2018-08-06

Analog vs. digital, Boolean algebra, equivalence laws Summer Session II 2018

- 1. Analog vs. digital
 - a. Analog represent values by a continuously variable physical quantity
 - i. Here, voltage
 - ii. Key word is continuous
 - iii. Suited to amplification of real world phenomena (sound)
 - iv. Suited to calculating continuous function values (integrals)
 - v. Subject to noise, difficult to debug
 - b. Digital use discrete (discontinuous) values to represent data
 - i. Suited to discrete mathematics (like accounting)
 - ii. Needs to sample continuous data
 - 1. Will miss data that fluctuates faster than sampling rate
 - iii. Fixed 0 and 1, low and high, false and true
 - iv. Far more resistant to noise, easier to debug

2. Boolean algebra

- a. Algebra of truth values 0 and 1, along with conjunction (AND), disjunction (OR), and negation
 - i. George Boole, 1854
 - ii. Claude Shannon, 1938, uses it to solve circuit design problems
- b. * = AND, + = OR, \sim = negation, \oplus = XOR, variables A, B...
- c. Duality principle swap all signs (+, *, 0, 1) and the underlying logic is still the same
- d. Operator precedence: NOT, AND, OR
- e. Logic types
 - i. Combinational output based solely on current input
 - ii. Sequential logic output based on input and previous stored values (memory)

Truth Tables for Digital Design Gates									
Operation:		Negation		AND	NAND	OR	NOR	XOR	
Gates:		a NOT C		a AND C	b NANDOC	a or c	<u>a</u> <u>b</u> NOR OC	<u>a</u> <u>b</u> xor <u>c</u>	
Α	В	~A	~B	A * B	~(A * B)	A + B	~(A + B)	A ⊕ B	
0	0	1	1	0	1	0	1	0	
0	1	1	0	0	1	1	0	1	
1	0	0	1	0	1	1	0	1	
1	1	0	0	1	0	1	0	0	

3. equivalence

Logical

Laws of Logical Equivalence							
OR version	AND version						
A + B = B + A	A * B = B * A						
(A + B) + C = A + (B + C)	(A * B) * C = A * (B * C)						
A + (B * C) = (A + B) * (A +	A * (B + C) = (A * B) + (A *						
C)	C)						
A + A = A	A * A = A						
A + 0 = A	A * 1 = A						
A + 1 = 1	A * 0 = 0						
$A + \sim A = 1$	A * ~A = 0						
~1 = 0	~0 = 1						
~(~A) = A							
~(A + B) = ~A * ~B	~(A * B) = ~A + ~B						
A + (A * B) = A	A * (A + B) = A						
	OR version A + B = B + A (A + B) + C = A + (B + C) A + (B * C) = (A + B) * (A + C) A + A = A A + O = A A + 1 = 1 A +~A = 1 ~1 = 0 ~(~A) = A						

2018-08-06

Analog vs. digital, Boolean algebra, equivalence laws Summer Session II 2018

4. Examples

a. $A + \sim A * B = A + B$. Why?

Assertion	Reason
A + ~A * B	Initial function
= (A + ~A) * (A + B)	Distributive Law for OR
= 1 * (A + B)	Complement Law for OR
= (A + B) * 1	Commutative Law for AND (won't bother with this from now on)
= A + B	Identity Law for AND

b. Prove the OR version of the Absorption Law, A + A * B = A.

Assertion	Reason
A + A * B	Initial function
= (A * 1) + (A * B)	Identity Law for AND
= A * (1 + B)	Distributive Law for AND
= A * (1)	Identity Law for OR
= A	Identity Law for AND

c. Simplify the following digital logic circuit using propositional algebra.

Assertion	Reason
F = ((A * ~B) + (A * B)) * B	Initial circuit logic
= (A * (~B + B)) * B	Distributive Law for OR
= (A * 1) * B	Complement Law for OR
= A * B	Identity Law for AND