Overview

The sinking of the RMS Titanic is one of the most infamous shipwrecks in history. On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 1502 out of 2224 passengers and crew. This sensational tragedy shocked the international community and led to better safety regulations for ships.

One of the reasons that the shipwreck led to such loss of life was that there were not enough lifeboats for the passengers and crew. Although there was some element of luck involved in surviving the sinking, some groups of people were more likely to survive than others, such as women, children, and the upper-class.

In this challenge, we target to complete the analysis of what sorts of people were likely to survive.

Importing Libraries

In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC

import warnings
warnings.filterwarnings("ignore")
sns.set(rc={'figure.figsize':(12, 10)})
```

In [4]:

data=pd.read_csv("titanic_data.csv")
data.head(10)

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emt
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	
4												•

Types of Features :

Categorical - Sex, and Embarked.

Continuous - Age, Fare

Discrete - SibSp, Parch.

Alphanumeric - Cabin

In [5]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype				
0	PassengerId	891 non-null	int64				
1	Survived	891 non-null	int64				
2	Pclass	891 non-null	int64				
3	Name	891 non-null	object				
4	Sex	891 non-null	object				
5	Age	714 non-null	float64				
6	SibSp	891 non-null	int64				
7	Parch	891 non-null	int64				
8	Ticket	891 non-null	object				
9	Fare	891 non-null	float64				
10	Cabin	204 non-null	object				
11	Embarked	889 non-null	object				
<pre>dtypes: float64(2), int64(5), object(5)</pre>							
memory usage: 83.7+ KB							

In [8]:

data.isnull().sum()

Out[8]:

PassengerId 0 Survived 0 Pclass 0 0 Name Sex 0 177 Age SibSp 0 0 Parch Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

In [9]:

data.describe()

Out[9]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

Numerical value analysis

In [11]:

```
plt.figure(figsize=(5,5))
heatmap = sns.heatmap(data[["Survived","SibSp","Parch","Age","Fare"]].corr(), annot=True)
```


sibsp - Number of siblings / spouses aboard the Titanic

```
In [12]:
```

```
data['SibSp'].nunique()
```

Out[12]:

7

In [13]:

```
data['SibSp'].unique()
```

Out[13]:

array([1, 0, 3, 4, 2, 5, 8], dtype=int64)

In [24]:

```
bargraph\_sibsp = sns.catplot(x = "SibSp", y = "Survived", data = data,kind="bar")
```


In [26]:

```
age_visual = sns.FacetGrid(data, col = 'Survived')
age_visual = age_visual.map(sns.distplot, "Age")
age_visual = age_visual.set_ylabels("survival probability")
```


In [27]:

```
import matplotlib.pyplot as plt
plt.figure(figsize=(5,5))
age_plot = sns.barplot(x = "Sex",y = "Survived", data = data)
age_plot = age_plot.set_ylabel("Survival Probability")
```


In [28]:

```
data[["Sex","Survived"]].groupby('Sex').mean()
```

Out[28]:

Survived

female 0.742038

male 0.188908

In [30]:

```
pclass = sns.catplot(x = "Pclass", y = "Survived", data = data, kind = "bar")
pclass = pclass.set_ylabels("survival probability")
```



```
In [35]:
```

```
g = sns.catplot(x="Pclass", y="Survived", hue="Sex", data=data, kind="bar")
g = g.set_ylabels("survival probability")
import warnings
warnings.filterwarnings("ignore")
```



```
In [36]:
```

```
data["Embarked"].isnull().sum()
```

Out[36]:

2

In [38]:

```
data["Embarked"].value_counts()
```

Out[38]:

S 644 C 168 O 77

Name: Embarked, dtype: int64

In [39]:

```
data["Embarked"] = data["Embarked"].fillna("S")
```

In [40]:

```
g = sns.catplot(x="Embarked", y="Survived", data=data, kind="bar")
g = g.set_ylabels("survival probability")
```


In [66]:

```
g = sns.catplot(x="Embarked", data=data,hue='Pclass', kind="count")
g.despine(left=True)
g = g.set_ylabels("Count")
```



```
In [70]:
```

```
g = sns.catplot(hue="Sex", x="Embarked", data=data, kind="count")
```


Preparing data

memory usage: 83.7+ KB

In [71]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

		, .	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	891 non-null	object
dtyp	es: float64(2), int64(5), obj	ect(5)

```
In [76]:
```

```
mean = data["Age"].mean()
std = data["Age"].std()
is_null = data["Age"].isnull().sum()

# compute random numbers between the mean, std and is_null
rand_age = np.random.randint(mean - std, mean + std, size = is_null)

# fill NaN values in Age column with random values generated
age_slice = data["Age"].copy()
age_slice[np.isnan(age_slice)] = rand_age
data["Age"] = age_slice
```

In [77]:

```
data["Age"].isnull().sum()
```

Out[77]:

a

In [79]:

```
data.info()
```

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                  Non-Null Count Dtype
 #
     Column
                  -----
---
     PassengerId 891 non-null
 0
                                  int64
 1
     Survived
                  891 non-null
                                  int64
 2
     Pclass
                  891 non-null
                                  int64
 3
     Name
                  891 non-null
                                  object
 4
                  891 non-null
     Sex
                                  object
 5
     Age
                  891 non-null
                                  float64
 6
                  891 non-null
                                  int64
     SibSp
 7
     Parch
                  891 non-null
                                  int64
 8
                  891 non-null
                                  object
     Ticket
 9
     Fare
                  891 non-null
                                  float64
 10
    Cabin
                  204 non-null
                                  object
                  891 non-null
    Embarked
                                  object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
```

