2. 8.5/10

HW 4-Linear Model

ID:111024517 Name:鄭家豪

due on 11/17

Problem 1

```
y: log (oxygen demand, mg oxygen per minute)  
x1: biological oxygen demand, mg/liter  
x2: total Kjeldahl nitrogen, mg/liter  
x3: total solids, mg/liter  
x4: total volatile solids, a component of x3, mg/liter  
x5: chemical oxygen demand, mg/liter  
Model: y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \beta_5 X_{5i} + \epsilon_i  
,where i = 1, 2, ..., n, \epsilon = (\epsilon_1, ..., \epsilon_n)^T \sim N(\mathbf{0}, \sigma^2 \mathbf{I_n}).  
Parameter space: \Omega = \{\beta \in \mathbb{R}^6 : y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \beta_4 X_4 + \beta_5 X_5 + \epsilon\}  
\mathbf{data} \leftarrow \mathbf{read.table('http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/data/wastes.txt', header=TRUE, fill = TRUE)}  
colnames(data)[1:7] \leftarrow names(data)[2:8]  
\mathbf{data} = \mathbf{data[-c(21),]}  
\mathbf{data} = \mathbf{data[-c(31),]}  
\mathbf{data} = \mathbf{data[-c(31),]}  
\mathbf{model} \leftarrow \mathbf{lm(y} \sim x1 + x2 + x3 + x4 + x5, \mathbf{data} = \mathbf{data})
```

2 (a)

The 95% confidence interval for β_3 is $\hat{\beta}_3 \pm t_{(n-p,1-0.025)} * s.e.(\hat{\beta}_3)$:

```
coef <- summary(model)$coef
bound_L <- coef[4,1] - qt(0.975,20-6)*coef[4,2]
bound_U <- coef[4,1] + qt(0.975,20-6)*coef[4,2]
kable(t(c(bound_L,bound_U)),col.names = NULL)</pre>
```

-3.71e-05 0.0002927

由以上式子,得到 95% C.I. for β_3 is $(-3.713929 \times 10^{-5}, 2.927368 \times 10^{-4})$. Similarly, the 95% confidence interval for β_5 is $\hat{\beta}_5 \pm t_{(n-p,1-0.025)} * s.e.(\hat{\beta}_5)$:

```
bound_L <- coef[6,1] - qt(0.975,20-6)*coef[6,2]
bound_U <- coef[6,1] + qt(0.975,20-6)*coef[6,2]
kable(t(c(bound_L,bound_U)),col.names = NULL)</pre>
```

-1.65e-05 0.0002998

由以上式子,得到 95% C.I. for β_5 is $(-1.652198\times 10^{-5}, 2.998305\times 10^{-4})$. By the way, 這邊可以使用指令:"confint" 來找出每個 β 的信賴區間:

confint(model,level = 0.95)

2.5 % 97.5 %

(Intercept) -4.115384e+00 -0.1969076588

x1 -1.120765e-03 0.0011027419

x2 -1.394016e-03 0.0040257880

x3 -3.713929e-05 0.0002927368

x4 -2.212779e-02 0.0379255006

x5 -1.652198e-05 0.0002998305

2 (b)

The 95% confidence interval for $\beta_3+2\beta_5$ is $\hat{\beta}_3\pm t_{(n-p,1-0.025)}*s.e.(\hat{\beta}_3+\hat{\beta}_5)$, where $s.e.(\hat{\beta}_3+\hat{\beta}_5)=\sqrt{\mathrm{Var}(\hat{\beta}_3)+\mathrm{Var}(2\hat{\beta}_5)+4\mathrm{Cov}(\beta_3,\beta_5)}.$

$$\mathrm{Cov}(\hat{\beta}_i,\hat{\beta}_j) = (X^TX)_{ij}^{-1}\hat{\sigma}^2 \Rightarrow \mathrm{Cov}(\hat{\beta}_3,\hat{\beta}_5) = \hat{\sigma}^2(-2.612349 \times 10^{-9})$$

X <- model.matrix(model)
solve(t(X)%*%X)[4,6]</pre>

[1] -2.612349e-09

 $(以上為 (X^TX)_{35}^{-1}$ 的數值)

因此,我們可以得到 95% C.I. for $\beta_3+2\beta_5$ by the following:

```
sigma_hat <- summary(model)$sig
sd <- sqrt(coef[4,2]^2+4*coef[6,2]^2 + 4*(-2.612349e-09)*sigma_hat^2)
bound_L <- coef[4,1] + 2*coef[6,1] - qt(0.975,20-6)*sd
bound_U <- coef[4,1] + 2*coef[6,1] + qt(0.975,20-6)*sd
kable(t(c(bound_L,bound_U)),col.names = NULL)</pre>
```

