Міністерство освіти та науки України Національний університет «Львівська політехніка» Кафедра КСА

Лабораторна робота №1

з дисципліни «Теорія інформації і кодування»

Варіант - 52 Номер залікової книжки2

Виконав:

студент групи ІР-21

Оприск Р.Р.

Перевірив:

доц. каф. КСА

Стахів Р. І.

Завдання

1. Визначення спектру періодичного сигналу

Знайти аналітичний вираз для частотного спектру амплітуд та частотного спектру фаз заданого періодичного сигналу (табл. 1 та 2). Отримані спектри показати графічно у вигляді спектральних ліній, висоти яких пропорційні до модулів амплітуд та початкових фаз гармонік. Визначити похибку спектрального представлення середньої потужності сигналу, якщо спектр обмежено шириною частотної смуги пропускання каналу зв'язку.

Остання цифра НЗК	0	1	2	3	4	5	6	7	8	9
A, B	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
<i>T</i> , мс	16.6	18.2	20.0	22.2	25.0	28.6	33.3	40.0	50.0	56.6
T_1/T	1/2	1/3	1/5	1/4	3/5	3/4	2/3	1/8	2/5	1/6
ΔF к, Гц	700	650	600	500	450	400	350	280	250	170

Остання цифра НЗК	2
A, B	1.5
Т, мс	20
T _i /T	1/5
ΔF_k	600

Умовно у відстані від 0 до T можна вмістити 6 верхніх парабол синусоїди, тобто логічно виходить, що w0 = 6.

Спектр обчислюємо за перетворенням Фур'є

$$S(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos(k \cdot \omega_1 \cdot t) + b_k \cdot \cos(k \cdot \omega_1 \cdot t))$$

$$\omega_1 = 2\pi f = \frac{2\pi}{T} = \frac{2\pi}{20 \cdot 10^{-3}} = 314 \left(\frac{\text{рад}}{\text{c}}\right)$$

$$\frac{t_i}{T} = \frac{1}{5} = > t_i = \frac{T}{5} = \frac{20 \cdot 10^{-3}}{3} = 6.667 \cdot 10^{-3} (c)$$

$$F_1 = \frac{1}{T} = \frac{1}{20 \cdot 10^{-3}} = 50 (\Gamma \text{ц})$$

Сигнал – парна функція.

$$a_0 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} S(t) \cdot dt; \quad a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} S(t) \cdot \cos(k \cdot \omega_1 \cdot t) \cdot dt; \quad b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} S(t) \cdot \sin(k \cdot \omega_1 \cdot t) \cdot dt$$

$$S(t) = A \cdot |sin(w0 \cdot t)|;$$
 $-\frac{t_i}{2} \le t \le \frac{t_i}{2};$

$$S(t) = \begin{cases} -A \cdot \sin(\mathbf{6} \cdot \mathbf{t}), & -\frac{t_i}{2} \le t \le 0; \\ A \cdot \sin(\mathbf{6} \cdot \mathbf{t}), & 0 \le t \le \frac{t_i}{2}; \end{cases}$$

Функція – парна, тому $b_k = 0$.

Знаходити відповідні визначені інтеграли будемо за допомогою програми:

```
public static final double T = 0.002;
public static final double t1 = 0.006667;
public static final double w = 314;

public static double ak(int k) {
    return - (2*(k*w-5)* (int)Math.cos((k*t1*w+5*t1)/2) + (-k*w-5)*(int)Math.cos((k*t1*w-5*t1)/2) +10)/ ( T* (w*w * k*k - 25));
}

public static void main(String[] args) {
    for(int k = 1; k < 21; k++ ) {
        System.out.println("a" + k + " = " + ak(k));
    }
}</pre>
```

Знайдемо коефіцієнти тригонометричного ряду:

$$a_0 = \frac{2 \cdot A}{T} \int_{-\frac{t_i}{2}}^{0} -\sin(\mathbf{6} \cdot \mathbf{t}) \cdot d\mathbf{t} + \frac{2 \cdot A}{T} \int_{0}^{\frac{t_i}{2}} \sin(\mathbf{6} \cdot \mathbf{t}) \cdot d\mathbf{t} =$$

$$-\frac{4\cos\left(\frac{5t_1}{2}\right)-4}{5\mathbf{T}}$$
 ≈ 0.83

$$S(t) = \frac{0.83}{2} = 0.415$$
 (В) — постійна складова рівна нулю.

