Sonntag, 5. Dezember 2021 10:38

Evaluation Metrics for Classification

Sonntag, 5. Dezember 2021

Label	Class
1	Spam Mail (positive)
0	Regular Mail (negative)

Confusion Matrix (Two Classes)

Sonntag, 5. Dezember 2021 10:40

true label	predicted label	name	description
positive	positive	tp	true positive predicted
negative	negative	tn	true negative predicted
positive	negative	fn	false negative predicted
negative	positive	fp	false positive predicted

Label	Class
1	positive
0	negative

Sonntag, 5. Dezember 2021 11:11

true	1	1	1	0	0	0	0	0	0	0
pred	1	1	0	1	1	0	0	0	0	0

$$\mathrm{accuracy} = \frac{\mathrm{tp} + \mathrm{tn}}{\mathrm{tp} + \mathrm{fp} + \mathrm{tn} + \mathrm{fn}}$$

accuracy =
$$\frac{2+5}{2+2+5+1} = 0.7 = 70\%$$

• Assumption: Positive cases are rare

- Dummy classificator: Always predicts *negative*

true	1	0	0	0	0	0	0	0	0	0
pred	0	0	0	0	0	0	0	0	0	0

accuracy =
$$\frac{0+9}{0+0+9+1} = 0.9 = 90\%$$

but classifier is useless

16.14

Fraction of true positive predicted to all positives

$$recall = \frac{tp}{tp + fn}$$

$$recall = \frac{2}{2+1} = 0.66 = 66\%$$

Fraction of true positive predicted to all positive predicted

$$recall = \frac{tp}{tp + fp}$$

precision =
$$\frac{2}{2+2} = 0.5 = 50\%$$

- Easy to get high recall: just predict positive
 - recall = 100% -> precision bad
- Easy to get high precision: only predict one sample as positive where you are really sure
 - precision = 100% -> recall bad
- Calculate mean between recall and precision
 - Arithmetic mean not a good choice
 - precision = 100%, recall = 1% -> mean(precision, recall) = 50.5%
 - Too good a value for this bad classificator
 - o Better: Harmonic mean F1 value

$$F1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}} = 2 * \frac{precision * recall}{precision + recall}$$

Sonntag, 5. Dezember 2021 18:07

,, ,,,,	arith_1	harmonic_1
0.1	0.55	0.181818
0.2	0.60	0.333333
0.3	0.65	0.461538
0.4	0.70	0.571429
0.5	0.75	0.666667
0.6	0.80	0.750000
0.7	0.85	0.823529
8.0	0.90	0.888889
0.9	0.95	0.947368
1.0	1.00	1.000000

Precision = 1.0

	arith_05	harmonic_05
0.1	0.30	0.166667
0.2	0.35	0.285714
0.3	0.40	0.375000
0.4	0.45	0.444444
0.5	0.50	0.500000
0.6	0.55	0.545455
0.7	0.60	0.583333
0.8	0.65	0.615385
0.9	0.70	0.642857
1.0	0.75	0.666667

Precision = 0.5

09:01

Fraction of false positive predicted to all negatives

$$fpr = \frac{fp}{fp + tn}$$

$$fpr = \frac{2}{2+5} = 0.29 = 29\%$$

Classifiers with Scores

Dienstag, 7. Dezember 2021 14:

true	1	1	0	1	1	0	0	0	1	0
score	0.9	0.8	0.7	0.6	0.55	0.4	0.39	0.38	0.37	0.1
pred >= 1.0	0	0	0	0	0	0	0	0	0	0
pred >= 0.8	1	1	0	0	0	0	0	0	0	0
pred >= 0.7	1	1	1	0	0	0	0	0	0	0
pred >= 0.5	1	1	1	1	1	0	0	0	0	0
pred >= 0.38	1	1	1	1	1	1	1	1	0	0
pred >= 0.37	1	1	1	1	1	1	1	1	1	0
pred >= 0.0	1	1	1	1	1	1	1	1	1	1

Eval Seite 12

Donnerstag, 9. Dezember 2021

11:54

There is a threshhold that separates true and false

Example 1

true	1	1	1	1	1	0	0	0	0	0
score	0.9	0.8	0.7	0.6	0.55	0.4	0.39	0.38	0.37	0.1

Example 2

true	1	1	1	0	0	0	0	0	0	0
score	0.9	0.8	0.7	0.6	0.55	0.4	0.39	0.38	0.37	0.1

both have same ROC Curve

Donnerstag, 9. Dezember 2021 12:11

```
t7 = np.concatenate([np.ones(100), np.zeros(100)])
s7 = np.random.rand(200)
roc4 = RocCurveDisplay.from_predictions(t7, s7)
```

- Among all true, half of them are predicted positive and half of them negative
- Among all false, half of them are predicted positive and half of them negative

4 ROC Curves (4 times generation of 200 random numbers)

AUC value near 0.5 means random classifier

Confusion Matrix (More than two Classes)

Montag, 6. Dezember 2021 10:31

Classification of newspaper articles

bus	business
pol	politics
spo	sports

	1	2	3	4	5	6	7	8	9
true	pol	pol	spo	spo	spo	bus	bus	bus	bus
pred	pol	spo	spo	spo	pol	bus	bus	bus	spo

Accuracy

- = all correctly classified / all
- = sum(diagonal cells) / sum(all cells)

Precision / Recall / F1

		precision	recall	f1	support
	bus	1.0	0.750000	0.857143	4
per class	pol	0.5	0.500000	0.500000	2
	spo	0.5	0.666667	0.571429	3

 macro
 0.666667
 0.638889
 0.642857

 micro
 0.666667
 0.666667
 0.666667

 weighted
 0.722222
 0.666667
 0.682540

macro	average of values per class
micro	average per instances
weighte d	weighted (wrt support) average of values per class