SSH Super-Resolution using high resolution SST with a Subpixel Convolutional Residual Network

Théo Archambault¹, Anastase Charantonis²,³, Dominique Béréziat¹, Carlos Meija², Sylvie Thyria²

¹Sorbonne Université, CNRS, LIP6, Paris

²Sorbonne Université, LOCEAN, Paris

³Ecole Nationale Supérieure d'Informatique

May 12, 2022

Climate Informatics 2022

Introduction

Ocean remote sensing:

- ▷ Ocean: important role in climate regulation
- ▷ Satellite observations are sparse, noisy, and multi resolution
- ▷ Case study: **Sea Surface Height** (SSH) downscaling using Sea Surface Temperature (SST) information
 - SSH: low resolution ($\sim 1/4^{\circ}$)
 - SST: high resolution contextual information ($\sim 1/100^{\circ}$)

Introduction

Ocean remote sensing:

- ▷ Ocean: important role in **climate regulation**
- ▷ Satellite observations are sparse, noisy, and multi resolution
- ▷ Case study: **Sea Surface Height** (SSH) downscaling using Sea Surface Temperature (SST) information
 - SSH: low resolution ($\sim 1/4^{\circ}$)
 - SST: high resolution contextual information ($\sim 1/100^{\circ}$)

Downscale SSH: a Super-resolution task:

- ▷ Ill-posed inverse problem
- ▶ Deep Neural Network (DNN) to generate a solution
 - proposed method : multi input subpixel residual network

Introduction

Ocean remote sensing:

- ▷ Ocean: important role in **climate regulation**
- ▷ Satellite observations are sparse, noisy, and multi resolution
- ▷ Case study: **Sea Surface Height** (SSH) downscaling using Sea Surface Temperature (SST) information
 - SSH: low resolution ($\sim 1/4^{\circ}$)
 - SST: high resolution contextual information ($\sim 1/100^{\circ}$)

Downscale SSH: a Super-resolution task:

- ▷ Ill-posed inverse problem
- ▶ Deep Neural Network (DNN) to generate a solution
 - proposed method : multi input subpixel residual network

Motivations:

- ▶ Useful in ocean currents recovery
 - geostrophic approximation

Case study

NATL60 model:

- High resolution: $1/60^{\circ}$ (R01)
- Based on Nemo code
- Golf Stream (lat 25° to 45°, long 40° to 65°)

Studied Area:

Case study

NATL60 model:

- High resolution: $1/60^{\circ}$ (R01)
- Based on Nemo code
- Golf Stream (lat 26° to 45° , long 40° to 65°)

$\underline{\mathbf{SSH}}$:

$\underline{\mathbf{SST}}$:

Super-resolution framework:

- $\triangleright \mathbf{X}_{lr} = d(\mathbf{X}_{hr})$ where d is a decimation operator. We average the pixels in a square 27×27
 - ill posed inverse problem (d not injective)
- \triangleright We aim to generate a solution to this inverse problem \mathbf{X}_{sr}
 - minimizing the MSE between \mathbf{X}_{sr} and \mathbf{X}_{hr}

Super-resolution framework:

- $\triangleright \mathbf{X}_{lr} = d(\mathbf{X}_{hr})$ where d is a decimation operator. We average the pixels in a square 27×27
 - ill posed inverse problem (d not injective)
- \triangleright We aim to generate a solution to this inverse problem \mathbf{X}_{sr}
 - minimizing the MSE between \mathbf{X}_{sr} and \mathbf{X}_{hr}

Deep Neural Network:

- \triangleright Generate \mathbf{X}_{sr} from \mathbf{X}_{lr}
 - Super-Resolution Convolutionnal Neural Network (SRCNN, 2014)
- ▶ In the literature :
 - Focus on natural images
 - Focus on lower up-scaling factor
 - Mostly single image Super Resolution (no cross input)

RESAC Method:

- ▶ Use SST High resolution data as an input
- ▶ Very large upscaling factor (x27) from R81 to R03
 - progressive downscaling 3 CNN block
 - control at 3 resolution

RESAC Architecture of one CNN block:

- ⊳ Fully convolutionnal
- ▷ Bilinear upsampling (front)

 \triangleright

RESACsub Architecture of one CNN block:

- \triangleright Residual network: $\mathbf{SSH}_{l+1} = \mathbf{SSH}_l + F_l^{\theta}(\mathbf{SSH}_l, \mathbf{SST})$
- ▷ Subpixel convolution
- ▶ Adapted Batch Normalization

Subpixel convolution layer:

- ▷ Convolution in a smaller deeper space
- ▷ Pixel shuffling operator P (bijective)

Subpixel convolution layer:

- ▷ Convolution in a smaller deeper space
- ▶ Pixel shuffling operator P (bijective)

Advantages:

- ▷ Can be used as a **trainable upsampling**
- ▶ Less computatively expensive
- ▶ Higher perceptive field

Subpixel convolution layer:

- ▷ Convolution in a smaller deeper space
- ▷ Pixel shuffling operator P (bijective)

Advantages:

- ▷ Can be used as a **trainable upsampling**
- ▶ Less computatively expensive
- ▶ Higher perceptive field

Drawbacks:

- ⊳ Strong checkerboard artifacts
- ▶ Batch Normalization issue

Predictions of the methods:

<u>Predictions of the methods</u>:

- \triangleright Performances: RESACsub > RESAC >> Bicubic interpolation
- ▷ Bicubic interpolation is too smooth

Checkerboard artifacts:

- ▷ Subpixel convolution introduces checkerboard artifacts
- ▶ We use 2 convolution layers as a **denoiser**

Checkerboard artifacts:

- ▷ Subpixel convolution introduces checkerboard artifacts
- ▶ We use 2 convolution layers as a **denoiser**

Scores:

Model	RESAC	RESACsub	After Denoising	Bicubic
weights	344,976	334,722	51,841	unsupervised
RMSE (cm)	5.50	4.00	3.94	6.94

> Small improvement with the denoising network

Conclusion

RESACsub architecture:

- ▷ Subpixel Convolution
 - improves performances with lesser numerical cost
 - but introduces checkerboard artifacts
- ▶ Adapted form of Batch Normalization
- ▶ Denoising with large filter CNN

Conclusion

RESACsub architecture:

- ▷ Subpixel Convolution
 - improves performances with lesser numerical cost
 - but introduces checkerboard artifacts
- ▶ Adapted form of Batch Normalization
- ▶ Denoising with large filter CNN

Performances:

- ▶ Very large upscaling factor (x27)
- ▶ RESACsub outperform bicubic and RESAC :
- after denoising we achieve a RMSE of $3.94~\mathrm{cm}$ ($5.50\mathrm{cm}$ for RESAC and $6.94~\mathrm{for}$ Bicubic)

Perspectives

Improvement:

- - Passive tracker
 - More information about currents
- ▷ Other architectures : SRGAN

Perspectives

Improvement:

- ▶ Using temporal information of SST
 - Passive tracker
 - More information about currents
- ▷ Other architectures : SRGAN

Perspectives:

- ▷ Application to other geophysical data : Salinity
- ▶ Transfer Learning to real world data
 - Using the satellite along track measures

Thank you!

Thank you!

For details:

⊳ my email : theo.archambault@lip6.fr

▷ article with code : https://gitlab.lip6.fr/archambault/resacsub