Коефіцієнт при косинусах:

$$a_k = -\frac{2 \cdot A}{T} \int_{-\frac{t_i}{2}}^{0} sin(\mathbf{6} \cdot \mathbf{t}) \cdot \cos(k\omega_1 t) \cdot dt$$

$$+\frac{2\cdot A}{T}\int_{0}^{\frac{t_{i}}{2}}sin(6\cdot t)\cdot\cos(k\omega_{1}t)\cdot dt =$$

$$-\frac{2\left(\left(kw-5\right)\cos\left(\frac{kt_{1}w+5t_{1}}{2}\right)+\left(-kw-5\right)\cos\left(\frac{kt_{1}w-5t_{1}}{2}\right)+10\right)}{\mathsf{T}(k^{2}w^{2}-25)}$$

Коефіцієнт при синусах:

$$b_k = -\frac{2 \cdot A}{T} \int_{-\frac{t_i}{2}}^{0} sin(\mathbf{6} \cdot \mathbf{t}) \cdot \sin(k\omega_1 t) \cdot dt$$

$$+\frac{2\cdot A}{T}\int_{0}^{\frac{t_{i}}{2}}sin(6t)\cdot\sin(k\omega_{1}t)\cdot dt = \dots = 0$$

$$\Psi_k = arctg\left(\frac{b_k}{a_k}\right)$$

К	Ak	Bk	$\sqrt{(A_k)^2 + (B_k)^2}$	Ψk
1	2.525	0	2.525	0.304

2	0.632	0	0.632	0.56
3	0.282	0	0.282	0.756
4	0.159	0	0.159	0.898
5	0.102	0	0.102	1.004
6	0.071	0	0.071	1.082
7	0.052	0	0.052	1.144
8	0.04	0	0.04	1.192
9	0.031	0	0.031	1.231
10	0.025	0	0.025	1.263
11	0.021	0	0.021	1.289
12	0.018	0	0.018	1.311
13	0.015	0	0.015	1.323
14	0.013	0	0.013	1.345
15	0.011	0	0.011	1.359
16	0.01	0	0.01	1.367
17	0.009	0	0.009	1.373
18	0.008	0	0.008	1.386
19	0.007	0	0.007	1.394
20	0.006	0	0.006	1.402

Загальний вигляд ряду:

$$S(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cdot \cos(k \cdot \omega_1 \cdot t)) =$$

$$= \frac{a_0}{2} + a_1 \cdot \cos(1 \cdot \omega_1 \cdot t) + a_2 \cdot \cos(2 \cdot \omega_1 \cdot t) + a_3 \cdot \cos(3 \cdot \omega_1 \cdot t) + a_4 \cdot \cos(4 \cdot \omega_1 \cdot t) + a_5 \cdot \cos(5 \cdot \omega_1 \cdot t) + a_6 \cdot \cos(6 \cdot \omega_1 \cdot t) + a_7 \cdot \cos(7 \cdot \omega_1 \cdot t) + a_8 \cdot \cos(8 \cdot \omega_1 \cdot t) + a_9 \cdot \cos(9 \cdot \omega_1 \cdot t) + a_{10} \cdot \cos(10 \cdot \omega_1 \cdot t) + a_{11} \cdot \cos(11 \cdot \omega_1 \cdot t) + a_{12} \cdot \cos(12 \cdot \omega_1 \cdot t) + a_{13} \cdot \cos(13 \cdot \omega_1 \cdot t) + a_{14} \cdot \cos(14 \cdot \omega_1 \cdot t) + a_{15} \cdot \cos(15 \cdot \omega_1 \cdot t) + a_{16} \cdot \cos(16 \cdot \omega_1 \cdot t) + a_{17} \cdot \cos(17 \cdot \omega_1 \cdot t) + a_{18} \cdot \cos(18 \cdot \omega_1 \cdot t) + a_{19} \cdot \cos(19 \cdot \omega_1 \cdot t) + a_{20} \cdot \cos(20 \cdot \omega_1 \cdot t)$$

