NEW YORK STATE DEPT OF ENVIRONMENTAL CONSERVATION ALBANY F/6 13/13 NATIONAL DAM SAFETY PROGRAM. LAKE PLACID VILLAGE DAM. (INVENTOR--ETC(U) SEP 80 J B STETSON AD-AU90 939 UNCLASSIFIED 1 * 2

To A Good To So S SECURITY CLASSIFICATION OF THIS PAGE (When

READ INSTRUCTIONS BEFORE COMPLETING FORM
peroce completing rock
NO. 3. RECIPIENT'S CATALOG NUMBER
9
5. TYPE OF REPORT & PERIOD COVERE
Phase I Inspection Report
National Dam Safety Progr
6. PERFORMING ORG. REPORT NUMBER
8. CONTRACT OR GRANT NUMBER(*)
✓ DACW-51-79-C-0001
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
12. REPORT DATE 16 September 1980
13. NUMBER OF PAGES
NUMBER OF FACES
e) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
-TIC
from Report)
oct 3 0 1980
TTY FRACTICABLE
TTY FRACTICABLE A CONTAINED A
TTY FRACTICABLE
TTY FRACTICABLE CONTAINED A ES WHICH DO NOR
TTY FRACTICABLE CONTAINED A ES WHICH DO NOT Lake Placid
TTY FRACTICABLE CONTAINED A ES WHICH DO NOT Lake Placid Lake Placid Village Dam
Lake Placid Village Dam Essex County
TTY FRACTICABLE CONTAINED A ES WHICH DO NOT Lake Placid Lake Placid Village Dam
Lake Placid Village Dam Essex County Chubb River
Lake Placid Lake Placid Village Dam Essex County Chubb River
Lake Placid Lake Placid Village Dam Essex County Chubb River the physical condition of the
Lake Placid Lake Placid Village Dam Essex County Chubb River the physical condition of the vsis are based on visual
Lake Placid Lake Placid Village Dam Essex County Chubb River the physical condition of the vsis are based on visual
Lake Placid Lake Placid Village Dam Essex County Chubb River the physical condition of the vsis are based on visual

human life or property. The dam, however, has a number of problem areas which require further investigation and remedial work.

The structural stability analysis indicates that the dam is unstable when subjected to forces which could occur under the Probable Maximum Flood (PMF) loading condition. Unsatisfactory stability is indicated for the dam when subject to forces which could occur during the normal winter operations and the 1/2 PMF loading condition.

A structural stability investigation should be started within six months to determine the characteristics of the uplift forces acting on the dam and to determine whether the foundation acts integrally with the dam section to resist overturning. Remedial work should be completed, depending on the results of the investigation, within two years.

The hydrologic/hydraulic analysis establishes the spillway capacity as 10.7% of the Probable Maximum Flood (PMF). The dam will be overtopped by 10.0 feet and 4.8 feet during the PMF and 1/2 PMF respectively. The spillway is inadequate since failure of the dam during the 1/2 PMF event will not significantly increase the downstream hazard from that which would occur just prior to the dam failure.

The following measures should be undertaken within one year:

- 1. Repairs to restore the dam's deteriorated concrete on the spillway and both abutments should be undertaken.
- 2. The channel wall at the toe of the south abutment should be repaired to prevent further deterioration of the bank of the stream and protect the south abutment from erosion.
- 3. A flood warning and evacuation plan should be developed and implemented to alert the public, should conditions occur which could result in failure of the dam.
- 4. A formalized inspection program should be initiated to develop data on conditions and maintenance operations at the facility.

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing, and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through frequent inspections can unsafe conditions be detected and only through continued care and maintenance can these conditions be prevented or corrected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aide in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

	<u>Page</u>
Preface	
Assessment of General Conditions	i-ii
Overall View of Dam	iii-vi
Section 1 - Project Information	1-4
Section 2 - Engineering Data	5
Section 3 - Visual Inspection	6-7
Section 4 - Operational Procedures	8
Section 5 - Hydrologic/Hydraulic Computations	9-11
Section 6 - Structural Stability	12-17
Section 7 - Assessment/Remedial Measures	18-19

FIGURES

Figure	1	-	Location Map
Figure	2	_	Elevation and Plan View of Dam
Figure	3	-	Stress Diagram
Figure	4	-	Geologic Map

APPENDIX

Field Inspection Report	Α
Previous Inspection Report/Relevant Correspondence	В
Hydrologic and Hydraulic Computations	С
Stability Analysis	D
References	Ε

PHASE I REPORT NATIONAL DAM SAFETY PROGRAM

Name	of	Dam	Lake Placi	d Villa	ige Dam, NY781	
		State Lo	ocated	New Yo	ork	
		County I	Located	Essex		_
		Stream		Chubb	River	
		Date of	Inspection	April	22, 1980	

ASSESSMENT OF GENERAL CONDITIONS

The examination of documents and visual inspection of the dam and appurtenant structures did not reveal conditions which constitute an immediate hazard to human life or property. The dam, however, has a number of problem areas which require further investigation and remedial work.

