Pathway Analysis in Metabolomics using Bayesian Statistics

Novia Minaee

15/04/2021

Metabolic Profiling

Metabolic **Profiling**

Sample collection, treatment and processing

Separation technique:

- Gas Chromatography (GC)
- High Performance Liquid
- Chromatography (HPLC)
- · Ultra Performance Liquid
- Chromatography (UPLC)
- Capillary Electrophoresis (CE)

Validation and Clinical Application

Pathway Analysis:

- Over-representation Analysis (ORA)
- Network Enrichment Analysis
 - Bayesian?

Data analysis:

- Principal component analysis (PCA)
- Partial Least-Squares-Discriminant Analysis (PLS-DA) Orthogonal projections to latent structuresdiscriminant analysis (OPLS-DA)

Detection technique:

- Nuclear magnetic resonance (NMR) spectroscopy Mass spectrometry (MS)
 - Ion-mobility spectrometry
 - Electrochemical detection
 - Radiolabelling techniques
 - Magnetic resonance spectroscopic imaging

Metabolic journey

Citric Acid Cycle or Tricarboxylic acid cycle (TCA)

Challenge

- So many unknown links between pathways that haven't been identified.
- ► To take into account the interaction between pathways and metabolites within the pathway as one dynamic system.
- ► To include the pathway interaction into metabolic profiling in the pathway analysis.

Aim

► To integrate the dynamic nature of a biological system in the analysis through Bayesian Statistics.

Pathway Analysis Methods

Two most common methods of enrichment analysis are:

- 1. Over-representation analysis (ORA)
- 2. Quantitative Enrichment Analysis (QEA)

Over-representation analysis (ORA)

- ► Tests if the proportion of affected metabolites within a pathway is statistically meaningful.
- Based on statistical tests on probability distribution like the hypergeometric, binomial or chi-squared.

(Kamburov et al. 2011; Ren et al. 2015; Khatri, Sirota, and Butte 2012; Picart-Armada et al. 2018)

Quantitative Enrichment Analysis (QEA)

- It is directly based on the compound concentration values as compared to the compound lists used by over representation analysis.
- It is usually more sensitive than over-representation analysis and has the potential to discover "subtle but consistent" changes among compounds within the same biological pathway.

(Xia and Wishart 2010)

Example of QEA Summary for top 25 Pathway

	Total Cmpd	Hits	Statistic Q	Expected Q	Raw p	Holm p	FDR
Tryptophan metabolism	41	1	22.64	1.04	8.41E-07	3.36E-05	3.36E-05
Taurine and hypotaurine	8	1	20.89	1.04	2.53E-06	9.87E-05	5.06E-05
metabolism							
Valine, leucine and isoleucine	40	1	19.48	1.04	6.03E-06	2.29E-04	5.76E-05
degradation							
Nitrogen metabolism	6	1	18.94	1.04	8.41E-06	3.11E-04	5.76E-05
Aminoacyl-tRNA biosynthesis	48	11	12.94	1.04	8.43E-06	3.11E-04	5.76E-05
Neomycin, kanamycin and gen-	2	1	18.89	1.04	8.64E-06	3.11E-04	5.76E-05
tamicin biosynthesis							
Galactose metabolism	27	2	11.05	1.04	1.22E-05	4.15E-04	6.11E-05
Starch and sucrose metabolism	18	2	11.05	1.04	1.22E-05	4.15E-04	6.11E-05
Valine, leucine and isoleucine	8	2	14.89	1.04	1.63E-05	5.21E-04	7.24E-05
biosynthesis							
Primary bile acid biosynthesis	46	2	11.08	1.04	1.99E-05	6.18E-04	7.97E-05
D-Glutamine and D-glutamate	6	3	12.73	1.04	4.12E-05	1.24E-03	1.50E-04
metabolism							
Glyoxylate and dicarboxylate	32	8	9.19	1.04	5.02E-05	1.45E-03	1.67E-04
metabolism							
Ubiquinone and other terpenoid-	9	1	15.60	1.04	6.23E-05	1.74E-03	1.78E-04
quinone biosynthesis							
Phenylalanine, tyrosine and	4	1	15.60	1.04	6.23E-05	1.74E-03	1.78E-04
tryptophan biosynthesis							
Glycolysis / Gluconeogenesis	26	2	9.56	1.04	7.29E-05	1.90E-03	1.82E-04
Pyruvate metabolism	22	2	9.56	1.04	7.29E-05	1.90E-03	1.82E-04
Phenylalanine metabolism	10	2	10.03	1.04	8.77E-05	2.11E-03	2.06E-04
Alanine, aspartate and gluta-	28	7	9.41	1.04	1.34E-04	3.08E-03	2.92E-04
mate metabolism							
Glutathione metabolism	28	2	9.42	1.04	1.39E-04	3.08E-03	2.92E-04
Pyrimidine metabolism	39	2	10.51	1.04	1.56E-04	3.28E-03	3.12E-04
Nicotinate and nicotinamide	15	2	9.50	1.04	2.16E-04	4.33E-03	4.12E-04
metabolism							
Purine metabolism	65	2	10.81	1.04	2.53E-04	4.81E-03	4.60E-04
Arginine biosynthesis	14	2	9.63	1.04	3.00E-04	5.40E-03	5.22E-04
Lysine degradation	25	2	8.55	1.04	3.35E-04	5.70E-03	5.59E-04
Selenocompound metabolism	20	1	11.62	1.04	6.36E-04	1.02E-02	1.02E-03

