

_ Universitat Rovira i Virgili

Departament de Bioquímica i Biotecnologia

9. ESTRUCTURA SECUNDÀRIA DEL DNA

ESTRUCTURA I FUNCIÓ DE BIOMOLÈCULES

(Grau en Bioquímica i Biologia Molecular) (Grau en Biotecnologia)

PROGRAMA DE TEORIA DE L'ASSIGNATURA

- 8) COMPONENTS ESTRUCTURALS DELS ÀCIDS NUCLEICS (2)
- 9) ESTRUCTURA SECUNDÀRIA DEL DNA (2)

- 10) ESTRUCTURA DELS PRINCIPALS TIPUS D'ARN (2)
- 11) FONAMENTS DE LA INTERACCIÓ PROTEÏNA-DNA (2)

OBJECTIUS PRINCIPALS DEL TEMA

- (1) correlacionar l'estructura de la doble hèlice del DNA com un factor decisiu en l'herència biològica
- (2) justificar a partir de les característiques químices i estructurals, tant dels nucleòtids com de les cadenes polinucleotídiques, l'estructura de doble hèlice del DNA
- (3) reconèixer en l'estructura de la doble hèlice la presència de grups capaços de realitzar interaccions intermoleculars
- (4) conèixer la importància biològica de cada forma del DNA
- (5) comprendre l'efecte de la hidratació i dels cations sobre la forma del DNA i com es poden produir transicions entre formes distintes sense que es trenquin enllaços entre parells de bases
- (6) correlacionar la composició d'un DNA amb la seva temperatura de fusió

CONEIXEMENTS PREVIS

EL MODEL D'EN WATSON I CRICK

13. ESTRUCTURA SECUNDÀRIA DEL DNA

EL POLIMORFISME DEL DNA

DNA MONO-, TRI- I TETRACATENARI

LES REGLES DE CHARGAFF

	Mol % of Bases			
Source	Adenine (A)	Guanine (G)	Cytosine ^a (C)	Thymine (T)
Bacteriophage øX174	24.0	23.3	21.5	31.2
Bacteriophage T7	26.0	23.8	23.6	26.6
Escherichia coli B	23.8	26.8	26.3	23.1
Neurospora	23.0	27.1	26.6	23.3
Corn (maize)	26.8	22.8	23.2	27.2
Tetrahymena	35.4	14.5	14.7	35.4
Octopus	33.2	17.6	17.6	31.6
Drosophila	30.7	19.6	20.2	29.5
Starfish	29.8	20.7	20.7	28.8

CONCLUSIÓ: el nombre de mols d'A i de I (i de G i C) en un DNA determinat són iguals

ELS PATRONS DE DIFRACCIÓ OBTINGUTS PER EN MAURICE WILKINS I ROSALIND FRANKLIN

LA REPLICACIÓ DEL DNA SEGUEIX UN MECANISME SEMICONSERVATIU (MESELSON I STAHL, 1958)

CONEIXEMENTS PREVIS

EL MODEL D'EN WATSON I CRICK

13. ESTRUCTURA SECUNDÀRIA DEL DNA

EL POLIMORFISME DEL DNA

DNA MONO-, TRI- I TETRACATENARI

EL MODEL DE DOBLE HÈLICE DEL DNA D'EN WATSON I CRICK

CARACTERÍSTIQUES ESTRUCTURA <u>Dues</u> cadenes polinucleotídiques <u>antiparal·leles</u> formant una doble hèlice dextrògira L'esquelet sucre-fosfat es troba en l'exterior de la doble hèlice Les <u>bases nitrogenades</u> queden en l'interior de la doble hèlice i sols són accesibles des de l'exterior pels solcs Les 2 cadenes són complementàries (i.e. interaccionen mitjançant ponts d'hidrogen entre A i I i entre G i C de cadenes diferents) Aquest model <u>permet explicar</u> tant els resultats trobats per en Chargaff com explicar perquè la replicació és semiconservativa

