TD 1 – Models of Neurons I

Mathematical tools for Differential Equations

Analytical solutions

1 Independent term only – Solving $\frac{\mathrm{d}y}{\mathrm{d}t}=\frac{1}{\tau}c(t)$. Any primitive of this function verifies the differential equation, and all those primitives differ only by a constant. The primitive which cancels at the initial time can be obtained by integrating up to time $t: t \mapsto \int_{c}^{t} \frac{1}{\tau} c(t) dt$.

The primitive which satisfies the initial condition is the one which takes the value y_0 at time t=0, which is the constant to add : $y(t) = y_0 + \frac{1}{\tau} \int_0^t c(t)dt$.

- **2** No independent term Solving $\frac{dy}{dt} = -\frac{1}{\tau}y(t)$.
- Method 1: Directly exhibiting a solution.

The exponential function has the property of being equal to its derivative. Therefore, any function $t \mapsto \lambda e^{-\frac{t}{\tau}}, \ \lambda \in \mathbb{R}$ verifies the differential equation, since its derivative is $t\mapsto -\frac{1}{\tau}\lambda e^{-\frac{t}{\tau}}$ with $\lambda\in\mathbb{R}$ a constant.

To further verify the initial condition, the constant λ should be set such as $y(0)=y_0$, i.e. $y_0=\lambda e^0=\lambda$.

Method 2: Separation of variables.

The equation rewrites: $\frac{\mathrm{d}y}{y(t)} = -\frac{1}{\tau} \, \mathrm{d}t$. Integrating leads to: $\int_0^t \frac{1}{y(t)} \, \mathrm{d}y = -\frac{1}{\tau} \int_0^t \, \mathrm{d}t \implies \ln\left(\frac{y(t)}{y_0}\right) = -\frac{1}{\tau}t$.

Exponentiating to express the solution : $\frac{y(t)}{y_0} = e^{-\frac{t}{\tau}} \implies y(t) = y_0 e^{-\frac{t}{\tau}}$.

Conclusion Both methods lead to the unique solution $y(t) = y_0 e^{-\frac{t}{\tau}}$

- **3** Constant independent term Solving $\frac{dy}{dt} = -\frac{1}{\pi}(y(t) c_0)$
- Method 1: Separation of variables.

The equation $\frac{\mathrm{d}y}{y(t)-c_0}=-\frac{1}{\tau}\,\mathrm{d}t$ can be integrated by linear change of variable ($z(t)=y(t)-c_0$):

$$\ln\left(\frac{y(t) - c_0}{y_0 - c_0}\right) = -\frac{1}{\tau}t \implies y(t) = c_0 + (y_0 - c_0)e^{-\frac{t}{\tau}}.$$

(E) Method 2: Sum of particular solution and homogeneous solution.

This method proceeds in two steps, which can be interpreted by a physical meaning:

(1) Investigating if there exists a particular solution $y_p(t)$ which is constant, thereby constituting an equilibrium of the

Such a constant solution does not evolve in time by definition : $\frac{\mathrm{d}y_p}{\mathrm{d}t} = 0 \implies -y_p(t) + c_0 = 0 \implies y_p(t) = c_0$.

(2) Finding the *transient dynamics* by which the system converges towards the equilibrium.

This involves finding the dynamics of the difference $y(t)-y_p(t)=y(t)-c_0$, which verifies a differential equation without independent term (as in ②): $\frac{\mathrm{d}(y(t)-c_0)}{\mathrm{d}t}=\frac{\mathrm{d}y(t)}{\mathrm{d}t}=-\frac{1}{\tau}\left(y(t)-c_0\right)$. Therefore, $(y(t)-c_0)=(y(t)-c_0)(0)\times e^{-\frac{t}{\tau}}=0$

 $(y_0 - c_0) \times e^{-\frac{t}{\tau}}$.

③ Summing both solutions lead to the unique solution : $y(t) = c_0 + (y_0 - c_0)e^{-\frac{t}{\tau}}$

Conclusion Both methods lead to the unique solution $y(t) = c_0 + (y_0 - c_0)e^{-\frac{t}{\tau}}$

- Method : 'Variation of the constant'.

