Formal Languages and Compilers

Matteo Secco

 $March\ 7,\ 2021$

Contents

1	Formal Language Theory			
	1.1	Operations on strings	3	
	1.2	Operations on Languages	4	
2	Regular Expressions and Languages			
	2.1	Algebraic definition	6	
	2.2	Language Families	7	
	2.3	Derivation	7	
	2.4	Ambiguity of Regular Expressions	7	
	2.5	Extended Regular Expressions	8	
3	Context Free Grammars 10			
	3.1	Types of rules	11	
	3.2	Derivation	11	
	3.3	Erroneous Grammars and Useless Rules	11	
	3.4	Infinite Languages and Recursion	12	
	3.5	Syntax Trees and Canonical Derivations	12	
		3.5.1 Parenthesis languages	14	
	3.6	Regular composition of (Context) Free Languages	14	

1 Formal Language Theory

Alphabet Σ : any finite set of symbols $\Sigma = \{a_1, a_2, ..., a_k\}$

String: a sequence of alphabeth elements

Language: a set (possibly infinite) of strings

$$\Sigma = \{a, b, c\}$$
 $L_1 = \{ab, ac\}$ $L_2 = \{ab, aab, aaab, aaab, ...\}$

Sentences/Phrases: strings belonging to a language

Language cardinality: number of sentences of the language

$$|L_1| = |\{ab, ab\}| = 2$$
 $|L_2| = |\{ab, aab, aaab, aaab, ...\}| = \infty$

Number of occurrences of a symbol in a string: $|bbc|_b = 2$, $|bbc|_a = 0$

Length of a string: number of its elements

$$|bbc| = 3 \quad |abbc| = 4$$

String equality: two strings $x = a_1 a_2 ... a_h$ and $y = a_1 a_2 ... a_k$ are equal \iff

- have same length: $|x| = |y| \iff h = k$
- elements from left to right coincide: $a_i = b_i \quad \forall i \in \{1..h\}$

1.1 Operations on strings

Concatenation $x = a_1 a_2 ... a_h \land y = b_1 b_2 ... b_k \implies x \cdot y = a_1 a_2 ... a_h b_1 b_2 ... b_k$

- associative: (xy)z = x(yz)
- length: |xy| = |x| + |y|

Empty string ϵ is the neutral element for concatenation: $x\epsilon = \epsilon x = x \ \forall x$.

- length: $|\epsilon| = 0$
- NB: $\epsilon \neq \emptyset$

Substrings: if x = uyv then

- y is a substring of x
- y is a proper substring of $x \iff u \neq \epsilon \lor v \neq \epsilon$
- u is a prefix of x
- v is a <u>suffix</u> of y

Reflection: if $x = a_1 a_2 ... a_h$ then $x^R = a_h a_{h-1} ... a_1$

$$\bullet \ (x^R)^R = x$$

$$\bullet (xy)^R = y^R x^R$$

•
$$\epsilon^R = \epsilon$$

Repetition: $x^m = \underbrace{xxx...x}_{m \text{ times}}$. Inductive definition:

•
$$x^0 = \epsilon$$

•
$$x^m = x^{m-1}x$$
 if $m > 0$

1.2 Operations on Languages

Reflection: $L^R = \{x | \exists y (y \in L \land x = y^R)\}$

Prefixes(L): $\{y|y \neq \epsilon \land \exists x \exists z (x \in L \land z \neq \epsilon \land x = yz)\}$

• Prefix-free language: $L \cap Prefixes(L) = \emptyset$

Concatenation: $L'L'' = \{xy | x \in L' \land y \in L''\}$

Power: inductive definition:

•
$$L^0 = \{\epsilon\}$$

•
$$L^m = L^{m-1}L$$
 for $m > 0$

 \bullet Consequences:

$$-\ \emptyset^0=\{\epsilon\}$$

$$-L\cdot\emptyset=\emptyset\cdot L=\emptyset$$

$$-L \cdot \{\epsilon\} = \{\epsilon\} \cdot L = L$$

Universal language: over alphabet Σ : $L_{\text{universal}} = \Sigma^0 \cup \Sigma^1 \cup ...$