Example of QEA Summary Plot for top 25 Pathway

Enrichment Ratio

Current Limitations of ORA and QEA

- Massive information loss (due to only the most significant metabolites are used and the rest are ignored).
- Only a number of identified metabolites is considered.
- It assumes each metabolite and pathway is independent of others (improper independence).
- Does not take the reactions among metabolites into account.

(Kamburov et al. 2011; Ren et al. 2015; Khatri, Sirota, and Butte 2012; Picart-Armada et al. 2018; Xia and Wishart 2010)

Bayesian Statistics

- ▶ It is a probabilistic model that uses Bayes' Theorem to update the probability for a hypothesis as more evidence becomes available.
 - i.e. it uses probabilities as a tool to quantify uncertainty.

Example

We want to know what is the probability that it rained given that it is wet outside?

A = it rained today, B = wet sidewalk.

$$p(rain|wet) = \frac{p(rain)p(wet|rain)}{p(wet)} = \frac{p(rain)p(wet|rain)}{p(wet|no rain)}$$

p(rain) – our initial beliefs – called prior.

p(rain|wet) – our final beliefs – called posterior.

p(wet) – how plausible is the evidence? what is the likelihood that it is wet outside given it rained and not rained. This is to ensure that the posterior is the correct probability distribution.

Bayesian workflow

(Schoot et al. 2021)

Strength of Bayesian

- Bayesian statistics are particularly useful for modelling networks of biological reactions which are typically modelled by large numbers of parameters.
- ▶ If we were to use frequentist methods, we'd require at least as many observations as there are parameters to fit a model (p»n issue)
- ▶ In contrast, Bayesian methods incorporate our prior knowledge of the system and use the experimental data to refine the estimates.
- ▶ It allows us to group the metabolites according to the pathways they sit under.
- ▶ Being a probabilistic model, it takes account uncertainty
- Information sharing amongst groups.
 - when the number of observations for groups varies widely, the groups with smaller numbers of observations will have improved information to the improved information to th

References

- Kamburov, Atanas, Rachel Cavill, Timothy MD Ebbels, Ralf Herwig, and Hector C Keun. 2011. "Integrated Pathway-Level Analysis of Transcriptomics and Metabolomics Data with IMPaLA." Bioinformatics 27 (20): 2917–18.
- Khatri, Purvesh, Marina Sirota, and Atul J Butte. 2012. "Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges." *PLoS Comput Biol* 8 (2): e1002375.
- Picart-Armada, Sergio, Francesc Fernández-Albert, Maria Vinaixa, Oscar Yanes, and Alexandre Perera-Lluna. 2018. "FELLA: An r Package to Enrich Metabolomics Data." *BMC Bioinformatics* 19 (1): 1–9.
- Ren, Sheng, Anna A Hinzman, Emily L Kang, Rhonda D Szczesniak, and Long Jason Lu. 2015. "Computational and Statistical Analysis of Metabolomics Data." *Metabolomics* 11 (6): 1492–1513.
- Schoot, Rens van de, Sarah Depaoli, Ruth King, Bianca Kramer,