This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):.

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES.
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

·		

Offenlegungssch Fit ® DE 44 04 411 A 1

DEUTSCHES PATENTAMT Aktenzeichen:

Anmeldetag: Offenlegungstag: P 44 04 411.9 11. 2.94

17. 8.95

(5) Int. Cl.6:

Щ

C 08 J 3/03

C 08 F 2/22 C 08 L 33/06 C 09 J 9/00 C 09 J 11/04 C 09 J 133/06 E 04 F 15/16 // C08L 31/02,25/00 33/18,27/00,9/00, C09J 131/02,125/00, 133/18,127/00,109/00

(71) Anmelder:

BASF AG, 67063 Ludwigshafen, DE

② Erfinder:

Fickeisen, Peter, 67246 Dirmstein, DE; Aydin, Oral, Dr., 68165 Mannheim, DE; Wistuba, Eckehardt, Dr., 67098 Bad Dürkheim, DE; Schwerzel, Thomas, Dr., 67149 Meckenheim, DE; Füssl, Rüdiger, 67435 Neustadt, DE; Urban, Dieter, Dr., 67346 Speyer, DE

(54) Dispersionsfußbodenkleber

Wäßrige Zusammensetzung, im wesentlichen frei von organischen Lösungsmitteln, Weichmachern mit zusätzlichen klebrigmachenden Harzen, enthaltend Wasser und 20-99 Gew.-% eines Polymeren und 1-80 Gew.-% eines Füllstoffs, wobei sich die Gewichtsprozente auf die Summe der Komponenten der wäßrigen Zusammensetzung mit Ausnahme von Wasser beziehen.

Beschreibung

Die Erfindung betrifft eine wäßrige Zusammensetzung, im wesentlichen frei von organischen Lösungsmitteln, Weichmachern mit zusätzlichen klebrigmachenden Harzen, enthaltend Wasser und

20-99 Gew.-% eines Polymeren mit einer Glasübergangstemperatur unter - 25°C und

1-80 Gew.-% eines Füllstoffs,

wobei sich die Gewichtsprozente auf die Summe der Bestandteile der wäßrigen Zusammensetzung mit Ausnahme von Wasser beziehen.

Des weiteren betrifft die Erfindung die Verwendung der wäßrigen Zusammensetzungen als Klebstoff, insbesondere als Fußbodenkleber.

Aus der EP-A 490 191 sind lösungsmittelfreie Fußbodenkleber auf Basis einer Acrylatdispersion bekannt. Die dort beschriebenen Fußbodenkleber enthalten zwingend ein klebrigmachendes Harz und einen Weichmacher.

Die DE-A 41 41 168 betrifft Kontaktkleberdispersionen von Vinylester-Acrylsäureestercopolymerisaten. Die Copolymerisate weisen eine Glasübergangstemperatur von -20 bis $+20^{\circ}$ C auf.

Grundsätzlich ist es erwünscht, daß Klebstoffe möglichst wenig Mischungskomponenten aufweisen, um ihre Herstellung zu erleichtern und Kosten zu senken. Insbesondere sollen Klebstoffe frei sein von Bestandteilen, die bei der späteren Verwendung aus der Verklebung entweichen und zu unerwünschten Emissionen führen können.

Bei den anwendungstechnischen Eigenschaften ist im besonderen eine gute Klebrigkeit, z. B. ein gutes Naßund Trockenanzugsvermögen, und eine gute Wärmestandfestigkeit der Verklebung erwünscht.

Aufgabe der vorliegenden Erfindung waren daher Klebstoffe, insbesondere Fußbodenkleber mit den voranstehend genannten Eigenschaften.

Demgemäß wurden die eingangs definierten wäßrigen Zubereitungen und ihre Verwendung als Klebstoffe gefunden.

