מעגלים בוליאניים

הגדרה (מעגל בוליאני): תהי B קבוצה של פונקציות בוליאניות. מעגל בוליאני מעל B עם ביטי קלט x_1,\dots,x_n וביטי פלט y_1,\dots,y_m הוא גרף מכוון וחסר מעגלים שמקיים את התכונות הבאות: • כל צומת מסומן ע"י ביט קלט x_i, y_i או y_i או y_i או y_i שם דרגת פניסה y_i ודרגת יציאה y_i אם דרגת הכניסה של כל צומת המסומן ע"י y_i עם דרגת כניסה y_i ודרגת יציאה y_i או y_i או y_i לכל צומת המסומן בפונקציה y_i או y_i או דרגת הכניסה y_i כל צומת נכנסת מקבלת אינדקס.

של fan-out "חוטים". ה־שער שער המחסומן צומת צומת צומת בפונקציה נקרא הקרא המחסומן הוא דרגת היציאה המקסימלית. מעגלים עם fan-out=1 נקראים המעגל הוא דרגת היציאה המקסימלית. מעגלים עם "נוסחאות".

טענה: יש תהליך שהופך מעגל לנוסחה, אבל צריך כמה עותקים של הקלטים. (\neg, \land, \lor) טענה: כל $f: \{0,1\}^n \to \{0,1\}$

הגדרה (משפחה של מעגלים): c_n , $\mathcal{C}=\left\{c_n
ight\}_{n\in\mathbb{N}}$: מוגדר על קלטים באורך .n

 $x\in\{0,1\}^n$ ולכל $n\in\mathbb{N}$ אם לכל בכל $L\subseteq\{0,1\}^*$ ולכל מכריעה שפה כריעה $c_n(x)=1\iff x\in L$

הגדרה (גודל): גודל של מעגל הוא מספר השערים בו.

טענה (מתרגול): כל $f:\left\{ 0,1\right\} ^{n}
ightarrow \left\{ 0,1\right\}$ ניתנת לחישוב ע"י מעגל בגודל . $O\left(2^{n}\right)$

טענה (מתרגול): כל $f:\left\{0,1\right\}^n o \left\{0,1\right\}$ כל מעגל בגודל $f:\left\{0,0\right\}^n$ כל כל כל כל כל כל מענה ויינים ליינים ליינים באודל כל כל האישוב ע"י מעגל בגודל באודל הענה (מתרגול): כל כל האישוב ע"י מעגל בגודל באודל האישוב ע"י מעגל באודל האישוב באודל האודל האישוב באודל האודל האישוב באודל האישוב באודל האישוב באודל ה

טענה שאנון): עבור n גדול מספיק קיימות פונקציות עבור עבור $s < \frac{2^n}{10n}$ ע"י מעגלים בגודל מעגלים בגודל

אוטומטיים סופיים

 $A=(Q,\Sigma,\delta,q_0,F)$ הגדרה (אס"ד): אס"ד הוא חמישיה

קבוצה סופית של מצבים אלפאבית לפאבית אלפאבית סופית של מצבים סופית קבוצה לפאבית קבוצה לפאבית מצבים לפוקציית מעברים פונקצית מצב תחילי ק q_0 אלפאבים המעברים פונקצית

פונקציית המעברים המורחבת $\hat{\delta}:Q imes\Sigma^* o Q$ מוגדרת באינדוקציה: $\hat{\delta}\left(q,\varepsilon\right)=q,\ \hat{\delta}\left(q,x_1,\ldots,x_n\right)=\delta\left(\hat{\delta}\left(x_1,\ldots,x_{n-1}\right),x_n\right)$

 $s\in q,\;\;\delta\left(q,x_1,\ldots,x_n
ight)=\delta\left(\delta\left(x_1,\ldots,x_{n-1}
ight),x_n
ight)$ האוטומט <u>מקבל</u> מילה Σ^* אם

ייאוטומט <u>מקבע</u> מיכוד ב $x \in \mathbb{Z}$ אם $(q_0, x) \in \mathbb{Z}$ אותה. שפה נקראת <u>רגולרית</u> אם קיים אס"ד שמקבל אותה.

תכונות סגירות: • חיתוך • משלים • שרשור • חזקה • סגור $(L^* = \bigcup_{i \in \mathbb{N}} L^i)$

טענה (מתרגול): $\{w^R\mid w\in L\}$ אמ"מ רגולרית רגולרית רגולרית ומרגול):

טענה (מתרגול): בי רגולרית אז

רגולרית $\{w_1w_2\mid w_1,w_2\in\Sigma^*\wedge\exists\sigma\in\Sigma:w_1\sigma w_2\in L\}$

ענה (משיעורי הבית): λ רגולרית הבית): $\{x_1x_2...x_k \mid k\in\mathbb{N}, x_1,...,x_k\in\Sigma,\exists y_1,...,y_{2k}\in\Sigma: x_1y_1y_2,....,x_ky_{2k-1}y_{2k}\in L\}$

טענה (משיעורי הבית): L רגולרית אז $\{xy\mid yx\in L\}$

' טענה (משיעורי הבית): L רגולרית אז לכל $\{x \in \Sigma^* \mid \exists y \in L', xy \in L\}$

