Advanced PDEs

Billy Sumners

April 22, 2019

Contents

1	Sobolev Spaces		
		Sobolev Spaces	
	1.2	Mollification and Approximation	7
2	Embeddings of Sobolev Spaces		
	2.1	Integrability of Sobolev Functions	11
	2.2	Hölder Continuity of Sobolev Functions	12
	2.3	Compact Embeddings	13
	2.4	Extension and Approximation	14
3	Wea	ak Solutions to PDEs	15

4 CONTENTS

Chapter 1

Sobolev Spaces

1.1 Sobolev Spaces

Let $\Omega \subseteq \mathbb{R}^n$ be open, $u \in L^1_{loc}(\Omega)$, and $\alpha \in \mathbb{N}^n_0$ a multiindex. A function $v \in L^1_{loc}(\Omega)$ is a *weak derivative* of u corresponding to α if

$$\int_{\Omega} u \partial^{\alpha} \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} v \varphi \, dx \tag{1.1}$$

for all $\varphi \in C_c^{\infty}(\Omega)$.

Lemma 1.1. Suppose $v, w \in L^1_{loc}(\Omega)$ are weak derivatives of $u \in L^1_{loc}(\Omega)$ corresponding to α . Then v = w a.e.

Proof. Given $\varphi \in C_c^{\infty}(\Omega)$, we have

$$\int_{\Omega} (v - w) \varphi \, dx = (-1)^{|\alpha|} \int_{\Omega} (u - u) \partial^{\alpha} \varphi \, dx = 0.$$
 (1.2)

The proof then follows from the following important lemma.

Lemma 1.2 (Fundamental Lemma of the Calculus of Variations). *Suppose* $v \in L^1_{loc}(\Omega)$ *satisfies*

$$\int_{\Omega} v \varphi \, \mathrm{d}x = 0 \tag{1.3}$$

for all $\varphi \in C_c^{\infty}(\Omega)$. Then v = 0 a.e.

We will prove this later after introducing mollification. The idea is to approximate $\operatorname{sgn} v$ by a function in $C_c^{\infty}(\Omega)$.

If $u \in L^1_{loc}(\Omega)$ has a weak derivative corresponding to α , we will write $\partial^{\alpha} u$ for this weak derivative, interpreting it as a (necessarily unique by the preceding lemma) element of $L^1_{loc}(\Omega)$. If all weak derivatives of order 1 for u exist, we say u is weakly differentiable, and we compile all its derivatives in the weak gradient $\nabla u := (\partial_1 u, \dots, \partial_n u)$.

Of course, integration by parts implies that if $u \in C^k(\Omega)$, then all its weak derivatives of order at most k exist, and are equal to the corresponding classical derivatives. Furthermore, if $U \subseteq \Omega$ is open, then $C_c^{\infty}(U)$ embeds naturally in $C_c^{\infty}(\Omega)$ (extension by zero), so if $u \in L^1_{loc}(\Omega)$ has a weak derivative corresponding to α , then its restriction to U also has a weak derivative corresponding to α , given by the restriction of $\partial^{\alpha}u$. From these facts, the following two examples follow naturally.

Example 1.3. On $\Omega = (-1,1) \subseteq \mathbb{R}$, define

$$u(x) := \begin{cases} 0 & x < 0, \\ x & x \ge 0. \end{cases}$$
 (1.4)

Then on the open set (-1,0), u has classical derivative 0, and on (0,1), u has classical derivative 1. So if u were weakly differentiable, its weak derivative would be

$$v(x) := \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$
 (1.5)

Let's check this. Fix $\varphi \in C_c^{\infty}(\Omega)$. Then

$$\int_{-1}^{1} v \varphi \, dx = \int_{0}^{1} \varphi \, dx = -\int_{0}^{1} x \varphi'(x) \, dx = -\int_{-1}^{1} u \varphi' \, dx. \tag{1.6}$$

It follows that u' exists and equals v.

