ОТКЛИК СИСТЕМЫ K₃[Fe(CN)₆] / K₄[Fe(CN)₆] НА ДОБАВЛЕНИЕ ПЕРОКСИДА ВОДОРОДА И АСКОРБИНОВОЙ КИСЛОТЫ

Нилова А.Б., Фокина А.И., Сазанов А.В. Вятский государственный университет 610000, г. Киров, ул. Московская, д. 36

В настоящее время активно исследуются свойства экзогенных антиоксидантов (АО) с целью подбора оптимальных для борьбы с окислительным стрессом в организме человека. Для более точной оценки действия экзогенных АО необходимо их изучение при совместном присутствии с активными формами кислорола.

Цель работы — подобрать соотношение компонентов медиаторной системы $K_3[Fe(CN)_6]$ / $K_4[Fe(CN)_6]$ для оценки антиоксидантных свойств аскорбиновой кислоты в присутствии раствора пероксида водорода потенциометрическим методом.

Для оценки антиоксидантных свойств веществ в стандартном потенциометрическом методе применяется медиаторная система с соотношением солей $K_3[Fe(CN)_6] / K_4[Fe(CN)_6] = 0.01/0.00001 M. Однако при введении в данную си$ стему раствора пероксида водорода ЭДС системы уменьшается ($\Delta E = -18.2 \text{ мB}$), что указывает на действие пероксида водорода в качестве восстановителя. Использование раствора пероксида водорода в качестве АФК в данных условиях затруднительно. Поэтому подобрано соотношение $K_3[Fe(CN)_6] / K_4[Fe(CN)_6] = 0,00005/0,001 M.$ При введении в данную медиаторную систему (V = 50,0 мл) раствора пероксида водорода наблюдается увеличение ЭДС, что указывает на действие пероксида в качестве окислителя. При введении раствора АО (аскорбиновой кислоты) отмечается уменьшение ЭДС. При одновременном введении растворов пероксида водорода и аскорбиновой кислоты наблюдается снижение величины скачка ЭДС, что свидетельствует о взаимодействии АО с пероксидом. При этом значение становится отрицательным. Величины скачков ЭДС представлены в таблице.

Величина скачка ЭДС при введении растворов аскорбиновой кислоты и H₂O₂

	ΔЕ, мВ	
	$K_3[Fe(CN)_6] / K_4[Fe(CN)_6]$	$K_3[Fe(CN)_6] / K_4[Fe(CN)_6]$
	0,01/0,00001 M	0,00005/0,001 M
H_2O_2 (V = 4,5 мл)	-(14,6±3,4)	99,3±0,2
Аскорбиновая кислота (V = 1 мл)	-(65,7±0,2)	-(83,0±0,0)
H ₂ O ₂ + аскорбиновая кис- лота	-52,1	-35,3
$C(H_2O_2)$ в аликвоте = 3 мг/мл, C (аскорбиновой кислоты) в аликвоте = 1 мг/мл		

Таким образом, подобрано соотношение компонентов медиаторной системы $K_3[Fe(CN)_6]$ / $K_4[Fe(CN)_6]$, позволяющее оценить антиоксидантные свойства веществ в присутствии пероксида водорода.