Fine tune FasterRCNN to detect our own objects

pip install labelme in your Anaconda environment

```
C:\Windows\system32\cmd.exe in instanta
                                                                                                                                                                                X
                                                                                              pip install labelme
(base) C:\Users\ADY<mark>(</mark>IN>pip install labelme
Collecting labelme
Downloading labelme 4 5.7.tar.gz (1.5 MB)
                                                       1.5 MB 1.7 MB/s
Collecting imgviz>=0.11.0
Downloading imgviz-1.2.6.tar.gz (7.7 MB)
                                                           7.7 MB 6.8 MB/s
Installing build dependencies ... done

Getting requirements to build wheel ... done

Preparing wheel metadata ... done

Requirement already satisfied: matplotlib<3.3 in c:\users\admin\anaconda3\lib\site-packages (from labelme) (3.1.3)
```

Run labelme

Load an image and draw boundary

Save label

Saved label

Save boundary to json file

Saved json file

Convert json file to mask image

cd to the folder where you save the *.json file Labelme_json_to_dataset *.json

```
(base) C:\Users\ADMIN\coogle 雲端硬碟\Image folders\train\surprised
(base) C:\Users\ADMIN\coogle 雲端硬碟\Image folders\train\surprised>labelme_json_to_dataset frame23.json
[WARNING] json_to_dataset;main:16 - This script is aimed to demonstrate how to convert the JSON file to a sin gle image dataset.
[WARNING] json_to_dataset:main:20 - It won't handle multiple JSON files to generate a real-use dataset.
[INFO ] json_to_dataset:main:77 - Saved to: irame23_json
(base) C:\Users\ADMIN\Google 雲端硬碟\Image folders\train\surprised>
```

Mask images are saved in a folder

Mask image

|le 雲端硬碟 > Image folders > train > surprised > frame23_json

Save RGB and mask images on your Google drive

Save RGB and mask images on your Google drive

Fine tune FasterRCNN

FasterRCNN(3) Fine_tune.ipynb

HW4 – Object detector

Fine-tune pre-trained FasterRCNN to detect your own objects.

Automatically labelled photo-realistic images

Accelerate computer vision model training with the synthetic image data generated using Unity's perception package

2D bounding boxes

3D bounding boxes

Class segmentation

Instance segmentation

Unity perception package

https://github.com/Unity-Technologies/com.unity.perception