Example 1.4. On the same Ω , define

$$u(x) := \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$
 (1.7)

As before, u is classically differentiable on (-1,0) and on (0,1) with classical derivative 0, so this would have to be the weak derivative of u if it exists. However, we claim that u is not weakly differentiable. To see this, fix $\varphi \in C_c^{\infty}(\Omega)$ with $\varphi(0) \neq 0$. Then

$$\int_{-1}^{1} u \varphi' \, dx = \int_{0}^{1} \varphi' \, dx = -\varphi(0) \neq 0 = -\int_{-1}^{1} 0 \varphi(x) \, dx, \tag{1.8}$$

as required.

Let's now define the spaces we will be using for the rest of the course. Let $\Omega \subseteq \mathbb{R}^n$ be open, $p \in [1,\infty]$, and $k \in \mathbb{N}_0$. The *Sobolev space* $W^{k,p}(\Omega)$ is defined to be the space of functions $u \in L^p(\Omega)$ such that for all multiindices α with $|\alpha| \le k$, the weak derivative $\partial^{\alpha} u$ exists and lies in $L^p(\Omega)$. The norm on this space is given by

$$||u||_{W^{k,p}(\Omega)} := \left(\sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^p(\Omega)}^p\right)^{1/p} \quad p < \infty, \tag{1.9}$$

and

$$||u||_{W^{k,\infty}(\Omega)} := \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{\infty}(\Omega)}. \tag{1.10}$$

Clearly, the Sobolev spaces are vector spaces. We will show their norms are actually norms by embedding them as particularly nice subspaces of a certain L^p space. This embedding will automatically give us some other properties.

Define Ω_k to be the disjoint union $\coprod_{|\alpha| \le k} \Omega = \prod_{|\alpha| \le k} \{\alpha\} \times \Omega$, and equip it with the Lebesgue measure. Define $i: W^{k,p}(\Omega) \to L^p(\Omega_k)$ by

$$i(u)(\alpha, x) := \partial^{\alpha} u(x). \tag{1.11}$$

Then *i* is a linear isometry as can be easily checked, from which it follows immediately that $\|\cdot\|_{W^{k,p}(\Omega)}$ is a norm. For more intricate properties, we will prove the following:

Lemma 1.5. Under the embedding above, $W^{k,p}(\Omega)$ is a closed subspace of $L^p(\Omega_k)$.

Indeed, this lemma tells us that $W^{k,p}(\Omega)$ is a Banach space for all $p \in [1,\infty]$, separable for $p \in [1,\infty)$, and reflexive for $p \in (1,\infty)$.

Proof. Let u_i be a sequence in $W^{k,p}(\Omega)$ such that $i(u_i)$ is Cauchy in $L^p(\Omega_k)$. Then, for each multiindex α , $\partial^{\alpha}u_i$ converges to some $u^{(\alpha)}$ in $L^p(\Omega)$. We claim that $u^{(0)}$ is in $W^{k,p}(\Omega)$, and $\partial^{\alpha}u^{(0)} = u^{(\alpha)}$ for all multiindices α . Indeed, given $\varphi \in C_c^{\infty}(\Omega)$, we have

$$\int_{\Omega} \varphi u^{(\alpha)} dx = \lim_{i \to \infty} \int_{\Omega} \varphi \partial^{\alpha} u_{i} dx$$

$$= \lim_{i \to \infty} (-1)^{|\alpha|} \int_{\Omega} \partial^{\alpha} \varphi u_{i} dx$$

$$= \int_{\Omega} \partial^{\alpha} \varphi u^{(0)} dx,$$
(1.12)

where passing to limits is possible by Hölder's inequality. Since each $u^{(\alpha)}$ lies in $L^p(\Omega)$, we have that $u^{(0)}$ is in $W^{k,p}(\Omega)$. Finally, since $i(u_i) \to i(u^{(0)})$ in $L^p(\Omega_k)$, it follows that $u_i \to u^{(0)}$ in $W^{k,p}(\Omega)$.

Since finite-dimensional norms are all equivalent, there are many equivalent norms to put on Sobolev spaces. For example,

$$||u|| := \sum_{|\alpha| \le k} ||\partial^{\alpha} u||_{L^{p}(\Omega)}$$

$$\tag{1.13}$$

is a particularly nice one.

