Notations usuelles et identités remarquables

A- Lettres grecques

sigma	phi	psi	oméga
Ω,	у, Ф	$\psi,~\Psi$	Ω,
D	9	Þ	3
lambda	mm	pi	rho
V		π , Π	
Α,	π	μ,	θ
epsilon	zêta	êta	thêta
ω	5	μ	θ
alpha	beta	gamma	delta
σ	β	γ , Γ	δ, Δ

B- Propriétés des sommes

L'opérateur Σ : Soient $x_1, x_2, \dots x_n$ des nombres réels. Nous avons

$$\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n.$$

On en déduit les propriétés suivantes de l'opérateur Σ :

$$\sum_{i=1}^{n} a = n a$$

$$\sum_{i=1}^{n} x_i + y_i = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$

$$\sum_{i=1}^{n} k x_i = k \sum_{i=1}^{n} x_i$$

$$\left[\sum_{i=1}^{n} x_i\right]^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i x_j.$$

L'opérateur Π : Soient $x_1, x_2, \dots x_n$ des nombres réels. Nous avons

$$\prod_{i=1}^{n} x_i = x_1 \times x_2 \times \dots \times x_n.$$

Factoriel : $n! = \prod_{k=1}^{n} k = n \times (n-1) \times (n-2) \cdots \times 2 \times 1$ et 0! = 1.

C-Les identités remarquables

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$a^{3} + b^{3} = (a+b)\left(a^{2} - ab + b^{2}\right)$$

$$a^{3} - b^{3} = (a-b)\left(a^{2} + ab + b^{2}\right)$$

$$a^{n} - b^{n} = (a-b)\left(\sum_{i=0}^{n-1} a^{i}b^{n-1-i}\right)$$

Formule du binôme de Newton:

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i}$$
 où par définition, $\binom{n}{i}$

Formules du triangle de Pascal:

Pour tout
$$i \in \mathbb{N} \begin{pmatrix} i \\ i \end{pmatrix} = 1$$
Pour tout $i \in \mathbb{N} \begin{pmatrix} i \\ 0 \end{pmatrix} = 1$

$$\begin{pmatrix} n \\ i \end{pmatrix} + \begin{pmatrix} n \\ i+1 \end{pmatrix} = \begin{pmatrix} n+1 \\ i+1 \end{pmatrix}$$