95% C.I. for $\beta_3 + 2\beta_5$ is (5.898666 \times $10^{-5}, 7.632279 \times 10^{-4}).$

/

3 (c)

```
紅點:(0,0); 藍點:(\hat{\beta}_3,\hat{\beta}_5) 虚線 (x-axis):95\% 信賴區間 for \beta_3 虚線 (y-axis):95\% 信賴區間 for \beta_5
```


由 (a) (b) 可以得知, β_3 與 β_5 的信賴區間分別都會涵蓋 0 ,這代表著分別做檢定:

$$\mathbf{H}_0: \beta_i = 0$$
 v.s. $\mathbf{H}_1: \beta_i \neq 0$

都會得到這個結論: "Do not reject H_0 at significant level 0.05"。那如果要檢定:

$$H_0: \omega = \{\beta \in \mathbb{R}^6 : \beta_3 = \beta_5 = 0\} \text{ v.s. } H_1: \Omega/\omega$$

可觀察上面的 confidence region for (β_3,β_5) ,是否有涵蓋到原點 (0,0) 。這裡可以觀察到,此圖是會涵蓋原點!因此,Do not reject H_0 at significant level 0.05 。

2 (d)

The confidence region of $(\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$ is satisfying the following:

$$(A(\hat{\beta}-\beta))^T(A(X^TX)^{-1}A^T)^{-1}(A(\hat{\beta}-\beta)) \leq (5\hat{\sigma}^2)F_{5,20-6}(\alpha) \text{ under } \mathbf{H}_0 - (*)$$

which implies the testing:

$$H_0: \omega = \{\beta : (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5) = \mathbf{0}\}$$
 v.s. $H_1: \Omega/\omega$

where $A = [\mathbf{0}_{5\times 1}|\mathbf{I}_{5\times 5}]:5\times 6$ matrix, is equivalent to under the null hypothesis is true, examine whether (*) holds.

So, by the following,

```
A = matrix(0,nrow = 5,ncol = 6)
for (i in 1:5){
    A[i,i+1] =1
}
model_inverse <- solve(t(X)%*%X)
statistic <- as.numeric(t(A%*%coef[,1]) %*% solve(A%*%model_inverse%*%t(A)) %*% A%*%(coef[,1]))
critical_value <- 5*summary(model)$sig^2*qf(0.95,5,20-6)
statistic - critical_value</pre>
```

[1] 3.094621

計算 $(\hat{A}\beta-0)^T(A(X^TX)^{-1}A^T)^{-1}(\hat{A}\beta-0)-(5\hat{\sigma}^2)F_{5,20-6}(\alpha=0.05)=3.094621>0$,代表(*)不成立,即得到結論:"Reject \mathbf{H}_0 at significant level 0.05"。

Does origin lie inside or outside of confidence region?

5 (e)

let total non-volatile solids be $X_6 = X_3 - X_4$

$$\begin{split} & \text{Model}: \ y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 (X_{4i} + X_{6i}) + \beta_4 X_{4i} + \beta_5 X_{5i} + \epsilon_i \ \text{在進行檢定前,我們發現} \\ & \text{Cor}(X_3, X_6) = 0.9999964 \approx 1 \text{ , 這代表 } X_3 \text{ 和 } X_6 \text{ 存在共線性的性質。} \end{split}$$

8.5

cor(data\$x3,data\$x3-data\$x4)

[1] 0.9999964

這意味著 X_6 的效應和 X_3 極度相似,so, the testing to this suspicion :

$$H_0: \omega = \{\beta: \beta_3 = 0\}$$
 v.s. $H_1: \Omega/\omega$

這裡的檢定等價於利用 β_3 的信賴區間來檢驗是否涵蓋 0 。由 (a) 可以得知,其區間是涵蓋 0 的,因此,Do not reject H_0 at significant level 0.05 。

Problem 2

(a)

summary(data)

