

Page 1 of 27

FCC TEST REPORT for GODOX Photo Equipment Co.,Ltd

TTL Wireless Flash Trigger

Model No.: XProC, XProN, XProS, XProF, XProO

Prepared for : GODOX Photo Equipment Co.,Ltd

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan

East Road, Luohu District, Shenzhen 518001, China

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China.

Tel: +86-755-26503290 Fax: +86-755-26503396

Report No. : ATE20172401

Date of Test : Nov. 08, 2017--Nov. 28, 2017

Date of Report: Nov. 29, 2017

Page 2 of 27

TABLE OF CONTENTS

Descrip	otion	Page
Test R	eport	
1. TE	ST RESULTS SUMMARY	4
2. GE	ENERAL INFORMATION	5
2.1.	Description of Device (EUT)	
2.2.	Test mode description	
2.3.	Model difference declaration	
2.4.	Accessory and Auxiliary Equipment	
2.5.	Description of Test Facility	
2.6.	Measurement Uncertainty	
3. ME	EASURING DEVICE AND TEST EQUIPMENT	
3.1.	For Radiated Emission Measurement	
3.2.	The Equipment Used to Measure Conducted Disturbance (L.I.S.N)	
4. PO	OWER LINE CONDUCTED MEASUREMENT	
4.1.	Block Diagram of Test Setup	
4.2.	Power Line Conducted Emission Measurement Limits	
4.3.	Configuration of EUT on Measurement	
4.4.	Operating Condition of EUT	
4.5.	DATA SAMPLE	
4.6. 4.7.	Measurement Uncertainty Test Procedure	
4.7. 4.8.	Power Line Conducted Emission Measurement Results	
_	ADIATED EMISSION MEASUREMENT	
5.1.	Block Diagram of Test	
5.1. 5.2.	Radiated Emission Limit (Class B)	
5.3.	Manufacturer	
5.4.	Operating Condition of EUT	
5.5.	DATA SAMPLE	
5.6.	Test Procedure	18
5.7.	Radiated Emission Noise Measurement Result	19

Page 3 of 27

Test Report

Applicant : GODOX Photo Equipment Co.,Ltd

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan East Road,

Luohu District, Shenzhen 518001, China

Manufacturer : GODOX Photo Equipment Co.,Ltd

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan East Road,

Luohu District, Shenzhen 518001, China

Product : TTL Wireless Flash Trigger

Model No. : XProC, XProN, XProS, XProF, XProO

Trade name : n.a

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart B Class B ANSI C63.4: 2014

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart B Class B limits both radiated and conducted emissions. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test :	Nov. 08, 2017-Nov. 28, 2017
Date of Report :	Nov. 29, 2017
Prepared by :	7 TOTAL OF THE PARTY OF THE PAR
	(Tin Ph. g Eng S er)
Approved & Authorized Signer :	Lemil
	(Sean Liu. Manager)

Page 4 of 27

1. TEST RESULTS SUMMARY

Test Items	Test Standard	Test Results
Power Line Conducted Emission	FCC Part 15 Subpart B	Pass
Radiated Emission	FCC Part 15 Subpart B	Pass

Page 5 of 27

2. GENERAL INFORMATION

2.1.Description of Device (EUT)

Product : TTL Wireless Flash Trigger

Model No. : XProC, XProN, XProS, XProF, XProO

Rating : DC 3V via battery

Trade Name : n.a

Remark(s) : The EUT highest operating frequency provided by

Manufacturer is 2.4645GHz, the radiated emission measurement shall be made up to 12.75 GHz.

Applicant : GODOX Photo Equipment Co.,Ltd

Address : 19th Floor, Room 1902, Building Jinshan, 5033

Shennan East Road, Luohu District, Shenzhen

518001, China

Manufacturer : GODOX Photo Equipment Co.,Ltd

Address : 19th Floor, Room 1902, Building Jinshan, 5033

Shennan East Road, Luohu District, Shenzhen

518001, China

Date of sample receiver: Nov. 08, 2017

Date of Test : Nov. 08, 2017-Nov. 28, 2017

2.2. Test mode description

Test mode: 1.On 2.Transfer data

2.3. Model difference declaration

XProC, XProN, XProS, XProF, XProO are identical in PCB motherboard, driver IC, RF module and Enclosure except the Hot Shoe Camera Connector applied to various camera types.

All models were conducted test, only reported the worst case in this test report.

