DeepDIA Demo: Spectral Library Generation From Peptide Lists

Using deep learning to generate in silico spectral libraries from peptide lists for data-independent acquisition (DIA) analysis.

1. System Requirements

In this demo, spectral library generation has been tested on a workstation with Intel Xeon E5-2690 v3 CPU, 16 GB RAM, and Microsoft Windows Server 2016 Version 1607 (OS Build 14393.2430) operating system with the following softwares:

- Anaconda 4.2.0 (Python 3.5.2).
- Keras 2.2.4 and TensorFlow 1.11.
- Microsoft R Open 3.5.1.
- RStudio 1.1.447.
- R pakages rjson and readr.

DIA data analysis is performed on a workstation with Intel Core i9-7960X CPU, 128 GB RAM, and Microsoft Windows 10 Version 1809 (OS Build 17763.503) 64-bit operating system with the following softwares:

Spectronaut 12.0.20491.

2. Demo Data

LC-MS/MS data of 3 DIA technical replicates of 2 h gradient of HeLa cells on Q Exactive HF are available at ProteomeXchange (http://proteomecentral.proteomexchange.org/) with the data set PXD005573. (Bruderer, R. et al. Mol. Cell. Proteomics 2017, 16, 2296-2309.)

- Fig1_MP-DIA-120min120kMS1-22W30k-8dppp_MHRM_R01.raw
- Fig1_MP-DIA-120min120kMS1-22W30k-8dppp_MHRM_R02.raw
- Fig1_MP-DIA-120min120kMS1-22W30k-8dppp_MHRM_R03.raw

SwissProt *Homo sapiens* database (FASTA) can be downloaded from UniProt (https://www.uniprot.org/). The FASTA file (2018-04 version, 20,301 entries)

has been deposited to ProteomeXchange via the iProX partner repository with the data set identifier PXD014108/IPX0001628000 .

• swissprot_human_201804_validated.fasta

Pre-trained models for Q Exactive HF trained with HeLa data from PXD005573 are available at ProteomeXchange/iProX with identifier PXD014108/IPX0001628000.

· HeLa.model.zip

They are also provided in data/models folder.

Peptide lists (CSV) collected from the Pan Human Library (Rosenberger, G. et al. Sci. Data 2014, 1, 140031) are provided in data/peptides folder.

- Pan_human.peptide.csv
- Pan_human_charge2.peptide.csv
- Pan_human_charge3.peptide.csv

Generated spectral libraries and the saved projects from Spectronaut are also available at ProteomeXchange/iProX with identifier PXD014108/IPX0001628000.

- Pan_human_prediction.library.zip
- Pan_human_prediction.kit
- HeLa_Pan_prediction.sne.zip
- HeLa_Pan_prediction.csv.zip

3. Spectral Library Generation

3.1. Prepare Peptide Lists

A peptide list is stored in a comma-separated values (CSV) file including a column named sequence. DeepDIA only supports peptide sequences with standard amino acids (ACDEFGHIKLMNPQRSTVWY) and length <=50.

In this demo, the peptide list files are provided in data/peptides folder.

3.2. Predict MS/MS Spectra

In this demo, pre-trained models data/model/charge2 and data/model/charge3 are used for MS/MS prediction.

Copy the peptide list file data/peptides/Pan_human_charge2. peptide. csv to the model directory.

Run deepms2/py/predict.py in the directory.

```
cd {PATH_TO_MODEL}

python {PATH_TO_CODE}/deepms2/py/predict.py
```

Expected run time depends on the number of peptides and the performance of the computer. In this demo, this command may take about 5 min.

Predict MS/MS spectra for charge 3+ following the same steps.

3.3. Predict iRT

In this demo, a pre-trained model data/model/irt is used for iRT prediction.

Copy the peptide list file data/peptides/Pan human. peptide. csv to the model directory.

Run deeprt/py/predict.py in the directory.

```
cd {PATH_TO_MODEL}

python {PATH_TO_CODE}/deeprt/py/predict.py
```

Expected run time depends on the number of peptides and the performance of the computer. In this demo, this command may take about 2 min.

3.4. Generate Spectral Library

Move the predicted MS/MS and iRT files to the same directory with the peptide list.

- Pan_human.peptide.csv
- Pan_human_charge2.prediction.ions.json
- Pan_human_charge3.prediction.ions.json
- Pan_human.prediction.irt.csv

Start RStudio, ensure packages readr and rjson have been installed.

```
install.packages("readr")
install.packages("rjson")
```

Open init. R and run the script by clicking Source.

```
source("{PATH_TO_CODE}/init.R")
```


Set the peptide list directory as working directory and run generate spectral library for Spectronaut. R.

```
setwd("{PATH_TO_DATA}")
source("{PATH_TO_CODE}/generate_spectral_library_for_Spectronaut.R")
```

Expected run time depends on the number of peptides and the performance of the computer. In this demo, this command may take up to 1 h.

