Assignment: NP-Completeness and Heuristic Algorithms

1. NP-Completeness: Consider the Travelling Salesperson (TSP) problem that was covered in the exploration.

Problem: Given a graph G with V vertices and E edges, determine if the graph has a TSP solution consisting of a cost k.

Prove that the above stated problem is NP-Complete

2. Implement Heuristic Algorithm:

a. Below matrix represents the distance of 5 cities from each other. Represent it in the form of a graph

	Α	В	С	D	Е
Α	0	2	3	0	0
В	2	0	15	2	0
С	3	15	0	0	13
D	0	2	0	0	9
Е	0	0	13	9	0

- b. Apply Nearest-neighbour heuristic to this matrix and find the approximate solution for this matrix if it were for TSP problem.
- c. What is the accuracy ratio of your approximate solution?
- d. Write the pseudocode for the nearest neighbour heuristic

(Ungraded question: you can try this question if time permits)
Implement the Minimum Spanning Tree-based approach for the TSP problem that was discussed in
the exploration. Name your function approx_tsp_algo(G). Name your file TSP.py
Debriefing (required!):
Report:

- 1. Approximately how many hours did you spend on this assignment?
- 2. Would you rate it as easy, moderate, or difficult?
- 3. How deeply do you feel you understand the material it covers (0%–100%)?
- 4. Any other comments?

Note: 'Debriefing' section is intended to help us calibrate the assignments.