Communication System

WAVELENGTH

$$\lambda$$
 = rate of travel \times period

$$\lambda = \frac{\text{rate of travel}}{\text{frequency}}$$

The average range used on speech is 250 Hz to 2750 Hz

The height of the antenna should be preferably around $\lambda/4$, where λ is the wavelength of the signal to be radiated.

Rate of travel -> 300,000,000 m/sec

For 300 Hz, $\lambda = 300,000,000 / 300 = 1,000,000 \text{ m}$

Table 1-1.—Radio frequency versus wavelength

FREQUENCY	WAVELENGTH	
	METRIC	U.S.
300,000 MHz	.001 m	.04 in
EHF-		
30,000 MHz	.01 m	.39 in
SHF-		
3,000 MHz	.1 m	3.94 in
UHF		
300 MHz	1 m	39.37 in
VHF		
30 MHz	10 m	10.93 yd
HF		
3 MHz	100 m	109.4 yd
MF		
300 kHz	1 km	.62 mi
LF		
30 kHz	10 km	6.2 mi
VLF		
3 kHz	100 km	62 mi

Baseband and carrier communications

- The term baseband refers to a band of frequencies of signal generated by a information source.
- In telephony, baseband signal is 0Hz-3.4kHz
- In TV, it is 0Hz to 4.3 MHz
- In baseband communication, baseband signal is transmitted without modulation. It cannot be transmitted through radio link.
- In carrier communication, one of the basic parameters (amplitude, frequency and phase)of a sinusoidal carrier of high frequency w_c is varied in proportion to the baseband signal m(t)

Modulation

$$v_c(t) = ACos(2\pi f_c t + \phi(t))$$

A – Amplitude Modulation

f_c – Frequency Modulation

Φ(t) – Phase Modulation

• Modulation is defined as the process by which some characteristics of a carrier wave is varied in accordance with the message signal.

Advantages of Modulation

- Reduction the height of the antenna
 - For efficient radiation, the height of the antenna should be preferably around $\lambda/4$, where λ is the wavelength of the signal to be radiated. Where $\lambda = c f$
- Easy to Multiplex
- Avoids mixing of signal
- Increase the range of communication
- Allow adjustments in the bandwidth
 - For Signal to noise ratio in the receiver is the function of the signal bandwidth.
- Improves quality of reception

What is Modulation?

- This high frequency signal is called CARRIER SIGNAL
- The message signal is called MODULATING SIGNAL or BASEBAND SIGNAL.
- The word **modulation** means the systematic alteration of one waveform, called the *carrier*, according to the characteristic of another waveform, the modulating signal or the message.
- We use c(t) and m(t), to denote the carrier and the message waveforms respectively.
- The resultant signal after modulation is called MODULATED SIGNAL.
- For study purpose, the commonly used carrier and message signal is **SINUSOIDAL WAVE.**
- Transmitter Side Modulation
- Receiver Side Demodulation

Types of Modulation

Types of Modulation

 Modulation - Characteristics of Carrier Wave is varied in accordance with the characteristics of message signal.

Amplitude Modulation

Frequency Modulation

$$V \cdot \sin(\omega) t + \Phi$$

Types of Modulation

- AM The amplitude of the carrier signal is varied in accordance with the instantaneous amplitude of the message signal.
- FM The frequency of the carrier signal is varied in accordance with the instantaneous amplitude of the message signal.
- PM The phase of the carrier signal is varied in accordance with the instantaneous amplitude of the message signal.

Phase Modulation

AM & FM Waveforms

FIGURE 2.2 Illustrating AM and FM signals produced by a single tone. (a) Carrier wave. (b) Sinusoidal modulating signal. (c) Amplitude-modulated signal. (d) Frequency-modulated signal.

Amplitude Modulation

• The amplitude of high-carrier signal is varied according to the instantaneous amplitude of the modulating message signal m(t).

