Two mathematical formulations of the Location Inventory Routing Problem (LIRP)

Olivier Péton, Seydou Coulibaly January 17, 2017

1 Model 1: a "direct+loop" LIRP model

1.1 Data Sets and parameters

Set	Definition
\overline{I}	Set of customers
J	Set of distribution centers
P	Set of plants (1 plant here)
$T = \{0, \dots, T \}$	set of time periods (days)
$T^* = T \setminus \{0\}$	
V	Set of all nodes $V = P \cup I \cup J$.
V^*	Set of depots and clients $V^* = I \cup J$.
R	Set of routes (in the second layer)

1.2 Data Sets and parameters

Data	Definition
$\overline{f_i}$	Fixed cost of opening distribution center $j \in J$
${Q}$	Capacity of vehicles (homogeneous fleet)
$ au_{max}$	Maximum shelf life.
$\begin{array}{c} d_i^t \\ h_i^t \end{array}$	Demand of customer $i \in I$ in period $t \in \{1,, T + \tau_{max} - 1\}$.
h_i^t	Holding cost at facility $i \in V^*$ in time period $t \in T$
I_{i0}	Initial inventory at facility $i \in V^*$
c_j	Cost of delivering distribution center $j \in J$ (1 st layer)
$c_j \\ c_r'$	Cost of route $r \in R$ (2 nd layer)
$rac{lpha_{ir}}{ar{I}_i}$	=1 if route $r \in R$ visits facility $i \in V^*$, 0 otherwise
$ar{I}_i$	Capacity (max inventory) at facility $i \in V^*$

1.3 Variables

Binary Variables $\begin{aligned} y_j &= 1 \text{ if distribution center } j \in J \text{ is selected. 0 otherwise.} \\ z_r^t &= 1 \text{ if route } r \in R \text{ is selected in period } t \in T, \text{ 0 otherwise} \\ x_j^t &= 1 \text{ if distribution center } j \in J \text{ is delivered in time period } t \in T \end{aligned}$ $\begin{aligned} &Continuous & Variables \\ q_j^t & \text{ quantity delivered to distribution center } j \in J \text{ in time period } t \in T. \\ u_{ir}^t & \text{ quantity delivered by route } r \in R \text{ to client } i \in I \text{ in time period } t \in T. \\ I_i^t & \text{ inventory at facility } i \in I \cup J \text{ in time period } t \in T. \end{aligned}$

1.4 LIRP model 1 (1/3)

$$\min \sum_{j \in J} f_j \mathbf{y_j} + \sum_{t \in T} \left(\sum_{j \in J} c_j \mathbf{x_j^t} + \sum_{r \in R} c_r' \mathbf{z_r^t} \right) + \sum_{t \in T} \sum_{i \in V^*} h_i^t I_i^t$$
 (1)

$$\sum_{r \in R} \alpha_{ir} \mathbf{z}_r^t \le 1 \qquad \forall i \in I, \forall t \in T$$
 (2)

$$q_{j,t} \le Q x_j^t \qquad \forall j \in J, \forall t \in T$$
 (3)

$$x_j^t \le y_j \qquad \forall j \in J, \forall t \in T \tag{4}$$

$$q_{j,t} \leq Q x_{j}^{t} \qquad \forall j \in J, \forall t \in T$$

$$x_{j}^{t} \leq y_{j} \qquad \forall j \in J, \forall t \in T$$

$$\sum_{i \in I} u_{ir}^{t} \leq Q z_{r}^{t} \qquad \forall r \in R, \forall t \in T$$

$$(3)$$

$$(4)$$

$$(5)$$

$$\boldsymbol{z_r^t} \le \sum_{i \in I} \alpha_{jr} \boldsymbol{y_j} \qquad \forall r \in R, \forall t \in T$$
 (6)

$$\sum_{r \in R} z_r^t \le |K| \qquad \forall t \in T \tag{7}$$

$$\mathbf{y_j} = 1 \to I_j^t = I_j^{t-1} + q_j^t - \sum_{r \in R} \alpha_{jr} (\sum_{i \in I} \alpha_{ir} \ u_{ir}^t) \qquad \forall j \in J, \forall t \in T$$
 (8)

