Housing in King County

Author: Christine Li

Summary

The objective of this project is to create a regression model to predict home sale pricing in King County.

Using this multiple regression model, homeowners can then make informed decisions about targeted renovations for certain property features to increase the estimated value of their homes.

Data

This project will use the King County
House Sales dataset. This data set
contains information on historic home
sales and property features within the
target real estate of King County.

Image on the right contains the title and descriptions of the data set.

- id unique identifier for a house
- · dateDate house was sold
- · pricePrice is prediction target
- · bedroomsNumber of Bedrooms/House
- bathroomsNumber of bathrooms/bedrooms
- sqft_livingsquare footage of the home
- sqft_lotsquare footage of the lot
- · floorsTotal floors (levels) in house
- · waterfront House which has a view to a waterfront
- · view Has been viewed
- condition How good the condition is (Overall)
- · grade overall grade given to the housing unit, based on King County grading system
- · sqft_above square footage of house apart from basement
- · sqft_basement square footage of the basement
- yr_built Built Year
- yr_renovated Year when house was renovated
- zipcode zip
- lat Latitude coordinate
- · long Longitude coordinate
- sqft_living15 The square footage of interior housing living space for the nearest 15 neighbors
- sqft_lot15 The square footage of the land lots of the nearest 15 neighbors

Methods (OEMIN)

- Obtain the data
 - a. Clean the data
 - b. Deal with missing values
- 2. Explore the data
 - a. Initial data analysis and visualisation
- 3. Model the data
 - a. Select the features and target variable
 - b. Baseline model
 - i. Deal with categorical variables and implement dummies
 - ii. Check for multicollinearity
 - iii. Check it meets the multiple regression assumptions
 - c. Second model iteration
 - i. Deal with multicollinearity
 - ii. Log transform and standardise continuous variables
 - d. Third model iteration
 - i. Train/Test Split Model Validation
- 4. Interpret the data

Results (Final Model)

R² value: 0.55

55% of the variance in the target variable price can be explained by the predictor features.

p value: 0

The p-value is lower than 0.05 so we can reject the null hypothesis.

OLS Regression F	Results							
Dep. Variab	le:	price		R-squared:			0.553	
Mod	el:	OLS		Adj. R-squared:		0.553		
Metho	d: Le	Least Squares		F-statistic:		4013.		
Dat	te: Sat, 1	Sat, 10 Feb 2024		Prob (F-statistic):		0.00		
Tim	ie:	23:35:26 L o		g-Likelihood:		-6090.9		
No. Observation	ıs:	16197			AIC:	1.	219e+04	
Df Residuals:		16191			BIC:	1.	224e+04	
Df Model:			5					
Covariance Type: nonrobust								
	coef	std err	t	P> t	[0.02	25	0.975]	
const	11.6881	0.034	345.508	0.000	11.62	22	11.754	
sqft_living_log	0.2281	0.006	38.437	0.000	0.2	16	0.240	
sqft_lot_log	-0.0376	0.003	-12.436	0.000	-0.04	14	-0.032	
bedrooms	-0.0315	0.004	-7.695	0.000	-0.04	40	-0.023	
bathrooms	-0.0227	0.006	-3.798	0.000	-0.03	34	-0.011	
grade	0.1978	0.004	53.026	0.000	0.19	91	0.205	
Omnibus:	84.909	Durbi	n-Watson:	. 1.	991			
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	86.	118			
Skew:			Prob(JB):		-19			
Kurtosis:	2.952		Cond. No.		109.			

Conclusions

Square footage and grade are the best predictors of a house's price in King County. We can see that these variables are positively related to price and therefore to get the best price for the house, renovations should be done in these areas.

These features share:

- Strong linear relationship with price
- Have relatively low multicollinearity,
- Low p-value rejecting the null hypothesis
- Positive coefficient.

Homeowners should target their renovations into increasing the square footage and consider increasing number of bathrooms/bedrooms as well as and improving the overall quality of the house.

Limitations

Some of the challenges:

- Some of the variables had to be log-transformed to satisfy the multiple regression assumptions and therefore any new data would have to go through the same process.
- Looking at the original distribution of the variables, there was some outliers
 that were not removed from the model. In the future when applying new data,
 further consideration would need to be made on whether it is worth removing
 the outliers or not as outliers inherently can skew and influence the results.

Thank You