CaliFormer: Leveraging Unlabeled Measurements to Calibrate Sensors with Self-supervised Learning

Haoyang Wang¹, Yuxuan Liu¹, Chenyu Zhao¹, Jiayou HE², Wenbo Ding¹, Xinlei Chen¹

¹Shenzhen International Graduate School, ²Hong Kong University of Science and Technology

Air Pollution Takes Away a lot of lives

In 2019, air pollution caused 4.2 million deaths worldwide [1]

2

[1] https://www.who.int/zh/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health

Response: Environment Monitoring

Design specific sensors to monitor the quality of air

- Cheng Y, Li X, Li Z, et al. AirCloud: A cloud-based air-quality monitoring system for everyone[C]//Proceedings of the 12th ACM Conference on Embedded Network Sensor Systems. 2014: 251-265.
- Daepp M I G, Cabral A, Ranganathan V, et al. Eclipse: an end-to-end platform for low-cost, hyperlocal environmental sensing in cities[C]//2022 21st ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN). IEEE, 2022: 28-40.

2023-11-26

3

Key issue: the quality of the measurements

The monitoring systems heavily depends on the quality of measurements

One-to-one calibration

Utilize measurements at a single time step to predict a calibrated sensor value for the same time step

5

Many-to-one calibration

Utilizes measurements in recent past to capture measured phenomena and the temporal dynamics

6

Many-to-Many calibration

Utilizes measurements in recent past and near future to calibrating low-cost measurements

7

Many-to-Many calibration

Providing immediate calibration with its gradual refinement as further measurements become available

8

Existing Methods

However, all these methods are data-hungry, and it's hard to collect sufficient data

Reason 1

Sparsely distributed monitoring stations

Reason 2

Various combinations of sensors and usage scenarios

Research problem

How to scale data-driven system to sensing calibration with limited labeled data?

In mathematical form, how to minimize the following loss function with limited labeled data?

10

Observation: time- and spatial-invariant knowledge

Framework Overview

1. Self-supervised learning phase

CaliFormer: Representation Learning Model

Inspired by the efficiency of the Transformer in sequence-to-sequence prediction tasks

MLP Layer norm

 α, β : adjustable trade-off coefficient to balance the importance of two parts of the loss function

Experiments Setup

- Datasets: Beijing Data Set, which comprise PM2.5 (particles of diameter less than 2.5μm) measurements at seven locations in Beijing. The sensor reports seven feature measurements at a time which are utilized to train the models.
 There are 60450 samples used in the experiments.
- **Preprocessing**: We split the sensor measurements into the training (60%), validation (20%), and test (20%) sets. The training set is then split into the labeled set (1%) and unlabeled set(99%).
- Methods in comparison: (1) Naïve; (2) SensorFormer (SF): To the best of our knowledge, SF is the state-of-the-art many-to-many calibration method, which is based on the Transformer model; (3) SensorFormer-mo (SF-mo). SF-mo is the many-to-one version of state-of-the-art calibration method, which means this method do not use lossshape in the loss function. (4) SensorFormer-oo (SF-oo) [7]. SF-oo is the one-to-one version of state-of-the-art calibration method. (5) CaliFormer-FT. CaliFormer-FT stands for CaliFormer with the fine-tune decoder.
- Metric: Mean Absolute Error (MAE)

Overall Performance

TABLE I OVERALL PERFORMANCE WITH 1% LABELED DATA, WHICH IS SHOWN IN ${\rm MAE}(\mu{\rm G}/m^3)$.

Methods	Naive	SF-oo	SF-mo	SF	CaliFormer-FT
MAE	31.25	25.20	24.91	24.08	18.20

TABLE II PERFORMANCE WITH DIFFERENT LABELING RATES, WHICH IS SHOWN IN ${\rm MAE}(\mu{\rm G}/m^3)$.

Labeling rate	0.5%	1%	2%	5%	10%	Average
Naive	31.25	31.25	31.25	31.25	31.25	31.25
SF-oo	29.89	25.20	24.68	21.93	21.78	24.70
SF-mo	29.72	24.91	22.33	21.77	20.86	23.92
SF	29.74	24.08	22.11	21.70	20.37	23.60
CaliFormer-FT	19.91	18.20	15.20	14.84	14.57	16.54

Overall performances: with only 1% of the labeled dataset. The CaliFormer-FT outperforms the state-of-theart method SF by 25%. This is because the CaliFormer extracts *effective representation* from unlabeled data.

Varying labeling rate: the performance with different labeling rates, varying from 0.5% to 10%. The fine-tune decoder achieve better performance with learned CaliFormer. *The gain is significant with low labeling rate.*

Calibration results

Compared to other baselines, CaliFormer-FT performs better, especially during the peak periods

Observations and Contributions

- To the best of our knowledge, CaliFormer is the **first attempt** to incorporate **self-supervised learning** into sensor calibration. Compared to prior research, the CaliFormer **necessitates significantly less labeled data**, which constitutes a tangible advancement toward **practical in-field sensor calibration**.
- Drawing inspiration from the Transformer architecture, we develop the CaliFormer to process multi-modal sensor data. Additionally, we propose a set of enhancements in pre-training methodology and model architecture to facilitate the effective training of the calibration model.
- A prototype system is developed and experimentally compared with **state-of-the-art methods**. Extensive evaluation results demonstrate the **effectiveness** of the CaliFormer based calibration system.

22

Thank you for listening

Haoyang Wang, Yuhan Cheng, Baining Zhao Lab 2C

