Welcome to STN International! Enter x:x

LOGINID:ssptasmr1614

```
PASSWORD:
```

TERMINAL (ENTER 1, 2, 3, OR ?):2

```
* * * * * * * * * *
                     Welcome to STN International
                 Web Page for STN Seminar Schedule - N. America
NEWS 1
NEWS 2 JAN 02
                 STN pricing information for 2008 now available
NEWS 3 JAN 16
                 CAS patent coverage enhanced to include exemplified
                 prophetic substances
NEWS 4
         JAN 28
                 USPATFULL, USPAT2, and USPATOLD enhanced with new
                 custom IPC display formats
NEWS 5 JAN 28 MARPAT searching enhanced
NEWS 6 JAN 28 USGENE now provides USPTO sequence data within 3 days
                 of publication
NEWS 7
         JAN 28
                 TOXCENTER enhanced with reloaded MEDLINE segment
NEWS 8
NEWS 9
         JAN 28 MEDLINE and LMEDLINE reloaded with enhancements
         FEB 08 STN Express, Version 8.3, now available
NEWS 10 FEB 20 PCI now available as a replacement to DPCI
NEWS 11 FEB 25 IFIREF reloaded with enhancements
NEWS 12 FEB 25
                 IMSPRODUCT reloaded with enhancements
NEWS 13 FEB 29 WPINDEX/WPIDS/WPIX enhanced with ECLA and current
                 U.S. National Patent Classification
                 IFICDB, IFIPAT, and IFIUDB enhanced with new custom
NEWS 14 MAR 31
                 IPC display formats
NEWS 15 MAR 31
                 CAS REGISTRY enhanced with additional experimental
                 spectra
NEWS 16 MAR 31
                 CA/CAplus and CASREACT patent number format for U.S.
                 applications updated
NEWS 17 MAR 31
                 LPCI now available as a replacement to LDPCI
NEWS 18 MAR 31 EMBASE, EMBAL, and LEMBASE reloaded with enhancements
NEWS 19 APR 04 STN AnaVist, Version 1, to be discontinued
NEWS 20 APR 15 WPIDS, WPINDEX, and WPIX enhanced with new
                 predefined hit display formats
NEWS 21 APR 28 EMBASE Controlled Term thesaurus enhanced
NEWS 22 APR 28 IMSRESEARCH reloaded with enhancements
NEWS EXPRESS FEBRUARY 08 CURRENT WINDOWS VERSION IS V8.3,
             AND CURRENT DISCOVER FILE IS DATED 20 FEBRUARY 2008
NEWS HOURS
              STN Operating Hours Plus Help Desk Availability
NEWS LOGIN
              Welcome Banner and News Items
NEWS IPC8
              For general information regarding STN implementation of IPC 8
Enter NEWS followed by the item number or name to see news on that
```

Enter NEWS followed by the item number or name to see news on tha specific topic.

All use of STN is subject to the provisions of the STN Customer agreement. Please note that this agreement limits use to scientific research. Use for software development or design or implementation of commercial gateways or other similar uses is prohibited and may result in loss of user privileges and other penalties.

* * * * * * * * * * * * * * * * STN Columbus * * * * * * * * * * * * * * * * * *

FILE 'HOME' ENTERED AT 12:53:02 ON 14 MAY 2008

=> e polyphenols

THIS COMMAND NOT AVAILABLE IN THE CURRENT FILE The EXPAND command is used to look at the index in a file which has an index. This file does not have an index.

=> file rea

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 0.21 0.21

FILE 'REGISTRY' ENTERED AT 12:53:28 ON 14 MAY 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 American Chemical Society (ACS)

Property values tagged with IC are from the ZIC/VINITI data file provided by InfoChem.

STRUCTURE FILE UPDATES: 13 MAY 2008 HIGHEST RN 1020702-70-8 DICTIONARY FILE UPDATES: 13 MAY 2008 HIGHEST RN 1020702-70-8

New CAS Information Use Policies, enter HELP USAGETERMS for details.

TSCA INFORMATION NOW CURRENT THROUGH January 9, 2008.

Please note that search-term pricing does apply when conducting SmartSELECT searches.

REGISTRY includes numerically searchable data for experimental and predicted properties as well as tags indicating availability of experimental property data in the original document. For information on property searching in REGISTRY, refer to:

http://www.cas.org/support/stngen/stndoc/properties.html

=> e polyphenols E1 1 POLYPHENOLOXIDASE/BI E2 POLYPHENOLPHTHALEIN/BI E3 0 --> POLYPHENOLS/BI E4 2.2 POLYPHENON/BI E5 1 POLYPHENOTHIAZINE/BI E6 POLYPHENYL/BI 45 E7 POLYPHENYLACETYLENE/BI E8 3 POLYPHENYLALAN/BI E9 POLYPHENYLALANINE/BI E10 POLYPHENYLALANYL/BI 3 E11 1 POLYPHENYLCARB/BI E12 1 POLYPHENYLCARBYNE/BI

=> file caplus COST IN U.S. DOLLARS FULL ESTIMATED COST

SINCE FILE TOTAL ENTRY SESSION 0.46 0.67

FILE 'CAPLUS' ENTERED AT 12:53:48 ON 14 MAY 2008

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

5078 "HOPS"

```
Copyright of the articles to which records in this database refer is
held by the publishers listed in the PUBLISHER (PB) field (available
for records published or updated in Chemical Abstracts after December
26, 1996), unless otherwise indicated in the original publications.
The CA Lexicon is the copyrighted intellectual property of the
American Chemical Society and is provided to assist you in searching
databases on STN. Any dissemination, distribution, copying, or storing
of this information, without the prior written consent of CAS, is
strictly prohibited.
FILE COVERS 1907 - 14 May 2008 VOL 148 ISS 20
FILE LAST UPDATED: 13 May 2008 (20080513/ED)
Effective October 17, 2005, revised CAS Information Use Policies apply.
They are available for your review at:
http://www.cas.org/legal/infopolicy.html
=> s polyphenols
         18430 POLYPHENOLS
=> s 11 and ("humulus lupulus L" "Hop bract polyphenols" "hop bitter acids")
          2017 "HUMULUS"
          1195 "LUPULUS"
       1660207 "L"
          7573 "HOP"
          5078 "HOPS"
          9953 "HOP"
                ("HOP" OR "HOPS")
           487 "BRACT"
          891 "BRACTS"
          1175 "BRACT"
                 ("BRACT" OR "BRACTS")
         18430 "POLYPHENOLS"
          7573 "HOP"
          5078 "HOPS"
         9953 "HOP"
                ("HOP" OR "HOPS")
         15620 "BITTER"
           483 "BITTERS"
         15784 "BITTER"
                 ("BITTER" OR "BITTERS")
       1627014 "ACTDS"
             0 "HUMULUS LUPULUS L" "HOP BRACT POLYPHENOLS" "HOP BITTER ACIDS"
                 ("HUMULUS" (W) "LUPULUS" (W) "L" (W) "HOP" (W) "BRACT" (W) "POLYPHENOLS"
                 (W) "HOP" (W) "BITTER" (W) "ACIDS")
L2
             0 L1 AND ("HUMULUS LUPULUS L" "HOP BRACT POLYPHENOLS" "HOP BITTER
               ACIDS")
=> s 11 and ("humulus lupulus L" or "Hop bract" or "hop bitter acids")
          2017 "HUMULUS"
          1195 "LUPULUS"
       1660207 "L"
           224 "HUMULUS LUPULUS L"
                 ("HUMULUS"(W)"LUPULUS"(W)"L")
          7573 "HOP"
```

```
9953 "HOP"
                 ("HOP" OR "HOPS")
           487 "BRACT"
           891 "BRACTS"
          1175 "BRACT"
                 ("BRACT" OR "BRACTS")
            23 "HOP BRACT"
                ("HOP"(W) "BRACT")
          7573 "HOP"
          5078 "HOPS"
          9953 "HOP"
                ("HOP" OR "HOPS")
         15620 "BITTER"
           483 "BITTERS"
         15784 "BITTER"
                ("BITTER" OR "BITTERS")
       1627014 "ACIDS"
           141 "HOP BITTER ACIDS"
                 ("HOP"(W) "BITTER"(W) "ACIDS")
L3
            31 L1 AND ("HUMULUS LUPULUS L" OR "HOP BRACT" OR "HOP BITTER ACIDS"
=> d L3 20-31 ibib ab
   ANSWER 20 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER:
                         2005:462226 CAPLUS
DOCUMENT NUMBER:
                         143:435849
TITLE:
                         Prenvlflavonoids account for intriguing biological
                         activities of hops
AUTHOR(S):
                        de Keukeleire, D.; Heyerick, A.
CORPORATE SOURCE:
                        Laboratory of Pharmacognosy and Phytochemistry,
                         Faculty of Pharmaceutical Sciences, Ghent University,
                         Ghent, Belg.
SOURCE:
                         Acta Horticulturae (2005), 668 (Proceedings of the 1st
                         International Humulus Symposium, 2004), 175-189
                         CODEN: AHORA2; ISSN: 0567-7572
PUBLISHER:
                         International Society for Horticultural Science
DOCUMENT TYPE:
                         Journal; General Review
LANGUAGE:
                         English
    A review. Hops (Humulus lupulus L.) prove to be a very rich source
     of prenylated hop polyphenols and derivs., which, in addition to their
     essential role in flavoring beer, account for intriguing health-beneficial
     properties as well. Biosynthetic pathways involve acylation and
     prenylation of phloroglucinol, which also serves as a precursor to hop
     acids including humulones (alpha acids) and lupulones (beta acids). It
     appears that mixed hydrophilic - hydrophobic properties of prenylated
     polyphenols determine biol. efficacies. Coupling of prenyl groups delivers
     terpenes that are main constituents of hop essential oils and contribute
     greatly to a hoppy aroma. A volatile isoprenoid alc. is held responsible
     for the sedative activity of hops. Health aspects of humulones and
     derivs. thereof, mainly isohumulones (iso-alpha acids), as well as of
     lupulones, require close attention and varying interesting biol.
     activities have been observed Regarding hop prenylflavonoids, most prominent
```

prenylchalcones are xanthohumol (up to 1.3\$, m/m) and desmethylxanthohumol (up to 0.2\$, m/m). Prenylchalcones can be readily converted to isomeric prenylflavanones, whereby xanthohumol gives rise to isoxanthohumol and desmethylxanthohumol furnishes a mixture of 8-prenylnaringenin and 6-prenylnaringenin. 8-Prenylnaringenin has been shown to be the most potent phytoestrogen currently known, hence, desmethylxanthohumol serves as a pro-estrogen. Xanthohumol exhibits an exceptionally broad spectrum of inhibition mechanisms at all stages of carcinogenesis, but other

interesting biol. activities have been observed as well. It follows that levels of both prenylchalcones in hops determine significantly the value of a particular hop cultivar for medicinal purposes. It should be taken into account that different hop cultivars possess varying contents of these key compds. Furthermore, organic hops prove to be superior for production of elevated levels of prenylchalcones and, even, for a most efficient access to desmethylxanthohumol.

