Process Management

- OS manages many kinds of activities:
 - User programs
 - System programs: printer spoolers, name servers, file servers, etc.
- Each is encapsulated in a process
 - A process includes the complete execution context (code, data, PC, registers, OS resources in use, etc.)
 - A process is not a program
 - A process is <u>one</u> instance of a program <u>in</u> <u>execution</u>; many processes can be running the same program

■ OS must:

- Create, delete, suspend, resume, and schedule processes
- Support inter-process communication and synchronization, handle deadlock

Fall 1998, Lecture 04

Fall 1998 Lecture 04

File System Management

■ File System

- Disks (secondary storage) provide longterm storage, but are awkward to use directly
- File system provides files and various operations on files
 - A file is a long-term storage entity, a named collection of persistent information that can be read or written
 - A file system supports directories, which contain files and other directories
 - Name, size, date created, date last modified, owner, etc.

OS must:

- Create and delete files and directories
- Manipulate files and directories
 - Read, write, extend, rename, copy, protect
- Provide general higher-level services
 - Backups, accounting, quotas

Memory Management

- Primary (Main) Memory
 - Provides direct access storage for CPU
 - Processes must be in main memory to execute

OS must:

- Mechanics
 - Keep track of memory in use
 - Keep track of unused ("free") memory
 - Protect memory space
 - Allocate, deallocate space for processes
 - Swap processes: memory <-> disk

Policies

- Decide when to load each process into memory
- Decide how much memory space to allocate each process
- Decide when a process should be removed from memory

Fall 1998, Lecture 04

Disk Management

■ Disk

- The actual hardware that sits underneath the file system
- Large enough to store all user programs and data, application programs, entire OS
- Persistent endures system failures

■ OS must:

- Manage disk space at low level:
 - Keep track of used spaces
 - Keep track of unused (free) space
 - Keep track of "bad blocks"
- Handle low-level disk functions, such as:
 - Scheduling of disk operations
 - Head movement
- Note fine line between disk management and file system management

Fall 1998, Lecture 04

System Calls

- Process control
 - end/abort this program
 - load/execute another program
 - create/terminate a process
 - get/set attributes
 - wait specified time
 - wait for event, signal event
- File manipulation
 - create/open/read/write/close/delete file
 - get/set attributes
- Device manipulation
 - request/read/write/release device
- Information
 - get/set time/date

Fall 1998, Lecture 04

One OS Structure: Large Kernel

- The *kernel* is the protected part of the OS that runs in kernel mode
 - Critical OS data structures and device registers are protected from user programs
 - Can use privileged instructions

Fall 1998, Lecture 04

Coping with Hugeness

■ Ideal:

■ Reality:

OS Design Issues

- Another approach: layered OS
 - Divide OS into layers
 - Each layer uses services provided by next lower layer
 - User programs
 - Shell & compilers
 - CPU scheduling & memory management
 - Device drivers
 - Hardware
 - Advantages: modularity, simplicity
 - Disadvantages: performance
- Big tradeoff in OS design:
 - **⇒** simplicity versus performance
 - ➤ Always strive for simplicity...
 - ...Unless you have a strong reason to believe that complication is needed to achieve acceptable performance

Fall 1998, Lecture 04 8 Fall 1998, Lecture 04

Another OS Structure: Microkernel

- Goal is to minimize what goes in the kernel, implementing as much of the OS as possible in user-mode processes
 - Better reliability, easier extension
 - Lower performance (unfortunately)
- Examples: Mach (US), Chorus (France)

The Future? Network Operating Systems

■ Sun's JavaOS architecture:

Details at http://java.sun.com/doc/white_papers.html

- No disk
- OS can only run a net browser
 - Get whatever the OS needs over the net
 - Get whatever application programs are needed over the net (as Java applets)

Fall 1998, Lecture 04 10 Fall 1998, Lecture 04