La terre se réchauffe, la glace fond

TIPE 2020/2021: Enjeux sociétaux.

Introduction

Dans certaines régions, les phénomènes météorologiques extrêmes et les précipitations sont de plus en plus fréquents, tandis que d'autres sont confrontées à des vagues de chaleur et des sécheresses de plus en plus extrêmes. En effet, Le changement climatique est tellement rapide que beaucoup de plantes et d'espèces animales ont dû mal à s'y adapter. Ces effets ne devraient pas s'intensifier au cours des prochaines décennies.

Les conséquences des changements climatiques qui justifient l'intérêt de ce sujet

La Fonte des glaciers: Le nombre d'ours polaires aura chuté de 30 % vers 2050.

Montée des eaux : l'effrayant impact du réchauffement climatique si rien ne change.

Le changement climatique est le principal responsable du doublement des catastrophes naturelles dans le monde en vingt ans

Ces dernières années, les données notaient déjà une forte diminution de la quantité moyenne de glace en arctique.

Le plan

- modélisation des différents échanges thermiques entre un bloc de glace et son environnement avec l'équation de chaleur.
- Résolution numérique de l'équation de la chaleur.
- Modélisation avec les lois de newton et Stefan.
- exploitation d'une base de données et implémentation avec python.

objectif

Le constat étant fait, on essaie donc d'inhiber les dangers. Afin d'appréhender ce fléau on va modéliser tout en utilisant l'équation de chaleur et une base de données.

La modélisation des différents échanges thermiques entre un bloc de glace et son environnement avec l'équation de chaleur

La Résolution analytique de l'équation de chaleur

On considère une calotte avec une température qui présente une allure gaussienne avec aucun effet extérieur du à une quelconque convection.

L'équation de chaleur s'écrit :
Avec :
$$D = \frac{\lambda}{\rho C_p}$$

$$\frac{\partial \theta(x,y,t)}{\partial t} = D\left(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2}\right)$$

On résout cette équation et on obtient :

$$\theta(x,y,t) = \sqrt{\frac{1}{1 + \frac{2Dt}{\sigma}}} e^{-\frac{x^2 + y^2}{4Dt + 2\sigma}}$$

La Résolution analytique de l'équation de chaleur

Modélisation avec les lois de Newton et Stefan

Le model précèdent ignore l'impact de la température extérieure, en fait, c'est un cas idéaliste et irréel.

L'équation à résoudre à présent se présente comme suit:

$$\frac{\partial \theta(x, y, t)}{\partial t} = D(\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2}) + h(\theta - \theta_{air}) + \gamma \theta^4$$

Considérons un bloc de glace soumis aux phénomènes considères dans l'équation. le glaçon commence par fondre par les bords.

Modélisation avec les lois de newton et Stefan

Modélisation avec les lois de Newton et Stefan

Exploitation d'une base de données et implémentation avec python

en se basant sur la base de données retrouvées qui contient l'ensemble des valeurs indiquant la variation de la hauteur de la mer en fonction du temps (dans ce cas, la période étant 6 mois) la courbe représentée par ces points est :

Annexe

B. La résolution numérique de l'équation de la chaleur:

```
Entrée [1]: pylab inline
            Populating the interactive namespace from numpy and matplotlib
Entrée [2]: T = 0.1
            1 = 1
            M = 101
            N = 4 * M ** 2
            xx = linspace(0, 1, M)
            yy = linspace(0, 1, M)
            h = 1 / (M - 1)
            k = T / (N - 1)
            11 = k / h ** 2
Entrée [3]: gamma = 1
            H = 1
Entrée [4]: X, Y = meshgrid(xx, yy)

U0 = zeros((M, M)) - 20
            U0[0, :] = 2 + zeros(M)
            U0[-1, :] = 2 + zeros(M)
            U0[:, 0] = 2 + zeros(M)
            U0[:, -1] = 2 + zeros(M)
```

B. La résolution numérique de l'équation de la chaleur:

```
Entrée [5]: e = ones(M)
            ee = ones(M - 1)
            LM = -2 * diag(e) + diag(ee, 1) + diag(ee, -1)
Entrée [6]: V = U0
            for i in range(N):
                V = V + 11 * (dot(LM, V) + dot(V, LM)) + k * (H * V + gamma * V ** 4)
                V[0, :] = 2 + zeros(M)
                V[-1, :] = 2 + zeros(M)
                V[:, 0] = 2 + zeros(M)
                V[:, -1] = 2 + zeros(M)
Entrée [7]: fig, ax = subplots(subplot kw={"projection": "3d"})
            surf
                    = ax.plot surface(X, Y, V, cmap=cm.coolwarm,
                                   linewidth=0, antialiased=False)
            # Customize the z axis.
            ax.zaxis.set major locator(LinearLocator(10))
            # A StrMethodFormatter is used automatically
            ax.zaxis.set major formatter('{x:.02f}')
            # Add a color bar which maps values to colors.
            fig.colorbar(surf, shrink=0.5, aspect=5)
```