REFERENCE COUNT: 47 THERE ARE 47 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 21 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:965021 CAPLUS

DOCUMENT NUMBER: 141:384030

TITLE: Material for inhibiting enamel decalcification INVENTOR(S): Imai, Susumu; Tagashira, Motoyuki; Kanda, Tomomasa;

Nishizawa, Toshiki; Hanada, Nobuhiro

Asahi Breweries Ltd., Japan PATENT ASSIGNEE(S):

PCT Int. Appl., 23 pp. SOURCE:

CODEN: PIXXD2 DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

| | | ENT I | | | | | | | | | | | | | | | | |
|--------|----|-------|------|-------|------|-------|------|-------|-------|-----|------|------|-------|-------|------|------|------|---------|
| | | | | | | | | | | | | | | | | | | |
| W | 0 | 2004 | | | | | | | | | | | | | | | | |
| | | ₩: | | | | | | AU, | | | | | | | | | | |
| | | | CN, | CO, | CR, | CU, | CZ, | DE, | DK, | DM, | DZ, | EC, | EE, | EG, | ES, | FI, | GB, | GD, |
| | | | | | | | | ID, | | | | | | | | | | |
| | | | LK, | LR, | LS, | LT, | LU, | LV, | MA, | MD, | MG, | MK, | MN, | MW, | MX, | ΜZ, | NA, | NI, |
| | | | NO, | NZ, | OM, | PG, | PH, | PL, | PT, | RO, | RU, | SC, | SD, | SE, | SG, | SK, | SL, | SY, |
| | | | ТJ, | TM, | TN, | TR, | TT, | TZ, | UA, | UG, | US, | UZ, | VC, | VN, | YU, | ZA, | ZM, | ZW |
| | | RW: | BW, | GH, | GM, | KE, | LS, | MW, | MZ, | ΝA, | SD, | SL, | SZ, | TZ, | UG, | ZM, | ZW, | AM, |
| | | | AZ, | BY, | KG, | ΚZ, | MD, | RU, | ТJ, | TM, | ΑT, | BE, | BG, | CH, | CY, | CZ, | DE, | DK, |
| | | | EE, | ES, | FI, | FR, | GB, | GR, | HU, | ΙE, | IT, | LU, | MC, | NL, | PL, | PT, | RO, | SE, |
| | | | SI, | SK, | TR, | BF, | ВJ, | CF, | CG, | CI, | CM, | GΑ, | GN, | GQ, | GW, | ML, | MR, | NE, |
| | | | | TD, | | | | | | | | | | | | | | |
| | | 2004 | | | | | | | | | | | | | | | | |
| | | 2524 | | | | | | | | | | | | | | | | |
| Ε | Ρ | 1621 | 081 | | | A1 | | 2006 | 0201 | | EP 2 | 004- | 7307 | 41 | | 2 | 0040 | 430 |
| | | R: | | | | | | ES, | | | | | | | NL, | SE, | MC, | PT, |
| | | | | | | | | TR, | | | | | | | | | | |
| | | 1780 | 604 | | | A | | 2006 | 0531 | | CN 2 | 004- | 8001 | 1641 | | 2 | 0040 | 430 |
| | | 8109 | | | | | | | | | | | | | | | | |
| | | 2006 | | | | | | | | | | | | | | | | |
| | | 2008 | | | | | | 2008 | 0103 | | | | | | | | | |
| PRIORI | ΤY | APP: | LN. | INFO | . : | | | | | | | | 1247 | | | | | |
| | | | | | | | | | | | | | JP64 | | | | | |
| | | | | | | | | | | | US 2 | 005- | 5549 | 32 | | A3 2 | 0051 | 031 |
| AB I | t | is i | nten | ded : | to p | rovio | de a | n ef: | fect. | ive | cari | osta | tic : | mate: | rial | whi | ch i | nhibits |

dental plaque formation as well as onset of dental caries. A material for inhibiting enamel decalcification containing, as the active ingredient, a proanthocyanidin-like polyphenol originating in hop bract or immature apple, which effectively inhibits not only dental plaque formation but also the dental caries process including proliferation of bacteria, formation of acids by the bacteria and enamel decalcification. Also, foods, drinks and oral care goods with the use of the above substance as an enamel decalcification inhibitor are provided. An enamel decalcification inhibitor was prepared from immature apple fruit extract The obtained enamel decalcification inhibitor was combined at 0.005 % with

other ingredients to 100 % to give a tooth paste.

REFERENCE COUNT: THERE ARE 12 CITED REFERENCES AVAILABLE FOR THIS 12 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L3 ANSWER 22 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:75999 CAPLUS

DOCUMENT NUMBER: 140:92972

TITLE: Device for solid phase extraction of polyphenols and

bitter acids for beer analysis

INVENTOR(S): Nitzsche, Frank; Harms, Diedrich; Offer, Guido

PATENT ASSIGNEE(S): Germany

Ger. Offen., 6 pp. SOURCE:

CODEN: GWXXBX DOCUMENT TYPE: Patent

LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-------------------------|----------|-------------|--------------------------|------------|
| | | | | |
| DE 10233077 | A1 | 20040129 | DE 2002-10233077 | 20020719 |
| PRIORITY APPLN. INFO.: | | | DE 2002-10233077 | 20020719 |
| AP A dorrido for the co | olid pha | oo outracti | on of malumbanala concic | +0 of 2 or |

A device for the solid phase extraction of polyphenols consists of a carrier system which is contacted with the fluid to be analyzed to selectively bind the compds. of interest. The extracted analyte is reacted with an anal. reagent, especially salts of Dy, Sm, Eu, or Tb, to form complexes which are subsequently analyzed by UV-Vis spectroscopy, fluorometry, mass spectrometry, or by electrochem. detection. The carrier system contains functional group-specific sorbing or reactive particles, especially derivs. of inorg. oxides, such as silica, alumina, titania, or zirconia, and a macrocyclic ligand covalently bound to the oxide. The particles can be directly applied onto an inert carrier or homogeneously distributed in a porous matrix. The porous matrix can consist of polyolefins, low-d. polyethylene, low-d. polypropylene, silicones, e.g. polydimethylsiloxane, polyacrylonitrile, PTFE, poly(p-phenyleneterephthylamide), poly(m-phenyleneterephthylamide), or regenerated cellulose. The inert carrier can be a transparent capillary made of glass or quartz, or a inert polymer strip for use as a test strip. A polar solvent or solvent mixture, such as methanol, ethanol, propanol, isopropanol, acetone, DMSO, or their mixts. with water, can be used to eluate the analyte from the carrier system. The device is especially useful for the anal, of beer, or hop bitter acids.

L3 ANSWER 23 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:842054 CAPLUS 135:370939

DOCUMENT NUMBER:

TITLE: Lipase inhibitors from hop and foods containing them INVENTOR(S):

Kaneko, Maki

PATENT ASSIGNEE(S): Asahi Breweries, Ltd. Japan SOURCE: Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|-------|--------------|-----------------------|--------------|
| | | | | |
| JP 2001321166 | A | 20011120 | JP 2000-144639 | 20000517 |
| PRIORITY APPLN. INFO.: | | | JP 2000-144639 | 20000517 |
| AB Polyphenol compds., | which | are containe | d in hop and adsorbed | by synthetic |

resin gel, are useful as lipase inhibitors. Antiobesity foods containing the inhibitors are also claimed. Hot aqueous EtOH extract of hop bracts was passed through a Sepabeads 825 (styrene-divinylbenzene copolymer). The column was eluted with 80% EtOH and the eluted fraction was freeze-dried to give lipase inhibitor. The inhibitor was further purified by ultrafiltration to give a product containing 40.6% catechins. Tablets, capsules, candies, etc. containing the inhibitor were also manufactured

L3 ANSWER 24 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:738369 CAPLUS

DOCUMENT NUMBER: 135:290147

TITLE: Hop-derived natural colorants

INVENTOR(S): Tagashira, Motoyuki

PATENT ASSIGNEE(S): Asahi Breweries, Ltd, Japan

Jpn. Kokai Tokkyo Koho, 4 pp.

CODEN: JKXXAF DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

colorant.

CORPORATE SOURCE:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|----------|---------------|-------------------------|----------------|
| | | | | |
| JP 2001279125 | A | 20011010 | JP 2000-93725 | 20000330 |
| PRIORITY APPLN. INFO.: | | | JP 2000-93725 | 20000330 |
| | | | cones and hop bracts w | |
| can be extracted b | y acid o | or alkali hyd | rolysis in the presence | of heavy metal |
| | | | re useful for beverage, | |
| | | | op cone with 10 mg FeCl | |
| 0.05M HCl while st | irring a | at 95° for 40 | min and filtering gave | a red |

L3 ANSWER 25 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1998:524309 CAPLUS

TITLE: Inhibition by hop bract polyphenols of cellular

adherence and water-insoluble glucan synthesis of

mutans streptococci.

AUTHOR(S): Tagashira, M.; Uchiyama, K.; Yoshimura, T.; Shirota, M.; Uemitsu, N.

Bioscience Research and Development Laboratory, Asahi

Breweries, Ltd., Ibaraki, 302-0106, Japan

Book of Abstracts, 216th ACS National Meeting, Boston,

August 23-27 (1998), AGRO-041. American Chemical

Society: Washington, D. C.

CODEN: 66KYA2

DOCUMENT TYPE: Conference; Meeting Abstract

LANGUAGE:

SOURCE:

English The inhibitory effect of hop bract polyphenols (HBP) on cariogenic streptococci was investigated. It was found that the high mol. weight polyphenol (estimated about 36,000-40,000) inhibited the cellular adherence of Streptococcus mutans MT8148 (serotype C) and Streptococcus sobrinus ATCC 33478 (serotype q) at much smallar concns. than the polyphenols extracted from colong tea or green tea leaves. Furthermore, HBF also inhibited the action of glucosyltransferase, which was involved in the water-insol. glucan synthesis, but did not suppress the growth and the acid production of the bacteria. These results suggest that HBP would be a candidate to act against dental caries caused by Mutans Streptococci.

