Ориентированная площадь параллелограмма

Определим функцию $S\colon \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, которая по двум векторам $\vec{u}, \vec{v} \in \mathbb{R}^2$ плоскости вычисляет площадь $S(\vec{u}, \vec{v})$ параллелограмма, построенного на них. Во-первых, эта функция должна быть линейной по обоим аргументам $^1: S(x\vec{u}_1+y\vec{u}_2,\vec{v})=xS(\vec{u}_1,\vec{v})+yS(\vec{u}_2,\vec{v})$ и $S(\vec{u},x\vec{v}_1+y\vec{v}_2)=xS(\vec{u},\vec{v}_1)+yS(\vec{u},\vec{v}_2)$ для любых вещественных x и y. Во-вторых, площадь вырожденного параллелограмма должна равняться нулю: $S(\vec{u},\vec{u})=0$. Наконец, чтобы с чего-то начать, мы должны определить единичную площадь: $S(\vec{e}_1,\vec{e}_2)=1$, где, как обычно, \vec{e}_1 и \vec{e}_2 — единичные векторы, параллельные осям Ox и Oy соответственно.

- 1. Докажите равенства $S(\vec{u}, \vec{0}) = S(\vec{0}, \vec{v}) = 0$.
- 2. Докажите, что такая функция должна быть кососимметрической: $S(\vec{v}, \vec{u}) = -S(\vec{u}, \vec{v})$, т. е. мы хотим определить *ориентированную* площадь.
- 3. Выразите значение функции S через координаты векторов \vec{u} и \vec{v} . Проверьте, что она удовлетворяет всем условиям.

Ориентированный объём в произвольном *п*-мерном пространстве, очевидно, должен быть полилинейной кососимметрической функцией, которую мы положим равной единице на наборе единичных векторов, идущих вдоль координатных осей.

4. Выведите формулу объёма параллелепипеда в \mathbb{R}^3 .

Перестановки

Произвольная биекция $\sigma: \{1, 2, ..., n\} \to \{1, 2, ..., n\}$ называется перестановкой на n элементах. Нетрудно видеть, что множество всех перестановок на n элементах образуют группу 2 с операцией "композиция" и единичным элементом — тождественной перестановкой Id, эту группу принято обозначать S_n . Если существует последовательность $a_1, a_2, ..., a_k$ различных элементов такая, что $\sigma(a_1) = a_2, \, \sigma(a_2) = a_3, \, ..., \, \sigma(a_{k-1}) = a_k$ и $\sigma(a_k) = a_1$, а на всех остальных элементах σ тождественна, то σ называется η иклом длины η иклы длины η называются η пранспозициями.

- 5. Докажите, что любую перестановку единственным образом можно представить в виде произведения нескольких циклов, не имеющих общих элементов³.
- 6. Докажите, что цикл длины k представи́м виде произведения k-1 транспозиций.
- 7. Докажите, что меньшим количеством транспозиций обойтись нельзя.

Чётность перестановки

Инверсией в перестановке σ называется произвольная пара (i,j) индексов такая, что i < j и $\sigma(i) > \sigma(j)$. Если в перестановке σ количество всех инверсий равно p, то чётностью σ называется чётность числа p, для этого есть удобное обозначение $(-1)^{\sigma} \stackrel{\text{onp}}{=} (-1)^p$.

- 8. Пусть σ произвольная перестановка, а τ транспозиция. Докажите равенство $(-1)^{\tau\sigma} = -(-1)^{\sigma}$ и выведите отсюда, что всякая транспозиция нечётна.
- 9. Найдите чётность произвольного цикла длины k.
- 10. Докажите, что для любых перестановок σ и τ верно равенство $(-1)^{\tau\sigma}=(-1)^{\tau}\cdot(-1)^{\sigma}$.
- 11. На двух параллельных прямых отметили по n точек и занумеровали их числами от 1 до n в одинаковом направлении. После этого соединили отрезками все пары точек с номерами i на первой прямой и $\sigma(i)$ на второй прямой. Докажите, что количество пар пересекающихся отрезков равно числу инверсий перестановки σ .

 $^{^{1}\}Phi$ ункции, линейные по всем своим (нескольким) аргументам называются **полилинейными**.

²Эта группа называется **симметрической группой**.

³Такие циклы называются независимыми, а разложение **каноническим**.

Упражнения и задачи

- 12. Докажите, что для любого $k \le n$ в группе S_n есть ровно n!/k перестановок, у которых число инверсий кратно k.
- 13. Пусть $S = \{1, \ldots, n\}$. Для произвольной биекции $f \colon S \to S$ через c(f) обозначим количество различных обит f. Для любого набора f_1, \ldots, f_k , состоящего из k биекций из S в себя, докажите неравенство $c(f_1) + \cdots + c(f_k) \leqslant n(k-1) + c(f_1 \circ \cdots \circ f_k)$.
- 14. Определите количество !n перестановок n элементов без неподвижных точек 4 .
- 15. Найдите предел $\lim_{n\to\infty} \frac{!n}{n!}$, т. е. предел вероятности того, что случайно выбранная перестановка является беспорядком (при n стремящемся к бесконечности).
- 16. Докажите, что любая группа G, состоящая из n элементов изоморфна некоторой подгруппе 5 группы S_n .
- 17. Элементы a и b группы G называются conpяжёнными, если существует элемент c такой, что ac = cb. Докажите, что две перестановки из S_n сопряжены между собой, если и только если наборы длин циклов (с учётом кратности) в их каноническом разложении совпадают.

Лемма Бёрнсайда

Пусть H — подгруппа группы G. Для элемента $g \in G$ множество $gH = \{gh : h \in H\}$ называется его левым смеженым классом по H (сокращённо просто смеженый класс, если остальное ясно из контекста).

- 18. Докажите, что gH = H, если и только если $g \in H$.
- 19. Докажите, что отношение "принадлежать одному смежному классу" отношение эквивалентности.
- 20. Докажите, что конечная группа G разбивается на |G|:|H| смежных классов мощности |H|.

В частности, число |G|:|H| всегда целое⁶, оно называется undercom подгруппы H и обозначается [G:H].

Пусть G — подгруппа S_n . Для произвольного числа k от 1 до n множество $\{g(k):g\in G\}$ называется его opбumoŭ, а множество перестановок $\{g\in G:g(k)=k\}$ называется его $opбumo\~u$.

- 21. Покажите, что стабилизатор любого элемента является подгруппой в G и найдите её индекс.
- 22. Докажите, что количество орбит группы G равно среднему количеству неподвижных точек элементов G.

⁴Это количество называется **числом беспорядков**.

 $^{^5}$ Часто допускают вольность речи и говорят, что G- подгруппа $S_n.$

⁶Это утверждение называется **теоремой Лагранжа**.