1004F
. 20	20-241300	(VC-X2U)	1-R18	ER-341551	R MF H F10 1/4W 1003F
1-L7,8	EO-330252	CQIL FIX 1 EL0606SKI 100µH K	1-R30	ER-330304	R MF H F10 1/4W 1102F
1-VL1	EO-341542	COIL VARI I L215 VXN1243Z	1-R31	ER-341612	R MF H F10 1/4W 6200F
		35μH	I-R40	ER-337745	R THRMO H 2700PPM 1/4W 103J
1-CR1	ER-341519	CR COMP 10-0056	1-R78	ER-341609	R MF H F10 1/4W 3901F
I-FLI	ER-338339	FILTER CE TPS4.43MA	1-R79	ER-338078	R MF H F10 1/4W 3601F
		4.430 MHz (VC-X2E)	1-R80	ER-341608	R MF H F10 1/4W 2401F
1-FL1	ER-300068	FILTER CE TPS3.58MA	1-R81	ER-341609	R MF H F10 1/4W 3901F
		3.580 MHz (VC-X2U)	1-R82	ER-341617	R MF H F10 1/4W 3001F
1-X1	EI-341511	OSC X'TAL HC-18/U 17.734	1-R83	ER-341552	R MF H F10 1/4W 1001F
		475 MHz (VC-X2E)	1-R87	ER-341577	R MF H F10 1/4W 7501F
1-X1	EI-300840	OSC X'TAL HC-18/U 14.318	1-R88	ER-338079	R MF H F10 1/4W 4301F
		180 MHz (VC-X2U)	1-C6	EC-300193	C EC V F05 NP SM 100M 16DC
1-DL1	EI-341595	DL MS-19P (VC-X2E)	1-C9	EC-300193	C EC V F05 NP SM 100M 16DC
1-DL1	EI-341512	DL EFD-PN645B85B (VC-X2U)	1-C21 1-C24	EC-307684	C EC V F05 NP SM R47M 50DC
1-DL2	EI-341521	DL DL102151D-326	1-C34	EC-307793	C EC V F05 NP SM 220M 10DC
1-DL3	EI-341522	DL DL102701D-327	1-C50	EC-300193	C EC V F05 NP SM 100M 16DC
1-R69	ER-330304	R MF H F10 1/4W 1102F	1-030	EC-304431	C TT V D 220M 6.3DC
1-R70	ER-341617	R MF H F10 1/4W 3001F			
1-R71	ER-341616	R MF H F10 1/4W 3900F			

REF. NO.	PARTS NO.	DESCRIPTION
	PRE AMP P.C	BOARD
1-TR-1	ET-307630	TR FET 2SK218 P
1-TR2 to 6	ET-330526	TR 2SC2377 C, D
1-D1	ED-307690	D ZENER H HZ7L A1
1-D2	ED-301911	D SILICON H DS448
1-VC1, 2	EC-307634	C S-FIX V ECV-1ZW10×60
1-VR1	EV-338359	R S-FIX V EVN31C 3P 102
1-Li	EO-341539	COIL CA, TV PARCIVAL
		OR-12.3-6H
1-L2	EO-357287	COIL FIX 1 FL05H 100µH K
1-L3	EO-341587	COIL FIX L-5 56µH J
1-C7	EC-452665	C MC V FM 200J 500DC
1-C9	EC-307711	C PP V APS 102J 100DC
1-C12	EC-427948	C MC V FM 100J 500DC
1-C13	EC-337674	C TT V D 100M 16.0DC
	AW P.C BOA	RD
1-PH1	ED-300143	D PHOTO BS-500B