The output library file can be imported into Spectronaut.

• Pan_human.prediction.library.csv

4. DIA Data Analysis

4.1. Import the Spectral Library

Open Spectronaut, import library Pan_human. prediction. library. csv with FASTA file swissprot_human_201804_validated. fasta with the default parameters.

4.2. Perform DIA Analysis

Set a DIA experiment, load the raw data and the spectral library with the default parameters.

```
Intensity Extraction MS1: Maximum Intensity
 Intensity Extraction MS2: Maximum Intensity
- XIC Extraction
 XIC RT Extraction Window: Dynamic
    Correction Factor: 1
- Calibration
 — Calibration Mode: Automatic
 Precision iRT: True
 iRT <-> RT Regression Type: Local (Non-Linear) Regression
 Exclude Deamidated Peptides: True
 ─ MZ Extraction Strategy: Maximum Intensity
 — Allow source specific iRT Calibration: True
 ── Used Biognosys' iRT Kit: True
 └── Calibration Carry-Over: False

    Identification

 Generate Decoys: True
 — Decoy Limit Strategy: Dynamic
 Library Size Fraction: 0.1
 ☐ Decoy Method: Mutated
 — Machine Learning: Per Run
 Exclude Duplicate Assays: True
 Protein Qvalue Cutoff: 0.01
 Exclude Single Hit Proteins: False
 ├─ PTM Localization: True
 Probability Cutoff: 0.75
 — Pvalue Estimator: Kernel Density Estimator
 Precursor Qvalue Cutoff: 0.01
 └── Single Hit Definition: By Stripped Sequence
- Quantification
 Interference Correction: True
 ├─ MS1 Min:
 ├─ MS2 Min:
 Exclude All Multi-Channel Interferences: True
 — Major (Protein) Grouping: by Protein Group Id
 — Minor (Peptide) Grouping: by Stripped Sequence
 ├─ Minor Group Top N: True
 | — Min: 1
```

	├── Minor Group Quantity: Sum precursor quantity
	├── Major Group Top N: True
	Min: 1
	├── Major Group Quantity: Sum peptide quantity
	— Quantity MS-Level: MS2
	— Quantity Type: Area
	— Proteotypicity Filter: None
	├── Data Filtering: Qvalue
	└── Cross Run Normalization: True
	├── Row Selection: Automatic
	└── Normalization Strategy: Local Normalization
-	- Workflow
	— Profiling Strategy: None
	├── Unify Peptide Peaks Strategy: None
	— Multi-Channel Workflow Definition: From Library Annotation
	└── Fallback Option: Labeled
<u> </u>	- Protein Inference
	Protein Inference Workflow: Automatic
	- Post Analysis
	├── Calculate Sample Correlation Matrix: False
	Calculate Explained TIC: None
	├── Gene Ontology: C:\Users\admin\AppData\Roaming\Spectronaut\geneOntology/Ontologies\b
gs_def	ault_go-basic.obo
	├── Differential Abundance Grouping: Major Group (Quantification Settings)
	│ └── Smallest Quantitative Unit: Precursor Ion (Quantification Settings)
	└── Differential Abundance Testing: Student's t-test
	├─ Run Clustering: True
	├── Distance Metric: Manhattan Distance
	├── Linkage Strategy: Ward's Method
	Z-score transformation: False
	└── Group-Wise Testing Correction: False
L_	- Pipeline Mode
	├── Post Analysis Reports:
	├── Scoring Histograms: False
	├── Data Completeness Bar Chart: False

│ ├── Run Identifications Bar Chart: False	
├── CV Density Line Chart: False	
│ └── CVs Below X Bar Chart: False	
├── Generate SNE File: False	
- Report Schema: BGS Factory Report (Normal)	
Reporting Unit: Across Experiment	

Spectronaut Manual is available at https://www.biognosys.com/shop/spectronaut.

For benchmarking purpose, the saved projects using a sample-specific spectral library generated by data-dependent acquisition (DDA) experiments and the Pan Human library are also available at $ProteomeXchange/iProX \ with \ identifier \ \ \underline{PXD014108/IPX0001628000} \ .$

- HeLa_DDA.kit
- HeLa_prediction.kit
- HeLa_DDALib.sne.zip
- HeLa_DDALib.csv.zip
- HeLa_Pan.sne.zip
- HeLa_Pan.csv.zip