

Introduction to EconML

Automated Learning and Intelligence for Causation and Economics (ALICE)

Vasilis Syrgkanis

The MSR ALICE Project

Automated Learning and Intelligence for Causation and Economics

- Research. Advance methodological research in econometrics and ML
- Impact. Apply Econ + ML methods to industry and societal problems
- **Software.** Develop software tools that reduce barriers to entry

Greg Lewis

Keith Battocchi

Maggie Hei

Miruna Oprescu

Paul Oka

Eleanor Dillon

EconML is a Python package that applies the power of machine learning techniques to estimate individualized causal responses from observational or experimental data.

Flexible model forms avoid strong assumptions and can estimate personalized responses to treatment

Unified API brings together all the latest advances in causal machine learning and econometrics Familiar Interface built on standard

Python packages make causal analysis quicker and easier for a broad set of users

Quantity of Interest

Conditional Average Treatment Effect (CATE). What is the causal effect on an outcome of interest Y, of switching from a treatment value T0 to treatment value T1 for a sample with features X?

EconML Flow

Unified API

Every CATE estimator has a `fit` and `effect` API

```
from econml.dml import DML

est = DML() # instantiate CATE estimator
est.fit(y, T, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```

High-Level Capabilities

- Many ML-based methods: either under conditional exogeneity or with access to instruments
 - DoubleML, Causal Forests, Rlearner, Meta-Learners, DynamicDML, DRLearner, OrtholV, DRIV, DeeplV,
 OrthoForests

• Confidence Intervals: cutting-edge methods for confidence intervals even when ML is used

Causal Scoring and Causal Cross-Validation: scoring approaches that target the CATE model

Causal Interpretability: interpreting the CATE with trees and shap values

Causal Validation: integration with DoWhy library for sensitivity analysis

Policy Recommendations: recommend interpretable personalized treatment policies

Estimation

Conditional Exogeneity

Confounder: any variable that simultaneously has a direct effect on the treatment and on the outcome

Unconfoundedness: we observe all such confounders

Example Estimator:

Double Machine Learning (Rlearner)

[Nie-Wager17] [Chernozhukov et al.17] [Chernozhukov et al.18] [Foster-Syrgkanis19]

- Cross-fitting: Split your data in two halves
 - \Leftrightarrow Train ML model \hat{q} for $q_0(X,W) \triangleq E[Y|X,W]$ on first, predict on second and calculate residual outcome

$$\tilde{Y}_i = Y_i - \hat{q}(X_i, W_i)$$

and vice versa

 \Leftrightarrow Train ML model \hat{p} for $p_0(X,W) \triangleq E[T|X,W]$ on first, predict on second and calculate residual treatment

$$\tilde{T}_i = T_i - \hat{p}(X_i, W_i)$$

and vice versa

 \diamond Minimize square loss, over CATE model space Θ :

$$\widehat{\theta} = \operatorname*{argmin}_{\theta(\cdot) \in \Theta} E_n \left[\left(\widetilde{\mathbf{Y}} - \theta(\mathbf{X}) \cdot \widetilde{\mathbf{T}} \right)^2 \right]$$

EconML: Estimation under Exogen


```
from econml.dml import NonParamDML
est = NonParamDML(model y=RandomForestRegressor(), # Any ML model for E[Y|X,W]
                 model t=RandomForestRegressor(), # Any ML model for E[T|X,W]
                 model final=RandomForestRegressor(), # Any ML model for CATE
                 discrete treatment=False, # categorical or continuous treatment
                 cv=2, # number of cross-fit folds
                 mc iters=1) # repetitions of cross-fitting for stability
est.fit(y, T, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```


Personalized effect estimates on test samples

nn	in	+	es	4i	m	2	+ c
μu	111	L_	CS	ч		а	rc

X	
0	1.806
1	1.786
2	1.768
3	1.751
4	1.735

Diagnostics on ML models

est.models y # fitted model y on each fold

[[RandomForestRegressor(), RandomForestRegressor()]]

est.nuisance scores y # out-of-sample scores for model y

[[0.6994953731317803, 0.6764212717126863]]

