Transformation de la matière – chapitre 2 –

TD application : Transformation et équilibre chimique

Combinaisons de réactions et constantes d'équilibre

1) Montrer que, pour des réactions numérotées (1) et (2), de constantes de réactions K_1° et K_2° respectivement, alors une réaction (3) = $\alpha(1) + \beta(2)$ a pour constante

$$K_3^{\circ} = K_1^{\circ \alpha} \times K_2^{\circ \beta}$$

2) On considère les réactions numérotées (1) et (2) ci-dessous :

$$4 \operatorname{Cu}_{(\mathrm{s})} + \operatorname{O}_{2(\mathrm{g})} = 2 \operatorname{Cu}_2 \operatorname{O}_{(\mathrm{s})} \quad K_1^{\circ} \quad \text{et} \quad 2 \operatorname{Cu}_2 \operatorname{O}_{(\mathrm{s})} + \operatorname{O}_{2(\mathrm{g})} = 4 \operatorname{Cu} \operatorname{O}_{(\mathrm{s})} \quad K_2^{\circ}$$

Exprimer les constantes d'équilibre des trois réactions ci-dessous en fonction de K_1° et K_2° :

$$2 \, Cu_{(s)} + O_{2(g)} = 2 \, CuO_{(s)} \quad ; \quad 8 \, Cu_{(s)} + 2 \, O_{2(g)} = 4 \, Cu_2O_{(s)} \quad ; \quad 2 \, Cu_2O_{(s)} = 4 \, Cu_{(s)} + O_{2(g)} = 4 \,$$

Transformations totales

Compléter les tableaux suivants. Les gaz seront supposés parfaits. Dans la ligne intermédiaire, on demande d'exprimer la quantité de matière en fonction de l'avancement molaire $\xi(t)$ à un instant t quelconque.

1) Réaction de l'oxydation du monoxyde d'azote en phase gazeuse, à $T=25\,^{\circ}\mathrm{C}$ dans un volume $V=10.0\,\mathrm{L}$:

Équation		NO _(g) -	$\vdash \dots O_{2(g)}$ –	$n_{ m tot,\ gaz}$	$P_{\rm tot}({\rm bar})$	
Initial (mol)	$\xi = 0$	1,00	2,00	0,00		
Interm. (mol)	ξ					
Final (mol)	$\xi_f =$					

2) Réaction de combustion de l'éthanol dans l'air. Les réactifs sont introduits dans les proportions stœchiométriques. Le dioxygène provient de l'air, qui contient 20% de O_2 et 80% de N_2 en fraction molaire.

Équation (mol)		$C_2H_5OH_{(l)}$	⊢ 3O _{2(g)} −	$n_{ m N_2}$	$n_{ m tot,\ gaz}$	
Initial	$\xi = 0$	2,00				
Interm.	ξ					
Final	$\xi_f =$					

III Équilibre... ou pas!

La dissociation du peroxyde de baryum sert à l'obtention de dioxygène avant la mise au point de la liquéfaction de l'air, selon l'équation

$$2 \operatorname{BaO}_{2(s)} \rightleftharpoons 2 \operatorname{BaO}_{(s)} + \operatorname{O}_{2(g)}$$
 $K^{\circ}(795 \, ^{\circ}\mathrm{C}) = 0.50$

Le volume de l'enceinte, initialement vide de tout gaz, vaut $V=10\,\mathrm{L}$. On rappelle que $R=8.314\,\mathrm{J\cdot K^{-1}\cdot mol^{-1}}$.

- 1) a Exprimer la constante d'équilibre K° en fonction de la pression partielle à l'équilibre $p_{O_2,eq}$.
 - b En déduire la valeur numérique de $p_{O_2,eq}$.
 - c Calculer le nombre de moles de dioxygène qui permet d'atteindre cette pression dans l'enceinte.

2) Cas 1:

Équation		$2BaO_{2(s)} =$	\doteq 2BaO _(s) -	$+$ $O_{2(g)}$	$n_{ m tot,\ gaz}$
Initial (mol)	$\xi = 0$	0,20	0,00	0,00	0,00
Interm. (mol)	ξ				
Final (mol)	$\xi = \xi_f$				

- a Calculer le quotient de réaction initial $Q_{r,0}$ et en déduire le sens d'évolution du système.
- b Remplir le tableau d'avancement et remplir la ligne intermédiaire dans le tableau en fonction de ξ .
- c Déterminer ξ_f en précisant si l'équilibre est atteint ou pas. On rappelle que l'équilibre correspond à la coexistence de toutes les espèces.
- d Remplir la dernière ligne du tableau d'avancement.

3) Mêmes questions dans le cas 2 :

Équation		$2BaO_{2(s)} =$	\Rightarrow 2BaO _(s) -	\vdash $O_{2(g)}$	$n_{ m tot, \ gaz}$
Initial (mol)	$\xi = 0$	0,10	0,00	0,00	0,00
Interm. (mol)	ξ				
Final (mol)	$\xi = \xi_f$				

4) Mêmes questions dans le cas 3:

Équation		$2BaO_{2(s)} =$	$\stackrel{ ightharpoonup}{=}$ 2BaO _(s) -	$+$ $O_{2(g)}$	$n_{ m tot,\ gaz}$
Initial (mol)	$\xi = 0$	0,10	0,050	0,10	0,10
Interm. (mol)	ξ				
Final (mol)	$\xi = \xi_f$				

IV

Équilibre en solution aqueuse

Considérons un système de volume 20 mL évoluant selon la réaction d'équation bilan :

$$CH_3COOH_{(aq)} + F_{(aq)}^- \rightleftharpoons CH_3COO_{(aq)}^- + HF_{(aq)} \qquad K^{\circ}(25 \,^{\circ}C) = 10^{-1,60}$$

Déterminer le sens d'évolution du système et l'avancement à l'équilibre en partant des deux situations initiales suivantes :

1)
$$[CH_3COOH]_0 = [F^-]_0 = c = 0.1 \text{ mol} \cdot L^{-1} \text{ et } [CH_3COO^-]_0 = [HF]_0 = 0$$

2)
$$[CH_3COOH]_0 = [F^-]_0 = [CH_3COO^-]_0 = [HF]_0 = c = 0.1 \text{ mol} \cdot L^{-1}$$

Ions mercure

Les ions mercure (II) $\mathrm{Hg^{2+}}$ peuvent réagir avec le métal liquide (insoluble dans l'eau) mercure Hg pour donner les ions mercure (I) $\mathrm{Hg_2}^{2+}$ selon l'équilibre chimique ci-dessous :

$$Hg_{(aq)}^{2+} + Hg_{(l)} = Hg_2^{+2}{}_{(aq)}$$
 $K^{\circ}(25 \,{}^{\circ}C) = 91$

- 1) Dans quel sens évolue un système obtenu en mélangeant du mercure liquide en large excès avec $V_1=40.0\,\mathrm{mL}$ d'une solution de chlorure de mercure (I) à $c_1=1.0\times10^{-3}\,\mathrm{mol\cdot L^{-1}}$ et $V_2=10.0\,\mathrm{mL}$ d'une solution de chlorure de mercure (II) à $c_2=2.0\times10^{-3}\,\mathrm{mol\cdot L^{-1}}$?
- 2) Déterminer la composition finale de la solution.