L3 ANSWER 26 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1997:166027 CAPLUS

126:261436 DOCUMENT NUMBER:

TITLE: Inhibition by hop bract polyphenols of cellular

adherence and water-insoluble glucan synthesis of

mutans streptococci

AUTHOR(S): Tagashira, Motoyuki; Uchiyama, Keiko; Yoshimura,

Tomoaki; Shirota, Masayuki; Uemitsu, Nobuo

Bioscience Res. Development Lab., Asahi Breweries CORPORATE SOURCE:

Ltd., Tokjyo, 143, Japan

Bioscience, Biotechnology, and Biochemistry (1997),

61(2), 332-335

CODEN: BBBIEJ; ISSN: 0916-8451

PUBLISHER: Japan Society for Bioscience, Biotechnology, and

Agrochemistry Journal

DOCUMENT TYPE: LANGUAGE: English

The inhibitory effect of hop bract polyphenols (HBP) on cariogenic streptococci was investigated. The high mol. weight polyphenol (estimated 36,-000-40,000) inhibited the cellular adherence of Streptococcus mutans MT8148 (serotype C) and Streptococcus sobrinus ATCC 33478 (serotype g) at much smaller concns. than the polyphenols extracted from oolong tea or green tea leaves. HBP also inhibited the action of glucosyltransferase, which was involved in the water-insol. glucan synthesis, but did not suppress the growth and the acid production of the bacteria. These results suggest that HBP would be a candidate to act against dental-caries caused by mutans streptococci.

ANSWER 27 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1995:138832 CAPLUS DOCUMENT NUMBER:

122:54303

ORIGINAL REFERENCE NO.: 122:10541a,10544a

TITLE: Novel methodology for unambiguous identification of

hop varieties

De Keukeleire, D.; De Cooman, L.; Everaert, E.; AUTHOR(S): Sandra, P.; Vindevogel, J.; Szucs, R.

Faculty of Pharmaceutical Sciences, University of CORPORATE SOURCE:

Gent, Ghent, Belg. SOURCE:

Proceedings of the Convention - Institute of Brewing

(Asia Pacific Section) (1994), 23rd, 129-32

CODEN: IBAZA2; ISSN: 0367-6897

Winetitles

DOCUMENT TYPE: Journal LANGUAGE: English

PUBLISHER:

A novel methodol, for unambiguous hop cultivar identification involves interpretation by multivariate anal, techniques of data assembled from quant. anal. of important chemotaxonomic markers. Essentially, 3 series of constituents, bitter acids, essential oil components, and polyphenols, were investigated. Prior to anal., each of these series is extracted selectively from 3 hop cultivars, Saaz, Wye Target, and Nugget. The hop bitter acids provide relatively little information that could be useful for distinguishing the cultivars. Furthermore, the ratios of the adhumulones and the adlupulones, which were obtained for the 1st time, are very similar. Detailed insight of the composition of the essential oils allows straightforward distinction. Principal component anal. of quant. data of the hop essential oil as well as of the hop polyphenols leads to unequivocal identification of the 3 cultivars. It is envisaged that manipulation of all combined data will be needed to identify many different hop cultivars by the content of chemical markers.

L3 ANSWER 28 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1994:481159 CAPLUS

DOCUMENT NUMBER: 121:81159

ORIGINAL REFERENCE NO.: 121:14583a,14586a

TITLE: The effects of hops on flavor stability and beer

properties

AUTHOR(S): De Keukeleire, Denis

CORPORATE SOURCE: Fac. Pharm. Sci., Univ. Gent, Ghent, 9000, Belg. SOURCE: Cerevisia and Biotechnology (1993), 18(4), 33-46

CODEN: CERBE8; ISSN: 0778-2640

DOCUMENT TYPE: Journal; General Review

LANGUAGE: English

AB A review with 41 refs. The brewing value and the flavor characteristics of hops are due to the presence of resins, essential oil and polyphenols. While transformations of α -acids during the boiling of wort with hops in the brewery cause development of the bitter taste, the essential oil and the volatile degradation products of the hop bitter acids determine mainly the hop character of beer. The inherent flavor instability is due to the complexity of the flavor pattern and the reactivity of various constituents. It is therefore suggested to use trans iso- α -acids as bittering agents and to apply hydrogenation for removal of the reactive double bonds in the hop components.

L3 ANSWER 29 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1990:176944 CAPLUS DOCUMENT NUMBER: 112:176944

ORIGINAL REFERENCE NO.: 112:29911a,29914a

TITLE: Biochemical identification of hop (Humulus lupulus) cultivars, hop pellets, and barley (Hordeum vulgare)

by means of RP-HPLC flavonoid fingerprints
AUTHOR(S): Van Sumere, C. F.; Everaert, E.; Vande Casteele, K.;

De Cooman, L.; Fache, P.; Saey, L.

CORPORATE SOURCE: Lab. Plantenbiochem., Rijksuniv. Gent, Ghent, 9000, Belg.

SOURCE: Cerevisia (1976-1990) (1989), 14(3), 147-56

CODEN: CRVSDX; ISSN: 0377-8266

DOCUMENT TYPE: Journal

LANGUAGE: Dutch

AB Reverse-phase RPLC (LiChrospher 100 CH-18 column; combined isocratic and gradient elution; UV and visible detection) was used to characterize flavonoids and $\alpha-$ and $\beta-$ bitter acids in hops (or hop pellets) and polyphenols in barley chaff. The data may be used to authenticate samples of hops and barley in the brewing industry when combined with a computerized reference system. Application of the techniques to ornamental plants (e.g. rose cultivars) is also briefly documented.

L3 ANSWER 30 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1987:3758 CAPLUS DOCUMENT NUMBER: 106:3758

ORIGINAL REFERENCE NO.: 106:731a,734a

AUTHOR(S): Effect of hops on the brewing process and beer quality

Melet'ev, A. E.; Mikhnenko, T. A.; Semenova, T. I.

CORPORATE SOURCE: KTIPP, USSR

SOURCE: Fermentnaya i Spirtovaya Promyshlennost (1986), (5),

CODEN: FSPMAM; ISSN: 0367-3197

DOCUMENT TYPE: Journal

LANGUAGE: Russian

AB The organoleptic properties of beer and wort are influenced by the components of hops, particularly $\alpha\text{-bitter}$ acids, isohumulones, and polyphenols. The most critical component, is polyphenol, which enhances the precipitation of high-mol-weight nitrogenous substances upon addition of Mg (50412.

The optimal concns. of polyphenol in hops and wort are 4.5% and 100-300 mg/L, resp.

L3 ANSWER 31 OF 31 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1985:165176 CAPLUS DOCUMENT NUMBER: 102:165176

ORIGINAL REFERENCE NO.: 102:25959a,25962a

TITLE: A novel approach to the analysis of hop bitter

acids in brewing

De la Vega, P.; Batoon, E.

CORPORATE SOURCE: San Miguel Corp., Manila, Philippines

SOURCE: Proceedings of the Convention - Institute of Brewing (Asia Pacific Section) (1985), Volume Date 1984, 18th,

CODEN: IBAZA2; ISSN: 0367-6897

DOCUMENT TYPE: Journal LANGUAGE: English

A laboratory technique that ensures a rapid enrichment and quant. recovery of hop bitter acids in wort and beer, prior to chromatog. anal., was

developed. Hop bitter acids and polyphenols were selectively absorbed onto a C18-bonded silica cartridge and were sequentially desorbed with 90:10:0.25 MeOH-H2O-H3PO4. Determination of bitter acids was subsequently accomplished by HPLC, using an assayed solution of isomerized hop extract as external standard This method gave reproducible results and allowed the anal. of 50 samples/day. Investigations using this new approach provided accurate information on the changes that bitter acids undergo during brewing and beer processing.

=> FIL STNGUIDE

COST IN U.S. DOLLARS SINCE FILE TOTAL SESSION ENTRY FULL ESTIMATED COST 74.52 75.19 DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS) SINCE FILE TOTAL ENTRY SESSION CA SUBSCRIBER PRICE -9.60 -9.60

FILE 'STNGUIDE' ENTERED AT 12:55:47 ON 14 MAY 2008 USE IS SUBJECT TO THE TERMS OF YOUR CUSTOMER AGREEMENT COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

FILE CONTAINS CURRENT INFORMATION. LAST RELOADED: May 9, 2008 (20080509/UP).

=> File caplus

COST IN U.S. DOLLARS SINCE FILE TOTAL ENTRY SESSION FULL ESTIMATED COST 0.48 75.67 SINCE FILE DISCOUNT AMOUNTS (FOR OUALIFYING ACCOUNTS) TOTAL ENTRY SESSION CA SUBSCRIBER PRICE -9.60 0.00

FILE 'CAPLUS' ENTERED AT 13:00:41 ON 14 MAY 2008 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December

```
26, 1996), unless otherwise indicated in the original publications.
The CA Lexicon is the copyrighted intellectual property of the
American Chemical Society and is provided to assist you in searching
databases on STN. Any dissemination, distribution, copying, or storing
of this information, without the prior written consent of CAS, is
strictly prohibited.
FILE COVERS 1907 - 14 May 2008 VOL 148 ISS 20
FILE LAST UPDATED: 13 May 2008 (20080513/ED)
Effective October 17, 2005, revised CAS Information Use Policies apply.
They are available for your review at:
http://www.cas.org/legal/infopolicy.html
=> d his
     (FILE 'HOME' ENTERED AT 12:53:02 ON 14 MAY 2008)
     FILE 'REGISTRY' ENTERED AT 12:53:28 ON 14 MAY 2008
                E POLYPHENOLS
     FILE 'CAPLUS' ENTERED AT 12:53:48 ON 14 MAY 2008
L1
          18430 S POLYPHENOLS
L2
              0 S L1 AND ("HUMULUS LUPULUS L" "HOP BRACT POLYPHENOLS" "HOP BITT
T.3
             31 S L1 AND ("HUMULUS LUPULUS L" OR "HOP BRACT" OR "HOP BITTER ACI
     FILE 'STNGUIDE' ENTERED AT 12:55:47 ON 14 MAY 2008
     FILE 'CAPLUS' ENTERED AT 13:00:41 ON 14 MAY 2008
=> L1 and "aqueous alcohol"
L1 IS NOT A RECOGNIZED COMMAND
The previous command name entered was not recognized by the system.
For a list of commands available to you in the current file, enter
"HELP COMMANDS" at an arrow prompt (=>).
=> s L1 and "aqueous alcohol"
        196324 "AQUEOUS"
             1 "AQUEQUSES"
        196325 "AOUEOUS"
                 ("AOUEOUS" OR "AOUEOUSES")
       1116633 "AO"
           194 "AOS"
       1116751 "AQ"
                 ("AO" OR "AOS")
       1163052 "AOUEOUS"
                 ("AQUEOUS" OR "AQ")
        285819 "ALCOHOL"
        182530 "ALCOHOLS"
        433170 "ALCOHOL"
                 ("ALCOHOL" OR "ALCOHOLS")
        612972 "ALC"
        197719 "ALCS"
        711727 "ALC"
                 ("ALC" OR "ALCS")
        887788 "ALCOHOL"
                 ("ALCOHOL" OR "ALC")
         14184 "AQUEOUS ALCOHOL"
                 ("AQUEOUS" (W) "ALCOHOL")
T. 4
            27 L1 AND "AQUEOUS ALCOHOL"
```

```
=> dup rem
ENTER L# LIST OR (END):4
4 IS NOT VALID HERE
The L-number entered has not been defined in this session, or it
has been deleted. To see the L-numbers currently defined in this
session, enter DISPLAY HISTORY at an arrow prompt (=>).
=> S L4 1-27 ibib ab
MISSING OPERATOR L4 1-27
The search profile that was entered contains terms or
nested terms that are not separated by a logical operator.
=> d his
     (FILE 'HOME' ENTERED AT 12:53:02 ON 14 MAY 2008)
     FILE 'REGISTRY' ENTERED AT 12:53:28 ON 14 MAY 2008
               E POLYPHENOLS
    FILE 'CAPLUS' ENTERED AT 12:53:48 ON 14 MAY 2008
          18430 S POLYPHENOLS
L2
             0 S L1 AND ("HUMULUS LUPULUS L" "HOP BRACT POLYPHENOLS" "HOP BITT
             31 S L1 AND ("HUMULUS LUPULUS L" OR "HOP BRACT" OR "HOP BITTER ACI
L3
     FILE 'STNGUIDE' ENTERED AT 12:55:47 ON 14 MAY 2008
     FILE 'CAPLUS' ENTERED AT 13:00:41 ON 14 MAY 2008
            27 S L1 AND "AOUEOUS ALCOHOL"
=> d L4 1-27 ibib ab
   ANSWER 1 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN
ACCESSION NUMBER: 2007:505184 CAPLUS
DOCUMENT NUMBER:
                        146:481128
TITLE:
                       Manufacture of polyphenol-containing materials from
                        citrus, and foods and beverages containing them
INVENTOR(S):
                       Yamaquchi, Kenji; Masuko, Mari
```