Diagnostics on CATE model

est.score # in sample goodness-of-fit

3.538796087098728

Diagnostics on nuisance quantities

est.residuals # calculated residuals (yres, Tres, X, W)

EconML: Estimation under Exogene


```
from econml.dml import NonParamDML
est = NonParamDML(model y=RandomForestRegressor(), # Any ML model for E[Y|X,W]
                 model t=RandomForestRegressor(), # Any ML model for E[T|X,W]
                 model final=RandomForestRegressor(), # Any ML model for CATE
                 discrete treatment=False, # categorical or continuous treatment
                 cv=2. # number of cross-fit folds
                 mc iters=1) # repetitions of cross-fitting for stability
est.fit(y, T, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```

```
from econml.automl import addAutomatedML
AutomatedDML = addAutomatedML(NonParamDML)
est = AutomatedDML(model y=automl config reg, # Azure AutoML for E[Y|X,W]
                   model t=automl config reg, # Azure AutoML for E[Y|X,W]
                   model_final=automl_config_final, # Azure AutoML for CATE
                   cv=2) # number of crossfit folds
est.fit(y, T, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```


Personalized effect estimates on test samples

point estimate

X	
0	1.806
1	1.786
2	1.768
3	1.751
4	1.735

Diagnostics on ML models

est.models y # fitted model y on each fold

[[RandomForestRegressor(), RandomForestRegressor()]]

est.nuisance scores y # out-of-sample scores for model y

[[0.6994953731317803, 0.6764212717126863]]

Diagnostics on CATE model

est.score # in sample goodness-of-fit

3.538796087098728

Diagnostics on nuisance quantities

est.residuals # calculated residuals (yres, Tres, X, W)

EconML: Estimation under Exogen


```
from econml.dml import NonParamDML
est = NonParamDML(model y=RandomForestRegressor(), # Any ML model for E[Y|X,W]
                 model t=RandomForestRegressor(), # Any ML model for E[T|X,W]
                 model final=RandomForestRegressor(), # Any ML model for CATE
                 discrete treatment=False, # categorical or continuous treatment
                 cv=2, # number of cross-fit folds
                 mc iters=1) # repetitions of cross-fitting for stability
est.fit(y, T, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```


Personalized effect estimates on test samples

nn	in	+	es	4i	m	2	+ c
μu	111	L_	CS	ч		а	rc

X	
0	1.806
1	1.786
2	1.768
3	1.751
4	1.735

Diagnostics on ML models

est.models y # fitted model y on each fold

[[RandomForestRegressor(), RandomForestRegressor()]]

est.nuisance scores y # out-of-sample scores for model y

[[0.6994953731317803, 0.6764212717126863]]

Diagnostics on CATE model

est.score # in sample goodness-of-fit

3.538796087098728

Diagnostics on nuisance quantities

est.residuals # calculated residuals (yres, Tres, X, W)

EconML: Estimation with Instruments

