T.C.

KOCAELİ SAĞLIK VE TEKNOLOJİ ÜNİVERSİTESİ MÜHENDİSLİK VE DOĞA BİLİMLERİ FAKÜLTESİ BİLGİSAYAR MÜHENDİSLİĞİ BÖLÜMÜ 2023-2024 BAHAR YARIYILI FİZ120 FİZİK II DERSİ

ELEKTRİKSEL POTANSİYEL

KOCAELI SAĞLIK VE TEKNOLOJI ÜNİVERSİTESI

Öğretim Üyesi: Dr. Öğr. Üyesi SALİHA ELMAS İletişim: saliha.elmas@kocaelisaglik.edu.tr

Kocaeli Sağlık ve Teknoloji Üniversitesi Uzaktan Eğitim Birimi Koordinatörlüğü

ELEKTRİK POTANSİYEL

Elektrik Potansiyel Noktasal Yük Dağılımlarının Potansiyeli Sürekli Yük Dağılımlarının Potansiyeli İletkenler ve Eşpotansiyel Yüzeyler

ELEKTRİK POTANSİYEL

- Değişken bir kuvvetin yaptığı iş $W = \int_1^2 \vec{F} \cdot d\vec{r}$ tanımlanmıştı.
- Elektrik alanın \vec{E} olduğu bir yere konulan q yüküne etkiyen kuvveti de tekrar yazalım:
- $\vec{F} = q\vec{E}$
- O halde, bu q yükünü bir noktadan diğerine götürürken elektriksel kuvvetin yapacağı iş, $W=q\int_1^2 \vec{E} \cdot d\vec{r}$ olur.

ELEKTRİK POTANSİYEL

Hatırlatma: Korunumlu kuvvete *karşı* yapılan iş, iki nokta arasındaki potansiyel enerji farkına eşit oluyordu:

$$-\int_1^2 \vec{\mathbf{F}}_{kor} \cdot d\vec{\mathbf{r}} = U_2 - U_1$$

Bir q yüküne $\vec{\boldsymbol{E}}$ alanında etkiyen kuvvet:

$$\vec{F} = q\vec{E}$$

O halde, elektrik potansiyel enerjisi tanımı:

$$U_2 - U_1 = -q \int_1^2 \vec{E} \cdot d\vec{r}$$
 (Elektrik potansiyel enerjisi)

Elektrik Potansiyel:

Gözlem: Elektrik potansiyel enerjisi hep q yükü ile orantılı. \bullet

Birim yükün potansiyel enerjisine **elektrik potansiyel** denir:

$$V = \frac{U}{q}$$
 (elektrik potansiyel)

Bunun tersi de doğrudur: Potansiyeli V olan bir noktaya konulan q yükünün sahip olacağı potansiyel enerji:

$$U = q V$$

İki nokta arasındaki potansiyel farkı:

$$V_2 - V_1 = -\int_1^2 \vec{E} \cdot d\vec{r}$$
 (Elektrik potansiyel farkı)

- Teknolojide potansiyel farkı yerine gerilim ve voltaj terimleri de kullanılır.
- Artı yüklere yaklaşırken potansiyel artar, eksi yüklere yaklaşırken azalır.
- Elektrik alan çizgileri yönünde gidildiğinde potansiyel azalır.
- Potansiyel skaler nicelik olduğundan, elektrik alana göre, çalışması daha kolaydır.

Sabit Elektrik Alanın Potansiyeli

Hatırlatma:

İki levhayı, elektrik alan -x yönünde olacak şekilde yerleştirelim.

 x_1 konumuyla x_2 konumu arasındaki potansiyel farkı:

$$V(x_2) - V(x_1) = -\int_{x_1}^{x_2} (-E) \, dx = -E \int_{x_1}^{x_2} dx = E(x_2 - x_1) \, \cdot$$

Veya, $x_1 = 0$ orijinindeki negatif levhayı sıfır potansiyelde seçersek:

$$V(x) = Ex$$
 (sabit elektrik alanın potansiyeli)

