

WYPEŁNIA ZDAJĄCY						
KOD PESEL						

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Próbna Matura z Operonem 2022/2023

TERMIN: 25 listopada 2022 r.

Czas pracy: 210 minut

LICZBA PUNKTÓW DO UZYSKANIA: 50

WYPEŁNIA ZDAJĄCY. WYBRANE:

(system operacyjny)

(program użytkowy)

(język programowania i środowisko programistyczne)

Instrukcja dla zdającego

- Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron i czy dołączony jest do niego nośnik danych – podpisany DANE_PR. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz język programowania i środowisko programistyczne.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie będą oceniane.
- 6. Symbol zamieszczony w nagłówku zadania oznacza, że zadanie nie wymaga użycia komputera i odpowiedź do niego należy zapisać tylko w miejscu na to przeznaczonym w arkuszu egzaminacyjnym.
- 7. Pliki oddawane do oceny nazwij dokładnie tak, jak polecono w treści zadań, lub zapisz je pod nazwami (wraz z rozszerzeniem zgodnym z zadeklarowanym oprogramowaniem), jakie podajesz w arkuszu egzaminacyjnym. Pliki o innych nazwach nie będą sprawdzane przez egzaminatora.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

Arkusz opracowany przez Wydawnictwo Pedagogiczne OPERON. Kopiowanie w całości lub we fragmentach bez zgody wydawcy zabronione.

Zadanie 1. Kopalnie planety Kwartacja (0–10)

Na planecie Kwartacja każda miara jest podzielona na 4 równe części i jej zapis odbywa się w następujący sposób: na początku wartości pojawia się duża litera alfabetu A, B, C lub D, określająca odpowiednio pierwszą, drugą, trzecią lub czwartą część jednostki, a następnie zapisana w systemie binarnym wartość z tej kwarty. Aby przetłumaczyć zapis Kwartacji na zrozumiały dla przeciętnego ziemianina, musimy przeliczyć zapis binarny na wartość dziesiętną i umieścić go w odpowiedniej kwarcie jednostki miary. W przypadku godziny A jest to pierwsza kwarta, czyli czas od 0 do 14 minut, w przypadku B – 15 do 29 minut, C – 30 do 44 minut, D – 45 do 59 minut.

Przykład 1.

Jeśli podany zostanie czas:

- a) C11 kwartańskiej godziny, będzie to oznaczało wartość 3 min (11₂) znajdującą się w trzeciej kwarcie godziny, czyli 30 min + 3 min = 33 min;
- b) kwartańska godzina B0110:C1010:A1100, będzie oznaczała 11:40:12 czasu ziemskiego, ponieważ:

B0101 – B to druga kwarta 24-godzinnej doby, która zaczyna się od 6 godziny, a 101_2 to 5_{10} , otrzymamy więc 11 godzinę;

C1010 - C to trzecia kwarta godziny, która zaczyna się od 30 minuty, a 1010_2 to 10_{10} , otrzymamy więc 40 minut;

A1100 - A to pierwsza kwarta minuty, która zaczyna się od 0 sekundy, a 1100_2 to 12_{10} , otrzymamy więc 12 sekund.

Podobnie wygląda zapis i przeliczanie masy.

Przykład 2.

Jeśli podana zostanie masa:

- a) B101 kwartańskiego kilograma, będzie to oznaczało wartość 5 g (101₂) znajdującą się w drugiej kwarcie kilograma, czyli 250 g + 5 g = 255 g;
- b) C1011101 kwartańskiej tony, będzie to oznaczało wartość 93 kg (1011101₂) znajdującą się w 3 kwarcie tony, czyli 500 kg + 93 kg = 593 kg.

Planeta Kwartacja słynie z wydobycia kwartacjańskiego kwarcu najczystszej postaci, który wykorzystuje się do budowy najnowszych procesorów.

