# EE910: Digital Communication Systems-I

#### Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

May 23, 2022



Lecture #7C: Differential Phase Shift Keying



- In differentially encoded PSK, the information sequence determines the relative phase, or phase transition, between adjacent symbol intervals
- In *M*-ary DPSK, the carrier phase angle of the modulator for the *n*th symbol interval is given by

$$\theta_n = \left(\theta_{n-1} + x_n \frac{2\pi}{M}\right). \quad \text{modulo } 2\pi$$
 (1)

where  $x_n$  is a modulator input symbol contained in  $\{0, 1, \dots, M-1\}$ .

• The transmitted signal is the PSK waveform

$$s(t) = \left(\frac{2E_s}{T_s}\right)^{1/2} \cos\left(\omega_c t + \theta_n\right), \quad nT_s \le t \le (n+1)T_s. \tag{2}$$

• Thus, we implement M-ary PSK modulation, but with the phase differences  $\delta_n = \theta_n - \theta_{n-1}$ , modulo  $2\pi$ , defined by the symbol sequence  $\{x_n\}$ .

Adrish Banerjee

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

# Differential PSK

ullet At the receiver, due to an unknown (but assumed fixed) phase offset heta and the addition of white Gaussian noise, we observe

$$r(t) = \left(\frac{2E_s}{T_s}\right)^{1/2} \cos\left(\omega_c t + \theta_n + \theta\right) + n(t). \tag{3}$$

• For M = 2

- Since in differential PSK the information is in the phase transitions and not in the absolute phase, the phase ambiguity from a PLL cancels between the two adjacent intervals and will have no effect on the performance of the system.
- The performance of the system is only slightly degraded due to the tendency of errors to occur in pairs, and the overall error probability is twice the error probability of a PSK system.



Adrish Banerjee EE910: Digital Communication Systems-I Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

# Differential PSK

- A differentially encoded phase-modulated signal also allows noncoherent detection.
- Since the information is in the phase transition, we have to do the detection over a period of two symbols.
- The vector representation of the lowpass equivalent of the mth signal over a period of two symbol intervals is given by

$$\mathbf{s}_{ml} = (\sqrt{2\mathcal{E}_s} \ \sqrt{2\mathcal{E}_s} e^{j\theta_m}), \quad 1 \le m \le M$$
 (4)

where  $\theta_m = \frac{2\pi(m-1)}{M}$  is the phase transition corresponding to the mth message.

 $\bullet$  When  $\mathbf{s}_{ml}$  is transmitted, the vector representation of the lowpass equivalent of the received signal on the corresponding two-symbol period is given by

$$\mathbf{r} = (r_1 \ r_2) = (\sqrt{2\mathcal{E}_s} \ \sqrt{2\mathcal{E}_s} e^{j\theta_m}) e^{j\phi} + (n_{1l} \ n_{2l}), \quad 1 \le m \le M$$
 (5)

where  $n_{1l}$  and  $n_{2l}$  are two complex valued zero-mean circular Gaussian random variables each with variance  $2N_0$  (variance  $N_0$  for real and imaginary components) and  $\phi$  is the random phase due to noncoherent detection.

- $\bullet$  We assume that the phase offset  $\phi$  remains the same over adjacent signaling periods.
- The optimal noncoherent receiver uses the following detection rule

$$\hat{m} = \underset{1 \le m \le M}{\arg \max} \ I_0 \left( \frac{|\mathbf{r}_I \cdot \mathbf{s}_{mI}|}{N_0} \right) \tag{6}$$

Adrish Banerjee EE910: Digital Communication SystemsDepartment of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

