TAREA 4

INDICACIONES:

- Para resolver el problema 1, crear un archivo en Jupyter Notebook, y llámelo hmw4_1.

 Para escribir las respuestas a estas preguntas usen MarkDown.
- Para resolver el problema 2, crear un archivo en Jupyter Notebook, y llámelo hmw4_2. Para escribir las respuestas a estas preguntas usen MarkDown.
- Usted deberá realiar el PUSH a la carpeta github ECOP2037_NN, antes de la fecha indicada en esta tarea 4.

1. Contribución empírica del crecimiento económico: Estimaciones OLS, CLS y EMD

En su clásico artículo:

Mankiw, N.G., Romer, D., & Weil, D.N. (1992). A Contribution to the Empirics of Economic Growth. Quarterly Journal of Economics, 107(2), 407–437.

Los autores evaluaron las predicciones del modelo de crecimiento de Solow mediante regresiones cross-country. La Tabla 8.1 del libro de Bruce Hansen reporta los estimadores por Mínimos Cuadrados Ordinarios (OLS), por Mínimos Cuadrados Restringidos (CLS) y por Minimum Distance Eficiente (EMD):

	$\widehat{oldsymbol{eta}}_{ ext{ols}}$	$\widehat{eta}_{ m cls}$	$\widehat{eta}_{ ext{emd}}$
$\log GDP_{1960}$	-0.29	-0.30	-0.30
	(0.05)	(0.05)	(0.05)
$\log \frac{I}{GDP}$	0.52 (0.11)	0.50 (0.09)	0.46 (0.08)
$\log(n+g+\delta)$	-0.51	-0.74	-0.71
	(0.24)	(80.0)	(0.07)
log(School)	0.23 (0.07)	0.24 (0.07)	0.25 (0.06)
Intercept	3.02	2.46	2.48
	(0.74)	(0.44)	(0.44)

Standard errors are heteroskedasticity-consistent

Objetivo: Replicar los resultados de la Tabla 8.1 mediante programación explícita en Python. No está permitido usar métodos automáticos como sm.OLS(), LinearRegression() o fit().

Datos: Use la base MRW1992.dta. Para una mayor descripcion de cada una de las variables revise MRW1992_description.

Instrucciones

- 1. Carga la base de datos en un DataFrame.
- 2. Calcula las matrices X (con columna de 1s) y y a partir del DataFrame.
- 3. Implementa el estimador OLS y sus su matriz de varianza y covarianza HCO.
- 4. Implementa el estimador CLS y su matriz de varianza y covarianza.
- 5. Implementa el estimador EMD. Pondera por una matriz de varianza estimada eficiente \widehat{V} , siguiendo el mismo principio de CLS. Estima también la matriz de varianza y covarianza.
- 6. Implementa un código que genere una tabla de resumen de resultado como la Tabla 8.1.
- 7. Escriba un párrafo breve explicando las diferencias entre OLS, CLS y EMD en términos econométricos, y sobretodo su interpretación ecónomica.

2. Estimación iterativa FGLS

Para realizar este ejercicio, use la base de datos del problema previo.

En el modelo clásico, los errores se asumen homocedásticos e independientes, pero en la práctica a menudo son heterocedásticos, lo que hace que el estimador OLS sea insesgado pero ineficiente y con errores estándar incorrectos. El estimador GLS corrige esta ineficiencia si se conoce la matriz de varianzas-covarianzas Ω , pero como esta suele ser desconocida, se usa el Feasible GLS (FGLS), que estima Ω a partir de los residuos y ajusta iterativamente hasta converger.

Objetivo: Estimar los estimadores FGLS, usando Python. No está permitido usar métodos automáticos como sm.OLS(), LinearRegression() o fit().

Datos: Use los datos y la especificación econometrica del problema previo.

Contexto teórico

Considera el modelo lineal clásico en forma matricial:

$$Y = X\beta + e$$
, $\mathbb{E}[e|X] = 0$, $\mathbb{E}[ee'|X] = \Omega$,

donde:

- Ω es la matriz de varianzas-condicionales desconocida.
- Si los errores son heterocedásticos pero no correlacionados entre sí, entonces Ω es diagonal:

$$\Omega = \begin{pmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_n^2 \end{pmatrix}.$$

Sabemos que:

- OLS es consistente para β , pero ineficiente si $\Omega \neq \sigma^2 I$.
- GLS es eficiente cuando Ω es conocida.

La fórmula teórica del estimador GLS es:

$$\widetilde{\beta}_{GLS} = (\boldsymbol{X}'\Omega^{-1}\boldsymbol{X})^{-1}\boldsymbol{X}'\Omega^{-1}\boldsymbol{Y}$$

Como Ω es desconocida, podemos aproximarla iterativamente en un procedimiento llamado **Feasible GLS**. Puede asumir que Ω se estima como $\widehat{\Omega} = \operatorname{diag}(\widehat{e}_1^2, \dots, \widehat{e}_n^2)$.

Instrucciones

- Escriba un código claro y comentado paso a paso, para implementar el procedimiento iterativo FGLS que:
 - 1. Inicializa con OLS.
 - 2. Estima Ω a partir de los residuos.
 - 3. Calcula $\widetilde{\beta}_{GLS}$ con la Ω estimada.
 - 4. Actualiza Ω y repite hasta convergencia.
 - 5. La condición de convergencia puede definirse como: $\|\beta^{(t)} \beta^{(t-1)}\| < \text{tolerancia}$. t es el número de iteracción.
- \blacksquare Usted debe claramente cuántas iteracciones hizo el codigo hasta converger, y los $\hat{\beta}$ final obtenido.