Aflevering 39 3.b mat A

Kevin Zhou

Opgave 1: Opgave 10: Model for udvikling af fiskebestand

En fiskeribiolog undersøger udviklingen i antallet af fisk i et stort bassin. Udviklingen kan beskrives ved differentialligningen

$$y' = 0.5 \cdot y \cdot (1 - 0.0002 \cdot y) - 0.06 \cdot y$$

hvor y er antallet af fisk i bassinet t år efter undersøgelsens start. Ved undersøgelsens start er der 3500 fisk i bassinet.

Løsning:

a. For at finde hastigheden af fiskeudviklingen ved undersøgelsens start, ved at sætte y=3500 ind i ligningen. Når y=3500 gælder der

$$y' = 0.5 \cdot 3500 \cdot (1 - 0.0002 \cdot 3500) - 0.06 \cdot 3500$$
$$= 315$$

Ved undersøgelsens start vokser antallet af fisk i bassinet altså med hastigheden 315 fisk per år.

b. For at bestemme antallet af fisk efter fem år, findes en forskrift for løsningen af differentialligningen, som vi betegner f. Vi omskriver først udtrykket for y'.

$$y' = 0.5 \cdot y \cdot (1 - 0.0002 \cdot y) - 0.06 \cdot y \iff y' = y \cdot (0.5 - 0.06 - 0.0002 \cdot 0.5 \cdot y)$$
$$\iff y' = y \cdot (0.44 - 0.0001 \cdot y)$$

Siden en differentialligning af formen $y' = y \cdot (b - a \cdot y)$ har de ikke-trivielle løsninger $y = \frac{\frac{b}{a}}{1 + c \cdot e^{-bt}}$, så må f være af formen

$$f(t) = \frac{\frac{0.44}{0.0001}}{1 + c \cdot e^{-0.44 \cdot t}}$$
$$= \frac{4400}{1 + c \cdot e^{-0.44 \cdot t}}$$

Siden f(0) = 3500, så har vi

$$f(0) = 3500 \iff 3500 = \frac{4400}{1 + c \cdot e^{-0.44 \cdot 0}}$$
$$\iff 1 + c = \frac{4400}{3500}$$
$$\iff c = \frac{9}{35}$$

Vi har altså

$$f(t) = \frac{4400}{1 + \frac{9}{35} \cdot e^{-0.44 \cdot t}}$$

Vi beregner nu f(5).

$$f(5) = \frac{4400}{1 + \frac{9}{35} \cdot e^{-0.44 \cdot 5}}$$
$$\approx 4278$$

Antallet af fisk i bassinet efter 5 år er altså 4278.

Opgave 2: Opgave 11: Arealbestemmelse

Funktionen f er givet ved

$$f(x) = 2x - \frac{1}{2}x^3$$

Grafen for f afgrænser sammen med første
aksen i første kvadrant et område M. I fig. 1 ses først grafen for f og så grafen for f med en lod
ret linje med ligning x = k, hvor 0 < k < 2, som dele
r M i to dele.

Figur 1: Grafen for f og lodret linje med ligningen $x = k, \quad 0 < k < 2$

Løsning:

a. Vi ser fra fig. 1, at grafen for f skærer førsteaksen ved x=0 og x=2. Siden der gælder, at $x\in[0;2]$ \Longrightarrow $f(x)\geq 0$, så må arealet af M være

$$A(M) = \int_0^2 f(x) dx$$

$$= \int_0^2 \left(2x - \frac{1}{2}x^3\right) dx$$

$$= \left[x^2 - \frac{1}{8}x^4\right]_0^2$$

$$= 2^2 - \frac{2^4}{2^3}$$

$$= 4 - 2$$

$$= 2$$

Arealet af M er altså 2.

