ΕΝΟΤΗΤΑ 2: ΓΝΩΣΗ

Μάθημα 2.4: Κανόνες Παραγωγής

Δημήτρης Ψούνης

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

www.psounis.gr

Περιεχόμενα Μαθήματος

Α.Θεωρία

- 1. Εισαγωγή
 - 1. Κανόνες Παραγωγής
 - 2. Σύστημα Παραγωγής
- 2. Ορθή Αλυσίδωση
 - 1. Εισαγωγή
 - 2. Παράδειγμα
 - 3. Αλγόριθμος Εκτέλεσης
 - 4. Στρατηγικές Επίλυσης Συγκρούσεων
 - 5. Παράδειγμα με άλλες στρατηγικές επίλυσης συγκρούσεων
 - 6. Παράδειγμα με κατηγορήματα
 - 7. Δίκτυο Κανόνων
- 3. Ανάστροφη Αλυσίδωση
 - 1. Αλγόριθμος Εκτέλεσης
 - 2. Παράδειγμα
 - 3. Παράδειγμα με κατηγορήματα

Β.Ασκήσεις

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Α. Θεωρία

1. Εισαγωγή

1. Σύστημα Παραγωγής

- Ένα <u>σύστημα παραγωγής</u> είναι ένα απλό σύστημα συμπερασμού, το οποίο αποτελείται από τα εξής:
 - Ένα σύνολο από κανόνες (κανόνες παραγωγής) που είναι IF..THEN κανόνες υπό τη γενική μορφή:

IF συνθήκες THEN συμπεράσματα

- Το σύνολο των κανόνων συγκροτούν τη βάση κανόνων.
- > Έπειτα χρησιμοποιώντας αυτήν την «αποθηκευμένη γνώση»
 - Είτε ξεκινάμε από υποθέσεις που ισχύουν προσπαθώντας να συνδυάσουμε κανόνες για να οδηγηθούμε σε κάποιο συμπέρασμα (συλλογισμός προς τα εμπρός – ορθή αλυσίδωση)
 - ► Είτε ξεκινάμε από κάτι που θέλουμε να αποδείξουμε και εντοπίζουμε τι αρκεί να δείξουμε (συλλογισμός προς τα πίσω – ανάστροφη αλυσίδωση)
- Το σημαντικό βέβαια είναι ότι αυτό γίνεται αλγοριθμικά!
- Ο τρόπος συμπερασμού του συστήματος παραγωγής είναι «απλοϊκός», αλλά μας δίνει κατάλληλο υπόβαθρο για να κατανοήσουμε (επόμενο μάθημα) τα έμπειρα συστήματα.

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

www.psounis.gr

Α. Θεωρία

2. Ορθή Αλυσίδωση

1. Εισαγωγή

- > Ένα <u>σύστημα παραγωγής</u> λειτουργεί ως εξής:
 - Εισάγουμε σε αυτό γεγονότα που ισχύουν (συγκροτούν τη μνήμη εργασίας)
 - Αυτά ενεργοποιούν (ισχύει το IF) κάποιους κανόνες παραγωγής
 - Επιλέγουμε με κάποιο κριτήριο (επίλυση συγκρούσεων) έναν από τους κανόνες (τον πυροδοτούμε) και η νέα γνώση που παράγεται ισχύει πλέον ως γεγονός
 - Παράγεται έτσι νέα γνώση. Σταματάμε όταν προκύψει ένα συμπέρασμα που μας ικανοποιεί.

Α. Θεωρία

2. Ορθή Αλυσίδωση

2. Παράδειγμα

Παράδειγμα 1: Δίνεται η παρακάτω βάση κανόνων:

R1: if A and B then C

R2: if C and D then E

R3: if A and I then ~H

R4: if A and ~D then E

R5: if C and ~D then I

R6: if E and I then ~H

R7: if E and H then ~G

R8: if E and ~H then G

Να εξαχθεί το G χρησιμοποιώντας ορθή αλυσίδωση, αν το αρχικό περιεχόμενο της μνήμης εργασίας είναι ΜΕ={Α,Β,~D,Ε}

Χρησιμοποιήστε την εξής στρατηγική ελέγχου: Σε περίπτωση σύγκρουσης να επιλεχθεί ο κανόνας που προηγείται στη σειρά αναγραφής. Δεν πυροδοτείται ο ίδιος κανόνας δεύτερη φορά.

