

BUSINESS PROCESS MANAGEMENT - EXERCISE

COMPUTATIONAL TREE LOGIC (CTL)

CTL SYNTAX AND SEMANTICS

- Set of atomic propositions $P=\{p_1, p_2, \ldots\}$
- CTL Syntax:

$$φ := p_i | ¬φ | φΛφ | φνφ | φ→φ | ΑΧφ | ΕΧφ | ΑϜφ | ΕϜφ | ΑGφ | ΕGφ | Α[φUφ] | Ε[φUφ]$$

- CTL Semantics:
 - Let $M=(S,R_t,L)$ be a transition system.
 - Let φ be a CTL formula and s∈S
 - M, s $|= \varphi$ is defined inductively on the structure of φ

(for a detailed definition see lecture slides)

CTL SEMANTICS: IMPLICATION

- Let $M=(S,R_t,L)$ be a transition system.
- Let φ be a CTL formula and s∈S
- M, s $| = \varphi$ is defined inductively on the structure of φ
- M, s | = $\phi \rightarrow \psi$ iff M, s | $\neq \phi$ or M, s | = ψ
- Example:
 - $\mathbf{x} \to \mathbf{y}$ (if x is true, then y is true too)
 - $\neg x \lor y$ (either x is false, or y has to be true)

CTL OPERATORS

A (for all paths)	X (in the next state)	ΑΧφ
	F (in a future state)	AFφ
	G (globally in the future)	$AG\phi$
	U (until)	Α[φUφ]
E (there exists a path)	X	ΕΧφ
	F	EFφ
	G	EGφ
	U	Ε[φUφ]

• If we don't use operators, then we are always talking about the current state

CTL OPERATORS - EXAMPLES

- $\blacksquare M$, $S_0 \mid = x \rightarrow y$
 - (if x is true in S_0 , then y is also true in that same state)
- $\blacksquare M$, $S_0 \mid = x \rightarrow EFy$
 - (if x is true in S_0 , then somewhere in the future, y is also true)
- M, $S_0 \mid = EF(x \rightarrow y)$
 - (if somewhere in the future x is true, then y is also true in that same state
- M, $S_0 \mid = EF(x \rightarrow EFy)$
 - (if somewhere in the future x is true, then somewhere in the future (from x), y is also true)

EPC TO TRANSITION SYSTEM

- $L(s_0)=\{start\}$
- $L(s_1)=\{n_check_order\}$
- L(s₂)={n_process_order}
- $L(s_3)={n_inform_customer}$
- L(s₄)={n_verify_correctness, o_boss}
- $L(s_5)=\{n_ship_order\}$
- ■L(s₆)={n_write_report}
- ■L(s₇)={n_inform_employee, o_employee}
- $L(s_8)=\{end\}$

COMPLIANCE CHECKING USING BUSINESS RULES

- Step 1: transform a model into a transition system
- Step 2: create CTL formulas representing, e.g., compliance rules or weakness patterns
- Step 3: check the transition system with a CTL model checker
- Important: You have to assume, that you don't know where potential problems can be found in the model, so in this case model checking always has to start in S₀

 The order has to be verified, before it can be shipped

x before y

The order has to be verified by the boss

x and y

 If the order is not correct, an employee has to be informed about this

if x then y

 If the customer is informed that the product is unavailable, the order needn't be verified by the boss (to save time)

if x then y

- The order has to be verified, before it can be shipped (x before y)
- \rightarrow y must not occur, until x has occurred
- M, $S_0 = A[\neg y \cup x]$
- M, $S_0 | = A[x | U | y]$

- The order has to be verified by the boss (x and y)
- \rightarrow if we have x, y also has to occur in that same state
- $\blacksquare M$, $S_0 \mid = \neg EF(x \land \neg y)$
- M, $S_0 \mid = AG(x \rightarrow y)$ or M, $S_0 \mid = AG(\neg x \lor y)$
- M, $S_0 \mid = \neg EF(x \rightarrow \neg y)$ or M, $S_0 \mid = \neg EF(\neg x \lor \neg y)$
- $\blacksquare M$, $S_0 \mid = AG(x \land y)$

- If the order is not correct, an employee has to be informed about this (if x then y)
- \rightarrow if x occurs, then somewhere in the future y has to occur

■ M,
$$S_0 \mid = \neg EF(x \land \neg EFy)$$

■ M,
$$S_0 \mid = AG(x \rightarrow EFy)$$
 or M, $S_0 \mid = AG(\neg x \lor EFy)$

■ M,
$$S_0 \mid = \neg EF(x \rightarrow \neg EFy)$$
 or M, $S_0 \mid = \neg EF(\neg x \lor \neg EFy)$

■ M,
$$S_0 \mid = \neg EF(x \land \neg y)$$

$$\blacksquare$$
 M, S₀ |= AG(x \land EFy)

■ M,
$$S_0$$
 |= EF (x U y)

COMPLIANCE CHECKING

■ M,
$$s_1 | = EX(\neg p)$$

 \rightarrow true

■ M,
$$s_1 | = AX(\neg p)$$

 \rightarrow false

$$\blacksquare M, s_1 \mid = AG(q V r)$$

→ true

$$-M$$
, $s_0 | = A [q U r]$

→ true

TRANSITION SYSTEM: LABELING FUNCTION

- Transition system: M=(S,R_t,L)
- Set of states S
- Binary relation R_t⊆S×S
- Labeling function L: S→2^{AP}
 - Input: Elements of S (s₁, s₂)
 - AP (atomic propositions) = {A,B,C}
 - L maps each state S to a set of atomic propositions
- $-2^{AP} \rightarrow 2^3 = 8$
- Possible labels: {A}, {B}, {C}, {AB}, {AC}, {BC}, {ABC}, {}

BUSINESS PROCESS MANAGEMENT - EXERCISE