VECTOR ANALYSIS IFS PYQs

2019

1.5d

Let $\bar{r}=\bar{r}(s)$ represent a space curve. Find $\frac{d^3\bar{r}}{ds^3}$ in terms of \bar{T} , \bar{N} and \bar{B} , where \bar{T} , \bar{N} and \bar{B} represent tangent, principal normal and binormal respectively. Compute $\frac{d\bar{r}}{ds} \cdot \left(\frac{d^2\bar{r}}{ds^2} \times \frac{d^3\bar{r}}{ds^3}\right)$ in terms of radius of curvature and the torsion.

2. 5e

8

10

Evaluate
$$\int_{(0, 0)}^{(2, 1)} (10x^4 - 2xy^3) dx - 3x^2y^2 dy$$
 along the path $x^4 - 6xy^3 = 4y^2$.

3, 6c

Verify Stokes' theorem for $\overline{V} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.

4.7c

Derive the Frenet-Serret formulae. Verify the same for the space curve $x = 3\cos t, \ y = 3\sin t, \ z = 4t.$

5.8c

Derive
$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$
 in spherical coordinates and compute
$$\nabla^2 \left(\frac{x}{(x^2 + y^2 + z^2)^{\frac{3}{2}}} \right)$$
 in spherical coordinates.

6. 5e

If $\overrightarrow{r} = x \hat{i} + y \hat{j} + z \hat{k}$ and f(r) is differentiable, show that $div[f(r) \overrightarrow{r}] = rf'(r) + 3f(r)$.

Hence or otherwise show that div $\left(\frac{\overrightarrow{r}}{r^3}\right) = 0$.

8

7.6c

Show that $\overrightarrow{F} = (2xy + z^3)\hat{i} + x^2\hat{j} + 3xz^2\hat{k}$ is a conservative force. Hence, find the scalar potential. Also find the work done in moving a particle of unit mass in the force field from (1, -2, 1) to (3, 1, 4).

15

8.7d

Let α be a unit-speed curve in R^3 with constant curvature and zero torsion. Show that α is (part of) a circle.

10

9.8c

For a curve lying on a sphere of radius a and such that the torsion is never 0, show that

$$\left(\frac{1}{\kappa}\right)^2 + \left(\frac{\kappa'}{\kappa^2 \tau}\right)^2 = a^2.$$

10. 5e

Prove that

$$\nabla^2 r^n = n (n + 1) r^{n-2}$$

and that $\overrightarrow{r} \xrightarrow{r}$ is irrotational, where $r = |\overrightarrow{r}| = \sqrt{x^2 + y^2 + z^2}$.

11.6c

8

10

10

Using Stokes' theorem, evaluate

$$\oint_C [(x + y) dx + (2x - z) dy + (y + z) dz],$$

where C is the boundary of the triangle with vertices at (2, 0, 0), (0, 3, 0) and (0, 0, 6).

12.7d

Evaluate

$$\iint_{S} (\nabla \times \overrightarrow{f}) \cdot \hat{n} dS,$$

where S is the surface of the cone, $z = 2 - \sqrt{x^2 + y^2}$ above xy-plane and $\overrightarrow{f} = (x - z) \overrightarrow{i} + (x^3 + yz) \overrightarrow{j} - 3xy^2 \overrightarrow{k}$.

13.8c

Find the curvature and torsion of the circular helix

$$\overrightarrow{r} = a (\cos \theta, \sin \theta, \theta \cot \beta),$$

β is the constant angle at which it cuts its generators.

14.8d

If the tangent to a curve makes a constant angle α , with a fixed line, then prove that $\kappa \cos \alpha \pm \tau \sin \alpha = 0$.

Conversely, if $\frac{\kappa}{\tau}$ is constant, then show that the tangent makes a constant angle with a fixed direction.

15. 5e

If E be the solid bounded by the xy plane and the paraboloid $z = 4 - x^2 - y^2$, then evaluate $\iint_S \overline{F} \cdot dS$ where S is the surface bounding

the volume E and $\overline{F} = (zx \sin yz + x^3) \hat{i} + \cos yz \hat{j} + (3zy^2 - e^{\lambda^2 + y^2}) \hat{k}$.