 $N=(Q,\Sigma,\delta,S,F)$ הגדרה (אסל"ד): אסל"ד הוא חמישיה

 $\delta:Q imes(\Sigma\cup\{arepsilon\}) o 2^Q$ ס אלפאבית של מצבים של מצבים אלפאבית פונקציית המעברים אפסילון מצבים מאבים מאבים מקבלים. $S\subseteq Q$ ס מצבים מאבים מקבלים: $\hat{\delta}:2^Q imes\Sigma^Q imes\Sigma^Q$ להיות:

 $E(q) = \{q' \in Q \mid \exists q_0, \dots, q_k \in Q. q_0 = q, \forall i. \delta(q_{i-1}, q_i) = \varepsilon, q_k = q'\}$

$$\hat{\delta}\left(Q',w\right) = \begin{cases} E\left(Q'\right) & w = \varepsilon \\ E\left(\bigcup_{r \in \hat{\delta}\left(Q'\right)} \delta\left(r,w_{n}\right)\right) & n = |w| \ge 1 \end{cases}$$

 $\hat{\delta}\left(S,x
ight)\cap F
eq\emptyset$ אם $x\in\Sigma^{*}$ מילה מילה מאסל"ד

 $L\left((r\cup s)^*\right)$

משפט: לכל אסל"ד קיים אס"ד כך ש־ $L\left(A\right)=L\left(B\right)$. (הוכחה: כל מצב מייצג קבוצה של מצבים)

 $a\in\Sigma,\ arepsilon,\ (R_1\cup R_2)\,,\ (R_1R_2)\,,\ (R^*)$ ביטויים רגולרים:

טענה: שפה רגולרית \iff קיים לה ביטוי רגולרי. $L\left(\left(r^*s^*\right)^*\right) = r,s$ מתרגול): לכל שני ביטווים רגולרים r,s מתקיים לכל שני ביטווים רגולרים

למת הניפוח: לכל שפה רגולרית $\mathcal L$ קיים $\ell>0$ כך שלכל xy עם $s\in\mathcal L$ עם למת הניפוח: לכל $xy|\leq \ell$ • |y|>0 • $i\geq 0$ לכל $xy^iz\in\mathcal L$ • : xyz אבל, לא כל שפה שמקיימת את למת הניפוח היא רגולרית. למשל,

 $\mathcal{L}=\left\{a^ib^nc^n\mid n\geq 0, i\geq 1
ight\}\cup \left\{b^nc^m\mid n, m\geq 0
ight\}$.xz $\in\mathcal{L}\iff yz\in\mathcal{L}$,z $\in\Sigma^*$ אם לכל

 $\mathbb{R}^{\mathcal{L}}$ אז, \mathcal{L} רגולרית \iff יש כמות סופית של מחלקות שקילות ב־

 $\mathcal{L} \in Size\left(O\left(n
ight)
ight)$ משפט: \mathcal{L} רגולרית אז מכונות מכונות טיורינג וכריעות

 $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$ הגדרה (מכונת טיורינג): מכונת טיורינג היא שביעייה

קבוצת מצבים סופית פ0אלפאבית סרט, Γ יש, אלפאבית סופית פופית Qס קבוצת מצבים סופית קלט, $\delta:(Q\setminus\{q_a,q_r\})\times\Gamma\to Q\times\Gamma\times\{L,R\}$ פונקציית מעברים מעברים

 $q_r \neq q_a$ מצב חחלתי, $q_a \in Q$ מצב מקבל, $q_a \in Q$ מצב התחלתי, $q_a \in Q$ מצב התחלתיים מטל"ד היא שביעייה מטל"ד: מ"ט לא דטרמיניסטית־ מטל"ד היא שביעייה $(Q, \Sigma, \Gamma, \delta, q_0, q_a, q_r)$

קבוצת מצבים סופית סופית סרט, Γ אלפאבית סרט, Σ קבוצת מצבים סופית Q אלפאבית מעברים $\delta:(Q\setminus\{q_a,q_r\})\times\Gamma\to 2^{Q\times\Gamma\times\{L,R\}}$ סיך קלט, Q מצב דוחה Q מצב התחלתי, Q מצב מקבל, Q מצב המודלים של מ"ט ומטל"ד שקולים. הרעיון: לסרוק את עץ החישוב ולבדוק האם עלה כלשהו מקבל.

הגדרה (קונפיגורציה): קונפיגורציה מייצגת את המצב של מ"ט ברגע מסוים. למשל 10110111 אומר שהתוכן של הסרט הוא 10110111, שהמצב הוא q_7 , ושהמ"ט נמצאת בתא החמישי של הסרט (על 0). הקונפיגורציה ההתחלית עבור קלט w היא w0.

