

«Московский государственный технический университет имени Н.Э. Баумана»

(МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления КАФЕДРА Программное обеспечение ЭВМ и информационные технологии

РАСЧЁТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Разработка системы имитационного моделирования в форме библиотеки языка

к дипломной работе на тему:

Haskell		
Студент	(Подпись, дата)	И. В. Миникс (И.О.Фамилия)
Руководитель дипломной работы	(, , , , , , , , , , , , , , , , , ,	(======================================
уководитель дипломной расоты	(Подпись, дата)	(И.О.Фамилия)
Консультант по исследовательской части		_
	(Подпись, дата)	(И.О.Фамилия)
Консультант по конструкторско-технологической части		
	(Подпись, дата)	(И.О.Фамилия)
Консультант по организационно-экономической части		
	(Подпись, дата)	(И.О.Фамилия)
Консультант по охране труда и экологии	_	_
	(Подпись, дата)	(И.О.Фамилия)

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

	УТВЕРЖДАЮ	
	Заведующий	кафедрой (Индекс)
	«»	(И.О.Фамилия) 20 г.
ЗАДАНИЕ	_	
на выполнение дипломной	работы	
СтудентМиникс Игорь Владимирович		
Фамилия, имя, отчество) Разработка системы имитационного моделирования в форме б (Тема дипломной работы)	библиотеки язь	ыка Haskell
Источник тематики (НИР кафедры, заказ организаций и т.п.) _	_НИР кафедр	Ы
 Тема дипломной работы утверждена распоряжением по факул от « » 20 г. 1. Исходные данные Техническое задание, содержащее следующие требования: разработать библиотеку языка Haskell, позволяющу 	ую осуществ	тять имитационное
моделирование систем массового обслуживания;		
обеспечить возможность распространения моделей библиотеки, в виде самостоятельных приложений		•
2. Технико-экономическое обоснование Существующие системы имитационного моделирования либ имеют серьезные функциональные ограничения (огр используемых блоков, поддерживаются не все операционные	аничено ма	ксимальное число

3. Научно-исследовательская часть Сравнить характеристики системы массово помощью разработанного ПО и с помощью од	<u>-</u>	-
Консультант		
1010 Juliu	(Подпись, дата)	(И.О.Фамилия)
4. Проектно-конструкторская часть		
Определить синтаксис описания систем маданных для хранения описания систем и характеристик систем.	методы и алгоритмы	имитации и определения
Консультант		
	(Подпись, дата)	(И.О.Фамилия)
5. <i>Технологическая часть</i> Осуществить выбор конкретных технологий и		
спроектированную библиотеку. Провести корректности его работы и соответствия задан Консультант		_
6. Организационно-экономическая часть		
V OHOVEL TOUT		
Консультант	(Подпись, дата)	 (И.О.Фамилия)
7. Охрана труда и экология		
Консультант	(Подпись, дата)	(И.О.Фамилия)
	(подпись, дата)	(и.о.фамилия)
8. Оформление дипломной работы 8.1. Расчетно-пояснительная записка на л 8.2. Перечень графического материала (плакат		л.п.)
Дата выдачи задания « » 20	Γ.	
В соответствии с учебным планом дипломную до « » 20_ г.	работу выполнить в г	полном объеме в срок
Руководитель дипломной работы	(Подпись, дата)	(И.О.Фамилия)
	(110диись, дата)	(п.о. Фамилии)
Студент		
	(Подпись, дата)	(И.О.Фамилия)

<u>Примечание</u>:
1. Задание оформляется в двух экземплярах; один выдаётся студенту, второй хранится на кафедре.

«Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

		УТВЕРЖДАЮ		
			Заведующий	і кафедрой (Индекс)
		_	«»	(И.О.Фамилия) 20 г.
Студе	КАЛЕНДАР выполнения ди нт _Миникс Игорь Владимирович	пломной ј		[
-	(Фамилия, из фамилия, из фамилия, из фамилия, из фамилия, из фамилия (Тема диплом (Тема диплом)	вания в форме	библиотеки з	языка Haskell
No/	п ,	Выполнение этапов		П
№ п/п	Наименование этапов дипломной работы	Срок	Объем, %	Примечание
1.	Разработка структур данных и выбор методов и алгоритмов.	17.02.2012	15%	
2.	Определение синтаксиса описания систем.	24.02.2012	20%	
3.	Написание программной части.	31.03.2012	55%	
4.	Тестирование и отладка.	7.04.2012	60%	
5.	Исследовательская часть.	14.04.2012	65%	
6.	Подготовка расчетно-пояснительной записки.	30.04.2012	80%	
7.	Оформление организационно- экономической и экологической части.	12.05.2012	85%	
8.	Оформление графической части.	19.05.2012	90%	
9.	Подготовка к защите.	26.05.2012	100%	
	· ·			
Pyi	ководитель дипломной работы	(Подпись, дата)		И.О.Фамилия)

