Project Name: Customer Segmentation based on Personality

Goal: To split users/customers into segments based on behavior.

Dataset: Kaggle Customer Personality Analysis Dataset (https://www.kaggle.com/datasets/imakash3011/customer-personality-analysis)

About the Project: In today's era, companies work hard to make their customers happy. They launch new technologies and services so that customers can use their products more. They try to be in touch with each of their customers so that they can provide goods accordingly. But practically, it's very difficult and non-realistic to keep in touch with everyone.

For this, the solution is to create segments of customers based on similar behavioral patterns, and use an algorhithm to keep in touch with all people of any particular segment. This is a much more feasible solution.

To facilitate this, we create a Machine Learning model, which when fed with appropriate data can create certain number of segments within it, hence making the desire to keep in touch with each user according to their needs possible.

Section 1: Collecting the data

First off all, the necessary libraries need to be imported

```
In [1]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
In [2]: data = pd.read_csv("C:/Users/goura/Desktop/Data Science/Datasets/Customer Person
data
```

Out[2]:		ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_(
	0	5524	1957	Graduation	Single	58138.0	0	0	04
	1	2174	1954	Graduation	Single	46344.0	1	1	80
	2	4141	1965	Graduation	Together	71613.0	0	0	21
	3	6182	1984	Graduation	Together	26646.0	1	0	10
	4	5324	1981	PhD	Married	58293.0	1	0	19
	•••					•••	•••		
	2235	10870	1967	Graduation	Married	61223.0	0	1	13
	2236	4001	1946	PhD	Together	64014.0	2	1	10
	2237	7270	1981	Graduation	Divorced	56981.0	0	0	25
	2238	8235	1956	Master	Together	69245.0	0	1	24
	2239	9405	1954	PhD	Married	52869.0	1	1	15
	2240 rc	ows × 29	9 columns						

In [3]: data.shape

Out[3]: (2240, 29)

In [4]: data.describe()

Out[4]:

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency
count	2240.000000	2240.000000	2216.000000	2240.000000	2240.000000	2240.000000
mean	5592.159821	1968.805804	52247.251354	0.444196	0.506250	49.109375
std	3246.662198	11.984069	25173.076661	0.538398	0.544538	28.962453
min	0.000000	1893.000000	1730.000000	0.000000	0.000000	0.000000
25%	2828.250000	1959.000000	35303.000000	0.000000	0.000000	24.000000
50%	5458.500000	1970.000000	51381.500000	0.000000	0.000000	49.000000
75%	8427.750000	1977.000000	68522.000000	1.000000	1.000000	74.000000
max	11191.000000	1996.000000	666666.000000	2.000000	2.000000	99.000000

8 rows × 26 columns

1

In [5]: data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2240 entries, 0 to 2239 Data columns (total 29 columns):

```
Column
                          Non-Null Count Dtype
--- -----
                           _____
                          2240 non-null
0
     ID
                                             int64
                        2240 non-null int64
1 Year_Birth2 Education
                          2240 non-null object
3 Marital_Status
                         2240 non-null object
    Income
                          2216 non-null float64
5 Kidhome
                          2240 non-null int64
   Teenhome
                          2240 non-null int64
                        2240 non-null object
7 Dt_Customer
                          2240 non-null int64
    Recency
9 MntWines
                          2240 non-null int64
10 MntFruits
                          2240 non-null int64
11 MntMeatProducts 2240 non-null int64
12 MntFishProducts 2240 non-null int64
13 MntSweetProducts 2240 non-null int64
14 MntGoldProds 2240 non-null int64
15 NumDealsPurchases 2240 non-null int64
16 NumWebPurchases 2240 non-null int64
17 NumCatalogPurchases 2240 non-null int64
18 NumStorePurchases 2240 non-null int64
19 NumWebVisitsMonth 2240 non-null int64
20 AcceptedCmp3 2240 non-null int64
21 AcceptedCmp4 2240 non-null int64
22 AcceptedCmp5 2240 non-null int64
23 AcceptedCmp1 2240 non-null int64
24 AcceptedCmp1 2240 non-null int64
24 AcceptedCmp2
                         2240 non-null int64
25 Complain
                          2240 non-null int64
26 Z_CostContact
                          2240 non-null int64
27 Z_Revenue
                          2240 non-null int64
28 Response
                           2240 non-null
                                             int64
dtypes: float64(1), int64(25), object(3)
```

