06;07

## Влияние освещения на вольт-амперные характеристики и электропроводность монокристаллов MnIn<sub>2</sub>S<sub>4</sub>

© Н.Н. Нифтиев, О.Б. Тагиев

Азербайджанский государственный педагогический университет, Баку Институт физики НАН Азербайджана, Баку

В окончательной редакции 24 мая 2005 г.

Приводятся результаты исследования влияния освещения на ВАХ и зависимость  $\sigma(T)$  монокристаллов MnIn<sub>2</sub>S<sub>4</sub>. В освещаемых образцах ВАХ содержит участки: линейный  $(J \sim U)$ , участок трех вторых  $(J \sim U^{3/2})$ , участок зависимости  $(J \sim U^{2.5})$ . Дано объяснение этих зависимостей. Установлено, что  $J_1$  ток освещаемого образца почти в  $10^5$  раз больше  $J_2$  тока не освещаемого образца. Определены энергетические положения уровней.

В настоящей работе приводятся результаты исследования влияния освещения на вольт-амперные характеристики (ВАХ) и электропроводность монокристаллов MnIn<sub>2</sub>S<sub>4</sub>. Монокристаллические образцы  $MnIn_2S_4$  были получены методом химических транспортных реакций. Рентгеноструктурные исследования показали, что MnIn<sub>2</sub>S<sub>4</sub> обладает кубической структурой (пр.гр.Fd3m). Параметр решетки  $a = 10.71 \,\text{Å}$  [1]. Контакты в образцах создавались вплавлением индия (сендвич-структура). На рис. 1 представлены ВАХ структуры In- $MnIn_2S_4$ -In в темноте (кривая 1), в темноте после предварительной подсветки (кривая 2) и при освещении белым светом (кривая 3) при температуре 293 К. Видно, что в неосвещаемых образцах (кривая 1) ВАХ содержит следующие участки: линейный  $(J \sim U)$ , квадратичный  $(J \sim U^2)$  и кубический  $(J \sim U^3)$ . В [2] нами установлено, что ток в квадратичной области обусловлен монополярной инжекцией, а кубический участок связан с двойной инжекцией. А ВАХ после предварительной подсветки имеют участки: линейный  $(J \sim U)$  и участок зависимости  $J \sim U^{3/2}$ . Так как при освещении кристаллов белым светом ловушки заполняются электронами, тогда как дырки захватываются центрами рекомбинации и электроны переходят из валентных зон в зону



**Рис. 1.** ВАХ In—MnIn<sub>2</sub>S<sub>4</sub>—In при температуре 293 K (кривая I — в темноте, 2 — в темноте после предварительной подсветки, 3 — при освещении белым светом  $200\,\mathrm{Lx}$ ).

проводимости, появляются неравновесные носители. После окончания освещения и некоторой выдержки образца в темноте при измерении ВАХ видно, что ток в темноте после предварительной подсветки почти в  $10^2$  раз больше тока образца, который не облучался светом. Неравновесные носители создают добавочную проводимость [3].

В освещенных образцах (кривая 3) ВАХ содержит следующие участки: линейный  $(J\sim U)$ , участок степени трех вторых  $(J\sim U^{3/2})$  и область зависимости  $(J\sim U^{2.5})$ . При совместном действии электрического поля и освещения вероятность появления электронов в зоне проводимости и дырок в валентной зоне увеличивается, что приводит

Письма в ЖТФ, 2005, том 31, вып. 19



**Рис. 2.** Температурные зависимости электрической проводимости для монокристаллов MnIn<sub>2</sub>S<sub>4</sub>: I — в темноте, 2 — при освещении белым светом  $(3.5 \cdot 10^3 \, \mathrm{Lx})$ .

к увеличению проводимости образца. Видно, что  $J_1$  ток освещенного образца почти в  $10^5$  раз больше  $J_2$  неосвещенного. Когда в ВАХ неосвещенного образца начинается квадратичная область, ВАХ освещенного содержит участок зависимости  $J \sim U^{2.5}$ . Освещение образца, в котором поддерживается ток монополярной инжекции, может привести к увеличению ТООЗ в том случае, когда часть объемного заряда захвачена, и носители, находящиеся в ловушках, могут получить энергию от падающего света. Захваченный носитель может непосредственно поглотить фотон и при этом выброситься в одну из разрешенных зон [4].

На рис. 2 представлены температурные зависимости электропроводности монокристаллов  $MnIn_2S_4$  в темноте (кривая I) и при освещении белым светом (кривая 2). В низкотемпературной области проводимость освещаемых монокристаллов  $MnIn_2S_4$  значительно выше, чем нахо-

Письма в ЖТФ, 2005, том 31, вып. 19

дящихся в темноте. Температурная зависимость электропроводности освещаемых монокристаллов включает в себя два участка с различной энергией активации:  $E_1=0.065\,\mathrm{eV},\ E_2=0.21\,\mathrm{eV};$  на темновой зависимости  $\sigma(T)$  участок с энергией активации 0.53 eV. Следует отметить, что все эти уровни обнаруживаются также из термостимулированных токов [5].

Итак, исследованы влияния освещения на ВАХ и электрическая проводимость  $\sigma(T)$  монокристаллов MnIn<sub>2</sub>S<sub>4</sub>. В освещаемых образцах ВАХ содержит участки: линейный  $(J\sim U)$  участок степени трех вторых  $(J\sim U^{3/2})$  и участок зависимости  $J\sim U^{2,5}$ . Дано объяснение этих зависимостей. Установлено, что  $J_1$  — ток освещаемых образцов почти в  $10^5$  раз больше  $J_2$  — тока неосвещаемых. Определены энергетические положения уровней.

## Список литературы

- [1] Kanamato T., Ido H., Kaneko T. // J. Phys. Japan. 1973. V. 34. N 2. P. 554.
- [2] Niftiyev N.N., Tağiev O.B. // Sol. St. Commun. 1992. V. 81. N 8. P. 693-695.
- [3] Бьюб Р. // Фотопроводимость твердых тел. М.: Мир, 1960. 558 с.
- [4] Ламперт М., Марк П. // Инжекционные токи в твердых телах. М.: Мир, 1973. С. 473.
- [5] Нифтиев Н.Н. // ФТП. 2002. Т. 36. В. 7. С. 836-837.