

HT23C256 CMOS 32K×8-Bit Mask ROM

Features

- Operating voltage 2.7V~5.5V
- Low power consumption
 - Operation: 25mA max. (V_{CC} =5V) 10mA max. (V_{CC} =3V)
 - Standby: 30µA max. (V_{CC}=5V)

 $10\mu A$ max. (V_{CC}=3V)

Access time:150ns max. (V_{CC}=5V)
 250ns max. (V_{CC}=3V)

- 32768×8 bits of mask ROM
- Mask options: chip enable CE/CE/OE1/OE1 and output enable OE/OE/NC
- TTL compatible inputs and outputs
- Tristate outputs
- Fully static operation
- Package type: 28-pin DIP/SOP

General Description

The HT23C256 is a read-only memory with high performance CMOS storage device whose 256K of memory is arranged into 32768 words by 8 bits.

For application flexibility, the chip enable and output enable control pins can be selected as active high or active low. This flexibility not only allows easy interface with most microprocessors, but also eliminates bus contention in multiple bus microprocessor systems. An additional feature of the HT23C256 is its ability to enter the standby mode whenever the chip enable (CE/ $\overline{\text{CE}}$) is inactive, thus reducing current consumption to below 30 μ A. The combination of these functions makes the chip suitable for high density low power memory applications.

Block Diagram

Pin Assignment

Pin Description

Pin Name	I/O	Description	
A0~A14	I	Address inputs	
D0~D7	О	Data outputs	
CE/CE/OE1/OE1	I	Chip enable/Output enable input	
OE/ OE /NC	I	Output enable input	
VSS	I	Negative power supply	
VCC	I	Positive power supply	
NC	_	No connection	

Operation Truth Table

Mode	CE/CE	OE/OE	A0~A14	D0~D7
Read	H/L	H/L	Valid	Data Out
Deselect	H/L	L/H	X	High Z
Standby	L/H	X	X	High Z

2

Note: $H=V_{IH}$, $L=V_{IL}$, $X=V_{IH}$ or V_{IL}

Absolute Maximum Ratings*

Supply Voltage0.3V to 6V	Storage Temperature50°C to 125°C
Input Voltage0.3V to V _{CC} +0.3V	Operating Temperature40°C to 85°C

^{*}Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

D.C. Characteristics

Supply voltage: 2.7V~3.6V

Ta=-40°C to 85°C

Cb-al	Domonoston	Te	est Conditions	Min.	T	N f	Unit
Symbol	Parameter	Vcc	Conditions	WHI.	Тур.	Max.	
V_{CC}	Operating Voltage	_	_	2.7	_	3.6	V
I_{CC}	Operating Current	3V	O/P Unload, f= 5MHz	_	_	10	mA
V_{IL}	Input Low Voltage	3V	_	Vss	_	0.4	V
V_{IH}	Input High Voltage	3V	_	2.0	_	V _{CC}	V
Vol	Output Low Voltage	3V	I _{OL} = 2.1mA	_	_	0.4	V
Voh	Output High Voltage	3V	I _{OH} = -0.4mA	2.4	_	Vcc	V
I_{LI}	Input Leakage Current	3V	V _{IN} = 0 to V _{CC}	_	_	10	μΑ
I_{LO}	Output Leakage Current	3V	V _{OUT} = 0 to V _{CC}	_	_	10	μΑ
I _{STB1}	Standby Current	3V	CE=V _{IL} CE=V _{IH}	_	_	500	μΑ
I _{STB2}	Standby Current	3V	<u>CE</u> ≤0.2V <u>CE</u> ≥V _{CC} -0.2V	_	_	10	μΑ
C _{IN}	Input Capacitance (See note)	_	f= 1MHz	_	_	10	pF
Cout	Output Capacitance (See note)	_	f= 1MHz	_	_	10	pF

3

Note: These parameters are periodically sampled but not 100% tested.