W pewnej kopalni i fabryce przetwarzającej urobek zamontowano skanery, których zadaniem jest pomiar ilości kwarcu w procesie wydobycia i wytwarzania. Pierwsze urządzenie skanuje wagoniki i odczytuje ilość kwarcu zawartego w urobku, drugie notuje wagę czystego kwarcu, który opuszcza linię produkcyjną w fabryce.

Dane są dwa pliki tekstowe kopalnia.txt i fabryka.txt do analizy procesu wydobycia i produkcji.

W pliku kopalnia.txt pierwszy wiersz zawiera liczbę binarną określającą liczbę pomiarów, a kolejne pokazują dane z jednego dnia o procesie wydobycia i są rozdzielone pojedynczym znakiem spacji.

Wiersze pliku kopalnia.txt zawierają informacje z kopalni:

- czas podany w zapisie kwartańskim (przykład 1.),
- ilość kwarcu w kwartańskich tonach (przykład 2.).

Ponieważ w fabryce zamontowano urządzenie z innej planety, wszystkie dane w pliku fabryka.txt są zapisane w systemie ósemkowym.

Pierwszy wiersz stanowi liczbę pomiarów, a każdy kolejny – czas podany jako liczby ósemkowe rozdzielone dwukropkiem, oznaczające odpowiednio godziny, minuty i sekundy, oraz masę jako jedną liczbę całkowitą, oznaczającą ilość kilogramów czystego kwarcu.

Napisz program(-y) dający(-e) odpowiedzi do poniższych zadań. Zapisz uzyskane odpowiedzi w pliku wynikil.txt. Każda odpowiedź poprzedź numerem odpowiedniego zadania.

Zadanie 1.1. (0-4)

Przeanalizuj plik kopalnia.txt i podaj, ile pomiarów mieści się w każdej z kategorii: *pomiar właściwy*, *pomiar prawdopodobny*, *pomiar błędny*, przy czym:

- pomiar jest właściwy, jeśli różnica między nim a poprzednim pomiarem jest nie większa niż 5% poprzedniego pomiaru (zakładamy, że urządzenia są po kalibracji i pierwszy pomiar nie jest obarczony żadnym błędem),
- pomiar jest prawdopodobny, jeśli różnica między nim a poprzednim pomiarem jest większa od 5%, ale nie większa niż 10%,
- pomiar jest błędny, gdy różnica między nim a poprzednim pomiarem jest większa niż 10% (jeśli pomiar jest błędny, punktem odniesienia do określenia kolejnego rodzaju pomiaru jest ostatni pomiar właściwy lub prawdopodobny).

Zadanie 1.2. (0–3)

Podaj najdłuższy nieprzerwany okres, w którym pomiary badane w zadaniu 1.1. mieszczą się w kategorii *pomiar właściwy*. Jako rozwiązanie podaj długość tego okresu oraz czas jego trwania w zapisie godzina:minuta:sekunda. Wartości zapisz w systemie dziesiętnym. Początkiem okresu jest czas pierwszego właściwego pomiaru, a czasem zakończenia – czas ostatniego właściwego pomiaru.

Zadanie 1.3. (0-3)

W pliku fabryka.txt są zawarte informacje o ilości czystego kwarcu schodzącego z linii produkcyjnej. Ponieważ w pliku dane są zapisane w systemie ósemkowym, napisz translator, który przetłumaczy zapis na system kwartański i stworzy jego odwzorowanie w tym systemie.

