Marco Cognetta, Institute of Science Tokyo

Subword Tokenization Meets Formal Language Theory

Neural Language Modeling

• There is a mismatch between what the user inputs and what the model processes!

Subword Tokenization

- People read and write text
- Language models operate on tokens
- Tokens are produced by a subword tokenizer
 - Minor surface variations: [un][_comfort][_able] vs [un][comfort][able_]
- Many competing goals:
 - Alignment with text/linguistic features
 - Coverage of all possible input text
 - Sequence compression
 - Parameter counts
- This is basically the "steering wheel" of LLMs

Tokenizers Are Pretty Brittle

- This is ok in academic datasets, where data is fairly clean
- Not so true in real life, where users make tons of mistakes

Figure: https://huggingface.co/meta-llama

Tokenizers Are Pretty Brittle

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

- Why can't LLM spell words? Tokenization.
- Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
- Why is LLM worse at non-English languages (e.g. Japanese)? **Tokenization**.
- Why is LLM bad at simple arithmetic? Tokenization.
- Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
- Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
- What is this weird warning I get about a "trailing whitespace"? Tokenization.
- Why the LLM break if I ask it about "SolidGoldMagikarp"? Tokenization.
- · Why should I prefer to use YAML over JSON with LLMs? Tokenization.
- Why is LLM not actually end-to-end language modeling? Tokenization.
- What is the real root of suffering? Tokenization.

Figure: https://twitter.com/karpathy/status/1759996551378940395

Origins of Tokenization

- Word-level
- Character-level
- Morpheme-level
- Needed something with total coverage, but finite vocabulary
 - Subwords are an intermediate granularity between words and characters
 - o Subword vocabularies contain all characters, so any input can be represented

Weird trivia: only 2 years between BPE and Transformers

MaxMatch (WordPiece) Encoding

- Given a subword vocabulary, greedily find the longest matching token
- The subword vocabulary construction is not really relevant

Step							
0.	b	а	n	а	n	а	S
1.	b	а	n	а	n	а	S
2.	b	а	n	a a a a	n	а	S
3.	b	а	n	а	n	а	S

Figure: MaxMatch encoding of bananas with $\Gamma = \{a, b, n, s, ba, na, ban, bana\}.$

Byte-Pair Encoding

Two stages: training and inference

```
Algorithm 2: BPE Training Input: Corpus C over alphabet \Sigma, Target merge size k Output: Vocabulary \Gamma, Merge list \mu

1: \Gamma = \Sigma, \mu = \langle \rangle \triangleright The initial vocabulary and merge list, respectively.

2: for i \in 1 \dots k do

3: (a,b) = \arg\max_{(a,b) \in \Gamma^2} \text{COUNT}(C, a\_b) \triangleright The most frequent cooccuring pair in C.

4: APPEND(\mu, (a,b)) \triangleright Add merge information to \mu (which is ordered by priority).

5: APPEND(\Gamma, ab) \triangleright Update the token vocabulary.

6: \triangle APPLY(C, (a, b)) \triangleright Merge all instances of a\_b to ab in C.

7: return (\Gamma, \mu)
```

Byte-Pair Encoding

Algorithm 3: BPE Tokenization

Input: BPE Tokenizer $\mathcal{B} = (\Gamma, \mu)$, String $w \in \Sigma^+$

Output: Tokenized sequence $t \in \Gamma^+$

```
1: t \leftarrow w 
ightharpoonup The initial character sequence, interpreted as tokens.

2: <math>\psi \leftarrow \langle (t_i, t_{i+1}) \mid (t_i, t_{i+1}) \in \mu \rangle 
ightharpoonup The set of all current possible merges.

3: while <math>\psi \neq \emptyset do

4: (a,b) \leftarrow \arg\max_{\mu} \psi 
ightharpoonup The highest priority merge according to the ordering in <math>\mu.

5: t \leftarrow \text{APPLY}(t, (a, b)) 
ightharpoonup Apply the merge and update t.

6: \psi \leftarrow \langle (t_i, t_{i+1}) \mid (t_i, t_{i+1}) \in \mu \rangle 
ightharpoonup The new list of possible merges.

7: return t
```

Byte-Pair Encoding

Usage in Modern NLP

- All major GPT-style models use BPE
 - SENTENCEPIECE
 - TIKTOKEN
 - HuggingFace
- BERT uses MaxMatch
- Vocabulary sizes over 200k
- Multi-lingual
- Pre-tokenization

The Subword Lexicon Transducer

• Convert sequences of characters (text) into sequences of subwords

The Subword Lattice

- Encode the input as an automaton
- Compose with the subword transducer
- Project to output labels
- $Min(Proj(A \circ T))$

An Aside: Sampling Tokenizations

- So far, we have considered tokenizers to be unweighted/bijective
 - What if they were weighted (e.g., stochastic tokenizers)?
- During training:
 - Acts as data augmentation
 - Adds robustness to the model
 - Makes it more likely all tokens are trained well
- During inference:
 - Acts as self-ensemble
 - Can be used for importance sampling (marginalization)

An Aside: Sampling Tokenizations

Algorithm 1: BPE Inference (with dropout)

BPE-Dropout $p = 0.1$				
to ken ization	97.77%			
to ke n ization	1.89%			
to k en ization	0.25%			
to ken iz ation	0.04%			
t oken ization	0.03%			
to k en iz ation	0.01%			
to ke n iz ation	0.01%			
to ken i z ation	< 0.01%			

DDE Dropout m - 0.1

An Aside: Sampling Tokenizations

(a) An automaton \mathcal{A} representing ababc.

