Machine Learning for Computer Vision

EE462 (EEE&EIE), EE9SO25, EE9CS728

Tae-Kyun (T-K) Kim Senior Lecturer https://labicvl.github.io/

Lecturers

Lecturer: Dr Tae-Kyun Kim

- Office: EEE 1017

https://labicvl.github.io/

Lecturer: Dr Krystian Mikolajczyk

- Office: EEE 1015

http://www.imperial.ac.uk/people/k.mikolajczyk

GTA: Guillermo Garcia-Hernando

Email: g.garcia-hernando@imperial.ac.uk

- Office: EEE 1009e

https://labicvl.github.io/

GTA: Dr Binod Bhattarai

Email: b.bhattarai@imperial.ac.uk

Office: EEE 1009e

– https://labicvl.github.io/

Imperial College

LondWhy understanding images is hard

Sources of image variability

Sources of image variability

Street scene Scene type Sky Sidewalk **Bollard** Bicycle Scene geometry Building×3 Tree×3 Car×5 Object classes Road Person×4 Bench

Sources of image variability

Street scene Scene type Sky **Bollard** Sidewalk Bicycle Scene geometry Building×3 Tree×3 Car×5 Object classes Road Person×4 Bench Object position Object orientation

Sources of image variability

Scene type
Scene geometry
Object classes
Object position
Object orientation
Object shape

Sources of image variability

Scene type
Scene geometry
Object classes
Object position
Object orientation
Object shape
Depth/occlusions

Sources of image variability

Scene type
Scene geometry
Object classes
Object position
Object orientation
Object shape
Depth/occlusions
Object appearance

Sources of image variability

Scene type Scene geometry Object classes Object position Object orientation Object shape Depth/occlusions Object appearance Illumination **Shadows**

Sources of image variability

Scene type Scene geometry Object classes Object position Object orientation Object shape Depth/occlusions Object appearance Illumination **Shadows**

Sources of image variability

Scene type Scene geometry Object classes Object position Object orientation Object shape Depth/occlusions Object appearance Illumination **Shadows** Motion blur Camera effects

Course Aims

- The course studies concepts, theories and state-of-the-art algorithms for visual learning and recognition.
- The lectures introduce selected topics of visual recognition by machine learning techniques, including: object categorisation, image segmentation, pose estimation, object detection.
- Formulations and theories of machine learning techniques are presented, including: Bag of Words, K-means, Randomised Forests, Boosting.

Imperial College

London Face Recognition vs Object Categorisation

- Both are as multi-class (cf. binary) classification problem.
- The classes are different object categories in object categorisation, while the classes are different person identities in face recognition.

Pose Estimation

- Given an input image, the system yields an output vector of joint angles/locations.
- The joint angles/locations take continuous values, this is formulated as a regression problem.

Object Detection

 The task is to determine the locations and sizes of objects present in an image, given a known object class: e.g. pedestrian, or face.

Backgrounds

The module is coursework-based and the coursework requires Matlab programming.

The lectures require background on:

- Optimisation (EE429)
- Matrix and vector derivatives

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.320.4607&rep=rep1&type=pdf http://cns-classes.bu.edu/cn550/Readings/duda-etal-00.pdf

This module is benefited from

- (EEE courses) 468 Pattern Recognition, Introduction to Machine Learning
- (Computing courses) 316 Computer Vision, 395 Machine Learning, 333
 Robotics, 495 Advanced Statistical Machine Learning and Pattern
 Recognition

^{*}Further reading: Appendix A Mathematical Foundations, R.Duda, P.Hart, D.Stork, Pattern Classification (Second Edition), JOHN WILEY & SONS, Inc. 2001.

Lecture Schedules

20 lectures (in spring term)

- Every Tuesday, 4-6pm (2 hours)
- Room 509A EEE

100% coursework

- Computer programming based (Matlab, other tools)
- 2 courseworks (by the end of lectures)
- (refer to PR or MLCV in the previous years)

Course homepage:

- https://intranet.ee.ic.ac.uk/electricalengineering/eecourses_t
 4/course_content.asp?c=EE4-62&s=T4
- https://bb.imperial.ac.uk

Lecture schedules

Week 1.

- Course Introduction
- Object Categorisation, Bag of Words, Kmeans Clustering for Image Quantisation

Week 2.

Randomised Decision Forests (for classification)

Week 3.

Regression Forests, Pose Estimation

Week 4.

Object Detection, Boosting

Week 5.

 Hands-on Session: Boosting for Face Detection