memory usage: 507.6+ KB

Section 2: Data Cleaning / Manipulation

At the very first, we can remove the 'ID' column, because it doesn't have any actual influence or isnt a consequence of a person's behavior.

```
In [6]: data=data.drop("ID", axis=1)
```

What's visible is that there's a column called "Dt_Customer" which encapsulates informtion about the date.

We can split up the date to form 3 columns "Year", "Month", Day" for better performance.

```
parts = data["Dt_Customer"].str.split("-",n=3,expand=True)
        data["day"] = parts[0].astype('int')
        data["month"] = parts[1].astype('int')
        data["year"] = parts[2].astype('int')
In [8]: data = data.drop('Dt_Customer',axis=1)
```

Now, we do have a few columns which are "object" type, which means we need to encode such columns.

```
In [9]: from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()

In [10]: nums = []
```

```
In [10]:    nums = []
    objs = []
    for i in data.columns:
        if data[i].dtype == object:
            objs.append(i)
        else:
            nums.append(i)
    print(objs)
```

['Education', 'Marital_Status']

As well as encoding, we will have to keep track of which object gets encoded to which numeric value, for which we initialize a list.

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2240 entries, 0 to 2239
Data columns (total 30 columns):

#	Column	Non-Null Count	Dtype
0	Year_Birth	2240 non-null	int64
1	Education	2240 non-null	int32
2	Marital_Status	2240 non-null	int32
3	Income	2216 non-null	float64
4	Kidhome	2240 non-null	int64
5	Teenhome	2240 non-null	int64
6	Recency	2240 non-null	int64
7	MntWines	2240 non-null	int64
8	MntFruits	2240 non-null	int64
9	MntMeatProducts	2240 non-null	int64
10	MntFishProducts	2240 non-null	int64
11	MntSweetProducts	2240 non-null	int64
12	MntGoldProds	2240 non-null	int64
13	NumDealsPurchases	2240 non-null	int64
14	NumWebPurchases	2240 non-null	int64
15	NumCatalogPurchases	2240 non-null	int64
16	NumStorePurchases	2240 non-null	int64
17	NumWebVisitsMonth	2240 non-null	int64
18	AcceptedCmp3	2240 non-null	int64
19	AcceptedCmp4	2240 non-null	int64
20	AcceptedCmp5	2240 non-null	int64
21	AcceptedCmp1	2240 non-null	int64
22	AcceptedCmp2	2240 non-null	int64
23	Complain	2240 non-null	int64
24	<pre>Z_CostContact</pre>	2240 non-null	int64
25	Z_Revenue	2240 non-null	int64
26	Response	2240 non-null	int64
27	day	2240 non-null	int32
28	month	2240 non-null	int32
29	year	2240 non-null	int32
44	£1+C4/1\ :-+22	(5) :=+(4/24)	

dtypes: float64(1), int32(5), int64(24)

memory usage: 481.4 KB

Since we will need this information later, lets create dictionaries to keep note of which object was encoded to which numeric value for each of the columns.

In [14]: data

Out[14]:		Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Recency	M
	0	1957	2	4	58138.0	0	0	58	
	1	1954	2	4	46344.0	1	1	38	
	2	1965	2	5	71613.0	0	0	26	
	3	1984	2	5	26646.0	1	0	26	
	4	1981	4	3	58293.0	1	0	94	
	•••								
	2235	1967	2	3	61223.0	0	1	46	
	2236	1946	4	5	64014.0	2	1	56	
	2237	1981	2	2	56981.0	0	0	91	
	2238	1956	3	5	69245.0	0	1	8	
	2239	1954	4	3	52869.0	1	1	40	

2240 rows × 30 columns

All of the essential changes to the data have been done.

