Homotopy type theory

Ingo Blechschmidt November 25th, 2014

Outline

- 1 Foundations
 - What are foundations?
 - What's problematic with set-based foundations?
- 2 Basics on homotopy type theory (HoTT)
 - What is homotopy type theory?
 - What are values and types?
 - What is the dependent equality type?
- 3 Homotopy theory in HoTT
 - How are types like spaces?
 - How are constructions encoded?
 - What are higher inductive definitions?
 - What is circle induction?
- 4 Further topics
 - What is type truncation?
 - What is the univalence axiom?
 - What's the status of the axiom of choice?
 - What are models of HoTT?
- 5 References

What are foundations?

- Foundations set the logical context for doing maths.
- Their details don't matter in everyday work (mostly).
- But their main concepts do.

http://collabcubed.com/2012/10/24/high-trestle-trail-bridge-rdg/

What are foundations?

- Foundations set the logical context for doing maths.
- Their details don't matter in everyday work (mostly).
- But their main concepts do.
- Classical foundations are set-based (ZF, ZFC, ...): Everything is a set.
- $0 := \emptyset, \quad 1 := \{0\}, \quad 2 := \{0,1\}, \quad \dots$
- $(x,y) := \{ \{x\}, \{x,y\} \}$ (Kuratowski pairing)
- (x,y,z) := (x,(y,z))
- maps: (X, Y, R) with $R \subseteq X \times Y$ such that ...

What's wrong with set-based foundations?

Set-based foundations ...

- do not reflect typed mathematical practice,
- do not respect equivalence of structures,
- require complex encoding of "higher-level" subjects, complicating interactive proof environments.

What is homotopy type theory?

- Homotopy type theory is a new foundational theory.
- Basic notions have a homotopy-theoretic flavour.
- One can start doing "real mathematics" right away, without complex encodings.
- Initiated by Voevodsky in 2005.

Some participants of the IAS special year

What is homotopy type theory?

Homotopy type theory ...

- is elegant,
- reflects mathematical practice,
- contains wondrous new concepts,
- ensures that everything respects equivalences,
- simplifies the plumbing of homotopy theory,
- allows for accessible computer formalization.

What are values and types?

- In type theory, there are **values** and **types**.
- Every value is of exactly one type.
- Types may depend on values.

 $7: \mathbb{N}$

 $(3,5): \mathbb{N} \times \mathbb{N}$

 $\mathsf{succ}: \mathbb{N} \to \mathbb{N}$

zero vector : \mathbb{R}^n $(n : \mathbb{N})$

What are values and types?

- In type theory, there are **values** and **types**.
- Every value is of exactly one type.
- Types may depend on values.

$$7: \mathbb{N}$$
$$(3,5): \mathbb{N} \times \mathbb{N}$$
$$\mathsf{succ}: \mathbb{N} \to \mathbb{N}$$

zero vector : \mathbb{R}^n $(n : \mathbb{N})$

Let B(x) be a type family depending on x : A.

■
$$\prod_{x:A} B(x) = "\{f : A \to ?? | f(a) : B(a) \text{ for all } a : A\}"$$

What is the dependent equality type?

In set theory, for a set *X* and elements $x, y \in X$:

- "x = y" is a proposition.
- Set theory is **layered above** predicate logic.

In type theory, for a type X and values x, y : X:

- There is the **equality type** $Id_X(x,y)$ or $(x =_X y)$.
- To verify that "x = y", exhibit a value of (x = y).
- Have $refl_x : (x = x)$.
- Identity types may contain zero or many values!

Intuition: (x = y) is the type of **proofs** that "x = y".

What is the dependent equality type?

In set theory, for a set *X* and elements $x, y \in X$:

- "x = y" is a proposition.
- Set theory is **layered above** predicate logic.

In type theory, for a type X and values x, y : X:

- There is the **equality type** $Id_X(x,y)$ or $(x =_X y)$.
- To verify that "x = y", exhibit a value of (x = y).
- Have $refl_x : (x = x)$.
- Identity types may contain zero or many values!

Intuition: (x = y) is the type of **proofs** that "x = y".

Intuition: (x = y) is the type of paths $x \rightsquigarrow y$.