Page 6 of 27

2.4. Accessory and Auxiliary Equipment

PC Manufacturer: LENOVO

M/N: 4290-RT8

S/N: R9-FW93G 11/08

Camera Manufacturer: Canon

M/N: DS126151 S/N: 0410125928

Page 7 of 27

2.5. Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

Site Location : 1/F., Building A, Changyuan New Material Port, Science

& Industry Park, Nanshan District, Shenzhen, Guangdong,

P.R. China

2.6. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Power Disturbance Expanded Uncertainty = 2.92 dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Page 8 of 27

3. MEASURING DEVICE AND TEST EQUIPMENT

3.1. For Radiated Emission Measurement

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan.07, 2017	1 Year
2.	Spectrum Analyzer	•	FSV40	101495	Jan.07, 2017	1 Year
3.	Test Receiver		ESCS30	100307	Jan.07, 2017	1 Year
4.	Test Receiver	Rohde& Schwarz	ESPI	100396/003	Jan.07, 2017	1 Year
5.	Test Receiver	Rohde& Schwarz	ESPI	101526/003	Jan.07, 2017	1 Year
6.	Test Receiver	Rohde& Schwarz	ESR	101817	Jan.07, 2017	1 Year
7.	Bilog Antenna	Schwarzbeck	VULB9163	9163-194	Jan.13, 2017	1 Year
8.	Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan.13, 2017	1 Year
9.	LogPer.Antenna	Schwarzbeck	VUSLP 9111B	9111B-074	Jan.13, 2017	1 Year
10.	Biconical Broad Band Antenna	Schwarzbeck	VHBB 9124+BBA 9106	9124-617	Jan.13, 2017	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan.13, 2017	1 Year
12.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan.13, 2017	1 Year
13.	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1067	Jan.13, 2017	1 Year
14.	Vertical Active Monopole Antenna	Schwarzbeck	VAMP 9243	9243-370	Jan.13, 2017	1 Year
15.	RF Switching Unit+PreAMP	Compliance Direction	RSU-M2	38322	Jan.07, 2017	1 Year
16.	Pre-Amplifier	Agilent	8447D	294A10619	Jan.07, 2017	1 Year
17.	Pre-Amplifier	Rohde&Schwarz	CBLU11835 40-01	3791	Jan.07, 2017	1 Year
18.	50 Coaxial Switch	Anritsu Corp	MP59B	6200237248	Jan.07, 2017	1 Year
19.	50 Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.07, 2017	1 Year
20.	RF Coaxial Cable	Schwarzbeck	N-5m	No.1	Jan.07, 2017	1 Year
21.	RF Coaxial Cable	Schwarzbeck	N-1m	No.6	Jan.07, 2017	1 Year
22.	RF Coaxial Cable	Schwarzbeck	N-1m	No.7	Jan.07, 2017	1 Year
23.	RF Coaxial Cable	SUHNER	N-3m	No.8	Jan.07, 2017	1 Year
24.	RF Coaxial Cable	RESENBERGER	N-3.5m	No.9	Jan.07, 2017	1 Year
25.	RF Coaxial Cable	SUHNER	N-6m	No.10	Jan.07, 2017	1 Year
26.	RF Coaxial Cable	RESENBERGER	N-12m	No.11	Jan.07, 2017	1 Year
27.	RF Coaxial Cable	RESENBERGER	N-0.5m	No.12	Jan.07, 2017	1 Year
28.	RF Coaxial Cable	SUHNER	N-2m	No.13	Jan.07, 2017	1 Year
29.	RF Coaxial Cable	SUHNER	N-0.5m	No.15	Jan.07, 2017	1 Year
30.	RF Coaxial Cable	SUHNER	N-2m	No.16	Jan.07, 2017	1 Year
31.	RF Coaxial Cable	RESENBERGER	N-6m	No.17	Jan.07, 2017	1 Year

