TALEND DATA INTEGRATION

Agenda

- ☐ Introduction à Talend Data integration
- ☐ Prise en main de Talend Big Data

Objectifs

- Avantages de Talend pour Big Data
- Les principaux composants de Talend BD
- Déposer des fichiers sur HDFS
- ☐ Ecrire et lire des fichiers sur HDFS
- ☐ Lire des tables Hive
- ☐ Création des tables Hive
- ☐ Gérer des métadonnées dans Hive avec TOS For Big Data
- ☐ Importer et exporter des données avec Sqoop

Avantages du TOS For Big Data

- ☐ Conception plus rapide : un environnement de développement graphique simple et facile à utiliser
- Meilleure collaboration : communauté active pour améliorer et créer les composants Big Data
- Portabilité : le TOS peut être utilisé sur n'importe quel OS
- □ Scalabilité: l'évolution des jobs Talend est facile.
- ☐ Personnalisable : un développeur peut ajouter des nouveaux composants.

Les composants du TOS For Data Integration

Les composants du TOS For Big Data

- ☐ Une pièce fonctionnelle permettant d'effectuer une seule opération
- Les composants sont classifiés par besoin fonctionnel ou technique dans la palette
- C'est un extrait de code java généré lors de l'exécution d'un job
- ☐ Talend fournit plus de 900 composants

Les composants du TOS For Big Data

	Type de composants	Description	Exemples
/	Connexion	 ✓ Configure et initialise une connexion à un environnement ou à une base de données. ✓ Pas de connecteurs d'entrée ou sortie 	tHDFSConnection, tHiveConnexion, tHiveClose
/	Flux entrée	 ✓ Lire à partir d'un fichier ou une table et met à disposition des lignes des données pour le composant qui succède ✓ Pas de connecteur d'entrée 	tHDFSInput, tHiveInput, tHbaseInput
	Flux en Sortie	 ✓ Ecrire le flux dans un fichier ou une table ✓ Pas de connecteur de sortie 	tHDFSOutput, tHiveOutput, tHbaseOutput
	Traitement des flux	 ✓ Transformation, jointure, agrégation, tri, filtrage ✓ Connecteurs en entrée et en sortie 	tMap, tSortRow, tAggregateRow

Les composants du TOS For Data Integration

	Type de composants	Description	Exemples
/	Traitement des fichiers	✓ Lister, copier, supprimer, renommer des fichiers • Existent pour HDFS et Local	tHDFSList, tFileList, tFileCopy, tHDFSCopy
/	Composants Java	✓ Composants personnalisables en écrivant du code java	Java, tJavaRow, tJavaFlex
	Orchestration	✓ Orchestration des composants dans un job Talend : lancement d'un job, iteration	TPostJob, tPreJob, tRunJob, tLoop

Déclaration des Métadonnées

- ✓ Talend fournit des connecteurs permettant d'extraire les métadonnées des fichiers, base de données ...
- ✓ Ces métadonnées sont mise à disposition au développeur dans l'onglet référentiel projet
- Les métadonnées peuvent être utilisés par plusieurs jobs

Création d'une métadonnée Hadoop Cluster

- L'objectif de ce lab est la création d'un job Talend qui dépose des fichiers locaux sur HDFS
- ☐ Télécharger l'archive Data_accounting.zip
- Dézipper l'archive dans un répertoire local.
- Ici par exemple, on choisi le répertoire C:\Data_Talend
- ☐ Créer un nouveau job Talend nommé J001_HDFS_PUT_FilES

Avec un drag and drop, créer une connexion HDFS à partir de métadonnées HDFS

Ajouter le composant tHDFSPut Configurer le composant pour déplacer les fichier .csv dans le répertoire HDFS /mydata/talendData/csv

Lancer le job et vérifier le résultat avec la commande hdfs dfs –ls /mydata/talendData/txt

☐ Déposer le composant tHDFSConnection

■ Déposer le composant tHDFSPut

Relier les deux composants et relancer votre job

- Pour lire un fichier HDFS, il faut commencer par identifier ses métadonnées :
- ☐ Format de fichier : texte ou autre
- Schéma de fichier : les noms de colonnes et leurs types
- Le séparateur des lignes : « \n »
- ☐ Le séparateur des colonnes : «; » Nous essayons de lire le fichier
- Nous essayons de lire le fichier /mydata/Data/txt/Comptes.csv

- ☐ Pour lire un fichier HDFS, il faut commencer par identifier ses les métadonnées des fichier.
- L'objectif de ce lab est de lire le fichier Personnes.txt

☐ Etape 1 : création une connexion

☐ Etape 2: Configuration du composant tHDFSInput

☐ Etape 3: Ajouter et configurer le composant tLogRow

☐ Etape 4: Lancer votre job et vérifier le résultat

Attention!

