

计算理论 Theory of Computation

https://courses.zju.edu.cn/course/join/5YB41KV75LZ

第3章 上下文无关语言 Context-free Language

杨莹春

yyc@zju.edu.cn

该群属于"浙江大学"内部群,仅组织内部成员 可以加入,如果组织外部人员收到此分享,需要 去申请加入该组织。

浙江大学曹光彪西楼-201 2021年10月21日

内容安排

- 3 classes (9/16,9/23,9/30) Sets, Relations and Language (CH1)
- 3 classes(10/7,10/14,10/21) Regular Language and Finite Automata (CH2)
- 3 classes(10/21,10/28,11/4) Context-free Languages (CH3)
- 1 class(11/11) Mid-Term Review
- 3 classes (11/18,11/25,12/2) Turing machine (CH4)
- 2 classes(12/9,12/16)Undecidability (CH5)
- 2 classes(12/23,12/30) Final Review

Exam:2022/1

计算理论

第3章 上下文无关语言

Ch3. Context-free Language

Keywords III

Ch3. Context-free Languages

Context-free grammars, Pushdown automata, Equivalence of Pushdown automata and context-free grammars, Languages that are and are not context-free

Keywords III

Ch3. Context-free Languages

Context-free grammars, Pushdown automata, Equivalence of Pushdown automata and context-free grammars, Languages that are and are not context-free

•Ch2. Regular Language and Finite Automata

Finite automata and Nondeterministic finite automata, Equivalence of finite automata and regular expressions, Languages that are and are not regular

Homework 3上交时间: 2020/12/25

Homework 3:	
P120	3.1.3(c)
	3.1.9 (a)(b)
P135	3.3.2 (c)(d)
P142	3.4.1
P148	3.5.1 (b)(c)(d)
	3.5.2 (c)
	3.5.14 (a)(b)(c)(d)
	3.5.15

Goal:

- to define increasingly powerful models of computation, more and more sophisticated devices for
 - accepting languages
 - generating languages

The Chomsky hierarchy

Language type	Automata type
regular	finite
context-free	pushdown
context-sensitive	linear bounded
unrestricted	Turing Machine

- ☐ So-far: regular languages
- DFA = NFA (language recognizer)
- Regular expressions(language generator)
- Many languages are not regular
 - Balanced parentheses
 - Arithmetic expressions
- □ Next: context-free languages
- -PDA = CFG
- Add LIFO (stack) memory

3.1 Context-Free Grammars

Example:

Consider the regular expression $a(a^* \cup b^*)b$.

Regular expressions can be viewed as language generators.

• The language denoted by $a(a^* \cup b^*)b$ can be defined by the following generator:

$$S \rightarrow aMb, M \rightarrow A, M \rightarrow B, \\ A \rightarrow aA, A \rightarrow e, B \rightarrow bB, B \rightarrow e.$$

Context-Free Grammar

Question: What is the context-free?

(as opposed to **Context-Sensitive Grammar**, CSG.)

Chomsky Hierarchy

Definition: A context-free grammar(CFG) is a quadru-

ple
$$G = (V, \Sigma, R, S)$$
, where

V is an alphabet;

 $\sum \subseteq V$ is the set of <u>terminal</u> symbols;

 $S \in V - \sum$ is the <u>start</u> symbol; and

R is the set of <u>rules</u>, a finite subset of $(V - \Sigma) \times V^*$.

Remark:

• The member of $V - \sum$ are called **nonterminals**.

For any
$$A \in V - \sum$$
 and $u \in V^*$,

$$A \to_G u \Leftrightarrow (A, u) \in R$$
.

• For any strings $u, v \in V^*$,

$$u\Rightarrow_G v\Leftrightarrow \exists x,y\in V^*$$
, and $A\in V-\Sigma$, such that $u=xAy,v=xv'y$, and $A\to_G v'$.

- $\bullet \Rightarrow_G^*$ is the reflexive, transitive closure of \Rightarrow_G .
- $w_0 \Rightarrow_G w_1 \Rightarrow_G \cdots \Rightarrow_G w_n$ — a **derivation** in G of w_n from w_0 . n be the length of the derivation.
- The language generated by G,

$$L(G) = \{ w \in \Sigma^* : S \Rightarrow_G^* w \}.$$

L is a **context-free language(CFL)** $\Leftrightarrow \exists$ a context-free grammar(CFG) G, such that L = L(G).

Example: Consider the CFG $G = (V, \Sigma, R, S)$ where $V = \{S, a, b\}, \Sigma = \{a, b\}, R = \{S \rightarrow aSb, S \rightarrow e\}.$

$$L(G) = \{a^n b^n : n \ge 0\}$$

L(G) is context-free but not regular

Example: Let
$$G = (V, \Sigma, R, S)$$
 where $V = \{S, (,)\}, \Sigma = \{(,)\}, R = \{S \to e, S \to SS, S \to (S)\}.$

L(G) is the language containing all strings of balanced parentheses.

Example: Let
$$G = (\{S, a, b\}, \{a, b\}, R, S)$$
, where, $R = \{S \rightarrow e, S \rightarrow SS, S \rightarrow aSb, S \rightarrow bSa\}$.

