[Cheng P.6-2] An electron is injected with a velocity $\mathbf{u}_0 = \mathbf{a}_y u_0$ into a region where both an electric field \mathbf{E} and a magnetic field \mathbf{B} exist. Describe the motion of the electron if

(a)
$$\mathbf{E} = \mathbf{a}_z E_0$$
 and $\mathbf{B} = \mathbf{a}_x B_0$,

(b)
$$\mathbf{E} = -\mathbf{a}_z E_0$$
 and $\mathbf{B} = -\mathbf{a}_z B_0$

Discuss the effect of the relative magnitudes of E_0 and B_0 on the electron paths in parts (a) and (b).

Solution: The electron will experience a force upon it from the electric and magnetic fields in the region, which will determine its motion.

$$\mathbf{F} = ma$$

$$q(\mathbf{E} + \mathbf{u} \times \mathbf{B}) = m\frac{du}{dt}$$

$$\frac{du}{dt} = -\frac{e}{m}(\mathbf{E} + \mathbf{u} \times \mathbf{B})$$

(a) Here $\mathbf{E} = \mathbf{a}_z E_0$ and $\mathbf{B} = \mathbf{a}_x B_0$.

$$\frac{\partial u_x}{\partial t} = 0$$

$$\frac{\partial u_y}{\partial t} = -\frac{e}{m} B_0 u_x \qquad \longrightarrow \qquad u_y = \left(u_0 - \frac{E_0}{B_0}\right) \cos \omega_0 t + \frac{E_0}{B_0}$$

$$\frac{\partial u_z}{\partial t} = -\frac{e}{m} (E_0 - B_0 u_x) \qquad u_z = \left(\frac{E_0}{B_0} - u_0\right) \sin \omega_0 t; \quad \omega_0 = \frac{e}{m} B_0$$

If the electron is injected at the origin at t=0 then x=0, $y=\frac{c_2}{\omega_0}\sin\omega_0t+\frac{E_0}{B_0}t$, $z=-\frac{c_2}{\omega_0}(1-\cos\omega_0t)$, and $c_2=u_0-\frac{E_0}{B_0}$. This yields the equation of motion

$$\left(y - \frac{E_0}{B_0}t\right)^2 + \left(z + \frac{c_2}{\omega_0}\right)^2 = \left(\frac{c_2}{\omega_0}\right)^2.$$

If $\frac{E_0}{B_0} = u_0$, $u_x = u_z = 0$, $u_y = 0$, then x = z = 0, and $y = u_0 t$.

(b) Here $\mathbf{E} = -\mathbf{a}_z E_0$ and $\mathbf{B} = -\mathbf{a}_z B_0$.

$$\frac{\partial u_x}{\partial t} = \frac{e}{m} B_0 u_y = \omega_0 u_y$$

$$\frac{\partial u_y}{\partial t} = -\omega_0 u_x$$

$$\frac{\partial u_z}{\partial t} = -\frac{e}{m} E_0.$$

The first two equations are for circular motion, while the last one is acceleration in the z direction. This creates a helical motion. See P6-1 for more details.

Answer:

(a)

$$\left(y - \frac{E_o}{B_o}t\right)^2 + \left(z + \frac{c_2}{\omega_0}\right)^2 = \left(\frac{c_2}{\omega_0}\right)^2 \text{ where } c_2 = u_o - \frac{E_o}{B_o}$$

(b)

$$\frac{\partial u_x}{\partial t} = \frac{e}{m} B_0 u_y = \omega_0 u_y$$
$$\frac{\partial u_y}{\partial t} = -\omega_0 u_x$$
$$\frac{\partial u_z}{\partial t} = -\frac{e}{m} E_0.$$