$$I_i^t = I_i^{t-1} + \sum_{r \in R} \alpha_{ir} \ u_{ir}^t - d_i^t \qquad \forall i \in I, \forall t \in T$$
 (9)

$$I_i^t \le \sum_{t'>t}^{t' \le t + \tau_{max}} d_i^{t'} \qquad \forall i \in I, \forall t \in T \qquad (10)$$

$$u_{i,r}^t \le M\alpha_{i,r} \qquad \forall i \in I, \forall r \in R, \forall t \in T$$
 (11)

$$u_{i,r}^{t} \leq M\alpha_{i,r} \qquad \forall i \in I, \forall r \in R, \forall t \in T$$

$$u_{i,r}^{t} \leq Mz_{r,t} \qquad \forall i \in I, \forall r \in R, \forall t \in T$$

$$I_{i,t} \leq \bar{I}_{i} \qquad \forall i \in V^{*}, \forall t \in T$$

$$(11)$$

$$I_{i,t} \le \bar{I}_i \qquad \forall i \in V^*, \forall t \in T$$
 (13)

$$I_{i,t} \le \bar{I}_i \ y_i \qquad \forall j \in J, \forall t \in T$$
 (14)

$$y_{j} \in \{0, 1\} \qquad \forall j \in J \qquad (15)$$

$$z_{r}^{t} \in \{0, 1\} \qquad \forall r \in R, \forall t \in T \qquad (16)$$

$$x_{j}^{t} \in \{0, 1\} \qquad \forall j \in J, \forall t \in T \qquad (17)$$

$$I_{i}^{t}, I_{j}^{t} \geq 0 \qquad \forall i \in I, \forall j \in J, \forall t \in T \qquad (18)$$

$$q_{j}^{t}, u_{ir}^{t} \geq 0 \qquad \forall i \in I, \forall j \in J, \forall t \in T, \forall r \in R \qquad (19)$$

$$patroints of model 1$$

$$z_r^t \in \{0, 1\} \qquad \forall r \in R, \forall t \in T \tag{16}$$

$$\mathbf{x}_{i}^{t} \in \{0, 1\} \qquad \forall j \in J, \forall t \in T \tag{17}$$

$$I_i^t, I_i^t \ge 0 \qquad \forall i \in I, \forall j \in J, \forall t \in T$$
 (18)

$$q_i^t, u_{ir}^t \ge 0 \qquad \forall i \in I, \forall j \in J, \forall t \in T, \forall r \in R$$
 (19)

Constraints of model 1 1.5

- Objective function (1) = facility fixed cost + routing cost + inventory cost
- (2) Each supplier is visited by at most one route at every period
- (3) Capacity constraint between the plant and the distribution centers.

- (4) No routes to non-selected distribution centers
- (5) Capacity constraint on route r, if it is performed in time period t.
- (6) A route starts from a selected distribution centers
- (7) Fleet size limitation
- (8) Flow conservation at DC j
- (30) Flow conservation at customer i
- (10) Max inventory at customers (valid inequality)
- (11) If a customer $i \in I$ does not belong to a route $r \in R$, then it cannot be delivered by this route (this constraint is probably useless)
- (12) If a route is not performed on period $t \in T$, then it cannot deliver any customer (this constraint is probably useless)
- (13) capacity constraint at depots and clients
- (14) if a depot is not selected, then its inventory is zero

Constraints (8) can be linearised as follows

$$I_j^t - I_j^{t-1} - q_j^t + \sum_{r \in R} \alpha_{jr} (\sum_{i \in I} \alpha_{ir} \ u_{ir}^t) \le (1 - y_j) \ \bar{I}_j \quad \forall j \in J, \forall t \in T$$
 (20)

$$-(1-y_j) \bar{I}_j \le I_j^t - I_j^{t-1} - q_j^t + \sum_{r \in R} \alpha_{jr} \left(\sum_{i \in I} \alpha_{ir} \ u_{ir}^t \right) \quad \forall j \in J, \forall t \in T$$
 (21)

2 Model 2: a "loop+direct" LIRP model

Data	Definition
\overline{R}	Set of routes (in first layer)
c_r	Cost of route $r \in R$ (1 st layer)
c'_{ij}	Cost of delivering customer $i \in I$ from DC $j \in J$ (2 nd layer)
α_{jr}	=1 if route $r \in R$ visits DC $j \in J$, 0 otherwise

Binary Variables

- $y_j = 1$ if distribution center $j \in J$ is selected. 0 otherwise.
- $z_r^t = 1$ if route $r \in R$ is selected in period $t \in T$, 0 otherwise
- x_{ij}^t =1 if customer i is delivered by DC $j \in J$ in time period $t \in T$

$Continuous\ Variables$

 v_{ij}^t quantity delivered from DC $j \in J$ to customer $i \in I$ in period $t \in T$.

