Analisis Multivariat

Program Studi Sains Data Universitas Teknologi Yogyakarta

Analisis Diskriminan

- Analisis diskriminan merupakan Teknik statistika untuk mengelompokkan individu-individu ke dalam kelompok-kelompok yang saling bebas dengan tegas berdasarkan segugus peubah bebas.
- Analisis diskriminan merupakan teknik multivariat yang termasuk dalam dependence method, yaitu terdapat variabel dependen dan variabel independen dengan ciri variabel dependen harus berupa data kategori, sedangkan variabel independen berupa data nonkategori.

Analisis Diskriminan

- Analisis diskriminan mirip dengan analisis regresi, perbedaannya adalah analisis regresi pada variabel dependen harus data rasio, sedangkan jenis data untuk variabel independen dapat berupa data rasio atau kategori.
- Model analisis diskriminan ditandai dengan ciri khusus, yaitu data variabel dependen yang harus berupa data kategori, sedangkan variable independen berupa data non-kategori.

Model Analisis Diskriminan

Model Analisis Diskriminan:

$$D = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 \cdots + b_n X_n$$

D berupa data Kategorik

 X_i berupa data non-kategorik

D : skor diskriminan

 b_i : koefisien diskriminasi atau bobot

 X_i : variable predictor/ independen

• Jika data kategorikal tersebut hanya terdiri atas dua kode saja (misal kode 1 untuk pegawai ASN dan kode 2 pegawai non-ASN), maka data kategorikal tersebut hanya terdiri dari 2 kode saja disebut 'two-groups discriminant analysis'. Namun, apabila lebih dari 2 kategori disebut 'multiple discriminant analysis'.

Tujuan Analisis Diskriminan

- 1. Untuk mengetahui apakah ada perbedaan yang jelas antar grup pada variabel dependen.
- 2. Jika ada perbedaan, kita ingin mengetahui variabel independen mana pada fungsi diskriminan yang membuat perbedaan tersebut.
- 3. Membuat fungsi atau model diskriminan, yang pada dasarnya mirip dengan persamaan regresi.
- 4. Melakukan klasifikasi terhadap objek, apakah suatu objek (bisa nama orang, nama tumbuhan, benda atau lainnya) termasuk pada grup 1 atau grup 2 atau lainnya.

Manfaat Analisis Diskriminan

- Melihat signifikansi perbedaan dua kelompok sampel atau lebih
- Menemukan variabel-variabel yang membedakan secara signifikan dua kelompok atau lebih.

Contoh:

- Analisis perbedaan Keberhasilan studi mahasiswa jurusan Manajemen antara mahasiswa yang berasal dari SLTA jurusan IPA dan SLTA jurusan IPS.
- 2. Analisis perbedaan konsumen wanita dan pria dalam melakukan keputusan pembelian mobil.

Perbedaan Analisis Regresi, Anova dan Analisis Diskriminan

Pembeda	ANOVA	Regresi	Diskriminan
Persamaan			
Jumlah variabel dependen	Satu	Satu	Satu
Jumlah variabel independen	Banyak	Banyak	Banyak
Perbedaan			
Sifat variabel dependen	Matrik	Matrik	Kategori
Sifat variabel independen	Kategori	Matrik	Matrik

Analisis Diskriminan	Regresi Linear
Mengklasifikasikan suatu individu/objek.	Mengestimasi nilai Y.
Variabel respons: fixed (tidak disyaratkan	Variabel respons: distribusi normal dan
mengikuti distribusi tertentu).	homokedastisitas terpenuhi.
Variabel prediktor: berdistribusi normal,	Variabel prediktor: fixed (tidak disyaratkan
homokedastis.	mengikuti distribusi tertentu).
Memprediksi suatu objek masuk ke dalam	Memprediksi atau mengestimasi nilai dari
salah satu kategori dari variabel tak bebas	variabel tak bebas.
berdasarkan informasi dari objek tersebut.	

Asumsi Dalam Analisis Diskriminan

- 1. Multivariate normality, atau variabel independen seharusnya berdistribusi normal. Jika data tidak berdistribusi normal akan menyebabkan masalah pada ketepatan fungsi (model) diskriminan. Regresi logistik (logistic regression) bisa dijadikan alternatif metode jika memang data tidak berdistribusi normal.
- 2. Matriks co-varian dari semua variabel independen seharusnya sama (Homogenitas)
- **3. Tidak ada** korelasi antar-variabel independen. Jika dua variabel independen mempunyai korelasi yang kuat, dikatakan terjadi **multikolinieritas**.
- **4. Tidak adanya** data yang sangat ekstrem (**outlier**) pada variabel independen. Jika ada data outlier yang tetap diproses berakibat berkurangnya ketepatan klasifikasi dari fungsi diskriminan.

