A dictionary of modular threefolds

Dissertation zur Erlangung des Grades "Doktor der Naturwissenschaften"

am Fachbereich Mathematik und Informatik der Johannes Gutenberg-Universität in Mainz,

vorgelegt von Christian Meyer, geboren in Mainz.

Mainz, den 22. Februar 2005

Contents

ln	trod	uction		6
1	Ari	thmeti	ic on Calabi–Yau threefolds	9
	1.1	Calab	i–Yau varieties	9
	1.2	Arithr	metic on Calabi–Yau varieties	11
	1.3	Modu	lar forms	13
	1.4	Dimer	$asion \neq 3 \dots \dots$	14
		1.4.1	Dimension 1: Elliptic curves	15
		1.4.2	Dimension 2: K3 surfaces	15
	1.5	Dimer	nsion 3: Calabi–Yau threefolds	16
		1.5.1	Modularity of rigid Calabi—Yau threefolds	17
		1.5.2	Modularity of non-rigid Calabi—Yau threefolds	20
	1.6	Const	ruction of Calabi–Yau threefolds	21
		1.6.1	Ordinary double points	22
		1.6.2	Threefolds with many nodes	25
		1.6.3	Higher singularities	25
	1.7	Corres	spondences and twists	26
		1.7.1	Correspondences and relatives	26
		1.7.2	Relatives by construction	27
		1.7.3	Twists	28
	1.8	Comp	utational matters	29
		1.8.1	Computation of Hodge and Betti numbers	29
		1.8.2	Algorithms for counting points	30
		1.8.3	Computation of coefficients of modular forms	30
		184	Hard- and software	31

4 CONTENTS

2	Fibr	re products of elliptic surfaces	32
	2.1	Examples of Schoen and Schütt	32
	2.2	Experiments	35
	2.3	Relatives	41
3	Qui	ntics in \mathbb{P}^4	43
	3.1	Schoen's quintic and the standard family of quintics	43
	3.2	Equations for the mirror	44
	3.3	Hirzebruch's quintic	47
	3.4	Van Geemen's and Werner's quintics	52
	3.5	Consani's and Scholten's quintic	55
	3.6	Van Straten's Σ_6 -symmetric quintics	56
	3.7	The Barth-Nieto quintic and its double cover	60
4	Dou	able octics	62
	4.1	Cynk's octic arrangements	62
	4.2	Arrangements of eight planes	65
	4.3	Six planes and a quadric	79
	4.4	Four planes and two quadrics	89
	4.5	Four quadrics	95
	4.6	Segre's construction (squaring of coordinates)	102
	4.7	Application to Kummer surfaces and other quartics	103
	4.8	Playing with cubic surfaces	106
	4.9	Σ_5 -symmetric quintics and Barth's quintic with 15 cusps	112
	4.10	Σ_5 -symmetric octics	117
	4.11	Sarti's Heisenberg-invariant surfaces	118
5	Oth	er examples	131
	5.1	A rigid complete intersection with small Euler number	131
	5.2	A family of nodal complete intersections	134
	5.3	Van Geemen's and Werner's complete intersections	
	5.4	Nygaard's and van Geemen's complete intersection	
	5.5	Libgober's and Teitelbaum's complete intersection	
	5.6	An intersection of two cubics in \mathbb{P}^5 with 108 nodes	

	5.7	Verrill's threefolds	53				
	5.8	Hulek's and Verrill's threefolds	54				
	5.9	Bernadara's complete intersections	57				
	5.10	Σ_6 -symmetric complete intersections	59				
	5.11	Rodriguez-Villegas' hypergeometric threefolds	61				
_							
6		· · · · · · · · · · · · · · · · · · ·	64				
	6.1		64				
		6.1.1 Level 5					
		6.1.2 Level 6	65				
		6.1.3 Level 7	68				
		6.1.4 Level 8	69				
		6.1.5 Level 9	72				
		6.1.6 Level 10	75				
		6.1.7 Level 12	76				
	6.2	Modular threefolds with large levels	77				
	6.3	Hodge and Euler numbers	79				
	6.4	Bad primes	80				
		6.4.1 Problems	80				
		6.4.2 Powers of bad primes	80				
		6.4.3 Which newforms do occur?	83				
	6.5	Other aspects and questions	.85				
A	Arra	ngements of eight planes	86				
В	Mod	ular double octics	98				
\mathbf{C}	C Weight four newforms 225						
D	O Weight two newforms 283						
_							
H۷	oforonces 200						

Introduction

The proof of the Taniyama-Shimura Conjecture by A. Wiles et al. in the 1990s (cf. [15]), which implied a proof of Fermat's Last Theorem, has been met with approval from the mathematical community and has even aroused great interest in the public (cf. [1], [95]). It connects, in a very fascinating way, different mathematical subjects, such as algebraic geometry and number theory.

The two main mathematical theories involved are those of elliptic curves and of modular forms. The Taniyama-Shimura conjecture relates the numbers of points on elliptic curves over finite fields to Fourier coefficients of certain modular forms of weight two.

An elliptic curve is a special case of a so called *Calabi–Yau manifold*, namely a Calabi–Yau manifold of dimension one. Calabi–Yau manifolds are of great importance in string theory, a main branch of modern theoretical physics. It is a very natural task to try to extend the results for elliptic curves to Calabi–Yau manifolds of higher dimension. Calabi–Yau manifolds of dimension two are called *K3 surfaces*. Their arithmetic, i.e., their properties over finite fields, has also been studied but we will take one further step forward and concentrate on Calabi–Yau manifolds of dimension three, the so called *Calabi–Yau threefolds*.

The arithmetic of Calabi–Yau threefolds defined over \mathbb{Q} is mainly determined by the L-series of their middle étale cohomology space. The dimension of this space is a positive even number and can be used to classify Calabi–Yau threefolds. If the dimension is two then the threefold allows no complex deformations and is therefore called rigid (and non-rigid otherwise). For a rigid Calabi–Yau threefold X which is defined over \mathbb{Q} there is a precise conjecture about its connection with modular forms. There should exist a newform of weight four for some Hecke subgroup $\Gamma_0(N)$ the L-series of which agrees with the L-series of the middle cohomology of X. In this case X is called modular.

The conjecture has been checked in several examples before and there is also a partial general result by Dieulefait and Manoharmayum (a modularity proof under mild restrictions concerning the primes of bad reduction). It is rather difficult to construct rigid Calabi–Yau threefolds.

For non-rigid Calabi–Yau threefolds the situation becomes much more complicated. We expect that the L-series of their middle cohomology is also determined by modular or automorphic forms. There are some examples where the L-series splits into two-dimensional pieces which are easier to handle.

The main subject of this thesis is the presentation of known results concerning modularity of

Calabi-Yau threefolds and the construction of many new examples.

In chapter 1 we collect the notations and facts concerning Calabi–Yau manifolds and their arithmetic. We also present general modularity results and tools for modularity proofs.

In chapters 2, 3, 4 and 5 we investigate many different examples of Calabi–Yau threefolds and study their modularity. Note that the level of detail is very different for the single examples. A detailed study of all occurring examples would require much more time and space. Nevertheless, the large number of examples makes it possible for the first time to give conjectures about the levels of the occurring newforms. Altogether there are hundreds of new examples of rigid and non-rigid Calabi–Yau threefolds. I would like to accentuate some results:

- In 3.1 and 3.2 the "standard family of quintics" is discussed. We present an equation for the mirror family as a family of quintics. Inside the mirror family there is a rigid Calabi–Yau manifold which corresponds to the Schoen quintic.
- Double coverings of \mathbb{P}^3 branched along an octic surface (so called *double octics*) are investigated in chapter 4. These Calabi–Yau threefolds are easier to handle because their geometry is determined by the (lower-dimensional) branch locus. This leads to large tables of modular examples.
- In 3.2 and 5.1 we construct two rigid Calabi–Yau threefolds with Euler characteristics 32 and 202. To my knowledge these are the smallest resp. largest known values. Note that it seems to be possible to produce larger values (cf. 5.11) but this requires additional work.
- It is an interesting question which prime numbers can occur in the levels of weight four modular forms connected with Calabi–Yau threefolds. We present examples involving the "new" primes 13, 19, 31 and 37.

In chapter 6 we try to link those modular Calabi–Yau threefolds which have the *same* modular form in their *L*-series. According to the Tate conjecture there should be correspondences between them. We present tables of examples and correspondences for examples connected with weight four newforms of small level. Afterwards we discuss the effect of primes of bad reduction on the level and formulate conjectures.

Appendix A contains a table of arrangements of eight planes defined over \mathbb{Q} and the numerical data of the double coverings of \mathbb{P}^3 branched along these arrangements.

Appendix B contains tables of modular double coverings of \mathbb{P}^3 branched along the union of six planes and a smooth quadric surface.

Appendix C contains a large and almost complete table of weight four newforms for $\Gamma_0(N)$ with level $N \leq 2000$ and rational coefficients.

Appendix D contains a complete table of weight two newforms for $\Gamma_0(N)$ with level $N \leq 228$ and rational coefficients.

To keep the text from further expansion I omitted details on the background in algebraic geometry and number theory. The reader is referred to the standard texbooks of Hartshorne ([47]) on

8 CONTENTS

algebraic geometry, Serre ([91]) on Galois representations and Knapp ([58]), Dolgachev ([37]) or Milne ([72]) on modular forms. Further references on specific topics are given in the text. The table of references should be rather complete as far as the subject of modularity of Calabi–Yau threefolds is concerned.

I thank everybody who has helped me in one way or another during the time I have been writing this thesis. This includes everybody working in algebraic geometry at the university of Mainz. The working conditions at the institute of mathematics have been excellent.

During the time of writing I have been supported by the Deutsche Forschungsgemeinschaft. This work is a part of the "DFG Schwerpunktprogramm: Globale Methoden in der komplexen Geometrie".

Chapter 1

Arithmetic on Calabi-Yau threefolds

1.1 Calabi-Yau varieties

Let X be a smooth complex projective variety of dimension d. X is called a Calabi-Yau variety if

- 1. $H^i(X, \mathcal{O}_X) = 0$ for every i, 0 < i < d, and
- 2. $K_X := \wedge^d \Omega^1_X \simeq \mathcal{O}_X$, i.e., the canonical bundle is trivial.

By the second condition and Serre duality we have

$$\dim H^0(X,K_X) = \dim H^d(X,\mathcal{O}_X) = 1,$$

i.e., the geometric genus of X is 1.

Let $\Omega_X^p := \wedge^p \Omega_X^1$ and let $H^q(\Omega_X^p)$ be the (p,q)-th Hodge cohomology group of X with Hodge number $h^{p,q}(X) := \dim_{\mathbb{C}} H^q(\Omega_X^p)$. The Hodge numbers are very important invariants of X. They are often displayed as a Hodge diamond:

All numbers not appearing in the diagram are zero. By complex conjugation we have $H^q(\Omega_X^p) = H^p(\Omega_X^q)$ and by Serre duality $H^q(\Omega_X^p) = H^{d-q}(\Omega_X^{d-p})$. The symmetries of the Hodge diamond are indicated in the second picture.

The k-th Betti number of X is $h^k(X) := \dim_{\mathbb{C}} H^k(X,\mathbb{C})$. By the Hodge decomposition

$$H^k(X,\mathbb{C}) \cong \bigoplus_{p+q=k} H^q(\Omega_X^p)$$

we have

$$h^k(X) = \sum_{p+q=k} h^{p,q}(X) = \sum_{i=0}^k h^{i,k-i}(X).$$

Finally the Euler characteristic of X is

$$\chi(X) := \sum_{k=0}^{2d} (-1)^k h^k(X).$$

The conditions for X to be Calabi–Yau assert that $h^{i,0}(X) = 0$ for 0 < i < d and that $h^{0,0}(X) = h^{d,0}(X) = 1$.

A dimension d=1 Calabi–Yau variety X (equipped with a rational point) is an elliptic curve with the following Hodge diamond:

$$\begin{array}{cccc}
1 & & h^0(X) = 1 \\
1 & & 1 & & h^1(X) = 1 + 1 = 2 \\
& & & h^2(X) = 1 \\
\hline
& \chi(X) = 1 - 2 + 1 = 0
\end{array}$$

A dimension d=2 Calabi–Yau variety X is called a K3 surface. It has the following Hodge diamond:

A dimension d=3 Calabi–Yau variety X is simply called a Calabi–Yau threefold. It has the following Hodge diamond:

Calabi–Yau threefolds are Kähler manifolds, so $h^{1,1}(X) > 0$. Note also that for Calabi–Yau threefolds all 2-cycles are algebraic, i.e. $H^2(X,\mathbb{Z}) \simeq \operatorname{Pic}(X)$. In particular we have $h^{1,1}(X) = h^2(X) = \rho(X) := \operatorname{rk}\operatorname{Pic}(X)$. It is still an open problem if there is a constant bounding the absolute value of the Euler characteristics of Calabi–Yau threefolds (cf. [78]).

Physicists have discovered a phenomenon for Calabi–Yau threefolds, known as mirror symmetry. Given a Calabi–Yau threefold X there should exist (naively speaking) a mirror Calabi–Yau threefold \hat{X} such that

$$\begin{split} h^{1,1}(X) &= h^{2,1}(\hat{X}), \\ h^{2,1}(X) &= h^{1,1}(\hat{X}), \\ \chi(X) &= -\chi(\hat{X}). \end{split}$$

The picture visualizes where mirror symmetry occurs in the Hodge diamond.

The mirror symmetry conjecture, as stated above, obviously fails for a certain type of Calabi–Yau threefolds, namely where $h^{2,1}(X)=0$. In this case there is a generalized notion of mirror, cf. [9]. Since for a Calabi–Yau threefold X the Hodge number $h^{2,1}(X)$ equals the number of complex deformations, we call X rigid if $h^{2,1}(X)=0$ and non-rigid if $h^{2,1}(X)>0$.

1.2 Arithmetic on Calabi–Yau varieties

In the preceding section we introduced Calabi–Yau varieties over the complex numbers. Now we are going to deal with arithmetical questions, i.e., reduction of Calabi–Yau varieties over finite fields and number fields. All examples will be defined over $\mathbb Q$ so we are going to restrict the discussion to this case.

Let X be a Calabi–Yau variety of dimension d defined over \mathbb{Q} . Then X always has a model defined over \mathbb{Z} (an *integral model*). We will use the following notation for the reduction of X over different fields:

notation	\bar{X}	X_q	$ar{X_p}$
field	$\bar{\mathbb{Q}}$	$\mathbb{F}_q, q = p^r, p \text{ prime}$	$\bar{\mathbb{F}}_p$, p prime

A prime p is called a *good* prime (or a *prime of good reduction*) if the reduction \bar{X}_p is again a Calabi–Yau variety (in particular, it is smooth), otherwise a *bad* prime (or a *prime of bad reduction*). The set of bad primes is always finite.

Let p be a good prime and let $F_p: \bar{X}_p \longrightarrow \bar{X}_p$ denote the geometric Frobenius morphism which takes coordinates to the p-th power. Let $\ell \neq p$ be a prime. The maps F_{p^r} induce endomorphisms $F_{p^r}^*: H^i_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) \longrightarrow H^i_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ on $\acute{\text{etale}}$ ℓ -adic cohomology (which is an ℓ -adic analogon of singular cohomology, $H^i_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) \otimes_{\mathbb{Q}_\ell} \mathbb{C} \simeq H^i(X, \mathbb{C})$. By the smooth base change theorem we also have $H^i_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) \simeq H^i_{\text{\'et}}(\bar{X}_p, \mathbb{Q}_\ell)$. For details on $\acute{\text{etale}}$ cohomology, cf. [44], [71].). We have $\dim_{\mathbb{Q}_\ell} H^0_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) = \dim_{\mathbb{Q}_\ell} H^{2d}_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) = h^0(X) = 1$. The action of F_p^* on $H^0_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ resp. $H^{2d}_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ is the identity resp. multiplication with p^d .

There are ℓ -adic Galois representations

$$\rho_{X,\ell}^{(i)}: \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \mapsto \operatorname{GL}_{h^i(X)}(\mathbb{Q}_{\ell}), \qquad 0 \le i \le 2d,$$

unramified for all primes p of good reduction for X and compatible with the Poincaré perfect pairings

$$H^i_{\mathrm{\acute{e}t}}(\bar{X},\mathbb{Q}_\ell) \times H^{2d-i}_{\mathrm{\acute{e}t}}(\bar{X},\mathbb{Q}_\ell) \longrightarrow H^{2d}_{\mathrm{\acute{e}t}}(\bar{X},\mathbb{Q}_\ell) \simeq \mathbb{Q}_\ell.$$

Frobenius elements Frob_p at p are mapped to F_n^* .

Now let again p be a good prime and let

$$P_{i,p}(t) = \det(1 - t \cdot \mathcal{F}_p^* | H_{\text{\'et}}^i(\bar{X}, \mathbb{Q}_\ell)).$$

By Weil and Deligne, the polynomials $P_{i,p}(t)$ have integer coefficients and

$$P_{i,p}(t) = \prod_{j=1}^{h^i(X)} (1 - t \cdot \omega_{ij})$$

where the ω_{ij} are algebraic integers, independent of ℓ , with $|\omega_{ij}| = p^{i/2}$. Let $\#X_q$ denote the number of points on X_q for a prime power q and let

$$Z_p(t) := \exp\left(\sum_{r=1}^{\infty} \# X_{p^r} \frac{t^r}{r}\right)$$

denote the zeta function of X. Then $Z_p(t)$ is a rational function of t and can be written as

$$Z_p(t) = \frac{P_{1,p}(t)P_{3,p}(t)\cdots P_{2d-1,p}(t)}{P_{0,p}(t)P_{2,p}(t)\cdots P_{2d,p}(t)}.$$

Now the *i-th (cohomological) L-series of X* is defined as the *L*-series of the (semi-simplification of the) Galois representation $\rho_{X,\ell}^{(i)}$. It is independent of ℓ and can be written as an Euler product

$$L(H^i_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell), s) = (*) \prod_p \frac{1}{P_{i,p}(p^{-s})}$$

where the product runs over the good primes and (*) denotes possible Euler factors for the bad primes. In particular, the d-th L-series of X is called the (cohomological) L-series of X and denoted by

$$L(X,s) := L(H_{\operatorname{\acute{e}t}}^d(\bar{X}, \mathbb{Q}_\ell), s).$$

We have a series expansion

$$L(X,s) = \sum_{k=1}^{\infty} \frac{a_k(X)}{k^s}$$

where $a_1(X) = 1$, $a_p(X) = \operatorname{tr}(\mathbb{F}_p^* | H_{\text{\'et}}^d(\bar{X}, \mathbb{Q}_\ell))$ and $a_k(X)$ is determined by the $a_p(X)$ for the prime divisors p of k.

The Lefschetz fixed point formula relates the number of points on X_p to the action of the Frobenius map:

$$\#X_{p^r} = \sum_{i=0}^{2d} (-1)^i \operatorname{tr}(\mathbf{F}_{p^r}^* | H_{\operatorname{et}}^i(\bar{X}, \mathbb{Q}_\ell))$$

Note that, by Weil and Deligne, we have $\operatorname{tr}(F_p^* | H^i_{\operatorname{\acute{e}t}}(\bar{X}, \mathbb{Q}_\ell)) \in \mathbb{Z}$ and

$$|\operatorname{tr}(\mathcal{F}_p^*|H^i_{\operatorname{\acute{e}t}}(\bar{X},\mathbb{Q}_\ell))| \le h^i(X) \cdot p^{i/2}$$

for all good primes p.

1.3 Modular forms

By standard conjectures (cf. conjecture 1.2 and the subsequent remarks) the L-series of Calabi–Yau varieties should be determined by modular (or automorphic) forms. Modular forms for the congruence subgroups $\Gamma_0(N)$ play an important role so we will collect the basic facts. Modular forms for different congruence groups can similarly be defined. Good references on modular forms are [37], [58] and [72].

Let $\Gamma = \mathrm{SL}(2,\mathbb{Z})$ be the full modular group. The subgroups

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \quad \middle| \quad c \equiv 0 \mod N \right\} \quad \text{for } N \in \mathbb{N}$$

of finite index in Γ are called *Hecke subgroups* of Γ .

An unrestricted modular form of weight $k \in \mathbb{Z}$ and level $N \in \mathbb{N}$ is an analytic function f on the upper half plane \mathbb{H} with

$$f\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^k f(\tau)$$
 for all $\gamma=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in\Gamma_0(N), \quad \tau\in\mathbb{H}.$

The function f always has a q-expansion

$$f(\tau) = \sum_{n=-\infty}^{\infty} c_n q^n$$
 with $q = e^{2\pi i \tau}$.

It is called a modular form if $c_n = 0$ for n < 0 and a cusp form if $c_n = 0$ for $n \le 0$.

The set $M_k(\Gamma_0(N))$ of modular forms of weight k and level N is a finite-dimensional vector space. The subspace of cusp forms is denoted by $S_k(\Gamma_0(N))$.

The space $S_k(\Gamma_0(N))$ is the orthogonal sum of simultaneous eigenspaces for certain operators, the Hecke operators. A cusp form is called eigenform if it is an eigenvector for the Hecke operators; two eigenforms in the same eigenspace are called equivalent. If $r_1r_2|N$ and $f(\tau)$ is an eigenform for $\Gamma_0(N/r_1r_2)$ then $f(r_1\tau)$ is an eigenform for $\Gamma_0(N)$ with the same eigenvalues and is called an oldform. The oldforms span a subspace $S_k^{old}(\Gamma_0(N))$. The orthogonal complement is denoted by $S_k^{new}(\Gamma_0(N))$ and an eigenform in $S_k^{new}(\Gamma_0(N))$ is called a newform. The equivalence class of a newform is one-dimensional, and $S_k^{new}(\Gamma_0(N))$ is the orthogonal sum of these classes.

Let $f \in S_k^{new}(\Gamma_0(N)), k \geq 2$ be a newform and let the q-expansion

$$f(\tau) = \sum_{n=1}^{\infty} c_n q^n$$

have rational coefficients. We can normalize f to have $c_1 = 1$. By the theory of Hecke operators the coefficients c_n are in general algebraic integers and therefore integers in our case. Let ℓ be a prime. By Deligne ([31], cf. also [32]) there is a unique (up to isomorphism) ℓ -adic semi-simple Galois representation

$$\rho_{f,\ell}: \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Q}_\ell)$$

which is unramified for all primes p not dividing $N \cdot \ell$ with

$$\operatorname{tr}(\rho_{f,\ell}(\operatorname{Frob}_p)) = c_p$$
 and $\operatorname{det}(\rho_{f,\ell}(\operatorname{Frob}_p)) = p^{k-1}$.

The *L*-series of f is defined as the *L*-series of the Galois representation $\rho_{f,\ell}$ and is denoted by L(f,s). It can be written as the Dirichlet series

$$L(f,s) = \sum_{n=1}^{\infty} \frac{c_n}{n^s}$$

and it has an Euler product expansion (which is convergent for the real part of s large enough) of the form

$$L(f,s) = \prod_{p \in \mathbb{P}, p \mid N} \left(\frac{1}{1 - c_p p^{-s}} \right) \prod_{p \in \mathbb{P}, p \nmid N} \left(\frac{1}{1 - c_p p^{-s} + p^{k-1-2s}} \right).$$

We will mainly be interested in newforms of weight two and four with rational coefficients for $\Gamma_0(N)$. Details on the computation of coefficients of such newforms can be found in 1.8.3 and large tables are presented in appendices C and D.

1.4 Dimension $\neq 3$

We give a short overview of the known connections between Calabi–Yau manifolds and modular forms in the dimension d=1 and d=2 cases. Our main interest will be in Calabi–Yau threefolds; this will be the subject of the rest of this thesis. For dimension > 3 there is almost nothing known. Ahlgren ([2]) connects the number of points on a certain fivefold with the coefficients of the unique normalized newform in $S_6(\Gamma_0(4))$. Note that this newform can be written as $\eta^{12}(2\tau)$ where η is the *Dedekind* η function (cf. 6.1).

1.4.1 Dimension 1: Elliptic curves

Let E be an elliptic curve (i.e., a Calabi–Yau variety of dimension 1) defined over \mathbb{Q} . The only non-trivial cohomology group of E is the middle cohomology group $H^1_{\text{\'et}}(\bar{E},\mathbb{Q}_\ell)$. The Lefschetz fixed point formula gives

$$a_p(E) = \operatorname{tr}(H^1_{\text{\'et}}(\bar{E}, \mathbb{Q}_{\ell})) = p + 1 - \#E_p.$$

Let N be the conductor of E (cf. 6.4.2). By the famous work of Wiles et al. (for an overview, cf. [15] or [79]) we know that there exists a cusp form

$$f(q) = \sum_{k=1}^{\infty} b_m q^m, \qquad q = e^{2\pi i z},$$

of weight 2 and level N such that for a prime ℓ the Galois representations $\rho_{E,\ell}^{(1)}$ and $\rho_{f,\ell}$ have the same semi-simplifications and

$$L(E, s) = L(f, s),$$

in particular $a_p(E) = b_p$ for all primes p of good reduction for E. Thus all elliptic curves defined over \mathbb{Q} are modular.

1.4.2 Dimension 2: K3 surfaces

Let X be a K3 surface (i.e., a Calabi–Yau variety of dimension 2) defined over \mathbb{Q} . The only non-trivial cohomology group of X is again the middle cohomology group $H^2_{\text{\'et}}(\bar{X}, \mathbb{Q}_{\ell})$ (with dimension $h^2(X) = 22$).

Let NS(X) denote the Néron–Severi group of X, i.e., the group of divisors on X modulo algebraic equivalence. There is a natural embedding of NS(X) into $H^2(X,\mathbb{Z}) \simeq U_2^3 \perp (-E_8)^2$. This implies that NS(X) is a torsion free lattice of rank $\rho(X) = \operatorname{rk}\operatorname{Pic}(X) \leq 20$. The decomposition of lattices $H^2(X,\mathbb{Z}) = \operatorname{NS}(X) \otimes T(X)$, where T(X) is the transcendental part of $H^2(X,\mathbb{Z})$, induces a decomposition of the L-series of X into

$$L(X,s) = L(NS(X) \otimes \mathbb{Q}_l, s) \cdot L(T(X) \otimes \mathbb{Q}_l, s).$$

The K3 surface X is called extremal (or singular) if $\rho(X) = 20$.

1.1 Theorem

Let X be an extremal K3 surface defined over \mathbb{Q} . Suppose that NS(X) is generated by algebraic cycles defined over some extension K of \mathbb{Q} . Then the L-series of X is given, up to finitely many Euler factors, by

$$L(X,s) = \zeta_K(s-1)^{20}L(f,s)$$

where $\zeta_K(s)$ is the Dedekind zeta function of K and L(f,s) is the L-series of a cusp form f of weight 3 on a congruence subgroup of $\mathrm{PSL}_2(\mathbb{Z})$, e.g., $\Gamma_1(N)$ or $\Gamma_0(N)$ twisted by a character. The first factor corresponds to the algebraic part of $H^2_{\acute{e}t}(\bar{X},\mathbb{Q}_\ell)$, the second to the (two-dimensional) transcendental part of $H^2_{\acute{e}t}(\bar{X},\mathbb{Q}_\ell)$. The level N depends on the discriminant of the lattice $\mathrm{NS}(X)$ and can be determined explicitly.

There are different proofs of the above theorem which can be found in [111]. They rely on the work of Inose and Shioda on the classification of extremal K3 surfaces ([53]) and on the work of Livné on modularity of motivic orthogonal two-dimensional Galois representations ([63]). Examples of modular K3 surfaces can be found in [4], [14], [59], [64], [65], [66], [77] and [98].

If the conditions of the above theorem are weakened (i.e., the K3 surface is not extremal) then there is not much known about modularity. In this case the Galois representation associated to the transcendental part of $H^2_{\text{\'et}}(\bar{X},\mathbb{Q}_\ell)$ is no longer two-dimensional.

1.5 Dimension 3: Calabi-Yau threefolds

Modularity of Calabi–Yau threefolds has been the subject of investigation of several authors. Several review articles have been written by N. Yui (cf. [108], [109], [110], [111]). Articles dealing with specific examples or questions include [3], [23], [28], [33], [34], [35], [49], [50], [51], [52], [64], [68], [69], [74], [75], [80], [81], [86], [87], [88], [89], [99], [100], [101], [104], [107].

Let X be a Calabi–Yau threefold defined over \mathbb{Q} , and let p be a prime of good reduction for X. We apply the Lefschetz fixed point formula:

$$\#X_{p} = \sum_{i=0}^{6} (-1)^{i} \operatorname{tr}(F_{p}^{*} | H_{\operatorname{\acute{e}t}}^{i}(\bar{X}, \mathbb{Q}_{\ell}))
= 1 + \operatorname{tr}(F_{p}^{*} | H_{\operatorname{\acute{e}t}}^{2}(\bar{X}, \mathbb{Q}_{\ell})) - \operatorname{tr}(F_{p}^{*} | H_{\operatorname{\acute{e}t}}^{3}(\bar{X}, \mathbb{Q}_{\ell})) + \operatorname{tr}(F_{p}^{*} | H_{\operatorname{\acute{e}t}}^{4}(\bar{X}, \mathbb{Q}_{\ell})) + p^{3}$$

By Weil and Deligne, we have

$$\operatorname{tr}(\mathbf{F}_{p}^{*}|H_{\operatorname{\acute{e}t}}^{2}(\bar{X},\mathbb{Q}_{\ell})) = k_{p}(X) \cdot p$$

where $k_p(X) \in \mathbb{Z}$, $|k_p(X)| \leq h^2(X) = h^{1,1}(X)$. The equality $k_p(X) = h^2(X)$ holds if $H^2_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ is generated by cycles defined over \mathbb{Q} (in this case the action of F_p^* on $H^2_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ is just multiplication by p). By Poincaré duality we have

$$\operatorname{tr}(\mathbf{F}_p^* | H_{\operatorname{\acute{e}t}}^4(\bar{X}, \mathbb{Q}_\ell)) = k_p(X) \cdot p^2.$$

Remember also the notation

$$a_p(X) := \operatorname{tr}(\mathbf{F}_p^* | H^3_{\operatorname{\acute{e}t}}(\bar{X}, \mathbb{Q}_\ell)).$$

Altogether this gives the identity

$$a_p(X) = 1 + p^3 + (p^2 + p) \cdot k_p(X) - \#X_p,$$

so if we know $k_p(X)$ (which is not too difficult in many examples because the Picard group of X can be controlled) we can determine $a_p(X)$ by counting points on X_p .

1.5.1 Modularity of rigid Calabi-Yau threefolds

For arithmetical purposes the easiest Calabi–Yau threefolds are the rigid ones (i.e., $h^{2,1}(X) = 0$, $h^3(X) = 2$). For these there is a precise modularity conjecture:

1.2 Conjecture

Let X be a rigid Calabi–Yau threefold defined over \mathbb{Q} . Then X is modular, i.e., there exists a newform

$$f(q) = \sum_{k=1}^{\infty} b_m q^m, \qquad q = e^{2\pi i z},$$

of weight 4 for $\Gamma_0(N)$ such that for a prime ℓ the (two-dimensional) Galois representations $\rho_{X,\ell}^{(3)}$ and $\rho_{f,\ell}$ have the same semi-simplifications and

$$L(X,s) = L(f,s),$$

in particular $a_p(X) = b_p$ for all primes p of good reduction for X. The level N is only divisible by primes of bad reduction for X.

This conjecture was formulated in [81]. It is a concrete realization of a conjecture of Fontaine and Mazur in [43] that every irreducible ℓ -adic two-dimensional Galois representation arising from geometry should be modular. It is also a special case of Serre's conjectures in [94].

We are going to describe later how a modularity proof for a specific example can work. The most general result up to now is the following:

1.3 Theorem

(Dieulefait, Manoharmayum in [35], Dieulefait in [34]) Let X be a rigid Calabi–Yau threefold defined over \mathbb{Q} . Suppose that X satisfies one of the following conditions:

- X has good reduction at 3 with $3 \nmid a_3(X)$, or
- X has good reduction at 3 and 7, or
- X has good reduction at 5 and some prime $p \equiv \pm 2 \mod 5$ with $5 \nmid a_p(X)$.

Then X is modular.

The above theorem contains no information about the level of the modular form. The following theorem gives a bound for the powers of primes in the level:

1.4 Theorem

(Serre in [94], Dieulefait in [33]) Let X be a rigid Calabi–Yau threefold defined over \mathbb{Q} . Suppose that X is modular with modular form f of weight 4 for $\Gamma_0(N)$. Then the exponent e_p of a prime p dividing N is bounded by $e_p \leq 2$ if p > 3, $e_3 \leq 5$ and $e_2 \leq 8$.

To prove modularity of a specific Calabi–Yau threefold there is a powerful result based on work of Faltings ([42]) and Serre. The key part will be to check equality of finitely many coefficients of the two L-series and to conclude equality for almost all coefficients. We need some definitions first.

A subset T of a finite-dimensional vector space V is called *non-cubic* if every homogeneous polynomial of degree 3 on V which vanishes on T vanishes on V. For example, the set $V \setminus \{0\}$ is non-cubic for $V = (\mathbb{Z}/2\mathbb{Z})^3$ and there is no smaller non-cubic set for this vector space (for each nonzero vector in this space there is a cubic polynomial vanishing everywhere but at this vector). The set $W \setminus \{0, w\}$ is non-cubic for $W = (\mathbb{Z}/2\mathbb{Z})^4$, where $w \in W$ is an arbitrary vector.

Let $S = \{s_1, \ldots, s_k\}$ be a finite set of primes and let $\mathbb{Q}_S = \mathbb{Q}(\sqrt{-1}, \sqrt{s_1}, \ldots, \sqrt{s_k})$ be the compositum of all quadratic extensions of \mathbb{Q} unramified outside S. For $s \in S \cup \{-1\}$, denote by $\chi_s : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \mathbb{Z}/2\mathbb{Z}$ the quadratic Galois character cutting out \sqrt{s} . Note that $\chi_s(\operatorname{Frob}_p) = \binom{\underline{s}}{p}$. We can now interpret $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q})$ as $\mathbb{Z}/2\mathbb{Z}$ -vector space via the bijection

$$\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q}) \longrightarrow (\mathbb{Z}/2\mathbb{Z})^{k+1}, \qquad g \mapsto \left(\frac{1-\chi_{-1}(g)}{2}, \frac{1-\chi_{s_1}(g)}{2}, \dots, \frac{1-\chi_{s_k}(g)}{2}\right).$$

1.5 Theorem

(Theorem 4.3 in [62]) Let S be a finite set of primes and let $\rho_1, \rho_2 : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Q}_2)$ be continuous Galois representations, unramified outside S, and satisfying

- 1. $\operatorname{tr} \rho_1 \equiv \operatorname{tr} \rho_2 \equiv 0 \mod 2$ and $\det \rho_1 \equiv \det \rho_2 \mod 2$.
- 2. There exists a finite set T of primes, disjoint from S, for which the image of the set $\{\operatorname{Frob}_t, t \in T\}$ in $\operatorname{Gal}(\mathbb{Q}_S/\mathbb{Q})$ (as $\mathbb{Z}/2\mathbb{Z}$ -vector space as explained above) is non-cubic, and

$$\operatorname{tr} \rho_1(\operatorname{Frob}_t) = \operatorname{tr} \rho_2(\operatorname{Frob}_t)$$
 and $\det \rho_1(\operatorname{Frob}_t) = \det \rho_2(\operatorname{Frob}_t)$

for all $t \in T$.

Then ρ_1 and ρ_2 have isomorphic semi-simplifications. In particular, $\operatorname{tr} \rho_1(\operatorname{Frob}_p) = \operatorname{tr} \rho_2(\operatorname{Frob}_p)$ for all primes $p \notin S$.

1.6 Corollary

Let X be a rigid Calabi–Yau threefold defined over $\mathbb Q$ and let

$$f(q) = \sum_{k=1}^{\infty} b_m q^m, \qquad q = e^{2\pi i z}$$

be a newform of weight 4 for $\Gamma_0(N)$. Let S be a finite set of primes containing the primes of bad reduction for X and the prime divisors of N. Suppose that

$$a_p(X) \equiv b_p \equiv 0 \mod 2$$

for all primes $p \notin S$ and that there exists a finite set T of primes, disjoint from S, for which the image of the set $\{\text{Frob}_t, t \in T\}$ in $\text{Gal}(\mathbb{Q}_S/\mathbb{Q})$ is non-cubic, and

$$a_p(X) = b_p$$

for all $p \in T$. Then X is modular, i.e. L(X, s) = L(f, s) except for possible Euler factors at the primes of bad reduction; in particular, $a_p(X) = b_p$ for all primes $p \notin S$.

Proof:

We apply theorem 1.5 to the two Galois representations $\rho_1 = \rho_{X,2}^{(3)}$ and $\rho_2 = \rho_{f,2}$. It is known (cf. [35]) that det ρ_1 is the third power of the ℓ -adic cyclotomic character, so we have det $\rho_1(\operatorname{Frob}_p) = \det \rho_2(\operatorname{Frob}_p) = p^3$ and the conditions for the determinants follow from the Tchebotarev density theorem. Since $a_p(X) = \operatorname{tr} \rho_1(\operatorname{Frob}_p)$ and $b_p = \operatorname{tr} \rho_2(\operatorname{Frob}_p)$ the same holds true for the traces.

The above corollary still contains a condition on the traces for infinitely many primes but there is also a method to reduce this to finitely many conditions which was introduced in [62]. Let ρ be a continuous 2-adic Galois representation unramified outside the prime divisors of some number N and assume that the trace is not always even. Consider the kernel of the reduction $\bar{\rho}$ of ρ modulo 2. Since by assumption it contains an element of order 3, the Galois extension of \mathbb{Q} cut out by ker ρ must have Galois group the symmetric group Σ_3 or the group with three elements C_3 while being unramified outside 2 and the prime divisors of N. The different possible extensions of \mathbb{Q} have been classified in [54] by the cubic polynomials they are the splitting fields of. Now we choose for each such polynomial h a prime p such that h is irreducible over \mathbb{F}_p , which implies that the trace tr $\rho(\text{Frob}_p)$ is odd, since Frob_p has order 3 in $\text{Gal}(\mathbb{Q}(h)/\mathbb{Q})$.

This way it is possible to find, for each set S of bad primes, a set U of primes, disjoint from S, such that if $\operatorname{tr} \rho(\operatorname{Frob}_p)$ is even for all $p \in U$ then it is even for all primes $p \notin S$.

We give a list of sets S of bad primes and corresponding sets T and U of good primes needed for a modularity proof. The list suffices for all modularity proofs in this thesis where corollary 1.6 can be applied but it could easily be extended (at least for small enough primes where the classification of the needed Galois extensions is accessible for computers).

S	T	U	References
2	3,5,7	3	[62], [104]
2,3	5,7,11,13,17,19,23	5,7,11,13	[104]
2,5	3,7,11,13,17,29,31	3	[62]
2,3,5	7,11,13,17,19,23,29,31,41,43,53,61,71,73	11,13,17,19,	[62]
		23,29,31,37	
2,7	3,5,11,17,23,29,31	5,11,13,19,23,31	[88]
2,3,7	5,11,13,17,19,23,29,31,37,43,47,59,73,79	5,11,13,19,23,31	[88]
2,3,5,7	11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,	11,13,17,19,	[51]
	59,61,71,73,79,83,101,103,107,109,113,	23,29,31,37	
	127,173,193,211,241,281,283,311		

S	T	U	References
2,17	3,5,7,13,19,41,47	Ø	[88]
2,3,17	5,7,11,13,19,23,37,41,47,53,59,73,89,103	?	
2,73	3,5,7,11,17,23,37	3,13	[88]
2,3,73	5,7,11,13,17,19,23,37,41,43,47,79,149,193	?	

The main disadvantage of theorem 1.5 and corollary 1.6 is the condition that the traces of the two Galois representation must be even. This condition is not fulfilled in several examples.

There are some nice ideas by J.P. Serre to treat a more general situation. Apart from [93] they have only been communicated in letters and used once in [86]. Recently M. Schütt ([89]) explained the construction in detail and proved the following lemma:

1.7 Lemma

([89], Proposition 1) Let $\rho_1, \rho_2 : \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \longrightarrow \operatorname{GL}_2(\mathbb{Q}_2)$ be continuous Galois representations, unramified outside $\{2,3\}$, with the same determinant and with $\operatorname{tr}\operatorname{Frob}_{11}(\rho_1) \equiv 0 \mod 2$ or $\operatorname{tr}\operatorname{Frob}_{13}(\rho_1) \equiv 0 \mod 2$. Then ρ_1 and ρ_2 have isomorphic semisimplifications if and only if $\operatorname{tr}\operatorname{Frob}_p(\rho_1) = \operatorname{tr}\operatorname{Frob}_p(\rho_2)$ for every $p \in \{5,7,11,13,17,19,23,31,37\}$.

The lemma can be generalized to other sets of bad primes. This requires again knowledge about Galois extensions with Galois group Σ_3 or C_3 (as tabulated in [54]). For example, in [89] M. Schütt considered the set $\{2, 5, 11\}$.

1.5.2 Modularity of non-rigid Calabi–Yau threefolds

The modularity of non-rigid Calabi–Yau threefolds is much more difficult to handle. In this case the Galois representations $\rho_{X,\ell}^{(3)}$ induced by the Frobenius morphism are $h^3(X)$ -dimensional with $h^3(X) > 2$. By standard conjectures they should agree with the Galois representations of certain automorphic forms but we do not know enough to make this conjecture more precise.

There are some examples in the literature (and we will present more) where the Galois representations $\rho_{X,\ell}^{(3)}$ split into two-dimensional pieces. The single pieces correspond to Galois representations of certain modular forms and the modularity can be proved. The most prominent examples are of the following type:

Assume that there exist elliptic curves E_i defined over \mathbb{Q} , $i = 1, \ldots, r$, and birational maps

$$\phi_i: E_i \times \mathbb{P}^1 \longrightarrow X$$

defined over \mathbb{Q} , i.e., there are certain elliptic surfaces $E_i \times \mathbb{P}^1$ inside X. We have induced endomorphisms

$$\phi_i^*: H_3(E_i \times \mathbb{P}^1, \mathbb{Z}) \longrightarrow H_3(X, \mathbb{Z}).$$

Assume further that the maps ϕ_i^* are non-zero and that the images $\phi_i^*(E_i \times \mathbb{P}^1)$ are linearly independent in $H_3(X,\mathbb{Z})$, so they span a subspace $V \subset H^3(X,\mathbb{Z})$ of dimension 2r. In ℓ -adic

cohomology we get the exact sequence

$$0 \longrightarrow U \longrightarrow H^3_{\text{\'et}}(\bar{X}, \mathbb{Q}_{\ell}) \longrightarrow \bigoplus_{i=1}^r H^3_{\text{\'et}}(\overline{E \times \mathbb{P}^1}, \mathbb{Q}_{\ell}) \longrightarrow 0.$$

By the Künneth formula we have $H^3_{\text{\'et}}(\overline{E \times \mathbb{P}^1}, \mathbb{Q}_\ell) = H^1_{\text{\'et}}(\bar{E}, \mathbb{Q}_\ell) \otimes H^2_{\text{\'et}}(\bar{\mathbb{P}}^1, \mathbb{Q}_\ell)$, such that

$$F_p^*|H^3_{\text{\'et}}(\overline{E\times \mathbb{P}^1},\mathbb{Q}_\ell) = p\cdot (F_p^*|H^1_{\text{\'et}}(\bar{E},\mathbb{Q}_\ell)).$$

and finally

$$a_p(X) = \operatorname{tr}(\mathbf{F}_p^* | U) + p \cdot a_p(E).$$

Since elliptic curves defined over \mathbb{Q} are modular, the action of Frobenius on a 2r-dimensional subspace of $H^3_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell)$ is determined by weight 2 modular forms for $\Gamma_0(N)$. If $h^3(X) - 2r = 2$, i.e. the remaining piece U is two-dimensional, then there is hope that the Galois representation associated to it is again determined by a weight 4 modular form for $\Gamma_0(N)$ (as in the rigid case).

This method has been used in [51] and [89] (and in a smiliar way in [75] although this is not so obvious, cf. 4.5) and we are going to apply it to further examples. Very recently ([52]) Hulek and Verrill explained the construction in detail, giving complete proofs. There are very few non-rigid Calabi–Yau threefolds that have been associated with different modular or automorphic forms than this "weight 4 plus weight 2" case. In [23] (cf. also 3.5) the arithmetic of a threefold X with $h^3(X) = 4$ is investigated, and there is numerical evidence that its L-series is that of a Hilbert modular form. Again the Galois representation $\rho_{X,\ell}^{(3)}$ splits, but over $\mathbb{Q}[\sqrt{5}]$ instead of \mathbb{Q} .

Further considerations about modularity for a certain class of Calabi–Yau threefolds are made in [64]. These threefolds are resolutions of $Y \times E$ divided by an involution, where Y is an extremal K3 surface and E is an elliptic curve. Consequently products of coefficients of weight 3 and weight 2 newforms occur in the L-series.

Note that we will meet many examples of non-rigid Calabi–Yau threefolds where the L-series seems to split (due to numerical observations) in a "weight 4 part" and a "p times something part", i.e.,

$$a_p(X) = b_p + p \cdot c_p$$

where b_p are the coefficients of a weight 4 newform. This can be relatively easily detected by comparing $a_p(X)$ modulo p with coefficients of suitable newforms. However, the quantity c_p is much more difficult to handle. It might be a sum of coefficients of weight 2 newforms as explained above but it is hard to detect the right newforms if there is no explicit geometrical explanation at hand.

1.6 Construction of Calabi–Yau threefolds

Now we want to see examples of Calabi–Yau threefolds. The easiest examples are complete intersections of k hypersurfaces in \mathbb{P}^{3+k} in general position. Let d_1, \ldots, d_k be the degrees of

these hypersurfaces. Then the canonical bundle of their intersection is trivial if and only if

$$\sum_{i=1}^{k} d_i = k+4.$$

This gives the following possibilities:

- 1. A quintic in \mathbb{P}^4 , with Euler characteristic -200,
- 2. The intersection of a quartic and a quadric in \mathbb{P}^5 , with Euler characteristic -176,
- 3. The intersection of two cubics in \mathbb{P}^5 , with Euler characteristic -144,
- 4. The intersection of a cubic and two quadrics in \mathbb{P}^6 , with Euler characteristic -144,
- 5. The intersection of four quadrics in \mathbb{P}^7 , with Euler characteristic -128.

For these examples see [20] or [48]. We can generalize this to certain complete intersections of polynomials in products of (weighted) projective spaces, cf. for example [11], [17] and [80].

Other important examples are:

- 6. Double coverings of \mathbb{P}^3 branched along a smooth octic surface, with Euler characteristic -296.
- 7. Triple coverings of \mathbb{P}^3 branched along a smooth sextic surface, with Euler characteristic -204.

All these examples will be non-rigid (since a rigid Calabi–Yau threefold has positive Euler characteristic). The most important method to produce rigid Calabi–Yau threefolds (or those with small number $h^{2,1}$ of deformations) is to take a (highly) singular threefold X of one of the above types and resolve the singularities in such a way that the resolution \tilde{X} is still Calabi–Yau.

1.6.1 Ordinary double points

Let us deal with isolated singularities first. The simplest and most common ones are *ordinary* double points, also called (ordinary) nodes. In suitable local analytic coordinates they are given by the equation

$$xy - zt = 0.$$

In general the tangent cone at a node is a smooth quadric surface, which is isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. Blowing up the point in the ambient space replaces the node by its tangent cone and resolves the singularity. This is called a *big resolution*. Unfortunately this adds the exceptional surface to the canonical divisor so the result will not be Calabi–Yau.

There is another way to resolve a node, a so called *small resolution*. The idea is to replace the singularity by a set of codimension 2 which does not influence the canonical divisor. Consider the above local coordinates and the local meromorphic functions

$$\frac{x}{u} = \frac{v}{y}$$
 and $\frac{x}{v} = \frac{u}{y}$.

They have a point of indeterminancy at the critical point x = y = z = t = 0. Choosing one of them and taking the closure of its graph we add a \mathbb{P}^1 and resolve the node. Blowing up along this exceptional \mathbb{P}^1 we regain the big resolution of the node.

Now there is another problem. The above construction is an analytic one so in general the resolution will not be projective (or equivalently not kähler, in the Calabi–Yau case) anymore. There are a number of references on this problem, cf. [22], [25] and [106]. The following theorem characterizes projective algebraic small resolutions:

1.8 Theorem

([106], chapter XI) Let X be a singular projective threefold and assume that the singular locus of X consists of the nodes P_1, \ldots, P_s . Let \tilde{X} be a small resolution of X and L_i the exceptional \mathbb{P}^1 for the node P_i . Then \tilde{X} is projective algebraic if and only if there is a divisor D on X with $D.L_i > 0$ for all $i = 1, \ldots, s$.

This gives a very convenient way to prove the existence of a projective small resolution. Assume that for each node P_i of X there is a surface inside X which contains P_i and is smooth in this point. Then we obtain a projective small resolution of X by blowing up along these surfaces. This method has been used in many examples.

Now let X be a threefold containing only s nodes as singularities and let \tilde{X} resp. \hat{X} be a small resp. big resolution of (all the nodes of) X. Let X be a member of a family $\{X_t\}$ of smooth threefolds. Then we can compute the Euler characteristics

$$\chi(X) = \chi(X_t) + s,$$

$$\chi(\tilde{X}) = \chi(X_t) + 2s,$$

$$\chi(\hat{X}) = \chi(X_t) + 4s.$$

The first equality holds because removing a singular point from a threefold changes the Euler characteristic in the same way as removing the Milnor fibre from a smooth model, i.e., the Euler characteristic decreases by the Milnor number of the singularity, which is one for a node (cf. [36]). The second resp. third equality holds because each node is replaced by \mathbb{P}^1 resp. $\mathbb{P}^1 \times \mathbb{P}^1$.

The defect of X is defined as

$$d(X) := h^4(X) - h^2(X).$$

J. Werner ([106]) considers in particular the cases that X is a quintic in \mathbb{P}^4 or a double covering of \mathbb{P}^3 branched along an octic surface and proves that if there is a projective small resolution \tilde{X} of all the nodes of X then d(X) > 0. Note also that in these cases we have

$$h^2(X) = 1,$$
 $h^4(X) = h^4(\tilde{X}) = h^2(\tilde{X}) = 1 + d(X).$

Werner also proves the following useful corollary:

1.9 Corollary

([106], chapter IV) Let X be a quintic in \mathbb{P}^4 or a double covering of \mathbb{P}^3 branched along an octic surface. Assume that X has only nodes as singularities. Let there be a group of automorphisms of X operating transitively on the set of nodes of X, and let d(X) > 0. Then there exist projective small resolutions (of all the nodes of X).

Equipped with the above theory we can investigate many examples of threefolds with nodes as only singularities. Note that the existence of projective small resolutions is only important for the construction of Calabi–Yau threefolds but not for arithmetical purposes since the arithmetic of big resolutions is almost the same.

Let $S_p \subset \mathbb{P}^3$ be a smooth quadric surface over \mathbb{F}_p , $p \neq 2$, with discriminant a. Then by [92], IV1.7, prop. 5, S_p is isomorphic over \mathbb{F}_p to the quadric surface given by

$$\begin{cases} x^2 + y^2 + z^2 + t^2 = 0, & \text{if } \left(\frac{a}{p}\right) = 1, \\ x^2 + y^2 + z^2 + at^2 = 0, & \text{if } \left(\frac{a}{p}\right) = -1. \end{cases}$$

This includes

$$#S_p = \begin{cases} (p+1)^2, & \text{if } \left(\frac{a}{p}\right) = 1, \\ p^2 + 1, & \text{if } \left(\frac{a}{p}\right) = -1. \end{cases}$$

In the first case all rulings of S_p are defined over \mathbb{F}_p . In the second case there is a pair of intersecting rulings on S_p which are not defined over \mathbb{F}_p apart from the point of intersection.

Let X again be a threefold containing only s nodes as singularities and let \tilde{X} resp. \hat{X} be a small resp. big resolution of (all the nodes of) X. Let p be a prime of good reduction for X. Consider the Leray spectral sequence for the blow–up:

$$0 \longrightarrow H^2_{\text{\'et}}(\bar{X}_p, \mathbb{Q}_\ell) \longrightarrow H^2_{\text{\'et}}(\bar{\hat{X}}_p, \mathbb{Q}_\ell) \longrightarrow \bigoplus H^2_{\text{\'et}}(\bar{Q}_p, \mathbb{Q}_\ell)$$

Here the sum runs over the exceptional quadrics Q of the blow-up. In many examples (e.g., if X is singular of one of the types listed at the beginning of this section) we have

$$H^2_{\text{\'et}}(\bar{X}_p, \mathbb{Q}_\ell) = \mathbb{Q}_l(-1),$$

i.e., it contains only multiples of the generic hyperplane section. In this case $H^2_{\text{\'et}}(\hat{X}_p, \mathbb{Q}_\ell)$ is determined by the action of F_p^* on $H^2_{\text{\'et}}(\bar{Q}_p, \mathbb{Q}_\ell)$ for the exceptional quadrics Q. If all rulings of all the quadrics are defined over \mathbb{F}_p then the action of F_p^* on $H^2_{\text{\'et}}(\bar{\hat{X}}_p, \mathbb{Q}_\ell)$ (and also on $H^2_{\text{\'et}}(\bar{\hat{X}}_p, \mathbb{Q}_\ell)$) is just multiplication by p, and in general it depends only on the question if the discriminants of the quadrics are squares in \mathbb{F}_p . On the point counting side we have

$$#\hat{X}_p = #X_p + s_p \cdot (p^2 + p) + t_p \cdot p^2, #\tilde{X}_p = #X_p + s_p \cdot p - t_p \cdot p,$$

where s_p denotes the number of nodes which are rational over \mathbb{F}_p and whose rulings of the tangent cones are also rational over \mathbb{F}_p , and t_p denotes the number of nodes which are rational over \mathbb{F}_p but not the rulings of their tangent cones.

For convenience we recapitulate formulas for some Legendre symbols that will occur in this thesis:

$$\left(\frac{-1}{p}\right) = \begin{cases}
1, & p \equiv 1 \mod 4 \\
-1, & p \equiv 3 \mod 4
\end{cases} \qquad \left(\frac{2}{p}\right) = \begin{cases}
1, & p \equiv 1, 7 \mod 8 \\
-1, & p \equiv 3, 5 \mod 8
\end{cases}$$

$$\left(\frac{-2}{p}\right) = \begin{cases}
1, & p \equiv 1, 3 \mod 8 \\
-1, & p \equiv 5, 7 \mod 8
\end{cases} \qquad \left(\frac{3}{p}\right) = \begin{cases}
1, & p \equiv 1, 11 \mod 12 \\
-1, & p \equiv 5, 7 \mod 12
\end{cases}$$

$$\left(\frac{-3}{p}\right) = \begin{cases}
1, & p \equiv 1, 11 \mod 12 \\
-1, & p \equiv 5, 7 \mod 12
\end{cases}$$

$$\left(\frac{-3}{p}\right) = \begin{cases}
1, & p \equiv 1, 11 \mod 12 \\
-1, & p \equiv 5, 7 \mod 12
\end{cases}$$

$$\left(\frac{5}{p}\right) = \begin{cases}
1, & p \equiv 1, 4 \mod 5 \\
-1, & p \equiv 2, 3 \mod 5
\end{cases}$$

$$\left(\frac{-7}{p}\right) = \begin{cases}
1, & p \equiv 1, 2, 4 \mod 7 \\
-1, & p \equiv 3, 5, 6 \mod 7
\end{cases}$$

1.6.2 Threefolds with many nodes

It is an interesting task to construct threefolds of a certain type with many isolated singularities. Varchenko ([102]) gives bounds for the maximal number in the case of hypersurfaces. We compile a table of threefolds with many nodes leading to rigid Calabi–Yau threefolds. All examples will be discussed later.

type of threefold	# of nodes	reference
quintic in \mathbb{P}^4	125	3.1
quintic in \mathbb{P}^4	126	3.3
quintic in \mathbb{P}^4	130	3.6
intersection of quadric and quartic in \mathbb{P}^6	122	5.2
intersection of two cubics in \mathbb{P}^6	108	5.6
intersection of four quadrics in \mathbb{P}^7	96	5.4
double covering of \mathbb{P}^3 branched along octic surface	168	4.6

1.6.3 Higher singularities

We can also allow higher isolated singularities. The following examples have been discussed in [48] and [99], building on the results of [16] about small resolutions.

We say that a singularity is of type (a, b, c, d) (with a < b < c < d) if it can be given in local coordinates by $x^a + y^b + z^c + t^d = 0$. Let again X be a singular member of a smooth family $\{X_t\}$ of threefolds.

A singularity of type (3,3,3,3) can be resolved by a big resolution (blow–up of the point) without changing the canonical divisor. The resolving surface is \mathbb{P}^2 blown up in six points with Euler characteristic equal to 9. The Milnor number of the singularity is 16, so every singularity and its resolution enlarges the Euler characteristic by 24, compared with a smooth member X_t .

A singularity of type (2, 4, 4, 4) can also be resolved by a big resolution without changing the canonical divisor. The resolving surface is \mathbb{P}^2 blown up in seven points with Euler characteristic equal to 10. The Milnor number of the singularity is 27, so every singularity and its resolution enlarges the Euler characteristic by 36, compared with a smooth member X_t .

A singularity of type (2, 2, n + 1, h(n + 1)) can be resolved small by a configuration of n curves isomorphic to \mathbb{P}^1 . The Milnor number is n(hn + h - 1), the resolving curve has Euler number 2n - (n - 1) = n + 1, so every resolved singularity enlarges the Euler characteristic by nh(n + 1), compared with a smooth member X_t . If all local divisors $\{x = \sqrt{-1}y, z = \sqrt[n+1]{-1}t^h\}$ of all singularities can be extended to global smooth divisors then there exist projective small resolutions. An ordinary node is of type (2, 2, 2, 2) and so a special case of this class of singularities.

A singularity given by the local equations

$$x^2 + y^2 + z^2 + t^2 + w^2 = ax^2 + by^2 + cz^2 + dt^2 + ew^2 = 0$$

with a, b, c, d, e pairwise distinct can be resolved by a big resolution without changing the canonical divisor. The resolving surface is \mathbb{P}^2 blown up in five points with Euler characteristic equal to 8. The Milnor number of the singularity is 9, so every singularity and its resolution enlarges the Euler characteristic by 16, compared with a smooth member X_t .

We can also allow non-isolated singularities, e.g. singular lines. This will be disussed in examples.

1.7 Correspondences and twists

1.7.1 Correspondences and relatives

There are many examples of pairs of Calabi–Yau threefolds with an isomorphism between some pieces of their middle étale cohomologies and the appropriate Galois representations. In particular, if we can attach modular forms to these pieces then these modular forms will be the same. If on the other hand we detect the same modular forms in the middle étale cohomologies of two Calabi–Yau threefolds then this should have a geometrical reason:

1.10 Conjecture

(The Tate conjecture, as formulated in [111, Conj. 5.8]) If two isomorphic two-dimensional Galois representations ρ_1 , ρ_2 occur in the étale cohomology of varieties X_1 , X_2 defined over \mathbb{Q} , then there should be a correspondence between the two varieties (i.e., an algebraic cycle on the product of the two varieties) defined over \mathbb{Q} , which induces an isomorphism between ρ_1 and ρ_2 .

Following [50] we will call two Calabi–Yau threefolds defined over \mathbb{Q} relatives if the same (weight four) modular form occurs in their L-series. Finding a correspondence between two relatives is a highly non-trivial task. It can be induced by a birational map defined over \mathbb{Q} or more generally by a finite map between the two threefolds but this does not have to be the case. If a correspondence is induced by a birational map then by a result of Batyrev ([8]) the two Calabi–Yau threefolds must have the same Betti (and Hodge) numbers (and so the same Euler characteristic). It is very interesting to find Calabi–Yau threefolds with the same L-series but different Hodge numbers. Many explicit correspondences can be found in 6.1.

1.7.2 Relatives by construction

The Calabi–Yau threefolds constructed in 1.6 (and others) may be closely related to each other (also in the above sense). We will illustrate this with an example.

Let X be a double covering of \mathbb{P}^3 branched along the union of eight planes. Under certain conditions on the intersection of the planes the threefold X will have a Calabi–Yau resolution. This is the subject of 4.1 and 4.2. The variety X is given by an equation of the form

$$\{u^2 = \prod_{i=1}^8 f_i(x, y, z, t)\} \subset \mathbb{P}^4(4, 1, 1, 1, 1)$$

where the f_i are linear homogeneous polynomials in x, y, z, t. Now consider the following three-folds:

Let the complete intersection threefold $X_{2,2,2,2}\subset \mathbb{P}^7$ be given by the equations

$$u_1^2 = f_1(x, y, z, t) \cdot f_2(x, y, z, t),$$

$$u_2^2 = f_3(x, y, z, t) \cdot f_4(x, y, z, t),$$

$$u_3^2 = f_5(x, y, z, t) \cdot f_6(x, y, z, t),$$

$$u_4^2 = f_7(x, y, z, t) \cdot f_8(x, y, z, t).$$

There is a 8:1 map $X_{2,2,2,2} \longrightarrow X$ induced by the map

$$\mathbb{P}^7 \dashrightarrow \mathbb{P}^4(4,1,1,1,1), \quad (u_1:u_2:u_3:u_4:x:y:z:t) \mapsto (u_1u_2u_3u_4:x:y:z:t).$$

Let the quintic threefold $X_5 \subset \mathbb{P}^4$ be given by the equation

$$u^{2} \cdot \prod_{i=1}^{3} f_{i}(x, y, z, t) = \prod_{i=4}^{8} f_{i}(x, y, z, t)$$

There is a 1:1 map $X_5 \longrightarrow X$ induced by the map

$$\mathbb{P}^4 \longrightarrow \mathbb{P}^4(4,1,1,1,1), \quad (u:x:y:z:t) \mapsto (u \cdot \prod_{i=1}^3 f_i(x,y,z,t):x:y:z:t).$$

Let the complete intersection threefold $X_{3,3} \subset \mathbb{P}^5$ be given by the equations

$$u^{2} f_{1}(x, y, z, t) = \prod_{i=2}^{4} f_{i}(x, y, z, t),$$
$$v^{2} f_{5}(x, y, z, t) = \prod_{i=6}^{8} f_{i}(x, y, z, t).$$

There is a 2:1 map $X_{3,3} \longrightarrow X$ induced by the map

$$\mathbb{P}^5 \longrightarrow \mathbb{P}^4(4,1,1,1,1), \quad (u:v:x:y:z:t) \mapsto (uv \cdot f_1(x,y,z,t) \cdot f_5(x,y,z,t):x:y:z:t).$$

Let the complete intersection threefold $X_{2,4} \subset \mathbb{P}^5$ be given by the equations

$$u^{2} = f_{1}(x, y, z, t) \cdot f_{2}(x, y, z, t),$$
$$v^{2} \cdot f_{3}(x, y, z, t) \cdot f_{4}(x, y, z, t) = \prod_{i=5}^{8} f_{i}(x, y, z, t).$$

There is a 2:1 map $X_{2,4} \longrightarrow X$ induced by the map

$$\mathbb{P}^5 \dashrightarrow \mathbb{P}^4(4,1,1,1,1), \quad (u:v:x:y:z:t) \mapsto (uv \cdot f_3(x,y,z,t) \cdot f_4(x,y,z,t):x:y:z:t).$$

Let the complete intersection threefold $X_{2,2,3}\subset \mathbb{P}^6$ be given by the equations

$$u^{2} = f_{1}(x, y, z, t) \cdot f_{2}(x, y, z, t),$$

$$v^{2} = f_{3}(x, y, z, t) \cdot f_{4}(x, y, z, t),$$

$$w^{2} \cdot f_{5}(x, y, z, t) = \prod_{i=6}^{8} f_{i}(x, y, z, t).$$

There is a 4:1 map $X_{2,2,3} \longrightarrow X$ induced by the map

$$\mathbb{P}^6 \dashrightarrow \mathbb{P}^4(4,1,1,1,1), \quad (u:v:w:x:y:z:t) \mapsto (uvw \cdot f_5(x,y,z,t):x:y:z:t).$$

It is not a priori clear if the singularities of the threefolds $X_{2,2,2,2}$, X_5 , $X_{3,3}$, $X_{2,4}$ and $X_{2,2,3}$ admit Calabi–Yau resolutions. But if they do then the above maps will induce non-zero maps on étale cohomology, and some pieces of the L-series will agree with some pieces of the L-series of X. Note also that in the above construction we may construct examples with different geometry by permutation of the f_i . This way and with generalizations it is possible to construct many examples of Calabi–Yau threefolds and correspondences between them. Examples will be given in the following chapters.

1.7.3 Twists

The previous section about correspondences was concerned with maps defined over \mathbb{Q} giving rise to isomorphisms on étale cohomology and leading to the same modular forms. If such maps are not defined over \mathbb{Q} but over some finite extension this may cause twists of the modular forms involved. We will have a closer look at a special case. The reference is the appendix of [111] by H. Verrill.

Let $d \in \mathbb{Z}$ be a square free number and let X, X_d be Calabi–Yau threefolds defined over \mathbb{Q} and isomorphic over $\mathbb{Q}[\sqrt{d}]$. In this case the induced maps $H^3_{\text{\'et}}(\bar{X}, \mathbb{Q}_\ell) \longrightarrow H^3_{\text{\'et}}(\bar{X}_d, \mathbb{Q}_\ell)$ commute with the action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}[\sqrt{d}])$, and so restricted to this group the Galois representations are equal. Hence (up to conjugation) they are equal up to tensoring by a character $\chi_d : \operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q}[\sqrt{d}]) \longrightarrow \mathbb{Q}_l^{\times}$. This character is either trivial or given by $\operatorname{Frob}_p \mapsto \left(\frac{d}{p}\right)$. If the weight four newform $f = \sum a_n q^n$ occurs in the L-series of X then in the first case also f and in the second case the twisted modular form $f_d = \sum \left(\frac{d}{n}\right) a_n q^n$ occurs in the L-series of X_d . If d is odd then f_d has level $8d^2$ if $d \equiv 1 \mod 4$, and level $16d^2$ otherwise (cf. [111], Lemma 9.4).

For some classes of Calabi–Yau threefolds it is very easy to write down equations of pairs of examples X, X_d isomorphic not over \mathbb{Q} but over some $\mathbb{Q}[\sqrt{d}]$. For example, let X be a double covering of \mathbb{P}^3 branched along an octic surface, i.e., X is given by an equation of the form

$$u^2 = f(x, y, z, t)$$

where f is a homogeneous polynomial of degree 8 in x, y, z, t (cf. chapter 4). We define X_d by the equation

$$u^2 = d \cdot f(x, y, z, t).$$

Now assume that X is modular. Choosing d it is possible to write down examples of modular Calabi–Yau threefolds with arbitrary primes appearing in the level of the corresponding modular form (but it is a kind of "cheating").

In what follows, if we detect a modular Calabi–Yau threefold X then we will always give the twist of the modular form involved that has minimal level. This does not always mean that we are able to write down equations for a Calabi–Yau threefold isomorphic with X over some finite extension of \mathbb{Q} with exactly this modular form in its L-series (but I conjecture the existence of such a variety).

1.8 Computational matters

1.8.1 Computation of Hodge and Betti numbers

Computing the Hodge numbers $h^{1,1}$ and $h^{2,1}$ of a Calabi–Yau threefold (or equivalently the Betti numbers h^2 and h^3) is a highly nontrivial task. But there is a method invented by van Geemen (cf. [75], [99], [100]) that works in a special situation and reduces the problem to the counting of points.

Let X be a Calabi–Yau threefold defined over \mathbb{Q} and assume that the Frobenius map F_p^* acts by multiplication with p on $H^2_{\text{\'et}}(X,\mathbb{Q}_\ell)$ for a prime p. This can quite often be checked by explicitly determining generators of the Picard group Pic(X). Combining the Weil conjectures and the Lefschetz fixed point formula we find the estimate

$$|a_p(X)| = |1 + p^3 + (p^2 + p) \cdot h^2(X) - \#X_p| \le h^3(X) \cdot p^{3/2} = (2 + 2h^2(X) - \chi(X)) \cdot p^{3/2}.$$

Consequently if we know the Euler characteristic $\chi(X)$ (which is not too difficult to compute in most examples) and if there is a prime p as above with

$$\sqrt{p} + \frac{1}{\sqrt{p}} > 2 \cdot h^3(X)$$

we can determine $h^2(X)$ and so all Hodge and Betti numbers of X by counting points on X_p . We can rewrite the above condition as

$$p \ge 4 \cdot \left(h^3(X)\right)^2 - 2.$$

If X has a small number of deformations (i.e., $h^{2,1}(X)$ and so $h^3(X)$ is small) then also a very small p will suffice (if for example X is rigid, i.e. $h^3(X) = 2$, then we get the condition $p \ge 17$). If on the other hand $h^3(X)$ is large then also the required prime p is large and we need fast algorithms for counting points.

1.8.2 Algorithms for counting points

Let X be a threefold defined over \mathbb{Q} . If we want to count points on X_p then we will have to do this with a computer. Basically we can take every point of the ambient space and check if it belongs to X_p . This way we get running times (with respect to the number of evaluations of the defining equations) depending on the dimension of the ambient space. In all examples appearing in this thesis I could reduce the running time to $O(p^3)$ (or sometimes only to $O(p^4)$). This is of course only possible by close inspection of the single examples.

To illustrate this consider a double octic X which is given by an equation of the form $u^2 = f(x, y, z, t)$ where (x : y : z : t) are coordinates on \mathbb{P}^3 . We first create a table of Legendre symbols $(\frac{u}{p})$. Then we insert all possible values $(x : y : z : t) \in \mathbb{P}^3(\mathbb{F}_p)$ into f and check if the result is a square in \mathbb{F}_p (and we add 0, 1 or 2 points to the computed number). This algorithm already has running time $O(p^3)$.

It also makes sense to consider symmetry. This will of course only reduce the running time by a constant (but this constant can be rather large; there are examples where the symmetric group Σ_6 operates on X).

I used the C++ programming language for all point counting algorithms. This is much faster than any computer algebra system for this purpose since a typical program uses only loops and elementary integer arithmetic, and a computer algebra system would only interpret but not compile the source.

Typical running times for counting points with an $O(p^3)$ algorithm on a 3 Gigahertz machine (cf. 1.8.4) would be less than a second for a prime $p \sim 200$ and 6 hours for a prime $p \sim 20000$.

Note that there are attempts to efficiently count points on varieties over finite fields using p-adic methods. A good starting point is [60]. Using these methods there should be an algorithm with running time $O(p^{2+\varepsilon})$ that counts points on a threefold but as far as I know at the moment this is not implemented (there are implementations for curves).

1.8.3 Computation of coefficients of modular forms

To find candidates of modular forms connected with Calabi–Yau threefolds it is desirable to have large tables of newforms of weight 4 and weight 2 for $\Gamma_0(N)$. W. Stein has set up a web page ([97]) containing tables. He also wrote the computation package HECKE which is now part of the computer algebra system MAGMA ([112]). I used HECKE to compute coefficients for the first 25 primes (between 2 and 97) of all newforms with rational coefficients of weight 4 for $\Gamma_0(N)$ with $N \leq 2000$ and all newforms with rational coefficients of weight 2 for $\Gamma_0(N)$ with $N \leq 3000$. The computations afford quite a lot of memory and time, around 2 Gigabytes and 6

hours on a 3 Gigahertz machine for one level ~ 2000 in the weight 4 case (weight 2 is easier). For some levels HECKE could not complete the computations due to lack of memory. These are

```
1849 = 43 \cdot 43,
                       1853 = 17 \cdot 109,
                                            1883 = 7 \cdot 269
                                                                     1897 = 7 \cdot 271,
1903 = 11 \cdot 173,
                      1909 = 23 \cdot 83
                                              1919 = 19 \cdot 101,
                                                                     1921 = 17 \cdot 113
1927 = 41 \cdot 47,
                       1937 = 13 \cdot 149
                                              1939 = 7 \cdot 277,
                                                                     1943 = 29 \cdot 67,
1957 = 19 \cdot 103,
                      1961 = 37 \cdot 53,
                                              1963 = 13 \cdot 151,
                                                                     1967 = 7 \cdot 281,
1969 = 11 \cdot 179,
                      1981 = 7 \cdot 283,
                                              1985 = 5 \cdot 397,
                                                                     1991 = 11 \cdot 181.
```

The complete table of computed weight four newforms can be found in appendix C. I also included a small table of weight two newforms in appendix D. It contains all weight two newforms occurring in this thesis.

Throughout the text we will use the notation N/m for the m-th newform of weight four for $\Gamma_0(N)$ with rational coefficients in the table in appendix C. Stein ([97]) uses a different notation; whenever a newform also occurs in his tables (this is only the case for levels $\sim < 300$) we will give both notations. We will also use his notation for weight two newforms for $\Gamma_0(N)$.

1.8.4 Hard- and software

This thesis was written between March 2001 and January 2005. In the beginning I could use an AMD Duron PC running at 800 MHz, with 256 megabytes of RAM. In 2003 this machine was replaced by an INTEL Pentium IV PC running at 2.6 GHz, with 512 megabytes of RAM. Whenever I am referring to a "3 Gigahertz machine" in the text, I am thinking of a PC with approximately this capacity (which is still state of the art in the year 2005). I am indebted to W. Stein who gave me access to the multiprocessor machine MECCAH at Harvard university which I used to compute coefficients of modular forms.

All algorithms counting points on threefolds, searching for modular examples or classifying threefolds I have implemented in the C++ programming language. I used the computer algebra system MAGMA ([112]) and in particular W. Stein's computation package HECKE to compute coefficients of modular forms. For all other computer algebra purposes I used SINGULAR ([45]).

I estimate the total computing time used to produce the results of this thesis to one year on a 3 Gigahertz machine. This makes it obvious that it could not have been written ten years ago.

Chapter 2

Fibre products of elliptic surfaces

2.1 Examples of Schoen and Schütt

The construction method for the threefolds appearing in this section is due to Schoen ([84]). The modularity proofs for the different examples can be found in [81] and [111] and recently in [87], [88] and [89].

Let (Y,r), (Y',r') be relatively minimal, regular elliptic surfaces with r, r' surjecting onto \mathbb{P}^1 . Let $W:=(Y,r)\times_{\mathbb{P}^1}(Y',r')$ denote their fibre product. In general W will not be smooth; the singularities are the points (x,x') where x and x' are singular points of the fibres of (Y,r) and (Y',r') over a common cusp $s\in S''=S\cap S'$, where S and S' denote the images of the singular fibres of (Y,r) and (Y',r') in \mathbb{P}^1 .

In order to avoid singularities worse than ordinary double points, we are going to assume that all fibres over S'' are either irreducible nodal rational curves or cycles of smooth rational curves. In Kodaira's notation these are of type I_b , where b>0 denotes the number of irreducible components. Such fibres are also called semi-stable. If both Y and Y' are rational and have sections then the fibre product W has trivial canonical bundle.

Now consider a small resolution \tilde{W} of the nodes of W. There are projective small resolutions (i.e., \tilde{W} is a Calabi–Yau threefold) if r = r' or if for all $s \in S''$, neither $r^{-1}(s)$ nor r'^{-1} is irreducible.

Now assume that (Y,r) = (Y',r') and that Y has exactly four singular fibres and that they are of type I_{b_1} , I_{b_2} , I_{b_3} , I_{b_4} for some integers $b_i > 0$. Then \tilde{W} is a rigid Calabi–Yau threefold.

In order to find suitable elliptic surfaces Y we consider a torsion free congruence subgroup $\Gamma \subset \mathrm{PSL}_2(\mathbb{Z})$ (of level > 2) and the respective modular curve $C_{\Gamma} = (\mathbb{H}/\Gamma)^*$. Then there is a universal family of elliptic curves $\pi: S_{\Gamma} \longrightarrow C_{\Gamma}$, called the *elliptic modular surface* associated to Γ (see [96]). In fact these surfaces have exactly four singular fibres of type I_b , and all rational elliptic surfaces with this property are of this type. They have been classified by Beauville ([12]). We give a list of the six possible cases, including the congruence subgroup Γ and equations of surfaces $Y_{\Gamma} \subset \mathbb{P}^2 \times \mathbb{P}^1$ such that S_{Γ} is a resolution of Y_{Γ} . The fibration in each case is given by

	Γ	sing. fibres	equation for Y_{Γ}
I	$\Gamma(3)$	I_3, I_3, I_3, I_3	$(x^3 + y^3 + z^3)\mu = \lambda xyz$
II	$\Gamma_1(4) \cap \Gamma(2)$	I_4, I_4, I_2, I_2	$(x+y)(x^2+y^2+2xy+4z^2+4yz-4xz)\mu = \lambda xyz$
III	$\Gamma_1(5)$	I_5, I_5, I_1, I_1	$(x+y)(x+y-z)(y-z)\mu = \lambda xyz$
IV	$\Gamma_1(6)$	I_6, I_3, I_2, I_1	$(x+y)(y+z)(z+x)\mu = \lambda xyz$
V	$\Gamma_0(8) \cap \Gamma_1(4)$	I_8, I_2, I_1, I_1	$(x+y)(xy-z^2)\mu = \lambda xyz$
VI	$\Gamma_0(9) \cap \Gamma_1(3)$	I_9, I_1, I_1, I_1	$(x^2y + y^2z + z^2x)\mu = \lambda xyz$

projecting to \mathbb{P}^1 . The elliptic surface $Y_{\Gamma(3)}$ is also known as *Hesse pencil*.

Now let W_{Γ} be a projective small resolution of $Y_{\Gamma} \times_{\mathbb{P}^1} Y_{\Gamma}$. Then W_{Γ} is a rigid Calabi–Yau threefold defined over \mathbb{Q} . Saito and Yui ([81]) and Verrill (appendix of [111]) have given different modularity proofs for all six cases. We list the Hodge numbers $h^{1,1}(W_{\Gamma})$ and Euler numbers $\chi(W_{\Gamma}) = 2 \cdot h^{1,1}(W_{\Gamma})$ and the weight four newforms involved. We also give different notations for W_{Γ} occurring in the literature (corresponding to the congruence subgroups).

	W_{Γ}	$h^{1,1}(W_{\Gamma})$	$\chi(W_{\Gamma})$	weight four newform
I	W(3)	36	72	9/1 $(9k4A1)$
II	$W_1(4)$	40	80	8/1 (8k4A1)
III	$W_1(5)$	52	104	5/1 $(5k4A1)$
IV	$W_1(6)$	50	100	6/1 $(6k4A1)$
V	$W_0(8)$	70	140	16/1 (16k4A1, twist of 8/1)
VI	$W_0(9)$	84	168	9/1 $(9k4A1)$

Note that for example no. V we can also get the weight four newform 8/1 in the L-series by using the equation $(x+y)(xy+z^2)\mu = \lambda xyz$ instead (cf. [111]). The resulting threefolds are isomorphic over $\mathbb{Q}[\sqrt{-1}]$. This perfectly agrees with the fact that the newform 16/1 is a twist of the newform 8/1 by $\left(\frac{-1}{p}\right)$.

The L-series of W(3) and $W_0(9)$ are the same so there should be a correspondence defined over \mathbb{Q} between them. C. Schoen found such a correspondence (cf. 6.1.5).

Recently ([88], [87]) M. Schütt modified the above construction by twisting, i.e., he considered small resolutions of

$$(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$$

where π is an automorphism of \mathbb{P}^1 chosen in such a way that some small resolutions are still projective. Most possibilities do not lead to different modular forms (cf. [87]), but for $\Gamma = \Gamma_1(6)$ there are very interesting results. Let W_i denote a small resolution of $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi_i \circ \operatorname{pr})$. Note that Schütt uses an equation for Y_{Γ} which is slightly different from that in the above table. With that equation the cusps are $0, 1, \infty$ and -8, and the automorphisms π_i below permute

i	π_i	$h^{1,1}(W_i)$	$\chi(W_i)$	weight four newform
1	$t \mapsto 1 - t$	48	96	17/1 (17k4A1)
2	$t\mapsto \frac{1}{t}$	40	80	21/2 (21k4A1)
3	$t\mapsto \frac{t}{t-1}$	33	66	10/1 (10k4A1)
4	$t\mapsto \frac{1}{1-t}$	36	72	73/1 (73k4A1)
5	$t\mapsto \frac{\overline{t}-1}{t}$	36	72	73/1 (73k4A1)

the first three and do not fix the fourth.

Very recently ([89]) Schütt generalized this even further by also looking at non-rigid examples and at examples that do not allow a projective small resolution of all nodes (which is not important from an arithmetical standpoint). He gives the following examples:

Consider the group $\Gamma = \Gamma_1(5)$ (number III in the above table) and the twisted self-fibre product $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$ where $\pi : t \mapsto -11 - t$ is an automorphism of \mathbb{P}^1 (Schütt uses a slightly different equation for Y_{Γ} so his automorphism is also slightly different). The variety has 27 nodes but only 25 of them allow a projective small resolution. Let \tilde{W}_1 denote a mixed resolution of $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$ where the remaining 2 nodes are resolved by a big resolution. We have $h^{1,1}(\tilde{W}_1) = 37$ and $h^{2,1}(\tilde{W}_1) = 8$. Schütt proves that (up to Euler factors at the primes of bad reduction) the L-series of \tilde{W}_1 splits into

$$L(\tilde{W}_1, s) = L(f, s) \cdot L(g, s - 1)^8$$

where f is the weight four newform 55/1 (55k4A1) and g is the weight two newform 11A1. In particular we have

$$a_p(\tilde{W}_1) = b_p + 8 \cdot p \cdot c_p$$

where b_p resp. c_p are the coefficients of f resp. g. The "weight two part" comes from the fibre of Y_{Γ} above 11 which is an elliptic curve with conductor 11 and so associated to the newform g.

Now consider the elliptic surface Y' arising from the following pencil of cubics:

$$(x+y+z)(\frac{11}{8}xy+\frac{11}{8}yz+\frac{125}{88}xz)-(t+\frac{125}{88})xyz.$$

It has singular fibres of type I_6 , I_2 , I_1 and I_1 . The fibre product $Y_{\Gamma} \times_{\mathbb{P}^1} Y'$ where $\Gamma = \Gamma_1(5)$ has again only nodes as singularities two of which do not allow a projective small resolution. Let \tilde{W}_2 denote a mixed resolution of $Y_{\Gamma} \times_{\mathbb{P}^1} Y'$ as above. We have $h^{1,1}(\tilde{W}_2) = 45$ and $h^{2,1}(\tilde{W}_2) = 1$. Schütt conjectures that (up to Euler factors at the primes of bad reduction) the L-series of \tilde{W}_2 splits into

$$L(\tilde{W}_2, s) = L(f, s) \cdot L(g', s - 1)^8$$

where f is again the weight four newform 55/1 (55k4A1) and g' is a weight two newform for $\Gamma_0(39490)$. In particular we have

$$a_p(\tilde{W}_2) = b_p + p \cdot c_p'$$

where b_p resp. c'_p are the coefficients of f resp. g'. The "weight two part" comes from the fibre of Y_{Γ} above $-\frac{125}{88}$ which is an elliptic curve with conductor 39490 and so associated to

the newform g'. Note that with more computer power than it is available today a proof of this conjecture would be possible (the problem is that \tilde{W}_2 has bad reduction at 359).

Now consider the elliptic surface Y'' arising from the Weierstrass equation

$$y^2 = x(x-1)(x + (t^2 - 11t - 1)).$$

It has singular fibres of type I_4 and four times I_2 . The fibre product $Y_{\Gamma} \times_{\mathbb{P}^1} Y''$ where $\Gamma = \Gamma_1(5)$ has again only nodes as singularities some of which do not allow a projective small resolution. Let \tilde{W}_3 denote a mixed resolution of $Y_{\Gamma} \times_{\mathbb{P}^1} Y''$ as above. We have $h^{1,1}(\tilde{W}_3) = 39$ and $h^{2,1}(\tilde{W}_3) = 1$. Schütt proves that (up to Euler factors at the primes of bad reduction) the L-series of \tilde{W}_3 splits into

$$L(\tilde{W}_3, s) = L(f', s) \cdot L(g, s - 1)$$

where f' is the weight four newform 22/2 (22k4C1) and g is again the weight two newform 11A1. In particular we have

$$a_p(\tilde{W}_3) = b_p' + p \cdot c_p$$

where b'_p resp. c_p are the coefficients of f' resp. g. The "weight two part" comes again from the fibre of Y_{Γ} above 11.

Finally consider the group $\Gamma = \Gamma(3)$ (number I in the above table) and the twisted self-fibre product $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$ where $\pi : t \mapsto 3 - t$ is an automorphism of \mathbb{P}^1 . All nodes of this threefold allow a projective small resolution. Let \tilde{W}_4 denote such a resolution. We have $h^{1,1}(\tilde{W}_4) = 31$ and $h^{2,1}(\tilde{W}_4) = 4$. Schütt proves that (up to Euler factors at the primes of bad reduction) the L-series of \tilde{W}_4 splits into

$$L(\tilde{W}_4, s) = L(f_{27}, s) \cdot L(g_{27}, s - 1)^4$$

where f_{27} is the weight four newform 27/2 (27k4B1) and g is the weight two newform 27A1. In particular we have

$$a_p(\tilde{W}_1) = d_p + 4 \cdot p \cdot e_p$$

where d_p resp. e_p are the coefficients of f_{27} resp. g_{27} . The "weight two part" comes from the fibre of Y_{Γ} above 6 which is an elliptic curve with conductor 27 and so associated to the newform g_{27} . The proof makes use of lemma 1.7.

2.2 Experiments

Inspired by Schütt's constructions I performed some numerical experiments. I counted points on twisted self-fibre products $W_{\Gamma,\pi} = (Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$ where Y_{Γ} is one of the six Beauville surfaces and π is an automorphism of \mathbb{P}^1 defined over \mathbb{Q} ,

$$\pi(t) = \frac{at+b}{ct+d}, \quad a, b, c, d \in \mathbb{Z}, \quad ad-bc \neq 0.$$

For certain automorphisms π we find

$$\#W_{\Gamma,\pi,p} \equiv b_p \mod p$$

for all checked good primes p where b_p are the coefficients of a certain weight four newform, suggesting that this newform occurs in the L-series of (a resolution of) $W_{\Gamma,\pi}$. The "rest" of the L-series could again be determined by weight two newforms but I did not check this.

The following tables list the results for the parameter set $|a|, |b|, |c|, |d| \le 32$ (the computations took several days). Some examples in it have been discussed in [87], [88] and [89].

Example I: $\Gamma = \Gamma(3)$:

Here I used the equation

$$x^3 + y^3 + z^3 = txyz$$

for the elliptic surface Y_{Γ} .

a, b, c, d	weight four newform	references
0, 9, 1, 0	27/2 (27k4B1, twist of 27/1)	5.5
0, 18, -1, 0	54/3 (54k4A1, twist of 54/1)	
1, -6, 0, -1	54/2 (54k4D1)	
1, 0, 0, 1	9/1 $(9k4A1)$	[81], [84], [87], [111], 5.6
1, 3, 0, -1	27/2 (27k4B1, twist of 27/1)	[89]
3, -9, 1, 6	27/1 $(27k4A1)$	
3, 0, -1, -3	54/2 (54k4D1)	
3, 18, -2, -3	54/4 (54k4C1, twist of 54/2)	
3, 18, 1, -3	9/1 $(9k4A1)$	[87]
6, -18, -1, -6	54/1 (54k4B1)	

Note that the surface given by

$$x^3 + y^3 \pm d \cdot z^3 = txyz,$$

with $d \in \mathbb{N}$ a cubefree number, is isomorphic to $Y_{\Gamma(3)}$ over $\mathbb{Q}[\sqrt[3]{d}]$. Consequently self-fibre products of such surfaces lead to closely related newforms. M. Schütt suggested that they can be constructed from the newform 9/1 by tensoring with the cubic reciprocity character $\text{Frob}_p \mapsto \left(\frac{d}{p}\right)_3$ or its square. For d=2, 3, 4, 5, 6, 7, 9, 10, 12, 18, 25, 28, 36, 49, 98 we get the newforms <math>108/3 (108k4A1), 243/4 (243k4B1), 108/1 (108k4B1), 675/1, 972/2, 1323/2, 243/3 (243k4A1), 900/18, 972/1, 972/4, 675/4, 1764/3, 972/3, 1323/3, 1764/2.

Example II: $\Gamma = \Gamma_1(4) \cap \Gamma(2)$:

Here I used the equation

$$(x+y)(x^2+y^2+2xy+4z^2+4yz-4xz) = txyz$$

for the elliptic surface Y_{Γ} . It is different from that in [87] so that the cusps are in different positions and also the automorphisms are different from those in [87].

The automorphism $t \mapsto -t$ corresponds to the coordinate change $z \mapsto -z$ so to keep the table short I only display the results modulo this automorphism.

a,b,c,d	weight	four newform	references
0, 32, 1, -4	48/2	(48k4C1, twist of 12/1)	
0, 32, 1, 4	48/2	(48k4C1, twist of 12/1)	
0,64,1,-16	6/1	(6k4A1)	
0,64,1,-8	12/1	(6k4A1)	
0,64,1,8	12/1	(6k4A1)	
0,64,1,16	6/1	(6k4A1)	
0,64,1,0	8/1	(8k4A1)	[87]
1, -16, 0, -1	6/1	(6k4A1)	
1, -16, 0, 1	6/1	(6k4A1)	
1, -8, 0, -1	,	,	
	· ·	(8k4A1)	[81], [84], [87], [111]
	,	(48k4C1, twist of 12/1)	
1, 8, 0, -1			
	,	(48k4C1, twist of 12/1)	
4, 0, -1, 4	· ·	,	
	· '	(6k4A1)	
8, -64, -1, -8	16/1	(16k4A1, twist of 8/1)	[87]
		(16k4A1, twist of 8/1)	[87]
8, 0, -1, 8	. ,	,	
	. ,	(48k4C1, twist of 12/1)	
8, 0, 1, 8	12/1	(6k4A1)	
8, 0, 1, 16	48/2	(48k4C1, twist of 12/1)	

Example III: $\Gamma = \Gamma_1(5)$:

Here I used the equation

$$(x+y)(x+y-z)(y-z) = txyz$$

for the elliptic surface Y_{Γ} . It is different from that in [87] and [89] so that the cusps are in different positions and also the automorphisms are different from those in [89].

a, b, c, d	weight four new	form references
0, 1, -1, 0	5/1 $(5k4A1)$	[87]
0, 1, 1, 0	22/2 (22k4C)	
0, 1, 1, 11	55/1 (55k4A1)
1, -1, 1, 1	110/5 $(110k4E)$	(1)
1,0,0,-1	22/2 (22k4C)	
1, 0, 0, 1	5/1 (5k4A1)	[81], [84], [87], [111]
1, 0, 11, -1	55/1 (55k4A1)
1, 11, 0, -1	55/1 ($55k4A1$) [89]
2, 11, 11, -2	550/5 (twist of	(22/2)
11, -2, -2, -11	550/5 (twist of	(22/2)

Example IV: $\Gamma = \Gamma_1(6)$:

Here I used the equation

$$(x+y)(y+z)(z+x) = txyz$$

for the elliptic surface Y_{Γ} . Note that some examples appear as relatives of some of Hulek's and Verrill's modular threefolds (cf. 5.8). To see this we can rewrite the above equation for Y_{Γ} :

$$(x+y+z)(xy+xz+yz) = (x+y)(y+z)(z+x) + xyz = (t+1)xyz$$

a,b,c,d	weight	four newform	references
0, 1, -1, -1	73/1	(73k4A1)	[87], [89]
0, 1, 1, 0	21/2	(21k4A1)	[87], [89]
0, 8, -9, -8	90/2	(90k4A1, twist of 10/1)	
0, 8, -1, 0	6/1	(6k4A1)	[87]
0, 8, 1, -16	102/3	(102k4D1)	
0, 8, 1, -8	10/1	(10k4A1)	
0, 8, 1, -7	21/2	(21k4A1)	
0, 8, 1, 0	14/2	(14k4A1)	
0, 8, 1, 1	17/1	(17k4A1)	
0, 8, 1, 2	60/1	(60k4A1)	
0, 8, 9, 1	657/1	(twist of $73/1$)	
0, 9, -1, -1	153/2	(153k4D1, twist of 17/1)	
0, 9, 1, -8	657/1	(twist of $73/1$)	
1, -16, 0, -1	102/3	(102k4D1)	
1, -8, -10, -1	10/1	(10k4A1)	
1, -8, -1, -1	18/1	(18k4A1, twist of 6/1)	[87]
1, -8, -1, 17	306/8	(306k4F1, twist of 102/3)	
1, -8, 0, -1	10/1	(10k4A1)	
1, -8, 0, 8	73/1	(73k4A1)	
1, -8, 0, 9	90/2	(90k4A1, twist of 10/1)	[51], 5.8
1, -8, 1, 1	126/4	(126k4D1, twist of 14/2)	
1, -8, 8, 8	63/3	(63k4B1, twist of 21/2)	
1, -7, 0, -1	21/2	(21k4A1)	
1, 0, -2, -1	102/3	(102k4D1)	
1, 0, -1, -1	10/1	(10k4A1)	[87], [89]
1, 0, -1, 8	73/1	(73k4A1)	
1, 0, -1, 9	90/2	(90k4A1, twist of 10/1)	
1, 0, 0, -8	21/2	(21k4A1)	
1, 0, 0, -1	14/2	(14k4A1)	
1, 0, 0, 1	6/1	(6k4A1)	[81], [84], [87], [111]
1, 1, -1, 8	63/3	(63k4B1, twist of 21/2)	
1, 1, 0, -9	657/1	(twist of $73/1$)	
1, 1, 0, -1	17/1	(17k4A1)	[87], [89]

a,b,c,d	weight	four newform	references
1, 2, 0, -1	60/1	(60k4A1)	[51], 5.8
1, 10, -1, -1	180/5	(180k4D1, twist of 60/1)	
4, -32, 5, -4	180/5	(180k4D1, twist of 60/1)	
4,0,1,-4	60/1	(60k4A1)	
7, 16, 2, -7	14/2	(14k4A1)	
8, -8, 1, 8	126/4	(126k4D1, twist of 14/2)	
8, 0, -8, -9	657/1	(twist of $73/1$)	
8, 0, -7, -8	21/2	(21k4A1)	
8, 0, 1, -8	17/1	(17k4A1)	
8, 0, 1, 9	153/2	(153k4D1, twist of 17/1)	
8, 8, -17, -8	306/8	(306k4F1, twist of 102/3)	
8, 8, 0, 9	153/2	(153k4D1, twist of 17/1)	
8, 8, 1, -8	18/1	(18k4A1, twist of $6/1)$	[87]
8, 8, 1, 10	180/5	(180k4D1, twist of 60/1)	
8, 17, 1, -8	17/1	(17k4A1)	

Example V: $\Gamma = \Gamma_0(8) \cap \Gamma_1(4)$:

Here I used the equation

$$(x+y)(xy+z^2) = txyz$$

for the elliptic surface Y_{Γ} . The advantage is that all cusps are then defined over \mathbb{Q} and there are more possibilities to permute some of them by an automorphism defined over \mathbb{Q} (which may lead to interesting arithmetical results). In fact, using the equation $(x+y)(xy-z^2)=txyz$ I have not detected any modular forms in the L-series of the twisted fibre products, except for the trivial cases $t\mapsto \pm t$.

The automorphism $t\mapsto -t$ corresponds to the coordinate change $z\mapsto -z$ so to keep the table short I only display the results modulo this automorphism.

a,b,c,d	weigh	t four newform	references
0, 8, 1, -2	48/2	(48k4C1, twist of 12/1)	
0, 8, 1, 2	48/2	(48k4C1, twist of 12/1)	
0, 16, 1, -8	6/1	(6k4A1)	
0, 16, 1, -4	12/1	(12k4A1)	
0, 16, 1, 0	8/1	(8k4A1)	[87]
0, 16, 1, 4	12/1	(12k4A1)	
0, 16, 1, 8	6/1	(6k4A1)	
0, 32, 1, -4	48/2	(48k4C1, twist of 12/1)	
0, 32, 1, 4	48/2	(48k4C1, twist of 12/1)	
1, -8, 0, -1	6/1	(6k4A1)	
1, -4, 0, -1	12/1	(12k4A1)	
1, 0, 0, 1	8/1	(8k4A1)	[81], [84], [87], [111]
1, 4, 0, -2	48/2	(48k4C1, twist of 12/1)	

a,b,c,d	weight	four newform	references
			references
1, 4, 0, -1	,	(12k4A1)	
1, 4, 0, 2	48/2	(48k4C1, twist of 12/1)	
1, 8, 0, -1	6/1	(6k4A1)	
2, 0, -1, 2	6/1	(6k4A1)	
2, 0, 1, 2	6/1	(6k4A1)	
4, -16, -3, -4	12/1	(12k4A1)	
4, -16, -1, -4	16/1	(16k4A1, twist of 8/1)	
4, -16, 3, -4	48/3	(48k4A1, twist of 6/1)	
4, 0, -1, 4	12/1	(12k4A1)	
4, 0, -1, 8	48/2	(48k4C1, twist of 12/1)	
4, 0, 1, 4	12/1	(12k4A1)	
4, 0, 1, 8	48/2	(48k4C1, twist of 12/1)	
4, 16, -3, -4	48/3	(48k4A1, twist of 6/1)	
4, 16, -1, -12	48/3	(48k4A1, twist of 6/1)	
4, 16, -1, 12	12/1	(12k4A1)	
4, 16, 1, -12	12/1	(12k4A1)	
4, 16, 1, -4	16/1	(16k4A1, twist of 8/1)	
4, 16, 1, 12	48/3	(48k4A1, twist of 6/1)	
4, 16, 3, -4	12/1	(12k4A1)	

Example VI: $\Gamma = \Gamma_0(9) \cap \Gamma_1(3)$:

Here I used the equation

$$x^2y + y^2z + z^2x = txyz$$

for the elliptic surface Y_{Γ} . The results are exactly the same as for example I ($\Gamma = \Gamma(3)$). This is not unexpected because of the correspondence between them (cf. 6.1.5).

Other examples:

Let (Y, pr) be given by the equation

$$(x+y+z)(xy+xz+4yz) = txyz.$$

(Twisted) self-fibre products of this elliptic surface are also rather interesting because they appear as relatives of some of Hulek's and Verrill's modular threefolds (cf. 5.8).

a,b,c,d	weight f	references	
1,0,0,-1	40/2	(40k4B1)	5.8
1, 0, 0, 1	12/1	(12k4A1)	[51], 5.8
1, 0, 0, 4	30/2	(30k4A1)	
2, 0, -1, 6	240/11	(240k4H1, twist of 120/4)	
2,0,1,-2	336/4	(twist of $168/1$)	

2.3. RELATIVES 41

a,b,c,d	weight f	our newform	references
3, 0, 1, -4	78/2	(78k4D1)	
4,0,-1,-4	480/7	(twist of $480/2$)	
4,0,1,-16	78/2	(78k4D1)	
4,0,1,-12	96/3	(96k4F1, twist of 96/2)	
4,0,1,-4	96/3	(96k4F1, twist of 96/2)	
8, 0, 1, -8	384/8	(twist of $384/1$)	
12, 0, -1, 16	168/2	(168k4E1)	
16, 0, 1, -16	1344/9	(twist of $168/2$)	
16, 0, 5, -16	960/1	(twist of $30/2$)	

I performed some more numerical experiments with (twisted) fibre products of two elliptic surfaces. This way I found threefolds connected with the weight four newforms 28/1 (28k4B1), 68/1 (68k4A1) and 88/2 (88k4A1). Very recently ([52]) Hulek and Verrill continued the study of non-rigid fibre products. Among others they give an example connected with the weight four newform 35/1 (35k4A1).

2.3 Relatives

All of the above elliptic surfaces Y_{Γ} are given in $\mathbb{P}^2 \times \mathbb{P}^1$ by an equation of the form

$$F(x, y, z) = t \cdot G(x, y, z)$$

with homogeneous polynomials F and G of degree 3. There is a model in $\mathbb{P}^2 \times \mathbb{P}^2$ of their self-fibre products $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \operatorname{pr})$, with equation

$$F(x, y, z) \cdot G(r, s, t) = F(r, s, t) \cdot G(x, y, z).$$

A birational relative of such a variety is the complete intersection of two cubics in \mathbb{P}^5 given by

$$F(x, y, z) = F(r, s, t),$$

$$G(x, y, z) = G(r, s, t).$$

If we consider twisted self-fibre products instead, i.e., $(Y_{\Gamma}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma}, \pi \circ \operatorname{pr})$ where π is an automorphism of \mathbb{P}^1 then we may get different complete intersections of two cubics as relatives. If π is of the form $t \mapsto a \cdot t$ with $a \in \mathbb{P}^1$ then a birational relative is given by the equations

$$F(x, y, z) = \lambda \cdot F(r, s, t),$$

$$G(x, y, z) = \mu \cdot G(r, s, t).$$

with $\lambda, \mu \in \mathbb{P}^1$, $\mu/\lambda = a$.

If π is of the form $t \mapsto a/t$ with $a \in \mathbb{P}^1$ then a birational relative is given by the equations

$$F(x, y, z) = \lambda \cdot G(r, s, t),$$

$$G(r, s, t) = \mu \cdot G(x, y, z),$$

with $\lambda, \mu \in \mathbb{P}^1$, $\lambda \cdot \mu = a$.

Sometimes it may be interesting to study these models. We will do this in 5.5 and 5.6 for two examples. The first one corresponds to $(Y_{\Gamma(3)}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma(3)}, \pi \circ \operatorname{pr})$ where $\pi(t) = 9/t$. It is a special member of a family of smooth Calabi–Yau threefolds which has been studied by several authors. The second one corresponds to $(Y_{\Gamma(3)}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma(3)}, \operatorname{pr})$. It has 108 ordinary nodes as only singularities which seems to be the highest known value for a complete intersection of two cubics in \mathbb{P}^5 .

Chapter 3

Quintics in \mathbb{P}^4

3.1 Schoen's quintic and the standard family of quintics

Let $X_{\mu} \subset \mathbb{P}^4$ be the quintic threefold defined by the equation

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5\mu x_0 x_1 x_2 x_3 x_4 = 0.$$

If μ is general (i.e., no 5-th root of unity and not 0 or ∞) then X_{μ} is smooth and so a Calabi–Yau threefold. On X_{μ} there is an action of the group $G \simeq (\mathbb{Z}/5\mathbb{Z})^3$ generated by the coordinate transformations

$$(x_0:x_1:x_2:x_3:x_4:x_5)\mapsto (x_0:x_1\cdot\xi_5^{\lambda_1}:x_2\cdot\xi_5^{\lambda_2}:x_3\cdot\xi_5^{\lambda_3}:x_4\cdot\xi_5^{\lambda_4})$$

with $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{Z}/5\mathbb{Z}$, $\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 \equiv 0 \mod 5$ and ξ_5 a fixed primitive 5-th root of unity. The mirror partner of X_{μ} can be described as a resolution of the quotient X_{μ}/G (we will come back to that in 3.2 below). There is a lot of literature on the varieties X_{μ} ; good starting points are [73] for the mirror and [18] and [19] where the zeta function of X_{μ} is discussed.

If μ is a 5-th root of unity then X_{μ} has 125 nodes as only singularities, namely the points on the orbit of $(1 : \mu : \mu : \mu : \mu)$ under the action of the group G. We are especially interested in $X := X_1$, which is defined over \mathbb{Q} . We will give an account of the modularity question for X which was discussed in [86].

Let \tilde{X} be a small resolution of X. Then \tilde{X} has Euler characteristic

$$\chi(\tilde{X}) = -200 + 2 \cdot 125 = 50.$$

The defect of X is $d(X) = h^2(\tilde{X}) - 1 = 24 \neq 0$ (see the computation of $h^2(\tilde{X})$ below). Since the group G acts transitively on the set of nodes of X there exist projective small resolutions (cf. corollary 1.9). Equivalently this may be deduced from the existence of smooth quadric surfaces on X through all the nodes (cf. [86]).

If 5-th roots of unity exist in \mathbb{F}_p (i.e., $p \equiv 1 \mod 5$) then all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p . In this case the Lefschetz fixed point formula gives

$$|\#\tilde{X}_p - 1 - p^3 - h^2(\tilde{X}) \cdot (p^2 + p)| = |\#X_p + 125p - 1 - p^3 - h^2(\tilde{X}) \cdot (p^2 + p)|$$

$$\leq p^{3/2}h^3(\tilde{X}) = p^{3/2}(2 + 2h^2(\tilde{X}) - 50).$$

Counting points over \mathbb{F}_{31} we find

$$h^2(\tilde{X}) = 25, \quad h^3(\tilde{X}) = 2,$$

and so \tilde{X} is rigid.

Note that p = 5 is the only prime of bad reduction for X. If $p \not\equiv 1 \mod 5$ then only the node (1:1:1:1:1) is rational over \mathbb{F}_p . The tangent cone at this node is given by the smooth quadric surface with equation

$$2(x^{2} + y^{2} + z^{2} + w^{2}) - xy - xz - xw - yz - yw - zw = 0.$$

The discriminant of the corresponding quadratic form is 125. Consequently if 5 is a square in \mathbb{F}_p (i.e., in our case $p \equiv 4 \mod 5$) we find

$$|\#\tilde{X}_p - 1 - p^3 - k \cdot (p^2 + p)| = |\#X_p + p - 1 - p^3 - k \cdot (p^2 + p)| \le 2p^{3/2}$$

with $k \in \mathbb{Z}$, $|k| \leq 25 = h^2(\tilde{X})$. Counting points over \mathbb{F}_{19} gives k = 1.

If $p \equiv 2, 3 \mod 5$ then we have the estimate

$$|\#\tilde{X}_p - 1 - p^3 - l(p^2 + p)| = |\#X_p - p - 1 - p^3 - l(p^2 + p)| \le 2p^{3/2}$$

with $l \in \mathbb{Z}$, $|l| \leq 25 = h^2(\tilde{X})$. Counting points over \mathbb{F}_7 gives l = 1.

We end up with the formula

$$a_p(\tilde{X}) = \begin{cases} p^3 + 25p^2 - 100p + 1 - \#X_p, & p \equiv 1 \mod 5, \\ p^3 + p^2 + 1 - \#X_p, & p \equiv 4 \mod 5, \\ p^3 + p^2 + 2p + 1 - \#X_p, & p \equiv 2, 3 \mod 5. \end{cases}$$

Not all of the $a_p(\tilde{X})$ are even so theorem 1.5 can not be applied to prove the modularity of \tilde{X} but the principle still works. In [86] it is checked that the $a_p(\tilde{X})$ agree with the coefficients of the weight four newform 25/1 (25k4A1) for the primes $p \in \{3, 7, 11, 13\}$, and a proof is given that they agree for all good primes.

3.2 Equations for the mirror

Let $Y_{\mu} \subset \mathbb{P}^4$ be the quintic threefold defined by the equation

$$(x_0 + x_1 + x_2 + x_3 + x_4)^5 - (5\mu)^5 x_0 x_1 x_2 x_3 x_4 = 0.$$

For general μ (i.e., μ is no 5-th root of unity and not 0 or ∞) the singular locus of Y_{μ} consists of the $\binom{5}{2} = 10$ lines given by

$$x_i = x_i = x_k + x_l + x_m = 0$$

where $\{i, j, k, l, m\} = \{0, 1, 2, 3, 4\}$. If μ is a 5-th of unity then there is an additional singularity at the point (1:1:1:1:1). This is an ordinary node.

There is a rational dominant map $X_{\mu} \longrightarrow Y_{\mu}$ induced by

$$\phi: \mathbb{P}^4 \longrightarrow \mathbb{P}^4, \quad (x_0: x_1: x_2: x_3: x_4) \mapsto (x_0^5: x_1^5: x_2^5: x_3^5: x_4^5).$$

The map is generically 125:1. The degree reduces to 25:1 on the singular lines and to 5:1 on the 10 intersection points of three lines (i.e., the points on the orbit of (0:0:0:1:-1) under permutation of coordinates). Let A denote the union of the 10 singular lines and let B denote the union of the 10 intersection points. We can now relate the Euler characteristic of a general Y_{μ} to that of X_{μ} :

$$-200 = \chi(X_{\mu}) = 125 \cdot \chi(Y_{\mu} \setminus A) + 25 \cdot \chi(A \setminus B) + 5 \cdot \chi(B)$$

= 125 \cdot \chi(Y_{\mu} \hat{\text{A}}) + 25 \cdot 10 \cdot (2 - 3) + 5 \cdot 10
= 125 \cdot \chi(Y_{\mu} \hat{\text{A}}) - 200,

thus $\chi(Y_{\mu} \setminus A) = 0$ and

$$\chi(Y_{\mu}) = \chi(Y_{\mu} \setminus A) + \chi(A) = 0 + 10 \cdot 2 - 2 \cdot 10 = 0.$$

If μ is a 5-th root of unity then we set $Y := Y_{\mu} = Y_1$ and we find

$$-75 = \chi(X) = 125 \cdot \chi(Y \setminus A) + 25 \cdot \chi(A \setminus B) + 5 \cdot \chi(B)$$

= 125 \cdot \chi(Y \hat\) A) + 25 \cdot 10 \cdot (2 - 3) + 5 \cdot 10
= 125 \cdot \chi(Y \hat\) A) - 200,

thus $\chi(Y \setminus A) = 1$ and

$$\chi(Y) = \chi(Y \setminus A) + \chi(A) = 1 + 10 \cdot 2 - 2 \cdot 10 = 1.$$

The map ϕ exactly divides out the action of the group G on X_{μ} . Thus the quintic Y_{μ} is a model for the mirror X_{μ}/G of X_{μ} . The resolution of singularities of X_{μ}/G has been discussed in [73]. The singular lines are lines of A_4 singularities. The 10 intersection points of singular lines look locally like the quotient \mathbb{C}^3/H where the group $H \cong \{(\xi_1, \xi_2, \xi_3), \xi_1^5 = \xi_2^5 = \xi_3^5 = \xi_1 \xi_2 \xi_3 = 1\}$ acts diagonally on \mathbb{C}^3 . One choice of resolution is the following:

Blow up the 10 intersection points of the singular lines. This produces three exceptional divisors for each point and 30 lines of A_1 singularities where two of these divisors intersect.

Blow up the 10 lines of A_4 singularities and the 30 lines of A_1 singularities. This produces $50 = 2 \cdot 10 + 1 \cdot 30$ new exceptional divisors.

Blow up the remaining singular curves (intersection of divisors coming from the blowup of the lines of A_4 singularities). This produces $20 = 2 \cdot 10$ new exceptional divisors.

Now the singular locus consists of $60 = 6 \cdot 10$ nodes (2 nodes on each exceptional divisor from the first step) which can be resolved by a projective small resolution.

Altogether the resolution of singularities replaces 30 points by \mathbb{P}^2 and 70 copies of \mathbb{P}^1 by $\mathbb{P}^1 \times \mathbb{P}^1$. Denote by \tilde{Y}_{μ} such a resolution. The Euler characteristic and Hodge numbers of \tilde{Y}_{μ} are

$$\chi(\tilde{Y}_{\mu}) = \chi(Y_{\mu}) + 200 = 200, \quad h^{2,1}(\tilde{Y}_{\mu}) = 1, \quad h^{1,1}(\tilde{Y}_{\mu}) = 100,$$

and over the finite field \mathbb{F}_p we have

$$\#\tilde{Y}_{\mu,p} = \#Y_{\mu,p} + 100 \cdot (p^2 + p).$$

On $Y = Y_1$ there is the additional node (1:1:1:1:1). It is the image of the 125 nodes of the Schoen quintic X under the map ϕ . On X the node (1:1:1:1:1) is contained in the smooth quadric surface Q given by the equations

$$x_0 + \xi_5 x_1 + \xi_5^2 x_2 + \xi_5^3 x_3 + \xi_5^4 x_4 = x_0 x_1 + \xi_5 x_0 x_2 + \xi_5^2 x_0 x_3 + \xi_5^3 x_0 x_4 + \xi_5^2 x_1 x_2 + \xi_5^3 x_1 x_3 + \xi_5^4 x_1 x_4 + \xi_5^4 x_2 x_3 + x_2 x_4 + \xi_5 x_3 x_4 = 0$$

where ξ_5 is a primitive 5-th root of unity. Thus on Y the node (1:1:1:1:1) is contained in the smooth surface $\phi(Q)$ (which does not meet the singular lines) so there exist projective small resolutions. Let \tilde{Y} denote such a small resolution of (all the singularities of) Y. The Euler characteristic of \tilde{Y} is

$$\chi(\tilde{Y}) = \chi(Y) + 200 + 1 = 202.$$

The tangent cone at the node (1:1:1:1:1) is given by the smooth quadric surface

$$2(x^{2} + y^{2} + z^{2} + t^{2}) - (xy + xz + xt + yz + yt + zt) = 0$$

with discriminant 125. Thus if $p \equiv 1, 4 \mod 5$ we have

$$\#\tilde{Y}_{\mu,p} = \#Y_{\mu,p} + 100 \cdot (p^2 + p) + p$$

and the Lefschetz fixed point formula gives

$$|\#\tilde{Y}_p - 1 - p^3 - h^2(\tilde{Y}) \cdot (p^2 + p)| = |\#Y_p + 100(p^2 + p) + p - 1 - p^3 - h^2(\tilde{Y}) \cdot (p^2 + p)|$$

$$\leq p^{3/2}h^3(\tilde{Y}) = p^{3/2}(2 + 2h^2(\tilde{Y}) - 202).$$

Counting points over \mathbb{F}_{31} we find

$$h^{2}(\tilde{Y}) = h^{1,1}(\tilde{Y}) = 101, \quad h^{3}(\tilde{Y}) = 2, \quad h^{2,1}(\tilde{Y}) = 0,$$

and so \tilde{Y} is rigid.

If $p \equiv 2, 3 \mod 5$ then we have the estimate

$$|\#\tilde{Y}_p - 1 - p^3 - k \cdot (p^2 + p)| = |\#Y_p + 100(p^2 + p) - p - 1 - p^3 - k \cdot (p^2 + p)| \le 2p^{3/2}$$

with $k \in \mathbb{Z}$, $|k| \leq 101 = h^2(\tilde{Y})$. Counting points over \mathbb{F}_{23} gives k = 101. We end up with the formula

$$a_p(\tilde{Y}) = \begin{cases} p^3 + p^2 + 1 - \#Y_p, & p \equiv 1, 4 \mod 5, \\ p^3 + p^2 + 2p + 1 - \#Y_p, & p \equiv 2, 3 \mod 5. \end{cases}$$

Counting points we find that the $a_p(\tilde{Y})$ agree with the coefficients of the weight four newform 25/1 (25k4A1) for all primes $p \in \{3, 7, 11, 13\}$, so they agree for all good primes. Note that this was clear from the start because of the correspondence between X and Y.

It would also be interesting to explicitly compute the zeta functions of the mirror families and compare with the recent results of Wan ([105]) and Haessig ([46]).

3.3 Hirzebruch's quintic

The manifold in this section was constructed in [48]. It was further discussed in [99] where also its modularity was proven.

Let $\{f(x,y) := \prod_{i=1}^5 f_i(x,y) = 0\}$ be the quintic curve in the real (x,y)-plane which is given by the product of the five lines of a regular pentagon.

As a function of two real variables x and y, f has relative extrema in the center A of the pentagon and in one point b_i of each triangle B_i . So both partial derivatives of f vanish at these six points and at the ten intersection points of the five lines. By symmetry, $f(b_i) = f(b_j)$ for all i and j. Thus the function f can be normalized so that $f(b_i) = b < 0$ for all i = 1, ..., 5. Now we consider the threefold $V \subset \mathbb{P}^4$ given by the homogenisation of the equation

$$f(x,y) - f(z,w) = 0.$$

There are no singularities at infinity. If (x, y, z, w) is a singular point in the affine part of V, then (x, y) and (z, w) are critical points of f. There are three possibilities:

$$f(x,y) = 0 = f(z,w)$$
 (100 points),
 $f(x,y) = b = f(z,w)$ (25 points),
 $f(x,y) = f(A) = f(z,w)$ (1 point, $f(A) > 0$).

So the threefold V has 126 isolated singularities (which are all nodes) and Euler characteristic $\chi(V) = -200 + 126 = -74$.

Now we choose the coordinates of the vertices of the pentagon to be

$$\left(-\frac{1}{2},\pm\frac{u\sqrt{2-u}}{2}\right),\quad \left(\frac{1-u}{2},\pm\frac{\sqrt{2-u}}{2}\right),\quad (u,0),$$

with

$$u = \frac{\sqrt{5} - 1}{2}$$
, so $u^2 = 1 - u$.

This gives:

$$f(x,y) = \left(x + \frac{1}{2}\right) \left(y^2 - \left(\frac{-4u + 3}{5}\right) (x + u + 1)^2\right) \left(y^2 - \left(\frac{4u + 7}{5}\right) (x - u)^2\right)$$
$$= \left(x + \frac{1}{2}\right) (y^4 - y^2 (2x^2 - 2x + 1) + \frac{1}{5} (x^2 + x - 1)^2).$$

The critical points of f are the 5 vertices of the pentagon, the other 5 intersection points with coordinates

$$\left(\frac{u+1}{2u}, \pm \frac{(u+1)\sqrt{2-u}}{2}\right), \quad \left(-\frac{1}{2}, \pm \frac{(u+2)\sqrt{2-u}}{2}\right), \quad (-(u+1), 0),$$

the point (0,0) and the 5 points in the orbit of (-1,0) under the symmetry group of the pentagon, with coordinates

$$\left(\frac{1}{2u}, \pm \frac{\sqrt{2-u}}{2}\right), \quad \left(-\frac{1}{2(u+1)}, \pm \frac{(1+u)\sqrt{2-u}}{2}\right), \quad (-1,0).$$

On V there are the planes

$$f_i(x,y) = f_i(z,w) = 0, \quad i,j \in \{1,\ldots,5\}$$

containing the 100 nodes arising from the intersection points of the lines and the planes

$$z = \left(\frac{\cos 2\pi k}{5}\right) x - \left(\frac{\sin 2\pi k}{5}\right) y, \quad w = \left(\frac{\sin 2\pi k}{5}\right) x + \left(\frac{\cos 2\pi k}{5}\right) y, \quad k \in \{1, \dots, 4\}$$

containing the other 26 nodes so there exist projective small resolutions. Let \tilde{V} be a small resolution of V. Then \tilde{V} has Euler characteristic $\chi(\tilde{V}) = -74 + 126 = 52$.

All critical points appear over finite fields \mathbb{F}_p where 5 is a square (i.e., $p \equiv 1, 4 \mod 5$) and where 2 - u is a square. This condition is equivalent to the equation

$$v^4 = 5v^2 - 5$$

being solvable in \mathbb{F}_p , which is the case exactly for $p \equiv -1, 1 \mod 20$.

The rulings of the tangent cones at the nodes are also defined over \mathbb{F}_p in this case so the Lefschetz fixed point formula gives

$$|\#\tilde{V}_p - 1 - p^3 - h^2(\tilde{V})(p + p^2)| = |\#V_p + 126p - 1 - p^3 - h^2(\tilde{V})(p + p^2)|$$

$$\leq p^{3/2}h^3(\tilde{V}) = p^{3/2}(2 + 2h^2(\tilde{V}) - 52).$$

Counting points over \mathbb{F}_{41} we find

$$h^2(\tilde{V}) = 26, \quad h^3(\tilde{V}) = 2,$$

so \tilde{V} is rigid.

If $u^2 = 1 - u$ has solutions in \mathbb{F}_p , but $v^4 = 5v^2 - 5$ has not, then the only critical points of f over \mathbb{F}_p are

$$(u,0), (-(u+1),0), (-1,0), (0,0),$$

which means that over \mathbb{F}_p the variety V has only $2 \cdot 2 + 1 \cdot 1 + 1 \cdot 1 = 6$ nodes. Again the rulings of the tangent cones are defined over \mathbb{F}_p . The Lefschetz fixed point formula gives

$$|\#\tilde{V}_p - 1 - p^3 - k(p+p^2)| = |\#V_p + 6p - 1 - p^3 - k(p+p^2)| \le 2p^{3/2}$$

with $k \in \mathbb{Z}, |k| \leq h^2(\tilde{V})$. Counting points over \mathbb{F}_{11} we find k = 2.

If $u^2 = 1 - u$ has no solutions in \mathbb{F}_p (i.e., $p \not\equiv 1, 4 \mod 5$) then the only critical points of f over \mathbb{F}_p are

$$(-1,0), (0,0),$$

which means that over \mathbb{F}_p the variety V has only 2 nodes. Again the rulings of the tangent cones are defined over \mathbb{F}_p . The Lefschetz fixed point formula gives

$$|\#\tilde{V}_p - 1 - p^3 - l(p+p^2)| = |\#V_p + 2p - 1 - p^3 - l(p+p^2)| \le 2p^{3/2}$$

with $l \in \mathbb{Z}, |l| \leq h^2(\tilde{V})$. Counting points over \mathbb{F}_{13} we find l = 2.

We end up with the formula

$$a_p(\tilde{V}) = \begin{cases} p^3 + 26p^2 - 100p + 1 - \#V_p, & p \equiv 1, 19 \mod 20, \\ p^3 + 2p^2 - 4p + 1 - \#V_p, & p \equiv 9, 11 \mod 20, \\ p^3 + 2p^2 & + 1 - \#V_p, & p \equiv 3, 7 \mod 10, \end{cases}$$

and 2 and 5 are the primes of bad reduction. Counting points gives the following table:

p	3	7	11	13	17	29	31
$a_p(\tilde{V})$	-2	-26	-28	-12	64	90	-128

As far as calculated the $a_p(\tilde{V})$ agree with the coefficients of the weight 4 newform 50/3 (50k4B1) and by corollary 1.6 they agree for all $p \neq 2, 5$.

A similar construction

If we consider the family of threefolds $W_{\lambda} \subset \mathbb{P}^4$ given by the homogenisation of the equation

$$f(x,y) - \lambda \cdot f(z,w) = 0$$

then the general member of this family has $10 \cdot 10 = 100$ nodes arising from the intersection points of the lines as only singularities. All the nodes are contained in some of the planes

$$f_i(x,y) = f_j(z,w) = 0, \quad i,j \in \{1,\ldots,5\}$$

so there exist projective small resolutions. The Euler characteristic of a small resolution is $\chi(\tilde{W}_{\lambda}) = 0$. I have not detected any weight 4 modular form in the *L*-series of W_{λ} .

The special member W_1 is Hirzebruch's quintic discussed above. Another very interesting special member is $W := W_{-1}$.

The function f as chosen above has critical values $\frac{1}{10}$ resp. $-\frac{1}{10}$ at (0,0) resp. at the five points on the orbit of (-1,0). Thus the threefold W has $10 \cdot 10 + 5 \cdot 1 + 5 \cdot 1 = 110$ nodes.

It is not clear if there exist projective small resolutions. The 100 nodes arising from the intersection points of the lines are again contained in the planes

$$f_i(x,y) = f_j(z,w) = 0, \quad i,j \in \{1,\ldots,5\}.$$

Since

$$f(x,0) = \frac{1}{5} \left(x + \frac{1}{2} \right) \left(\left(x + \frac{1}{2} \right)^2 - \frac{5}{4} \right)^2,$$

is odd around $x=-\frac{1}{2}$ the other 10 nodes are contained in the lines

$$f_i(x,y) = -f_i(z,w), \quad \tilde{f}_i(x,y) = \tilde{f}_i(z,w) = 0, \quad i \in \{1,\dots,5\}$$

where \tilde{f}_i is the line in the real plane through (0,0) and perpendicular to f_i . But so far I have not been able to find a smooth divisor on W containing these nodes. The defect of W is $d(W) = h^2(\tilde{W}) - 1 = 17$ (see the computation of $h^2(\tilde{W})$ below). The part coming from the above planes is 16-dimensional (cf. [99]) so there is still some space left.

Now let \tilde{W} be a small (maybe not projective) resolution of W. It has Euler characteristic $\chi(\tilde{W}) = -200 + 2 \cdot 110 = 20$. If $p \equiv -1, 1 \mod 20$ then all the nodes and the rulings of their tangent cones are defined over \mathbb{F}_p and the Lefschetz fixed point formula gives

$$|\#\tilde{W}_p - 1 - p^3 - h^2(\tilde{W})(p+p^2)| = |\#W_p + 110p - 1 - p^3 - h^2(\tilde{W})(p+p^2)|$$

$$< p^{3/2}h^3(\tilde{W}) = p^{3/2}(2 + 2h^2(\tilde{W}) - 20).$$

Counting points over \mathbb{F}_{179} and \mathbb{F}_{199} we find

$$h^2(\tilde{W}) = 18, \quad h^3(\tilde{W}) = 18.$$

If $p \equiv 9, 11 \mod 20$ then only 6 nodes (and the rulings of their tangent cones) are rational over \mathbb{F}_p . In this case we have the estimate

$$|\#W_p + 6p - 1 - p^3 - k \cdot p(p+1)| \le 18p^{3/2}$$

with $k \in \mathbb{Z}$, $|k| \le 18$. Counting points over \mathbb{F}_{349} we find k = 2.

If $p \equiv 3,7 \mod 10$ then only 2 nodes are rational over \mathbb{F}_p . The discriminant of the corresponding quadratic form is 5 times a square so on the tangent cone there is a pair of rulings not defined over \mathbb{F}_p . In this case we have the estimate

$$|\#W_p - 2p - 1 - p^3 - l \cdot p(p+1)| \le 18p^{3/2}$$

with $l \in \mathbb{Z}$, $|l| \leq 18$. Counting points over \mathbb{F}_{337} we find l = 0.

We end up with the formula

$$a_p(\tilde{W}) = \begin{cases} p^3 + 18p^2 - 92p + 1 - \#W_p, & p \equiv 1, 19 \mod 20, \\ p^3 + 2p^2 - 4p + 1 - \#W_p, & p \equiv 9, 11 \mod 20, \\ p^3 + 2p + 1 - \#W_p, & p \equiv 3, 7 \mod 10, \end{cases}$$

and 2 and 5 are the primes of bad reduction.

Now let b_p be the coefficients of the weight 4 newform 50/4 (50k4A1) which is a twist by $\left(\frac{5}{p}\right)$ of the weight 4 newform 50/3 (50k4B1) connected with Hirzebruch's quintic. For all good primes p < 1000 we find by counting points

$$\begin{cases} b_p \equiv a_p(\tilde{W}) \mod 8p, & p \equiv 1, 19 \mod 20, \\ b_p = a_p(\tilde{W}), & p \not\equiv 1, 19 \mod 20. \end{cases}$$

The following table lists the numbers $(a_p(\tilde{W}) - b_p)/p$ for $p \equiv 1, 19 \mod 20$:

p	$(a_p(\tilde{W}) - b_p)/p$	p	$(a_p(\tilde{W}) - b_p)/p$	p	$(a_p(\tilde{W}) - b_p)/p$
19	40	379	-200	641	336
41	-24	401	-24	659	120
61	16	419	-120	661	256
79	-80	421	-224	701	96
101	-144	439	-320	719	-240
139	40	461	96	739	160
179	-120	479	240	761	-24
181	16	499	160	821	336
199	160	521	-24	839	0
239	0	541	256	859	40
241	136	599	240	881	-144
281	-144	601	-104	919	-80
359	240	619	160	941	96

Let c_p be the coefficients of the weight two newform 50B1 and d_p be the coefficients of the weight two newform 50A1 (which is a twist of 50B1 by $(\frac{5}{n})$). For all good primes p < 1000 we find

$$a_p(\tilde{W}) = b_p + 4p \cdot (1 + \chi_p) \cdot c_p = b_p + 4p \cdot (1 + \chi_p) \cdot d_p$$

where χ_p is the character defined by

$$\chi_p = \begin{cases} 1, & v^4 - 5v^2 + 5 \equiv 0 \mod p \text{ has solutions} \\ -1, & \text{otherwise} \end{cases} = \begin{cases} 1, & p \equiv 1, 19 \mod 20 \\ -1, & p \not\equiv 1, 19 \mod 20 \end{cases}.$$

An explanation for this formula has still to be found.

3.4 Van Geemen's and Werner's quintics

In [99] and [100] van Geemen and Werner generalized the construction from 3.3 to produce quintic hypersurfaces in \mathbb{P}^4 with many nodes and quintics which have Calabi–Yau resolutions with different Euler numbers. All quintics are projectivisations of affine varieties given by an equation of the form

$$F(x,y) - G(z,w) = 0$$

with F, G of degree 5.

We start with the examples constructed in [100]. Let us consider a symmetric configuration of a circle and an equilateral triangle where the radius of the circle is chosen in such a way that the critical values at the six critical points lying in the marked areas are all the same.

The equation of such a configuration can be written as

$$G(x,y) = (x+1)\left(y^2 - \frac{1}{3}(x-2)^2\right)\left(x^2 + y^2 - \frac{8}{5}\right) = 0$$

where (0,0) is the center of the circle. Now let the threefold $Y \subset \mathbb{P}^4$ be defined by the homogenisation of the equation

$$G(x,y) - G(z,w) = 0.$$

Then Y has 118 (= $9 \cdot 9 + 6 \cdot 6 + 1 \cdot 1$) nodes as only singularities. Let \hat{Y} denote a big resolution of Y. Van Geemen and Werner compute

$$\chi(\hat{Y}) = 272, \quad h^2(\hat{Y}) = 137, \quad h^3(\hat{Y}) = 4.$$

The most interesting thing is that they prove that there does not exist a triple (\mathbb{K}, C, ϕ) where \mathbb{K} is a number field, C is a curve defined over \mathbb{K} and ϕ is a non-trivial map of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{K})$ representations

$$\phi: H^1_{\text{\'et}}(\bar{C}, \mathbb{Q}_{\ell}(-1)) \longrightarrow H^3_{\text{\'et}}(\bar{\hat{Y}}, \mathbb{Q}_{\ell}).$$

If there was such a triple then at each prime of \mathbb{K} some eigenvalues of (every) Frobenius map on $H^3_{\mathrm{\acute{e}t}}(\hat{Y},\mathbb{Q}_\ell)$ would have to be equal to q times an algebraic integer, with q the norm of the prime. Van Geemen and Werner show that this is not the case for the prime 59.

This means that if the 4-dimensional Galois representation associated to $H^3_{\text{\'et}}(\hat{\bar{Y}}, \mathbb{Q}_{\ell})$ splits into 2-dimensional pieces over some number field then this splitting can not be caused by elliptic surfaces on \hat{Y} (see 1.5.2).

Next we consider configurations of 5 lines which only meet in pairs and which are stable under $(x,y) \mapsto (x,-y)$. Van Geemen and Werner call such a configuration a *skew pentagon*.

The defining equation of a skew pentagon has 10 critical points at the intersection points of the lines and 2 critical points on the x-axis. There are additional four critical points, and we claim that their critical values are the same. Such skew pentagons are given by an equation of the form

$$H_t(x,y) = \left(x + \frac{t(t+5)}{t^2 - 5}\right)(y^2 - x^2)\left(y^2 - \frac{t^2}{5}(x+1)^2\right)$$

Now let the threefold $Z_t \subset \mathbb{P}^4$ be defined by the homogenisation of the equation

$$H_t(x,y) - H_t(z,w) = 0.$$

Then for general t the quintic Z_t has 118 (= $10 \cdot 10 + 4 \cdot 4 + 1 \cdot 1 + 1 \cdot 1$) nodes as only singularities. Let \hat{Z}_t denote a big resolution of Z_t . Van Geemen and Werner compute

$$\chi(\hat{Z}_t) = 272, \quad h^2(\hat{Z}_t) = 138, \quad h^3(\hat{Z}_t) = 6.$$

For $\tilde{t} = -3 \pm 2\sqrt{5}$ the critical values at the two critical points on the x-axis are the same. The corresponding skew pentagon can also be given by the equation

$$(x-2)(y^4-y^2(2x^2-2x+1)+\frac{1}{5}(x^2+x-1)^2).$$

The threefold $Z_{\tilde{t}}$ has 120 (= $10 \cdot 10 + 4 \cdot 4 + 2 \cdot 2$) nodes as only singularities. Van Geemen and Werner compute

$$\chi(\hat{Z}_{\tilde{t}}) = 280, \quad h^2(\hat{Z}_{\tilde{t}}) = 141, \quad h^3(\hat{Z}_{\tilde{t}}) = 4.$$

Again they prove that there does not exist a triple (\mathbb{K}, C, ϕ) where \mathbb{K} is a number field, C is a curve defined over \mathbb{K} and ϕ is a non-trivial map of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{K})$ representations

$$\phi: H^1_{\text{\'et}}(\bar{C}, \mathbb{Q}_{\ell}(-1)) \longrightarrow H^3_{\text{\'et}}(\bar{\hat{Z}_{\tilde{\mathcal{H}}}}\mathbb{Q}_{\ell}).$$

Now let the threefold X_{gh} be defined by the homogenisation of the equation

$$G(x,y) - cH_t(z,w)$$

where c is a constant chosen such that the critical values agree at the six critical points of G and the four critical points of H_t mentioned above. Then X_{gh} has 114 (= 9 · 10 + 6 · 4) nodes as only singularities. Let \hat{X}_{gh} denote a big resolution of X_{gh} . Van Geemen and Werner compute

$$\chi(\hat{X}_{qh}) = 256, \quad h^2(\hat{X}_{qh}) = 131, \quad h^3(\hat{X}_{qh}) = 8.$$

Now let the threefold V_t be defined by the homogenisation of the equation

$$f(x,y) - c(t)H_t(z,w)$$

where f(x, y) is the equation for the regular pentagon from 3.3 and c(t) is chosen so that V_t has in general 120 (= $10 \cdot 10 + 5 \cdot 4$) nodes as only singularities. Let \hat{V}_t denote a big resolution of V_t . Van Geemen and Werner compute

$$\chi(\hat{V}_t) = 280, \quad h^2(\hat{V}_t) = 141, \quad h^3(\hat{V}_t) = 4.$$

For $t = -5 - 2\sqrt{5}$ we obtain again the Hirzebruch quintic with 126 nodes. So this quintic is a special element of a family $\{V_t\}$, such that V_t has in general 120 nodes.

Finally let the threefold W be defined by the homogenisation of the equation

$$f(x,y) - \frac{625}{1296}G(z,w).$$

The factor $\frac{625}{1296} = (\frac{5}{6})^4$ is chosen so that W has also $120 = (9 \cdot 10 + 5 \cdot 6)$ nodes as only singularities (but this example is not mentioned in [100]). Let \hat{W} denote a big resolution of W. We can compute

$$\chi(\hat{W}) = 280, \quad h^2(\hat{W}) = 141, \quad h^3(\hat{W}) = 4.$$

Note that in all of the above examples it is not clear if there exist projective small resolutions. The nodes coming from intersection points of lines are always contained in certain planes on the quintic but it is difficult to identify smooth divisors through the other nodes.

In [99], section 2, different configurations of lines and conics are allowed, as sketched below.

The configurations containing intersection points of three or more lines or tangency of a line and a conic lead to quintic threefolds with higher isolated singularities.

I have made some numerical experiments with the quintics constructed in this section but I have not detected any weight four modular form connected with their middle cohomology. The results of section 3.5 suggest that the situation may indeed be more complicated.

Note that the examples listed in [99] have a high number of deformations. By closer examination of critical points not coming from intersection of lines and conics we could add some nodes and so reduce the number of deformations.

3.5 Consani's and Scholten's quintic

In [23] Consani and Scholten investigated the L-series of a quintic threefold closely related to one of van Geemen's and Werner's examples. Consider the polynomial

$$P_5(x,y) = (x^5 + y^5) - 5xy(x^2 + y^2) + 5xy(x+y) + 5(x^2 + y^2) - 5(x+y)$$

and the quintic X defined by the homogenisation of the equation

$$P_5(x,y) - P_5(z,w)$$
.

Then X has 120 nodes as only singularities. It is isomorphic over $\mathbb{Q}[i]$ to van Geemen's and Werner's threefold $Z_{\tilde{t}}$ from section 3.4 (see [23] for the isomorphism). Let \hat{X} denote a big resolution of X. We have

$$\chi(\hat{X}) = 280, \quad h^2(\hat{X}) = 141, \quad h^3(\hat{X}) = 4.$$

The threefold \hat{X} has good reduction outside the set $\{2,3,5\}$. Consani and Scholten prove that the Galois representation ρ associated to $H^3_{\text{\'et}}(\bar{\hat{X}},\mathbb{Q}_\ell(\sqrt{5}))$ splits into two two-dimensional pieces. Furthermore they construct a Hilbert modular newform f of weight (2,4) and conductor 30 on a finite extension E_λ of \mathbb{Q}_l with ring of integers \mathcal{O}_λ and an associated 2-dimensional λ -adic Galois representation $\sigma_{f,\lambda} \longrightarrow \mathrm{GL}_2(\mathcal{O}_\lambda)$. They give numerical evidence for the fact that the Galois representation $\sigma_{f,\lambda}$ appears as a two-dimensional piece of ρ (a complete proof would be possible with more computer power). This perfectly agrees with the results of van Geemen and Werner on $Z_{\tilde{t}}$ from section 3.4.

3.6 Van Straten's Σ_6 -symmetric quintics

Let

$$S_i := S_i(x_0, x_1, \dots, x_5) := \sum_{0 \le j_1 < \dots < j_i \le 5} x_{j_1} x_{j_2} \cdots x_{j_i}$$

be the *i*-th elementary-symmetric function in six variables x_j . The equations

$$S_1 = 0,$$

$$\alpha S_5 + \beta S_2 S_3 = 0 \text{ with } (\alpha : \beta) \in \mathbb{P}^1$$

define the pencil $\{\mathcal{M}_{(\alpha:\beta)}\}$ of quintics in \mathbb{P}^4 that are invariant under the operation of the symmetric group Σ_6 by permutation of coordinates.

These varieties were first investigated over \mathbb{C} by van Straten in [101]. The general member of the pencil has exactly 100 nodes as its only singularities, namely the points on the Σ_6 -orbit of the point (1:1:1:-1:-1:-1) (the 10 Segre nodes; they are also the singularities of the Segre cubic $S_1 = S_3 = 0$) and the points on the Σ_6 -orbit of the point (1:1:-1:-1:z:-z) where z is a solution of $\beta z^2 + \alpha + 2\beta = 0$ (the 90 moving nodes).

For 6 choices of $(\alpha : \beta) \in \mathbb{P}^1$ the singular locus of $\mathcal{M}_{(\alpha : \beta)}$ is different:

$(\alpha:\beta)$	singular locus
(1:1)	100 nodes of the general variety and 30 extra nodes on
	the Σ_6 -orbit of $(1:1:1:1:\sqrt{-3}-2:-\sqrt{-3}-2)$.
	$\mathcal{M}_{(1:1)}$ is the quintic with the highest number of nodes
	that is known.
(25:1)	100 nodes of the general variety and 6 additional nodes
	on the Σ_6 -orbit of $(1:1:1:1:1:-5)$.
(-3:1)	10 singularities of type $(3, 3, 3, 3)$ (Del Pezzo nodes).
(-2:1)	10 nodes (the Segre nodes) and 15 lines given by the
	Σ_{6} -orbit of $\{(x:x:y:y:z:z), x+y+z=0\}.$
(1:0)	10 nodes (the Segre nodes) and 20 lines given by the
	Σ_{6} -orbit of $\{(0:0:0:x:y:z), x+y+z=0\}$. $\mathcal{M}_{(1:0)}$
	is known as Barth-Nieto quintic and was investigated
	in [6] and [50]; see also 3.7.
(0:1)	The surface $S_2 = S_3 = 0$.

Each $\mathcal{M}_{(\alpha;\beta)}$ contains the 15 so called Segre planes given by the Σ_6 -orbit of

$$x_0 + x_1 = x_2 + x_3 = x_4 + x_5 = 0.$$

The Segre nodes (and the singularities of $\mathcal{M}_{(-3:1)}$) and the moving nodes are contained in these planes, so for general (a:b) there exist projective small resolutions $\tilde{\mathcal{M}}_{(a:b)}$ of $\mathcal{M}_{(a:b)}$. Furthermore we can prove (with the help of point counting arguments)

$$\chi(\tilde{\mathcal{M}}_{(a:b)}) = 0, \quad h^2(\tilde{\mathcal{M}}_{(a:b)}) = 15, \quad h^3(\tilde{\mathcal{M}}_{(a:b)}) = 32.$$

The modularity of most of the special members has been previously discussed in [69] (cf. also [68]).

The *L*-series of $\mathcal{M}_{(1:1)}$

The coordinates of the singularities of $\mathcal{M}_{(1:1)}$ over \mathbb{C} are defined over $\mathbb{Q}[\sqrt{-3}]$, so it is reasonable to assume that the situation over \mathbb{F}_p depends on the existence of $\sqrt{-3}$. In fact, all nodes and the rulings of their tangent cones are rational over \mathbb{F}_p for $p \geq 5$ if $\sqrt{-3}$ exists which means that $p \equiv 1 \mod 6$. For $p \equiv 5 \mod 6$ only the 10 Segre nodes (and the rulings of their tangent cones) are rational over \mathbb{F}_p .

On $\mathcal{M}_{(1:1)}$ there are 40 extra planes given by the Σ_6 -orbit of

$$x_0 + x_1 + x_2 + x_3 + x_4 + x_5 = 0,$$

$$x_0 + \omega x_1 + \omega^2 x_2 = 0,$$

$$x_3 + \omega x_4 + \omega^2 x_5 = 0,$$

where $\omega = \frac{-1+\sqrt{-3}}{2}$. The extra nodes are contained in these planes so there exist projective small resolutions.

Let $\tilde{\mathcal{M}}_{(1:1)}$ be a small resolution of $\mathcal{M}_{(1:1)}$. Then $\tilde{\mathcal{M}}_{(1:1)}$ has Euler characteristic

$$\chi(\tilde{\mathcal{M}}_{(1:1)}) = -200 + 2 \cdot 130 = 60.$$

The primes of bad reduction are 2 and 3. In the case of $p \equiv 1 \mod 6$ all singularities of $\mathcal{M}_{(1:1)}$ and the rulings of their tangent cones are rational over \mathbb{F}_p . The Lefschetz fixed point formula gives

$$|\#\tilde{\mathcal{M}}_{(1:1),p} - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(1:1)}) \cdot p(p+1)|$$

$$= |\#\mathcal{M}_{(1:1),p} + 130p - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(1:1)}) \cdot p(p+1)|$$

$$\leq p^{3/2}h^3(\tilde{\mathcal{M}}_{(1:1)}) = p^{3/2}(2 + 2h^2(\tilde{\mathcal{M}}_{(1:1)}) - 60).$$

Counting points over \mathbb{F}_{13} we find

$$h^2(\tilde{\mathcal{M}}_{(1:1)}) = 30, \quad h^3(\tilde{\mathcal{M}}_{(1:1)}) = 2,$$

so $\tilde{\mathcal{M}}_{(1:1)}$ is rigid.

If $p \equiv 5 \mod 6$ then only the 10 Segre nodes (and the rulings of their tangent cones) are rational over \mathbb{F}_p and we have the estimate

$$|\#\tilde{\mathcal{M}}_{(1;1),p} - 1 - p^3 - k \cdot p(p+1)| = |\#\mathcal{M}_{(1;1),p} + 10p - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}$$

for some $k \in \mathbb{Z}, |k| \leq h^2(\tilde{\mathcal{M}}_{(1:1)}) = 30$. Counting points over \mathbb{F}_{11} gives k = 10.

We end up with the formula

$$a_p(\tilde{\mathcal{M}}_{(1:1)}) = \begin{cases} p^3 + 30p^2 - 100p + 1 - \#\mathcal{M}_{(1:1),p}, & p \equiv 1 \mod 6, \\ p^3 + 10p^2 + 1 - \#\mathcal{M}_{(1:1),p}, & p \equiv 5 \mod 6. \end{cases}$$

Counting points we detect that for all primes $5 \le p \le 97$ the $a_p(\tilde{\mathcal{M}}_{(1:1)})$ agree with the coefficients of the weight four newform 6/1 (6k4A1), and by corollary 1.6 they agree for all $p \ge 5$.

The *L*-series of $\mathcal{M}_{(25:1)}$

To get an idea what the primes of bad reduction are we can look at the parameter (25:1). Modulo 2, 3, 5 and 7 it becomes (1:1), (1:1), (0:1) and (-3:1) which is in any case the parameter of a special member of the pencil of quintics.

Let $\tilde{\mathcal{M}}_{(25:1)}$ be a small resolution of $\mathcal{M}_{(25:1)}$. Then $\tilde{\mathcal{M}}_{(25:1)}$ has Euler characteristic

$$\chi(\tilde{\mathcal{M}}_{(25:1)}) = -200 + 2 \cdot 106 = 12.$$

It is not clear if there exist projective small resolutions.

The Segre nodes and the rulings of their tangent cones are always rational over \mathbb{F}_p , the moving nodes and the rulings of their tangent cones only for $p \equiv 1 \mod 6$. The six additional nodes are always rational over \mathbb{F}_p but the rulings of their tangent cones only if $\sqrt{5}$ exists, i.e., $p \equiv 1, 4 \mod 5$. Thus for $p \equiv 1, 4 \mod 15$ the Lefschetz fixed point formula gives

$$\begin{aligned} |\#\tilde{\mathcal{M}}_{(25:1),p} - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(25:1)}) \cdot p(p+1)| \\ &= |\#\mathcal{M}_{(25:1),p} + 106p - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(25:1)}) \cdot p(p+1)| \\ &\leq p^{3/2}h^3(\tilde{\mathcal{M}}_{(25:1)}) = p^{3/2}(2 + 2h^2(\tilde{\mathcal{M}}_{(25:1)}) - 12). \end{aligned}$$

Counting points over \mathbb{F}_{31} and \mathbb{F}_{139} gives

$$h^2(\tilde{\mathcal{M}}_{(25:1)}) = 15, \quad h^3(\tilde{\mathcal{M}}_{(25:1)}) = 20.$$

For $p \not\equiv 1, 4 \mod 15$ we have the estimates

$$|\#\mathcal{M}_{(25:1),p} + 94p - 1 - p^3 - k \cdot p(p+1)| \le 20p^{3/2}, \quad p \equiv 7,13 \mod 15,$$

$$|\#\mathcal{M}_{(25:1),p} + 16p - 1 - p^3 - l \cdot p(p+1)| \le 20p^{3/2}, \quad p \equiv 11,14 \mod 15,$$

$$|\#\mathcal{M}_{(25:1),p} + 4p - 1 - p^3 - m \cdot p(p+1)| \le 20p^{3/2}, \quad p \equiv 2,8 \mod 15,$$

with $k, l, m \in \mathbb{Z}$, $|k|, |l|, |m| \le 15$. Counting points over \mathbb{F}_{43} , \mathbb{F}_{149} and \mathbb{F}_{107} gives k = l = m = 15. We end up with the formula

$$a_p(\tilde{\mathcal{M}}_{(25:1)}) = \begin{cases} p^3 + 15p^2 - 91p + 1 - \#\mathcal{M}_{(25:1),p}, & p \equiv 1, 4 \mod 15, \\ p^3 + 15p^2 - 79p + 1 - \#\mathcal{M}_{(25:1),p}, & p \equiv 7, 13 \mod 15, \\ p^3 + 15p^2 - p + 1 - \#\mathcal{M}_{(25:1),p}, & p \equiv 11, 14 \mod 15, \\ p^3 + 15p^2 + 11p + 1 - \#\mathcal{M}_{(25:1),p}, & p \equiv 2, 8 \mod 15. \end{cases}$$

For all primes $11 \le p \le 149$ we find

$$a_p(\tilde{\mathcal{M}}_{(25:1)}) = b_p + 9 \cdot p \cdot c_p$$

where b_p are the coefficients of the weight four newform 210/9 (210k4F1) and c_p the coefficients of the weight two newform 210C1.

The *L*-series of $\mathcal{M}_{(-3:1)}$

To get an idea what the primes of bad reduction are we can look at the parameter (-3:1). Modulo 2, 3 and 7 it becomes (1:1), (0:1) and (25:1) which is in any case the parameter of a special member of the pencil of quintics.

Let $\tilde{\mathcal{M}}_{(-3:1)}$ be a big resolution of $\mathcal{M}_{(-3:1)}$ (which is Calabi–Yau, cf. 1.6.3). Then $\tilde{\mathcal{M}}_{(-3:1)}$ has Euler characteristic

$$\chi(\tilde{\mathcal{M}}_{(-3:1)}) = -200 + 10 \cdot 16 + 10 \cdot (9 - 1) = 40.$$

The tangent cone at the singularities is locally isomorphic to the cone over the smooth cubic surface given by

$$0 = x^{2}y + xy^{2} + x^{2}z + xz^{2}$$

$$+ y^{2}z + yz^{2} + y^{2}w + yw^{2}$$

$$+ z^{2}w + zw^{2} + 2xyz + 2yzw$$

$$+ 3x^{2}w + 3xw^{2} + 4xyw + 4xzw.$$

Over \mathbb{F}_p for all primes p that I checked this surface contains

$$\begin{cases} p^2 + 7p + 1, & p \equiv 1 \mod 3, \\ p^2 + 5p + 1, & p \equiv 2 \mod 3 \end{cases}$$

points. It is isomorphic to \mathbb{P}^2 blown up in six points, and if someone identifies a suitable configuration of six points then four of them should be defined over \mathbb{Q} and two over $\mathbb{Q}[\xi_3]$ for a third root of unity ξ_3 . Now for $p \equiv 1 \mod 3$ the Lefschetz fixed point formula gives

$$\begin{aligned} |\#\tilde{\mathcal{M}}_{(-3:1),p} - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(-3:1)}) \cdot p(p+1)| \\ &= |\#\mathcal{M}_{(-3:1),p} + 10(p^2 + 7p) - 1 - p^3 - h^2(\tilde{\mathcal{M}}_{(-3:1)}) \cdot p(p+1)| \\ &\leq p^{3/2}h^3(\tilde{\mathcal{M}}_{(-3:1)}) = p^{3/2}(2 + 2h^2(\tilde{\mathcal{M}}_{(-3:1)}) - 40). \end{aligned}$$

Counting points over \mathbb{F}_{73} and \mathbb{F}_{97} gives

$$h^2(\tilde{\mathcal{M}}_{(-3:1)}) = 25, \quad h^3(\tilde{\mathcal{M}}_{(-3:1)}) = 12.$$

For $p \equiv 2 \mod 3$ we have the estimate

$$\begin{aligned} |\# \tilde{\mathcal{M}}_{(-3:1),p} - 1 - p^3 - k \cdot p(p+1)| \\ &= |\# \mathcal{M}_{(-3:1),p} + 10(p^2 + 5p) - 1 - p^3 - k \cdot p(p+1)| \le 12p^{3/2} \end{aligned}$$

for some $k \in \mathbb{Z}$, $|k| \leq 25$. Counting points over \mathbb{F}_{83} gives k = 25. We end up with the formula

$$a_p(\tilde{\mathcal{M}}_{(-3:1)}) = \begin{cases} p^3 + 15p^2 - 45p + 1 - \#\mathcal{M}_{(-3:1),p}, & p \equiv 1 \mod 3, \\ p^3 + 15p^2 - 25p + 1 - \#\mathcal{M}_{(-3:1),p}, & p \equiv 2 \mod 3. \end{cases}$$

For p = 5 and all primes $11 \le p \le 149$ we find

$$a_p(\tilde{\mathcal{M}}_{(-3:1)}) = b_p + 5 \cdot p \cdot c_p$$

where b_p are the coefficients of the weight four newform 21/1 (21k4B1) and c_p the coefficients of the weight two newform 21A1.

The *L*-series of $\mathcal{M}_{(-2:1)}$

I have not studied the L-series of $\mathcal{M}_{(-2:1)}$ but there is numerical evidence that it is also connected to the weight four newform 6/1 (6k4A1). Let b_p the coefficients of this newform. For all primes $5 \le p \le 151$ we have the formula

$$b_p = p^3 + 15p^2 - 40p + 1 - \#\mathcal{M}_{(-2:1),p}$$

(cf. the tables in [68]), suggesting that $\mathcal{M}_{(-2:1)}$ has a rigid Calabi–Yau desingularization $\mathcal{M}_{(-2:1)}$ and that $a_p(\tilde{\mathcal{M}}_{(-2:1)}) = b_p$. A proof would require a closer look at the resolution of the singularities of $\mathcal{M}_{(-2:1)}$.

3.7 The Barth-Nieto quintic and its double cover

The Barth-Nieto quintic is the variety given by

$$N = \left\{ \sum_{i=0}^{5} x_i = \sum_{i=0}^{5} \frac{1}{x_i} = 0 \right\} \subset \mathbb{P}^5,$$

so we have $N = \mathcal{M}_{1:0}$ (cf. 3.6). It was studied by Barth and Nieto in [6]. We will also consider the inverse image \tilde{N} of N under the double covering of \mathbb{P}^5 branched along the union of the 6 hyperplanes $\{x_k = 0\}$.

In [50] Hulek, Spandaw, van Geemen and van Straten proved that the varieties N and \tilde{N} have smooth Calabi–Yau models, denoted by Y and Z respectively. They also determined their L-series. The L-series of Y was also determined independently in [68]. We will sketch the results.

There are smooth Calabi–Yau models Y resp. Z of N resp. \tilde{N} . Note that there exist projective small resolutions of the nodes (cf. 3.6). We have

$$\chi(Y) = 100, \quad h^{1,1}(Y) = 50, \quad h^{2,1}(Y) = 0$$

and

$$\chi(Z) = 80, \quad h^{1,1}(Z) = 40, \quad h^{2,1}(Z) = 0,$$

so both Y and Z are rigid. Using theorem 1.5 we can prove

$$a_p(Y) = a_p(Z) = b_p$$

for all primes $p \geq 5$, where b_p are the coefficients of the weight four newform 6/1 (6k4A1). This confirms the Tate conjecture for Y and Z which predicts that since there is a 2:1 map $Z \dashrightarrow Y$ the L-series of the two varieties should be the same. In 6.1.2 we will give correspondences between Y and other threefolds with the same L-series.

Chapter 4

Double octics

4.1 Cynk's octic arrangements

Let $X \xrightarrow{\pi} \mathbb{P}^3$ be a double covering of \mathbb{P}^3 branched along an octic surface D. We will regard X as a hypersurface in the weighted projective space $\mathbb{P}^4(1,1,1,1,4)$. If D is smooth then X is a (smooth) Calabi–Yau threefold, if D is singular then X is also singular, and the singularities of X are in one–to–one correspondence with the singularities of D. The singularities of X can be resolved by a sequence of blow–ups of \mathbb{P}^3 , more precisely there is a sequence of blow–ups with smooth centers $\sigma: Y \longrightarrow \mathbb{P}^3$, and a smooth, reduced divisor D^* such that $\sigma(D^*) = D$ and D^* is an even element of the Picard group $\operatorname{Pic}(Y)$ of Y. Then the double covering X of Y branched along D^* is a smooth model of X (for details see, f.i., [41]). If X has only certain types of singularities then X is a smooth Calabi–Yau threefold.

The study of such double coverings was initiated by C.H. Clemens in [22]. He investigated branch loci with ordinary nodes as only singularities. Other authors continued these investigations (cf. [25], [40], [106]). S. Cynk and his co-authors (cf. [26], [27], [29], [30]) extended the class of surfaces and studied new aspects. We are going to report about the results. Modularity of some examples was investigated in [28] and we will extend this work.

4.1 Definition

Let $D \subset \mathbb{P}^3$ be a surface. We call D an arrangement if it is a sum of irreducible surfaces D_1, \ldots, D_r with only isolated singular points satisfying the following conditions:

- 1. For any $i \neq j$ the surfaces D_i and D_j intersect transversally along a smooth irreducible curve $C_{i,j}$ or they are disjoint,
- 2. The curves $C_{i,j}$ and $C_{k,l}$ either coincide, are disjoint or intersect transversally.

A singular point of D_i we call an isolated singular point of the arrangement. A point $P \in D$ which belongs to p of the surfaces D_1, \ldots, D_r we call an arrangement p-fold point. We say that

an irreducible curve $C \subset D$ is a q-fold curve if exactly q of the surfaces D_1, \ldots, D_r pass through it.

We will use the following numerical data for an arrangement:

- d_i The degree of D_i ,
- p_q^i The number of arrangement q-fold points lying on exactly i triple curves,
- l_3 The number of triple lines,
- m_q The number of isolated q-fold points.

If D has degree 8 then we call it an octic arrangement.

Away from the isolated singularities an arrangement looks locally like a sum of planes. Note also that for an octic arrangement with triple curves there are only two possibilities: Either there is one triple elliptic curve and no other triple curves or there are only triple lines. The octic arrangements with triple elliptic curves were classified in [29] (there are four cases).

4.2 Theorem ([27])

If an octic arrangement D contains only

- double and triple curves,
- arrangement q-fold points, q = 2, 3, 4, 5,
- isolated q-fold points, q = 2, 4, 5,

then the double covering of \mathbb{P}^3 branched along D has a non–singular model \tilde{X} which is a Calabi–Yau threefold. Moreover if D contains no triple elliptic curves then

$$\chi(\tilde{X}) = 8 - \sum_{i} (d_i^3 - 4d_i^2 + 6d_i)$$

$$+ 2\sum_{i < j} (4 - d_i - d_j)d_id_j - \sum_{i < j < k} d_id_jd_k$$

$$+ 4p_4^0 + 3p_4^1 + 16p_5^0 + 18p_5^1 + 20p_5^2 + l_3 + 2m_2 + 36m_4 + 56m_5.$$

The ordinary double points (nodes) play a special role in the above theorem. They are resolved by a small resolution (on the double covering). As a consequence \tilde{X} can not be in general realized as a double covering, and it is even non–projective (or equivalently non–kähler). In this case it is easier to study a large resolution of X which is a blow–up of the small resolution at the exceptional lines. These matters have already been discussed in 1.6.

For an octic arrangement there can be up to two triple curves going through a 5-fold point and up to one triple curve going through a 4-fold point.

The resolution of singularities (and with that the proof of the above theorem) is done in the following way:

- 1. Blow—up of isolated singular points: For points of even multiplicity we take the strict transform of the branch divisor as the new branch divisor, for points of odd multiplicity we take the strict transform of the branch divisor plus the exceptional divisor as the new branch divisor. In the latter case we get a new double curve (projectivisation of the normal cone).
- 2. Blow-up of arrangement 5-fold points: We take the strict transform of the branch divisor plus the exceptional divisor as the new branch divisor. This introduces five double lines (lying on the exceptional divisor) and a p_4^1 point for each triple curve going through the point. Here is a picture of the exceptional divisor \mathbb{P}^2 in the three cases of 0, 1 or 2 triple curves:

3. Blow-up of triple curves: We take the strict transform of the branch divisor plus the exceptional divisor as the new branch divisor. We get three copies C_1 , C_2 , C_3 of the blown-up curve C as double curves. Moreover every 4-fold point lying on that curve gives rise to a double line. Here is a picture of the exceptional divisor $C \times \mathbb{P}^1$ for t 4-fold points on the blown-up curve:

- 4. **Blow-up of arrangement 4-fold points:** We take the strict transform of the branch divisor as the new branch divisor (no new singularities).
- 5. Blow-up of double curves: We take the strict transform of the branch divisor as the new branch divisor (no other singularities). Observe that arrangement triple points disappear.

The next important thing to compute are the Hodge numbers of \tilde{X} . In principle this can be done by counting points, using van Geemen's method. In the present case it is also possible to compute $h^{1,2}(\tilde{X})$ (and so $h^{1,1}(\tilde{X})$) with computer algebra methods. The advantage is that we do not need additional information on the action of Frobenius on $H^2_{\text{\'et}}(\tilde{X})$. The algorithm has been implemented in SINGULAR ([45]) by S. Cynk.

4.3 Lemma

Let D be an octic arrangement as in theorem 4.2 without triple curves.

1.
$$h^2(Y) = \operatorname{rk}\operatorname{Pic}(Y) = 1 + \binom{r}{2} + p_4^0 + p_4^1 + 6p_5^0 + 7p_5^1 + 8p_5^2 + l_3 + m_4 + 2m_5$$

2.
$$h^{1,2}(Y) = 6m_5 + \frac{1}{2} \sum_{i < j} d_i d_j (d_i + d_j - 4) + {r \choose 2},$$

3.
$$h^1(\mathcal{T}_Y(\log D^*)) = \dim_{\mathbb{C}}(I_{\text{eq}}/Jf)_8$$

4.
$$h^{1,2}(\tilde{X}) = h^{1,2}(Y) + h^1(\mathcal{T}_Y(\log D^*)),$$

where I_{eq} is the equisingular ideal of D defined by

$$I_{\text{eq}} = \bigcap_{C} \left(I_C^{mult_C D} + Jf \right),$$

the intersection being taken over all multiple curves and points of the arrangement D, and

$$Jf := \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial f}{\partial t}\right)$$

is the Jacobian ideal of D.

4.2 Arrangements of eight planes

Now we are ready to look for nice examples. First we are going to investigate sums of eight planes. These are always octic arrangements in the above sense. In [28] we already gave 88 examples. The aim now is to give an at least heuristically complete list. In [28] we also noticed that the numbers p_4^0 , p_4^1 , p_5^0 , p_5^1 , p_5^2 and l_3 are not sufficient to determine the geometry of the arrangement; they even do not determine the Hodge numbers. To refine the classification we can look at all subarrangements of six planes:

4.4 Lemma

Up to projective equivalence there are exactly 10 possible arrangements of six planes (in arbitrary characteristic \neq 2,3) containing no 6-fold points and no fourfold lines. We list the numerical data and a sample equation:

		9	1				ı	
no.	l_3	p_5^2	$p_5^{\scriptscriptstyle extsf{1}}$	p_5^0	p_4	p_{4}^{0}	p_3	equation: $0 = \cdots$
1	2	1	0	0	2	0	4	xyzt(x+y)(x+z)
2	2	0	0	0	6	0	0	xyzt(x+y)(z+t)
3	1	0	1	0	1	0	7	xyzt(x+y)(x-y+z)
4	1	0	0	0	3	0	10	xyzt(x+y)(x+z+t)
5	1	0	0	0	3	1	6	xyzt(x+y)(x+y+z+t)
6	0	0	0	1	0	0	10	xyzt(x+y+z)(x-y+2z)
7	0	0	0	0	0	0	20	xyzt(x+y+z+t)(x-y+2z-2t)
8	0	0	0	0	0	1	16	xyzt(x+y+z)(x+2y-z+t)
9	0	0	0	0	0	2	12	xyzt(x+y+z+t)(x+y-z-t)
0	0	0	0	0	0	3	8	xyzt(x+y+z)(x+y+t)

Proof:

There can not be three triple lines since this would result in a 6-fold point.

Let there be two triple lines. If they meet in a p_5^2 point then the plane that does not contain a triple line intersects the triple lines in two p_4^1 points (and there are no other 4-fold or 5-fold points). If the triple lines do not meet then each plane intersects the triple line which is not contained in that plane in a p_4^1 point.

Let there be only one triple line. If there is a p_5^1 point then the plane which does not contain that point intersects the triple line in a p_4^1 point (and there are no other 4–fold or 5–fold points). If there is no p_5^1 point then the three planes which do not contain the triple line intersect that line in three p_4^1 points. These three planes also intersect in a point which either is contained in one of the other planes or not.

Let there be no triple lines. If there is a p_5^0 point then there are no other 4-fold or 5-fold points. If there is no p_5^0 point then there can be up to three p_0^4 points (if there are two p_0^4 points then they lie on a double line; if there are three p_0^4 points then each two lie on a double line, the arrangement is a cube).

The table in appendix A lists 450 examples of arrangements of eight planes defined over \mathbb{Q} that have been found with a computer search. We give the numerical data of the arrangements, the Hodge numbers $h^{1,1} = h^{1,1}(\tilde{X})$ and $h^{1,2} = h^{1,2}(\tilde{X})$ and the Euler number $\chi = \chi(\tilde{X})$ of the Calabi–Yau resolution \tilde{X} of the double covering and the list of types of subarrangements of six planes (in lexicographical order with respect to some numbering of the planes, i.e., from $D_0 \cup \cdots \cup D_5$ to $D_2 \cup \cdots \cup D_7$).

The computer search was organized in the following way: One by one, I fixed one of the ten possible subarrangements of six planes (with equations as in the table in lemma 4.4) and added all sets of two planes with bounded absolute value of integral coefficients. I determined the numerical data of the arrangement and all subarrangements of six planes and compared the result with the existing list (this includes of course considering all possible permutations of the eight planes).

At first I bounded the absolute value of the coefficients of the additional planes by two. This way I already found 447 examples. The remaining 3 examples had some coefficients ± 3 (no. 275, 276, 385). I ran the program again, this time bounding the absolute value of the coefficients by six, and did not find any new examples (this took more than a week).

