

TRABAJO PRÁCTICO N°5

Asignatura: Programación Orientada a Objetos

Importante: recordar que utilizaremos un guión bajo inicial en cada nombre de atributo como convención para indicar que deben tratarse como atributo privado, mientras que todos los métodos serán considerados públicos.

Ejercicio 1

Implementar una clase A, que contenga un constructor para asignar el valor de un atributo _a1, y un método *calcularCuadrado* que calcule y retorne el cuadrado de _a1. Luego incorporar los siguientes requisitos:

- a) Crear una clase **B** por herencia de **A**, que contenga un constructor para asignar el valor de _a1 y un segundo parámetro _b1.
- b) Sobreescribir el método calcular Cuadrado, de forma que calcule y retorne el cuadrado de _b1.
- c) Crear una clase **C** por herencia de **B**, que contenga un constructor para asignar valores de _a1 y _b1.
- d) Agregar a **C** un método *sumar*, que calcule y retorne la suma de _a1 y _b1.

Nota: con esta jerarquía, la clase A es la clase padre de B, mientras que C es clase hija de B.

Ejercicio 2

Crear una clase abstracta A, que especifique dos métodos abstractos incrementarValor(cantidad) y reducirValor(cantidad). Luego utilizar a A como padre para crear una clase B y completar la implementación. B debe tener un atributo _valor, que se pueda incrementar o reducir en una cantidad determinada utilizando los métodos indicados.

Ejercicio 3

Crear una clase **Precio**, que modele los diferentes valores de venta de un producto teniendo en cuenta su precio de lista, recargo por pago en 3 cuotas y descuento por pago en efectivo. La clase debe contener un **constructor sobrecargado** para poder instanciar objetos con las siguientes opciones:

- a) p1 = Precio(1000) # asigna \$1000 al precio de lista, no hay descuentos y no se permite pago en cuotas
- b) p2 = Precio(1000, 10) # asigna \$1000 al precio de lista, un descuento del 10% por pago efectivo, no se permite pago en cuotas,
- c) p3 = Precio(1000, (10, 25)) # asigna \$1000 al precio de lista, un descuento del 10% por pago efectivo, y opciones de pago en 3 cuotas con 25% de recargo.

Agregar un método *mostrarOpcionesPago*, que imprima un mensaje con el siguiente formato de acuerdo a la información del objeto creado:

Asignatura: Programación Orientada a Objetos

p1.mostrarOpcionesPago() # salida esperada: 'El precio de lista es \$1000 - No hay descuento por pago efectivo - No hay opción de pago en cuotas

p2.mostrarOpcionesPago() # salida esperada: 'El precio de lista es \$1000 - Descuento de 10% por pago efectivo - No hay opción de pago en cuotas

p3.mostrarOpcionesPago() # salida esperada: 'El precio de lista es \$1000 - Descuento de 10% por pago efectivo - Recargo de 25% por pago en 3 cuotas.

Ejercicio 4

Crear una clase *Numeros*, que pueda ser instanciada a partir de una lista de valores numéricos reales. Luego incorporar los *métodos mágicos* necesarios para poder iterar un objeto extrayendo únicamente los valores positivos.

```
Ejemplo:
```

```
Si se crea el objeto

num1 = Numeros([3, 6, -2, 0.5, -103, -71.3, 12.34])

luego debe poder ejecutarse el código:

for positivo in num1:

print(positivo)
```

Salida esperada:

3

6

0.5

12.34