The Sobolev space we will be using most often are $W^{k,2}(\Omega)$, also denoted $H^k(\Omega)$. These spaces gain an inner product, defined by

$$(u,v)_{H^k(\Omega)} := \int_{\Omega} uv \, \mathrm{d}x. \tag{1.14}$$

1.2 Mollification and Approximation

In this section, fix a nonnegative smooth test function $\eta \in C_c^{\infty}(B(0,1))$ such that $\|\eta\|_{L^1} = 1$. Such an η is called a *mollifier*. For h > 0, we define its rescaling $\eta_h \in C_c^{\infty}(B(0,h))$ by

$$\eta_h(x) := \frac{1}{h^n} \eta\left(\frac{x}{h}\right). \tag{1.15}$$

Given $u \in L^1_{loc}(\Omega)$, define its *mollification* at scale h > 0 by

$$u_h(x) := (\eta_h * u)(x) = \int_{B(x,h)} \eta_h(x - y) u(y) \, dy,$$
 (1.16)

whenever $x \in \Omega$ is such that $\overline{B(x,h)} \subseteq \Omega$. Strictly speaking, this condition is not absolutely necessary since we can extend any locally integrable function by zero to all of \mathbb{R}^n . It will be necessary shortly, however.

Lemma 1.6. Let $u \in L^1_{loc}(\mathbb{R}^n)$, and let h > 0. Then $u_h \in C^{\infty}(\mathbb{R}^n)$.

Proof. Fix a multiindex α . Then

$$\frac{\partial^{\alpha}}{\partial x^{\alpha}} \int_{\mathbb{R}^{n}} \eta_{h}(x - y) u(y) \, dy = \int_{\mathbb{R}^{n}} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \eta_{h}(x - y) u(y) \, dy, \tag{1.17}$$

where we may move the derivative under the integral since the derivative

$$\frac{\partial^{\alpha}}{\partial x^{\alpha}} \eta_h(x - y) u(y) \tag{1.18}$$

is bounded by the integrable function $\|\partial^{\alpha} \eta_h\|_{L^{\infty}(\mathbb{R}^n)} \|u\|_{B(x,h)}$ independent of $x \in \mathbb{R}^n$.

Lemma 1.7. Fix a locally integrable function $u \in L^1_{loc}(\Omega)$, and a multiindex α such that the weak derivative $\partial^{\alpha}u$ exists. Suppose $x \in \Omega$ and h > 0 is such that $\overline{B(x,h)} \subseteq \Omega$. Then the classical derivative $\partial^{\alpha}u_h$ exists, and $\partial^{\alpha}u_h(x) = (\partial^{\alpha}u)_h(x)$.

Proof. This is a simple calculation:

$$\frac{\partial^{\alpha}}{\partial x^{\alpha}} \int_{\Omega} \eta_{h}(x - y) u(y) \, dy = \int_{\Omega} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \eta_{h}(x - y) u(y) \, dy$$

$$= \int_{\Omega} (-1)^{|\alpha|} \frac{\partial^{\alpha}}{\partial x^{\alpha}} \eta_{h}(x - y) u(y) \, dy$$

$$= \int_{\Omega} \eta_{h}(x - y) \partial^{\alpha}(y) \, dy.$$
(1.19)

Again, we can move the derivative inside the integral by the proof of the previous lemma. In the last equality, we use the fact that $y \mapsto \eta_h(x-y)$ is smooth with compact support.

We will now show how mollification can be used to approximate Sobolev functions by smooth functions.

Theorem 1.8. (a) Let $\Omega \subseteq \mathbb{R}^n$ be open, and let $u \in L^1_{loc}(\Omega)$. Then $u_h \to u$ a.e. as $h \downarrow 0$. If u is continuous, then $u_h \to u$ locally uniformly.

Choose a smaller open set $\Omega' \subseteq \Omega$, let $p \in [1, \infty]$, and let h > 0 be sufficiently small such that

$$\left\{ x \in \mathbb{R}^n : d(x, \Omega') < h \right\} \subseteq \Omega. \tag{1.20}$$

(b) If $u \in L^p(\Omega)$, then $||u_h||_{L^p(\Omega')} \le ||u||_{L^p(\Omega)}$. Furthermore, if $p \in [1, \infty)$, then $u_h \to u$ in $L^p(\Omega')$.