The structural stability analysis indicates that the dam is unstable when subjected to forces which could occur under the Probable Maximum Flood (PMF) loading condition. Unsatisfactory stability is indicated for the dam when subject to forces which could occur during the normal winter operations and the 1/2 PMF loading condition.

A structural stability investigation should be started within six months to determine the characteristics of the uplift forces acting on the dam and to determine whether the foundation acts integrally with the dam section to resist overturning. Remedial work should be completed, depending on the results of the investigation, within two years.

The hydrologic/hydraulic analysis establishes the spillway capacity as 10.7% of the Probable Maximum Flood (PMF). The dam will be overtopped by 10.0 feet and 4.8 feet during the PMF and 1/2 PMF respectively. The spillway is inadequate since failure of the dam during the 1/2 PMF event will not significantly increase the downstream hazard from that which would occur just prior to the dam failure.

The following measures should be undertaken within one year:

- Repairs to restore the dam's deteriorated concrete on the spillway and both abutments should be undertaken.
- 2. The channel wall at the toe of the south abutment should be repaired to prevent further deterioration of the bank of the stream and protect the south abutment from erosion.

1

- 3. A flood warning and evacuation plan should be developed and implemented to alert the public, should conditions occur which could result in failure of the dam.
- 4. A formalized inspection program should be initiated to develop data on conditions and maintenance operations at the facility.

Dale Engineering Company

John B. Stetson, President

Approved By: Date: 16 September 2015

T

1

D

L

L

di di

山

I

1

Col. W.M. Smith Jr.
New York District Engineer

1. Overview of Lake Placid Village Dam NY 781. Note deterioration of face of spillway as evidenced by irregular pattern of flow.

2. View from southwest abutment.

3. View from northeast abutment. Note deterioration at crest of spillway.

4. Deterioration of northeast abutment viewed from below the dam.

5. Deterioration of masonry wall at toe of dam.

6. Close-up of 5 above.

7. Operating mechanism for sluice gate controlling flow to penstock.

8. Downstream channel viewed from Dam. Note building 800 feet downstream.

9. Downstream channel showing downstream hazard, electric substation and municipal power building.

PHASE I INSPECTION REPORT NATIONAL DAM SAFETY PROGRAM NAME OF DAM - LAKE PLACID VILLAGE DAM ID# - NY 781

SECTION 1 - PROJECT INFORMATION

1.1 GENERAL

a. Authority

Authority for this report is provided by the National Dam Inspection Act, Public Law 92-367 of 1972. It has been prepared in accordance with a contract for professional services between Dale Engineering Company and The New York State Department of Environmental Conservation.

b. Purpose of Inspection

The purpose of this inspection is to evaluate the existing condition of the Lake Placid Village Dam and appurtenant structures, owned by the Village of Lake Placid, New York, and to determine if the dam constitutes a hazard to human life or property and to transmit findings to the State of New York.

This Phase I inspection report does not relieve an Owner or Operator of a dam of the legal duties, obligations or liabilities associated with the ownership or operation of the dam. In addition, due to the limited scope of services for these Phase I investigations, the investigators had to rely upon the data furnished to them. Therefore, this investigation is limited to visual inspection, review of data prepared by others, and simplified hydrologic, hydraulic and structural stability evaluations where appropriate. The investigators do not assume responsibility for defects or deficiencies in the dam or in the data provided.

1.2 DESCRIPTION OF PROJECT

Description of Dam and Appurtenances

The Lake Placid Village Dam is located on the Chubb River in the Village of Lake Placid, approximately 4/10 of a mile downstream from the Route 73 bridge across the Chubb River. The dam is a concrete gravity structure approximately 19 feet high and 136 feet long with a 70 foot wide ogee crested spillway centered in the structure. The dam is slightly curved with a radius of approximately 300 feet. The northeast abutment of the dam accommodates a wood frame control structure which houses the controls for a sluice gate which regulates flow into a 5 foot, 4 inch diameter penstock which formerly transmitted flow to a power generating station located approximately 800 feet downstream. The gate mechanism for a 36 inch diameter drain and waste pipe is also located on the west abutment. Borings located near both the northeast and the southwest abutments indicate that the

dam is founded on silt, sand and gravel rather than on rock. Plans for the repair of the dam in 1936 indicate that the dam foundation of concrete was extended approximately 12 feet below the original base of the dam into the sand and gravel material.

