Exercice 1. Dans le parallélépipède rectangle ci-contre, M est le centre du rectangle *ABCD*.

- 1-Exprimer les vecteurs \overrightarrow{CE} et \overrightarrow{MG} comme combinaisons linéaires des vecteurs \overrightarrow{AM} et \overrightarrow{AE} .
- 2- Exprimer le vecteur \overrightarrow{MF} comme combinaison linéaire des vecteurs \overrightarrow{AM} , \overrightarrow{AB} et \overrightarrow{AE} .

Exercice 2. Soit ABCDEFGH un pavé droit. On note I le centre du rectangle ABCD.

Soient
$$\overrightarrow{u} = 3\overrightarrow{AB}$$
, $\overrightarrow{v} = \overrightarrow{BD} + \overrightarrow{BE}$ et $\overrightarrow{w} = 3\overrightarrow{AI} + \overrightarrow{IE}$.

Montrer que les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

Exercice 3.

Soit $\overrightarrow{ABCDEFGH}$ un cube. On définit les points \overrightarrow{P} , \overrightarrow{Q} et \overrightarrow{R} par les relations vectorielles suivantes : $\overrightarrow{AP} = \overrightarrow{AB} - \overrightarrow{AB} + \overrightarrow{AE}$, $\overrightarrow{AQ} = -\overrightarrow{AD} + 2\overrightarrow{AE}$ et $\overrightarrow{AR} = \overrightarrow{AB} - 2\overrightarrow{AD} + 3\overrightarrow{AE}$.

Démontrer que les points A, P, Q et R sont coplanaires.

Exercice 4. On considère un tétraèdre ABCD. Soit M le point tel que $\overrightarrow{AM} = 3\overrightarrow{BM} + \overrightarrow{CM}$. Montrer que le point M appartient au plan (ABC).

Exercice 5. Dans un triangle ABC, le point M est le milieu du segment [AB] et le point N est défini par $\overrightarrow{BN} = \frac{2}{3}\overrightarrow{AC}$.

Exprimer le vecteur \overrightarrow{MN} en fonction des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .

Exercice 6. Dans le cube ABCDEFGH, lire la décomposition du vecteur donné dans la base donnée.

- a) \overrightarrow{EG} dans la base $(\overrightarrow{AB}, \overrightarrow{BD})$
- b) \overrightarrow{CF} dans la base $(\overrightarrow{AB}, \overrightarrow{BD}, \overrightarrow{CG})$

Exercice 7.

Dans le cube ABCDEFGH ci-contre, donner une caractérisation du plan (CEG) à l'aide d'un point et de deux vecteurs non colinéaires puis justifier que le point A appartient à ce plan.

Exercice 8. La figure ci-dessous représente la pyramide ABCDE à base carrée.

Les points I et J représentent les milieux respectifs des arêtes [BE] et [CE]

Justifier que les points A, D, I et J sont coplanaires

Exercice 9.

On considère une pyramide \overrightarrow{ABCDE} de sommet \overrightarrow{E} dont la base est le parallélogramme \overrightarrow{ABCD} . Soient $\overrightarrow{u} = \overrightarrow{AB}$, $\overrightarrow{v} = 2\overrightarrow{AD} + \overrightarrow{DE}$ et $\overrightarrow{w} = \overrightarrow{AC} + \overrightarrow{AE}$.

Démontrer que les vecteurs \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} sont coplanaires.