We can further Standardize the data to make it easier for the model to learn from.

```
In [16]: from sklearn.preprocessing import StandardScaler
    scaler = StandardScaler()
    data[columns] = scaler.fit_transform(data[columns])
    data
```

Out[16]:		Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Recency
	0	-0.985345	-0.350141	0.251004	0.234063	-0.825218	-0.929894	0.307039
	1	-1.235733	-0.350141	0.251004	-0.234559	1.032559	0.906934	-0.383664
	2	-0.317643	-0.350141	1.180340	0.769478	-0.825218	-0.929894	-0.798086
	3	1.268149	-0.350141	1.180340	-1.017239	1.032559	-0.929894	-0.798086
	4	1.017761	1.428354	-0.678332	0.240221	1.032559	-0.929894	1.550305

2235 -0.150717 -0.350141 -0.678332 0.356642 -0.825218 0.906934 -0.107383 2236 -1.903435 1.428354 1.180340 0.467539 2.890335 0.906934 0.237969 2237 1.017761 -0.350141 -1.607669 0.188091 -0.825218 -0.929894 1.446700 2238 -1.068807 0.539106 1.180340 -0.825218 0.906934 0.675388 -1.419719

0.024705

1.032559

0.906934

-0.314594

2240 rows × 30 columns

-1.235733

2239

Lets have a look at the correlation matrix of this dataset

1.428354

```
In [17]: corr_matrix = data.corr()
    corr_matrix
```

-0.678332

Out[17]:

	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenl
Year_Birth	1.000000	-0.171390	-0.060580	-0.161791	0.230176	-0.3!
Education	-0.171390	1.000000	0.007090	0.120692	-0.045564	0.1
Marital_Status	-0.060580	0.007090	1.000000	0.021353	-0.022553	-0.00
Income	-0.161791	0.120692	0.021353	1.000000	-0.428669	0.0
Kidhome	0.230176	-0.045564	-0.022553	-0.428669	1.000000	-0.03
Teenhome	-0.352111	0.118485	-0.003596	0.019133	-0.036133	1.00
Recency	-0.019871	-0.011728	0.014159	-0.003970	0.008827	0.0
MntWines	-0.157773	0.197576	0.008205	0.578650	-0.496297	0.00
MntFruits	-0.017917	-0.080412	0.000593	0.430842	-0.372581	-0.17
MntMeatProducts	-0.030872	0.033625	0.030689	0.584633	-0.437129	-0.26
MntFishProducts	-0.041625	-0.112223	0.035808	0.438871	-0.387644	-0.20
MntSweetProducts	-0.018133	-0.105217	0.017382	0.440744	-0.370673	-0.16
MntGoldProds	-0.061818	-0.095489	0.001688	0.325916	-0.349595	-0.02
NumDealsPurchases	-0.060846	0.030075	-0.021772	-0.083101	0.221798	0.38
NumWebPurchases	-0.145040	0.081908	-0.001894	0.387878	-0.361647	0.1!
NumCatalogPurchases	-0.121275	0.070782	0.015125	0.589162	-0.502237	-0.1
NumStorePurchases	-0.128272	0.070483	0.001412	0.529362	-0.499683	0.0!
NumWebVisitsMonth	0.121139	-0.040281	-0.031210	-0.553088	0.447846	0.13
AcceptedCmp3	0.061774	0.005836	-0.027113	-0.016174	0.014674	-0.04
AcceptedCmp4	-0.060510	0.053266	0.014381	0.184400	-0.161600	0.03
AcceptedCmp5	0.007123	0.033346	0.012817	0.335943	-0.205634	-0.19
AcceptedCmp1	-0.005930	-0.010845	-0.017097	0.276820	-0.172339	-0.14
AcceptedCmp2	-0.006539	0.021369	0.018417	0.087545	-0.081716	-0.0
Complain	-0.030128	-0.050540	-0.005718	-0.027225	0.040207	0.00
Z_CostContact	NaN	NaN	NaN	NaN	NaN	
Z_Revenue	NaN	NaN	NaN	NaN	NaN	
Response	0.021325	0.090819	-0.011403	0.133047	-0.080008	-0.1!
day	-0.009193	0.018291	-0.016087	-0.031244	-0.001718	0.00
month	0.024246	-0.011304	0.017708	-0.014955	-0.023571	-0.0
year	-0.028188	0.045356	-0.018176	0.022451	0.053339	-0.00