<class 'pandas.core.frame.DataFrame'>

In [80]:

```
#Fill Embarked with 'S' i.e. the most frequent values
data["Embarked"] = data["Embarked"].fillna("S")
```

In [81]:

```
col_to_drop = ['PassengerId','Cabin', 'Ticket','Name']
data.drop(col_to_drop, axis=1, inplace = True)
```

In [83]:

```
data.head()
```

Out[83]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

In [84]:

```
genders = {"male": 0, "female": 1}
data['Sex'] = data['Sex'].map(genders)
```

In [85]:

```
data.head()
```

Out[85]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	0	22.0	1	0	7.2500	S
1	1	1	1	38.0	1	0	71.2833	С
2	1	3	1	26.0	0	0	7.9250	S
3	1	1	1	35.0	1	0	53.1000	S
4	0	3	0	35.0	0	0	8.0500	S

In [86]:

```
ports = {"S": 0, "C": 1, "Q": 2}
data['Embarked'] = data['Embarked'].map(ports)
```

In [87]:

```
data.head()
```

Out[87]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	0	22.0	1	0	7.2500	0
1	1	1	1	38.0	1	0	71.2833	1
2	1	3	1	26.0	0	0	7.9250	0
3	1	1	1	35.0	1	0	53.1000	0
4	0	3	0	35.0	0	0	8.0500	0

```
In [88]:
```

```
data.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 8 columns):
 #
     Column
               Non-Null Count Dtype
---
 0
     Survived 891 non-null
                               int64
 1
     Pclass
               891 non-null
                               int64
               891 non-null
                               int64
 2
     Sex
 3
     Age
               891 non-null
                               float64
               891 non-null
                               int64
 4
     SibSp
 5
     Parch
               891 non-null
                               int64
     Fare
               891 non-null
                               float64
     Embarked 891 non-null
                               int64
dtypes: float64(2), int64(6)
```

Train-Test split

memory usage: 55.8 KB

```
In [89]:
```

```
x = data.drop(data.columns[[0]], axis = 1)
y = data['Survived']
```

```
In [90]:
```

```
x.head()
```

Out[90]:

	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	3	0	22.0	1	0	7.2500	0
1	1	1	38.0	1	0	71.2833	1
2	3	1	26.0	0	0	7.9250	0
3	1	1	35.0	1	0	53.1000	0
4	3	0	35.0	0	0	8.0500	0

In [91]:

```
y.head()
```

Out[91]:

```
0 0
1 1
2 1
3 1
4 0
```

Name: Survived, dtype: int64

In [92]:

```
# splitting into training and testing data
from sklearn.model_selection import train_test_split
xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size = 0.30, random_state =0)
```

Feature scaling

In [94]:

```
from sklearn.preprocessing import StandardScaler
sc_x = StandardScaler()
xtrain = sc_x.fit_transform(xtrain)
xtest = sc_x.transform(xtest)
```

Classification

In [95]:

```
logreg = LogisticRegression()
svc_classifier = SVC()
dt_classifier = DecisionTreeClassifier()
knn_classifier = KNeighborsClassifier(5)
rf_classifier = RandomForestClassifier(n_estimators=1000, criterion = 'entropy', random_state = 0
```

In [96]:

```
logreg.fit(xtrain, ytrain)
svc_classifier.fit(xtrain, ytrain)
dt_classifier.fit(xtrain, ytrain)
knn_classifier.fit(xtrain, ytrain)
rf_classifier.fit(xtrain, ytrain)
```

Out[96]:

```
RandomForestClassifier
RandomForestClassifier(criterion='entropy', n_estimators=1000, random_state=0)
```

In [97]:

```
logreg_ypred = logreg.predict(xtest)
svc_classifier_ypred = svc_classifier.predict(xtest)
dt_classifier_ypred = dt_classifier.predict(xtest)
knn_classifier_ypred = knn_classifier.predict(xtest)
rf_classifier_ypred = rf_classifier.predict(xtest)
```

In [98]:

```
# finding accuracy
from sklearn.metrics import accuracy_score

logreg_acc = accuracy_score(ytest, logreg_ypred)
svc_classifier_acc = accuracy_score(ytest, svc_classifier_ypred)
dt_classifier_acc = accuracy_score(ytest, dt_classifier_ypred)
knn_classifier_acc = accuracy_score(ytest, knn_classifier_ypred)
rf_classifier_acc = accuracy_score(ytest, rf_classifier_ypred)
```

In [99]:

```
print ("Logistic Regression : ", round(logreg_acc*100, 2))
print ("Support Vector : ", round(svc_classifier_acc*100, 2))
print ("Decision Tree : ", round(dt_classifier_acc*100, 2))
print ("K-NN Classifier : ", round(knn_classifier_acc*100, 2))
print ("Random Forest : ", round(rf_classifier_acc*100, 2))
```

Logistic Regression: 80.22 Support Vector: 81.34 Decision Tree: 80.22 K-NN Classifier: 80.97 Random Forest: 84.7

In []:

Р