C. La résolution numérique de l'équation de la chaleur avec les lois de Newton et Stefan

```
Entrée [1]: pylab inline
           Populating the interactive namespace from numpy and matplotlib
Entrée [2]: T = 0.1
           1 = 1
           M = 101
           N = 4 * M ** 2
           xx = linspace(0, 1, M)
           yy = linspace(0, 1, M)
           h = 1 / (M - 1)
           k = T / (N - 1)
           11 = k / h ** 2
Entrée [3]: gamma = 1
           H = 1
Entrée [4]: X, Y = meshgrid(xx, yy)
                     = zeros((M, M)) - 20
           U0[0, :] = 2 + zeros(M)
           | U0[-1, :] = 2 + zeros(M)
           U0[:, 0] = 2 + zeros(M)
           U0[:, -1] = 2 + zeros(M)
```

C. La résolution numérique de l'équation de la chaleur avec les lois de Newton et Stefan

```
Entrée [5]: e = ones(M)
            ee = ones(M - 1)
            LM = -2 * diag(e) + diag(ee, 1) + diag(ee, -1)
Entrée [6]: V = U0
            for i in range(N):
                V = V + 11 * (dot(LM, V) + dot(V, LM)) + k * (H * V + gamma * V ** 4)
                V[0, :] = 2 + zeros(M)
                V[-1, :] = 2 + zeros(M)
                V[:, 0] = 2 + zeros(M)
                V[:, -1] = 2 + zeros(M)
Entrée [7]: fig, ax = subplots(subplot kw={"projection": "3d"})
                   = ax.plot surface(X, Y, V, cmap=cm.coolwarm,
                                   linewidth=0, antialiased=False)
            # Customize the z axis.
            ax.zaxis.set major locator(LinearLocator(10))
            # A StrMethodFormatter is used automatically
            ax.zaxis.set major formatter('{x:.02f}')
            # Add a color bar which maps values to colors.
            fig.colorbar(surf, shrink=0.5, aspect=5)
```

C. La résolution numérique de l'équation de la chaleur avec les lois de Newton et Stefan

```
Entrée [5]: e = ones(M)
            ee = ones(M - 1)
            LM = -2 * diag(e) + diag(ee, 1) + diag(ee, -1)
Entrée [6]: V = U0
            for i in range(N):
                V = V + 11 * (dot(LM, V) + dot(V, LM)) + k * (H * V + gamma * V ** 4)
                V[0, :] = 2 + zeros(M)
                V[-1, :] = 2 + zeros(M)
                V[:, 0] = 2 + zeros(M)
                V[:, -1] = 2 + zeros(M)
Entrée [7]: #1ère courbe
            im1 = pcolormesh(X, Y, U0, shading='auto')
            colorbar(im1)
            show()
            #2ème courbe
            im2 = pcolormesh(X, Y, V, shading='auto')
            colorbar(im2)
            show()
```

D.La base de données

la variation de la hauteur de la mer	date
1,4	07/02/1993
4,5	07/08/1993
6,8	07/02/1994
7,2	07/08/1994
11,7	07/02/1995
9,4	07/08/1995
10,7	07/02/1996
14,2	07/08/1996
12,2	07/02/1997
19,8	07/08/1997
18,5	07/02/1998
11,9	07/08/1998
15,9	07/02/1999
17,4	07/08/1999
21,8	07/02/2000
20,4	07/08/2000
25,1	07/02/2001
28,1	07/08/2001
29,3	07/03/2002

33,5	07/08/2002
35,5	07/02/2003
34,2	07/08/2003
36,4	07/02/2004
37,1	07/08/2004
40,1	07/02/2005
40,9	07/08/2005
41,1	07/02/2006
43,9	07/08/2006
43,7	07/02/2007
42,4	07/08/2007
43,2	07/02/2008
47,2	07/08/2008
47,7	07/02/2009
51,6	07/08/2009
54,1	07/02/2010
51,7	07/08/2010
48,6	07/02/2011
54	07/08/2011
58,9	07/02/2012

58,9	07/02/2012
64,2	07/08/2012
67,3	07/02/2013
63,1	07/08/2013
68,2	07/02/2014
70	07/08/2014
75,3	07/02/2015
82,4	07/08/2015
84,8	07/02/2016
79,2	07/08/2016
79,9	07/02/2017
83,9	07/08/2017
86	07/02/2018
87,3	07/08/2018
91,8	07/02/2019
95,8	07/08/2019
92,3	07/02/2020
95,3	07/08/2020

Conclusion

Pour des blocs de glace de dimension de même ordre de grandeur, la glace fonde lorsqu'on rajoute les termes de Newton et de Stefan dans une condition similaire à un changement climatique. L'influence est claire.

Etant conscient des dangers qui menacent notre planète liés aux glaciers , on doit tous faire pour prédire leurs évolutions futures et d'éviter les catastrophes.

Finalement cette étude a été fort instructive pour mon statut d'étudiant car cela m'a permis de manipuler des équations assez complexes et découvrir certaines méthodes de résolutions numériques d'équations.