Обзор постановок оптимизационных задач машинного обучения

Воронцов Константин Вячеславович k.v.vorontsov@phystech.edu http://www.MachineLearning.ru/wiki?title=User:Vokov

Общероссийский семинар по оптимизации http://www.mathnet.ru/php/conference.phtml?confid=1794

● 3 июня 2020 ●

Содержание

- Обучение с учителем
 - Регрессия и классификация
 - Регуляризация
 - Ранжирование
- Обучение без учителя
 - Восстановление плотности
 - Кластеризация и частичное обучение
 - Понижение размерности и обучение представлений
- Пекоторые неклассические парадигмы обучения
 - Обучение с привилегированной информацией
 - Перенос обучения (transfer learning)
 - Генеративные состязательные сети (GAN)

Общая оптимизационная задача машинного обучения

Дано: обучающая выборка $\{x_i: i=1,\ldots,\ell\}$

Найти: вектор параметров w модели a(x,w)

Критерий: минимум эмпирического риска

$$\sum_{i=1}^{\ell} \mathscr{L}_i(\mathsf{a}(\mathsf{x}_i,\mathsf{w})) \to \min_{\mathsf{w}}$$

или минимум регуляризованного эмпирического риска

$$\sum_{i=1}^{\ell} \mathscr{L}_i(a(x_i, w)) + \sum_{j=1}^{r} \tau_j R_j(w) \rightarrow \min_{w}$$

 \mathscr{L}_i — функция потерь модели w на объекте x_i R_i — регуляризаторы, au_i — коэффициенты регуляризации

Оптимизационная задача восстановления регрессии

Обучающая выборка: $X^\ell=(x_i,y_i)_{i=1}^\ell,\;\;x_i\in\mathbb{R}^n,\;\;y_i\in\mathbb{R}$

Фиксируется модель регрессии, например, линейная:

$$a(x, w) = \langle x, w \rangle = \sum_{j=1}^{n} w_j f_j(x), \qquad w \in \mathbb{R}^n$$

Фиксируется функция потерь, например, квадратичная:

$$\mathscr{L}_i(a) = (a - y_i)^2$$

Метод обучения — метод наименьших квадратов:

$$Q(w) = \sum_{i=1}^{\ell} (a(x_i, w) - y_i)^2 \rightarrow \min_{w}$$

1 Проверка по тестовой выборке $X^k = (\tilde{x}_i, \tilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} (a(\tilde{x}_i, w) - \tilde{y}_i)^2$$

Обучающая выборка:
$$X^\ell = (x_i, y_i)_{i=1}^\ell, \;\; x_i \in \mathbb{R}^n, \;\; y_i \in \{-1, +1\}$$

Фиксируется модель классификации, например, линейная:

$$a(x, w) = \operatorname{sign}\langle x, w \rangle = \operatorname{sign} \sum_{j=1}^{n} w_j f_j(x)$$

Функция потерь — пороговая или её верхняя оценка:

$$\mathscr{L}_{i}(a) = [ay_{i} < 0] = [\langle x_{i}, w \rangle y_{i} < 0] \leqslant \mathscr{L}(\langle x_{i}, w \rangle y_{i})$$

Метод обучения — минимизация эмпирического риска:

$$Q(w) = \sum_{i=1}^{\ell} \left[\langle x_i, w \rangle y_i < 0 \right] \leqslant \sum_{i=1}^{\ell} \mathscr{L} \left(\langle x_i, w \rangle y_i \right) \to \min_{w}$$

lacksquare Проверка по тестовой выборке $X^k=(ilde{x}_i, ilde{y}_i)_{i=1}^k$:

$$\bar{Q}(w) = \frac{1}{k} \sum_{i=1}^{k} \left[\langle \tilde{x}_i, w \rangle \tilde{y}_i < 0 \right]$$

Непрерывные верхние оценки пороговой функции потерь

Часто используемые непрерывные функции потерь $\mathscr{L}(M)$:

$$[M < 0]$$
 — пороговая функция потерь $V(M) = (1-M)_+$ — кусочно-линейная (SVM) $H(M) = (-M)_+$ — кусочно-линейная (Hebb's rule) $L(M) = \log_2(1+e^{-M})$ — логарифмическая (LR) $Q(M) = (1-M)^2$ — квадратичная (FLD) $S(M) = 2(1+e^{M})^{-1}$ — сигмоидная (ANN) $E(M) = e^{-M}$ — экспоненциальная (AdaBoost)