Α. Θεωρία

2. Ορθή Αλυσίδωση

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

2. Παράδειγμα

Λύση:

R2: if C and D then E
R3: if A and I then ~H
R4: if A and ~D then E
R5: if C and ~D then I
R6: if E and I then ~H
R7: if E and H then ~G
R8: if E and ~H then G

R1: if A and B then C

2.Καταγράφουμε τους κανόνες που ενεργοποιούνται (Ισχύει το if τους)

1.Εισάγουμε στην Μνήμη Εργασίας τα αρχικά γεγονότα

Βήμα	Κανόνες που ενεργοποιούνται	Κανόνας που πυροδοτείται	Μνήμη Εργασίας		
0	J.		₹A,B,~D,E}		
1	R1,R4	∌ R1	{A,B,~D,E,C}		
2	R4,R5	/ R4	{A,B,~D,C,E}		
3	R5	R5	{A,B,~D,C,E,I}		
4	R3,R6	/ R3	{A,B,~D,C,E,I,~H}		
5	R6,R8	R6	{A,B,~D,C,E,I,~H}		
6	R8	R8	{A,B,~D,C,E,I,~H,G}		

Άρα ισχύει το G.

3. Επιλέγουμε τον κανόνα που πυροδοτείται με βάση τη στρατηγική επίλυσης σύγκρουσης

4.Τα γεγονότα που είναι στο THEN εισάγονται στην μνήμη εργασίας (Τερματισμός όταν εισαχθεί ο στόχος)

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

<u>Α. Θεωρία</u>

2.Ορθή Αλυσίδωση

3. Αλγόριθμος Εκτέλεσης

Ο ΑΛΓΟΡΙΘΜΟΣ ΟΡΘΗΣ ΑΛΥΣΙΔΩΣΗΣ:

- 1. Αρχικοποίηση της μνήμης εργασίας
 - Γίνεται μόνο στην αρχή της εκτέλεσης. Τα γεγονότα που μας δινονται, εισάγονται στην μνήμη εργασίας
- 2. Εύρεση Κανόνων που ικανοποιούνται (Κατασκευή Συνόλου Σύγκρουσης)
 - Εξετάζεται σε ποιους κανόνες ικανοποιούνται οι υποθέσεις τους (ποιοι κανόνες ενεργοποιούνται)
 - Οι κανόνες αυτοί δημιουργούν το σύνολο σύγκρουσης.
- 3. Επιλογή ενός κανόνα
 - Η επιλογή του κανόνα γίνεται με βάση την στρατηγική επίλυσης σύγκρουσης που επιλέγεται
- 4. Πυροδότηση του κανόνα
 - Δηλαδή εκτελείται ο κανόνας που έχει επιλεχθεί από το προηγούμενο βήμα
- 5. Ενημέρωση της μνήμης εργασίας
 - Η πυροδότηση του κανόνα έχει ως αποτέλεσμα την τροποποίηση της μνήμης εργασίας με προσθήκη νέας γνώσης.
- 6. Αν βρεθεί κατάσταση λύσης τερμάτισε, αλλιώς πήγαινε στο βήμα 2.
 - Το κριτήριο τερματισμού καθορίζεται από την εκφώνηση.

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

www.psounis.