Note that it is not clear that two arrangements with the same numerical data and the same (ordered) set of subarrangements have the same geometry (but it seems plausible). I checked it for fun in two simple cases:

There are exactly 3 arrangements with two p_4^0 points and no other multiple points: the two points can lie on two, one or zero common planes of the arrangement. These arrangements correspond to no. 446, no. 447 and no. 448 in the list. Note that to distinguish no. 447 and no. 448 we really need to look at the *ordered* set of subarrangements.

There are exactly 7 arrangements with three p_4^0 points and no other multiple points: Denote the three p_4^0 points of such an arrangement with A, B and C and the planes with D_0, \ldots, D_8 . Note

that it is impossible that no two of the points lie in a common plane of the arrangement.

Now assume that the three points do not lie in a common plane. Then without loss of generality $A \in D_0$ and $B \in D_0$. Up to permutation there are four cases (note that there must be two points lying on a double line):

- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_2 \cap D_4 \cap D_6 \cap D_7$ (A and B lie on a double line, A and C lie on a common plane, B and C lie on a common plane; no. 443)
- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_2 \cap D_3 \cap D_6 \cap D_7$ (A and B lie on a double line, A and C lie on a double line; no. 440)
- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_2 \cap D_3 \cap D_4 \cap D_7$ (A and B lie on a double line, A and C lie on a double line, B and C lie on a common plane; no. 441)
- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_2 \cap D_3 \cap D_4 \cap D_5$ (A and B lie on a double line, A and C lie on a double line, B and C lie on a double line; no. 444)

Now assume that the three points lie in a common plane, say D_0 . This time there are three cases up to permutation:

- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_0 \cap D_2 \cap D_6 \cap D_7$ (A and B lie on a double line, A and C lie on a double line; no. 442)
- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_0 \cap D_2 \cap D_4 \cap D_6$ (A and B lie on a double line, A and C lie on a double line, B and C lie on a double line; no. 439)
- $A = D_0 \cap D_1 \cap D_2 \cap D_3$, $B = D_0 \cap D_1 \cap D_4 \cap D_5$, $C = D_0 \cap D_1 \cap D_6 \cap D_7$ (A, B and C lie on a double line; no. 445)

Here are schematic pictures of the seven arrangements:

Now we are going to discuss several aspects of the list of examples.

Forgotten arrangements of eight planes

There are some configurations of multiple points and lines that did not appear in the list in [28]:

no.	p_3	p_4^0	p_4^1	p_5^0	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ
30	14	1	6	1	0	1	2	2	52	100
52	15	0	4	0	3	0	2	2	56	108
64	12	3	10	0	0	0	2	2	44	84
144	14	4	5	1	0	0	1	1	45	88
145	18	3	5	1	0	0	1	2	44	84
146, 147, 148	22	2	5	1	0	0	1	3	43	80
149	26	1	5	1	0	0	1	4	42	76
150, 151	30	0	5	1	0	0	1	5	41	72
197, 198, 199, 200	22	6	0	1	0	0	0	1	41	80

Hodge numbers are not determined by numerical data

As mentioned before, the Hodge numbers are not determined by the numbers p_4^0 , p_4^1 , p_5^0 , p_5^1 , p_5^2 and l_3 . This can be observed for the arrangements with only p_4^0 points where in some cases the Hodge number $h^{1,2}$ is lower than expected (the idea is that adding a p_4^0 point should decrease $h^{1,2}$ by one):

• no. 384 with $p_4^0=6$, • no. 287 with $p_4^0=7$, • no. 260, no. 263, no. 269, no. 271, no. 272 with $p_4^0=8$, • no. 243, no. 244, no. 246 with $p_4^0=9$, • no. 242 with $p_4^0=10$.

Rigid arrangements of eight planes

In the table of arrangements of eight planes in appendix A there are exactly 11 rigid arrangements. All of them but no. 241 were already discussed in [28] (where they were numbered in a different way). We list the numbers, the old numbers from [28], the Hodge number $h^{1,1} = h^{1,1}(\tilde{X})$, the rank $\rho = \operatorname{rk}\operatorname{Pic}(Y)$ of the Picard group of Y and a sample equation.

no.	old	$h^{1,1}$	ρ	sample equation: $0 = \cdots$
1	2	70	70	xyzt(x+y)(y+z)(z+t)(t+x)
3	6	62	62	xyzt(x+y)(y+z)(y-t)(x-y-z+t)
19	23	54	54	xyzt(x+y)(y+z)(x-z-t)(x+y+z-t)
32	29	50	50	xyzt(x+y)(y+z)(x-y-z-t)(x+y-z+t)
69	44	50	50	xyzt(x+y)(x-y+z)(x-y-t)(x+y-z-t)
93	62	46	46	xyzt(x+y)(x-y+z)(y-z-t)(x+z-t)
238	87	44	41	xyzt(x+y+z-t)(x+y-z+t)(x-y+z+t)(-x+y+z+t)
239	86^{a}	40	39	xyzt(x+y+z)(x+y+t)(x+z+t)(y+z+t)
240	86	40	39	xyzt(x + y + z)(x + y - z + t)(x - y + z + t)(x - y - z - t)
241		40	39	xyzt(x+y+z+t)(x+y-z-t)(y-z+t)(x+z-t)
245	84	38	38	xyzt(x+y+z)(y+z+t)(x-y-t)(x-y+z+t)

All of the above arrangements can be realized as a cube with two additional planes since they contain subarrangements of six planes of type zero. Note that in all cases except no. 32 there is more than one subcube and we could draw different pictures of the same arrangement. E.g., for arrangements no. 239 and no. 240 different subcubes were chosen in [28].

Now we will present pictures and geometrical descriptions of all rigid arrangements.

Arrangement no. 1: the additional two planes pass through four vertices of the cube each and intersect along a diagonal of the cube.

Equivalently this arrangement may be described as a tetrahedron and additional four planes going through four edges of the tetrahedron and intersecting in one point.

Arrangement no. 3: one additional plane goes through three vertices and the other through four vertices of the cube; they intersect along the diagonal of a face.

Arrangement no. 19: one additional plane goes through three vertices and the other through four vertices of the cube; they have only one of the vertices of the cube in common.

Arrangement no. 32: one additional plane goes through four vertices of the cube, the other through two opposite vertices not belonging to the first plane and two midpoints of edges belonging to the first plane.

Arrangement no. 69: the additional planes pass through three vertices of the cube each and intersect along the diagonal of a face.

Arrangement no. 93: one additional plane goes through an edge of the cube and is parallel to a diagonal of the cube, the other plane goes through three vertices of the cube not belonging to the first plane.

Arrangement no. 238: the additional planes pass through three vertices of the cube each and are parallel.

Equivalently this arrangement may be described as a symmetric octahedron. The 4–fold points are then: six vertices of the octahedron and six points at infinity of intersections of parallel edges. Note that this arrangement was already described in [48] and [75].

Arrangement no. 239: the additional planes pass through three vertices of the cube each; they intersect in a line going through two midpoints of faces of the cube.

Arrangement no. 240: one additional plane goes through three vertices of the cube, the other goes through two vertices and two midpoints of edges such that the planes are parallel.

Arrangement no. 241: the additional planes pass through two opposite vertices of the cube each and intersect in a line through the midpoints of two opposite edges of the cube.

Arrangement no. 245: the additional planes pass through two vertices and two midpoints of edges of the cube each and intersect in a line through a midpoint of an edge and a midpoint of a face of the cube.

Modularity of the rigid arrangements

Now we are going to verify the modularity conjecture for the Calabi–Yau threefolds constructed from the eleven rigid arrangements above.

4.5 Lemma

The Calabi–Yau manifolds \tilde{X}_p associated to arrangements no. 1, 3, 19, 32, 69, 93, 238, 241 are smooth for all primes $p \geq 3$, the Calabi–Yau manifolds \tilde{X}_p associated to arrangements no. 239, 240, 245 are smooth for all primes $p \geq 5$.

Proof:

Since the singularities of arrangements of planes are defined by ranks of some minors of 8×4 matrices of coefficients, it is enough to verify the lemma for the primes dividing any minor of the matrices. This is easily done with a computer.

The coefficients of the L-series can now be computed from the Lefschetz fixed point formula

$$a_p(\tilde{X}) = 1 + p^3 + k_p(\tilde{X})(p + p^2) - \#\tilde{X}_p$$

where
$$k_p(\tilde{X}) \in \mathbb{Z}$$
, $|k_p(\tilde{X})| \leq h^{1,1}(\tilde{X})$, $k_p(\tilde{X}) \cdot p = \operatorname{tr}(\operatorname{Frob}_n^* | H_{\text{\'et}}^2(\tilde{X}))$.

Now the Picard group $Pic(\tilde{X})$ of \tilde{X} splits into a sum of symmetric part and skew–symmetric part. The symmetric part is naturally isomorphic to Pic(Y). By Lemma 4.3

$$\operatorname{rk}\operatorname{Pic}(Y) = 29 + p_4^0 + p_4^1 + 6p_5^0 + 7p_5^1 + 8p_5^2 + l_3.$$

Consequently for arrangements no. 1,3,19,32,69,93,245 we get $\operatorname{Pic}(\tilde{X}) \cong \operatorname{Pic}(Y)$, i.e., all the divisors are even and defined over \mathbb{Q} . Thus Frob_p^* acts on $H^2_{\operatorname{\acute{e}t}}(\tilde{X})$ by multiplication with p, and $k_p(\tilde{X}) = h^{1,1}(\tilde{X})$ for all good primes p.

For arrangements no. 239, 240 and 241 the rank of the skew-symmetric part of $Pic(\tilde{X})$ is one. For arrangement no. 239 it is generated by the divisor associated to the contact hyperplane x - t = 0, for arrangement no. 240 it is generated by the divisor associated to the contact hyperplane x + y - z + t; so also in these cases we have $k_p(\tilde{X}) = h^{1,1}(\tilde{X})$ for all good primes p.

For arrangement no. 241 there seems to be no contact hyperplane (there is at least no plane through four double lines as for no. 239 and no. 240). But since $h^{1,1}(\tilde{X}) - \operatorname{rk}\operatorname{Pic}(Y) = 1$ and $k_p(\tilde{X}) \in \mathbb{Z}$, the "missing eigenvalue" of Frob_p^* on $H^2_{\operatorname{\acute{e}t}}(\tilde{X})$ can only be $\pm p$, so $k_p(\tilde{X}) = h^{1,1}(\tilde{X})$ or $k_p(\tilde{X}) = h^{1,1}(\tilde{X}) - 2$. Once we know $\#\tilde{X}_p$ we can thus determine $k_p(\tilde{X})$ for all needed primes since $|a_p(\tilde{X})| \leq 2p^{3/2}$ and $p^2 + p > 2p^{3/2}$.

For arrangement no. 238 the rank of the skew–symmetric part of $\operatorname{Pic}(\tilde{X})$ is three. On \tilde{X} there are the skew–symmetric divisors associated to the contact hyperplanes x+y+z-t=0, x+y+t-z=0, x+z+t-y=0 and y+z+t-x=0. It is not easy to check if they generate all of the skew–symmetric part of $\operatorname{Pic}(\tilde{X})$, but anyway we have $h^{1,1}(\tilde{X})-k_p(\tilde{X})\in\{0,1,2,3,4\}$ and we can determine $k_p(\tilde{X})$ as above.

To compute $\#\tilde{X}_p$ we first count points on the singular double covering X_p of $\mathbb{P}^3(\mathbb{F}_p)$, i.e., the number of points in $\mathbb{P}^3(\mathbb{F}_p)$ for which the value of the branch divisor equation is a square (in \mathbb{F}_p). Note that the number does not only depend on the branch divisor, but actually on its equation. Multiplying the equation of the branch divisor by squarefree integers we get new (non-isomorphic over \mathbb{Q}) Calabi–Yau manifolds. Then we have to take into account the resolution of singularities.

Blowing up a 5-fold point replaces a point on the double covering by a plane (since the exceptional divisor is contained in the branch locus), but we add five double lines and 0, 1 or two p_4^1 points (depending on the number of triple lines through this point).

Blowing up a triple line replaces a line on the double covering by $\mathbb{P}^1 \times \mathbb{P}^1$. This introduces new double lines, altogether 3 plus the number of 4-fold points on the triple line.

Blowing up a double line replaces a line on the double covering by a double covering of $\mathbb{P}^1 \times \mathbb{P}^1$ which is also $\mathbb{P}^1 \times \mathbb{P}^1$, so we add $p^2 + 2p + 1 - (p+1) = p^2 + p$ points.

Altogether blowing up double and triple lines and 5-fold points adds

$$(p_4^1 + 6p_5^0 + 7p_5^1 + 8p_5^2 + l_3 + 28)(p + p^2)$$

points to the double covering.

We can not write down a similarly simple formula for blowing up a 4-fold point. The reason is that the blow-up of a 4-fold point replaces a point on the double covering by a double covering of a projective plane branched along four lines (projectivisation of the normal cone).

Let P be a p_4^0 point with coordinates $(p_x : p_y : p_z : 1)$ and let D_i , i = 1, ..., 8 be the equations for the eight planes of the arrangement. The projectivisation of the normal cone at P is then given by

$$\left\{ u^2 = \prod_{D_i(P) \neq 0} D_i(P) \prod_{D_i(P) = 0} D_i(x : y : z : 0) \right\} \subset \mathbb{P}^3(1, 1, 1, 2)$$

so it is of the form

$$\left\{ u^2 = \prod_{i=1}^4 (a_{i1}x + a_{i2}y + a_{i3}z) \right\} \subset \mathbb{P}^3(1,1,1,2).$$

Let

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ a_{41} & a_{42} & a_{43} \end{pmatrix}, \qquad M = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Then $|M| \neq 0$ and

$$|M| \cdot A \cdot M^{-1} = \begin{pmatrix} |M| & 0 & 0\\ 0 & |M| & 0\\ 0 & 0 & |M|\\ c_1 & c_2 & c_3 \end{pmatrix}$$

with

$$\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = |M|(a_{41}, a_{42}, a_{43})M^{-1}
= \begin{pmatrix} (a_{22}a_{33} - a_{23}a_{32})a_{41} + (a_{23}a_{31} - a_{21}a_{33})a_{42} + (a_{21}a_{32} - a_{22}a_{31})a_{43} \\ (a_{13}a_{32} - a_{12}a_{33})a_{41} + (a_{11}a_{33} - a_{13}a_{31})a_{42} + (a_{12}a_{31} - a_{11}a_{32})a_{43} \\ (a_{12}a_{23} - a_{13}a_{22})a_{41} + (a_{13}a_{21} - a_{11}a_{23})a_{42} + (a_{11}a_{22} - a_{12}a_{21})a_{43} \end{pmatrix}$$

and $c_1c_2c_3 \neq 0$. This means that our surface is birationally equivalent over \mathbb{Q} with the surface

$$\{u^2 = |M|^3 \cdot xyz(c_1x + c_2y + c_3z)\} \subset \mathbb{P}^3(1,1,1,2)$$

and so also to the surface

$$S_{\alpha} = \{u^2 = \alpha \cdot xyz(x+y+z)\} \subset \mathbb{P}^3(1,1,1,2)$$

where α is the squarefree part of $|M|c_1c_2c_3$. Now consider the smooth quadric surface

$$Q_{\alpha} = \{t^2 = \alpha(ab + ac + bc)\} \subset \mathbb{P}^3(\mathbb{K})$$

with discriminant $-4\alpha^3$. The map

$$\mathbb{P}^3(1,1,1,2) \longrightarrow \mathbb{P}^3(\mathbb{K}), \qquad (x:y:z:u) \mapsto (u:yz:xz:xy)$$

maps $S_{\alpha} \setminus \{xyz = 0\}$ birationally to $Q_{\alpha} \setminus \{abc = 0\}$ (the inverse map is given by $(t:a:b:c) \mapsto (bc:ac:ab:tabc)$). The set $S_{\alpha} \cap \{xyz = 0\}$ is the union of three lines in a plane, the set $Q_{\alpha} \cap \{abc = 0\}$ is the union of three plane conics where each two meet in one point. Thus over the finite field \mathbb{F}_p we have

$$\#S_{\alpha,p} = \#Q_{\alpha,p} = p^2 + p + \left(\frac{-\alpha}{p}\right)p + 1.$$

Going back to our Calabi–Yau manifolds \tilde{X} we can now compute

$$\#\tilde{X}_p = \#X_p + (p_4^0 + p_4^1 + 6p_5^0 + 7p_5^1 + 8p_5^2 + l_3 + 28)(p + p^2) + \sum_{n=0}^{\infty} \left(\frac{-\alpha}{p}\right)p$$

where the sum runs over the p_4^0 points and α is defined as above. Counting points and comparing we find that the $a_p(\tilde{X})$ agree with the coefficients of certain weight four newforms (where I multiplied the equation of the branch divisor with λ to twist the modular form to reach a minimal level). To prove the modularity we can use corollary 1.6.

no.	λ	newfo	rm
1	1	8/1	(8k4A1)
3	1	32/2	(32k4B1)
19	2	32/1	(32k4A1)
32	-1	8/1	(8k4A1)
69	-1	8/1	(8k4A1)
93	2	8/1	(8k4A1)
238	1	8/1	(8k4A1)
239	1	12/1	(12k4A1)
240	-2	6/1	(6k4A1)
241	1	8/1	(8k4A1)
245	-2	6/1	(6k4A1)

One-parameter families

In the table of arrangements of eight planes in appendix A there are exactly 63 arrangements with $h^{2,1}(\tilde{X})=1$. Some of them were already discussed in [28] (where they were numbered in a different way). We list the numbers, the old numbers from [28] and equations of one-parameter families containing these arrangements. I have not been able to find a linear parametrization for families no. 275 and no. 276. But of course this does not mean that there is no such parametrization.

no.	old	equation: $0 = xyzt\cdots$
2	1	$\frac{(x+y)(y+z)(z+t)(Ax+Bt)}{(x+y)(y+z)(z+t)(Ax+Bt)}$
4		(x+y)(y+z)(Ax+By+Bz-At)(Ax+Ay+Bz-At)
5	5	(x+y)(y+z)(x+y+z-t)(Ax+By+Az-At)
8	11	(x+y)(y+z)(z-t)(Ax-By-Bz+Bt)
10	10	(x+y)(y+z)(z-t)(Ax-By-Bz-At)
13	14	(x+y)(y+z)(x-z-t)(Ax-Az+Bt)
16	18	(x+y)(y+z)(Ay-Bz-At)(Bx-Ay+At)
20	22	(x+y)(y+z)(x-z+t)(Ay-Bz-At)
21		(x+y)(y+z)(Ax - By - (A+B)t)(Ax + Bz - At)
33		(x+y)(y+z)(x-z+t)(Ax-Ay-Az+Bt)
34	28	(x+y)(x+z)(x+y+z+t)(Ay-Az+Bt)
35		(x+y)(x+y+t)(Ax - Ay + Bz + At)(Ay - Bz + At)
36		(x+y)(y-z+t)(Ax-By+Bz+At)(Ax+Ay+Bz+At)
53	32	(x+y)(z+t)(Ax - By - Az - At)(Bx + By - Bz + At)
70		(x-y+z)(y-z-t)(x-y-t)(Ax+By)
71	43	(x+y)(x+y+z+t)(Ax-By+Az)(By-Az-At)
72		(x+y+z)(y+z+t)(x-y-t)(Ay+Bz+Bt)
73		(x+y-z-t)(y-z-t)(Ax+Ay+Bz+Bt)(Ax-By+Bt)
94		(x+y)(x+y+z-t)(Ax-By+Az)(By-Az-Bt)
95		(x+y)(x+y-z+t)(Ax-By+Bz)(Ax-By-Az-Bt)
96		(x+y)(x+y-z+t)(Ax-By+Bz+At)(Ay+Bz+At)
97		(x+y)(x+y+z+t)(y-z-t)(Ax-Bz+At)
98	61	(x+y+z)(y+z+t)(x+z-t)(Ay+Bz+Bt)
99		(x+y+z)(x+z-t)(Ax+(A+B)y-Bz+Bt)(Ax-By-Bz)
100		(x+y-z+t)(Ax+Ay+Bz)(Ay+Bz+At)(By-Bz-At)
144		(x-y+z+t)(Ax+By+Az)(By+Az+At)(Bx-By-Az+Bt)
152		(x + y + z + t)(y + t)(x - y - z + t)(Ax - Ay + Bz - Bt)
153		(x+y+z)(y+z+t)(Ax-By+At)(Ax-By+Az+At)
154	55	(x+y+z)(x+y+z-t)(Ax+(A+B)y-Bz+Bt)(Ax-Bz-At)
155		(Ax + By + Az)(Ax + (A + B)y - Bz + At)
		$\cdot (Ax - Bz - Bt)(Ax + By + Az + At)$
197		(x-y-z+t)(Ax+By+Bz)(By+Bz+At)(Ax+Bz+At)
198		(x+y+z)(y+z+t)(x-y-t)(Ax-Ay-Az+Bt)

no	old	equation: $0 = xyzt\cdots$
no.	oid	equation: $0 = xyzt \cdots$ (x + y + z)(y + z + t)(Ax + By + (A - B)z)(Ax + By + Az + Bt)
200		
	OF.	(x+y+z+t)(Ax+Ay-Bz-Bt)(Ay-Bz+At)(Ax-By-Bt)
242	85	(x+y+z)(x+z-t).
9.49		(Ax + (A+B)y - Bz + Bt)((A+B)x + (A+B)y + Bt)
243	02	(x+y+z)(y+z+t)(x+y+t)(Ax+By+Az+At)
244	83	(x+y+z+t)(Ax+Ay+Bz+Bt)(Ay+Bz+At)(Ax+Bz+At)
246		$(x+y+z)(Ax+(A+B)y-Bz+Bt)\cdot$
247		$\frac{(Ax - Bz - At)(Ax + (A+B)y + Az - At)}{(x + y + z)(y + z + t)(x - y + t)(Ax - Bz + Bt)}$
248		$\frac{(x+y+z)(y+z+t)(x-y-t)(Ax-Bz+Bt)}{(x+y+z)(x-z-t)(x+z+t)(Ax+(A+B)x-Bz+At)}$
249		(x+y+z)(y-z-t)(x+z+t)(Ax+(A+B)y-Bz+At)
$\frac{249}{250}$		(x+y+z)(x+z+t)(Ax+(A+B)y-Bz+At)(By-Bz+At)
251		$\frac{(x+y+z)(y+z-t)(x+z+t)(Ax+By-Az+At)}{(x+y+z)(x+z-t)(Ax+Az+By-Bz+Bt)(Ax-By-Az+At)}$
252		(x+y+z)(x+z-t)(Ax+(A+B)y-Bz+Bt)(Ax-By-Bz-At) $ (x+y+z)(x+y+t)(Ax+2Ay-Bz+At)(Ax-Bz-At)$
253		
$\frac{253}{254}$		(x+y+z)(x+z-t)(Ax+(A+B)y-Bz+Bt)(Ax+Ay-Bz-At) $ (x+y+z+t)(Ax+Ay-Bz-Bt)(Ay-Bz+At)(Ax-By-Bz)$
255		(x+y+z+t)(Ax+Ay-Bz-Bt)(Ay-Bz+At)(Ax-By-Bz) $(Ax+Ay+Bz+Bt)(x+y-2z-2t).$
200		(Ax + Ay + Bz + Bt)(x + y - 2z - 2t) $(Ay + (B - 2A)z + Bt)(Bx + (B - 2A)y + (4A - 2B)z - 2Bt)$
256		(Ay + (B - 2A)z + Bt)(Bx + (B - 2A)y + (4A - 2B)z - 2Bt) (x + y + 2z)(Ay - Bz + Bt).
200		(x + y + 2z)(Ay - Bz + Bt) $\cdot (Ax + Ay + (2A - B)z + Bt)(Bx + (B - 2A)y + 2Bz - 2Bt)$
257		(x + y + 2z + 2t)(Ax + Ay + Bz + Bt)
		(Ay + (B - 2A)z + Bt)((2A - B)x - By + (4A - 2B)z - 2Bt)
258		(x-y+2z-2t)(y-z+2t)(x-y+z-t)(Ax+By+Az+Bt)
259		(x+y+z+t)(x-y-z+t)(Ax-Ay+Bz-Bt)(Ax-By+Az-Bt)
261		(x+y+z+t)(x-y-z+t)(Ax-Ay+Bz-Bt)(Ax+Ay+Bz+Bt)
262		(x-z-t)(Ax + Ay + Bz)(Ax + (A+B)y - Az + Bt)(By - (A+B)z - At)
264		$(y-2z+2t)(Ax+Ay+Bz)\cdot$
		$\cdot (Ax + 2Ay + (B - 2A)z + (2A - B)t)(Ax + Ay - 2Az + (2A - B)t)$
265		(x+y-z+2t)(Ax+2Ay-Az+Bt)
		$\cdot (By - 2Az + 2Bt)(Bx + By + (2A - B)z)$
266		(y-2z+2t)(2x+y+2t)(Ax+By+Az)(Ax+(A+B)y-Az+At)
267		(Ax + Ay + (B - A)z)(Ax + By - Az + At)
0.00		$\frac{\cdot ((B-A)y-Bz+Bt)(Bx+By-Az+Bt)}{(A+A)(A+A)(A+A)(A+A)(A+A)(A+A)(A+A)(A+A$
268		(x+y+z)(Ay-2Bz+2Bt)(2Bx+2By+At)((2B-A)x+2By-Az+At)
270		(x+y+z)(y+z+t)(Ax+2Ay-Bz+At)(Bx-2Ay+Bz+Bt)
273		(x+y+z)(2y+2z+t)(2x-2z-t)(Ax+2By-Az+Bt)
274		(x+y+z)(x+z-t)(Ax+(A+B)y-Bz+Bt)(Ax+Ay-Bz+(A+B)t)
275		xyzt(x+y+z)((A+B-C)x+2Bz+t)(2Cy+(B+C-A)z+t).
276		$(2Ax + (A + C - B)y + t), A^2 + B^2 + C^2 = 2(AB + AC + BC)$ $xyzt(Ax + By + Cz)(Cy + Bz + At)$
210		$(Rx + Rx + Ct)(Cx + Rt + Rt)$ $R^2 - C^2 AC$
		$(Bx + Bz + Ct)(Cx + By + Bt), \qquad B^2 = C^2 - AC$

I ran a computer search to find modular examples. For some families and certain parameters we find

$$a_p(\tilde{X}) = b_p + p \cdot c_p$$

for all primes $5 \le p \le 97$, where b_p are the coefficients of a weight four newform and c_p are the coefficients of a weight two newform. Below there is a list of the results. Again I multiplied the equations of the branch divisors with λ to obtain a weight four newform of minimal level.

no.	(A:B)	λ	weight 4	weight 2
4	(1:-1)	1	32/1 $(32k4A1)$	32A1
4	(1:2)	1	32/1 $(32k4A1)$	32A1
4	(2:1)	2	32/1 $(32k4A1)$	32A1
8	(3:1)	-1	24/1 $(24k4A1)$	24A1
13	(1:-2)	1	32/1 (32k4A1)	32A1
13	(1:1)	1	32/1 $(32k4A1)$	32A1
13	(2:-1)	1	32/1 $(32k4A1)$	32A1
21	(2:-1)	1	32/2 (32k4B1)	32A1
53	(1:1)	1	32/2 (32k4B1)	32A1
154	(2:-3)	-1	8/1 $(8k4A1)$	72A1
244	(1:-1)	1	12/1 $(12k4A1)$	48A1
249	(2:1)	1	24/1 (24k4A1)	24A1
249	(2:-3)	1	24/1 (24k4A1)	24A1
267	(1:-1)	-1	96/4 (96k4B1)	96B1
267	(1:2)	-1	96/4 (96k4B1)	96B1
267	(2:1)	-1	96/4 (96k4B1)	96B1
274	(1:1)	-1	96/2 (96k4E1)	96B1
275	(A:B:C) = (1:1:4)	-1	96/4 (96k4B1)	96B1

Note that for all listed arrangements but no. 244 we have $\operatorname{Pic}(\tilde{X}) \cong \operatorname{Pic}(Y)$, so Frob_p^* acts on $H^2_{\operatorname{\acute{e}t}}(\tilde{X})$ by multiplication with p. For arrangement no. 244 the rank of the skew–symmetric part of $\operatorname{Pic}(\tilde{X})$ is one. It is generated by the divisor associated to the contact hyperplane x+y-z+t; so also in this case Frob_p^* acts on $H^2_{\operatorname{\acute{e}t}}(\tilde{X})$ by multiplication with p.

Now we want to prove the modularity at least in some cases. We consider an arrangement of eight planes and suppose that there is a plane (not belonging to the arrangement) which contains exactly two multiple lines of the arrangement. The intersection of the double covering X with this plane is then a double covering of \mathbb{P}^2 branched along the union of four lines. The preimage of this surface in \tilde{X} is an elliptic surface as in 1.5.2 and the modularity of \tilde{X} follows (with the help of corollary 1.6).

This construction works for two of the above families. In the other cases there does not seem to be a suitable configuration of double lines (but nonetheless there might be hidden elliptic surfaces).

Arrangement no. 244: A one-parameter family containing this arrangement is given by the

equation

$$0 = xyzt(x+y+z+t)(Ax+Ay+Bz+Bt)(Ay+Bz+At)(Ax+Bz+At).$$

The plane containing the double lines z = Ax + Ay + Bz + Bt = 0 and t = x + y + z + t = 0 is given by

$$Ax + Ay + Az + Bt = 0.$$

The fourfold point which is the intersection of the remaining four planes,

$$x = y = Ay + Bz + At = Ax + Bz + At = 0,$$

has coordinates (0:0:A:-B). If we want the plane Ax + Ay + Az + Bt = 0 to contain this point then we get the condition $A^2 = B^2$. For (A:B) = (1:1) the arrangement degenerates (there is a double plane), but for (A:B) = (1:-1) we are in the above situation.

Arrangement no. 4: A one-parameter family containing this arrangement is given by the equation

$$0 = xyzt(x+y)(y+z)(Ax + By + Bz - At)(Ax + Ay + Bz - At).$$

The plane containing the double lines x = z = 0 and x + y = y + z = 0 is given by

$$x - z = 0$$
.

The fourfold point which is the intersection of the remaining four planes,

$$y = t = Ax + By + Bz - At = Ax + Ay + Bz - At = 0,$$

has coordinates (B:0:-A:0). If we want the plane x-z=0 to contain this point then we get the condition B=-A.

The plane containing the double lines x = Ax + Ay + Bz - At = 0 and x + y = Ax + By + Bz - At = 0 is given by

$$(2A - B)x + Ay + Bz - At = 0.$$

The fourfold point which is the intersection of the remaining four planes,

$$y = z = t = y + z = 0,$$

has coordinates (1:0:0:0). If we want the plane (2A - B)x + Ay + Bz - At = 0 to contain this point then we get the condition B = 2A.

The plane containing the double lines z = Ax + By + Bz - At = 0 and y + z = Ax + Ay + Bz - At = 0 is given by

$$Ax + By + (2B - A)z - At = 0.$$

The fourfold point which is the intersection of the remaining four planes,

$$x = y = t = x + y = 0$$
,

has coordinates (0:0:1:0). If we want the plane Ax + By + (2B - A)z - At = 0 to contain this point then we get the condition 2B = A.

Modular examples with higher number of deformations

For some examples with higher number of deformations $(h^{2,1}(\tilde{X}) > 1)$ I also found examples that seem to be modular. In all listed cases we have

$$a_p(\tilde{X}) = b_p + h^{2,1}(\tilde{X}) \cdot p \cdot c_p$$

for all primes $5 \le p \le 97$ where b_p are the coefficients of a weight four newform and c_p are the sums of coefficients of weight two newforms. Again I multiplied the equations of the branch divisors with λ to twist the modular form to reach a minimal level. Note that the search for modular examples was no longer systematic, so there might be many more.

no.	$h^{2,1}(\tilde{X})$	equation
6	2	xyzt(x+y)(y+z)(y-t)(x-y-z-t)
58	3	xyzt(x+y)(z+t)(x-y-z+t)(x-y+z-t)
269	2	xyzt(x+y+z)(x+2y-z+t)(y+z-t)(x+y-2z+t)
287	3	xyzt(x+y+z-3t)(x+y-3z+t)(x-3y+z+t)(-3x+y+z+t)
317	2	xyzt(x+2y+z)(y+2z+t)(x+2t+z)(2x+y+t)
385	3	xyzt(x+y+z+t)(x-y+2z-2t)(x-3y+3z-3t)(x+y+2z)

no.	λ	weight 4	weight 2
6	1	96/4 (96k4B1)	$2 \cdot 32A1$
58	1	32/1 $(32k4A1)$	$3 \cdot 32A1$
269	1	24/1 (24k4A1)	$2 \cdot 24A1$
287	1	6/1 $(6k4A1)$	$3 \cdot 24A1$
317	1	12/1 $(12k4A1)$	$2 \cdot 48A1$
385	-1	96/1 (96k4D1)	$96A1 + 2 \cdot 96B1$

At least for two examples the above construction works, showing certain elliptic surfaces in the resolution \tilde{X} . The modular form of the elliptic curves involved is the weight two newform in the table. To prove the modularity it remains to show that the elliptic surfaces span a subspace of $H^3_{\text{\'et}}(\tilde{X}, \mathbb{Q}_{\ell})$ of dimension $h^{2,1}(\tilde{X})$.

Arrangement no. 58: The plane given by x + y + z - t = 0 contains the two double lines x = x - y - z + t = 0 and y = x - y + z - t = 0 and the fourfold point (1:-1:0:0) which is the intersection of the remaining four planes.

The plane given by x + y - z + t = 0 contains the two double lines x = x - y + z - t = 0 and y = x - y - z + t = 0 and the fourfold point (1:-1:0:0) which is the intersection of the remaining four planes.

The plane given by x - y + z + t = 0 contains the two double lines z = x - y - z + t = 0 and t = x - y + z - t = 0 and the fourfold point (0:0:1:-1) which is the intersection of the remaining four planes.

The plane given by -x + y + z + t = 0 contains the two double lines z = x - y + z - t = 0 and t = x - y - z + t = 0 and the fourfold point (0:0:1:-1) which is the intersection of the remaining four planes.

Altogether there are at least four elliptic surfaces inside the double octic \tilde{X} .

Arrangement no. 287: The plane given by x + y = 3(z + t) contains the two double lines z = x + y + z - 3t = 0 and t = x + y - 3z + t = 0 and the fourfold point (0:0:1:-1) which is the intersection of the remaining four planes. By permutation of coordinates we find six elliptic surfaces inside the double octic \tilde{X} .

Arrangements in finite characteristics

It is also interesting to search for arrangements of eight planes in finite characteristics. One purpose is to find arrangements that do not exist over \mathbb{Q} , the other is to check the list of examples defined over \mathbb{Q} for completeness (since it is possible for small characteristic p to test all arrangements defined over \mathbb{F}_p).

I ran a computer search for the characteristics $p \in \{3, 5, 7, 11, 13, 17\}$. Characteristic 2 makes no sense and larger characteristics are unlikely to produce new examples.

p	p_3	p_4^0	p_4^1	p_5^0	p_{5}^{1}	p_{5}^{2}	l_3	subarrangements of 6 planes
3		6	3	0	1	0	1	999099595954039359999935095
3		11	0	0	0	0	0	99999099999999999000000
5		9	0	0	0	0	0	998998909999999988999099998
7		6	3	0	1	0	1	9999909099999593359554099355
7		8	0	0	0	0	0	9999988989998989989989989
7		9	0	0	0	0	0	990809988999999999999999
11		9	0	0	0	0	0	9889998998999999999999900
13		6	3	0	1	0	1	9990999595954039359999935095
13		9	0	0	0	0	0	999800989998998998999900
13		8	0	0	0	0	0	99990999998989899988989

There are no new examples for characteristic 17. In this case I had to check about 1 billion of examples (which took about two weeks). Some of the examples in the table might lift to some finite extension of \mathbb{Q} . This will be discussed elsewhere.

4.3 Six planes and a quadric

The next interesting thing to consider are unions of six planes and a smooth quadric. Unfortunately the most interesting examples are no arrangements as defined in the last section since there is tangency of surfaces and tangency of intersection curves. Therefore we should have a closer look at the different possible types of multiple points. A priori we can exclude sixfold points and fourfold curves (i.e., fourfold lines in our case).

Note that we will only consider the local type of the multiple points, so the numerical data (numbers of multiple curves and points of certain types) will not determine the variety.

There are double points where one plane is tangent to the quadric and no other plane contains that point. In the following three lemmata we will prove that there are three types of triple points, eight types of fourfold points and fifteen types of fivefold points. Note that it is not a priori clear if all types of multiple points admit a Calabi–Yau resolution (but there is evidence since there will be modular examples with all types of multiple points).

4.6 Lemma

There are exactly three different types of triple points (as intersection of three planes or two planes and a smooth quadric):

Type F_1 : Ordinary arrangement triple point: no two surfaces and no two curves are tangent at this point.

Type F_2 : Intersection point of two planes and the quadric where the planes intersect the quadric in two conics and the conics are tangent to the intersection line of the planes.

Type F_3 : Intersection point of two planes and the quadric where one plane is tangent to the quadric at this point and the other plane intersects the quadric in a conic which is tangent to the intersection line of the planes.

The picture sketches the three different types. It shows two planes and the intersection curves with the third surface (plane or quadric).

Proof:

If a triple point P is no arrangement triple point (i.e., not of type F_1) then there must be tangency of surfaces or tangency of curves which means that one of the surfaces is the quadric.

Let there be no tangency of surfaces at P. If there is tangency of curves then one plane intersects the quadric in a conic which must be tangent to the intersection line of the two planes. In this case the point P is the only point of intersection of the second plane with the quadric. This means that the intersection curve is also a conic tangent at P to the intersection line of the two planes. The point P is then of type F_2 .

Now let one plane be tangent to the quadric at P. Then again the point P is the only point of intersection of the second plane with the quadric and the intersection curve is a conic tangent at P to the intersection line of the two planes. The point P is then of type F_3 .

4.7 Lemma

There are exactly eight different types of 4-fold points (as intersection of four planes or three planes and a smooth quadric) not contained in a fourfold line:

Points not on triple lines:

- **Type** G_1 : Ordinary arrangement p_4^0 point: no two surfaces and no two curves are tangent at this point.
- **Type** G_2 : Intersection point of three planes and the quadric where no plane is tangent to the quadric. Two planes intersect the quadric in conics which are tangent to the intersection line of the two planes at the point.
- **Type** G_3 : Intersection point of three planes and the quadric where one plane is tangent to the quadric at the point. The other planes intersect the quadric in conics which are tangent to the intersection lines with the first plane.

Points on one triple line:

- **Type** G_4 : Ordinary arrangement p_4^1 point: no two surfaces and no two curves are tangent at this point. Observe that the triple line can be the intersection of three planes or of two planes and the quadric.
- **Type** G_5 : Intersection point of three planes and the quadric where the planes intersect in a triple line. No plane is tangent to the quadric and the planes intersect the quadric in conics which are tangent to the triple line.
- **Type** G_6 : Intersection point of three planes and the quadric where the planes intersect in a triple line. One plane is tangent to the quadric at P, and the other two planes intersect the quadric in conics which are tangent to the triple line.
- **Type** G_7 : Intersection point of three planes and the quadric where two planes and the quadric intersect in a triple line. One of the two planes is tangent to the quadric at P. The third plane intersects the quadric in a conic which is tangent to the intersection line with the tangent plane.

Points on two triple lines:

Type G_8 : Intersection point of three planes and the quadric where one plane is tangent to the quadric at the point and the other two planes pass through the two intersection lines. All intersection curves are lines.

Proof:

We only have to consider intersection points of three planes and the quadric. Let P be the 4-fold point and let there be no triple lines through P. A priori there are the following sets of subconfigurations of two planes and the quadric: $\{F_1, F_1, F_1\}$, $\{F_1, F_1, F_2\}$, $\{F_1, F_2, F_2\}$, $\{F_2, F_2, F_2\}$, $\{F_1, F_1, F_3\}$, $\{F_2, F_2, F_3\}$, $\{F_3, F_3, F_3\}$

Let the planes be called A, B, C and the quadric Q. If one of the subconfigurations is of type F_3 then without loss of generality plane A is tangent to the quadric at P and the two subconfigurations containing A are of type F_3 . The conic $B \cap Q$ is tangent to the line $A \cap B$ and the conic $C \cap Q$ is tangent to the line $A \cap C$ so the subconfiguration not containing A is of type F_1 and the 4-fold point is of type G_3 .

If none of the subconfigurations is of type F_3 than at most one can be of type F_2 (otherwise three intersection conics would be tangent to the same line). The set $\{F_1, F_1, F_1\}$ corresponds to type G_1 , the set $\{F_1, F_1, F_2\}$ corresponds to type G_2 .

Now let there be exactly one triple line through P. If the triple line is the intersection of the three planes then we can again consider the possible sets of subconfigurations of two planes and the quadric. If there is a subconfiguration of type F_3 then again there is a second one, and the third one must be of type F_2 . This corresponds to type G_6 . If there is no subconfiguration of type F_3 and if there is one of type F_2 then all three must be of type F_2 . This corresponds to type G_5 . The set $\{F_1, F_1, F_1\}$ corresponds to type G_4 .

If the triple line is the intersection of two planes (say A, B) with the quadric then the subconfigurations of three surfaces corresponding to A, C, Q and to B, C, Q can only be of type F_1 or type F_3 . If they are both of type F_1 then the 4-fold point is of type G_4 . If one is of type F_3 and the other of type F_1 then the 4-fold point is of type G_7 . If they were both of type F_3 then plane C would be tangent to the quadric and there would be a fourfold line.

Now let there be exactly two triple lines through P. Then one plane is tangent to the quadric at P and the other two planes pass through the two intersection lines. All intersection curves are lines so there is no tangency of curves. The 4-fold point is of type G_8 .

4.8 Lemma

There are exactly fifteen different types of 5-fold points (as intersection of five planes or four planes and a smooth quadric) not contained in a fourfold line:

Points not on triple lines:

Type H_1 : Ordinary arrangement p_5^0 point: no two surfaces and no two curves are tangent at this point.

Type H_2 : Intersection point of four planes and the quadric where no plane is tangent to the quadric. Two planes intersect the quadric in conics which are tangent to the intersection line of the two planes at the point.

- **Type** H_3 : Intersection point of four planes and the quadric where no plane is tangent to the quadric. Two pairs of planes intersect the quadric in conics which are tangent to the intersection line of the two planes at the point.
- **Type** H_4 : Intersection point of four planes and the quadric where one plane is tangent to the quadric at the point. The other planes intersect the quadric in conics which are tangent to the intersection lines with the first plane.

Points on one triple line:

- **Type** H_5 : Ordinary arrangement p_5^1 point: no two surfaces and no two curves are tangent at this point. Observe that the triple line can be the intersection of three planes or of two planes and the quadric.
- Type H_6 : Intersection point of four planes and the quadric where no plane is tangent to the quadric. Two planes intersect the quadric in conics which are tangent to the intersection line of the two planes at the point. Observe that the triple line can be the intersection of three planes or of two planes and the quadric.
- **Type** H_7 : Intersection point of four planes and the quadric where three planes intersect in a triple line and the fourth plane is tangent to the quadric at the point. The first three planes intersect the quadric in conics which are tangent to the intersection lines with the fourth plane.
- Type H_8 : Intersection point of four planes and the quadric where three planes intersect in a triple line and the fourth plane is tangent to the quadric at the point. The first three planes intersect the quadric in conics which are tangent to the triple line.
- **Type** H_9 : Intersection point of four planes and the quadric where three planes intersect in a triple line and one of these planes is tangent to the quadric. The other two planes intersect the quadric in conics which are tangent to the triple line.
- **Type** H_{10} : Intersection point of four planes and the quadric where two planes and the quadric intersect in a triple line. One of the two planes is tangent to the quadric at the point. The other two planes intersect the quadric in conics which are tangent to the intersection line with the tangent plane.

Points on two triple lines:

- **Type** H_{11} : Ordinary arrangement p_5^2 point: no two surfaces and no two curves are tangent at this point. Observe that the triple lines can be the intersections of three planes or of two planes and the quadric.
- **Type** H_{12} : Intersection point of four planes and the quadric where three planes intersect in a triple line and also two planes and the quadric intersect in a triple line. The plane

containing only the second triple line is tangent to the quadric at the point. The two planes containing only the first triple line intersect the quadric in conics which are tangent to the intersection lines with the tangent plane.

Type H_{13} : Intersection point of four planes and the quadric where three planes intersect in a triple line and also two planes and the quadric intersect in a triple line. The plane containing both triple lines is tangent to the quadric at the point. The two planes containing only the first triple line intersect the quadric in conics which are tangent to the triple line.

Type H_{14} : Intersection point of four planes and the quadric where one plane is tangent to the quadric and two other planes pass through the intersection lines with the quadric. The fourth plane intersects the quadric in a conic which is tangent to the intersection line with the tangent plane.

Points on three triple lines:

Type H_{15} : Intersection point of four planes and the quadric where one plane is tangent to the quadric and two other planes pass through the intersection lines with the quadric. The fourth plane goes through the intersection line of these two planes and intersects the quadric in a conic which is tangent to the intersection line with the tangent plane.

Proof:

The proof works like the one of lemma 4.7, by inspection of the possible sets of subconfigurations of four planes or three planes and the quadric. These are the sets of subconfigurations corresponding to the fifteen types of 5-fold points (where ijklm stands for the set $\{G_i, G_j, G_k, G_l, G_m\}$):

H_1	11111
H_2	11122
H_3	12222
H_4	11333
H_5	11144

H_6	12244
H_7	33344
H_8	22245
H_9	23346
H_{10}	11377

H_{11}	14444
H_{12}	34477
H_{13}	24677
H_{14}	11778
H_{15}	44778

Experiments

Based on these results I performed some numerical experiments, counting points on double coverings of \mathbb{P}^3 branched along the union of six planes and a smooth quadric.

By lemma 4.4 there are only 10 possible arrangements of six planes containing no sixfold points and no fourfold lines. They all contain a triple point and can thus be given by an equation of the form

$$xyzt \cdot f(x, y, z, t) \cdot g(x, y, z, t) = 0$$

with certain linear polynomials f and g (cf. lemma 4.4 and the table below). For all 10 arrangements of six planes I investigated double coverings of \mathbb{P}^3 branched along the octic surface given by

$$xyzt \cdot f(x, y, z, t) \cdot g(x, y, z, t) \cdot Q(x, y, z, t) = 0$$

where

$$Q(x, y, z, t) = (a_0x^2 + a_1y^2 + a_2z^2 + a_3t^2 + a_4xy + a_5xz + a_6xt + a_7yz + a_8yt + a_9zt)$$

with $a_i \in \mathbb{Z}$, $|a_i| \leq 2$ such that $\{Q=0\}$ is a smooth quadric surface. I determined the number of singular points of the different possible types, counted points over finite fields and compared with coefficients of weight four newforms. Many examples seem to be modular. They are listed in the tables in chapter B. If some examples are not separated by a horizontal line then they have the same numbers and types of singularities (I did not include the numbers and types in the table for layout reasons). Note that this does not mean that the geometry is the same. There are examples with the same numbers and types of singularities but different weight four newforms in their L-series.

The listed weight four newforms are always the twists of minimal level (they can be obtained by multiplying the equation of the octic by certain nonsquare numbers). I also predict if the (resolved) double octics will be rigid. This is based on numerical observations: If a Calabi–Yau threefold X defined over $\mathbb Q$ is rigid then most likely for good primes p the expression $X_p - a_p(X)$ will be a polynomial in p up to $p^2 + p$ times some Legendre symbol(s), and vice versa. I am pretty sure that the examples which are predicted to be rigid are really rigid. Some of the examples which are predicted to be non-rigid might also be rigid.

If we want to prove the modularity of these examples then we will have to resolve the different types of singularities. Note also that S. Cynk's programs for computing Hodge numbers currently do not work for octics that are no arrangements so the Hodge numbers would have to be determined by counting points. Some parts of this procedure could probably be automated but would still require an enormous amount of work.

In the following table I list the equations of the arrangements of six planes and the number of resulting double octics with different numbers and types of singularities (altogether 19258). An extension of the parameter space of the quadrics (there are about 20 millions of examples with $|a_i| \leq 2$) would produce even more results but I believe that there will not be many new examples with $|a_i| \geq 4$. Anyway the numbers are too large to raise expectations of a complete classification.

no.	equation	# octics
1	xyzt(x+y)(x+z)	1428
2	xyzt(x+y)(z+t)	486
3	xyzt(x+y)(x-y+z)	1379
4	xyzt(x+y)(x+z+t)	3894
5	xyzt(x+y)(x+y+z+t)	3774
6	xyzt(x+y+z)(x-y+2z)	567
7	xyzt(x+y+z+t)(x-y+2z-2t)	1039

no.	equation	# octics
8	xyzt(x+y+z)(x+2y-z+t)	2569
9	xyzt(x+y+z+t)(x+y-z-t)	2070
0	xyzt(x+y+z)(x+y+t)	2052

Note that if the quadric is not smooth but has a node then there are also many interesting examples but I did not include them here.

Note also that by a general construction (which will be explained in 4.6) there is a correspondence between the double octic given by the equation

$$u^2 = xyzt \cdot f(x, y, z, t) \cdot g(x, y, z, t) \cdot Q(x, y, z, t)$$

and the double octic given by the equation

$$u^{2} = f(x^{2}, y^{2}, z^{2}, t^{2}) \cdot g(x^{2}, y^{2}, z^{2}, t^{2}) \cdot Q(x^{2}, y^{2}, z^{2}, t^{2}).$$

In general the Hodge numbers of the two double octics will be different but if a weight four newform occurs in the L-series of one of them then it should also occur in the L-series of the other.

If the six planes are the faces of the cube (sextic arrangement no. 0) then they can also be given by the equation

$$0 = (x-t)(x+t)(y-t)(y+t)(z-t)(z+t) = (x^2-t^2)(y^2-t^2)(z^2-t^2).$$

By the same construction as above there is a correspondence between the double octic given by the equation

$$u^{2} = (x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(ax^{2}+by^{2}+cz^{2}+dt^{2})$$

and the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(z-t)(ax + by + cz + dt).$$

If the six planes form a sextic arrangement of type no. 9 (two fourfold points) then they can also be given by the equation

$$0 = (x-t)(x+t)(y-t)(y+t)(x-z)(x+z) = (x^2-t^2)(y^2-t^2)(x^2-z^2).$$

By the same construction as above there is a correspondence between the double octic given by the equation

$$u^{2} = (x-t)(x+t)(y-t)(y+t)(x-z)(x+z)(ax^{2} + by^{2} + cz^{2} + dt^{2})$$

and the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(x-z)(ax + by + cz + dt).$$

We finish this section with some examples that have nice geometrical descriptions. All of them can be realized as the union of the faces of a cube and a quadric.

A ball through the vertices of a cube

Consider (as a real picture) the union of the faces of a symmetric cube (i.e., an arrangement of six planes of type 0) and a ball through its eight vertices. Such an octic surface can be given by the equation

$$(x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^2+y^2+z^2-3t^2) = 0.$$

The double covering X_1 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(z-t)(x+y+z-3t)$$

which is arrangement no. 6 from 4.2. Consequently the weight four newform 96/4 (96k4B1) occurs in the *L*-series of a resolution \tilde{X}_1 of X_1 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_1) = 2$ and $a_p(\tilde{X}_1) = b_p + 2p \cdot c_p$ where b_p are the coefficients of the newform 96/4 and c_p are the coefficients of the weight two newform 32A1.

Indeed a general quadric surface through the vertices of the above cube is given by the equation

$$Ax^{2} + By^{2} + Cz^{2} - (A + B + C)t^{2} = 0$$

with $(A:B:C) \in \mathbb{P}^2$; and an equation for a 2-dimensional family of double octics containing arrangement no. 6 is given by the equation

$$u^{2} = xyzt(x-t)(y-t)(z-t)(Ax + By + Cz - (A+B+C)t).$$

Note that in these families there are examples with smaller number of deformations. If A=0 or B=0 or C=0 or A+B+C=0 then the quadric is nodal. For example, consider the double octic Y_1 given by the equation

$$u^{2} = (x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^{2}+y^{2}-2z^{2}).$$

By numerical observation we have $h^{2,1}(\tilde{Y}_1) = 1$ for a resolution \tilde{Y}_1 of Y_1 , and $a_p(\tilde{Y}_1) = b_p + p \cdot c_p$ where b_p are the coefficients of the weight four newform 32/1 (32k4A1) and c_p are the coefficients of the weight two newform 32A1. The corresponding arrangement of eight planes is no. 4 (with the same L-series).

A ball through the midpoints of the edges of a cube

Consider (as a real picture) the union of the faces of a symmetric cube and a ball through the 12 midpoints of its edges. Such an octic surface can be given by the equation

$$(x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^2+y^2+z^2-2t^2) = 0.$$

The double covering X_2 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(z-t)(x+y+z-2t)$$

which is the rigid arrangement no. 3 from 4.2. Consequently the weight four newform 32/2 (32k4B1) occurs in the *L*-series of a resolution \tilde{X}_2 of X_2 . Moreover by numerical observation \tilde{X}_2 is rigid. Indeed the quadric surface is fixed by the 12 midpoints of the edges of the cube.

A ball through the midpoints of the faces of a cube

Consider (as a real picture) the union of the faces of a symmetric cube and a ball through the 6 midpoints of its faces. Such an octic surface can be given by the equation

$$(x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^2+y^2+z^2-t^2) = 0.$$

The double covering X_3 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(z-t)(x+y+z-t)$$

which is also the rigid arrangement no. 3 from 4.2. Consequently the weight four newform 32/2 (32k4B1) occurs in the *L*-series of a resolution \tilde{X}_3 of X_3 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_3) = 3$ and $a_p(\tilde{X}_3) = b_p + 3p \cdot c_p$ where b_p are the coefficients of the newform 32/2

and c_p are the coefficients of the weight two newform 32A1. Indeed a general quadric surface through the midpoints of the faces of the above cube is given by the equation

$$A(x^{2} + y^{2} + z^{2} - t^{2}) + Bxy + Cxz + Dyz = 0$$

with $(A:B:C:D) \in \mathbb{P}^3$. It is rather interesting that in this case (unlike in the two previous cases) the Hodge numbers $h^{2,1}$ of the two relatives are not the same. Note that in the two previous cases the correspondences work for the whole families.

A cone and the faces of a cube

Consider the octic surface given by the equation

$$(x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^2+y^2-z^2) = 0.$$

It can be described as the union of the faces of a symmetric cube and a cone through eight of the midpoints of its edges.

Let X_4 be a double covering of \mathbb{P}^3 branched along this surface. By numerical observation we have $h^{2,1}(\tilde{X}_4) = 1$ for a resolution \tilde{X}_4 of X_4 , and $a_p(\tilde{X}_4) = b_p + p \cdot c_p$ where b_p are the coefficients of the weight four newform 32/2 (32k4B1) and c_p are the coefficients of the weight two newform 32A1. The corresponding arrangement of eight planes (cf. 4.2) is the rigid arrangement no. 3.

Finally consider the octic surface given by the equation

$$(x-t)(x+t)(y-t)(y+t)(z-t)(z+t)(x^2+y^2+z^2) = 0.$$

The quadric is a complex cone and has no nice real geometric description. Let X_5 be a double covering of \mathbb{P}^3 branched along this surface. Then the weight four newform 96/4 (96k4B1) occurs in the L-series of a resolution \tilde{X}_5 of X_5 . The corresponding arrangement of eight planes (cf. 4.2) is arrangement no. 6.

4.4 Four planes and two quadrics

If we investigate double coverings of \mathbb{P}^3 branched along the union of four planes and two quadrics then the situation becomes even more complicated. I confined myself to performing some numerical experiments with a special type of such double octics.

We consider unions of four planes and two quadrics of the form

$$xyzt \cdot (A(x^2 + y^2 + z^2 + t^2) + B(xy + zt) + C(x + y)(z + t))$$
$$\cdot (D(x^2 + y^2 + z^2 + t^2) + E(xy + zt) + F(x + y)(z + t)) = 0.$$

with $(A:B:C) \in \mathbb{P}^2$, $(D:E:F) \in \mathbb{P}^2$. The group $(\mathbb{Z}/2\mathbb{Z})^3$ which is generated by the permutations (xy), (zt) and (xz)(yt) acts on such octic surfaces. The surface with parameters (A:B:-C), (D:E:-F) corresponds to the coordinate change $z\mapsto -z$, $t\mapsto -t$. If we have B=C and E=D then the octic surface is even Σ_4 -symmetric. Double coverings of \mathbb{P}^3 branched along surfaces of this type occur in 4.11 as relatives of double coverings of \mathbb{P}^3 branched along the union of two Heisenberg-invariant quartics.

The discriminant of the quadric surface given by the equation

$$A(x^{2} + y^{2} + z^{2} + t^{2}) + B(xy + zt) + C(x + y)(z + t) = 0$$

is easily computed to be

$$(2A - B)^{2}(2A + B + 2C)(2A + B - 2C).$$

If exactly one factor vanishes then the quadric is nodal; if exactly two factors vanish then the quadric is the union of two planes; if more than two factors vanish then the quadric is a double plane.

For many values of (A:B:C), (D:E:F) the double covering of \mathbb{P}^3 branched along the corresponding octic surface seems to be modular (i.e., for each considered good prime p the number of points on the threefold agrees with the coefficient of a weight four newform modulo p). Here I multiplied the equations of the branch loci with a certain factor to get a twisted newform of minimal level. The table lists the parameters, the (twists of minimal level of the) occurring newforms and the types of the two quadrics (p means two planes, p means nodal and p means smooth). It contains all examples with $|A|, |B|, |C|, |D|, |E|, |F| \leq 8$ and a few additional examples. If an example is also mentioned in 4.11 then there is a remark. If one of the quadrics is the union of two planes and the other quadric is smooth then the double octic should also occur in the tables in chapter B.

(A:B:C)	(D:E:F)	weight four newform	type	remark
(0:0:1)	(0:1:0)	32/1 (32k4A1)	ps	
(0:0:1)	(0:2:1)	8/1 $(8k4A1)$	pn	
(0:0:1)	(1:-6:2)	128/1 (8k4A1)	pn	
(0:0:1)	(1:-2:0)	32/1 (32k4A1)	pn	
(0:0:1)	(1:-2:2)	8/1 $(8k4A1)$	ps	
(0:0:1)	(1:1:0)	32/1 (32k4A1)	ps	
(0:0:1)	(3:10:0)	32/1 (32k4A1)	ps	
(0:1:0)	(0:2:1)	8/1 $(8k4A1)$	sn	
(0:1:0)	(1:-6:2)	32/1 (32k4A1)	sn	
(0:1:0)	(1:-2:0)	8/1 $(8k4A1)$	sn	

(A:B:C)	(D:E:F)	weight	weight four newform		remark
(0:1:0)	(1:-2:2)	32/2	(32k4B1)	ss	
(0:1:0)	(1:2:0)	8/1	(8k4A1)	sp	
(0:1:0)	(1:6:2)	96/4	(96k4B1)	ss	
(0:1:1)	(1:-2:-2)	96/2	(96k4E1)	ss	4.11
(0:1:1)	(1:-1:-1)	24/1	(24k4A1)	ss	4.11
(0:1:1)	(1:1:1)	120/4	(120k4F1)	ss	4.11
(0:1:1)	(3:-2:-2)	96/1	(96k4D1)	sn	4.11
(0:2:1)	(0:2:-1)	8/1	(8k4A1)	nn	
(0:2:1)	(1:-22:-2)	360/2		ns	
(0:2:1)	(1:-7:-2)	120/2	(120k4D1)	ns	
` /	(1:-6:-2)	8/1	,	nn	
(0:2:1)	(1:-6:2)	14/2	(14k4A1)	nn	
(0:2:1)	(1:-2:-4)	96/2	` ,	ns	
(0:2:1)	(1:-2:-2)	40/3	,	ns	
(0:2:1)	(1:-2:0)	32/2	(32k4B1)	nn	
(0:2:1)	(1:-2:2)	24/1	(24k4A1)	ns	
(0:2:1)	(1:1:2)	168/2	(168k4E1)	ns	
(0:2:1)	(1:10:2)	6/1	(6k4A1)	ns	
(0:2:1)	(1:14:4)	96/4	,	ns	
(0:2:1)	(2:-4:1)	30/2	` '	ns	
(0:2:1)	(2:4:-3)	14/1	,	np	
(0:2:1)	(2:4:5)	6/1	(6k4A1)	np	
(0:2:1)	(4:-10:1)	168/1	(168k4A1)	nn	
(0:2:1)	(4:-7:-2)	120/3	(120k4C1)	ns	
(0:3:1)	(1:1:3)	120/4	(120k4F1)	ss	
` ,	(2:2:3)	168/2	(168k4E1)	sn	
(0:4:1)	(1:-14:-6)	32/2	(32k4B1)	sn	
(0:4:1)	(1:-14:-2)	96/2	(96k4E1)	ss	
(0:4:1)	(1:-2:1)	12/1	` '	ss	
\	(3:-10:2)	,	(96k4B1)	sn	
(0:6:1)	(1:10:2)	8/1		ss	
` ′	(1:-2:2)		(30k4A1)	ss	
` /	(1:-6:-2)	,	(32k4B1)	nn	
	(1:-2:-2)		(14k4A1)	ns	
	(1:-2:0)	,	(32k4A1)	nn	
	(1:-2:2)	,	(8k4A1)	ns	
(1:-2:0)	` /	,	(8k4A1)	ns	
(1:-2:0)	\	,	(96k4B1)	nn	
(1:-2:0)			(8k4A1)	np	
	(1:-2:-2)	,	(8k4A1)	ss	
(1:-2:2)	` /	,	(96k4B1)	ss	4.11
(1:-2:2)	(2:4:-3)	14/1	(14k4B1)	sp	

(A:B:C)	(D:E:F)	weight	four newform	type	remark
(1:-2:2)	(2:4:5)	6/1	(6k4A1)	sp	
(1:-2:2)	(3:-2:2)	6/1	(6k4A1)	sn	4.11
(1:-1:1)	(3:-2:2)	96/1	(96k4D1)	sn	4.11
(1:-1:1)	(3:2:-2)	480/5		ss	4.11
(1:1:1)	(3:2:2)	480/2		ss	4.11
(3:-6:2)	(3:-2:2)	8/1	(8k4A1)	sn	

Note also that by a general construction (which will be explained in 4.6) there is a correspondence between the double octic given by the equation

$$u^{2} = xyzt \cdot (A(x^{2} + y^{2} + z^{2} + t^{2}) + B(xy + zt) + C(x + y)(z + t))$$
$$\cdot (D(x^{2} + y^{2} + z^{2} + t^{2}) + E(xy + zt) + F(x + y)(z + t))$$

and the double octic given by the equation

$$u^{2} = (A(x^{4} + y^{4} + z^{4} + t^{4}) + B(x^{2}y^{2} + z^{2}t^{2}) + C(x^{2} + y^{2})(z^{2} + t^{2}))$$
$$\cdot (D(x^{4} + y^{4} + z^{4} + t^{4}) + E(x^{2}y^{2} + z^{2}t^{2}) + F(x^{2} + y^{2})(z^{2} + t^{2})).$$

In general the Hodge numbers of the two double octics will be different but if a weight four newform occurs in the L-series of one of them then it should also occur in the L-series of the other.

If four planes meet in a point then they can also be given by the equation

$$0 = (x - t)(x + t)(y - t)(y + t) = (x^{2} - t^{2})(y^{2} - t^{2}).$$

By the same construction as above there is a correspondence between the double octic given by the equation

$$u^{2} = (x-t)(x+t)(y-t)(y+t)(ax^{2} + by^{2} + cz^{2} + dt^{2})(a'x^{2} + b'y^{2} + c'z^{2} + d't^{2})$$

and the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(ax + by + cz + dt)(a'x + b'y + c'z + d't).$$

We finish this section with certain explicit examples.

Two balls in a paperbag

Consider (as a real picture) four planes which meet in a fourfold point and two balls which touch each plane and have one point in common. This is a picture of the two-dimensional analogon:

Such an octic surface can be given by the equation

$$(x-t)(x+t)(y-t)(y+t)(x^2+y^2+(z-t)^2-t^2)(x^2+y^2+(z+t)^2-t^2)=0.$$

Let X_1 be a double covering of \mathbb{P}^3 branched along this surface and let \tilde{X}_1 be a resolution of X_1 . By numerical observation we have $h^{2,1}(\tilde{X}_1) = 1$ and $a_p(\tilde{X}_1) = b_p + p \cdot c_p$ where b_p are the coefficients of the weight four newform 32/1 (32k4A1) and c_p are the coefficients of the weight two newform 32A1. Indeed (in the real picture again) one of the quadrics can always be chosen to be a ball and the other will be an ellipsoid with radii depending only on its center.

More experiments

Consider (as a real picture) four planes which meet in a fourfold point and two balls with the same center, one touching all the planes and one through the intersection lines of the planes such that the lines are tangent in the intersection points. This is a picture of the situation "from above":

Such an octic surface can be given by the equation

$$(x-t)(x+t)(y-t)(y+t)(x^2+y^2+z^2-t^2)(x^2+y^2+z^2-2t^2) = 0.$$

Let X_2 be a double covering of \mathbb{P}^3 branched along this surface and let \tilde{X}_2 be a resolution of X_2 . By numerical observation \tilde{X}_2 is rigid and its *L*-series is given by the *L*-series of the weight four newform 32/2 (32k4B1). It is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x-t)(y-t)(x+y+z+t)(x+y+z-2t)$$

which is the rigid arrangement no. 3 from 4.2.

We can more generally investigate the double covering $X_{A,B,C,D}$ of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x-t)(x+t)(y-t)(y+t)(A\cdot(x^2+y^2)+z^2+B\cdot t^2)(C\cdot(x^2+y^2)+z^2+D\cdot t^2)=0.$$

where $A \neq 0$ and $C \neq 0$. The quadrics are nodal for B = 0 resp. D = 0. There is always a relative of $X_{A,B,C,D}$ which is a double covering of \mathbb{P}^3 branched along the arrangement of planes given by the equation

$$xyzt(x-t)(y-t)(A\cdot(x+y)+z+B\cdot t)(C\cdot(x+y)+z+D\cdot t)=0.$$

For certain values of A, B, C, D the resolution $\tilde{X}_{A,B,C,D}$ of $X_{A,B,C,D}$ seems to be modular. In the table we list these values A, B, C, D, the occurring weight four newform, a prediction of the Hodge number $h^{2,1} = h^{2,1}(\tilde{X}_{A,B,C,D})$ (based on numerical observations) and the corresponding arrangement of planes.

A, B	C, D	weight four newform	$h^{2,1}$	arr. of planes
1, -3	1, -2	96/4 (96k4B1)	2	no. 6
1, -2	1, -1	32/2 (32k4B1)	0	no. 3
1, -1	1,0	32/2 (32k4B1)	1	no. 3
1,0	1, 1	96/4 (96k4B1)	2	no. 6
1, -2	1,0	32/1 (32k4A1)	1	no. 4
1, -2	2, -2	8/1 $(8k4A1)$	2	no. 32
1, -1	2, -2	32/1 (32k4A1)	2	no. 13
1,0	2, -2	8/1 $(8k4A1)$	0	no. 32

Playing with correspondences

We will display correspondences between various double octics. All correspondences are based on the general construction explained in 4.6.

Consider the double octic given by the equation

$$u^{2} = xyzt(x^{2} + y^{2} + z^{2} + t^{2})(x^{2} + y^{2} - z^{2} - t^{2}).$$
 (I)

By the coordinate change $x \mapsto x + y$, $y \mapsto x - y$, $z \mapsto z + t$, $t \mapsto z - t$ we get the equation

$$u^{2} = (x+y)(x-y)(z+t)(z-t)(x^{2}+y^{2}+z^{2}+t^{2})(x^{2}+y^{2}-z^{2}-t^{2}).$$
 (I*)

There is a correspondence between (I*) and the double octic given by the equation

$$u^{2} = xyzt(x-y)(z-t)(x+y+z+t)(x+y-z-t).$$
 (II)

This is arrangement no. 58 from 4.2. By changing the sign of y and t we get the equation

$$u^{2} = xyzt(x+y)(z+t)(x-y+z-t)(x-y-z+t). (II^{*})$$

There is a correspondence between (II*) and the double octic given by the equation

$$u^{2} = (x^{2} + y^{2})(z^{2} + t^{2})(x^{2} - y^{2} + z^{2} - t^{2})(x^{2} - y^{2} - z^{2} + t^{2}).$$
 (III)

By the coordinate change $x \mapsto x + y$, $y \mapsto x - y$, $z \mapsto z + t$, $t \mapsto z - t$ we get the equation

$$u^{2} = (x^{2} + y^{2})(z^{2} + t^{2})(xy + zt)(xy - zt).$$
 (III*)

There is a correspondence between (III*) and the double octic given by the equation

$$u^{2} = xyzt(x+y)(z+t)(xy-zt). (IV)$$

By changing the sign of y and t we get the equation

$$u^2 = -xyzt(x-y)(z-t)(xy-zt). (IV*)$$

There is a correspondence between (IV*) and the double octic given by the equation

$$u^{2} = -(x+y)(x-y)(z+t)(z-t)(xy-zt)(xy+zt).$$
 (V)

By the coordinate change $x \mapsto x + y$, $y \mapsto x - y$, $z \mapsto z + t$, $t \mapsto z - t$ and a sign change of x we get the equation

$$u^{2} = xyzt(x^{2} - y^{2} + z^{2} - t^{2})(x^{2} - y^{2} - z^{2} + t^{2}).$$
 (V*)

There is also a correspondence between (I) and the double octic given by the equation

$$u^{2} = (x^{4} + y^{4} + z^{4} + t^{4})(x^{4} + y^{4} - z^{4} - t^{4}), \qquad (VI)$$

and there is a correspondence between (V*) and the double octic given by the equation

$$u^{2} = (x^{4} - y^{4} + z^{4} - t^{4})(x^{4} - y^{4} - z^{4} + t^{4}).$$
 (VII)

The weight four newform 32/1 (32k4A1) occurs in the *L*-series of (resolutions of) all listed double octics. The Hodge numbers seem to be different. The table predicts $h^{2,1}$ based on numerical observations (where possible):

$(I), (I^*)$	$(II), (II)^*$	$(III), (III^*)$	$(IV), (IV^*)$	$(V),(V^*)$	(VI)	(VII)
3	3	3	0	3	> 3?	> 3?

For all examples with $h^{2,1}=3$ the *L*-series seems to split into $b_p+3p\cdot c_p$ where b_p are the coefficients of the newform 32/1 and c_p are the coefficients of the weight two newform 32A1.

It is rather remarkable that we can see immediately that the examples (I) and (V) are birationally equivalent over $\mathbb{Q}[\sqrt{-1}]$ and that the examples (VI) and (VII) are birationally equivalent over $\mathbb{Q}[\sqrt[4]{-1}]$. The correspondences between them that we have found in this section are defined over \mathbb{Q} but they do not seem to be induced by birational maps.

4.5 Four quadrics

In the general case of the union of four quadrics we will restrict ourselves to single examples. Most of them will be relatives of arrangements of planes, and a correspondence will be given by the general construction from 4.6.

Four nodal quadrics related to arrangement no. 239

Consider the octic surface given by the equation

$$(x^{2} + y^{2} + z^{2})(y^{2} + z^{2} + t^{2})(z^{2} + t^{2} + x^{2})(t^{2} + x^{2} + y^{2}) = 0.$$

It is the union of four nodal quadrics. The double covering X_1 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + y + z)(y + z + t)(z + t + x)(t + x + y)$$

which is the rigid arrangement no. 239 from 4.2. Consequently the weight four newform 12/1 (12k4A1) occurs in the *L*-series of a resolution \tilde{X}_1 of X_1 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_1) = 6$ and $a_p(\tilde{X}_1) = b_p + 6p \cdot c_p$ where b_p are the coefficients of the newform 12/1 and c_p are the coefficients of the weight two newform 48A1.

Four nodal quadrics related to arrangement no. 317

Consider the octic surface given by the equation

$$(x^{2} + 2y^{2} + z^{2})(y^{2} + 2z^{2} + t^{2})(z^{2} + 2t^{2} + x^{2})(t^{2} + 2x^{2} + y^{2}) = 0.$$

It is also the union of four nodal quadrics. The double covering X_2 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + 2y + z)(y + 2z + t)(z + 2t + x)(t + 2x + y)$$

which is arrangement no. 317 from 4.2. Consequently the weight four newform 12/1 (12k4A1) occurs in the *L*-series of a resolution \tilde{X}_2 of X_2 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_2) = 6$ and $a_p(\tilde{X}_2) = b_p + 6p \cdot c_p$ where b_p are the coefficients of the newform 12/1 and c_p are the coefficients of the weight two newform 48A1.

There should be a correspondence between X_1 and X_2 (and so a correspondence between arrangements no. 239 and no. 317) but I have not been able to find one.

Four smooth quadrics related to arrangement no. 239

Consider the octic surface given by the equation

$$(x^2 + y^2 + z^2 - 2t^2)(x^2 + y^2 - 2z^2 + t^2)(x^2 - 2y^2 + z^2 + t^2)(-2x^2 + y^2 + z^2 + t^2) = 0.$$

It is the union of four smooth quadrics. The double covering X_3 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x+y+z-2t)(x+y-2z+t)(x-2y+z+t)(-2x+y+z+t)$$

which is again the rigid arrangement no. 239 from 4.2. Consequently the weight four newform 12/1 (12k4A1) occurs in the *L*-series of a resolution \tilde{X}_3 of X_3 . Moreover by numerical observation \tilde{X}_3 seems to be rigid.

Four smooth quadrics related to arrangement no. 3

Consider the octic surface given by the equation

$$(x^2 + y^2 + z^2 + t^2)(x^2 + y^2 + z^2 - t^2)(x^2 + y^2 - z^2 + t^2)(x^2 - y^2 + z^2 + t^2).$$

It is the union of four smooth quadrics. The double covering X_4 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + y + z + t)(x + y + z - t)(x + y - z + t)(x - y + z + t)$$

which is the rigid arrangement no. 3 from 4.2. Consequently the weight four newform 32/2 (32k4B1) occurs in the *L*-series of a resolution \tilde{X}_4 of X_4 . Moreover by numerical observation \tilde{X}_4 seems to be rigid.

Two planes and three smooth quadrics related to arrangement no. 19

Consider the octic surface given by the equation

$$(x+y)(z+t)(xy+zt)(xz+yt)(xt+yz) = 0.$$

It is the union of two planes and three smooth quadrics. After the coordinate change $x \mapsto x + y + z + t$, $x \mapsto x - y + z - t$, $z \mapsto x + y - z - t$, $t \mapsto x - y - z + t$ this equation becomes

$$(x+z)(x-z)(x^2-y^2-z^2+t^2)(x^2-y^2+z^2-t^2)(x^2+y^2-z^2-t^2)=0.$$

Thus the double covering X_5 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x-z)(x-y-z+t)(x-y+z-t)(x+y-z-t)$$

which is the rigid arrangement no. 19 from 4.2. Consequently the weight four newform 32/1 (32k4A1) occurs in the *L*-series of a resolution \tilde{X}_5 of X_5 . Moreover by numerical observation \tilde{X}_5 seems to be rigid.

One smooth and three nodal quadrics related to arrangement no. 3

Consider the octic surface given by the equation

$$u^{2} = (x^{2} + y^{2} + z^{2} + t^{2})(x^{2} + y^{2} + z^{2})(x^{2} + y^{2} + t^{2})(x^{2} + z^{2} + t^{2})$$

It is the union of one smooth and three nodal quadrics. The double covering X_6 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + y + z + t)(x + y + z)(x + y + t)(x + z + t)$$

which is again the rigid arrangement no. 3 from 4.2. Consequently the weight four newform 32/2 (32k4B1) occurs in the *L*-series of a resolution \tilde{X}_6 of X_6 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_6) = 3$ and $a_p(\tilde{X}_6) = b_p + 3p \cdot c_p$ where b_p are the coefficients of the newform 32/2 and c_p are the coefficients of the weight two newform 32A1.

Four smooth quadrics related to arrangement no. 6

Consider the octic surface given by the equation

$$(x^2 + y^2 + z^2 - 2t^2)(x^2 + y^2 - 2z^2 + t^2)(x^2 - 2y^2 + z^2 + t^2)(x^2 + y^2 + z^2 + t^2) = 0.$$

It is the union of four smooth quadrics. The double covering X_7 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + y + z - t)(x + y - z + t)(x - y + z + t)(x + y + z + t)$$

which is arrangement no. 6 from 4.2. Consequently the weight four newform 96/4 (96k4B1) occurs in the *L*-series of a resolution \tilde{X}_7 of X_7 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_7) = 2$ and $a_p(\tilde{X}_7) = b_p + 2p \cdot c_p$ where b_p are the coefficients of the newform 96/4 and c_p are the coefficients of the weight two newform 32A1.

Four smooth quadrics related to an example by Nygaard and van Geemen

Consider the octic surface given by the equation

$$(xy - zt)(xy + zt)(xz + yt)(xt + yz) = 0.$$

After the coordinate change $x\mapsto x+y,\,y\mapsto x-y,\,z\mapsto z+t,\,t\mapsto z-t$ this equation becomes

$$(x^{2} - y^{2} - z^{2} + t^{2})(x^{2} - y^{2} + z^{2} - t^{2})(xz + yt)(xz - yt) = 0.$$

Thus the double covering X_8 of \mathbb{P}^3 branched along this surface is in correspondence with the double octic Y_8 given by the equation

$$u^{2} = xyzt(x - y - z + t)(x - y + z - t)(xz - yt).$$

The weight four newform 32/1 (32k4A1) occurs in the *L*-series of a resolution \tilde{X}_8 of X_8 and of a resolution \tilde{Y}_8 of Y_8 . Moreover by numerical observation we have $h^{2,1}(\tilde{X}_8) = h^{2,1}(\tilde{Y}_8) = 1$ and $a_p(\tilde{X}_8) = a_p(\tilde{Y}_8) = b_p + p \cdot c_p$ where b_p are the coefficients of the newform 32/1 and c_p are the coefficients of the weight two newform 32A1.

There is an obvious correspondence between X_8 and the intersection Y of four quadrics in \mathbb{P}^7 with coordinates $(u_0: u_1: u_2: u_3: x: y: z: t)$ which is given by the following equations:

$$u_0^2 = 2(xy + zt),$$

$$u_1^2 = 2(xz + yt),$$

$$u_2^2 = 2(xt + yt),$$

$$u_3^2 = 2(xy - zt).$$

The variety Y has been examined by Nygaard and van Geemen in [75]. They show the following:

The singular locus of Y consists of the 16 ordinary nodes

$$(\pm\sqrt{2}:0:0:\pm\sqrt{2}:1:1:0:0),\\ (\pm\sqrt{-2}:0:0:\pm\sqrt{-2}:1:-1:0:0),\\ (\pm\sqrt{2}:0:0:\pm\sqrt{2}:0:0:1:1),\\ (\pm\sqrt{-2}:0:0:\pm\sqrt{-2}:0:0:1:-1),$$

and of the four plane conics (configured in a square) given by the equations

$$u_0 = u_2 = u_3 = x = z = 0,$$

 $u_0 = u_2 = u_3 = y = t = 0,$
 $u_0 = u_1 = u_3 = x = t = 0,$
 $u_0 = u_1 = u_3 = y = z = 0.$

A (big) resolution Y' of Y can be obtained by first blowing up the 16 nodes and a pair of opposite sides in the square of conics and then blowing up the strict transforms of the other pair of conics. The Euler characteristic of such a resolution is $\chi(Y') = 80$, the Hodge numbers are $h^{1,1}(Y') = 41$ and $h^{2,1}(Y') = 1$. It is unknown if there exist projective small resolutions. There is an automorphism of Y defined by

$$(u_0: u_1: u_2: u_3: x: y: z: t) \mapsto (u_0: u_2: u_1: \sqrt{-1}u_3: z: t: x: y).$$

This lifts to an automorphism of Y' which induces a splitting of the L-series of Y' into two-two-dimensional parts. Nygaard and van Geemen prove that

$$L(Y', s) = L(\psi^3, s)L(\psi, s - 1)$$

where ψ is the Hecke character of $\mathbb{Q}[\sqrt{-1}]$. This means that

$$a_p(Y') = b_p + p \cdot c_p$$

where b_p are the coefficients of the newform 32/1 (32k4A1) and c_p are the coefficients of the weight two newform 32A1.

Nygaard and van Geemen also exhibited a correspondence between Y' and the triple product $E \times E \times E$ where $E = \{y^2 = 1 + x^4\}$ is the elliptic curve with complex multiplication by $\mathbb{Q}[\sqrt{-1}]$.

Four smooth quadrics related to arrangement no. 287

Let D_9 be the octic surface given by the equation

$$(x^2 + y^2 + z^2 - 3t^2)(x^2 + y^2 - 3z^2 + t^2)(x^2 - 3y^2 + z^2 + t^2)(-3x^2 + y^2 + z^2 + t^2) = 0.$$

and let X_9 be a double covering of \mathbb{P}^3 branched along D_9 . The variety X_9 is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x+y+z-3t)(x+y-3z+t)(x-3y+z+t)(-3x+y+z+t)$$

which is arrangement no. 287 from 4.2.

The singular locus of D_9 consists of the 12 plane conics on the orbits under permutation of coordinates of the conics

$$x = \pm y$$
, $z^2 + t^2 = 2x^2$.

Two conics (and two quadrics) meet at the 12 points on the orbits of the points $(1 : \pm \sqrt{-1} : 0 : 0)$, and six conics (and four quadrics) meet at the 8 points $(1 : \pm 1 : \pm 1)$.

On the double covering X_9 the last 8 points look locally like arrangement p_4^0 points so they have to be blown up first. The first 12 points however leave us with 12 nodes after blowup of the double conics which also have to be resolved.

The Euler characteristic $\chi(X_9)$ of X_9 is

$$\chi(X_9) = 8 - \chi(D_9) = 8 - (4 \cdot 4 - 12 \cdot 2 + 12 + 3 \cdot 8) = -20.$$

Let \tilde{X}_9 be a small resolution of X_9 . Then \tilde{X}_9 has Euler characteristic

$$\chi(\tilde{X}_9) = \chi(X_9) + 12 \cdot (4-2) + 8 \cdot (4-1) + 12 \cdot (2-1) = 40.$$

For $p \equiv 1 \mod 4$ all the double conics, the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p and the Lefschetz fixed point formula gives

$$\begin{aligned} |\#\tilde{X}_{9,p} - 1 - p^3 - h^2(\tilde{X}_9) \cdot p(p+1)| \\ &= |\#X_{9,p} + 12 \cdot p(p+1) + 12 \cdot p + 8 \cdot (\#N - 1) - 1 - p^3 - h^2(\tilde{X}_9) \cdot p(p+1)| \\ &\leq p^{3/2} \cdot h^3(\tilde{X}_9) \\ &= p^{3/2} \cdot (2 + 2h^2(\tilde{X}_9) - \chi(\tilde{X}_9)), \end{aligned}$$

where N is the normal cone at the point (1:1:1:1) (which is a double covering of \mathbb{P}^2 branched along (x+y+z)(x+y-3z)(x-3y+z)(-3x+y+z)). Counting points over \mathbb{F}_{37} and \mathbb{F}_{41} gives $h^2(\tilde{X}_9)=23, h^3(\tilde{X}_9)=8$.

For $p \equiv 3 \mod 4$ the 12 nodes disappear. In this case we have the estimate

$$|\#\tilde{X}_{9,p} - 1 - p^3 - k \cdot p(p+1)| = |\#X_{9,p} + 12 \cdot p(p+1) + 8 \cdot (\#N - 1) - 1 - p^3 - k \cdot p(p+1)| \le 8p^{3/2}$$

with a $k \in \mathbb{Z}$, $|k| \leq 23$. Counting points over \mathbb{F}_{23} gives k = 23. We end up with the formula

$$a_p(\tilde{X}_9) = \begin{cases} p^3 + 11p^2 + 11p + 9 - 8 \cdot \#N - \#X_{9,p}, & p \equiv 3 \mod 4, \\ p^3 + 11p^2 - p + 9 - 8 \cdot \#N - \#X_{9,p}, & p \equiv 1 \mod 4. \end{cases}$$

Since N is birationally equivalent with the quadric surface given by the equation $t^2 + xy + xz + yz = 0$ (with discriminant 1) we can write

$$a_p(\tilde{X}_9) = \begin{cases} p^3 + 3p^2 - 5p + 1 - \#X_{9,p}, & p \equiv 3 \mod 4\\ p^3 + 3p^2 - 17p + 1 - \#X_{9,p}, & p \equiv 1 \mod 4 \end{cases}$$

For all primes $5 \le p \le 97$ we find

$$a_p(\tilde{X}_9) = b_p + 3p \cdot c_p$$

where b_p are the coefficients of the weight four newform 6/1 (6k4A1) and c_p are the coefficients of the weight two newform 24A1. The weight four newform 6/1 also occurs in the *L*-series of the corresponding double octic constructed from arrangement no. 287. Another relative of X_9 will be discussed in 5.9.

Four smooth quadrics related to arrangement no. 238

Let D be the octic surface given by the equation

$$(x^{2} + y^{2} + z^{2} - t^{2})(x^{2} + y^{2} - z^{2} + t^{2})(x^{2} - y^{2} + z^{2} + t^{2})(-x^{2} + y^{2} + z^{2} + t^{2}) = 0,$$

and let Y be a double covering of \mathbb{P}^3 branched along D. The variety Y is in correspondence with the double octic given by the equation

$$u^{2} = xyzt(x + y + z - t)(x + y - z + t)(x - y + z + t)(-x + y + z + t)$$

which is the rigid arrangement no. 238 from 4.2.

The singular locus of D consists of the lines on the orbit under permutation of coordinates of the lines

$$x = \pm y,$$
 $z = \pm \sqrt{-1}t.$

Two lines meet at the 24 points on the orbits of $(1:\pm 1:0:0)$ and $(1:\pm \sqrt{-1}:0:0)$, and three lines meet at the 32 points on the orbits of $(1:\pm \sqrt{-1}:\pm \sqrt{-1}:\pm \sqrt{-1})$.

On the double covering Y the last 32 points look locally like arrangement triple points so they disappear after blowup of the double lines. The first 24 points however leave us with 24 nodes after blowup of the double lines which also have to be resolved.

The Euler characteristic $\chi(Y)$ of Y is

$$\chi(Y) = 8 - \chi(D) = 8 - (4 \cdot 4 - 24 \cdot 2 + 24 + 32) = -16.$$

Let \tilde{Y} be a small resolution of Y. Then \tilde{Y} has Euler characteristic

$$\chi(\tilde{Y}) = \chi(Y) + 24 \cdot (4 - 2) + 24 = 56.$$

For $p \equiv 1 \mod 4$ all the double lines, the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p and the Lefschetz fixed point formula gives

$$\begin{split} |\#\tilde{Y}_p - 1 - p^3 - h^2(\tilde{Y}) \cdot p(p+1)| \\ &= |\#Y_p + 24 \cdot p(p+1) + 24 \cdot p - 1 - p^3 - h^2(\tilde{Y}) \cdot p(p+1)| \\ &\leq p^{3/2} \cdot h^3(\tilde{Y}) \\ &= p^{3/2} \cdot (2 + 2h^2(\tilde{Y}) - \chi(\tilde{Y})). \end{split}$$

Counting points over \mathbb{F}_{13} gives $h^2(\tilde{Y}) = 28$, $h^3(\tilde{Y}) = 2$, so \tilde{Y} is rigid.

For $p \equiv 3 \mod 4$ the singular locus of \tilde{Y} consists of the 12 nodes on the orbits of the points $(1:\pm 1:0:0)$ under permutation of coordinates. In this case we have the estimate

$$|\#\tilde{Y}_p - 1 - p^3 - k \cdot p(p+1)| = |\#Y_p + 12p - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}$$

with a $k \in \mathbb{Z}$, $|k| \leq 28$. Counting points over \mathbb{F}_{11} gives k = 4. We end up with the formula

$$a_p(\tilde{Y}) = \begin{cases} p^3 + 4p^2 - 8p + 1 - \#Y, & p \equiv 3 \mod 4, \\ p^3 + 4p^2 - 20p + 1 - \#Y, & p \equiv 1 \mod 4. \end{cases}$$

Counting points for $p \in \{3, 5, 7, 17\}$ we see that the $a_p(\tilde{Y})$ agree with the coefficients of the modular form 8/1 (8k4A1) and by corollary 1.6 they agree for all $p \geq 3$.

There is an obvious correspondence between Y and the complete intersection of four quadrics in \mathbb{P}^7 discussed in 5.4. For details about correspondences cf. also 6.1.4.

4.6 Segre's construction (squaring of coordinates)

We give an overview of a construction method invented by B. Segre ([90]):

Let u_i , $i=0,\ldots,3$ be four general linear forms on \mathbb{P}^3 , and denote by T_u the tetrahedron determined by the four planes $u_i=0$. Consider the map $\Omega:\mathbb{P}^3_v\longrightarrow\mathbb{P}^3_u$ given by $u_i=v_i^2$. It is ramified simply on $T_v=\Omega^{-1}(T_u)$ and has degree 8. The degree of Ω reduces to 4 on the faces, to 2 on the edges, and to 1 on the vertices of T_u . Let $F(u)\subset\mathbb{P}^3$ be a surface of degree n, then $G(v)=F(\Omega(v))\subset\mathbb{P}^3$ is a surface of degree 2n. Furthermore we have:

4.9 Theorem

G(v) has only nodes as singularities if and only if

- F has only nodes as singularities, and they lie outside T_u ,
- if a face of T_u is tangent to F then it must be simply tangent, and the points of tangency must not lie on the edges,
- if an edge of T_u is tangent to F then it must be simply tangent in points which are not vertices.

Moreover, if t is the number of nodes of F, r is the number of tangency points of the faces, s of the edges and m the number of vertices lying on F, then G has exactly d = 8t + 4r + 2s + m nodes.

I have copied this version of the theorem from [21] where it was used to construct sextic surfaces with $1 \le d \le 64$ nodes. It was also used in [39] to construct two octic surfaces with 168 nodes (which is at present the world record for octic surfaces). The double coverings of \mathbb{P}^3 branched

4.7. APPLICATION TO KUMMER SURFACES AND OTHER QUARTICS 103

along these surfaces are rigid Calabi–Yau threefolds with defect 19 but the surfaces are not defined over \mathbb{Q} but only over $\mathbb{Q}[\sqrt{2}]$.

Now let the polynomial F(u) have degree 4. By extending the map Ω to the 8:1 map

$$\Omega': \mathbb{P}^4(1,1,1,1,4) \longrightarrow \mathbb{P}^4(1,1,1,1,4),$$

$$(v_0: v_1: v_2: v_3: w) \mapsto (v_0^2: v_1^2: v_2^2: v_3^2: v_0v_1v_2v_3w) =: (u_0: u_1: u_2: u_3: \tilde{w}),$$

we get a correspondence between the two double octics given by

$$w^2 = G(v) = F(\Omega(v))$$

and by

$$\tilde{w}^2 = u_0 u_1 u_2 u_3 F(u).$$

This kind of correspondence has first been noticed by S. Cynk. We have already listed many examples in the preceding section and we will investigate some more.

4.7 Application to Kummer surfaces and other quartics

Consider the quartic surface $F_{\lambda} \subset \mathbb{P}^3$ given by the equation

$$x^4 + y^4 + z^4 + t^4 - \lambda \cdot xyzt = 0.$$

It is smooth except for $\lambda = 4\xi$ with ξ a fourth root of unity. In this case it is a Kummer surface (with 16 nodes as only singularities). Let $D_{\lambda} \subset \mathbb{P}^3$ be the octic surface constructed from F_{λ} with Segre's method which is given by the equation

$$x^8 + y^8 + z^8 + t^8 - \lambda \cdot x^2 y^2 z^2 t^2 = 0.$$

By theorem 4.9 it is smooth except for $\lambda = 4\xi$ with ξ a fourth root of unity. In this case it has $128 = 8 \cdot 16$ nodes as only singularities. We will focus on $D := D_4$ which is defined over \mathbb{Q} . The 128 nodes are the points on the orbit of the point (1:1:1:1) under the action of the group G generated by the coordinate transformations

$$(x:y:z:t) \mapsto (x:y\cdot\xi_8^a:z\cdot\xi_8^b:t\cdot\xi_8^c)$$

with $a, b, c \in \mathbb{Z}/8\mathbb{Z}$, $2(a+b+c) \equiv 0 \mod 8$ and ξ_8 a fixed primitive 8-th root of unity.

Let X be a double covering of \mathbb{P}^3 branched along D and let \tilde{X} be a small resolution of X. Then \tilde{X} has Euler characteristic

$$\chi(\tilde{X}) = -296 + 2 \cdot 128 = -40.$$

The defect of X is $d(X) = h^2(\tilde{X}) - 1 = 6 \neq 0$ (see the computation of $h^2(\tilde{X})$ below). Since G acts transitively on the set of nodes of D (and so of X) there exist projective small resolutions.

For $p \geq 3$ all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p if primitive 8-th roots of unity exist. Thus for $p \equiv 1 \mod 8$ the Lefschetz fixed point formula gives

$$|\#\tilde{X}_p - 1 - p^3 - h^2(\tilde{X})p(p+1)| = |\#X_p + 128p - 1 - p^3 - h^2(\tilde{X})p(p+1)|$$

$$\leq p^{3/2}h^3(\tilde{X}) = p^{3/2}(2 + 2h^2(\tilde{X}) + 40).$$

Counting points over \mathbb{F}_{641} and \mathbb{F}_{769} gives

$$h^2(\tilde{X}) = 7, \quad h^3(\tilde{X}) = 56.$$

For $p \equiv 3,7 \mod 8$ only 8 and for $p \equiv 5 \mod 8$ only 24 of the nodes are defined over \mathbb{F}_p . The rulings of their tangent cones are rational over \mathbb{F}_p if $\sqrt{-2}$ exists. We have the estimates

$$\begin{aligned} |\#X_p + 8p - 1 - p^3 - k \cdot p(p+1)| &\leq 56p^{3/2}, \quad p \equiv 3 \mod 8, \\ |\#X_p - 24p - 1 - p^3 - l \cdot p(p+1)| &\leq 56p^{3/2}, \quad p \equiv 5 \mod 8, \\ |\#X_p - 8p - 1 - p^3 - m \cdot p(p+1)| &\leq 56p^{3/2}, \quad p \equiv 7 \mod 8, \end{aligned}$$

with $k, l, m \in \mathbb{Z}$, $|k|, |l|, |m| \leq 7$. Counting points over \mathbb{F}_{2683} , \mathbb{F}_{2707} , \mathbb{F}_{1669} , \mathbb{F}_{1949} , \mathbb{F}_{2711} and \mathbb{F}_{2927} gives k = 1, l = -5 and m = 1. We end up with the formula

$$a_p(\tilde{X}) = \begin{cases} p^3 + 7p^2 - 33p + 1 - \#X_p, & p \equiv 1 \mod 8, \\ p^3 + p^2 - 7p + 1 - \#X_p, & p \equiv 3 \mod 8, \\ p^3 - 5p^2 + 19p + 1 - \#X_p, & p \equiv 5 \mod 8, \\ p^3 + p^2 + 9p + 1 - \#X_p, & p \equiv 7 \mod 8. \end{cases}$$

Now let b_p be the coefficients of the weight four newform 128/1 (128k4A1). For all primes $3 \le p \le 97$ we find by counting points

$$b_p - a_p \equiv 0 \mod 2p$$

The following table lists the numbers $\frac{b_p - a_p}{p}$:

p	$\frac{b_p - a_p}{p}$						
3	6	19	6	43	18	71	-36
5	-10	23	-12	47	24	73	-274
7	12	29	62	53	62	79	24
11	-6	31	0	59	42	83	-18
13	-10	37	-82	61	-10	89	158
17	14	41	-70	67	30	97	-178

The numbers in the table might be sums of coefficients of weight two newforms but this would be difficult to prove. I have not detected any weight four newforms in the *L*-series of the resolution of the double covering X_{λ} of \mathbb{P}^3 branched along D_{λ} for any rational values $\lambda \neq \pm 4$. The

4.7. APPLICATION TO KUMMER SURFACES AND OTHER QUARTICS 105

threefolds $X = X_4$ and X_{-4} are isomorphic over $\mathbb{Q}[i]$. Consequently the weight four newform 128/3 (128k4C1), which is a twist of the newform 128/1 by $\left(\frac{-1}{p}\right)$, occurs in the *L*-series of a small resolution of X_{-4} .

The threefold X_{λ} also occurs as the hypergeometric threefold $V_8(\varphi)$ in 5.11.

By the results of 4.6 there is a correspondence between X_{λ} and the double octic Y_{λ} given by the equation

$$u^{2} = xyzt(x^{4} + y^{4} + z^{4} + t^{4} - \lambda \cdot xyzt).$$

Indeed the weight four newforms 128/1 resp. 128/3 seem to occur in the *L*-series of (resolutions of) Y_4 resp. Y_{-4} .

More experiments

There are also interesting numerical observations for the double octic Z_4 given by the equation

$$u^{2} = 2 \cdot (x + y + z - t)(x + y - z + t)(x - y + z + t)(-x + y + z + t)(x^{4} + y^{4} + z^{4} + t^{4} - 4 \cdot xyzt).$$

Four of the sixteen nodes of the Kummer surface are not contained in any of the planes, and each intersection line of two planes contains two of the remaining twelve nodes. For all primes $3 \le p \le 97$ we find

$$c_p + 3p \cdot d_p = \begin{cases} p^3 + p^2 - 3p + 1 - \# Z_{4,p}, & p \equiv 1 \mod 4, \\ p^3 + p^2 + 5p + 1 - \# Z_{4,p}, & p \equiv 3 \mod 4, \end{cases}$$

where c_p are the coefficients of the weight four newform 32/2 (32k4B1) and d_p are the coefficients of the weight two newform 32A1.

For the double octic Z_{-4} given by the equation

$$u^{2} = 2 \cdot (x + y + z - t)(x + y - z + t)(x - y + z + t)(-x + y + z + t)(x^{4} + y^{4} + z^{4} + t^{4} + 4 \cdot xyzt)$$

the geometry is quite different: Twelve of the nodes of the Kummer surface are not contained in any of the planes, and the other four nodes are the vertices of the tetrahedron. For all primes $3 \le p \le 97$ we find

$$\tilde{c}_p + 3p \cdot d_p = \begin{cases} p^3 + p^2 - 11p + 1 - \# Z_{-4,p}, & p \equiv 1 \mod 4, \\ p^3 + p^2 + p + 1 - \# Z_{-4,p}, & p \equiv 3 \mod 4, \end{cases}$$

where \tilde{c}_p are the coefficients of the weight four newform 32/3 (32k4C1) which is a twist of 32/2 by $\left(\frac{-1}{p}\right)$. Conjecturally we have $h^3(\tilde{Z}_4) = h^3(\tilde{Z}_{-4}) = 8$ for Calabi–Yau resolutions \tilde{Z}_4 resp. \tilde{Z}_{-4} of Z_4 resp. Z_{-4} , and the L-series of these varieties split as indicated above.

Applying the coordinate change $x \mapsto -x + y + z + t$, $y \mapsto x - y + z + t$, $z \mapsto x + y - z + t$, $t \mapsto x + y + z - t$, the equation for Z_4 becomes

$$u^{2} = xyzt((x^{2} + y^{2} + z^{2} + t^{2})^{2} - 16 \cdot xyzt).$$

By the results of 4.6 there is a correspondence between Z_4 and the double octic W_4 given by the equation

$$u^{2} = (x^{4} + y^{4} + z^{4} + t^{4})^{2} - 16 \cdot x^{2}y^{2}z^{2}t^{2}.$$

The octic surface is the union of the two Kummer surfaces F_4 and F_{-4} . The surfaces have no common node. The weight four newform 32/2 (32k4B1) seems to occur in the *L*-series of W_4 , as expected. By numerical observation we have $h^{2,1}(\tilde{W}_4) = 3$ for a resolution \tilde{W}_4 of W_4 and $a_p(\tilde{W}_4) = c_p + 3p \cdot d_p$.

A quartic with six A_3 singularities

Now consider the octic surface given by the equation

$$xyzt((x + y + z + t)^4 - 256 \cdot xyzt) = 0.$$

The quartic surface has 6 singularities of type A_3 (i.e., with local equation $x^2 + y^2 + z^4 = 0$) at the points on the orbit of the point (0:0:1:-1) under permutation of coordinates and one ordinary node at the point (1:1:1:1). Each plane contains three of the A_3 singularities.

Let W be a double covering of \mathbb{P}^3 branched along this octic surface. By numerical observation a resolution \tilde{W} of W is rigid and its L-series agrees with the L-series of the weight four newform 8/1 (8k4A1).

By the results of 4.6 there is a correspondence between W and the double octic W' given by the equation

$$u^{2} = (x^{2} + y^{2} + z^{2} + t^{2})^{4} - 256 \cdot x^{2}y^{2}z^{2}t^{2}$$
$$= ((x^{2} + y^{2} + z^{2} + t^{2})^{2} - 16 \cdot xyzt)((x^{2} + y^{2} + z^{2} + t^{2})^{2} + 16 \cdot xyzt).$$

The octic surface is again the union of two Kummer surfaces. The surfaces have 12 common nodes. By numerical observation a resolution \tilde{W}' of W' is again rigid and its L-series agrees with the L-series of the weight four newform 8/1 (8k4A1), as expected.

4.8 Playing with cubic surfaces

There are rather nice examples of double octics constructed from a cubic surface and five planes. We will explain some constructions and report about numerical observations but not prove modularity in detail. Some of the material might be discussed elsewhere.

The Cayley cubic

The Cayley cubic C is one interesting cubic surface. It can be given in \mathbb{P}^3 by the equation

$$xyz + xyt + xzt + yzt = 0.$$

It corresponds to \mathbb{P}^2 blown up in the six intersection points of a configuration of four lines. It has 4 ordinary nodes as only singularities which is the maximal possible number for a cubic surface. There are only 9 lines on C, namely the lines on the orbits of the lines given by the equations

$$x = y = 0,$$
 $x + y = z + t = 0,$

under permutation of coordinates. Now consider the double covering X_1 of \mathbb{P}^3 branched along the Σ_4 -symmetric octic surface given by the equation

$$xyzt(x+y+z+t)(xyz+xyt+xzt+yzt) = 0$$

or, in other coordinates, by the equation

$$(x+y+z-t)(x+y-z+t)(x-y+z+t)(-x+y+z+t)(x+y+z+t) \cdot (4(x^3+y^3+z^3+t^3)-(x+y+z+t)^3) = 0.$$

Here each of the planes contains three of the lines of C and each of the first four planes contains three nodes of C. By numerical observation the double octic X_1 is rigid, and its L-series is equal to the L-series of the weight four newform 8/1 (8k4A1). In fact there is a birational correspondence between X_1 and other rigid Calabi–Yau threefolds connected with this newform (cf. 6.1.4).

Applying the Segre construction (cf. 4.6) we find a relative Y_1 of X_1 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2 + t^2)(x^2y^2z^2 + x^2y^2t^2 + x^2z^2t^2 + y^2z^2t^2) = 0.$$

The sextic surface has non-isolated singularities (theorem 4.9 does not apply here). By numerical observation the double octic Y_1 is also rigid, and its L-series is equal to the L-series of the weight four newform 8/1 (8k4A1), as expected.

Now consider the double covering X_2 of \mathbb{P}^3 branched along the Σ_4 -symmetric octic surface given by the equation

$$xyzt(x+y+z+t)(4(x^3+y^3+z^3+t^3)-(x+y+z+t)^3)=0$$

or, in other coordinates, by the equation

$$(x+y+z-t)(x+y-z+t)(x-y+z+t)(-x+y+z+t)(x+y+z+t) \cdot (xyz + xyt + xzt + yzt) = 0.$$

Here the first four planes do not contain any lines or nodes of C, but there are six fourfold points of three planes and the cubic. By numerical observation the double octic X_2 is rigid, and its L-series is equal to the L-series of the weight four newform 40/3 (40k4A1).

Applying the Segre construction (cf. 4.6) we find a relative Y_2 of X_2 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2 + t^2)(4(x^6 + y^6 + z^6 + t^6) - (x^2 + y^2 + z^2 + t^2)^3) = 0.$$

Here theorem 4.9 applies: the sextic surface has 44 nodes as only singularities, namely the points on the orbits of the points (1:1:0:0) and $(1:1:1:\sqrt{-1})$ under permutation of coordinates and sign change. By numerical observation the double octic Y_2 is non-rigid (I predict $h^{12} = 6$), but its L-series still contains the L-series of the weight four newform 40/3 (40k4A1), as expected.

The Clebsch cubic

The *Clebsch cubic* is the only smooth cubic surface in \mathbb{P}^3 with 10 *Eckardt points*, i.e., points where three of the 27 lines on the surface meet. It corresponds to \mathbb{P}^2 blown up in the vertices and the center of a regular pentagon. It can be given in \mathbb{P}^3 by the equations

$$x^{3} + y^{3} + z^{3} + t^{3} + u^{3} = x + y + z + t + u = 0.$$

Let X_3 be a double covering of \mathbb{P}^3 branched along the octic surface given by the equations

$$(x+y)(y+z)(z+t)(t+x)(x+u)(x^3+y^3+z^3+t^3+u^3) = x+y+z+t+u=0.$$

Consider the following (non-planar) pentagon with 5 Eckardt points as vertices where the 5 inner edges represent lines on the Clebsch cubic.

The five planes of the octic surface are chosen in such a way that each plane contains three consecutive vertices of the pentagon, with respect to the inner edges. Note that each plane also contains one Eckardt point which is not a vertex of the pentagon. By numerical observation the double octic X_3 is rigid, and its L-series is equal to the L-series of the weight four newform 5/1 (5k4A1).

Now consider the double covering X_4 of \mathbb{P}^3 branched along the octic surface given by the equations

$$xyztu(x^3 + y^3 + z^3 + t^3 + u^3) = x + y + z + t + u = 0$$

Here the five planes of the octic surface are chosen in such a way that each plane contains three consecutive vertices of the pentagon, with respect to the *outer* edges. Note that each plane also contains three Eckardt points which are not vertices of the pentagon. The octic surface is Σ_5 -symmetric; it occurs also as $X_{(5:6)}$ in 4.9. By numerical observation the double octic X_4 is rigid, and its L-series is equal to the L-series of the weight four newform 10/1 (10k4A1).

Applying the Segre construction (cf. 4.6) we find a relative Y_4 of X_4 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2 + t^2)(x^6 + y^6 + z^6 + t^6 - (x^2 + y^2 + z^2 + t^2)^3) = 0.$$

Here theorem 4.9 applies: the sextic surface has 52 nodes as only singularities, namely the points on the orbits of the points (1:0:0:0) and $(0:1:1:\sqrt{-1})$ under permutation of coordinates and sign change. By numerical observation the double octic Y_4 is non-rigid but its L-series still contains the L-series of the weight four newform 10/1 (10k4A1), as expected.

Σ_4 -symmetric cubics

Modifying some of the above constructions I performed numerical experiments with double coverings of \mathbb{P}^3 branched along the union of the five planes xyzt(x+y+z+t)=0 and a cubic surface which is also invariant under permutation of coordinates. Such a surface is given by an equation of the form

$$F_{(f;a;h)}(x,y,z,t) = f \cdot S_3(x,y,z,t) + g \cdot S_1(x,y,z,t) \cdot S_2(x,y,z,t) + h \cdot S_1^3(x,y,z,t) = 0$$

where $S_i(x, y, z, t)$ is the elementary symmetric polynomial of degree i in x, y, z, t, and $(f : g : h) \in \mathbb{P}^2$. To avoid a double plane we can assume that $f \neq 0$. For certain parameters there seem to occur weight four newforms in the L-series of the Calabi–Yau threefolds (i.e., for each considered good prime p the number of points on the threefold agrees with the coefficient of the newform modulo p). Here I multiplied the equations of the branch loci with a certain factor to get a twisted newform of minimal level.

Note that the coordinate transformation

$$\begin{split} x &\mapsto -x + y + z + t, \\ y &\mapsto & x - y + z + t, \\ z &\mapsto & x + y - z + t, \\ t &\mapsto & x + y + z - t, \end{split}$$

maps the cubic with parameter (f:g:h) to the one with parameter (4f:-4(f+g):f-4h) and vice versa; the map $\phi:(f:g:h)\mapsto (4f:-4(f+g):f-4h)$ is an involution of \mathbb{P}^2 . Outside f=0 it has only one fixed point, namely (8:-4:1). The cubic degenerates to three planes; we get the rigid arrangement no. 238. For all other parameters there are two possibilities of choosing five planes which preserve the Σ_4 -symmetry of the octic. In some examples (like for the Cayley cubic) we get different modular forms for the two choices.

In the table I also predict if the double octics are rigid. This is based on numerical observations.

(f:g:h)	weight four newform	$\phi(f:g:h)$	rigid?	comments
(1:-1:0)	10/1 $(10k4A1)$	(4:0:1)	У	Clebsch cubic, 4.9
(1:0:0)	8/1 $(8k4A1)$	(4:-4:1)	У	Cayley cubic
(2:-3:0)	8/1 $(8k4A1)$	(4:2:1)	n	

(f:g:h)	weight	four newform	$\phi(f:g:h)$	rigid?	comments
(2:-1:0)	14/2	(14k4A1)	(4:-2:1)	n	
(4:-4:1)	40/3	(40k4A1)	(1:0:0)	У	Cayley cubic
(6:-1:0)	360/2		(12:-10:3)	n	Sarti cubic, 4.11
(8:-4:1)	8/1	(8k4A1)	(8:-4:1)	У	Arr. no. 238
(9:-4:1)	120/2	(120k4D1)	(36:-20:5)	У	
(9:-1:0)	42/2	(42k4A1)	(36:-32:9)	n	
(16:-16:5)	280/2	(280k4D1)	(16:0:-1)	n	
(16:0:-1)	88/2	(88k4A1)	(16:-16:5)	n	
(18:-11:3)	264/4	(264k4D1)	(36:-14:3)	n	
(18:7:-3)	210/6	(210k4H1)	(36:-50:15)	n	
(24:-4:1)	360/2		(24:-20:5)	n	
(27:-27:8)	210/6	(210k4H1)	(108:0:-5)	n	
(27:0:-1)	264/4	(264k4D1)	(108:-108:31)	У	
(54:-27:7)	42/2	(42k4A1)	(108:-54:13)	n	
(54:-9:1)	120/2	(120k4D1)	(108:-90:25)	n	
(216:-36:5)	120/2	(120k4D1)	(216:-180:49)	n	Sarti cubic, 4.11

The computer search ran over the parameter space $|f| \le 100$, $|g| \le 100$, $|h| \le 100$. Some of the parameters (f:g:h) might look rather strange but if we express the corresponding cubics in terms of sums of powers they become much nicer.

Note that applying the Segre construction (cf. 4.6) to the double octic constructed from the octic surface given by the equation

$$xyzt(x+y+z+t)F_{(f:a:h)}(x,y,z,t) = 0$$

we always find a relative (in general with different Hodge numbers) which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^{2} + y^{2} + z^{2} + t^{2})F_{(f:q:h)}(x^{2}, y^{2}, z^{2}, t^{2}) = 0.$$

A cubic with three cusps

There is a cubic surface in \mathbb{P}^3 with 3 cusps (i.e., singularities given locally by $xy = z^3$; also called A_2 singularities) as only singularities. It can be given in \mathbb{P}^3 by the equation

$$xyz - t^3 = 0.$$

The coordinates of the cusps are then (1:0:0:0), (0:1:0:0), (0:0:1:0). Let X_5 be a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$xyzt(x + y + z - 3t)(xyz - t^3) = 0.$$

The first three planes contain two of the cusps each, the fourth plane contains all three cusps and the third plane is tangent to the cubic at the point (1:1:1:1). By numerical observation

the double octic X_5 is rigid, and its L-series is equal to the L-series of the weight four newform 24/1 (24k4A1). Applying the Segre construction (cf. 4.6) we find a relative Y_5 of X_5 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2 - 3t^2)(xyz - t^3)(xyz + t^3) = 0.$$

By numerical observation the double octic Y_5 is also rigid, and its L-series is equal to the L-series of the weight four newform 24/1 (24k4A1), as expected.

Now let X_6 be a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x-t)(y-t)(z-t)t(x+y+z-3t)(xyz-t^{3}) = 0.$$

The first three planes contain one cusp each, the fourth plane contains all three cusps and the third plane is tangent to the cubic at the point (1:1:1:1). The first three planes also contain that point. There are also three fourfold points of the cubic, the fourth and the fifth and one of the first three planes. By numerical observation the double octic X_6 is rigid, and its L-series is equal to the L-series of the weight four newform 12/1 (12k4A1).

After the change of coordinates $x \mapsto x + t$, $y \mapsto y + t$, $z \mapsto z + t$ the equation for X_6 becomes

$$xyzt(x + y + z)((x + t)(y + t)(z + t) - t^3) = 0.$$

Applying the Segre construction (cf. 4.6) we find a relative Y_6 of X_6 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2)((x^2 + t^2)(y^2 + t^2)(z^2 + t^2) - t^6) = 0.$$

By numerical observation the double octic Y_6 is non-rigid but its L-series still contains the L-series of the weight four newform 12/1 (12k4A1), as expected.

Now let X_7 be a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$xyzt(x+y+z)(xyz-t^3) = 0.$$

The first three planes contain two of the cusps each, the fourth plane contains all three cusps and the fifth plane contains the intersection point of the first three planes. There are also three fourfold points of the cubic, the fourth and the fifth and one of the first three planes. By numerical observation the double octic X_7 is rigid, and its L-series is equal to the L-series of the weight four newform 108/3 (108k4A1). By applying an isomorphism defined over $\mathbb{Q}[\sqrt[3]{2}]$ we get the equation

$$xyzt(x+y+z)(xyz-2t^3) = 0,$$

and the newform 9/1 (9k4A1) occurs in the L-series of the double octic.

Applying the Segre construction (cf. 4.6) we find a relative Y_7 of X_7 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2)(xyz - t^3)(xyz + t^3) = 0.$$

By numerical observation the double octic Y_7 is non-rigid but its L-series still contains the L-series of the weight four newform 108/3 (108k4A1), as expected. By applying an isomorphism defined over $\mathbb{Q}[\sqrt[3]{2}]$ we get the equation

$$(x^2 + y^2 + z^2)(xyz - 4t^3)(xyz + 4t^3) = 0,$$

and the newform 9/1 (9k4A1) occurs again in the L-series of the double octic.

Now let X_8 be a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$xyz(x + y + z)(x + y + z - 3t)(xyz - t^3) = 0.$$

The first three planes contain two of the cusps each, the fourth plane contains the intersection point of the first three planes and the fifth plane is tangent to the cubic at the point (1:1:1:1). There are also three fourfold points of the cubic, the fourth and the fifth and one of the first three planes. By numerical observation the double octic X_8 is non-rigid, and its L-series contains the L-series of the weight four newform 54/2 (54k4D1).

After the change of coordinates $t \mapsto (x+y+z-t)/3$ the equation for X_8 becomes

$$xyzt(x + y + z)(27xyz - (x + y + z - t)^3) = 0.$$

Applying the Segre construction (cf. 4.6) we find a relative Y_8 of X_8 which is a double covering of \mathbb{P}^3 branched along the octic surface given by the equation

$$(x^2 + y^2 + z^2)(27x^2y^2z^2 - (x^2 + y^2 + z^2 - t^2)^3) = 0.$$

By numerical observation the double octic Y_8 is non-rigid but its L-series still contains the L-series of the weight four newform 54/2 (54k4D1), as expected.

4.9 Σ_5 -symmetric quintics and Barth's quintic with 15 cusps

Consider the power sums

$$C_i := C_i(x_0, x_1, \dots, x_4) := \sum_{k=0}^4 x_k^i,$$

and let the quintic surface $S_{(a:b)} \subset \mathbb{P}^3$ with $(a:b) \in \mathbb{P}^1$ be given by the equations

$$C_1 = aC_2C_3 - bC_5 = 0.$$

The varieties $S_{(a:b)} \subset \mathbb{P}^3$ define the pencil of quintic surfaces in \mathbb{P}^3 that are invariant under the operation of the symmetric group Σ_5 by permutation of coordinates.

The variety $S_{(a:b)}$ is the intersection of van Straten's quintic $\mathcal{M}_{(5b:6a-5b)}$ (cf. 3.6) with the hyperplane $x_5 = 0$. We will compute the singularities of $S_{(a:b)}$ in a similar way as in [101]. Let

$$D_i := D_i(x_0, x_1, x_2, x_3) := x_0^i + x_1^i + x_2^i + x_3^i.$$

4.9. Σ_5 -SYMMETRIC QUINTICS AND BARTH'S QUINTIC WITH 15 CUSPS

Then $S_{(a:b)}$ is given in \mathbb{P}^3 by the equation

$$a(D_2 + D_1^2)(D_3 - D_1^3) - b(D_5 - D_1^5).$$

The singular locus of $S_{(1:0)}$ is clearly the smooth curve $D_2 + D_1^2 = D_3 - D_1^3 = 0$; the quintic $S_{(0:1)}$ is clearly non-singular. Thus we can assume that a = 5 and $b \neq 0$. For convenience, we will set $c := b - 6 \neq -6$. Let $(x_0 : x_1 : x_2 : x_3)$ be a singular point of $S_{(a:b)}$. Differentiating we get

$$F(x_0) = F(x_1) = F(x_2) = F(x_3) = 0$$

for the quartic polynomial

$$F(x) = (c+6)x^4 - 3(D_2 + D_1^2)x^2 - 2(D_3 - D_1^3)x - D_1(2D_3 - 3D_1D_2 + (c+1)D_1^3).$$

A priori and up to permutation there are five possibilities how the roots of F can be distributed over the four coordinates:

$$(x:x:x:x), (x:x:y:y), (x:x:y:y), (x:x:y:z), (x:y:z:t).$$

Case 1: We can assume that $(x_0: x_1: x_2: x_3) = (1:1:1:1)$. We compute $D_1 = D_2 = D_3 = 4$ which leads to (a:b) = (17:20). In fact the 5 points on the orbit of (1:1:1:1:-4) are nodes on $S_{(17:20)}$ (it is easy to check that they are really ordinary nodes).

Case 2: If we assume that $(x_0: x_1: x_2: x_3) = (0:0:0:1)$ then we compute $D_1 = D_2 = D_3 = 1$ which leads to (a:b) = (5:6). The variety $S_{(5:6)}$ is the intersection of five planes given by xyzt(x+y+z+t) = 0, and the point (0:0:0:1) and its orbit are contained in the double lines.

Thus we can assume that x = 1 and so $(x_0 : x_1 : x_2 : x_3) = (1 : 1 : 1 : y)$. We compute $D_1 = 1 + t$, $D_2 = 1 + t^2$, $D_3 = 1 + t^3$ and (up to constants)

$$F(1) = (y+4)(c(y^3 + 8y^2 + 22y + 20) + 6y) = 0,$$

$$F(y) = (2y+3)(c(2y^2 + 6y + 9) + 2) = 0,$$

$$F(1) - F(y) = (y-1)(c(y^3 + y^2 + y + 1) + 6(y + 3)) = 0.$$

The cases y = 1 and y = -4 lead us back to case 1. If we assume that y = -3/2 then we can compute (a:b) = (13:30). In fact the 10 points on the orbit of (1:1:1:-3/2:-3/2) are nodes on $S_{(13:30)}$ (it is easy to check that they are really ordinary nodes).

Inserting $c(2y^2+6y+9)+2=0$ into $c(y^3+y^2+y+1)+6(y+3)=0$ gives (y+4)(c+2)=0. The first factor leads us back to case 1, the second factor gives (a:b)=(5:4). In fact the 20 points on the orbit of $(1:1:1:-3/2+\sqrt{-7}/2:-3/2-\sqrt{-7}/2)$ are nodes on $S_{(5:4)}$ (it is easy to check that they are really ordinary nodes).

Case 3: If we assume that $(x_0 : x_1 : x_2 : x_3) = (0 : 0 : 1 : 1)$ then we compute $D_1 = D_2 = D_3 = 2$ which leads to (a : b) = (5 : 6) again. Thus we can assume that x = 1 and so

 $(x_0: x_1: x_2: x_3) = (1:1:y:y)$. We compute $D_1 = 2(1+y)$, $D_2 = 2(1+y^2)$, $D_3 = 2(1+y^3)$ and (up to constants)

$$F(1) = (3+2y)(c(8y^3+20y^2+18y+5)+6y^2) = 0,$$

$$F(y) = (2+3y)(c(5y^3+18y^2+20y+8)+6y) = 0,$$

$$F(1) - F(y) = (y-1)(y+1)(cy^2+12y+c) = 0.$$

The cases y = -3/2 and y = -2/3 lead us back to case 2, the case y = 1 leads us back to case 1. The case y = -1 leads to (a : b) = (5 : 12). In fact the 15 points on the orbit of (1 : 1 : -1 : -1 : 0) are cusps on $S_{(5:12)}$. A cusp is a singularity with local equation $x^2 + y^2 + z^3 = 0$ (also called an A_2 singularity).

Inserting $cy^2 + 12y + c = 0$ into $c(8y^3 + 20y^2 + 18y + 5) + 6y^2 = 0$ gives (c-6)(2cy - 3c - 36y) = 0. The first factor only gives again the 15 cusps on $S_{(5:12)}$. The second factor, together with $cy^2 + 12y + c = 0$, gives $-3cy^2 = 2cy$. All possibilities lead us back to previous cases.

Case 4: If we assume that $(x_0 : x_1 : x_2 : x_3) = (0 : 0 : 1 : y)$ then we compute $D_1 = 1 + y$, $D_2 = 1 + y^2$, $D_3 = 1 + y^3$ and (up to constants)

$$F(0) = c(y^4 + 4y^3 + 6y^2 + 4y + 1) = 0,$$

$$F(1) = c(y^4 + 4y^3 + 6y^2 + 4y) = 0,$$

$$F(y) = c(4y^3 + 6y^2 + 4y + 1) = 0.$$

This is only possible for c = 0, i.e., (a : b) = (5 : 6).

Thus we can assume that $(x_0: x_1: x_2: x_3) = (1:1:y:z)$. We compute (up to constant)

$$F(1) - F(y) = (y - 1)(c(y + 1)(y^2 + 1) + 6z(y + z + 2)) = 0,$$

$$F(1) - F(z) = (z - 1)(c(z + 1)(z^2 + 1) + 6y(y + z + 2)) = 0,$$

$$F(y) - F(z) = (y - z)(c(y + z)(y^2 + z^2) + 6(y + z + 2)) = 0.$$

The cases y = 1, z = 1 and y = z have been discussed before. Let

$$H_1 = c(y+1)(y^2+1) + 6z(y+z+2),$$

$$H_2 = c(z+1)(z^2+1) + 6z(y+z+2),$$

$$H_3 = c(y+z)(y^2+z^2) + 6(y+z+2).$$

The case c=0 leads back to the 15 cusps on $S_{(5:12)}$. If $c\neq 0$ then we compute (up to constant)

$$H_2 - yH_3 = (y-1)((y+1)(y^2+1) + (z+1)(z^2+1) + yz(y+z+1) - 1) = 0,$$

 $yH_1 - xH_2 = (y-z)(yz(y+z+1) - 1) = 0.$

Again the cases y=1 and y=z lead us to previous cases. Thus we find $(y+1)(y^2+1)+(z+1)(z^2+1)=0$ and $H_1+H_2=6(y+z)(y+z+2)=0$. If y+z=0 then $H_3=12\neq 0$. If y+z+2=0 then we have either y=z=-1 (which leads us back to z=0) or z=1 which includes z=1 includes

4.9. Σ_5 -SYMMETRIC QUINTICS AND BARTH'S QUINTIC WITH 15 CUSPS

Case 5: If we assume that $(x_0 : x_1 : x_2 : x_3) = (0 : 1 : y : -1 - y)$ (note that the four roots of F must sum up to zero) then we compute

$$F(0) = 0$$
, $F(1) = c$, $F(y) = cy^4$, $F(-1-y) = c(y^4 + 4y^3 + 6y^2 + 4y + 1)$,

so we conclude c = 0 and (a : b) = (5 : 6) where we know the singular locus.

Thus we can assume that $(x_0: x_1: x_2: x_3) = (1: y: z: -1 - y - z)$. But then, considering the Σ_5 -symmetry, the point (0: 1: y: z) is also singular, and we conclude $z \in \{0, 1, y, -1 - y\}$ which leads to different previous cases.

The table collects the results of the above discussion. The general quintic $S_{(a:b)}$ is smooth, and the singular members are the following:

(a:b)	(5b:6a-5b)	singular locus
(1:0)	(0:1)	the curve $C_1 = C_2 = C_3 = 0$
(5:6)	(1:0)	10 lines given by $x_i = x_j = 0$
(5:12)	(-2:1)	15 cusps on the Σ_5 -orbit of $(1:1:-1:-1:0)$
(5:4)	(2:1)	20 nodes on the Σ_5 -orbit of $(2:2:2:-3+\sqrt{-7}:-3-\sqrt{-7})$
(17:20)	(50:1)	5 nodes on the Σ_5 -orbit of $(1:1:1:1:-4)$
(13:30)	(-25:12)	10 nodes on the Σ_5 -orbit of $(1:1:1:-3/2:-3/2)$

The surface $S_{(5:12)}$ was investigated by Barth in [5]. It is the quintic surface with the highest number of cusps that is currently known. The surface $S_{(5:6)}$ (which is the union of five planes) has already occurred in 4.8.

The surface $S_{(a:b)}$ contains the 15 lines given by

$$x_i + x_j = x_k + x_l = x_m = 0,$$
 $\{i, j, k, l, m\} = \{0, 1, 2, 3, 4\}.$

These lines are the complete intersection of $S_{(a:b)}$ with the Clebsch cubic C (cf. 4.8) which is given by the equations

$$C_1 = C_3 = 0.$$

Let $X_{(a:b)}$ be a double covering of \mathbb{P}^3 branched along the octic surface $S_{(a:b)} \cup C$. Counting points on $X_{(a:b),p}$ for small primes p we see that for some parameters (a:b) we have

$$\#X_{(a:b),p} \equiv b_p \mod p$$

where b_p are the coefficients of certain weight four newforms for $\Gamma_0(N)$, suggesting that these newforms occur in the *L*-series of $X_{(a:b)}$. Here I multiplied the equations of the branch loci with a certain factor to get a twisted newform of minimal level.

(a:b)	(5b:6a-5b)	factor	newform
(5:6)	(1:0)	10	10/1 $(10k4A1)$
(5:12)	(-2:1)	-10	130/2 (130k4B1)
(5:4)	(2:1)	30	30/2 (30k4A1)
(17:20)	(50:1)	6	390/5
(13:30)	(-25:12)	2	10/1 $(10k4A1)$

The occurrence of the bad prime 13 in the levels of the newforms connected with $X_{(5:12)}$ and $X_{(17:20)}$ is remarkable. We will give some comments on the single examples.

• For $X_{(5:6)}$ and small good primes p we have the formula

$$b_p = p^3 + 7p^2 - 18p + 1 - \#X_{(5:6),p},$$

suggesting that $X_{(5:6)}$ is rigid. In fact S. Cynk computed

$$h^{1,2}(\tilde{X}_{(5:6)}) = 0$$
, $h^{1,1}(\tilde{X}_{(5:6)}) = 42$, $\chi(\tilde{X}_{(5:6)}) = 84$

for a resolution $\tilde{X}_{(5:6)}$ of $X_{(5:6)}$. A modularity proof requires a closer look at the Picard group of $\tilde{X}_{(5:6)}$.

• For $X_{(5:12)}$ and small good primes p we have the formula

$$b_p + 4 \cdot c_p = p^3 + 6p^2 - 29p + 1$$

where c_p are the coefficients of the weight two newform 26B1. S. Cynk computed

$$h^{1,2}(\tilde{X}_{(5:12)}) = 4, \quad h^{1,1}(\tilde{X}_{(5:12)}) = 21, \quad \chi(\tilde{X}_{(5:12)}) = 34$$

for a resolution $\tilde{X}_{(5:12)}$ of $X_{(5:12)}$. A modularity proof requires an explanation for the occurrence of the weight two newform and a closer look at the resolution of singularities and at the Picard group of $\tilde{X}_{(5:12)}$.

• For $X_{(5:4)}$ and small good primes p we have the formula

$$b_p = p^3 + 7p^2 + 1 - \#X_{(5:4),p} - \begin{cases} 28p, & p \equiv 3, 5, 6 \mod 7, \\ 48p, & p \equiv 1, 2, 4 \mod 7, \end{cases}$$

suggesting that $X_{(5:4)}$ is rigid. In fact S. Cynk computed

$$h^{1,2}(\tilde{X}_{(5:4)}) = 0, \quad h^{1,1}(\tilde{X}_{(5:4)}) = 22, \quad \chi(\tilde{X}_{(5:4)}) = 44$$

for a resolution $\tilde{X}_{(5:4)}$ of $X_{(5:4)}$. The nodes of $X_{(5:4)}$ (and the rulings of their tangent cones) are defined over \mathbb{F}_p if $\sqrt{-7}$ exists which is the case exactly for $p \equiv 1, 2, 4 \mod 7$. A modularity proof requires a closer look at the resolution of singularities and at the Picard group of $\tilde{X}_{(5:4)}$.

- There can not be said much about $X_{(17:20)}$ at the moment. It seems to be non-rigid; S. Cynk conjectures $h^{1,2}(\tilde{X}_{(17:20)}) = 9$ for a resolution $\tilde{X}_{(17:20)}$ of $X_{(17:20)}$. The discriminant of the tangent cones at the nodes is -5.
- There can also not be said much about $X_{(13:30)}$ at the moment. It seems to be non-rigid; S. Cynk conjectures $h^{1,2}(\tilde{X}_{(13:30)}) = 4$ for a resolution $\tilde{X}_{(13:30)}$ of $X_{(13:30)}$. The discriminant of the tangent cones at the nodes is $105 = 3 \cdot 5 \cdot 7$ which is pretty unpleasant.

4.10 Σ_5 -symmetric octics

We are going to have a glance at the general case of Σ_5 -symmetric octic surfaces and double octics constructed from them. Consider again the power sums

$$C_i := C_i(x_0, x_1, \dots, x_4) := \sum_{k=0}^4 x_k^i,$$

and let the octic surface $T_{(a:b:c:d:e)} \subset \mathbb{P}^3$ with $(a:b:c:d:e) \in \mathbb{P}^4$ be given by the equations

$$C_1 = aC_5C_3 + bC_4^2 + cC_4C_2^2 + dC_3^2C_2 + eC_2^4 = 0.$$

The varieties $T_{(a:b:c:d:e)} \subset \mathbb{P}^3$ define the pencil of octic surfaces in \mathbb{P}^3 that are invariant under the action of the symmetric group Σ_5 by permutation of coordinates. There are three subfamilies where the octic splits into a sum of two symmetric surfaces of lower degree:

- For b = c = e = 0 the surface $T_{(a:b:c:d:e)}$ is the union of the Clebsch cubic and the quintic surface $S_{(d:-a)}$ from 4.9.
- For a = d = 0 the surface $T_{(a:b:c:d:e)}$ is the union of two Σ_5 -symmetric quartic surfaces.
- For a = b = 0 the surface $T_{(a:b:c:d:e)}$ is the union of the Σ_5 -symmetric quadric surface given by $C_1 = C_2 = 0$ and a Σ_5 -symmetric sextic surface.

For many values of (a:b:c:d:e) the double covering of \mathbb{P}^3 branched along the octic surface $T_{(a:b:c:d:e)}$ seems to be modular (i.e., for each considered good prime p the number of points on the threefold agrees with the coefficient of a weight four newform modulo p). Here I multiplied the equations of the branch loci with a certain factor to get a twisted newform of minimal level. The table lists the parameters and the (twists of minimal level of the) occurring newforms. The computer search ran over all parameters with $|a|, |b|, |c|, |d|, |e| \leq 25$. It took more than one month on a 3 Gigahertz machine to check these parameters (166.859.681 examples at a rate of ~ 200.000 per hour). There might be many interesting examples missing.

(a:b:c:d:e)	weight four newform	remarks
(0:0:4:2:-1)	120/2 (120k4D1)	quadric and sextic, non-rigid
(0:0:5:-5:-1)	1920/3	quadric and sextic, non-rigid
(0:0:6:-2:-3)	360/2	quadric and sextic, non-rigid

(a:b:c:d:e)	weight four newform		remarks	
(0:8:-6:0:1)	120/4	(120k4F1)	two quartics, non-rigid	
(4:0:0:-5:0)	30/2	(30k4A1)	cubic and quintic, rigid, cf. 4.9	
(6:0:0:-5:0)	10/1	(10k4A1)	cubic and quintic, rigid, cf. 4.9	
(12:-4:4:-10:-1)	570/7		non-rigid, $570 = 2 \cdot 3 \cdot 5 \cdot 19$	
(12:0:0:-5:0)	130/2	(130k4B1)	cubic and quintic, non-rigid, cf. 4.9	
(0:0:2:16:-1)	120/1	(120k4B1)	quadric and sextic, non-rigid	
(0:0:0:20:-9)	32/2	(32k4B1)	quadric and sextic, non-rigid	
(0:20:-20:-1:5)	1110/2		non-rigid, $1110 = 2 \cdot 3 \cdot 5 \cdot 37$	
(20:0:-6:-15:3)	330/4		non-rigid, $330 = 2 \cdot 3 \cdot 5 \cdot 11$	
(20:0:0:-17:0)	390/5		cubic and quintic, non-rigid, cf. 4.9	
(0:0:0:30:-1)	96/1	(96k4D1)	quadric and sextic, non-rigid	
(30:0:0:-13:0)	10/1	(10k4A1)	cubic and quintic, non-rigid, cf. 4.9	

The occurrence of the bad primes 11, 13, 19 and 37 is remarkable.

4.11 Sarti's Heisenberg-invariant surfaces

Construction of the surfaces

Consider two subgroups $G_1, G_2 \subset SO(3)$. Let \tilde{G}_1, \tilde{G}_2 denote their inverse images in SU(2) under the universal covering $SU(2) \longrightarrow SO(3)$ and let G_1G_2 denote the 2 : 1 image of $\tilde{G}_1 \times \tilde{G}_2$ in SO(4) under the double covering $SU(2) \times SU(2) \longrightarrow SO(4)$.

Consider the Klein four group $V \subset SO(3)$. Then $H := VV \subset SO(4)$ is called the *Heisenberg group* (with 32 elements).

Sarti ([83]) classified all subgroups $G \subset SO(4)$ which contain H and studied their first nontrivial invariants in $\mathbb{C}[x,y,z,t]$. Since $H \subset G$ there is always the trivial invariant

$$Q(x, y, z, t) = x^{2} + y^{2} + z^{2} + t^{2},$$

and any nontrivial invariant f has even degree, say $\deg(f) = j$. A pencil of G-invariant surfaces of degree j in \mathbb{P}^3 is then given by

$$f(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^{j/2} = 0, \quad \lambda \in \mathbb{P}^1.$$

Sarti gave a list of those groups G where the above pencil with f the first nontrivial invariant for G contains surfaces with isolated singularities. In all cases the pencil contains all G-invariant surfaces of degree j in \mathbb{P}^3 (i.e., f is the only nontrivial invariant of degree j), there are exactly four singular surfaces (apart from the multiple quadric for $\lambda = \infty$), and in all but one case (in the case IO there are two additional double lines in the base locus) all the singularities are

G	order	j		λ				# of	nodes	
(OO)'	192	4	-1	$-\frac{1}{2}$	$-\frac{1}{3}$	$-\frac{1}{4}$	4	12	16	8
$TT =: G_6$	288	6	-1	$-\frac{2}{3}$	$-\frac{7}{12}$	$-\frac{1}{4}$	12	48	48	12
$OO =: G_8$	1152	8	-1	$-\frac{3}{4}$	$-\frac{9}{16}$	$-\frac{5}{9}$	24	72	144	96
IO	2880	12	c_1	$-\frac{1}{8}$	c_2	0	240	360	240	120
$II =: G_{12}$	7200	12	$-\frac{3}{32}$	$-\frac{22}{243}$	$-\frac{2}{25}$	0	300	600	360	60

ordinary nodes that form one G-orbit.

Here T, O, $I \subset SO(3)$ denote the tetrahedral, octahedral and icosahedral groups (i.e., the rotation groups leaving invariant these platonic solids). The notation G_n is that of [82] and corresponds to the degree j (in [82] these groups were called *bi-polyhedral groups*). The group (OO)' is a subgroup of OO (see [83] for generators). The numbers c_1 and c_2 are $-\frac{74}{972} + \frac{4}{243}\sqrt{10}$ and $-\frac{74}{972} - \frac{4}{243}\sqrt{10}$ (they did not look nice in the table).

We are interested in (double coverings of \mathbb{P}^3 branched along) octic surfaces, so we are going to have a look at the cases with $j \leq 8$:

G	first nontrivial invariant
(OO)'	$S_4(x, y, z, t) = x^4 + y^4 + z^4 + t^4$
TT	$S_6(x, y, z, t) = x^6 + y^6 + z^6 + t^6 + 15(x^2y^2z^2 + x^2y^2t^2 + x^2z^2t^2 + y^2z^2t^2)$
00	$S_8(x, y, z, t) = x^8 + y^8 + z^8 + t^8$ $+14(x^4y^4 + x^4z^4 + x^4t^4 + y^4z^4 + y^4t^4 + z^4t^4)$ $+168x^2y^2z^2t^2$

Let

$$D_{\lambda} = \{S_8(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^4 = 0\} \subset \mathbb{P}^3,$$

$$F_{\lambda} = \{S_6(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^3 = 0\} \subset \mathbb{P}^3,$$

$$H_{\lambda} = \{S_4(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^2 = 0\} \subset \mathbb{P}^3, \qquad \infty \neq \lambda \in \mathbb{P}^1,$$

and let X_{λ} resp. Y_{λ} resp. $Z_{\lambda,\mu}$ be a double covering of \mathbb{P}^3 branched along D_{λ} resp. $F_{\lambda} \cup Q$ resp. $H_{\lambda} \cup H_{\mu}$ (which are all octic surfaces).

We will pay special attention to parameters λ , μ leading to surfaces with nodes. Let us start

Surface	Representative under	# of nodes under
	permutation	permutation
И.	$(1 \cdot 0 \cdot 0 \cdot 0)$	1

with H_{λ} . We list representatives of the nodes under permutation of coordinates:

 $(1:\pm 1:\pm 1:\pm 1)$

12

16

To describe the singularities of D_{λ} and F_{λ} we consider the 24-cell in \mathbb{C}^4 (with Schläfli symbol $\{3,4,3\}$) and its reciprocal (denoted by $\{3,4,3\}'$). As in [24, p. 156] we choose the permutations of the points $(\pm 1, \pm 1, 0, 0)$ as vertices of $\{3, 4, 3\}$. The singularities of D_{λ} and F_{λ} (if there are any) are then given by the images in \mathbb{P}^3 of the following points:

Surface	Nodes
$F_{-\frac{1}{4}}$	Vertices of $\{3,4,3\}$
F_{-1}	Vertices of $\{3,4,3\}'$
$F_{-\frac{7}{12}}$	Middle points of the edges of $\{3, 4, 3\}$
$F_{-\frac{2}{3}}$	Middle points of the edges of $\{3,4,3\}'$
D_{-1}	Vertices of $\{3,4,3\}$ and vertices of $\{3,4,3\}'$
$D_{-\frac{5}{9}}$	Middle points of the edges of $\{3,4,3\}$ and middle points of the edges of $\{3,4,3\}'$
$D_{-\frac{3}{4}},$	Certain middle points of the segments connecting
$D_{-\frac{9}{16}}$	the vertices of $\{3,4,3\}$ with those of $\{3,4,3\}'$

We also give a list of representatives of the nodes under permutation of coordinates.

Surface	Representative under	# of nodes under
	permutation	permutation
$F_{-\frac{1}{4}}$	$(1:\pm 1:0:0)$	12
F_{-1}	(1:0:0:0)	4
	$(1:\pm 1:\pm 1:\pm 1)$	8
$F_{-\frac{7}{12}}$	$(1:\pm 1:\pm 2:0)$	48

Surface	Representative under	# of nodes under
	permutation	permutation
$F_{-\frac{2}{3}}$	$(1:\pm 1:\pm 1:\pm 3)$	32
	$(1:\pm 1:\pm 1:0)$	16
D_{-1}	$(1:\pm 1:0:0)$	12
	(1:0:0:0)	4
	$(1:\pm 1:\pm 1:\pm 1)$	8
$D_{-\frac{5}{9}}$	$(1:\pm 1:\pm 2:0)$	48
9	$(1:\pm 1:\pm 1:\pm 3)$	32
	$(1:\pm 1:\pm 1:0)$	16
$D_{-\frac{3}{4}}$	$(1:\pm(1+\sqrt{2}):0:0)$	24
	$(1:\pm 1:\pm (1+\sqrt{2}):\pm (1+\sqrt{2}))$	48
$D_{-\frac{9}{16}}$	$(1:\pm 1:\pm \sqrt{2}:0)$	48
10	$(1:\pm 1:\pm (1+\sqrt{2}):\pm (1-\sqrt{2}))$	96

Nodal octics

Now we are ready to study the double coverings. Let \hat{X}_{λ} be a big resolution of X_{λ} . Then \hat{X}_{λ} has Euler characteristic

$$\chi(\hat{X}_{\lambda}) = -296 + 4 \cdot s_{\lambda}$$

where s_{λ} is the number of nodes of D_{λ} . The group $OO = G_8$ acts transitively on the sets of nodes in each of the four singular examples, so by corollary 1.9 there exist projective small resolutions exactly if the defect $d(X_{\lambda})$ is not zero.

Let the four singular double octics $X_{\lambda} \subset \mathbb{P}^4(1,1,1,1,4)$ be given by

$$X_{-1} = \{u^2 = S_8(x, y, z, t) - Q(x, y, z, t)^4\},\$$

$$X_{-\frac{5}{9}} = \{u^2 = -(9S_8(x, y, z, t) - 5Q(x, y, z, t)^4)\},\$$

$$X_{-\frac{9}{16}} = \{u^2 = 16S_8(x, y, z, t) - 9Q(x, y, z, t)^4\},\$$

$$X_{-\frac{3}{4}} = \{u^2 = -(4S_8(x, y, z, t) - 3Q(x, y, z, t)^4)\}.$$

For every good prime p such that all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p (i.e., all the discriminants are squares in \mathbb{F}_p) the Lefschetz fixed point formula gives

$$\begin{aligned} |\#\hat{X}_{\lambda,p} - 1 - p^3 - h^2(\hat{X}_{\lambda})p(p+1)| \\ &= |\#X_{\lambda,p} + s_{\lambda} \cdot p(p+2) - 1 - p^3 - h^2(\hat{X}_{\lambda})p(p+1)| \\ &\leq p^{3/2}h^3(\hat{X}_{\lambda}) \\ &= p^{3/2}(2 + 2h^2(\hat{X}_{\lambda}) - \chi(\hat{X}_{\lambda})). \end{aligned}$$

With the above choice of equations this holds for all good primes in the cases $\lambda = -1$ and $\lambda = -5/9$ and for all good primes $p \equiv 1,7 \mod 8$ (such that $\sqrt{2}$ exists) in the cases $\lambda = -9/16$ and $\lambda = -3/4$.

Counting points on X_{λ} for suitable primes (see the last column of the following table) we compute $h^2(\hat{X}_{\lambda})$ and from that and the Euler characteristic all the other data. If there exist projective small resolutions then we also list the corresponding data.

λ	$\chi(\hat{X}_{\lambda})$	$h^2(\hat{X}_{\lambda})$	$h^3(\hat{X}_{\lambda})$	$d(X_{\lambda})$	$\chi(\tilde{X}_{\lambda})$	$h^2(\tilde{X}_{\lambda})$	primes
-1	-200	25	252	0			65089
$-\frac{5}{9}$	88	97	108	0			2687
$-\frac{9}{16}$	280	154	30	9	-8	10	71,353
$-\frac{3}{4}$	-8	73	156	0			5711

Note that the counting of points on X_{-1} over \mathbb{F}_{65089} took over three weeks on a 3 Gigahertz machine, using an $O(p^3)$ algorithm (and it took some months to find a suitable prime).

If $p \equiv 3, 5 \mod 8$ and $\lambda = -9/16$ or $\lambda = -3/4$ then none of the nodes are rational over \mathbb{F}_p . In this case we have the estimate

$$|\#\hat{X}_{\lambda,p} - 1 - p^3 - k_\lambda \cdot p(p+1)| = |\#X_{\lambda,p} - 1 - p^3 - k_\lambda \cdot p(p+1)| \le p^{3/2}h^3(\hat{X}_\lambda)$$

with some $k_{\lambda} \in \mathbb{Z}$, $|k_{\lambda}| \leq h^2(\hat{X}_{\lambda})$. Counting points over \mathbb{F}_{349} and \mathbb{F}_{421} gives $k_{-\frac{9}{16}} = 10$; counting points over \mathbb{F}_{8093} and \mathbb{F}_{10037} gives $k_{-\frac{3}{4}} = 1$.

We end up with the formulas

$$\begin{split} a_p(\hat{X}_{-1}) &= p^3 + p^2 - 23p + 1 - \#X_{-1,p}, \\ a_p(\hat{X}_{-\frac{5}{9}}) &= p^3 + p^2 - 95p + 1 - \#X_{-\frac{5}{9},p}, \\ a_p(\hat{X}_{-\frac{9}{16}}) &= \begin{cases} p^3 + 10p^2 - 134p + 1 - \#X_{-\frac{9}{16},p}, & p \equiv 1,7 \mod 8, \\ p^3 + 10p^2 + & 10p + 1 - \#X_{-\frac{9}{16},p}, & p \equiv 3,5 \mod 8, \end{cases} \\ a_p(\hat{X}_{-\frac{3}{4}}) &= \begin{cases} p^3 + p^2 - 71p + 1 - \#X_{-\frac{3}{4},p}, & p \equiv 1,7 \mod 8, \\ p^3 + p^2 + & p + 1 - \#X_{-\frac{3}{4},p}, & p \equiv 3,5 \mod 8. \end{cases} \end{split}$$

We are also going to consider the smooth example

$$\hat{X}_0 = X_0 = \{u^2 = S_8(x, y, z, t)\}$$
 with $\chi(\hat{X}_0) = -296$, $h^2(\hat{X}_0) = 1$, $h^3(\hat{X}_0) = 298$ and
$$a_n(\hat{X}_0) = p^3 + p^2 + p + 1 - \#X_0$$

Now let b_n	be the	coefficients	of the	following	weight f	our newforms:

λ	newform	1
- 1	168/1	(168k4A1)
$-\frac{5}{9}$	336/10	(twist of 168/2)
$-\frac{9}{16}$	336/12	(twist of $42/2$)
$-\frac{3}{4}$	336/3	(twist of 21/1)
0	120/5	(120k4A1)

For all good primes $p \leq 97$ we find by counting points

$$b_{p,\lambda} \equiv a_p(\hat{X}_{\lambda}) \mod 2p$$

and even

$$b_{p,-\frac{9}{16}} \equiv a_p(\hat{X}_{-\frac{9}{16}}) \mod 4p.$$

The following table lists the numbers $\frac{a_p(\hat{X}_{\lambda}) - b_{p,\lambda}}{p}$:

p	$\lambda = -1$	$\lambda = -\frac{5}{9}$	$\lambda = -\frac{9}{16}$	$\lambda = -\frac{3}{4}$	$\lambda = 0$
5	-50	-106	32	8	
7					0
11	60	-116	-4	34	-20
13	114	-74	36	26	102
17	-2	-126	-32	-120	-102
19	52	92	56	-92	-92
23	32	-48	-52	-54	-144
29	-70	-186	-100	-10	134
31	-128	128	-72	-144	32
37	162	-130	52	-78	-226
41	118	74	-24	100	-174
43	-172	-220	-16	308	276
47	272	-160	24	-36	184
53	-382	78	-108	-6	-258
59	-180	84	136	48	204
61	130	-234	12	62	502
67	60	-4	136	16	92
71	-144	-16	-172	-90	184
73	-146	-94	-124	-66	690
79	64	-176	-120	-388	-256

p	$\lambda = -1$	$\lambda = -\frac{5}{9}$	$\lambda = -\frac{9}{16}$	$\lambda = -\frac{3}{4}$	$\lambda = 0$
83	228	76	128	-12	-132
89	790	-6	-24	-124	-94
97	-122	282	68	-306	298

The numbers in the table might be sums of coefficients of weight two modular forms but this would be difficult to prove. I have not detected any weight four newforms in the L-series of \hat{X}_{λ} for any other values of λ .

Quadric and nodal sextics

Now we consider the surfaces $F_{\lambda} \cup Q$. By the results of [82] no singularities of F_{λ} are contained in Q. The intersection $F_{\lambda} \cap Q$ is reduced and consists of 12 lines, 6 of each ruling of Q.

The surfaces F_{-1} and $F_{-\frac{1}{4}}$ resp. $F_{-\frac{7}{12}}$ and $F_{-\frac{2}{3}}$ are isomorphic via the coordinate transformation given by the matrix (cf. [82])

$$\begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix}.$$

Note that this transformation is not contained in G_6 but in G_8 . It maps the 24-cell $\{3,4,3\}$ to its reciprocal $\{3,4,3\}'$.

The Euler characteristic $\chi(Y_{\lambda})$ of Y_{λ} is

$$\chi(Y_{\lambda}) = 2 \cdot \chi(\mathbb{P}^{3}) - \chi(F_{\lambda} \cup Q)$$

$$= 8 - (\chi(F_{\lambda}) + \chi(Q) - \chi(F_{\lambda} \cap Q))$$

$$= 8 - (108 - s_{\lambda} + 4 - (12 \cdot 2 - 6 \cdot 6))$$

$$= -116 + s_{\lambda}$$

where s_{λ} is the number of nodes of F_{λ} .

The singularities of Y_{λ} can be resolved by blowing up the 12 singular lines and the double points. Let \hat{Y}_{λ} denote such a big resolution. The Euler characteristic of \hat{Y}_{λ} is then

$$\chi(\hat{Y}_{\lambda}) = \chi(Y_{\lambda}) + 3 \cdot s_{\lambda} + 12 \cdot (4-2) = -92 + 3 \cdot s_{\lambda}.$$

The singular lines are defined over every \mathbb{F}_p since they are rulings of the quadric Q (whose discriminant is a square). If we choose

$$Y_{-1} = \{u^2 = -3(S_6(x, y, z, t) - Q(x, y, z, t)^3) \cdot Q(x, y, z, t)\},\$$

$$Y_{-\frac{7}{12}} = \{u^2 = (12S_6(x, y, z, t) - 7Q(x, y, z, t)^3) \cdot Q(x, y, z, t)\}$$

as equations for the double coverings then for every good prime p all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p (i.e., all the discriminants are squares in \mathbb{F}_p) and the Lefschetz fixed point formula gives

$$\begin{split} |\#\hat{Y}_{\lambda,p} - 1 - p^3 - h^2(\hat{Y}_{\lambda})p(p+1)| \\ &= |\#Y_{\lambda,p} + s_{\lambda} \cdot p(p+2) + 12 \cdot p(p+1) - 1 - p^3 - h^2(\hat{Y}_{\lambda})p(p+1)| \\ &\leq p^{3/2}h^3(\hat{Y}_{\lambda}) \\ &= p^{3/2}(2 + 2h^2(\hat{Y}_{\lambda}) - \chi(\hat{Y}_{\lambda})). \end{split}$$

Counting points on Y_{λ} for suitable primes (see the last column of the following table) we compute $h^2(\hat{Y}_{\lambda})$ and from that and the Euler characteristic all the other data. Note that it is an open question if there also exist projective small resolutions.

λ	$\chi(\hat{Y}_{\lambda})$	$h^2(\hat{Y}_{\lambda})$	$h^3(\hat{Y}_{\lambda})$	primes
- 1	-56	25	108	4271,5039
$-\frac{7}{12}$	52	70	90	7333,7703

We end up with the formulas

$$a_p(\hat{Y}_{-1}) = p^3 + p^2 - 11p + 1 - \#Y_{-1,p},$$

$$a_p(\hat{Y}_{-\frac{7}{12}}) = p^3 + 10p^2 - 38p + 1 - \#Y_{-\frac{7}{12},p}.$$

Now let $b_{p,-1}$ be the coefficients of the weight four newform 360/2 and $b_{p,-\frac{7}{12}}$ the coefficients of the weight four newform 120/2 (120k4D1). For all good primes $p \leq 97$ we find by counting points

$$a_p(\hat{Y}_{-1}) \equiv b_{p,-1} \mod 2p$$

and even

$$a_p(\hat{Y}_{-\frac{7}{12}}) \equiv b_{p,-\frac{7}{12}} \mod 8p.$$

The following table lists the numbers $\frac{a_p(\hat{Y}_{\lambda}) - b_{p,\lambda}}{p}$:

p	$\lambda = -1$	$\lambda = -\frac{7}{12}$
3		
5		
7	-42	-8
11	-82	8
13	12	32
17	-30	40
19	4	8
23	0	8

p	$\lambda = -1$	$\lambda = -\frac{7}{12}$
29	-38	32
31	-148	-16
37	176	48
41	24	24
43	-72	-16
47	-16	8
53	-54	48
59	-114	-8

p	$\lambda = -1$	$\lambda = -\frac{7}{12}$
61	-26	32
67	20	16
71	164	0
73	-102	24
79	-148	0
83	132	-32
89	-188	24
97	-194	8

The numbers in the table might again be sums of coefficients of weight two modular forms but this would be difficult to prove. I have not detected any weight four newforms in the L-series of \hat{Y}_{λ} for any other values of λ .

Two nodal quartics

Finally we consider the surfaces $H_{\lambda} \cup H_{\mu}$. If $\lambda \neq \mu$ then by the results of [83] the intersection $H_{\lambda} \cap H_{\mu}$ is the smooth curve of degree 8 given by

$$x^{2} + y^{2} + z^{2} + t^{2} = x^{4} + y^{4} + z^{4} + t^{4} = 0.$$

The Euler characteristic $\chi(Z_{\lambda,\mu})$ of $Z_{\lambda,\mu}$ is

$$\chi(Z_{\lambda,\mu}) = 2 \cdot \chi(\mathbb{P}^3) - \chi(H_{\lambda} \cup H_{\mu})$$

$$= 8 - (\chi(H_{\lambda}) + \chi(H_{\mu}) - \chi(H_{\lambda} \cap H_{\mu}))$$

$$= 8 - (2 \cdot 24 - s_{\lambda} - s_{\mu} - (-64))$$

$$= -104 + s_{\lambda} + s_{\mu}$$

where s_{λ} resp. s_{μ} is the number of nodes of F_{λ} resp. F_{μ} .

Since H_{λ} and H_{μ} do not intersect transversally the octic surface $H_{\lambda} \cup H_{\mu}$ is not an arrangement, and the resolution of the singular curve may be more complicated. We will not go through this in detail but concentrate on numerical observations.

Let us first have a closer look at the primes of bad reduction. Let $\lambda = (a:b) \in \mathbb{P}^1(\mathbb{Q})$, $a,b \in \mathbb{Z}$ with gcd(a,b) = 1 and let $(\bar{x}:\bar{y}:\bar{z}:\bar{t})$ be a singular point of H_{λ} over \mathbb{F}_p . Differentiating we get

$$\begin{split} &4\bar{x}((a+b)\bar{x}^2+b\bar{y}^2+b\bar{z}^2+b\bar{t}^2)=0,\\ &4\bar{y}(b\bar{x}^2+(a+b)\bar{y}^2+b\bar{z}^2+b\bar{t}^2)=0,\\ &4\bar{z}(b\bar{x}^2+b\bar{y}^2+(a+b)\bar{z}^2+b\bar{t}^2)=0,\\ &4\bar{t}(b\bar{x}^2+b\bar{y}^2+b\bar{z}^2+(a+b)\bar{t}^2)=0, \end{split}$$

so the vector whose entries are the nonzero entries of $(\bar{x}^2, \bar{y}^2, \bar{z}^2, \bar{t}^2)$ must be in the kernel of one of the following matrices over \mathbb{F}_p (the one with the correct size):

$$\begin{pmatrix} a+b & b & b & b \\ b & a+b & b & b \\ b & b & a+b & b \\ b & b & b & a+b \end{pmatrix}, \begin{pmatrix} a+b & b & b \\ b & a+b & b \\ b & b & a+b \end{pmatrix}, \begin{pmatrix} a+b & b \\ b & a+b \end{pmatrix}, \begin{pmatrix} a+b & b \\ b & a+b \end{pmatrix}$$

The determinants of these matrices are

$$a^{3}(a+4b)$$
, $a^{2}(a+3b)$, $a(a+2b)$, $a+b$,

so p has to divide one of the numbers $a + b^i$, $0 \le i \le 4$. The five examples which are singular over \mathbb{C} (four examples with nodes and the double quadric Q) correspond to the vanishing of one of these numbers.

The kernel of the above matrices is $\langle (1,\ldots,1)\rangle$ so whenever a prime p divides $a+b^i$ for some i, $0 \le i \le 4$, it really is a bad prime.

For the following values of λ , μ we can detect congruences

$$\#Z_{\lambda,\mu,p} \equiv b_p \mod p$$

for all good primes $p \leq 97$ where b_p are the coefficients of the listed weight four newform (here I twisted the equation for $H_{\lambda} \cup H_{\mu}$ by a nonsquare number to get a twisted newform of minimal level):

λ	μ	newform		
- 1	1	120/4	(120k4F1)	
-1	$-\frac{1}{2}$	96/2	(96k4E1)	
- 1	$-\frac{1}{3}$	24/1	(24k4A1)	
- 1	$-\frac{1}{4}$	96/1	(96k4D1)	
1	$\frac{1}{2}$	480/2		

λ	μ	newform		
$-\frac{1}{2}$	$-\frac{1}{3}$	96/4	(96k4B1)	
$-\frac{1}{2}$	$-\frac{1}{4}$	6/1	(6k4A1)	
$-\frac{1}{3}$	$-\frac{1}{4}$	96/1	(96k4D1)	
$\frac{1}{2}$	$-\frac{1}{3}$	480/5		

This is a list of the parameter values appearing above:

$\lambda = (a:b)$	a+b	a+2b	a+3b	a+4b	bad primes
-1 = (1:-1)	0	-1	-2	-3	2,3
$-\frac{1}{2} = (2:-1)$	1	0	-1	-2	2
$-\frac{1}{3} = (3:-1)$	2	1	0	-1	2,3
$-\frac{1}{4} = (4:-1)$	3	2	1	0	2,3
1 = (1:1)	2	3	4	5	2, 3, 5
$\frac{1}{2} = (2:1)$	3	4	5	6	2, 3, 5

These examples are special in the way that there are only very few and very small bad primes and they appear at small powers in the numbers $a + b^i$. I expect a weight four newform in the middle cohomology of *all* double octics $Z_{\lambda,\mu}$ but the level will be too high to be in my tables.

Remarks

In [7] Barth and Sarti studied the pencils of quotient surfaces F_{λ}/G_6 , D_{λ}/G_8 and C_{λ}/G_{12} (where C_{λ} is given by

$$C_{\lambda} = \{S_{12}(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^6 = 0\} \subset \mathbb{P}^3$$

with S_{12} being the nontrivial invariant of degree 12 for G_{12}). It turned out that the minimal resolution of a general member of each pencil is a K3 surface with Picard number 19, and in each case the four nodal examples lead to K3 surfaces with Picard number 20 (i.e., extremal K3 surfaces).

In each case with group G_n the number n-1 is a prime, and this prime occurs in a mysterious way in many places. This was first noted in [7], and we will add some more data.

We list again the special values for λ , the number s_{λ} of nodes on F_{λ} resp. D_{λ} resp. C_{λ} , the discriminant d_{λ} of the Picard lattice of F_{λ}/G_6 resp. D_{λ}/G_8 resp. C_{λ}/G_{12} and the level N_{λ} of the (twists of minimal level of the) weight four newforms associated to the double covering of \mathbb{P}^3 branched along the octic $F_{\lambda} \cup Q$ resp. D_{λ} .

n = 6					
λ	s_{λ}	d_{λ}	N_{λ}		
- 1	12	-15	360		
$-\frac{2}{3}$	48	-60	120		
$-\frac{7}{12}$	48	-60	120		
$-\frac{1}{4}$	12	-15	360		

n = 8				
λ	s_{λ}	d_{λ}	N_{λ}	
- 1	24	-28	168	
$-\frac{3}{4}$	72	-84	21	
$-\frac{9}{16}$	144	-168	42	
$-\frac{5}{9}$	96	-112	168	

n = 12					
λ	s_{λ}	d_{λ}			
$-\frac{3}{32}$	300	-660			
$-\frac{22}{243}$	600	-440			
$-\frac{2}{25}$	360	-792			
0	60	-132			

The primes 5, 7 and 11 also occur in the coefficients of the defining polynomials, in the cross ratio CR of the four special values for λ , in the absolute invariant j and in the sum of nodes $\sum s_{\lambda}$ over all special members:

n	6	8	12
CR	$\frac{5^2}{3^2}$	$\frac{7^2}{2^4 \cdot 3}$	$\frac{11^2}{2^5 \cdot 3}$
j	$\frac{13^3 \cdot 37^3}{2^8 \cdot 3^2 \cdot 7^4}$	$\frac{13^3 \cdot 181^3}{2^8 \cdot 3^2 \cdot 7^4}$	$\frac{12241^3}{2^{10} \cdot 3^2 \cdot 5^4 \cdot 11^4}$
$\sum s_{\lambda}$	$120 = 2^3 \cdot 3 \cdot 5$	$336 = 2^4 \cdot 3 \cdot 7$	$1320 = 2^3 \cdot 3 \cdot 5 \cdot 11$

It would be very interesting to find an explanation for this and to study the arithmetic of the K3 surfaces in detail.

Relatives

The polynomials Q, S_4 , S_6 and S_8 are polynomials in x^2 , y^2 , z^2 , t^2 , so we can apply the results from 4.6 and find nice (double octic) relatives of the modular double octics constructed above. Let

$$T_2(x, y, z, t) = x^2 + y^2 + z^2 + t^2,$$

$$T_3(x, y, z, t) = x^3 + y^3 + z^3 + t^3 + 15(xyz + xyt + xzt + yzt),$$

$$T_4(x, y, z, t) = x^4 + y^4 + z^4 + t^4 + 14(x^2y^2 + x^2z^2 + x^2t^2 + y^2z^2 + y^2t^2 + z^2t^2) + 168xyzt,$$
such that $S_{2i}(x, y, z, t) = T_i(x^2, y^2, z^2, t^2).$

In the S_8 case we get the double octic corresponding to the union of four planes and a (maybe nodal) quartic surface as a relative.

double octic	equation for relative	newfor	m
X_{-1}	$u^2 = xyzt(T_4 - (x+y+z+t)^4)$	168/1	(168k4A1)
$X_{-\frac{5}{9}}$	$u^{2} = xyzt(9T_{4} - 5(x + y + z + t)^{4})$	168/2	(168k4E1)
$X_{-\frac{3}{4}}$	$u^{2} = xyzt(4T_{4} - 3(x + y + z + t)^{4})$	21/1	(21k4B1)
$X_{-\frac{9}{16}}$	$u^{2} = xyzt(16T_{4} - 9(x + y + z + t)^{4})$	42/2	(42k4A1)
X_0	$u^2 = xyzt \cdot T_4$	120/5	(120k4A1)

In the S_6 case we get the double octic corresponding to the union of five planes and a (maybe nodal) cubic surface as a relative. Both examples also occur in 4.8.

double octic	equation for relative	newform
Y_{-1}	$u^{2} = xyzt(x+y+z+t)(T_{3} - (x+y+z+t)^{3})$	360/2
$Y_{-\frac{7}{12}}$	$u^{2} = xyzt(x+y+z+t)(12T_{3} - 7(x+y+z+t)^{3})$	120/2 $(120k4D1)$

In the S_4 case we get the double octic corresponding to the union of four planes and two quadric surfaces as a relative. The quadric surface given by $T_2 + \lambda \cdot (x + y + z + t)^2 = 0$ has a node exactly if $\lambda = -1/4$. All these examples also occur in 4.5.

double octic	equation for relative	newfor	m
$Z_{-1,1}$	$xyzt(T_2 - (x + y + z + t)^2)(T_2 + (x + y + z + t)^2)$	120/4	(120k4F1)
$Z_{-\frac{1}{2},-\frac{1}{3}}$	$xyzt(2T_2 - (x+y+z+t)^2)(3T_2 - (x+y+z+t)^2)$	96/4	(96k4B1)
$Z_{-1,-\frac{1}{2}}$	$xyzt(T_2 - (x + y + z + t)^2)(2T_2 - (x + y + z + t)^2)$	96/2	(96k4E1)
$Z_{-\frac{1}{2},-\frac{1}{4}}$	$xyzt(2T_2 - (x+y+z+t)^2)(4T_2 - (x+y+z+t)^2)$	6/1	(6k4A1)
$Z_{-1,-\frac{1}{3}}$	$xyzt(T_2 - (x+y+z+t)^2)(3T_2 - (x+y+z+t)^2)$	24/1	(24k4A1)
$Z_{-\frac{1}{3},-\frac{1}{4}}$	$xyzt(3T_2 - (x+y+z+t)^2)(4T_2 - (x+y+z+t)^2)$	96/1	(96k4D1)
$Z_{-1,-\frac{1}{4}}$	$xyzt(T_2 - (x+y+z+t)^2)(4T_2 - (x+y+z+t)^2)$	96/1	(96k4D1)
$Z_{\frac{1}{2},-\frac{1}{3}}$	$xyzt(2T_2 + (x+y+z+t)^2)(3T_2 - (x+y+z+t)^2)$	480/5	
$Z_{1,rac{1}{2}}$	$xyzt(T_2 + (x + y + z + t)^2)(2T_2 + (x + y + z + t)^2)$	480/2	

More experiments

I performed some more numerical experiments with the Sarti surfaces. Consider again the quartic surface H_{λ} given by the equation

$$S_4(x, y, z, t) + \lambda \cdot Q(x, y, z, t)^2 = x^4 + y^4 + z^4 + z^4 + \lambda \cdot (x^2 + y^2 + z^2 + t^2)^2 = 0.$$

For certain double octics X constructed from these surfaces I detected connections to weight four newforms in the sense that

$$\#X_p \equiv b_p \mod p$$

for all checked good primes where b_p are the coefficients of the respective newform. In the table we write S = x + y + z + t.

equation of double octic	newfor	m
$u^{2} = (S - x)(S - y)(S - z)(S - t)(3S_{4} - Q^{2})$	96/1	(96k4D1)
$u^{2} = (S - x)(S - y)(S - z)(S - t)(4S_{4} - Q^{2})$	96/1	(96k4D1)
$u^{2} = (S - 2x)(S - 2y)(S - 2z)(S - 2t)(4S_{4} - Q^{2})$	96/4	(96k4B1)
$u^2 = xyzt(4S_4 - Q^2)$	288/1	
$u^{2} = 4S_{4}(x^{2}, y^{2}, z^{2}, t^{2}) - Q(x^{2}, y^{2}, z^{2}, t^{2})^{2}$	288/1	

The last two examples in the table are again relatives by the construction from 4.6.