- a) 2 μC luk bir yük bir elektrik alanı konulduğunda, 0,006 J potansiyel enerji kazanıyor. Bu noktanın potansiyeli ne kadardır?
- b) Bir proton, potansiyeli 1000 volt olan bir yerdeki potansiyel enerjisinin tümünü kinetik enerjiye çevirdiğinde hızı ne kadar olur? (Protonun kütlesi $m_p = 1.7x10^{-27} kg$, yükü: $e = 1.6x10^{-19} C$)

a) Potansiyelin U potansiyel enerjisi cinsinden tanımı yazılır:

•
$$V = \frac{U}{q} = \frac{0.006}{2x10^{-6}} = 3000 V$$

b) Potansiyelin V olduğu yerdeki protonun potansiyel enerjisi eV olur. Bunun tamamı kinetik enerjiye dönüşmüştür:

•
$$\frac{1}{2}m_p v^2 = eV \rightarrow v = \sqrt{\frac{2eV}{m_p}}$$

Verilen değerler yerine konup hız hesaplanır:

•
$$v = \sqrt{\frac{2x1.6x10^{-19}x1000}{1.7x10^{-27}}} = 4.3x10^5 \ m/s$$

Örnek: Aralarında 5 mm mesafe bulunan iki paralel iletken levha, 20 V luk bir akünün kutuplarına bağlanıyor.

a) Levhalar arasındaki elektrik alan şiddeti ne kadar olur?

b) Bir levhanın yüzölçümü 100 cm² ise üzerinde ne kadar yük

toplanır?

• \pm yüklü iki paralel levha arasında sabit E alanı oluştuğunu biliyoruz. Ayrıca, sabit elektrik alanda, eksi yüklü levhadan itibaren potansiyelin nasıl değiştiğini V(x) = Ex formülüyle bulmuştuk.

•
$$V = Ex$$

• Artı yüklü levhanın $x = 0.005 \, m$ olan konumunu yerine koyar ve elektrik alanı buluruz:

•
$$E = \frac{V}{x} = \frac{20}{0.005} = 4000 \, V/m$$

• b) Levhaların boyutları, aradaki mesafeye göre büyük ise, sonsuz düzlem yük gibi kabul edebiliriz:

•
$$E = \frac{\sigma}{\varepsilon_0}$$

• Yükü Q ve yüzölçümü A olan bir levhanın yüzey yük yoğunluğu yazılır:

•
$$\sigma = \frac{Q}{A}$$

•
$$E = \frac{(Q/A)}{\varepsilon_0} \to Q = \varepsilon_0 EA$$

• Sayısal veriler yerine konulup bir levhanın yükü bulunur:

•
$$Q = 8.85 \times 10^{-12} \times 4000 \times 100 \times 10^{-4}$$

•
$$Q = 35x10^{-11} C = 0.35 nC$$

DÜZGÜN BİR ELEKTRİK ALAN İÇERİSİNDE İKİ NOKTA ARASINDAKİ ELEKTRİKSEL POTANSİYEL FARK

NOKTASAL YÜK DAĞILIMLARININ POTANSİYELİ

Bir Noktasal Yükün Potansiyeli 🔻

Orijindeki bir *Q* yükünün elektrik alanı:

$$E = \frac{kQ}{r^2}$$

 r_1 ve r_2 noktaları arasındaki potansiyel farkı (\vec{E} ile $d\vec{r}$ aynı yönde):

$$V(r_2) - V(r_1) = -\int_{r_1}^{r_2} E \, dr = -\int_{r_1}^{r_2} \frac{kQ}{r^2} \, dr = -kQ \left| -\frac{1}{r} \right|_{r_1}^{r_2} = kQ \left(\frac{1}{r_2} - \frac{1}{r_1} \right)$$

İntegrali $r_1 = \infty$ dan $r_2 = r$ noktasına kadar alırsak: $V(r) - V(\infty) = \frac{kQ}{r}$

Potansiyelin referans noktası sonsuzda seçilirse ($V(\infty) = 0$):

$$V(r) = \frac{kQ}{r}$$
 (Noktasal yükün potansiyeli)

Potansiyelin diğer bir yorumu:

Bir noktanın potansiyeli, birim yükü sonsuzdan o noktaya getirmek için yapılan iş. •

🔸 + yükün potansiyeli pozitif, – yükün potansiyeli de negatif olur. 🔻

 Pozitif yüke yaklaştıkça potansiyel artar, negatif yüke yaklaştıkça azalır.

