

Implémenter un outil de « scoring crédit »

Projet: DataScientist #7

Oumou Faye

Mentor: Medina Hadjem

PLAN DE PRESENTATION

INTRODUCTION - MISSION

INTRODUCTION - MISSION

Entreprise

Fonction

Data Scientist

Mission

Mise en place d'un outil de « scoring crédit »

Activité

Proposition de crédit à la

consommation

(client à historique limité)

Manager

Mickaël

Prédire la probabilité de remboursement du client

Cibles : les nouveaux clients et les clients avec un historique bancaire limité

Objectif

Évaluer la probabilité de remboursement d'un client

Classifier la demande en deux catégories :

<u>Automatiser</u> la décision de d'octroi de crédit

INTRODUCTION - MISSION

- Données issues du concours Kaggle Home Credit (#10 fichiers au format « .csv »)
- Données d'applications de crédit et de leur suivi comportemental.

- 2. application_train
 - 307. 511 <u>lignes</u> / 122 <u>colonnes</u> 4. bureau

- previous_application
- credit_card_balance

installments_payments

dépenser

- application_test 48. 744 <u>lignes</u> / 121 <u>colonnes</u>
- bureau_balance
- POS CASH balance
- 10. sample_submission

Information de chaque demande de crédit. application_train intègre la variable cible

■Target : 1 = difficulté de

■Target: 0 = Autre cas

paiement la durée de chaque crédit

- Crédit contracté auprès d'autres institutions financières
- Historique mensuel des crédits signalés

Donnés de comportements sur

- Historique des demandes de crédit.
- Historiques mensuels des demandes de crédit enregistrées

- Historique des paiements (effectués et manqués)
- -Nombre de carte de crédit détenu par les clients de la société
- Identifiant unique du client

application_train = données utilisées pour l'entraînement lors de la modélisation

MODÉLISATION

PIPELINE DE MODÉLISATION

METRIQUES DE PERFORMANCES

DETAIL DES MÉTRIQUES DE PERFORMANCES

- AUC_global : Score AUC global sur toutes les prédictions.
- AUC_mean : Moyenne des scores AUC Area Under the Curve sur les validations croisées.
- Business_Score_Global : Score métier normalisé sur toutes les prédictions.
- Business _Score_Mean : Moyenne du score métier normalisé (coût évité) sur les validations croisées (#5).
- Accuracy_Global : Précision globale du modèle (sur tout l'ensemble).
- Accuracy Mean : Moyenne de la précision globale (toutes classes confondues).
- **Precision_ Global**: Précision positive globale (proportion de bons positifs parmi les positifs prédits).
- Precision_Mean : Moyenne de la précision positive (sur les folds).
- Recall_Global : Rappel global : (proportion de vrais positifs détectés).
- Recall _mean : Moyenne du rappel (sur les folds).
- F1_mean : Moyenne du F1-score (équilibre précision/rappel).
- F1_global : F1-score global sur l'ensemble des prédictions.

DETAIL DU SCORE METIER

Étape 1 :

Transformation des probabilités du modèle en classes (0 ou 1) avec un seuil de décision (threshold = 0.5).

Étape 2 :

Identification des erreurs de prédiction :

- Faux Positifs (FP) = Clients fiables refusés
- Faux Négatifs (FN) = Clients acceptés à tort

SCORE METIER > 0 :

Minimisation des <u>erreurs coûteuses</u>

Étape 3 :

Calcul du **coût total des erreurs** : coût_total = FP × coût_fp + FN × coût_fn (coût_fn = 10 & coût_fp = 1)

SCORE METIER

SUPERIEUR > 0:

Modèle <u>économiquement</u> <u>intéressant</u>

Étape 4:

Calcul du **pire coût possible** si le modèle se trompe à 100%. worst = np.sum(y_true == 0) / worst_fn = np.sum(y_true == 1) / worst_cost = worst_fp * cost_fp + worst_fn * cost_fn

Étape 5 :

