Lecture notes FY8305

August 13, 2019

Digitalisert fra FAG 74986 Funksjonal-integral metoder HØST 1996. Brukes per 2019 som forelesningsnotater til selvstudium for faget FY8305 -Funksjonalintegral metoder i kondenserte fasers fysikk

Contents

1	Kort rekapitulering av 2. kvantisering for fermioner og bosoner	2	
	1.1 Mangepartikkelbasis	2	
	1.2 Fra klassisk til 2.kvantisering av én-partikkel operatorer	3	
2	Koherente tilstander for bosoner	4	
3	Grassman variable	5	
4	Koherente tilstander for fermioner	6	

1 Kort rekapitulering av 2. kvantisering for fermioner og bosoner

Notasjon: $\lambda = \text{sett}$ av kvantetall som bestemmer en én-partikkel tilstand.

1.1 Mangepartikkelbasis

Eks 1.

 $\lambda = (\vec{k}, \sigma)$: Bølgetall, spinn $\lambda = (i, \sigma)$: Gitterpunkt, spinn $\lambda = (n, i)$: Orbital, gitterpunkt

En mange-partikkel basis kan skrives $|\phi\rangle = |n_{\lambda_1}, n_{\lambda_2}, \dots, n_{\lambda_N}\rangle$. Mangepartikkeltilstander er bygget opp av én-partikkel tilstander, men hvor én-partikkeltilstandene ikke nødvendighvis er uavhengige. Dersom <u>ett</u> av kvantetall-settene, λ_i , endres, får denne <u>spredningen</u> generelt konsekvenser for fordelingen av kvantetall i de øvrige <u>kvantetallene</u> $\{\lambda_j\}_{j\neq i}$. Vi tenker oss at en generell mangepartikkeltilstand kan bygges opp som en lineærkombinasjon av $|\phi\rangle$ -er;

$$|\Psi\rangle = \sum_{n_{\lambda_1},\dots,n_{\lambda_N}} \phi_{\lambda_1,\dots,n_{\lambda_N}} |\lambda_1,\dots,n_{\lambda_N}\rangle.$$
 (1)

Én-bestemt tilstandsvektor $|n_{\lambda_1},\dots,n_{\lambda_N}\rangle$ kan kreves fra en <u>vakuum</u>-tilstand $|0\rangle$ (ingen kvant i noen av de mulige én-partikkeltilstandene) via kreasjons-operatorer.

bosoner : $a^{\dagger}\lambda$ fermioner : $c^{\dagger}\lambda$

Et kvant i en én-partikkeltilstand kan destrueres v.h.a annihilasjonsoperatorene

bosoner : $a\lambda$ fermioner : $c\lambda$

Disse operatorene oppfyller diverse kommutasjonsrelasjoner

$$[a\lambda, a\lambda'] = [a^{\dagger}\lambda, a^{\dagger}\lambda'] = 0 \tag{2}$$

$$[a\lambda, a^{\dagger}\lambda'] = \delta_{\lambda\lambda'} \tag{3}$$

$$[A, B] = AB - BA \tag{4}$$

$$\{c^{\dagger}\lambda, c^{\dagger}\lambda'\} = \{c\lambda, c\lambda'\} = 0 \tag{5}$$

$$\{c\lambda, c^{\dagger}\lambda'\} = \delta_{\lambda\lambda'} \tag{6}$$

I tillegg kommer Pauli-prinsippet, som gir symmetriske/antisymmetriske kommutatorer ved ombytte, avhengig om det er fermion eller boson.

1.2 Fra klassisk til 2.kvantisering av én-partikkel operatorer

For én-partikkel operatorer har vi som regel for den kinetiske energien

$$T = \sum_{i} T(\vec{r_i}, \vec{p_i}) = \sum_{i} T\left(\vec{r_i}, \frac{\partial}{\partial r}\right)$$
 (7)

Eks 2. Eksternt elektrostatisk potensial:

$$T = \sum_{i} V_{\text{ext}} \left(\vec{r_i} \right) \tag{8}$$

Eks 3. Kinetisk energi:

$$T = \sum_{i} \frac{p^2}{2m} = -\sum_{i} \frac{\hbar^2}{2m} \nabla_i^2 \tag{9}$$

Eks 4. Krystall-potensial:

$$T = \sum_{i} \sum_{j} v_{\text{cryst}} \left(\vec{r_i}, \vec{R}_j \right) \tag{10}$$

2 Koherente tilstander for bosoner

3 Grassman variable

4 Koherente tilstander for fermioner