 $L(G) = \{w \in \{a, b\}^* : w \text{ has the same number of } a's \text{ and } b's\}$

Proof:

 $w \in L(G) \Rightarrow w$ has the same number of a's and b's.

By Induction on length k of derivation.

(a)
$$k = 1$$

The derivation is $S \Rightarrow e$

 $\Rightarrow w = e$ has the same number of a's and b's. \checkmark

(b)
$$k > 1$$

Then either:

$$S \Rightarrow SS \Rightarrow^* xy = w$$

 $S \Rightarrow aSb \Rightarrow^* axb = w$
 $S \Rightarrow bSa \Rightarrow^* bxa = w$

Since $S \Rightarrow^* x, S \Rightarrow^* y$ by derivations of length < k x, y have equal number of a's and b's(IH)

so do xy, axb, and bxa.

w has the same number of a's and b's $\Rightarrow w \in L(G)$.

By induction on |w|.

(a)
$$|w| = 0$$

 $w = e \in L(G)$

$$S \rightarrow e$$
 is a rule.

(b)
$$|w| = k + 2$$
: ($|w|$ must be even)

4 subcase depending on first and last symbols of w:

Case 1
$$w = axb$$
 for some $x \in \Sigma^*$

$$|x| = k$$

$$\Rightarrow S \Rightarrow^* x$$

x has the same number of a's and b's.

$$S \Rightarrow aSb \Rightarrow^* axb = w$$

Case 2 w = bxa for some $x \in \Sigma^*$ - similar

Case 3
$$w = axa$$
 for some $x \in \Sigma^*$

|x| = k, x has 2 more b's than a's.

x = uv for some u and v such that

- \bullet u has one more b than a.
- \bullet v has one more b than a.

$$S \Rightarrow^* au$$
 and $S \Rightarrow^* va$

So
$$S \Rightarrow^* SS \Rightarrow^* auva = w$$
.

Case 4 w = bxb for some $x \in \Sigma^*$ - similar

Example: Consider the CFG $G = (V, \Sigma, R, S)$ where $-V = \{+, *, (,), id, T, F, E\}$ $-\Sigma = \{+, *, (,), id\}$

 $-R = \{E \to E + T, E \to T, T \to TF, T \to F, F \to (E), F \to F, F \to (E), F \to F, F \to F,$

id

E: expression, T: term, F: factor.

Remark:

- Computer programs written in any programming language must be syntactically correct and enable to mechanical interpretation.
- The syntax of most programming language can be captured by CFG.

Example All regular languages are CFL.

Proof: We will encounter several proof of this fact.

• In section 3.3:

The CFL are precisely the languages accepted by Pushdown Automata, which is a generalization of the FA.

• In section 3.5:

The class of CFL is closed under union, concatenation, and Kleene star.

The trivial languages \emptyset ; and $\{a\}$ are definitely context-free.

• Now we show that all regular languages are CFL by a direct construction.

Consider the regular language accepted by the DFA $M = (K, \Sigma, \delta, s, F)$.

To build a CFG from DFA M

Example:

$$S \to aS$$

$$S \to bA$$

$$A \to aB$$

$$A \to bA$$

$$B \to aS$$

$$B \to bA$$
.

$$B \to e$$
.

Consider string *aabbaba*:

 $S \Rightarrow_G aS \Rightarrow_G aaS \Rightarrow_G aabA \Rightarrow_G aabbA \Rightarrow_G aabbaBba \Rightarrow_G aabbabAa \Rightarrow_G aabbabaA \Rightarrow_G aabbaba$

Consider the regular language accepted by the DFA $M = (K, \Sigma, \delta, s, F)$.

The same language is generated by the CFG $G = (V, \sum, R, S)$ where,

$$V = K \cup \Sigma$$

$$S = s$$

$$R = \{q \to ap : \delta(q, a) = p\}$$

$$\cup \{q \to e : q \in F\}.$$

$$q \to ap$$

$$q \to ap$$

$$q \to aq$$

3.2 Parse Tree

Example: If G is the CFG that generates language of balanced parentheses.

Then string (())() can be derived from S by at least two

distinct derivations, namely,

$$S \rightarrow e$$
 $S \rightarrow SS$
 $S \rightarrow (S)$

$$S \Rightarrow \underline{S}S \Rightarrow (\underline{S})S \Rightarrow ((\underline{S}))S \Rightarrow (())\underline{S} \Rightarrow (())(\underline{S}) \Rightarrow (())()$$

$$S \Rightarrow S\underline{S} \Rightarrow \underline{S}(S) \Rightarrow (S)(\underline{S}) \Rightarrow (\underline{S})() \Rightarrow ((\underline{S}))() \Rightarrow (())()$$

Both derivations can be pictured as following:

• Node: has a label in V

Root: Start symbol

• Leaves: labeled by terminals

The string

— by concatenating the labels of leaves from left to right is called the yield of the parse tree.