60 02 L R-12.3-6H H K	

x60 02 NL NR-12.3-6H WH K	ALC MANAGEMENT AND ADMINISTRATION OF THE PROPERTY OF THE PROPE

2. H & D P.C BOARD BLOCK

REF. NO.	PARTS NO.	DESCRIPTION
2-1	BA-V3004A180A	PC H&D BLK VC-X2E
	H & D P.C BOA	RD
2-IC1	EI-307644	IC NJM4556D
2-IC2	EI-341500	IC MK-1
2-IC3	EI-213390	IC NJM4558D
2-IC3 2-IC4		IC NJM4560D
	EI-307789	IC UPC78L05
2-IC5	EI-310031	
2-IC6	EI-341501	IC LA3210
2-TR1	ET-200505	TR 2SC2603 E, F
2-TR2	ET-307571	TR 2SD781
2-TR3	ET-515733	TR2SC945L P, Q, R
2-TR4	ET-341603	TR 2SA1123 R, S
2-TR5	ET-338595	TR 2SC2291 F, G, H
2-TR6	ET-330427	TR 2SB772 E, P
2-TR7, 8	ET-554657	TR 2SA733A P, Q
2-TR9 to 11	ET-200558	TR 2SA1115 E, F
2-TR12 to 15	ET-200505	TR 2SC2603 E, F
2-D1	ED-307752	D ZENER H HZ6L B2
2-D2	ED-522472	D SILICON HF-1Z 200/0.6A
2-D3	ED-306732	D SILICON S5277D 200/1.0A
2-D4 to 6	ED-200468	D SILICON V DS448-VB6
2-D7	ED-310025	D ZENER H HZ6L A2
2-D8 to 10	ED-301911	D SILICON H DS448
2-J903	EJ-464995	PHONE J 2P SJ296-1-15 3.5
2-VR1 to 4	EV-338358	R S-FIX V EVN31C 3P 103
2-VR1 to 4	EV-338360	R S-FIX V EVM-31G 3P 0.30W
2-VK3	E V -330300	504
2.1/0/	EV 241660	R S-FIX H H0651A 3P 0.05W 105
2-VR6	EV-341560	R S-FIX V RVS0707H 3P 0.33W
2-VR7 to 12	EV-338388	103
	TIT 000000	
2-VR13	EV-307653	R S-FIX H H0651 3P 0.05W 102
2-VR14	EV-307694	R S-FIX H H0651A 3P 0.05W 472
2-VR15	EV-307621	R S-FIX H H0651A 3P 0.05W 103
2-VR16	EV-341561	R S-FIX H H0621A 3P 0.03W 105
2-VR18	EV-307621	R S-FIX H H0651A 3P 0.05W 103
2-VR19	EV-307629	R S-FIX H H0621A 3P 0.03W 223
2-L1	EO-307409	COIL CA TV LINEARITY
		CANS-4668Z
2-L2, 3	EO-341558	COIL FIX 1 RC875-473J47MH J
2-L4, 5	EO-357287	COIL FIX 1 FL05H 100µH K
2-T1	EO-341502	
		HVT-7
2-CR1	ER-341503	CR COMP 10-0057
2-CR2	ER-337765	CR COMP 10-0067
2-CR3	ER-341505	CR COMP 14-0025
2-CR4	ER-341506	R COMP 02-0092
2-CR5	ER-341507	CR COMP 10-0054
2-R5	ER-341652	R MF H F10 1/4W 1504F
	ER-341674	R MF V 1/4W 4703F
2-R12	ER-341673	R MF V 1/4W 3303F
2-R13		R MF V 1/4W 5103F
2-R16	ER-338589	R MF V 1/4W 7501F
2-R25	ER-309811	
2-R26	ER-338590	R MF V 1/4W 1802F
2-R29 to 31	ER-341650	R MF V 1/4W 3922F
2-R32	ER-309815	R MF V 1/4W 1202F
2-R34	ER-326169	△ R FUSE ERD 2FC 1/4W
2.61	DO 207724	22ROG`
2-C1	EC-307724	C CE V E 472P 500DC
2-C2	EC-341559	C EC V F05 SL 2R2 160DC
2-C10	EC-201440	C EC V F05 FL 1R0 160DC
2-C11	EC-231568	C EC V R5A 1R0 350DC
2-C12	EC-307407	C EC V UHU1R0 450DC
2-C13	EC-307778	C PP V ECQ-P 4701G 100DC
2-C15	EC-201440	C EC V F05 SL 1R0 160DC
2-C60	EC-307650	C CE V E 222z 1000DC