Page 9 of 27

3.2. The Equipment Used to Measure Conducted Disturbance (L.I.S.N)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCS30	100307	Jan.07, 2017	1 Year
2.	Test Receiver	Rohde & Schwarz	ESPI3	100396/003	Jan.07, 2017	1 Year
3.	Test Receiver	Rohde & Schwarz	ESPI3	101526/003	Jan.07, 2017	1 Year
4.	L.I.S.N.	Schwarzbeck	NLSK8126	8126431	Jan.07, 2017	1 Year
5.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100305	Jan.07, 2017	1 Year
6.	L.I.S.N.	Rohde & Schwarz	ESH3-Z5	100310	Jan.07, 2017	1 Year
7.	L.I.S.N.	Rohde & Schwarz	ESH3-Z6	100132	Jan.07, 2017	1 Year
8.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100305	Jan.07, 2017	1 Year
9.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100312	Jan.07, 2017	1 Year
10.	Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100815	Jan.07, 2017	1 Year
11.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283936	Jan.07, 2017	1 Year
12.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200283933	Jan.07, 2017	1 Year
13.	50Ω Coaxial Switch	Anritsu Corp	MP59B	6200506474	Jan.07, 2017	1 Year
14.	VOLTAGE PROBE	Schwarzbeck	TK9416	N/A	Jan.07, 2017	1 Year
15.	RF CURRENT PROBE	Rohde & Schwarz	EZ-17	100048	Jan.07, 2017	1 Year
16.	8-Wire Impedance Stabilisation Network	Schwarzbeck	CAT5 8158		Jan.07, 2017	1 Year
17.	RF Coaxial Cable	SUHNER	N-2m	No.2	Jan.07, 2017	1 Year
18.	RF Coaxial Cable	SUHNER	N-2m	No.3	Jan.07, 2017	1 Year
19.	RF Coaxial Cable	SUHNER	N-2m	No.14	Jan.07, 2017	1 Year

Page 10 of 27

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

(EUT: TTL Wireless Flash Trigger)

4.2. Power Line Conducted Emission Measurement Limits

Frequency	Limit d	B(μV)
(MHz)	Quasi-peak Level	Average Level
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *
0.50 - 5.00	56.0	46.0
5.00 - 30.00	60.0	50.0

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

4.3. Configuration of EUT on Measurement

The following equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

4.4. Operating Condition of EUT

- 4.4.1. Setup the EUT and simulator as shown as Section 4.1.
- 4.4.2. Turn on the power of all equipment.
- 4.4.3.Let the EUT work in test mode and measure it.

Shenzhen Accurate Technology Co., Ltd.

Page 11 of 27

4.5.DATA SAMPLE

Frequ	Quasi	Avera	Trans	QuasiP	Avera	Quasi	Avera	QuasiP	Averag	Remark
ency	Peak	ge	ducer	eak	ge	Peak	ge	eak	е	(Pass/Fail)
(MHz)	Level	Level	value	Result	Result	Limit	Limit	Margin	Margin	
	(dBμv)	(dBμv)	(dB)	(dBµv)	(dBμv)	(dBμv)	(dBμv)	(dB)	(dB)	
X.XX	29.4	18.3	11.1	40.5	29.4	56.0	56.0	15.5	16.6	Pass

Transducer value = Insertion loss of LISN + Cable Loss Result = Quasi-peak Level/Average Level + Transducer value Limit = Limit stated in standard

Calculation Formula:

Margin = Limit – Reading level value – Transducer value

4.6.Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at ATC is +2.23dB.

4.7.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 500hm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

4.8. Power Line Conducted Emission Measurement Results

PASS.

The frequency range from 150kHz to 30MHz is checked.

Test mode: Tra							
MEASUREMENT			1119-3	fin"			
11/19/2017 Frequency MHz	Level dBµV		Limit dBµV	_	Detector	Line	PE
0.235000	54.00 45.30 38.40	10.0	65 62 56	17.0	QP	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "TUV-	1119-3	_fin2"			
11/19/2017 Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.170000 0.240000 4.640000	41.90 30.00 33.60		55 52 46	22.1	AV	L1 L1 L1	GND GND GND
MEASUREMENT	RESULT	: "TUV-	1119-4	_fin"			
11/19/2017 Frequency MHz			Limit dBµV	_	Detector	Line	PE
0.165000 0.485000 4.750000	53.10 42.50 35.70		65 56 56	13.8	QP	N N	GND GND GND
MEASUREMENT	RESULT	: "TUV-	1119-4	1_fin2"			
11/19/2017 Frequency MHz	Level dBµV		Limit dBµV		Detector	Line	PE
0.170000 0.495000 4.420000	37.80 33.10 32.10	10.5 10.7 11.1	55 46 46	17.2 13.0 13.9		N N N	GND GND GND

Emissions attenuated more than 20 dB below the permissible value are not reported.

The spectral diagrams are attached as below.

ACCURATE TECHNOLOGY CO., LTD

Report No.: ATE20172401 Page 13 of 27

CONDUCTED EMISSION STANDARD FCC PART 15 B

EUT: TTL Wireless Flash Trigger M/N:XProC

Manufacturer: GODOX Photo Equipment Co., Ltd.

