Лабораторная работа №1. Логистическая регрессия в качестве нейронной сети

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая – около 19 тыс.

Данные можно скачать по ссылке:

- https://commondatastorage.googleapis.com/books1000/notMNIST_large.tar.gz
 (большой набор данных);
- https://commondatastorage.googleapis.com/books1000/notMNIST_small.tar.gz
 (маленький набор данных);

Описание данных на английском языке доступно по ссылке:

http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html

Задание 1.

Загрузите данные и отобразите на экране несколько из изображений с помощью языка Python;

Задание 2.

Проверьте, что классы являются сбалансированными, т.е. количество изображений, принадлежащих каждому из классов, примерно одинаково (В данной задаче 10 классов).

Задание 3.

Разделите данные на три подвыборки: обучающую (200 тыс. изображений), валидационную (10 тыс. изображений) и контрольную (тестовую) (19 тыс. изображений);

Задание 4.

Проверьте, что данные из обучающей выборки не пересекаются с данными из валидационной и контрольной выборок. Другими словами, избавьтесь от дубликатов в обучающей выборке.

Задание 5.

Постройте простейший классификатор (например, с помощью логистической регрессии). Постройте график зависимости точности классификатора от размера обучающей выборки (50, 100, 1000, 50000). Для построения классификатора можете использовать библиотеку SkLearn (http://scikit-learn.org).

Лабораторная работа №2. Реализация глубокой нейронной сети

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая – около 19 тыс.

Данные можно скачать по ссылке:

- https://commondatastorage.googleapis.com/books1000/notMNIST_large.tar.gz
 (большой набор данных);
- https://commondatastorage.googleapis.com/books1000/notMNIST_small.tar.gz
 (маленький набор данных);

Описание данных на английском языке доступно по ссылке: http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html

Задание 1.

Реализуйте полносвязную нейронную сеть с помощью библиотеки Tensor Flow. В качестве алгоритма оптимизации можно использовать, например, стохастический градиент (Stochastic Gradient Descent, SGD). Определите количество скрытых слоев от 1 до 5, количество нейронов в каждом из слоев до нескольких сотен, а также их функции активации (кусочно-линейная, сигмоидная, гиперболический тангенс и т.д.).

Задание 2.

Как улучшилась точность классификатора по сравнению с логистической регрессией?

Задание 3.

Используйте регуляризацию и метод сброса нейронов (dropout) для борьбы с переобучением. Как улучшилось качество классификации?

Задание 4.

Воспользуйтесь динамически изменяемой скоростью обучения (learning rate). Наилучшая точность, достигнутая с помощью данной модели составляет 97.1%. Какую точность демонстрирует Ваша реализованная модель?

Лабораторная работа №3. Реализация сверточной нейронной сети

Данные: В работе предлагается использовать набор данных notMNIST, который состоит из изображений размерностью 28×28 первых 10 букв латинского алфавита (А ... J, соответственно). Обучающая выборка содержит порядка 500 тыс. изображений, а тестовая – около 19 тыс.

Данные можно скачать по ссылке:

- https://commondatastorage.googleapis.com/books1000/notMNIST_large.tar.gz
 (большой набор данных);
- https://commondatastorage.googleapis.com/books1000/notMNIST_small.tar.gz
 (маленький набор данных);

Описание данных на английском языке доступно по ссылке: http://yaroslavvb.blogspot.sg/2011/09/notmnist-dataset.html

2-------

Задание 1.

Реализуйте нейронную сеть с двумя сверточными слоями, и одним полносвязным с нейронами с кусочно-линейной функцией активации. Какова точность построенное модели?

Задание 2.

Замените один из сверточных слоев на слой, реализующий операцию пулинга (Pooling) с функцией максимума или среднего. Как это повлияло на точность классификатора?

Задание 3.

Реализуйте классическую архитектуру сверточных сетей LeNet-5 (http://yann.lecun.com/exdb/lenet/).

Задание 4.

Сравните максимальные точности моделей, построенных в лабораторных работах 1-3. Как можно объяснить полученные различия?

Лабораторная работа №4. Реализация приложения по распознаванию номеров домов.

Данные: Набор изображений из Google Street View с изображениями номеров домов, содержащий 10 классов, соответствующих цифрам от 0 до 9.

- 73257 изображений цифр в обучающей выборке;
- 26032 изображения цифр в тестовой выборке;
- 531131 изображения, которые можно использовать как дополнение к обучающей выборке;
- В двух форматах:
 - Оригинальные изображения с выделенными цифрами;
 - Изображения размером 32 × 32, содержащих одну цифру;
- Данные первого формата можно скачать по ссылкам:
 - http://ufldl.stanford.edu/housenumbers/train.tar.qz (обучающая выборка);
 - http://ufldl.stanford.edu/housenumbers/test.tar.gz (тестовая выборка);
 - о http://ufldl.stanford.edu/housenumbers/extra.tar.gz (дополнительные данные);
- Данные второго формата можно скачать по ссылкам:
 - http://ufldl.stanford.edu/housenumbers/train 32x32.mat (обучающая выборка);
 - http://ufldl.stanford.edu/housenumbers/test-32x32.mat (тестовая выборка);
- http://ufldl.stanford.edu/housenumbers/extra_32x32.mat
 (дополнительные данные);
 - Описание данных на английском языке доступно по ссылке:
 - http://ufldl.stanford.edu/housenumbers/

Задание 1.

Реализуйте глубокую нейронную сеть (полносвязную или сверточную) и обучите ее на синтетических данных (например, наборы MNIST (http://yann.lecun.com/exdb/mnist/) или notMNIST).

