#### ANSWER ALL QUESTIONS IN THE SPACES PROVIDED ON THIS PAPER.

Full working must be shown to obtain full marks. Should show answers in 3 s.f. and scientific notation.

NOTE: Where necessary use the constants supplied on the SCASA formula sheet.

Number of Questions: 10

#### Question 1 (7 marks)

 a) A 90.0 gram copper rivet has a temperature of 25.0°C. Calculate the heat energy required to heat the copper rivet to 210°C. Assume no heat loss to the surroundings. [3]

b) A different rivet with a mass of 112.0 grams at a temperature of 1500°C made from rare metal "adamantium", is dropped into an insulated bucket with 5.0 kg of water at 22.0°C. If the final temperature of the bucket and water is 25.5°C, what is the specific heat capacity of the rare metal? Assume no heat loss to the surroundings. [4]

| Question 2 (3marks)                                                          |                                         |         |
|------------------------------------------------------------------------------|-----------------------------------------|---------|
| Explain why a concrete floor <u>feels</u> colder than a carpete temperature? |                                         |         |
| •••••••••••••••••••••••••••••••••••••••                                      | ••••                                    |         |
|                                                                              | • • • • • • • • • • • • • • • • • • • • |         |
|                                                                              |                                         |         |
|                                                                              |                                         |         |
|                                                                              | • • • • • • • • • • • • • • • • • • • • |         |
|                                                                              | • • • • • • • • • • • • • • • • • • • • | ••••••• |
|                                                                              | ••••••                                  |         |
| ***************************************                                      |                                         |         |

#### Question 3 (4marks)

A mechanic adds 2.75 kg of ethylene glycol antifreeze at 22.0°C to your car's radiator. The radiator already contains 6.00 kg of water at 93.5°C. If the 5.20 kg radiator is made of copper, calculate the final temperature of the mixture. Assume no heat loss to the surroundings. (c  $_{copper}$  = 390 J kg $^{-1}$  K $^{-1}$ , c  $_{ethylene \, glycol}$  = 2500 J kg $^{-1}$  K $^{-1}$ )

## Question 4 (7marks)

A physicist designed a greenhouse friendly water heater using 10 curved metal mirrors to focus the light from the sun onto a small tank containing 200 kg of water. If the average amount of energy received from the sun by each mirror is 128 W,

| a) | What is the maximum energy received by the tank containing the water each second? [2]           |
|----|-------------------------------------------------------------------------------------------------|
|    |                                                                                                 |
| b) | Calculate the energy required to heat the 200 kg of water in the tank from 22.5°C to 100°C. [2] |
|    |                                                                                                 |

c) Calculate the time it takes to raise the temperature from 22.5°C to 100°C.

[3]

# Question 5 (3marks)

A cooking show gives the following warning when boiling water:

"Steam is hotter than boiling water, so take the lids off cooking liquids carefully to prevent steam burns"

| Is the steam hotter than boiling wabboiling water? | • | urns from |
|----------------------------------------------------|---|-----------|
|                                                    |   |           |
|                                                    |   | •••••••   |
|                                                    |   |           |
|                                                    |   |           |

## Question 6 (6marks)



- a) Between what two points is <u>solid and liquid</u> always present? [1]
- b) Which segment(s) of the graph represents the substance undergoing a phase change? [1]
- c) i) Which segment(s) of the graph shows no increase in temperature? [1]
- ii) Explain in physics terms why energy is absorbed or released, but there is no change in average temperature of the substance? [2]

 During which segment of the graph does the substance have the lowest average kinetic energy? [1]

#### Question 7 (7marks)

A certain solar panel is capable of absorbing 75 J of energy from sunlight every second, and converting only 15 J of that energy to useful electrical energy.

a) How much energy is "wasted" in the form of heat by the solar panel every second?
[1]

b) What is the efficiency of this solar panel?

c) How many solar panels would be needed to fully charge a Tesla Model Y car's battery of 80 kWh, in 0.5 hours? [1 kWh equals one hour of electricity usage at a rate of 1 kW, and the equation is simply kW x time = kWh]
[4]

[2]

#### Question 8 (12marks)

In an experiment to measure the temperature of a Bunsen burner flame, a 250 gram piece of copper is held in the flame of a Bunsen burner for several minutes. The metal is then quickly transferred to 285 mL of water contained in a 40.0 gram calorimeter (container) at 288 K. Assume no heat loss to the surroundings.



| a)   | Explain why the metal is transferred as quickly as possible from the flame to the water. |     |
|------|------------------------------------------------------------------------------------------|-----|
| •••• |                                                                                          |     |
|      | Explain why the water is stirred.                                                        | [1] |
| •••• |                                                                                          |     |
| c)   | Calculate the quantity of heat energy absorbed by the water and the calorimeter.         | [3] |

d) Using your answer from part c (use 75kJ if you could not find an answer for part c), determine the temperature of the Bunsen burner flame. [3]

e) If instead of water, the same mass of ethylene glycol was used, by what factor would the temperature of the liquid change compared to the water? (Hint: Factor- how many times more will temperature rise by for ethylene glycol than for water). Show all your work. [4]

#### Question 9 (7marks)

- a) Label the diagram below for a refrigerative air conditioner with the words below. [6]
- b) Draw arrows to show direction of the flow of refrigerant.

[1]

compressor motor condenser evaporator gaseous refrigerant liquid refrigerant fan

| Outside | Inside |
|---------|--------|
| 6 600   | 3      |

| 1 |       | ••••••••  |   |
|---|-------|-----------|---|
| 4 |       |           |   |
| 2 | <br>5 | <br>han . |   |
| 3 | <br>6 |           | • |

## Question 10 (4marks)

| a)     | Hot bodies can lose heat by conduction, convection and radiation. State two factors the help to increase the rate of cooling. |      |
|--------|-------------------------------------------------------------------------------------------------------------------------------|------|
| •••••• |                                                                                                                               | •••• |
| b)     | Human bodies maintain a core body temperature of around 37°C. State the two ways                                              | :    |
|        | our bodies are able to control its core temperature. [2                                                                       | ]    |
|        |                                                                                                                               | •••• |
|        |                                                                                                                               |      |

**END OF TEST**