Astrophysics - Summary - Introduction	(
(1.) Units: - mess: solar mass	
- length: AU, pc, hpc, Mpc, Gpc	
- time: regular time	A a a l
- time: régular time - coordinates: Da Dec Equatorial systèm - opteur	rriou
l, b Galature of	
- Inightness: magnitudes - log scale (absolute, apporent, bo	lometric
m-M = 5log, d - o destance measurments	
+ colour of objects (B-V)	
Sources of astronomical information:	
- EM radiation	
- neutrinos - Sun + supernovas	
- gravitational waves - or black hole & wentron star men	gers
- cornic vays -o enegetic abjects	
EM vadiation: - various wavelengths	
- atmosperic windows (throughput)	
- Imaging + Spectroscopy	
- Bladsbody or syncsotron to spectral lines	
Optical: resolution $\theta = 1.22 \frac{1}{D}$ have a fe	w
Radio astronomy: ringle dish vs. interferometry (sources + where an	
X- vay astronomy: only from space the observation	nes
Infrared astronomy:	
Gamma-ray astronomy: directly only from space	

3) Radiation transfer - Summary Describes how vadiation interacts with matter - Macroscopic: using emission and absorption coeficients - Thoroscopic: calculating the encission & absorption coeficients Plandes law - blackbody vadiation Radiation transfer - hour does vadiation propagate amount of vadiation dEydv = 1, cost dA dt dadv solid area time angle of direction F= JEdv Rediation Flux: Fy = 1/2 cost of 12 to integrate over frequency Lo integrate the internity density of energy in a sylunder filled by radiation Energy dewrity: Uy = \[\frac{1v}{c} d\D Rediction pressure: pressure associated with vadiation Py= /3uy Radiadice transport: how dos indication propagate trough things - in empty space: the vadiation does not change - through matter: emersion and absorption emirrion coef: jr 3 all matter has this absorption coef &) radiation transfer equation: $\frac{dly}{ds} = Jy - \alpha_y / y$ if the matter only absorbes: J V = 0 $\frac{d|V}{ds} = -d_V |_V$ optical depth: $d_V^2 = -d_V ds \rightarrow \tau_p = \int d_V (s') ds'$ 1 (2) = 1 (9) e-in

3) & > 1 optically thick
2 LL 1 optically thin (can neglect optical depth)
source function: Sy = JR describes matter
Mirchofs law: In thermodynamic agnilibrium:
$j_v = d_v B_v(T)$ emission coef. absorption coef x blackbody
emission coef. absorption coef X bladbody
- Thermodynamic equilibrium -> Maxwellian velocity dostribution (e.g. stars)
Boltzmann distribution law: $\frac{Ne}{N_o} = \exp\left(\frac{E}{1K_BT}\right) + fraction of excited$
Saha equation: fraction of ionised gas
- Local thermodynamical equilibrium
- Radiative transfer trough stellar atmospheres - Jemeral couriderations
- plane parallel atmosphere = layers, no variation in sex directi
- LTE - vadiation field is anisotropic (vadral temperature gradient)
- greag atmosphere model - o no dependence on V (nimpolification)
- limb devening interrity depends on direction
- Formation of spectral lines (absorption)
-o layers with different & v
-o metter actually has I dependent on V
- Radiative energy transport curide stars:
- Radiative energy transport curride stars: opacity(X): $\angle_R = \mathcal{G} X$ depends on denn'ty and absorption coef.
Kramers's law X & 43.5 depends on tomperature to lower X However: opacity drops at low temperatures!
However: opacity drops at low temperatures!

(4) Thompson scattering: radiation ocattering on free electrons elastic ocattering - wavelength does not change
- additional spacity due to thempson scattering
Spectral lines: Equivalent width: the integral of the fractional dip in intervity for an absorption line $W_{\lambda} = \int \frac{1c - lv}{lc} d\lambda$ $V_{\lambda} = \frac{1}{lc} $
photon diffusion inside the Sun -v it tales a very long time for photons to get out from the core ~ 104 years
Stellar Physics
Solar Managera:
Solar phenomena: rotation: differential votation -> from oscillations -> movement of runspots 25days
magnetic field: sunspots: colder spots associated with magnetic fields
sdar cycle: Myears of variation for number of surspot + polarity change = D 22 years cycle
Solar flores + CHE's - space weather, Auroral Exo planets: 5 methods for detection: - radial velocity - transit - desect imaging - mentron star } descurred - astrometry - BH
White durante: Fermi gas (not Boltemanner velocity) -o degeneracy pressure Lo degenerate e- gas For the pressure we have two cases telativistic case P= Kz p 1/3
For the pressure we have two cases to non relativistic case $P = K_1 S^{5/3}$

degenerate matter -> stellar structure rymplifies: only need to solve = D R & M - 1/3 - o increasing wass - o smaller star depending on the store of the star we can use wonfiel for low mass and relativistic premuse for higher masses Neutron star: degenerate hentron gas -o "neutron drip" neutrons drip out of atoms at very high pressures, e-+p+-> n+v - degenerate pressure - D also have a mass limit That of a star in a size of a city (1984) -s rotating hentron star : pulsar - > binary pulsar - > graw waves - s unlisecond julsars - o binary rytom Lo X-ray binaries

The Mally Way