Supply voltage: 4.5V~5.5V

 $Ta=-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Te	est Conditions	Min.	Tem	Max.	Unit
Symbol	Parameter	$\mathbf{v_{cc}}$	Conditions	WIIII.	Тур.	Max.	
V_{CC}	Operating Voltage	_	_	4.5	_	5.5	V
Icc	Operating Current	5V	O/P Unload, f=5MHz	_	_	25	mA
V _{IL}	Input Low Voltage	5V	_	Vss	_	0.8	V
V _{IH}	Input High Voltage	5V	_	2.2	_	V _{CC}	V
V _{OL}	Output Low Voltage	5V	I _{OL} =3.2mA	_	_	0.4	V
VoH	Output High Voltage	5V	I _{OH} =-1mA	2.4	_	Vcc	V
I _{LI}	Input Leakage Current	5V	V _{IN} =0 to V _{CC}	_	_	10	μΑ
ILO	Output Leakage Current	5V	V _{OUT} =0 to V _{CC}	_	_	10	μА
I _{STB1}	Standby Current	5V	CE=V _{IL} CE=V _{IH}	_	_	1.5	mA
I _{STB2}	Standby Current	5V	$\frac{CE}{CE} \le 0.2V$ $\frac{CE}{CE} \ge V_{CC} - 0.2V$	_	_	30	μΑ
C _{IN}	Input Capacitance (See note)	_	f=1MHz	_	_	10	pF
Cout	Output Capacitance (See note)	_	f=1MHz	_	_	10	pF

Note: These parameters are periodically sampled but not 100% tested.

A.C. Characteristics

 $Ta=-40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	V _{CC} =2.7V~3.6V		V _{CC} =4.5V~5.5V		Unit
		Min.	Max.	Min.	Max.	Omt
$t_{\rm CYC}$	Cycle Time	250	_	150	_	ns
t _{AA}	Address Access Time	_	250	_	150	ns
tace	Chip Enable Access Time	_	250	_	150	ns
t _{AOE}	Output Enable Access Time	_	150	_	80	ns
t _{OH}	Output Hold Time	_	_	10	_	ns
ton	Output Disable Time (See Note)	_	_	_	70	ns
toe	Output Enable Time (See Note)	_	_	10	_	ns

4

Note: These parameters are periodically sampled but not 100% tested. \\

A.C. test conditions

Output load: see figure right Input rise and fall time: 10ns Input pulse levels: 0.4V to 2.4V

Input and output timing reference levels: 0.8V and 2.0V (V_{CC} =5V), 1.5V (V_{CC} =3V)

* Including scope and jig

Output load circuit

Functional Description

The HT23C256 has two modes, namely data read mode and standby mode, controlled by $CE/\overline{CE}/OE1/\overline{OE1}$ and OE/OE/NC inputs.

· Standby mode

The HT23C256 has lower current consumption, controlled by the chip enable input (CE/ \overline{CE}). When a low/high level is applied to the CE/ \overline{CE} input regardless of the output enable (OE/ \overline{OE} /NC) states the chip will enter the standby mode.

· Data read mode

When both the chip enable (CE/ $\overline{\text{CE}}/\text{OE}/\overline{\text{OE1}}$) and the output enable (OE/ $\overline{\text{OE}}/\text{NC}$) are active, the chip is in data read mode. Otherwise, active CE/ $\overline{\text{CE}}$ and inactive OE/ $\overline{\text{OE}}/\text{NC}$ result in deselect mode. The output will remain in Hi-Z state.

Timing Diagrams

• Propagation delay due to address (CE/CE/OE1/OE1 and OE/OE are active)

• Propagation delay due to chip enable and output enable (address valid)

5

24th Aug '98

Characteristic Curves

HT23C256 MASK ROM ORDERING SHEET

Custom:						
nput Medium:	K ☐ File (Mail Address	: romfile@h	oltek.com.tw)	OTHER_		
HN-	Torre (Def. Norma	0.16		Memory Address		
User No.	Type/Ref. Name	Q'ty	Check Sum	Start	End	
(a) 28 Pin Type	ckage Form Option: Pin 20:(1) CE Pin 22:(1) OE m:(1) Chip Form	(2) OE (3)) NC			
Companion User	No					
Package Marking	:					
Delivery Date	:		_ Q'ty:			
CUSTOM CONFIRME	D BY:					
	(NAME, DATE, PO	OSITION & C	CO. CHOP)			
IOLTEK CONFIRME	D BY:					
(SALE	(S)		(SALES MAN	IAGER)		

8