Eksamen på Økonomistudiet sommer 2014

Lineære Modeller

valgfag

Fredag d.30 maj 2014

(3-timers prøve med hjælpemidler, dog ikke lommeregnere og CAS værktøjer)

Dette eksamenssæt består af 2 sider.

KØBENHAVNS UNIVERSITETS ØKONOMISKE INSTITUT

2014S-2LM ex

Eksamen i Lineære Modeller

Fredag d.30 maj 2014.

Dette er en 3-timers eksamen (2 sider med i alt 4 opgaver).

Brug af bøger, noter og lignende er tilladt, men brug af lommeregner og casværktøjer er ikke tilladt.

Opgave 1.

I \mathbb{R}^n er der givet tre lineært uafhængige vektorer u_1, u_2 og u_3 . Lad u_4 og u_5 være givet ved $u_4 = u_1 + u_2$ og $u_5 = u_1 + u_2 + u_3$. Vi kalder span $\{u_1, u_2, u_3, u_4, u_5\} = U$.

- (1) Gør rede for at $n \geq 3$, samt at span $\{u_1, u_2, u_3, u_4, u_5\} = \text{span}\{u_1, u_4, u_5\}$.
- (2) Bestem koordinaterne for vektoren $v = u_2 + u_3$ med hensyn til basen u_1, u_4, u_5 i U.
- (3) Lad en lineær afbildning $L: U \to U$ være givet ved $Lu_1 = u_2 + u_3$, $Lu_4 = u_1$, og $Lu_5 = u_1$. Bestem matricen hørende til L med hensyn til basen u_1, u_4, u_5 for U, samt nulrummet for L, N(L).
- (4) Bestem Lu_3 .

Opgave 2.

Vi betragter, for reelle tal s, 3×3 matricen

$$A_s = \begin{pmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & s \end{pmatrix} .$$

- (1) Det oplyses at matricen A_s har tre forskellige egenværdier. Bestem for hvilke værdier af s dette er tilfældet.
- (2) Bestem egenvektorerne for A_s .
- (3) Bestem matricen $f(A_s)$, hvor f er en reel funktion defineret på spektret for A_s .
- (4) Bestem determinanten for $f(A_s)$.

Opgave 3.

- (1) Beregn integralet $\int \cos(x) \sin(2x) \sin(3x) dx$.
- (2) Løs den komplekse ligning $z^2 = -(4+4i)$. Løsningen ønskes angivet på rektangulær form a+ib.

Opgave 4.

Vi betragter funktionen f, som er sumfunktion for rækken

$$\sum_{n=0}^{\infty} \left(\frac{x}{x-1}\right)^n.$$

- (1) Bestem de værdier af x, for hvilke funktionen f er veldefineret.
- (2) Bestem en regneforskrift for funktionen f.
- (3) Bestem monotoniforholdene for funktionen f, og undersøg om funktionen er injektiv.
- (4) Bestem værdimængden for f.
- (5) Løs ligningen f(x) = y (med hensyn til x) for et givet y beliggende i værdimængden for funktionen f.