SPX1117--800mA 低压差(LDO) 稳压器

特性

- 0.8A 稳定输出电流
- 1A 稳定峰值电流
- 3端可调节(电压可选: 1.5V, 1.8V, 2.5V, 2.85V, 3.0V, 3.3V及5V)
- 低静态电流
- 0.8A 时低压差为 1.1V
- 0.1%线性调整率/0.2%负载调整率
- 2.2uF 陶瓷电容即可保持稳定
- 过流及温度保护
- 多封装: SOT-223, T0-252, T0-220及 T0-263(现已提供无铅封装)

应用

- PC 桌面服务器
- SCSI-II 有源终端
- 便携式/手持式/笔记本电脑
- 无线电话
- 充电设备
- 磁盘驱动器
- 便携式消费类电子
- 便携式仪器
- SMPS 后置调节器

描述

SPX1117 为一个低功耗正向电压调节器,其可以用在一些高效率,小封装的低功耗设计中。这款器件非常适合便携式电脑及电池供电的应用。SPX1117 有很低的静态电流,在满负载时其低压差仅为 1.1V。当输出电流减少时,静态电流随负载变化,并提高效率。SPX1117 可调节,以选择 1.5V,1.8V,2.5V,2.85V,3.0V,3.3V 及 5V 的输出电压。

SPX1117 为提供多种 3 引脚封装: SOT-223, TO-252, TO-220 及 TO-263。一个 10uF 的输出电容可有效地保证稳定性,然而在大多数应用中,仅需一个更小的 2.2uF 电容。

译注:

DROPOUT (minimum input-to-output differential) Voltage.

从以下这段话,我们可以看出 Dropout Voltage 是一个系统效率的相关量。One way towards improved efficiency is to minimize the input-to-output voltage across the regulator. The smaller this term is, the lower the power loss. The minimum input-output voltage required to support regulation is referred to as the "dropout voltage."

.....Low dropout regulators thus save considerable power and dissipation.

本文采用国内一些文章已经出现的叫法,称 Dropout Voltage 为压差。

如您对本文的某些地方存在疑问,可与 **周立功单片机发展有限公司** 的技术支持部门联系,我们将竭诚为您服务。

功能模块图

极限参数

● 焊接温度(焊接过程中,5秒) …… 260℃

● 输入电压 +20V

● 输入端到输出端压降 ······ 18.8V

● ESD 额定值 ····· 最小 2kV

这里仅描述了部分参数,器件在以上状态的工作性能及下面规范中的操作相关说明,并没有在这里提到。长期处于极限工作状态将影响器件的稳定性。

电气特性

T_A=25℃, CIN=COUT=10uF, 无其他特定条件, 芯片工作于正常温度范围。

参数	条件	最小	典型值	最大	单位
1.5V					
输出电压	$I_{OUT}=10$ mA, $V_{IN}=3.0$ V	1. 485	1.500	1. 515	V
	$10\text{mA} \le I_{\text{OUT}} \le 800\text{mA}, 2.9\text{V} \le V_{\text{IN}} \le 12\text{V}$	1. 470		1.530	
1.8V					
输出电压	$I_{\text{OUT}}=10\text{mA}$, $V_{\text{IN}}=3.3\text{V}$	1. 782	1.800	1.818	V
	$10\text{mA} \le I_{\text{OUT}} \le 800\text{mA}, 3.2\text{V} \le V_{\text{IN}} \le 12\text{V}$	1. 764		1.836	
2. 5V					
输出电压	$I_{OUT}=10$ mA, $V_{IN}=4.0$ V	2. 475	2.500	2. 525	V
	$10\text{mA} \le I_{\text{OUT}} \le 800\text{mA}, 3.9\text{V} \le V_{\text{IN}} \le 12\text{V}$	2. 450		2.550	
2.85V					
输出电压	I _{OUT} =10mA, V _{IN} =4.35V	2. 821	2.850	2.878	V
	$10\text{mA} \le I_{\text{OUT}} \le 800\text{mA}, 4.25\text{V} \le V_{\text{IN}} \le 12\text{V}$	2. 793		2. 907	
3. 00V					
输出电压	$I_{\text{OUT}}=10\text{mA}$, $V_{\text{IN}}=4.5\text{V}$	2. 970	3.000	3. 030	V
	$10\text{mA} \leq I_{\text{OUT}} \leq 800\text{mA}, 4.4\text{V} \leq V_{\text{IN}} \leq 12\text{V}$	2. 940		3.060	
3. 3V					

