Testes de Moses e Ansari-Bradley

Neves, N 23 de novembro de 2017

Natacha Neves

natacha neves@hotmail.com (mailto:natacha neves@hotmail.com)

http://lattes.cnpg.br/5137044427781447 (http://lattes.cnpg.br/5137044427781447)

Universidade Estadual da Paraíba

http://departamentos.uepb.edu.br/estatistica/corpo-docente/ (http://departamentos.uepb.edu.br/estatistica/corpo-docente/)

Centro de Ciência e Tecnologia Departamento de Estatística UEPB - CCT - DE

Teste de Moses

Moses propôs um teste para a igualdade de parâmetros de dispersão. Onde, esse teste não assume o parâmetro de igualdade de localização.

SUPOSIÇÕES

- Os dados consistem em 2 amostras aleatórias: X_1,\dots,X_n & Y_1,\dots,Y_n da população 1 e 2, respectivamente;
- A distribuição da população é contínua e é medida em, pelo menos, escala intervalar;
- As duas amostras são independentes.

Procedimento Geral

1. Hipóteses

Bilateral

$$H_0:\sigma_1=\sigma_2\ H_1:\sigma_1
eq\sigma_2$$

Unilateral

Parte inferior da cauda:

$$H_0:\sigma_1\geq\sigma_2\ H_1:\sigma_1<\sigma_2$$

Parte superior da cauda:

$$H_0:\sigma_1\leq\sigma_2\ H_1:\sigma_1>\sigma_2$$

2. Nível de Significância

$$\alpha = 0.05$$

3. Estatística de teste

$$T=S-\frac{m_1(m_1+1)}{2}$$

4. Cálculo

- Divida as duas observações em subamostras de k tamanhos iguais aleatoriamente;
- Para cada amostra calcular a soma dos quadrados (SQ);
- Organizar a SQ em ordem crescente e atribua classificações;
- Encontre S e T.

5. Região Crítica

Bilateral

$$W_{lpha/2} \leq T \leq W_{1-lpha/2}, \quad ext{onde} \quad W_{1-lpha/2} = n_1 n_2 - W_{lpha/2}$$

· Parte inferior da cauda:

$$T < W_{\alpha}$$

• Parte superior da cauda:

$$T < W_{1-\alpha}$$
, onde $W_{1-\alpha} = n_1 n_2 - W_{\alpha}$

EXEMPLO

Verifique se esses dados fornecem evidências suficientes para indicar uma diferença de dispersão entre as duas populações representadas pelas amostras observadas, com 5% de significância.

Valores de X

Valores de Y

Hipóteses

 $H_0: \sigma_1 = \sigma_2 \ H_1: \sigma_1
eq \sigma_2$

Nível de significância

$$\alpha = 0.05$$

Estatística de teste

$$T=S-\frac{m_1(m_1+1)}{2}$$

Cálculos

Temos que K = 4 então, $m_1=6$ e $m_2=5$ (descarte 1 valor)

Subdivisão aleatória das observações de X

Subamostras	Observações	Soma dos Quadrados
1	26, 32, 35, 24	78.75
2	26, 36, 18, 23	172.75
3	18, 16, 30, 13	166.75
4	35, 27, 29, 29	38.75
5	52, 17, 14, 17	978.00
6	21, 44, 23, 34	341.00

Subdivisão aleatória das observações de ${\cal Y}$

Subamostras	Observações	Soma dos Quadrados
1	60, 58, 48, 61	106.75
2	80, 58, 58, 61	336.75
3	54, 56, 51, 51	113.00
4	55, 44, 66, 65	317.00
5	59, 76, 68, 47	465.00

Soma dos Quadrados e os ranks correspondentes

SQ (Grupo de X)	Rank	SQ (Grupo de Y)	Rank
38.75	1	106.75	3
78.75	2	113.00	4
166.75	5	317.00	7
172.75	6	336.75	8
341.00	9	465.00	10
978.00	11		
Total	34		

$$T = S - rac{m_1(m_1+1)}{2}$$
 $T = 34 - rac{6(6+1)}{2} = 13$

Região crítica

$$W_{lpha/2} \leq T \leq W_{1-lpha/2}, \quad ext{onde} \quad W_{1-lpha/2} = n_1 n_2 - W_{lpha/2}$$

Decisão

$$W_{lpha/2} \leq T \leq W_{1-lpha/2} \ W_{lpha/2} = 4$$
usando $n_1=4$ e $n_2=5$ (Tabela A.7) $W_{1-lpha/2}=26$ usando $W_{1-lpha}=n_1n_2-W_{lpha/2}$

Então,

$$W_{lpha/2} \leq T \leq W_{1-lpha/2} \ 4 \leq 13 \leq 26 \quad ext{Logo, não Rejeita-se H_0}$$

VANTAGENS

Não depende dos parâmetros de localização iguais nas suposições (mediana).

Desvantagens

- · Ineficiente;
- Pessoas diferentes que aplicam o teste obtêm valores diferentes devido ao processo ser aleatório;
- Uma subdivisão pode levar a resultados significativos onde outros não.

