

D ~	d	f												B.#
[106]														Python
		diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean	symmetry_mean	texture_worst	perimeter_worst	area_
	0	М	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.30010	0.14710	0.2419	17.33	184.60	
	1	М	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.08690	0.07017	0.1812	23.41	158.80	
	2	М	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.19740	0.12790	0.2069	25.53	152.50	
	3	М	11.42	20.38	77.58	386.1	0.14250	0.28390	0.24140	0.10520	0.2597	26.50	98.87	
	4	М	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.19800	0.10430	0.1809	16.67	152.20	
🛭 🔊 Laui	nchpad	⊗ 0 △ 12 😾 0	Connect									Cell 1 of 25	Go Live o tabnine starte	r 👈 🚨

Mark Chindudzi

Outline for the Report

1. Introduction

Description of the dataset and objective.

2. Data Exploration

- o Initial data inspection.
- Summary statistics.
- Visualizations.

3. Data Preprocessing

- o Handling missing values.
- o Encoding categorical variables.
- o Feature scaling.

4. Model Building

- o Logistic Regression.
- o Support Vector Machine (SVM).
- o Random Forest.

5. Model Evaluation

- o Evaluation metrics for each model.
- o Comparison of models.

6. Model Tuning

- o Hyperparameter tuning for Random Forest.
- o Evaluation of the tuned model.

7. Conclusion

- o Summary of findings.
- o Best-performing model.
- o Potential improvements.

1. Introduction

Add a markdown cell at the beginning:

```
# Breast Cancer Wisconsin (Diagnostic) Dataset Analysis

## Introduction
In this task, I worked with the Breast Cancer Wisconsin (Diagnostic)
dataset, which contains features computed from breast mass images. The
dataset is used to diagnose whether a breast mass is malignant or benign,
making it a binary classification problem.
```

2. Data Exploration

Add the following cells to load and explore the data:

```
python
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
# Load the dataset
```

```
df = pd.read csv('data.csv')
# Display the first few rows of the dataset
df.head()
## Data Exploration
I began by loading the dataset and inspecting the first few rows to
understand its structure.
Python
# Check for missing values
print(df.isnull().sum())
# Get summary statistics
df.describe()
markdown
I checked for missing values and obtained summary statistics of the dataset
to understand its distribution.
python
# Visualize the distribution of the target variable
sns.countplot(df['diagnosis'])
plt.show()
# Pairplot for some features
sns.pairplot(df[['radius_mean', 'texture_mean', 'perimeter_mean',
'area mean', 'smoothness mean', 'diagnosis']], hue='diagnosis')
plt.show()
markdown
I visualized the distribution of the target variable and some features to
get a sense of the data.
```

3. Data Preprocessing

Add the following cells to preprocess the data:

```
python
from sklearn.impute import SimpleImputer
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
# Drop the 'id' and 'Unnamed: 32' columns
df.drop(columns=['id', 'Unnamed: 32'], inplace=True)
# Encode the target variable 'diagnosis' (M = malignant, B = benign)
df['diagnosis'] = df['diagnosis'].map({'M': 1, 'B': 0})
# Separate features and target
X = df.drop(columns=['diagnosis'])
y = df['diagnosis']
# Impute missing values with the mean of the respective column
imputer = SimpleImputer(strategy='mean')
X imputed = imputer.fit transform(X)
# Split the data into training and testing sets
X train, X test, y train, y test = train test split(X imputed, y,
test size=0.2, random state=42)
```

```
# Standardize the features
scaler = StandardScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.transform(X_test)
markdown
## Data Preprocessing
I handled missing values by imputing with the mean and standardized the features for better model performance.
```

4. Model Building

Add the following cells to build and evaluate models:

```
python
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
# Logistic Regression
logreg = LogisticRegression(max iter=10000)
logreg.fit(X_train, y_train)
y pred logreg = logreg.predict(X test)
# Support Vector Machine
svc = SVC()
svc.fit(X train, y train)
y pred svc = svc.predict(X test)
# Random Forest
rf = RandomForestClassifier()
rf.fit(X_train, y_train)
y pred rf = rf.predict(X test)
markdown
## Model Building
I built three models: Logistic Regression, Support Vector Machine (SVM),
and Random Forest.
```

5. Model Evaluation

Add the following cells to evaluate the models:

```
python
from sklearn.metrics import accuracy_score, precision_score, recall_score,
f1_score, confusion_matrix, classification_report

def evaluate_model(y_test, y_pred):
    print("Accuracy:", accuracy_score(y_test, y_pred))
    print("Precision:", precision_score(y_test, y_pred))
    print("Recall:", recall_score(y_test, y_pred))
    print("F1 Score:", f1_score(y_test, y_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
    print("Classification Report:\n", classification_report(y_test, y_pred))

print("Logistic Regression:")
evaluate_model(y_test, y_pred_logreg)

print("\nSupport Vector Machine:")
```

```
evaluate_model(y_test, y_pred_svc)
print("\nRandom Forest:")
evaluate_model(y_test, y_pred_rf)
markdown
## Model Evaluation
I evaluated the performance of each model using accuracy, precision, recall, and F1-score.
```

6. Model Tuning

Add the following cells for hyperparameter tuning:

```
python
from sklearn.model selection import GridSearchCV
# Hyperparameter tuning for Random Forest
param grid rf = {
    'n_estimators': [50, 100, 200],
    'max depth': [None, 10, 20, 30],
    'min samples split': [2, 5, 10],
    'min samples leaf': [1, 2, 4]
}
grid search rf = GridSearchCV(estimator=rf, param grid=param grid rf, cv=5,
n jobs=-1, verbose=2)
grid search rf.fit(X train, y train)
print("Best parameters for Random Forest:", grid search rf.best params )
best rf = grid search rf.best estimator
y pred best rf = best rf.predict(X test)
print("\nTuned Random Forest:")
evaluate model(y test, y pred best rf)
markdown
## Model Tuning
I performed hyperparameter tuning for the Random Forest model to optimize
its performance.
```

7. Conclusion

Add a markdown cell at the end:

```
markdown ## Conclusion
In this analysis, I explored the Breast Cancer Wisconsin (Diagnostic) dataset, preprocessed the data, built and evaluated three models, and performed hyperparameter tuning for the Random Forest model. The best-performing model was the Random Forest with tuned hyperparameters, achieving the highest accuracy, precision, recall, and F1-score. Further improvements can be made by exploring other models and additional feature engineering.
```

```
import matplotlib.pyplot as plt
       from sklearn.impute import SimpleImputer
       from sklearn.model_selection import train_test_split
       from sklearn.preprocessing import StandardScaler
       from sklearn.linear model import LogisticRegression
       from sklearn.svm import SVC
       from sklearn.ensemble import RandomForestClassifier
       from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
       from sklearn.model selection import GridSearchCV
       # Load the dataset
       df = pd.read_csv('data.csv')
       # Display the first few rows of the dataset
       print("First few rows of the dataset:")
       print(df.head())
20
       # Check for missing values
       print("\nMissing values in each column:")
       print(df.isnull().sum())
       # Get summary statistics
       print("\nSummary statistics of the dataset:")
       print(df.describe())
28
       # Visualize the distribution of the target variable
       print("\nDistribution of the target variable:")
       sns.countplot(df['diagnosis'])
       plt.title('Distribution of Target Variable')
       plt.show()
       # Visualize pairplot for some features
       print("\nPairplot for selected features:")
       sns.pairplot(df[['radius mean', 'texture mean', 'perimeter mean', 'area mean', 'smoothness mean', 'diagnosis']], hue='diagnosis')
       plt.show()
```