2.1 New notation

2.2 LIRP model 2

$$\min \sum_{j \in J} f_{j} y_{j} + \sum_{t \in T} \left(\sum_{j \in J} c_{r} z_{r}^{t} + \sum_{i \in I} \sum_{j \in J} c'_{ij} x_{ij}^{t} \right) + \sum_{t \in T} \sum_{i \in V^{*}} h_{i}^{t} I_{i}^{t}$$
(22)

$$\sum_{r \in R} \alpha_{jr} z_r^t \le 1 \qquad \forall j \in J, \forall t \in T$$
 (23)

$$q_{j}^{t} \leq Q \ \boldsymbol{z_{r}^{t}} \qquad \qquad \forall j \in J, \forall r \in R, \forall t \in T$$

$$\mathbf{z}_{r}^{t} \le \alpha_{jr} \, \mathbf{y}_{j} \qquad \forall j \in J, \forall t \in T$$
 (25)

$$\sum_{r \in R} z_r^t \le |K| \qquad \forall t \in T \tag{26}$$

$$v_{ij}^t \le Q \ x_{ij}^t$$
 $\forall i \in I, \forall j \in J, \forall t \in T$ (27)

$$v_{ij}^{t} \le \left(\sum_{t \ge t}^{t' \le t + \tau_{max}} d_{i}^{t'}\right) x_{ij}^{t} \qquad \forall i \in I, \forall j \in J, \forall t \in T$$
 (28)

$$x_{ij}^{t} \le y_{j} \qquad \forall i \in I, \forall j \in J, \forall t \in T$$
 (29)

$$I_j^t = I_j^{t-1} + q_j^t - \sum_{i \in I} v_{ij}^t \qquad \forall i \in I, \forall j \in J, \forall t \in T$$

$$(30)$$

$$I_j^t = I_j^{t-1} + q_j^t - \sum_{i \in I} v_{ij}^t \qquad \forall i \in I, \forall j \in J, \forall t \in T$$

$$I_i^t = I_i^{t-1} + \sum_{j \in J} v_{ij}^t - d_i^t \qquad \forall i \in I, \forall t \in T$$

$$(30)$$

$$I_i^t \le \sum_{t' \ge t}^{t' \le t + \tau_{max}} d_i^{t'} \qquad \forall i \in I, \forall t \in T$$
 (32)

$$y_{j} \in \{0, 1\} \qquad \forall j \in J \qquad (33)$$

$$z_{r}^{t} \in \{0, 1\} \qquad \forall r \in R, \forall t \in T \qquad (34)$$

$$x_{ij}^{t} \in \{0, 1\} \qquad \forall i \in I, \forall j \in J, \forall t \in T \qquad (35)$$

$$z_r^t \in \{0, 1\} \qquad \forall r \in R, \forall t \in T \tag{34}$$

$$x_{ij}^t \in \{0, 1\}$$
 $\forall i \in I, \forall j \in J, \forall t \in T$ (35)

$$I_i^t, I_i^t \ge 0$$
 $\forall i \in I, \forall j \in J, \forall t \in T$ (36)

$$q_j^t, v_{ij}^t \ge 0$$
 $\forall i \in I, \forall j \in J, \forall t \in T, \forall r \in R$ (37)

Constraints of model 2 (vérifier numérso équations)

- Objective function = facility fixed cost + routing cost + inventory cost
- (21) Each DC is visited by at most one route in every time period
- (22) Capacity constraint on routes.
- (23) No routes to unselected distribution centers
- (24) Fleet size limitation
- (25) (22) Capacity constraints on route r, if it is performed in time period t.
- (26) A customer is served from a selected distribution center
- (27) Flow conservation at DC j
- (28) Flow conservation at customer i
- (29) Max inventory at customers (valid inequality)