Interação Humano-Computador

Projeto de Interface

Prof. Marcos L. Chaim

IHC: projeto de interface

- Princípios de projeto de interface:
 - Norman;
 - Nielsen;
 - Critérios ergonômicos de Scarpin & Bastien;
 - Uso de metáforas.
- Ciclo de vida de projeto de interface
- Engenharia de usabilidade

IHC: projeto de interface

- Modelos de ciclo de vida de projeto:
 - inspirados na Engenharia de Sw: cascata; espiral
 - direcionados diretamente para projeto de interface: modelo de Eason; modelo Estrela; modelo de Shneiderman.

IHC: projeto de interface

- Técnicas de design de interface:
 - design basedo em cenários:
 - design participativo:
 - métodos etnográficos:

Princípios de Design

- Vários autores procuram estabelecer princípios norteadores do design de interfaces.
- Segundo Norman, a idéia é identificar diretrizes de como as pessoas interagem com os objetos.
- A seguir são discutidos os princípios de design estabelecidos por vários autores. Iniciamos como os princípios de Norman.

- Visibilidade e affordances
 - O usuário necessita de ajuda, porém, apenas as coisas necessárias devem estar visíveis: para indicar quais as partes podem ser operadas e como, para indicar como o usuário interage com um dispositivo.
 - Visibilidade indica o mapeamento entre as ações pretendidas e as ações reais.
 - Designers devem prover sinais que claramente indiquem as funções a serem realizadas.

- Visibilidade e affordances
 - objetos que são fáceis de interpretar e entender possuem bom design. Eles possuem dicas visíveis da sua operação.
 Ao contrário, objetos com design pobre são difíceis e frustantes de usar e provêem falsas dicas ou não provêem indicações.
 - Affordance é o termo definido para se referir às propriedades percebidas e reais de um objeto, que deveriam determinar como ele pode ser usado. Exemplo: tesoura é para cortar.
 Quando se tem a predominância da affordance o usuário sabe o que facer somente olhando, não necessitando de figuras ou instruções.

- Bom modelo conceitual
 - Um bom modelo conceitual permite prever o efeito das ações. Por exemplo, consegue-se entender a tesoura e seu funcionamento porque sua partes são visíveis e as implicações são claras. O modelo conceitual é óbvio e existe efetivo uso de affordance.
- Bons mapeamentos
 - Mapeamento é o termo técnico para denotar o relacionamento entre duas entidades. Exemplo: direção de um carro: virando à direita, o carro vira à direita; trata-se de um mapeamento natural.

Feedback

- Retornar ao usuário informação sobre as ações que foram feitas, quais os resultados obtidos é um conceito conhecido da teoria da informação e controle.
- Exemplo: solicitada uma impressão, não é retornado um feedback do resultado da impressão.

 Nielsen faz uso de slogans para descrever seus princípios de usabilidade. A seguir descrevemos estes princípios:

- Sua melhor tentativa não é boa o suficiente:
 - é impossível fazer o design de uma interface ótima simplesmente baseado em nossas melhores idéias.
 Portanto, o design é sempre melhor se trabalhamos baseados no entendimento do usuário e de suas tarefas.

- Usuário está sempre certo:
 - a atitude do design não deve ser a de julgar o usuário ignorante ou despreparado para utilizar o software.
 - o designer deve assumir uma atitude humilde e aceitar modificar a sua interface para ajustar-se aos desejos do usuário.

- Usuário não está sempre certo:
 - Por outro lado, os usuário não tem conhecimento necessário para prever o que é bom para o design.
 Neste sentido, o designer deve pautar-se também pelos seus conhecimentos e intuições e testá-las posteriormente com os usuários.

- Usuário *não* são designers:
 - não se deve dar muita ênfase na customização, pois os usuários novatos tendem a não realizá-las (estudos demostram isto).
 - Outros problemas:
 - interface particulares a cada usuário;
 - adição de complexidade;
 - dificulta compartilhamento de conhecimento entre usuários;
 - nem sempre os usuários adotam as melhores decisões.

- Designers não são usuários:
 - designers possuem experiência e conhecimentos que o usuário não possui.
 - designer olha uma determinada tela ou uma determinada mensagem e acredita que são perfeitamente claras e adequadas, mesmo que sejam incompreensíveis para quem não conhece o sistema.

Menos é mais:

- ter poucas opções, as necessárias à tarefa, geramente significa uma melhor usabilidade, pois o usuário pode se concentrar em entender essas poucas opções.
- Exemplo: gmail x yahoo mail

- help n\u00e4o ajuda
 - não se deve contar com o help como apoio à usuabilidade do software.
 - help pode acrescentar complexidade e frustação quando o usuário tenta encontrar a informação desejada e não a encontra.

