Neural networks

Doc. RNDr. Iveta Mrázová, CSc.

Department of Throretical Computer Science and Mathematical Logic Faculty of Mathematics and Physics Charles University in Prague

Neural networks

Introduction into the area –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Computer versus brain

- The speed of information processing
- The kind of information processing
 - serial × parallel
- The kind of information storage
- Redundance
- Control

I. Mrázová: Neural networks (NAIL002)

Neural networks – a brief history

- 1943 formal neuron (W. McCulloch, W. Pitts)
- ◆ 1949 mathematical notion of learning (D. Hebb)
- ◆ 1958 perceptron (F. Rosenblatt)
- 1962 Adaline and sigmoidal transfer function (B. Widrow, M. Hoff)
- ◆ 1969 The perceptrons (M. Minsky, S. Papert)
- ◆ 1980s a further development

Neural networks – a brief history

- since the eighties further developments:
 - The back-propagation training algorithm (P. Werbos, D. Rumelhart, G. Hinton, Y. Le Cun)
 - Kohonen maps (T. Kohonen)
 - RBF-networks (Radial Basis Function, J. Moody, C. Darken)
 - GNG-model (Growing Neural Gas, B. Fritzke)
 - Convolutional neural networks (Y. Le Cun)
 - SVM-machines (Support Vector Machines, V. Vapnik)
 - ELM-networks (Extreme Learning Machines, G.-B. Huang)

Neural networks – 21st century

- 2003 Allen Brain Atlas (Allen Institute for Brain Science, USA)
- **HBP Human Brain Project**, EU (january 2013)

Goal: mimic the human brain and identify poruchy its function Expected costs – 1.2 billions Euro /10 year

https://www.humanbrainproject.eu/

http://www.nature.com/news/brain-simulation-and-graphene-projects-win-billion-euro-competition-1.12291

 2013 – BigBrain (Montreal Neurological Institute and German Forschungszentrum Jülich, June 2013)

https://bigbrain.loris.ca/main.php

Neural networks – 21st century

■ BRAIN Initiative — <u>Brain Research Through Advancing Innovative Neurotechnologies</u>, USA

"President Obama is calling on the science community to join him in pursuing a GRAND CHALLENGE BRAIN Initiative", 2. 4. 2013,

http://www.whitehouse.gov/infographics/brain-initiative

Goal: understand, how we think, how we learn and how works our memory

Expected costs – 3 billions USD / 10 years

Participants: DARPA ~ Defense Advanced Research Projects Agency

NIH ~ National Institutes of Health

NSF ~ National Science Foudation

private sector

http://www.nih.gov/science/brain/how.htm

http://www.nature.com/news/flashing-fish-brains-filmed-in-action- 1.12621

New technologies

□ Neurosynaptic chip

☐ Lightsheet microscopy

http://www.nature.com/nmeth/journal/v10/n5/fig_tab/nmeth.2434_

SV4.html

10

Neural networks – a general introduction

Recent problems:

- Training strategies paralellization and efficiency
 - "This Will Revolutionize Education" (http://youtu.be/GEmuEWjHr5c)
- Architecture generalization and robustness
- Convergence and over-training
- Prediction

Applications:

- Data mining "black-box", "white-box"
- Clustering and classification
- Information processing speech, vision, olfactory, tactile, motoric
- Data compression
- Solutions of optimization tasks
- and many others

Biological background (1)

Model of a neuron

basic ,,computational unit" of a more complex system

neural network (contains cca 80 billion neurons)

biological neurons consist of:

body (soma), dendrits, axon and synapses

Biological background (1) biological neuron

I. Mrázová: Neuronové sítě (NAIL002)

Biological background (2)

◆ Body (**soma**):

- summarizes signals transmitted by surrounding neurons
 → potential
- inner potential leads to the excitation of the neuron
- the size of neuron body varies from several μm to several tens of μm

Dendrites:

- represent signal input to neuron body
- their length varies around 2-3 mm

Biological background (3)

Axon:

- the only output of a neuron, branched out widely, however, at it end
- transmits the signal given by the level of excitation to the synapses
- its length can reach over 1 m

Synapse:

- represent the "output device" of the neurons, can the signal amplify or diminish and transmit it to other neurons
- for each neuron, there are up to 10° connections to other neurons

Neuron output:

Depends on neuron inputs and their processing inside neuron body

Biological background (4)

Biological neural networks:

- neurons are mutually interconnected into networks
 - by means of axons, that are connected to dendrites of other neurons via synapses
- ~ density of the neurons:
 - reaches cca $70 80 \cdot 10^3 / \text{mm}^3$ in the human brain
 - cca 10 · 10³ neurons die every day without replacement
 - synapses are formed on the dendrites during the whole life
 - → new synapses are formed, resp. non-functioning synapses can be revived

=> <u>LEARNING</u>

Biological background (8)

Memory types

- Short-term memory mechanism
 - based on cyclical circulation of signals in neural networks
 - after cca 300 ciculations, fixation of the information starts in midterm memory – this takes cca 30 s
- Mid-term memory mechanism
 - based on the changes of ,,neural weights"
 - the change of synaptic weight coefficients is caused by multiple actions of the same signal on the respective synapse

Biological background (9)

Memory types

- Mid-term memory mechanism
 - some information stored in mid-term memory moves to long-term memory while sleeping
 - information stays in mid-term memoryfor several hours or days
- Long-term memory mechanism
 - consists in copying the informations from mid-term memory to proteins inside the neurons – in particular in their nuclei
 - information stored in this way can remain in the organism for its entire life

Adaptation and learning

Adaptation:

ability to accommodate to the changes of the environment

Adaptive process: the process of the adjustment

- every adaptation represents for the system some costs (material, energy, ...)
- living organisms are capable of reducing these costs during multiply repeated adaptations to environment changes

LEARNING:

- minimalization of costs spent for adaptation
- result of a multiply repeated adaptation

Adaptation and learning: the formalism (1)

- Manifestation of the environment: x
- Feature description of the objects:
 - selection of *n* basic characteristics features $x_1, ..., x_n$
 - $x = (x_1, ..., x_n)$
- Information about the desired system reaction to the manifested environment: Ω
- The system reacts to any manifestation of the environment x and information Ω by yielding one of the symbols ω_r ; r = 1, ..., R at its output

Adaptation and learning: the formalism (2)

- Every assignment $[x, \Omega] \rightarrow \omega_r$ is accompanied by some costs given by the function $Q(x, \Omega, \omega_r)$ for each time unit
- The goal of the system:
 - find for any x and Ω such an assignment $[x, \Omega] \rightarrow \omega_r$,

for which the **cost** is minimal:

$$Q(x, \Omega, \omega_r) = \min_{\omega} Q(x, \Omega, \omega)$$

Adaptive systems (1)

Adaptive system

- ~ a system with two inputs and one output determined by:
- 1) a set X of manifestations of the environment x
- 2) a set O_1 of informations about the desired system reaction Ω
- 3) a set O_2 of output symbols ω
- 4) a set D of decision rules $\omega = d(x, q)$
- 5) the cost $Q(x, \Omega, q)$

For any pair $[x, \Omega]$ we seek for such a parametr q^* , for which it holds: $Q(x, \Omega, q^*) = \min_{q} Q(x, \Omega, q)$

Adaptive systems (2)

- Initial assignment $[x, \Omega] \rightarrow \omega_s$
- If the system stays for time T in its initial assignment, this will be associated with total costs corresponding to $TQ(x, \Omega, \omega_s)$
- If the system is able to change its behavior based on an ongoing cost assessment, it finds **after a certain time** τ **necessary for evaluation** ω_r , for which the cost is minimal

Adaptive systems (3)

Total costs after time T:

$$\tau Q(\mathbf{x}, \Omega, \omega_s) + (T - \tau) Q(\mathbf{x}, \Omega, \omega_r)$$

