COMP 472 Artificial Intelligence (Winter 2024)

Worksheet #4: Artificial Neural Networks

Perceptron. Calculate your first neuron activation for the *Perceptron* (only 100 billion–1 more to go!):

Activation function:

$$f(\vec{x}) = \begin{cases} 1, & \text{if } \vec{x} \cdot \vec{w} \ge \text{threshold} \\ 0, & \text{otherwise} \end{cases}$$

(use a threshold of 0.55): $f(\vec{x}) =$

Perceptron Learning. Ok, so for the first training example, the perceptron did not produce the right output. To learn the correct result, it has to adjust the weights: $w' = w + \Delta w$, with $\Delta w = \eta(T - O)$, where we set $\eta = 0.05$ (our *learning rate*). The threshold stays at 0.55. T is the expected output and O the output produced by the perceptron $(= f(\vec{x}))$.

		Output			
Student	'A' last year?	Male?	Works hard?	Drinks?	'A' this year?
Richard	Yes	Yes	No	Yes	No
Alan	Yes	Yes	Yes	No	Yes
Alison	No	No	Yes	No	No

Student	w_1	w_2	w_3	w_4	$f(\vec{x})$	ok?	Δw
Richard	0.2	0.2	0.2	0.2			
Alan							
Alison							

- (1) Start by computing the output $f(\vec{x})$ for Richard as before.
- (2) Check if the computed output O is correct or not by comparing it with the expected output T.
- (3) If the output was not correct, compute Δw .
- (4) Write down the *new* weights in the next row (Alan). Remember to only update weights where the current sample (Richard) had an *active* connection (i.e., with non-zero input, here "No" = 0, "Yes" = 1).
- (5) Now repeat the steps, computing the output for Alan using the updated weights.

Delta Rule. In the generalized delta rule for training the perceptron, we add a bias input that is always one and has its own weight (here w_3). Weight changes Δw_i now take the input value x_i into account. We want the perceptron to learn the two-dimensional data shown on the right:

X ₁	X_2	Output
1.0	1.0	1
9.4	6.4	-1
2.5	2.1	1
8.0	7.7	-1
0.5	2.2	1

Assume we use the sign function and set the learning rate $\eta = 0.2$. The weights are initialized randomly as shown in the table. Apply the generalized delta rule for updating the weights:

$$sign(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ -1 & \text{otherwise} \end{cases}$$
$$\Delta w_i = \eta (T - O) x_i$$
$$w' = w + \Delta w$$

Data	w_1	w_2	w_3	$f(\vec{x})$	ok?	Δw_1	Δw_2	Δw_3
#1	0.75	0.5	-0.6					
#2								
#3								
#4								

Neural Network for XOR: Backpropagation. To learn a non-linearly separable function like XOR, we'll use a neural network with a hidden layer. The weights have been initialized randomly (note: here, the bias

is set to -1):

x_1	x_2	$x_1 \text{ XOR } x_2$
1	1	0
0	0	0
1	0	1
0	1	1

$$O_i = \text{sigmoid}\left(\sum_j w_{ji} x_j\right)$$
$$= \frac{1}{1 + e^{-\left(\sum_j w_{ji} x_j\right)}}$$

Step 1. Compute the output for the three neurons O_3, O_4 and O_5 for the first input $(x_1 = 1, x_2 = 1)$: $O_3 = O_5 =$

Step 2. The next step is to calculate the error

$$\delta_o \leftarrow q'(x_o) \times \text{Err}_o = O_o(1 - O_o) \times (O_o - T_o)$$

starting from the output neuron O_5 : $\delta_5 = O_5(1-O_5) \times (O_5-T_5) =$

Step 3. Now we calculate the error terms for the hidden layer:

$$\delta_h \leftarrow g'(x_h) \times \operatorname{Err}_h = O_h(1 - O_h) \times \sum_{k \in \text{outputs}} \delta_k w_{hk}$$

For the two neurons (3), (4) in the hidden layer:

- $\delta_3 = O_3(1 O_3)\delta_5 w_{35} =$ ______
- $\delta_4 = O_4(1 O_4)\delta_5 w_{45} =$ ______

Step 4. Now we compute our weight changes, using a constant learning rate $\eta = 0.1$:

$$\Delta w_{ij} = -\eta \delta_j x_i$$

- $\Delta w_{14} =$ _______
- $\Delta w_{24} =$ _______
- $\bullet \ \Delta w_{45} = \underline{\hspace{1cm}}$
- $\Delta\Theta_5 =$

Step 5. And finally, we update the weights $(w_{ij} \leftarrow w_{ij} + \Delta w_{ij})$:

- $\bullet \ w_{14} = w_{14} + \Delta w_{14} = \underline{\hspace{1cm}}$
- $\bullet \ w_{24} = w_{24} + \Delta w_{24} = \underline{\hspace{2cm}}$
- $\bullet \ w_{45} = w_{45} + \Delta w_{45} = \underline{\hspace{1cm}}$
- $\bullet \ \Theta_5 = \Theta_5 + \Delta\Theta_5 = \underline{\hspace{1cm}}$