[70240413 Statistical Machine Learning, Spring, 2018]

Probabilistic Graphical Models (I): Representation

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://bigml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

May 22, 2018

What are Graphical Models?

Reasoning under uncertainty!

Three Fundamental Questions

Representation

- How to capture/model uncertainty in possible worlds?
- How to encode our domain knowledge/assumptions/constraints?

Inference

• How do I answer questions/queries according to my model and/or based on given data?

e.g.:
$$P(X_i | \mathbf{D})$$

Learning

What model is "right" for my data?

e.g.:
$$\mathcal{M} = \arg \max_{\mathcal{M} \in \mathcal{M}} F(\mathbf{D}; \mathcal{M})$$

Recap of Basic Prob. Concepts

Representation: what is the joint prob. distribution on multiple variables

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

- How many state configurations in total?
- Are they all needed to be represented?
- Do we get any scientific/medical insight?

- Learning: where do we get all this probabilities?
 - Maximum likelihood estimation? But how many data do we need?
 - □ Are there other estimation principles?
 - Where do we put domain knowledge in terms of plausible relationships between variables, and plausible values of probabilities?
- ♦ **Inference**: if not all variables are observable, how to compute the conditional distribution of latent variables given evidence?
 - Computing p(H|A) would require summing over all | configurations of the unobserved variables

What is a Graphical Model?

- A multivariate distribution in high-dimensional space!
- An example with food web:

Probabilistic Graphical Models

• If X_i 's are conditionally independent (as described by a PGM), the joint can be factorized into a product of simpler terms, e.g.:

- Why we may favor a PGM?
 - Incorporation of domain knowledge and causal (logical) structures
 - How many parameters in the above factorized distribution?

PGM: Data Integration

- More examples:
 - □ Text + Image + Network → Holistic Social Media

Probabilistic Graphical Models

 \bullet If X_i 's are conditionally independent (as described by a PGM), the joint can be factorized into a product of simpler terms, e.g.:

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_2) P(X_4 | X_2) P(X_5 | X_2) P(X_1) P(X_3 | X_1)$$

$$P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$$

- Why we may favor a PGM?
 - Incorporation of domain knowledge and causal (logical) structures
 - How many parameters in the above factorized distribution?
 - Modular combination of heterogeneous parts data fusion!

So What is a PGM after all?

The informal blurb:

■ It is a smart way to specify exponentially large prob. distributions without paying an exponential cost, and at the same time endow the distributions with structured semantics

♦ A more formal description:

 It refers to a family of distributions on a set of RVs that are compatible with all the probabilistic independence propositions encoded by the graph that connects these variables

Two Types of PGMs

Directed edges give causality relationships (Bayesian Network or Directed Graphical Models)

$$P(X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8)$$

$$= P(X_1) P(X_2) P(X_3 | X_1) P(X_4 | X_2) P(X_5 | X_2)$$

$$P(X_6 | X_3, X_4) P(X_7 | X_6) P(X_8 | X_5, X_6)$$

Undirected edges give correlations between variables
 (Markov Random Field or Undirected Graphical Models)

$$P(X_1, X_2, X_3, X_{\phi}, X_5, X_6, X_7, X_8)$$

$$= \frac{1}{Z} \exp\{E(X_1) + E(X_2) + E(X_3, X_1) + E(X_{\phi}, X_2) + E(X_5, X_2) + E(X_6, X_3, X_4) + E(X_7, X_6) + E(X_8, X_5, X_6)\}$$

Bayesian Networks

Structure: DAG

Meaning: a node is conditionally independent of every other node in the network outside its Markov blanket

Local conditional distributions
 (CPD) and the DAG completely determine the joint distribution

Markov Random Fields

- Structure: undirected graph
- Meaning: a node is conditionally independent of every other node in the network given its Direct Neighbors
- Local contingency functions
 (potentials) and the cliques in the graph completely determine the joint distribution

Towards Structural Specification of Probability Distribution

- Separation properties in the graph imply independence properties about the associated variables
- For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents
- **♦** The **Equivalence Theorem**:
 - □ For a graph G,
 - □ Let | denote the family of distributions that satisfy I(G),
 - □ Let denote the family of distributions that factor according to G,
 - □ Then | |

GMs are your old friends

- Clustering
 - GMMs

- Linear, conditional mixture
- Classification
 - Generative and discriminative approach
- Dimension reduction
 - □ PCA, FA, etc

An (incomplete)
 genealogy of graphical
 models

1972-2010

Picture by Zoubin Ghahramani & Sam Roweis

Application of PGMs

- Machine learning
- Computational statistics
- Computer vision and graphics
- Natural language processing
- Information retrieval
- Robot control
- Decision making under uncertainty
- Error-control codes
- Computational biology
- Genetics and medical diagnosis/prognosis
- Finance and economics
- Etc.