Do oceny oddajesz:

- plik tekstowy wynikil.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem);
- plik(i) zawierający(e) komputerowa realizację twoich obliczeń o nazwie (nazwach):

Wypełnia egzaminator	Nr zadania	1.1.	1.2.	1.3.
	Maks. liczba pkt	4	3	3
	Uzyskana liczba pkt			

Zadanie 2. Komórki (0-8)

W laboratorium genetycznym wyhodowano komórki o przekroju prostokątnym, których podział odbywał się równolegle do krótszego boku. W ten sposób powstawała kolonia w kształcie nici. Wszystkie komórki dzielą się dokładnie na dwie części w tym samym czasie. W wyniku badań określono, że w trakcie podziału zachodzą mutacje genowe, które występują według określonego schematu:

 $A \longrightarrow BD$

 $B \longrightarrow CA$

 $B \longrightarrow CD$

 $C \longrightarrow DD$

 $D \longrightarrow BC$

Organizm pierwotny o wyselekcjonowanym genie A w trakcie pierwszego podziału mutuje do BD. Przy drugim podziale może powstać mutacja CABC lub CDBC itd.

Zadanie 2.1. (0–2)

Genetycy potrafią wyodrębnić dowolny gen. Wypisz wszystkie odróżnialne kombinacje kolonii, które mogą powstać po trzecim podziale, jeśli rozrost zacznie się od genu C.

Miejsce na rozwiązanie:

Strona 4

Zadanie 2.2. (0−3) 🖹

Zastanów się, w jaki sposób można sprawdzić, czy kolonia o rozmiarze *n* mogła powstać w procesie badanego podziału.

Podaj wzór na wyznaczenie ilości podziałów m, którym uległy komórki kolonii o rozmiarze n, jeśli n jest prawidłową wartością. Odpowiedź uzasadnij.

Miejsce na rozwiązanie:

Zadanie 2.3. (0-3)

W pliku genetyka.txt zapisano kombinacje różnych kolonii, w różnym stadium podziału, które wygenerowali studenci na potrzeby badań. Napisz program, który sprawdzi liczbę kolonii, których **nie można** utworzyć w pełni zgodnie z opisanym schematem mutowania. Wynik działania programu zapisz w ramce.

Miejsce na odpowiedź:

Do oceny oddajesz:

• plik(i) zawierający(e) komputerową realizację twoich obliczeń o nazwie (nazwach):

.....

	Nr zadania	2.1.	2.2.	2.3.
Wypełnia egzaminator	Maks. liczba pkt	2	3	3
	Uzyskana liczba pkt			

Zadanie 3. Trójki pitagorejskie (0–7)

Trójką pitagorejską nazywamy trzy liczby całkowite dodatnie $a,\,b,\,c$ spełniające równanie Pitagorasa:

~2 1	1-2_	
$a^2 +$	· <i>n</i> -=	=7'-

а	b	c
3	4	5
5	12	13
6	8	10
7	24	25
8	15	17
13	84	85

Trójkę nazywamy pierwotną, jeżeli a,b i c są względnie pierwsze.

Jeżeli trójka a, b, c jest pitagorejska, to jest też nią trójka da, db, dc, dla dowolnej liczby całkowitej d. Wynika z tego, że każdą trójkę pitagorejską możemy uzyskać przez pomnożenie jej elementów przez dowolną, tą samą liczbę całkowitą dodatnią.

Zadanie 3.1. (0–1)

Uzupełnij tabelę tak, aby powstały trójki pitagorejskie.

а	b	С
15	36	
24		51
	60	75

Miejsce na obliczenia:

Strona 6

Zadanie 3.2. (0−3) 🖹

Napisz algorytm (np. w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który na podstawie dwóch podanych dowolnych wartości wyznaczy trzecią wartość z trójki pitagorejskiej i wypisze je we właściwej kolejności, a jeżeli taka liczba nie istnieje, wypisze wartość 0. Sformułuj specyfikację.

Miejsce na rozwiązanie:

Zadanie 3.3. (0–3) 🗎

Napisz algorytm (np. w postaci listy kroków, w pseudokodzie lub w wybranym języku programowania), który wypisze wszystkie kombinacje trójek pitagorejskich dla pierwszej i drugiej liczby z zakresu od 1 do 1000 oraz oznaczy wszystkie trójki pierwotne, wypisując przy nich słowo *pierwotne*. Sformułuj specyfikację.