输出电压	$I_{\text{OUT}}=10\text{mA}$, $V_{\text{IN}}=4.8\text{V}$	3. 267	3. 300	3. 333	V
	$10\text{mA} \leqslant I_{\text{OUT}} \leqslant 800\text{mA}$, $4.7\text{V} \leqslant V_{\text{IN}} \leqslant 12\text{V}$	3. 234		3. 366	
5V		1	1	•	•
输出电压	$I_{OUT}=10$ mA, $V_{IN}=6.5$ V	4. 950	5	5. 050	V
	$10 \text{mA} \leqslant I_{\text{OUT}} \leqslant 800 \text{mA}$, $6.4 \text{V} \leqslant V_{\text{IN}} \leqslant 12 \text{V}$	4. 90		5. 10	
所有电压选项		1	1	•	•
参考电压	$I_{\text{OUT}}=10\text{mA}$, $(V_{\text{IN}}-V_{\text{OUT}})$ =2V	1. 238	1. 250	1. 262	V
	$10 \text{mA} \leqslant I_{\text{OUT}} \leqslant 800 \text{mA}$, $1.4 \text{V} \leqslant (V_{\text{IN}} - V_{\text{OUT}}) \leqslant 12 \text{V}$	1. 225		1. 270	
输出电压			0.3		%
温度稳定性					
线性调节	V _{INMIN} ≪V _{IN} ≪12V, V _{OUT} ≪Fixed/Adj		3	7	mV
	I _{out} =10mA				
负载调节	10mA≤I _{OUT} ≤800mA, V _{OUT} ≤Fixed/Adj		6	12	mV
压差电压	I _{out} =100mA		1.80	1. 10	V
	$I_{\text{OUT}} = 100 \text{mA}$		1.05	1. 15	
	$I_{OUT}=100mA$		1. 10	1. 25	
静态电流	4. 25V ≤V _{IN} ≤6. 5V		5	10	MA
可调节引脚电流			50	120	uA
电流极限值	$(V_{\text{IN}}-V_{\text{OUT}}) = 5V$	1. 0V	1.5V	2. 0V	A
温度线性	25℃, 30mS 脉冲		0. 01	0. 1	%/W
纹波抑制比	f _{RIPPLE} =120Hz, V _{IN} -V _{OUT} =2V,	60	75		dB
	$V_{RIPPLE}=1V_{PP}$				
长期稳定性	125℃, 1000Hrs		0. 03		%
RMS 输出噪声	Vout 百分比,10Hz≤f≤10kHz		0.003		%
温度阻抗	T0-220 接点->焊片		3		°C/W
	T0-220 接点->周围环境		60		
	T0-263 接点->焊片		3		
	T0-263 接点->周围环境		60		
	T0-252 接点->焊片		6		
	T0-252 接点->周围环境		126		
	SOT-223 接点->焊片		15		
	S0T-223 接点->周围环境		156		

注解 1 - 对于可设定的选项, V_{INMIN}=V_{OUT}+1.5V

- 对于可调节的选项, V_{INMIN}=V_{IN}-V_{OUT}=1.4V

注解 2 - 压差是输入电压减去输出电压(有 1%的压降)的值,此时的理想输出电压应满足 $V_{\text{IN}} = V_{\text{OUT}}$ + 1.5V

图 1 SPX1117M3-3.3 负载调节率; V_{IN}=4.8V

图 2 SPX1117M3-3.3 线性调节率; Iour=10mA

图 3 SPX1117M3-3.3 压差 vs 输出电流; V_{IN}=4.8V, C_{OUT}=2.2uF

图 4 SP1117M3-3.3 的电流极限值; VIN=4.8V, CIN=COUT=1uF, IOUT 从 10mA 到电流极限值

图 5 SPX11173M3-3.3 电流极限值, Iout 从 10mA 到 1A 时的输出电压偏差

图 6 Vout vs 温度, V_{IN}=2.5V, IOUT=10mA

图 8 V_{IN}=3.3V, I_{OUT}=10mA

图 9 VIN=4.0V, IOUT=10mA

图 10 VIN=4.85, IOUT=10mA

图 11 VIN=4.85, IOUT=10mA

图 12 VIN=5.0V, IOUT=10mA

图 13 线性调节率 Vs 温度, Vout=1.8V (可调节), V_{IN}=3.3V

图 14 在不同当前负载的情况下,输出电压 vs 温度, V_{IN} =3.3V, V_{OUT} =1.8V 可调节

图 15 ILDAD=800mA 时,温度范围内的线性调节率,Vout=1.8V 可调节

输出电容

为了确保 SPX1117 的稳定性,输出端至少需要一个 2. 2uF 的钽/陶瓷电容或 10uF 铝电容。其值可以根据输出负载/温度范围的要求变动。ESR 的值取决于用来保持稳定的电容类型。建议 ESR 选取 $0.5\,\Omega$ 或更小的值。也可以选用一个更大的输出电容值(100uF)以增长负载瞬态响应。

图 16 负载瞬态响应 (0->800mA), Vin=3.3V, Vout=1.8V, Cin=10uF, Cout=2.2uF, 陶瓷封装; I=Vout, 4=Iload

图 17 负载瞬态响应 (0->800mA), Vin=3.3V, Vout=1.8V, Cin=10uF, Cout=2.2uF, OSCON; I=Vout, 4=Iload

图 18

焊接方式

SPX1117 SOT-223 封装可使用红外回流/汽相回流工艺焊接。在焊接过程中,可以使用无活性剂或微活性剂。SPX1117 的输入、输出、及地引脚可能在散热的过程中,导致器件损坏。

尽量避免手工焊接及波峰焊接,因为这些方法可能对芯片的热稳定性造成伤害。SOT-223 建议采用以下焊接形式: 红外回流焊法及汽相回流焊法(组件预热到65℃的焊接温度范围)。

温度特性

SPX1117(S0T-223 封装)从接点到焊贴片的热阻为 15℃/W,31℃/W 从焊贴片到周围环境,从接点到周围环境的总热阻为 46℃/W(表 1)。SPX1117 的内部热限定功能,可以在一些过载的情况下保护器件。需要注意,当器件处于连续工作状态下,最大接点温度不会超过 125℃。当温度>155℃启动热保护功能,当温度<145℃时,解除热保护功能。

采用 FR-4 印刷电路板,并选取 1 盎司铜箔厚度的 1/16 (见图 13)。这种附带焊贴片的 PCB 材料可以有效地导热,其背面可以作为接地层。测试结果可参见表 1 中。

应用中,其他器件的热干扰可能影响 SPX1117。实际热阻可由实验测得。

SPX1117 功耗计算公式如下。

 $PD = (V_{IN} - V_{OUT}) (I_{OUT})$

最大接点温度范围:

T_J=T_{A (max)} + P_D*温度阻抗

(接点到周围环境)

最大接点温度不能超过125℃。

图 19 SOT-223 底层板图

纹波抑制比

可以在 ADJ 引脚与地之间接一个电容增强纹波抑制比(如图 23)。如果 ADJ 引脚旁路,输出电容需要达到最大值。如果 ADJ 引脚没有旁路,输出电容可以选择 10uF 的铝电解电容或 2. 2uF 的陶瓷电容或者固态钽电容(图 22)。