Die wäßrigen Zusammensetzungen enthalten vorzugsweise

30 bis 70 Gew.-%, besonders bevorzugt 40 bis 60 Gew.-% eines Polymeren mit einer Glasübergangstemperatur unter – 25°C,

30 bis 70 Gew.-%, besonders bevorzugt 40 bis 60 Gew.-% eines Füllstoffs.

Die Gewichtsprozente beziehen sich dabei auf die Summe der Komponenten der wäßrigen Zusammensetzung mit Ausnahme von Wasser, d. h. im wesentlichen den Festgehalt der Zubereitung.

Bei dem Polymeren handelt es sich vorzugsweise um ein radikalisch polymerisiertes Polymer aus ethylenisch ungesättigten Monomeren.

Das Polymer kann z. B. aus C_1-C_{20} -Alkyl(meth)acrylaten, Vinylestern von bis zu 20 C-Atome enthaltenden Carbonsäuren, Vinylaromaten mit bis zu 20 C-Atomen, ethylenisch ungesättigten Nitrilen, Vinylhalogeniden, nicht aromatischen Kohlenwasserstoffen mit mindestens 2 konjugierten Doppelbindungen oder Mischungen dieser Monomeren aufgebaut sein.

Die vorstehend genannten Monomeren können z. B. zu 60 bis 100 Gew.-%, vorzugsweise 80 bis 100 Gew.-%, besonders bevorzugt 90 bis 99,8 Gew.-%, bezogen auf das Polymer, im Polymer enthalten sein.

Zu nennen sind z. B. (Meth)acrylsäurealkylester mit einem $\tilde{C}_1 - \tilde{C}_{10}$ -Alkylrest, wie Methylmethacrylat, Methylacrylat, n-Butylacrylat, Ethylacrylat und 2-Ethylhexylacrylat.

Insbesondere sind auch Mischungen der (Meth)acrylsäurealkylester geeignet.

Vinylester von Carbonsäuren mit 1 bis 20 C-Atomen sind z. B. Vinyllaurat, -stearat, Vinylpropionat, Versatic-säurevinylester und Vinylacetat.

Als vinylaromatische Verbindungen kommen Vinyltoluol, α1- θνδ π-Μετηυλστυρολ, α-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol und vorzugsweise Styrol in Betracht. Beispiele für Nitrile sind Acrylnitril und Methacrylnitril

Die Vinylhalogenide sind mit Chlor, Fluor oder Brom substituierte ethylenisch ungesättigte Verbindungen, bevorzugt Vinylchlorid und Vinylidenchlorid.

Als nicht aromatische Kohlenwasserstoffe mit 2 bis 8 C-Atomen und mindestens zwei olefinischen Doppelbindungen seien Butadien, Isopren, und Chloropren genannt.

Besonders bevorzugt sind (Meth)acrylsäureester und deren Mischungen.

Weitere Monome e, die z. B. von 0 bis 40 Gew.-%, vorzugsweise von 0 bis 20 Gew.-% und besonders bevorzugt von 0,2 bis 10 Gew.-% im Polymer enthalten sein können, sind insbesondere C₁—C₁₀-Hydroxyal-kyl(meth)acrylate, (Meth)acrylamid sowie dessen am Stickstoff mit C₁—C₄-Alkyl substituierten Derivate, ethylenisch ungesättigte Carbonsäuren, Dicarbonsäuren, deren Halbester und Anhydride, z. B. (Meth)acrylsäure, Maleinsäure, Fumarsäure, Maleinsäure- und Fumarsäurehalbester und Itaconsäure. Ganz besonders bevorzugt ist ein Gehalt von 0,2 bis 5 Gew.-% einer ethylenisch ungesättigten Carbonsäure.

Die Glasübergangstemperatur des Polymeren liegt unter -25° C, insbesondere zwischen -25° C und -60° C, besonders bevorzugt zwischen -30° C und -50° C.

Die Glasübergangstemperatur des Polymeren läßt sich nach üblichen Methoden wie Differentialthermoanalyse oder Differential Scanning Calorimetrie (s. z. B. ASTM 3418/82, sog. "midpoint temperature") bestimmen.