Calcul du **score métier normalisé** entre **0 et 1** : score = 1 - (coût_total / coût_max)

mlf/ow

RESULTATS

Sans feature Engineering Résultat de la modélisation avec l'algorithme de classification de la Régression Linéaire.

dépenser

Modèle statistique: Objectif: Prédire une classe binaire (Crédit Accordé: =0 / Crédit Refusé: = 1)

Visualisation : graphique présentant une droite qui minimise l'erreur entre les prédictions et les vraies valeurs

Mise en place : calcul de la probabilité de remboursement et classification de la demande de crédit (accord / refus)

Model Registry: « Credit Scoring Tool Baseline »

SCORE METIER > 0:

Modèle économiquement intéressant

- Modèle simple avec bonne précision globale **0.92**%.
- Le modèle n'identifie pas les cas positifs (scores de précision, rappel et F1 nuls)
- La cause : le déséquilibre des classes.

« Credit_Scoring_Tool_baseline »

=== RÉSULTATS VALIDATION CROISÉE ===

Experiment Name:

AUC moyen : 0.634 ± 0.003

AUC global: 0.634

Score métier global : 0.532

Score métier moyen : 0.532

Accuracy moyen: 0.919

Accuracy global: 0.919

Précision moyenne : 0.000 Précision globale : 0.000

Rappel moyen: 0.000 Rappel global : 0.000

F1-score moyen: 0.000

RESULTATS

Sans feature Engineering

- Objectif: Classifier 0 = Crédit accordé / 1 = Crédit refusé
- Principe: Combine plusieurs arbres aléatoires pour améliorer la précision
- Usage: Robuste, réduit le surapprentissage, très stable.

 Score AUC en légère augmentation mais, le modèle est limité concernant la détection des clients à risque avec un F1-score quasi nul.

dépenser

 Le déséquilibre des classes est aussi la raison pour laquelle le modèle ne parvient pas à détecter des clients à risques.

Model Registry: « Credit Scoring Tool Baseline »

Experiment Name: « Credit_Scoring_Tool_baseline »

=== RÉSULTATS VALIDATION CROISÉE === AUC moyen : 0.712 ± 0.001 /

AUC global: 0.712

Score métier moyen : 0.533 Score métier global : 0.533

Accuracy moyen: 0.919 Accuracy global: 0.919 Précision moyenne : 0.657 Précision globale : 0.667

Rappel moyen: 0.001 Rappel global: 0.001 F1-score moyen: 0.002 F1-score global: 0.002

RESULTATS

Sans feature Engineering

Résultat de la modélisation avec l'algorithme de classification de la XGBoost:

- Objectif : Booster les performances de prédiction
- Principe : Entraîne les arbres en série, chaque arbre corrige les erreurs du précédent
- Avantage: Très Performant, gère les données manquantes

Github Docs

Model registered Cf

dépenser

- AUC également en / légère augmentation 0.751.
- Le déséquilibre des classes est encore le résultat de la sous performance sur les classes minoritaires.

Model Registry : « Credit Scoring Tool Baseline »

Experiment Name : « Credit_Scoring_Tool_baseline »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.751 ± 0.001

AUC global : 0.751

Score métier moyen : 0.536

Score métier global : 0.536

Accuracy moyen : 0.920

Accuracy global : 0.920 Précision moyenne : 0.631

Précision globale : 0.627

Rappel moyen : 0.008

Rappel global : 0.008

F1-score moyen : 0.016

F1-score global : 0.016

0 = (pas de **difficulté** de paiement) 282686 (**91.93**%) / **1**=(difficulté de paiement) = nombre de 248725 (**8.07**%)

RÉSULTATS

avec feature Engineering – caractéristiques polynomiales

mlflow

Model Registry: « Credit Scoring Tool Baseline »

Experiment Name: « Credit_Scoring_Tool_FeatureEng »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.711 ± 0.002

AUC global : 0.711

Score métier moyen : 0.656

Score métier global : 0.656

Accuracy global : 0.616

Precision global : 0.137

Recall global : 0.711

F1-score global: 0.230

Résultat de la modélisation avec l'algorithme de classification de la Régression Linéaire.

