### Introduction to Machine Learning

# Computational Properties of Loss Functions



#### Learning goals

- Understand why the choice of the loss function matters
- Know some advanced loss functions

#### THE ROLE OF LOSS FUNCTIONS

Why should we care about how to choose the loss function  $L(y, f(\mathbf{x}))$ ?

- Statistical properties of f: Choice of loss implies statistical properties of f like robustness and an implicit error distribution.
- Computational / Optimization complexity of the optimization problem: The complexity of the optimization problem

$$\underset{ extit{ heta} \in \Theta}{\operatorname{arg\,min}} \, \mathcal{R}_{\operatorname{emp}}( heta)$$

is influenced by the choice of the loss function, i.e.

- Smoothness of the objective
  Some optimization methods require smoothness (e.g. gradient methods).
- Uni- or multimodality of the problem
  If L (y, f(x)) is convex in its second argument, and f(x | θ) is linear in θ,
  then R<sub>emp</sub>(θ) is convex; every local minimum of R<sub>emp</sub>(θ) is a global one. If
  L is not convex, R<sub>emp</sub>(θ) might have multiple local minima (bad!).

#### TYPES OF REGRESSION LOSSES

Regression losses usually only depend on the residuals

$$\epsilon := y - f(\mathbf{x})$$

- A loss is called distance-based if
  - it can be written in terms of the residual

$$L(y, f(\mathbf{x})) = \psi(\epsilon)$$
 for some  $\psi : \mathbb{R} \to \mathbb{R}$ 

- $\psi(\epsilon) = 0 \Leftrightarrow \epsilon = 0$ .
- A loss is translation-invariant, if  $L(y + a, f(\mathbf{x}) + a) = L(y, f(\mathbf{x}))$ .
- Losses are called **symmetric** if  $L(y, f(\mathbf{x})) = L(f(\mathbf{x}), y)$ .

#### **VISULIZING LOSSES VIA LOSS PLOTS**

We call the plot that shows the point-wise error, i.e. the loss  $L(y, f(\mathbf{x}))$  vs. the **residuals**  $\epsilon := y - f(\mathbf{x})$  (for regression), **loss plot**. The pseudo-residual corresponds to the slope of the tangent in  $(y - f(\mathbf{x}), L(y, f(\mathbf{x})))$ .



## **Summary**

#### **SUMMARY OF LOSS FUNCTIONS**

|                    | L2                                    | <i>L</i> 1                                   | Huber        | Log-Barrier  |
|--------------------|---------------------------------------|----------------------------------------------|--------------|--------------|
| Point-wise optimum | $\mathbb{E}_{y x}[y \mid \mathbf{x}]$ | $med_{y \mid \mathbf{x}}[y \mid \mathbf{x}]$ | n.a.         | n.a.         |
| Best constant      | $\frac{1}{n}\sum_{i=1}^{n}y^{(i)}$    | $\operatorname{med}\left(y^{(i)}\right)$     | n.a.         | n.a.         |
| Differentiable     | <b>√</b>                              | X                                            | $\checkmark$ | $\checkmark$ |
| Convex             | ✓                                     | $\checkmark$                                 | $\checkmark$ | $\checkmark$ |
| Robust             | ×                                     | $\checkmark$                                 | $\checkmark$ | X            |

There are many other loss functions for regression tasks, for example:

- Quantile-Loss
- ε-insensitive-Loss

Loss functions might also be customized to an objective that is defined by an application.