Das zahlenmittlere Molekulargewicht Mn des Polymeren ist vorzugsweise größer als 10 000, bevorzugt größer als 20 000, besonders bevorzugt größer als 30 000 und das gewichtsmittlere Molekulargewicht Mw ist vorzugsweise größer 250 000 (bestimmt durch Gelpermeationschromatographie mit Polystyrol als Standard an einer Polymerlösung in Tetrahydrofuran nach Sedimentation der unlöslichen Bestandteile).

Die Herstellung des Polymeren erfolgt durch radikalische Polymerisation. Geeignete Polymerisationsmethoden, wie Substanz-, Lösungs-, Suspensions- oder Emulsionspolymerisation sind dem Fachmann bekannt.

Vorzugsweise wird das Copolymerisat durch Lösungspolymerisation mit anschließender Dispergierung in Wasser oder besonders bevorzugt durch Emulsionspolymerisation hergestellt, so daß wäßrige Copolymerdis-

30

35

40

45

persionen entstehen.

Die Emulsionspolymerisation kann diskontinuierlich, mit oder ohne Verwendung von Saatlatices, unter Vorlage aller oder einzelner Bestandteile des Reaktionsgemisches, oder bevorzugt unter teilweiser Vorlage und Nachdosierung der oder einzelner Bestandteile des Reaktionsgemisches, oder nach dem Dosierverfahren ohne Vorlage durchgeführt werden.

Die Monomeren können bei der Emulsionspolymerisation wie üblich in Gegenwart eines wasserlöslichen Initiators und eines Emulgators bei vorzugsweise 30 bis 95°C polymerisiert werden.

Geeignete Initiatoren sind z. B. Natrium-, Kalium- und Ammoniumpersulfat, tert.-Butylhydroperoxide, wasserlösliche Azoverbindungen oder auch Redoxinitiatoren wie H_2O_2 /Ascorbinsäure.

Als Emulgatoren dienen z. B. Alkalisalze von längerkettigen Fettsäuren, Alkylsulfate, Alkylsulfonate, alkylierte Arylsulfonate oder alkylierte Biphenylethersulfonate. Des weiteren kommen als Emulgatoren Umsetzungsprodukte von Alkylenoxiden, insbesondere Ethylen- oder Propylenoxid mit Fettalkoholen, -säuren oder Phenol, bzw. Alkylphenolen in Betracht.

Im Falle von wäßrigen Sekundärdispersionen wird das Copolymerisat zunächst durch Lösungspolymerisation in einem organischen Lösungsmittel hergestellt und anschließend unter Zugabe von Salzbildnern, z. B. von Ammoniak zu Carbonsäuregruppen enthaltenden Copolymerisaten, in Wasser ohne Verwendung eines Emulgators oder Dispergierhilfsmittels dispergiert. Das organische Lösungsmittel kann abdestilliert werden. Die Herstellung von wäßrigen Sekundärdispersionen ist dem Fachmann bekannt und z. B. in der DE-A 37 20 860 beschrieben.

Zur Einstellung des Molekulargewichts können bei der Polymerisation Regler eingesetzt werden. Geeignet sind z. B. —SH enthaltende Verbindungen wie Mercaptoethanol, Mercaptopropanol, Thiophenol, Thioglycerin, Thioglykolsäureethylester, Thioglykolsäuremethylester und tert.-Dodecylmercaptan.

Der Feststoffgehalt der erhaltenen Polymerdispersionen beträgt vorzugsweise 40 bis 80, besonders bevorzugt 45 bis 75 Gew.-%. Hohe Polymerfeststoffgehalte können z. B. nach Verfahren, welche in der deutschen Patentanmeldung P 43 01 683.1 oder der EP 37 923 beschrieben sind, eingestellt werden.

