# Shape and Moment Invariants Local Descriptor for Structured Images

### **Anonymous Submission**

#### Anonymous Affiliation

#### **Abstract**

**Keywords:** image matching, shape descriptors, moment invariants,

# Introduction

A pair of images < I1, I2 >, related with an photometric P and affine geometric transformation G: I2 = I1.G.P.

# **Related Work**

Salient region detectors Maximally Stable Extremal Regions (MSER), [Matas et al., 2002]. The Data-driven Morphology Salient Regions Detector (DMSR) have been demonstrated to outperform MSER in ..., [Ranguelova, 2016]. Here, we propose to use a Binary detector (BIN) using the data-driven binarization explained in [Ranguelova, 2016], with either all or only regions with large area  $(A_{reg.} \ge$  $f_A.A_{Im.}$ ) are used.



Region descriptors State of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description within the state of the art in region description with the state of the art in region description with the state of the art in region description with the state of the art in region description with the state of the art in region description with the state of the art in region description with the state of the art in region description with the art in region with the art in object descriptors. Flusser et al. introduced a general framewingers und general framewingers und general framewingers und general framewingers. (AMIs) using graph representation [Flusser and Suk, 1999; Sakragio Fluster tool by MSER et al., 2009].

**Detector-descriptor combination** 

# Image matching with Shape and (0.27), while SMI - true negative (-0.11). Moment Invariant descriptor

We propose a set of several Shape and Moment Invariants (SMI) to encode each salient region into a feature vector (descriptor) used for the region matching. The SMI descriptor contains two parts: simple shape invariants and moment invariants  $SMI_i$  =  $\{S_i, M_i\}.$ 

Top image pair (scale and viewpoint): SURF descriptor yields false negative (similarity score 0.096), while the proposed SMI descriptor - true positive (0.89).

Bottom image pair (blur): SURF gives false positive

**Simple shape invariants** A binary shape of a region  $R_i$  can be described by a set of simple properties defined over the original shape or the equivalent up to the second order moments ellipse  $E_i$ . These properties are: the region's area  $a_i$ , the area of the region's convex hull  $a_i^c$ , the length of the major and minor axes of  $E_i$ ,  $\mu_i$  and  $\nu_i$  and the distance between the foci of the ellipse  $\phi_i$ . From these basic properties, a set of shape affine invariants are defined in Table 1.

| Invariant          | Definition             | Description                                                        |
|--------------------|------------------------|--------------------------------------------------------------------|
| Relative Area      | $\tilde{a}_i = a_i/A$  | region's area normalized by the image area A                       |
| Ratio Axes Lengths | $r_i = v_i/\mu_i$      | ratio between $E_i$ minor and major axes lengths                   |
| Eccentricity       | $e_i = \phi_i / \mu_i$ | $e_i \in [0,1]$ (0 is a circle, 1 is a line segment.)              |
| Solidity           | $s_i = a_i / a_i^c$    | proportion of the convex hull pixels, that are also in the region. |

Table 1: Simple shape invariants.

The simple shape invariants part of  $SMI_i$  is then  $S_i = \{\tilde{a}_i, r_i, e_i, s_i\}$ .

**Affine Moment Invariants** If f(x, y) is a real-valued image with N points, the AMI functional is defined by

$$I(f) = \int_{-\infty}^{\infty} \prod_{k, i=1}^{N} C_{kj}^{n_{kj}} \cdot \prod_{l=1}^{N} f(x_l, y_l) dx_l dy_l,$$
 (1)

where  $n_{kj}$  are non-negative integers,  $C_{kj} = x_k y_j - x_j y_k$  is the cross-product (graph edge) of points (nodes)  $(x_k, y_k)$  and  $(x_j, y_j)$ , [Suk and Flusser, 2004]. For full details of the AMI's theory the reader is referred to [Flusser et al., 2009]. We use the set of 16 irreducible AMIs of N = 4th order as implemented by the authors in an open source MATLAB software [Suk, 2004]. The AMI part of  $SMI_i$  is  $M_i = \{m_{i1}, ..., m_{i16}\}$ .

Hence, the final descriptor for the *i*-th region is a 20 element feature vector  $SMI_i = \{\tilde{a}_i, r_i, e_i, s_i, m_{i1}, ..., m_{i16}\}$ .