The associated homogeneous equation $\frac{\mathrm{d}y_h}{\mathrm{d}t}=-\frac{1}{\tau}y_h(t)$ (as in ②) is verified by functions of the form $y_h(t)=\lambda e^{-\frac{t}{\tau}}$ with $\lambda\in\mathbb{R}$. Therefore, an ansatz is to look for the solution of the equation with time-varying independent term under the form $t \mapsto \lambda(t)e^{-\frac{t}{\tau}}$, with $t \mapsto \lambda(t)$ a differentiable function to be determined (without loss of generality).

This form is indeed convenient, since its derivative matches the form of the differential equation :

• On the one hand, $\frac{\mathrm{d}y_p}{\mathrm{d}t} = \lambda'(t)e^{-\frac{t}{\tau}} - \frac{1}{\tau}\lambda(t)e^{-\frac{t}{\tau}} = \lambda'(t)e^{-\frac{t}{\tau}} - \frac{1}{\tau}y_p(t)$, by the product expression of a derivative,

• On the other hand, $\frac{\mathrm{d}y_p}{\mathrm{d}t} = -\frac{1}{\tau}\left(y_p(t) - c(t)\right)$, to satisfy the differential equation.

Equating both expressions leads to a simplification which allows to express the derivative of the function looked for :

$$\lambda'(t)e^{-\frac{t}{\tau}} - \frac{1}{\tau}y_p(t) = -\frac{1}{\tau}y_p(t) + \frac{1}{\tau}c(t) \implies \lambda'(t) = \frac{1}{\tau}e^{\frac{t}{\tau}}c(t) \implies \lambda(t) = \frac{1}{\tau}\int_0^t e^{\frac{s}{\tau}}c(s)ds + \alpha, \text{ with } \alpha \in \mathbb{R} \text{ a constant.}$$

Thus, a solution is given by : $t\mapsto e^{-\frac{t}{\tau}}\left[\frac{1}{\tau}\int_0^t e^{\frac{s}{\tau}}c(s)ds + \alpha\right].$

To satisfy the initial condition, the constant must verify $1\times(0+\alpha)=y_0\implies \alpha=y_0$

Numerical approximation with Euler Method

(5) Taylor expansion The value of a function y in the neighboring of a point t can be expressed by its Taylor expansion, provided the function y is infinitely differentiable:

$$y(t + \Delta_t) = y(t) + \sum_{n=0}^{\infty} \frac{y^{(n)}(t)}{n!} \Delta_t^n$$

with $y^{(n)}(t)$ the n^{th} derivative of y(t).

Truncating at the first order:

$$y(t + \Delta_t) = y(t) + y'(t) \Delta_t + \mathcal{O}(\Delta_t^2)$$

The Euler method builds up an approximation by adding an increment proportional to the tangent at a given point:

$$\tilde{y}_{k+1} \approx \tilde{y}_k + \Delta_t f(\tilde{y}_k)$$

num Implementation of the algorithm

(7) Analytical solution

The solution is $y(t) = y_0 e^{-kt}$ (question 2), which tends towards 0 when times grows (as k > 0).

The approximated solution is obtained from the previous time step by (question 5) : $\tilde{y}_{n+1} = y_n - ky_n \Delta_t = y_n (1 - k\Delta_t)$. By an immediate recurrence (geometric sequence) : $\tilde{y}_n = y_0 (1 - k\Delta_t)^n$.

This sequence tends to 0 if and only if $|1-k\Delta_t|<1$, i.e. $-1<1-k\Delta_t<1$ which is satisfied provided $\left|\Delta_t<\frac{2}{k}\right|$

First order method

The error inherent to the Euler's method can be estimated more precisely. Pushing the Taylor expansion one order further:

$$f(t + \Delta t) = f(t) + f'(t)\Delta x + \frac{1}{2}f''(t)\Delta t^2 + \mathcal{O}(\Delta t^3)$$

Therefore, the error made by the Euler scheme at each step is of the order $\epsilon = \Delta_t^2$. At time t, the approximation requires $\approx t/\Delta_t$ steps, such that the cumulative effect of the errors is expected to be of order $\frac{t}{\Delta_t} \times \Delta_t^2 = t\Delta_t$.

