When is Correlation Causation?

Image Source: http://xkcd.com/552/

When is Correlation Causation?

Age of Miss America 24 24 24 21 22 21 24 22 20 19 Years (Wikipedia)	22
Years (Wikipedia) 27 27 27 21 22 21 27 22 20 17	22
ours and hot objects 7 7 7 3 4 3 8 4 2 3	2
Deaths (US) (CDC) 7 7 7 3 4 3 6 4 2	

Image source: www.tylervigen.com/

Causal inference

A framework for causal inference

- Represent each variable as deterministic function of its direct causes and noise
- Noise terms must be mutually independent

$$x_i = f_i(Parents_i, e_i)$$
 where $\begin{cases} f_1 ... f_n \end{cases}$ deterministic functions $\{e_1 ... e_n\}$ mutually independent

- => Variables are independent of their non-effects given their direct causes
- => The factorisation of the full distribution can be simplified

$$P(Po, S, D, C) = P(Po)P(S|Po)P(D|Po, S)P(C|Po, S, D) = P(Po)P(S|Po)P(D|Po)P(C|S, D)$$

A framework for causal inference

Some intuition

- A correlated with B
- B correlated with C
- C not correlated with A

Some intuition

- A correlated with B
- B correlated with C
- C not correlated with A

Bayesian Network Definition: A directed acyclic graph, whose nodes represent variables, where each variable is independent of its non-desendents given its parents (Markov independences)

A graph G represents a distribution P if P can be factorised over G. In other words, if all the Markov independences implied by the graph structure are true in P, then G represents P.

Note: The distribution can have additional independences not required by G, in other words if G represents a given distribution P, we can add any edges to G and it will still represent P.

D-separation

- A given set of Markov independence relations, as represented by a graph G, often imply additional independence relations that are true for **all** distributions that factories over G
- D-separation gives us a method to read these dependencies directly off the graph.

Consider how **a** could be connected to **b** through **c**.

- Is a independent of b given c is known?
- Is a independent of b if c is not known.

D-separation

When can influence flow from a to b through c?

Influence can flow <=> trail is active if c is not observed

Influence can flow if c is observed

D-separation

A trail through variables $X_1...X_n$ is active if:

- Whenever we have a v-structure (X_{i-1} X_{i+1}), Then X_i or a descendent is observed.
- No other variables in $X_1...X_n$ are observed If there are no active trails from $\bf a$ to $\bf b$, then they are D-separated with respect to the observed variables

Theorem: let I(G) represent the set of independences implied by d-separation. If P factorises over G then $I(G) \subseteq I(P)$ that is independences implied by d-separation apply to all distributions that factorise over that graph.

Faithfulness

A distribution P is faithful to G if I(P)=I(G)

Theorem: For almost all distributions P that factorise over G, i.e. for all distributions except a set of measure zero in the space of conditional probability distribution parameterizations, I(P)=I(G)

When is correlation causation?

 Can we infer causal structure from observed conditional independences?

Sparsity and causal ordering

 Can you have a Bayesian network that represents a distribution, and is more sparse than the true causal model that generated that distribution?

Bayesian network representing P

A perfect I-Map; the IC algorithm

- 1. for all pairs of variables a, b search for a set S_{ab} such that $a \perp b \mid S_{ab}$. If there is no such set, then draw an undirected link between them.
- 2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c
- 3. Orient any undirected edges so as to avoid creating cycles or additional v-structures

True Causal Model

The IC algorithm

- 1. for all pairs of variables a, b search for a set S_{ab} such that $a \perp b \mid S_{ab}$.

 If there is no such set, then draw an undirected link between them.
- 2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c
- 3. Orient any undirected edges so as to avoid creating cycles or additional v-structures

True Causal Model

Inferred at step 1

The IC algorithm

- 1. for all pairs of variables a, b search for a set S_{ab} such that $a \perp b \mid S_{ab}$. If there is no such set, then draw an undirected link between them.
- 2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c

3. Orient any undirected edges so as to avoid creating cycles or additional v-structures

True Causal Model

Inferred at step 2

$$a$$
 a c a b c c a b c $a \perp b \mid \{c\}$

A perfect I-Map

- 1. for all pairs of variables a, b search for a set S_{ab} such that $a \perp b \mid S_{ab}$. If there is no such set, then draw an undirected link between them.
- 2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c

3. Orient any undirected edges so as to avoid creating cycles or additional v-structures

True Causal Model

Inferred output

Latent variables

Theorem (Verma 1993):

for any latent structure there is a dependency equivalent structure such that every latent variable is a root node with exactly 2 children.

The IC* algorithm

- 1. for all pairs of variables a, b search for a set S_{ab} such that $a \perp b \mid S_{ab}$. If there is no such set, then draw an undirected link between them.
- 2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c
- 3. Recursively add arrowheads/mark edges according to:

The IC* algorithm

2. for all pairs of non-linked nodes with a common neighbour, c; If $c \notin S_{ab}$ direct links towards c

The IC* algorithm

3. Add arrowheads/mark edges according to:

Causes of poverty

Bessler, David A. "On world poverty: Its causes and effects." Food and Agricultural Organization (FAO) of the United Nations, Research Bulletin, Rome(2003).

Uncovering causal links between genes and gene expression

Maathuis, Marloes H., et al. "Predicting causal effects in large-scale systems from observational data." Nature Methods 7.4 (2010): 247-248.

Causal structure learning in R (pcalg)

```
library('pcalg')
n = 1000
X1 = rnorm(n,mean=10,sd=.2)
X2 = rnorm(n,mean=20,sd=.7)
X3 = X2-X1+rnorm(n,mean=0,sd=.5)
X4 = -X3^2+rnorm(n,mean=0,sd=8)
df = data.frame(X1,X2,X3,X4)
plot(df)
suffStat <- list(C = cor(df),n=nrow(df))
pc.3var = pc(suffStat,indepTest=gaussCItest,p=ncol(df),alpha=0.01)
plot(pc.3var, main = "")</pre>
```


References

Pearl, J. (2000). Causality: models, reasoning and inference (particularly chapter 2)

Koller, D., & Friedman, N. (2009). *Probabilistic graphical models:* principles and techniques. (chapters 3 & 21)

Verma 1993 Graphical aspects of causal models Technical Report. UCLA

Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search.

Maathuis, Marloes H., et al. (2010) *Predicting causal effects in large-scale systems from observational data.* Nature Methods 7.4 : 247-248.

Kalisch, Markus, et al. (2012) Causal inference using graphical models with the R package pealg. Journal of Statistical Software 47.11: 1-26.

Bessler, David A. (2003) *On world poverty: Its causes and effects*. Food and Agricultural Organization (FAO) of the United Nations, Research Bulletin, Rome.