ACM 100b

Transforms of more general functions

Dan Meiron

Caltech

February 23, 2014

Recap

 In our previous lecture we discussed using the Fourier transform to solve linear constant coefficient ODE's on the interval

$$-\infty < X < \infty$$

We also introduced the cosine transform

$$F_c(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty f(x) \cos(kx) dx$$
$$f(x) = \sqrt{\frac{2}{\pi}} \int_0^\infty F_c(k) \cos(kx) dk.$$

And the sine transform

$$F_{s}(k) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} f(x) \sin(kx) dx$$
$$f(x) = \sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{s}(k) \sin(kx) dk.$$

• These can be used to solve ODE's on the interval $0 < x < \infty$

Recap

- Either transform could be used for ODE's on the interval $0 < x < \infty$
- But they are mostly used for ODE's with even derivative terms
- The sine transform is convenient when the value of the solution is given at x = 0
- The cosine transform is useful when the derivative of the solution is given at x = 0

Transforming a wider class of functions

• It often happens that the function f(x) you want to transform does not vanish sufficiently quickly as $|x| \to \infty$ so that the integral

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \exp(-ikx) dx$$

does not technically exist.

- There are several ways to cope with this
- One way is to use convergence factors and delta functions
- Another way is to use contour deformation.
- We'll illustrate these approaches.

- Suppose we wanted to compute the full Fourier transform of the function f(x) = 1
- This is

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-ikx) dx$$

- This integral is not convergent.
- However, we can make it convergent by instead considering

$$F_a(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(-|a|x) \exp(-ikx) dx$$

• The idea is to compute the result for finite a and then take the limit as $a \rightarrow 0$

If we perform the integral we would get

$$F_a(k) = \frac{1}{\sqrt{2\pi}} \frac{2a}{a^2 + k^2}$$

It is not hard to show that the area under this function is

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{2a}{a^2 + k^2} dk = \sqrt{2\pi}$$

- On the other hand unless k = 0 the limit of this function as $a \to 0$ is 0.
- So this must be the function

$$\sqrt{2\pi}\delta(\mathbf{k})$$
 as $\mathbf{a} \to \mathbf{0}$

 And we can confirm that the inverse transform of this function gives us back the function 1.

From here we can see that if

$$F(k) = \frac{\sqrt{2\pi}}{2} \left[\delta(k-1) + \delta(k+1) \right]$$

then the inverse transform gives us

$$f(x) = \cos(x)$$

- In this way we can get the transforms of any trigonometric function even if the integrals don't converge.
- This technique works for other transforms as well.
- For example consider the cosine transform of sin(x)
- Using instead the transform with a convergence factor we get

$$F_c(k) = \sqrt{\frac{2}{\pi}} \int_0^\infty \exp(-ax) \sin(x) \cos(kx) dx \qquad a > 0$$

Doing the integral we get

$$F_c(k) = \frac{a^2 - k^2 + 1}{\left(a^2 + k^2 + 2k + 1\right)\left(a^2 + k^2 - 2k + 1\right)}$$

- You can now work with this in any ODE problem
- When the time comes to get the final answer you can then take the limit $a \rightarrow 0$
- You do need to check that the result will not depend on how this limit is taken

Use of contour deformation

Suppose we want to transform the function

$$g(x) = \begin{cases} x^{+1/2} & x > 0 \\ 0 & x < 0 \end{cases}$$

Now if we write the integral for the transform to k space we get

$$F(k) = \frac{1}{\sqrt{2\pi}} \int_0^\infty x^{1/2} \exp(-ikx) dx$$

- This integral also will not converge if we consider *k* real.
- But notice it will converge if Im(k) < 0.
- In fact you can show by setting $k=\xi-i\epsilon$ where now ξ is real and $\epsilon>0$ that

$$F(k) = \frac{1}{2\sqrt{2}} \exp(-3\pi i/4) k^{-3/2}$$

• This is valid as long as $-\pi < \arg(k) < 0$

Use of contour deformation

You can see that by analytic continuation you can say that

$$F(k) = \frac{1}{2\sqrt{2}} \exp(-3\pi i/4) k^{-3/2}$$

for all complex k as long as $k \neq 0$

• Now suppose we write $k = k_1 - ik_2$ and hold $k_2 > 0$ and constant and look at the variation of F with k_1 :

$$G(k_1) = F(k_1 - ik_2)$$

• $G(k_1)$ is the transform of the function

$$g(x) = \exp(-k_2 x) f(x)$$

 This function could have been transformed using the usual Fourier transform because it does decay.

Use of contour deformation

So we can write

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(+ik_1x)G(k_1)dk_1$$

But this means

$$f(x) = \exp(k_2 x)g(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \exp(+i(k_1 - ik_2)x)F(k_1 - ik_2)dk_1$$

But this is

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty - ik_2}^{\infty - ik_2} \exp(+ikx)F(k)dk$$

And now using Cauchy's integral theorem we can write this as

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\Gamma_1} \exp(+ikx) F(k) dk$$

where Γ_1 is the real axis except for an indentation about the point k=0.