Fonctions réelles d'une variable réelle

OUIKENE Fethia

Department of Mathematics University of Science and Technology of Oran, Algeria

January 24, 2024

Fonctions réelles d'une variable réelle

On appelle fonction réelle d'une variable réelle toute application de l'ensemble $E \subset \mathbb{R}$ dans un ensemble $F \subset \mathbb{R}$. On notera

$$f: E \rightarrow F$$

 $x \mapsto f(x)$

x s'appelle l'antécédent et f(x) est l'image de x par f. On notera

$$f(E) = \{f(x) / x \in E\}.$$

2. Graphe d'une fonction réelle (ou courbe représentative de *f*):

On appelle graphe d'une fonction $f : E \to F$ toute partie $\Gamma(f)$ du produit cartésien $E \times F$ telle que

$$\Gamma(f) = \left\{ \left(x, f(x) \right) / x \in E \right\}.$$

3. Domaine de définition d'une fonction:

Le domaine de définition d'une fonction f est l'ensemble des valeurs de $x \in E$ pour lesquelles la fonction f est bien définie. On note par D_f .

$$D_{f} = \{x \in E/f(x) \in \mathbb{R}\}.$$

4. Parité d'une fonction:

Soit *f* une fonction définie sur un intervalle *l* symetrique par rapport à 0.

On dit que f est paire si $\forall x \in I$; f(-x) = f(x).

On dit que f est impaire si $\forall x \in I$; f(-x) = -f(x). Remarque:

- 1. Si *f* est paire alors son graphe est symetrique par rapport à l'axe des ordonnées.
- 2. Si *f* est impaire alors son graphe est symetrique par rapport à l'origine.

5. Périodicité d'une fonction:

Une fonction $f : \mathbb{R} \to \mathbb{R}$ est dite périodique s'il existe T > 0 tel que $\forall x \in \mathbb{R}, f(x + T) = f(x - T) = f(x)$. T est appelé période de f.

Remarque: Si T est une période de f alors tout nombre de la forme $kT, k \in \mathbb{N}^*$ est aussi une période de f.

Remarque: Si f est périodique alors il suffit de l'étudier sur un intervalle de longueur T et tracer le graphe. Le graphe complet se déduit du graphe précédent par des translations de valeurs (kT), $k \in \mathbb{Z}$.

6. Fonctions bornées, Fonctions monotones: Fonctions bornées

Soit $f: E \to F$. On dira que

1. f est majorée si l'ensemble f(E) est majorée, c'est à dire

$$\exists M \in \mathbb{R}, \forall x \in E/f(x) \leq M.$$

2. f est minorée si l'ensemble f(E) est minorée, c'est à dire

$$\exists m \in \mathbb{R}, \forall x \in E/f(x) \geq m.$$

3. f est bornée si elle est majorée et minorée (l'ensemble f(E) est borrée), c'est à dire

$$\exists \alpha > 0, \forall x \in E/|f(x)| \leq \alpha.$$

Remarque:

Si f est majorée alors elle admet une borne supérieure

$$\sup_{x\in E} f(x) = \sup f(E) = \sup \{f(x)/x \in E\}.$$

Si f est minorée alors elle admet une borne inférieure

$$\inf_{x\in E}f(x)=\inf f(E)=\inf \left\{ f(x)\,/x\in E\right\} .$$

Fonctions monotones:

Soit $f: E \to F$. On dira que

1. f est croissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) \leq f(y).$$

2. f est strictement croissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) < f(y).$$

3. f est décroissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) \geq f(y)$$
.

4. f est strictement décroissante dans E si

$$\forall x, y \in E, x < y \Rightarrow f(x) > f(y).$$

Limite d'une fonction

Soit $f: I \subset \mathbb{R} \to \mathbb{R}$. On dit qu'une fonction f définie au voisinage de x_0 (sauf peut être en x_0) a une limite $I \in \mathbb{R}$ au point x_0 si

$$\lim_{x\to x_0}f(x)=I\Leftrightarrow \forall \varepsilon>0, \exists \eta>0, \forall x\in I, |x-x_0|<\eta\Rightarrow |f(x)-I|<\varepsilon.$$

Remarque: 1. Pour prouver que f n'admet pas pour limite I quand $x \to x_0$, on peut prendre la négation, c'est à dire

$$\exists \varepsilon > 0, \forall \eta > 0, \exists x \in I, |x - x_0| < \eta \text{ et } |f(x) - I| \ge \varepsilon.$$

2. Si $\lim_{x\to x_0} f(x) = I$ alors on n'a pas toujours $f(x_0) = I$ ou $f(x_0)$ existe, par exemple

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{si } x \neq 0 \\ 2, & \text{si } x = 0 \end{cases},$$

 $\lim f(x) = 1 \neq 2 = f(0)$.

