TALLER #5

Carlos Gustavo Vélez Manco y John Esteban Castro Ramírez

1. Insertion Sort

• Complejidad asintótica para el peor de los casos:

T(n) = C1*n + n*C2 + C3*n(n+1)/2 + C4*n(n+1)/2 + C5*n(n+1)/2 + C6*n(n+1)/2 + C7*n(n+1)/2 + C7*n(n+

T(n)=(n(n+1)/2*)(C3+C4+C5+C6)+C' (Regla de las sumas y producto)

 $T(n)=(n^2+n)^*1/2^*C'$ (Se quita la suma interna)

 $T(n)=n^2+n$ (Se quitan los productos y la suma interna)

 $T(n)=O(n^2)$

• Gráficas:

Figura 1. Gráfica (experimental) del algoritmo 'Insertion Sort' con 20 tamaños de problema diferentes en Python

amano dei	Hellipo de																					
problema(n) [En este	complejidad																					
aso la longitud del	T(n)																					
2000	0.517613173																					
2100	0.49319768																					
2200	0.552578688																					
2300	0.544637442																					
2400	0.609321833																					
2500	0.649451733																					
2600	0.713601351					_																
2700	0.761494875		Tie	emp					ejida										So	rt'		
2800	0.847904444					con	20	tan	naño)S (16	ei b	robi	iem	na d	IITe	en	tes					
2900	0.904559374																					
3000	1.081242561	2 1.8					I	I											Λ			/
3100	1.145543814	complejidad (ms)					+	+	_	+								1		\	/	_
3200	1.380022287	B 1.4					+	+	+	+				$\overline{}$				_				
3300	1.243818283	9 1.2 E 1						_					/									
3400	1.375633955	8.0					+	_	\bot	_	_											
3500	1.46132493	0.6	-		_	_	_	1	+	+												
3600	1.458250523	0.6 0.4 0.2						I	1													
3700	1.895799398	0				_				_			_			_		_				_
3800	1.572344542		2000	2100	2200	2300	2400	2500	2600	2800	2900	3000	3100	3200	3300	3400	3500	3600	3700	3800	3900	4000
3900	1.65513587						Tam	ıaño	del	prob	lema		[Lor	ngitu	ıd d			lo]				
4000	1.871318579														_							

Tiempo de

Tamaño del

Figura 2. Gráfica (experimental) del algoritmo 'Insertion Sort' con sus longitudes (n) y tiempo de complejidad para 20 tamaños del problema diferentes en Excel.

- Análisis: Aunque en la gráfica generada no se ve del todo claro el comportamiento cuadrático O(n^2) esto se debe a que la dimensión del problema, que en este caso es la longitud del arreglo, no representa el peor de los casos; pero podemos ver que, a partir de cierto punto, la gráfica de n^2 está por encima de la graficada. Hay cierta similitud, y se puede ver que a medida que aumenta la dimensión del problema, aumentará el tiempo de complejidad para el algoritmo.
- ¿Este algoritmo es apropiado para ordenar grandes volúmenes de datos?: No, este algoritmo no es apropiado para ordenar grandes volúmenes de datos ya que como crece con una tendencia cuadrática, al aumentar la dimensión del problema este tomará tiempos muy grandes para ejecutarse.

Figura 3. Notación BigO

Podemos ver en la gráfica anterior que $O(n^2)$ se encuentra en el rango de horrible, por lo que no funcionará bien para grandes volúmenes de datos.

2. ArraySum

Figura 4. Gráfica (experimental) del algoritmo 'ArraySum' con 20 tamaños de problema diferentes en Python.

Tamaño del problema (n)	Tiempo de							
[En este caso la longitud	complejidad(T(n)							
del arregio])							
1000000	0.083278418							
1100000	0.110213995							
1200000	0.094318151							
1300000	0.116163015							
1400000	0.111736536							
1500000	0.154599667							
1600000	0.133598089							
1700000	0.148109913							
1800000	0.17852211							
1900000	0.152636528							
2000000	0.201558352							
2100000	0.180508137							
2200000	0.188529491							
2300000	0.206016302							
2400000	0.221915722							
2500000	0.269281149							
2600000	0.231835127							
2700000	0.283311605							
2800000	0.249519348							
2900000	0.281291723							
3000000	0.254285097							

Figura 5. Gráfica (experimental) del algoritmo 'ArraySum' con sus longitudes (n) y tiempo de complejidad para 20 tamaños del problema diferentes en Excel.

- Análisis: Se puede ver que, aunque la gráfica tiene ciertos picos, debido al "ruido", sigue un patrón lineal O(n) que es precisamente lo que nos dio la complejidad teórica; aunque al igual que en el punto anterior no se está tomando el peor de los casos por lo que no se ve del todo claro. Esta complejidad es medianamente buena para todo tipo de datos ya que no toma mucho tiempo de ejecución.
- ¿Existe una diferencia significativa, en el tiempo de ejecución, entre la implementación con recursión y la implementación con ciclos? ¿Por qué? En la carpeta de Github se encuentra este algoritmo con ambas opciones (ciclos y recursión), al realizar el calculo de complejidad con recursión para el peor de los casos da como resultado T(n)=C+T(n-1) que al resolverla en WolframAlpha da como resultado T(n)=Cn+C1 que es lo mismo que O(Cn+C1) y al aplicarle regla de la suma queda O(Cn) y luego con regla del producto queda O(n) donde n es el número de elementos del arreglo. Por lo que no hay una diferencia significativa entre ambas implementaciones.

3. Ejercicio Opcional

• Complejidad asintótica para el peor de los casos.

$$T(n)=C1*n+C2*n^2+C3*n^2+C4*n^2$$

$$T(n)=n^2*(C1+C3+C4)+C'$$
 (Regla de las sumas y producto)

T(n)=n^2*C' (Se quitan los productos y se simplifica la suma)

 $T(n)=O(n^2)$

• Gráfica.

Tiempos de complejidad para el algoritmo tablas de multiplicar con 20 tamaños del problema diferentes

Figura 6. Gráfica (experimental) del algoritmo 'Tablas de multiplicar' con 20 tamaños de problema diferentes en Python.

Tamaño del problema	
(n) [En este caso hasta	
donde va a llegar la	Tiempo de
tabla de multiplicar]	complejidad(T(n))
1000000	1.117292166
1000001	1.133828878
1000002	1.058720589
1000003	0.957368612
1000004	0.949926615
1000005	0.909908056
1000006	0.860890865
1000007	0.886265755
1000008	0.908121824
1000009	0.997231722
1000010	1.348102331
1000011	1.09817481
1000012	1.054695368
1000013	1.040132046
1000014	0.910562277
1000015	0.956426859
1000016	0.882814407
1000017	0.986088037
1000018	1.112864971
1000019	1.735034466

Tiempos de complejidad para el algoritmo 'ArraySum' con 20 tamaños del problema diferentes

Figura 7. Gráfica (experimental) del algoritmo 'Tablas de multiplicar' con sus longitudes (n) y tiempo de complejidad para 20 tamaños del problema diferentes en Excel.

- Análisis: Se puede ver que al igual que en los puntos anteriores, la gráfica se asemeja a la de una función cuadrática pero no es del todo precisa debido a que no se está tomando el peor de los casos; también se puede ver que no funcionará muy bien para grandes dimensiones del problema ya que se tomará mucho tiempo.
- ¿La teoría (notación asintótica) corresponde a lo encontrado de forma experimental al tomar los tiempos de la implementación? Si, corresponde a lo encontrado, pero no de forma exacta, aunque si aproximada; debido a la justificación del punto anterior.