ADATSZERKEZETEK ÉS ALGORITMUSOK

- Batcher-féle páros-páratlan összefésüléses rendezés
- Jelentősége: ez a MergeSort olyan változata, amelyben a lépések jelentős része párhuzamosan végezhető el.
 - Ha párhuzamos processzorokon hajtanánk végre, akkor azt tapasztalnánk, hogy $\Theta((\log_2 n)^2)$ idő alatt futna le, szemben a MergeSort $\Theta(n * \log_2 n)$ idejével

Összefuttatásos rendezés

• MergeSort(*S*)

Length(S) > 1
Szétvág (S, S_1, S_2)	
$MergeSort(S_1)$ $MergeSort(S_2)$	SKIP
Összefuttat (S_1, S_2, S)	

Összefuttatásos rendezés – tömbre

• MergeSort(A, k, v)

k < v	
$h \leftarrow \frac{k+v}{2}$ Szétvág (S, S_1, S_2)	
MergeSort (A, k, h) MergeSort $(A, h + 1, v)$	SKIP
Összefuttat($A[k,h]$, $A[h+1,v]$, $A[k,v]$)	

- A külső hívás
 - MergeSort(*A*, 1, *n*)
- Az összefuttatásnál szükséges egy segédtömb használata

Mergesort

- Hatékonyságelemzés:
- Műveletigény:
 - Ha n a két sorozat együttes hossza:
 - $M\ddot{O}\ddot{O}_{sszefuttat}(n) = n 1$
 - $M\ddot{O}_{MS}(n) \le (n-1) * \log_2 n = \Theta(n \log_2 n)$

Mergesort

Mergesort

$$A = a_1 < a_2 < \dots < a_k$$

 $B = b_1 < b_2 < \dots < b_m$

$$C = c_1 < c_2 < \dots < c_{m+k}$$

Batcher-féle

- Ez lesz a PPMerge
 - Egy tömb(részlet) két rendezett feléből összefésüléssel előállítja a tömb(részlet) rendezett tartalmát
 - Ez is rekurzív eljárás, csak kicsit másképp

- Az új összefésülés:
 - 1. A páratlan és B páros indexű elemeit fésüli össze U-ba
 - 2. A páros és B páratlan indexű elemeit fésüli össze V-be

$$A = a_1 < a_3 < a_5 < \cdots$$
 $B = b_2 < b_4 < b_6 < \cdots$
 $U = u_1 < u_2 < u_3 < u_4 < \cdots$
 $A = a_2 < a_4 < a_6 < \cdots$
 $B = b_1 < b_3 < b_5 < \cdots$
 $V = v_1 < v_2 < v_3 < v_4 < \cdots$

• Tegyük fel, hogy k = m vagy k = m + 1

- 3. Az U és V sorozatokat nem kell összefésülni, hanem elég csak az egymás alatti u_i , v_i párokat 1-1 összehasonlítással a helyes sorrendbe rakni
 - Így $\{u_1, v_1\}$, $\{u_2, v_2\}$, $\{u_3, v_3\}$, ... -ból kialakul a helyes sorrend (Ezt be fogjuk látni.)
 - Amennyiben az U és V sorozat hossza eltérő (tehát az végeredmény páratlan hosszú), az utolsó elemet összehasonlítás nélkül kell áttenni.
 - Ezt az esetet külön kell vizsgálni.
- Párhuzamosítás: 1. és 2. párhuzamosan végezhető.

Batcher-féle rendezés – példa

A	1	4	5	7	11	12	14	20
В	2	3	6	10	13	15	16	17

• 1. menet: A páratlan és B páros indexű elemei

A	1	5	11	14
В	3	10	15	17

U	1	3	5	10	11	14	15	17
1								

Batcher-féle rendezés – példa

A	1	4	5	7	11	12	14	20
В	2	3	6	10	13	15	16	17

• 2. menet: A páros és B páratlan indexű elemei

A	4	7	12	20
В	2	6	13	16

V 2 4 6 7 12 13 16 20

• $\{u_1, v_1\}, \{u_2, v_2\}, \{u_3, v_3\}$ párosítás

Rekurzió

- A 2-2 rövidebb sorozat összefésülését ugyanezzel az eljárással végezzük. Ez rekurzív hívással valósul meg.
- Ehhez meg kell adni a legkisebb k és m értéket, amelyre már nem hívja az eljárás önmagát:
 - Egy 2 hosszú tömböt még szétvágunk két 1 hosszú részre és azokra meghívjuk az összefésülőt, ekkor k=1 és m=1.
 - Egy 1 hosszú tömböt azonban már nem fésülünk össze, hanem felismerjük, hogy az már rendezett, így nulla (0) összehasonlítást igényel, ekkor $k=1,\,m=0$.