Метод опорных векторов SVM (двухклассовый)

$$M_i(w,w_0) = y_i (\langle w,x_i \rangle - w_0)$$
 — отступ в линейной модели
Кусочно-линейная функция потерь:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}$$

- Функция потерь штрафует объекты за приближение к границе классов
- Регуляризация максимизирует зазор между классами и штрафует за мультиколлинеарность

Важнейшие свойства SVM:

- Задача выпуклого программирования, решение единственно
- Решение разрежено зависит только от опорных объектов
- Обобщение на нелинейные модели: $\langle x, x_i \rangle \to K(x, x_i)$

Логистическая регрессия (двухклассовая)

Линейная модель классификации $a(x,w)=\mathrm{sign}\langle x,w\rangle$ Логарифмическая функция потерь:

$$\sum_{i=1}^{\ell} \ln(1 + \exp(-\langle w, x_i \rangle y_i)) + \frac{\tau}{2} ||w||^2 \rightarrow \min_{w}$$

Логарифмическая функция потерь:

$$\mathscr{L}(M) = \ln(1 + e^{-M})$$

Модель условной вероятности:

$$P(y|x,w)=\sigma(M)=rac{1}{1+{
m e}^{-M}}$$
,
где $\sigma(M)$ — сигмоидная функция

Логистическая регрессия (многоклассовая)

Линейный классификатор при произвольном числе классов |Y|:

$$a(x, w) = \arg\max_{y \in Y} \langle w_y, x \rangle, \quad x, w_y \in \mathbb{R}^n$$

Вероятность того, что объект x относится к классу y:

$$P(y|x,w) = \frac{\exp\langle w_y, x \rangle}{\sum_{z \in Y} \exp\langle w_z, x \rangle} = \operatorname{SoftMax}\langle w_y, x \rangle,$$

где SoftMax: $\mathbb{R}^Y \to \mathbb{R}^Y$ переводит произвольный вектор в нормированный вектор дискретного распределения.

Максимизация правдоподобия (log-loss) с регуляризацией:

$$-\sum_{i=1}^{\ell} \ln P(y_i|x_i, w) + \frac{\tau}{2} \sum_{y \in Y} \|w_y\|^2 \to \min_{w}.$$

Кванти́льная регрессия

Функция потерь,
$$\varepsilon = a(x_i, w) - y_i$$
:

$$\mathscr{L}(\varepsilon) = \begin{cases} C_{+}|\varepsilon|, & \varepsilon > 0 \\ C_{-}|\varepsilon|, & \varepsilon < 0; \end{cases}$$

Модель регрессии: линейная $a(x_i, w) = \langle x_i, w \rangle$.

Сведение к задаче линейного программирования:

замена переменных
$$\varepsilon_i^+ = (a(x_i) - y_i)_+, \ \varepsilon_i^- = (y_i - a(x_i))_+;$$

$$\begin{cases} Q = \sum_{i=1}^{\ell} C_{+} \varepsilon_{i}^{+} + C_{-} \varepsilon_{i}^{-} \rightarrow \min_{w}; \\ \langle x_{i}, w \rangle - y_{i} = \varepsilon_{i}^{+} - \varepsilon_{i}^{-}; \\ \varepsilon_{i}^{+} \geqslant 0; \quad \varepsilon_{i}^{-} \geqslant 0. \end{cases}$$

Робастная регрессия

Функция Мешалкина:
$$\mathscr{L}(\varepsilon) = b \big(1 - \exp \big(- \frac{1}{b} \varepsilon^2 \big) \big), \;\; \varepsilon = f - y$$

Модель регрессии: a(x) = f(x, w)

Постановка оптимизационной задачи:

$$\sum_{i=1}^{\ell} \exp\left(-\frac{1}{b}(f(x_i, w) - y_i)^2\right) \to \max_{w}$$

Численное решение методом Ньютона-Рафсона

SVM-регрессия

Модель регрессии: $a(x) = \langle x, w \rangle - w_0$, $w \in \mathbb{R}^n$, $w_0 \in \mathbb{R}$.

Функция потерь:
$$\mathscr{L}(arepsilon) = ig(|arepsilon| - \deltaig)_+$$

Постановка оптимизационной задачи:

$$\sum_{i=1}^{\ell} \left(|\langle w, x_i \rangle - w_0 - y_i| - \delta \right)_+ + \frac{1}{2C} ||w||^2 \to \min_{w, w_0}.$$

Сводится к выпуклой задаче квадратичного программирования

Регуляризаторы, штрафующие сложность модели

Регуляризатор — аддитивная добавка к основному критерию:

$$Q(w) = \sum_{i=1}^{\ell} \mathscr{L}_iig(\langle x_i, w
angleig) + au$$
 штра $igoplus (w)
ightarrow \min_w$

где au — коэффициент регуляризации

 L_2 -регуляризация (гребневая регрессия, SVM):

штра
$$\phi(w) = \|w\|_2^2 = \sum_{i=1}^n w_i^2$$
.

