

Manual de Instruções

GP5
Rede Nacional para Educação e
Pesquisa

Controle do Documento

Histórico de revisões

Data	Autor	Versão	Resumo da atividade
<05/12/2 023>	<bruno Gottardo Conti></bruno 	<sprint 4=""> Versão 1</sprint>	Criação do documento Atualização de todas as seções
<07/12/2 023>	<bruno Gottardo Conti></bruno 	<sprint 4=""> Versão 1.1</sprint>	Atualização de todas as seções

Índice

1. Introdução			
1.1. Solução	3		
1.2. Arquitetura da solução	3		
2.Componentes e Recursos			
2.1. Componentes externos	4		
2.2. Requisitos de conectividade	4		
3. Guia de Montagem			
3.1. Primeiros passos	5		
4.Guia de Instalação			
4.1. estrutura de hardware	7		
4.1. estrutura de software	7		
5.Guia de Configuração			
5.1. instalações prévias	7		
6. Guia de Operação			
6.1. Página inicial	8		

6.2. Registrando um novo ativo		
6.3. Começar uma nova viagem	9	
7. Troubleshooting		
8. Créditos	1	

Índice de imagens

imagem 1 - arquitetura da solução		
imagem 2 - componentes de hardware		
imagem 3 - primeiros passos	5	
imagem 4 - passo 2	5	
imagem 5 -passo 3	5	
imagem 6 - passo 4	6	
imagem 7 -Página inicial		
imagem 8 - Registrando um novo ativo		
imagem 9 - Começar uma nova viagem		
imagem 10 -Viagem iniciada com sucesso	9	

1. Introdução

1.1. Solução

Celulares, tablets e computadores são os dispositivos que a solução engloba, para conectar esses dispositivos utilizaremos um banco de dados e algum servidor na nuvem, atualmente utilizamos o hiveMQ para aplicar a tecnologia MQTT.

1.2. Arquitetura da solução

Nosso ESP32 coleta as informações do módulo gps e as envia usando o protocolo MQTT para o broker, elas são lidas pelo LCD e mostradas em display, também serão lidas pelo backend e mostradas no frontend prontas para interação.

Imagem 1 - Arquitetura da solução

Fonte: O próprio autor

Na imagem acima (Imagem 1) Podemos observar de forma centralizada o micro controlador ESP32 que através do WiFi e do protocolo de comunicação MQTT vai se comunicar com o Broker e enviar e receber informações, essas são lidas pelo ESP32 e mostradas na tela LCD.

Imagem 2 - Componentes de hardware

2. Componentes e recursos

2.1. Componentes de hardware

Na imagem ao lado podemos observar todos os componentes necessários para a montagem do protótipo.

2.2. Componentes externos

Um computador com acesso à internet, HiveMQ como broker e o SQLite 3 como sistema de gerenciamento de banco de dados.

2.3. Requisitos de conectividade

- Protocolo MQTT: protocolo de comunicação do broker com o ESP32;
- Protocolo HTTPS: protocolo de internet;
- Back end;

Fonte : O próprio autor.

1x - Esp 32, 1x - Display LCD, 1x- módulo gps, 1x- Led, 1x - Batería, 1x - cabo de transferência de dados 1x- resistor

3. Guia de Montagem

3.1. Primeiros passos

Imagem 3 - Primeiros passos

Fonte: Próprios autores

Passo 1: Conecte uma entrada do ESP32 usando um jumper a um resistor e ao polo positivo do led, depois conecte outro jumper ao polo negativo do led.

Imagem 4 - Passo 2

Passo 2: conecte os jumpers ao display LCD, (GND, VCC(5V)) e os dois jumpers de troca de informações.

Imagem 5 - Passo 3

Passo 3: conecte os jumpers (VCC(3,3V)GND) e as portas de comunicação a sua escolha

lmagem 6 - passo 4

Passo 4 : conecte a bateria ao ESP32

4. Guia de Instalação

Inicialmente conecte os cabos de maneira adequada, para que os equipamentos se conectem de maneira funcional.

4.1. Estrutura de hardware

Passo 1 : conclua os passos do guia de montagem (seção 3)

4.1. Estrutura de software

Passo 2: insira os dados de sua rede wifi no código do ESP32

- ssid: (nome de sua rede wifi)
- password (senha de sua rede wifi)

5. Guia de Configuração

5.1. instalações prévias

Passo 1 : Para realizar a configuração adequada do protótipo, é necessário instalar o Arduino IDE, um software de edição de código para microprocessadores. O site de download pode ser encontrado no link: https://www.arduino.cc/en/software

Passo 2: instalação das bibliotecas utilizadas no código

<WiFi.h>

<PubSubClient.h>

<TinyGPS++.h>

<Wire.h>

vá até a aba bibliotecas e pesquise o nome de cada uma, após isso clique em instalar

Passo 3: para instalar essa biblioteca (<LiquidCrystal_I2C.h>) acesse o link:

https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library

e adicione o zip ao arduino IDE

<LiquidCrystal_I2C.h>

Passo 4: Adicione o código em nosso repositório do github ao arduino IDE e clique no botão verificar, caso todos os passos até aqui tenham sido seguidos corretamente nenhum erro deve aparecer, e você pode prosseguir e fazer o upload do código para o ESP.

6. Guia de Operação

6.1. Página inicial

Imagem 7 - Página inicial

Fonte: Próprios autores

Quando o usuário acessar o link da solução desenvolvida ele encontrará essa página mostrando quais as viagens atualmente em curso

6.2. Registrando um novo ativo

Imagem 8- Registrando um ativo

Para criar um novo ativo no site com seu respectivo QRcode o usuário deve inserir a URL do site e o código desejado do ativo, assim criando um id único conectado a um QRcode único para o ativo.

6.3. Começar uma viagem

Imagem 9- começar uma viagem

Para iniciar uma nova viagem o usuário deve acessar a página começar viagem e inserir o local de saída, de destino e o id do ativo.

Imagem 10 - Viagem iniciada com sucesso

Ao apertar o botão, uma notificação aparece

Aqui abordaremos possíveis problemas e respectivas soluções

Tabela 1 Troubleshooting

#	Problema	Possível solução
1	O dispositivo loT perde a conexão com o broker MQTT	desconectar e reconectar ao WiFi / diminuir o número ou a velocidade das requisições
2	O dispositivo loT perde a conexão com o WiFi	Verificar os dados de rede (senha e ssid) / verificar a compatibilidade com o aparelho fornecendo WiFi
3	O dispositivo loT fica sem bateria	Implementar um sistema que monitore o nível de bateria restante e forneça alertas
4	Falha de algum componente de hardware	realizar testes para determinar qual o componente com defeito e substituí-lo
5	Falha em detectar o sinal de algum satélite	Verificar se o ambiente em que o dispositivo se encontra é capaz de receber sinal via GPS / Verificar se as condições

8. Créditos Grupo GP5

Bruno Gottardo Conti

Daniel Zular

Enzo Boccia Pagliara

Pedro Faria Santos

Murilo Prianti

Theo Tosto