Projet Étudiant d'Entreprise n°13:

Étude du dimensionnement d'un trépan

Groupe P2E
GAZZOLA Matteo - JOLY Morgane - MERHEB Sophie - PROUTIER Charline - GAGNIERE Pierre-Jules - BOUNOUA Ilyas

03 Juin 2024

Tuteur enseignant LE VERN Mickaël

Correspondant entreprise
DU MORTIER Alexandre

SOMMAIRE

- Introduction sujet-entreprise
- Le trépanage

- Objectifs
- Méthodologie
- Résultats
- Regard critique

Le trépanage

Figure 2 : Schématisation de l'opération de trénanace

Image : **Vibrofonçage**, Ali Bouafia

Image : **Battage**, Claire Prada

Image : **Trépannage**, ETPO

Objectifs

Demandes de l'entreprise

vérifier la progression du fourrage par coup avec une feuille de calcul

Années > précédentes

Reprendre les études et les étendre à tous les types de roches

Paramètres à intégrer

Le type de roche

Le poids du trépan

Le diamètre du pieu

La hauteur de chute du trépan

IV. Méthodologie

L'organisation de l'équipe

Pôle communication Pôle gestion de projet Pôle technique Ligison avec le Répartition des tâches Gestion des sources via Trello et rédaction superviseur universitaire bibliographiques et de la et le responsable des comptes-rendus production des livrables industriel

techniques

Feuille de calculs

Données conçernant la roche	Valeur	Autres données	Valeur
GSI (cf. tab1)	85 -	Masse trépan	4,00E+03 kg
Facteur de rupture D (cf.tab2)	0 -	Rayon cylindrique trépan	0,46 m
Constante de résistance mi (cf.tab3)	25 -	Hauteur de chute	2,00 m
Module de Young E	65 GI	Pa Hauteur eau	1,00 m
		Longueur trépan	6,00 m

Type de roche	Roches représentatives	m_i [-]
Roches calcaires à clivage cristallin bien développé	Dolomite, calcite, marbre	≈ 7
Roches argileuses consolidées	Mudstone, siltstone, schiste limoneux, ardoise	≈ 10
Roches sableuses avec des cristaux solides et un clivage cristallin peu développé	Grès, quartzite	≈ 15
Roches cristallines ignées à grains fins	Andésite, dolérite, diabase, rhyolite	≈ 17
Roches à grains grossiers et métamorphiques	Amphibolite, gabbro, gneiss, granite, diorite	≈ 25

Type de roche		Module de Young et résistance à la compression		
Roches sédimentaires	Commune.(département)	Porosité	E,(GPa)	R _c (MPa)
	10000	(%)	76	127,
Calcaire du boulonnais	Marquise(62)	0.9	83	140
Calcaire fossilifère	Rinxent(62)	1.4	82	120
Calcaire à molioles	Saint-Maximin(60)	13.5	31	80
Calcaire oolithique	Villiers-Adam (95)	36	9	10
Craie	Lillebonne(76)	40	6	10
	Vernon(27)	27	28	55
Dolomie	Saint Rome de Tarn(12)	2.2	72	160
Grès	Fréhel(22)	13.7	15	55
	Tignes(73)	2.2	64	200
Quartzite	Cherbourg(50)	0.8	76	370
		1.8	91	280
Roches métamorphiques	Commune, (département)	E,(GPa)		R _c (MPa)
Calcshiste	Lanslebg. Mont-Cenis(73)	20-53 13-60		13-60
Gneiss	Bouguenais(44)	65		220
	Bonneval sur Arc(74)	36		120
Schiste sériciteux	Funny(89)	56-118 50-		50-255
Schiste ardoisier	Travassac(19)	75-115		

Extraits de la feuille de calculs réalisée

Feuille de calculs

1,62E-03 m		

Le domaine d'étude est-il vérifié?

Feuille de calculs

Temps de trépanage pour une profondeur donnée :	1,6	m
Durée en heures	1,1	h
Durée en heures et en minutes	1h5	min
Nombre de coups nécessaires	988	coups

La durée du chantier (pour un pieu)		
En heures	4,6 h	
En heures et minutes	4h38min	
En jours	1 jour	

Documents produits

Le manuel d'utilisation

Le rapport final

VI. Regard critique

Difficultés et solutions

Merci pour votre attention

Bibliographie

- E. Hoek (2023). Practical rock engineering, CH 3 "Intact rock strength" et 5 "Rock mass properties"
- Mission géotechnique G2 et G3, ETPO
- J.Y. Le Ven, M. Pernier (1979). La conception et le calcul des quais sur pieux
- M. Gasc-Barbier, D. Hanz (2019). Mécanique des roches appliquée au Génie Civil
- Andrew J Deeks, Mark Randolph (1993). Analytical modeling of hammer impact for pile driving
- Etude géotechnique de Conception (G2) Phase DCE 29/11/2023 "Installation d'une grue portuaire, Saint-Nazaire (44) Bassin de Penhoët", Format complet et format synthétisé
- J.Y. LE VEN, "La conception et le calcul des quais sur pieux", Oct 1979, Ministère des Transports, direction générale de la marine marchande
- Service technique central des ports maritimes et voies navigables, "Projet national Tuba, Procédure pratique pour les études de prévision et de contrôle de battage des pieux métalliques", mai 1998
- Tableau GSI <u>Annexe D Méthodes de classification des masses rocheuses fracturées</u>

CONCLUSION

Résultats

Conformité avec la mission confiée

Perspectives

Reste à faire