(Подпись, дата)

(И.О.Фамилия)

Содержание

B	ведени	e
1 Анал		итический раздел
	1.1	Краткий обзор GPSS
	1.2	Объекты языка GPSS
	1.3	Управления процесом моделирования в GPSS 10
	1.4	Выбор подмножества реализуемых блоков
	1.5	Описание выбранных блоков
	1.6	Выводы
2 Констру		грукторский раздел
	2.1	
	2.2	Монады
\mathbf{C}	писок	использованных источников

Введение

Зародившаяся в начале прошлого века с целью упорядочить работу телефонных станций, теория массового обслуживания нашла применения в моделировании самых разнообразных систем, таких как системы связи, обработки информации, снабжения, производства и др.

Несмотря на имеющиеся достижения в области математического исследования характеристик систем массового обслуживания, наиболее универсальным подходом по прежнему остается имитационное моделирование.

Язык имитационного моделирования GPSS создан специально для моделирования систем массового обслуживания и на данный момен является доминирующим в этой области. Однако, существующие версии систем имитационного моделирования на основе языка GPSS либо слишком дороги, либо ограничены в возможностях и не позволяют провести все необходимые исследования.[1] Помимо этого, на данный момент затруднено интегрирование моделей, разработанных при помощи GPSS в другие программные средства (напимер, в целях оптимизации параметров исследуемой системы).

Целью данной работы является создание системы имитационного моделирования, основанной на принципах и синтаксисе GPSS, однако позволяющей разрабатывать модели как часть более крупной программы.

В качестве языка разработки был выбран Haskell. Haskell является динамично развивающимся функциональным языком проограммирования, который получает все больше сторонников во всем мире, в том числе и в России. [2]. Для Haskell характерны строгая статическая типизация, модульность, строгое разделение функций на чистые и не чистые, ленивые вычисления, функции высших порядков и др.[3] Помимо этого использование языка Haskell позволит производить описание систем при помощи синтаксиса схожего с синтаксисом GPSS, при этом разработанные модели будут являться объектами первого класса, что позволит, например, передать модель как параметр в функцию оптимизации.

Для достижения поставленной цели необходимо решить следующие задачи:

- изучить принципы функционирования и синтаксис описания моделей в GPSS;
- разработать синтаксис описания моделей схожий с синтаксисом GPSS, но при этом позволяющий составлять модели в виде функций языка Haskell;
- выбрать подмножество блоков GPSS, которые следует реализовать в системе;
- реализовать алгоритмы описания моделей и имитационного моделирования;
- разработать и реализовать транслятор моделей GPSS в формат разработанной системы моделиования;
 - провести тестирование разработанного программного обеспечения;
- провести моделирование некоторой эталонной системы массового обслуживания в разработанной системе, GPSS и аналитически и убедиться в совпадении полученных результатов.

1 Аналитический раздел

В данном разделе проводится обзор принципов функционирования и синтаксиса системы GPSS, а также производтся выбор блоков, которые следует реализовать в разрабатываемой системе моделирования.

1.1 Краткий обзор GPSS

GPSS стал одним из первых языков моделирования, облегчающих процесс написания имитационных программ. Он был создан в виде конечного продукта Джефри Гордоном в фирме IBM в 1962 г.[4] В свое время он входил в десятку лучших языков программирования и по сей день широко используется для решения практических задач.

Основой имитационных алгоритмов GPSS является дискретнособытийный подход — моделирование системы в дискретные моменты времени, когда происходят события, отражающие последовательность изменения состояний системы во времени.[4]

1.2 Объекты языка GPSS

Основными Объектами языка GPSS являются транзакты и блоки, которые отображают соответственно динамические и статические объекты моделируемой системы.

