MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388 Web: www.mrt-cert.com

Report No.: 1608TW0110-U3 Report Version: V01 Issue Date: 03-02-2017

RF Exposure Evaluation Declaration

FCC ID: 2AD8UFZCWO4A1

APPLICANT: Nokia Solutions and Networks

Application Type: Certification

Product: US WI-FI AP 4X4 OD ext. antenna

Model No.: WO4A-AC400, WO4B-AC400, WO4C-AC400

Trademark: Nokia

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

Reviewed By: Paddy Chen

(Paddy Chen)

Approved By : am her

(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1608TW0110-U3	Rev. 01	Initial report	03-02-2017	Valid

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	US WI-FI AP 4X4 OD ext. antenna
Model No.	WO4A-AC400, WO4B-AC400, WO4C-AC400
Brand Name	Nokia
Hardware Version:	AM3
Frequency Range	2.4GHz:
	For 802.11b/g/n-HT20:
	2412 ~ 2462 MHz
	For 802.11n-HT40:
	2422 ~ 2452 MHz
	5GHz:
	For 802.11a/n-HT20/ac-VHT20
	5180~5240MHz, 5745~5825MHz
	For 802.11n-HT40/ac-VHT40:
	5190~5230MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5775MHz
	For 802.11ac-VHT80+80:
	5210 MHz + 5775 MHz
Type of Modulation	802.11a/n/ac: OFDM
Modulation Technology	CCK, DQPSK, DBPSK for DSSS
	16QAM, 64QAM, QPSK, BPSK for OFDM

Note 1: We select the POE adapter (M/N: PoE35-54A) to perform all RF testing.

Note 2: The change of the measured voltage at the radio part of the EUT is below $\pm 1\%$, when input voltage from external power supply to the equipment under test, thus the RF items are tested with AC adapter only.

Note 3: The model difference as below:

- when the device has been connected the Galtronics Omni antenna, the model number is "WO4A-AC400";
- when the device has been connected the Galtronics Directional antenna, the model number is "WO4B-AC400";
- when the device has been connected the PCTEL antenna & HUBER+SUHNER, the model number is "WO4C-AC400";

1.2. Antenna Description

Antenna	Manufacturer	Frequency Band (GHz)	Product Number	Tx Paths
		2.4	FPMI2458-DP4RPSMA	4
	PCTEL, Inc.	5	PPINI2430-DP4RP3INIA	4
	POTEL, IIIC.	2.4	FPMI2458-DP2RPSMA	2
		5	PPIVIIZ430-DPZRPSIVIA	2
		2.4	Galtronics Omni Antenna	2
	Galtronics	5	Gaittories Offili Anterna	2
	Gaittoffics	2.4	Galtronics Directional	2
		5	Antenna	2
	HUBER+	5	Sector-Antenna 1356.17.0011	1
T.	SUHNER	5	Directional Antenna 1356.17.0077	1

Note 1: This device make the transmission with two "FPMI2458-DP2RPSMA" directional antenna, there is not any superposition of transmit signal between two antennas.

Note 2: For "FPMI2458-DP2RPSMA" directional antenna, one antenna port be connected with device's Ant 0 & Ant 1, the other antenna port be connect with device's Ant 2 & Ant 3, and this installation has been showed in the professional installation manual.

Note 3: For HUBER+SUHNER antenna, this device make the transmission with four antenna, they were installed by the four sides of the perpendicular. So the antenna was Independent of each other and had no MIMO, CDD or Beamforming mode.

