

4.4.1.1

Чем чревато появление еще одного физического соединения? Минусы? Плюсы?

4.4.1.2 Часто случайно или целенаправленно с целью повышения надежности (redundancy) в СПД вносят избыточные связи, в том числе и коммутаторами.

4.4.1.4 Пакеты второго уровня (фреймы) не имеют поля TTL, что приводит к возможности возникновения бесконечных циклов при их ретрансляции.

4.4.1.5

Группа протоколов второго уровня под общим названием Spanning Tree призвана бороться с зацикливанием в СПД при резервировании физических каналов.

Собственно STP (Spanning Tree Protocol) (802.1D с дополнением 802.1t) -- это, по сути, один из алгоритмов построения из группы произвольно соединенных между собой L2-устройств виртуального дерева, то есть графа, не содержащего логических петель. Заложенный в STP алгоритм позволяет находить один из лучших вариантов среди множества возможных.

Некоторые модификации STP совместимы с виланами.

4.4.2.1

STP-домен (STP domain) может находиться в одном из трех состояний:

- 1. Первоначальная STP-конвергенция (STP convergence) -- первоначальное построение дерева.
 - 2. Устоявшееся состояние -- полезная работоспособность.
- 3. Повторная STP-конвергенция -- перестроение дерева по причине топологических изменений с последующим возвращением в устоявшееся состояние.

4.4.3.1

По протоколу STP коммутаторы обмениваются сообщениями BPDUs (Bridge Protocol Data Units).

Для STP BPDUs зарезервировано 17 мультикаст-МАС-адресов: 01-80-C2-00-00-00 -- 01-80-C2-00-00-10.

Обмен BPDUs происходит во всех состояниях STP-домена, но поразному.

BPDUs коммутаторами передаются и принимаются, но не ретранслируются.

1	1	9	
4	_4		_/

BPDU [IEEE]

4.4.4.1						
В устоявше	мся ST	Р-домене	корнем	дерева	является	коммутатор,
называемый <i>кор</i>				• •		
		,	,			

4.4.4.2

В результате работы алгоритма каждому отдельно взятому порту каждого из коммутаторов назначается одна из следующих STP-ролей (порты доступа в контексте STP рассматривать не принято):

- 1. Корневой (root) -- разрешено передавать кадры, ближайший обращенный к корневому мосту.
- 2. Назначенный (designated) -- разрешено передавать кадры, обращенный в сторону от корневого моста.
- 3. Альтернативный (alternate) или, иначе, резервный (backup) -- запрещено передавать кадры.

4.4.4.3

В каждый момент времени каждый порт коммутатора находится в одном из следующих STP-состояний:

- 1. Блокировка (blocking) -- не участвует в пересылке кадров.
- 2. Прослушивание (listening) -- принимается решение о возможности участия в пересылке кадров.
 - 3. Изучение (learning) -- готовится к участию в пересылке кадров.
 - 4. Ретрансляция (forwarding) -- участвует в пересылке кадров.
- 5. Запрет (disabled) -- вообще не участвует в работе, то есть не подключен к СрПД, административно выключен, или не поддерживает STP.

4.4.4.4 Power-on initialization, Blocking Listening Disabled Learning Forwarding Диаграмма переходов между STP-состояниями порта

4.4.4.5

Поведение порта в различных STP-состояниях.

	Блокировка	Прослушивание	Изучение	Ретрансляция	Запрет
Прием кадров	-	-	-	+	-
Передача принятых	-	-	-	+	-
другими портами					
кадров					
Изучение МАС-	-	-	+	+	-
адресов					
Прием BPDUs	+	+	+	+	-

Прослушивание и изучение являются переходными состояниями, а ретрансляция и блокировка -- устоявшимися.

4.4.4.6 STP-конвергенция протекает в три фазы: 1. Выбор корневого моста. 2. Выбор корневых портов. 3. Выбор назначенных и альтернативных портов

4.4.4.7a

В процессе упомянутых выборов анализируются следующие параметры:

1. Идентификатор моста (bridge Identifier) -- ассоциирован с каждым мостом, должен быть уникален.

	2 Bytes		6 Bytes
802.1D	Bridge Priority		Bridge Address (= MAC Address)
	4 bits	12 bits	6 Bytes
802.1t	Bridge Priority	System ID (= VLAN ID)	Bridge Address (= MAC Address)

- 2. Стоимость пути (path cost) -- ассоциирована с каждым портом, оценивается в рамках STP-домена (2 байта либо, в соответствии с 802.1t, 4 байта).
- 3. Идентификатор порта (port identifier) -- ассоциирован с каждым портом, оценивается в рамках коммутатора.