LA DIRECCIONALITAT DE LES CADENES EN EL MODEL D'EN WATSON I CRICK

CONTIGUT EN G+C D'UN DNA I RESISTÈNCIA A LA DESNATURALITZACIÓ TÈRMICA

ELS SOLCS DE LA DOBLE HÈLICE EN EL MODEL D'EN WATSON I CRICK

PONTS D'HIDROGEN ENTRE PARELLS DE BASES EN EL MODEL D'EN WATSON I CRICK

CARACTERÍSTIQUES

El nombre de ponts d'hidrogens és característic de cada parell de bases (2 per AT i 3 per GC)

Com <u>major</u> sigui el contingut en <u>GC</u> d'un DNA, <u>major</u> serà la <u>temperatura</u> a la qual es <u>desnaturalitzarà</u>

Les <u>dimensions</u> de la doble hèlice són pràcticament <u>idèntiques</u> amb <u>independència</u> del parell de bases

La formació dels ponts d'hidrogen entre bases complementàries <u>no esgota</u> les possibilitats de aquestes participin en <u>més interaccions</u> d'aquest tipus

ESTRUCTURA

APARELLAMENTS ENTRE BASES DIFERENTS DELS ENUNCIATS EN EL MODEL D'EN WATSON I CRICK (1)

INTERACCIÓ CANÒNICA DE WATSON-CRICK

INTERACCIÓ DE WATSON-CRICK REVERSA

APARELLAMENTS ENTRE BASES DIFERENTS DELS ENUNCIATS EN EL MODEL D'EN WATSON I CRICK (2)

INTERACCIÓ DE TIPUS HOGGSTEEN

APARELLAMENTS ENTRE BASES DIFERENTS DELS ENUNCIATS EN EL MODEL D'EN WATSON I CRICK (3)

INTERACCIONS NO COVALENTS QUE ESTABILITZEN A LA DOBLE HÈLICE

PONTS D'HIDROGEN

Entre els parells de bases complementàries (2 en el parell AT i 3 en el parell CG)

Dels àtoms polars de la cadena sucre-fosfat amb les molècules d'aigua de l'entorn

INTERACCIONS CÀRREGA-CÀRREGA

Les càrregues negatives dels grups fosfat amb els cations en solució com ara el Mg²+

EFECTE HIDROFÒBIC I INTERACCIONS DE VAN DER WAALS

Els parells de bases situades al nucli de l'hèlice es troben empaquetats

Això té una contribució molt important a l'energia global d'estabilització

FORCES DE DISPERSIÓ O DE VAN DER WAALS. DEPENDÈNCIA DE L'ENERGIA AMB LA DISTÀNCIA

PARÀMETRES EMPRATS EN LA DESCRIPCIÓ DE LA DOBLE HÈLICE D'ADN

PARÀMETRE	DESCRIPCIÓ	
Sentit de gir de l'hèlice	Posició del nucleòtid en posició i+1 respecte al i	
Nombre de nucleòtids per gir	Nombre de nucleòtids necessaris per fer un gir complet	
Angle de gir per p.b. (°)	Angle que gira un parell de bases respecte al precedent	
Desplaçament per p.b. (Å)	Desplaçament respecte a l'eix de la doble hèlice	
Ascensió per p.b. (Å)	Desplaçament vertical d'un p.b. respecte al precedent	
Inclinació per p.b. (°)	Inclinació d'un p.b. respecte al pla normal a l'eix de l'hèlice	
Plegament del sucre	Conformació del sucre	
Conformació enllaç glicosídic	Conformació de l'enllaç entre el sucre i la base nitrogenada	

