Chapter 20

- 1.) The elements in $\mathbb{Q}(\sqrt[3]{5})$ all take the form $a+b(\sqrt[3]{5})$, where a and b are rational numbers.
- 3.) We can factor $x^3 1$ as $(x 1)(x^2 + x + 1)$. Since x 1 has a root in \mathbb{Q} , it suffices to construct a splitting field for $x^2 + x + 1$. We find the roots of $x^2 + x + 1$ to be $-(1/2) \pm i (\sqrt{3}/2)$, thus the extension field $\mathbb{Q}(i\sqrt{3})$ contains all the roots of $x^2 + x + 1$, and thus all the roots of $x^3 1$, thus it is a splitting field of $x^3 1$ over \mathbb{Q} .
- 4.) We can factor $x^4 + 1$ as $(x^2 + i)(x^2 i)$, thus the roots of $x^4 1$ are $\pm \sqrt{i}$ and $\pm \sqrt{-i}$, thus the extension field $\mathbb{Q}(\sqrt{i}, \sqrt{-i})$ is a splitting field of $x^4 + 1$ over \mathbb{Q} .
- 11.) The elements in $\mathbb{Q}(\pi)$ all take the form $a + b\pi$, where a and b are rational numbers. Note that since π is transcendental, $\mathbb{Q}(\pi)$ is not a splitting field for any polynomial in $\mathbb{Q}[x]$.
- 35.) For a root of $f(x) = x^{p^n} x$ to be multiple, then that root would also be a root of the derivative $f'(x) = p^n x^{p^n} 1$. Since this polynomial exists in a field with characteristic $p \neq 0$, we know that $p^n = 0$, so $f'(x) = 0x^0 1 = -1$, thus f'(x) has no roots, and thus no common roots with f(x), thus the roots of f(x) are distinct.