Machine Learning

Abdelhak Mahmoudi abdelhak.mahmoudi@um5.ac.ma

INPT - 2020

Content

- 1. The Big Picture
- 2. Supervised Learning
 - Linear Regression, Logistic Regression, Support Vector
 Machines, Trees, Random Forests, Boosting, Artificial Neural Networks
- 3. Unsupervised Learning
 - Principal Component Analysis, K-means, Mean Shift

Supervised Learning

- Linear Regression
- Logistic Regression
- Support Vector Machines
- Trees (Decision and Regression)
- Random Forests
- Boosting
- Artificial Neural Networks

- The output *y* is continuous
- Fit X with a line $y = w_0 + w_1 x$
- The best line is the line with minimum loss
 L(w)
- Solved using Normal Equations

•
$$W = (X^T X)^{-1} X^T y$$

- But not for big X!
- Find W iteratively using gradient descent

Gradient Descent

(Batch) GD $X = data_input$ $Y = data_output$ $W = initialize_parameters()$ for it in range(num_iterations): Yhat = h(X, W) L = loss(Yhat, Y) dW = gradient(L(W)) $W = W - \alpha dW$

Feature Scaling

Problem: features are not on a similar scale

Solution: Mean Normalization

$$\frac{x_j - \mu_j}{\sigma_i} \qquad -1 \le x_j \le 1$$

Gradient Descent: Debugging

- How to make sure gradient descent is working correctly?
- How to choose learning rate
- Solution: Declare convergence if L(w) decreases by less than 10^{-3} in one iteration.

Abdelhak Mahmoudi

17

Gradient Descent: Debugging

- For sufficiently small α , L(w) should decrease on every iteration.
- But if α is too small, gradient descent can be slow to converge.

Abdelhak Mahmoudi

18

Gradient Descent: Debugging

- If α is too small: slow convergence.
- If α is too large: L(w) may not decrease on every iteration; may not converge.

```
To choose \alpha, try
```

$$\dots, 0.001,$$

$$, 0.01, , 0.1, , 1, \dots$$

$$, 1, \dots$$

Other Optimization Methods

Abdelhak Mahmoudi

20

Polynomial Regression

Overfitting vs. Underfitting

Bias-Variance Tradeoff

Expected error (Human or Bayes optimal): 0%	Train set error	1%	15%	15%	0.5%
	Validation set error	11%	16%	30%	1%
		High variance	High bias	High bias High variance	Low bias Low variance

Address Overfitting

- Detect Overfitting
 - Performance analysis (Cross-Validation)
- Avoid Overfitting
 - Fewer features (Feature Selection, Dimensionality Reduction)
 - Constraint the model (Regularization: minimum loss $L(w) + \lambda ww^T$)
 - Model Selection (Tune hyper-parameters using Grid Search)

Performance Analysis

Training set

Validation set

Test (Blind) set

Performance Measures

- Measure of distance between predictions $\hat{y} = h(x)$ and targets y
- L2 norm: Root Mean Square Error (RMSE)
 - Sensitive to outliers!

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2}$

- L1 norm: Mean Absolute Error (MSE)
 - Derivability!

$$MAE(\mathbf{X}, h) = \frac{1}{m} \sum_{i=1}^{m} \left| h(\mathbf{x}^{(i)}) - y^{(i)} \right|$$

26

Feature Selection

Best Subset Selection

Fit a separate least squares regression for each possible combination of the n features: 2ⁿ possibilities!

Forward Stepwise Selection

Begins with a model containing no feature, and then adds the feature that gives the greatest improvement (smallest cost) to the model, one-at-a-time.

Backward Stepwise Selection

Begins with a model containing all feature, and then removes the feature that gives the smallest improvement (highest cost) to the model, one-at-a-time.

Dimensionality Reduction

Reducing or extracting features

Regularization

- See regularization as a penalty against complexity. Increasing the regularization strength penalizes "large" W
- The goal is to prevent the model from picking up "peculiarities," "noise," or "imagines a pattern where there is none."

Regularization: Ridge Regression (L₂ norm)

Linear Regression

$$\hat{y} = h_w(x) = w_0 + w_1 x_1 + w_2 x_2$$

if λ is set to be extremely large, then w_j have to be very small.

- → Algorithm results in underfitting
- → Gradient Descent will fail to converge

minimize
$$L(y, \hat{y})$$

w

L₂ norm

minimize $L(y, \hat{y}) + \lambda \sum_{i=1}^{n} w_i^2$

Do not regularize for j=0

Training
$$w_0 = 1, w_1 = 2, w_2 = 0.01$$

Test
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Regularization: Ridge Regression (L₂ norm)

 $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$

Tradeoff

 $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$

Overfitting

Regularization: LASSO Regression (L₁ norm)

Linear Regression

$$\hat{y} = h_w(x) = w_0 + w_1 x_1 + w_2 x_2$$

- LASSO: Least Absolute Shrinkage and Selection Operator
- LASSO is not differentiable for every value of w, but performs best feature selection

minimize
$$L(y, \hat{y})$$

w

 $L_1 \text{ norm}$

minimize $L(y, \hat{y}) + \lambda \sum_{j=1}^{n} |w_j|$

Training
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Test
$$w_0 = 1, w_1 = 2, w_2 = 0$$

Do not regularize for j=0

Model Selection

- Hyper-Parameters Tuning
 - λ : regularization hyper-parameter
 - *d*: degree of polynomial
 - Etc.
- Grid Search
- Randomized search