 L_1 -регуляризация (LASSO, ElasticNet):

штра
$$\phi(w) = \|w\|_1 = \sum_{i=1}^n |w_j|.$$

 L_0 -регуляризация (критерии Акаике AIC, байесовский BIC):

штра
$$\phi(w) = \|w\|_0 = \sum_{i=1}^n [w_i \neq 0].$$

Негладкие регуляризаторы для отбора признаков

Общий вид регуляризаторов (μ — параметр селективности):

$$\sum_{i=1}^{\ell} \mathscr{L}_i(a(x_i, w)) + \tau \sum_{j=1}^{n} R_{\mu}(w_j) \rightarrow \min_{w}.$$

Регуляризаторы с эффектом группировки зависимых признаков:

Elastic Net:
$$R_{\mu}(\alpha) = \mu |\alpha| + \alpha^2$$

Support Features Machine (SFM):

$$R_{\mu}(\alpha) = \begin{cases} 2\mu|\alpha|, & |\alpha| \leq \mu; \\ \mu^2 + \alpha^2, & |\alpha| \geqslant \mu; \end{cases}$$

Relevance Features Machine (RFM):

$$R_{\mu}(\alpha) = \ln(\mu \alpha^2 + 1)$$

Задача обучения ранжированию (learning to rank)

X — множество объектов $X^\ell=\{x_1,\ldots,x_\ell\}$ — обучающая выборка $i\prec j$ — правильный порядок на парах $(i,j)\in\{1,\ldots,\ell\}^2$

Задача:

построить ранжирующую функцию $a\colon X o \mathbb{R}$ такую, что

$$i \prec j \Rightarrow a(x_i) < a(x_j)$$

Линейная модель ранжирования:

$$a(x, w) = \langle x, w \rangle$$

где $x\mapsto (f_1(x),\ldots,f_n(x))\in\mathbb{R}^n$ — вектор признаков объекта x

Модель классификации на два класса, $y_i \in \{-1, +1\}$:

$$a(x_i, w, w_0) = \operatorname{sign}(g(x_i, w) - w_0).$$

AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\mathsf{AUC}(w) = \frac{1}{\ell_- \ell_+} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_i < y_j \big] \big[g(x_i, w) < g(x_j, w) \big] o \max_{w}.$$

Явная максимизация аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant \sum_{i,j \colon y_i < y_j} \mathscr{L}(\underbrace{g(x_j, w) - g(x_i, w)}_{M_{ij}(w)}) \to \min_{w},$$

где $\mathscr{L}(M)$ — убывающая функция отступа, $M_{ij}(w)$ — новое понятие отступа для пар объектов.

Дано: обучающая выборка $\{x_i \colon i=1,\ldots,\ell\}$

Найти: вектор параметров θ в модели $p(x|\theta)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) \to \max_{\theta}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta) + \ln p(\theta|\gamma) \rightarrow \max_{\theta}$$

где γ — вектор гиперпараметров априорного распределения

Дано: обучающая выборка
$$\{x_i : i = 1, \dots, \ell\}$$

Найти: параметры w_j , θ_j в модели $p(x|\theta,w) = \sum\limits_{j=1}^K w_j p(x|\theta_j)$

Критерий: максимум правдоподобия

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta,w) \to \max_{\theta,w}$$

или максимум апостериорной вероятности

$$\sum_{i=1}^{\ell} \ln p(x_i|\theta, w) + \ln p(\theta, w|\gamma) \rightarrow \max_{\theta, w}$$

где γ — вектор гиперпараметров априорного распределения

Задача кластеризации (clustering)

Дано: обучающая выборка $\{x_i \in \mathbb{R}^n \colon i=1,\ldots,\ell\}$

Найти:

- центры кластеров $\mu_i \in \mathbb{R}^n$, $j = 1, \ldots, K$
- кластеризации объектов $a_i \in \{1, \dots, K\}$

Критерий: минимум внутрикластерных расстояний

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 \to \min_{\{a_i\}, \{\mu_j\}}$$