Carrier Signal: $C(t) : A_c \cos(2\pi f_c t) \text{ or } \cos(\omega_c t)$

Modulating Signal: m(t): $A_{\rm m}\cos(2\pi f_{\rm m}t)$ or $\cos(\omega_{\rm m}t)$

Modulated Signal: $S_{AM}(t) = [A_c + m(t)]\cos(2\pi f_c t)$

$$S_{AM}(t) = [A_c + A_m \cos(2\pi f_m t)] \cos(2\pi f_c t)$$
$$= A_c [1 + k \cos(2\pi f_m t)] \cos(2\pi f_c t)$$

Modulation Index $k = A_m/A_c$

AM Signal Math Expression

Mathematical expression for AM: time domain

$$S_{AM}(t) = (1 + k \cos \omega_m t) \cos \omega_c t$$

Expanding this produces:

$$S_{AM}(t) = \cos \omega_c t + k \cos \omega_m t \cos \omega_c t$$

using:
$$\cos A \cos B = \frac{1}{2} \cos(A - B) + \cos(A + B)$$

$$S_{AM}(t) = \cos \omega_c t + \frac{k}{2} \cos(\omega_c - \omega_m) t + \frac{k}{2} \cos(\omega_c + \omega_m) t$$

In the frequency domain this gives:

AM Power Frequency Spectrum

 AM Power frequency spectrum obtained by squaring the amplitude:

• Total power for AM
$$= A^2 + \frac{k^2}{4} + \frac{k^2}{4}$$
$$= 1 + \frac{k^2}{2}$$

AM Modulation/Demodulation

Modulation Index of AM Signal

Modulation Index = 1

Modulation Index of AM Signal

Modulation Index =.05

Max. Amp. = 2v, DC of 40v added

<u>Undermodulation</u>

Modulation Index of AM Signal

Amplitude Modulators

A high-level collector modulator.

Balanced Modulator

Demodulator – Envelope detector

Advantages/disadvantages

Advantages of Amplitude Modulation, AM

- It is **simple** to implement
- it can be demodulated using a circuit consisting of very few components
- AM receivers are very cheap as no specialized components are needed.

Disadvantages of amplitude modulation

- It is not efficient in terms of its power usage
- It is not efficient in terms of its use of bandwidth, requiring a bandwidth equal to twice that of the highest audio frequency
- It is prone to high levels of noise because most noise is amplitude based and obviously AM detectors are sensitive to it.

Angle Modulation

Consider again the general carrier

$$v_c$$
 $t = V_c \cos \omega_c t + \varphi_c$

$$\omega_c t + \varphi_c$$
 represents the angle of the carrier.

There are two ways of varying the angle of the carrier.

$$v_c$$
 $t = V_c \cos \omega_c t + \varphi_c$

Frequency Modulation is the process of varying the frequency of the carrier signal linearly with the message signal. **Phase Modulation** is the process of varying the phase of the carrier signal linearly with the message signal.

In FM, the message signal m(t) controls the frequency f_c of the carrier. Consider the carrier

$$v_c$$
 $t = V_c \cos \omega_c t$

then for FM we may write: v_s t = V_c cos 2π f_c + frequency deviation t

where the frequency deviation will depend on m(t).

Given that the carrier frequency will change we may write for an instantaneous carrier signal

$$V_c \cos \omega_i t = V_c \cos 2\pi f_i t = V_c \cos \theta_i$$

where $arphi_i$ is the instantaneous angle = $\ \omega_i t = 2\pi f_i t$

 f_i is the instantaneous frequency.

Since
$$\varphi_i = 2\pi f_i t$$
 then $\frac{d\varphi_i}{dt} = 2\pi f_i$ or $f_i = \frac{1}{2\pi} \frac{d\varphi_i}{dt}$

i.e. frequency is proportional to the rate of change of angle.

If f_c is the unmodulated carrier and f_m is the modulating frequency, then we may deduce that

$$f_i = f_c + \Delta f A_m \cos \omega_m t = \frac{1}{2\pi} \frac{d\varphi_i}{dt}$$

 Δf is the peak deviation of the carrier.