Chapter 5

Other examples

5.1 A rigid complete intersection with small Euler number

Let $X \subset \mathbb{P}^5$ be the complete intersection threefold defined by the equations

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 = 4x_4x_5,$$

 $x_4^4 + x_5^4 = 2x_0x_1x_2x_3.$

It is invariant under the action of the group G which is generated by the permutations of the first four coordinates and by the transformations

$$(x_0: x_1: x_2: x_3: x_4: x_5) \mapsto (x_0: -x_1: x_2: x_3: \xi_8 x_4: \xi_8^{-1} x_5),$$

$$(x_0: x_1: x_2: x_3: x_4: x_5) \mapsto (x_0: x_1: x_2: x_3: \xi_4 x_4: \xi_4^{-1} x_5),$$

$$(x_0: x_1: x_2: x_3: x_4: x_5) \mapsto (x_0: -x_1: -x_2: x_3: x_4: x_5),$$

where ξ_4 is a 4-th root of unity and ξ_8 is a primitive 8-th root of unity.

The singular locus of X consists of 12 singularities of type (2,2,4,4) on the orbit of the point $(1:\sqrt{-1}:0:0:0:0)$ and 32 nodes on the orbit of the point (1:1:1:1:1:1) under the action of G.

The Euler characteristic of X is

$$\chi(X) = -176 + 32 + 12 \cdot 9 = -36.$$

Let \tilde{X} be a small resolution of X. Then

$$\chi(\tilde{X}) = -36 + 32 + 12 \cdot (4 - 1) = 32.$$

To my knowledge, this is the smallest known Euler number for a rigid Calabi–Yau threefold (we will check rigidity below).

There exist projective small resolutions. The singularities of type (2, 2, 4, 4) are contained in the smooth divisors

$$x_4 = \xi_8 x_5$$
, $x_i^2 + x_j^2 + x_k^2 = 4\xi_8 x_5^2$, $x_l = 0$

where ξ_8 is a primitive 8th root of unity and $\{i, j, k, l\} = \{0, 1, 2, 3\}$.

To see that the nodes are also contained in smooth divisors we rewrite the first equation for X as

$$(x_0 - x_1)^2 + (x_2 - x_3)^2 + 2(x_0x_1 + x_2x_3 - 2x_4x_5) = 0$$

and the second equation as

$$2(x_4x_5 - x_0x_1)(x_4x_5 - x_2x_3) + 2x_4x_5(x_0x_1 + x_2x_3 - 2x_4x_5) = (x_4^2 - x_5^2)^2.$$

Thus the smooth surface given by the equations

$$x_0 - x_1 = \sqrt{-1}(x_2 - x_3),$$

$$x_0 x_1 + x_2 x_3 = 2x_4 x_5,$$

$$\sqrt{-2}(x_4 x_5 - x_0 x_1) = x_4^2 - x_5^2$$

is contained in X. Moreover it contains the node (1:1:1:1:1:1) of X.

Over the finite field \mathbb{F}_p not all of the singularities may appear, depending on the existence of 4-th and 8-th roots of unity:

p me	8 bc	# of nodes	# of $(2, 2, 4, 4)$ -points
1		32	12
5		16	12
3,7		8	0

The tangent cones at the nodes are given by the quadric surface defined by

$$5(x^2 + y^2 + z^2) + 2(xy + xz + yz) - 16w(x + y + z) + 32w^2 = 0$$

with discriminant $2 \cdot 64^2$, so all rulings are defined over fields where 2 is a square.

At the singular points of type (2, 2, 4, 4) the variety X looks locally like

$$xy(2+x^2-y^2-4zt) + z^4 + t^4 = 0.$$

It seems that one of the resolving curves is defined over $\mathbb{Q}[\sqrt{-1}]$ and the remaining two only over $\mathbb{Q}[\sqrt{-2}]$. This has still to be checked.

Then for $p \equiv 1 \mod 8$ all singularities and all resolving curves are rational over \mathbb{F}_p . We apply the Lefschetz fixed point formula:

$$|\#\tilde{X}_p - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)| = |\#X_p + 12 \cdot 3p + 32p - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)|$$

$$\leq p^{3/2} h^3(\tilde{X}) = p^{3/2} (2 + 2h^2(\tilde{X}) - 32).$$

5.1. A RIGID COMPLETE INTERSECTION WITH SMALL EULER NUMBER

Counting points over \mathbb{F}_{17} we find

$$h^2(\tilde{X}) = 16, \quad h^3(\tilde{X}) = 2,$$

so \tilde{X} is rigid.

For $p \not\equiv 1 \mod 8$ we have the estimates

$$|\#X_p - 12p - 16p - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}, \quad p \equiv 5 \mod 8,$$
$$|\#X_p + 8p - 1 - p^3 - l \cdot p(p+1)| \le 2p^{3/2}, \quad p \equiv 7 \mod 8,$$
$$|\#X_p - 8p - 1 - p^3 - m \cdot p(p+1)| \le 2p^{3/2}, \quad p \equiv 3 \mod 8,$$

with $k, l, m \in \mathbb{Z}$, $|k|, |l|, |m| \le 16$. Counting points over \mathbb{F}_{13} , \mathbb{F}_{23} and \mathbb{F}_{11} gives k = -8, l = -2 and m = -2. We end up with the formula

$$a_p(\tilde{X}) = \begin{cases} p^3 + 16p^2 - 52p + 1 - \#X_p, & p \equiv 1 \mod 8, \\ p^3 - 8p^2 + 20p + 1 - \#X_p, & p \equiv 5 \mod 8, \\ p^3 - 2p^2 - 10p + 1 - \#X_p, & p \equiv 7 \mod 8, \\ p^3 - 2p^2 + 6p + 1 - \#X_p, & p \equiv 3 \mod 8. \end{cases}$$

Counting points for all primes $3 \leq 97$ we find that the $a_p(\tilde{X})$ agree with the coefficients of the weight four newform 16/1 (16k4A1, twist of 8/1 by $\left(\frac{-1}{p}\right)$), and by corollary 1.6 they agree for all primes $p \geq 5$.

A related double octic

Eliminating x_5 from the second equation for X we obtain the equation

$$256 \cdot x_4^8 + (x_0^2 + x_1^2 + x_2^2 + x_3^2)^4 = 2 \cdot 256 \cdot x_0 x_1 x_2 x_3 x_4^4$$

which we rewrite as

$$-256 \cdot (x_4^4 - x_0 x_1 x_2 x_3)^2 = (x_0^2 + x_1^2 + x_2^2 + x_3^2)^4 - 256 \cdot x_0^2 x_1^2 x_2^2 x_3^2$$

Thus there is a correspondence defined over $\mathbb Q$ between X and the double octic given by the equation

$$u^2 = 256 \cdot x^2 y^2 z^2 t^2 - (x^2 + y^2 + z^2 + t^2)^4.$$

This double octic is also discussed in 4.7. Note that by multiplying the branch locus with -1 we twist the occurring newform 16/1 by $\left(\frac{-1}{p}\right)$, thus obtaining the newform 8/1.

5.2 A family of nodal complete intersections

Let $a=(a_0:a_1:a_2:a_3:a_4:a_5)\in \mathbb{P}^5(\mathbb{Q})$ and let $X_a\subset \mathbb{P}^5$ be the complete intersection threefold defined by

$$\sum_{i=0}^{5} a_i x_i^2 = \sum_{i=0}^{5} a_i x_i^4 = 0.$$

If $a_0 \cdot \ldots \cdot a_5 \neq 0$ then X_a has only isolated singularities, namely the points with coordinates

$$x_i = \begin{cases} \pm 1, & i \in I \\ 0, & i \notin I \end{cases}$$
 where $I \subset \{0, 1, \dots, 5\}$ with $\sum_{i \in I} a_i = 0$.

The group $(\mathbb{Z}/2\mathbb{Z})^6$ acts on X_a by sign change of the coordinates.

Now let $\zeta = (\zeta_0 : \zeta_1 : \zeta_2 : \zeta_3 : \zeta_4 : \zeta_5)$ be a singular point of X_a . Since $a_0 \cdot \ldots \cdot a_5 \neq 0$ we can assume that $a_0 = 1$, $\zeta_0^2 = 1$ and $\zeta_5 = 1$. The tangent cone at ζ is then given by the quadric surface

$$2\sum_{i=1}^{4} a_i(3\zeta_i^2 - 1)x_i^2 + 4\left(\sum_{i=1}^{4} a_i\zeta_i x_i\right)^2 = 0$$

with discriminant

$$a_1 a_2 a_3 a_4 (3\zeta_1^2 - 1)(3\zeta_2^2 - 1)(3\zeta_3^2 - 1)(3\zeta_4^2 - 1) \cdot \left(1 + \frac{2a_1\zeta_1^2}{3\zeta_1^2 - 1} + \frac{2a_2\zeta_2^2}{3\zeta_2^2 - 1} + \frac{2a_3\zeta_3^2}{3\zeta_3^2 - 1} + \frac{2a_4\zeta_4^2}{3\zeta_4^2 - 1}\right).$$

Since $\zeta_i^2 \in \{0,1\}$, the last factor can be written as

$$1 + a_1 \zeta_1^2 + a_2 \zeta_2^2 + a_3 \zeta_3^2 + a_4 \zeta_4^2.$$

But $a_1\zeta_1^2 + a_2\zeta_2^2 + a_3\zeta_3^2 + a_4\zeta_4^2 + a_5 = -1$ with $a_5 \neq 0$, so ζ is an ordinary node with discriminant

$$-a_1a_2a_3a_4a_5(3\zeta_1^2-1)(3\zeta_2^2-1)(3\zeta_3^2-1)(3\zeta_4^2-1).$$

Using a computer we find examples with 0, 2, 4, 6, ..., 76, 80, 82, 90, 96 and 122 nodes. Some

numbers seem to occur onl	v finitely many	times. In the table we l	ist the corresponding examples.

# of nodes	$(a_0:a_1:a_2:a_3:a_4:a_5)$
54	(1:1:2:-2:3:-4)
54	(1:-1:2:2:-2:-3)
68	(1:1:-1:-2:-2:3)
72	(1:1:1:1:-1:-3)
74	(1:1:1:-1:2:-3)
76	(1:1:1:2:-2:-2)
80	(1:1:1:1:1:-3)
80	(1:1:1:1:1:-4)
80	(1:1:1:1:-2:-2)
80	(1:1:1:-1:-1:-2)
90	(1:1:-1:-1:2:-2)
96	(1:1:1:1:-1:-2)
122	(1:1:1:-1:-1:-1)

Over the finite field \mathbb{F}_p with $p \geq 5$ the singularities of X_a are given by the points with coordinates

$$x_i = \begin{cases} \pm 1, & i \in I, \quad a_i \not\equiv 0 \mod p \\ 0, & i \not\in I, \quad a_i \not\equiv 0 \mod p \end{cases} \text{ where } I \subset \{0, 1, \dots, 5\} \text{ with } \sum_{i \in I} a_i \equiv 0 \mod p,$$

so it is possible to detect the bad primes by looking at the coefficients a_i . Note that 2 and 3 are always bad primes.

Lemma: Up to permutation of coordinates there are only seven sets of coefficients $a = (a_0 : a_1 : a_2 : a_3 : a_4 : a_5) \in \mathbb{P}^5(\mathbb{Q})$ with $a_0 \cdot \ldots \cdot a_5 \neq 0$ such that 2 and 3 are the only bad primes for X_a . These are

$$(1:1:1:1:-1:-3),\\(1:1:1:1:-2:-2),\\(1:1:1:-1:-1:-2),\\(2:1:1:-1:-1:-2),\\(1:1:1:1:-1:-2),\\(1:1:1:-1:-1:-1),\\(1:1:-1:-1:-1),$$

Proof: We may assume that $a_i = \pm 2^{\alpha_i} 3^{\beta_i} \in \mathbb{Z}$ and $gcd(a_0, \dots, a_5) = 1$. There are two cases: Case 1: $a_0 = 1$.

Let $i \in \{1, ..., 5\}$. Then $a_0 + a_i = 1 \pm 2^{\alpha_i} 3^{\beta_i} = \pm 2^{\gamma} 3^{\delta}$ from which we conclude that $\alpha_i \cdot \gamma = \beta_i \cdot \delta = 0$. The cases $\alpha_i = \beta_i = 0$ and $\gamma = \delta = 0$ give $a_i \in \{\pm 1, \pm 2\}$. The cases $\alpha_i = \delta = 0$ and $\gamma = \beta_i = 0$ lead to special cases of Catalán's conjecture (which has been proven by P. Mihăilescu in [70]) and give $a_i \in \{-9, -4, -3, 2, 3, 8\}$.

Case 2: $a_i \neq \pm 1 \text{ for all } i \in \{0, ..., 5\}.$

Because $gcd(a_0,...,a_5) = 1$ there are $i,j \in \{0,...,5\}$, $i \neq j$ with $a_i = \pm 2^{\alpha}$, $a_j = \pm 3^{\beta}$. We have $a_i + a_j = \pm 2^{\gamma}3^{\delta}$ which is only possible if $\gamma = \delta = 0$. If $k \in \{0,...,5\}$, $i \neq k \neq j$, then $a_i + a_j + a_k = \pm 1 + a_k = \pm 2^{\lambda}3^{\mu}$ from which we conclude that $|a_k| \in \{1,2,3,4,6,8,9\}$ like in case 1.

We are left with a finite problem that can easily be solved with the help of a computer. \Box

I also performed a computer search for sets of coefficients $a = (a_0 : a_1 : a_2 : a_3 : a_4 : a_5) \in \mathbb{P}^5(\mathbb{Q})$ such that 2, 3 and 5 are the only bad primes for X_a ; and it seems that there are only finitely many of them. A proof could require generalizations of Catalán's conjecture. This is a list of the examples that I found (I checked all coefficients with absolute value ≤ 20):

```
(4:4:1:1:-4:-6),
(3:3:3:3:-4:-8),
                                       (4:4:4:-3:-3:-6),
(1:1:1:1:1:-6),
                   (2:1:1:1:1:-6),
                                       (4:4:1:1:-5:-5),
(2:2:2:2:-5:-5),
                    (4:2:2:2:-5:-5),
                                       (5:4:1:-1:-4:-5),
(3:3:3:-1:-3:-5),
                   (2:2:2:2:-3:-5),
                                       (1:1:1:1:-1:-5),
(2:1:1:1:-1:-5),
                    (3:1:1:1:-1:-5),
                                       (2:2:1:1:-1:-5),
(1:1:1:1:1:-5),
                    (2:1:1:1:1:-5),
                                       (2:2:2:2:2:-5),
(3:3:3:-4:-4:-4),
                   (3:3:3:-1:-4:-4),
                                       (3:3:3:3:-4:-4),
(3:3:2:-2:-2:-4),
                   (1:1:1:1:-2:-4),
                                       (2:1:1:1:-2:-4),
(3:1:1:1:-2:-4),
                    (2:2:1:1:-2:-4),
                                       (1:1:1:-1:-1:-4),
(2:1:1:-1:-1:-4),
                    (3:1:1:-1:-1:-4),
                                       (4:1:1:-1:-1:-4),
(2:2:1:-1:-1:-4),
                   (3:2:1:-1:-1:-4),
                                       (2:2:2:-1:-1:-4),
(1:1:1:1:-1:-4),
                   (2:1:1:1:-1:-4),
                                       (3:1:1:1:-1:-4),
(2:2:1:1:-1:-4),
                    (1:1:1:1:1:-4),
                                       (2:1:1:1:1:-4),
(2:2:2:-2:-3:-3),
                   (3:3:2:-2:-3:-3),
                                       (1:1:1:1:-3:-3),
(2:1:1:1:-3:-3),
                    (3:1:1:1:-3:-3),
                                       (2:2:1:1:-3:-3),
(2:2:2:2:-3:-3),
                   (1:1:1:-1:-2:-3),
                                       (2:1:1:-1:-2:-3),
(3:1:1:-1:-2:-3),
                   (2:2:1:-1:-2:-3),
                                       (3:2:1:-1:-2:-3),
(2:2:2:-1:-2:-3),
                   (1:1:1:1:-2:-3),
                                       (2:1:1:1:-2:-3),
(3:1:1:1:-2:-3),
                   (2:2:1:1:-2:-3),
                                       (2:2:2:2:-2:-3),
(-1:-1:1:1:1:3),
                    (-2:-1:1:1:1:3),
                                       (-3:-1:1:1:1:3),
(-2:-2:1:1:1:3),
                    (1:1:1:-1:-1:-3),
                                       (2:1:1:-1:-1:-3),
(3:1:1:-1:-1:-3),
                   (2:2:1:-1:-1:-3),
                                       (2:2:2:-1:-1:-3),
(2:1:1:1:-1:-3),
                   (2:2:1:1:-1:-3),
                                       (1:1:1:1:1:-3),
(2:1:1:1:1:-3),
                   (1:1:1:-2:-2:-2),
                                       (2:1:1:-2:-2:-2),
(2:2:1:-2:-2:-2),
                   (-1:-1:1:1:2:2),
                                       (-2:-1:1:1:2:2),
(-2:-2:1:1:2:2),
                   (1:1:1:-1:-2:-2),
                                       (2:1:1:-1:-2:-2),
(2:2:1:-1:-2:-2),
                   (2:1:1:1:-2:-2),
                                       (-1:1:1:1:1:2),
(2:1:1:1:1:-2),
                    (-1:-1:1:1:1:2),
                                       (-2:-1:1:1:1:2),
(1:1:1:1:1:-2),
                   (1:1:1:1:1:1),
                                       (1:1:1:1:1:-1).
```

Now we are going to investigate the members of the family for modularity. We will consider a

small resolution \tilde{X}_a of X_a and compute $a_p(\tilde{X}_a)$. For some values $a \in \mathbb{P}^5$ we find

$$a_p(\tilde{X}_a) \equiv b_p \mod 2p$$

for the coefficients of certain weight four newforms and all considered good primes p, suggesting that the newform occurs in the L-series of \tilde{X}_a . In particular, all the examples with bad primes only 2 and 3 seem to be modular. I conjecture that a weight four newform for some $\Gamma_0(N)$ can be found in the L-series of all examples \tilde{X}_a but the level will be too high to be in my tables. I have not been able to detect if the remaining part of the L-series of the modular examples is a sum of weight two newforms.

The computation of $a_p(\tilde{X})$ is done in the usual way, using the Lefschetz fixed point formula. I am going to omit the details. Note that the computation of $h^2(\tilde{X}_a)$ requires counting of points over rather large fields (like \mathbb{F}_{2579} and \mathbb{F}_{3853}), so the counting program had to be highly optimized.

In most examples it is not clear if there exist projective small resolutions.

The following table summarizes the results, listing the coefficients a, the number of nodes, the Hodge numbers, information about projective small resolutions and the weight four newform. The single examples are discussed in more detail afterwards.

a	#nodes	$h^{1,1}$	$h^{2,1}$	proj.	weight fo	ur newform
(1:1:1:1:1:1)	0	1	89	yes	480/2	
(1:1:1:1:1:-1)	10	1	79	no	240/11	(240k4H1, twist of 120/4)
(1:1:1:1:1:-5)	32	2	58	yes	600/10	(twist of $600/2$)
(1:1:1:1:1:-2)	40	1	49	no	1920/10	(twist of 1920/2)
(1:1:1:-1:-1:2)	40	1	49	no	1920/6	(twist of 1920/2)
(1:1:1:-1:-1:-3)	44	1	45	no	1440/7	
(1:1:1:3:-3:-3)	52	4	40	?	360/10	(twist of $40/2$)
(1:1:1:1:-1:-1)	64	3	27	?	96/2	(96k4E1)
(1:1:1:2:-2:-3)	66	3	25	?	720/25	(twist of $360/2$)
(1:1:1:1:-1:-3)	72	6	22	?	72/1	(72k4C1)
(1:1:1:1:1:-3)	80	11	19	yes	1440/7	
(1:1:1:1:-2:-2)	80	4	12	?	192/7	(192k4C1, twist of 6/1)
(1:1:1:-1:-1:-2)	80	2	10	?	384/4	(twist of $384/3$)
(1:1:-1:-1:2:-2)	90	15	13	?	48/3	(48k4A1, twist of 6/1)
(1:1:1:1:-1:-2)	96	15	7	?	384/5	(twist of 384/3)
(1:1:1:-1:-1:-1)	122	34	0	yes	12/1	(12k4A1)

No. 1: a = (1:1:1:1:1:1):

The variety X_a is smooth with

$$\chi(X_a) = -176$$
, $h^2(X_a) = 1$, $h^3(X_a) = 180$

and

$$a_p(X_a) = p^3 + p^2 + p + 1 - \#X_{a,p}.$$

The table lists the numbers $(b_p - a_p(X_a))/p$ where b_p are the coefficients of the newform 480/2.

$ (b_p - a_p(X_a))/p $ 104 76 198 74 184 -300 382 176 278 -298 -12	p	7	11	13	17	19	23	29	31	37	41	43
	$(b_p - a_p(X_a))/p$	104	76	198	74	184	-300	382	176	278	-298	-124

p	47	53	59	61	67	71	73	79	83	89	97
$b_p - a_p(X_a))/p$	212	-370	84	-334	-444	-144	574	776	748	-450	286

No. 2:
$$a = (1:1:1:1:1:1:-1)$$
:

The variety X_a has 10 nodes as only singularities, namely the points on the orbit of

under sign change and permutation of the first five coordinates. We have

$$\chi(\tilde{X}_a) = -156, \quad h^2(\tilde{X}_a) = 1, \quad h^3(\tilde{X}_a) = 160$$

and

$$a_p(\tilde{X}_a) = p^3 + p^2 - 9p + 1 - \#X_{a,p}.$$

There do not exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 240/11 (240k4H1).

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	100	-24	98	182	84	-152	-294	-8	66	-6	-84

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))$))/p -280	-422	376	-122	-116	832	-30	-472	-596	-206	642

No. 3:
$$a = (1:1:1:1:1:-5)$$
:

The variety X_a has 32 nodes as only singularities, namely the points on the orbit of the point

under sign change. We have

$$\chi(\tilde{X}_a) = -112, \quad h^2(\tilde{X}_a) = 2, \quad h^3(\tilde{X}_a) = 118$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 2p^2 - 30p + 1 - \#X_{a,p}, & p \equiv 1, 4 \mod 5, \\ p^3 + 32p + 1 - \#X_{a,p}, & p \equiv 2, 3 \mod 5. \end{cases}$$

By a generalization of corollary 1.9 there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 600/10.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	4	184	-46	-54	-92	20	-32	372	2	184	48
p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	-108	-74	144	184	160	328	382	212	232	-24	374

No. 4:
$$a = (1:1:1:1:1:1:-2)$$
:

The variety X_a has 40 nodes as only singularities, namely the points on the orbit of the point

under sign change and permutation of the first 5 coordinates. We have

$$\chi(\tilde{X}_a) = -96, \quad h^2(\tilde{X}_a) = 1, \quad h^3(\tilde{X}_a) = 100$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + p^2 - 39p + 1 - \#X_{a,p}, & p \equiv 1 \mod 4, \\ p^3 + p^2 + 41p + 1 - \#X_{a,p}, & p \equiv 3 \mod 4. \end{cases}$$

There do not exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 1920/10.

p	1	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	12	-26	152	-152	48	64	-10	134	48	66	-100

	p	47	53	59	61	67	71	73	79	83	89	97
(b	$p_p - a_p(\tilde{X}_a))/p$	-256	-90	-54	174	-76	-88	250	-50	-332	-94	-50

No. 5:
$$a = (1:1:1:-1:-1:2)$$
:

The variety X_a has 40 nodes as only singularities, namely the points on the orbits of the points

$$(0:0:0:1:1:1), \quad (1:1:0:1:1:0), \quad (1:0:0:1:0:0)$$

under sign change and permutation of the first 3 resp. the next 2 coordinates. We have

$$\chi(\tilde{X}_a) = -96, \quad h^2(\tilde{X}_a) = 1, \quad h^3(\tilde{X}_a) = 100$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + p^2 - 39p + 1 - \#X_{a,p}, & p \equiv 1, 3 \mod 8, \\ p^3 + p^2 + 33p + 1 - \#X_{a,p}, & p \equiv 5, 7 \mod 8. \end{cases}$$

There do not exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 1920/6.

p	7	11	13	17	19	23	29	31	37	41	43
$b_p - a_p(\tilde{X}_a))/p$	28	2	8	40	112	-96	-134	134	-48	-30	20
m	17	53	50	61	67	71	73	70	83	80	07

No. 6:
$$a = (1:1:1:-1:-1:-3)$$
:

The variety X_a has 44 nodes as only singularities, namely the points on the orbits of the points

$$(1:1:1:0:0:1), (1:1:0:1:1:0), (1:0:0:1:0:0)$$

under sign change and permutation of the first three resp. the next two coordinates. We have

$$\chi(\tilde{X}_a) = -88, \quad h^2(\tilde{X}_a) = 1, \quad h^3(\tilde{X}_a) = 92$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + p^2 - 43p + 1 - \#X_{a,p}, & p \equiv 1, 11 \mod 12, \\ p^3 + p^2 + 45p + 1 - \#X_{a,p}, & p \equiv 5, 7 \mod 12. \end{cases}$$

There do not exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 1440/7.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	-62	34	76	-102	76	-112	158	-112	48	12	56

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	-48	110	106	-2	-52	276	-102	144	-156	-184	206

No. 7: a = (1:1:1:3:-3:-3):

The variety X_a has 52 nodes as only singularities, namely the points on the orbits of the points

$$(0:0:0:1:1:0), \quad (0:0:0:1:0:1), \quad (1:1:1:0:1:0),$$
 $(1:1:1:0:0:1), \quad (1:1:1:1:1:1)$

under sign change and permutation of the last two coordinates. We have

$$\chi(\tilde{X}_a) = -72, \quad h^2(\tilde{X}_a) = 4, \quad h^3(\tilde{X}_a) = 82$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 4p^2 - 48p + 1 - \#X_{a,p}, & p \equiv 1 \mod 4, \\ p^3 - 2p^2 + 50p + 1 - \#X_{a,p}, & p \equiv 3 \mod 4. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 360/10.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	34	-44	-12	-16	-24	34	16	36	44	-84	-30
									•		

No. 8:
$$a = (1:1:1:1:-1:-1)$$
:

The variety X_a has 64 nodes as only singularities, namely the points on the orbits of the points

under sign change and permutation of the first four resp. the last two coordinates. We have

$$\chi(\tilde{X}_a) = -48, \quad h^2(\tilde{X}_a) = 3, \quad h^3(\tilde{X}_a) = 56$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 3p^2 - 61p + 1 - \#X_{a,p}, & p \equiv 1 \mod 4, \\ p^3 - p^2 + 63p + 1 - \#X_{a,p}, & p \equiv 3 \mod 4. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 96/2 (96k4E1).

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	-4	-100	54	-46	100	208	-158	-204	-144	144	-100

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	8	42	-108	46	108	-224	-254	212	116	146	-38

No. 9: a = (1:1:1:2:-2:-3):

The variety X_a has 66 nodes as only singularities, namely the points on the orbits of the points

$$(0:0:0:1:1:0),\quad (1:1:1:0:0:1),\quad (1:1:1:1:1:1),$$

under sign change and permutation of the first three coordinates. We have

$$\chi(\tilde{X}_a) = -44, \quad h^2(\tilde{X}_a) = 3, \quad h^3(\tilde{X}_a) = 52$$

and

$$a_p(\tilde{X}_p) = \begin{cases} p^3 + 3p^2 - 63p + 1 - \#X_{a,p}, & p \equiv 1, 19 \mod 24, \\ p^3 + 3p^2 - 15p + 1 - \#X_{a,p}, & p \equiv 7, 13 \mod 24, \\ p^3 - p^2 + 17p + 1 - \#X_{a,p}, & p \equiv 5, 23 \mod 24, \\ p^3 - p^2 + 65p + 1 - \#X_{a,p}, & p \equiv 11, 17 \mod 24. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 720/25.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	22	-18	4	-18	16	48	-18	4	112	-36	28

p	47	53	59	61	67	71	73	79	83	89	97
$b_p - a_p(\tilde{X}_a))/p$	48	78	-42	-26	88	-48	130	4	-60	24	-38

No. 10:
$$a = (1:1:1:1:-1:-3)$$
:

The variety X has 72 nodes as only singularities, namely the points on the orbits of the points

$$(1:0:0:0:1:0), (1:1:1:1:0:0:1), (1:1:1:1:1:1)$$

under sign change and permutation of the first four coordinates. We have

$$\chi(\tilde{X}_a) = -32, \quad h^2(\tilde{X}_a) = 6, \quad h^3(\tilde{X}_a) = 46$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 6p^2 - 66p + 1 - \#X_{a,p}, & p \equiv 1 \mod 6, \\ p^3 - 4p^2 + 68p + 1 - \#X_{a,p}, & p \equiv 5 \mod 6. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 72/1 (72k4C1).

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	42	-12	16	-42	-116	24	42	76	124	30	-92
n	47	53	59	61	67	71	73	79	83	89	97
P		0	0	01	•	• •	•				

No. 11:
$$a = (1:1:1:1:1:-3)$$
:

The variety X_a has 80 nodes as only singularities, namely the points on the orbit of the point

under sign change and permutation of the first five coordinates. We have

$$\chi(\tilde{X}_a) = -16, \quad h^2(\tilde{X}_a) = 11, \quad h^3(\tilde{X}_a) = 40$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 11p^2 - 69p + 1 - \#X_{a,p}, & p \equiv 1, 11 \mod 12, \\ p^3 - 9p^2 + 71p + 1 - \#X_{a,p}, & p \equiv 5, 7 \mod 12. \end{cases}$$

By a generalization of corollary 1.9 there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 1440/7.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$		10	-16	-42	-60	80	-94	-80	28	72	40

No. 12:
$$a = (1:1:1:1:-2:-2)$$
:

The variety X_a has 80 nodes as only singularities, namely the points on the orbit of the points

under sign change and permutation of the first four resp. the last two coordinates. We have

$$\chi(\tilde{X}_a) = -16, \quad h^2(\tilde{X}_a) = 4, \quad h^3(\tilde{X}_a) = 26$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 4p^2 - 76p + 1 - \#X_{a,p}, & p \equiv 1 \mod 8, \\ p^3 + 16p + 1 - \#X_{a,p}, & p \equiv 5 \mod 8, \\ p^3 + 2p^2 - 14p + 1 - \#X_{a,p}, & p \equiv 7 \mod 8, \\ p^3 - 2p^2 + 78p + 1 - \#X_{a,p}, & p \equiv 3 \mod 8. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 192/7 (192k4C1).

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}))$	$(f_a))/p$ 24	0	-12	24	0	0	12	-24	-12	24	0

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	-48	60	-48	36	48	96	-24	-24	96	-24	72

Note that in this case we even have

$$a_p(\tilde{X}_a) \equiv b_p \mod 12p.$$

No. 13:
$$a = (1:1:1:-1:-1:-2)$$
:

The variety X_a has 80 nodes as only singularities, namely the points on the orbits of the points

$$(1:1:0:1:1:0), (1:0:0:1:0:0), (1:1:0:0:0:1), (1:1:1:1:1:1:1:0:1)$$

under sign change and permutation of the first three resp. the next two coordinates. We have

$$\chi(\tilde{X}_a) = -16, \quad h^2(\tilde{X}_a) = 2, \quad h^3(\tilde{X}_a) = 22$$

and

$$a_p = \begin{cases} p^3 + 2p^2 - 78p + 1 - \#X, & p \equiv 1 \mod 8, \\ p^3 + 2p^2 - 6p + 1 - \#X, & p \equiv 5 \mod 8, \\ p^3 + 8p + 1 - \#X, & p \equiv 7 \mod 8, \\ p^3 + 80p + 1 - \#X, & p \equiv 3 \mod 8. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 384/4.

p	7	11	13	17	19	23	29	31	37	41	43
$b_p - a_p(\tilde{X}_a))/p$	2	-40	20	-16	28	76	-54	-78	-56	48	-36

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	4	18	-32	32	32	-60	-80	82	48	68	-28

No. 14:
$$a = (1:1:-1:-1:2:-2)$$
:

The variety X_a has 90 nodes as only singularities, namely the points on the orbits of the points

$$(1:1:0:0:0:1), \quad (0:0:1:1:1:0), \quad (1:1:1:1:1:1),$$

$$(1:1:1:1:0:0), (1:0:1:0:0:0), (1:0:1:0:1:1), (0:0:0:0:0:1:1)$$

under sign change and permutation of the first two resp. the second two coordinates. We have

$$\chi(\tilde{X}_a) = 4$$
, $h^2(\tilde{X}_a) = 15$, $h^3(\tilde{X}_a) = 28$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 15p^2 - 75p + 1 - \#X_{a,p}, & p \equiv 1, 3 \mod 8, \\ p^3 + 15p^2 - 59p + 1 - \#X_{a,p}, & p \equiv 5, 7 \mod 8. \end{cases}$$

The planes given by

$$x_0 = \pm x_i, \quad x_1 = \pm x_j, \quad x_4 = \pm x_5$$

where $\{i, j\} = \{2, 3\}$ are contained in X and contain 82 of the 90 nodes, but it is still not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 48/3 (48k4A1).

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	16	36	10	6	12	-40	-46	24	-30	14	20

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	0	-6	20	-54	-20	136	-18	-24	-100	78	-26

No. 15:
$$a = (1:1:1:1:-1:-2)$$
:

The variety X_a has 96 nodes as only singularities, namely the points on the orbits of the points

$$(1:0:0:0:1:0), (1:1:1:0:1:1), (1:1:0:0:0:1)$$

under sign change and permutation of the first four coordinates. We have

$$\chi(\tilde{X}_a) = 16, \quad h^2(\tilde{X}_a) = 15, \quad h^3(\tilde{X}_a) = 16$$

and

$$a_p(\tilde{X}_a) = \begin{cases} p^3 + 15p^2 - 81p + 1 - \#X_{a,p}, & p \equiv 1, 3 \mod 8, \\ p^3 + 15p^2 - 65p + 1 - \#X_{a,p}, & p \equiv 5, 7 \mod 8. \end{cases}$$

It is not clear if there exist projective small resolutions. The table lists the numbers $(b_p - a_p(\tilde{X}_a))/p$ where b_p are the coefficients of the newform 384/5.

p	7	11	13	17	19	23	29	31	37	41	43
$(b_p - a_p(\tilde{X}_a))/p$	10	20	-6	6	48	20	4	-46	14	-34	8

p	47	53	59	61	67	71	73	79	83	89	97
$(b_p - a_p(\tilde{X}_a))/p$	36	-12	-28	-82	28	76	70	66	-60	82	-54

No. 16:
$$a = (1:1:1:-1:-1:-1)$$
:

This variety was investigated by van Geemen and Werner in [99] where also its modularity was proven. It was denoted there by V_{24} .

The variety $V_{24} = X_a$ has 122 nodes as only singularities, namely the points on the orbits of the points

$$(1:0:0:1:0:0), (1:1:0:1:1:0), (1:1:1:1:1:1)$$

under sign change and permutation of the first three resp. the last three coordinates. We have

$$\chi(\tilde{X}_a) = 68, \quad h^2(\tilde{X}_a) = 34, \quad h^3(\tilde{X}_a) = 2$$

and

$$a_p(\tilde{X}_a) = p^3 + 34p^2 - 88p + 1 - \#X_{a,p}.$$

The planes given by

$$x_0 = \pm x_i, \quad x_1 = \pm x_i, \quad x_2 = \pm x_k$$

with $i, j, k \in \{3, 4, 5\}$ pairwise disjoint are contained in X_a and contain all the nodes so there exist projective small resolutions. For all primes $5 \le p \le 97$ the $a_p(\tilde{X}_a)$ agree with the coefficients of the weight four newform 12/1 (12k4A1), and by corollary 1.6 they agree for all $p \ge 5$.

5.3 Van Geemen's and Werner's complete intersections

Van Geemen and Werner ([99]) discuss two rigid complete intersection Calabi–Yau threefolds and prove their modularity. We will study their examples in some detail.

Complete intersection of a quadric and a quartic in \mathbb{P}^5

Let $V_{24} \subset \mathbb{P}^5$ be the threefold given by the equations

$$x_0^2 + x_1^2 + x_2^2 = x_3^2 + x_4^2 + x_5^2,$$

 $x_0^4 + x_1^4 + x_2^4 = x_3^4 + x_4^4 + x_5^4.$

Then V_{24} has 122 nodes as only singularities. There exist projective small resolutions. They are rigid, and their L-series is given by the weight four newform 12/1 (12k4A1). This example is a special member of the family discussed in 5.2. In fact my study of that family was inspired by van Geemen's and Werner's example.

Complete intersection of two cubics in \mathbb{P}^5

Let $V_{33} \subset \mathbb{P}^5$ be the threefold given by the equations

$$x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0,$$

 $x_2^3 + x_3^3 + x_4^3 + x_5^3 = 0.$

This variety can be constructed as a covering of \mathbb{P}^3 of degree 3^5 , branched along a configuration of the six planes of a cube. The construction is due to Hirzebruch ([48]), but he does not give it explicitly.

Consider the triple cover T of \mathbb{P}^3 branched along a cube given by the equation

$$u^{3} = (x-t)(x+t)(y-t)(y+t)(z-t)(z+t).$$

There is a $3^4: 1 \text{ map } V_{33} \longrightarrow T$ induced by the map $\mathbb{P}^5 \longrightarrow \mathbb{P}^4(1,1,1,1,3)$,

$$(x_0: x_1: x_2: x_3: x_4: x_5) \mapsto (x_0^3 - x_1^3: x_2^3 - x_3^3: x_4^3 - x_5^3: x_2^3 + x_3^3: 4x_0x_1x_2x_3x_4x_5).$$

The variety V_{33} has 9 singularities of type (3,3,3,3), namely the points

$$(-1:\xi_3:0:0:0:0), (0:0:-1:\xi_3:0:0), (0:0:0:0:0:-1:\xi_3)$$

where ξ_3 is a third root of unity. The Euler characteristic of V_{33} is $\chi(V_{33}) = -144 + 9 \cdot 16 = 0$. Let \tilde{V}_{33} be a big resolution of V_{33} (which is Calabi–Yau, cf. 1.6.3). Then \tilde{V}_{33} has Euler characteristic $\chi(\tilde{V}_{33}) = \chi(V_{33}) + 9 \cdot 8 = 72$.

The tangent cone at the singularities is locally isomorphic to the cone over the Del Pezzo surface

$$x^3 + y^3 + z^3 + t^3 = 0.$$

This surface is isomorphic to \mathbb{P}^2 blown up in the 6 points

$$(-\xi_3:1:1), \quad (-\xi_3^2:1:1),$$

 $(0:1:-\xi_3), \quad (0:1:-\xi_3^2),$
 $(1:-\xi_3^2:-\xi_3), \quad (1:-\xi_3:-\xi_3^2),$

where ξ_3 is a primitive third root of unity (cf. [38]), so over \mathbb{F}_p it contains

$$\begin{cases} p^2 + 7p + 1, & p \equiv 1 \mod 3, \\ p^2 + p + 1, & p \equiv 2 \mod 3 \end{cases}$$

points. Now for $p \equiv 1 \mod 3$ the Lefschetz fixed point formula gives

$$|\#\tilde{V}_{33,p} - 1 - p^3 - h^2(\tilde{V}_{33}) \cdot p(p+1)| = |\#V_{33,p} + 9(p^2 + 7p) - 1 - p^3 - h^2(\tilde{V}_{33}) \cdot p(p+1)|$$

$$\leq p^{3/2}h^3(\tilde{V}_{33}) = p^{3/2}(2 + 2h^2(\tilde{V}_{33}) - 72).$$

Counting points over \mathbb{F}_7 gives

$$h^2(\tilde{V}_{33}) = 36, \quad h^3(\tilde{V}_{33}) = 2,$$

so \tilde{V}_{33} is rigid. For $p \equiv 2 \mod 3$ we have the estimate

$$|\#\tilde{V}_{33,p} - 1 - p^3 - k \cdot p(p+1)| = |\#V_{33,p} + 3(p^2 + p) - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}$$

for a $k \in \mathbb{Z}$, $|k| \leq 36$. Counting points over \mathbb{F}_{11} gives k = 4. We end up with the formula

$$a_p(\tilde{V}_{33}) = \begin{cases} p^3 + 27p^2 - 27p + 1 - \#V_{33,p}, & p \equiv 1 \mod 3, \\ p^3 + p^2 + p + 1 - \#V_{33,p}, & p \equiv 2 \mod 3. \end{cases}$$

Counting points we find that for all primes $5 \le p \le 97$ the $a_p(\tilde{V}_{33})$ agree with the coefficients of the weight four newform 9/1 (9k4A1), and by corollary 1.6 they agree for all $p \ge 5$.

Van Geemen and Werner note ([99]) that because the automorphism of \tilde{V}_{33} induced by

$$(x_0: x_1: x_2: x_3: x_4: x_5) \mapsto (\xi_3 x_0: x_1: x_2: x_3: x_4: x_5)$$

acts nontrivially on $H^3(\tilde{V}_{33})$, the Galois representation comes from a Hecke character of $\mathbb{Q}(\sqrt{-3})$. As both Galois representations are unramified outside 3 it is then easy to check the isomorphism.

5.4 Nygaard's and van Geemen's complete intersection

The threefold in this section was studied by Nygaard and van Geemen in [75] who already proved its modularity.

Let the complete intersection threefold $X \subset \mathbb{P}^7$ be given by the equations

$$\begin{aligned} &2y_0^2 = +x_0^2 - x_1^2 - x_2^2 - x_3^2, \\ &2y_1^2 = -x_0^2 + x_1^2 - x_2^2 - x_3^2, \\ &2y_2^2 = -x_0^2 - x_1^2 + x_2^2 - x_3^2, \\ &2y_3^2 = -x_0^2 - x_1^2 - x_2^2 + x_3^2. \end{aligned}$$

Then X is invariant under the action of the group G generated by the following transformations:

- permute the x_i and the y_i simultaneously.
- change the sign of some x_i or y_i .

- $(x_0: x_1: x_2: x_3: y_0: y_1: y_2: y_3) \mapsto (y_0: y_1: y_2: y_3: x_0: x_1: x_2: x_3)$
- $(x_0: x_1: x_2: x_3: y_0: y_1: y_2: y_3) \mapsto (x_0 \cdot \sqrt{-1}: x_1 \cdot \sqrt{-1}: x_2: x_3: y_1: y_0: y_3 \cdot \sqrt{-1}: y_2 \cdot \sqrt{-1})$

The variety X has 96 ordinary nodes as only singularities, namely the points on the orbit of

$$(1:1:0:0:0:0:\sqrt{-1}:\sqrt{-1})$$

under the action of G. Let \tilde{X} be a small resolution of X. Then \tilde{X} has Euler characteristic

$$\chi(\tilde{X}) = -128 + 2 \cdot 96 = 64.$$

The divisor on X given by

$$y_1 = y_0 \cdot \sqrt{-1}, \quad x_3 = x_2 \cdot \sqrt{-1}$$

is smooth in the above singular point so there exist projective small resolutions (cf. [99]). Note also that the defect of X is $d(X) = h^2(\tilde{X}) - 1 = 31 \neq 0$ (see the computation of $h^2(\tilde{X})$ below). The existence of projective small resolutions could also be deduced from a generalization of corollary 1.9.

For $p \geq 3$ all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p if $p \equiv 1 \mod 4$. We apply the Lefschetz fixed point formula:

$$|\#\tilde{X} - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)| = |\#X + 96p - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)|$$

$$\leq p^{3/2} h^3(\tilde{X}) = p^{3/2} (2 + 2h^2(\tilde{X}) - 64).$$

Counting points over \mathbb{F}_{13} we find

$$h^2(\tilde{X}) = 32, \quad h^3(\tilde{X}) = 2,$$

so \tilde{X} is rigid. For $p \equiv 3 \mod 4$ none of the nodes are rational over \mathbb{F}_p and we have the estimate

$$|\#\tilde{X} - 1 - p^3 - k \cdot p(p+1)| = |\#X - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}$$

for some $k \in \mathbb{Z}$, $|k| \leq 32$. Counting points over \mathbb{F}_{11} gives k = 8. We end up with the formula

$$a_p(\tilde{X}) = \begin{cases} p^3 + 32p^2 - 64p + 1 - \#X, & p \equiv 1 \mod 4, \\ p^3 + 8p^2 - 8p + 1 - \#X, & p \equiv 3 \mod 4. \end{cases}$$

Counting points we find that for all primes $3 \le p \le 97$ the $a_p(\tilde{X})$ agree with the coefficients of the weight four newform 8/1 (8k4A1), and by corollary 1.6 they agree for all $p \ge 3$. For correspondences between X and other threefolds connected with the same newform, cf. 6.1.4.

5.5 Libgober's and Teitelbaum's complete intersection

Let the threefold $X_{\lambda} \subset \mathbb{P}^5$ be given by the equations

$$x_1^3 + x_2^3 + x_3^3 = 3\lambda x_4 x_5 x_6,$$

$$x_4^3 + x_5^3 + x_6^3 = 3\lambda x_1 x_2 x_3.$$

This is a complete intersection which is invariant under the group $G_{81} \subset PGL(5)$ (of order 81) of transformations $g_{\alpha,\beta,\delta,\epsilon,\mu}$ where $\alpha,\beta,\delta,\epsilon\in\mathbb{Z}/3\mathbb{Z},\ \mu\in\mathbb{Z}/9\mathbb{Z}$, and $\mu\equiv\alpha+\beta\equiv\delta+\epsilon\mod3$ (Note the misprint in [61]). These transformations act as

$$g_{\alpha,\beta,\delta,\epsilon,\mu}: (x_1:x_2:x_3:x_4:x_5:x_6) \\ \mapsto (\xi_3^{\alpha} \xi_9^{\mu} x_1:\xi_3^{\beta} \xi_9^{\mu} x_2:\xi_9^{\mu} x_3:\xi_3^{-\delta} \xi_9^{-\mu} x_4:\xi_3^{-\epsilon} \xi_9^{-\mu} x_5:\xi_9^{-\mu} x_6)$$

where ξ_i is a fixed primitive *i*-th root of unity. For generic λ the variety X_{λ} is a smooth Calabi–Yau threefold with Euler characteristic $\chi(X_{\lambda}) = -144$. Libgober and Teitelbaum ([61]) prove that the mirror partner of X_{λ} can be described as a resolution of the quotient X_{λ}/G_{81} . Bernardara ([13]) notes that on X_{λ} there are more than the expected 1053 lines.

The special member X_1 , however, has 81 nodes as only singularities, namely the points on the orbit of the point (1:1:1:1:1) under the action of G_{81} . To see that the nodes are contained in smooth divisors we rewrite the equations for X_1 as

$$2(x_1^3 + x_2^3 + x_3^3 - x_4^3 - x_5^3 - x_6^3) = 3(x_1 + x_2 + x_3)(x_1^2 + x_2^2 + x_3^2) - (x_1 + x_2 + x_3)^3$$
$$= 3(x_4 + x_5 + x_6)(x_4^2 + x_5^2 + x_6^2) - (x_4 + x_5 + x_6)^3.$$

The smooth cubic surface given by the equations

$$x_1 + x_2 + x_3 = x_4 + x_5 + x_6 = x_1^3 + x_2^3 + x_3^3 - x_4^3 - x_5^3 - x_6^3 = 0$$

is contained in X_1 and contains 27 of the nodes (and the surfaces on its G_{81} -orbit contain all 81 nodes). Thus there exist projective small resolutions. Since the defect of X_1 is $d(X_1) = h^2(\tilde{X}_1) - 1 = 12 \neq 0$ (see the computation of $h^2(\tilde{X}_1)$ below) the existence of projective small resolutions could also be deduced from a generalization of corollary 1.9.

Now let \tilde{X}_1 be a small resolution of X_1 . Then \tilde{X}_1 has Euler characteristic

$$\chi(\tilde{X}_1) = -144 + 2 \cdot 81 = 18.$$

Over \mathbb{F}_p not all of the 81 nodes may appear, depending on the existence of 9-th and 3-rd roots of unity:

$p \mod 9$	# of nodes
1	81
4,7	27
2, 5, 8	1

If $p \equiv 1 \mod 9$ then all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p and thus the Lefschetz fixed point formula gives

$$|\#\tilde{X}_{1,p} - 1 - p^3 - h^2(\tilde{X}_1) \cdot p(p+1)| = |\#X_1, p + 81p - 1 - p^3 - h^2(\tilde{X}_1) \cdot p(p+1)|$$

$$\leq p^{3/2} h^3(\tilde{X}_1) = p^{3/2} (2 + 2h^2(\tilde{X}_1) - 18).$$

Counting points on X_1 over \mathbb{F}_{19} and \mathbb{F}_{127} gives

$$h^2(\tilde{X}_1) = 13, \quad h^3(\tilde{X}_1) = 10.$$

Otherwise only 27 resp. 1 of the nodes (and the rulings of their tangent cones) are rational over \mathbb{F}_p and we have the estimates

$$|\#X_{1,p} + 27p - 1 - p^3 - k \cdot p(p+1)| \le p^{3/2}h^3, \quad p \equiv 4,7 \mod 9,$$

 $|\#X_{1,p} + p - 1 - p^3 - l \cdot p(p+1)| \le p^{3/2}h^3, \quad p \equiv 2,5,8 \mod 9,$

for some $k, l \in \mathbb{Z}, |k|, |l| \le h^2(\tilde{X}_1) = 13$. Counting points on X_1 over \mathbb{F}_{97} , \mathbb{F}_{89} and \mathbb{F}_{101} gives k = 13, l = 1. We end up with the formula

$$a_p(\tilde{X}_1) = \begin{cases} p^3 + 13p^2 - 68p + 1 - \#X_1, & p \equiv 1 \mod 9, \\ p^3 + 13p^2 - 14p + 1 - \#X_1, & p \equiv 4, 7 \mod 9, \\ p^3 + p^2 + 1 - \#X_1, & p \equiv 2, 5, 8 \mod 9. \end{cases}$$

For all primes $5 \le p \le 97$ we find

$$a_p(\tilde{X}_1) = b_p + 4 \cdot p \cdot c_p$$

where b_p are the coefficients of the weight four newform 27/2 (27k4B1) and c_p are the coefficients of the weight two newform 27A1.

To prove that this formula holds true for all good primes p we use the fact that X_1 is birationally equivalent with the twisted fibre product $(Y_{\Gamma(3)}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma(3)}, \pi \circ \operatorname{pr})$ where $(Y_{\Gamma(3)}, \operatorname{pr})$ is the Hesse pencil and $\pi(t) = 9/t$ is an automorphism of \mathbb{P}^1 (cf. chapter 2). The elliptic surface $(Y_{\Gamma(3)}, \operatorname{pr})$ has four singular fibres of type I_3 over the cusps ∞ , -3, -3w, $-3w^2$, where w is a primitive third root of unity. The automorphism π maps the cusps to 0, -3, -3w, $-3w^2$.

In [89] (cf. also chapter 2) Schütt considered the automorphism $\pi'(t) = 3 - t$ instead. It maps the cusps to ∞ , 6, $-3w^2$, -3w, so we are in a completely analogous situation and the modularity proof can be copied from [89].

In analogy to the case of the Schoen quintic (3.1 and 3.2) we can also study the complete intersection $Y_{\lambda} \subset \mathbb{P}^5$ given by the equations

$$(x_1 + x_2 + x_3)^3 = 3^3 \lambda x_4 x_5 x_6,$$

$$(x_4 + x_5 + x_6)^3 = 3^3 \lambda x_1 x_2 x_3.$$

Note that in this case the map

$$\phi: \mathbb{P}^5 \longrightarrow \mathbb{P}^5, \quad (z_0: z_1: z_2: z_3: z_4: z_5) \mapsto (z_0^3: z_1^3: z_2^3: z_3^3: z_4^3: z_5^3)$$

does not divide out the whole group G_{81} but only a subgroup with 27 elements so that Y_{λ} is not the mirror of X_{λ} . According to numerical experiments (i.e., counting of points) the *L*-series of Y_1 seems to agree with that of X_1 (but the resolution of singularities will be much more complicated).

5.6 An intersection of two cubics in \mathbb{P}^5 with 108 nodes

Let the complete intersection threefold $X \subset \mathbb{P}^5$ be defined by the equations

$$x_0^3 + x_1^3 + x_2^3 = x_3^3 + x_4^3 + x_5^3$$

 $x_0x_1x_2 = x_3x_4x_5.$

Then X has 108 ordinary nodes as only singularities, namely the 27 points on the orbits of

$$(1:0:0:1:0:0), (1:0:0:\xi:0:0), (1:0:0:\xi^2:0:0)$$

under permutation of the first three resp. the last three coordinates and the 81 points

$$(1:\xi^a:\xi^b:\xi^c:\xi^d:\xi^e)$$

with $a,b,c,d,e\in\mathbb{Z}/3\mathbb{Z},\ a+b\equiv c+d+e\mod 3$ where ξ is a primitive third root of unity.

The planes given by

$$x_i = \xi^a x_l, \quad x_j = \xi^b x_m, \quad x_k = \xi^c x_n$$

with $a,b,c\in\mathbb{Z}/3\mathbb{Z},\ a+b+c\equiv 0\mod 3$, where ξ is a primitive third root of unity and $\{i,j,k\}=\{0,1,2\},\ \{l,m,n\}=\{3,4,5\},$ are contained in X and contain all the nodes so there exist projective small resolutions.

Let \tilde{X} be a small resolution of X. Then \tilde{X} has Euler characteristic

$$\chi(\tilde{X}) = -144 + 2 \cdot 108 = 72.$$

If $p \equiv 1 \mod 3$ then all the nodes and the rulings of their tangent cones are rational over \mathbb{F}_p and thus the Lefschetz fixed point formula gives

$$|\#\tilde{X}_p - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)| = |\#X_p + 108p - 1 - p^3 - h^2(\tilde{X}) \cdot p(p+1)|$$

$$\leq p^{3/2} h^3(\tilde{X}) = p^{3/2} (2 + 2h^2(\tilde{X}) - 72).$$

Counting points over \mathbb{F}_{19} gives

$$h^2(\tilde{X}) = 36, \quad h^3(\tilde{X}) = 2,$$

so \tilde{X} is rigid.

If $p \equiv 2 \mod 3$ then only 10 nodes (and the rulings of their tangent cones) are rational over \mathbb{F}_p . In this case we have the estimate

$$|\#X_p + 10p - 1 - p^3 - k \cdot p(p+1)| \le 2p^{3/2}$$

with $k \in \mathbb{Z}$, $|k| \leq h^2(\tilde{X}) = 36$. Counting points over \mathbb{F}_{11} gives k = 6. We end up with the formula

$$a_p(\tilde{X}) = \begin{cases} p^3 + 36p^2 - 72p + 1 - \#X_p, & p \equiv 1 \mod 3, \\ p^3 + 6p^2 - 4p + 1 - \#X_p, & p \equiv 2 \mod 3. \end{cases}$$

Counting points on X_p for all good primes $p \leq 97$ we detect that the $a_p(\tilde{X})$ agree with the coefficients of the weight 4 newform 9/1 (9k4A1) and by corollary 1.6 they agree for all $p \geq 5$.

The threefold X is birationally equivalent with the self-fibre product $(Y_{\Gamma(3)}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma(3)}, \operatorname{pr})$ where $(Y_{\Gamma(3)}, \operatorname{pr})$ is again the Hesse pencil (cf. chapter 2). It has been studied here because it seems to be the intersection of two cubics in \mathbb{P}^5 with the highest known number of nodes.

5.7 Verrill's threefolds

We consider a root system \mathcal{R} of rank n. Let $\mathcal{L}_{\mathcal{R}}$ be the root lattice generated by \mathcal{R} , and let $\mathcal{L}_{\mathcal{R}}^*$ be its dual lattice. Define the Weyl chambers of \mathcal{R} as follows: For $r \in \mathcal{R}$, let $H_r := \{s \in \mathcal{L}_{\mathcal{R}}^* \otimes \mathbb{Q} \mid \langle s, r \rangle = 0\}$. A Weyl chamber is the closure of any connected component of $\mathcal{L}_{\mathcal{R}}^* \otimes \mathbb{Q} \setminus \bigcup_{r \in \mathcal{R}} H_r$.

Let $\Sigma_{\mathcal{R}}$ be the fan in $\mathcal{L}_{\mathcal{R}}^* \otimes \mathbb{Q}$ consisting of the Weyl chambers, together with all their subfaces, and let $X(\Sigma_{\mathcal{R}})$ be the toric variety associated to the fan $\Sigma_{\mathcal{R}}$. Let $\Delta_{\mathcal{R}}$ be the polyhedron in $\mathcal{L}_{\mathcal{R}} \otimes \mathbb{Q}$ with vertices in \mathcal{R} , and let $L(\Delta_{\mathcal{R}})$ denote the space of Laurent polynomials with support in $\Delta_{\mathcal{R}}$. Let the notation e^x denote the passing from $\mathcal{L}_{\mathcal{R}}$ to $\mathbb{C}[\mathcal{L}_{\mathcal{R}}]$, $x \mapsto e^x$, so that each root $r \in \mathcal{R}$ gives a monomial e^r . We define a Laurent polynomial

$$\chi_{\mathcal{R}} := \sum_{r \in \mathcal{R}} e^r \in L(\Delta_{\mathcal{R}})$$

and so obtain a rational function $\chi_{\mathcal{R}}: X(\Sigma_{\mathcal{R}}) \longrightarrow \mathbb{P}^1$. Blowing up the base locus of this map and resolving singularities we obtain a variety $\mathcal{X}_{\mathcal{R}}$ with a fibration $\mathcal{X}_{\mathcal{R}} \longrightarrow \mathbb{P}^1$. In [103] it is shown that if \mathcal{R} is of type A_n or a product of A_n type lattices then the general fibre is a Calabi–Yau variety. The variety $\mathcal{X}_{\mathcal{R}}$ itself does not have canonical class, and so can not be a Calabi–Yau variety, but for $\mathcal{R} = A_3$, $A_1^3 := A_1 \times A_1 \times A_1$ or $A_1 \times A_2$, we can obtain a Calabi–Yau variety $\mathcal{Z}_{\mathcal{R}}$, which is the desingularization of a double cover of $\mathcal{X}_{\mathcal{R}}$ and is given by the pullback in the following diagram, where F(t) is a certain rational function of degree 2 (cf. [104], Theorem 2.1.):

$$\mathcal{Z}_{\mathcal{R}} \longrightarrow \mathcal{X}_{\mathcal{R}}$$

$$\downarrow \qquad \qquad \downarrow \chi_{\mathcal{R}}$$

$$\mathbb{P}^{1} \xrightarrow{t \mapsto \lambda = F(t)} \mathbb{P}^{1}$$

The A_3 case

Let $\{E_1, E_2, E_3, E_4\}$ be the standard basis for \mathbb{R}^4 . The root lattice A_3 is a sublattice of \mathbb{R}^4 of rank 3 generated by $v_1 := E_1 - E_2$, $v_2 := E_2 - E_3$, $v_3 := E_3 - E_4$, and the collection of all roots

is given by the set

$${E_i - E_j \mid 1 \le i, j \le 4, i \ne j}.$$

By putting $x_i = e^{E_i}$ we associate the monomial $x_i x_j^{-1}$ to the root $E_i - E_j$. The Laurent polynomial χ_{A_3} is then given by

$$\chi_{A_3} = \sum_{i \neq j} x_i x_j^{-1} = (x_1 + x_2 + x_3 + x_4)(x_1^{-1} + x_2^{-1} + x_3^{-1} + x_4^{-1}) - 4.$$

The variety \mathcal{X}_{A_3} is given by the desingularization of $\{\chi_{A_3} = \lambda\} \subset \mathbb{P}^3 \times \mathbb{P}^1$. We obtain the Calabi–Yau variety \mathcal{Z}_{A_3} by taking the double cover $\lambda = (t-1)^2/t$ and resolving singularities. Verrill computes

$$\chi(\mathcal{Z}_{A_3}) = 100, \quad h^2(\mathcal{Z}_{A_3}) = 50, \quad h^3(\mathcal{Z}_{A_3}) = 2,$$

so \mathcal{Z}_{A_3} is rigid. Verrill uses theorem 1.5 to prove that $a_p(\mathcal{Z}_{A_3}) = b_p$ for all $p \geq 5$ where b_p are the coefficients of the weight four newform 6/1 (6k4A1). There are two more proofs of this fact in the literature; the one in [81] uses a correspondence (see also 6.1.2), and the one in [107] uses Wiles' results on comparison of Galois representations.

The A_1^3 case

Let again $\{E_1, E_2, E_3, E_4\}$ be the standard basis for \mathbb{R}^4 . The root lattice A_1^3 is a sublattice of \mathbb{R}^4 of rank 3 generated by E_1 , E_2 , E_3 , and the collection of all roots is given by the set

$$\{\pm E_1, \pm E_2, \pm E_3\}.$$

By putting $x_i = e^{E_i}$ we associate the monomial $x_i^{\pm 1}$ to the root $\pm E_i$. The Laurent polynomial $\chi_{A_i^3}$ is then given by

$$\chi_{A_1^3} = x + x^{-1} + y + y^{-1} + z + z^{-1}.$$

The variety $\mathcal{X}_{A_1^3}$ is given by the desingularization of $\{\chi_{A_1^3} = \lambda\} \subset (\mathbb{P}^1)^4$. We obtain the Calabi–Yau variety $\mathcal{Z}_{A_1^3}$ by taking the double cover $\lambda = -t - t^{-1}$ and resolving singularities. Verrill computes

$$\chi(\mathcal{Z}_{A_1^3}) = 140, \quad h^2(\mathcal{Z}_{A_1^3}) = 70, \quad h^3(\mathcal{Z}_{A_1^3}) = 2,$$

so $\mathcal{Z}_{A_1^3}$ is rigid. Verrill uses theorem 1.5 to prove that $a_p(\mathcal{Z}_{A_1^3}) = b_p$ for all $p \geq 3$ where b_p are the coefficients of the weight four newform 8/1 (8k4A1). A different proof of this fact using character sum calculations can be found in [3]. There are various correspondences between $\mathcal{Z}_{A_1^3}$ and other varieties with the same L-series, cf. 6.1.4.

5.8 Hulek's and Verrill's threefolds

In [51] Hulek and Verrill investigated the geometry and arithmetic of a family of Calabi–Yau threefolds X_a , $a = (a_1 : \cdots : a_6) \in \mathbb{P}^5$, given by

$$X_{\mathbf{a}} \cap T : (x_1 + \dots + x_5) \left(\frac{a_1}{x_1} + \dots + \frac{a_5}{x_5} \right) = a_6.$$

where $T := \mathbb{P}^4 \setminus \{x_1 \cdots x_5 = 0\}$. The variety X_a is the closure of $X_a \cap T$ in the toric variety \tilde{P} associated to the root lattice A_4 (cf. 5.7). It is birational to a variety in \mathbb{P}^5 defined by the two equations

$$\sum_{i=1}^{6} \frac{a_i}{x_i} = \sum_{i=1}^{6} x_i = 0.$$

This follows immediately from setting $x_6 = -\sum_{i=1}^5 x_i$.

The advantage of the toric realisation is that the resulting varieties have only ordinary nodes as singularities (which are easier to resolve). Hulek and Verrill compute the number of nodes and the Hodge numbers of the desingularizations in each case. The Hodge numbers can be computed since by rewriting the equations for X_a as

$$x_1 + x_2 + x_3 = -(x_4 + x_5 + x_6),$$

$$\frac{a_1}{x_1} + \frac{a_2}{x_2} + \frac{a_3}{x_3} = -\left(\frac{a_4}{x_4} + \frac{a_5}{x_5} + \frac{a_6}{x_6}\right),$$

we see that X_a is birational to the fibre product of the elliptic surfaces given by

$$(x_1 + x_2 + x_3) \left(\frac{a_1}{x_1} + \frac{a_2}{x_2} + \frac{a_3}{x_3} \right) \lambda_0 = \lambda_1,$$

$$(x_4 + x_5 + x_6) \left(\frac{a_4}{x_4} + \frac{a_5}{x_5} + \frac{a_6}{x_6} \right) \mu_0 = \mu_1,$$

and these fibre products can be investigated with the help of Schoen's results ([84], cf. also chapter 2). It is also possible to determine if X_a has a projective small resolution or not.

In the following table we list a number of cases where Hulek and Verrill determined the L-series. We give the number of nodes on X_a , the Euler number $\chi(\tilde{X}_a)$ and the Hodge number $h^{2,1}(\tilde{X}_a)$ of a big resolution \tilde{X}_a .

	-		
a	# of nodes	$\chi(\tilde{X}_{\boldsymbol{a}})$	$h^{2,1}(\tilde{X}_{\boldsymbol{a}})$
(1:1:1:1:1:1)	40	180	0
(1:1:1:1:1:9)	35	160	0
(1:1:1:1:4:4)	37	168	0
(1:1:1:4:4:9)	35	160	0
(1:1:1:1:1:25)	31	144	4
(1:1:1:9:9:9)	33	152	2
(1:1:4:4:4:16)	34	156	1

Hulek and Verrill prove in each case that the *L*-series splits into two-dimensional pieces. Let $\mathbf{a} = (a_1 : \cdots : a_6) \in \mathbb{P}^5$ and k < l < m, with $\{i, j, k, l, m\} = \{1, 2, 3, 4, 5\}$. Let H_{ij} denote the

hyperplane in T given by $x_i + x_j = 0$. We define

$$E_{\boldsymbol{a}}^{ij} := \overline{(X_{\boldsymbol{a}} \cap H_{ij} \cap T)} \subset X_{\boldsymbol{a}}.$$

Substituting $x_i = -x_j$ in the equation for $X_{\boldsymbol{a}} \cap T$ gives the curve

$$E_{ij} := \{ (x_k + x_l + x_m) \left(\frac{a_k}{x_k} + \frac{a_l}{x_l} + \frac{a_m}{x_m} \right) = a_6 \},$$

so $E_{\boldsymbol{a}}^{ij}$ is birational to $\overline{E_{ij} \times \mathbb{P}^1} \subset X_{\boldsymbol{a}}$. Now suppose that

$$\prod_{i=1}^{6} a_n \neq 0, \ a_i = a_j \quad \text{and} \quad \sqrt{a_k} \pm \sqrt{a_l} \pm \sqrt{a_m} \pm \sqrt{a_6} \neq 0.$$

Then $E_{\boldsymbol{a}}^{ij}$ is smooth and contains no singularities of $X_{\boldsymbol{a}} \cap T$. Hulek and Verrill consider the induced homomorphism (cf. 1.5.2)

$$H^3_{\text{\'et}}(\bar{X}_{\boldsymbol{a}},\mathbb{Q}_{\ell}) \longrightarrow \bigoplus_{i,j \text{ as above}} H^3_{\text{\'et}}(\bar{E}^{ij}_{\boldsymbol{a}},\mathbb{Q}_{\ell}) \quad \simeq \bigoplus_{i,j \text{ as above}} H^1_{\text{\'et}}(\bar{E}_{ij},\mathbb{Q}_{\ell}) \otimes H^2_{\text{\'et}}(\bar{\mathbb{P}}^1,\mathbb{Q}_{\ell})$$

Let $W_{\boldsymbol{a}}$ be the kernel of the above map. It turns out that for the non-rigid examples in the table its dimension is equal to $h^{2,1}(\tilde{X}_{\boldsymbol{a}})$. Thus in these cases the *L*-series of $X_{\boldsymbol{a}}$ splits into two-dimensional parts and (with the help of theorem 1.5)

$$a_p(\tilde{X}_{\boldsymbol{a}}) = b_p + h^{2,1}(\tilde{X}_{\boldsymbol{a}}) \cdot p \cdot c_p$$

where b_p are the coefficients of a weight four newform for some $\Gamma_0(N)$ and c_p the coefficients of a weight two newform for some $\Gamma_0(N)$ associated to the elliptic curves E_{ij} . We list the occurring newforms for the rigid and non-rigid examples.

a	b_p		c_p
(1:1:1:1:1:1)	6/1	(6k4A1)	_
(1:1:1:1:1:9)	6/1	(6k4A1)	_
(1:1:1:1:4:4)	12/1	(12k4A1)	_
(1:1:1:4:4:9)	60/1	(60k4A1)	_
(1:1:1:1:1:25)	30/1	(30k4B1)	30A1
(1:1:1:9:9:9)	90/2	(90k4A1, twist of 10/1)	30A1
(1:1:4:4:4:16)	30/2	(30k4A1)	30A1

By numerical experimentation I found some more parameters a such that the L-series of X_a seems to split into a weight four part and certain weight two parts. Verrill computed the dimension of W_a and the levels of the corresponding weight two newforms. In all examples we have $\dim(W_a) = h^{2,1}(\tilde{X}_a) - 1$. The numerical experiments suggest formulas of the type

$$a_p(\tilde{X}_{\boldsymbol{a}}) = b_p + (h^{2,1}(\tilde{X}_{\boldsymbol{a}}) - 1) \cdot p \cdot c_p + p \cdot d_p$$

where b_p are the coefficients of a weight four newform for some $\Gamma_0(N)$, c_p are the coefficients of a weight two newform for some $\Gamma_0(N)$ associated to the elliptic curves E_{ij} and d_p are the coefficients of another weight two newform for $\Gamma_0(N)$.

a	$\chi(\tilde{X}_{\boldsymbol{a}})$	$h^{2,1}(\tilde{X}_{\boldsymbol{a}})$	b_p		c_p	d_p
(1:1:1:1:1:-7)	140	5	14/1	(14k4B1)	14A1	14A1
(1:1:-1:-1:4:-4)	148	3	40/2	(40k4B1)	160A1	20A1
(1:1:1:-1:-1:-1)	140	5	60/1	(60k4A1)	20A1	30A1
(1:1:9:9:9:81)	148	3	210/6	(210k4H1)	210A1	30A1
(1:9:9:9:9:25)	156	1	30/1	(30k4B1)	_	30A1

There is no explanation yet for the occurrence of the later weight two newforms.

Note that the second and the third example in the table are birationally equivalent with twisted self-fibre products of elliptic surfaces. The second example corresponds to $(Y, \operatorname{pr}) \times_{\mathbb{P}^1} (Y, \pi \circ \operatorname{pr})$ where Y is given by

$$(x+y+z)(xy+xz+4yz) = txyz$$

and $\pi(t) = -t$. The third example corresponds to $(Y_{\Gamma_1(6)}, \operatorname{pr}) \times_{\mathbb{P}^1} (Y_{\Gamma_1(6)}, \pi \circ \operatorname{pr})$ (cf. the tables in chapter 2).

5.9 Bernadara's complete intersections

Let the complete intersection threefold $V_{\lambda} \subset \mathbb{P}^7$ with $\lambda = (\lambda_{01}, \lambda_{23}, \lambda_{45}, \lambda_{67}) \in (\mathbb{P}^1)^4$ be given by the equations

Bernardara ([13]) considered the subfamily with $\lambda_{23} = \lambda_{45} = \lambda_{67}$. He showed that on generic X_{λ} there are more than the expected 512 lines.

I performed some numerical experiments with V_{λ} . For certain values of the parameter λ we have

$$\#V_{\lambda,p} \equiv b_p \mod p$$

for all considered primes p and the coefficients b_p of certain weight four newforms, suggesting that these newforms appear in the L-series of V_{λ} :

λ	newform	1
(6, 6, 6, 6)	6/1	(6k4A1)
(1, 1, 1, 4)	48/3	(48k4A1, twist of 6/1)
(2, 10, 10, 10)	2400/5	(twist of $96/4$)
(6,2/3,6,2)	288/7	(288k4F1, twist of 32/2)

Let $V = V_{(6,6,6,6)}$. Then V is invariant under the action of the group $G \subset PGL(7)$ of order $3072 = 24 \cdot 16 \cdot 8$ which is generated by the permutations $(x_{2i}x_{2i+1}), (x_{2i}x_{2j})(x_{2i+1}x_{2j+1})$ and the sign changing transformations $x_{2i} \mapsto -x_{2i}, x_{2i+1} \mapsto -x_{2i+1}$.

Let us consider the coordinate change

$$y_0 = x_0 + x_1,$$
 $y_1 = x_0 - y_1,$
 $y_2 = x_2 + x_3,$ $y_3 = x_2 - y_3,$
 $y_4 = x_4 + x_5,$ $y_5 = x_4 - y_5,$
 $y_6 = x_6 + x_7,$ $y_7 = x_6 - y_7.$

In these new coordinates V_{λ} is given by the equations

$$\begin{pmatrix} 2 & 2 & 2 & 2 & 2 & 2 & -\lambda_{67} & \lambda_{67} \\ 2 & 2 & 2 & 2 & -\lambda_{45} & \lambda_{45} & 2 & 2 \\ 2 & 2 & -\lambda_{23} & \lambda_{23} & 2 & 2 & 2 & 2 \\ -\lambda_{01} & \lambda_{01} & 2 & 2 & 2 & 2 & 2 & 2 \end{pmatrix} \cdot \begin{pmatrix} y_0^2 \\ \vdots \\ y_7^2 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

For $\lambda = (6, 6, 6, 6)$ the above matrix can be transformed such that V_{λ} is given by the equations

$$\begin{pmatrix} -3 & 1 & 1 & 1 & 2 & 0 & 0 & 0 \\ 1 & -3 & 1 & 1 & 0 & 2 & 0 & 0 \\ 1 & 1 & -3 & 1 & 0 & 0 & 2 & 0 \\ 1 & 1 & 1 & -3 & 0 & 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} y_0^2 \\ \vdots \\ y_7^2 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix},$$

so we get a correspondence between V_{λ} and the double octic X_9 given by the equation

$$u^{2} = (x^{2} + y^{2} + z^{2} - 3t^{2})(x^{2} + y^{2} - 3z^{2} + t^{2})(x^{2} - 3y^{2} + z^{2} + t^{2})(-3x^{2} + y^{2} + z^{2} + t^{2})$$

from 4.5, induced by the 8:1 rational map

$$\mathbb{P}^7 \longrightarrow \mathbb{P}^4(1,1,1,1,4), \qquad (y_0:\dots:y_7) \mapsto (y_0:y_1:y_2:y_3:y_4y_5y_6y_7).$$

Another correspondence between V_{λ} and the double octic X given by the equation

$$u^{2} = xyzt(x+y+z-3t)(x+y-3z+t)(x-3y+z+t)(-3x+y+z+t)$$

(arrangement no. 287 from 4.2) is induced by the 64:1 rational map

$$\mathbb{P}^7 \longrightarrow \mathbb{P}^4(1,1,1,1,4), \qquad (y_0: \dots: y_7) \mapsto (y_0^2: y_1^2: y_2^2: y_3^2: y_0y_1y_2y_3y_4y_5y_6y_7).$$

Similar correspondences between V_{λ} for other values of λ and double octics can easily be constructed.

5.10 Σ_6 -symmetric complete intersections

Consider the power sums

$$C_i := C_i(x_0, x_1, \dots, x_5) := \sum_{k=0}^{5} x_k^i$$

and let the complete intersection threefold $X_{\lambda,\mu} \subset \mathbb{P}^5$ be given by the equations

$$aC_1^2 + bC_2 = 0,$$

$$cC_4 + dC_3C_1 + eC_1^4 = 0,$$

with $\lambda := (a:b) \in \mathbb{P}^1$, $\mu := (c:d:e) \in \mathbb{P}^2$. The pencil $\{X_{\lambda,\mu}\}$ is the pencil of Σ_6 -symmetric complete intersections of a quadric and a quartic in \mathbb{P}^5 . This construction is inspired by van Straten's Σ_6 -symmetric quintics in \mathbb{P}^4 (cf. 3.6). I have not classified the members of this pencil but performed some numerical experiments. For certain values of the parameters λ , μ we have

$$\#X_{\lambda,\mu,p} \equiv b_p \mod p$$

for all considered primes p and the coefficients b_p of certain weight four newforms, suggesting that these newforms appear in the L-series of $X_{\lambda,\mu}$. I ran the computer search for integer values of a, b, c, d, e with |a|, |b|, |c|, |d|, $|e| \leq 20$. Note that for $\lambda = (a:b) = (0:1)$, $\mu = (c:d:e) = (1:0:0)$ we find $X_{\lambda,\mu} = X_a$ with a = (1:1:1:1:1) from 5.2.

$\lambda = (a:b)$	$\mu = (c:d:e)$	newform	1	level
(-5:3)	(3:4:-5)	465/2		$465 = 3 \cdot 5 \cdot 31$
(-1:1)	(3:-4:1)	15/1	(15k4B1)	$15 = 3 \cdot 5$
(-1:1)	(3:-2:-1)	300/2		$300 = 2^2 \cdot 3 \cdot 5^2$
(0:1)	(1:0:0)	480/2		$480 = 2^5 \cdot 3 \cdot 5$
(1:1)	(1:0:1)	1365/1		$1365 = 3 \cdot 5 \cdot 7 \cdot 13$
(4:3)	(3:4:-2)	480/2		$480 = 2^5 \cdot 3 \cdot 5$
(-1:1)	(3:4:-7)	15/1	(15k4B1)	$15 = 3 \cdot 5$
(1:3)	(9:-6:-1)	180/2	(180k4A1, twist of 180/1)	$180 = 2^2 \cdot 3^2 \cdot 5$
(-5:3)	(9:-6:-1)	180/1	(180k4B1)	$180 = 2^2 \cdot 3^2 \cdot 5$
(-1:2)	(12:-10:1)	930/3		$930 = 2 \cdot 3 \cdot 5 \cdot 31$
(-1:3)	(9:-12:1)	465/2		$465 = 3 \cdot 5 \cdot 31$
(-9:4)	(12:-13:1)	930/3		$930 = 2 \cdot 3 \cdot 5 \cdot 31$
(7:3)	(9:-6:-13)	900/1	(twist of $180/1$)	$900 = 2^2 \cdot 3^2 \cdot 5^2$
(1:2)	(8:-16:-7)	480/2		$480 = 2^5 \cdot 3 \cdot 5$

To my knowledge, the bad primes 13 and 31 have not appeared in examples of this kind before (the bad prime 13 occurs also in 4.9). It would be interesting to study the varieties $X_{\lambda,\mu}$ in detail, i.e., determine the singularities and describe a resolution. This could be done along the lines of [101].

As an example we will investigate $X := X_{\lambda,\mu}$ for $\lambda = (1:1)$, $\mu = (1:0:1)$. This variety is even Σ_7 -symmetric since it can be given in \mathbb{P}^6 by the equations

$$\sum_{i=0}^{6} x_i = \sum_{i=0}^{6} x_i^2 = \sum_{i=0}^{6} x_i^4 = 0.$$

We will prove that X is smooth over \mathbb{C} and find the bad primes on the way. Differentiating we see that if $(x_0:\ldots:x_6)$ is a singular point of X then there is $(A:B:C)\in\mathbb{P}^2$ with

$$Cx_i^3 + Bx_i + A = 0$$

for all $i \in \{0, ..., 6\}$. If we assume that A = 0 then we can conclude $x_i \in \{-1, 0, 1\}$ for all $i \in \{0, ..., 6\}$. This leads to singular points in characteristic 2,3,5,7 (so these primes are primes of bad reduction) but no other characteristics.

Now let $A \neq 0$. Then we can assume (for all characteristics except 7) that also $C \neq 0$ and thus C = 1. We can further assume that the roots of $x^3 + Bx + A$ are $\{1, \beta, -1 - \beta\}$. In particular, considering symmetry we have $x_i = 1$ for $i \in \{0, ..., m\}$, and we can restrict ourselves to the cases with $m \geq 2$ (by the pigeonhole principle).

If m = 6 then $(x_0 : \ldots : x_6) = (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1)$ and this point is non-singular except in characteristic 2.

If m = 5 then $(x_0 : \ldots : x_6) = (1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 3)$ and so $\beta = -6$. The other two equations for X give $6 + 6^2 = 42 = 0$ and $6 + 6^4 = 1302 = 0$. The common prime divisors of 42 and 1302 are 2, 3 and 7, so only in these characteristics we can get singular points.

If m=3 then $(x_0:\ldots:x_6)=(1:1:1:1:\beta:\beta:\beta:\beta)$ or $(x_0:\ldots:x_6)=(1:1:1:1:\beta:\beta:\beta:-1-\beta)$. In the first case we conclude that $4+3\beta=4+3\beta^2=0$ which can only happen in characteristics 2 and 7. In the second case we find $\beta=-3$. The other two equations for X give 26=0 and 182=0. Thus in characteristic 13 we have 105 isolated singular points on the Σ_7 -orbit of the point

$$(1:1:1:1:2:-3:-3).$$

If m=2 then we have $(x_0:\ldots:x_6)=(1:1:1:\beta:\beta:\beta:\beta:\beta)$ or $(x_0:\ldots:x_6)=(1:1:1:\beta:\beta:\beta:\beta:-1-\beta)$ or $(x_0:\ldots:x_6)=(1:1:1:\beta:\beta:\beta:\beta:-1-\beta)$. In the first case we conclude $3+4\beta=3+4\beta^2=0$ which can only happen in characteristics 3 and 7. In the second case we find 1=0. In the third case we find $2(1+\beta)=0$. This leads to singular points only for the bad primes 2 and 3.

It is nice to see that all the bad primes except 2 appear in the level of the modular form 1365/1 which is conjectured to occur in the *L*-series of *X*.

Note that there are no Σ_6 -symmetric complete intersections of two cubics in \mathbb{P}^5 since all Σ_6 -symmetric cubic polymials are linear combinations of C_1^3 , C_1C_2 and C_3 .

5.11 Rodriguez-Villegas' hypergeometric threefolds

A hypergeometric weight system is a formal linear combination

$$\gamma = \sum_{\mu \ge 1} \gamma_{\mu}[\mu],$$

where $\gamma_{\mu} \in \mathbb{Z}$ are zero for all but finitely many μ , satisfying the following two conditions:

$$(i) \qquad \sum_{\mu \ge 1} \gamma_{\mu} \mu = 0,$$

(ii)
$$d = d(\gamma) := -\sum_{\mu \ge 1} \gamma_{\mu} > 0.$$

The number d is called the dimension of the weight system γ . To γ we associate the hypergeometric function

$$u(\lambda) := \sum_{n \ge 0} u_n \lambda^n$$

where

$$u_n = \prod_{\mu \ge 1} (\mu n)!^{\gamma_\mu}.$$

The weight system γ is called *integral* if $u_n \in \mathbb{Z}$ for all n > 0.

We consider the weight systems generated by those of the form

$$\phi(n)[1] - \sum_{m|n} \mu\left(\frac{n}{m}\right)[m], \qquad n \ge 2,$$

where ϕ is Euler's phi-function and μ is the Möbius function. Exactly for these weight systems we have d=r where r is another invariant called the rank. They are all integral. By toric geometry we can associate to each such weight system a one-parameter family X_{φ} of Calabi–Yau d-1-folds as subvarieties of a product of weighted projective spaces of total dimension d (with $u(\lambda)$ as one of its periods). For d=4 we find exactly 14 families of Calabi–Yau threefolds. The generic member X_{φ} of each family is smooth and has $h^{1,1}(X_{\varphi})=1$. For finitely many values of φ the threefold X_{φ} becomes singular and the resolution of singularities is again a Calabi–Yau threefold defined over $\mathbb Q$. Rodriguez-Villegas ([80]) claims that these threefolds are rigid but this is not always the case.

Thirteen of the families were mentioned by Batyrev and van Straten in [11]. The 14-th example (last one in the table) was found later by Rodriguez-Villegas in [80] who also dealt with the modularity of the singular members. In the table we list the weight systems, the threefolds (where $V_{d_1,...,d_s}$ denotes a complete intersection of hypersurfaces of degrees $d_1,...,d_s$), the Euler characteristic of the general members, the ambient (weighted) projective spaces and the weight four newform associated to the singular members. To save space, " $\sim 128/1$ " is used as an

 $(\sim 864/1)$

 $(72k4B1, \sim 24/1)$

 $(144k4E1, \sim 72/1)$

 $(216k4D1, \sim 216/1)$

72/2

144/1

216/3

864/4

weight system	threefold	χ	ambient space	weight four newform
[5] - 5[1]	V_5	-200	\mathbb{P}^4	25/1 $(25k4A1)$
[6] - [2] - 4[1]	V_6	-204	$\mathbb{P}^4(1,1,1,1,2)$	108/2 (108k4D1)
[8] - [4] - 4[1]	V_8	-296	$\mathbb{P}^4(1,1,1,1,4)$	$128/3 (128k4C1, \sim 128/1)$
[10] - [5] - [2] - 3[1]	V_{10}	-288	$\mathbb{P}^4(1,1,1,2,5)$	$200/10 \ (200k4A1, \sim 200/1)$
2[3] - 6[1]	$V_{3,3}$	-144	\mathbb{P}^5	$27/2 (27k4B1, \sim 27/1)$
[4] + [2] - 6[1]	$V_{2,4}$	-176	\mathbb{P}^5	$16/1 (16k4A1, \sim 8/1)$
[3] + 2[2] - 7[1]	$V_{2,2,3}$	-144	\mathbb{P}^6	$36/1 (36k4A1, \sim 12/1)$
4[2] - 8[1]	$V_{2,2,2,2}$	-128	\mathbb{P}^7	8/1 $(8k4A1)$
[4] + [3] - [2] - 5[1]	$V_{3,4}$	-156	$\mathbb{P}^5(1,1,1,1,1,2)$	9/1 $(9k4A1)$
2[4] - 2[2] - 4[1]	$V_{4,4}$	-144	$\mathbb{P}^5(1,1,1,1,2,2)$	$32/3 (32k4C1, \sim 32/2)$

 $-256 \mid \mathbb{P}^5(1,1,1,1,1,3)$

 $-156 \mid \mathbb{P}^5(1,1,1,2,2,3)$

 $-120 \mid \mathbb{P}^5(1,1,2,2,3,3)$

 $\mathbb{P}^5(1,1,1,1,4,6)$

abbreviation for "twist of 128/1".

 $\begin{bmatrix} 6 \end{bmatrix} + \begin{bmatrix} 2 \end{bmatrix} - \begin{bmatrix} 3 \end{bmatrix} - \begin{bmatrix} 5 \end{bmatrix} \\ \begin{bmatrix} 6 \end{bmatrix} + \begin{bmatrix} 4 \end{bmatrix} - \begin{bmatrix} 3 \end{bmatrix} - 2\begin{bmatrix} 2 \end{bmatrix} - 3\begin{bmatrix} 1 \end{bmatrix}$

2[6] - 2[3] - 2[2] - 2[1]

 $V_{4.6}$

The Euler characteristics of the first thirteen examples can be found, for example, in [56] and [57]. The Euler characteristic of $V_{2,12}$ has not been computed yet but this could be done with standard methods (cf. [57]).

For each family $\{X_{\varphi}\}$ there is a group G operating on X_{φ} such that the mirror of X_{φ} can be described as a resolution of the quotient X_{φ}/G . The singular members have one orbit of ordinary nodes under the action of G and the resolution of the quotient X_{φ}/G is a rigid Calabi-Yau threefold.

It is possible to write down equations for all families. We give some examples. For the special value of φ the points on the orbit of the points $(1:\ldots:1)$ under the action of the respective group become singular.

$$\begin{split} V_5(\varphi) &= \{x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5\varphi \cdot x_0x_1x_2x_3x_4 = 0\} \\ V_6(\varphi) &= \{x_0^6 + x_1^6 + x_2^6 + x_3^6 + x_4^3 - 6\varphi \cdot x_0x_1x_2x_3x_4 = 0\} \\ V_8(\varphi) &= \{x_0^8 + x_1^8 + x_2^8 + x_3^8 + x_4^2 - 8\varphi \cdot \begin{cases} x_0x_1x_2x_3x_4 \\ x_0^2x_1^2x_2^2x_3^2 \end{cases} = 0\} \\ V_{10}(\varphi) &= \{x_0^{10} + x_1^{10} + x_2^{10} + x_3^5 + x_4^2 - 10\varphi \cdot \begin{cases} x_0x_1x_2x_3x_4 \\ x_0^2x_1^2x_2^2x_3^2 \end{cases} = 0\} \\ V_{3,3}(\varphi) &= \{x_0^3 + x_1^3 + x_2^3 = 3\varphi \cdot x_3x_4x_5, \quad x_3^3 + x_4^3 + x_5^3 = 3\varphi \cdot x_0x_1x_2\} \\ V_{4,4}(\varphi) &= \{x_0^4 + x_1^4 + 2x_2^2 = 4\varphi \cdot x_3x_4x_5, \quad x_3^4 + x_4^4 + 2x_5^2 = 4\varphi \cdot x_0x_1x_2\} \end{split}$$

The family $V_5(\varphi)$ is investigated in 3.1. The special members have 125 nodes and are rigid.

The special members of the family $V_6(\varphi)$ have 108 nodes (cf. [56]).

The different equations for $V_8(\varphi)$ are equivalent. The family $V_8(\varphi)$ is discussed in 4.7. The special members have 128 nodes and $h^{2,1}=27$.

The different equations for $V_{10}(\varphi)$ are equivalent. The special members have 100 nodes (cf. [56]).

The family $V_{3,3}(\varphi)$ is investigated in 5.5. The special members have 81 nodes and $h^{2,1}=4$.

The family $V_{4,4}(\varphi)$ is investigated in [57]. The special members have 64 nodes.

Note that the resolutions of X_{φ}/G for the special members X_{φ} will be rigid Calabi–Yau threefolds with large Euler characteristics. For the family $V_5(\varphi)$ this is explicitly computed in 3.1. The largest possible Euler number seems to be 298 (constructed from the family $V_8(\varphi)$).

Chapter 6

Tables, correspondences, conclusions

6.1 Modular threefolds with small levels

This section collects information about modular threefolds whose L-series contains the L-series of a weight four newform of small level (≤ 12) or twists of these newforms. The data includes Hodge numbers (as far as they have been computed or conjectured) and internal and external references. If any correspondences are known then they are given explicitly.

In the tables, "CI" is an abbreviation for "complete intersection".

Whenever examples from appendix B occur in the tables the number in brackets is the total number. The number in front gives the number of examples with different numerical data (which ensures that the geometry is different).

Denote by

$$\eta(\tau) = q^{\frac{1}{24}} \prod_{n \in \mathbb{N}} (1 - q^n), \qquad q = e^{2\pi i \tau}$$

the *Dedekind* η function. Some weight four newforms can be written as products or quotients of η functions. Martin ([67]) gives a complete list of these cases, and we will mention them here.

6.1.1 Level 5

There is only one newform f of weight four with rational coefficients for $\Gamma_0(5)$. In this thesis it is denoted by 5/1; Stein ([97]) denotes it by 5k4A1. It can be written as an eta product

$$f(q) = \eta(\tau)^4 \eta(5\tau)^4.$$

By twisting with certain Legendre symbols we obtain the following newforms:

25/2	45/5	80/4	225/4	245/1	320/10	320/14	400/13
605/4	720/5	845/1	1225/11	1445/8	1600/13	1600/16	1805/6

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
1	$W_1(5)$	projective small resolution of	52	0	ch. 2	[81], [84], [111]
		self-fibre product of $Y_{\Gamma_1(5)}$				
2	$W_1(5)^{\pi}$	projective small resolution of		0	ch. 2	[87]
		twisted self-fibre product of $Y_{\Gamma_1(5)}$				
3	X_3	double octic from Clebsch cubic		0	4.8	
		and five planes				
4		8 (29) double octics from six			4.3,	
		planes and quadric			app.B	
5		relatives of double octics			1.7.2,	
		and self-fibre products			4.6,	
		by various constructions			ch. 2,	

Correspondences

Examples no. 1 and no. 2 are birational. The twist $t \mapsto -1/t$ (cf. chapter 2) corresponds to the coordinate change $x \mapsto x + y$, $y \mapsto x + y - z$, $z \mapsto y - z$, which transforms the equation

$$(x+y)(x+y-z)(y-z) = txyz$$

for the elliptic surface $Y_{\Gamma_1(5)}$ into the equation

$$xyz = -t(x+y)(x+y-z)(y-z).$$

(cf. [87]). No correspondences involving any of the other examples are known. In particular, it would be interesting to investigate if the symmetry of the pentagon behind example no. 3 can also be found in other examples.

6.1.2 Level 6

There is only one newform f of weight four with rational coefficients for $\Gamma_0(6)$. In this thesis it is denoted by 6/1; Stein ([97]) denotes it by 6k4A1. It can be written as an eta product

$$f(q) = [\eta(\tau)\eta(2\tau)\eta(3\tau)\eta(6\tau)]^2.$$

By twisting with certain Legendre symbols we obtain the following newforms:

18/1	48/3	144/6	150/9	192/4	192/7	294/9	450/8
576/9	576/10	726/5	882/1	1014/3	1200/29	1734/4	

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
1	$W_1(6)$	projective small resolution of	50	0	ch. 2	[50], [81], [84],
	, ,	self-fibre product of $Y_{\Gamma_1(6)}$				[111]
2	\mathcal{Z}_{A_3}	desingularization of toric	50	0	5.7	[50], [81], [103],
		variety connected with A_3				[104], [107]
3	Y	desingularization	50	0	3.7	[6], [50], [68],
		of Barth-Nieto quintic N				[107]
4	Z	desingularization of double cover	40	0	3.7	[50]
		of Barth-Nieto quintic N				
5	$ ilde{\mathcal{M}}_{(1:1)}$	proj. small resolution of 130-nodal	30	0	3.6	[101], [68], [69]
		van Straten quintic $\mathcal{M}_{(1:1)}$				
6	$\tilde{\mathcal{M}}_{(-2:1)}$	desingularization of		0?	3.6	[101], [68], [69]
		van Straten quintic $\mathcal{M}_{(-2:1)}$				
7	\tilde{X}	double octic from arrangement	40	0	4.2	[28]
		no. 240 with 10 fourfold points				
8	\tilde{X}	double octic from arrangement	38	0	4.2	[28]
		no. 245 with 9 fourfold points				
9	$ ilde{Z}_{\lambda,\mu}$	double octic from two Sarti		> 0	4.11	[82], [83]
	,	quartics, $\lambda = -\frac{1}{2}$, $\mu = -\frac{1}{4}$				
10		double octic from four planes and		> 0	4.11	
		two quadrics related to no. 9				
11	\hat{X}_1 ,	proj. small resol. of toric variety	50	0	5.8	[51]
	$\hat{X}_{m{a}}$	connected with A_4 , $a = (1:1:1:1:1:1)$				
12	\hat{X}_9 ,	non-proj. small resol. of toric var.	45	0	5.8	[51]
	$\hat{X}_{m{a}}$	connected with A_4 , $a = (1:1:1:1:1:9)$				
13	\hat{X}_{a} \tilde{X}	double octic from arrangement	37	3	4.2	[28]
		no. 287				
14	\tilde{X}_9	double octic from four smooth	23	3	4.5	
		quadrics related to arr. no. 287				
15	\tilde{V}_{λ}	resolution of CI of		> 0	5.9	[13]
	,	quadric and quartic, $\lambda = (6, 6, 6, 6)$				
16	\tilde{V}_{λ}	resolution of CI of		> 0	5.9	[13]
		quadric and quartic, $\lambda = (1, 1, 1, 4)$				
17	\tilde{X}_a	small resolution of CI of quadric	4	12	5.2	
		and quartic, $a = (1:1:1:1:-2:-2)$				
18	\tilde{X}_a	small resolution of CI of quadric	15	13	5.2	
		and quartic, $a = (1:1:-1:-1:2:-2)$				
19		resol. of various twisted self-fibre			ch. 2	
		prod. of $Y_{\Gamma_1(4)\cap\Gamma(2)}$ and $Y_{\Gamma_0(8)\cap\Gamma_1(4)}$				
20		resolutions of various			ch. 2	[87]
		twisted self-fibre products of $Y_{\Gamma_1(6)}$				

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
21		3 double octics from four planes and two quadrics			4.4	
22		39 (68) double octics from six planes and quadric			4.3, app.B	

Correspondences

Consider the singular Barth-Nieto quintic $N \subset \mathbb{P}^4$ (no. 3) given by the equations

$$x + y + z + r + s + t = \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{r} + \frac{1}{s} + \frac{1}{t} = 0.$$

Writing these equations as

$$x + y + z = -(r + s + t), \quad \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -\left(\frac{1}{r} + \frac{1}{s} + \frac{1}{t}\right)$$

and multiplying them we obtain the equation

$$(x+y+z)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right) = (r+s+t)\left(\frac{1}{r} + \frac{1}{s} + \frac{1}{t}\right)$$

which we rewrite as

$$(x+y+z)(xy+xz+yz)rst = (r+s+t)(rs+rt+st)xyz$$

which is nothing but an equation for Schoen's fibre product $W_1(6)$ from chapter 2 (no. 1), so the rational map given by

$$\mathbb{P}^5 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$$
, $(x:y:z:r:s:t) \mapsto (x:y:z), (r:s:t)$

induces a birational equivalence between N and $W_1(6)$.

By using the equations

$$x + y + z + r = -(s + t), \quad \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{r} = -\left(\frac{1}{s} + \frac{1}{t}\right)$$

we obtain

$$(x+y+z+r)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{1}{r}\right) = (s+t)\left(\frac{1}{s} + \frac{1}{t}\right).$$

Since

$$(s+t)\left(\frac{1}{s} + \frac{1}{t}\right) = \frac{(t+s)^2}{st} = \frac{(t-s)^2}{st} + 4$$

the above equation is nothing but the one for the singular model of \mathcal{Z}_{A_3} from 5.7 (no. 2), so the rational map given by

$$\mathbb{P}^5 \longrightarrow \mathbb{P}^3 \times \mathbb{P}^1, \quad (x:y:z:r:s:t) \mapsto (x:y:z:r), (s:t)$$

induces a birational equivalence between N and \mathcal{Z}_{A_3} .

Thus the Barth-Nieto quintic N, the fibre product $W_1(6)$, the variety \mathcal{Z}_{A_3} and the variety X_1 (no. 11, cf. 5.8) are birationally equivalent over \mathbb{Q} .

The above birational equivalence between N and $W_1(6)$ was constructed in [50], section 4. The authors also give a birational equivalence between N and \mathcal{Z}_{A_3} but it seems to be different from ours. Another explicit birational map between these varieties was constructed in [81, section 5]. Note also that in [10, Problem 7] K. Hulek poses the problem to exhibit a correspondence between no. 11 and no. 12.

Examples no. 13, no. 14 and no. 15 are related by correspondences (cf. 4.5 and 5.9). Examples no. 9 and no. 10 are related by the Segre construction (cf. 4.6). Apart from such standard constructions no other correspondences seem to be known. This is a picture of the situation so far:

In particular, it would be interesting to determine the Hodge numbers of the double octics constructed from six planes and a quadric.

6.1.3 Level 7

There is only one newform f of weight four for $\Gamma_0(7)$ with rational coefficients. In this thesis it is denoted by 7/1; Stein ([97]) denotes it by 7k4A1. It can not be written as an eta product. By twisting with certain Legendre symbols we obtain the following newforms:

49,	/2	63/1	112/5	175/2	441/9	448/5	448/9
784,	6	847/1	1008/19	1183/1	1225/1	1575/3	

At present there are no known examples of Calabi–Yau threefolds whose L-series contains the L-series of f.

6.1.4 Level 8

There is only one newform f of weight four with rational coefficients for $\Gamma_0(8)$. In this thesis it is denoted by 8/1; Stein ([97]) denotes it by 8k4A1. It can be written as an eta product

$$f(q) = \eta (2\tau)^4 \eta (4\tau)^4.$$

By twisting with certain Legendre symbols we obtain the following newforms:

16/1	64/1	64/5	72/4	144/3	200/4	392/5	400/9	576/5
576/6	784/10	968/4	1352/2	1600/22	1600/25	1800/30	1936/5	

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
1	$W_1(4)$	proj. small resolution of self-fibre product of Y_{Γ} , $\Gamma = \Gamma_1(4) \cap \Gamma(2)$	40	0	ch. 2	[81], [84], [111]
2	$W_0(8)$	proj. small resolution of self-fibre product of Y_{Γ} , $\Gamma = \Gamma_0(8) \cap \Gamma_1(4)$	70	0	ch. 2	[81], [84], [111]
3	$\mathcal{Z}_{A_1^3}$	desingularization of toric variety connected with A_1^3	70	0	5.7	[3], [14], [75], [76], [103], [104]
4	\tilde{X}	projective small resolution of CI of quadric and quartic	16	0	5.1	
5	\tilde{X}	projective small resolution of CI of four quadrics	32	0	5.4	[99]
6	$ ilde{X}$	double octic from arrangement no. 1 with 4 triple lines		0	4.2	[28]
7	Ã	double octic from arrangement no. 32	50	0	4.2	[28]
8	$ ilde{X}$	double octic from arrangement no. 69	50	0	4.2	[28]
9	\tilde{X}	double octic from arrangement no. 93	46	0	4.2	[28]
10	X	double octic from arrangement no. 238 with 12 fourfold points	44	0	4.2, 4.8	[28]
11	\tilde{X}	double octic from arrangement no. 241 with 10 fourfold points	40	0	4.2	[28]
12	\tilde{X}	double octic from arrangement no. 154 with parameter $(2:-3)$		1	4.2	[28]
13	$ ilde{X}_1$	double octic from Cayley cubic and five planes	70	0	4.8	

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
14	$ ilde{Y}_1$	Relative of no. 13 by the		0	4.8	
		Segre construction				
15	\tilde{Y}	double octic from four smooth	28	0	4.5	
		quadrics related to arr. no. 238				
16	W	double octic from four planes and		0	4.7	
		quartic with six A_3 singularities				
17	W'	double octic from two Kummer		0	4.7	
		quartics with 12 common nodes				
18		double octic from Σ_4 -symm. cubic		> 0	4.8	
		with param. $(2:-3:0)$ and 5 planes				
19	$V_{2,4}$	special member of family of			5.11	[80], [111]
		hypergeometric threefolds				
20	$V_{2,2,2,2}$	special member of family of			5.11	[80], [111]
		hypergeometric threefolds				
21		resol. of various twisted self-fibre			ch. 2	[87]
		prod. of $Y_{\Gamma_1(4)\cap\Gamma(2)}$ and $Y_{\Gamma_0(8)\cap\Gamma_1(4)}$				
22		13 double octics from four			4.4	
		planes and two quadrics				
23		88 (254) double octics from six			4.3,	
		planes and quadric			app.B	
24		relatives of double octics			1.7.2,	
		and self-fibre products			4.6,	
		by various constructions			ch. 2,	

Correspondences

An open part of $W_0(8)$ (no. 2) is given by the equation

$$\frac{(x+y)(xy+1)}{xy} = \frac{(z+t)(zt+1)}{zt}.$$

Because of

$$x + \frac{1}{x} + y + \frac{1}{y} = \frac{(x+y)(xy+1)}{xy}$$

and after a sign change of z and t this equation becomes

$$x + \frac{1}{x} + y + \frac{1}{y} + z + \frac{1}{z} + t + \frac{1}{t} = 0.$$

This is also an equation for an open part of Verrill's threefold $\mathcal{Z}_{A_1^3}$ (no. 3, cf. 5.7).

By homogenizing this equation we find a birational model as a quintic in \mathbb{P}^4 given by

$$w^{2}(xyz + xyt + xzt + yzt) = xyzt(x + y + z + t).$$

This quintic is birationally equivalent with the double covering X_1 of \mathbb{P}^3 branched along the union of five planes and a Cayley cubic (no. 13, cf. 4.8) which can be given by the equation

$$u^2 = xyzt(x + y + z + t)(xyz + xyt + xzt + yzt).$$

By the Segre construction (4.6) there is a correspondence between no. 13 and no. 14.

Now consider Nygaard's and van Geemen's complete intersection X of four quadrics in \mathbb{P}^7 (no. 5) given by the equations

$$2y_0^2 = +x_0^2 - x_1^2 - x_2^2 - x_3^2,$$

$$2y_1^2 = -x_0^2 + x_1^2 - x_2^2 - x_3^2,$$

$$2y_2^2 = -x_0^2 - x_1^2 + x_2^2 - x_3^2,$$

$$2y_3^2 = -x_0^2 - x_1^2 - x_2^2 + x_3^2.$$

A dominant rational map $X \longrightarrow W_0(8)$ is then given by

$$x = \frac{y_0 + x_0}{y_0 - x_0}, \qquad y = \frac{y_1 + x_1}{y_1 - x_1}, \qquad z = \frac{y_2 + x_2}{y_2 - x_2}, \qquad t = \frac{y_3 + x_3}{y_3 - x_3}.$$

This map was constructed by J. Stienstra. It can also be found in [75, page 60] but there are some misprints. Implicitly Nygaard and van Geemen give the correspondence induced by the Segre construction between X and the double octic constructed from arrangement no. 238 (no. 10 in the above table) which can be given by the equation

$$u^{2} = xyzt(x+y+z-t)(x+y-z+t)(x-y+z+t)(-x+y+z+t).$$

The explicit map is given by

$$(y_0:y_1:y_2:y_3:x_0:x_1:x_2:x_3)\mapsto (x_0^2:x_1^2:x_2^2:x_3^2:4x_0x_1x_2x_3y_0y_1y_2y_3).$$

The double octic Y (no. 15, cf. 4.5) can be given by the equation

$$u^{2} = (x^{2} + y^{2} + z^{2} - t^{2})(x^{2} + y^{2} - z^{2} + t^{2})(x^{2} - y^{2} + z^{2} + t^{2})(-x^{2} + y^{2} + z^{2} + t^{2}).$$

There are immediate correspondences between Y and Nygaard's and van Geemen's complete intersection X (no. 5) and the double octic constructed from arrangement no. 238 (no. 10). Note that the equations for X in [75] differ from ours by the factors 2 at the y_i , so a priori the two threefolds are isomorphic over $\mathbb{Q}[\sqrt{2}]$. Nevertheless their L-series are exactly the same because both varieties correspond with the double octic Y.

The double octic constructed from arrangement no. 238 (no. 10 in the above table) can also be given (after a change of coordinates) by the equation

$$u^{2} = (x - y)(x + y)(y - z)(y + z)(z - t)(z + t)(t - x)(t + x)$$
$$= (x^{2} - y^{2})(y^{2} - z^{2})(z^{2} - t^{2})(t^{2} - x^{2}).$$

By the Segre construction there is a correspondence between this double octic and the double octic given by the equation

$$u^{2} = xyzt(x - y)(y - z)(z - t)(t - x)$$

which is the double octic constructed from arrangement no. 1 (no. 6 in the above table). This correspondence was first noticed by S. Cynk. Note that although the Hodge numbers of the later double octic are the same as those of examples no. 2, no. 3 and no. 13, the correspondence between them is not given by a birational map (but there might exist such a map).

There is a correspondence between no. 4 and no. 17, cf. 5.1. Examples no. 16 and no. 17 are related by the Segre construction.

This is a picture of the situation so far:

No correspondences between any of the other examples seem to be known, except standard constructions. In particular, it would be interesting to study the (many!) examples of double octics constructed from six planes and a quadric and to determine their Hodge numbers.

Note also that among the listed rigid examples there are many with different Hodge numbers $h^{1,1}$. The occurring values are at least 16, 28, 32, 40, 44, 46, 50, 70.

6.1.5 Level 9

There is only one newform f of weight four with rational coefficients for $\Gamma_0(9)$. In this thesis it is denoted by 9/1; Stein ([97]) denotes it by 9k4A1. It can be written as an eta product

$$f(q) = \eta(3\tau)^8.$$

By twisting with certain Legendre symbols we obtain the following newforms:

144/5 225/6	441/6	576/1	576/2	1089/1	1521/1
-------------	-------	-------	-------	--------	--------

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
1	W(3)	proj. small resolution of self-fibre product of Y_{Γ} , $\Gamma = \Gamma(3)$	36	0	ch. 2	[81], [84], [111]
2	$W_0(9)$	proj. small resolution of self-fibre product of Y_{Γ} , $\Gamma = \Gamma_0(9) \cap \Gamma_1(3)$	84	0	ch. 2	[81], [84], [111]
3	$ ilde{V}_{33}$	big resolution of CI of two cubics with 9 sing. of type $(3,3,3,3)$	36	0	5.3	[99]
4	\tilde{X}	projective small resolution of CI of two cubics with 108 nodes	36	0	5.6, ch. 2	
5	$ ilde{T}$	resolution of triple cover of \mathbb{P}^3 branched along the faces of a cube			5.3	[48], [99]
6	\tilde{E}^3	resol. of quotient of triple product of the elliptic curve $x^3 + y^3 + z^3 = 0$	36	0	below	[111]
7	X_7	double octic from five planes and cubic with three cusps		0	4.8	
8	$V_{3,4}$	special member of family of hypergeometric threefolds			5.11	[80], [111]
9		resol. of various twisted self-fibre prod. of $Y_{\Gamma(3)}$ and $Y_{\Gamma_0(9)\cap\Gamma_1(3)}$			ch. 2	[87]
10		4 (6) double octics from six planes and quadric			4.3, app.B	
11		relatives of double octics and self-fibre products by various constructions			1.7.2, 4.6, ch. 2,	

Correspondences

Singular birational models for W(3) (no. 1) and $W_0(9)$ (no. 2) are given by the equations

$$(x^{3} + y^{3} + z^{3})rst = (r^{3} + s^{3} + t^{3})xyz,$$

$$(x^{2}z + y^{2}x + z^{2}y)rst = (r^{2}t + s^{2}r + t^{2}s)xyz,$$

with (x:y:z,r:s:t) coordinates of $\mathbb{P}^2 \times \mathbb{P}^2$.

A correspondence between these two varieties is given by the 3:1 map $W_0(9)\longrightarrow W(3)$ induced by (cf. [85], Theorem 13.2.)

$$\mathbb{P}^2 \times \mathbb{P}^2 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2, \quad (x:y:z,\, r:s:t) \mapsto (x^2y:y^2z:z^2x,\, r^2s:s^2t:t^2r).$$

Now consider the triple product E^3 of the elliptic curve

$$E := \{x^3 + y^3 + z^3 = 0\} \subset \mathbb{P}^2$$

with complex multiplication by $\mathbb{Z}[\sqrt{-3}]$. Let the equations of the three factors be given by

$$u_i^3 + v_i^3 + w_i^3 = 0, \quad i = 1, 2, 3.$$

The variety E^3 is not Calabi–Yau but we obtain a Calabi–Yau threefold by dividing out the group of automorphisms generated by $w_1 \mapsto \xi \cdot w_1$, $w_2 \mapsto \xi \cdot w_2$, $v_3 \mapsto \xi \cdot v_3$ and resolving singularities. According to [111], ex. 5.22, a smooth Calabi–Yau model \tilde{E}^3 (no. 6) of E^3 has

$$h^{2,1}(\tilde{E}^3) = 0$$
, $h^{1,1}(\tilde{E}^3) = 36$, $\chi(\tilde{E}^3) = 72$.

Recently Kimura ([55]) constructed a correspondence $E^3 \longrightarrow \tilde{V}_{33}$ as follows:

Consider the affine piece $\{x_3 \neq 0\}$ of the singular model V_{33} (no. 3). It is given by the equations

$$x_0^3 + x_1^3 + x_2^3 + 1 = x_2^3 + 1 + x_4^3 + x_5^3 = 0.$$

On the other hand, the equations of $(E - \{z = 0\})^3$ are given by

$$u_i^3 + v_i^3 + 1 = 0, \quad i = 1, 2, 3.$$

Then there is a 3:1 rational map

$$(E - \{z = 0\})^3 \longrightarrow V_{33}, \quad x_0 = -u_1v_3, x_1 = -v_1v_3, x_2 = u_3, x_4 = -u_2v_3, x_5 = -v_2v_3.$$

Actually this map induces a 1 : 1 rational map $\tilde{E}^3 \dashrightarrow V_{33}$. Note that in [111], ex. 8.6, it was conjectured that the *L*-series of \tilde{E}^3 is connected with a weight four newform for $\Gamma_0(27)$ instead of $\Gamma_0(9)$.

A correspondence (given by an 81 : 1 map) between V_{33} and a triple cover of \mathbb{P}^3 branched along the faces of a cube (no. 5) is given in 5.3.

The curve E is isogenous to the curve given by

$$\{t_0^3 - t_2 ab = 0\} \subset \mathbb{P}^2$$

where $a=t_1+t_2/2$, $b=t_1-t_2/2$. Schoen ([85], Theorem 13.2.) establishes the correspondence $E^3 \longrightarrow W_0(9)$ induced by the rational map $E^3 \longrightarrow \mathbb{P}^2 \times \mathbb{P}^2$ given by

$$(x:y:z) = (-t_2 a(t_0')^2 t_0'' b'': -t_0 a t_2' b' (t_0'')^2 : t_0^2 t_0' t_2' t_2'' b''),$$

$$(r:s:t) = (-t_0 a t_0' t_2' t_0'' b'': -t_0^2 (t_0')^2 (t_0'')^2 : t_2 a t_2' b' t_2'' b''),$$

where the number of dashes distinguishes between the variables of the different factors of E^3 . This is a picture of the situation so far:

Note that it is still unknown if the examples with the same Hodge numbers in the above discussion are all birational. It would also be interesting to study the double octics (and their relatives) and find correspondences between them and the other examples.

6.1.6 Level 10

There is only one newform f of weight four for $\Gamma_0(10)$ with rational coefficients. In this thesis it is denoted by 10/1; Stein ([97]) denotes it by 10k4A1. It can not be written as an eta product. By twisting with certain Legendre symbols we obtain the following newforms:

50/2	80/6	90/2	320/1	320/2	400/3	450/17
490/15	720/19	1210/12	1600/44	1600/46	1690/13	

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
1	W_3	projective small resolution of	33	0	ch. 2	[88]
		twisted self-fibre product of $Y_{\Gamma_1(6)}$				
2	\tilde{X}_4 ,	double octic from Clebsch cubic	42	0	4.8,	
	$\tilde{X}_{(5:6)}$	and five planes			4.9	
3	\tilde{Y}_4	Relative of no. 2 by		> 0	4.8	
		Segre construction				
4	$\tilde{X}_{(13:30)}$	double octic from Clebsch cubic		4?	4.9	
		and Barth quintic with 10 nodes				
5	$\hat{X}_{m{a}}$	non-proj. small resol. of toric variety	45	2	5.8,	[51]
		connected with A_4 , $a = (1:1:1:9:9:9)$			ch. 2	
6		resolutions of various			ch. 2	
		twisted self-fibre products of $Y_{\Gamma_1(6)}$				
7		3 double octics from six			4.3,	
		planes and quadric			app.B	
8		relatives of double octics			1.7.2,	
		and self-fibre products			4.6,	
		by various constructions			ch. 2,	

Correspondences

There are correspondences between no. 1 resp. the twisted self-fibre products in no. 6 and complete intersections of two cubics (contained in no. 8), cf. chapter 2. A correspondence between no. 2 and no. 3 is given by the Segre construction, cf. 4.6. There are various

correspondences between no. 2 resp. no. 4 resp. the double octics in no. 7 and other varieties (like quintics or complete intersections, contained in no. 8), cf. 1.7.2. There is a birational correspondence between no. 5 and certain (twisted) self-fibre products (contained in no. 6), cf. 5.8.

6.1.7 Level 12

There is only one newform of weight four for $\Gamma_0(12)$ with rational coefficients. In this thesis it is denoted by 12/1; Stein ([97]) denotes it by 12k4A1. It can not be written as an eta product. By twisting with certain Legendre symbols we obtain the following newforms:

36/1	48/2	144/7	192/3	192/12	300/3	576/23
576/24	588/5	900/5	1200/8	1452/6	1764/11	

The following table lists all currently known examples of Calabi–Yau threefolds whose L-series contains the L-series of f. Hodge numbers are included as far as they have been computed.

no.	symbol	comments		$h^{1,2}$	ref.	external ref.
1	\tilde{V}_{24} , proj. small resolution of CI of quadric		34	0	5.2	[99]
	$ ilde{X}_a$	and quartic, $a = (1:1:1:-1:-1:-1)$				
2	$\hat{X}_{m{a}}$	non-proj. small resol. of toric variety	47	0	5.8	[51]
		connected with A_4 , $a = (1:1:1:4:4)$				
3		non-projective small resolution of	47	0	ch. 2,	[51]
		twisted self-fibre product of ell. surface			5.8	
4	\tilde{X}	double octic from arrangement	40	0	4.2	[28]
		no. 239 with 10 fourfold points				
5	\tilde{X}	double octic from arrangement	39	1	4.2	[28]
		no. 244 with parameter $(1:-1)$				
6	6 \tilde{X} double octic from arrangement		36	2	4.2	[28]
		no. 317				
7	X_6	double octic from five planes		0	4.8	
	and cubic with three cusps					
8	$V_{2,2,3}$	special member of family of			5.11	[80], [111]
		hypergeometric threefolds				
9	\tilde{X}_1	double octic from four smooth		6	4.5	
		quadrics related to arrangement no. 239				
10	\tilde{X}_2 double octic from four smooth			6	4.5	
		quadrics related to arrangement no. 317				
11	$ ilde{X}_3$	double octic from four smooth		0	4.5	
		quadrics related to arrangement no. 239				

no.	symbol	comments	$h^{1,1}$	$h^{1,2}$	ref.	external ref.
12		double octic from four planes			4.4	
		and two smooth quadrics				
13		resolutions of various twisted self-fibre			ch. 2	
		products of $Y_{\Gamma_1(4)\cap\Gamma(2)}$ and $Y_{\Gamma_0(8)\cap\Gamma_1(4)}$				
14		19 (58) double octics from six			4.3, app.B	
		planes and quadric			app.B	

Correspondences

Examples no. 2 and no. 3 are birationally equivalent, cf. 5.8. By the Segre construction there is a correspondence between no. 6 and no. 10. Examples no. 4, no. 9 and no. 11 are also related by the same construction. Apart from such standard correspondences not much is known.

6.2 Modular threefolds with large levels

For the next few weight four newforms with rational coefficients (up to level 32) we list the threefolds containing the L-series of these newforms in their L-series.

newform	known examples
13/1	no examples known
14/1	double octics constructed from four planes and two quadrics, cf. 4.4,
	toric varieties (resp. twisted self-fibre products of elliptic surfaces), cf. 5.8
14/2	double octics constructed from four planes and two quadrics, cf. 4.4,
	double octics constructed from six planes and a quadric, cf. 4.3, app.B,
	double octic constructed from five planes and Σ_4 -symmetric cubic, cf. 4.8,
	twisted self-fibre products of elliptic surfaces, cf. ch. 2
15/1	Σ_6 -symmetric complete intersections, cf. 5.10
15/2	no examples known
16/1	just a twist of 8/1, cf. 6.1.4
17/1	twisted self-fibre products of elliptic surfaces, cf. ch. 2
18/1	just a twist of $6/1$, cf. $6.1.2$
19/1	no examples known
20/1	double octics constructed from six planes and a quadric, cf. 4.3, app.B,
21/1	double octic constructed from Sarti octic, cf. 4.11,
	van Straten's quintic $\mathcal{M}_{(-3:1)}$, cf. 3.6
21/2	twisted self-fibre products of elliptic surfaces, cf. ch. 2
22/1	no examples known
22/2	twisted self-fibre products of elliptic surfaces, cf. ch. 2
22/3	no examples known

C						
newform	known examples					
23/1	no examples known					
24/1	double octics constructed from eight planes, cf. 4.2,					
	double octics constructed from four planes and two quadrics, cf. 4.4,					
	double octic constructed from two Sarti quartics, cf. 4.11,					
	double octic constructed from five planes and cubic with 3 cusps, cf. 4.8,					
	hypergeometric threefold, cf. 5.11					
25/1	Schoen's quintic and its relative, cf. 3.1, 5.11					
25/2	just a twist of 5/1, cf. 6.1.1					
25/3	just a twist of 25/1					
26/1	no examples known					
26/2	no examples known					
26/3	no examples known					
27/1	twisted self-fibre products of elliptic surfaces, cf. ch. 2,					
	Libgober's and Teitelbaum's complete intersection of two cubics, cf. 5.5,					
27/2	hypergeometric threefold, cf. 5.11					
27/2	just a twist of 27/1					
28/1	twisted fibre product of two elliptic surfaces, cf. ch. 2					
28/2	double octic constructed from six planes and a quadric, cf. 4.3, app.B					
$\frac{30/1}{20.72}$	toric varieties (resp. twisted self-fibre products of elliptic surfaces), cf. 5.8					
30/2	twisted self-fibre products of elliptic surfaces, cf. ch. 2,					
	toric varieties (resp. twisted self-fibre products of elliptic surfaces), cf. double octic constructed from Σ_5 -symmetric quintic and cubic, cf. 4.9,					
	double octic constructed from Σ_5 -symmetric quintic and cubic, ci. 4.9, double octics constructed from four planes and two quadrics, cf. 4.4					
32/1	double octics constructed from eight planes, cf. 4.2,					
32/1	double octic constructed from six planes and a quadric, cf. 4.3, app.B,					
	double octics constructed from four planes and two quadrics, cf. 4.4,					
	double octics constructed from four quadrics, cf. 4.4,					
32/2	double octics constructed from eight planes, cf. 4.2,					
92/2	double octic constructed from six planes and a quadric, cf. 4.3, app.B,					
	double octics constructed from four planes and two quadrics, cf. 4.4,					
	double octics constructed from four quadrics, cf. 4.5,					
	double octics constructed from four planes and a Kummer surface, cf. 4.7,					
	double octics constructed two Kummer surfaces, cf. 4.7,					
	complete intersection of four quadrics, cf. 5.9,					
	hypergeometric threefold, cf. 5.11					
32/3	just a twist of $32/2$					

The other weight four newforms (not regarding twists) known or conjectured to occur in the L-series of Calabi-Yau threefolds are

35/1,	40/2,	40/3,	42/2,	50/3,	54/1,	54/2,
55/1,	60/1,	68/1,	72/1,	73/1,	78/2,	88/2,
96/1,	96/2,	96/4,	102/3,	108/2,	110/5,	120/1,
120/2,	120/3,	120/4,	120/5,	128/1,	130/2,	168/1,
168/2,	180/1,	200/1,	210/6,	210/9,	216/1,	256/1,
256/3,	256/7,	264/4,	280/2,	288/1,	300/2,	330/4,
360/2,	384/1,	384/3,	390/5,	465/2,	480/2,	480/5,
544/1,	570/7,	600/2,	864/1,	930/3,	1110/2,	1365/1,
1440/7,	1568/1,	1920/2,	1920/3.			

In 6.4.3 it is further discussed which newforms might occur.

6.3 Hodge and Euler numbers

It is still an open question if the value of the Euler number $\chi(X)$ of a Calabi–Yau threefold X is bounded by two constants (if there are such constants then their absolute values will be the same because of mirror symmetry). It is therefore also unknown which pairs of Hodge numbers $h^{1,1}(X)$, $h^{2,1}(X)$ may occur. The currently known bounds for the Euler number (based on constructions of Calabi–Yau threefolds in weighted projective spaces) are -960 and 960. For a general survey of the classification of threefolds, cf. [78].

This question can also be restricted to rigid Calabi–Yau threefolds. In this case we have $h^{2,1}(X) = 0$ and $2h^{1,1}(X) = \chi(X)$ so the Euler number $\chi(X)$ must be positive. The smallest Euler number for a rigid Calabi–Yau threefold that I am aware of is 32 (cf. 5.1), the largest is 202 (cf. 3.2). Both examples have been constructed in this thesis. Examples with even larger Euler characteristics may be constructed as described in 5.11.

There are (projective) rigid Calabi–Yau threefolds with Euler numbers 32, 50, 52, 56, 60, 64, 66, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 124, 140, 168, 202. In particular, every number between 52 and 108 which is divisible by four is realized. It is not surprising if the Hodge number $h^{2,1}$ of a modular Calabi–Yau threefold and its level have many common divisors because in most cases there is some symmetry which affects both the bad primes and the Picard group. Examples without symmetries are very difficult to construct.

I believe that some gaps in the above list could be filled by computing Euler numbers of resolutions of the double octics listed in appendix B. Most if not all of these numbers will also be divisible by four but we can avoid this by allowing nodal quadrics (a node and its small resolution will increase the Euler number by 2).

It is also interesting to investigate which Hodge numbers can occur for modular Calabi–Yau threefolds with the same weight four newform. Between two such threefolds there should be a correspondence. If they are birationally equivalent then by Batyrev ([8]) the Hodge numbers are equal but if the correspondence is not given by a birational map then there are more possibilities.

For example, in most cases the Segre construction (4.6) produces relatives with different Hodge numbers. In 4.4 there are examples of modular Calabi–Yau threefolds connected with the newform 32/1 (32k4A1) which are related by correspondences. The occurring Hodge numbers $h^{2,1}$ are at least 0, 1, 2, 3.

Note also that the Hodge numbers do not determine the newform. For example, there are three rigid double octics constructed from eight planes with 10 fourfold points (cf. 4.2). They all have $h^{1,1} = 40$ but the newforms are different (6/1, 8/1 resp. 12/1). By the Tate conjecture these threefolds can not be in correspondence (and, in particular, not birationally equivalent).

6.4 Bad primes

6.4.1 Problems

There are two (closely related) main problems concerned with primes of bad reduction for Calabi–Yau threefolds. We will present them and afterwards collect some material which might help shedding some light.

6.1 Problem

What determines the level of (the weight four newform connected with) a modular Calabi–Yau threefold? More specifically, if p is a prime of bad reduction for the modular Calabi–Yau threefold X, at what power does it occur in the level of the newform whose L-series is contained in the L-series of X? Generalize the notion of a conductor (of an elliptic curve) to Calabi–Yau threefolds.

This problem has also been posed in [10, Problem6] by R. Schimmrigk.

6.2 Problem

For which weight four newforms f does there exist a rigid Calabi–Yau variety X such that the L-series of X equals the L-series of f? More generally, does there exist a Calabi–Yau variety Y such that some part of the L-series of Y is equal to the L-series of f?

This problem has also been posed, for the rigid case, in [10, Problem 8] by K. Hulek (he became aware of this problem when B. Mazur asked him this question in 2003) and in [108, Problem 7.1] by N. Yui. At an earlier occasion, D. van Straten had also asked the question to B. van Geemen.

6.4.2 Powers of bad primes

Let X be a modular Calabi–Yau threefold, and let the L-series of the weight four newform f for $\Gamma_0(N)$ occur in the L-series of X. Then by theorem 1.4 the exponent e_p of a prime p dividing N is bounded by $e_p \leq 2$ if p > 3, $e_3 \leq 5$ and $e_2 \leq 8$. Thus the primes 2 and 3 play a special role and it is extremely difficult to predict which powers will occur in a level.

6.4. BAD PRIMES 181

A bad prime $p \ge 5$ can occur to the power 0, 1 or 2. There are only very few examples known where a bad prime $p \ge 5$ occurs to the power 2 in the level of a modular Calabi–Yau threefold (apart from twists). Unfortunately it is almost always the prime p = 5:

• Consider the Schoen quintic X in \mathbb{P}^4 which is given by the equation

$$x_0^5 + x_1^5 + x_2^5 + x_3^5 + x_4^5 - 5x_0x_1x_2x_3x_4 = 0.$$

In 3.1 it was shown that the *L*-series of a resolution \tilde{X} of *X* is equal to the *L*-series of the weight four newform 25/1 (25k4A1). Over \mathbb{F}_5 the threefold *X* degenerates into

$$(x_0 + x_1 + x_2 + x_3 + x_4)^5 = 0.$$

The same degeneration happens to the relative Y of X which is given by the equation (cf. 3.1)

$$(x_0 + x_1 + x_2 + x_3 + x_4)^5 - 5^5 x_0 x_1 x_2 x_3 x_4 = 0.$$

• Consider the Hirzebruch quintic V in \mathbb{P}^4 which is given by the homogenisation of the equation

$$f(x,y) - f(z,w) = 0$$

where

$$f(x,y) = (2x+1)(5y^4 - 5y^2(2x^2 - 2x + 1) + (x^2 + x - 1)^2).$$

In 3.3 it was shown that the *L*-series of a resolution \tilde{V} of *V* is equal to the *L*-series of the weight four newform 50/3 (50k4B1). Over \mathbb{F}_5 the threefold *V* degenerates into

$$(x-z)^5 = 0.$$

ullet Consider the complete intersection X of a quartic and a quadric in \mathbb{P}^5 which is given by the equations

$$x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 = 5x_5^2,$$

$$x_0^4 + x_1^4 + x_2^4 + x_3^4 + x_4^4 = 5x_5^4.$$

In 5.2 it is conjectured that the weight four newform 600/10 occurs in the *L*-series of *X*. Over \mathbb{F}_5 the threefold *X* has additional non-isolated singularities, namely the 16 lines given by

$$x_0 = \pm x_1 = \pm x_2 = \pm x_3 = \pm x_4.$$

• Consider the Σ_6 -symmetric complete intersection X of a quartic and a quadric in \mathbb{P}^5 which is given by the equations

$$C_1^2 - C_2 = 0,$$

$$3C_4 - 2C_3C_1 - C_1^4 = 0,$$

where $C_i := \sum_{k=0}^{5} x_k^i$ are the power sums. In 5.10 it is conjectured that the weight four newform 300/2 occurs in the L-series of X. In fact over fields with characteristic zero or ≥ 7 the threefold

X is smooth. Over \mathbb{F}_5 it has non-isolated singularities, namely the 6 lines on the Σ_6 -orbit of the line given by the equation

$$x_0 = x_1 = x_2 = x_3 = x_4.$$

- Consider the hypergeometric threefold V_{10} from 5.11. In [80] Villegas showed that its L-series is determined by the weight four newform 200/10 (200k4A1). This example can be interpreted as a double covering of $\mathbb{P}^3(1,1,1,2)$ branched along a surface of degree 10. Over \mathbb{F}_5 the surface develops multiple components.
- Very recently S. Cynk constructed a double covering of \mathbb{P}^3 branched along an arrangement of eight planes with the *L*-series of the weight four newform 49/1 (49k4B1) in its *L*-series (unpublished). Over \mathbb{F}_7 the threefold degenerates; two of the eight planes coincide.

Thus in all examples of modular Calabi–Yau threefolds with a prime $p \geq 5$ to the second power in the level of the modular form the threefold degenerates modulo p or develops non-isolated singularities.

In most examples of modular Calabi–Yau threefolds with a prime $p \ge 5$ to the first power in the level of the modular form the threefold develops only isolated singularities modulo p. The main problem here is to find a suitable birational model which shows only the "really" bad primes. We will discuss some examples:

- Consider the double coverings of \mathbb{P}^3 branched along the union of six planes and a smooth quadric investigated in 4.3 and tabulated in appendix B. I computed the discriminants of all the quadric surfaces. There are only six examples where the discriminant is divisible by a prime $p \geq 5$ (it is always p = 5 and the discriminants are 5 or 25). In fact the quadric surfaces develop a node in characteristic 5. The prime 5 occurs to the power 1 in the levels of the corresponding weight four newforms.
- Consider the double coverings of \mathbb{P}^3 branched along the union of five planes and the Clebsch cubic investigated in 4.8. The bad prime 5 occurs in the levels of the two weight four newforms associated with these examples. In fact the Clebsch cubic develops an extra node modulo 5.
- The (twisted) fibre products of elliptic surfaces investigated in chapter 2 develop only isolated singularities modulo the bad primes. Consequently the bad primes occur to the power ≤ 1 in the levels of the (twists of minimal level of the) corresponding weight four newforms. Note that M. Schütt ([89, section 6.2]) made some very interesting observations. There are examples where there does not exist a projective small resolution. A big resolution develops additional nodes modulo some primes. If there was a projective small resolution then it would have good reduction at these primes. In this case the primes do not seem to occur in the level.
- Consider the family of nodal complete intersections investigated in 5.2. For many examples the prime 5 occurs to the power 1 in the levels of the associated weight four newforms. In all these cases the threefold develops additional nodes modulo 5. Note that there are also many examples with set of bad primes $\{2,3,5\}$ where I could not detect a weight four newform in the L-series. Maybe the powers of 2 and 3 in the levels are too large so that the newforms are not contained in the tables in appendix C.

6.4. BAD PRIMES 183

• The Σ_7 -symmetric complete intersection investigated in 5.10 develops additional isolated singularities modulo the primes 5, 7 and 13. All three primes occur to the power 1 in the level of the corresponding weight four newform.

Based on these obeservations we may formulate the following conjecture. Note that it is still very vague (but it can already be used as a "rule of thumb"). It would be helpful to construct more examples of modular Calabi–Yau threefolds with large bad primes but this seems to be an extremely difficult task.

6.3 Conjecture

("rule of thumb") Let X be a modular Calabi–Yau threefold and let $p \geq 5$ be a prime. Let f be the twist of minimal level of the weight four newform associated with X. If p occurs to the power 2 in the level of f then X develops non-isolated singularities over \mathbb{F}_p . If p occurs to the power 1 in the level of f then X is singular modulo p and there is a birational model of X with only isolated singularities modulo p (note that it is very difficult to find examples where these singularities are not ordinary nodes). If p does not occur in the level of f then there is a birational model of X with good reduction modulo p.

There is a certain analogy between the above conjecture and the conductor of an elliptic curve E (i.e., a one-dimensional Calabi–Yau manifold) defined over \mathbb{Q} . The conductor of an elliptic curve is equal to the level of the associated weight two newform and is given by

$$N = \prod_{p \text{ prime}} p^{f_p}$$

where

$$f_p = \begin{cases} 0, & \text{if } E \text{ has good reduction modulo } p, \\ 1, & \text{if } E \text{ has a node modulo } p, \\ 2, & \text{if } E \text{ has a cusp modulo } p, \text{ and } p \neq 2, 3, \\ 2 + \delta_p, & \text{if } E \text{ has a cusp at } p = 2 \text{ or } p = 3. \end{cases}$$

Here δ_p depends on wild ramification in the action of the inertia group at p of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ on the Tate module $T_p(E)$ of E.

6.4.3 Which newforms do occur?

At present, the following primes have occurred in levels of weight four newforms connected with rigid Calabi–Yau threefolds (cf. 6.1, 6.2):

The following primes have occurred in levels of weight four newforms connected with (not necessarily rigid) Calabi–Yau threefolds (cf. 6.1, 6.2):

Up to twist there are only 7 weight four newforms with rational coefficients for $\Gamma_0(N)$ where N is a power of 2. These are 8/1, 32/1, 32/2, 128/1, 256/1, 256/3, 256/7. All of them are known to occur in the L-series of some Calabi–Yau threefolds; all of them but 256/3 are known to occur in the L-series of some rigid Calabi–Yau threefolds.

The table below summarizes the current situation for weight four newforms with level divisible only by 2 and 3. The symbols in the table stand for the following:

- \bullet : There are no newforms of this level.
- T: There are newforms of this level but they are all twists of newforms of lower level.
- ?: There might be newforms of this level but this has not been investigated yet because of lack of computer power.
- ullet M: There are newforms of this level. Until now none of them has occurred in the L-series of a Calabi–Yau threefold.
- $(\sqrt{})$: There are newforms of this level. Some of them but not all have occurred in the L-series of a Calabi-Yau threefold.
- $\sqrt{}$: There are newforms of this level. They all have occurred in the L-series of a Calabi–Yau threefold.

	3 -	9 🗸	27 V	81 –	243 $()$
2 -	$6 \sqrt{}$	18 T	$54 \sqrt{}$	$162 ext{ } M$	$486 ext{ } M$
4 –	$12 \sqrt{}$	36 T	$108 \sqrt{}$	$324 ext{ } M$	$972 \sqrt{}$
8 √	$24 \sqrt{}$	$72 \sqrt{}$	216 $()$	$648 ext{ } M$	1944 M
16 T	48 T	144 T	$432 ext{ } T$	1296 T	3888 ?
$32 \sqrt{}$	$96 \sqrt{}$	$288 \sqrt{}$	864 √	2592 ?	7776 ?
64 T	192 T	576 T	1728 T	5184 ?	15552 ?
$128 \sqrt{}$	$384 \sqrt{}$	1152 T	3456 ?	10368 ?	31104 ?
$256 \sqrt{}$	768 M	2304 T	6912 ?	20736 ?	62208 ?

It is possible to produce similar tables for different primes but this does not make sense in the current situation. We should perform large computer searches for modular Calabi–Yau threefolds and weight four newforms first. In only a few years time computers will be powerful enough for this. The problem with examples constructed by human beings is that they usually exhibit too much symmetry and obstruct the view towards the general case.

In the meantime we are restricted to making conjectures. I am not sure if every weight four newform will occur in the *L*-series of some Calabi–Yau threefold (this is only possible if there are infinitely many families of Calabi–Yau threefolds, cf. [78]) but I am pretty sure that this will be the case for every newform the computation of which comes into the range of computers.

6.5 Other aspects and questions

There are some aspects concerning modularity of Calabi–Yau threefolds that have not been discussed in this thesis but that promise to be interesting:

- What can be said about the *L*-series of a (rigid) Calabi–Yau threefold which is not defined over \mathbb{Q} but over a finite extension of \mathbb{Q} , e.g. a double covering of \mathbb{P}^3 branched along Endraß' octic surface with 168 nodes (cf. 4.6)?
- What is the connection between modularity of a rigid Calabi–Yau threefold and modularity of its intermediate Jacobian (which is an elliptic curve)? A precise conjecture can be found in [111, Conjecture 8.4]. Note that there are some numerical computations by H. Verrill, suggesting that the conjecture might be wrong.
- What kinds of modular or automorphic forms can occur in the *L*-series of a non-rigid Calabi–Yau threefold? E.g., there seem to be examples involving weight three and weight two modular forms (cf. [64]).
- Can (rigid) Calabi–Yau threefolds be classified somehow, and will the classification shed light on the modularity question? Some attempts in this direction can be found in [111].

Appendix A

Arrangements of eight planes

The following table lists 450 examples of arrangements of eight planes defined over \mathbb{Q} that have been found with a computer search. Many aspects of these examples are discussed in 4.2.

We give the numerical data of the arrangements, the Hodge numbers $h^{1,1} = h^{1,1}(\tilde{X})$ and $h^{1,2} = h^{1,2}(\tilde{X})$ and the Euler number $\chi = \chi(\tilde{X})$ of the Calabi–Yau resolution \tilde{X} of the double coverings X of \mathbb{P}^3 branched along the arrangements, and the list of types of subarrangements of six planes (in lexicographical order with respect to some numbering of the planes, i.e., from $D_0 \cup \cdots \cup D_5$ to $D_2 \cup \cdots \cup D_7$).

no.	p_3	p_{4}^{0}	p_4^1	p_5^0	p_{5}^{1}	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ	subarrangements of 6 planes
1	4	1	4	0	0	4	4	0	70	140	5051551551105151552111151521
2	8	0	4	0	0	4	4	1	69	136	4941551491155451155511121121
3	8	3	3	0	0	3	3	0	62	124	9551441000990551515511551411
4	12	2	3	0	0	3	3	1	61	120	9411554909999151451111445541
5	12	2	3	0	0	3	3	1	61	120	9411554909908151541111454541
6	16	1	3	0	0	3	3	2	60	116	8441441989890451514411451411
7	20	0	3	0	0	3	3	3	59	112	8441441888880441414411441411
8	9	1	5	0	1	2	3	1	61	120	4951541995595303555311551421
9	13	0	5	0	1	2	3	2	60	116	4941551884595493354411551321
10	8	2	7	0	0	2	3	1	57	112	5951441995495594554411451421
11	12	1	7	0	0	2	3	2	56	108	4441841495885444425511941451
12	16	0	7	0	0	2	3	3	55	104	4841441784485484454411441421
13	6	0	7	0	2	1	3	1	61	120	3352455303300542555511355551
14	9	0	9	0	1	1	3	2	56	108	4442444393499532555411455441
15	12	0	11	0	0	1	3	3	51	96	444244448448442444411444441
16	14	2	2	0	2	1	2	1	57	112	9053953909999593355511053351
17	18	1	2	0	2	1	2	2	56	108	8953943999899303555311953451
18	22	0	2	0	2	1	2	3	55	104	8943953888899493354411953351
19	9	4	4	0	1	1	2	0	54	108	0933955990900594553511955551
20	13	3	4	0	1	1	2	1	53	104	0953953899909484554511953551

no. p3 p4 p5 p5 p5 p5 p5 p5 p5		III		- 1					1.0			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			p_4^0	p_4^1	p_{5}^{0}	p_5^1	p_{5}^{2}		$h^{1,2}$	$h^{1,1}$		subarrangements of 6 planes
23				4			1					
24				4	0	1	1				100	
25					_							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1	1				100	
27 21 1 4 0 1 1 2 3 51 96 8843843889894954544411943451 28 21 1 4 0 1 1 2 3 51 96 4441184895584334883598195947 29 25 0 4 0 1 1 2 4 50 92 444118488554833888388184957 30 14 1 6 1 0 1 2 2 52 100 5849548656558565555559114099154 31 18 0 6 1 0 1 2 0 50 100 995595490999955455511945541 33 12 4 6 0 0 1 2 1 49 96 84585498810155814099554 34 12 4 6 0 0 1 2 1 49 96 84495588999981545159199554999154 35 12 4 6 <				4	0	1	1				100	
28 21 1 4 0 1 1 2 3 51 96 4441184895584334883598195947 29 25 0 4 0 1 1 2 4 50 92 4441184884574343884388184957 30 14 1 6 1 0 1 2 2 52 100 584954866558565558565559114099154 31 18 0 6 1 0 1 2 3 51 96 44511957844855448566195956 32 8 5 6 0 0 1 2 1 0 90 8945854989809495554411955541 33 12 4 6 0 0 1 2 1 49 96 454958854988101555414199554 35 12 4 6 0 0 1 2 1 49 96 444955884991549499154 36 12 4 6 0 <td>26</td> <td>17</td> <td>2</td> <td>4</td> <td>0</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>52</td> <td>100</td> <td>4858549958458394539113999154</td>	26	17	2	4	0	1	1			52	100	4858549958458394539113999154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27	21	1	4	0	1	1		3	51	96	8843843889889495454411943451
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28	21	1	4	0	1	1		3	51	96	4441184895584334883598195947
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29	25	0	4	0	1	1	2	4	50	92	4441184884574343884388184957
32	30	14	1	6	1	0	1	2	2	52	100	5849548656558565559114099154
33 12 4 6 0 0 1 2 1 49 96 8945854988909495554411955541 34 12 4 6 0 0 1 2 1 49 96 4549588549588101558144099554 35 12 4 6 0 0 1 2 1 49 96 4489558589548491159554099154 36 12 4 6 0 0 1 2 1 49 96 8445958999998154155514949554 37 16 3 6 0 0 1 2 2 48 92 4478548589458491158454999154 38 16 3 6 0 0 1 2 2 48 92 945518449881144815495811499154 39 16 3 6 0 0 1 2 2 48 92 9551144998088445841458144557 41 16 3 6 <	31	18	0	6	1	0	1	2	3	51	96	4451195784485544885566195956
34 12 4 6 0 0 1 2 1 49 96 4549588549588101558144099554 35 12 4 6 0 0 1 2 1 49 96 4489558589548491159554099154 36 12 4 6 0 0 1 2 1 49 96 844595899998154155514949554 37 16 3 6 0 0 1 2 2 48 92 4478548589454811158454999154 38 16 3 6 0 0 1 2 2 48 92 444955884448494558114999154 39 16 3 6 0 0 1 2 2 48 92 54545988454988114481549549597 40 16 3 6 0 0 1 2 2 48 92 915144598888414441557 41 16 3 6 0	32	8	5	6	0	0	1	2	0	50	100	9955954909999595455511945541
35 12 4 6 0 0 1 2 1 49 96 4489558589548491159554099154 36 12 4 6 0 0 1 2 1 49 96 8445958999998154155514949554 37 16 3 6 0 0 1 2 2 48 92 4478548589458491158454999154 38 16 3 6 0 0 1 2 2 48 92 4849558848448494558114999154 39 16 3 6 0 0 1 2 2 48 92 55415988454988114481549597 40 16 3 6 0 0 1 2 2 48 92 9551144998088845844458144557 41 16 3 6 0 0 1 2 2 48 92 9454588484585411844589184584845848584845845848144419584458458484584	33	12	4	6	0	0	1	2	1	49	96	8945854989809495554411955541
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	12	4	6	0	0	1	2	1	49	96	4549588549588101558144099554
37 16 3 6 0 0 1 2 2 48 92 4478548589458491158454999154 38 16 3 6 0 0 1 2 2 48 92 4849558848448494558114999154 39 16 3 6 0 0 1 2 2 48 92 5445988454988114481549549597 40 16 3 6 0 0 1 2 2 48 92 9551144998088845844548144557 41 16 3 6 0 0 1 2 2 48 92 955114499808884584458494958 42 16 3 6 0 0 1 2 2 48 92 9551144998088845844441557 42 16 3 6 0 0 1 2 3 47 88 18441448441448998844548581444195458 43 20 2 6	35	12	4	6	0	0	1	2	1	49	96	4489558589548491159554099154
38 16 3 6 0 0 1 2 2 48 92 4849558848448494558114999154 39 16 3 6 0 0 1 2 2 48 92 5445988454988114481549549597 40 16 3 6 0 0 1 2 2 48 92 955114499808884584458144557 41 16 3 6 0 0 1 2 2 48 92 955114499808884584458444958 42 16 3 6 0 0 1 2 2 48 92 94545884458541184458944958 43 20 2 6 0 0 1 2 3 47 88 784584478889848544441195451 44 20 2 6 0 0 1 2 3 47 88 18411447845848458808144557 45 20 2 6 0	36	12	4	6	0	0	1	2	1	49	96	8445958999998154155514949554
39 16 3 6 0 0 1 2 2 48 92 5445988454988114481549549597 40 16 3 6 0 0 1 2 2 48 92 95511449980888458445441844557 41 16 3 6 0 0 1 2 2 48 92 9151445988888415544859444958 42 16 3 6 0 0 1 2 2 48 92 9454588484585411844589184058 43 20 2 6 0 0 1 2 3 47 88 7845844788898485444411954541 44 20 2 6 0 0 1 2 3 47 88 184414484414489988844855547 45 20 2 6 0 0 1 2 3 47 88 4441148444588885444441557 46 20 2 6 0<	37	16	3	6	0	0	1	2	2	48	92	4478548589458491158454999154
40 16 3 6 0 0 1 2 2 48 92 95511449980888458445444144557 41 16 3 6 0 0 1 2 2 48 92 9151445988888415544859444958 42 16 3 6 0 0 1 2 2 48 92 9454588484585411844589184058 43 20 2 6 0 0 1 2 3 47 88 7845844788898485444411954541 44 20 2 6 0 0 1 2 3 47 88 1844144844144899888448585547 45 20 2 6 0 0 1 2 3 47 88 44811447845848458888144557 46 20 2 6 0 0 1 2 3 47 88 9445154888988441447548484457 48 24 1 6	38	16	3	6	0	0	1	2	2	48	92	4849558848448494558114999154
41 16 3 6 0 0 1 2 2 48 92 9151445988888415544859444958 42 16 3 6 0 0 1 2 2 48 92 9454588484585411844589184058 43 20 2 6 0 0 1 2 3 47 88 7845844788898485444411954541 44 20 2 6 0 0 1 2 3 47 88 184414484144899888448585547 45 20 2 6 0 0 1 2 3 47 88 184144784584845488088144557 46 20 2 6 0 0 1 2 3 47 88 4441184484587854875594194947 47 20 2 6 0 0 1 2 3 47 88 91451548898844144754884457 48 24 1 6 0 </td <td>39</td> <td>16</td> <td>3</td> <td>6</td> <td>0</td> <td>0</td> <td>1</td> <td>2</td> <td>2</td> <td>48</td> <td>92</td> <td>5445988454988114481549549597</td>	39	16	3	6	0	0	1	2	2	48	92	5445988454988114481549549597
42 16 3 6 0 0 1 2 2 48 92 9454588484585411844589184058 43 20 2 6 0 0 1 2 3 47 88 7845844788898485444411954541 44 20 2 6 0 0 1 2 3 47 88 184414484144899888448585547 45 20 2 6 0 0 1 2 3 47 88 448114478458445488088144557 46 20 2 6 0 0 1 2 3 47 88 44811447845844548088144557 47 20 2 6 0 0 1 2 3 47 88 91451548889884144755494947 47 20 2 6 0 0 1 2 4 46 84 48411447744788978548145447 49 24 1 6 0	40	16	3	6	0	0	1	2	2	48	92	9551144998088845844548144557
43 20 2 6 0 0 1 2 3 47 88 7845844788898485444411954541 44 20 2 6 0 0 1 2 3 47 88 1844144844144899888448585547 45 20 2 6 0 0 1 2 3 47 88 44811447845848458485888144557 46 20 2 6 0 0 1 2 3 47 88 44811447845848457594194947 47 20 2 6 0 0 1 2 3 47 88 9145154888988441447548484457 48 24 1 6 0 0 1 2 4 46 84 4841144774474898785448145447 49 24 1 6 0 0 1 2 4 46 84 784584478788887444441184441 50 24 1 6 0	41	16	3	6	0	0	1	2	2	48	92	9151445988888415544859444958
44 20 2 6 0 0 1 2 3 47 88 18441448441448998884445855547 45 20 2 6 0 0 1 2 3 47 88 4481144784584845488088144557 46 20 2 6 0 0 1 2 3 47 88 4441184484587854875594194947 47 20 2 6 0 0 1 2 3 47 88 9145154888988441447548484457 48 24 1 6 0 0 1 2 4 46 84 484114477447898785448145447 49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 784584478788485444411844441 51 28 0 6	42	16	3	6	0	0	1	2	2	48	92	9454588484585411844589184058
45 20 2 6 0 0 1 2 3 47 88 4481144784584845488088144557 46 20 2 6 0 0 1 2 3 47 88 4441184484587854875594194947 47 20 2 6 0 0 1 2 3 47 88 9145154888988441447548484457 48 24 1 6 0 0 1 2 4 46 84 4841144774474898785448145447 49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 7845844788888474444411844441 51 28 0 6 0 0 1 2 5 45 80 84411447788774447447444441 51 28 0 6 0	43	20	2	6	0	0	1	2	3	47	88	7845844788898485444411954541
46 20 2 6 0 0 1 2 3 47 88 4441184484587854875594194947 47 20 2 6 0 0 1 2 3 47 88 9145154888988441447548484457 48 24 1 6 0 0 1 2 4 46 84 4841144774474898785448145447 49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 5 45 80 8441144778877744474474144447 52 15 0 4 0 3 0 2 2 56 108 499394399393430355035503550355533553355335533553355	44	20	2	6	0	0	1	2	3	47	88	1844144844144899888448585547
47 20 2 6 0 0 1 2 3 47 88 9145154888988441447548484457 48 24 1 6 0 0 1 2 4 46 84 4841144774474898785448145447 49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 5 45 80 8441144778877744474444411844447 52 15 0 4 0 3 0 2 2 56 108 49939439939343035503550355035533552 53 10 2 6	45	20	2	6	0	0	1	2	3	47	88	4481144784584845488088144557
48 24 1 6 0 0 1 2 4 46 84 4841144774474898785448145447 49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 5 45 80 8441144778877744474474144447 52 15 0 4 0 3 0 2 2 56 108 49939439939343035503550355033552 53 10 2 6 0 2 0 2 1 53 104 3095935905935395539553955395539553955395	46	20	2	6	0	0	1	2	3	47	88	4441184484587854875594194947
49 24 1 6 0 0 1 2 4 46 84 8745844788888474444411844441 50 24 1 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 5 45 80 8441144778877744474474144447 52 15 0 4 0 3 0 2 2 56 108 49939439939343035503550355035503552 53 10 2 6 0 2 0 2 1 53 104 3095935905935395539553955395539553955395	47	20	2	6	0	0	1	2	3	47	88	9145154888988441447548484457
50 24 1 6 0 0 1 2 4 46 84 7845844787788485444411844441 51 28 0 6 0 0 1 2 5 45 80 8441144778877744474474144447 52 15 0 4 0 3 0 2 2 56 108 49939439939343035503550355035503552 53 10 2 6 0 2 0 2 1 53 104 3095935905935395539553955395539553955395	48	24	1	6	0	0	1	2	4	46	84	4841144774474898785448145447
51 28 0 6 0 0 1 2 5 45 80 84411447788777444744744744144447 52 15 0 4 0 3 0 2 2 56 108 49939439939343035503550355035503552 53 10 2 6 0 2 0 2 1 53 104 309593590593539553955395539553945542 54 14 1 6 0 2 0 2 2 52 100 4993853895854394350535953452 55 14 1 6 0 2 0 2 2 52 100 4595959594858353249333959453 56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 499394388444393459345943452 58 18 0	49	24	1	6	0	0	1	2	4	46	84	8745844788888474444411844441
52 15 0 4 0 3 0 2 2 56 108 499394399393430355035503550355035503550 53 10 2 6 0 2 0 2 1 53 104 30959359059353955395539553945542 54 14 1 6 0 2 0 2 2 52 100 4993853895854394350535953452 55 14 1 6 0 2 0 2 2 52 100 4993853895854394350535953452 56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 499394388449393449344944442 59 18 0	50	24	1	6	0	0	1	2	4	46	84	7845844787788485444411844441
53 10 2 6 0 2 0 2 1 53 104 3095935905935395539553945542 54 14 1 6 0 2 0 2 2 52 100 4993853895854394350535953452 55 14 1 6 0 2 0 2 2 52 100 4595959594858353249333959453 56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 4993943884494393449344944442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8	51	28	0	6	0	0	1	2	5	45	80	8441144778877744474474144447
54 14 1 6 0 2 0 2 2 52 100 4993853895854394350535953452 55 14 1 6 0 2 0 2 2 52 100 4595959594858353249333959453 56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 3993944993944393449344944442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	52	15	0	4	0	3	0	2	2	56	108	4993943993934303550355033552
55 14 1 6 0 2 0 2 2 52 100 4595959594858353249333959453 56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 39939449939443934493449444442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	53	10	2	6	0	2	0	2	1	53	104	3095935905935395539553945542
56 18 0 6 0 2 0 2 3 51 96 4893953784854484459335953352 57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 3993944993944393449344944442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	54	14	1	6	0	2	0	2	2	52	100	4993853895854394350535953452
57 18 0 6 0 2 0 2 3 51 96 4993943884844393459345943452 58 18 0 6 0 2 0 2 3 51 96 3993944993944393449344944442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	55	14	1	6	0	2	0	2	2	52	100	4595959594858353249333959453
58 18 0 6 0 2 0 2 3 51 96 3993944993944393449344944442 59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	56	18	0	6	0	2	0	2	3	51	96	4893953784854484459335953352
59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	57	18	0	6	0	2	0	2	3	51	96	4993943884844393459345943452
59 18 0 6 0 2 0 2 3 51 96 4895584895584334483339245358 60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453	58	18	0	6	0	2	0	2	3	51	96	3993944993944393449344944442
60 13 2 8 0 1 0 2 2 48 92 4485859495858444249533959453			0		0	2	0			51	96	4895584895584334483339245358
			1		0	1				47	88	4883384444244595489548385547

	1				-			1 . 1 0		1	
no.	p_3	p_{4}^{0}	$p_4^{\scriptscriptstyle 1}$	p_{5}^{0}	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ	subarrangements of 6 planes
62	21	0	8	0	1	0	2	4	46	84	8843384448547485474244384547
63	21	0	8	0	1	0	2	4	46	84	388384488384448444844484442
64	12	3	10	0	0	0	2	2	44	84	9454858484585424444859444958
65	16	2	10	0	0	0	2	3	43	80	4442444874584448574858444958
66	20	1	10	0	0	0	2	4	42	76	8745484448457474474244484447
67	24	0	10	0	0	0	2	5	41	72	7744474474447744474474244447
68	24	0	1	1	2	0	1	3	51	96	6996909996909493349433909343
69	14	5	1	0	2	0	1	0	50	100	0909090099900593539533990533
70	18	4	1	0	2	0	1	1	49	96	8990909989809503359433900353
71	18	4	1	0	2	0	1	1	49	96	8999009998999303559333990553
72	18	4	1	0	2	0	1	1	49	96	3553099553099330993099999997
73	18	4	1	0	2	0	1	1	49	96	9999099853394900995303395038
74	22	3	1	0	2	0	1	2	48	92	8899999999899393459333990453
75	22	3	1	0	2	0	1	2	48	92	8898099998908393549333999553
76	22	3	1	0	2	0	1	2	48	92	9990098435398335983399599997
77	22	3	1	0	2	0	1	2	48	92	5493398394398953899099389008
78	22	3	1	0	2	0	1	2	48	92	8989098348348503599339099308
79	22	3	1	0	2	0	1	2	48	92	8990909888808593349433909353
80	26	2	1	0	2	0	1	3	47	88	8889909888808483348433909353
81	26	2	1	0	2	0	1	3	47	88	8443388999088335983589399997
82	26	2	1	0	2	0	1	3	47	88	8998999997898583348433999353
83	26	2	1	0	2	0	1	3	47	88	799999887898593349433999353
84	26	2	1	0	2	0	1	3	47	88	8899999898898483349433999353
85	30	1	1	0	2	0	1	4	46	84	8833484798878999883393594938
86	30	1	1	0	2	0	1	4	46	84	8888088888888433844383384038
87	30	1	1	0	2	0	1	4	46	84	8898988898988383449333988443
88	34	0	1	0	2	0	1	5	45	80	7897888897888383449333888443
89	19	2	3	1	1	0	1	2	48	92	9889999696909565559433990553
90	23	1	3	1	1	0	1	3	47	88	4893395895485998880966395956
91	27	0	3	1	1	0	1	4	46	84	4784485893395888889966395956
92	27	0	3	1	1	0	1	4	46	84	4493399484488844889966399996
93	13	6	3	0	1	0	1	0	46	92	999099999999495559433900553
94	17	5	3	0	1	0	1	1	45	88	8889909899999494559533990553
95	17	5	3	0	1	0	1	1	45	88	9889999890909495549533999543
96	17	5	3	0	1	0	1	1	45	88	889999999998394530553999554
97	17	5	3	0	1	0	1	1	45	88	9809990898999384439553999555
98	17	5	3	0	1	0	1	1	45	88	8455948999088339493059059908
99	17	5	3	0	1	0	1	1	45	88	899899458594595959303999038
100	17	5	3	0	1	0	1	1	45	88	855489499998330953905994098
101	21	4	3	0	1	0	1	2	44	84	8789899890899484459533990453
102	21	4	3	0	1	0	1	2	44	84	879898989999484458533990553
102			5	J			_		1-1	Οī	2.3000000000000000000000000000000000000

no.	p_3	p_4^0	p_4^1	p_5^0	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ	subarrangements of 6 planes
103	21	4	3	0	1	0	1	2	44	84	9899989899998475449433999553
104	21	4	3	0	1	0	1	2	44	84	8889909888998495548433999553
105	21	4	3	0	1	0	1	2	44	84	8889898990898394359534999454
106	21	4	3	0	1	0	1	2	44	84	8898988999998394358534999554
107	21	4	3	0	1	0	1	2	44	84	7899988989988393459354099554
108	21	4	3	0	1	0	1	2	44	84	9889098349394593948594998957
109	21	4	3	0	1	0	1	2	44	84	5893394884594899889999385058
110	21	4	3	0	1	0	1	2	44	84	5885494893394808889999395958
111	21	4	3	0	1	0	1	2	44	84	8458549898988595489330089398
112	21	4	3	0	1	0	1	2	44	84	4489558388348993499999989508
113	21	4	3	0	1	0	1	2	44	84	9353894989998439854895994998
114	21	4	3	0	1	0	1	2	44	84	9899989899998484448533999553
115	21	4	3	0	1	0	1	2	44	84	9989900887899484558433899553
116	25	3	3	0	1	0	1	3	43	80	8789899889898485448433999453
117	25	3	3	0	1	0	1	3	43	80	3883484983594898880888595947
118	25	3	3	0	1	0	1	3	43	80	4883384874584990989988394957
119	25	3	3	0	1	0	1	3	43	80	3883484983594889889988594957
120	25	3	3	0	1	0	1	3	43	80	4483388484587955889098398997
121	25	3	3	0	1	0	1	3	43	80	9835394888997989975394494947
122	25	3	3	0	1	0	1	3	43	80	9789988439358584489349989497
123	25	3	3	0	1	0	1	3	43	80	3985394884384898888989485958
124	25	3	3	0	1	0	1	3	43	80	3884384884384899888989585058
125	25	3	3	0	1	0	1	3	43	80	5893394784484898879908394958
126	25	3	3	0	1	0	1	3	43	80	8495485888878833849999394958
127	25	3	3	0	1	0	1	3	43	80	4933598744477899883599589998
128	25	3	3	0	1	0	1	3	43	80	9433958788887458483959949998
129	25	3	3	0	1	0	1	3	43	80	888988989898484448433999553
130	25	3	3	0	1	0	1	3	43	80	879898989898484548533899453
131	29	2	3	0	1	0	1	4	42	76	4883384774474999889988385947
132	29	2	3	0	1	0	1	4	42	76	3884384884384989888988475947
133	29	2	3	0	1	0	1	4	42	76	3884384884384888789988585947
134	29	2	3	0	1	0	1	4	42	76	3884384884384879788088584957
135	29	2	3	0	1	0	1	4	42	76	9835394788887889874384594947
136	29	2	3	0	1	0	1	4	42	76	8384384877877953948998484958
137	29	2	3	0	1	0	1	4	42	76	7788889888798484548433899453
138	29	2	3	0	1	0	1	4	42	76	8889889888788484448433889453
139	33	1	3	0	1	0	1	5	41	72	7788988787887444474338548398
140	33	1	3	0	1	0	1	5	41	72	8788888788888474448433888443
141	33	1	3	0	1	0	1	5	41	72	8788798788798474448433798443
142	33	1	3	0	1	0	1	5	41	72	7787788888888485448433888443
143	37	0	3	0	1	0	1	6	40	68	7787788787788474448433788443
	1	_	_								