PATENT ASSIGNEE(S): Pokka Corp., Japan

SOURCE: Jpn. Kokai Tokkvo Koho, 23pp.

CODEN: JKXXAF

DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

AB The materials, useful for foods and beverages, are manufactured by immersion of citrus fruits or their constituents in solvents for extraction, addition of bentonite to solns. containing the exts., and removal of bentonite from the solns. The manufacturing process may also involve further purification steps including adsorption with adsorbent resins, washing of the adsorbent resins with H2O or aq. alc. solns., and elution of polyphenols from the adsorbent resins. Food materials with high content of polyphenols and low content of components causing quality deterioration are manufactured

L4 ANSWER 2 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 2006:848276 CAPLUS

DOCUMENT NUMBER: 145:235739

TITLE: Oral formulation containing polyphenols from Cistus

incanus extracts

PATENT ASSIGNEE(S): ICB Investment Consulting und Beteiligungen G.m.b.H.,

Austria

Ger. Gebrauchsmusterschrift, 4pp. SOURCE:

CODEN: GGXXFR Patent

LANGUAGE: German FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

DOCUMENT TYPE:

PATENT NO. KIND DATE APPLICATION NO. DATE DE 202006004872 111 20060824 DE 2006-202006004872 20060328 PRIORITY APPLN. INFO.: DE 2006-202006003957IA 20060310

AB The invention concerns oral dosage forms of polyphenol-containing Cistus incanus exts. in combination with Vitamin E. Typically 80 mg polyphenol-containing Cistus flower or sprout extract and 2 mg Vitamin E are included in capsules, dragees, or tablets; other vitamins and minerals can be added. Dried plant material is extracted with ag. alc., concentrated in vacuum and sorbed on a solid phase.

ANSWER 3 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2006:182143 CAPLUS

DOCUMENT NUMBER: 144:226341

TITLE: Method for preparing hepatoprotective and

hypocholesterolemic agent

INVENTOR(S): Oganesyan, E. T.; Parkhomenko, A. Yu.; Andreeva, O. A.; Dorkina, E. G.; Agadzhanyan, Z. S.; Paukova, E. O.

PATENT ASSIGNEE(S): Pyatigorskava Gosudarstvennava Farmatseyticheskava

Akademiya, Russia Russ., 11 pp.

SOURCE: CODEN: RUXXE7 DOCUMENT TYPE: Patent

LANGUAGE: Russian

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE C2 20060227 RU 2004-109481 RU 2270686 PRIORITY APPLN. INFO.: RU 2004-109481

AB The invention relates to a method for preparing the hepatoprotective and hypocholesterolemic agent. Method for preparing hepatoprotective and hypocholesterolemic agent involves using common wormwood-leaved raqweed (Ambrosia) as the parent raw gathered in the blooming phase. Raw is milled and extracted with ethanol three times under the definite conditions, exts. are combined, filtered and evaporated under vacuum. An aq.-alc. vat residue is mixed with hot water and heated to the complete removing ethanol and then purified from lipophilic substances. The prepared purified aqueous extract comprising the sum of polyphenolic compds. is divided for two equal parts. One part is evaporated to dryness and dry sum of polyphenolic compds. is prepared - fraction 1; the second part is treated sequentially with solvents being with ether firstly to isolated fraction 2 and then this part is treated with Et acetate to isolate fraction 3 followed by treatment with butanol to isolated fraction 4. For each extraction solvents are taken in the definite amount of the aqueous extract volume Extraction time is 5 min,

multiplicity is 5, settling is 5 min followed by removing solvents under vacuum up to dry residue. Method provides preparing an agent from common wormwood-leaved ragweed (Ambrosia) possessing effective hepatoprotective and hypocholesterolemic effect.

L4 ANSWER 4 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2005:1154002 CAPLUS

DOCUMENT NUMBER: 143:405038

TITLE: Complex processing of wild rose fruits for vitamin-containing nutritional supplements.

INVENTOR(S): Rubchevskava, L. P.; Shanina, E. V.

PATENT ASSIGNEE(S): Gosudarstvennoe Obrazovatel'noe Uchrezhdenie Vysshego

Professional'nogo Obrazovaniva "Sibirskii

Gosudarstvennyi Tekhnologicheskii Universitet", Russia SOURCE: Russ., 5 pp.

CODEN: RUXXE7 DOCUMENT TYPE: Patent

LANGUAGE: Russian FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| KIND | DATE | APPLICATION NO. | DATE |
|------|----------|-----------------|----------------------------|
| | | | |
| C1 | 20051027 | RU 2004-100748 | 20040108 |
| | | RU 2004-100748 | 20040108 |
| | | | C1 20051027 RU 2004-100748 |

AB The invention relates to the complex processing of vitamin-containing vegetable raw materials and can be used in preparing vitamin-containing complexes

and nutritional supplements. Complex treatment involves extraction of wild rose fruits with carbon dioxide and preparing a lipid-carotenoid complex and residue that is extracted with water, yielding an aqueous extract containing a vitamin-flavonoid complex and residue. Before extraction the raw material is milled to particle size 0.5 mm. Extraction of raw material with carbon dioxide is carried out under pressure 6-7 MPa and temperature 20-22 °C for 3-4 h and extraction with water is carried out in the ratio residue: solvent (water) = 1:10 for 3 h. Then dried residue is extracted with 40-96% aqueous EtOH at 40-100 °C for 1-3 h and an aq.-alc. extract containing biol. active substances and residue are isolated. The residue is dried and a mineral complex is obtained.

L4 ANSWER 5 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:1130088 CAPLUS

DOCUMENT NUMBER: 142:296962

TITLE: Antioxidant activity of dulse (Palmaria palmata)

extract evaluated in vitro

AUTHOR(S): Yuan, Yvonne V.; Bone, Dawn E.; Carrington, Meshell F. CORPORATE SOURCE: School of Nutrition, Faculty of Community Services,

Ryerson University, Toronto, ON, M5B 2K3, Can. Food Chemistry (2005), 91(3), 485-494

SOURCE:

CODEN: FOCHDJ: ISSN: 0308-8146

Elsevier B.V. PUBLISHER: DOCUMENT TYPE: Journal

LANGUAGE: English

AB Palmaria palmata (dulse) is traditionally consumed as a snack food and garnish; but, little is known about its potential as a source of

antioxidants. A 1-butanol soluble fraction extracted from dulse exhibited -OH scavenging activity ± EDTA (non-site and site specific

activity) in a deoxyribose assay. EC50 concns. of dulse extract to quench DPPH- and ABTS-+ free radicals were 12.5 and 29.5 mg/mL.

Dulse extract inhibited (p < 0.05) conjugated diene production in a linoleic acid

emulsion at 24, 48 and 52 h, 38° ; and inhibited (p = 0.044) thiobarbituric acid reactive substances (TBARS) production at 52 h. One milligram dulse extract exhibited reducing activity = 9.68 µg L-ascorbic acid and total polyphenol content = 10.3 µg gallic acid; the dulse extract did not chelate transition metal ions. The antioxidant activity of the dulse extract was associated with aq./alc.-soluble compds. characterized by phenolic functional groups with reducing activity.

REFERENCE COUNT: 52 THERE ARE 52 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 6 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:1081549 CAPLUS

DOCUMENT NUMBER: 142:348937

TITLE: Antioxidant properties of plumbago zeylanica, an Indian medicinal plant and its active ingredient,

plumbagin AUTHOR(S): Tilak, Jai C.; Adhikari, Soumyakanti; Devasagayam,

Thomas P. A.

CORPORATE SOURCE: Radiation Biology

& Health Sciences Division, Bhabha

Atomic Research Centre, Mumbai, India SOURCE: Redox Report (2004), 9(4), 219-227

CODEN: RDRPE4; ISSN: 1351-0002

PUBLISHER: Maney Publishing

DOCUMENT TYPE: Journal LANGUAGE: English

Plumbago zeylanica (known as 'Chitrak') is a useful Indian medicinal plant. The root of the plant and its constituents are credited with potential therapeutic properties including anti-atherogenic, cardiotonic, hepatoprotective and neuroprotective properties. To examine possible mechanisms of action of P. zeylanica (Chitrak), in relation to its reported beneficial properties, antioxidant effects of the aq./alc.

exts. of root, corresponding to medicinal prepns., and the active ingredient, plumbagin, were studied. Methods used included: ferric reducing/antioxidant power (FRAP), radical scavenging of

1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2'-azobis-3-

ethylbenzthiazoline-6-sulfonic acid (ABTS), lipid peroxidn. in rat liver mitochondria induced by different agents, and estimating phenolic and flavonoid content. In FRAP/DPPH assays, boiled ethanolic exts. were the most

effective, while in the ABTS assay boiled aqueous exts. were the most efficient. These exts. also significantly inhibited lipid peroxidn. induced by cumene hydroperoxide, ascorbate-Fe2+ and peroxynitrite and contained high amts. of polyphenols and flavonoids. To examine the

mechanisms of action in detail, antioxidant and pulse radiolysis studies with plumbagin were conducted. The hydroxyl (.OH), alkyl peroxyl

(CC1300.), linoleic acid peroxyl (LOO.), and glutathiyl (GS.) radicals generate a phenoxyl radical upon reaction with plumbagin. The bimol. rate consts. were: .OH, 2.03 × 109 dm3mol-1s-1; CC1300., 1.1 × 109 dm3mol-1s-1; LOO., 6.7 × 107 dm3mol-1s-1; and GS., 8.8 × 108

dm3mol-1s-1. In conclusion, our studies reveal that exts. of P. zeylanica and its active ingredient plumbagin have significant antioxidant abilities

that may possibly explain some of the reported therapeutic effects. REFERENCE COUNT: THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS 46 RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 7 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN 2004:515517 CAPLUS ACCESSION NUMBER:

DOCUMENT NUMBER: 141:33848

TITLE: Process for producing hop glume polyphenols

INVENTOR(S): Tagashira, Motoyuki; Kanda, Tomomasa PATENT ASSIGNEE(S): Asahi Breweries, Ltd., Japan

SOURCE: PCT Int. Appl., 16 pp.