Proses Analisis Diskriminan

- Memilah variabel-variabel menjadi variabel terikat (dependent) dan variabel bebas (independent).
- Menentukan metode untuk membuat fungsi diskriminan, yaitu
 - simultaneous estimation; semua variabel dimasukkan secara bersama-sama lalu dilakukan proses diskriminan;
 - b) step-wise estimation; variabel dimasukkan satu per satu ke dalam model diskriminan. . pada proses ini, tentu ada variabel yang tetap ada pada model, dan ada kemungkinan satu atau lebih variabel independen yang 'dibuang' dari model.
- Menguji signifikansi fungsi diskriminan yang terbentuk, dengan menggunakan Wilk's Lambda, Box M, F test.
- Menguji ketepatan klasifikasi dari fungsi diskriminan (secara individual dengan casewise diagnotics).
- Melakukan interpretasi fungsi diskriminan.
- Melakukan uji validasi fungsi diskriminan.

Contoh

Sebuah Lembaga sertifikasi profesi sedang menganalisis hasil rekomendasi asesor kompetensi dalam pelaksanaan uji kompetensi pada peserta didik SMK di beberapa jejaring SMK yang tersebar di Jawa Timur dengan variabel berikut.

- a. Variabel dependen D dengan
- Kode 1: menyatakan peserta didik yang direkomendasikan Kompeten
- Kode 0: menyatakan peserta didik yang direkomendasikan Belum Kompeten
- b. Jam Praktikum per minggu (X_1)
- c. Nilai Praktikum (X_2)
- d. Usia peserta didik (X_3)

Siswa	Rekomendasi	Jam Praktikum	Nilai Praktikum	Usia
1	Belum Kompeten	7	80	15
2	Belum Kompeten	8	81	16
3	Belum Kompeten	7	82	17
4	Belum Kompeten	5	83	18
5	Belum Kompeten	4	80	19
6	Belum Kompeten	6	81	20
7	Belum Kompeten	8	82	15
8	Belum Kompeten	8	83	16
9	Belum Kompeten	6	80	17
10	Belum Kompeten	5	81	18
11	Belum Kompeten	7	82	19
12	Belum Kompeten	3	83	20
13	Belum Kompeten	7	81	15
14	Belum Kompeten	4	82	16
15	Belum Kompeten	3	83	17
16	Kompeten	12	88	18
17	Kompeten	14	89	19
18	Kompeten	15	90	20
19	Kompeten	13	91	15
20	Kompeten	15	88	16
21	Kompeten	12	89	17
22	Kompeten	17	90	18
23	Kompeten	13	91	19
24	Kompeten	15	92	20
25	Kompeten	12	89	15
26	Kompeten	12	88	16
27	Kompeten	14	90	17
28	Kompeten	16	92	18
29	Kompeten	12	92	19
30	Kompeten	13	92	20

REKOMENDASI

Kode 1: menyatakan peserta didik yang direkomendasikan Kompeten

Kode 2: menyatakan peserta didik yang direkomendasikan Belum Kompeten

Pertanyaan

- 1. Apakah ada perbedaan yang signifikan antara peserta didik yang direkomendasikan kompeten dengan mereka yang direkomendasikan belum kompeten?
- 2. Jika ada perbedaan yang signifikan, variabel apa saja yang membuat hasil rekomendasi dari asesor kompetensi kompeten dan belum kompeten?
- 3. Bagaimana model diskriminan dari kasus tersebut? Jelaskan!
- 4. Apakah Model Diskriminan tersebut sudah cukup valid? Jelaskan!

Penyelesaian dengan SPSS

1. Input data ke SPSS

- 2. Pilih Cell B1:E31 yang digunakan untuk analisis diskriminan
- 3. Atur tipe variable dan sesuaikan/definisikan grup pada variable dependen dengan 0 (belum kompeten) dan 1 (kompeten)

Uji Asumsi: Normalitas Data

18.0

ROC Curve...