b. Location

The Lake Placid Village Dam is located in the Village of Lake Placid, Town of North Elba, Essex County, New York.

c. Size Classification

The maximum height of the dam is approximately 19 feet. The storage volume of the impoundment is approximately 70 acre feet. Therefore, the dam is in the Small Size Classification as defined by the Recommended Guidelines for Safety Inspection of Dams.

d. Hazard Classification

The Chubb River, the receiving stream from the impoundment, flows immediately adjacent to a storage building and electric substation which is owned and operated by the Village of Lake Placid Municipal Electric Department. This facility is located approximately 800 feet downstream from the dam. Therefore, the dam is in the High Hazard Category as defined by the Recommended Guidelines for Safety Inspection of Dams.

e. Ownership

The dam is owned by the Village of Lake Placid, New York.

Contact: Village of Lake Placid

Eileen Valentine, Village Clerk

Lake Placid, New York 12946

Telephone: 518-523-2597 Village Clerk

518-523-2021 Municipal Electric Department

f. Purpose of the Dam

The dam is presently used to maintain a pond within the Village of Lake Placid for recreational, aesthetic and environmental purposes. The dam was formerly used as a source of water for hydroelectric power generation. A hydroelectric feasibility study of this site was completed in 1979. This study explored the feasibility of re-equipping the site for hydroelectric power generation. At present, no steps have been taken to re-equip the site for power generation.

g. Design and Construction History

The construction plans included in this report indicate that the dam was reconstructed in 1936. The reconstruction was necessary to repair damage caused by a failure of the dam foundation under high

water early in the summer of 1936. The application for the reconstruction of the dam to New York State Department of Public Works states "The high early water in the summer forced a channel through underneath the structure and now the dam is undermined for nearly the entire length and remains suspended by the wing walls. The wing walls apparently have a good bearing and have shown no indication of failure." The application further states "the superstructure of the present dam will remain unchanged as it stood for 30 years. The reconstruction will consist only of carrying the concrete down to a solid impervious foundation. An earlier conservation commission dam report dated July 23, 1919 covers a dam which is called Power House Dam on the Chubb River. Sketches in this report indicate the total length of dam to be approximately 80 feet with a 40 foot spillway and a height of 15 feet above the stream bed. Earlier correspondence in 1913 discusses the quality of the concrete in a dam under construction by the Village of Lake Placid. This dam is referred to as Number 599 which is the same number referred to in the dam report of 1919. No records have been found to indicate a modification of the 1919 dam to the configuration shown on the 1936 plans.

h. Normal Operational Procedures

The facility is operated by the Village of Lake Placid Municipal Electric Department. At the present time, the dam has been abandoned for power generating purposes but the impoundment is maintained for recreational, aesthetic and environmental purposes.

1.3 PERTINENT DATA

a. Drainage Area

The drainage area of the Lake Placid Village Dam is 38.3 square miles.

b. <u>Discharge at Dam Site</u>

No discharge records are available for this site.

Computed Discharges:

Ungated Spillway, Top of Dam	2212	cfs
Reservoir Drain Capacity (Water Surface at Normal Pool)	175	cfs

c. Elevation (Feet Above MSL)

Top of Dam	1710
Spillway Crest	1706
Stream Bed at Centerline of Dam	1691

d. Reservoir

Length of Normal Pool

1150<u>+</u> FT

e. Storage

Top of Dam Normal Pool 102 Acre Feet 70 Acre Feet

f. Reservoir Area

Top of Dam Spillway Pool 9 Acres7 Acres

g. Dam

Type - Concrete Gravity. Length - 136 Feet. Height - 19 Feet. Freeboard Between Normal Reservoir and Top of Dam - 4 Feet.

Top Width - 6 Feet. Side Slopes - Upstream - Vertical; Downstream - 6 Horizontal, 12

Vertical.

Zoning - N/A.
Impervious Core - N/A.
Grout Curtain - Unknown.

h. Spillway

Type - Ogee Crest.
Length - 70 Feet.
Crest Elevation - 1706.
Gates - None.
U/S Channel - Impoundment.
D/S Channel - Natural Stream Channel.

i. Regulating Outlets

 Wooden sluice gate controls outlet to 5 feet, 4 inch diameter penstock, gate dimensions unknown.

2. Sluice gate controls outlet through 36 inch diameter drain and waste pipe.

SECTION 2 - ENGINEERING DATA

2.1 GEOTECHNICAL DATA

The 1936 application for the reconstruction of the dam makes reference to the foundation material as consisting of "hardpan and boulders." No other data on subsurface investigations was available. A hydroelectric feasibility study, performed for the Village of Lake Placid in 1979, provided two soil borings taken near the dam abutments. These soil borings are included in Appendix B.