Транзакты — динамические элементы GPSS-модели. В реальной системе транзактам могут соответствовать такие элементы как заявка, покупатель автомобиль и др. Состояни транзакта в процессе моделирования хараактеризуется следующими атрибутами:

- параметры набор значений связанных с транзактом. Каждый транзакт может иметь произвольное число параметров. Каждый параметр иметт уникальный номер, по которому на него можно сослаться;
- приоритет определяет порядок продвижения транзактов при конкурировании за общий ресурс;
- текущий блок номер блока, в котором транзакт находится в данный момент;

- следующий блок номер блока, в который транзакт попыытается войти;
- время появления блока момент времени в который транзакт был создан;
- состояние состояние, показывающее в каких списках транзакт находится в даннный момент. Транзакт может находиться в одном из следующих состояний:
 - а) активен транзакт находится в списке текущих событий и имеет наивысший приоритет;
 - б) приостановлен транзакт находится в списке будущих событий либо в списке текущих событий, но с меньшим приоритетом;
 - в) пассивен транзакт находится в списке прерываний, списке синхронизации, списке блокировок или списке пользователя;
- г) завершен транзакт уничтожен и болше не участвует в модели. Диаграмма состояний транзакта показана на Рисунке 1.1.

Рисунок 1.1 — Состояния транзакта

Блоки — статические элементы GPSS-модели. Модель в GPSS может быть представленна как диаграмма блоков, т.е. ориентированный граф, узлами которого являются блоки, а дугам — направления движения транзактов. с каждым блоком связано некоторое действие, изменяющее состояние прочих элементов модели. Транзакты проходят блоки один за другим, до тех пор пока не достигнут блока TERMINATE. В ряде случаев транзакт может быть остановлен в одном из блоков до наступления некоторого события.

Помимо транзактов и блоков в GPSS используются следующие объекты: устройства, многоканальные устройства (хранилища, памяти), ключи, очереди, списки пользователя и др.

1.3 Управления процесом моделирования в GPSS

В системе GPSS итерпретатор поддерживает сложные структуры организации списков (см. Рисунок 1.2).[4] Два основных из них — список текущих событий (СТС) и список будущих событий (СБС).

В СТС входят все события запланированные на текущий момент модельного времени. Интерпретатор в первую очередь просматривает этот список и перемещает по модели те транзакты, для которых выполнены все условия. Если таких транзактов в списке не оказалось интерпретатор обращается к СБС. Он переносит все события, запланированные на ближайший момент времени и вновь возвращается к просмотру СТС. Перенос также осуществляется в случае совпадения текущего момента времени с моментом наступления ближайшего события из СБС.

В целях эффективной организации просмотра транзактов, движение которых заблокировано (например, из-за занятости некоторого ресурса), используются следующие вспомогательные списки:

- списки блокировок списки транзактов, которые ожидают освобождения некоторого ресурса;
- список прерываний содержит транзакты, прерванные во время обслуживания. Используется для организации обслуживания одноканальных устройств с абсолютным приоритетом;

Рисунок 1.2 — Списки GPSS

- списки синхронизации содержат транзакты одного семейства (созданные блоком SPLIT), которые ожидают синхронизации в блоках (MATCH, ASSEMBLE или GATHER);
- списки пользователя содержат транзакты, выведенные пользователем из СТС с помощью блока LINK. Транзакты могут быть возвращены в СТСс помощью блока UNLINK.

1.4 Выбор подмножества реализуемых блоков

В современной версии языка GPSS (входящей в пакет GPSS World) поддерживается 53 различных блока.[5] В рамках данной работы не представляется возможным реализовать аналоги каждого из них. Поэтому сле-

дует выделить некоторое подмножество блоков, которое с одной не будет слишком обширным, а с другой — позволит решать практические или по крайней мере учебные задачи.

В качетсве примера рассмотрим задачу из курса Модели оценки качества аппаратно программных комлексов:

В вычислительной системе, содержащей N процессоров и М каналов обмена данными, постоянно находятся К задач. Разработать модель, оценивающую производительность системы с учетом отказов и восстановлений процессоров и каналов. Имеется не более L ремонтных бригад, которые ремонтируют отказывающие устройства с бесприоритетной дисциплиной. Интенсивность отказов, восстановлений, средние времена обработки сообщения и среднее время обдумывания также известны.

Как и подаляющее большинство других задач, данная задача, безусловно, не может быть решена без использования блоков GENERATE, TERMINATE и ADVANCE. Так как моделируемая система является замкнутой, при описании модели не обойтись без блока TRANSFER.

К содалению, не представляется возможным реализовать процессоры и каналы как многоканальные устройства, т.к. многоканальные устройства в GPSS не поддерживают абсолютные приоритеты и не позволяют смоделировать выход из строя отдельных каналов устройства. Однако, требуемую систему можно описать при помощи множества одноканальных устройств и блока TRANSFER в режиме ALL. Таким образом, также понадобятся блоки SEIZE и RELEASE. Для моделирования отказов устройств можно воспользоваться блоками SAVAIL и SUNAVAIL либо блоками PREEMPT и RETURN.