(9) num Failures of the Euler's method

Jupyter Notebook

With k = 10, the numerical approximation is stable for $\Delta_t \in [0; 1/5]$. Otherwise, oscillations and divergence can be observed.

Models of Point Neurons

2.1 Leaky Neuron

10 Differential equation for the membrane potential

The membrane potential is related to the instantaneous charge of the membrane by : $V_m = \frac{1}{C_m}Q$, and deriving this expression gives $\frac{\mathrm{d}V_m}{\mathrm{d}t} = \frac{1}{C_m}\frac{\mathrm{d}Q}{\mathrm{d}t} = I$, since the current I is defined as the flow of charges. Replacing I by its expression yields :

$$C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} = -g_l(V_m - E_l)$$

(11) Solution of the membrane potential's dynamics

The equation rewrites : $\frac{C_m}{q_l} \frac{\mathrm{d}V_m}{\mathrm{d}t} = -V_m + E_l$.

A characteristic time constant of the system can be defined as $\tau_m = \frac{C_m}{g_l}$ (it has a dimension of time to comply with the equation homogeneity).

Thus, the membrane potential relaxes exponentially from an initial condition V_0 to its equilibrium E_l (question (3)):

$$V_m(t) = E_l + (V_0 - E_l) e^{-\frac{t}{\tau_m}}$$

The time constant represents the time at which the membrane potential has relaxed to $\approx 36\%$ from its deviation from the equilibrium : $t=\tau_m \implies e^{-\frac{t}{\tau_m}}=e^{-1}\approx 0.36.$ Alternatively, it can be seen as the time at which the tangent at the initial point crosses the abscisses : $\frac{\mathrm{d}V_m}{\mathrm{d}t}(t=0)=-\frac{V_0-E_l}{\tau_m}$

(12) Distinct behaviors

- $V_0 < E_l \implies V_m$ grows towards E_l .
- $V_0 > E_l \implies V_m$ decreases towards E_l .
- $V_0 = E_l \implies V_m$ is fixed.

2.2 Leaky Integrate-and-Fire model (LIF)

(13) Threshold current

The membrane potential dynamics still follows the same differential equation, but with a modified equilibrium, which is switched from E_l to $V_{\infty} = E_l + \frac{I_{app}}{q_l}$ by the additional input current.

Thus, starting from the reset potential, the membrane potential evolves as :

$$V_m(t) = V_{\infty} + (V_0 - V_{\infty}) e^{-\frac{t}{\tau_m}}$$

A spike can be emitted only if the membrane potential can reach the threshold V_{th} , which depends on the position of the equilibrium relative to the threshold. The spiking condition therefore is:

$$V_{\infty} > V_{th} \implies E_l + \frac{I_{app}}{q_l} > V_{th}$$

The threshold current required for this condition to be met is:

$$I_{th} = g_l(V_{th} - E_l)$$

Numerical application : With the parameters given in the table, $I_{th} = 200 \ pA$.

(14) num Simulation with the reset mechanism

Jupyter Notebook

With the reset mechanism, the membrane potential evolves periodically from the reset potential to the spiking threshold. This allows to define a firing rate as the inverse of the inter-spike interval, that is the time between two consecutive spikes.

(15) Firing rate as a function of current

The time T_{ISI} between two spikes corresponds to the time required to reach the threshold from the reset potential:

$$V_m(T_{ISI}) = V_{th} \implies V_{\infty} + (V_r - V_{\infty}) e^{-\frac{T_{ISI}}{\tau_m}} = V_{th} \implies \exp\left(-\frac{T_{ISI}}{\tau_m}\right) = \frac{V_{\infty} - V_{th}}{V_{\infty} - V_r}$$

Solutions exist for $V_{\infty} > V_{th}$, which ensures a positive quotient (by assumption $V_{th} > V_r$, which implies $V_{\infty} > V_{th}$). In this case:

$$T_{ISI} = \tau_m \ln \left(\frac{V_{\infty} - V_r}{V_{\infty} - V_{th}} \right) = \tau_m \ln \left(\frac{E_l + \frac{I_{app}}{g_l} - V_r}{E_l + \frac{I_{app}}{g_l} - V_{th}} \right)$$

