$$U_{ijT} = u_{ijT} + \epsilon_{ijT}$$

$$= X_{iT}\alpha_i + \epsilon_{ijT}$$

$$U_{ijT} = u_{ijT} + \epsilon_{ijT}$$
$$= X_{iT}\alpha_i + \epsilon_{iiT}$$

Conditional value function for choice i:

deterministic utility today plus discounted expected future utility given today's choice

$$v_{ijT-1} = u_{ijT-1} + \beta \mathbb{E} \max_{k \in \mathcal{J}} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j \right\}$$

where β is the discount factor

$$U_{ijT} = u_{ijT} + \epsilon_{ijT}$$
$$= X_{iT}\alpha_j + \epsilon_{ijT}$$

Conditional value function for choice *j*:

deterministic utility today plus discounted expected future utility given today's choice

$$v_{ijT-1} = \underbrace{u_{ijT-1}} + \beta \mathbb{E} \max_{k \in \mathcal{I}} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j \right\}$$

where β is the discount factor

$$U_{ijT} = u_{ijT} + \epsilon_{ijT}$$
$$= X_{iT}\alpha_j + \epsilon_{ijT}$$

Conditional value function for choice *j*:

deterministic utility today plus discounted expected future utility given today's choice

$$v_{ijT-1} = u_{ijT-1} + \beta \mathbb{E} \max_{k \in \mathcal{J}} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j \right\}$$

where β is the discount factor

$$V_{it} = \mathbb{E} \max_{j \in \mathcal{J}} \left\{ u_{ijt} + \beta V_{it+1}(X_{it+1}) + \epsilon_{ijt} \right\}$$

$$V_{it} = \mathbb{E} \max_{i \in \mathcal{J}} \left\{ u_{ijt} + \beta V_{it+1}(X_{it+1}) + \epsilon_{ijt} \right\}$$

As with v_{ijt} formulation, we have immediate and discounted future components

$$V_{it} = \mathbb{E} \max_{i \in \mathcal{J}} \left\{ u_{ijt} + \beta V_{it+1}(X_{it+1}) + \epsilon_{ijt} \right\}$$

As with v_{iit} formulation, we have immediate and discounted future components

V is also called the unconditional value function

$$V_{it} = \mathbb{E} \max_{i \in \mathcal{I}} \left\{ u_{ijt} + \beta V_{it+1}(X_{it+1}) + \epsilon_{ijt} \right\}$$

As with v_{iit} formulation, we have immediate and discounted future components

V is also called the unconditional value function

Expectation taken over both future ϵ 's and future X's

$$V_{it} = \mathbb{E} \max_{i \in \mathcal{I}} \left\{ u_{ijt} + \beta V_{it+1}(X_{it+1}) + \epsilon_{ijt} \right\}$$

As with v_{iit} formulation, we have immediate and discounted future components

V is also called the unconditional value function

Expectation taken over both future ϵ 's and future X's

Recursive formulation helps keep notation compact

We've	seen	the	$\mathbb{E}max$	term	before:	

• When talking about expected consumer surplus

• When thinking about nested logit as a multi-stage problem

We've seen the \mathbb{E} max term before:

- When talking about expected consumer surplus
- When thinking about nested logit as a multi-stage problem

What is $\mathbb{E} \max$ if X_{iT} is deterministic given X_{iT-1} and d_{iT-1} , and ϵ 's are T1EV?

We've seen the \mathbb{E} max term before:

- When talking about expected consumer surplus
- When thinking about nested logit as a multi-stage problem

What is $\mathbb{E} \max \text{ if } X_{iT}$ is deterministic given X_{iT-1} and d_{iT-1} , and ϵ 's are T1EV?

$$\mathbb{E} \max = \log \left(\sum_{k} \exp \left(u_{ikT} \right) \right) + \underbrace{c}_{\text{Euler's constant}}$$

We can estimate α 's by MLE under the following conditions:

- X's transition deterministically
- E max term has a closed form

We can estimate α 's by MLE under the following conditions:

- X's transition deterministically
- \bullet \mathbb{E} max term has a closed form

Then

$$v_{ijT} = X_{iT}\alpha_j,$$

$$v_{ijT-1} = X_{iT-1}\alpha_j + \beta \log \sum_{k \in \mathcal{I}} \exp(X_{iT}\alpha_k) + \beta c$$

We can estimate α 's by MLE under the following conditions:

- X's transition deterministically
- E max term has a closed form

Then

$$v_{ijT} = X_{iT}\alpha_j,$$

$$v_{ijT-1} = X_{iT-1}\alpha_j + \beta \log \sum_{k \in \mathcal{I}} \exp(X_{iT}\alpha_k) + \beta c$$

Treat the v's like we would the u's in a multinomial logit model

When	might	dynamics	not ma	tter?	Let's wa	alk tl	rrough	location	normaliz	zation o	f utility

When might dynamics not matter?

$$egin{aligned} v_{ijT-1} - v_{ij'T-1} &= u_{ijT-1} - u_{ij'T-1} + \ eta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j
ight\} - \ eta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j'
ight\} \end{aligned}$$

When might dynamics not matter?

$$v_{ijT-1} - v_{ij'T-1} = u_{ijT-1} - u_{ij'T-1} + \beta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j \right\} - \beta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j' \right\}$$

If future value terms are equal \Rightarrow cancellation (model becomes static)

Thus, dynamics require that choices affect future states

When might dynamics not matter?

$$\begin{aligned} v_{ijT-1} - v_{ij'T-1} &= u_{ijT-1} - u_{ij'T-1} + \\ \beta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j \right\} - \\ \beta \mathbb{E} \max_{k} \left\{ u_{ikT} + \epsilon_{ikT} | d_{iT-1} = j' \right\} \end{aligned}$$

If future value terms are equal ⇒ cancellation (model becomes static)

Thus, dynamics require that choices affect future states

Easiest way to satisfy this is switching costs

Intuition: switching costs make agents consider future consequences