Why graphical models

- A language for communication
- A language for computation
- A language for development
- Origins:
 - Independently developed by Spiegelhalter and Lauritzen in statistics and Pearl in computer science in the late 1980's

Why graphical models

- Probability theory provides the glue whereby the parts are combined, ensuring that the system as a whole is consistent, and providing ways to interface models to data
- Graph theory provides both an intuitively appealing interface by which humans can model highly-interacting sets of variables as well as a data structure that lends itself naturally to the design of efficient general-purpose algorithms
- Many of the classical multivariate probabilistic systems studied in the fields such as statistics, systems engineering, information theory, pattern recognition and statistical mechanics are special cases of the general graphical model formalism
- The graphical model framework provides a way to view all of these systems as instances of a common underlying formalism

Bayesian Networks

Example: The dishonest casino

- A casino has two dice:
 - Fair die: P(1)=P(2)=...=P(6)=1/6
 - Loaded die: P(1)=P(2)=...=P(5)=1/10; P(6)=1/2
- Casino player switches back & forth between fair and loaded die once every 20 turns

- You bet \$1
- You roll (always with a fair die)
- Casino player rolls (maybe with fair die, maybe with loaded die)
- Highest number wins \$2

Puzzles regarding the dishonest casino

• Given: a sequence of rolls by the casino player

1245526462146146136136661664661636616366163616515615115146123562344

Questions:

- How likely is this sequence, given our model of how the casino works?
 - This is the **EVALUATION** problem
- What portion of the sequence was generated with the fair die, and what portion with the loaded die?
 - This is the **DECODING** problem
- How "loaded" is the loaded die? How "fair" is the fair die? How often does the casino player change from fair to loaded, and back?
 - This is the **LEARNING** problem

Hidden Markov Models (HMMs)

The underlying source:

Speech signal genome function dice

The sequence:

Phonemes
DNA sequence
sequence of rolls

Probability of a parse

- Given a sequence $\mathbf{x} = \mathbf{x}_1, \dots, \mathbf{x}_T$ and a parse $\mathbf{y} = \mathbf{y}_1, \dots, \mathbf{y}_T$
- $y_1 \longrightarrow y_2 \longrightarrow y_3 \longrightarrow \dots \longrightarrow y_T$ $x_1 \longrightarrow x_2 \longrightarrow x_3 \longrightarrow \dots \longrightarrow x_T$
- To find how likely is the parse: (given our HMM and the sequence)

```
p(\mathbf{x}, \mathbf{y}) = p(x_1, \dots, x_T, y_1, \dots, y_T)  (Joint probability)

= p(y_1) p(x_1 | y_1) p(y_2 | y_1) p(x_2 | y_2) \dots p(y_T | y_{T-1}) p(x_T | y_T)

= p(y_1) P(y_2 | y_1) \dots p(y_T | y_{T-1}) \times p(x_1 | y_1) p(x_2 | y_2) \dots p(x_T | y_T)

= p(y_1, \dots, y_T) p(x_1, \dots, x_T | y_1, \dots, y_T)
```

- Marginal probability: $p(\mathbf{x}) = \sum_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) = \sum_{y_1} \sum_{y_2} \cdots \sum_{y_N} \pi_{y_1} \prod_{t=2}^{T} a_{y_{t-1}, y_t} \prod_{t=1}^{T} p(x_t | y_t)$
- □ Posterior probability: p(y|x) = p(x,y)/p(x)
- We will learn how to do this explicitly (**polynomial time**)

Bayesian Networks in a Nutshell

- ♦ A BN is a directed graph whose nodes represent the RVs and whose edges represent direct influence of one variable on another
- ♦ It is a data structure that provides the skeleton for representing a joint distribution compactly in a factorized way
- It offers a compact representation for a set of conditional independence assumptions about a distribution
- ♦ We can view the graph as encoding a generative sampling process executed by nature, where the value for each variable is selected by nature using a distribution that depends only on its parents.