Informatyka. Poziom rozszerzony Próbna Matura z OPERONEM dla szkół ponadpodstawowych

Miejsce na rozwiązanie:

Wypełnia egzaminator	Nr zadania	3.1.	3.2.	3.3.
	Maks. liczba pkt	1	3	3
	Uzyskana liczba pkt			

Strona 8

N7968_informa_SP_Arkusz_GLOWNY.indd 8 2022-09-26 14:02:32

Zadanie 4. Populacja (0–10)

W pliku tekstowym ludnosc.txt w każdym wierszu umieszczono kod rejonu oraz liczbę mieszkańców powiatów w latach 2016–2021. Dane w wierszach są rozdzielone średnikami.

Przykład fragmentu pliku:

KOD;L2016;L2017;L2018;L2019;L2020;L2021

0201;90199;90180;90173;90200;90103;89762

0202; 103349; 102649; 102077; 101437; 100813; 99935

0203;90205;89989;89933;89541;89102;88447

0204;35940;35715;35473;35182;34870;34552

0205;51451;51176;50947;50545;50116;49734

Kod rejonu składa się z 4 cyfr: dwie pierwsze to kod województwa, dwie ostatnie – kod powiatu w danym województwie.

Główny urząd statystyczny Gondoru przekazał do analizy plik tekstowy i poprosił o wykonanie zestawień.

Z wykorzystaniem danych zawartych w pliku ludnosc.txt oraz dostępnych narzędzi informatycznych wykonaj polecenia. Każdą odpowiedź umieść w pliku wyniki4.txt i poprzedź oznaczeniem odpowiedniego zadania.

Zadanie 4.1. (0–3)

Przygotuj zestawienie liczby ludności każdego z województw w poszczególnych latach. Na podstawie otrzymanego zestawienia utwórz wykres kolumnowy. Pamiętaj o czytelnym opisie osi.

Zadanie 4.2. (0-3)

Ostatnie dwie cyfry kodu rejonu oznaczają powiat. Wartości od 0 do 59 oznaczają powiaty w danym województwie, natomiast wartości od 60 oznaczają miasta na prawach powiatu. Oblicz, jaki procent ludności mieszkał w 2021 roku w miastach na prawach powiatu. Wartość zaokraglij do dwóch miejsc po przecinku.

Zadanie 4.3. (0–2)

Wyludnianie to zmniejszanie się stanu ludności z upływem czasu. Podaj, w ilu powiatach (łącznie z miastami na prawach powiatu) w okresie 2016–2021 występował proces wyludniania.

Zadanie 4.4. (0–2)

Współczynnik Tempa Wzrostu (WTW) określa się na podstawie kolejnych lat, obliczając stosunek ludności roku bieżącego do roku poprzedniego i zaokrąglając w dół do czterech miejsc po przecinku:

WTW = ludność(r) / ludność(r-1)

Wyznacz średni współczynnik tempa wzrostu dla poszczególnych rejonów w latach 2016–2021 i podaj nazwy rejonów o najwyższym i najniższym współczynniku.

Informatyka. Poziom rozszerzony Próbna Matura z OPERONEM dla szkół ponadpodstawowych

Do oceny oddajesz:

- plik tekstowy wyniki4.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem);
- plik zawierający wykres do zadania 4.1. o nazwie:
- plik(-i) zawierający(-e) komputerową realizację twoich obliczeń o nazwie (nazwach):

	Nr zadania	4.1.	4.2.	4.3.	4.4.
Wypełnia egzaminator	Maks. liczba pkt	3	3	2	2
cg2uiiiiiutoi	Uzyskana liczba pkt				

Zadanie 5. Filmoteka (0–10)

Firma streamingowa udostępniająca filmy na swojej platformie chciała przeprowadzić badania dotyczące zainteresowań filmowych swoich klientów. Dostarczyła pliki tekstowe z danymi ze swojego serwera do przeprowadzenia analizy.