2.2 DESIGN RECORDS

No records were available from the original design of the dam. Drawings for the reconstruction of the dam in 1936 are included as Figures 2 and 3. The permit application for reconstruction of the dam is also included in Appendix B.

2.3 CONSTRUCTION RECORDS

No information was available concerning either the original construction or the reconstruction of the dam.

2.4 OPERATION RECORDS

There were no operation records available for this dam.

2.5 EVALUATION OF DATA

The data presented in this report was obtained from the Department of Environmental Conservation files. The information available appears to be reliable and adequate for a Phase I Inspection Report.

SECTION 3 - VISUAL INSPECTION

3.1 FINDINGS

a. General

The Lake Placid Village Dam was inspected on April 22, 1980. The Dale Engineering Company Inspection Team was accompanied on the inspection by James VonDell, Assistant Superintendent of Electric for the Village of Lake Placid.

b. Dam

At the time of the inspection, water was cresting the spillway at a depth of 5 inches. This flow obscured from view the surface of the spillway; however, the irregular pattern of the flow across the crest of the spillway indicates that surface deterioration has taken place on the face of the spillway. The northeast abutment of the spillway is severely deteriorated and partially undercut at the water surface. A similar condition exists, although to a somewhat lesser degree, on the southwest abutment. Visual observation did not disclose physical displacement of the alignment of this structure and despite the severe deterioration of the spillway abutments, the facility shows no visual signs of instability.

c. Appurtenant Structures

The northeast abutment accommodates the intake to the penstock which formerly fed the downstream power generating station. Although the house which encloses the sluice gate controls is somewhat deteriorated, the penstock inlet appears to be generally in good condition.

d. Control Outlet

The outlet of the impoundment is controlled by the gates at the penstock and the drain line to the impoundment. These gates are in operating condition and the gate at the impoundment drain was partially open during the inspection.

e. Reservoir Area

The reservoir extends approximately 1150 feet upstream and provides a pond which is used for recreational, aesthetic and environmental purposes. There is no evidence of bank instability in the impoundment area.

f. Downstream Channel

The downstream channel is formed by masonry walls which extend downstream to the former generating station, approximately 800 feet downstream. The masonry wall at the toe of the dam near the southwest

abutment is severely deteriorated and erosion is now occurring at the toe of the abutment. The debris from the wall is now lying in the creek bed. Tree root penetration is occurring in the abutment core wall which is exposed at this location. Other than this spot, the masonry channel walls appear to be in good condition.

3.2 EVALUATION

The visual inspection revealed some deterioration of the spillway surface and rather severe undercutting of the spillway abutment walls near the crest elevation. The channel wall near the southwest abutment should be repaired to prevent further erosion at the abutment. No deformation of the alignment of any of the structures which would indicate instability was noted in the visual inspection.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 PROCEDURES

The normal operating procedure for this structure is to control the water level in the impoundment for recreational, aesthetic and environmental purposes. This level is maintained without manipulation of the gates controlling the outlet from the impoundment.

4.2 MAINTENANCE OF THE DAM

Maintenance and operation of the dam is controlled by the Village of Lake Placid Municipal Electrical Department. Periodic visits are made to the site to check on conditions of the facilities. No formal reporting system is in effect.

4.3 MAINTENANCE OF OPERATING FACILITIES

The gates controlling the flow are presently in operating condition and are checked periodically by the Municipal Electric Department.

4.4 DESCRIPTION OF WARNING SYSTEM

No warning system is in effect at present.

4.5 EVALUATION

The dam and appurtenances are inspected at regular intervals by the Village of Lake Placid Municipal Electric Department. The facilities are in generally good working condition. There is no evidence of deterioration caused by lack of maintenance. Since the dam is in the High Hazard Classification, a warning system should be implemented to alert the public, should conditions occur which could result in failure of the dam.

SECTION 5 - HYDROLOGIC/HYDRAULIC

5.1 DRAINAGE AREA CHARACTERISTICS

The Lake Placid Village Dam is located in the northwest portion of Essex County. The dam has a drainage area of 38.3 square miles, which is characterized by steeply sloping terrain. The northern portion of the drainage area is dominated by Lake Placid, whereas the southern portion contributes to the Chubb River. The reservoir has a surface area of approximately 7 acres and is situated on the Chubb River approximately 2 miles upstream of its confluence with the West Branch of the Ausable River.