16. 6d

Evaluate $\iint\limits_{S} (\nabla \times \overrightarrow{f}) \cdot \hat{n} \, dS \text{ for } \overrightarrow{f} = (2x - y) \, \hat{i} - yz^2 \hat{j} - y^2 z \, \hat{k} \text{ where } S$

is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy plane.

17.7a

State Stokes' theorem. Verify the Stokes' theorem for the function $\bar{f} = x\hat{i} + z\hat{j} + 2y\hat{k}$, where c is the curve obtained by the intersection of the plane z = x and the cylinder $x^2 + y^2 = 1$ and S is the surface inside the intersected one.

18.8c

Prove that $\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \times \overline{b}) \times \overline{c}$, if and only if either $\overline{b} = \overline{0}$ or \overline{c} is collinear with \overline{a} or \overline{b} is perpendicular to both \overline{a} and \overline{c} .

19.5c

Find the curvature and torsion of the curve $x = a \cos t$, $y = a \sin t$, z = bt.

8

20.6d

Examine if the vector field defined by $\vec{F} = 2xyz^3\hat{i} + x^2z^3\hat{j} + 3x^2yz^2\hat{k}$ is irrotational. If so, find the scalar potential ϕ such that $\vec{F} = \text{grad } \phi$.

21.7b

Using divergence theorem, evaluate

$$\iint\limits_{S} (x^3 dy dz + x^2 y dz dx + x^2 z dy dx)$$

where S is the surface of the sphere $x^2 + y^2 + z^2 = 1$.

15

22.8b

If $\vec{F} = y\hat{i} + (x - 2xz)\hat{j} - xy\hat{k}$, evaluate $\iint_{S} (\nabla \times \vec{F}) \cdot \hat{n} dS$, where S is the surface of the sphere $x^2 + y^2 + z^2 = a^2$ above the xy-plane.

23. 5e

For three vectors show that:

$$\overline{a} \times (\overline{b} \times \overline{c}) + \overline{b} \times (\overline{c} \times \overline{a}) + \overline{c} \times (\overline{a} \times \overline{b}) = 0$$

8

24. 6d

For the vector $\overline{A} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{x^2 + y^2 + z^2}$ examine if \overline{A} is an irrotational vector. Then determine ϕ such that $\overline{A} = \nabla \phi$.

25.7b

Evaluate $\iint_S \nabla \times \overline{A} \cdot \overline{n} \, dS$ for $\overline{A} = (x^2 + y - 4) \hat{i} + 3xy \hat{j} + (2xz + z^2) \hat{k}$ and S is the surface of hemisphere $x^2 + y^2 + z^2 = 16$ above xy plane.

26.8c

Verify the divergence theorem for $\overline{A} = 4x\hat{i} - 2y^2\hat{j} + z^2\hat{k}$ over the region $x^2 + y^2 = 4$, z = 0, z = 3.

27.5c

F being a vector, prove that

curl curl $\vec{F} = \text{grad}$ div $\vec{F} - \nabla^2 \vec{F}$

where $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$.

8

28.6b

Evaluate $\int_{S} \vec{F} \cdot d\vec{s}$, where $\vec{F} = 4x\vec{i} - 2y^2\vec{j} + z^2\vec{k}$ and s is the surface bounding the region

$$x^2 + y^2 = 4$$
, $z = 0$ and $z = 3$.

13

29.8b

Verify the Divergence theorem for the vector function

$$\vec{F} = (x^2 - yz)\vec{i} + (y^2 - xz)\vec{j} + (z^2 - xy)\vec{k}$$

taken over the rectangular parallelopiped

$$0 \leq x \leq a, \ 0 \leq y \leq b, \ 0 \leq z \leq c.$$

14

30. 5e

(e) If u = x + y + z, $v = x^2 + y^2 + z^2$, w = yz + zx + xy, prove that grad u, grad v and grad w are coplanar.