The corresponding firing rate is:

$$f = \frac{1}{T_{ISI}}$$

(16) Study the function f(I)

- Domain of validity : solutions exist for $V_{\infty} => V_{th} \implies I_{app} > I_{th}$ (questions (13)).
- Limits of extreme values of the input current :

•
$$I_{app} \to +\infty \implies V_{\infty} \to +\infty \implies \frac{V_{\infty} - V_r}{V_{\infty} - V_{th}} = \frac{1 - \frac{V_r}{V_{\infty}}}{1 - \frac{V_{th}}{V_{\infty}}} \to 1 \implies T_{ISI} \to 0 \implies f \to +\infty$$

•
$$I_{app} \to I_{th}^+ \implies V_\infty \to V_{th} \implies \frac{V_\infty - V_r}{V_\infty - V_{th}} \to 0 \implies T_{ISI} \to +\infty \implies f \to 0$$
• Asymptotic behavior for $I_{app} \to +\infty$:
An equivalent of the quotient can be obtained by a limited development of logarithms:

$$T_{ISI} = \tau_m \ln \left(\frac{1 - \frac{V_r}{V_{\infty}}}{1 - \frac{V_{th}}{V_{\infty}}} \right) = \tau_m \left(\ln \left(1 - \frac{V_r}{V_{\infty}} \right) - \ln \left(1 - \frac{V_{th}}{V_{\infty}} \right) \right) \sim \tau_m \left(- \frac{V_r}{V_{\infty}} + \frac{V_{th}}{V_{\infty}} \right) = \tau_m \frac{V_{th} - V_r}{V_{\infty}}$$

Therefore, the firing rate is asymptotically linear in I_{app} : $f \sim \frac{1}{\tau_m} \frac{V_\infty}{V_{th} - V_r}$.

• Slope at the threshold current :

By the chain rule for derivatives : $\frac{\mathrm{d}f}{\mathrm{d}I_{app}} = \frac{\mathrm{d}f}{\mathrm{d}T_{ISI}} \frac{\mathrm{d}T_{ISI}}{\mathrm{d}Q} \frac{\mathrm{d}V_{\infty}}{\mathrm{d}I_{app}}$, with $Q = \frac{V_{\infty} - V_r}{V_{\infty} - V_{th}}$ the quotient.

$$\begin{split} \bullet & \frac{\mathrm{d}f}{\mathrm{d}T_{ISI}} = -\frac{1}{T_{ISI}^2} = -\frac{1}{\left[\tau_m \ln\left(\frac{V_\infty - V_r}{V_\infty - V_{th}}\right)\right]^2} \\ \bullet & \frac{\mathrm{d}T_{ISI}}{\mathrm{d}Q} = \tau_m \frac{1}{Q} = \frac{V_\infty - V_{th}}{V_\infty - V_r} \\ \bullet & \frac{\mathrm{d}V_\infty}{\mathrm{d}I_{app}} = \frac{1 \times (V_\infty - V_{th}) - 1 \times (V_\infty - V_r)}{(V_\infty - V_{th})^2} = \frac{V_r - V_{th}}{(V_\infty - V_{th})^2} \\ \bullet & \frac{\mathrm{d}Q}{\mathrm{d}V_\infty} = \frac{1}{g_l} \\ \mathrm{Altogether} : & \frac{\mathrm{d}f}{\mathrm{d}I_{app}} = -\frac{1}{\tau_m^2 g_l} \frac{1}{\left[\ln\left(\frac{V_\infty - V_r}{V_\infty - V_{th}}\right)\right]^2} \frac{V_\infty - V_{th}}{V_\infty - V_r} \frac{V_r - V_{th}}{(V_\infty - V_{th})^2} \\ = & -\frac{1}{\tau_m^2 g_l} \frac{1}{\left[\ln\left(\frac{V_\infty - V_r}{V_\infty - V_{th}}\right)(V_\infty - V_{th})\right]^2} \frac{(V_\infty - V_{th})(V_r - V_{th})}{V_\infty - V_r} \end{split}$$
 Finding the limit when $I_{app} \to I_{th}$ is equivalent to find the limit when V_r

Finding the limit when $I_{app} \to I_{th}$ is equivalent to find the limit when $V_{\infty} \to V_{th}$.