Çok sayıda noktasal yükün bir P noktasındaki potansiyeli, herbir yükün potansiyelinin cebirsel toplamı olur:

$$V = \frac{kq_1}{r_1} + \frac{kq_2}{r_2} + \dots + \frac{kq_N}{r_N} = \sum_{i} \frac{kq_i}{r_i}$$

Bir Yük Dağılımının Potansiyel Enerjisi:

Çok sayıda yükten oluşan bir sistemin potansiyel enerjisi ne kadardır? 🔻

Cevap: Bu yükleri bu konumlara getirmek için yapılan iş kadardır. 🔻

$$U_2 = q_2 V_1 = q_2 \frac{kq_1}{r_{12}} = k \frac{q_1 q_2}{r_{12}}$$

Daha sonra q₃ yükünü getirelim.
Daha önce gelmiş olan (q₁, q₂) yüklerinin potansiyelini içinde, sahip olduğu enerji:

$$U_3 = q_3 \left(\frac{kq_1}{r_{13}} + \frac{kq_2}{r_{23}} \right) = k \left(\frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

Sistemin toplam potansiyel enerjisi:

$$U_{\text{top}} = U_1 + U_2 + U_3 = k \left(\frac{q_1 q_2}{r_{12}} + \frac{q_1 q_3}{r_{13}} + \frac{q_2 q_3}{r_{23}} \right)$$

N sayıda yük için genelleme:

$$U_{\text{top}} = k \sum_{i < j}^{N} \frac{q_i q_j}{r_{ij}}$$

Örnek: $q_1 = 1 \mu C$, $q_2 = 5 \mu C$ ve $q_3 = -2\mu C$ yükleri, bir kenarı 1 m uzunlukta olan karenin üç köşesine şekildeki gibi konulmuşlardır.

a) A noktasındaki potansiyel ne kadar olur?

b) $q_4 = +4 \mu C$ yükü sonsuzdan A noktasına getirmek için ne kadar iş

yapılması gerekir?

• $q_1 = 1 \,\mu C$, $q_2 = 5 \,\mu C$ ve $q_3 = -2 \mu C$ yükleri, bir kenarı 1 uzunlukta olan karenin üç köşesine şekildeki gibi konulmuşlardır.

a) A noktasının potansiyeli, her üç yükün buradaki potansiyellerinin cebirsel toplamıdır.

•
$$V_A = \frac{kq_1}{r_1} + \frac{kq_2}{r_2} + \frac{kq_3}{r_3}$$

•
$$V_A = 9x10^9 \left(\frac{1x10^{-6}}{1} + \frac{5x10^{-6}}{\sqrt{2}} + \frac{-2x10^{-6}}{1} \right)$$

•
$$V_A = 22800 V$$

Görüldüğü gibi potansiyelle çalışmak vektörel elektrik alanlarla çalışmaktan daha kolaydır.

•
$$U_A = q_4 V_A$$

Değerler yerine konulup hesaplanır:

•
$$U_A = 4x10^{-6}x22800 = 0.09J$$

Örnek: Şekilde, aralarında 4 m mesafe bulunan $q_1 = 1 \mu C$ ve $q_2 = -2 \mu C$ yükler, bulundukları yerlere tespit edilmişlerdir. Bu iki yük yukarısında, kütlesi 1 g olan $q_3 = 3 \mu C$ yükü A noktasından ilk hızsız bırakılıyor. B noktasına vardığında hızı ne olur?

• Bir q yükünün potansiyeli V olan bir noktadaki potansiyel enerjisi U = qV dir. Böylece enerji korunumunu A ve B noktaları için yazarız:

$$\bullet \frac{1}{2} m v_A^2 + q_3 V_A = \frac{1}{2} m v_B^2 + q_3 V_B$$

• q_3 yükü A noktasından ilk hızsız bırakıldığı için, $v_A = 0$ alıp, V_B için çözeriz:

$$\bullet \ v_B = \sqrt{\frac{2q_3(V_A - V_B)}{m}}$$

• Potansiyel farkını ayrı hesaplayalım:

•
$$V_A = \frac{kq_1}{r_1} + \frac{kq_2}{r_2} = 9x10^9 \left(\frac{1x10^{-6}}{1} - \frac{2x10^{-6}}{3}\right) = 3000 V$$

•
$$V_B = \frac{kq_1}{r_1} + \frac{kq_2}{r_2} = 9x10^9 \left(\frac{1x10^{-6}}{3} - \frac{2x10^{-6}}{1}\right) = -15\ 000\ V$$

• Buradan V_B hızı hesaplanır:

•
$$v_B = \sqrt{\frac{2x3x10^{-6}(3000+15000)}{0.001}} = 10 \text{ m/s}$$

Örnek: Elektrik dipol:

Bir elektrik dipolün potansiyelini uzayın herhangi bir noktasında hesaplayın ve r>>a için limit değerini bulun.