Α. Θεωρία

2.Ορθή Αλυσίδωση

4. Στρατηγικές Επίλυσης Σύγκρουσης

Υπάρχουν διάφορες στρατηγικές για την επιλογή του κανόνα που θα πυροδοτηθεί:

- 1. Τυχαία Επιλογή
 - Επιλέγεται τυχαία ο κανόνας που πυροδοτείται.
- 2. Σειρά αναγραφής
 - Επιλέγεται ο κανόνας που έχει γραφεί πρώτος στη σειρά
- 3. Προτεραιότητα
 - Δίνεται ένας βαθμός προτεραιότητας σε κάθε κανόνα και επιλέγεται αυτός με την μεγαλύτερη προτεραιότητα
- 4. Διαθλαστικότητα ή αποφυγή επανάληψης
 - Δεν επιτρέπεται η πυροδότηση ενός κανόνα περισσότερες από μία φορές στα ίδια δεδομένα.
- 5. Προσφατότητα ή Επικαιρότητα
 - Επιλέγεται ο κανόνας που ενσωματώνει τα πιο πρόσφατα δεδομένα που προστέθηκαν στην βάση γνώσης
- 6. Συγκεκριμενικότητα (εξειδίκευση)
 - Επιλέγεται ο κανόνας που ενσωματώνει τις περισσότερες συνθήκες (πιο ειδικός κανόνας)

Παρατήρηση: Η διαθλαστικότητα είναι υποχρεωτική, ακόμη και αν δεν ορίζεται ρητά θα πρέπει να την κάνουμε (αλλιώς το σύστημα πέφτει σε βρόχο) Οι πιο συχνοί κανόνες είναι η σειρά αναγραφής και η προσφατότητα.

Α. Θεωρία 2.Ορθή Αλυσίδωση

5. Παράδειγμα με άλλες στρατηγικές επίλυσης συγκρούσεων R1: if A and B then C R2: if C and D then E R3: if A and I then ~H R4: if A and ~D then E R5: if C and ~D then I R6: if E and I then ~H R7: if E and H then ~G R8: if E and ~H then G

Παράδειγμα 2: Στην ίδια βάση κανόνων, να εξαχθεί το G με ορθή αλυσίδωση, αν το αρχικό περιεχόμενο της μνήμης εργασίας είναι ΜΕ={A,B,~D,E}

Με στρατηγικού ελέγχου: Την προσφατότητα και δευτερευόντως την σειρά αναγραφής. Ισχύει ότι ο ίδιος κανόνας πυροδοτείται μόνο μία φορά.

Βήμα	Κανόνες που ενεργοποιούνται	Κανόνας που πυροδοτείται	Μνήμη Εργασίας		
0			{A,B,~D,E}		
1	R1,R4	R1	{A,B,~D,E,C}		
2	R4,R5	R5	{A,B,~D,E,C,I}		
3	R3,R4,R6	R3	{A,B,~D,E,C,I,~H}		
4	R4,R6,R8	R8	{A,B,~D,E,C,I,~H,G}		

Άρα ισχύει το G.

Α. Θεωρία

2.Ορθή Αλυσίδωση

6. Παράδειγμα με κατηγορήματα

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

≽ Ένα πραγματικό σύστημα παραγωγής χρησιμοποιεί γεγονότα και κανόνες (σε αντιστοιχία με την κατηγορηματική λογική). Το ταίριασμα γίνεται με ενοποίηση (βλέπε μάθημα 2.3). Ας δούμε ένα παράδεινμα:

Παράδειγμα 3: Δίνονται τα ακόλουθα γεγονότα:

(Tom is-parent-of Bob) (Tom is-male) (Bob is-male) (Tom is-parent-of Pam) (Bob is-parent-of Jim) (Jim is-male) (Pam is-female) (Jim is-parent-of John)

Ζητείστε από το σύστημα να αποδείξει τον ισχυρισμό (Tom is-father-of Bob), δεδομένης της βάσης κανόνων:

R1	If	(x is-parent-of y)			
	and	v is-parent-of z)			
	Then	(x is-grandparent-of z)			
R2	If	(x is-parent-of y)			
	and	(x is-male)			
	Then	(x is-father-of y)			
R3	If	(x is-parent-of y)			
	and	(x is-female)			
	Then	(x is-mother-of y)			

Χρησιμοποιήστε ως στρατηγική επίλυσης συγκρούσεων πρωτευόντως την σειρά αναγραφής και δευτερεύοντως την τυχαία επιλογή. Επίσης ο ίδιος κανόνας δεν πυροδοτείται δεύτερη φορά με τα ίδια δεδομένα.