(c) If $u \in W^{k,p}(\Omega)$, then $||u_h||_{W^{k,p}(\Omega')} \le ||u||_{W^{k,p}(\Omega)}$. Furthermore, if $p \in [1,\infty)$, then $u_h \to u$ in $W^{k,p}(\Omega')$.

Proof. (a) By the Lebesgue differentiation theorem, we have

$$\lim_{h \downarrow 0} \int_{B(x,h)} |u(x) - u(y)| \, \mathrm{d}y \tag{1.21}$$

for a.e. $x \in \Omega$. Choose such an x. Then

$$\lim_{h\downarrow 0} \left| u(x) - \int_{B(x,h)} \eta_h(x-y)u(y) \, dy \right| \le \lim_{h\downarrow 0} \int_{B(x,h)} \eta_h(x-y) \left| u(x) - u(y) \right| \, dy$$

$$\le \lim_{h\downarrow 0} C \int_{B(x,h)} \left| u(x) - u(y) \right| \, dy$$

$$= 0$$
(1.22)

This shows $u_h \rightarrow u$ a.e.

For local uniform convergence, note that u is uniformly continuous on any ball in Ω . Let $\varepsilon > 0$, and choose $\delta > 0$ such that $h < \delta$ implies $|u(x) - u(y)| < \varepsilon$ for all $x, y \in \Omega$ with |x-y| < h. The rest follows by following the above argument for convergence a.e.

(b) Suppose first that $p = \infty$. Then, for all $x \in \Omega'$, we have

$$|u_h(x)| \le \int_{B(x,h)} \eta_h(x-y) |u(y)| \, \mathrm{d}y \le ||u||_{L^{\infty}(\Omega)}.$$
 (1.23)

Suppose on the other hand that $p \in [1, \infty)$. We use Hölder's inequality with respect to the measure $\eta_h(x-y)$ dy to find

$$|u_{h}(x)| \leq \int_{B(x,h)} u(y) \eta_{h}(x-y) \, dy$$

$$\leq \left(\int_{B(x,h)} |u(y)|^{p} \eta_{h}(x-y) \, dy \right)^{\frac{1}{p}} \left(\int_{B(x,h)} \eta_{h}(x-y) \, dy \right)^{\frac{1}{p'}}$$

$$\leq \left(\int_{B(x,h)} |u(y)|^{p} \eta_{h}(x-y) \, dy \right)^{\frac{1}{p}}.$$
(1.24)

Taking to the power p and integrating over $x \in \Omega'$, we have

$$\int_{\Omega'} |u_h(x)|^p \, \mathrm{d}x \le \int_{\Omega'} \int_{B(x,h)} |u(y)|^p \, \eta_h(x-y) \, \mathrm{d}y \, \mathrm{d}x$$

$$= \int_{B(x,h)} |u(y)|^p \int_{\Omega'} \eta_h(x-y) \, \mathrm{d}x \, \mathrm{d}y$$

$$\le \int_{\Omega} |u(y)|^p \, \mathrm{d}y.$$
(1.25)

This shows the required inequality.

For the convergence, note that $C(\Omega)$ is dense in $L^p(\Omega)$, so let $\varepsilon > 0$, and choose $v \in C(\Omega)$ such that $||u-v||_{L^p(\Omega)} < \frac{\varepsilon}{3}$. By part (a), we can choose h > 0 sufficiently small so that $||v_h-v||_{L^p(\Omega')} < \frac{\varepsilon}{3}$. Then

$$||u_{h} - u||_{L^{p}(\Omega')} \leq ||u_{h} - v_{h}||_{L^{p}(\Omega')} + ||v_{h} - v||_{L^{p}(\Omega')} + ||v - u||_{L^{p}(\Omega')}$$

$$\leq ||u - v||_{L^{p}(\Omega)} + ||v_{h} - v||_{L^{p}(\Omega')} + ||v - u||_{L^{p}(\Omega)}$$

$$< \varepsilon,$$
(1.26)

as required.

