Student ID: ______ Name:

1. Derive the autocorrelation function $R_{zz}(\tau)$ and the power spectrum $S_{zz}(\omega)$ of the following stochastic process

$$Z(t) = aX(t) + bY(t),$$

where a and b represent constant parameters, X(t) stands for stationary white noise with $E\{X(t)\}=0$ and $R_{XX}(\tau)=q\delta(\tau)$, and Y(t) stands for stationary noise with $E\{Y(t)\}=0$ and $R_{YY}(\tau)=\exp(j\tau)$. The processes X(t) and Y(t) are supposed to be independent from each other.

2. Consider the following memoryless system

$$Y(t) = g[X(t)] = \exp(\beta X(t)),$$

where β is a positive constant ($\beta > 0$). Derive the probability density function $f_Y(y,t)$ of the output Y(t) with respect to input X(t), whose probability density function is given as $f_X(x,t) = t \exp(-tx)$, $(x \ge 0)$; 0 (x < 0).

3. Consider the following differentiator

$$Y(t) = L[X(t)] = X'(t).$$

Derive the autocorrelation function $R_{YY}(\tau)$ of the output Y(t) with respect to input X(t), whose autocorrelation function is given as $R_{XX}(\tau) = \cos \beta \tau$.

4. With respect to the following linear differential equation with white noise input X(t)

$$Y''(t) + 2Y'(t) - 3Y(t) = X(t),$$

derives the autocorrelation function $R_{YY}(\tau)$ and the power spectrum $S_{YY}(\omega)$. The input X(t) is considered to be white noise with $E\{X(t)\}=0$ and $R_{XX}(\tau)=48\delta(\tau)$.

Note:

- Please provide your answer in clear handwriting
- Dead-line for submission: 27 May 2025