

Multipath QUIC: Design and Evaluation

Quentin De Coninck, Olivier Bonaventure quentin.deconinck@uclouvain.be

multipath-quic.org

QUIC = Quick UDP Internet Connection

- TCP/TLS1.3 atop UDP
- Stream multiplexing → HTTP/2 use case
- 0-RTT establishment (most of the time)

HTTP/2
TLS
TCP
IP

Flags Connection ID Packet Number

Encrypted Payload...

Flags Connection ID Packet Number

Encrypted Payload...

Cleartext Public Header

Cleartext Public Header

H2

13

14

15

- Multipath QUIC
 - Bandwidth aggregation
 - Seamless network handover
 - Can try new WiFi while keeping using LTE

Connection is composed of a set of paths

Connection is composed of a set of paths

Connection is composed of a set of paths

Performance monitoring? Loss detection? Path congestion control?

Connection is composed of a set of paths

Connection is composed of a set of paths

Flags Connection ID Path ID Packet Number Encrypted Payload...

Explicit path identification

Connection is composed of a set of paths

Explicit path

Connection is composed of a set of paths

identification -- No path handshake

Path management

Path management

Path management

Packet scheduling

Path management

Packet scheduling

Path management

Packet scheduling

Multipath Mechanisms

Path management

Packet scheduling

Multipath Mechanisms

Path management

Packet scheduling

- Congestion control
 - Opportunistic Linked Increase Algorithm

Evaluation of Multipath QUIC

- (Multipath) QUIC vs. (Multipath) TCP
 - Multipath QUIC: quic-go
 - Linux Multipath TCP v0.91 with default settings
- Mininet environment with 2 paths

Download of 20 MB file

- Over a single stream
- Collect the transfer time

- Download of 20 MB file
 - Over a single stream
 - Collect the transfer time
- For a loss-free scenario

Download of 20 MB file

- Over a single stream
- Collect the transfer time

Router 1 Router 2 Path 2 40ms RTT, 15 Mbps

For a loss-free scenario

MPQUIC has 13% speedup compared to MPTCP

- Download of 20 MB file
 - Over a single stream
 - Collect the transfer time
- For a loss-free scenario
 - MPQUIC has 13% speedup compared to MPTCP
- But what about other topologies?

Experimental design, WSP algorithm

- 2x253 network scenarios
 - Vary the initial path
- Median over 15 runs

Factor	Minimum	Maximum
Capacity [Mbps]	0.1	100
Round-Trip-Time [ms]	0	50
Queuing Delay [ms]	0	100
Random Loss [%]	0	2.5

Additional Results (see paper)

- QUIC benefits more of Multipath than TCP
- Bandwidth aggregation in high BDP
 - MPQUIC still better performs than MPTCP
- Short file transfers
 - (MP)QUIC better thanks to its low latency handshake
- Network handover
 - MPQUIC can be very efficient
 - New frame to communicate path state

Conclusion

- Multipath should be part of any transport protocol
 - Most devices are multihomed
- Designed and implemented Multipath QUIC
 - Source code + artifacts + IETF draft available
 - See multipath-quic.org
- Multipath more promising with QUIC than TCP

What's Next?

Perform tests in actual networks

- Does (MP)QUIC work in your networks?
- Does MPQUIC provides better performances?
- Application running on iOS11
 - https://itunes.apple.com/fr/app/quictester/id1322019644?mt=8
- Feel free to provide feedback :-)

QUICTester

QUICTester

QUIC IPv4 Bulk Download of 10MB

Start

Thanks!

multipath-quic.org