Rates Série A 2014-2019

From Dixon & Robinson, 1998

In a match picked a random, let T_{xy} be the time to the next goal while the current score is (x, y) for x, y = 0, 1, 2, ..., and let δ_{xy} be a censoring indicator that is 0 if the match ends before the next goal is scored and 1 if a goal is observed. Then, assuming $T_{xy} \sim \exp(\nu_{xy})$, standart survival analysis give the maximum likelihood estimate of ν_{xy} as

$$\hat{\nu}_{xy} = \frac{\sum_{i=1}^{N} \delta_{xy,i}}{\sum_{i=1}^{N} t_{xy,i}}$$

where N is the number of matches, $t_{xy,i}$ and $\delta_{xy,i}$ are the observed times to the next goal and censoring indicators respectively, at score (x,y) in match i.

```
options(knitr.kable.NA = "-",
        scipen = 999)
library(dplyr)
library(knitr)
library(reshape2)
library(ggplot2)
load("input_2014_2019.RData")
x = list(); y = list(); xy = list()
for(i in 1:N) {
  x[[i]] = c(x1[[i]], x2[[i]])
 y[[i]] = c(y1[[i]], y2[[i]])
  xy[[i]] = paste(x[[i]], y[[i]], sep = "-")
}
tables = lapply(xy, table)
scores = NULL
c = 0
for(i in 0:3) {
 for(j in 0:3) {
    c = c + 1
    scores[c] = paste(i, j, sep = "-")
 }
}
delta_home = list(); delta_away = list(); t = list()
for(i in 1:length(scores)) {
  tmp_delta_home = NULL; tmp_delta_away = NULL; tmp_t = NULL
 for(k in 1:N) {
```

```
if(scores[i] %in% names(tables[[k]])) {
      next_score = names(tables[[k]])[which(names(tables[[k]]) ==
                                              names(tables[[k]][scores[i]])) + 1]
      if(is.na(next_score)) {
        tmp_delta_home[k] = 0
        tmp_delta_away[k] = 0
      } else {
        if(as.integer(substr(next score, 1, 1)) > as.integer(substr(scores[i], 1, 1))) {
          tmp delta home[k] = 1
          tmp delta away[k] = 0
        } else {
          tmp_delta_home[k] = 0
          tmp_delta_away[k] = 1
      tmp_t[k] = tables[[k]][scores[i]]
    } else {
      tmp_delta_home[k] = 0
      tmp_delta_away[k] = 0
      tmp_t[k] = 0
    }
  delta_home[[i]] = tmp_delta_home
  delta_away[[i]] = tmp_delta_away
  t[[i]] = tmp_t
}
rates = NULL; rates_home = NULL; rates_away = NULL
for(i in 1:length(scores)) {
  rates[i] = (sum(delta_home[[i]]) + sum(delta_away[[i]])) / sum(t[[i]])
  rates_home[i] = sum(delta_home[[i]]) / sum(t[[i]])
  rates_away[i] = sum(delta_away[[i]]) / sum(t[[i]])
}
# Crowder pag 66
sd_home = NULL; sd_away = NULL; sd = NULL
for(i in 1:length(scores)) {
  sd[i] = rates[i] / sqrt(sum(delta_home[[i]]) + sum(delta_away[[i]]))
  sd_home[i] = rates_home[i] / sqrt(sum(delta_home[[i]]))
  sd_away[i] = rates_away[i] / sqrt(sum(delta_away[[i]]))
}
tib = tibble(Rate = paste0("$\\nu_{", stringr::str_replace(scores, "-", ""), "}$"),
             'Est.(both)' = rates, 'Est.(home)' = rates_home, 'Est.(away)' = rates_away,
             'S.e.(both)' = sd, 'S.e.(home)' = sd_home, 'S.e.(away)' = sd_away)
```

kable(tib, digits = 4, caption = "Estimates and standard errors of the rate of the time
 to the next goal")