5.2 ANALYSIS CRITERIA

The purpose of this investigation is to evaluate the dam and spillway with respect to their flood control potential and adequacy. This has been assessed through the evaluation of the Probable Maximum Flood (PMF) for the watershed and the subsequent routing of the flood through the reservoir and the dam's spillway system. The PMF event is that hypothetical flow induced by the most critical combination of precipitation, minimum infiltration loss and concentration of run-off of a specific location that is considered reasonably possible for a particular drainage area. The dam is in the Small Dam Category and is a High Hazard.

The hydrologic analysis was performed using the unit hydrograph method to develop the flood hydrograph. Due to the limited scope of this Phase I investigation, certain assumptions, based on experience and existing data were used in this analysis and in the determination of the dam's spillway capacity to pass the PMF. In the event that the dam could not pass 1/2 the Probable Maximum Flood without overtopping, additional analyses are to be performed on potential dam failures if the dam is designated as a High Hazard Classification. This process was done with the concept that if the dam was unable to satisfy this criteria, further refined hydrologic investigations would be required.

The U.S. Army Corps of Engineers' Hydrologic Engineering Center's Computer Program HEC-1 DB using the Modified Puls Method of flood routing was used to evaluate the dam, spillway capacity, and downstream hazard.

Unit hydrographs were defined by Snyder coefficients, C_t and C_p . Snyder's C_t was estimated to be 1.5 for the steeply sloped drainage area and C_p was estimated to be 0.625. The drainage area was divided into sub-areas to model the variability in hydrologic characteristics within the drainage basin. Run-off, routing and flood hydrograph combining was then performed to obtain the inflow into the reservoir.

The Probable Maximum Precipitation (PMP) was 16.2 inches according to Hydrometeorological Report (HMR #33) for a 24-hour duration storm, 200 square mile basin, while loss rates were set at 1.0 inches initial abstraction and 0.1 inches/hour continuous loss rate. The loss rate function yielded 82 percent run-off from the PMF. The peak for the PMF inflow hydrograph was 20,695 cfs and the 1/2 PMF inflow peak was 9,520 cfs. The relatively small storage capacity of the reservoir only reduced these peak flows to 20,686 cfs for the PMF, whereas the 1/2 PMF flow was essentially unchanged.

5.3 SPILLWAY CAPACITY

The spillway is an ogee-crested weir type structure 70 feet in length. Weir coefficients ranging from 3.2 to 4.15 over the heads encountered in routing the PMF were assigned for the spillway rating curve development. The discharge capacity of the spillway at the top of dam elevation is 2212 cfs.

SPILLWAY CAPACITY

F1 ood	<u>Peak Discharge</u>	Capacity as % of Flood Discharge
PMF	20,686 cfs	10.7%
1/2 PMF	9,520 cfs	23.2%

5.4 RESERVOIR CAPACITY

The reservoir storage capacity was estimated from USGS mapping. The resulting estimates of the reservoir storage capacity are shown below:

Top of Dam	100 Acre	Feet
Spillway Crest	70 Acre	Feet

5.5 FLOODS OF RECORD

There is no information on water levels at the dam site.

5.6 OVERTOPPING POTENTIAL

The HEC-1 DB analysis indicates that the dam will be overtopped as follows:

<u>Flood</u>	Maximum Depth Over Dam
PMF	10.0 Feet
1/2 PMF	4.8 Feet

A dam break analysis was performed to determine the significance of various dam failures on the downstream hazard. This analysis was performed with the 1/2 PMF assuming the dam to fail at the maximum elevation resulting from the 1/2 PMF. This condition represents the

worst case that could result from the 1/2 PMF, with regards to the flood discharges in the downstream area. The information available for the stability analysis was inadequate to determine the exact water elevation necessary to induce failure of the dam, therefore, this assumption was made for comparison purposes. The flood elevations, due to various dam failures and the flood elevations that would exist just before the corresponding dam break induced flood wave are shown below. These flood elevations are compared at the Village of Lake Placid Municipal Electric Department's offices.

Flood Elevations @ Elec. Dept.

				Just Prior to Dam Break	Due to Dam Break
Failure	Time :	= 0.1	hrs.	1683.8	1684.9
Failure				1683.8	1684.9
Failure				1683.8	1684.8

The above elevations were estimated from USGS quad sheets and available topographic information from previous reports. These elevations are not exact and their significance is in the difference between the elevations for the flood levels with and without the dam failure. The maximum difference determined by this analysis is only about one foot, indicating that the downstream hazard would not be increased by a dam failure under this condition. It should also be noted that the Electric Department's offices will be flooded before the dam is assumed to fail, serving to warn the occupants to evacuate the area.