31.6b

(b) Find the value of $\iint_{S} (\overrightarrow{\nabla} \times \overrightarrow{F}) \cdot \overrightarrow{ds}$ taken over the upper portion of the surface $x^2 + y^2 - 2ax + az = 0$ and the bounding curve lies in the plane z = 0, when

$$\vec{F} = (y^2 + z^2 - x) \vec{i} + (z^2 + x^2 - y^2) \vec{j}$$

$$+ (x^2 + y^2 - z^2) \vec{k}.$$

32. 8b

(b) Find the value of the line integral over a circular path given by $x^2 + y^2 = a^2$, z = 0, where the vector field,

$$\vec{F} = (\sin y) \vec{i} + x(1 + \cos y) \vec{j}.$$

33. 5a

(e) Evaluate the line integral

 $\oint_C (\sin x \, dx + y^2 dy - dz), \text{ where C is the circle } c$ $x^2 + y^2 = 16, z = 3, \text{ by using Stokes' theorem.}$

34. 8a

8. (a) Find the curvature, torsion and the relation between the arc length S and parameter u for the curve :

10

35.8b

Prove the vector identity:

36.8c

10

10

(c) Verify Green's theorem in the plane for

 $\oint_C [(3x^2 - 8y^2)dx + (4y - 6xy)dy],$

where C is the boundary of the region enclosed by the curves $y = \sqrt{x}$ and $y = x^2$.

The position vector \overrightarrow{r} of a particle of mass 2 units at any time t, referred to fixed origin and axes, is

$$\vec{r} = (t^2 - 2t) \hat{i} + (\frac{1}{2} t^2 + 1) \hat{j} + \frac{1}{2} t^2 \hat{k}.$$

At time t = 1, find its kinetic energy, angular momentum, time rate of change of angular momentum and the moment of the resultant force, acting at the particle, about the origin.

10

2010

38. 1f

Find the directional derivation of \overrightarrow{V}^2 , where, $\overrightarrow{V} = xy^2 \overrightarrow{i} + zy^2 \overrightarrow{j} + xz^2 \overrightarrow{k}$ at the point (2, 0, 3) in the direction of the outward normal to the surface $x^2 + y^2 + z^2 = 14$ at the point (3, 2, 1).

39. 8a(i)

Show that

$$\overrightarrow{F} = (2xy + z^3)\overrightarrow{i} + x^2\overrightarrow{j} + 3z^2x\overrightarrow{k}$$

 $\overrightarrow{F} = (2xy + z^3)\overrightarrow{i} + x^2\overrightarrow{j} + 3z^2x\overrightarrow{k}$ is a conservative field. Find its scalar potential and also the work done in moving a particle from (1, -2, 1) to (3, 1, 4).

5

40. 8a(ii)

(ii) Show that, $\nabla^2 f(r) = \left(\frac{2}{r}\right) f'(r) + f''(r)$, where $r = \sqrt{x^2 + y^2 + z^2}$.

41.8b

(b) Use divergence theorem to evaluate,

$$\iint_{S} (x^{3} dy dz + x^{2}y dz dx + x^{2}z dy dx),$$

where S is the sphere, $x^2 + y^2 + z^2 = 1$.

10

5

42.8c

(c) If $\overrightarrow{A} = 2y \overrightarrow{i} - z \overrightarrow{j} - x^2 \overrightarrow{k}$ and S is the surface of the parabolic cylinder $y^2 = 8x$ in the first octant bounded by the planes y = 4, z = 6, evaluate the surface integral,

$$\iint\limits_{S} \vec{A} \cdot \hat{n} \, \vec{dS}.$$

10

43.8d

(d) Use Green's theorem in a plane to evaluate the integral, $\int_C [(2x^2 - y^2) dx + (x^2 + y^2) dy]$, where C is the boundary of the surface in the xy-plane enclosed by, y = 0 and the semi-circle, $y = \sqrt{1-x^2}$.