

大连理工大学软件学院

陈志奎 博士、教授、博士生导师

办公室: 综合楼405, Tel: 62274392 实验室: 综合楼一楼, 教学楼A502/C109

Mobile: 13478461921

Email: zkchen@dlut.edu.cn

zkchen00@hotmail.com

QQ: 1062258606

2017/10/11 1/35

- 集合的定义
- 集合的描述
- 内涵与外延
- 集合的基数
- 集合间的关系
 - 相等
 - 包含、真包含
- 全集
- 补集
- 子集、幂集
- 集合的交并运算
- 集合的差分运算
- 集合对称差分运算

- •集合运算的40条规律
- 包含排斥原理

回顾一数学符号的书写与阅读

数学公式的读法(Pronunciation of mathematical expressions)

- 1逻辑(Logic)
 - **∃** there exists
 - \forall for all
- p p implies q / if p, then q
- p⇔q p if and only if q p is equivalent to q p and q are equivalent

数学公式的读法(Pronunciation of mathematical expressions)

2集合(Sets)

 $x \in A$ x belongs to A / x is an element (or a member) of A

 $x \notin A$ x does not belong to A / x is not an element (or a member)

of A

A⊂**B** A is contained in **B** / A is a subset of **B**

 $A \supset B$ A contains B / B is a subset of A

 $A \cap B$ A cap B / A meet B/ A intersection B

A∪B A cup B/A join B / A union B

B/A A minus B/the difference between A and B

A×B A cross B / the Cartesian product of A and B(A与B的笛卡尔积)

数学公式的读法(Pronunciation of mathematical expressions)

3 实数(Real numbers)

x+1 x plus one

x-1 x minus one

 $x\pm 1$ x plus or minus one

xy xy / x multiplied by y

(x-y)(x+y) x minus y, x plus y

x = x x over y

y

the equals sign

x=5 x equals 5 / x is equal to 5

 $x \neq 5$ x (is) not equal to 5

x≡**y x** is equivalent to (or identical with) **y**

数学公式的读法(Pronunciation of mathematical expressions)

```
3 实数(Real numbers)
                 x is greater than y
x>y
                  x is greater than or equal to y
x \ge y
                 x is less than y
x < y
x≤y
                  x is less than or equal to y
0 < x < 1
                  zero is less than x is less than 1
0 \le x \le 1
          zero is less than or equal to x is less than or equal to 1
                  mod x / modulus x
X
\mathbf{X}^2
                  x squared / x (raised) to the power 2
\mathbf{x}^3
                  x cubed
\mathbf{x}^4
                  x to the fourth / x to the power four
\mathbf{x}^{\mathbf{n}}
                  x to the nth / x to the power n
                  x to the (power) minus n
\mathbf{x}^{-\mathbf{n}}
```

数学公式的读法(Pronunciation of mathematical expressions)

```
3 实数(Real numbers)

n! n factorial
(x+y)^2 x plus y all squared
x_i x_i / x subscript i / x suffix i / x sub i
the sum from i equals one to n ai / the sum as i runs
\sum_{i=1}^{n} a_i from 1 to n of the ai
\left(\frac{x}{y}\right)^2 x over y all squared
```

 $\hat{\chi}$ x hat $\overline{\chi}$ x bar $\widetilde{\chi}$ x tilde

数学公式的读法(Pronunciation of mathematical expressions)

4 线性代数(Linear algebra)

||A|| the norm (or modulus) of x

 \overrightarrow{OA} OA / vector OA

OA / the length of the segment OA

 ΔT A transpose / the transpose of A

A –1 A inverse / the inverse of A

数学公式的读法(Pronunciation of mathematical expressions)

5 函数(Functions)

f(x)fx / f of x / the function f of x $f: S \rightarrow T$ a function f from S to T x maps to y / x is sent (or mapped) to y $x \mapsto y$ f prime x / f dash x / the (rst) derivative of f with f'(x)respect to x f''(x)f double-prime x / f double-dash x / the second derivative of f with respect to x f triple-prime x / f triple-dash x / the third f'''(x)derivative of f with respect to x four x / the fourth derivative of f with respect to x log y to the base e / log to the base e of y / natural ln y log (of) y

数学公式的读法(Pronunciation of mathematical expressions)

5 函数(Functions)

 $\frac{\partial f}{\partial x_1}$ the partial (derivative) of f with respect to x1

 $\frac{O^2 f}{\partial x^2}$ the second partial (derivative) of f with respect to x1