5.7 EVALUATION

The hydrologic/hydraulic analysis establishes the spillway capacity as 10.7% of the Probable Maximum Flood (PMF). The dam will be overtopped by 10.0 feet under the PMF and 4.8 feet during the 1/2 PMF. However, failure of the dam during the 1/2 PMF event will not significantly increase the downstream hazard from that which would occur just prior to the dam failure. Therefore, the spillway is assessed as inadequate according to the Corps of Engineers screening criteria.

SECTION 6 - STRUCTURAL STABILITY

6.1 EVALUATION OF STRUCTURAL STABILITY

a. Visual Observations

This dam is a concrete structure having a curved alignment. Most of the dam's length is comprised of its ogee spillway section. The abutments are constructed into the glacially deposited soils natural to the site. No outcroppings of bedrock were visible in the vicinity of the dam. The downstream channel is defined by low masonry walls which presumably were constructed to prevent erosion of the natural banks along this segment of the Chubb River.

The dam was inspected under conditions where flow over the spillway was occurring, limiting the physical detail visible for evaluation. The abutment sections were visible, however. The field observations indicate the dam retains structural stability but surface deterioration including at least surficial cracking and/or jointing is evident. Noticeable erosion (loss-of-section) has occurred at the northerly abutment (left abutment facing downstream). There is a general surface deterioration occurring in the concrete for this abutment section. The southerly abutment (right abutment) also shows some loss-of-section near the toe of the spillway, with a general surface deterioration throughout. The section of masonry forming the southerly channel wall immediately downstream of the abutment has been destroyed by erosion but the remaining sections of downstream walls appear to be in satisfactory structural condition.

Soil conditions at the toe of the dam were not visible, and the possibility of erosion, undermining and seepage in that area could not be investigated. No indications of seepage around the abutment sections were noted. In the gatehouse located on the left abutment, the control for a waste tube appeared to be open slightly, and some flow was outletting at the discharge point near the toe of the abutment/spillway. It could not be ascertained if some of the observed flow was leakage but the discharge did appear to be all pipe flow.

b. Geology and Seismic Stability

Geologically, Lake Placid is located within the Adirondack Province. The dam and the abutments are sited in glacial drift. According to Miller and Alling (Ref. 17) glacial till was deposited on top of glacial lacustrine deposits. Their information indicates till along Chubb River in the vicinity of the dam site. An exposure of well-sorted sands with some gravel was observed along the roadway extending along the northerly side of Chubb River immediately downstream of the dam. The September 28, 1936, State Engineering Report indicates the dam bed as being "impervious, nonwaterbearing." However, if the foundation and banks are sands and gravels of a lacustrine nature,

it is expected they are permeable. Two borings drilled in 1978, one located a short distance from the dam's northerly abutment and the other sited near the southerly abutment, encountered mainly sands with some gravel. Mostly moist silt was encountered at the lower depths of the northerly boring. The borings did not contact bedrock.

With reference to soil conditions indicated by the 1978 borings, potential for leakage beneath or around the dam exists due to the type of material.

Bedrock in the vicinity of the dam is believed to be of Precambrian metasedimentary rock, probably gneissic. This bedrock probably is too deep to benefit the water-impounding-function of the dam.

Faults are common in this area as shown on Figure 4, Geologic Map. Several nearly vertical faults are present in the small quarry at the southern end of Lake Placid (Ref. 16). The Seismic Probablility Map locates the dam near the border of a Zone 2 - Zone 3 Designation. The major earthquakes occurring in this region are listed in the following table; numerous minor earthquakes have also occurred. It is felt the area has potential for an earthquake of intensity VI-VII (MM scale).

Date	Intensity Modified Mercalli	Location Relative to Dam		
1877	VII	15 mi. N		
1910	III	10 mi. WNW		
1926	IV	7 mi. NW		
1932a	IV	11 mi. NW		
1932b	III	11 mi. NW		
1948	III	9 mi. SE		
1974a	III	10 mi. N		
1974b	III-IV	16 mi. N		
1974c	IV	4 mi. N		
1977	V-VI	8 mi. NNE		
1978	IV-V	17 mi. NE		
1979	V-VI	12 mi. NE		

c. Stability Evaulation

Design drawings available for review show plan alignment and the cross-section from the dam spillway but do not include information on the properties of the dam and foundation materials, nor stability analysis. As part of the present study, stability evaluations have been performed for the dam spillway section. Actual properties of the dam's construction materials and foundations were not determined as part of this study; where information on properties were necessary for computations but lacking, assumptions felt to be practical were made. The stability computations assumed a structural cross-section

based on dimensions indicated by the plans included in this report. It should be considered that in areas where deterioration has occurred, section dimensions would be less than indicated by the plans, with some adverse affect on the structural strength expected. The studies also assumed dam sections analyzed to be monoliths possessing necessary internal resistance to shear and bending occurring as a result of loading.