CODEN: PIXXD2

DOCUMENT TYPE: Patent LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE WO 2004052898 A1 20040624 WO 2003-JP15959 20031212 W: AU, CN, JP, US RW: AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR AU 2003289063 A1 20040630 AU 2003-289063 20031212 AU 2003289063 B2 20071018 EP 1577315 A1 20050921 EP 2003-778886 20031212 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, LT, LV, FI, MK, CY, AL, TR, BG, CZ, EE, SK CN 1726221 A 20060125 CN 2003-80105813 US 20060251760 A1 20061109 US 2005-538790 20031212 US 2005-538790 20050610 JP 2002-360424 A 20021212 WO 2003-JP15959 W 20031212 PRIORITY APPLN. INFO.:

This invention provides a process for efficiently producing highly purified hop glume polyphenols using hop glume as the starting material; food, drinks, cosmetics and drugs containing hop glume polyphenol are disclosed. Namely, a process for producing hop polyphenols comprises extracting hop glume with an ag. alc. solution, concentrating the extract to

give a

residual alc. concentration of 0.5 to 2% and then centrifuging and/or filtering the concentrate Formulations containing hop glume polyphenols are given.

L4 ANSWER 8 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:409947 CAPLUS

DOCUMENT NUMBER: 140:390674

TITLE: Black rice ingredients and extracts for inhibition of increase in human blood sugar level and their use for

prevention of diabetes and diet foods and beverages INVENTOR(S): Tsuboi, Makoto; Aitani, Norio; Okada, Tadashi; Murai,

Hiromichi

PATENT ASSIGNEE(S): Oriza Yuka K. K., Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF Patent

DOCUMENT TYPE:

Japanese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|-------|-----------------|---------------------|----------|
| | | | | |
| JP 2004143130 | A | 20040520 | JP 2002-349142 | 20021025 |
| PRIORITY APPLN. INFO.: | | | JP 2002-349142 | 20021025 |
| 3D Diook wise looks | - 1 - | ant bearroad as | and an all auto and | |

AB Black rice polyphenols, anthocyanins, and aq. alc. exts. are useful for inhibition of increase in human blood sugar level. Thus. aqueous EtOH extract of the rice suppressed the rise in blood sugar level after diet in volunteers.

L4 ANSWER 9 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2004:249625 CAPLUS

DOCUMENT NUMBER: 140:276146

TITLE: Sugar-uptake inhibitors, antidiabetic compositions, and dietary foods and beverages containing ingredients

of black rice

INVENTOR(S): Tsuboi, Makoto; Aitani, Norio; Sugishita, Tomoko; Okada, Tadashi; Murai, Hiromichi

Oriza Yuka K. K., Japan Jpn. Kokai Tokkyo Koho, 9 pp.

SOURCE: Jpn. Kokai Tol
CODEN: JKXXAF
DOCUMENT TYPE: Patent

LANGUAGE: Japanese FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT ASSIGNEE(S):

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|----------|------------|-----------------------|-------------|
| | | | | |
| JP 2004091462 | A | 20040325 | JP 2002-296748 | 20020902 |
| PRIORITY APPLN. INFO.: | | | JP 2002-296748 | 20020902 |
| AB Title inhibitors, | compns., | and foods, | useful for prevention | of diabetes |

and obesity, contain polyphenols, anthocyanin, α -glucosidase inhibitors, α -amylase inhibitors, sucrose-uptake inhibitors, or starch-uptake inhibitors of black rice, or its aq. alc. extract Thus, black rice extract at 3.0 mg/mL inhibited α -amylase and

 α -glucosidase by 100% and 90.59%, resp.

L4 ANSWER 10 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2003:417503 CAPLUS DOCUMENT NUMBER: 138:406580

DOCUMENI NUMBER: 138:406580

TITLE: Use of reed or its ingredients in the form of extracts

for cosmetic formulations
INVENTOR(S): Aquadish, Louis Michel Jacques; Mane, Jean Maurice

Eugene; Berthon, Jean Yves Antonin

PATENT ASSIGNEE(S): Greentech S. A., Fr.; V Mane Fils

SOURCE: Fr. Demande, 17 pp.

CODEN: FRXXBL

DOCUMENT TYPE: Patent LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|----------------------|------|----------|-----------------|----------|
| | | | | |
| FR 2832631 | A1 | 20030530 | FR 2001-15405 | 20011127 |
| FR 2832631 | B1 | 20040618 | | |
| TODITY MIDDIN THEO . | | | ED 2001-15/05 | 20011127 |

The present invention relates to the use of the reed (Reeds communis), (Acorus calamus), (Arundo dorax) or (Cordyline terminalis) in the form of aq., alc., acetone, hydroalcoholic, hydroglycolic, glycolic or oil exts. for the preparation of cosmetic formulations (skin, body, hair), presenting local slimming properties by reduction in the lipidic load of the s.c. adipocytes, characterized by the presence of inhibiting cAMP phosphodiesterase inhibitors (adenosine 3':5'monophosphate cyclic phosphodiesterase) and activators of the adenylate cyclase, presenting antiradical properties, slowing down cellular ageing due to the presence of polyphenols and flavonoids, presenting by the presence of polysaccharides and free sugars such as saccharose, presenting immunomodulating properties by the presence of polysaccharides, inhibiting epidermal and dermal ageing due to the presence of specific polysaccharides such as arabinoglucans, vitamin C and organic acids, presenting detoxifying properties naturally recognized for the reed in its environment, due to the presence of flavonoids and polyphenols allowing the complexation and the elimination of heavy metals and aggressive pollutants on the skin, presenting refreshing and invigorating properties naturally recognized for the reed, due to the presence of polysaccharides, saccharose and vitamin C (ascorbic acid), rejuvenating properties for epidermis, dermis and hair.

REFERENCE COUNT: 1.0 THERE ARE 10 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 11 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2002:834248 CAPLUS

DOCUMENT NUMBER: 138:169782

TITLE: 2D NMR analysis for unambiguous structural elucidation of phenolic compounds formed through reaction between

(+)-catechin and glvoxvlic acid

AUTHOR(S): Es-Safi, Nour-Eddine; Le Guerneve, Christine;

Chevnier, Veronique; Moutounet, Michel

CORPORATE SOURCE: UMR Sciences Pour l'OEnologie, INRA, Montpellier,

34060, Fr.

SOURCE: Magnetic Resonance in Chemistry (2002), 40(11),

693-704

CODEN: MRCHEG; ISSN: 0749-1581

PUBLISHER . John Wiley & Sons Ltd.

DOCUMENT TYPE: Journal

LANGUAGE: English Various phenolic compds. were synthesized in an ag.-alc. solution containing (+)-catechin and glyoxylic acid which was used as a model of fruit-derived food browning that usually occurs during aging. After purification by semi-preparative HPLC, the isolated compds. were subjected to homo- and heteronuclear proton and carbon NMR anal, including COSY, TOCSY, ROESY, HSQC and HMBC techniques. These expts. allowed the structural elucidation and complete 1H and 13C NMR assignment of the isolated compds. The strategies followed for the assignment of all proton and carbon resonances

in addition to the linkage site determination are discussed. REFERENCE COUNT: 30 THERE ARE 30 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ANSWER 12 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:764505 CAPLUS

DOCUMENT NUMBER: 135:282416

TITLE: Device for IR or near-IR spectrophotometric analysis

of body fluids or aqueous alcoholic fluids

INVENTOR(S): Therry, Francis; Leboeuf, Jean Pierre

PATENT ASSIGNEE(S): Cetim, Fr. SOURCE:

Fr. Demande, 16 pp. CODEN: FRXXBL

Patent

DOCUMENT TYPE: LANGUAGE: French

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT N |
DATE | APPLICATION NO. | DATE |
|----------------------|--------------|-----------------|----------|
| FR 28036
FR 28036 |
20010713 | FR 2000-202 | 20000107 |

PRIORITY APPLN. INFO.: FR 2000-202 20000107 The apparatus for the spectrophotometric anal. of fluids consists of a spectrophotometer, and a sampling unit featuring a syringe, a three-way valve, and a motorized piston. The valve connects to the syringe, to the reservoir of sample being analyzed, and to a tube that leads to the optical cell in the spectrophotometer. The device is equipped with a Peltier-effect-type thermostat to control the temperature Two elec. valves are integrated before and behind the optical cell to immobilize the sample. A computer analyzes the data obtained from calibration measurements and measurements of the actual sample. The method is based on IR and near-IR

spectroscopy. Preferentially, body fluids such as blood or aq. alc. fluids (e.g., wine) are analyzed.

L4 ANSWER 13 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:289933 CAPLUS

DOCUMENT NUMBER: 134:300615

TITLE: Stable cosmetic compositions containing polyphenols

and amino carboxylic acids
INVENTOR(S): Tajima, Masaru; Omoto, Tsunetaka

PATENT ASSIGNEE(S): Lion Corp., Japan
SOURCE: Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF
DOCUMENT TYPE: Patent

LANGUAGE: Japanese

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE

JP 2001114651 A 20010424 JP 1999-295416 19991018
PRIORITY APPLN. INFO.:
AB The compns., which are free from discoloration or crystallization during

storage,

contain polyphenols and monoamino monocarboxylic acids dissolved in solvents comprising 15:85-95:5 weight ratio of C2-4 alcs. and H2O. A spray-type hair treatment composition was prepared from Pr gallate 1.0, glycine 1.0, silk hydrolyzate 2.0, hydroxyethyl chitosan 1.5, poly(vinylpyrrolidone) 0.5, polyoxyethylene hydrogenated castor oil 0.5, cetyltrimethylammonium chloride 0.5, dihydroxybenzophenone 0.1, methylparaben 0.1, citric acid, Na citrate, perfume 0.2, EtOH 35.0, and H2O to 100.0%.