- Facilidade de aprendizagem
 - o sistema precisa ser fácil de aprender de forma que o usuário possa rapidamente começar a interagir.

Eficiência

- O sistema precisa ser eficiente no uso, de forma que uma vez aprendido o usuário tenha um elevado nível de produtividade.
- produtividade refere-se a usuários experientes depois de certo tempo.

- Facilidade de relembrar:
 - o sistema precisa ser facilmente relembrado, de forma que o usuário ao voltar a usá-lo depois de um certo tempo não tenha novamente que aprendê-lo.

Erros

- erros catastróficos (o usuário peder o seu trabalho ou não perceber que errou) não podem ocorrer.
- o usuário não pode cometer muitos erros durante o seu uso e, em errando, deve ser capaz de recuperar o trabalho.

- Satisfação subjetiva:
 - os usuários devem gostar do sistema, ou seja,
 deve ser agradável de forma que o usuário fique satisfeito ao usá-lo.
 - a satisfação subjetiva pode ser avaliada fazendo uma pesquisa via formulários com um número significativo de usuários.

- A partir dos princípios de usabilidade, é possível observar que o usuário tem um papel central.
- Logo, quando é feita a análise do usuário de um sistema, é necessário, segundo Nielsen, considerar os seguintes tipos de usuários: novato em computadores ou experiente em computadores; novato no sistema ou experiente no sistema; experiente no domínio ou novato no domínio.

- Scapin & Bastien estabeleceram critérios de ergonomia cujo objetivo é minimizar a ambigüidade na identificação e classificação da qualidade e problemas ergonômicos do software interativo.
- Estes critérios são úteis tanto na concepção de interfaces como na sua avaliação.

Condução:

- software ergonômico aconselha, orienta, informa e conduz o usuário na interação com o computador (mensagens, alarmes, rótulos, etc.).
- condução possui dois subcritérios: presteza
 (informações que permitem ao usuário identificar o estado ou o contexto, ferramentas de ajuda e mecanismos alternativos), feedback imeditato, legibilidade, agrupamento/distinção de itens.

- Carga de trabalho:
 - quanto maior a carga de trabalho cognitivo, maior é a probabilidade do usuário cometer erros.
 Subcritérios: brevidade (concisão e ações mínimas), densidade informacional (carga de memorização deve ser minimizada)

- Controle explícito
 - usuário deve possuir o controle explícito sobre o processamento do sistema. Quando isto ocorrer os erros e as ambigüidades são limitados.
 - subcritérios: ações explícitas e controle do usuário.

Adaptabilidade

 capacidade de reagir conforme o contexto e conforme as necessidades e preferências do usuário. Dois subcritérios: flexibilidade e consideração de experiência do usuário.

Gestão de erros:

 trata-se dos mecanismos que permitem reduzir ou evitar a ocorrêncai de erros. E quando ocorrem favorem a sua correção. Três subcritérios: protenção contra erros, qualidade das mensagens de erro, correção dos erros.

- Homogeneidade/coerência
 - refere-se à forma na qual as escolhas na concepção da interface (códigos, denominações, formatos, procedimentos etc.) são conservadas idênticas em contextos idêntidos e diferentes em contextos diferentes.

- Significado dos códigos e denominações:
 - trata da adequação entre o objeto ou a informação apresentada ou pedida e sua referência.
 - quando a codificação é significativa, a recordação e o reconhecimento são melhores.

Compatibilidade

acordo entre as características do usuário
 (memória, percepção, hábitos, competências, idade, expectativas etc.) e das tarefas e da organização das saídas, das entradas e do diálogo.

Modelos de ciclo de vida de projeto de interface

- inspirados na Engenharia de Sw: cascata; espiral
- cascata: viabilidade do sistema, requisitos do software, design do produto, codificação, integração, implementação e manuntenção.
- Possui os mesmos problemas que ocorrem no desenvolvimento de software, a saber, feedback tardio, incapaz de acomodar mudanças.

Modelos de ciclo de vida de projeto

de interface

- Modelo espiral de Bohem:
 - visa acomodar os problemas do modelo cascata incluindo os mesmos processos do modelo anterior;
 - análise de requisitos, design e implementação;
 - o modelo espiral já mostra que várias iterações sao necessárias e introduzir a idéia de prototipagem para melhor entendimento dos requisitos.

Modelos de ciclo de vida de projeto

de interface

- Desenvolvimento centrado no humano:
 - é uma abordagem que visa produzir sistemas fáceis de aprender e usar, seguros e efetivos em facitiar as atividades do usuário. Reconhece a importância de testes freqüentes com o usuário usando representações informais e prototipagem.
 - o aspecto centrar é o envolvimento dos usuários ao longo do processo de design.