30 rows × 30 columns

[0.]

We see something strange, there are Null correlation values for all columns with Z_CostContact & Z_Revenue

Looking back at the dataset, we can notice that all values for both the columns are 0, post standardization.

```
In [18]: print(data['Z_CostContact'].unique())
    print(data['Z_Revenue'].unique())

[0.]
```

Since either of those are just constant values, they play no significant role in our data, thus it is safe & wise to drop them.

```
In [19]: data = data.drop("Z_CostContact",axis=1)
    data = data.drop("Z_Revenue",axis=1)
```

Our next step would be to drop all the Null values.

```
In [20]: data = data.dropna(axis=0)
```

Since our data has now been finalized, lets try to visualize this using a correlation matrix.

```
In [21]: corr_matrix = data.corr()
  plt.figure(figsize=(8,6))
  plt.title("Correaltion Matrix on Customer Data")
  sns.heatmap(corr_matrix,annot=True)
  plt.show()
```


Lets move on to the creation of the required Machine Learning Model.

Section 3: Model Selection

We will be using T-distributed Stochastic Neighbor Embedding. It helps in visualizing high-dimensional data. It converts similarities between data points to joint probabilities and tries to minimize the values to low-dimensional embedding.

Note: Maximum permitted dimetion: 3

```
from sklearn.manifold import TSNE
In [22]:
         model = TSNE(n_components = 2, random_state=30)
         tsne data = model.fit transform(data)
         tsne_data
Out[22]: array([[ 30.011686 , 28.94765 ],
                 [-10.480262 , -31.956112 ],
                 [ 30.15759 ,
                               1.3275617],
                            , -26.50215
                 [ 51.3011
                 [ 19.630033 , -7.863148 ],
                 [-18.908077 , 22.416216 ]], dtype=float32)
In [23]: plt.figure(figsize=(7, 7))
         plt.scatter(tsne data[:, 0], tsne data[:, 1])
         plt.show()
```


From this diagram, some clusters are already visible.

But, there's a issue we will face latter on. Due to very the points being very evenly scattered, we may need a large no of clusters to reach optimal state.

This simply means the customers are a diverse set of people, which is often seen when countering a large userbase/mainstream app.

We will be using the KMeans model to form the clusters.

We plot down the error of the clustering for a large range of "number of clusters" (0-100) Visualizing the graph can help us with finding the optimal number of clusters. How? The number from which onwards the error starts becoming a straight line, is the optimal point.

Two possible scenarios-

- The straight line is nearly flat/parallel to the X-axis
- The straight line still has a significant negative slope.

The first scenario is favourable, but in the second scenario, the ony options to flatten the line error-number line is to increase the number of clusters. Generally, it'd be a very large number compared to what we defined as the "optimal" number. So, unless the company

has the resources to manage a large number of clusters and is willing to, we settle with the defined optimal number.

Note: In model.intertia_, .inertia is simply the error between all points of a cluster, summed up for all clusters.

```
In [25]: plt.figure(figsize=(10, 5))
    sns.lineplot(x=range(1, 100), y=error)
    sns.scatterplot(x=range(1, 100), y=error)
    plt.show()
```


The error decrease reaches constant slope at around 15-20 clusters, even if the slope is still a significant one.

We will continue with 20 to be our optimal number of clusters, because affording more clusters places a financial burden on the company in question.

Segments now determines each instance/row/data point's cluster.