144		1	0			-			1.10			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_	p_{4}^{0}		p_{5}^{0}	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$		subarrangements of 6 planes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
151 30					1							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16			0	0	0			41	80	9595594998998955948998494957
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	153	16	6		0	0	0	1	1	41	80	8809989484448955489990559598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		16			0	0	0	1	1	41	80	5599549488549894589999989598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	155	16	6	5	0	0	0	1	1	41	80	5599459488549895489999989598
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	156	20	5	5	0	0	0	1	2	40	76	8845594889997899975594594947
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	157	20	5	5	0	0	0	1	2	40	76	8449558889988595488549989497
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	158	20	5	5	0	0	0	1	2	40	76	8549548889988594488549989597
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	159	20	5	5	0	0	0	1	2	40	76	5489548498548884480989989597
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	160	20	5	5	0	0	0	1	2	40	76	8455849888989448484859958908
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	161	20	5	5	0	0	0	1	2	40	76	8444884888088459855985984098
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	162	20	5	5	0	0	0	1	2	40	76	8889988989888485549455899454
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	163	20	5	5	0	0	0	1	2	40	76	9888988999997584548544988554
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	164	20	5	5	0	0	0	1	2	40	76	8879998889997495548454998554
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	165	24	4	5	0	0	0	1	3	39	72	8979988845447889884548548597
168 24 4 5 0 0 0 1 3 39 72 4875484874584898988889485958 169 24 4 5 0 0 0 1 3 39 72 48855947744748888899485958 170 24 4 5 0 0 0 1 3 39 72 7445848888987447474958958948 171 24 4 5 0 0 0 1 3 39 72 8455948788987447474958958998 172 24 4 5 0 0 0 1 3 39 72 848594884457745488899448598 173 24 4 5 0 0 0 1 3 39 72 84448847789884588448598598 174 24 4 5 0 0 0 1 3 39 72 8789988798884544448545889454 175 24 4 5	166	24	4	5	0	0	0	1	3	39	72	8945584879887898975484594947
169 24 4 5 0 0 0 1 3 39 72 4885594774474888889899485958 170 24 4 5 0 0 0 1 3 39 72 7445848888987448575958948998 171 24 4 5 0 0 0 1 3 39 72 8455948788987447474958958998 172 24 4 5 0 0 0 1 3 39 72 8898889484457745488899448598 173 24 4 5 0 0 0 1 3 39 72 8898889484457745488899448598 174 24 4 5 0 0 0 1 3 39 72 8844884778988458844885985098 175 24 4 5 0 0 0 1 3 39 72 8879998788884744448548545889554 176 24 4 5	167	24	4	5	0	0	0	1	3	39	72	4748548847548899898448989597
170 24 4 5 0 0 0 1 3 39 72 7445848888987448575958948998 171 24 4 5 0 0 0 1 3 39 72 8455948788987447474958958998 172 24 4 5 0 0 0 1 3 39 72 8898889484457745488899448598 173 24 4 5 0 0 0 1 3 39 72 8444884778988458844885985098 174 24 4 5 0 0 0 1 3 39 72 978998879988845884485889454 175 24 4 5 0 0 0 1 3 39 72 8879998788884484548445889554 176 24 4 5 0 0 0 1 3 39 72 88899887988784845485454889554 177 28 3 5	168	24	4	5	0	0	0	1	3	39	72	4875484874584898988889485958
171 24 4 5 0 0 0 1 3 39 72 8455948788987447474958958998 172 24 4 5 0 0 0 1 3 39 72 8898889484457745488899448598 173 24 4 5 0 0 0 1 3 39 72 8444884778988458844885985098 174 24 4 5 0 0 0 1 3 39 72 9789988799884744448545889454 175 24 4 5 0 0 0 1 3 39 72 978998879887888844548545889454 176 24 4 5 0 0 0 1 3 39 72 88899887988784845454545889454 177 28 3 5 0 0 0 1 4 38 68 7788988788484548459885454 179 28 3 5	169	24	4	5	0	0	0	1	3	39	72	4885594774474888889899485958
172 24 4 5 0 0 1 3 39 72 8898889484457745488899448598 173 24 4 5 0 0 0 1 3 39 72 8444884778988458844885985098 174 24 4 5 0 0 0 1 3 39 72 9789988799888474448545889454 175 24 4 5 0 0 0 1 3 39 72 8879998788888484548454889554 176 24 4 5 0 0 0 1 3 39 72 887999878888848454845889554 176 24 4 5 0 0 0 1 3 39 72 88899887988784845454845889554 177 28 3 5 0 0 0 1 4 38 68 7788988474447845487988545997 178 28 3 5 0	170	24	4	5	0	0	0	1	3	39	72	7445848888987448575958948998
173 24 4 5 0 0 0 1 3 39 72 8444884778988458844885985098 174 24 4 5 0 0 0 1 3 39 72 9789988799888474448545889454 175 24 4 5 0 0 0 1 3 39 72 887999878888844544548545889554 176 24 4 5 0 0 0 1 3 39 72 888998879887888844544548545889554 177 28 3 5 0 0 0 1 4 38 68 7788988474447845487988548597 178 28 3 5 0 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 </td <td>171</td> <td>24</td> <td>4</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>3</td> <td>39</td> <td>72</td> <td>8455948788987447474958958998</td>	171	24	4	5	0	0	0	1	3	39	72	8455948788987447474958958998
174 24 4 5 0 0 0 1 3 39 72 9789988799888474448545889454 175 24 4 5 0 0 0 1 3 39 72 8879998788888484548454889554 176 24 4 5 0 0 0 1 3 39 72 8889988798878484548545889554 177 28 3 5 0 0 0 1 4 38 68 7788988788878884454854598544 178 28 3 5 0 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5	172	24	4	5	0	0	0	1	3	39	72	8898889484457745488899448598
175 24 4 5 0 0 1 3 39 72 8879998788888484548445889554 176 24 4 5 0 0 0 1 3 39 72 8889988798878484548545889454 177 28 3 5 0 0 0 1 4 38 68 7788988474447845487988548597 178 28 3 5 0 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 0 1 4 38 68 984558474474474888978898484958 181 28 3 5 0 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0	173	24	4	5	0	0	0	1	3	39	72	8444884778988458844885985098
176 24 4 5 0 0 1 3 39 72 8889988798878484548545889454 177 28 3 5 0 0 1 4 38 68 7788988474447845487988548597 178 28 3 5 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5 0 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 0 1 4 38 68 877898878888474448445889454 183 28 3 5 0 0 0	174	24	4	5	0	0	0	1	3	39	72	9789988799888474448545889454
177 28 3 5 0 0 1 4 38 68 7788988474447845487988548597 178 28 3 5 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5 0 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 0 1 4 38 68 877898878888474448445879554 183 28 3 5 0 0 0 1 4 38 68 877898878888474448445879554	175	24	4	5	0	0	0	1	3	39	72	8879998788888484548445889554
178 28 3 5 0 0 1 4 38 68 8745484788897788874584594947 179 28 3 5 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5 0 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 0 1 4 38 68 877898878888474448445879554 183 28 3 5 0 0 0 1 4 38 68 88808887787858444844488454	176	24	4	5	0	0	0	1	3	39	72	8889988798878484548545889454
179 28 3 5 0 0 1 4 38 68 9845584878887798874474584947 180 28 3 5 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 0 1 4 38 68 8778988788888474448445879554 183 28 3 5 0 0 0 1 4 38 68 88808887787875844484448844588454	177	28	3	5	0	0	0	1	4	38	68	7788988474447845487988548597
180 28 3 5 0 0 1 4 38 68 4874584774474888978898484958 181 28 3 5 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 1 4 38 68 8778988788888474448445879554 183 28 3 5 0 0 1 4 38 68 8880888778787584448444884454	178	28	3	5	0	0	0	1	4	38	68	8745484788897788874584594947
181 28 3 5 0 0 1 4 38 68 7879888788778484548445889454 182 28 3 5 0 0 1 4 38 68 8778988788888474448445879554 183 28 3 5 0 0 0 1 4 38 68 888088877878758444844488454	179	28	3	5	0	0	0	1	4	38	68	9845584878887798874474584947
182 28 3 5 0 0 0 1 4 38 68 8778988788888474448445879554 183 28 3 5 0 0 0 1 4 38 68 888088877878758444844488454	180	28	3	5	0	0	0	1	4	38	68	4874584774474888978898484958
183 28 3 5 0 0 0 1 4 38 68 888088877878758444844488454	181	28	3	5	0	0	0	1	4	38	68	7879888788778484548445889454
	182	28	3	5	0	0	0	1	4	38	68	8778988788888474448445879554
184 28 3 5 0 0 0 1 4 38 68 8789878889787484548444888454	183	28	3	5	0	0	0	1	4	38	68	8880888778787584448444888454
	184	28	3	5	0	0	0	1	4	38	68	8789878889787484548444888454

185	p_3	p_4^0	p_4^1	p_5^0							
	., .	3	5	0	$\frac{p_5^1}{0}$	$\frac{p_5^2}{0}$	$\frac{l_3}{1}$	$h^{1,2}$	$\frac{h^{1,1}}{38}$	$\frac{\chi}{68}$	subarrangements of 6 planes 8788978888887484547544888454
100	28 32	2	5	0	0	0	1	5	37	64	7778878744447878784548548497
187	32	2	5	0	0	0	1	5	37	64	777887878878747444845488454
	32	2	5	0	0	0	1	5	37	64	778988877777747444845488454
	32	2	5	0	0	0	1	5	37	64	8779888778787474447444888454
	36	1	5	0	0	0	1	6	36	60	7778878777777474447444878454
	36	1	5	0	0	0	1	6	36	60	8778877778877474447444877444
<u> </u>	40	0	5	0	0	0	1	7	35	56	
	24	3	0	2	0	0	0	2			7777777777777474447444777444 699690999699099090966999996
		2		2	0			3	44	84	
	28		0			0	0		43	80	988999699609986998966999906
	32	1	0	2	0	0	0	4	42	76	689869989869988998966998096
<u> </u>	36	0	0	2	0	0	0	5	41	72	889669978888888889966699996
	22	6	0	1	0	0	0	1	41	80	99909989999899989066099096
	22	6	0	1	0	0	0	1	41	80	88999989999980999066009906
	22	6	0	1	0	0	0	1	41	80	899090989999989990966999906
	22	6	0	1	0	0	0	1	41	80	97999996969099999609099999
	26	5	0	1	0	0	0	2	40	76	8990909889898999989866999996
	26	5	0	1	0	0	0	2	40	76	888990988889998099966999906
	26	5	0	1	0	0	0	2	40	76	8798989898099989899066099906
	26	5	0	1	0	0	0	2	40	76	8899999889990879999966999096
	26	5	0	1	0	0	0	2	40	76	9788899899090889999966999096
	26	5	0	1	0	0	0	2	40	76	889999990988998999966880996
207	26	5	0	1	0	0	0	2	40	76	8899999889799999998966900996
	26	5	0	1	0	0	0	2	40	76	89899999999989898966999096
209	26	5	0	1	0	0	0	2	40	76	998899988999989998866999006
210	30	4	0	1	0	0	0	3	39	72	8789899888808989989966999996
211	30	4	0	1	0	0	0	3	39	72	8789899899908878989966999996
212	30	4	0	1	0	0	0	3	39	72	8789899799898888989966009996
213	30	4	0	1	0	0	0	3	39	72	988999988889898988866999096
214	30	4	0	1	0	0	0	3	39	72	8789899888899889998866909906
215	30	4	0	1	0	0	0	3	39	72	8788999887999989899966989906
216	30	4	0	1	0	0	0	3	39	72	888899889999998889866989996
217	30	4	0	1	0	0	0	3	39	72	7899988899988668886099099997
218	30	4	0	1	0	0	0	3	39	72	8799889999899888999866880996
219	30	4	0	1	0	0	0	3	39	72	8898099898889888998966880996
220	30	4	0	1	0	0	0	3	39	72	8999989888788999988966999996
221	30	4	0	1	0	0	0	3	39	72	8888989888998989889966099996
222	34	3	0	1	0	0	0	4	38	68	878899988899888888866989996
	34	3	0	1	0	0	0	4	38	68	8787898788999888988866999096
	34	3	0	1	0	0	0	4	38	68	7788889988899888998866880996
\vdash	34	3	0	1	0	0	0	4	38	68	888898998888988898866880896

no.	p_3	p_4^0	p_4^1	p_5^0	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ	subarrangements of 6 planes
226	34	$\frac{r_4}{3}$	0	1	0	0	0	4	38	68	8799889898898878989866889996
227	34	3	0	1	0	0	0	4	38	68	7898989787788989988966999996
228	34	3	0	1	0	0	0	4	38	68	778888989898978888966999996
229	34	3	0	1	0	0	0	4	38	68	7788889798888888989966099996
230	34	3	0	1	0	0	0	4	38	68	888988998889888898866889996
231	38	2	0	1	0	0	0	5	37	64	7888978888987686888688088997
232	38	2	0	1	0	0	0	5	37	64	7788889887898878988866889996
233	38	2	0	1	0	0	0	5	37	64	7788889787788988889966989896
234	38	2	0	1	0	0	0	5	37	64	77888898888888888866989896
235	42	1	0	1	0	0	0	6	36	60	7788889787788877888866889896
236	42	1	0	1	0	0	0	6	36	60	788888878778888888866888886
237	46	0	0	1	0	0	0	7	35	56	7787788787788877888866788886
238	8	12	0	0	0	0	0	0	44	88	999000099000090000000999999
239	16	10	0	0	0	0	0	0	40	80	0900099899988909880090099098
240	16	10	0	0	0	0	0	0	40	80	0999999999089900899990999008
241	16	10	0	0	0	0	0	0	40	80	9999909999990099999999999
242	16	10	0	0	0	0	0	1	41	80	009899989099999999800999008
243	20	9	0	0	0	0	0	1	39	76	0999089889989809899980089008
244	20	9	0	0	0	0	0	1	39	76	8889909889990908998099099999
245	20	9	0	0	0	0	0	0	38	76	8989999889889999009890990990
246	20	9	0	0	0	0	0	1	39	76	9990999899989999999999
247	24	8	0	0	0	0	0	1	37	72	9889089889089990899089979997
248	24	8	0	0	0	0	0	1	37	72	9990098889987899879098098098
249	24	8	0	0	0	0	0	1	37	72	9990999889888888889890999098
250	24	8	0	0	0	0	0	1	37	72	8899098888088889899999999008
251	24	8	0	0	0	0	0	1	37	72	89999888899889999908998098
252	24	8	0	0	0	0	0	1	37	72	9899899899989808889899999998
253	24	8	0	0	0	0	0	1	37	72	9999099788989898899980989908
254	24	8	0	0	0	0	0	1	37	72	887989998899089809899999999
255	24	8	0	0	0	0	0	1	37	72	98999899899899899997
256	24	8	0	0	0	0	0	1	37	72	9990098798988998880089999997
257	24	8	0	0	0	0	0	1	37	72	9989998808998098989999899997
258	24	8	0	0	0	0	0	1	37	72	9989998900998999979898999987
259	24	8	0	0	0	0	0	1	37	72	99099999989898989999798997
260	24	8	0	0	0	0	0	2	38	72	979999979999999999999999
261	24	8	0	0	0	0	0	1	37	72	9889998899999999999999999
262	24	8	0	0	0	0	0	1	37	72	9099999998989888998998
263	24	8	0	0	0	0	0	2	38	72	9989899998988989999998998
264	24	8	0	0	0	0	0	1	37	72	98899990889989988998098998
265	24	8	0	0	0	0	0	1	37	72	908909988898899889908998998
266	24	8	0	0	0	0	0	1	37	72	899989888878999890099099998

no	m-	p_4^0	_m 1	p_5^0	_m 1	p_{5}^{2}	1	$h^{1,2}$	$h^{1,1}$	2/	subarrangements of 6 planes
no. 267	$\frac{p_3}{24}$	$\frac{p_4}{8}$	$\frac{p_4^1}{0}$	$\frac{p_5}{0}$	$\frac{p_5^1}{0}$	$\frac{p_5}{0}$	$\frac{l_3}{0}$	$\frac{n}{1}$	$\frac{n}{37}$	$\frac{\chi}{72}$	9889990889989988999989998
268	24	8	0	0	0	0	0	1	37	72	98899988889899899999998
269	24	8	0	0	0	0	0	2	38	72	988099808899899889980999098
270	24	8	0	0	0	0	0	1	37	72	88999998888989098999998908
270	24	8	0	0	0	0	0	2	38	72	8090999880888888889890999098
271	24	8	0	0	0	0	0	2	38	72	9880998099999888889809889908
273	24	8	0	0	0	0	0	1	37	72	88898889908989889089099908
274	24	8	0	0	0	0	0	1	37	72	
	24	8	0	0	0	0	0	1	37	72	9988999898089999898980889908
275											89899989999999989899979989
276	24	8	0	0	0	0	0	1	37	72	8989998999999998899998989
277	28	7	0	0	0	0	0	2	36	68	8789988899979899899899899
278	28	7	0	0	0	0	0	2	36	68	8879998889988998999997
279	28	7	0	0	0	0	0	2	36	68	988898899808809888989979997
280	28	7	0	0	0	0	0	2	36	68	9789988899088898780989089997
281	28	7	0	0	0	0	0	2	36	68	9989998889897898978808998098
282	28	7	0	0	0	0	0	2	36	68	9989088889987899878088088098
283	28	7	0	0	0	0	0	2	36	68	8889898989898989989998
284	28	7	0	0	0	0	0	2	36	68	8809989787778999889990999998
285	28	7	0	0	0	0	0	2	36	68	8899999888878899889890989998
286	28	7	0	0	0	0	0	2	36	68	98899998889888888888989998
287	28	7	0	0	0	0	0	3	37	68	088998988888888888888989098
288	28	7	0	0	0	0	0	2	36	68	8889898888998898899999908
289	28	7	0	0	0	0	0	2	36	68	8879998888088898899989989908
290	28	7	0	0	0	0	0	2	36	68	888898989897988998999988908
291	28	7	0	0	0	0	0	2	36	68	7989898878988890899998998098
292	28	7	0	0	0	0	0	2	36	68	8899798898997899888999999998
293	28	7	0	0	0	0	0	2	36	68	8999998788897898899999998998
294	28	7	0	0	0	0	0	2	36	68	8999899788897899889999998998
295	28	7	0	0	0	0	0	2	36	68	8989999778988899889989989908
296	28	7	0	0	0	0	0	2	36	68	8789998979898999998998899997
297	28	7	0	0	0	0	0	2	36	68	9899088999979898889998889897
298	28	7	0	0	0	0	0	2	36	68	889099899998979898898889997
299	28	7	0	0	0	0	0	2	36	68	8979988888088999988989999997
300	28	7	0	0	0	0	0	2	36	68	88909988989888989898989997
301	28	7	0	0	0	0	0	2	36	68	998999889999889888889989997
302	28	7	0	0	0	0	0	2	36	68	88899889999889889999889997
303	28	7	0	0	0	0	0	2	36	68	989999899989898979898899987
304	28	7	0	0	0	0	0	2	36	68	888998888808899999898999997
305	28	7	0	0	0	0	0	2	36	68	9899998999997988979997998987
306	28	7	0	0	0	0	0	2	36	68	997999988889898998998998997
307	28	7	0	0	0	0	0	2	36	68	908909987788899889998899987

308 28 7 0 0 0 0 0 0 2 36 68 9889999889889889889889997			0	- 1	0	- 1	9		T - 10	. 1 1		
309			p_4^0	$p_4^{\scriptscriptstyle 1}$	p_{5}^{0}	p_5^1	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$		subarrangements of 6 planes
310					Ů	_						
311 28 7 0 0 0 0 2 36 68 989999898998998989898888999098 312 28 7 0 0 0 0 2 36 68 9988999888889888988989999898989989899												
312				0								
313 28 7 0 0 0 0 2 36 68 89899998788888888989999989983314 28 7 0 0 0 0 0 2 36 68 90890998889888888888888888888888888888												
314												
315			7	0								
316 28 7 0 0 0 0 2 36 68 898999908888888899889989998 317 28 7 0 0 0 0 0 2 36 68 989088998888888988999899988899998 318 28 7 0 0 0 0 2 36 68 88899888898889898989898989898989898989	314	28		0	0	0	0	0		36	68	908909988898888888888988998
317 28 7 0 0 0 0 2 36 68 98908899888888988998890889998 318 28 7 0 0 0 0 0 2 36 68 8889988888898989888088998989808 319 28 7 0 0 0 0 2 36 68 789998888989899899898989898989898989898				0								9999099887878889889098988998
318 28 7 0 0 0 0 2 36 68 888998888088899898808089908 319 28 7 0 0 0 0 0 2 36 68 7989988888978999899999898989989999908 320 28 7 0 0 0 0 2 36 68 8879998878887799988099999998 321 28 7 0 0 0 0 2 36 68 88999897998988878889999999999999999999	316	28	7	0	0	0	0	0		36	68	8989999088888889988998898998
319	317	28		0	0	0	0	0		36	68	989088998888888989889998
320 28 7 0 0 0 0 2 36 68 8879988889989898989999998 321 28 7 0 0 0 0 2 36 68 789998878887799988099999999999999999999	318	28	7	0	0	0	0	0		36	68	8889988888088899888088098908
321 28 7 0 0 0 0 2 36 68 7899988788877999880099099998 322 28 7 0 0 0 0 2 36 68 8999899799898887888890999998 323 28 7 0 0 0 0 2 36 68 8899889888889889989999998989888898999999	319	28	7	0	0	0	0	0	2	36	68	7989988888978999899089989808
322 28 7 0 0 0 0 2 36 68 899989979988887888890999988 323 28 7 0 0 0 0 2 36 68 888988988988988989899998988 324 28 7 0 0 0 0 2 36 68 899088988988898889889989898998989898989	320	28	7	0	0	0	0	0	2	36	68	88799988889988988998999908
323 28 7 0 0 0 0 2 36 68 8889889889889889898989898888999999898 324 28 7 0 0 0 0 2 36 68 899088988998888998899989989989898989898	321	28	7	0	0	0	0	0	2	36	68	7899988788877999880099099998
324 28 7 0 0 0 0 2 36 68 89908898899888889988889998908 325 28 7 0 0 0 0 2 36 68 88898898988999999989998999899989998999	322	28	7	0	0	0	0	0	2	36	68	8999899799898887888890999998
325 28 7 0 0 0 0 2 36 68 8889889888988898989999898888999998988889999	323	28	7	0	0	0	0	0	2	36	68	8889889880888998889890999898
326 28 7 0 0 0 0 2 36 68 8899897899999788889999998888999998 327 28 7 0 0 0 0 2 36 68 99889998999989998888998999898989898989	324	28	7	0	0	0	0	0	2	36	68	8990889889988888898889998908
327 28 7 0 0 0 0 2 36 68 998899998999879988889989998 328 28 7 0 0 0 0 0 2 36 68 98808999899989998898988888888888888898999 329 32 6 0 0 0 0 0 3 35 64 87899987898887989888988989999999999988888999999	325	28	7	0	0	0	0	0	2	36	68	8889889889988889898989098908
328 28 7 0 0 0 0 2 36 68 9880899998989989899898988888898997 329 32 6 0 0 0 0 3 35 64 878999878988789988888889899997 330 32 6 0 0 0 0 3 35 64 897998887998889999999998888998999999999	326	28	7	0	0	0	0	0	2	36	68	8899897899999788889999998998
329 32 6 0 0 0 0 3 35 64 8789998789887889888088098997 330 32 6 0 0 0 0 3 35 64 8979988879887999888899899997 331 32 6 0 0 0 0 3 35 64 987998888998789988899899999997 332 32 6 0 0 0 0 3 35 64 8779888888988888888989999999997 333 32 6 0 0 0 0 3 35 64 87798888889888888888898999999999999999	327	28	7	0	0	0	0	0	2	36	68	9988999899998799888899897998
330 32 6 0 0 0 0 3 35 64 897998887987999988888998997 331 32 6 0 0 0 0 3 35 64 987998888998789988897898889999999997 332 32 6 0 0 0 0 3 35 64 87798888889988888889899999999999999999	328	28	7	0	0	0	0	0	2	36	68	9880899989899898098788889889
331 32 6 0 0 0 0 3 35 64 987998888998789988899999997 332 32 6 0 0 0 0 3 35 64 87798888889988888899999999999999999999	329	32	6	0	0	0	0	0	3	35	64	8789998789887889888088098997
332 32 6 0 0 0 0 3 35 64 8779888888998888888999999997 333 32 6 0 0 0 0 0 3 35 64 98799888888988888888889999899999999999	330	32	6	0	0	0	0	0	3	35	64	8979988879887999988888998997
333 32 6 0 0 0 0 3 35 64 987998888898888888888899998899998 334 32 6 0 0 0 0 3 35 64 87789888888888889899988999889998 335 32 6 0 0 0 0 3 35 64 8889898788897898878998098998 336 32 6 0 0 0 0 3 35 64 98809988788877988789889998998 337 32 6 0 0 0 0 3 35 64 8799889887879887989888899998998 338 32 6 0 0 0 0 3 35 64 888998877988798988889998899889988 339 32 6 0 0 0 0 3 35 64 888998877887789998989998998989988998899	331	32	6	0	0	0	0	0	3	35	64	9879988889987899888978088997
334 32 6 0 0 0 0 3 35 64 87789888888888989998899988979997 335 32 6 0 0 0 0 3 35 64 8889898788878988789898989889898988 336 32 6 0 0 0 0 3 35 64 988099887888779887898989898988888999889888888	332	32	6	0	0	0	0	0	3	35	64	877988888899888888998999997
335 32 6 0 0 0 0 3 35 64 8889898788897898878998098998 336 32 6 0 0 0 0 3 35 64 988099887888779887889899898988989989898 337 32 6 0 0 0 0 3 35 64 879988988787978988888999989898888899988988	333	32	6	0	0	0	0	0	3	35	64	9879988888988808888879989997
336 32 6 0 0 0 0 3 35 64 9880998878887798878898998098 337 32 6 0 0 0 0 3 35 64 879988988789789888899998998 338 32 6 0 0 0 0 3 35 64 88899887798879989898988988989889898 339 32 6 0 0 0 0 3 35 64 88899887788778999898989989988 340 32 6 0 0 0 0 3 35 64 888988778877988999899989998 341 32 6 0 0 0 0 3 35 64 88898877887899989998999889998 342 32 6 0 0 0 0 3 35 64 878987898888898999889999889997 343 32 6 0 0 0 0 3 35 64 <td< td=""><td>334</td><td>32</td><td>6</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>3</td><td>35</td><td>64</td><td>8778988888088989899988979997</td></td<>	334	32	6	0	0	0	0	0	3	35	64	8778988888088989899988979997
337 32 6 0 0 0 0 3 35 64 8799889887879789888889998898898 338 32 6 0 0 0 0 3 35 64 888998887798879989898898898898 339 32 6 0 0 0 0 3 35 64 88899887788778999899899989998 340 32 6 0 0 0 0 3 35 64 8889887788779888999899989998 341 32 6 0 0 0 0 3 35 64 888988778879989999989998998998998 342 32 6 0 0 0 0 3 35 64 87898789898888899998899997 343 32 6 0 0 0 0 3 35 64 878999888888989998899997 344 32 6 0 0 0 0 3 35 64 888	335	32	6	0	0	0	0	0	3	35	64	8889898788897898878998098998
338 32 6 0 0 0 0 3 35 64 888998877988799898989898998998 339 32 6 0 0 0 0 3 35 64 8889988778877899989999989998 340 32 6 0 0 0 0 3 35 64 8889887788789989989989989989998 341 32 6 0 0 0 0 3 35 64 88898877887899899999989998998998 342 32 6 0 0 0 0 3 35 64 87898789898999999999999999999999999999	336	32	6	0	0	0	0	0	3	35	64	9880998878887798878898998098
339 32 6 0 0 0 0 3 35 64 888998877887789998999989998998998 340 32 6 0 0 0 0 3 35 64 88898987889877988899899899899898 341 32 6 0 0 0 0 3 35 64 888808877887899899999899988998 342 32 6 0 0 0 0 3 35 64 878987898888888989998899997 343 32 6 0 0 0 0 3 35 64 78899988888888898998889998889997 344 32 6 0 0 0 0 3 35 64 88899888897788898999889997 345 32 6 0 0 0 0 3 35 64 87798889798988989898999999999999999999	337	32	6	0	0	0	0	0	3	35	64	8799889887879789888899998908
340 32 6 0 0 0 0 3 35 64 888989878898779888998998998998 341 32 6 0 0 0 0 3 35 64 88880887778878998999899889898 342 32 6 0 0 0 0 3 35 64 8789878989888888899998899997 343 32 6 0 0 0 0 3 35 64 788999888888889899889998889997 344 32 6 0 0 0 0 3 35 64 88899888897788898999889997 345 32 6 0 0 0 0 3 35 64 877988897989889998899997 346 32 6 0 0 0 0 3 35 64 87798889798988998989999999999999999999	338	32	6	0	0	0	0	0	3	35	64	8889988877988799898988988098
341 32 6 0 0 0 0 3 35 64 888808877788789989998999889998 342 32 6 0 0 0 0 3 35 64 87898789898888899998899997 343 32 6 0 0 0 0 3 35 64 7889998888888989998889997 344 32 6 0 0 0 0 3 35 64 888998888977888989998899997 345 32 6 0 0 0 0 3 35 64 87798889798988898989899997 346 32 6 0 0 0 0 3 35 64 87798889798988989998899997	339	32	6	0	0	0	0	0	3	35	64	8889988778877899989899989998
342 32 6 0 0 0 0 3 35 64 8789878989888889899988989997 343 32 6 0 0 0 0 3 35 64 788999888888888898998889997 344 32 6 0 0 0 0 3 35 64 888998888977888989998899997 345 32 6 0 0 0 0 3 35 64 8779888979898898989898999997 346 32 6 0 0 0 0 3 35 64 8779888980998889898989898999997	340	32	6	0	0	0	0	0	3	35	64	8889898788987798889989989998
343 32 6 0 0 0 0 3 35 64 788999888888888888989898889997 344 32 6 0 0 0 0 3 35 64 888998888977888989998899997 345 32 6 0 0 0 0 3 35 64 8779888979898899988999997 346 32 6 0 0 0 0 3 35 64 8779888980998889898989898989898989898989	341	32	6	0	0	0	0	0	3	35	64	888808877788789989989988098
344 32 6 0 0 0 0 3 35 64 8889988889778889899988989997 345 32 6 0 0 0 0 3 35 64 8779888979898889898989899997 346 32 6 0 0 0 0 3 35 64 8779888980998889898989898989898989898989	342	32	6	0	0	0	0	0	3	35	64	8789878989888889899988989997
345 32 6 0 0 0 0 3 35 64 877988897989888989898999997 346 32 6 0 0 0 0 3 35 64 877988898999988898989898989898989898989	343	32	6	0	0	0	0	0	3	35	64	78899988888888889898998889997
346 32 6 0 0 0 0 0 3 35 64 8779888980998889898989898989898989898989	344	32	6	0	0	0	0	0	3	35	64	8889988889778889899988989997
346 32 6 0 0 0 0 0 3 35 64 8779888980998889898989898989898989898989	345	32	6	0	0	0	0	0	3	35	64	877988897989888989898999997
		32		0	0	0	0			35	64	87798889809988898978989897
, , , , , , , , , , , , , , , , , , , ,	347	32	6	0	0	0	0	0	3	35	64	8779888889898899897988999997
348 32 6 0 0 0 0 0 3 35 64 878999887978889989798899997			6	0	0	0	0	0		35	64	8789998879788899897988999997

349 350	$\frac{p_3}{32}$	$\frac{p_4^0}{6}$	$p_4^{\scriptscriptstyle 1}$	p_5^0	p_5^1	711-					
350	34	-	0	0	0	$\frac{p_5^2}{0}$	$\frac{l_3}{0}$	$h^{1,2}$ 3	$\frac{h^{1,1}}{35}$	$\frac{\chi}{64}$	subarrangements of 6 planes 7878988879888999997
	32	6	0	0	0	0	0	3	35	64	878998889988888799988989897
	32	6	0	0	0	0	0	3	35	64	88808888887899998988889897
	32	6	0	0	0	0	0	3	35	64	7788988989898889898889997
	32	6	0	0	0	0	0	3	35	64	87898788909898888889898997
	32	6	0	0	0	0	0	3	35	64	788999888998978888888999997
	32	6	0	0	0	0	0	3	35	64	9789988899989787789988989997
	32	6	0	0	0	0	0	3	35	64	8799988899879898789088979897
	32	6	0	0	0	0	0	3	35	64	8799988899879798888989997
	32	6	0	0	0	0	0	3	35	64	887999888989899888978989897
	32	6	0	0	0	0	0	3	35	64	8889988899879899889978979897
	32	6	0	0	0	0	0	3	35	64	9880998889987798879887098987
	32	6	0	0	0	0	0	3	35	64	9879988889897899888888998997
	32	6	0	0	0	0	0	3	35	64	8889988888977880889988098897
	32	6	0	0	0	0	0	3	35	64	8889988989897889888998888997
	32	6	0	0	0	0	0	3	35	64	8888878998978998789989089897
	32	6	0	0	0	0	0	3	35	64	8999998998888888978888889987
	32	6	0	0	0	0	0	3	35	64	8988988909898888978888889987
	32	6	0	0	0	0	0	3	35	64	8888088888888889898878989997
368	32	6	0	0	0	0	0	3	35	64	9889888988888089898888889897
	32	6	0	0	0	0	0	3	35	64	8888998888998889898788989997
370	32	6	0	0	0	0	0	3	35	64	997999988889888988897898987
371	32	6	0	0	0	0	0	3	35	64	8888989888878988899098988897
372	32	6	0	0	0	0	0	3	35	64	9879889978898879898988998997
373	32	6	0	0	0	0	0	3	35	64	98798898898888898978098897
374	32	6	0	0	0	0	0	3	35	64	98888988889898898998897
375	32	6	0	0	0	0	0	3	35	64	98789899880898988888888898897
376	32	6	0	0	0	0	0	3	35	64	888808888888889778088088997
377	32	6	0	0	0	0	0	3	35	64	88899978899978997997977
378	32	6	0	0	0	0	0	3	35	64	8899888989897899870998888977
379	32	6	0	0	0	0	0	3	35	64	897988998898878898898898898
380	32	6	0	0	0	0	0	3	35	64	9888889988888898888808988898
381	32	6	0	0	0	0	0	3	35	64	08899898888888888788088988898
382	32	6	0	0	0	0	0	3	35	64	8889988998888897987998889898
	32	6	0	0	0	0	0	3	35	64	8088888899888888888889889088
	32	6	0	0	0	0	0	4	36	64	088888888888888888888888888888
	32	6	0	0	0	0	0	3	35	64	9978898887989897899989898987
	36	5	0	0	0	0	0	4	34	60	8779888878897879888988998997
	36	5	0	0	0	0	0	4	34	60	7788988778887988888998998997
	36	5	0	0	0	0	0	4	34	60	8778988878987889788988088997
	36	5	0	0	0	0	0	4	34	60	7789888788877788879998098998

390 36 5 0 0 0 0 0 4 34 60 777887897888899 391 36 5 0 0 0 0 4 34 60 778988888888888 392 36 5 0 0 0 0 4 34 60 778898887877899 393 36 5 0 0 0 0 4 34 60 778898887877889	88798998889897
391 36 5 0 0 0 0 4 34 60 77898888888888888888888888888888888888	88798998889897
392 36 5 0 0 0 0 4 34 60 778898887877899 393 36 5 0 0 0 0 4 34 60 778898887877889	
393 36 5 0 0 0 0 0 4 34 60 778898887877889	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	88797988889897
395 36 5 0 0 0 0 4 34 60 878999887978888	
396 36 5 0 0 0 0 4 34 60 778988887988888	
397 36 5 0 0 0 0 4 34 60 877898887888889	
398 36 5 0 0 0 0 0 4 34 60 887999887888889	
399 36 5 0 0 0 0 4 34 60 888998897887888	
400 36 5 0 0 0 0 0 4 34 60 887897897887888	
401 36 5 0 0 0 0 0 4 34 60 778898888987888	88798088979897
402 36 5 0 0 0 0 0 4 34 60 87888888989888	
403 36 5 0 0 0 0 0 4 34 60 777887898998888	89898978979897
404 36 5 0 0 0 0 0 4 34 60 888998888977889	98989787889887
405 36 5 0 0 0 0 0 4 34 60 888808888998878	88887877989987
406 36 5 0 0 0 0 0 4 34 60 888808887888888	88788987989987
407 36 5 0 0 0 0 0 4 34 60 877898888998879	98888877089987
408 36 5 0 0 0 0 0 4 34 60 888808897887889	98888897889887
409 36 5 0 0 0 0 0 4 34 60 8788888898988	88887897989987
410 36 5 0 0 0 0 0 4 34 60 8880888898777	98879887098887
411 36 5 0 0 0 0 0 4 34 60 888998878877798	89989888888897
412 36 5 0 0 0 0 0 4 34 60 88989889988888	78878888879987
413 36 5 0 0 0 0 0 4 34 60 97899887989887	77779988988997
414 36 5 0 0 0 0 0 4 34 60 99880898878787	78888987988987
415 36 5 0 0 0 0 0 4 34 60 98789898879898	8788888888897
416 36 5 0 0 0 0 0 4 34 60 9898889888898	88888888797797
417 36 5 0 0 0 0 0 4 34 60 878888888888888888888888888888888888	98879889888887
418 36 5 0 0 0 0 0 4 34 60 8880888788888	8878888888888
419 36 5 0 0 0 0 0 4 34 60 798998877777799	9888898989898
420 36 5 0 0 0 0 0 4 34 60 879988978777878	88878899998998
421 40 4 0 0 0 0 0 5 33 56 78889787777788	89877988988998
422 40 4 0 0 0 0 0 5 33 56 777887897888888	89897878879897
423 40 4 0 0 0 0 0 5 33 56 777887887877889	99897878989897
424 40 4 0 0 0 0 0 5 33 56 878897888887888	88797978879797
425 40 4 0 0 0 0 0 5 33 56 778898887877888	88797988879897
426 40 4 0 0 0 0 0 5 33 56 777887888888888	88797988879897
427 40 4 0 0 0 0 5 33 56 777887888987889	88798978979797
428 40 4 0 0 0 0 0 5 33 56 777887897888878	88888887989987
429 40 4 0 0 0 0 0 5 33 56 778898897888878	88887887879987
430 40 4 0 0 0 0 0 5 33 56 778988888888888	87788897889887

no.	p_3	p_4^0	p_4^1	p_5^0	p_{5}^{1}	p_{5}^{2}	l_3	$h^{1,2}$	$h^{1,1}$	χ	subarrangements of 6 planes
431	40	4	0	0	0	0	0	5	33	56	8789878889778888888887879887
432	40	4	0	0	0	0	0	5	33	56	8789878889778798888777989887
433	40	4	0	0	0	0	0	5	33	56	7778878889878798888877089887
434	40	4	0	0	0	0	0	5	33	56	8878978978878889887887879887
435	40	4	0	0	0	0	0	5	33	56	8888878088888888887777879887
436	40	4	0	0	0	0	0	5	33	56	8878879887888887888897888887
437	40	4	0	0	0	0	0	5	33	56	8789887888088778788897887887
438	40	4	0	0	0	0	0	5	33	56	8788897877988888799788788887
439	44	3	0	0	0	0	0	6	32	52	7778878878778888797878879797
440	44	3	0	0	0	0	0	6	32	52	778898887877878787878789887
441	44	3	0	0	0	0	0	6	32	52	7778878889788787788787889787
442	44	3	0	0	0	0	0	6	32	52	877898887888878778777879887
443	44	3	0	0	0	0	0	6	32	52	7778878877887888978787888887
444	44	3	0	0	0	0	0	6	32	52	7778878878877788778887088887
445	44	3	0	0	0	0	0	6	32	52	777777888978888799878878787
446	48	2	0	0	0	0	0	7	31	48	777887887877878778777879787
447	48	2	0	0	0	0	0	7	31	48	777887887788777887777878887
448	48	2	0	0	0	0	0	7	31	48	7788787877878778788787787787
449	52	1	0	0	0	0	0	8	30	44	7778878777777777777777878787
450	56	0	0	0	0	0	0	9	29	40	777777777777777777777777777777777777777

Appendix B

Modular double octics

This apppendix contains tables of modular double octics constructed from six planes and a smooth quadric surface. For a rather detailed discussion cf. 4.3. There are ten different types of arrangements of six planes. The equations that I used are given before each table. The tables contain the parameter $(a_0: \ldots : a_9)$ of the quadric surface given by

$$a_0x^2 + a_1y^2 + a_2z^2 + a_3t^2 + a_4xy + a_5xz + a_6xt + a_7yz + a_8yt + a_9zt = 0,$$

the (twists of minimal level of the) weight four newforms occuring in the L-series of the double octics, and a prediction if the double octics are rigid. Double octics that are separated by a horizontal line have different numbers or types of singularities. Examples with the same numbers and types of singularities do not have to be isomorphic (there are examples with different newforms occuring in the L-series).

The weight four newforms occurring in the tables are 5/1, 6/1, 8/1, 9/1, 10/1, 12/1, 14/2, 20/1, 24/1, 28/2, 32/1, 32/2, 40/2, 40/3, 72/1, 96/2, 96/4, 128/1, 168/1, 256/1, 256/3, 256/7, 288/1, 544/1, 1568/1. The occurrence of the bad prime 17 in the level 544 is remarkable.

Sextic arrangement no. 1:

Equation for the arrangement of six planes:

$$xyzt(x+z)(y+z) = 0$$

Note: Some examples are isomorphic over $\mathbb{Q}[\sqrt{-1}]$.

parameter	weight four newform	rigid?
(0:0:0:1:-2:-1:0:-1:0:2)	256/1 (256k4G1)	У
(0:0:1:1:2:1:0:1:0:2)	256/1 (256k4G1)	У
(0:0:0:1:-1:-1:2:0:-2:0)	6/1 $(6k4A1)$	У
(0:0:0:1:1:0:2:0:2:2)	6/1 $(6k4A1)$	у
(0:0:1:1:1:1:2:1:2:2)	6/1 $(6k4A1)$	у

$ \begin{array}{c} (0:0) : 0:1:-1:-1:1:0:-1:0) & 12/1 & (12k4A1) & y \\ (0:0:0:1:1:0:1:0:1:1) & 12/1 & (12k4A1) & y \\ (0:0:0:1:1:1:1:1:1:1:1) & 12/1 & (12k4A1) & y \\ (0:0:0:1:1:1:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:1:0:1:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:0:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:0:0:0) & 3/2 & (32k4B1) & y \\ (0:0:0:1:0:-1:0:0:2:2) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:1:-1:1:0:1:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:1:0:1:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:1:0:1:1:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:1:1:1:1:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:-1:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:1:0:1:1:0:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:1:0:1:1:0:1:1:0:1) & 32/$			C C	10
$ \begin{array}{c} (0:0:0:0:1:1:0:1:0:1:1) & 12/1 & (12k4A1) & y \\ (0:0:1:1:1:1:1:1:1:1:1) & 12/1 & (12k4A1) & y \\ (0:0:0:1:1-1:0:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:1:1:0:1:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:1:0:0:0:0:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:0:-1:0:0:2:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:0:-1:0:0:2:2) & 32/2 & (32k4B1) & y \\ (0:0:0:1:0:0-1:0:0:2:2) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:0:1:-1:1:0:1:1:-1:0) & 40/2 & (40k4B1) & y \\ (0:0:0:1:-1:1:0:1:1:-1:0) & 40/2 & (40k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:2:2:-1:-2:1) & 8/1 & (8k4A1) & y \\ (0:1:0:1:0:2:2:-1:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:0:0:-1:0:0:0:0) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:-1:0:0:0:0) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:-1:0:0:0:1:1:0:1) & 96/4 & (96k4B1) & y \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:1:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0$	parameter	_		rigid?
$\begin{array}{c} (0:0:1:1:1:1:1:1:1:1) & 12/1 & (12k4A1) & y \\ (0:0:0:1:-1:-1:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:1:1:1:0:1:0:0:0:0:2) & 8/1 & (8k4A1) & y \\ (0:0:1:1:1:1:0:1:0:2) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:1:0:0:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:1) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:1:0:1:1:0:0) & 8/1 & (8k4A1) & y \\ (0:0:0:1:0:-1:0:0:2:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:0:-1:0:0:2:2) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:-2) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:0:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:1:-1:1:0:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:2:1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:2:1:-1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:0:1:1:1:1:1:1:1:1:1:1:2) & 6/1 & (6k4A1) & n \\ (0:1:0:1:0:2:2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:1:0:1) & 8/1 & (8k4A1) & p \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:1:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:2:2:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:1:0:1:1:1:0:0:1$	(0:0:0:1:-1:-1:1:0:-1:0)	12/1	(12k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	,	` '	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,			У
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:0:1:-1:-1:0:0:0:2)	8/1	(8k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	8/1	(8k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	8/1	(8k4A1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:0:1:-1:0:0:0:1:1)	8/1	(8k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:0:1:1:0:0:1:1:1)	8/1	(8k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:0:1:1:0:1:1:0:0)	,	(8k4A1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:0:1:0:-1:0:0:2:0)	32/2	(32k4B1)	У
$\begin{array}{c} (0:0:1:1:0:0:-2:1:0:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:0:-1:0:0:-2:2) & 96/4 & (96k4B1) & n \\ (0:0:0:1:1:1:1:1:1:1:1) & 40/2 & (40k4B1) & y \\ (0:0:1:-1:-1:0:1:0:1:1) & 40/2 & (40k4B1) & y \\ (0:0:1:-1:1:0:1:1:1-1:0) & 40/2 & (40k4B1) & y \\ (0:0:0:1:-1:1:0:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:0:1:-1:2:1:-1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:0:1:-1:2:1:-1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:2:1:-1:1:1:1:1) & 32/1 & (32k4A1) & y \\ (0:0:1:-1:2:1:0:-2:1:-2:1) & 8/1 & (8k4A1) & n \\ (0:1:-2:1:0:-2:2:-1:2:1) & 8/1 & (8k4A1) & y \\ (0:1:0:1:-2:-1:0:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:-1:0:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:-2:0:0:0:1:1:-1:-1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:-1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:1:1:0:0) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:-1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:1:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:1:0:1:0:1:1:0:1) & 32/1 & (32k4$	(0:0:0:1:0:-1:0:0:2:2)	32/2	(32k4B1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:1:1:0:0:-2:1:0:-2)	32/2	(32k4B1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:1:1:0:0:-2:1:0:0)	32/2	(32k4B1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:0:1:0:-1:0:0:-2:2)	96/4	(96k4B1)	n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		40/2	(40k4B1)	У
$ \begin{array}{c} (0:0:0:1:2:1:1:1:1:1) \\ (0:0:1:-1:2:1:-1:1:1:1) \\ (0:0:1:-1:2:1:-1:1:1:1) \\ (0:0:1:1:1:1:1:1:1:1:1:1) \\ (0:0:1:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:0:1:2:1:1:1:1:1:1) \\ (0:1:0:1:0:2:2:-1:2:1) \\ (0:1:0:1:0:2:2:-1:0:0:0) \\ (0:1:0:1:-2:1:0:0:0:0) \\ (0:1:0:1:-2:1:0:0:0:0) \\ (0:1:0:2:-2:-1:0:0:0) \\ (0:1:1:-1:2:1:0:2:0:0) \\ (0:1:1:-1:2:1:0:2:0:0) \\ (0:1:1:-1:2:1:0:2:0:0) \\ (0:1:0:-1:0:0:-1:1:-1:1) \\ (0:1:0:-1:0:0:-1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:0:1:1:1) \\ (0:1:0:1:0:1:1:1:0:1:1:1:1) \\ (0:1:0:1:1:1:0:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1:0:1:1:1:1:1:1:1) \\ (0:1$	(0:0:1:-1:-1:0:1:0:1:1)	40/2	(40k4B1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:1:-1:1:0:1:1:-1:0)	40/2	(40k4B1)	у
$\begin{array}{c} (0:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1) & 6/1 & (6k4A1) & n \\ (0:1:-2:1:0:-2:2:-1:2:1) & 8/1 & (8k4A1) & p \\ (0:1:0:1:0:2:2:-1:0:0:0) & 32/1 & (32k4A1) & p \\ (0:1:0:2:-2:-1:0:0:0:0) & 32/1 & (32k4A1) & p \\ (0:1:0:2:-2:-1:0:0:0:0) & 256/7 & (256k4B1) & p \\ (0:1:1:-2:2:1:0:2:0:0) & 256/7 & (256k4B1) & p \\ (0:1:1:-1:2:1:0:2:0:0) & 32/1 & (32k4A1) & p \\ (0:1:0:-2:0:0:-1:1:-1:-1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:-1:1:0:1) & 96/4 & (96k4B1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & p \\ (0:1:0:1:0:-1:0:2:2:1:0:-1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:0:-1:0:2:2:1:0:-1) & 8/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-2:0:1:1:-2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-2:0:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-2:0:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-1:0:1:1:2:1) & 40/2 & (40k4B1) & p \\ (0:1:0:1:-1:0:1:0:1:2:1) & 40/2 & (40k4B1) & p \\ (0:1:0:1:-1:0:1:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:-1:0:0:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:-1:0:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:-1:0:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:1:0:1:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0$	(0:0:0:1:2:1:1:1:1)	32/1	(32k4A1)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:1:-1:2:1:-1:1:0)	32/1	(32k4A1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:0:1:1:1:1:1:1:1:-2)	6/1	(6k4A1)	
$ \begin{array}{c} (0:1:0:1:-2:-1:0:0:0:0) \\ (0:1:0:2:-2:-1:0:0:0:0) \\ (0:1:0:2:-2:-1:0:0:0:0) \\ (0:1:1:-2:2:1:0:2:0:0) \\ (0:1:1:-2:2:1:0:2:0:0) \\ (0:1:1:-1:2:1:0:2:0:0) \\ (0:1:0:-2:0:0:-1:1:-1:0) \\ (0:1:0:-1:0:0:-1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:0:1) \\ (0:1:0:1:0:1:0:1:1:1:1:0:1) \\ (0:1:0:1:0:1:1:0:1:1:1:1:1:0:1) \\ (0:1:0:1:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1$	(0:1:-2:1:0:-2:2:-1:2:1)	8/1	(8k4A1)	n
$\begin{array}{c} (0:1:0:1:-2:-1:0:0:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:2:-2:-1:0:0:0:0) & 256/7 & (256k4B1) & y \\ (0:1:1:-2:2:1:0:2:0:0) & 256/7 & (256k4B1) & y \\ (0:1:1:-1:2:1:0:2:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:-2:0:0:-1:1:-1:-1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:-1:1:0:1) & 96/4 & (96k4B1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/2 & (32k4A1) & n \\ (0:1:0:-1:0:0:1:1:0:0) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:1:0:-1:0:2:2:1:0:-1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:-2:-2:1:1:-2:-2) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:0:1:1:-2:1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:0:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-1:0:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-1:-1:1:1:2:0) & 40/2 & (40k4B1) & y \\ (0:1:0:1:-1:0:1:0:1:2:1) & 40/2 & (40k4B1) & y \\ (0:1:0:1:-1:-1:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:-1:-1:0:0:0:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:-1:0:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:1:1:0:0:1:1:1:1:1 & (12x4A1) & y \\ (0:1:0:1:1:1:1:0:1:1 & (12x4A1) & y \\ (0:1:0:1:1:1:1:1 & (12x4A1) & y \\ (0:1:0:1:1:1:1 & (12x4A1) & y \\ (0$	(0:1:0:1:0:2:2:-1:-2:1)	8/1	(8k4A1)	У
$\begin{array}{c} (0:1:1:-2:2:1:0:2:0:0) \\ (0:1:1:-1:2:1:0:2:0:0) \\ (0:1:0:-2:0:0:-1:1:-1:-1) \\ (0:1:0:-1:0:0:-1:1:0:1) \\ (0:1:0:-1:0:0:2:1:0:1) \\ (0:1:0:-1:0:0:2:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:0) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:0:1:1:0:1) \\ (0:1:0:1:0:-1:0:2:2:1:0:-1) \\ (0:1:0:1:-2:-2:1:1:-2:-2) \\ (0:1:0:1:-2:0:1:-1:-2:1) \\ (0:1:0:1:0:1:2:0:1:1:1:2:0) \\ (0:1:0:1:0:1:-1:0:1:1:1:2:0) \\ (0:1:0:1:0:1:-1:0:1:1:1:1:1:2:0) \\ (0:1:0:1:0:1:-1:0:1:1:1:1:1:1:1:1:1:1:1:1$	(0:1:0:1:-2:-1:0:0:0:0)	32/1	(32k4A1)	
$\begin{array}{c} (0:1:1:-1:2:1:0:2:0:0) & 32/1 & (32k4A1) & y \\ (0:1:0:-2:0:0:-1:1:-1:-1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:-1:1:0:1) & 96/4 & (96k4B1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/2 & (32k4B1) & p \\ (0:1:0:-1:0:0:1:1:0:0) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & p \\ (0:1:0:-1:0:2:2:1:0:-1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:-2:-2:1:1:-2:-2) & 32/1 & (32k4A1) & p \\ (0:1:0:1:-2:0:1:-1:-2:1) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-2:0:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:2:0:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-1:-1:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-1:0:1:1:2:0) & 32/1 & (32k4A1) & p \\ (0:1:0:1:0:1:-1:0:1:1:2:1) & 40/2 & (40k4B1) & p \\ (0:1:0:1:0:1:-1:0:1:1:2:1) & 40/2 & (40k4B1) & p \\ (0:1:0:1:0:1:-1:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:-1:0:0:0:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:-1:0:0:0:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:1:0:0:1:1:2:1) & 12/1 & (12k4A1) & p \\ (0:1:0:1:0:1:1:0:1:1:0:1:1:1:1:1:1:1:1:1$	(0:1:0:2:-2:-1:0:0:0:0)	256/7	(256k4B1)	У
$\begin{array}{c} (0:1:0:-2:0:0:-1:1:-1:-1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:-1:1:0:1) & 96/4 & (96k4B1) & n \\ (0:1:0:-1:0:0:2:1:0:1) & 32/1 & (32k4A1) & n \\ (0:1:0:-1:0:0:1:1:0:0) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:0:1:1:0:1) & 32/2 & (32k4B1) & y \\ (0:1:0:-1:0:2:2:1:0:-1) & 8/1 & (8k4A1) & n \\ (0:1:0:1:-2:-2:1:1:-2:-2) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-2:0:1:-1:-2:1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:2:0:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:1:2:0:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:1:0:1:0:1:-1:-1:1:1:2:0) & 40/2 & (40k4B1) & y \\ (0:1:0:1:0:1:-1:0:1:0:2:1) & 40/2 & (40k4B1) & y \\ (0:1:0:1:0:1:-1:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:-1:0:0:0:0:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:-1:0:0:0:0:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:1:2:1) & 12/1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:0:1:1:1:0:0:1:1:1:1:1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:0:1:1:1:1:1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:1:1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:1:1 & (12k4A1) & y \\ (0:1:0:1:0:1:1:1 & (12k4A1) & y \\ (0:1:0:1:1:1 & (12k4A1) & y \\ (0:1:0:1:1:1 & (12k4A1) & y \\ (0$	(0:1:1:-2:2:1:0:2:0:0)	256/7	(256k4B1)	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:1:-1:2:1:0:2:0:0)	32/1	(32k4A1)	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:-2:0:0:-1:1:-1:-1)	32/1	(32k4A1)	n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:-1:0:0:-1:1:0:1)	96/4	(96k4B1)	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:0:-1:0:0:2:1:0:1)	32/1	(32k4A1)	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:0:-1:0:0:1:1:0:0)	32/2	(32k4B1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:0:-1:0:0:1:1:0:1)	32/2	(32k4B1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:-1:0:2:2:1:0:-1)	8/1	(8k4A1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:1:-2:-2:1:1:-2:-2)	32/1	(32k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:1:-2:0:1:-1:-2:1)	32/1	(32k4A1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:1:2:0:1:1:2:0)	32/1	(32k4A1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:1:-1:-1:1:1:-2:-2)	40/2	(40k4B1)	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:1:0:1:-1:0:1:0:-2:1)	40/2	(40k4B1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		40/2	(40k4B1)	у
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:0:1:-1:-1:0:1:2:1)	12/1	(12k4A1)	
(0:1:0:1:1:0:0:1:2:1)			(12k4A1)	у
	· ·	12/1	(12k4A1)	
(0.1.0.111.0.1.22)	(0:1:0:1:-1:-1:0:1:2:-2)	6/1	(6k4A1)	У

parameter	woight	four newform	rigid?
*			rigid:
(0:1:1:1:1:1:0:2:2:-2)	6/1	(6k4A1)	У
(0:1:0:1:0:0:2:1:-2:0)	32/1	(32k4A1)	У
(0:1:0:1:0:0:2:1:2:2)	32/1	(32k4A1)	У
(0:1:0:1:0:0:-1:1:-2:0)	96/4	(96k4B1)	n
(0:1:0:1:0:0:-1:1:2:-1)	96/4	(96k4B1)	n
(0:1:0:1:0:0:-1:1:2:2)	96/4	(96k4B1)	n
(0:1:0:1:0:0:-1:1:-2:-2)	32/2	(32k4B1)	У
(0:1:0:1:0:0:-1:1:-2:-1)	32/2	(32k4B1)	У
(0:1:0:1:0:0:1:1:-2:-1)	32/2	(32k4B1)	У
(0:1:0:1:0:0:1:1:-2:0)	32/2	(32k4B1)	У
(0:1:1:1:1:1:1:2:2:-2)	40/3	(40k4A1)	n
(0:2:0:-2:-2:-1:0:1:0:1)	32/2	(32k4B1)	n
(0:2:0:1:-2:-1:0:1:0:2)	256/3	(256k4F1)	n
(1:-1:0:-1:0:1:0:-1:0:1)	128/1	(128k4A1)	n
(1:-1:0:-1:0:1:0:-1:2:-1)	8/1	(8k4A1)	n
(1:1:-2:1:-2:-1:2:-1:2:-1)	96/2	(96k4E1)	У
(1:1:0:1:-2:1:2:1:2:1)	544/1		n
(1:1:0:-1:0:1:0:1:0:1)	128/1	(128k4A1)	У
(1:1:0:1:0:1:-2:1:2:-1)	128/1	(128k4A1)	n
(1:1:0:1:0:1:-2:1:2:1)	128/1	(128k4A1)	n
(1:1:0:1:0:1:2:1:2:1)	128/1	(128k4A1)	n
(1:1:1:1:-2:-2:2:2:2)	40/2	(40k4B1)	У
(2:2:1:1:0:2:0:2:0:2)	256/1	(256k4G1)	n
(2:2:0:-1:-2:1:1:1:1:1)	288/1	(288k4C1)	n
(2:2:1:2:0:2:0:2:0:2)	128/1	(128k4A1)	n

Sextic arrangement no. 2:

$$xyzt(x+y)(z+t) = 0$$

parameter	weight four newform	rigid?
(0:0:0:0:1:0:2:2:2:1)	6/1 $(6k4A1)$	У
(0:0:0:1:-1:0:-2:2:0:1)	6/1 $(6k4A1)$	У
(0:0:0:1:-1:2:0:2:2:1)	6/1 $(6k4A1)$	У
(0:0:0:0:1:0:0:2:1)	8/1 $(8k4A1)$	У
(0:0:0:1:-1:0:0:0:2:1)	8/1 $(8k4A1)$	У
(0:0:0:1:-1:0:0:2:2:1)	8/1 $(8k4A1)$	У
(0:0:0:0:1:-1:-1:0:0:-1)	8/1 $(8k4A1)$	У
(0:0:0:0:1:-1:0:-1:0:-1)	8/1 $(8k4A1)$	У

parameter	weight	four newform	rigid?
(0:0:0:1:1:-1:-1:-1:1)	8/1	(8k4A1)	_
(0:0:0:1:1:-1:-1:-1:1) (0:0:0:1:1:0:-1:0:-1:1)	8/1	(8k4A1)	у
(0:0:0:1:1:0:1:0:1:1) (0:0:0:1:1:0:0:1:0:1)	8/1	(8k4A1)	y y
(0:0:0:0:1:1:0:0:1:0:1) $(0:0:0:0:1:0:0:0:0:0:-2)$	$\frac{6/1}{256/7}$	(256k4B1)	У
(0:0:0:0:1:0:0:0:0:2) (0:0:0:0:0:1:0:0:0:0:0:-1)	$\frac{250}{1}$	(32k4A1)	у
(0:0:0:0:1:0:0:0:0:1)	32/1	(32k4A1)	у
(0:0:0:0:1:0:0:0:0:1)	256/7	(256k4B1)	у
(0:0:0:1:-0:0:0:0:1)	,	(256k4B1)	у
(0:0:0:1:-1:0:0:0:0:1)	$\frac{32}{1}$	(32k4A1)	y
(0:0:0:1:-2:-2:-1:2:2:2)	$\frac{32}{2}$	(32k4B1)	n
(0:0:0:1:1:-1:-2:-1:-2:0)	96/4	(96k4B1)	n
(0:0:0:1:1:1:1:-1:0)	96/4	(96k4B1)	n
(0:1:-1:0:0:0:-1:0:1:-1)	96/4	(96k4B1)	n
(0:0:0:1:-2:1:-1:1:2:0)	32/1	(32k4A1)	n
(0:1:-1:0:0:0:-2:0:-1:-1)	32/1	(32k4A1)	n
(0:0:0:1:1:2:1:0)	32/1	(32k4A1)	n
(0:0:0:2:-1:1:-1:1:2:0)	32/1	(32k4A1)	n
(0:0:0:1:-1:-2:0:2:2:0)	128/1	(128k4A1)	У
(0:0:1:1:-1:0:2:2:0:2)	128/1	(128k4A1)	у
(0:1:1:1:1:0:2:-2:2:2)	128/1	(128k4A1)	у
(0:0:0:1:1:1:0:1:0:0)	32/2	(32k4B1)	У
(0:0:0:1:1:1:1:1:0)	32/2	(32k4B1)	У
(0:0:1:1:1:0:1:0:1:2)	32/2	(32k4B1)	у
(0:0:1:1:1:1:1:1:1:-2)	8/1	(8k4A1)	У
(0:1:-1:-1:1:1:1:0:0:2)	8/1	(8k4A1)	У
(0:1:-1:0:2:0:0:-2:0:-2)	128/1	(128k4A1)	n
(0:1:-1:1:2:0:0:2:2:0)	128/1	(128k4A1)	n
(0:1:0:1:2:0:0:2:2)	128/1	(128k4A1)	n
(1:-1:-1:1:0:-2:-2:-2:0)	128/1	(128k4A1)	n
(0:1:0:1:0:0:-2:2:0:0)	32/1	(32k4A1)	n
(0:1:1:1:0:2:2:0:0:-2)	32/2	(32k4B1)	n
(0:1:1:1:0:2:2:2:2:-2)	32/2	(32k4B1)	n
(1:1:1:1:-2:0:2:0:2:2)	32/2	(32k4B1)	n
(0:1:1:1:0:-2:-2:2:2:-2)	96/4	(96k4B1)	n
(0:1:1:1:1:2:2:-2:2:2)	8/1	(8k4A1)	у
(1:1:1:1:-2:2:2:2:2:-2)	8/1	(8k4A1)	у
(1:1:1:1:-2:-2:2:2:2)	32/1	(32k4A1)	У
(1:1:1:1:1:-2:-2:0:1)	32/1	(32k4A1)	n
(1:1:1:1:1:-2:0:0:2:1)	32/1	(32k4A1)	n
(1:1:1:1:2:-2:2:2:-2:2)	32/1	(32k4A1)	У

Sextic arrangement no. 3:

Equation for the arrangement of six planes:

$$xyzt(x+y)(x-y+z) = 0$$

Note: Some examples are isomorphic over $\mathbb{Q}[\sqrt{-1}].$

parameter	weight	four newform	rigid?
(0:0:0:1:-1:0:0:0:2:-2)	128/1	(128k4A1)	У
(0:0:0:1:-1:0:2:0:0:2)	128/1	(128k4A1)	y
(0:0:0:1:0:-2:2:-2:0:-1)	32/2	(32k4B1)	n
(0:0:0:1:0:-1:2:1:2:0)	8/1	(8k4A1)	у
(1:1:0:1:-2:1:2:-1:2:0)	8/1	(8k4A1)	У
(0:0:0:1:1:0:0:0:2:-2)	128/1	(128k4A1)	n
(0:0:0:1:1:0:2:0:0:2)	128/1	(128k4A1)	n
(0:0:1:-1:0:1:1:-1:1:0)	8/1	(8k4A1)	У
(0:0:1:1:0:-1:1:-1:0:-2)	8/1	(8k4A1)	n
(0:0:1:1:0:1:0:1:1:2)	8/1	(8k4A1)	n
(0:0:1:1:0:1:0:-1:2:-2)	8/1	(8k4A1)	У
(0:0:1:1:0:1:2:-1:0:2)	8/1	(8k4A1)	У
(0:1:0:-2:-1:-1:1:-1:1:0)	32/2	(32k4B1)	n
(0:2:0:-1:-2:-2:1:-2:1:0)	32/2	(32k4B1)	n
(1:0:0:-2:-1:1:1:1:1:0)	32/2	(32k4B1)	n
(0:1:0:-2:0:-1:0:-1:0:0)	256/7	(256k4B1)	У
(0:1:0:-1:0:-1:0:-1:0:0)	32/1	(32k4A1)	У
(0:1:0:1:0:-1:0:-1:0:0)	32/1	(32k4A1)	У
(0:1:0:2:0:-1:0:-1:0:0)	256/7	(256k4B1)	У
(0:2:0:-1:0:-2:0:-2:0:0)	256/7	(256k4B1)	У
(0:2:0:1:0:-2:0:-2:0:0)	256/7	(256k4B1)	У
(0:1:0:-1:-1:-1:1:-1:0:1)	8/1	(8k4A1)	n
(1:0:0:-1:-1:1:0:1:1:-1)	8/1	(8k4A1)	n
(0:1:0:1:-1:-1:2:-1:2:0)	256/3	(256k4F1)	n
(1:0:0:1:-1:1:2:1:2:0)	256/3	(256k4F1)	n
(1:1:1:-1:2:2:0:-2:0:0)	32/1	(32k4A1)	У
(1:1:1:-2:2:2:0:-2:0:0)	256/7	(256k4B1)	У
(1:1:1:1:2:2:0:-2:0:0)	32/1	(32k4A1)	у
(1:1:1:2:2:2:0:-2:0:0)	256/7	(256k4B1)	У

Sextic arrangement no. 4:

$$xyzt(x+y)(x+z+t) = 0$$

parameter	weight four newform	rigid?
(0:0:0:0:0:0:1:-1:1:-1)	96/4 (96 <i>k</i> 4 <i>B</i> 1)	n
(0:0:0:0:0:0:1:-1:1:1)	32/2 (32k4B1)	У
(0:0:0:1:-1:0:0:-1:-2:1)	32/2 (32k4B1)	У
(1:0:0:1:1:1:2:1:2:1)	32/2 (32k4B1)	У
(0:0:0:0:0:0:1:-1:1:2)	32/1 $(32k4A1)$	n
(0:0:0:0:0:0:0:1:2:1:-1)	32/1 (32k4A1)	n
(0:0:0:0:0:0:2:1:2:1)	32/1 (32k4A1)	n
(0:0:0:0:0:0:1:1:1:1:-1)	32/2 (32k4B1)	y
(0:0:0:0:0:0:1:1:1:1)	32/2 (32k4B1)	y
(0:0:0:1:-1:0:2:-1:0:1)	32/2 (32k4B1)	y
(0:0:0:1:1:0:0:1:0:1)	32/2 (32k4B1)	У
(1:0:-1:0:1:0:1:0:1:-1)	32/2 (32k4B1)	У
(1:0:0:1:1:1:2:1:0:1)	32/2 (32k4B1)	У
(0:0:0:0:2:-1:2:1:0:2)	32/2 (32k4B1)	n
(0:0:0:0:1:-1:-1:0:0:-1)	12/1 $(12k4A1)$	У
(0:0:0:1:-1:1:1:0:0:1)	12/1 $(12k4A1)$	У
(1:0:0:0:1:1:1:0:0:1)	12/1 $(12k4A1)$	У
(1:0:0:1:1:1:1:0:0:1)	12/1 $(12k4A1)$	У
(0:0:0:0:2:-2:1:0:1:-2)	32/2 (32k4B1)	n
(0:0:0:0:2:0:2:1:-2:2)	96/4 (96k4B1)	n
(0:0:0:0:1:-1:0:0:0:-1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:-1:1:2:0:0:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:1:0:0:0:0:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:-1:0:1:0:0:0:0:0:-1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:0:0:1:0:1:0:0:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:0:1:1:1:2:0:0:1)	8/1 (8k4A1)	У
(0:0:0:0:1:0:0:1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:-1:0:1:0:-1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:0:-1:0:-1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:0:0:1:1:1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:0:0:1:0:1:0:1:-1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:0:1:1:0:2:0:1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:0:1:0:0:1:1:-1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:0:0:1:-1:0:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:0:1:1:0:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(1:0:0:0:1:1:1:1:1:1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:0:1:0:1:0:1:1)	12/1 $(12k4A1)$	У
(0:0:0:1:-1:0:0:0:-1:1)	12/1 $(12k4A1)$	У
(1:0:0:0:1:0:0:1:-1)	12/1 $(12k4A1)$	У
(1:0:0:1:0:0:1:-1:-1:1)	12/1 $(12k4A1)$	У
(1:0:0:1:0:1:1:1)	12/1 $(12k4A1)$	У
(1:0:0:1:1:0:1:0)	12/1 (12k4A1)	У

,	. 1	I · · 10
parameter	weight four newform	rigid?
(0:0:0:0:2:-2:0:2:1:-2)	32/2 (32k4B1)	n
(0:0:0:2:1:0:0:-1:1:2)	32/2 (32k4B1)	n
(1:0:-2:0:1:1:-1:1:-1:-2)	32/2 (32k4B1)	n
(0:0:0:0:2:-1:0:1:1:-1)	32/1 (32k4A1)	У
(0:0:0:1:-1:2:2:1:0:1)	32/1 (32k4A1)	У
(0:0:0:1:1:0:0:-1:0:1)	32/1 (32k4A1)	У
(1:0:-1:0:1:0:-1:0:-1:-1)	32/1 (32k4A1)	У
(1:0:0:1:1:1:2:-1:0:1)	32/1 (32k4A1)	У
(2:0:0:0:2:1:2:1:1)	32/1 (32k4A1)	У
(0:0:2:-2:0:0:-2:-1:-1:0)	32/2 (32k4B1)	n
(0:0:2:-2:0:1:-1:-1:0)	32/2 (32k4B1)	n
(0:0:0:1:1:1:1:0:1:0)	96/4 (96k4B1)	n
(0:0:0:1:-2:-1:1:-2:-2:1)	32/1 (32k4A1)	n
(0:0:0:1:0:-1:-1:0:-2:1)	32/1 (32k4A1)	n
(0:0:0:1:0:-1:1:0:2:1)	32/1 $(32k4A1)$	n
(0:0:0:1:-2:1:1:0:-2:0)	32/1 (32k4A1)	n
(0:0:0:1:1:-2:1:0:1:0)	32/1 (32k4A1)	n
(0:0:0:2:-1:-1:1:-1:-2:2)	8/1 $(8k4A1)$	n
(1:0:0:0:0:1:-1:1:-2)	8/1 $(8k4A1)$	n
(0:0:0:1:-2:1:2:0:-1:1)	32/1 (32k4A1)	У
(0:0:0:1:1:-1:-1:-1:1)	32/1 (32k4A1)	У
(1:0:-1:0:1:0:0:-1:-1:-1)	32/1 (32k4A1)	У
(1:0:0:0:2:-1:1:0:1:-1)	32/1 (32k4A1)	У
(1:0:0:0:1:1:1:0:1)	32/1 $(32k4A1)$	У
(0:0:0:1:0:-1:1:0:-1:1)	96/4 (96k4B1)	n
(0:0:0:2:-1:-2:2:-1:-1:-2)	32/2 (32k4B1)	n
(0:0:0:1:2:-2:-1:0:0:2)	32/2 (32k4B1)	n
(0:0:0:1:2:-2:1:0:0:2)	32/2 (32k4B1)	n
(0:0:0:1:-1:-2:2:-1:0:-1)	8/1 (8k4A1)	n
(1:0:0:1:1:-1:2:1:0:-1)	8/1 (8k4A1)	n
(0:0:0:1:-1:-1:1:-2:-1:0)	32/1 (32k4A1)	У
(0:0:1:1:0:0:1:-1:1:2)	32/1 (32k4A1)	У
(1:0:0:1:1:1:2:2:1:0)	32/1 (32k4A1)	У
(0:0:0:1:-1:-1:-1:-1:-1)	32/1 (32k4A1)	У
(1:0:0:1:1:0:2:1:1:-1)	32/1 $(32k4A1)$	У
(0:0:0:1:-1:-1:1:-1:1)	32/2 (32k4B1)	У
(0:0:0:1:0:-1:0:0:-1:1)	32/2 (32k4B1)	У
(0:0:0:1:0:-1:1:0:1:1)	32/2 (32k4B1)	У
(1:0:0:0:0:0:1:-1:0:-1)	32/2 (32k4B1)	У
(1:0:0:0:0:1:1:0:1:-1)	32/2 (32k4B1)	У
(1:0:0:1:1:0:2:1:1:1)	32/2 (32k4B1)	У
(0:0:0:1:-1:-1:1:0:-1:0)	32/2 (32k4B1)	У

	. 1	1 10
parameter	weight four newform	rigid?
(0:0:1:1:0:-1:0:-1:2)	32/2 (32k4B1)	У
(0:0:1:1:0:0:1:1:1:2)	32/2 (32k4B1)	У
(1:0:0:1:-1:1:2:0:-1:0)	32/2 (32k4B1)	У
(1:0:0:1:1:-1:2:0:1:0)	32/2 (32k4B1)	У
(0:0:0:1:-1:0:0:-2:-2:2)	8/1 $(8k4A1)$	У
(0:0:0:1:-1:0:2:-2:0:2)	8/1 $(8k4A1)$	У
(0:0:1:-1:-1:0:0:-2:0:0)	8/1 $(8k4A1)$	У
(1:0:-1:1:1:0:2:0:2:0)	8/1 $(8k4A1)$	У
(1:0:0:1:1:2:2:2:0:2)	8/1 $(8k4A1)$	У
(1:0:0:1:1:2:2:2:2:2)	8/1 $(8k4A1)$	У
(0:0:0:1:-1:0:1:-1:0)	8/1 $(8k4A1)$	У
(0:0:0:1:0:-1:1:-1:0:0)	8/1 $(8k4A1)$	У
(0:0:0:1:0:0:1:1:0:0)	8/1 $(8k4A1)$	У
(0:0:1:1:0:0:1:-1:0:2)	8/1 $(8k4A1)$	У
(0:0:1:1:0:1:1:0:1:2)	8/1 $(8k4A1)$	У
(1:0:0:1:1:1:2:1:1:0)	8/1 $(8k4A1)$	у
(0:0:0:1:-1:0:1:-1:0:0)	12/1 $(12k4A1)$	У
(0:0:0:1:0:-1:0:-1:-1:0)	12/1 (12k4A1)	У
(0:0:0:1:0:0:1:1:1:0)	12/1 (12k4A1)	у
(0:0:1:1:-1:1:1:-1:0:2)	12/1 (12k4A1)	у
(1:0:0:1:1:1:1:0:0)	12/1 (12k4A1)	у
(1:0:1:1:1:1:2:0:1:2)	12/1 (12k4A1)	у
(0:0:0:1:-1:1:-2:0:0:1)	6/1 $(6k4A1)$	n
(1:0:0:1:1:1:-2:0:0:1)	6/1 $(6k4A1)$	n
(0:0:0:1:-1:1:1:-1:-1:1)	32/2 (32k4B1)	У
(0:0:0:1:0:1:0:0:-1:1)	32/2 (32k4B1)	у
(0:0:0:1:0:1:1:0:1:1)	32/2 (32k4B1)	у
(1:0:0:0:0:1:1:-1:0:1)	32/2 (32k4B1)	у
(1:0:0:0:0:1:2:0:1:1)	32/2 (32k4B1)	у
(1:0:0:1:1:2:2:1:1:1)	32/2 (32k4B1)	у
(0:0:0:1:-1:1:1:0:-1:0)	32/2 (32k4B1)	У
(0:0:0:1:1:-1:1:0:1:0)	32/2 (32k4B1)	у
(0:0:1:1:0:0:1:-1:-1:2)	32/2 (32k4B1)	у
(0:0:1:1:0:1:2:1:1:2)	32/2 (32k4B1)	у
(1:0:-1:0:1:0:1:0:0)	32/2 (32k4B1)	y
(1:0:0:1:1:1:2:0:1:0)	32/2 (32k4B1)	y
(0:0:0:1:-1:1:1:0:-1:2)	32/1 $(32k4A1)$	у
(0:0:1:-1:0:0:-1:-1:-1:0)	32/1 $(32k4A1)$	y
(1:0:0:1:1:1:1:2:0:1:2)	32/1 $(32k4A1)$	y
(0:0:0:1:-1:1:1:1:1:1)	32/1 (32k4A1)	y
(0:0:0:1:1:1:1:1:1:1) (0:0:0:1:0:-1:0:-2:-1:1)	32/1 $(32k4A1)$	y
(0:0:0:1:0:1:0:2:1:1)	32/1 $(32k4A1)$	
(0.0.0.1.0.1.1.2.1.1)	02/1 (02h4711)	У

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	rid?
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} (1:0:0:1:1:0:2:-1:1:1) & 32/1 & (32k4A1) & y \\ \hline (0:0:0:1:0:-1:-2:0:-1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:1:0:-1:-1:0:1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:-2:-1:0:-1:1) & 32/1 & (32k4A1) & n \\ \hline (0:0:0:0:1:0:-2:0:0:1:1) & 32/1 & (32k4A1) & n \\ \hline (0:0:0:0:1:0:-2:0:0:1:1) & 32/1 & (32k4A1) & n \\ \hline (0:0:0:0:1:0:-2:0:0:1:1) & 32/1 & (32k4A1) & n \\ \hline (1:0:0:0:0:0:-1:1:-1:0:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:1:1:0:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:1:0:-1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:1:0:0:-1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:1:0:1:0:-1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:1:0:-1:0:-1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:-1:0:0:1:1) & 96/4 & (96k4B1) & n \\ \hline (0:0:0:0:1:0:-1:0:-1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (1:0:0:0:0:0:0:1:1:1:0:-1) & 32/2 & (32k4B1) & y \\ \hline (1:0:0:0:0:0:1:1:1:0:-1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:1:0:1:0:1:1:0:-1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:0:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:0:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:0:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1:1:1 & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1 & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1 & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1 & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1:1:1 & 32/2 & (32k4B1) & y \\ \hline (0:0:0:0:1:1:1:1:1:1 & 32/2$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c }\hline (0:0:0:1:0:-2:0:0:1:1) & 32/1 & (32k4A1) & n\\ \hline (1:0:0:0:0:0:0:-1:1:-1:0:1) & 96/4 & (96k4B1) & n\\ \hline (1:0:0:0:0:0:0:1:1:0:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:1:0:1:2:0:-1:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:0:1:0:1:-1:0:-1:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:0:1:0:1:-1:0:-1:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:0:1:0:1:0:0:1:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:0:2:0:0:-2:2:2:1) & 96/4 & (96k4B1) & n\\ \hline (0:0:0:0:1:0:-1:0:-1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:0:1:0:-1:0:0:1:1) & 32/2 & (32k4B1) & y\\ \hline (1:0:0:0:0:0:0:1:1:0:-1) & 32/2 & (32k4B1) & y\\ \hline (1:0:0:0:1:-1:0:2:-1:-1:1) & 32/2 & (32k4B1) & y\\ \hline (1:0:0:0:1:-1:0:2:-1:-1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:0:1:1:1:0:-1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:0:1:1:1:0:-1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:0:1:1:1:0:-1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:0:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1:1:1:1) & 32/2 & (32k4B1) & y\\ \hline (0:0:0:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(0:0:0:1:1:1:1:1:1:1) $32/2$ $(32k4B1)$ y	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(1:0:-1:0:1:0:-1:-1:1) 8/1 (8k4A1)	
(2:0:-2:0:2:0:1:0:1:-1) 8/1 (8k4A1)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
(1:0:-1:0:1:0:1:1) $(32/4-4A1)$ y	
(0:0:0:1:1:1:-1:-1) 8/1 (8k4A1) y	
(1:0:-2:0:0:-1:0:-2:-1:-1) 8/1 (8k4A1)	
(1:0:-2:0:0:1:1:2:1:-1) 8/1 (8k4A1)	
(1:0:-1:0:1:0:0:-1:1:1) 8/1 (8k4A1)	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
(1:0:0:0:0:0:0:-1:-1:1) 5/1 (5k4A1) y	

parameter	weight	four newform	rigid?
(1:0:0:0:0:1:1:1:1:1)	5/1	$\frac{(5k4A1)}{(9l4A1)}$	У
(0:0:0:1:1:2:1:2:1:2)	8/1	(8k4A1)	У
(0:0:1:-1:0:-1:-1:1:0)	8/1	(8k4A1)	У
(0:0:1:-1:0:0:-2:1:-1:0)	8/1	(8k4A1)	У
(1:0:-1:0:1:0:0:1:2:-2)	8/1	(8k4A1)	У
(1:0:0:1:-1:0:2:-2:-1:2)	8/1	$\frac{(8k4A1)}{(8k4A1)}$	У
(0:0:0:1:2:1:1:2:0:1)	8/1	(8k4A1)	n
(1:0:0:0:0:0:-1:-1:-2:-2:1)	8/1	(8k4A1)	n
(1:0:0:0:0:1:1:2:2:1)	8/1	(8k4A1)	n
(2:0:-1:0:2:-1:1:0:2:-1)	8/1	$\frac{(8k4A1)}{(8k4A1)}$	n
(0:0:0:1:2:2:2:1:1)	8/1	(8k4A1)	n
(1:0:-1:0:-1:0:-1:1:-1:-1)	8/1	(8k4A1)	n
(2:0:-1:0:1:-1:0:-1:1:-1)	8/1	(8k4A1)	n
(2:0:-1:0:2:-1:0:1:2:-1)	8/1	(8k4A1)	n
(2:0:0:0:0:0:0:0:-2:-1:1)	8/1	(8k4A1)	n
(2:0:0:0:0:1:2:1)	8/1	(8k4A1)	n
(0:0:0:2:-2:-1:2:-1:-2:1)	8/1	(8k4A1)	У
(1:0:0:1:-1:1:2:1:-1:-1)	8/1	(8k4A1)	У
(0:0:0:2:-1:1:1:-1:-2:2)	8/1	(8k4A1)	У
(1:0:0:0:0:1:2:-1:1:2)	8/1	(8k4A1)	У
(1:0:-1:0:2:0:-1:2:-2:-1)	32/2	(32k4B1)	n
(0:0:0:2:0:-1:2:-2:2:0)	32/2	(32k4B1)	n
(0:0:0:2:0:1:0:2:-2:0)	32/2	(32k4B1)	n
(0:0:0:2:1:1:1:1:0:2)	8/1	(8k4A1)	n
(1:0:-2:0:1:-1:0:0:1:-2)	8/1	(8k4A1)	У
(1:0:0:0:0:0:1:-1:-1:2)	8/1	(8k4A1)	У
(1:0:0:0:0:1:2:1:1:2)	8/1	(8k4A1)	У
(0:0:1:1:0:0:1:-1:1:0)	128/1	(128k4A1)	n
(0:0:1:2:-1:1:1:-1:-2:2)	128/1	(128k4A1)	n
(0:0:1:1:-1:0:0:-1:-1:-1)	24/1	(24k4A1)	n
(1:0:1:1:1:1:1:1:1:1:1)	24/1	(24k4A1)	n
(0:0:1:1:-1:-2:1:0:-1:2)	24/1	(24k4A1)	У
$ \begin{array}{c} (1:0:1:1:1:-2:2:0:1:2) \\ \hline (0:0:1:1:-1:1:1:-1:-1:-2) \end{array} $	24/1	(24k4A1)	У
	32/2	(32k4B1)	У
(1:0:1:1:1:2:2:1:1:-2)	32/2	(32k4B1)	У
(0:0:1:1:0:-2:-1:-1:-1:2)	96/4	(96k4B1)	n
(0:0:1:1:0:-1:0:1:1:2)	96/4	(96k4B1)	n
(0:0:1:1:0:-2:0:-2:2:2)	96/4	(96k4B1)	n
(1:0:-1:-1:-1:0:0:-1:-1:2)	96/4	(96k4B1)	n
(2:0:-1:-1:1:1:1:1:1:2)	96/4	(96k4B1)	n
(0:0:1:1:1:1:1:1:1:-2)	32/2	(32k4B1)	n
(1:0:-1:-1:1:0:0:1:1:2)	32/2	(32k4B1)	n

parameter	weight	four newform	rigid?
(0:0:1:1:0:0:1:-1:1:-2)	8/1	(8k4A1)	У
(0:0:1:1:0:0:2:-2:2:2)	$\frac{1}{32/2}$	(32k4B1)	n
(0:0:1:1:1:-1:-1:-1:-1:-2)	$\frac{7}{32/1}$	(32k4A1)	У
(1:0:-1:-1:1:0:0:-1:-1:2)	32/1	(32k4A1)	y
(0:1:-2:0:0:-2:0:-1:-2:-2)	$\frac{7}{32/2}$	(32k4B1)	n
(0:1:-2:0:1:-2:0:1:-1:-2)	32/2	(32k4B1)	n
(0:1:-2:0:-1:-1:0:-1:-2:0)	32/2	(32k4B1)	n
(0:1:-2:0:1:-2:-1:-2:0)	32/2	(32k4B1)	n
(0:1:-2:0:1:-1:0:1:2:0)	32/2	(32k4B1)	n
(0:1:-2:0:-1:-1:1:-1:-1:-2)	32/2	(32k4B1)	n
(0:1:0:0:2:-2:0:-1:0:2)	32/2	(32k4B1)	n
(1:-1:0:0:0:0:1:0:-1:-2)	32/2	(32k4B1)	n
(0:1:-2:0:0:-2:0:-1:-1:-1)	8/1	(8k4A1)	n
(0:1:-1:0:1:-1:0:-1:1)	8/1	(8k4A1)	n
(0:1:-1:0:1:-1:0:0:1:1)	8/1	(8k4A1)	n
(1:1:-2:0:2:-1:1:1:1:-1)	8/1	(8k4A1)	n
(0:1:-2:0:0:0:-1:1:2:-2)	6/1	(6k4A1)	у
(0:1:0:1:0:1:0:0:0:1)	128/1	(128k4A1)	n
(0:1:-1:0:0:0:-1:0:0:-1)	128/1	(128k4A1)	У
(0:1:-1:0:2:-2:-2:0:0:-1)	128/1	(128k4A1)	У
(0:1:-2:0:1:-2:-1:-1:-1:-2)	8/1	(8k4A1)	n
(0:1:-2:0:1:-1:0:1:1:-2)	8/1	(8k4A1)	n
(0:1:-2:0:2:-2:-1:1:0:-2)	8/1	(8k4A1)	n
(0:1:0:0:0:0:1:-1:0:2)	8/1	(8k4A1)	n
(0:1:-1:-1:1:-2:-1:-1:0:-2)	40/2	(40k4B1)	У
(0:1:-1:-1:1:-1:0:1:-2)	40/2	(40k4B1)	У
(0:1:-1:0:0:-1:0:-1:-1:0)	40/2	(40k4B1)	У
(0:1:-1:0:1:-1:-1:0:-1:0)	40/2	(40k4B1)	У
(0:1:-1:0:1:-1:0:0:1:0)	40/2	(40k4B1)	У
(1:1:-1:0:2:0:1:1:1:0)	40/2	(40k4B1)	У
(0:1:-1:-1:1:-1:0:0:-1)	24/1	(24k4A1)	У
(0:1:-1:-1:1:-1:0:0:2)	6/1	(6k4A1)	У
(0:1:-1:-1:1:-1:1:0:0:-2)	8/1	(8k4A1)	n
(0:1:-1:0:1:-1:2:0:0:0)	8/1	(8k4A1)	n
(0:1:-1:-1:2:-2:-2:0:0:2)	128/1	(128k4A1)	У
(1:-1:1:1:0:2:2:0:0:-2)	128/1	(128k4A1)	У
(0:1:-1:0:-2:2:-1:0:0:-1)	96/2	(96k4E1)	У
(1:1:0:0:-2:1:1:1:1:1)	544/1		У
(0:1:-1:0:-1:-1:0:-1:-1)	128/1	(128k4A1)	n
(1:1:0:0:0:1:1:1:1:1)	128/1	(128k4A1)	n
(2:1:0:0:2:0:0:-1:-1:1)	128/1	(128k4A1)	n
(0:1:-1:0:-1:-1:1:0:-1:-1)	8/1	(8k4A1)	n

parameter	weight	four newform	rigid?
(0:1:0:0:2:-2:-2:-1:-1:1)	8/1	(8k4A1)	
(0:1:0:0:2:-2:-2:-1:-1:1) $(1:-1:0:0:0:1:1:-1:-1:-1)$	8/1	(8k4A1)	n y
(0:1:-1:0:0:-1:0:0:-1:-1)	40/2	(40k4B1)	У
(0:1:0:0:1:-1:-1:-1:1)	40/2	(40k4B1)	у
(0:1:0:0:1:1:1:1)	40/2	(40k4B1)	y
(1:1:-1:0:2:-1:1:0:1:-1)	40/2	(40k4B1)	y
(0:1:-1:0:0:0:1:0:0:-1)	$\frac{7}{32/1}$	(32k4A1)	У
(0:1:-1:0:2:-2:0:0:0:-1)	,	(32k4A1)	y
(0:1:0:0:2:-1:0:0:0:1)	32/1	(32k4A1)	у
(1:-1:0:0:0:0:1:0:0:-1)	32/1	(32k4A1)	У
(1:-1:0:1:0:0:2:0:0:1)	32/1	(32k4A1)	у
(1:1:-1:0:2:0:1:0:0:-1)	32/1	(32k4A1)	у
(0:1:-1:0:1:-1:-2:0:-1:-1)	128/1	(128k4A1)	у
(0:1:-1:0:1:-1:-1:0:1:-1)	128/1	(128k4A1)	У
(1:1:0:0:0:1:1:-1:-1:1)	128/1	(128k4A1)	У
(2:1:0:0:2:2:1:1:1)	128/1	(128k4A1)	У
(0:1:-1:0:1:-1:-1:-1:-1:-1)	5/1	(5k4A1)	У
(0:1:-1:0:1:0:0:1:1:-1)	5/1	(5k4A1)	У
(0:1:-1:0:2:-1:-1:1:0:-1)	5/1	(5k4A1)	У
(0:1:0:0:0:0:1:-1:0:1)	5/1	(5k4A1)	У
(1:-1:0:1:0:1:2:0:1:1)	5/1	(5k4A1)	У
(1:1:0:0:2:1:1:0:1:1)	5/1	(5k4A1)	У
(0:1:-1:0:1:-1:-1:0:0:-1)	6/1	(6k4A1)	У
(1:1:0:0:1:1:1:0:0:1)	6/1	(6k4A1)	У
(0:1:-1:0:1:-1:0:0:-1:-1)	32/1	(32k4A1)	У
(0:1:-1:0:1:-1:1:0:1:-1)	32/1	(32k4A1)	У
(0:1:0:0:2:0:0:1:1:1)	32/1	(32k4A1)	У
(1:-1:0:0:0:1:1:1:1:-1)	32/1	(32k4A1)	y
(0:1:-1:0:1:-1:0:0:0:0:-1)	8/1	(8k4A1)	У
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8/1 8/1	$\frac{(8k4A1)}{(8k4A1)}$	У
,	,	(8k4A1)	у
$ \begin{array}{c} (1:1:0:0:2:-1:1:-1:2:-2) \\ \hline (0:1:0:0:1:-1:0:-1:0:-1) \end{array} $	8/1	(0k4A1) $(12k4A1)$	У
$ \begin{array}{c} (0:1:0:0:1:-1:0:-1:0:-1) \\ (0:1:0:0:1:0:0:1:-1) \end{array} $	$12/1 \\ 12/1$	(12k4A1) $(12k4A1)$	У
(0:1:0:0:1:0:0:1:-1) (0:1:0:1:0:0:1:-1:-1:1)	$\frac{12/1}{12/1}$	(12k4A1) $(12k4A1)$	У
(0:1:0:1:0:0:1:-1:-1:1) (0:1:0:1:1:0:0:0:0:-1:1)	$\frac{12/1}{12/1}$	(12k4A1) $(12k4A1)$	У
(0:1:0:1:1:0:0:0:-1:1) (0:1:0:1:1:0:1:0:1:1)	$\frac{12/1}{12/1}$	(12k4A1)	y y
(1:1:0:1:2:1:2:1:1)	$\frac{12}{1}$	(12k4A1)	y
(0:1:1:1:1:1:0:0:-1:-1)	$\frac{12/1}{72/1}$	(72k4C1)	n
(0:1:1:1:1:0:0:1:1:1:1)	72/1	(72k4C1)	n
(0:2:-1:-1:1:-1:-1:-1:-1:-1:2)	$\frac{128}{1}$	(128k4A1)	n
(0:2:-1:-1:2:-2:-1:-1:1:-2)	8/1	(8k4A1)	n
=: =: =: = · =/	-/-	(

parameter	weight	four newform	rigid?
(0:2:-1:0:1:-1:-1:-1:-2:0)	8/1	(8k4A1)	n
(0:2:-1:0:1:-1:-1:-1:-1:-1)	128/1	(128k4A1)	n
(0:2:-1:0:2:-2:-1:-1:0:-1)	128/1	(128k4A1)	n
(0:2:-1:0:2:-1:-1:1:0:-1)	128/1	(128k4A1)	n
(1:2:0:0:2:0:1:-1:0:1)	128/1	(128k4A1)	n
(1:2:0:0:2:1:1:0:1:1)	128/1	(128k4A1)	n
(0:2:-1:0:1:1:0:1:1:-1)	8/1	(8k4A1)	n
(0:2:0:0:0:0:1:-2:1:-1)	8/1	(8k4A1)	n
(0:2:0:0:0:0:2:-1:0:1)	8/1	(8k4A1)	n
(0:2:-1:0:2:-1:-2:-1:-2:-1)	8/1	(8k4A1)	n
(0:2:-1:0:2:0:0:1:2:-1)	8/1	(8k4A1)	n
(0:2:0:0:0:0:1:-2:-1:1)	8/1	(8k4A1)	n
(1:-2:0:1:-1:1:2:-1:1:1)	8/1	(8k4A1)	У
(1:0:-1:-1:0:0:0:-1:-1:2)	40/2	(40k4B1)	n
(1:0:-1:-1:0:1:1:1:1:2)	40/2	(40k4B1)	n
(1:0:-1:-1:2:0:0:2:2:2)	32/1	(32k4A1)	У
(1:0:1:1:2:2:2:2:2:2:-2)	32/1	(32k4A1)	У
(1:0:0:1:1:0:-2:0:1:1)	6/1	(6k4A1)	n
(1:0:1:1:-1:2:2:-1:-1:-2)	96/4	(96k4B1)	n
(1:0:1:1:1:-2:2:1:1:2)	8/1	(8k4A1)	у
(1:1:0:1:2:1:2:1:-2:1)	24/1	(24k4A1)	у
(1:1:1:1:0:2:2:0:0:-2)	128/1	(128k4A1)	У
(2:1:1:1:2:2:2:0:0:-2)	128/1	(128k4A1)	у
(1:2:0:0:2:0:1:-1:2:-1)	128/1	(128k4A1)	у
(1:2:0:0:2:-1:1:-2:1:-1)	128/1	(128k4A1)	У

Sextic arrangement no. 5:

$$xyzt(x+y)(x+y+z+t) = 0$$

parameter	weight four newform	rigid?
(0:0:0:0:0:0:1:-2:0:-1)	32/1 $(32k4A1)$	n
(0:0:0:0:0:0:1:1:0:2)	32/1 (32k4A1)	n
(0:0:0:0:0:0:1:1:0:-1)	96/4 (96k4B1)	n
(0:0:0:0:0:0:1:-1:0:-1)	32/2 (32k4B1)	У
(0:1:-1:0:1:0:0:0:1:-1)	32/2 (32k4B1)	У
(0:1:0:1:1:0:2:1:2:1)	32/2 (32k4B1)	У
(0:0:0:0:0:0:1:1:0:1)	32/2 (32k4B1)	У
(0:1:0:1:1:0:0:1:2:1)	32/2 (32k4B1)	У

		1 10
parameter	weight four newform	rigid?
(0:0:0:0:1:0:0:0:0:-1)	8/1 $(8k4A1)$	У
(0:0:0:1:1:0:1:0:1:1)	8/1 $(8k4A1)$	У
(0:0:0:0:1:0:0:1:1)	12/1 $(12k4A1)$	У
(0:0:0:1:-1:0:0:0:1:1)	12/1 (12k4A1)	У
(0:1:0:1:0:0:1:1:2:1)	12/1 $(12k4A1)$	У
(0:0:0:0:1:0:0:1:1:-1)	40/2 (40k4B1)	У
(0:1:-1:0:0:-1:0:-1:1:-1)	40/2 (40k4B1)	У
(0:0:0:1:-2:-2:-1:0:2:1)	8/1 $(8k4A1)$	n
(0:1:-1:0:-1:1:0:0:-1:-1)	8/1 $(8k4A1)$	n
(0:2:0:0:0:1:2:0:-1)	8/1 $(8k4A1)$	n
(0:2:0:0:0:0:2:1:2:1)	8/1 $(8k4A1)$	n
(0:0:0:2:1:0:1:1:2:2)	8/1 $(8k4A1)$	n
(0:0:0:1:0:-1:-1:-1:1:1)	32/1 (32k4A1)	n
(0:0:0:1:0:2:1:2:2:1)	32/1 (32k4A1)	n
(0:0:0:1:0:-1:-2:-1:-1:1)	96/4 (96k4B1)	n
(0:0:0:1:0:-2:-2:2:0:1)	96/4 (96k4B1)	n
(0:0:0:1:0:-2:-1:-2:0:1)	32/1 $(32k4A1)$	n
(0:0:0:1:0:1:0:1:2:1)	32/1 (32k4A1)	n
(0:2:-1:0:2:-1:0:-1:2:1)	32/2 (32k4B1)	n
(0:0:0:1:0:1:-1:1:0:1)	96/4 (96k4B1)	n
(0:0:0:1:0:-2:0:2:2:1)	32/2 (32k4B1)	n
(1:-1:-1:0:0:0:-1:-2:1:-1)	32/2 (32k4B1)	n
(2:-2:0:0:0:1:2:-1:-2:-1)	32/2 (32k4B1)	n
(0:0:0:1:0:-1:1:-1:2:1)	96/4 (96k4B1)	n
(0:0:0:1:0:-1:-1:-1:0:1)	32/2 (32k4B1)	У
(1:1:0:0:2:-1:1:0:1:-1)	32/2 (32k4B1)	У
(0:0:0:1:0:-1:0:-1:1:1)	32/2 (32k4B1)	У
(0:1:0:1:1:-1:1:0:2:1)	32/2 (32k4B1)	У
(1:1:0:0:2:0:1:1:1:-1)	32/2 (32k4B1)	У
(0:0:0:1:0:-1:0:0:1:0)	12/1 $(12k4A1)$	У
(0:1:0:1:1:0:1:1:0)	12/1 (12k4A1)	У
(0:1:1:1:1:1:1:1:2:2)	12/1 (12k4A1)	У
(0:0:0:1:0:-1:0:0:1:1)	8/1 $(8k4A1)$	У
(0:1:0:0:1:0:0:1:-1)	8/1 $(8k4A1)$	У
(0:1:0:1:1:0:1:0:2:1)	8/1 $(8k4A1)$	У
(0:0:0:1:0:-1:0:1:1:1)	32/1 $(32k4A1)$	У
(0:1:0:1:1:1:1:0:2:1)	32/1 $(32k4A1)$	у
(1:-1:0:0:0:0:1:-1:-1:-1)	32/1 $(32k4A1)$	у
(0:0:0:1:0:-1:1:0:1:0)	8/1 $(8k4A1)$	у
(0:0:1:1:0:0:1:1:1:2)	8/1 $(8k4A1)$	у
(0:1:0:1:1:0:1:1:2:0)	8/1 $(8k4A1)$	у
(0:0:0:1:0:0:1:1:1:1)	8/1 $(8k4A1)$	у

parameter	weight	four newform	rigid?
(0:1:0:0:1:0:0:1:1:1)	8/1	(8k4A1)	
(0:1:0:0:1:0:0:1:1:1) (0:0:0:1:0:1:1:1)		(32k4B1)	У
,	$\frac{32}{2}$,	У
(0:1:0:1:1:1:1:2:2:1)	$\frac{32}{2}$,	У
$ \begin{array}{c} (1:1:0:0:2:1:1:1:2:1) \\ (0:0:0:1:0:1:1:1:2:1) \end{array} $	$\frac{32/2}{22/2}$		У
,	$\frac{32}{2}$	(32k4B1)	У
(0:1:-1:0:1:-1:-1:0:0:-1)	$\frac{32}{2}$,	У
(1:1:0:0:2:0:1:1:1:1)	32/2		У
(0:0:0:1:1:-2:1:-2:1:0)	8/1	(8k4A1)	n
(0:0:1:1:1:-1:1:-1:1:2)	8/1	$\frac{(8k4A1)}{(12014A1)}$	n
(0:2:-1:0:1:-1:-1:0:-1)	128/1	(128k4A1)	n
(1:2:0:0:2:1:1:0:0:1)		(128k4A1)	n
(0:0:0:1:1:-1:1:0:1:1)	32/1	(32k4A1)	У
(0:1:0:0:2:0:0:1:1:-1)	32/1		У
(0:0:0:1:1:0:0:1:1:1)	5/1	` ,	У
(0:1:0:0:0:0:1:1:1:1)	5/1	,	У
(0:1:0:1:2:1:1:1:2:1)	5/1	(5k4A1)	У
(0:0:0:1:1:0:1:1:1:-1)	8/1	(8k4A1)	n
(0:1:-2:0:0:-2:0:-1:1:-1)		(8k4A1)	У
(0:0:0:1:1:0:1:1:0)	40/2	(40k4B1)	У
(0:0:1:1:1:1:1:1:2:2)	40/2	(40k4B1)	У
(0:1:-1:0:0:-1:0:0:1:0)	40/2	(40k4B1)	У
(0:0:0:1:1:1:1:1:1:1)	6/1	(6k4A1)	У
(1:1:0:0:1:1:1:1:1)	6/1	(6k4A1)	У
(0:0:0:1:1:1:1:2:1:1)	128/1	(128k4A1)	У
(1:2:0:0:2:1:1:2:2:1)	128/1	(128k4A1)	У
(0:0:0:2:1:0:1:2:2:0)	32/2	(32k4B1)	n
(0:2:-2:0:1:-1:0:0:2:0)	32/2	(32k4B1)	n
(0:0:0:1:2:0:0:2:1:1)	8/1	(8k4A1)	n
(0:2:0:0:0:0:1:2:2:1)	8/1	(8k4A1)	У
(0:0:0:1:2:1:1:1:2:1)	128/1	(128k4A1)	у
(0:1:-1:0:-1:-1:-1:0:0:-1)	128/1	(128k4A1)	n
(1:1:0:0:0:0:1:1:1:1)	128/1	(128k4A1)	n
(0:0:0:2:0:-1:2:1:0:0)	32/2	(32k4B1)	n
(0:0:0:2:0:1:1:2:1)	32/1	(32k4A1)	у
(0:1:-1:0:1:0:0:0:1:1)	32/1	(32k4A1)	у
(0:0:1:1:0:0:1:1:0:0)	128/1	(128k4A1)	n
(0:0:1:-2:1:1:-2:1:1:1)	6/1	(6k4A1)	у
(0:0:1:-1:0:-1:0:-2:0)	8/1	(8k4A1)	у
(0:1:-1:0:1:-1:-2:0:0:-2)	8/1	(8k4A1)	y
(0:0:1:-1:0:0:-1:1:0:0)	$\frac{32}{1}$	(32k4A1)	У
(0:1:0:1:1:1:1:1:2:2)	$\frac{32}{1}$	(32k4A1)	y
(*)	9 - / 1	(32101111)	J

	n a ma ma at an	www.imb.t	form roomform	nimid?
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	parameter			rigid?
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	` ,		,	У
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	`		,	n
$ \begin{array}{c} (0:0:1:1:0:-1:1:0:2:2) & 32/1 & (32k4A1) & n \\ (0:1:-1:0:1:-1:2:0:2:0) & 32/1 & (32k4A1) & n \\ \hline (0:1:-1:0:1:-1:-1:0:-1:0) & 96/4 & (96k4B1) & n \\ \hline (0:0:1:1:0:-2:0:0:-2:2) & 96/4 & (96k4B1) & n \\ \hline (0:0:1:1:0:-1:0:0:1:2) & 32/2 & (32k4B1) & y \\ \hline (0:1:0:1:1:-1:1:-1:1:-1:2:0) & 32/2 & (32k4B1) & y \\ \hline (0:1:0:1:1:0:0:1:1:0:0:2) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:1:1:0:0:2) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:0:0:1:1:0:0:2) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:0:0:1:1:0:2) & 32/1 & (32k4A1) & p \\ \hline (0:0:1:1:0:0:1:1:0:2) & 32/1 & (32k4A1) & p \\ \hline (0:0:1:1:0:0:1:1:0:2) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:1:1:1:1:1:1:0) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:1:1:1:1:1:1:0) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:1:1:1:1:1:1:1:0) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & p \\ \hline (0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1:1) & 128/1 & (128k4A1) & p \\ \hline (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & p \\ \hline (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & p \\ \hline (0:1:0:1:2:1:2:1:2:1:1:1:1:1:1) & 128/1 & (128k4A1) & p \\ \hline (0:1:0:1:2:1:2:1:2:1:1:1:1:1:1:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:2:1:2:1:2:1:1:1:1:1:1:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:0:1:0:1:0:1:1:1:1:1:1:1:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:2:1:2:1:2:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:1:1:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:1:1:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:1:1:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:1:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:0:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1:2:0:1:1:1:1:1:1:1:1 & 12:1 & 12 \\ \hline (0:1:0:1$	`	,	(n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	` ,	n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	` '	•	` ,	n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	` ,		,	n
$\begin{array}{c} (0:1:0:1:1:-1:1:-1:1:-1:2:0) & 32/2 & (32k4B1) & y \\ \hline (0:1:-1:-1:1:-1:-1:0:0:2) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:0:0:1:1:0:0-2) & 8/1 & (8k4A1) & n \\ \hline (0:0:1:1:0:0:1:1:0:2) & 32/1 & (32k4A1) & y \\ \hline (0:1:0:1:1:-1:1:1:1:2:0) & 32/1 & (32k4A1) & y \\ \hline (0:0:1:0:1:1:-1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ \hline (0:0:1:1:0:0:1:-1:0:1:0) & 32/2 & (32k4B1) & y \\ \hline (0:1:-1:0:1:-1:1:0:1:0) & 32/2 & (32k4B1) & y \\ \hline (0:1:0:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ \hline (0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ \hline (1:-1:-1:0:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1-2) & 6/1 & (6k4A1) & y \\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n \\ \hline (0:0:1:-1:0:-1:-1:-1:0:1:0) & 8/1 & (8k4A1) & n \\ \hline (0:1:-1:0:-1:-1:-1:0:1:0) & 32/2 & (32k4B1) & n \\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:-1:0:2:2:2:2:2:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:-1:0:2:2:2:2:2:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:2:1:1:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:1:1:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:1:1:1:2:2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2:1:1:1:1:1:1:1:1:1:1:1:1:1:$,		,	n
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	` '	•	` /	У
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	У
$\begin{array}{c} (0:0:1:1:0:0:1:1:0:2) & 32/1 & (32k4A1) & y \\ (0:1:0:1:1:1:0:1:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:0:0:1:1:0:0:1:1:2:2) & 32/2 & (32k4B1) & y \\ (0:1:0:1:1:0:1:1:1:1:0:1:0) & 32/2 & (32k4B1) & y \\ (0:1:0:1:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ (0:0:1:0:1:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ (0:0:1:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ (1:-1:-1:0:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ (0:0:1:1:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ (0:0:1:-1:0:-1:-1:0:1:0) & 8/1 & (8k4A1) & y \\ (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n \\ (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n \\ (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & y \\ (0:2:-1:0:2:2:2:2:2:2:1) & 128/1 & (128k4A1) & y \\ (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n \\ (0:1:-2:0:1:1:-1:0:0) & 96/4 & (96k4B1) & n \\ (0:1:-2:0:1:-1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:-1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n \\ (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2:1:1:-2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2:1:1:1:-2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ (0:1:-2:0:1:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ (0:1:-2:0:1:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ (0:1:-2:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:$	` ,	32/2	(32k4B1)	n
$\begin{array}{c} (0:1:0:1:1:-1:1:1:1:2:0) & 32/1 & (32k4A1) & y \\ (0:0:1:1:0:0:1:1:2:2) & 32/2 & (32k4B1) & y \\ (0:1:-1:0:1:-1:1:1:1:0:1:0) & 32/2 & (32k4B1) & y \\ (0:1:0:1:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ (0:0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & p \\ (0:0:1:1:0:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ (1:-1:-1:0:0:0:0:2:-2:-2:0) & 32/2 & (32k4B1) & n \\ (0:0:1:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & p \\ (0:0:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ (0:0:1:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & p \\ (0:0:1:-1:0:-1:-1:0:1:0) & 8/1 & (8k4A1) & p \\ (0:0:1:-1:0:-1:0:1:0:1) & 32/2 & (32k4B1) & n \\ (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & p \\ (0:1:0:1:2:2:2:2:2:2:1) & 128/1 & (128k4A1) & p \\ (0:1:0:1:2:2:2:2:2:2:1) & 128/1 & (128k4A1) & p \\ (0:1:0:1:0:1:0:1:0:1:0:1:0:0) & 96/4 & (96k4B1) & n \\ (0:1:-2:0:1:1:-1:0:0) & 96/4 & (96k4B1) & n \\ (0:1:-2:0:1:1:-1:-1:0:0) & 96/4 & (8k4A1) & n \\ (0:1:-2:0:1:1:-1:-1:0:0) & 96/4 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \end{array}$	(0:0:1:1:0:0:1:1:0:-2)	8/1	(8k4A1)	n
$\begin{array}{ c c c c c c }\hline (0:0:1:1:0:0:1:1:2:2) & 32/2 & (32k4B1) & y\\ (0:1:-1:0:1:-1:1:0:1:0) & 32/2 & (32k4B1) & y\\ (0:1:0:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y\\ \hline (0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & n\\ \hline (1:-1:-1:0:0:0:0:0:2:-2:-2:0) & 32/2 & (32k4B1) & n\\ \hline (0:0:1:1:1:1:1:1:1:1:1:1:-2) & 6/1 & (6k4A1) & y\\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n\\ \hline (0:0:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n\\ \hline (0:0:1:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n\\ \hline (0:0:1:-1:0:-1:-1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:-1:0:-1:-1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline \end{array}$	(0:0:1:1:0:0:1:1:0:2)		(32k4A1)	У
$\begin{array}{c} (0:1:-1:0:1:-1:1:0:1:0) & 32/2 & (32k4B1) & y \\ (0:1:0:1:1:1:1:1:1:2:0) & 32/2 & (32k4B1) & y \\ \hline (0:0:1:1:0:0:2:2:0:2) & 32/2 & (32k4B1) & n \\ (1:-1:-1:0:0:0:0:2:-2:-2:0) & 32/2 & (32k4B1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ \hline (0:0:1:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n \\ \hline (0:0:1:-1:0:-1:-1:-1:0:1:0) & 8/1 & (8k4A1) & y \\ \hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n \\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n \\ \hline (0:1:0:1:0:1:2:2:2:2:1) & 128/1 & (128k4A1) & y \\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:2:1:2:-1:2:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:2:1:2:-1:2:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:2:1:2:-1:2:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:-1:0:0) & 96/4 & (96k4B1) & n \\ \hline (0:1:-2:0:1:-1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n \\ \hline (0:1:-2:0:1:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:2:2:1:1:1:-2) & 32/2 & (32k4B1) & n \\ \hline (0:1:-2:0:1:1:1:1:1:1:$		32/1	(32k4A1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:1:1:0:0:1:1:2:2)	32/2	(32k4B1)	у
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:-1:0:1:-1:1:0:1:0)	32/2	(32k4B1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		32/2	(32k4B1)	У
$\begin{array}{ c c c c c c }\hline (0:0:1:1:1:1:1:1:1:1:1:1:1) & 6/1 & (6k4A1) & y\\ \hline (0:0:1:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n\\ \hline (0:0:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-1:0:-1:-1:-1:0:1:0) & 8/1 & (8k4A1) & y\\ \hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:-1:0:0:0:0:-1:0:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:2:1:1:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:-2:1:0:0) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline \end{array}$	(0:0:1:1:0:0:2:2:0:2)	32/2	(32k4B1)	n
$\begin{array}{ c c c c c c c }\hline (0:0:1:1:1:1:1:1:1:1) & 24/1 & (24k4A1) & n\\ \hline (0:0:1:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-1:0:-1:-1:-1:-1:0) & 8/1 & (8k4A1) & y\\ \hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:-1:0:0:0:0:-1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:2:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline \end{array}$	(1:-1:-1:0:0:0:2:-2:-2:0)	32/2	(32k4B1)	n
$\begin{array}{ c c c c c c c }\hline (0:0:1:1:2:1:2:1:2:2:1:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-1:0:-1:-1:-1:-1:0:1:0) & 8/1 & (8k4A1) & y\\ \hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:0:1:0:0:0:-1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:2:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline \end{array}$	(0:0:1:1:1:1:1:1:1:2)	6/1	(6k4A1)	У
$\begin{array}{ c c c c c c c }\hline (0:1:-1:0:-1:-1:-1:0:1:0) & 8/1 & (8k4A1) & y\\ \hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:-1:0:0:0:0:-1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:2:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline \end{array}$	(0:0:1:1:1:1:1:1:1)	24/1	(24k4A1)	n
$\begin{array}{ c c c c c c }\hline (0:0:2:-2:0:0:-2:1:-1:0) & 32/2 & (32k4B1) & n\\ \hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:-1:0:0:0:0:-1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:2:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline \end{array}$	(0:0:1:1:2:1:2:2:1:2)	8/1	(8k4A1)	n
$\begin{array}{ c c c c c c c }\hline (0:1:0:1:0:1:0:1:0:1) & 128/1 & (128k4A1) & n\\ \hline (0:1:-1:0:0:0:-1:0:-1:-1) & 128/1 & (128k4A1) & y\\ \hline (0:1:0:1:2:2:2:2:2:1) & 128/1 & (128k4A1) & y\\ \hline (0:2:-1:0:2:-1:2:-1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:2:-1:0:2:1:2:1:2:-2) & 32/2 & (32k4B1) & n\\ \hline (0:1:-2:0:1:1:-2:1:0:0) & 96/4 & (96k4B1) & n\\ \hline (0:1:-2:0:1:-1:-1:-1:0:-2) & 8/1 & (8k4A1) & n\\ \hline (1:1:0:0:2:0:1:1:2:2) & 8/1 & (8k4A1) & n\\ \hline (0:1:-2:0:1:2:2:1:1:-2) & 32/2 & (32k4B1) & n\\ \hline \end{array}$	(0:1:-1:0:-1:-1:0:1:0)	8/1	(8k4A1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:0:2:-2:0:0:-2:1:-1:0)	32/2	(32k4B1)	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:0:1:0:1:0:1)	128/1	(128k4A1)	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:-1:0:0:0:-1:0:-1:-1)	128/1	(128k4A1)	у
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		128/1	(128k4A1)	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:2:-1:0:2:-1:2:-1:2:-2)	32/2	(32k4B1)	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		32/2	(32k4B1)	n
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:1:-2:0:1:1:-2:1:0:0)	96/4	(96k4B1)	n
(0:1:-2:0:1:2:2:1:1:-2) $32/2$ $(32k4B1)$ n	(0:1:-2:0:1:-1:-1:0:-2)	8/1	(8k4A1)	n
, , , , , , , , , , , , , , , , , , , ,	(1:1:0:0:2:0:1:1:2:2)	8/1	(8k4A1)	n
, , , , , , , , , , , , , , , , , , , ,	(0:1:-2:0:1:2:2:1:1:-2)	32/2	(32k4B1)	n
(0:1:-2:0:1:0:0:1:-1:-2) $32/2$ $(32k4B1)$ n	(0:1:-2:0:1:0:0:1:-1:-2)		(32k4B1)	n
(0:1:-2:0:2:-2:1:1:1:0) 8/1 $(8k4A1)$ n	,		(n
(0:1:-1:-1:-1:-1:-1:0:0:2) 128/1 (128k4A1) n	,			
(0:1:-1:-1:1:1:1:0:0:2) $32/1$ $(32k4A1)$ y	`	/	,	
(0:1:-1:0:0:0:1:0:1:-1) 32/1 (32k4A1) y	,	•	,	
(0:1:0:0:2:0:1:0:1:-1) $32/1$ $(32k4A1)$ y	` '		` ,	
(0:1:0:1:2:0:2:0:2:1) $32/1$ $(32k4A1)$ y	`	,	/	
(0:1:-1:0:1:-1:-1:0:-1) 5/1 (5k4A1) y	,		,	

$ \begin{array}{ c c c c c c }\hline (1:1:0:0:2:0:0:1:1:1) & 5/1 & (5k4A1) & y\\\hline (0:1:-1:0:1:-1:2:0:1:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:0:0:0:0:-1:-1) & 32/1 & (32k4A1) & y\\\hline (0:1:0:1:1:2:2:1:2:1) & 32/1 & (32k4A1) & y\\\hline (0:2:0:0:2:0:1:1:2:1) & 32/1 & (32k4A1) & y\\\hline (0:1:-1:0:1:0:0:0:0:0:-1) & 8/1 & (8k4A1) & y\\\hline (0:1:0:0:1:0:1:0:1:0:1) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:1:2:1) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:1:1:2:1:2:1) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:1:1:1:1:1:1:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:1:1:-1:0:0:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:1:1:0:0:-1:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:1:1:0:0:-1:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:1:1:0:0:-1:1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:1:1:1:0:0:-1) & 32/1 & (32k4A1) & y\\\hline (0:1:-1:0:0:0:0:1:1:-1:0:-1) & 32/1 & (32k4A1) & y\\\hline (0:1:-1:0:0:0:0:1:1:-1:0:-1) & 8/1 & (8k4A1) & y\\\hline (0:1:-1:0:0:0:0:1:1:-1:0:-1) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:1:0:0:0:2:2:2:2) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:0:0:2:2:2:2) & 8/1 & (8k4A1) & y\\\hline (0:1:0:1:1:1:0:0:0:1:-1:0:1:-1:-2) & 8/1 & (8k4A1) & y\\\hline \end{array}$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c} (0:1:-1:0:1:0:0:0:0:-1:-1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:1:2:2:1:2:1) & 32/1 & (32k4A1) & y \\ (0:2:0:0:2:0:1:1:2:1) & 32/1 & (32k4A1) & y \\ (0:1:-1:0:1:0:0:0:0:0:-1) & 8/1 & (8k4A1) & y \\ (0:1:0:0:1:0:1:0:1:0:1:1) & 8/1 & (8k4A1) & y \\ (0:1:0:1:1:1:2:1:2:1) & 8/1 & (8k4A1) & y \\ (0:1:0:1:1:1:1:2:1:2:1) & 8/1 & (8k4A1) & y \\ (0:1:-1:0:1:1:1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (0:1:-1:0:1:1:-1:0:1:1:-1) & 8/1 & (8k4A1) & y \\ (0:1:-1:0:1:1:0:0:-1:1) & 8/1 & (8k4A1) & y \\ (0:1:-1:0:1:1:0:0:0:-1:1) & 8/1 & (8k4A1) & y \\ (0:1:-1:0:1:1:1:0:0:-1) & 32/1 & (32k4A1) & y \\ (0:1:-1:0:0:0:0:-1:1:-1) & 32/1 & (32k4A1) & y \\ (0:1:-1:0:0:0:0:-1:1:-1) & 32/1 & (32k4A1) & y \\ (0:1:0:1:-1:1:1:0:0:2:2:2) & 8/1 & (8k4A1) & y \\ (0:1:0:1:0:1:1:0:0:2:2:2:2) & 8/1 & (8k4A1) & y \\ (0:1:0:1:0:1:1:0:0:2:2:2:2) & 8/1 & (8k4A1) & y \\ (0:1:0:1:0:1:1:0:1:-1:0:1:-1:-2) & 8/1 & (8k4A1) & y \\ \end{array}$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(0:1:0:0:0:-1:0:1:-1:-2) 8/1 $(8k4A1)$ y	
(0:1:0:0:1:-1:0:0:0:-1) $12/1$ $(12k4A1)$ y	
(0:1:0:1:1:0:0:0:1:1) $12/1$ $(12k4A1)$ y	
(1:1:0:1:2:0:1:1:2:1) $12/1$ $(12k4A1)$ y	
(0:1:0:0:1:1:1:1:1:1) $12/1$ $(12k4A1)$ y	
(0:1:0:1:1:1:1:1:1:1) $12/1$ $(12k4A1)$ y	
(0:1:0:0:2:0:2:0:1:-2) $32/2$ $(32k4B1)$ n	
(0:2:-2:0:1:-1:1:0:2:-2) $32/2$ $(32k4B1)$ n	
(0:1:0:0:2:2:2:1:1:-1) 8/1 $(8k4A1)$ n	
(0:2:-1:0:1:-1:1:-1:2:-1) 8/1 $(8k4A1)$ y	
(0:1:0:1:-2:1:1:1:-2:1) 9/1 $(9k4A1)$ n	
(1:1:0:0:-2:-2:1:1:1:1) $96/2$ $(96k4E1)$ y	
(0:1:0:1:-1:-1:-1:0:2:1) $128/1$ $(128k4A1)$ y	
(1:1:0:0:0:-1:1:1:0:-1) $128/1$ $(128k4A1)$ y	
(1:-1:0:0:0:-1:2:-1:0:-2) $32/2$ $(32k4B1)$ n	
(0:1:0:1:1:-2:2:-1:2:-1) 8/1 $(8k4A1)$ y	
(0:1:0:1:1:-1:1:0:2:-1) $32/1$ $(32k4A1)$ y	
(0:1:0:1:1:0:1:1:-2:0) 6/1 $(6k4A1)$ n	
(0:1:0:1:1:1:-2:1:-2:1) 6/1 $(6k4A1)$ n	
(0:1:0:1:1:1:1:1:1:-2:1) $24/1$ $(24k4A1)$ y	
(0:1:0:1:1:1:2:1:-2:1) $10/1$ $(10k4A1)$ n	
(0:1:1:1:1:-2:1:-2:2:2) $24/1$ $(24k4A1)$ y	
(0:1:1:1:1:0:0:1:1:-1) $24/1$ $(24k4A1)$ n	
(0:1:1:1:1:1:1:2:2:2) $12/1$ $(12k4A1)$ y	

parameter	weight	four newform	rigid?
(0:1:1:1:1:1:1:2:2:2:-2)	32/2	(32k4B1)	У
(0:1:1:1:2:2:2:2:2:2:-2)	128/1	(128k4A1)	У
(0:2:-1:0:2:-2:-2:-1:0:-1)	8/1	(8k4A1)	n
(0:2:-1:0:2:-1:-1:-1:1:-1)	8/1	(8k4A1)	n
(1:1:0:0:2:-1:-1:1:1:1)	8/1	(8k4A1)	n
(1:1:1:1:-2:1:1:1:1:-2)	12/1	(12k4A1)	n
(1:-1:-1:-1:0:0:0:-2:-2:2)	32/1	(32k4A1)	У
(1:1:-1:-1:2:0:0:1:1:2)	40/2	(40k4B1)	n
(1:1:0:0:-2:0:1:1:0:2)	6/1	(6k4A1)	n
(1:1:0:0:-2:-2:1:1:-2:-2)	6/1	(6k4A1)	n
(1:1:0:0:-2:0:1:1:1:1)	544/1		у
(1:1:0:0:-2:1:1:1:1:1)	12/1	(12k4A1)	У
(1:1:0:0:2:1:2:2:1:2)	8/1	(8k4A1)	У
(1:1:0:1:-2:1:-2:1:-2:1)	6/1	(6k4A1)	n
(1:1:0:1:-2:1:2:1:2:1)	8/1	(8k4A1)	У
(1:1:0:1:2:0:-2:1:2:1)	24/1	(24k4A1)	У
(1:1:0:1:2:1:-2:1:2:1)	8/1	(8k4A1)	у
(1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:	24/1	(24k4A1)	n
(1:2:1:1:2:2:2:2:2:2:2)	128/1	(128k4A1)	У

Sextic arrangement no. 6:

Equation for the arrangement of six planes:

$$xyzt(x+y+z)(x-y+2z) = 0$$

Note: These examples are isomorphic over $\mathbb{Q}[\sqrt{2}].$

parameter	weight four newform	rigid?
(1:1:1:-2:-2:2:0:2:0:0)	1568/1	n
(1:1:1:-1:-2:2:0:2:0:0)	288/1 (288k4C1)	n

Sextic arrangement no. 7:

$$xyzt(x + y + z + t)(x - y + 2z - 2t) = 0$$

parameter	weight four newform	rigid?
0:1:-1:0:-1:0:0:0:1:1)	32/1 $(32k4A1)$	n

parameter	weight four newfor	rm rigid?
(1:1:-2:0:2:1:1:-1:1:0)	32/2 (32k4B1)	n
(0:0:1:-1:0:1:0:0:-1:0)	6/1 $(6k4A1)$	У
(1:-1:0:0:0:2:0:0:-2:0)	6/1 $(6k4A1)$	У
(0:0:1:1:-2:1:-2:-2:1:-2)	32/1 (32k4A1)	n
(0:0:1:1:0:0:1:1:0:-2)	32/1 $(32k4A1)$	n
(1:1:0:0:2:0:-2:-2:0:0)	32/1 (32k4A1)	n

Sextic arrangement no. 8:

Equation for the arrangement of six planes:

$$xyzt(x+y+z)(x+2y-z+t) = 0$$

parameter	weight four newform	rigid?
(0:0:0:1:-1:0:0:-2:2:-1)	6/1 $(6k4A1)$	У
(0:0:1:1:0:1:0:-1:1:-2)	6/1 $(6k4A1)$	у
(1:0:0:1:1:-1:2:-2:2:-1)	6/1 (6k4A1)	у
(1:0:0:-1:-1:1:0:0:1:0)	32/1 (32k4A1)	n
(0:0:1:-2:1:-1:1:1:-2:1)	8/1 $(8k4A1)$	n
(0:0:2:-1:1:-2:1:2:-1:1)	8/1 $(8k4A1)$	n
(0:0:1:-1:-1:1:-1:1:-1:0)	24/1 (24k4A1)	n
(0:0:1:0:-1:-1:1:1:2:-1)	32/1 (32k4A1)	n
(0:0:1:0:-1:1:-1:1:0:-1)	288/1 (288k4C1)	n
(0:0:1:1:-1:1:-1:1:1:-2)	24/1 (24k4A1)	У
(2:0:-1:0:2:1:2:2:-2:-1)	32/2 (32k4B1)	n
(1:0:-1:0:0:0:0:0:1:1)	6/1 $(6k4A1)$	У
(1:-2:0:0:-1:-1:0:-1:-1:-1)	6/1 (6k4A1)	У
(1:0:1:0:2:2:0:2:-1:-1)	6/1 $(6k4A1)$	У
(1:0:-1:0:2:0:0:1:-1:1)	6/1 $(6k4A1)$	У

Sextic arrangement no. 9:

$$xyzt(x+y+z+t)(x+y-z-t) = 0$$

parameter	weight four newform	rigid?
(0:0:0:0:0:0:1:-1:0:-1)	8/1 (8k4A1)	У
(0:0:0:0:0:0:1:-1:0:0)	32/1 $(32k4A1)$	n

parameter	weight four newform	rigid?
parameter	_	<u> </u>
(0:0:0:0:0:0:1:1:1:0)	32/1 $(32k4A1)$	n
(0:0:0:0:1:-1:0:0:1:1)	32/1 (32k4A1)	У
(0:0:0:0:1:-1:0:1:0:1)	40/2 (40k4B1)	n
(0:0:0:0:1:-1:1:0:0:1)	40/2 (40k4B1)	n
(0:0:0:0:1:0:0:0:0:-1)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	У
(0:0:0:1:-2:0:-1:0:1:1)	32/1 (32k4A1)	У
(0:0:0:1:-1:-2:-1:2:1:1)	544/1	n
(0:0:0:1:-1:-1:1:1:1)	5/1 $(5k4A1)$	n
(0:0:0:1:-1:0:-1:0:1:-1)	32/1 $(32k4A1)$	У
(0:0:0:1:-1:0:-1:0:1:1)	32/2 (32k4B1)	n
(0:1:-1:-1:1:-1:1:0:0:-2)	32/1 $(32k4A1)$	n
(0:0:0:1:0:1:1:1)	8/1 $(8k4A1)$	У
(0:0:0:1:1:0:-1:0:1:1)	96/4 (96k4B1)	n
(0:0:0:2:-1:0:-2:0:2:-2)	32/2 (32k4B1)	У
(0:0:1:1:-1:-1:1:1:-1:-1)	24/1 (24k4A1)	n
(0:0:1:1:1:-1:1:-1:1:1)	24/1 (24k4A1)	n
(0:0:1:-2:2:-1:-2:1:2:-1)	6/1 $(6k4A1)$	У
(0:0:1:1:-1:-1:1:1:-1:2)	12/1 $(12k4A1)$	n
(0:0:1:-1:-1:-1:1:1:0)	8/1 $(8k4A1)$	n
(0:0:1:1:-1:0:0:0:0:0:-1)	24/1 $(24k4A1)$	n
(0:0:1:1:-1:-1:-1:1:1:-2)	5/1 $(5k4A1)$	n
(0:0:1:1:-1:-1:1:0:0:0)	8/1 $(8k4A1)$	У
(0:0:1:1:0:-1:0:0:1:-2)	14/2 (14k4A1)	n
(0:0:1:1:0:-1:0:0:1:2)	8/1 $(8k4A1)$	у
(0:0:1:1:1:-1:1:-1:2)	8/1 $(8k4A1)$	у
(0:0:1:2:-2:-1:2:1:-2:-1)	14/2 (14k4A1)	У
(0:1:-2:-2:1:-2:2:-1:1:-2)	288/1 ($288k4C1$)	n
(0:1:-2:0:1:-2:0:1:1:0)	8/1 $(8k4A1)$	у
(0:1:-2:1:-1:2:1:-1:-2:-1)	6/1 $(6k4A1)$	У
(0:1:-2:1:1:2:1:-1:-2:1)	6/1 $(6k4A1)$	у
(0:1:-1:-1:-1:1:0:0:-2)	8/1 (8k4A1)	у
(0:1:-1:-1:0:0:1:0:2:-2)	128/1 $(128k4A1)$	n
(0:1:-1:-1:1:0:0:0)	128/1 $(128k4A1)$	у
(0:1:-1:0:1:1:0:0:-1:-2)	96/4 (96k4B1)	n
(0:1:-1:0:-1:1:0:0:-1:0)	128/1 $(128k4A1)$	n
(0:1:-1:0:0:1:0:0:-1:0)	6/1 $(6k4A1)$	у
(0:1:-1:0:-1:1:0:0:-1:-1)	32/1 $(32k4A1)$	y
(0:1:-1:0:0:2:0:0:-2:0)	12/1 (12k4A1)	n
(0:1:-1:0:0:1:0:0:-1:-1)	$\frac{32}{2}$ $\frac{(32k4B1)}{(32k4B1)}$	n
(0:1:0:1:0:0:1:0:0:1:1)	$\frac{32/2}{32/1} \frac{(32k4A1)}{(32k4A1)}$	у
(0:1:0:1:1:1:1:1:0:1) $(0:1:-1:0:1:0:0:0:0:0:-1)$	8/1 (8k4A1)	
(0.1. 1.0.1.0.0.0.01)	0/1 (064711)	У

parameter	weight four newform	rigid?
(0:1:-1:0:2:0:0:0:0:-2)	8/1 $(8k4A1)$	у
(0:1:-1:1:1:1:1:0:-2:0)	8/1 $(8k4A1)$	У
(0:1:0:1:-1:0:1:1:-2:0)	128/1 (128k4A1)	n
(0:1:0:1:-1:0:1:1:-2:1)	8/1 $(8k4A1)$	У
(0:1:1:1:-1:-1:1:2:-2:2)	6/1 $(6k4A1)$	У
(0:1:1:1:1:-1:1:-2:2:0)	128/1 (128k4A1)	У
(0:1:1:1:1:-1:1:-2:2:2)	8/1 $(8k4A1)$	У
(0:1:1:1:1:1:-1:1:0:0:2)	128/1 (128k4A1)	n
(0:1:1:1:2:-2:2:-2:2:2)	6/1 $(6k4A1)$	у
(0:2:-1:-1:-2:-1:1:-1:1:-2)	6/1 $(6k4A1)$	У
(0:2:-1:-1:1:-1:1:-1:1:-2)	12/1 (12k4A1)	n
(1:1:1:1:-1:-2:-1:1:2:2)	24/1 (24k4A1)	n
(1:-1:-1:-1:0:0:0:-2:2:-2)	32/2 (32k4B1)	У
(1:1:1:1:1:-2:2:-1:1:1)	72/1 (72k4C1)	n
(1:1:1:1:1:-2:-1:2:1:1)	72/1 (72k4C1)	n

Sextic arrangement no. 0 (cube):

Equation for the arrangement of six planes:

$$xyzt(x+y+z)(x+y+t) = 0$$

parameter	weight	four newform	rigid?
(0:1:0:0:1:-2:0:0:1:2)	32/2	(32k4B1)	n
(0:0:0:0:0:0:1:-1:1:0)	8/1	(8k4A1)	У
(0:1:0:0:1:-1:1:0:1:0)	8/1	(8k4A1)	у
(0:1:0:0:1:0:0:0:0:-1)	8/1	(8k4A1)	У
(0:1:0:0:1:0:1:0:1:1)	8/1	(8k4A1)	У
(0:1:0:0:1:0:1:1:1:0)	8/1	(8k4A1)	у
(0:1:0:0:1:1:1:1:1:1)	8/1	(8k4A1)	у
(0:0:0:0:0:0:1:1:0:0)	8/1	(8k4A1)	У
(0:0:0:0:0:0:1:1:1:1)	8/1	(8k4A1)	у
(0:1:0:0:1:-1:0:0:0:-1)	8/1	(8k4A1)	у
(0:1:0:0:1:-1:0:0:1:0)	8/1	(8k4A1)	у
(0:1:0:0:1:0:0:1:1)	8/1	(8k4A1)	у
(1:1:0:0:2:0:1:1:0:0)	8/1	(8k4A1)	У
(0:0:0:0:0:0:1:1:0:1)	8/1	(8k4A1)	У
(0:1:0:0:1:0:0:1:1:1)	8/1	(8k4A1)	у
(0:0:0:0:0:0:1:1:1)	32/1	(32k4A1)	у
(0:1:0:0:1:-1:0:0:-1:-1)	32/1	(32k4A1)	у
(0:1:0:0:1:-1:0:0:1:1)	32/1	(32k4A1)	у

parameter	weight four newform	rigid?
		1
(0:2:0:0:2:0:0:1:1:1)	32/1 $(32k4A1)$	У
(1:1:0:0:2:-1:1:0:0:-1)	32/1 $(32k4A1)$	У
(1:1:0:0:2:0:1:1:1)	32/1 (32k4A1)	У
(0:0:0:0:1:-2:0:-2:2:-2)	32/2 (32k4B1)	n
(0:0:0:1:0:0:-1:2:-1:-2)	32/2 (32k4B1)	n
(0:0:0:1:0:0:-1:2:1:0)	32/2 (32k4B1)	n
(0:0:0:0:1:-2:0:-2:1:-1)	8/1 $(8k4A1)$	У
(0:0:0:1:0:1:0:2:1:0)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	n
(0:1:-1:0:1:0:0:0:-1:1)	8/1 (8k4A1)	У
(0:1:0:0:0:0:1:1:1:-1)	8/1 $(8k4A1)$	n
(0:1:0:0:2:-2:1:-1:1:-1)	8/1 $(8k4A1)$	У
(0:1:0:1:1:2:1:1:2:0)	8/1 $(8k4A1)$	n
(0:0:0:0:2:-1:-1:-1:-2)	96/4 (96k4B1)	n
(0:0:0:0:1:-1:-1:0:0:-2)	8/1 $(8k4A1)$	У
(0:0:0:1:0:-2:2:0:1:-1)	8/1 $(8k4A1)$	У
(0:1:-1:0:1:-1:-1:0:1:-1)	8/1 $(8k4A1)$	У
(0:1:-1:0:1:1:-1:0:1:1)	8/1 $(8k4A1)$	У
(0:1:0:0:2:0:2:1:1:2)	8/1 $(8k4A1)$	у
(0:2:0:0:1:1:1:2:2:2)	8/1 $(8k4A1)$	у
(0:0:0:0:1:-1:0:-1:1:0)	40/2 (40k4B1)	у
(0:0:0:1:0:1:0:1:0)	40/2 (40k4B1)	у
(0:1:-1:0:1:-2:1:-1:1:0)	40/2 (40k4B1)	у
(0:1:-1:0:1:-1:0:-1:0:-1)	40/2 (40k4B1)	у
(0:1:-1:0:1:-1:1:-1:1:1)	40/2 (40k4B1)	у
(0:1:-1:0:1:0:0:0:0:1)	40/2 (40k4B1)	у
(0:0:0:0:1:-1:0:0:0:-1)	32/2 (32k4B1)	у
(0:0:0:0:0:1:0:0:1:1)	32/2 (32k4B1)	у
(0:0:0:1:0:-1:1:0:1:-1)	32/2 (32k4B1)	у
(0:0:0:1:0:-1:2:0:1:0)	32/2 (32k4B1)	у
(0:0:0:1:0:0:1:1:0:0)	32/2 (32k4B1)	у
(0:0:0:1:0:0:1:1:1:1)	32/2 (32k4B1)	у
(0:0:0:0:1:1:1:1)	5/1 $(5k4A1)$	y
(0:0:0:1:0:0:1:1:0:1)	5/1 $(5k4A1)$	y
(0:1:-1:0:1:0:0:1:1:1)	5/1 $(5k4A1)$	y
(0:1:0:0:0:0:1:1:0:1)	5/1 $(5k4A1)$	y
(0:1:0:1:1:-1:1:0:2:-1)	5/1 $(5k4A1)$	y
(1:-1:0:0:-1:0:0:-1:-1:-1)	5/1 $(5k4A1)$	y
(0:0:0:0:0:1:0:0:1:1:2)	8/1 (8 <i>k</i> 4 <i>A</i> 1)	n
(0:0:0:1:0:0:1:2:0:1)	8/1 $(8k4A1)$	n
(0:1:0:0:0:0:2:1:1:2)	8/1 (8k4A1)	n
(0:1:0:1:1:1:1:1:2:-1)	8/1 (8k4A1)	n
(0:2:-1:0:2:0:0:1:2:1)	8/1 (8k4A1)	n
· = · · · · · = · = · = /	-, (=:===)	

		C	:: 19
parameter		four newform	rigid?
(0:0:0:0:1:0:1:0:0)	12/1	,	У
(0:0:0:1:0:-1:0:-1:1:-1)	12/1	,	У
(0:1:0:0:0:-1:0:0:1:0)	12/1	,	У
(0:1:0:1:1:0:0:0:1:-1)	12/1	` ,	У
(0:1:0:1:1:0:1:0:2:1)	12/1		У
(1:1:0:0:1:0:1:0:0)	,	(12k4A1)	У
(0:0:0:0:1:0:1:2:0:1)	,	(32k4A1)	У
(0:0:0:1:0:-2:1:-1:0:-2)	,	(32k4A1)	У
(0:0:0:1:0:-1:0:0:-1:-2)	32/1	'	У
(0:0:0:1:0:-1:1:0:-1:-1)	32/1		У
(0:1:0:0:0:-1:0:1:-1:-1)	32/1		У
(0:1:0:0:0:-1:0:1:1:1)		(32k4A1)	У
(0:0:0:0:2:0:0:1:2:1)	8/1	` ,	n
(0:0:0:2:0:2:1:0:1)	,	(8k4A1)	n
(0:0:0:2:0:0:2:1:1:2)	,	(8k4A1)	n
(0:1:-2:0:1:-1:0:1:1:1)	8/1	,	n
(0:1:-2:0:1:0:0:1:1:2)	8/1	(8k4A1)	n
(0:1:0:0:-1:0:1:1:-1:1)	8/1	(8k4A1)	n
(0:0:0:1:-1:-1:1:0:1:-1)	128/1	(128k4A1)	У
(0:0:0:1:-1:0:1:1:1:1)	128/1		У
(0:0:0:1:-2:-1:1:0:-1:-1)	128/1	` /	У
(0:0:0:2:-1:-1:2:0:0:-1)		(128k4A1)	У
(0:0:1:2:0:-1:2:0:1:-2)	128/1	` ,	У
(0:0:1:2:0:0:1:1:0:-2)	128/1	(128k4A1)	У
(0:1:0:1:-1:0:0:-1:2:-1)	128/1	(128k4A1)	У
(0:1:0:1:-1:0:0:1:2:1)	128/1		У
(0:0:0:1:-2:-1:2:0:-1:0)	8/1	(8k4A1)	n
(0:1:-2:0:2:-2:1:1:1:1)	8/1	,	У
(0:1:0:1:-1:0:-1:1:2:0)		(8k4A1)	n
(0:0:0:1:-1:-1:-2:0:0:-1)	24/1	\	n
(0:0:0:1:-1:-1:2:0:0:-1)	40/3	(40k4A1)	У
(0:0:1:1:0:0:1:1:0:-2)	40/3	(40k4A1)	У
(0:0:1:1:0:0:1:1:0:2)	24/1	` '	n
(0:1:-1:0:2:-1:1:1:0:1)	40/3	(40k4A1)	У
(0:1:0:1:0:0:1:1:-1:1)	24/1	(24k4A1)	n
(0:0:0:1:-1:-1:1:-1:2:0)	24/1	(24k4A1)	n
(0:1:-1:-1:1:0:0:0:0:1)	24/1	(24k4A1)	n
(0:1:-1:0:2:-1:1:0:1:0)	24/1	(24k4A1)	n
(0:1:0:1:0:1:0:1:1:0)	24/1	(24k4A1)	n
(0:1:1:1:1:1:1:1:1:1)	24/1	(24k4A1)	n
(0:1:1:1:1:1:2:1:2:1)	24/1	(24k4A1)	n
(0:0:0:1:-1:-1:1:0:0:-1)	6/1	(6k4A1)	У

	• 1 4	C C	19
parameter		four newform	rigid?
(0:0:1:1:0:0:1:1:0:-1)	6/1	(6k4A1)	У
(0:1:0:1:0:0:1:1:2:1)	6/1	(6k4A1)	У
(0:1:1:1:1:1:1:2:2:1)	6/1	(6k4A1)	У
(0:0:0:1:0:-2:-1:0:-1:2)	96/4	(96k4B1)	n
(0:0:0:1:0:2:0:2:1)	32/2	(32k4B1)	n
(0:0:0:1:0:-1:2:1:0:0)	8/1	(8k4A1)	У
(0:1:-1:0:1:0:0:0:2:2)	8/1		У
(0:1:0:0:0:0:1:2:1:2)	8/1	(8k4A1)	У
(0:1:0:0:2:0:1:2:1:2)	8/1	(8k4A1)	У
(0:1:0:1:1:0:2:2:2:2)	8/1	(8k4A1)	У
(1:-1:-1:0:0:0:1:-2:-1:0)	8/1	(8k4A1)	У
(0:0:0:1:0:0:-1:1:-1:-1)	32/1	(32k4A1)	У
(0:0:0:1:0:0:-1:1:0:0)	32/1	(32k4A1)	У
(0:1:-1:0:1:0:0:0:1:-1)	32/1	(32k4A1)	У
(0:1:-1:0:1:1:0:0:1:0)	32/1	(32k4A1)	У
(0:1:0:0:0:0:1:-1:1:1)	32/1	(32k4A1)	У
(0:1:0:0:2:1:2:1:1)	32/1	(32k4A1)	У
(0:0:0:1:1:-2:1:-2:1:-2)	8/1	(8k4A1)	n
(0:0:0:1:1:0:-1:0:-1:-2)	8/1	(8k4A1)	n
(0:0:0:1:1:0:1:0:1:2)	8/1	(8k4A1)	n
(0:0:0:1:1:0:1:2:1:0)	8/1	(8k4A1)	n
(0:0:1:-1:0:-1:-1:1:-1:0)	8/1	(8k4A1)	n
(0:2:-1:0:1:-1:0:-1:2:0)	8/1	(8k4A1)	n
(0:0:0:2:-2:-1:2:-1:2:0)	32/1	(32k4A1)	n
(0:1:-2:0:-1:-1:-1:-1:1:0)	6/1	(6k4A1)	У
(0:1:-2:0:-1:-1:1:-1:1:2)	6/1	(6k4A1)	У
(0:0:0:1:1:-1:1:-1:1:-1)	5/1	(5k4A1)	У
(0:0:0:1:1:0:0:0:0:-1)	5/1	(5k4A1)	у
(0:0:0:1:1:0:1:0:1:1)	5/1		у
(0:0:0:1:1:0:1:1:0)	5/1	(5k4A1)	у
(0:0:1:-1:0:0:-1:1:-1:0)	5/1	(5k4A1)	У
(0:1:-1:0:0:-1:0:-1:1:0)	5/1	(5k4A1)	У
(0:0:0:1:2:-1:2:2:1:0)	6/1	(6k4A1)	У
(0:1:-2:1:1:-2:2:1:2:1)	6/1	(6k4A1)	у
(0:1:-1:0:-1:-1:-2:0:1:0)	6/1	(6k4A1)	У
(0:0:0:1:2:0:0:0:1:-1)	8/1	(8k4A1)	У
(0:0:0:1:2:0:1:0:2:1)	8/1	(8k4A1)	у
(0:0:0:2:1:0:2:1:1:0)	8/1	(8k4A1)	n
(0:0:1:-2:0:0:-2:1:-2:-1)	8/1	(8k4A1)	у
(0:0:1:-2:0:1:-2:2:-2:1)	8/1	(8k4A1)	у
(0:1:-2:0:0:-2:0:-1:1:0)	8/1	(8k4A1)	у
(0:0:2:2:1:1:1:2:2:-2)	24/1	(24k4A1)	У

parameter	weight	four newform	rigid?
-			_
(0:2:-2:-2:1:-1:-1:0:0:2)	24/1	(24k4A1)	У
(0:0:1:-2:1:1:-2:1:-1:1)	14/2	(14k4A1)	n
(0:0:1:-1:-2:0:0:1:-1:0)	14/2	'	n
(0:0:1:-1:-2:1:-1:2:-2:0)	14/2	(14k4A1)	n
(0:0:1:2:1:1:1:1:2:-1)	14/2	(14k4A1)	n
(0:1:-2:-1:0:-2:0:-1:0:1)	14/2	(14k4A1)	n
$ \begin{array}{c} (0:1:-2:1:2:-2:2:-1:2:1) \\ (0:0:1:-2:2:0:0:1:-2:1) \end{array} $	$\frac{14/2}{24/1}$	\ /	n
,	$\frac{24}{1}$	(24k4A1)	n
(0:1:-2:-2:0:-2:0:-1:-1:2)	24/1	(24k4A1)	n
(0:0:1:1:-1:1:1:1:0)	96/4	(96k4B1)	n
(0:0:1:-1:-1:0:0:2:-1:1)	$\frac{20}{1}$	(20k4A1)	У
(0:0:1:1:1:1:2:2:1:2)	$\frac{20}{1}$	(20k4A1)	У
(0:1:-1:-1:0:-1:0:0:1:2)	$\frac{20}{1}$	(20k4A1)	У
(0:1:-1:1:2:-1:1:1:2:1)	$\frac{20/1}{22/2}$		У
(0:0:1:-1:-1:1:-1:1:-1:0)	$\frac{32}{2}$	(32k4B1)	У
(0:0:1:1:1:1:1:1:0)	$\frac{32/2}{0.1}$	(32k4B1)	У
(0:0:1:1:-1:0:0:1:1:1:1)	9/1	(9k4A1)	У
(0:1:1:1:0:0:1:-1:2:-1)	9/1	(9k4A1)	У
(0:0:1:1:1:1:1:1:1:1:-2)	28/2	(28k4A1)	n
$ \begin{array}{c} (0:2:1:1:1:-1:-1:1:1:-2) \\ \hline (0:1:-2:0:0:0:-1:-1:1:-1) \end{array} $	6/1	$\frac{(168k4A1)}{(6k4A1)}$	n
(0:1:-2:0:0:0:-1:-1:1:-1) (0:1:-2:0:0:0:-1:1:1:1)	$6/1 \\ 6/1$,	У
(0:1:-2:0:0:0:-1:1:1:1) (0:1:-2:1:1:0:0:-1:2:-1)	$\frac{6}{1}$	(6k4A1)	У
(0:1:-2:1:1:0:0:-1:2:-1) (0:1:-2:1:1:0:0:1:2:1)	$\frac{6}{1}$	(6k4A1)	У
(0:1:2:1:1:0:0:1:2:1) (0:2:-1:0:0:0:1:-1:2:2)	6/1	(6k4A1)	У
(0:2:-1:0:0:0:1:-1:2:2) (0:2:-1:0:0:0:1:1:0:2)	$\frac{6}{1}$	(6k4A1)	y y
(0:1:-2:0:1:1:0:2)	8/1	$\frac{(8k4A1)}{(8k4A1)}$	у
(0:1:0:0:-1:-1:1:1:1:2)	,	(8k4A1)	n y
(0:1:-2:0:2:1:-1:1:-1)	$\frac{6}{1}$	$\frac{(6k4A1)}{(6k4A1)}$	У
(0:1:-1:0:0:0:-2:0:1:-1)	$\frac{6}{1}$	$\frac{(6k4A1)}{(6k4A1)}$	У
(0:1:-1:0:0:0:-1:1) (0:1:-1:1:1:1:-1:0:2:0)		(6k4A1)	y
(0:1:0:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1	6/1	(6k4A1)	y
(0:2:-1:0:1:1:-1:1:2:1)	6/1	(6k4A1)	y
(0:1:-1:0:0:0:-1:0:1:0)	$\frac{12}{1}$	(12k4A1)	У
(0:1:-1:0:0:0:1:0:1:2)	$\frac{-2}{12}$	(12k4A1)	y
(0:1:-1:1:1:-2:2:0:2:0)	$\frac{12}{1}$	(12k4A1)	У
(0:1:-1:1:1:0:0:0:2:0)	$\frac{-2}{12}$	(12k4A1)	У
(0:1:0:1:2:-1:2:1:2:0)	12/1	(12k4A1)	y
(0:1:0:1:2:1:2:1:2:2)	$\frac{-2}{12}$	(12k4A1)	y
(0:1:-1:1:-2:-2:2:0:2:0)	$\frac{7}{24/1}$	(24k4A1)	n
(0:1:0:0:1:-1:-1:0:0:-2)	128/1	(128k4A1)	У
(0:1:0:0:1:-1:-1:0:1:-1)	128/1	(128k4A1)	y
(/ -	(===::===)	J

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	parameter	weight	four newform	rigid?
$ \begin{array}{c} (0:1:0:0:1:-2:-1:-1:0:-1) & 128/1 & (128k441) & y \\ (0:2:0:0:2:-1:-1:0:0:-1) & 128/1 & (128k441) & y \\ (1:1:0:0:2:-1:1:0:0:-1) & 128/1 & (128k441) & y \\ (1:1:0:0:2:-1:1:0:0:1) & 128/1 & (128k441) & y \\ (0:1:0:0:1:-1:-1:0:0:-1) & 6/1 & (6k441) & y \\ (0:1:0:0:1:-1:-1:0:1:0:1) & 6/1 & (6k441) & y \\ (0:1:0:0:1:-1:-1:1:1:1:-2) & 288/1 & (28k4C1) & n \\ (0:1:0:0:1:-1:1:0:1:-1) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:0:1:-1) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:0:1:-1) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:0:1:1) & 32/1 & (32k4A1) & y \\ (0:1:0:0:0:1:-1:1:0:1:1) & 32/1 & (32k4A1) & y \\ (1:-1:0:0:0:0:0:0:-1:0:-1) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:1:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:1:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ (0:1:0:0:0:2:1:1:1:1:1 & 32/1 & (32k4A1) & y \\ ($	parameter			1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	` /	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	` ,	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	· ·	,	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	`	•	,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· ·	,	'	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, ,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	\ /	
$ \begin{array}{c} (0:1:0:0:1:1:1:1:0:1:1) & 32/1 & (32k4A1) & y \\ (1:-1:0:0:0:0:0:0:-1:0:-1) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:2:0:1:1) & 128/1 & (128k4A1) & y \\ (0:1:0:0:2:0:0:2:1:1:2:2:1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:0:0:1:1:-1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:0:0:1:1:-1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:-2:1:2:1:0) & 32/2 & (32k4B1) & n \\ (1:-1:0:0:0:-1:2:-1:-2:0) & 32/2 & (32k4B1) & n \\ (0:1:0:1:-1:0:0:-1:2:-1:1:2:2) & 6/1 & (6k4A1) & y \\ (0:1:0:1:-1:1:-2:-1:1:2:2) & 6/1 & (6k4A1) & y \\ (0:1:0:1:0:1:0:0:1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:0:1:0:0:1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:1:-1:1:0:-2:1) & 9/1 & (9k4A1) & y \\ (1:1:0:1:2:0:-2:1:2:1) & 20/1 & (20k4A1) & y \\ (0:1:1:1:1:1:1:1:1:2:2:-2) & 96/2 & (96k4E1) & y \\ (1:1:0:1:2:0:-1:1:1:1:1:1:2) & 24/1 & (24k4A1) & p \\ (0:2:-1:-1:-1:2:1:-1:1:1:1:2) & 24/1 & (24k4A1) & n \\ (0:2:-1:-1:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1$		•	` ,	
$\begin{array}{c} (1:-1:0:0:0:0:0:0:-1:0:-1) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:1:0) & 32/1 & (32k4A1) & y \\ (1:1:0:0:2:0:2:1:2:1) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:0) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:1:1:1:1:2) & 32/1 & (32k4A1) & y \\ (0:1:0:0:1:-1:2:0:1:1) & 128/1 & (128k4A1) & y \\ (0:1:0:0:2:1:1:2:2:1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:0:0:1:1:-1) & 128/1 & (128k4A1) & y \\ (1:1:0:0:2:0:0:1:1:-1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:-2:1:2:1:0) & 32/2 & (32k4B1) & n \\ (1:-1:0:0:0:-1:2:-1:-2:0) & 32/2 & (32k4B1) & n \\ (0:1:0:1:-1:1:-2:-1:1:2:2) & 6/1 & (6k4A1) & y \\ (0:1:0:1:-1:1:-1:1:2:-1) & 6/1 & (6k4A1) & y \\ (0:1:0:1:0:1:0:0:1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:0:1:2:0:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:1:-1:1:0:-2:-1) & 9/1 & (9k4A1) & y \\ (1:1:0:1:2:0:-2:1:1:2:1) & 9/1 & (9k4A1) & y \\ (0:1:1:1:1:1:1:1:1:2:2:-2) & 96/2 & (96k4E1) & y \\ (1:1:0:1:2:0:-1:1:2:1) & 9/1 & (9k4A1) & y \\ (0:2:-1:-1:-1:-1:-1:1:1:1:2) & 24/1 & (24k4A1) & y \\ (0:2:-1:-1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1$,		` '	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·		,	_
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	`		` '	У
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,		,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,		У
$ \begin{array}{c} (0:1:0:0:1:-1:2:0:1:1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:1:1:2:2:1) & 128/1 & (128k4A1) & y \\ (1:1:0:0:2:0:0:1:1:-1) & 128/1 & (128k4A1) & y \\ (0:2:0:0:2:-2:1:2:1:0) & 32/2 & (32k4B1) & n \\ (1:-1:0:0:0:0:-1:2:-1:-2:0) & 32/2 & (32k4B1) & n \\ (0:1:0:1:-1:-2:-1:1:2:2) & 6/1 & (6k4A1) & y \\ (0:1:0:1:-1:1:-1:1:2:-1) & 6/1 & (6k4A1) & y \\ (0:1:0:1:0:1:-1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:0:1:0:0:1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:2:0:-2:-1) & 9/1 & (9k4A1) & y \\ (1:1:0:1:2:0:-2:1:1) & 20/1 & (20k4A1) & y \\ (1:1:0:1:2:0:-1:1:2:1) & 9/1 & (9k4A1) & y \\ (0:1:1:1:1:1:1:1:1:2:2:-2) & 96/2 & (96k4E1) & y \\ (1:2:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1$,		,	У
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·		` '	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	•	` ,	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,		,	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· ·	,	'	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	-		n
$\begin{array}{c} (0:1:0:1:0:1:0:0:1:1:-2:1) & 10/1 & (10k4A1) & y \\ (0:1:0:1:1:-1:1:0:-2:-1) & 9/1 & (9k4A1) & y \\ (1:1:0:1:2:0:-2:1:2:1) & 20/1 & (20k4A1) & y \\ (1:1:0:1:2:0:-1:1:2:1) & 9/1 & (9k4A1) & y \\ (0:1:1:1:1:1:1:1:2:2:-2) & 9/1 & (9k4A1) & y \\ (0:1:1:1:1:1:1:1:1:2:2:-2) & 9/1 & (9k4A1) & y \\ (1:-2:1:1:-1:2:2:-1:-1:-1:-2) & 9/1 & (9k4A1) & y \\ (0:2:-1:-1:-1:-1:-1:-1:1:1:2) & 2/1 & (24k4A1) & y \\ (0:2:-1:-1:2:-1:-1:1:1:1:2) & 6/1 & (6k4A1) & y \\ (0:2:-1:-1:2:2:2:1:1:2) & 2/1 & (24k4A1) & n \\ (0:2:-1:0:-2:-1:-2:-1:2:0) & 8/1 & (8k4A1) & n \\ (1:1:0:0:-2:0:1:1:0:1) & 10/1 & (10k4A1) & y \\ (1:1:0:0:-2:0:1:1:1:1:1) & 2/1 & (24k4A1) & n \\ (1:1:0:0:-2:0:1:1:1:1:1) & 2/1 & (24k4A1) & n \\ (1:1:0:0:-2:0:1:1:1:1:1) & 2/1 & (24k4A1) & y \\ (1:1:0:0:-2:0:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) $,	,	,	У
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		•	,	У
$\begin{array}{c} (1:1:0:1:2:0:-2:1:2:1) & 20/1 & (20k4A1) & y \\ (1:1:0:1:2:0:-1:1:2:1) & 9/1 & (9k4A1) & y \\ (0:1:1:1:1:1:1:1:2:2:-2) & 96/2 & (96k4E1) & y \\ (1:-2:1:1:-1:2:2:-1:-1:-1:-2) & 96/4 & (96k4B1) & n \\ (0:2:-1:-1:-1:-1:-1:1:1:2) & 24/1 & (24k4A1) & y \\ (0:2:-1:-1:2:-1:-1:1:1:2) & 6/1 & (6k4A1) & y \\ (0:2:-1:-1:2:2:2:1:1:2) & 24/1 & (24k4A1) & n \\ (0:2:-1:0:-2:-1:-2:-1:2:0) & 8/1 & (8k4A1) & n \\ (1:1:0:0:-2:0:1:1:0:0) & 6/1 & (6k4A1) & n \\ (1:1:0:0:-2:0:1:1:1:0:1) & 10/1 & (10k4A1) & y \\ (1:1:0:0:-2:0:1:1:1:1:1) & 24/1 & (24k4A1) & n \\ (1:1:0:0:-2:0:1:1:1:1:1) & 24/1 & (24k4A1) & y \\ (1:1:0:0:-2:0:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:$,		,	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	,	У
$ \begin{array}{c} (0:1:1:1:1:1:1:1:2:2:-2) & 96/2 & (96k4E1) & y \\ (1:-2:1:1:-1:2:2:-1:-1:-2) & 96/4 & (96k4B1) & n \\ (0:2:-1:-1:-1:-1:-1:1:1:2) & 24/1 & (24k4A1) & y \\ (0:2:-1:-1:2:-1:-1:1:1:2) & 6/1 & (6k4A1) & y \\ (0:2:-1:-1:2:2:2:2:1:1:2) & 24/1 & (24k4A1) & n \\ (0:2:-1:-1:2:2:2:2:1:1:2) & 24/1 & (24k4A1) & n \\ (0:2:-1:0:-2:-1:-2:-1:2:0) & 8/1 & (8k4A1) & n \\ (1:1:0:0:-2:0:1:1:0:0) & 6/1 & (6k4A1) & n \\ (1:1:0:0:-2:0:1:1:0:1) & 10/1 & (10k4A1) & y \\ (1:1:0:0:-2:0:1:1:1:1) & 40/3 & (40k4A1) & n \\ (1:1:0:0:-2:0:1:1:1:1) & 24/1 & (24k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:-2:1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:1:1:1:1:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:1) & 8/1 & (8k4A1) & y \\ (1:1:0:0:0:2:-1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:$,	,	` ,	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	,	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	` ,	,	,	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		96/4	, ,	n
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:2:-1:-1:-1:-1:1:1:2)		, ,	У
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0:2:-1:-1:2:-1:-1:1:1:2)	6/1	(6k4A1)	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:2:-1:-1:2:2:2:1:1:2)	24/1	(24k4A1)	n
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0:2:-1:0:-2:-1:-2:-1:2:0)	8/1	(8k4A1)	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1:1:0:0:-2:0:1:1:0:0)	6/1	(6k4A1)	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1:1:0:0:-2:0:1:1:0:1)	10/1	(10k4A1)	У
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1:1:0:0:-2:0:1:1:1:0)	40/3	(40k4A1)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1:1:0:0:-2:0:1:1:1:1)		(24k4A1)	у
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1:1:0:0:-2:1:1:1:1:1)	8/1	(8k4A1)	
(1:1:0:0:2:-1:-1:0:0:1) 8/1 (8k4A1) y	,	,	,	
	,		,	
	(1:1:0:1:-2:1:2:1)	40/2	(40k4B1)	у

parameter	weight four newform	n rigid?
(1:1:0:1:-1:1:-2:1:2:1)	9/1 $(9k4A1)$	n
(1:1:0:1:2:1:-2:1:2:1)	12/1 $(12k4A1)$	У
(1:1:1:1:-2:1:2:1:2:1)	24/1 (24k4A1)	n
(1:1:1:1:-2:1:1:1:1:-1)	24/1 $(24k4A1)$	n
(1:1:2:2:-2:2:2:2:0)	32/1 $(32k4A1)$	n
(1:1:2:2:0:2:2:2:0)	32/2 (32k4B1)	n

Appendix C

Weight four newforms

The following table contains coefficients a_p for all primes $p \leq 97$ of weight four newforms with rational coefficients for $\Gamma_0(N)$ with $N \leq 2000$ (and for a few levels N > 2000). They have been computed with the help of W. Stein's package HECKE which is included in the MAGMA computer algebra system ([112]). As mentioned in 1.8.3, for some levels the data is missing due to lack of computer memory. These are

```
1849 = 43 \cdot 43,
                       1853 = 17 \cdot 109
                                              1883 = 7 \cdot 269
                                                                     1897 = 7 \cdot 271,
1903 = 11 \cdot 173,
                       1909 = 23 \cdot 83
                                              1919 = 19 \cdot 101,
                                                                     1921 = 17 \cdot 113,
1927 = 41 \cdot 47
                       1937 = 13 \cdot 149
                                              1939 = 7 \cdot 277,
                                                                     1943 = 29 \cdot 67
1957 = 19 \cdot 103,
                      1961 = 37 \cdot 53,
                                              1963 = 13 \cdot 151,
                                                                     1967 = 7 \cdot 281,
1969 = 11 \cdot 179,
                      1981 = 7 \cdot 283,
                                              1985 = 5 \cdot 397,
                                                                     1991 = 11 \cdot 181.
```

The first column of the table contains my notation of weight four newforms for $\Gamma_0(N)$ (where N/k simply denotes the k-th newform for $\Gamma_0(N)$). I did not include Stein's notation in the table (since this would have required a lot of handwork) but only whenever a weight four newform occurs somewhere else in this thesis.

As explained in 1.7.3 some newforms are closely related by twisting. Their coefficients differ only in sign, depending on certain Legendre symbols. The second column of the table contains the twist of minimal level for the current newform if there is such a twist. The search for twists was performed with the help of a C++ program. The last 25 columns contain the coefficients of the newforms for the first 25 primes.

It is difficult to estimate the total computing time that was needed to produce the table. One level ~ 2000 affords around 6 hours on a 3 Gigahertz machine so the total time should be measured in months. However, the main problem is computer memory. To enlarge the table we would have to use significantly more memory than 2 Gigabytes (which is at present still rather expensive).

