## Grundlagen der Elektrotechnik I: 1. Aufgabenblatt

SS2009

Prof. Dr.-Ing. S. Tschirley



Aufgabensammlung Elektrotechnik I

letzte Änderung: 16. April 2009

# **Kapitel 1**

# Grundbegriffe

## 1.1 Wissensfragen

## 1. Aufgabe: Telefonleitung

Welchen Gleichstromwiderstand hat eine Telefonleitung aus Kupfer von 4km Länge und einem Druchmesser von 4mm?

## 2. Aufgabe: Elektrolysebad

In einem Glastrog stehen zwei Kupferplatten 5cm  $\times$  8cm im Abstand von 3cm in einer 10% igen Lösung aus Kupfersulfat  $\kappa = 3, 2$ S/m. Wie groß ist der Widerstand der Anordnung?

## 3. Aufgabe: Temperaturkoeffizient

Welches Verhalten wird mit dem Temperaturkoeffizienten  $\alpha_{20}$  eines Materials beschrieben?

## 1.2 Rechenaufgaben

## 4. Aufgabe: Dickschichtwiderstand

Welchen Widerstand hat ein Dickschichtwiderstand der Dicke d=10nm, einer Breite von b=0,15mm und einer Länge von l=5mm. Der spezifische Widerstand des Dickschichtmaterials ist  $\varrho=5\Omega$ mm²/m.



#### **4.1.** Welchen Wert hat der Widerstand?

## 5. Aufgabe: Nichtlinearer Widerstand

Ein nichtlinearer Widerstand wird messtechnisch durch die folgenden Messerte charakterisiert:

| U in V | 1   |     |     |      |     |      |      | 1   |
|--------|-----|-----|-----|------|-----|------|------|-----|
| I in A | 0,1 | 0,2 | 0,3 | 0,35 | 0,4 | 0,42 | 0,45 | 0,5 |

Der Widerstand wird an einer Spannungsquelle  $U=80\mathrm{V}$  betrieben, die einen Innenwiderstand von  $R_i=160\Omega$  besitzt.

- **5.1.** Stellen Sie die Kennlinie I = f(U) des Widerstands grafisch dar.
- **5.2.** Bestimmen Sie die Spannung  $U_R$  über dem Widerstand, den Strom  $I_R$  durch den Widerstand und den gesamten Widerstand des Kreises.
- 5.3. Dem nichtlinearen Widerstand wird ein Vorwiderstand von  $R_V = 40\Omega$  vorgeschaltet. Ermitteln Sie für diesen Fall die Spannung  $U_R$  über dem Widerstand, den Strom I durch den Widerstand und den gesamten Widerstand des Kreises.

## 6. Aufgabe: Bestimmung von Temperaturkoeffizienten

Um den Temperaturkoeffizienten  $\alpha_{20}$  eines Leiters zu ermitteln, wird er in einem Ölbad von  $20^{\circ}$ C auf  $80^{\circ}$ C erwärmt. Hierbei wird eine Widerstandszunahme festgestellt:

- **Probe 1** Es wird eine Widerstandszunahme um 24% festgestellt.
- **Probe 2** Es wird eine Widerstandszunahme um 0, 3% festgestellt.
- **6.1. TK-Bestimmung** Bestimmen Sie die Temperaturkoeffizienten der beiden Proben.
- **6.2. Materialbestimmung** Um welche Materialien könnte es sich handeln.
- **6.3.** Als Präszisionswiderstand wird der Dickschichtwiderstand mit einem Laser abgeglichen. Auf welche Breite b muss die Breite des Widerstands verringert werden, um einen Widerstand von  $R = 15 \mathrm{k}\Omega$  zu erreichen?

## 7. Aufgabe: Heizung

Eine einfache Heizung besteht aus einem Drahtwiderstand aus Aluminium und einem Lüfter, mit der eine Kammer beheizt werden kann. Der Heizwiderstand soll eine elektrische Leistung von  $P=36\mathrm{W}$  in Wärme umsetzen.

- **7.1.** Wie lang muss ein 1mm dicker Aluminiumdraht sein, um den Widerstand zu realisieren?
- **7.2.** Die Heizung soll mobil eingesetzt werden und mit einer KFZ-Batterie von 44Ah betrieben werden. Wie lange kann mit der Batterie geheizt werden?

#### 8. Aufgabe: Isolationswiderstand

Zwischen der Verplattung in der Stromzuführung in einem Stromrichter befindet sich eine PVC-Folie von 0,1mm Dicke. Die Platten überlappen auf einer Fläche von 12cm  $\times$  15cm.

- **8.1.** Wie groß ist der Isolationswiderstand?
- **8.2.** Welcher Strom fließt bei einer Spannung von 3kV zwischen den Platten?