Task Pipeline Specification and Scheduling

John Schulman and Arjun Singh

Abstract - Stuff

- I. INTRODUCTION
- II. RELATED WORK

III. OVERVIEW

IV. IMPLEMENTATION

- A. Task Specification
- B. Pipeline Structure
- C. Parallelization
- D. Scheduling

V. RESULTS

VI. CONCLUSIONS

REFERENCES

- Ziang Xie, Arjun Singh, Justin Uang, Karthik S. Narayan, and Pieter Abbeel. Multimodal blending for high-accuracy instance recognition. In IROS, 2013.
- [2] J. Tang, S. Miller, A. Singh, and P. Abbeel. A textured object recognition pipeline for color and depth image data. In ICRA, 2012.
- [3] N. Vaskevicius, K. Pathak, A. Ichim, and A. Birk. The jacobs robotics approach to object recognition and localization in the context of the icra'11 solutions in perception challenge. In *ICRA*, 2012.
- [4] Y. LeCun, C. Cortes, and C. J. C. Burges. The mnist database, 1998.
- [5] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. *Comput. Vis. Image Underst.*, 106(1):59–70, 2007.
- [6] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. *International Journal of Computer Vision*, 88(2):303–338, 2010.
- [7] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained environments. Technical report, 2007.
- [8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09, 2009.
- [9] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In ICCV, 2005.
- [10] Willow Garage. Solutions in perception challenge, May 2011.
- [11] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. A category-level 3-d object dataset: Putting the kinect to work. 2011.
- [12] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multiview rgb-d object dataset. In *ICRA*, 2011.
- [13] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012.
- [14] J. Sturm, J. Engelhard, F. Endres, W. Burgard, and D. Cremers. A benchmark for the evaluation of rgb-d slam systems. In *IROS*, 2012.
- [15] D. Cremers and K. Kolev. Multiview stereo and silhouette consistency via convex functionals over convex domains. 33, 2011.
- [16] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereopsis. *PAMI*, 32(8), 2010.
- [17] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. Towards internet-scale multi-view stereo. In CVPR, 2010.
- [18] J. Guillemaut and A. Hilton. Joint multi-layer segmentation and reconstruction for free-viewpoint video applications. *Int. J. Comput. Vision*, 93(1):73–100, 2011.

- [19] Alvaro Collet, Manuel Martinez, and Siddhartha S. Srinivasa. The MOPED framework: Object Recognition and Pose Estimation for Manipulation. 2011.
- [20] Alexander Kasper, Zhixing Xue, and Rüdiger Dillmann. The kit object models database: An object model database for object recognition, localization and manipulation in service robotics. *The International Journal of Robotics Research*, 31(8):927–934, 2012.
- [21] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera. In *UIST*, 2011.
- [22] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In *ISMAR*, 2011.
- [23] Kaess M. Fallon M. F. Johannsson H. Leonard J. J. McDonald J. B. Whelan, T. Kintinuous: Spatially extended kinectfusion. In RSS Workshop on RGB-D: Advanced Reasoning with Depth Cameras, 2012.
- [24] Q. Zhou, S. Miller, and V. Koltun. Elastic fragments for dense scene reconstruction. In ICCV, 2013.
- [25] C. D. Herrera, J. Kannala, and J. Heikkilä. Accurate and practical calibration of a depth and color camera pair. In CAIP, 2011.
- [26] C. Zhang and Z. Zhang. Calibration between depth and color sensors for commodity depth cameras. In *ICME*, 2011.
- [27] A. Geiger, F. Moosmann, O. Car, and B. Schuster. A toolbox for automatic calibration of range and camera sensors using a single shot. In ICRA, 2012.
- [28] Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations. In *ICCV*, 1999.
- [29] Q. V. Le and A. Y. Ng. Joint calibration of multiple sensors. In IROS, 2009.
- [30] Jan Smisek, Michal Jancosek, and Tomas Pajdla. 3d with kinect. In Consumer Depth Cameras for Computer Vision, pages 3–25. Springer, 2013
- [31] Michael Warren, David McKinnon, and Ben Upcroft. Online Calibration of Stereo Rigs for Long-Term Autonomy. In *International Conference on Robotics and Automation (ICRA)*, Karlsruhe, 2013.
- [32] D Alex Butler, Shahram Izadi, Otmar Hilliges, David Molyneaux, Steve Hodges, and David Kim. Shake'n'sense: reducing interference for overlapping structured light depth cameras. In *Proceedings of* the 2012 ACM annual conference on Human Factors in Computing Systems, pages 1933–1936. ACM, 2012.
- [33] James George, Alexander Porter, Jonathan Minard, and Mike Heavers. Rgbd toolkit, 2013.
- [34] Sameer Agarwal, Keir Mierle, and Others. Ceres solver.
- [35] K. Konolige and P. Mihelich. Technical description of kinect calibration, 2013.
- [36] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In SGP, 2006.
- [37] P. Cignoni, M. Corsini, and G. Ranzuglia. Meshlab: an open-source 3d mesh processing system. ERCIM News, 2008(73), 2008.
- [38] Thomas Whelan, Hordur Johannsson, Michael Kaess, John J Leonard, and John McDonald. Robust tracking for real-time dense rgb-d mapping with kintinuous. 2012.