Lets plot our findings for a better understanding.

```
palette = sns.color_palette("husl", len(np.unique(segments)))
In [28]:
In [29]:
          plt.figure(figsize = (7,7))
          sns.scatterplot(x=tsne_data[:, 0], y=tsne_data[:, 1], hue=segments, palette =
          plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
          plt.show()
          60
                                                                                           0
                                                                                           1
                                                                                           2
                                                                                           3
                                                                                           4
          40
                                                                                           5
                                                                                           6
                                                                                           7
                                                                                           8
          20
                                                                                           9
                                                                                           10
                                                                                           11
                                                                                           12
                                                                                           13
           0
                                                                                           14
                                                                                           15
                                                                                           16
                                                                                           17
                                                                                           18
         -20
                                                                                           19
         -40
```

This above plot represents our clusters. While there is a rough boundary between all clusters, its not very clear to the eye due to frequent errors in classification, caused by the diversity.

20

60

Now, we shall proceed to make our program user-interactive, such that a person can be classified based on their behavioral patterns, provided as input.

Section 4: User-Interactive Space

-40

-20

-60

In [30]: data.columns

Out[30]: Index(['Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidhome',

```
'Teenhome', 'Recency', 'MntWines', 'MntFruits', 'MntMeatProducts',
                 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds',
                 'NumDealsPurchases', 'NumWebPurchases', 'NumCatalogPurchases',
                 'NumStorePurchases', 'NumWebVisitsMonth', 'AcceptedCmp3',
                 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1', 'AcceptedCmp2',
                 'Complain', 'Response', 'day', 'month', 'year'],
                dtype='object')
In [32]: ques = [ i for i in data.columns ]
         c=0
         while True:
             if c==0:
                  print("Do you want to make any predictions?")
             elif c>0:
                  print("Do you want to make any more predictions?")
             print("Enter 1 if Yes, else 0")
             a = int(input("Choice:"))
             if a!=0 and a!=1:
                 print("Invalid Choice")
             elif a==0:
                  print("Choice is No (0)")
                  print("Exit Program")
                      print("Thank you for using our services.")
                  break
             elif a==1:
                  print("Choice is Yes (1)")
                 lst = []
                 for i in ques:
                      if i not in ["Marital_Status", "Education"]:
                          lst.append(float(input(f"Enter value of {i}: ")))
                      else:
                          a=input(f"Enter value of {i}: ")
                          a =codeval[objs.index(i)][a]
                          lst.append(a)
                  df = pd.DataFrame([1st], columns=ques)
                  df[ques] = scaler.fit_transform(df[ques])
                  preds = model.predict(df)
                  print("Reported Parameters: ",lst)
                  print("The customer is determined to be of cluster",preds[0])
                  c+=1
        Do you want to make any predictions?
        Enter 1 if Yes, else 0
        Choice is Yes (1)
        Reported Parameters: [2005.0, 2, 4, 50000.0, 0.0, 0.0, 3.0, 4.0, 2.0, 5.0, 7.0,
        2.0, 5.0, 20.0, 32.0, 34.0, 55.0, 11.0, 3.0, 5.0, 52.0, 6.0, 7.0, 3.0, 4.0, 5.0,
        6.0, 2022.01
        The customer is determined to be of cluster 12
        Do you want to make any more predictions?
        Enter 1 if Yes, else 0
        Choice is No (0)
        Exit Program
        Thank you for using our services.
         Since the model has been defined, and set to actively accept provided data and provide
```

predicted classifications,

our program is ready to use and the project is complete.

Conclusion

This marks the end of our project.

This program assists us in classifying the customers of the store/app based on their behavioral patterns.

We acheived this via creating a KMeans Model.

We noticed that the error-n_clusters line had a significant downwards slope after straightening, for the provided data, thus we can conclude the dataset to be very diverse and thus tough to classify. Despite that, our model has performed fairly well and provided us with visually-distinctive clusters.

Therefore, the Program is ready to be used.