Serviços cognitivos da Microsoft para classificação de imagens

MURILLO GRÜBLER

- Classificação de Imagens
- Serviços Cognitivos
 - Computer Vision
 - Custom Vision
- Demonstração

Classificação de Imagens

monocromático

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	/1/	0	0	0	0	0
0	0	0	0	1	1	0	0	0	0	1	1/	0	0	0	0	0
0	0	0	0	1	0	1	1	1	Ž	0	1	0	0	0	0	0
0	0	0	0	1.	0	0	0	0	0	1	/1	0	0	0	0	0
0	0	0	0	Ă	1	7	0	1/	1	0	1	0	0	0	0	0
0	0	0	1/	0	/1	1	0	1	1	0	0	1	0	0	0	0
0	0	0	1/	0	1	1	0	1	1	0	0	1	0	0	0	0
0	0	0	1	0	0.5	0.5	0	0.5	0.5	0	0	1	0	0	0	0
1	1	1	1	0	0	0	1	1	0	0	1	1_	1	1	1	4
1	1	1	1	1	1	1	0	0	1	1	1	1	1	1	1	_1
0	0	0	0	1	0	1	0	0	1	0	0	1	0	0	0	0
0	0	0	0	1	0	0	4	4	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Classificação de Imagens

Convolutional Layer

_	ut Vo		e (+	pad 1	1) (7	x7x2					-	x3x3)		put \
x [0	0	0	0	0	0	w0[:,:,0] 0 -1 -1		1[:		,0]			4
		_	<u> </u>	_										$\overline{}$
0	2	1	0	1	1	0	0 -1 0	1		1			2	4
0	0	0	2	0	0	0	1 0 1	C)]	1	1		-3	-4
0	0	0	1	0	0	0	w0[:,:,1]				,1]	l		,:,
0	0	2	1	2	1	0	-1 0 1	-	1 -	-1	1		0	0
0	2	2	1	1	2	8	1 0 1	C	-	-1	1		0	7
0	0	0	0	2	0	0	0 -1 0	-	1 -	-1	0		3	4
v [:,:						w0[:,1,2]	W	1[:	, :	,2]]		
0	0	0	0	0	0	0	0 1 1	1	. ()	1			
0	1	1	0	2.	2	0	1 -1 0	-	1 -	-1	0			
0	2	2		1	1,	0	1 1 -1	1	. ()	0			
			Ļ		/	/								
0	2	1	2	2	1	/ 0	Bias b0/(1x1x1)	В	ias t	o1 ((1x1	x1)		
0	2	1	0	0	/2	0	b0[x,:,0]			<i>,</i> :	,0]]		
0	1	0	2	Λ	0	0/	<u>// </u>	C)					
0	0	0	Ø	0	0/	10								
x [:,:	,21			//							toggle mo	vemer	nt
0	0	0	0	0	0	0								
0	0	2	2	1	1	ø								
0	2	2/	0	1	1	0								
0	1	0	0	1	2	0								
0	0	1	0	0	1	0								
0	0	1	2	1	1	0								

t Volume (3x3x2)

Fully-connected layer

Arquitetura CNN

CLASSIFIER
FULLY CONNECTED
FULLY CONNECTED
MAX POOLING
CONVOLUTION
MAX POOLING
CONVOLUTION
IMAGE

'LENET-5' YAN LECUN '98

Porque não utilizar somente Neural Network

Em uma rede neural, todos os nós estão conectados entre si, e todos recebem os valores de entrada;

Imagem: 800x600 = 480000 * 3 [R,G,B] = 14400

A convolução diminui o valor de entrada para a e evitar o overfitting;

- Visão;
- Fala;
- Linguagem;
- Pesquisa.

- Visão;
- Fala;
- Linguagem;
- Pesquisa.

- Biblioteca disponível no NuGet para aplicações .Net;
- REST API.

Computer Vision da Microsoft

- 1. Criar um projeto de Pesquisa Visual Computacional no Azure;
 - 1. Selecionar plano;
 - 2. Selecionar localização;
- 2. Selecione a chave.

- 1. Criar um projeto;
- 2. Carregue as imagens para a plataforma;
- 3. Rotule as imagens;
- 4. Treine o modelo.

Criar um projeto

• www.customvision.ai

Carregue as imagens

Rotule as imagens

Treine o modelo

Avaliação

• <u>Precision</u>: Se uma tag for prevista pelo seu modelo, qual a probabilidade de isso estar certo?

Modelo retornou nos testes: Fritas, Arroz, Carne;

Imagem com as tags originais: Frias, Arroz, Feijão, Tomate;

Resultado: 2/3 = 0,67

Avaliação

• <u>Recall</u>: Das tags que devem ser previstas corretamente, qual porcentagem seu modelo encontrou corretamente?

Modelo retornou nos testes: Fritas, Arroz, Carne;

Imagem com as tags originais: Frias, Arroz, Feijão, Tomate;

Resultado: 2/4 = 0,5

Classificando

< 1 2 >

Detectando objetos

l4914931314b94f2036b503a_XL.jpg

or

Browse local files

File formats accepted: jpg, png, bmp
File size should not exceed: 4mb

Predicted Object Filter

Probability Threshold: 15% (i)

	^
Tag	Probability
Arroz	97.1%
Ovo	94.8%
Fritas	80.9%
Carne	61%
Fritas	43.3%

Referências

- https://medium.com/brasil-ai/entendendo-o-funcionamento-de-uma-rede-neural-artificial-4463fcf44dd0
- https://medium.com/brasil-ai/classificando-imagens-com-o-custom-vision-da-microsoft-c6ee54aba953
- https://medium.com/brasil-ai/analisando-imagens-com-computer-vision-api-da-microsoft-520ef28d8eaf
- http://cs231n.github.io/convolutional-networks/

