week5

October 29, 2017

1 Data Visualization

The effort to understand data by placing it in a visual context

2 Dr. Edward Tufte

- Though leader and practicioner of data visualization
- Written two excellent books on the subject:
 - The Visual Display of Quantitative Information
 - Envisioning Information
- Put down some principles for data visualization

3 Excellence in Visualization

- Clear, precise, and efficient communication of complex ideas
- Greatest number of ideas in the smallest amount of time and space
- Multivariate
- Conveys the truth

4 Visualization Goals

- Content focus
- Comparison rather than description
- Integrity
- High resolution
- Utilize designs proven with time

5 The Message

- Can use tables, charts, animations, inforgraphics ..etc
- Powerful if the right data and graphic are combined
- We will focus mostly on charts and tables, but know that the possibilities are bigger.
- To improve your visualization, read the work of **Stephen Few**:
 - Show Me the Numbers: Designing Tables and Graphs to Enlighten

- Information Dashboard Design: Displaying Data for At-a-Glance Monitoring

6 The Visualization Tools - In Python

- Matplotlib
- Bokeh
- ggplot
- Seaborn
- Plotly
- Altair (We will use this)
- .. others

They vary in their simplicity and capabilities: static, interactive, animated ..etc.

7 Other Visualization Platforms

- R: ggplot2, ggvis, .. libraries much like python
- Tableau: The current defacto standard in data visualization for non-programmers
- SAS, SPSS, Excel, Matlab, Stata ... etc.

8 The Message: Charts Vs. Tables

- Tables used to accuratly show the values of specific data points
 - Dataframes, frequency tables, balance sheets ... etc
- Charts used to display patterns and comparisons
 - Histograms, box plots, scatter plots, bar plots ..etc

Source: Timer Higher Education

9 Message Types

- Time series: How values change with time
- Rankings: Categorical subdivisions ordered in ascending or descending order for comparison
- Part-to-whole: Categorical subdivisions to show ratio to the whole
- Deviation: Categorical subdivisions compared to reference (like mean or predicted values)

10 Message Types Cont.

- Frequency distributions
- Correlations: Comparison between two variables
- Nominal comparisons: Comparison of categorecal subdivisions without a particular order
- Geospatial: Comparison of data across map or layout

Rank 2014	Rank 2008	Institution	GPA	
1	1	Institute of Cancer Research	3.40	
2	6	Imperial College London		
3	=4	London School of Economics 3		
4	=4	University of Oxford 3.3		
5	2	University of Cambridge		
6	=22	Cardiff University 3		
7	=22	King's College London 3.3		
=8	7	University College London		
=8	9	University of Warwick	3.22	
10	3	London School of Hygiene and Tropical Medicine	3.20	
Original data from Hefce; GPA calculation by Times Higher Education				

Source Data: FRED Database Inflation: CPI for All Urban Consumers

chart

11 The Right Chart for The Message

- See the chart selection matrix by Stephen Few
 - View also his presentation on improving charts
- See also selecting the right chart type by Andrew Abela

12 References and Resources

- Tufte, E. R. (2001). The visual display of quantitative information.
 - Chapter 1
- The Encyclopedia of Human-Computer Interaction
- Resources for 424 Info Vis. Course at University of Washington By. Prof. Maureen Stone and Prof. Polle Zellweger.
- Tableau public, try it for free

13 Visualization in Python

Install Altair

in cmd or terminal, type the following:

```
conda install altair -- channel conda-forge
In [50]: # using altair
         import pandas as pd
         import altair as alt
         # you need a dataset
         cars_df = pd.read_json("https://github.com/vega/vega-datasets/raw/gh-pages
         # you can also load the sample data provided with altair using
         # cars_df = alt.load_dataset('cars')
         # for list of data sets, run the following command in jupyter:
         # alt.datasets.list_datasets()
         # Build the chart and configure it
         chart = alt.Chart(cars_df).mark_circle().encode(
             x='Horsepower',
             y='Miles_per_Gallon',
             color='Origin',
         )
         # display it
         chart
```


