

Introduction to Bioinformatics

RNA-Seq

Stevan Radanović

Resources

• RNA-seqlopedia, http://rnaseq.uoregon.edu/

Why do we do (m)RNA-Seq?

- Central dogma DNA is used to make RNA, then RNA is used to make proteins, and proteins "run the show"
- If DNA = cookbook, and proteins = ready meals, than RNA = intermediate stages in this cooking process

mRNA-Seq

Complications - splicing (introns)

Complications - alternative splicing

RNA-Seq analyses

- Qualitative identifying expressed transcripts, exonintron boundaries, transcriptional start sites (TSS), poly-A sites
- Transcriptome annotation GTF files

Col 1	Co1 2	<u>Col 3</u>	Col 4	Col 5	Col 6	Col 7	Col 8	<u>Col 9</u>
chr21	HAVANA	transcript	10862622	10863067	- · · · · ·	+		gene id "ENSG00000169
chr21	HAVANA	exon	10862622	10862667	€3;	+	3	gene id "ENSG00000169
chr21	HAVANA	CDS	10862622	10862667		+	0	gene id "ENSG00000169
chr21	HAVANA	start codon	10862622	10862624	€	+	0	gene id "ENSG00000169
chr21	HAVANA	exon	10862751	10863067	5. 5. •8	+	50) • (gene id "ENSG00000169
chr21	HAVANA	CDS	10862751	10863064	6 3	+	2	gene id "ENSG00000169
chr21	HAVANA	stop codon	10863065	10863067		+	0	gene id "ENSG00000169
chr21	HAVANA	UTR	10863065	10863067	•	+		gene_id "ENSG00000169

RNA-Seq analyses

• Transcriptome annotation - GTF files

Col 1	Co1 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
chr21	HAVANA	transcript	10862622	10863067	- 48	+		gene id "ENSG00000169
chr21	HAVANA	exon	10862622	10862667	-	+		gene id "ENSG00000169
chr21	HAVANA	CDS	10862622	10862667		+	0	gene id "ENSG00000169
chr21	HAVANA	start codon	10862622	10862624	- F	+	0	gene id "ENSG00000169
chr21	HAVANA	exon	10862751	10863067	-8	+	55) 	gene id "ENSG00000169
chr21	HAVANA	CDS	10862751	10863064	£	+	2	gene id "ENSG00000169
chr21	HAVANA	stop codon	10863065	10863067	1 63	+	0	gene id "ENSG00000169
chr21	HAVANA	UTR	10863065	10863067	•	+		gene_id "ENSG00000169

RNA-Seq analyses

 Quantitative - measuring differences in expression, alternative splicing, TSS, poly-A between two or more treatments or groups

RNA-Seq data analysis pipeline

- Alignment
- Quantification
- Differential expression

- Burrows-Wheeler Transformation reversible lossless transformation algorithm which permutes an input string into a new string
- BWT string lends itself to an effective compression
- Rank preserving property LF mapping

- BWT is reversible
- Recreating T from BWT(T) start in the first row and apply LF repeatedly, accumulating predecessors along the way

• Exact match, checkpoints, suffix array sample

Exact match, <u>checkpoints</u>, suffix array sample

• Exact match, checkpoints, suffix array sample

Bowtie marks every 32nd row by default (configurable)

- Alignment:
 - step 1: extracting seeds from the read and its complement

Read

CCAGTAGCTCTCAGCCTTATTTTACCCAGGCCTGTA

Read (reverse complemented)

TACAGGCCTGGGTAAAATAAGGCTGAGAGCTACTGG

Policy: extract seed of 16 bases every 10nt base

Seeds:

+, 0: CCAGTAGCTCTCAGCC

+, 10: TCAGCCTTATTTTACC

+, 20: TTTACCCAGGCCTGTA

-, 0: TACAGGCCTGGGTAAA

-, 10: GGTAAAATAAGGCTGA

-, 20: GGCTGAGAGCTACTGG

- Alignment:
 - step 1: extracting seeds from the read and its complement
 - step 2: seed alignment using exact matching

- Alignment:
 - step 1: extracting seeds from the read and its complement
 - step 2: seed alignment using exact matching
 - step 3: prioritization and offset resolving

- Alignment:
 - step 1: extracting seeds from the read and its complement
 - step 2: seed alignment using exact matching
 - step 3: prioritization and offset resolving
 - step 4: extending (local alignment) using dynamic programming

RNA-Seq alignment - TopHat

- Average length of mature mRNA transcript - 2,227 bp
- Average exon length 235 bp
- Average number of exons per transcript: 9.5
- Assuming that 100 bp reads are uniformly distributed along a transcript we would expect ~ 35% of reads to span two or more exons

RNA-Seq alignment - TopHat

- Step 1: alignment to transcriptome, if annotation (GTF) provided
- Step 2: alignment to genome

RNA-Seq alignment - TopHat

 Step 3: TopHat examines any case in which the left and right segments of the same read are mapped within user-defined maximum intron size

RNA-Seq alignment - HISAT

b

- Global FM-index, and
- Local FM-indices (~ 48k, 64k
 bp each, 1k bp overlap)
- Global vs local search

RNA-Seq alignment - HISAT

2nd run of HISAT to align reads by making use of the list of splice sites collected above

