Clustering: Unsupervised Learning

IF-3270 Pembelajaran Mesin Teknik Informatika ITB

Modul 7: Clustering

Fariska Z. Ruskanda, S.T., M.T. (fariska@informatika.org)

KK IF -Teknik Informatika - STEI ITB

04 Hierarchical Clustering

IF3270 - Pembelajaran Mesin (Machine Learning)

Outline

Hierarchical Clustering

Agglomerative Clustering

Divisive Clustering

Hierarchical Clustering

A hierarchical clustering method works by grouping data objects into a hierarchy or "tree" of clusters.

- a. <u>Agglomerative hierarchical clustering</u> method uses a bottom-up strategy.
- b. <u>Divisive hierarchical clustering</u> method employs a top-down strategy.

Hierarchical Clustering

Agglomerative Clustering Algorithm

- Start with N singleton clusters. Calculate the proximity matrix for the N clusters.
- 2) Search the minimal distance

$$D(C_i, C_j) = \min_{\substack{1 \le m, l \le N \\ m \ne l}} D(C_m, C_l)$$

where D(*,*) is the distance function discussed before, in the proximity matrix, and combine cluster C_i and C_j to form a new cluster.

- Update the proximity matrix by computing the distances between the new cluster and the other clusters.
- Repeat steps 2)–3) until all objects are in the same cluster.

Ilustrasi Agglomerative HC

Cluster3 Cluster2 Cluster2 DE

Ilustrasi Agglomerative HC (lanj)

	Α	В	С	D	Ε	F	G	
Α								
В								
С								
D								
Ε								
F								
G								

	Α	В,С	D	E	F	G
Α						
В,С						
D						
E						
F						
G						

	Α	В,С	D,E	F	G
Α					
В,С					
D,E					
F					
G					

	Α	В,С	D,E	F,G
Α				
В,С				
D,E				
F,G				

- Iterasi 0: (A),(B),(C),(D),(E),(F),(G)
- Iterasi 1: (A),(B,C),(D),(E),(F),(G)
- Iterasi 2: (A),(B,C),(D,E),(F),(G)
- Iterasi 3: (A),(B,C),(D,E),(F,G)
- Iterasi 4 : (A,(B,C)),(D,E),(F,G)
- Iterasi 5 : (A,(B,C)),((D,E),(F,G))
- Iterasi 6 : ((A,(B,C)),((D,E),(F,G)))

	A, (B,C)	D,E	F,G
A, (B,C)			
D,E			
F,G			

	A, (B,C)	(D,E), (F,G)
A, (B,C)		
(D,E), (F,G)		

Dendogram

Iterasi 0: (A),(B),(C),(D),(E),(F),(G)

Iterasi 1: (A),(B,C),(D),(E),(F),(G)

Iterasi 2: (A),(B,C),(D,E),(F),(G)

Iterasi 3: (A),(B,C),(D,E),(F,G)

Iterasi 4 : (A,(B,C)),(D,E),(F,G)

Iterasi 5 : (A,(B,C)),((D,E),(F,G))

Iterasi 6: ((A,(B,C)),((D,E),(F,G)))

Linkage: Single, Complete, Average, Average Group

Dissimilarity between two clusters = Minimum dissimilarity between the members of two clusters

Dissimilarity between two clusters = Maximum dissimilarity between the members of two clusters

Linkage: Single, Complete, Average, Average Group (lanjutan)

Dissimilarity between two clusters = Distance between two cluster means.

Dissimilarity between two clusters =
Averaged distances of all pairs of objects
(one from each cluster).

Single vs Complete-Link

Figure 12. A single-link clustering of a pattern set containing two classes (1 and 2) connected by a chain of noisy patterns (*).

Figure 13. A complete-link clustering of a pattern set containing two classes (1 and 2) connected by a chain of noisy patterns (*).

Figure 11. Two concentric clusters.

- bisa kasih hasil clustering yo sih
 - Single link clustering suffers from a chaining effect.
 - From a pragmatic viewpoint, it has been observed that the completelink algorithm produces more useful hierarchies in many applications that single-link alg.

Sumber: Jain dkk (1999)

Single vs Complete-Link

Single-link

Complete-link

- In the beginning, the entire data set belongs to a cluster and a procedure successively divides it until all clusters are singleton clusters.
- Divisive clustering is not commonly used in practice:
 - For a cluster with N objects, there are 2^{N-1} -1 possible two-subset divisions, which is very expensive in computation (Xu & Wunsch, 2005).

05 Cluster Evaluation

IF3270 Pembelajaran Mesin