Ряд із відповідними коефіцієнтами:

```
S(t) = 0.415 + 2.525 \cdot \cos(1 \cdot \omega \cdot t) + 0.632 \cdot \cos(2 \cdot \omega \cdot t) + 0.282 \cdot \cos(3 \cdot \omega \cdot t) + 0.159
\cdot \cos(4 \cdot \omega \cdot t) + 0.102 \cdot \cos(5 \cdot \omega \cdot t) + 0.071 \cdot \cos(6 \cdot \omega \cdot t) + 0.052 \cdot \cos(7 \cdot \omega \cdot t) + 0.040 \cdot \cos(8 \cdot \omega \cdot t) + 0.031 \cdot \cos(9 \cdot \omega \cdot t) + 0.025 \cdot \cos(10 \cdot \omega \cdot t) + 0.021
\cdot \cos(11 \cdot \omega \cdot t) + 0.018 \cdot \cos(12 \cdot \omega \cdot t) + 0.015 \cdot \cos(13 \cdot \omega \cdot t) + 0.013 \cdot \cos(14 \cdot \omega \cdot t) + 0.011 \cdot \cos(15 \cdot \omega \cdot t) + 0.010 \cdot \cos(16 \cdot \omega \cdot t) + 0.009 \cdot \cos(17 \cdot \omega \cdot t) + 0.008 \cdot \cos(18 \cdot \omega \cdot t) + 0.007 \cdot \cos(19 \cdot \omega \cdot t) + 0.006 \cdot \cos(20 \cdot \omega \cdot t)
```

1. Відтворений рисунок

Рис. 1

Рис. 2

Рис. 3

Кількість гармонік:

$$n = \frac{\Delta F_k}{F_1} = \frac{600}{50} = 8$$
 (гармонік)

Потужність сигналу:

$$P = A_0^2 + \frac{1}{2} \cdot (A_1^2 + A_2^2 + A_3^2 + A_4^2 + A_5^2 + A_6^2 + A_7^2 + A_8^2)$$

$$= 0.415^2 + \frac{1}{2} \cdot (2.525^2 + 0.632^2 + 0.282^2 + 0.159^2 + 0.102^2 + 0.071^2 + 0.052^2 + 0.04^2) = 3.605 \text{ B}^2$$

Визначаємо повну середню потужність сигналу:

$$\overline{S^{2}(t)} = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} S^{2}(t) \cdot dt = \frac{A^{2}}{T} \int_{-\frac{t_{i}}{2}}^{0} (-\sin(6 \cdot t))^{2} \cdot dt + \frac{A^{2}}{T} \int_{0}^{\frac{t_{i}}{2}} (\sin(6 \cdot t))^{2} \cdot dt$$

$$= \frac{A^2}{T} \cdot \int_{-\frac{t_i}{2}}^{\frac{t_i}{2}} \sin^2(6 \cdot t) \cdot dt \approx 2.333 \text{ B}^2$$

Знаходимо абсолютну похибку представлення:

$$\Delta = |\overline{S^2(t)} - P| = |2.333 - 3.605| = 1.272$$

Відносна похибка представлення:

$$\delta = \frac{\Delta}{\overline{S^2(t)}} = \frac{1.272}{2.333} \cdot 100\% = 54.5\%$$

Висновок: На цій лабораторній роботі я навчився визначати спектр періодичного сигналу, зображувати його графічно, шукати абсолютну і відносну похибку спектрального представлення середньої потужності сигналу при обмеженій ширині частотної смуги пропускання каналу зв'язку.