Bayesian Network: Factorization Theorem

Theorem:

• Given a DAG, the most general form of the probability distribution that is consistent with the graph factors according to "node given its parents":

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

where X_{π_i} is the set of parents of X_i , d is the number of nodes (variables) in the graph

Specification of a Directed GM

- There are two components to any GM:
 - The qualitative specification
 - □ The quantitative specification

Qualitative Specification

- Where does the qualitative specification come from?
 - Prior knowledge of causal relationships
 - Prior knowledge of modular relationships
 - Assessment from experts
 - Learning from data
 - We simply like a certain architecture (e.g., a layered graph)
 - **.** . . .

Local Structure & Independence

- Common parent
 - Fixing B decouples A and C

- Cascade
 - Knowing B decouples A and C

- V-structure
 - Knowing C couples A and B because A can "explain away" B w.r.t C

The language is compact, the concepts are rich!

I-Maps

- **Defn**: Let P be a distribution over X. We define I(P) to be the set of independence assertions of the form $(X \perp Y \mid Z)$ that hold in P (however how we set the parameter-values).
- Defn: Let K be any graph object associated with a set of independencies I(K). We say that K is an *I-map* for a set of independencies I, I(K) ⊆ I.

 We now say that G is an I-map for P if G is an I-map for I(P), where we use I(G) as the set of independencies associated.

Facts about I-map

- \diamond For G be an I-map of P, it is necessary that G does not mislead us regarding independencies in P:
 - ullet Any independence that G asserts must also hold in P.
 - Conversely, P may have additional independencies that are not reflected in G
- Example: (who is P1 / P2's I-map?)

- Complete graph is an I-map for any distribution, right?
 - Yet it does not reveal any independence structure in the distribution

Graph separation criterion

D-separation criterion for Bayesian networks (D for Directed edges):

Defn: variables x and y are *D-separated* (conditionally independent) given z if they are separated in the *moralized* ancestral graph

Example:

Active trail

- Causal trail X → Z → Y : active if and only if Z is not observed.
- Evidential trail X ← Z ← Y : active if and only if Z is not observed.
- Common cause X ← Z → Y : active if and only if Z is not observed.
- Common effect X → Z ← Y : active if and only if either Z or one of Z's descendants is observed

Definition: Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-separated given Z, denoted d-sep $(X; Y \mid Z)$, if there is no active trail between any node $X \in X$ and $Y \in Y$ given Z.

What is in I(G): Global Markov Property

 X is d-separated (directed-separated) from Z given Y if we can't send a ball from any node in X to any node in Z using the "Bayesball" algorithm illustrated bellow (and plus some boundary conditions):

 Defn: I(G)=all independence properties that correspond to dseparation:

$$I(G) = \{X \perp Z | Y : dsep_G(X; Z|Y)\}$$

Example

• Complete the I(G) of this graph:

Quantitative specification of probability distribution

- Separation properties in the graph imply independence properties about the associated variables
- The Equivalence Theorem:

```
For a graph G,
```

Let \mathcal{D}_1 denote the family of **all distributions** that satisfy I(G),

Let \mathcal{D}_2 denote the family of **all distributions** that factor according to G,

$$P(\mathbf{X}) = \prod_{i=1:d} P(X_i \mid \mathbf{X}_{\pi_i})$$

Then $\mathfrak{D}_1 \equiv \mathfrak{D}_2$.

For the graph to be useful, any conditional independence properties we can derive from the graph should hold for the probability distribution that the graph represents

Conditional Probability Tables (CPTs)

a^0	0.75
a ¹	0.25

b^0	0.33
b ¹	0.67

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

	a ⁰ b ⁰	a ⁰ b ¹	a¹b ⁰	a¹b¹
C ₀	0.45	1	0.9	0.7
C ¹	0.55	0	0.1	0.3

	°	C ¹
d ⁰	0.3	0.5
d¹	07	0.5

Conditional Probability Density Functions (CPDs)

 $A \sim N(\mu_a, \Sigma_a)$ $B \sim N(\mu_b, \Sigma_b)$

P(a,b,c.d) = P(a)P(b)P(c|a,b)P(d|c)

Summary of BN Semantics

- Defn: A Bayesian network is a pair (G, P) where P factorizes over G, and where P is specified as set of CPDs associated with G's nodes.
 - Conditional independencies imply factorization
 - Factorization according to G implies the associated conditional independencies.