```
from econml.iv.dml import OrthoIV
est = OrthoIV(model y xw=RandomForestRegressor(), # ML model for E[Y|X,W]
              model t xw=RandomForestRegressor(), # ML model for E[T|X,W]
              model z xw=RandomForestRegressor(), # ML model for E[Z|X,W]
              discrete treatment=False, # categorical/continuous treatment
              discrete_instrument=False, # categorical/continuous instrument
              cv=2, # number of cross-fit folds
              mc iters=1) # repetitions of cross-fitting for stability
est.fit(y, T, Z=Z, X=X, W=W) # fit the CATE model
est.effect(X, T0=t0, T1=t1) # predict effect for each sample X
```


Personalized effect estimates on test samples

	point_commute
X	
0	1.806
1	1.786
2	1.768
3	1.751
4	1.735

point estimate

Diagnostics on ML models

est.models_y_xw # fitted model_y_xw on each fold

[[RandomForestRegressor(), RandomForestRegressor()]]

est.nuisance scores y xw # out-of-sample scores for model y xw

[[0.6994953731317803, 0.6764212717126863]]

Diagnostics on CATE model

est.score # in sample goodness-of-fit

3.538796087098728

Diagnostics on nuisance quantities

est.residuals # calculated residuals (yres, Tres, Zres, X, W, Z)

Inference

EconML: Estimation under Exogen

Personalized effect estimates on test samples

Х	
0	1.806
1	1.786
2	1.768
3	1.751
4	1.735

point estimate

EconML: Generic Bootstrap Inference

Personalized effect estimates on test samples						
	point_estimate	stderr	zstat	pvalue	ci_lower	ci_upper
Х						

x						
0	1.806	0.127	14.275	0.0	1.598	2.015
1	1.786	0.120	14.934	0.0	1.589	1.983
2	1.768	0.113	15.653	0.0	1.582	1.953
3	1.751	0.106	16.439	0.0	1.575	1.926
4	1.735	0.100	17.295	0.0	1.570	1.900

EconML: Generic Bootstrap Inference

est.ate inference(X test) # inference on average effect of test population

Personalized effect estimates on test samples

soint estimate stderr. Tetat pyalue si lower si upper

	point_estimate	Stuerr	ZStat	pvalue	CI_IOWEI	ci_uppei
X						
0	1.806	0.127	14.275	0.0	1.598	2.015
1	1.786	0.120	14.934	0.0	1.589	1.983
2	1.768	0.113	15.653	0.0	1.582	1.953
3	1.751	0.106	16.439	0.0	1.575	1.926
4	1.735	0.100	17.295	0.0	1.570	1.900

Inference on average effects over test samples

Uncertainty of Mean Point Estimate

mean_point	stderr_mean	zstat	pvalue	ci_mean_lower	ci_mean_upper
1.378	0.26	5.303	0.0	0.95	1.805

Distribution of Point Estimate

std_point	pct_point_lower	pct_point_upper
0.607	0.437	2.331

Total Variance of Point Estimate

stderr_point	ci_point_lower	ci_point_upper
0.661	0.386	2.511

EconML: Generic Bootstrap Inference

Personalized effect estimates on test samples

X						
0	1.806	0.127	14.275	0.0	1.598	2.015
1	1.786	0.120	14.934	0.0	1.589	1.983
2	1.768	0.113	15.653	0.0	1.582	1.953
3	1.751	0.106	16.439	0.0	1.575	1.926
4	1.735	0.100	17.295	0.0	1.570	1.900

Uncertainty of Mean Point Estimate

mean_point	stderr_mean	zstat	pvalue	ci_mean_lower	ci_mean_upper
1.378	0.26	5.303	0.0	0.95	1.805

Distribution of Point Estimate

std_point	pct_point_lower	pct_point_upper
0.607	0.437	2 331

Total Variance of Point Estimate

stderr_point	ci_point_lower	ci_point_upper
0.661	0.386	2.511

EconML: Tailored Valid Inference

Inference on parameters of CATE model

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_upper
X0	-1.46	0.674	-2.165	0.03	-2.57	-0.351
X0^2	7.341	0.761	9.648	0.0	6.089	8.592

CATE Intercept Results

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_uppe
cate intercent	1 809	0 119	15 243	0.0	1 614	2 004

Inference on personalized effects on test samples

	point_estimate	Stuerr	ZStat	pvalue	ci_lower	ci_upper
X						
0	1.806	0.127	14.275	0.0	1.598	2.015
1	1.786	0.120	14.934	0.0	1.589	1.983
2	1.768	0.113	15.653	0.0	1.582	1.953
3	1.751	0.106	16.439	0.0	1.575	1.926
4	1.735	0.100	17.295	0.0	1.570	1.900

Inference on average effects on training samples

Doubly Robust ATE on Training Data Results

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_upper				
ATE	3.158	0.082	38.551	0.0	3.023	3.292				
Doubly Robust ATT(T=0) on Training Data Results										

	point_estimate	stderr	zstat	pvalue	ci_lower	ci_uppe
ATT	3.1	0.096	32.322	0.0	2.942	3.25

Scoring

EconML: Scoring

Multitude of approaches for CATE estimation to select from