Die wäßrige Zusammensetzung enthält neben dem Polymeren noch mindestens einen Füllstoff. Als solche in Betracht kommen z. B. feingemahlene oder gefällte Kreiden mit einem mittleren Teilchendurchmesser von im allgemeinen zwischen 2 und 50 μ m und/oder Quarzmehl mit einem üblichen mittleren Teilchendurchmesser von 3 bis 50 μ m.

Die Zusammensetzung kann weiterhin Netz- oder Dispergiermittel z. B. für die Füllstoffe, Verdicker und auch z. B. noch weitere übliche Zuschlagstoffe, wie Entschäumer und Konservierungsstoffe enthalten.

Netz- oder Dispergiermittel können z. B. in Mengen von 0 bis 5 Gew.-%, Verdicker in Mengen von 0 bis 10 Gew.-%, Konservierungsmittel in Mengen von 0 bis 1 Gew.-% und Entschäumer in Mengen von 0 bis 5 Gew.-% in der wäßrigen Zusammensetzung enthalten sein. Die Gewichtsangaben beziehen sich dabei auf die Summe aller Bestandteile der wäßrigen Zusammensetzung, mit Ausnahme von Wasser.

Die Zusammensetzung ist im wesentlichen frei, vorzugsweise frei von organischen Lösungsmitteln und Weichmachern wie z. B. Butylacetat, Toluol oder Phthalsäureester. Sie enthält daher im wesentlichen keine organischen Verbindungen mit einem Siedepunkt unterhalb 260°C bei Normaldruck (1 bar).

Die Zusammensetzung ist auch im wesentlichen frei von üblicherweise zusätzlich eingesetzten klebrigmachenden Harzen, wie Kolophoniumharzen.

Die Herstellung der wäßrigen Zusammensetzung kann in einfacher Weise dadurch erfolgen, daß der bei der Emulsionspolymerisation erhaltenen wäßrigen Polymerdispersion die Füllstoffe und gegebenenfalls weitere Additive unter Rühren zugesetzt werden.

Der Wassergehalt der fertigen Zubereitung liegt im allgemeinen bei 7 bis 50, insbesondere 10 bis 30 Gew.-%, bezogen auf die gesamte wäßrige Zubereitung.

45

55

60

65

Die wäßrige Zusammensetzung eignet sich insbesondere als Klebstoff zum Verkleben von Substraten aus Kunststoff, Holz, Metall, Textilien aus gewebten und oder ungewebten Fasern.

Ganz besonders eignet sich die wäßrige Zubereitung als Fußbodenkleber für Bodenbeläge z. B. aus PVC, in Ausführungen als Mehrschichtbeläge oder Homogenbeläge, Schaumstoffbeläge mit Textilunterseite, z. B. Jute, Polyestervlies, Gummibeläge, Textilbeläge mit unterschiedlicher Rückenausstattung, wie Polyurethanschaum, Styrol-Butadien-Schaum, textiler Zweitrücken, Nadelfilzbodenbeläge, Polyolefinbeläge oder Linoleumbeläge, auf Untergründen wie Holz, Estrich, Beton, keramische Fliesen, Metalluntergründe oder ähnliches.

Der Kleber kann z. B. mit einer Zahnleiste auf den Untergrund aufgetragen werden. Nach dem üblichen Ablüften wird der Bodenbelag eingelegt. Arbeitstechnisch ist der erfindungsgemäße Kleber den lösungsmittelhaltigen Kunstharzklebern und den klassischen Dispersionseinseitklebern gleichzusetzen. In der Verarbeitbarkeit ähnelt der neue Kleber lösungsmittelhaltigen Klebern. Die erfindungsgemäße Klebstoffzusammensetzung weist ein gutes Niveau von anwendungstechnischen Eigenschaften wie Schälfestigkeit, Scherfestigkeit, Naßanzugsvermögen und Trockenanfaßvermögen und eine hohe Wärmestandfestigkeit auf.

Die in den folgenden Beispielen angegebenen Teile und Prozente beziehen sich, wenn nichts anderes angegeben, auf das Gewicht.

