Fond's dorest cares

$$\frac{1}{\sqrt{4}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{$$







van(actan(2e) = >c arctan (tan(2)) = ~ , de 3-TITEL et & EIR

| P | J SS    | SOM | U)                               | ) (( |    | ~        | ,et   | <u>(</u> |            |    |          |               |   |   |                 |   |
|---|---------|-----|----------------------------------|------|----|----------|-------|----------|------------|----|----------|---------------|---|---|-----------------|---|
| A | $a_{l}$ |     |                                  |      |    |          |       |          |            |    |          |               |   | R | )<br> <br> <br> | 7 |
|   |         | (a' | $\left( \frac{1}{2} \right)^{2}$ |      | CA | <u>.</u> | ſΥM   | ご        |            | m) | <b>^</b> |               |   |   |                 |   |
|   |         |     | (d. x                            | m    |    | ر الم    | 7 . J | ۲        | <u>.</u> ( | m  | · La Dia | -m<br>><br>-m | 1 |   |                 |   |
|   |         | 0   | <u>ω</u>                         |      | ٥  | 1 N-1    | m     |          |            |    |          |               |   |   |                 |   |

On a les membres règles de calculs par cê, 
$$z \in \mathbb{R}$$

$$\begin{array}{l}
\text{The all } = a^{1/n} & (a \cdot a \cdot > 0) \\
\text{Si} & (a^{1/n})^n = a & c-a-d?
\end{array}$$
Si  $(a^{1/n})^n = a & c-a-d?$ 

Peur  $a = 2n+1$ ,  $n \in \mathbb{N}^+$ , alors:
$$\begin{array}{l}
\text{The all } = -\Im[a] \\
\text{The all } = -\Im[a]
\end{array}$$
The proper de  $a^{2n}$ ,  $a > 0$ ,  $a \ne 1$  as  $a > 0$ .
$$\begin{array}{l}
\text{Loga}(a^{2n}) = x \\
\text{Loga}(a^{2n}) = x'
\end{array}$$
The alors is the property of the alors is  $a > 0$ .

identés qui en décadent loga (1) =0 loga (a) =1  $\log_a(x \cdot y) = \log_a(x) + \log_a(y)$  $\log_{\alpha}\left(\frac{1}{x}\right) = \log_{\alpha}(x)$   $\log_{\alpha}\left(\frac{x}{y}\right) = \log_{\alpha}(x) - \log_{\alpha}(y)$   $\in_{\mathbb{R}}^{+}$  $\log \alpha \left( \frac{1}{3} \right) = c \cdot \log \alpha \left( \frac{1}{2} \right)$   $c \in \mathbb{R}$ Remarque In (x) = base (x)

e 2 2, 7 18781828...

loga 
$$(-\sqrt{s})$$
 = loga  $(s^{1/2})$  =  $\frac{1}{2}$  loga  $(s)$   $\frac{1}{n}$   
Challerge

A loga  $(s)$  =  $(\log_{\alpha}(s))^{1/2}$ 

A  $(\log_{\alpha}(s))$  =  $\log_{\alpha}(s)$ 

B  $\frac{1}{n}$  |  $\log_{\alpha}(s)$  =  $\log_{\alpha}(s)$ 

B  $\frac{1}{n}$  =  $\frac{1}{\log_{\alpha}(s)}$  |  $\log_{\alpha}(a)$  =  $\frac{1}{n}$  |  $\log_{\alpha}(a)$  |  $\log_{\alpha}(a)$  =  $\frac{1}{n}$  |  $\log_{\alpha}(a)$  =  $\frac{1}{n}$  |  $\log_{\alpha}(a)$  |  $\log_{\alpha}(a$ 

