Decidable Languages

Recall that:

A language L is Turing-Acceptable if there is a Turing machine M that accepts L

Also known as: Turing-Recognizable or Recursively-enumerable languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \longrightarrow M$$
 halts in a non-accept state or loops forever

Definition:

A language L is decidable if there is a Turing machine (decider) M which accepts L and halts on every input string

Also known as recursive languages

For any string w:

$$w \in L \longrightarrow M$$
 halts in an accept state

$$w \notin L \implies M$$
 halts in a non-accept state

Every decidable language is Turing-Acceptable

Sometimes, it is convenient to have Turing machines with single accept and reject states

These are the only halting states

That result to possible halting configurations

We can convert any Turing machine to have single accept and reject states

Old machine

Multiple accept states

New machine

One accept state

Do the following for each possible halting state:

Old machine

Multiple reject states

New machine

One reject state

other transitions of q_i

For a decidable language L:

For each input string, the computation halts in the accept or reject state

For a Turing-Acceptable language L:

It is possible that for some input string the machine enters an infinite loop Problem: Is number x prime?

Corresponding language:

$$PRIMES = \{1, 2, 3, 5, 7, ...\}$$

We will show it is decidable

Decider for PRIMES:

On input number X:

Divide x with all possible numbers between 2 and \sqrt{x}

If any of them divides X

Then reject

Else accept

the decider for the language solves the corresponding problem

Decider for PRIMES

Theorem:

If a language L is decidable, then its complement \overline{L} is decidable too

Proof:

Build a Turing machine M' that accepts \overline{L} and halts on every input string (M') is decider for \overline{L}

Transform accept state to reject and vice-versa

MM' q'_{reject} q_{accept} q'_{accept} **q**reject

Turing Machine M'

On each input string w do:

- 1. Let M be the decider for L
- 2. Run M with input string w If M accepts then reject If M rejects then accept

Accepts \overline{L} and halts on every input string

Undecidable Languages

An undecidable language has no decider: each Turing machine that accepts L does not halt on some input string

Non Turing-Acceptable \overline{L}

