

Towards Diverse Perspective Learning with Selection over Multiple Temporal Poolings

Jihyeon Seong ^{1 *} Jungmin Kim ^{1 *} Jaesik Choi ^{1 2}

*: Equal Contribution ¹KAIST ²INEEJI

Problem & Motivation

- Global pooling in CNN disregards temporal information in time series classification.
- Existing temporal poolings exhibit data dependency based on segmentation type.

To address these issues,

• Selection ensemble learning is applied to the pooling level.

Data-dependency on Temporal Poolings

Figure 1. Different Perspectives of Temporal Poolings.

- Global View: Without segmentation, GTP best performs on time series data with dominant features.
- Uniform Local View: With segmenting in equal lengths, STP best performs on the recursive patterns.
- Dynamic Local View: With segmenting in dynamic lengths based on DTW metric, DTP best performs on complex and noisy patterns.

Multiple Choice Learning

MCL generates M solutions $\hat{Y}_i = (\hat{y}_i^1, ..., \hat{y}_i^M)$, and learns a mapping $g: \mathcal{X} \to \mathcal{Y}^M$ that minimizes oracle loss $min_m \ell(y_i, \hat{y}_i^m)$. The ensemble mapping function g consists of multiple predictors, $g(x) = \{f_1(x), f_2(x), ..., f_M(x)\}$.

- 1. **Ambiguous evidence** refers to situations with insufficient information to make a definitive prediction.
- Presenting a small set of reasonable possibilities can alleviate the over-confidence problem of deep learning rather than striving for a single accurate answer.
- 2. Bias towards the model indicates the model's tendency to learn a mode-seeking behavior to reduce the expected loss across the entire dataset.
 When only a single prediction exists, the model learns to minimize the average error.
- 3. **MCL** generates multiple predictions, allowing classifiers to cover the lower-density regions of the solution space without sacrificing performance on the high-density regions.
- With multiple predictions from multiple classifiers, MCL solves 'ambiguous evidence' and 'bias toward the mode' problems.
- 4. SoM-TP, motivated by MCL, achieves selection ensemble learning at the pooling level.
 - To achieve MCL in the pooling level, SoM-TP dynamically selects optimal pooling by attention mechanism and achieves effective optimization through perspective loss.
- In a single classifier, SoM-TP reflects all temporal poolings with $\mathcal{O}(N)$ optimization cost, while MCL has $\mathcal{O}(N^2)$.

Contributions

- Found data dependency in temporal poolings arising from distinct perspectives.
- Propose SoM-TP, leveraging diverse perspectives through a selection ensemble.
- Employ an attention mechanism to enable non-iterative ensemble learning.
- Define DPLN and perspective loss as a regularizer for effective optimization.

Selection over Multiple Temporal Poolings

Figure 2. SoM-TP Architecture

- From heterogeneous temporal poolings, all pooling outputs are generated.
- Attention block automatically selects optimal pooling at batch level.
- Diverse Perspective Learning Network (DPLN) considers all pooling perspectives for effective selection ensemble learning.

DPL Attention

- Weight vector A_0 cumulatively learns the overall characteristics of dataset.
- A convolutional layer ϕ_0 captures batch-level characteristics.

DPLN & Perspective Loss

- DPLN is a regularization network to accelerate diverse perspective learning from all poolings through perspective loss.
- Perspective loss is a cost function to maximize utilization of DPLN, linking the two networks by KL term.

$$KL(y_{CLS}, y_{DPL}) = y_{DPL} \cdot log \frac{y_{DPL}}{y_{CLS}},$$

$$\mathcal{L}_{DPLN} = -\frac{1}{t} \sum_{n=1}^{t} log P(y = y_n | \mathbf{X}_n),$$

 $\mathcal{L}_{perspective} = KL(y_{CLS}, y_{DPL}) + \mathcal{L}_{DPLN}.$

Cost Function & Optimization

$$\mathcal{L}_{CLS} = -\frac{1}{t} \sum_{n=1}^{t} log P(y = y_n | \mathbf{X}_n), \qquad \mathbf{A_0} \leftarrow \mathbf{A_0} - \eta \cdot \partial \mathcal{L}_{attn} / \partial \mathbf{A_0},$$

$$\mathcal{L}_{cost} = \mathcal{L}_{CLS} + \lambda \cdot \mathcal{L}_{perspective}, \qquad \qquad \mathcal{W}_{\Phi} \leftarrow \mathcal{W}_{\Phi} - \eta \cdot \partial \mathcal{L}_{cost} / \partial \mathcal{W}_{\Phi},$$

$$\mathcal{L}_{attn} = -y_{CLS} \cdot y_{DPL}, \qquad \qquad \mathbf{W} \leftarrow \mathbf{W} - \eta \cdot \partial \mathcal{L}_{cost} / \partial \mathbf{W}.$$

Diverse Perspective Learning Results

Figure 3. Layer-wise Relevance Propagation (LRP): Fixed vs Diverse Perspective Learning

- Utilizing the input attribution method, LRP, the pooling perspective can be analyzed.
- The blue circle indicates well-captured points, while the red circle shows the lost points that should be captured for enhanced performance.
- Due to the unique characteristics of time series data, temporal poolings exhibit drawbacks with single perspectives based on segmentation type.
- SoM-TP addresses the limitations of a single perspective by incorporating diverse perspective learning while also capturing the benefits from individual perspectives.

Dynamic Selection Results

Figure 4. Dynamic Pooling Selection in SoM-TP.

Comparison Results with Advanced Methods

Methods	UCR						UEA				
	Baseline	wins SoM-T	P (Ours) wins	Tie	Avera	ge Rank	Baseline wins	SoM-TP (Our	rs) wins Tie	Average Rank	
Vanilla-Transformer	10		99	4		5.2	3	18	1	4.4	
TCN	28		80	5	_	1.0	4	17	1	4.3	
TST	32		78	3.8	3	3.1	6	15	1	3.6	
ConvTran	35		71	7	3	3.1	8	13	1	3.1	
MLSTM-FCN	46		60	6	2	2.6	6	12	4	3.2	
SoM-TP - MAX	-		-	-	2	2.5	-	-	-	2.5	
Methods	UCR						L	Complexity			
	Acc	F1-score	ROC AUC	PR	AUC	Acc	F1-score	ROC AUC	PR AUC	Complexity	
ROCKET	0.7718	0.7478	0.8899	0.7	7841	0.678	5 <u>0.6592</u>	0.7926	0.6940		
InceptionTime	0.7713	0.7455	0.9056	<u>0.8</u>	3164	0.661	2 0.6360	0.7984	0.7106	$\mathcal{O}(N^2)$	
OS-CNN	0.7663	0.7324	0.9005	0.8	3139	0.680	<u>8</u> 0.6547	0.8118	0.7137		
DSN	0.7488	0.7230	0.8838	0.7	7968	0.564	8 0.5433	0.7575	0.6265		
SoM-TP - MAX	0.7773	0.7489	0.9182	3.0	3261	0.692	0 0.6621	0.8105	0.7099	$\mathcal{O}(N)$	

Table 1. Performance Comparison with Advanced Methods.