W trzech plikach tekstowych o nazwach filmy.txt, osoby.txt i wypożyczenia.txt zapisano szczegółowe dane. Rozdzielono je średnikami. Do kodowania polskich znaków diakrytycznych użyto UTF-8.

W pliku filmy.txt znajdują się następujące dane:

ID FILMU - identyfikator filmu

TYTUL – tytuł filmu

ODCINKI – liczba odcinków, która określa, czy badany wskazał serial czy film pełnometrażowy. Jeżeli liczba odcinków wynosi 1, jest to film pełnometrażowy, a jeżeli liczba odcinków jest większa niż 1, jest to serial.

Przykład:

ID FILMU;TYTUL;ODCINKI

f01;Odlotowe agentki;29

f02;The Grich;1

f03;Czarna lista;160

f04;Psia akademia;19

f05;Emily w Paryżu;10

f06;Wiedźmin;16

W pliku osoby.txt znajdują się dane:

ID OSOBY - identyfikator klienta

NAZWISKO – nazwisko klienta

IMIE – imię klienta

Przykład:

ID OSOBY;NAZWISKO;IMIE

k01;Dampc;Marta

k02;Kaźmierczak;Anna

k03;Senger;Adrianna

k04;Ciępiel;Michał

k05;Witt;Agnieszka

W pliku wypożyczenia.txt znajdują się dane:

ID OSOBY - identyfikator klienta

ID FILMU – identyfikator filmu

ODCINKI – liczba obejrzanych odcinków. Jeśli użytkownik obejrzał serial lub film w całości, liczba obejrzanych odcinków będzie taka sama, jak liczba odcinków w pliku filmy.txt; jeśli liczba obejrzanych odcinków będzie równa 0, to oznacza, że użytkownik rozpoczął oglądanie pierwszego odcinka serialu lub filmu, ale go nie dokończył.

Przykład:

ID OSOBY;ID FILMU;ODCINKI

k01;f01;29

k01;f02;1

k01;f03;160

Informatyka. Poziom rozszerzony Próbna Matura z OPERONEM dla szkół ponadpodstawowych

k01;f09;1

k01;f10;1

Za pomocą dostępnych narzędzi informatycznych podaj odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku wyniki5.txt, a każdą z nich poprzedź numerem odpowiedniego zadania.

Zadanie 5.1. (0-1)

Sprawdź, którą pozycję filmową wybrano najwięcej razy. Zapisz tytuł filmu lub serialu oraz liczbę wyborów, niezależnie od tego, czy oglądnie danej pozycji zostało ukończone.

Zadanie 5.2. (0–2)

Wyznacz liczbę seriali oraz liczbę filmów pełnometrażowych dostępnych w ofercie.

Zadanie 5.3. (0-2)

Właściciele firmy chcą wiedzieć, kto ogląda tylko seriale. Podaj imiona i nazwiska takich klientów oraz liczbę oglądanych seriali.

Zadanie 5.4. (0-2)

Czy istnieje osoba, która obejrzała wszystkie seriale w całości? Jeśli tak, podaj imiona i nazwiska takich klientów.

Zadanie 5.5. (0-2)

Czy istnieje osoba, która ogląda w całości tylko filmy pełnometrażowe? Pamiętaj, że dla firmy ważne są tylko obejrzane filmy, a nie rozpoczęte. Podaj imiona i nazwiska takich klientów.

Zadanie 5.6. (0-1)

Sprawdź, która pozycja filmowa nie została wybrana przez żadnego klienta. Podaj jej tytuł.