Beispiele

Teile sind Gewichtsteile

Beispiel 1

In einem Reaktionsgefäß mit Rührer und Zulaufgefäßen werden 240 Teile Wasser, 1 Teil Ascorbinsäure und

1,5 Teile einer Saatdispersion (Herstellung siehe Beispiel 5) auf 85°C erhitzt. Nach Zugabe von 2,0 Teilen Natriumpersulfat beginnt man den über 3 Stunden gleichmäßigen Zulauf einer Emulsion aus 219 Teilen Wasser, 16 Teilen des Natriumsalzes eines sulfatierten Umsetzungsproduktes von Laurylalkohol mit 2,5 Mol Ethylenoxid, 1 Teil Ascorbinsäure, 4 Teilen Natriumhydroxid, 2 Teilen t-Dodecylmercaptan, 1660 Teilen Butylacrylat, 280 Teilen Ethylhexylacrylat, 50 Teilen Methacrylsäure und 10 Teilen Hydroxyethylacrylat. Gleichzeitig wird in einem separaten Zulauf eine Lösung von 8 g Natriumpersulfat in 200 g Wasser zugegeben. Anschließend wird der Inhalt des Reaktionsgefäßes noch 1 Stunde bei 85°C gehalten.

Nachbehandlung: Man kühlt auf 60°C und gibt während 1 Stunde gleichzeitig zwei Lösungen zu, die aus 2 Teilen t-Butylhydroperoxid in 18 Teilen Wasser und aus 2 Teilen Natriumdisulfit, 0,1 Teilen Eisen-II-sulfat·7

H₂O, 1,4 Teilen Aceton und 30 Teilen Wasser bestehen.

Anschließend wird der Inhalt des Reaktionsgefäßes noch 1/2 Stunde bei 60°C gehalten. Durch Zugabe von 10-%iger NaOH wird auf pH 7,0-7,5 gestellt.

Die Entfernung flüchtiger Verbindungen erfolgt im Vakuum (200 mbar) solange, bis die Summe der flüchtigen organischen Bestandteile kleiner, höchstens gleich 500 ppm sind, wobei man verdampftes Wasser durch neues Wasser ersetzt.

Die Glasübergangstemperatur des Polymeren betrug -43°C.

Beispiel 2

In einem Reaktionsgefäß mit Rührer und Zulaufgefäßen werden 225 Teile Wasser auf 85°C erhitzt. Es werden 12 Teile des Emulsionszulaufs und 30 Teile des Initiatorzulaufs zugegeben. 15 Minuten später beginnt der gleichmäßige Zulauf der Emulsion und der Initiatorlösung, wobei die Emulsion in 2 1/4 h und die Initiatorlösung in 3 h zugegeben wird.

Anschließend wird der Inhalt des Reaktionsgefäßes noch 1 Stunde bei 85°C gehalten.

Emulsionszulauf:

25

30

35

45

55

65

302 Teile Wasser

5,8 Teile Dowfax® 2A1 (verzweigtes C12-Alkyldiphenyletherdisulfonat-Na-salz)

1,2 Teile Natriumlaurylsulfat

1,3 Teile t-Dodecylmercaptan

9 Teile Acrylsäure

221 Teile VEOVA® 10 (Vinylester einer synthetischen Fettsäure der Kettenlösung C10, Neodecansäure)

478 Teile Butylacrylat

177 Teile Ethylhexylacrylat

17,7 Teile Ureidomethacrylat

70,8 Teile Methylmethacrylat.

Initiatorlösung:

150 Teile Wasser

40 2,5 Teile Natriumperoxodisulfat.

Nachbehandlung wie bei Beispiel 1.

Die Glasübergangstemperatur des Polymeren betrug - 26°C.

