

### — 大连理工大学 微电子实验教学中心 —



# 集成电路CMOS器件制造流程 关键工艺虚拟仿真实验

中人計

2022年8月

## 提纲

- 1 实验目的
- 2 实验方法
- 3 实验原理
- 4 实验设备及材料
- 5 实验过程及步骤
- 6 实验报告
- 7 思考题

### 1.实验目的

#### 不忘初心,牢记使命,"芯"系国家,励志图强



习总书记强调,要把半导体芯片产业作为战略性产业,抓住不放、实现跨越。

集成电路是现代信息社会的基石,是国家"十四五规划"及2035远景目标中"人工智能、量子信息、集成电路、生命健康、脑科学、空天科技、深地深海"等前沿领域的重要支撑。

2017年初,央视财经频道播出的《感受中国制造》第五集《中国"芯"力量》介绍了中国在半导体设备和半导体原材料上取得的成绩和进步。其中,最引人瞩目的是中国企业在刻蚀机上取得的成绩——16nm刻蚀机实现商业化量产并在客户的生产线上运行,7-10nm刻蚀机设备可以与世界最前沿技术比肩。







### 1.实验目的

### 不忘初心,牢记使命,"芯"系国家,励志图强

选取集成电路产业中典型的CMOS器件结构,重点学习深亚微米CMOS制程中的关键工艺(薄膜沉积、光刻、离子注入、刻蚀)的原理及工艺操作。

- 1. 了解当前IC发展现状与趋势;
- 2. 学习IC器件的生产环境;
- 3. 了解CMOS器件关键工艺设备(薄膜沉积、光刻、刻蚀及离子注入);
- 4. 掌握超净间入室准备操作;
- 5. 掌握典型CMOS器件基本结构及制造流程;
- 6. 掌握CMOS器件关键工艺的原理;
- 7. 熟练掌握光刻工艺过程,理解光刻胶与掩膜版的作用。
- 8. 运用关键工艺综合设计IC器件制造流程与工艺参数。

### 2.实验方法

1. 网络在线版: http://dlut.rofall.net/virexp/login





2. 单机客户端版: 在客户端直接点击图标即可进入



3. VR体验版:在客户端直接点击图标即可进入





#### 集成电路CMOS器件基本结构及工艺流程





#### — 大连理工大学微电子实验教学中心 —

#### 光刻工艺原理

该项工艺利用曝光和显影在光刻胶层上留下几何图形结构,然后通过刻蚀工艺将掩模板的图形转移到所在衬底上。



#### 工业皇冠上的明珠,是芯片制造产业链中最关键的设备。

#### 光刻机

一台高端的EUV光刻机光零件就多达10万个,全球超过5000家供应商,是通过全球的技术集成做出来的,它是一个全球高端技术的结晶。







#### 薄膜沉积工艺原理



物理气相沉积 (PVD) 原理示意图



化学气相沉积 (CVD) 工艺原理示意图

#### 刻蚀工艺原理





#### 国内芯片制造与国际先进水平差距:大约三代、5~10年



中微公司已是全球半导体刻蚀设备5大供应商之一,截至2020年年底已申请1755项专利。其12英寸高端刻蚀设备已用于迄今最先进的5nm生产线上;其3nm刻蚀机Alpha原型机的设计、制造、测试及初步的工艺开发和评估也已完成。

胸怀祖国、服务人民的爱国精神; 勇攀高峰、敢为人先的创新精神; 追求真理、严谨治学的求实精神; 淡泊名利、潜心研究的奉献精神; 集智攻关、团结协作的协同精神; 甘为人梯、奖掖后学的育人精神。

#### 离子注入工艺原理



(a) 低掺杂浓度 (n-,p-) 和浅洁深 (x<sub>j</sub>))