Information obtained for this study indicates the original dam structure was provided with a poured concrete underpinning foundation section circa 1936. Reportedly, the original dam's soil foundation virtually washed away during the Winter-Spring of 1936 after test pit excavations made along the toe of the dam in Fall of 1935 were abandoned without backfilling. Information on the as-built foundation section or reports of its construction are not available, but information on the design of the new foundation is shown on the dam cross-section included with this report. Consequently, for the stability studies for this report, two cross-sections were assumed: (a) the original structure and the foundation section act as a integral unit and, (b) an unbonded construction joint presently exists between the original dam structure and the underpinning foundation, with the effect that the original section is essentially an independent structure.

The results of the stability computations are summarized in the table following this page. The stability analysis are presented in Appendix D.

The engineering studies indicate satisfactory stability against overturning and sliding affects for the dam subject to forces possible during normal summer type operation (no ice loading). A marginally safe factor of safety is indicated for the structure subject to seismic forces if the dam with its new foundation acts integrally, but a sliding failure is possible if the original dam section is not structurally tied to the foundation. The analysis indicates unsatisfactory stability against overturning for the two dam sections analyzed when subject to forces including ice loading possible during normal winter operations, according to the Recommended Guidelines for Safety Inspection of Dams (i.e., where the resultant of forces acting on the dam is located outside the middle third of the base, tensile stresses would develop in the dam section, a condition which is structurally undesirable.)

Unsatisfactory stability is indicated for both analyzed spillway sections when subjected to the 1/2 PMF loading condition. Instability is indicated for both spillway sections analyzed when subject to the PMF loading condition.

RESULTS OF STABILITY COMPUTATIONS

	Loading Condition	Factor of Safety* Overturning Slid	ety* <u>Sliding</u> **	Location of Resultant*** Passing through Base
Ê	Water level at spillway elevation, uplift on base of section (no ice)			
	(a) Presently existing section (including 1936 foundation section)	1.52	1.67	0.40b
	(b) Upper (original) section only, assuming no bond between base of original section and 1936 foundation section	1.84	1.24	0.53b
(2)	Water level at spillway elevation, uplift on base of section plus 10 kip per lineal foot ice load acting			
	(a) Presently existing section (including 1936 foundation section)	1.06	1.3	0.07b
	(b) Upper (original) section only, assuming no bond between base of original section and 1936 foundation section	1.10	0.65	0.116
(3)	Water elevations at 1/2 PMF levels, uplift on base of section			
	(a) Presently existing section (including 1936 foundation section)	1.08	1.18	0.13b
	(b) Upper (original) section only, assuming no bond between base of original section and 1936 foundation section	1.07	0.50	0.16b

RESULTS OF STABILITY COMPUTATIONS - (CONTINUED)

	Loading Condition	Factor of Safety*	ety* <u>Sliding</u> **	Location of Resultant*** Passing through Base
(4)	Water elevations at PMF level, uplift on base of section			
	(a) Presently existing section (including 1936 foundation section)	76*0	1.04+	Outside of base (FS<1)
	(b) Upper (original) section only, assuming no bond between base of original section and 1936 foundation section	0.	Û• 4+	Outside of base (FS<1)
(5)	Reservoir level at spillway elevation, uplift on base, seismic effect applicable to Zone 3	ď;		
	(a) Presently existing section (including 1936 foundation section)	1.24	1.28	0.25b
	(b) Upper (original) section only, assuming no bond between base of original section and 1936 foundation section	1.50	0.8+	0.43b

^{*} These factors of safety indicate the ratio of moments resisting overturning to those causing, and the ratio of forces resisting sliding to those causing.

** Assuming friction only, no shear/bond developing on base of section being analyzed.

*** Indicated in terms of the dam's base dimension, b, measured from the toe of the dam.

Critical to the analysis for cases indicating instability is the item of uplift water pressures acting on the base of the dam section for each case analyzed, the uplift force was based on a full headwater hydrostatic pressure acting on the dam's upstream corner and a full tail water hydrostatic pressure acting at the dam's downstream corner. Uplift pressures were assumed to vary linearly between the dam's upstream and downstream corners, and act upon 100 percent of the dam section's base.

For the 1/2 PMF and PMF condition, it was assumed that lateral pressures acting on the back and front faces of the dam correspond to the upstream and downstream flood levels respectively. Stability is expected for the dam sections when complete submergence under a static water level condition occurs (e.g., a difference in reservoir and downstream water levels does not occur in the vicinity of the structure.)