(c) This follows immediately from part (b) and lemma 1.7.

Having approximated Sobolev functions locally by smooth functions, we would now like to do it globally.

Lemma 1.9. For $k \in \mathbb{N}$ and $p \in [1, \infty]$, let $u \in W^{k,p}(\Omega)$ and $\psi \in C^{\infty}(\Omega)$. Then $\psi u \in W^{k,p}(\Omega)$.

Proof. We claim ψu has weak derivative

$$v_{\alpha} := \sum_{\beta < \alpha} {\alpha \choose \beta} \partial^{\alpha - \beta} \psi \partial^{\beta} u \in L^{p}(\Omega)$$
(1.27)

corresponding to the multiindex α with $|\alpha| \le k$. By an induction argument, it suffices to prove this for $|\alpha| = 1$. Fix $i \in \{1, ..., n\}$, and a test function $\varphi \in C_c^{\infty}(\Omega)$. Then

$$\int_{\Omega} v_{i} \varphi \, dx = \int_{\Omega} (u \partial_{i} \psi + \psi \partial_{i} u) \varphi \, dx$$

$$= \int_{\Omega} u (\varphi \partial_{i} \psi - \partial_{i} (\psi \varphi)) \, dx$$

$$= -\int_{\Omega} u \psi \partial_{i} \varphi \, dx,$$
(1.28)

therefore proving the claim, and hence the lemma.

Theorem 1.10. Let $\Omega \subseteq \mathbb{R}^n$ be open, $k \in \mathbb{N}_0$ and $p \in [1, \infty)$. Then, for all $u \in W^{k,p}(\Omega)$ and $\varepsilon > 0$, there exists $v \in (C^{\infty} \cap W^{k,p})(\Omega)$ such that $||u-v||_{W^{k,p}(\Omega)} < \varepsilon$.

Proof. partition of unity wrt an increasing sequence $\emptyset = \Omega_0 \subseteq \Omega_1 \subseteq \cdots \subseteq \Omega_i \subseteq \cdots \subseteq \Omega$.

Chapter 2

Embeddings of Sobolev Spaces

2.1 Integrability of Sobolev Functions

Theorem 2.1 (Sobolev Embedding). For $p \in [1, n)$, there exists $C = C_{n,p} > 0$ such that

$$||u||_{L^{p^*}(\mathbb{R}^n)} \le C ||\nabla u||_{L^p(\mathbb{R}^n)} \tag{2.1}$$

for all $u \in W_0^{1,p}(\mathbb{R}^n)$, where $p^* := \frac{np}{n-p}$ is the Sobolev conjugate of p. In other words, $W_0^{1,p}(\mathbb{R}^n)$ embeds continuously in $L^{p^*}(\mathbb{R}^n)$.

A similar result holds for other $W_0^{k,p}(\mathbb{R}^n)$ by a little bootstrapping.

Let's show that p^* is the only possible index. Indeed, suppose the inequality $\|u\|_{L^q(\mathbb{R}^n)} \le C \|\nabla u\|_{L^p(\mathbb{R}^n)}$ holds for some $C = C_{n,p} > 0$, $q \in [1,\infty]$, and all $u \in W^{1,p}(\mathbb{R}^n)$. Note first that $q \ne \infty$, since we can take $u(x) = |x|^{-s} - 1$ on B(0,1) for some $s \in (0,\frac{n-1}{p})$, u(x) = 0 elsewhere. Then u is unbounded, yet lies in $W_0^{1,p}(\mathbb{R}^n)$. Thus we now suppose $q \in [1,\infty)$. For $\lambda > 0$, define $u_{\lambda}(x) := u(\lambda x)$. Then

$$||u_{\lambda}||_{L^{q}(\mathbb{R}^{n})} = \left(\int_{\mathbb{R}^{n}} |u(\lambda x)|^{q} dx\right)^{\frac{1}{q}} = \lambda^{-\frac{n}{q}} ||u||_{L^{q}(\mathbb{R}^{n})},$$
(2.2)

and similarly,

$$\|\nabla u_{\lambda}\|_{L^{p}(\mathbb{R}^{n})} = \left(\int_{\mathbb{R}^{n}} |\lambda \nabla u(\lambda x)|^{p} dx\right)^{\frac{1}{p}} = \lambda^{1-\frac{n}{p}} \|\nabla u\|_{L^{p}(\mathbb{R}^{n})}. \tag{2.3}$$