Finding the limit when
$$I_{app} \rightarrow I_{th}$$
 is equivalent to find the limit when $V_{\infty} \rightarrow V_{th}$. Introducing $(V_{\infty} - V_r)^2$ at numerator and denominator :
$$= -\frac{1}{\tau_m^2 g_l} \frac{1}{\left[\ln\left(\frac{V_{\infty} - V_r}{V_{\infty} - V_{th}}\right) (V_{\infty} - V_{th})\right]^2} \frac{(V_{\infty} - V_{th})(V_r - V_{th})}{V_{\infty} - V_r} \times \frac{(V_{\infty} - V_r)^2}{(V_{\infty} - V_r)^2}$$

$$= -\frac{1}{\tau_m^2 g_l} \left[\frac{\frac{V_{\infty} - V_r}{V_{\infty} - V_{th}}}{\ln\left(\frac{V_{\infty} - V_r}{V_{\infty} - V_{th}}\right)}\right]^2 \frac{V_r - V_{th}}{V_{\infty} - V_r} \times \frac{V_{\infty} - V_{th}}{(V_{\infty} - V_r)^2}$$

- The squared term contains a limit of the form $\frac{z}{\ln(z)}\xrightarrow[z\to+\infty]{}0$ with $z=\frac{V_\infty-V_r}{V_\infty-V_{th}}\xrightarrow[v_\infty\to V_{th}]{}+\infty.$
- The middle term tends to a constant when $V_\infty \to V_{th}$.
 The last term rewrites : $\frac{V_\infty V_{th}}{(V_\infty V_r)^2} = \frac{1}{V_\infty} \frac{1 \frac{V_{th}}{V_\infty}}{\left(1 \frac{V_r}{V_\infty}\right)^2} \xrightarrow{V_\infty \to V_{th}} +\infty$.

Conclusion: The slope of the f-I curve is vertical when the current tends to its threshold value.

(17) f-I curve

According to this model, the firing rate is not bounded when the input current increases ($\lim_{t\to\infty} f = +\infty$), which is not biologically plausible. In real neurons, spikes are not points in time but last for a few milliseconds, and they moreover induce a refractory period during which the neuron is prevented to spike immediately afterwards.

Response to an oscillating input current

(18) Oscillatory functions

Interpretation of the parameters:

- $2I_0$ and 2A: amplitudes of the oscillations.
- ϕ : phase shift (or time delay) of the response of V_m to the input I_{app} .

• ω : frequency of the oscillations.

(19) Expressions with complex numbers

The cosinus can be expressed of two manners : $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2} = \Re(e^{i\theta})$. With this formalism:

$$I(t) = I_0(e^{i\omega t} + e^{-i\omega t})$$

$$V_m(t) = E_l + A(e^{i(\omega t + \phi)} + e^{-i(\omega t + \phi)}).$$

20 The expressions found in question (19) can be plugged into the differential equation:

$$C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} = -g_l(V_m(t) - E_l) + I_{app}(t)$$

$$C_m \frac{\mathrm{d}V_m}{\mathrm{d}t} = -g_l(V_m(t) - E_l) + I_{app}(t)$$

$$C_m A \left(i\omega e^{i(\omega t + \phi)} - i\omega e^{-i(\omega t + \phi)}\right) = -g_l(\left[\mathcal{E}_l + A(e^{i(\omega t + \phi)} + e^{-i(\omega t + \phi)})\right] - \mathcal{E}_l) + I_0(e^{i\omega t} + e^{-i\omega t})$$

Factorizing by the independent functions $t\mapsto e^{i\omega t}$ and $t\mapsto e^{-i\omega t}$:

$$(C_m A i \omega e^{i\phi} + g_l A e^{i\phi} - I_0)e^{i\omega t} + (-C_m A i \omega e^{-i\phi} + g_l A e^{i\phi} - I_0)e^{-i\omega t} = 0$$

$$(Ae^{i\phi}(C_m i\omega + g_l) - I_0)e^{i\omega t} + (Ae^{-i\phi}(-C_m i\omega + g_l) - I_0)e^{-i\omega t} = 0$$
 Multiplying by $e^{-i\omega t}$:

$$(Ae^{i\phi}(C_m i\omega + g_l) - I_0) \times 1 + (Ae^{-i\phi}(-C_m i\omega + g_l) - I_0)e^{-2i\omega t} = 0$$

