UNIVERSIDADE PEDERAL DO MARANHÃO Centro de Ciências Exatas e Tecnologia		Departamento de Informática - DEMF Internet: www.deinf.ufma.br		3a AVALIAÇÃO
Disciplina: Teoria da Computação		Curso: CIÊNCIA DA COMPUTAÇÃO		T
Código 5607.5	Carga Horária: (0 horas	Créditos: 4.0.0	MEDIA
Professor: Luciano Rei	s Coutinho 👟	Email: Irc@c	leinf.ufma.br	7,5
Terceira Avaliaçã	o: Prova Escrita	Silva Jim	Data: 24 ag Código:	osto de 2016
 A interpretação e resposta sua interpretação 	rpretação e a corresponden	avaliação. Caso te resposta	a livros, anotações, etc. ache um enunciado ambiguo ou imp na folha de respostas (papel almaço)	

QUESTÕES

1. (2,0 pontos) Funções recursivas de Kleene. As funções recursivas de KLEENE são funções parciais definidas a partir de três tanções básicas – a função constante zero Z(x)=0, a função sucessor S(x)=x+1 e as funções de projeção $U^n_i(x_1,...,x_n)=x_i$ (uma para cada $n, i \in \mathbb{N}$) – utilizando os esquemas de

3) $g_s(x,y,z)=S(U^3_3(x,y,z))$ – composição de 1) com 2)

5) $soma(x, 0)=U_1(x)$

 $soma(x,y+1)=g_s(x,y,soma(x,y))$ – recursão primitiva usando 4) e 3) no papel de f(x) e g(x), resp.

Um outro exemplo é a definição da função mult(x,y):

8) $g_m(x,y,z) = soma(U^3(x,y,z), U^3(x,y,z)) - composição de 5) com 7) e com 2)$

9) mult(x, 0)=Z(x)

 $mult(x,y+1)=g_m(x,y,mult(x,y))$ – recursão primitiva usando 8) e 6) no papel de f(x) e g(x), resp.

Dando continuidade, MOSTRE passo a passo como as funções fatorial fat(x)=x! e exponenciação $\exp(x,y)=x^2$ podem ser definidas como funções recursivas de KLEENE.

- (1,0 ponto) Usando as definições recursivas das funções soma(x,y) e mult(x,y) dadas na questão anterior, mostre passo a passo como é calculado o valor mult(3,2).
- 3. (2,0 pontos) Função de Ackermann. A função de Ackerman é um importante exemplo no estudo das funções recursivas. Afunção de Ackermann ack; N2 - N é tal que:

```
ack(0,y) = y + 1
ack(1,0) = 2
```

ack(x,0) = x+2, para x >= 2

ack(x+1, y+1) = ack(ack(x, y+1), y)

- a) A definição acima satisfaz a definição de função recursiva de KLEENE? Justifique sua resposta em no
- b) Mostre passo a passo como são calculados os valores de ack(0,0) e ack(2,1).