Beispiel 3

In einem Reaktionsgefäß mit Rührer und Zulaufgefäßen werden 240 Teile Wasser, 1 Teil Ascorbinsäure und 1,5 Teile einer Saatdispersion (Herstellung siehe Beispiel 5) auf 85°C erhitzt. Dann werden 20% der Initiatorlösung zugegeben und danach beginnt man mit der Zugabe der Emulsion und der Initiatorlösung, wobei 6% der Emulsion in 20 Minuten und der Rest der Emulsion in 3 Stunden zugegeben werden. Der Rest der Initiatorlösung wird gleichmäßig in 3,3 Stunden zugegeben.

Anschließend wird der Inhalt des Reaktionsgefäßes noch 1 Stunde bei 85°C gehalten.

Emulsionszulauf:

219 Teile Wasser

16 Teile des Na-Salzes eines sulfatierten Umsetzungsproduktes von Laurylalkohol mit 2,5 Mol Ethylenoxid

1 Teil Ascorbinsäure

4 Teile Natriumhydroxid

2 Teile Ethylhexylthioglykolat

60 1660 Teile Butylacrylat

280 Teile Ethylhexylacrylat

60 Teile Methacrylsäure.

Initiatorzulauf:

250 Teile Wasser

10 Teile Natriumperoxodisulfat.

Nachbehandlung wie bei Beispiel 1.

DE 44 04 411 A1

Die Glasübergangstemperatur des Polymeren betrug -43°C.

Beispiel 4

Die Durchführung entsprach Beispiel 2., jedoch wurden 13 Teile des Emulsionszulaufs und 25 Teile der Initiatorlösung zugegeben.	5
Emulsionszulauf: 260 Teile Wasser 7 Teile des Na-Salzes eines sulfatierten Umsetzungsproduktes von Laurylalkohol mit 2,5 Mol Ethylenoxid 1,5 Teile Natriumlaurylsulfat 1 Teil Mercaptopropyltrimethoxysilan 1,5 Teile t-Dodecylmercaptan 10 Teile Acrylsäure 133 Teile Methylmethacrylat 307 Teile Ethylhexylacrylat	10
552 Teile Butylacrylat.	
Die Glasübergangstemperatur des Polymeren betrug - 32°C.	20
Beispiel 5	
Herstellung wäßriger Polymerisatausgangsdispersion, ausgehend von der Dispersion aus Beispiel 6 als Saat- dispersion für Beispiele 1 und 3	25
ADI ₁ : Ein Gemisch aus 35 kg Wasser	
0,025 kg Ascorbinsäure 1,00 kg Dispersion aus Beispiel 6 und 1,55 kg Zulauf I	30
wurde auf 85°C erwärmt und anschließend auf einmal mit 0,825 kg Zulauf II versetzt. Die einsetzende Polymerisation wurde unter Aufrechterhalten der 85°C während 10 min sich selbst überlassen. Im Anschluß daran wurden unter Aufrechterhalten der 85°C die Restmenge des Zulauf I (innerhalb von 3 h) und die Restmenge des Zulauf II (innerhalb von 4 h) dem Polymerisationsgemisch zeitgleich beginnend kontinuierlich zugeführt. Anschließend wurde noch 1 h nachgerührt.	35
Zulauf I: 49 kg n-Butylacrylat 1 kg Methacrylsäure 1,79 kg einer 28-gew%igen wäßrigen Lösung des Natriumsalzes des Schwefelsäurehalbesters von ethoxyliertem C ₁₂ -Fettalkohol (EO-Grad: 25) = Emulgatorlösung 1 0,4 kg einer 25-gew%igen wäßrigen Natriumhydroxidlösung und 25,2 kg Wasser.	40
Zulauf II:	45
8 kg Wasser 0,25 kg Natriumperoxodissulfat.	
Es wurde eine wäßrige Polymerisatausgangsdispersion ADI1 erhalten, die wie folgt charakterisiert war:	50
Feststoffgehalt: 40,5 Gew% dw,11: 219 nm.	
Beispiel 6	55
Herstellung einer wäßrigen Polymerisatausgangsdispersion	
Ein Gemisch aus 1,44 kg n-Butylacrylat 16,28 kg Wasser 1,27 kg einer 45-gew%igen Dowfax 2A1 entsprechenden grenzflächenaktiven Substanz 0,52 kg einer 30-gew%igen wäßrigen Wasserstoffperoxidlösung	60
wurde bei 25°C mit 25 Gew% des Zulaufs II auf einmal versetzt. Nachdem sich das Gemisch durch die einsetzende exotherme Polymerisation auf 50°C erwärmt hatte (nach ca. 10 min) wurden unter Aufrechterhalten der 50°C zeitgleich beginnend die Restmenge des Zulauf II (innerhalb von 3 h) und der Zulauf I (innerhalb von 2 h) bei 60°C nachgerührt.	65

