# Singular Value Decomposition (SVD) in Image Processing

Applications, Techniques, and Findings

Siju K.S<sup>1</sup> Dr. Vipin.V<sup>2</sup>

<sup>1</sup>Roll No. CB.AI.R4CEN24003 Amrita School of Artificial Intelligence

<sup>2</sup>Thesis Supervisor Amrita School of Artificial Intelligence

November 2024



# Objective, Methodology and Approach

- Objective: To explore Singular Value Decomposition (SVD) applications in image processing.
- Methodology:
  - Replication of Sadek's Works :
    - Reproduce key findings and techniques from Sadek's research on SVD in image processing.
    - Conduct mathematical experiments to evaluate and validate SVD-based image compression, denoising, and watermarking techniques.



#### Introduction

- Singular Value Decomposition (SVD) is a powerful matrix factorization tool widely used in image processing.
- Applications include:
  - Image Compression
  - Image Denoising
  - Digital Watermarking for forensics
- Objective: Validate SVD's effectiveness and explore enhancements across these applications.



#### **SVD Fundamentals**

SVD decomposes a matrix X into:

$$X = U\Sigma V^T$$

- Properties:
  - Rank Approximation: Reduces dimensionality by focusing on dominant singular values.
  - **Energy Compaction**: Most image energy is captured in the largest singular values, allowing effective compression [2, 3].



# **Image Compression using SVD**

- **Goal**: Minimize storage while preserving key image details.
- **Method**: Retain only top-*k* singular values to approximate the original image.

#### **SVD** reconstruction formula

$$X \approx X_{k=40} = \sum_{i=1}^{40} \sigma_i \cdot u_i \cdot v_i^T$$

- where:
  - $\sigma_i$  is the *i*-th singular value,
  - $u_i$  is the *i*-th left singular vector (column of U),
  - $v_i$  is the *i*-th right singular vector (column of V).



## **Visual Comparison**





Figure: Reconstructed image using SVD with low-rank approximation (k=40).



## **Compression Method Comparison**

| MSE    | PSNR (dB)                                 | SSIM                                                                             |
|--------|-------------------------------------------|----------------------------------------------------------------------------------|
| 36.18  | 32.55                                     | 0.8247                                                                           |
| 107.66 | 27.81                                     | 0.8217                                                                           |
| 32.94  | 32.95                                     | 0.9582                                                                           |
| 20.47  | 35.02                                     | 0.9320                                                                           |
| 0.00   | $\infty$                                  | 1.000                                                                            |
| 107.25 | 27.83                                     | 0.5477                                                                           |
|        | 36.18<br>107.66<br>32.94<br>20.47<br>0.00 | $36.18$ $32.55$ $107.66$ $27.81$ $32.94$ $32.95$ $20.47$ $35.02$ $0.00$ $\infty$ |

Table: Comparison of Image Compression Methods



# Correlation between the truncation factor and PSNR and SSIM metrics



**Figure:** Variation of PSNR and SSIM with respect to the truncation factor k.



## **Image Denoising with SVD**

- Goal: Suppress noise without significant loss in image content.
- Method: Filter smaller singular values that represent noise.
- Dynamic Thresholding: 0.618 × mean(S).
- Results:
  - PSNR Improvement: 12.42 (noisy) to 20.31 (denoised)
  - SSIM Improvement: 0.0324 (noisy) to 0.4374 (denoised)



# **Visual Comparison**



(a) Original Image in JPEG format.



(b) Noisy Image (PSNR: 12.42, SSIM: 0.0324.)



(c) Denoised (PSNR:20.31, SSIM: 0.437.)

Figure: Comparison of Original, Noisy, and Denoised Images using SVP TA

#### SVD Denoising on BSD400 Dataset



(a) Original Image from the BSD400 dataset.



**(b)** Noisy Image (PSNR: 30.27, SSIM: 0.7794).



(c) Denoised (PSNR: 32.27, SSIM: 0.8636).

**Figure:** Comparison of Original, Noisy, and Denoised images using SVD on BSD400 sample image.



# Image Forensics - Watermarking with SVD

• **Purpose**: Embed secure watermarks for authenticity verification.

#### • Techniques:

 Scaled Additive Approach: Adds scaled watermark data to singular values [1].

$$SV_{\text{modified}} = SV_{\text{original}} + \alpha \cdot \text{Watermark}$$

 Adaptive Scaled Additive (ASA): Fine-tunes watermark strength for resilience.