Table 1: Estimates and standard errors of the rate of the time to the next goal

Rate	Est.(both)	Est.(home)	Est.(away)	S.e.(both)	S.e.(home)	S.e.(away)
$\overline{\nu_{00}}$	0.0224	0.0137	0.0087	0.0005	0.0004	0.0003
ν_{01}	0.0239	0.0151	0.0088	0.0010	0.0008	0.0006
ν_{02}	0.0250	0.0158	0.0092	0.0021	0.0017	0.0013
ν_{03}	0.0222	0.0141	0.0081	0.0047	0.0038	0.0028
ν_{10}	0.0220	0.0128	0.0091	0.0007	0.0006	0.0005
ν_{11}	0.0276	0.0174	0.0102	0.0012	0.0010	0.0008
ν_{12}	0.0271	0.0183	0.0088	0.0023	0.0019	0.0013
ν_{13}	0.0288	0.0144	0.0144	0.0061	0.0043	0.0043
ν_{20}	0.0239	0.0145	0.0094	0.0014	0.0011	0.0008
ν_{21}	0.0254	0.0151	0.0103	0.0017	0.0013	0.0011
ν_{22}	0.0297	0.0182	0.0115	0.0033	0.0026	0.0021
ν_{23}	0.0357	0.0198	0.0159	0.0084	0.0063	0.0056
ν_{30}	0.0213	0.0129	0.0085	0.0023	0.0018	0.0015
ν_{31}	0.0298	0.0168	0.0130	0.0035	0.0027	0.0023
ν_{32}	0.0254	0.0154	0.0100	0.0048	0.0037	0.0030
ν_{33}	0.0317	0.0159	0.0159	0.0112	0.0079	0.0079

```
names(rates) = scores
names(rates_home) = scores
names(rates_away) = scores
mat = matrix(NA, nrow = 4, ncol = 4)
rownames(mat) = paste0(0:3)
colnames(mat) = paste0(0:3)
mat_home = mat
mat_away = mat
for(i in 1:4) {
 for(j in 1:4) {
    mat[i,j] = rates[paste(i-1, j-1, sep = "-")]
    mat_home[i,j] = rates_home[paste(i-1, j-1, sep = "-")]
    mat_away[i,j] = rates_away[paste(i-1, j-1, sep = "-")]
}
melted_mat = melt(mat) %>%
 rename(x = Var1, y = Var2)
melted_mat_home = melt(mat_home) %>%
  rename(x = Var1, y = Var2)
melted_mat_away = melt(mat_away) %>%
 rename(x = Var1, y = Var2)
```

```
theme(panel.grid.major = element_blank(),
    panel.border = element_blank(),
    panel.background = element_blank(),
    axis.ticks = element_blank()) +
ggtitle("Rate of the time to the next goal while the score is (x, y)")
```

Rate of the time to the next goal while the score is (x, y)

Rate of the time to the next home goal while the score is (x, y)

Rate of the time to the away goal while the score is (x, y)


```
ts = NULL; Js = NULL;
for(k in 1:N) {
   ts[[k]] = c(t1s[[k]], t2s[[k]]+45+U1[[k]])
   Js[[k]] = c(J1s[[k]], J2s[[k]])
delta_home = list(); delta_away = list(); t = list()
for(i in 1:length(scores)) {
   tmp_delta_home = NULL; tmp_delta_away = NULL; tmp_t = NULL
   for(k in 1:N) {
      if(scores[i] %in% names(tables[[k]])) {
         w = which(xy[[k]] == scores[i])
         start = w[1]
         end = w[length(w)]
         tmp_t[k] = end - start
         tmp_delta_home[k] = sum((ts[[k]] %in% start:end) * !Js[[k]])
         tmp_delta_away[k] = sum((ts[[k]] %in% start:end) * Js[[k]])
      } else {
         tmp_delta_home[k] = 0
         tmp_delta_away[k] = 0
         tmp_t[k] = 0
      }
   delta_home[[i]] = tmp_delta_home
   delta_away[[i]] = tmp_delta_away
   t[[i]] = tmp_t
}
rates = NULL; rates_home = NULL; rates_away = NULL
for(i in 1:length(scores)) {
   rates[i] = (sum(delta_home[[i]]) + sum(delta_away[[i]])) / sum(t[[i]])
   rates_home[i] = sum(delta_home[[i]]) / sum(t[[i]])
   rates_away[i] = sum(delta_away[[i]]) / sum(t[[i]])
}
sd_home = NULL; sd_away = NULL; sd = NULL
for(i in 1:length(scores)) {
   sd[i] = rates[i] / sqrt(sum(delta_home[[i]]) + sum(delta_away[[i]]))
   sd_home[i] = rates_home[i] / sqrt(sum(delta_home[[i]]))
   sd_away[i] = rates_away[i] / sqrt(sum(delta_away[[i]]))
}
rates_away[which(rates_away == 0)] = NA
tib = tibble(Rate = paste0("\rho_{", stringr::str_replace(scores, "-", ""), "}\rho_{", stringr::str_replace(scores, "-", ""), ""]}
                     'Est.(both)' = rates, 'Est.(home)' = rates_home, 'Est.(away)' = rates_away,
                     'S.e.(both)' = sd, 'S.e.(home)' = sd_home, 'S.e.(away)' = sd_away)
```