ASCENSIÓ PER CADA PARELL DE BASES

ANGLE DE GIR PER CADA PARELL DE BASES

PAS DE L'HÈLICE

CONEIXEMENTS PREVIS

EL MODEL D'EN WATSON I CRICK

13. ESTRUCTURA SECUNDÀRIA DEL DNA

EL POLIMORFISME DEL DNA

DNA MONO-, TRI- I TETRACATENARI

FONAMENTS ESTRUCTURALS DEL POLIMORFISME DEL DNA

"FORMES" DEL DNA, SITUACIONS EN QUE ES PRODUEIXEN I DISPONIBILITAT BIOLÒGICA

FORMA	SEQÜÈNCIA CARACT.	GRAU D'HIDRATACIÓ	DISPONIBILITAT
В	Seqüències generals sense Gs seguides o Cs seguides o alternança de CG	elevat	Forma majoritària biològicament
A	Gs seguides o Cs seguides	Disminuir el grau d'hidratació respecte a B	En dúplex d'híbrids entre DNA i RNA (i en dúplex d'RNA)
Z	Alternança de CG	Disminuir el grau d'hidratació respecte a B	En situacions especials dins la cèl·lula

ESTRUCTURA DE LES FORMES DE DNA MÉS RELLEVANTS

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (1)

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (2)

	Double Helix Type			
	A	В	z	
Overall proportions	Short and broad	Longer and thinner	Elongated and slim	
Rise per base pair	2.3 Å	$3.32 \text{ Å} \pm 0.19 \text{ Å}$	3.8 Å	
Helix packing diameter	25.5 Å	23.7 Å	18.4 Å	
Helix rotation sense	Right-handed	Right-handed	Left-handed	
Base pairs per helix repeat	1	1	2	
Base pairs per turn of helix	~11	~10	12	
Mean rotation per base pair	33.6°	$35.9^{\circ} \pm 4.2^{\circ}$	-60°/2	
Pitch per turn of helix	24.6 Å	33.2 Å	45.6 Å	
Base-pair tilt from the perpendicular	+19°	$-1.2^{\circ} \pm 4.1^{\circ}$	-9°	
Base-pair mean propeller twist	+18°	$+16^{\circ} \pm 7^{\circ}$	~0°	
Helix axis location	Major groove	Through base pairs	Minor groove	
Major groove proportions	Extremely narrow but very deep	Wide and with intermediate depth	Flattened out on helix surface	
Minor groove proportions	Very broad but shallow	Narrow and with intermediate depth	Extremely narrow but ver deep	
Glycosyl bond conformation	anti	anti	anti at C, syn at G	

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (3)

CONFORMACIONS DELS SUCRES EN FUNCIÓ DE LA FORMA

FORMA A: C3'-endo (conformació anti de l'enllaç **ß**-N-glicosídic)

FORMA B: C2'-endo (conformació anti de l'enllaç **ß**-N-glicosídic)

FORMA Z: C2'-endo (C; conf. anti) i C3'-endo (G; conf. syn)

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (4)

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (5)

CARACTERÍSTIQUES MÉS RELLEVANTS DE LES PRINCIPALS "FORMES" (6)

TRANSICIÓ ENTRE "FORMES" DE DNA

CONEIXEMENTS PREVIS

EL MODEL D'EN WATSON I CRICK

13. ESTRUCTURA SECUNDÀRIA DEL DNA

EL POLIMORFISME DEL DNA

DNA MONO-, TRI- I TETRACATENARI

ZONES DE DOBLE HÈLICE EN UN DNA MONOCATENARI

ESTRUCTURES DE DNA TRICATENÀRIES

OBJECTIUS PRINCIPALS DEL TEMA

- (1) correlacionar l'estructura de la doble hèlice del DNA com un factor decisiu en l'herència biològica
- (2) justificar a partir de les característiques químices i estructurals, tant dels nucleòtids com de les cadenes polinucleotídiques, l'estructura de doble hèlice del DNA
- (3) reconèixer en l'estructura de la doble hèlice la presència de grups capaços de realitzar interaccions intermoleculars
- (4) conèixer la importància biològica de cada forma del DNA
- (5) comprendre l'efecte de la hidratació i dels cations sobre la forma del DNA i com es poden produir transicions entre formes distintes sense que es trenquin enllaços entre parells de bases
- (6) correlacionar la composició d'un DNA amb la seva temperatura de fusió