Unicité de la limite:

Théorème: Si f admet une limite au point x_0 , cette limite est unique.

Limite à droite et à gauche:

Définition:

1. On dit que f admet une limite à droite au point x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, 0 < x - x_0 < \eta \Rightarrow |f(x) - I| < \varepsilon.$$

On notera
$$\lim_{\substack{x \to x_0 \\ x \to x_0}} f(x) = \lim_{\substack{x \to x_0^+}} f(x) = f(x_0 + 0)$$
.

2. On dit que f admet une limite à gauche au point x_0 si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, -\eta < x - x_0 < 0 \Rightarrow |f(x) - I| < \varepsilon.$$

On notera
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0 - 0)$$
.

Remarque:

- .Si $\lim_{x \to x_0} f(x) = I$ existe alors $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} f(x) = I$.
- . Inversement, si $\lim_{x \stackrel{<}{\to} x_0} f(x)$ et $\lim_{x \stackrel{<}{\to} x_0} f(x)$ existent et sont égales alors

la limite de f existe, elle est égale à la valeur commune.

Limites infinies:

$$1. \lim_{x \to +\infty} f(x) = I \Leftrightarrow \forall \varepsilon > 0, \exists A > 0, \forall x \in I, \in x > A \Rightarrow |f(x) - I| < \varepsilon.$$

$$2.\lim_{x\to -\infty} f(x) = I \Leftrightarrow \forall \varepsilon > 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow |f(x) - I| < \varepsilon.$$

$$3. \lim_{x \to x_0} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists \eta > 0, \forall x \in I, \in |x - x_0| < \eta \Rightarrow f(x)$$

$$4. \lim_{x \to x_0} f(x) = -\infty \Leftrightarrow \forall B < 0, \exists \eta > 0, \forall x \in I, \in |x - x_0| < \eta \Rightarrow f(x)$$

$$5. \lim_{x \to +\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B > 0, \forall x \in I, \in x > B \Rightarrow f(x) > A.$$

$$6. \lim_{x \to +\infty} f(x) = -\infty \Leftrightarrow \forall A < 0, \exists B > 0, \forall x \in I, \in x > B \Rightarrow f(x) < A.$$

$$7. \lim_{x \to -\infty} f(x) = +\infty \Leftrightarrow \forall A > 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow f(x) > A.$$

$$8. \lim_{x \to -\infty} f(x) = -\infty \Leftrightarrow \forall A < 0, \exists B < 0, \forall x \in I, \in x < B \Rightarrow f(x) < A.$$

Théorème sur les limites

Théorème: Soit $f:[a,b] \to \mathbb{R}$, et $x_0 \in [a,b]$, alors

$$\lim_{x\to x_0} f(x) = I \Leftrightarrow \forall (x_n)_n, x_n \in \lim_{x\to x_0} [a,b]/x_n \to x_0 \Rightarrow \lim_{n\to +\infty} f(x_n) = I.$$

Remarque: On peut utiliser ce théorème pour démontrer la non existance de la limite d'une fonction.

S'il existe deux suites (x_n) , (y_n) qui ont la même limite mais $\lim_{n\to+\infty} f(x_n) \neq \lim_{n\to+\infty} f(y_n)$.

S'il existe une suite $(x_n)/x_n \to x_0$ mais $f(x_n)$ n'admet pas de limite.

Proposition: Si f admet une limite en x_0 alors f est bornée au voisinage de x_0 .

Remarque: La réciproque n'est pas vraie. En effet, $f(x) = \cos(\frac{\pi}{x^2})$ est bornée mais elle n'admet pas une limite en 0 .

Limite et relation d'ordre:

Soit $x_0 \in E$, f, g, h trois fonctions définies sur

$$]\mathbf{x}_{0}-\alpha,\mathbf{x}_{0}+\alpha[\,,\alpha>0.$$

Théorème:

1.
$$f(x) < g(x) \Rightarrow \lim_{x \to x_0} f(x) \leq \lim_{x \to x_0} g(x)$$
.

2.
$$\lim_{\substack{x \to x_0 \\ \text{et } f(x) \le g(x)}} f(x) = +\infty \} \Rightarrow \lim_{\substack{x \to x_0 }} g(x) = +\infty.$$

3.
$$\begin{cases}
\lim_{x \to x_0} f(x) = -\infty \\
\text{et } g(x) \le f(x)
\end{cases}
\Rightarrow \lim_{x \to x_0} g(x) = -\infty.$$

4. et
$$\lim_{x \to x_0} f(x) \le g(x) \le h(x)$$

 $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = I$ $\Rightarrow \lim_{x \to x_0} h(x) = I$.