This is a simplified version of the MAGMA script that I used:

```
for i := 1 to 2000 do
   M := ModularForms(GammaO(i),4);
    SetPrecision(M, 97);
   C := CuspidalSubspace(M);
    for j := 1 to NumberOfNewformClasses(C) do
        f := Newform(C,j);
        if BaseRing(Parent(f)) eq RationalField() then
            printf "%o %o ", Level(M), Coefficient(f,2);
            printf "%o %o ", Coefficient(f,3), Coefficient(f,5);
            printf "%o %o ", Coefficient(f,7), Coefficient(f,11);
            printf "%o %o ", Coefficient(f,13), Coefficient(f,17);
            printf "%o %o ", Coefficient(f,19), Coefficient(f,23);
            printf "%o %o ", Coefficient(f,29), Coefficient(f,31);
            printf "%o %o ", Coefficient(f,37), Coefficient(f,41);
            printf "%o %o ", Coefficient(f,43), Coefficient(f,47);
            printf "%o %o ", Coefficient(f,53), Coefficient(f,59);
            printf "%o %o ", Coefficient(f,61), Coefficient(f,67);
            printf "%o %o ", Coefficient(f,71), Coefficient(f,73);
            printf "%o %o ", Coefficient(f,79), Coefficient(f,83);
            printf "%o %o\n", Coefficient(f,89), Coefficient(f,97);
        end if;
    end for;
end for;
quit;
```

The actual script that I used restricted the considered levels to those given by theorem 1.4. I also had to restart MAGMA for single levels since there seem to be problems with garbage collection.

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
5/1		-4	2	-5	6	32	-38	26	100	-78	-50	-108	266	22	442	-514	2	500	-518	126	412	-878	600	282	-150	386
6/1		-2	-3	6	-16	12	38	-126	20	168	30	-88	254	42	-52	-96	198	-660	-538	884	792	218	-520	-492	810	1154
7/1		-1	-2	16	-7	-8	28	54	-110	48	-110	12	-246	182	128	324	-162	810	-488	244	-768	-702		-1302	730	294
8/1 9/1		0	-4 0	-2 0	24 20	-44 0	22 -70	50 0	44 56	-56 0	198	-160 308	-162 110	-198 0	52 -520	528 0	-242 0	-668 0	$\frac{550}{182}$	188 -880	728 0	$\frac{154}{1190}$	-656 884	236 0	714	-478 -1330
$\frac{9/1}{10/1}$		2	-8	5	-4	12	-58	66	-100	132	-90	152	-34	-438	32	-204	222	420		-1024	432	362	-160	72	810	1106
12/1		0	3	-18	-4	36	-10	18	-100	72	-234	-16	-226	90	452	432	414	-684	422	332	-360	26		-1188		-1054
13/1		-5	-7	-7	-13	-26	13	77	-126	-96	-82	196	-131	336	-201	-105	-432	-294	-56	478	9	98	1304	-308 -		70
14/1		-2	8	-14	-7	-28	18	74	80	-112	190	72	-346	162	-412	24	318	-200	-198	-716	392	538		-1072	810	1354
14/2		2	-2	-12	7	48	56	-114	2	-120	-54	236	146	126	-376	-12	174	138	380	-484	576	-1150	776	378	-390	-1330
15/1		3	-3	-5	20	-24	74	54	-124	-120	-78	200	-70	330	92	-24	450	24	-322	-196	-288	-430	-520		1026	-286
15/2	0./1	1	3	5	-24	52	22	-14	-20	-168	230	-288	-34	122	-188	256	-338	100	742	-84	-328	-38	-240	1212	330	866
16/1	8/1	0	4	-2	-24	44	22	50	-44	56	198	160	-162	-198	-52	-528	-242	668	550	-188	-728	154	656	-236	714	-478
17/1 18/1	6/1	-3 2	-8 0	6 -6	-28 -16	-24 -12	-58 38	$\frac{17}{126}$	116 20	-60 -168	30 -30	-172 -88	-58 254	-342 -42	-148 -52	288 96	318 -198	$\frac{252}{660}$	110 -538	-484 884	-708 -792	$\frac{362}{218}$	-484 -520	$756 \\ 492$	-774 -810	-382 1154
19/1	0/1	-3	-5	-12	11	-54	11	-93	19	183	-249	56	-250	240	-196	-168	435	195	-358	-961	-246	353	-34	234	-168	758
20/1		0	4	5	-16	-60	86	18	44	48	-186	176	254	186	-100	168	-498	-252		-1036	168	506	272		-1014	-766
21/1		4	-3	-4	-7	62	-62	84	100	-42	-10	-48	-246	-248	68	324	258	120	622	904	-678	-642	740	468	200	-1266
21/2		-3	-3	-18	7	-36	-34	42	-124	0	102	-160	398	-318	-268	240	-498	-132	398	92	-720		-1024	-204	354	-286
22/1		-2	4	14	-8	-11	-50	130	-108	-96	142	40	382	-118	220	520	238	-852	190	-12	-112	-6	304	820	202	-1406
22/2		-2	-7	-19	14	11	-72	-46	-20	-107	120	117	-201	-228	-242	-96	458	435	-668		-1113	-72	-70	358	895	409
$\frac{22}{3}$ $\frac{23}{1}$		2 -2	1 -5	-3 -6	-10 -8	$\frac{11}{34}$	-16 -57	42 -80	116 -70	189 23	-120 245	-163 103	-409 -298	$\frac{468}{95}$	110 88	144 -357	90 -414	-453 -408	20 822	-97 926	-465 335	848 -899	-742 -1322	438 -36	-273 -460	761 -964
24/1		-2	-o 3	-0 14	-8 -24	-28	-57 -74	-80 82	92	23 8	-138	80	30	282	4	240	-130	-408 596	-218	-436	856	-998		-30	-246	866
25/1		1	7	0	-24	-43	-28	91	-35	162	160	42	-314	-203	92	196	82	-280	-518	141	412	-763	510	777	-945	1246
25/2	5/1	4	-2	0	-6	32	38	-26	100	78	-50	-108	-266	22	-442	514	-2	500	-518	-126	412	878	600	-282	-150	-386
25/3	25/1	-1	-7	0	-6	-43	28	-91	-35	-162	160	42	314	-203	-92	-196	-82	-280	-518	-141	412	763	510	-777	-945	-1246
26/1		-2	3	11	19	-38	-13	-51	90	-52	-190	292	-441	312	373	-41	468	530	592	-206	-863	-322	-460	528	870	-346
26/2		2	-1	17	-35	2	13	-19	94	-72	246	-100	-11	-280	241	137	-232	-386	64	-670	55	-838	1016	420		-1154
26/3		2	4	-18	20	-48	13	66	-16	168	6	20	254	-390	-124	-468	558	-96	-826	-160	-420	362	776			-1294
$\frac{27}{1}$ $\frac{27}{2}$	27/1	3 -3	0	15 -15	-25 -25	-15 15	20 20	72 -72	$\frac{2}{2}$	114 -114	30 -30	101 101	-430 -430	-30 30	110 110	-330 330	621 -621	-660 660	-376 -376	-250 -250	-360 360	785 785	488 488	489 -489		-1105 -1105
28/1	21/1	-3 0	-10	-13	-23 -7	-40	-12	-58	26	-64	-62	252	26	6	416	-396	-450	274	-576	-476	-448	-158	-936	530	-390	214
28/2		0	4	6	7	-12	-82	-30	68	216	246	-112	110	-246	-172	192	558	540	110	140	-840	-550	-208		-1398	1586
30/1		-2	3	5	32	-60	-34	42	-76	0	6	-232	134	234	-412	-360	222	660	-490	812	120	746	152	-804	-678	194
30/2		2	3	-5	-4	-48	2	-114	140	72	210	272	-334	-198	-268	216	-78	240	302	596	-768	-478	-640	-348	210	-1534
32/1		0	0	22	0	0	-18	-94	0	0	-130	0	214	-230	0	0	518	0	830	0	0	1098	0		-1670	594
32/2		0	8	-10	16	-40	-50	-30	40	48	-34	320	310	410	152	-416	-410	-200	30	776	400		-1120	552	-326	-110
32/3	32/2	0	-8	-10	-16	40	-50	-30	-40	-48	-34	-320	310	410	-152	416	-410	200	30	-776	-400	-630	1120	-552	-326	-110
33/1 33/2		-1 -5	-3 3	-4 -14	-26 -32	11 -11	-32 -38	74 -2	-60 72	-182 68	-90 -54	-8 -152	-66 174	$\frac{422}{94}$	408 -528	-506 -340	348 -438	-200 20	132 570	-1036 -460	762 -1092	-542 562	-550 -16	-132 372	570 -966	14 -526
34/1		-3 -2	-2	16	24	62	-62	-17	-20	-12	80	-208	-356	22	-312	24	-462	240	812	-216	732	178	700	-992	-390	-146
34/2		-2	-2	-18	-10	-6	74	17	-88	-114	-90	-310	86	90	368	-384	-258	240	302	-964	-390	722	-898		1446	-1438
35/1		1	-8	-5	7	12	-78	-94	40	32	-50	-248	-434	402	-68	536	22	-560	-278	-164	672		-1000	-448	-870	1026
36/1	12/1	0	0	18	8	-36	-10	-18	-100	-72	234	-16	-226	-90	452	-432	-414	684	422	332	360	26	512	1188	630	-1054
38/1		-2	-2	-9	-31	57	-52	69	19	-72	-150	32	-226	-258	-67	579	-432	-330	-13	-856	642	-487	-700	-12	-600	1424
39/1		0	-3	-12	2	-36	13	-78	74	-96	18	-214	-286	-384	524	300	558	576	74	38	-456	-682	704	-888 -		110
40/1		0	10	-5	-18	-16	-6	-6 70	-124	124	142	-188	202	129	178	38	738	564	-262	-554	140		-1160	642	-854 726	-478
$\frac{40/2}{40/3}$		0	-6 4	-5 5	-34 16	16 36	58 -42	-70 -110	-116	-134 16	-242 198	$\frac{100}{240}$	-438 -258	-138 442	178 -292	$\frac{22}{392}$	$\frac{162}{142}$	-268 -348	250 -570	$\frac{422}{692}$	-852 168	306 -134	-456 784	$\frac{434}{564}$	-726 1034	1378 -382
42/1		2	-3	18	7	-72	-34	-110	92	-180	-114	56	-34	6	164	168	654	-492	-250	-124	36	1010	56	228	390	-70
42/1		2	3	2	-7	-8	-42	-2	-124	76	254	-72	398	462	212	-264	-162	-772	30	-764	-236	418	552	1036		-1190
44/1		0	-5	-7	-26	-11	52	46	-96	27	16	-293	-29	-472	-110	-224	754	825	-548	-123		-1020	526	-158 -		-263
45/1		5	0	-5	-30	50	-20	-10	-44	120	-50	108	-40	400	280	-280	-610	50	-518	-180	700	-410	-516			-1630
45/2	45/1	-5	0	5	-30	-50	-20	10	-44	-120	50	108	-40	-400	280	280	610	-50	-518	-180	-700	-410	-516			-1630
45/3	15/2	-1	0	-5	-24	-52	22	14	-20	168	-230	-288	-34	-122	-188	-256	338	-100	742	-84	328	-38		-1212	-330	866
45/4	15/1	-3 4	0	5 5	20 6	24 -32	74 -38	-54 -26	-124 100	120	78 50	200 -108	-70 266	-330 -22	$\frac{92}{442}$	$\frac{24}{514}$	-450 -2	-24 -500	-322 -518	-196 126	288 -412	-430 -878	-520 600	-156 - -282	150	-286 386
45/5 46/1	5/1	-2	-1	-10	-12	-32 -42	-38 7	-26 20	100	78 23	-227	-108 67	$\frac{266}{74}$	-22 -497	-88	$\frac{514}{215}$	-2 314	-500 176	-518 -298	266	-412 -981	-878 -411	806		150 -1332	-1328
46/2		2	-9	-20	2	-52	43	-50	-74	-23	-221	-273	-4	123	-152	75	86	-444	262	764	-21	681	426		-1332	-342
48/1	24/1	0	-3	14	24	28	-74	82	-92	-8	-138	-80	30	282	-4	-240	-130	-596	-218	436	-856	-998	32		-246	866
48/2	12/1	0	-3	-18	-8	-36	-10	18	100	-72	-234	16	-226	90	-452	-432	414	684	422	-332	360	26		1188	-630	

49/1	level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
49/92		6/1																									1154
49//3 49//3 2 7 7 7 0 5 14 21 49 159 58 147 219 350 128 205 301 80 0 10 60 40 500 60 0 10 60 60 60 60 6		F /1																									-882
49/4																											882
50/1		43/1																									002
50/2										35			182		357				-840	-238					903	735	-1106
50/4 50/3 2 2 0 20 -28 12 -04 -06 -58 90 -128 236 -24 36 -108 -20 -108 -20 -122 -133 -50 -303 -33 -33 -33 -35 -303 -35	50/2	10/1									-132															810	-1106
50/5		/-																									-1456
51/1																											1456
51/2		30/1																									494
52/1																											530
53/1	51/3		-1		-20							-36		76	294			-234		-820	700	794	-1038				710
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											1262
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-187
54/3 54/4 54/2 2 0 13 29 -57 20 -72 -106 174 -210 47 2 -6 218 474 81 84 56 -142 360 -1159 -160 735 -954 15 54/4 54/2 2 0 12 -7 60 -79 -108 11 -132 -96 20 -169 192 488 2041 360 156 83 47 216 -511 -529 128 36 66 55/1 56/1 0 6 8 -7 56 -82 90 11 2 21 -85 22 -165 -83 1 -478 -8 126 -683 -290 257 776 -313 902 830 842 25 -178 56/2 0 -2 -166 1 -2 -18 -18 -18 -18 -18 -18 -18 -18 -18 -18														_	-												605
54/4 54/2 2 0 0 12 -7 60 -79 -108 11 -132 96 20 -169 192 48 204 300 156 83 47 216 511 529 -1128 36 60 55/1 1 -3 5 -9 11 2 21 55 22 51 58 1 -478 8 216 683 290 257 776 313 902 830 830 842 25 -1776 56/2 0 -2 -16 -7 24 -86 54 -46 176 -174 -116 74 -10 -480 -572 -102 -86 -90 60 1024 -770 -904 660 1024 -770 -904 -90		54/1																									191
56/1			2									96		-169													605
56/2														_													-1784
57/1																											-138
58/1																											-218 830
58/2 2																											486
																											-1206
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											-286
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											194
63/1 7/1 1 0 -16 -7 8 28 -54 -110 -48 110 12 -246 -182 128 -324 162 -810 -488 244 768 -702 440 1302 -730 25 63/3 21/2 3 0 18 7 36 -34 -42 -124 0 -102 -160 398 318 -268 -240 498 132 398 92 720 -502 -1024 204 -354 -28 64/1 8/1 0 4 2 24 44 -22 50 -44 -56 -198 1-60 162 -198 -52 528 242 668 -550 -188 728 154 -656 -236 714 -44 64/2 32/2 0 8 10 -16 -40 50 -30 40 -48 34 -320 -310 410 152 416 410 -200 -30 .776 -400 -630 1120 .552 -326 -11 64/3 32/2 0 -8 10 16 40 50 -30 40 48 34 320 -310 410 152 416 410 -200 -30 .776 -400 -630 1120 .552 -326 -11 64/4 32/1 0 0 -22 0 0 18 -94 0 0 130 0 -214 -230 0 0 .518 0 -830 0 0 1098 0 0 -1670 .55 -326 -14 64/5 8/1 0 -4 2 2 -24 -44 -22 50 44 56 -198 160 162 -198 52 528 242 .668 5-50 188 -728 154 656 236 714 -44 64/4 32/1 0 0 -22 0 0 18 -94 0 0 130 0 -214 -230 0 0 -518 0 -830 0 0 1098 0 0 -1670 .55 -326 -11 64/5 8/1 0 -4 2 2 -24 -44 -22 50 44 56 -198 160 162 -198 52 -528 242 .668 5-50 188 -728 154 656 236 714 -47 66/1					_																						-1631
63/2 21/1 -4		7/1																									294
63/3 21/2 3 0 18 7 36 -34 -42 -124 0 -102 -160 398 318 -268 -240 498 132 398 92 720 -502 -1024 204 -354 -254 64/1 8/1 0 4 2 24 44 -22 50 -44 -56 -198 1-60 162 -198 -52 528 242 668 -550 -188 728 154 -656 -236 -114 -47 64/3 32/2 0 -8 10 16 -40 50 -30 -40 48 34 -320 -310 410 -152 -416 410 -200 -30 -776 -400 -630 -1120 -552 -326 -11 64/3 32/2 0 -8 10 16 -40 50 -30 -40 48 34 -320 -310 410 -152 -416 410 -200 -30 -776 -400 -630 -1120 -552 -326 -11 64/4 32/1 0 0 -22 0 0 18 -94 0 0 130 0 -214 -230 0 0 -518 0 -830 0 0 1098 0 0 -1670 -55 64/5 8/1 0 -4 2 -24 -44 -42 25 0 44 56 -198 160 162 -198 52 -528 242 -668 -550 188 -728 154 656 236 714 -47 66/1 5 5 2 -5 -12 14 -13 98 -26 -114 58 306 86 -374 -314 620 362 266 63 4 612 -686 202 -616 48 -1323 33 66/1 22 -2 3 10 16 11 10 -10 -144 -84 218 -176 46 -26 -488 404 194 444 202 -84 -764 354 1312 -1322 -133 66/1 0 -2 -8 -5 -7 668 34 74 -128 -80 286 -24 294 66 -124 312 -34 168 170 -564 616 250 -944 672 -1430 -132 70/2 -2 -1 -5 7 -65 13 -73 -142 130 111 256 -266 -424 534 -269 -132 -224 -572 -108 560 586 57 252 -184 -60 70/3 -2 -3 5 -7 -17 -81 -91 102 -90 -129 116 314 -124 -434 497 -584 -332 200 384 -664 230 361 1172 40 -17 70/5 -2 -7 -5 7 -5 7 -5 33 -43 111 -70 42 -225 -43 -432 -136 -54 -460 -76 -47 -76 -47 -76 -47 -76 -47 -76 -47 -76 -47 -76 -47 -76 -47 -76 -47 -77 -77 -77 -77 -77 -77 -77 -77 -77																											-1266
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21/2	3	0	18	7	36	-34	-42	-124	0	-102	-160	398	318	-268	-240	498	132	398	92	720	-502	-1024	204	-354	-286
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-																								-478
64/4		32/2																									-110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											-110 594
65/1		8/1											-				-										-478
66/2 2 -3 10 16 11 10 -10 -144 -84 218 -176 46 -26 -488 404 194 444 202 -84 -764 354 1312 -1252 -1222 -135 68/1		,	5	2	-5	-12	14	-13	98	-26	-114	58	306	86	-374		620	362	266	634			202		48	-1230	350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-1358
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										-																	1270
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-605
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-3		-7	-17	-81	-91	102		-129	116	314	-124	-434	497	-584	-332	220	384	-664	230	361	1172	40	-175
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											-70
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																											-709
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											-1351
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				_																							206
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		24/1	0	0					-82			138	80			4											866
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		72/1																									206
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		8/1			_																						-478
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_		-		-																				614 1772
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											-560
75/2 15/1 -3 3 0 -20 -24 -74 -54 -124 120 -78 200 70 330 -92 24 -450 24 -322 196 -288 430 -520 -156 1026 28 77/1 3 4 12 7 11 38 -48 -70 12 126 -70 -358 -216 344 390 438 -552 830 -196 648 -16 1352 90 1146 -77 8/1 -2 -3 -16 28 34 -13 138 108 -52 -190 -176 342 240 -140 454 198 -154 34 -656 550 614 8 762 -444 102		15/2																									-866
78/1 -2 -3 -16 28 34 -13 138 108 -52 -190 -176 342 240 -140 454 198 -154 34 -656 550 614 8 762 -444 102	75/2			3																							286
																											-70
	78/1 78/2		-2 -2	-3 3	-16 -16	28 -8	34 -38	-13 -13	138 -78	108 -72	-52 -52	-190 242	-176 76	$\frac{342}{342}$	240 -336	-140 76	$454 \\ 94$				-656 -908		614 -970	-			1022 -562
																											-562 -614
			2																								614

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
78/5		2	-3	6	20	24	13	-30	-16	-72	-282	164	110	-126	164	-204	-738	120	614	848	132		-1096	552		-1726
78/6	40./0	2	3	4	4	2	-13	-6 -70	-36	-20	-14	-152	-258	84	-188	254	366	550	-14	448	926	254 306	1328	186	-336	614
80/1 80/2	$\frac{40/2}{40/1}$	0	6 -10	-5 -5	34 18	-16 16	58 -6	-70 -6	$^{-4}$ 124	134 -42	-242 142	-100 188	-438 202	-138 54	-178 -66	-22 -38	$\frac{162}{738}$	268 -564	250 -262	-422 554	852 -140	882	456 1160	-434 -642	-726 -854	1378 -478
80/3	40/3	0	-4	5	-16	-36	-42	-110	116	-16	198	-240	-258	442	292	-392	142	348	-570	-692	-168	-134	-784		1034	-382
80/4	5/1	0	-2	-5	-6	-32	-38	26	-100	78	-50	108	266	22	-442	514	2	-500	-518	-126	-412	-878	-600	-282	-150	386
80/5	20/1	0	-4	5	16	60	86	18	-44	-48	-186	-176	254	186	100	-168	-498	252	-58	1036	-168	506	-272	-948 -		-766
80/6	10/1	0	8	5	4	-12	-58	66	100	-132	-90	-152	-34	-438	-32	204	222	-420	902	1024	-432	362	160	-72	810	1106
82/1 82/2		2 2	-4 10	-18 -6	-2 -10	-52 -54	28 -82	$\frac{14}{42}$	-16 134	-36 48	-160 30	132 -136	-294 2	-41 41	356 200	42 -30	-548 390	252 - 444	-494 38	-616 -610	738 -42	-1010 110	-834 950	-1436 900	$\frac{474}{138}$	$1598 \\ 170$
84/1		0	-3	-0 6	-10 7	36	62	114	-76	-24	54	-112	-178	378	-172	-192	-402	396		-1012	840	890	80		-1638	1010
84/2		ő	3	14	-7	4	54	-14	92	-152	-106	-144	158	-390	-508	-528	606	-364	678	844	-8	-422	384		1194	-1502
85/1		3	-5	-5	-22	60	-31	17	-61	-78	69	-31	56	-6	-538	-465	723	-753	35	-322	-99	-1123	488	-852	1215	-601
85/2		3	-7	5	-22	-64	73	-17	-49	110	155	-197	-372	-262	258	-13	-653	-333	-355	814	47	-437	-384	-736	511	537
85/3		3	10	5	-22	-30	-46	17	104	42	-66	194	206	-126	-388	-540	78	432	-610	848	-174	362	398	828		-1486
86/1 86/2		-2 2	8 -4	6 -14	14 -14	-43 -11	-17 -9	49 9	130 -46	53 -19	-180 216	-163 -155	284 -76	-323 5	-43 -43	-56 -392	-437 579	-420 -588	$\frac{552}{28}$	-541 -621	-18 -146	1108 -192	-664		-1090 -1622	179 827
88/1		0	7	-14	2	-11	-9	-38	44	175	-264	159	-173	-220	-542	-264	682	421	308	177	365	-528	686	698		-1127
88/2		0	-1	-7	-6	-11	-40	-78	36	7	8	183	227	-36	322	-184	-6	-99	164	-695	-987	-248		-1494		-1031
89/1		-1	2	2	-4	-56	-16	-30	-50	-92	204	324	-20	270	86	0	534	-206	-672	-576	-352	-338	-336	630	89	-1506
89/2		-4	-7	11	8	-32	-4	39	-59	-83	66	-279	-350	-78	71	-258	597	-572	-420	-30	230	-497	-714	-420	89	1833
90/1 90/2	10/1	-2 -2	0	-5 -5	14 -4	6 -12	68 -58	78 -66	44 -100	120 -132	126 90	-244 152	-304 -34	-480 438	104 32	600 204	-258 -222	534 -420	362 902	-268 -1024	-972 -432	$\frac{470}{362}$	1244 -160	396 -72	-972 -810	-46 1106
90/3	$\frac{10/1}{30/2}$	-2	0	-5 5	-4 -4	48	-58	114	140	-132	-210	$\frac{132}{272}$	-334	198	-268	-216	78	-240	302	596	768	-478	-640	348	-210	-1534
90/4	90/1	2	0	5	14	-6	68	-78	44	-120	-126	-244	-304	480	104	-600	258	-534	362	-268	972	470	1244	-396	972	-46
90/5	30/1	2	0	-5	32	60	-34	-42	-76	0	-6	-232	134	-234	-412	360	-222	-660	-490	812	-120	746	152	804	678	194
93/1		3	-3	-9	-34	33	65	-21	-97	-84	48	31	146	-378	182	-501	-402	102	209	-835	-105	542	1109	-597 -		-1483
95/1		0	4	-5	-22	-12	8	-66	19	-30 27	-6	-64	-16	54	182 -34	594	396	-564	-706	-628	-984 384	14	-328	-294		-1564
95/2 95/3		3	-5 7	-5 5	-1 11	-24 -36	-31 65	33 -87	19 19	-129	$\frac{111}{231}$	-94 110	-70 -142	-510 -330	-34 74	-192 -336	-75 501	$\frac{45}{633}$	-28 -88	$\frac{371}{119}$	-204	-73 407	-1234 1262	270	-1578 -30	-538 1406
95/4		5	4	5	-32	-12	-42	114	19	160	214	-144	94	-6	-308	184	-274	276	-826	52	-344	-166	-688		1578	786
96/1		0	-3	10	-4	20	70	90	140	-192	-134	100	-170	-110	532	-56	-430	-20	270	-524	-80	330			1274	-590
96/2		0	-3	-14	36	36	54	-22	-36	144	50	108	214	-446	-252	-72	-22	684	-466	180	-576	-54	972	684	346	-1134
96/3	96/2	0	3	-14	-36	-36	54	-22	36	-144	50	-108	214	-446	252	72	-22	-684	-466	-180	576	-54	-972	-684		-1134
96/4 96/5	96/4	0	-3 3	$\frac{2}{2}$	-12 12	-60 60	-42 -42	10 10	-132 132	48 -48	$\frac{226}{226}$	252 -252	-362 -362	-94 -94	228 -228	408 -408	$\frac{346}{346}$	300 -300	-466 -466	-204 204	-1056 1056	330 330	-612 612	-564 - 564 -		594 594
96/6	96/1	0	3	10	4	-20	70	90	-140	192	-134	-100	-170	-110	-532	56	-430	20	270	524	80		-1060		1274	-590
98/1	,	-2	-1	7	0	35	66	59	137	-7	106	75	11	-498	260	-171	-417	-17	51	439	-784	295	-495	932	-873	-290
98/2	98/1	-2	1	-7	0	35	-66	-59	-137	-7	106	-75	11	498	260	171	-417	17	-51	439	-784	-295	-495	-932	873	290
98/3	14/1	-2	-8	14	0	-28	-18	-74	-80	-112	190	-72	-346	-162	-412	-24	318	200	198	-716	392	-538	240	1072		-1354
98/4 98/5	14/2	2 2	-5 2	-9 12	0	-57 48	-70 -56	$\frac{51}{114}$	5 -2	69 -120	114 -54	23 -236	-253 146	-42 -126	-124 -376	$\frac{201}{12}$	-393 174	219 -138	-709 -380	419 -484	-96 576	-313 1150	$\frac{461}{776}$	-588 - -378	390	-1834 1330
98/6	98/4	2	5	9	ő	-57	70	-51	-2 -5	69	114	-23	-253	42	-124	-201	-393	-219	709	419	-96	313	461		1017	1834
99/1	33/1	1	0	4	-26	-11	-32	-74	-60	182	90	-8	-66	-422	408	506	-348	200		-1036	-762	-542	-550	132	-570	14
99/2	33/2	5	0	14	-32	11	-38	2	72	-68	54	-152	174	-94	-528	340	438	-20	570	-460	1092	562	-16	-372	966	-526
100/1	00 /1	0	-1	0	-26	45	-44	-117	-91	18	144	26	214	-459	460	468	-558	-72	-118	-251	108	-299	-898	-927	351	-386
$\frac{100/2}{100/3}$	$\frac{20/1}{100/1}$	0	-4 1	0	16 26	-60 45	-86 44	-18 117	44 -91	-48 -18	-186 144	176 26	-254 -214	186 -459	100 -460	-168 -468	$\frac{498}{558}$	-252 -72	-58 -118	$\frac{1036}{251}$	168 108	-506 299	272 -898	-948 - 927	351	766 386
100/3 $102/1$	100/1	-2	-3	-3	20	-51	-61	17	-91 -43	-219	-150	290	56	-459 15	-400 83	426	-378	-12	-448	-124		-1078	722	-78	-144	-268
102/2		-2	3	-5	-32	27	-69	-17	-83	-117	94	198	-244	169	227	-382	686	450	-700	540	-276	-298	-182			-1140
102/3		2	-3	-12	-22	-48	2	-17	20	-54	84	62	44	-138	428	-516	174	-852	908	-508	-426	-574		-1308	798	-1690
102/4		2	-3	5	12	37	19	17	37	-3	-86	-142	-296	-121	3	402	174	270	-520	-780	84	-302	178		1512	-500
104/1 $104/2$		0	5 1	19 -7	-3 -21	-2 6	-13 13	77 -115	-58 -46	$\frac{76}{144}$	-6 -162	-292 180	$\frac{207}{13}$	$\frac{240}{192}$	-317 -33	-375 383	-692 288	$\frac{214}{442}$	-488 -680	782 -722	-1057 -207	$\frac{1174}{274}$	892 -936	704 -1204	-966	830 -138
$\frac{104/2}{105/1}$		0	-3	-1 5	-21 7	42	20	-115	-46 38	144	-162	146	434	-282	-33 20	-72	336	-360	-682	812	810	-124	1136		-900	1208
105/2		5	-3	5	7	12	30	-134	-92	112	-58	-224	-146	18	340	208	-754	380	718	412	-960	1066	896		-1038	-702
108/1		0	0	0	-37	0	-19	0	-163	0	0	308	323	0	-520	0	0	0	719	-127	0		-1387	0	0	-523
108/2		0	0	-9	-1	-63	-28	-72	98	-126	126	-259	386	450	-34	54	693	-180	-280	-586	-504	161	440	-999	-882	-721
108/3 108/4	108/2	0	0	0 9	17 -1	0 63	89 -28	$\frac{0}{72}$	107 98	$\frac{0}{126}$	0 -126	308 -259	-433 386	450	-520 -34	0 -54	-693	0 180	-901 -280	1007 -586	$\frac{0}{504}$	-271 161	$503 \\ 440$	0 999	0 882	1853 -721
$\frac{108/4}{110/1}$	108/2	-2	4	-5	-1 -30	63 11	-28 16	-112	-64	36	-126 10	-259 -48	-146	-450 278	-34 -330	$^{-54}$ 476	-693 150	732	-280	-586 -848		-1128	788	-698	-458	134
$\frac{110/1}{110/2}$		-2	4	5	20	11	26	-42	116	96	270	32	-106	-462	-40	-504	-570	12	590	-388	-240	302	8	-48	282	-646

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
110/3		-2	-7	5	-35	11	26	101	127	-58	-27	-177	191	66	444	2	-669	386	-521	96	-427	1006	910	-818	601	-228
110/4	l l	2	-4	-5	-22	-11	-20	-20	-8	-204	122	40	278	302	-330	60	-418	188	-670	-568	128	676	-876	-1130	822	-434
110/5 110/6		$\frac{2}{2}$	7 -8	-5 -5	11 26	11 11	2 92	-9 -84	-85 80	-138 72	45 -30	227 -208	-19 86	-138 -378	-88 542	-534 216	297 -18	-450 420	287 -718	-304 -124	777 912	962 -268	290 -940	1422 -498	-1455 150	116 446
110/0		2	1	5	23	-11	50	75	17	-174	-153	35	-277	-258	-220	210	-273	438	-475	992	-927	-934	974	-90	1377	-64
110/8	3	2	8	5	-12	-11	-34	-86	-4	148	134	-280	430	-6	-136	-28	-658	4	-90	96	816	-430	1296	-608	810	706
111/1 111/2		-1 1	-3 3	-4 -8	-1 -13	-13 -35	73 -35	99 -3	-105 15	$\frac{133}{47}$	300 -12	62 -94	-37 -37	-198 54	68 -244	$\frac{354}{282}$	-7 619	220 8	$\frac{322}{250}$	-706 -478	672 -96	893 -955	910 -410	243 -579	$\frac{995}{37}$	1234 -2
111/2	3	-4	3	2	-28	20	10	-78	-150	82	-222	-154	-37	-306	386	12	-46	658	250	-748	324	-130	-230	216	-118	898
112/1	56/2	0	2	-16	7	-24	-68	54	46	-176	-174	116	74	-10	480	572	-162	86	-904	-660	-1024	770	904	-682	-102	-218
112/2 112/3		0	-6 2	8 -12	7 -7	-56	-28 56	-90 -114	-74 -2	96 120	-222 -54	100 -236	$\frac{58}{146}$	$\frac{422}{126}$	-512 376	-148 12	-642 174	318 -138	$\frac{720}{380}$	$\frac{412}{484}$	-448 -576	994 -1150	296 -776	-386 -378	-6 -390	-138 -1330
112/3		0	-4	-12	-7	-48 12	-82	-30	-68	-216	246	112	110	-246	172	-192	558	-540	110	-140	840	-550	208	-516		1586
112/5	7/1	ő	2	16	7	8	28	54	110	-48	-110	-12	-246	182	-128	-324	-162	-810	-488	-244	768	-702	-440	1302	730	294
112/6		0	-8	-14	7 7	28	18	74	-80	112	190	-72	-346	162	412	-24	318	200	-198	716	-392	538	-240	1072	810	1354
112/7 114/1		0 -2	10 -3	-8 -19	9	40 -13	-12 38	-58 99	-26 -19	64 68	-62 130	-252 262	26 -296	6 -8	-416 73	396 -271	-450 -502	-274 540	-576 587	$476 \\ 684$	448 992	-158 -507	936 980	-530 -492	-390 810	214 -1046
114/2	2	-2	3	-7	-15	-49	14	-33	-19	-148	-278	94	160	400	73	173	170	-12	419	444	-952	-27	-556	-276	1386	130
114/3		-2	3	12	4	8	-24	62	19	194	102	18	-296	134	-60	-226	-362	-316	134	-240	-800	-578	1078	940	170	206
114/4 115/1		2 1	-3 4	-11 -5	-15 -32	-29 40	-82 -66	27 130	-19 -88	100 23	-118 -130	70 40	232 -334	-22	-287 -272	$\frac{385}{24}$	$\frac{538}{258}$	-300 612	-901 -366	132 -496	$\frac{472}{248}$	-1131 826	-52 -296	-1296		-1310 -1438
115/2		2	-3	5	-2	-16	-47	-24	-56	-23	85	67	104	-53	-234	285	2	80	-764	236	-289	-225	24		-1370	-110
117/1		0	0	12	2	36	13	78	74	96	-18	-214	-286	384	524	-300	-558	-576	74	38	456	-682	704		1020	110
117/2 118/1		5 -2	0 5	7 -5	-13 -33	26 -4	13 -30	-77 -14	-126 97	96 -134	82 1	196 -28	-131 290	-336 -5	-201 192	105 -326	432 -537	294 59	-56 472	$478 \\ 856$	-9 168	98 -686	1304 -919	308 362	1190 -312	70 -514
118/2		2	-1	-13	-27	-8	42	2	-77	98	-295	-40	278	179	-132	-202	-345	-59	184	-356	-144	814		-1250	-600	-790
118/3		2	-7	5	-15	-50	-66	14	-11	-172	287	26	128	167	-78	38	-147	-59	76		-1140	-848	359	-362	1212	836
119/1 120/1		-1 0	-6 -3	-20 -5	-7	$\frac{60}{72}$	-68 -6	-17 38	-70 52	-176 152	-90 -78	196 120	22 -150	-138 362	328 -484	-12 280	-234 -670	-54 696	$\frac{44}{222}$	-596 -4	200 96	$\frac{1122}{178}$	480 -632	-838 -612	778 994	$1142 \\ 1634$
120/1		ő	-3	5	-16	-28	-26	-62	-68	-208	-58	160	270	282	76	-280	-210	196	742	836		-1062		-1052		-1406
120/3		0	3	5	8	20	22	-14	76	56	-154	160	-162	-390	388	-544	-210	-380	-794	-148	-840	858	144	316	1098	994
120/4 120/5		0	-3 -3	-5 5	20 0	-56 4	-86 54	-106 114	4 44	136 96	-206 134	-152 -272	282 -98	-246 -6	$\frac{412}{12}$	40 -200	-126 654	56 36	-2 -442	-388 -188	-672 -632	1170 -390	408 688	668 1188	66 -694	-926 -1726
120/6		0	3	-5	20	16	58	38	4	-80	82	-8	426	-246	-524	-464	-702	-592	574	-172	768	-558	408	164	-510	514
121/1		0	8	18	0	0	0	0	0	-108	0	340	-434	0	0	-36	-738	-720	0	-416	612	0	0	0	1674	-34
126/1 126/2		-2 -2	0	22 -6	-7 7	26 -30	-54 2	74 -66	116 -52	-58 -114	208 -72	-252 -196	50 -286	$\frac{126}{378}$	$\frac{164}{164}$	-444 228	$\frac{12}{348}$	$\frac{124}{348}$	-162 -106	-860 596	-238 -630	-146 -1042	-984 -88	656 1440	-954 -1374	526 -34
126/3		-2	0	-2	-7	-30	-42	2	-124	-76	-254	-72	398	-462	212	264	162	772	30	-764	236	418		-1036		-1190
126/4		-2	0	12	7	-48	56	114	2	120	54	236	146	-126	-376	12	-174	-138	380	-484		-1150	776	-378		-1330
126/5 126/6		-2 2	0	-18 -22	7 -7	72 -26	-34 -54	-6 -74	$\frac{92}{116}$	180 58	114 -208	56 -252	-34 50	-6 -126	$\frac{164}{164}$	-168 444	-654 -12	492 -124	-250 -162	-124 -860	-36 238	1010 -146	56 -984	-228 -656	-390 954	-70 526
126/7		2	0	6	7	30	2	66	-52	114	72	-196	-286	-378	164	-228	-348	-348	-102	596		-1042		-1440	1374	-34
126/8	14/1	2	0	14	-7	28	18	-74	80	112	-190	72	-346	-162	-412	-24	-318	200	-198	-716	-392	538	240	1072	-810	1354
127/1 128/1		-1 0	-8 2	-15 6	-25 20	-51 14	$\frac{2}{54}$	31 -66	-123 162	-149 172	6 -2	10 -128	-348 158	-387 202	-80 -298	266 -408	347 -690	-656 -322	-158 -298	-314 202	312 -700	-646 -418	-846 744	1352 -678	1242	632 -1122
128/1		0	2	-6	-20	14	-54	-66	162	-172	2	128	-158	202	-298	408	690	-322	298	202	700	-418	-744	-678		-1122
128/3	128/1	0	-2	6	-20	-14	54	-66	-162	-172	-2	128	158	202	298	408	-690	322	-298	-202	700	-418	-744	678		-1122
128/4 129/1		$0 \\ 4$	-2 -3	-6 11	20 9	-14 57	-54 43	-66 -66	-162 25	172 -112	$\frac{2}{75}$	-128 32	-158 -36	202 -268	298 -43	-408 -611	$690 \\ 148$	$\frac{322}{780}$	298 -328	-202 -246	-700 902	-418 -502	744 -380	$678 \\ 753$		-1122 -1391
129/1		-1	-3 3	-2	6	-48	-62	-66	-92	106	-18	-196	-30	502	-43	74	-40	744	752	36		-1006	376	732	-1334	-242
130/1		-2	-2	5	8	6	13	114	38	150	114	-34	146	-30	122	336	-570	66	-502	728	582	-994	-988	-84	906	290
130/2		$\frac{2}{0}$	-4	-5 0	-8 2	-32	-13	-86 -66	-56	68 6	-202 -54	-56 8	66	490	460	-24	-294	-480	-338 404	676 -4	120	-210	184 -874	-660		-1202
132/1 132/2		0	-3 -3	-12	$\frac{2}{14}$	-11 11	-88 56	-66 42	-40 116	-30	-54 198	-88	-106 350	354 198	-124 56	546 -594	-408 -204	552 -312	404 620	-4 356	126 -462	-166 482	-874 -238	444 492	$\frac{1002}{954}$	-802 -1426
132/3	3	ő	-3	22	-20	11	22	110	48	72	-142	184	-194	-482	-80	392	-34	-108	382	84	-1040	-606	-1292	356	-406	1090
132/4		0	3 8	10	8 -7	-11	18	46	40	44	186	-72	-114	174	-416	-156	-62	-348	-446	-956	-444	306	-664	-124	602	1522
133/1 134/1		$\frac{4}{2}$	8 10	6 6	-7 -34	-68 24	-46	14 -69	-19 -79	188 99	70 183	252 -46	-186 -277	$\frac{192}{420}$	488 -202	-216 189	178 -522	-500 639	-298 -250	$\frac{494}{67}$	-618 -552	-842 -439	10 140	228 12	$\frac{600}{255}$	-976 428
135/1		-1	0	-5	-6	47	-5	131	-56	-3	157	225	-70	-140	397	347	-4	-748	-338	492	-32	970	-1257	102	1488	974
135/2		1	0	5	-6	-47	-5	-131	-56	3	-157	225	-70	140	397	-347	4	748	-338	492	32		-1257	-102		974
135/3 135/4		-2 2	0	5 -5	0	10 -10	-80 -80	7 -7	-113 -113	-81 81	-220 220	-189 -189	170 170	-130 130	10 10	160 -160	631 -631	-560 560	$\frac{229}{229}$	$750 \\ 750$	890 -890	-890 -890	-27 -27	429 -429		-1480 -1480

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
138/1		-2	-3	-10	32	-20	-26	-46	-92	23	-194	-120	-322	42	220	-192	-170	396	934	-988	-552	282	-888	-908	1242	-30
138/2		-2	3	2	-32	-48	22	42	-144	-23	174	-304	-318	74	192	392	-734	156	706	192	624	-406	696	-800	-102	-918
138/3		2	-3	-2	-34	2	-74	-68	88	-23	-178	240	-76	186	28	264	-598	492	352	-244	-984	1014	-438		-1524	-198
$\frac{140/1}{140/2}$		0	1 -5	-5 -5	-7 7	-7 15	-23 17	-25 123	-62 86	-86 54	-29 -177	-12 212	-150 74	204 -444	-178 -46	$\frac{33}{471}$	452 -180	$\frac{120}{144}$	920 -376	-300 356	520 -48	370 818	-1013 89	-636 -780	$\frac{292}{1140}$	-1381 -169
140/2		0	-5 8	-5 -5	7	28	82	-46	8	-128	174	-152	-290	50	396	-296	-570	-272	-662	876	-880	-638	-600	624	698	754
140/3		0	-4	-5 5	-7	68	22	-30	108	184	166	-32	-370	154	212	-512	-98	-860	390	60	840	-630	1312	-436	-598	914
140/5		0	9	5	-7	55	-69	113	-126	-102	-81	176	254	-184	-230	-187	-488	388	-728	-96	8	-994	337	188	-884	-451
140/6		0	-5	5	7	-15	-13	-27	-154	-186	3	-328	254	96	134	51	240	-396	-616	296	-48	-322	659	300	1020	-199
144/1	72/1	0	0	16	12	-64	58	32	136	128	-144	-20	-18	-288	200	-384	496	128	-458	496	-512	-602	-1108	-704	-960	206
144/2	72/1	0	0	-16	12	64	58	-32	136	-128	144	-20	-18	288	200	384	-496	-128	-458	496	512		-1108	704	960	206
144/3	8/1	0	0	2	-24	-44	22	-50	-44	-56	-198	160	-162	198	-52	528	242	-668	550	-188	728	154	656	236	-714	-478
144/4	24/1	0	0	-14	24	-28	-74	-82	-92	8	138	-80	30	-282	-4	240	130	596	-218	436	856	-998		-1508	246	866
144/5 144/6	$\frac{9}{1}$	0	0	0 -6	-20 16	$\frac{0}{12}$	-70 38	$\frac{0}{126}$	-56 -20	0 168	-30	-308 88	$\frac{110}{254}$	0 -42	$\frac{520}{52}$	0 -96	0 -198	-660	182 -538	880 -884	0 792	$\frac{1190}{218}$	-884 520	0 -492	-810	-1330 1154
144/7	12/1	0	0	18	-8	36	-10	-18	100	72	234	16	-226	-90	-452	432	-414	-684	422	-332	-360	26		-1188		-1054
145/1	12/1	1	-8	-5	-14	62	42	-114	-70	62	-29	142	146	162	352	-444	-238	840	2	-154	892	-38	1050	-778	1410	466
146/1		-2	4	-6	-8	-8	-62	10	28	48	-126	-280	-138	74	304	192	82	480	310	-204	480	73	-120	-168	954	818
147/1		-1	-3	12	0	20	-84	-96	12	-176	58	-264	258	0	156	-408	-722	492	-492	412	296	240	776	924	-744	-168
147/2		-3	-3	3	0	-15	64	-84	16	-84	-297	253	-316	-360	26	30	363	15	118	-370	-342	-362	467	-477	-906	-503
147/3		4	-3	-18	0	-50	36	-126	72	14	158	36	-162	270	-324	72	-22	-468	-792	232	-734	-180	236	-36	-234	-468
147/4	147/2	-3	3	-3 -12	0	-15 20	-64 84	84 96	-16	-84 -176	-297	-253 264	-316 258	360 0	26	-30	363	-15 -492	-118 492	-370	-342	362	467	477 -924	906	503
147/5 147/6	$\frac{147/1}{21/2}$	-1 -3	3	18	0	-36	34	-42	-12 124	-176	58 102	160	398	318	156 -268	408 -240	-722 -498	$^{-492}$	-398	412 92	296 -720	-240 502	776 -1024	204	744 -354	168 286
147/7	$\frac{21/2}{21/1}$	-3 4	3	4	0	62	62	-84	-100	-42	-102	48	-246	248	68	-324	258	-120	-622	904	-678	642	740	-468	-200	1266
147/8	147/3	4	3	18	ő	-50	-36	126	-72	14	158	-36	-162	-270	-324	-72	-22	468	792	232	-734	180	236	36	234	468
150/1	30/2	-2	-3	0	4	-48	-2	114	140	-72	210	272	334	-198	268	-216	78	240	302	-596	-768	478	-640	348	210	1534
150/2		-2	-3	0	-1	42	-67	54	-115	-162	-210	-193	-286	12	263	414	-192	690	-733	299	-228	938	-160	-462	-240	-511
150/3		-2	3	0	-23	-30	-29	-78	149	-150	-234	-217	-146	-156	433	-30	552	-270	275	-803	660	646	992		-1488	319
150/4	20.44	-2	3	0	2	70	-54	22	24	100	216	208	254	-206	-292	320	402	-370	-550	-728	-540	-604	792	-404	-938	-56
150/5 150/6	$\frac{30}{1}$ $\frac{150}{4}$	$\frac{2}{2}$	-3 -3	0	-32 -2	-60 70	$\frac{34}{54}$	-42 -22	-76 24	0 -100	$\frac{6}{216}$	-232 208	-134 -254	234 -206	$\frac{412}{292}$	360 -320	-222 -402	660 -370	-490 -550	-812 728	120 -540	-746 604	$\frac{152}{792}$	804 404	-678 -938	-194 56
150/7	150/4 $150/3$	2	-3	0	23	-30	29	78	149	150	-234	-217	146	-156	-433	30	-552	-270	275	803	660	-646	992		-1488	-319
150/8	150/3 $150/2$	2	3	0	1	42	67	-54	-115	162	-210	-193	286	12	-263	-414	192	690	-733	-299	-228	-938	-160	462	-240	511
150/9	6/1	2	3	Ö	16	12	-38	126	20	-168	30	-88	-254	42	52	96	-198	-660	-538	-884	792	-218	-520	492		
153/1	51/2	-1	0	10	-8	-12	-26	-17	-148	-152	66	-32	-266	6	-92	288	546	-420	350	940	-424	378	288	-748	1558	530
153/2	17/1	3	0	-6	-28	24	-58	-17	116	60	-30	-172	-58	342	-148	-288	-318	-252	110	-484	708	362	-484	-756	774	-382
153/3	51/1	1	0	-16	34	48	58	17	20	-58	0	-218	184	138	148	516	162	180	152	-956	538	-462		-1268	770	494
153/4 154/1	51/3	1 -2	0 -5	20 -1	-2 -7	48 -11	-14 -8	$\frac{17}{22}$	92 54	$\frac{122}{213}$	36 190	-182 163	$\frac{76}{31}$	-294 110	-428 4	12 -80	234 -566	$\frac{540}{645}$	-820 634	700 -729	-794 431	-1038 -918	-254	-1052 904	901	710 -89
154/1		-2 -2	-3	2	-1 -7	11	26	-46	-48	-128	-146	-128	-26	10	52	-544	318	-48	466	516	-392	754	-254		-1590	1018
154/3		2	-2	18	7	-11	56	36	-28	180	-54	-334	386	-444	-316	-402	-486	-282	380	176	-324		-1144	468		-1330
154/4		2	7	3	7	-11	-16	6	14	-51	54	95	-193	102	284	-72	-102	-63	-790	-433	135	-238		-1008	-639	11
154/5		2	-10	-14	7	-11	-16	108	116	68	122	-262	130	204	-396	166	442	702	196	-416	492	408	600	-1212	1146	-482
155/1		1	2	-5	16	2	-48	-94	-140	-68	300	31	296	-138	-318	-224	312	160	-128	716	912	182		-1418		126
156/1		0	-3	-6	-4	36	13	66	56	96	222	260	-106	-90	44	168	30	348	-346	-256	-168	-814		1236	318	-502
156/2		0 -2	3	-2 -9	-32 9	-68	13 -47	-14	4	72 -2	102	-136	-386 -346	250 -268	-140 328	-296 -351	526	332 365	-410 492	596	-880	506 378			1450	-446 1129
158/1 159/1		-2 -5	-3	-9 -21	-16	-8 -45	-47 -66	84 -123	-150 -62	-2 47	180 76	-328 -17	-346	324	343	-394	498 -53	-379	-398	784 -234	897 56	-142	305	-1102 -434	-1255	-581
159/2		-5	-3	3	-16	-57	-00 54	-39	82	-49	-260	-17 -5	-250	-276	-137	206	-53	473	-830	366	248		-1075	-602	-303 47	1027
160/1		0	-2	-5	6	60	50	-30	40	178	166	20	10	-250	142	214	490	-800	250	-774	100		-1320	982	874	-310
160/2	160/1	0	2	-5	-6	-60	50	-30	-40	-178	166	-20	10	-250	-142	-214	490	800	250	774	-100	-230	1320	-982	874	-310
162/1	,	-2	0	21	8	36	-49	21	-112	180	-135	308	-1	-42	20	84	-174	504	-385	272	-888	371	-652	84		-1246
162/2		-2	0	9	-31	15	-37	42	-28	-195	-111	-205	-166	261	-43	-177	-114	-159	191	-421	-156	182	1133	1083	1050	-901
162/3	162/2	2	0	-9	-31	-15	-37	-42	-28	195	111	-205	-166	-261	-43	177	114	159	191	-421	156	182		-1083		-901
162/4	162/1	2	0	-21 -5	8 2	-36 -11	-49 -22	-21 72	-112 122	-180 72	135 96	308 -112	-1 266	42 -96	20 -382	-84 360	$\frac{174}{318}$	-504 660	-385 -430	$\frac{272}{380}$	888 168	$\frac{371}{218}$	-652 -706	-84 1068	-21 -6	-1246
165/1 165/2		1	-3 3	-5 -5	36	-11 11	-22 2	66	140	-68	96 150	-112 -128	-314	-96 -118	-382 172	-324	318 82	-740	-430 122	-124	-988	218	-706 1100	-868	-6 -470	686 1186
166/1		2	-5	-3	-31	3	-24	5	-144	-40	-71	-215	-111	438	-180	534	738	-79	-163	-578	-138	586	-412			-1016
168/1		0	-3	-2	7	12	-66	-70	-92	16	-122	64	-306	50	20	-176	526	540	-818	-228	864	106	736	-588		-1214
168/2		0	3	-10	-7	-52	-10	-54	-52	48	-186	224	94	-478	-316	256	-66	420	342	668	-272	-86	1360	188		1554
168/3		0	-3	4	-7	-26	2	-36	-76	-114	6	-256	-86	160	-220	308	258	264	606	-520	-286	-530	-44	1012	768	222

168/6 0 3 -16 7 -18 -54 -128 52 -202 302 -200 -150 172 164 -460 -190 96 622 744 -54 74		
168/5 0 3 -2 -7 52 86 -30 -4 120 246 80 -290 -374 164 464 -162 180 -666 -628 296 -51 168/6 0 3 -16 7 -18 -54 -128 52 -202 302 -200 -150 172 164 -460 -190 96 622 744 -54 74		1426
168/6 0 3 -16 7 -18 -54 -128 52 -202 302 -200 -150 172 164 -460 -190 96 622 744 -54 74		1086
	2 -92 -228 -116 -	-554
169/1 4 2 17 20 -32 0 -13 30 78 197 -74 -227 -165 -156 -162 93 -864 145 862 654 21		238
169/2 169/1 -4 2 -17 -20 32 0 -13 -30 78 197 74 227 165 -156 162 93 864 145 -862 -654 -21		-238
169/3 13/1 5 -7 7 13 26 0 77 126 -96 -82 -196 131 -336 -201 105 -432 294 -56 -478 -9 -9		-70
169/4 3 -1 -9 15 -48 0 45 6 -162 -144 264 303 -192 97 111 -414 522 376 -36 357 -109		-852
169/5 169/4 -3 -1 9 -15 48 0 45 -6 -162 -144 -264 -303 192 97 -111 -414 -522 376 36 -357 109		852
170/1 -2 4 -5 -4 -12 -58 17 -52 84 -246 68 -358 -78 -412 408 750 -420 -190 596 324 101	0 164 588 -486 -	-718
170/2 2 7 5 -10 24 41 -17 -103 -6 -45 5 -196 210 -58 -171 3 645 197 -46 -975 -63	7 272 -72 -609 -8	-847
171/1 3 0 -6 -16 -18 -16 -24 19 60 186 -214 -196 282 20 240 -210 -240 -250 632 -168 -53	8 -142 126 -1470	434
171/2 171/1 -3 0 6 -16 18 -16 24 19 -60 -186 -214 -196 -282 20 -240 210 240 -250 632 168 -53	8 -142 -126 1470	434
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 94 1296 -846 8	830
171/4 19/1 3 0 12 11 54 11 93 19 -183 249 56 -250 -240 -196 168 -435 -195 -358 -961 246 35	3 -34 -234 168 '	758
174/1	8 190 -522 745 -15	1566
174/2 -2 -3 21 19 -38 -12 109 -65 108 -29 72 -311 377 -167 349 338 -155 802 -856 932 -22	2 110 168 -810	144
174/3 -2 -3 -8 19 -9 17 -7 -36 -182 29 -102 -166 -406 -80 -173 -68 222 106 681 -286 35	8 516 922 -1129 -10	1016
174/4 -2 3 0 -17 -23 -63 19 -8 42 -29 -198 -110 -514 -404 517 584 -182 430 365 -34 -5		156
174/5 2 -3 -10 7 -63 -7 -89 -78 -52 -29 192 200 166 -356 353 -154 258 520 -15 -764 24		1294
		270
		1026
175/2 7/1 1 2 0 7 -8 -28 -54 -110 -48 -110 12 246 182 -128 -324 162 810 -488 -244 -768 70		-294
176/1 88/2 0 1 -7 6 11 -40 -78 -36 -7 8 -183 227 -36 -322 184 -6 99 164 695 987 -24		1031
176/2 88/1 0 -7 9 -2 11 0 -38 -44 -175 -264 -159 -173 -220 542 264 682 -421 308 -177 -365 -52		1127
176/3 22/3 0 -1 -3 10 -11 -16 42 -116 -189 -120 163 -409 468 -110 -144 90 453 20 97 465 84		761
176/4 22/2 0 7 -19 -14 -11 -72 -46 20 107 120 -117 -201 -228 242 96 458 -435 -668 -439 1113 -7		409
176/5 22/1 0 -4 14 8 11 -50 130 108 96 142 -40 382 -118 -220 -520 238 852 190 12 112 -		1406
176/6 44/1 0 5 -7 26 11 52 46 96 -27 16 293 -29 -472 110 224 754 -825 -548 123 -1001 -102		-263
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1538 1538
		-766
		194
180/5 60/1 0 0 5 -28 24 -70 -102 20 72 -306 -136 -214 150 -292 72 414 744 -418 188 -480 43		-286
181/1 -3 7 -18 20 -33 20 -102 -34 3 -216 -133 -376 264 263 -93 -462 -279 155 -52 477 -94		1222
182/1		317
		133
182/3 2 5 16 7 -15 -13 -44 -138 111 -12 215 55 -133 -180 471 -260 110 -271 -799 912 74		1407
182/4 2 -8 3 7 -54 13 -96 -151 33 183 -331 -88 -42 353 -465 195 552 470 254 132 -94	3 -727 -1197 753 10	1037
183/1 1 3 3 -14 -46 -20 -31 -4 -147 30 204 -349 100 97 104 -6 492 -61 20 353 -40		-161
184/1 0 8 -4 -4 26 70 94 54 -23 -86 -144 -172 -42 386 -80 -108 164 -400 398 -320 -81		1370
184/2 0 -4 22 8 -20 22 98 -12 23 -10 192 -106 186 332 -544 390 -716 110 836 -280 -48	3 288 180 650 -15	1262
186/1 -2 -3 3 -7 0 2 120 -115 -138 -168 31 -376 -159 -448 264 564 -135 416 -268 -579 9	2 -430 342 522 10	1001
186/2 -2 3 -11 9 -30 -16 -60 -11 -16 -130 -31 -266 -273 -22 -188 -156 -9 312 324 647 73	538 518 714	113
186/3 -2 3 -11 -22 63 15 95 -11 108 56 31 230 378 102 -157 -466 270 591 -513 647 -26		485
186/4 -2 3 15 17 24 2 -48 -115 30 264 31 -160 -51 128 480 132 309 -280 -604 -159 -65		329
186/5 2 -3 -7 -3 -18 -52 -60 -119 -20 178 -31 58 -285 230 164 180 351 288 324 -65 -38		1615
186/6 2 3 -1 -6 39 89 27 -23 -68 64 -31 -206 -138 218 -379 630 -366 -279 123 121 -67		1003
186/7 2 3 -21 -19 -12 -34 -72 -7 -30 -84 31 380 9 -268 -480 276 309 -712 116 -783 104		1625
187/1 1 4 6 -24 -11 -58 17 28 -24 222 -112 -394 410 -204 240 -386 564 -530 108 -392 -40		1774
189/1 3 0 -12 7 12 -61 -117 2 -75 3 263 218 -246 515 318 -459 -255 -862 479 -117 -43		-376
189/2 0 0 21 7 -21 2 -42 119 147 210 65 -97 -399 92 252 -672 -504 632 650 567 -44		488
189/3 189/2 0 0 -21 7 21 2 42 119 -147 -210 65 -97 399 92 -252 672 504 632 650 -567 -44 189/4 189/1 -3 0 12 7 -12 -61 117 2 75 -3 263 218 246 515 -318 459 255 -862 479 117 -43		488 -376
189/4 189/1 -3 0 12 (-12 -01 11(2 (5 -3 263 218 246 515 -518 459 255 -862 4(9 11(-43 19) 11(-43 19		1124
		1280
		1166
		-590
192/1 90/1 0 -3 -10 4 20 -10 90 140 192 134 -100 110 -110 32 30 430 -20 -210 -024 80 39 192/2 24/1 0 -3 -14 -24 28 74 82 -92 8 138 80 -30 282 -4 240 130 -596 218 436 856 -99		866
192/3 12/1 0 -3 18 8 -36 10 18 100 72 234 -16 226 90 -452 432 -414 684 -422 -332 -360 2		1054
192/4 6/1 0 3 -6 -16 -12 -38 -126 -20 168 -30 -88 -254 42 52 -96 -198 660 538 -884 792 21		1154
192/5 96/1 0 3 -10 -4 -20 -70 90 -140 -192 134 100 170 -110 -532 -56 430 20 -270 524 -80 33		-590
192/6 96/4 0 -3 -2 12 -60 42 10 -132 -48 -226 -252 362 -94 228 -408 -346 300 466 -204 1056 33		594

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
192/7	6/1	0	-3	-6	16	12	-38	-126	20	-168	-30	88	-254	42	-52	96	-198	-660	538	884	-792	218	520	-492	810	1154
192/8	96/2	0	-3	14	-36	36	-54	-22	-36	-144	-50	-108	-214	-446	-252	72	22	684	466	180	576	-54	-972	684		-1134
192/9	96/4	0	3	-2	-12	60	42	10	132	48	-226	252	362	-94	-228	408	-346	-300	466		-1056	330	-612		-1510	594
192/10 192/11	$\frac{96/2}{24/1}$	0	3	14 -14	$\frac{36}{24}$	-36 -28	-54 74	-22 82	36 92	144 -8	-50 138	108 -80	-214 -30	-446 282	252 4	-72 -240	$\frac{22}{130}$	-684 596	$\frac{466}{218}$	-180 -436	-576 -856	-54 -998	972	-684 -1508	346 -246	-1134 866
$\frac{192}{11}$	$\frac{24/1}{12/1}$	0	3	18	-8	36	10	18	-100	-72	234	16	226	90	452	-432	-414	-684	-422	332	360	26		-1188	-630	-1054
195/1	12/1	-3	-3	-5	2	24	13	24	-70	90	-120	-196	-214	-54	-196	120	18	-312	-322	-376	240	1136	-808	1092	-618	-880
195/2		-5	3	-5	8	-56	-13	58	24	36	-242	-64	-254	-414	-164	-40	82	-744	494	-508	384	462	-816	-92	1210	-530
195/3		4	3	5	18	10	-13	46	-14	-36	-22	42	-46	-226	-224	-50	-290	130	70	-138	-586	-758	1068	378	1374	-1822
195/4		-3	3	5	-16	-36	13	-30	68	-120	-186	8	-226	-342	-76	-552	-738	780	-154	596	1056	-22	-112	-684	90	-334
196/1	20.42	0	4	20	0	44	44	-72	-100	-120	218	280	-30	-120	220	-88	110	-580	-380	-980	-112	640	-488	-660	-320	-248
196/2	28/2	0	-4 -4	-6 -20	0	-12 44	82 -44	$\frac{30}{72}$	-68	216 -120	$\frac{246}{218}$	112 -280	110 -30	$\frac{246}{120}$	-172 220	-192	558	-540	-110 380	140	-840 -112	550	-208	-516	1398	-1586
196/3 196/4	$\frac{196/1}{28/1}$	0	10	-20 8	0	-40	-44 12	58	100 -26	-64	-62	-280 -252	-30 26	-6	416	88 396	110 -450	580 -274	576	-980 -476	-112	-640 158	-488 -936	660 -530	320 390	248 -214
198/1	26/1	2	0	-8	-22	-11	-54	-26	-38	-64	294	36	-390	138	-242	132	388	-732	430	520	420	-594	506	380	-256	418
198/2	22/2	2	ő	19	14	-11	-72	46	-20	107	-120	117	-201	228	-242	96	-458	-435	-668	439	1113	-72	-70	-358	-895	409
198/3	22/1	2	0	-14	-8	11	-50	-130	-108	96	-142	40	382	118	220	-520	-238	852	190	-12	112	-6	304	-820	-202	-1406
198/4	66/1	2	0	0	14	-11	80	-30	56	126	222	-16	-106	-114	-52	-246	264	-264	92	-796	-426	-1174	842	-852	1062	
198/5	66/2	-2	0	-10	16	-11	10	10	-144	84	-218	-176	46	26	-488	-404	-194	-444	202	-84	764	354	1312	1252	1222	-1358
198/6	22/3	-2	0	3	-10	-11	-16	-42	116	-189	120	-163	-409	-468	110	-144	-90	453	20	-97	465	848	-742	-438	273	761
198/7 200/1	198/1	-2 0	0 -1	8	-22 6	11 -19	-54 -12	$\frac{26}{75}$	-38 -91	64 -174	-294 -272	36 -230	-390 182	-138 117	-242 -372	-132 52	-388 402	$732 \\ 312$	430 170	520 -763	-420 -52	-594 981	$506 \\ 1054$	-380 -351	256 799	418 -962
200/1		0	5	0	2	39	84	-61	151	-58	192	-18	-138	229	-164	-212	578	-336	858	-209	-780	-403		-1293		382
200/3	200/2	0	-5	0	-2	39	-84	61	151	58	192	-18	138	229	164	212	-578	-336	858	209	-780	403	-230	1293		-382
200/4	8/1	Ö	4	ō	-24	-44	-22	-50	44	56	198	-160	162	-198	-52	-528	242	-668	550	-188	728	-154	-656	-236	714	478
200/5	40/1	0	-10	0	18	-16	6	6	-124	-42	142	-188	-202	54	-66	-38	-738	564	-262	554	140	-882	-1160	-642	-854	478
200/6		0	9	0	26	-59	28	5	109	-194	-32	10	-198	117	388	-68	-18	392	-710	-253	-612	-549	414	-121	-81	-1502
200/7	200/6	0	-9	0	-26	-59	-28	-5	109	194	-32	10	198	117	-388	68	18	392	-710	253	-612	549	414	121	-81	1502
200/8 200/9	40/3	0	-4 6	0	-16 34	36 16	42 -58	110 70	-116 4	-16 134	198 -242	$\frac{240}{100}$	$\frac{258}{438}$	442 -138	292 -178	-392 -22	-142 -162	-348 -268	-570 250	-692 -422	168 -852	134 -306	784 -456	-564 -434	1034	382 -1378
200/9	$\frac{40/2}{200/1}$	0	0	0	-6	-19	12	-75	-91	174	-242	-230	-182	117	372	-52	-402	312	170	763	-52	-981	1054	351	-726 799	962
201/1	200/1	-4	-3	-19	13	26	26	-96	124	153	-188	-229	-271	-225	121	272	-503	351	436	67	-792	-97	-848	865	430	-270
202/1		2	-2	3	-30	22	-51	-13	-71	-41	204	97	-434	-240	-440	497	122	590	-728	862	627	280	-335	-328	994	674
202/2		2	-8	18	-13	-12	-16	117	143	42	-9	-16	440	-84	-283	354	-273	-612	83		-1062	272	50	-1056	720	-1531
203/1		4	8	2	7	2	-26	-80	128	0	29	160	-274	-36	246	-244	114	-420	188	624	1120	-352	438	-676	-336	-216
203/2		0	-4	14	7	-28	70	-14	140	72	29	208	254	186	-444	-160	270	-684	86	-708	280	506		-1060	810	1314
204/1		0 -1	3 2	-3	-16 8	-57 -54	-25 68	17	-13 -150	-93 -64	-6 -56	110 -336	248 66	-333	-115 188	-294 -536	-318 172	-30 -24	668 -262	-220 442	$\frac{540}{652}$	1214 -54	-442 -104	-438 1236	60 370	1568
205/1 205/2		-1	2	5 -5	26	-18	2	-10 -134	-30	-188	-190	192	-174	-41 41	332	-556 566	-718	180	-418	286	62	-378	1150		-1030	1294 -254
207/1	23/1	2	0	6	-8	-34	-57	80	-70	-23	-245	103	-298	-95	88	357	414	408	822	926	-335		-1322	36	460	-964
208/1	104/1	0	-5	19	3	2	-13	77	58	-76	-6	292	207	240	317	375	-692	-214	-488	-782	1057	1174	-892	-704	6	830
208/2	13/1	0	7	-7	13	26	13	77	126	96	-82	-196	-131	336	201	105	-432	294	-56	-478	-9		-1304		-1190	70
208/3	26/1	0	-3	11	-19	38	-13	-51	-90	52	-190	-292	-441	312	-373	41	468	-530	592	206	863	-322	460	-528	870	-346
208/4	104/2	0	-1	-7 -18	21 -20	-6 48	13 13	-115	46 16	-144 -168	-162 6	-180 -20	$\frac{13}{254}$	192 -390	$\frac{33}{124}$	-383 468	$\frac{288}{558}$	-442 96	-680 -826	$\frac{722}{160}$	$\frac{207}{420}$	$\frac{274}{362}$	936 -776	1204 0	-966 1626	-138
208/5 208/6	$\frac{26}{3}$ $\frac{52}{1}$	0	-4 3	-13	-20 11	2	-13	66 -51	-150	-108	-118	116	63	-288	293	335	-708	-566	904	-382	420 -7	518	100		1254	-1294 1262
208/7	26/2	0	0	17	35	-2	13	-19	-94	72	246	100	-11	-280	-241	-137	-232	386	64	670	-55		-1016	-420	-934	-1154
210/1	/-	-2	-3	-5	7	12	2	-18	56	-156	-186	-52	-178	-138	-412	-456	-198	348	110	-196	-936	542	992	-276	630	110
210/2		-2	-3	5	-7	-44	54	98	-60	-144	-210	-208	-226	-502	484	-232	-530	-764	814	60	848	-958	-152		-1094	554
210/3		-2	-3	5	7	12	-58	42	-4	24	294	128	-58	282	428	384	-138	468	-250	-556	624	-958	632	84	810	-790
210/4		-2	3	5	-7	28	54	-46	12	0	6	296	134	146	556	-448	46	748	-50		-1024	-310	856	-628	-590	-1390
210/5		-2	3	-5	7	0	26	18	92	140	-6	-4	410	174	248	420	102	-588	650	152	-168		-1048	-684	-834	110
$\frac{210}{6}$ $\frac{210}{7}$		-2 2	3 3	-5 -5	-7 -7	28 56	-86 54	-66 94	-48 36	140 -84	-34 -258	-284 -40	-346 -178	-274 -146	-4 148	-448 -200	-94 -130	308 188	510 94	-156 -444	336 532	-1170 770	16 -536		1630 -1090	$\frac{110}{1274}$
210/7		2	-3	-5 5	-1 -7	16	58	34	64	-16	62	60	150	474	-292	240	-662	-324	-514	-372	-412	-770	-560		1466	-178
210/9		2	-3	-5	7	24	14	54	44	156	174	-88	-34	-138	164	-216	318	-204	-442	-316	-252		-1000	516	-522	-310
210/10		2	-3	-5	-7	-4	-42	-86	-96	-96	-78	80	50	-26	-32	-20	-382	356	-134	888	868	-70		-1052	-634	1202
213/1		5	-3	13	-7	51	-50	18	-27	174	17	-139	84	-135	-451	-264	346	381	-383	-772	-71	-607	-2	1426	-966	1090
216/1		0	0	4	3	28	-11	44	29	172	192	116	-69	384	328	156	-392	412	-425		-1000	-359	877		-1572	
216/2	016/1	0	0	-1	-9	17	-44	-56	-94	50 179	30	-139	-174	-318	-242	630	-547	236	328	614	-296	433	-56	1225		1391
216/3 216/4	$\frac{216}{1}$ $\frac{216}{2}$	0	0	-4 0	3 -9	-28 -17	-11 -44	-44 56	29 -94	-172 -50	-192 -30	116 -139	-69 -174	-384 318	328 -242	-156 -630	$\frac{392}{547}$	-412 -236	-425 328	$\frac{257}{614}$	$\frac{1000}{296}$	-359 433	877 -56	328 -1225	1572 1506	
210/4	210/2	U	U	U	-9	-11	-44	50	-94	-50	-30	-109	-114	910	-242	-030	041	-230	520	014	290	400	-50	-1440	1000	1031

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
217/1		-1	-8	4	7	66	-78	78	-106	-28	88	-31	152	-18	-506	-484	364	770	-222	-220	-512	-646	-380	-832	-1402	414
220/1		0	5	-5	-19	-11	-62	19	-131	138	-79	217	-91	158	120	-546	-439	290	-373	728	-709		-1194	58	753	1228
220/2		0	8	5	24	-11	-22	22	-28	-44	110	-40	-362	210	260	-460	662	-68	606	-312	360	-1042	-552	268	-966	-1334
220/3		0	-5	5	11	-11	-22	9	89	138	201	77	119	-102	260	294	51	270	-733	728	-849	830	-214	138	633	-892
221/1		5	4	6	-20	70	-13	-17	96	-98	-48	-312	262	360	-460	-168	666	780	-392	-24	-320	-748	90	1280	782	-524
222/1		2	3	-16	-24	8	-78	12	-16	-198	-72	280	37	-30	244	56	-654	38	526	-516	-552	-842	588		1136	726
222/2		2 -2	-3 -3	0 -2	-16	48	50	60 90	20	162	-264	332	37	330	368 -500	-504	354 -426	$\frac{222}{628}$	-322 262	-532	-888	-922	1328	-696 4	-1488	806
222/3 224/1		-2	-3 -2	-2 0	0 7	28 20	-42 -20	-50	-28 10	-48 -72	-42 -134	-152 -180	37 -270	-342 -250	-500 92	-224 -236	150	570	-200	-60 176	504 -640	-1190 250	552 -640	_	-110 1074	-846 270
224/1	224/1	0	2	0	-7	-20	-20	-50	-10	72	-134	180	-270	-250	-92	236	150	-570	-200	-176	640	250	640	-882	1074	270
225/1	25/1	-1	0	0	6	43	-28	-91	-35	-162	-160	42	-314	203	92	-196	-82	280	-518	141	-412	-763	510	-777	945	1246
225/2	45/1	-5	0	0	30	50	20	10	-44	-120	-50	108	40	400	-280	280	610	50	-518	180	700	410	-516	-660	-1500	1630
225/3	15/1	3	0	0	-20	24	-74	54	-124	-120	78	200	70	-330	-92	-24	450	-24	-322	196	288	430	-520		-1026	286
225/4	5/1	-4	0	0	-6	-32	38	26	100	-78	50	-108	-266	-22	-442	-514	2	-500	-518	-126	-412	878	600	282	150	-386
225/5	45/1	5	0	0	30	-50	20	-10	-44	120	50	108	40	-400	-280	-280	-610	-50	-518	180	-700	410	-516	660	1500	1630
225/6 225/7	9/1	0	0	0	-20 24	0 -52	70 -22	0	56	0	0 -230	308 -288	-110	0 -122	$\frac{520}{188}$	$\frac{0}{256}$	0 -338	100	182	880	$\frac{0}{328}$	-1190	884 -240	$0 \\ 1212$	0	1330 -866
225/8	$\frac{15/2}{25/1}$	0	0	0	-6	-32 43	28	-14 91	-20 -35	-168 162	-160	42	$\frac{34}{314}$	203	-92	196	-336 82	-100 280	742 -518	84 -141	-412	38 763	510	777	-330 945	-1246
228/1	20/1	0	-3	4	-12	40	-40	-66	-19	-98	-130	262	-296	-442	-164	-542	334	60	614	0	400	318	1154	-636	-630	1006
228/2		Ö	-3	-7	21	-37	26	-33	-19	-76	-218	-266	-32	64	133	305	-766	-72	-805	264	92	285	1088	420	426	-314
228/3		0	3	-3	-17	-19	-30	-97	19	-28	126	-126	64	80	-453	107	-326	56	47	-168	1060	-659	592	892	-310	-874
230/1		2	-1	5	-32	-30	19	-60	-58	23	85	-65	-34	143	-332	-561	-422	392	-246	894	-737	1041	1114	-936	824	-868
230/2		2	0	-5	-18	-32	-47	20	36	-23	-27	-33	56	-157	18	65	-14	-744	552	-156	699	-609	-644	512	-102	578
230/3 230/4		-2 -2	7 4	5 -5	20 3	6 -2	47 -38	-132 -45	146 -74	23 23	-99 283	-253 -303	-118 79	495 -407	272 -328	639 360	-342 -561	240 101	-370 -268	698 -69	-357 -641	-259 994	542 -884	-1248 503	-828 1608	992 1082
230/4		-2 -2	-5	-5 -5	12	-2 22	-38 19	-45 96	-74 -98	23	-227	-303	-398	271	-328	-285	-561	-352	-208 -478	330	835	-1127	322	572	-504	1712
231/1		3	3	-14	-7	-11	2	-74	-38	-148	26	112	-98	-10	208	460	258	-204	178	-924	-748	-230	-456	-228	-198	562
231/2		5	3	-6	7	-11	70	126	-80	-200	134	-244	-314	278	-372	-84	182	-756	694	820	160	-2	40	760	-102	-862
231/3		-2	3	0	-7	-11	7	-14	-45	-88	-69	22	57	-380	48	-385	-672	-469	-342	-139	132	145	1244	522	822	272
231/4		2	-3	11	-7	11	-5	-118	-105	-68	-195	214	33	-376	-168	61	24	625	-558	173	168		-1072	1458	-198	-352
231/5	20/4	-3	-3	-4	-7	11	50	-28	30	112	130	-146	-302	4	-548	86	-246	120	-638	-132	-692	-152	768		-1158	1618
234/1	26/1	2 2	0	-11	19	38	-13	51	90	52 0	190	292	-441	-312	373	41	-468	-530	592	-206	863	-322	-460 -976	-528	-870	-346
234/2 234/3	78/3	2	0	-10 -2	-8 -26	-40 -52	13 -13	-130 -48	-20 18	52	18 -224	-184 310	-74 -18	362 -330	$\frac{76}{328}$	452 -616	-382 324	-464 -188	358 -110	-700 118	748 656	1058 -178	-976 836	1008 -60	386 -870	-614 1238
234/3	78/2	2	0	16	-8	38	-13	78	-72	52	-242	76	342	336	76	-94	450	-854	-110	-908	-838	-970	-352	-474	1452	-562
234/5	78/1	2	Ö	16	28	-34	-13	-138	108	52	190	-176	342	-240	-140	-454	-198	154	34	-656	-550	614	8	-762	444	1022
234/6	234/3	-2	0	2	-26	52	-13	48	18	-52	224	310	-18	330	328	616	-324	188	-110	118	-656	-178	836	60	870	1238
234/7	26/2	-2	0	-17	-35	-2	13	19	94	72	-246	-100	-11	280	241	-137	232	386	64	-670	-55	-838	1016	-420		-1154
234/8	78/4	-2	0	20	-32	-50	-13	30	-120	20	-82	-44	-306	-108	-356	178	-198	-94	-62	-140	778		-1096		-1224	614
234/9 234/10	26/3 78/6	-2 -2	0	18 -4	20 4	48 -2	13 -13	-66 6	-16 -36	-168 20	-6 14	20 -152	254 -258	390 -84	-124 -188	468 -254	-558 -366	96 -550	-826 -14	-160 448	420 -926	$\frac{362}{254}$	776 1328	-186	-1626 336	-1294 614
234/10	78/5	-2	0	-6	20	-24	13	30	-16	72	282	164	110	126	164	204	738	-120	614	848	-132		-1096	-552	-210	-1726
236/1	10/0	0	2	2	-3	-59	-33	47	40	-40	-4	-124	-157	221	291	-526	132	-59	82	-524	-15	538	947	-575	546	-34
240/1	30/2	0	-3	-5	4	48	2	-114	-140	-72	210	-272	-334	-198	268	-216	-78	-240	302	-596	768	-478	640	348		-1534
240/2	120/6	0	-3	-5	-20	-16	58	38	-4	80	82	8	426	-246	524	464	-702	592	574	172	-768	-558	-408	-164	-510	514
240/3	30/1	0	-3	5	-32	60	-34	42	76	0	6	232	134	234	412	360	222	-660	-490	-812	-120	746	-152	804	-678	194
240/4	15/2	0	-3	5	24	-52	22	-14	20	168	230	288	-34	122	188	-256	-338	-100	742	84	328	-38		-1212	330	866
240/5 240/6	$\frac{120/3}{60/2}$	0	-3 3	5 5	-8 -32	-20 -36	22 -10	-14 -78	-76 -140	-56 192	-154 6	-160 16	-162 -34	-390 -390	-388 52	544 -408	-210 -114	380 -516	-794 -58	148 892	840 120	858 -646	-144 1168	-316 732	1098 -1590	994 194
240/6	$\frac{60/2}{120/2}$	0	3	5 5	-32 16	-36 28	-26	-62	68	208	-58	-160	270	282	-76	280	-210	-196	742	-836	504	-1062	-768	1052	-726	-1406
240/8	120/5	ő	3	5	0	-4	54	114	-44	-96	134	272	-98	-6	-12	200	654	-36	-442	188	632	-390		-1188		-1726
240/9	60/1	0	3	-5	28	24	-70	102	-20	72	306	136	-214	-150	292	72	-414	744	-418	-188	-480		-1352	612	-30	-286
240/10	120/1	0	3	-5	-4	-72	-6	38	-52	-152	-78	-120	-150	362	484	-280	-670	-696	222	4	-96	178	632	612	994	1634
240/11	120/4	0	3	-5	-20	56	-86	-106	-4	-136	-206	152	282	-246	-412	-40	-126	-56	-2	388	672	1170	-408	-668	66	-926
240/12	15/1	0 -2	3 5	-5 -15	-20 36	$\frac{24}{0}$	74 -12	54 84	124 60	120 105	-78 -120	-200 205	-70 115	$\frac{330}{420}$	-92 168	24 -180	$\frac{450}{270}$	-24 -429	-322 600	196 -65	288 -237	-430 -12	520 840	-156 -288	$\frac{1026}{255}$	-286 -1375
$242/1 \\ 242/2$		-2 -2	5 4	-15 3	-8	0	-12 -83	-123	112	36	-120 21	205 128	107	201	-308	-180 -492	-345	204	-470	-65 -760	900	-12 742	-92	-288 864	-645	299
242/2	22/3	-2	0	-3	10	0	16	-123	-116	189	120	-163	-409	-468	-110	144	90	-453	-20	-700	-465	-848	742	-438	-273	761
242/4	22/2	2	-7	-19	-14	ő	72	46	20	-107	-120	117	-201	228	242	-96	458	435	668		-1113	72	70	-358	895	409
242/5	242/1	2	5	-15	-36	ŏ	12	-84	-60	105	120	205	115	-420	-168	-180	270	-429	-600	-65	-237	12	-840	288		-1375
242/6	242/2	2	4	3	8	0	83	123	-112	36	-21	128	107	-201	308	-492	-345	204	470	-760	900	-742	92	-864	-645	299
242/7	22/1	2	4	14	8	0	50	-130	108	-96	-142	40	382	118	-220	520	238	-852	-190	-12	-112	6	-304	-820	202	-1406

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
243/1		3	0	-3	-10	12	8	-126	-91	-93	183	170	-172	474	-172	-159	603	564	-430	-439	-351	-727	1232		-1044	1151
243/2	243/1	-3	0	3	-10	-12	8	126	-91	93	-183	170	-172	-474	-172	159	-603	-564	-430	-439	351	-727	1232	-498	1044	1151
243/3		0	0	0	17	0	-19	0	-163	0	0	-289	-433	0	449	0	0	0	182	-880	0	1190	-1387	0	0	-523
243/4		0	$\frac{0}{2}$	ō	-37 -7	0	89 -47	0	107	0	0	-19	323	0	71 -144	0	0 6	0	182	-880	100	1190	503	0	0	1853 -1726
244/1 $245/1$	5/1	-4	-2	5 5	-7	-61 32	-47 38	16 -26	112 -100	-33 -78	-98 -50	-56 108	68 266	53 -22	442	84 514	2	-335 -500	-61 518	793 126	$\frac{120}{412}$	-819 878	763 600	-468 -282	$\frac{1116}{150}$	-386
245/1 245/2	5/1	3	-2 -2	5 5	0	-45	59	-54	-121	69	-162	-88	-259	195	-286	45	597	-360	392	-280	412	668	782		-1194	902
245/3	245/2	3	2	-5	0	-45	-59	54	121	69	-162	88	-259	-195	-286	-45	597	360	-392	-280	48	-668	782	-768	1194	-902
245/4	/-	0	6	-5	ő	-44	6	-24	-114	-52	146	-276	-210	444	492	-612	50	294	450	-668	-308	12	596	-966		-1200
245/5	35/1	0	8	5	0	12	78	94	-40	32	-50	248	-434	-402	-68	-536	22	560	278	-164	672	-82	-1000	448		-1026
245/6	245/4	0	-6	5	0	-44	-6	24	114	-52	146	276	-210	-444	492	612	50	-294	-450	-668	-308	-12	596	966	408	1200
246/1		2	3	-14	-28	0	16	-107	-138	-32	99	-35	149	41	-339	511	-58	-136	-335	682	389	-323	10	-834	526	-330
247/1	20.44	-3	-5	7	-27	60	13	21	-19	202	36	-96	-155	-254	-405	-567	-382	746	-206	-448	457	-312	688	44		-1674
252/1 $252/2$	28/1 84/2	0	0	-14	-7 -7	40 -4	-12 54	$\frac{58}{14}$	26 92	$\frac{64}{152}$	62 106	252 -144	$\frac{26}{158}$	-6 390	416 -508	$\frac{396}{528}$	450 -606	-274 364	-576 678	-476 844	448 8	-158 -422	-936 384	-530	390 -1194	214
252/2 252/3	28/2	0	0	-14	-1 7	12	-82	30	68	-216	-246	-112	110	$\frac{390}{246}$	-172	-192	-558	-540	110	140	840	-550	-208	-516	1398	1586
252/4	84/1	0	0	-6	7	-36	62	-114	-76	24	-54	-112	-178	-378	-172	192	402	-396		-1012	-840	890	80	108	1638	1010
253/1	01/1	2	7	-8	-24	-11	-11	-94	110	23	-257	207	170	369	-402	471	-628	-556	168	-118	847	-849		-1388		-1348
254/1		2	0	-1	-21	7	-50	-73	47	-33	66	26	364	-387	-204	-338	405	-484	82	586	-540	562	-1094	1272	966	160
255/1		-2	-3	5	-17	41	8	-17	-9	0	-75	68	-217	-287	-32	-423	-343	2	-20	-46	112	-647	646	-296	486	-418
255/2		-4	-3	-5	-8	-38	74	17	72	132	-246	158	14	-286	-62	-318	-446	-200	-350	770	-946	-962	838	338		-1630
256/1	270/4	0	10	0	0	-18	0	90	106	0	0	0	0	-522	-290	0	0	846	0	-70	0	430			-1026	
256/2	256/1	0	-10	0	0	18	0	90	-106	0	170	0	0	-522	290	0	0	-846	0	70	0	430	0	1350		-1910
256/3 $256/4$	256/3	0	-8 -8	-12 12	32 -32	8	20 -20	-98 -98	88 88	-32 32	-172 172	-256 256	-92 92	$\frac{102}{102}$	296 296	-320 320	-76 76	-408 -408	-636 636	-552 -552	416 -416	138 138	-64 64	-392 -392	-582 -582	238 238
256/5	256/3	0	-8	12	32	-8	-20	-98	-88	-32	172	-256	92	102	-296	-320	76	408	636	552	416	138	-64	392	-582	238
256/6	256/3	ő	8	-12	-32	-8	20	-98	-88	32	-172	256	-92	102	-296	320	-76	408	-636	552	-416	138	64	392	-582	238
256/7	,-	0	0	-4	0	0	92	94	0	0	284	0	396	230	0	0	572	0	-468	0	0	1098	0		-1670	-594
256/8	256/7	0	0	4	0	0	-92	94	0	0	-284	0	-396	230	0	0	-572	0	468	0	0	1098	0	0	-1670	-594
258/1		2	3	-9	-25	-69	-31	0	17	132	-237	38	326	-72	43	201	-84	-612	-496	-502	-288	-160	170	-561	654	449
259/1		3	-2	2	7	20	-74	76	-136	-16	86	-238	-37	86	-468	264	-298	420	838	-244	-152	514	204	314	680	-712
260/1		0	-2 3	5 -6	-4	18 11	13 6	-54 -108	-70 -98	-66	-78	-46 -40	-358	-438	98	-300	78	-114 -604	-166	788	-198	-58 502	-340 -862	$\frac{1080}{592}$	-6	-142
264/1 $264/2$		0	3	-6	-14 -8	-11	-30	-108	-98 -56	-32 -100	-8 26	-136	50 -178	-8 110	-486 288	$\frac{40}{116}$	710 -398	196	322 -782	-476 292	216 180	-398	-862 56	548	$\frac{354}{282}$	446 -142
264/3		0	-3	12	22	11	-48	-54	100	58	262	248	-130	-26	216	22	620	-424	340	-620		-1118	-214	988	-6	590
264/4		0	-3	-18	-28	11	-18	-34	80	128	162	-312	-290	-146	256	432	-490	836	230	900	520	-798	-484	-812		-1790
270/1		2	0	5	-34	-48	-70	-27	119	-51	-30	-133	218	156	-88	-516	-639	-654	461	182	900	704	-1375	915	-1116	-16
270/2		2	0	5	8	18	8	15	23	63	156	-85	74	246	-190	288	-177	792	-907	-322	-270	254	-1123	-771	-198	-1192
270/3		2	0	-5	-13	-30	-61	12	-49	18	-186	-160	-91	378	-268	144	570	204	-877	-187	-606	431	1151	102	984	-265
270/4		2	0	-5	14	-3	47	39	32	99	-51	83	314	108	299	-531	-564	-12	230	-268	-120	1106		-1086		-1642
270/5 270/6		$\frac{2}{2}$	0	-5	-22	-12 42	38 20	-105 93	-157 59	-117 9	66 120	-25 47	314 -262	-504 126	380 -178	-252 144	3	-318	293 221	-322 -538	-120	1100	917 665	309	1272	1328
270/6	270/2	-2	0	-5 -5	-4 8	-18	8	-15	23	-63	-156	-85	-262 74	-246	-178	-288	$\frac{741}{177}$	-444 -792	-907	-322	270	-1126 254	-1123	75 771	-1086 198	1544 -1192
270/8	$\frac{270/2}{270/1}$	-2	0	-5	-34	48	-70	27	119	51	30	-133	218	-156	-88	516	639	654	461	182	-900		-1125	-915	1116	-1132
270/9	270/3	-2	ŏ	5	-13	30	-61	-12	-49	-18	186	-160	-91	-378	-268	-144	-570	-204	-877	-187	606	431	1151	-102	-984	-265
270/10	270/6	-2	0	5	-4	-42	20	-93	59	-9	-120	47	-262	-126	-178	-144	-741	444	221	-538	-690	-1126	665	-75	1086	1544
270/11	270/5	-2	0	5	-22	12	38	105	-157	117	-66	-25	314	504	380	252	-3	318	293	-322	120	44	917		-1272	1328
270/12	270/4	-2	0	5	14	3	47	-39	32	-99	51	83	314	-108	299	531	564	12	230	-268	120	1106	-739	1086		-1642
272/1	17/1	0	8	6	28	24	-58	17	-116	60	30	172	-58	-342	148	-288	318	-252	110	484	708	362	484	-756	-774	-382
272/2 272/3	68/1	0	$\frac{2}{2}$	-8 16	12 -24	10 -62	-38 -62	-17 -17	-4 20	-120 12	56 80	-164 208	-236 -356	$\frac{70}{22}$	$\frac{144}{312}$	-48 -24	-366 -462	504 -240	-460 812	$\frac{768}{216}$	-72 -732	-734	-736 -700	-856	906 -390	146
$\frac{272}{3}$	$\frac{34}{1}$ $\frac{34}{2}$	0	2	-18	-24 10	-62 6	-62 74	-17 17	20 88	114	-90	310	-356 86	90	-368	384	-462 -258	-240	302	964	390	$\frac{178}{722}$	898	992 -912		-146 -1438
273/1	34/2	-4	-3	-10	-7	-6	-13	-4	-52	6	14	-48	-190	180	356	536	210	244	470	240	854	-82	-876	504	-660	1318
273/2		-1	3	-5	7	-1	13	19	-117	-141	-131	-128	55	0	-201	-96	510	-156	-845	-470	324	-373	-526	266	-250	322
273/3		-1	3	9	-7	-57	-13	-37	107	-183	191	-240	-379	-84	-313	296	-414	40	65	-1086	-208	635	-582	798	-726	1498
275/1	55/1	-1	3	0	9	11	-2	-21	-85	-22	-165	-83	-1	-478	8	-126	683	-290	257	-776	-313	-902	830	-842	25	1784
276/1		0	3	8	34	36	-62	-60	30	-23	234	140	-174	194	-42	-400	76	252	-566	-6	264	-286	486	-980		-1626
276/2		0	3	2	-22	-14	-50	-52	-20	23	-74	24	104	-30	112	-288	-386	-204	-308	152	-720	486	462	742	180	786
278/1	93/1	-2 -3	-4	9	-5	7 -33	-5 65	-12 21	148	-100	139	-287	-370	-2	122	-540	-582	-94	-418	895	-519	-218	319	141		-1590
279/1 $280/1$	93/1	-3 0	0 -1	9 5	-34 7	-33 -39	-17	-15	-97 74	84 -14	-48 -237	31 -180	146 -318	378 -348	182 -22	501 -193	402 -208	-102 452	209 340	-835 -408	$\frac{105}{528}$	542 -554	1109 539	$\frac{597}{164}$	1638 -576	-1483 -827
280/1		0	7	5	7	9	23	41	34	-6	131	4	26	-260	-190	167	-368	324	-164	200	784	-410	1211		-72	-707

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	F 2	59	61	67	71	73	79	83	90	97
280/3	twist of	0	-4	5	7	20	-10	-14	19	104	-122	224	158	378	404	112	270	324	-186	67 156	-360	-102	-912		-1590	866
280/4		0	5	-5	-7	-39	-19	-37	-18	-90	99	-32	46	-248	178	429	-652	40	-36	-348	72		699	-116	-704	223
282/1		-2	-3	3	11	15	-28	60	-94	45	75	200	149	222	380	-47	594	846	650	-160	114	-340	-373	1122	-582	-811
282/1		-2	3	7	-9	-45	-70	-38	30	-99	211	-2	-275	394	-182	-47	80	-776	-130	-290	234		-1221	468	1082	449
282/2		-2	3	-8	-12	60	2	-110	-126	84	40	-14	-254	-164	-422	-47	-502	628	26	-386	-720	574	156			-1570
282/4		-2	3	-3	-33	-31	62	58	130	151	-23	250	-43	-282	342	47	-412	324	518	734	-322	22	707	-1096	254	-767
282/5		2	3	-11	-25	-15	-26	-54	-6	-89	-31	-70	-171	390	262	47	12	196	-442	-386	70	22	171	-672	-42	-607
285/1		-3	-3	-11 5	32	-12	-10	-30	19	-48	150	224	254	-54	-196	-504	78	132	230	740	-120	122	1184	612	1050	-1006
287/1		-1	-2	-12	-7	-36	-28	-114	-54	104	30	180	202	-41	-264	436	-582	-674	-236	48	968	82	-120	-266	-278	-266
288/1		0	0	4	0	-30	18	104	-04	0	284	0	214	472	-204	430	572	0	830	0	0		-120	-200	-176	-594
288/2	32/1	0	0	-22	0	0	-18	94	0	0	130	0	214	230	0	0	-518	0	830	0	0	1098	0	0	1670	594
288/3	288/1	0	0	-22	0	0	18	-104	0	0	-284	0	214	-472	0	0	-572	0	830	0	0	-1098	0	0	176	-594
288/4	96/2	0	0	14	36	-36	54	22	-36	-144	-50	108	214	446	-252	72	22	-684	-466	180	576	-54	972	-684		-1134
288/5	96/2	0	0	14	-36	36	54	22	36	144	-50	-108	214	446	252	-72	22	684	-466	-180	-576	-54	-972	684		-1134
288/6	32/2	0	0	10	16	40	-50	30	40	-48	34	320	310	-410	152	416	410	200	30	776	-400		-1120	-552	326	-1104
288/7	32/2	ő	ő	10	-16	-40	-50	30	-40	48	34	-320	310	-410	-152	-416	410	-200	30	-776	400		1120	552	326	-110
288/8	96/1	ő	ő	-10	-4	-20	70	-90	140	192	134	100	-170	110	532	56	430	20	270	-524	80	330	1060	1188		-590
288/9	96/1	ő	ő	-10	4	20	70	-90	-140	-192	134	-100	-170	110	-532	-56	430	-20	270	524	-80			-1188		-590
288/10	96/4	ő	Ö	-2	-12	60	-42	-10	-132	-48	-226	252	-362	94	228	-408	-346	-300	-466	-204	1056	330	-612	564	1510	594
288/11	96/4	ő	ő	-2	12	-60	-42	-10	132	48	-226	-252	-362	94	-228	408	-346	300	-466		-1056	330	612	-564	1510	594
289/1	17/1	-3	8	-6	28	24	-58	0	116	60	-30	172	58	342	-148	288	318	252	-110	-484	708	-362	484	756	-774	382
290/1	, -	2	2	-5	-24	12	-18	-44	-100	-68	-29	172	156	22	-18	-114	-518	100	282	-204	-768	32	-20	1332	-530	-804
290/2		2	-2	-5	12	-48	-2	-24	-48	8	-29	-328	-280	-154	-206	-102	546	548	50	-480	816	124	296	-408	1558	304
290/3		2	0	5	-20	-52	-42	-22	28	36	29	24	-266	-38	88	188	-194	-460	-314	896	-416	-606	992	-24	-774	1626
290/4		-2	2	-5	-32	12	22	104	12	212	-29	52	0	-354	526	-58	314	-692	730	-140	696	-404	116	-172	-42	176
294/1	42/1	2	3	-18	0	-72	34	-6	-92	-180	-114	-56	-34	-6	164	-168	654	492	250	-124	36	-1010	56	-228	-390	70
294/2	42/2	2	-3	-2	0	-8	42	2	124	76	254	72	398	-462	212	264	-162	772	-30	-764	-236	-418	552	-1036	-30	1190
294/3	·	-2	-3	6	0	-30	-53	84	97	84	-180	-179	-145	-126	-325	366	-768	264	-818	-523	-342	43	-1171	810	600	-386
294/4		-2	-3	-15	0	-9	-88	-84	104	-84	51	185	44	-168	326	-138	639	159	722	-166	1086	218	-583	-597	-1038	-169
294/5		-2	-3	-8	0	40	-4	84	-148	84	58	136	-222	-420	-164	-488	478	-548	-692	-908	-524	-440	1216	684	-604	832
294/6	294/5	-2	3	8	0	40	4	-84	148	84	58	-136	-222	420	-164	488	478	548	692	-908	-524	440	1216	-684	604	-832
294/7	294/4	-2	3	15	0	-9	88	84	-104	-84	51	-185	44	168	326	138	639	-159	-722	-166	1086	-218	-583	597	1038	169
294/8	294/3	-2	3	-6	0	-30	53	-84	-97	84	-180	179	-145	126	-325	-366	-768	-264	818	-523	-342		-1171	-810	-600	386
294/9	6/1	-2	3	-6	0	12	-38	126	-20	168	30	88	254	-42	-52	96	198	660	538	884	792	-218	-520	492	-810	-1154
297/1		4	0	-8	-11	-11	-92	-65	156	173	-177	94	-171	-47	-135	29	492	695	-684	2	528		-1129	-300	30	491
297/2	297/1	-4	0	8	-11	11	-92	65	156	-173	177	94	-171	47	-135	-29	-492	-695	-684	2	-528		-1129	300	-30	491
297/3		-1	0	-13	28	11	-5	29	12	-173	-234	-98	168	-361	210	160	-633	646	-831	305	-372	-866	-271	561		-1831
297/4	00-11	-1	0	11	-20	11	67	-115	-36	-149	246	142	-360	-457	-318	-272	207	-506	297		-1092	-338	905	-543	-414	905
297/5	297/4	0	0	-11	-20	-11	67	115	-36	149	-246	142	-360	457	-318	272	-207	506	297	-319	1092	-338	905	543	414	905
297/6	297/3	0	0	13 0	28	-11	-5	-29	12	173	234	-98	168	361	210	-160	633	-646	-831	305	372	-866	-271	-561		-1831
300/1		0	-3		-13 22	6	5	-78	65 -120	138 188	66 96	299	-214 406	360 130	$\frac{203}{148}$	78	636 -414	$\frac{786}{266}$	467 -838	-217 248	-360 1020	-286	272	498	0	-511
300/2 300/3	12/1	0	-3 -3	0	-8	-14 36	-30 10	62 -18	-120	-72	-234	184 -16	226	90	-452	448 -432	-414 -414	-684	-838 422	-332	-360	484 -26	-48 512	548 1188	-650 -630	-1816 1054
300/3	12/1	0	-3 -3	0	-o 7	-54	55	-18	-25	18	-234	-271	-314	-360	163	-522	36	126	422		-1080	1054	-568	-1422	1440	439
300/4	300/1	0	-3 3	0	13	-54 6	-5	-18 78	-25 65	-138	-54 66	299	214	360	-203	-322	-636	786	467	217	-360	286	272	-498	1440	511
300/6	60/1	0	3	ő	28	-24	70	-102	20	72	306	-136	214	-150	292	72	414	-744	-418	-188	480	-434	1352	612	-30	286
300/7	60/2	0	3	0	-32	36	10	78	140	192	6	-16	34	-390	52	-408	114	516	-58	892	-120		-1168		-1590	-194
300/8	300/4	0	3	0	-7	-54	-55	18	-25	-18	-54	-271	314	-360	-163	522	-36	126	47			-1054	-568	1422	1440	-439
300/9	300/2	0	3	ő	-22	-14	30	-62	-120	-188	96	184	-406	130	-148	-448	414	266	-838	-248	1020	-484	-48	-548	-650	1816
301/1	/2	3	10	6	7	60	-88	-78	74	-120	186	-70	254	-126	43	-222	-450	96	182	-916	-264	92	128	-132	168	182
303/1		-3	3	-8	-5	-22	82	3	-17	32	-275	-114	322	16	169	-160	-667	-706	-785		-1042	-814		-1472	592	593
304/1	38/1	o o	2	-9	31	-57	-52	69	-19	72	-150	-32	-226	-258	67	-579	-432	330	-13	856	-642	-487	700	12	-600	1424
304/2	19/1	ő	5	-12	-11	54	11	-93	-19	-183	-249	-56	-250	240	196	168	435	-195	-358	961	246	353	34	-234	-168	758
306/1	34/1	2	0	-16	24	-62	-62	17	-20	12	-80	-208	-356	-22	-312	-24	462	-240	812	-216	-732	178	700	992	390	-146
306/2	34/2	2	0	18	-10	6	74	-17	-88	114	90	-310	86	-90	368	384	258	-240	302	-964	390	722	-898			-1438
306/3	102/2	2	0	5	-32	-27	-69	17	-83	117	-94	198	-244	-169	227	382	-686	-450	-700	540	276	-298	-182	-282	1468	-1140
306/4	102/1	2	0	3	20	51	-61	-17	-43	219	150	290	56	-15	83	-426	378	210	-448	-124	-900	-1078	722	78	144	-268
306/5		2	0	-9	-10	15	-25	-17	-151	-57	-234	-4	-22	333	-289	240	312	282	374	-604	480	-412	-466	-192	462	1244
306/6	306/5	-2	0	9	-10	-15	-25	17	-151	57	234	-4	-22	-333	-289	-240	-312	-282	374	-604	-480	-412	-466	192	-462	1244
306/7	102/4	-2	0	-5	12	-37	19	-17	37	3	86	-142	-296	121	3	-402	-174	-270	-520	-780	-84	-302	178		-1512	-500
306/8	102/3	-2	0	12	-22	48	2	17	20	54	-84	62	44	138	428	516	-174	852	908	-508	426	-574	110	1308		-1690
308/1		0	4	-12	7	11	-10	24	-94	-180	30	-94	-214	-48	8	30	54	360	-178	-292	312	728	-1288	66	-390	-1510

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
308/2		0	-7	-1	7	11	12	2	82	7	-102	-171	-357	-114	-344	96	-430	-201	-2	313	-579	-438	494	748	457	-1037
310/1		2	-10	-5	0	60	16	-112	-124	-146	-62	-31	140	474	94	-156	-28	-348	-646	-404	-912	-380		-1066	-354	414
$\frac{310/2}{310/3}$		2 -2	-1 7	5 -5	-18 -4	-30 -4	-2 -2	-25 79	-51 133	-148 176	64 186	31 -31	-69 191	-11 -35	25 -391	-50 242	75 -237	-483 33	-596 360	-604 398	-65 1031	593 173	-328 -522	933 537	838 -240	350 -826
310/3		-2	-2	-5	-24	-22	24	86	-68	-104	-72	-31	232	70	158	432	440	24	-428	20	864	218	252	-398	-302	222
310/5		-2	-2	-5	20	44	-20	-68	-68	182	-6	-31	-208	202	422	608	264	684	474	680	-16		-1200	1230	6	1190
314/1		2	-8	Õ	5	-10	27	-93	20	55	-168	-286	-381	0	-115	320	-532	69	520	-226	378	-276	-56	-304	-187	1030
315/1	105/2	-5	0	-5	7	-12	30	134	-92	-112	58	-224	-146	-18	340	-208	754	-380	718	412	960	1066	896		1038	-702
315/2	35/1	-1	0	5	7	-12	-78	94	40	-32	50	-248	-434	-402	-68	-536	-22	560	-278	-164	-672		-1000	448	870	1026
315/3		-3	0	-5	7	-60	38	84	110	-120	-162	236	-376	126	-34	6	-582	-492	-880	-826	666	-826	-592	-792 -		1442
315/4	315/3	3	0	5	7	60	38	-84	110	120	162	236	-376	-126	-34	-6	582	492	-880	-826	-666	-826	-592		1002	1442
315/5 316/1	105/1	0	0 6	-5 6	7 0	-42 4	20 34	-66 54	$\frac{38}{144}$	-12 -8	$\frac{258}{180}$	$\frac{146}{128}$	434 -232	$\frac{282}{446}$	20 -86	72 -192	-336 -348	360 -838	-682 780	812 904	-810 312	-124 -234	1136 79	-156 -316	1038 566	1208 -806
$\frac{310/1}{320/1}$	10/1	0	8	-5	-4	-12	58	66	100	132	90	152	34	-438	-32	-204	-222	-420	-902	1024	432	362	-160	-72	810	1106
320/2	10/1	ő	-8	-5	4	12	58	66	-100	-132	90	-152	34	-438	32	204	-222	420		-1024	-432	362	160	72	810	1106
320/3	40/2	0	-6	5	34	16	-58	-70	4	134	242	-100	438	-138	178	-22	-162	-268	-250	422	852	306	456	434	-726	1378
320/4	40/1	0	10	5	18	-16	6	-6	-124	-42	-142	188	-202	54	66	-38	-738	564	262	-554	-140	882	1160	642	-854	-478
320/5	40/1	0	-10	5	-18	16	6	-6	124	42	-142	-188	-202	54	-66	38	-738	-564	262	554	140		-1160	-642	-854	-478
320/6	40/2	0	6	5	-34	-16	-58	-70	-4	-134	242	100	438	-138	-178	22	-162	268	-250	-422	-852	306	-456	-434	-726	1378
$\frac{320}{7}$ $\frac{320}{8}$	20/1	0	4	-5	16 -16	-60 36	-86 42	18 -110	44 -116	-48 -16	186 -198	-176 -240	-254 258	$\frac{186}{442}$	-100 -292	-168 -392	498 -142	-252 -348	58 570	-1036 692	-168 -168	506 -134	-272 -784		-1014 1034	-766 -382
320/8	$\frac{40/3}{160/1}$	0	2	-5 5	-16	-60	-50	-30	-116	-16 178	-198	-240 20	-10	-250	-292	-392 214	-142	800	-250	774	100		-1320	-982	874	-382
320/10	5/1	0	2	5	-6	32	38	26	100	78	50	108	-266	22	442	514	-2	500	518	126	-412	-878	-600	282	-150	386
320/11	40/3	0	-4	-5	16	-36	42	-110	116	16	-198	240	258	442	292	392	-142	348	570	-692	168	-134	784		1034	-382
320/12	20/1	0	-4	-5	-16	60	-86	18	-44	48	186	176	-254	186	100	168	498	252	58	1036	168	506	272	-948 -	-1014	-766
320/13	160/1	0	-2	5	-6	60	-50	-30	40	-178	-166	-20	-10	-250	142	-214	-490	-800	-250	-774	-100	-230	1320	982	874	-310
320/14	5/1	0	-2	5	6	-32	38	26	-100	-78	50	-108	-266	22	-442	-514	-2	-500	518	-126	412	-878	600	-282	-150	386
324/1	204/1	0	0	3 -3	-4	-24 24	-25 -25	-21 21	-52 -52	168	-177	-124	-265 -265	426	-160 -160	-540 540	-258 258	528	-505 -505	-244 -244	204 -204	-397 -397	200 200	-540	-453	290 290
$\frac{324/2}{325/1}$	$324/1 \\ 65/1$	-5	-2	-3 0	$^{-4}$	$\frac{24}{14}$	-25 13	-98	-52 -26	-168 114	177 58	-124 306	-265	-426 -374	314	-620	-362	-528 266	634	-612	-204 -686	-397	-516	540 -48	453 -1230	-350
325/2	13/1	5	7	0	13	-26	-13	-77	-126	96	-82	196	131	336	201	105	432	-294	-56	-478	9	-98	1304		-1190	-70
325/3	- /	-3	-4	0	28	2	13	-44	-94	18	118	-100	-126	474	200	-448	754	-446	-638	868	536	58	232		1038	774
325/4	325/3	3	4	0	-28	2	-13	44	-94	-18	118	-100	126	474	-200	448	-754	-446	-638	-868	536	-58	232	-108	1038	-774
330/1		2	3	-5	10	-11	44	124	-56	100	42	-120	86	222	54	76	-162	-68	-734	-552	-320	292	676	422	-490	174
330/2		2	3	-5	-34	11	-88	36	-100	12	-90	-208	86	-438	362	516	102	-420	-118	416	-408	-808	-160	-18	-930	1406
330/3 330/4		2 2	-3 -3	-5 5	2 -24	-11 11	-28 -30	-36 -110	-64 56	12 -144	-126 -182	-280 24	-298 -234	54 -26	62 -68	-444 224	366 -146	108 -116	146 -818	848 -4	$\frac{48}{176}$	-628 -826	-676 532	$\frac{342}{1008}$	-570 1098	-178 42
330/4		-2	3	-5	-6	-11	48	-52	-76	-132	134	-192	30	-334	334	-572	-140	-220	-302	392	-704	-184		-1446	-114	-642
330/6		-2	3	-5	-6	11	-40	80	56	44	178	-16	-146	414	158	-44	166	44	402	744	1056	1136	-468	182	678	-1082
330/7		-2	3	5	-16	-11	38	18	44	168	54	8	-130	-174	164	528	510	780	-82	92	336	-574	56	1044	426	1298
330/8		-2	3	5	-16	11	-50	-70	-44	-96	-122	184	134	-86	-12	-264	-194	-716	182	-436	-104	-134	-648	-628	-102	418
330/9		-2	-3	5	20	11	26	6	-28	-48	-162	128	86	66	344	312	486	-84	494	716	-432	206	440	192	-294	1082
330/10	111 /0	-2 4	-3 0	-5 -2	2	11 -20	-16	96	-112	180	-102 222	-208 -154	110	-90 306	-10 386	-180 -12	-618	-36	-286 250	-928 -748	48	-520 -130	-412	-618	-234	422 898
333/1 333/2	$\frac{111/3}{111/2}$	-1	0	-2 8	-28 -13	-20 35	10 -35	78 3	-150 15	-82 -47	12	-154 -94	-37 -37	-54	-244	-12 -282	46 -619	-658 -8	250	-748 -478	-324 96	-130 -955	-230 -410	-216 579	118 -37	898 -2
333/3	111/2	0	0	4	-13	13	73	-99	-105	-133	-300	62	-37	198	68	-354	7	-220	322	-706	-672	893	910	-243	-995	1234
336/1	21/2	ő	3	-18	-7	36	-34	42	124	0	102	160	398	-318	268	-240	-498	132	398	-92	720	-502	1024	204	354	-286
336/2	168/3	0	3	4	7	26	2	-36	76	114	6	256	-86	160	220	-308	258	-264	606	520	286	-530		-1012	768	222
336/3	21/1	0	3	-4	7	-62	-62	84	-100	42	-10	48	-246	-248	-68	-324	258	-120	622	-904	678	-642	-740	-468	200	-1266
336/4	168/1	0	3	-2	-7	-12	-66	-70	92	-16	-122	-64	-306	50	-20	176	526	-540	-818	228	-864	106	-736	588	146	-1214
336/5	42/1	0	3 3	18	-7	72	-34	6	-92	180	-114	-56	-34	6	-164	-168	654	492	-250	124	-36	1010	-56	-228 108	390	-70
336/6 336/7	168/4 84/1	0	3	-10 6	-7 -7	12 -36	30 62	$\frac{34}{114}$	-148 76	-152 24	-106 54	-304 112	-114 -178	$\frac{202}{378}$	-116 172	-224 192	-274 -402	660 -396	$\frac{382}{254}$	-12 1012	552 -840	-614 890	-880 -80		-86 -1638	$1426 \\ 1010$
336/8	168/5	0	-3	-2	7	-52	86	-30	4	-120	246	-80	-290	-374	-164	-464	-162	-180	-666	628	-296	-518	1184	-220		-1086
336/9	84/2	ő	-3	$^{-2}$	7	-4	54	-14	-92	152	-106	144	158	-390	508	528	606	364	678	-844	8	-422	-384			-1502
336/10	168/2	0	-3	-10	7	52	-10	-54	52	-48	-186	-224	94	-478	316	-256	-66	-420	342	-668	272	-86	-1360	-188	-366	1554
336/11	168/6	0	-3	-16	-7	18	-54	-128	-52	202	302	200	-150	172	-164	460	-190	-96	622	-744	54	742	92	228	-116	-554
336/12	42/2	0	-3	2	7	8	-42	-2	124	-76	254	72	398	462	-212	264	-162	772	30	764	236	418		-1036	30	-1190
338/1	26/1	$\frac{2}{2}$	-3	-2	5	-13	0	27	-75	-187	-13	104	-423	-195	199	-388	618	-491	175	-817	-79	-230	764		1041	97
338/2 338/3	$\frac{26}{1}$ $\frac{338}{1}$	-2	3 -3	-11 2	-19 -5	38 13	0	-51 27	-90 75	-52 -187	-190 -13	-292 -104	$\frac{441}{423}$	-312 195	$\frac{373}{199}$	$\frac{41}{388}$	$\frac{468}{618}$	-530 491	$\frac{592}{175}$	206 817	863 79	$\frac{322}{230}$	-460 764	-528 -732 -	-870 1041	346 -97
338/4	26/2	-2	-3 -1	-17	-5 35	-2	0	-19	-94	-72	246	100	11	280	241	-137	-232	386	64	670	-55		1016	-420		1154
336/4	40/2	-2	-1	-11	55	-2	U	-19	-94	-12	240	100	11	200	241	-101	-232	360	04	070	-55	000	1010	-420	304	1104

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
338/5	26/3	-2	4	18	-20	48	0	66	16	168	6	-20	-254	390	-124	468	558	96	-826	160	420	-362	776	0	-1626	1294
339/1	- / -	-4	3	17	-15	-24	-7	-123	-108	-69	-30	233	2	-374	90	288	-446	-585	-39	308	315	-280	730	-1378	-458	-818
340/1		0	2	5	2	-30	-62	17	-56	-110	206	114	-194	-430	4	-68	206	496	-290	8	-798	314		-1276		-1006
340/2		0	-5	5	2	12	-13	17	35	30	-249	-229	-124	-66	-262	-75	-543	-225	-535	386	231	-547	-376	768	-537	1367
341/1	4440	5	-4	-6	-19	-11	12	-105	-10	-11	-48	31	47	122	-289	216	50	621	454	63	-750	502	-1222	-781	-478	321
342/1	114/2	2	0	7	-15	49	14	33	-19	148	278	94	160	-400	73	-173	-170	12	419	444	952	-27	-556		-1386	130
342/2 342/3	$\frac{114/1}{38/1}$	2 2	0	19 9	9 -31	13 -57	38 -52	-99 -69	-19 19	-68 72	-130 150	$\frac{262}{32}$	-296 -226	$\frac{8}{258}$	73 -67	271 -579	$\frac{502}{432}$	-540 330	587 -13	684 -856	-992 -642	-507 -487	980 -700	$\frac{492}{12}$	-810 600	-1046 1424
342/3	114/3	2	0	-12	-31 4	-8	-24	-62	19	-194	-102	18	-226	-134	-60	226	362	316	134	-240	800	-578	1078	-940	-170	206
342/4	114/3	-2	0	11	-15	29	-82	-27	-19	-100	118	70	232	-134	-287	-385	-538	300	-901	132		-1131	-52	-276	1302	
345/1	111/1	-3	3	5	26	54	2	-72	68	-23	-102	-16	344	162	-280	-360	114	-768	704	560	408	998	-550	966	-804	-310
345/2		-5	3	5	-6	46	-50	-116	-152	23	206	-120	-28	-118	292	-344	-326	748	-584	-684	152	118		-1278	228	-790
345/3		0	-3	-5	-16	-48	-46	-30	-46	-23	30	116	68	54	380	420	-642	186	-34	-124	1026	-646	-610	-612	642	476
345/4		0	3	-5	16	52	-38	-54	40	23	170	232	386	482	132	-144	82	100	-398	-124	-428	-78	-960	-1488	470	1126
348/1		0	3	-9	21	-66	-72	-25	137	-112	29	88	-375	-397	87	-327	182	449	-510	-864	144	-370	1174	-528	986	360
350/1	70/6	-2	-5	0	7	-1	-7	51	30	50	79	-212	190	-308	-422	-121	-664	628		-1056	744	-726	-407	-644	-880	1351
350/2	70/5	-2 -2	-7	0	-7 7	-33 5	43 -82	-111 12	-70 -42	-42	-225 0	-88 226	34 19	432 16	178 -281	-411 -334	$\frac{708}{398}$	480	812	-596	432	358	425	-972	960	709
350/3 350/4		-2 -2	4	0	-7	37	-82 18	-121	-42 -45	-175 -72	210	-148	-136	227	-32	-334	-452	106 -140	48 -578	-483 -801	-15 -478	-1044 -247	-1253 610	-758 653	86 -1115	-710 614
350/4		-2	10	0	7	9	-52	96	-10	75	189	-232	305	-438	353	-486	-354	-672	206	599	-471	614	743	996	180	-184
350/6		-2	-8	ő	-7	-7	-26	44	142	115	0	6	-411	-444	221	-258	626	-162	-820	519		-1160	-809	-678	370	-310
350/7		-2	7	ŏ	-7	-37	-51	-41	-108	70	-249	-134	334	206	376	287	6	-2	-940	-106	456		-1239	-428	-220	1055
350/8		-2	-1	0	7	-35	58	107	23	-200	-174	76	184	431	144	526	108	76	118	687	530	-299	402	897	-799	1510
350/9	14/2	-2	2	0	-7	48	-56	114	2	120	-54	236	-146	126	376	12	-174	138	380	484	576	1150	776	-378	-390	1330
350/10		-2	2	0	-7	-27	64	24	62	105	141	-124	439	-354	211	102	306	348	410	349	-339	70	731	-528		-1340
350/11	70/3	2	3	0	7	-17	81	91	102	90	-129	116	-314	-124	434	-497	584	-332	220	-384	-664	-230		-1172	40	175
350/12	350/7 $350/4$	2 2	-7 -3	0	7 7	-37 37	51	$\frac{41}{121}$	-108	-70 72	-249 210	-134	-334	$\frac{206}{227}$	-376 32	-287 346	-6	-2	-940	106 801	456	650	-1239	428		-1055
350/13 350/14	350/4	2	-3 -8	0	7	-28	-18 -18	-74	-45 80	112	190	-148 72	136 346	162	$\frac{32}{412}$	-24	452 -318	-140 -200	-578 -198	716	-478 392	247 -538	610 240	-653 1072	-1115	-614 -1354
350/14	350/10	2	-2	0	7	-27	-64	-24	62	-105	141	-124	-439	-354	-211	-102	-306	348	410	-349	-339	-70	731	528	960	1340
350/16	350/5	2	-10	ő	-7	9	52	-96	-10	-75	189	-232	-305	-438	-353	486	354	-672	206	-599	-471	-614	743	-996	180	184
350/17	70/1	2	8	0	7	68	-34	-74	-128	80	286	-24	-294	66	124	-312	34	168	170	-564	616	-250	-944		-1430	1270
350/18	350/6	2	8	0	7	-7	26	-44	142	-115	0	6	411	-444	-221	258	-626	-162	-820	-519	61	1160	-809	678	370	310
350/19	70/4	2	-4	0	-7	60	-38	-42	-52	-120	-234	-304	106	-54	196	-336	-438	-444	38	988	-720	-146	-808	-612	1146	70
350/20	350/3	2	-4	0	-7	5	82	-12	-42	175	0	226	-19	16	281	334	-398	106	48	483	-15		-1253	758	86	710
350/21	70/2	$\frac{2}{2}$	0	0	-7 -7	-65	-13	73 -107	-142 23	-130	111 -174	256	266	-424	-534	269	132 -108	-224 76	-572	108	560	-586 299	57	-252	-184	605
350/22 $351/1$	350/8	-1	0	4	11	-35 -55	-58 13	-107 46	-90	200 201	157	76 -47	-184 -359	431 -378	-144 -453	-526 -384	-633	663	118 -134	-687 628	530 342	299 86	402 526	-897 -1003		-1510 -1406
351/1	351/1	0	0	-4	11	-55 55	13	-46	-90	-201	-157	-47	-359	378	-453	384	633	-663	-134	628	-342	86	-526	1003		-1406
357/1	001/1	-1	-3	-6	7	18	-8	-17	86	80	-44	112	-256	-270	-380	56	58	194	-530	-296	100	286		-1086	1298	-166
357/2		-5	-3	-1	-7	45	-83	17	-22	134	210	112	331	-228	307	-504	-555	540	-118	-719	40	-855		-1433	35	701
358/1		-2	-8	7	-24	60	-93	33	107	202	207	-288	-2	-204	83	-149	-376	-539	-2	-423	168	-682	-134	119	351	-1666
360/1	40/3	0	0	-5	16	-36	-42	110	-116	-16	-198	240	-258	-442	-292	-392	-142	348	-570	692	-168	-134	784	-564		-382
360/2		0	0	-5	-18	-34	12	102	164	-48	-146	100	328	288	120	-16	126	-642	602	436	-652	1062	388	444	820	-766
360/3		0	0	-5	34	18	12	-106	-44	56	270	204	120	80	536	-536	542	-174	186	332	-132	-602	-548		-1052	482
360/4 360/5	120/2	0	0	-5 -5	-16	34 28	-68 -26	38 62	-68	-152 208	46 58	-260 160	-312 270	-48 -282	-200 76	-104 280	$\frac{414}{210}$	-196	-38 742	-244 836	-708 504	-378 -1062	-852 768	-844 1052	$\frac{1380}{726}$	514 -1406
360/6	120/2	0	0	-5	-10	-20	22	14	76	-56	154	160	-162	390	388	544	210	380	-794	-148	840	858	144		-1098	994
360/7	120/5	0	0	-5	0	-4	54	-114	44	-96	-134	-272	-98	6	12	200	-654	-36	-442	-188	632	-390		-1188		-1726
360/8	120/1	Ö	Ö	5	4	-72	-6	-38	52	-152	78	120	-150	-362	-484	-280	670	-696	222	-4	-96	178	-632	612	-994	1634
360/9	360/4	0	0	5	2	-34	-68	-38	4	152	-46	-260	-312	48	-200	104	-414	-2	-38	-244	708	-378	-852	844	-1380	514
360/10	40/2	0	0	5	-34	-16	58	70	4	134	242	100	-438	138	178	-22	-162	268	250	422	852	306	-456	-434	726	1378
360/11	360/3	0	0	5	34	-18	12	106	-44	-56	-270	204	120	-80	536	536	-542	174	186	332	132	-602	-548	492	1052	482
360/12	40/1	0	0	5	-18	16	-6	6	-124	-42	-142	-188	202	-54	66	-38	-738	-564	-262	-554	-140		-1160	-642	854	-478
360/13 360/14	$\frac{360/2}{120/6}$	0	0	5 5	-18 20	34	12	-102 -38	164 4	48 80	146 -82	100 -8	$\frac{328}{426}$	-288 246	120 -524	$\frac{16}{464}$	-126 702	$642 \\ 592$	$602 \\ 574$	436 -172	652 -768	1062 -558	388 408	-444 -164	-820	-766 514
360/14	$\frac{120}{6}$	0	0	5 5	20	-16 56	58 -86	-38 106	4	-136	206	-8 -152	282	$\frac{246}{246}$	-524 412	-404	126	-56	-2	-172	672	-558 1170	408	-164	510 -66	514 -926
361/1	19/1	3	5	-12	11	-54	-11	-93	0	183	249	-56	250	-240	-196	-168	-435	-195	-358	961	246	353	34	234	168	-758
361/2	10,1	0	0	14	-36	40	0	14	0	212	0	0	0	0	128	364	0	0	630	0	0	1078	0	-112	0	0
363/1		3	3	-12	12	0	-66	-114	42	18	186	-308	-146	42	-366	618	-408	-132	630	-452	-282	684	1272	-432	954	326
363/2		4	-3	-13	26	0	-73	31	-108	-86	-207	208	45	247	-450	-500	-441	598	378	494	-594	1034	352	360	-351	1079
363/3	363/2	-4	-3	-13	-26	0	73	-31	108	-86	207	208	45	-247	450	-500	-441	598	-378	494	-594	-1034	-352	-360	-351	1079

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
363/4		-1	-3	7	-4	0	-43	41	72	104	273	-272	-165	-403	-120	-220	-741	-112	858	284	-624	-586	-308	0	-321	179
363/5	363/1	-3	3	-12	-12	0	66	114	-42	18	-186	-308	-146	-42	366	618	-408	-132	-630	-452	-282	-684	-1272	432	954	326
363/6	33/2	5	3	-14	32	0	38	2	-72	68	54	-152	174	-94	528	-340	-438	20	-570		-1092	-562	16	-372	-966	-526
363/7	363/4	0	-3	7	4	0	43	-41	-72	104	-273	-272	-165	403	120	-220	-741	-112	-858	284	-624	586	308	120	-321	179
363/8	33/1	0	-3 7	-4 -8	26 -7	-57	32 -13	-74 44	60 -110	-182 21	90 -28	-8 -71	-66 43	-422 -113	-408 212	-506 -175	348 -348	-200 546	-132 529	-1036 527	762 -448	542 63	550	132 -1340	570 -866	14 -1163
364/1 364/2		0	4	-8 -19	-1 7	38	-13	120	-110	-9	171	313	160	354	-197	-175	-617	40	-90	490	-540	275	-233	1291	627	-1103
364/3		0	0	17	-7	-50	-13	-108	-1 -9	-19	23	-173	156	426	-197	-311	-165	-856	-626	334	472		-233	405	915	719
365/1		-3	10	5	-16	48	-88	9	137	57	213	-97	-97	201	-421	192	690	186	-304	146	420	73	-196	-612	-399	1280
365/2		-3	-7	-5	-10	-39	-16	-130	-136	-50	-123	-254	41	-215	162	99	-676	691	-304	601	-803	-73	-593		1169	1586
366/1		2	3	-3	-33	-19	-29	-62	-4	-9	160	-276	-32	-93	284	-334	428	123	61	385	-120	-535		-1074	-476	1446
366/2		2	3	-18	12	-44	-74	-2	-44	16	-270	44	-2	-78	184	-344	-702	628	61	80	520	570	812			-1054
368/1	46/2	0	9	-20	-2	52	43	-50	74	23	-7	273	-4	123	152	-75	86	444	262	-764	21	681	-426		-1272	-342
368/2	184/1	0	-8	-4	4	-26	70	94	-54	23	-86	144	-172	-42	-386	80	-108	-164	-400	-398	320	-810	204	-102	1018	-1370
368/3	23/1	0	5	-6	8	-34	-57	-80	70	-23	245	-103	-298	95	-88	357	-414	408	822	-926	-335	-899	1322	36	-460	-964
368/4	184/2	0	4	22	-8	20	22	98	12	-23	-10	-192	-106	186	-332	544	390	716	110	-836	280	-486	-288	-180	650	-1262
368/5	46/1	0	0	-10	12	42	7	20	-106	-23	-227	-67	74	-497	88	-215	314	-176	-298	-266	981	-411	-806			-1328
369/1		-3	0	-13	-28	-8	-91	-91	-89	68	-64	-173	188	-41	-290	-496	446	183	180	-239	921	-503	-74	47	369	-620
369/2	369/1	3	0	13	-28	8	-91	91	-89	-68	64	-173	188	41	-290	496	-446	-183	180	-239	-921	-503	-74	-47	-369	-620
370/1		2	6	5	3	5	-16	115	110	6	-111	-79	-37	171	361	-428	-527	112	-323	-464	-366	712	176	-180		-1407
370/2		$\frac{2}{2}$	-2 0	5	2	-72	2	-66	38	-36	-90	-70	37	-438	272	-198	-354	-498	542	2	408	-358	722	-174	-102	-574
370/3		-2		5	-25 25	9	-76 -72	-24	-40	-72	60	26	37	267	-382 -22	267	$\frac{171}{293}$	396	-898 -866	-676	-21	-691	-394	309	-918	-766
374/1		-2 2	4	-8 20	25 -7	-11 28	-72	17	-42 -106	102 -149	-23 11	-224 81	-58 2	333 -6	-139	-327	-531	347 -817	-800 498	-991 793	42 853	-875 490	-840 -330	-478 -404	-95	662
378/1 378/2		2	0	-1	-1 -7	-44	-66	115 7	-100	-86	176	162	-199	-363	-451	474 -9	174	587	-156	-560	532	-854	-330 -747	613	831 1266	-1424 64
378/3		2	0	-9	7	-45	-16	-66	11	-27	12	-169	209	-291	-394	-174	-228	-474	-232	992	153	686	1046	-708	-195	-88
378/4		2	0	-15	7	42	-88	45	-106	-114	-66	-304	-187	-69	29	-471	414	597	218	-628	-288	1190	-295	1311		-1186
378/5		2	0	-7	-7	28	30	-47	164	94	200	162	137	-141	293	-471	306	-331	-204	928	-740	706	-195	-485	-114	-344
378/6		2	Õ	-7	-7	-17	12	-38	-43	-131	-160	45	-331	111	230	-282	-396	-214	768	388	-551	274	390	-440	-105	304
378/7	378/3	-2	0	9	7	45	-16	66	11	27	-12	-169	209	291	-394	174	228	474	-232	992	-153	686	1046	708	195	-88
378/8	378/1	-2	0	-20	-7	-28	3	-115	-106	149	-11	81	2	6	-139	-474	531	817	498	793	-853	490	-330	404	-831	-1424
378/9	378/4	-2	0	15	7	-42	-88	-45	-106	114	66	-304	-187	69	29	471	-414	-597	218	-628	288	1190		-1311	1206	-1186
378/10	378/2	-2	0	0	-7	44	-66	-7	-4	86	-176	162	-199	363	-451	9	-174	-587	-156	-560	-532	-854	-747	-613	-1266	64
378/11	378/5	-2	0	7	-7	-28	30	47	164	-94	-200	162	137	141	293	471	-306	331	-204	928	740	706	-195	485	114	-344
378/12	378/6	-2	0	7	-7	17	12	38	-43	131	160	45	-331	-111	230	282	396	214	768	388	551	274	390	440	105	304
380/1		0	0	-5	19	20	-77	-11	-19	79	-303	214	-250	-230	-402	48	-417	99	332		-1088	-373	102	934		-1386
384/1	004/1	0	-3	4	-10	-4	26	14	8	-148	72	-18	262	-378	-432	-148	360	-428	-442	-692		-1018	-386	108	-382	298
384/2	384/1	0	-3 -3	-4 8	10 10	-4 68	-26 -46	14 -74	8 16	148 20	-72 228	18 162	-262 262	-378 30	-432 264	148 -124	-360 -204	-428 340	$\frac{442}{950}$	-692 -436	780	-1018 518	386 1010	108 852	-382 -686	298 -806
384/3 384/4	384/3	0	-3 -3	-8	-10	68	-46 46	-74 -74	16	-20	-228	-162	-262	30	$\frac{264}{264}$	$\frac{-124}{124}$	204	340	-950	-436 -436	-780		-1010	852 852	-686	-806
384/5	384/3	0	3	-8	-10	-68	-46	-74	-16	-20	228	-162	262	30	-264	124	-204	-340	950	436	-780		-1010	-852	-686	-806
384/6	384/3	0	3	-8	10	-68	46	-74	-16	20	-228	162	-262	30	-264	-124	204	-340	-950	436	780	518	1010	-852	-686	-806
384/7	384/1	ő	3	4	10	4	26	14	-8	148	72	18	262	-378	432	148	360	428	-442	692		-1018	386	-108	-382	298
384/8	384/1	0	3	-4	-10	4	-26	14	-8	-148	-72	-18	-262	-378	432	-148	-360	428	442	692		-1018	-386	-108	-382	298
385/1	,	3	4	-5	-7	11	-46	106	-140	-128	210	-252	-78	442	-356	-72	466	316	-682	224	-528	-142	148	1112	-254	1694
385/2		0	-2	5	7	-11	-52	48	68	-66	66	-340	242	-54	524	390	522	744	830	170	-636	296	1160	-684	-642	-562
385/3		0	-2	5	7	11	80	-84	68	-198	-198	56	-286	78	260	-402	-534	-180		-1018	-900	956	-424	636	-378	758
385/4		0	10	-5	7	11	54	86	-98	-82	4	112	196	120	148	464	-488	-368	-614	-836	948	-554	50	-484		-1368
385/5		0	2	-5	7	11	22	6	70	182	-20	32	76	352	132	-624	592	720	442	-164	452	-698	-950	-628	30	656
387/1	129/1	-4	0	-11	9	-57	43	66	25	112	-75	32	-36	268	-43	611	-148	-780	-328	-246	-902	-502	-380	-753		-1391
387/2	129/2	0	0	2	6	48	-62	66	-92	-106	18	-196	0	-502	-43	-74	40	-744	752	36	$\frac{224}{1080}$	-1006	376	-732	1334	-242
$\frac{390}{1}$ $\frac{390}{2}$		$\frac{2}{2}$	3 -3	-5 5	-28 -12	-36 -48	13 13	42 -62	-112 -32	-168 -8	-210 -58	-76 -124	278 -162	$\frac{150}{74}$	-460 -396	-264 -164	$\frac{582}{270}$	-204 -416	614 70	-304 448	-1092	-934 10	$\frac{128}{328}$	348 -144	-834 -502	-1582 1042
390/2		2	-3 -3	-5	-12 -25	-48 -21	13	123	-32 146	-8 99	-58 -246	182	-162	9	-396 452	390	315	-416	-727	596	771	326	-889	-144	-502 795	983
390/3		2	-3	-5 -5	-25 8	-21 -40	-13	123	0	-180	22	-144	34	-502	-76	-168	-422	$\frac{-24}{104}$	-82	-540	512	622	104	348	-286	494
390/4		2	-3	-5	8	12	13	-42	-52	132	282	116	398	174	-76	456	150	-156	230	-592	408	-730	728		-1482	1742
390/6		-2	-3	-5	-14	-36	-13	68	-158	46	-8	-176	62	30	252	-120	758	252	398	884	-80	-660	568		1250	84
390/7		-2	-3	5	5	-35	-13	23	-30	63	-190	330	43	-473	-232	270	-193	-200	-679	-12	-899	154			-1019	-427
390/8		-2	3	5	-13	-15	13	-75	-130	45	-138	-34	-379	243	416	378	-3	-816	-607	-700		-1162	-1	672	969	-949
390/9		-2	3	-5	2	0	13	-60	50	210	-228	116	386	378	-4	-312	-198	624	638	200	-408	1148	824	1332	54	-244
390/10		-2	3	-5	-15	39	-13	-15	54	-143	-122	-246	-225	469	-484	234	33	0	-831	772	-793	-998	-681	-772	-465	-79
390/11		-2	3	-5	24	0	13	50	28	-208	190	248	-186	-194	348	260	462	-520	-506	772	780	-62	736	1464	406	922

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
392/1	56/1	0	-6	-8	0	56	28	90	-74	-96	-222	100	58	-422	512	-148	-642	318	-720	-412	448	-994	-296	-386	6	138
392/2	<i>'</i>	0	-4	12	0	12	-76	8	100	-56	-166	232	-414	-72	-452	-424	-18	-444	284	524	-1008	-896	-40	-1388	-448	824
392/3	56/2	0	2	16	0	24	68	-54	46	176	-174	116	74	10	-480	572	-162	86	904	660	1024	-770	-904	-682	102	218
392/4	392/2	0	4	-12	0	12	76	-8	-100	-56	-166	-232	-414	72	-452	424	-18	444	-284		-1008	896	-40	1388	448	-824
392/5	8/1	0	4	2	0	-44	-22	-50	-44	-56	198	160	-162	198	52	-528	-242	668	-550	188	728	-154	-656	-236	-714	478
396/1	44/1	0	0	-12 7	26	-11	-34	-126	110	180	18	-292	-238	-426	146	-528	-408	-324	-550	824	-552	-850	866	660	-768	-286
396/2 396/3	$\frac{44/1}{132/3}$	0	0	-22	-26 -20	11 -11	$\frac{52}{22}$	-46 -110	-96 48	-27 -72	-16 142	-293 184	-29 -194	$\frac{472}{482}$	-110 -80	224 -392	-754 34	-825 108	-548 382	-123 84	-1001 1040	-1020 -606	526 -1292	158 -356	$\frac{1217}{406}$	-263 1090
396/4	132/4	0	0	-10	8	11	18	-46	40	-44	-186	-72	-114	-174	-416	156	62	348	-446	-956	444	306	-664	124	-602	1522
396/5	132/1	0	ő	0	2	11	-88	66	-40	-6	54	- 12	-106	-354	-124	-546	408	-552	404	-4	-126	-166	-874		-1002	-802
396/6	132/2	o o	Ö	12	14	-11	56	-42	116	30	-198	-88	350	-198	56	594	204	312	620	356	462	482	-238	-492		-1426
396/7	396/1	0	0	12	26	11	-34	126	110	-180	-18	-292	-238	426	146	528	408	324	-550	824	552	-850	866	-660	768	-286
399/1		3	-3	-8	-7	18	68	4	-19	118	166	304	350	378	-456	-304	-394	844	-418	130	-404	58	-178	828	-870	948
399/2		-1	3	-12	7	34	0	-16	19	6	-138	-240	-218	-238	-376	352	6	-268	814	-694	100	-422	-666	756	-446	-728
400/1	40/2	0	-6	0	-34	-16	-58	70	-4	-134	-242	-100	438	-138	178	22	-162	268	250	422	852	-306	456	434		-1378
400/2	200/6	0	9	0	26	59	-28	-5	-109	-194	-32	-10	198	117	388	-68	18 -222	-392	-710	-253	612	549	-414	-121	-81	1502
400/3 400/4	$\frac{10/1}{200/2}$	0	-8 -5	0	-4 -2	-12 -39	58 84	-66 -61	100 -151	132 58	-90 192	-152 18	34 -138	-438 229	$\frac{32}{164}$	-204 212	-222 578	-420 336	902 858	-1024 209	-432 780	-362 -403	$\frac{160}{230}$	$\frac{72}{1293}$		-1106 382
400/4	40/1	0	10	0	-18	16	6	-01	124	42	142	188	-202	54	66	38	-738	-564	-262	-554	-140	-882	1160	642	-854	478
400/6	50/3	0	-2	ő	-26	28	12	-64	60	58	90	128	236	242	-362	-226	-108	20	542	434	1128	632	720	478	-490	1456
400/7	200/6	0	-9	0	-26	59	28	5	-109	194	-32	-10	-198	117	-388	68	-18	-392	-710	253	612	-549	-414	121		-1502
400/8	200/2	0	5	0	2	-39	-84	61	-151	-58	192	18	138	229	-164	-212	-578	336	858	-209	780	403	230	-1293 -	-1369	-382
400/9	8/1	0	-4	0	24	44	-22	-50	-44	-56	198	160	162	-198	52	528	242	668	550	188	-728	-154	656	236	714	478
400/10	50/1	0	7	0	-34	-27	28	-21	-35	-78	-120	-182	-146	357	-148	-84	-702	840	-238	461	708	133	-650	-903		-1106
400/11	25/1	0	7	0	6	43	28	-91	35	162	160	-42	314	-203	92	196	-82	280	-518	141	-412	763	-510	777	-945	-
400/12	50/3	0	$\frac{2}{2}$	0	26	28 -32	-12 38	64 -26	60 -100	-58 -78	90 -50	128 108	-236 -266	$\frac{242}{22}$	$\frac{362}{442}$	226	108 -2	20 -500	542	-434 126	1128	-632	720 -600	$-478 \\ 282$		-1456 -386
400/13 400/14	$\frac{5}{1}$ $\frac{25}{1}$	0	-7	0	6 -6	-32 43	-28	-20 91	35	-162	160	-42	-314	-203	-92	-514 -196	82	280	-518 -518	-141	-412 -412	878 -763	-510	-777	-150 -945	1246
400/14	50/1	0	-7	0	34	-27	-28	21	-35	78	-120	-182	146	357	148	84	702	840	-238	-461	708	-133	-650	903	735	1106
400/16	20/1	0	4	0	-16	60	-86	-18	-44	48	-186	-176	-254	186	-100	168	498	252		-1036	-168	-506	-272		-1014	766
400/17	40/3	o o	4	Ö	16	-36	42	110	116	16	198	-240	258	442	-292	392	-142	348	-570	692	-168	134	-784	564	1034	382
400/18	100/1	0	-1	0	-26	-45	44	117	91	18	144	-26	-214	-459	460	468	558	72	-118	-251	-108	299	898	-927	351	386
400/19	200/1	0	-1	0	6	19	12	-75	91	-174	-272	230	-182	117	-372	52	-402	-312	170	-763	52		-1054	-351	799	962
400/20	200/1	0	0	0	-6	19	-12	75	91	174	-272	230	182	117	372	-52	402	-312	170	763	52		-1054	351	799	-962
400/21	100/1	0	0	0	26	-45	-44	-117	91	-18	144	-26	214	-459	-460	-468	-558	72	-118	251	-108	-299	898	927	351	-386
402/1 405/1		-2 -5	-3 0	14 5	20 9	68 -8	18 43	42 -122	76 -59	-132 -213	-22 224	-244 -36	142 206	-406 413	316 -392	-204 -311	558 -377	-380 337	578 40	-67 348	-260 62	282 -1214	916 -294	1140 - 534	-1350 -810	-1286 -928
405/2	405/1	-5 5	0	-5	9	-8	43	122	-59	213	-224	-36	206	-413	-392	311	377	-337	40	348		-1214	-294	-534	810	-928
408/1	400/1	0	-3	6	-24	44	6	17	-20	-152	270	-272	-250	186	260	-320	-770	-348	-210	-148	-360		-1168	-788		882
408/2		ő	3	-7	4	-21	-25	17	-69	15	58	-298	72	-369	-59	-138	262	50	-568	124	100	-158	710		-1016	-1780
410/1		-2	2	5	-2	16	8	-20	-120	-164	54	64	146	-41	28	294	-668	116	-822	362	-868	-14	-1324	-264	190	-96
414/1	138/3	-2	0	2	-34	-2	-74	68	88	23	178	240	-76	-186	28	-264	598	-492	352	-244	984	1014	-438	682	1524	-198
414/2	46/2	-2	0	20	2	52	43	50	-74	23	7	-273	-4	-123	-152	-75	-86	444	262	764	21	681	426		1272	-342
414/3	138/2	2	0	-2	-32	48	22	-42	-144	23	-174	-304	-318	-74	192	-392	734	-156	706	192	-624	-406	696	800	102	-918
414/4 414/5	$\frac{46}{138}$	2 2	0	10 10	-12 32	42 20	7 -26	-20 46	106 -92	-23 -23	$\frac{227}{194}$	67 -120	74 -322	497 -42	-88 220	-215 192	-314 170	-176 -396	-298 934	266 -988	981 552	-411 282	806 -888		1332 -1242	-1328 -30
414/5	136/1	0	-5	-3	32 5	30	13	-19	-92 70	20	-30	-120	-322	-180	85	-295	-132	-230	-220	-670	55	-602	-360	-540	-270	-606
416/2		0	-1	-1	-5	-10	-13	93	82	192	-106	-172	379	-148	329	631	160	478	300	722	-335	90	788	-96	-866	-998
416/3	416/2	0	1	-1	5	10	-13	93	-82	-192	-106	172	379	-148	-329	-631	160	-478	300	-722	335	90	-788	96	-866	-998
416/4	416/1	ő	5	-3	-5	-30	13	-19	-70	-20	-30	100	-111	-180	-85	295	-132	230	-220	670	-55	-602	360	540	-270	-606
418/1	, i	-2	8	-14	-6	11	-2	14	19	208	130	262	204	342	-352	624	-232	-360	-348	-96	-118	498	740	428	850	374
420/1		0	-3	-5	-7	32	42	-38	-36	96	-198	-220	-46	-290	-152	124	62	68	-614	-456	-416	-826	-272	508	110	-874
420/2		0	-3	5	7	-36	-34	-6	-28	192	-186	176	-418	-30	-412	-432	-306	-564	-322	716		-1078	-496			-1438
420/3		0	3	-5	7	-36	-34	-30	-16	-48	-126	110	74	-138	-352	-396	-78	-60	-70	-664	156	410	344		-1002	290
420/4 $420/5$		0	3 3	5 5	-7 7	-44 -16	-42 -14	-94 130	-36 104	24 -88	54 54	-112 28	-322 -266	-22 202	292 348	$\frac{272}{104}$	-578 402	-44 -100	-26 310	12 -324	-280 -644	410 -290	-320 744	-1252 1044	-38 298	1250 -290
420/5		0	3	о 5	7	36	38	-78	-52	-88 120	54 54	28 80	254	-6	-172	104	-66	420	-106	-324 92	-644 1176		-1024	-516	$\frac{298}{714}$	-862
425/1	85/3	-3	-10	0	22	-30	46	-17	104	-42	-66	194	-206	-126	388	540	-78	432	-610	-848	-174	-362	398	-828	630	1486
425/2	85/1	-3	5	Ö	22	60	31	-17	-61	78	69	-31	-56	-6	538	465	-723	-753	35	322	-99	1123	488	852	1215	601
425/3	85/2	-3	7	ő	22	-64	-73	17	-49	-110	155	-197	372	-262	-258	13	653	-333	-355	-814	47	437	-384	736	511	-537
425/4	17/1	3	8	0	28	-24	58	-17	116	60	30	-172	58	-342	148	-288	-318	252	110	484	-708	-362	-484	-756	-774	382
427/1		0	-1	4	-7	63	-46	-135	3	53	218	196	92	-100	401	381	76	-176	-61	913	-79	760	89	751	-115	1124

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
429/1		-1	-3	-19	19	11	-13	44	-90	163	255	-68	-426	-13	63	124	-642	-605	-363	-91	582	283	830	1278		-1306
430/1 430/2		-2 2	0 -8	5 5	22 -21	-43 16	47 93	-111 -60	-62 -47	-43 -208	-44 49	45 -147	220 -24	-115 -135	-43 43	-24 -474	-533 -750	$\frac{108}{452}$	-304 -69	-525 -65	-546 -418	-116 -1021	-192 235	-927 -264	$\frac{1302}{212}$	-1613 -1106
430/2		2	-8	5	22	-27	7	-103	82	93	92	-147	148	381	-43	472	755	108	-112	107	614	-548	880	553	-906	-805
432/1	27/1	ō	0	-15	25	-15	20	-72	-2	114	-30	-101	-430	30	-110	-330	-621	-660	-376	250	-360	785	-488	489	450	-1105
432/2	54/2	0	0	-12	7	60	-79	108	-11	-132	-96	-20	-169	-192	-488	204	-360	156	83	-47	216	-511	529	-1128	-36	605
432/3	108/2	0	0	-9	1	63	-28	-72	-98	126	126	259	386	450	34	-54	693	180	-280	586	504	161	-440	999	-882	-721
432/4	216/1	0	0	-4	-3 -29	28	-11 20	$-44 \\ 72$	-29	172	-192 210	-116	-69 2	-384	-328	156	392	412	-425 56		-1000	-359	-877	-328		-1483
432/5 432/6	54/1 $216/2$	0	0	-3 -1	-29 9	-57 -17	-44	-56	106 94	174 -50	30	-47 139	-174	6 -318	-218 242	474 -630	-81 -547	84 -236	328	142 -614	360 296	-1159 433	160 56	735 -1225	954 -1506	191 1391
432/7	108/3	0	0	0	-17	-17	89	-50	-107	-50	0	-308	-433	-318	520	-030	-347	-230		-1007	0	-271	-503	0	0	1853
432/8	108/1	Õ	0	Ö	37	Ö	-19	ō	163	ŏ	Ö	-308	323	Ö	520	Ö	Õ	Õ	719	127	ő	-919	1387	Õ	Ö	-523
432/9	216/2	0	0	1	9	17	-44	56	94	50	-30	139	-174	318	242	630	547	236	328	-614	-296	433	56		1506	1391
432/10	54/1	0	0	3	-29	57	20	-72	106	-174	-210	-47	2	-6	-218	-474	81	-84	56	142		-1159	160	-735	-954	191
432/11	216/1	0	0	4 9	-3	-28	-11	44	-29	-172	192	-116	-69	384	-328	-156	-392	-412	-425	-257	1000	-359	-877		-1572	-1483
432/12 432/13	$108/2 \\ 54/2$	0	0	12	$\frac{1}{7}$	-63 -60	-28 -79	72 -108	-98 -11	-126 132	-126 96	259 -20	386 -169	-450 192	34 -488	54 -204	-693 360	-180 -156	-280 83	586 -47	-504 -216	161 -511	-440 529	-999 1128	882 36	-721 605
432/14	$\frac{34/2}{27/1}$	0	0	15	25	15	20	72	-11	-114	30	-101	-430	-30	-110	330	621	660	-376	250	360	785	-488	-489	-450	-1105
434/1	=:/1	-2	-9	-3	-7	28	-68	-46	-102	-75	65	-31	-314	-64	354	-121	-350	-672	492	857	520	-193	911	-271	1251	992
435/1		-2	-3	5	29	-15	3	121	-40	-116	29	-116	36	-170	230	231	456	576	342	-269	302	-372	-348	-512	1525	-560
435/2		-1	3	5	4	-36	-22	-2	-56	-40	29	152	34	-250	-412	-120	-762	-188	-54	-244	600	6	-640	664	150	-1690
435/3		5 2	-3 -3	5	16	-44	78	18	-28	184	29	-224 -268	254 90	-78	-260	312	574	180	-610	-340	296	394	-960	-908	-990	1234
438/1 440/1		0	-3 -5	12 5	16 1	-10 11	40 18	-94 -113	160 55	-24 190	108 -69	-268 -255	51	154 -314	430 -484	-36 470	56 -545	618 -102	$\frac{454}{129}$	-664	-144 -1029	73 -758	-480 634	906 -654	-714 -511	-1186 1736
440/1		0	-4	5	8	11	-58	114	-4	-152	-138	208	-226	-294	276	-240	-370	-716	-650	124	232	-454	-144			-1438
440/3		Ö	0	5	16	-11	-70	-10	-12	-84	30	-72	310	18	-388	-516	-298	204	-210	-432	-440	46	-616	740	-6	490
440/4		0	6	5	-32	11	-48	-36	-44	58	-278	-112	194	-314	396	-410	170	404	250	-26	-468	-164	-664	1348	534	-1498
441/1	147/3	-4	0	-18	0	50	-36	-126	-72	-14	-158	-36	-162	270	-324	72	22	-468	792	232	734	180	236	-36	-234	468
$\frac{441/2}{441/3}$	$\frac{21}{1}$	-4 -4	0	-4 18	0	-62	62 36	$\frac{84}{126}$	$-100 \\ 72$	42	10	48 36	-246 -162	-248 -270	68	324 -72	$-258 \\ 22$	$\frac{120}{468}$	-622 -792	$\frac{904}{232}$	$678 \\ 734$	642	$\frac{740}{236}$	$\frac{468}{36}$	200	1266
441/3	147/3 $49/1$	-4 -2	0	-7	0	50 5	-14	21	49	-14 159	-158 -58	147	219	-350	-324 -124	-525	-303	105	-413	415		-180 -1113		-1092	234 329	-468 -882
441/5	49/1	-2	0	7	ő	5	14	-21	-49	159	-58	-147	219	350	-124	525	-303	-105	413	415	432	1113	-103	1092	-329	882
441/6	9/1	0	0	0	0	0	70	0	-56	0	0	-308	110	0	-520	0	0	0	-182	-880	0	-1190	884	0	0	1330
441/7	147/1	1	0	-12	0	-20	-84	96	12	176	-58	-264	258	0	156	408	722	-492	-492	412	-296	240	776	-924	744	-168
441/8	147/1	1	0	12	0	-20	84	-96	-12	176	-58	264	258	0	156	-408	722	492	492	412	-296	-240	776	924	-744	168
441/9 $441/10$	$\frac{7/1}{21/2}$	1 3	0	16 -18	0	8 36	-28 34	$\frac{54}{42}$	$\frac{110}{124}$	-48 0	110 -102	-12 160	-246 398	182 -318	128 -268	$\frac{324}{240}$	$\frac{162}{498}$	810 -132	488 -398	244 92	$\frac{768}{720}$	702 502	440 -1024	-1302 -204	$730 \\ 354$	-294 286
441/11	147/2	3	0	-10	0	15	64	84	16	84	297	253	-316	360	26	-30	-363	-152	118	-370	342	-362	467	477	906	-503
441/12	147/2	3	0	3	ő	15	-64	-84	-16	84	297	-253	-316	-360	26	30	-363	15	-118	-370	342	362	467	-477	-906	503
441/13	49/4	5	0	0	0	68	0	0	0	40	166	0	450	0	-180	0	-590	0	0	-740	-688		-1384	0	0	0
442/1		-2	-8	16	-22	10	-13	17	-120	148	282	10	-356	316	188	-456	194	-64	-754	-536	-858	-692	840	-860		-1520
442/2		-2	-4	4	26	-38	-13	17	-64	200	-134	82	392	-248	-348	-160	-526	-744	102	-304	-618	1064	-460	-228	646	-1116
442/3 $444/1$]	2 0	-3	12 -4	-10 -25	-22 67	-13 57	$\frac{17}{27}$	148 -17	112 -107	-10 -4	22 -274	-144 -37	68 -342	-164 52	-52 82	-78 17	-556 -420	-182 610	-236 110	-542 -960	-628 205	228 -1330	-952 51	1214 -533	1528 178
444/1		-1	-3 2	-4 -5	12	8	64	-94	46	-107	-164	276	-100	-338	-266	-352	-202	818	-560	0	-320	-338	-624	-810	-555 89	542
448/1	28/1	0	-10	8	7	-40	12	-58	26	64	62	-252	-26	6	416	396	450	274	576	-476	448	-158	936	530	-390	214
448/2	14/1	0	-8	14	-7	28	-18	74	-80	-112	-190	72	346	162	412	24	-318	200	198	716	392	538	240	1072	810	1354
448/3	56/1	0	-6	-8	-7	-56	28	-90	-74	-96	222	-100	-58	422	-512	148	642	318	-720	412	448	994	-296	-386	-6	-138
448/4	28/2	0	-4 -2	-6	7 7	12	82	-30	-68	216	-246	-112	-110	-246	172	192	-558	-540	-110	-140	-840	-550	-208		-1398	1586
448/5 448/6	7/1 $224/1$	0	-2 -2	-16 0	7 -7	-8 20	-28 20	54 -50	-110 10	-48 72	$\frac{110}{134}$	-12 180	$\frac{246}{270}$	182 -250	128 92	-324 236	162 -150	810 570	488 200	$\frac{244}{176}$	$\frac{768}{640}$	-702 250	-440 640	-1302 882	$730 \\ 1074$	294 270
448/7	$\frac{224}{14}$	0	-2	12	-7	48	-56	-114	2	120	54	-236	-146	126	-376	12	-174	138	-380	-484	-576	-1150	-776	378	-390	-1330
448/8	56/2	ő	-2	16	7	24	68	54	-46	-176	174	116	-74	-10	-480	572	162	-86	904		-1024	770	904	682	-102	-218
448/9	7/1	0	2	-16	-7	8	-28	54	110	48	110	12	246	182	-128	324	162	-810	488	-244	-768	-702	440	1302	730	294
448/10	224/1	0	2	0	7	-20	20	-50	-10	-72	134	-180	270	-250	-92	-236	-150	-570	200	-176	-640	250	-640	-882	1074	270
448/11	14/2	0	$\frac{2}{2}$	12	7 -7	-48	-56	-114	-2	-120	54	236	-146	126	376	-12	-174	-138	-380	484 -660	576	-1150	776 -904	-378	-390	-1330
448/12 448/13	$\frac{56/2}{28/2}$	0	4	16 -6	-7 -7	-24 -12	68 82	54 -30	46 68	176 -216	174 -246	-116 112	-74 -110	-10 -246	480 -172	-572 -192	162 -558	$\frac{86}{540}$	904 -110	-660 140	1024 840	770 -550	-904 208	-682 516	-102 -1398	-218 1586
448/14	56/1	0	6	-8	7	56	28	-90	74	96	222	100	-58	422	512	-148	642	-318	-720	-412	-448	994	296	386	-1396	-138
448/15	14/1	ő	8	14	7	-28	-18	74	80	112	-190	-72	346	162	-412	-24	-318	-200	198	-716	-392	538	-240	-1072	810	1354
448/16	28/1	0	10	8	-7	40	12	-58	-26	-64	62	252	-26	6	-416	-396	450	-274	576	476	-448	-158	-936	-530	-390	214
450/1	50/1	-2	0	0	-34	-27	-28	-21	35	78	120	182	146	-357	-148	84	-702	840	-238	461	708	-133	650	903	-735	1106

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
450/2	30/1	-2	0	0	-32	60	34	42	-76	0	-6	-232	-134	-234	412	-360	222	-660	-490	-812	-120	-746	152	-804	678	-194
450/3		-2	ő	ő	-14	-6	-68	78	44	120	-126	-244	304	480	-104	600	-258	-534	362	268	972	-470	1244	396	972	46
450/4	<i>'</i>	-2	0	0	-11	36	-17	-12	-91	60	276	191	-254	60	49	-600	612	744	167	457	588	970	164	696	1248	1099
450/5	150/4	-2	0	0	-2	-70	54	22	24	100	-216	208	-254	206	292	320	402	370	-550	728	540	604	792	-404	938	56
450/6	150/2	-2	0	0	1	-42	67	54	-115	-162	210	-193	286	-12	-263	414	-192	-690	-733	-299	228	-938	-160	-462	240	511
450/7	450/4	-2	0	0	11	-36	17	-12	-91	60	-276	191	254	-60	-49	-600	612	-744	167	-457	-588	-970	164			-1099
450/8	6/1	-2	0	0	16	-12	-38	-126	20	168	-30	-88	-254	-42	52	-96	198	660	-538	-884	-792	-218	-520	-492	-810	
450/9	150/3	-2	0	0	23	30	29	-78	149	-150	234	-217	146	156	-433	-30	552	270	275	803	-660	-646	992	846	1488	
450/10 450/11	50/3	-2 2	0	0	26 -26	28 28	12 -12	64 -64	-60	58	-90 -90	-128 -128	236 -236	-242 -242	362 -362	-226 226	108 -108	20 20	$\frac{542}{542}$	-434	$\frac{1128}{1128}$	632 -632	-720 -720	478 -478	490 490	
450/11	50/3 $150/3$	2	0	0	-23	30	-12	-04 78	-60 149	-58 150	234	-128	-146	156	433	30	-552	270	275	434 -803	-660	646	992	-846	1488	-1456 319
450/12	90/1	2	0	0	-14	6	-68	-78	44	-120	126	-244	304	-480	-104	-600	258	534	362	268	-972	-470	1244	-396	-972	46
450/14	450/4	2	0	0	-11	-36	-17	12	-91	-60	-276	191	-254	-60	49	600	-612	-744	167	457	-588	970	164		-1248	1099
450/15	150/2	2	ő	0	-1	-42	-67	-54	-115	162	210	-193	-286	-12	263	-414	192	-690	-733	299	228	938	-160	462	240	-511
450/16	150/4	2	Ö	Ö	2	-70	-54	-22	24	-100	-216	208	254	206	-292	-320	-402	370	-550	-728	540	-604	792	404	938	-56
450/17	10/1	2	0	0	4	-12	58	66	-100	132	90	152	34	438	-32	-204	222	-420	902	1024	-432	-362	-160	72	-810	-1106
450/18	30/2	2	0	0	4	48	-2	-114	140	72	-210	272	334	198	268	216	-78	-240	302	-596	768	478	-640	-348	-210	1534
450/19	450/4	2	0	0	11	36	17	12	-91	-60	276	191	254	60	-49	600	-612	744	167	-457	588	-970	164	-696	1248	-1099
450/20	50/1	2	0	0	34	-27	28	21	35	-78	120	182	-146	-357	148	-84	702	840	-238	-461	708	133	650	-903		-1106
453/1		-3	3	-19	-32	-7	-57	-66	-90	-195	-267	21	190	9	462	-220	-360	-676	-166	101	789	-188	-770		-1335	1058
455/1		-3 -3	-5 1	5 5	-7 7	-25 -9	-13 13	46 -6	74 -70	-55 105	82 -258	$\frac{325}{263}$	-181 371	201 111	298 -538	-421 -411	-432 60	$\frac{24}{156}$	-75 -529	-911 173	464 -372	-285 -727	-335 -1051	306 -198	-782 -930	-1739 -745
455/2 455/3		-3 -3	8	5 5	-7	40	13	-6	-56	140	134	-52	14	370	-558	-411	-458	856	-634	-716		1002	328	124	-930 50	
455/4		-3 1	-4	5	-7	-12	13	-94	-4	-24	6	-160	350	362	452	-384	-546	148	870	396	744	474	-176	188	-646	1090
462/1		-2	-3	-21	7	-11	65	-54	65	132	39	-178	-439	96	272	-375	612	-507		-1087	0	-673	-700	1218		-808
462/2		-2	-3	-14	-7	11	38	54	40	8	-170	92	294	-258	-52	-76	-322	260	22	-436	-368	-2	-200	-952	-70	
462/3		-2	-3	11	-7	11	-37	-46	15	-92	205	142	-431	-8	448	149	-672	-615	322	-411	-968	-227		-1302		-1736
462/4		-2	3	-7	7	11	-67	30	-7	28	121	-310	-71	-180	-108	71	128	-429	22	-803	468	-117	-96	-1122	-1146	-92
462/5		2	-3	-4	-7	-11	62	-120	118	-188	62	-322	-198	48	32	-326	-482	400	70	-124	-712		-1016	430	442	
462/6		2	-3	1	-7	-11	-43	100	-87	-58	-223	88	37	128	-458	-341	-342	-105	190	-579	128	-161	-396	-420	-798	1414
462/7		2 2	-3	3	7	-11	41	6	-43	120	111	266	-79	216	284	213	-216	393	350	821	-264	-865	-484	1158	330	980
462/8 462/9		2	3	-17	7 -7	-11	-21	-104 8	-161 21	194	9	-180	-363	-108 292	-386	333 221	-122	537	-950	-83	180	177	-220	1112	-394	826
462/9	58/1	0	3 -7	-13 5	2	11 -37	-67 27	24	88	-194 28	-221 -29	88 143	-347 -360	386	-458 -381	103	-642 -431	273 -288	-530 -840	561 180	604 -706	703 716	552 -931	-144 -1188	750 -642	-1370 486
464/1	58/2	0	7	-15	18	-37 -27	-57	-44	-152	152	-29	173	-120	-314	-339	357	-451	572	-420	-660	-726	1004	-361	168		-1206
465/1	00/2	-4	3	5	22	-20	-72	-80	40	-112	-258	31	-364	-114	468	206	-384	-40	586	398	-804	8	-600	-172		-1026
465/2		-3	-3	-5	-24	-38	-18	-44	-136	-62	-296	-31	-278	-210	476	-276	10	-632	-732	316	984	-12	1196	24	-738	238
465/3		-1	3	5	7	-41	-18	-8	-95	-25	264	31	-220	-96	-147	-490	117	-586	-230	-334	-1059	-187	1077	-520	1361	54
468/1	156/2	0	0	2	-32	68	13	14	4	-72	-102	-136	-386	-250	-140	296	-526	-332	-410	596	880	506	-640	-1380	-1450	-446
468/2	156/1	0	0	6	-4	-36	13	-66	56	-96	-222	260	-106	90	44	-168	-30	-348	-346	-256	168	-814		-1236	-318	-502
468/3	52/1	0	0	13	-11	2	-13	51	150	4	118	-116	63	288	-293	335	708	-566	904	382	-7	518	-100	1440		1262
470/1		-2	1	5	-19	-45	-61	120	119	78	-18	131	188	78	62	47	714	492	-241	-466	-12		-1252		-1554	1034
470/2 474/1		2 -2	-5 3	5 18	-25 9	-3 -35	23 7	-24 111	137 66	162 133	-294 -279	-91 -220	344 -76	306 2	158 463	-47 432	186 -42	648 -418	-553 -372	$1034 \\ 622$	228 438	-7 -297	776 79	167	-1410	-298 -1625
474/1		2	3	-6	-27	23	-53	45	-102	35	-177	-268	200	-386	-497	168	-486	718	444	838	438	831	79	-827		-1023
475/1	95/4	-5	-4	0	32	-12	42	-114	19	-160	214	-144	-94	-6	308	-184	274	276	-826	-52	-344	166	-688	-996	1578	-786
475/2	95/3	-3	-7	Ö	-11	-36	-65	87	19	129	231	110	142	-330	-74	336	-501	633	-88	-119	-204	-407	1262	-270	-30	-1406
475/3	95/2	-3	5	0	1	-24	31	-33	19	-27	111	-94	70	-510	34	192	75	45	-28	-371	384	73	-1234	-366	-1578	538
475/4	95/1	0	-4	0	22	-12	-8	66	19	30	-6	-64	16	54	-182	-594	-396	-564	-706	628	-984	-14	-328	294	918	1564
475/5	19/1	3	5	0	-11	-54	-11	93	19	-183	-249	56	250	240	196	168	-435	195	-358	961	-246	-353	-34	-234	-168	-758
477/1		-1	0	18	-31	57	-54	-78	43	19	71	-218	-238	387	-356	4	53	-356	-731	-711	-17	-928				
477/2	53/1	0	0	18	2	-54	-43	99	-61	-207	99	-160	-7	414	-268	-270	-53	-450	182	-556	-693	-862	119		-1350	-187
477/3		1	0	-18	-31	-57	-54	78	43	-19	-71	-218	-238	-387	-356	-4	-53	356	-731	-711	17	-928	-34	1072		
477/4 477/5	159/2 $159/1$	5 5	0	-3 21	-16 -16	$\frac{57}{45}$	54 -66	39 123	82 -62	49 -47	260 -76	-5 -17	-250 -370	276 -324	-137 343	-206 394	53 53	-473 379	-830 -398	366 -234	-248 -56	-358 -142	-1075 305	$602 \\ 434$	-47 565	1027 -581
480/1	139/1	0	-3	-5	-10	20	-58	-70	92	-112	66	108	-58	-324	388	408	474	540	-398	276	-56 96	-790	-308	1036	1210	1426
480/1		0	-3	-5 -5	-12	-4	-6	-70	16	60	-142	176	-214	-278	68	-116	-350	-684	-394	-108	96	-398	-136	-436	-750	82
480/3		0	-3	5	-32	-64	-6	38	116	120	-122	-164	146	-238	148	184	470	216	806	732	-264	-638	-596	884	930	322
480/4		0	-3	5	-4	40	-90	-70	40	108	166	-40	-130	-310	-268	-556	-370	240	-130	876	-840	250	-880	-188	-726	-1550
480/5		0	-3	5	12	24	38	-6	-104	-100	230	56	190	202	148	-124	206	128	190	204	440	1210	-816	1412	-214	1202
480/6		0	-3	5	16	24	-14	-18	36	104	-250	-28	-54	354	228	408	262	-64	374	300	1016	274	788	-396	786	-1086
480/7	480/2	0	3	-5	-8	4	-6	-2	-16	-60	-142	-176	-214	-278	-68	116	-350	684	-394	108	-96	-398	136	436	-750	82

