

Universidade Federal de Santa Catarina Centro Tecnológico Departamento de Informática e Estatística INE5201 - Trabalho Final

Tendências de séries temporais com médias móveis

1. Introdução

Médias móveis são comumente aplicadas para previsão de valores futuros. Esta técnica de tratamento de séries temporais pode ser vista em diferentes campos de estudo, desde o mercado financeiro [1] até o gerenciamento de elasticidade em nuvens computacionais [2]. Na sua forma mais simples (Média Móvel Simples), a técnica consiste em calcular para cada novo valor observado a média dos *n* valores anteriores, fazendo com que o valor da média seja móvel na série temporal. Assim, quanto maior o valor de *n* menos sensível a *outliers* a média tende a ser, tendo um comportamento de suavização [3]. A fórmula abaixo é utilizada para calcular um valor de média móvel simples :

$$SMA = rac{A_1 + A_2 + \ldots + A_n}{n}$$

Onde, A1, A2, ... A_n são os valores observados ao longo do tempo, n é a quantidade de valores observados e SMA é o valor da média móvel simples (SMA - Simple Moving Average). Com essa formulação é possível obter um conjunto de valores de média móvel, a depender do tamanho da população e do tamanho da média. Por exemplo, considere a seguinte série temporal com valores da cotação do dólar no mês de outubro (até o dia 23): [4.1590,4.1293,4.0841,4.0556,4.1071,4.0954,4.1104,4.1095,4.1097,4.1265,4.1807,4.1518,4.1 643,4.1117,4.1293,4.0819,4.0346]. Considerando n=3, o conjunto de médias móveis é: [4.1590,4.1442,4.1241,4.0897,4.0823,4.0860,4.1043,4.1051,4.1099,4.1152,4.1390,4.1530,4.1 656,4.1426,4.1351,4.1076,4.0819]. Enquanto a visualização absoluta dos dados pode não permitir conclusões diretas, a observação gráfica pode trazer insights. A Figura 1 plota estas séries temporais.

Figura 1 - Evolução das cotações de dólar em outubro de 2019

Como pode ser observado na Figura 1, a média móvel de três valores suaviza o comportamento dos dados flutuantes. Como dito anteriormente, a mudança do valor de *n* aumenta ou reduz esse efeito de suavização. A Figura 2, mostra diferentes séries temporais de média móvel de acordo com o valor de *n*.

Figura 2 - Diferentes valores de média móvel para cotação do dólar

O comportamento observado pelas séries temporais exibido na Figura 2 sugere que a combinação de diferentes valores de média móvel seja utilizado para previsão de crescimento ou queda dos valores do valor observado. Uma destas técnicas de análise é a comparação de duas médias móveis: quando uma média móvel curta transcende para cima uma média móvel longa isso é um sinal de que o valor mensurado deve ser maior na próxima medição. De outro lado, quando a média móvel curta transcende para baixo uma média móvel longa isso é um sinal de que os próximos valores serão mais baixos. No caso de Figura 2, esses comportamentos podem ser observados, respectivamente, nos dias 06 e 07 de outubro

(quando MM3 passa para cima de MM5) e 13 e 13 de outubro (quando MM3 passa para baixo de MM5). Nesta situação, um investidor pode decidir por comprar dólares quando a tendência for de alta e vender quando a tendência for de queda.

2. Enunciado

Faça um programa para implementar a análise de séries temporais com indicativo de tendência baseado em média móvel. Seu programa deve entregar as seguintes funcionalidades:

- Cadastrar uma nova série
- Adicionar nova entrada de dados na série
- Exibir a série de dados
- Calcular a MM-*n*, onde *n* é o tamanho da média móvel lido do teclado
- Mostrar a série de tendências baseada em duas médias móveis:
 - A saída deve mostrar para cada novo valor da série temporal os seguintes itens:
 - Valor da média móvel 1;
 - Valor da média móvel 2;
 - Tendência: alta, queda ou constante.
- Exibir graficamente ou em formato de tabela os pontos de uma série temporal, as médias móveis e a tendência (A para alta, Q queda e C constante)
- Bônus: realizar a leitura de uma série temporal de um arquivo.

3. Exemplo

Considere que os seguintes valores são inseridos em sequência.

Tamanho da média móvel 1: 3

Tamanho da média móvel 2: 5

Valores de entrada e respectivas saídas:

Cotação (entrada)	MM3 (saída)	MM5 (saída)	Tendência (saída)
4,159	4,1590	4,159	Constante
4,1293	4,144	4,144	Constante
4,0841	4,124	4,124	Constante
4,0556	4,089	4,107	Queda
4,1071	4,082	4,107	Constante
4,0954	4,086	4,094	Constante
4,1104	4,104	4,090	Alta
4,1095	4,105	4,095	Constante
4,1097	4,109	4,106	Constante
4,1293	4,1351	4,14756	Queda

No exemplo acima, um investidor poderia ter comprado dólares a R\$4,1104 e vendido a R\$4,1293, com ganhos de 2 centavos de real a cada dólar investido.

4. Entregas

O trabalho poderá ser desenvolvido em grupos de até 3 pessoas. Deve ser entregue o código fonte do programa e um tutorial sobre como utilizá-lo. Cada equipe irá apresentar seu programa para o professor, o qual fará perguntas individualmente. As notas dos participantes podem ser diferentes de acordo com seu desempenho na avaliação.

Referências

- [1] Vidotto, Rodrigo Silva, Antônio Luiz Tonissi Migliato, and Antonio Carlos Zambon. "O Moving Average Convergence-Divergence como ferramenta para a decisão de investimentos no mercado de ações." *Revista de Administração Contemporânea* (2009).
- [2] Baruchi, A., & Midorikawa, E. T. (2010, August). Elasticidade de memória em máquinas virtuais utilizando média móvel exponencial. In *VII Workshop de Sistemas Operacionais (WSO)*. sn.
- [3] Hunter, J. S. (1986). The exponentially weighted moving average. *Journal of quality technology*, 18(4), 203-210.