הגדרה: M מקבלת/דוחה קלט Σ^* אם קיימת סדרת מקבלת. c_t יי, c_t עוברת ל c_t י, כך ש־ c_t עוברת ל c_t י, את כל המילים ש־ c_t מקבלת. ונסמן ב־ C_t את כל המילים ש־ C_t מקבלת/דוחה, ונסמן ב־ C_t

הגדרה (\mathcal{R}): שפה \mathcal{L} כריעה אם קיימת מ"ט שעוצרת לכל קלט x, ומקבלת הגדרה (x): אוסף השפות הכריעות. $x \in \mathcal{L} \Longleftrightarrow \mathcal{L}$

 \iff מ"ט שמקבלת מ"ט בפה \mathcal{L} כריעה למחצה אם היימת מ"ט שמקבלת כריעות למחצה. אוסף השפות הכריעות למחצה. \mathcal{RE} . $x \in \mathcal{L}$

:אם: $L\subseteq \Sigma^*$ אם: הינה מונה עבור E מ"ט

עלים של סרט פלט לכתיבה חד פעמית הא"ב של סרט הפלט הפלט הא"ב של יש סרט פלט לכתיבה חד בפלט המחרוזת $x\in\mathcal{L}$ הקלט הריק: לכל בריצה על הקלט הריק: לכל בריצה אז x לא תופיע. בריצה אז x לא תופיע. $x\notin\mathcal{L}$

 $\mathcal{R} = \mathcal{RE} \cap co\mathcal{RE}$ טענה:

.
< 100 משפט: קיימת מ"ט שמסמלצת מכונות טיורינג ויש לה מספר מצבים איימת משפט: קיימת שפה
 $|\mathcal{RE}| \leq |\mathrm{TMs}| \leq \aleph_0$ כי כי $\mathcal{L} \subseteq \{0,1\}^*$ ו־
י $|\mathcal{L}| = \aleph$.

הוכחה ש־ACC נניח בשלילה שמ"ט A מכריעה את ACC. נשתמש A נניח בשלילה שמ"ט A דוחה Flip ($\langle M \rangle$) מקבלת ואם A ב־A ונבנה מ"ט חדשה: Flip ($\langle Flip \rangle$) אם A דוחה אבל, A ($\langle Flip \rangle \rangle$) מקבלת A דוחה. אבל, A ווער האבל, דוחה לא מקבלת. סתירה.

 $.f:D o \Gamma^*\setminus \{\llcorner\}$, $D\subseteq \Sigma^*$ מ"ט, מ"ט, M יהיו יהיו (פונקציה חשיבה): יהיו אם לכל קלט M עוצרת ובסוף הריצה כתוב על הסרט M

רדוקציית מיפוי היו A ל־B ל-B ל-B. רדוקציית מיפוי היו $A,B\subseteq \Sigma^*$ היא פונקציה חשיבה $f:\Sigma^*\to \Sigma^*$ כך שלכל כך שלכל $f:\Sigma^*\to \Sigma^*$, ונסמן $A\le_m B$ אז,

 $A \in co\mathcal{RE} \iff A \in \mathcal{RE} \iff B \in \mathcal{RE} \bullet A \in \mathcal{R} \iff B \in \mathcal{RE} \bullet B \in \mathcal{RE} \bullet B \in \mathcal{RE}$

משפט רייס: יהיו $\mathcal{C}\subseteq\mathcal{RE}$ אוסף שפות כך ש־ $\mathcal{C}\in\mathcal{RE}$. אז: $\mathcal{L}_{\mathcal{C}}=\{\langle M
angle\mid \mathcal{L}(M)\in\mathcal{C},M \text{ is a TM}\}\notin\mathcal{R}$

 $\emptyset \in \mathcal{C} \subsetneq \mathcal{RE}$:2 הרחבה $\mathcal{L}_{\mathcal{C}} \notin co\mathcal{RE}$ אז $\emptyset \subsetneq \mathcal{C} \subseteq \mathcal{RE} \setminus \{\emptyset\}$:1 הרחבה :4 אז $\mathcal{L}_{\mathcal{C}} \notin \mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin \mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin \mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin co\mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin co\mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin co\mathcal{RE}$ אז $\mathcal{L}_{\mathcal{C}} \notin co\mathcal{RE}$

v . $\mathcal{L}\subseteq \Sigma^*$ ותהי $\Sigma\cup\{,\}$ ותהי Σ מוודא עבור $\Sigma\cup\{,\}$ ותהי Σ מוודא עבור Σ אם:

לכל (גאותו: לכל $x\in\mathcal{L}$ קיים $w\in\Sigma^*$ כך ש־ $v\left(x,w\right)$ מקבל א קיים $x\in\mathcal{L}$ לכל א פאלמות: לכל $x\notin\mathcal{L}$ דוחה. ע נקראת עד. $x\notin\mathcal{L}$

טענה: $\mathcal{L} \in RE$ ל־ל $\mathcal{L} \in RE$

סיבוכיות זמן

הגדרה (זמן ריצה): תהי $M \to \overline{M}$, $T: \overline{\mathbb{N}} \to \mathbb{N}$ הבזעת הגדרה (זמן ריצה): תהי תהי עוצרת עבור קלט באורך T לפני שהיא עוצרת עבור קלט באורך

 $DTime(T(n)) = \{\mathcal{L}(M) \mid M \text{ runs in time } O(T(n))\}\$

משפט היררכיית הזמן: $\mathbb{N} \to \mathbb{N}$ חשיבה בזמן אם קיימת מ"ט T(n) חשיבה חשבת את חשיבת את $O\left(T(n)\right)$ בזמן בזמן החשבת את חשבת את חשיבת בזמן בזמן בזמן בזמן $t\left(n\right)$ שמקיימת $t\left(n\right)=o\left(T\left(N\right)\right)$ אז $O\left(T\left(n\right)\right)$ החשיבת בזמן ו־DTime $O\left(T\left(n\right)\right)$

T(n)רעיון הוכחה: מקבל קלט w מחשב את T(n) דוחה אם w של מהצורה $U\left(\langle M,w\rangle\right)$ או אם $T\left(n\right)$ מריץ $|\langle M\rangle|>\log T\left(n\right)$ או אם $\langle M,0^k\rangle$ (נותנים ל-Mבתור קלט את עצמה!). אם U עצרה וקיבלה, דוחה, $T\mathrm{Flip}$ מקבל. נשים לב שלכל מ"ט Mש־Flip הריץ עד הסוף, קדוף אחרת קלט שונה ממנה, ולכן הוא שונה מכל מ"ט כזו.

