Московский государственный университет имени М. В. Ломоносова

Lomonosov Moscow State University

Факультет вычислительной математики и кибернетики Кафедра математической кибернетики

> Курсовая работа студента 318 группы Балашова Александра Владимировича

Тема курсовой работы: «О нормальной форме простых программ над двоичными деревьями»

Научный руководитель:

к.ф.-м.н., доцент Подымов В. В.

Содержание

1	Вве	едение	3
2	Основные понятия		4
	2.1	Простые программы над двоичными деревьями	4
	2.2	Нормальная форма программ	6
	2.3	Теорема об эквивалентности программ в нормальной форме	6
	2.4	Схема проверки эквивалентности двух программ	7
3	Пос	становка задачи	8
4	Основная часть		9
	4.1	Алгоритм преобразования программы к нормальной форме	9
	4.2	Оценка увеличения сложности программы при переходе к нормальной форме	10
	4.3	Алгоритм поиска миимального размера программы в нормальной форме	10
5	Пол	лученные результаты	13
Cı	Список литературы		

1 Введение

В работе рассматривается задача проверки эквивалентности программ и решение этой задачи, основанное на составлении адекватного тестового покрытия.[2] Адекватным тестовым покрытием назовем конечное подмножество множества для которых и рассматриваются программы. Задача же заключается в проверке совпадения результатов работы программ на адекватном тестовом покрытии. Эта задача неразрешима для многих языков программ [1], таких как Тьюринг-полные языки, язык примитивно рекурсивных функций и даже язык полиномов с целочисленными коэффициентами. В [2] предлагается рассмотреть класс простых программ для которых эта задача разрешима. В этих программах нет циклов, рекурсий, есть условный оператор и простейшие действия над деревьями. Программы называются простыми, потому что существует язык программ, где уже есть циклы.[3] Двоичные деревья - распространённая и простая структура данных, и при этом достаточно полезная: такие деревья можно использовать, например, для представления булевых значений, натуральных чисел и списков. В работе рассматривается класс простых программ на них. А так же рассмотрим задачу проверки эквивалентности таких программ. Цель данной работы состоит в исследовании и улучшении алгоритма проверки эквивалентности программ на двоичных деревьях, предлагающегося в [2].

2 Основные понятия

2.1 Простые программы над двоичными деревьями

Будем рассматривать двоичные деревья, у которых не может отсутствовать левое или правое поддерево. Синтаксис depesbes [2] зададим формой Бэкуса-Науэра

Определение 2.1 $T ::= nil \mid (T \cdot T)$, где nil - nycmoe дерево, T - двоичное дерево.

Рассматриваются непустые корневые упорядоченные двоичные деревья. nil - это дерево из одной вершины. $(T_1.T_2)$ - это дерево, первым (левым) поддеревом которого является T_1 , и вторым (правым) - T_2 . Такие деревья могут быть полезны, так как с их помощью можно выразить булевы значения, натуральные числа и списки[2]:

- $\lceil \bullet \rceil_{Bool} : Bool \to T$ отображение из множества булевых значений в множество деревьев Т.
 - $\lceil false \rceil_{Bool} = nil$ false отобравается в дерево из одной вершины.
 - $\lceil true \rceil_{Bool} = (nil.nil)$ true отображается в дерево из трех вершин, высоты 1.
- $\lceil \bullet \rceil_{N \cup \{0\}} : N \cup \{0\} \to T$ отображение из множества натуральных чисел в множество деревьев T.
 - $\lceil 0 \rceil_{N \cup \{0\}} = nil 0$ отобравается в дерево из одной вершины.
 - $\lceil n+1 \rceil_{N \cup \{0\}} = (nil. \lceil n \rceil_N)$ любое число больше 0 отображается в дерево, у которого левое поддерево состоит из одной вершины, а правое из дерева, соответствующего предыдущему числу.
- $\lceil \bullet \rceil_{List(X)} : List(X) \to T$ отображение из множества списков состоящих из элементов типа X, имеющего представление деревьями, в множество деревьев T.
 - $[[]]_{List(X)} = nil$ пустой список отобравается в дерево из одной вершины.
 - $[[x_1, x_2, ..., x_n]]_{List(X)} = ([x_1]_X.[[x_2, ..., x_n]]_{List(X)})$ любой непустой список отображается в дерево, у которого левое поддерево состоит из дерева соответствующего

первому элементу списка, а правое - из дерева соответствующего списку без первого элемента.

Введем понятие программы над описанными выше деревьями. Как и в случае с деревьями, сделаем это с помощью БНФ.

Определение 2.2 [2] $E := I \mid hd \mid tl \mid nil \mid cons(E, E) \mid E \circ E \mid ifnil(E, E, E)$, где E - программа над деревъями T. Смысл операций I, hd, tl, nil, cons(), \circ , ifnil() описан ниже.

Опишем семантику программ: каждая программа в квадратных скобках обозначает отображение из T в T: [ullet]: T o T

- 1. [I](x) = x программа, возвращающая входное дерево без изменений.
- 2. $[hd](t_1.t_2) = t_1$ программа, возвращающая левое поддерево.
- 3. $[tl](t_1.t_2) = t_2$ программа, возвращающая правое поддерево.
- 4. [nil](x) = nil программа, для любого дерева возвращающая nil.
- 5. $[cons(e_1, e_2)](x) = ([e_1](x).[e_2](x))$ программа, возвращающая новое дерево, состоящее из поддеревьев, полученных путем применения e_1 и e_2 к дереву \mathbf{x} .
- 6. $[e_1 \circ e_2](x) = [e_1]([e_2](x))$ программа, которая последовательно применяет к дереву сначала e_2 , а потом к результату применяет e_1 . Назовем ее последовательной композицией.
- 7. $[ifnil(e_1, e_2, e_3)](x) = [e_2](x)$, если $[e_1](x) = nil$.
- 8. $[ifnil(e_1, e_2, e_3)](x) = [e_3](x)$, если $[e_1](x) = (t_1.t_2)$ ifnil возвращает результат применения e_2 к входному дереву, если результат применения e_1 к исходному дереву возвращает nil, и возвращает результат применения e_3 к входному дереву в другом случае.

Итого операциями программы считаются: I, hd, tl, nil, cons(), \circ и ifnil(). Будем считать, что сложность каждой операции равна 1.

Определение 2.3 $|p_n|$ - сложность программы p_n - суммарная сложность всез операций программы p_n

2.2 Нормальная форма программ

Определение 2.4 [2] $E^{nf} ::= nil \mid cons(E^{nf}, E^{nf}) \mid sel_1 \circ ... \circ sel_n \mid ifnil(sel_1 \circ ... \circ sel_n, E^{nf}, E^{nf}), sel_i \in \{hd, tl\}, i \in [1, n],$ где пустое множество композиций sel значит I

Опишем тождества приведения программ к нормальной форме

$$\begin{split} &T_1: \ I \circ e = e \circ I = e \\ &T_2: \ sel \circ cons(e_1, e_2) = e_i \\ &T_3: \ nil \circ e = nil \\ &T_4: \ cons(e_1, e_2) \circ e_3 = cons(e_1 \circ e_3, e_2 \circ e_3) \\ &T_5: \ e \circ ifnil(e_1, e_2, e_3) = ifnil(e_1, e \circ e_2, e \circ e_3) \\ &T_6: \ ifnil(e_1, e_2, e_3) \circ e = ifnil(e_1 \circ e, e_2 \circ e, e_3 \circ e) \\ &T_7: \ ifnil(nil, e_1, e_2) = e_1 \\ &T_8: \ ifnil(cons(e_h, e_t), e_1, e_2) = e_2 \\ &T_9: \ ifnil(ifnil(e_1, e_2, e_3), e'_1, e'_2) = ifnil(e_1, ifnil(e_2, e'_1, e'_2), ifnil(e_3, e'_2, e'_3)) \end{split}$$

2.3 Теорема об эквивалентности программ в нормальной форме

Введем понятие глубины depth [2] дерева.

Определение 2.5 Глубиной дерева depth будем называть такое отображение depth : $T \to N$, что depth(nil) = 0, depth($t_1.t_2$) = $1 + max(depth(t_1), depth(t_2))$ Введем также понятие дерева глубины не более чем N.

Определение 2.6 [2]
$$T_N = \{t \in T \mid depth(t) \leq N\}$$

Так же нам потребуется определение программ в нормальной форме глубины N

Определение 2.7 [2] $E_N^{nf} ::= nil \ / \ cons(E_N^{nf}, E_N^{nf}) \ / \ sel_1 \circ ... \circ sel_n \ / \ if nil (sel_1 \circ ... \circ sel_n, E_N^{nf}, E_N^{nf}),$ $n \leq N$

Теорема 2.1 [2] Для любого натурального n и двух любых программ из множества программ в нормальной форме, глубины не более чем N, если результат этих программ одинаков на всех деревьях глубины не более чем N+1, то результат таких программ будет одинаков на всех деревьях, то есть они равны в смысле тестирования.

2.4 Схема проверки эквивалентности двух программ

Определение 2.8 [2] $nf: E \to E^{nf}$, отображение преобразующее программу в ее нормальную форму

Стоит отметить, что реализация алгоритма, преобразовывающего программу в нормальную форму, не была явно представлена автором статьи [2]. Этот алгоритм будет представлен в 4.1.

