

LM2901,LM339/LM339A,LM3302 LM239/LM239A

Quad Comparator

Features

- Single or Dual Supply Operation
- Wide Range of Supply Voltage LM2901,LM339/LM339A,LM239/LM239A: 2 ~ 36V (or ±1 ~ ±18V)
 - LM3302: $2 \sim 28V$ (or $\pm 1 \sim \pm 14V$)
- Low Supply Current Drain 800µA Typ.
- Open Collector Outputs for Wired and Connectors
- Low Input Bias Current 25nA Typ.
- Low Input Offset Current ±2.3nA Typ.
- Low Input Offset Voltage ±1.4mV Typ.
- Input Common Mode Voltage Range Includes Ground.
- Low Output Saturation Voltage
- Output Compatible With TTL, DTL and MOS Logic System

Description

The LM2901, LM339/LM339A ,LM239/LM239A, LM3302 consist of four independent voltage comparators designed to operate from single power supply over a wide voltage range.

Internal Block Diagram

Schematic Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	±18 or 36	V
Supply Voltage only LM3302	Vcc	±14 or 28	V
Differential Input Voltage	VI(DIFF)	36	V
Differential Input Voltage Only LM3302	VI(DIFF)	28	V
Input Voltage	VI	-0.3 to +36	V
Input Voltage Only LM3302	VI	-0.3 to +28	V
Output Short Circuit to GND	-	Continuous	-
Power Dissipation	PD	570	mW
Operating Temperature LM339/LM339A LM2901/LM3302 LM239/LM239A	TOPR	0 ~ +70 -40 ~ +85 -25 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Electrical Characteristics

(VCC = 5V, TA = 25°C, unless otherwise specified)

Parameter	Symbol	Conditions		LM239A/LM339A			LM239/LM339			Unit	
Parameter	Syllibol			Min.	Тур.	Max.	Min.	Тур.	Max.	Juli	
Input Offset	Vio	VO(P) =1.4V,	$Rs = 0\Omega$	-	1	2	-	1.4	5	mV	
Voltage	VIO		Note1	-	-	4.0	-	-	9.0		
Input Offset IIO		IIN(+) - IIN(-), VCM = 0V		-	2.3	50	-	2.3	50	nA	
Current	110		Note1	-	-	150	-	-	150		
Input Bias Current	IBIAS	VCM = 0V		-	57	250	-	57	250	n ^	
Input bias Current	IBIAS	u.	Note1	-	-	400	-	-	400	nA	
Input Common		Vcc = 30V		0	-	Vcc-1.5	0	-	Vcc-1.5		
Mode Voltage Range	VI(R)		Note1	0	-	Vcc-2	0	-	VCC-2	V	
Supply Current	Icc	Vcc = 5V, R _L = ∞		-	1.1	2.0	-	1.1	2.0	mA	
Voltage Gain	Gv	VCC =15V, RL ≥ 15kΩ (for large swing)		50	200	-	50	200	-	V/mV	
Large Signal Response Time	TLRES	V_I = TTL Logic Swing V_{REF} = 1.4V, V_{RL} = 5V, R_L = 5.1k Ω (Note2)		-	300	-	-	300	-	ns	
Response Time	TRES	$V_{RL} = 5V$, $R_{L} = 5.1k\Omega$ (Note2)		-	1.3	-	-	1.3	-	μs	
Output Sink Current	ISINK	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V, \ V_{O(P)} \le 1.5V$		6	18	-	6	18	-	mA	
Output Saturation Voltage	VSAT	$V_{I(-)} \ge 1V, V_{I(+)} = 0V$		-	140	400	-	140	400	\/	
		ISINK = 4mA	Note1	-	-	700	-	-	700	mV	
Output Leakage Current	I _{o(LKG)}	VI(-) = 0V	VO(P) = 5V	-	0.1	-	-	0.1	-	nA	
		$V_{I(+)} = 1V$	VO(P) = 30V	-	-	1.0	-	-	1.0	μΑ	
Differential Voltage	VI(DIFF)		Note1	i	-	36	-	-	36	V	

Note:

1. LM339/LM339A : $0 \le T_A \le +70^{\circ}C$ LM2901/LM3302 : $-40 \le T_A \le +85^{\circ}C$ LM239/LM239A : $-25 \le T_A \le +85^{\circ}C$

2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (Continued)

(VCC = 5V, TA = 25°C, unless otherwise specified)

Danamatan	Cumbal	Conditions		LM2901			LM3302			l lm:4	
Parameter Symbol		Conditions		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
Input Offset Voltage V _{IO}		$VO(P) = 1.4V$, $RS = 0\Omega$		-	2	7	-	2	20	mV	
input Onset voltage	VIO		Note1	-	9	15	-	-	40	IIIV	
Input Offset Current	lio			-	2.3	50	-	3	100	nA	
input Onset Current	110		Note1	-	50	200	-	-	300		
Input Bias Current	IBIAS		_	-	57	250	-	57	250	nA	
Input bias Current	IBIAS		Note1	-	200	500	-	-	1000		
Input Common Mode Voltage V Range	Vivo	LM2901, VCC = LM3302, VCC =		0	-	VCC -1.5	0	-	VCC -1.5	V	
	VI(R)		Note1	0	-	Vcc -2	0	-	VCC -2		
		RL =∞, VCC=5V		-	1.1	2.0	-	1.1	2.0		
Supply Current ICC		R _L =∞,V _{CC} =30V (LM3302, V _{CC} =28V)		-	1.6	2.5	-	1.6	2.5	mA	
Voltage Gain	G∨	V_{CC} =15V, R _L ≥ 15kΩ (for large swing)		25	100	-	2	30	-	V/ mV	
Large Signal Response Time	TLRES	V _I =TTL Logic Swing VREF =1.4V, VRL =5V, RL =5.1kΩ (Note2)		-	300	-	-	300	-	ns	
Response Time	TRES	$VRL = 5V$, $RL = 5.1k\Omega$ (Note2)		-	1.3	-	-	1.3	-	μs	
Output Sink Current	ISINK	$V_{I(-)} \ge 1V$, $V_{I(+)} = 0V$, $V_{O(P)} \le 1.5V$		6	18	-	6	18	-	mA	
Output Saturation Voltage	VSAT	$V_{I(-)} \ge 1V, \ V_{I(+)} = 0V$		-	140	400	-	140	400	mV	
		ISINK =4mA	Note1	-	-	700	-	-	700	''''	
Output Leakage Current	IO(LKG)	VI(-) = 0V	VO(P) = 5V	-	0.1	-	-	0.1	-	nA	
		$V_{I(+)} = 1V$	V _O (P) = 30V	-	-	1.0	-	-	1.0	μΑ	
Differential Voltage	VI(DIFF)		Note1	-	-	36	-	-	28	V	

Note:

1. LM339/LM339A : $0 \le T_A \le +70^{\circ}C$ LM2901/LM3302 : $-40 \le T_A \le +85^{\circ}C$ LM239/LM239A : $-25 \le T_A \le +85^{\circ}C$

2. These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

Figure 1. Supply Current vs Supply Voltage

Figure 3. Output Saturation Voltage vs Sink Current

Figure 5. Response Time for Various Input Overdrive-Positive Transition

Figure 2. Input Current vs Supply Voltage

Figure 4. Response Time for Various Input Overdrive-Negative Transition

Mechanical Dimensions

Package

Dimensions in millimeters

Mechanical Dimensions (Continued)

Package

Dimensions in millimeters

14-SOP

Ordering Information

Product Number	Package	Operating Temperature
LM339N	14-DIP	
LM339AN	14-015	0 ~ +70°C
LM339M	14-SOP	0~+70 C
LM339AM	14-30F	
LM2901N	14-DIP	
LM2901M	14-SOP	-40 ∼ +85°C
LM3302N	14-DIP	-40 ~ +83 C
LM3302M	14-SOP	
LM239N	14-DIP	
LM239AN	14-015	-25 ~ +85°C
LM239M	14-SOP	-23 ~ +65 C
LM239AM	14-30P	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com