L4 ANSWER 14 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 2001:251182 CAPLUS

DOCUMENT NUMBER: 135:2977

TITLE: Polyphenolic metabolites of the flowers of Tamarix tetragona

AUTHOR(S): El-Mousallami, Amani M. D.; Hussein, Sahar A. M.;

Nawwar, Mahmoud A. M.
CORPORATE SOURCE: Department of Chemistry, Faculty of Science, Zagazig

ORPORATE SOURCE: Department of Chemistry, Fa University, Zagazig, Egypt

SOURCE: Natural Product Sciences (2000), 6(4), 193-198 CODEN: NPSCFB; ISSN: 1226-3907

PUBLISHER: Korean Society of Pharmacognosy

DOCUMENT TYPE: Journal LANGUAGE: English

ABA A phytochem, study of the constitutive polyphenolics of the aq. alc. extract of Tamarix tetragyna flowers was carried out. The new sulfated flavonol quercetin 3',4'-dimethyl ether 3-O-KSO3 as well as a new natural galloyl glucose, 2-O-galloyl-(a/β)-4Cl-glucopyranose, were isolated and characterized. The known sulfated flavonols, kaempferol 7,4-di-Me ether 3,5-di-O-KSO3, quercetin 7,4'-di-Me of the ther 3-O-KSO3 and quercetin 7,4'-dimethyl ether 3-O-KSO3 and quercetin 3-O-KSO3 and the known sulfated phenolics isoferulic acid 3-O-KSO3 and ellagic acid 4,4'-dimethyl ether 3-O-KSO3 were also separated and identified. The structures were established by conventional methods of anal. and confirmed by 1H-, 13C-NMR and neg. ESI-mass spectrometry. A 2D-homonuclear chemical

shift correlation NMR experiment was applied for the new natural galloylqlucose.

REFERENCE COUNT: 18 THESE ARE 18 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

ACCESSION NUMBER: 2000:542288 CAPLUS DOCUMENT NUMBER: 133:131172

TITLE: Bactericides, fungicides, and insecticides containing

polyphenols for plants

INVENTOR(S): Shiga, Takuo PATENT ASSIGNEE(S): Japan

SOURCE: Jpn. Kokai Tokkyo Koho, 2 pp.

CODEN: JKXXAF DOCUMENT TYPE: Patent

Japanese

LANGUAGE:

FAMILY ACC. NUM. COUNT: 1 PATENT INFORMATION:

PATENT NO. KIND DATE APPLICATION NO. DATE JP 2000219606 A 2000808 JP 1999-57521 19990128 PRIORITY APPLN. INFO.: JP 1999-57521 19990128

AB The pesticides contain tea exts. (extracted with H2O or ag. alc.) and/or natural polyphenols, e.g. tannic acids, catechin, or flavones. Green tea polyphenol showed good antibacterial, antifungal, and insecticidal activity.

L4 ANSWER 16 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1998:294406 CAPLUS

DOCUMENT NUMBER: 129:27283

TITLE: Transformations of wood resulting from the development of wood fungi during cask-stave aging Roulland, C.

AUTHOR(S):

CORPORATE SOURCE: B.N.I.C. du Cognac, Station Viticole du Bureau Natl. Interprofessionel du Cognac - 69, Cognac, F.16100, Fr. SOURCE:

Rivista Italiana EPPOS (1998), (Spec. Num.), 425-434 CODEN: RIEPD7; ISSN: 0392-0445

Rivista Italiana EPPOS

PUBLISHER: DOCUMENT TYPE: Journal

LANGUAGE: French

AB The role of microorganisms encountered in oak wood was investigated by the use of chemical and sensorial methods. These analyses were carried out on

ag. alc. exts. of chips inoculated with different species. Fungi (Paecilomyces, Candida, Phialemonium, strain E) apparently do not produce

the volatile substances found in cognac (furan aldehydes, lactones,

volatile phenols, aromatic aldehydes), but do degrade some sugars, polyols and fatty acids, as well as gallic acid and eugenol. However certain microorganisms appear to affect the formation of some fatty acid esters.

Sensorial anal. showed differences in the intensity of color and

bitterness between the hydroalcoholic exts. of the control sample and those of inoculated samples. Paecilomyces seems to accentuate bitterness,

while Phlalemonium seems to attenuate it.

REFERENCE COUNT: 8 THERE ARE 8 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L4 ANSWER 17 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1995:624378 CAPLUS

DOCUMENT NUMBER: 123:197056

TITLE: Fractionation and HPLC analysis of polyphenol

compounds in Olea europea L. fruits. Baldi, A.; Romani, Annalisa; Mulinacci, Nadia; AUTHOR(S):

Alberti, M. Bambagiotti; Vincieri, F. F. Dipartimento di Scienze Farmaceutiche, Florence, Italy CORPORATE SOURCE:

SOURCE: Bulletin de Liaison - Groupe Polyphenols (1992),

16(Pt. 2), 60-3 CODEN: BLPLAS; ISSN: 0242-8466 PUBLISHER: Groupe Polyphenols

DOCUMENT TYPE: Journal LANGUAGE: French

AB Depitted olive fruits were frozen in liquid N and extracted with aq. alc. Following liquid-liquid fractioning, the fractions were analyzed with HPLC. Oleuropein, its degradation products, low mol.-weight polyphenols and cyanidin derivs. were found.

L4 ANSWER 18 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1992:537658 CAPLUS

DOCUMENT NUMBER: 117:137658

ORIGINAL REFERENCE NO.: 117:23747a,23750a

TITLE: Euphorbia hirta extracts as immunostimulants

INVENTOR(S): Tamas Szenasi, Eszter

PATENT ASSIGNEE(S): Hung.

SOURCE: Ger. Offen., 5 pp.
CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|------------------------|------|------------|----------------------|------------|
| | | | | |
| DE 4102054 | A1 | 19920730 | DE 1991-4102054 | 19910124 |
| PRIORITY APPLN. INFO.: | | | DE 1991-4102054 | 19910124 |
| AB Agueous and ag =ale | avte | of F birts | are immunostimulants | functicide |

AB Aqueous and aq.-aic. exts. of E. hirta are immunostimulants, tungicides and wound-healing stimulants. The active principles are flavonoids, polyphenois, sterols and terpenes. E. hirta stems and leaves were extracted with water at 50 and the extract was lyophilized to give a product

which affected the lectin-induced lymphoblast transformation, in vitro.

L4 ANSWER 19 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1978:27793 CAPLUS DOCUMENT NUMBER: 88:27793

ORIGINAL REFERENCE NO.: 88:4359a,4362a

TITLE: Total polyphenolic compounds

INVENTOR(S): Dem'yanenko, V. G.; Dranik, L. I.; Drogovoz, S. M.;

Vikhtinskaya, I. L.
PATENT ASSIGNEE(S): Kharkov Scientific-Research Chemical-Pharmaceutical

Institute, USSR; Kharkov State Pharmaceutical

Institute

SOURCE: U.S.S.R. From: Otkrytiya, Izobret., Prom. Obraztsy, Tovarnye Znaki 1977, 54(39), 15.

Tovarnye Znaki 1977, 54(39), 15. CODEN: URXXAF

DOCUMENT TYPE: Patent LANGUAGE: Russian

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

| PATENT NO. | KIND | DATE | APPLICATION NO. | DATE |
|-----------------|----------------|-----------|---------------------------|--------------|
| | | | | |
| SU 577033 | A1 | 19771025 | SU 1974-2088334 | 19741230 |
| PRIORITY APPLN. | INFO.: | | SU 1974-2088334 A | 19741230 |
| AB Chicory is | extracted with | aq. alc., | the extract is evaporated | and purified |
| | | | | |

1:8 mixture of n-BuOH with CHCl3 to give polyphenols with cholagogue activity.

L4 ANSWER 20 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN ACCESSION NUMBER: 1975:10723 CAPLUS

DOCUMENT NUMBER: 82:10723

ORIGINAL REFERENCE NO.: 82:1673a,1676a

TITLE: State of titanium oxidation in compounds formed during

the reaction of titanium with polyphenols and

pyrazolone derivatives

Busev, A. I.; Solov'eva, N. G.; Akimov, V. K. AUTHOR(S):

CORPORATE SOURCE: Mosk. Gos. Univ. im. Lomonosova, Moscow, USSR

SOURCE: Zhurnal Neorganicheskoi Khimii (1974), 19(10), 2704-7

CODEN: ZNOKAQ; ISSN: 0044-457X

DOCUMENT TYPE: Journal LANGUAGE: Russian

Aq.-alc. tetrabromo-pyrocatechol (H2L) or tribromopyrogallol (H2L')

1968:86723 CAPLUS

was treated with Ti(III) or Ti(IV) salts in HCl in the presence of antipyrine (Q) to give the octahedral complexes Ti(HL)LQ, Ti(HL)2LQ2,

Ti(HL')L'Q3, and Ti(HL')2L'Q2. The oxidation state of Ti in these complexes was established from magnetic measurements.

ANSWER 21 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: DOCUMENT NUMBER:

68:86723

ORIGINAL REFERENCE NO.: 68:16683a,16686a

TITLE: Dependence of oxidation rates of substituted phenols

on the constants of substituents

AUTHOR(S): Kirso, U.; Gubergrits, M.; Kuiv, K. CORPORATE SOURCE: Inst. Khim., Tallinn, USSR

SOURCE: Reaktsionnaya Sposobnost Organicheskikh Soedinenii

(1966), 3(3), 33-46

CODEN: RSOTAY; ISSN: 0375-9520

DOCUMENT TYPE: Journal Russian

LANGUAGE: The oxidation of alkyl-substituted mono- and polyphenols by mol. O at

40° in 50% ag. alc. KOH was studied. Oxidation rate consts. were calculated from the O consumption as a function of time. The additivity rule

of σ consts. in the Hammett equation was tested on polysubstituted derivs. For meta and para substituents linear correlation was obtained

(correlation coefficient r = 0.98, 8 compds.). When ortho substituents were included, the correlation was not so good (r = 0.87, 11 compds.). In the similar way the antioxidizing efficiency of phenols was correlated with

the σ consts. New values of σ consts. -0.65 and -0.24 were suggested for ortho substituents 0- and tert-Bu, resp.

L4 ANSWER 22 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1966:63021 CAPLUS

DOCUMENT NUMBER: 64:63021

ORIGINAL REFERENCE NO.: 64:11820g-h,11821a-b

TITLE: Wine tannins. Isolation of condensed flavonoid

pigments by gel filtration

Somers, T. C. AUTHOR(S):

Australian Wine Res. Inst., Glen Osmond CORPORATE SOURCE:

SOURCE: Nature (London, United Kingdom) (1966), 209(5021),

368-70

CODEN: NATUAS; ISSN: 0028-0836

DOCUMENT TYPE: Journal

LANGUAGE: English

The paper reports the use of Sephadex G-25 dextran gels in both the preparation

and analysis of wine tannins. Adsorptive capacity of Sephadex G-25 for wine tannins is almost completely eliminated by preparation of the gel in aq.

alc. media. The procedure is rapid and gives quant. recovery. The anthocyanins present in the wine are also partially resolved.