So in order for the estimate $||u||_{L^q(\mathbb{R}^n)} \le C ||\nabla u||_{L^p(\mathbb{R}^n)}$ to hold independent of u, we need $-\frac{n}{q} = 1 - \frac{n}{p}$. Indeed, the given estimate implies

$$\lambda^{-\frac{n}{q}} \|u\|_{L^{q}(\mathbb{R}^{n})} \le C\lambda^{1-\frac{n}{p}} \|\nabla u\|_{L^{p}(\mathbb{R}^{n})}$$
 (2.4)

for all $u \in W_0^{1,p}(\mathbb{R}^n)$ and $\lambda > 0$. So if $-\frac{n}{q} < 1 - \frac{n}{p}$, then we can take $\lambda \to 0$ to obtain a contradiction, and in the case $-\frac{n}{q} > 1 - \frac{n}{p}$, we take $\lambda \to \infty$. Solving $-\frac{n}{q} = 1 - \frac{n}{p}$ gives us $q = \frac{np}{n-p} = p^*$

2.2 Hölder Continuity of Sobolev Functions

Choose a set $A \subseteq \mathbb{R}^n$ (not necessarily open), and let $\alpha \in (0,1]$. A function $u: A \to \mathbb{R}$ is *uniformly* α -Hölder continuous if there exists C > 0 such that

$$|u(x) - u(y)| \le C|x - y|^{\alpha} \tag{2.5}$$

for all $x, y \in A$. The α -Hölder seminorm is defined by

$$[u]_{C^{0,\alpha}(A)} := \sup_{x,y \in A} \frac{|u(x) - u(y)|^{\alpha}}{x - y}.$$
 (2.6)

More generally, u is *locally* α -Hölder continuous if it is uniformly α -Hölder continuous on any compact subset of A. Now take an open set $\Omega \subseteq \mathbb{R}^n$. We let $C^{k,\alpha}(\Omega)$ denote the set of all $u \in C^k(\Omega)$ whose derivatives up to order k are all locally α -Hölder continuous. If Ω has the property $(\overline{\Omega})^\circ = \Omega$, we define $C^{k,\alpha}(\overline{\Omega})$ to be the set of functions $u \in C^{k,\alpha}(\Omega)$ such that the α -Hölder norm

$$||u||_{C^0(\Omega)} + \sum_{|\beta| < k} [\partial^{\beta} u]_{C^{0,\alpha}(\Omega)}$$
 (2.7)

is finite. The definition is ambigious when $\Omega = \mathbb{R}^n$, so we take $C^{k,\alpha}(\mathbb{R}^n)$ to be the $C^{k,\alpha}(\overline{\Omega})$ definition.

Lemma 2.2 (Morrey's Inequality). For $p \in (n, \infty]$ and r > 0, there exists $C = C_{n,p} > 0$ such that

$$|u(x) - u(y)| \le Cr^{1 - \frac{n}{p}} \|\nabla u\|_{L^p(B(0,r))}$$
 (2.8)

for a.e. $x, y \in B(0,r)$ and all $u \in W^{1,p}(B(0,r))$.

The following theorem follows nicely:

Theorem 2.3 (Morrey Embedding). For $p \in (n, \infty]$, there exists $C = C_{n,p} > 0$ such that for all $u \in W^{1,p}(\mathbb{R}^n)$, there exists a version \widetilde{u} of u which is uniformly α -Hölder continuous, and

$$\|\widetilde{u}\|_{C^{0,1-\frac{n}{p}}(\mathbb{R}^n)} \le C \|u\|_{W^{1,p}(\mathbb{R}^n)}.$$
 (2.9)

In other words, $W^{1,p}(\mathbb{R}^n)$ embeds continuously in $C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$.

