$V_{o} = -Z_{f} \sum_{i=1}^{n} \frac{V_{i}}{Z_{i}}$ let current: $V_{1} \circ Z_{2}$ $V_{2} \circ Z_{2}$ $V_{3} \circ V_{CC}$ $V_{6} \circ V_{CC}$ Figure 2.1: Summer Circuit $V_{i} \circ V_{i} \circ V_{i}$ $V_{i} \circ V_{i} \circ V_{i} \circ V_{i}$ $V_{i} \circ V_{i} \circ V_{i} \circ V_{i}$

Let current
$$I_1$$
 be current from V_1
 I_2 be current from V_2
and I_n be current from V_n
 I_n and I_n be current from V_n
 $I_n = I_1 + I_2 + ... + I_n$
 $= \left(\frac{V_1}{Z_1} + \frac{V_2}{Z_1} + ... + \frac{V_n}{Z_n} \right)$
By inverting amplifien,

Vont = (Vin)
$$\left(-\frac{2f}{2in}\right) = \left(\frac{Vin}{Rin}\right)(-2f) = Iin (-2f)$$

Vont in summing amplifier = $\sum_{i=1}^{N} \frac{Vi}{2i}(-2f)$

$$V_{o} = \frac{-1}{R_{I}C_{f}} \int V_{I}dt$$

$$R_{I} \rightarrow v_{0} \downarrow_{c} C_{f}$$

$$V_{I} \rightarrow V_{CC}$$
Figure 2.4: Integrator Circuit

$$I_{1} = I_{2}$$

$$I_{1} = -I_{2}$$

$$I_{2} = -Ct$$

In node I, since voltage in node is some as inverting input terminal which is voltage at hodel is also zero