14 Altair uses a declarative syntax

- You express the logic of constructing the plot
- Matplotlib uses imperitave syntax where you give specific instructions to construct the plot
- Assumes that the data is in tidy form
 - Required reading: Tidy Data, by Hadley Wickham

15 The Syntax

```
Chart( data ).mark_type( options ).encode( channels )
    1    2    3    4    5    6

# alternatively you can reverse mark and encode
Chart( data ).encode( channels ).mark_type( options )
Chart( data ).mark_type( options ).encode( channels )
    1    2    3    4    5    6
```

15.0.1 1- Chart:

Construct a chart object (OOP), can be: - Chart: Used to display a single chart, our likely use case - LayeredChart: To place multiple charts on top of one another (When you want to be fancy)

```
Chart (data).mark_type (options).encode (channels)

1 2 3 4 5 6
```

15.0.2 2- Data:

Tells Altair what data set to use for the plot, can be: - Pandas dataframe - Altair Data object - URL/filename of json or csv data - **Remember:** json must be list of dictionaries (called objects in javascript) - Use this to keep the size of the notebook small

```
In [44]: # url also works
          url = 'https://vega.github.io/vega-datasets/data/cars.json'
          alt.Chart(url).mark_circle().encode(
               x='Horsepower',
              y='Miles_per_Gallon',
               #color="Origin", # bug, does not work with url
          )
       45
       40
       35
       30
    Miles_per_Gallon
       25
       20
       15
       10
       5
        0
                        50
                                      100
                                                    150
                                                                   200
         0
```

```
Chart( data ).mark_type( options ).encode( channels )

1 2 3 4 5 6
```

Horsepower

15.0.3 3- Marks:

Tells Altair how to represent values on the chart, includes: - mark_line(), mark_area(), mark_round(), mark_bar() - Can be configured with mark_options - Unlike pandas, these will mutate the original chart - Complete list available here

let's modify our chart
chart.mark_area() # this mutated chart

try other mark_* types
chart.display() # this will show the mutated plot

Chart(data).mark_type(options).encode(channels)
$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

15.0.4 4- Mark options:

- Options to change the properties of **all** marks
- Options passed as arguments and can be found here, e.g.:

```
alt.Chart(url).mark_circle(
color='red',
opacity=0.3
)
```


15.0.5 5- Encode:

• Must be there, tells altair how to plot the values

```
Chart (data).mark_type (options).encode (channels)

1 2 3 4 5 6
```

15.0.6 6- Encoding Channels

These are the options to tell altair how to: - Link data to axis - Plot the data - Group/transform the data

These options are referred to as **Channels**

16 Most important channel configurations:

- x: Name of column to map to x axis (as a string)
- y: Name of column to map to x axis (as a string)

notice how previous options remain if not changed (like color)

17 Aggregation Function in Altair

You can use the following functions to describe the aggregation for the axes values in the following format: 'aggregation(variable)'

Use * in place of variable to mean for any row/observation

The functions include: sum, mean, media, variance, stdev, distinct .. and more

18 Column names can describe the datatype

- using : and a letter after the name to describe the type.
- For example: 'sales:Q' tells Altair that the sales column is a quantitative value.
- Letter can be:

Data Type	Letter	Description
quantitative	Q	a continuous real-valued quantity
ordinal	O	a discrete ordered quantity
nominal	N	a discrete unordered category
temporal	T	a time or date value

```
alt.Chart(cars_df).mark_bar().encode(
    column="Origin",
    x="Cylinders:N",
    y="count(*)",)
```


19 Channels With Legends

- These are the channels that produce a legend on the graph.
- Used typically with a categorical grouping variable
- These channel configurations affect individual points on the plot based on its value
 - Remember, configuring a mark will affect all points on the plot

• The channels include: color, opacity, size, and shape

20 Notes on Altair

- Data is included with plot, the more plots in the notebook, the greater its size in MB
- Maximum data points are 5000 to miaintain performance, can be increased to 10000 using cart.max_rows = 10000
- Use chart_display() to display multiple charts from a single cell
- Unlike jupyter, performing methods on chart object will mutate it