Teste de dispersão (Ansari-Bradley)

O teste *Ansari-Bradley* é uma alternativa não paramétrica ao teste F de duas amostras com variâncias iguais. Não requer a suposição de que x e y vêm de distribuições normais.

A dispersão de uma distribuição é geralmente medida pela sua variação ou desvio padrão, mas o teste *Ansari-Bradley* pode ser usado com amostras de distribuições que não possuem variações finitas.

Este teste exige que as amostras tenham medianas iguais. Sob essa suposição, e se as distribuições das amostras forem contínuas e idênticas, o teste é independente das distribuições. Se as amostras não tiverem as mesmas medianas, os resultados podem ser equivocados.

Nesse caso, Ansari e Bradley recomendam subtrair a mediana, mas a distribuição do teste resultante sob a hipótese nula não é mais independente da distribuição comum de x e y.

Problemas de Interesse

Como problema de localização de duas amostras, temos N=m+n observações:

- $X_1; \ldots; X_m$ são amostras aleatórias *iid* da população 1;
- $Y_1; \ldots; Y_n$ são amostras aleatórias *iid* da população 2.

Queremos fazer inferências sobre a diferença nas distribuições:

- Temos que F_1 e F_2 indicam distribuições das populações 1 e 2;
- A hipótese nula é a de que as distribuições são iguais, ou seja, $(F_1(z)=F_2(z) \quad {
 m para\ todos\ os\ z's}).$

Usando o modelo de parâmetro de localização-escala, temos:

- $F_1(z)=G([z- heta_1]/\eta_1)$ e $F_2(z)=G([z- heta_2]/\eta_2)$;
- θ_i e η_i são, mediana e parâmetros de escala para a população j.

SUPOSIÇÕES

Dentro da suposição de independência da amostra:

- $X_1;\ldots;X_m$ são amostras aleatórias *iid* da população 1;
- $Y_1; \ldots; Y_n$ são amostras aleatórias *iid* da população 2.

Entre a suposição de independência da amostra:

- Amostras $[X_i]_{i=1}^m$ e $[Y_i]_{i=1}^n$ são mutuamente independentes.

Suposição de continuidade: tanto F_1 quanto F_2 são distribuições contínuas.

Suposição de localização: $heta_1= heta_2$ ou $heta_1$ e $heta_2$ são conhecidos.

Parâmetros de Interesse e Hipóteses

Parâmetro de interesse é a razão das variâncias:

$$\gamma^2 = \frac{V(X)}{V(Y)}$$

De modo que $\gamma^2=1$ sempre que V(X)=V(Y).

A hipótese nula sobre γ^2 é:

$$H_0:\gamma^2=1$$

e poderíamos ter uma das três hipóteses alternativas:

- Unilateral à direita: $H_1: \gamma^2 > 1$;
- Unilateral à esquerda: $H_1: \gamma^2 < 1$;
- Bilateral: $H_1: \gamma^2
 eq 1$.

Teste Estatístico

Temos que $[Z_{(k)}]_{k=1}^N$ indica sequências estatísticas das amostras combinadas e atribui as classificações dos ranks:

$$R_k^* = \left\{ \begin{array}{l} 1,2,3,\ldots,\frac{N}{2},\frac{N}{2},3,2,1; \quad \text{se N for par} \\ 1,2,3,\ldots,\frac{N-1}{2},\frac{N+1}{2},\frac{N-1}{2},2,1; \quad \text{se N for impar} \end{array} \right.$$

para amostras combinadas $[Z_{(k)}]_{k=1}^N.$

O teste estatístico C de Ansari-Bradley é definido como:

$$C = \sum_{j=1}^{n} R_j$$

onde R_j é a classificação dos ranks atribuídos de Y_j para $j=1,\dots,n$.

Distribuição da Estatística de Teste sob H_0

Sob H_0 todos $\left(egin{array}{c} N \\ n \end{array}
ight)$ arranjos de Y-ranks ocorrem com probabilidades iguais:

Dado (N,n), calcular C para todo $\binom{N}{n}$ resultados possíveis;

- Cada resultado tem probabilidade $1/\left(egin{array}{c} N \\ n \end{array}
ight)$ sob $H_0.$

Exemplo de distribuição nula com m=3 e n=2:

Ranks-Y	C	Probabilidade sob $H_{ m 0}$
1,2	3	1/10
1,3	4	1/10
1,4	3	1/10
1,5	2	1/10
2,3	5	1/10
2,4	4	1/10
2,5	3	1/10
3,4	5	1/10
3,5	4	1/10
4,5	3	1/10

Testando as hipóteses

Teste Unilateral à direita:

- $H_0: \gamma^2=1$ versus $H_1: \gamma^2>1$;
- Rejeitar H_0 se $C \geq c_lpha$, onde $P(C > c_lpha) = lpha$.

