Inteligência Artificial Além da Busca Clássica Parte 1 Hill Climbing

Prof. Jefferson Morais

Introdução

- Até agora, analisamos algoritmos cujas soluções eram uma sequência de ações
 - Mantendo um ou mais caminhos na memória
 - Registrando alternativas exploradas e não exploradas
- Entretanto, em muitos problemas, o caminho até o objetivo é irrelevante, importando apenas a solução encontrada
 - Ex.: problema da oito rainhas, otimização de redes de telecomunicações, roteamento de veículos, etc
- Analisaremos agora algoritmos que se importam apenas com a solução e não com o custo do caminho para alcançá-lo

- São aqueles que operam usando um único estado atual (em vez de vários caminhos)
- Em geral, movem-se apenas para os vizinhos desse estado
- Normalmente, os caminhos seguidos pela busca não são guardados (sem memória)
- Duas vantagens, embora não sejam sistemáticos
 - Usam pouca memória: normalmente um valor constante
 - Frequentemente encontram soluções razoáveis em grandes ou infinitos (contínuos) espaços de busca para os quais os algoritmos sistemáticos são inadequados

Topologias de espaço de estados

- Espaço de busca (estado): contém todos os estados possíveis
- Função objetivo: modela o problema e o que se quer otimizar

- Ótimo local: melhor solução entre os estados vizinhos
 - Problemas de minimização, diz-se mínimo local
 - Problemas de maximização, diz-se máximo local
- Ótimo global: melhor solução entre todos os estados possíveis
 - Problemas de minimização, diz-se mínimo global
 - Problemas de maximização, diz-se máximo global

Hill Climbing (subida da encosta)

- Versão encosta mais íngreme (steepest ascent)
 - É um laço repetitivo que se move de forma contínua no sentido do valor crescente (encosta acima)
 - O algoritmo termina quando alcança um "pico" (problema de maximização) em que nenhum vizinho tem valor mais alto

Versão: steepest ascent

function HILL-CLIMBING(problem) **returns** a state that is a local maximum

 $current \leftarrow Make-Node(problem.Initial-State)$

loop do

 $neighbor \leftarrow$ a highest-valued successor of current if neighbor. Value \leq current. Value then return current. State $current \leftarrow neighbor$

Hill Climbing - Problema das n Rainhas

- O problema consiste em
 - Posicionar n rainhas em um tabuleiro n x n, sendo que nenhum par de rainhas deve ficar na mesma linha, coluna ou diagonal
 - Sucessores de um estado são todos os estados possíveis a partir do movimento de uma única rainha
- Deve-se mover as rainhas para reduzir o número de conflitos.
 Uma possível função de custo h: número de pares de rainhas em conflito
- O mínimo global desta função é zero

- O Hill Climbing também é conhecido como busca gulosa local
 - Captura um bom estado vizinho sem decidir com antecedência para onde irá em seguida
- Quando n é pequeno, o algoritmo progride ao ótimo global rapidamente
- Em caso de platôs (áreas planas na topologia de espaço de estados)
 - Normalmente, o algoritmo faz uma escolha aleatória entre o conjunto de melhores sucessores

- O algoritmo Hill Climbing pode ficar paralisado
 - Máximos locais: pico mais alto entre seus vizinhos e mais baixo que o máximo global
 - Platôs: é uma área plana da topologia de espaço de estados
 - . Máximo local plano: não existe saída encosta acima
 - · Planície: é possível progredir

Aula 15

- A partir de um estado do problema de oito rainhas gerado aleatoriamente
 - 86% do tempo ficará paralisada
 - Resolve 14% de instâncias do problema
- Funciona com rapidez, em média
 - 4 passos quando tem sucesso
 - 3 passos quando fica paralisada
- Considerando o espaço de busca com 8⁸ ≈ 17 milhões de estados, o resultado possível com Hill Climbing é satisfatório

- Mínimo local: todos os estados vizinhos ao atual são piores que ele
 - Ex.: atual h = 1, vizinhos h > 1

Formulação do problema com 8 x 7 = 56 estados sucessores.

Considerando que cada rainha deve ocupar uma coluna (heurística).

Mover a rainha da coluna 4 ou 7, na mesma coluna, piorará a função objetivo.

- Platôs: uma região do espaço de estados onde a função de avaliação retorna o mesmo resultado
 - Ideia: permitir um movimento lateral
 - Pode funcionar se o platô for uma planície
 - Se for uma um máximo local plano, ocorrerá uma repetição infinita

- Possível solução para os problemas das rainhas
 - Impor um limite para o número de movimentos laterais consecutivos permitidos
 - 100 movimentos laterais consecutivos para n = 8
 - Aumenta a porcentagem de instâncias resolvidas
 - De 14% para 94%
 - Custo em média
 - 22 passos para instâncias bem sucedidas
 - 64 passos para cada falha

- Subida da encosta mais íngreme (Steepest ascent hill climbing): todos os sucessores são avaliados e o melhor é selecionado como o próximo movimento
- Subida da encosta estocástica (Stochastic hill climbing): escolhe de forma aleatória os movimentos encosta acima (converge mais lentamente que a subida mais íngreme)
 - Implementação: subida da encosta pela primeira escolha (First-choice hill climbing) que gera sucessores ao acaso até encontrar um sucessor melhor que o estado corrente. É uma boa estratégia quando um estado tem muitos sucessos (milhares)
- Subida da encosta com reinício aleatório (Random-restart hill climbing): inicia em um estado aleatório e aplica o algoritmo. Se o algoritmo não encontrar uma solução na primeira execução, reinicieo

Subida da encosta mais íngreme

- Avaliar todos os sucessores e escolhe o melhor (uma das opções onde h = 12)
- Subida da encosta pela primeira escolha
 - Escolhe aleatoriamente um movimento com que leve a h < 17
- Subida da encosta com reinício aleatório
 - Executa várias vezes o algoritmo com o estado inicial aleatório

h = 17

Próxima Aula:

Simulated Annealing