Topic: Quadrant of the angle

Question: Which two axes make up the boundary of the third quadrant?

Answer choices:

- A The positive horizontal axis and the negative vertical axis
- B The negative horizontal axis and the negative vertical axis
- C The positive horizontal axis and the positive vertical axis
- D The negative horizontal axis and the positive vertical axis

Solution: B

The third quadrant is bounded by the negative horizontal axis and the negative vertical axis.

2nd quadrant avadrant 11

1st quadrant

3rd quadrant 4th quadrant N

Quadrant III Quadrant N

Topic: Quadrant of the angle

Question: Where is an angle of 10.5π radians in standard position located?

Answer choices:

- A On the positive vertical axis
- B On the negative vertical axis
- C In the second quadrant
- D In the fourth quadrant

Solution: A

One full rotation is 2π radians, so we know 10.5π radians is more than one full rotation. To figure out how many rotations are made by 10.5π , divide 10.5π by 2π .

$$\frac{10.5\pi}{2\pi}$$

5.25

So 10.5π is five and a quarter rotations in the positive direction. If we start along the positive x-axis in standard position and make 5 full rotations, we'll end up right back in the same place, on the positive x-axis.

One more quarter rotation will then put us along the positive y-axis.

Topic: Quadrant of the angle

Question: In which quadrant is the angle located?

 $-1,600^{\circ}$

Answer choices:

- A First quadrant
- B Second quadrant
- C Third quadrant
- D Fourth quadrant

Solution: C

One full rotation is -360° , so we know $-1,600^\circ$ is more than one full rotation. To figure out how many rotations are made by $-1,600^\circ$, divide $-1,600^\circ$ by -360° .

$$\frac{-1,600^{\circ}}{-360^{\circ}}$$

4.44

So $-1,600^{\circ}$ is almost four and a half rotations in the negative direction. If we start along the positive x-axis in standard position and make 4 full rotations in the negative direction, we'll end up right back in the same place, on the positive x-axis.

Four full rotations is

$$4(-360^{\circ})$$

$$-1,440^{\circ}$$

and once we've made a $-1,440^\circ$ rotation, to get to $-1,600^\circ$, we'll need an additional -160° of rotation. From standard position, we know -90° puts us along the negative vertical axis, and then -180° puts us along the negative horizontal axis. So a rotation of -160° will put us in the third quadrant, just short of the negative horizontal axis.