```
# A multitude of possible approaches for CATE estimation under conditional exogeneity
models = [('ldml', LinearDML(model y=reg(), model t=clf(), discrete treatment=True)),
          ('sldml', SparseLinearDML(model y=reg(), model t=clf(), discrete treatment=True,
                                    featurizer=PolynomialFeatures(degree=2, include bias=False))),
          ('xlearner', XLearner(models=reg(), cate_models=reg(), propensity_model=clf())),
          ('dalearner', DomainAdaptationLearner(models=reg(), final models=reg(), propensity model=clf())),
          ('slearner', SLearner(overall_model=reg())),
          ('tlearner', TLearner(models=reg())),
          ('drlearner', DRLearner(model propensity=clf(), model regression=reg(), model final=reg())),
          ('rlearner', NonParamDML(model y=reg(), model t=clf(), model final=reg(), discrete treatment=True)),
          ('dml3dlasso', DML(model y=reg(), model t=clf(), model final=LassoCV(), discrete treatment=True,
                             featurizer=PolynomialFeatures(degree=3)))]
```


A universal causal scorer: RScorer

0.25

0.30

Interpretation

EconML: Interpretability with Trees

Average policy gains over no treatment: 0.225 Average policy gains over constant treatment policies for each treatment: [0.779]

```
A \le 0.5
                         samples = 2000
                              CATE
                              -0.555
  samples = 1010
                                                samples = 990
       CATE
                                                     CATE
-1.067 (-1.18, -0.953)
                                              0.999 (0.792, 1.205)
value - cost = [-1.543]
                                             value - cost = [0.454]
  Treatment: T[0]
                                                Treatment: T[1]
```



```
from econml.cate interpreter import SingleTreePolicyInterpreter
# make tree-based policy recommendations from CATE model
intrp = SingleTreePolicyInterpreter(risk level=0.05, max depth=1)
intrp.interpret(est, X, sample treatment costs=0.2)
intrp.export_graphviz(out_file='policy_tree.dot') # export to a dot file
intrp.plot() # plot with matplotlib
```


EconML: Interpretability with SH

```
import shap

# shap values for CATE predictions of any CATE estimator
shap_values = est.shap_values(X)

# effect heterogeneity feature importances with summary plot
shap.summary_plot(shap_values['Y0']['T0'])

# explain the heterogeneity of effect of any single sample
shap.force_plot(shap_values['Y0']['T0'][sample_id])
```


Validation and Sensitivity

EconML: Validation with DoWhy

Sensitivity analysis with DoWhy: sensitivity to causal assumptions

```
import dowhy
# enabled dowhy capabilities by using the dowhy wrapper
est = est.dowhy
est.fit(y, T, Z=Z, X=X, W=W)
# econml API is preserved
est.summary()
est.effect(X)
# dowhy capabilities are now also available: sensitivity analysis
est.refute_estimate(method_name="add_unobserved_common_cause",
                    effect strength on treatment=0.05, effect strength on outcome=0.5)
```

Refute: Add an Unobserved Common Cause Estimated effect: 2.484810103996173 New effect: 2.7511514869150684

Policy Learning

EconML: Policy Learning

```
from econml.policy import DRPolicyTree, DRPolicyForest

est = DRPolicyTree(max_depth=2, min_impurity_decrease=0.01, honest=True, ...)
est.fit(y, T, X=X, W=W)
est.plot() # plot tree with matplotlib
est.feature_importances_ # feature importances
est.predict(X) # produce recommended treatment for each sample

