Serial No.: 10/696,140

Filed :

: Oct. 29, 2003

Page

: 4 of 23

Attorney's Docket No.: 200312926-1 Amendment dated Jan. 8, 2007

Reply to Office action dated Oct. 6, 2006

Amendments to the Claims

The following Listing of Claims replaces all prior versions, and listings, of claims in the application.

Listing of Claims:

Claim 1 (currently amended): A method of processing an input image, comprising: computing spatially-shifted forward transforms of the input image, each of the forward transforms being computed based on a denoiser transform Z having an associated transpose Z', wherein a matrix multiplication between Z and Z' produces a diagonal matrix Λ, Z=F(D), F specifies a nonlinear mapping from coefficients of D to coefficients of Z, and D substantially corresponds to a frequency-domain transform;

denoising the forward transforms based on nonlinear mappings derived from quantization values linked to the input image;

computing spatially-shifted inverse transforms of the denoised forward transforms, each of the inverse transforms being computed based on Z and Z'; and

computing an output image based on a combination of <u>ones of the</u> spatially-shifted inverse transforms.

Claim 2 (original): The method of claim 1, wherein D is a block-based linear transform.

Claim 3 (currently amended): The method of claim 2, wherein the computing of the spatially-shifted forward transforms comprises applying a forward transform operation to each of multiple positions of a blocking grid relative to the input imageare computed based on different respective blocking grids and the spatially-shifted inverse transforms are computed based on the relative positions of the blocking grids-grid used to compute corresponding ones of the spatially-shifted forward transforms.

Claim 4 (original): The method of claim 2, wherein D is a discrete cosine transform.

Serial No.: 10/696,140

Filed

: Oct. 29, 2003

Page

: 5 of 23

Attorney's Docket No.: 200312926-1 Amendment dated Jan. 8, 2007

Reply to Office action dated Oct. 6, 2006

Claim 5 (original): The method of claim 3, wherein D is a one-dimensional discrete cosine transform.

Claim 6 (original): The method of claim 5, wherein F is an arithmetic operator.

Claim 7 (original): The method of claim 6, wherein F is a rounding arithmetic operator.

Claim 8 (original): The method of claim 1, wherein F is a mapping from coefficients of D to corresponding coefficients of Z having values selected from 0 and $\pm 2N$ where N has an integer value.

Claim 9 (currently amended): The method of claim 1, wherein F is a mapping mathematical operator corresponding to one of a rounding operator, a floor operator, a ceiling operator, and a truncate operator, and the computing of the forward transform coefficients comprises applying the mathematical operator to from weighted coefficients of D weighted by respective scaling factors to obtain corresponding coefficients of Z.

Claim 10 (currently amended): The method of claim 9, wherein the computing of the forward transform coefficients comprises weighting the coefficient of D-are weighted by a common scaling factor.

Claim 11 (original): The method of claim 10, wherein F corresponds to a rounding operator applied to the weighted coefficients of D.

Claim 12 (currently amended): A method of processing an input image, comprising:

computing spatially-shifted forward transforms of the input image, each of the forward

transforms being computed based on a denoiser transform Z having an associated transpose Z',

wherein a matrix multiplication between Z and Z' produces a diagonal matrix Λ, Z=F(D), F

specifies a mapping from coefficients of D weighted by a common scaling factor to

Applicant: Ramin Samadani Attorney's Docket No.: 200312926-1

Serial No.: 10/696,140 Filed: Oct. 29, 2003

Page : 6 of 23

Amendment dated Jan. 8, 2007 Reply to Office action dated Oct. 6, 2006

corresponding coefficients of Z, and D substantially corresponds to a frequency-domain transform;

denoising the forward transforms based on nonlinear mappings derived from quantization values linked to the input image The method of claim 10, wherein the nonlinear mappings are derived from quantization values weighted by the common scaling factor;

computing spatially-shifted inverse transforms of the denoised forward transforms, each of the inverse transforms being computed based on Z and Z'; and

computing an output image based on a combination of ones of the spatially-shifted inverse transforms.

Claim 13 (currently amended): The method of claim 9, wherein the denoising comprises applying to the forward transforms are denoised based on nonlinear mappings derived from the quantization values linked to the input image and weighted by respective scaling factors.

Claim 14 (currently amended): The method of claim 1, wherein the computing of the forward transforms are computed is based on a factorization of Z.

Claim 15 (original): The method of claim 1, wherein the input image corresponds to a decompressed version of an input image compressed based on a given quantization process and the forward transforms are denoised based on the given quantization process.

Claim 16 (currently amended): The method of claim 1, wherein the forward transforms are denoised by setting to zero each of the forward transform coefficients with an absolute value below a respective threshold derived from a respective one of the quantization values linked to the input image and leaving unchanged each of the forward transform coefficients with an absolute equal to at least a respective threshold derived from a respective ones of the quantization values linked to the input image.