— Parse tree

☐ Parse tree: formal definition

For an arbitrary CFG $G = (V, \sum, R, S)$, we define its parse tree as following:

• This is the parse tree for each $a \in \Sigma$. The single node is both the root and a leaf. The yield of this parse tree is a.

• If $A \rightarrow e$ is a rule in R, then is a parse tree.

• If

are parse trees, where $n \ge 1$, with roots labeled A_1, \dots, A_n , respectively, and yields y_1, \dots, y_n , and $A \mapsto A_1 \dots A_n$ is a rule in R, then

is a parse tree.

Nothing else is a parse tree.

Remark:

Parse tree

— Equivalence classes of derivation

Derivations D and D' are similar: formal definition

Let $G = (V, \Sigma, R, S)$ be a CFG,

$$D = x_1 \Rightarrow x_2 \Rightarrow \cdots \Rightarrow x_n$$

$$D' = x_1' \Rightarrow x_2' \Rightarrow \dots \Rightarrow x_n'$$

be two derivations, where $x_i, x_i' \in V^*$ for $i = 1 \cdots n$, $x_1, x_1' \in V - \sum$, and $x_n, x_n' \in \sum^*$.

- 1) D preceds $D'(D \prec D') \Leftrightarrow \exists 1 < k < n$, such that
 - for all $i \neq k$, we have $x_i = x_i'$.
- $x_{k-1} = x'_{k-1} = uAvBw$, where $u, v, w \in V^*$, and $A, B \in V \Sigma$.

- $x_k = uyvBw$, where $A \to y \in R$.
- $x'_k = uAvzw$, where $B \to z \in R$.
- $x_{k+1} = x'_{k+1} = uyvzw$.
- 2) D and D' are **similar** \Leftrightarrow (D, D'), belong in the reflexive, symmetric, transitive closure of \prec .

Remark:

- Similarity is an equivalence relation.
- Derivations in the same equivalence class under similarity have the same parse tree.

- Each parse tree contains a derivation that is maximal under ≺.
 - leftmost derivation (similarly, rightmost derivation)

Theorem: Let $G=(V, \sum, R, S)$ be a CFG, and let $A \in V-\sum$, and $w \in \sum^*$. Then the following statements are equivalent:

- (a) $A \Rightarrow^* w$.
- (b) \exists Parse tree with root A and yield w.
- (c) \exists a leftmost derivation $A \stackrel{L}{\Rightarrow}^* w$.
- (d) \exists a rightmost derivation $A \stackrel{R}{\Rightarrow}^* w$.

Example: If G is the CFG that generates language of balanced parentheses. Consider the following derivations D_1, D_2 and D_3 :

$$D_1 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())(S)$$

$$D_2 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow (())(S) \Rightarrow (())(S)$$

$$D_3 = S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow ((S))(S) \Rightarrow$$

 $D_1 \prec D_2$, $D_2 \prec D_3$ but not the case $D_1 \prec D_3$ D_1, D_2 , and D_3 are similar.

$$D = S \Rightarrow SS \Rightarrow SSS \Rightarrow S(S)S \Rightarrow S((S))S \Rightarrow S(())S \Rightarrow S(())(S) \Rightarrow S(()()(S) \Rightarrow S(())(S) \Rightarrow S(()()(S) \Rightarrow S(()()(S)$$

— not similar to the above

☐ Ambiguity

- A leftmost-derivation is a derivation in which a production is always applied to the leftmost symbol.
- In general, a string may have multiple left and rightmost derivations.

Definition: A grammar in which some word has two parse trees is said to be **ambiguous**.

Example: Consider the CFG $G' = (V, \Sigma, R, S)$ where

$$-V = \{+, *, (,), id, E\}$$

$$-\sum = \{+, *, (,), id\}$$

$$-R = \{E \to E + E, E \to E * E, E \to (E), E \to id\}$$

Grammar G' is ambiguous.

3.3 Pushdown Automata

PDA has

- An input tape
- A finite control
- A stack

Action:

- Read: Examine input,
 move tape head right, and
 replace the top of the stack
 with a new symbol
- Think: manipulate stack without reading

Definition: A **pushdown automata(PDA)** is a sextuple

$$M = (K, \Sigma, \Gamma, \Delta, s, F)$$
, where

- K is a finite set of states
- $-\sum$ is an alphabet (the input symbols)
- $-\Gamma$ is an alphabet (the stack symbols)
- $-s \in K$ is the initial state
- $-F \subseteq K$ is the set of final states
- $-\Delta$, transition relation, is a subset of

$$(K \times (\Sigma \cup \{e\}) \times \Gamma^*) \times (K \times \Gamma^*).$$

• PDA execution: reading a symbol

Consider $((p, \alpha, \beta), (q, \gamma)) \in \Delta$, Then the PDA can:

- enter some state q
- replace β by γ on the top of the stack
- advance the tape head
- PDA execution: e-transition

Consider $((p, e, \beta), (q, \gamma)) \in \Delta$, Then the PDA can:

- enter some state q
- replace β by γ on the top of the stack
- does not advance the tape head

Remark:

- ullet Since several transition of M may be simultaneously applicable at any point, the machines are **nondeterministic**.
- ((p, u, e), (q, a))— push a; ((p, u, a), (q, e))— pop a.
- Configuration of a PDA: a member of $K \times \sum^* \times \Gamma^*$.