44 04 411

Zulauf I: 47,0 kg Wasser

14,7 kg n-Butylacrylat

14,7 kg Methylmethacrylat

0,60 kg Methacrylsäure

0,664 kg einer 45-gew.-%igen wäßrigen Lösung der Dowfax 2A1 entsprechenden grenzflächenaktiven Sub-

Zulauf II:

10 kg Wasser 10

0, 156 kg Ascorbinsäure

0,004 kg Eisen(II)-sulfat.

Es wurde eine wäßrige Polymerisatausgangsdispersion erhalten, die wie folgt charakterisiert war:

Feststoffgehalt: 30 Gew.-%

dw: 40 nm

25

30

35

40

45

15

Anwendungsbeispiele 1A bis 4A und Vergleichsbeispiel

Beispiel 1A

In 696 Gew.-Teilen der 71,8-%igen Polymerdispersion aus Beispiel 1 werden 500 Gew.-Teile Kreide (*Ulmer weiß x M) eingearbeitet, indem die Kreide portionsweise unter Rühren der vorgelegten Dispersion zugegeben wird. Nach 24 Stunden Reifezeit des Klebers wird das Naßanzugs- und Trockenanzugsvermögen bestimmt (siehe Anlage: Prüfmethode). Die Ergebnisse sind in Tabelle 1 zusammengestellt.

Beispiel 2A

In 923 Gew.-Teilen der 54,2-%igen Polymerdispersion aus Beispiel 2 wurden 500 Gew.-Teile Kreide eingearbeitet. Die Prüfergebnisse sind in Tabelle 1 zusammengestellt.

Beispiel 3A

In 700 Gew.-Teilen der 71,4-%igen Polymerdispersion aus Beispiel 3 werden 500 g Kreide eingerührt. Prüfergebnisse siehe Tabelle 1.

Beispiel 4A

In 792 Gew.-Teilen der 63,1-%igen Polymerdispersion aus Beispiel 4 wurden, nachdem die Dispersion mit 10-%iger Natronlauge auf pH 8 gestellt wurde, 500 g Kreide eingearbeitet. Prüfergebnisse siehe Tabelle 1.

50

55

60

5

10

15

20

30

35

40

45

50

55

60

65

Tabelle 1: Naß- und Trockenanzugsvermögen der Fußbodenkleber

		1A	2A	3A	4A
Naßanzu	gsvermögen [N/5 cm]		*		
nach	10 min	18	4	10	4
	20 min	45	16	32	23
	30 min	55	42	50	40
Trocken	anzùgsvermögen [N/5 cm]		·············		
nach	10 min	5	1	4	2
	20 min	35	3	45	27
	30 min	45	33	60	37
	45 min	45	28	48	25

Vergleichsbeispiel

Zum Vergleich wurde auch ein herkömmlicher Bodenbelagklebstoff mit folgender Zusammensetzung geprüft:

35,0 Teile Acronal® V 302; pH-Wert = 7,5, einem Polymeren auf Basis von Acrylsäureestern mit einer Tg von -20°C

- 0,5 Teile Emulphor® OPS 25, einem Emulgator
- 0,2 Teile Lumiten® EL, einem Entschäumer
- 8,5 Teile Latekoll® D 2-%ig, einem Verdicker
- 2,0 Teile Plastilit® 3431, einem Weichmacher (Monophenylglykolether)
- 20,0 Teile Harzschmelze (80 Teile Kolophoniumharz und 20 Teile Plastilit 3431)
- 33,8 Teile Calzit (Calziumcarbonat).

