Low-Level Design (LLD) for BigMart Sales Prediction Project

1. Introduction

This document provides a detailed technical design for building a machine learning model to predict sales for BigMart products across different outlets. It includes step-by-step information on the implementation, data handling, feature engineering, model training, and evaluation.

2. Input Specifications

- **2.1 Data Sources:** CSV file containing sales data for 2013 with product and store features.
- 2.2 Data Attributes: Product Features: Item_Identifier: Unique
 identifier for each product. Item_Weight: Weight of the product. Item_Fat_Content: Categorical feature indicating low or regular fat. Item_Visibility: Percentage of total display area allocated to the product.
 Item_Type: Category to which the product belongs. Item_MRP: Maximum
 Retail Price of the product.

Store Features:

- ° Outlet Identifier: Unique identifier for each outlet.
- Outlet_Establishment_Year: The year when the outlet was established.
- ° Outlet Size: Size of the outlet (small, medium, large).
- Outlet_Location_Type: Categorical feature indicating outlet location (urban, rural).
- ° Outlet_Type: Type of outlet (e.g., supermarket, grocery store).

• Target Variable:

° Item_Outlet_Sales: Sales for each product at a particular outlet.

3. Functional Requirements

3.1 Data Preprocessing: - **Objective:** Clean and preprocess data to make it suitable for machine learning.

Steps: - **Handling Missing Values:** - Item_Weight: Fill missing values using the median. - Outlet_Size: Fill missing values using the mode.

Outlier Detection:

 Identify outliers in numerical features like Item_Visibility. Cap outliers above 99th percentile.

• Feature Transformation:

- Create Outlet_Age by subtracting Outlet_Establishment_Year from the current year (2013).
- Binning Item_Visibility into low, medium, and high categories to reduce skewness.

3.2 Exploratory Data Analysis (EDA): - Objective: Understand the distribution of data and relationships between variables.

Steps: - **Univariate Analysis:** - Plot histograms for Item_Outlet_Sales, Item_MRP, and Item_Weight. - Analyze categorical features using bar plots (Item_Type, Outlet_Type).

• Bivariate Analysis:

- Scatter plots to visualize Item_MRP vs. Item_Outlet_Sales.
- Box plots to check sales distribution across Outlet_Type and Outlet_Location_Type.
- Correlation heatmaps to find relationships between numerical variables.

Tools:

Use matplotlib and seaborn for visualizations.

3.3 Feature Engineering: - **Objective:** Create meaningful features that improve the model's performance.

Steps: - **Create Derived Features:** - Outlet_Age: Current year (2013) minus Outlet_Establishment_Year. - Item_Category: Group Item_Type into broader categories (e.g., Food, Non-Food).

• Interaction Features:

 Create interaction terms between Item_Type and Outlet_Type to capture product-outlet relationships.

Tools:

pandas and numpy.

3.4 Categorical Encoding: - **Objective:** Convert categorical variables into numeric form for modeling.

Steps: - **Label Encoding:** Use LabelEncoder for ordinal features such as Outlet_Size. - **One-Hot Encoding:** Apply OneHotEncoder or pd.get_dummies() on nominal variables like Item_Fat_Content, Outlet_Type, Item_Type, etc.

Tools:

sklearn.preprocessing.LabelEncoder and pandas.get_dummies().

3.5 Model Training: - **Objective:** Train various machine learning models to predict sales.

Steps: - **Split Data:** - Split data into training (70%) and testing (30%) sets using train_test_split.

- Baseline Model:
 - Linear Regression:
 - Train a basic linear regression model using sklearn.linear_model.LinearRegression.
 - Evaluate using mean_absolute_error and r2_score.
- Regularized Models:
 - **Ridge and Lasso Regression:** Train Ridge and Lasso regression models with hyperparameter tuning.
- Non-linear Models:
 - Random Forest: Train a RandomForestRegressor to capture nonlinear relationships and feature interactions.
 - XGBoost: Train an XGBRegressor for better performance with optimized hyperparameters.

Tools:

sklearn.linear_model, sklearn.ensemble.RandomForestRegressor,
xqboost.XGBRegressor.

3.6 Model Evaluation: - **Objective:** Evaluate the model's performance on test data.

Steps: - Calculate metrics: - **Mean Absolute Error (MAE):** Use mean_absolute_error to measure prediction accuracy. - **R-squared (R²):** Use r2_score to explain the variance captured by the model.

• Perform cross-validation to assess model stability.

Tools:

sklearn.metrics.mean_absolute_error, sklearn.metrics.r2_score,
sklearn.model_selection.cross_val_score.

3.7 Model Tuning: - **Objective:** Optimize model hyperparameters to improve performance.

Steps: - **GridSearchCV:** Use grid search to tune hyperparameters such as n_estimators and max_depth for RandomForest and XGBoost. - **Feature Selection:** Apply feature importance analysis (e.g., based on Random Forest or XGBoost results) to eliminate less relevant features.

Tools:

sklearn.model_selection.GridSearchCV.

3.8 Final Model Selection: - **Objective:** Select the best-performing model based on evaluation metrics.

Steps: - Compare all models (Linear Regression, Ridge, Lasso, RandomForest, XGBoost) based on MAE and R^2 . - Select the model with the lowest error and highest R^2 score for final deployment.

4. Non-Functional Requirements

- **4.1 Performance:** The system should be capable of predicting sales within a reasonable time (less than 2 seconds for each prediction). The model training should complete within a few minutes for the given dataset.
- **4.2 Scalability:** The solution should handle increased data volume (e.g., more stores and products) without significant degradation in performance.
- **4.3 Usability:** The final model should be easy to deploy and use in future sales forecasting tasks.

5. Deployment Details

5.1 Model Saving: - Save the final model using joblib or pickle for future use.

```
Example: python import joblib joblib.dump(best_model,
'final sales model.pkl')
```

5.2 Model Inference: - Load the saved model and use it to predict sales for new data.

```
Example: python model = joblib.load('final_sales_model.pkl')
predictions = model.predict(new_data)
```

6. Risks and Mitigation

Risk	Mitigation
Missing or inconsistent data	Use imputation and data validation techniques
Model overfitting	Use regularization (Ridge, Lasso) and cross- validation

Risk	Mitigation
Long training times for large datasets	Use optimized algorithms like XGBoost and RandomForest
Poor model performance	Perform extensive feature engineering and hyperparameter tuning

7. Testing and Validation

- **7.1 Unit Testing:** Test individual components like data preprocessing, feature engineering, and model training using unit tests.
- **7.2 Integration Testing:** Ensure that the data preprocessing pipeline and model training work cohesively by testing the full workflow.
- **7.3 Performance Testing:** Evaluate the model's performance using validation data and ensure that the prediction time is within acceptable limits.

8. Conclusion

The BigMart Sales Prediction project involves building a robust machine learning model to predict product sales across stores. This Low-Level Design document outlines each step involved in data preprocessing, feature engineering, model training, evaluation, and deployment. By following this plan, the project will deliver a scalable, efficient solution for forecasting sales.