CS5314 RANDOMIZED ALGORITHMS

Homework 4 Due: June 02, 2020 (before 23:59)

- 1. Let Z be a Poisson random variable with mean μ , where $\mu \geq 1$ is an integer.
 - (a) Show that $\Pr(Z = \mu + h) \ge \Pr(Z = \mu h 1)$ for $0 \le h \le \mu 1$.
 - (b) Using part (a), argue that $Pr(Z \ge \mu) \ge 1/2$.
- 2. Let X be a Poisson random variable with mean μ , representing the number of criminals in a city. There are two types of criminals: For the first type, they are not too bad and are reformable. For the second type, they are flagrant. Suppose each criminal is independently reformable with probability p (so that flagrant with probability 1-p). Let Y and Z be random variables denoting the number of reformable criminals and flagrant criminals (respectively) in the city. Show that Y and Z are independent Poisson random variables.
- 3. We consider another way to obtain Chernoff-like bound in the balls-and-bins setting. Consider n balls thrown randomly into n bins. Let $X_i = 1$ if the ith bin is empty and 0 otherwise. Let $X = \sum_{i=1}^{n} X_i$ be the number of empty bins.

Let Y_i be independent Bernoulli random variable such that $Y_i = 1$ with probability $p = (1 - 1/n)^n$. Let $Y = \sum_{i=1}^n Y_i$.

- (a) Show that $E[X_1X_2\cdots X_k] \leq E[Y_1Y_2\cdots Y_k]$ for any $k\geq 1$.
- (b) Show that $X_1^{j_1} X_2^{j_2} \cdots X_k^{j_k} = X_1 X_2 \cdots X_k$ for any $j_1, j_2, \dots, j_k \in \mathbb{N}$.
- (c) Show that $E[e^{tX}] \leq E[e^{tY}]$ for all $t \geq 0$. Hint: Use the expansion for e^x and compare $E[e^{tX}]$ to $E[e^{tY}]$.
- (d) Derive a Chernoff bound for $\Pr(X \ge (1 + \delta)E[X])$.
- 4. In the lecture, we showed that, for any nonnegative function f,

$$E[f(Y_1^{(m)}, \dots, Y_n^{(m)})] \ge E[f(X_1^{(m)}, \dots, X_n^{(m)})] \Pr\left(\sum_{i=1}^n Y_i^{(m)} = m\right).$$

(a) Now suppose we further know that $E[f(X_1^{(m)}, \ldots, X_n^{(m)})]$ is monotonically increasing in m. Show that

$$E[f(Y_1^{(m)}, \dots, Y_n^{(m)})] \ge E[f(X_1^{(m)}, \dots, X_n^{(m)})] \Pr\left(\sum_{i=1}^n Y_i^{(m)} \ge m\right).$$

(b) Combining part (a) with the result in Question 1, show that:

$$E[f(X_1^{(m)}, \dots, X_n^{(m)})] \le 2 E[f(Y_1^{(m)}, \dots, Y_n^{(m)})].$$

1