5.
$$\lim_{x \to x_0} f(x) = 0$$
 et g est bornée $\Rightarrow \lim_{x \to x_0} f(x) g(x) = 0$.

6.
$$\lim_{x \to x_0} f(x) = \infty$$
 et g est bornée $\Rightarrow \lim_{x \to x_0} f(x) + g(x) = \infty$.

Forme indéterminées:

Lorsque les limites ne sont pas finies, On a quatre formes indéterminées lorsque $x \to x_0$.

- 1. $\lim_{x \to x_0} f(x) = +\infty$ et $\lim_{x \to x_0} g(x) = -\infty$, f + g se présente sous la forme indéterminée $+\infty \infty$.
- 2. $\lim_{x\to x_0} f(x) = 0$ et $\lim_{x\to x_0} g(x) = 0$, $\frac{f}{g}$ se présente sous la forme indéterminée $\frac{0}{0}$.
- 3. $\lim_{x \to x_0} f(x) = \infty$ et $\lim_{x \to x_0} g(x) = \infty$, $\frac{f}{g}$ se présente sous la forme indéterminée $\frac{\infty}{\infty}$.
- 4. $\lim_{x\to x_0} f(x) = 0$ et $\lim_{x\to x_0} g(x) = \infty$, f.g se présente sous la forme indéterminée $0.\infty$.

Lorsque les limites sont finies, On a deux formes indéterminée lorsque $x \to x_0$.

- 5. $\lim_{x \to x_0} f(x) = 1$ et $\lim_{x \to x_0} g(x) = 0$, $(f(x))^{g(x)}$ se présente sous la
- forme indéterminée 10.
- 6. $\lim_{x \to x_0} f(x) = 0$ et $\lim_{x \to x_0} g(x) = 0$, $(f(x))^{g(x)}$ se présente sous la forme indéterminée 0^0 .

On résout le problème par des transformations élémentaires.

Comparaison des fonctions au voisinage d'un point (notation de Landau)

Soient f et g deux fonctions définies dans un voisinage du point x_0 (sauf peut être en x_0).

1. On dit que la fonction f est négligeable devant g lorsque $x \to x_0$ et on écrit f = o(g) si

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x(|x - x_0| < \delta \Rightarrow |f(x)| \le \varepsilon |g(x)|$$

ou bien pour $g(x) \neq 0$ au voisinage de x_0 ,

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x(|x - x_0| < \delta \Rightarrow \left| \frac{f(x)}{g(x)} \right| \le \varepsilon.$$

c'est à dire

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0.$$

2. On dit que la fonction f est dominée par g lorsque $x \to x_0$ et on écrit f = O(g) si

$$\exists k > 0, \exists \delta > 0, \forall x (|x - x_0| < \delta \Rightarrow |f(x)| \le k |g(x)|),$$

c'est à dire

$$\left| \frac{f(x)}{g(x)} \right|$$
 bornée au voisinage de x_0 .

Les symboles o et O s'appellent notation de Landau.

Fonctions équivalentes:

Définition: Soient f et g deux fonctions définies au voisinage de x_0 sauf peut être en x_0 .

On dit que f est équivalente à g lorsque $x \to x_0$ et on note $f \sim^{x_0} g$ si

$$f-g=o(f), x\to x_0$$
.

Remarque: Si f et g ne sont pas nulles au voisinage de x_0 alors

$$f \sim^{x_0} g \Leftrightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

3. On peut définir l'équivalence au voisinage de ∞ de la même façon.

Exemple:

1.
$$\ln(1+x) \sim^0 x \operatorname{car} \lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$
.

2.
$$\sin x \sim^0 x$$
 car $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

2.
$$\sin x \sim^0 x$$
 car $\lim_{x \to 0} \frac{\sin x}{x} = 1$.
3. $1 - \cos x \sim^0 \frac{x^2}{2}$ car $\lim_{x \to 0} \frac{1 - \cos x}{\frac{x^2}{2}} = 1$.

4.
$$e^x - 1 \sim^0 x \operatorname{car} \lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
.

Corollaire:

Dans le calcule des limites, on peut remplacer une fonction par une fonction équivalente dans le produit et la division seulement. Ceci n'est pas vrai pour la somme.

Exemple:

1.
$$\lim_{x\to 0} \frac{(e^x-1)(tgx)^2}{x(1-cox)} = \frac{0}{0}$$
 F.I.

On a $e^x - 1 \sim^0 x$ et $tgx \sim^0 x$ et $1 - \cos x \sim^0 \frac{x^2}{2}$.

$$\lim_{x \to 0} \frac{(e^x - 1)(tgx)^2}{x(1 - cox)} = \lim_{x \to 0} \frac{x \cdot x^2}{x \cdot \frac{x^2}{2}} = 2.$$