Lösungsvorschläge zur 6. Übung

Aufgabe 6.1: (4 Punkte)

Wir betrachten die ZV $Z = \overline{Y - X}$, die als normalverteilt angenommen wird mit unbekannter Varianz σ^2 und unbekanntem Erwartungswert μ . Die normiert ZV

$$Z^* = \frac{S_n}{\sqrt{n}}(Z - \bar{z})$$

ist t_n -verteilt (n=6). Das zugehörige 5%-Konfidenzintervall lautet $I^* = [-2.015, 2.015]$. Wir berechnen zunächst den benutzten Mittelwert \bar{z} und die empirische Varianz:

$$\bar{z} = \frac{1}{n}(-2+1-3-4-1-2) = -1.8333$$

$$S_n^2 = \frac{1}{n-1}\sum_{i=1}^n (z_i - \bar{z})^2 = 2.9666$$

Rückskalierung liefert nun:

$$Z = \bar{z} + \frac{\sqrt{n}}{S_n} Z^* = -1.8333 + \sqrt{\frac{6}{2.97}} Z^* = -1.8333 + 1.422 Z^*$$

sowie das transformierte 5%-Konfidenzintervall:

$$I = [-4.7, 1]$$

Der tatsächliche Erwartungswert μ von Z liegt also mit 95%-iger Sicherheit in diesem Intervall.

Ein signifikanter Einfluss der Antibiotikumbehandlung kann durch die Hypothese

$$H_0: \mu < 0$$

zum Ausdruck gebracht werden. Da tatsächlich negative Werte im Intervall I liegen, kann diese Hypothese also auf dem 5% Signifikanzniveau nicht verworfen werden.

Bemerkung: Genauso können aber auch die Hypothesen

$$H_1 : \mu = 0$$

 $H_2 : \mu > 0$

noch nicht verworfen werden.

Aufgabe 6.2: (4 Punkte)

Da zwei gleiche Ränge auftreten, vergeben wir dazu die Rangzahl 13.5 zweimal. Vergibt man hingegen die Ränge 13 und 14, so wird sich das Endergebnis geringfügig unterscheiden.

Γ	Wert	45	48	51	53	63	64	67	69	70	71	75	77	78	78	88	90	110
	Gruppe	В	В	A	A	В	A	В	A	A	В	В	A	\mathbf{A}	В	A	A	A
	Rang	1	2	3	4	5	6	7	8	9	10	11	12	13.5	13.5	15	16	17

Es ergeben sich die Rangzahlen:

$$T_A = 103.5 \text{ und } T_B = 49.5$$

Unter der Hypothese H_0 , dass die Erwartungswerte von T_A und T_B gleich sind, sind der Erwartungswert und die Standardabweichung von T_A :

$$\mu = \frac{n_1}{n}(T_a + T_B) = \frac{1530}{17} = 90$$

$$\sigma = \sqrt{\frac{1}{12}n_1n_2(n+1)} = \sqrt{\frac{10 \cdot 7 \cdot 18}{12}} = 10.25$$

Aufgrund von $n_1 \ge 10$ können wir T_A $N(\mu, \sigma^2)$ -verteilt annehmen. Die ZV $Z = (T_A - \mu)/\sigma$ ist dann N(0,1) verteilt. Das 10%-Konfidenzintervall von Z lautet:

$$\hat{I} = [-1.645, 1.645]$$

Die Reskalierung für $T_A = \mu + \sigma Z$ lautet:

$$I = [73.13875, 106.86125]$$

Mit 90%-iger Wahrscheinlichkeit liegt der beobachtete Wert also in diesem Intervall I, sofern die Hypothese H_0 gilt. Da $T_A = 103.5 \in I$, wird die Hypothese H_0 also auf diesem Konfidenzniveau akzeptiert.