ICT4255-Data Communication and Networks

Md. Habibur Rahman Lecturer Department of ICT

William Stallings Data and Computer Communications 7th Edition

Chapter 1
Data Communications and
Networks Overview

A Communications Model

- Source
 - generates data to be transmitted
- Transmitter
 - Converts data into transmittable signals
- Transmission System
 - Carries data
- Receiver
 - Converts received signal into data
- Destination
 - Takes incoming data

Communications Tasks

Transmission system utilization	Addressing
Interfacing	Routing
Signal generation	Recovery
Synchronization	Message formatting
Exchange management	Security
Error detection and correction	Network management
Flow control	

Simplified Communications Model - Diagram

(a) General block diagram

(b) Example

Simplified Data Communications Model

Analog and Digital Signals

Analog - voice

Digital – computer oriented data

Analog to Digital? How's it done?

Forouzan –Chapter 4.2

A Network Model

Transmission Modes

Encoding Data: The Telegraph Network

- Point to point
- Relayed (switched) by operator
- Protocol
 - The DOT is the Basic UNIT of Length (sometimes called a DIT).
 - The DASH (DAH) is equal in length to three DOTS.
 - The space between the DOTS and DASHS within a character (letter) is equal to one DOT.
 - The space between characters (letters) in a word is equal to three DOTS.
 - The space between words is equal to seven DOTS.

Networks

- How do we categorise?
 - Topology, geography
 - Technology
- Geographic
 - Wide area networks
 - Metropolitan networks
 - Local area networks
 - Personal networks
- Technologies
 - Circuit switched
 - Packet switched

Consider the physical topology

Topology = The map or plan of the network.

The physical topology describes how the wires or cables are laid out, and the logical topology describes how the information flows.

Consider the physical topology

Point-to-Point Connections:

Consider the physical topology

Point-to-Multipoint Connections:

Mesh Networks

Star Topology

Bus Topology

Ring Topology

Classification of Networks by Size and Community

Single to Multiple LANs

a. Single-building LAN

Metropolitan Area Network

Wide Area Network

The Telephone Network

Example Network

Modem = Modulator - Demodulator © Peter Komisarczuk & VUW, 2004.

The Internet

Hierarchical Infrastructure

International/National ISPs

Connected by NAP –
Network Access Points
(also called peering points
Or Internet eXchanges)

Regional ISP

(Local) ISP

ISP = Internet Service Provider

Internet Connections

Wide Area Networks

- Large geographical area
- Alternative technologies
 - Circuit switching
 - Packet switching

Circuit Switching

- Dedicated communications path established for the duration of the conversation
- e.g. telephone network

Packet Switching

- Data sent out of sequence
- Small chunks (packets) of data at a time
- Packets passed from node to node between source and destination
- Used for terminal to computer and computer to computer communications

Packet Switching Example

