Tutorial 5

February 26, 2015

$$f(n) = \begin{cases} 2 & \text{if } n = 0\\ f(\lfloor \frac{n}{2} \rfloor)^2 + 2f(\lfloor \frac{n}{2} \rfloor) & \text{if } n \ge 1 \end{cases}$$

prove if $m, n \in \mathbb{N}$ with $m \leq n$, then $f(m) \leq f(n)$.

Questions:

1. Complete Induction

2. m = n, m < n

Predicate:

For $n \in \mathbb{N}$, let P(n) be for $m \in \mathbb{N}$ if $m \in \mathbb{N}$ if $m \leqslant n$ then $f(m) \leqslant f(n)$.

Base Case:

n = 0 this forms m = 0f(m) = f(0) = 2 = f(n) \therefore P(0) holds.

Inductive Step:

Let $m \in \mathbb{N}$ where $m \leq n$.

Then assume P(k) holds for all $0 \le k < n$ for $k \in \mathbb{N}$.

Consider if n > 0, then there are 2 cases to consider.

Case 1: m = 0

 $f(m)=f(0)\leqslant f(\left\lfloor\frac{n}{2}\right\rfloor) \text{ by IH } P(\left\lfloor\frac{n}{2}\right\rfloor) \text{ because $\$ \floor\frac{n}{2}\rfloor 0, \floor\frac{n}{2}\$

Case 2:
$$m > 0$$

 $f(m) = f(\lfloor \frac{m}{2} \rfloor)^2 + 2f(\lfloor \frac{m}{2} \rfloor)$
 $\leq f(\lfloor \frac{n}{2} \rfloor) + 2f(\lfloor \frac{n}{2} \rfloor)$
 $= f(n)$
 $\therefore P(n)$ holds.

because $f(\lfloor \frac{m}{2} \rfloor) \leqslant f(\lfloor \frac{n}{2} \rfloor)$ by I.H., $P(\lfloor \frac{n}{2} \rfloor)$ and since $m \leqslant n, \lfloor \frac{m}{2} \rfloor \leqslant \lfloor \frac{n}{2} \rfloor$.