- bigger than the least possible total costs $TQ(x, \Omega, \omega_r)$
- smaller than the total costs of a system, that cannot change its decision, $TQ(x, \Omega, \omega_s)$

$$T Q(x, \Omega, \omega_r) < \tau Q(x, \Omega, \omega_s) + (T - \tau) Q(x, \Omega, \omega_r) <$$

$$< T Q(x, \Omega, \omega_s)$$

Learning systems (1)

The result of adaptation is stored in the memory:

- Save the time τ necessary to find minimum costs for repeated manifestations of the environment
- Further, it is not necessary to evaluate the costs
 - \rightarrow after training, the information Ω about the desired system reaction is not necessary anymore

Total costs of a learning system after training:

 $T Q(\mathbf{x}, \Omega, \omega_r)$

- smaller than total costs of an adaptive system

Learning systems (2)

Learning system

- ~ a system with two inputs and one output determined by:
- 1) a set X of manifestations of the environment x
- 2) a set O_1 of informations about the desired system reaction Ω
- 3) a set O_2 of output symbols ω
- 4) a set D of decision rules $\omega = d(x, q)$
- 5) The **desired behavior** $\Omega = T(x)$
- **Mean costs** J(q) evaluated over $X \times O_1$

Learning systems (3)

Learning system

Finds after presenting the pair elements from the sequence $\{[x_k, \Omega_k]\}; 1 \le k \le \infty$, where $\Omega = T_k(x_k)$, such a parametr q^* , for which it holds:

$$J(q^*) = \min_{q} J(q)$$

- Sequential ~ sequential presentation of the pairs $[x_k, \Omega_k]$
- Inductive ~ find after the evaluation of countably many pairs $[x_k, \Omega_k]$ the parametr q^* , that minimizes the mean costs over the entire set X

Efficiency of adaptation and learning

Efficiency of an adaptive system is the higher, the shorter is the time τ necessary for its adaptation and the longer are the time intervals T when the environment does not change:

au $au/T \rightarrow \theta$:

Efficiency of the AS is comparable with the efficiency of a learning system after training

• $\tau/T \rightarrow 1 \ (\tau/T < 1)$:

AS has about the same efficiency like a non-adaptive system

• $\tau/T \ge 1$: no adaptation takes place

Efficiency of the (trained) learning system is the highest possible

Selection and order of features

Probability of a wrong decision

Information contained in the input patterns

- Too many features:
 - technical feasibility
 - speed of processing
 - danger of over-training
 - the number of variables × the number of training patterns
 - correlated features

Selection of informative features

- Selection of the minimum number of features from the considered set of features
 - the chosen set is not guaranteed to contain really informative features
 - the choice depends on the actual task solved
- The order of features from the considered set of features
 - according to the amount of information contained
 - can be used, e.g., in the case of sequential classifiers

Karhunen-Loeve transform (1)

Properties of the Karhunen-Loeve transform:

- 1. For the given number of expansion members it yields the **least mean squared error** between the original and the transformed patterns
- 2. After the application of the covariance matrix the approximated patterns are decorrelated
 - → decorrelation of features

Karhunen-Loeve transform (2)

- 3. Expansion members do not contribute equally to the approximation
 - The influence of each respective expansion member on the approximation accuracy falls with its index
 - → The impact of members with high indexes will be small and we can thus omit them
- 4. The magnitude of the approximation error does not influence the structure of the expansion
 - Changed demands on the approximation error do not require the recomputation of the entire expansion
 - → It is sufficient to add or remove a few of the last members

Of advantage especially for sequential classification metods

Karhunen-Loeve transform (3)

• The choice of a suitable mapping $V: X^m \to X^p$ such that the patterns from X^p will represent the best approximation of the original patterns from X^m in the sense of the mean squared error

K patterns from the same class

m features

p orthonormal vectors \mathbf{e}_i ($1 \le i \le p$) in \mathbf{X}^m ($p \le m$)