1. Klik menu Analyze – Descriptive Statistics – Explore – isikan Dependen list dengan variable Jam Praktikum, Nilai Praktikum, Usia dan Factor List dengan Rekomendasi – kill plots – klik Normality plots with test – Continue - OK

Hasil Tes Normalitas

	Tests of Normality							
			Kolm	ogorov-Smir	nov ^a	Shapiro-Wilk		
		Rekomendasi	Statistic	df	Sig.	Statistic	df	Sig.
	Jam Praktikum	Belum Ko	.206	15	.087	.902	15	.101
		Kompeten	.192	15	.143	.885	15	.056
·	Nilai Praktikum	Belum Ko	.173	15	.200*	.876	15	.042
		Kompeten	.163	15	.200*	.882	15	.051
	Usia	Belum Ko	.155	15	.200*	.917	15	.175
		Kompeten	.155	15	.200*	.917	15	.175

^{*.} This is a lower bound of the true significance.

Perhatikan nilai p-value (Sig.) pada kolom Kolmogorov-Smirnov diperoleh bahwa nilai seluruh $p_{value} > 0.05$. Hal ini berarti data yang digunakan seluruhnya berdistribusi normal.

a. Lilliefors Significance Correction

Menilai Variabel Yang Layak Dianalisis

- 1. Ubah tipe variable Rekomendasi menjadi Numeric
- 2. Pilih menu Analyze Classify Discriminant
- 3. Isikan Grouping Variable dengan Rekomendasi, klik Define Range : isikan minimum =0 dan maksimum = 1
- 4. Klik Statistics pada Descriptives : pilih means, univariate anova, Box's M Pada functions coefficients: pilih Unstandarized Pada matrices: pilih within groups correlation klik continue

- 5. Pada Method: pilih Wilk's Lambda, dan pada Display: klik Summary of Steps Klik Continue
- 6. Pada Classify: pilih all groups equal, pada display: klik casewise results, summary table, leave-one-out classifications klik Continue
- 7. Pada Save: klik semua pilihan klik Continue

• Hasil:

Tests of Equality of Group Means					
Wilks' Lambda F df1 df2 Sig.					
Jam Praktikum	.151	157.604	1	28	.000
Nilai Praktikum	.086	297.897	1	28	.000
Usia	.969	.892	1	28	.353

Apabila Nilai Lambda Wilk's mendekati 1 menunjukkan bahwa data memiliki kecenderungan sama dengan data pada tiap grup. Dari hasil tersebut yang memiliki kecenderungan yang sama adalah data usia, sedangkan data Jam Praktikum dan Nilai Praktikum cenderung memiliki perbedaan dengan seluruh data pada grup. Hal ini berarti jam praktikum dan nilai praktikum mempengaruhi nilai rekomendasi. Sedangkan usia tidak mempengaruhi nilai rekomendasi.

- Pada beberapa analisis diskriminan, sebuah variabel yang tidak lolos uji tidak otomatis dikeluarkan.
- Seperti pada kasus ini, variabel Usia walaupun tidak lolos uji, tetapi seharusnya tetap disertakan pada analisis diskriminan selanjutnya.
- Pandangan ini berdasar pada prinsip bahwa pada analisis multivariat, variabel-variabel dianggap suatu kesatuan, dan bukannya terpisah-pisah

- Jika analisis ANOVA dan angka Wilk's Lambda menguji Means (rata-rata) dari setiap variabel, maka Box's M menguji varian dari setiap variable
- Analisis diskriminan mempunyai asumsi bahwa:
- a. Varian variabel bebas untuk tiap grup seharusnya sama. Jika demikian, seharusnya varian dari responden yang direkomendasikan belum kompeten sama dengan varian dari responden yang direkomendasikan
- b. Varian di antara variabel-variabel bebas seharusnya juga sama. Jika demikian, seharusnya varian dari Jam Praktikum sama dengan varian dari Nilai Praktikum dan sama dengan variabel Usia.
- Kedua pengertian di atas bisa disimpulkan, seharusnya group covariance matrices adalah relatif sama, yang diuji dengan alat Box's M

• Uji Box's M

1. Hipotesis

 H_0 : group covariance matrices adalah relatif sama.

 H_1 : group covariance matrices adalah berbeda secara nyata.

- 2. Tingkat Signifikansi: $\alpha = 0.05$
- 3. Keputusan dengan dasar signifikansi (lihat angka Sig.)

Jika Sig. > 0,05 berarti H_0 diterima.

Jika Sig. < 0.05 berarti H_0 ditolak.

