Esercizi sugli stadi amplificatori

Esercizio 1.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C nel punto di lavoro:

- 1. verificare la regione di funzionamento di MN e di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\text{out}}}{v_{\text{in}}}$, la resistenza d'ingresso R_{in} e la resistenza d'uscita R_{out} in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C_1 può considerarsi un corto circuito ed il condensatore C_2 può considerarsi un circuito aperto);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per $C_1 = 1 \mu \text{F}$ e $C_2 = 100 \text{pF}$, e tracciarne i diagrammi di Bode di modulo e fase.
- 4. sotto le stesse ipotesi del punto 3., determinare l'impedenza d'ingresso $Z_{in}(s)$ e l'impedenza d'uscita $Z_{out}(s)$ e tracciarne i diagrammi di Bode di modulo e fase.

Esercizio 2.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C e V_D nel punto di lavoro:

- 1. verificare la regione di funzionamento di MN e di MP e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C può considerarsi come un circuito aperto);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per C = 100 pF e tracciarne i diagrammi di Bode di modulo e fase.

Esercizio 3.

Con riferimento al circuito in figura, in cui sono date le tensioni continue V_A , V_B , V_C nel punto di lavoro:

- 1. verificare la regione di funzionamento di M1 e di M2 e determinarne i parametri del modello per il piccolo segnale;
- 2. valutare l'amplificazione di tensione $A_v = \frac{v_{\rm out}}{v_{\rm in}}$, la resistenza d'ingresso $R_{\rm in}$ e la resistenza d'uscita $R_{\rm out}$ in condizioni di piccolo segnale e per segnali in banda (in banda, il condensatore C può considerarsi come un corto circuito);
- 3. ricavare l'espressione della funzione di trasferimento $A_v(s) = \frac{V_{\text{out}}(s)}{V_{\text{in}(s)}}$ ed i valori numerici delle frequenze di taglio di zeri e poli per $C = 1 \mu \text{F}$ e tracciarne i diagrammi di Bode di modulo e fase.