 \int_{0}^{∞} the integral from zero to infinity

 $\lim_{x\to +0}$ the limit as x approaches zero from above

第四章 二元关系

- 本章讨论的关系(主要是二元关系),它仍然 是一种集合,但它是比前一章更为复杂的集合。
- 关系是笛卡尔乘积的子集,它的元素是有序二元组的形式,这些有序二元组中的两个元素来自于两个不同或者相同的集合。因此,关系是建立在其它集合基础之上的集合。
- 关系中的有序二元组反映了不同集合中元素与元素之间的关系,或者同一集合中元素之间的关系。本章首先讨论关系的基本表达形式,然后给出关系的运算,最后讨论几种常用的关系。

主要内容

- 序偶与迪卡尔乘积
- 关系的基本概念
- 关系的性质
- 关系的表示
- 关系的运算
- 合成关系的关系图、关系矩阵
- 特殊关系:等价关系和划分,相容关系和 覆盖,偏序关系和哈斯图等。

4.1 多重序元与迪卡尔乘积

一、序偶

定义:由两个具有固定次序的客体组成的序列,称序偶,记作< x,y>。

一、序偶

序偶的相等:

$$\langle x, y \rangle = \langle a, b \rangle \Leftrightarrow ((x = a) \land (y = b))$$

序偶<a,b>中,a称为第一元素,b称为第二元素。两个元素不一定来自同一个集合,他们可以代表不同类型的事务。

二、多重序元

定义: n重序元是一个序偶,它的第一元素是(n-1) 重序元。

3重序元: <<x,y>,z>, 简单记作<x,y,z>

n重序元: $<< x_1, x_2, \dots, x_{n-1}>, x_n>$

n重序元的相等:

$$\langle\langle x_1, x_2, \dots, x_{n-1} \rangle, x_n \rangle = \langle\langle a_1, a_2, \dots, a_{n-1} \rangle, a_n \rangle \Leftrightarrow$$

$$((x_1 = a_1) \land (x_2 = a_2) \land \dots \land (x_n = a_n))$$

三、迪卡尔乘积

定义:设A和B是任意两个集合。若序偶的第一个元素是A的一个元素,第二个元素是B的一个元素,则所有这样的序偶集合,称为A和B的笛卡尔乘积,记作 $A \times B$,即

$$A \times B = \{\langle x, y \rangle \mid x \in A \land y \in B\}$$

若A中有m个元素,B中有n个元素, A和B的笛卡尔乘 积中元素个数为? 例: 设 $A = \{\alpha, \beta\}, B = \{1, 2\},$ 求 $A \times B, B \times A, A \times A, (A \times B) \cap (B \times A).$

解:
$$A \times B = \{\langle \alpha, 1 \rangle, \langle \alpha, 2 \rangle, \langle \beta, 1 \rangle, \langle \beta, 2 \rangle\}$$

 $B \times A = \{\langle 1, \alpha \rangle, \langle 2, \alpha \rangle, \langle 1, \beta \rangle, \langle 2, \beta \rangle\}$
 $A \times A = \{\langle \alpha, \alpha \rangle, \langle \beta, \beta \rangle, \langle \alpha, \beta \rangle, \langle \beta, \alpha \rangle\}$
 $(A \times B) \cap (B \times A) = \emptyset$

三、迪卡尔乘积

例: 设
$$A = \{\alpha, \beta\}, B = \{1, 2\}$$
和 $C = \{c\},$ 试求 $(A \times B) \times C$ 和 $A \times (B \times C)$

解:
$$(A \times B) \times C = \{\langle \alpha, 1 \rangle, \langle \alpha, 2 \rangle, \langle \beta, 1 \rangle, \langle \beta, 2 \rangle\} \times \{c\}$$

$$= \{\langle \langle \alpha, 1 \rangle, c \rangle, \langle \langle \alpha, 2 \rangle, c \rangle, \langle \langle \beta, 1 \rangle, c \rangle, \langle \langle \beta, 2 \rangle, c \rangle\}$$

$$A \times (B \times C) = \{\alpha, \beta\} \times \{\langle 1, c \rangle, \langle 2, c \rangle\}$$

$$= \{\langle \alpha, \langle 1, c \rangle\rangle, \langle \alpha, \langle 2, c \rangle\rangle, \langle \beta, \langle 1, c \rangle\rangle, \langle \beta, \langle 2, c \rangle\rangle\}$$

可见
$$(A \times B) \times C \neq A \times (B \times C)$$

三、迪卡尔乘积

定理:设有A,B,C三个集合,则

- $(a) A \times (B \cup C) = (A \times B) \cup (A \times C)$
- $(b) A \times (B \cap C) = (A \times B) \cap (A \times C)$
- $(c) (A \cup B) \times C = (A \times C) \cup (B \times C)$
- $(d) (A \cap B) \times C = (A \times C) \cap (B \times C)$