Operating Condition: Transfer data
Test Site: 1#Shielding Room

Operator: WADE

Test Specification: L 120V/60Hz

Comment:

Start of Test: 11/19/2017 /

SCAN TABLE: "V 9K-30MHz fin"

Short Description: SUB STD VTERM2 1.70

Average

MEASUREMENT RESULT: "TUV-1119-3 fin"

11/19/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.170000 0.235000 4.740000	54.00 45.30 38.40	10.5 10.6 11.1	65 62 56	11.0 17.0 17.6	QP	L1 L1 L1	GND GND

MEASUREMENT RESULT: "TUV-1119-3 fin2"

11/19/2017 Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.170000	41.90	10.5	55	13.1	AV	L1	GND
0.240000	30.00	10.6	52	22.1	AV	L1	GND
4.640000	33.60	11.1	46	12.4	AV	L1	GND

ACCURATE TECHNOLOGY CO., LTD

Report No.: ATE20172401 Page 14 of 27

CONDUCTED EMISSION STANDARD FCC PART 15 B

TTL Wireless Flash Trigger M/N:XProC

Manufacturer: GODOX Photo Equipment Co., Ltd.

Operating Condition: Transfer data Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz

Comment:

Start of Test: 11/19/2017 /

SCAN TABLE: "V 9K-30MHz fin"

SUB STD VTERM2 1.70 Short Description:

UB STD VILLE Detector Meas. IF Time Bandw. Start Stop Step Transducer

Frequency Frequency Width

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TUV-1119-4 fin"

11	/19/2017 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
	0.165000 0.485000	53.10 42.50	10.5	65 56	13.8	QР	N N	GND GND
	4.750000	35.70	11.1	56	20.3	QP	N	GND

MEASUREMENT RESULT: "TUV-1119-4 fin2"

11/19/2017							
Frequency MHz	Level dBµV		Limit dBµV	Margin dB	Detector	Line	PE
0.170000	37.80	10.5	55	17.2	AV	N	GND
0.495000	33.10	10.7	46	13.0	AV	N	GND
4.420000	32.10	11.1	46	13.9	AV	N	GND

5. RADIATED EMISSION MEASUREMENT

5.1.Block Diagram of Test

5.1.1.Block diagram of connection between the EUT and simulators

Page 15 of 27

Test mode 1:

Test mode 2:

(EUT: TTL Wireless Flash Trigger)

5.1.2.Block diagram of test setup (In chamber)

Below 1GHz:

Shenzhen Accurate Technology Co., Ltd.

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

Page 16 of 27

Above 1GHz:

5.2.Radiated Emission Limit (Class B)

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

Frequency	Distance	Field Strer	gths Limit
MHz	Meters	μV/m	dB(μV/m)
30-88	3	100	40.0
88-216	3	150	43.5
216-960	3	200	46.0
Above 960	3	500	54.0

Remark:

- (1) Emission level dB(μ V) = 20 log Emission level μ V/m.
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument antenna and the closest point of any part of the device or system.

5.3.Manufacturer

The following equipments are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.TTL Wireless Flash Trigger (EUT)

Model Number: XProC

Manufacturer: GODOX Photo Equipment Co.,Ltd

Shenzhen Accurate Technology Co., Ltd.

Page 17 of 27

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in test mode and measure it.

5.5.DATA SAMPLE

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBμv)	(dB/m)	(dBμv/m)	(dBμv/m)	(dB)	
X.XX	49.83	-22.03	27.80	43.50	-15.70	QP

Frequency(MHz) = Emission frequency in MHz

Reading(dB_μv) = Uncorrected Analyzer/Receiver reading

Factor (dB/m)= Antenna factor + Cable Loss - Amplifier gain

Result($dB\mu v/m$) = Reading + Factor

Limit (dBμv/m)= Limit stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

Calculation Formula:

Margin(dB) = Result (dB μ v/m)–Limit(dB μ v/m) Result(dB μ v/m)= Reading(dB μ v)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

Page 18 of 27

5.6.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2014 on radiated emission measurement.

The bandwidth of the EMI test receiver (R&S ESCS30) is set at 120kHz.

The frequency range from 9kHz to 12750MHz is checked. Note: The EUT highest operating frequency provided by Manufacturer is 2464.5MHz, the radiated emission measurement shall be made up to 12.75GHz.

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measure- ment range (MHz)
Below 1.705 1.705–108 108–500 500–1000 Above 1000	30. 1000. 2000. 5000. 5th harmonic of the highest frequency or 40 GHz, whichever is lower.

Page 19 of 27

5.7. Radiated Emission Noise Measurement Result

PASS.

The frequency range from 9kHz to 12750MHz is investigated.

The radiation emissions from 9kHz-30MHz is not reported, because the test values lower than the limits of 20dB.

The spectral diagrams are attached as below.