D-separation is sound and complete w.r.t BN factorization law

Uniqueness of BN

 Very different BN graphs can actually be equivalent, in that they encode precisely the same set of conditional independence assertions.

$$(X \perp Y \mid Z)$$
.

Simple BNs: Conditionally Indep. Observations

• The "Plate" Micro:

Model parameters

Data =
$$\{y_1, ..., y_n\}$$

Hidden Markov Model: from static to dynamic mixture

Static mixture

Dynamic mixture

Definition of HMM

Observation space

Alphabetic set: $C = \{c_1, c_2, \dots, c_K\}$ Euclidean space: \mathbb{R}^d

Index set of hidden states

$$I = \{1, 2, \cdots, M\}$$

Transition probabilities between any two states

$$p(y_t^j = 1 | y_{t-1}^i = 1) = a_{i,j},$$
or
$$p(y_t | y_{t-1}^i = 1) \sim \text{Multinomial}(a_{i,1}, a_{i,1}, \dots, a_{i,M}), \forall i \in I.$$

Start probabilities

$$p(y_1) \sim \text{Multinomial}(\pi_1, \pi_2, ..., \pi_M)$$

Emission probabilities associated with each state

$$p(x_t \mid y_t^i = 1) \sim \text{Multinomial}(b_{i,1}, b_{i,1}, \dots, b_{i,K}), \forall i \in I.$$

or in general:

$$p(\mathbf{x}_t \mid \mathbf{y}_t^i = 1) \sim f(\cdot \mid \theta_i), \forall i \in I.$$

P-maps

- **Definition**: A DAG G is a perfect map (P-map) for a distribution P is I(P) = I(G)
- **Theorem**: not every distribution has a perfect map as DAG
 - Proof by counterexample: suppose we have a model where

$$A \perp C \mid \{B, D\}$$
, and $B \perp D \mid \{A, C\}$.

□ This cannot be represented by any Bayes net

Undirected Graphical Models (UGM)

- Pairwise (non-causal) relationships
- Can write down model, and score specific configurations of the graph, but no explicit way to generate samples
- Contingency constrains on node configuration

A Canonical Example: understanding complex scene

air or water?

A Canonical Example

♦ The grid model

- Naturally arises in image processing, lattice physics, etc
- ♦ Each node may represent a single "pixel", or an atom
 - □ The states of adjacent or nearby nodes are "coupled" due to pattern continuity or electro-magnetic force, etc
 - Most likely joint-configurations usually correspond to a "low-energy" state

Representation

Defn: an undirected graphical model represents a distribution
 P(X₁,...,X_n) defined by an undirected graph H, and a set of
 positive potential functions y_c associated with the cliques of
 H, s.t.

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

where *Z* is known as the partition function:

$$Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Also known as Markov Random Fields, Markov networks ...
- The potential function can be understood as an contingency function of its arguments assigning "pre-probabilistic" score of their joint configuration.

I. Quantitative Specification: Cliques

- For G={V,E}, a complete subgraph (clique) is a subgraph
 G'={V'⊆V,E'⊆E} such that nodes in V' are fully interconnected
- A (maximal) clique is a complete subgraph s.t. any superset
 V"⊃V' is not complete.
- A sub-clique is a not-necessarily-maximal clique.

Example:

- max-cliques = {A,B,D}, {B,C,D},
- sub-cliques = {A,B}, {C,D}, ...→ all edges and singletons

Example UGM – using max cliques

$$P'(x_1, x_2, x_3, x_4) = \frac{1}{Z} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$
$$Z = \sum_{x_1, x_2, x_3, x_4} \psi_c(\mathbf{x}_{124}) \times \psi_c(\mathbf{x}_{234})$$

 For discrete nodes, we can represent P(X_{1:4}) as two 3D tables instead of one 4D table

Example UGM – using subcliques

- We can represent $P(X_{1:4})$ as 5 2D tables instead of one 4D table
- Pair MRFs, a popular and simple special case