 \mathbf{b} . Vi vil gerne finde k, når de to områder har samme areal. De to områder har samme areal netop når (bemærk

at k > 0

$$\int_0^k f(x) \, dx = \int_k^2 f(x) \, dx \iff \left[x^2 - \frac{1}{8} x^4 \right]_0^k = \left[x^2 - \frac{1}{8} x^4 \right]_k^2$$

$$\iff 2 \cdot \left(k^2 - \frac{1}{8} k^4 \right) = 2^2 - \frac{1}{8} \cdot 2^4$$

$$\iff k^2 - \frac{1}{8} k^4 = 1$$

$$\iff -\frac{1}{8} k^4 + k^2 - 1 = 0$$

$$\iff k^2 = \frac{-1 - \sqrt{1^2 - 4 \cdot \left(-\frac{1}{8} \right) \cdot (-1)}}{2 \cdot \left(-\frac{1}{8} \right)}$$

$$\iff k^2 = -4 \cdot \left(-1 - \sqrt{\frac{1}{2}} \right)$$

$$\iff k = \sqrt{4 + 4 \cdot \sqrt{\frac{1}{2}}}$$

$$\iff k = \sqrt{4 + 2\sqrt{2}}$$

Bemærk, at grunden til, at vi kun får 1 løsning er, at vi benytter det faktum, at k er positiv. De to dele af området får altså samme areal når $k = \sqrt{4 + 2\sqrt{2}}$.

Opgave 3: Opgave 13: Logo for TV-station og vekterfunktion

Logoet for TV-stationen Australian Broadcasting Corporation har form som parameterkurven for vektorfunktionen \vec{r} givet ved

$$\vec{r}(t) = \begin{pmatrix} \cos(t) \\ \sin(3t) \end{pmatrix}, \quad 0 \le t \le 2\pi.$$

Parameterkurven for $\vec{\mathbf{r}}$ har et dobbeltpunkt for $t = \frac{\pi}{3}$ og $t = \frac{5\pi}{3}$.

Løsning:

a. Parameterkurven for $\vec{\mathbf{r}}$ ses tegnet i GeoGebra i fig. 2.

Figur 2: Parameterkurven for $\vec{\mathbf{r}}$ tegnet i Geo
Gebra

 ${f b}$. For at bestemme koordinatsættene til parameterkurvens skæringspunkter med andenaksen findes de tilsvarende t-værdier først. Når parameterkurven skærer y-aksen er x-værdien 0, hvilket er tilfældet når

$$\cos\left(t\right)=0\land0\leq t\leq2\pi\implies t=\frac{1}{2}\pi\lor t=\frac{3}{2}\pi$$

Vi beregner nu stedvektoren til de to skæringspunkter med andenaksen.

$$\vec{\mathbf{r}} \begin{pmatrix} \frac{1}{2}\pi \end{pmatrix} = \begin{pmatrix} 0\\ \sin\left(3 \cdot \frac{1}{2}\pi\right) \end{pmatrix} = \begin{pmatrix} 0\\ -1 \end{pmatrix}$$
$$\vec{\mathbf{r}} \begin{pmatrix} \frac{3}{2}\pi \end{pmatrix} = \begin{pmatrix} 0\\ \sin\left(3 \cdot \frac{3}{2}\pi\right) \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

Koordinatsættene til parameterkurvens skæringspunkter med andenaksen er altå (0, -1) og (0,1).

c. For at finde vinklen mellem has tighedsvektorerne i dobbeltpunktet findes først et generelt udtryk for has tighedsvektorens udtrykt ved t, som vi betegner $\vec{\mathbf{v}}(t)$.

$$\vec{\mathbf{v}}(t) = \vec{\mathbf{r}}'(t)$$

$$= \begin{pmatrix} \frac{\mathrm{d}}{\mathrm{d}t}\cos(t) \\ \frac{\mathrm{d}}{\mathrm{d}t}\sin(3t) \end{pmatrix}$$

$$= \begin{pmatrix} -\sin(t) \\ 3 \cdot \cos(3t) \end{pmatrix}$$

De to hastighedsvektorer i dobbeltpunktet må da være

$$\vec{\mathbf{v}}\left(\frac{\pi}{3}\right) = \begin{pmatrix} -\sin\left(\frac{\pi}{3}\right) \\ 3 \cdot \cos\left(3 \cdot \frac{\pi}{3}\right) \end{pmatrix} = \begin{pmatrix} -\frac{\sqrt{3}}{2} \\ -3 \end{pmatrix}$$
$$\vec{\mathbf{v}}\left(\frac{5\pi}{3}\right) = \begin{pmatrix} -\sin\left(\frac{5\pi}{3}\right) \\ 3 \cdot \cos\left(3 \cdot \frac{5\pi}{3}\right) \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{3}}{2} \\ -3 \end{pmatrix}$$

Vi kan nu beregne vinklen mellem de to vektorer

$$v = \cos^{-1} \left(\frac{\left(-\frac{\sqrt{3}}{2} \right) \cdot \left(\frac{\sqrt{3}}{2} \right)}{\left| \left(-\frac{\sqrt{3}}{2} \right) \right| \cdot \left| \left(\frac{\sqrt{3}}{2} \right) \right|} \right)$$

$$= \cos^{-1} \left(\frac{-\frac{3}{4} + 9}{\sqrt{\left(-\frac{\sqrt{3}}{2} \right)^2 + \left(-3 \right)^2} \cdot \sqrt{\left(\frac{\sqrt{3}}{2} \right)^2 + \left(-3 \right)^2} \right)$$

$$= \cos^{-1} \left(\frac{\frac{33}{4}}{\frac{3}{4} + 9} \right)$$

$$= \cos^{-1} \left(\frac{33}{39} \right)$$

$$= \cos^{-1} \left(\frac{11}{13} \right)$$

$$\approx 32,204^{\circ}$$

Vinklen mellem hastighedsvektorerne i dobbeltpunktet er altså $\cos^{-1}\left(\frac{11}{13}\right) \approx 32,204^{\circ}$.

Opgave 4: Opgave 15: Lampeskærm og funktion af to variable

fig. 3 viser en model af en stor lampeskærm i et tredimensionalt koordinatsystem med enheden meter. I modellen kan lampeskærmen beskrives som grafen for funktionen $f:\{(x,y)\in\mathbb{R}^2:-1\leq x\leq 1,-1\leq y\leq 1\}\to\mathbb{R}$ givet ved

$$f(x,y) = e^{-x^2 - y^2}$$

Punkterne A = (1, -1, f(1, -1)) og B = (1, 1, f(1, 1)) ligger på en af lampeskærmens kanter. Den ene af lampeskærmens kanter svarer til den del af snitkurven, der går fra punktet A til punktet B.

Figur 3: Grafen for f med punkterne A og B

Løsning:

a. For at bestemme koordinatsættene for A og B, beregner vi først deres z-værdier.

$$f(1,-1) = e^{-1^2 - (-1)^2} = e^{-2}$$

 $f(1,1) = e^{-1^2 - 1^2} = e^{-2}$

Vi har altså $A = (1, -1, e^{-2})$ og $B = (1, 1, e^{-2})$.

b. For at bestemme længden af lampeskærmens kant fra A til B, finder vi først et udtryk af den del af snitkurven, der går fra A til B. Denne må da være, hvor x=1 (bemærk at der er tale om "kanten"pga. definitionsmængden), og vi betegner den g:

$$g(y) = f(1,y)$$

= $e^{-1^2 - y^2}$
= e^{-1-y^2}

Fra punkternes y-værdier er det klart, at længden af lampeskærmens kant må være kurvelængden af grafen for snitkurven fra y = -1 til y = 1.

$$L = \int_{-1}^{1} \sqrt{1 + g'(y)^2} \, dy$$
$$= \int_{-1}^{1} \sqrt{1 + \left(-2y \cdot e^{-1 - y^2}\right)^2} \, dy$$
$$\approx 2.06$$

Integralet er udregnet med CAS (se fig. 4). Længden af lampeskærmens kant fra punktet A til B er altså 2,06 meter.

Figur 4: Integralet regnet med CAS