SOCKET P.C BOARD

EJ-311395 SOCKET VIDICON MT-7P

3. PANEL P.C BOARD BLOCK

REF. NO.	PARTS NO.	DESCRIPTION	
3-1	BA-V3004A070A	PC PANEL BLK VC-X2E	
3-IC1	EI-311392	IC UPC358C	
3-IC2	EI-341536	IC MP4523	
3-TR1	ET-328436	TR 2 SA937 Q, R	
3-TR2	ET-328435	TR 2SC2021 R, S	
3-TR3	ET-328436	TR 2SA937 Q, R	
3-TR4 to 9	ET-328435	TR 2SC2021 R, S	
3-TR10, 11	ET-328436	TR 2SA937 Q, R	
3-TR12	ET-328435	TR 2SC2021 R, S	
3-TR13	ET-328436	TR-2SA937 Q, R	
3-TR14	ET-328435	TR 2SC2021 R, S	
3-D1 to 9	ED-200212	D SILICON H DS448F×2 F07	
3-D10, 11	ED-301911	D SILICON H DS448	
3-SW1, 2	ES-307659	SW SLIDE MSS-P-2-4	
3-SW3	ES-341532	SW SLIDE MSS-P-1-2 01-2	
3-SW4	ES-341531	SW SLIDE MSS-P-2-4 02-4	
3-SW5	ES-307404	SW TACT KHC10014	
3-VR1	EV-201964	VR ROTARY 16W10S0A B102	
3-VR2	EV-338074	R S-FIX H EVNB3AAOO 3P 302	
3-VR3	EV-307621	R S-FIX H H0651A 3P 0.05W 103	
3-VR4	EV-307709	R S-FIX H H0651A 3P 0.05W 223	
3-L1	EO-574187	COIL FIX 1 FL05H 100 µH M	
3-CR1, 2	ER-341534	RD COMP 3D-0007	
3-CR3	ER-341535	R COMP 1D-0005	
3-CR4	ER-341534	RD COMP 3D-0007	
3-CR5	ER-341533	R COMP RGSD10A0306	

4. EVF P.C BOARD BLOCK

REF.	PARTS NO.	DESCRIPTION
NO.	PARTS NO.	DESCRIPTION
4-1	BA-V3004A140A	PC EVF BLK VC-X2E
4-2	BA-V3004A140B	PC EVF BLK VC-X2U
4-ICI	EI-201970	IC AN5750
4-IC2	EI-201972	IC AN5760
4-TR1 to 5	ET-200480	TR 2SC2603 D, E, F
4-TR6	ET-305468	TR 2SC2264
4-TR7	ET-200480	TR 2SC2603D, E, F
	ED-307690	D ZENER H HZ7L A1
4-D2, 3	ED-200212	D SILICON H DS448F×2 F07
4-D4 to 6	ED-309859	D SILICON RH-1S 600/0.2A
4-D7	ED-523618	D SILICON SF-1-8 800/0.2A
4-D8	ED-201967	D LED LN26RP RED
4-D8 4-D9	ED-201968	D LED LN36BP GRN
4-D10	ED-201969	D LED LN46YP ORG
4-J905	EJ-311393	SOCKET CRT SPECIAL-7P
4-3703	LJ-511575	S7-506P-44
4-VR1	EV-522404	R S-FIX V V8K1-1 3P 102
4-VR2	EV-522663	R S-FIX V V8K1-1 3P 104
4-VR3	EV-464264	R S-FIX V V8K1-1 3P 503
4-VR4	EV-475470	R S-FIX V V8K1-1 3P 103
4-VR5	EV-522652	R S-FIX V V8K1-1 3P 105
4-VR6	EV-307655	R S-FIX H H0621A 3P 0.30W 225
4-V K0 4-L1	EO-322395	COIL FIX 1 EL0810SKI 100 µH K
4-L1 4-L2	EO-201965	COIL CA. TV LINEARITY
4-L2	20-201703	LCH-10
4-L4	EO-301630	⚠ COIL CA. TV FLYBACK
4-L4	EO-301030	VHT-4
4-L5	EO-341573	COIL FIX 1 EL0810SKI 33µH J
4-L3	LO-341313	(VC-X2E)
4-L5	EO-321699	COIL FIX 1 EL0810SKI 47µH J
4-1.3	LO-321077	(VC-X2U)
4-CR1, 2	ER-309982	CR COMP EXR-P221K-102C
4-CR3	ER-309996	CR COMP EXR-P101K-103C
4-CR4	ER-318235	CR COMP EXR-P100K-474C
4-CR4 4-R26	ER-333347	R CB H SNP FS RDS 1/4W 3R9J
4-R20 4-C17	EC-307773	C TT V DA 2R2K 10DC
4-C18	EC-307772	CTT V D 4R7K 6.3DC
4-C18 4-C29	EC-307725	C PP V ECO-P 103J 100DC
4-C29 4-C31	EC-307723 EC-307722	C CE V E 472Z 1000DC
4-C32	EC-307722 EC-243617	C MY V AMS 272J 200DC
4-C32 4-C33	EC-243017 EC-307650	C CE V E 222Z 1000DC
4-033	LC-30/030	C CL