II: Independence Properties

- Now let us ask what kinds of distributions can be represented by undirected graphs (ignoring the details of the particular parameterization).
- Defn: the global Markov properties of a UG H are

$$I(H) = \{X \perp Z | Y\} : sep_H(X; Z | Y)\}$$

Global Markov Properties

Let H be an undirected graph:

- B separates A and C if every path from a node in A to a node in C passes through a node in B: $\sup_{H} (A; C|B)$
- A probability distribution satisfies the **global Markov property** if for any disjoint A, B, C, such that B separates A and C, A is independent of C given B: $I(H) = \{A \perp C | B : \text{sep}_H(A; C | B)\}$

Local Markov Properties

• For each node $X_i \in \mathbf{V}$, there is unique Markov blanket of X_i , denoted MB_{X_i} , which is the set of neighbors of X_i in the graph (those that share an edge with X_i)

Defn:

The local Markov independencies associated with H is:

$$I_{\ell}(H)$$
: $\{X_i \perp \mathbf{V} - \{X_i\} - MB_{Xi} \mid MB_{Xi} : \forall i\}$,

In other words, X_i is independent of the rest of the nodes in the graph given its immediate neighbors

Soundness and Completeness of global Markov property

- Defn: An UG H is an I-map for a distribution P if $I(H) \subseteq I(P)$, i.e., P entails I(H).
- Defn: P is a Gibbs distribution over H if it can be represented as

$$P(\mathbf{x}_1, \dots, \mathbf{x}_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

- Thm (soundness): If P is a Gibbs distribution over H, then H is an I-map of P.
- Thm (completeness): If $\neg sep_H(X; Z | Y)$, then $X \not\perp_P Z | Y$ in **some** P that factorizes over H.

Hammersley-Clifford Theorem

 Thm: Let P be a positive distribution over V, and H a Markov network graph over V. If H is an I-map for P, then P is a Gibbs distribution over H.

Perfect maps

Defn: A Markov network H is a perfect map for P if for any X;
 Y; Z we have that

$$\operatorname{sep}_{H}(X; Z|Y) \Leftrightarrow P \models (X \perp Z|Y)$$

- Thm: not every distribution has a perfect map as UGM.
 - Pf by counterexample. No undirected network can capture all and only the independencies encoded in a v-structure X → Z ← Y.

Exponential Form

• Constraining clique potentials to be positive could be inconvenient (e.g., the interactions between a pair of atoms can be either attractive or repulsive). We represent a clique potential $\psi_c(\mathbf{x}_c)$ in an unconstrained form using a real-value "energy" function $\phi_c(\mathbf{x}_c)$:

$$\psi_c(\mathbf{x}_c) = \exp\{-\phi_c(\mathbf{x}_c)\}\$$

For convenience, we will call $\phi_c(\mathbf{x}_c)$ a potential when no confusion arises from the context.

This gives the joint a nice additive strcuture

$$p(\mathbf{x}) = \frac{1}{Z} \exp \left\{ -\sum_{c \in C} \phi_c(\mathbf{x}_c) \right\} = \frac{1}{Z} \exp \left\{ -H(\mathbf{x}) \right\}$$

where the sum in the exponent is called the "free energy":

$$H(\mathbf{x}) = \sum_{c \in C} \phi_c(\mathbf{x}_c)$$

- In physics, this is called the "Boltzmann distribution".
- In statistics, this is called a log-linear model.

Example: Boltzmann machines

• A fully connected graph with pairwise (edge) potentials on binary-valued nodes (for $x_i \in \{-1,+1\} \text{ or } x_i \in \{0,1\}$) is called a Boltzmann machine

$$P(x_{1}, x_{2}, x_{3}, x_{4}) = \frac{1}{Z} \exp \left\{ \sum_{ij} \phi_{ij}(x_{i,j} x_{j}) \right\}$$
$$= \frac{1}{Z} \exp \left\{ \sum_{ij} \theta_{ij} x_{i} x_{j} + \sum_{i} \alpha_{i} x_{i} + C \right\}$$

Hence the overall energy function has the form:

$$H(x) = \sum_{ij} (x_i - \mu)\Theta_{ij}(x_j - \mu) = (x - \mu)^T \Theta(x - \mu)$$

Ising Model

 Nodes are arranged in a regular topology (often a regular packing grid) and connected only to their geometric neighbors.

$$p(X) = \frac{1}{Z} \exp \left\{ \sum_{i,j \in N_i} \theta_{ij} X_i X_j + \sum_i \theta_{i0} X_i \right\}$$

- Same as sparse Boltzmann machine, where θ_{ij}≠0 iff i,j are neighbors.
 - e.g., nodes are pixels, potential function encourages nearby pixels to have similar intensities.
- Potts model: multi-state Ising model.