(c) A lattice, $A \circ T$, of all possible tokenizations of ababc.

Constrained Generation

- Language models can output any text
- Sometimes we want it to output only a specified format
 - Strings that match a regex
 - Json
 - Syntactically correct code
- What if we could attach a regex to the end of a model?
 - We can do it with a modular FST pipeline

Locally Masked Constrained Generation

Standard autoregressive distribution is:

$$\begin{array}{ll} \circ & p(t_i \mid c_l) = \text{SOFTMAX} \, (l)_i \\ \circ & p(t) = p(t_1 \mid < \!\!\! \text{s} \!\!\! >) \prod_{i=1}^{|t|-1} p(t_{i+1} \mid < \!\!\! \text{s} \!\!\! > \!\!\! t_1 t_2 \dots t_i) \end{array}$$

Define a constraint mask:

$$m_i = egin{cases} 1 & v_i \in \Gamma ext{ can satisfy the constraint} \ -\infty & ext{otherwise.} \end{cases}$$

- Constraint satisfication comes from the tokenization lattice
- "Is there a path from the current state to a final state after reading this token?"
- Replace with a masked distribution:

$$\begin{array}{ll} \circ & p'(t_i \mid c_l) = \operatorname{softmax} \left(l \odot m \right)_i \\ \circ & p'(t) = p'(t_1 \mid < >) \prod_{i=1}^{|t|-1} p'(t_{i+1} \mid < > > t_1 t_2 \dots t_i) \end{array}$$

Three Problems With Constrained Generation

- Mismatch between regex (character level) and LLMs (subword level)
 - Solved by the subword lexicon transducer
 - Promotes character patterns to subword patterns
- Warped distribution
 - Missing a normalization factor for p(A)
 - Solved by importance sampling
- Allows any matching tokenization
 - Throws away canonical tokenization inductive bias

Importance Sampling and Marginalization

• Constrained generation needs a normalization factor:

$$p'(t) = p(t)/z$$

$$z = \sum_{t \in A} p(t)$$

- Difficult to compute (exponentially many tokenizations)
- Difficult to sample with rejection sampling
- Importance Sampling:
 - Pick a proxy distribution q with the desired support
 - q should be easy to sample from
 - \circ Compute $\mathbb{E}_{t \sim q} \left[\frac{p(t)}{q(t)} \right] pprox \frac{1}{N} \sum_{t} \frac{p(t)}{q(t)}$
- p' can serve as our proxy distribution

Tokenization-Aware Constrained Generation

- Constrained generation allows any matching tokenization
- Models are trained on canonical tokenizations
- During generation, models don't know they are being constrained
 - Can accidentally generate poor tokenizations
 - o [_r][a][ce][car] vs [_race][car]
 - Bad downstream performance

An Example With MaxMatch

An Example With MaxMatch

An Example With MaxMatch

The MaxMatch Lexicon Transducer

Is Byte-Pair Encoding Regular?

- Doesn't process in left-to-right order ×
 - Merges can happen in random places in the string
- Requires a notion of "priority" ×
 - Some merges take precedence over others
- Recent result showed you only need a constant-lookahead window to tokenize in a streaming manner √
 - o Berglund & van der Merwe, 2023

An Algorithm for BPE Promotion

- Berglund, et al. 2024 give an algorithm for BPE promotion
- For each merge, iteratively check triplets of states to see if they match, then modify the states/arcs
- Runs in polynomial time and space

BPE As Finite-State Transduction

Algorithm 5: Iterative BPE

Input: Word $w \in \Sigma^+$, BPE Tokenizer $\mathcal{B} = (\Gamma, \mu)$

Output: Tokenized sequence $t \in \Gamma^+$

- 1: **for** $(a, b) \in \mu$ **do**
- 2: $w \leftarrow APPLY((a, b), w)$
- 3: return w

- We construct transducers that act as merges
- Everything is done via finite-state automata composition

BPE Merge Gadgets

Figure: Merge gadget for the merge $(a, b) \rightarrow ab$.

BPE Merge Gadgets

BPE Transduction

Figure: An automaton \mathcal{A} .

Figure: $Min(Proj(A \circ T))$

 $\text{Figure: MIN}(\texttt{PROJ}(\mathcal{A} \circ \textit{G}_{(\textit{a},\textit{a})} \circ \textit{G}_{(\textit{a},\textit{b})} \circ \textit{G}_{(\textit{d},\textit{b})} \circ \textit{G}_{(\textit{c},\textit{db})}))$

BPE Transduction Complexity

- Naive analysis: $O(3^{|\mu|}|\mathcal{A}||\mu|)$
 - Prohibitively expensive even for small vocabularies
 - о Gеммаз has 260k tokens in the vocabulary
- We prove the complexity is actually polynomial

BPE Transduction

A Very Brief Proof Sketch

- Merges act on triplets of states
 - ∘ Merge $(a, b) \in \mu$
 - $\circ x, y, z \in A$, s.t. $\delta(x, a) = y$ and $\delta(y, b) = z$
- Merges "split" state y into y', y".
 - We call these *derived* triplets from the triplet x, Y, z (y, y', y'', etc $\in Y$)
- An issue is if more than one state in a derived subset can be split during a merge
 - A merge $(c, d) \in \mu$ that matches (x, y', z) and $(x, y'', z) \in Y$
 - o Or (x', y, z) and (x'', y, z)
 - o If so, we get exponential blowup
- We prove this cannot happen
 - Each derived triplet can only add one new distinct state per merge
- This bounds the runtime size at $Poly(|A|, |\mu|)$
 - And therefore also the automaton size

An Alternative Promotion Procedure

- Full composition is very slow
 - $\circ \ \ \mathsf{MIN}(\mathsf{PROJ}(\mathcal{A} \circ \mathcal{G}_{\mu_1} \circ \mathcal{G}_{\mu_2} \circ \dots \circ \mathcal{G}_{\mu_k})) \ \mathsf{is} \ \mathsf{inherently} \ \mathsf{serial}$
 - We are usually minimizing between each composition
 - o In practice, most merges are unnecessary
- What if we had a "canonical filter"?
 - $\circ \ \mathcal{A}_{\mathsf{BPE}} = \mathsf{MIN}(\mathsf{PROJ}(\Sigma^* \circ G_{\mathfrak{u}_1} \circ G_{\mathfrak{u}_2} \circ \cdots \circ G_{\mathfrak{u}_k}))$
 - Accepts all canonical BPE sequences
 - Slow to construct, but can be reused
 - Combine with $Min(Proj(A \circ T))$, which is fast to construct

$$\mathsf{Min}(\mathsf{Proj}(\mathcal{A} \circ \mathcal{G}_{\mathfrak{u}_1} \circ \mathcal{G}_{\mathfrak{u}_2} \circ \cdots \circ \mathcal{G}_{\mathfrak{u}_k})) \equiv \mathsf{Min}(\mathsf{Proj}(\mathcal{A} \circ \mathfrak{T})) \circ \mathcal{A}_{\mathsf{BPE}}$$

An Alternative Promotion Procedure (Speedup)

Vocabulary Size	Full Composition (Equation 4)	Preconstructed A_{BPE} (Equation 5)	Speedup
4k	16.09s	0.19s	85x
8k	43.39s	0.24s	181x
16k	103.37s	0.38s	272x
32k	228.57s	0.45s	514x

Figure: Full composition vs preconstructed BPE filter composition on an edit-distance automaton with 2k states.

A Speedup From Canonicalization

Model	Canonical	Skip Rate	Rel. Time
LLAMA2-7B	no	24.5%	-
LLAMAZ-/B	yes	77.9%	-15.7%
LLAMA2-13B	no	26.5%	-
LLAMAZ-13B	yes	78.9%	-21.0%

What Comes with Proving Things Are Regular?

- Pros:
 - Tokenizer equivalence testing
 - Tokenizer minimization
 - Hook into all transducer machinery

Cons:

- Some linguistic features are not regular
 - Reduplication
 - 드르렁드르렁
- These can't be perfectly captured by existing tokenizers

Pretokenizer Issues

Unreachable Tokens

```
token id
        decoded to token
                           re-encoded strings for re-encoded
 3413
        " T'"
                       [357, 6] [' I', "'"]
                       [198, 393] ['\n', '//']
 3914 '\n//'
                       [370, 393] ['\r\n', '//']
24091 '\r\n//'
                       [198, 5991] ['\n', '///']
48235 '\n///'
63100
      '\n\n//'
                    [279, 393] ['\n\n', '//']
65447 '\n//\n//' [198, 5754] ['\n', '//\n//']
125141 '\r\n\r\n//'
                          [1414. 393] ['\r\n\r\n'. '//']
175653
        '\n\n\n//'
                       [2499, 393] ['\n\n\n', '//']
```

Figure: https://tokencontributions.substack.com/p/unreachable-tokens-in-gpt-4o

Future Work

- Runtime/space-complexity analysis for CFG
- Tokenization algorithms with better properties
 - Runtime
 - Space-complexity for composition
 - Output compression
- Interaction with non-regular pretokenization
 - This precludes end-to-end finite-state pipelines
- Constrained Generation with Diffusion Language Models
 - These don't generate text from left-to-right, so automata might not be a good choice

Links

Figure: My Personal Site