S8-612J-02 P

70

5. ASSEMBLY BLOCK

REF. NO.	PARTS NO.	DESCRIPTION
	EVF BLOCK	
5-1	EU-307635	△ CRT 40CB4M
5-2	VC-307875	CUSHION RING
5-3	EO-311396	△ COIL DEF VIDICON
5-5	20-311390	ELY-15V 101A
	CHASSIS CA	MERA BLOCK
5-4	VC-B341619	LENS J6×11-14 IG AF-2 PART
5-5	BM-307613	△ MOTOR T16056-M0827Y
5-6	VC-780010	HOOD CAP B12-2013-K101
5-7	VC-780011	HOOD LES B12-2013-K101
5-8	VC-307663	HINGE TYPE (B) NO312
	CAMERA CO	NNECTOR BLOCK
5-9	EJ-341598	DIN J TCS0819-0601 L 8P (J901)
5-10	EJ-307693	PHONE J 2P HSJ0289-050 2.5 (J904
	The ACE of the	•
	IMAGE-TUB	E BLOCK
5-11	EO-341622	⚠ COIL DEF VIDICON XVC-557N
5-12	EU-341600	△ IMAGE-T SATICON H4103 (VC-X2U
5-13x	EU-341599	⚠ IMAGE-T SATICON H4100 (VC-X2E)
	HOLDER ND	BLOCK
5-14	EJ-341601	PLUG CONNECTOR D8-102N 100 8P
5-15	ZG-312944	SP-T1-3.2/0.29-12-5 T1-060
	ASSEMBLY B	
5-16	EJ-328679A	PW JACK(1)
5-17	EC-307649	C MMY V ECQ-E 682M 1600DC
5-18	SK-307883	KNOB ZOOM
5-19	SK-307878	HOLDER KNOB ZOOM
5-20x	ZW-260370	RV NYL34×055 BL
5-21	EF-309387	△ FUSE TSC A 250V 1A (VC-X2 (C, A)) (F1)
5-22x	EF-318608	⚠ FUSE GGS A 250V 1A
5-23x	EF-623103	(VC-X2 (J)) (F1)
5-24	EJ-464995	PHONE J 2P SJ296-1-15 3.5 (J903)
5-25	EJ-311393	SOCKET CRT SPECIAL-7P S7-506P-44 (J904)
5-26	ET-330427	TR 2SB772 E, P

