《 信号分析与处理 》 自测题 1

•	填空题(2 分/题, 共 30 分) 		
1.	模拟信号是指	的信号	,
	数字信号是指	_的信号。)
2.	信号 $\sin(2t)+\cos(2t)$ 的能量为,功率为。		
3.	设 $f(t)$ 的频谱为 $F(\omega)$,则 $f(t)\cos^2\omega_0 t$ 的频谱为	o	,
4.	乃奎斯特频率是指	c)
5.	序列的Z变换和理想抽样信号拉普拉斯变换		
	为	c	,
6.	双边序列 $x(n)$ 的(双边) Z 变换的收敛域是 z 平面上的		.0
7.	离散信号数字频率的有效取值范围为	c	,
8.	已知序列 $x(n) = [3,2+j,5,7-j]$, 其 DFT 为 $X(k) = [17,5j,-1,-4]$	l−5j],	令
	$x_1(n) = x((n-1))_4 R_4(n)$, 其 DFT 为 $X_1(k)$, 则 $X_1(2) =$ 。		
9.	连续信号 $x(t) = \cos 2\pi t$ 的在采样周期 $T_s = 0.5$, 点数 $N = 8$ 采样下的	离散序列	的
	DFT $X(k)$ 有 $X(1) =$ 。		
10	. 某 DFT 的表达式是 $X(l) = \sum_{k=0}^{N-1} x(k) W_{\scriptscriptstyle M}^{kl}$,则变换后数字频域上相邻两个 l	频率点之	间
	的间隔是。		
11	. 无失真传输的频域的条件为(幅频)和	(相频)。	>
12	. 描述一个离散系统的方法,时域有, Z 域有		D
13	. 巴特沃斯低通滤波器的极点分布在 s 平面上的巴特沃斯圆上,相邻极,	点间的角	度
	间隔为rad。		
14	. 双线性变换法中, s 平面到 z 平面的映射关系是		0

- 15. 数 字 滤 波 器 设 计 的 冲 激 响 应 不 变 法 的 准 则 为
- 二. 画图题(10分)

2. (6 分)已知有限长序列 $x(n) = \{2,4,3\}$,试画图,利用基 2 时间抽选的 FFT 算法 求 x(n) 的 DFT X(k) (要求补全运算流图,代入实际数据,在运算流图上给出计算的中间结果以及最终结果)。

$$()) \\ ($$

三. 简答题和简算题(6分/题,共30分)

1. 写出非周期连续信号傅里叶变换和周期连续信号傅里叶变换的公式,并简述它们的特点。

2. 试简述 DFS 和 DFT 的关系。

3. 已知系统输入x(n)和输出y(n)满足以下关系y(n)=2x(n)+3,试讨论该系统是否为线性系统、时不变系统。

4. 有一理想抽样系统,抽样角频率为 $\omega = 6\pi$,信号抽样后经理想低通滤波器还原,该理想滤波器的频率特性为

$$H(\omega) = \begin{cases} \frac{1}{2}, & (|\omega| < 3\pi) \\ 0, & (|\omega| \ge 3\pi) \end{cases}$$

现有两个输入信号, $x_1(t) = \cos 2\pi t$, $x_2(t) = \cos 5\pi t$ 。问输出信号 $x_1(t)$ 和 $x_2(t)$ 有无失真?为什么?

5. 写出巴特沃思模拟滤波器的幅度平方函数,并简述巴特沃思低通滤波器的特点及设计思路。

四. 计算题(20分)

1. (6分) 求 $x(t) = Sa(t)\cos 4t$ 的傅立叶变换 $X(\omega)$, 并画出 $X(\omega)$ 的频谱图。

- 2. (14 分))已知描述某线性时不变离散系统的差分方程为 y(n) + 0.25y(n-1) 0.125y(n-2) = x(n) 2x(n-1)
- (1) (4分) 求该系统的系统函数,并判断系统的稳定性。
- (2) (6分) 若系统的激励为x(n)=u(n), 求系统的零状态响应。
- (3) (4 分) 若描述系统的差分方程为 2y(n)-y(n-1)=2x(n)-4x(n-1),且该系统的激励为 $x(n)=5\cos(0.5n\pi)$,求系统的稳态响应。

五. 分析题(10分)

1. (6分)设实数序列x(n)的 DFT 为X(k),将它分解为实部和虚部,即 X(k) = R(k) + jI(k),试分析R(k)和I(k)的奇偶性。

2. (4 分) 已知序列 x(n) 的 Z 变换为 X(z), 另一个序列 y(n) 与 x(n) 的关系为: y(3n)=x(n), y(3n+1)=0.5x(n), y(3n+2)=0, 求 Y(z)。