**Matching** Lets  $\{SMI_i^1\}$ ,  $i=1,\ldots,n_1$  and  $\{SMI_j^2\}$ ,  $j=1,\ldots,n_2$  be the  $n_1 \times 20$  and  $n_2 \times 20$  matrices with rows the SMI descriptors for the  $n_1$  and  $n_2$  regions detected via MSER or BIN (all/largest) detector in the pair of images to compare. We compare exhaustively every pair of local SMI descriptors  $SMI_i^1$  and  $SMI_j^2$  with Sum of square differences metric. The matching threshold for selection of the strongest matches is mt, the max ratio threshold for rejecting ambiguous matches is mr, the confidence of a match is mc and only unique matches are considered. After matching of all descriptor pairs, we select the top quality matches above a matching cost threshold ct. From those, we estimate in it iterations the affine transformation  $\tilde{T}$  between the two sets of points being the centroids of the two matching regions sets as average of nr runs with allowed max point distance md. The two images are then transformed  $J2 = I1.\tilde{T}$ ,  $J1 = I2.\tilde{T}^{-1}$  and a correlation  $(cor[X,Y] = cov[X,Y]/\sqrt{var[X]var[Y]})$  between the original and transformed images is used for confirmation of a true match. If the average correlation similarity between both images and their transformed versions (cor[I1,J1] + cor[I2,J2])/2 is above a similarity threshold st, we declare the original image pair < I1,I2 > to be depicting (partially) the same scene.

# 4 Performance Evaluation

VGG dataset, [Mikolajczyk et al., 2005]. OxFrei dataset, [Ranguelova, 2016]. Used parameters: mt = mr = 1,  $f_A = 2e - 3$  (for BIN largest), it = 1000, nr = 10, mc = 95, md = 8px, ct = 0.025, st = 0.25.

### 4.1 VGG dataset

The performance results on the VGG dataset are summarized in Table 2.

### 4.2 OxFrei dataset

The performance results on the OxFrei dataset are summarized in Table 3.

| Det. + descr.          | TP  | TN  | FP | FN | Acc.  | Prec. | Recall |
|------------------------|-----|-----|----|----|-------|-------|--------|
| MSER + SURF            | 128 | 428 | 4  | 16 | 0.965 | 0.969 | 0.889  |
| MSER + SMI             | 122 | 430 | 2  | 22 | 0.958 | 0.98  | 0.847  |
| BIN + SURF             | 122 | 426 | 6  | 22 | 0.951 | 0.953 | 0.847  |
| BIN (All) + <b>SMI</b> | 84  | 432 | 0  | 60 | 0.89  | 1     | 0.58   |
| BIN (Largest) + SMI    | 112 | 424 | 8  | 32 | 0.93  | 0.93  | 0.77   |

Table 2: Performance of salient region detectors and descriptors on the VGG dataset.

| Det. + descr.              | TP   | TN    | FP   | FN   | Acc. | Prec. | Recall |
|----------------------------|------|-------|------|------|------|-------|--------|
| MSER + SURF                | 3309 | 28848 | 2904 | 660  | 0.90 | 0.53  | 0.83   |
| MSER + SMI                 | 2957 | 31162 | 590  | 1012 | 0.95 | 0.83  | 0.74   |
| BIN + SURF                 | 2513 | 28198 | 3554 | 1456 | 0.85 | 0.41  | 0.63   |
| BIN (All) + <b>SMI</b>     | 1275 | 31298 | 454  | 2694 | 0.91 | 0.73  | 0.32   |
| BIN (Largest) + <b>SMI</b> | 2079 | 28474 | 3278 | 1890 | 0.85 | 0.38  | 0.52   |

Table 3: Performance of salient region detectors and descriptors on the OxFrei dataset.

# 5 Conclusion

# References

[Flusser and Suk, 1993] Flusser, J. and Suk, T. (1993). Pattern recognition by affine moment invariants. *Pattern Recognition*, 26(1):167 – 174.

[Flusser et al., 2009] Flusser, J., Suk, T., and Zitova, B. (2009). *Moments and Moment Invariants in Pattern Recognition*. Wiley.

[Matas et al., 2002] Matas, J., Chum, O., Urban, M., and Pajdla, T. (2002). Robust Wide Baseline Stereo from Maximally Stable Extremal Regions. In *Proceedings BMVC*, pages 36.1–36.10.

[Mikolajczyk et al., 2005] Mikolajczyk, K. et al. (2005). A comparison of affine region detectors. *International Journal of Computer Vision*, 65(1-2):43–72.

[Ranguelova, 2016] Ranguelova, E. (2016). A Salient Region Detector for Structured Images. In *Proceedings* of IEEE/ACS 13th Int. Conf. of Computer Systems and Applications (AICCSA), pages 1–8.

[Suk, 2004] Suk (2004). Matlab codes: Affine moment invariants. http://zoi\_zmije.utia.cas.cz/mi/codes.

[Suk and Flusser, 2004] Suk, T. and Flusser, J. (2004). Graph method for generating affine moment invariants. In 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, August 23-26, 2004., pages 192–195.