S1.N	Jo: Title	Page No.
	Abstract	(i)
	List of Figures	(v)
	List of Tables	(vii)
	List of symbols and acronyms	(viii)
	CHAPTER 1	
	INTRODUCTION	
1.1	LOAD FREQUENCY CONTROL IN A SINGLE AREA POWER SYSTEM 1.1.1 REASONS FOR THE NEED OF MAINTAINING CONSTANT FREQUENCY 1.1.2 LOAD FREQUENCY CONTROL	
1.2	MATHEMATICAL MODELLING OF A LFC SYSTEM 1.2.1 MATHEMATICAL MODELLING OF AGENERATOR 1.2.2 MATHEMATICAL MODELLING OFLOAD 1.2.3 MATHEMATICAL MODELLING FOR PRIMEMOVER 1.2.4 MATHEMATICAL MODELLING FOR GOVERNOR	
1.3	AUTOMATIC GENERATION CONTROL 1.3.1 AGC IN A SINGLEAREA	
1.4	FREQUENCY RESPONSES OF LFC SYSTEM 1.4.1 FREQUENCY RESPONSE WITHOUT THE PI CONTROLLER 1.4.2 FREQUENCY RESPONSE WITH THE PI CONTROLLER	
1.5	CONCLUSION.	
	CHAPTER 2 ELECTRIC VEHICLE TO GRID TECHNO	LOGY
2.1	INTRODUCTION:	

2.2 CONCEPT OF ELECTRIC VEHICLE TO GRID TECHNOLOGY

- 2.3 ELECTRIC VEHICLE
- 2.4 WHY DO WE USE PLUG IN EV FOR V2G TECHNOLOGY?
- 2.5 WHAT IS V2G CHARGING OR EV SMART CHARGING?
- 2.6 ELECTRIC VEHICLE AGGREGATOR
 2.6.1 AN EV AGGREGATOR MODEL
 2.6.2 LFC MODELINCLUDING EV AGGREGATORS WITH DELAYS

CHAPTER 3 MATHEMATICAL MODELLING OF LOAD FREQUENCY CONTROL SYSTEMS INTEGRATED WITH EV AGGREGATOR

3.1 INTRODUCTION

- 3.1.1 MATHEMATICAL MODELLING OF LFC SYSTEM WITH EV AGGREGATOR:
- 3.1.2 VARIABLE DESCRIPTION
- 3.1.3 PARAMETER DESCRIPTION:
- 3.1.4 CONTROLLER PARAMETERS AND PARTICIPATION FACTORS:
- 3.1.5 EV AGGREGATOR PARAMETERS:

CHAPTER 4

SIMULATIONS AND RESULTS

- 4.1 DELAY DEPENDENT STABILITY
 - 4.1.1 BENCHMARK SYSTEM PARAMETERS
 - 4.1.2 MATLAB CODE FOR COMPUTATION OF STABILITY DELAY MARGIN
 - 4.1.3 MATLAB OUTPUT FOR DIFFERENT K_P AND K_I VALUES
 - 4.1.4 SIMULATION RESULTS
- 4.2 COMPUTATION OF STABILITY DELAY MARGINS
 - 4.2.1 MATLAB CODE FOR COMPUTATION OF STABILITY REGIONS

4.2.2 STABILITY REGION CURVE FOR TIME DELAY FOR VARIOUS PARTICIPATION FACTORS.

4.3 CONCLUSION

CHAPTER 5

5.0 CONCLUSION.

CHAPTER 6

6.0 REFERENCE PAPERS AND BASE PAPERS

<u>CONTENT</u> iv