		and	(y is-parent-of z)
		Then	(x is-grandparent-of z)
Θεωρία	R2	If	(x is-parent-of y)
		and	(x is-male)
.Ορθή Αλυσίδωση		Then	(x is-father-of y)
Παράδειγμα με κατηγορήματα	R3	If	(x is-parent-of y)
Γιαρασειγμα με κατηγορηματα		and	(x is-female)
σn:		Then	(x is-mother-of y)

<u>6. Παράδειγμα με κατηγορήματα</u>				103	and	(x is-fema	* /
Λύση:				Then	(x is-moth	er-of y)	
Βήμα	Κανόνες που ενεργοποιούνται	Κανόνας που πυροδοτείται			Μνήμη	Εργασίας	
0			(Tom is-parent-o (Tom is-parent-o (Bob is-parent-o (Jim is-parent-of	f Pam f Jim)) (Bob (Jim	is-male) is-male) is-male) i is-female)	
1	R1(x=Tom, y=Bob, z=Jim) R1(x=Bob, y=Jim, z=John) R2(x=Tom, y=Bob) R2(x=Tom, y=Pam) R2(x=Bob, y=Jim) R2(x=Jim, y=John)	R1(x=Tom, y=Bob, z=Jim)	(Tom is-parent-o (Tom is-parent-o (Bob is-parent-o (Jim is-parent-of	f Pam f Jim)	(Bob (Jim	is-male) is-male) is-male) n is-female)	(Tom is-grandparent- of Jim)
2	R1(x=Bob, y=Jim, z=John) R2(x=Tom, y=Bob) R2(x=Tom, y=Pam) R2(x=Bob, y=Jim) R2(x=Jim, y=John)	R1(x=Bob, y=Jim, z=John)	(Tom is-parent-o (Tom is-parent-o (Bob is-parent-o (Jim is-parent-of	f Pam f Jim)) (Bob (Jim	is-male) is-male) is-male) is-female)	(Tom is-grandparent- of Jim) (Bob is-grandparent- of John)
3	R2(x=Tom, y=Bob) R2(x=Tom, y=Pam) R2(x=Bob, y=Jim) R2(x=Jim, y=John)	R2(x=Tom, y=Bob)	(Tom is-parent-o (Tom is-parent-o (Bob is-parent-o (Jim is-parent-of	f Pam f Jim)) (Bob (Jim	is-male) is-male) is-male) i is-female)	(Tom is-grandparent- of Jim) (Bob is-grandparent- of John) (Tom is-father-of Bob)

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Α. Θεωρία

2.Ορθή Αλυσίδωση

7. Δίκτυο Κανόνων

- > Κάποιες Φορές ζητείται και η απεικόνιση των κανόνων σε μορφή δικτύου (γράφου)
- > Τότε τα απεικονίζουμε με μία τοπολογική απεικόνισή ώστε να φαίνεται ότι οι κανόνες κινούνται «προς τα δεξιά»

R1: if A and B then C

R2: if C and D then E R3: if A and I then ~H

R4: if A and ~D then E

R5: if C and ~D then I

R6: if E and I then ~H

R7: if E and H then ~G

R8: if E and ~H then G

Α. Θεωρία

3. Ανάστροφη Αλυσίδωση

1. Αλγόριθμος Εκτέλεσης

Στην αντίστροφη αλυσίδωση ξεκινάμε από τον στόχο:

- Προσπαθούμε να ταυτίσουμε τον στόχο με το συμπέρασμα κάποιου κανόνα και επαναλαμβάνουμε.
 - Επιλέγονται οι κανόνες και γράφονται με την σειρά που καθορίζει η στρατηγική επίλυσης συγκρούσεων.
 - Αν υπάρχουν μεταβλητές <u>ενοποιούνται</u> με τις τιμές που καθορίζει ο κόμβος στόχος
 - Επαναλαμβάνουμε για κάθε νέο στόχο που έχει προκύψει, μέχρι να οδηγηθούμε σε κάποιο γεγονός.
- Η όλη προσέγγιση γίνεται με μία πολιτική «κατά βάθος». Η εξερεύνηση θα σταματήσει, όταν ικανοποιηθούν οι απόγονοι του κόμβου-στόχου που επαρκούν για να απαντηθεί το ερώτημα.

