# 電子電路實驗四: 相位測量

實驗結報

B02901178 江誠敏

2014/10/07

# 1 實驗結果

本實驗的電路圖如下:



# 1.1 利薩如圖形法

| 頻率  | y 極値 | y 截距 | 量測相位差            | 理論値              | 相對誤差    |
|-----|------|------|------------------|------------------|---------|
| 100 | 3.6  | 0.1  | 1.592°           | $3.595^{\circ}$  | 125.87% |
| 200 | 3.8  | 0.2  | $3.017^{\circ}$  | $7.162^{\circ}$  | 137.41% |
| 500 | 3.6  | 1.0  | $16.128^{\circ}$ | $17.441^{\circ}$ | 8.14%   |
| 1k  | 3.2  | 1.5  | $27.953^{\circ}$ | $32.142^{\circ}$ | 14.98%  |
| 2k  | 2.4  | 1.8  | $48.590^{\circ}$ | $51.488^{\circ}$ | 5.96%   |
| 5k  | 1.6  | 1.4  | 61.045°          | 72.343°          | 18.51%  |
| 10k | 0.7  | 0.7  | 90.000°          | 80.957°          | -10.05% |

#### 1.2 雙軌跡直接測量法

| 頻率  | 時間差            | 量測相位差            | 理論値              | 相對誤差   |
|-----|----------------|------------------|------------------|--------|
| 100 | 100 (µs)       | 3.600°           | 3.595°           | 0.13%  |
| 200 | 140 (µs)       | 10.080°          | 7.162°           | 40.73% |
| 500 | $110  (\mu s)$ | $19.800^{\circ}$ | 17.441°          | 13.53% |
| 1k  | 96 (μs)        | $34.560^\circ$   | $32.142^{\circ}$ | 7.52%  |
| 2k  | $68  (\mu s)$  | $48.960^{\circ}$ | $51.488^{\circ}$ | -4.91% |
| 5k  | 38 (µs)        | 68.400°          | 72.343°          | -5.45% |
| 10k | 21 (µs)        | 75.600°          | 80.957°          | -6.62% |

### 2 結報問題

- 1. 當 X-Y mode 時, Lissajous Figures Method 圖形:
  - (a) 試述軌跡方向與相位差之關係?

答: 令  $\Delta \phi = \phi_x - \phi_y$ , 也就是說如果  $\Delta \phi > 0$ , x 領先 y, 則 x 會先達到最大値,接者 y 才會,因此軌跡方向會是逆時鐘方向,反之如果 y 領先 x,則軌跡以順時針方向轉動。

(b) 什麼樣的情況會造成圖形不成封閉曲線?

答:圖形封閉的話有一點會在兩個時間被經過。假設  $x(t)=\sin(\omega_x t+\phi_x), y(t)=\sin(\omega_y t+\phi_y)$ ,因此如果在時間  $t_1,t_2$  時在同一點,則  $\Delta t=t_1-t_2$  必需要是  $2\pi/\omega_x, 2\pi/\omega_y$  的整數倍,因此  $\omega_x/\omega_y$  必需是有理數,並且如果  $\omega_x/\omega_y=a/b$ ,取  $\Delta t=2\pi a/\omega_x$  即可,因此圖形不成封閉曲線若且唯若兩頻率比不爲有理數。

(c) 什麽樣的情況會造成圖形出現有交叉點?

答: 如果頻率相等的時後顯然圖形是一個橢圓,不會有交叉點。現在不失一般性假設  $\omega_x > \omega_y$ ,且  $x(t) = \cos(\omega_x t + \phi)$ , $y(t) = \cos(\omega_y t)$ ,取  $t_1 = \pi/\omega_x$ , $t_2 = -\pi/\omega_x$ ,可以知道  $x(t_1) = x(t_2)$  因爲這兩點的相位是  $2\pi\omega_x/\omega_x = 2\pi$ ,而  $y(t_1) = \cos(\omega t 1) = \cos(\omega t 2) = y(t_2)$ ,但  $y'(t_1) \neq y'(t_2)$ ,因此這點是個交叉點而非下個周期同相位的點。總結以上只要頻率不相等,就會有交叉點。

2. 如何由 Dual-Trace Method 看出螢幕上兩波形為超前或落後 (Lead/Lag)?

答:取兩訊號相鄰的兩個波峰,容易知道較左側的在比較早的時間就達到波峰,因此左側的領先。

3. **試述當電容改成電感時有何差異?** 答: 電容換成電感時,阻抗從  $\frac{1}{\mathrm{i}\omega C} \to \mathrm{i}\omega L$ ,因此電感的電壓會領先,並且隨著  $\omega$  上升,電感對電源電壓的相位差下降。

- 4. **根據結果,Phase Measurement 以何方法為佳?** 答: 以誤差來看,顯然 Dual Trace Method 較好一些。而我認爲跟實驗的儀器有關,因爲本實驗的示波器在 XY Mode 下不能使用 Cursor 測量,只能用肉眼估計,造成不小的誤差。
- 5. **信號產生器的 DC Offset 之用法為何?又 Attenuator 呢?** 答: DC Offect 會給交流訊號一個直流的偏移,比如說本來交流訊號是從  $-5V \sim +5V$ ,如果 DC Offset 調至 2V 則輸出訊號會變成  $-3V \sim +7V$ 。而 Attenuator 則是衰減器,如果被打 開後訊號將會被衰減成 10 倍。

## 3 心得

這次的實驗還算簡單,只要線路不要接錯應該都可以做蠻快的。只是一開始打開示波器的時後別人的 menu 都有 XY Mode, 我的居然沒有,大概是前一個人有用其他選單 (似乎會停在最後一個使用的 menu 上),好在把儀器上的按鈕全按一輪終於按到了。