• $(p, x, \alpha) \vdash_M (q, y, \zeta)$ (yield in one step) iff there is some transitions $((p, a, \beta), (q, \gamma)) \in \Delta$ such that

$$\square \ x = ay, \ a \in \Sigma \cup \{e\}$$

$$\square \alpha = \beta \eta$$

$$\square \zeta = \gamma \eta$$
 for some $\eta \in \Gamma^*$

 $\bullet \vdash_M^*$ be the reflexive, transitive colsure of \vdash_M .

□ Acceptance conditions

A PDA M accepts a string $w \in \Sigma^*$ iff

- $(s, w, e) \vdash_{M}^{*} (p, e, e)$ for some $p \in F$.
- There is a sequence of configuration $C_0, \dots, C_n (n > n)$

0),
$$(s, w, e) = C_0 \vdash_M C_1 \vdash_M \cdots \vdash_M (p, e, e)$$
 for some $p \in F$.

Note: Two traditional conditions

- Process the input, and accept if the stack is empty
- Accept if the PDA is in a final state
- \bullet The language accepted by M:

$$L(M) = \{w | (s, w, e) \vdash_M^* (p, e, e) \text{ for some state } p \in F\}.$$

Example: Design a PDA M to accepted the language

$$L = \{wcw^R : w \in \{a, b\}^*\}.$$

Solution:

Let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$-K = \{s, f\}$$

$$-\sum = \{a, b, c\}$$

$$-\Gamma = \{a, b\}$$

$$-F = \{f\}$$

$$-\Delta$$
 contains five transitions:

$$((s,a,e),(s,a)) \ ((s,b,e),(s,b)) \ ((s,c,e),(f,e)) \ ((f,a,a),(f,e)) \ ((f,b,b),(f,e))$$

Example: Design a PDA M to accepted the language

$$L = \{wcw^R : w \in \{a, b\}^*\}.$$

State	Unread Input	Stack	Transition Used
s	abbcbba	e	_
s	bbcbba	a	1
s	bcbba	ba	2
s	cbba	bba	2
f	bba	bba	3
f	ba	ba	5
f	a	a	5
f	e	e	4

$$((s,a,e),(s,a)) \ ((s,b,e),(s,b)) \ ((s,c,e),(f,e)) \ ((f,a,a),(f,e)) \ ((f,b,b),(f,e))$$

Example: Design a PDA M to accepted the language

$$L = \{ww^R : w \in \{a, b\}^*\}.$$

Solution:

Let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$-K = \{s, f\}$$

$$-\sum = \{a, b\}$$

$$-\Gamma = \{a, b\}$$

$$-F = \{f\}$$

$$-\Delta \text{ contains five transitions:}$$

$$((s, a, e), (s, a))$$

 $((s, b, e), (s, b))$
 $((s, e, e), (f, e))$
 $((f, a, a), (f, e))$
 $((f, b, b), (f, e))$

Example: Design a PDA M to accepted the language $L = \{w \in \{a,b\}^* : w \text{ has the same number of a's and b's}\}.$

Solution:

Let $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$-K = \{s, q, f\}$$

$$-\sum = \{a, b\}$$

$$-\Gamma = \{a, b, c\}$$

$$-F = \{f\}$$

$$-\Delta \text{ is listed right.}$$

$$((s,e,e),(q,c))$$

 $((q,a,c),(q,ac))$
 $((q,a,a),(q,aa))$
 $((q,a,b),(q,e))$
 $((q,b,c),(q,bc))$
 $((q,b,b),(q,bb))$
 $((q,b,a),(q,e))$
 $((q,e,c),(f,e))$

Example: Design a PDA M to accepted the language $L = \{w \in \{a,b\}^* : w \text{ has the same number of a's and b's}\}.$

State	Unread Input	Stack	Transition	Comments
s	abbbabaa	е	_ 1	Initial configuration.
q	abbbabaa	c	1	Bottom marker.
q	bbbabaa	ac	2 5	Start a stack of a's.
q	bbabaa	c	7	Remove one a .
q	babaa	bc	5 5	Start a stack of b 's.
q	abaa	bbc	6	
q	baa	bc	4	
q	aa	bbc	6	
q	a	bc	4	
q	e	c	4	
ſ	ϵ	ϵ	8 .	Accepts.

$$((s,e,e),(q,c)) \ ((q,a,c),(q,ac)) \ ((q,a,a),(q,aa)) \ ((q,a,b),(q,e)) \ ((q,b,c),(q,bc)) \ ((q,b,b),(q,bb)) \ ((q,b,a),(q,e)) \ ((q,e,c),(f,e))$$

Example: Every FA can be trivially viewed a PDA that never operates on its stack.

- Let $M = (K, \Sigma, \Delta, s, F)$ be a NFA.
- Let $M' = (K, \Sigma, \emptyset, \Delta', s, F)$ be a PDA. where $\Delta' = \{((p, u, e), (q, e)) : (p, u, q) \in \Delta\}$

Then,
$$L(M) = L(M')$$
.