Approximate the vectors \mathbf{x}_k from \mathbf{X}^m ($1 \le k \le K$) by a linear combination of \mathbf{e}_i : $\mathbf{y}_k = \sum_{i=1}^p c_{ki} \mathbf{e}_i$

such that the squared error between \mathbf{x}_k and \mathbf{y}_k , $\varepsilon_k^2 = \|\mathbf{x}_k - \mathbf{y}_k\|^2$, will be minimal

Karhunen-Loeve transform (4)

$$\mathbf{v} = (v_1, v_2, ...)^T$$
,
 $\mathbf{x} = (x_1, x_2, ...)^T$
 $\mathbf{y} = \mathbf{v}^T \mathbf{x} = v_1 x_1 + v_2 x_2 + ...$

From m measured features, we want to get the p most important features ($1 \le p << m$)

Matrix $V : m \times p$

$$\mathbf{V} = \begin{pmatrix} v_{11} & \dots & v_{1p} \\ \vdots & \ddots & \vdots \\ v_{m1} & \dots & v_{mp} \end{pmatrix}$$

Compute the vector *p* of the most important features:

$$y = V^T x$$

Karhunen-Loeve transform (5)

Computation of the matrix V:

Center the data:

$$\mu_j = \frac{1}{K} \sum_{k=1}^K x_{kj}$$

• covariance matrix for the training set:

$$w_{ij} = w_{ji} = \frac{1}{K} \sum_{k=1}^{K} (x_{ki} - \mu_i) (x_{kj} - \mu_j)$$

 The vectors defining the most important features correspond to the eigenvectors of the covariance matrix

Karhunen-Loeve transform (6)

- The eigenvalues correspond to the variance of the most important features
 - the first column of the matrix V will be the eigenvector corresponding to the biggest eigenvalue,...
 - further columns of V will be added until the following eigenvalues are too small and can be omitted

Problem:

- The choice of an adequate number of eigenvalues (p)
- An optimal choice of *p* cannot be guaranteed as the expansion does not reflect the true importance of each respective feature

Karhunen-Loeve transform (7)

Modifications:

1. Centered most important features

$$\mathbf{y} = \mathbf{V}^{\mathrm{T}}(\mathbf{x} - \mathbf{\mu}),$$

where $\mu = (\mu_I, ...)$ is the vector of mean values

2. Normalized most important features

$$\mathbf{y} = \mathbf{L}^{-1/2} \mathbf{V}^{\mathrm{T}} (\mathbf{x} - \mathbf{\mu}),$$

where **L** is the matrix $p \times p$, diagonal elements are the eigenvalues corresponding to the columns of **V**, the other elements are zero

Probability – basic notions (1)

Probability (of an event A from the space S):

- $P(A) \ge 0 \qquad (P(\{\}\}) = 0)$
- P(S) = 1
- For a finite number of mutually exclusive events $A_1, A_2, ..., A_n$ the probability

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i)$$

• For an infinite number of mutually exclusive events A_1 , A_2 , ..., A_n the probability

$$P(A_1 \cup A_2 \cup \ldots) = \sum_{i=1}^{\infty} P(A_i)$$

Probability – basic notions (2)

• Conditional probability of the event B given that the event A has occurred (P(A) > 0):

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

• Mutual independence of the events A and B:

$$P(A \cap B) = P(A) \cdot P(B)$$

• Formula for the probability of A:

$$P(A) = \sum_{i} P(A | B_i) P(B_i)$$

Probability – basic notions (3)

Bayesian formula for the conditional probability:

$$P(B|A) = \frac{P(A|B) P(B)}{P(A)}$$
; $P(A), P(B) > 0$

- Random variable:
 - 'the name of an experiment with a probabilistic outcome'
 - its value is the outcome of the experiment
- Probability distribution (for the random variable Y):
 - Probability $P(Y = y_i)$, that Y will také on the value y_i
- Expected value (~mean) of a random variable Y:

$$\mu_Y = E(Y) = \sum_i y_i P(Y = y_i)$$

Probability – basic notions (4)