. רגולרית אם $\mathcal{L}\in\mathrm{DTime}\left(o\left(n\log n
ight)
ight)$ אז אז \mathcal{L}

דוגמה לזמן ריצה שונה במ"ט דו סרטית: השפה היא מחרוזת עם אותה כמות של אפסים ואחדים. $O\left(n\right)$ בדו סרטית (סרט שנעתיק אליו את כל האפסים, ואז נעבור על שניהם ונבדוק שכמות האחדים שווה לכמות האפסים), אבל $\Omega\left(n\log n\right)$ בחד סרטית (צריך לספור איכשהו).

 $n \leq$ משפט (סימולציה של רב־סרטית): מ"ט רב־סרטית בעלת אמן ריצה $O\left(T^2\left(n\right)\right)$ ניתנת לסימולציה ע"י מ"ט חד־סרטית בעלת אמן ריצה $T\left(n\right)$ משפט (סימולציה של חד־סרטית): קיימת מ"ט אוניברסלית U כך שלכל $M\left(x\right)$ אם $M\left(x\right)$ עוצרת תוך צעדים, אאי $U\left(\langle M,x \rangle\right)$ עוצרת תוך $O\left(\left|\langle M \rangle\right|^3 t \log t\right)$ צעדים.

הפער של $\log t$ נובע מהתקורה של סימולציה אוניברסלית על מ"ט חד־ ברטית. עבור מ"ט רב־סרטית ניתן לסמלץ בזמן לינארי.

הגדרה (זמן ריצה לא דטרמיניסטי): תהי $\mathbb{N} \to \mathbb{N}$ ו־N מטל"ד. N רצה בזמן (זמן ריצה לכל $n \in \mathbb{N}$ ולכל קלט t באורך t, עץ הקונפיגורציות t(n) בעומק לכל היותר t

NTime $(T(n)) = \{\mathcal{L}(N) \mid N \text{ runs in time } O(T(n))\}$

 $\mathsf{NP} = \bigcup_{c \in \mathbb{N}} \mathrm{NTime}\,(n^c)$, $\mathsf{P} = \bigcup_{c \in \mathbb{N}} \mathrm{DTime}\,(n^c)$ הגדרה:

 $\mathcal{L}\subseteq \Sigma^*$ ותהי $\Sigma\cup\{,\}$ ותהי מ"ט עם א"ב קלט תהי ותהי בולינומי): תהי עבור $\mathcal{L}\subseteq \Sigma^*$ אם: v

לכל שלמות: לכל $x\in\mathcal{L}$ קיים $w\in\Sigma^*$ קיים $w\in\Sigma^*$ קיים פולינום $p\left(n\right)$ מקבל פולינום $v\left(x,w\right)$ קיים פולינום $v\left(x,w\right)$ עלכל $x\notin\mathcal{L}$ ולכל $x\notin\mathcal{L}$ זמן הריצה של $v\left(x,w\right)$ לכל היותר $v\left(x,w\right)$ זמן הריצה של $v\left(x,w\right)$ לכל היותר $v\left(x,w\right)$

. טענה: איים מוודא פולינומי ל־ $\Longleftrightarrow~\mathcal{L}\in\mathsf{NP}$

 $A\subseteq$ הגדרה (רדוקציית מיפוי פולינומית): יהיו Σ_A,Σ_B אלפאביתים, Σ_A,Σ_B היא פונקציה $\Sigma_A^*,B\subseteq\Sigma_B^*$ רדוקציית מיפוי פולינומית מ־ $\Sigma_A^*,B\subseteq\Sigma_B^*$ חשיבה בזמן פולינומי כך שלכל $f:\Sigma_A^*\to\Sigma_B^*$. $A\le_p B$. $f(x)\in B$

 $A\in\mathsf{P}$ אז $B\in\mathsf{P}$ ר $A\leq_p B$ אם

 $A \in \mathsf{NP}$ אז $B \in \mathsf{NP}$ ו־ $A \leq_p B$ אם

 $D \in \mathsf{NDC} \longrightarrow A \in \mathsf{NDC} \oplus B \in \mathsf{NDC} \longrightarrow A \subseteq B \oplus A$

 $B\in\mathsf{NPC}$ אז $A\in\mathsf{NPC}$ אם $A\leq_p B$ ו־ $B\in\mathsf{NPC}$

 $ext{ACC}_{\mathsf{NP}} = \{\langle M,x,1^t \rangle \mid \exists w.M\,(x,w) \text{ accepts in time } t\}$. $ext{ACC}_{\mathsf{NP}} \in \mathsf{NPC}$

