

UNIVERSITY INSTITUTEOF ENGINEERING

Bachelor of Engineering (Computer Science & Engineering)

Operating System (20CST/ITT-313)

Subject Coordinator: Er. Puneet kaur(E6913)

Introduction to Operating System

DISCOVER . LEARN . EMPOWER

System Protection and Security

Authentication

- Constraining set of potential senders of a message
 - Complementary and sometimes redundant to encryption
 - Also can prove message unmodified
- Algorithm components
 - A set K of keys
 - A set M of messages
 - A set A of authenticators
 - A function $S: K \to (M \to A)$
 - That is, for each $k \in K$, S(k) is a function for generating authenticators from messages
 - Both S and S(k) for any k should be efficiently computable functions
 - − A function $V: K \rightarrow (M \times A \rightarrow \{\text{true, false}\})$. That is, for each $k \subseteq K$, V(k) is a function for verifying authenticators on messages
 - Both V and V(k) for any k should be efficiently computable functions

Authentication

- For a message m, a computer can generate an authenticator $a \in A$ such that V(k)(m, a) = true only if it possesses S(k)
- Thus, computer holding S(k) can generate authenticators on messages so that any other computer possessing V(k) can verify them
- Computer not holding S(k) cannot generate authenticators on messages that can be verified using V(k)
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive S(k) from the authenticators

Authentication – Hash Functions

- Basis of authentication
- Creates small, fixed-size block of data (message digest, hash value) from m
- Hash Function *H* must be collision resistant on *m*
 - Must be infeasible to find an $m' \neq m$ such that H(m) = H(m')
- If H(m) = H(m'), then m = m'
 - The message has not been modified
- Common message-digest functions include MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash

Authentication - MAC

- Symmetric encryption used in message-authentication code (MAC) authentication algorithm
- Simple example:
 - MAC defines S(k)(m) = f(k, H(m))
 - Where f is a function that is one-way on its first argument
 - -k cannot be derived from f(k, H(m))
 - Because of the collision resistance in the hash function, reasonably assured no other message could create the same MAC
 - A suitable verification algorithm is $V(k)(m, a) \equiv (f(k,m) = a)$
 - Note that k is needed to compute both S(k) and V(k), so anyone able to compute one can compute the other

Authentication - Digital Signature

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive $S(k_s)$ from $V(k_s)$
 - V is a one-way function
 - Thus, k_{y} is the public key and k_{s} is the private key
- Consider the RSA digital-signature algorithm
 - Similar to the RSA encryption algorithm, but the key use is reversed
 - Digital signature of message $S(k_s)(m) = H(m)^{ks} \mod N$
 - The key k_s again is a pair d, N, where N is the product of two large, randomly chosen prime numbers p and q
 - Verification algorithm is $V(k_{\nu})(m, a) \equiv (a^{k\nu} \mod N = H(m))$
 - Where k_{ν} satisfies $k_{\nu}k_{s} \mod (p-1)(q-1)=1$

Authentication Contin....

- Why authentication if a subset of encryption?
 - Fewer computations (except for RSA digital signatures)
 - Authenticator usually shorter than message
 - Sometimes want authentication but not confidentiality
 - Signed patches et al
 - Can be basis for non-repudiation

Key Distribution

- Delivery of symmetric key is huge challenge
 - Sometimes done out-of-band
- Asymmetric keys can proliferate stored on key ring
 - Even asymmetric key distribution needs care man-in-the-middle attack

Man-in-the-middle Attack on Asymmetric Cryptography

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party their public keys included with web browser distributions
 - They vouch for other authorities via digitally signing their keys, and so on

University Institute of Engineering (UIE)

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through *passwords*, can be considered a special case of either keys or capabilities
- Passwords must be kept secret
 - Frequent change of passwords
 - History to avoid repeats
 - Use of "non-guessable" passwords
 - Log all invalid access attempts (but not the passwords themselves)
 - Unauthorized transfer
- Passwords may also either be encrypted or allowed to be used only once
 - Does encrypting passwords solve the exposure problem?
 - Might solve sniffing
 - Consider shoulder surfing
 - Consider Trojan horse keystroke logger
 - How are passwords stored at authenticating site?

Passwords

- Encrypt to avoid having to keep secret
 - But keep secret anyway (i.e. Unix uses superuser-only readably file /etc/shadow)
 - Use algorithm easy to compute but difficult to invert
 - Only encrypted password stored, never decrypted
 - Add "salt" to avoid the same password being encrypted to the same value
- One-time passwords
 - Use a function based on a seed to compute a password, both user and computer
 - Hardware device / calculator / key fob to generate the password
 - Changes very frequently
- Biometrics
 - Some physical attribute (fingerprint, hand scan)
- Multi-factor authentication
 - Need two or more factors for authentication
 - i.e. USB "dongle", biometric measure, and password

Implementing Security Defenses

- **Defense in depth** is most common security theory multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
 - Signature-based detection spots known bad patterns
 - Anomaly detection spots differences from normal behavior
 - Can detect zero-day attacks
 - False-positives and false-negatives a problem
- Virus protection
- Auditing, accounting, and logging of all or specific system or network activities

Firewalling to Protect Systems and Networks

- A network firewall is placed between trusted and untrusted hosts
 - The firewall limits network access between these two security domains
- Can be tunneled or spoofed
 - Tunneling allows disallowed protocol to travel within allowed protocol (i.e., telnet inside of HTTP)
 - Firewall rules typically based on host name or IP address which can be spoofed
- **Personal firewall** is software layer on given host
 - Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e., SMTP)
- **System-call firewall** monitors all important system calls and apply rules to them (i.e., this program can execute that system call)

Network Security Through Domain Separation Via Firewall

University Institute of Engineering (UIE)

Computer Security Classifications

- U.S. Department of Defense outlines four divisions of computer security: A, B, C, and D
- **D** Minimal security
- C Provides discretionary protection through auditing
 - Divided into C1 and C2
 - C1 identifies cooperating users with the same level of protection
 - C2 allows user-level access control
- **B** All the properties of **C**, however each object may have unique sensitivity labels
 - Divided into B1, B2, and B3
- A Uses formal design and verification techniques to ensure security

Video Links

https://www.youtube.com/watch?v=3yLf 2dNqDzw

https://www.youtube.com/watch?v=w4J1 RZyUv_I

References

- https://www.unf.edu/public/cop4610/ree/Notes/PPT/PPT8E/CH15-OS8e.pdf
- https://www.tutorialspoint.com/operating_system/os_security.htm
- https://www.coursehero.com/file/19323929/Operating-System-Threats-and-Vulnerabilities/
- https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/15_Security.h
 tml
- https://devqa.io/security-threats-attack-vectors/
- https://www.geeksforgeeks.org/system-security/
- https://www.javatpoint.com/os-security-management