2° de Secundaria Unidad 3 2022-2023

Última revisión del documento: 14 de noviembre de 2024

Preparación para el Examen de la Unidad 3

Nombre del alumno:		. Fe	echa:				
Aprendizajes:		Pu	ntuc	aciór	ո:		
Describe la generación, diversidad y comportamiento de las on	Pregunta	1	2	3	4	5	6
electromagnéticas como resultado de la interacción entre electricion y magnetismo.		10	10	10	10	10	10
Describe cómo se lleva a cabo la exploración de los cuerpos celes por medio de la detección de las ondas electromagnéticas que emit							
		7	8	9	10		Total
Describe algunos avances en las características y composición Universo (estrellas, galaxias y otros sistemas).		10	10	10	10		100
🔽 Describe las características y dinámica del Sistema Solar.							

Frecuencia y longitud de onda

🙎 Identifica algunos aspectos sobre la evolución del Universo.

La frecuencia f de una onda electromagnética es:

$$f = \frac{\nu}{\lambda}$$
 y $\lambda = \frac{\nu}{f}$ (1)

donde ν es la velocidad de propagación de la onda ($\nu=3\times10^8~{\rm m/s})$ y λ la longitud de onda.

Energía de un fotón

La energía E asociada a dicha onda es:

$$E = h \times f \tag{2}$$

donde h se conoce como constante de Planck ($h=6.626\times 10^{-34}~\mathrm{Js}).$

Ejercicio 1	de 10 puntos
Relaciona cada grupo de galaxias con su descripción.	
☐ Grupo formado por la Vía Láctea y unas 30 galaxias más	⊔ Supercúmulo
b Son cúmulos de galaxias□	☐ Grupo local
C Grupo formado por la Vía Láctea y otras 14 galaxias gigantes que integra una estructura en forma de anillo	☐ Cúmulos de galaxias
$\ensuremath{ \mbox{\sf d} }$ Grupo de galaxias cuyos tamaños típicos son de 2 a 3 Mpc	☐ Concilio de Gigantes

Ejercicio 2 de 10 puntos

Elige la respuesta correcta.

- La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
 - (A) Ley de Hook
 - (B) Ley de Faraday
 - C Ley de Hubble
 - D Ley de Moore

- b Indica que el Universo se expande.
 - A El corrimiento al azul de la luz que emiten las galaxias.
 - B El corrimiento al rojo de la luz que emiten las galaxias.
 - C Todas las galaxias se alejan de la Vía Láctea.
 - D La Teoría de la Relatividad General

Ejemplo 1

Completa el Cuadro 1 escribiendo los datos que faltan en notación científica.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	2×10^{-2}	1.5×10^{10}	9.939×10^{-24}
Rayos X	3×10^{-10}	1×10^{18}	6.626×10^{-16}
Radiación infraroja	6×10^{-6}	13.3 $\times 10^{13}$	8.83 $\times 10^{-20}$

Tabla 1: Comparación entre algunos tipos de ondas electromagnéticas.

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{10} = 9.939 \times 10^{-24}$$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{18}} = 3 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{18} = 6.626 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{6 \times 10^{-6}} = 13.3 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 13.3 \times 10^{13} = 8.83 \times 10^{-20}$$

Ejercicio 3	de 10 punt	tos
Liei Cicio 3	de la pun	LUS

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Rayos gamma	1.2×10^{-11}	$\times 10^{19}$	
Luz visible	$\times 10^{-7}$	1×10^{15}	
Ondas de radio	$\times 10^5$	2×10^{3}	

Ejercicio 4	de 10 pun	tos
Ejercicio 4	de lo pun	LOS

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	1×10^{-2}	$\times 10^{10}$	
Rayos X	$\times 10^{-10}$	1.5×10^{18}	
Radiación infraroja	8.33×10^{-6}	$\times 10^{13}$	$\times 10^{-20}$

Tabla 2: Comparación entre algunos tipos de ondas electromagnéticas.

Ejercicio 5	de 10 puntos
Elige la respuesta correcta. • Células receptoras de luz capaces de percibir colores, percluz.	para que funcionen es necesario que haya suficiente
(A) Bastones	
B Esferas	
© Conos	
D Rizos	
b Perturbación eléctrica que se genera cuando una neurona	recibe un estímulo.
(A) Impulso eléctrico	
B Impulso nervioso	
© Impulso magnético	
D Impulso atómico	
c Pulso eléctrico que se propaga a través de la neurona.	
(A) Potencial de acción	
B Potencial eléctrico	
© Potencial magnético	
D Energía potencial	
Ejercicio 6	de 10 puntos
Relaciona cada enunciado con su respuesta.	
Refaciona cada enunciado con su respuesta.	
© Es un indicador de su distancia si se conoce cuán luminosa es una estrella□	☐ Radiotelescopios
b Nos indica la temperatura de una estrella □	☐ El brillo
c Telescopios que permiten observar las ondas de radio emitidas por algunos cuerpos celestes □	☐ Electromagnética
Radiación que emiten algunos cuerpos celestes que nos permite obtener nueva afirmación acerca de ellos	☐ El color

Eiercicio 7	de 10 puntos

El parsec (pc) puede definirse a partir del año luz como: 1 pc = 3.26 años luz. Si la distancia d que recorre la luz es igual a la velocidad v de la luz por el tiempo t que tarda en recorrerla, entonces:

$$d = vt$$

Q ¿A cuántos metros equivale un parsec?

Considera que un año tiene 365 días y que la velocidad de la luz es 3×10^8 m/s.

T 1 ' 3.601	 T7. T.	,,	1 .1 1 1	270.1 / 01

f b La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. Si la fórmula de cinemática para el tiempo es:

$$t = \frac{d}{v}$$

¿En cuánto tiempo "chocará" con ella?

Considea como el kiloparsec, 1 kpc = 10^3 pc, y el megaparsec, 1 Mpc = 10^6 pc.

Ejercicio 8	de 10 puntos
Señala si son verdaderas o falsas las siguientes afirmaciones	

- Cuando se viaja de norte a sur, o viceversa, la altura aparente de las estrellas cambia.
 - (A) Verdadero
 - (B) Falso
- **b** La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
 - (B) Falso
- c La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - (A) Verdadero
 - (B) Falso
- d En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - (A) Verdadero
 - (B) Falso
- e El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
 - (B) Falso

Ejercicio 9	de 10 puntos
Elige la respuesta correcta a cada inciso. • Longitud del diámetro del Universo.	
(A) Un millón de años luz.	
B Cien mil millones de años luz.	
C Un billón de años luz.	
D Mil millones de años luz.	
b Porcentaje de energía oscura que hay en el Universo.	
$\textcircled{A} \hspace{0.1cm} 4.9 \hspace{0.1cm}\%$	
$egin{array}{c} egin{array}{c} egin{array}{c} 26.8\% \end{array}$	
◎ 33.3 %	
\bigcirc 68.3 $\%$	
c Porcentaje de materia oscura que hay en el Universo.	
iga(A) 4.9 %	
$egin{array}{c} egin{array}{c} egin{array}{c} 26.8 \% \end{array}$	
© 33.3 %	
\bigcirc 68.3 $\%$	
d Porcentaje de materia ordinaria que hay en el Universo.	
$\textcircled{A} \hspace{0.1cm} 4.9 \hspace{0.1cm}\%$	
$egin{array}{c} egin{array}{c} egin{array}{c} 26.8 \% \end{array}$	
© 33.3 %	
\bigcirc 68.3 $\%$	
e Antigüedad estimada del Universo.	
A 14,800 millones de años	
B 10,800 millones de años	

Ejercicio 10	de 10 puntos
Elige la respuesta correcta. • Instrumento gracias al cual es posible observar cuerpos celestes muy lejanos.	
(A) Microscopio	
B Estetoscopio	
© Telescopio	
(D) Electroscopio	
b Variación aparente de la posición de un objeto al cambiar la posición del observador.	
(A) Eclipse	
B Declinación	
© Transformación	
① Paralaje	
C Aparato que sirve para medir ángulos muy pequeños que ayudó a medir la distancia a la algunos objetos celestes.	a cual se encuentran
(A) Vernier	
B Micrómetro	
© Astrolabio	
① Transportador	
d Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella período de tiempo.	al transcurrir cierto
(A) Radiografía	
B Radiometría	
© Fotografía	
D Espectroscopía	