Twenty-fold-concentrated phenolic constituents from 1964 dry red wine (20 ml.)

were applied to the Sephadex G-25 column. Two distinct bands were

obtained. Recovery of total phenolic material was almost 100%. The chemical nature of effluent under band I and II was revealed by paper chromatography, using BuOH-HOAc-H2O as solvent. The method thus provides a solution to the problem of sep. measurement and isolation of wine tannins. The individual anthocyanins may also be estimated fairly accurately by use of control paper chromatography. The technique has revealed that the red color of wine is due to the monomeric anthocyanin pigments only, with superimposed tannin effects producing the familiar brick-red tints of an aged wine. The changing hues and tints of a red wine are then explicable in terms of the relative contributions of polymeric and monomeric pigments to total color. The author has also used Sephadex G-50 and G-100 to analyze tannins from 1959 Shiraz red wine. Using different concns. of aq. alc. as eluting agent, the swelling capacity of the gel can be altered and hence its resolution power can also be altered. Thus, the same gel may be modified to give different performances as a mol. sieve for tannins. It is concluded that most of the condensed polyphenols in 1959 wine tannins were in the mol. weight range of 2000-5000, but some material having mol. weight up to 50,000 was also present.

L4 ANSWER 23 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1961:108171 CAPLUS DOCUMENT NUMBER: 55:108171

ORIGINAL REFERENCE NO.: 55:20336i,20337a-b
TITLE: Melanoids in tobacco. I. Quantitative determination of

free and bound amino acids in tobacco

AUTHOR(S): Ivanov, N. G.

CORPORATE SOURCE: Central Tobacco Lab., Plovdiv

SOURCE: Bulgarski Tyutyun (1961), 6(No. 1), 29-32

CODEN: BUYYA5; ISSN: 0521-6680
DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB The amino acids in fermented tobacco were determined quant. by the following method: 1 g. of dry tobacco was extracted for 8-10 hrs. with dry the following method: 1 g. of dry tobacco was taken up with 75% aq. alc., acidified with RCI, evaporated to a small volume in vacuo over CaCl2 and NaOH and chromatographed on paper. The residual tobacco was hydrolyzed with 8 ml. 68 HCl at 105° for 48 hrs., filtered, washed, concentrated, and chromatographed on paper. The separated free amino acids in tobacco and the hydrolyzate were determined colorimetrically. Fermented tobacco contained lysine, arginine, glutamine, aspartic acid, serine, glycine, glutamic acid, threonine, tyrosine, methionine, alanine, valine, phenylalanine, leucine, and isoleucine. The amount of the acids was lower in fermented than in nonfermented tobacco, apparently due to melanoid formation by reacting with polyphenols and other hydroxy compds. during fermentation.

L4 ANSWER 24 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1961:76136 CAPLUS

DOCUMENT NUMBER: 55:76136 ORIGINAL REFERENCE NO.: 55:14447b-h

TITLE: Flavan derivatives. IV. Teracacidin, a new leucoanthocyanidin from Acacia intertexta

AUTHOR(S): Clark-Lewis, J. W.; Katekar, G. F.; Mortimer, P. I.

CORPORATE SOURCE: Univ. Adelaide, S. Australia

SOURCE: Journal of the Chemical Society (1961) 499-503

CODEN: JCSOA9: ISSN: 0368-1769

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

cf. CA 55, 3573f. Heartwood of A. intertexta contained a new leucoanthocyanidin (tetracacidin) found to be (-)-7,8,4'-trihydroxy-2,3-cis-flavan-3,4-cis-diol (I), an analog of melacacidin (Ia). The wood also contained a very small proportion of isoteracacidin (II), and (+)-pinitol

```
(III). I and III appeared to be related to each other in the same way as
Ia and isomelacacidin, and the epimers thus differed only in configuration
at the 4-position. From 11.5 kg. milled wood were obtained 57 g. III, m.
182-3° (aq. alc.), [α]16D 65° (c 2.8, H20), and 32
g. mixture of I, II, and O-ethylisoteracacidin (IV). The polyphenols (92
g.) heated 2 h. at 100° with H2O and 12 cc. AcOH gave soluble
material, which was converted to IV by refluxing with 1% AcOH. The
filtrate refluxed 10 min. with 0.1 cc. concentrated HCl, then 10 q. Na
p-toluenesulfonate. 2H2O in 20 cc. H2O and 6 cc. AcOH added, and the mixture
heated 0.5 h. gave 3.4 g. crude isoteracacidin p-tolvl sulfone (V),
plates, m. 214° (decomposition), [α]24D -22.4°(c 1, Me2CO);
tetraacetate, m. 137-8° (alc.), [α]24D -16° (c 1,
Me2CO). I purified by counter-current distribution was a brown powder.
Extraction with pentyl alc. of an HCl solution of I gave an orange-red
anthocyanidin compared chromatog. with cyanidin and 3,3',4',7,8-
pentahydroxyflavylium chloride. The anthocyanidin similarly derived from
V was indistinguishable from that from I. Crude I (1.63 g.) methylated 5
h. with Me2SO4 and K2CO3 gave 0.5 g. teracacicin 4',7,8-trimethyl ether
(VI), m. 159°, [α] 18D -65° (c 1, alc.). KMnO4 (0.51
q.) added gradually to 0.108 q. VI in 50 cc. Me2CO, and the mixture heated
and decolorized gave 0.0121 g. p-anisic acid, m. 178°. VI (1.03
g.) oxidized with 1.5 g. KMnO4 gave 0.081 g. VI. Acidification of the
Na2CO3 solution gave a residue which when methylated gave 0.25 g. Me
2-hydroxy-3,4-dimethoxybenzoate, prisms, m. 75-6°, and 0.34 g. Me
anisate, m. 48-9^{\circ} (ligroine). 2-{\rm Hydroxy}-3,4,4'-{\rm trimethoxychalcone} (5 g.) was converted into 4',7,8-{\rm trimethoxyflavonol} (VII), m. 195^{\circ}
(AcOH), with alkaline peroxide. VII (2 g.) in 100 cc. alc. hydrogenated 24 h.
at 100°/100 atmospheric over 2 g. Raney Ni (W6) gave 0.36 g.
(±)-4',7,8-trimethoxy-2,3-cis-flavan-3,4-cis-diol (VIII), m.
132-3° (alc.); diacetate, leaflets, m. 158-9° (alc.);
isopropylidene derivative m. 126° (MeOH). Br (0.25 g.) in 1 cc. CC14
left 2 h. at room temperature with 0.6 q. 2-acetoxy-3,4,4'-trimethoxychalcone
```

15 cc. CCl4, evaporated, and the residue refluxed 13-15 min. with 10 cc. 1:4 aqueous Me2CO gave the bromohydrin, prisms, m. 138-45°. The bromohydrin refluxed 3 min. with 8 cc. 10% Na2CO3 gave 0.15 g. dihydro-4', 7, 8-trimethoxyflavonol (IX), m. 172° (alc.). IX was also prepared without isolation of the bromohydrin by adding aqueous Na2CO3 to the aqueous Me2CO solution of the chalcone dibromide after the heating period. NaBH4 (0.6 g.) left 24 h. with 2 g. IX in 150 cc. MeOH gave 1.3 g. (±)-4',7,8-trimethoxy-2,3-trans-flavan-3,4-cis-diol (X), m. 83-4°, raised to 126-7° by drying; isopropylidene derivative (76%), m. 168-9° (MeOH). IX (0.2 g.) in 20 cc. MeOH hydrogenated 12 h. at 50°/70 atmospheric over 0.01 q. PtO2 gave 65% X. III m. 184-5°, [α]25D 65° (c 3, H2O). Paper chromatog. of the mixture showed that conversion of III into inositol occurred rapidly in refluxing 6N HCl, and was complete in 8 h. III (5 g.) refluxed 8 h. with 6N HCl gave 4.1 g. (+)-inositol, prisms, m. $239-40^{\circ}$, [α]16D 64° (c 1.2, H2O).

```
ANSWER 25 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN
                    1961:17908 CAPLUS
```

ACCESSION NUMBER: DOCUMENT NUMBER: 55:17908

in

ORIGINAL REFERENCE NO.: 55:3573f-i,3574a-i,3575a-b

TITLE: Flavan derivatives. III. Melacacidin and isomelacacidin from Acacia species AUTHOR(S): Clark-Lewis, J. W.; Mortimer, P. I.

CORPORATE SOURCE: Univ. Adelaide, S. Australia SOURCE: Journal of the Chemical Society (1960) 4106-12

CODEN: JCSOA9; ISSN: 0368-1769

DOCUMENT TYPE: Journal

LANGUAGE: Unavailable

AB cf. CA 54, 24696d. A new leucoanthocyanidin, isomelacacidin (I), was found with its 4-epimer, melacacidin (II), in the heartwood of 3 species of Acacia. Extraction and separation of the epimers were described. II was obtained pure and crystalline I behaved as a reactive p-hydroxybenzyl alc. and readily formed an Et ether by reaction with alc.; this facilitated its separation from II. The comparative inertness of II was attributed to an unexpected conformational stability in its 2(eq), 3(ax), 4(eq)-half-chair conformation, which inhibited resonance stabilization of the 4-carbonium ion and thus reduced the benzylic character of the 4-OH group. Willed heartwood (2335 g.) of Acacia excelsa extracted 24 hrs. with Me2CO, 8 hrs. with alc., and 8 hrs. with H2O by continuous hot percolation, the 376 g. of residue obtained by concentrating the Me2CO extract stirred in 4 l. H2O,

and the

next day the filtrate concentrated to 600 cc. and continuously extracted with EtOAc

gave (in successive 8 hrs. periods) 116 g., 8 g., and 4 g. of extractive. The alc. extract similarly treated gave 14 g. EtOAc-soluble material. The EtOAc-soluble material (142 g.) refluxed 2 hrs. with 1 l. alc. and 10 cc. AcOH converted I into O-ethylisomelacacidin (III). Evaporation to dryness in vacuo left a residue which was dissolved in 400 cc. H2O and distributed between 240 cc. EtOAc and 400 cc. H2O (on each occasion) in a counter current procedure; the EtOAc portion gave fraction A (77.7 g.). The H2O-soluble fractions were evaporated at 55° and continuously extracted with Et2O to give (in 32 hrs.) a total of 10.6 g. II and 26.6 g. of noncryst. EtO3-soluble material. Fraction A was heated on a steam bath with 400 cc. H2O and filtered from 5.2 g. dihydroflavonol. The filtrate distributed between EtOAc and H2O and the combined advecues phases evaporated gave a

residue.