 $igwedge_{j\in[k]}c_i$ הינה מהצורה $\Phi\left(x_1,\ldots,x_n
ight)$ 3CNF הגדרה: כאשר $z_{i,j}\in$ מהצורה $c_i=(z_{i,1}\lor z_{i,2}\lor z_{i,3})$ מהצורה c_i כאשר $c_i=(z_{i,1}\lor z_{i,2}\lor z_{i,3})$ מהצורה $\{x_1,\ldots,x_n,\overline{x_1},\ldots,\overline{x_n}\}$

 $3{
m SAT}\in \$ משפט: $3{
m SAT}=\{\langle\Phi\rangle\ |\ \Phi \ {
m is\ satisfiable\ 3CNF}\}$.NPC

 $.t\left(n
ight)$ הלב של קוק־ליון: תהי M מ"ט הרצה בזמן ותהי M מ"ט הרצה בי0 קיימת פונקציה חשיבה בזמן 0 שבהנתן 0 שבהנתן 0 מחשבת (קידוד) מעגל המקיים: $\mathcal{C}_{m,n}:\left\{0,1\right\}^N o \left\{0,1\right\}$

 $|\mathcal{C}_{m,n}|=ullet \mathcal{C}_{m,n}(z)=1\iff m$ מקבלת M(z) , $z\in\{0,1\}^n$ לכל $O\left(t^2\left(n
ight)
ight)$ רעיון הוכחה: לבנות מעגל שמעביר מקונפיגורציה אחת לבאה $O\left(t^2\left(n
ight)
ight)$ נאל כאלה זה לזה.

מסקנה: אם $f:\{0,1\}^* \to \{0,1\}$ אינה ניתנת לחישוב ע"י משפחת מעגלים $\sqrt{s\left(n\right)}$ אז לא ניתנת לחישוב ע"י מ"ט בזמן $O\left(s\left(n\right)\right)$.

מסקנה: $3SAT \in \mathsf{NPC}$ מסקנה: $CIRSAT \in \mathsf{NPC}$ (רדוקציה מ־CIRSAT).

אקראיות בחישוב

הגדרה: מ"ט אקראית עם זמן ריצה $t\left(n\right)$ הינה מ"ט דו־סרטית: הסרט הראשון מאכלס בתחילת הריצה את הקלט x ומשמש בסרט עבודה. הסרט השני הינו "סרט אקראיות" ומאותחל בתחילת הריצת למחרוזת הסרט השני הינו "סרט אקראיות" מסמנת ריצה על קלט x עם אקראיות x עם אקראיות x עם אקראיות x עם אקראיות x בתור משתנה מקרי x בתור משתנה מקרי x

M אם קיימת מ"ט אקראית $\mathcal{L}\in\mathrm{RP}\left(lpha\left(n
ight)
ight), lpha\left(n
ight)\in\left[0,1
ight]$ אם הרצה בזמן פולינומי $p\left(n
ight)$ כך שלכל n מספיק גדול, ו־ $p\left(n
ight)$

 $\Pr_{r \leftarrow \{0,1\}^{p(n)}}\left[M\left(x;r\right)=1\right] \geq \alpha\left(n\right)$, $x \in \mathcal{L}$ אם •

 $\Pr_{r \leftarrow \{0,1\}^{p(n)}}\left[M\left(x;r
ight)=1
ight]=0$, $x
otin \mathcal{L}$ אם \bullet

(לעולם לא טועים עבור $\mathrm{coRP}=\left\{L\mid\overline{L}\in\mathrm{RP}\left(lpha\left(n
ight)
ight)
ight\}$ הגדרה: $\mathrm{coRP}=\mathrm{coRP}\left(1/2
ight)$, $\mathrm{RP}=\mathrm{RP}\left(1/2
ight)$

 n^{c+d} מריצים . $\mathrm{RP}\left(n^{-c}
ight)=\mathrm{RP}\left(1-2^{-n^d}
ight)$, $c,d\in\mathbb{N}$ טענה: לכל פעמים ומקבלים אם אחת הריצות קיבלה.

 $\mathsf{NP} = \bigcup_{c>0} \mathrm{RP}\left(2^{-n^c}\right)$ טענה:

אם קיימת $\mathcal{L}\in \mathrm{BPP}\left(lpha\left(n\right),eta\left(n\right)\right)$, $lpha\left(n\right),eta\left(n\right)\in\left[0,1\right]$ אם קיימת מ"ט אקראית M הרצה בזמן פולינומי $p\left(n\right)$ כך שלכל n גדול מספיק ור , $x\in\left\{0,1\right\}^n$

 $\Pr_{r\leftarrow\{0,1\}^{p(n)}}\left[M\left(x;r
ight)=1
ight]\geqeta\left(n
ight)$, $x\in\mathcal{L}$ אם •

 $\Pr_{r\leftarrow\{0,1\}^{p(n)}}\left[M\left(x;r
ight)=1
ight]\leqlpha\left(n
ight)$, $x
otin\mathcal{L}$ אם •

 $.coRP = BPP\left(\frac{1}{2},1\right)$ ו $RP = BPP\left(0,\frac{1}{2},\frac{1}{2}\right)$ ניתן לומר שי

BPP = BPP(1/3, 2/3) מוסכמה:

טענה: לכל $poly\left(n\right)$ חשיבה חשיבה $\alpha\left(n\right)$ ו־, $c,d\in\mathbb{N}$ לכל מספיק מספיק (מ $(n)-n^{-c},\alpha\left(n\right)+n^{-c}\right)\subseteq\left[0,1\right]$ מספיק

BPP
$$(\alpha(n) - n^{-c}, \alpha(n) + n^{-c}) \subseteq BPP(2^{-n^d}, 1 - 2^{-n^d})$$

עם שערי (ז fan-out מעגל עם (מעגל היא נוסחה אריתמטית אריתמטית $+, \times, 0, 1$

 $ZE_{\mathbb F}=\{\langle\phi\rangle: \forall x\in\mathbb F. \phi\ (x)=0 \land \phi \ {\rm is\ AF}\}$ הגדרה: עבור שדה עבור עבור בת הער הא למה (שוורץ-זיפל): יהי ווה ער $p\in\mathbb F\left[x_1,...,x_n\right]$ יהי יהי אם לכל הוא לכל אז לכל תת קבוצה סופית מתקיים כי

$$\Pr_{(x_1,...,x_n) \leftarrow S^n} \left[P(x_1,...,x_n) = 0 \right] \le \frac{d}{|S|}$$

 $ZE_{\mathbb{F}}\in\mathsf{BPP}$ משפט:

משפטים בהסתברות:

a>0 אי לכל אזי תוחלת מקרי מקרי משתנה משתנה אי יהי אי שוויון מרקוב: יהי

$$\Pr\left[|X| \ge a\right] \le \frac{E\left(|X|\right)}{a}$$

C>0 אי לכל אזי בעל תוחלת מקרי משתנה משתנה אי יהי צ'בישב: יהי

$$\Pr\left[\left|X - E\left(X\right)\right| \ge C\right] \le \frac{Var\left(X\right)}{C^2}$$

תוחלת עם ברנולי ב"ת משתני ברנולי היהיו אי אי שוויון אירנוף־הופדינג: יהיו יהיו אי: $E\left[A_{i}\right]=p$ זהה

$$\Pr\left[\left|p - \frac{1}{s} \sum_{i=1}^{s} A_i\right| \ge \delta\right] \le 2^{-\Omega(\delta^2 s)}$$

אי שוויון קולמגורוב: יהיו $X_1,...,X_N$ משתנים מקריים ב"ת עם תוחלת אפס והשונות של כולם סופית. נסמן $S_k=\sum_{i=1}^k X_k$ אזי לכל סופית:

$$\Pr\left[\max_{1 \le k \le n} |S_k| \ge \lambda\right] \le \frac{1}{\lambda^2} Var\left(S_n\right) = \frac{1}{\lambda^2} \sum_{i=1}^k Var\left(X_k\right)$$

סיבוכיות מקום

המודל: סרט קלט - לקריאה בלבד, אפשר לעבור עליו לשני הכיוונים. סרט עבודה: קריאה/כתיבה, אפשר לעבור עליו לשני הכיוונים, מקום מוגבל. סרט פלט: כתיבה חד פעמית, אפשר לעבור עליו רק בכיוון אחד.

M ,n באורך, x ולכל קלט $n\in\mathbb{N}$ אם לכל $s\left(n\right)$ אם באורך אורך מאמר ש־ משתמשת בלכל היותר $s\left(n
ight)$ תאים על סרט העבודה בטרם עוצרת (בפרט תמיד עוצרת).

DSpace $(s(n)) = \{\mathcal{L}(M) \mid M \text{ is a TM, space } O(s(n))\}$ הגדרה: $\mathsf{PSPACE} = \bigcup_{c \in \mathbb{N}} \mathsf{DSpace}(n^c)$

L = LOGSPACE = DSpace(log(n))

 $DSpace(O(1)) = DSpace(o(\log\log(n))) = \{\mathcal{L} \mid \mathcal{L} \text{ is regular}\}\$.DSpace $(s(n)) \subseteq \mathrm{DTime}\left(2^{O(s(n))}\right)$ אז $s(n) \geq \log(n)$ טענה: תהי $\mathsf{L} \subseteq \mathsf{P}$ בפרט

(רעיון: מספר הקונפיגורציות אליהן $M\left(x\right)$ יכולה להגיע חסום)

הגדרה: $s:\mathbb{N} o \mathbb{N}$ הינה פונקציה חשיבה במקום אם קיימת מ"ט שבהנתן $O\left(s\left(n
ight)
ight)$ במקום מחשבת את הקידוד הבינארי של 1^{n}

תהי $\log\left(n
ight) \leq s\left(n
ight)$ פונקציה חשיבה במקום, .DSpace $(o(s(n))) \subseteq D$ Space (s(n))

 $L \subseteq P$ ולכן לפחות אחד מהבאים נכון: 1. $L \subseteq P$ בסקנה: $P \subseteq PSPACE$

רדוקציית מיפוי . $B\subseteq \Sigma_B^*$, $A\subseteq \Sigma_A^*$ אפלאבתים, אפלאבתיה יהיו הגדרה: יהיו במקום חשיבה $f:\Sigma_A^* o \Sigma_B^*$ היא פונקציה Bל-ל חשיבה לוגריתמי $A \leq_L B$: סימון: $f\left(x
ight) \in B \iff x \in A$ א $x \in \Sigma_A$ לוגריתמי כך שלכל $A \in \mathsf{L}$ אז $B \in \mathsf{L}$ ר $A \leq_L B$ אם