- Állítás: A PP_Merge eljárás helyes.
 - Belátjuk, hogy a leírt eljárás azt a helyes rendezett sorozatot eredményezi, amelyet

$$C = c_1 < c_2 < \cdots < c_{m+k}$$
-val jelöltünk

Esetszétválasztással gondoljuk meg:

$$c_1 = \min\{u_1, v_1\}, \qquad c_2 = \max\{u_1, v_1\}$$

• Általában, ha $1 \le i \le \left\lfloor \frac{k+m}{2} \right\rfloor$: $c_{2i-1} = \min\{u_i,v_i\}\,, \qquad c_{2i} = \max\{u_i,v_i\}\,$

- Vegyük figyelembe a kiegyensúlyozott szétvágást is, azaz azt, hogy k=m vagy k=m+1 esetén $\left\lfloor \frac{k+m}{2} \right\rfloor = m$
- Ha k+m páratlan, akkor még azt is be kell látni, hogy c_{k+m} is helyesen képződik, hiszen erre akkor a képlet nem vonatkozik.
- Bizonyítás:
 - 1. Belátjuk, hogy a C sorozatban bármely páros indexű tagig elmenve $c_1, \dots c_{2k}$ között ugyanannyi u_i szerepel, mint v_j vagyis az U és a V sorozat szinte "cipzár"-szerűen építi a C-t.

- A C sorozat a rendezett A és B sorozatok összefésülésével adódik.
- Tegyük fel, hogy
 - A-ból az $a_1, \dots a_s$ elemek,
 - B-ből a b_1, \dots, b_{2k-s} elemek jönnek összefésüléssel a
 - C sorozat első 2k elemébe

$${c_1, \dots c_{2k}} = {a_1, \dots a_s} \cup {b_1, \dots b_{2k-s}}$$

U-ba kerülnek a páratlan indexű elemek, ezek száma:

[s/2]

V-be kerülnek a páros indexű elemek, ezek száma: $\lfloor s/2 \rfloor$

U-ba kerülnek a páros indexű elemek, ezek száma:

$$[(2k - s)/2]$$

V-be kerülnek a páratlan indexű elemek, ezek száma:

$$\lceil (2k-s)/2 \rceil$$

- Az állítás ekkor egyenértékű azzal, hogy:
- $\lceil s/2 \rceil + \lfloor (2k s)/2 \rfloor = \lfloor s/2 \rfloor + \lceil (2k s)/2 \rceil$?
 - Ez nyilván igaz, ha s páros, hiszen ekkor minden tag egész,
 - Ha s páratlan, akkor a kérdés a következő egyenlőség fennáll-e (igen)

•
$$\frac{s+1}{2} + \frac{2k-(s+1)}{2} = \frac{(s-1)}{2} + \frac{2k-(s-1)}{2}$$

2. Eszerint:

- $\{c_1, \dots c_{2i}\} = \{u_1, \dots u_i\} \cup \{v_1, \dots v_i\}$
- $\{c_1, \dots c_{2(i-1)}\} = \{u_1, \dots u_{i-1}\} \cup \{v_1, \dots v_{i-1}\}$
- A két halmaz kivonásával:
 - $\{c_{2i-1}, c_{2i}\} = \{u_i, v_i\}$
- Így, mivel $c_{2i-1} < c_{2i}$, tehát az eredeti állítás fennáll.

Tehát

• *U* és *V* már egy párhuzamos lépésben összefésülhető.

- Hatékonyságelemzés:
 - Párhuzamos költséget számolunk, ez azt jelenti, hogy akárhány összehasonlítás is csak 1-nek számít, ha párhuzamosan végezzük!
 - 1. A PP_Merge rekurzív eljárást egy n méretű, két (közel) egyenlő méretű, rendezett két félből álló tömbre hajtjuk végre.

