徽实考试善化不虚 , 公平克争方直实力, 考试失政尚有机会 , 考试舞弊前初基弃。

上海财经大学《局等数字 I(经官央)》课程考试卷(A)的仓
课程代码
姓名学号
注:1、本次考试禁止用各种型号计算器或电子产品,违者取消考试资格! 2、解答写在答题纸的指定位置上!
一、填空题(本题共10小题,每小题2分,满分20分.)
1. $\lim_{x\to 0} [1-\sin x \ln(1-x)]^{\frac{1}{1-\cos x}} = \underline{\hspace{1cm}}$
2. $\forall y = x^{\sin x}, \exists x > 0, \iint \frac{dy}{dx} = \underline{\hspace{1cm}}$
3. 当 $x \to -1$ 时, $x^3 + ax^2 - x + b$ 与 $x + 1$ 为 等价 无 穷 小, 則 $a =$, $b =$.
4. d = $\left(\frac{1}{1+x^4} + \frac{1}{x}\right) d(x^2)$.
5. 设函数 $f(x) = \ln(ax + b)(a \neq 0)$, 则 $f^{(n)}(x) = $
6. 定积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin^4 x}{1 + e^{-x}} dx = \underline{\qquad}$
7. 设某产品的需求量 Q 为价格 P 的函数关系为 $Q=aP^b$, 其中 a 和 b 为常数,且 $a\neq 0$,则需求 弹性 $\eta(P)=$
8. 设函数 $f(x)$ 连续,且 $\int_0^{x^2-1} f(t) dt = x^4$,则当 $x > 0$ 时, $f(8) = $
9. 不定积分∫x arctan xdx =·
10. 函数 $f(x) = x^3$ 在 $[0,1]$ 上满足拉格朗日中值定理的中值 $\xi = $
二、单项选择题 (本题共5小题,每小题2分,满分10分.)
1. 设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1+ x ^{3n}}$, 则 $f(x)$ 在 $(-\infty, +\infty)$ 内 ().
1. 设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1+ x ^{3n}}$,則 $f(x)$ 在 $(-\infty, +\infty)$ 内 (). (A) 处处可导
2. $ \ \mathfrak{g}(x) \ \mathfrak{I}(x) = \ln^2(1+g(x)) + 2\ln(1+g(x)) , \ f'(1) = 1 , \ g'(1) = \frac{1}{2} , \ \mathfrak{g}(1) = () . $
(A) $-\frac{1}{2}$ (B) -1 (C) 1 (D) 0
3. 下列广义(反常)积分发散的是().
(A) $\int_0^{+\infty} \frac{e^{-x}}{\sqrt{x}} dx$ (B) $\int_0^{+\infty} \frac{dx}{x \ln^2 x}$ (C) $\int_0^{+\infty} x^2 e^{-x^2} dx$ (D) $\int_0^{+\infty} \frac{dx}{(x+2) \ln^2 (x+2)}$
1.

- 4. 设函数 $f(x) = \begin{cases} x^4 \ln|x| + 1, & 0 < |x| \le 1 \\ 1, & x = 0 \end{cases}$, 则 ().
 - (A) $f(0) \not\in f(x)$ f(-1,1] $f(0) \cap f(0) \cap f(x)$ $f(0) \cap f(x)$ f(0) f(0)
 - (c) f(x) = 0 f(x)
- 5. 设 f(x) 为连续的偶函数,则 f(x) 的原函数中().
 - (A) 都是奇函数 (B) 都是偶函数 (C) 有奇函数
- (D) 有偶函数
- 三、计算题(本题共7小题,每小题8分,满分56分.)
- 1. 设 y(x) 是由方程 x+y=xy+1 确定的隐函数, 函数 g(x) 在点 x=0 处二阶可导,

且
$$g'(0) = g''(0) = 1$$
. 若 $f(x) = \begin{cases} \frac{g(x) - y(x)}{x}, & x \neq 0 \\ a, & x = 0 \end{cases}$

在点x=0处连续.求f'(0).

- 3. 求函数 $f(x) = \frac{x^3 + 1}{|x + 1|(x^2 x)} \sin\left(\frac{|x 1|}{x + 2}\pi\right)$ 的所有间断点,并判别间断点类型.
- 4. 设函数 y = y(x) 由参数方程 $\begin{cases} x = \int_0^t e^{u^2} du & \text{所确定, } x \frac{dy}{dx} = x \frac{d^2y}{dx^2} \\ y = \int_0^t e^{(u+t)^2} du & \text{for } x = x \frac{dy}{dx} = x \frac{d^2y}{dx^2} \end{cases}$
- 5. 计其 $\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{\mathrm{d}x}{\sqrt{|x-x^2|}}$.
- 6. 求不定积分 $\int \frac{\sin^2 x}{\cos^3 x} dx$.
- 7. $x \int_0^x f(t)g(x-t)dt(x \ge 0)$, x = f(x) = x, $x = f(x) = \begin{cases} \sin x, & 0 \le x < \frac{\pi}{2}, \\ 0, & x \ge \frac{\pi}{2}. \end{cases}$
- 四、综合应用题 (本題满分 8 分) 求函数 $f(x)=x^3-2x^2+x-1$ 在 [0,2] 上的极值、最值及曲线 y=f(x) 的拐点.
- 五、证明题 (本题满分 6 分) 设函数 f(x) 在区间 [0,1] 上连续,在区间 (0,1) 内存在二阶导数,且 f(0)=f(1). 证明:存在 $\xi\in(0,1)$,使得 $2f'(\xi)+\xi f''(\xi)=0$.