Test Results

Box's	М	2.835
F	Approx.	.872
	df1	3
	df2	141120.000
	Sig.	.455

Tests null hypothesis of equal population covariance matrices.

Berdasarkan hasil Uji Box's M, diperoleh hasil bahwa nilai $sig.=0.455>0.05=\alpha$ sehingga H_0 diterima.

4. Jadi grup covariance matrices relative sama.

Hasil Uji Multikolinearitas

Pooled Within-Groups Matrices

		Jam Praktikum	Nilai Praktikum	Usia
Correlation	Jam Praktikum	1.000	.040	140
	Nilai Praktikum	.040	1.000	.342
	Usia	140	.342	1.000

- Lihat nilai korelasi, apabila ada korelasi antar variabel independen dengan nilai lebih dari 0,5, maka dicurigai ada gejala multikolinieritas.
- Hasil dari matriks korelasi di atas, tidak ada angka yang mencapai 0,5 atau diatasnya, sehingga bisa diidentifikasi tidak ada multikolinieritas data.

Analisa Output Determinan

Group Statistics

				Valid N (lis	stwise)
Rekomendasi		Mean	Std. Deviation	Unweighted	Weighted
0	Jam Praktikum	5.867	1.7674	15	15.000
	Nilai Praktikum	81.600	1.1212	15	15.000
	Usia	17.200	1.7403	15	15.000
1	Jam Praktikum	13.667	1.6330	15	15.000
	Nilai Praktikum	90.067	1.5337	15	15.000
	Usia	17.800	1.7403	15	15.000
Total	Jam Praktikum	9.767	4.3046	30	30.000
	Nilai Praktikum	85.833	4.5035	30	30.000
	Usia	17.500	1.7370	30	30.000

- Tabel Group Statistics pada dasarnya berisi data statistik (deskriptif) yang utama, yakni rata-rata dan standar deviasi, dari kedua kelompok peserta
- Berdasarkan table tersebut, diketahui bahwa terdapat 15 peserta didik kompeten dan 15 peserta didik tidak kompeten.

	Variables Entered/Removed ^{a,b,c,d}								
			Wilks' Lambda					to	
							activate		
Step	Entered	Statistic	df1	df2	df3	Statistic	df1	df2	Sig.
1	Nilai Praktikum	.086	1	1	28.000	297.897	1	28.000	.000
2	Jam Praktikum	.060	2	1	28.000	211.678	2	27.000	.000

At each step, the variable that minimizes the overall Wilks' Lambda is entered.

- a. Maximum number of steps is 6.
- b. Minimum partial F to enter is 3.84.
- c. Maximum partial F to remove is 2.71.
- d. F level, tolerance, or VIN insufficient for further computation.
- Tabel ini menyajikan variabel mana saja dari tiga variabel input yang bisa dimasukkan (entered)
 dalam persamaan diskriminan. Pada dua variabel pada Gambar.
- tentunya mempunyai angka Sig. di bawah 0,05 seperti angka Sig. variabel Nilai Praktikum adalah 0,000, jauh di bawah 0,05.
- Dapat dikatakan nilai praktikum dan jam praktikum memengaruhi rekomendasi pelaksanaan uji kompetensi (belum kompeten atau kompeten).

Eigenvalues

Function	Eigenvalue	% of Variance	Cumulative %	Canonical Correlation
1	15.680ª	100.0	100.0	.970

- a. First 1 canonical discriminant functions were used in the analysis.
- Canonical correlation mengukur keeratan hubungan antara discriminant score dengan grup (dalam hal ini, karena ada dua rekomendasi maka ada dua grup).
- Angka 0,970 menunjukkan keeratan yang cukup tinggi, dengan ukuran skala asosiasi antara 0 sampai
 1.
- Kuadrat dari nilai korelasi kanonikal $(0,97^2 = 0,9401)$ menyatakan kemampuan persamaan diskriminan yang melibatkan variabel bebas (jam praktikum dan nilai praktikum) dalam menjelaskan varian variabel tak bebas sebesar 94,01% sedangkan sisanya 5,99% dijelaskan oleh faktor lain.

Structure Matrix

	Function
	1
Nilai Praktikum	.824
Jam Praktikum	.599
Usia ^a	.195

Pooled within-groups correlations between discriminating variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within function.

 a. This variable not used in the analysis.