 $A \leq_L C$ אז $B \leq_L C$ ר $A \leq_L B$ אם

 $m_{f}\left(n
ight)$ אינה: יהיו בהתאמה $s_{f}\left(n
ight),s_{g}\left(n
ight)$ במקום חשיבות f,gיהיו יהיו חסם על אורך הפלט של f, אז $g\left(f
ight)$ ניתנת לחישוב במקום $O\left(s_{f}\left(n\right) + \log m_{f}\left(n\right) + s_{g}\left(m_{f}\left(n\right)\right)\right)$

 $\mathcal{L}\in\mathsf{P}$ לכל \bullet $\mathcal{L}_0\in\mathsf{P}$ סלכה אם: \bullet P שפה רשלמה): שפה P שפה רכל פעיה $\mathcal{L} \leq_l \mathcal{L}_0$

טענה: CVAL (מעגל בוליאני עם ערך 1) בעיה P טענה: מחדש: תהי M מ"ט פולינומית. קיימת פונ' חשיבה במקום לוגריתמי שבהנתן $z \in \left\{0,1
ight\}^n$ כך שלכל $\mathcal{C}_{m,n}: \left\{0,1
ight\}^n
ightarrow \left\{0,1
ight\}$ מחשבת (קידוד) מעגל 1^n $\mathcal{C}_{m,n}\left(z
ight)=1\iff M\left(z
ight)$ מקבלת $M\left(z
ight)$

מטל"ד $s:\mathbb{N} o \mathbb{N}$ מטל" מקום לא־דטרמיניסטית): תהי $s:\mathbb{N} o \mathbb{N}$ תלת־סרטית עם סרט אם במקום רצה במקום חרט היט סרט ולכל אם ולכל הא $s\left(n\right)$ רצה רצה אם חרט חרטית עם חרט חר $s\left(n
ight)$ באורך n, ובכל ענף בעץ החישוב $T_{M.x}$ משתמשת בלכל היותר xתאים על סרט העבודה בטרם עוצרת (תמיד עוצרת).

 $NSpace(s(n)) = \{\mathcal{L}(N) \mid N \text{ runs in space } O(s(n))\}$ הגדרה: NL = NSpace(log(n)) הגדרה:

ullet מ"ט v מ"ט מוודא במקום לוגריתמי עבור שפה אם מ מ"ט v מ"ט הגדרה: vסרט קלט לקריאה בלבד • <u>סרט עד לקריאה חד פעמית</u> • סרט עבודה. לכל עד וכל x באורך v ,v משתמש בלכל היותר $O(\log{(n)})$ תאים בסרט העבודה ו־ $v\left(x;w\right)$ מקבל. w קיים עד w כך ש־ $x\in A$ מקבל.

A סענה: $A \in \mathsf{NL}$ קיים מוודא במקום לוגריתמי

 $A\in\mathsf{NL}$ לכל \bullet $A_0\in\mathsf{NL}$ שלמה אם: \bullet NL A_0 לכל \bullet $A \leq_L A_0$

 $A\in\mathsf{NL}$ כי אם $\mathsf{NL}\subset\mathsf{P}$ שלמה. בנוסף STCON בעיה $A \in \mathsf{P}$, $\mathsf{STCON} \in \mathsf{P}$ ובגלל שי $A \leq_p \mathsf{STCON}$ ולכן $A \leq_L \mathsf{STCON}$ $\operatorname{STCON} \in \operatorname{DSpace}\left(\log^2 n\right)$ משפט (סאביץ'):

 (v^-) מ"ע ל $\ell \geq 1$ מסלול באורך (האם קיים מסלול $\operatorname{Reach}(G,u,v,\ell)$

 $(u,v)\in E\iff \ell=1$ נקבל.

 $\operatorname{Reach}(G,w,v,\lfloor \ell/2 \rfloor)$ ו Reach $(G,u,w,\lceil \ell/2 \rceil)$ נחשב, $w \in V$ כל לכל. .3 נקבל אם שניהם קיבלו עבור w כלשהו אחר נדחה.

.NL \subseteq DSpace $(\log^2 n)$ באופן כללי יותר גם $.\underline{\mathsf{PSPACE}} = \mathsf{NPSPACE}$ ובפרט $\mathsf{NSpace}(s(n)) \subseteq \mathsf{DSpace}(s^2(n))$

 $\mathrm{NL}=\mathrm{coNL}$ (כלומר, $\overline{\mathrm{STCON}}\in\mathrm{NL}$ (כלומר,).

