# Оптимизация метапараметров в задаче дистилляции знаний

Горпинич М., Бахтеев О. Ю., Стрижов В. В.

Московский физико-технический институт (государственный университет)

# Дистилляция знаний

#### Цель

Предложить метод оптимизации метапараметров для задачи дистилляции. Метапараметры — это параметры оптимизационной задачи.

### Проблема

Задача подбора метапараметров является вычислительно затратной. Однако, правильное назначение метапараметров значительно повышает качество модели.

#### Решение

Рассмотрим двухуровневую задачу оптимизации. Данная задача решается градиентными методами. Для уменьшения вычислительной сложности задачи значения метапараметров предсказываются с помощью линейных моделей.

# Ключевая идея метода



Метапараметры задают значение функции потерь для рассмотренной модели:

$$\mathcal{L}_{\mathsf{train}} = \lambda_1 \mathcal{L}_{\mathsf{student}} + (1 - \lambda_1) \mathcal{L}_{\mathsf{teacher}}.$$

Вместо непосредственной оптимизации значений метапараметров анализируется поведение траектории оптимизации, которая предсказывается с помощью линейных моделей.

#### Постановка задачи

Метапараметрами  $\lambda$  в задаче дистилляции являются коэффициенты слагаемых в функции потерь и температура:

$$\boldsymbol{\lambda} = [\lambda_1, T].$$

Температура является множителем логитов моделей в функции softmax. Дистилляция знаний является задачей оптимизации параметров модели. Она учитывает:

- 1. информацию исходной выборки;
- 2. информацию, содержащуюся в модели-учителе.

Модель-учитель имеет более сложную структуру. Она обучается на исходной выборке. Модель-ученик имеет более простую структуру. Она оптимизируется путем переноса знаний модели-учителя.

#### Постановка задачи дистилляции

#### Дана выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \; \mathbf{x}_i \in \mathbb{R}^n, \qquad y_i \in \mathbb{Y} = \{1, \dots, K\}, \qquad \mathfrak{D} = \mathfrak{D}_{\mathsf{train}} \sqcup \mathfrak{D}_{\mathsf{val}}.$$

 ${f f}$  — фиксированная модель-учитель,  ${f g}$  — модель-ученик.

**Определение 1**. Пусть функция  $D: \mathbb{R}^s \to \mathbb{R}_+$  определяет расстояние между моделью-учеником  $\mathbf{g}$  и моделью-учителем  $\mathbf{f}$ . Назовем D-дистилляцией модели-ученика такую задачу оптимизации параметров модели ученика, которая минимизирует функцию D.

**Утверждение 1**. Если  $\lambda_1=0$ , то минимизируется функция потерь, являющаяся D-дистилляцией с  $D=D_{KL}\left(\sigma\left(\mathbf{f}/T\right),\sigma\left(\mathbf{g}/T\right)\right)$ , где  $\sigma$  — функция softmax.

# Функции потерь

#### Функция потерь на обучении

$$\mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}) = -\lambda_1 \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\mathsf{train}}} \sum_{k=1}^K y^k \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_k}}{\sum\limits_{j=1}^K e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j}} - (1 - \lambda_1) \sum_{(\mathbf{x}, y) \in \mathfrak{D}_{\mathsf{train}}} \sum_{k=1}^K \frac{e^{\mathbf{f}(\mathbf{x})_k/T}}{\sum\limits_{j=1}^K e^{\mathbf{f}(\mathbf{x})_j/T}} \log \frac{e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_k/T}}{\sum\limits_{j=1}^K e^{\mathbf{g}(\mathbf{x}, \mathbf{w})_j/T}},$$

# Валидационная функция потерь $\mathcal{L}_{\mathsf{val}}(\mathbf{w}, \boldsymbol{\lambda}) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathfrak{D}_{\mathsf{val}}} \sum_{k=1}^K y^k \log \frac{e^{\mathsf{g}(\mathbf{x}, \mathbf{w})_k / T_{\mathsf{val}}}}{\sum\limits_{j=1}^K e^{\mathsf{g}(\mathbf{x}, \mathbf{w})_j / T_{\mathsf{val}}}}$

Множество метапараметров:

$$oldsymbol{\lambda} = [\lambda_1, \, T]$$

Задача оптимизации:

$$\hat{oldsymbol{\lambda}} = \arg\min_{oldsymbol{\lambda} \subset \mathbb{R}^2} \mathcal{L}_{\mathsf{val}}(\hat{oldsymbol{w}}, oldsymbol{\lambda}),$$

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^s} \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}).$$

### Градиентная оптимизация

Определение 2. Назовем *оператором оптимизации* алгоритм U выбора вектора параметров  $\mathbf{w}'$  с использованием параметров на предыдущем шаге  $\mathbf{w}$ :  $\mathbf{w}' = U(\mathbf{w})$ .

Оптимизируем параметры  ${\bf w}$  используя  $\eta$  шагов оптимизации:

$$\hat{\mathbf{w}} = U \circ U \circ \cdots \circ U(\mathbf{w}_0, \boldsymbol{\lambda}) = U^{\eta}(\mathbf{w}_0, \boldsymbol{\lambda}),$$

где  $\mathbf{w}_0$  — начальное значение вектора параметров  $\mathbf{w}$ . Переопределим задачу оптимизации используя определение оператора U:

$$\hat{\pmb{\lambda}} = \arg\max_{\pmb{\lambda} \in \mathbb{R}^3} \mathcal{L}_{\text{val}}\big(U^{\eta}(\mathbf{w}_0, \pmb{\lambda})\big), \qquad U(\mathbf{w}, \pmb{\lambda}) = \mathbf{w} - \gamma \nabla \mathcal{L}_{\text{train}}(\mathbf{w}, \pmb{\lambda}).$$

Будем обновлять метапараметры последовательно по правилу:

$$\boldsymbol{\lambda}' = \boldsymbol{\lambda} - \gamma_{\boldsymbol{\lambda}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\boldsymbol{\mathit{U}}(\mathbf{w}, \boldsymbol{\lambda}), \boldsymbol{\lambda}) = \boldsymbol{\lambda} - \gamma_{\boldsymbol{\lambda}} \nabla_{\boldsymbol{\lambda}} \mathcal{L}_{\mathsf{val}}(\mathbf{w} - \gamma \nabla \mathcal{L}_{\mathsf{train}}(\mathbf{w}, \boldsymbol{\lambda}), \boldsymbol{\lambda}).$$

Гипотеза: в случае градиентной оптимизации траектория оптимизации может быть предсказана локально линейными моделями:

$$\lambda' = \lambda + \mathbf{c}^{\top} \begin{pmatrix} \mathbf{z} \\ 1 \end{pmatrix},$$

где  $\mathbf{c}$  — вектор параметров линейной модели.

#### Итоговый алгоритм

#### Algorithm 1 Оптимизация метапараметров

Require: число  $e_1$  итераций с использованием градиентной оптимизации

- Require: число  $e_2$  итераций с предсказанием  $\lambda$  линейными моделями
  - 1: **while** нет сходимости **do** 2: Оптимизация  $\lambda$  и **w** на протяжении  $e_1$  итераций, решая двухуровневую задачу
  - 3:  $\mathsf{traj} = \mathsf{траектория} \ (\nabla \lambda)$  изменяется во время оптимизации;
  - 4: Положим  $\mathbf{z} = [1, \dots, e_1]^\mathsf{T}$ 5: Оптимизация **с** с помощью МНК:

$$\hat{\mathbf{c}} = \arg\min_{\mathbf{c} \in \mathbb{R}^2} ||\mathbf{traj} - \mathbf{z} \cdot c_1 + c_2||_2^2$$

- 6: Оптимизация **w** и предсказание  $\lambda$  на протяжении  $e_2$  итераций с помощью линейной модели с параметрами **c**.
- 7: end while

# Корректность аппроксимации линейной моделью

**Теорема 1.** Если функция  $\mathcal{L}_{\text{train}}(\mathbf{w}, \boldsymbol{\lambda})$  является гладкой и выпуклой, и ее Гессиан  $\mathbf{H} = \nabla^2_{\mathbf{w}} \mathcal{L}_{\text{train}}$  обратим и является единичной матрицей,  $\mathbf{H} = \mathbf{I}$ , а также если параметры  $\mathbf{w}$  равны  $\mathbf{w}^*$ , где  $\mathbf{w}^*$  — точка локального минимума для текущего значения  $\boldsymbol{\lambda}$ , тогда жадный алгоритм находит оптимальное решение двухуровневой задачи. Если существует область  $\mathcal{D} \in \mathbb{R}^2$  в пространстве метапараметров, такая что градиент метапараметров может быть аппроксимирован константой, то оптимизация является линейной по метапараметрам.

## Постановка эксперимента

#### Выборки

Синтетическая выборка, CIFAR-10 (вся выборка и уменьшенная выборка),

#### Fashion-MNIST

#### Методы оптимизации

- 1) оптимизация без дистилляции;
- 2) оптимизация со случайной инициализацией метапараметров. Метапараметры выбираются из равномерного распределения
- $\lambda_1 \sim \mathcal{U}(0;1), \quad T \sim \mathcal{U}(0.1,10).$  3) оптимизация с "наивным" назначением метапараметров:

$$\lambda_1 = 0.5, T = 1$$
:

- градиентная оптимизация;
- hyperopt;
- б) предложенный метод.

Внешний критерий качества:

$$accuracy = \frac{1}{m} \sum_{i=1}^{m} [\mathbf{g}(\mathbf{x}_i, \mathbf{w}) = y_i].$$

# Эксперимент на синтетических данных

#### Выборка

$$\mathfrak{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^m, \ x_{ij} \in \mathcal{N}(0, 1), \qquad j = 1, 2, \qquad x_{i3} = [\operatorname{sign}(x_{i1}) + \operatorname{sign}(x_{i2}) > 0], \\ y_i = \operatorname{sign}(x_{i1} \cdot x_{i2} + \delta) \in \mathbb{Y}.$$

Размер выборки для модели-ученика существенно меньше размера выборки для модели-учителя.



Визуализация выборки для а) модели-учителя; б) модели-ученика; в) тестовой выборки

# Настройка параметров алгоритма

Точность модели со значениями  $e_1$  и  $e_2$ : а)  $e_1=e_2$ ; б) подбор  $e_2$  при  $e_1=10$ .





Лучшая точность получена при  $e_1=e_2=10.$ 

# Сравение подходов к оптимизации



Результаты, полученные с помощью градиентной оптимизации близки к результатам, полученным с помощью аппроксимации линейными моделями.  $_{13/17}$ 

# Выборки CIFAR-10 и Fashion-MNIST

Метод оценивался на выборках Fashion-MNIST, CIFAR-10 и подмножестве CIFAR-10, которое составляет 10% от исходной выборки.



CIFAR-10 Fashion-MNIST

# Результаты эксперимента на выборке CIFAR-10



Точность модели при обучении с дистилляцией значительно выше, чем без нее. Наибольшая точность получена при использовании предложенного метода.

#### Результаты эксперимента

Синтетическая Fashion-

Метод

|                                                                       | выборка            | MNIST              | CIFAR-10           |                    |
|-----------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|
| Без дистил-                                                           | 0.63 (0.63)        | 0.87 (0.88)        | 0.55 (0.56)        | 0.65 (0.66)        |
| ляции                                                                 |                    |                    |                    |                    |
| Наивный вы-                                                           | 0.63 (0.63)        | 0.87 (0.88)        | 0.55 (0.56)        | 0.66 (0.67)        |
| бор                                                                   |                    |                    |                    |                    |
| Случайные                                                             | 0.64 (0.72)        | 0.79 (0.88)        | 0.54 (0.57)        | 0.64 (0.67)        |
| метапарамет-                                                          |                    |                    |                    |                    |
| ры                                                                    |                    |                    |                    |                    |
| Градиентная                                                           | <b>0.77</b> (0.78) | <b>0.88</b> (0.89) | <b>0.57</b> (0.61) | <b>0.70</b> (0.72) |
| оптимизация                                                           |                    |                    |                    |                    |
| Hyperopt                                                              | <b>0.77</b> (0.78) | 0.87 (0.88)        | 0.55 (0.58)        | -                  |
| Предложенный                                                          | 0.76 (0.78)        | <b>0.88</b> (0.89) | 0.57               | <b>0.70</b> (0.72) |
| метод                                                                 |                    |                    |                    |                    |
| MCDORESORSHIME DEGROWENHOLD METORS IN LUSTIMENTHEIN METOROR RESET ROY |                    |                    |                    |                    |

Использование предложенного метода и градиентных методов дает похожий результат. Градиентные методы являются предпочтительными, так как они дают схожее качество, но требуют меньше вычислительных затрат.  $_{16/17}$ 

Уменьшенный

CIFAR-10

#### Заключение

- Исследовано применение градиентных методов оптимизации для метапараметров задачи дистилляции.
- Предложена и проверена гипотеза по аппроксимации траектории оптимизации метапараметров.
- ▶ Вычислительный эксперимент показал, что оптимизация метапараметров применима к задаче дистилляции.
- Подтверждена возможность аппроксимации метапараметров локально-линейными моделями.
- Планируется дальнейшее исследование оптимизационной задачи и анализ качества аппроксимации траектории оптимизации метапараметров более сложными прогностическими моделями.

#### Основная литература

- Geoffrey E. Hinton, Oriol Vinyals ν Jeffrey Dean. "Distilling the Knowledge in a Neural Network". Β: CoRR abs/1503.02531 (2015). URL: http://arxiv.org/abs/1503.02531.
- Jelena Luketina и др. "Scalable Gradient-Based Tuning of Continuous Regularization Hyperparameters". в: CoRR abs/1511.06727 (2015). URL: http://arxiv.org/abs/1511.06727.
- Oleg Yu. Bakhteev и Vadim V. Strijov. "Comprehensive analysis of gradient-based hyperparameter optimization algorithms". в: Ann. Oper. Res 289.1 (2020), с. 51—65.
- Marcin Andrychowicz и др. "Learning to learn by gradient descent by gradient descent". в: CoRR abs/1606.04474 (2016). URL: http://arxiv.org/abs/1606.04474.