FINAL ASSEMBLY BLOCK

6. FINAL ASSEMBLY BLOCK

REF. NO.	PARTS NO.	DESCRIPTION
6-1	CASE CAMERA SP-342012D	CASE CAMERA (A-2) VC-X2U
6-2x	SP-342012B	(VC-X2U (C)) CASE CAMERA (A) VC-X2U (VC-X2U (J))
6-3x 6-4	SP-342012 ZW-307859	CASE CAMERA (A) VC-X2E NUT (A)
6-5	CASE CAMERA BD-V3004A150A	(B) BLOCK CASE CAMERA (B) BLK VC-X2E
		(VC-X2E, VC-X2 (C, A)) CASE CAMERA (B) BLK
6-6x	BD-V3004A150B	VC-X2U (J)
6-7	SK-307884	KNOB ND
6-8	ZG-307871	SP PLATE ND
6-9	ZW-307859	NUT (A)
	CASE CAMERA	(C) DI OCK
6-10	BD-V3004A160C	CASE CAMERA (C) BLK
		VC-X2U (C)
6-11x	BD-V3004A160B	CASE CAMERA (C) BLK VC-X2U (J)
6-12x	BD-V3004A160A	
6-13	VC-307661	LENS EYE
		HOOD EYECAP
6-14	VC-307938	HOODETECAT
	CASE GRIP BLO	OCK
6-15	BD-V3004A080A	CASE GRIP BLK VC-X2E
		(VC-X2E, VC-X2U (C))
6-16x	BD-V3004A080C	CASE GRIP BLK VC-X2U (J)
		CASE GRIP (A)
6-17	SP-307900	
6-18	SK-307886	KNOB LOCK
6-19	SP-307902	CASE GRIP (B)
6-20	ZW-307872	NUT (B)
6-21	VC-307942	GRIP BAND
6-22	VC-307887	COLLAR GRIP BAND
6-23	ZS-558090	BID40×14STL BNI
6-24	ZS-311098	T2PAN30×10STL BNI
6-25	ZG-313193	SP C-4.5/0.6-20.0 C-040
6-26	BD-V3004A090A	CASE MIC BLK VC-X2E
		(VC-X2E, VC-X20 (C))
6-27x	BD-V3004A090C	CASE MIC BLK VC-X2U (J)
6-28	ZW-307859	NUT (A)
6-29	VC-307615	MIC EMU-4628A 2.00K
6-30	ZS-307944	PAN26×05STL BNI
6-31	ZG-307876	SP PLATE REC
	FINAL ASSEM	BLY BLOCK
6-32	ZS-309374	CTS26×08STL BNI
6-33	ZS-429862	N6B30×080STL CMT
6-34	ZS-593908	PAN30×06STL NI3
0-34	25 373700	(VC-X2E, VC-X2U (C, A))
6-35x	ZS-355522	PAN30×06STL BNI (VC-X2U (J))
6-36	VC-307863	ACCS SHOE
6-37	ZS-609546	CTS26×08STL NI3
6-38	ZG-307864	SP PLATE ACCS SHOE
6-39	ZS-307865	SCREW ACCS SHOE
6-40x	ZS-410231	PAN26×05STL NI3
6-41x	ZS-307944	PAN26×05STL BNI
6-42		CORD VC-X2 CAMERA CABLE
-	EW-341593	
6-43	VC-311418	MIC WIND SCREEN (LARGE)
6-44x	VC-337648	SHOULDER STRAP SS-2 (VC-X2E)
(15	CV 207005	,
6-45	SK-307885	KNOB REC
6-46	SK-307882	KNOB IRIS