Наконец, доступные ремонтные бригады можно смоделировать с помощью многоканального устройства. Соответственно, понадобятся блоки ENTER и LEAVE.

Приблизительная модель системы показана в Листинге 1.1

Листинг 1.1 — Приблизительная модель системы

3

[;] Доступное число ремонтных бригад

REPAIRERS STORAGE 5

```
;Общее время моделирования
   GENERATE ,,,1
 5
   ADVANCE 1000
 6
   TERMINATE 1
 7
 8
 9
    ; Основная часть модели
   GENERATE ,,,10
10
11
   ; фаза обдумывания
12
   LUSER ADVANCE 4,1
13
          TRANSFER ALL, LCPU1, LCPUN, 4
14
15
   ;Первая фаза обработки
16
   LCPU1 SEIZE CPU1
17
18
          ADVANCE 2,1
          RELEASE CPU1
19
          TRANSFER ,LPHASE2
20
21
22
    . . .
23
   LCPUN SEIZE CPUN
24
          ADVANCE 2,1
25
26
          RELEASE CPUN
          TRANSFER ,LPHASE2
27
28
   LPHASE2 TRANSFER ALL, LCHAN1, LCHANM, 4
29
30
   ; Вторая фаза обработки
31
   LCHAN1 SEIZE CHAN1
32
           ADVANCE 2,1
33
           RELEASE CHAN1
34
           TRANSFER ,LUSER
35
36
37
   . . .
38
   LCHANM SEIZE CHANM
39
          ADVANCE 2,1
40
          RELEASE CHANM
41
          TRANSFER ,LUSER
42
43
    ; Моделирование отказов и восстановлений.
44
              GENERATE ,,,1,10
45
   CPUBROKE1 ADVANCE 20,4
46
              PREEMPT CPU1
47
              ENTER REPAIRERS
48
              ADVANCE 10,4
49
```

```
LEAVE REPAIRERS
50
              RETURN CPU1
51
              TRANSFER ,CPUBROKE1
52
53
54
55
56
              GENERATE ,,,1,10
   CPUBROKEN ADVANCE 20,4
57
              PREEMPT CPUN
58
              ENTER REPAIRERS
59
              ADVANCE 10,4
60
              LEAVE REPAIRERS
61
              RETURN CPUN
62
              TRANSFER , CPUBROKEN
63
64
               GENERATE ,,,1,10
65
   CHANBROKE1 ADVANCE 20,4
66
               PREEMPT CHAN1
67
               ENTER REPAIRERS
68
               ADVANCE 10,4
69
70
               LEAVE REPAIRERS
               RETURN CHAN1
71
               TRANSFER ,CHANBROKE1
72
73
74
75
76
               GENERATE , , , 1 , 1 0
   CHANBROKEN ADVANCE 20,4
77
               PREEMPT CHANM
78
               ENTER REPAIRERS
79
               ADVANCE 10,4
80
               LEAVE REPAIRERS
81
               RETURN CHANM
82
83
               TRANSFER , CHANBROKEM
```

Таким образом, разрабатываемая система имитационного моделирования должна поддерживать аналоги по крайней мере следующих блоков: ADVANCE, ENTER, GENERATE, LEAVE, PREEMPT, RELEASE, RETURN, SEIZE, TERMINATE и TRANSFER.

1.5 Описание выбранных блоков

Ниже представлено описание выбранных блоков в соответствии со справочным руководством GPSS World.[5]

ADVANCE A,B

Блок ADVANCE осуществляет задержку продвижения транзактов на заданный промежуток времени.

- A Среднее время задержки. Не обязательный параметр. Значение по умолчанию 0.
- В Максимально допустимое отклонение времени задержки либо функция-модификатор.

ENTER A,B

При входе в блок ENTER транзакт либо занимает заданное колличество каналов указанного многоканального устройства либо блокируется до его освобождения.

- А Имя или номер многоканального устройства. Обязательный параметр.
- B Число требуемых каналов. Не обязательный параметр. Значение по умолчанию 1.

GENERATE A,B,C,D,E

Блок GENERATE предназначен для создания новых транзактов.

