

HyperGCN: A New Method for Training Graph Convolutional Networks on Hypergraphs

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, Partha Talukdar Indian Institute of Science, Bangalore

Motivation

Networks have complex relationships

chemical reaction

Modelled flexibly by hypergraphs

Hypergraph Semi-Supervised Learning

Label vertices in U given labelled vertices in V-U

Challenges

- $E \subseteq 2^V$ Arbitrary size
- $|V U| \ll |U|$ Low supervision
- $\mathcal{H} = (V, E)$ Noisy edges
- $|y_v: v \in e| > 1, e \in E$
- Explicit regularisation [Zhou et al., Hein et al.]
 - $\mathcal{L} = \mathcal{L}_S + \lambda \cdot Q(\mathcal{H}, f)$
- × hyperedges encode similarity
- Implicit regularisation [Feng et al.]
 - $f_{Neural}(\mathcal{H},X) = ?$ $\mathcal{L} = \mathcal{L}_S$

✓ need not encode similarity

[Kipf and Welling]

 $H^{\{l\}} = \sigma \left(A \cdot H^{\{l-1\}} \cdot W^{\{l\}} \right)$

HyperGCN

 $f = H^{\{l-1\}} \cdot W^{\{l\}}$

 $f = H^{\{0\}} = X$

FastHyperGCN

Densest k-Subhypergraph

$$W \subseteq V, |W| = k, \text{ maximise } |e \in E : e \subseteq W|$$

Results

Simple, strong baseline: HGNN

Clique expansion

Avg. size 3.0 ± 1.1 3.2 ± 2.0 Citeseer Cora HGNN 32.41 ± 1.8 37.40 ± 1.6 HyperGCN 32.37 ± 1.7 37.35 ± 1.6 FastHyperGCN 32.42 ± 1.8 37.42 ± 1.7

comparable on small hyperedges

test error (lower is better)

Avg. size	8.5 ± 8.8	4.3 ± 5.7
Dataset	DBLP	Pubmed
HGNN	45.27 ± 2.48	29.41 ± 1.5
HyperGCN	41.64 ± 2.6	25.56 ± 1.6
FastHyperGCN	41.79 ± 2.8	29.48 ± 1.6

training time (lower is better)

Dataset	DBLP	Pubmed
HGNN	0.115s	0.019s
FastHyperGCN	0.035s	0.016s

more accurate, faster on large noisy hyperedges

density for k = 0.75*|V| (higher is better)

	Dataset	DBLP	Pubmed	Cora	Citeseer
	HGNN	6274	7865	437	969
_	HyperGCN	7720	7928	504	971
	FastHyperGCN	7342	7893	452	969
		•			

Type	Training Time	Density
HGNN	170s	337
FastHyperGCN	1/3c	352

and training time (lower is better)

What NeurIPS Reviewers Liked

- Linking two different fields
- Quadratic to Linear Approx.
- Extensive experiments

Unsupervised learning

Going Forward

- Label correlation
- Hypergraph pooling

Acknowledgement

[Zhou et al.] D. Zhou, J. Huang, B. Scholkopf. Learning with Hypergraphs: Clustering, classification and embedding, In NeurIPS 2006 [Feng et al.] Y. Feng, H. You, Z. Zhang, R. Ji, Y. Gao. Hypergraph Neural Networks, In AAAI 2019