Ознакомьтесь с имеющимися работами по данной тематике: англоязычная статья (http://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42241.pdf), видео на YouTube (https://www.youtube.com/watch?v=vGPI JvLoN0).

Задание 2.

После уточнения модели на синтетических данных попробуйте обучить ее на реальных данных (набор Google Street View). Что изменилось в модели?

Задание 3.

Сделайте множество снимков изображений номеров домов с помощью смартфона на ОС Android. Также можно использовать библиотеки OpenCV, Simple CV или Рудате для обработки изображений с общедоступных камер видеонаблюдения (например, https://www.earthcam.com/).

Пример использования библиотеки TensorFlow на смартфоне можете воспользоваться демонстрационным приложением от Google (https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android).

Задание 4.

Реализуйте приложение для ОС Android, которое может распознавать цифры в номерах домов, используя разработанный ранее классификатор. Какова доля правильных классификаций?

Лабораторная работа №5. Применение сверточных нейронных сетей (бинарная классификация)

Данные: Набор данных DogsVsCats, который состоит из изображений различной размерности, содержащих фотографии собак и кошек. Обучающая выборка включает в себя 25 тыс. изображений (12,5 тыс. кошек: cat.0.jpg, ..., cat.12499.jpg и 12,5 тыс. собак: dog.0.jpg, ..., dog.12499.jpg), а контрольная выборка содержит 12,5 тыс. неразмеченных изображений. Скачать данные, а также проверить качество классификатора на тестовой выборке можно на сайте Kaggle -> https://www.kaggle.com/c/dogs-vs-cats/data

Задание 1.

Загрузите данные. Разделите исходный набор данных на обучающую, валидационную и контрольную выборки.

Задание 2.

Реализуйте глубокую нейронную сеть с как минимум тремя сверточными слоями. Какое качество классификации получено?

Задание 3.

Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?

Задание 4.

Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора?

Какой максимальный результат удалось получить на сайте Kaggle? Почему?

Лабораторная работа №6. Применение сверточных нейронных сетей (многоклассовая классификация)

Данные: Набор данных для распознавания языка жестов, который состоит из изображений размерности 28х28 в оттенках серого (значение пикселя от 0 до 255). Каждое из изображений обозначает букву латинского алфавита, обозначенную с помощью жеста, как показано на рисунке ниже (рисунок цветной, а изображения в наборе данных в оттенках серого). Обучающая выборка включает в себя 27,455 изображений, а контрольная выборка содержит 7172 изображения. Данные в виде сsv-файлов можно скачать на сайте Kaggle -> https://www.kaggle.com/datamunge/sign-language-mnist

Задание 1.

Загрузите данные. Разделите исходный набор данных на обучающую и валидационную выборки.

Задание 2.

Реализуйте глубокую нейронную сеть со сверточными слоями. Какое качество классификации получено? Какая архитектура сети была использована?

Задание 3.

Примените дополнение данных (data augmentation). Как это повлияло на качество классификатора?

Задание 4.

Поэкспериментируйте с готовыми нейронными сетями (например, AlexNet, VGG16, Inception и т.п.), применив передаточное обучение. Как это повлияло на качество классификатора? Можно ли было обойтись без него?

Какой максимальный результат удалось получить на контрольной выборке?

Лабораторная работа №7. Рекуррентные нейронные сети для анализа текста

Данные: Набор данных для предсказания оценок для отзывов, собранных с сайта imdb.com, который состоит из 50,000 отзывов в виде текстовых файлов. Отзывы разделены на положительные (25,000) и отрицательные (25,000). Данные предварительно токенизированы по принципу "мешка слов", индексы слов можно взять из словаря (imdb.vocab). Обучающая выборка включает в себя 12,500 положительных и 12,500 отрицательных отзывов, контрольная выборка также содержит 12,500 положительных и 12,500 отрицательных отзывов, а также. Данные можно скачать по ссылке https://ai.stanford.edu/~amaas/data/sentiment/

Задание 1.

Загрузите данные. Преобразуйте текстовые файлы во внутренние структуры данных, которые используют индексы вместо слов.

Задание 2.

Реализуйте и обучите двунаправленную рекуррентную сеть (LSTM или GRU). Какого качества классификации удалось достичь?

Задание 3.

Используйте индексы слов и их различное внутреннее представление (word2vec, glove). Как влияет данное преобразование на качество классификации?

Задание 4.

Поэкспериментируйте со структурой сети (добавьте больше рекуррентных, полносвязных или сверточных слоев). Как это повлияло на качество классификации?

Задание 5.

Используйте предобученную рекуррентную нейронную сеть (например, DeepMoji или что-то подобное).

Какой максимальный результат удалось получить на контрольной выборке? Результат выполнения заданий опишите в отчете.

Лабораторная работа №8. Рекуррентные нейронные сети для анализа временных рядов

Данные: Набор данных для прогнозирования временных рядов, который состоит из среднемесячного числа пятен на солнце, наблюдаемых с января 1749 по август 2017. Данные в виде csv-файла можно скачать на сайте Kaggle -> https://www.kaggle.com/robervalt/sunspots/

Задание 1.

Загрузите данные. Изобразите ряд в виде графика. Вычислите основные характеристики временного ряда (сезонность, тренд, автокорреляцию).

Задание 2.

Для прогнозирования разделите временной ряд на обучающую, валидационную и контрольную выборки.

Задание 3.

Примените модель ARIMA для прогнозирования значений данного временного ряда.

Задание 4.

Повторите эксперимент по прогнозированию, реализовав рекуррентную нейронную сеть (с как минимум 2 рекуррентными слоями).

Задание 5.

Сравните качество прогноза моделей.

Какой максимальный результат удалось получить на контрольной выборке? Результат выполнения заданий опишите в отчете.