3.4 Pushdown Automata and Context-Free Language

Theorem: The class of languages accepted by PDA is exactly the class of CFL.

I. Building a PDA from a CFG

Lemma: Each Context-Free language is accepted by some PDA.

Proof:

To build the PDA M for CFG $G = (V, \Sigma, R, S)$ such that L(M) = L(G).

Main idea:

Define PDA M to mimics a leftmost derivation of the input string.

□ Construction of PDA

Define PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$.

PDA M has just 2 states.

$$p \sim \text{start state}$$

 $q \sim \text{final state}$

- Stack alphabet $\Gamma = V$.
- ullet Let Δ contains the following transitions:
 - 1) ((p, e, e), (q, S))
 - 2) ((q, e, A), (q, x)) for each rule $A \rightarrow x \in R$
 - 3) $((q, a, a), (q, e)), \forall a \in \Sigma.$

Example: Let CFG $G = (V, \sum, R, S)$ with $V = \{S, a, b, c\}$, $\sum = \{a, b, c\}$, and $R = \{S \to aSa, S \to bSb, S \to c\}$, then $L(G) = \{wcw^R : w \in \{a, b\}^*\}$.

The corresponding PDA, according to the construction above, is $M = (K, \Sigma, V, \Delta, s, F)$, with

- $-K = \{p, q\}$
- -s=p
- $-F = \{q\}$
- $-\Delta$ contains the following transitions:

```
 \begin{array}{|c|c|c|c|c|}\hline I & ((p,e,e),(q,S)) \\\hline II & ((q,e,S),(q,aSa)),((q,e,S),(q,bSb)),((q,e,S),(q,c)) \\\hline III & ((q,a,a),(q,e)),((q,b,b),(q,e)),((q,c,c),(q,e)) \\\hline \end{array}
```

• Consider the string *abbcbba*.

Derivation:

$$S \Rightarrow aSa \Rightarrow abSba \Rightarrow abbSbba \Rightarrow abbcbba$$

Corresponding Computation:

$$(p, abbcbba, e) \vdash (q, abbcbba, S) \vdash (q, abbcbba, aSa)$$
 $\vdash (q, bbcbba, Sa) \vdash (q, bbcbba, bSba)$
 $\vdash (q, bbcbba, bSba) \vdash (q, bcbba, Sba)$
 $\vdash (q, bcbba, bSbba)$
 $\vdash (q, cbba, Sbba)$
 $\vdash (q, cbba, cbba)$
 $\vdash (q, cbba, cbba)$
 $\vdash (q, cbba, cbba)$

\square Verify L(M) = L(G)

Claim: Let $w \in \Sigma^*$ and $\alpha \in (V - \Sigma)V^* \cup \{e\}$. Then

$$S \stackrel{L}{\Rightarrow}^* w\alpha \iff (q, w, S) \vdash_M^* (q, e, \alpha)$$

The claim will suffice to Lemma. Taking $\alpha = e$ that

$$S \stackrel{L}{\Rightarrow}^* w \iff (q, w, S) \vdash_M^* (q, e, e)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$w \in L(G) \iff w \in L(M)$$

☐ Proof of Claim

 \Rightarrow

Suppose that $S \stackrel{L}{\Rightarrow}^* w\alpha$ where $w \in \Sigma^*$, $\alpha \in (V - \Sigma)V^* \cup \{e\}$. Induction on the length of **the leftmost derivation of** w.

Basis step:

If the derivation is of length 0, then w=e, and $\alpha=S$, hence indeed $(q,w,S)\vdash_M^* (q,e,\alpha)$.

Induction hypothesis:

Assume that if $S \stackrel{L}{\Rightarrow}^* w\alpha$ by a derivation of length n or less, $n \geq 0$, then $(q, w, S) \vdash_M^* (q, e, \alpha)$.

Induction step:

$$S = u_0 \stackrel{L}{\Rightarrow} u_1 \stackrel{L}{\Rightarrow} \cdots \stackrel{L}{\Rightarrow} u_n \stackrel{L}{\Rightarrow} u_{n+1} = w\alpha.$$

— be a leftmost derivation of $w\alpha$ from S.

Let $u_n = xA\beta$, A — the leftmost nonterminal of u_n .

$$\Rightarrow u_{n+1} = x\gamma\beta$$
, where $x \in \Sigma^*, \beta, \gamma \in V^*$, and $A \to \gamma$ is in R.

• $S \stackrel{L}{\Rightarrow} u_1 \cdots \stackrel{L}{\Rightarrow} u_n = xA\beta$ —a leftmost derivation of length n.

By the induction hypothesis,

$$(q, x, S) \vdash_{M}^{*} (q, e, A\beta)$$
 (1)

• Since $A \rightarrow \gamma$ is a rule in R,

$$(q, e, A\beta) \vdash_M (q, e, \gamma\beta)$$
 (2)

- Note that $u_{n+1} = w\alpha = x\gamma\beta$. $\Rightarrow \exists \text{ string } y \in \Sigma^* \text{ such that } w = xy \text{ and } y\alpha = \gamma\beta$.
- Rewrite (1) and (2) $(q, w, S) \vdash_{M}^{*} (q, y, \gamma \beta)$ (3)
- Since $y\alpha = \gamma\beta$ $(q, y, \gamma\beta) \vdash_{M}^{*} (q, e, \alpha)$ (4)

Combining (3) and (4) completes the induction step.