#### Differential PSK

• Thus we have

$$\hat{m} = \underset{1 \leq m \leq M}{\arg \max} |\mathbf{r}_{I}.\mathbf{s}_{mI}|$$

$$= \underset{1 \leq m \leq M}{\arg \max} \sqrt{2\mathcal{E}_{s}}|\mathbf{r}_{1} + r_{2}e^{-j\theta_{m}}|$$

$$= \underset{1 \leq m \leq M}{\arg \max} |r_{1} + r_{2}e^{-j\theta_{m}}|^{2}$$

$$= \underset{1 \leq m \leq M}{\arg \max} (|r_{1}|^{2} + |r_{2}|^{2} + 2Re[r_{1}^{*}r_{2}e^{-j\theta_{m}}])$$

$$= \underset{1 \leq m \leq M}{\arg \max} Re[r_{1}^{*}r_{2}e^{-j\theta_{m}}]$$

$$= \underset{1 \leq m \leq M}{\arg \max} |r_{1}r_{2}|\cos(\angle r_{2} - \angle r_{1} - \theta_{m})$$

$$= \underset{1 \leq m \leq M}{\arg \max} \cos(\angle r_{2} - \angle r_{1} - \theta_{m})$$

$$= \underset{1 \leq m \leq M}{\arg \min} |\angle r_{2} - \angle r_{1} - \theta_{m}|$$

$$= \underset{1 \leq m \leq M}{\arg \min} |\angle r_{2} - \angle r_{1} - \theta_{m}|$$

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

- Note that  $\alpha = \angle r_2 \angle r_1$  is the phase difference of the received signal in two adjacent intervals
- The receiver computes this phase difference and compares it with  $\theta_m = \frac{2\pi}{M}(m-1)$  for all  $1 \leq m \leq M$  and selects the m for which  $\theta_m$  is closest to  $\alpha$ , thus maximizing  $cos(\alpha \theta_m)$ .
- Differentially encoded PSK signal that uses this method for demodulation detection is called differential PSK (DPSK).
- ullet This method of detection has lower complexity in comparison with coherent detection of PSK signals and can be used in situations where the assumption that  $\phi$  remains constant over two-symbol intervals is valid.

EE910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India



- In binary DPSK the phase difference between adjacent symbols is either 0 or  $\pi$ , corresponding to a 0 or 1.
- The two lowpass equivalent signals are

$$\mathbf{s}_{1l} = (\sqrt{2\mathcal{E}_s} \sqrt{2\mathcal{E}_s})$$

$$\mathbf{s}_{2l} = (\sqrt{2\mathcal{E}_s} - \sqrt{2\mathcal{E}_s})$$
(8)

- These two signals are noncoherently demodulated and detected using the general approach for optimal noncoherent detection.
- Note that the two signals are orthogonal on an interval of length  $2T_s$ .
- Therefore, the error probability can be obtained from the expression for the error probability of binary orthogonal signaling.
- The difference is that the energy in each of the signals  $s_1(t)$  and  $s_2(t)$  is  $2\mathcal{E}_s$ .

(D) (A) (E) (E) (O)

FF910: Digital Communication Systems-

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh India

#### Differential PSK

- ullet This is seen easily from Equation (8) which shows that the energy in lowpass equivalents is  $4\mathcal{E}_s$  .
- Therefore

$$P_b = \frac{1}{2}e^{-\frac{2\mathcal{E}_s}{2N_0}}$$

$$= \frac{1}{2}e^{-\frac{\mathcal{E}_b}{N_0}}$$
(9)

- This is the bit error probability for binary DPSK.
- Comparing this result with coherent detection of BPSK where the error probability is given by

$$P_b = Q\left(\sqrt{\frac{2\mathcal{E}_b}{N_0}}\right) \tag{10}$$

we observe that by the inequality  $Q(x) \leq \frac{1}{2}e^{-x^2/2}$ ,we have

$$P_b(\text{coherent}) \le P_b(\text{noncoherent})$$
 (11)

Department of Electrical Engineering Indian Institute of Technology Kanpur Kanpur, Uttar Pradesh Ind

EE910: Digital Communication Systems-I

# Differential PSK Binary DPSK $P_h = \frac{1}{2}e^{-\gamma_h}$ Probability of a symbol error, P<sub>b</sub> Binary PSK $P_b = Q(\sqrt{2\gamma_b})$ 10-4 10-5 4 6 8 10 SNR per bit, γ<sub>b</sub> (dB) $\iff \bigcirc \land \bigcirc \land \land \bigcirc \land \land \bigcirc \land \land \bigcirc \land \bigcirc \land \bigcirc \bigcirc$ Department of Electrical Engineering Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh India

Adrish Banerjee EE910: Digital Communication Systems-I