

TRIAL HIGHER SCHOOL CERTIFICATE 1999

MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON)

BHC

PM TUESDAY 17 AUGUST

EH

BJR

LJP

GJR

RMH

CLK

130 copies

TIME ALLOWED: TWO HOURS
[Plus 5 minutes reading time]

DIRECTIONS TO STUDENTS:

- · Write your Barker Student Number on EACH AND EVERY page.
- Students are to attempt ALL questions. ALL questions are of equal value. [12 marks]
- The questions are not necessarily arranged in order of difficulty. Students are advised to read the whole paper carefully at the start of the examination.
- ALL necessary working should be shown in every question.
 Marks may be deducted for careless or badly arranged work.
- Begin your answer to each question on a NEW page. The answers to the questions in this paper are to be returned in SEVEN SEPARATE BUNDLES.
 Write on ONLY ONE SIDE of each page.
- Approved calculators and geometrical instruments may be used.
- A table of Standard Integrals is provided at the end of the paper.

* * * *

QUESTION 1. (Start a <u>NEW</u> page)

Marks

(a) Find
$$\lim_{x\to 0} \frac{\sin 5x}{2x}$$

1

(b) Evaluate (i)
$$\int_0^1 \frac{e^{2x}}{e^{2x} + 1} dx$$

2

(ii)
$$\int_{0}^{4} \frac{3}{\sqrt{16 - x^2}} dx$$

2

(c) Solve
$$\frac{2x}{x-1} > 1$$
 for all real x.

2

(d) A and B are the points (4, 5) and (8, -1) respectively.

Find the point P which divides the interval AB externally in the ratio 3:5.

2

(e) Find the acute angle between the curves $y = \log_e x$ and $y = 1 - x^2$ at the point P (1, 0).

QUESTION 2. (Start a <u>NEW</u> page)

Marks

(a) (i) Write down the expansion of $cos(\alpha + \beta)$.

3

(ii) Hence, or otherwise, find the exact value of cos 105°.

(b) A debating team consists of 12 students, 8 of whom are girls.

If three students are chosen at random, what is the probability of selecting

3

- (i) no girls at all
- (ii) exactly one girl
- (iii) at least two girls ?

(c) Prove that $\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$

2

(d) Use the substitution u = 1 - x to find the exact value of the integral

$$\int_{0}^{1} x \sqrt{1-x} \ dx$$

QUESTION 3. (Start a NEW page)

Marks

(a) Melinda invites eleven guests to dinner to celebrate her birthday. Everyone is randomly seated about a round table. Find

3

- (i) the number of seating arrangements that are possible.
- (ii) the probability that a particular couple, Stuart and Rachael, sit together.
- (b) (i) State the domain and range of the function $f(x) = \cos^{-1} 2x$.

3

- (ii) Draw a neat sketch of the function $f(x) = \cos^{-1} 2x$, clearly labelling all essential features.
- (c) (i) Find the exact value of $\tan^{-1}(\sqrt{3}) \tan^{-1}(-1)$.

3

- (ii) Hence, or otherwise, find the area bounded by the curve $y = \frac{1}{4 + x^2}$, the x-axis and the ordinates x = -2 and $x = 2\sqrt{3}$.
- (c) Prove by Mathematical Induction that $7^n 1$ is divisible by 6 for all positive integers of n.

QUESTION 4. (Start a NEW page)

Marks

- (a) Given that $\sin x > 0$, differentiate $y = \sin^{-1}(\cos x)$, simplifying your answer fully. 2
- (b) Find the term independent of x in the expansion of $\left(x + \frac{1}{2x^2}\right)^6$.
- (c) Solve the equation $3\sin x + 4\cos x = 2$ for $0 \le x \le 2\pi$.
- (d) (i) Given the function $f(x) = x \sin x 2$ is a continuous function, determine the nature of any stationary points in the domain $0 \le x \le 4\pi$ and show that this function inflects at $x = n\pi$. (where n is any integer)
 - (ii) Hence, or otherwise, draw a neat sketch of the function $f(x) = x \sin x 2$ over the domain $0 \le x \le 4\pi$.

QUESTION 5: (Start a NEW page)

Marks

- (a) Newton's Law of Cooling can be expressed in the form $\frac{dT}{dt} = -k(T T_o)$ where T_o is the temperature of the surrounding medium and t is the time and k is a constant.
 - (i) Verify, by substitution or otherwise, that $T = T_o + Ae^{-kt}$ (where A is a constant) is the solution to the above differential equation.
 - (ii) A body whose temperature is $150^{\circ}C$ is immersed in a liquid kept at a constant temperature of $70^{\circ}C$. In 40 minutes, the temperature of the immersed body falls to $90^{\circ}C$. How long altogether will it take for the temperature of the body to fall to $76^{\circ}C$?

(b) The rate
$$\frac{dV}{dt}$$
 at which a balloon is pumped up is given by $\frac{dV}{dt} = 1000e^{-2t}$

- (i) Prove that the volume V of air present in the balloon at time t seconds is given by $V = 500(1 e^{-2t})$.
- (ii) How many seconds does it take before there is 400 cubic units of air in the balloon?
- (iii) What is the maximum volume of air which the balloon can hold?
- (iv) Assuming the balloon is spherical, find the rate at which the radius of the balloon is increasing when the balloon contains 400 cubic units of air.

QUESTION 6. (Start a NEW page)

Marks

3

(a) Using the fact that $(1 + x)^{m+n} = (1 + x)^m (1 + x)^n$, show that

$$\binom{m+n}{2} = \binom{m}{2} + \binom{n}{2} + \binom{m}{1} \binom{n}{1}$$

- (b) A particle moves in such a way that its displacement x cm from an origin O at any time t seconds is given by the function $x = \sqrt{3}\cos 3t \sin 3t$.
 - (i) Show that the particle is moving in simple harmonic motion.
 - (ii) Find the period of the motion.
 - (iii) Find when the particle first passes the origin.
- (c) Rambo is at the top P of a 100 metre vertical cliff PQ. A flat plain extends horizontally 5 from the base Q of the cliff. A Sherman tank is situated somewhere on this plain at point T. Rambo fires a mortar shell from P with an initial velocity of $\frac{190}{\sqrt{3}}$ ms⁻¹ at an angle of θ to the horizontal and the shell lands on the tank 20 seconds later.
 - (i) Taking the acceleration due to gravity to be $10ms^{-2}$, show that $\theta = 60^{\circ}$.
 - (ii) Find the maximum height above the plain that the mortar shell reaches.

QUESTION 7. (Start a <u>NEW</u> page)

Marks

- (a) P and Q are two points on the parabola $x^2 = 4ay$ with coordinates $(2ap, ap^2)$ and $(2aq, aq^2)$ respectively. The tangents at P and Q meet at T which is situated on the parabola $x^2 = -4ay$.
 - (i) Write down the equations of the tangents at P and Q.
 - (ii) Show that T is the point (a(p+q), apq).
 - (iii) Prove that $p^2 + q^2 = -6pq$.
 - (iv) Find the equation of the locus of the midpoint of PQ.
- (b) The point R(a, b) lies in the positive quadrant of the number plane. A line through R meets the positive x and y axes at P and Q respectively and makes an angle θ with the x-axis.

- (i) Show that the length of PQ is equal to $\frac{a}{\cos \theta} + \frac{b}{\sin \theta}$.
- (ii) Hence, show that the minimum length of PQ is equal to $(a^{3/3} + b^{3/3})^{3/2}$.