

Goal

- Machine Translation
 - requires alignment of source with output sentence
- Parallel calculation

Previous Works

Alignment using

Multi Head Attention

Focus: Ad hoc Retrieval

Given: query q

collection of texts

Return: a ranked list of k texts $d_1 \dots d_k$

Maximizing: a metric of interest

metric: 0.66

3.

Information Retrieval Basics I

Vector Space Model

- queries q + documents d
 represented as vectors
- represented as vectors
 use cosine similarity between
 query and documents for ranking

$$\sin(d_1,d_2) = \ \cos heta = rac{ec{d_1}\cdotec{d_2}}{\left|ec{d_1}
ight|\left|ec{d_2}
ight|}$$

Dot Product Attention

→ Context of all other words influences the output vector of token ti

- → Weights determined by current vector (mini neural network is trained here)
- → Context of all other words influences the output vector of token ti

- → Weights determined by current vector (mini neural network is trained here)
- → Context of all other words influences the output vector of token ti

- → Weights determined by current vector (mini neural network is trained here)
- → Context of all other words influences the output vector of token ti

- → Weights determined by current vector (mini neural network is trained here)
- → Context of all other words influences the output vector of token ti

Visualization of weights of one attention head:

- → Weights determined by current vector (mini neural network is trained here)
- → Context of all other words influences the output vector of token to

Encoder

- Repeated self attention
- Skip connections for gradient flow
- Normalization for
 - gradient flow
 - Cosine distance

Positional Encoding

- Problem: Dot-Product attention doesn't consider distance of words in a document.
- Add a positional encoding to each token

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{\text{model}}})$$

 $PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{\text{model}}})$

i ... dimension

Positional Encoding

Decoder

Prediction Step

Decoder

Prediction Step

https://jalammar.github.io/illustrated-transformer/

Prediction Step

Decoder

Prediction Step

Decoder

Training Optimization

- What we saw before
 - Iterative prediction
- During training we know the target sentence
 - We can make all predictions in parallel

Masked Self Attention

	Input1	Input2	Input3	Input4	
Input1					→ K,V
Input2					→ K,V
Input3					→ K,V
Input3					→ K,V

	<beg></beg>	Out1	Out2	Out3	
<beg></beg>					→ Q1
Out1					→ Q2
Out2					→ Q3
Out3					→ Q4

-> parallel prediction of all tokens (training only)