Restricted Boltzmann Machines

hidden units

visible units

$$p(x, h \mid \theta) = \exp\left\{ \sum_{i} \theta_{i} \phi_{i}(x_{i}) + \sum_{j} \theta_{j} \phi_{j}(h_{j}) + \sum_{i,j} \theta_{i,j} \phi_{i,j}(x_{i}, h_{j}) - A(\mathbf{\theta}) \right\}$$

Properties of RBM

- Factors are marginally dependent.
- Factors are conditionally independent given observations on the visible nodes.

$$P(\ell \mid \mathbf{w}) = \prod_{i} P(\ell_i \mid \mathbf{w})$$

Iterative Gibbs sampling.

Learning with contrastive divergence

Conditional Random Fields

Discriminative

$$p_{\theta}(y \mid x) = \frac{1}{Z(\theta, x)} \exp \left\{ \sum_{c} \theta_{c} f_{c}(x, y_{c}) \right\}$$

 Doesn't assume that features are independent

When labeling X_i future observations are taken into account

Conditional Models

- Conditional probability P(label sequence y | observation sequence x)
 rather than joint probability P(y, x)
 - Specify the probability of possible label sequences given an observation sequence
- Allow arbitrary, non-independent features on the observation sequence X
- The probability of a transition between labels may depend on past and future observations
- Relax strong independence assumptions in generative models

Conditional Distribution

• If the graph G = (V, E) of **Y** is a tree, the conditional distribution over the label sequence $\mathbf{Y} = \mathbf{y}$, given $\mathbf{X} = \mathbf{x}$, by the Hammersley Clifford theorem of random fields is:

$$p_{\theta}(\mathbf{y} | \mathbf{x}) \propto \exp \left(\sum_{e \in E, k} \lambda_k f_k(e, \mathbf{y} |_e, \mathbf{x}) + \sum_{v \in V, k} \mu_k g_k(v, \mathbf{y} |_v, \mathbf{x}) \right)$$

- x is a data sequence
- y is a label sequence
- v is a vertex from vertex set V = set of label random variables

X₁ ... X_n

- e is an edge from edge set E over V
- f_k and g_k are given and fixed. g_k is a Boolean vertex feature; f_k is a Boolean edge feature
- k is the number of features
- $\quad \theta = (\lambda_1, \lambda_2, \cdots, \lambda_n; \mu_1, \mu_2, \cdots, \mu_n); \lambda_k \text{ and } \mu_k \quad \text{are parameters to be estimated}$
- y_e is the set of components of y defined by edge e
- $-y|_{v}$ is the set of components of y defined by vertex v

CRFs

$$p_{\theta}(\mathbf{y} \mid \mathbf{x}) = \frac{1}{Z(\theta, \mathbf{x})} \exp \left\{ \sum_{c} \theta_{c} f_{c}(\mathbf{x}, \mathbf{y}_{c}) \right\}$$

- Allow arbitrary dependencies on input
- Clique dependencies on labels
- Use approximate inference for general graphs

Summary: Cond. Indep. Semantics in MRF

- Structure: an undirected graph
 - Meaning: a node is conditionally independent of every other node given its directed neighbors
 - Local potential functions and the cliques in the graph completely determine the joint dist.
 - Give correlations between variables, but no explicit way to generate samples

Summary

- Undirected graphical models capture "relatedness", "coupling", "co-occurrence", "synergism", etc. between variables
 - Local and global independence properties via graph separation criteria
 - Defined on clique potentials
- Can be used to define either joint or conditional distributions
- Senerally intractable to compute likelihood due to presence of "partition function"
 - Not only inference but also likelihood-based learning is difficult in general
- Important special cases
 - Ising models; RBMs; CRFs

References

Lecture notes from "Probabilistic Graphical Models", 10-708, Spring 2015. Eric Xing, CMU

 Daphne Koller and Nir Friedman, Probabilistic Graphical Models: Principles and Techniques