Antenna Frequency Band Product (MHz)		Tx Paths	,					CDD Directional
Number			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
	2412 ~2462	4	6.70	6.40	6.80	6.80	12.70	12.70
	5150 ~ 5250	4	5.79	5.57	5.89	5.05	11.60	11.60
FPMI2458- DP4RPSMA	5150 ~ 5250 30°elevation angle	4	5.10	2.27	4.94	4.06	N/A	N/A
	5725 ~ 5850	4	5.24	5.09	6.73	5.62	11.71	11.71
	2412 ~2462	2	6.70	6.40		1	9.56	9.56
		2	1	1	6.70	6.40	9.56	9.56
	5150 ~ 5250	2	5.79	5.57		1	8.69	8.69
FPMI2458-	5150 ~ 5250	2	1	1	5.79	5.57	8.69	8.69
DP2RPSMA	5150 ~ 5250 30°elevation	2	5.10	2.27		1	N/A	N/A
	angle				5.10	2.27	N/A	N/A
	5725 ~ 5850	0	5.24	5.09		1	8.18	8.18
	3123 ~ 3030	2	-		5.24	5.09	8.18	8.18

Antenna Product	' '			hain Max A	ntenna Gair	n (dBi)	Beam Forming	CDD Directional
Number			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
	2412 ~2462	2	2.93	3.02	2.93	3.02	9.00	9.00
Galtronics	5150 ~ 5250	2	6.68	6.53	6.68	6.53	12.63	12.63
Omni Antenna	5150 ~ 5250 30°elevation angle	2	-1.32	-1.53	-1.32	-1.53	N/A	N/A
	5725 ~ 5850	2	6.78	6.55	6.78	6.55	12.69	12.69
	2412 ~2462	2	6.75	6.75	6.75	6.75	12.77	12.77
Galtronics	5150 ~ 5250	2	8.39	8.16	8.39	8.16	14.30	14.30
Directional Antenna	5150 ~ 5250 30°elevation angle	2	-1.54	-2.86	-1.54	-2.86	N/A	N/A
	5725 ~ 5850	2	8.92	8.82	8.92	8.82	14.89	14.89

Antenna Product	' '			nain Max A	Beam Forming	CDD Directional		
Number			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
Sector-	5150 ~ 5250	1	16.00	16.00	16.00	16.00	N/A	N/A
Antenna 1356.17.001	5150 ~ 5250 30°elevation angle	1	-1.22	-1.22	-1.22	-1.22	N/A	N/A
1	5725 ~ 5850	1	17.00	17.00	17.00	17.00	N/A	N/A
Directional	5150 ~ 5250	1	14.00	14.00	14.00	14.00	N/A	N/A
Antenna 1356.17.007	5150 ~ 5250 30°elevation angle	1	1.52	1.52	1.52	1.52	N/A	N/A
7	5725 ~ 5850	1	14.00	14.00	14.00	14.00	N/A	N/A

Note

- The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11a/b/g mode, and CDD signals are correlated.
- 2. The EUT supports Beam Forming technology for 802.11n/ac mode, and exclude 802.11b/g mode. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
 - CDD signals are correlated and create unintended array gain that varies with signal bandwidth, antenna geometry, and cyclic delay values. Consequently, depending on system parameters, it may be appropriate to use different values of array gain for compliance with power limits versus compliance with powerspectral density limits.
- 3. Unequal Antenna gains, with equal transmit powers. For Antenna gains given by G_1 , G_2 , ..., G_N dBi transmit signals are correlated, then
 - Directional gain = 10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})²/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

Page Number: 8 of 15

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time					
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)					
(A) Limits for Occupational/ Control Exposures									
300-1500			f/300	6					
1500-100,000			5	6					
	(B) Limits for Gene	ral Population/ Unco	ntrolled Exposures						
300-1500			f/1500	6					
1500-100,000			1	30					

f= Frequency in MHz

Calculation Formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Result of RF Exposure Evaluation

Product	US WI-FI AP 4X4 OD ext. antenna
Test Item	RF Exposure Evaluation (For General Population)

FPMI2458-DP4RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/	2412 ~ 2462	35.85	25	0.4897	1
n-HT40					
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	35.83	25	0.4874	1
ac-VHT40/ac-VHT80/	5725 ~ 5850	55.65	25	0.4074	1
ac-VHT80+80					