• Şekilde $\pm q$ yükleri y-ekseni boyunca, aralarında a mesafesi olacak şekilde yerleştirilmişlerdir. Bu dipolün +q yükünden r uzaklıkta ve y-ekseniyle θ açısı yapan bir P noktasındaki elektrik potansiyeli hemen yazabiliriz:

•
$$V = \frac{kq}{r} - \frac{kq}{r + \Delta r} = \frac{kq\Delta r}{r(r + \Delta r)}$$

- Burada P noktasının +q yüküne uzaklığını r ile, -q yüküne uzaklığını $r + \Delta r$ ile gösterdik. Verilen her P noktası için bu ifade hesaplanarak potansiyel bulanabilir.
- r>>a için yaklaşık olarak şu ifadeleri kullanırız:
- $\Delta r \approx a \cos \theta$

•
$$r(r + \Delta r) \approx r^2$$

• Ayrıca, p = qa çarpımı elektrik dipol momenti olarak tanımlanmıştı. Buna göre, dipolden çok uzaklarda potansiyel ifadesi şöyle oluşur.

•
$$V = k \frac{p \cos \theta}{r^2}$$

• Elektrik dipolün xy-düzlemindeki eşpotansiyel yüzeyleri aşağıdaki şekilde gösterilmiştir. Bu potansiyelin önemli özelliği r^2 ile azalıyor olmasıdır. Noktasal yükün potansiyeli r ile azalıyordu, dipol potansiyeli çok daha hızlı azalır. Dipolün elektrik alan çizgileri de, aynı şekil üzerinde, eşpotansiyel yüzeyleri dik kesecek şekilde, artı yükten eksi yüke doğru gösterilmişlerdir.

ELEKTRİK POTANSİYELDEN ELEKTRİK ALAN ELDE ETME

SÜREKLİ YÜK DAĞILIMLARININ POTANSİYELİ

Bir hacim, yüzey veya eğri üzerine sürekli dağılmış yük.

Yüklü bölgede küçük bir dq yük elemanı. Bunun toplam potansiyele dV katkısı:

$$dV = \frac{k \, dq}{r}$$

Tüm yük dağılımının potansiyeli:

$$V = k \int \frac{dq}{r}$$

 $V = k \int \frac{dq}{r}$ (Sürekli dağılmış yükün potansiyeli •

dq elemanı, yük yoğunluğu cinsinden şöyle ifade edilir:

$$dq = \rho \, dV$$

$$dq = \sigma dA$$

$$dq = \rho \, dV$$
 $dq = \sigma \, dA$ $dq = \lambda \, dL$

Ayrıca, potansiyelin \vec{E} alanı cinsinden ifadesi de hesaplarda kullanılabilir:

$$V_2 - V_1 = -\int_1^2 \vec{E} \cdot d\vec{r}$$

Örnek: Yüklü sonsuz tel. Boyca yük yoğunluğu λ olan sonsuz bir telden a ve b uzaklıkta bulunan İki nokta arasındaki potansiyel farkını bulun.

• Yine elektrik alan bilindiği için, tanımdan gitmek daha kolaydır:

•
$$V_b - V_a = -\int_a^b \vec{E} \cdot d\vec{r} = \int_b^a E dr$$

• (Son ifadede integralin sınırları yer değiştirildi ve \vec{E} ile $d\vec{r}$ nin paralel oluşu kullanıldı). Sonsuz telin elektrik alanı Gauss yasasıyla $E=\frac{2k\lambda}{r}$ olarak bulunmuştu. O sonucu kullanıp integrali alırız:

•
$$V_b - V_a = \int_a^b \frac{2k\lambda dr}{r} = 2k\lambda |\ln r|$$
 $b = 2k\lambda \ln(a/b)$

• Bu formülde a<b olduğu için, aslında logaritma eksi işaretlidir, yani b noktasının potansiyeli daha küçük olur. O halde, a ve b' nin yerlerini değiştirirsek pozitif bir ifade elde ederiz:

•
$$V_a - V_b = 2k\lambda \ln(b/a)$$

Örnek: Yüklü halka. Üzerinde toplam Q yükü taşıyan R yarıçaplı halkanın merkezinden h uzaklıkta potansiyeli hesaplayın.