в случае евклидовой метрики

$$||x - \mu_j||^2 = \sum_{d=1}^n (f_d(x) - \mu_{jd})^2$$

Meтод OSVM — одноклассовый SVM

Дано: обучающая выборка $\{x_i \in \mathbb{R}^n \colon i=1,\ldots,\ell\}$

Найти: центр $a \in \mathbb{R}^n$ и радиус r шара, охватывающего всю выборку кроме аномальных объектов-выбросов

Критерий: минимизация радиуса шара и суммы штрафов за выход из шара:

$$\nu r^2 + \sum_{i=1}^{\ell} \mathcal{L}\left(\underbrace{r^2 - \|x_i - a\|^2}_{\mathsf{margin}_i}\right) \to \min_{a,r}$$

При $\mathscr{L}(M) = (-M)_+$ свойства решения аналогичны SVM:

- Выпуклая задача квадратичного программирования
- Решение разрежено зависит только от опорных объектов
- ullet Обобщение на нелинейные модели: $\langle x_i, x_j
 angle o K(x_i, x_j)$

Задача частичного обучения (semi-supervised learning, SSL)

Дано:

$$X^k = \{x_1, \dots, x_k\}$$
 — размеченные объекты (labeled data); $\{y_1, \dots, y_k\}$

$$U = ig\{ x_{k+1}, \dots, x_\ell ig\}$$
 — неразмеченные объекты (unlabeled data).

Найти: классификации $\{a_{k+1},\ldots,a_\ell\}$ неразмеченных объектов

Критерий без модели классификации (transductive learning):

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \left[a_i \neq y_i \right] \to \min_{\{a_i\}, \{\mu_j\}}$$

При построении модели классификации, $a_i = a(x_i, w)$:

$$\sum_{i=1}^{\ell} \|x_i - \mu_{a_i}\|^2 + \lambda \sum_{i=1}^{k} \mathcal{L}(a(x_i, w), y_i) \rightarrow \min_{\{a_i\}, \{\mu_j\}, w}$$

Meтод TSVM — трансдуктивный SVM

$$M_i = (\langle w, x_i \rangle - w_0) y_i$$
 — отступ объекта x_i

- ullet Функция потерь $\mathscr{L}(M)=(1-M)_+$ штрафует за уменьшение отступа
- ullet Функция потерь $\mathscr{L}(M) = ig(1 |M|ig)_+$ штрафует за попадание объекта внутрь разделяющей полосы

Обучение весов w, w_0 по частично размеченной выборке:

$$Q(w, w_0) = \sum_{i=1}^{k} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 + \gamma \sum_{i=k+1}^{\ell} (1 - |M_i(w, w_0)|)_+ \rightarrow \min_{w, w_0}.$$

Частный случай SSL: PU-learning (Positive and Unlabeled)

Примеры задач, когда известны объекты только одного класса:

- обнаружение мошеннических транзакций
- персонализация предложений рекламы
- медицинская диагностика при неизвестном анамнезе
- автоматическое пополнение базы знаний фактами

Модель двухклассовой классификации $a(x_i, w)$.

Неразмеченные трактуются как негативные с весом $\mathcal{C}_- \ll \mathcal{C}_+$:

$$C_{+}\sum_{i=1}^{k} \mathscr{L}(\mathsf{a}(\mathsf{x}_{i},\mathsf{w}),+1) + C_{-}\sum_{i=k+1}^{\ell} \mathscr{L}(\mathsf{a}(\mathsf{x}_{i},\mathsf{w}),-1) + R(\mathsf{w}) \to \min_{\mathsf{w}}$$

Один из успешных методов — Biased SVM.

Gang Li. A Survey on Positive and Unlabelled Learning. 2013. J.Bekker, J.Davis Learning From Positive and Unlabeled Data: A Survey. 2020.

Задачи низкорангового матричного разложения

- Понижение размерности для классификации/регрессии
- Формирование сжатого представления данных
- Восстановление пропущенных значений в матрице

Дано: матрица
$$Z=\|z_{ij}\|_{n imes m},\;\;(i,j)\in\Omega\subseteq\{1..n\} imes\{1..m\}$$

Найти: матрицы $X=\|x_{it}\|_{n imes k}$ и $Y=\|y_{tj}\|_{k imes m}$ такие, что

$$||Z - XY|| = \sum_{(i,j)\in\Omega} \mathscr{L}\left(z_{ij} - \sum_{t} x_{it} y_{tj}\right) \to \min_{X,Y}$$

Почему на практике отказываются от классического SVD:

- ullet неквадратичная функция потерь ${\mathscr L}$
- ullet неотрицательное матричное разложение: $x_{it}\geqslant 0,\ y_{ti}\geqslant 0$
- ullet разреженные данные: $|\Omega| \ll nm$

Примеры прикладных задач матричного разложения

Выявление интересов в рекомендательных системах (recommender systems, collaborative filtering)

$$z_{iu} = \sum_t p_{it} q_{tu}$$

дано: z_{iu} — рейтинги товаров i, поставленные пользователем u; **найти:** p_{it} — профиль интересов товара i; q_{tu} — профиль интересов пользователя u.

