Fast and Accurate Entity Recognition with Iterated Dilated Convolutions

Emma Strubell, Patrick Verga, David Belanger & Andrew McCallum College of Information and Computer Sciences, University of Massachusetts Amherst

Summary

- Want fast and accurate NER / tagging
- LSTMs attain highest accuracy, but O(n) parallelized runtime; Feed-forward nets are O(1), but less accurate
- We introduce ID-CNNs: distinct combination of network structure, parameter sharing and training enabling 14-20x speedups while retaining Bi-LSTM-CRF accuracy.
- ID-CNNs trained on entire documents are even more accurate while maintaining $8\times$ test time speeds.

Model

The first layer in the network is a dilation-1 convolution $D_1^{(0)}$:

$$\mathbf{i_t} = D_1^{(0)} \mathbf{x_t} \tag{1}$$

We apply L_c layers of exponentially increasing dilation width to $\mathbf{i_t}$. Beginning with $\mathbf{c_t}^{(0)} = \mathbf{i_t}$:

$$\mathbf{c_t}^{(j)} = r \left(D_{2^{L_c-1}}^{(j-1)} \mathbf{c_t}^{(j-1)} \right)$$
 (2)

and add a final dilation-1 layer to the stack:

$$\mathbf{c_t}^{(L_c+1)} = r \left(D_1^{(L_c)} \mathbf{c_t}^{(L_c)} \right) \tag{3}$$

We iteratively apply this *block* $B(\cdot)$ of convolutions L_b times, starting with $\mathbf{b_t}^{(1)} = B\left(\mathbf{i_t}\right)$:

$$\mathbf{b_t}^{(k)} = B\left(\mathbf{b_t}^{(k-1)}\right) \tag{4}$$

Finally, we obtain per-class scores for each token \mathbf{x}_t :

$$\mathbf{h_t}^{(L_b)} = W_o \mathbf{b_t}^{(L_b)} \tag{5}$$

Training

Let $\mathbf{h_t}^{(k)}$ be the result of applying W_o from Eqn. (5) to $\mathbf{b_t}^{(k)}$. We minimize the average of the losses for each application of the block:

$$\frac{1}{L_b} \sum_{k=1}^{L_b} \frac{1}{T} \sum_{t=1}^{T} \log P(y_t \mid \mathbf{h_t}^{(k)})$$
 (6)

Dilated Iterated CNN

Experimental results

 $4.60 \times$

 $7.96 \times$

English	CoNLL	2003:
----------------	-------	-------

Bi-LSTM

ID-CNN

Model (sentence)	F1	Speed
Ratinov and Roth (2009)	86.82	
Collobert et al. (2011)	88.67	
Passos et al. (2014)	90.05	
Lample et al. (2016)	90.20	
Bi-LSTM-CRF (re-impl)	90.43 ± 0.12	$1 \times$
ID-CNN-CRF	90.54 ± 0.18	$1.28 \times$
Bi-LSTM	89.34 ± 0.28	$9.92 \times$
4-layer CNN	89.97 ± 0.20	$18.40 \times$
5-layer CNN	90.23 ± 0.16	$12.38 \times$
ID-CNN	90.32 ± 0.26	$14.10 \times$
Model (document)	F1	Speed
Bi-LSTM-CRF	90.60 ± 0.19	$1 \times$

 89.09 ± 0.19

 90.65 ± 0.15

Varying loss, parameter sharing:

Model		F1	
ID-CNN	noshare	89.81	\pm 0.19
ID-CNN	1-loss	90.06	\pm 0.19
ID-CNN		90.65	\pm 0.1

English OntoNotes 5.0:

Model	F1	Speed
Ratinov and Roth (2009)	83.45	
Durrett and Klein (2014)	84.04	
Chiu and Nichols (2016)	86.19 ± 0.25	
Bi-LSTM-CRF	86.99 ± 0.22	$1 \times$
Bi-LSTM-CRF-Doc	86.81 ± 0.18	$1.32 \times$
Bi-LSTM	83.76 ± 0.10	$24.44 \times$
ID-CNN-CRF (1 block)	86.84 ± 0.19	$1.83 \times$
ID-CNN-Doc (3 blocks)	85.76 ± 0.13	$21.19 \times$
ID-CNN (3 blocks)	85.27 ± 0.24	$13.21 \times$
ID-CNN (1 block)	84.28 ± 0.10	$26.01 \times$