Complement: of L over Σ : $\neg L = L_{\text{universal}} \backslash L$

Star: formally called reflexive and transitive closure or Klenee star

$$L^* = \bigcup_{h=0}^{\infty} L^h = L^0 \cup L^1 \cup \ldots = \epsilon \cup L^1 \cup L^2$$

$$\Sigma^* = L_{\text{universal}}$$

Monotonic: $L \subseteq L^*$

Close under concatenation: $x \in L^* \land y \in L^* \implies xy \in L^*$

Idempotent: $(L^*)^* = L^*$

Commutative with reflection: $(L^*)^R = (L^R)^*$

$$\emptyset^* = \{\epsilon\}$$

$$\{\epsilon\}^* = \{\epsilon\}$$

Cross: $L^+ = L \cdot L^*$

Quotient: $L_1/L_2 = \{y | \exists x \in L_1 \exists z \in L_2(x = yz)\}$

- Not set quotient!
- \bullet Removes from L_1 suffixes contained in L_2

2 Regular Expressions and Languages

Regular languages are the simplest family of laguages.

They can be defined in three ways:

- Algebraically
- Using generative grammars
- Using recognizer automata

2.1 Algebraic definition

Regular expressions are expression on languages that composes languages operations.

Formally

- ullet Is a string r
- Over the alphabet $\Sigma = \{a_1, a_2, ..., a_n\} \cup \{\emptyset, \cup, \cdot, *\}$

Moreover, assuming s and t are regular expressions, then r is a regular expression if any of the following rules applies:

- \bullet $r = \emptyset$
- $r = a, \quad a \in \Sigma$
- $r = s \cup t$ (alternative notation is s|t)
- $r = s \cdot t$ (the · can be omitted)
- $r = s^*$

The meaning of a r.e. is a language L_r of alphabet Σ according to the table:

Expression	Language
Ø	Ø
ϵ	$\{\epsilon\}$
$a \in \Sigma$	$\{a\}$
$s \cup t$	$L_s \cup L_t$
$s \cdot t$	$L_s \cdot L_t$
۰*	L^*

Regular Languages are languages denoted by a regular expression

2.2 Language Families

REG is the collection of all regular languages

FIN is the collection of all languages with finite cardinality

Every finite language is regular $FIN \subset REG$:

•
$$L \in FIN \implies L = \bigcup_{i=1}^{k \in \mathbb{N}} x_i \implies L \in FIN$$

$$\bullet \ L = a^* \implies L \in REG \land L \not\in FIN$$

2.3 Derivation

Choice Union and Concatenation corresponds to possible choices. One obtains subexpressions by making a choice that identifies a sub language.

$$\begin{array}{lll} \textbf{Regular expression} & \textbf{Choices} \\ e_1 \cup ... \cup e_k & e_i & \forall i \in \{1,2,...,k\} \\ e^* & \epsilon \text{ or } e^n & \forall n \geq 1 \\ e^+ & e^n & \forall n \geq 1 \end{array}$$

Derivation among two r.e: $e_1 \implies e_2$ if

$$e_1 = \alpha \beta \gamma \wedge e_2 = \alpha \delta \gamma$$

where γ is a choice of β .

Derivation can be applied repeatedly, leading to $\stackrel{n}{\Rightarrow}$ (deriving n times, $\stackrel{*}{\Rightarrow}$ (0 or more times), $\stackrel{+}{\Rightarrow}$ (1 or more times).

Language defined by an r.e. $L(r) = \{x \in \Sigma^* | r \xrightarrow{*} x\}$

Equivalent r.e. defines the same language

2.4 Ambiguity of Regular Expressions

Numbered subexpressions of a R.E

- Add all passible parentheses to the r.e.
- number the elements of Σ
- identify all the subexpressions

Ambiguity happens when a phrase can be obtained through distinct derivations, which differ **not only for the order**.

