Exploring Wikipedia with LSA

Lucy Linder, Kewin Dousse, Davide Mazzoleni, Christophe Blanquet

Plan

- Concepts
- Dataset and preprocessing
- Book's implementation
 - SVD
 - Improvements
- Our implementation
 - LDA
- Results

66

Latent Semantic Analysis (LSA)

aims to discover underlying "topics" /
determine the relationship between terms
and concepts in a collection of
documents.

5,414,583

Is the number of articles in the English Wikipedia (as of 29 May, 2017)

svd(A) = [U, s, V]

Singular Value Decomposition

SVD

X

Matrix of document / term frequency (TF-IDF)

M x N

Mxk

concepts (s)

X

kx1

Matrix of concept / term

 (V^T)

k x N

Matrix of document / concept (U)

M = documents

N = terms

K = concepts

Clustering algorithm:

- cluster centers ⇒ topics
- Examples ⇒ documents
- Features ⇒ word counts
- Distance ⇒ Euclidean based on a statistical model (Bayesian inference rules / Dirichlet distribution)

Parameters (priors): k, α, β

Dataset and preprocessing

datasets

- Wikidump 2017: 57.5 GB
- Samples:?
- Custom dump
 - https://en.wikipedia.org/wiki/Special:Export

All in XML format.

Preprocessing steps

Wikidump ⇒ (docTermMatrix, termIds, tfidf)

Three steps

Preparation	Topic modeling	Query	
Whole wikipedia set.	Using SVD.	LSAQueryEngine.	
wikiXmlToPlainText contentToTerms	RunLSA computeSVD	topDocsForTerm topTermsForTerm	
documentTermMatrix		topDocsForDoc topDocsForTermQuery	

Sources on Github
Recreated in a scala worksheet with comments (spark-shell)

Changes from the Book's implementation

Book's	Changes
1rst Edition: spark 1.X + RDD	2nd Edition: spark 2.X + SparkQL
Maven with submodules	SBT
Written as one spark program	Broken into steps: (1) XML2Text, (2) TF-IDF, (3) svd, (4) query
Stanford NLP library	spark-corenlp library
Sluggish document IDs tracking	Use IndexedRowMatrix to track IDs
Queries in the main program	External class usable in the spark shell
	SVD model serialization

Pipeline / Steps (1)

Pipeline / Steps (2)

Creating a model

```
spark-submit --class bda.lsa.<package>.Run<model>
bda-project-lsa-assembly-1.0.jar <args>
```

Using a model

```
spark-shell --jars bda-project-lsa-assembly-1.0.jar
> import bda.lsa
> val data = getData(spark)
> val model = <package>.Run<model>.loadModel(spark)
> val q = <package>.<SVD|<LDA>QueryEngine(model, data)
```


Creating a mapping of row IDs to document titles is a little more difficult.

We rely on the fact that, if we call [zipWithUniqueId], it will assign the same unique IDs to the transformed rows, as long as the transformations don't change the number of rows or their partitioning.

⇒ "hack" working only when all is done in the same spark session

SingularValueDecomposition[RowMatrix, Matrix] ⇒
SingularValueDecomposition[IndexedRowMatrix, Matrix]!

Goals

- Run both mllib.LDA and ml.LDA
 - ✓ using the same pipeline and query engine

- Compare:
 - ✓ SVD □ LDA
 - ✓ MLLib □ ML

MLLIB	ML
RDD[(Long, mllib_Vector)]	DataFrame[(, ml_Vector,)]
model.run	model.fit.transform
Default optimizer: EM	Default optimizer: Online
Alpha, Beta,	optimiseDocConcentration

ML much faster at model creation

ML much easier at querying (but slower?)

LDAQueryEngine

- Describe topics with words
- Describe topics with words and stats
- Top topics for term
- Top topics for documents
- Top documents for topic

Results

Execution times - 4'703'192 docs, 20'000 terms, 1'000 topics

Time	Jobs	
3h08	8	DocTermMatrixWriter
48 min	2511	SVD
5h	61	LDA (mllib) maxIter 50
1h27	?	LDA (ml) maxIter 50

Daplab

- --master yarn --deploy-mode client --num-executors 10
- --driver-memory 20G --executor-memory 15G

SVD with 20'000 words and 1'000 topics

Some relevant topics:

- album, band, bar, song, party
- war, force, use, army, government

And some irrelevant:

- mathbf, film, station, party, frac
- kelly, snake, ira, hat, teen

Top documents for "computer" (score):

- O History of IBM (972)
- O Computer (688)
- IBM Personal Computer (653)
- Personal computer (630)

LDA (mllib) with 20'000 words and 1'000 topics

Some relevant topics:

- route, expressway, bridge, highway, parkway
- onba, basketball, season, team, coach

And some irrelevant:

- stan, capitol, kenton, melrose, shearer
- turtle, denton, hartley, butte, window

Top topics for "mustard" (score):

- asia, asian, southeast, laos, lao (32'504)
- cook, eat, dish, sweet, cuisine (6'478)
- animal, nature, wild, wildlife, sanctuary (0.6)
- nuclear, accident, missile, weapon, viaduct (0.15)

LDA (mllib): number of topics

Top topics for batman...

- ... With k=1'000:
- batman, woodward, général, comics, joker (155'246)
- suit, batman, anime, gundam, cyclone (123'800)
- superman, chinese, qing, lois, ethnic (4'644)

• • •

... With k=200:

green, big, clark, baker, wayne, batman, kent, lock, guy, superman, bennett, flash, giant, wonder, blake, martha, quinn, lantern, slalom, hal, lois, pipe, comics, brave, justice, joker, atkinson, save, gotham, titans, wally, metropolis, lex, alec, watt, liz, lindsey, robin, shelton, bruce, ...

⇒ marvel/superheroes/comics all in the same topic!

Conclusion and perspectives

Conclusion

Preprocessing is a super important step

Everything takes a lot of time

SVD and LDA both give interesting results, but have different functionalities and applications

Tuning parameters makes the difference between interesting and completely useless results

Perspectives

Try bigger vocabulary size, different number of topics

Try to classify **new documents** with LDA

More **LDA tuning**: parameters *alpha*, *beta* and *k*

More complete and efficient **QueryEngines**

Usage of **Pipelines**

Resources

Our repo

https://github.com/derlin/bda-lsa-project

Our wiki

https://github.com/derlin/bda-lsa-project/wiki

Our website

https://derlin.github.io/bda-lsa-project

Thanks!

Any questions?

Model

```
val model =
  new mllib_LDA().
  setK(k).
  setOptimizer("em").
  setMaxIterations(maxIterations).
  setAlpha(alpha).
  setBeta(beta).
  run(corpus.mapValues(_._1)).
  asInstanceOf[mllib_DistributedLDAModel]
```

MLLIB: works with RDDs[(Long, Vector)]

```
val model =
   new ml_LDA().
   setK(k).
   setOptimizer("em").
   setMaxIter(maxIterations).
   setOptimizeDocConcentration(true).
   setFeaturesCol("tfidfVec").
   fit(data.dtm).
   asInstanceOf[ml_DistributedLDAModel]
```

ML: works with
DataFrames[(Long, Vector)]