4.4.4.7b В реализациях STP перечисленные параметры можно конфигурировать, то есть параметрам можно присваивать значения, отличные от значений по умолчанию.

4.4.4.8a

Изначально каждый коммутатор считает себя корневым мостом, но после обмена BPDUs корневым становится мост с наивысшим приоритетом, то есть с наименьшим цифровым значением идентификатора моста.

Получается, что при совпадении приоритетов мостов учитывается МАС-адрес.

В дальнейшем корневой мост используется как точка отсчета.

4.4.4.8b

Корневые порты выбираются исходя из стоимости пути к корневому мосту, то есть из суммы условных стоимостей физических каналов, ведущих к корневому мосту. Выбирается путь с минимальной стоимостью.

В случае полного совпадения стоимостей учитываются идентификаторы портов. Выбирается порт с наименьшим цифровым значением идентификатора.

При совпадении приоритетов портов учитываются номера портов.

4.4.4.8c

Если из оставшихся портов два связанных порта входят в образовавшуюся петлю, то решается, какой из них активировать, а какой зарезервировать и блокировать (то есть каждый из физических каналов заканчивается только одним активным портом).

Назначенный порт выбирается исходя из наименьшей стоимости пути к корневому мосту.

При совпадении стоимости учитывается идентификатор моста. Выбирается порт с наименьшим идентификатором.

4.4.4.8d

Роль порта в процессе STP-конвергенции может изменяться неоднократно.

В последствии, если какая-либо часть STP-домена претерпела изменение, то оно обнаруживается (регулярный обмен BPDUs) и специальное BPDU (Topology Change Notification) отсылается в сторону корневого моста. Затем корневой мост информирует об изменении топологии все коммутаторы. В результате топология перерассчитывается и резервные пути активируются.

4.4.4.9

Пример устоявшегося STP-домена

4.4.5.1

Протокол STP имеет следующие основные модификации:

- 1. RSTP (Rapid STP) (802.1w -> 802.1D) -- алгоритм предоставляет возможность ускоренной STP-конвергенции.
- 2. PVST (Per-VLAN Spanning Tree) -- проприетарный протокол Cisco, в отличие от 802.1D в каждом из виланов коммутатор рассматривается как независимая сущность (при этом native VLAN на обоих концах транка должен быть одним и тем же), поддерживает ISL-транки, ряд расширений от Cisco (например, PortFast).
- 3. PVST+ -- проприетарный протокол Cisco, поддерживает ISL- и 802.1Q- транки, новые расширения (например, BPDU Guard).
- 4. RPVST+ (Rapid PVST+) -- от PVST+ отличается только тем, что базируется на 802.1w.
- 5. MSTP (Multiple STP) (802.1s -> 802.1Q) -- коммутатор как независимую сущность можно отобразить в несколько виланов.

4.4.6.1

В качестве альтернативы Spanning Tree применимы другие технологии, например, Cisco Flex Links (порту назначают дублирующий порт).

Некоторые реализации собственно Ethernet (в том числе от Cisco) поддерживают механизм Ethernet keep-alive, также позволяющий обнаружить зацикливание (через порт периодически передается специальный «нулевой» кадр типа 9000h с MAC-адресом источника и MAC-адресом назначения, равными MAC-адресу, относящемуся к порту).

4.4.7.1a

В отличие от многих других протоколов, работа STP почти не требует вмешательства.

Командой no spanning-tree vlan можно отключить STP -- глобально в соответствующих виланах.

Совместимость с 802.1D либо 802.1t контролируют командами spanning-tree extend system-id (на большинстве современных платформ «инверсный» вариант команды недоступен) и spanning-tree pathcost method.

4.4.7.1b

Switch(config) #no spanning-tree extend system-id

% Command "no spanning-tree extend system-id <cr>" was not accepted.
This platform requires that the extended system-id feature remain enabled.

Switch(config)#spanning-tree pathcost method long

4.4.7.2a Пример попытки назначения коммутатора корневым мостом.

4.4.7.2b

Switch(config)#spanning-tree vlan 40 root primary diameter 3

Команды IOS

4.4.7.0
4.4.7.3a
Пример задания стоимости пути.

4.4.7.3b

```
Switch(config)#interface fa0/1
Switch(config-if)#spanning-tree vlan 40 cost 50
Switch(config-if)#exit
```

4.4.7.4

С функционированием STP на коммутаторах Cisco связаны следующие таймеры:

- 1. Hello timer -- позволяет задать частоту обмена периодическими BPDUs с соседними коммутаторами (по умолчанию 2 s).
- 2. Forward-delay timer -- позволяет задать паузу при переходе порта из состояния изучения в состояние ретрансляции (по умолчанию 15 s).
- 3. Maximum-age timer -- позволяет задать интервал времени, в течении которого принятые интерфейсом BPDUs считаются валидными (по умолчанию 20 s).
- +4. Transmit hold count -- позволяет задать количество BPDUs, которые могут быть переданы перед паузой в 1 секунду (по умолчанию 6).