Modelos de ciclo de vida de projeto

de interface

- Modelo de Eason segue este paradigma representando um processo de natureza cíclica centrado em pessoas, trabalho e tecnologoia, ordenado e não ad hoc.
- Ver figura 3.5 livro Rocha e Baranaukas.

Modelos de ciclo de vida de projeto

- de interface
 Hix e Hartson criaram o modelo estrela, bastante popular entre a comunidade de IHC.
- Este modelo apresenta uma abordagem ao desenvolvimento em que o processo de avaliação é a atividade central e mais relevante.
- O início do processo pode-se dar a partir de qualquer atividade. (ver figura 3.6)

Modelos de ciclo de vida de projeto

de interface

- Shneiderman propõe um modelo baseado em três pilares: guidelines (princípios e regras de design); ferramentas de prototipagem (Hypercar, visual basic, delphi); avaliação por especialistas e testes com o usuário.
- A seguir é descutida a engenharia de usabilidade que é baseada nos princípios de design discutidos e nos modelos de ciclo de vida centrados no humano.

- engenharia de usabilidade:
 - sistemas computacionais têm como objetivo facilidade de uso, aprendizado e agradáveis de utilizar.
 - propõe a aplicação de métodos empíricos ao design de sistemas baseados em computador.
 - processo de design dividido em quatro fases: prédesign, design inicial, desenvolvimento iterativo e pós-design.

Pré-design:

- busca de informação e conceituação sobre o usuário e seu contexto de trabalho e sobre sistemas relacionados, padrões de interface, guidelines, ferramentas de desenvolvimento, etc.
- Estabelecimento de metas a partir dos princípios de design. Métodos: visitas, observação do usuário, gravação de fita, design participativo, think aloud.

Design inicial:

- Especificação inicial da interface visando concretizar um protótipo com o design.
- Este protótipo será verificado empiricamente através da avaliação com usuários reais.
- Sugere-se a utilização de métodos participativos, utilização de guidelines gerais, guidelines específicos

- Desenvolvimento iterativo:
 - Alimentado por feedback de testes até que os objetivos tenham sido alcançados.
 - É baseado na prototipagem e testes empíricos em cada iteração do desenvolvimento. Neste ponto dois tipos de avalicações poderão ocorrer: qualitativas e quantitivas. As primeira ocorrerem nas iterações iniciais e as últimas nas finais.
 - São também registradas cada decisão feita no design da interface. Estes registros são chamados de design rationale.

Pós-design:

- Instalação do sistema no local de trabalho do usuário e acompanhamento com medidas de reação e aceitação do sistema pelo usuário final.
- Estudos são conduzidos para avaliar o impacto do produto na qualidade do trabalho do usuário.
 Registros desses estudos devem ser feitos.

Benefícios:

- tempo economizado em implementar funções que a análise de usabilidade mostrou não serem utilizadas pelo usuários.
- economia financeira equivalente ao dobro do que foi investido com redução do treinamento para determinados produtos.

IHC: projeto de interface

 A seguir discutiremos técnicas de design de interface que visam apoiar as atividades da engenharia de usabilidade, a saber, pré-design, design inicial, desenvolvimento interativo, pósdesign.

Uso de Guidelines no Design

- Guidelines são muito populares em design de interfaces por constituírem um framework para oirentar o designer.
- Servem para dar consistência a produtos de um particular fabricante.
- Origens: artigos acadêmicos, manuais, estilos etc.
- Não é uma receita, mas princípios norteadores.

Uso de Guidelines no Design

- Os princípios de design discutidos anteriormente podem ser entendidos como guidelines.
- Os guidelines podem ser utilizados nas fases de design inicial e desenvolvimento interativo do processo de engenharia de usabilidade.

- Metáforas ajudam-nos a construir Modelos Mentais sobre o artefato com o qual interagimos e, muitas vezes, elas representam nossos modelos mentais;
- Permitem-nos usar conhecimento de objetos concretos, familiares e experiências anteriores para dar estrutura a conceitos mais abstratos.

- Metáforas permitem o entendimento e a experimentação de uma coisa em termos de outra.
- No contexto de projeto de interfaces, as metáforas permitem que o usuário utilizem conhecimento anterior para entendimento do sistema computacional.

 Tome-se como exemplo área de desktop de um computador. A idéia subjacente é que se trata do topo de uma mesa em que estão esplhadas ferramentas podemos utilizar. Há, por exemplo, uma lixeira aonde podemos jogar foram papéis não mais utilizados.

- Madsen, com base em estudos de caso, propôs uma série de diretrizes para o design baseado em metáfora.
- São distinguidos as seguintes atividades:
 - geração de metáforas candidatas à aplicação no design; avaliação com relação à adequação ao domínio particular de tarefas e desenvolvimento, ou seja, adaptação da metáfora à situação de design.

 Metáforas pode ser utilizadas nas fases de design inicial e desenvolvimento interativo.