ADJ 旁路电阻的值可以通过以下公式获得:

 $C=1/(6.28*F_R*R_1)$

C 为电容值,以 F (法拉)为单位, F_R 为纹波频率,以 Hz 为单位, R_1 为 R1 的电阻值,以 Ohm (欧姆)为单位。

如果使用了ADJ旁路电容,输出波的振幅将为独立输出电压。如果没有使用ADJ旁路电容,输出波将与输出电压及参考电压之比成比例:

 $\mathrm{M}{=}\mathrm{V_{\mathrm{OUT}}}/\mathrm{V_{\mathrm{REF}}}$

当 ADJ 引脚为理想旁路状态时,M=纹波的倍数。

 $V_{REF}=1.25V$

可调纹波抑制比如图 20 所示。

图 20 纹波抑制比; Vin=3.3V, Vout=1.8V (adj.), Iload=200mA

表 1

PC板 (mm2)	顶层 Copper (mm2)	背层 Copper(mm2)	热阻(JUNC to AMB) ℃/W
2500	2500	2500	46
2500	1250	2500	47
2500	950	2500	49
2500	2500	0	51
2500	1800	0	53
1600	600	1600	55
2500	1250	0	58
2500	915	0	59
1600	600	0	67
900	240	900	72
900	240	0	85

输出电压

可通过输出调节器选择 1.25V 到 15V 之间的任意值。 V_{OLT} 的值可以通过以下公式快速获得 V_{OLT} =1.25* (R_1+R_2) $/R_1$

因为可调节引脚电流(大约为 50uA)流过 R_2 ,所以可参照 R_1 及 R_2 的阻值,对以上等式进行小修正。如果把 I_{ADI} 也计算在内,

等式变为 V_{OUT}=V_{REF} (1+ (R2/R1)) +I_{ADJ} * R2, 条件是 V_{REF}=1.25V

布板规则

寄生线性阻抗可以降低负载调节线性。为了避免这种情况的出现,可以将 R_1 直接连到 V_{out} ,如图 25 所示。同样原因,R2 应该与负载的反向端连接。

图 21 电流源

图 22 典型可调节电路

图 23 纹波抑制比增强图

图 24 带关断电路的 5V 调节器

图 25 推荐连接电路

引脚排列

SOT-223 封装

3-Lead SOT-223

T0-252 封装

BACK VIEW	A-A	

S Y M					N
В	ING	4ES		MM	_
Ĺ	MN	MAX	MIN.	MAX	Ť
Α	0.086	0.094	2.184	2.3876	
A1	0.035	0.045	0.889	1.143	1 1
b	0.025	0.035	0.635	0.889	1 1
b1	0.300	0.045	7.620	1.143	1 1
b2	0.205	0.215	5.207	5.461	4
c	0.018	0.023	0.457	0.5842	1 1
c1	0.018	0.023	0.457	0.5842	1 1
D	0.235	0.245	5.969	6.223	1 1
D1	0.170	-	4.318	-	4,5
E	0.250	0.265	6.350	6.731	1 1
E1	0.170	-	4.318	-	4,5
e	a.	098	2.	489	1 1
e1	a	180	4	.572	1 1
н	0.370	0.410	9.398	10.414	1 1
L	0.020	-	0.508	-	6
L1	0.025	0.040	0.635	1.016	1 1
L2	0.035	0.050	0.889	1.270	4
L3	0.045	0.060	1,143	1.524	3