Table 2: Estimates and standard errors of the rate of the time to the next red card

Rate	Est.(both)	Est.(home)	Est.(away)	S.e.(both)	S.e.(home)	S.e.(away)
$\overline{ ho_{00}}$	0.0012	0.0004	0.0008	0.0001	0.0001	0.0001
ρ_{01}	0.0023	0.0013	0.0010	0.0003	0.0002	0.0002
$ ho_{02}$	0.0032	0.0017	0.0015	0.0008	0.0006	0.0005
$ ho_{03}$	0.0042	0.0042	_	0.0021	0.0021	_
$ ho_{10}$	0.0026	0.0007	0.0019	0.0003	0.0001	0.0002
ρ_{11}	0.0038	0.0015	0.0023	0.0005	0.0003	0.0004
$ ho_{12}$	0.0061	0.0036	0.0025	0.0011	0.0009	0.0007
ρ_{13}	0.0057	0.0028	0.0028	0.0028	0.0020	0.0020
$ ho_{20}$	0.0029	0.0008	0.0021	0.0005	0.0003	0.0004
$ ho_{21}$	0.0047	0.0015	0.0032	0.0008	0.0004	0.0006
$ ho_{22}$	0.0072	0.0028	0.0044	0.0017	0.0011	0.0013
ρ_{23}	0.0130	0.0043	0.0087	0.0053	0.0031	0.0043
$ ho_{30}$	0.0024	0.0005	0.0019	0.0008	0.0004	0.0007
ρ_{31}	0.0045	0.0014	0.0032	0.0014	0.0008	0.0012
ρ_{32}	0.0166	0.0068	0.0098	0.0040	0.0026	0.0031
ρ_{33}	0.0130	0.0087	0.0043	0.0075	0.0061	0.0043

```
names(rates) = scores
names(rates_home) = scores
names(rates_away) = scores
mat = matrix(NA, nrow = 4, ncol = 4)
rownames(mat) = paste0(0:3)
colnames(mat) = paste0(0:3)
mat_home = mat
mat_away = mat
for(i in 1:4) {
 for(j in 1:4) {
    mat[i,j] = rates[paste(i-1, j-1, sep = "-")]
    mat\_home[i,j] = rates\_home[paste(i-1, j-1, sep = "-")]
    mat_away[i,j] = rates_away[paste(i-1, j-1, sep = "-")]
  }
}
melted_mat = melt(mat) %>%
 rename(x = Var1, y = Var2)
melted_mat_home = melt(mat_home) %>%
 rename(x = Var1, y = Var2)
melted_mat_away = melt(mat_away) %>%
  rename(x = Var1, y = Var2)
```

Rate of the time to the next red card while the score is (x, y)

Rate of the time to the next red card of the home team while the score is (x, y)

Rate of the time to the next red card of the away team while the score is (x, y)