Ergebnisse

Naßanzug	gsverm	igen	[N/5	cm]	
nach	10	min			3
	20	min			12
	30	min			28
Trockena	nzugsv	/ermc	gen	[N/5	cm]
nach	10	min			18
	30	min			30
	45	min			34

Beschreibung der Prüfmethoden

Naßanzugsvermögen

Der Klebstoff wird mit einem DIN-Rakel auf eine Zementfaserplatte (z. B. Eternit® 2000) (20 × 50 cm) in Abzugsrichtung aufgetragen. Auftragsmenge ca. 350-400 g/m². Nadelfilzbeläge (NBB Streifen) werden nach 10 Minuten Ablüften in das Kleberbett eingelegt und mit einer 2,5 kg Walze durch 3-mal Hin- und Herrollen angepreßt. In den angegebenen Zeitabständen werden die Beläge mit einem Abzugsgerät abgezogen und dabei die Zunahme des Abschälwiderstandes in N 5 cm bestimmt.

Trockenanzugsvermögen

Der Klebstoff wird mit DIN-Rakel auf eine Zementfaserplatte (z. B. Eternit® 2000) (20 × 50 cm) in Abzugsrichtung aufgetragen. Auftragsmenge ca. 250—300 mg/m². PVC Streifen (Pegulan® B1) werden nach unterschiedlicher Ablüftzeit in das Kleberbett eingelegt und mit einer 2,5 kg Walze durch Hin- und Herrollen (3 ×) angepreßt. Anschließend werden die Streifen mit einem Abzugsgerät abgezogen und der Abschälwiderstand in

N 5 cm bestimmt.

Patentansprüche

5	1. Wäßrige Zusammensetzung, im wesentlichen frei von organischen Lösungsmitteln, Weichmachern und zusätzlichen klebrigmachenden Harzen, enthaltend Wasser und 20-99 Gew% eines Polymeren mit einer Glasübergangstemperatur unter -25°C und 1-80 Gew% eines Föllstoffs,
10	wobei sich die Gewichtsprozente auf die Summe der Bestandteile der wäßrigen Zusammensetzung mit Ausnahme von Wasser beziehen. 2. Wäßrige Zusammensetzung gemäß Anspruch 1, wobei das Polymere in Form einer 45- bis 75-gew%igen wäßrigen Dispersion vorliegt. 3. Wäßrige Zusammensetzung gemäß Anspruch 1 oder 2, wobei die Glasübergangstemperatur des Polymeren unterhalb von -30°C liegt.
15	 Wäßrige Zusammensetzung gemäß einem der Ansprüche 1 bis 3, wobei das Polymer zu 60 bis 100 Gew% aus C₁ - C₂₀-Alkyl(meth)acrylaten besteht. Wäßrige Zusammensetzung gemäß einem der Ansprüche 1 bis 4, wobei das zahlenmittlere Molekulargewicht Mn der Polymeren größer 20 000 ist.
20	6. Wäßrige Zusammensetzung gemäß einem der Ansprüche 1 bis 5, enthaltend 40 bis 80 Gew% eines Füllstoffs. 7. Verwendung von wäßrigen Zusammensetzungen gemäß einem der Ansprüche 1 bis 6 als Klebstoff. 8. Verwendung von wäßrigen Zusammensetzungen gemäß einem der Ansprüche 1 bis 6 als Fußbodenkleber. 8. Mit singer wäßsigen Zusammensetzung gemäß einem der Ansprüche 1 bis 6 beschichtete Substrate.
25	9. Mit einer wäßrigen Zusammensetzung gemäß einem der Ansprüche 1 bis 6 beschichtete Substrate.
30	
35	
40	
45	
50	
55	
60	