How are types like spaces?

homotopy theory	type theory
space X point $x \in X$ path $x \rightsquigarrow y$ (continuous) map	type X value $x : X$ value of $(x = y)$ value of $X \to Y$

■ A **homotopy** between maps $f, g : X \rightarrow Y$ is a value of

$$(f \simeq g) :\equiv \prod_{x \in X} (f(x) = g(x)).$$

■ A space *X* is **contractible** iff

$$\mathsf{IsContr}(X) :\equiv \sum_{x:X} \prod_{y:X} (x = y).$$

How are types like spaces?

■ "The type *X* is **contractible**":

$$\mathsf{IsContr}(X) :\equiv \sum_{x:X} \prod_{y:X} (x = y).$$

■ "The type *X* is a **mere proposition**":

$$\mathsf{IsMereProp}(X) :\equiv \prod_{x,y:X} (x = y)$$

■ "The type *X* is a **set** or **discrete space**":

$$\mathsf{IsSet}(X) :\equiv \prod_{x,y:X} \mathsf{IsMereProp}(x = y)$$

■ For instance, N is a set.

How are types like spaces?

■ Functions are automatically **continuous/functorial**:

$$(x = y) \longrightarrow (f(x) = f(y)).$$

■ Type families $P: X \to \mathcal{U}$ automatically behave like **fibrations**, in that fibers over connected points are equivalent:

$$(x = y) \longrightarrow (P(x) \simeq P(y)).$$

How are constructions encoded?

■ The **fiber** of a map $f: X \to Y$ over a point y: Y is

$$\operatorname{fib}_f(y) :\equiv \sum_{x \in X} (f(x) = y).$$

 \blacksquare The path space of X is

$$X^I :\equiv \sum_{x,y:X} (x = y).$$

 \blacksquare The **based loop space** of *X* at *x* is

$$\Omega^1(X, x) :\equiv (x = x).$$

■ The path fibration of (X, x) is the map

$$\mathsf{fst}: \sum_{y:X} (x=y) \to X.$$

How are constructions encoded?

■ The **fiber** of a map $f: X \to Y$ over a point y: Y is

$$\operatorname{fib}_f(y) :\equiv \sum_{x:X} (f(x) = y).$$

 \blacksquare The path space of X is

$$X^I := \sum_{x,y:X} (x = y).$$

■ The **based loop space** of X at x is

$$\Omega^1(X, x) :\equiv (x = x).$$

■ The **path fibration** of (X, x) is the map

$$\mathsf{fst}: \sum_{y:X} (x=y) \to X.$$

What are higher inductive definitions?

The type \mathbb{N} of natural numbers is **freely generated** by

- \blacksquare a point $0: \mathbb{N}$ and
- \blacksquare a function succ : $\mathbb{N} \to \mathbb{N}$.

This definition gives rise to an induction principle

$$\prod_{A:\mathbb{N}\to\mathcal{U}} \Bigl(A(0)\times\Bigl(\prod_{n:\mathbb{N}} A(n)\to A(\mathrm{succ}(n))\Bigr) \longrightarrow \prod_{n:\mathbb{N}} A(n)\Bigr),$$

and a recursion principle

$$\prod_{X:\mathcal{U}} \Big(X \times \Big(\mathbb{N} \to (X \to X) \Big) \longrightarrow (\mathbb{N} \to X) \Big).$$

How to present famous spaces?

The **circle** S^1 is generated by

- \blacksquare a point base : S^1 and
- \blacksquare a path loop : (base = base).

The **sphere** S^2 is generated by

- \blacksquare a point base : S^2 and
- \blacksquare a path surf : (refl_{base} = refl_{base}).

The **torus** T^2 is generated by

- \blacksquare a point $b: T^2$,
- a path p : (b = b),
- \blacksquare a path q:(b=b), and
- a 2-path t : (p q = q p).

How to present famous spaces?

The **suspension** ΣX of X is generated by

- a point $N : \Sigma X$ and
- \blacksquare a point $S : \Sigma X$ and
- a function merid : $X \rightarrow (N = S)$.

The **cylinder** Cyl(X) of X is generated by

- a function bot : $X \to \text{Cyl}(X)$ and
- a function top : $X \to \text{Cyl}(X)$ and
- a function seg : $\prod_{x:X} (bot(x) = top(x))$.