← (Omitted)

II. Building a CFG from a PDA

Lemma: If a language is accepted by a PDA, it is CFL.

Outline of the Proof

- Define the simple PDA
- Convert a PDA to an equivalent simple PDA
- Building a CFG from the simple PDA

□ Definition of Simple PDA

A PDA is **simple** if the following is true: Whenever $((q, a, \beta), (p, \gamma))$ is a transition of the PDA and q is not the start state, then $\beta \in \Gamma$ and $|\gamma| \leq 2$

In other words, A simple PDA always

- consults its topmost stack symbol, and
- replace it either e, or with single stack symbol, or with two stack symbols.

□ Convert a PDA to an equivalent simple PDA

Let $M = (K, \Sigma, \Gamma, \Delta, s, F)$ be any PDA, \Rightarrow construct a simple PDA $M' = (K', \Sigma, \Gamma \cup \{Z\}, \Delta', s', \{f'\})$ such that L(M) = L(M').

- $-s', f' \not\in K$ be two new states, $Z \not\in \Gamma$ be the stack bottom symbol.
- $-K' = K \cup \cdots$
- $-\Delta'$ contains:
 - the transition ((s', e, e), (s, Z)) (start transition)
 - for each $f \in F$, ((f, e, Z), (f', e)) (final transition)
 - \bullet all transition of Δ
 - replace with equivalent transitions that satisfy the simplicity condition.

Replace transitions with equivalent transitions that satisfy the simplicity condition:

• Get rid of transitions with $\beta > 2$.

Consider any transition $((q, a, \beta), (p, \gamma)) \in \Delta'$, where $\beta = B_1 \cdots B_n$, with n > 1.

Replace with the following transitions:

$$((q, e, B_1), (q_{B_1}, e))$$

$$((q_{B_1}, e, B_2), (q_{B_1B_2}, e))$$

$$\vdots$$

$$((q_{B_1...B_{n-2}}, e, B_{n-1}), (q_{B_1...B_{n-1}}, e))$$

$$((q_{B_1...B_{n-1}}, a, B_n), (p, \gamma))$$

• Get rid of transitions with $\gamma > 2$, without introducing any transitions with $\beta > 2$.

Consider any transition $((q, u, \beta), (p, \gamma)) \in \Delta'$, where $\gamma = C_1 \cdots C_m$, with m > 2.

Replace with the following transitions:

$$((q, u, \beta), (r_1, C_m))$$

 $((r_1, e, e), (r_2, C_{m-1}))$
 \vdots
 $((r_{m-2}, e, e, (r_{m-1}, C_2))$
 $((r_{m-1}, e, e), (p, C_1))$

• Get rid of transitions with $\beta = e$, without introducing any transitions with $\beta > 2$ or $\gamma > 2$.

Consider any transition $((q, a, e), (p, \gamma))$ with $q \neq s'$.

Replace any such transitions by all transitions of the form

$$((q, a, A), (p, \gamma A) \text{ for all } A \in \Gamma \cup \{Z\}$$

It is easy to see that L(M) = L(M').

☐ Construct A CFG from a simple PDA

 \Rightarrow Construct a CFG $G = (V, \Sigma, R, S)$ such that L(G) = L(M').

• Let's look at how a PDA can consume $x = x_1x_2\cdots x_k$ and empty the stack.

Definition:

The nonterminals $\langle q, A, p \rangle$:

represents any portion of the input string that might be read between a point when M is in state q with A on top of stack, and a point in time when M removes the occurrence of A from the stack and enters state p.

• $V = \{S\} \cup \sum \cup \{\langle q, A, p \rangle | \forall q, p \in K, A \in \Gamma \cup \{e, Z\}\}$

- ullet The rules in R are of four types.
 - (1) The rules $S \to \langle s, Z, f' \rangle$:
 - s the start state of original PDA and f' the new final state.
 - (2) For each transition ((q, a, B), (r, e)), where $q, r \in K$, $a \in \Sigma \cup \{e\}, B, C \in \Gamma \cup \{e\}$, and for each $p \in K$, we add the rule $\langle q, B, p \rangle \to a \langle r, C, p \rangle$.
 - (3) For each transition $((q, a, B), (r, C_1C_2))$, where $q, r \in K$, $a \in \Sigma \cup \{e\}, B \in \Gamma \cup \{e\}$, and $C_1, C_2 \in \Gamma$ and for each $p, p' \in K$ we add the rule $\langle q, B, p \rangle \to a \langle r, C_1, p' \rangle \langle p', C_2, p \rangle$.
 - (4) For each $q \in K$, the rule $\langle q, e, q \rangle \to e$.

