Paths of analysis* Analysis 3

Synthia

March 3, 2022

Analysis parameters 1

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1000 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL COEF*FGI COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: $\{\}$

2 Paths

1 path found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 313.21

Figure 1: Outline of path 1

2.1.1 Mitsunobu reaction

Substrates:

1. C6H6O - available at Sigma-Aldrich

2. 4-hydroxypyrrolidin-2-one - Combi-Blocks

Products:

 $1. \ O{=}C1CC(Oc2cccc2)CN1$

Typical conditions: DEAD.or.DCAD.or.DIAD.PPh3

Protections: none

Yield: good

Reference: DOI: 10.1021/jo0345751 AND 10.1021/ol0618757

Retrosynthesis ID: 7562

2.1.2 Mild reduction of secondary amides to imines

Substrates:

 $1. \ O{=}C1CC(Oc2cccc2)CN1$

Products:

1. C1=NCC(Oc2cccc2)C1

Typical conditions: Tf2O.2-FPyr.Et3SiH.DCM

Protections: none

Yield: moderate

Reference: DOI: 10.1021/ja105194s

Retrosynthesis ID: 1629

2.1.3 amine formylation

$$H_2N$$
 NH_2
 NH_2
 NH_2
 NH_2

Substrates:

1. Formic acid - available at Sigma-Aldrich

2. 1-aminocyclobutane-1-carboxamide - available at Sigma-Aldrich

Products:

 $1. \ \mathrm{NC}(=\mathrm{O})\mathrm{C1}(\mathrm{NC}=\mathrm{O})\mathrm{CCC1}$

 $\textbf{Typical conditions:} \ \mathrm{HEU}(\mathrm{zeolite}).\mathrm{RT.no} \ \mathrm{solvent}$

Protections: none

Yield: good

Reference: 10.5012/bkcs.2012.33.7.2251

Retrosynthesis ID: 6000040

2.1.4 Amide coupling

Substrates:

1. Boc-DL-Val-OH - available at Sigma-Aldrich

2. 2-Amino-3,3-dimethyl-butan-1-ol - Enamine

Products:

1. CC(C)C(NC(=O)OC(C)(C)C)C(=O)NC(CO)C(C)(C)C

Typical conditions: DCC.DCM or EDC.DCM or SOC12.DCM

Protections: none

Yield: good

Reference: 10.1021/cr100048w and 10.1039/B701677H and 10.1039/C5RA24527C and 10.3727/0000000006783981206 and 10.1021/np060007f and 10.1021/jo00012a058 and 10.1016/j.bmcl.2007.08.037 and 10.1039/C0OB00355G and 10.1021/jm500031w (p.3056) and 10.1016/j.tet.2011.03.046

Retrosynthesis ID: 10087

2.1.5 Hydrolysis of cyclic imines

Substrates:

1. C1=NCC(Oc2cccc2)C1

Products:

1. NCC(CC=O)Oc1ccccc1

Typical conditions: NaOH.H2O

Protections: none

Yield: good

Reference: 10.1016/S0040-4020(96)00946-5 and 10.1002/ange.19891011019 and

10.1055/s-0028-1083183

Retrosynthesis ID: 23678

2.1.6 Synthesis of isocyanides from formamides

Substrates:

 $1. \ \mathrm{NC}(=\mathrm{O})\mathrm{C1}(\mathrm{NC}=\mathrm{O})\mathrm{CCC1}$

Products:

1. [C-]#[N+]C1(C(N)=O)CCC1

 $\textbf{Typical conditions:} \ \, \textbf{TCT.DCM.TEA.MW.50-100C}$

Protections: none
Yield: moderate

Reference: DOI: 10.1021/jo047924f

Retrosynthesis ID: 245867

2.1.7 Jones Oxidation

Substrates:

1. CC(C)C(NC(=O)OC(C)(C)C)C(=O)NC(CO)C(C)(C)C

Products:

 $1. \ \mathrm{CC}(\mathrm{C})\mathrm{C}(\mathrm{NC}(=\mathrm{O})\mathrm{OC}(\mathrm{C})(\mathrm{C})\mathrm{C})\mathrm{C}(=\mathrm{O})\mathrm{NC}(\mathrm{C}(=\mathrm{O})\mathrm{O})\mathrm{C}(\mathrm{C})(\mathrm{C})\mathrm{C}$

 ${\bf Typical\ conditions:}\ {\bf cromate.sulfate. H2O. acetone}$

Protections: none
Yield: moderate

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.1.8 Ugi reaction

Substrates:

 $1.\ \ NCC(CC=O)Oc1ccccc1$

2. [C-]#[N+]C1(C(N)=O)CCC1

 $3. \ \mathrm{CC}(\mathrm{C})\mathrm{C}(\mathrm{NC}(=\mathrm{O})\mathrm{OC}(\mathrm{C})(\mathrm{C})\mathrm{C})\mathrm{C}(=\mathrm{O})\mathrm{NC}(\mathrm{C}(=\mathrm{O})\mathrm{O})\mathrm{C}(\mathrm{C})(\mathrm{C})\mathrm{C}$

Products:

 $1. \ \ CC(C)C(NC(=O)OC(C)(C)C)C(=O)NC(C(=O)N1CC(Oc2cccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2ccc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(=O)NC1(C(N)=O)CCC1)C(Oc2cc2)CC1C(Oc2c2)CC1C(O$

Typical conditions: MeOH

Protections: none

Yield: good

Reference: DOI: 10.1002/ange.19590711110

Retrosynthesis ID: 222