23-01-2023 (E) 271



Semester: August 2022 – December 2022 (Jan. 2023)

Maximum Marks: 100 Examination: ESE Examination D57 (P27+R7) Duration: 3 Hrs.

Programme code: 01

Programme: B. Tech Computer Engineering

Name of the Constituent College:

K. J. Somalya College of Engineering

Course Code: 116U01C301 Name of the Course: Integral transform and Vector Calculus.

Instructions: 1) Draw neat diagrams 2) All questions are compulsory

3) Assume suitable data wherever necessary

| Que.<br>No. | Question                                                                                                                                                                          | Max.<br>Marks |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Q1          | Solve any Four of the following                                                                                                                                                   | 20            |
| i)          | Find $L(e^{-3t}\sin^2 t)$ .                                                                                                                                                       | 05            |
| ii)         | Find $L^{-1}\left(\frac{s}{(s-2)^6}\right)$                                                                                                                                       | 0.5           |
| iii)        | Obtain a half – range sine series in $(0, \pi)$ for $f(x) = x(\pi - x)$ .                                                                                                         | 05            |
| iv)         | Find Z-Transform of $\cos \alpha k$ for $k \ge 0$                                                                                                                                 | 105           |
| v)          | Prove that $(\overline{a} \times \overline{b}) \times (\overline{a} \times \overline{c}) = [(\overline{a} \times \overline{b}) \cdot \overline{c}] \overline{a}$                  | 05            |
| vi)         | Evaluate $\int_A^B (x^2 - y^2 + x) dx - (2xy + y) dy$ along the parabola $y^2 = x$ from $A(0,0)$ to $B(1,1)$ .                                                                    | 05            |
| Q2 A        | Solve the following                                                                                                                                                               | 10            |
| i)          | Evaluate using Laplace transform $\int_0^\infty \frac{e^{-2t}-e^{-3t}}{t} dt$ .                                                                                                   | 05            |
| ii)         | Find $L^{-1}\left[\tan^{-1}\frac{a}{s}\right]$ .                                                                                                                                  | 05            |
|             | OR                                                                                                                                                                                | 1- 1          |
| Q2 A        | Find Fourier series for $f(x) = x^2$ in $(0,2\pi)$ .                                                                                                                              | 01            |
|             | Hence deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} + \cdots$ .                                                                                   | 100           |
| 22B         | Solve any One of the following                                                                                                                                                    | 10            |
| i)          | Solve $(D^2 - D - 2)y = 20 \sin 2t$ , $y(0) = 1$ and $y'(0) = 2$ using Laplace transforms.                                                                                        | 10            |
| ii)         | Find Fourier Series of $f(x) = \begin{cases} \frac{\pi}{2} + x & -\pi < x < 0 \\ \frac{\pi}{2} - x & 0 < x < \pi \end{cases}$                                                     | 10            |
|             | Hence deduce that<br>a) $\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$ b) $\frac{\pi^4}{96} = \frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \cdots$ |               |

| Q    | 3 Solve any Two of the following                                                                                                                                                                                                                                                                      | -    |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1)   |                                                                                                                                                                                                                                                                                                       | 2    |
|      | $f(x) = \begin{cases} -c, -a < x < 0 \\ c, & 0 < x < a \end{cases}$ in the range $(-a, a)$ .                                                                                                                                                                                                          | 0    |
|      | (b) Find Fourier Transform of $f(x) = \begin{cases} 1 & \text{for }  x  < 1 \\ 0 & \text{for }  x  > 1 \end{cases}$                                                                                                                                                                                   | 0.   |
| ii)  | Show that $\bar{F} = (2xyz^2)i + (x^2z^2 + z\cos yz)j + (2x^2yz + y\cos yz)k$ is conservative. Find the scalar potential $\Phi$ such that $\bar{F} = \nabla \Phi$ and hence find the work done by $\bar{F}$ in displacing a particle from $A(0,0,1)$ to $B(1,\pi/4,2)$ along the straight line $AB$ . |      |
| iii) | Verify Green's Theorem in the plane for                                                                                                                                                                                                                                                               |      |
|      | $\oint_{C} [(xy + y^{2})dx + x^{2}dy]$ Where C is the closed curve of the region bounded by $y = x$ and $y^{2} = x$ .                                                                                                                                                                                 | 10   |
| Q4   | Solve any Two of the following                                                                                                                                                                                                                                                                        | 16   |
| i)   | (a) Find $Z[\frac{1}{K}]$                                                                                                                                                                                                                                                                             | 20   |
|      | (b) Prove that $\nabla \cdot \left[ \frac{logr}{r} \ \overline{r} \right] = \frac{1}{r} [1 + 2logr]$                                                                                                                                                                                                  | 05   |
| ii)  | Prove that $\overline{F} = (x + 2y + az)i + (bx - 3y - z)j + (4x + cy + 2z)k$ is solenoidal and determine the constants $a, b, c$ if $\overline{F}$ is irrotational.                                                                                                                                  | ,1() |
| iii) | Using Stokes theorem evaluate $\int_{c} \bar{F}  d\bar{r}$                                                                                                                                                                                                                                            |      |
|      | where $\overline{F} = 2y(1-x)\hat{\imath} + (x-x^2-y^2)\hat{\jmath} + (x^2+y^2+z^2)\hat{k}$ and C is the boundary of the plane $x+y+z=2$ Cut off by the coordinate planes.                                                                                                                            | 10   |
| Q5   | Solve any Four of the following                                                                                                                                                                                                                                                                       |      |
| i)   | Evaluate $\int_0^\infty e^{-t} [1 + 2t - t^2 + t^3] H(t-1) dt$ using Laplace transform.                                                                                                                                                                                                               | 20   |
| ii)  | Find $l^{-1} \left( \begin{array}{c} s^2 \end{array} \right)$ using Laplace transform.                                                                                                                                                                                                                | 05   |
| ii)  | Find $L^{-1}\left(\frac{s^2}{(s^2+1)^2}\right)$ using convolution theorem.                                                                                                                                                                                                                            | 05   |
| v)   | Obtain the complex form of Fourier Series for $f(x) = e^{ax}$ in $(0, a)$ .                                                                                                                                                                                                                           | 0.5  |
|      | Find $Z^{-1}\left[\frac{1}{(z-3)(z-2)}\right]$ for $ z  > 3$                                                                                                                                                                                                                                          | 05   |
| 7)   | Find the angle between the surfaces $x \log z + 1 - y^2 = 0$ and $x^2y + z = 2$ at $(1, 1, 1)$ .                                                                                                                                                                                                      | 05   |
| i)   | Find the directional derivatie of $\emptyset = xy + yz + xz$ at (1,2,1) along the normal to the surface $x^2 + y^2 = z + 4$ at (1,1,-2)                                                                                                                                                               | 05   |