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*log[(10^{6.70/20} + 10^{6.80/20} + 10^{6.80/20} + 10^{6.80/20})^2/4] = 12.70 dBi$

 $5150 \sim 5250$ MHz Directional Gain = $10*log[(10^{5.79/20} + 10^{5.57/20} + 10^{5.89/20} + 10^{5.05/20})^2/4] = 11.60$ dBi

 $5725 \sim 5850$ MHz Directional Gain = $10*log[(10^{5.24/20} + 10^{5.09/20} + 10^{6.73/20} + 10^{5.62/20})^2/4] = 11.71$ dBi

FPMI2458-DP2RPSMA Antenna:

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Safety Distance (cm)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.65	25	0.4676	1
802.11a/n-HT20/ n-H40/ac-VHT20 ac-VHT40/ac-VHT80/ ac-VHT80+80	5150 ~ 5250, 5725 ~ 5850	35.81	25	0.4852	1

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*log[(10^{6.70/20} + 10^{6.40})^2/2] = 9.56 dBi$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{5.79/20} + 10^{5.57/20})^2/2] = 8.69 \text{ dBi}$

 $5725 \sim 5850$ MHz Directional Gain = $10*log[(10^{5.24/20} + 10^{5.09/20})^2/2] = 8.18$ dBi

FCC ID: 2AD8UFZCWO4A1 Page Number: 9 of 15

Galtronics Omni Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/	2442 2462	0F 66	25	0.4697	4
n-HT40	2412 ~ 2462	35.66	25	0.4687	I
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	35.66	25	0.4687	1
ac-VHT40/ac-VHT80/	5725 ~ 5850	33.00	25	0.4007	1
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10*log[(10^{2.93/20} + 10^{3.02/20} + 10^{2.93/20} + 10^{3.02/20})^2/4] = 9.00 \text{ dBi}$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63 dBi$

 $5725 \sim 5850$ MHz Directional Gain = $10*log[(10^{6.78/20} + 10^{6.55/20} + 10^{6.78/20} + 10^{6.55/20})^2/4] = 12.69$ dBi

Galtronics Directional Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.81	26	0.4486	1
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	36.20	26	0.4907	1
ac-VHT40/ac-VHT80/	5725 ~ 5850	30.20		0007	•
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10* log[(10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20})^2/4] = 12.77 \text{ dBi}$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10*\log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30 dBi$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10*\log[(10^{8.92/20} + 10^{8.82/20} + 10^{8.92/20} + 10^{8.82/20})^2/4] = 14.89 dBi$

Sector-Antenna 1356.17.0011 Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	25.65	20	0.7207	4
ac-VHT40/ac-VHT80/	5725 ~ 5850	35.65	20	0.7307	'
ac-VHT80+80					

Directional Antenna 1356.17.0077 Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	25.67	20	0.7341	4
ac-VHT40/ac-VHT80/	5725 ~ 5850	35.67	20	0.7341	1
ac-VHT80+80					

Product	US WI-FI AP 4X4 OD ext. antenna
Test Item	RF Exposure Evaluation (For Occupational)

FPMI2458-DP4RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/	2412 ~ 2462	35.85	20	0.7651	5
n-HT40	2412 ~ 2402	35.65	20	0.7651	5
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	35.83	20	0.7616	5
ac-VHT40/ac-VHT80/	5725 ~ 5850	აა.ია	20	0.7616	5
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10 * \log[(10^{6.70/20} + 10^{6.80/20} + 10^{6.80/20} + 10^{6.80/20})^2/4] = 12.70 \; \text{dBi}$

 $5150 \sim 5250 \text{MHz Directional Gain} = 10*log[(10^{5.79/20} + 10^{5.57/20} + 10^{5.89/20} + 10^{5.05/20})^2/4] = 11.60 \text{ dBi}$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{5.24/20} + 10^{5.09/20} + 10^{6.73/20} + 10^{5.62/20})^2/4] = 11.71 dBi$