Proof. Let $x, y \in \mathbb{R}^n$, and set r := 2|x-y|. Then $u \in W^{1,p}(B(x,r))$, so Morrey's inequality implies there exists $C = C_{n,p} > 0$ such that

$$|u(x) - u(y)| \le C_{n,p} |x - y|^{1 - \frac{n}{p}} \|\nabla u\|_{L^p(B(x,r))}.$$
(2.10)

The Sobolev and Morrey embedding theorems give us our first set of Poincaré-like inequalities:

Theorem 2.4 (Friedrichs-Poincaré). For $p \in [1, \infty]$ and $\Omega \subseteq \mathbb{R}^n$ open and with finite measure, let q lie in one of the following intervals

- $[1, p^*]$ *if* $p \in [1, n)$,
- $[1, \infty)$ if p = n,
- $[1,\infty]$ if $p \in (n,\infty]$.

Then there exists $C = C_{n,p,q} > 0$ such that

$$||u||_{L^{q}(\Omega)} \le C ||\nabla u||_{L^{p}(\Omega)}$$
 (2.11)

for all $u \in W_0^{1,p}(\Omega)$.

Proof. Suppose first that $p \in [1, n)$. By the Sobolev embedding theorem, there exists $C = C_{n,p} > 0$ such that

$$||u||_{L^{p^*}(\Omega)} = ||u||_{L^{p^*}(\mathbb{R}^n)} \le C_{n,p} ||\nabla u||_{L^p(\mathbb{R}^n)} = C_{n,p} ||\nabla u||_{L^p(\Omega)}, \tag{2.12}$$

for all $u \in W_0^{1,p}(\Omega)$, which embeds in $W_0^{1,p}(\mathbb{R}^n)$ by extension by zero. Since Ω has finite measure, we have $L^{p^*}(\Omega) \subseteq L^q(\Omega)$, and $\|u\|_{L^q(\Omega)} \le \|u\|_{L^{p^*}(\Omega)}$ for all $u \in L^{p^*}(\Omega)$. The desired inequality follows

Now suppose p = n. First, take n > 1. Choose $q \in [\frac{n}{n-1}, \infty)$, and set $p' = \frac{nq}{n+q}$. Then $p' \in [1, n)$, and $(p')^* = q$. By the previous estimates, we have

$$||u||_{L^{q}(\Omega)} \le C_{n,q} ||\nabla u||_{L^{p'}(\Omega)} \le C_{n,q} ||\nabla u||_{L^{n}(\Omega)}.$$
 (2.13)

The case n = 1 is what.

Finally, suppose $p \in (n, \infty]$. Take $u \in W_0^{1,p}(\Omega)$, and let $\widetilde{u} \in C^{0,1-\frac{n}{p}}(\mathbb{R}^n)$ be its continuous version. Since Ω has finite measure, we can choose r > 0 such that $B(y,r) \setminus \Omega$ is nonempty. Choose x in this set. Then by Morrey's inequality, noting $\widetilde{u} \in W^{1,p}(B(y,r))$, we have

$$\begin{aligned} |\widetilde{u}(y)| &= |\widetilde{u}(y) - \widetilde{u}(x)| \\ &\leq C_{n,p} r^{1-\frac{n}{p}} \|\nabla \widetilde{u}\|_{L^{p}(B(y,r))} \\ &= C_{n,p,\Omega} \|\nabla \widetilde{u}\|_{L^{p}(\Omega)}. \end{aligned}$$

$$(2.14)$$

The inequality follows.

2.3 Compact Embeddings

Theorem 2.5 (Rellich-Kondrachov). For $p \in [1,n)$ and $\Omega \subseteq \mathbb{R}^n$ open and bounded, let $q \in [1,p^*)$. Then $W_0^{1,p}(\mathbb{R}^n)$ embeds compactly in $L^q(\mathbb{R}^n)$.

The proof comes from this absolutely fat theorem:

Theorem 2.6 (Arzelà-Ascoli). Let $A \subseteq \mathbb{R}^n$ be some set, and let $u_i \in C(A)$ be a bounded and uniformly equicontinuous sequence. Then u_i has a locally uniformly convergent subsequence.

2.4 Extension and Approximation

Chapter 3

Weak Solutions to PDEs