- Cenários foram propostos como um meio de representar, analisar re planejar como um sistema computacional pode causar impacto nas atividades e experiências do usuário.
- É uma descrição em geral narrativa mas também em outros formatos (storyboards, vídeos) que as pessoas fazem e experimentam conforma imaginam ou tentam fazer uso de sistemas e aplicações.

Formato:

- nome, descrição, lógica essencial (com relação ao usuário, representações e ações disponíveis; com relação ao sistema, informações necessárias para que o sistema funcione como requerido); passos genéricos; passos específicos.
- Exemplo: um cenário descrevendo o leilão no jogo de bridge.

- O cenário identifica o usuário como tendo certa motivações e razões para essas ações. Para o designer, ajuda a visualizar aspectos da atividade e experiência adquirida ou necessária ao usuário.
- O uso de cenários pode se dar no pré-design, no design inicial e no desenvolvimento iterativo.

- Na fase de design propriamente dita, cenários pode ser analisados para identificar os objetos centrais do domínio do problema e articular o estado, comportamento e interação funcional dos objetos de design.
- Neste sentido, ele possuem um papel semelhante aos casos de uso no desenvolvimento orientado a objetos.

Desgin participativo

- Como o próprio nome diz, esta abordagem caracteriza-se pela participação ativa dos usuários ao longo de todo o ciclo de design e desenvolvimento.
- A participação do usuário não se restringe ao estágio de teste de protótipos ou avaliação, mas ocorre ao longo do design e desenvolvimento.

Desgin participativo

- Os métodos de design participativo caracterizam-se pelo uso de técnicas simples e pouco comprometimento de recursos.
- Exemplos de técnicas de design participativo:
 - Storytelling workshop: participantes compartilham histórias, comentando semelhanças e contrastes de suas experiências.

Design participativo

- Exemplos de técnicas de design participativo:
 - Picture card: são utilizados cartões contendo figuras de objetos e eventos do mundo de trabalho do usuário. Como resultado, as histórias contadas pelos usuários, inicialmente expressas por cartões, são traduzidas para textos.

Design participativo

 Os métodos de DP apresentados são mais indicados para a fase de pré-design, porém, há outros métodos de DP que podem auxilar o design inicial e o desenvolvimento interativo.

- Métodos etnográficos são utilizados nas ciências humanas com o objetivo de estudar as pessoas in loco, isto é, em seu habitat nativo.
- Entre os objetivos e tarefas principais da abordagem etnográfica em design está o entendimento da prática corrente do trabalho das pessoas usando tecnologias.

- Vários tipos de registros da observação podem ser realizados de forma captar em diferentes mídias, diferentes aspectos do ambiente observado. Pode ser um ambiente de trabalho ou o trabalho de uma única pessoa ou mesmo o uso de um determinado artefato.
- O registro pode ser manual, através de anotações do observador, ou através de registro em vídeo. Depois de realizadas as anotações ou registro em vídeo, é feita a análise do material coletado.

- Os métodos etnográficos pode envolver protocolos pós-evento ou protocolos verbais.
- Os protocolos pós-evento determinam que usuário, depois de realizar a tarefa observada, deve comentar sobre suas ações.
 Isto pode ser feito visualizando seu desempenho em vídeo ou mesmo realizando uma pós-avaliação com o observador.
- Já os protocolos verbais determinam que o usuário verbalize seu pensamentos antes da realização de cada tarefa. Este protocolo é também chamdo de "pensar alto".

- Um método etnográfico efetivo e pouco intrusivo é logging de ações do usuário por meio de programas espiões.
- O problema deste método o grande volume de dados gerados e que precisam ser filtrados e analisado.

- Os métodos etnográficos são úteis à fase de pré-design no qual o ambiente e o usuário realizando suas tarefas são analisados e também na fase de pós-design em que o sistema é avaliado in loco.
- Ele poderia ser utilizado na fase de desenvolvimento interativo, mas o seu custo é muito alto para ser repetido a cada interação.

- Na avaliação, cenários podem ser utilizados para coletar informação detalhada de como os usuários percebem o sistema.
- Design de telas podem ser apresentados a usuários potenciais que tentam explicar o que pensam ser possível fazer e feitos esperados de suas ações.

Resumo

- Discutimos o design de interfaces humanocomputador.
 - princípios de design;
 - ciclo de vida de design;
 - a engenharia de usabilidade: pré-design, design inicial, desenvolvimento interativo e pós-design;
 - técnicas de design de interface (guidelines, metáforas, cenários, design participativo e métodos etnográficos) vis-a-vis engenharia de reusabilidade.

Bibliografia

 Rocha, H. V. & Baranauskas, M. C. C., "Design e avaliação de interfaces humano-computador", Campinas, SP: NIED-UNICAMP, 2003.