Mathematical Operations

- Base 2: the native base for computer systems
- Glyphs: 0, 1
- On a computer, we are limited to a certain number of digits bits.
- Recall, the results are summarized via the use of status flags.
 - For unsigned operations:
 - the final value is Zero (Z)
 - the calculation resulted in final carry (C)
 - For signed values
 - the final value is Negative (S)
 - the calculation resulted in an overflow (V) [used when singed numbers are involved]

Binary Addition:

- We have only two digits
 - 0 + 0 = 0
 - 0 + 1 = 1
 - 0 1 + 0 = 1
 - o 1+1=?
- What do we do in base 10

Base 2

		ase z	
+		E	3
	•	0	1
٨	0	0	1
Α	1	1	?

Base 10

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9/	10
2	2	3	4	5	6	7	8	9/	10	n
3	3	4	5	6	7	8	9	10	M	12
4	4	5	6	7	8	9	10	И	12	13
5	5	6	7	8	9	10	M	12	13	14
6	6	7	8	9	10	И	12	13	14	15
7	7	8	9	10	И	12	13	14	15	16
8	8	9/	10	И	12	13	14	15	16	17
9	9	10	И	12	13	14	15	16	17	18

Binary Addition (1-digit):

We have only two digits

$$0 + 0 = 0$$

What do we do in base 10

Base 2

Half Adder

A	В	С	s	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

Base 10

			•		_	_	_	_	_	
+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

In Binary (before)

C + A + B = C, S								
С	A	В	С	S				
0	0	0	0	0				
0	0	1	0	1				
0	1	0	0	1				
0	1	1	1	0				

C + A + B = C, S								
С	A	В	С	S				
1	0	0	0	1				
1	0	1	1	0				
1	1	0	1	0				
1	1	1	1	1				

In Binary (after)

V S Z

0	1	1	0	0					0	0	0	0	0
	0	1	1	0						0	1	0	0
+	0	0	1	1					+	1	0	1	1
					_								
0	1	0	0	1		0	?	?	0	1	1	1	1
Z						С	V	S	Z				
1	1	1	1	0					1	1	1	0	0
	1	1	0	1						1	0	1	1
+	0	0	1	1					+	0	1	1	0

V

S

Binary Addition: Practice

C	+ A	+ B	= C	, S
С	A	В	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0

Binary Subtraction (via Borrow)

- Traditional Method ⇒
 - Notice the extra squares
 - Notice the extra bookkeeping

- Recall Method of Complements
 - o allows us to leverage binary addition
 - need a method to encode negative numbers

Binary Subtraction (via Borrow)

- Traditional Method ⇒
 - Notice the extra squares
 - Notice the extra bookkeeping

- Recall Method of Complements
 - allows us to leverage binary addition
 - need a method to encode negative numbers

V	~V
0	1
1	0

- A technique to encode both positive and negative numbers
 - o uses the same algorithm to perform addition, subtraction performed by the addition of complements
- Complement: a thing that completes or brings to perfection: $X + Y = 2^n$ (10...0)
- Radix 10:
 - o 10's complement

$$7 + x = 10; x = 3$$

$$\blacksquare$$
 46 + y = 100; y = 54

o 9's complement

- Radix 2:
 - 2's complement

$$\bullet$$
 0010 1110 + y = 1 0000 0000 ; y = 1101 0010

1's complement

- As we shall see, for Base 2
 - The 2's complement of X is: -X (~X + 1)
 - The 1's complement of X is: ~X

Method of Complements

A technique to encode both positive and <u>negative</u> numbers

- MSb used to denote the sign bit (0 positive, 1 negative)
- Table assumes a 4-bit represent

Use 1's complement to represent negative numbers

- Divide the number range in half
- Encode a positive and a negative value for each number
- Pros/cons:
 - ease to compute
 - o positive and negative representations of zero

1's Complement

	Positive	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000
8		

Method of Complements

A technique to encode both positive and <u>negative</u> numbers

- MSb used to denote the sign bit (0 positive, 1 negative)
- Table assumes a 4-bit represent

Use 2's complete to represent negative numbers

- Hold Zero as special
- Fold the resulting range to assign values
- Pros/cons:
 - Not symmetric: extra negative number
 - Need to flip all bits and add one to form the negative number
 - Consider then the predecessor of -8:

2's Complement

2 o o o impromonic								
	Positive	Negative						
0		0000						
1	0001	1110 + 1 = 1111						
2	0010	1101 + 1 = 1110						
3	0011	1100 + 1 = 1101						
4	0100	1011 + 1 = 1100						
5	0101	1010 + 1 = 1011						
6	0110	1001 + 1 = 1010						
7	0111	1000 + 1 = 1001						
8		1000						

Comparison of 1's and 2's Complement Encodings

1's Complement

	Positive	Negative
0	0000	1111
1	0001	1110
2	0010	1101
3	0011	1100
4	0100	1011
5	0101	1010
6	0110	1001
7	0111	1000

2's Complement

	Positive	Negative	
0	0000		
1	0001	1110 + 1 = 1111	
2	0010	1101 + 1 = 1110	
3	0011	1100 + 1 = 1101	
4	0100	1011 + 1 = 1100	
5	0101	1010 + 1 = 1011	
6	0110	1001 + 1 = 1010	
7	0111	1000 + 1 = 1001	
8		1000	

Status Flags Explained!

Example: $13 - 9 \Rightarrow 01101 + 10111$ * 9: $01001 \rightarrow -9$: 10110 + 1 = 10111

- C: Carry Flag
 - the last step resulted in a carry value of 1
- V: Overflow Flag
 - o the xor of the last two carry values: c ^ c'
- S: Sign Flag
 - o the MSB in the result is set (i.e., a 1)
- Z: Zero Flag
 - o all bits in the result are cleared (i.e., 0)

See: comp122/tidbits/status_bits_explained.gif

Algorithm: Subtraction via 1's Complements

Example: $13 - 9 \Rightarrow 0013 + -0009$

- 1. Convert 13 and 9 into binary (01101 & 01001)
- 2. Take the **1's complement** of the subtrahend (9)
 - $\circ \quad 01001 \rightarrow 10110$
- 3. Add the complement to the minuend
- 4. Drop the leading "1"
- 5. Add 1
- Optimization: introduce initial carry in

Algorithm: Subtraction via 2's Complement

Example: $13 - 9 \Rightarrow 00013 + -0009$

- 1. Encode 13 and 9 into binary (01101 & 01001)
- 2. Take the **2's complement** of the subtrahend (9)
 - \circ 01001 \rightarrow 10110 + 1 = 10111
- 3. Add the complement to the minuend
- 4. Drop the leading "1", i.e., the carry bit.

Providing the answer:

Optimization: Addition of adding one is baked in!

Algorithm: Subtraction via 2's Complement

Example: $13 - 9 \Rightarrow 0013 + -0009$

- 1. Encode 13 and 9 into binary (01101 & 01001)
- 2. Take the 2's complement of the subtrahend (9)
 - o 01001 -> 10110 + 1 = 10111
- 3. Add the complement to the minuend
- 4. Drop the leading "1", i.e., the carry bit.

Providing the answer: 4

Optimization: Addition of adding one is baked in!

1 0 1 0 C V S Z

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$\bullet$$
 8 + 9 = 17

$$\bullet$$
 7 - 4 = 3

$$-5 + 2 = -3$$

$$\bullet$$
 -16 - 3 = -19

$$\bullet$$
 -25 - 4 = -29 => (-25) + (-4)

Steps:

- transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - if negative result: compute 2's complement first

- 7 4 = 3
- -5 + 2 = -3
- -16 3 = -19

3.

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$8 + 9 = 17$$

$$\triangleright$$
 7 - 4 = 3

$$-5 + 2 = -3$$

$$\bullet$$
 -16 - 3 = -19

3.
$$-4$$
: $111011+1 \Rightarrow 111100$

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$>$$
 -5 + 2 = -3

$$\bullet$$
 -16 - 3 = -19

3.
$$-5$$
: 111010+1 \Rightarrow 111011

5.
$$000010+1 \Rightarrow 000011 = -3$$

+ 1 1 1 1 0 1	1
---------------	---

- 1. transform the operation to addition
- 2. convert abs(X) to binary
- 3. encode both numbers in 2's complement
- 4. perform binary addition
- 5. convert result to decimal
 - o if negative result: compute 2's complement first

$$8 + 9 = 17$$

$$\bullet$$
 -5 + 2 = -3

$$>$$
 -16 - 3 = -19

5.
$$010010+1 \Rightarrow 010011 = -19$$

