### **PROJECT-SUMMARY**

### **NETWORK INTRUSION DETECTION**

## **MULTINOMIAL CLASSIFICATION**

**Problem statement-** Task is to build network intrusion detection system to detect anamolies and attacks in the network.

### Multinomial classification: Activity is normal or DOS or PROBE or R2L or U2R

**Diagnostic-** The business problem can be solved by classifying the activity as normal or in attack category.

Target variable - Activity category( NORMAL, DOS, PROBE, R2L, U2R)

Independent variables – Basic, content related and host based network features

# Step1. Data preparation

#### (Data profiling, Missing values imputation, Outliers handling, Feature encoding)

- 1. Data is loaded from Test.txt and Train.txt available in NSL\_dataset
- 2. Variable *attack* in dataset is mapped to attack category and new variable is 'attack\_cat' and 'attack' variable is dropped
- 3. 9 variables are dropped based on DATA PROFILING

  'dst\_host\_same\_srv\_rate','dst\_host\_serror\_rate','dst\_host\_srv\_rerror\_rate','dst\_host\_sr

  v\_serror\_rate','num\_outbound\_cmds','num\_root','srv\_rerror\_rate','srv\_serror\_rate',

  'service'
- 4. No missing values are present. Numerical data is handled for outliers.
- 5. Scalar data is standardized using StandardScalor() from sklearn. Preproceesing module.
- 6. **FEATURE ENCODING** -one- hot encoding is performed on categorical variables. *protocol\_type and flag*.
- 7. Target variable 'attack cat' is encoded using label encoder into 5 categories.
- **8.** Final data set is prepared as *train* and *test*

# Step2. Feature selection using variable reduction yechniques

- 1. Recursive feature elimination
- 2. Seleck K best features
- 3. Variance Inflation factor analysis.

Recursive feature elimination and select k best features methods were used to select features and after combining these features VIF analysis is performed on selected variables to remove multicolinearity: Final 13features **selected** are.

- dst\_host\_same\_src\_port\_rate
- dst host count
- dst\_host\_srv\_diff\_host\_rate
- srv\_count
- flag\_RSTR
- src\_bytes
- dst\_host\_srv\_count
- diff\_srv\_rate
- srv\_diff\_host\_rate
- dst\_host\_diff\_srv\_rate
- dst\_host\_rerror\_rate

# Step 3: MODEL BUILIDING (Random Forest, KNN, Naïve Bayes)

- 1. Scikit is used
- 2. Train Data is split into train and test and metrics are calculated.
- 3. models (RF, KNN) performance was checked with cross validation.

#### ROC AUC SCORE TEST FILE

|          | RF   | KNN  |
|----------|------|------|
| Dos 0    | . 87 | . 89 |
| NORMAL 1 | . 75 | .73  |
| Prob 2   | . 66 | . 63 |
| R2L 3    | .50  | .53  |
| U2R 4    | .5   | . 5  |

Comparative summary of Classification Report

Test.txt File

| RF        |        | KNN |           |        |    |
|-----------|--------|-----|-----------|--------|----|
| Precision | Recall | F1  | Precision | Recall | F1 |

| Dos 0    | . 91 | .78  | . 84 | .89  | .83  | .86  |
|----------|------|------|------|------|------|------|
| NORMAL 1 | . 62 | . 88 | . 73 | . 61 | . 94 | .74  |
| Prob 2   | .80  | . 35 | . 49 | . 85 | .28  | . 42 |
| R2L 3    | 1    | .04  | . 07 | . 94 | .07  | .13  |
| U2R 4    | 0    | 0    | 0    | 0    | 0    | 0    |

### RANDOM FOREST MODEL

## Features with importance