T0-220 封装

- .161 - .135

.139

.100

L2

ΔP Q

T0-263 封装

订购信息

型号	ACC	输出电压	封装
SPX1117M3	1%	Adj	3 Pin SOT-223
SPX1117M3/TR	1%	Adj	3 Pin SOT-223
SPX1117M3-1.5	1%	1. 5V	3 Pin SOT-223
SPX1117M3-1.5/TR	1%	1. 5V	3 Pin SOT-223
SPX1117M3-1.8	1%	1. 8V	3 Pin SOT-223
SPX1117M3-1.8/TR	1%	1.8V	3 Pin SOT-223
SPX1117M3-2.5	1%	2. 5V	3 Pin SOT-223
SPX1117M3-2.5/TR	1%	2. 5V	3 Pin SOT-223
SPX1117M3-2.85	1%	2.85V	3 Pin SOT-223
SPX1117M3-2.85/TR	1%	2.85V	3 Pin SOT-223
SPX1117M3-3.0	1%	3. 0V	3 Pin SOT-223
SPX1117M3-3.0/TR	1%	3. 0V	3 Pin SOT-223
SPX1117M3-3.3	1%	3. 3V	3 Pin SOT-223
SPX1117M3-3.3/TR	1%	3. 3V	3 Pin SOT-223
SPX1117M3-5.0	1%	5. 0V	3 Pin SOT-223
SPX1117M3-5. 0/TR	1%	5. 0V	3 Pin SOT-223
SPX1117R	1%	Adj	3 Pin TO-252
SPX1117R/TR	1%	Adj	3 Pin TO-252
SPX1117R-1.5	1%	1. 5V	3 Pin TO-252
SPX1117R-1.5/TR	1%	1. 5V	3 Pin TO-252
SPX1117R-1.8	1%	1.8V	3 Pin TO-252
SPX1117R-1.8/TR	1%	1. 8V	3 Pin TO-252
SPX1117R-2.5	1%	2. 5V	3 Pin T0-252
SPX1117R-2.5/TR	1%	2. 5V	3 Pin TO-252
SPX1117R-2.85	1%	2.85V	3 Pin TO-252
SPX1117R-2.85/TR	1%	2.85V	3 Pin TO-252

SPX1117R-3.0	1%	3. 0V	3 Pin TO-252
SPX1117R-3. 0/TR	1%	3. 0V	3 Pin TO-252
SPX1117R-3.3	1%	3. 3V	3 Pin TO-252
SPX1117R-3.3/TR	1%	3. 3V	3 Pin TO-252

型号	ACC	输出电压	封装
SPX1117T	1%	Adj	3 Pin TO-263
SPX1117T/TR	1%	Adj	3 Pin TO-263
SPX1117T-1.5	1%	1.5V	3 Pin TO-263
SPX1117T-1.5/TR	1%	1.5V	3 Pin TO-263
SPX1117T-1.8	1%	1.8V	3 Pin TO-263
SPX1117T-1.8/TR	1%	1.8V	3 Pin TO-263
SPX1117T-2.5	1%	2.5V	3 Pin TO-263
SPX1117T-2.5/TR	1%	2.5V	3 Pin TO-263
SPX1117T-2.85	1%	2.85V	3 Pin TO-263
SPX1117T-2.85/TR	1%	2.85V	3 Pin TO-263
SPX1117T-3.0	1%	3. 0V	3 Pin TO-263
SPX1117T-3. 0/TR	1%	3. 0V	3 Pin TO-263
SPX1117T-3.3	1%	3. 3V	3 Pin TO-263
SPX1117T-3.3/TR	1%	3. 3V	3 Pin TO-263
SPX1117U	1%	Adj	3 Pin TO-220
SPX1117U-1.5	1%	1.5V	3 Pin TO-220
SPX1117U-1.8V	1%	1.8V	3 Pin TO-220
SPX1117U-2.5	1%	2.5V	3 Pin TO-220
SPX1117U-2.85	1%	2.85V	3 Pin TO-220
SPX1117U-3.0	1%	3. 0V	3 Pin TO-220
SPX1117U-3.3	1%	3. 3V	3 Pin TO-220

现已提供无铅封装。在型号中有 "-L"后缀。

如: SPX1117M3-5.0/TR=标准; SPX1117M3-L-5.0/TR =无铅封装

/TR = 盘式及带式 (Tape & Reel)

封装数量: T0263 为 500, T0-252 为 2000, S0T223 为 2500。