#### 4.1 实验设备



超净间



刻蚀机



风淋间



离子注入设备



光刻机



薄膜沉积设备

一 大连理工大学微电子实验教学中心 —

### 4.2 实验关键工艺设备





光刻机



离子注入设备



刻蚀机





薄膜沉积设备

一 大连理工大学微电子实验教学中心 —

### 4.3 实验材料

| 序号 | 虚拟实验材料名称                                                                                                                        | 用途                     |  |  |
|----|---------------------------------------------------------------------------------------------------------------------------------|------------------------|--|--|
| 1  | P(100)型单晶硅                                                                                                                      | 器件制造工艺衬底               |  |  |
| 2  | 光刻胶 (I-Line光刻胶,KrF光刻胶,<br>ArF光刻胶)                                                                                               | 实现掩膜版图形曝光后转移           |  |  |
| 3  | $H_2$ , $O_2$ , $N_2$ , $He$ , $Cl_2$ , $CF4$ , $Cl_2$ , $HBr$ , $BCl_3$ , $SiH_4$ , $N_2O$ , $SF_6$ , $C_4F_8$ , $Ar$ , $NH_3$ |                        |  |  |
| 4  | 氢氟酸                                                                                                                             | 腐蚀二氧化硅SiO <sub>2</sub> |  |  |
| 5  | 金属铝                                                                                                                             | 形成金属铝电极                |  |  |
| 6  | 硼、磷、砷                                                                                                                           | 用于掺杂形成P-、P+、N-、N+      |  |  |

#### 4.4 实验设备预设参数



| 序号 工艺设备 工艺名称 预设参数 预设参数                                                                                        |                     |
|---------------------------------------------------------------------------------------------------------------|---------------------|
| 1 风淋间 入室规范 360度旋转、保持5 s。                                                                                      |                     |
| 2 清洗机 清洗 I号+II清洗液+BHF                                                                                         |                     |
| 3 热氧化炉 氧化 O₂流量: 0-30 sccl H₂流量: 0-30 sccl, N₂流量: 0-<br>温度: 700-1100 °C, 时间: 2~8 h                             | 30 sccl             |
| <b>対応</b> 特速: 1000-5000 时间: 30 s-60 s, 光線 対応 対応 対応 ・                                                          |                     |
| 曝光 曝光剂量: 10 mJ-1000 mJ, 时间: 30 mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/mg/m                                       |                     |
| 4 光刻机 光刻 显影 显影液: TMAH 2.38% 时间: 40 s-150                                                                      | S                   |
| 前烘 温度: 70 ℃ 时间: 10 min                                                                                        |                     |
| 后烘 温度: 70 ℃ 时间: 10 min                                                                                        |                     |
| 5 离子注入机 离子注入 能量: 0-250 KeV 注入物质; B/P/As 剂量: 1E10-1E17 /cm² 注入时间: 60 s                                         |                     |
| 光刻胶                                                                                                           |                     |
| 气体: CF <sub>4</sub> , Cl <sub>2</sub> , He, 流量: 3-200 sc                                                      | cm, 时间: 10 s-600 s  |
| <b>多次 多次 多次 多次 多次 多次 一 一 一 一 一 一 一 一 一 一</b>                                                                  | 气体: SF <sub>6</sub> |
| 多晶硅 气压: 3 mT-60 mT, 电压: 30 V-160 V<br>气体: CF <sub>4</sub> , Cl <sub>2</sub> , O <sub>2</sub> , HBr, He, 流量    |                     |
| 金属铝 气压: 3 mT-12 mT, 电压: 30 V-200 V<br>气体: Cl <sub>2</sub> , BCl <sub>3</sub> , N <sub>2</sub> , 流量: 10-200 se |                     |
| 多晶硅 压力: 275 torr 流量: 20 sccm<br>温度: 800 °C 时间: 230 s                                                          |                     |
| 二氧化硅 压力: 2-3 Torr 气体: SiH <sub>4</sub> , N <sub>2</sub> O<br>功率: 120-300 W 时间: 20-200 s                       |                     |
| 7 & 薄膜沉积                                                                                                      | _                   |
| 金属铝 功率: 200-10000 W<br>压力: 1-20 mTorr; 气体: Ar 时间                                                              |                     |