• Halka üzerinde küçük bir *ds* yayına tekabül eden küçük bir *dq* yükü seçelim. Bunun P noktasındaki potansiyele katkısını yazıp, tüm halka üzerindeki *ds* katkılarını toplar, yani integralini alırız:

•
$$V = k \int \frac{dq}{r} = k \int \frac{dq}{\sqrt{R^2 + h^2}}$$

• İntegral içindeki payda, halkanın her yerinde aynı olduğu için, dışarı alınabilir:

•
$$V = \frac{k}{\sqrt{R^2 + h^2}} \int dq$$

• Kalan integral tüm yüklerin Q toplamı olur:

•
$$V = \frac{kQ}{\sqrt{R^2 + h^2}}$$

Örnek: Yüklü disk.

Üzerinde sabit σ yüzey yük yoğunluğu bulunan R yarıçaplı diskin ekseni üzerinde h uzaklıktaki P noktasında potansiyeli hesaplayın.

• Disk üzerinde, yarıçapı [r, r + dr] aralığında olan dr kalınlığında ince bir halka göz önüne alalım. Bu halka üzerindeki küçük yük miktarına dq dersek, önceki örneğe göre (yüklü halka), bunun P noktasındaki potansiyele katkısı şöyle olur:

•
$$dV = \frac{kdq}{\sqrt{r^2 + h^2}}$$

•
$$dq = \sigma dA = \sigma(2\pi r dr)$$

• Bu değer yerine konur ve tüm halkaların katkısı integral alınarak bulunur:

•
$$V = \pi kr \int_0^R \frac{2rdr}{\sqrt{r^2 + h^2}}$$

• Burada $u=r^2+h^2$ değişkeni tanımlanırsa, du=2rdr olur. Bu u değişkeniyle integral basitleşir:

•
$$V = \pi kr \int u^{-1/2} du = \pi kr \left| 2\sqrt{r^2 + h^2} \right|_0^R$$

• Sınır değerleri yerine konur ve sadeleştirilirse, diskin potansiyel ifadesi bulunmuş olur:

$$\bullet V = 2\pi k r \left[\sqrt{h^2 + R^2} - h\right]$$

İLETKENLER VE EŞPOTANSİYEL YÜZEYLER

Potansiyelin aynı değerde olduğu yüzeylere **eşpotansiyel yüzey** denir. 🔻

Örnek: Orijindeki q yükünün potansiyeli:

$$V = \frac{kq}{r}$$

Noktasal yükün eşpotansiyel yüzeyleri: q yükünün merkezde bulunduğu küre yüzeyleri. •

Doğrusal telin eşpotansiyel yüzeyleri: Tel eksenli silindirik yüzeyler.

Eşpotansiyel yüzeylerin özellikleri:

İletken yüzeyleri eşpotansiyel yüzeylerdir.

İspat: Potansiyel farkı tanımı:

$$V_2 - V_1 = -\int_1^2 \vec{E} \cdot d\vec{r}$$

1 ve 2 noktaları iletken yüzeyinde olsun. 🔻

Potansiyel farkı gidilen yoldan bağımsızdır.

Gidilen yolu iletken içinde seçelim.

İletken içinde daima $\vec{E}=0$ olduğundan, integralin sağ tarafı sıfır olur:

$$\vec{E} = 0 \implies V_2 = V_1$$

Elektrik alan çizgileri daima eşpotansiyel yüzeylere dik olur.

Eşpotansiyel yüzey üzerinde birbirine $d\vec{r}$ kadar çok yakın iki nokta seçelim.

Bu iki nokta aynı potansiyelde olacağından:

$$V_1 = V_2 \implies dV = -\vec{E} \cdot d\vec{r} = 0 \implies \vec{E} \perp d\vec{r}$$

Elektrik alan ile potansiyel arasındaki ilişki.