Hence, we have

$$\frac{1}{2\pi} \frac{d\varphi_i}{dt} = f_c + \Delta f \, \mathbf{A}_{\mathrm{m}} \cos \, \omega_m t \qquad \qquad \text{i.e.} \quad \frac{d\varphi_i}{dt} = 2\pi f_c + 2\pi \Delta f \, \mathbf{A}_{\mathrm{m}} \cos \, \omega_m t$$

After integration *i.e.*

$$\int \omega_c + 2\pi \Delta f_c A_m \cos \omega_m t dt$$

$$\theta_i = \omega_c t + \frac{2\pi \Delta f_c A_m \sin \omega_m t}{\omega_m}$$

$$\theta_i = \omega_c t + \frac{\Delta f_c}{f_m} \mathbf{A}_m \sin \omega_m t$$

Hence for the FM signal,

$$v_s t = V_c \cos \theta_i$$

$$v_s t = V_c \cos \left(\omega_c t + \frac{\Delta f_c}{f_m} A_m \sin \omega_m t \right)$$

The ratio
$$\frac{\varDelta f_c}{f_m}$$
 is called the **Modulation Index** denoted by β *i.e.*

$$\beta = \frac{\text{Peak frequency deviation}}{\text{modulating frequency}}$$

FM Signal Spectrum.

Carson's Rule provides an adequate approximation for determining FM signal bandwidth:

$$B = 2 \Delta f + f_{m(\text{max})} = 2f_m(\beta + 1)$$

Figure 5.18 Frequency modulation

FM demodulator

Advantage:

- 1. FM has characteristics of audio quality and immunity to noise. Most forms of static and electrical noise are naturally AM, and an FM receiver will not respond to AM signals.
- 2. By increasing the frequency deviation in Fm, It is possible to improve signal to noise ratio.
- 3. The Power is constant. Because amplitude of modulated FM wave is constant.
- 4. All transmitted power is useful. Incase of AM, 67% of transmitted power is in carrier.

Disadvantage:

- 1. FM requires the larger bandwidth.
- 2. The service area of FM transmitter is much less than that for AM.
- 3. FM transmitter and receiver are quite complicated.

Phase Modulation

In **Phase Modulation (PM)**, the phase of the carrier signal varies in accordance with the instantaneous amplitude of the modulating signal.

The equation for instantaneous phase ϕ_i in phase modulation is

$$\phi_i = k_p m(t)$$

Where,

- **k**_p is the phase sensitivity
- •m(t) is the message signal

The standard equation of angle modulated wave is

$$s(t)=A_ccos(2\pi f_ct+\phi_i)$$

Substitute, ϕ_i value in the above equation.

$$s(t)=A_c\cos(2\pi f_ct+k_pm(t))$$

This is the **equation of PM wave**.

If the modulating signal, $m(t)=A_m\cos(2\pi f_m t)$ then the equation of PM wave will be $s(t)=A_c\cos(2\pi f_c t + \beta\cos(2\pi f_m t))$ Where,

- • β = modulation index = $\Delta \phi = k_p A_m$
- $\bullet \Delta \phi$ is phase deviation

Phase modulation is used in mobile communication systems, while frequency modulation is used mainly for FM broadcasting.

Propagation Modes

Radio signal behaves like light in free space

□ Ground Wave

- > Frequencies up to 2 MHz
- Follows contour of the earth
- > Example: AM Radio

■ Sky Wave

- Signal reflected from ionosphere and earth's surface
- Can travel thousands of kilometers
- > Frequency: 2-30MHz
- > Amateur Radio, Military Comm.

□ Line of Sight

- Transmitting and receiving antenna: must be within line of sight
- > Frequency: More then 30MHz
- > TV, satellite, optical comm.

Three propagation modes of em waves

	Frequency	Common Uses	
VLF	3-30 kHz	underwater communications	
LF	30-300 kHz	AM radio	
MF	300-3000 kHz	AM radio	
		AM radio, long distance aviation	
HF	3-30 MHz	communications	
П		FM radio, television, short range avaiation	
VHF	30-300 MHz	communications, weather radio	
		television, mobile phones, wireless	
UHF	300-3000 MHz	networks, Bluetooth, satellite radio, GPS	
		satellite television and radio, radar	
SHF	3-30 GHz	systems, radio astronomy	
EHF	30-300 GHz	radio astronomy, full body scanners	

Basic analog communications system