SCORE METIER > 0

Minimisation des erreurs coûteuses

- AUC assez élevé et le score métier supérieur à 0.50
- Le modèle reste simple mais il est efficace

RÉSULTATS

avec feature Engineering – caractéristiques polynomiales

Résultat de la modélisation avec l'algorithme de classification de la Random Forest.

ml*flow*

Model Registry: « Credit Scoring Tool Baseline »

Experiment Name:

« Credit_Scoring_Tool_FeatureEng »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.734 ± 0.002

AUC global: 0.734

Score métier moyen : 0.534

Score métier global : 0.534

Accuracy global: 0.919

Precision global: 0.561 Recall global : 0.003

F1-score global : 0.006

- Très bonne précision (0.561) mais faible rappel.
- Le modèle est conservateur, et effectue peu de détections.

mlf/ow

Tracking Models Model Registry Projects

Model Registry : « Credit Scoring Tool Baseline »

Experiment Name:

« Credit_Scoring_Tool_FeatureEng »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.752 ± 0.001

AUC global : 0.752

Score métier moyen : 0.533

Score métier global : 0.533

Accuracy global : 0.919

Precision global : 0.646

Recall global : 0.002

F1-score global: 0.004

RÉSULTATS

avec feature Engineering – caractéristiques polynomiales

Résultat de la modélisation avec l'algorithme de classification de la XGBoost:

- Meilleure AUC (0.752), bon équilibre global.
- Le modèle est précis mais le score de rappel est encore faible.
- Nous n'avons toujours pas appliqué la gestion du déséquilibre des classe avec SMOTE à ce stade

mlflow

Projects

Model Registry:

« Credit Scoring Tool Baseline »

Experiment Name:

« Credit_Scoring_Tool_FeatureEng »

: 0.628 ± 0.002 AUC moyen AUC global : 0.628 Score métier moyen : 0.486 Score métier global : 0.486 Accuracy moyen : 0.129 Accuracy global : 0.129 Précision moyenne : 0.083 Précision globale : 0.083 Rappel moyen : 0.977 Rappel global : 0.977 F1-score moyen : 0.153 F1-score global : 0.153

RÉSULTATS

avec feature Engineering – caractéristiques basées sur le domaine

Résultat de la modélisation avec l'algorithme de classification de la Régression Linéaire.

SCORE METIER > 0

Minimisation des erreurs coûteuses

- Rappel très fort (0.97) mais précision très faible.
- Beaucoup de faux positifs. opportunité perdue.

RÉSULTATS

avec feature Engineering - caractéristiques basées sur le domaine

Prêt à dépenser

ml*flow*

Tracking Models Model Registry Projects

Model Registry : « Credit Scoring Tool Baseline »

Experiment Name:

« Credit_Scoring_Tool_FeatureEng »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.736 ± 0.001

AUC global: 0.736

Score métier moyen : 0.533 Score métier global : 0.533

Accuracy moyen: 0.919 Accuracy global: 0.919

Précision moyenne : 0.606 Précision globale : 0.561

Rappel moyen: 0.001 Rappel global: 0.001 F1-score moyen: 0.002

F1-score global : 0.002

Résultat de la modélisation avec l'algorithme de classification de la Random Forest.

- Score AUC (0.736) correct et précision correcte.
- Rappel trop faible, peu de détections.

ml*flow*

Model Registry : « Credit Scoring Tool Baseline »

Experiment Name : « Credit_Scoring_Tool_FeatureEng »

=== RÉSULTATS VALIDATION CROISÉE ===

AUC moyen : 0.756 ± 0.002

AUC global: 0.756

Score métier moyen : 0.572 Score métier global : 0.572

Accuracy moyen : 0.915 Accuracy global : 0.915 Précision moyenne : 0.403 Précision globale : 0.403

Rappel moyen : 0.100 Rappel global : 0.100 F1-score moyen : 0.161 F1-score global : 0.161

RÉSULTATS

avec feature Engineering - caractéristiques basées sur le domaine

Résultat de la modélisation avec l'algorithme de classification de la XGBoost:

- Meilleure AUC (0.756) avec bon équilibre global.
- Modèle robuste mais le rappel reste encore limité.