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
480/8	480/1	0	3	-5	12	-20	-58	-70	-92	112	66	-108	-58	66	-388	-408	474	-540	14	-276	-96	-790	308	-1036	1210	1426
480/9	480/6	0	3	5	-16	-24	-14	-18	-36	-104	-250	28	-54	354	-228	-408	262	64	374		-1016	274	-788	396	786	-1086
480/10 480/11	480/5 480/4	0	3	5 5	-12 4	-24 -40	38 -90	-6 -70	104 -40	100 -108	230 166	-56 40	190 -130	202 -310	-148 268	124 556	206 -370	-128 -240	190 -130	-204 -876	-440 840	$\frac{1210}{250}$	816 880	-1412 188	-214 -726	1202 -1550
480/11	480/4	0	3	5	32	64	-6	38	-116	-120	-122	164	146	-238	-148	-184	470	-216	806	-732	264	-638	596	-884	930	322
482/1	400/0	-2	-2	7	-23	20	-38	80	-149	207	-15	112	-176	453	-175	184	-715	-430	319	820	835	1034	632	708	968	-509
484/1	44/1	0	-5	-7	26	0	-52	-46	96	27	-16	-293	-29	472	110	-224	754	825	548	-123	1001	1020	-526		-1217	-263
486/1	<i>'</i>	-2	0	-12	-19	66	-73	-54	-145	42	102	179	89	-372	215	318	-198	24	326	20	1098	218	665	1002	1296	-1495
486/2		-2	0	-6	5	-18	29	12	29	0	-198	71	383	282	-163	-546	-642	342	-70	-232	-114	-430	389	-960	-618	-1015
486/3		-2	0	3	-22	-36	-16	30	11	99	297	62	-76	318	-388	129	-363	684	578	551	-879	1001	-736		1020	911
486/4		-2 -2	0	6	8	30	-55 77	90	89	78	-96 222	-55	-46	132	143 -325	-60	$\frac{738}{282}$	546	-241	-493	594	245		-1374	900	1709
486/5 486/6	486/5	-2 2	0	18 -18	11 11	6 -6	77	96 -96	-85 -85	12 -12	-222	-271 -271	-241 -241	18 -18	-325 -325	-42 42	-282	-726 726	$\frac{146}{146}$	920 920	798 -798	-502 -502	635 635	1092 -1092	1434	$545 \\ 545$
486/7	486/4	2	0	-16	8	-30	-55	-90	89	-78	96	-55	-46	-132	143	60	-738	-546	-241	-493	-594	245	1061	1374	-900	1709
486/8	486/3	2	ő	-3	-22	36	-16	-30	11	-99	-297	62	-76	-318	-388	-129	363	-684	578	551	879	1001	-736	-714		911
486/9	486/2	2	0	6	5	18	29	-12	29	0	198	71	383	-282	-163	546	642	-342	-70	-232	114	-430	389	960		-1015
486/10	486/1	2	0	12	-19	-66	-73	54	-145	-42	-102	179	89	372	215	-318	198	-24	326	20	-1098	218	665	-1002		-1495
489/1		-3	3	-17	-1	18	-47	54	144	27	67	-243	-98	-81	-149	584	-198	302	-270	-746	-922	-218	820		-1600	-1193
490/1	70./4	-2 -2	-10 -4	5	0	53 60	-25 -38	-14 -42	$\frac{95}{52}$	$\frac{1}{120}$	-206 -234	-108 304	-57 -106	-243 54	434 -196	231 -336	$\frac{263}{438}$	-24 444	-116 -38	-204 -988	484 -720	692 -146	466 -808	-228 -612	362	-854 70
$\frac{490}{2}$ $\frac{490}{3}$	70/4	-2 -2	-4 -1	-5 -5	0	-2	-38 -8	-42 -52	26	67	-234 69	-332	196	$\frac{54}{353}$	-369	-336 88	438 582	-350	-38 -467	-988 291	770	628	-808 1170	525	-1146	-290
490/4	70/2	-2 -2	-1 1	-5 5	0	-65	-0 -13	-32 73	$\frac{20}{142}$	130	111	-256	-266	424	534	269	-132	224	572	-108	560	-586	57	-252	184	605
490/5	490/3	-2	1	5	Õ	-2	8	52	-26	67	69	332	196	-353	-369	-88	582	350	467	291	770	-628	1170	-525	-89	290
490/6	70/3	-2	3	-5	0	-17	81	91	-102	-90	-129	-116	314	124	-434	-497	-584	332	-220	384	-664	-230	361	-1172	-40	175
490/7	70/1	-2	8	5	0	68	-34	-74	128	-80	286	24	294	-66	-124	-312	-34	-168	-170	564	616	-250	-944	-672	1430	1270
490/8	490/1	-2	10	-5	0	53	25	14	-95	1	-206	108	-57	243	434	-231	263	24	116	-204	484	-692	466	228	-362	854
490/9	70/5	2 2	-7 -5	5	0	-33	43 -7	-111	70	42	-225 79	88 212	-34 -190	-432 308	-178 422	-411 -121	-708	-480	-812	596	432	358	425 -407	-972	-960	709
490/10 490/11	70/6	2	-5 -1	-5 5	0	-1 -30	-44	51 24	-30 -2	-50 -183	-279	40	-190	423	305	-121	664 -198	-628 462	684 -281	1056 -499	744 -534	-726 -800	-407 -790	-644 507	880 -1017	1351 1330
490/11		2	-1	5	0	-9	-51	-81	-86	48	211	-254	-20	-74	-318	167	-170	-854	580	-58	152	-702	-419	-124		-1085
490/13	490/11	2	1	-5	Ö	-30	44	-24	2	-183	-279	-40	-76	-423	305	456	-198	-462	281	-499	-534	800	-790	-597	1017	
490/14	490/12	2	1	-5	0	-9	51	81	86	48	211	254	-20	74	-318	-167	-170	854	-580	-58	152	702	-419	124	-768	1085
490/15	10/1	2	8	-5	0	12	58	-66	100	132	-90	-152	-34	438	32	204	222	-420		-1024	432	-362	-160	-72	-810	-1106
492/1		0	-3	5	-26	34	-85	97	-79	186	-168	271	-2	41	268	84	378	337	-358	279	837	705	-384	1293	-347	694
492/2 495/1	EE /1	0 -1	3	-12 5	10 -9	-41 -11	58 2	-53 -21	56 -85	-162 -22	$\frac{1}{165}$	-15 -83	-363	$\frac{41}{478}$	-91 -8	-195 -126	-670 683	-192 290	$\frac{193}{257}$	-646 776	891 313	-35 902	-426 830	728 -842	294 -25	188 -1784
495/2	$\frac{55/1}{165/2}$	-1 -1	0	5 5	-9 36	-11	2	-66	140	68	-150	-128	-314	118	172	324	-82	740	122	-124	988	902	1100	868	470	
495/3	165/1	0	ő	5	2	11	-22	-72	122	-72	-96	-112	266	96	-382	-360	-318	-660	-430	380	-168	218	-706	-1068	6	686
496/1	62/1	0	2	1	11	18	-82	-6	-25	-58	180	-31	-146	47	12	136	-232	-715	-518	436	-387	678	-660	382	-800	
496/2	62/2	0	8	-3	35	46	20	8	-97	-28	-206	31	-282	367	562	148	-84	301	-236	-60	-699	-814	-670	650	1566	-615
502/1		-2	4	9	-27	54	-30	-25	-30	27	2	-219	-366	429	-50	-336	526	-346	-336	-601	634	-293	-571	-167	-690	218
503/1	100/1	5	7	-4	-3 7	35 -12	-17	$\frac{24}{70}$	62	189	258	-332	-412	-220	347	-85	60	196	-517	-521	-78	-546	-8	423	552	-1010
504/1 504/2	168/1 168/5	0	0	2 2	-7	-12 -52	-66 86	30	-92 -4	-16 -120	122 -246	64 80	-306 -290	-50 374	$\frac{20}{164}$	176 -464	-526 162	-540 -180	-818 -666	-228 -628	-864 -296	106 -518	736 -1184	588 -220	-146 774	-1214 -1086
504/3	168/3	0	0	-4	-7	26	2	36	-76	114	-240	-256	-86	-160	-220	-308	-258	-264	606	-520	286	-530		-1012	-768	222
504/4	56/1	0	0	-8	-7	-56	-28	90	74	96	222	-100	58	-422	512	-148	642	318	720	-412	-448	994	-296	-386	6	-138
504/5	168/4	0	0	10	7	12	30	-34	148	-152	106	304	-114	-202	116	-224	274	660	382	12	552	-614	880	108	86	1426
504/6	168/2	0	0	10	-7	52	-10	54	-52	-48	186	224	94	478	-316	-256	66	-420	342	668	272	-86	1360	-188	366	1554
504/7	168/6	0	0	16	7 -7	18	-54	128	52	202	-302	-200	-150	-172	164	460	190	-96	622	744	54	742	-92	228	116	-554
504/8 505/1	56/2	0 -3	0 -2	16 5	-7 -3	-24 58	-68 -78	-54 -49	-46 19	-176 202	174 87	-116 -20	74 -236	10 102	-480 127	$\frac{572}{146}$	$\frac{162}{221}$	$\frac{86}{464}$	-904 -125	660 -974	-1024 -84	770 -890	-904 -128	-682 670	102 -1130	-218 -1585
506/1		-3 -2	-2 4	5 5	-3 -17	-11	67	-49	-54	202	-137	-203	139	368	22	-605	-446	516	262	-489	-661	-816	151	-422	328	412
507/1	39/1	0	-3	12	-2	36	0	-78	-74	-96	18	214	286	384	524	-300	558	-576	74	-38	456	682	704	888	1020	-110
507/2	,	1	3	-7	10	22	0	37	-30	-162	-113	-196	-13	-285	-246	462	-537	-576	-635	-202	1086	805	884	-518	-194	1202
507/3	507/2	-1	3	7	-10	-22	0	37	30	-162	-113	196	13	285	-246	-462	-537	576	-635		-1086	-805	884	518	194	-1202
507/4	FOF / .	3	3	-9	2	30	0	-111	-46	-6	-105	-100	17	-231	-514	-162	639	600	233	926	-930		-1324	810	498	1358
507/5	507/4	-3 2	3	9	-2 -25	-30	0	-111	46	-6	-105 75	100	-17	231	-514	162	639	-600	233	-926	930		-1324	-810	-498	-1358
510/1 510/2		2	3	5 -5	-25 -25	-61 1	-54 -26	$^{-17}$	-93 -49	-66 -110	75 -35	30 -302	19 -369	$\frac{135}{145}$	-228 96	599 -575	363 -127	-480 408	-278 50	-416 316	420 100	813 985	-18 18	-852 -68	-504 896	1018 -78
510/3		-2	3	-5 5	3	27	-34	-17	127	58	-81	-302 58	-69	379	52	423	-329	660	-490	-580	4	717	-602	1052	772	890
510/4		-2	3	5	-6	0	56	-17	-116	112	270	220	66	-44	-182	-216	418	-618	878	-598	1066	276	1000	656	1438	-1432
510/5	1	-2	3	5	-23	17	-12	17	-65	44	-291	-188	321	-503	-148	311	-449	198	368	218	-56	-761	-530	-1112	-942	370

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
510/6		-2	3	-5	11	49	10	17	-109	22	169	-98	-57	253	216	409	-283	324	-178	904	100	-503	666	172	404	1314
510/7		-2	3	-5	-28	-68	-42	17	60	204	234	-228	346	162	372	136	-114	-612	-542	-812	204	-126	-660	588	378	-350
510/8		-2	-3	5	11	-15	-28	-17	-109	108	129	-16	-193	-195	248	153	-51	-42	-64	-34	-1056	-439	-1330	504	-198	-1138
515/1		3	-8	5	-34	3	-25	30	-22	-72	72	20	104	153	62	-99	540	576	-610	-898	-114	-709	1139	-717	876	836
516/1		0	3	5	-1	-39	-67	0	-11	-180	-55	190	-86	176	43	207	172	-844	-324	-146	72	16	758	701	-238	-527
518/1		-2	4	18	7	36	-22	126	-160	168	294	-28	37	-6	-28	-600	-258	816	-862	116	576	122	464	84	-810	374
519/1 519/2		-1 2	3 3	6 9	-12 -24	30 9	-60 18	5 14	-59 -116	92 32	161 -208	-39 -261	-324 -363	42 -30	-334 -211	$\frac{44}{104}$	$\frac{72}{387}$	-440 436	71 -820	-562 407	-525 765	495 -693	-1304 58	-443 514	-702	938 -1384
520/1		0	-2	-5	30	-12	-13	-46	72	-98	126	56	-158	-162	-211	-362	-166	-576	-870	-738	-928	234		-1038	730	1250
520/1		0	-10	-5 5	-12	-62	13	58	122	-26	114	338	-342	-230	282	140	-418	-306	-38	-372	-742	-554	812	-864		-1390
522/1	174/4	2	0	0	-17	23	-63	-19	-8	-42	29	-198	-110	514	-404	-517	-584	182	430	365	34	-54	236	-258	-213	156
522/2	58/1	2	0	-5	-2	-37	27	-24	-88	28	29	-143	-360	-386	381	103	431	-288	-840	-180	-706	716	931	-1188	642	486
522/3	174/3	2	0	8	19	9	17	7	-36	182	-29	-102	-166	406	-80	173	68	-222	106	681	286	358	516	-922	1129	-1016
522/4	174/1	2	0	14	-21	-37	-87	-119	-50	-48	29	332	324	-462	-132	331	222	-250	-308	29	928	488	190	522		-1566
522/5	174/2	2	0	-21	19	38	-12	-109	-65	-108	29	72	-311	-377	-167	-349	-338	155	802	-856	-932	-222	110	-168	810	144
522/6 522/7	174/5	-2 -2	0	10 15	7 -18	63 -27	-7 -57	89 44	-78 152	$\frac{52}{152}$	29 29	192 -173	200 -120	-166 314	-356 339	-353 357	154 59	-258 572	520 -420	-15 660	764 -726	$\frac{244}{1004}$	186 361	1018 168	-553 -58	1294 -1206
522/7	$\frac{58/2}{174/6}$	-2	0	18	-29	49	-57 -15	-101	-110	-84	-29	132	-404	-10	-224	313	374	394	-420		-1120		-1018		-58 45	270
525/1	105/1	0	3	0	-7	42	-20	-66	38	-12	-258	146	-434	-282	-20	72	-336	-360	-682	-812	810	124	1136	-156		-1208
525/2		2	-3	ő	7	-21	-24	22	16	25	167	10	133	-168	97	400	182	488	28	967	-285	838	-469	406	324	114
525/3	525/2	-2	3	0	-7	-21	24	-22	16	-25	167	10	-133	-168	-97	-400	-182	488	28	-967	-285	-838	-469	-406	324	-114
525/4		3	3	0	-7	-6	-41	-27	-4	-75	-123	-205	262	57	-407	60	-327	33	-427	628	300	-98		-1401	714	-494
525/5	21/2	3	3	0	-7	-36	34	-42	-124	0	102	-160	-398	-318	268	-240	498	-132	398	-92	-720		-1024	204	354	286
525/6	525/4	-3	-3	0	7 7	-6	41	27	-4	75	-123	-205	-262	57	407	-60	327	33	-427	-628	300	98	686	1401	714	494
525/7 525/8	$\frac{21/1}{105/2}$	-4 -5	3 3	0	-7	$\frac{62}{12}$	62 -30	-84 134	100 -92	42 -112	-10 -58	-48 -224	246 146	-248 18	-68 -340	-324 -208	-258 754	120 380	622 718	-904 -412	-678 -960	642 -1066	740 896	-468 -436	200 -1038	$\frac{1266}{702}$
528/1	$\frac{103/2}{132/1}$	0	3	0	-2	11	-88	-66	40	-112	-54	-224	-106	354	124	-546	-408	-552	404	4	-126	-166	874	-444	1002	-802
528/2	33/1	0	3	-4	26	-11	-32	74	60	182	-90	8	-66	422	-408	506	348	200	132	1036	-762	-542	550	132	570	14
528/3	66/2	0	3	10	-16	-11	10	-10	144	84	218	176	46	-26	488	-404	194	-444	202	84	764		-1312		-1222	-1358
528/4	264/3	0	3	12	-22	-11	-48	-54	-100	-58	262	-248	-130	-26	-216	-22	620	424	340	620	-810	-1118	214	-988	-6	590
528/5	132/2	0	3	-12	-14	-11	56	42	-116	30	198	88	350	198	-56	594	-204	312	620	-356	462	482	238	-492		-1426
528/6	264/4	0	3	-18	28	-11	-18	-34	-80	-128	162	312	-290	-146	-256	-432	-490	-836	230	-900	-520	-798	484	812		-1790
528/7	132/3	0	3	22 0	20	-11	22	110	-48	-72	-142	-184	-194	-482	80	-392	-34	108	382	-84	1040	-606	1292	-356	-406	1090
528/8 528/9	$\frac{66/1}{264/2}$	0	-3 -3	-6	-14 8	-11 11	80 -30	30 -18	-56 56	$\frac{126}{100}$	-222 26	16 136	-106 -178	114 110	52 -288	-246 -116	-264 -398	-264 -196	92 -782	796 -292	-426 -180	-1174 -398	-842 -56	-852 -548	-1062 282	-1282 -142
528/10	264/1	0	-3	-6	14	-11	-30	-108	98	32	-8	40	50	-8	486	-40	710	604	322	476	-216	502	862	-592	354	446
528/11	132/4	ő	-3	10	-8	11	18	46	-40	-44	186	72	-114	174	416	156	-62	348	-446	956	444	306	664	124	602	1522
528/12	33/2	0	-3	-14	32	11	-38	-2	-72	-68	-54	152	174	94	528	340	-438	-20	570	460	1092	562	16	-372	-966	-526
529/1	23/1	-2	-5	6	8	-34	-57	80	70	0	245	103	298	95	-88	-357	414	-408	-822	-926	335	-899	1322	36	460	964
529/2		3	4	0	0	0	-74	0	0	0	282	-344	0	426	0	48	0	-396	0	0	1176	-1226	0	0	0	0
530/1		-2	-4	5	6	40	-2	106	-86	-84	-54	82	-122	-78	-74	218	53	-212	-58	852	342	1034	542		-402	866
530/2 537/1		-2 -1	-5 3	-5 -12	6 11	20 -26	-31 83	63 -110	-53 30	95 -6	-157 186	128 130	341 -124	-120 63	250 -398	-162 -437	53 -141	-188 -677	388 155	-452 -780	-421 720	-790 22	-1295 -407	189	506 -1108	-1417
539/1		3	3	2	0	11	-73	62	-84	124	-203	-224	412	-176	400	-586	-234	531	367	105	-878	-236	351	-342		-1001
539/2	539/1	3	-3	-2	ő	11	73	-62	84	124	-203	224	412	176	400	586	-234	-531	-367	105	-878	236	351	342	-366	1001
539/3	77/1	3	-4	-12	0	11	-38	48	70	12	126	70	-358	216	344	-390	438	552	-830	-196	648	16	1352	-90	-1146	70
540/1	·	0	0	5	17	-30	-61	-120	-43	90	-90	8	317	-30	-220	-180	-630	-840	599	107	-210	-421		-1350	1020	-997
540/2		0	0	5	-22	9	17	75	-4	-183	-129	-187	-34	-264	443	-609	228	-60	-454	-244	-444	398		-1038	-852	914
540/3	540/1	0	0	-5	17	30	-61	120	-43	-90	90	8	317	30	-220	180	630	840	599	107	210	-421	353		-1020	-997
540/4 544/1	540/2	0	0 4	-5 8	-22 -14	-9 8	17 -46	-75 -17	-4 -116	183 94	129 -112	-187 -50	-34 -20	264 62	443 -68	609 60	-228 162	$\frac{60}{724}$	-454 -388	-244 -172	$\frac{444}{1090}$	398	-349 -114	1038 68	852 666	914 -1322
544/1	544/1	0	-4	8	-14 14	-8	-46	-17	116	-94	-112	-50 50	-20	62	-08 68	-60	162	-724	-388		-1090		114	-68		-1322
544/3	044/1	0	6	18	-2	26	-22	17	44	78	50	170	58	130	-68	192	-690	-388	226	344	90	-966	1078	36		-1006
544/4	544/3	0	-6	18	2	-26	-22	17	-44	-78	50	-170	58	130	68	-192	-690	388	226	-344	-90	-966	-1078	-36		-1006
545/1	, '	-1	2	-5	3	2	58	89	16	-216	250	-102	-412	124	148	-514	356	-262	-254	-717	-368	1012	-675	-762	-117	1142
546/1		2	3	9	-7	62	-13	-16	79	-155	51	243	412	-406	-103	429	-169	320	-614	258	-264	-121	-967	-679	1059	-21
546/2		2	3	-12	7	-50	-13	-58	-40	-64	-110	124	-50	84	-12	-82	-442	-618	-278	20	-390	-2	-680	322	968	1022
546/3		2 2	3	-14	-7 7	8	13	-98	-28	-52 9	-2	-168	-146	-514	-236	-216	-66	-84	446 -466	292	100 -288	450	392	-292	-402	314
546/4 546/5		-2	-3 -3	-9 12	7 7	-18 -22	13 -13	60 -2	-43 -88	-80	-249 -22	-79 -92	-412 118	$\frac{222}{324}$	-295 84	411 -134	-237 -194	-384 210	-466 -470	-1042 -292	-288 -66	-691 -506	1001 -776	39 -778	-339 -920	713 -490
549/1	183/1	-2	-3 0	-3	-14	46	-20	31	-00 -4	147	-30	204	-349	-100	97	-104	-194	-492	-61	20	-353	-401	498		-920	-161
550/1	/ 1	2	2	0	16	11	37	36	5	87	45	167	196	72	-233	336	-78	-720	482	166	1137	-308	-160		1155	-299

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
550/2	22/1	2	-4	0	8	-11	50	-130	-108	96	142	40	-382	-118	-220	-520	-238	-852	190	12	-112	6	304	-820	202	1406
550/3	110/2	2	-4	0	-20	11	-26	42	116	-96	270	32	106	-462	40	504	570	12	590	388	-240	-302	8	48	282	646
550/4	110/1	$\frac{2}{2}$	-4 7	0	30	11	-16 72	112	-64	-36	10 120	-48	$\frac{146}{201}$	278 -228	$\frac{330}{242}$	-476	-150	732	-30 -668	848	240	1128 72	788 -70	698	-458 895	-134
550/5 550/6	$\frac{22/2}{110/3}$	2	7	0	-14 35	11 11	-26	46 -101	$-20 \\ 127$	107 58	-27	117 -177	-191	-228 66	-444	96 -2	-458 669	$\frac{435}{386}$	-521	-439 -96	-1113 -427	-1006	910	-358 818	601	-409 228
550/7	110/3	2	-9	0	-5	11	-36	17	41	44	285	-323	-29	208	-430	-336	-725	-648	-565	748	-265	-602	8	708	137	-44
550/8	22/3	-2	-1	0	10	11	16	-42	116	-189	-120	-163	409	468	-110	-144	-90	-453	20	97	-465	-848	-742	-438	-273	-761
550/9	110/7	-2	-1	0	-23	-11	-50	-75	17	174	-153	35	277	-258	220	-210	273	438	-475	-992	-927	934	974		1377	64
550/10	550/1	-2	-2	0	-16	11	-37	-36	5	-87	45	167	-196	72	233	-336	78	-720	482	-166	1137	308	-160		1155	299
550/11	110/4	-2	4	0	22	-11	20	20	-8	204	122	40	-278	302	330	-60	418	188	-670	568	128	-676	-876	1130	822	434
550/12	110/5	-2	-7	0	-11	11	-2	9	-85	138	45	227	19	-138	88	534	-297	-450	287	304	777	-962			-1455	-116
550/13 550/14	$\frac{110}{6}$ $\frac{110}{8}$	-2 -2	-8	0	-26 12	11 -11	-92 34	84 86	80 -4	-72 -148	-30 134	-208 -280	-86 -430	-378 -6	-542 136	-216 28	18 658	420 4	-718 -90	124 -96	912 816	268 430	-940 1296	498 608	150 810	-446 -706
550/14	550/7	-2 -2	-o 9	0	5	11	36	-17	41	-44	285	-323	29	208	430	336	725	-648	-565	-748	-265	602	1290	-708	137	44
552/1	330/1	0	3	8	-22	-4	-14	-116	30	-23	-38	60	-310	-366	326	-464	348	44	434	-406	472	-222	-642	756	-728	-1370
552/2		Ö	3	-14	2	58	-50	-76	60	23	-106	-24	-256	-126	-304	32	-642	436	-460	-232	224	-282	-426	702	764	-686
553/1		-1	4	4	7	8	-44	90	-138	-64	256	284	-404	70	-510	24	292	-884	98	-664	216	-1022	-79	-646	-70	-1458
555/1		1	3	5	25	3	22	35	-118	28	83	153	-37	73	155	-136	201	198	497	700	1044	1040			1310	131
555/2	00.44	1	-3	5	25	-57	-26	107	-46	124	-157	-75	-37	-443	-265	512	-459	-570	-259		-1020	-232	-468	-114	134	-889
558/1	62/1	$\frac{2}{2}$	0	-1	-11 -7	18	-82 2	6	25	-58 138	-180	31 31	-146	-47 159	-12 -448	136 -264	232	-715 135	-518	-436	-387	678 92	660	382	800	-1631
558/2 558/3	$\frac{186/1}{186/2}$	2	0	-3 11	- 1 9	30	-16	-120 60	-115 -11	138	168 130	-31	-376 -266	$\frac{159}{273}$	-448	-264 188	-564 156	135	$\frac{416}{312}$	-268 324	579 -647	730	-430 538	-342 -518	-522 -714	$\frac{1001}{113}$
558/4	186/3	2	0	11	-22	-63	15	-95	-11	-108	-56	31	230	-378	102	157	466	-270	591	-513	-647	-262	-175	443	-714	485
558/5	186/4	2	ő	-15	17	-24	2	48	-115	-30	-264	31	-160	51	128	-480	-132	-309	-280	-604	159	-652	-838	690	534	329
558/6	186/6	-2	0	1	-6	-39	89	-27	-23	68	-64	-31	-206	138	218	379	-630	366	-279	123	-121	-674	-965	-493	-570	-1003
558/7	62/2	-2	0	3	-35	46	20	-8	97	-28	206	-31	-282	-367	-562	148	84	301	-236	60	-699	-814	670	650 -	-1566	-615
558/8	186/5	-2	0	7	-3	18	-52	60	-119	20	-178	-31	58	285	230	-164	-180	-351	288	324	65	-386	-758		-594	-1615
558/9	186/7	-2	0	21	-19	12	-34	72	-7	30	84	31	380	-9	-268	480	-276	-309	-712	116	783	1040	386		1446	1625
$\frac{560/1}{560/2}$	$\frac{280}{1}$ $\frac{70}{2}$	0	1 1	5 -5	-7 -7	39 65	-17 13	-15 -73	-74 142	14 -130	-237 111	180 -256	-318 -266	-348 -424	22 -534	193 269	-208 -132	-452 224	340 -572	408 108	-528 -560	-554 586	-539 -57	-164 -252	-576 -184	-827 -605
560/3	$\frac{70/2}{140/1}$	0	-1	-5 -5	7	7	-23	-25	62	86	-29	12	-150	204	178	-33	452	-120	920	300	-520	370	1013	636	292	-1381
560/4	70/3	ő	3	5	7	17	-81	-91	-102	90	-129	-116	314	-124	434	-497	-584	332	220	-384	664	230		-1172	40	-175
560/5	140/4	0	4	5	7	-68	22	-30	-108	-184	166	32	-370	154	-212	512	-98	860	390	-60	-840	-630	-1312	436	-598	914
560/6	280/3	0	4	5	-7	-20	-10	-14	-12	-104	-122	-224	158	378	-404	-112	270	-324	-186	-156	360	-102			-1590	866
560/7	70/4	0	-4	5	-7	-60	38	42	52	-120	-234	304	-106	-54	196	-336	438	444	38	988	720	146	808		1146	-70
560/8 560/9	$\frac{140}{6}$ $\frac{140}{2}$	0	5 5	5 -5	-7 -7	15 -15	-13 17	-27 123	154 -86	186 -54	3 -177	328 -212	$\frac{254}{74}$	96 -444	-134 46	-51 -471	240 -180	396 -144	-616 -376	-296 -356	48 48	-322 818	-659 -89		$1020 \\ 1140$	-199 -169
560/10	$\frac{140/2}{70/6}$	0	-5	-5 5	7	-15 1	7	-51	-30	-54 50	79	212	-190	-308	-422	-121	664	-628		-1056	-744	726	407	-644	-880	-1351
560/11	280/4	0	-5	-5	7	39	-19	-37	18	90	99	32	46	-248	-178	-429	-652	-40	-36	348		-1190	-699	116	-704	223
560/12	280/2	Ö	-7	5	-7	-9	23	41	-34	6	131	-4	26	-260	190	-167	-368	-324	-164	-200	-784	-410	-1211	1132	-72	-707
560/13	70/5	0	-7	-5	-7	33	-43	111	70	-42	-225	88	-34	432	178	-411	-708	-480	812	-596	-432	-358	-425	-972	960	-709
560/14	70/1	0	8	-5	7	-68	34	74	128	80	286	24	294	66	124	-312	-34	-168	170	-564	-616	250	944	-672 -		-1270
560/15	35/1	0	8	-5	-7	-12	-78	-94	-40	-32	-50	248	-434	402	68	-536	22	560	-278	164	-672	82	1000		-870	1026
560/16 560/17	$\frac{140/3}{140/5}$	0	-8 -9	-5 5	-7 7	-28 -55	82 -69	-46 113	-8 126	$\frac{128}{102}$	174 -81	152 -176	-290 254	50 -184	-396 230	$\frac{296}{187}$	-570 -488	272 -388	-662 -728	-876 96	880 -8	-638 -994	600 -337	-624 -188	698 -884	754 -451
561/1	140/3	1	-3	10	12	-33 11	-26	17	-28	-28	-61	68	354	-86	308	-128	414	860	850	340	-996	218	828		1322	-230
561/2		-3	-3	18	8	-11	-58	17	-88	-48	30	-112	-34	450	-88	-156	-546	-264	362	572	-648	254	-952	-828	498	-46
564/1		0	-3	-12	36	-16	-58	-38	106	148	-260	70	2	-132	-30	47	194	276	794	614	872	382	524	596	494	46
564/2		0	-3	-21	3	55	-4	56	-2	-43	131	-308	125	6	-552	-47	-62	594	-550	908	-362	-968	-229	1066 -	-1346	805
567/1		1	0	14	-7	47	-86	9	-131	12	260	-54	-246	-383	-169	-96	-300	-429	-380	-155	-72	117	-526	-576	278	-201
567/2	567/1	-1	0	-14	-7	-47	-86	-9	-131	-12	-260	-54	-246	383	-169	96	300	429	-380	-155	72	117	-526	576	-278	-201
568/1 570/1		$0 \\ 2$	7 3	6	31	30	-35 -48	-6 -34	85	103 -128	-122 -80	$\frac{65}{112}$	-186 -124	-222 -208	69	-59	-142 -378	186 440	-110	922 496	71 72	-1177 -738	-582 920	$\frac{268}{832}$	$\frac{145}{440}$	-638
570/1 570/2		2	3	5 -5	-34 -8	-18 -20	-48 -82	-34 -18	-19 19	-128	-80 -186	-248	262	-208 246	$\frac{42}{288}$	-144 -168	-378 -302	440 72	-118 -546	-804	240	-738 602	-800	-116	766	-864 790
570/3		2	3	-5	-24	32	2	106	-19	152	90	52	306	62	-268	456	-318	300	502	-644	-608	-198		-1248	110	-574
570/4		2	-3	5	-4	-12	-46	-102	19	-84	222	8	-214	-126	-160	36	-318	-516	-346	-700	-480	338	248	720	-30	614
570/5		2	-3	-5	-34	28	-6	8	19	-204	262	298	346	-296	340	-204	462	194	-46	-20	1080		-1382	10	180	514
570/6		-2	-3	5	-2	-16	-10	36	19	124	-174	-74	94	-240	-276	540	146	606	450	180	-456	14	550	1442	212	-830
570/7		-2	-3	5	26	54	32	78	19	12	204	-256	-340	-156	326	-132	90	-360	-838	-16	888	854	-640	-84	828	1424
572/1		0	7	-15	-1	11	13	-81	-16	108	-216	-40	-391	408	-421	-399	-582	450	-856	752	759	-544	578	924	-240	-736
572/2 574/1		2	10 -1	13 5	-11 7	-11 -32	13 -38	66 -123	-136 156	217 -106	-79 -91	-38 -191	-54 -20	63 41	$\frac{435}{497}$	$\frac{276}{14}$	-266 -479	735 -466	-903 599	-853 952		-1055 -1034	316 -975	-348 -684 -	-332 -1413	-688 863
014/1			-1	9		-52	-50	-120	100	-100	-91	-191	-20	-41	431	1.4	-413	-400	000	302	-003	-1004	-910	-004	1419	503

	_ 1																									$\overline{}$
level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
575/1		1	-6	0	-7	35	89	0	-113	23	-35	250	-314	-437	-207	144	628	-358	-206	544	-862	-9	159	-471	1174	-28
575/2		1	-10	0	23	-43	-79	-96	-103	-23	-27	110	-42	171	-265	-280	-428	638	842	-80	-1050	87	17	63	126	668
575/3	115/1	-1	-4	0	32	40	66	-130	-88	-23	-130	40	334	-22	272	-24	-258	612	-366	496	248	-826	-296	1296	-646	1438
575/4	575/1	-1	6	0	7	35	-89	0	-113	-23	-35	250	314	-437	207	-144	-628	-358	-206	-544	-862	9	159	471	1174	28
575/5	575/2	-1	10	0	-23	-43	79	96	-103	23	-27	110	42	171	265	280	428	638	842		-1050	-87	17	-63	126	-668
575/6	23/1	2	5	0	8	34	57	80	-70	-23	245	103	298	95	-88	357	414	-408	822	-926	335		-1322	36	-460	964
575/7	115/2	-2	3	0	2	-16	47	24	-56	23	85	67	-104	-53	234	-285	-2	80	-764	-236	-289	225	24		-1370	110
576/1	9/1	0	0	0	20	0	70	0	-56	0	0	308	-110	0	520	0	0	0	-182	880	0	1190	884	0	0	
576/2 576/3	9/1 96/4	0	0	0 2	-20 12	60	$\frac{70}{42}$	0 -10	56 -132	0 48	$\frac{0}{226}$	-308 -252	-110 362	0 94	-520 228	$\frac{0}{408}$	$\frac{0}{346}$	-300	-182 466	-880	0 -1056	1190 330	-884 612	$\frac{0}{564}$	0 1510	-1330 594
576/4	96/4	0	0	2	-12	-60	42	-10	132	-48	226	252	362	94	-228	-408	346	300	466	204	1056	330	-612	-564	1510	594
576/5	8/1	0	0	-2	24	-44	-22	-50	-44	56	198	-160	162	198	-52	-528	-242	-668	-550	-188	-728	154	-656	236	-714	-478
576/6	8/1	0	0	-2	-24	44	-22	-50	44	-56	198	160	162	198	52	528	-242	668	-550	188	728	154	656	-236	-714	-478
576/7	288/1	0	0	4	0	0	-18	-104	0	0	284	0	-214	-472	0	0	572	0	-830	0		-1098	0	0	176	-594
576/8	288/1	Ö	Ö	-4	ő	Õ	-18	104	Ö	Ö	-284	ő	-214	472	Ö	Õ	-572	Õ	-830	Õ		-1098	Õ	ō	-176	-594
576/9	6/1	0	0	6	16	-12	-38	126	20	168	30	88	-254	-42	-52	-96	198	660	538	884	792	218	520	492	-810	1154
576/10	6/1	0	0	6	-16	12	-38	126	-20	-168	30	-88	-254	-42	52	96	198	-660	538	-884	-792	218	-520	-492	-810	1154
576/11	96/1	0	0	10	4	-20	-70	-90	140	-192	-134	-100	170	110	532	-56	-430	20	-270	-524	-80	330	-1060	1188		-590
576/12	96/1	0	0	10	-4	20	-70	-90	-140	192	-134	100	170	110	-532	56	-430	-20	-270	524	80	330		-1188		-590
576/13	32/2	0	0	-10	16	-40	50	30	-40	-48	-34	320	-310	-410	-152	416	-410	-200	-30	-776	-400		-1120	552	326	-110
576/14	32/2	0	0	-10	-16	40	50	30	40	48	-34	-320	-310	-410	152	-416	-410	200	-30	776	400	-630	1120	-552	326	-110
576/15	$\frac{24}{1}$ $\frac{24}{1}$	0	0	$\frac{14}{14}$	24 -24	28 -28	$\frac{74}{74}$	-82 -82	92 -92	-8	-138 -138	-80 80	-30 -30	-282 -282	4 -4	240 -240	-130 -130	-596 596	218 218	-436 436	856 -856	-998 -998	32	1508 -1508	$\frac{246}{246}$	866 866
576/16 576/17	96/2	0	0	-14	36	36	-54	22	36	-144	-138 50	108	-214	446	252	-240 72	-22	684	466	-180	-850 576	-54	972	684	-346	
576/18	96/2	0	0	-14	-36	-36	-54	22	-36	144	50	-108	-214	446	-252	-72	-22	-684	466	180	-576	-54	-972	-684	-346	
576/19	$\frac{72}{1}$	0	0	16	12	-64	-58	-32	-136	-128	-144	-20	18	288	-200	384	496	128	458	-496	512		-1108	-704	960	206
576/20	$\frac{72}{1}$	Ö	Ö	16	-12	64	-58	-32	136	128	-144	20	18	288	200	-384	496	-128	458	496	-512	-602	1108	704	960	206
576/21	72/1	0	0	-16	12	64	-58	32	-136	128	144	-20	18	-288	-200	-384	-496	-128	458	-496	-512	-602	-1108	704	-960	206
576/22	72/1	0	0	-16	-12	-64	-58	32	136	-128	144	20	18	-288	200	384	-496	128	458	496	512	-602	1108	-704	-960	206
576/23	12/1	0	0	-18	8	36	10	-18	100	-72	-234	-16	226	-90	-452	-432	414	-684	-422	-332	360	26		-1188	630	-1054
576/24	12/1	0	0	-18	-8	-36	10	-18	-100	72	-234	16	226	-90	452	432	414	684	-422	332	-360	26	-512	1188	630	-1054
576/25	32/1	0	$0 \\ 2$	22	0	0	18	94	0	0	-130	0	-214	230	0	0	518	0	-830	0	0	1098	0	0	1670	594
578/1 578/2	578/1	2 2	-2	-8	-34 34	30 -30	-42 -42	0	-60 -60	-42 42	-144 144	170 -170	-176 176	240 -240	-508 -508	-136 -136	-318 -318	-300 -300	320 -320	-676 -676	650 -650	952 -952	894 -894	1132 1132	-350 -350	-1176 1176
578/3	34/1	-2	2	-8 -16	-24	-62	-62	0	-20	12	-80	208	356	-240	-312	24	-462	240	-812	-216	-732	-952	-700	-992	-390	146
578/4	34/1	-2	2	18	10	-02	74	0	-88	114	90	310	-86	-90	368	-384	-258	240	-302	-964	390	-722	898	912	1446	1438
581/1	01/2	-5	-4	-16	7	-39	50	-110	5	-54	-80	-327	-198	-56	-326	-286	-665	-504	-793	-202	693	-921	405	83	951	126
585/1	195/1	3	0	5	2	-24	13	-24	-70	-90	120	-196	-214	54	-196	-120	-18	312	-322	-376	-240	1136		-1092	618	-880
585/2	195/4	3	0	-5	-16	36	13	30	68	120	186	8	-226	342	-76	552	738	-780	-154	596	-1056	-22	-112	684	-90	-334
585/3	195/3	-4	0	-5	18	-10	-13	-46	-14	36	22	42	-46	226	-224	50	290	-130	70	-138	586	-758	1068	-378	-1374	-1822
585/4	195/2	5	0	5	8	56	-13	-58	24	-36	242	-64	-254	414	-164	40	-82	744	494	-508	-384	462	-816		-1210	-530
585/5	65/1	-5	0	5	-12	-14	-13	-98	-26	114	-58	306	86	374	-314	-620	-362	-266	634	612	686	202	-516		1230	350
588/1	04/1	0	3	-4	0	-20	4	-24	-44	72	-38	-184	-30	216	-164	-520	-146	-460	-628	556		-1024	-104	324	-896	920
588/2 588/3	84/1 588/1	0	3 -3	-6 4	0	36 -20	-62 -4	-114 24	$\frac{76}{44}$	-24 72	54 -38	112 184	-178 -30	-378 -216	-172 -164	$\frac{192}{520}$	-402 -146	-396 460	-254 628	-1012 556	840 592	-890 1024	80 -104	108 -324	1638 896	-1010 -920
588/4	84/2	0	-3	-14	0	-20	-54	14	-92	-152	-106	144	158	390	-508	528	606	364	-678	844	-8	422	384		-1194	1502
588/5	12/1	ő	-3	18	ŏ	36	10	-18	100	72	-234	16	-226	-90	452	-432	414	684	-422	332	-360	-26	512	1188	630	1054
592/1	74/1	0	5	12	7	63	-28	6	70	6	-42	292	37	351	-32	-357	57	-432	-340	1012	609	539		-1299	-390	1772
592/2	74/2	0	5	-14	19	-5	6	-72	44	-182	10	244	-37	-225	2	-221	-659	-156	-620	-416	1125	-641	484	-1239	1304	-560
594/1		2	0	-8	-11	11	37	8	-81	-12	-52	-140	-305	-440	-128	-64	-220	48	247	-129	496	93	-533	512	1640	-899
594/2	594/1	-2	0	8	-11	-11	37	-8	-81	12	52	-140	-305	440	-128	64	220	-48	247	-129	-496	93	-533		-1640	-899
595/1		1	-4	5	7	20	38	17	-100	136	-170	16	-82	-198	-188	-448	174	-204		-1044	680			-1332		-862
595/2		-1	-4	-5	7	-14	8	-17	86	-40	284	64	-40	-174	340	-512	282	-54	118	-552	-908	-674	-740	-30	-310	602
595/3		-5 -2	-7 5	5 -9	7 -11	62 30	-55	17 -13	-7 40	-218 -23	-173	-119 240	$\frac{434}{127}$	$\frac{258}{2}$	$\frac{40}{473}$	-37 247	-279 306	$\frac{225}{124}$	523	-768 218	-25	571 1128	316		-1043	113
598/1 600/1	120/5	-2 0	5 3	-9 0	-11	30 4	-13 -54	-13 -114	40 44	-23 -96	188 134	-272	98	-6	473 -12	200	-654	36	-644 -442	188	1137 -632	390	-208 688	-882 -1188	-918 -694	-256 1726
600/1	120/3	0	3	0	-4	-28	-54 16	-114	32	-96 28	-238	-180	40	422	-276	-60	-220	-804	-358	884	-64	152	-932	1292		-824
600/3	120/1	0	3	0	-4	72	6	-38	52	-152	-78	120	150	362	484	-280	670	696	222	4	96	-178	-632	612		-1634
600/4	/1	ő	3	ő	5	14	1	46	19	-46	14	133	258	84	-167	410	456	-194	-17	653	828	570	-552		-1104	841
600/5		0	3	0	10	-14	-82	18	-136	-140	112	72	26	-446	396	-144	158	-342	314	-152	-932	-548	-512	284	-810	1304
600/6		0	3	0	10	-46	-34	66	104	164	224	-72	-22	194	108	-480	286	426	698	328	188	-740	1168	412	1206	-1384
600/7	120/2	0	3	0	16	-28	26	62	-68	208	-58	160	-270	282	-76	280	210	196	742	-836	-504	1062	768	1052	-726	1406

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
600/8		0	3	0	-19	22	1	-58	-53	58	22	-35	-270	-468	-431	-230	0	446	127	-811	36	522	1368	-1138	144	-1079
600/9	120/4	0	3	0	-20	-56	86	106	4	-136	-206	-152	-282	-246	-412	-40	126	56	-2	388		-1170	408	-668	66	926
600/10	600/2	0	-3	0	4	-28	-16	108	32	-28	-238	-180	-40	422	276	60	220	-804	-358	-884	-64	-152		-1292 -		824
600/11	600/4	0	-3	0	-5	14	-1	-46	19	46	14	133	-258	84	167	-410	-456	-194	-17	-653	828	-570	-552		1104	-841
600/12	120/3	0	-3	0	-8	20	-22	14	76	-56	-154	160	162	-390	-388	544	210	-380	-794	148	-840	-858	144		1098	-994
600/13	600/5	0	-3	0	-10	-14	82	-18	-136	140	112	72	-26	-446	-396	144	-158	-342	314	152	-932	548	-512		-810	-1304
600/14	600/6	0	-3	0	-10	-46	34	-66	104	-164	224	-72	22	194	-108	480	-286	426	698	-328	188	740	1168		1206	1384
600/15	600/8	0	-3	0	19 -20	22	-1	58	-53	-58	22 82	-35	270	-468	431	230	700	446	$\frac{127}{574}$	811	36	-522	1368	1138	144	1079
600/16 600/17	120/6	0	-3 -3	0	-20 24	16 -28	-58 74	-38 -82	4 92	80 -8	-138	-8 80	-426 -30	-246 282	524 -4	464 -240	$702 \\ 130$	-592 596	-218	$\frac{172}{436}$	768 856	558 998	408 -32	-164 1508	-510 -246	-514 -866
602/1	24/1	2	-3 -9	2	-7	-28 -57	14	-82 96	-131	-78	191	89	-295	364	43	492	130	348	870	69	121	-86	1336		-145	1260
603/1	201/1	4	0	19	13	-26	26	96	124	-153	188	-229	-271	225	121	-272	503	-351	436	67	792	-97	-848		-430	-270
605/1	201/1	1	-5	5	29	0	-88	21	105	160	-165	-85	-15	-270	12	-370	-615	396	-835	-540	-187	-58	-620	828 -		-90
605/2	55/1	-1	-3	-5	9	ő	-2	-21	85	22	165	-83	1	478	8	126	-683	-290	-257	776	-313	-902	-830	-842	25	-1784
605/3	605/1	-1	-5	5	-29	ő	88	-21	-105	160	165	-85	-15	270	-12	-370	-615	396	835	-540	-187	58	620	-828 -		-90
605/4	5/1	4	2	-5	-6	0	38	-26	-100	-78	50	-108	266	-22	-442	-514	2	500	518	126	412	878	-600	-282	-150	386
606/1	<i>'</i>	2	3	-4	-17	-50	70	-93	-143	88	263	-282	178	-412	-473	-572	391	190	493	44	-278	626	6	-52	152	-559
608/1		0	1	-8	17	70	-61	83	-19	-115	279	72	-34	108	192	392	131	609	338	461	-750	1177	22	810	-476	1426
608/2	608/1	0	-1	-8	-17	-70	-61	83	19	115	279	-72	-34	108	-192	-392	131	-609	338	-461	750	1177	-22	-810	-476	1426
609/1		-3	3	12	7	-60	32	24	-160	-144	29	-106	-286	180	260	-126	-246	-174	302		-1008	992		-1218	540	-100
609/2		5	3	4	7	16	58	-46	-64	-42	-29	-56	26	306	318	112	-186	120	368	-348	266		-1026	-296	294	-60
610/1		-2	4	5	-10	52	-74	60	-140	90	-6	-180 2	-64	-378	-314	284	204	-36	-61	1034		-1114	-116	-996	-122	1274
610/2 $612/1$	204/1	-2 0	10 0	5 3	20 -16	-18 57	38 -25	114 -17	-124 -13	-72 93	-66 6	110	-322 248	-306 333	272 -115	$\frac{582}{294}$	306 318	-150 30	61 668	-844 -220	-1110 -540	-862 1214	-862 -442	1182 438	-558 -60	$\frac{146}{1568}$
612/2	68/1	0	0	8	-10	10	-38	17	-13 4	-120	-56	164	-236	-70	-113	-48	366	504	-460	-768	-72	-734	736		-906	46
612/3	08/1	0	0	17	-12	-17	43	17	67	51	34	-124	106	119	-387	204	204	304	242	-732	-12	256	466		1326	712
612/4	612/3	ő	ő	-17	6	17	43	-17	67	-51	-34	-124	106	-119	-387	-204	-204	-306	242	-732	ő	256	466		1326	712
615/1	, -	1	3	5	11	-18	-68	36	-15	-73	-210	-213	81	41	247	-284	-273	235	-28	-944	-228	-978	620		-225	666
615/2		-3	3	5	16	-12	-26	-86	-84	-96	62	96	-162	41	-100	-72	142	4	-362	-596	256	-102	-392	1012	-838	-150
615/3		-5	3	5	-10	-6	-2	84	-54	-40	-180	-240	-126	41	-20	382	-102	40	-262	-356	792	594	-4	692	-906	-1272
616/1		0	9	15	-7	11	0	6	-14	79	-146	221	-37	70	-204	496	266	-553	-734		-1083	802	854	-992	-351	-301
618/1		2	3	-8	12	-57	-38	-94	-127	-27	117	233	341	-424	182	-50	396	-420	-464	-542	-276	-176			1297	1055
623/1		-1	5	-19	7	-8	-70	-51	121	-197	30	-135	412	-42	65	366	-267	460	618	90	842	565	-792	924	89	-21
623/2	-0.4	-1	7	7	7	54	44	-55	-5	43	-46	129	-160	-90	431	180	279	804	218	-746	658	157	-26	840	89	-461
624/1	78/5	0	3	6	-20	-24	13	-30	16	72	-282	-164	110	-126	-164	204	-738	-120	614	-848	-132	218	1096	-552	210	-1726
624/2 624/3	$\frac{156/1}{39/1}$	0	3	-6 -12	4 -2	-36 36	13 13	66 -78	-56 -74	-96 96	222 18	-260 214	-106 -286	-90 -384	-44 -524	-168 -300	30	-348	-346 74	256 -38	$\frac{168}{456}$	-814 -682	-200 -704	-1236 888 -	318 1020	-502 110
624/4	78/1	0	3	-16	-28	-34	-13	138	-108	52	-190	176	342	240	140	-454	$\frac{558}{198}$	-576 154	34	656	-550	614	-704		-444	1022
624/5	78/4	0	3	-20	32	-50	-13	-30	120	20	82	44	-306	108	356	178	198	-94	-62	140	778	62	1096		1224	614
624/6	156/2	0	-3	-2	32	68	13	-14	-4	-72	102	136	-386	250	140	296	526	-332	-410	-596	880	506			1450	-446
624/7	78/6	0	-3	4	-4	-2	-13	-6	36	20	-14	152	-258	84	188	-254	366	-550	-14	-448	-926		-1328	-186	-336	614
624/8	78/3	0	-3	10	8	-40	13	130	20	0	-18	184	-74	-362	-76	452	382	-464	358	700	748	1058	976	1008	-386	-614
624/9	78/2	0	-3	-16	8	38	-13	-78	72	52	242	-76	342	-336	-76	-94	-450	-854	-110	908	-838	-970	352	-474 -	1452	-562
630/1	210/5	2	0	5	7	0	26	-18	92	0	6	-4	410	-174	248	-420	-102	588	650	152	168		-1048	684	834	110
630/2	210/1	2	0	5	7	-12	2	18	56	156	186	-52	-178	138	-412	456	198	-348	110	-196	936	542	992	276	-630	110
630/3	70.70	2	0	5	7	-34	-86	-134	-124	-22	168	148	130	46	-204	44	-372	404	-842	180	-218	-314	-744	864	-554	934
630/4	70/2	2	0	5	7 -7	65	13	73	-142	-130	-111	256	-266	424	534	269	132	224	-572	-108	-560	586	57	-252	184	-605
630/5 630/6	210/6	2 2	0	5	-7 -7	-28 -68	-86 34	66 -74	-48 -128	-140 80	34 -286	-284 -24	-346 294	274 -66	-4 -124	448 -312	94 34	-308 -168	$\frac{510}{170}$	-156 564	-336 -616	-1170 250	16 -944		$1630 \\ 1430$	110 -1270
630/6	70/1 $210/3$	2	0	5 -5	-7 7	-68 -12	-58	-74 -42	-128 -4	-24	-286 -294	-24 128	-58	-66 -282	-124 428	-312 -384	138	-168 -468	-250	-556	-616 -624	-958	-944 632	-672 -84	-810	-1270 -790
630/8	210/3	2	0	-5 -5	7	-12	-38 74	-24	-34	168	-162	128	380	126	-34	294	318	444	-592	110	-198	-938 866	776		-354	614
630/9		2	0	-5	7	30	-34	30	128	-210	216	128	2	234	236	132	-168	12	758	164	-306	866	-304	720	186	1370
630/10	70/4	2	ő	-5	7	-60	38	-42	-52	-120	234	-304	-106	54	-196	-336	-438	444	38	-988	720	146	-808		1146	-70
630/11	/ -	2	0	-5	-7	-10	18	46	-132	-126	48	44	-334	-182	-524	-308	332	-172	94		-1010	-58	-8	880		-1066
630/12	70/3	2	0	-5	-7	17	-81	91	102	90	129	116	314	124	-434	-497	584	332	220	384	664	230	361	-1172	-40	-175
630/13	210/4	2	0	-5	-7	-28	54	46	12	0	-6	296	134	-146	556	448	-46	-748	-50	-156	1024	-310	856	628	590	-1390
630/14	210/2	2	0	-5	-7	44	54	-98	-60	144	210	-208	-226	502	484	232	530	764	814	60	-848	-958	-152		1094	554
630/15	630/8	-2	0	5	7	24	74	24	-34	-168	162	128	380	-126	-34	-294	-318	-444	-592	110	198	866	776	576	354	614
630/16	210/9	-2	0	5	7	-24	14	-54	44	-156	-174	-88	-34	138	164	216	-318	204	-442	-316	252	98	-1000	-516	522	-310
630/17	630/9	-2	0	5	7 7	-30	-34	-30	128	210	-216	128	2	-234	236	-132	168	-12	758	164	306	866	-304	-720	-186	1370
630/18 630/19	70/5 $210/10$	-2 -2	0	5 5	-7 -7	33 4	-43 -42	-111 86	-70 -96	-42 96	$\frac{225}{78}$	-88 80	-34 50	-432 26	-178 -32	-411 20	$708 \\ 382$	-480 -356	812 -134	596 888	-432 -868	-358 -70	$\frac{425}{400}$	-972 1052	-960 634	-709 1202
030/19	210/10	-2	U	υ	-1	4	-42	00	-90	90	18	00	υU	20	-32	20	362	-000	-134	000	-008	-10	400	1002	054	1202

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
630/20	630/11	-2	0	5	-7	10	18	-46	-132	126	-48	44	-334	182	-524	308	-332	172	94	-156	1010	-58	-8	-880	-626	-1066
630/21	210/7	-2	0	5	-7	-56	54	-94	36	84	258	-40	-178	146	148	200	130	-188	94	-444	-532	770	-536	1076	1090	1274
630/22	630/3	-2	0	-5	7	34	-86	134	-124	22	-168	148	130	-46	-204	-44	372	-404	-842	180	218	-314	-744	-864	554	934
630/23	70/6	-2	0	-5	-7	1	7	51	30	50	-79	-212	-190	308	422	-121	-664	-628	-684	1056	-744	726	-407	-644		-1351
630/24	210/8	-2	0	-5	-7	-16	58	-34	64	16	-62	60	150	-474	-292	-240	662	324	-514	-372	412	-770	-560		-1466	-178
632/1		0	-7	7	19	-44	-31	-36	102	154	-204	104	-46	208	-304	187	418	-113	-488	-516	-821	-566	-79	-478	-543	-1319
633/1	19/1	-4	-3 7	3 7	30 0	3 -26	-23	-114 -77	19 126	104	-246 -82	88 -196	321	-266 -336	93 -201	-147 105	-642 -432	$\frac{20}{294}$	-330	-526	585 9	-330	$137 \\ 1304$	1068	-756	950 -70
637/1 638/1	13/1	-5 -2	-5	-11	0	-20	-13 2	112	38	-96 -71	29	190	-131 -199	472	292	392	234	115	56 26	478 -481	-901	-98 -354	-38	308	1190 -1199	
639/1	71/1	-2 -1	-0	16	-1	-24	7	-72	-153	213	-232	149	-204	432	71	-273	$\frac{234}{274}$	-126	-134	-760	-71	-457	112	124		-1424
639/2	213/1	-5	0	-13	-7	-51	-50	-18	-27	-174	-17	-139	84	135	-451	264	-346	-381	-383	-772	71	-607		-1426	966	1090
640/1	210/1	0	8	5	2	22	10	10	110	-154	222	-92	-34	398	268	-10	-582	746	-226	-172	928	570	64	-864	-874	306
640/2	640/1	0	8	-5	-2	22	-10	10	110	154	-222	92	34	398	268	10	582	746	226	-172	-928	570	-64	-864	-874	306
640/3	640/1	0	-8	5	-2	-22	10	10	-110	154	222	92	-34	398	-268	10	-582	-746	-226	172	-928	570	-64	864	-874	306
640/4	640/1	0	-8	-5	2	-22	-10	10	-110	-154	-222	-92	34	398	-268	-10	582	-746	226	172	928	570	64	864	-874	306
642/1		2	3	-7	-8	-30	-13	-9	-11	-100	132	-230	-231	-362	414	-4	-158	-84	283	-868	597		-1036	1126		1074
642/2		2	3	9	-34	-4	-77	-121	-11	-64	4	170	249	20	-236	-380	-108	-340	151	670	945	-208	-416	364	534	312
642/3		-2	-3	7	26	-52	10	-32	14	-123	-134	-122	20	105	363	75	338	-215	-326	-439	-150	-50		-1038	-783	1710
648/1 648/2	648/1	0	0	5 -5	36 36	-64 64	-65 -65	-59 59	-28 -28	-160 160	57 -57	$\frac{164}{164}$	-321 -321	246 -246	-8 -8	-84 84	-478 478	32 -32	$\frac{415}{415}$	-220 -220	-884 884	-77 -77	-80 -80	-1268 1268	-123 123	1346 1346
650/1	130/1	2	2	-3 0	-8	6	-13	-114	38	-150	114	-34	-146	-30	-122	-336	570	-32 66	-502	-728	582	994	-988	84	906	-290
650/2	130/1	2	-3	0	12	6	-13	-114	-152	-125	169	296	-126	-110	-387	-356	-435	26	-437		-1098	-556	757	-306	-524	-610
650/3	26/1	2	-3	ő	-19	-38	13	51	90	52	-190	292	441	312	-373	41	-468	530	592	206	-863	322	-460	-528	870	346
650/4	- /	2	7	0	22	6	-13	-14	28	125	209	-14	-316	0	-57	84	-425	756	-217	62	-988	294	517	224	-14	-420
650/5	26/2	-2	1	0	35	2	-13	19	94	72	246	-100	11	-280	-241	-137	232	-386	64	670	55	838	1016	-420	-934	1154
650/6	650/2	-2	3	0	-12	6	13	14	-152	125	169	296	126	-110	387	356	435	26	-437	-182	-1098	556	757	306	-524	610
650/7	130/2	-2	4	0	8	-32	13	86	-56	-68	-202	-56	-66	490	-460	24	294	-480	-338	-676	120	210	184	660	-286	1202
650/8	26/3	-2	-4	0	-20	-48	-13	-66	-16	-168	6	20	-254	-390	124	468	-558	-96	-826	160	-420	-362	776	0	1626	1294
650/9	650/4	-2	-7	0	-22	6	13	14	28	-125	209	-14	316	0	57	-84	425	756	-217	-62	-988	-294	517	-224	-14	420
654/1 654/2		-2 -2	-3 -3	-6 -14	-19 -11	-12 12	20 -12	75 79	86 -10	111 43	-78 210	-169 167	-58 -66	315 -313	389 -267	333 329	-342 538	-327 205	293 -523	-862 634	-378	-1063 273	932 -1340	$822 \\ 478$	-636 -780	-1393 1159
654/2		-2 -2	-3 -3	20	-11	60	-50	31	-10	43	210	-37	-278	327	-483	329 441	-54	-403	497		-1058	313	994	1036	378	1171
655/1		5	2	-5	33	50	16	8	-53	-96	175	-72	-391	427	424	440	-592	194	-680	783	-380	112		-1023		944
656/1	82/1	0	4	-18	2	52	28	14	16	36	-160	-132	-294	-41	-356	-42	-548	-252	-494	616		-1010	834	1436	474	1598
656/2	82/2	0	-10	-6	10	54	-82	42	-134	-48	30	136	2	41	-200	30	390	444	38	610	42	110	-950	-900	138	170
657/1	73/1	-3	0	-6	-34	-6	-34	-90	-16	-60	-102	-214	-286	-150	-322	534	474	-786	-574	-16	-192	73	-988	-1242	6	614
658/1		-2	4	16	-7	18	-72	42	-136	-166	-118	-236	-170	488	-422	47	18	556	10	806	1020		-1120	1212	-714	-566
660/1		0	-3	5	0	11	-42	-14	-52	96	-26	-144	126	58	364	-328	-50	-284	-794	-316	-280	-358	784		-1398	-894
663/1		4	3	-10	-10	18	-13	-17	-74	-132	210	-230	-46	-114	36	446	-754	-50	-226	582	-370	826	272	162	-186	-790
665/1		1 1	-1	-5	-7	-44	-64 27	11	-19	53	34	-24	-63 106	45 -303	-439	-24 -604	-167	-350	-376	578	189	313	1324	168	474	-346
665/2 665/3		1	-8 9	-5 -5	7 7	-33 12	24	41 -9	-19 19	107 83	$\frac{55}{154}$	142 -112	-43	-303	-158 323	-604	$472 \\ 549$	745 -186	-413 504	-749 958	-1023 315	322 -275	-145 292	-283 232	1350 -54	-1704 -130
665/4		3	-5	-5 5	-7	16	4	-47	19	97	246	-112	-85	-23 85	-179	348	155	270	712	226	-21	387	516	276	1202	-698
665/5		-4	7	-5	7	2	-8	-79	-19	117	-120	-58	-69	-263	-403	376	207	-220	-638	236	-253	-853	1120	822	1050	1496
666/1	222/3	2	Ö	2	0	-28	-42	-90	-28	48	42	-152	37	342	-500	224	426	-628	262	-60		-1190	552	-4	110	-846
666/2		2	0	6	-33	41	-89	87	45	-11	-308	-252	-37	-182	-252	-288	715	-546	-250	-64	-24	-339	-970	1317	291	-328
666/3	74/1	2	0	-12	-7	63	-28	-6	-70	6	42	-292	37	-351	32	-357	-57	-432		-1012	609	539	818	-1299	390	1772
666/4	222/2	-2	0	0	-16	-48	50	-60	20	-162	264	332	37	-330	368	504	-354	-222	-322	-532	888	-922	1328	696	1488	806
666/5	666/2	-2	0	-6	-33	-41	-89	-87	45	11	308	-252	-37	182	-252	288	-715	546	-250	-64	24	-339		-1317	-291	-328
666/6	74/2	-2	0	14	-19	-5	6	72	-44	-182	-10	-244	-37	225	-2	-221	659	-156	-620	416	1125	-641		-1239		-560
666/7	222/1	-2	0	16	-24	-8	-78	-12	-16	198	72	280	37	30	244	-56	654	-38	526	-516	552	-842	588	-368		726
670/1 670/2		-2 -2	-6 7	-5 -5	31 31	-29 -4	-44 -30	$\frac{36}{134}$	98 -76	-208 154	150 -43	-150 24	$\frac{153}{376}$	40 -186	324 -97	228 80	450 663	-544 -225	-327 -244	67 -67	-715 384	-226 -288	-142 -310	-673 1230	-1587	$655 \\ 741$
672/1		-2	3	-5 6	-7	-4 4	-30 -46	-82	-84	-44	-43 70	152	-146	94	-488	32	-562	476	34	520	36	-654	608	-284	-954	-1694
672/2		0	3	-18	-7	44	58	-130	92	84	-250	-72	-354	334	-416	-464	-450	-516	58	-656	-940	178	1072	660	1254	210
672/3	672/1	0	-3	6	7	-4	-46	-82	84	44	70	-152	-146	94	488	-32	-562	-476	34	-520	-36	-654	-608	284		-1694
672/4	672/2	Ö	-3	-18	7	-44	58	-130	-92	-84	-250	72	-354	334	416	464	-450	516	58	656	940		-1072		1254	210
675/1	<u> </u>	0	0	0	17	0	-70	0	107	0	0	-289	323	0	71	0	0	0	-901	-880	0	-919	-1387	0	0	1853
675/2	675/1	0	0	0	-17	0	70	0	107	0	0	-289	-323	0	-71	0	0	0	-901	880	0		-1387	0		-1853
675/3		0	0	0	37	0	70	0	-163	0	0	-19	433	0	-449	0	0	0	719	880	0	271	503	0	0	523
675/4	675/3	0	0	0	-37	0	-70	0	-163	0	0	-19	-433	0	449	0	0	0	719	-880	0	-271	503	0	0	-523
675/5	135/1	1	0	0	6	47	5	-131	-56	3	157	225	70	-140	-397	-347	4	-748	-338	-492	-32	-970	-1257	-102	1488	-974

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
675/6	135/1	-1	0	0	6	-47	5	131	-56	-3	-157	225	70	140	-397	347	-4	748	-338	-492	32	-970	-1257	102	-1488	-974
675/7	135/3	2	0	0	0	10	80	-7	-113	81	-220	-189	-170	-130	-10	-160	-631	-560	229	-750	890	890	-27	-429	-750	1480
675/8	135/3	-2	0	0	0	-10	80	7	-113	-81	220	-189	-170	130	-10	160	631	560	229	-750	-890	890	-27	429	750	1480
675/9	27/1	3	0	0	25	15	-20	72	2	114	-30	101	430	30	-110	-330	621	660	-376	250	360	-785	488	489	450	1105
675/10	27/1	-3	0	0	25	-15	-20	-72	2	-114	30	101	430	-30	-110	330	-621	-660	-376	250	-360	-785	488	-489	-450	1105
676/1	52/1	0	-3	13	11	2	0	-51	-150	-4	-118	116	-63	288	-293	335	-708	-566	904	-382	-7	-518	-100	1440		-1262
678/1		2	3	1	-33	-14	13	-19	16	-127	154	-37	-212	-474	-324	-492	-394	-231	441	452	665	-806	200		1562	1642
678/2		2	3	-9	11	-50	-53	17	-66	-163	138	-57	-32	396	-146	-288	246	607	-365	-658	-603	-916	344	-212	126	-1646
680/1		0	2 -2	5	2 -22	-14	-30 -70	17 17	72 -128	178	$\frac{238}{210}$	34 -222	286 -438	$\frac{242}{26}$	$\frac{52}{220}$	-52 164	-306	$\frac{240}{728}$	$\frac{478}{426}$	56 -680	$722 \\ 394$	218 -638	-930	-332 -324	982	
680/2 680/3		0	-8	-5 -5	12	-18 -34	-30	17	32	194 168	-62	274	-314	282	162	-22	-434 354	-480	98	-374	-958	-762	-42 -830	978	-266 -578	898 -1006
681/1		-1	3	-8	-36	-64	-89	-57	79	-108	93	88	-29	-325	-351	273	-331	-738	698	-566	899	-387	-560	-231	946	-1705
682/1		2	8	-10	-31	11	-72	7	-38	-63	76	31	-115	6	-135	-416	-218	219	-162	-447	1138	-874	-658	893	42	1097
684/1	228/3	0	Õ	3	-17	19	-30	97	19	28	-126	-126	64	-80	-453	-107	326	-56	47		-1060	-659	592	-892	310	-874
684/2	228/1	0	0	-4	-12	-40	-40	66	-19	98	130	262	-296	442	-164	542	-334	-60	614	0	-400	318	1154	636	630	1006
684/3	228/2	0	0	7	21	37	26	33	-19	76	218	-266	-32	-64	133	-305	766	72	-805	264	-92	285	1088	-420	-426	-314
684/4	·	0	0	18	-32	46	-72	-8	19	148	282	210	-188	-326	84	472	254	208	-586	456	8	358	106	782	178	-1534
684/5	684/4	0	0	-18	-32	-46	-72	8	19	-148	-282	210	-188	326	84	-472	-254	-208	-586	456	-8	358	106	-782	-178	-1534
688/1	86/2	0	4	-14	14	11	-9	9	46	19	216	155	-76	5	43	392	579	588	28	621	146	-192	664	1239		827
688/2	86/1	0	-8	6	-14	43	-17	49	-130	-53	-180	163	284	-323	43	56	-437	420	552	541	18	1108	-80		-1090	179
690/1 690/2		2 2	3 3	5 -5	-7 -5	-60 -58	-64 10	-129 27	-52 -154	-23 23	-99 -205	-115 -103	$\frac{137}{143}$	327 -447	$\frac{500}{264}$	-258 128	555 -521	$\frac{471}{565}$	614 -492	-307 371	-627 -65	-1072 530	692 -740	903 -457	-528 -144	-250 -38
690/3		2	3	-5 -5	-20	32	-30	-98	-84	23	-110	-48	-62	378	-556	-72	-366	-720	-492	-844	800	-30	1040	148	-574	1602
690/4		-2	3	-5	-5	-46	-66	79	-30	23	79	225	-41	237	104	276	579	345	-104	-61	-253	-498	356	283	176	930
690/5		-2	3	-5	-16	42	44	-42	-52	23	-108	-160	146	6	302	276	678	312	182	-226	726	206	-568	492	-264	-412
690/6		-2	-3	5	16	4	-26	-30	-100	-23	94	-232	230	-150	-156	544	-34	-388	174	-484	440	-550	376	652	-1350	-542
690/7		-2	-3	5	-18	-70	-86	-56	108	23	186	-120	-232	-398	120	88	-190	696	504	432	-72	102	-218	82	-828	650
690/8		-2	-3	5	-19	-24	44	75	-16	-23	-123	-43	-43	207	236	-30	519	39	-190	-295	-603		-1276	-573	456	-1186
693/1	231/3	2	0	-1	-7	11	7	14	-45	88	69	22	57	380	48	385	672	469	-342	-139	-132	145	1244	-522	-822	272
693/2	231/4	-2 3	0	-11	-7 -7	-11	-5	118 28	-105	68	195	214	33	376	-168	-61	-24	-625 -120	-558	173	-168		-1072		198	-352
693/3 693/4	$\frac{231}{5}$ $\frac{77}{1}$	-3	0	4 -12	- 1 7	-11 -11	50 38	28 48	30 -70	-112 -12	-130 -126	-146 -70	-302 -358	$^{-4}$ 216	-548 344	-86 -390	246 -438	-120 552	-638 830	-132 -196	692 -648	-152 -16	1352	-1098	1158 -1146	1618 -70
693/5	231/1	-3	0	14	-7	11	2	74	-70	148	-26	112	-98	10	208	-460	-258	204	178	-924	748	-230	-456	228	198	562
693/6	231/2	-5	ő	6	7	11	70	-126	-80	200	-134	-244	-314	-278	-372	84	-182	756	694	820	-160	-2	40	-760	102	-862
700/1	- /	0	1	0	-7	-37	-38	35	73	64	226	108	360	279	32	-222	-508	420	-610	825	190	-275	742	-1041	1417	-106
700/2	140/1	0	-1	0	7	-7	23	25	-62	86	-29	-12	150	204	178	-33	-452	120	920	300	520	-370	-1013	636	292	1381
700/3	700/1	0	-1	0	7	-37	38	-35	73	-64	226	108	-360	279	-32	222	508	420	-610	-825	190	275	742		1417	106
700/4	140/4	0	4	0	7	68	-22	30	108	-184	166	-32	370	154	-212	512	98	-860	390	-60	840	630	1312	436	-598	-914
700/5	28/2	0	-4	0	-7	-12	82	30	68	-216	246	-112	-110	-246	172	-192	-558	540	110	-140	-840	550	-208	-516		-1586
700/6	1.40./0	0	5	0	7	-65	-13	113	16	-186	-57	-258	134	-414	284	-419	130	334	-56	-534	952	-502		-1220	880	241
700/7 700/8	$\frac{140/2}{140/6}$	0	5 5	0	-7 -7	15 -15	-17 13	-123 27	86 -154	-54 186	-177 3	212 -328	-74 -254	-444 96	46 -134	-471 -51	180 -240	144 -396	-376 -616	-356 -296	-48 -48	-818 322	89 659	780 -300	$1140 \\ 1020$	169 199
700/8	700/6	0	-5	0	-7	-65	13	-113	16	186	-57	-258	-134	-414	-284	419	-130	334	-56	534	952	502	-371	1220	880	-241
700/10	, .	ő	7	Õ	-7	-7	3	61	48	58	219	298	-170	50	484	131	210	-782	488	494	-240		-1065	1036	608	-1339
700/11	700/10	ŏ	-7	ŏ	7	-7	-3	-61	48	-58	219	298	170	50	-484	-131	-210	-782	488	-494	-240			-1036	608	1339
700/12	140/3	0	-8	0	-7	28	-82	46	8	128	174	-152	290	50	-396	296	570	-272	-662	-876	-880	638	-600	-624	698	-754
700/13	140/5	0	-9	0	7	55	69	-113	-126	102	-81	176	-254	-184	230	187	488	388	-728	96	8	994	337	-188	-884	451
700/14	28/1	0	10	0	7	-40	12	58	26	64	-62	252	-26	6	-416	396	450	274	-576	476	-448	158	-936	-530	-390	-214
704/1	22/3	0	1	3	10	11	16	42	116	-189	120	163	409	468	110	-144	-90 6	-453	-20	-97	465	848	742	438	-273	761
704/2 704/3	$\frac{88/2}{22/3}$	0	1 -1	7 3	-6 -10	11 -11	40 16	-78 42	-36 -116	$\frac{7}{189}$	-8 120	183 -163	-227 409	-36 468	-322 -110	-184 144	-90	$\frac{99}{453}$	-164 -20	695 97	-987 -465	-248 848	-242 -742	1494 -438	-905 -273	-1031 761
704/3	88/2	0	-1	7	-10	-11	40	-78	36	-7	-8	-103	-227	-36	322	184	-90 6	-99	-164	-695	987	-248		-436	-273 -905	-1031
704/5	$\frac{33/2}{22/1}$	0	4	-14	8	-11	50	130	-108	96	-142	-40	-382	-118	220	-520	-238	-852	-190	-12	112	-6	-304	820		-1406
704/6	22/1	ő	-4	-14	-8	11	50	130	108	-96	-142	40	-382	-118	-220	520	-238	852	-190	12	-112	-6	304	-820		
704/7	44/1	0	5	7	-26	11	-52	46	96	27	-16	-293	29	-472	110	-224	-754	-825	548	123	1001	-1020	526	158	-1217	-263
704/8	44/1	0	-5	7	26	-11	-52	46	-96	-27	-16	293	29	-472	-110	224	-754	825	548			-1020	-526		-1217	-263
704/9	88/1	0	7	-9	-2	-11	0	-38	44	-175	264	-159	173	-220	-542	264	-682	421	-308	177	-365	-528	-686	698	967	-1127
704/10	22/2	0	7	19	14	-11	72	-46	20	-107	-120	117	201	-228	242	-96	-458	-435	668		-1113	-72	-70	-358	895	409
704/11 704/12	$\frac{88/1}{22/2}$	0	-7 -7	-9 19	2 -14	11 11	$\frac{0}{72}$	-38 -46	-44 -20	$\frac{175}{107}$	264 -120	159 -117	$\frac{173}{201}$	-220 -228	542 -242	-264 96	-682 -458	-421 435	-308 668	-177 439	$\frac{365}{1113}$	-528 -72	686 70	-698 358	967 895	-1127 409
704/12	22/2	3	3	-5	-14	42	11	123	-20 -73	177	255	-232	164	-183	470	47	543	549	-235	344	27	-850	806		-1110	-520
705/2		-4	-3	5	7	60	-45	-117	-13	37	-169	252	-174	-347	330	-47	-601	453	629	754	-129	134	-64	-716		-684
100/2		-4	-0	9		00	-40	-111	-13	51	-103	202	-,114	-041	550	-41	-001	400	043	104	-143	104	-04	-110	1200	-004

Tools	level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
Tilly	705/3		5	-3	-5	-11	-18	93	-39	71	199	251	24	72	145	6	-47	-55	285	-703	148	279	386	518	1276	122	-1020
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	708/1		0	3	-4	15	1	-45	-31	124	170	158	152	-205	83	81	68	288	-59	58	556	585	-44	365	1213	420	164
T10/3				1	5	-1	-30		-90		-81	78	-43	158	234			-498	390	398		71		290	828	633	-538
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_																								-174
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-1270
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-1377
714/2																											-436
714/3			_																							_	-60
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-530
T14/6																											1150 600
T14/6																											-1274
T15/1																											756
T15/2																											656
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-1																								-1148
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720/1	180/1	0	0	5	-2	-30	-4	90	28	-120	210	4	200	240	136	120	-30	450	-166	-908	1020	-250	916	1140	-420	1538
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	5	-2	34	-68	-38	-4	-152	-46	260	-312	48	200	-104	-414	2	-38	244	-708	-378	852	-844	-1380	514
729/6																					-596						-1534
720/6																					_						1634
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											386
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		/	-	-			-																				-46
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-478 -766
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								514
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-286
720/12																											-926
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											-286
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0		30		-20	10		120						-280										-1630
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720/14	40/2	0	0	5	34	16	58	70	-4	-134	242	-100	-438	138	-178	22	-162	-268	250	-422	-852	306	456	434	726	1378
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								482
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-1726
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													_														1538
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											514
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											1106 994
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								-46
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-1406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																											-766
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	Ö	Ö																							-382
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	720/25	360/2	0	0	-5	18	34	12	102	-164	48	-146	-100	328	288	-120	16	126	642	602	-436	652	1062	-388	-444	820	-766
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720/26	15/2	0	0	-5	24	52	22	14	20	-168	-230	288	-34	-122	188	256	338	100	742	84	-328	-38	240	1212	-330	866
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								-1630
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-																							194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											194
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								482 -1424
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		38/1																									-613
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-943
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		722/3																									943
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																											613
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							62			-70																	-466
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	726/1		2	3				-80				222	-16		-114	52			264	-92		426					-1282
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		· I			-5	-16	0		-101	88	44	-237	-72	-141	-297		12	175	396		-560		-966			203	1627
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-																				-430
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_ ,																									53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							-																				1154
726/8 726/4 -2 -3 0 11 0 -34 36 -37 6 -42 113 311 18 -412 18 750 546 -25 -535 300 -499 -343 -1386 -1392							-																				1627
																											-430
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	726/8	66/2	-2 -2	-3 -3	10	-16	0	-34 -10	36 10	-37 144	-84	-42 -218	-176	311 46	18 26	-412 488	404	194	$\frac{546}{444}$	-25 -202	-535 -84	-764					53 -1358
730/1 2 2 -5 -4 -8 52 101 75 -133 235 -13 261 417 477 116 702 -470 -388 -314 -188 73 -440 332 425 -1		00/2																									
730/2 2 -5 5 17 -33 2 -66 -58 -24 -171 80 353 45 -364 -219 -504 -87 -280 107 -1089 73 -295 -18 -483 -19			_																								

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
732/1		0	3	3	-6	22	-80	-101	124	-5	-234	-100	145	-204	319	-44	78	100	61		-1025	-9	-790	373	679	815
735/1	105/1	0	3	-5	0	42	-20	-66	-38	12	-258	-146	434	282	20	72	336	360	682	812	810	124	1136	-156		-1208
735/2		1	3	5	0	10	-6	-84	-48	56	-232	6	-48	150	-426	18	-58	-348	-882	-182	-524		-1024	-384		-1122
735/3	735/2	1	-3	-5	0	10	6	84	48	56	-232	-6	-48	-150	-426	-18	-58	348	882	-182	-524		-1024	384	-246	1122
735/4	15/2	1	-3	-5	0	52	-22	14	20	-168	230	288	-34	-122	-188	-256	-338	-100	-742	-84	-328	38	-240		-330	-866
735/5 735/6	15/1	3	3	5 5	0	-24 -45	-74 31	-54 -96	124 -149	-120 -141	-78 48	-200	-70 371	-330 -225	$\frac{92}{344}$	24 -375	450 -663	-24 60	322 -392	-196 -280	-288 258	430 -578	-520 152	-156 432		286 -1352
735/7	735/6	3	-3	-5	0	-45 -45	-31	-96 96	149	-141	48	178 -178	371	225	344	375	-663	-60	392	-280	258	578	152	-432	-234	1352
735/8	133/0	-4	3	-5 5	0	-10	24	-54	12	-134	118	-144	-378	-330	204	-312	142	-108	168	448	146	360	236		-1194	1728
735/9	735/8	-4	-3	-5	0	-10	-24	54	-12	-134	118	144	-378	330	204	312	142	108	-168	448	146	-360	236		1194	-1728
735/10	105/2	5	3	-5	0	12	-30	134	92	112	-58	224	-146	-18	340	-208	-754	-380	-718	412		-1066	896	-436	1038	702
738/1	82/2	-2	0	6	-10	54	-82	-42	134	-48	-30	-136	2	-41	200	30	-390	444	38	-610	42	110	950	-900	-138	170
738/2	246/1	-2	0	14	-28	-1	16	107	-138	32	-99	-35	149	-41	-339	-511	58	136	-335	682	-389	-323	10	834	-526	-330
738/3	82/1	-2	0	18	-2	52	28	-14	-16	36	160	132	-294	41	356	-42	548	-252	-494	-616		-1010	-834	1436	-474	1598
740/1		0	-8	5	4	-20	-10	-62	8	192	-154	124	37	186	92	476	-258	-176	-458	336	-232	-470	-676	-608	-102	-30
741/1		5	3	20	-9	-33	-13	-6	19	93	210	238	-198	-368	-23	-470	-362	-54	-792	-259	1029	748	145	-468	1500	
$742/1 \\ 742/2$		-2 -2	2 -8	20 15	-7 7	-4 53	50 -82	-122 42	-62 -131	-204 -32	-178 -255	$\frac{46}{111}$	-446 -47	-420 455	52 -524	504 608	53 -53	-372 -82	-56 -747	-260 -416	$\frac{1088}{252}$	532 -682	180 786	822 907	$\frac{358}{644}$	-10 -702
742/2		-2 0	-8 -3	14	-24	-4	-82 46	-30	-131	-32 168	-255 254	-31	22	455 -70	-524	256	-53 -122	-82 660	750	-804	792	-082 -934	576	-44	970	1346
754/1		-2	-8	10	-32	2	13	74	-98	72	-29	-258	320	336	376	282	114	408	-810	-720	1116		-1324	688		-1104
756/1		0	0	9	7	6	-28	-99	-130	-102	102	140	101	-165	-91	-111	-66	-675	-394	212	48	674	953		-1398	-322
756/2	756/1	0	0	-9	7	-6	-28	99	-130	102	-102	140	101	165	-91	111	66	675	-394	212	-48	674	953		1398	-322
756/3		0	0	13	-7	14	-72	5	-34	-82	-182	-72	-175	219	131	-309	-66	139	138	844	-856	-422	-165		-1014	874
756/4	756/3	0	0	-13	-7	-14	-72	-5	-34	82	182	-72	-175	-219	131	309	66	-139	138	844	856	-422	-165		1014	874
759/1 760/1		-5 0	3 -8	-3	1 -30	$\frac{11}{20}$	-49	75	-16	23	265	-119 -296	-343	-346	110 -162	-175	$\frac{442}{288}$	-684	636 590	629	-399 464	-54 -906	1205	482	332	-746
762/1		-2	-o -3	-5 15	-30 11	39	-12 -52	54 -99	19 29	114 -183	178 -222	-304	-164 164	$\frac{438}{159}$	-102	74 -510	261	-324 654	236	-728 -646	180	-682	$\frac{712}{272}$	-102 264	108	-616 -466
765/1	255/1	2	0	-5	-17	-41	8	17	-9	0	75	68	-217	287	-32	423	343	-2	-20	-46	-112	-647	646	296	-486	-418
765/2	85/1	-3	0	5	-22	-60	-31	-17	-61	78	-69	-31	56	6	-538	465	-723	753	35	-322		-1123	488		-1215	-601
765/3	85/3	-3	0	-5	-22	30	-46	-17	104	-42	66	194	206	126	-388	540	-78	-432	-610	848	174	362	398	-828	-630	-1486
765/4	85/2	-3	0	-5	-22	64	73	17	-49	-110	-155	-197	-372	262	258	13	653	333	-355	814	-47	-437	-384	736	-511	537
765/5	255/2	4	0	5	-8	38	74	-17	72	-132	246	158	14	286	-62	318	446	200	-350	770	946	-962	838	-338		-1630
768/1	700 /1	0	3	8	12	-12	-20 20	62	108	-72	128	204	228	22	-204 -204	600	-256	-828	84	348	456	-822	1356	108	938	1278
768/2 768/3	768/1 $768/1$	0	3 -3	-8 8	-12 -12	-12 12	-20	62 62	108 -108	$\frac{72}{72}$	-128 128	-204 -204	-228 228	22 22	204	-600 -600	256 -256	-828 828	-84 84	348 -348	-456 -456		-1356 -1356	108 -108	938 938	$1278 \\ 1278$
768/4	768/1	0	-3	-8	12	12	20	62	-108	-72	-128	204	-228	22	204	600	256	828	-84	-348	456		1356	-108	938	1278
770/1	, -	2	4	-5	7	-11	26	42	68	72	210	188	266	-150	68	240	186	-612	-250	392	408		-1180	360	498	326
770/2		2	10	-5	7	-11	68	-72	44	12	-30	-202	-46	-120	-244	-390	666	690	704	-136	-1164	908	896	-1044	-54	-106
770/3		-2	4	-5	-7	11	-10	70	40	88	-42	108	-42	-242	-356	-252	-578	-620	-394	764	-384	-322	-824	680		-1582
770/4		-2	-4	5	7	-11	6	-6	84	-112	-34	0	286	-350	172	-528	654	-380	-538	-156	608	-798	-640	1044	1386	338
770/5	00/1	-2	-4	-5	-7	11	-2	30	56	72	-122	-140	-42	-90	428	380	478	-340	142	-724	-144	-218	344	-8	570	802
774/1 $774/2$	$\frac{86/1}{258/1}$	2 -2	0	-6 9	14 -25	43 69	-17 -31	-49 0	$\frac{130}{17}$	-53 -132	$\frac{180}{237}$	-163 38	$\frac{284}{326}$	$\frac{323}{72}$	-43 43	56 -201	$\frac{437}{84}$	$\frac{420}{612}$	552 -496	-541 -502	18 288	1108 -160	80 170	-33 561	1090 -654	$179 \\ 449$
774/3	86/2	-2	0	14	-14	11	-9	-9	-46	19	-216	-155	-76	-5	-43	392	-579	588	28	-621	146	-192	-664	1239	1622	827
775/1	00/2	1	-8	0	-19	37	-33	26	10	22	90	31	331	57	-183	301	-633	230	-233	-824		-1118	180	217	530	-1134
775/2	155/1	-1	-2	0	-16	2	48	94	-140	68	300	31	-296	-138	318	224	-312	160	-128	-716	912	-182	-180	1418	-1190	-126
775/3	775/1	-1	8	0	19	37	33	-26	10	-22	90	31	-331	57	183	-301	633	230	-233	824	387	1118	180	-217	530	1134
777/1		1	3	14	7	-12	-58	-78	-116	-8	38	-240	37	-230	484	-304	206	-252	-394	-196	-392	1178	448	-772		546
780/1		0	3	5	24	60	13	58	28	-80	-274	-88	174	458	-252	-440	78	-212	-698	340	432	82	-368	996	890	250
780/2 780/3		0	-3 -3	-5 -5	$^{-4}$	-3	-13 -13	46 -31	$\frac{12}{34}$	$\frac{48}{103}$	-182 82	168 -206	298 -109	-22 165	-244 240	-552 306	658 -211	824 -408	-802 485	-228 -316	-496 -815		-1384 -1175	-1332 340	-1534 215	-598 -279
780/3 781/1		-1	-3 -7	-5 6	-21	-3 11	-13 -77	-26	34 5	-207	90	-233	-356	-178	-387	-161	-582	180	-118	954	-815 71	-900 -427		-1392	685	-279 -656
784/1	49/4	0	0	0	0	68	-11	0	0	40	-166	-233	450	0	180	-101	590	0	0	740	-688	0	1384	-1392	000	-030
784/2	98/1	ő	1	7	ő	-35	66	59	-137	7	106	-75	11	-498	-260	171	-417	17	51	-439	784	295	495	-932	-873	-290
784/3	98/1	0	-1	-7	0	-35	-66	-59	137	7	106	75	11	498	-260	-171	-417	-17	-51	-439	784	-295	495	932	873	290
784/4	14/2	0	-2	12	0	-48	-56	114	2	120	-54	236	146	-126	376	-12	174	138	-380	484	-576	1150	-776	378	390	1330
784/5	56/2	0	-2	16	0	-24	68	-54	-46	-176	-174	-116	74	10	480	-572	-162	-86	904		-1024	-770	904	682	102	218
784/6 784/7	$\frac{7/1}{28/2}$	0	-2 4	-16 -6	0	8 12	-28 82	-54 30	-110 68	-48 -216	-110 246	12 -112	-246 110	-182 246	-128 172	$\frac{324}{192}$	-162 558	810 540	488 -110	-244 -140	768 840	702 550	-440 208	-1302 516	-730 1398	-294 -1586
784/7	$\frac{28/2}{392/2}$	0	4	-6 12	0	-12	-76	30 8	-100	-216 56	-166	-112	-414	-72	452	424	-18	$\frac{540}{444}$	284	-524	1008	-896	40	1388	-448	824
784/9	196/1	0	4	-20	0	-44	-44	72	-100	120	218	280	-30	120	-220	-88	110	-580	380	980	112	-640	488	-660	320	248
784/10	8/1	ő	-4	2	ō	44	-22	-50	44	56	198	-160	-162	198	-52	528	-242	-668	-550	-188	-728	-154	656	236	-714	478

																										$\overline{}$
level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
784/11	392/2	0	-4	-12	0	-12	76	-8	100	56	-166	232	-414	72	452	-424	-18	-444	-284	-524	1008	896	40	-1388	448	-824
784/12	196/1	0	-4	20	0	-44	44	-72	100	120	218	-280	-30	-120	-220	88	110	580	-380	980	112	640	488	660	-320	-248
784/13	98/4	0	5	-9	0	57	-70	51	-5	-69	114	-23	-253	-42	124	-201	-393	-219	-709	-419	96	-313	-461	588	-1017	-1834
784/14	98/4	0	-5	9	0	57	70	-51	5	-69	114	23	-253	42	124	201	-393	219	709	-419	96	313	-461	-588	1017	1834
784/15	56/1	0	6	-8	0	-56	28	90	74	96	-222	-100	58	-422	-512	148	-642	-318	-720	412	-448	-994	296	386	6	138
784/16	49/1	0	7	-7	0	5	14	21	49	159	58	147	219	-350	124	525	303	-105	413	-415	432	1113	103	1092	329	882
784/17	49/1	0	-7	7	0	5	-14	-21	-49	159	58	-147	219	350	124	-525	303	105	-413	-415	432	-1113	103	-1092	-329	-882
784/18	14/1	0	8	14	0	28	-18	-74	80	112	190	72	-346	-162	412	24	318	-200	198	716	-392	-538		-1072		
784/19	28/1	0	-10	8	0	40	12	58	26	64	-62	252	26	-6	-416	-396	-450	274	576	476	448	158	936	530	390	-214
785/1		0	-4	-5	23	6	-37	-15	-54	97	214	168	79	-318	293	280	-308	-537	-936	962	-288	-572	360			-1704
786/1		2	3	-7	-15	39	-44	-41	-48	-125	-72	122	381	-410	-78	-561	225	-357	326	-115	-517	-848	-506	114		-1454
786/2		-2	-3	2	-22	-45	-69	-85	55	-28	81	85	-80	84	-234	-220	-156	173	429	-264	-568	-794	520	686	242	-936
792/1	264/2	0	0	6	-8	11	-30	18	-56	100	-26	-136	-178	-110	288	-116	398	-196	-782	292	-180	-398	56	-548	-282	-142
792/2	264/1	0	0	6	-14	-11	6	108	-98	32	8	-40	50	8	-486	-40	-710	604	322	-476	-216	502	-862	-592	-354	446
792/3	88/2	0	0	7	-6	11	-40	78	36	-7	-8	183	227	36	322	184	6	99	164	-695	987	-248	-242	1494		-1031
792/4	88/1	0	0	-9	2	11	0	38	44	-175	264	159	-173	220	-542	264	-682	-421	308	177	-365	-528	686	-698		-1127
792/5	264/3	0	0	-12	22	-11	-48	54	100	-58	-262	248	-130	26	216	-22	-620	424	340	-620		-1118	-214	-988	6	590
792/6	264/4	0	0	18	-28	-11	-18	34	80	-128	-162	-312	-290	146	256	-432	490	-836	230	900	-520	-798	-484	812		-1790
798/1		2 2	-3	0	7 7	-42 8	20	-96	19	102	90	-196	-214	378	-376	216	-750	-252	182	-286	264	-358	-862	-384		-1240
798/2		_	-3	-10	7	-	-50	114	19	-148	-30	304	-274	-202	-116	-324	-550	628	-58	-756	-216	-278	-952 704	-1184	1542	-870
798/3	32/1	-2 0	-3 0	-12 0	0	-60 0	74 18	-36 94	19 0	-192 0	12 -130	-160 0	254 -214	114 -230	-412 0	-330 0	360 -518	-12 0	-610 830	-1024 0	990	-322 -1098	0	318	90	1154
800/1 800/2	32/1	0	0	0	0	0	92	-104	0	0	130	0	-396	230	0	0	-572	0	-830	0	0	-592	0	0	-1670 1670	-594 -1816
800/2	800/2	0	0	0	0	0	-92	104	0	0	130	0	396	230	0	0	572	0	-830	0	0	-592 592	0	0	1670	1816
800/3	160/1	0	2	0	-6	60	-50	30	40	-178	166	20	-10	-250	-142	-214	-490	-800	250	774	100			-982	874	310
800/4	160/1	0	-2	0	6	-60	-50	30	-40	178	166	-20	-10	-250	142	214	-490	800	250	-774	-100	230		982	874	310
800/6	100/1	0	5	0	-10	15	-30	-21	-105	-10	-20	230	-54	-195	-300	-480	322	-560	-730	255	40	317	830	75		-1434
800/7	800/6	0	5	0	-10	-15	-8	21	105	-10	-20	-230	54	-195	-300	-480	-322	560	-730	255	-40	-317	-830	75	-705	1434
800/8	800/6	0	-5	0	10	15	-8	21	-105	10	-20	230	54	-195	300	480	-322	-560	-730	-255	40	-317	830	-75	-705	1434
800/9	800/6	ő	-5	Õ	10	-15	8	-21	105	10	-20	-230	-54	-195	300	480	322	560	-730	-255	-40	317	-830	-75		-1434
800/10	32/2	0	8	0	16	40	50	30	-40	48	-34	-320	-310	410	152	-416	410	200	30	776	-400	630	1120	552	-326	110
800/11	32/2	0	-8	0	-16	-40	50	30	40	-48	-34	320	-310	410	-152	416	410	-200	30	-776	400	630	-1120	-552	-326	110
801/1	89/1	1	0	-2	-4	56	-16	30	-50	92	-204	324	-20	-270	86	0	-534	206	-672	-576	352	-338	-336	-630	-89	-1506
801/2	89/2	4	0	-11	8	32	-4	-39	-59	83	-66	-279	-350	78	71	258	-597	572	-420	-30	-230	-497	-714	420	-89	1833
804/1		0	3	8	8	62	-36	-99	121	189	65	140	-161	-352	-146	315	570	421	-358	-67	-776	1209	616	-564	1125	1156
805/1		1	4	5	-7	28	-42	58	20	23	182	-56	230	26	268	600	-186	-420	582	596		-1094	352	372	434	986
805/2		5	-8	-5	7	4	-58	118	-132	-23	198	-236	-146	-326	-476	-236	-282	224	130	228	120	-886	-800	84	414	-626
810/1		2	0	-5	2	-9	-16	-6	-67	30	-45	-247	-124	3	80	36	-486	249	-10	-322	-453	-346	-352	-204	-729	716
810/2		2	0	-5	-16	57	-64	99	-49	-198	-66	146	-28	-411	-223	-132	-654	-33	458	-385	-642	-247	-106	-324		-1885
810/3		2	0	-5	-28	45	32	-84	149	-90	9	-259	-262	-111	-466	-606	-132	135	-826	-538	357	-52	-724	6	1617	1094
810/4	810/1	-2	0	5	2	9	-16	6	-67	-30	45	-247	-124	-3	80	-36	486	-249	-10	-322	453	-346	-352	204	729	716
810/5	810/2	-2	0	5	-16	-57	-64	-99	-49	198	66	146	-28	411	-223	132	654	33	458	-385	642	-247	-106	324		-1885
810/6	810/3	-2 0	0 -2	5	-28 7	-45 -60	32	84 -36	149 62	90 -96	-9 -29	-259 -22	-262 362	111 -216	-466 128	606 210	132 -258	-135 180	-826 596	-538 -556	-357 -744	-52 -364	-724 1076	-6 624	-1617	1094 -700
812/1 815/1		-2	-2 4	-6 5	-9	-60 -16	38 -13	-36 61	62 96	-96 89	-206	-22 40	-353	-216 341	128	-138	-258 164	-542	634	-556 -865	-744 -633	-364 -706	252	-486	900 -20	-700 1778
816/1	102/1	-2	3	-3	-20	-10 51	-61	17	43	219	-150	-290	-333 56	15	-83	-426	-378	210	-448	124			-722	-480 78	-144	-268
816/1	$\frac{102/1}{102/4}$	0	3	-3 5	-12	-37	19	17	-37	219	-86	142	-296	-121	-os -3	-420	174	-270	-520	780	-84	-302	-178	-698	1512	-500
816/3	408/1	0	3	6	24	-44	6	17	20	152	270	272	-250	186	-260	320	-770	348	-210	148	360	-646	1168		-1238	882
816/4	51/2	0	3	-10	8	-12	-26	17	148	-152	-66	32	-266	-6	92	288	-546	-420	350	-940	-424	378	-288	-748		530
816/5	102/3	0	3	-12	22	48	2	-17	-20	54	84	-62	44	-138	-428	516	174	852	908	508	426	-574	-110	1308		-1690
816/6	51/1	ő	3	16	-34	48	58	-17	-20	-58	0	218	184	-138	-148	516	-162	180	152	956	538	-462		-1268	-770	494
816/7	204/1	ő	-3	-3	16	57	-25	17	13	93	-6	-110	248	-333	115	294	-318	30	668	220	-540	1214	442	438	60	1568
816/8	102/2	ő	-3	-5	32	-27	-69	-17	83	117	94	-198	-244	169	-227	382	686	-450	-700	-540	276	-298	182			-1140
816/9	408/2	0	-3	-7	-4	21	-25	17	69	-15	58	298	72	-369	59	138	262	-50	-568	-124	-100	-158	-710	-214	-1016	-1780
816/10	51/3	0	-3	-20	2	48	-14	-17	-92	122	-36	182	76	294	428	12	-234	540	-820	-700		-1038		-1052	1102	710
819/1	273/2	1	0	5	7	1	13	-19	-117	141	131	-128	55	0	-201	96	-510	156	-845	-470	-324	-373	-526	-266	250	322
819/2	273/3	1	0	-9	-7	57	-13	37	107	183	-191	-240	-379	84	-313	-296	414	-40		-1086	208	635	-582	-798	726	1498
819/3	273/1	4	0	0	-7	6	-13	4	-52	-6	-14	-48	-190	-180	356	-536	-210	-244	470	240	-854	-82	-876	-504	660	1318
822/1		2	3	9	-19	-40	-26	-124	-109	-69	115	-2	-245	30	510	305	330	-582	-213	380	-976	989	982	159	-203	1830
822/2		2	3	-9	15	-30	-72	-58	-21	33	-99	-188	-23	-2	120	495	-82	152	-143	44	-296	-827	-1318	719		-1012
822/3		-2	3	7	-1	-16	26	-60	-151	55	-43	30	-45	-174	-142	-571	302	414	-317	-184	256	413	778		-1485	-186
825/1	165/1	0	3	0	-2	-11	22	-72	122	-72	96	-112	-266	-96	382	-360	-318	660	-430	-380	168	-218	-706	-1068	-6	-686

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
825/2	33/1	1	3	0	26	11	32	-74	-60	182	-90	-8	66	422	-408	506	-348	-200	132	1036	762	542	-550	132	570	-14
825/3	165/2	-1	-3	0	-36	11	-2	-66	140	68	150	-128	314	-118	-172	324	-82	-740	122	124	-988	-2	1100	868		-1186
825/4	007/4	3	3	0	7	11	16	-21	125	81	186	-58	253	63	100	219	192	249	-64	-272	-645	112	509	1254	756	-839
825/5	825/4	-3	-3	0	-7	11	-16	21	125	-81	186	-58	-253	63	-100	-219	-192	249	-64	272	-645	-112		-1254	756	839
825/6 825/7	99F /6	4 -4	-3 3	0	-21 21	11 11	68 -68	-21 21	$\frac{125}{125}$	-137 137	-150 -150	292 292	349 -349	$\frac{497}{497}$	208 -208	369 -369	-542 542	$\frac{235}{235}$	$\frac{482}{482}$	734 -734	587 587		-1045 -1045	608 -608	-770 -770	-1541 1541
825/8	825/6	-4 5	3	0	3	-11	32	33	47	113	-54	178	-349 19	139	-308	195	152	-625	320	200	-947	-448	-721	142	404	79
825/9	33/2	5	-3	0	32	-11	38	2	72	-68	-54	-152	-174	94	528	340	438	20	570		-1092	-562	-16	-372	-966	526
825/10	825/8	-5	-3	0	-3	-11	-32	-33	47	-113	-54	178	-19	139	308	-195	-152	-625	320	-200	-947	448	-721	-142	404	-79
828/1	276/2	0	Õ	-2	-22	14	-50	52	-20	-23	74	24	104	30	112	288	386	204	-308	152	720	486	462	-742	-180	786
828/2	276/1	0	0	-8	34	-36	-62	60	30	23	-234	140	-174	-194	-42	400	-76	-252	-566	-6	-264	-286	486		-1632 -	-1626
832/1	416/2	0	1	1	-5	10	13	93	-82	192	106	-172	-379	-148	-329	631	-160	-478	-300	-722	-335	90	788	96	-866	-998
832/2	104/2	0	1	7	21	6	-13	-115	-46	-144	162	-180	-13	192	-33	-383	-288	442	680	-722	207	274		-1204	-966	-138
832/3	26/2	0	1 -1	-17 1	-35 5	-2 -10	-13 13	-19 93	-94 82	-72 -192	-246 106	-100 172	-379	-280 -148	-241 329	137 -631	232 -160	$\frac{386}{478}$	-64 -300	$\frac{670}{722}$	$\frac{55}{335}$	-838 90	1016	-420 -96	-934 -866	-1154 -998
832/4 832/5	$\frac{416/2}{104/2}$	0	-1	7	-21	-10	-13	-115	46	144	162	180	-13	192	33	383	-288	-442	680	722	-207	$\frac{90}{274}$	-788 -936	1204	-966	-138
832/6	26/2	0	-1	-17	35	2	-13	-113	94	72	-246	100	11	-280	241	-137	232	-386	-64	-670	-55		-1016	420		-1154
832/7	26/1	ő	3	-11	-19	-38	13	-51	90	52	190	-292	441	312	373	41	-468	530	-592	-206	863	-322	460	528	870	-346
832/8	52/1	0	3	13	-11	2	13	-51	-150	-4	118	-116	-63	-288	293	-335	708	-566	-904	-382	7	518	-100	1440	1254	1262
832/9	26/1	0	-3	-11	19	38	13	-51	-90	-52	190	292	441	312	-373	-41	-468	-530	-592	206	-863	-322	-460	-528	870	-346
832/10	52/1	0	-3	13	11	-2	13	-51	150	4	118	116	-63	-288	-293	335	708	566	-904	382	-7	518		-1440	1254	1262
832/11	26/3	0	4	18	-20	-48	-13	66	-16	-168	-6	-20	-254	-390	-124	468	-558	-96	826	-160	420	362	-776	0		-1294
832/12	26/3	0	-4	18	20	48	-13	66	16	168	-6	20	-254	-390	124	-468	-558	96	826	160	-420	362	776	0		-1294
832/13 832/14	$\frac{416}{104}$	0	5 5	-19	5 3	-30 -2	-13 13	-19 77	-70 -58	20 -76	30 6	-100 292	111 -207	-180 240	-85 -317	-295 -375	132 692	$\frac{230}{214}$	$\frac{220}{488}$	$\frac{670}{782}$	$\frac{55}{1057}$	-602 1174	-360 -892	$\frac{540}{704}$	-270 6	-606 830
832/14	416/1	0	-5	3	-5	30	-13	-19	-38 70	-20	30	100	111	-180	85	295	132	-230	220	-670	-55	-602	360	-540	-270	-606
832/16	104/1	ő	-5	-19	-3	2	13	77	58	76	6	-292	-207	240	317	-375	692	-214	488	-782	-1057	1174	892	-704	6	830
832/17	13/1	0	7	7	-13	26	-13	77	126	-96	82	196	131	336	201	-105	432	294	56	-478	9	98	1304	308	-1190	70
832/18	13/1	0	-7	7	13	-26	-13	77	-126	96	82	-196	131	336	-201	105	432	-294	56	478	-9		-1304	-308		70
833/1	119/1	-1	6	20	0	60	68	17	70	-176	-90	-196	22	138	328	12	-234	54	-44	-596		-1122	480	838		-1142
833/2	17/1	-3	8	-6	0	-24	58	-17	-116	-60	30	172	-58	342	-148	-288	318	-252	-110	-484	-708	-362	-484	-756	774	382
834/1 840/1		2	3	-15 5	-11 7	17 -16	73 -62	-18 -14	-146 -56	-116 -136	-169 -154	151 -116	-226 6	26 -150	50 -20	-96 152	-372 -78	-254 124	-670 166	-761 140	-531 204	268 -210	1225 -984	615 628	-1019 138 -	48 -1202
840/1		0	3	5 5	-7	20	-62 54	-14 82	-116	-130	-186	-110	190	250	36	384	-82	-124	390	524	344	186	272	-388	714	-510
840/3		0	3	5	-7	22	-44	-110	-22	-36	-122	-186	306	-330	20	-64	504	-560	-418	-452	-146	-236	536	-92	-574	184
840/4		Ö	3	5	-7	-44	22	66	-132	-168	54	144	-354	-22	-156	-240	-354	-76	-154	-628	8	1018	96	348		-1598
840/5		0	-3	-5	-7	0	-54	74	-20	-160	-246	84	306	-370	-88	460	686	-684	186	-904	912	-26	-320	732	1150	1526
840/6		0	-3	-5	-7	-58	4	-42	-78	72	102	-90	-390	442	-204	-120	-300	-104	302	836	-74	148	-552	1428	454	424
845/1	5/1	4	2	5	-6	-32	0	26	-100	-78	-50	108	-266	-22	442	514	2	-500	-518	-126	-412	878	600	-282	150	-386
845/2	65/1	-5 2	2	5 3	12	-14	0	98	26	-114	58	-306	-86	374	-314	-620	362	-266	634	-612	686	-202	-516	-48	1230	-350
846/1 846/2	$\frac{282}{4}$ $\frac{282}{1}$	2	0	-3	-33 11	31 -15	62 -28	-58 -60	130 -94	-151 -45	23 -75	$\frac{250}{200}$	-43 149	282 -222	342 380	-47 47	412 -594	-324 -846	518 650	734 -160	322 -114	-340	707	1096 -1122	-254 582	-767 -811
846/3	$\frac{282}{1}$	2	0	-3 -7	-9	-15 45	-28 -70	38	30	99	-211	-2	-275	-394	-182	47	-80	776	-130	-290	-234		-1221	-468		449
846/4	282/3	2	0	8	-12	-60	2	110	-126	-84	-40	-14	-254	164	-422	47	502	-628	26	-386	720	574	156	-660		-1570
846/5	282/5	-2	Ö	11	-25	15	-26	54	-6	89	31	-70	-171	-390	262	-47	-12	-196	-442	-386	-70	22	171	672	42	-607
847/1	7/1	1	-2	16	7	0	-28	-54	110	48	110	12	-246	-182	-128	324	-162	810	488	244	-768	702	-440	1302	730	294
847/2	77/1	-3	4	12	-7	0	-38	48	70	12	-126	-70	-358	216	-344	390	438	-552	-830	-196	648		-1352	-90	1146	-70
848/1	53/1	$0 \\ 2$	-1 2	-18	-2	-54	-43 -74	-99	61	-207	-99	160	-7	-414	268	-270	53	-450	182	556	-693	-862	-119	333	1350	-187
850/1 850/2	$\frac{34}{2}$ $\frac{34}{1}$	2	2	0	10 -24	-6 62	-74 62	-17 17	-88 -20	$\frac{114}{12}$	-90 80	-310 -208	-86 356	90 22	-368 312	384 -24	$\frac{258}{462}$	$\frac{240}{240}$	302 812	$964 \\ 216$	-390 732	-722 -178	-898 700	-912 992	1446 -390	1438 146
850/2 850/3	$\frac{34}{170}$	2	-4	0	-24 4	-12	58	-17	-52	-84	-246	68	358	-78	412	-408	-750	-420	-190	-596		-1010	164	-588	-486	718
850/4	170/1 $170/2$	-2	-7	0	10	24	-41	17	-103	6	-45	5	196	210	58	171	-750	645	197	46	-975	637	272	72	-609	847
855/1	95/1	0	Ö	5	-22	12	8	66	19	30	6	-64	-16	-54	182	-594	-396	564	-706	-628	984	14	-328	294		-1564
855/2	,	3	0	5	-34	18	56	66	19	-120	-66	236	236	228	20	240	330	-330	-430	308	948	1118		-1044	960	326
855/3	285/1	3	0	-5	32	12	-10	30	19	48	-150	224	254	54	-196	504	-78	-132	230	740	120	122	1184	-612		-1006
855/4	95/2	-3	0	5	-1	24	-31	-33	19	-27	-111	-94	-70	510	-34	192	75	-45	-28	371	-384		-1234	-366	1578	-538
855/5 855/6	95/3 $855/2$	-3 -3	0	-5 -5	11 -34	36 -18	65 56	87 -66	19 19	129 120	-231 66	110 236	-142 236	330 -228	$\frac{74}{20}$	336 -240	-501 -330	-633 330	-88 -430	119 308	204 -948	407 1118	1262 -52	-270 1044	30 -960	$\frac{1406}{326}$
855/6 855/7	855/2 95/4	-3 -5	0	-5 -5	-34	-18 12	-42	-00 -114	19	-160	-214	-144	236 94	-228 6	-308	-184	-330 274	-276	-430 -826	508 52	-948 344	-166	-688		-960 -1578	786
858/1	30/4	-2	3	13	27	-11	13	-24	54	73	57	40	254	25	227	-412	234	-611	-305	-697	322	29	274	226	168	-514
861/1		0	-3	-17	7	-22	-45	48	88	169	-55	48	-371	-41	112	273	21	790	-428	-365	-192	382	199		-1436	-581
861/2		3	3	8	7	-47	-36	-54	-77	-145	-2	105	238	41	223	-279	60	-511	349	-50	228	184	13	-68	-274	-1871

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
864/1		0	0	19	13	-65	-56	108	58	66	118	-145	190	430	530	74	-295	-628	360	146	-388	753	1136	-153	-850	391
864/2	864/1	0	0	19	-13	65	-56	108	-58	-66	118	145	190	430	-530	-74	-295	628	360	-146	388		-1136	153	-850	391
864/3	864/1	0	0	-19	13	65	-56	-108	58	-66	-118	-145	190	-430	530	-74	295	628	360	146	388	753	1136	153	850	391
864/4	864/1	0	0	-19	-13	-65	-56	-108	-58	66	-118	145	190	-430	-530	74	295	-628	360	-146	-388		-1136	-153	850	391
867/1	51/2	1	3	10	8	-12	-26	0	-148	-152	66	32	266	6	-92	-288	-546	420	-350	940	-424	-378	-288		-1558	-530
867/2	51/1	-1	3	-16	-34	48	58	0	20	-58	0	218	-184	138	148	-516	-162	-180	-152	-956	538	462	-390	1268	-770	-494
867/3	51/3	-1	-3	20	2	48 9	-14 2	0	92	122	$\frac{36}{225}$	182	-76	-294	-428	-12 282	-234	-540	820	700	-794	1038	-858	1052	1102	-710
867/4 867/5	867/4	-3 -3	3 -3	-9 9	4 -4	-9	2	0	-40 -40	-174 174	-225	103 -103	160 -160	-78 78	$\frac{452}{452}$	282	555 555	-93 -93	-638 638	-766 -766	624 -624	-929 929		-1140 -1140	576 576	349 -349
867/6	807/4	-3 4	-3 3	-2	-31	-9 72	-47	0	-61	-62	-132	-103 47	125	-288	-59	-264	-600	-408	937	403	-34		-1248	22	674	1315
867/7	867/6	4	-3	2	31	-72	-47	0	-61	62	132	-47	-125	288	-59	-264	-600	-408	-937	403	34	642	1248	22		-1315
870/1	001/0	2	3	5	-19	7	-73	-49	-160	12	-29	-168	-104	282	-198	381	32	240	-138	131	-58	-508	-280	-908		-1744
870/2		2	3	5	-24	-68	52	-54	10	-158	-29	-88	266	-388	-128	-504	162	180	-868	-474	-288	162	560		1100	1286
870/3		2	3	-5	7	-37	-75	29	-14	-192	29	-256	216	-22	-268	183	-166	-222	456	-31	-504	600	1230	-150		-610
870/4		2	3	-5	-14	26	-12	-118	-56	-108	29	-102	-134	-176	460	8	478	-628	-524	-556	784	-1038	-1234	18	-624	1686
870/5		2	3	-5	26	57	-58	-24	50	57	-29	92	-49	357	137	-354	-483	-600	932	-1054	942	-163	380	327	1530	-529
870/6		2	-3	5	2	6	68	-54	68	-108	-29	110	146	-300	260	360	450	-168	860	-100	576	-970	866	978	-180	674
870/7		-2	3	-5	15	35	49	117	-50	-16	29	-304	104	322	-368	75	318	-306	524	201	180	-456	314		1459	-574
870/8		-2	-3	-5	30	35	-38	-84	-146	137	29	-256	-67	463	19	-30	669	156	-796	-870	-990	-225	296	-761	-458	557
876/1		0	-3	4	-2	-20	-2	128	-76	-144	96	250	6	294	-106	-488	12	-236	-38	744	-520	-73	-120			-1186
880/1 880/2	$\frac{440/3}{110/7}$	0	0 -1	5 5	-16 -23	11 11	-70 50	-10 75	12 -17	$\frac{84}{174}$	30 -153	72 -35	310 -277	18 -258	$\frac{388}{220}$	516 -210	-298 -273	-204 -438	-210 -475	432 -992	$\frac{440}{927}$	46 -934	616 -974	-740 90	-6 1377	490 -64
880/3	55/1	0	3	-5	-23 9	-11	2	21	-17 85	-22	-165	-33 83	-211	-478	220 8	-126	-683	290	257	-776	313	902	-830	-842		-1784
880/4	440/2	0	4	5	-8	-11	-58	114	4	152	-138	-208	-226	-294	-276	240	-370	716	-650	-124	-232	-454	144			-1438
880/5	$\frac{110/2}{110/4}$	0	4	-5	22	11	-20	-20	8	204	122	-40	278	302	330	-60	-418	-188	-670	568	-128	676		1130	822	-434
880/6	110/2	0	-4	5	-20	-11	26	-42	-116	-96	270	-32	-106	-462	40	504	-570	-12	590	388	240	302	-8	48	282	-646
880/7	110/1	0	-4	-5	30	-11	16	-112	64	-36	10	48	-146	278	330	-476	150	-732	-30	848		-1128	-788	698	-458	134
880/8	440/1	0	5	5	-1	-11	18	-113	-55	-190	-69	255	51	-314	484	-470	-545	102	129	664	1029	-758	-634	654	-511	1736
880/9	220/3	0	5	5	-11	11	-22	9	-89	-138	201	-77	119	-102	-260	-294	51	-270	-733	-728	849	830	214	-138	633	-892
880/10	220/1	0	-5	-5	19	11	-62	19	131	-138	-79	-217	-91	158	-120	546	-439	-290	-373	-728	709	850	1194	-58	753	1228
880/11	440/4	0	-6	5	32	-11	-48	-36	44	-58	-278	112	194	-314	-396	410	170	-404	250	26	468	-164		-1348	534	-1498
880/12	110/3	0	7	5	35	-11	26	101	-127	58	-27	177	191	66	-444	-2	-669	-386	-521	-96	427	1006	-910	818	601	-228
880/13 880/14	110/5 110/6	0	-7 8	-5 -5	-11 -26	-11 -11	2 92	-9 -84	85 -80	138 -72	45 -30	-227 208	-19 86	-138 -378	88 -542	534 -216	297 -18	450 -420	287 -718	$\frac{304}{124}$	-777 -912	962 -268	-290 940	-1422 498	-1455 150	$\frac{116}{446}$
880/15	110/8	0	-8	-5 5	12	11	-34	-86	-80 4	-148	134	280	430	-318	136	28	-658	-420 -4	-718	-96	-816		-1296	608	810	706
880/16	220/2	0	-8	5	-24	11	-22	22	28	44	110	40	-362	210	-260	460	662	68	606	312		-1042	552	-268		-1334
882/1	6/1	2	ő	6	0	-12	-38	-126	-20	-168	-30	88	254	42	-52	-96	-198	-660	538	884	-792	-218	-520	-492		-1154
882/2	294/3	2	0	6	0	30	53	84	-97	-84	180	179	-145	-126	-325	366	768	264	818	-523	342	-43	-1171	810	600	386
882/3	126/2	2	0	-6	0	30	-2	-66	52	114	72	196	-286	378	164	228	-348	348	106	596	630	1042	-88	1440	-1374	34
882/4	294/3	2	0	-6	0	30	-53	-84	97	-84	180	-179	-145	126	-325	-366	768	-264	-818	-523	342		-1171	-810	-600	-386
882/5	98/1	2	0	7	0	-35	-66	59	-137	7	-106	-75	11	-498	260	-171	417	-17	-51	439	784	-295	-495	932	-873	290
882/6	98/1	2	0	-7	0	-35	66	-59	137	7	-106	75	11	498	260	171	417	17	51	439	784	295	-495	-932	873	-290
882/7	294/5	2	0	8	0	-40	-4 4	-84	-148	-84	-58	136	-222	420	-164	488	-478	548	-692	-908	524	-440	1216	-684	604	832
882/8 882/9	294/5	2 2	0	-8 -14	0	-40 28	-18	84 74	148	-84 112	-58 -190	-136 -72	-222 -346	-420 162	-164 -412	-488 24	-478 -318	-548 -200	692 198	-908 -716	524 -392	440 -538	1216	684 -1072	-604 810	-832 -1354
882/9 882/10	$\frac{14/1}{294/4}$	2	0	-14 15	0	28 9	-18	84	-80 104	84	-190	185	-346 44	168	326	138	-639	-159	722	-116		-538 218	-583	-1072 597	810 1038	-1354
882/11	294/4	2	0	-15	0	9	-88	-84	-104	84	-51	-185	44	-168	326	-138	-639	159	-722	-166		-218	-583		-1038	169
882/12	$\frac{234}{4}$ $126/1$	2	0	22	0	-26	54	74	-116	58	-208	252	50	126	164	-444	-12	124	162	-860	238	146	-984	656	-954	-526
882/13	42/2	-2	Ö	2	Ö	8	42	-2	124	-76	-254	72	398	462	212	-264	162	-772	-30	-764	236	-418	552	1036	30	1190
882/14	126/2	-2	ŏ	6	ŏ	-30	-2	66	52	-114	-72	196	-286	-378	164	-228	348	-348	106	596	-630	1042		-1440	1374	34
882/15	98/4	-2	0	9	0	57	-70	-51	5	-69	-114	23	-253	42	-124	-201	393	-219	-709	419	96	-313	461	588	1017	-1834
882/16	98/4	-2	0	-9	0	57	70	51	-5	-69	-114	-23	-253	-42	-124	201	393	219	709	419	96	313	461		-1017	1834
882/17	14/2	-2	0	-12	0	-48	-56	-114	-2	120	54	-236	146	126	-376	-12	-174	138	-380	-484	-576	1150	776	378	-390	1330
882/18	42/1	-2	0	18	0	72	34	6	-92	180	114	-56	-34	6	164	168	-654	-492	250	-124		-1010	56	228	390	70
882/19	126/1	-2	0 2	-22	0	26	54	-74	-116	-58	208	252	50	-126	164	444	12	-124	162	-860	-238	146	-984	-656	954	-526
884/1 884/2		0	$\frac{2}{2}$	-10 12	$\frac{26}{4}$	20 -2	-13 -13	-17 -17	-52 -140	-8 36	152 -288	-14 -36	-34 208	-280 -38	-132 -88	352 -440	$\frac{106}{282}$	-372 376	$\frac{288}{244}$	-676 -368	-894 -168	44 198	-964 1060	-516 -120		-1284 -1878
884/2 885/1		-3	3	-5	-27	-2 -71	-13 -65	-63	-50	-40	-288 178	-306	-201	-303	-88 493	-228	-312	376 59	134	-308	-168 47	-210	-567	-120 19	-126	-1878
891/1		-3 1	0	-3 7	22	-11	-03 -77	-03 91	126	-16	-135	-306 70	69	-266	552	476	-512	266	-189	482	624	-791	-316	1302	1449	1358
891/1	891/1	-1	0	-7	22	11	-77	-91	126	16	135	70	69	266	552	-476	510	-266	-189	482	-624	-791		-1302		1358
891/3	/-	4	ő	19	-26	-11	-56	-104	-96	-40	-18	49	75	-296	372	149	417	17	90	1073	285	-962	596		-1230	-331
891/4	891/3	-4	0	-19	-26	11	-56	104	-96	40	18	49	75	296	372	-149	-417	-17	90	1073	-285	-962	596	-498		-331

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
892/1		0	-7	-2	-14	-45	-72	1	78	-189	-259	-106	-271	-189	48	326	359	-171	-618	-389		-1169	232	78	-177	1524
897/1		1	3	6	-8	12	13	-126	116	23	-154	-32	22	-70	12	-48	-602	212	-706	-124	120	-198	-1200	852	-806	546
900/1	180/1	0	0	0	-2	30	4	-90	-28	-120	210	-4	-200	240	136	120	30	-450	-166		-1020	250		1140		-1538
900/2	180/1	0	0	0	-2	-30	4	90	-28	120	-210	-4	-200	-240	136	-120	-30	450	-166	-908	1020	250		-1140		-1538
900/3	300/4	0	0	0	7	54	55	18	-25	-18	54	-271	-314	360	163	522	-36	-126	47	343	1080	1054		1422		439
900/4	300/4	0	0	0	-7	54 -36	-55 10	-18	-25 -100	18 72	$\frac{54}{234}$	-271	$\frac{314}{226}$	360 -90	-163 -452	-522 432	36	-126 684	$\frac{47}{422}$	-343 -332	1080 360	-1054 -26		-1422 -1188		-439
900/5 900/6	$\frac{12/1}{300/1}$	0	0	0	-8 13	-36 -6	-5	18 -78	-100	138	-66	-16 299	$\frac{226}{214}$	-360	-452 -203	432 78	$\frac{414}{636}$	-786	$\frac{422}{467}$	-332 217	360	286	$\frac{512}{272}$	498	630 0	$1054 \\ 511$
900/7	300/1	0	0	0	-13	-6	-5 5	-18 78	65	-138	-66	299	-214	-360	203	-78	-636	-786	467	-217	360	-286	272	-498	0	-511
900/8	20/1	0	0	0	16	60	-86	18	44	48	186	176	-254	-186	100	168	-498	252	-58	1036	-168	-506	272	948	1014	766
900/9	20/1	0	0	0	17	0	-19	0	107	0	0	-19	110	0	449	0	0	0	-901	-127	0	1190	884	0	0	1853
900/10	900/9	0	0	0	-17	0	19	0	107	0	0	-19	-110	0	-449	0	0	0	-901	127	0	-1190	884	0	0	-1853
900/11	300/2	0	0	0	22	14	-30	-62	-120	-188	-96	184	406	-130	148	-448	414	-266	-838	248	-1020	484	-48	-548	650	-1816
900/12	300/2	0	0	0	-22	14	30	62	-120	188	-96	184	-406	-130	-148	448	-414	-266	-838	-248	-1020	-484	-48	548	650	1816
900/13	100/1	0	0	0	26	-45	44	-117	-91	18	-144	26	-214	459	-460	468	-558	72	-118	251	-108	299	-898	-927	-351	386
900/14	100/1	0	0	0	-26	-45	-44	117	-91	-18	-144	26	214	459	460	-468	558	72	-118	-251	-108	-299	-898	927	-351	-386
900/15	60/1	0	0	0	28	24	70	102	20	-72	-306	-136	214	150	292	-72	-414	744	-418	-188	-480	-434	1352	-612	30	286
900/16	60/2	0	0	0	-32	-36	10	-78	140	-192	-6 0	-16	34	390	52	408	-114	-516 0	-58	892	120	646	-1168	-732 0	1590	-194
900/17 900/18	900/17	0	0	0	37 -37	0	-89 89	0	-163 -163	0	0	-289 -289	-110 110	0	-71 71	0	0	0	719 719	-1007 1007	0	-1190 1190	884 884	0	0	523 -523
902/1	900/17	2	-4	5	21	11	74	-9	7	33	-45	-209	281	-41	-58	-556	372	735	840	396	-688	-366	-880	1232	980	-426
902/2		-2	8	21	-31	11	78	-11	-85	63	145	-83	-151	41	278	524	228	625	-468	44	-588	-62	-480	628		-1826
903/1		1	-3	11	-7	14	-23	39	-29	33	26	75	-279	373	43	-138	33	-45	-662	-887	378	-966	-292		-1084	-1692
906/1		2	3	-15	10	-45	91	-76	-152	-33	-191	39	176	-243	162	384	-330	-440	110	-621	-109	-362	-392	-488	-707	-1386
909/1	303/1	3	0	8	-5	22	82	-3	-17	-32	275	-114	322	-16	169	160	667	706	-785	812	1042	-814	558	1472	-592	593
910/1		2	-2	5	-7	-36	-13	-44	58	146	254	292	230	0	-264	-264	580	54	-250	20	-166	558	-176	-196	520	1218
910/2		2	-2	-5	7	12	13	120	-142	-174	-90	20	326	-252	344	-336	-636	-906	-646	-700	522		-1384	1296	-12	1154
910/3 910/4		2 2	5 -8	5 5	-7 7	-1 -30	-13 -13	138 44	30 -44	139 -124	-110 150	-23 -86	$\frac{377}{270}$	$\frac{259}{176}$	422 -510	$\frac{499}{552}$	-92 -716	-128 76	-495 -410	-267 -736	-768 -988	-219 390	727 240	-490	-1258 -1200 -	539
910/4		-2	-o 8	-5	-7	-30 14	13	-112	-32	-96	-162	178	-6	208	-74	-504	-300	-584	-18	-16	1044		-1152	1092		-1738
912/1	228/1	0	3	4	12	-40	-40	-66	19	98	-130	-262	-296	-442	164	542	334	-60	614	-10	-400		-1154	636	-630	1006
912/2	228/2	Ö	3	-7	-21	37	26	-33	19	76	-218	266	-32	64	-133	-305	-766	72	-805	-264	-92		-1088	-420	426	-314
912/3	114/4	0	3	-11	15	29	-82	27	19	-100	-118	-70	232	8	287	-385	538	300	-901	-132	-472	-1131	52	-276	-1302	-1310
912/4	114/1	0	3	-19	-9	13	38	99	19	-68	130	-262	-296	-8	-73	271	-502	-540	587	-684	-992	-507	-980	492		-1046
912/5	228/3	0	-3	-3	17	19	-30	-97	-19	28	126	126	64	80	453	-107	-326	-56	47		-1060	-659	-592	-892	-310	-874
912/6	114/2	0	-3	-7	15	49	14	-33	19	148	-278	-94	160	400	-73	-173	170	12	419	-444	952	-27	556	276	1386	130
912/7 912/8	114/3	0	-3 -3	12 -12	-4 20	-8 4	-24 -76	62 22	-19 19	-194 -82	$\frac{102}{242}$	-18 126	-296 -180	134 -390	60 -308	$\frac{226}{522}$	-362 -70	316 -188	134 -706	240 -104	800 432	-578 718	-1078 -94	-940 1296	$170 \\ 846$	206 830
912/8	57/1	2	-3 0	-12 9	-28	36	-49	-17	-109	-62 57	135	-280	212	-165	-517	-168	-10	42	-484	173	159	-448	-106	-24	-198	-724
918/2	918/1	-2	0	-9	-28	-36	-49	17	-109	-57	-135	-280	212	165	-517	168	12	-42	-484	173	-159	-448	-106	24	198	-724
924/1	0.00/ -	0	-3	-2	-7	11	-34	42	-164	200	118	-88	30	-462	356	-184	-274	188	190	476	-392	1042	112		1034	114
928/1		0	7	-13	-16	45	61	-102	68	-194	-29	-149	400	280	-263	-509	-605	578	-718	260	-738	652	917	-678	-1008	-1764
928/2	928/1	0	-7	-13	16	-45	61	-102	-68	194	-29	149	400	280	263	509	-605	-578	-718	-260	738	652	-917	678	-1008	
930/1		2	3	-5	-18	0	28	10	-120	-152	-28	31	-204	-94	88	296	-714	-390	-134	-442		-1072	1160	-12	212	-226
930/2		2	3	-5	26	-48	-88	-54	-160	-48	-120	31	-304	162	272	96	582	30	-478	-334	1062	212	-640	972	120	86
930/3 931/1	19/1	-2 -3	-3 5	$\frac{5}{12}$	-1 0	63 -54	74 -11	72 93	23 -19	-15 183	-84 -249	31 -56	440 -250	-276 -240	83 -196	$\frac{270}{168}$	-171	834 -195	-802 358	14 -961	-333 -246	-715 -353	-979 -34	816 -234	-441 168	-430 -758
931/1	133/1	4	-8	-6	0	-68	-11	-14	19	188	70	-252	-186	-192	488	216	$\frac{435}{178}$	500	298	494	-618	842	10	-234	-600	976
933/1	133/1	3	3	3	5	-22	-74	126	-101	93	-34	-142	-441	353	-215	-424	-510	354	221	-630	783	938	903	-611		-1180
935/1		-3	1	5	-4	11	11	17	35	-132	111	35	164	120	-358	129	-465	57	101	776	-117	263	1184		-1641	-901
936/1	104/2	0	0	7	-21	-6	13	115	-46	-144	162	180	13	-192	-33	-383	-288	-442	-680	-722	207	274	-936	1204	966	-138
936/2	104/1	0	0	-19	-3	2	-13	-77	-58	-76	6	-292	207	-240	-317	375	692	-214	-488	782	1057	1174	892	-704	-6	830
938/1		2	1	9	7	-24	-61	-48	-16	-57	-123	-169	-43	219	20	-582	54	450	722	67	1155	290		-1326	1224	290
938/2		2	-5	-9	7	-6	49	6	6	19	43	-101	-137	355	158	-216	-482	-536	-890	67	-477		-1320	-258	1150	-362
940/1	110 /0	0	5 1	5	-5 27	-1 8	-43 42	-130 2	131 77	160 -98	-274 -295	-135 40	-244 278	-324 179	$\frac{436}{132}$	$\frac{47}{202}$	-216 -345	-450 59	$\frac{397}{184}$	$\frac{204}{356}$	$\frac{548}{144}$	-523 814	-1194 181	-635 1250	94 -600	12 -790
944/1 944/2	$\frac{118/2}{236/1}$	0	-2	-13 2	3	59	-33	$\frac{2}{47}$	-40	-98 40	-295 -4	$\frac{40}{124}$	-157	221	-291	526	132	59 59	82	524	144	538	-947	575	-600 546	-790
944/3	118/1	0	-5	-5	33	4	-30	-14	-97	134	1	28	290	-5	-192	326	-537	-59	472	-856	-168	-686	919	-362	-312	-514
944/4	118/3	ő	7	5	15	50	-66	14	11	172	287	-26	128	167	78	-38	-147	59	76	-514	1140	-848	-359	362	1212	836
945/1	, -	4	0	-5	7	51	-33	26	79	194	-248	-80	232	351	529	53	529	-326	160	-515	600	697		-1381	1551	-810
945/2	945/1	-4	0	5	7	-51	-33	-26	79	-194	248	-80	232	-351	529	-53	-529	326	160	-515	-600	697			-1551	-810
945/3		5	0	5	7	66	-87	91	-92	157	221	91	16	-18	-263	118	-223	-889	250	-83	-195	-554	176	1444	69	270

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
945/4	945/3	-5	0	-5	7	-66	-87	-91	-92	-157	-221	91	16	18	-263	-118	223	889	250	-83	195	-554	176	-1444	-69	270
946/1	0 20, 0	2	-5	8	ò	-11	34	-54	-94	126	113	-330	-394	280	-43	610	-465	116	-23	-344	488	-903	-101	-611	-764	-727
946/2		-2	-2	10	-27	11	-2	54	59	153	193	-177	-214	-190	-43	209	339	-161	13	-695	-848	-606	-614	1052	1070	-1627
950/1	190/2	2	2	0	-8	44	0	74	19	-84	266	136	-424	470	236	240	-36	736	650	830	-216		-1220	688	102	1280
950/2	38/1	2	2	0	31	57	52	-69	19	72	-150	32	226	-258	67	-579	432	-330	-13	856	642	487	-700	12		-1424
950/3	190/1	2	-2	0	12	-20	4	34	-19	-40	-150	-200	156	-218	-248	180	-72	-48	-134	-334	-520	-438	980	156		-1124
950/4 957/1	190/3	-2 1	4	0 -17	20 -29	-44 -11	-42 -32	86 -89	19 -87	164 -106	-162 29	-312 -326	-226 147	34 -413	432 -33	-580 -1	-506 -162	$\frac{364}{581}$	518 -378	-924 410	320 1080	$\frac{542}{370}$	-1208 -610	1120 -1020	-1022 882	-1166 -286
960/1	30/2	0	3	-17	-29	-48	-32	-114	140	-72	-210	-272	334	-198	-268	-216	78	240	-302	596	768	-478	640	-348		-1534
960/2	$\frac{30/2}{120/1}$	0	3	5	4	-72	6	38	-52	152	78	120	150	362	484	280	670	-696	-222	4	96	178	-632	612	994	1634
960/3	480/2	0	3	5	8	4	6	-2	-16	60	142	176	214	-278	-68	-116	350	684	394	108	96	-398	-136	436	-750	82
960/4	480/1	0	3	5	-12	-20	58	-70	-92	-112	-66	108	58	66	-388	408	-474	-540	-14	-276	96	-790	-308	-1036	1210	1426
960/5	15/1	0	3	5	20	24	-74	54	124	-120	78	200	70	330	-92	-24	-450	-24	322	196	-288	-430	-520	-156	1026	-286
960/6	120/4	0	3	5	20	56	86	-106	-4	136	206	-152	-282	-246	-412	40	126	-56	2	388	-672	1170	408	-668	66	-926
960/7	120/6	0	3	5	-20	16	-58	38	4	80	-82	8	-426	-246	-524	464	702	-592	-574	-172	-768	-558	-408	164	-510	514
960/8	60/1	0	3	5	-28	24	70	102	-20	-72	-306	-136	214	-150	292	-72	414	744	418	-188	480	434	1352	612	-30	-286
960/9 960/10	$\frac{120}{5}$ $\frac{480}{4}$	0	3	-5 -5	0 -4	-4 -40	-54 90	114 -70	-44 -40	96 108	-134 -166	-272 -40	98 130	-6 -310	-12 268	-200 -556	-654 370	-36 -240	442 130	188 -876	-632 -840	-390 250	688 -880	-1188 188		-1726 -1550
960/11	$\frac{480}{4}$	0	3	-5	-8	20	-22	-14	76	-56	154	-160	162	-390	388	544	210	-380	794	-148	840	858	-144	316	1098	994
960/12	480/5	0	3	-5	12	-24	-38	-6	104	-100	-230	56	-190	202	-148	-124	-206	-128	-190	-204	440	1210		-1412	-214	1202
960/13	480/6	0	3	-5	16	-24	14	-18	-36	104	250	-28	54	354	-228	408	-262	64	-374	-300	1016	274	788	396	786	-1086
960/14	120/2	0	3	-5	-16	28	26	-62	68	-208	58	160	-270	282	-76	-280	210	-196	-742	-836	-504	-1062	768	1052	-726	-1406
960/15	15/2	0	3	-5	24	52	-22	-14	-20	168	-230	288	34	122	-188	-256	338	100	-742	-84	328	-38	240	1212	330	866
960/16	60/2	0	3	-5	32	-36	10	-78	-140	-192	-6	-16	34	-390	52	408	114	-516	58	892	-120		-1168		-1590	194
960/17	30/1	0	3	-5	-32	-60	34	42	-76	0	-6	232	-134	234	-412	360	-222	660	490	812	-120	746	-152	-804	-678	194
960/18 960/19	$\frac{480/3}{30/2}$	0	3 -3	-5 5	-32 -4	64 48	6 -2	38 -114	-116 -140	120 72	122 -210	-164 272	-146 334	-238 -198	-148 268	$\frac{184}{216}$	-470 78	-216 -240	-806 -302	-732 -596	-264 -768	-638 -478	-596 -640	-884 348	930 210	322 -1534
960/19	$\frac{30/2}{120/1}$	0	-3 -3	5 5	-4 -4	72	6	38	52	-152	78	-120	150	362	-484	-280	670	696	-222	-390	-708	178	632	-612	994	1634
960/21	480/2	0	-3	5	-8	-4	6	-2	16	-60	142	-176	214	-278	68	116	350	-684	394	-108	-96	-398	136	-436	-750	82
960/22	480/1	ő	-3	5	12	20	58	-70	92	112	-66	-108	58	66	388	-408	-474	540	-14	276	-96	-790	308		1210	1426
960/23	120/6	0	-3	5	20	-16	-58	38	-4	-80	-82	-8	-426	-246	524	-464	702	592	-574	172	768	-558	408	-164	-510	514
960/24	15/1	0	-3	5	-20	-24	-74	54	-124	120	78	-200	70	330	92	24	-450	24	322	-196	288	-430	520		1026	-286
960/25	120/4	0	-3	5	-20	-56	86	-106	4	-136	206	152	-282	-246	412	-40	126	56	2	-388	672	1170	-408	668	66	-926
960/26	60/1	0	-3	5	28	-24	70	102	20	72	-306	136	214	-150	-292	72	414	-744	418	188	-480		-1352	-612	-30	-286
960/27 960/28	$\frac{120}{5}$ $\frac{480}{4}$	0	-3 -3	-5	0	$\frac{4}{40}$	-54 90	114 -70	44 40	-96	-134 -166	$\frac{272}{40}$	98	-6 -310	12 -268	200	-654 370	36	442 130	-188	632 840	-390 250	-688 880	1188 -188		-1726
960/28	$\frac{480}{4}$	0	-3 -3	-5 -5	4 8	-20	-22	-10	-76	-108 56	154	160	130 162	-310	-268 -388	556 -544	210	$\frac{240}{380}$	794	876 148	-840	250 858	144		1098	-1550 994
960/30	480/5	0	-3	-5	-12	24	-38	-6	-104	100	-230	-56	-190	202	148	124	-206	128	-190	204	-440	1210	816	1412	-214	1202
960/31	120/2	ő	-3	-5	16	-28	26	-62	-68	208	58	-160	-270	282	76	280	210	196	-742	836	504	-1062		-1052		-1406
960/32	480/6	0	-3	-5	-16	24	14	-18	36	-104	250	28	54	354	228	-408	-262	-64	-374	300	-1016	274	-788	-396	786	-1086
960/33	15/2	0	-3	-5	-24	-52	-22	-14	20	-168	-230	-288	34	122	188	256	338	-100	-742	84	-328	-38	-240	-1212	330	866
960/34	30/1	0	-3	-5	32	60	34	42	76	0	-6	-232	-134	234	412	-360	-222	-660	490	-812	120	746	152	804	-678	194
960/35	480/3	0	-3	-5	32	-64	6	38	116	-120	122	164	-146	-238	148	-184	-470	216	-806	732	264	-638	596	884	930	322
960/36	60/2	0	-3	-5 2	-32	36 0	10 0	-78 0	140	192	-6 0	16	34	-390	-52 0	-408	114	516 -740	58	-892	120	-646 0	1168	-732 0		194
961/1 962/1		1 -2	0 -5	12	16 -29	3	-13	138	156 40	-116	-86	170	37	-278 -243	-122	-616 159	409	-184	0 738	684 -44	1000 293	-539	-238	-923	$\frac{0}{446}$	-1906 1024
966/1		2	-3	-9	7	-12	11	96	-40	-23	-231	-94	47	-243	479	423	516	882	842	-844	654	-496	260	-156	-414	1343
966/2		-2	3	-6	7	48	38	114	56	-23	-162	-16	-46	-342	248	-24	426	-852	338	488	336		1184	-336	-78	746
968/1	88/2	0	-1	-7	6	0	40	78	-36	7	-8	183	227	36	-322	-184	-6	-99	-164	-695	-987	248	242	1494	-905	-1031
968/2	·	0	-2	13	10	0	-27	27	-38	150	285	-198	57	227	64	390	-267	280	-50	-546	772	-178	1058		-1185	-733
968/3	968/2	0	-2	13	-10	0	27	-27	38	150	-285	-198	57	-227	-64	390	-267	280	50	-546	772		-1058		-1185	-733
968/4	8/1	0	-4	-2	-24	0	-22	-50	-44	-56	-198	-160	-162	198	-52	528	-242	-668	-550	188	728	-154	656	-236	714	-478
968/5	88/1	0	7	9	-2	0	0	38	-44	175	264	159	-173	220	542	-264	682	421	-308	177	365	528	-686	-698		-1127
969/1 969/2		-4 5	-3 -3	19 2	-1 0	28 -48	-76 -90	-17 17	-19 -19	180 8	180 -146	-152 68	306 14	-170 14	$\frac{144}{356}$	-457 -408	$\frac{105}{222}$	$\frac{310}{564}$	840 34	-93 -340	83 -1020	-4 850	$\frac{210}{1260}$	1183 -172	333 98	-1429 -26
969/2		-5	-3 -3	-22	-8	-24	34	17	19	-112	-294	-164	-206	78	-548	576	-558	-84	278	-572	-1020	-822		-172	-658	386
970/1		2	-4	5	33	-37	5	-102	-100	-57	-222	-201	365	-252	502	-440	128	-570	-373	-761	524		-1091	572	457	97
972/1		0	0	ō	17	0	-70	0	56	0	0	-19	-433	0	71	0	0	0	719	-127	0	-919	884	0		-1330
972/2		0	0	0	20	0	-19	0	-163	0	0	-19	110	0	71	0	0	0	-901	1007	0		-1387	0	0	-523
972/3		0	0	0	20	0	89	O	107	O	0	-289	110	0	449	0	0	0	719	-127	0	-919	503	0	0	1853
972/4	~~ /:	0	0	0	-37	0	-70	0	56	0	0	-289	323	0	449	0	0	0	-901	1007	0	-271	884	0		
975/1	39/1	0	3	0	-2	-36	-13	78	74	96	18	-214	286	-384	-524	-300	-558	576	74	-38	-456	682	704	888	-1020	-110

975/3 975/3 975/3 975/3 975/3 975/3 975/3 975/3 975/3 975/3 975/4	level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
975/4 195/1 3 3 0 0 -2 24 13 24 -70 90 120 190 214 54 196 120 18 312 322 376 240 1136 808 1092 618 808 1072 618 808 1075/6 1075 1075 1075 1075 1075 1075 1075 1075					0														-519								-1370
975/5 3 - 3 0			-																								
975/6 195/6 39 - 3 0 16 - 36 - 13 30 68 120 - 186 8 226 - 342 76 592 738 78 76 164 - 596 1056 22 112 68 90 341 34 34 34 34 34 34 3		195/1																									
975/7 975/7 975/8 -3 3 0 0 4 34 13 -100 -22 -150 14 -292 354 -102 344 448 -238 190 -264 -764 1009 418 -1302 156 -930 -712 330 975/9 150/2 5 -3 0 -8 -66 13 -58 24 -36 -262 -24 24 46 -26 -26 24 -141 16 40 -82 -74 40 508 -384 -462 -816 92 1210 530 980/1 1240/1 0 -1 -5 0 -8 -66 13 -58 24 -36 -262 -46 -46 14 16 40 -82 -74 40 508 -384 -462 -816 92 1210 530 980/1 1240/1 0 -1 -5 0 -7 -23 -25 02 -86 -29 121 -10 -204 -178 -33 -40 -20 -370 80 470 -772 -330 47 82 1020 1438 980/3 980/1 0 -1 -5 0 -7 -23 -25 02 -86 -29 121 -10 -204 -178 -33 -40 -20 -370 -80 470 -772 -330 47 82 1020 1438 980/3 980/4 0 -2 -5 0 -27 -41 -6 -40 -81 -66 -188 -23 -51 -20 -20 -20 -370 -80 -470 -772 -330 -470 -20 -370 -80 -470 -270 -380 -470 -470 -470 -470 -470 -470 -470 -47		105/4																									
976/8 195/8 -4 - 3 0 - 18 0 13 - 46 -14 36 - 22 42 46 -26 224 50 20 10 70 138 -58 758 108 -378 1374 129 120 130 130 14																											
975/9 195/9 244/1 0 -2 5 -3 0 -8 56 13 58 24 -36 242 -36 242 -414 164 40 -82 744 494 508 384 -462 -816 92 1210 538 976 714 984 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986 986 714 986						_																					
980/1 244/1 0 - 2 5 7 6 -47 16 - 1/2 33 - 98 56 08 53 144 - 84 6 385 -61 - 793 -120 - 819 - 763 488 1116 - 1729 980/1 980/1 0 - 1 5 0 0 - 21 9 - 91 - 23 50 180 - 197 170 - 849 140 - 170 140					-																						
989//2 980/1 980/1 0 -1 5 0 -21 91 23 -50 180 -197 170 -33 455 -28 -80 -29 12 150 -294 178 -33 452 -120 -920 300 520 -370 -1013 636 -292 1381 980/3 980/4 0 -2 5 0 27 -41 -6 49 -81 66 -188 23 -51 -302 -327 -321 180 -964 -1140 808 638 -36 810 -155 980/5 980/5 980/5 980/6 0 -2 5 0 0 27 -41 10 47 -53 122 152 -29 150 52 21 33 290 370 -80 470 -712 330 457 -80 10 150 150 150 150 150 150 150 150 150			0	-2	5		61	-47	16	-112	33	-98	56	68	53	144	-84	6	335	-61	-793	-120	-819	-763	468	1116	-1726
980/3 980/4 0 -1 5 0 -21 9 123 -50 180 -197 -170 -80 470 270 -313 -299 370 -80 470 -712 330 457 -820 -1020 -1433 980/4 0 -2 5 5 0 -27 -411 -6 49 -81 66 -188 23 -51 -202 -327 -201 -24 160 -904 -110 886 383 -68 80 -150 198 -170 19			~	1		-					180		170	-80					-370		470		-330	457		1020	1433
980/4 0 2 5 0 0 27 -41 -6 49 -81 66 -188 23 -51 -202 -337 -202 -337 -202 -337 -202 -337 -205 -352 -20 580 -226 -86 -918 -705 -326 -360 -86 -918 -705 -326 -360 -86 -918 -705 -326 -360 -86 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -360 -918 -705 -326 -326 -326 -326 -326 -326 -326 -326			-																								
980/5 980/5 980/5 980/5 980/5 980/5 96 94 97 980/5 980		980/1	-			-																					
980/6 980/5 0 -2 -5 0 -69 11 -102 47 -51 222 152 221 -333 20 -555 261 360 824 776 -720 -580 -226 816 918 470 980/8 140/4 0 4 -5 0 60 88 -22 31 08 184 166 32 377 -01 -128 198 660 30 1312 436 598 -101 598 980/8 140/4 0 4 -5 0 -60 -80 -80 -108 184 166 32 370 -154 212 512 -98 860 390 60 840 630 1312 436 598 -101 198 980/9 1 140/7 0 5 -5 5 0 15 -17 -123 86 55 147 -123 74 444 -46 471 -180 -144 376 356 -48 818 89 789 -1140 186 980/10 1 140/2 0 5 -5 5 0 15 -17 -123 86 55 147 -123 74 444 -46 471 -180 -144 376 356 -48 818 89 789 -1140 186 980/13 140/5 0 -8 5 0 28 88 -24 61 88 -128 174 152 -200 -50 30 69 -570 27 602 876 -880 638 -900 -024 -908 -754 980/13 140/5 0 -9 -5 0 55 60 -113 126 -102 -81 176 224 184 -230 187 -488 -388 72 89 68 994 337 -188 884 451 984/1 184 184 184 184 184 184 184 184 184 18			~			-																					
980/7 980/4 00 - 2 - 5		980/5	-																								
980/8 140/4 0			~			-																					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0			0																					
980/11 140/6 0																											766
989/12 140/3 0 -8 5 0 28 8-82 46 8-128 174 152 -290 50 80 96 296 570 272 662 876 880 638 600 624 698 754 989/13 140/5 0 -9 -5 0 5 5 69 + 113 126 102 281 116 110 225 167 81 41 420 187 488 388 728 -96 8.994 337 148 834 834 348 348 348 348 348 349 348 348 349 348 348 348 349 348 348 348 349 348 348 349 348						-																					
989/13 140/5 0						-																					
984/1						-																					
987/1 -3 -3 -3 10 -7 86 44 -78 -152 -148 122 314 -406 480 -52 -47 -110 -144 426 -716 448 -926 524 -904 -642 1263 990/1 330/10 2 0 5 5 -6 11 -16 -96 -112 -180 102 -208 110 90 -10 180 618 36 -286 -928 -48 -520 -412 618 234 422 990/3 330/6 2 0 5 5 -6 -11 -40 -80 56 -44 -178 -16 -146 -414 158 44 -166 -44 402 744 -1056 1136 -468 -182 -678 -192 990/4 110/1 2 0 5 5 -30 -11 16 112 -64 -36 -10 -48 -162 -4278 -330 -476 -150 -732 -30 -884 240 -1128 -788 698 48 -899 990/6 330/6 2 0 5 -5 -16 11 -30 -80 -74 -98 22 -90 -168 362 -66 -294 286 -474 -728 892 -444 -842 -1082 -1196 764 -1024 -642 990/8 330/8 2 0 -5 -16 -11 -50 -70 -44 96 122 184 134 86 -12 264 140 -716 182 -436 104 -134 -648 628 102 418 990/9 110/2 2 0 -5 -5 -20 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 182 -436 104 -134 -648 628 102 418 990/9 1110/3 2 0 -5 -5 -35 -11 26 -61 -62 -84 48 162 128 86 -66 344 -312 -486 84 494 716 182 -436 104 -134 -648 628 102 418 990/11 110/3 2 0 -5 -5 -5 -5 -5 -5 -11 1 -26 -96 -28 48 162 128 86 -66 344 -312 -486 84 494 716 182 -436 104 -134 -648 628 102 418 990/11 110/3 2 0 -5 -5 -35 -11 26 -161 127 58 -70 -72 -72 -72 -72 -72 -72 -72 -72 -72 -72		140/5																									
990/2 330/5 2			-																								
990/2 330/5 2 0 5 -6 11 48 52 -76 132 -134 -192 30 334 334 572 10 220 -302 392 704 -184 16 1446 114 -6142 990/5 330/8 1 2 0 5 -30 -11 16 112 -64 -36 -10 -48 -146 -278 -330 -476 -150 -732 -30 -848 -240 -1128 788 698 458 134 990/5 2 0 -5 -8 11 80 -74 -98 22 -90 -168 636 -66 -94 286 474 -728 892 -444 -842 -1082 -1196 764 -1024 -642 990/6 330/8 2 0 -5 -16 11 -35 -70 -44 98 -122 184 134 86 -12 264 194 716 182 -436 104 -134 648 628 102 418 990/8 330/9 2 0 -5 -16 11 -50 -70 -44 96 122 184 134 86 -12 264 194 716 182 -436 104 -134 648 628 102 418 990/8 330/9 2 0 -5 -5 0.0 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1082 990/9 110/2 2 0 -5 -35 -11 26 -101 127 58 27 -177 191 -66 444 -2 669 386 -521 96 427 1006 910 818 -601 -228 990/11 330/3 -2 0 5 -5 -8 11 28 36 -64 12 126 -229 58 -54 66 -249 4286 444 842 1082 -196 -642 258 990/11 330/3 -2 0 5 -8 8 11 80 74 -98 -22 90 168 362 66 -294 -286 474 728 892 -444 842 1082 -196 -642 199 990/13 330/1 -2 0 5 -10 1 26 40 144 -56 -10 42 126 -280 886 -62 244 -366 108 146 848 -48 -628 -676 -342 570 -128 990/13 330/1 -2 0 5 -10 1 26 -10 127 58 27 -177 191 -66 444 -2 669 386 -521 96 427 1006 910 818 -601 -228 990/14 110/5 -2 0 5 5 10 1 1 44 -124 -55 -100 -42 120 -298 -54 66 -294 -286 474 728 892 -444 842 1082 -196 -642 4990/13 330/1 -2 0 5 5 10 1 44 -124 -55 -100 -42 120 -298 -54 66 -294 -286 474 728 892 -444 842 1082 -196 -642 490 -642 990/13 330/1 -2 0 5 5 10 1 1 44 -124 -55 -100 -42 120 -298 -54 -76 162 68 -734 -552 320 292 676 -642 490 -642 990/13 330/1 -2 0 5 5 10 1 1 44 -124 -55 -100 -42 120 -420 -420 -420 -420 -420 -420 -420 -4				-3	10	-7	8	2			-188	-98	248				47	-274			1000			-496	844		
990/3 330/6 2 0 5 -6 -11 -40 -80 56 -44 -178 -16 -146 -278 -330 -476 -150 -732 -330 -848 -244 -1056 1136 -468 -182 -678 -1082 -990/6 -20 0 -5 -36 -11 -18 -40 -80 -20 -18 -36 -40 -44 -278 -330 -476 -150 -732 -330 -848 -244 -842 -1082 -1196 -764 -1024 -642 -288 -990/6 -330/6 -2 0 -5 -16 -11 -150 -70 -44 -96 -122 -184 -134 -164 -528 -510 -780 -82 -2 -336 -574 -56 -104 -426 -128 -289 -298 -344 -442 -468 -428 -444 -484 -1082 -1196 -744 -1084 -128 -784 -1082 -194 -1084 -128 -128 -144 -128	990/1			0	5	2	-11	-16	-96	-112	-180		-208	110			180	618					-520	-412	618	234	422
990/4 110/1 2 0 5 -30 -11 16 112 -64 -36 -10 -48 -146 -278 -330 -476 -150 -732 -30 -848 -240 -1128 788 698 458 134 990/6 330/7 2 0 -5 -8 -11 80 -74 -98 22 -90 -146 -462 -294 286 -474 -728 892 -444 -484 -1082 -1196 764 -1024 -642 990/7 330/8 2 0 -5 -16 -11 -50 70 -44 -96 122 181 134 86 -12 264 194 716 182 -436 104 134 -648 628 104 134 990/8 330/9 2 0 -5 -20 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1089 990/9 110/2 2 0 -5 -35 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1089 990/1 110/3 2 0 -5 -35 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1089 990/1 110/3 2 0 -5 -35 -11 26 -101 127 58 27 -177 191 -66 442 -2 669 -386 -521 96 427 1006 910 818 -601 -228 990/1 330/3 2 0 5 -35 -11 28 6 142 116 -66 -270 82 -298 -444 -366 -108 146 848 -48 -628 -676 -342 570 -178 990/1 330/3 -2 0 5 -8 11 80 74 -98 -22 90 -142 1469 42 -44 -366 -108 146 848 -48 -628 -676 -342 570 -178 990/1 110/4 -2 0 5 -22 11 -28 36 -64 -12 126 -280 -298 -54 62 -294 -288 474 728 892 -444 842 -1082 -1196 -764 1024 -642 990/1 110/4 -2 0 5 -22 11 -12 9 -85 188 -45 227 -19 138 -85 534 -297 450 287 -304 -777 962 990 -1422 1455 116 990/1 110/4 -2 0 5 -22 11 -20 80 -8 204 -122 40 278 -302 -330 -60 418 -188 -670 -568 -128 676 -876 1130 -822 -434 110/9 990/18 110/4 -2 0 5 -34 -11 -88 -36 -100 -12 90 -208 86 438 362 -516 -102 420 -118 416 408 808 -160 18 90/18 110/8 -2 0 -5 -34 -11 -88 -36 -100 -12 90 -208 86 438 362 -516 -102 420 -118 416 408 808 -160 18 90/18 110/8 -2 0 -5 -34 -11 -88 -36 -100 -12 90 -208 86 438 362 -516 -102 420 -118 416 408 808 -160 18 90/18 110/8 -2 0 -5 -34 -11 -30 10 56 144 182 -24 -24 -24 -24 -24 -24 -24 -24 -24 -2																											-642
990/5																											
990/6 930/7 230/8 2 0 -5 -16 11 38 -18 44 -168 -54 8 -130 174 164 -528 -510 -780 -82 92 -336 -574 56 -1044 -426 1298 990/8 330/9 2 0 -5 -20 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1082 990/9 110/2 2 0 -5 20 -11 26 -6 -28 48 162 128 86 -66 344 -312 -486 84 494 716 432 206 440 -192 294 1082 990/10 110/3 2 0 -5 -35 -11 26 -101 127 58 27 -177 191 -66 444 -2 669 -386 -521 96 427 1006 910 818 -601 -228 990/11 330/3 -2 0 -5 -35 -11 26 -101 127 58 27 -177 191 -66 444 -2 669 -386 -521 96 427 1006 910 818 -601 -228 990/12 990/5 -2 0 5 -8 11 80 74 -98 -22 90 -168 362 66 -294 -286 474 728 892 -444 842 -1082 -1196 -764 1024 -642 990/13 330/1 -2 0 5 10 11 44 -124 -56 -100 -42 -120 86 -222 54 -76 162 68 -734 -552 320 292 676 -422 490 174 990/14 110/5 -2 0 5 5 10 11 44 -124 -56 -100 -42 -120 86 -222 54 -76 162 68 -734 -552 320 292 676 -422 490 174 990/16 110/6 -2 0 5 5 22 11 -20 20 -8 204 -122 40 278 -302 -330 -60 418 -188 -670 -568 -128 676 -876 1130 -822 -434 990/17 330/2 -2 0 5 5 34 -11 88 -36 -100 -12 90 -208 86 378 542 -216 18 -420 -718 -124 -912 -268 -940 498 -150 446 990/17 330/2 -2 0 5 -34 -11 88 -36 -100 -12 90 -208 86 378 542 -216 18 -420 -718 -124 -912 -268 -940 498 -150 446 990/18 110/8 -2 0 5 -22 11 -38 6 -4 -148 -134 -280 430 6 -136 -28 658 -4 -90 96 -816 -430 1296 608 -810 706 990/19 110/7 -2 0 -5 -23 11 50 -75 17 174 153 35 -277 258 220 -210 273 -438 -475 992 927 -934 974 90 -1377 -64 1008/1 1008/1 168/5 0 0 0 2 -7 12 -66 70 92 16 122 -66 80 290 378 -164 162 818 -86 60 -868 -96 -86 630 -104 28 8140 1008/1 168/5 0 0 0 2 -7 12 -66 70 92 16 122 -66 80 -290 378 -164 162 81 -88 64 106 -786 -865 -124 40 1008/1 168/5 0 0 0 -8 7 -30 2 66 52 114 -72 196 -86 378 -164 122 83 84 80 -106 -596 630 -1042 88 1440 1374 -34 1008/1 168/5 0 0 0 -6 -7 -30 2 66 52 114 -72 196 -286 378 -164 122 83 84 83 84 -106 -596 630 -1042 88 1440 1374 -34 1008/1 168/2 0 0 0 -6 -7 -30 2 66 52 114 -76 -24 -54 112 -106 -306 -378 -164 122 -24 100 -108 -24 1008/3 1008/1 168/2 0 0 0 -6 -7 -30 2 66 52 114 -76 -24 -5		110/1																									
990/78		330/7																									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$													-														418
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	990/8	330/9		0	-5	20	-11	26	-6	-28	48	162	128	86	-66	344	-312	-486	84	494	716	432	206	440	-192	294	1082
990/11 990/12 990/5 -2 0 5 2 11 -28 36 -64 -12 126 -280 -298 -54 62 444 -366 -108 146 848 -48 -628 -676 -342 570 -178 990/13 330/1 -2 0 5 10 11 44 -124 -56 -100 -42 -120 86 -222 54 -76 162 68 -734 -552 320 292 676 -422 490 174 990/14 110/5 -2 0 5 11 -11 2 9 -85 138 -45 227 -19 138 -88 534 -297 450 287 -304 -777 962 290 -1422 1455 116 990/15 110/4 -2 0 5 -22 11 -20 20 -8 204 -122 40 278 -302 -330 -60 418 -188 -670 -568 -128 676 -876 130 -822 443 990/16 110/6 -2 0 5 26 -11 92 84 80 -72 30 -208 86 378 542 -216 18 -420 -718 -124 -912 -268 -940 498 -150 446 990/18 110/8 -2 0 5 -34 -11 -88 -36 -100 -12 90 -208 86 438 362 -516 -102 420 -118 416 408 -808 -160 18 990/18 110/8 -2 0 -5 -12 11 -34 86 -4 -148 -134 -280 430 6 -136 28 658 -4 -90 96 -816 -430 1296 608 -810 706 990/19 110/7 -2 0 -5 23 11 50 -75 17 174 153 35 -277 258 -220 -10 273 -438 -475 992 927 -934 974 90 -1377 -64 990/20 330/4 -2 0 -5 -24 -11 -30 110 56 144 182 24 -234 26 -68 -224 146 116 -818 -4 -176 -826 532 -1008 -108 1008/2 168/1 0 0 2 -7 12 -66 70 92 16 122 -64 -306 -50 -20 -176 -526 540 -818 228 864 106 -736 -588 -141 -171 1008/3 42/2 0 0 -2 7 -8 -42 2 124 76 -254 72 398 -462 -212 -264 162 -772 30 764 -236 418 -138 -228 864 106 -736 -588 -146 -1214 1008/3 42/2 0 0 -4 7 -26 -2 36 -66 -40 -40 -40 -40 -40 -40 -40 -40 -40 -40																											-646
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-																							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			-																							-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											116
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				Õ					20			-122									-568	-128					-434
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	990/16			-			-11			80	-72				378				-420	-718	-124	-912	-268	-940	498		446
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																											
990/20 330/4 -2 0 -5 -24 -11 -30 110 56 144 182 24 -234 26 -68 -224 146 116 -818 -4 -176 -826 532 -1008 -1098 42 1007/1 -3 10 11 10 33 -8 75 -19 99 -6 157 -322 -110 -157 124 -53 463 -922 76 60 -784 -429 798 -411 -1713 1008/1 168/5 0 0 2 7 52 86 30 4 120 -246 -80 -290 374 -164 464 162 180 -666 628 296 -518 1184 220 774 -1086 1008/2 168/1 0 0 0 2 -7 12 -66 70 92 16 122 -64 -306 -50 -20 -176 -526 540 -818 228 864 106 -736 -588 -146 -1214 1008/3 42/2 0 0 0 -2 7 -8 -42 2 124 76 -254 72 398 -462 -212 -264 162 -772 30 764 -236 418 -552 1036 -30 -1190 1008/4 21/1 0 0 4 7 62 -62 -84 -100 -42 10 48 -246 248 -68 324 -258 120 622 -904 -678 -642 -740 468 -200 -1266 1008/5 168/3 0 0 -4 7 -26 2 36 76 -114 -6 256 -86 -160 220 308 -258 264 606 520 -286 -530 44 1012 -768 222 1008/6 1008/6 126/2 0 0 6 6 -7 -30 2 666 52 -114 72 196 -286 -378 -164 228 -348 348 -106 -596 -630 -1042 88 1440 1374 -34 1008/7 28/2 0 0 0 -6 -7 30 2 -66 52 114 -72 196 -286 378 -164 228 348 -348 -106 -596 -630 -1042 88 1440 1374 -34 1008/9 84/1 0 0 0 -6 -7 36 62 -114 76 -24 -54 112 110 246 172 192 -558 540 110 -140 -840 -550 208 516 1398 1586 1008/9 84/1 0 0 0 -6 -7 36 62 -114 76 -24 -54 112 -178 -378 172 -192 402 396 254 1012 840 890 -80 -108 1638 1010 1008/10 28/1 40 0 0 -8 7 56 -28 90 -74 -96 222 100 58 -422 -512 148 642 -318 720 412 448 994 296 386 6 -138 1008/11 56/1 0 0 -8 8 7 56 -28 90 -74 -96 222 100 58 -422 -512 148 642 -318 720 412 448 994 296 386 6 -138 1008/11 56/1 0 0 0 -8 7 56 -28 90 -74 -96 222 100 58 -422 -512 148 642 -318 720 412 448 994 296 386 6 -138 1008/11 56/1 0 0 12 -7 48 56 114 -2 -120 54 -236 146 -126 376 -12 -174 138 380 -12 -552 -614 -880 -108 86 1426 1008/14 14/2 0 0 12 -7 48 56 114 -2 -120 54 -236 146 -126 376 -12 -174 138 380 484 576 -1150 -776 378 390 -1330 1008/14 14/2 0 0 12 -7 48 56 114 -2 -120 54 -236 146 -126 376 -12 -174 138 380 484 576 -1150 -776 378 390 -1330 1008/14 14/2 0 0 12 -7 48 56 148 56 144 -22 -120 54 -236 146 -126 376 -12 -174 138 380 484 576 -1150 -776 378 390 -1330 1008/14 14/2 0 0 12 -7 48 56 148 150 1008				-						_																	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		330/4																			_						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		168/5																									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	2	-7			70	92	16			-306	-50	-20	-176			-818		864		-736			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-																							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								1010
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-												-												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-	-																						-	-138
1008/14 14/2 0 0 12 -7 48 56 114 -2 -120 54 -236 146 -126 376 -12 -174 138 380 484 576 -1150 -776 378 390 -1330			-																								
			~	-																							
1000/10 11/1 0 0 11 1 20 10 14 100 112 100 12 102 412 24 1010 200 100 00 1240 1012 1005			-																								
1008/16 $84/2$ 0 0 -14 7 4 54 14 -92 -152 106 144 158 390 508 -528 -606 -364 678 -844 -8 -422 -384 -548 -1194 -1502			~																								