INDEX

PARTS NO.	DEE NO	DADTONO	Dan		· · · · · · · · · · · · · · · · · · ·		
BA-V3004A03		PARTS NO. EI-307644	REF. NO.	PARTS NO. ER-338584	REF. NO.	PARTS NO.	REF. NO.
BA-V3004A14 BA-V3004A15 BA-V3004A15 BA-V3004A15 BA-V3004A05 BD-V3004A08 BD-V3004A08 BD-V3004A08	40A 4-1 40B 4-2 70A 1-1 70B 1-2 80A 2-1 80A 6-15 80C 6-16x 40A 6-26	EI-307644 EI-307789 EI-310031 EI-311392 EI-311392 EI-324255 EI-341500 EI-341501 EI-341511	2-IC1 2-IC4 2-IC5 1-IC3 3-IC1 1-IC1, 2 2-IC2 2-IC6 1-x1	ER-338589 ER-338590 ER-341503 ER-341505 ER-341506 ER-341507 ER-341517 ER-341518 ER-341519	2-R16 2-R16 2-R26 2-CR1 2-CR3 2-CR4 2-CR5 1-FL2 1-FL1 1-CR1	EV-307620 EV-307620 EV-307620 EV-307620 EV-307621 EV-307621 EV-307621 EV-307621 EV-307621	I-VR10, 11 I-VR23 I-VR1 I-VR19, 20 I-VR6, 7 I-VR6 I-VR8 I-VR17 I-VR3
BD-V3004A15 BD-V3004A16 BD-V3004A16 BD-V3004A16 BD-V3004A16 BM-307613 EC-201440 EC-201440 EC-231568 EC-243617	60B 6-6x 60A 6-12x 60B 6-11x	EI-341512 EI-341513 EI-341514 EI-341516 EI-341521 EI-341522 EI-341523 EI-341524 EI-341525 EI-341526	1-DL1 1-IC5 1-IC4 1-IC3 1-DL2 1-DL3 1-DL2 1-DL1 1-IC6 1-IC7	ER-341533 ER-341534 ER-341535 ER-341550 ER-341551 ER-341552 ER-341608 ER-341609	3-CR5 3-CR4 3-CR1, 2 3-CR3 1-R2 1-R18 1-R83 1-R87 1-R80 1-R78	EV-307621 EV-307621 EV-307621 EV-307621 EV-307623 EV-307652 EV-307653 EV-307653 EV-307653	1-VR10 2-VR15 2-VR18 3-VR3 1-VR8 2-VR19 1-VR2 1-VR13 1-VR5 1-VR21
EC-300193 EC-300193 EC-300193 EC-300193 EC-304431 EC-307407 EC-307634 EC-307648 EC-307649 EC-307650	1-C34 1-C9 1-C6 1-C41 1-C50 2-C12 1-VC1, 2 2-C7 5-17 2-C60	EI-341527 EI-341528 EI-341529 EI-341536 EI-341623 EJ-307693 EJ-311393 EJ-311393 EJ-311395	1-IC10 1-IC9 1-IC4 3-IC2 1-DL1 1-DL2 5-10 4-J905 5-25 2-J906	ER-341609 ER-341612 ER-341616 ER-341617 ER-341650 ER-341652 ER-341673 ER-341674 ES-300122	1-R81 1-R31 1-R71 1-R70 1-R82 2-R29 to 31 2-R5 2-R13 2-R13 2-R12 1-SW1, 2	EV-307653 EV-307655 EV-307694 EV-307706 EV-307706 EV-307709 EV-307709 EV-332319 EV-332321	2-VR13 4-VR6 1-VR4 2-VR14 1-VR12 1-VR14 1-VR22 3-VR4 1-VR4 1-VR9
EC-307650 EC-307684 EC-307711 EC-307722 EC-307724 EC-307772 EC-307773 EC-307778 EC-307793	4-C33 1-C21 1-C9 4-C31 2-C1 4-C29 4-C18 4-C17 2-C13 1-C24	EJ-328679A EJ-341598 EJ-341601 EJ-464995 EO-201965 EO-241380 EO-301630 EO-307409 EO-311396	5-16 5-9 5-14 2-J903 5-24 4-L2 1-L6 4-L4 2-L1 5-3	ES-307404 ES-307659 ES-332277 ES-341531 ES-341532 ET-200480 ET-200505 ET-200505 ET-200505	3-SW5 3-SW1, 2 1-SW3 3-SW4 3-SW3 4-TR1 to 5 4-TR7 1-TR14 1-TR20, 21 1-TR17, 18	EV-332404 EV-336770 EV-338074 EV-338358 EV-338359 EV-338360 EV-338388 EV-338583 EV-341560 EV-341561	1-VR5 1-VR7 3-VR2 2-VR1 to 4 1-VR1 2-VR5 2-VR7 to 12 1-VR9 2-VR6 2-VR16
EC-332222 EC-332222 EC-337674 EC-338596 EC-341559 EC-427948 EC-452665 ED-200212 ED-200212	1-VC1, 2 1-VC1 1-C13 1-C9 2-C2 1-C12 1-C7 1-D1 to 6 1-D8 3-D1 to 9	EO-321699 EO-322395 EO-322395 EO-330252 EO-330252 EO-341502 EO-341539 EO-341542 EO-341558	4-L5 1-L3 4-L1 1-L1, 2 1-L7, 8 1-L1, 2 2-T1 1-L1 1-VL1 2-L2, 3	ET-200505 ET-200505 ET-200505 ET-200505 ET-200505 ET-200505 ET-200558 ET-200558 ET-200558	1-TR2 1-TR11 to 14 1-TR5, 6 1-TR5 to 8 2-TR12 to 15 2-TR1 1-TR10 to 12 1-TR22 1-TR4 1-TR7 to 10	EV-464264 EV-475470 EV-522404 EV-522652 EV-522663 EW-341593 SK-307878 SK-307882 SK-307883 SK-307884	4-VR3 4-VR4 4-VR1 4-VR5 4-VR2 6-42 5-19 6-46 5-18 6-7
ED-200212 ED-200468 ED-201967 ED-201968 ED-201969 ED-300143 ED-301911 ED-301911 ED-306732	4-D2, 3 2-D4 to 6 4-D8 4-D9 4-D10 1-PH1 1-D2 2-D8 to 10 3-D10, 11 2-D3	EO-341573 EO-341579 EO-341579 EO-341579 EO-341586 EO-341586 EO-341587 EO-341622 EO-357287	4-L5 1-L5 1-L4 1-L3, 4 1-L5 1-L3 5-11 1-L6 1-L2	ET-200558 ET-200558 ET-200558 ET-305468 ET-307571 ET-307630 ET-321016 ET-321016	1-TR15 1-TR19 1-TR1 to 4 2-TR9 to 11 4-TR6 2-TR2 1-TR1 1-TR9 1-TR16 1-TR1	SK-307885 SK-307886 SP-307900 SP-307902 SP-342012 SP-342012B SP-342012D VC-B341619 VC-307615 VC-307661	6-45 6-18 6-17 6-19 6-3x 6-2x 6-1 5-4 6-29 6-13
ED-307645 ED-307690 ED-307690 ED-307752 ED-309859 ED-310025 ED-522472 ED-523618 EF-309387 EF-318608	1-D1 1-D1 4-D1 2-D1 4-D4 to 6 2-D7 2-D2 4-D7 5-21 5-22x	EO-357287 EO-485278 EO-574187 ER-300068 ER-309811 ER-309982 ER-309996 ER-318235 ER-326169	2-L4, 5 1-L5, 6 3-L1 1-FL1 2-R25 2-R32 4-CR1, 2 4-CR3 4-CR4 2-R34	ET-328435 ET-328435 ET-328435 ET-328436 ET-328436 ET-328436 ET-328436 ET-328436 ET-330427	3-TR14 3-TR2 3-TR4 to 9 3-TR12 3-TR13 3-TR3 3-TR10, 11 2-TR6 5-26	VC-307663 VC-307863 VC-307875 VC-307938 VC-307942 VC-311418 VC-337648 VC-780010 VC-780011	5-8 6-36 5-2 6-22 6-14 6-21 6-43 6-44x 5-6 5-7
EF-623103 EI-201970 EI-201972 EI-213390 EI-300128 EI-300130 EI-300141 EI-300840 EI-305456 EI-307644	5-23x 4-IC1 4-IC2 2-IC3 1-IC6 1-IC1 1-IC7 1-x1 1-IC2 1-IC5	ER-330304 ER-330304 ER-333347 ER-337745 ER-337765 ER-338078 ER-338079 ER-338309 ER-338339 ER-338560	1-R30 1-R69 4-R26 1-R40 2-CR2 1-R79 1-R88 1-CR3 1-FL1 1-CR1, 2	ET-330526 ET-338594 ET-338595 ET-341603 ET-515733 ET-554657 EU-307635 EU-341599 EU-341600 EV-201964	1-TR2 to 6 1-TR13 2-TR5 2-TR4 2-TR3 2-TR7, 8 5-1 5-13x 5-12 3-VR1	ZG-307864 ZG-307871 ZG-307876 ZG-312944 ZG-313193 ZS-307865 ZS-307944 ZS-307944 ZS-309374 ZS-311098	6-38 6-8 6-31 5-15 6-25 6-39 6-41x 6-30 6-32 6-24

PARTS NO.	REF. NO.	PARTS NO.	REF. NO.	PARTS NO.	REF. NO.	PARTS NO. REF. NO.
ZS-355522 ZS-410231 ZS-429862 ZS-558090 ZS-593908 ZS-609546 ZW-260370 ZW-307859 ZW-307859 ZW-307859	6-35x 6-40x 6-33 6-23 6-34 6-37 5-20x 6-4 6-9 6-28					
ZW-307872	6-20					
					-	

SECTION 3

SCHEMATIC DIAGRAM

TABLE OF CONTENTS

1.	SCHEMATIC DIAGRAM OF ICs	76
	VC-X2E/U No. 1641234A CONNECTION DIAGRAM	
3.	VC-X2E/U VIDEO (1) No. 1641235A SCHEMATIC DIAGRAM	86
4.	VC-X2E/U VIDEO (2) No. 1641236A	87
	VC-X2 H & D No. 1641237A SCHEMATIC DIAGRAM	
	VC-X2E/U/S PANEL No. 1641238A SCHEMATIC DIAGRAM	
7.	VC-X2 EVF No. 1641239A SCHEMATIC DIAGRAM	90
	VC-X2E/U AMP No. 1641240A SCHEMATIC DIAGRAM	

SCHEMATIC DIAGRAM OF IC's

HD440072

LA3210

M54514P

MA7220

MK-1

MK-2

NJM4556D/NJM4558D/TL082/MPC082CP

MPC78L05