Example: Let $M = (\{p, q\}, \{0, 1\}, \{X, Z_0\}, \Delta, q, \{p\})$, where Δ contains following transitions:

$$\begin{array}{c|c} (1) & ((q,1,Z_0),(q,XZ_0)) \\ (2) & ((q,1,X),(q,XX)) \\ (3) & ((q,0,X),(p,X)) \\ (4) & ((q,e,X),(q,e)) \\ (5) & ((p,1,X),(p,e)) \\ (6) & ((p,0,Z_0),(q,Z_0)) \end{array}$$

Covert PDA M to an equivalent CFG G.

We get CFG $G = (V, \{0, 1\}, R, S)$ where

•
$$V = \{\langle pXp \rangle, \langle pXq \rangle, \langle pZ_0p \rangle, \langle pZ_0q \rangle, \langle qXp \rangle, \langle qXq \rangle, \langle qZ_0p \rangle, \langle qZ_0q \rangle, S\}$$

• R contains:

$$S \to \langle qZ_0q \rangle$$

$$S \to \langle q Z_0 p \rangle$$

From rule (1):

$$\langle qZ_0q\rangle \to 1\langle qXq\rangle\langle qZ_0q\rangle$$

$$\langle qZ_0q\rangle \to 1\langle qXp\rangle\langle pZ_0q\rangle$$

$$\langle qZ_0p\rangle \to 1\langle qXq\rangle\langle qZ_0p\rangle$$

$$\langle qZ_0p\rangle \to 1\langle qXp\rangle\langle pZ_0p\rangle$$

$$((q, 1, Z_0), (q, XZ_0))$$

From rule (2):

$$\langle qXq\rangle \to \mathbf{1}\langle qXq\rangle\langle qXq\rangle$$

$$\langle qXq\rangle \to 1\langle qXp\rangle\langle pXq\rangle$$

$$\langle qXp\rangle \to 1\langle qXq\rangle\langle qXp\rangle$$

$$\langle qXp\rangle \to \mathbf{1}\langle qXp\rangle\langle pXp\rangle$$

From rule (4):

$$\langle qXq\rangle \to e$$

From rule (5):

$$\langle pXp\rangle \to 1$$

From rule (3):

$$\langle qXq\rangle \to 0\langle qXq\rangle$$

$$\langle qXp\rangle \to 0\langle pXp\rangle$$

From rule (6):

$$\langle pZ_0q\rangle \to 0\langle qZ_0q\rangle$$

$$\langle pZ_0p\rangle \to 0\langle qZ_0p\rangle$$

Claim: For any $q, p \in K$, $A \in \Gamma \cup \{e\}$, and $x \in \Sigma^*$,

$$\langle q, A, p \rangle \Rightarrow_G^* x \Leftrightarrow (q, x, A) \vdash_M^* (p, e, e)$$

The claim will suffice to Lemma.

$$\langle s, e, f \rangle \Rightarrow_G^* x$$
, for $f \in F \iff (s, x, e) \vdash_M^* (f, e, e)$
 $x \in L(G) \iff x \in L(M)$

3.5 Languages that are and are not Context-

Free

☐ Closure Properties

Theorem: The CFL are closed under union, concatenation, and Kleene star.

Proof:

Let $G_1 = (V_1, \sum_1, R_1, S_1)$ and $G_2 = (V_2, \sum_2, R_2, S_2)$ be two CFG.

Without loss generality, assume that $(V_1 - \sum_1)$ and $(V_2 - \sum_2)$ are disjoint.

a) Union

Let
$$G = (V_1 \cup V_2 \cup \{S\}, \sum_1 \cup \sum_2, R, S),$$
 where
$$R = R_1 \cup R_2 \cup \{S \to S_1, S \to S_2\}$$
 Then $L(G) = L(G_1) \cup L(G_2).$

b) Concatenation

Let
$$G = (V_1 \cup V_2 \cup \{S\}, \sum_1 \cup \sum_2, R, S),$$
 where $R = R_1 \cup R_2 \cup \{S \to S_1 S_2\}$ Then $L(G) = L(G_1)L(G_2).$

c) Kleene star

Let
$$G=(V_1\cup\{S\}, \sum_1, R, S),$$
 where $R=R_1\cup\{S\rightarrow e, S\rightarrow SS_1\}$ Then $L(G)=L(G_1)^*.$

Remark:

CFLs are not closed under intersection and complement.

Theorem: The Intersection of a CFL with a regular language is a CFL.

Proof:

Build a new machine that simulates both automata.

Let $M_1 = (K_1, \sum, \Gamma_1, \Delta_1, s_1, F_1)$ be a PDA and $M_2 = (K_2, \sum, \delta, s_2, F_2)$ be a DFA.

Bulid PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$, where

$$-K = K_1 \times K_2$$

$$-\Gamma = \Gamma_1$$

$$-s = (s_1, s_2)$$

$$-F = F_1 \times F_2$$

$$-\Delta$$
: For each $((q_1,a,\beta),(p_1,\gamma))\in \Delta_1$, and $q_2\in K_2$,
$$(((q_1,q_2),a,\beta),((p_1,\delta(q_2,a)),\gamma))\in \Delta$$

Example:

 $L = \{w : w \in \{a,b\}^*, w \text{ has equal numbers of } a's \text{ and } b's \text{ but containing no substring } abaa \text{ or } babb\}.$

Then L is context-free.