- A két félből párhuzamosan lehet képezni az *U* és *V* sorozatokat, itt tehát [n/2]-t vesszük alapul. Mivel ugyanezt az eljárást használjuk az *U* és *V* előállítására is, ez a költségszámítás képletében is rekurziót ad.
- Továbbá, az *U* és *V* tömbökből egyetlen párhuzamos összehasonlítással kapjuk a *C* eredményt.
 - Így az egyenlet: $M\ddot{O}_{PPM}(n) \le M\ddot{O}_{PPM}\left(\left\lceil\frac{n}{2}\right\rceil\right) + 1$
 - Itt egyébként elegendő MÖ helyett Ö-t írni, mert ez az eljárás fix összehasonlítás számmal dolgozik. Szokásos jelölés még:
 - $T(n) \le T\left(\left\lceil \frac{n}{2}\right\rceil\right) + 1$, T(1) = 0

- Ennek megoldása úgy történik általánosan is, ahogy egy konkrét értékre:
 - például n = 21-re:

 - $T(21) \le \lceil \log_2 21 \rceil$
 - Ha v olyan egész, amire $2^v < n \le 2^{v+1}$, akkor a rekurzív egyenletet éppen v+1-szer alkalmazzuk, mire eljutunk T(1)-ig
 - Így v + 1 db egyest adunk össze, vagyis $T(n) \le \lceil \log_2 n \rceil$
 - Ez tehát a párhuzamos összefésülés költsége.

2. A párhuzamos rendező eljárás szerkezete pontosan az, ami a bevezetőben felidézett MergeSort-é, csak más összefuttatást alkalmaz.

- 2. A párhuzamos összehasonlítás számra az egyenlet:
- $\ddot{O}_{Batcher}(n) \le \ddot{O}_{Batcher}(\lceil n/2 \rceil) + \lceil \log_2 n \rceil$
- Egyszerűbb jelöléssel:
 - $T(n) \leq T(\lceil n/2 \rceil) + \lceil \log_2 n \rceil$
- Ha ezt is kifejtjük, akkor az előzőhöz hasonlóan azt kapjuk, hogy $\lceil \log_2 n \rceil$ számú tag lesz; ezek a tagok azonban csökkennek:

•
$$T(n) \le T(\left\lceil \frac{n}{2} \right\rceil) + \lceil \log_2 n \rceil \le$$

$$T(\left\lceil \frac{n}{2^2} \right\rceil) + \left\lceil \log_2 \left(\left\lceil \frac{n}{2} \right\rceil \right) \right\rceil + \lceil \log_2 n \rceil \le \cdots$$

$$\le T(1) + 1 + 2 + \cdots (\lceil \log_2 n \rceil - 1) + \lceil \log_2 n \rceil =$$

$$\frac{(\lceil \log_2 n \rceil + 1) * \lceil \log_2 n \rceil}{2} \approx \frac{(\log_2 n)^2}{2} = \Theta(\log_2 n)^2$$

- Az előzőekben felhasználtuk, hogy
- $\lceil \log_2(\lceil n/2 \rceil) \rceil = \lceil \log_2 n \rceil 1$, ezt be is látjuk:
 - Ha n = 2p, akkor igaz.
 - Ha $2p < n \le 2p + 1$, akkor
 - $\bullet \ 2p-1 < \frac{n}{2} \le 2p,$
 - $2p-1<\left[\frac{n}{2}\right]\leq 2p$
 - $p-1 < \log_2\left[\frac{n}{2}\right] \le p$, így
 - $\left[\log_2\left(\left\lceil\frac{n}{2}\right\rceil\right)\right] = \left[\log_2 n\right] 1$

Batcher-féle rendezés - tömbökre

BatcherSort(S, p, q)

p < q	
$r \leftarrow \lfloor (p+q)/2 \rfloor$	
BatcherSort(S, p, r)	SKIP
BatcherSort($S, r + 1, q$)	J
$PP_Merge(S[p \dots r], S[r+1, \dots q], S[p, \dots q])$	

- Külső hívása
 - BatcherSort(S,1,n)

Rendezők implementációja

Következő téma