

第2章门电路

- 2.1 概 述
- 2.2 半导体器件的开关特性
- 2.3 分立元件门电路
- 2.4 TTL集成门电路
- 2.5 CMOS集成门电路

2.1 概述

二、逻辑赋值 三、高低电平获取方法

• 理想开关

•开关打开时: 电流为零

I=0

机械开关 电子开关

•开关闭合时:导通电压为零,导通电阻为零

•开关动作在瞬时完成

2.2 半导体器件的开关特性

2.2.1 二极管的开关特性

1. 二极管导通:

Vi=0V时,D正向导 通,Vo=0.7V,相 当于开关闭合。

2. 二极管截止:

Vi=5V时,**D**反向 截止,**Vo=5V**, 相当于开关打开。

2.2.2 二极管的动态开关特性

反向恢复时间t_{re}是影响开关速度的主要因素, 其原因在于PN结的电容效应。

2.2.3 三极管的开关特性

Vi=0V时,T截止,I_B=0,I_C≈0, V_{CE}≈Vcc, V₀=5V,CE间相当于断 开的开关。

2) 三极管饱和导通

 $Vi=V_{iH}$ 时, $I_B=(Vi-0.7)/Rb$,

 $I_{CS} \approx V_{CC}/R_{C}, I_{BS} = I_{CS}/\beta$

当I_B > I_{BS} 时,三极管饱和导通

 $V_{CE} = V_{CES} = 0.2V$, $V_0 = 0.2V$, CE间相当于闭合的开关。

2.2.4

MOS管的开关特性

1) MOS管截止

Vi=0V时: V_{GS}<V_{GS(th)}, MOS 管工作在截止区,I_D=0,DS间 相当于断开的开关,V_O=V_{DD}。

2) MOS管导通

 $V_{I}=V_{DD}$ 时: $V_{GS}>V_{GS(th)}$, $V_{GD}>V_{GS(th)}$, MOS管工作于可变电阻区, $R_{ON}<1K\Omega$, D,S间相当于闭合的开关。 $V_{O}=V_{DD}R_{ON}/(R_{ON}+R_{D})\approx 0V$

2.3 分立元件门电路

2.3.1 二极管 "与门"

VA	V_{B}	Vy
0V	0V	0.7V
0V	3V	0.7V
3V	0V	0.7V
3V	3V	3.7V

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

2.3.2 二极管"或门"

V_A	V_{B}	V_{Y}
0V	0V	0V
0V	3V	2.3V
3V	0V	2.3V
3V	3V	2.3V

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

2.3.3 三极管"非门"

分立元件门电路的输出电平存在偏移而且带负载能力较差,工作不稳定,可靠性差。

Vi	Vo
0V	V_{CC}
V_{CC}	0.2V

A	Y
0	1
1	0

2.4 TTL集成门电路

- ▶集成电路: 把二极管、三极管、电阻和连线都制作在一块半导体基片上构成具有一定功能的电路。
- ▶集成电路可分为线性集成电路、数字集成电路、 混合集成电路。
- ▶ 数字集成电路可分为SSI、MSI、LSI、VLSI。
- > SSI从功能可分为门电路、触发器
- ▶ 门电路从集成工艺可分为双极型、MOS型
- ▶ 双极型工艺可分为TTL、HTL、ECL、I²L
- ➤ MOS型工艺可分为NMOS、PMOS、CMOS

一、TTL逻辑门

1. TTL反相器的结构和 原理

1) 结构

TTL反相器由三部 分构成:输入级、中 间级和输出级。

2) 原理

A为低电平时,T1饱和, $V_{B1}\approx 0.9 V$, $V_{B2}\approx 0.2 V$,T2和T5截止,T4和D2导通,Y为高电平;

A 为 高 电 平 时 , V_{B1}≈2.1V ,T1倒置, V_{B2}≈1.4V,T2和T5饱 和,T4和D2截止,Y 为低电平。

2. TTL反相器的电压传输特性

分为四个区段:

AB段: U_I<0.6伏, 截止区; BC段: 0.6伏< U_I<1.3伏, 线性区;

CD段: U_I ≈1.4伏,转 折区; DE段: U_I >1.4 伏,饱和区。

输出高电平: VOH=3.4V

输出低电平: V_{OL}=0.2V

阈值电压: V_{TH}=1.4V

输入端噪声容限示意图

相关参数:

高电平噪声容限 V_{NH} ,低电平噪声容限 V_{NL} 。

$$V_{NH} = V_{NL} = 0.4 V$$

3. TTL反相器的静态输入和输出特性

1) 输入伏安特性 Ii=f (Vi)

输入短路电流:I_{IL}=1mA

输入漏电流: $I_{III}=40\mu A$

2)输出特性

$V_0=f(I_L)$

(1) 输出为高电平时

(2) 输出为低电平时

3)输入负载特性

$V_i = f(R_i)$

- •输入端短路接地相当于接低电平
- ·输入端电阻小于1K时相当于接低电平
- ·输入端电阻大于1K时相当于接高电平
- •输入端悬空时相当于接高电平

4. TTL反相器的动态特性

5. 其它逻辑功能的TTL门

- TTL门电路包括与门、或门、与非门、或非门、与或非门、异或门等几种常见的类型。
- TTL门电路输入端、端出端的电路结构形式 与反相器基本相同
- 反相器的特性同样适用所有的TTL门电路

6. 特殊门电路

1) OC门(集电极开路的门电路)

A=1,Y=0

A=0,Y为高电阻

- A=B=1时, Y=0
- · 其它情况, Y为高电阻

•使用时需外接电阻和电源, 电源取值一般为+5V,电 阻取值应恰当。

$$Y = AB$$

可将多个OC门的输出端 直接并联以实现"线与"。

$$Y = \overline{AB} \bullet \overline{CD}$$

2) 三态输出门电路(TS门)

EN为控制端 (使能端)

EN=0, Y为高阻

EN=1,
$$Y = AB$$

控制端为高电平有效

$$\overline{EN} = 0, Y = \overline{AB}$$

控制端为低电平有效

特殊门电路的应用

总线

双向传输线

2.5 CMOS集成门电路

1. CMOS反相器电路结构及工作原理

电路正常工作的条件:

 $V_{DD} > V_{TN} + |V_{TP}|$

A=0V,T1截止,T2导通, Y=V_{DD}

A= V_{DD} , T2截止, T1导通, Y=0V

2. COMS反相器的电压传输特性 Vo=f(Vi)

3. COMS反相器的静态特性

1) 输入伏安特性 Ii=f (Vi)

2) 电流传输特性 I_D=f (Vi)

3) 输入负载特性 V_i=f(R_i)

- •输入端接电阻接地相当于接低电平
- •输入端不能悬空

4. 动态特性

5、COMS传输门

$$C = 0, C = 1, Vo = Vi$$
 $\overline{C} = 1, C = 0, 输入与输出之间断开$

电阻特性

模拟开关