Of course, we can show $Cyl(X) \simeq X \times I \simeq X$.

What is circle induction?

The **induction principle** of S^1 states: Given $P: S^1 \to \mathcal{U}$,

■ a point $b : P(\mathsf{base})$, and ■ a path $\ell : \mathsf{loop}_*(b) = b$

there is a function $f: \prod_{x:S^1} P(x)$ such that

$$f(base) \equiv b$$
 and

$$f(loop) = \ell.$$

What is type truncation?

Let *X* be a type.

The **propositional truncation** $||X||_{-1}$ is generated by

- a function $X \rightarrow ||X||_{-1}$ and
- for any $x, y : ||X||_{-1}$, a path x = y.

The **0-truncation** $||X||_0$ is generated by

- a function $X \rightarrow ||X||_0$ and
- for any $x, y : ||X||_0$, p, q : (x = y), a path p = q.

The **fundamental group** of (X, x_0) is

$$\pi_1(X, x_0) :\equiv \|\Omega^1(X, x_0)\|_0 :\equiv \|(x_0 = x_0)\|_0.$$

What is the univalence axiom?

An **equivalence** is a function $f: X \to Y$ such that

$$\mathsf{IsEquiv}(f) :\equiv \prod_{y:Y} \mathsf{IsContr}(\mathsf{fib}_f(y)).$$

Types *X* and *Y* are **equivalent** iff

$$(X \simeq Y) := \sum_{f:X \to Y} \mathsf{lsEquiv}(f).$$

The univalence axiom states: The canonical function

$$(X = Y) \longrightarrow (X \simeq Y)$$

is an equivalence, for all types X and Y.

What's the status of the axiom of choice?

■ The following proposition is **just true**, but is not a faithful rendition of the axiom of choice:

$$\left(\prod_{x:A}\sum_{y:B}R(x,y)\right)\longrightarrow\sum_{f:A\to B}\prod_{x:A}R(x,f(x)).$$

■ The real axiom of choice,

$$\left(\prod_{x:A}\left\|\sum_{y:B}R(x,y)\right\|_{-1}\right)\longrightarrow\left\|\sum_{f:A\to B}\prod_{x:A}R(x,f(x))\right\|_{-1},$$

can be added as an axiom, but is rarely needed.

What's the status of the axiom of choice?

■ The following proposition is **just true**, but is not a faithful rendition of the axiom of choice:

$$\left(\prod_{x:A}\sum_{y:B}R(x,y)\right)\longrightarrow\sum_{f:A\to B}\prod_{x:A}R(x,f(x)).$$

■ The real axiom of choice,

$$\left(\prod_{x:A}\left\|\sum_{y:B}R(x,y)\right\|_{-1}\right)\longrightarrow\left\|\sum_{f:A\to B}\prod_{x:A}R(x,f(x))\right\|_{-1},$$

can be added as an axiom, but is rarely needed.

■ The law of excluded middle is too rarely needed.

$$\mathsf{LEM} :\equiv \prod_{A:\mathcal{U}} \Big(\mathsf{IsMereProp}(A) \to A + \neg A \Big).$$

What are models of HoTT?

Conjecturally, HoTT can be interpreted in any $(\infty, 1)$ -topos. Verified models include

- ∞Grpd, i. e. a model in simplicial sets, and
- $(\infty, 1)$ -presheaf toposes over elegant Reedy categories.

Thus, any theorem proven in HoTT holds in the context of classical homotopy theory and in more general contexts.

References

- The textbook

 http://homotopytypetheory.org/book/
- Voevodsky on his motivations
 http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2014_IAS.pdf
- Seminar slides
 http://www.math.ias.edu/~mshulman/hottseminar2012/01intro.pdf
 http://www.math.ias.edu/~mshulman/hottminicourse2012/04induction.pdf
 https://coq.inria.fr/files/coq5-slides-spitters.pdf
 https://www.andrew.cmu.edu/user/awodey/hott/CMUslides.pdf
- An application unrelated to homotopy theory http://www.cs.nott.ac.uk/-txa/talks/lyon14.pdf
- hott-amateurs mailing list