

Universidade do Minho

DEPARTAMENTO DE INFORMÁTICA

Algoritmos Paralelos Room Assignment Problem

João Teixeira (A85504) José Filipe Ferreira (A83683)

29 de março de 2021

Conteúdo

1	Introdução	3
	Soluções desenvolvidas 2.1 Greedy Search	4
	2.2 Monte-Carlo	4
	2.3 Monte-Carlo com Annealing	5
3	Analise de Resultados	6

Capítulo 1

Introdução

O room assignment problem consiste em distribuir n pessoas por n/2 salas de forma a minimizar os maus relacionamentos entre os habitantes de cada sala. A única maneira de obter o melhor resultado para este algoritmo consiste em testar todas as possibilidades, calcular um valor para cada um com recurso a uma função objetivo e procurar o menor entre eles. Resolver este problema com forca bruta resulta numa complexidade de O(n!) fazendo com que o tempo da computação aumente de forma extremamente rápida.

Para contornar este problema é possível recorrer a métodos que, apesar de não calcularem o melhor resultado possível, conseguem calcular uma aproximação do resultado final. Para tal pode-se desenvolver algoritmos determinísticos (greedy search) e algoritmos não determinísticos.

Um problema NP, ou seja, um problema polinomial em tempo não determinístico é uma classe utilizada para classificar um sub conjunto de problemas de decisão. Estes problemas são caracterizados por ser possível calcular um resultado de forma não determinística em tempo polinomial. A solução NP foi desenvolvida fazendo uso do método de Monte-Carlo com e sem *annealing*.

Ao longo deste relatório iremos descrever em mais detalhe como desenvolvemos estes algoritmos e comparar os resultados obtidos entre eles.

Capítulo 2

Soluções desenvolvidas

Internamente os dados são representados da seguinte forma:

- Cada pessoa tem um id associado de 0 ate n-1;
- O relacionamento entre a pessoa i e a pessoa j é dado pelo valor D(i,j) contido numa matriz simétrica D com valores entre 1 e 10;
- As salas são uma matriz n/2 por 2 em que cada sala é uma coluna;

Dentro de cada teste, cada algoritmo determinístico foi executado uma vez e cada algoritmo não determinístico foi executado mil vezes fazendo uso sempre da mesma matriz de relacionamentos populada de forma aleatória no inicio do teste.

2.1 Greedy Search

Este método consiste em percorrer todas as salas uma a uma. Para cada sala procura-se quais são as pessoas que se dão melhor para as quais ainda não foi atribuída uma sala e coloca se nessa mesma sala. Desta forma o algoritmo é determinístico e polinomial.

A complexidade de percorrer cada sala é O(n/2), para procurar qual é o par que vai ocupar cada sala a complexidade é $O(n^2/2 - n)$. Multiplicando uma pela outra obtemos que a complexidade do algoritmo é $O(n^3)$. Resultando numa complexidade muito menor do que a complexidade do algoritmo de brute froce para um n suficientemente grande.

2.2 Monte-Carlo

Por contraste com o método de greedy search, o método de Monte-Carlo é não determinístico.

No inicio do calculo, preenche-se as salas com uma permutação aleatória de pessoas de forma a obter um estado inicial. Em seguida calcula-se o custo desse estado inicial.

Para melhorar o resultado do estado inicial cria-se um loop que corre um conjunto de passos. Primeiro calcula-se duas salas consecutivas e compara-se a diferença de custo se os membros dessas salas fossem trocados. Caso o custo fique mais baixo a troca é efetivada e o custo final atualizado. Caso ocorram maxi loops ao sem ser feita nenhuma troca o algoritmo termina.

2.3 Monte-Carlo com Annealing

O metodo de Monte-Carlo com Annealing é muito semelhante ao método de Monte-Carlo sem annealing. Primeiro é introduzido o conceito de temperatura. A temperatura começa a 1. E em cada ciclo a temperatura decai seguindo a formula T = T * Tdecay. Assim que a temperatura atinge um Tmin as iterações acabam. Aquando de decidir se a ordem das salas e trocada ou não existe uma clausula extra definida por $\exp(-\text{delta}/\text{temperatura})$;= rand.

Capítulo 3

Analise de Resultados

Para representar os resultados obtidos decidimos utilizar um gráfico de caixa, de forma a mostrar a concentração dos resultados, bem como os seus extremantes.

Figura 3.1: Comparação de diferentes valores para maxi em Monte-Carlo com e sem annealing

A variável maxi define o numero máximo de iterações que podem ser realizadas sem ocorrer alterações no custo da distribuição pelas salas.

No caso do Monte-Carlo sem Annealing, aumentar o maxi permite aumentar o número de ciclos em que se procura por uma solução melhor do que a que se tem atualmente. Por isso, quanto maior o maxi melhor os resultados obtidos.

Por outro lado, no caso de Monte-Carlo com Annealing, como é possível fazer trocas mesmo que não seja para melhorar o custo, o caso de paragem do algoritmo é quase sempre quando a temperatura atinge o Tmin, fazendo com que o maxi não tenha grande impacto no resultado obtido. Desta forma, todos os testes foram efetuados com o valor de maxi a 100.

Figura 3.2: Comparação de diferentes valores para Tmin e Tdecay em Monte-Carlo com annealing

Como podemos ver, embora sejam pequenas variações, quanto menor o Tmin, mais concentrados os resultados obtidos, graças ao maior número de iterações efetuadas. Esta diminuição leva também a que tanto os quartis como a mediana apresentam valores mais baixos, o que corresponde, regra geral, à obtenção de melhores resultados.

Com a variação do Tdecay, não há nenhuma tendência explicita definida, pois com a diminuição deste são efetuadas menos iterações, mas ao mesmo tempo, são efetuadas menos trocas que possam contribuir para a obtenção de resultados piores. Por outro lado, ao aumentar o Tdecay, temos mais iterações do algoritmo, mas podendo este ter mais trocas que contribuam para a obtenção de um custo superior.

Figura 3.3: Comparação de todos os métodos desenvolvidos

Comparando o algoritmo que utilizada Monte-Carlo com o que utiliza também Annealing, podemos ver que o que utiliza apenas Monte-Carlo produz resultados substancialmente melhores que o que também utiliza Annealing, visto que este ultimo realiza trocas desnecessárias e prejudiciais ao bom resultado do algoritmo.

Comparando os anteriores com a pesquisa Greedy, vemos que a pesquisa Greedy produz o melhor resultado comparado com todos os anteriores, pois como o intervalo de valores a escolher é muito restrito quando comparado com o número de pessoas que utilizamos para testar, faz com que exista sempre um valor muito pequeno para a relação entre duas pessoas, o que é extremamente benéfico para o funcionamento deste algoritmo, levando quase sempre a uma solução ótima ou muito perto desta.