• Variance (of a random variable):

$$VAR(Y) = E[(Y - \mu_Y)^2]$$

- Characterizes the width (dispersion) of the distribution about its mean
- Standard deviation of Y: $\sigma_Y = \sqrt{VAR(Y)}$
- Binomial distribution
 - The probability of observing *r* 'heads'in a series of *n* independent coin tosses
 - The probability of 'heads' in a single toss is *p*

Probability – basic notions (5)

Binomial distribution

- The probability of observing
 r 'heads'in a series of n
 independent coin tosses
- The probability of 'heads' in a single toss is p

• **Probability function** (probability that X will take on the value r):

$$P(r) = \frac{n!}{r!(n-r)!} p^r (1-p)^{n-r}$$

Probability – basic notions (6)

- Expected (mean) value of X: E[X] = np
- Variance: VAR(X) = np(1-p)
- Standard deviation: $\sigma_X = \sqrt{n p (1-p)}$
- For sufficiently large values of *n* the binomial distribution is closely approximated by a normal distribution with the same mean and variance
- Recommendation: use the normal approximation only when: $n p (1-p) \ge 5$

Probability – basic notions (7)

Normal distribution

- also called Gaussian distribution
- Normal probability density function

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Probability that the value of the random variable X will fall into the interval (a, b):

$$\int_{a}^{b} p(x) dx$$

Probability – basic notions (8)

Normal distribution

- Suitable for a large number of natural phenomena
- Expected (mean) value of X: $E[X] = \mu$
- Variance: $VAR(X) = \sigma^2$
- Standard deviation: $\sigma_X = \sigma$

• Central limit theorem:

'The distribution of the mean of a large number of independent random variables of the same distribution approximates the normal distribution'

Probability – basic notions (9)

- Estimator ~ random variable Y
 - Used to estimate the parameter p from the tested population
- Estimation bias of Y for p : E[Y]-p
 - 'unbiased' estimator for p: E[Y] = p
- N% confidence interval for the parameter p
 - Interval that contains p with probability N%
- Test ~ procedure deciding on the correctness of a statistical hypothesis *H*
 - Significance level α corresponds to the probability of rejecting the true hypothesis \rightarrow usually set as $\alpha = 0.05$

Hypotheses testing (1)

- 1. Given the observed accuracy of a hypothesis over a limited sample of data \rightarrow how well does this estimate its accuracy over additional examples?
- 2. Given that one hypothesis outperforms another over some sample of data → how probable is it that this hypothesis is more accurate in general?
- 3. When data is limited → what is the best way to use this data to both learn a hypothesis and estimate its accuracy as well as to compare the performance of two learning algorithms?
 - → limit the difference between the accuracy observed on the given data and the actual accuracy of the whole data distribution

Hypotheses testing (2)

- **Aim:** 1) Understand whether to use the hypothesis or not
 - 2) Evaluating hypotheses represents an integral component of many learning methods (e.g., when post-pruning decision trees to avoid overfitting)

Estimate future accuracy of a hypothesis given only a limited set of data:

- **Bias in the estimate**: over-training × unbiased estimate of future accuracy (mutually independent training and test sets)
- Variance in the estimate: the measured accuracy can vary from the true accuracy; bigger variance for fewer test examples

Hypotheses testing (3)

Estimating hypothesis accuracy

- Space of possible instances X, e.g., the set of all people
- Various target functions may be defined over X, $f: X \rightarrow \{0,1\}$, e.g., people who plan to purchase new skis this year
- Different instances $x \in X$ may be encountered with different frequencies, e.g., probability that x arrives at the ski resort
 - D ... probability of encountering the instances in X

Hypotheses testing (4)

Task: learn the target function f from the space H of possible hypotheses

• provided are training examples x, along with their correct target value f(x), drawn randomly from X according to the distribution D

Questions:

- Given a hypothesis h and a data sample containing n examples drawn at random according to the distribution D:
 - 1. What is the best estimate of the accuracy of *h* over future instances drawn from the same distribution?
 - 2. What is the probable error in this accuracy estimate?