② Латентный семантический анализ коллекций текстов (тематическое моделирование)

$$z_{wd} = \sum_{t} \varphi_{wt} \theta_{td}$$

дано: $z_{wd} = p(w|d)$ — частоты слов w в документах d; найти: $\varphi_{wt} = p(w|t)$ — распределения слов w в темах t, $\theta_{td} = p(t|d)$ — распределения тем t в документах d.

Примеры прикладных задач матричного разложения

 Разделение смеси химических веществ по данным жидкостной хроматографии

$$z_{t\lambda} = \sum_{i} x_{ti} y_{i\lambda}$$

дано: $z_{t\lambda}$ — выход сканирующего УФ-детектора; найти: x_{ti} — хроматограмма i-го вещества, t — время; $y_{i\lambda}$ — спектр i-го вещества, λ — длина волны.

 Оценивание экспрессии генов по данным ДНК-микрочипов с учётом кросс-гибридизации

$$z_{pk} = \sum_{g} a_{pg} c_{gk}$$

дано: z_{pk} — интенсивность свечения p-й пробы на k-м чипе; **найти:** a_{pg} — коэффициент сродства p-й пробы g-му гену, c_{gk} — концентрация g-го гена на k-м чипе.

Обучение с использованием привилегированной информации

V. Vapnik, A. Vashist. A new learning paradigm: Learning Using Privileged Information // Neural Networks. 2009.

Примеры задач с привилегированной информацией x^st

- x первичная (1D) структура белка
 - x^* третичная (3D) структура белка
 - у иерархическая классификация функции белка
- х предыстория временного ряда
 - x^* информация о будущем поведении ряда
 - *у* прогноз следующей точки ряда
- х текстовый документ
 - x^* выделенные ключевые слова или фразы
 - у категория документа
- х пара (запрос, документ)
 - x^st выделенные асессором ключевые слова или фразы
 - *у* оценка релевантности

Задача обучения с привилегированной информацией

Раздельное обучение модели-ученика и модели-учителя:

$$\begin{array}{ll} \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \mathsf{y}_i\big) \to \min_{\mathsf{w}} & \sum\limits_{i=1}^{\ell} \mathscr{L}\big(\mathsf{a}(\mathsf{x}_i^*, \mathsf{w}^*), \mathsf{y}_i\big) \to \min_{\mathsf{w}} \end{array}$$

Модель-ученик обучается повторять ошибки модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w}$$

Совместное обучение модели-ученика и модели-учителя:

$$\sum_{i=1}^{\ell} \mathcal{L}(a(x_i, w), y_i) + \lambda \mathcal{L}(a(x_i^*, w^*), y_i) + \mu \mathcal{L}(a(x_i, w), a(x_i^*, w^*)) \rightarrow \min_{w, w^*}$$

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged information. 2016.

Перенос обучения (transfer learning)

 $f(x_i, \alpha)$ — часть модели, универсальная для всех задач $g(x_i, \beta)$ — часть модели, специфичная для каждой задачи

Базовая задача на выборке $\{x_i\}_{i=1}^\ell$ с функцией потерь \mathscr{L}_i :

$$\sum_{i=1}^{\ell} \mathscr{L}_i(f(x_i, \alpha), g(x_i, \beta)) \rightarrow \max_{\alpha, \beta}$$

 $extstyle \mathcal{L}_i^{\prime}$ елевая задача на другой выборке $\{x_i^{\prime}\}_{i=1}^m$, с другими \mathscr{L}_i^{\prime} , g^{\prime} :

$$\sum_{i=1}^{m} \mathscr{L}'_i \big(f(\mathbf{x}'_i, \boldsymbol{\alpha}), g'(\mathbf{x}'_i, \boldsymbol{\beta}') \big) \rightarrow \max_{\boldsymbol{\beta}'}$$

при $m \ll \ell$ это может быть намного лучше, чем

$$\sum_{i=1}^{m} \mathcal{L}'_{i}(f(x'_{i}, \alpha), g'(x'_{i}, \beta')) \rightarrow \max_{\alpha, \beta'}$$

Sinno Jialin Pan, Qiang Yang. A Survey on Transfer Learning. 2009

Свёрточные сети глубокого обучения

Визильтер Ю.В., Горбацевич В.С. Структурно-функциональный анализ и синтез глубоких конволюционных нейронных сетей. ММРО-2017.

