Apellido y Nombre: _ _ _ _ _ L.U:_ _ _ _ L.U:_ _ _ _ _

Realizar cada Problema en hojas separadas.

Problema 1. [33/100 pts.] Dos pequeñas esferas conductoras idénticas se sitúan con sus centros separados por una distancia de $0.300 \ m$. A una de ellas se le proporciona una carga de $12.0 \ nC$ y a la otra una carga de $-18.0 \ nC$.

- a) Realice un diagrama de las fuerzas eléctricas \mathbf{F} .
- b) Calcule la fuerza eléctrica \mathbf{F} ejercida por una esfera sobre la otra.
- c) Realice una gráfica cualitativa para \mathbf{E} y V a lo largo de la línea de las cargas, mostrando el comportamiento asintótico a distancias infinitas y señalando los puntos de equilibrio. (Puede ayudarse calculando explícitamente los mismos pero no se evaluará)

Si las esferas se conectan mediante un cable conductor, luego de alcanzar el equilibrio:

- d) Realice el diagrama de las fuerzas eléctricas ${\bf F}$ sobre las esferas.
- e) Calcule la fuerza eléctrica F entre las esferas.
- f) ¿Existen puntos de equilibrio para la nueva configuración? Explique sin calcular!

Problema 2. [33/100 pts.] Un cascarón esférico de radio $a=5\ cm$ tiene una densidad superficial de carga $\sigma=15\ C/cm^2$. Concéntricamente, se tiene un cascarón conductor esférico de radio interior $b=10\ cm$ y radio exterior $c=15\ cm$ con un excedente de carga Q. Además, sabemos que el ${\bf E}=0$ para r>c.

- a) Calcular el campo eléctrico $\mathbf{E}(r)$ para todo el espacio.
- b) Calcular la densidad de cargas inducidas (σ) en la superficie interior del conductor.
- c) ¿Cúal es el valor de la carga excedente Q en el conductor y cómo se distribuye?
- d) Calcular el potencial eléctrico V(r) en todo el espacio.

Problema 3. [33/100 pts.] Considere un arreglo de cinco capacitores conectados como se muestra en la figura. Los capacitores tienen las siguientes capacitancias: $C_1 = 10 \,\mu\text{F}$, $C_2 = C_3 = 5 \,\mu\text{F}$, $C_4 = 7 \,\mu\text{F}$ y $C_5 = 2 \,\mu\text{F}$. El arreglo completo está conectado a una batería de $20 \,\text{V}$.

- a) Determine la capacidad y la carga total del sistema.
- b) Calcule la energía almacenada en el sistema.
- c) Determine la carga Q_5 y la diferencia de potencial V_1 .
- d) Suponga que se introduce un material dieléctrico con una constante dieléctrica $\kappa = 3$ en el capacitor C_5 . Determine cómo cambian la capacitancia equivalente y la energía almacenada en el sistema.

Problema 4. [Opcional Suma 15/100 pts.] Se tiene una densidad lineal de carga $\lambda = \lambda_o$ dispuesta como un anillo de radio a.

- a) Calcule el campo eléctrico $\mathbf{E}(z)$ y el potencial eléctrico V(z) a lo largo del eje z para el anillo.
- c) Realice una gráfica cualitativa para el campo eléctrico $\mathbf{E}(z)$ y el potencial eléctrico V(z) a lo largo del eje z.