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1008/17	56/2	0	0	16	7	24	-68	-54	46	176	174	116	74	10	480	-572	162	-86	-904	-660	1024	770	904	682	102	-218
1008/18		ő	ő	16	-7	-18	-54	128	-52	-202	-302	200	-150	-172	-164	-460	190	96	622	-744	-54	742	92	-228	116	-554
1008/19	7/1	0	0	-16	7	-8	28	-54	110	48	110	-12	-246	-182	-128	324	162	810	-488	-244	-768	-702	-440	-1302	-730	294
1008/20	21/2	0	0	18	-7	-36	-34	-42	124	0	-102	160	398	318	268	240	498	-132	398	-92	-720	-502	1024	-204	-354	-286
1008/21	42/1	0	0	-18	-7	-72	-34	-6	-92	-180	114	-56	-34	-6	-164	168	-654	-492	-250	124	36	1010	-56	228	-390	-70
1008/22	126/1	0	0	22	7	-26	-54	74	-116	58	208	252	50	126	-164	444	12	-124	-162	860	238	-146	984	-656	-954	526
1008/23	126/1	0 2	0	-22	7 8	26	-54	-74	-116	-58	-208	252	50	-126	-164	-444	-12	124	-162	860	-238	-146	984	656	954	526
1014/1 1014/2	78/3 78/2	2	3	-10 16	8	-40 38	0	130 -78	20 72	0 -52	-18 242	184 -76	74 -342	362 336	76 76	452 -94	382 -450	-464 -854	358 -110	700 908	748 -838	-1058 970	-976 -352	1008 -474	$\frac{386}{1452}$	614 562
1014/2	6/1	2	-3	-6	16	-12	0	-126	-20	168	30	88	-254	-42	-52	96	198	660	-538	-884	-792	-218	-520	492		-1154
1014/4	0/1	2	-3	7	16	-64	0	-9	-72	-92	-113	-224	279	387	-260	-112	471	-380	-317	-260		-1141		1428	282	-478
1014/5		2	-3	-8	14	30	0	46	-66	112	-170	-110	4	380	92	114	558	-74	902	646	-930	832	360	178	-204	1416
1014/6	78/1	2	-3	16	-28	-34	0	138	-108	-52	-190	176	-342	-240	-140	-454	198	154	34	656	-550	-614	8	-762	444	-1022
1014/7	78/6	-2	3	-4	-4	-2	0	-6	36	-20	-14	152	258	-84	-188	-254	366	-550	-14	-448	-926			-186	336	-614
1014/8	78/5	-2	-3	-6	-20	-24	0	-30	16	-72	-282	-164	-110	126	164	204	-738	-120	614	-848	-132		-1096	-552	-210	1726
1014/9	1014/4	-2	-3	-7	-16	64	0	-9	72	-92	-113	224	-279	-387	-260	112	471	380	-317	260	64	1141		-1428	-282	478
1014/10 1014/11	1014/5 78/4	-2 -2	-3 -3	8 20	-14 32	-30 -50	0	46 -30	$\frac{66}{120}$	112 -20	-170 82	$\frac{110}{44}$	-4 306	-380 -108	92 -356	-114 178	$\frac{558}{198}$	74 -94	902 -62	-646 140	930 778	-832 62	-1096	-178 462	-1224	-1416 -614
1015/1	10/4	0	-4	-5	-7	-18	-10	52	70	48	29	2	-192	-18	312	-584	642	-196	-386	356	964	1176		-1268	446	172
1017/1	339/1	4	ō	-17	-15	24	-7	123	-108	69	30	233	2	374	90	-288	446	585	-39	308	-315	-280		1378	458	-818
1020/1	,	0	3	5	-8	20	-42	17	124	-40	6	-176	366	250	-76	512	766	-204	-490	-292	472	634	736	-116	-54	-926
1020/2		0	3	-5	20	-20	-90	17	84	36	-102	-228	-206	-270	-132	232	-378	564	-854	844	468	-126	-420	-396	378	-398
1023/1		1	-3	-14	34	-11	16	-110	6	-112	-174	-31	-210	70	432	-298	-288	50	240	32	198	688	128	1092	-384	-898
1025/1	205/1	1	-2 -2	0	-8	-54	-68	10	-150	64	-56	-336	-66	-41	-188	536	-172	-24	-262	-442	652	54		-1236		-1294
1025/2 1027/1	205/2	-1 3	-2 -8	5	-26 -3	-18 -7	-2 13	$\frac{134}{114}$	-30 32	188 47	-190 153	192 -68	174 -240	41 -247	-332 173	-566 -88	718 219	$\frac{180}{264}$	-418 -382	-286 -123	62	378 -1108	1150 -79	-432	-1030	254
1032/1		0	3	11	-5 -5	-61	35	-62	27	-168	111	-284	368	20	43	-537	-452	84	-240	-123	142	854	16	1251		-423
1032/2		ő	-3	-13	29	21	-87	-12	-13	92	-41	310	-334	264	-43	447	-284	220	16	278	-156		-1046	-63	-826	
1035/1	345/3	0	0	5	-16	48	-46	30	-46	23	-30	116	68	-54	380	-420	642	-186	-34	-124	-1026	-646	-610	612	-642	476
1035/2	345/4	-1	0	5	16	-52	-38	54	40	-23	-170	232	386	-482	132	144	-82	-100	-398	-124	428	-78	-960	1488	-470	
1035/3	115/1	-1	0	5	-32	-40	-66	-130	-88	-23	130	40	-334	22	-272	-24	-258	-612	-366	-496	-248	826	-296	1296		-1438
1035/4 1035/5	$\frac{115/2}{345/1}$	-2 3	0	-5 -5	-2 26	16 -54	-47	$\frac{24}{72}$	-56 68	23 23	-85 102	67	$\frac{104}{344}$	53 -162	-234 -280	-285 360	-2	-80 768	-764 704	236 560	289 -408	-225 998	24	-684 -966	1370 804	-110
1035/5	345/1 $345/2$	5 5	0	-5	-6	-46	-50	116	-152	-23	-206	-16 -120	-28	118	292	344	-114 326	-748	-584	-684	-152	118	-550 870	1278	-228	-310 -790
1040/1	260/1	0	2	5	4	-18	13	-54	70	66	-78	46	-358	-438	-98	300	78	114	-166	-788	198	-58		-1080	-6	-142
1040/2	130/1	ő	2	5	-8	-6	13	114	-38	-150	114	34	146	-30	-122	-336	-570	-66	-502	-728	-582	-994	988	84	906	290
1040/3	520/1	0	2	-5	-30	12	-13	-46	-72	98	126	-56	-158	-162	98	362	-166	576	-870	738	928	234	-128	1038	730	1250
1040/4	65/1	0	-2	-5	12	-14	-13	98	26	114	58	-306	86	-374	314	-620	362	-266	634	-612	686	202	516		-1230	350
1040/5	130/2	0	4	-5	8	32	-13	-86	56	-68	-202	56	66	490	-460	24	-294	480	-338	-676	-120	-210	-184	660		-1202
1040/6	520/2	0	10 0	5 9	$\frac{12}{21}$	62 66	13 -72	58 25	-122 137	$\frac{26}{112}$	114 -29	-338 88	-342 -375	-230 397	-282 87	-140 327	-418 -182	306	-38 -510	372 -864	742 -144	-554 -370	-812 1174	864 528	1146 -986	-1390 360
1044/1 1045/1	348/1	-5	-1	-5	-2 -2	-11	-72 -7	25 14	19	55	-26	261	-375	-381	387	189	-182	-449 746	-510 79	-864 537	-144	169	-338	601	-986 -762	866
1050/1		2	3	0	7	-35	-54	-32	-126	-135	21	-94	-341	56	419	-194	38	382	-128	801	-415	-608	511		1234	-182
1050/2	210/2	2	3	0	7	-44	-54	-98	-60	144	-210	-208	226	-502	-484	232	530	-764	814	-60	848	958	-152	-308		-554
1050/3	210/1	2	3	0	-7	12	-2	18	56	156	-186	-52	178	-138	412	456	198	348	110	196	-936	-542	992	276	630	-110
1050/4	210/3	2	3	0	-7	12	58	-42	-4	-24	294	128	58	282	-428	-384	138	468	-250	556	624	958	632	-84	810	790
1050/5		2	3	0	-7	42	-47	3	56	-9	189	263	58	-273	307	156	-207	-507	635	556	684	-482	182	291	-810	910
1050/6		2 2	3	0	-7	-43	18	-92	6	-129	-111	-142	173	-128	217 -137	-194 600	-622	-22	160	-189 1	769 -93	-652	-773	-314 -486	$\frac{470}{300}$	470
1050/7 1050/8		2	3 -3	0	-7 7	-69 3	64 -4	114 -54	56 -148	-9 -15	-33 -69	-70 146	-53 -19	504 -24	29	228	$\frac{570}{174}$	48 -732	524 -220	11		-910	-1261 -889	-480 78	-960	-866 -550
1050/9	210/4	2	-3	0	7	28	-54	46	12	0	6	296	-134	146	-556	448	-46	748	-50		-1024	310	856	628	-590	1390
1050/10	210/6	2	-3	ő	7	28	86	66	-48	-140	-34	-284	346	-274	4	448	94	308	510	156	336	1170	16	-772	1630	-110
1050/11	210/5	2	-3	0	-7	0	-26	-18	92	0	-6	-4	-410	174	-248	-420	-102	-588	650	-152	-168	610	-1048	684	-834	-110
1050/12		2	-3	0	-7	-9	-32	114	-16	-21	-213	50	115	-336	103	-240	-342	336	-844		-1017	130	155	858	-84	-938
1050/13	210/10	-2	3	0	7	-4	42	86	-96	96	-78	80	-50	-26	32	20	382	356	-134	-888	868	70	400	1052		-1202
1050/14 1050/15	$\frac{1050/12}{210/8}$	-2 -2	3	0	7 7	-9 16	32 -58	-114 -34	-16 64	21 16	-213 62	50 60	-115 -150	-336 474	-103 292	240 -240	$\frac{342}{662}$	336 -324	-844 -514	$\frac{167}{372}$	-1017 -412	-130 770	155 -560	-858 852	-84 1466	938 178
1050/15	1050/8	-2 -2	3	0	-7	3	-58 4	-34 54	-148	15	-69	146	-150 19	-24	-292	-240	-174	-324 -732	-220	-11	-412 -429	910	-889	-78	-960	550
1050/17	210/9	-2	3	0	-7	24	-14	-54	44	-156	174	-88	34	-138	-164	216	-318	-204	-442	316	-252		-1000	-516	-522	310
1050/18	42/1	-2	3	ő	-7	-72	34	-6	92	180	-114	56	34	6	-164	-168	-654	-492	-250	124		-1010	56	-228	390	70
1050/19	42/2	-2	-3	0	7	-8	42	2	-124	-76	254	-72	-398	462	-212	264	162	-772	30	764	-236	-418		-1036		1190
1050/20	1050/5	-2	-3	0	7	42	47	-3	56	9	189	263	-58	-273	-307	-156	207	-507	635	-556	684	482	182	-291	-810	-910

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-173 -128 178 -146 53 504 341 56 354 -68 -354 375 354 375 4 123	-148 200 137 -600 -419 194 -210 16 210 -16	622 -22 130 188 -570 48 -38 382 -246 -292 -246 292	3 94 3 524 2 -128	189 444 -1 -801		652 -770	-773 -536	314 47	0 -470
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	53 504 341 56 354 -68 354 -68 -354 375 354 375	137 -600 -419 194 -210 16 210 -16	-570 48 -38 382 -246 -292	524 2 -128	-1			-536		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	341 56 354 -68 354 -68 -354 375 354 375	-419 194 -210 16 210 -16	-38 382 -246 -292	-128		-93 -			1076 -109	
$ \begin{vmatrix} 1056/1 \\ 1056/2 \\ 1058/1 \\ 1058/2 \\ 1058/3 \end{vmatrix} = \begin{vmatrix} 0 & 3 & 14 & 34 & 11 & -2 & 48 & 106 & 24 & -160 & -220 \\ 0 & -3 & 14 & -34 & -11 & -2 & 48 & -106 & -24 & -160 & 220 \\ 2 & 7 & 18 & -30 & -6 & 79 & 102 & -36 & 0 & 33 & 43 \\ 2 & 7 & -18 & 30 & 6 & 79 & -102 & 36 & 0 & 33 & 43 \\ 1058/3 & 46/2 & 2 & -9 & 20 & -2 & 52 & 43 & 50 & 74 & 0 & -7 & -273 \end{vmatrix} $	354 -68 354 -68 -354 375 354 375	-210 16 210 -16	-246 -292			415		1261	486 30	
$ \begin{array}{ c cccccccccccccccccccccccccccccccccc$	354 -68 -354 375 354 375	210 -16				-415	608	511	374 123	
$ \begin{array}{ c cccccccccccccccccccccccccccccccccc$	-354 375 354 375				-124 124		-922 -922	-958 958	-824 17	
1058/2 1058/1 2 7 -18 30 6 79 -102 36 0 33 43 1058/3 46/2 2 -9 20 -2 52 43 50 74 0 -7 -273	354 375		-300 -324		582	320 147	-922 637	-468	824 17 978 -25	
1058/3 46/2 2 -9 20 -2 52 43 50 74 0 -7 -273			300 -324		-582	$147 \\ 147$	637	468	-978 -25 -978 25	
			-86 -444		-764	-21	681	-426	-902 127	
1058/4 46/1 -2 -1 10 12 42 7 -20 -106 0 -227 67	-74 -497	88 215	-314 176		-266			-806	952 133	
1062/1 118/1 2 0 5 -33 4 -30 14 97 134 -1 -28	290 5	192 326	537 -59		856			-919	-362 31	
1062/2 2 0 14 -24 -68 -12 104 52 -64 -190 8	-124 -436	-114 -124	-606 -59	9 292	-530	966	214 -	1144	-452 43	8 -838
1062/3 118/3 -2 0 -5 -15 50 -66 -14 -11 172 -287 26	128 -167	-78 -38	147 59	76	514	1140 -	-848	359	362 -121	2 836
1062/4 118/2 -2 0 13 -27 8 42 -2 -77 -98 295 -40	278 - 179		345 59		-356	144		-181	1250 60	0 -790
1062/5 1062/2 -2 0 -14 -24 68 -12 -104 52 64 190 8	-124 436		606 59		-530	-966		1144	452 -43	
1064/1 0 -4 14 -7 36 -50 34 19 40 -122 -240	158 -398		-258 724		164			1240	172 -127	
1065/1 -3 -3 5 -14 -58 -82 -88 44 -114 74 -56	2 -342		106 -54		-680		-894	-40	124 -81	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-256 270 22 138	-380 -56 328 12	-58 -194 234 54		-296 -596	-100 -200 1	$\frac{286}{1122}$	-380 480	1086 -129 838 -77	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	331 228		555 -540		-596 -719		-855	-429	1433 -3	
1072/1 134/1 0 -10 6 34 -24 -46 -69 79 -99 183 46	-277 420	202 -189	-522 -639		-67		-439	-140	-12 25	
1074/1 2 -3 -22 18 -9 -12 -3 110 8 -162 153	-185 168		313 -490		-6	-618	368	592	-908 -41	
1074/2 -2 3 -2 1 -66 13 60 0 204 176 -120	-4 -147		359 -7	7 25	-680	-370 -1	1068	443	-1077 102	
1078/1 22/3 2 -1 3 0 11 16 -42 -116 189 -120 163	-409 -468	110 -144	90 453	3 -20	-97	-465	-848	-742	-438 27	3 -761
1078/2 154/3 2 2 -18 0 -11 -56 -36 28 180 -54 334	386 444		-486 282		176	-324	-800 -	1144	-468 87	0 1330
1078/3 154/4 2 -7 -3 0 -11 16 -6 -14 -51 54 -95	-193 -102		-102 63		-433	135	238	770	1008 63	-
1078/4 154/5 2 10 14 0 -11 16 -108 -116 68 122 262	130 -204		442 -702		-416		-408	600	1212 -114	
1078/5 154/2 -2 0 -2 0 11 -26 46 48 -128 -146 128	-26 -10		318 48		516		-754	0	-624 159	
1078/6 22/1 -2 -4 -14 0 -11 50 -130 108 -96 142 -40 1078/7 154/1 -2 5 1 0 -11 8 -22 -54 213 190 -163	382 118 31 -110		238 852 -566 -645		-12 -729	-112 431	6 918	304 -254	-820 -20 -904 -90	
1078/8 22/2 -2 7 19 0 11 72 46 20 -107 120 -117	-201 228		458 -435			1113	72	-70	-358 -89	
1081/1 -1 4 2 12 -32 64 14 72 23 -108 32	32 310	-52 47	544 20		604		-766	-160	782 -7	
1083/1 57/1 1 -3 -12 -20 -4 76 22 0 82 -242 126	180 390	308 -522	70 -188	3 -706	-104	432	718	-94	-1296 -84	
1085/1 1 10 5 -7 -2 8 42 -40 132 -120 31	100 230	302 -48	-116 428	3 -128	-884	-312	1158	324	718 47	4 -442
1086/1 2 -3 3 1 -6 2 -89 54 -190 261 -224	12 415		258 -882		765		-825	114	-699 -15	
1088/1 68/1 0 2 8 -12 10 38 -17 -4 120 -56 164	236 70		366 504		768		-734	736	-856 90	
1088/2 34/1 0 2 -16 24 -62 62 -17 20 -12 -80 -208	356 22		462 -240		216		178	700	992 -39	-
1088/3 34/2 0 2 18 -10 6 -74 17 88 -114 90 -310 1088/4 68/1 0 -2 8 12 -10 38 -17 4 -120 -56 -164	-86 90 236 70		258 -240 366 -504		964 -768	-390 -72	722 -734	-898 -736	-912 144 856 90	
1088/4 68/1 0 -2 8 12 -10 38 -17 4 -120 -56 -164 1088/5 34/1 0 -2 -16 -24 62 62 -17 -20 12 -80 208	356 22		462 240		-768 -216	-732	178	-700	-992 -39	
1088/6 34/2 0 -2 18 10 -6 -74 17 -88 114 90 310	-86 90		258 240		-964	390	722	898	912 144	
1088/7 544/1 0 4 -8 14 8 46 -17 -116 -94 112 50	20 62		-162 724				1062	114	68 -66	
1088/8 544/1 0 -4 -8 -14 -8 46 -17 116 94 112 -50	20 62		-162 -724					-114		6 -1322
1088/9 544/3 0 6 -18 2 26 22 17 44 -78 -50 -170	-58 130		690 -388		344			1078	36 -29	
1088/10 544/3 0 -6 -18 -2 -26 22 17 -44 78 -50 170	-58 130		690 388		-344			1078	-36 -29	
1088/11 17/1 0 8 -6 -28 24 58 17 -116 -60 -30 -172	58 -342		-318 -252		484	-708	362	-484	-756 -77	
1088/12 17/1 0 -8 -6 28 -24 58 17 116 60 -30 172	58 -342		-318 252		-484	708	362	484	756 -77	
1089/1 9/1 0 0 0 -20 0 70 0 -56 0 0 308 1089/2 121/1 0 0 -18 0 0 0 0 0 108 0 340	110 0 -434 0	520 0 0 36	0 0	, 102	-880	0 -1	1190	-884 0	0	0 -1330
1089/2 121/1 0 0 -18 0 0 0 0 0 108 0 340 1089/3 363/4 1 0 -7 -4 0 -43 -41 72 -104 -273 -272	-434 0 -165 403	0 00	738 720 741 112		-416 284		-586	-308	0 -167 0 32	_
1089/4 33/1 -1 0 4 26 0 32 74 60 182 -90 -8	-66 422		-348 200		-1036	-762	542	550	-132 -57	
1089/5 363/4 -1 0 -7 4 0 43 41 -72 -104 273 -272	-165 -403		741 112		284	624	586	308	0 32	
1089/6 363/1 3 0 12 -12 0 66 -114 -42 -18 186 -308	-146 42		408 132		-452			1272	-432 -95	
1089/7 363/1 -3 0 12 12 0 -66 114 42 -18 -186 -308	-146 -42		408 132		-452	282		1272	432 -95	
1089/8 363/2 4 0 13 -26 0 73 31 108 86 -207 208	45 247	450 500	441 -598		494			-352	360 35	
1089/9 363/2 -4 0 13 26 0 -73 -31 -108 86 207 208	45 -247	-450 500	441 -598		494		1034	352	-360 35	
1089/10 33/2 -5 0 14 32 0 38 -2 -72 -68 -54 -152	174 94		438 -20				-562	16	372 96	
1092/1 0 -3 11 -7 -35 -13 33 147 -61 -223 220 1092/2 0 -3 -19 -7 -30 -13 88 67 189 7 -65	-291 24		-378 404		$\frac{502}{62}$		-529 231	-166 909	162 -88 617 -141	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-56 -286 -32 93		267 -576 -428 -123		385	-332 120 -	-535	-923	617 -141 1074 47	
1098/2 366/2 -2 0 18 12 44 -74 2 -44 -16 270 44	-32 93 -2 78		702 -628		80	-520	-555 570	812	44 110	
1100/1 220/3 0 5 0 -11 -11 22 -9 89 -138 201 77	-119 -102		-51 270					-214	-138 63	

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1100/2	44/1	0	5	0	26	-11	-52	-46	-96	-27	16	-293	29	-472	110	224	-754	825	-548	123	1001	1020	526	158	-1217	263
1100/3	220/1	ő	-5	ŏ	19	-11	62	-19	-131	-138	-79	217	91	158	-120	546	439	290	-373	-728	-709		-1194	-58		-1228
1100/4	220/2	0	-8	0	-24	-11	22	-22	-28	44	110	-40	362	210	-260	460	-662	-68	606	312	360	1042	-552	-268	-966	1334
1102/1		-2	-2	11	-11	7	-42	99	19	128	-29	-38	-96	182	-357	-331	688	570	-603	-6	-248	263	-200	-372	-180	-576
1104/1	138/3	0	3	-2	34	-2	-74	-68	-88	23	-178	-240	-76	186	-28	-264	-598	-492	352	244	984	1014	438		-1524	-198
1104/2	138/1	0	3	-10	-32	20	-26	-46	92	-23	-194	120	-322	42	-220	192	-170	-396	934	988	552	282	888		1242	-30
1104/3	276/2	0	-3	$\frac{2}{2}$	22 32	14	-50 22	-52	20	-23 23	-74 174	-24	104	-30	-112	288	-386	204	-308	-152	720	486 -406	-462	-742	180	786
1104/4 1104/5	$\frac{138/2}{552/1}$	0	-3 -3	8	22	48 4	-14	42 -116	144 -30	23	-38	304 -60	-318 -310	74 -366	-192 -326	-392 464	-734 348	-156 -44	$706 \\ 434$	-192 406	-624 -472	-222	-696 642	800 -756	-102 -728	-918 -1370
1104/6	276/1	0	-3	8	-34	-36	-62	-60	-30	23	234	-140	-174	194	-320 42	400	76	-252	-566	6	-264	-286	-486			-1626
1104/7	552/2	ő	-3	-14	-2	-58	-50	-76	-60	-23	-106	24	-256	-126	304	-32	-642	-436	-460	232	-224	-282	426	-702	764	-686
1105/1		-3	6	-5	$^{-24}$	-6	-13	17	6	-102	-294	118	14	-446	-10	372	-158	586	442	-900	-90	-790	56		1338	-826
1105/2		-4	4	-5	-14	-50	-13	-17	-54	-68	-102	-150	226	42	-232	-54	-138	294	-170	798	730	482	-852	-58	-310	-854
1110/1		2	-3	-5	10	44	59	-46	-34	6	7	-182	37	360	101	-35	-507	821	70	612	88	622	8	1223	345	870
1110/2		-2	3	-5	1	-47	35	55	-125	213	6	-98	-37	-40	-188	304	341	-518	-382	-578	882	-713	288		-1263	
1113/1		4	3	12	7	60	-18	42	28	-58	154	40	-34	84	304	-424	-53	-148	-20	-498	-526	200	734	928		-1322
1120/1		0	4	5	-7	36	-82 -62	6	56	-16	118	-104	-230	-30	-228 192	-72	-606	-40	102	-836	1020		-1324	-244	722	166
1120/2 1120/3	1120/1	0	-4	-5 5	-7 7	-24 -36	-62 -82	66 6	-84 -56	64 16	118 118	$\frac{296}{104}$	390 -230	-30 -30	228	48 72	254 -606	220 40	-118 102	264	40 -1020	802 -578	$\frac{56}{1324}$	-804 244	-198 722	-414 166
1120/3	$\frac{1120/1}{1120/2}$	0	-4	-5	7	24	-62	66	84	-64	118	-296	390	-30	-192	-48	254	-220	-118	-264	-40	802	-56	804	-198	-414
1126/1	1120/2	2	1	8	5	12	-62	-47	-161	179	-256	198	-372	-448	-58	167	492	387	123	371	535	-256	170	-876	860	616
1126/2		2	-3	-8	-15	60	42	81	-149	-33	132	142	-328	124	234	-77	-48	-177	-261	-817	-213		-1250	-364	-320	-940
1127/1	23/1	-2	5	6	0	34	57	80	70	23	245	-103	-298	-95	88	357	-414	408	-822	926	335	899	-1322	36	460	964
1136/1	71/1	0	-1	-16	1	-24	7	72	153	213	232	-149	-204	-432	-71	-273	-274	-126	-134	760	-71		-112	124		-1424
1136/2	568/1	0	-7	6	-31	-30	-35	-6	-85	-103	-122	-65	-186	-222	-69	59	-142	-186	-110	-922		-1177	582	-268	145	-638
1140/1		0	-3	5	-8	20	-58	90	19	-128	-186	136	334	-318	252	312	-274	-612	-234	660	-24		-1112			-1550
1140/2	107/1	0 1	-3 0	-5 15	22 -25	6 51	-40 2	-31	-19 -123	-132 149	176 -6	24 10	-364 -348	$\frac{340}{387}$	278 -80	-372 -266	606 -347	196 656	-678 -158	408 -314	-960 -312	454 -646	-648	588 -1352	-460	-796 632
1143/1 1144/1	127/1	0	-2	9	-25 -21	-11	-13	-31 86	132	133	159	98	-446	-315	-407	220	-286	279	-201	507	-556		-1396			-1108
1146/1		2	-3	8	-4	7	-77	70	-42	-96	105	-70	-202	-229	-137	327	361	284	-668	-555	39	220	477		-506	
1150/1	46/1	2	1	ō	12	-42	-7	-20	106	-23	-227	67	-74	-497	88	-215	-314	176	-298	-266	-981	411	806		-1332	1328
1150/2	, i	2	2	0	21	47	57	-84	-5	23	285	82	-54	-53	197	-124	-148	30	-578	296	422	487	-405	397	730	-64
1150/3	230/4	2	-4	0	-3	-2	38	45	-74	-23	283	-303	-79	-407	328	-360	561	101	-268	69	-641	-994	-884		1608	-1082
1150/4	230/5	2	5	0	-12	22	-19	-96	-98	-23	-227	-285	398	271	100	285	-18	-352	-478	-330	835	1127	322	-572	-504	-1712
1150/5	230/3	2	-7	0	-20	6	-47	132	146	-23	-99	-253	118	495	-272	-639	342	240	-370	-698	-357	259	542	1248	-828	-992
1150/6 1150/7	$\frac{230}{1}$ $\frac{230}{2}$	-2 -2	1 -1	0	32 18	-30 -32	-19 47	60 -20	-58 36	-23 23	85 -27	-65 -33	34 -56	143 -157	332 -18	561 -65	$\frac{422}{14}$	392 -744	-246 552	-894 156	-737 699	-1041 609	1114 -644	936 -512	824 -102	868 -578
1150/8	$\frac{250/2}{1150/2}$	-2	-2	0	-21	47	-57	84	-5	-23	285	82	-50 54	-53	-197	124	148	30	-578	-296	422	-487	-405	-397	730	64
1150/9	46/2	-2	9	0	-2	-52	-43	50	-74	23	-7	-273	4	123	152	-75	-86	-444	262	-764	-21	-681	426		-1272	342
1152/1	384/1	0	Õ	4	10	4	-26	-14	8	-148	72	18	-262	378	-432	-148	360	428	442	-692		-1018	386	-108	382	298
1152/2	384/1	0	0	4	-10	-4	-26	-14	-8	148	72	-18	-262	378	432	148	360	-428	442	692	540	-1018	-386	108	382	298
1152/3	384/1	0	0	-4	10	-4	26	-14	-8	-148	-72	18	262	378	432	-148	-360	-428	-442	692		-1018	386	108	382	298
1152/4	384/1	0	0	-4	-10	4	26	-14	8	148	-72	-18	262	378	-432	148	-360	428	-442	-692		-1018	-386	-108	382	298
1152/5	128/1	0	0	6	20	14	-54	66	-162	-172	-2	-128	-158	-202	298	408	-690	-322	298	-202	700	-418	744	-678		-1122
1152/6 1152/7	$\frac{128/1}{128/1}$	0	0	6 -6	-20 20	-14 -14	-54 54	66 66	$\frac{162}{162}$	172 -172	-2 2	128 -128	-158 158	-202 -202	-298 -298	-408 408	-690 690	$\frac{322}{322}$	298 -298	202 202	-700 700	-418 -418	-744 744	678 678		-1122 -1122
1152/7	128/1	0	0	-6	-20	14	54	66	-162	172	2	128	158	-202	298	-408	690	-322	-298	-202	-700	-418	-744	-678		-1122
1152/9	384/3	0	0	8	10	68	46	74	-16	-20	228	162	-262	-30	-264	124	-204	340	-950	436	-780		1010	852	686	-806
1152/10	384/3	0	0	8	-10	-68	46	74	16	20	228	-162	-262	-30	264	-124	-204	-340	-950	-436	780		-1010	-852	686	-806
1152/11	384/3	0	0	-8	10	-68	-46	74	16	-20	-228	162	262	-30	264	124	204	-340	950	-436	-780		1010	-852	686	-806
1152/12	384/3	0	0	-8	-10	68	-46	74	-16	20	-228	-162	262	-30	-264	-124	204	340	950	436	780		-1010	852	686	-806
1155/1		0	-3	-5	7	-11	-22	18	-112	54	6	230	122	336	104	180	-258	354	200	-610	-336	326	320			-1582
1155/2		1	3	5	-7	11	54	-78	-148	200	-218	-304	126	58	532	-368	222	-204	-666	-356	312	-726		-1332	-742	514
1155/3 1155/4		3	3 -3	-5 -5	7 7	11 -11	30 38	-102 54	0 -4	-32 180	$\frac{10}{162}$	-96 -172	-158 -298	-226 -390	-512 -412	204 -336	66 -462	$\frac{20}{156}$	-118 230	-48 -4	-92 120	-438 -574	-1312 524	492 -408	-1338 -618	614
1155/4		-3	-3 -3	-5 -5	7	-11	44	-72	-4	-162	102	56	-124	18	224	120	414	660	-334	314	-36	110	-316	-732	-924	1154
1155/6		-3	-3	-5	7	-11	-82	54	80	48	-234	-28	-82	270	-28	-300	582	-684	758	524	552	110	944	1368	42	1658
1156/1	68/1	0	2	8	12	10	-38	0	4	-120	-56	-164	236	-70	-144	48	-366	-504	460	-768	-72	734	-736	856	906	-46
1159/1	<i>'</i>	3	7	10	-11	-44	-73	25	-19	-55	85	-44	254	-12	-510	472	-235	345	61	381	-108	-787	-246	454	1316	596
1160/1		0	-8	-5	-6	-58	10	-18	-110	-170	-29	134	-14	-382	-448	-284	-718	-424	-382		-1108	858	962	1342		-1198
1168/1	146/1	0	-4	-6	8	8	-62	10	-28	-48	-126	280	-138	74	-304	-192	82	-480	310		-480	73	120	168	954	818
1168/2	73/1	0	8	6	34	-6	-34	90	16	-60	102	214	-286	150	322	534	-474	-786	-574	16	-192	73	988	-1242	-6	614

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1170/1	390/9	2	0	5	2	0	13	60	50	-210	228	116	386	-378	-4	312	198	-624	638	200	408	1148		-1332	-54	-244
1170/2	202.42	2	0	5	-3	-45	13	13	-116	73	-154	-310	255	-391	258	154	-579	412	-695	-92	75	262	367	-24	-901	-1679
1170/3	390/6	2	0	5	-14	36	-13	-68	-158	-46	8	-176	62	-30	252	120	-758	-252	398	884	80	-660		-1084		84
$\frac{1170/4}{1170/5}$	390/10 $390/11$	$\frac{2}{2}$	0	5 5	-15 24	-39 0	-13 13	15 -50	$\frac{54}{28}$	$\frac{143}{208}$	122 -190	-246 248	-225 -186	-469 194	-484 348	-234 -260	-33 -462	$\frac{0}{520}$	-831 -506	$772 \\ 772$	793 -780	-998 -62	-681 736	772 -1464	465 -406	-79 922
1170/5	390/11	2	0	5 5	-24	32	13	-50 -78	-32	-158	-126	250	38	-90	-428	-200 84	-236	188	-170	-78			-1264		1010	372
1170/7	390/7	2	0	-5	5	35	-13	-23	-30	-63	190	330	43	473	-232	-270	193	200	-679	-12	899	154	215	1308	1010	-427
1170/8	130/1	2	ő	-5	8	-6	13	-114	38	-150	-114	-34	146	30	122	-336	570	-66	-502	728	-582	-994	-988	84	-906	290
1170/9	390/8	2	0	-5	-13	15	13	75	-130	-45	138	-34	-379	-243	416	-378	3	816	-607	-700		-1162	-1	-672	-969	-949
1170/10	390/5	-2	0	5	8	-12	13	42	-52	-132	-282	116	398	-174	-76	-456	-150	156	230	-592	-408	-730	728	-36	1482	1742
1170/11	390/4	-2	0	5	8	40	-13	-10	0	180	-22	-144	34	502	-76	168	422	-104	-82	-540	-512	622	104	-348	286	494
1170/12	130/2	-2	0	5	-8	32	-13	86	-56	-68	202	-56	66	-490	460	24	294	480	-338	676	-120	-210	184	660	286	-1202
1170/13	390/3	-2	0	5	-25	21	13	-123	146	-99	246	182	-295	-9	452	-390	-315	24	-727	596	-771	326	-889	96	-795	983
1170/14 $1170/15$	390/1 $1170/2$	-2 -2	0	5 -5	-28 -3	$\frac{36}{45}$	13 13	-42 -13	-112 -116	168 -73	$\frac{210}{154}$	-76 -310	$\frac{278}{255}$	-150 391	-460 258	264 -154	-582 579	204 -412	614 -695	-304 -92	-1080 -75	-934 262	$\frac{128}{367}$	-348 24		-1582 -1679
1170/16	$\frac{1170/2}{390/2}$	-2	0	-5	-12	48	13	62	-32	-73	58	-124	-162	-74	-396	164	-270	416	70	448	1092	10	328	144	502	1042
1170/17	1170/6	-2	0	-5	-24	-32	13	78	-32	158	126	250	38	90	-428	-84	236	-188	-170	-78		-1012	-1264		-1010	372
1176/1	168/1	0	3	2	0	12	66	70	92	16	-122	-64	-306	-50	20	176	526	-540	818	-228	864	-106	736	588	-146	1214
1176/2	,	0	3	-2	0	-18	-33	68	-25	92	92	-25	-213	-94	-67	-278	-400	-744	734	555	-642	-973	-785	822	-424	734
1176/3	168/3	0	3	-4	0	-26	-2	36	76	-114	6	256	-86	-160	-220	-308	258	-264	-606	-520	-286	530		-1012	-768	-222
1176/4	100/1	0	3	-7	0	7	52	-72	-20	-48	-243	-95	352	296	158	142	-375	-279	-246	-730	338	542		-1123	426	369
1176/5	168/4	0	3	10	0	-12	-30	-34	-148	152	-106	-304	-114	-202	116	-224	-274	660	-382	12	-552	614	880	108	86	-1426
1176/6 1176/7		0	3	$\frac{11}{12}$	0	39 -60	$\frac{32}{44}$	-12 -128	88 52	-92 -160	255 -230	35 136	-4 -318	-16 -192	-330 220	298 184	-717 -498	217 -492	-386 20	906 380	-34 -264	838 -560	1325 104		54 1144	-7 -904
1176/8	1176/2	0	-3	2	0	-18	33	-68	25	92	92	25	-213	94	-67	278	-400	744	-734	555	-642	973	-785	-822	424	-734
1176/9	168/5	0	-3	2	0	52	-86	30	4	120	246	-80	-290	374	164	-464	-162	-180	666	-628	296		-1184	-220	774	1086
1176/10	1176/4	ő	-3	7	ő	7	-52	72	20	-48	-243	95	352	-296	158	-142	-375	279	246	-730	338	-542	-305	1123	-426	-369
1176/11	168/2	0	-3	10	0	-52	10	54	52	48	-186	-224	94	478	-316	-256	-66	-420	-342	668	-272	86	1360	-188	366	-1554
1176/12	1176/6	0	-3	-11	0	39	-32	12	-88	-92	255	-35	-4	16	-330	-298	-717	-217	386	906	-34	-838	1325	1163	-54	7
1176/13	1176/7	0	-3	-12	0	-60	-44	128	-52	-160	-230	-136	-318	192	220	-184	-498	492	-20	380	-264	560		-1508 -		904
$\frac{1176/14}{1176/15}$	24/1	0	-3 -3	-14 16	0	-28 -18	$\frac{74}{54}$	-82 128	-92 -52	-202	-138 302	-80 200	30	-282 -172	164	-240 460	-130 -190	-596 -96	218 -622	-436 744	856	998 -742	-32 -92	$\frac{1508}{228}$	$\frac{246}{116}$	-866
1183/1	$\frac{168}{6}$ $\frac{7}{1}$	1	-3 -2	-16	7	-18	0	54	110	48	-110	-12	-150 246	-172	$\frac{164}{128}$	-324	-162	-810	-488	-244	-54 768	702	440	1302	-730	554 -294
1183/1	1/1	5	2	19	-7	50	0	77	-12	-138	251	-250	-79	219	258	-72	111	-126	-359	-286	120		-1030		1526	-562
1183/3	1183/2	-5	2	-19	7	-50	ő	77	12	-138	251	250	79	-219	258	72	111	126	-359	286	-120		-1030		-1526	562
1190/1	,	2	-4	5	-7	32	22	17	-156	-128	214	-140	-34	10	176	-212	-434	76	-42	-456	-228	-54	-236	-1192	-454	98
1190/2		2	-4	-5	-7	28	-6	-17	100	72	46	-20	-334	-202	-80	-120	-474	-684	-302	624	1192	278	-712	-548	586	-1778
1196/1		0	7	21	32	9	13	-126	65	-23	-150	-64	182	66	26	-336	-264	-528	860	-175	-180	-256		-1071 -		-205
1197/1	399/2	1	0	12	7	-34	0	16	19	-6	138	-240	-218	238	-376	-352	-6	268	814	-694	-100	-422	-666	-756	446	-728
1197/2	1107/0	3 -3	0	-4	-7	60	-58	-34	-19	110	158	166 166	56	-54	324	184	562	-832	-190	-494 -494	1076		-1072		1098	1368
$\frac{1197/3}{1197/4}$	$\frac{1197/2}{399/1}$	-3 -3	0	4 8	-7 -7	-60 -18	-58 68	34 -4	-19 -19	-110 -118	-158 -166	304	$\frac{56}{350}$	54 -378	324 -456	-184 304	-562 394	832 -844	-190 -418	130	404	826 58	-1072 -178	-828	-1098 870	1368 948
1197/4	133/1	-3 -4	0	-6	-7 -7	68	8	-14	-19	-118	-70	252	-186	-192	488	216	-178	500	-298	494	618	-842	10	-228	-600	-976
1200/1	150/2	0	3	ő	1	-42	-67	54	115	162	-210	193	-286	12	-263	-414	-192	-690	-733	-299	228	938	160	462	-240	-511
1200/2	150/4	0	3	0	2	-70	54	-22	-24	100	216	-208	-254	-206	-292	320	-402	370	-550	-728	540	604	-792	-404	-938	56
1200/3	600/2	0	3	0	-4	28	-16	108	-32	28	-238	180	-40	422	-276	-60	220	804	-358	884	64	-152	932	1292		824
1200/4	30/2	0	3	0	-4	48	-2	114	-140	72	210	-272	334	-198	-268	216	78	-240	302	596	768	478	640	-348	210	1534
1200/5	600/4	0	3	0	5	-14	-1	-46	-19	-46	14	-133	-258	84	-167	410	-456	194	-17	653	-828	-570	552		-1104	-841
$\frac{1200/6}{1200/7}$	$\frac{300/4}{120/3}$	0	3	0	-7 8	54 -20	55 -22	-18 14	25 -76	-18 56	-54 -154	271 -160	-314 162	-360 -390	-163 388	522 -544	$\frac{36}{210}$	-126 380	47 -794	-343 -148	1080 840	1054 -858	568 -144		$1440 \\ 1098$	439 -994
1200/7	$\frac{120}{3}$	0	3	0	8	-36	10	-18	100	72	-134	16	226	-390 90	452	432	-414	684	422	332	360	-26		-1188	-630	1054
1200/9	600/5	0	3	0	10	14	82	-18	136	-140	112	-72	-26	-446	396	-144	-158	342	314	-152	932	548	512	284	-810	-1304
1200/10	600/6	ő	3	ő	10	46	34	-66	-104	164	224	72	22	194	108	-480	-286	-426	698	328	-188		-1168		1206	1384
1200/11	300/1	0	3	0	13	-6	5	-78	-65	-138	66	-299	-214	360	-203	-78	636	-786	467	217	360	-286	-272	-498	0	-511
1200/12	600/8	0	3	0	-19	-22	-1	58	53	58	22	35	270	-468	-431	-230	0	-446	127	-811	-36			-1138	144	1079
1200/13	120/6	0	3	0	20	-16	-58	-38	-4	-80	82	8	-426	-246	-524	-464	702	592	574	-172	-768	558	-408	164	-510	-514
1200/14	300/2	0	3	0	-22	14	-30	62	120	-188	96	-184	406	130	-148	-448	-414	-266	-838		-1020	484	48	-548	-650	-1816
$\frac{1200/15}{1200/16}$	150/3 $24/1$	0	3	0	-23 -24	30 28	$\frac{29}{74}$	78 -82	-149 -92	-150 8	-234 -138	217 -80	146 -30	-156 282	433	-30 240	-552 130	270 -596	275 -218	-803 -436	-660 -856	-646 998	-992 32	-1508	-1488 -246	-319 -866
$\frac{1200/16}{1200/17}$	$\frac{24}{15}$	0	3	0	-24 -24	-52	-22	-82 14	-92 20	-168	230	-80 288	-30 34	$\frac{282}{122}$	-188	256	338	-100	-218 742	-436 -84	328	38	240	1212	330	-866
1200/17	$\frac{13/2}{30/1}$	0	3	0	32	60	34	-42	76	0	6	232	-134	234	-412	-360	-222	-660	-490	812	-120	-746	-152	-804	-678	-194
1200/19	120/5	ő	-3	ő	0	-4	-54	-114	-44	96	134	272	98	-6	12	-200	-654	-36	-442	-188	632	390		1188	-694	1726

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1200/20	150/2	0	-3	0	-1	-42	67	-54	115	-162	-210	193	286	12	263	414	192	-690	-733	299	228	-938	160	-462	-240	511
1200/21	150/4	0	-3	0	-2	-70	-54	22	-24	-100	216	-208	254	-206	292	-320	402	370	-550	728	540	-604	-792	404	-938	-56
1200/22	600/2	0	-3	0	4	28	16	-108	-32	-28	-238	180	40	422	276	60	-220	804	-358	-884	64	152		-1292		-824
1200/23	120/1	0	-3	0	4	-72	6	-38	-52	152	-78	-120	150	362	-484	280	670	-696	222	-4	-96	-178	632	-612		-1634
$\frac{1200/24}{1200/25}$	600/4 300/4	0	-3 -3	0	-5 7	-14 54	1 -55	46 18	-19 25	46 18	14 -54	-133 271	$\frac{258}{314}$	84 -360	$\frac{167}{163}$	-410 -522	456 -36	194 -126	$^{-17}$	-653 343	-828 1080	570 -1054	552	-142 -1422		841 -439
1200/25	600/5	0	-3 -3	0	-10	14	-82	18	136	140	112	-72	26	-446	-396	144	-30 158	342	314	152	932	-548	512	-1422	-810	1304
1200/20	600/6	0	-3	0	-10	46	-34	66	-104	-164	224	72	-22	194	-108	480	286	-426	698	-328	-188		-1168	-412	1206	
1200/28	300/1	0	-3	0	-13	-6	-5	78	-65	138	66	-299	214	360	203	78	-636	-786	467	-217	360	286	-272	498	0	511
1200/29	6/1	ő	-3	ő	-16	-12	-38	126	-20	168	30	88	-254	42	-52	-96	-198	660	-538	884	-792	-218	520	-492		-1154
1200/30	120/2	0	-3	0	-16	28	26	62	68	-208	-58	-160	-270	282	76	-280	210	-196	742	836	504	1062	-768		-726	1406
1200/31	600/8	0	-3	0	19	-22	1	-58	53	-58	22	35	-270	-468	431	230	0	-446	127	811	-36	522	-1368	1138		-1079
1200/32	15/1	0	-3	0	20	24	-74	-54	124	-120	-78	-200	70	330	92	-24	-450	-24	-322	-196	288	430	520	156	1026	286
1200/33	120/4	0	-3	0	20	56	86	106	-4	136	-206	152	-282	-246	412	40	126	-56	-2	-388		-1170	-408	668	66	926
1200/34	300/2	0	-3	0	22	14	30	-62	120	188	96	-184	-406	130	148	448	414	-266	-838	248	-1020	-484	48	548	-650	1816
1200/35	150/3	0	-3 -3	0	23 -28	$\frac{30}{24}$	-29 70	-78 -102	-149 -20	150	-234 306	217	-146 214	-156	-433 -292	30 -72	552	270	275 -418	803	-660	646	-992	-846	-1488	319 286
1200/36 1200/37	$\frac{60/1}{60/2}$	0	-3 -3	0	32	-36	10	78	-140	-72 -192	300 6	136 16	34	-150 -390	-52	408	$\frac{414}{114}$	744 -516	-418	188 -892	-480 120	-434 646	-1352 1168	-612 -732		-194
1206/1	402/1	2	-3	-14	20	-68	18	-42	76	132	22	-244	142	406	316	204	-558	380	578	-67	260	282		-1140		-1286
1206/2	134/1	-2	ő	-6	-34	-24	-46	69	-79	-99	-183	-46	-277	-420	-202	-189	522	-639	-250	67	552	-439	140	-12	-255	428
1207/1	- /	1	1	12	13	10	-35	-17	29	109	106	-285	-64	-348	-503	385	482	-882	174	766	71		-1190	492	165	620
1208/1		0	-7	12	-22	-2	2	115	-136	102	48	-189	238	-172	462	-321	-335	306	-205	375	908	644	1046	-1237	1400	-1479
1210/1		2	2	-5	24	0	-30	-126	48	-150	24	-20	-362	324	36	-378	-594	528	-360	898	552	-222	-468	-876	-714	1190
1210/2	110/2	2	4	5	-20	0	-26	42	-116	96	-270	32	-106	462	40	-504	-570	12	-590	-388	-240	-302	-8	48	282	-646
1210/3	110/1	2	4	-5	30	0	-16	112	64	36	-10	-48	-146	-278	330	476	150	732	30	-848	240	1128	-788	698	-458	134
1210/4	110/9	2 2	-5	-5	-11	0	12	91	55	60	-165	-195	135	30	232	-70	-265	-704	165	-740	363	-838	680	-512		-1190
1210/5 1210/6	$\frac{110/3}{110/7}$	-2	-7 1	5 5	35 -23	0	-26 -50	-101 -75	-127 -17	-58 -174	$\frac{27}{153}$	-177 35	191 -277	-66 258	-444 220	210	-669 -273	$\frac{386}{438}$	$\frac{521}{475}$	96 992	-427 -927	-1006 934	-910 -974	818 90	$601 \\ 1377$	-228 -64
1210/6	$\frac{11077}{1210/1}$	-2 -2	2	-5	-23 -24	0	-50 30	126	-17 -48	-174	-24	-20	-362	-324	-36	210 -378	-273 -594	528	360	898	-927 552	222	-974 468	876	-714	-64 1190
1210/7	110/4	-2	-4	-5	22	0	20	20	-48	-204	-122	40	278	-302	330	60	-418	188	670	-568	128	-676		1130	822	-434
1210/9	1210/4	-2	-5	-5	11	0	-12	-91	-55	60	165	-195	135	-30	-232	-70	-265	-704	-165	-740	363	838	-680	512		-1190
1210/10	110/5	-2	7	-5	-11	0	-2	9	85	-138	-45	227	-19	138	88	-534	297	-450	-287	-304	777	-962			-1455	116
1210/11	110/8	-2	8	5	12	0	34	86	4	148	-134	-280	430	6	136	-28	-658	4	90	96	816	430	-1296	608	810	706
1210/12	10/1	-2	-8	5	4	0	58	-66	100	132	90	152	-34	438	-32	-204	222	420		-1024	432	-362	160	-72	810	1106
1210/13	110/6	-2	-8	-5	-26	0	-92	84	-80	72	30	-208	86	378	-542	216	-18	420	718	-124	912	268	940	498	150	446
1212/1		0	3	-11	-20	50	-87	109	145	9	-10	201	-254	-218	-332	411	-468	534	-754	-970	-563	404	169		-1260	-914
1215/1		1	0	5	-15 24	-17	28 -89	61	28	102	104 26	-222	-256	398	37 -392	-332	-521	100	-485	255	-265	-902 -122	780 -312	-408		-64
1215/2 1215/3		1	0	5 5	30	61 -53	-89 46	-134 -47	-50 -26	63 -105	-283	-105 -24	$\frac{251}{257}$	-382 272	-392	$\frac{175}{136}$	454 82	217 -683	-134 -710	-369 -393	-304 986	-650	609	-96	-516 -1518	1340 -1180
1215/3	1215/1	-1	0	-5	-15	-55 17	28	-61	28	-103	-104	-222	-256	-398	37	332	521	-100	-485	255	265	-902	780	408	1608	-64
1215/5	1215/2	-1	0	-5	24	-61	-89	134	-50	-63	-26	-105	251	382	-392	-175	-454	-217	-134	-369	304	-122	-312	96	516	1340
1215/6	1215/3	-1	Ö	-5	30	53	46	47	-26	105	283	-24	257	-272	-107	-136	-82	683	-710	-393	-986	-650	609	-330		-1180
1215/7	, -	3	0	5	-31	69	-28	-39	146	-42	-222	104	-214	228	443	-18	201	264	-115	281	687	1028	662	510	750	-304
1215/8		3	0	-5	-19	-15	-28	-45	8	42	156	134	332	150	-19	-24	117	-516	-25	-601	-27	974	-640	-636	468	-424
1215/9	1215/8	-3	0	5	-19	15	-28	45	8	-42	-156	134	332	-150	-19	24	-117	516	-25	-601	27	974	-640	636	-468	-424
1215/10	1215/7	-3	0	-5	-31	-69	-28	39	146	42	222	104	-214	-228	443	18	-201	-264	-115	281		1028	662	-510	-750	-304
1215/11	1015/11	4	0	5	9	-41	-14	-11	-20	-168	-226	120	-214	32	373	10	331	-212 212	451	-69	-1	-692	-822 -822	-834	456	1130
1215/12 1215/13	1215/11	-4 5	0	-5 -5	9 27	41 5	-14 4	11 -25	-20 106	168 150	226 10	120 -204	-214 -250	-32 400	373 -275	-10 170	-331 515	680	451 -791	-69 975	$\frac{1}{235}$	-692 424	-822 -642	1050	-456 30	1130 -400
1215/13	1215/13	-5	0	-5 5	27	-5	4	-25 25	106	-150	-10	-204	-250	-400	-275	-170	-515	-680	-791	975	-235	424	-642		-30	-400
1216/1	608/1	0	1	8	-17	70	61	83	-19	115	-279	-72	34	108	192	-392	-131	609	-338	461		1177	-22	810	-476	1426
1216/2	608/1	ő	-1	8	17	-70	61	83	19	-115	-279	72	34	108	-192	392	-131	-609	-338	-461	-750	1177	22	-810	-476	1426
1216/3	38/1	0	2	9	-31	-57	52	69	-19	-72	150	32	226	-258	67	579	432	330	13	856	642	-487	-700	12	-600	1424
1216/4	38/1	0	-2	9	31	57	52	69	19	72	150	-32	226	-258	-67	-579	432	-330	13	-856	-642	-487	700	-12	-600	1424
1216/5	19/1	0	5	12	11	54	-11	-93	-19	183	249	56	250	240	196	-168	-435	-195	358	961	-246	353	-34	-234	-168	758
1216/6	19/1	0	-5	12	-11	-54	-11	-93	19	-183	249	-56	250	240	-196	168	-435	195	358	-961	246	353	34	234	-168	758
1218/1		2	-3	-4	-7	-12	-28	100	24	152	-29	-42	-322	304	-92	-274	-106	-666	-110	24	-608	-896	-180		1120	532
1218/2	400 /4	2	-3	18	7	63	-7	114	-43	-45	-29	164	-115	-156	218	-291	-399	-519	128	-421	-288	-43	-808	417	-420	335
$\frac{1224/1}{1224/2}$	408/1 408/2	0	0	-6 7	-24 4	-44 21	6 -25	-17 -17	-20 -69	152 -15	-270 -58	-272 -298	$-250 \\ 72$	-186 369	260 -59	320 138	770 -262	348 -50	-210 -568	-148 124	360 -100	-646 -158	-1168 710	788 -214	$\frac{1238}{1016}$	882 -1780
1224/2	7/1	1	-2	0	0	-8	-23 28	-17 54	110	-48	-110	-12	246	-182	-128	324	162	-810	488	-244	-768	-702		-214	-730	294
1225/2	25/1	1	-7	ő	0	-43	28	-91	35	162	160	-42	-314	203	92	-196	82	280	518	141	412	763		-777		-1246

1225/4 245/4 -1	level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1225/6 22/1 -1			-1	6	0																668						-1200
1225/76 35/1 -1																											
1225/7																											
1225/8																											
1225/9		,			-																						
1225/10					-	-																					
1225/11 5/1 4 2 0 0 32 38 26 100 78 50 108 266 22 442 514 -2 500 518 126 412 878 600 282 150 388 1235/13 1235/14 12 1235/14 12 1235/14 12 1235/14 12 1235/14 12 1235/14 12 12 12 12 12 12 12						-																					
1235/12						-																					
1230/1																			0	0							0
1230/3		- /	2	3	5	16	12	82	-74	60	12	110	-288	6	41	-328	456	-278	700	-698	-44	-128	282	-320	112	-310	726
1239/4						13					141				41							228		-288			1226
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5																						86
1232/2 154/3 0			_			-			-																		-960
1232/3			-			•																					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								
1232/6 154/1 0 5 -1 7 11 -8 22 -54 -213 190 -163 31 110 -4 80 -566 -645 634 729 -431 -918 244 -904 901 -88 1323/7 154/4 0 -7 3 -7 11 -16 6 -14 51 54 -95 -193 102 -284 -24 -202 63 -700 433 -135 -238 -707 1008 -639 -131 -1323/8 154/6 0 -7 3 -7 11 -16 6 -14 -79 -146 -79 -146 -205 -204 -406 -205 -553 -732 -738 -737 -738			-																								
1232/6 308/2 0			-	_																							
1232/7 154/4 0 - 7 3 - 7 11 - 16 6 - 14 51 54 95 - 193 102 284 72 - 102 63 790 433 -35 -238 -770 108 639 11 1232/9 154/5 0 10 - 14 -7 11 -16 108 -116 -68 122 262 130 204 396 -166 442 -702 196 416 -492 408 -600 1212 1146 -482 135/1 -3 4 5 2 12 13 -18 19 -72 0 - 70 218 -56 -585 546 -534 -185 -55 -55 -546 -466 -100 0 1044 -37 -134 -35 -16 -234 -212 -222 -2130 -214 -224 -214 -224 -			-																								-1037
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	-7	3	-7	11	-16	6	-14	51	54	-95		102		72	-102	63	-790	433	-135	-238		1008		11
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-		15		-11	-	6									266								-351	-301
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		154/5																									-482
1239/1						_																			-		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						-7																					1370
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			2			14	-11			-19			282	159	30	-437	204	106	-564		439		684	560			-380
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			•																					-169
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-																							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-			•							-														
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-	-																							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-												00												-290
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			0	0		7																					-1438
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1260/9	420/6	0	0	-5	7	-36	38	78	-52	-120	-54	80	254		-172	0	66	-420	-106	92	-1176	698	-1024	516	-714	-862
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,				•																					1250
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			-																								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							_																				-300
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		/1																									1667
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1265/2		1	_		11		20		41	23		126			-358	-449		-549	236			267	-640		128	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	-							. –																1154
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		182/2				-																					-133
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		1974/9																									
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							_										_										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											1407
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																											-1037
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		26/1		-3	-11	0	-38	13	51	-90	-52	-190		-441	-312	373	41	468	-530	-592	-206	-863	322	-460	-528	-870	346
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-	-																					-317
1275/3 51/2 -1 3 0 8 12 26 -17 -148 -152 -66 -32 266 -6 92 288 546 420 350 -940 424 -378 288 -748 -1558 -530 1275/4 255/1 2 3 0 17 41 -8 17 -9 0 -75 68 217 -287 32 423 343 2 -20 46 112 647 646 296 486 418																											
1275/4 255/1 2 3 0 17 41 -8 17 -9 0 -75 68 217 -287 32 423 343 2 -20 46 112 647 646 296 486 418			_																								
															-				420								
1 1275/51 1 3 -3 0 13 -69 -2 -17 101 -90 30 293 103 -42 373 -183 -423 -168 230 439 222 568 701 834 -504 29	1275/4	200/1	3	-3	0	13	-69	-8 -2	-17	101	-90	30	293	103	-42	373	-183	-423	-168	230	439	222	568	701	834	-504	22

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1275/6		3	-3	0	-20	-14	-46	-17	-64	185	52	-290	15	-185	-78	356	655	459	593	-826	-713	920	-300	-79	926	-1056
1275/7	1275/5	-3	3	ő	-13	-69	2	17	101	90	30	293	-103	-42	-373	183	423	-168	230	-439	222	-568	701	-834	-504	-22
1275/8	1275/6	-3	3	Ö	20	-14	46	17	-64	-185	52	-290	-15	-185	78	-356	-655	459	593	826	-713	-920	-300	79	926	1056
1275/9	255/2	4	3	Ö	-8	-38	-74	-17	72	-132	-246	158	-14	-286	62	318	446	-200	-350	-770	-946	962	838	-338	942	1630
1275/10	/-	5	-3	Ö	13	67	8	17	-69	48	-216	287	53	-58	-359	627	253	-56	538	563	-298	-206	355	1268		-1738
1275/11	1275/10	-5	3	0	-13	67	-8	-17	-69	-48	-216	287	-53	-58	359	-627	-253	-56	538	-563	-298	206	355	-1268	90	1738
1281/1	,	1	3	3	-7	52	-34	60	-67	-112	-173	-48	260	-110	531	174	-265	-285	-61	-99	710	-940	-545	-1342	-1524	-266
1281/2		-3	-3	-5	7	40	-46	-4	7	-12	-61	28	-20	-222	281	310	15	553	-61	-825	6	872	1285	-2	-1304	634
1281/3		-3	-3	-7	7	-58	32	-68	85	66	-41	82	-152	-186	293	152	-201	-55	-61	939	864	-502	1231	1226	926	-1496
1287/1	429/1	1	0	19	19	-11	-13	-44	-90	-163	-255	-68	-426	13	63	-124	642	605	-363	-91	-582	283		-1278	-480	
1290/1		2	3	5	-10	-50	22	-88	-86	-2	78	-88	-214	-334	-43	-250	386	354	-240	-604	840	-68	704	-12		-1570
1290/2		2	3	-5	-24	36	-54	26	104	-84	-30	-104	-206	-214	43	-276	-486	-484	322	-772	-760	110	48	-676	-446	58
1290/3		-2	3	-5	29	24	41	-60	-37	108	159	173	164	-171	43	42	-558	324	-127	-133	-330	173		-1080		-370
1290/4		-2 -2	-3	-5	-20	-29	-19	-75	-68	73	-232 -242	-267	-236	-317	-43	384	479	-672	284	-963	-948	-560	-240	561	-936	-179
1290/5		-2 1	-3 2	-5 5	-20 7	36	76	100	52	48	-242	-132 37	34 37	-102 -348	-43 -498	-316 -39	-266	828 90	-616 132	392 -609	652	1090 -393	-560 -610	1346	-756 -135	-814 1106
1295/1 1295/2		-2	1	-5	7	-18 -12	$\frac{17}{42}$	-44 38	150 -65	117 -145	214	-17	-37	330	352	215	-483 -488	-161	73	-530	-693 447		1160	-168 1349	-582	-324
1295/2		3	-4	-5 -5	7	68	2	58	-20	-200	114	168	-37	-350	172	160	282	-196	-902	-720	552		-1060	-956	-482	426
1296/1	324/1	0	0	3	4	24	-25	-21	52	-168	-177	124	-265	426	160	540	-258	-528	-505	244	-204	-397	-200	540	-453	290
1296/2	324/1	0	0	-3	4	-24	-25	21	52	168	177	124	-265	-426	160	-540	258	528	-505	244	204	-397	-200	-540	453	290
1296/3	648/1	0	ŏ	5	-36	64	-65	-59	28	160	57	-164	-321	246	8	84	-478	-32	415	220	884	-77	80	1268	-123	1346
1296/4	648/1	0	0	-5	-36	-64	-65	59	28	-160	-57	-164	-321	-246	8	-84	478	32	415	220	-884	-77	80	-1268	123	1346
1296/5	162/2	0	0	9	31	-15	-37	42	28	195	-111	205	-166	261	43	177	-114	159	191	421	156	182	-1133	-1083	1050	-901
1296/6	162/2	0	0	-9	31	15	-37	-42	28	-195	111	205	-166	-261	43	-177	114	-159	191	421	-156			1083		-901
1296/7	162/1	0	0	21	-8	-36	-49	21	112	-180	-135	-308	-1	-42	-20	-84	-174	-504	-385	-272	888	371	652	-84		-
1296/8	162/1	0	0	-21	-8	36	-49	-21	112	180	135	-308	-1	42	-20	84	174	504	-385	-272	-888	371	652	84		-1246
1300/1	260/1	0	2	0	4	18	-13	54	-70	66	-78	-46	358	-438	-98	300	-78	-114	-166	-788	-198	58	-340		-6	142
1300/2	52/1	0	3	0	11	-2	13	51	150	4	-118	-116	-63	-288	293	335	708	566	904	-382	7	-518	-100			
1300/3	1300/3	0	4 -4	0	-4 4	-6 -6	13 -13	116 -116	-70 -70	-102 102	-250	$\frac{340}{340}$	-30 30	58	384	-208 208	-366 366	-342 -342	-558 -558		-1008 -1008	-790 790			$1550 \\ 1550$	-1594 1594
1300/4 1300/5	1300/3	0	-4 5	0	16	-0 -27	-13	-33	41	-156	-250 -12	110	-92	58 -381	-384 412	-444	-222	-540	308	-875	480	571	404	1108 -63	-459	514
1300/6	1300/5	0	-5	0	-16	-27	13	33	41	156	-12	110	92	-381	-412	444	222	-540	308	875	480	-571	404	63	-459	-514
1302/1	1000/0	2	3	12	-7	-38	58	-22	66	96	104	-31	-32	62	102	356	508	318	-390	476	184	-202	632		-1350	-370
1305/1	435/2	1	o o	-5	4	36	-22	2	-56	40	-29	152	34	250	-412	120	762	188	-54	-244	-600	6	-640		-150	-1690
1305/2	145/1	-1	0	5	-14	-62	42	114	-70	-62	29	142	146	-162	352	444	238	-840	2	-154	-892	-38	1050		-1410	466
1305/3	435/1	2	0	-5	29	15	3	-121	-40	116	-29	-116	36	170	230	-231	-456	-576	342	-269	-302	-372	-348	512	-1525	-560
1305/4	435/3	-5	0	-5	16	44	78	-18	-28	-184	-29	-224	254	78	-260	-312	-574	-180	-610	-340	-296	394	-960	908	990	1234
1314/1	146/1	2	0	6	-8	8	-62	-10	28	-48	126	-280	-138	-74	304	-192	-82	-480	310	-204	-480	73	-120	168	-954	818
1314/2	438/1	-2	0	-12	16	10	40	94	160	24	-108	-268	90	-154	430	36	-56	-618	454	444	144	73	-480	-906		-1186
1320/1		0	3	-5	-26	11	50	136	-138	-96	96	-120	-134	432	62	-432	-194	588	-54	84	-880	-518		-1052		
1320/2		0	3	-5	28	-11	-12	-78	-122	80	-64	-220	-178	80	-84	-460	-482	-44	718	436	-528	496	-166		1146	854
1320/3 1323/1	900/9	0	-3 0	-5 0	8	11 0	36 19	86 0	86 -56	-40 0	-228 0	-60 19	-74 323	-236 0	$\frac{160}{449}$	36 0	494 0	-4 0	830 901	-732 -127	880	72 -1190		-1070 0	50 0	478 -1853
1323/1	900/9	0	0	0	0	0	-19	0	-56	0	0	-19	323	0	449	0	0	0	-901	-127		1190		0	0	1853
1323/2	900/9	0	0	0	0	0	89	0	56	0	0	-289	-433	0	71	0	0	0	719	1007		1190	503	0	0	-523
1323/4	900/17	0	0	0	ő	0	-89	0	-56	0	0	289	-433	0	71	0	0	0	-719	1007		-1190	503	ő	0	523
1323/5	189/2	ő	0	21	ŏ	21	-2	-42	-119	-147	-210	-65	-97	-399	92	252	672	-504	-632	650	-567	448	-484		-1407	-488
1323/6	189/2	0	0	-21	0	-21	-2	42	-119	147	210	-65	-97	399	92	-252	-672	504	-632	650	567	448	-484		1407	-488
1323/7	· .	3	0	6	0	-57	-62	12	124	156	261	109	368	-54	152	78	222	-285	712	170	396	475	-163	-27	-642	-1835
1323/8	1323/7	3	0	-6	0	-57	62	-12	-124	156	261	-109	368	54	152	-78	222	285	-712	170	396	-475	-163	27	642	1835
1323/9	189/1	3	0	12	0	12	61	117	-2	-75	3	-263	218	246	515	-318	-459	255	862	479	-117	430	-646	348	585	376
1323/10	27/1	3	0	-15	0	-15	-20	-72	-2	114	30	-101	-430	30	110	330	621	660	376	-250	-360	-785	488	-489	450	1105
1323/11	1323/7	-3	0	6	0	57	62	12	-124	-156	-261	-109	368	-54	152	78	-222	-285	-712	170	-396	-475	-163	-27	-642	1835
1323/12	$\frac{1323}{7}$ $\frac{189}{1}$	-3 -3	0	-6 -12	0	57	-62 61	-12 -117	124 -2	-156	-261	109 -263	$\frac{368}{218}$	54 -246	$\frac{152}{515}$	-78 318	-222 459	285 -255	$712 \\ 862$	$\frac{170}{479}$	-396	$475 \\ 430$	-163	27	642 -585	-1835 376
1323/13 1323/14	$\frac{189/1}{27/1}$	-3 -3	0	-12 15	0	-12 15	-20	72	-2 -2	75 -114	-3 -30	-263 -101	-430	-246	110	-330	-621	-255 -660	376	-250	$\frac{117}{360}$	-785	-646 488	-348 489	-585 -450	1105
1325/14	$\frac{27}{1}$ 53/1	-3 0	-1	0	-2	54	43	99	-61	-207	-99	-160	-430 7	-414	268	-270	-53	450	182	556	693	862	119		1350	187
1326/1	55/1	2	3	16	-26	-70	-13	17	-132	52	22	-194	108	-240	100	-364	-462	604	-350	-596	-910	392	512	1008	-690	-916
1326/2		-2	3	16	-20	58	-13	17	56	140	-110	-260	-58	496	300	14	158	-570	114	788	-474	-154	-832	1290	-764	-546
1326/3		-2	-3	8	-2	70	-13	17	-120	-76	-106	70	144	48	-500	52	18	164	-470	448	-266		-1192		-1398	656
1328/1	166/1	0	5	8	31	-3	-24	5	144	40	-71	215	-111	438	180	-534	738	79	-163	578	138	586	412	83	-1036	-1016
1330/1	· .	2	0	5	7	-20	-58	130	-19	-24	-266	-152	258	-458	-4	-120	226	-140	-634	276	-1100	-1046	108	-636	246	58

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1330/2		2	-4	5	-7	-35	15	103	19	97	-171	-78	-314	-83	-54	364	-268	-761	-499	-525	257	430	7	-391	-194	-1264
1330/3		-2	-7	5	7	43	35	-117	19	-60	-39	-12	-236	-116	-308	107	188	-538	274	-652	800	1154	1347	468	-710	401
1332/1	444/1	0	0	4	-25	-67	57	-27	-17	107	4	-274	-37	342	52	-82	-17	420	610	110	960		-1330	-51	533	178
1340/1		$0 \\ 2$	-4 7	-5 18	-16 20	-64 -11	$\frac{42}{47}$	106 -27	124 -76	-36 -108	-34 72	-8 65	210 89	378 -216	-20 -1	-396 -30	402 -357	428 -30	-830 61	-67 -376	-888 399	-990 -904	-456 -58	-964 1032	1290 486	-26 -205
1342/1 1344/1	168/1	0	3	2	20 7	-11	66	-21 -70	92	16	122	64	306	50	-20	-176	-526	-540	818	228	864	106	736	588		
1344/1	168/5	0	3	2	7	52	-86	-30	-4	-120	-246	-80	290	-374	164	-464	162	180	666	-628	-296	-518	1184	220		-1086
1344/3	42/2	ő	3	-2	7	-8	42	-2	-124	-76	-254	72	-398	462	212	264	162	-772	-30	-764	236	418	-552	1036		-1190
1344/4	21/1	0	3	4	-7	-62	62	84	-100	-42	10	-48	246	-248	-68	324	-258	-120	-622	-904	-678	-642	740	-468		
1344/5	168/3	0	3	-4	-7	26	-2	-36	76	-114	-6	-256	86	160	220	308	-258	-264	-606	520	-286	-530		-1012	768	222
1344/6	672/1	0	3	-6	7	4	46	-82	-84	44	-70	-152	146	94	-488	-32	562	476	-34	520	-36	-654	-608	-284	-954	-1694
1344/7	84/1	0	3	-6	7	-36	-62	114	76	-24	-54	-112	178	378	172	-192	402	-396	-254	1012	840	890	80		-1638	1010
1344/8	168/4	0	3 3	10	7 7	12	-30	34	-148	152	106	304	114	202 -478	-116	224	274	660	-382 -342	-12	-552	-614	880 -1360	108	-86	1426
1344/9 1344/10	$\frac{168/2}{84/2}$	0	3	10 -14	7	-52 4	10 -54	-54 -14	-52 92	$-48 \\ 152$	186 106	-224 144	-94 -158	-390	-316 -508	-256 528	66 -606	420 -364	-342 -678	668 844	272 8	-86 -422	-384	188 -548	-366 1194	1554 -1502
1344/11	168/6	0	3	16	-7	-18	54	-128	52	202	-302	200	150	172	164	460	190	96	-622	744	54	742	92	-228	-116	-554
1344/12	21/2	ő	3	18	7	36	34	42	124	0	-102	-160	-398	-318	268	240	498	132	-398	-92	-720		-1024	204	354	-286
1344/13	672/2	0	3	18	7	44	-58	-130	92	-84	250	72	354	334	-416	464	450	-516	-58	-656	940		-1072	660	1254	210
1344/14	42/1	0	3	-18	7	72	34	6	-92	-180	114	56	34	6	-164	168	-654	492	250	124	36	1010	56	-228	390	-70
1344/15	168/1	0	-3	2	-7	12	66	-70	-92	-16	122	-64	306	50	20	176	-526	540	818	-228	-864	106	-736	-588		
1344/16	168/5	0	-3	2	-7	-52	-86	-30	4	120	-246	80	290	-374	-164	464	162	-180	666	628	296		-1184	-220		-1086
1344/17 1344/18	$\frac{42}{2}$ $\frac{21}{1}$	0	-3 -3	-2 4	-7 7	8 62	42 62	-2 84	124 100	$\frac{76}{42}$	-254 10	-72 48	-398 246	462 -248	-212 68	-264 -324	162 -258	772 120	-30 -622	$764 \\ 904$	-236 678	418 -642	552 -740	-1036 468		-1190 -1266
1344/19	168/3	0	-3	-4	7	-26	-2	-36	-76	114	-6	256	86	160	-220	-308	-258	264	-606	-520	286	-530	44	1012	768	222
1344/19	672/1	0	-3	-6	-7	-4	46	-82	84	-44	-70	152	146	94	488	32	562	-476	-34	-520	36	-654	608	284	-954	-1694
1344/21	84/1	ő	-3	-6	-7	36	-62	114	-76	24	-54	112	178	378	-172	192	402	396		-1012	-840	890	-80		-1638	1010
1344/22	168/4	0	-3	10	-7	-12	-30	34	148	-152	106	-304	114	202	116	-224	274	-660	-382	12	552	-614	-880	-108	-86	1426
1344/23	168/2	0	-3	10	-7	52	10	-54	52	48	186	224	-94	-478	316	256	66	-420	-342	-668	-272	-86	1360	-188	-366	1554
1344/24	84/2	0	-3	-14	-7	-4	-54	-14	-92	-152	106	-144	-158	-390	508	-528	-606	364	-678	-844	-8	-422	384		1194	-1502
1344/25	168/6	0	-3	16	7	18	54	-128	-52	-202	-302	-200	150	172	-164	-460	190	-96	-622	-744	-54	742	-92	228	-116	-554
1344/26 $1344/27$	$\frac{21/2}{672/2}$	0	-3 -3	18 18	-7 -7	-36 -44	34 -58	42 -130	-124 -92	84	-102 250	160 -72	-398 354	-318 334	-268 416	-240 -464	$\frac{498}{450}$	-132 516	-398 -58	92 656	720 -940	-502 178	$1024 \\ 1072$	-204 -660	354 1254	-286 210
1344/28	42/1	0	-3	-18	-7	-72	34	-130	92	180	114	-56	34	6	164	-168	-654	-492	250	-124	-36	1010	-56	228	390	-70
1350/1	270/6	2	0	0	4	-42	-20	93	59	9	-120	47	262	-126	178	144	741	444	221	538	-690	1126	665	75	1086	-1544
1350/2	54/2	2	0	0	7	-60	79	-108	11	-132	-96	20	169	-192	-488	204	360	-156	83	-47	-216	511	-529		-36	-605
1350/3	270/2	2	0	0	-8	-18	-8	15	23	63	-156	-85	-74	-246	190	288	-177	-792	-907	322	270		-1123	-771	198	1192
1350/4	270/3	2	0	0	13	30	61	12	-49	18	186	-160	91	-378	268	144	570	-204	-877	187	606		1151	102	-984	265
1350/5	070/4	2	0	0	14	-22	-30	-7	-81	-151	270	-113	-88	-406	-442	-56	141	274	41	328	390		-1215	-505	-514	1816
1350/6 $1350/7$	$\frac{270/4}{1350/5}$	2 2	0	0	-14 -14	$\frac{3}{22}$	-47 30	39 -7	32 -81	99 -151	51 -270	83 -113	-314 88	-108 406	-299 442	-531 -56	-564 141	12 -274	$\frac{230}{41}$	268 -328	120 -390	-1106	-739 -1215	-505	-120 514	1642 -1816
1350/8	1330/3	2	0	0	19	-12	-50	-126	29	18	-102	-265	-65	-240	367	-72	-636	-102	-103	-328 52	582	-65	173	498	822	-821
1350/9	1350/8	2	0	0	-19	12	50	-126	29	18	102	-265	65	240	-367	-72	-636	102	-103	-52	-582	65	173	498	-822	821
1350/10	270/5	2	0	0	22	12	-38	-105	-157	-117	-66	-25	-314	504	-380	-252	3	318	293	322	120	-44	917		-1272	-1328
1350/11		2	0	0	23	-30	-34	42	-139	-192	-234	-55	191	-138	53	-366	330	396	23	452	-204	-691		-1098	816	905
1350/12	1350/11	2	0	0	-23	30	34	42	-139	-192	234	-55	-191	138	-53	-366	330	-396	23	-452	204	691		-1098	-816	-905
1350/13	54/1	$\frac{2}{2}$	0	0	-29	57	-20 70	-72 -27	-106 119	174	210	47	-2	6	-218 88	474	81	-84	56	142	-360 -900	1159	-160	735	954	-191 16
1350/14 $1350/15$	$\frac{270}{1}$ $\frac{270}{6}$	-2	0	0	34 4	48 42	-20	-27 -93	119 59	-51 -9	30 120	-133 47	-218 262	-156 126	88 178	-516 -144	-639 -741	654 -444	$\frac{461}{221}$	-182 538	-900 690	-704 1126	-1375 665		1116 -1086	-1544
1350/15	54/2	-2	0	0	7	60	-20 79	108	11	132	96	20	169	192	-488	-204	-360	156	83	-47	216	511	-529	1128	36	-605
1350/17	$\frac{34/2}{270/2}$	-2	0	ő	-8	18	-8	-15	23	-63	156	-85	-74	246	190	-288	177	792	-907	322	-270		-1123	771	-198	1192
1350/18	270/3	-2	0	0	13	-30	61	-12	-49	-18	-186	-160	91	378	268	-144	-570	204	-877	187	-606		1151	-102	984	265
1350/19	1350/5	-2	0	0	14	22	-30	7	-81	151	-270	-113	-88	406	-442	56	-141	-274	41	328	-390		-1215	505	514	1816
1350/20	270/4	-2	0	0	-14	-3	-47	-39	32	-99	-51	83	-314	108	-299	531	564	-12	230	268	-120		-739	1086	120	1642
1350/21	1350/5	-2	0	0	-14	-22	30	7	-81	151	270	-113	88	-406	442	56	-141	274	41	-328	390		-1215	505	-514	-1816
1350/22 $1350/23$	1350/8 $1350/8$	-2 -2	0	0	19 -19	12 -12	-50 50	$\frac{126}{126}$	29 29	-18 -18	102 -102	-265 -265	-65 65	240 -240	367 -367	72 72	636 636	102 -102	-103 -103	52 -52	-582 582	-65 65	173 173	-498 -498	-822 822	-821 821
1350/23 $1350/24$	$\frac{1350/8}{270/5}$	-2 -2	0	0	-19 22	-12 -12	-38	105	-157	-18 117	-102	-265 -25	-314	-504	-380	252	-3	-318	293	-52 322	-120	-44	917	-498	1272	-1328
1350/24	1350/11	-2	0	o	23	30	-34	-42	-139	192	234	-55	191	138	53	366	-330	-396	23	452	204	-691	-709	1098	-816	905
1350/26	1350/11	-2	0	ő	-23	-30	34	-42	-139	192	-234	-55	-191	-138	-53	366	-330	396	23	-452	-204	691	-709	1098	816	-905
1350/27	54/1	-2	0	0	-29	-57	-20	72	-106	-174	-210	47	-2	-6	-218	-474	-81	84	56	142	360	1159	-160	-735	-954	-191
1350/28	270/1	-2	0	0	34	-48	70	27	119	51	-30	-133	-218	156	88	516	639	-654	461	-182	900		-1375	-915		16
1352/1	104/2	0	1	7	21	-6	0	-115	46	144	-162	-180	-13	-192	-33	-383	288	-442	-680	722	207	-274	-936	1204	966	138

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1352/2	8/1	0	-4	2	-24	44	0	50	-44	-56	198	160	162	198	52	-528	-242	668	550	-188	-728	-154	-656	-236	-714	478
1352/3	104/1	Ő	5	-19	3	2	Ö	77	58	76	-6	292	-207	-240	-317	375	-692	-214	-488	-782	1057		892	-704	-6	-830
1352/4	,	0	8	9	4	20	0	75	40	-68	199	236	-355	393	-424	208	-161	44	799	-740	304	301	-412	1488	54	638
1352/5	1352/4	0	8	-9	-4	-20	0	75	-40	-68	199	-236	355	-393	-424	-208	-161	-44	799	740	-304	-301	-412	-1488	-54	-638
1358/1		-2	-8	20	-7	36	44	22	-62	128	152	-80	96	462	104	480	278	-338		-1042	4	22	336	-642	206	-97
1359/1	453/1	3	0	19	-32	7	-57	66	-90	195	267	21	190	-9	462	220	360	676	-166	101	-789	-188	-770	-952	1335	1058
1360/1	680/2	0	2	-5	22	18	-70	17	128	-194	210	222	-438	26	-220	-164	-434	-728	426	680	-394	-638	42	324	-266	898
1360/2 1360/3	680/1 340/1	0	-2 -2	5 5	-2 -2	14 30	-30 -62	17 17	-72 56	-178	238 206	-34	286 -194	242 -430	-52 -4	52 68	-306 206	-240	478 -290	-56	-722	218 314	930 -366	$\frac{332}{1276}$	982 86	1234 -1006
1360/3	$\frac{340/1}{170/1}$	0	-2 -4	-5	-2 4	12	-62 -58	17	50 52	110 -84	-246	-114 -68	-358	-430 -78	412	-408	750	-496 420	-190	-8 -596	798 -324	1010	-366	-588	-486	-718
1360/4	$\frac{170/1}{340/2}$	0	-4 5	-5 5	-2	-12	-13	17	-35	-30	-249	229	-124	-66	262	75	-543	225	-535	-386	-231	-547	376	-768	-537	1367
1360/6	85/1	ő	5	-5	22	-60	-31	17	61	78	69	31	56	-6	538	465	723	753	35	322		-1123	-488		1215	-601
1360/7	85/2	0	7	5	22	64	73	-17	49	-110	155	197	-372	-262	-258	13	-653	333	-355	-814	-47	-437	384	736	511	537
1360/8	170/2	0	-7	5	10	-24	41	-17	103	6	-45	-5	-196	210	58	171	3	-645	197	46	975	-637	-272	72	-609	-847
1360/9	680/3	0	8	-5	-12	34	-30	17	-32	-168	-62	-274	-314	282	-162	22	354	480	98	374	958	-762	830	-978	-578	-1006
1360/10	85/3	0	-10	5	22	30	-46	17	-104	-42	-66	-194	206	-126	388	540	78	-432	-610	-848	174	362	-398	-828	630	-1486
1365/1		1	-3	5	7	-52	13	82	-28	48	-154	200	-386	186	188	144	-466	780	230	76	192			-1428	234	-158
1365/2		1	-3	-5	-7	48	-13	-86	-4	-192	-134	-204	146	-306	-280	76	366	-364	-694	744	-80	-58	-384		1278	1078
1365/3		-1	3	5	-7	48	-13	110	44	-36	-250	264	-190	42	-208	-124	-162	460	338	300	-712	530	384		1122	1666
1365/4		-1	3 3	-5	7 -7	4	13	-106	68	-156	-86	212	-50	270	-76	384	-650	564	350	160	504	-698	-96	-84	-570	622
1365/5 1365/6		-1 -3	3	-5 5	- 1 7	60 -20	13 13	-50 -6	68 -4	12 -16	-30 94	-292 120	-106 -146	46 -54	$\frac{428}{276}$	-120 568	-258 302	-220 -196	-546 -650	$\frac{552}{404}$	0 -944	1038 802	16 -512	-476	886 -6	-218 1290
1370/1		2	4	5	-20	-28	22	2	-92	160	38	-68	110	-390	-452	376	-498	-620	-698	484	-876	-214	-300	-252		770
1380/1		0	-3	-5	-16	30	-28	78	-52	-23	-252	200	146	438	-46	588	438	-168	-586	-94	-30	-466	-520	708	-600	-340
1385/1		-3	1	5	17	-4	-48	87	20	5	-37	264	-366	-207	24	-381	-570	102	194	-9	450	-95	1264		-1357	1423
1386/1	154/1	2	0	1	-7	11	-8	-22	54	-213	-190	163	31	-110	4	80	566	-645	634	-729	-431	-918	-254	-904	-901	-89
1386/2	154/2	2	Ö	-2	-7	-11	26	46	-48	128	146	-128	-26	-10	52	544	-318	48	466	516	392	754	0		1590	1018
1386/3	462/4	2	0	7	7	-11	-67	-30	-7	-28	-121	-310	-71	180	-108	-71	-128	429	22	-803	-468	-117	-96	1122	1146	-92
1386/4	462/3	2	0	-11	-7	-11	-37	46	15	92	-205	142	-431	8	448	-149	672	615	322	-411	968	-227	0	1302	870	-1736
1386/5	462/2	2	0	14	-7	-11	38	-54	40	-8	170	92	294	258	-52	76	322	-260	22	-436	368	-2	-200	952		-1086
1386/6	462/1	2	0	21	7	11	65	54	65	-132	-39	-178	-439	-96	272	375	-612	507		-1087	0	-673			1350	-808
1386/7	462/6	-2	0	-1	-7	11	-43	-100	-87	58	223	88	37	-128	-458	341	342	105	190	-579	-128	-161	-396	420	798	1414
1386/8	154/4	-2	0	-3	7	11	-16	-6	14	51	-54	95	-193	-102	284	72	102	63	-790	-433	-135	-238	770	1008	639	11
1386/9 1386/10	462/7	-2 -2	0	-3 4	7 -7	11	$\frac{41}{62}$	-6 120	-43 118	-120 188	-111 -62	266 -322	-79 -198	-216	$\frac{284}{32}$	-213 326	$\frac{216}{482}$	-393 -400	350 70	821 -124	$\frac{264}{712}$	-865	-484 -1016		-330	980
1386/11	462/5 462/9	-2	0	13	-1 -7	11 -11	-67	-8	21	194	221	-322	-198	-48 -292	-458	-221	642	-273	-530	561	-604	703	552	-430 144	-442 -750	-966 -1370
1386/12	154/5	-2	0	14	7	11	-16	-108	116	-68	-122	-262	130	-204	-396	-166	-442	-702	196	-416	-492	408	600	1212		-482
1386/13	462/8	-2	0	17	7	11	-21	104	-161	-194	-9	-180	-363	108	-386	-333	122	-537	-950	-83	-180	177		-1112	394	826
1386/14	154/3	-2	Ö	-18	7	11	56	-36	-28	-180	54	-334	386	444	-316	402	486	282	380	176	324		-1144	-468		-1330
1392/1	174/3	0	3	-8	-19	9	17	-7	36	182	29	102	-166	-406	80	173	-68	-222	106	-681	286	358	-516			-1016
1392/2	174/5	0	3	-10	-7	63	-7	-89	78	52	-29	-192	200	166	356	-353	-154	-258	520	15	764	244	-186	1018	553	1294
1392/3	174/1	0	3	-14	21	-37	-87	119	50	-48	-29	-332	324	462	132	331	-222	-250	-308	-29	928	488	-190	522		-1566
1392/4	174/2	0	3	21	-19	38	-12	109	65	-108	-29	-72	-311	377	167	-349	338	155	802	856	-932	-222	-110	-168	-810	144
1392/5	174/4	0	-3	0	17	23	-63	19	8	-42	-29	198	-110	-514	404	-517	584	182	430	-365	34	-54	-236	-258	213	156
1392/6	348/1	0	-3	-9	-21	66	-72	-25	-137	112	29	-88	-375	-397	-87	327	182	-449	-510		-144		-1174	528	986	360
1392/7 1394/1	174/6	0 2	-3 -1	-18 -6	29 1	49 12	-15 28	101 17	110 46	-84 -106	$\frac{29}{217}$	-132 40	-404 -394	10 41	$\frac{224}{277}$	313 -294	-374 -6	394 -191	-56 170		-1120 -1065	420 594	1018 -821	-1230 -629	-45 -918	270 -1634
1395/1		1	0	-0 5	5	-59	8	42	107	141	-252	-31	-394 76	-60	-27	-294	437	-688		-1030	-279	-537	1057	726	-339	1392
1395/1	465/3	1	0	-5	7	-59 41	-18	8	-95	25	-264	31	-220	-60 96	-147	490	-117	586	-230	-334	1059	-187	1057		-339	54
1395/3	400/0	1	0	-5	7	-43	60	14	67	-113	-24	31	224	-48	69	136	159	376	250	-238	-357	-457		-1166		-1584
1395/4	1395/3	-1	ő	5	7	43	60	-14	67	113	24	31	224	48	69	-136	-159	-376	250	-238	357	-457		1166		-1584
1395/5	155/1	-1	Ö	5	16	-2	-48	94	-140	68	-300	31	296	138	-318	224	-312	-160	-128	716	-912	182	-180		1190	126
1395/6	1395/1	-1	0	-5	5	59	8	-42	107	-141	252	-31	76	60	-27	0	-437	688	-138	-1030	279	-537	1057	-726	339	1392
1395/7	465/2	3	0	5	-24	38	-18	44	-136	62	296	-31	-278	210	476	276	-10	632	-732	316	-984	-12	1196	-24	738	238
1395/8	465/1	4	0	-5	22	20	-72	80	40	112	258	31	-364	114	468	-206	384	40	586	398	804	8	-600	172	838	-1026
1400/1	280/1	0	1	0	-7	-39	17	15	74	14	-237	-180	318	-348	22	193	208	452	340	408	528	554	539	-164	-576	827
1400/2	56/2	0	2	0	7	24	68	-54	-46	-176	-174	-116	-74	-10	480	572	162	-86	-904	-660	1024	-770	-904	-682	-102	218
1400/3	280/3	0	4	0	-7	20	10	14	12	-104	-122	224	-158	378	-404	-112	-270	324	-186	-156	-360	102		-1068		-866
1400/4	900 / 4	0	5	0	7	11	-46	127	117	80	34	-292	-376	507	32	-134	612	780	-426	-207	702	1185	54	-309	-339	182
1400/5	280/4	0	-5	0	7	-39	19	37	-18	90	99	-32	-46	-248	-178	-429	652	40	-36	348		1190	699	116	-704	-223
1400/6 1400/7	1400/4	0	-5 -6	0	-7 7	11 56	$\frac{46}{28}$	-127 90	$\frac{117}{74}$	-80 96	34 -222	-292 -100	376 -58	$\frac{507}{422}$	-32 -512	134 -148	-612 642	780 -318	-426 720	$\frac{207}{412}$	702 448	-1185 -994	54 -296	309 -386	-339	-182 138
1400/7	56/1	U	-0	U	- 1	90	40	90	14	90	-222	-100	-08	422	-012	-148	042	-918	120	412	448	-994	-290	-300	-6	190

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1400/8	280/2	0	-7	0	-7	9	-23	-41	34	6	131	4	-26	-260	190	-167	368	324	-164	-200	784	410	1211	1132	-72	707
1404/1	,	0	0	6	23	-45	13	132	-160	-123	-141	-235	-169	306	197	-312	249	-735	104	32	-876	-364	200	195	1185	-1636
1404/2	1404/1	0	0	-6	23	45	13	-132	-160	123	141	-235	-169	-306	197	312	-249	735	104	32	876	-364	200			
1406/1		2	1	6	-13	30	-1	-87	19	33	27	38	37	-162	-394	144	-291	-633	218	-307	438	-787	170	-204	-690	176
1410/1		2	-3	5	2	-30	43	-70	-106	41	-50	106	-76	-24	-493	47	-418	383	-149	436	315	-879	1141	900	-63	-1050
1410/2		2	-3	-5	-12	34	8	-58	40	-136	182	-110	-82	228	288	-47	-338	564	218	-304	-392	-842	-28	-464	-746	-98
1414/1		2	-10	-15	-7	0	-93	17	-33	-33	-300	-237	-126	-120	-328	-397	-476	378	534	-120	-393	2		-1454	0	-322
1420/1 $1421/1$	002/0	0	-1 4	5 -14	-31 0	30 -28	-9 -70	78 14	-31 -140	$-47 \\ 72$	-146 29	-149 -208	-426 254	-174 -186	165 -444	163 160	-258 270	738 684	-18 -86	-406 -708	-71 280	1051 -506	$\frac{262}{480}$	308 1060	-519 -810	1094 -1314
$\frac{1421/1}{1421/2}$	$\frac{203/2}{203/1}$	4	-8	-14	0	-28 2	26	80	-128	0	29	-160	-274	36	246	244	114	420	-188	624	$\frac{280}{1120}$	352	438	676	336	216
1421/2	203/1	2	0	-4	-12	-14	86	-70	36	-78	-110	152	-194	382	-68	-132	-262	544	438		-1076	-774	-79		-1092	46
1422/1	158/1	2	0	9	9	8	-47	-84	-150	2	-180	-328	-346	268	328	351	-498	-365	492	784	-897	378	79		1255	1129
1422/3	474/1	2	Ö	-18	9	35	7	-111	66	-133	279	-220	-76	-2	463	-432	42	418	-372	622	-438	-297	79	-167	-932	-1625
1422/4	1422/1	-2	0	4	-12	14	86	70	36	78	110	152	-194	-382	-68	132	262	-544	438	-220	1076	-774	-79	366	1092	46
1422/5	474/2	-2	0	6	-27	-23	-53	-45	-102	-35	177	-268	200	386	-497	-168	486	-718	444	838	-42	831	79	827	-868	-1481
1424/1	89/1	0	-2	2	4	56	-16	-30	50	92	204	-324	-20	270	-86	0	534	206	-672	576	352	-338	336	-630	89	-1506
1424/2	89/2	0	7	11	-8	32	-4	39	59	83	66	279	-350	-78	-71	258	597	572	-420	30	-230	-497	714	420	89	1833
1425/1		1	3	0	-4	-68	82	86	19	-18	30	-298	-34	52	482	-114	362	-210	-718	-904	-988	-488	-530	1032	-880	246
1425/2	57/1	1 -1	-3	0	20 4	-4 -68	76	-22 -86	-19	-82 18	242	-126 -298	180	-390 52	-308	$\frac{522}{114}$	70	188	-706 -718	-104 904	-432	-718	94	1296	846	-830
1425/3	1425/1	-1 2	-3 -3	0	-9	-62	-82 38	-86 -76	19 -19	-42	30 -259	-298 -120	34 -230	$\frac{52}{455}$	-482 -340	$\frac{114}{224}$	-362 -61	-210 -119	-113	468	-988 995	488 -271	-530 318	-1032 -336	-880 -945	-246 -872
1425/4 $1425/5$	1425/4	-2	-3 3	0	-9 9	-62	-38	-76 76	-19 -19	-42 42	-259 -259	-120	230	$\frac{455}{455}$	340	-224	-61	-119	-113	-468	995 995	$\frac{-271}{271}$	318	-336 336	-945 -945	-872 872
1425/6	285/1	3	3	0	-32	-12	10	30	19	48	150	224	-254	-54	196	504	-78	132	230	-740	-120	-122	1184	-612	1050	1006
1428/1		0	3	-2	7	20	-58	17	12	120	-138	160	446	-198	516	16	-514	228	246	76	520	-454	48	940	970	-1374
1428/2		0	3	3	7	21	-43	-17	-130	102	-66	-232	-211	324	-169	-408	-321	12	398	581	-180	-217	-487	-687	417	659
1428/3		0	-3	9	7	-51	-31	-17	-163	153	102	200	146	135	209	-108	168	24	-58	-664	-72	566	980	-930	864	980
1430/1		-2	4	5	-32	-11	13	42	-28	176	206	-328	-290	314	-188	-600	398	-612	-322	196	912	562	-96	1180	298	-1118
1431/1	1.401./1	3	0	-9 9	-4	-15	2 2	-24	17	48	24 -24	8	-379	-177	464	579	53	327	-142	1019	708	452	-721	1386		-85
1431/2 $1435/1$	1431/1	-3 4	8	-5	-4 7	15 60	56	24 4	17 -36	-48 22	-142	$\frac{8}{204}$	-379 -18	$\frac{177}{41}$	$\frac{464}{362}$	-579 8	-53 -88	-327 336	-142 134	1019 -44	-708 848	452 -750	-721 -824	-1386 -126	1548 2	-85 -1352
1440/1	160/1	0	0	-5 5	6	-60	50	30	40	-178	-166	204	10	250	142	-214	-490	800	250	-774	-100		-1320	-982	-874	-310
1440/2	160/1	ő	ő	5	-6	60	50	30	-40	178	-166	-20	10	250	-142	214	-490	-800	250	774	100	-230	1320	982	-874	-310
1440/3	480/2	0	0	5	8	4	-6	2	16	-60	142	176	-214	278	68	116	350	684	-394	-108	-96	-398	-136	436	750	82
1440/4	480/2	0	0	5	-8	-4	-6	2	-16	60	142	-176	-214	278	-68	-116	350	-684	-394	108	96	-398	136	-436	750	82
1440/5	480/1	0	0	5	12	20	-58	70	-92	-112	-66	-108	-58	-66	-388	408	-474	540	14	-276	96	-790	308	1036 -		1426
1440/6	480/1	0	0	5	-12	-20	-58	70	92	112	-66	108	-58	-66	388	-408	-474	-540	14	276	-96	-790		-1036 -		1426
1440/7 1440/8	1440/7	0	0	5 5	30 -30	-50 50	-88 -88	-74 -74	140 -140	-80 80	$\frac{234}{234}$	0	116 116	72 72	280 -280	-120 120	$\frac{498}{498}$	870 -870	650 650	420 -420	-1020 1020	-322 -322	160 -160	980 -980	1124 1124	1114 1114
1440/8	480/4	0	0	-5	-30	40	-90	70	-40	108	-166	40	-130	310	268	-556	370	240	-130	-876	-840	250	880	-188		
1440/10	480/4	0	0	-5	-4	-40	-90	70	40	-108	-166	-40	-130	310	-268	556	370	-240	-130	876	840	250	-880	188	726	-1550
1440/11	480/5	0	Ö	-5	12	-24	38	6	-104	100	-230	56	190	-202	148	124	-206	-128	190	204	-440	1210		-1412	214	1202
1440/12	480/5	0	0	-5	-12	24	38	6	104	-100	-230	-56	190	-202	-148	-124	-206	128	190	-204	440	1210	816	1412	214	1202
1440/13	480/6	0	0	-5	16	-24	-14	18	36	-104	250	-28	-54	-354	228	-408	-262	64	374		-1016	274	788	396		
1440/14	480/6	0	0	-5	-16	24	-14	18	-36	104	250	28	-54	-354	-228	408	-262	-64	374	-300	1016	274	-788	-396	-786	-1086
1440/15	1440/7	0	0	-5	30 -30	50 -50	-88	$\frac{74}{74}$	140	-80	-234 -234	0	116	-72 -72	280 -280	120 -120	-498 -498	-870 870	650 650	420 -420	1020 -1020	-322 -322	160 -160		-1124 -1124	1114
1440/16 $1440/17$	$\frac{1440/7}{480/3}$	0	0	-5 -5	-30 32	-50 -64	-88 -6	-38	-140 -116	-80 120	-234 122	164	116 146	-72 238	-280 -148	-120 184	-498 -470	$\frac{870}{216}$	806	-420 -732	-1020	-322 -638	-160 596	980 - 884	-930	$\frac{1114}{322}$
1440/17	480/3	0	0	-5 -5	-32	64	-6	-38	116	-120	122	-164	146	238	148	-184	-470	-216	806	732	264	-638	-596	-884	-930	322
1444/1	100/0	0	7	2	-11	22	-7	-33	0	-131	-119	-182	-322	308	118	264	385	-833	688	-749	504	-275	924	770	-210	-588
1444/2	1444/1	0	-7	2	-11	22	7	-33	ő	-131	119	182	322	-308	118	264	-385	833	688	749	-504	-275	-924	770	210	588
1445/1	,	-1	8	5	14	-20	-58	0	-80	-118	126	70	-134	100	-272	-464	-642	180	-110	-924	90	828	1334	-552	1490	1376
1445/2	1445/1	-1	-8	-5	-14	20	-58	0	-80	118	-126	-70	134	-100	-272	-464	-642	180	110	-924	-90		-1334		1490	-1376
1445/3	85/1	3	5	5	22	-60	-31	0	-61	78	-69	31	-56	6	-538	-465	723	-753	-35	-322	99	1123	-488	-852	1215	601
1445/4	85/2	3	7 -10	-5	22 22	64 30	73 46	0	-49 104	-110	-155 66	197	372 -206	$\frac{262}{126}$	258 -388	-13 -540	-653	-333 432	$\frac{355}{610}$	814 848	$-47 \\ 174$	437 -362	384 -398	-736 828	511	-537 1486
1445/5 1445/6	85/3	3 -3	-10 2	-5 5	22 5	30 17	-46 1	0	-76	-42 -7	86	-194 178	-206 -6	266	-388 -138	-540 305	78 -197	213	-112	-794	$174 \\ 1190$	-362 982	-398 -162	-718	630 -107	714
1445/6	1445/6	-3	-2	-5	-5	-17	1	0	-76 -76	7	-86	-178	-0 6	-266	-138	305	-197	213	112		-1190	-982	162	-718	-107	-714
1445/8	5/1	-4	-2	5	-6	-32	-38	0	100	78	50	108	-266	-22	442	-514	2	500	518	126	-412	878	-600	282	-150	-386
1449/1		3	0	3	7	-30	11	78	74	23	9	56	-169	225	47	255	-102	24	722	884	90	578	-484		1416	1019
1449/2	1449/1	-3	0	-3	7	30	11	-78	74	-23	-9	56	-169	-225	47	-255	102	-24	722	884	-90	578	-484		-1416	1019
1450/1	290/4	2	-2	0	32	12	-22	-104	12	-212	-29	52	0	-354	-526	58	-314	-692	730	140	696	404	116	172	-42	-176
1450/2	58/1	2	-7	0	2	37	-27	-24	-88	28	-29	-143	360	386	-381	103	431	288	-840	180	706	-716	931	-1188	-642	-486

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1450/3	290/3	-2	0	0	20	-52	42	22	28	-36	29	24	266	-38	-88	-188	194	-460	-314	-896	-416	606	992	24		-1626
1450/4	290/2	-2	2	0	-12	-48	2	24	-48	-8	-29	-328	280	-154	206	102	-546	548	50	480	816	-124	296		1558	-304
1450/5	290/1	-2	-2	0	24	12	18	44	-100	68	-29	172	-156	22	18	114	518	100	282	204	-768	-32		-1332	-530	804
1450/6	58/2	-2	7	0	18	27	57	44	152	152	-29	-173	120	-314	-339	357	59	-572	-420	-660		-1004	361	168	58	1206
1452/1		0	3	4	19	0	-54	-4	-1	-214	-102	-225	27	-174	-76	234	-26	-354	-403	-317	-96	-117	1249	946	-916	541
1452/2	1452/1	0	3	4	-19	0	54	4	1	-214	102	-225	27	174	76	234	-26	-354	403	-317	-96		-1249	-946	-916	541
1452/3	4 4 5 0 10	0	3	-9	20	0	-37	-9	-64	72	63	152	-181	-333	128	-468	-117	504	-442	-772	216	650	-196			-1357
1452/4	1452/3	0	3	-9	-20	0	37	9	64	72	-63	152	-181	333	-128	-468	-117	504	442	-772	216	-650		-1368		-1357
1452/5	132/4	0	3	10 -18	-8	0	-18 10	-46 -18	-40 100	$\frac{44}{72}$	-186	-72 -16	-114	-174 -90	416	-156	-62	-348	446	-956 332	-444 -360	-306 -26	664	124		1522
1452/6 1452/7	$\frac{12/1}{132/1}$	0	3 -3	-18	-8 -2	0	88	-18 66	40	6	234 54	-16	-226 -106	-90 -354	-452 124	432 546	414 -408	-684 552	-422 -404	332 -4	126	-26 166	-512 874	1188 -444	1002	-1054 -802
1452/8	$\frac{132}{1}$	0	-3 -3	-12	-14	0	-56	-42	-116	-30	-198	-88	350	-198	-56	-594	-204	-312	-620	356	-462	-482	238	-444		-1426
1452/9	132/2	0	-3	22	20	0	-22	-110	-48	72	142	184	-194	482	80	392	-34	-108	-382		-1040	606	1292	-356	-406	1090
1455/1	132/3	-1	3	5	-2	48	-46	-114	-66	174	-34	100	-446	382	-440	-212	194	542	602	-254	798	-290	-476	-978	1478	97
1456/1	364/3	0	0	17	7	50	-13	-108	9	19	23	173	156	426	59	311	-165	856	-626	-334	-472	-253	1051	-405	915	719
1456/2	182/2	0	2	-5	7	36	-13	26	47	99	-61	23	-50	70	19	-191	195	-264	310	190	166	873	1191	-259	-635	133
1456/3	364/2	0	-4	-19	-7	-38	-13	120	7	9	171	-313	160	354	197	-67	-617	-40	-90	-490	540	275		-1291	627	-89
1456/4	182/3	0	-5	16	-7	15	-13	-44	138	-111	-12	-215	55	-133	180	-471	-260	-110	-271	799	-912	747	883	924		-1407
1456/5	182/1	0	-7	0	-7	-39	13	24	-38	-39	-96	-227	425	-105	-344	-99	-540	-114	-565	385	156	-673	-749	1044	-690	317
1456/6	364/1	0	-7	-8	7	57	-13	44	110	-21	-28	71	43	-113	-212	175	-348	-546	529	-527	448	63	-135	1340	-866	-1163
1456/7	182/4	0	8	3	-7	54	13	-96	151	-33	183	331	-88	-42	-353	465	195	-552	470	-254	-132	-943	727	1197	753	1037
1462/1		2	5	-15	4	8	-23	17	84	-44	-30	126	-281	-4	43	-553	233	-621	-529	-679	-941	-645	1250	581	-136	-248
1467/1	489/1	3	0	17	-1	-18	-47	-54	144	-27	-67	-243	-98	81	-149	-584	198	-302	-270	-746	922	-218	820	-355		-1193
1470/1	210/10	2	3	5	0	-4	42	86	96	-96	-78	-80	50	26	-32	20	-382	-356	134	888	868	70		1052		-1202
1470/2		2	3	5	0	-4	-77	-26	-121	-166	6	235	-419	-128	-291	-442	276	-706	442	531	1036	427	1317		-38	-866
1470/3	240.10	2	3	5	0	-15	-77	96	37	-99	240	166	335	-21	-40	639	153	684	-488	608	198	-338	-736	0	1290	1456
1470/4	210/9	2	3	5	0	24	-14	-54	-44	156	174	88	-34	138	164	216	318	204	442	-316	-252		-1000	-516	522	310
1470/5	010/0	2	3	-5	0	-6	-19	12	119	-12	-252	251	359	54	-37	-246	552	408	386	-811	-54	173	1061	1206	672	818
1470/6 1470/7	210/8	2 2	3	-5 -5	0	16 -19	-58 33	-34 64	-64 -141	-16 -51	$\frac{62}{216}$	-60 290	150 -109	$-474 \\ 457$	-292 184	-240 313	-662 -319	$\frac{324}{44}$	514 -368	-372 216	-412 -314	770 602	-560 112		-1466 -1018	178 584
1470/7		2	3	-5 -5	0	-20	-26	26	42	-194	-42	-274	-109	250	-296	328	-148	-488	-272	210	-684	-310	-584	-404	266	678
1470/8	1470/5	2	-3	-5 5	0	-6	19	-12	-119	-12	-252	-251	359	-54	-37	246	552	-408	-386	-811	-54	-173	1061		-672	-818
1470/10	1470/7	2	-3	5	0	-19	-33	-64	141	-51	216	-290	-109	-457	184	-313	-319	-44	368	216	-314	-602	112	-712	1018	-584
1470/11	1470/8	2	-3	5	ő	-20	26	-26	-42	-194	-42	274	2	-250	-296	-328	-148	488	272	8	-684	310	-584	404	-266	-678
1470/12	30/2	2	-3	5	Õ	-48	-2	114	-140	72	210	-272	-334	198	-268	-216	-78	-240	-302	596	-768	478	-640	348	-210	1534
1470/13	210/7	2	-3	5	0	56	-54	-94	-36	-84	-258	40	-178	146	148	200	-130	-188	-94	-444	532	-770	-536		1090	-1274
1470/14	1470/2	2	-3	-5	0	-4	77	26	121	-166	6	-235	-419	128	-291	442	276	706	-442	531	1036	-427	1317	1188	38	866
1470/15	1470/3	2	-3	-5	0	-15	77	-96	-37	-99	240	-166	335	21	-40	-639	153	-684	488	608	198	338	-736	0	-1290	-1456
1470/16		-2	3	5	0	-4	-62	70	-6	-70	-162	62	218	-130	232	-304	-380	-376	-56	-952	708	-682	-632	-244	1198	-1206
1470/17	210/1	-2	3	5	0	12	-2	18	-56	-156	-186	52	-178	138	-412	456	-198	-348	-110	-196	-936	-542	992	276	-630	-110
1470/18		-2	3	5	0	-32	15	-70	15	-42	90	-85	113	164	169	326	-44	-782		1071	344	431	397	680	1534	
1470/19		-2	3	5	0	33	-37	60	119	75	-144	-46	-199	-135	260	183	411	492	-460	980	-306	-934	-604	108		
1470/20	010 /0	-2	3	-5	0	-2	-47	0	39	80	56	19	131	-310	-265	218	296	92	-870	-255	-426	1161		-1022	-236	-862
1470/21	$\frac{210/3}{210/2}$	-2 -2	3	-5	0	12	58	-42	60	24	294	-128	-58	-282	428	-384	-138	-468	250	-556	624	958	632	-84	-810	790
1470/22 1470/23	$\frac{210/2}{210/5}$	-2 -2	3 -3	-5 5	0	-44 0	-54 -26	-98 -18	60 -92	-144 0	-210 -6	208 4	-226 410	502 -174	$\frac{484}{248}$	232 -420	-530 102	764 588	-814 -650	$\frac{60}{152}$	848 -168	958	-152 -1048	-308 684	1094 834	-554 -110
1470/23	1470/20	-2 -2	-3 -3	5 5	0	-2	-26 47	-18	-39	80	-6 56	-19	131	310	-265	-420	296	-92	-650 870	-255		-1161	-1048	1022	236	862
1470/24	210/6	-2	-3 -3	5	0	28	86	66	48	140	-34	284	-346	$\frac{310}{274}$	-205	448	-94	-308	-510	-156		1170	16	-772		-110
1470/26	1470/16	-2	-3	-5	0	-4	62	-70	6	-70	-162	-62	218	130	232	304	-380	376	56	-952	708	682	-632		-1198	1206
1470/27	210/4	-2	-3	-5	0	28	-54	46	-12	-70	6	-296	134	-146	556	448	46	-748	50	-156		310	856	628	590	
1470/28	1470/18	-2	-3	-5	ő	-32	-15	70	-15	-42	90	85	113	-164	169	-326	-44	782		1071	344	-431	397		-1534	
1470/29	1470/19	-2	-3	-5	ō	33	37	-60	-119	75	-144	46	-199	135	260	-183	411	-492	460	980	-306	934	-604	-108		-1808
1470/30	30/1	-2	-3	-5	0	-60	34	-42	76	0	6	232	134	-234	-412	360	222	-660	490	812	120	-746	152	804	678	-194
1472/1	46/1	0	1	10	-12	42	-7	20	-106	23	227	67	-74	-497	88	215	-314	-176	298	-266	-981	-411	806	952	-1332	-1328
1472/2	46/1	0	-1	10	12	-42	-7	20	106	-23	227	-67	-74	-497	-88	-215	-314	176	298	266	981	-411	-806		-1332	
1472/3	184/2	0	4	-22	8	20	-22	98	12	23	10	192	106	186	-332	-544	-390	716	-110	-836	-280	-486	288	-180		-1262
1472/4	184/2	0	-4	-22	-8	-20	-22	98	-12	-23	10	-192	106	186	332	544	-390	-716	-110	836	280	-486	-288	180		-1262
1472/5	23/1	0	5	6	-8	-34	57	-80	70	23	-245	103	298	95	-88	-357	414	408	-822	-926	335		-1322	36	-460	-964
1472/6	23/1	0	-5	6	8	34	57	-80	-70	-23	-245	-103	298	95	88	357	414	-408	-822	926	-335	-899	1322	-36	-460	-964
1472/7	184/1	0	8	4	4	26	-70	94	54	23	86	144	172	-42	386	80	108	164	400	398	320	-810	204	102		-1370
1472/8	184/1	0	-8	4	-4	-26	-70	94	-54	-23	86	-144	172	-42	-386	-80	108	-164	400	-398	-320	-810	-204		1018	
1472/9	46/2	0	9	20	2	52	-43	-50	74	-23	7	-273	4	123	152	75	-86	444	-262	-764	-21	681	426	-902	-1272	-342

1	evel/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
	1472/10	46/2	0	-9	20	-2	-52	-43	-50	-74	23	7	273	4	123	-152	-75	-86	-444	-262	764	21	681	-426		-1272	-342
	1476/1	492/1	0	0	-5	-26	-34	-85	-97	-79	-186	168	271	-2	-41	268	-84	-378	-337	-358	279	-837	705		-1293	347	694
	1476/2	492/2	0	0	12	10	41	58	53	56	162	-1	-15	-363	-41	-91	195	670	192	193	-646	-891	-35	-426	-728	-294	188
	1479/1		0	3	12	-1	-36	-53 -62	17	39	160	29 -29	-94 -278	219 -266	-373	-239	409	-733	-432 30	$\frac{381}{422}$	-598	-921	-251	508	726	884	1654
	1479/2 $1482/1$		-1 -2	-3 -3	-14 -14	4 -26	12 2	-62 -13	-17 -11	110 19	-62 -127	130	-278 87	-200 79	$\frac{102}{407}$	178 -507	-336 314	-372 378	105	647	-776 699	-838 232	108 -322	$\frac{210}{140}$	-562 -942	$\frac{250}{210}$	-1036 -1031
	1482/1		-2 -2	-3	-14	-20	-9	-13 -13	-63	-19	-127	-100	-2	-188	-322	149	-339	368	-572	-641	-754	-204	-341	-398	-942 -964	-914	1460
	1484/1		0	4	-13	7	15	-28	33	32	-27	-96	221	-160	-30	305	-384	53	-153	-862	-292	852	-802	-487		-1569	-403
	1484/2		ő	-6	4	-7	-40	-92	-66	-98	40	-30	-72	-302	402	-432	-252	53	266	-12	-460	200	-786	-344	-770	290	-98
	1485/1		3	0	5	-1	-11	74	30	-133	-69	120	-193	-115	3	362	-96	-678	-117	605	-241	-834	-427	68	-132	252	-1522
	1485/2		3	0	5	-16	11	26	54	62	42	-162	-226	107	315	-307	-438	-96	-18		-1024	-633	-943	-559	324	588	326
	1485/3		3	0	-5	-25	-11	-16	-9	20	33	-177	-178	209	231	-7	-303	-414	735	326	182	540	542	155	768	-756	1217
	1485/4	1485/3	-3	0	5	-25	11	-16	9	20	-33	177	-178	209	-231	-7	303	414	-735	326	182	-540	542	155	-768	756	1217
	1485/5	$\frac{1485}{1}$ $\frac{1485}{2}$	-3 -3	0	-5 -5	-1 -16	11 -11	$\frac{74}{26}$	-30 -54	-133 62	69 -42	-120 162	-193 -226	-115 107	-3 -315	362 -307	96 438	678 96	117	605 -385	-241 -1024	834 633	-427 -943	68 -559	132 -324	-252 -588	-1522 326
	1485/6 $1488/1$	186/1	-3 0	3	-5 3	-16 7	-11	20	120	115	138	-168	-220	-376	-159	448	-264	564	18 135	416	268	579	-943 92	430	-342	522	1001
	1488/2	186/5	0	3	-7	3	18	-52	-60	119	20	178	31	58	-285	-230	-164	180	-351	288	-324	65	-386	758	-814	594	-1615
	1488/3	93/1	ő	3	-9	34	-33	65	-21	97	84	48	-31	146	-378	-182	501	-402	-102	209	835	105		-1109		-1638	-1483
	1488/4	744/1	0	3	14	24	4	46	-30	116	-168	254	31	22	-70	212	-256	-122	-660	750	804	-792	-934	-576	44	970	1346
	1488/5	186/6	0	-3	-1	6	-39	89	27	23	68	64	31	-206	-138	-218	379	630	366	-279	-123	-121	-674	965	-493	570	-1003
	1488/6	186/2	0	-3	-11	-9	30	-16	-60	11	16	-130	31	-266	-273	22	188	-156	9	312	-324	-647	730	-538	-518	714	113
	1488/7	186/3	0	-3	-11	22	-63	15	95	11	-108	56	-31	230	378	-102	157	-466	-270	591	513	-647	-262	175	443	714	485
	1488/8	186/4	0	-3	15	-17	-24	2	-48	115 7	-30	264	-31	-160	-51 9	-128	-480	132	-309	-280	604	159	-652	838	690	-534	329
	1488/9 $1494/1$	$\frac{186/7}{166/1}$	-2	-3 0	-21 -8	19 -31	12 -3	-34 -24	-72 -5	-144	30 40	-84 71	-31 -215	380 -111	-438	268 -180	480 -534	276 -738	-309 79	-712 -163	-116 -578	783 138	1040 586	-386 -412		-1446 1036	1625 -1016
	1494/1	100/1	2	5	-0	-31 -7	-33	31	12	-103	-83	-266	130	-259	453	-504	504	381	-264	-87	-178	280	152	-379	-396		-1404
	1498/2		2	-7	-12	7	-47	21	16	37	15	106	306	281	-349	-386	-352	-271	218	455	796	-1044	350	951	968	345	-890
	1504/1		0	4	8	16	-42	20	-66	-54	92	-52	-212	194	-170	-278	47	-30	56	-526	-226	264	74	-480	-620	-522	1346
	1504/2	1504/1	0	-4	8	-16	42	20	-66	54	-92	-52	212	194	-170	278	-47	-30	-56	-526	226	-264	74	480	620	-522	1346
	1510/1		2	1	5	-4	9	-31	30	-97	63	177	-31	-226	-300	62	-186	-522	-297	-70	-439	-6	101	-220	237		
	1512/1	1510/1	0	0	4	7	12	27	-61	-62	13	19	-329	42	-310	491	-290	373	-111	-254	-297	-93	-254	-614	1380	-1	-488
	1512/2 $1512/3$	1512/1	0	0	-4 7	7 7	-12 57	27 42	61 -70	-62 79	-13 169	-19	-329 145	$\frac{42}{279}$	310 -13	491 -268	290 -68	-373 112	111 -288	-254 -8	-297 -894	93 189	-254 88	-614 -236	-1380 -318	1 803	-488
	1512/3 $1512/4$	1512/3	0	0	-7	7	-57	42	70	79	-169	-50 50	145	279	13	-268	-08 68	-112	288	-8	-894	-189	88	-236	318	-803	-8 -8
	1512/4	1012/0	0	0	16	7	48	-39	11	-74	25	265	91	-54	-22	173	310	-113	639	478	-831	-729		-1046	60	191	1576
	1512/6	1512/5	ő	Ö	-16	7	-48	-39	-11	-74	-25	-265	91	-54	22	173	-310	113	-639	478	-831	729		-1046	-60	-191	1576
	1518/1	,	2	3	3	5	11	-49	-123	-136	-23	-159	155	-241	-354	-178	555	-66	-504	848	-31	1155	-478	1025	642	1584	-1738
	1518/2		2	3	-3	1	-11	17	-79	-126	23	45	-119	75	-148	-198	-329	442	-288	394	211	415	232	457		-1428	-20
	1518/3		2	-3	-2	-8	11	-74	62	36	-23	134	-176	262	82	28	56	182	180	-38	-348	1096	-78	472	1268	-406	1258
	1518/4		2	-3	-6	-19	-11	23	-30	-16	23	-132	-79	65	435	-34	-186	-570	39	326	755	252	2	740	1209	258	-1438
	1518/5 $1519/1$	217/1	-2 -1	3 8	6 -4	-21 0	-11 66	35 78	-26 -78	16 106	23 -28	84 88	$\frac{241}{31}$	-45 152	173	-362 -506	-50 484	-298 364	-291 -770	-270 222	417 -220	856 -512	826 646	940 -380	733 832	$\frac{250}{1402}$	1810 -414
	1519/1 $1520/1$	$\frac{217/1}{380/1}$	-1	-1	-4 -5	-19	-20	-77	-10	19	-28 -79	-303	-214	-250	18 -230	402	-48	-417	-99	332	319	1088	-373	-102	-934	498	-1386
	1520/1	190/2	0	2	5	-8	-44	0	-74	-19	-84	266	-136	424	470	236	240	36	-736	650	830	216	254	1220	688		
	1520/3	190/1	ő	-2	5	12	20	-4	-34	19	-40	-150	200	-156	-218	-248	180	72	48	-134	-334	520	438	-980	156	670	1124
	1520/4	190/3	0	4	5	20	44	42	-86	-19	164	-162	312	226	34	432	-580	506	-364	518	-924	-320	-542	1208	1120		1166
	1520/5	95/4	0	-4	5	32	12	-42	114	-19	-160	214	144	94	-6	308	-184	-274	-276	-826	-52	344	-166	688		1578	786
	1520/6	95/1	0	-4	-5	22	12	8	-66	-19	30	-6	64	-16	54	-182	-594	396	564	-706	628	984	14	328	294	918	-1564
	1520/7	95/2	0	5 -7	-5	1	24	-31	33	-19	-27	111	94	-70	-510	34	192	-75	-45	-28	-371	-384	-73	1234	-366		-538
	1520/8 $1520/9$	95/3 $760/1$	0	-7 8	5 -5	-11 30	36 -20	65 -12	-87 54	-19 -19	129 -114	231 178	-110 296	-142 -164	-330 438	-74 162	336 -74	$\frac{501}{288}$	-633 324	-88 590	-119 728	204 -464	407 -906	-1262 -712	-270 102	-30 -1202	1406 -616
	1520/9 $1521/1$	9/1	0	0	-5 0	-20	-20	-12	0	-56	-114	1/8	-308	-1104	436	-520	-74	200	324 0	182	880		-1190	884	0	-1202	1330
	1521/1 $1521/2$	$\frac{3}{1}$	0	0	-12	-20	-36	0	78	-74	96	-18	214	286	-384	524	300	-558	576	74	-38	-456	682	704	-888		-110
	1521/3	507/2	1	0	-7	-10	22	ō	-37	30	162	113	196	13	-285	-246	462	537	-576	-635	202	1086	-805	884	-518		-1202
	1521/4	507/2	-1	0	7	10	-22	0	-37	-30	162	113	-196	-13	285	-246	-462	537	576	-635		-1086	805	884	518	194	1202
	1521/5	507/4	3	0	-9	-2	30	0	111	46	6	105	100	-17	-231	-514	-162	-639	600	233	-926	-930		-1324	810	498	-1358
	1521/6	169/4	3	0	-9	-15	-48	0	-45	-6	162	144	-264	-303	-192	97	111	414	522	376	36	357	1098	-830	-438	-438	852
	1521/7 $1521/8$	507/4 $169/4$	-3 -3	0	9	2 15	-30 48	0	111 -45	-46 6	$\frac{6}{162}$	$\frac{105}{144}$	-100 264	17 303	231 192	-514 97	162 -111	-639 414	-600 -522	233 376	926 -36	930 -357	-253 -1098	-1324 -830	-810 438	-498	1358
	1521/8	$\frac{169}{4}$ $\frac{169}{1}$	-3 4	0	9 17	-20	-32	0	-45 13	-30	-78	-197	$\frac{264}{74}$	$\frac{303}{227}$	-165	-156	-111	-93	-522 -864	145	-862	-357 654	-1098	-830 -76	628	438 -266	-852 -238
	1521/9 $1521/10$	169/1	-4	0	-17	20	32	0	13	30	-78	-197	-74	-227	165	-156	162	-93	864	145	862	-654	215	-76	-628	266	238
	1521/11	13/1	-5	ő	-7	13	-26	ő	-77	126	96	82	-196	131	336	-201	-105	432	-294	-56	-478	9	-98	1304	-308		-70

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1522/1		2	-2	3	-8	38	-30	99	-64	-56	-105	310	37	-5	-326	-441	608	-61	-12	-467	-506	-388	-339	-544	-147	78
1526/1		-2	-4	-10	7	-36	-44	52	-6	108	138	140	-14	-40	-396	-54	278	-830	422	956	832	-134	388		1358	870
1530/1	170/1	2	0	5	-4	12	-58	-17	-52	-84	246	68	-358	78	-412	-408	-750	420	-190	596	-324	1010	164	-588	486	-718
1530/2	510/6	2	0	5	11	-49	10	-17	-109	-22	-169	-98	-57	-253	216	-409	283	-324	-178	904	-100	-503	666	-172	-404	1314
1530/3	510/7	2	0	5	-28	68	-42	-17	60	-204	-234	-228	346	-162	372	-136	114	612	-542	-812	-204	-126	-660	-588	-378	-350
1530/4	510/3	2	0	-5	3	-27	-34	17	127	-58	81	58	-69	-379	52	-423	329	-660	-490	-580	-4	717	-602	-1052	-772	890
1530/5	510/4	2	0	-5	-6	0	56	17	-116	-112	-270	220	66	44	-182	216	-418	618	878	-598	-1066	276	1000	-656	-1438	-1432
1530/6	510/8	2	0	-5	11	15	-28	17	-109	-108	-129	-16	-193	195	248	-153	51	42	-64		1056		-1330	-504		-1138
1530/7		2	0	-5	17	57	68	17	-73	-114	273	-100	185	225	-94	-405	255	684		-1078	-816	335	-268	684	-828	806
1530/8	510/5	2	0	-5	-23	-17	-12	-17	-65	-44	291	-188	321	503	-148	-311	449	-198	368	218	56	-761	-530	1112	942	370
1530/9	1530/7	-2	0	5	17	-57	68	-17	-73	114	-273	-100	185	-225	-94	405	-255	-684			816	335	-268	-684	828	806
1530/10 1530/11	510/2	-2 -2	0	5 -5	-25 -10	-1 -24	-26 41	-17 17	-49 -103	110 6	35 45	-302 5	-369 -196	-145	96	$\frac{575}{171}$	127	-408 -645	50	316 -46	-100	985	$\frac{18}{272}$	$\frac{68}{72}$	-896	-78 -847
1530/11	170/2 $510/1$	-2 -2	0	-5	-10 -25	-24 61	-54	17	-103	66	-75	30	196	-210 -135	-58 -228	-599	-3 -363	480	197 -278	-46 -416	975 -420	-637 813	-18	852	$609 \\ 504$	1018
1531/1	510/1	-2	-6	-12	-23 8	67	-76	33	-132	1	70	-194	-126	126	-228	-599 591	-372	231	901	181	863	698	-86	-296	-959	1766
1533/1		0	3	-8	-7	42	25	-124	-47	159	-153	-282	49	-133	233	384	-405	113	324	-234	-625	73	-20		1205	-586
1534/1		-2	-9	-7	-17	-30	13	90	121	-144	157	-314	254	173	52	-154	-329	59	-690	-524	284	772	651	-992		-1182
1540/1		0	2	5	-7	11	8	8	112	-172	-102	-6	2	96	204	254	450	-886	-812		-1084	-812	64	-848	-758	-738
1540/2		0	-8	5	-7	11	-42	58	-48	68	-222	-56	-278	206	284	624	50	324	-602	92	256	-222	404	772	-558	582
1540/3		0	-8	5	-7	-11	-86	-74	-92	68	174	-232	118	-14	-332	-476	-522	-292	190	312	-536	-178	184	-900	-646	-1046
1542/1		2	-3	-16	-22	-35	-59	-31	-56	-43	-249	-257	-32	142	6	-70	-722	333	166	-780	480	621	-59	-272	-339	454
1542/2		-2	-3	9	14	36	53	96	74	150	-84	305	248	315	20	-39	-309	414	317	-169	-216	-313	-541	204	-270	-958
1545/1		-3	3	5	-30	-69	-63	-58	-26	-124	-276	-84	-256	33	34	531	-260	-444	398	238	-386	-551	311		-1076	296
1547/1 1548/1	516/1	1 0	-8 0	-6 -5	-7 -1	16 39	13 -67	17 0	-116 -11	-72 180	-22 55	-320 190	-366 -86	-318 -176	-532 43	376 -207	38 -172	$\frac{76}{844}$	-222 -324	-700 -146	-464 -72	506 16	-560 758	-684 -701	890 238	-1350 -527
1550/1	62/1	2	2	-3 0	11	-18	82	6	25	-58	180	31	146	47	12	136	232	715	-518	436	387	-678	660	382	-800	1631
1550/1	310/5	2	2	0	-20	44	20	68	-68	-182	-6	-31	208	202	-422	-608	-264	684	474	-680	-16			-1230		-1190
1550/3	310/4	2	2	ő	24	-22	-24	-86	-68	104	-72	-31	-232	70	-158	-432	-440	24	-428	-20	864	-218	252		-302	-222
1550/4	310/3	2	-7	0	4	-4	2	-79	133	-176	186	-31	-191	-35	391	-242	237	33	360	-398	1031	-173	-522		-240	826
1550/5	,	2	8	0	9	21	67	26	-142	-86	166	-31	359	345	511	-87	-613	-822	-355	472	681	322	-572	983	-1230	-354
1550/6	310/2	-2	1	0	18	-30	2	25	-51	148	64	31	69	-11	-25	50	-75	-483	-596	604	-65	-593	-328	-933	838	-350
1550/7	62/2	-2	8	0	35	-46	-20	-8	97	-28	-206	-31	282	367	562	148	84	-301	-236	-60	699	814	670		1566	615
1550/8	1550/5	-2	-8	0	-9	21	-67	-26	-142	86	166	-31	-359	345	-511	87	613	-822	-355	-472	681	-322	-572	-983		354
1550/9	310/1 519/1	-2 1	10	0 -6	0 -12	60 -30	-16 -60	112 -5	-124 -59	146	-62 -161	-31 -39	-140 -324	474 -42	-94 -334	156	28 -72	-348	-646 71	404 -562	-912 525	380	-992 -1304	1066	-354	-414 938
1557/1 1557/2	519/1	-2	0	-0 -9	-12	-30 -9	18	-14	-116	-92 -32	208	-261	-363	30	-334	-44 -104	-387	440 -436	-820	407	-765	495 -693	-1304	443 -514	$\frac{702}{162}$	-1384
1560/1	313/2	0	3	-5	2	-52	-13	96	50	-106	164		-170	462	-484	-248	62	-676	-674	44	-104	-112	-712		-1278	-248
1560/2		0	3	-5	$^{-24}$	-8	-13	-102	-104	180	-34	32	-126	-462	-484	456	-158	-280	-850	-396	160	-178	608	1476		-1106
1560/3		0	-3	5	10	24	13	16	114	-78	176	56	-198	438	76	136	-158	-792	118	-100	848	-516	352	196	-726	700
1560/4		0	-3	5	-32	60	13	-86	12	24	62	104	-210	-438	-212	16	-242	540	-602	-4	-112	930	1168	-260	-6	-566
1560/5		0	-3	-5	-18	28	-13	-72	-146	42	-100	32	246	-210	308	-336	-626	-580	-130	-444	712	200	-808	708	-1118	1216
1561/1		-1	4	18	-7	2	-70	94	54	-160	-2	-232	294	270	-56	136	-298	-684	254	-478		-1022	-856		1314	-166
1562/1		-2	4	19	-33	-11	15	55	32	174	-118	130	-343	217	-110	210	-282	628	-655	578	-71	54	-626		1157	474
1565/1		1	-8	5	22	20	58	114	-4	150	258	-86	-226	-294	-74	378	606	854	-482	-630	324	-958	-824		-318	1774
1568/1 1568/2	1568/1	0	0	4 -4	0	0	92 -92	104 -104	0	0	130 130	0	-214 -214	$-472 \\ 472$	0	0	518 518	0	468 -468	0	0	-592 592	0	0	176 -176	1816 -1816
1568/3	32/1	0	0	-22	0	0	18	94	0	0	-130	0	214	230	0	0	518	0	-830	0	0	-1098	0		1670	-594
1568/4	224/1	0	2	0	0	20	20	50	-10	-72	-134	180	-270	250	92	236	150	-570	200	176	-640	-250	-640	-882		-270
1568/5		0	2	14	Õ	-20	-6	20	102	-124	-78	236	66	268	132	516	-354	438	486	804	248	768	192	294	80	1404
1568/6	1568/5	0	2	-14	ŏ	20	6	-20	102	124	-78	236	66	-268	-132	516	-354	438	-486	-804	-248	-768	-192	294		-1404
1568/7	224/1	0	-2	0	0	-20	20	50	10	72	-134	-180	-270	250	-92	-236	150	570	200	-176	640	-250	640	882	-1074	-270
1568/8	1568/5	0	-2	14	0	20	-6	20	-102	124	-78	-236	66	268	-132	-516	-354	-438	486	-804	-248	768	-192	-294	80	1404
1568/9	1568/5	0	-2	-14	0	-20	6	-20	-102	-124	-78	-236	66	-268	132	-516	-354	-438	-486	804	248	-768	192	-294		-1404
1568/10	1500/10	0	8	4	0	-40	-36	40	-72	-176	162	-16	-54	-472	-72	144	486	-648	-684	216	-608	1008	1008		-1040	-936
1568/11	1568/10	0	8	-4	0	40	36	-40	-72	176	162	-16 320	-54	472	72	144	486	-648	684	-216 -776		-1008			1040	936
1568/12 1568/13	$\frac{32/2}{1568/10}$	0	-8	10 4	0	40 40	50 -36	30 40	$\frac{40}{72}$	-48 176	-34 162	320 16	310 -54	-410 -472	$-152 \\ 72$	-416 -144	-410 486	-200 648	-30 -684	-776 -216	-400 608	$630 \\ 1008$	1120	552 -216 -	326	110 -936
1568/14	1568/10	0	-8	-4	0	-40	36	-40	72	-176	162	16	-54	472	-72	-144	486	648	684	216			1008		1040	936
1568/15	32/2	0	-8	10	0	-40	50	30	-40	48	-34	-320	310	-410	152	416	-410	200	-30	776	400		-1120	-552	326	110
1570/1	- /-	-2	-2	-5	-25	35	-42	78	-105	60	142	19	36	-70	355	420	197	384	-720	-744	-797	491	-616	1329	663	555
1573/1	13/1	5	-7	-7	13	0	-13	-77	126	-96	82	196	-131	-336	201	-105	-432	-294	56	478	9		-1304		-1190	70
1575/1	105/1	0	0	0	-7	-42	-20	66	38	12	258	146	-434	282	-20	-72	336	360	-682	-812	-810	124	1136	156	1038	-1208

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1575/2	35/1	1	0	0	-7	-12	78	-94	40	32	50	-248	434	-402	68	536	22	560	-278	164	-672	-82	-1000	-448	870	-1026
1575/3	7/1	-1	0	0	7	8	-28	54	-110	48	110	12	246	-182	-128	324	-162	-810	-488	-244	768	702		-1302	-730	-294
1575/4	525/2	2	0	0	-7	21	24	22	16	25	-167	10	-133	168	-97	400	182	-488	28	-967	285	-838	-469	406	-324	-114
1575/5	525/2	-2 3	0	0	7 7	21	-24	-22 -27	16	-25 -75	-167 123	10	133	168	97	-400	-182	-488	28 -427	967	285 -300	838 98	-469	-406	-324	114
1575/6 1575/7	$\frac{525}{4}$ $\frac{315}{3}$	3	0	0	-7	6 -60	41 -38	-21 -84	-4 110	120	-162	-205 236	-262 376	-57 126	$\frac{407}{34}$	60 -6	-327 582	-33 -492	-880	-628 826	666	826	686 -592	-1401 792	-714 -1002	494 -1442
1575/8	525/4	-3	0	0	-1 -7	-00	-41	27	-4	75	123	-205	262	-57	-407	-60	327	-33	-427	628	-300	-98	686	1401	-714	-494
1575/9	21/2	-3	ő	ő	-7	36	34	42	-124	0	-102	-160	-398	318	268	240	-498	132	398	-92	720		-1024	-204	-354	286
1575/10	315/3	-3	0	0	-7	60	-38	84	110	-120	162	236	376	-126	34	6	-582	492	-880	826	-666	826	-592	-792	1002	-1442
1575/11	21/1	4	0	0	7	-62	62	84	100	-42	10	-48	246	248	-68	324	258	-120	622	-904	678	642	740	468	-200	1266
1575/12	105/2	5	0	0	-7	-12	-30	-134	-92	112	58	-224	146	-18	-340	208	-754	-380	718	-412	960	-1066	896	436	1038	702
1584/1	132/1	0	0	0	-2	-11	-88 80	66 -30	40	6	$\frac{54}{222}$	-8	-106	-354	$\frac{124}{52}$	$\frac{546}{246}$	$\frac{408}{264}$	$\frac{552}{264}$	404 92	4 796	$\frac{126}{426}$	-166	874 -842		-1002 1062	-802
1584/2 1584/3	$\frac{66}{1}$ $\frac{22}{3}$	0	0	3	-14 10	11	-16	-30 -42	-56 -116	-126 189	120	16 163	-106 -409	-114 -468	-110	$\frac{246}{144}$	-90	-453	20	97	-465	-1174 848	-842 742	438	273	-1282 761
1584/4	33/1	0	0	4	26	11	-32	-74	60	-182	90	8	-66	-422	-408	-506	-348	-200	132	1036	762	-542	550	-132	-570	14
1584/5	264/2	0	Ö	6	8	-11	-30	18	56	-100	-26	136	-178	-110	-288	116	398	196	-782	-292	180	-398	-56	548	-282	-142
1584/6	264/1	0	0	6	14	11	6	108	98	-32	8	40	50	8	486	40	-710	-604	322	476	216	502	862	592	-354	446
1584/7	88/2	0	0	7	6	-11	-40	78	-36	7	-8	-183	227	36	-322	-184	6	-99	164	695	-987	-248		-1494	905	-1031
1584/8	44/1	0	0	7	26	-11	52	-46	96	27	-16	293	-29	472	110	-224	-754	825	-548	123	1001	-1020	-526	-158	1217	-263
1584/9	198/1	0	0	-8	22 22	-11 11	-54 -54	26 -26	38 38	-64 64	-294 294	-36 -36	-390 -390	-138 138	$\frac{242}{242}$	132 -132	-388 388	-732 732	430 430	-520 -520	420 -420	-594 -594	-506 -506	380 -380	256 -256	418 418
1584/10 1584/11	198/1 88/1	0	0	-8 -9	-2 -2	-11	-54	-26 38	-44	$\frac{64}{175}$	$\frac{294}{264}$	-36 -159	-390	220	$\frac{242}{542}$	-132	-682	421	308	-520 -177	365	-594 -528	-686	-380 698		-1127
1584/12	132/4	0	ő	-10	-8	-11	18	-46	-40	44	-186	72	-114	-174	416	-156	62	-348	-446	956	-444	306	664	-124	-602	1522
1584/13	66/2	0	0	-10	-16	11	10	10	144	-84	-218	176	46	26	488	404	-194	444	202	84	-764	354	-1312	-1252	1222	-1358
1584/14	132/2	0	0	12	-14	11	56	-42	-116	-30	-198	88	350	-198	-56	-594	204	-312	620	-356	-462	482	238	492		-1426
1584/15	396/1	0	0	12	-26	-11	-34	126	-110	180	-18	292	-238	426	-146	-528	408	-324	-550	-824	-552	-850	-866	660	768	-286
1584/16 1584/17	$\frac{264}{3}$	0	0	-12 -12	-22 -26	11 11	-48 -34	54 -126	-100 -110	58 -180	-262 18	-248 292	-130 -238	26 -426	-216 -146	$\frac{22}{528}$	-620 -408	-424 324	340 -550	620 -824	810 552	-1118 -850	214 -866	988 -660	-768	590 -286
1584/18	33/2	0	0	14	32	-11	-34	-120	-72	-180	54	152	174	-420 -94	528	-340	438	20	570		-1092	562	16	372	966	-526
1584/19	$\frac{33/2}{22/1}$	0	0	-14	8	-11	-50	-130	108	-96	-142	-40	382	118	-220	520	-238	-852	190	12	-112	-6	-304	820	-202	
1584/20	264/4	0	0	18	28	11	-18	34	-80	128	-162	312	-290	146	-256	432	490	836	230	-900	520	-798	484	-812		
1584/21	22/2	0	0	19	-14	11	-72	46	20	-107	-120	-117	-201	228	242	-96	-458	435	-668		-1113	-72	70	358	-895	409
1584/22	132/3	0	0	-22	20	11	22	-110	-48	72	142	-184	-194	482	80	392	34	-108	382		-1040	-606	1292	356	406	1090
1590/1 1590/2		2 2	3 -3	-5 -5	28 16	-24 46	10 42	126 28	-116 -94	72 20	$\frac{26}{216}$	160 156	58 -226	-254 -354	-148 60	360 390	-53 53	-264 286	622 376	212 -900	600 -552	-710 100	784 -48	212 -1188	-382 510	-414 570
1590/3		2	-3	-5	32	-66	74	-36	50	84	72	44	-130	30	44	-426	53	558	-232	92	-312	212	1088		-1410	602
1590/4		-2	-3	5	-6	-44	-16	-12	28	184	58	-22	-16	168	256	-456	-53	-172	124	556	604	-550	-686	1296	-950	-646
1596/1		0	-3	-8	7	22	-8	-120	19	190	-246	340	194	-314	-320	600	-230	284	398	-546	276	226	-58	704	-426	948
1600/1	32/1	0	0	0	0	0	-18	94	0	0	130	0	214	-230	0	0	518	0	-830	0	0	-1098	0		-1670	-594
1600/2	800/2	0	0	0	0	0	92	104	0	0	-130	0	-396	230	0	0	-572	0	830	0	0	592	0	0	1670	1816
1600/3 1600/4	800/2 $200/1$	0	0	0	0 6	0 19	-92 12	-104 75	0 91	0 -174	-130 272	0 -230	396 -182	$\frac{230}{117}$	$\frac{0}{372}$	-0	572 -402	0	830 -170	0 763	0 -52	-592 981	$0 \\ 1054$	0 351	1670 799	-1816 -962
1600/4	$\frac{200}{1}$	0	1	0	6	-19	-12	-75	-91	-174	272	230	182	117	372	52 52	402	-312 312	-170	763	-52 52		-1054	351	799	962
1600/6	100/1	0	1	ő	-26	45	-44	117	-91	18	-144	-26	214	-459	-460	468	-558	-72	118	251	-108	299	898	927	351	386
1600/7	100/1	0	1	Ö	-26	-45	44	-117	91	18	-144	26	-214	-459	-460	468	558	72	118	251	108	-299	-898	927	351	-386
1600/8	200/1	0	-1	0	-6	19	-12	-75	91	174	272	-230	182	117	-372	-52	402	-312	-170	-763	-52	-981	1054	-351	799	962
1600/9	200/1	0	-1	0	-6	-19	12	75	-91	174	272	230	-182	117	-372	-52	-402	312	-170	-763	52		-1054	-351	799	-962
1600/10 1600/11	$\frac{100/1}{100/1}$	0	-1 -1	0	26 26	45 -45	44 -44	-117 117	-91 91	-18 -18	-144 -144	-26 26	-214 214	-459 -459	$\frac{460}{460}$	-468 -468	558 -558	-72 72	118 118	-251 -251	-108 108	-299 299	898 -898	-927 -927	351 351	-386 386
1600/11	$\frac{100/1}{160/1}$	0	-1 2	0	26 6	-45 60	-44 50	30	40	-18 178	-144	-20	10	-459 -250	-142	-468 214	-558 490	-800	-250	-251 774	-100	230	1320	-927 -982	874	310
1600/12	5/1	0	2	ő	-6	-32	-38	-26	-100	78	50	-108	266	22	442	514	2	-500	518	126	412	878	600	282	-150	-386
1600/14	50/3	0	2	0	-26	28	12	64	60	58	-90	-128	236	242	362	-226	-108	20	-542	-434	-1128	-632	-720	-478	-490	-1456
1600/15	50/3	0	2	0	-26	-28	-12	-64	-60	58	-90	128	-236	242	362	-226	108	-20	-542	-434	1128	632	720	-478	-490	1456
1600/16	5/1	0	-2	0	6	32	-38	-26	100	-78	50	108	266	22	-442	-514	2	500	518	-126	-412	878	-600	-282	-150	-386
1600/17 1600/18	$\frac{160/1}{50/3}$	0	-2 -2	0	-6 26	-60 28	50 -12	30 -64	-40 60	-178 -58	-166 -90	20 -128	10 -236	-250 242	142 -362	-214 226	490 108	800 20	-250 -542	-774 434	100 -1128	230 632	-1320 -720	$982 \\ 478$	874 -490	$310 \\ 1456$
1600/18	50/3 50/3	0	-2 -2	0	26 26	-28	-12 12	-64 64	-60	-58 -58	-90 -90	128	236	242	-362	226	-108	-20	-542	434	1128	-632	720	478	-490 -490	-1456
1600/19	20/1	0	4	0	16	60	86	-18	-44	-48	186	176	254	186	-100	-168	-498	252		-1036	168	-506	272		-1014	766
1600/21	40/3	0	4	Ō	-16	-36	-42	110	116	-16	-198	240	-258	442	-292	-392	142	348	570	692	168	134	784	564	1034	382
1600/22	8/1	0	4	0	24	-44	22	-50	44	-56	-198	160	-162	-198	-52	528	-242	-668	-550	-188	-728	-154	656	-236	714	478
1600/23	40/3	0	-4	0	16	36	-42	110	-116	16	-198	-240	-258	442	292	392	142	-348	570	-692	-168	134	-784		1034	382
1600/24	20/1	0	-4	0	-16	-60	86	-18	44	48	186	-176	254	186	100	168	-498	-252	58	1036	-168	-506	-272	-948	-1014	766

	of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1600/25	8/1	0	-4	0	-24	44	22	-50	-44	56	-198	-160	-162	-198	52	-528	-242	668	-550	188	728	-154	-656	236	714	478
	00/2	ő	5	ŏ	-2	39	-84	-61	151	58	-192	18	138	229	-164	212	-578	-336	-858	-209	780	-403		-1293		382
1600/27 20	00/2	0	5	0	-2	-39	84	61	-151	58	-192	-18	-138	229	-164	212	578	336	-858	-209	-780	403	-230	-1293	-1369	-382
1600/28 80	00/6	0	5	0	10	15	-8	-21	-105	10	20	-230	54	-195	-300	480	-322	-560	730	255	-40	317	-830	75	-705	-1434
	00/6	0	5	0	10	-15	8	21	105	10	20	230	-54	-195	-300	480	322	560	730	255	40	-317	830	75	-705	1434
	00/2	0	-5	0	2	39	84	61	151	-58	-192	18	-138	229	164	-212	578	-336	-858	209	780	403	230	1293		-382
	00/2	0	-5	0	2	-39	-84	-61	-151	-58	-192	-18	138	229	164	-212	-578	336	-858	209	-780	-403	-230	1293		382
	00/6	0	-5	0	-10	15	8	21	-105	-10	20	-230	-54	-195	300	-480	322	-560	730	-255	-40	-317	-830	-75	-705	
	00/6	0	-5	0	-10	-15	-8	-21	105	-10	20	230	54	-195	300	-480	-322	560	730	-255	40	317	830	-75	-705	
	$\frac{40}{2}$	0	6 -6	0	-34 34	16 -16	58 58	70 70	4 -4	-134 134	$\frac{242}{242}$	-100 100	-438 -438	-138 -138	-178 178	22 -22	$\frac{162}{162}$	-268 268	-250 -250	-422 422	852 -852	-306 -306	456 -456	-434 434	-726	-1378
	$\frac{40}{2}$	0	-0 7	0	-6	43	-28	-91	35	-162	-160	42	-314	-203	92	-196	82	280	518	141	412	763	510	777		-1246
	$\frac{25}{1}$	0	7	Ö	-6	-43	28	91	-35	-162	-160	-42	314	-203	92	-196	-82	-280	518	141	-412	-763	-510	777		1246
	50/1	0	7	ő	34	27	28	21	35	78	120	-182	-146	357	-148	84	-702	-840	238	461	708	-133	-650	-903		
	50/1	Õ	7	ŏ	34	-27	-28	-21	-35	78	120	182	146	357	-148	84	702	840	238	461	-708	133	650	-903		-1106
	25/1	0	-7	0	6	43	28	91	35	162	-160	42	314	-203	-92	196	-82	280	518	-141	412	-763	510	-777	-945	1246
	25/1	0	-7	0	6	-43	-28	-91	-35	162	-160	-42	-314	-203	-92	196	82	-280	518	-141	-412	763	-510	-777	-945	-1246
	50/1	0	-7	0	-34	27	-28	-21	35	-78	120	-182	146	357	148	-84	702	-840	238	-461	708	133	-650	903		-1106
	50/1	0	-7	0	-34	-27	28	21	-35	-78	120	182	-146	357	148	-84	-702	840	238	-461	-708	-133	650	903		1106
	10/1	0	8	0	-4	12	-58	-66	-100	132	90	-152	-34	-438	-32	-204	222	420	-902	1024	-432	-362	160	-72		-1106
	$\frac{32}{2}$ $\frac{10}{1}$	0	-8	0	-16 4	40 -12	-50 -58	30 -66	-40 100	-48 -132	34 90	$\frac{320}{152}$	310 -34	410 -438	$\frac{152}{32}$	$\frac{416}{204}$	-410 222	200 -420	-30	776 -1024	$\frac{400}{432}$	630 -362	-1120 -160	$\frac{552}{72}$	-326	110 -1106
	$\frac{10}{1}$	0	-8	0	16	-40	-50	30	40	48	34	-320	310	410	-152	-416	-410	-200	-302	-776	-400	630	1120		-326	
	00/6	0	9	0	-26	59	28	-5	-109	194	32	10	-198	117	388	68	-18	-392	710	-253	-612	549	414	-121		1502
	00/6	ő	9	ő	-26	-59	-28	5	109	194	32	-10	198	117	388	68	18	392	710	-253	612	-549				-1502
1600/50 20	00/6	0	-9	0	26	59	-28	5	-109	-194	32	10	198	117	-388	-68	18	-392	710	253	-612	-549	414	121	-81	-1502
1600/51 20	00/6	0	-9	0	26	-59	28	-5	109	-194	32	-10	-198	117	-388	-68	-18	392	710	253	612	549	-414	121	-81	1502
	40/1	0	10	0	18	16	-6	6	124	-42	-142	-188	202	54	66	-38	738	-564	262	-554	140	-882		642	-854	478
	40/1	0	-10	0	-18	-16	-6	6	-124	42	-142	188	202	54	-66	38	738	564	262	554	-140	-882		-642	-854	478
1608/1		0	3	-17	-19	-60	-28	-90	-70	-209	188	-161	-167	273	-435	496	419	29	-210	67		-1077	-488		-1404	
$1610/1 \\ 1610/2$		2 -2	-1 -5	5 5	7 7	45 -6	-39 -21	-107 -8	$\frac{4}{70}$	-23 23	$\frac{79}{165}$	-298 -329	140 -142	-216 -125	-50 296	-565 -77	78 -338	-338 -392	-390 -298	-296 890	$792 \\ 291$	182 577	-1245 -454	724 -36	$\frac{126}{524}$	1785 -56
1610/2		-2	-5	5	7	-39	-43	69	92	23	-297	254	-340	216	-34	-33	366	510		-1024	-72	38	-25	756	678	1649
1610/4		-2	-5	5	-7	-50	-33	98	-18	-23	285	69	-132	-87	138	-565	380	-180	700	76	-861	505	962	406	-530	-742
1610/5		-2	8	5	-7	-50	84	-58	-96	-23	-118	-126	-236	30	-148	-240	120	834	154	-496		-1068	-442	380	1030	-846
	37/1	1	0	12	11	26	83	110	30	6	-186	130	-124	-63	-398	437	141	677	155	-780	-720	22	-407	367	1108	-1118
	02/1	0	2	3	30	-22	-51	-13	71	41	204	-97	-434	-240	440	-497	122	-590	-728	-862	-627	280	335	328	994	674
	02/2	0	8	18	13	12	-16	117	-143	-42	-9	16	440	-84	283	-354	-273	612	83	-974	1062	272				-1531
	33/1	-1	3	4	0	11	32	-74	60	-182	-90	8	-66	-422	408	506	348	200		-1036	762	542	-550	132	-570	-14
	31/4	2	3	-11	0	11	5	118	105	-68	-195	-214	33	376 380	-168	-61	24	-625	558	173	168		-1072	-1458 -522	198	352 -272
	$\frac{31}{3}$	-2 3	-3 -3	-1 14	0	-11 -11	-7 -2	14 74	45 0	-88 -148	-69 26	-22 -112	57 -98	10	48 208	385 -460	-672 258	$\frac{469}{204}$	342 -178	-139 -924	132 -748	-145 230	1244 -456	228	-822 198	-562
	31/5	-3	-3 3	4	0	11	-50	28	-30	112	130	146	-302	-4	-548	-86	-246	-120	638	-132	-692	152		-1098		-1618
	31/2	5	-3	6	ő	-11	-70	-126	80	-200	134	244	-314	-278	-372	84	182	756	-694	820	160	2	40	-760	102	862
	33/2	-5	-3	14	Ö	-11	38	2	-72	68	-54	152	174	-94	-528	340	-438	-20	-570	-460		-562	-16	-372	966	526
1620/1	<i>'</i>	0	0	5	-7	30	-22	-48	68	-111	-87	20	200	-69	-232	-243	498	-66		-1063	618	-532	410	-693	1599	50
	20/1	0	0	-5	-7	-30	-22	48	68	111	87	20	200	69	-232	243	-498	66		-1063	-618	-532	410		-1599	50
1624/1		0	5	-15	-7	61	3	108	-60	-174	29	233	-226	-368	137	369	-193	-432	-290	838	344	48	1285	592	898	976
	81/1	3	0	18	20	33	20	102	-34	-3	216	-133	-376	-264	263	93	462	279	155	-52	-477	-943		-1122		-1222
1630/1 1638/1 18	82/1	-2 2	4 0	-5 0	-23 7	20 -39	-27 13	123 -24	-36 38	87 -39	234 96	-88 227	-119 425	333 105	$\frac{178}{344}$	514 -99	-244 540	30 -114	-662 -565	-463 -385	23 156	-574 -673	-952 749	-270 1044	-348 690	-1142 317
1638/2	02/1	2	0	3	-7	-39	-13	-133	103	-113	141	-90	-233	230	-337	-99	134	-838	295	468	-54	-553			-390	-102
	46/5	2	0	-12	7	22	-13	2	-88	80	22	-92	118	-324	84	134	194	-210	-470	-292	66	-506	-776	778	920	-490
	82/4	-2	0	-3	7	54	13	96	-151	-33	-183	-331	-88	42	353	465	-195	-552	470	254	-132	-943		1197	-753	1037
1638/5 163	38/2	-2	0	-3	-7	-23	-13	133	103	113	-141	-90	-233	-230	-337	96	-134	838	295	468	54	-553	-694		390	-102
	82/2	-2	0	5	-7	36	-13	-26	-47	99	61	-23	-50	-70	-19	-191	-195	-264	310	-190	166		-1191	-259	635	133
	46/4	-2	0	9	7	18	13	-60	-43	-9	249	-79	-412	-222	-295	-411	237	384		-1042	288	-691		-39	339	713
	46/1	-2	0	-9	-7	-62	-13	16	79	155	-51	243	412	406	-103	-429	169	-320	-614	258	264	-121	-967		-1059	-21
	$\frac{46}{2}$ $\frac{46}{3}$	-2 -2	0	$\frac{12}{14}$	7 -7	50 -8	-13 13	58 98	-40 -28	$\frac{64}{52}$	110 2	124 -168	-50 -146	-84 514	-12 -236	$\frac{82}{216}$	442 66	618 84	-278 446	20 292	390 -100	-2 450	-680 392	-322 292	-968 402	$\frac{1022}{314}$
	82/3	-2 -2	0	-16	- 7 7	-8 15	-13	98 44	-28 -138	-111	12	215	-146 55	133	-180	-471	260	-110	-271	-799	-912	$\frac{450}{747}$	-883	924		-1407
1640/1	-2,0	0	-2	5	14	0	-44	116	-16	-96	-62	128	130	-41	-448	-306	-48	60	282	438	960	-806		-1332	158	

