REPORT

과목명 | 비모수통계자료분석

담당교수 | 최영훈 교수님

학과 | 응용통계학과

학년 | 3학년

학번 | 201452024

이름 | 박상희

제출일 | 2018년 12월 10일

연습문제 10

10명 대학생의 통계학 기말시험점수 X와 교양영어 기말시험점수 Y간의 Spearman 순위상관계수 ρ 와 Kendall 순위상관계수 τ 를 계산하고, 각각 독립성 여부를 검정하여라.

통계학(X)	78	86	49	94	53	89	94	71	70	97
영어(Y)	80	74	63	85	55	86	90	84	71	90

통계학(X)	78	86	49	94	53	89	94	71	70	97
영어(Y)	80	74	63	85	55	86	90	84	71	90
순위(X)	5	6	1	8.5	2	7	8.5	4	3	10
순위(Y)	5	4	2	7	1	8	9.5	6	3	9.5

① Spearman의 순위상관계수

$$\rho = \frac{\displaystyle\sum_{i=1}^{n} R(X_i) R(Y_i) - n \bigg(\frac{n+1}{2}\bigg)^2}{\sqrt{\displaystyle\sum_{i=1}^{n} [R(X_i)]^2 - n \bigg(\frac{n+1}{2}\bigg)^2} \sqrt{\displaystyle\sum_{i=1}^{n} [R(Y_i)]^2 - n \bigg(\frac{n+1}{2}\bigg)^2}}$$

$$\rho = \frac{\left(5*5 + 6*4 + 1*2 + 8.5*7 + 2*1 + 7*8 + 8.5*9.5 + 4*6 + 3*3 + 10*9.5\right) - 10\left(\frac{10+1}{2}\right)^2}{\sqrt{5^2 + 6^2 + 1^2 + 8.5^2 + 2^2 + 7^2 + 8.5^2 + 4^2 + 3^2 + 10^2 - 10\left(\frac{10+1}{2}\right)^2}\sqrt{5^2 + 4^2 + 2^2 + 7^2 + 1^2 + 8^2 + 9.5^2 + 6^2 + 3^2 + 9.5^2 - 10\left(\frac{10+1}{2}\right)^2}}$$

$$\rho = \frac{74.5}{9.06 \times 9.06} = 0.9076$$

② Kendall의 순위상관계수

$$\tau = \frac{N_{\rm Q} \, \rm cm}{\binom{N}{2}} - N_{\rm de} \, \rm cent{}{\rm Q} \, \rm cent{}{\rm R}{\rm d}} \, = \frac{38-5}{\binom{10}{2}} = \frac{33}{\frac{10 \times 9}{2 \times 1}} = \frac{33}{45} = 0.73$$

X_{i}	Y_{i}	N_{g} A	$N_{\pm\mathrm{g}\mathrm{i}}$
49	64	8	1
53	55	8	0
70	71	7	0
71	84	4	2
78	80	4	1
86	74	4	0
89	86	2	1
94	85	1	0
94	90	0	0
97	90	0	0
		38	5

독립성에 대한 가설

 H_0 : 통계학과 영어 점수는 서로 독립이다. H_1 : 통계학과 영어 점수는 서로 독립이 아니다.

통계량

$$T = N_{23} - N_{\frac{1}{2}23} = 38 - 5 = 33$$

통계적 검정

양측검정이므로 $T < X_{0.025}$ 이거나 T > 0.975 인 경우에 귀무가설을 기각한다.

 $T=33>T_{0.975}=21\,(\pm 18,\;n=10)$ 이므로 au기구사설을 기각한다. 따라서 두 점수는 독립이 아니라고 볼 수 있다.

연습문제 6

3명의 부동산 감정원은 동일한 5곳의 부동산에 대하여 감정을 의뢰받았다 감정 결과(단위:천만원)가 아래와 같을 때 몇몇 부동산 감정원은 다름 사람에 비하여 높은 평가를 경향이 있는지를 검정하여라.

	감정원					
부동산	А	В	С			
1	36.9	36.8	38.0			
2	47.4	43.8	47.9			
3	45.5	46.2	46.6			
4	35.6	34.3	37.3			
5	60.0	61.4	64.5			

	감정원					
부동산	А	В	С			
1	2	1	3			
2	2	1	3			
3	1	2	3			
4	2	1	3			
5	1	2	3			
	$R_{1.} = 8$	$R_{2} . = 7$	$R_3 = 15$			

① 가설

 H_0 : 몇몇 부동산 감정원은 다름 사람에 비하여 높은 평가를 경향이 없다. H_1 : 몇몇 부동산 감정원은 다름 사람에 비하여 높은 평가를 경향이 있다.

② Friedman 검정통계량

$$F_R = \frac{(b-1) \Biggl[\sum\limits_{i=1}^k \frac{R_i^2}{b} - \frac{bk(k+1)^2}{4} \Biggr]}{\Biggl[\sum\limits_{i=1}^k \sum\limits_{j=1}^b R_{ij}^2 - \sum\limits_{i=1}^k \frac{R_{i.}^2}{b} \Biggr]} = \frac{(5-1)[(8^2+7^2+15^2)/5 - 5 \times 3(3+1)^2/4]}{(1^2 \times 5 + 2^2 \times 5 + 3^2 \times 5) - (8^2+7^2+15^2)/5} = \frac{30.4}{2.4} = 12.6667$$

③ 통계적 검정

 $F_R > F_{0.95,3-1,(5-1)(3-1)} = F_{0.95,2,8}$ 이면 유의수준 5%하에서 귀무가설을 기각한다. $F_R = 12.6667 > F_{0.95,3,8} = 4.46$ 이므로 귀무가설을 기각한다. 따라서 몇몇 부동산 감정원은 다름 사람에 비하여 높은 평가를 경향이 있다고 말할 수 있다.