#### Formula:

$$SV_{mod} = (1 - \alpha) \cdot SV_{img} + \alpha \cdot Watermark$$



### **Image Forensic Workflow**



Figure: General image forensic workflow.



#### Watermarking Results and Comparison

**Table:** Peak Signal to Noise Ratio of various watermarked versions of test\_077 image from BSD400 dataset under scaled additive (SA) and adaptive scaled additive (ASA) approaches.

| Image                    | $\alpha =$ | 0.01  | $\alpha =$ | 0.1   | $\alpha =$ | 0.2   | $\alpha =$ | 0.3   |
|--------------------------|------------|-------|------------|-------|------------|-------|------------|-------|
| type                     | SA         | ASA   | SA         | ASA   | SA         | ASA   | SA         | ASA   |
| Watermarked              | 61.84      | 46.41 | 38.83      | 26.56 | 30.82      | 20.68 | 25.16      | 17.35 |
| Noised after watermarked | 20.70      | 20.66 | 20.66      | 19.74 | 20.48      | 17.86 | 19.91      | 16.06 |
| Watermarked & Compressed | 49.32      | 44.56 | 38.60      | 26.54 | 31.07      | 20.70 | 26.03      | 17.49 |



# Adaptive Scaled Aditive approach- a compromise

Table: Peak Signal to Noise Ratio of various watermarked versions of test\_077 image from BSD400 dataset under scaled additive (SA), adaptive scaled additive (ASA) and perceptual forensic (PF) approaches [4].

| Image        | $\alpha = 0.01$ |       |       |  |
|--------------|-----------------|-------|-------|--|
| type         | SA              | ASA   | PF    |  |
| Watermarked  | 61.84           | 46.41 | 75.17 |  |
| Noised after | 20.70           | 20.66 | 20.68 |  |
| watermarked  | 20.70           | 20.00 | 20.00 |  |
| Watermarked  | 49.32           | 44.56 | 38.87 |  |
| & Compressed | 49.32           | 44.50 | 30.67 |  |



# **Visual Comparison**



(a) Original Image (test\_077).



(b) Chandra's method output [1].



(c) Adaptive method output.



(d) Perceptive Method Output with k = 5.



(e) Perceptive Method with GN (k = 5).



(f) Chandra's method with PEETHA

#### SVD based image forensic on Medical Image







(a) Original Brain CT Image from radiopedia.

(b) Scaled Additive Watermarked Image

(c) Perceptual Forensic Watermarked Image

Figure: Comparison of Brain CT images: (a) Original Brain CT Image, (b) Watermarked with scaled additive approach, (c) Watermarked with perceptual forensic approach.



### **Experimental Analysis - Quality Metrics**

#### Metrics:

- MSE: Mean squared pixel difference.
- PSNR: Higher values indicate better signal quality.
- SSIM: Structural similarity closer to 1 represents better quality.

#### Optimization:

- Dynamic Thresholding: Balances noise reduction and detail preservation.
- Adaptive Truncation: Tailors k to desired PSNR/SSIM levels.



# **Challenges and Future Directions**

#### Challenges:

- High computational load for large images.
- Optimizing truncation across applications.

#### • Future Directions:

- Hybrid SVD and alternative denoising methods.
- Expanding SVD applications to real-time digital forensics.



#### Conclusion

- SVD as a versatile tool: Effective in image compression, denoising, and watermarking.
- Key Outcomes:
  - Reliable quality retention across image applications.
  - Noise reduction with high structural fidelity.
- Future Potential: Explore adaptive, hybrid SVD methods for advanced applications.



#### References I



Digital image watermarking using singular value decomposition. In *The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002.*, volume 3, pages III–III. IEEE, 2002.

Marc Moonen, Paul Van Dooren, and Joos Vandewalle.
A singular value decomposition updating algorithm for subspace tracking.

SIAM Journal on Matrix Analysis and Applications, 13(4):1015–1038, 1992.

Rowayda A Sadek.

Blind synthesis attack on SVD based watermarking techniques.

In 2008 International Conference on Computational Intelligence for Modelling Control & Automation, pages 140–145. IEEE, 2008, DIT.

#### References II



Rowayda A Sadek.

SVD based image processing applications: state of the art, contributions and research challenges.

arXiv preprint arXiv:1211.7102, 2012.



#### Thank you

Thank you very much for your patient listening