FPMI2458-DP2RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/	2412 ~ 2462	35.65	20	0.7307	5
n-HT40	2412 ~ 2402	35.05	20	0.7307	5
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	35.81	20	0.7501	E
ac-VHT40/ac-VHT80/	5725 ~ 5850	JU.01	20	0.7581	5
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462$ MHz Directional Gain = $10*log[(10^{6.70/20} + 10^{6.40})^2/2] = 9.56$ dBi

 $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{5.79/20} + 10^{5.57/20})^2/2] = 8.69$ dBi

 $5725 \sim 5850$ MHz Directional Gain = $10*log[(10^{5.24/20} + 10^{5.09/20})^2/2] = 8.18$ dBi

Galtronics Omni Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.66	20	0.7324	5
802.11a/n-HT20/ n-H40/ac-VHT20 ac-VHT40/ac-VHT80/	5150 ~ 5250, 5725 ~ 5850	35.66	20	0.7324	5
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10*log[(10^{2.93/20} + 10^{3.02/20} + 10^{2.93/20} + 10^{3.02/20})^2/4] = 9.00 \text{ dBi}$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63 dBi$

 $5725 \sim 5850$ MHz Directional Gain = $10*log[(10^{6.78/20} + 10^{6.55/20} + 10^{6.78/20} + 10^{6.55/20})^2/4] = 12.69$ dBi

Galtronics Directional Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.81	20	0.7581	5
802.11a/n-HT20/	5450 5050				
n-H40/ac-VHT20	5150 ~ 5250,	36.20	20	0.8293	5
ac-VHT40/ac-VHT80/	5725 ~ 5850				
ac-VHT80+80					

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10*log[(10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20})^2/4] = 12.77 \; \text{dBi}$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30 dBi$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10*\log[(10^{8.92/20} + 10^{8.82/20} + 10^{8.92/20} + 10^{8.82/20})^2/4] = 14.89 dBi$

Sector-Antenna 1356.17.0011 Antenna:

Test Mode	Frequency	Maximum	Safety	Power Density	Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	25.65	20	0.7207	F
ac-VHT40/ac-VHT80/	5725 ~ 5850	35.65	20	0.7307	5
ac-VHT80+80					

Directional Antenna 1356.17.0077 Antenna:

Test Mode	Frequency	Maximum	Safety		Limit of Power
	Band (MHz)	EIRP (dBm)	Distance	(mW/cm ²)	Density
			(cm)		(mW/cm ²)
802.11a/n-HT20/					
n-H40/ac-VHT20	5150 ~ 5250,	35.67	20	0.7341	E
ac-VHT40/ac-VHT8	80/ 5725 ~ 5850	33.67	20	0.7341	5
ac-VHT80+80					

Page Number: 15 of 15

2.3. Summary of Test Result

The maximum calculations of above situations

Model	Configuration	The formula of	Calculation	Limit	Result
		calculated the MPE	Power Density		
		(mW/cm2)	(mW/cm2)		
General Population	2.4GHz + 5GHz	0.4897 + 0.4907	0.9804	1	Pass
Occupational	2.4GHz + 5GHz	0.7581 + 0.8293	1.5874	5	Pass

The wireless device described within this report has been shown to be capable of compliance with basic restrictions related to human exposure to electromagnetic fields for both General public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specifications

Antenna Product	Configuration	Required Complian	nce Boundary (cm)
Number	Configuration	General Population	Occupational
FPMI2458-DP4RPSMA	2.4GHz + 5GHz	25	20
FPMI2458-DP2RPSMA	2.4GHz + 5GHz	25	20
Galtronics Omni Antenna	2.4GHz + 5GHz	25	20
Galtronics Directional Antenna	2.4GHz + 5GHz	26	20
Sector-Antenna 1356.17.0011	5GHz	20	20
Directional Antenna 1356.17.0077	5GHz	20	20

The End	
——————————————————————————————————————	