1.4.7.5a	
Пример задания таймера.	

4.4.7.5b

Switch(config)#spanning-tree vlan 40 hello-time 10

Команды IOS

4.4.7.6

PortFast -- это технология Cisco, которая заключается в незамедлительном переводе порта доступа из состояния блокировки в состояние ретрансляции.

BPDU Guard -- заключается в незамедлительном административном выключении находящегося в режиме PortFast порта доступа после приема им BPDU.

4.4.7.7a Включение PortFast и BPDU Guard.

4.4.7.7b

```
Switch(config)#interface fa0/2
Switch(config-if)#spanning-tree portfast
...
Switch(config-if)#spanning-tree bpduguard enable
Switch(config-if)#exit
```

4.4.7.8
Основная команда для просмотра состояния подсистемы STP это show
spanning-tree.

Fa0/11

Fa0/12

```
Switch#show spanning-tree
VLAN0001
 Spanning tree enabled protocol ieee
          Priority 32769
 Root ID
          Address 000a.b8a9.d680
          Cost
               19
          Port 13 (FastEthernet0/11)
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
 Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
          Address 000a.b8a9.d780
          Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
          Aging Time 300
Interface Role Sts Cost Prio.Nbr Type
Fa0/7 Desg FWD 19 128.9 P2p
             Desg FWD 19 128.10 P2p
Fa0/8
             Desg FWD 19 128.11 P2p
Fa0/9
             Desg FWD 19 128.12 P2p
Fa0/10
```

Root FWD 19 128.13 P2p

Altn BLK 19

Команды IOS

128.14 P2p

4.4.7.10 Общее состояние работоспособного порта коммутатора отображается как up -- вне зависимости от STP-состояния (кроме запрета). Но индикатор порта при STP-конвергенции и в случае блокировки горит оранжевым цветом.

4.4.7.11

Table Default Spanning-Tree Configuration

Feature	Default Setting
Enable state	Enabled on VLAN 1.
Spanning-tree mode	PVST+. (Rapid PVST+ and MSTP are disabled.)
Switch priority	32768.
Spanning-tree port priority (configurable on a per-interface basis)	128.
Spanning-tree port cost (configurable on a per-interface basis)	1000 Mb/s: 4.
	100 Mb/s: 19.
	10 Mb/s: 100.
Spanning-tree VLAN port priority (configurable on a per-VLAN basis)	128.
Spanning-tree VLAN port cost (configurable on a per-VLAN basis)	1000 Mb/s: 4.
	100 Mb/s: 19.
	10 Mb/s: 100.
Spanning-tree timers	Hello time: 2 seconds.
	Forward-delay time: 15 seconds.
	Maximum-aging time: 20 seconds.
	Transmit hold count: 6 BPDUs

Конфигурация порта коммутатора Cisco по умолчанию применительно к STP [Cisco]

4.4.7.12 Начиная с IOS версии 15.2(4), режим по умолчанию -- уже не PVST+, а RPVST+.

Parameter	Link Speed	Recommended value	Recommended range	Range
Path Cost	<=100 kb/s	200 000 000*	20 000 000-200 000 000	1-200 000 000
Path Cost	1 Mb/s	<u>20 000 000</u> *	2 000 000-200 000 000	1-200 000 000
Path Cost	10 Mb/s	<u>2 000 000</u> *	200 000-20 000 000	1-200 000 000
Path Cost	100 Mb/s	<u>200 000</u> *	20 000-2 000 000	1-200 000 000
Path Cost	1 Gb/s	20 000	2 000-200 000	1-200 000 000
Path Cost	10 Gb/s	<u>2 000</u>	200-20 000	1-200 000 000
Path Cost	100 Gb/s	<u>200</u>	20-2 000	1-200 000 000
Path Cost	1 Tb/s	<u>20</u>	2–200	1-200 000 000
Path Cost	<u>10 Tb/s</u>	2	1-20	1-200 000 000

^{*}Bridges conformant to IEEE Std 802.1D, 1998 Edition, i.e., that support only 16-bit values for Path Cost, should use 65 535 as the Path Cost for these link speeds when used in conjunction with Bridges that support 32 bit Path Cost values.

Обновленные стоимости путей [IEEE]