W4995 Applied Machine Learning

Preprocessing and Feature Transformations

02/05/20

Andreas C. Müller

Coming up with features is difficult, time-consuming, requires expert knowledge. "Applied machine learning" is basically feature engineering.

Andrew Ng

Scaling

Scaling and Distances

Scaling and Distances

Ways to Scale Data

Sparse Data

- Data with many zeros only store non-zero entries.
- Subtracting anything will make the data "dense" (no more zeros) and blow the RAM.
- Only scale, don't center (use MaxAbsScaler)

Standard Scaler Example

```
from sklearn.linear_model import Ridge
# Back to King Country house prices
X_train, X_test, y_train, y_test = train_test_split(
    X, y, random_state=0)

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)

ridge = Ridge().fit(X_train_scaled, y_train)
X_test_scaled = scaler.transform(X_test)
ridge.score(X_test_scaled, y_test)
```

0.684

Sckit-Learn API Summary

estimator.fit(X, [y])

estimator.predict	estimator.transform
Classification	Preprocessing
Regression	Dimensionality reduction
Clustering	Feature selection
	Feature extraction

12/48

```
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import RidgeCV
scores = cross_val_score(RidgeCV(), X_train, y_train, cv=10)
np.mean(scores), np.std(scores)

(0.694, 0.027)
scores = cross_val_score(RidgeCV(), X_train_scaled, y_train, cv=10)
np.mean(scores), np.std(scores)

(0.694, 0.027)
from sklearn.neighbors import KNeighborsRegressor
scores = cross_val_score(KNeighborsRegressor(), X_train, y_train, cv=10)
np.mean(scores), np.std(scores)

(0.500, 0.039)
from sklearn.neighbors import KNeighborsRegressor
scores = cross_val_score(KNeighborsRegressor(), X_train_scaled, y_train, cv=10)
np.mean(scores), np.std(scores)
```

(0.786, 0.030)

A note on preprocessing (and pipelines)

A common errror

```
print(X.shape)
(100, 10000)
 # select most informative 5% of features
 from sklearn.feature_selection import SelectPercentile, f_regression
 select = SelectPercentile(score_func=f_regression, percentile=5)
 select.fit(X, y)
 X selected = select.transform(X)
 print(X selected.shape)
(100, 500)
 from sklearn.model_selection import cross_val_score
 from sklearn.linear_model import Ridge
 np.mean(cross_val_score(Ridge(), X_selected, y))
0.90
 ridge = Ridge().fit(X_selected, y)
 X_test_selected = select.transform(X_test)
 ridge.score(X_test_selected, y_test)
```

-0.18

Leaking Information

```
# BAD!
select.fit(X, y) # includes the cv test parts!
X_sel = select.transform(X)
scores = []
for train, test in cv.split(X, y):
    ridge = Ridge().fit(X_sel[train], y[train])
    score = ridge.score(X_sel[test], y[test])
    scores.append(score)
```

```
# GOOD!
scores = []
for train, test in cv.split(X, y):
    select.fit(X[train], y[train])
    X_sel_train = select.transform(X[train])
    ridge = Ridge().fit(X_sel_train, y[train])
    X_sel_test = select.transform(X[test])
    score = ridge.score(X_sel_test, y[test])
    scores.append(score)
```

Need to include preprocessing in cross-validation!

```
# Housing data example
from sklearn.linear_model import Ridge
X, y = df, target

scaler = StandardScaler()
scaler.fit(X_train)
X_train_scaled = scaler.transform(X_train)
ridge = Ridge().fit(X_train_scaled, y_train)

X_test_scaled = scaler.transform(X_test)
ridge.score(X_test_scaled, y_test)
```

0.684

```
from sklearn.pipeline import make_pipeline
pipe = make_pipeline(StandardScaler(), Ridge())
pipe.fit(X_train, y_train)
pipe.score(X_test, y_test)
```

0.684

 $X' \xrightarrow{\text{T1.transform}(X')} X' 1 \xrightarrow{\text{T2.transform}(X')} X' 2 \xrightarrow{\text{Classifier.predict}(X'2)} Y'$

Undoing our feature selection mistake

```
# BAD!
select.fit(X, y) # includes the cv test parts!
X_sel = select.transform(X)
scores = []
for train, test in cv.split(X, y):
    ridge = Ridge().fit(X_sel[train], y[train])
    score = ridge.score(X_sel[test], y[test])
    scores.append(score)
```

Same as:

0.90

```
select.fit(X, y)
X_selected = select.transform(X, y)
np.mean(cross_val_score(Ridge(), X_selected, y))
```

```
# GOOD!
scores = []
for train, test in cv.split(X, y):
    select.fit(X[train], y[train])
    X_sel_train = select.transform(X[train])
    ridge = Ridge().fit(X_sel_train, y[train])
    X_sel_test = select.transform(X[test])
    score = ridge.score(X_sel_test, y[test])
    scores.append(score)
```