Определение 2.9 Назовем нормальным параметром программы e число $N \in N$: $e^{nf} = nf(e) \in E_N^{nf}$, но $e^{nf} = nf(e) \notin E_{N-1}^{nf}$

Приведем схему, позволяющую проверить, эквивалентны ли две программы e_1, e_2 [2]

- 1. Найдем наименьшее N такое, что $nf(e_1), nf(e_2) \in E_N^{nf}$
- 2. Проверим что для всех $t \in T_{N+1}$ выполняется $[e_1](t) = [e_2](t)$

В первом пункте автором [2] неявно предполагается, что поиск такого требуемого N заключается в построении нормальных форм программ e_1 , e_2 и явном нахождении наибольшего числа подряд идущих операций композиций в этих формах. Сложность схемы будет зависеть от количества деревьев, глубины не более чем N+1, а их количество равно $c^{2^{N+2}}$, где c=1.2259... [2] Сложность схемы получилась суперэкспоненциальной, а соответственно неэффективной.

3 Постановка задачи

- 1. Явно описать алгоритм приведения простой программы над двоичными деревьями, не вполне явно приведённый в [2], и использующийся для проверки эквивалентности программ так, как это рассказано в разделе 2.4, и оценить сложность нормальной формы, получающейся по этому алгоритму, относительно числа операций исходной программы в худшем случае.
- 2. Предложить алгоритм нахождения нормального параметра программы е, более эффективный по сравнению с упомянутым в разделе 2.4.
- 3. Оценить нормальный параметр программы для уточнения оценки сложности алгоритма, изложенного в разделе 2.4.

4 Основная часть

4.1 Алгоритм преобразования программы к нормальной форме

Алгоритм А: ${\bf A}(p)=p_{nf},\ p$ - программа на двоичных деревьях, p_{nf} - эквивалентная программа в нормальной форме

A:

- 1. Пока в программе р есть тождества вида $T_1 T_6$ применяется любое из применимых преобразований
 - Пока в программе р есть выражения вида $I\circ e,\ e\circ I$ выполняем преобразование T_1
 - Пока в программе р есть выражения вида $tl \circ cons(e_1, e_2), hd \circ cons(e_1, e_2)$ выполняем преобразование T_2
 - ullet Если в программе р есть выражения вида $nil\circ e$ выполняем преобразование T_3
 - Если в программе р есть выражения вида $cons(e_1, e_2) \circ e_3$ выполняем преобразование T_4
 - Если в программе р есть выражения вида $e \circ ifnil(e_1, e_2, e_3)$ выполняем преобразование T_5
 - Если в программе р есть выражения вида $ifnil(e_1, e_2, e_3) \circ e$ выполняем преобразование T_6

Итогом работы этой части алгоритма будет программа p_1

- 2. Пока в программе p_1 есть тождества вида $T_7 T_9$ применяется любое из применимых преобразований
 - Пока в программе p_1 есть выражения вида $ifnil(nil, e_1, e_2)$ выполняем преобразование T_7
 - Пока в программе p_1 есть выражения вида $ifnil(cons(e_h, e_t), e_1, e_2)$ выполняем преобразование T_8
 - Пока в программе p_1 есть выражения вида $ifnil(ifnil(e_1,e_2,e_3),e'_1,e'_2)$ выполняем преобразование T_9

4.2 Оценка увеличения сложности программы при переходе к нормальной форме

Как можно заметить из оценки сложности алгоритма, проверки эквивалентности двух программ, авторы не оценивают сложность поиска нормального параметра программы. Самый очевидный способ нахождения нормального параметра программы - привести обе программы к нормальной форме и посмотреть на них. В связи с этим оценим то, во сколько раз увеличится размер программы при переходе к нормальной форме, согласно алгоритму из раздела 4.1.

Теорема 4.1 B худшем случае нормальная форма nf(p) произвольной программы p имеет размер $\Omega(2^{|p|})$.

Доказательство Покажем это

Рассмотрим такую последовательность программ $p_1, p_2, \dots, p_n, \dots$:

 $p_1: ifnil(ifnil(tl, tl, hd), tl, hd)$

 $p_n: ifnil(ifnil(tl, tl, hd), tl, p_{n-1}), \forall n \geq 2$

Заметим, что $|p_1|=7$ и $|p_n|=|p_{n-1}|+6,\,n\geq 2,$ а значит, $|p_n|=1+6*n,\,n\geq 1$

Пусть p_i^{nf} - нормальная форма программы $p_i,\,i\geq 1.$ Тогда верно следующее:

 $p_1^{nf} = ifnil(tl, ifnil(tl, tl, hd), ifnil(hd, tl, hd))$

 $p_n^{nf} = ifnil(tl, ifnil(tl, tl, p_{n-1}^{nf}), ifnil(hd, tl, p_{n-1}^{nf}))$

При этом $|p_1^{nf}|=10$ и $|p_n^{nf}|=8+2*|p_{n-1}^{nf}|$ для $n\geq 2$, а значит, $|p_n^{nf}|=8+2*8+2*2*8+\ldots+2^{n-1}*8+2^n=9*2^n-8$ для $n\geq 1$.