- Le modèle XGBoost est le plus performant (score métier le plus performant).
- Les caractéristiques basées sur le domaine améliorent surtout le rappel.

Le modèle **XGBoost** avec les caractéristiques basées sur le domaine offre un meilleur compromis global.

MODÉLISATION DU MEILLEURE MODELE SUR 20 CARACTÉRISTIQUES

Model Registry : « Credit Scoring Tool Baseline »

Experiment Name : « Credit_Scoring_Tool_FeatureEng_Production_XgBoost»

=== MÉTRIQUES DE PERFORMANCE ===

AUC: 0.691 Accuracy: 0.670 Précision: 0.140 Recall: 0.602 F1-score: 0.227 Score métier: 0.641

=== Classification Report ===

	precision	recall	f1-score	support
Non Défaut	0.95	0.68	0.79	282686
Défaut	0.14	0.60	0.23	24825
accuracy			0.67	307511
macro avg	0.55	0.64	0.51	307511
weighted avg	0.89	0.67	0.74	307511

MODÉLISATION DU MEILLEUR MODELE 20 FEATURES

=== MÉTRIQUES DE PERFORMANCE ===

AUC: 0.691 Accuracy: 0.670 Précision: 0.140 Recall: 0.602 F1-score: 0.227 Score métier: 0.641

=== Classification Report ===

	precision	recall	f1-score	support
Non Défaut	0.95	0.68	0.79	282686
Défaut	0.14	0.60	0.23	24825
accuracy			0.67	307511
macro avg	0.55	0.64	0.51	307511
weighted avg	0.89	0.67	0.74	307511

- Le seuil optimal (0.22) maximise le score métier à 0.641.
- XGBoost détecte bien les défauts (rappel = 0.60), malgré une précision faible (0.14).
- Bon compromis entre performance globale et impact métier.

IMPORTANCE GLOBALE DES CARACTÉRISTIQUES

Prêt à dépenser

Impact global moyen des 20 variables

Distribution des impacts SHAP

- Les variables EXT_SOURCE_3, EXT_SOURCE_2 et le type de revenu ont le plus fort impact sur le modèle.
- Les caractéristiques **socio-économiques** influencent fortement la prédiction.
- Les effets SHAP sont cohérents et bien séparés selon la valeur des features.

IMPORTANCE LOCALE DES CARACTÉRISTIQUES

- Les 11 premiers facteurs influencent différemment chaque individu.
- Les scores de solvabilités externes, le revenu et logement ont un fort impact, positif ou négatif.
- Ces **3 exemples** nous permettent d'expliquer chaque prédiction de façon personnalisée.

DÉPLOIEMENT

PIPELINE DE DÉPLOIEMENT

DÉVELOPPEMENT DE L'API

Gestion des « endpoints », logique de scoring...

CREATION DE L'INTERFACE UTILISATEUR (UI)

Création du front end pour tester l'API

PIPELINE DE DÉPLOIEMENT

Prêt a dépenser

TEST UNITAIRE

L'objectif du test unitaire est de tester l'authenticité d'une portion d'un programme. Ici, il s'agit de notre modèle XGBoost que nous avons mis en production.

DATA DRIFT

Une dérive est détectée sur 30 % des variables (soit 6 colonnes), notamment sur l'âge, l'emploi et le crédit, indiquant un changement significatif du profil des clients.

usage réel en

production.

EXEMPLE DE SCORING CLIENT

EXEMPLE D'UN SCORING CLIENT

Merci de votre attention

Question(s) – Réponse(s)