Page 20 of 27

Below 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2017 #5104

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: TTL Wireless Flash Trigger

Mode: Model: **XProC**

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Polarization: Horizontal Power Source: DC 3V

Date: 17/11/19/

Time:

Engineer Signature: WADE

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	243.3771	33.06	-10.60	22.46	46.00	-23.54	QP			
2	270.3747	34.69	-9.92	24.77	46.00	-21.23	QP			
3	283.9791	35.07	-9.45	25.62	46.00	-20.38	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Page 21 of 27 Site: 2# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Report No.: ATE20172401

Job No.: LGW2017 #5105 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3V

Test item: Radiation Test Date: 17/11/19/

Temp.(C)/Hum.(%) 23 C / 48 % Time:

EUT: TTL Wireless Flash Trigger Engineer Signature: WADE

Mode: On Distance: 3m Model: XProC

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Note:

XProC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20172401

Page 22 of 27

Job No.: LGW2017 #5107 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 5V

Test item: Radiation Test Date: 17/11/19/

Temp.(C)/Hum.(%) 23 C / 48 % Time:

EUT: TTL Wireless Flash Trigger Engineer Signature: WADE

Mode: Transfer data Distance: 3m

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Note:

Model:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	73.3593	47.75	-16.51	31.24	40.00	-8.76	QP			
2	191.7450	48.51	-12.42	36.09	43.50	-7.41	QP			
3	327.8872	42.36	-8.12	34.24	46.00	-11.76	QP			

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20172401

Page 23 of 27

Job No.: LGW2017 #5106

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: TTL Wireless Flash Trigger

Mode: Transfer data

Model: XProC

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Note:

Polarization: Vertical Power Source: DC 5V

Date: 17/11/19/

Time:

Engineer Signature: WADE

70.0) dBuV/m				i				limit1	: -
60										
50										
40					2			3		
30			M		2		May May May		L KAMMIN	Whilliah
	1 17	The second			I Ida Malifi	1.0	1	tit da. Ad	Myn	1 1 1
20	Marytagartha		May 181	Linghan		halamka aya			pV-a-	
	Mary American			Haranakarakara				(1) Pr. Tyl	M	
10	Mary American		W HILLAL	Hudhadalada ka		Luda-ajkoro d			, , , , , , , , , , , , , , , , , , ,	
10 0.0	MAN A	50 60 70	80	Hudhalaha		30	0 400	500	600 7	00 1000.0 MHz
10 0.0 3	80.000 40 Freq. (MHz)	So 60 70 Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	300 Margin (dB)	0 400	500 Height (cm)	600 70 Degree (deg.)	00 1000.0 MHz
20	Freq.	Reading	Factor			Margin		Height	Degree	6 X 0

Page 24 of 27

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2017 #5115

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: TTL Wireless Flash Trigger

Mode: On

Manufacturer: GODOX Photo Equipment Co., Ltd.

Model: XProC

Note:

Date: 17/11/19/

Time:

Engineer Signature: WADE

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20172401

Page 25 of 27

Job No.: LGW2017 #5114

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Wireless Flash Trigger Mode: On

Model: XProC

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Manufa Note: Polarization: Vertical Power Source: DC 3V

Date: 17/11/19/

Time:

Engineer Signature: WADE

					- 1				limit1	
80									limit2	: <u>-</u>
70										
60										
50										J.
40	hashey Mongan Ma		A STATE OF THE STA	warety mountained	mymanymana	onemoupou	why	Johnson Ha	where a second	2
30	Linkyortonerroller	house, stephings who flick represent	Company of the compan							
20										
10	1									
10 0.0							6000	7000 80	00 9000 1	000012750.0 MHz
0.0	1000.000		2000	3000		5000	0000			
0.0		Reading (dBuV/m)	2000 Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	20000000	Height (cm)	Degree (deg.)	Remark

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20172401

Page 26 of 27

Job No.: LGW2017 #5116

Standard: FCC Class B 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 % EUT: TTL Wireless Flash Trigger

Mode: Transfer data
Model: XProC

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Polarization: Horizontal Power Source: DC 5V

Date: 17/11/19/

Time:

Engineer Signature: WADE

XProC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Page 27 of 27
Site: 2# Chamber
Tel:+86-0755-26503290

Fax:+86-0755-26503396

Report No.: ATE20172401

Job No.: LGW2017 #5117 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 5V

Test item: Radiation Test Date: 17/11/19/

Temp.(C)/Hum.(%) 23 C / 48 % Time:

EUT: TTL Wireless Flash Trigger Engineer Signature: WADE

Mode: Transfer data Distance: 3m

Manufacturer: GODOX Photo Equipment Co.,Ltd.

Note:

Model:

