SEG2106 Assignment 2

Lexical Analyser

Tommy Deng

2020-03-01

Question 1 - Regular Expressions

- 1. $((a|b){2})*$
- 2. b*a(b*ab*a)*b*
- 3. (a*ba*b)*a*
- 4. $((^a(a|b)*b$)|(^b(a|b)*a$))$
- 5. (a?b)+b
- 6. $0*(1(0|1){6,}|111(0|1){3}|1101(0|1){2})$
- 7. (-?[1-9][0-9]*|0)[a-zA-Z]+([4-9]|[1-3][0-9]|4[0-4])

Question 2 - Non-Deterministic Finite Automata

a) (b|c)*a(a|c)*

b) c*|(a+|(b|c))*b*

c) abb(ab)*(a*b*c*)

Question 3 – NFA to DFA Conversion

a)

Table 1: NFA transition function reference

State	a	b	ϵ^*
0	Ø	Ø	$\{0, 1, 2, 3, 4, 5, 8, 9, 10, 11\}$
1	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
2	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
3	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
4	$\{6\}$	Ø	{4}
5	Ø	{7}	$\{5\}$
6	Ø	Ø	$\{1, 2, 3, 4, 5, 6, 8, 9, 10, 11\}$
7	Ø	Ø	$\{1, 2, 3, 4, 5, 7, 8, 9, 10, 11\}$
8	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
9	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
10	Ø	Ø	$\{1, 2, 3, 4, 5, 8, 9, 10, 11\}$
(11)	Ø	Ø	{11}

Table 2: DStates

\bigcirc	$\{0, 1, 2, 3, 4, 5, 8, 9, 10, 11\}$
$\widecheck{\mathbf{B}}$	$\{1, 2, 3, 4, 5, 6, 8, 9, 10, 11\}$
$\overline{\mathbb{C}}$	$\{1, 2, 3, 4, 5, 7, 8, 9, 10, 11\}$

Table 3: ϵ -closure state pairings

ϵ -closure($\{0\}$)	A
ϵ -closure($\{6\}$)	\bigcirc
ϵ -closure($\{7\}$)	\bigcirc

Subset construction algorithm

```
T = \epsilon - \text{closure}(0) = \{ 0, 1, 2, 3, 4, 5, 8, 9, 10, 11 \} = A
U = \epsilon - \text{closure}(\text{moveTo}(A, a))
U = \epsilon - \text{closure}(\{ 6 \}) = \{ 1, 2, 3, 4, 5, 6, 8, 9, 10, 11 \} = B
U = \epsilon - \text{closure}(\text{moveTo}(A, b))
U = \epsilon - \text{closure}(\{ 7 \}) = \{ 1, 2, 3, 4, 5, 7, 8, 9, 10, 11 \} = C
T = B
U = \epsilon - \text{closure}(\text{moveTo}(B, a))
U = \epsilon - \text{closure}(\{ 6 \}) = B
U = \epsilon - \text{closure}(\{ 6 \}) = C
T = C
U = \epsilon - \text{closure}(\{ 7 \}) = C
U = \epsilon - \text{closure}(\{ 6 \}) = B
U = \epsilon - \text{closure}(\{ 6 \}) = B
U = \epsilon - \text{closure}(\{ 6 \}) = B
U = \epsilon - \text{closure}(\{ 6 \}) = C
```

Table 4: Resulting DFA transition function

	a	b
\rightarrow (A)	В	С
$^{\odot}$	В	С
<u>(C)</u>	В	С

Figure 1: Resulting DFA diagram

Figure 2: Minimized DFA diagram

b)

Table 5: NFA transition function reference

State	a	b	ϵ^*
0	{0,1}	{0}	{0}
1	$\{2\}$	$\{2\}$	{1}
2	$\{3\}$	$\{3\}$	$\{2\}$
3	Ø	Ø	$\{3\}$

Table 6: DStates

A	{0}
В	$\{0, 1\}$
\mathbf{C}	$\{0, 1, 2\}$
D	$\{0, 2\}$
\odot	$\{0, 1, 2, 3\}$
(F)	$\{0, 2, 3\}$
(G)	$\{0, 1, 3\}$
\bigcirc	$\{0, 3\}$

Table 7: ϵ -closure state pairings

ϵ -closure($\{0\}$)	A
ϵ -closure($\{0,1\}$)	В
ϵ -closure($\{0,1,2\}$)	\mathbf{C}
ϵ -closure($\{0,2\}$)	D
ϵ -closure($\{0, 1, 2, 3\}$)	\odot
ϵ -closure($\{0, 2, 3\}$)	\bigcirc
ϵ -closure($\{0, 1, 3\}$)	\bigcirc
ϵ -closure($\{0,3\}$)	\bigcirc

Subset construction algorithm

 $U = \epsilon$ -closure({ 0 }) = A

```
T = \epsilon-closure(0) = { 0 } = A
U = \epsilon-closure(moveTo(A, a))
U = \epsilon-closure({ 0, 1 }) = { 0, 1 } = B
U = \epsilon-closure(moveTo(A, b))
U = \epsilon-closure({ 0 }) = A
T = B
U = \epsilon-closure(moveTo(B, a))
U = \epsilon-closure({ 0, 1, 2 }) = { 0, 1, 2 } = C
U = \epsilon-closure(moveTo(B, b))
U = \epsilon-closure({ 0, 2 }) = { 0, 2 } = D
T = C
U = \epsilon-closure(moveTo(C, a))
U = \epsilon-closure({ 0, 1, 2, 3 }) = { 0, 1, 2, 3 } = E
U = \epsilon-closure(moveTo(C, b))
U = \epsilon-closure({ 0, 2, 3 }) = { 0, 2, 3 } = F
T = D
U = \epsilon-closure(moveTo(D, a))
U = \epsilon-closure({ 0, 1, 3 }) = { 0, 1, 3 } = G
U = \epsilon-closure(moveTo(D, b))
U = \epsilon - closure(\{ 0, 3 \}) = \{ 0, 3 \} = H
T = E
U = \epsilon-closure(moveTo(E, a))
U = \epsilon-closure({ 0, 1, 2, 3 }) = E
U = \epsilon-closure(moveTo(E, b))
U = \epsilon-closure({ 0, 2, 3 }) = F
T = F
U = \epsilon-closure(moveTo(F, a))
U = \epsilon - closure(\{ 0, 1, 3 \}) = G
U = \epsilon-closure(moveTo(F, b))
U = \epsilon-closure({ 0, 3 }) = H
T = G
U = \epsilon-closure(moveTo(G, a))
U = \epsilon-closure({ 0, 1, 2 }) = C
U = \epsilon-closure(moveTo(G, b))
U = \epsilon-closure({ 0, 2 }) = D
T = H
U = \epsilon-closure(moveTo(H, a))
U = \epsilon-closure({ 0, 1 }) = B
U = \epsilon-closure(moveTo(H, b))
```

Table 8: Resulting DFA transition function

	a	b
\rightarrow A	В	A
В	\mathbf{C}	D
$^{\mathrm{C}}$	\mathbf{E}	\mathbf{F}
D	G	Η
\odot	\mathbf{E}	F
\bigcirc	G	Η
\bigcirc	\mathbf{C}	D
H	В	A

Figure 3: Resulting DFA diagram