Hypotheses testing (5)

The sample error on the training set $S \subset X$

~ the fraction of S, misclassified by h

$$ERROR_{S}(h) \equiv \frac{1}{n} \sum_{x \in S} \delta(f(x), h(x))$$

- n ... the number of examples in S
- $\delta(f(x), h(x)) = 1$ pro $f(x) \neq h(x)$
- $\delta(f(x), h(x)) = 0$ pro f(x) = h(x)
- Binomial distribution $ERROR_S(h)$: $ERROR_S(h) = r/n$
 - r ... the number of examples from S, that were misclassified by h

Hypotheses testing (6)

The true error of hypothesis h

~ probability of misclassification for an instance $x \in X$ drawn at random according to D

$$ERROR_{D}(h) \equiv \Pr_{x \in D}[f(x) \neq h(x)]$$

- Binomial distribution: $ERROR_D(h) = p (= r/n ... \text{ estimate for } p)$
 - p ... probability of misclassifying a single instance drawn from D
 - unbiased estimator $ERROR_D(h)$ (~ p = r/n)
 - The hypothesis h and the sample set S must be chosen independently.
 - The training set S contains $n \ (\geq 30)$ examples drawn at random from X according to the probability distribution D

Hypotheses testing (7)

Estimator variance

- Unbiased estimator with the least variance would yield the smallest expected squared error between the estimate and the true value of the parameter
- Given no other information, the most probable value of $ERROR_D(h)$ is $ERROR_S(h)$
- With approximately 95% probability, the true error $ERROR_D(h)$ lies in the interval

$$ERROR_{S}(h) \pm 1.96\sqrt{\frac{ERROR_{S}(h)(1-ERROR_{S}(h))}{n}}$$

→ for approximately 95% of experiments, the calculated interval will contain the true error value

Hypotheses testing (8)

Expression for general (N%) confidence intervals – constant z_N :

$$ERROR_{S}(h) \pm z_{N}\sqrt{\frac{ERROR_{S}(h)(1-ERROR_{S}(h))}{n}}$$

	The values of z_N for two-sided $N\%$ confidence intervals						
N%	50%	68%	80%	90%	95%	98%	99%
z_N	0.67	1.00	1.28	1.64	1.96	2.33	2.58

- Wider intervals for a higher probability
- Good approximation for $n \ge 30$, resp.

$$n \cdot ERROR_{S}(h) (1 - ERROR_{S}(h)) \ge 5$$

Hypotheses testing (9)

General approach to derive the confidence intervals:

- 1. Identify the underlying population parameter p to be estimated, e.g., $(ERROR_D(h))$
- **2.** Define the estimator Y (e.g., $ERROR_S(h)$)
 - choose a minimum-variance, unbiased estimator
- 3. Determine the probability distribution D_Y that governs the estimator Y including its mean and variance
- 4. Determine the N% confidence interval
 - find the thresholds L and U such that N% of the mass in the probability distribution D_Y falls between L a U

Hypotheses testing (10)

Difference in error of two hypotheses:

- Discrete-valued target function
- Hypothesis h_1 has been tested on a sample S_1 containing n_1 randomly drawn examples
- Hypothesis h_2 has been tested on an independent sample S_2 containing n_2 examples drawn from the same distribution
- We want to estimate the difference *d* between the true errors of these two hypotheses:

$$d = ERROR_D(h_1) - ERROR_D(h_2)$$

Hypotheses testing (11)

 \rightarrow Estimator $\hat{d} \sim$ difference between sample errors:

$$\hat{d} \equiv ERROR_{S_1}(h_1) - ERROR_{S_2}(h_2)$$

 \hat{d} yields an unbiased estimate of d

Normal distribution with the mean $E[\hat{d}] = d$ and variance $\sigma_{\hat{d}}^2$

$$\sigma_{\hat{d}}^{2} \approx \frac{ERROR_{S_{1}}(h_{1})(1-ERROR_{S_{1}}(h_{1}))}{n_{1}} + \frac{ERROR_{S_{2}}(h_{2})(1-ERROR_{S_{2}}(h_{2}))}{n_{2}}$$