Do oceny oddajesz:

- plik tekstowy wyniki5.txt zawierający odpowiedzi do poszczególnych zadań (odpowiedź do każdego zadania powinna być poprzedzona jego numerem);
- plik(i) zawierający(e) komputerową realizację twoich obliczeń o nazwie (nazwach):

	Nr zadania	5.1.	5.2.	5.3.	5.4.	5.5.	5.6.
Wypełnia egzaminator	Maks. liczba pkt	1	2	2	2	2	1
CgZummator	Uzyskana liczba pkt						

Strona 12

Zadanie 6. (0-3)

Tabela "KOTY" przedstawia nazwy kotów z bajek. Zawiera ona następujące pola:

id – kolejny numer na liście

imie – imię kota

tytul – tytuł bajki, z której pochodzi kot

rok – rok produkcji bajki

dlugosc ogona – długość ogona kota

dlugosc_ciała - długość ciała kota bez długości ogona

id	imie	tytul	rok	dlugosc_ogona	dlugosc_ciala
1	Arlene	Garfield	1980	25.5	45.3
2	Azrael	Smurfs	1959	33.1	25.5
3	Butch	Tom & Jerry	1943	56.8	47.8
4	Garfield	Garfield	1978	27	48.9
5	Nermal	Garfield	1979	28.1	56.3
6	Puss in Boots	Shrek 2	2004	42.5	23.2
7	Tom	Tom & Jerry	1940	28.7	45.3
8	Sylvester	Looney Tunes	1941	34.7	57.9
9	Claude	Looney Tunes	1949	26.9	43.9
10	Moon Cat	The Penguins of Madagascar	2009	29.3	34.2

Zadanie 6.1. (0–1)

Napisz w języku SQL zapytanie, w wyniku którego wyświetlisz tytuły wszystkich bajek z tabeli w taki sposób, aby żaden z tytułów się nie powtórzył oraz aby były one posortowane alfabetycznie.

Miejsce na rozwiązanie:

Zadanie 6.2. (0–2)

Napisz w języku SQL zapytanie, w wyniku którego wyświetlisz wyłącznie imię, tytuł bajki oraz długość najdłuższego kota, tzn. długość ciała łącznie z ogonem.

Miejsce na rozwiązanie:

	Nr zadania	6.1.	6.2.
Wypełnia egzaminator	Maks. liczba pkt	1	2
	Uzyskana liczba pkt		

Strona 14

Zadanie 7. (0-2)

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

Zadanie 7.1. (0–1)

Podstawowym narzędziem Creative Commons są licencje prawne pozwalające zastąpić tradycyjny model "Wszystkie prawa zastrzeżone" zasadą "Pewne prawa zastrzeżone" przy jednoczesnym poszanowaniu zasad prawa autorskiego.

1.	Uznanie autorstwa – Użycie niekomercyjne – Na tych samych warunkach: licencja pozwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz tak długo, jak utwory zależne będą również obejmowane tą samą licencją.	P	F
2.	Uznanie autorstwa – Bez utworów zależnych: licencja zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu zarówno w celach komercyjnych, jak i niekomercyjnych, pod warunkiem zachowania go w oryginalnej postaci (nietworzenia utworów zależnych).	P	F
3.	Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych: licencja zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci (nietworzenia utworów zależnych). Jest to najbardziej restrykcyjna z licencji.	P	F
4.	Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych: licencja zezwala na rozpowszechnianie, przedstawianie i wykonywanie utworu jedynie w celach niekomercyjnych oraz pod warunkiem zachowania go w oryginalnej postaci lub wykorzystania fragmentu do stworzenia nowego utworu.	P	F

Zadanie 7.2. (0–1)

Wykonując operację w systemie binarnym: 1101 1101 1011 * 0111 0111 1011,

1.	otrzymamy liczbę mniejszą niż 1 000 000 _{(10).}	P	F
2.	otrzymamy liczbę nieparzystą.	P	F
3.	otrzymamy liczbę większą niż 2 000 000 _{(10).}	P	F
4.	otrzymamy liczbę podzielną przez pięć.	P	F

	Nr zadania	7.1.	7.2.
Wypełnia egzaminator	Maks. liczba pkt	1	1
	Uzyskana liczba pkt		

BRUDNOPIS (nie podlega ocenie)