##	Price	SQFT	Age	Features	NE
##	Min. : 540	Min. : 837	Min. : 1.00	Min. :0.00	Min. :0.0000
##	1st Qu.: 780	1st Qu.:1280	1st Qu.: 5.75	1st Qu.:3.00	1st Qu.:0.0000
##	Median : 960	Median :1549	Median :13.00	Median :4.00	Median :1.0000
##	Mean :1063	Mean :1654	Mean :14.97	Mean :3.53	Mean :0.6667
##	3rd Qu.:1200	3rd Qu.:1894	3rd Qu.:19.25	3rd Qu.:4.00	3rd Qu.:1.0000
##	Max. :2150	Max. :3750	Max. :53.00	Max. :8.00	Max. :1.0000
##			NA's :49		
##	Corner	Tax			
##	Min. :0.000	Min. : 223.	0		
##	1st Qu.:0.000	1st Qu.: 600.	0		
##	Median :0.000	Median : 731.	0		
##	Mean :0.188	Mean : 793.	5		
##	3rd Qu.:0.000	3rd Qu.: 919.	0		
##	Max. :1.000	Max. :1765.	0		
##		NA's :10			

由以上的 summary table,可以發現 Age 的 NA 數量大約佔了總樣本數的四成 $(49/117\approx0.419)$,可能因為這組數據的房子,有很多陳舊已久的房子以至於其房屋年齡無從而知,加上非 NA 的 Age 樣本中,大約有 75% 的房屋年齡在 20 年以下,代表大部分採樣的年齡屬於年輕的一群,假如 NA 代表陳舊已久的房屋歲數的話,那只移除有 NA 的 row data 來做分析,主要只會分析年輕房子的售價!因此,Age 這個 predictor 無具代表性,應擇將其 predictor 移除會比較保險。

2 (b)

##

由 (a) 的 summary teble, 會發現 Taxes 有 10 個 NA 值,由於 NA 佔的比例不高 (10/117 < 0.1),另外考量 Tax 為 NA 的可能性為房主逃稅,這種類型的房子不太值得去做分析,因此這裡將其 10 筆 row data 給移除掉。於是整理以上,資料整合為:

```
data = data[,-c(3)]
data = data[-c(which(is.na(data$Tax))),]
```

整合完後的資料為 non-NA data with size: 107 x 6

```
model <- lm(Price ~ . ,data=data)
summary(model)</pre>
```

```
## Call:
## lm(formula = Price ~ ., data = data)
##
## Residuals:
##
      Min
              1Q Median
                             30
                                    Max
## -544.22 -74.05 -15.03 68.34 615.26
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 77.6954
                       62.1231 1.251 0.2139
                        0.0620 4.301 3.93e-05 ***
## SQFT
              0.2666
## Features
              13.8581 13.5727 1.021 0.3097
              -3.3995 36.4875 -0.093 0.9260
## NE
                         42.4246 -2.101 0.0382 *
## Corner
             -89.1245
## Tax
               0.6627
                         0.1097
                                 6.042 2.57e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 171.9 on 101 degrees of freedom
## Multiple R-squared: 0.8091, Adjusted R-squared: 0.7996
## F-statistic: 85.6 on 5 and 101 DF, p-value: < 2.2e-16
```

這裡得到模型:

 $\hat{y}_{\text{Price}} = 77.6954 + 0.2666 X_{\text{SQFT}} + 13.8581 X_{\text{Features}} - 3.3995 X_{\text{NE}} - 89.1245 X_{\text{Corner}} + 0.6627 X_{\text{Tax}}$ The $100(1-\alpha)\%$ confidence interval for β_i is $\hat{\beta}_i \pm t_{(107-6,1-\alpha)} * \text{s.e.}(\hat{\beta}_i)$, by 指令"confint",可以分别得到 95%,99% 的信賴區間:

confint(model,level=0.95)

```
##
                      2.5 %
                                97.5 %
## (Intercept) -45.5400249 200.9309248
## SQFT
                 0.1436693
                              0.3896326
## Features
               -13.0665047
                            40.7827060
## NE
               -75.7809282 68.9818807
              -173.2835186
                            -4.9654323
## Corner
## Tax
                  0.4451310
                              0.8803222
```

confint(model,level=0.99)

##		0.5 %	99.5 %	
##	(Intercept)	-85.4016058	240.7925057	
##	SQFT	0.1038899	0.4294120	
##	Features	-21.7755013	49.4917026	1
##	NE	-99.1933199	92.3942724	V
##	Corner	-200.5054895	22.2565386	
##	Tax	0.3747479	0.9507053	

