Analysis of Running Time of Loops: the number of operations.

Case A:

Statement	Running Time (i.e. # of Operations)
1. for $i \leftarrow 0$ to n	$1 + (\sum_{i=0}^{n+1} 1) = (n+2)+1 = n+3$ initialization of <i>i</i> and
2 le / le 1 .	comparison $(i < n+1)$ until $i = (n+1)$
2. $k \leftarrow k+1$;	$\sum_{i=0}^{n} 2 = 2(n+1)$ - assignment & addition
Case B:	
Statement	Running Time
1. for $i \leftarrow \frac{1}{1}$ to n	$1 + (\sum_{i=1}^{n+1} 1) = n+2 \text{ initialization of } i \text{ and}$
2. k ← k+1;	comparison $(i < n+1)$ until $i = (n+1)$ $\sum_{i=1}^{n} 2 = 2n$ - assignment & addition
ŕ	
Case C:	
Statement	Running Time
1. for $i \leftarrow 1$ to n	$1+ (\sum_{i=1}^{n+1} 1) = n+2 \text{ initialization of } i \text{ and}$ $\text{comparison } (i < n+1) \text{ until } i = (n+1)$
2. for $j \leftarrow 1$ to n	$\sum_{i=1}^{n} (1 + (\sum_{j=1}^{n+1} 1)) = \sum_{i=1}^{n} (n+2) = n(n+2)$
3. $k \leftarrow k+1$;	$\sum_{i=1}^{n} (\sum_{j=1}^{n} 2) = \sum_{i=1}^{n} 2n = 2n^{2}$
Case D:	
Statement	Running Time
1. for $i \leftarrow 1$ to n	$1 + (\sum_{i=1}^{n+1} 1) = n+2$
2. for $j \leftarrow 1$ to i	$\sum_{i=1}^{n} (1 + (\sum_{j=1}^{i+1} 1)) = \sum_{i=1}^{n} (i+2) = n(n+5)/2$
	- initialization of j and comparison $(j < i+1)$ until $j=(i+1)$
	within an outer for loop of i.
3. $k \leftarrow k+1$;	$\sum_{i=1}^{n} (\sum_{j=1}^{i} 2) = \sum_{i=1}^{n} 2i = n(n+1)$
Case E:	
Statement	Running Time
1. for $i \leftarrow 1$ to s	$1 + (\sum_{i=1}^{s+1} 1) = s+2$
2. for $j \leftarrow 1$ to n	$\sum_{i=1}^{s} (1 + (\sum_{j=1}^{n+1} 1)) = \sum_{i=1}^{s} (n+2) = s(n+2)$
3. $k \leftarrow k+1$;	$\sum_{i=1}^{s} (\sum_{j=1}^{n} 2) = \sum_{i=1}^{s} 2n = 2sn$

Case F:

Statement	Running Time
$i \leftarrow 0, k \leftarrow 0$	
1. while $(i < n)$	n+1 comparison until $i=n$ from $i=0$
2. $k \leftarrow k + i$;	$\sum_{i=0}^{n-1} 2 = 2 n$ assignment & addition.
3. $i \leftarrow i + 1$	$\sum_{i=0}^{n-1} 2 = 2n \text{ assignment \& addition.}$
Case G:	
Statement	Running Time
$j \leftarrow 0, k \leftarrow 0$	
1. for $i \leftarrow 1$ to n	$1 + (\sum_{i=1}^{n+1} 1) = n + 2$ - initialization of i and comparison $(i < n+1)$ until $i = (n+1)$
2. while $(j \le n)$	$\sum_{j=1}^{n} (n+2)$ - comparison until $j=n+1$ from $j=0$.
3. $k \leftarrow k+1$;	$\sum_{i=1}^{n} \sum_{j=0}^{n} 2 = \sum_{i=1}^{n} 2(n+1) = 2n(n+1)$
4. $j \leftarrow j+1;$	$\sum_{i=1}^{n} \sum_{j=0}^{n} 2 = \sum_{i=1}^{n} 2(n+1) = 2n(n+1)$
Case H:	
Statement	Running Time
<i>j</i> ← 1	
1. while $(j \le n)$	n+1 - comparison until $j=n+1$ from $j=1$
2. for $i \leftarrow 1$ to j	$\sum_{j=1}^{n} (1 + \sum_{i=1}^{j+1} 1) = \sum_{j=1}^{n} (j+2) = n(n+5)/2$
	- initialization of i and comparison $(i < j+1)$ until $i=(j+1)$
	within an outer while loop of <i>j</i> .
3. $k \leftarrow k + 1$;	$\sum_{j=1}^{n} (\sum_{i=1}^{j} 2) = \sum_{i=1}^{n} 2j = n(n+1)$
4. $j \leftarrow j + 1$	$\sum_{j=1}^{n}$ (2) = 2 n assignment & addition within while loop.
Case I:	
Statement	Running Time
1. for $i \leftarrow 1$ to n	$1 + (\sum_{i=1}^{n+1} 1) = n+2$
2. for $j \leftarrow i$ to n	$\sum_{i=1}^{n} ((1 + \sum_{j=i}^{n+1} 1)) = \sum_{i=1}^{n} (1 + (n+1-(i-1))) = \frac{n^2 + 5n}{2}$
3. $k \leftarrow k+1$;	$\sum_{i=1}^{n} (\sum_{j=i}^{n} 2) = \sum_{i=1}^{n} 2(n-i+1) = n(n+1)$