Claim 17 (original): The method of claim 16, further comprising sharpening the forward transform coefficients by increasing nonlinear transform parameters by respective factors that are

Attorney's Docket No.: 200312926-1 Serial No.: 10/696,140 Amendment dated Jan. 8, 2007

Filed : Oct. 29, 2003 Reply to Office action dated Oct. 6, 2006

Page : 7 of 23

larger for higher spatial frequency forward transform coefficients than for lower spatial frequency forward transform coefficients.

Claim 18 (original): The method of claim 1, wherein the output image is computed from a weighted combination of the inverse transforms.

Claim 19 (original): The method of claim 18, wherein the computed output image corresponds to an average of the inverse transforms.

Claim 20 (original): The method of claim 1, wherein computing the output image comprises computing a base image from a combination of inverse transforms.

Claim 21 (original): The method of claim 20, wherein the base image has pixel values corresponding to respective averages of values of corresponding pixels in the inverse transforms.

Claim 22 (original): The method of claim 20, wherein computing the output image further comprises computing a ringing correction image based at least in part on computed measures of local spatial intensity variability for pixels of each of the inverse transforms.

Claim 23 (original): The method of claim 22, further comprising assigning to each pixel in the ringing correction image a value of a corresponding intermediate image pixel having a lowest computed measure of local spatial intensity variability of the corresponding intermediate image pixels.

Claim 24 (original): The method of claim 22, further comprising assigning to each pixel in the ringing correction image a value corresponding to an average of multiple corresponding intermediate image pixels in a lowest percentile of local spatial variability measures of the corresponding intermediate image pixels.

Applicant: Ramin Samadani Attorney's Docket No.: 200312926-1

Serial No.: 10/696,140

Amendment dated Jan. 8, 2007

Filed: Oct. 29, 2003

Reply to Office action dated Oct. 6, 2006

Page : 8 of 23

Claim 25 (original): The method of claim 22, wherein the output image is computed by combining pixel values from the base image and the ringing correction image.

Claim 26 (original): The method of claim 25, wherein the output image is computed by a weighted combination of the base image and the ringing correction image.

Claim 27 (currently amended): The method of claim <u>22</u>14, wherein the base image contribution to the output image is less than the ringing correction image contribution for pixels adjacent to transition regions in the base image.

Claim 28 (currently amended): A system for processing an input image, comprising: a forward transform module configured to compute spatially-shifted forward transforms of the input image, each of the forward transforms being computed based on a denoiser transform Z having an associated transpose Z', wherein a matrix multiplication between Z and Z' produces a diagonal matrix Λ , Z=F(D), F specifies a <u>nonlinear</u> mapping from coefficients of D to coefficients of Z, and D substantially corresponds to a frequency-domain transform;

a nonlinear denoiser module configured to denoise the forward transforms based on nonlinear mappings derived from quantization values linked to the input image;

an inverse transform module configured to compute spatially-shifted inverse transforms of the denoised forward transforms based on Z and Z'; and

an output image generator module configured to compute an output image based on a combination of <u>ones of the</u> spatially-shifted inverse transforms.

Claim 29 (currently amended): A system for processing an input image, comprising: means for computing spatially-shifted forward transforms of the input image, each of the forward transforms being computed based on a denoiser transform Z having an associated transpose Z', wherein a matrix multiplication between Z and Z' produces a diagonal matrix Λ, Z=F(D), F specifies a nonlinear mapping from coefficients of D to coefficients of Z, and D substantially corresponds to a frequency-domain transform;

Serial No.: 10/696,140

Filed

: Oct. 29, 2003

Page : 9 of 23

Attorney's Docket No.: 200312926-1 Amendment dated Jan. 8, 2007

Reply to Office action dated Oct. 6, 2006

means for denoising the forward transforms based on nonlinear mappings derived from quantization values linked to the input image;

means for computing spatially-shifted inverse transforms of the denoised forward transforms, each of the inverse transforms being computed based on Z and Z'; and means for computing an output image based on a combination of ones of the spatially-shifted inverse transforms.

Claim 30 (currently amended): A machine-readable medium storing machine-readable instructions for causing a machine to perform operations comprising:

compute computing spatially-shifted forward transforms of the input image, each of the forward transforms being computed based on a denoiser transform Z having an associated transpose Z, wherein a matrix multiplication between Z and Z produces a diagonal matrix Λ , Z=F(D), F specifies a nonlinear mapping from coefficients of D to coefficients of Z, and D substantially corresponds to a frequency-domain transform;

denoise denoising the forward transforms based on nonlinear mappings derived from quantization values linked to the input image;

compute computing spatially-shifted inverse transforms of the denoised forward transforms based on Z and Z'; and

<u>compute computing</u> an output image based on a combination of <u>ones of the</u> spatially-shifted inverse transforms.

Claim 31 (new): The method of claim 1, wherein $Z_{ij} = \text{round}\{(3.5) \cdot D_{ij}\}$, round{} is the rounding operator, Z_{ij} is the coefficient of Z in row i and column j, and D_{ij} is the coefficient of a discrete cosine transform in row i and column j.