Solution:

 $L_1 = \{w : w \in \{a, b\}^*, w \text{ has equal numbers of } a's \text{ and } b's\}$

 L_1 be a CFL accepted by a PDA

$$L_2 = \{w \in \{a,b\}^* : w \text{ containing no substring } abaa \text{ or } babb\}.$$

= $\{a,b\}^* - \{a,b\}^* (abaa \cup babb) \{a,b\}^*.$ regular

 $L = L_1 \cap L_2$ be a context-free language.

□ Pumping Theorem

Lemma The yield of any parse tree of G of height h has length at most $\phi(G)^h$.

Proof: The proof is by induction on h.

Basis step: h = 1

Induction step:

at most $\phi(G)$ subtrees

$$\phi(G)^{h-1}$$
 symbols

Theorem (Pumping Theorem) Let $G=(V, \Sigma, R, S)$ be a CFG. Then any string $w \in L(G)$ of length greater than $\phi(G)^{|V-\Sigma|}$ can be rewritten as w=uvxyz in such way that

- $-|vy| \ge 1$
- $-uv^nxy^nz \in L(G)$ for every $n \ge 0$.

Proof

- Let w be such a string.
- ullet Let T be the parse tree with root labeled S and with yield w that has the smallest number of leaves.

$$|w| > \phi(G)^{|V-\sum V|}$$

 \Rightarrow The height of $T > |V - \Sigma|$ (by Lemma)

 \Rightarrow \exists a path of length at least $|V - \sum| + 1$, with at least $|V - \sum| + 2$ nodes.

(only one labeled by terminal, the remaining are labeled by nonterminal).

 $\Rightarrow \exists$ two nodes on the path labeled with the same symbol.

If vy = e, then there is a parse tree with root S and yield w with fewer leaves.

But T is the smallest tree of this kind.

—contradiction!

Example:

Show that $L = \{a^n b^n c^n : n \ge 0\}$ is not CFL.

Proof: Suppose that L = L(G) for some CFG $G = (V, \Sigma, R, S)$.

Let
$$n > \frac{\phi(G)^{|V-\sum|}}{3}$$
.

Then $w=a^nb^nc^n\in L(G)$ and can has a representation w=uvxyz such that

$$-vy \neq e$$

$$-uv^nxy^nz \in L(G)$$
 for each $n = 0, 1, 2, \cdots$

Question: what about v, y?

Case 1. Contain all three kinds of symbols

Case 2. Contain 2 kinds of symbols

- \bullet v,y contains occurrences of all three symbols a,b,c.
- \Rightarrow at least one of v, y must contain at least two of them.
- \Rightarrow order error in uv^2xy^2z .
- \bullet v,y contains occurrences of some but not all of them
 - $\Rightarrow uv^2xy^2z$ has unequal number of a's, b's and c's.

Contradiction!!

Remark:

Proving that a language is not CFL

- Let L be the proposed CFL
- \bullet There is some n, by the pumping lemma
- ullet Choose a string s, longer than n symbols, in the language L
- ullet Using the pumping lemma, construct a new string s that is not in the language

Example: Show $L = \{a^n | n \text{ is prime } \}$ is not Context-free.

Proof: Take a prime $p > \phi(G)^{|V-\sum|}$, where $G = (V, \sum, R, S)$ is CFG and L = L(G).

Then $w = a^p$ can be written as prescribed by Pumping theorem, w = uvxyz and $vy \neq e$.

Suppose that $vy = a^q$ and $uxz = a^r$ where p and q are natural numbers and q > 0.

Then the theorem states that r+nq is prime, for all $n \geq 0$.

Remark:

Contradiction!!

Any CFL over a single-letter alphabet is regular.

Example: Show

 $L = \{w \in \{a,b,c\}^* | w \text{ has an equal number of } a\text{'s}, b\text{'s and } c\text{'s}\}$ is not Context-free.

Note:

$$\{a^n b^n c^n | n \ge 0\} = L \cap a^* b^* c^*$$

Theorem: The CFL are not closed under intersection or complementation.

Proof: 1) Intersection

Counterexample

$$L_{1} = \{a^{n}b^{n}c^{m} : m, n \ge 0\}$$
$$= \{a^{n}b^{n} : n \ge 0\} \circ c^{*}$$
$$L_{2} = \{a^{m}b^{n}c^{n} : m, n \ge 0\}$$

 L_1 and L_2 are CFL.

$$\{a^nb^nc^n:n\geq 0\}=L_1\cap L_2$$
 not CFL.

2) Complementation.

Note:
$$L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$$
.

Homework 3:	
P120	3.1.3(c)
	3.1.9 (a)(b)
P135	3.3.2 (c)(d)
P142	3.4.1
P148	3.5.1 (b)(c)(d)
	3.5.2 (c)
	3.5.14 (a)(b)(c)(d)
	3.5.15