ΠΡΟΣΟΧΗ! Αν ένας στόχος δεν ταυτίζεται ούτε με συμπέρασμα κανόνα, ούτε με κάποιο γεγονός, τότε ΔΕΝ ΙΣΧΥΕΙ!!!

Α. Θεωρία

3. Ανάστροφη Αλυσίδωση

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

1. Αλγόριθμος Εκτέλεσης

Το συντακτικό του δένδρου που κατασκευάζουμε είναι

Ένας στόχος αναφέρεται χωρίς πλαίσιο:

Στόχος: G

Ένας Κανόνας αναφέρεται με πλαίσιο

Κανόνας: Χ

Ένας κανόνας του οποίου οι υποθέσεις είναι ΑΝΟ γράφεται με σύζευξη των βελών

Κανόνας: Χ

Ενώ σε έναν στόχο που μπορεί να ικανοποιηθεί με διαφορετικούς τρόπους απεικονίζουμε το ΟR των στόχων ως εξής:

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

www.psounis.g

Α. Θεωρία

3. Ανάστροφη Αλυσίδωση

2. Παράδειγμα

Παράδειγμα 4: Δίνεται η παρακάτω βάση κανόνων:

R1: if A and B then C

R2: if C and D then E

R3: if A and I then ~H

R4: if A and ~D then E

R5: if C and ~D then I

R6: if E and I then ~H

R7: if E and H then ~G

R8: if E and ~H then G

Να εξαχθεί το G χρησιμοποιώντας ανάστροφη αλυσίδωση, αν το αρχικό περιεχόμενο της μνήμης εργασίας είναι ME={A,B,~D,E}

Χρησιμοποιήστε την εξής στρατηγική ελέγχου: Σε περίπτωση σύγκρουσης να επιλεχθεί ο κανόνας που προηγείται στη σειρά αναγραφής. Δεν πυροδοτείται ο ίδιος κανόνας δεύτερη φορά.

Α. Θεωρία R1: if A and B then C R2: if C and D then E 3. Ανάστροφη Αλυσίδωση R3: if A and I then ~H R4: if A and ~D then E 2. Παράδειγμα R5: if C and ~D then I R6: if E and I then ~H Λύση: Στόχος: G R7: if E and H then ~G R8: if E and ~H then G Κανόνας: R8 ПРОХЕІРО: Στόχος: ~Η 💙 Στόχος: Ε ME: {**A,B,~D,E**,C,I,~H,G} Για να ικανοποιήσουμε έναν Κανόνας: R3 Κανόνας: R6 στόχο: 1. Αν είναι στη μνήμη Στόχος: Α Στόχος: Ι εργασίας: ικανοποιείται 2. Αν είναι δεξί μέλος κανόνα: Γράφουμε τους Κανόνας: R5 κανόνες που ικανοποιείται με OR και έπειτα Στόχος: C Στόχος: ~D συνεχίζουμε με στρατηγική κατά βάθος Στην οπισθοδρόμηση της Κανόνας: R1 κατά βάθος, οι στόχοι που ικανοποιήθηκαν μπαίνουν Στόχος: Α Στόχος: Β στη μνήμη εργασίας.

Α. Θεωρία

3. Ανάστροφη Αλυσίδωση

3. Παράδειγμα με κατηγοργήματα

ΠΑΡΑΔΕΙΓΜΑ:

Δίνονται τα ακόλουθα γεγονότα:

(Bill lives-in Lamia)

(Chris lives-in Salonica)

(Katherine lives-in Lamia)

(Chris likes historical-novels)

(Bill likes GatesofFire)

(StevenPressfield is-author-of GatesofFire)

(StevenPressfield is-author-of LastoftheAmazons)

Ζητείστε από το σύστημα να αποδείξει τον ισχυρισμό (LastoftheAmazons isrecommended-for Bill), δεδομένης της βάσης κανόνων:

R1	If	(x likes StevenPressfield)
	Then	(x likes historical-novels)
R2	If	(x likes y)
	and	(z is-author-of y)
	Then	(x likes z)
R3	If	(x lives-in Lamia)
	and	(x likes historical-novels)
	Then	(x likes mythology)
R4	If	(x likes GatesofFire)
	Then	(x likes mythology)
R5	If	(x lives-in Salonica)
	Then	(x likes AlexandertheGreat)
R6	If	(x likes mythology)
	Then	(LastoftheAmazons is-recommended-for x)
R7	If	(x likes AlexandertheGreat)
	and	(x likes historical-novels)
	Then	(TheVirtuesofWar is-recommended-for x)

Η αναστροφη αλυσίδωση γίνεται με τον σχεδιασμό ενός AND/OR δένδρου που στόχο έχει να οδηγηθούμε από το συμπέρασμα σε γεγονότα που ισχύουν. Λύση: Στόχος: (LastoftheAmazons is-recommended-for Bill) Σχεδιάζουμε το AND/OR δένδρο Κανόνας: R6 x=Bill για το ερώτημα Στόχος: (Bill likes Mythology) 🗸 Κανόνας: R3 x=Bill 🗸 Κανόνας: R4 Στόχος: (Bill lives-in Lamia) Στόχος: (Bill likes historical-novels) Kανόνας: R1 x=Bill ✓ Στόχος: (Bill likes Steven-Pressfield) Kανόνας: R2 | x=Bill, z=Steven-Pressfield ✓ Στόχος: (Bill likes y) Στόχος: (Steven-Pressfield is author of y) y=gatesOfFire y=gatesOfFire

3.Ανάστροφη Αλυσίδωση (3. Παράδειγμα με Κατηγορήματα)

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Β.Ασκήσεις Εφαρμογή 1

Δίνεται η παρακάτω βάση κανόνων:

R1: if A and B then C R2: if C and D then E if C and E then G R3:

Η μνήμη εργασίας είναι WM = {A, B, D}.

(α) Να σχεδιαστεί το δίκτυο κανόνων

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

Α. Θεωρία

(β) Ζητείται να αποδειχθεί το G, αν χρησιμοποιούνται οι παρακάτω υποθέσεις εργασίας:

- αλυσίδωση προς τα εμπρός (forward chaining)
- ο πρώτος στη σειρά υποψήφιος κανόνας πυροδοτείται
- ο ίδιος κανόνας πυροδοτείται μόνο μια φορά

(γ) Ζητείται να αποδειχθεί πάλι το G, αλλά χρησιμοποιώντας ανάστροφη αλυσίδωση (backward chaining).

Β.Ασκήσεις Εφαρμογή 2

Δίνεται η παρακάτω βάση κανόνων:

R1: if A and C then $\neg H$ R2: if A and B then D if D and $\neg H$ then C R3: R4: if C and I then E R5: if C and D then I R6: if E and A then F R7: if E and F then G

H μνήμη εργασίας είναι WM = {A, B, \neg H}.

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

(α) Ζητείται να αποδειχθεί το G, αν χρησιμοποιούνται οι παρακάτω υποθέσεις εργασίας:

- αλυσίδωση προς τα εμπρός (forward chaining)
- ο πρώτος στη σειρά υποψήφιος κανόνας πυροδοτείται
- ο ίδιος κανόνας πυροδοτείται μόνο μια φορά
- κάθε νέο γεγονός που εισέρχεται στη WM συνεπάγεται διαγραφή κάθε παλαιότερου ίδιου

Δημήτρης Ψούνης, ΠΛΗ31, Μάθημα 2.4: Κανόνες Παραγωγής

(β) Ζητείται να αποδειχθεί πάλι το G, αλλά ως στρατηγική ελέγχου να χρησιμοποιηθεί η προσφατότητα και δευτερευόντως η σειρά αναγραφής (η μη πυροδότηση του ίδιου κανόνα εξακολουθεί να ισχύει).

