Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа 2.1.1	К работе допущен
Студент Батманов Даниил Евгеньевич	Работа выполнена
Преподаватель Горбенко А.П.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №3.10

Цель работы.

Изучение основных характеристик свободных затухающих колебаний.

Объект исследования.

Свободные затухающие колебания

Метод экспериментального исследования.

Эксперимент

Измерительные приборы.

Наименование средства измерения	Предел измерений	Цена деления	Погрешность прибора
Осциллограф ОЦЛ2	-	-	-

Рабочие формулы.

$$\lambda = \frac{1}{n} \ln \frac{U_i}{U_{i+n}}. \qquad R_0 = -R_{\rm M}\big|_{\lambda=0}. \label{eq:lambda}$$

$$R_0 = -R_{\rm M} \Big|_{\lambda=0}$$
.

$$\lambda \approx \pi R \cdot \sqrt{\frac{C}{L}}$$
.

$$\lambda \approx \pi R \cdot \sqrt{\frac{C}{L}}$$
. $T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$. $Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}}$.

$$Q = \frac{1}{R} \cdot \sqrt{\frac{L}{C}} \ .$$

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}.$$

$$T = \frac{2\pi}{\sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}}$$
 $T = 2\pi\sqrt{LC}$

Схема установки (перечень схем, которые составляют Приложение 1).

Рис 6. Рабочая схема для изучения затухающих колебаний напряжения на конденсаторе

Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица №1								
R_m, Ом	Т, мс	2U_i, дел	2U_(i + n), дел	n	lambda	Q	R, Ом	L, мГн
0	0,09	7,8	5,6	1	0,331357136	12,96048847	60	7,112001215
10	0,09	7,6	5,2	1	0,3794896217	11,80770833	70	7,380371964
20	0,09	7,4	4,8	1	0,4328640823	10,84151324	80	7,408987279
30	0,09	7,2	4,4	1	0,4924764851	10,02325123	90	7,244292858
40	0,09	7	4	1	0,5596157879	9,324848485	100	6,926312152
50	0,09	6,8	3,6	1	0,6359887667	8,725576923	110	6,488860797
60	0,09	6,6	3,2	1	0,7239188392	8,209987995	120	5,960253225
70	0,09	6,4	2,8	1	0,8266785732	7,766570048	130	5,3640809
80	0,09	6,2	2,4	1	0,9490805547	7,386878825	140	4,71989022
90	0,09	6	2	1	1,098612289	7,065	150	4,043668919
100	0,09	5,8	1,6	1	1,287854288	6,797271557	160	3,348023406
200	0,09	4,8	1,5	1	1,16315081	6,95965368	260	10,83818646
300	0,1	3,8	1,4	1	0,9985288301	7,266282051	360	28,19458856
400	0,1	3,2	1,2	1	0,980829253	7,307636364	460	47,71015419

Таблица №2					
С, мкФ	Т_эксп, мс	Т_теор, мс	dT = (Т_эксп - Т_теор) / Т_теор, %	формула томсона	
0,022	0,09	0,08237021626	0,09262794349	0,08226560302	
0,033	0,11	0,1009467458	0,08968346798	0,1007543754	
0,047	0,13	0,1205692849	0,07821822243	0,1202419122	
0,47	0,4	0,3909878696	0,02304964183	0,3802383126	

Вычисления. Графики.

lambda относительно параметра "R m, Ом"

Кубическая регрессия $y=0.000000590x^3-0.000019150x^2+0.005568849x+0.328007024$

Коэффициент корреляции **0.999933322**

Коэффициент детерминации 0.999866648

Средняя ошибка аппроксимации, % 0.501554560~%

Воспользовавшись кубической аппроксимацией, получим $R = -59 \sim -60$ Ом Отсечка - 0.5%

C = 0,022 мкФ

 $L_{\text{ист}} = 7,8 \text{ см}$

 $L_{\text{сред}} = 10,90997658$

Погрешность $L_{\text{срел}} = 3,109976581$

Т_эксп	0,09	0,1	0,1
Т	0,08	0,1	0,11
delta T	0,01	0,1	-0,1

Q_1 =	0,2996631361
Q 2=	0,2616554257

Q относительно параметра "R_m, Ом"

Выводы и анализ результатов работы.

В ходе выполнения данной лабораторной работы были изучены основные характеристики свободных затухающих колебаний