Same as:

```
pipe = make_pipeline(select, Ridge())
np.mean(cross_val_score(pipe, X, y))
```

-0.079

Naming Steps

Pipeline and GridSearchCV

```
from sklearn.model_selection import GridSearchCV

knn_pipe = make_pipeline(StandardScaler(), KNeighborsRegressor())
param_grid = {'kneighborsregressor_n_neighbors': range(1, 10)}
grid = GridSearchCV(knn_pipe, param_grid, cv=10)
grid.fit(X_train, y_train)
print(grid.best_params_)
print(grid.score(X_test, y_test))

{'kneighborsregressor_n_neighbors': 7}
0.60
```

Going wild with Pipelines

Going wilder with Pipelines

Going wildest with Pipelines

Categorical Variables

Categorical Variables

```
import pandas as pd
df = pd.DataFrame({
  'boro': ['Manhattan', 'Queens', 'Manhattan', 'Brooklyn', 'Brooklyn', 'Bronx'],
  'salary': [103, 89, 142, 54, 63, 219],
        'vegan': ['No', 'No', 'Yes', 'Yes', 'No']})
```

	boro	salary	vegan
0	Manhattan	103	No
1	Queens	89	No
2	Manhattan	142	No
3	Brooklyn	54	Yes
4	Brooklyn	63	Yes
5	Bronx	219	No

Ordinal encoding

df['boro_ordinal'] = df.boro.astype("category").cat.codes
df

	boro	salary	vegan
0	2	103	No
1	3	89	No
2	2	142	No
3	1	54	Yes
4	1	63	Yes
5	0	219	No

Ordinal encoding

df['boro_ordinal'] = df.boro.astype("category").cat.codes
df

	boro	salary	vegan
0	2	103	No
1	3	89	No
2	2	142	No
3	1	54	Yes
4	1	63	Yes
5	0	219	No

Ordinal encoding

df['boro_ordinal'] = df.boro.astype("category").cat.codes
df

	boro_ordinal	salary	vegan
0	2	103	No
1	3	89	No
2	2	142	No
3	1	54	Yes
4	1	63	Yes
5	0	219	No

One-Hot (Dummy) Encoding

	boro	salary	vegan
0	Manhattan	103	No
1	Queens	89	No
2	Manhattan	142	No
3	Brooklyn	54	Yes
4	Brooklyn	63	Yes
5	Bronx	219	No

pd	pd.get_dummies(df)										
	salary	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens	vegan_No	vegan_Yes				
0	103	0	0	1	0	1	C				
1	89	0	0	0	1	1	C				
2	142	0	0	1	0	1	C				
3	54	0	1	0	0	0	1				
4	63	0	1	0	0	0	1				
5	219	1	0	0	0	1	C				

One-Hot (Dummy) Encoding

	boro	salary	vegan
0	Manhattan	103	No
1	Queens	89	No
2	Manhattan	142	No
3	Brooklyn	54	Yes
4	Brooklyn	63	Yes
5	Bronx	219	No

pd	od.get_dummies(df, columns=['boro'])								
	salary	vegan	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens			
0	103	No	0	0	1	0			
1	89	No	0	0	0	1			
2	142	No	0	0	1	0			
3	54	Yes	0	1	0	0			
4	63	Yes	0	1	0	0			
5	219	No	1	0	0	0			

One-Hot (Dummy) Encoding

	boro	salary	vegan
0	2	103	No
1	3	89	No
2	2	142	No
3	1	54	Yes
4	1	63	Yes
5	0	219	No

pd	pd.get_dummies(df_ordinal, columns=['boro'])							
	salary	vegan	boro_0	boro_1	boro_2	boro_3		
0	103	No	0	0	1	0		
1	89	No	0	0	0	1		
2	142	No	0	0	1	0		
3	54	Yes	0	1	0	0		
4	63	Yes	0	1	0	0		
5	219	No	1	0	0	0		

	salary	vegan	boro_Bronx	boro_Brooklyn	boro_Manhattan	boro_Queens
0	103	No	0	0	1	0
1	89	No	0	0	0	1
2	142	No	0	0	1	0
3	54	Yes	0	1	0	0
4	63	Yes	0	1	0	0
5	219	No	1	0	0	0

<pre>df = pd.DataFrame({ 'boro': ['Brooklyn', 'Manhattan', 'Brooklyn',</pre>

		salary	vegan	boro_Brooklyn	boro_Manhattan	boro_Queens	boro_Stater Island
	0	61	Yes	1	0	0	C
	1	146	No	0	1	0	C
	2	142	Yes	1	0	0	C
	3	212	No	0	0	1	C
	4	98	Yes	1	0	0	C
	5	47	No	0	0	0	1