- ✓ Nous avons utilisé les composants tMap,
 tAgregateRow et tSort pour nettoyer et transformer nos données
- ✓ Ces composants sont couteux en mémoire lorsque la volumétrie est importante
- ✓ Ces composants s'exécutent seulement sur la machine client
- ✓ En Big Data, il est conseillé de remplacer ces composants par Hive ou Pig

Utilisation de Hive avec Talend

Utilisation de Hive avec Talend

☐ Talend propose quelques composants Hive pour traiter la données

Nom du composant	Rôle
tHiveConnection	Ouvrir une connexion Hive
tHiveClose	Fermer une connexion Hive après son utilisation
tHiveCreateTable	Création des tables Hive : interne et externe
tHiveInput	Lire une table ou une requête hive
tHiveRow	Lancer une requête Hive
tHiveLoad	Charger le contenu d'un fichier dans une table Hive

Utilisation de Hive avec Talend

■ Les trois composants tELTHiveInput et tELTHiveOutput doivent être utilisés ensemble

Nom du composant	Rôle
tELTHIveMap	Mapper les données entre tETLHiveInput et ETLHiveOutput. Possibilité d'utiliser des fonctions de transformation Hive
tELTHiveInput	Extraire des données à partir d'une table Hive et les passer en entrée d'un tELTHiveMaP
tELTHiveOutput	Charger les données en sortie d'un tELTHiveOutput dans une table Hive

Lab4: Lire une table Hive

L'objectif de ce Lab est de lire et d'afficher les données de la table defautl.sample_07.

☐ Etape 1 : définir le schéma de la table

☐ Etape 2 : Créer un job nommé J001_LireTableHive

Créer la connexion en utilisant le composant tHiveConnexion

Etape 3: faire un drag and drop de la table la table Sample_07

Etape 4: Ajouter le composant tLogRow et relier les trois composants Exécuter votre job.

- ☐ Créer un nouveau Job J3_HIVE_INIT
- ☐ Ajouter une connexion Hive dans ce Job
- Ajouter un composant tHiveRow pour créer la base « talend_hive_db »
- Ajouter le composant tHiveCreateTable Configurer ce composant pour créer la table « ext_comptes » : table externe qui pointe vers le répertoire HDFS "/mydata/talendData/txt »
- ☐ Ajouter un composant tHiveCreateTable pour créer une table interne Comptes (numero String, Type String)

Apache Sqoop

Apache Sqoop

- Sqoop est un outil conçu pour transférer des données entre Hadoop et des entrepôts de données structurés externes tels que les SGBDR et les Data Warehouses.
- Sqoop permet un échange de données JDBC entrant et sortant avec Hadoop et son écosystème.
- La source de données fournit le schéma et Sqoop génère et exécute des instructions SQL à l'aide de JDBC ou d'autres connecteurs.

Les commandes Sqoop

Les commandes Sqoop

- □ Sqoop fournit une interface en ligne de commande.
- Dans la commande Sqoop il faut simplement fournir des informations de base telles que :
 - L'adresse de la source.
 - Les détails d'authentification de la source.
 - La destination.
- □ Sqoop prendra en charge la partie restante!

La commande import

La syntaxe de la commande sqoop import est la suivante : sqoop import(generic-args) (import-args)

les arguments generic-args doivent précéder les arguments imports-args.

Les arguments import-args peuvent être entrés dans n'importe quel ordre.

La syntaxe de la commande sqoop export est la suivante :

sqoop import(generic-args)(export-args)

La commande export

- ☐ La commande sqoop export exporte un ensemble de fichiers de HDFS vers des tables SGBDR.
- ☐ La table cible devrait déjà exister dans la base de données.
- ☐ La commande sqoop export prépare les requêtes INSERT avec un ensemble de données d'entrée, puis les jouent sur la base de données.

sqoop export(generic-args)(export-args)

Lab – prise en main de sqoop

```
sandbox login: root
root@sandbox.hortonworks.com's password:
Last login: Mon Aug  8 15:59:44 2022 from 192.168.56.101
[root@sandbox ~]#
[root@sandbox ~]# su sqoop
[sqoop@sandbox root]$
```

Lab – prise en main de sqoop

Déposer la base sales_database.sql au répertoire suivant :

/home/sqoop/				
Nom	Taille	Date de modification	Droits	Propriét
L G		14/03/2016 15:49:37	rwxr-xr-x	root
sales_database.sql	205 KB	18/11/2018 14:49:36	rw-rr	root

Lab – prise en main de sqoop

☐ Création de la base et l'utilisateur de la base;

```
[sqoop@sandbox ~]$ mysql -t < sales_database.sql
 sqoop@sandbox ~]$ mysql
 Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 501
Server version: 5.1.73 Source distribution
Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 Pracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
 wners.
 Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> use Abortedb;
 sqoop@sandbox ~]$ mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 502
 Server version: 5.1.73 Source distribution
Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
 wners.
 ype 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql> use sales db;
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A
Database changed
mysql> create user sqoop_dba identified by 'sqoopdba';
ERROR 1396 (HY000): Operation CREATE USER failed for 'sqoop dba'@'%'
mysql> create user sales dba identified by 'salesdb';
 uery OK, 0 rows affected (0.00 sec)
```

Lab - prise en main de sqoop

☐ Importer la table customers de la base sales_db:

