1. DFT

In order to get practice with calculating the Discrete Fourier Transform (DFT), this problem will have you calculate the DFT for a few variations on a cosine signal.

Consider a sampled signal that is a function of discrete time x[t]. We can represent it as a vector of discrete samples over time \vec{x} , of length N.

$$\vec{x} = \begin{bmatrix} x[0] & \dots & x[N & 1] \end{bmatrix}^T \tag{1}$$

Let $\vec{X} = \begin{bmatrix} X[0] & \dots & X[N-1] \end{bmatrix}^T$ be the signal \vec{x} represented in the frequency domain, then

$$\vec{x} = U\vec{X} \tag{2}$$

and the inverse operation is given by

$$\vec{X} = U^{-1}\vec{x} = U^*\vec{x} \tag{3}$$

where the columns of U are the orthonormal DFT basis vectors.

$$U = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & e^{j\frac{2\pi}{N}} & e^{j\frac{2\pi(2)}{N}} & \cdots & e^{j\frac{2\pi(N-1)}{N}}\\ 1 & e^{j\frac{2\pi(2)}{N}} & e^{j\frac{2\pi(4)}{N}} & \cdots & e^{j\frac{2\pi2(N-1)}{N}}\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & e^{j\frac{2\pi(N-1)}{N}} & e^{j\frac{2\pi2(N-1)}{N}} & \cdots & e^{j\frac{2\pi(N-1)(N-1)}{N}} \end{bmatrix}$$
(4)

$$= \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega_N^1 & \omega_N^2 & \cdots & \omega_N^{(N-1)}\\ 1 & \omega_N^2 & \omega_N^{2\cdot 2} & \cdots & \omega_N^{(N-1)2}\\ \vdots & \vdots & \vdots & & \vdots\\ 1 & \omega_N^{N-1} & \omega_N^{2(N-1)} & \cdots & \omega_N^{(N-1)(N-1)} \end{bmatrix},$$
(5)

where $\omega_N = e^{j\frac{2\pi}{N}}$ is the Nth primitive root of unity.

We sometimes eall the components of \vec{X} the *DFT coefficients* of the time-domain signal \vec{x} . We can think of the components of \vec{X} as weights that represent \vec{x} in the DFT basis.

(a) Let's begin by looking at the DFT of $x_1[n] = \cos\left(\frac{2\pi}{5}n\right)$ for N = 5 samples $n \in \{0, 1, \dots, 4\}$. Compute the DFT basis matrix U.

$$\vec{u}_{i}[n] = \int_{S}^{(a_{i})T}$$

(b) Write out \vec{x}_1 in terms of the DFT basis vectors.

(c) Find the DFT coefficients $X_1[k]$.

$$X_{1} = \begin{bmatrix} -\frac{1}{12} & -\frac{1}{$$

(d) Plot the time domain representation of $x_1[n]$. Plot the magnitude, $|X_1[k]|$, and plot the phase, $\angle X_1[k]$, for the DFT representation \vec{X}_1 .

(e) Now let's consider the case were have a non-zero phase. Let $x_2[n] = \cos\left(\frac{4\pi}{5}n + \pi\right)$. Find the DFT coefficients \vec{X}_2 for \vec{x}_2 .

(f) Plot the time domain representation of $x_2[n]$. Plot the magnitude, $|X_2[k]|$, and plot the phase, $\angle X_2[k]$, for the DFT representation \vec{X}_2 .

(g) Now let's look at the reverse direction. Given $\vec{X}_3 = \begin{bmatrix} 2 & e^{-j\frac{\pi}{2}} & 0 & 0 & e^{j\frac{\pi}{2}} \end{bmatrix}^{\top}$, find $x_3[n]$.

$$\vec{X}_3 = U\vec{X}_3 = [u, ... u_n] \begin{bmatrix} e^{-i \cdot \frac{\pi}{2}} \\ e^{-i \cdot \frac{\pi}{2}} \end{bmatrix}$$

$$= 2 \cdot \frac{1}{3} \cdot \frac{1}{3}$$