Teste Unilateral à esquerda:

- $H_0: \gamma^2=1$ versus $H_1: \gamma^2<1$;
- Rejeitar H_0 se $C \leq [c_{1-lpha}-1].$

Teste Bilateral:

- $H_0: \gamma^2=1$ versus $H_1: \gamma^2
 eq 1$;
- Rejeitar H_0 se $C \geq c_{lpha/2}$ ou $C \leq [c_{1-lpha/2}-1].$

Aproximação de grandes amostras

Sob H_0 , o valor esperado e a variância de C são:

• Se
$$N$$
 é par: $E(C)=rac{n(N+2)}{4}$ e $V(C)=rac{mn(N+2)(N-2)}{48(N-1)}$;

• Se
$$N$$
 é ímpar: $E(C)=rac{n(N+2)^2}{4N}$ e $V(C)=rac{mn(N+1)(3+N^2)}{48N^2}$;

Podemos criar uma estatística de teste padronizada C^st da seguinte forma:

$$C^* = \frac{C - E(C)}{\sqrt{V(C)}}$$

que segue, assintoticamente, a uma distribuição N(0,1).

Derivação da aproximação de grandes amostras

Note que temos $C = \sum_{i=1}^n$, a qual implica que:

- C/n é a média número de postos (combinados) de Y;
- C/n tem a mesma distribuição como a média amostral de tamanho n tirada de uma população finita sem reposição:

$$S = \left\{1,2,3,\ldots,\frac{N}{2},\frac{N}{2},3,2,1\right\},\quad\text{se N for par}$$

$$S = \left\{1,2,3,\ldots,\frac{N-1}{2},\frac{N+1}{2},\frac{N-1}{2},2,1\right\},\quad\text{se N for impar}$$

Usando alguns resultados básicos da teoria de população finita, temos:

• $E(C/n) = \mu$, Onde.

$$\mu = rac{1}{N} \sum_{k=1}^N S_k = \left\{ egin{array}{l} rac{N+2}{4}, & ext{se N for par} \ rac{(N+1)^2}{4N}, & ext{se N for impar} \end{array}
ight.$$

$$ullet \ V(C/n) = \sigma^2 rac{N-n}{n(N-1)}$$
 , onde

$$\sigma^2 = \left(rac{1}{N}\sum_{i=1}^N S_k^2
ight) - \mu^2 = \left\{ egin{array}{ll} rac{(N+2)(N-2)}{48}, & ext{se N for par} \ rac{(N+1)(N-1)(3+N^2)}{48N^2}, & ext{se N for impar} \end{array}
ight.$$

Manipulação de laços

Se $Z_i=Z_j$ para qualquer uma das duas observações das amostras combinadas $(X_1,X_2,\ldots,X_m,Y_1,\ldots,Y_n)$, então usa-se o procedimento de posição central:

- ullet C é calculado da mesma forma (usando posições centrais);
- As posições centrais, com distribuição nula, é um teste de nível aproximado α ;
- Ainda pode obter um teste de nível exato lpha \emph{via} distribuição condicional.

Fórmulas da variância da aproximação de grandes amostras:

$$V_*(C) = \left\{ egin{array}{l} rac{mn \left[16 \sum \limits_{j=1}^g t_j r_j^2 - N(N+2)^2
ight]}{16N(N-1)}, & ext{se N for par} \ rac{mn \left[16 \sum \limits_{j=1}^g t_j r_j^2 - (N+1)^4
ight]}{16N^2(N-1)}, & ext{se N for impar} \end{array}
ight.$$

Onde,

- $oldsymbol{\cdot}$ g é o número de grupos vinculados;
- t_i é o tamanho do grupo vinculado;
- r_i é o rank médio do grupo.

EXEMPLO

Alguns dados simulados:

X	R_k	Y	R_k
-0.63	(5)	0.78	(8)
0.18	(9)	-1.24	(2)
-0.84	(3)	-4.43	(1)
1.60	(5)	2.25	(1)
0.33	(10)	-0.09	(7)
-0.82	(4)	-0.03	(8)
0.49	(11)	1.89	(2)
0.74	(9)	1.64	(4)
0.58	(10)	1.19	(7)
-0.31	(6)	1.84	(3)
1.51	(6)		
\sum	78	\sum	43

Exemplo: Usando R (Hard Way)

```
set.seed(1)
x = round(rnorm(11),2)
y = round(rnorm(10,0,2),2)
m = length(x)
n = length(y)
N = m + n
z = sort(c(x,y),index=TRUE)
rz = seq(1,(N-1)/2)
rz = c(rz,(N+1)/2,rev(rz))
r = rz[sort(z$ix,index=TRUE)$ix]
sum(r[1:11])
```

```
## [1] 78
```

```
sum(r[12:21])
```

```
## [1] 43
```

Ex: Usando o R (Easy Way)

```
set.seed(1)
x = round(rnorm(11),2)
y = round(rnorm(10,0,2),2)
ansari.test(x,y)
```

```
##
## Ansari-Bradley test
##
## data: x and y
## AB = 78, p-value = 0.04563
## alternative hypothesis: true ratio of scales is not equal to 1
```

```
ansari.test(x,y,alternative="less")
```

```
##
## Ansari-Bradley test
##
## data: x and y
## AB = 78, p-value = 0.02282
## alternative hypothesis: true ratio of scales is less than 1
```