- N% confidence interval:

$$\hat{d} \pm z_N \sqrt{\frac{ERROR_{S_1}(h_1)(1-ERROR_{S_1}(h_1))}{n_1} + \frac{ERROR_{S_2}(h_2)(1-ERROR_{S_2}(h_2))}{n_2}}$$

Hypotheses testing (12)

Comparing the learning algoritms:

- ullet test for comparing the learning algoritms L_A a L_B
- statistical significance of the observed difference between the algorithms
- \rightarrow determine which of the learning methods, L_A and L_B , is better for learning the target function f
- Consider the relative performance of the two algorithms averaged over all the training sets of size n that might be drawn from the distribution D

Hypotheses testing (13)

Comparing learning algorithms:

→ estimate the expected value of the difference in the errors

$$\underset{S \subset D}{E} \left[ERROR_{D} \left(L_{A}(S) \right) - ERROR_{D} \left(L_{B}(S) \right) \right]$$

- L(S) ... hypothesis obtained by the learning algorithm L on the training set S
- $S \subset D$... the expected value is taken over the samples S drawn according to the underlying instance distribution D
- ightarrow in practice, just a limited number of training data D_{θ} is available to compare the considered learning algorithms

Hypotheses testing (14)

- Divide the set D_{θ} into a training set S_{θ} and a disjoint test set množinu T_{θ}
 - Training data are used to train both L_A and L_B
 - Test data are used to compare the accuracy of the two learned hypotheses:

$$ERROR_{T_0}(L_A(S_0)) - ERROR_{T_0}(L_B(S_0))$$

- $ERROR_{T_0}(h)$ approximates the true error $ERROR_D(h)$
- The difference in errors is measured only for the training set S_{θ} (rather than taking the expected value of this difference over all samples S that might be drawn from the distribution D)

k-fold cross validation (1)

- 1. Partition the available data D_{θ} into k disjoint subsets T_1 , T_2 , ..., T_k of equal size ($\geq 3\theta$).
- 2. FOR i:=1 TO k DO use T_i for the test set, and the remaining data to build

the training set S_i

$$S_{i} \leftarrow \{D_{0} \setminus T_{i}\}$$

$$h_{A} \leftarrow L_{A}(S_{i})$$

$$h_{B} \leftarrow L_{B}(S_{i})$$

$$\delta_{i} \leftarrow ERROR_{T_{i}}(h_{A}) - ERROR_{T_{i}}(h_{B})$$

3. Return the value $\overline{\delta}$, where: $\overline{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_{i}$

k-fold cross validation (2)

N % - confidence interval: $\overline{\mathcal{S}} \pm t_{N,k=1}$ $s_{\overline{\mathcal{S}}}$

 $S_{\overline{\delta}}$... estimate of the standard deviation:

$$s_{\bar{\delta}} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} \left(\delta_i - \bar{\delta} \right)^2}$$

 $t_{N,k-1}$... constant (values of $t_{N,v}$ for two-sided confidence intervals approach the values of z_N with $v \to \infty$)

N the desired confidence level

v Nr. of degrees of freedom (nr. of independent random events that influence the value of $\overline{\delta}$)

k-fold cross validation (3)

	Confidence level N							
	90%	95%	98%	99%				
v = 2	2.92	4.30	6.96	9.92				
v = 5	2.02	2.57	3.36	4.03				
v = 10	1.81	2.23	2.76	3.17				
v = 20	1.72	2.09	2.53	2.84				
v = 30	1.70	2.04	2.46	2.75				
v = 120	1.66	1.98	2.36	2.62				
$v = \infty$	1.64	1.96	2.33	2.58				

N ... the desired confidence level

v ... Nr. of degrees of freedom

k-fold cross validation (4)

- Testing has to be done on identical test sets!
 - in contrast to comparing hypotheses that requires independent test sets

→ Paired tests

• typically produce tighter confidence intervals because any differences in observed errors are due to differences between the hypotheses and not due to differences in the makeup of the sampled data

A two-sided test

A one-sided × a two-sided test

A one-sided test

α = 0.05 0.95 0.95 0.1 Accepting zone

A two-sided test