- A Среднее время между генерацией последовательных заявок. Не обязательный параметр.
- В Максимальное допустимое отклонение времени генерации либо функция-модификатор. Не обязательный параметр.
- С Задержка до начала генерации первого транзакта. Не обязательный параметр.
- D Ограничение на максимальное допустимое число созданных транзактов. Не обязательный параметр. Пол умолчанию ограничение отсутствует.
- Е Уровень приоритета создаваемых заявок. Не обязательный параметр. Значение по умолчанию 0.

LEAVE A,B

При входе в блок LEAVE транзакт освобождаает заданное число каналов указанного многоканального устройства.

- А Имя или номер многоканального устройства. Обязательный параметр.
- B Число требуемых каналов. Не обязательный параметр. Значение по умолчанию 1.

PREEMPT A,B,C,D,E

RELEASE A

Блок RELEASE освобождает одноканальное устройство.

А — Имя или номер одноканального устройства. Обязательный параметр.

RETURN A

Блок RELEASE освобождает одноканальное устройство.

А — Имя или номер одноканального устройства. Обязательный параметр.

SEIZE A

При входе в блок SEIZE транзакт занимает указанное одноканальное устройство либо блокируется до его освобождения.

А — Имя или номер одноканального устройства. Обязательный параметр.

TERMINATE A

Блок TERMINATE завершает поступивший в него транзакт. И опционально уменьшает счетчик завершенных транзаков. Когда счетчик достигает нуля имитация останавливается.

А — Значение, на которое следует уменьшить счетчик завершенных транзактов. Не обязательный параметр. Значение по умолчанию — 0.

1.6 Выводы

Был проведен анализ устройства системы GPSS и осуществлен выбор подмножества блоков, необходимых для моделирования не сложных систем массового обслуживания.

2 Конструкторский раздел

В данном разделе проводится выбор синтаксиса описания моделей в разрабатываемой системе, а также описываются алгоритмы и структуры данных, используемые при формировании моделей и непосредственно при моделировании.

2.1

Синтаксис разрабатываемой системы должен быть, на сколько это возможно, схож с синтаксисом системы GPSS.

Программа на языке GPSS представляет из себя последовательность операторов, каждый из которы описывает тот или иной элемент модели (функцию, блок, устройство и др.). Этот подход естественен для императивных языков программирования, в которых программа является последовательностю комманд, меняющих состояние программы. Однако Haskell относится к категории функциональных языков, программы на которых лписываются как функции, значение которых вычисляется. При этом нет фиксированной, заданной программистом, последовательности операций, которые должны быть выполнены для достижения результата.

Тем не менее, в языке Haskell предусмотрен механизм, позволяющий описать конкретную последовательность вычислений — монады. В сочетании с так называемой do-нотацией, этот механизм позволит проводить описание моделей на Haskel, используя синтаксис схожий с GPSS.

2.2 Монады

Понятие монады в языке Haskell основано на теории категорий. В рамках данной теории монадо может быть определена (не вполне строго) как моноид в категории эндофункторов. Однако для практического использования этого понятия в рамках языка Haskell можно обойтись менее формальным определением.

В соответствии с [3] монада — это контейнейрный тип данных (то есть такой, который содержит в себе значения других типов), представляющий собой экземпляр класса Monad определенного в модуле Prelude.

Под классом в Haskell, понимается не тип данных, как в объектнооринтированных языках, а набор методов (функций), которые применимы для работы с теми или иными типами данных, для которых объявлены экземпляры заданных классов. Наиболее близким аналогом классам в Haskell являются интерфейсы в таких языках как Java или С#. Более точно их следует называть классами типов, но т.к. в данной работе используется исключительно функциональная парадигма, в дальнейшем для краткости они будут называться просто классами.

Класс Monad определен в модуле Prelude следующим образом:

Листинг 2.1 — Класс Monad

```
class Monad m where
return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

(>>) :: m a -> m b -> m b

fail :: String -> m a

p >> q = p >>= \_ -> q

fail s = error s
```

Список использованных источников

- 1. *Квитка М. Е. Сёмкин Ю. Ю., Томила С. О.* Разработка свободного аналога языка GPSS. 2008.
- 2. *Р.В.*, Душкин. Справочник по языку Haskell. / Душкин Р.В. М.: ДМК Пресс, 2008.
- 3. *Р.В.*, *Душкин*. Функциональное программирование на языке Haskell. / Душкин Р.В. М.: ДМК Пресс, 2007.
- 4. *Томашевский В., Ж∂анова Е.* Имитационное моделирование в среде GPSS. / Жданова Е. Томашевский В. М.: Бестселлер, 2003.
 - 5. GPSS Wrorld Reference Manual. 2009.