#### 一 大连理工大学微电子实验教学中心 —

#### 步骤1准备工作





#### 步骤2 超净间入室规范





步骤3 进入超净间



步骤4 粘尘垫二次除尘





#### 步骤5设备认知





#### 步骤6器件结构说明



步骤7清洗和场氧氧化



步骤8一次光刻



步骤9二氧化硅的刻蚀



步骤11 去胶



步骤10 形成N阱



步骤12 去除二氧化硅



步骤13氧化(再次氧化沉积)



步骤14 二次光刻+刻蚀二氧化硅





— 大连理工大学微电子实验教学中心 —

#### 步骤15 去胶+栅氧氧化





#### 步骤16 沉积多晶硅+三次光刻





一 大连理工大学微电子实验教学中心 —

步骤17刻蚀多晶硅



#### 步骤18 四次光刻+离子注入







一 大连理工大学微电子实验教学中心 —

步骤19 去胶+第五次光刻





步骤20 离子注入+去胶





— 大连理工大学微电子实验教学中心 —

#### 步骤21 沉积+刻蚀二氧化硅





#### 步骤22 金属化+电极引线





#### 步骤23 沉积二氧化硅 (钝化层形成)





步骤24 刻蚀形成压焊盘



### 6.实验报告

完成学习和模式和考核模式后,请学生填写实验报告后在平台上点击"提交",系统自动生成实验报告及该实验得分。

| 集成电路CMOS器件制造流程关键工艺虚拟仿真实验报告 |                                                                                                                                                                                           |      |  |    |  |  |  |  |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|----|--|--|--|--|
| 学生姓名                       |                                                                                                                                                                                           | 学号   |  | 专业 |  |  |  |  |
| 实验类型                       |                                                                                                                                                                                           | 指导教师 |  | 成绩 |  |  |  |  |
| 实验目的                       | 1. 了解当前IC发展现状与趋势; 2. 学习IC器件的生产环境; 3. 了解CMOS器件关键工艺设备(薄膜沉积、光刻、刻蚀及离子注入); 4. 掌握超净间入室准备操作; 5. 掌握典型CMOS器件基本结构及制造流程; 6. 掌握CMOS器件关键工艺的原理; 7. 熟练掌握光刻工艺过程,理解光刻胶与掩膜版的作用。 8. 运用关键工艺综合设计IC器件制造流程与工艺参数。 |      |  |    |  |  |  |  |
| 实验要求                       | 1、做CMOS虚拟仿真实验要假想自己进行真实的CMOS实验,不要因为是虚拟实验而忽略实验细节;<br>2、对于初学者或者未接触过CMOS实验的同学,要认真观看学习模式,尤其是领悟并掌握好CMOS实验原理再进行实验考核;<br>3、在实验过程中,如果对实验某些方面有个人创新想法,记录并附在实验报告中;<br>4、程序如果出现bug或有何不足之处,记得做完实验后进行反馈! |      |  |    |  |  |  |  |
| 实验原理                       | 填写实验指导书中的内容                                                                                                                                                                               |      |  |    |  |  |  |  |
| 预习内容                       | 1. 集成电路制造工艺<br>2. CMOS器件的基本结构                                                                                                                                                             |      |  |    |  |  |  |  |
| 实验步骤                       | 记录考核模式下第一次填写的参数数据。                                                                                                                                                                        |      |  |    |  |  |  |  |
| 实验结果                       | 实验结果和实验过程得分                                                                                                                                                                               |      |  |    |  |  |  |  |
| 实验心得                       | 学习者自行填写                                                                                                                                                                                   |      |  |    |  |  |  |  |

### 7.思考题

#### 思考题可发送至shjiank@dlut.edu.cn





#### 同面结构GaN基LED的结构示意图

#### 双阱CMOS器件结构示意图



# THURD

— 大连理工大学 微电子实验教学中心 —