Пред-обученные (pre-trained) нейронные сети

Свёрточная сеть для обработки изображений:

- ullet f(x,lpha) свёрточные слои для векторизации объектов
- ullet g(x,eta) полносвязные слои под конкретную задачу

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. How transferable are features in deep neural networks? 2014.

Самостоятельное обучение (self-supervised learning)

В компьютерном зрении сеть учится предсказывать взаимное расположение двух фрагментов на одном изображении

Преимущество: сеть выучивает векторные представления объектов без размеченной обучающей выборки.

Генеративная состязательная сеть (Generative Adversarial Net)

Генератор G(z) учится порождать объекты x из шума z Дискриминатор D(x) учится отличать их от реальных объектов

Antonia Creswell et al. Generative Adversarial Networks: an overview. 2017.

Zhengwei Wang, Qi She, Tomas Ward. Generative Adversarial Networks: a survey and taxonomy. 2019.

Chris Nicholson. A Beginner's Guide to Generative Adversarial Networks. https://pathmind.com/wiki/generative-adversarial-network-gan. 2019.

Постановка задачи GAN

Дано: выборка объектов $\{x_i\}_{i=1}^m$ из X

Найти:

вероятностную генеративную модель $G(z,\alpha)$: $x \sim p(x|z,\alpha)$ вероятностную дискриминативную модель $D(x,\beta) = p(1|x,\beta)$

Критерий:

обучение дискриминативной модели D:

$$\sum_{i=1}^{m} \ln D(x_i, \boldsymbol{\beta}) + \ln (1 - D(G(z_i, \alpha), \boldsymbol{\beta})) \rightarrow \max_{\boldsymbol{\beta}}$$

обучение генеративной модели G по случайному шуму $\{z_i\}_{i=1}^m$:

$$\sum_{i=1}^{m} \ln(1 - D(G(z_i, \alpha), \beta)) \rightarrow \min_{\alpha}$$

lan Goodfellow et al. Generative Adversarial Nets. 2014

Обучение с привилегированной информацией Перенос обучения (transfer learning) Генеративные состязательные сети (GAN)

Примеры GAN для синтеза изображений и видео

Chuan Li, Michael Wand. Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks. 2016

Xiaoxing Zeng, Xiaojiang Peng, Yu Qiao. DF2Net: A Dense Fine Finer Network for Detailed 3D Face Reconstruction ICCV-2019

Caroline Chan, Shiry Ginosar, Tinghui Zhou, Alexei A. Efros. Everybody Dance Now ICCV-2109

Вместо резюме. Типология задач машинного обучения

- Предварительная обработка (data preparation)
 - извлечение признаков (feature extraction)
 - отбор признаков (feature selection)
 - восстановление пропусков (missing values)
 - фильтрация выбросов (outlier detection)
- ② Обучение с учителем (supervised learning)
 - классификация (classification)
 - регрессия (regression)
 - ранжирование (learning to rank)
 - прогнозирование (forecasting)
- Обучение без учителя (unsupervised learning)
 - кластеризация (clustering)
 - поиск ассоциативных правил (association rule learning)
 - восстановление плотности (density estimation)
 - одноклассовая классификация (anomaly detection)
- Частичное обучение (semi-supervised learning)
 - трансдуктивное обучение (transductive learning)
 - обучение с положительными примерами (PU-learning)

Вместо резюме. Типология задач машинного обучения

- Обучение представлений (representation learning)
 - обучение признаков (feature learning)
 - обучение многообразий (manifold learning)
 - матричные разложения (matrix factorization)
- Глубокое обучение (deep learning)
- Обучение близости/связей (similarity/relational learning)
- Обучение структуры модели (structure learning)
- Привилегированное обучение (privileged learning, distilling)
- Состязательное обучение (adversarial learning)
- Динамическое обучение (online/incremental learning)
- Активное обучение (active learning)
- Обучение с подкреплением (reinforcement learning)
- Перенос обучения (transfer learning)
- Многозадачное обучение (multitask learning)
- Мета-обучение (meta-learning, AutoML)