Sufficient condition for ambiguity of the r.e. f having numbered version f' is that $\exists x \exists y \in L(f') | x \neq y$ but x = y when numbers are removed

2.5 Extended Regular Expressions

Regular expressions extended with other operators:

Power: $a^n = \underbrace{aa...a}_{\text{n times}}$. NB: n is an actual number, cannot be a parameter.

Repetition: from k to n > k: $[a]_k^n = a^k \cup a^{k+1} \cup ... \cup a^n$

Optionality: $\epsilon \cup a$ or [a]

Ordered interval: (0...9) (a...z) (A...Z)

Intersection

Difference

Complement

It can be shown that Extended R.E. are not more powerful than standard R.E.

Closures REG is closed under

- Concatenation
- Union
- Star (*)
- Cross (+)
- Power
- Intersection
- Complement

Lists contains an unspecified number of elements of the same type. Lists can be represented with regex:

$$ie(se) * f$$

where i,s,f are terminal symbols denoting the beginning of the list, a separator between elements, and the end of the string.

Nested lists are possible using regex if the nesting level is limited:

$$\begin{split} list_1 &= i_1 \cdot list_2 \cdot (s_1 \cdot list_2)^* \cdot f_1 \\ list_2 &= i_2 \cdot list_3 \cdot (s_2 \cdot list_3)^* \cdot f_2 \\ & \dots \\ list_k &= i_k \cdot e_k \cdot (s_k \cdot e_k)^* \cdot f_k \end{split}$$

3 Context Free Grammars

The language $L = \{a^n b^n | n > 0\}$ is **not** regular.

Grammars a tool to define language through **rewriting rules**. Phrases are generated hrough repeated application of the rules.

Context Free Grammar is defined by 4 entities:

Non-terminal aplhabet V

Terminal alphabet Σ , alphabeth of the resulting language

Rules/Productions P

Axiom/Start $S \in V$, from which derivation starts

Rules form: $X \to \alpha$ where $X \in V \land \alpha \in (V \cup \Sigma)^*$. Rules can be condensed:

$$X \to \alpha_1$$

$$X \to \alpha_2$$

• • •

$$X \to \alpha_k$$

can be rewritten as

$$X \to \alpha_1 |\alpha_2| ... |\alpha_k|$$

Safety conventions:

- $\{\rightarrow, |, \cup, \epsilon\} \cap \Sigma = \emptyset$
- $V \cap \Sigma = \emptyset$

Notation conventions: V elements can be distinguished using:

- \bullet <Angle brackets> surrounding elements of V
- Elements of Σ in **bold**, elements of V in *italic*
- Elements of Σ 'quoted'
- \bullet Elements of V in UPPERCASE

3.1 Types of rules

Terminal $\rightarrow u | \epsilon$

Empty/Null $\rightarrow \epsilon$

Initial/Axiomatic $S \rightarrow$

Recursive $A \rightarrow \alpha A \beta$

Left-Recursive $A \rightarrow A\beta$

Right-Recursive $A \rightarrow \alpha A$

Left-and-Right-Recursive $A \rightarrow A\beta A$

Copy/Categorization $A \rightarrow B$

Linear $\rightarrow uBv|w$

Right-linear $\rightarrow uB|w$

Left-Linear $\rightarrow Bv|w$

Homogeneous normal $\rightarrow A_1...A_n|a$

Chomsky normal $\rightarrow BC|a$

Greibach normal $\rightarrow a\sigma|b$ where $\sigma \in V^*$

Operator normal $\rightarrow AaB$

3.2 Derivation

Derivation \Longrightarrow Let $\beta, \gamma \in (V \cup \Sigma)^*$. Then $\beta \Longrightarrow \gamma$ for grammar $G = \langle V, \Sigma, P, S \rangle$ iff

$$\begin{array}{ll} \beta = \delta A \eta & \wedge \\ A \rightarrow \alpha & \in V & \wedge \\ \gamma = \delta \alpha \eta & \end{array}$$