Pandas Categorical Columns

	salary	vegan	boro_Manhattan	boro_Queens	boro_Brooklyn	boro_Bronx	boro_Staten Island
0	103	No	1	0	0	0	0
1	89	No	0	1	0	0	0
2	142	No	1	0	0	0	0
3	54	Yes	0	0	1	0	0
4	63	Yes	0	0	1	0	0
5	219	No	0	0	0	1	0

34 / 48

OneHotEncoder

• Always transforms all columns

OneHotEncoder + ColumnTransformer

```
categorical = df.dtypes == object

preprocess = make_column_transformer(
    (StandardScaler(), ~categorical),
    (OneHotEncoder(), categorical))

model = make_pipeline(preprocess, LogisticRegression())
```


Dummy variables and colinearity

- One-hot is redundant (last one is 1 sum of others)
- Can introduce co-linearity
- Can drop one
- Choice which one matters for penalized models
- Keeping all can make the model more interpretable

Models Supporting Discrete Features

- In principle:
 - o All tree-based models, naive Bayes
- In scikit-learn:
 - Some Naive Bayes classifiers.
- In scikit-learn "soon":
 - Decision trees, random forests, gradient boosting

Target Encoding (Impact Encoding)

Target Encoding (Impact Encoding)

- For high cardinality categorical features
- Instead of 70 one-hot variables, one "response encoded" variable.
- For regression:
 - o "average price in zip code"
- Binary classification: "building in this zip code have a likelihood p for class 1"
- Multiclass: One feature per class: probability distribution

More encodings for categorical features:

http://contrib.scikit-learn.org/categorical-encoding/

Load data, include ZIP code

X_train.	.head()											
	bedrooms	bathrooms	sqft_living	sqft_lot	floors		zipcode	lat	long	sqft_living15	sqft_lot15	
10666	4.0	2.50	2160.0	7000.0	2.0		98029.0	47.566	-122.013	2300.0	7440.0	
19108	4.0	4.25	3250.0	11780.0	2.0		98004.0	47.632	-122.203	1800.0	9000.0	
20132	3.0	2.50	1280.0	1920.0	3.0		98105.0	47.662	-122.324	1450.0	1900.0	
16169	4.0	1.50	1220.0	9600.0	1.0		98014.0	47.646	-121.909	1180.0	9000.0	
16890	3.0	1.50	2120.0	6290.0	1.0		98108.0	47.566	-122.318	1620.0	5400.0	
	te = TargetEncoder(cols='zipcode').fit(X_train, y_train) te.transform(X_train).head()											
	bedrooms	bathrooms	sqft_living	sqft_lot	floors		zipcode	e lo	ıt long	g sqft_living15	5 sqft_lot15	
10666	4.0	2.50	2160.0	7000.0	2.0		6.164e+05	5 47.56	6 -122.013	3 2300.0	7440.0	
19108	4.0	4.25	3250.0	11780.0	2.0		1.357e+06	47.63	2 -122.203	1800.0	9000.0	
20132	3.0	2.50	1280.0	1920.0	3.0		8.503e+05	47.66	2 -122.32	1450.0	1900.0	
16169	4.0	1.50	1220.0	9600.0	1.0		4.464e+05	5 47.64	6 -121.909	1180.0	9000.0	
16890	3.0	1.50	2120.0	6290.0	1.0		3.604e+05	47.56	6 -122.318	3 1620.0	5400.0	

98014.0

98105.0 price 616356.941 1.357e+06 850306.816 446448.065 360416.811

98004.0

98029.0

zipcode

```
X = data.frame.drop(['date', 'price', 'zipcode'], axis=1)
scores = cross_val_score(Ridge(), X, target)
np.mean(scores)
```

```
X = data.frame.drop(['date', 'price', 'zipcode'], axis=1)
scores = cross_val_score(Ridge(), X, target)
np.mean(scores)
```

```
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder
X = data.frame.drop(['date', 'price'], axis=1)

ct = make_column_transformer((OneHotEncoder(), ['zipcode']), remainder='passthrough')
pipe_ohe = make_pipeline(ct, Ridge())
scores = cross_val_score(pipe_ohe, X, target)
np.mean(scores)
```

0.52

```
X = data.frame.drop(['date', 'price', 'zipcode'], axis=1)
scores = cross_val_score(Ridge(), X, target)
np.mean(scores)
```

```
from sklearn.compose import make_column_transformer
from sklearn.preprocessing import OneHotEncoder
X = data.frame.drop(['date', 'price'], axis=1)

ct = make_column_transformer((OneHotEncoder(), ['zipcode']), remainder='passthrough')
pipe_ohe = make_pipeline(ct, Ridge())
scores = cross_val_score(pipe_ohe, X, target)
np.mean(scores)
```

0.52

```
from category_encoders import TargetEncoder
X = data.frame.drop(['date', 'price'], axis=1)
pipe_target = make_pipeline(TargetEncoder(cols='zipcode'), Ridge())
scores = cross_val_score(pipe_target, X, target)
np.mean(scores)
```

0.78

Questions?