- Hasil di samping menjelaskan korelasi antara variabel independen dengan fungsi diskriminan yang terbentuk.
- Terlihat variabel Nilai Praktikum paling erat hubungannya dengan fungsi diskriminan, kemudian jam praktikum dan usia.
- Hanya di sini variabel Usia tidak dimasukkan dalam model diskriminan (perhatikan tanda huruf (a) di dekat variabel tersebut).

Canonical Discriminant Function Coefficients

	Function
	1
Jam Praktikum	.333
Nilai Praktikum	.596
(Constant)	-54.452

Unstandardized coefficients

- Hasil di samping mempunyai fungsi yang hampir mirip dengan persamaan regresi berganda, yang dalam analisis diskriminan disebut sebagai fungsi diskriminan.
- Model Analisis Diskriminan:

$$D = b_0 + b_1 X_1 + b_2 X_2$$

$$D = -54,452 + 0,333 X_1 + 0,596 X_2$$

Menentukan batas untuk skor diskriminan

 Dalam fungsi diskriminan 2 kelompok, cutting score digunakan untuk mengklasifikasikan pengamatan ke dalam masing-masing kelompok.

Prior Probabilities for Groups

		Cases Used in Analysis			
Rekomendasi	Prior	Unweighted	Weighted		
0	.500	15	15.000		
1	.500	15	15.000		
Total	1.000	30	30.000		

• Dari tabel Prior Probabilities for Groups, didapat bahwa jumlah responden belum kompeten adalah 15 orang, sedangkan responden kompeten adalah 15 orang. Dengan demikian, dikaitkan dengan angka grup centroid $Cutting\ Score = n_1 * Centroid_1 + n_2 * Centroid_2 = 15 * (-3,826) + (15 * 3,826) = 0$

Functions at Group Centroids

	Function
Rekomendasi	1
0	-3.826
1	3.826

Unstandardized canonical discriminant functions evaluated at group means Berdasarkan hasil SPSS, diperoleh centroid 1 adalah -3,826 dan centroid 2 adalah 3,826

Casewise Statistics

			Highest Group				Second Highest Group			Discriminant Scores	
			Doe diete d	P(D>d	G=g)		Squared Mahalanobis			Squared Mahalanobis	
	Case Number	Actual Group	Predicted Group	р	df	P(G=g D=d)	Distance to Centroid	Group	P(G=g D=d)	Distance to Centroid	Function 1
Original	1	0	0	.564	1	1.000	.332	1	.000	67.690	-4.402
	2	0	0	.724	1	1.000	.125	1	.000	53.253	-3.472
	3	0	0	.538	1	1.000	.380	1	.000	49.484	-3.209
	4	0	0	.585	1	1.000	.298	1	.000	50.481	-3.280
	5	0	0	.115	1	1.000	2.486	1	.000	85.153	-5.402
	6	0	0	.754	1	1.000	.098	1	.000	63.432	-4.139
	7	0	0	.342	1	1.000	.903	1	.000	44.904	-2.876
	8	0	0	.122	1	1.000	2.391	1	.000	37.266	-2.279
	9	0	0	.363	1	1.000	.828	1	.000	73.288	-4.735
	10	0	0	.518	1	1.000	.418	1	.000	68.855	-4.472
	11	0	0	.538	1	1.000	.380	1	.000	49.484	-3.209
	12	0	0	.904	1	1.000	.015	1	.000	60.404	-3.946
	13	0	0	.984	1	1.000	.000	1	.000	58.231	-3.805
	14	0	0	.701	1	1.000	.147	1	.000	64.560	-4.209
	15	0	0	.904	1	1.000	.015	1	.000	60.404	-3.946
	16	1	1	.074	1	1.000	3.199	0	.000	34.370	2.037
	17	1	1	.600	1	1.000	.276	0	.000	50.780	3.300
	18	1	1	.686	1	1.000	.164	0	.000	64.898	4.230
	19	1	1	.738	1	1.000	.112	0	.000	63.766	4.160
	20	1	1	.431	1	1.000	.621	0	.000	47.101	3.038
	21	1	1	.233	1	1.000	1.421	0	.000	41.719	2.634
	22	1	1	.284	1	1.000	1.149	0	.000	76.088	4.897
	23	1	1	.738	1	1.000	.112	0	.000	63.766	4.160

Tabel Casewise pada prinsipnya ingin menguji apakah model diskriminan yang terbentuk akan mengelompokkan dengan tepat seorang peserta UK yang direkomendasikan belum kompeten atau kompeten

• Sebagai contoh dari output pada Tabel casewise, Peserta didik 1 mempunyai score -4,402 < 0 (cutting score) maka peserta didik 1 tergolong belum kompeten (0)

Classification Results^{a,c}

			Predicted Group Membership		
		Rekomendasi	0	1	Total
Original	Count	0	15	0	15
		1	0	15	15
	%	0	100.0	.0	100.0
		1	.0	100.0	100.0
Cross-validated ^b	Count	0	15	0	15
		1	0	15	15
	%	0	100.0	.0	100.0
		1	.0	100.0	100.0

a. 100.0% of original grouped cases correctly classified.