This residue refluxed 2.5 hrs. with 300 cc. alc. and 3 cc. AcOH, the mixture evaporated to dryness and continuously extracted with Et20, and the product crystallized gave 7.6 g. III. The H2O-soluble portion from the alc. extract contained pipecolic acid and 4-hydroxypipecolic acid. I and II were also obtained from A. melanoxylon and A. harpophylla heartwoods; the latter appeared to be the best source for II (one specimen gave 0.6% and 1.0%, and another 0.2% yield). II and I (as III) were separated in a 50 tube counter-extraction apparatus by distribution between EtOAc and 0.067M phosphate buffer. Peak concns. were as follows: III (tube 44), II (tube 18), and I (tube 14). The crude dihydroflavonol (5.2 q.) crystallized from hot H2O as vellow flakes; further crystallization gave dihydro-(?7,8,3',4')tetrahydroxyflavonol (IV), m. 284-5°. IV gave red colors (stable for several hrs.) when treated with aq.-alc.-HCl and Mg or Zn. HCl or alc. 3% p-MeC6H4SO3H gave a deep yellow color. Milled heartwood of A. harpophylla (2756 g.) was extracted 10 hrs. with ligroine, 67 hrs. with Et20, and 7 hrs. with Me2CO, and the Me2CO concentrated and filtered from 5.9 g. of residue, consisting mainly of 7,8,3',4'-tetrahydroxyflavonol (V). The filtrate diluted with H2O, filtered after several days, concentrated, and extracted 24

racted 24 hrs. with Et20 gave 36.2 g. of a yellow mixture of polyphenols. This in 25 cc. H2O was continuously extracted with ligroine, which dissolved 0.06 g. amorphous material and caused separation of 1.47 g. orange-red crystals of okanin (3,4,2',3',4'-pentahydroxychalcone) (VI). Recrystn. gave VI, orange needles, m. 238° (alc.); pentaacetate m. 136°. The V fraction was identified by acetylation to 3,7,8,3',4'-pentaacetoxyflavone, m. 176°, and by conversion in Me2CO with Me2SO4 and K2CO3 into 3,7,8,3',4'-pentamethoxyflavone, m. 151°. Crystalline II (0.5 g.) was dissolved in 30 cc. alc., filtered, and the filtrate concentrated to 4 cc. II (0.36 g.) crystallized rapidly (seeded) as prims, m. 229° (decomposition), (a)160 -75° (c 0.2, alc.). II was kept 20 months in alc. without exclusion of light or air; it did not darken appreciably and was then found by chromatography to contain only II. II tetramethyl ether

```
crystallized in needles, m. 144-5° (alc.-Et20), [α]25D
-83.5° (c 1, alc.); tetramethyl ether diacetate m. 191-2°,
[\alpha]D -39.5° (c 0.2, alc.). II (0.02 g.) was heated with 1
cc. hot solvent and examined by paper chromatography within 0.5-1 min. and
at intervals of 10, 20, 30, 60, and 90 min. II was unchanged after 1.5
hr. at 100°, but in 0.1N AcOH II was detected after 1 and 1.5 hrs.
II was progressively converted by 0.5N AcOH into I (about 50% after 1 hr.
and 67% after 1.5 hrs.) at 100°. Polymeric material was detected
after 1 hr.; results with 0.05N HCl at 100° were similar, except
that polymeric material appeared after 20 min. Less than 1% of III was
formed from 0.05 g. II, 10 cc. alc., and 0.2 cc. AcOH (1.5 hrs. at the
b.p.). Crude I (106 g.) refluxed 2 hrs. with 1 l. alc. and 10 cc. AcOH,
evaporated, and the residue distributed between EtOAc-H2O, and the product
crystallized gave 56 g. III. After dilution of its alc. solution with H2O and
storage at 0°20.4 g. III-hydrate was obtained. The anhydrous compound
was obtained by drying at 90° over P2O5, [α]22D -31°
(0.9% alc.). The anthocyanidin formed by heating III with 3N HCl (15
min.) was extracted with pentanol and chromatographed with Forestal solvent;
it possessed the same Rf as the anthocyanidin from II and behaved
similarly when sprayed with alc.-AlCl3. III (0.02 q.) was heated with 1
cc. hot solvent and then examined by paper chromatography as for II. III
was slowly hydrolyzed by H2O to I about 50% during 1 hr.; in 0.1N AcOH,
conversion was nearly complete in 10 min. and no other polyphenol was
formed. In 0.5N AcOH, 50% conversion to I was reached in 0.5 min.; II was
barely detectable after 10 min.; ther eafter it increased in concentration
Considerable conversion into I occurred in 1 min. in 0.01N HCl; II was
detected after 10 min. The tetramethyl ether prepared by the action of
CH2N2 on III was obtained as an oil, bl 245°; p-toluenesulfonate,
prisms, m. 125° (alc.), [α]23D -19° (0.04% in alc.).
The I fraction (33.5 g.) from 2.65 g. A. harpophylla heartwood refluxed 2
hrs. with 300 cc. MeOH and 10 cc. AcOH and evaporated in vacuo gave (after
slow crystallization) 5.8 g. O-methylisomelacacidin (VII), plates, decomposing
from VII and hot 3N HCl was chromatographically identical with that
obtained from II. Methylation of VII gave a product which did not
```

when heated, [α]12D -56° (c 0.9, MeOH). The anthocyanidin formed crystallize nor yield a crystalline acetate or p-toluenesulfonate. III (0.371 g.) in 5 cc. 0.01N HCl kept 1 min. on the steam bath, 0.35 cc. AcOH and 0.643 g. Na p-toluenesulfinate added, the mixture heated 0.5 hr. on the steam bath, and the product crystallized gave 0.39 g. of the p-tolyl sulfone (VIII), m. 103-11°, [α]26D -25° (c 1, Me2CO); pentaacetate m. 193°, [a]23D -13.5° (c 1, Me2CO). With 3N HCl (15 min. on the steam bath), the sulfone gave 3,7,8,3',4'-pentahydroxyflavylium chloride. II (0.612 g.) and 10 cc. 0.01N HCl heated 20 min., 0.7 cc. AcOH and 1.27 g. Na p-toluenesulfinate-2H2O added, the mixture heated 0.5 hr., and the product isolated gave 0.347 g. VIII; acetate m. 192-3°. VIII (1 g.) kept 45 hrs. at room temperature with Et2OCH2N2 and the mixture slowly evaporated gave a gum. The product triturated with Et2O and the 0.85 g. residue crystallized gave the p-tolyl sulfone 7,8,3',4'-tetramethyl ether, $[\alpha]25D$ -44° (c 1, Me2CO), m. 119-22° (MeOH). This compound was also prepared by methylation of 1.5 g. of the sulfone with CH2N2, evaporation of the Et2O, and acetylation of the residue at room temperature (14 hrs.).

```
ACCESSION NUMBER: 1957:72255 CAPLUS
DOCUMENT NUMBER: 51:72255
ST:72255
ST:72256
ST:72256
ST:72257
ST:7257
ST:7
```

L4 ANSWER 26 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

CORPORATE SOURCE: Katherinenhosp., Stuttgart, Germany

SOURCE: Planta Med. (1956), 4, 33-40

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

AB Includes a review with 10 references. By precipitation of high-mol.-weight polyphenols (= tannins) with basic Zn(AcO)2 (I), the low-mol.-weight glycosidal polyphenols can be determined quantitatively by means of the persistent yellow color developed with I (calculated as rutin). In aq.-alc. mixts., tannin-protein adsorbates show increased solubility with increasing alc. concns. in the case of good proteins combinations, but with protein-poor prepns. a greater solubility in cold water is noted. Increasing the maceration time in water of tannin-proteins gave increased solubility in added alc., showing the need or utility of maceration before the extraction of drugs. 60-70% of the total extractable tannin (II) of Bergenia saxifraga leaves is water-soluble (representing unbound or free tannin (III) which covers in the call scale resoluble, while the difference in the call scale resoluble the c

saxifraga leaves is water-soluble (representing unbound or free tannin (III) which occurs in the cell sap); II is alc.-soluble, while the difference between II and III represents the adsorptively bound tannin. On drying B. saxifraga leaves, only a slight lowering of III occurs with full extraction of II, but with other tannin leaves, such as those of walnut and sumac, considerable decreases of II (up to 30% reduction) occur, resulting entirely from loss of III. In low concns. of alc., a slow decrease in II occurs (which may result from continuing oxidation and condensation of tannin through the action of peroxidases soluble at this concentration); with

higher

concns., no change occurs. Practical applications are shown of premaceration and solvent concentration to the respective objectives of low and high-tannin contents in the finished product.

L4 ANSWER 27 OF 27 CAPLUS COPYRIGHT 2008 ACS on STN

ACCESSION NUMBER: 1955:18292 CAPLUS

DOCUMENT NUMBER: 49:18292

ORIGINAL REFERENCE NO.: 49:3563e-h

TITLE: Tannin extracts as raw materials for the adhesives and

AUTHOR(S): resins industries
Knowles, E:; White, T.
SOURCE: Adhesives & Resins

(1954), 2, 226-30 CODEN: ADRSAQ; ISSN: 0515-4138

DOCUMENT TYPE: Journal

DOCUMENT TYPE: Journal LANGUAGE: Unavailable

Vegetable tannin extract is a valuable source of polyphenolic compds., some of which are in demand in the manufacture of synthetic resins and adhesives. The hydrolyzable tanning hydrolyze to relatively simple, nonresin-forming compds. The condensed tannins (I) are complex mixts. of polyphenols which react with acids to form the basis for phenolic resins when treated with HCHO. Common I exts. include wattle (II) and quebracho (III). The basic structural unit of I consists of resorcinol or phloroglucinol groups connected by short aliphatic chains to a similar number of catechol or pyrogallol nuclei. III reacts like a mixture of 50% resorcinol and 50% pyrogallol and can be used in single-stage molding powders consisting of III, paraformaldehyde, and plasticizers. I can also be used to catalyze other resin-forming reactions. Thus, 35.6% III, 6.7% phenol, 6% paraformaldehyde, 49.8% wood flour, and 1.5% tritolyl phosphate can be molded at 250 °F. III is both catalyst and reactant. Sawdust can be bonded with a mixture of urea, III, and paraformaldehyde to form strong and durable tile. Either II or III can be refluxed with HCHO in aq. alc. to give a soluble resol which, when precipitated by H2O and dried,

becomes a stable molding powder or adhesive. The resol is soluble in aqueous acetone or alc. A boilproof adhesive results from a mixture of 1 part resol. 3 parts III, and acid or alkali catalyst. A DpH 9.5 pressing temps. can be as low as 90 $^{\circ}\mathrm{C.}$, and large amts. of fillers can be incorporated without significant loss of strength