V potansiyelli bir yüzeyden dik doğrultuda (yani, \vec{E} yönünde) küçük bir $d\vec{r}$ adımıyla, V+dV olan diğer bir eşpotansiyel yüzeye varmış olalım.

 \vec{E} ve $d\vec{r}$ vektörleri aynı yönde olduğundan,

$$(V + dV) - V = -\vec{E} \cdot d\vec{r} = -E dr \longrightarrow E = -\frac{dV}{dr}$$

Eşpotansiyel yüzeye dik doğrultudaki potansiyel artış oranına **potansiyel gradyanı** denir.

Elektrik alan negatif potansiyel gradyanıdır.

Negatif işaretin anlamı: Elektrik alanı yönünde gidilirken potansiyel azalır.

Örnek: İletken küre. R yarıçaplı Q yüklü iletken kürenin dışında ve içinde potansiyeli hesaplayın.

• Bu problemde potansiyeli elektrik alanın integral olarak hesaplamak daha kolaydır

•
$$V_2 - V_1 = -\int_1^2 \vec{E} \cdot d\vec{r}$$

- Bu formülde $r_1 = \infty$ alınırsa, $V_1 = 0$ olur ve r noktasının potansiyeli $V_2 = V(r)$ yazılır:
- $V(r) = -\int_{\infty}^{r} \vec{E} \cdot d\vec{r}$
- Eksi işaretten kurtulmak için integrali tersine çeviririz, yani r den sonsuza gideriz:

•
$$V(r) = \int_{r}^{\infty} \vec{E} \cdot d\vec{r} = \int_{r}^{\infty} E dr$$

• Burada \vec{E} ile $d\vec{r}$ aynı yönde olduğundan, $\vec{E} \cdot d\vec{r} = E dr$ alındı.

• İletken kürenin dışında (r > R), elektrik alan noktasal yükün $E = kQ/r^2$ alanı ile aynıdır:

•
$$V(r) = \int_{r}^{\infty} \frac{kQdr}{r^2} = \left| -\frac{kQ}{r} \right|^{\infty} r$$

•
$$V(r) = \frac{kQ}{r}$$
 $(r > R)$

- İletken kürenin içinde (r < R) bir r noktası için, integrali iki parçada yazalım:
- $V(r) = \int_{r}^{\infty} E dr = \int_{r}^{R} E dr + \int_{R}^{\infty} E dr$
- İletken içinde daima E=0 olduğundan birinci integral sıfır verir. Diğeri, iletken dışındaki potansiyelin r=R yüzeyinde aldığı değerdir:

•
$$V(r) = \frac{kQ}{R}$$
 $(r < R)$

- İletken içinde potansiyel sabit olup, yüzeydeki değerine eşittir.
- Sonuç olarak, iletken kürenin potansiyel grafiğini öğrenelim.

Örnek: Eş merkezli iki iletken küreden a=1 m yarıçaplı olanı üzerinde Q=+1 μC, b=2 m yarıçaplı olanı üzerinde –Q yükü bulunmaktadır.

- a)İki küre arasındaki potansiyel farkını bulunuz.
- b)Kütlesi 1 g olan q=2 μC luk noktasal bir yük, artı yüklü küre yakınında ilk hızsız bırakılıyor. Eksi yüklü küreye vardığında hızı ne kadar olur?

• a)İletken kürenin içinde elektrik alan sıfır, dışında ise noktasal yükün alanı gibi olur. Buna göre, küreler arasındaki potansiyel farkı, içteki +Q yüklü kürenin a ve b uzaklıklarındaki potansiyellerinin farkı olur:

•
$$V_a - V_b = kQ(\frac{1}{a} - \frac{1}{b})$$

•
$$V_a - V_b = 9x10^{9-6} \left(\frac{1}{1} - \frac{1}{2}\right) = 4500 V$$

• b) q yükünün potansiyel enerjisi U = qV olarak yazılır:

•
$$\frac{1}{2}mv_A^2 + qV_A = \frac{1}{2}mv_B^2 + qV_B$$

•
$$v = \sqrt{\frac{2q(V_A - V_B)}{m}} = \sqrt{\frac{2x2x10^{-6}x4500}{0.001}} = 4.2 \text{ m/s}$$

TEŞEKKÜR EDERİM

KOCAELISAĞLIK VE TEKNOLOJI ÜNIVERSITESI