## Discrete Mathematics for Computer Scientists

Big O Notation

Alg]

F(n) & gln

r=size of list the
Assure n is large

Version 3.0: Last updated, August 21, 2010

## A Quick and Dirty Introduction to Big O Notation

Which function is "bigger"?  $\frac{1}{10}n^2 \quad \text{or} \quad 100n + 10000$ 

Answer depends upon value of n.

In Computer Science we are usually interested in what happens when our problem input size gets large.

Asymptotic = 1 (3) WIR



Notice that when n is "large enough"  $\frac{1}{10}n^2$  gets much bigger than 100n + 10000 and stays larger.

Function 
$$f(n) = O(g(n))$$
:

(read:  $f(n)$  is  $O$  of  $g(n)$ )

If (i) There is some positive  $x_0 \in R$  such that

(ii) There is some positive  $c \in R$ 

$$\forall x \geq x_0 \qquad f(x) \leq cg(x).$$



Let 
$$x_0 = 1091$$
.

Can verify, 
$$\forall n > x_0, \ 100n + 10000 \le \frac{1}{10}n^2$$
. Thus  $100n + 10000 = O(\frac{1}{10}n^2)$ .

Note that the opposite is **not** true!

More Examples:

$$4n^2$$

$$8n^2 + 2n - 3$$

$$n^2/5 + \sqrt{n} - 10 \log n$$

$$n(n-3)$$
are all  $O(n^2)$ .

Note that the opposite is **not** true! 
$$y$$

Why? (Proof by contradiction)  $\frac{1}{10}$   $\frac{$ 

## Two functions f(n), g(n) have the same order of growth if

$$f(n) = O(g(n))$$
 and  $g(n) = O(f(n))$ .

In this case we say

$$f(n) = \Theta(g(n))$$

which is the same as

$$g(n) = \Theta(f(n))$$

+ hn) = n<sup>2</sup> y(n) = 32 + 20 + 20 + 20 + 32 y(n) = 32 y(n) =



## Examples $(f(n) = \Theta(g(n)))$ :

• 
$$3n^2 + 4n = \Theta(n)$$
?

No

• 
$$3n^2 + 4n = \Theta(n^2)$$
?

Yes

• 
$$3n^2 + 4n = \Theta(n^3)$$
?

No, but  $O(n^3)$ 

• 
$$n/5 + 10n \log n = \Theta(n^2)$$
?

No, but  $O(n^2)$ 

• 
$$n^2/5 + 10n \log n = \Theta(n \log n)$$
? No

• 
$$n^2/5 + 10n \log n = \Theta(n^2)$$
?

Yes