Sistema de Cifrado RSA

- El sistema de cifrado RSA es el sistema de cifrado asimétrico más usado y más sencillo de entender e implementar.
- Una peculiaridad de este algoritmo es que sus dos claves sirven indistintamente tanto para cifrar como para autenticar.
- Debe su nombre a sus tres inventores: Ronald Rivest, Adi Shamir y Leonard Adleman, que publicaron por primera vez el método RSA en 1977.
- Se basa en la dificultad que presenta la factorización de números grandes.

1

Sistema de Cifrado RSA (cont.)

- Las claves **pública** y **privada** se calculan a partir de un número que se obtiene como producto de dos primos grandes.
- Un atacante que quiera recuperar un texto claro a partir del criptograma y de la clave pública, tiene que enfrentarse a dicho problema de factorización.
- El algoritmo consta de tres pasos:
 - · Generación de claves
 - Cifrado del mensaje
 - Descifrado del mensaje

Sistema de Cifrado RSA Generación de Claves

- Cada usuario elige dos números primos distintos y grandes p y q (unas 200 cifras cada uno).
 - Por seguridad deben ser elegidos de forma aleatoria y tener una longitud en bits parecida. Se pueden hallar primos fácilmente mediante test de primalidad.
- Se calcula el producto n = pq
 - n se usa como el módulo para ambas claves: pública y privada
- Se calcula el grupo (Zn)*, cuyo orden es $\varphi(n) = (p-1)(q-1)$
 - φ es la función de Euler
- Se escoge un número entero positivo e menor que $\varphi(n)$, que sea primo relativo con $\varphi(n)$, e se usa como el exponente de la clave pública.

3

Sistema de Cifrado RSA Generación de Claves

- Se determina el inverso de e en (Zn)*: d, es decir un d (mediante aritmética modular) que satisfaga la congruencia ed ≡ 1 (mod φ(n)) → ed ≡ 1 (mod (p-1)(q-1)), d se usa como el exponente de la clave privada
 - d es el inverso modular de e mod $\phi(n)$
 - Se calcula mediante el algoritmo de Euclides
 - Se cumple que ed = 1 + k(p-1)(q-1) para cualquier entero k.
- La clave pública será el par de números (e,n), que pueden ser conocidos por cualquiera.
- La **clave privada** será el par de números (*d*,*n*), este número *d* debe mantenerse secreto y sólo será conocido por el propietario del par de claves.
- Se deben mantener ocultos también los valores de p, q y φ (n).

Sistema de Cifrado RSA Generación de Claves

- Para una mayor eficiencia los siguientes valores se calculan de antemano y se almacenan como parte de la clave privada:
 - Los primos para la generación de las claves: p y q.

 - $q^{-1} \mod p$

5

Sistema de Cifrado RSA Cifrado y Descifrado del Mensaje

- Los mensajes que se cifran y descifran con este algoritmo son números enteros de tamaño menor que *n*, no letras sueltas como en el caso de los cifrados vistos antes.
- Para obtener el mensaje cifrado *C* a partir del mensaje original *M* se realiza la siguiente operación:

 $C = M^e \pmod{n}$

• Para recuperar el mensaje original *M* a partir del cifrado *C* se realiza la siguiente operación:

 $M = C^d \pmod{n}$

Fortaleza del algoritmo RSA

¿Qué fortaleza tendrá este algoritmo ante ataques?

- El intruso que desee conocer la clave secreta d a partir de los valores públicos n y e se enfrentará al Problema de la Factorización de Números Grandes (PFNG) puesto que la solución para conocer esa clave privada pasa por deducir el valor del Indicador de Euler $\phi(n) = (p-1)(q-1)$ para así poder encontrar el inverso de la clave pública $d = inv [e, \phi(n)]$.
- Existen, no obstante, otros tipos de ataques a este sistema que no pasan por la factorización de n.

Curso de Seguridad Informática. Tema 12: Cifrado Exponencial.

Ejemplo de cifrado y descifrado con RSA

Grupo n = 91 = 7*13; $\phi(n) = \phi(7*13) = (7-1)(13-1) = 72$ M = 48

Elegimos e = 5 pues mcd (5,72) = 1 : d = inv(5,72) = 29

CIFRADO:

 $C = M^e \mod n = 48^5 \mod 91 = 5245.803.968 \mod 91 = 55$

DESCIFRADO:

 $M = C^d \mod n = 55^{29} \mod 91 = 48$... 55^{29} ya es "número grande"

55²⁹ es un número con 51 dígitos...

 $55^{29} = 295473131755644748809642476009391248226165771484375$

Curso de Seguridad Informática. Tema

Sistema de Cifrado RSA Ejemplo

- Cifrar STOP con RSA (use números primos pequeños)
 - p = 43 y q = 59, n = 43*59 = 2537
 - mcd(e,42*58) = mcd(13,42*58) = 1
 - Clave pública *Kp* = (13,2537)
 - STOP se pasa a números según la posición y se agrupan en bloques de cuatro dígitos: 1819 1415
 - Se usa la operación para cifrar:

$$C_1 = 1819^{13} \mod 2537 = 2081$$

$$C_2 = 1415^{13} \mod 2537 = 2182$$

• El mensaje cifrado es: 2081 2182

9

Sistema de Cifrado RSA Ejemplo

- Descifrar 0981 0461 con RSA (use números primos pequeños)
 - d = 937 (es el inverso de 13 módulo 42*58=2436)
 - Clave privada KP = (937,2537)
 - Se usa la operación para descifrar:

$$M_1 = 0981^{937} \mod 2537 = 0704$$

$$M_2 = 0461^{937} \mod 2537 = 1115$$

- El mensaje descifrado es: 0704 1115
- Se pasan las posiciones a letras: HELP

Referencias

- Ramírez Benavides, Kryscia Daviana. "Estructuras Discretas"
- Ramió Aguirre, Jorge. "Seguridad Informática y Criptografía"