Simulation results with time step = 1.0 second.

Figure 1: All PSDS bus frequencies and LTD system frequency response.

Figure 2: Averaged PSDS system response against LTD frequency. (Difference at $t(90) \approx 2.84\text{E}-5$).

Figure 3: Relative Hz difference of PSDS - LTD $\left(\text{i.e. } \left| \frac{f_{PSDS}(t) - f_{LTD}(t)}{f_{PSDS}(t)} \right| \times 60 \text{Hz} \right)$.

Miniwecc Model:	Simulation Results (60 Second Run):			
Buses 120	`	PSDS	LTD	
Generators 34	Timestep	$4.167~\mathrm{ms}$	1 sec	
Loads 23	Produced Data File Size	$35,492~\mathrm{KB}$	$423~\mathrm{KB}$	
Generation 107,509 MW	Simulation Run Time	$41.42~{ m sec}$	$11.75~{\rm sec}$	
Load 105,985 MW	Speed up from PSDS	1	3.52	

Possible reasons for Steady State Variance

MiniMECC Model

- 1. Mishandled Machine Parameters: PSDS and LTD Generator H and MWcap were verified as being the same for all machines in system.
- 2. AMQP JSON message behavior: The coded AMQP procedure sends data as a json message and as shown below, a value with many decimals is rounded to be represented as a floating point (Line 6), and then truncated when added to a dictionary (Line 9). This rounded and truncated value is what is sent as the AMQP message (Line 11). Note that Python reports these values as the same (Lines 12-17). The numpy (numerical python) package may have an alternate approach to this rounding / truncation behavior.

```
>>> import json
2
   >>> lval = 123.123456789012345678901234567890
3
   >>> lval
   123.12345678901235
   >>> print('%.30f' % lval)
5
6
   123.123456789012351464407402090728
   >>> msg = {'mval': lval}
   >>> msg
8
9
   {'mval': 123.12345678901235}
   >>> print(json.dumps(msg))
   {"mval": 123.12345678901235}
11
   >>> 123.123456789012345678901234567890-123.123456789012351464407402090728
12
13
   0.0
   >>> print('%.30e' % (123.123456789012345678901234567890 - lval))
14
   0.00000000000000000000000000000000000e+00
   >>> 123.123456789012345678901234567890 ==
16
                                                123.12345678901235
17
   True
```

- 3. Slack Tolerance: Decreasing the slack tolerance to 0.001 MW (from 1 MW) had no effect on relative difference - though did increase simulation time by $\approx 7x$ due to the number of power flows required to solve each time step.
- 4. Simulation Length: The simulation was run for 120 seconds and relative difference was found to vary slightly over time but stay between 3.3E-3\% and 2.1E-3\%.
- 5. Integration method Euler and RK-45 were found to have similar results and did not change relative difference.

6. Differences in load distribution: As shown in Figure 4, the steady state mechanical output does not change by the same amount in the two simulation environments.

The table below quantified this difference for the two generators that had the largest % change from t(0).

Generator	PSDS	LTD	$\%$ Δ Dif.	MW Dif.
WA-GEN (slack top line)	1.257	1.115	0.011	5.1
SDG GEN (lower line)	1.115	1.120	0.005	2.2

Figure 5: P_M from the machines that changed the most from t(0).

7. Time step resolution: NOTE: Code changed after all previously listed test were ran. Changing the time step affects accuracy, size of data collected, and simulation run time. The following data was collected from a 90 second simulation. LTD uses rk45 integration and 0.5 MW slack tolerance — it is also run from the command line. The PSDS system has exciters and PSS included in dyd file. Theoretical steady state frequency was calculated as

$$f = 1 + \Delta f = 1 + \frac{\Delta P}{S_{base}\beta} = 1 + \frac{-1200M\mathring{W}}{100 \times 15,555} = 0.999228543876567 = 59.953712632594019Hz$$

	Time step	Simulation Time [sec]	Data File Size [KB]	Real time Speed up	PSDS Speed up	Reduction of file size	Steady State f error [Hz]
PSDS	$4.167~\mathrm{ms}$	56.12	35,070.00	1.60	1.00	1.00	0.0034
LTD	2 sec	9.41	300.00	9.56	5.96	116.90	0.0017
LTD	$1 \sec$	17.39	496.00	5.18	3.23	70.71	0.0017
LTD	$0.5 \sec$	33.05	888.00	2.72	1.70	39.49	0.0017
LTD	$0.25~{ m sec}$	63.67	1,672.00	1.41	0.88	20.97	0.0017

Figure 6: Comparison of system frequency among different time steps.

Figure 7: Relative Hz difference of PSDS - LTD (i.e. $|f_{PSDS}(t) - f_{LTD}(t)| \times 60$ Hz).