Lab 0 - Stable Matching

Sep 4, 2025

Lab 0 instructions

In this lab you will:

- 1. Formalize an algorithm for deciding if a matching is stable
 - a. Writeup in latex
- 2. Give a proof for termination and correctness
- 3. Discuss time analysis
 - Worst case

Reference the algorithm writeup guidelines: https://bmc-cs-340.github.io/algorithm_guidelines.pdf

Part 1: Formalize an algorithm for deciding if a matching is stable

Input

- A set of employers: E
- A set of applicants: A
- -|E|=|A|=n
- 2n preference lists, each of size n
- How are the preference lists stored?
 - linked lists? arrays? hash maps? why?
- M, a list/set of n pairs (the matching)
- Output: yes/no

Stability Definition

For every employer E and every applicant A who is not assigned to intern at E, at least one of the following should be true:

- E prefers its accepted intern to A or
- A prefers her current internship over working for employer E

Individual self interest will lead to stability

Employer-Applicant Matching Example

Employers			Applicants		
Google(G)	Intel(I)	Apple(A)	Kate(K)	Clara(C)	Lisa(L)
K	K	L	Α	Α	G
С	L	K	G	I	1
L	С	С	I	G	А

Matching 1: (G, C), (I, L), (A, K)

Q:ls this stable?

A: Yes

Employer-Applicant Matching Example

Employers			Applicants		
Google(G)	Intel(I)	Apple(A)	Kate(K)	Clara(C)	Lisa(L)
K	K	L	Α	Α	G
С	L	K	G	I	1
L	С	С		G	А

Matching 2: (G, L), (I, K), (A, C)

Q:ls this stable?

A: No

Employer-Applicant Matching Example

Employers			Applicants		
Google(G)	Intel(I)	Apple(A)	Kate(K)	Clara(C)	Lisa(L)
K	K	L	Α	А	G
С	L	K	G	I	1
L	С	С	I	G	А

Matching 3: (G, L), (I, C), (A, K)

Q:ls this stable?

A: Yes

Part 2: Runtime complexity

Discuss the runtime complexity of your algorithm in terms of the size of your input (n)

2.1 Data Structures: detail the data structures and how they relate to the time complexity of the algorithm

Part 3: Termination and Correctness

Include an argument that your algorithm will terminate and that it will output the correct value (YES/NO)

Signing Out

Complete your writeup in latex and submit your lab on gradescope

Due before next Lab (Sep 11)