Simple Models Work Best in Peptide Function Prediction

Piotr Ludynia • ML & Chemoinformatics Lab (MLCIL), Faculty of Computer Science, AGH

Peptide Function Prediction

Iteration 0

Iteration 1

Iteration 2

Example subgraph extraction in consecutive iterations of ECFP algorithm.

Reprinted with permission from [7]. Copyright 2010 American Chemical Society.

Peptide function prediction:

small proteins, up to 50 amino acids

SMILES, amino-acid sequences, graphs

binary classification

Peptides:

does a peptide have a certain property, e.g. antibacterial?

potential novel therapeutics, e.g. antibiotics or anticancer drugs

Popular Approaches

- protein language models (PLMs)
- graph neural networks (GNNs)
- complex multimodal feature engineering

Long Range Graph Benchmark (LRGB)

- peptide benchmark for graph learning
- designed to require learning long-range dependencies
- benchmark mostly for graph neural networks (GNNs)
- important assumption "proteins require long-range dependencies so peptides must require them too" - but is it correct?

Methods

- molecular fingerprints: ECFP, RDKit fp, Topological Torsion (TT)
- vectorization algorithms molecules
- hashed fingerprints detect subgraphs of given shape and hash results onto feature vector
- fingerprints count count occurrences of subgraphs (binary would just detect if it exists)
- implemented using our own library for efficient computation fingerprints, molecular scikit-fingerprints
- LightGBM classifier
- quickly trainable model with minimal number of parameters

Large Scale Benchnmarking

- 6 benchmarks, 126 datasets, >215 thousand unique peptides
- SOTA on 5 benchmarks:
 - LRGB
 - BERT-based models benchmark
 - XUAMP
 - AMPBenchmark
 - PeptideReactor
- AutoPeptideML near SOTA but much faster and lighter

LRGB results:

Peptides-func | Peptides-struct

Model	1 cpitaes tune	1 cptiacs-struct
	AUPRC ↑	$\mathbf{MAE}\downarrow$
Transformer	63.26 ± 1.26	0.2529 ± 0.0016
SAN	64.39 ± 0.75	0.2545 ± 0.0012
MOLTOP	64.59 ± 0.05	-
GraphGPS	65.35 ± 0.41	0.2500 ± 0.0005
GINE	66.21 ± 0.67	0.2473 ± 0.0017
GatedGCN	67.65 ± 0.47	0.2477 ± 0.0009
GCN	68.60 ± 0.50	0.2460 ± 0.0007
GraphViT	69.42 ± 0.75	0.2449 ± 0.0016
GRIT	69.88 ± 0.82	0.2460 ± 0.0012
CRaWl	70.74 ± 0.32	0.2506 ± 0.0022
GRED	71.33 ± 0.11	0.2455 ± 0.0013
DRew	71.50 ± 0.44	0.2536 ± 0.0015
HDSE	71.56 ± 0.58	0.2457 ± 0.0013
S ² GCN	73.11 ± 0.66	0.2447 ± 0.0032
RDKit	73.11	0.2459
TT	73.18	0.2438
ECFP	74.60	0.2432

- short-range model outperform the complex ones
 - conclusion: peptides don't require long range dependencies
 - short-range features contain enough information for accurate peptide function prediction
- why so many papers haven't used this simple method?
 - their fingerprint baselines used binary fingerprints instead of count variants
 - don't compare their models against **strong** many scientists baselines!

Conclusions and Lessons

- conclusions
 - molecular fingerprints are effective methods for peptide function prediction problem
 - simple vectorization + tree ensemble is able to outperform deep-learning models
 - assumption that peptides need long-range dependencies was false
- lessons
 - complex models might not always be the best
 - don't underestimate simple feature extraction methods
 - always compare your models against simple but strong baselines
 - design your baselines very carefully, read documentation and learn about the methods

References

- 1. Adamczyk, Jakub, Piotr Ludynia, and Wojciech Czech. "Molecular Fingerprints Are Strong Models for Peptide Function Prediction." arXiv preprint arXiv:2501.17901 (2025).
- 2. Goles, Montserrat, et al. "Peptide-based drug discovery through artificial intelligence: towards an autonomous design of therapeutic peptides." Briefings in Bioinformatics 25.4 (2024): bbae275. 3. Dwivedi, Vijay Prakash, et al. "Long range graph benchmark." Advances in Neural Information Processing Systems 35 (2022): 22326-22340.
- 4. Rogers, David, and Mathew Hahn. "Extended-connectivity fingerprints." Journal of Chemical Information and Modeling 50.5 (2010): 742-754.
- 5. Adamczyk, Jakub, and Piotr Ludynia. "Scikit-fingerprints: Easy and efficient computation of molecular fingerprints in Python." SoftwareX 28 (2024): 101944. 6. Gao, Wanling, et al. "Comprehensive Assessment of BERT-Based Methods for Predicting Antimicrobial Peptides." Journal of Chemical Information and Modeling 64.19 (2024): 7772-7785.
- 7. Fernández-Díaz, Raúl, et al. "AutoPeptideML: a study on how to build more trustworthy peptide bioactivity predictors." Bioinformatics 40.9 (2024): btae555.