Power, star and cross operators apply to derivation as usual

3.3 Erroneous Grammars and Useless Rules

Clean grammar $G = \langle V, \Sigma, P, S \rangle$ is clean iff $\forall A \in V$

A is reachable: $S \stackrel{*}{\Rightarrow} \alpha A \beta$ where $\alpha, \beta \in (V \cap \Sigma)^*$

A is defined: $L_A(G) \neq \emptyset$ (generates a non-empty language)

(G doesn't allow for circular derivations) optional, but useful

Algorithm 1 Undefined nonterminals identification

```
NEW \leftarrow \{A | (A \rightarrow u) \in P \land u \in \Sigma^* \}
\mathbf{repeat}
DEF \leftarrow NEW
NEW \leftarrow DEF \cup \{B | (B \rightarrow D_1 D_2 ... D_n) \in P \land \forall i (D_i \in DEF \cup \Sigma) \}
\mathbf{until} \ NEW = DEF
UNDEF \leftarrow V \setminus DEF
```

Produce relation A produce B iff $A \to (\alpha B\beta) \in P$, where $A \neq B \land \alpha, \beta$ are strings

Algorithm 2 Unreachable nonterminals identification

Write the graph of the **produce** relation Delete states that are not reachable from S

3.4 Infinite Languages and Recursion

Interesting languages are infinite. Infinite languages require the grammar generating them to be recursive

Recursive derivation $A \stackrel{n}{\Longrightarrow} xAy$

Immediately recursive derivation $A \stackrel{1}{\Rightarrow} xAy$

Left-recursive derivation $A \stackrel{n}{\Longrightarrow} Ay$

Right-recursive derication $A \stackrel{n}{\Longrightarrow} xA$

Infinity condition $|L(G)| = \infty \iff G$ is clean $\wedge G$ avoids circular derivations $\wedge G$ allows recursive derivations

3.5 Syntax Trees and Canonical Derivations

Syntax tree A graph representing the derivation process which is

- Oriented
- Sorted (Top-down, Left-to-right)
- Acyclical
- $\forall n_1, n_2 \exists !$ a path $n_1 \leftrightarrow n_2$

Subtree with root N is the tree having N as root, includes N and all its descendant

Example grammar

- $E \rightarrow E + T|T$
- $T \rightarrow T * F | F$
- $F \rightarrow (E)|i$

Example sentence i + i * i

Example tree

 $\textbf{Left derivation} \quad \text{the left-most rule is applied first}$

Right derivation the right-most rule is applied first

Unicity of derivations for a fixed syntax tree \exists ! the left and right derivations

Skeleton tree is equal to the syntax tree with all the non-terminals obscured

Condensed skeleton tree obtained from the skeleton tree by merging internal nodes and non-branching paths

3.5.1 Parenthesis languages

Are expressed by the Dyck language

- $\Sigma = \{a, c\}$
- $S \to aScS | \epsilon$

We can observe that $L_1 = \{a^n c^n | n \ge 1\} \subset L_{\text{DYCK}}$

3.6 Regular composition of (Context) Free Languages

The family of free languages is closed under union, concatenation, kleen star. Given $G_1 = (\Sigma_1, V_{N_1}, P_1, S_1)$ and $G_2 = (\Sigma_2, V_{N_2}, P_2, S_2 \text{ such that } V_{N_1} \cap V_{N_2} = \emptyset \land S \notin (V_{N_1} \cup V_{N_2})$

Union
$$G = (\Sigma_1 \cup \Sigma_2, V_{N_1} \cup V_{N_2} \cup \{S\}, P_1 \cup P_2 \cup \{S \rightarrow S_1 S_2\}, S)$$

Concatenation

Kleen star