- c. 100.0% of cross-validated grouped cases correctly classified.
- Pada bagian Original, terlihat bahwa peserta didik yang pada data awal masuk kelompok belum kompeten, dan dari klasifikasi Fungsi diskriminan tetap pada kelompok belum kompeten, adalah 15 orang.
- Sedang dengan model diskriminan, mereka yang awalnya masuk kelompok kompeten juga tetap 15 orang. Dengan demikian, ketepatan prediksi dari model adalah:

$$\frac{(15+15)}{30} \times 100\% = 100\%$$

b. Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases other than that case.

Contoh Prediksi 1

Boba memiliki karakteristik sebagai berikut: jam praktikum 7 jam; nilai praktikum 90 dan usia 17. Bagaimana prediksi rekomendasi hasil UK Boba?

$$\widehat{D}$$
 = -54,452+0,333X₁+0,596X₂
= -54,452+0,333(7)+0,596(90)
= 1,519

Karena (1.519)>0, maka Boba masuk pada kelompok 1 yang diprediksi akan direkomendasikan kompeten.

Contoh Prediksi 2

Babo memiliki karakteristik sebagai berikut: jam praktikum 10 jam; nilai praktikum 85 dan usia 19. Bagaimana prediksi rekomendasi hasil UK Boba?

$$\widehat{D}$$
 = -54,452+0,333X₁+0,596X₂
= -54,452+0,333(10)+0,596(85)
= -0,462

Karena (-0.462)<0, maka Babo masuk pada kelompok 0 yang diprediksi akan direkomendasikan belum kompeten.

Latihan

Suatu penelitian dilakukan untuk mengetahui kebersihan/sanitasi (X1), harga (X2), variasi menu (X3), kualitas rasa (X4), pelayanan (X5), kapasitas tempat (X6), dan uang jajan/minggu (X7) terhadap pemilihan kantin. Peneliti tersebut mengelompokkan data yang diperoleh menjadi 2 kelompok yaitu:

0 = mahasiswa

1 = mahasiswi

Data Hasil Survey

Responden	X1	X2	Х3	X4	X5	X6	X7
1	4	4	3	3	4	3	200000
2	3	4	3	4	3	2	150000
3	5	4	3	3	4	3	250000
4	4	5	4	2	4	4	200000
5	2	4	3	4	3	5	220000
6	4	3	5	5	2	3	220000
7	5	5	4	3	4	4	200000
8	3	5	3	2	3	2	170000
9	3	3	5	4	5	1	200000
10	4	4	4	1	2	4	200000
11	2	4	3	4	3	1	220000
12	5	3	5	3	2	3	200000
13	4	4	2	3	1	2	250000
14	4	3	4	4	4	4	200000
15	3	3	3	2	3	1	200000
16	2	4	1	1	1	4	150000
17	4	4	2	2	3	4	200000
18	2	4	1	4	2	3	150000
19	3	5	4	2	4	2	200000
20	1	4	3	3	2	4	200000
21	2	1	4	5	4	3	200000
22	3	2	3	2	2	3	200000
23	5	1	2	3	3	1	200000
24	4	2	3	4	3	2	220000
25	4	2	4	3	2	3	200000
26	3	5	2	2	1	4	250000
27	2	3	3	4	4	1	200000
28	2	2	1	4	5	4	200000
29	3	2	3	2	2	3	150000
30	3	1	4	3	4	2	200000

Pertanyaan

- 1. Apakah ada perbedaan yang signifikan antara peserta didik yang direkomendasikan kompeten dengan mereka yang direkomendasikan belum kompeten?
- 2. Jika ada perbedaan yang signifikan, variabel apa saja yang membuat hasil rekomendasi dari asesor kompetensi kompeten dan belum kompeten?
- 3. Bagaimana model diskriminan dari kasus tersebut? Jelaskan!
- 4. Apakah Model Diskriminan tersebut sudah cukup valid? Jelaskan!