Таким образом, $\frac{|p_n^{nf}|}{|p_n|} = \frac{9*2^n - 8}{1 + 6*n}$, а значит, сложность программы при переходе к нормальной форме имеет порядок $\Omega(2^k)$, где k - сложность изначальной программы. Теорема доказана.

4.3 Алгоритм поиска миимального размера программы в нормальной форме

Для поиска нормального параметра программы не обязательно приводить программы к нормальной форме, ведь, как можно заметить, нормальный параметр программы зави-

сит лишь от того, сколько hd и tl может быть в одной композиции в нормальной форме программы. В связи с этим можно попробовать оценить это число, исходя из вида исходной программы.

Определение 4.1 Длина композиции len_comp : $E^{nf} \to N$ определяется следующим образом: len_comp $(sel_1 \circ \ldots \circ sel_n) = n$.

Определение 4.2 Максимальная глубина программы e - максимальная длина композиции по всем возможным композициям sel в программе e.

Пемма 4.1 В любом из тождеств $T_1 - T_3$ и $T_7 - T_9$, преобразующих программму е к нормальной форме, на каждом шаге их применнеия к программе е максимальная глубина программы е не может увеличиться.

Доказательство Вытекает из вида тождеств $T_1 - T_3$ и $T_7 - T_9$.

Лемма 4.2 В любом из тождеств $T_4 - T_6$, преобразующих программу р к нормальной форме, на каждом шаге максимальная глубина программы р не может стать больше чем сумма максимальных глубин в подпрограммах с обоих сторон от композиции. То есть, если в программе р есть подпрограммы вида левой части тождества T_4 , то максимальная глубина не может стать больше, чем сумма максимальных глубин подпрограмм e_3 и максимальной глубины подпрограмм e_2 , e_1 , если в программе р есть подпрограммы вида левой части тождества T_5 , то максимальная глубина не может стать больше, чем сумма максимальных глубин подпрограмм е и максимальной глубины подпрограмм e_3 , e_2 , e_1 , если в программе р есть подпрограммы вида левой части тождества T_6 , то максимальная глубина не может стать больше, чем сумма максимальных глубин подпрограмм е и максимальная глубина не может стать больше, чем сумма максимальных глубин подпрограмм е и максимальной глубины подпрограмм e_3 , e_2 , e_1 .

Доказательство Вытекает из вида тождеств $T_4 - T_6$.

Теорема 4.2 Нормальный параметр программы e не может быть больше количества композиций изначальной программы e+1.

Доказательство Следует из Леммы 4.1 и Леммы 4.2. Теорема доказана.

Опишем алгоритм вычисления верхней оценки нормального параметра программы.

Алгоритм $A1:A1(e)=n,\ e\in E$ - исходная программа, не обязательно в нормальной форме, $n\in N$ - оценка сверху нормального параметра программы.

A1:

- 1. Завести счетчик $count_comp$ числа \circ в программе, проставить в него изначальное значение 0.
- 2. Пройти по всем операциям op_i программы, если $op_i = \circ$, увеличиваем счетчик $count_comp$ на единицу.
- 3. Вернуть $count_comp + 1$ как результат работы алгоритма.

Теорема 4.3 Сложность алгоритма A1(e) составляет O(n), $extit{rde } n = |e|$.

Доказательство Алгоритм А1 заключается в просмотре всех операций программы е, соответственно и сложность его будет O(n), где n = |e|. Теорема доказана.

5 Полученные результаты

- 1. Описан алгоритм преобразования программы к нормальной форме.
- 2. Показана неэффективность описанного алгоритма, и для этого оценена снизу экспонентой сложность нормальной формы относительно сложности исходной программы.
- 3. Предложен алгоритм вычисления нормального параметра программы, показана эффективность этого алгоритма линейной оценкой сверху.
- 4. Получена оценка сверху нормального параметра программы.

Список литературы

- [1] Budd T. A., Angluin D.. Two notions of correctness and their relation to testing. // Acta Informatica. 1982.
- [2] Krustev D. Simple Programs on Binary Trees Testing and Decidable Equivalence. // Fifth International Valentin Turchin Workshop on Metacomputation. 2016.
- [3] Krustev D. A simple supercompiler formally verified in Coq. // Proceedings of the Second International Workshop on Metacomputation in Russia. 2010.