est = DRPolicyForest(n_estimators=100, ...)
est.fit(y, T, X=X, W=W)
est.predict(X) # produce recommended treatment for each sample
```


Average policy gains over no treatment: 0.906
Average policy gains over constant treatment policies for each treatment: [0.906 0.806 0.795]

- <u>econml.policy.DRPolicyForest</u> <u>econml documentation</u>
- i <u>econml.policy.DRPolicyTree</u> <u>econml documentation</u>

Overview

Estimator	Treatment Type	Requires Instrument	Delivers Conf. Intervals	Linear Treatment	Linear Heterogeneity	Mulitple Outcomes	Multiple Treatments	High- Dimensional Features
NonparametricTwoStageLeastSquares	Any	Yes		Yes	Assumed	Yes	Yes	
<u>DeepIV</u>	Any	Yes				Yes	Yes	
<u>SparseLinearDML</u>	Any		Yes	Yes	Assumed	Yes	Yes	Yes
<u>SparseLinearDRLearner</u>	Categorical		Yes		Projected		Yes	Yes
<u>LinearDML</u>	Any		Yes	Yes	Assumed	Yes	Yes	
<u>LinearDRLearner</u>	Categorical		Yes		Projected		Yes	
CausalForestDML	Any		Yes	Yes		Yes	Yes	Yes
<u>ForestDRLearner</u>	Categorical		Yes				Yes	Yes
<u>DMLOrthoForest</u>	Any		Yes	Yes			Yes	Yes
<u>DROrthoForest</u>	Categorical		Yes				Yes	Yes
metalearners	Categorical					Yes	Yes	Yes
<u>DRLearner</u>	Categorical						Yes	Yes
<u>DML</u>	Any			Yes	Assumed	Yes	Yes	Yes
<u>NonParamDML</u>	1-d/Binary			Yes		Yes		Yes
OrtholV	Any	Yes	Yes	Yes	Assumed	Yes	Yes	
DRIV	1-d/Binary	Yes	Yes	Yes				Yes

User Guide

EconML python library for ML Estimation of Heterogeneous Treatment Effects

https://github.com/microsoft/EconML

`pip install econml`

ALICE (Automated Learning and Intelligence for Causation and Economics) project:

https://www.microsoft.com/en-us/research/project/alice/

Academic References

- 1. G Lewis, V Syrgkanis. Double/Debiased Machine Learning for Dynamic Treatment Effects via g-Estimation. Arxiv (2021).
- 2. Athey, Susan, and Stefan Wager. Policy learning with observational data. Econometrica 89.1 (2021): 133-161.
- 3. X Nie, S Wager. Quasi-Oracle Estimation of Heterogeneous Treatment Effects. <u>Biometrika</u>, 2020
- 4. V. Syrgkanis, V. Lei, M. Oprescu, M. Hei, K. Battocchi, G. Lewis. Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments. <u>Proceedings of the 33rd Conference on Neural Information Processing Systems (NeurIPS)</u>, 2019 (Spotlight Presentation)
- 5. D. Foster, V. Syrgkanis, Orthogonal Statistical Learning. Proceedings of the 32nd Annual Conference on Learning Theory (COLT), 2019 (Best Paper Award)
- 6. M. Oprescu, V. Syrgkanis and Z. S. Wu. Orthogonal Random Forest for Causal Inference. Proceedings of the 36th International Conference on Machine Learning (ICML), 2019.
- 7. S. Künzel, J. Sekhon, J. Bickel and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. Proceedings of the national academy of sciences, 116(10), 4156-4165, 2019.
- 8. S. Athey, J. Tibshirani, S. Wager. **Generalized random forests.** Annals of Statistics, 47, no. 2, 1148--1178, 2019.
- 9. V Semenova, V Chernozhukov. Debiased machine learning of conditional average treatment effects and other causal functions. The Econometrics Journal, 2021
- 10. V. Chernozhukov, D. Nekipelov, V. Semenova, V. Syrgkanis. Plug-in Regularized Estimation of High-Dimensional Parameters in Nonlinear Semiparametric Models. Arxiv preprint arxiv:1806.04823, 2018.
- 11. S. Wager, S. Athey. Estimation and Inference of Heterogeneous Treatment Effects using Random Forests. Journal of the American Statistical Association, 113:523, 1228-1242, 2018.
- 12. Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep IV: A flexible approach for counterfactual prediction. Proceedings of the 34th International Conference on Machine Learning, ICML'17, 2017.
- 13. V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, and a. W. Newey. **Double Machine Learning for Treatment and Causal Parameters**. ArXiv preprint arXiv:1608.00060, 2016.
- 14. Dudik, M., Erhan, D., Langford, J., & Li, L. **Doubly robust policy evaluation and optimization.** Statistical Science, 29(4), 485-511, 2014.

Case Studies

- 1. Customer Segmentation at TripAdvisor with Recommendation A/B Tests
- 2. Long-Term Return-on-Investment at Microsoft via Short-Term Proxies