证: 设 $\langle x, y \rangle$ 是 $A \times (B \cup C)$ 的任意元素,根据 \land 对 \lor 的

分配律,有:

$$\langle x, y \rangle \in A \times (B \cup C)$$

- $\Leftrightarrow x \in A \land y \in B \bigcup C$
- $\Leftrightarrow x \in A \land (y \in B \lor y \in C)$
- \Leftrightarrow $(x \in A \land y \in B) \lor (x \in A) \land y \in C)$
- $\Leftrightarrow \langle x, y \rangle \in A \times B \vee \langle x, y \rangle \in A \times C$
- \Leftrightarrow $\langle x, y \rangle$ ∈ $(A \times B) \cup (A \times C)$ 得证。

n个集合的迪卡尔乘积

定义:集合 A_1,A_2,\cdots,A_n 的笛卡尔乘积可以表示成

$$X_{i \in I_n} A_i = A_1 \times A_2 \times \cdots A_n$$

$$= ((A_1 \times A_2) \times A_3) \times \cdots \times A_n$$

$$= \{\langle x_1, x_2, \cdots, x_n \rangle \mid x_1 \in A_1 \land x_2 \in A_2 \land \cdots \land x_n \in A_n \}$$

集合A的笛卡尔乘积 $A \times A$ 记作 A^2 ,类推

$$A \times A \times A = A^3$$

如果所有的集合A_i都是有限集合,则他们笛卡尔乘积的基数为:

$$|A_1 \times A_2 \times \cdots \times A_n| = |A_1| |A_2| \cdots |A_n|$$

4.2关系的基本概念

一、关系的定义

定义:设 $n \in I_+$ 且 A_1, A_2, \dots, A_n 为n个任意集合,

$$R \subseteq \overset{n}{\underset{i=1}{X}} A_i$$

- (a) 称R为 A_1, A_2, \dots, A_n 间的n元关系;
- (b) 若n=2,则称R为 A_1 到 A_2 的二元关系;
- (c) 若 $R = \emptyset$,则称 R为空关系;若 $R = X A_i$,则称 R为全关系;
- (d) 若 $A_1 = A_2 = \cdots = A_n = A$,则称R为A上的n元关系。

一、关系的定义

例: $\Leftrightarrow R_1 = \{\langle 2n \rangle \mid n \in N\}$

$$R_2 = \{\langle n, 2n \rangle \mid n \in N\}$$

 $R_3 = \{\langle n, m, k \rangle | n, m, k \in N \land n^2 + m^2 = k^2 \}$ 则称 R_1 是N上的一元关系, R_2 是N上的二元关系, R_3 是N上的三元关系。

如无特殊指定,"关系"概指二元关系。

若序偶 $\langle x, y \rangle$ 属于R,则记作 $\langle x, y \rangle \in R$ 或 xRy ,否则,记作 $\langle x, y \rangle \notin R$ 或 xRy 。

、关系的定义

例: 设集合 $A=\{a,b\},B=\{2,5,8\}$

则
$$A \times B = \{\langle a, 2 \rangle, \langle a, 5 \rangle, \langle a, 8 \rangle, \langle b, 2 \rangle, \langle b, 5 \rangle, \langle b, 8 \rangle\}$$

 $\Rightarrow \rho_1 = \{\langle a, 2 \rangle, \langle b, 2 \rangle, \langle b, 8 \rangle\}$ $\rho_2 = \{\langle a, 5 \rangle\}$

则 ρ_1, ρ_2 均是由A到B的关系。

同理,
$$\rho_3 = \{\langle 2, a \rangle, \langle 5, b \rangle\} \subseteq B \times A$$

则 ρ_3 是由B到A的关系。

同理,
$$\rho_4 = \{\langle 2, 2 \rangle, \langle 5, 8 \rangle\} \subseteq B \times B$$

则 ρ_4 是由B到B的关系。

一、关系的定义

例:设集合 $A=\{2,3,5,9\}$,试给出集合A上的小于或等于关系,大于或等于关系。

解:令集合A上的小于或等于关系为 R_1 ,大于或等于关系为 R_2 ,根据定义有:

$$R_1 = \{\langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 5, 5 \rangle, \langle 9, 9 \rangle, \langle 2, 3 \rangle, \langle 2, 5 \rangle, \langle 2, 9 \rangle, \langle 3, 5 \rangle, \langle 3, 9 \rangle, \langle 5, 9 \rangle\}$$

$$R_2 = \{\langle 2, 2 \rangle, \langle 3, 3 \rangle, \langle 5, 5 \rangle, \langle 9, 9 \rangle, \langle 3, 2 \rangle, \langle 5, 2 \rangle, \langle 9, 2 \rangle, \langle 5, 3 \rangle, \langle 9, 3 \rangle, \langle 9, 5 \rangle\}$$

二、关系的相等

定义:设 R_1 为 A_1 , A_2 ,..., A_n 间的n元关系, R_2 为 B_1 , B_2 ,..., B_m 间的m元关系,如果:

- (1) n=m
- (2) 若 $1 \le i \le n$,则 $A_i = B_i$
- (3) 把 R_1 和 R_2 作为集合看, R_1 = R_2 。

则称n元关系 R_1 和m元关系 R_2 相等,记作 R_1 = R_2

二、关系的相等

例:设 R_1 为从Z到 I_+ 的二元关系, R_2 和 R_3 都是I上的二元关系

$$R_{1} = \{\langle n, m \rangle \mid n \in Z \land m \in I \land m = n + 1\}$$

$$R_{2} = \{\langle n, n + 1 \rangle \mid n \in I \land n \ge 0\}$$

$$R_{3} = \{\langle n, n + 1 \rangle \mid n \in I\}$$

从集合的观点来看, $R_1=R_2=R_3$ 。

但是就二元关系来说, $R_2=R_3$,不等于 R_1 。

三、关系的定义域和值域

关系R(从A到B的关系)的定义域(简称为域)定义为:

$$D(R) = \{x \mid (\exists y)(\langle x, y \rangle \in R)\}$$

关系R的值域定义为:

$$R(R) = \{ y \mid (\exists x) (\langle x, y \rangle \in R) \}$$

显然,有 $D(R) \subseteq A, R(R) \subseteq B$

为: 当且仅当a整除b时,有aRb。

可得:
$$R = \{\langle 2, 2 \rangle, \langle 2, 6 \rangle, \langle 2, 8 \rangle, \langle 3, 6 \rangle, \langle 3, 9 \rangle\}$$

$$D(R) = \{2,3\}$$

$$R(R)=\{2,6,8,9\}$$

定义:设R为A上的二元关系 (1)若对每个 $x \in A$,皆有 $\langle x, x \rangle \in R$,则称R为自反的。用式子来表述即是:

R是自反的 \Leftrightarrow $(\forall x)(x \in A \rightarrow \langle x, x \rangle \in R)$

(2)若对每个 $x \in A$,皆有 $\langle x, x \rangle \notin R$,则称R为反自反的。 用式子来表述即是:

R是反自反的 $\Leftrightarrow (\forall x)(x \in A \to \langle x, x \rangle \notin R)$

(3) 对任意的 $x, y \in A$,若 $\langle x, y \rangle \in R$,则 $\langle y, x \rangle \in R$,就称R为对称的。用式子来表述即是:

R是对称的 \Leftrightarrow $(\forall x)(\forall y)(x, y \in A \land \langle x, y \rangle \in R \rightarrow \langle y, x \rangle \in R)$

(4) 对任意的 $x, y \in A$,若 $\langle x, y \rangle \in R$ 且 $\langle y, x \rangle \in R$,则x=y,就称R为反对称的。用式子来表述即是:

R是反对称的 \Leftrightarrow $(\forall x)(\forall y)(x, y \in A \land \langle x, y \rangle \in R \land \langle y, x \rangle \in R \rightarrow x = y)$

(5) 对任意的 $x, y, z \in A$,若 $\langle x, y \rangle \in R$ 且 $\langle y, z \rangle \in R$,则 $\langle x, z \rangle \in R$,就称R为可传递的。用式子来表述即是:

R是可传递的 \Leftrightarrow $(\forall x)(\forall y)(\forall z)(x, y, z \in A \land \langle x, y \rangle \in R \land \langle y, z \rangle \in R \rightarrow \langle x, z \rangle \in R)$

(6) 存在 $x, y, z \in A$,并且 $\langle x, y \rangle \in R \land \langle y, z \rangle \in R$ 而 $\langle x, z \rangle \notin R$, 就称R为不可传递的。用式子来表述即是:

R是不可传递的 \Leftrightarrow ($\exists x$)($\exists y$)($\exists z$)($\langle x, y \rangle \in R \land \langle y, z \rangle \in R \land \langle x, z \rangle \notin R$)

<u>例1:</u> 考虑自然数集合上的普通相等关系"=",大于关系">"和大于等于关系">"具有的性质。

解: (1) "="关系是自反的、对称的、反对称的、可传递的;

- (2)">"关系是反自反的、反对称的、可传递的;
- (3)"≥"关系是自反的、反对称的、可传递的。

例2: 空集上的二元关系的性质。

自反的、对称的、反对称的、反自 反的、可传递的

区分概念:空关系vs空集上的关系

空关系:对于任何集合A,称空集为A上的空关系.

性质: 若A非空, 空关系是反自反的, 对称的, 反对称的, 可传递的;

若A是空集,该空关系是自反的,反自反的,对称的,反对称的,可传递的

空集上的关系:自反的,反自反的,对称的,反对称的,可传递的。在空集上可定义任意元关系。

• 作业:

• P102: 1-10 (奇数)