בעיות $f\left(x
ight)\in B\iff x\in A$ פונקציה חשיבה במקום לוגריתמי, $A\leq_{L}B$ $A \in \mathsf{L}$ אז $B \in \mathsf{L}$ ר $A \leq_L B$ אם

 $A \leq_L C$ אז $B \leq_L C$ ר $A \leq_L B$ אם

 $f\left(x
ight)\in B\iff x\in A$, פונקציה חשיבה בזמן פולינומי. $A\leq_{p}B$ $A \in \mathsf{P}$ אז $B \in \mathsf{P}$ ר ו־ $A \leq_p B$ אם

 $A \in \mathsf{NP}$ אז $B \in \mathsf{NP}$ ו ר $A \leq_p B$

 $B \in \mathsf{NPC}$ אז $A \in \mathsf{NPC}$ אם $B \in \mathsf{NPT}$ ו־ $A \leq_p B$

 $\mathcal{L} \leq_p \mathcal{L}_0$, $\mathcal{L} \in \mathsf{NP}$ לכל • לכל • NP • שלמה אם: • NP \mathcal{L}_0 (NPC) הגדרה $\mathcal{L} \leq_L \mathcal{L}_0$, $\mathcal{L} \in \mathsf{P}$ לכל \bullet לכל \bullet רבישלמה אם: \bullet P שלמה אם: \bullet רבישלמה \bullet

 $\mathcal{L} \leq_L A_0$, $\mathcal{L} \in \mathsf{NL}$ לכל • לכל • NL שלמה אם: NL \mathcal{L}_0 :(NLC) הגדרה מקבלת $M\left(x\right)$ ש־ל
 $\left\langle M,x\right\rangle$ $\mathcal{RE}\setminus\mathcal{R}$

עוצרת $M\left(x ight)$ כך ש־ $\left\langle M,x ight angle$	$\mathcal{RE}\setminus\mathcal{R}$	$_{ m HALT}$
עוצרת על אפּסילון $M\left(x ight)$ כך ש־ $\left\langle M ight angle$	$\mathcal{RE}\setminus\mathcal{R}$	HALT_{ϵ}
כך ש־ $\mathcal{L}\left(M ight)$ כך ש־ $\left\langle M ight angle$	$co\mathcal{RE}\setminus\mathcal{R}$	EMPTY
Σ^* כך ש־ $\mathcal{L}\left(M ight)$ היא $\langle M angle$	$\overline{\mathcal{RE} \cup co\mathcal{RE}}$	ALL
כך ש־ $\mathcal{L}\left(M ight)$ כך ש־ $\left\langle M ight angle$	$\overline{\mathcal{RE} \cup co\mathcal{RE}}$	REG
$\mathcal{L}\left(M_{1} ight)=\mathcal{L}\left(M_{2} ight)$ כך ש־ $\left\langle M_{1},M_{2} ight angle$	$\overline{\mathcal{RE} \cup co\mathcal{RE}}$	EQ
כך ש־ $\mathcal{L}\left(M ight)$ אינסופית $\langle M angle$	$\overline{\mathcal{RE} \cup co\mathcal{RE}}$	L_{∞}
t כך ש־ קיים $M\left(x,w ight)$ כך ש־ קיים w כך כך ל $\left\langle M,x,1^{t} ight angle$	NPC	$\overline{\mathrm{EMPTY}_{NP}}$
t ל־ל s בגרף המכוון G יש מסלול המילטוני מ־ל $\langle G,s,t angle$	NPC	НАМРАТН
k כך ש־ G גרף לא מכוון עם קליקה בגודל $\langle G,k angle$	NPC	CLIQUE
k גרף לא מכוון שיש קב' כך שאין קשת בין כל שניים בגודל G	NPC	IS
יש מעגל המילטוני G בגרף המכוון $\langle G angle$	NPC	HAMCYCLE
k כך ש־ G גרף לא מכוון עם קליקה בגודל $\langle G,k angle$	NPC	IS∧CLIQUE
k וגם קב' כך שאין קשת בין כל שניים בגודל		
k כך ש־ G גרף לא מכוון עם קליקה בגודל $\langle G,k angle$	NPC	IS∨CLIQUE*
k או קב' כך שאין קשת בין כל שניים בגודל		
האם נוסחאת 3CNF ספיקה (מוגדר ב"סיבוכיות זמן")	NPC	3SAT
$\overline{\mathcal{C}\left(x,w ight)=1}$ כך ש $w\in\{0,1\}^*$ מעגל בוליאני וקיים $w\in\{0,1\}$	NPC	CIRSAT
נוסחת CNF , ומספר טבעי כך שיש $\langle arphi, k angle$	NPC	C-CNF
השמה שמספקת בדיוק k ליטרלים בנוסחה		
נוסחת אומספר טבעי כך שיש , DNF נוסחת $\langle arphi, k angle$	NPC	C-DNF
השמה שמספקת בדיוק k ליטרלים בנוסחה		
$s_1, \ldots, s_k, t \in \mathbb{N}. \exists I \subseteq [k]. \sum_{i \in I} s_i = t$	NPC	SUBSETSUM
קבוצה של k צמתים הנוגעת בכל הקשתות	NPC	VC
עם בדיוק שלושה $3 ext{-CNF}$ היא	NPC	E3SAT
ליטרלים שונים בכל פסוקית עם השמה מקבלת		
$\mathcal{C}\left(x ight)=1$ מעגל בוליאני ר $\mathcal{C}\left\langle \mathcal{C},x ight angle$	PC	CVAL
t-ל מרסלול מ־ s ל־ G	NLC	STCON
עם השמה מקבלת 2-CNF איא Φ	NLC	2SAT
$\langle u,v angle \in P$ יש G בגרף המכוון בגרף $\langle G,P angle$	NLC	PCON
uכך שקיים מסלול מ v ל		

image.png