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1645/1		5	4	-5	-7	-16	-38	-94	-124	204	30	-184	-210	150	112	47	494	388	-626	-544	-672	-186	848	364	1106	114
1650/1	220 /10	2	3	0	1 -2	11	-68	-99	-25	-63	150	122	-119	-303	-308	-189	-168	-435	-328	-344	267	952	515		1380	1681
$\frac{1650/2}{1650/3}$	330/10 330/9	2 2	3	0	-20	11 11	16 -26	-96 -6	-112 -28	-180 48	-102 -162	-208 128	-110 -86	-90 66	10 -344	180 -312	618 -486	-36 -84	-286 494	928 -716	48 -432	520 -206	-412 440	618 -192	-234 -294	-422 -1082
1650/4	330/ 9	2	3	0	30	-11	9	4	59	75	167	-135	-294	302	-31	-124	-272	-238	166	658	265	802	-44	27	-675	-591
1650/5	330/6	2	-3	Ö	6	11	40	-80	56	-44	178	-16	146	414	-158	44	-166	44	402	-744		-1136	-468	-182	678	1082
1650/6	330/5	2	-3	0	6	-11	-48	52	-76	132	134	-192	-30	-334	-334	572	10	-220	-302	-392	-704	184	16	1446	-114	642
1650/7	66/1	2	-3	0	-14	11	-80	-30	56	126	-222	-16	106	114	52	-246	264	264	92	796	426	1174	842	-852		1282
1650/8	330/8	2	-3	0	16	11	50	70	-44	96	-122	184	-134	-86	12	264	194	-716	182	436	-104	134	-648	628	-102	-418
1650/9 1650/10	330/7 330/3	2 -2	-3 3	0	16 -2	-11 -11	-38 28	-18 36	44 -64	-168 -12	54 -126	-280	130 298	-174 54	-164 -62	-528 444	-510 -366	780 108	-82 146	-92 -848	336 48	$\frac{574}{628}$	56 -676	-1044 -342	426	-1298
1650/10	66/2	-2 -2	3	0	-16	11	-10	10	-144	84	218	-176	-46	-26	488	-404	-194	444	202	-646 84	-764	-354	1312	1252 ·	-570 -1222	$178 \\ 1358$
1650/12	330/4	-2	3	0	24	11	30	110	56	144	-182	24	234	-26	68	-224	146	-116	-818	4	176	826			1098	-42
1650/13	1650/1	-2	-3	Ö	-1	11	68	99	-25	63	150	122	119	-303	308	189	168	-435	-328	344	267	-952	515			-1681
1650/14	330/1	-2	-3	0	-10	-11	-44	-124	-56	-100	42	-120	-86	222	-54	-76	162	-68	-734	552	-320	-292	676	-422	-490	-174
1650/15	1650/4	-2	-3	0	-30	-11	-9	-4	59	-75	167	-135	294	302	31	124	272	-238	166	-658	265	-802	-44	-27	-675	591
1650/16	330/2	-2	-3	0	34	11	88	-36	-100	-12	-90	-208	-86	-438	-362	-516	-102	-420	-118	-416	-408	808	-160	18		-1406
1656/1 $1656/2$	$\frac{184}{1}$ $\frac{552}{1}$	0	0	4 -8	-4 -22	-26 4	70 -14	-94 116	54 30	23 23	86 38	-144 60	-172 -310	$\frac{42}{366}$	386 326	$80 \\ 464$	108 -348	-164 -44	-400 434	398 -406	320 -472	-810 -222	-204 -642	-102 -756		-1370 -1370
1656/3	552/1	0	0	-8 14	-22	-58	-50	76	60	-23	106	-24	-256	126	-304	-32	642	-436	-460	-232	-224	-222	-426	-702	-764	-686
1656/4	184/2	0	0	-22	8	20	22	-98	-12	-23	100	192	-106	-186	332	544	-390	716	110	836	280	-486	288	-180	-650	-1262
1664/1	/-	ő	5	19	-7	-72	13	-119	66	-118	236	-40	135	30	107	-579	42	644	-278	-118	-553	-836	-944	-140		-892
1664/2	1664/1	0	5	-19	7	-72	-13	-119	66	118	-236	40	-135	30	107	579	-42	644	278	-118	553	-836	944	-140		-892
1664/3	1664/1	0	-5	19	7	72	13	-119	-66	118	236	40	135	30	-107	579	42	-644	-278	118	553	-836	944		-1186	-892
1664/4	1664/1	0	-5	-19	-7	72	-13	-119	-66	-118	-236	-40	-135	30	-107	-579	-42 -305	-644	278	118	-553	-836	-944		-1186	-892
1665/1 1665/2	555/1	1 -1	0	5 -5	-27 25	-41 -3	-71 22	-83 -35	-95 -118	69 -28	-232 -83	-132 153	37 -37	-358 -73	$\frac{52}{155}$	52 136	-305 -201	-254 -198	$730 \\ 497$	84 700	-76 -1044	$\frac{469}{1040}$	-210 -828	-213 1434 -	-951	-1012 131
1665/3	555/2	-1	0	-5	25	57	-26	-107	-46	-124	157	-75	-37	443	-265	-512	459	570	-259	-428	1020	-232	-468		-134	-889
1665/4	1665/1	-1	0	-5	-27	41	-71	83	-95	-69	232	-132	37	358	52	-52	305	254	730	84	76	469	-210	213	951	-1012
1666/1	34/1	-2	2	-16	0	62	62	17	20	-12	80	208	-356	-22	-312	-24	-462	-240	-812	-216	732	-178	700	992	390	146
1666/2	34/2	-2	2	18	0	-6	-74	-17	88	-114	-90	310	86	-90	368	384	-258	-240	-302	-964	-390	-722	-898	-912		1438
1668/1		0	-3 3	-12	22 5	41 -30	31	73	151 106	180	72 -247	-110	-293 -77	-416 331	187 -252	277 -24	-105 -676	488 439	340 -39	-674 -652	644 -962	278 -33	686 -11	384 -327	-264 750	-1548 290
1671/1 1672/1		-1 0	-8	18 6	-4	-30 11	-46 -86	-46 34	-19	-45 56	106	-84 48	-62	-458	-252 76	240	-38	-368	-39 634	400	-962 -624	-33	-11	-327 92	-502	-110
1674/1		2	-0	-4	-13	-15	48	19	-29	27	91	31	296	-384	-426	460	-542	-210	84	-219	52	80	-286	-763		-1594
1674/2		2	Ö	18	-1	-27	-70	-57	-61	-21	-165	31	-178	-186	-232	-426	-414	144	386	-127	-420	1076	710		1281	446
1674/3		2	0	-18	-29	-55	-58	53	-119	-95	-77	-31	-324	-338	26	242	78	-778	628	447	-738	-418	436	-467	-705	1122
1674/4	1674/1	-2	0	4	-13	15	48	-19	-29	-27	-91	31	296	384	-426	-460	542	210	84	-219	-52	80	-286	763		-1594
1674/5	1674/3	-2 -2	0	18	-29	55	-58	-53	-119	95	77	-31	-324	338	26	-242	-78	778	628	447	738	-418	436	467	705	1122
1674/6 1680/1	$\frac{1674/2}{210/8}$	-2 0	3	-18 5	$^{-1}$	27 -16	-70 58	$\frac{57}{34}$	-61 -64	21 16	$\frac{165}{62}$	31 -60	-178 150	$\frac{186}{474}$	-232 292	426 -240	414 -662	-144 324	386 -514	-127 372	$\frac{420}{412}$	1076 -770	710 560		-1281 1466	446 -178
1680/1	210/8	0	3	5	7	44	54	98	60	144	-210	208	-226	-502	-484	232	-530	764	814	-60	-848	-958	152		-1094	554
1680/3	105/2	ő	3	5	-7	-12	30	-134	92	-112	-58	224	-146	18	-340	-208	-754	-380	718	-412	960	1066	-896	-436		-702
1680/4	210/3	0	3	5	-7	-12	-58	42	4	-24	294	-128	-58	282	-428	-384	-138	-468	-250	556	-624	-958	-632	-84	810	-790
1680/5	420/2	0	3	5	-7	36	-34	-6	28	-192	-186	-176	-418	-30	412	432	-306	564	-322	-716		-1078	496			-1438
1680/6	105/1	0	3	5	-7 7	-42 0	20	$\frac{66}{74}$	-38 20	-12	-258 -246	-146	434 306	-282	-20	72	336	360	-682	-812 904	-810 -912	-124 -26	-1136	-156		1208
1680/7 1680/8	840/5 $210/10$	0	3	-5 -5	7	4	-54 -42	-86	20 96	160 96	-246 -78	-84 -80	306 50	-370 -26	88 32	-460 20	686 -382	684 -356	186 -134	-888	-912 -868	-26 -70	320 -400	-732 1052	1150 -634	$1526 \\ 1202$
1680/8	$\frac{210/10}{420/1}$	0	3	-5 -5	7	-32	42	-38	36	-96	-198	220	-46	-290	$\frac{32}{152}$	-124	62	-68	-614	456	416	-826	272	-508	110	-874
1680/10	840/6	0	3	-5	7	58	4	-42	78	-72	102	90	-390	442	204	120	-300	104	302	-836	74	148	552	-1428	454	424
1680/11	210/1	0	3	-5	-7	-12	2	-18	-56	156	-186	52	-178	-138	412	456	-198	-348	110	196	936	542	-992	276	630	110
1680/12	210/9	0	3	-5	-7	-24	14	54	-44	-156	174	88	-34	-138	-164	216	318	204	-442	316	252	98	1000	-516	-522	-310
1680/13	840/2	0	-3	5	7	-20	54	82	116	-88	-186	128	190	250	-36	-384	-82	124	390	-524	-344	186	-272	388	714	-510
1680/14 1680/15	840/3 210/4	0	-3 -3	5 5	7 7	-22 -28	-44 54	-110 -46	22 -12	36 0	-122 6	186 -296	306 134	-330 146	-20 -556	$\frac{64}{448}$	504 46	560 -748	-418 -50	$\frac{452}{156}$	$\frac{146}{1024}$	-236 -310	-536 -856	92 628	-574 -590	184 -1390
1680/16	840/4	0	-3	5 5	7	-28 44	22	-40 66	132	168	54	-144	-354	-22	156	240	-354	76	-154	628	-8	1018	-96	-348	218	-1598
1680/17	420/4	0	-3	5	7	44	-42	-94	36	-24	54	112	-322	-22	-292	-272	-578	44	-26	-12	280	410	320	1252	-38	1250
1680/18	420/5	0	-3	5	-7	16	-14	130	-104	88	54	-28	-266	202	-348	-104	402	100	310	324	644	-290	-744	-1044	298	-290
1680/19	840/1	0	-3	5	-7	16	-62	-14	56	136	-154	116	6	-150	20	-152	-78	-124	166	-140	-204	-210	984	-628	138	-1202
1680/20	420/6	0	-3	5	-7	-36	38	-78	52	-120	54	-80	254	-6	172	0	-66	-420	-106		-1176	698	1024	516	714	-862
$\frac{1680/21}{1680/22}$	$\frac{210}{6}$ $\frac{210}{7}$	0	-3 -3	-5 -5	7 7	-28 -56	-86 54	-66 94	48 -36	-140 84	-34 -258	284 40	-346 -178	-274 -146	-148	448 200	-94 -130	-308 -188	$\frac{510}{94}$	$\frac{156}{444}$	-336 -532	-1170 770	-16 536	-772 1076 -	1630	$\frac{110}{1274}$
1000/22	210/7	U	-0	-ე	1	-50	04	94	-30	04	-206	40	-118	-140	-146	200	-190	-100	94	444	-002	110	ეეტ	1010 -	-1090	1214

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1680/23	210/5	0	-3	-5	-7	0	26	18	-92	0	-6	4	410	174	-248	-420	102	588	650	-152	168	-610	1048	684	-834	110
1680/24	420/3	0	-3	-5	-7	36	-34	-30	16	48	-126	-8	74	-138	352	396	-78	60	-70	664	-156	410	-344		-1002	290
1682/1	58/1	2	-7	5	-2	-37	27	-24	88	-28	0	143	360	-386	-381	103	-431	288	840	-180	706	-716	-931	1188	642	-486
1682/2	58/2	-2	7	-15	-18	-27	-57	44	-152	-152	0	173	120	314	-339	357	-59	-572	420	660	726	-1004	-361	-168	-58	1206
1683/1	187/1	-1	0	-6	-24	11	-58	-17	28	24	-222	-112	-394	-410	-204	-240	386	-564	-530	108	392	-406	1008		-1354	-1774
1683/2	561/1	-1	0	-10	12	-11	-26	-17	-28	28	6	68	354	86	308	128	-414	-860	850	340	996	218	828		-1322	-230
1683/3	561/2	3	0	-18	8	11	-58	-17	-88	48	-30	-112	-34	-450	-88	156	546	264	362	572	648	254	-952	828	-498	-46
1690/1		2	2	-5	24	60	0	54	-84	-132	150	150	354	240	178	324	-48	-696	-758	156	210	-258		-1332	684	66
1690/2	120 /1	2 2	-2 -2	-5	5	33	0	-42	-25	72	192	-304	-133	30	-34	327	327	-144	-580	-832	354	-670	-676	162	849	1322
1690/3	130/1	2	-2 4	-5 -5	-8 -23	-6 57	0	114 48	-38 -5	150 -180	$\frac{114}{120}$	34 34	-146 -227	30 -6	122 -214	-336 -549	-570 -537	-66 300	-502 -322	-728 772	-582 894	994 -272	-988 -454	84 1068	-906 -681	-290 -1100
1690/4 1690/5		2	4 5	-5	-23 19	-23	0	48	-5 -137	-180	-277	-80	-189	163	463	-549 -492	138	759	-322	673	291	702	-620	-300	-081 -481	307
1690/6		2	-5	-5	-7	-51	0	81	155	-57	171	224	281	-309	-499	-336	-162	-321	-613	383	747	-502	1184	-480	-789	29
1690/7	1690/1	-2	2	-5 5	-24	-60	0	54	84	-132	150	-150	-354	-240	178	-324	-48	696	-758	-156	-210	258	880	1332	-684	-66
1690/8	1690/2	-2	-2	5	-5	-33	ő	-42	25	72	192	304	133	-30	-34	-327	327	144	-580	832	-354	670	-676	-162		
1690/9	1690/4	-2	4	5	23	-57	0	48	5	-180	120	-34	227	6	-214	549	-537	-300	-322	-772	-894	272		-1068	681	1100
1690/10	130/2	-2	-4	5	8	32	0	-86	56	68	-202	56	-66	-490	460	24	-294	480	-338	-676	-120	210	184	660	286	1202
1690/11	1690/5	-2	5	5	-19	23	0	7	137	-187	-277	80	189	-163	463	492	138	-759	-209	-673	-291	-702	-620	300	481	-307
1690/12	1690/6	-2	-5	5	7	51	0	81	-155	-57	171	-224	-281	309	-499	336	-162	321	-613	-383	-747	502	1184	480	789	-29
1690/13	10/1	-2	-8	-5	4	-12	0	66	100	132	-90	-152	34	438	32	204	222	-420	902	1024	-432	-362	-160	-72		-1106
1692/1	564/1	0	0	12	36	16	-58	38	106	-148	260	70	2	132	-30	-47	-194	-276	794	614	-872	382	524	-596	-494	46
1692/2	564/2	0 2		21	3 7	-55	-4	-56	-2	43	-131	-308	125	-6	-552	47	62	-594	-550	908	362	-968		-1066	1346	805
1694/1 $1694/2$	154/2 $154/1$	2	0 -5	2 -1	7	0	-26 8	46 -22	48 -54	-128 213	146 -190	-128 163	-26 31	-10 -110	-52 -4	-544 -80	318 -566	-48 645	-466 -634	516 -729	-392 431	-754 918	$\frac{0}{254}$	-624 -904	901	1018 -89
1694/3	$\frac{134/1}{14/1}$	2	-5 8	-14	7	0	-18	-22 -74	-80	-112	-190	72	-346	-162	412	24	318	-200	198	-716	392	-538		$\frac{-904}{1072}$	810	1354
1694/4	14/2	-2	-2	-12	-7	0	-56	114	-2	-120	54	236	146	-126	376	-12	174	138	-380	-484	576	1150	-776	-378		-1330
1694/5	154/3	-2	-2	18	-7	ő	-56	-36	28	180	54	-334	386	444	316	-402	-486	-282	-380	176	-324	-800	1144	-468		-1330
1694/6	154/4	-2	7	3	-7	0	16	-6	-14	-51	-54	95	-193	-102	-284	-72	-102	-63	790	-433	135	238	-770	1008	-639	11
1694/7	154/5	-2	-10	-14	-7	0	16	-108	-116	68	-122	-262	130	-204	396	166	442	702	-196	-416	492	-408	-600	1212	1146	-482
1700/1	68/1	0	2	0	12	-10	38	17	4	-120	56	164	236	70	144	-48	366	-504	-460	768	72	734	736	-856	906	-46
1700/2	340/1	0	-2	0	-2	-30	62	-17	-56	110	206	114	194	-430	-4	68	-206	496	-290	-8	-798	-314	366	1276	86	1006
1700/3	340/2	0 2	5	0 7	-2 -22	12 20	13	-17	35	-30	-249	-229	124	-66	262	75	543	-225	-535	-386	231	547	-376	-768		
1702/1 $1705/1$		-3	3	5	-22	-11	10 38	49 -102	$\frac{79}{104}$	-23 144	290 -102	30 31	37 -238	$\frac{186}{42}$	193 236	189 468	-424 402	$\frac{60}{492}$	-137 -70	-292 -136	903 168	342 -46	504 276	-448 -1140	$\frac{561}{1314}$	$\frac{1626}{1082}$
1705/1		-3 5	4	-5	-11	-11	-52	-25	-104	-19	-102	31	-337	82	-121	464	50	741	-866	87	490			1211	282	129
1710/1	570/6	2	0	-5	-2	16	-10	-36	19	-124	174	-74	94	240	-276	-540	-146	-606	450	180	456	14		-1442	-212	-830
1710/2	190/2	2	Ö	-5	8	-44	0	74	19	-84	-266	136	424	-470	-236	240	-36	-736	650	-830	216		-1220	688		-1280
1710/3	190/1	2	0	-5	-12	20	-4	34	-19	-40	150	-200	-156	218	248	180	-72	48	-134	334	520	438	980	156	-670	1124
1710/4	570/7	2	0	-5	26	-54	32	-78	19	-12	-204	-256	-340	156	326	132	-90	360	-838	-16	-888	854	-640	84	-828	1424
1710/5	570/2	-2	0	5	-8	20	-82	18	19	88	186	-248	262	-246	288	168	302	-72	-546	-804	-240	602	-800	116	-766	790
1710/6	570/3	-2	0	5	-24	-32	2	-106	-19	-152	-90	52	306	-62	-268	-456	318	-300	502	-644	608	-198	260	1248	-110	-574
1710/7	570/5	-2	0	5	-34	-28	-6	-8	19	204	-262	298	346	296	340	204	-462	-194	-46		-1080		-1382	-10	-180	514
1710/8 1710/9	570/4 $190/3$	-2 -2	0	-5 -5	-4 -20	$\frac{12}{44}$	-46 42	102 86	19 19	84 164	-222 162	-312	-214 226	126 -34	-160 -432	-36 -580	318 -506	516 -364	-346 518	-700 924	480 -320	338	248 -1208	-720 1120	$\frac{30}{1022}$	614 1166
1710/9	570/1	-2	0	-5	-34	18	-48	34	-19	128	80	112	-124	208	42	144	378	-440	-118	496	-72	-738	920	-832	-440	-864
1716/1	3.3/1	0	3	18	28	11	13	46	-36	-28	22	-96	354	-170	-260	-96	26	772	710	-624	-680	-794	240		-1170	-246
1716/2		ő	-3	2	0	11	13	0	18	-58	-222	94	56	338	-280	232	636	-508	802	104	140	-736	448		-1146	170
1716/3		0	-3	2	-36	11	13	-54	72	176	-42	-68	326	86	260	-56	-354	716	-458	-328	-184	722	-560	-748	-1434	26
1716/4		0	-3	-9	-25	-11	13	-120	50	-165	-207	152	-70	-321	-367	-408	42	-87	-469	167	-558	-697	-406	-726	1272	-766
1716/5		0	-3	10	-12	-11	13	114	144	-80	78	-260	38	-26	92	-208	222	436	550	8	208	386	-440	28	-258	170
1722/1		2	3	7	-7	-48	23	-107	-19	66	-216	-147	-152	41	-38	56	68	-17		-1019	459	-897		-1289	1345	
1722/2 $1725/1$	345/3	2	-3 3	-9 0	7 16	36 -48	-7 46	-21 30	119 -46	-18 23	48 30	-295 116	344 -68	-41 54	-106 -380	384 -420	-372 642	-141 186	-628 -34	$\frac{767}{124}$	$\frac{225}{1026}$	-529 646	488 -610	795 612	687 642	200 -476
1725/1 $1725/2$	$\frac{345}{3}$	-1	-3	0	-16	-48 52	38	54	-46 40	-23	170	232	-386	$\frac{54}{482}$	-132	144	-82	100	-34	$\frac{124}{124}$	-428	78	-960	1488		-476
1725/2	345/4	3	-3 3	0	-10	16	-6	-93	22	-23	249	118	-333	104	-132	-611	-404	-846	-590	-574	-305	277	864	-421	-91	782
1725/4	345/1	3	-3	0	-26	54	-2	72	68	23	-102	-16	-344	162	280	360	-114	-768	704	-560	408	-998	-550	-966	-804	310
1725/5	1725/3	-3	-3	ő	-3	16	6	93	22	23	249	118	333	104	34	611	404	-846	-590	574	-305	-277	864	421	-91	-782
1725/6	, ,	4	-3	0	25	-47	13	-12	43	23	221	160	74	293	-141	324	-212	652	82	-868	-200	381	-207		-1288	982
1725/7	1725/6	-4	3	0	-25	-47	-13	12	43	-23	221	160	-74	293	141	-324	212	652	82	868	-200	-381	-207		-1288	-982
1725/8		5	3	0	11	67	-19	30	89	23	-285	-184	-228	489	95	-50	-88	-734	-484	964	366	1071	1085	-183	-618	824
1725/9	345/2	5	-3	0	6	46	50	116	-152	-23	206	-120	28	-118	-292	344	326	748	-584	684	152	-118	870	1278	228	790
1725/10		5	-3	U	29	37	89	-30	19	-23	-205	316	-92	-331	-195	-510	-172	106	916	-284	586	879	-1005	-57	-1498	1076

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1725/11	1725/10	-5	3	0	-29	37	-89	30	19	23	-205	316	92	-331	195	510	172	106	916	284	586		-1005		-1498	-1076
1725/12	1725/8	-5	-3	0	-11	67	19	-30	89	-23	-285	-184	228	489	-95	50	88	-734	-484	-964		-1071	1085	183	-618	-824
1727/1	100/0	0	-2 0	8	-1 17	-11 0	-55	-101	-80	161	-104 0	-98 308	-335 433	-162 0	201	-22 0	238	741	-146 901	-86 -1007	260	-1082	-172 503	672	-1639	812
1728/1 $1728/2$	$\frac{108/3}{108/3}$	0	0	0	-17	0	-89 -89	0	-107 107	0	0	-308	433	0	520 -520	0	0	0	901	1007	0	-271 -271	-503	0	0	$1853 \\ 1853$
1728/3	108/1	0	0	0	37	0	19	0	-163	0	0	-308	-323	0	-520	0	0	0	-719	-127	0	-919	1387	0	0	-523
1728/4	108/1	0	0	0	-37	0	19	0	163	0	0	308	-323	0	520	0	0	0	-719	127	0		-1387	0	0	-523
1728/5	216/2	ő	Ö	1	9	17	44	-56	-94	-50	-30	139	174	-318	-242	-630	547	236	-328	614	296	433	56	1225	-1506	1391
1728/6	216/2	0	0	1	-9	-17	44	-56	94	50	-30	-139	174	-318	242	630	547	-236	-328	-614	-296	433	-56	-1225	-1506	1391
1728/7	216/2	0	0	-1	9	-17	44	56	-94	50	30	139	174	318	-242	630	-547	-236	-328	614	-296	433			1506	1391
1728/8	216/2	0	0	-1	-9	17	44	56	94	-50	30	-139	174	318	242	-630	-547	236	-328	-614	296	433	-56	1225	1506	1391
1728/9	54/1	0	0	3	29 -29	-57 57	-20 -20	72 72	106	-174	-210 -210	47	-2 -2	6 6	-218 218	-474	81	84	-56	142		-1159	-160	735	954	191
1728/10 $1728/11$	54/1 54/1	0	0	-3	-29 29	57	-20	-72	-106 106	$\frac{174}{174}$	210	$-47 \\ 47$	-2 -2	-6	-218	$474 \\ 474$	81 -81	-84 -84	-56 -56	-142 142		-1159 -1159	160 -160	-735 -735	954 -954	191 191
1728/11	54/1	0	0	-3	-29	-57	-20	-72	-106	-174	210	-47	-2	-6	218	-474	-81	84	-56	-142		-1159	160	735	-954	191
1728/13	216/1	ő	ő	4	3	28	11	-44	-29	-172	192	116	69	-384	-328	-156	-392	412	425	-257	1000	-359	877	-328		-1483
1728/14	216/1	ő	0	4	-3	-28	11	-44	29	172	192	-116	69	-384	328	156	-392	-412	425		-1000	-359	-877			-1483
1728/15	216/1	0	0	-4	3	-28	11	44	-29	172	-192	116	69	384	-328	156	392	-412	425		-1000	-359	877			-1483
1728/16	216/1	0	0	-4	-3	28	11	44	29	-172	-192	-116	69	384	328	-156	392	412	425	257	1000	-359	-877		-1572	-1483
1728/17	108/2	0	0	9	1	-63	28	-72	98	126	-126	259	-386	450	-34	-54	-693	-180	280	-586	504	161	-440	-999	-882	-721
1728/18 $1728/19$	$\frac{108/2}{108/2}$	0	0	9 -9	-1 1	63 63	28 28	-72 72	-98 98	-126 -126	-126 126	-259 259	-386 -386	450 -450	34 -34	$\frac{54}{54}$	-693 693	180 180	280 280	586 -586	-504 -504	161 161	440 -440	999 999	-882 882	-721 -721
1728/19	108/2	0	0	-9 -9	-1	-63	28	72	-98	126	126	-259	-386	-450	34	-54	693	-180	280	586	504	161	440	-999	882	-721
1728/21	54/2	0	0	12	7	-60	79	108	11	-132	96	-20	169	-192	488	204	360	-156	-83	47	216	-511	529	1128	-36	605
1728/22	54/2	ő	Ö	12	-7	60	79	108	-11	132	96	20	169	-192	-488	-204	360	156	-83	-47	-216	-511		-1128	-36	605
1728/23	54/2	0	0	-12	7	60	79	-108	11	132	-96	-20	169	192	488	-204	-360	156	-83	47	-216	-511	529	-1128	36	605
1728/24	54/2	0	0	-12	-7	-60	79	-108	-11	-132	-96	20	169	192	-488	204	-360	-156	-83	-47	216	-511	-529	1128	36	605
1728/25	27/1	0	0	15	25	15	-20	-72	2	114	30	-101	430	30	110	-330	621	660	376	-250	-360	785	-488	-489		-1105
1728/26	27/1	0	0	15	-25	-15	-20 -20	-72	-2 2	-114	30	101	430	30	-110	330	621	-660	376	250	360	785	488	489		-1105
1728/27 $1728/28$	$\frac{27}{1}$	0	0	-15 -15	25 -25	-15 15	-20	72 72	-2	-114 114	-30 -30	-101 101	430 430	-30 -30	110 -110	330 -330	-621 -621	-660 660	376 376	-250 250	360 -360	785 785	-488 488	489 -489		-1105 -1105
1728/29	864/1	0	0	19	13	-65	56	-108	-58	-66	118	-145	-190	-430	-530	-74	-295	-628	-360	-146	388	753	1136	-153	850	391
1728/30	864/1	ő	ő	19	-13	65	56	-108	58	66	118	145	-190	-430	530	74	-295	628	-360	146	-388		-1136	153	850	391
1728/31	864/1	0	0	-19	13	65	56	108	-58	66	-118	-145	-190	430	-530	74	295	628	-360	-146	-388	753	1136	153	-850	391
1728/32	864/1	0	0	-19	-13	-65	56	108	58	-66	-118	145	-190	430	530	-74	295	-628	-360	146	388	753	-1136	-153	-850	391
1729/1		-1	-2	-19	-7	-43	-13	-86	19	-92	100	47	-141	-28	478	254	-512	-135	2	664	-138	-142	-155	378	-110	854
1729/2	100/4	-2	4	16	-7	46	-13	-49	19	-115	-88	233	-261	-479	-107	376	-460	-9	101	7		-1138	124	588	-970	-1705
1734/1 $1734/2$	$\frac{102/4}{102/3}$	2 2	3	-5 12	-12 22	-37 48	19	0	37 20	3 54	86 -84	142 -62	296 -44	121 138	$\frac{3}{428}$	402 -516	$\frac{174}{174}$	270 -852	520 -908	-780 -508	-84 426	302 574	-178 -110	698 -1308	1512 798	500 1690
1734/2	$\frac{102}{3}$ $\frac{102}{1}$	-2	3	3	-20	51	-61	0	-43	219	150	-290	-56	-15	83	426	-378	-210	448	-124	-900	1078	-722	-1308	-144	268
1734/4	6/1	-2	3	-6	16	-12	38	ő	20	-168	-30	88	-254	-42	-52	-96	198	-660	538	884	-792	-218	520	-492		-1154
1734/5	٠, -	-2	3	-12	-11	-18	-7	Ö	59	168	-222	127	265	462	-19	-264	60	-438	457	23	36	358	412	-228		-1685
1734/6	102/2	-2	-3	5	32	-27	-69	0	-83	117	-94	-198	244	-169	227	-382	686	450	700	540	276	298	182		-1468	1140
1734/7	1734/5	-2	-3	12	11	18	-7	0	59	-168	222	-127	-265	-462	-19	-264	60	-438	-457	23	-36	-358	-412	-228	-426	1685
1740/1		0	3	5	16	40	-60	-122	-50	-42	-29	-156	-146	-472	-56	-248	-238	-356	-320	458	272	-906	1196	720	-120	1458
1740/2 $1743/1$		0 -3	-3 3	5 9	-8 7	28 9	60 2	-62 36	-26 -43	102 33	-29 -120	240 -130	-14 -337	260 30	-368 -76	184 -252	-46 9	4 -549	52 -685	146 -481	-304 -228	-318 -1132	$\frac{584}{116}$	-672 83	-1308 855	$966 \\ 1454$
1743/1 $1755/1$		-3 1	0	-5	20	-50	-13	112	-39	108	-120	146	-407	327	-38	341	574	-576	326	-796	363	696	57		-1085	-1304
1755/1 $1755/2$		1	0	-5 -5	-31	25	-13	124	-60	69	67	-97	-11	462	-227	-256	253	123	-664	812		-1176	-336	493	-281	796
1755/3	1755/1	-1	0	5	20	50	-13	-112	-39	-108	197	146	-407	-327	-38	-341	-574	576	326	-796	-363	696	57	860	1085	-1304
1755/4	1755/2	-1	0	5	-31	-25	-13	-124	-60	-69	-67	-97	-11	-462	-227	256	-253	-123	-664	812	-672	-1176	-336	-493	281	796
1755/5	•	3	0	-5	11	48	13	-63	20	33	-78	-214	344	321	47	-114	576	276	-700	-34	225	839	227	-789	1305	1262
1755/6		3	0	-5	-25	-72	13	-123	-148	93	258	-46	8	297	167	-186	216	-708	476	-322	-399	-85	-373	-333		-1234
1755/7	1755/5	-3	0	5	11	-48	13	63	20	-33	78	-214 -46	344 8	-321	47	114	-576	-276	-700	-34	-225	839	227		-1305	1262
1755/8 1760/1	1755/6	-3 0	4	5 5	-25 0	72 -11	13 -38	123 82	-148 44	-93 44	-258 234	-46 -4	-346	-297 98	167 -292	$\frac{186}{364}$	-216 406	$708 \\ 716$	$476 \\ 418$	-322 140	$399 \\ 1172$	-85 1042	-373 -1264	333 92	$\frac{1431}{250}$	-1234 114
1760/1 $1760/2$	1760/1	0	-4	5 5	0	11	-38	82	-44	-44	234	-4 4	-346	98	292	-364	406	-716	418		-1172	1042	1264	-92	250	114
1760/2	1.00/1	ő	5	-5	-25	11	54	1	119	-50	-69	289	-355	294	-328	-446	73	198	-263	-424	523	774	-962	534	-479	-592
1760/4	1760/3	0	-5	-5	25	-11	54	1	-119	50	-69	-289	-355	294	328	446	73	-198	-263	424	-523	774	962	-534	-479	-592
1764/1	•	0	0	0	0	0	19	0	-107	0	0	289	323	0	71	0	0	0	-182	-127	0	271	-1387	0	0	1330
1764/2	1764/1	0	0	0	0	0	-19	0	107	0	0	-289	323	0	71	0	0	0	182	-127	0		-1387	0		-1330
1764/3		0	0	0	0	0	89	0	-163	0	0	-19	-433	0	449	0	0	0	182	1007	0	-919	503	0	0	-1330

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1764/4	1764/3	0	0	0	0	0	-89	0	163	0	0	19	-433	0	449	0	0	0	-182	1007	0	919	503	0	0	1330
1764/5	588/1	ő	ŏ	4	ŏ	20	4	24	-44	-72	38	-184	-30	-216	-164	520	146	460	-628	556		-1024	-104	-324	896	920
1764/6	588/1	0	0	-4	0	20	-4	-24	44	-72	38	184	-30	216	-164	-520	146	-460	628	556	-592	1024	-104	324	-896	-920
1764/7	28/2	0	0	6	0	12	82	-30	-68	-216	-246	112	110	-246	-172	192	-558	540	-110	140	840	550	-208			-1586
1764/8	84/1	0	0	6	0	-36	-62	114	76	24	-54	112	-178	378	-172	-192	402	396			-840	-890	80	-108 -		-1010
1764/9	28/1	0	0	-8	0	40	12	-58	-26	64	62	-252	26	6	416	-396	450	274	576	-476	448	158	-936		-390	-214
1764/10 1764/11	84/2 12/1	0	0	14 -18	0	-4 -36	-54 10	-14 18	-92 100	152 -72	$\frac{106}{234}$	$\frac{144}{16}$	158 -226	-390 90	-508 452	-528 432	-606 -414	-364 -684	-678 -422	844 332	8 360	422 -26	$\frac{384}{512}$		1194 -630	$1502 \\ 1054$
1764/11	196/1	0	0	20	0	-44	-44	-72	100	120	-218	-280	-30	-120	220	-88	-110	-580	380	-980	112	-640	-488	-660	-320	248
1764/13	196/1	0	0	-20	ő	-44	44	72	-100	120	-218	280	-30	120	220	88	-110	580	-380	-980	112	640	-488	660	320	-248
1770/1	/-	2	3	5	ő	-28	-62	-30	20	-44	-210	-196	106	-342	292	-188	398	-59	-18	-484	56	38			1294	-682
1770/2		2	3	5	-24	17	-53	-39	25	-38	230	-108	-429	42	7	-204	-273	-59	-538	-279	112	-933	-735	2	415	946
1770/3		2	3	-5	11	-23	37	-119	-150	72	-70	-158	-219	37	237	-384	52	59	402	-1004	-23	-78	795	-233 -		1296
1770/4		2	-3	-5	10	-41	17	37	-11	-62	0	32	-91	326	-143	-28	-93	-59	-660	303	656	-739	593	878 -		-750
1770/5		2	-3	-5	-16	21	5	-21	-7	18	66	152	-115	-198	233	-168	621	-59	-574	-313	-840	1061	-391	-162	27	1478
1770/6 1770/7		-2 -2	3	5 5	-8 12	-52 45	$\frac{74}{11}$	50 -83	-164 -111	68 130	-90 -174	-40 268	122 -61	-230 474	400 383	172 -420	-162 707	59 -59	222 410	-96 457	-944 160	182 -429	-616	-464 -1494		-1050 1554
1770/8		-2 -2	3	5 5	-17	38	29	-83 21	22	105	-64	195	386	-298	-328	-87	-513	-59	308	-350	-111	641	-940		-559	110
1770/9		-2	-3	5	-15	54	-13	129	-114	209	48	23	-146	202	160	-119	127	59	-740	94	-277	963	436			-1006
1771/1		-1	-4	6	-7	-11	20	48	2	-23	170	-38	-418	-470	368	118	218	-420	342	-568	-12	258	-736	286 -		376
1775/1	71/1	-1	-1	0	1	24	-7	-72	-153	213	232	149	204	-432	-71	-273	274	126	-134	760	71	457	112	124	837	1424
1776/1	222/2	0	3	0	16	-48	50	60	-20	-162	-264	-332	37	330	-368	504	354	-222	-322	532	888		-1328	696 -		806
1776/2	222/3	0	3	-2	0	-28	-42	90	28	48	-42	152	37	-342	500	224	-426	-628	262	60		-1190	-552		-110	-846
1776/3	111/1	0	3	-4	1	13	73	99	105	-133	300	-62	-37	-198	-68	-354	-7	-220	322	706	-672	893	-910	-243	995	1234
1776/4 1776/5	444/1 111/3	0	3 -3	-4 2	25 28	-67 -20	57 10	27 -78	$\frac{17}{150}$	107 -82	-4 -222	$\frac{274}{154}$	-37 -37	-342 -306	-52 -386	-82 -12	17 -46	420 -658	610 250	-110 748	960 -324	205 -130	1330 230		-533 -118	178 898
1776/6	111/3	0	-3 -3	-8	13	35	-35	-10	-15	-62 -47	-12	94	-37	-300 54	244	-282	619	-058	250	478	96	-955	410	579	37	-2
1776/7	222/1	ő	-3	-16	24	-8	-78	12	16	198	-72	-280	37	-30	-244	-56	-654	-38	526	516	552	-842	-588		1136	726
1782/1		2	ō	7	-8	11	58	-124	-6	-132	-286	-317	-149	-74	322	611	425	531	268	-513	-629	-48	112	-88 -		1501
1782/2	1782/1	-2	0	-7	-8	-11	58	124	-6	132	286	-317	-149	74	322	-611	-425	-531	268	-513	629	-48	112	88	1534	1501
1779/1		-1	-3	-10	-19	-20	9	83	-65	84	-88	-282	-306	-470	-332	169	-102	-564	-725	874	-470	259	92		-924	479
1780/1		0	2	5	30	-60	-42	38	150	-98	-154	-62	358	-398	-22	-100	-198	-234	-354	316	-708		-1172	-462	89	1342
1785/1		1	3	5	7	-40	-70	17	-64	-104	34	88	338	426	100	128	-546	312	-74	36	704	586	568	-432	562	-622
1785/2 1785/3		1 5	3	5 5	-7 7	-12 44	-42 22	17 17	76 -132	120 -56	6 230	$\frac{32}{200}$	-194 -130	$90 \\ 314$	100 -276	-96 -168	-658 -530	4 820	-410 550	-244 -204	-360 16	-646 -838	-720 -472	156 - -396		386 -1246
1793/1		-3	2	-5	13	-11	-49	20	-22	-165	179	131	-58	-483	-109	396	576	182	-420	652	-604	346	264	-935 -		
1794/1		2	3	-2	14	56	-13	46	-74	-23	146	216	44	192	196	78	242	666	-386	14	-918	-342	-504	-484		-1032
1794/2		2	3	-6	24	-20	13	-86	-132	-23	-282	-172	-166	-62	-132	364	702	200	-210	-92	-636	2	-320	388	734	-146
1794/3		2	-3	6	30	34	13	100	144	-23	78	-16	20	-86	204	136	-198	-340		-1052	-1128	-682	1234	502	-100	-686
1794/4		-2	3	-8	-14	22	13	58	-26	23	-294	248	-416	-86	520	244	-578	500	598	746	800	-154	-712	978	-44	256
1800/1	120/5	0	0	0	0	-4	-54	114	44	96	-134	-272	98	6	-12	-200	654	-36	-442	188	632	390	688	1188	694	1726
1800/2 1800/3	$\frac{200/2}{360/4}$	0	0	0	2 -2	-39 34	84 68	61 -38	151 4	$\frac{58}{152}$	-192 46	-18 -260	-138 312	-229 -48	-164 200	$\frac{212}{104}$	-578 -414	336 2	858 -38	-209 244	780 -708	-403 378	-230 -852		1369 1380	382 -514
1800/3	360/4	0	0	0	-2 -2	-34	68	-38 38	4	-152	-46	-260	312	-48 48	200	-104	414	-2	-38	244	708	378	-852 -852	-844 -844 -		-514
1800/4	200/2	0	0	0	-2	-39	-84	-61	151	-58	-192	-18	138	-229	164	-212	578	336	858	209	780	403		-1293		-382
1800/6	600/2	0	0	0	4	28	-16	-108	32	28	238	-180	-40	-422	276	-60	-220	804	-358	-884	64	-152			1146	824
1800/7	600/2	0	0	0	-4	28	16	108	32	-28	238	-180	40	-422	-276	60	220	804	-358	884	64	152			1146	-824
1800/8	120/1	0	0	0	-4	-72	6	38	52	152	78	120	150	-362	484	280	-670	-696	222	4	-96	-178	-632			-1634
1800/9	600/4	0	0	0	5	-14	1	-46	19	46	-14	133	258	-84	-167	-410	-456	194	-17	653	-828	570	-552		1104	841
1800/10 1800/11	600/4 $200/1$	0	0	0	-5 6	-14 19	-1 -12	46 -75	19 -91	-46 174	-14 272	133 -230	-258 182	-84	167 -372	410 -52	456 -402	194 -312	-17 170	-653 -763	-828 52	-570 981	-552 1054		1104 -799	-841 -962
1800/11	200/1	0	0	0	-6	19	12	-75 75	-91 -91	-174	272	-230	-182	-117 -117	372	-52 52	402	-312	170	763	52 52	-981	1054 1054		-799	962
1800/12	120/3	0	0	0	-8	-20	-22	-14	-91 76	56	154	160	162	390	-388	-544	-210	380	-794	148	840	-858	144	316 -		-994
1800/14	600/5	0	0	0	10	14	-82	-18	-136	140	-112	72	26	446	396	144	-158	342	314	-152	932	-548	-512	-284	810	1304
1800/15	600/6	0	0	Ö	10	46	-34	-66	104	-164	-224	-72	-22	-194	108	480	-286	-426	698	328	-188	-740	1168	-412 -		-1384
1800/16	600/5	0	0	0	-10	14	82	18	-136	-140	-112	72	-26	446	-396	-144	158	342	314	152	932	548	-512	284		-1304
1800/17	600/6	0	0	0	-10	46	34	66	104	164	-224	-72	22	-194	-108	-480	286	-426	698	-328	-188	740	1168		1206	1384
1800/18	72/1	0	0	0	12	64	-58	-32	-136	128	-144	20	18	-288	200	-384	-496	-128	-458	496	512		1108		-960	-206
1800/19 1800/20	72/1 $120/2$	0	0	0	12	-64 28	-58 26	32 -62	-136	-128 -208	144	20 160	18 -270	288 -282	200 -76	384 -280	496 -210	128 -196	-458 742	496 -836	-512 504	$602 \\ 1062$	1108	704 -1052	960	-206 1406
1800/20	40/3	0	0	0	16 -16	-36	42		-68 -116		58 -198	240	258	-282 -442	292	392	142	348	-570	-836 -692	-168	134	$768 \\ 784$	-1052 564 -	726	382
1800/21	40/3	0	0	0	18	16	6	-110	-124	42	-142	-188	-202	-54	-66	38	738	-564	-262	554	-140		-1160	642	854	478
1000/22	40/1	J		v	10	10	J	-0	124		1112	.100	202	-0-1	-00	00	100	-00-1	-202	004	140	-002	1100	042	004	410

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1800/23	360/2	0	0	0	18	34	-12	102	164	-48	146	100	-328	-288	-120	-16	126	642	602	-436		-1062	388	444	-820	766
1800/24	360/2	0	0	0	18	-34	-12	-102	164	48	-146	100	-328	288	-120	16	-126	-642	602	-436		-1062	388	-444	820	766
1800/25	600/8	0	0	0	19	-22	-1	-58	-53	58	-22	-35	270	468	431	-230	0	-446	127	811	-36	-522		-1138	-144	1079
1800/26 $1800/27$	600/8 $120/6$	0	0	0	-19 -20	-22 -16	1 -58	58 38	-53 4	-58 -80	-22 -82	-35	-270 -426	$\frac{468}{246}$	-431 524	230 -464	0 -702	-446 592	$\frac{127}{574}$	-811 172	-36 -768	$\frac{522}{558}$	$\frac{1368}{408}$	$\frac{1138}{164}$	-144 510	-1079 -514
1800/27	$\frac{120}{6}$	0	0	0	-20	-10 56	-38 86	-106	4	136	206	-8 -152	-282	246	-412	40	-102	-56	-2	388		-1170	408	668	-66	926
1800/28	24/1	0	0	0	24	28	74	82	92	8	138	80	-30	-282	-412	240	-130	-596	-218	436	-856	998		-1508	246	-866
1800/30	8/1	ő	ő	ő	-24	44	-22	50	44	-56	-198	-160	162	198	-52	528	-242	668	550	-188	-728	-154	-656	236	-714	478
1800/31	200/6	0	0	0	26	59	28	-5	109	194	32	10	-198	-117	388	68	18	-392	-710	-253	612	-549	414	121	81	-1502
1800/32	200/6	0	0	0	-26	59	-28	5	109	-194	32	10	198	-117	-388	-68	-18	-392	-710	253	612	549	414	-121	81	1502
1800/33	40/2	0	0	0	34	-16	-58	-70	4	-134	242	100	438	138	-178	22	162	268	250	-422	852	-306	-456	434	726	-1378
1800/34	360/3	0	0	0	-34	18	-12	106	-44	-56	270	204	-120	80	-536	536	-542	-174	186	-332	-132	602	-548	492 -		-482
1800/35	360/3	0	0	0	-34 -22	-18 -12	-12 -8	-106 -66	-44 0	56 -30	-270 6	$\frac{204}{64}$	-120	-80	-536 182	-536 594	542 -396	$\frac{174}{564}$	186 -706	-332 628	$\frac{132}{984}$	602 14	-548 328	-492 -294	1052 -918	-482 1564
1805/1 $1805/2$	95/1	1	-4 5	-5 5	-22 22	-12 9	-8 -54	-66 -54	0	-30 -92	134	$\frac{64}{252}$	$\frac{16}{236}$	-54 243	496	$594 \\ 502$	-62	-681	-142	-55	984	695	736	-294 -63	-918 -726	$1364 \\ 1167$
1805/3	1805/2	-1	-5	5	22	9	54	-54	0	-92	-134	-252	-236	-243	496	502	62	681	-142	-55 55	-974	695	-736	-63		-1167
1805/4	95/2	-3	5	-5	-1	-24	31	33	0	27	-111	94	70	510	-34	-192	75	-45	-28	-371	-384	-73	1234		1578	538
1805/5	95/3	-3	-7	5	11	-36	-65	-87	Ö	-129	-231	-110	142	330	74	-336	-501	-633	-88	-119	204		-1262	270	30	-1406
1805/6	5/1	4	-2	-5	6	32	38	26	0	-78	50	108	-266	-22	442	-514	-2	-500	-518	-126	-412	-878	-600	282	150	-386
1805/7		5	-5	5	-19	50	-55	51	0	-147	165	70	-210	80	-558	-464	-455	-225	500	-105	1140	-703	-700	-918	-870	-1380
1805/8	95/4	-5 -5	-4	5	-32	-12	42	114	0	160 -147	-214 -165	144 -70	-94	6	-308	184 -464	274	-276	-826	-52	344 -1140	-166 -703	688 700		1578	-786 1380
1805/9 1806/1	1805/7	-5 2	5 3	5 -4	-19 -7	50 19	55 -51	51 85	-118	-147	-165 -130	-70 -33	210 -394	-80 -27	-558 43	-464 192	$\frac{455}{225}$	$\frac{225}{320}$	500 -684	105 -89	-1140 70		-1080	-918 181	870 -54	1813
1806/1		2	-3	14	-7	0	86	66	124	-12	-310	284	-106	-278	43	-168	-354	684	618	612	-728	-602	-248	-252	674	258
1813/1	259/1	3	2	-2	0	20	74	-76	136	-16	86	238	-37	-86	-468	-264	-298	-420	-838	-244	-152	-514	204	-314	-680	712
1815/1	165/1	0	-3	-5	-2	0	22	-72	-122	72	-96	-112	266	96	382	360	318	660	430	380	168	-218		-1068	-6	686
1815/2	,	1	3	5	9	0	-77	129	-53	-124	153	-2	-155	122	-430	-30	476	-472	-512	686	211	-434	-218	-295	-616	-1334
1815/3		1	-3	-5	-33	0	-31	33	113	-44	-51	-50	-239	218	46	594	628	-260	548	-382	5	-598		-1147 -		-1190
1815/4	1815/2	-1	3	5	-9	0	77	-129	53	-124	-153	-2	-155	-122	430	-30	476	-472	512	686	211	434	218	295		-1334
1815/5 1815/6	$\frac{15/2}{165/2}$	-1 -1	3	5 -5	24 -36	0	-22 -2	14 -66	20 -140	-168 -68	-230 -150	-288 -128	-34 -314	-122 118	188 -172	256 -324	-338 82	100 -740	-742 -122	-84 -124	-328 -988	38 -2	240 -1100	-1212 868	330 -470	866 1186
1815/7	1815/3	-1 -1	-3	-5 -5	-30	0	31	-33	-140	-44	-130	-50	-239	-218	-172	-324 594	628	-260	-548	-382	-900 5	598	-974	1147 -		-1190
1815/8	15/1	-3	-3	-5	-20	0	-74	-54	124	-120	78	200	-70	-330	-92	-24	450	24	322	-196	-288	430	520		1026	-286
1816/1	/-	0	-4	-12	-11	-39	-88	40	159	139	133	170	-2	182	-133	-12	273	-823	-390	-142	-37	659	24	-894	229	-618
1818/1	202/1	-2	0	-3	-30	-22	-51	13	-71	41	-204	97	-434	240	-440	-497	-122	-590	-728	862	-627	280	-335	328	-994	674
1818/2	606/1	-2	0	4	-17	50	70	93	-143	-88	-263	-282	178	412	-473	572	-391	-190	493	44	278	626	6	52	-152	-559
1818/3	202/2	-2	0	-18	-13	12	-16	-117	143	-42	9	-16	440	84	-283	-354	273	612	83	974	1062	272	50	1056	-720	-1531
1820/1		0	-4 -4	5	-7	34	-13	4 106	40	-88 -172	30	-270 96	310 -62	-152	-94	168 -600	-404	568	-698	-552	432	1070	-184 800	-572	-360 1146	234
$\frac{1820/2}{1820/3}$		0	-4 -4	-5 -5	-7 -7	16 -68	-13 -13	22	-80 88	164	150 38	292	-342	130 382	428 -272	408	418 -282	712 -576	-938 -98	636 76	-720 -888	878 822		-548 -1164	278	894 -338
1820/4		0	-8	-5	-7	-40	-13	62	28	-152	-122	-168	426	198	-292	264	302	396	878	-108	916	-698	640		1490	446
1820/5		0	-10	5	7	-32	-13	92	-14	-86	38	40	-162	-416	-148	-24	468	110	358	-140	650	86	824	-788	-24	674
1825/1	365/2	3	7	0	1	-39	16	130	-136	50	-123	-254	-41	-215	-162	-99	676	691	-304	-601	-803	73	-593		1169	-1586
1825/2	365/1	3	-10	0	16	48	88	-9	137	-57	213	-97	97	201	421	-192	-690	186	-304	-146	420	-73	-196	612	-399	-1280
1825/3	73/1	-3	8	0	34	6	34	-90	-16	-60	102	-214	286	150	322	534	474	786	-574	16	192	-73		-1242	-6	-614
1827/1 $1827/2$	1827/1	1 -1	0	12 -12	7 7	21 -21	-51 -51	-88	-117 -117	-15 15	-29 29	20 20	-243 -243	-100 100	-208 -208	215 -215	217 -217	111 -111	-218 -218	-195 -195	656 -656	-803 -803	-884 -884		1236 1236	-917 -917
1827/2	203/2	-1 -1	0	-12 -14	7	-21 28	-51 70	-88 14	140	-72	-29	208	254	-186	-208 -444	160	-217	684	-218 86	-195 -708	-000	-803 506	-884 480	1060	-810	1314
1827/4	609/1	3	0	-12	7	60	32	-24	-160	144	-29	-106	-286	-180	260	126	246	174	302	-136	1008	992	512	1218	-540	-100
1827/5	203/1	-4	0	-12	7	-2	-26	80	128	0	-29	160	-274	36	246	244	-114	420	188		-1120	-352	438	676	336	-216
1827/6	609/2	-5	0	-4	7	-16	58	46	-64	42	29	-56	26	-306	318	-112	186	-120	368	-348	-266	-844	-1026	296	-294	-60
1830/1	•	2	-3	5	12	-30	18	-36	-100	170	-244	-304	-262	-178	276	296	180	-230	61	380	-266		-1212	-396	-108	-74
1830/2		-2	3	5	-36	40	-26	26	92	-120	-142	48	130	-222	32	136	-50	168	61	160	-12	-814	88	-900	326	-702
1830/3		-2	3	-5	8	6	69	-59	-119 -4	-14	271	-179	-332	-279	-461	-159	614	624	-61	593	608	-668	-25	834 -		-1316
1830/4 1830/5		-2 -2	-3 -3	5 -5	-26 14	64 -6	-50 -30	-24 -14	-4 76	62 -68	30 220	-236 -236	-56 -116	470 390	-162 -362	$\frac{436}{576}$	-384 -34	$\frac{312}{162}$	-61 -61	-830 170	108 -22	886 -314	-452 -352	$844 \\ 324$	450 -40	-1134 466
1836/1		0	-3 0	-5 6	20	-0 15	-30 47	-14 17	-148	-147	-177	-250	-110	-153	-133	-96	$\frac{-34}{150}$	-336	290	-301	765	134	-352	-618	-264	614
1836/2	1836/1	0	0	-6	20	-15	47	-17	-148	147	177	-250	-184	153	-133	96	-150	336	290	-301	-765	134	-460	618	264	614
1840/1	230/1	0	1	5	32	30	19	-60	58	-23	85	65	-34	143	332	561	-422	-392	-246	-894	737		-1114	936	824	-868
1840/2	230/2	0	-1	-5	18	32	-47	20	-36	23	-27	33	56	-157	-18	-65	-14	744	552	156	-699	-609	644	-512	-102	578
1840/3	115/2	0	3	5	2	16	-47	-24	56	23	85	-67	104	-53	234	-285	2	-80	-764	-236	289	-225	-24	-684 -		-110
1840/4	230/4	0	-4	-5	-3	2	-38	-45	74	-23	283	303	79	-407	328	-360	-561	-101	-268	69	641	994	884	-503	1608	1082

1840/6 220/8 0 5 5 -12 -22 19 96 98 29 227 285 298 271 100 285 18 352 478 330 835 1127 322 572 504 771 1840/7 296 377 370	level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1840/T																											-1438
1841/2 2			_																								1712
1842/2 205/1 1		230/3	_		5																						992
1845/1 205/1 1 0 0 -5 8 8 54 68 10 -150 64 56 -336 66 41 188 536 -172 24 -262 442 -652 -54 -104 -1236 -370 1245 1845/2 1 1 0 0 -5 17 -36 -40 62 3 -771 200 -3 -123 41 377 -184 -323 333 -838 910 1048 108 -266 240 883 -440 1845/5 165/2 1 0 0 5 17 -36 -40 62 3 -771 200 -3 -123 41 377 -184 -323 333 -838 910 1048 108 -266 240 883 -440 1845/5 165/2 3 0 -5 -10 0 5 17 -36 -40 62 3 -771 -200 -3 -123 41 377 -184 -323 333 -838 910 1048 108 -266 240 883 -440 1845/5 165/2 3 0 -5 -10 0 5 17 -40 -62 36 -48 -124 14 247 24 23 -238 -848 -84 12 28 -248 14 12 247 24 24 23 -238 -848 -84 12 248 -848 14 12 147 248 14 12 147 24 12 14 14 14 14 14 14 14 14 14 14 14 14 14			_			-																					-1325
1845/2 1.0			_																								-1054
1845/3		205/1		-																							1294
1845/4 205/2 -1 0			_							-																	-1406
1845/5				-	-																						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				_																							-
1845/7																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
1850/1		015/3																									
1850/2		74/1	0		-														•								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		74/1									-																-672
1850/4 370/2 -2		370/3																									766
1850/5 74/2 -2 5 0 19 5 -6 72 -44 -182 10 -244 37 725 2 -221 659 156 -620 -416 -125 611 -481 -1239 1304 56 1850/7 1850/7 1850/7 1850/7 1850/7 20 8 12 57 -38 51 -125 -125 -121 -121 -12																											574
1850/6 370/1 -2 -6 0 -32 52 62 16 -115 110 -6 -111 -79 37 171 -361 428 527 112 -323 464 -366 -712 176 180 446 140 1805/1 -125 -12																											560
1850/7 1850/2 -2 10 0 -32 52 62 16 -85 189 98 -92 37 -249 -433 422 -63 37 -590 -222 -154 259 -1207 64 630 67 1855/1 -3 -8 -5 -7 -7 -20 -72 -14 52 -132 106 -46 -134 250 48 -228 -53 -506 -526 -532 -228 -584 -106 -728 -34 69 1855/1 -7 -7 -7 -7 -7 -7 -7 -																											1407
1854 /																											672
1855/1 58/1 58/1 0 7 -5 2 37 -27 24 82 82 92 143 360 386 381 103 431 288 840 180 706 716 931 1188 642 48			-2	0	8	12	57	-38	94	-127	27	-117	233	341	424	182	50	-396	420	-464	-542	276	-176	462	1108		1055
1856/1 58/1 0		,	-3	-8	-5	-7	-20	-72	-14	52	-132	106	-46	134	280	48	-228	-53	-506	-626	-332	-288	-584	-196	-728	-34	698
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1856/1	58/1	0	7	-5	2	37	-27	24	-88	28	29	143	360	386	381	103	431	288	840	-180	-706	716	-931	1188	-642	486
1856/4 58/1 0	1856/2	928/1	0	7	13	16		-61	-102	68	194		149	-400	280		509	605	578	718	260	738	652	-917	-678	-1008	-1764
1856/5 928/1 0	1856/3	58/2	0		15	-18	-27			-152	-152		-173	120	-314	-339	-357	59	572	420	-660	726	1004	361	168	58	-1206
1856/6 58/2 0 -7 15 18 27 57 -44 152 152 29 173 120 314 339 357 59 572 420 660 726 1004 -361 -168 58 -120 1860/1 38/1 -2 2 9 0 57 52 -69 19 -72 -150 -32 -226 258 -67 -579 -432 330 13 -856 642 487 -700 12 600 -141 1863/1 1 0 -3 -26 -32 57 -49 56 -23 -89 100 -121 -202 106 -390 -594 -258 -690 686 550 -1037 -902 -48 -691 140 1866/1 -10 -3 -26 -32 -57 -49 56 -23 -89 100 -121 -202 106 -390 -594 -258 -690 686 550 -1037 -902 -48 -691 140 -48 -4			-																								486
1880/1		,	0	•																							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		58/2																									
1863/1																											1634
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		38/1																									
1866/1 1870/1 2		1000/1																									1406
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1863/1																									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_																								-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		234/3		_	-						-																
1872/3																											-446
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											1238
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	0	0																							614
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	Õ			36		-66																		-502
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	0	-6	-20	24	13	30	16	-72	282	-164	110	126	-164	-204	738	120	614	-848	132	218	1096	552	-210	-1726
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1872/7	13/1	0	0	7	13	-26	13	-77	126	-96	82	-196	-131	-336	201	-105	432	-294	-56	-478	9	98	-1304	-308	1190	70
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		104/2	0	0	7	21	-	13	115		144	162	-180				383	-288	442	-680		-207	274	936	-1204	966	-138
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																											-614
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-346
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-																								110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-																							1262
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-		-																					-562
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0	_																							1022
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-			_																				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	_								-															830
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		10/4		-																							-62
1880/1 0 7 5 -27 -21 -37 62 -89 96 48 273 134 178 358 47 96 432 -519 524 820 -673 1040 207 366 -112 1884/1 0 -3 -6 -3 52 -7 -135 86 77 -240 18 281 -462 463 168 510 533 816 -218 568 -978 -704 492 519 -90 1887/2 0 3 15 9 41 24 -17 -59 22 137 -86 37 432 -153 384 -59 -571 451 -194 -813 -298 838 -101 666 -84 1887/2 0 3 15 31 -69 -20 -17 -99 -154 225 266 37 124 -43 296 425 683 -209 26 969 758 90 100 622 69 1890/1 2 0 5 7 9 -108 11 -126 -66 -148 -346 -147																	-										-62 1169
1884/1 0 -3 -6 -3 52 -7 -135 86 77 -240 18 281 -462 463 168 510 533 816 -218 568 -978 -704 492 519 -90 1887/1 0 3 15 9 41 24 -17 55 22 137 -86 37 432 -153 384 -59 -571 451 -194 -813 -298 838 -1016 666 -84 1887/2 0 3 15 31 -69 -20 -17 -99 -154 225 266 37 124 -43 296 425 683 -209 26 969 758 90 1008 622 69 1890/1 2 0 5 7 9 -19 -108 11 -126 -66 -148 -346 -147 -139 201 249 -582 344 305 -912 -151 -832 873 609 68			_																								-1122
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0		-																						-908
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																											-849
1890/1 2 0 5 7 9 -19 -108 11 -126 -66 -148 -346 -147 -139 201 249 -582 344 305 -912 -151 -832 873 609 68																											691
			0	-																							686
			_	-	-																						-920
1890/3 2 0 5 7 68 52 -95 -19 23 234 -239 424 -62 522 248 -549 -706 -329 -1038 1030 -38 -471 291 -836 75			2																								754

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1890/4		2	0	5	-7	25	13	-29	-98	-133	-217	-237	186	24	-31	-201	-518	684	224	204	-160	-752	691		-1180	-1456
1890/5		2	0	5	-7	28	-44	-47	-95	131	-22	-171	-48	-30	-262	-360	343	150	-685	114		-1070		-1077	404	914
1890/6		2	0	5	-7	-37	73	-60	9	-194	-74	76	-178	-251	11	199	109	358		-1017	-552	165	880		-1039	446
1890/7 1890/8	1890/7	2 -2	0	-5 5	7 7	-18 18	35 35	-57 57	$\frac{104}{104}$	$-171 \\ 171$	-165 165	-313 -313	128 128	-114 114	$\frac{47}{47}$	174 -174	291 -291	21 -21	86 86	$\frac{1067}{1067}$		-1066 -1066	-220 -220	-1020 1020	-51 51	-1846 -1846
1890/9	1890/1	-2 -2	0	-5	7	-9	-19	108	104	126	66	-148	-346	$114 \\ 147$	-139	-201	-249	582	344	305	912	-151	-832	-873	-609	686
1890/10	1890/2	-2	0	-5	7	46	-8	-79	-121	49	132	-146	-38	26	114	448	609	-56	-635		-1090	-338	477	579	326	-920
1890/11	1890/3	-2	ő	-5	7	-68	52	95	-19	-23	-234	-239	424	62	522	-248	549	706			-1030	-38	-471	-291	836	754
1890/12	1890/4	-2	0	-5	-7	-25	13	29	-98	133	217	-237	186	-24	-31	201	518	-684	224	204	160	-752	691	-1128	1180	-1456
1890/13	1890/5	-2	0	-5	-7	-28	-44	47	-95	-131	22	-171	-48	30	-262	360	-343	-150	-685	114	370	-1070	841	1077	-404	914
1890/14	1890/6	-2	0	-5	-7	37	73	60	9	194	74	76	-178	251	11	-199	-109	-358	-672	-1017	552	165	880	-431	1039	446
1899/1	633/1	4	0	-3	30	-3	-23 77	114	19	-104	246	88	321	266	93	147	642	-20	-330	-526	-585	-330		-1068	756	950
1900/1 1904/1	$\frac{380}{1}$	0	-1 6	0 -20	-19 7	20 -60	-68	11 -17	-19 70	-79 176	-303 -90	214 -196	$\frac{250}{22}$	-230 -138	402 -328	-48 12	417 -234	99 54	$\frac{332}{44}$	319 596	-1088 -200	373 1122	102 -480	-934 838	498 778	1386 1142
1904/1	119/1	-5	3	-20 -5	-29	-00 6	-44	-140	9	-134	160	-70	-240	-336	-482	89	-234	-105	-830	-956	-841	-223	782	1291	1293	338
1911/1	39/1	0	3	12	0	-36	-13	78	-74	-96	18	214	-286	384	524	-300	558	-576	-74	38	-456	682	704	888	1020	-110
1911/2	273/2	-1	-3	5	0	-1	-13	-19	117	-141	-131	128	55	0	-201	96	510	156	845	-470	324	373	-526	-266	250	-322
1911/3	273/3	-1	-3	-9	0	-57	13	37	-107	-183	191	240	-379	84	-313	-296	-414	-40		-1086	-208	-635	-582	-798	726	-1498
1911/4	273/1	-4	3	0	0	-6	13	4	52	6	14	48	-190	-180	356	-536	210	-244	-470	240	854	82	-876	-504	660	-1318
1911/5	1011/5	-5	3	-3	0	9	-13	22	56	-42	109	-75	-256	132	-208	280	381	-43	-508	612	238	134	-957	-927	-312	577
1911/6 1918/1	1911/5	-5 2	-3 4	3 -2	0 -7	9 20	13 18	-22 -10	-56 -22	-42 -80	109 -26	75 -170	-256 346	-132 -48	-208 -188	-280 -606	381 -486	43 -310	508 916	612 -140	$\frac{238}{704}$	-134 258	-957 496	927 -592	312 944	-577 -372
1920/1		0	3	5	-2	30	2	-54	-106	18	-138	-292	270	-466	32	74	-302	-518	86	448	328	258	288	-236	1254	-790
1920/2		ő	3	5	-4	6	-44	-84	8	48	90	166	156	166	-460	-448	-470	26	-206	-548	-392	30	750	-4	-186	530
1920/3		0	3	5	8	-50	-48	36	24	8	-118	178	-160	254	-148	-96	258	-278	-154		-1112	-1162	138	84	-746	-1590
1920/4		0	3	5	10	-22	26	14	-34	-190	-162	-268	-362	-170	16	434	594	-170	130	-1024	280	282	-160	-732	-746	-534
1920/5	1920/1	0	3	-5	2	30	-2	-54	-106	-18	138	292	-270	-466	32	-74	302	-518	-86	448	-328	258	-288	-236	1254	-790
1920/6	1920/2	0	3	-5	4	6	44	-84	8	-48	-90	-166	-156	166	-460	448	470	26	206	-548	392	30	-750	-4	-186	530
$\frac{1920/7}{1920/8}$	$\frac{1920/3}{1920/4}$	0	3	-5 -5	-8 -10	-50 -22	48 -26	$\frac{36}{14}$	24 -34	-8 190	$\frac{118}{162}$	-178 268	$\frac{160}{362}$	254 -170	-148 16	96 -434	-258 -594	-278 -170	154 -130	-212 -1024	1112 -280	-1162 282	-138 160	84 -732	-746 -746	-1590 -534
1920/8	$\frac{1920}{4}$	0	-3	-5 5	2	-30	20	-54	106	-18	-138	292	270	-466	-32	-74	-302	518	-130	-448	-328	258	-288		1254	-790
1920/10	1920/2	ő	-3	5	$\frac{2}{4}$	-6	-44	-84	-8	-48	90	-166	156	166	460	448	-470	-26	-206	548	392	30	-750	4	-186	530
1920/11	1920/3	0	-3	5	-8	50	-48	36	-24	-8	-118	-178	-160	254	148	96	258	278	-154	212	1112	-1162	-138	-84	-746	-1590
1920/12	1920/4	0	-3	5	-10	22	26	14	34	190	-162	268	-362	-170	-16	-434	594	170	130	1024	-280	282	160	732	-746	-534
1920/13	1920/1	0	-3	-5	-2	-30	-2	-54	106	18	138	-292	-270	-466	-32	74	302	518	-86	-448	328	258	288	236	1254	-790
1920/14 1920/15	$\frac{1920/2}{1920/3}$	0	-3 -3	-5 -5	-4 8	-6 50	44 48	-84 36	-8 -24	48 8	-90 118	$\frac{166}{178}$	-156 160	$\frac{166}{254}$	$\frac{460}{148}$	-448 -96	470 -258	$-26 \\ 278$	$\frac{206}{154}$	$\frac{548}{212}$	-392 -1112	30 -1162	$750 \\ 138$	-84	-186 -746	530 -1590
1920/16	1920/4	0	-3	-5	10	22	-26	14	34	-190	162	-268	362	-170	-16	434	-594	170	-130	1024	280	282	-160	732	-746	-534
1922/1	62/2	2	8	-3	-35	46	-20	-8	97	-28	206	0	282	367	562	-148	84	-301	236	60	699	814	-670		-1566	-615
1922/2	62/1	-2	2	1	-11	18	82	6	25	-58	-180	0	146	47	12	-136	232	715	518	-436	387	-678	-660	382	800	-1631
1925/1	385/3	0	2	0	-7	11	-80	84	68	198	-198	56	286	78	-260	402	534	-180	-622	1018	-900	-956	-424	-636	-378	-758
1925/2	385/2	0	2	0	-7	-11	52	-48	68	66	66	-340	-242	-54	-524	-390	-522	744	830	-170	-636	-296	1160	684	-642	562
1925/3	385/5	-1	-2	0	-7	11	-22	-6	70	-182	-20	32	-76	352	-132	624	-592	720	442 -614	164 836	452	698	-950	628	30	-656
1925/4 $1925/5$	385/4	-1 3	-10 4	0	-7 7	11 11	-54 23	-86 42	-98 5	82 -123	-249	112 185	-196 152	120 -336	-148 -61	-464 -360	488 -72	-368 -72	-790	644	948 813	554 -976	50 -298	$\frac{484}{465}$	-690 621	1368 -1735
1925/6		3	4	0	-7	11	-61	-14	145	157	255	213	-408	112	-341	-192	376	376	218	644	477	368	598	1277	481	-811
1925/7	385/1	-3	-4	0	7	11	46	-106	-140	128	210	-252	78	442	356	72	-466	316	-682	-224	-528	142		-1112	-254	-1694
1925/8	1925/6	-3	-4	0	7	11	61	14	145	-157	255	213	408	112	341	192	-376	376	218	-644	477	-368	598	-1277	481	811
1925/9	1925/5	-3	-4	0	-7	11	-23	-42	5	123	-249	185	-152	-336	61	360	72	-72	-790	-644	813	976	-298	-465	621	1735
1925/10	77/1	-3	-4	0	-7	11	-38	48	-70	-12	126	-70	358	-216	-344	-390	-438	-552	830	196	648	16	1352	-90	1146	70
1926/1	642/3	2	0	-7	26	52	10	32	14	123	134	-122	20	-105	363	-75	-338	215	-326	-439	150	-50	-869	1038	783	1710
1926/2 1926/3	642/1	2 -2	0	-17 7	-26 -8	-50 30	-21 -13	-123 9	-67 -11	-74 100	-120 -132	148 -230	-43 -231	-68 362	-542 414	-46 4	-96 158	848 84	583 283	-314 -868	-405 -597	-10 -124	384 -1036		-1312 1536	-904 1074
1926/4	642/2	-2	0	-9	-34	4	-77	121	-11	64	-132	170	249	-20	-236	380	108	340	151	670	-945	-208	-416	-364	-534	312
1926/5	1926/2	-2	0	17	-26	50	-21	123	-67	74	120	148	-43	68	-542	46	96	-848	583	-314	405	-10	384	1102	1312	-904
1932/1	'	0	3	8	7	25	-62	72	-113	-23	-250	-278	-174	51	-460	293	87	131	83	-776	-220	-528	354	186	-62	-1274
1932/2		0	-3	6	7	72	-28	-120	86	23	-270	-130	2	270	-460	-174	-402	108	-70	860	84	-802	512	-846	-324	-124
1932/3		0	-3	-19	7	-8	37	-40	-164	23	265	-90	-13	435	85	-609	568	558	-230	260	654	-492	-48	724	1026	-699
1935/1	1025 /1	3	0	5	4	8	-70	138	-86	86	286	-84	28	-208	-43	-522	-206	-60	-850	-756	-672	-1004	300			-1322
1935/2 1936/1	1935/1 $88/2$	-3 0	0 1	-5 -7	4 -6	-8 0	-70 40	-138 78	-86 36	-86 -7	-286 -8	-84 -183	$\frac{28}{227}$	208 36	-43 322	$\frac{522}{184}$	206 -6	60 99	-850 -164	-756 695	672 987	-1004 248		-1170 -1494		-1322 -1031
1936/1	$\frac{66/2}{22/3}$	0	-1	-1 -3	-10	0	16	-42	116	-189	120	163	-409	-468	110	-144	90	453	-20	97	465	-848	-742	438	-273	761
1900/2	22/3	U	-1	-0	-10	U	10	-44	110	-109	120	100	-403	-400	110	-144	90	400	-20	91	400	-040	-142	400	-210	101

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1936/3	968/2	0	2	13	10	0	27	-27	-38	-150	-285	198	57	-227	64	-390	-267	-280	50	546	-772	178	1058	378	-1185	-733
1936/4	968/2	0	2	13	-10	0	-27	27	38	-150	285	198	57	227	-64	-390	-267	-280	-50	546	-772	-178	-1058		-1185	-733
1936/5	8/1	0	4	-2	24	0	-22	-50	44	56	-198	160	-162	198	52	-528	-242	668	-550	-188	-728	-154	-656	236	714	-478
1936/6	242/2	0	-4	3	8	0	-83	-123	-112	-36	21	-128	107	201	308	492	-345	-204	-470	760	-900	742	92	-864	-645	299
1936/7	242/2	0	-4	3	-8	0	83	123	112	-36	-21	-128	107	-201	-308	492	-345	-204	470	760	-900	-742	-92	864	-645	299
1936/8	22/1	0	-4	14	-8	0	50	-130	-108	96	-142	-40	382	118	220	-520	238	852	-190	12	112	6	304	820	202	-1406
1936/9	44/1	0	5	-7	-26	0	-52	-46	-96	-27	-16	293	-29	472	-110	224	754	-825	548	123		1020	526		-1217	-263
1936/10	242/1	0	-5	-15	36	0	12	-84	60	-105	120	-205	115	-420	168	180	270	429	-600	65	237	12	840	-288	255	
1936/11	242/1	0	-5	-15	-36	0	-12	84	-60	-105	-120	-205	115	420	-168	180	270	429	600	65	237	-12	-840	288	255	-1375
1936/12	22/2	0	7	-19	14	0	72	46	-20	107	-120	-117	-201	228	-242	96	458	-435	668	-439		72	-70	358	895	409
1936/13	88/1	0	-7	9	2	0	0	38	44	-175	264	-159	-173	220	-542	264	682	-421	-308	-177	-365	528	686	698		-
1936/14	121/1	0	-8	18	0	0	0	0	0	108	0	-340	-434	170	0	36	-738	720	0	416	-612	1000	0	0	1674	-34
1938/1		2	-3 0	7	-33	34	44	-17 -38	-19	-62 26	-154	106	-182	-172	100	493	277	456	206	-327		-1068	-106	15	-825	-545 809
1944/1 1944/2		0	0	8	9 -21	-58 32	67 -23	-38 -8	-49 11	26 56	-54 96	263 -67	-51 -141	-456 264	199 -281	-78 192	-442 128	$\frac{308}{248}$	-914 -74	-76	430 -1040	322	-875 -185	994 424	84 -216	29
1944/3	1944/1	0	0	-8	9	58	67	38	-49	-26	54	263	-51	456	199	78	442	-308	-914	-76	-430	322	-875	-994	-84	809
1944/4	1944/2	0	0	-8	-21	-32	-23	8	11	-56	-96	-67	-141	-264	-281	-192	-128	-248	-74	464		-1178	-185	-424	216	29
1944/5	1344/2	0	ő	11	30	-4	16	70	5	53	-15	74	-156	366	292	-201	557	-364	-518	-7		-359	1024	1078	1044	-193
1944/6	1944/5	ő	Ö	-11	30	4	16	-70	5	-53	15	74	-156	-366	292	201	-557	364	-518	-7	473	-359		-1078		-193
1947/1	- / -	-3	3	-13	-30	11	-16	19	-101	-80	-42	-128	-197	-234	-96	-135	635	-59	-310	-932	-864	-833		-1141		-1630
1950/1	390/7	2	3	0	-5	-35	13	-23	-30	-63	-190	330	-43	-473	232	-270	193	-200	-679	12	-899	-154	215	1308	-1019	427
1950/2	390/6	2	3	0	14	-36	13	-68	-158	-46	-8	-176	-62	30	-252	120	-758	252	398	-884	-80	660	568	-1084	1250	-84
1950/3	78/1	2	3	0	-28	34	13	-138	108	52	-190	-176	-342	240	140	-454	-198	-154	34	656	550	-614	8	-762	-444	-1022
1950/4	390/9	2	-3	0	-2	0	-13	60	50	-210	-228	116	-386	378	4	312	198	624	638	-200		-1148		-1332	54	244
1950/5	78/2	2	-3	0	8	-38	13	78	-72	52	242	76	-342	-336	-76	-94	450	854	-110	908	838	970	-352	-474		562
1950/6	78/3	2	-3	0	8	40	-13	-130	-20	0	-18	-184	74	-362	-76	452	-382	464	358	700	-748	-1058	-976	1008	-386	614
1950/7	390/8	2	-3	0	13	-15	-13	75	-130	-45	-138	-34	379	243	-416	-378	3	-816	-607	700	57	1162	-1	-672	969	949
1950/8 1950/9	390/10 390/11	2 2	-3 -3	0	15 -24	39 0	13 -13	15 -50	54 28	143 208	-122 190	-246 248	225 186	469 -194	484 -348	-234 -260	-33 -462	0 -520	-831 -506	-772 -772	-793 780	998 62	-681 736	772 -1464	-465 406	79 -922
1950/9	390/11	-2	-3 3	0	-24	12	-13	-30 42	-52	-132	282	116	-398	174	-348 76	-456	-462	-156	230	592	408	730	728		-1482	-1742
1950/11	390/4	-2	3	0	-8	-40	13	-10	0	180	22	-144	-34	-502	76	168	422	104	-82	540	512	-622	104	-348	-286	-494
1950/12	390/2	-2	3	ő	12	-48	-13	62	-32	8	-58	-124	162	74	396	164	-270	-416	70		-1092	-10	328	144		
1950/13	78/5	-2	3	0	-20	24	-13	30	-16	72	-282	164	-110	-126	-164	204	738	120	614	-848	132		-1096	-552	210	1726
1950/14	390/3	-2	3	0	25	-21	-13	-123	146	-99	-246	182	295	9	-452	-390	-315	-24	-727	-596	771	-326	-889	96	795	-983
1950/15	78/4	-2	3	0	32	50	13	30	-120	20	82	-44	306	108	356	178	-198	94	-62	140	-778	-62	-1096	462	1224	-614
1950/16	78/6	-2	-3	0	-4	2	13	6	-36	20	-14	-152	258	84	188	-254	-366	550	-14	-448	926	-254	1328	-186	-336	-614
1950/17	390/1	-2	-3	0	28	-36	-13	-42	-112	168	-210	-76	-278	150	460	264	-582	-204	614	304		934	128	-348	-834	1582
1953/1	217/1	1	0	-4	7	-66	-78	-78	-106	28	-88	-31	152	18	-506	484	-364	-770	-222	-220	512	-646	-380		1402	414
1960/1	280/1	0	1	-5	0	-39	17	15	-74	-14	-237	180	-318	348	-22	193	-208	-452	-340	-408	528	554	539	-164	576	827
1960/2	280/3	0	4	-5	0	20	10	14	-12	104	-122	-224	158	-378	404	-112	270	-324	186	156	-360	102		-1068	1590	-866
1960/3 1960/4	$\frac{40/3}{280/4}$	0	-4 -5	-5 5	0	36 -39	42 19	$\frac{110}{37}$	116 18	16 -90	198 99	-240 32	-258 46	-442 248	-292 178	-392 -429	142 -652	348 -40	570 36	692 -348	168 72	134 1190	784 699	-564 116	-1034 704	382 -223
1960/4	40/2	0	-5 6	5 5	0	-39 16	-58	70	-4	-134	-242	-100	-438	138	178	-429	162	268	-250	422	-852	-306	-456	-434	726	-1378
1960/6	40/2	0	7	-5	0	58	82	50	64	-111	103	-130	376	-307	-197	120	-508	600	-165	-633	840		-1316	61	-187	406
1960/7	1960/6	ő	-7	5	0	58	-82	-50	-64	-111	103	130	376	307	-197	-120	-508	-600	165	-633	840		-1316	-61	187	-406
1960/8	280/2	0	-7	-5	0	9	-23	-41	-34	-6	131	-4	26	260	-190	-167	-368	-324	164	200	784	410		1132	72	707
1960/9	40'/1	0	-10	5	0	-16	6	6	124	42	142	188	202	-54	66	-38	738	-564	262	-554	140		-1160	-642	854	478
1962/1	654/1	2	0	6	-19	12	20	-75	86	-111	78	-169	-58	-315	389	-333	342	327	293	-862			932	-822	636	-1393
1962/2	654/2	2	0	14	-11	-12	-12	-79	-10	-43	-210	167	-66	313	-267	-329	-538	-205	-523	634	378		-1340	-478	780	1159
1962/3	654/3	2	0	-20	-19	-60	-50	-31	8	-47	-220	-37	-278	-327	-483	-441	54	403	497	-572		313		-1036	-378	1171
1968/1	492/1	0	3	5	26	-34	-85	97	79	-186	-168	-271	-2	41	-268	-84	378	-337	-358	-279	-837	705		-1293	-347	694
1968/2	492/2	0	-3	-12	-10	41	58	-53	-56	162	1	15	-363	41	91	195	-670	192	193	646	-891	-35	426	-728	294	188
1968/3	246/1	0	-3	-14	28	-1	16	-107	138	32	99	35	149	41	339	-511	-58	136	-335	-682	-389	-323	-10	834	526	-330
1968/4 1970/1	984/1	0 2	-3 -1	-16 -5	-18 -8	$\frac{1}{44}$	82 -33	-119 -70	16 -121	-110 106	-225 -54	-167 -58	81 86	$-41 \\ 215$	$\frac{65}{298}$	-225 494	-322 78	-764 -427	61 -469	-830 551	-535 876	349 -639	-538 316	-436 500	810 -96	$\frac{260}{214}$
1976/1		0	-1	-3 21	-o -5	64	-33 -13	-70	19	-178	200	-58	-41	158	-9 -9	-49	198	758	778	-564	-249	192		864	-520	-1130
1978/1		-2	-7	-12	-24	-16	-13	66	96	23	-97	-181	-278	-277	43	-581	156	-108	-568	-510	377	599	-912	-292	-734	594
1980/1	220/1	0	o O	5	-19	11	-62	-19	-131	-138	79	217	-91	-158	120	546	439	-290	-373	728	709		-1194	-58	-753	1228
1980/2	660/1	ő	Ö	-5	0	-11	-42	14	-52	-96	26	-144	126	-58	364	328	50	284	-794	-316	280	-358	784	-324	1398	-894
1980/3	220/3	0	0	-5	11	11	-22	-9	89	-138	-201	77	119	102	260	-294	-51	-270	-733	728	849	830	-214	-138	-633	-892
1980/4	220/2	0	0	-5	24	11	-22	-22	-28	44	-110	-40	-362	-210	260	460	-662	68	606	-312	-360	-1042	-552	-268	966	-1334
1984/1	62/1	0	2	-1	-11	18	82	-6	-25	58	-180	31	146	47	12	-136	232	-715	518	436	387	678	660	382	-800	-1631

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
1984/2	62/1	0	-2	-1	11	-18	82	-6	25	-58	-180	-31	146	47	-12	136	232	715	518	-436	-387	678	-660	-382		-1631
1984/3	62/2	0	8	3	-35	46	-20	8	-97	28	206	-31	282	367	562	-148	84	301	236	-60	699	-814	670	650	1566	-615
1984/4 1989/1	62/2 $663/1$	0 -4	-8 0	3 10	35 -10	-46 -18	-20 -13	8 17	97 -74	-28 132	206 -210	31 -230	282 -46	$\frac{367}{114}$	-562 36	148 -446	$\frac{84}{754}$	-301 50	236 -226	60 582	-699 370	-814 826	-670 272	-650 -162	$1566 \\ 186$	-615 -790
1989/1	$\frac{663}{1}$	-4 -5	0	-6	-20	-18 -70	-13	17	96	98	48	-312	262	-360	-460	168	-666	-780	-392	-24	320	-748		-102	-782	-524
1992/1	221/1	0	3	-17	-14	-57	-64	-24	5	-117	-194	-92	-9	-400	-28	-88	111	-115	-93	-9	-438	506	-80	-83	717	-800
1995/1		0	-3	5	7	-2	-46	-110	-19	78	-104	256	-138	-392	416	258	-368	256	-814	-684	-488	646	-624	750	480	-530
1995/2		1	3	-5	7	42	-58	36	-19	112	-130	-98	-24	-338	52	-154	-458	-340	842	426	112	882	-420	712	1030	-184
1995/3		1	-3	5	7	-25	21	-77	19	-33	171	102	-2	487	-262	-364	-576	-29	-719	59	1145	454	-69	651	1322	-524
1995/4		1	-3	-5	7	30	6	-72	19	92	-134	122	-232	-158	-352	-134	-306	156	486	454	-720	-986	1336	376	-558	-184
1995/5 1995/6		1	-3 -3	-5	-7 -7	-16 -33	10 27	26 -93	19 19	-176 113	42 -43	-140	258 -218	222	-104 -2	188	654	612	154 -781	$664 \\ 307$	222	-618 470	1104 -715	764 -681	-1426	-1642 432
1995/6		3	-3 3	-5 -5	-1 7	-33 -19	-1	-93 44	-19	115	-136	234 13	72	$\frac{171}{470}$	503	188 204	$688 \\ 473$	51 -511	-637	312	323 -247	-299	1008	591	954 -804	394
1995/8		3	-3	-5	7	-51	-1 -7	-36	19	105	-276	-295	416	-138	-547	264	513	-471	-367	272	-693	785	-160	1371	1224	-250
1995/9		3	-3	-5	7	-72	-70	-78	19	-168	186	20	-214	30	524	-72	-558	684	-682	20	-336	-790	596	-960	-498	-1006
1995/10		-4	-3	-5	7	40	-84	-22	19	-168	-234	132	178	212	-232	376	-306	236	46	-106	70	-986	246	-204	-1268	-404
2025/1		1	0	0	15	40	28	-77	-140	-48	50	-84	20	287	226	-539	526	-224	238	198	-604	679	-537		1029	1337
2025/2	2025/1	1	0	0	-15	-40	-28	-77	-140	-48	-50	-84	-20	-287	-226	-539	526	224	238	-198	604	-679	-537		-1029	-1337
2025/3	2025/1	-1 -1	0	0	15	-40	28 -28	77 77	-140 -140	48	-50 50	-84 -84	20	-287 287	226 -226	539 539	-526	224	238	198 -198	604	679	-537 -537		-1029	1337
2025/4 $2025/5$	2025/1 $405/1$	-1 5	0	0	-15 -9	40 -8	-28 -43	122	-59	$\frac{48}{213}$	$\frac{50}{224}$	-84 -36	-20 -206	413	392	311	-526 377	-224 337	238 40	-198	-604 62	-679 1214	-537 -294	378 -534	1029 -810	-1337 928
2025/6	405/1	-5	0	0	-9 -9	-8	-43	-122	-59	-213	-224	-36	-206	-413	392	-311	-377	-337	40	-348	-62	1214	-294	534	810	928
2160/1	135/3	0	0	5	ő	-10	-80	7	113	81	-220	189	170	-130	-10	-160	631	560	229	-750	-890	-890	27	-429		-1480
2160/2	270/6	0	0	5	4	42	20	-93	-59	9	-120	-47	-262	-126	178	144	-741	-444	221	538	690	-1126	-665	75	1086	1544
2160/3	135/1	0	0	5	6	47	-5	-131	56	-3	-157	-225	-70	140	-397	347	4	-748	-338	-492	-32	970	1257		-1488	974
2160/4	270/2	0	0	5	-8	-18	8	15	-23	-63	156	85	74	246	190	-288	-177	-792	-907	322	270	254	1123	771	-198	-1192
2160/5	270/3	0	0	5	13 -14	-30	-61	-12	49	18	186	160	-91	-378	268	144	-570	204	-877	187	-606		-1151	102	-984	-265
$\frac{2160}{6}$ $\frac{2160}{7}$	270/4 $540/1$	0	0	5 5	-14 -17	-3 30	47 -61	-39 -120	-32 43	99 -90	51 -90	-83 -8	$\frac{314}{317}$	-108 -30	-299 220	-531 180	564 -630	-12 840	230 599	268 -107	-120 210	1106 -421	739 -353	-1086 1350	-120 1020	-1642 -997
2160/8	540/1 $540/2$	0	0	5	22	-9	17	75	43	183	-129	187	-34	-264	-443	609	228	60	-454	244	444	398	349	1038	-852	914
2160/9	270/5	0	0	5	22	-12	38	105	157	-117	-66	25	314	504	-380	-252	-3	-318	293	322	-120	44	-917		-1272	1328
2160/10	270/1	0	0	5	34	48	-70	-27	-119	51	-30	133	218	156	88	516	-639	654	461	-182	-900	704	1375	-915	-1116	-16
2160/11	135/3	0	0	-5	0	10	-80	-7	113	-81	220	189	170	130	-10	160	-631	-560	229	-750	890	-890	27	429	750	-1480
2160/12	270/6	0	0	-5	4	-42	20	93	-59	-9	120	-47	-262	126	178	-144	741	444	221	538		-1126	-665		-1086	1544
2160/13	135/1	0	0	-5	6	-47	-5 8	131	56 -23	3	157	-225	-70	-140	-397	-347	-4	$748 \\ 792$	-338	-492 322	32	970	1257	-102 -771	1488	974
2160/14 $2160/15$	$\frac{270}{2}$	0	0	-5 -5	-8 13	18 30	-61	-15 12	-23 49	63 -18	-156 -186	$\frac{85}{160}$	74 -91	-246 378	190 268	288 -144	$\frac{177}{570}$	-204	-907 -877	187	-270 606	$\frac{254}{431}$	1123 -1151	-102	198 984	-1192 -265
2160/16	$\frac{270}{3}$	0	0	-5	-14	3	47	39	-32	-99	-51	-83	314	108	-299	531	-564	12	230	268	120	1106	739	1086		-1642
2160/17	540/1	0	0	-5	-17	-30	-61	120	43	90	90	-8	317	30	220	-180	630	-840	599	-107	-210	-421			-1020	-997
2160/18	540/2	0	0	-5	22	9	17	-75	4	-183	129	187	-34	264	-443	-609	-228	-60	-454	244	-444	398	349	-1038	852	914
2160/19	270/5	0	0	-5	22	12	38	-105	157	117	66	25	314	-504	-380	252	3	318	293	322	120	44	-917	-309	1272	1328
2160/20	270/1	0	0	-5	34	-48	-70	27	-119	-51	30	133	218	-156	88	-516	639	-654	461	-182	900	704	1375	915	1116	-16
2304/1 $2304/2$	256/1 $256/1$	0	0	0	0	18 -18	0	-90 -90	106 -106	0	0	0	0	$\frac{522}{522}$	-290 290	0	0	-846 846	0	-70 70	0	430 430	0	1350 -1350	$1026 \\ 1026$	-1910 -1910
2304/2	$\frac{256}{1}$	0	0	4	0	-18	92	-90 -94	-100	0	-284	0	396	-230	290	0	-572	040	-468	0	0	1098	0	-1330	1670	-594
2304/4	256/7	Ö	0	-4	0	0	-92	-94	ő	0	284	ő	-396	-230	ő	0	572	0	468	0	0	1098	ő	ő	1670	-594
2304/5	768/1	0	0	8	12	-12	20	-62	-108	72	128	204	-228	-22	204	-600	-256	-828	-84	-348	-456	-822	1356	108	-938	1278
2304/6	768/1	0	0	8	-12	12	20	-62	108	-72	128	-204	-228	-22	-204	600	-256	828	-84	348	456		-1356	-108	-938	1278
2304/7	768/1	0	0	-8	12	12	-20	-62	108	72	-128	204	228	-22	-204	-600	256	828	84	348	-456	-822	1356	-108	-938	1278
2304/8	768/1	0	0	-8	-12	-12	-20	-62	-108	-72	-128	-204	228	-22	204	600	256	-828	84	-348	456		-1356	108	-938	1278
2304/9 $2304/10$	256/3 $256/3$	0	0	12 12	32 -32	-8 8	20 20	98 98	-88	32 -32	$\frac{172}{172}$	-256 256	-92 -92	-102 -102	296 -296	320 -320	76 76	408 -408	-636 -636	-552 552	-416 416	138 138	-64 64	392 -392	$\frac{582}{582}$	238 238
2304/10	256/3	0	0	-12	32	8	-20	98	-88	32	-172	-256	92	-102	-296	320	-76	-408	636	552	-416	138	-64	-392	582	238
2304/12	256/3	Ö	0	-12	-32	-8	-20	98	88	-32	-172	256	92	-102	296	-320	-76	408	636	-552	416	138	64	392	582	238
2304/13	1568/1	0	0	22	0	0	92	104	0	0	130	0	-396	472	0	0	-518	0	468	0		-1098	0	0	176	594
2304/14	1568/1	0	0	22	0	0	-92	-104	0	0	130	0	396	-472	0	0	-518	0	-468	0		-1098	0	0	-176	594
2304/15	1568/1	0	0	-22	0	0	92	-104	0	0	-130	0	-396	-472	0	0	518	0	468	0		-1098	0	0	-176	594
2304/16	1568/1	0	0	-22	0	0	-92	104	140	100	-130	100	396	472	0	0	518	0	-468	0		-1098	1060	1100	176	594
$\frac{2400/1}{2400/2}$	$\frac{96/1}{480/4}$	0	3	0	4	20 40	-70 90	-90 70	140 40	192 -108	-134 166	100 -40	170 130	-110 -310	-532 268	56 556	430 370	-20 240	270 -130	524 -876	-80 -840	-330 -250	1060 -880	1188 188	1274 -726	$590 \\ 1550$
2400/2	480/4	0	э 3	0	-8	-40	6	2	16	-60	-142	176	214	-278	-68	116	350	-684	-394	108	96	398	-136	436	-720 -750	-82
2400/4	480/1	0	3	ő	12	20	58	70	92	112	66	108	58	66	-388	-408	-474	540	14	-276	96	790			1210	

level/no.	twist of	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
2400/5	96/4	0	3	0	12	-60	42	-10	-132	-48	226	252	362	-94	-228	-408	-346	300	-466		-1056	-330	-612		-1510	-594
2400/6	480/5	0	3	0	-12	24	-38	6	-104	100	230	56	-190	202	-148	124	-206	128	190	-204		-1210		-1412		-1202
2400/7	480/6	0	3	0	-16	24	14	18	36	-104	-250	-28	54	354	-228	-408	-262	-64	374	-300	1016	-274	788	396	786	1086
2400/8		0	3	0	-18	30	38	-70	12	72	-64	-312	138	-374	-468	132	446	510	754	384	-924	-340	72	-156	-290	-376
2400/9	2400/8	0	3	0	-18	-30	-38	70	-12	72	-64	312	-138	-374	-468	132	-446	-510	754	384	924	340	-72	-156	-290	376
2400/10	480/3	0	3	0	32	-64	6	-38	116	-120	-122	-164	-146	-238	-148	-184	-470	216	806	-732	-264	638	-596	-884	930	-322
2400/11	96/2	0	3	0	-36	36	-54	22	-36	-144	50	108	-214	-446	252	72	22	684	-466	-180	-576	54	972	-684	346	1134
2400/12	96/1	0	-3	0	-4	-20	-70	-90	-140	-192	-134	-100	170	-110	532	-56	430	20	270	-524	80	-330		-1188	1274	590
2400/13	480/4	0	-3	0	-4	-40	90	70	-40	108	166	40	130	-310	-268	-556	370	-240	-130	876	840	-250	880	-188	-726	
2400/14	480/2	0	-3	0	8	4	6	2	-16	60	-142	-176	214	-278	68	-116	350	684	-394	-108	-96	398	136	-436	-750	-82
2400/15	480/5	0	-3	0	12	-24	-38	6	104	-100	230	-56	-190	202	148	-124	-206	-128	190	204		-1210	816	1412		-1202
2400/16	480/1	0	-3	0	-12	-20	58	70	-92	-112	66	-108	58	66	388	408	-474	-540	14	276	-96	790	308	1036		-1426
2400/17	96/4	0	-3	0	-12	60	42	-10	132	48	226	-252	362	-94	228	408	-346	-300	-466	-204	1056	-330	612		-1510	-594
2400/18	480/6	0	-3	0	16	-24	14	18	-36	104	-250	28	54	354	228	408	-262	64	374		-1016	-274	-788	-396	786	1086
2400/19	2400/8	0	-3	0	18	30	-38	70	12	-72	-64	-312	-138	-374	468	-132	-446	510	754	-384	-924	340	72	156	-290	376
2400/20	2400/8	0	-3	0	18	-30	38	-70	-12	-72	-64	312	138	-374	468	-132	446	-510	754	-384	924	-340	-72	156	-290	-376
2400/21	480/3	0	-3	0	-32	64	6	-38	-116	120	-122	164	-146	-238	148	184	-470	-216	806	732	264	638	596	884	930	-322
2400/22	96/2	0	-3	0	36	-36	-54	22	36	144	50	-108	-214	-446	-252	-72	22	-684	-466	180	576	54	-972	684	346	1134
2430/1		2	0	-5	-1	-39	56	51	-70	-102	246	-40	-214	-132	-187	150	339	432	341	-529	-309	428		-1146	54	20
2430/2		2	0	-5	8	42	-7	-66	-151	42	-240	185	146	156	47	-84	-426	-522	-721	-205	1014	-859		-1290	-180	-547
2430/3		2	0	-5 -5	23 -25	-24 9	-73 -40	12 99	$65 \\ 146$	42 42	24 -306	-157 -112	-79 146	-300 -108	-205 245	18 -546	$\frac{492}{267}$	-192 336	-430 797	-988 191	1086 -669	-34 -892	329 -46	-708 558	-498 -114	-1789 -844
2430/4		2	0			-	-40	-12		30		191	-163	-108	203	-546 186	-288	-468	-310	452	-354	-892	-331			335
2430/5	0.400./1		0	-5	-25	12	11		29		132		-103	132			-288							60	-258	
2430/6 2430/7	2430/1 $2430/2$	-2 -2	0	5	-1 8	39 -42	56 -7	-51 66	-70 -151	102 -42	-246 240	-40 185	146	-156	-187 47	-150 84	-339 426	-432 522	341 -721	-529 -205	309 -1014	428 -859	-1222 1109	$\frac{1146}{1290}$	-54 180	20 -547
			0	5	23		-73	-12		-42	-24	-157	-79		-205	-18	-492	192	-430		-1014	-34	329	708		-1789
2430/8 2430/9	$\frac{2430}{3}$ $\frac{2430}{4}$	-2 -2	0	Э Б	-25	24 -9	-13 -40	-12	$65 \\ 146$	-42 -42	306	-112	146	300 108	-205 245	-18 546	-492 -267	-336	-430 797	-988 191	669	-892	-46	-558	114	-844
2430/9	2430/4	-2 -2	0	5 5	-25 -25	-12	-40	12	29	-30	-132	191	-163	288	203	-186	288	468	-310	452	354	-370	-331	-60	258	335
2430/10	2430/3	-2	U	ο	-23	-12	11	12	29	-30	-132	191	-103	400	203	-100	200	400	-510	402	554	-370	-551	-00	∠36	555

Appendix D

Weight two newforms

The following table contains coefficients a_p for all primes $p \leq 97$ of all weight two newforms with rational coefficients for $\Gamma_0(N)$ with $N \leq 228$. They have been computed with the help of W. Stein's package HECKE which is included in the MAGMA computer algebra system ([112]). W. Stein has set up a web page containing larger tables ([97]). For all newforms occurring in this thesis I add Stein's notation.

level	in [97]	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
11	11A1	-2	-1	1	-2	1	4	-2	0	-1	0	7	3	-8	-6	8	-6	5	12	7	-3	1	-10	6	15	7
14	14A1	-2 -1	-1 -2	0	-2 1	0	-4	6	2	-1	-6	-4	2	-o 6	-	-12	-0 6	-6	8	-1 -4	-3 0	2	-10	-6	-	-10
15	14/11	-1	-2 -1	1	0	-4	-2	2	4	0	-0 -2		-10	10	4		-10	-0 -4		12	-8	10	0	12	-6	2
17		-1	0	-2	4	0	-2	1	-4	4	6	4	-10 -2	-6	4	0	-	-12		4	-4	-6	12		10	2
19		-1	-2	3	-1	3	-2 -4	-3	1	0	6	-4	2	-6	-1	-3	12	-6	-10 -1	-4	6	-0 -7	8	12	12	8
20	20A1	0	-2	-1	2	0	2	-6	-4	6	6	-4 -4	2		-10	-6	-6	12	2		-12	2	8	6	-6	2
21	$20A1 \\ 21A1$	-1	1	-2	-1	4	-2	-6	4	0	-2	0	6	2	-10 -4	0	6	12	-2	4	0	_	-16	-	-	18
24	$\frac{21711}{24A1}$	0	-1	-2	0	4	-2	2	-4	-8	6	8	6	-6	4	0	-2	4	-2	-4	8	10		-12 -4		2
26	2-1711	-1	1	-3	-1	6	1	-3	2	0	6	-4	-7	0	-1	3	0	-6	8	14	-3	2	8	12		-10
26	26B1	1	-3	-1	1	-2	-1	-3	6	-4	2	4	3	0	-5	13	_	-10	-8	-2		-10	-4	0	6	14
27	27A1	0	0	0	-1	0	5	0	-7	0	0	-4	11	0	8	0	0	0	-1	5	0	-7	17	0		-19
30	30A1	-1	1	-1	-4	0	2	6	-4	0	-6	8	2	-6	-4	0	-6		-10	-4	0	2	8	12	18	2
32	32A1	0	0	-2	0	0	6	2	0	-	-10	0	-2	10	0	0	14	-	-10	0	0	-6	0	0	10	18
33	J 2 1111	1	-1	-2	4	1	-2	-2	0	8	-6	-8	6	-2	0	8	6	-4	6	-4		-14	-4	12	-6	2
34		1	-2	0	-4	6	2	-1	-4	0	0	-4	-4	6	8	0	-6	0	-4	8	0	2	8	0	-6	14
35		0	1	-1	1	-3	5	3	2	-6	3	-4	2	-12	-10	9	12	0	8	-4	0	2	-1	12	-12	-1
36		0	0	0	-4	0	2	0	8	0	0	-4	-10	0	8	0	0	0	14	-16	0	-10	-4	0	0	14
37		-2	-3	-2	-1	-5	-2	0	0	2	6	-4	-1	-9	2	-9	1	8	-8	8	9	-1	4	-15	4	4
37		0	1	0	-1	3	-4	6	2	6	-6	-4	1	-9	8	3	-3	12	8	-4	-15	11	-10	9	6	8
38		-1	1	0	-1	-6	5	3	1	3	9	-4	2	0	8	0	-3	9	-10	5	-6	-7	-10	-6	-12	-10
38		1	-1	-4	3	2	-1	3	-1	-1	-5	-8	-2	-8	4	8	-1	15	2	3	2	9	-10	-6	0	-2
39		1	-1	2	-4	4	1	2	0	0	-10	4	-2	6	-12	0	6	12	-2	-8	0	2	8	4	-2	10
40		0	0	1	-4	4	-2	2	4	4	-2	-8	6	-6	-8	4	6	-4	-2	8	0	-6	0	-16	-6	-14
42		1	-1	-2	-1	-4	6	2	-4	8	-2	0	-10	-6	-4	0	6	4	6	4	8	10	0	-4	-6	-14
43		-2	-2	-4	0	3	-5	-3	-2	-1	-6	-1	0	5	-1	4	-5	-12	2	-3	2	2	-8	15	-4	7
44		0	1	-3	2	-1	-4	6	8	-3	0	5	-1	0	-10	0	-6	3	-4	-1	15	-4	2	6	-9	-7
45		1	0	-1	0	4	-2	-2	4	0	2	0	-10	-10	4	-8	10	4	-2	12	8	10	0	-12	6	2
46		-1	0	4	-4	2	-2	-2	-2	1	2	0	-4	6	10	0	-4	12	-8	-10	0	6	-12	14	-6	6

level	in [97]	2	3	5	7	11		17	19	23	29	31	37	41	43	47	53	59		67	71	73	79	83	89	
48	48A1	0	1	-2	0	-4	-2	2	4	8	6 2	-8	6	-6	-4	0	-2	-4 0	-2	4	-8 16	10	8	4	-6 0	2
49 50	50A1	1 -1	0 1	0	$0 \\ 2$	-3	0 -4	0 -3	0 5	8 6	0	$0 \\ 2$	-6 2	-3	-12	12	-10 6	0	0	4 -13		0 11	8	0 -9	15	$0 \\ 2$
50	$50A1 \\ 50B1$	1	-1	0	-2	-3	4	-3 3	5	-6	0	2	-2	-3		-12	-6	0	2	13	12			9	15	-2
51	00D1	0	1	3	-4	-3	-1	-1	-1	9	6	2	-4	-3	-7	-6	-6	6	8	-4	12		-10	-6	-	-16
52		0	0	2	-2	-2	-1	6	-6	8	2	10	-6	-6	4	-2		-10	-2	10	10	2	-4	-6	-6	2
53		-1	-3	0	-4	0	-3	-3	-5	7	-7	4	5	6	-2	-2	-1	-2		-12	1	-4	-1		-14	1
54		-1	0	3	-1	-3	-4	0	2	-6	6	5	2	-6	-10	6	9	12	8	14	0	-7	8	-3	-18	-1
54		1	0	-3	-1	3	-4	0	2	6	-6	5	2	6	-10	-6	-9	-12	8	14	0	-7	8	3	18	-1
55		1	0	1	0	-1	2	6	-4	4	6	-8	-2	2	4	-12	-2	4	-10	-16	8	14	8	-4	10	10
56		0	2	-4	1	0	0	-2	-2	8	2	4	-6	-2	8	-4	-10	6	4	-12	0	-14	-8	6	10	-2
56		0	0	2	-1	-4	2	-6	8	0	6	8	-2	2	-4	-8	6	0	-6	-4	-8		16	8	-6	-6
57		-2	-1	-3	-5	1	2	-1	-1	-4	-2	-6	0	0	-1	-9	10	-8	-1	8	-12		16	12	-6	-10
57		1	1	-2	0	0	6	-6	-1	4	2		-10	-2		12		-12	-2	-4		10	0	16		10
57		-2	1	1	3	-3	-6	3	-1		-10	2	8	-8	-1	3	-6	0	7	8	12		0	4	10	-2
58		-1	-3	-3	-2	-1	3	-4	-8	0	-1	3	-8	-2	7	11	1	-4	4	-4		-12	-7	0	-6	-6
58		1	-1 -2	1	-2 1	-3 -5	-1	8	0 -4	-9	-1	-3	8		-11		-11	0		-12 -7	2 -8	4	15 3		-10	-2
61 62		-1 1	0	-3 -2	$\frac{1}{0}$	-3	$\frac{1}{2}$	4 -6	-4 4	-9 8	-6 2	0 -1	8 10	5 -6	-8 8	-8	6	9 -12	-1 6	-1 -12	-o 8	10	-8	4 8	-4 -6	-14 2
63		1	0	2	-1	-4	-2	6	4	0	2	0	6	-2	-4	0		-12	-2	4	0		-16	12	14	18
64		0	0	2	0	0	-6	2	0	0	10	0	2	10	0		-14	0	10	0	0	-6	0	0	10	18
65		-1	-2	-1	-4	2	-1	2	-6	-6		-10	-2	-6	10	4	2	6	2	-4	6		-12		2	-2
66		-1	1	0	2	-1	-4	-6	-4	6	6		-10	6	8	-6	0	0	8	-4	6	2		-12	-6	14
66		1	-1	2	-4	-1	-6	2	4	4	6	0	6	-6	4	-12	2	12	-14	4	-12	-6	-4	4	10	-14
66		1	1	-4	-2	1	4	-2	0	-6	10	-8	-2	2	4	-2	4	0	-8	-12	2	-6	10	4	10	-2
67		2	-2	2	-2	-4	2	3	7	9	-5	-10	-1	0	-2		10	9	-2	1	0	-7	-8	4	7	0
69		1	1	0	-2	4	-6	4	2	-1	2	4	2	2	10			-12	-6			-14	10		-16	
70	= 0.44	1	0	-1	-1	4	-6	2	0	0	6		-10	2	4	8	-2		-14			2	-8	8	10	2
72	72A1	0	0	2	0	-4	-2	-2	-4	8	-6	8	6	6	4	0	2	-4	-2	-4	-8	10	-8	4	6	2
73		$\frac{1}{2}$	0 -1	2	2 -3	-2	-6	$\frac{2}{2}$	8	4	2	-2 -3	-6 2	6	-2	6 2	10		-14	-3	0	1		-14		-10
75 75		1	-1 1	0	-3	2 -4	$\frac{1}{2}$	-2	-5 4	6 0	10 -2	-3 0	10	-8 10	1 -4		10	-10 -4	7			-14 -10	0	6 -12	0 -6	17 -2
75		-2	1	0	3	2	-1	-2	-5	-6	10	-3	-2	-8	-1	-2		-10	7	3	-8	14	0			-17
76		0	2	-1	-3	5	-4	-3	-1	8	-2	4	10	10	1	-1	-4		-13		2	9		-12	-	-8
77		0	-3	-1	-1	-1	-4	2	-6	-5	10	1	-5	-2	-8	8	-6	3	-2	-3	1	10	6	12		-5
77		1	2	-2	-1	1	4	4	0	-4	-6	10	-6	4	12	-10	-6	2	0		-12	-8	8	0	-6	-10
77		0	1	3	1	-1	-4	-6	2	3	-6	5	11	6	8	0	-6	-9	-10	5	9	2	-10	12	-3	-1
78		-1	-1	2	4	-4	1	2	-8	0	6	-4	-2	-10	4	8	-10		-2	-16	-8	2	8	12	14	10
79		-1	-1	-3	-1	-2	3	-6	4			-10			4	7		-3			15			-6		
80		0	0	1	4	-4	-2	2		-4		8		-6	8	-4	6		-2		0			16		
80		0		-1		0	2	-6		-6	6	4	2		10			-12		-2				-6		
82		-1	-2		-4	-2	4	-2		-8	0	-8		-1			-4		-14			10		12		
83		-1	_		-3	3	-6	5	2		-7		-11		-8	10	6	5		-2	2		14			-8
84 84		0	-1 1	$\frac{4}{0}$	-1 1	2 -6	-6 2	-4 0	-4 -4	2 -6	-2 6	0 8	2	12	-4 -1	12 12			6 -10	-8 8			12 -4	-4 -12		-2 -10
85		1	2	-1	-2	2	2	1	0		-6			10		12			-10 -14		-2			-12 4	6	-10 2
88		0	-3		-2		0	-6	4			-7		4		-8		-1		-5		16		-2		
89		-1	-1			-2	2	3	-5	7		-9		0		-12		4		12				12		
89		1	2		2	-4	2	6	-2		-6		10	-6				-10		12			-12			-18
90		-1	0	1	2	6	-4		-4		-6		8	0	8	0	-6	6						12		2
90		1	0	-1	2	-6	-4	6	-4	0	6	-4	8	0	8	0	6	-6						-12		2
90		1	0	1	-4	0	2	-6	-4	0	6	8	2	6	-4	0	6	0	-10	-4	0	2	8	-12	-18	2

lovol	in [07]	2	3	5	7	11	19	17	10	23	29	21	37	/11	/19	17	59	50	61	67	71	79	70	83	80	07
level	in [97]							17																		
91		-2	0	-3	-1	-6	-1	4	5	3	-5	-3	-4	-6	-1	7	-9		-10	-6	-8		3	15	3	7
91		0	-2	-3	1	0	1	-6	-7	3	-9	5	2	-6	-1	3	-9		-10	14	-6	11	-1	3	15	-1
92		0	1	0	2	0	-1	-6	2	-1	-3	5	8	3	8	9		-12	14		-15		-10	6		-10
92		0	-3	-2	-4	2	-5	4	-2	1	-7	-3	2	-9	-8 <i>c</i>	9	2	10	-2	14	-3	-3	-6	8	12	0
94	06.41	1	0	$0 \\ 2$	0	2	-4 -2	-2 -6	-2	4	4	4	2	6	6	-1	2	$\frac{12}{4}$	2	2				-16		
96 96		0	1 -1	2	-4 4	4 -4	-2 -2	-6	-4 4	0	$\frac{2}{2}$	4 -4	-2 -2	$\frac{2}{2}$	4 -4	-8	10 10	-4 4	6 6	-4	-16 16	-6 -6		12 -12		-14 -14
98	90D1	0	2	0	0		4	-6	-2		-6	4	2	-6	8	-o 12		6	-8	-4 -4	0	-0 -2	8	-12 6	6	
99		-1 -1	0	-4	-2	0 -1	-2	2	-2 -6	0 4	-6	4	-6		6	-8	6 0	4	-6	8	0		-10	12	0	$\frac{10}{2}$
99		1	0	4	-2 -2	1	-2 -2	-2	-6	-4	6	4	-6	10	6	8	0	-4	-6	8	0		-10		0	2
99		-1	0	2	4	-1	-2 -2	2	0	-8	6	-8	6	2	0	-8	-6	4	6	-4		-2 -14	-10 -4		6	2
99		2	0	-1	-2	-1	4	2	0	1	0	7	3	8	-6	-8	6	-5	12	- 4	3		-10		-15	-7
100		0	2	0	-2	0	-2	6	-4	-6	6	-4	-2	6	10	6	6	$\frac{-3}{12}$	2		-12	-2	8	-6	-6	-2
101		0	-2	-1	-2	-2	1	3	-5	1	-4	-9	-2	8	-8	7		-14	4	2	13	8	-9		14	2
102		-1	-1	-4	-2	0	-6	-1	4	6	-4	-6		-10	-4	4		12		-12	-6	2		-12	-2	6
102		-1	1	0	2	0	2	-1	-4	-6		-10	8	6	-4	12		-12	8	-4	6		-10	12		14
102		1	1	-2	0	-4	-2	1	4		-10	8	-2	10	12	0	6		-10		0	10	-8			-14
104		0	1	-1	5	-2	-1	-3	-2	4	-6	-4	11	8	-1		-12	6	0	6	7	-2		-16 -		
105		1	1	1	1	0	-6	2	-8	8	-2	4	-2	-6	4	8	10	4	-2		-12	-2	8	-4		-18
106		-1	-1	-4	0	-4	1	5	-7	1	5	-4	1 -	-10	-10	-6	-1	-6	4	4	15	-8	1	-3	2	17
106		-1	2	1	-2	5	-4	3	-4	-3	-6	7	-6	2	7	4	1	7	2	16	12		-7	-14	17	3
106		1	1	0	-4	0	5	-3	-1	3	9	-4	5	6	-10	6	-1	6	8	-4	-3	-4	-13	3	18	-7
106		1	-2	3	2	-3	-4	3	-4	-9	6	5	-10	6	-1	0	-1	15	-10	-4	12	8	11	-6	9	-13
108		0	0	0	5	0	-7	0	-1	0	0	-4	-1	0	8	0	0	0	-13	11	0	17	-13	0	0	5
109		1	0	3	2	1	0	-8	-5	7	-5	6	2	2	-4	9	12	12	-5	-12	-6	-5	8	-2	1	1
110		-1	1	-1	5	1	2	3	-7	-6	-3	-7	-7	6	8	6	-3	-6	-1	8	3	2	-10	-6	9	-4
110		1	1	-1	-1	-1	2	-3	-1	6	-9	5	5	-6	8	6	9	6	5	8	-9	-10	14	-6	-15	8
110		1	-1	1	3	1	-6	-7	5	-6	5	-3	3	2	4	-2	-1	-10	7	8	7	14	10	-6	-15	-12
112		0	-2	-4	-1	0	0	-2	2	-8	2	-4	-6	-2	-8	4	-10	-6	4	12	0	-14	8	-6	10	-2
112		0	0	2	1	4	2	-6	-8	0	6	-8	-2	2	4	8	6	0	-6	4	8	10	-16	-8	-6	-6
112		0	2	0	-1	0	-4	6	-2	0	-6	4	2	6	-8	12	6	6	8	4	0	2	-8	6	-6	-10
113		-1	2	2	0	0	2	-6	6	-6	-6	-4	2	-2	6	6	10	6	6	2	-6	2	10			-14
114		-1	-1	0	4	4	0	-2	1	-2	-6	6	-8	10	-12	10	2		-10		-16	-2		-16	-2	-10
114		1	-1	2	0	-4	2	-6	-1	-4	-2	4	10	10	4		-10		14		8	-6		12		10
114		1	1	0	-4	0	-4	6	1	-6	6	2	-4	6	-4	6		-12	14	8	0		-10			-10
115		2	0	-1	1	2	-2	3	-2	1	7	-5	11	1	0	0		-13	-8	5	5		-12	9	4	-14
116		0	1	3	-4	3	5	-6	-4	-6	-1	5	8	0	-1	-3	3	6	2	8		-16	11		-12	8
116		0	2	-2	4	-6	2	2	-6	4	-1	-6	2		10		10	0		-12	8	10	-6	16		10
116		_	-3	3		-1					-1		-8											6		
117		-l	0		-4 1			-2	0				-2							-8		2		-4 14		10
118 118		-l	-1 2	-3 2	-1 -3	-2 1	-2	-2 -1	3 -8		-1 -4			5		-6							-15		4	14
118		-l	-1	1	-3 3	2		-1 -2			-4 -5	2			-9 -6	-2	12 9		10	-2		4		-11 14		_
118		1 1	2	-2		-1	-0 -3	-2 7					8 -7					-1 -1		4				-13	18	8 2
120		0		-2 -1	-3 4	-1		-2	4	4 -8			- <i>6</i>			10	0 10	-1		-4			16		2	
120		0	1	1	0	-4		-2 -6	-4	0			-0 -2			8		12		4				-12		2
120		0	-1	-3	0	0	0	0	0	-9	0		-z 7	0		-12		-15		13		0	0			17
121		1	2	1	-2	0	1	-5	6	2	9		-3	-5	0	2	9	8	6		$\frac{-3}{12}$					-13
121		-1	2	1	2	0	-1	5	-6	2		-2 -2		5	0	2	9		-6		12			-6		
121		$\frac{1}{2}$	-1	1	2	0	-4	2	0	-1	0	7		8	6		-6				-3					
122			-2	1		-3		0	0	5	6		-12			12					-16			-12		
123													-7													

	1																									
level	in [97]	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
123		-2	1	-4	-2	-3	-6	3	0	-6	5	7	-7	1	-1	3	-6	0	-3	-2	-3	-11	10	-16 -	-10 -	-12
124		0	0	1	3	6	-4	0	-5	-4	2	-1	-2	-9	2	4	12	9	12	-12	5	-14	10	2	6	-7
124		0	-2	-3	-1	-6	2	6	-1	-6	0	1	-10	-9	8	0	0	-3	-10	-4	-15	14	8	6	12	-7
126		-1	0	2	-1	4	6	-2	-4	-8	2	0	-10	6	-4	0	-6	-4	6	4	-8	10	0	4	6 -	-14
126		1	0	0	1	0	-4	-6	2	0	6	-4	2	-6	8	12	-6	6	8	-4	0	2	8	6	6 -	-10
128		0	-2	-2	-4	2	-2	-2	-2	4	6	0	-10	-6	-6	-8	6	-14	-2	-10	12	14	-8	6	-2	-2
128		0	2	2	-4	-2	2	-2	2	4	-6	0	10	-6	6	-8	-6	14	2	10	12	14	-8	-6	-2	-2
128		0	2	-2	4	-2	-2	-2	2	-4	6	0	-10	-6	6	8	6	14	-2	10	-12	14	8	-6	-2	-2
128		0	-2	2	4	2	2	-2	-2	-4	-6	0	10	-6	-6	8	-6	-14		-10		14	8	6	-2	-2
129		0	-1	-2	-2	-5	3	-3	2	-1	0	-5	8	-7	-1	-8	3	12			-14				10	11
129		1	1	2	0	0	-2	-6	4	-4	-6	8	6	2	-1	4	-2	0	14	12	8	2	-8		14 ·	
130		-1	-2	1	-4	-6	1	-6	2	6	-6	2	2	-6		-12	6	6	2	-4		-10	-4		-6	2
130		1	2	-1	-4	-2	-1	2	6	6	2	-6	-2		-10		2	10		-12	10	10	-4			14
130		1	0	1	0	0	1	2	-8	-4	-2	-4	6	10	0	8	6	8	-2		-12	10	-8	12		
131		0	-1	-2	-1	0	-3	4	-2	-2	0	-2	-8	-3	3	10	-9		-15	-6	10	4	-8			12
132		0	-1	2	2	-1	6	-4	-2	-8	0	0	-6	0	10	0		-12		4	0	6	2	16 -		-2
132		0 -2	1	2	-2 -3	1 -2	-2 -5	4	-6	0	-8 2	-8	10	8 -10	-2	-8	-2 -2	12	10	12 -9	8	6 -5	-2 -3	16 -		-2
135 135		2	$0 \\ 0$	-1 1	-3	2	-5	-8 8	1 1	6 -6	-2	0	5 5	10	4	4 -4	2	-8 8	7 7	-9 -9	2 -2	-5	-3		·12 · 12 ·	
136		0	2	0	0	2	-6	-1	4	4	0	-8	-4	6	8	-8	10	0	12	-9	12	2	-3 -4		10	
136		0	-2	-2	-2	-6	2	1	0		-10	2	6	-6	-8		-10	-8	14	4		-14			-10	2
138		-1	-1	-2	-2	-6	-2	0	0	-1	6	8	0	10		-8		-12		-12		-10	-6	14	0	-6
138		-1	1	0	2	0	2	0	2	-1	-6		-10	-6	2	0	12	12		14	0		-10			-10
138		1	-1	2	0	0	-2	2	-8	-1	-2	-8	2	10	8	8	2	-4	2	8	0	-6				10
139		1	2	-1	3	5	-7	-6	-2	2	9	9	2	-6	-4	8	0	6	4	5	5	-6	-5	7		-12
140		0	3	-1	-1	-5	-3	-1	6	6	-9	-4	2	-4	10	-1	4	-8	-8	12	8	2	13	-4		-13
140		0	1	1	1	3	-1	-3	2	-6	-9	8	-10	0	2	-3	0	12	8	8	0	14	5	-12	12	17
141		0	-1	-1	-3	-3	-4	8	-6	3	-1	4	1	-10	-8	-1	10	-10	2	4	-6	-8	-3	-18	-2	5
141		-1	-1	0	4	0	6	-6	2	4	8	6	-6	-8	-6	1	2	12	2	-2	0	-10	-4	4 -	-10 -	-18
141		-1	1	2	0	4	-2	2	0	0	-6	-4	-10	-2	8	-1	-2	-4	14	-8	16	2	8	-4	18 -	-14
141		2	1	-1	-3	1	-2	2	6	3	3	2	-7	10	-10	-1	4	8	-10	10	-14	-10	17	8	6	1
141		-2	1	-3	-3	-5	2	-6	-6	9	1	-2	1	6	2	1	0	-12	-2	2	-2	-2	-15	-4	10	1
142		-1	-1	-2	-1	-2	-3	-6	5	-1	6	1	6	-6	5	-3	-6	2		-14		-17	10	4	9	-6
142		-1	0	2	0	6	4	6	-8	-4	-2	-8	10	-2	-8	-4	0	10	-8	2	1	-2	0	-4	6	14
142		-1	3	2	-3	-6	-5	6	1	5	-2	-5	-2	10	1	-1	6	-2	-2	2	1	7	-6	-4	9	2
142		1	1	0	-1	0	-1	0	-1	3	0	5	-4	0	-1	9	6	6	2	8	-1	-1	8	12	-3	
142		1	-3	-4	-3	0	1	0	-5	-7	-8	7	4	4		-13	-6	10	-2	-4	1	7	0	-4	-3	-4
143		0	-1	-1	-2	-1		-4	2	7			-11				2		-2	-1	-9		8			-13
144		0	0	2	0	4	-2 2	-2	4		-6	-8	6		-4	0	2		-2 14	16		10 -10	8	-4	6	2
144 145		0	$0 \\ 0$	0 -1	4 -2	0 -6	$\frac{2}{2}$	0 -2	-8 -2	$0 \\ 2$	0 -1		-10 10	$0 \\ 2$	-8	0 -12	0 -6	0 -8			-12		10	0 -14		$\frac{14}{2}$
145		-1 -1	-1	2	0	-0 4	2	6	-2 -4	0	-1 -2	0	6	-2	-4	0		-0 -12	2	4	0			$\frac{-14}{12}$		
147		2	-1 -1	2	0	-2	-1	0	-4 -1	0	-2 4	-9		10	-4 5			12		-5				-6 -		6
147		2	1	-2	0	-2	1	0	1	0	4	9		-10	5			-12				-3	-1			-6
148		0	-1	-4	-3	5	0	-6	2	-6	-6	4	1	-10 -9	4	-7					3	-5	6	-1	2	0
150		-1	-1	0	2	2	6	2	0	-4	0	-8	2	2	-4	-8		10	$\frac{\circ}{2}$		12	-4		-4 -		-8
150		1	-1	0	4	0	-2	-6	-4	0	-6	8	-2	-6	4	0	6		-10	4	0	-2		-12		-2
150		1	1	0	-2	2	-6	-2	0	4	0	-8	-2	2	4	8	-6	10	2	8	12	4	0		-10	8
152		0	-2	-1	-3	-3	-4	5	-1	0	2		-10	6	-7		-8	14			-6		-4		0	
152		0	1	0	3	2	1	-5	1	-1	-3	4	2	-8		-8	9		14	13				10 -		
153		-2	0	-1	-2	-3	-5	-1	-1	-7	6		10	9		-12		6	2	4	-8	0	-6	4	2	8
153		2	0	1	-2	3	-5	1	-1	7	-6		10	-9		12		-6	2	4	8			-4	-2	8

	1																									
level	in [97]	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
153		1	0	2	4	0	-2	-1	-4	-4	-6	4	-2	6	4	0	-6	12	-10	4	4	-6	12	4 -	10	2
153		0	0	-3	-4	3	-1	1	-1	-9	-6	2	-4	3	-7	6	6	-6	8		-12		-10	6		-16
154		-1	0	-4	-1	-1	2	-4	-6	4	-2	-2	10	4	-8	2			-14		-8	4	0	-6		-14
154		-1	2	2	-1	1	-4	0	4	4	2	-10	-6	0	-4	10	-14	10	-8	8	-4	4	16	4	10	6
154		1	0	2	-1	-1	2	2	0	-8	-2	-8	-2	10	4	8	6	0	10		16		0	0	-6	10
155		0	-1	-1	0	-4	-6	5	-1		-10	-1	1	-3	-7	-6	5	11	-12	-2	9		-10	9		-14
155		-1	2	-1	4	4	0	-8	4	2	-6	1	-4	-6	-6	8	-12	-4	10	8	0	-4	0	2	14	-18
155		-2	-1	1	-2	2	-6	-7	-5	4	0	1	-7	-3	9	-2	9	-5	-8	8	-3	-1	0 -	-11	10	18
156		0	-1	-4	-2	-4	1	2	-2	0	-6	-10	10	8	4	-4	-10	-8	-14	2	16	-10	-16	0	-4	-2
156		0	1	0	2	0	1	-6	2	0	-6	2	2	-12	-4	0	6	12	2	-10	12	14	8	12	0 -	-10
158		-1	-1	-1	-3	4	-7	-4	-6	6	4	8	10	-8	-8	-3	2	1	0	-4	-11	-6	-1	6 -	15	1
158		-1	1	3	-1	0	5	0	2	-6	0	-4	2	-12	8	-9	6	-9	8	-4	-9	2	1	18	9	17
158		1	-1	1	3	2	-1	-2	0	-6	-10	2	-2	2	4	3	4	5	12	8	-13	-6	-1	-6 -	15	13
158		1	2	-2	0	-4	2	-2	0	0	8	8	4	-10	-2	0	-8	14	0	8	8	6	-1	12	6	10
158		1	-3	-3	-3	-2	-5	6	0	-2	6	-10	-10	2	4	-3	-12	-1	12	-8	-3	-6	1	14	-7	-11
160	160A1	0	-2	-1	-2	-4	-6	2	8	-6	-2	4	2	-10	-2	-2	2	0	2	-6	-12	10	-8	-10	-6	10
160		0	2	-1	2	4	-6	2	-8	6	-2	-4	2	-10	2	2	2	0	2	6	12	10	8	10	-6	10
161		-1	0	2	1	4	6	-2	4	-1	-2	-4	-2	-6	12	-12	-10	0	2	12	8	-14	8	-4	6	-10
162		-1	0	-3	-4	0	-1	-3	-4	0	9	-4	-1	6	8	-12	-6	0	-1	-4	-12	11	-16	-12	-3	2
162		-1	0	0	2	3	2	3	-1	6	-6	-4	-4	-9	-1	6	-12	-3	8	5	12	11	-4	-12	-6	5
162		1	0	0	2	-3	2	-3	-1	-6	6	-4	-4	9	-1	-6	12	3	8	5	-12	11	-4	12	6	5
162		1	0	3	-4	0	-1	3	-4	0	-9	-4	-1	-6	8	12	6	0	-1	-4	12	11	-16	12	3	2
163		0	0	-4	2	-6	4	0	-6	6	-4	-6	-8	3	7	1	-9	-2	3	-2	-5	-2	-8	5 -	14	-11
166		-1	-1	-2	1	-5	-2	-3	-2	4	-3	1	1	6	8	12	-14	-3	-7	2	-14	-4	-6	-1	4	12
168		0	-1	2	1	0	6	-2	4	-4	-10	-8	6	-2	-4	8	-10	12	-2	12	-12	-14	-8	12	-2	10
168		0	1	2	-1	0	-2	6	-4	-4	6	-8	-10	-10	12	-8	6	4	-10	12	4	2	8	4	6	10
170		-1	-2	-1	2	6	2	1	8	-6	-6	2	2	-6	-4	12	6	0	2	8	-6	2	-10	12	6	2
170		-1	3	-1	2	-4	-3	1	3	-6	9	-3	-8	-6	6	-13	-9	15	7	-2	9	-3	0	12	-9	7
170		-1	1	1	2	0	5	-1	-1	6	-9	-1	-4	-6	2	-9	-9	3	-7	14	3	11	8	0	-9	-7
170		-1	-2	1	-2	-2	-6	1	-8	-2	6	-2	6	2	-4	4	-10	0	-10	8	14	10	-14	-4	6	-14
170		1	1	-1	2	0	-1	-1	-1	-6	-3	5	8	6	-10	-3	-3	3	11	2	9	11	8	-12	15	-7
171		-1	0	2	0	0	6	6	-1	-4	-2	8	-10	2	-4	-12	6	12	-2	-4	0	10	0	-16	2	10
171		2	0	-1	3	3	-6	-3	-1	-4	10	2	8	8	-1	-3	6	0	7	8	-12		0	-4 -	10	-2
171		2	0	3	-5	-1	2	1	-1	4	2	-6	0	0	-1	9	-10	8	-1	8	12	-11	16	-12	6	-10
171		0	0	-3	-1	-3	-4	3	1	0	-6	-4	2	6	-1	3	-12	6	-1	-4	-6	-7	8	-12 -	12	8
172		0	-2	0	-4	-3	-1	-3	2	-3	6	5	8	-3		-12		-12	-10	11	6	-10		-15	0	-1
174		-1	-1	3	-3	6	0	7	5	-8	1	-8	-3	-5	3	9		-11	-6	0		-10	-2		10	0
174		-1	1	2	0	-4	6	-2	4	0	-1	-4	-6		-12	-8	-6	8	10	-4	-8	2	4			18
174		-1		-3	5		-4								-7				-10					0		
174			-1	1	1			-7			-1				-5				10					16 -		_
174		1		-1	1				-1		1	4		-7			-2				16			0		0
175		0	-1	0		-3	-5		2	6	3		-2			-9		0	8	4				-12 -		1
175		2	1	0		-3	1	7	0		-5	2	2		-4	-3		10		2	-8		-5		0	7
175		-2	-1	0	1	-3	-1			-6			-2	2	4				-8			-6		4	0	-7
176		0	3	-3	2	1	0	-6		-1			-1		-6	8	2	1	4		-3			2		-7
176		0	1	1	2	-1	4	-2 c	0	1		-7			6					7			10	6		
176		0	-1	-3	-2	1	-4	6	-8	3	0		-1		10	0		-3			-15			-6		
178		-1	2	2	0	0	-4	2	-2	8	0	0			-2				-4		8		8			-2
178		1	1	3	-4		2	3	5		0		-10		-1			12					-10		-1	
179		2	0	3	-4	4	-1	1	-3	6	3	-8		12		1			14					17		
180		0	0	1	2	0	2	6		-6 7				-6 7		6					12	2	8			2
182		-1	1	4	-1	-1	1	4	2	-7	-8	3	7	-7	-8	3	U	-θ	-13	7	4	9	-13	-16	-θ	11

level	in [97]	2	3	5	7	11	13	17	19	23	29	31	37	41	43	47	53	59	61	67	71	73	79	83	89	97
182		-1	3	0	1	-5	-1	-4	2	5	4	1	7	-9	-12	-7	-4	-6	13	11	0	7	-17	4	14	5
182		1	0	2	-1	4	-1	-6	0	8	-10	-8	6	-6	4	-8	6	8	10	4	-8	2	8	0	18	2
182		1	3	-4	-1	1	-1	0	-6	-7	-4	7	9	-3	4	7		-10	1	1	16	5	11	0	-6	-1
182		1	1	0	1	-3	1	0	2	-3	0	5	-7	3	8	-3	-12	6	-1	5	12	11	-1	12	-18	17
184		0	-1	-2	-4	-2	7	-4	-6	-1	5	3	2	-9	8	-1	-6	-8	-10	2	-13	-3	6	0	-4	-8
184		0	0	0	4	6	-2	6	-6	1	-6	0	-8	6	-2	-8	-8	4	-4	2	-8	6	12	10	10	-18
184		0	3	0	-2	0	-5	-6	6	1	9	3	-8	3	-8	7	-2	4	-10	8	7	9	-6	-14	16	6
184		0	-1	-4	2	-4	-5	-2	6	1	1	-9	-4	3	8	-5	6	-4	-10	-4	-5	-15	-6	6	-8	10
185		1	-2	-1	-2	0	-2	2	2	-8	2	-6	-1	10	-4	-10	-6	-6	2	-14	0	2	-6	18	2	-10
185		-2	1	-1	-5	3	-2	-4	-4	-2	2	0	-1	7	-10	11	-3	0	-4	16	-15	11	-12	-3	-4	8
185		0	-1	1	-3	-5	4	-4	-8	4	4	2	1	-5	-6	9	3	-8	-10	-4		-15		11	-2	10
186		-1	-1	-1	2	3	3	1	7	0	4	1	-10	-6	6	-5	-2	6	3	-3	7	-10	-1	17	6	5
186		-1	1	3	-2	5	-7	-1	7	4	-8	-1	-6	-2	-10	-1	6	-10	1	-3	3	14	-11	7	-6	-3
186		1	1	1	-2	-3	-1	3	-5	4	0	1	-2	2	-6	-7	14	10	7	-7	-3	-6	15	-1	10	13
187		2	0	4	-5	-1	4	1	2	-2	-3	4	-2	-3	-2	3	9	-3	-10	7	2	-3	0	14	1	-10
187		0	1	3	2	1	2	-1	2	-3	-6	-7	-7	12	-10	0	6	-3	8	-7	-9	2	8	6	15	11
189		-2	0	-1	-1	-4	-2	3	-8	-6	-4	6	-3	1	11	9	6	-15	4	-8	-12	6	-1	-9	2	12
189		0	0	3	1	6	-4	3	2	-6	-6	-4	-7	-3	-1	9	-6	9	-10	-4	0	2	-1	3	6	-10
189		2	0	1	-1	4	-2	-3	-8	6	4	6	-3	-1	11	-9	-6	15	4	-8	12	6	-1	9	-2	12
189		0	0	-3	1	-6	-4	-3	2	6	6	-4	-7	3	-1	-9	6	-9	-10	-4	0	2	-1	-3	-6	-10
190		-1	-1	-1	-1	0	-3	-7	-1	-5	-5	10	2	2	6	0	9	-7	-4	7	0	-9	-10	-2	-10	-18
190		1	-3	-1	-5	-4	-1	-3	1	7	-3	-2	-2	-6	6	0	-13	-9	-12	-3	0	11	-2	-10	2	-2
190		1	1	1	-1	0	-1	-3	1	3	-3	2	-10	6	2	0	3	3	8	-7	12	-13	14	6	6	-10
192		0	-1	-2	-4	-4	2	-6	4	0	-2	4	2	2	-4	8	-10	4	-6	-4	-16	-6	4	-12	10	-14
192		0	1	2	0	-4	2	2	4	-8	-6	8	-6	-6	-4	0	2	-4	2	4	8	10	-8	4	-6	2
192		0	1	-2	4	4	2	-6	-4	0	-2	-4	2	2	4	-8	-10	-4	-6	4	16	-6	-4	12	10	-14
192		0	-1	2	0	4	2	2	-4	8	-6	-8	-6	-6	4	0	2	4	2	-4	-8	10	8	-4	-6	2
194		1	0	4	-4	4	-4	6	-6	-4	0	0	-8	-2	-8	0	6	6	10	6	0	-10	8	-2	14	-1
195		2	-1	1	3	-1	-1	-1	-2	-3	-2	-6	11	-5	4	-10	11	8	13	12	-5	10	-3	-12	-15	17
195		2	1	-1	-1	5	-1	-7	-6	3	2	2	7	9	-8	10	5	0	5	-4	9	-6	-3	-4	11	-11
195		-1	1	1	0	4	1	2	-4	8	-2	-8	6	-6	-4	-8	6	-12	-2	-4	0	-6	16	-4	10	18
195		2	1	1	-3	-5	1	5	2	-1	10	-2	-3	-9	-4	10	9	0	-11	-4	15	6	-11	8	-11	-9
196		0	1	3	0	-3	2	3	-1	3	-6	-7	-1	6	-4	-9	3	9	-1	-7	0	-1	-13	12	15	-10
196		0	-1	-3	0	-3	-2	-3	1	3	-6	7	-1	-6	-4	9	3	-9	1	-7	0	1	-13	-12	-15	10
197		-2	0	0	-3	4	-2	-8	-3	-3	7	-10	7	9		-11	10	0		-10	8	6	2	-7	-8	-2
198		-1	0	0	2	1	2	6	2	0	6	-4	2		-10		12	-12	-10	8	-12	14	2	12	0	2
198		-1	0	4	-2	-1	4	2	0	6	-10	-8	-2	-2	4	2	-4			-12					-10	-2
198		-1	0	-2	-4	1	-6	-2	4	-4		0	6	6	4	12	-2	-12	-14	4	12	-6	-4	-4	-10	-14
198		1	0	0	2	-1	2	-6	2		-6	-4	2		-10		-12		-10		12		2	-12	0	2
198		1	0	0	2	1	-4	6	- 4	-6	-6	8	-10	-6	8	6	0		8	-4	-6	2		12	6	14
200		0	2	0	2	-4	4	0	- 4	-2	2	0	4	2	-6		-4			14	8	8	16	2	6	16
200		0	-3	0	2	1	4	5	1	-2	-8	10	-6	-3	4	4	6	8	10	-1	-12	3	6	-13	-9	-14
200		0	0	0	4	4	2	-2	4	-4	-2		-6	-6	8	-4	-6	-4	-2	-8	0	6	0	16	-6	14
200		0	3	0	-2	1	-4	-5	1	2		10	6	-3	-4	-4	-6		10		-12	-3		13	-9	14
200		0	-2	0	-2	-4	-4	0	-4	2	2	0	-4	2	6	6	4	-12			8	-8	16	-2	6	-16
201		1	-1	-3	-3	0	4	2		-7	-8	-1	-3	-9	9	0	1			-1				5		16
201		-2	-1	0	0	-6	4	-7			1	-4	3	0	-6	9	10	3	2		-16		8	-4	-15	4
201		-1	1	-1	-5	-4	-4	6	-2	-3		-7	5	-3	7	8	-5	3	-2	1	-12	-13	-8	1	4	-12
202		-1	0	2	1	4	0	5	1	6	-5	0	-8	-4	-5	6	3						-2			13
203		1	2	2	1	-4	-2	4	2	0	-1	-2	2	0		-10	6	12	-4	12	-8	-4	12	-16	12	12
203		-2	-1	-4	1	2	4	-2	5	9	-1	-8	8	-3	-6	-7	9	0	2	3	7	-1	0	14	15	3
203		-1	-1	1	1	-5	-5	-4	-4	6	1	7	-10	0	-9	7	3	0	14	-6	8	-16	-9	16	-6	0

11	: [07]	- 0	2	۳	7	11	10	17	10	00	20	91	27	41	49	47	F 0	FO	C1	CZ	71	79	70	09	90	07
	in [97]	2	3	5																				83		
204		0	-1	-1	4	3	3	-1	1	_	-10	6	-4	5	-1		-14	-6		-12	12		-14	6	16	0
204		0	1	1	0	5	-5	1	1	-3	2	2	-8	-5	-9	6	-6	6		12			10	_	12	16
205		-1	2	-1	2	6	2	2	-6	-4	10	0	-6	1	-4			12			-2	6	-2	0	10	10
205		1	2	1	2	0	-4	4	0	-8	2	0	-6	-1	8	2		-12	2	10	8	-6	-8	12	14	-8
205		-1	0	1	-4	0	-2	-6	0	-8	6	0	6	1	4	-4	6	-4	14		-12	-6	-4	4	-6	-6
206		-1	2	4	0 -2	-6	-2 -6	2	-4 2	0	-6 -2	8	8 2	2 -2	2		-12	12	10	-2 -10	0	10	10	-4	2	14
207 208		-1	-1	0 -1	-2 -5	-4	-0 -1	-4 -3	2	1	-2 -6	4	11		10 1	0	12 -12	12 -6	-0	-10 -6	-0 -7	-14				-10
208		0	-1	2	-3 2	2 2	-1 -1	-3 6	6	-4 -8		4 -10	-6	-6	-4	-9 2	6	10		-0 -10		2	-12 4	16 6	-10 -6	-10 2
208		0	3	-1	-1	2	-1	-3	-6	-o 4	2	-10 -4	3	0		-13	12	10	-8	2		-10	4	0	6	$\frac{2}{14}$
208		0	-1	-3	1	-6	1	-3	-2	0	6	4	-7	0	1	-3	0	6		-14	3	2		-12		-10
209		0	1	-3	-4	1	2	0	1	3	-6	-7	-7		-10	0	6		-10	11	15		-16	0	9	-1
	210A1	-1	-1	-1	-1	-4	-2	-6	0	-8	10	-8	2	-2	8	4	10	4	-6		-12	-6	-8	-4	14	2
210	210111	-1	1	1	1	0	2	-6	8	0	6		-10	-6	-4	0		-12			12		8	12		-10
210	210C1	1	-1	1	1	4	-2	2	-4	-8	6	-8	-2		-12	-8	6	4	-2	12		-14	0	12	2	10
210		1	1	-1	1	0	2	-6	-4	0	-6	-4	2	6		-12		-12	$\overline{2}$	8	0		-16	12	6	14
210		1	1	1	-1	-4	-2	2	4	-8	-2	0	6	-6	-4		-10	12	14		-8	10		-12	10	2
212		0	2	2	0	-4	-2	2	2	-2	2	2	10	2	-4	-12		-12	10	-2	6	10	10		-10	14
212		0	-1	-2	-2	2	-7	-3	5	-3	9	-8	-3	2	4	10	1	-2	-10	4	-9	-6		-11	-10	-3
213		1	1	2	2	0	-2	0	0	0	-2	-10	-6	0	-4	12	-4	12	10	2	-1	-10	4	-4	6	-2
214		-1	1	-4	-2	-3	-1	6	1	-7	-6	4	-9	-5	12	8	7	-6	1	-10	6	-4	-7	4	-15	-6
214		-1	-2	-1	4	-6	-4	-6	-2	5	0	-2	0 -	-11	-9	11	10	-3	-8	5	0	8	11	4	-15	-12
214		1	1	0	2	-3	-1	6	-7	9	-6	-4	-1	3	8	0	-9	6	-7	14	6	-4	-7	12	9	14
214		1	-2	-3	-4	-2	4	-2	-2	1	-4	-10	12	-11	1	-1	6	-5	4	-5	-12	-16	7	-16	9	12
215		0	0	-1	-2	-1	-1	-3	-2	-1	4	3	-8	5	-1	0	-5	12	-4	-3	6	-8	0	-9	-6	-17
216		0	0	-4	-3	-4	1	4	-1	-4	0	-4	-9	0	-8	12	8	-4	-5	11	-8	1	-5	-8	-12	5
216		0	0	-1	3	5	4	-8	2	2	6	-7	-6	-6	-2	6	5	-4	-8	-10	-8	1	16	-11	6	-1
216		0	0	1	3	-5	4	8	2	-2	-6	-7	-6	6	-2	-6	-5	4	-8	-10	8	1	16	11	-6	-1
216		0	0	4	-3	4	1	-4	-1	4	0	-4	-9	0	-8	-12	-8	4	-5	11	8	1	-5	8	12	5
218		1	-2	-3	-4	3	-4	-6	5	3	-3	-4	-4	0	-10	-3	12	12	-7	-4	-12	-1	-16	6		-19
219		1	-1	-4	2	-4	-2	0	-4	0	8	6	-2	-10	-6		-12	4	-14	8	-8	-1	8	16	-14	-2
219		-2	-1	-1	2	-4	-2	-3	-1		-10	-6	1	2	6	7	3	1			10	-1		-11		-11
219		0	1	-3	-4	0	-4	3	-1	6		-10	-7	0	2	-3	9	-9		-13	12	1	11	15		5
220		0	-2	1	-4	-1	-4	0	-4	-6	-6	8	2	6	8	6		-12			-12		8	0	6	14
220		0	2	1	0	1	0	-4	-4	6	2	0		-10	4	10	2		-14	2	4	-4	-8	12	6	6
221		1	2	2	2	-6	-1	1	4	6	-6	-2	2	-6	0	-4	14	4	2		-10	10	14	12		2
221		-1	0	4	-2	6	-1	1	8	4	-6	-2	-8	0	4	0	-6		-10	-8	2	0	0	-4	-2	-4
222		-1	-1	2	0	-4	6	6	8	0	-6	4	1	-6	-8	8	6	-4	-2			10		-4	-	-6
222		-1	-1	-4	3	5	3	3	-7	9		-2	1	6		-10		-4			-12					6
222 222		-1 1	1	4	-1	-1	-3 1	3	-5 3	5			-1		12			-12						-9 0		
222		1	-1 1	0	3 -1	1	1 -1	-3	-7	-1 3		-6 2	-1					0	2 -10	$\frac{2}{2}$		-3 5	14			-10 2
224		1		0		3	-1 -4				0			-6 10		6	9									
224		0	-2 2	0	-1 1	-4 4		-2 -2	-6 6	8	$\frac{2}{2}$		10		4			10 -10		-8 8		-6 6	16			-2 -2
$\frac{224}{225}$		0	0	0	-5	0	-4 -5	0	6 -1	-8 0	0		10 10	0	-4 -5	-4 0			-0 -13			10		-2		-2 -5
225		0	0	0	-5 5	0	-5 5	0	-1 -1	0		-1 -7		0	-5 5	0	0		-13 -13	-5 5		-10		0	0	
225		-1	0	0	0	4	2	2	4	0	2		10		-4		-10		-13 -2			-10		12		-2
225		2	0	0	3	-2	-1	2	-5		-10		-2	8	-4 -1		-10 -4		7	3		14	0	6		-17
225		-2	0	0	-3		1	-2	-5		-10		2	8		-2	4			-3		-14		-6		$\frac{-17}{17}$
226		1	-2		0	-4			-2		-10 -4		-8	-6			10			2		-14		16		
228		0	-1	2	0	2	2		-1	2			-2								-4			6		-2
228		-	-1			-5	-6		1	4			-8		9			-8						-4		
220		U		J		U	·U	U			U	U	U	U	J	1		.0	11	U	- 1	тт	.0	-	10	10

Bibliography

- [1] Aczel, A. D., Fermat's Last Theorem: Unlocking the Secret of an Ancient Mathematical Problem, Four Walls Eight Windows (1996).
- [2] Ahlgren, S., The Points of a Certain Fivefold over Finite Fields and the Twelfth Power of the Eta Function, Finite Fields and Their Applications 8, no. 1 (2002), pp. 18–33.
- [3] Ahlgren, S., Ono, K., *The modularity of a certain Calabi–Yau threefold*, Monatshefte für Mathematik **129** (2000), pp. 177–190.
- [4] Ahlgren, S., Ono, K., Penniston, D., Zeta functions of an infinite family of K3 surfaces, American J. of Math. 124, no. 2 (2002), pp. 353–368.
- [5] Barth, W., A Quintic Surface with 15 three-divisble Cusps, preprint (2000).
- [6] Barth, W., Nieto, I., Abelian surfaces of type (1,3) and quartic surfaces with 16 skew lines, J. Alg. Geometry 3, no. 2 (1994), pp. 173–222.
- [7] Barth, W., Sarti, A., Polyhedral Groups and Pencils of K3-Surfaces with Maximal Picard Number, Asian J. of Math. 7, no. 4 (2003), pp. 519–538.
- [8] Batyrev, V., Birational Calabi–Yau n-folds have equal Betti numbers, in Proceedings Warwick Euroconference 1996, eds. Hulek, K., Catanese, F., Peters, C., Reid, M., London Math. Soc. Lecture Note Ser. 264 (1999), Cambridge Univ. Press, pp. 1–11.
- [9] Batyrev, V., Borisov, L., Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds, Mirror Symmetry II, eds. Greene, B., Yau, S.-T., International Press, Cambridge (1997), pp. 71–86.
- [10] Batyrev, V., Hosono, S., Lewis, J. D., Lian, B. H., Yau, S.-T., Yui, N., Zagier, D., Calabi-Yau Varieties and Mirror Symmetry, report for PIMS workshop at BIRS, Dec. 6-11, 2003, http://www.pims.math.ca/birs/workshops/2003/03w5061/report03w5061.pdf.
- [11] Batyrev, V., van Straten, D., Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric geometry, Comm. Math. Phys. **168** (1995), pp. 493–533.
- [12] Beauville, A., Les familles stables de courbes elliptiques sur \mathbb{P}^1 admettant quatre fibres singulières, C. R. Acad. Sc. Paris **294** (1982), pp. 657–660.

[13] Bernardara, M., Calabi-Yau complete intersections with infinitely many lines, preprint (2004), math.AG/0402454.

- [14] Beukers, F., Stienstra, J., On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces, Math. Ann. 271 (1985), pp. 269–304.
- [15] Breuil, C., Conrad, B., Diamond, F., Taylor, R., On the modularity of elliptic curves over Q: wild 3-adic exercises, J. of the AMS 14, no. 4 (2001), pp. 843-939.
- [16] Brieskorn, E., Über die Auflösung gewisser Singularitäten von holomorphen Abbildungen, Math. Ann. **166** (1966), pp. 76–102.
- [17] Candelas, P., Dale, A. M., Lütken, C. A., Schimmrigk, R., Complete intersection Calabi– Yau manifolds, Nucl. Physics **B298** (1988), pp. 493–525.
- [18] Candelas, P., de la Ossa, X., Rodriguez-Villegas, F., Calabi-Yau manifolds over finite fields I, preprint (2000), hep-th/0012233.
- [19] Candelas, P., de la Ossa, X., Rodriguez-Villegas, F., Calabi-Yau manifolds over finite fields II, in Proceedings of the Workshop on "Calabi-Yau Varieties and Mirror Symmetry", Fields Institute, Toronto, July 23-29, 2001, eds. Yui, N., Lewis, J. D., Fields Inst. Comm. Series 38 (2003), AMS, pp. 121–157.
- [20] Candelas, P., Horowitz, G. T., Strominger, A., Witten, E., Vacuum configurations for superstrings, Nucl. Physics **B258** (1985), pp. 46–74.
- [21] Catanese, F., Ceresa, G., Constructing Sextic Surfaces with a Given Number d of Nodes, J. Pure Appl. Alg. 23 (1982), pp. 1–12.
- [22] Clemens, C. H., Double Solids, Adv. in Math. 47 (1983), pp. 107–230.
- [23] Consani, K., Scholten, J., Arithmetic on a quintic threefold, Internat. J. Math. 12, no. 3 (2001), pp. 943–972.
- [24] Coxeter, H. S. M., Regular Polytopes, 3rd edition, Dover Publications, New York (1973).
- [25] Cynk, S., Defect of a nodal hypersurface, Manuscripta Math. 104 (2001), pp. 325–331.
- [26] Cynk, S., Double coverings of octic arrangements with isolated singularities, Adv. Theor. Math. Phys. 3 (1999), pp. 217–225.
- [27] Cynk, S., Cohomologies of a double covering of a non-singular algebraic 3-fold, Math. Z. **240**, no. 4 (2002), pp 731–743.
- [28] Cynk, S., Meyer, C., Geometry and arithmetic of certain double octic Calabi–Yau manifolds, preprint (2003), math.AG/0304121, to appear in Canadian Math. Bull.
- [29] Cynk, S., Szemberg, T., Double covers and Calabi-Yau varieties, Banach Center Publ. 44 (1998), pp. 93–101.

[30] Cynk, S., van Straten, D., Infinitesimal deformations of double covers of smooth algebraic varieties, preprint (2003), math.AG/0303329, to appear in Math. Nachr.

- [31] Deligne, P., Formes modulaires et représentations ℓ-adiques, Sem. Bourbaki **355** (1968/69), Lect. Notes **349** (1971), Springer, pp. 139–172.
- [32] Deligne, P., Serre, J. P., Formes modulaires de poids 1, Ann. Sci. Éc. Norm. Sup. 7 (1974), pp. 507–530.
- [33] Dieulefait, L., Computing the Level of a Modular Rigid Calabi-Yau Threefold, Exp. Math. 13, no. 2 (2004), pp. 165–169.
- [34] Dieulefait, L., From potential modularity to modularity for integral Galois representations and rigid Calabi–Yau threefolds, preprint (2004), math.NT/0409102.
- [35] Dieulefait, L., Manoharmayum, J., Modularity of rigid Calabi-Yau threefolds over Q, in Proceedings of the Workshop on "Calabi-Yau Varieties and Mirror Symmetry", Fields Institute, Toronto, July 23-29, 2001, eds. Yui, N., Lewis, J. D., Fields Inst. Comm. Series 38 (2003), AMS, pp. 159–166.
- [36] Dimca, A., On the homology and cohomology of complete intersections with isolated singularities, Compositio Mathematica **58** (1986), pp. 321–339.
- [37] Dolgachev, I. V., Lectures on modular forms, http://www.math.lsa.umich.edu/~idolga/.
- [38] Elkies, N., Complete cubic parametrization of the Fermat cubic surface $w^3 + x^3 + y^3 + z^3 = 0$, http://www.math.harvard.edu/~elkies/4cubes.html.
- [39] Endraß, S., A Projective Surface of Degree Eight with 168 Nodes, J. Alg. Geometry 6 (1997), pp. 325–334.
- [40] Endraß, S., On the divisor class group of double solids, Manuscripta Math. **99** (1999), pp. 341–358.
- [41] Esnault, H., Viehweg, E., Lectures on vanishing theorems, DMV Seminar 20 (1992), Birkhäuser. http://www.uni-essen.de/~mat903/books.html.
- [42] Faltings, G., Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. math. 73 (1983), pp. 349–366.
- [43] Fontaine, M., Mazur, B., Geometric Galois Representations, in Elliptic Curves, Modular Forms and Fermat's Last Theorem, Hongkong 1993, eds. Coates, J., Yau, S. T., Ser. Number Theory 1, International Press (1995), pp. 41–78.
- [44] Freitag, E., Kiehl, R., Etale Cohomology and the Weil Conjecture, Ergebnisse der Mathematik und ihrer Grenzgebiete 13 (1988), Springer.

[45] Greuel, G.-M., Pfister, G., Schönemann, H., SINGULAR 2.0, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2001), http://www.singular.uni-kl.de.

- [46] Haessig, C. D., Equalities, congruences, and quotients of zeta functions in Arithmetic Mirror Symmetry, preprint (2005), math.NT/0501115.
- [47] Hartshorne, R., Algebraic Geometry, Graduate texts in mathematics 52 (1977), Springer.
- [48] Hirzebruch, F., Some examples of threefolds with trivial canonical bundle, in Collected Works Vol. II (1995), Springer, pp. 757–770.
- [49] Hulek, K., Spandaw, J., Counting points on Calabi–Yau threefolds Some computational aspects, eds. Ciliberto, C. et al., Applications of Algebraic Geometry to Coding Theory, Physics and Computation, Kluwer Academic Publishers (2001), pp. 195–205.
- [50] Hulek, K., Spandaw, J., van Geemen, B., van Straten, D., The modularity of the Barth-Nieto quintic and its relatives, Adv. Geom. 1 (2001), pp. 263–289.
- [51] Hulek, K., Verrill, H. A., On modularity of rigid and nonrigid Calabi-Yau varieties associated to the root lattice A₄, preprint (2003), math.AG/0304169, to appear in Nagoya Math. Journal.
- [52] Hulek, K., Verrill, H. A., On the modularity of Calabi-Yau threefolds containing elliptic ruled surfaces, preprint (2005), math.AG/0502158, to appear in Calabi-Yau Varieties and Mirror Symmetry, proceedings of PIMS workshop at BIRS, Dec. 6-11, 2003.
- [53] Inose, K., Shioda, T., On singular K3 surfaces, in Complex Analysis and Algebraic Geometry, eds. Baily, W., Shioda, T. (1997), Kinokuniya Shoten and Cambridge University Press, pp. 119–136.
- [54] Jones, J., Tables of number fields with prescribed ramification, http://math.la.asu.edu/~jj/numberfields.
- [55] Kimura, K., A rational map between two threefolds, preprint (2004), math.AG/0410259.
- [56] Klemm, A, Theisen, S., Considerations of one modulus Calabi-Yau compactifications: Picard-Fuchs equations, Kähler Potentials and Mirror Maps, Nucl. Physics **B389** (1993), pp. 153–180.
- [57] Klemm, A, Theisen, S., Mirror Maps and Instanton Sums for Complete Intersections in Weighted Projective Space, Modern Physics Letters A 9, no. 20 (1994), pp. 1807–1817.
- [58] Knapp, A. W., *Elliptic Curves*, Princeton Mathematical Notes **40** (1993), Princeton University Press.
- [59] Kuwata, M., Top, J., A singular K3 surface related to sums of consecutive cubes, Indagationes Mathematicae 11, no. 3 (2000), pp. 419–435.

[60] Lauder, A. G. B., Counting solutions to equations in many variables over finite fields, Foundations of Computational Mathematics 4, no. 3 (2004), pp. 221–267.

- [61] Libgober, A., Teitelbaum, J., Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations, Int. Math. Research Notices 1 (1993), pp. 29–39.
- [62] Livné, R., Cubic exponential sums and Galois representations, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp.Math. 67, Amer.Math.Soc., Providence, R.I. (1987), pp. 247–261.
- [63] Livné, R., Motivic orthogonal two-dimensional representations of Gal(ℚ/ℚ), Israel J. of Math. 92, no. 1-3 (1995), pp. 148−156.
- [64] Livné, R., Yui, N., The modularity of certain non-rigid Calabi-Yau threefolds, preprint (2003), math.AG/0304497.
- [65] Long, L., L-Series of Certain Elliptic Surfaces, Canadian Math. Bull. 46, no. 4 (2003), pp. 546–558.
- [66] Lovejoy, J., Penniston, D., 3-regular partitions and a modular K3 surface, in q-Series with Applications to Combinatorics, Number Theory, and Physics, Contemporary Mathematics 291 (2001), pp. 177-182.
- [67] Martin, I., Multiplicative η -quotients, Trans. Amer. Math. Soc. **348**, no. 12 (1996), pp. 4825–4856.
- [68] Meyer, C., Die L-Reihen einiger symmetrischer Quintiken, diploma thesis, Mainz (2000).
- [69] Meyer, C., Modular quintics in \mathbb{P}^4 , Math. Nachr. **259** (2003), pp. 66–73.
- [70] Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math. **572** (2004), pp. 167–195.
- [71] Milne, J. S., Étale cohomology, Princeton Mathematical Series **33** (1980), Princeton University Press.
- [72] Milne, J. S., Modular Functions and Modular Forms, http://www.jmilne.org/math/CourseNotes/math678.html.
- [73] Morrison, D. R., Mirror Symmetry and Rational Curves on Quintic Threefolds: A Guide for Mathematicians, J. of the AMS 6, no. 1 (1993), pp. 223–247.
- [74] Mortenson, E., Modularity of a certain Calabi–Yau threefold and combinatorial congruences, to appear in Ramanujan Journal.
- [75] Nygaard, N., van Geemen, B., On the Geometry and Arithmetic of Some Siegel Modular Threefolds, J. Number Theory **53** (1995), pp. 45–87.

[76] Peters, C., Stienstra, J., A pencil of K3-surfaces related to Apéry's recurrence for ζ(3) and Fermi surfaces for potential zero, in Arithmetic of complex manifolds, Erlangen 1988, eds. Barth, W., Lange, H., Lect. Notes 1399 (1989), Springer, pp. 48–59.

- [77] Peters, C., Top, J., van der Vlugt, M., The Hasse zeta function of a K3 surface related to the number of words of weight 5 in the Melas codes, J. Reine Angew. Math. **432** (1992), pp. 151–176.
- [78] Reid, M., Update on 3-folds, Proc. ICM 2002, no. 3, also available as preprint (2003), math.AG/0206157.
- [79] Ribet, K. A., Galois representations and modular forms, Bull. of the AMS **32**, no. 4 (1995), pp. 375–402.
- [80] Rodriguez-Villegas, F., Hypergeometric Families of Calabi-Yau Manifolds. in Proceedings of the Workshop on "Calabi-Yau Varieties and Mirror Symmetry", Fields Institute, Toronto, July 23-29, 2001, eds. Yui, N., Lewis, J. D., Fields Inst. Comm. Series 38 (2003), AMS, pp. 223-232.
- [81] Saito, M., Yui, N., The modularity conjecture for rigid Calabi-Yau threefolds over Q, J. of Math. Kyoto Univ. 41, no. 2 (2001), pp. 403–419.
- [82] Sarti, A., Pencils of Symmetric Surfaces in \mathbb{P}_3 , J. of Algebra **246** (2001), pp. 429–452.
- [83] Sarti, A., Symmetric Surfaces with Many Singularities, Comm. in Algebra **32**, no. 10 (2004), pp. 3745–3770.
- [84] Schoen, C., On fiber products of rational elliptic surfaces with section, Math. Z. 197, no. 2 (1988), pp. 177–199.
- [85] Schoen, C., On the computation of the cycle class map for nullhomologous cycles over the algebraic closure of a finite field, Ann. Sci. Éc. Norm. Sup. 28, no. 1 (1995), pp. 1–50.
- [86] Schoen, C., On the geometry of a special determinantal hypersurface associated to the Mumford-Horrocks vector bundle, J. Reine Angew. Math **364** (1986), pp. 85–111.
- [87] Schütt, M., Die Modularität von starren 3-dimensionalen Calabi-Yau-Varietäten, diploma thesis, Hannover (2004).
- [88] Schütt, M., New examples of modular rigid Calabi–Yau threefolds, Collect. Math. 55, 2 (2004), pp. 219-228.
- [89] Schütt, M., On the modularity of three Calabi–Yau threefolds with bad reduction at 11, preprint (2004), math.AG/0405450, to appear in Canadian Math. Bull.
- [90] Segre, B., Sul massimo numero di nodi delle superficie algebraiche, Atti Acc. Ligure 10, no. 1 (1952), pp. 15–22.
- [91] Serre, J. P., Abelian \ell-Adic Representations and Elliptic Curves, W. A. Benjamin (1968).

[92] Serre, J. P., A course in arithmetic, Graduate Texts in Mathematics 7 (1973), Springer.

- [93] Serre, J. P., *Résumé des cours de 1984-1985*, Annuaire du Collège de France (1985), pp. 85–90.
- [94] Serre, J. P., Sur les représentations modulaires de degré 2 de $Gal(\mathbb{Q}/\mathbb{Q})$, Duke Math. J. **54**, no. 1 (1987), pp. 179–230.
- [95] Singh, S., Fermat's Last Theorem, Fourth Estate (1997).
- [96] Shioda, T., On elliptic modular surfaces, J. Math. Soc. Japan 24, no. 1 (1972), pp. 20–59.
- [97] Stein, W. A., The Modular Forms Database (2004), http://modular.fas.harvard.edu/Tables.
- [98] Top, J., van Geemen, B., An isogeny of K3 surfaces, preprint (2003), math.AG/0309272.
- [99] Van Geemen, B., Werner, J., New examples of threefolds with $c_1 = 0$, Math. Z. **203** (1990), pp. 211–225.
- [100] Van Geemen, B., Werner, J., Nodal quintics in \mathbb{P}^4 , in Arithmetic of complex manifolds, Erlangen 1988, eds. Barth, W., Lange, H., Lect. Notes **1399** (1989), Springer, pp. 48–59.
- [101] Van Straten, D., A quintic hypersurface in \mathbb{P}^4 with 130 nodes, Topology **32**, no. 4 (1993), pp. 857–864.
- [102] Varchenko, A., On semi-continuity of the spectrum and an upperbound for the number of singular points of projective hypersurfaces, Dokl. Akda. Nauk. USSR **270** (1983), pp. 735-739.
- [103] Verrill, H. A., Root Lattices and Pencils of Varieties, J. of Math. Kyoto Univ. **36**, no. 2 (1996), pp. 421–446.
- [104] Verrill, H. A., The L-series of certain rigid Calabi-Yau threefolds, J. Number Theory 81 (2000), pp. 310–334.
- [105] Wan, D., Mirror Symmetry for Zeta Functions, preprint (2004), math.AG/0411464.
- [106] Werner, J., Kleine Auflösungen spezieller dreidimensionaler Varietäten, Bonner mathematische Schriften **186** (1987).
- [107] Yi, Y. C., On the modularity of a rigid Calabi–Yau manifold, J. of Math. Kyoto Univ. 44, no. 1 (2004), pp. 119–127.
- [108] Yui, N., Arithmetic of Calabi-Yau varieties, in Mathematisches Institut Universität Göttingen, Seminars 2004, ed. Tschinkel, Y. (2004), pp. 9-29, http://www.math.princeton.edu/~ytschink/.goettingen/SS04/protokolle/dvi/book.pdf.
- [109] Yui, N., Arithmetic of certain Calabi–Yau varieties and mirror symmetry, in Arithmetic algebraic geometry, Park City, UT 1999, IAS/Park City Math. Series **9** (2001), AMS, pp. 507–569.

[110] Yui, N., The arithmetic of certain Calabi–Yau varieties over number fields, In: The Arithmetic and Geometry of Algebraic Cycles, Proceedings of the NATO Advanced Study Institute, Banff, Canada, June 7–19, 1998, NATO ASI Series, Series C, Mathematical and Physical Sciences **548**, Kluwer (2000), pp. 515–560.

- [111] Yui, N., Update on the modularity of Calabi–Yau varieties, with appendix by Verrill, H. A., in Proceedings of the Workshop on "Calabi–Yau Varieties and Mirror Symmetry", Fields Institute, Toronto, July 23-29, 2001, eds. Yui, N., Lewis, J. D., Fields Inst. Comm. Series 38 (2003), AMS, pp. 307–362.
- [112] The Magma Computational Algebra System for Algebra, Number Theory and Geometry, http://magma.maths.usyd.edu.au/.