For this equation to hold for all times t, both terms should cancel. For instance $t = \frac{\pi}{4\omega} \implies e^{-2i\omega t} = e^{-i\frac{\pi}{2}} = -i$, which imposes in particular for the first term : $Ae^{i\phi}(C_m i\omega + g_l) - I_0 = 0$. Simplifying leads to:

$$A\exp(i\phi) = \frac{I_0}{g_l + iC_m\omega}$$

Note: Using the real part expression of the cosinus, the same reasoning could have been carried out by taking a complex oscillating current $I_{app}(t)=I_0\cdot e^{i\omega t}$ (which has no physical meaning) and then focusing on the real part of the equations.

(21) Amplitude and Phase of the response

Any complex number z can be written either in a Cartesian representation z = x + iy or polar representation z = x + iy $|z|e^{i\phi_z}$. From Cartesian to polar coordinates, its module and phase are given by :

$$|z| = \sqrt{x^2 + y^2} \qquad \quad \phi_z = \arctan(y/x) + \mathbf{1}_{\{x < 0\}} \cdot \operatorname{sgn}(y) \cdot \pi$$

Applied to the complex number $A \exp(i\phi)$, A corresponds to the amplitude and ϕ to the phase. On the other hand, the expression found above can be rewritten so that imaginary parts appear only at the numerator:

$$\frac{I_0}{g_l + iC_m\omega} \times \frac{g_l - iC_m\omega}{g_l - iC_m\omega} = \frac{I_0}{g_l^2 + C_m^2\omega^2} \cdot (g_l - i\,C_m\omega)$$

By identification:

$$A = \frac{I_0}{g_l^2 + C_m^2 \omega^2} \times \sqrt{g_l^2 + (C_m \omega)^2} = \frac{I_0}{g_l \sqrt{1 + \left(\frac{C_m}{g_l}\right)^2 \omega^2}} \qquad \phi = \arctan\left(-\frac{C_m \omega}{g_l}\right) = -\arctan\left(\frac{C_m \omega}{g_l}\right)$$

Introducing the characteristic time constant $\tau_m = \frac{C_m}{q_I}$:

$$A = \frac{I_0/g_l}{\sqrt{1 + \tau_m^2 \omega^2}} \qquad \phi = -\arctan(\tau_m \omega)$$

(22) Behaviors at high and low frequencies

• At low frequency ($\omega \ll 1/\tau_m$), the membrane response can perfectly follow the sinusoidal input since the phase tends to 0, and in this case the amplitude tends to its maximum $A = I_0/g_l$.

For small oscillation frequencies ω , the phase can be approximated $\arctan{(\tau_m\omega)} \approx \tau_m\omega$ such that :

$$V_m(t) \approx E_l + 2I_0/g_l \cos(\omega(t - \tau_m))$$

Thus, the difference in phase just corresponds to the time for the membrane to relax (with the characteristic time scale τ_m).

• At high frequency ($\omega \gg 1/\tau_m$), the input current oscillates too quickly for the membrane to have the time to integrate the signal (which requires an time scale of order τ_m). In that case, the amplitude cannot develop and remains close to 0, while the phase to $-\pi/2$.

For small oscillation frequencies ω , the amplitude becomes equivalent to $A \sim \frac{I_0/g_l}{\sqrt{\tau_m^2 \omega^2}} = \frac{I_0/g_l}{\tau_m \omega} = \frac{I_0}{C_m \omega}$, such that :

$$V_m(t) \approx E_l + 2 \frac{I_0}{C_m \omega} \cos(\omega t - \pi/2)$$

• Conclusion: The membrane acts as such as a first-order low-pass filter. No resonance phenonmenon is observed (as there is no peak in the frequency) as can be seen with higher order integrators.