V

從 summary of lm,可以看到 Corner 的 p-value =0.0382 > 0.01 但是 < 0.05。對於此檢定:

$$H_0: \beta_{Corner} = 0$$
 v.s. $H_1: \beta_{Corner} \neq 0$

如果 p-value 小於給定的顯著水準 α ,應拒絕 H_0 ,反之則接受 H_0 。故使用 p-value 來檢定 $\beta_{Corner}=0$ 與檢察其係數之信賴區間是否涵蓋 0,兩者是等價的。從上面的信賴區間,95% C.I.:(-173.2835186,-4.9654323) 沒有涵蓋 0,但 99% C.I.:(-200.5054895,22.2565386) 有涵蓋 0,與 p-value 推出的檢定結果一致。

(c)

這題非預測這類型房屋的平均價格,應為對 future observation 的房價預測,因此其預測的信賴區間 (預測區間) for Y_{new} at $x_0=(1,SQFT=2500,Features=5,NE=1,Corner=1,Tax=1200)^T$ 為:

$$\hat{Y}_{\text{new}} \pm t_{(20-6,1-\alpha/2)} \times \hat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0}, \text{ where } X: \text{model matrix}$$

可使用指令 predict 來計算其區間:

```
## $fit
## fit lwr upr
## 1 1516.361 1162.761 1869.961
##
## $se.fit
## [1] 47.20802
##
## $df
## [1] 101
##
## $residual.scale
## [1] 171.8849
```

這裡預估這間房子的售價為 1516.361 (百美元),以及其 95% 預測區間為 (1162.761,1869.961),即有 95% 的信心預估其價格介於 (1162.761,1869.961) 之間。

(d)

3

2

由於這裡已知的資訊只有 SQFT = 2500,這裡我採用兩個方式來做預測並分別做分析:

• 內插 (imterpolation): 對 Features、NE、Corner 與 Tax 進行內插,使用 (b) 的模型來做預測 需要內插的值應落在資料涵蓋的範圍內,這樣預測結果才不太會受配適模型中不顯著效應變數的影響。由 (a) 的 summary table 可以觀察到,Tax 存在離群值且有 6 個。

```
Q1 <- as.numeric(quantile(data$Tax,0.25))
Q3 <- as.numeric(quantile(data$Tax,0.75))
length(which(data$Tax>Q3+1.5*(Q3-Q1)))
```

[1] 6

為了避免受到離群值的影響, Tax 的內插值設定為其中位數 731。另外, 其餘 predictors 為類別型資料,內插值分別皆設定為其眾數。

```
se=TRUE,interval = "prediction")
## $fit
         fit
##
                  lwr
                           upr
## 1 1280.809 917.6289 1643.989
##
## $se.fit
## [1] 63.0362
##
## $df
## [1] 101
##
## $residual.scale
## [1] 171.8849
最後我們得到預估值為 1280.809(百美元)。這裡要注意的是,因為內插是估計未知 predictors 的值,
代表會產生隨機效應,所以計算出來的 95\% 預測區間,其 coverage probability 實際上會大於 0.95,
這不符合我們題目所要找的 95% 預測區間。
  • Predictor 只保留 SQFT, 然後配適模型: y_{\text{Price}} = \beta_0 + \beta_1 X_{\text{SQFT}} + \epsilon
model <- lm(Price~ SQFT, data=data)</pre>
summary(model)
##
## Call:
## lm(formula = Price ~ SQFT, data = data)
## Residuals:
##
       Min
                 1Q
                     Median
                                   ЗQ
                                           Max
## -1050.93
           -93.54
                      1.44
                                       749.33
                                60.58
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.82322 66.39183 0.931
                                            0.354
## SQFT
               0.60910
                        0.03796 16.047
                                            <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
```

Tax=median(data\$Tax)),

Residual standard error: 207.6 on 105 degrees of freedom

```
## Multiple R-squared: 0.7103, Adjusted R-squared: 0.7076
## F-statistic: 257.5 on 1 and 105 DF, p-value: < 2.2e-16</pre>
```

由以上,我們得到配適模型: $\hat{y}_{\mathrm{Price}}=61.82322+0.60910\times X_{\mathrm{SQFT}}$ 。 利用此模型來做預測:

\$fit

fit lwr upr

1 1584.563 1166.205 2002.921

##

\$se.fit

[1] 37.4438

##

\$df

[1] 105

##

\$residual.scale

[1] 207.6429

在只知道 SQFT=2500 的資訊下,預估這間房子的售價為 1584.563(百美元),由於這裡沒有考慮其他 predictors 的隨機性,所以其 95% 預測區間為 (1166.205,2002.921),即有 95% 的信心預估其價格介於 (1166.205,2002.921) 之間。

因此,總結上述,預測值 = 1584.563,其 95% 預測的信賴區間為 (1166.205,2002.921)。