CONTENTS

PART I FLUID MOTIONS

Chapter 1 INTRODUCTION The nature of fluids Pressure Viscosity Diffusion Viscosity as a diffusion coefficient	2 2 3 10 15 17
Chapter 2 FLOW PAST A SPHERE I: DIMENSIONAL; ANALYSIS, REYNONUMBERS, AND FROUDE NUMBERS Introduction Which variables are important? Some dimensional reasoning, and its consequences How to construct dimensionless variables What if you choose the wrong variables? "Dimensional analysis" Significance of Reynolds numbers and Froude numbers Conclusion	DLDS 19 19 20 21 25 25 31 32 34
Chapter 3 FLOW PAST A SPHERE II: STOKES' LAW, THE BERNOULLI EQUATION, TURBULENCE, BOUNDARY LAYERS, FLOW SEPARATION Introduction The Navier–Stokes equation Flow past a sphere at low Reynolds numbers Inviscid flow The Bernoulli equation Turbulence Boundary layers Flow separation Flow past a sphere at high Reynolds numbers Settling of spheres	35 35 35 36 40 43 48 58 65 70 74
Chapter 4 FLOW IN PIPES AND CHANNELS Introduction Laminar flow down an inclined plane Turbulent flow in pipes and channels: initial material Turbulent shear stress The turbulence closure problem Structure of turbulent boundary layers Flow resistance Velocity profiles Coherent structures in turbulent shear flow	83 84 91 93 98 99 103 115 149
Chapter 5 OPEN-CHANNEL FLOW Introduction Two practical problems Uniform flow Energy in open-channel flow	157 157 159 160 164

The hydraulic jump Hydraulic regimes of open-channel flow Gradually varied flow	172 176 178
Chapter 6 OSCILLATORY FLOW Introduction The nature of waves Water motions due to waves Wave boundary layers 190	184 184 184 187
Combined flow (waves plus current	194
Chapter 7 FLOW IN ROTATING ENVIRONMENTS Introduction Playing on a rotating table The Coriolis effect on the Earth's surface The Rossby number Inertia currents The Ekman spiral Geostrophic motion	201 201 201 205 212 213 215 220 227
Ekman layers Planetary boundary layers	227
Transcary tourisary tayers	250
PART II SEDIMENT TRANSPORT	
Chapter 8 SEDIMENTS, VARIABLES, FLUMES Introduction Sediment Hydrodynamic perspective Particle motions vs. turbulence Observing sediment transport Variables Flumes	237 237 238 241 242 245 246 254
Chapter 9 THRESHOLD OF MOVEMENT Introduction Forces on bed particles Balance of forces Dimensional analysis How is the threshold for movement identified? Representations of the movement threshold Recasting the Shields diagram The Hjulstrøm diagram	260 260 260 265 267 269 272 275 278
Chapter 10 MOVEMENT OF SEDIMENT BY WATER FLOWS Introduction The bed, the flow, and the load Transport mode vs. flow intensity Bed load Suspension in a shear flow: the diffusional theory of suspension The effect of acceleration of gravity	285 285 286 289 294 307 314
Chapter 11 MOVEMENT OF SEDIMENT BY THE WIND	320

Introduction Saltation	320 321
Chapter 12 BED CONFIGURATIONS Introduction Unidirectional-flow bed configurations Oscillatory-flow and combined-flow bed configurations Wind ripples Eolian dunes	350 350 352 419 431 432
Chapter 13 THE SEDIMENT TRANSPORT RATE Introduction The sediment load and the sediment transport rate Predicting the sediment transport rate 450	445 445 445
Chapter 14 MIXED-SIZE SEDIMENTS Introduction A useful thought experiment The bed-surface size distribution Fractional transport rates Gradation independence versus equal mobility A thought experiment gradation independence versus equal mobility Real data on fractional transport rates, from the flume and from the field Movement threshold in mixed-size sediments Deviations from the condition of equal mobility More on sediment-discharge formulas	457 458 458 459 460 462 467 471 477
PART III CURRENT-GENERATED SEDIMENTARY STRUCTURES	
Chapter 15 DEPOSITION Introduction Modes of deposition Why deposition or erosion? A note on degradation	483 483 483 491 496
Chapter 16 CROSS STRATIFICATION Stratification and cross stratification The nature of cross stratification Some general points about interpretation The basic idea behind climbing-bed-form cross stratification Important kinds of climbing-bed-form cross stratification Cross stratification not produced by climbing bed forms Chapter 17 PLANAR STRATIFICATION Introduction Features of planar lamination The origin of planar lamination in sands and sandstones Planar lamination in fine sediments	497 498 499 503 508 526 531 533 533 533
1 Ignar Igniniation in time seaments	555

INDEX

PARTIAL LIST OF SYMBOLS