IDS 702: Module 8.1

BOOTSTRAP

DR. OLANREWAJU MICHAEL AKANDE

INTRODUCTION

- When building statistical models, we often need to quantify the uncertainty around the estimated parameters we are interested in.
- So far in this class, we have been doing so using standard errors and confidence intervals.
- Computing standard errors is often straightforward when we have closed forms.
- For example, the standard error for \bar{X} is σ/\sqrt{n} .
- When σ is unknown, replace with $s=\hat{\sigma}$.
- What to do when we do not have closed forms?

INTRODUCTION

- Setting confidence intervals and conducting hypotheses testing often requires us to know the distribution of the parameter of interest.
- A key tool for doing this is the central limit theorem.
- Recall that according to CLT, for large samples, averages and sums are approximately normally distributed.
- With some work, the CLT allows confidence intervals and hypotheses testing on means, proportions, sums, intercepts, slopes, and so on.
- But...what if we want to set confidence intervals on a correlation or an sd or a ratio?

INTRODUCTION

- Once neat solution is to approximate whatever distribution you have in mind via re-sampling from the true population.
- For example, suppose I would like to estimate the average income of Durham residents and quantify uncertainty around my estimate.
- First I need a sample (of course!).
- Suppose I sample 1000 residents and record their income as X_1, \ldots, X_{1000} . Then, my estimate of average income is \bar{X} .
- Next, I should quantify my uncertainty around that number. I can do so using the standard error σ/\sqrt{n} mentioned earlier, which relies on the CLT.

BOOTSTRAP

- Alternatively, I could approximate the entire distribution of average income myself as follows:
 - 1. Generate B=100 different samples of 1000 Durham residents.
 - 2. For each set $b=1,\ldots,B$ of 1000 residents, compute $ar{X}^b$.
 - 3. Make a histogram of all $\bar{X}^1,\dots,\bar{X}^{100}$ values. This approximates the distribution of average income of Durham residents.
- lacksquare Point estimate of average income is thus the mean of $ar{X}^1,\dots,ar{X}^{100}$.
- lacksquare To quantify uncertainty, can use the standard deviation of $ar{X}^1,\dots,ar{X}^{100}$.
- For confidence intervals, use the quantiles of the histogram.
- In practice, however, the procedure above cannot be applied, because we usually cannot generate many samples from the original population.
- What to do then? Bootstrap!

BOOTSTRAP

- Bootstrap is a very powerful statistical tool.
- It can be used to "approximate" the distribution of almost any parameter of interest.
- Bootstrap allows us to mimic the process of obtaining new sample sets by repeatedly sampling observations from the original data set.
- That is, replace step 1 of the previously outlined approach with
 - 1. Generate B=100 different samples of 1000 Durham residents by re-sampling from the original observed sample with replacement.
- Can then follow the remaining steps to approximate the distribution of the parameter of interest.
- Ideally, the sample you start with should be representative of the entire population. Bootstrap relies on the original sample!

BOOTSTRAP

Here's a figure from the ISL book illustrating the approach.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