Further study to investigate the actual construction and condition of the dam including the underpinning foundation, the properties of the foundation soils, and the effect on the dams structural stability is recommended. If analysis performed on the basis of actual conditions found to exist indicates structural instability, the study should develop methods for protecting the facility. Maintenance required at this time, to retain the existing stability, includes patching and repair to damaged surface areas of the abutments and spillway, and rebuilding of the channel wall below the toe of the southerly abutment.

SECTION 7 - ASSESSMENT/REMEDIAL MEASURES

7.1 DAM ASSESSMENT

a. Safety

The Phase I inspection of the Lake Placid Village Dam did not indicate conditions which would constitute an immediate hazard to human life or property.

The hydrologic/hydraulic analysis indicates that the spillway will pass only 10.7% of the Probable Maximum Flood (PMF). The dam will be overtopped by 10.0 feet and 4.8 feet by the PMF and 1/2 PMF respectively. However, since failure of the structure during a 1/2 PMF event would not cause appreciably more danger to downstream inhabitants than would exist during the 1/2 PMF just prior to a dam break, the spillway is assessed as inadequate.

The following specific safety assessments are based on the Phase 1 Visual Examination and Analysis of Hydrology and Hydraulics and Structural Stability.

- 1. Visual observations indicate that some surficial cracking and jointing is evident in the spillway. Noticeable erosion has occurred at the northerly abutment and there is general surface deterioration of the concrete in this area.
- 2. The southerly abutment also shows some loss of section near the toe of the spillway with general surface deterioration throughout.
- 3. The section of masonry forming the southerly channel wall immediately downstream from the abutment has been destroyed by erosion and tree root intrusion is occurring in the core wall which is exposed in this area.
- 4. The stability analysis indicates satisfactory stability exists during normal summer type operation. A marginally safe factor of safety is indicated for the structure subject to seismic forces. The analysis indicates unsatisfactory stability for the dam sections analyzed when subject to forces including ice loading possible during normal winter operations and the 1/2 PMF loading condition. Instability is indicated for both analyzed sections under the PMF loading condition.
- 5. No warning system is presently in effect to alert the public, should conditions occur which could result in failure of the dam.

b. Adequacy of Information

The information available is adequate for this Phase 1 investigation.

c. Urgency

Items 1 through 5 in the safety assessment should be dealt with and appropriate improvements and repairs should be performed within one year of this notification.

d. Need for Additional Investigation

further investigations relative to the stability of the dam should be performed to determine appropriate remedial measures.

7.2 RECOMMENDED MEASURES

The following is a list of recommended measures to be undertaken to insure safety of the facility:

- 1. Further study to investigate the actual construction and condition of the dam including the underpinning foundation, the properties of the foundation soils, and the effect on the dam's structural stability is recommended. If analysis performed on the basis of actual conditions found to exist indicates structural instability, the study should develop methods for protecting the facility. Remedial work should be undertaken depending on the results of the investigation.
- 2. Repairs to deteriorated concrete should be undertaken.
- 3. The channel wall at the toe of the south abutment should be repaired to prevent further deterioration of the bank of the stream in this area.
- 4. A flood warning and emergency evacuation plan should be developed and implemented to alert the public, should conditions occur which could result in failure of the dam.
- 5. A formalized inspection program should be initiated to develop data on conditions and maintenance operations at the facility.

LOCATION PLAN

FIGURE 1

LAKE PLACID VILLAGE

DAM CONSTRUCTION

SCALE 1". 4 FT. JUNE 1936

CW. JUDSON, G.E. ELM.

GEOLOGIC MAP

LEGEND
| Fault
| Rock contact
| Stream

APPENDIX A
FIELD INSPECTION REPORT

Tailwater at Time of Inspection No Measurement Taken 10 # NY-781 38°F New York High Temperature Hazard Category __ State Snowing Essex 5" over spillway Weather County Pool Elevation at Time of Inspection Date(s) Inspection April 22, 1980 Type of Dam Concrete-Gravity Lake Placid Village

Inspection Personnel:

				ake Placid Electric Company
Dale Engineering Company	Dale Engineering Company	Dale Engineering Company	Dale Engineering Company	Assistant Supt. of Village of Lake Placid Electric Company
J. A. Gomez	F. W. Byszewski	D. F. McCarthy	H. Muskatt	J. VonDell

J. A. Gomez

Recorder

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
ANY NOTICEABLE SEEPAGE	No seepage observed through concrete. Water was flowing over spillway at time of inspection obscuring face of spill- way.	Approximately 6 ft. from top of right abutment and 4 ft. tcwords bank from spillway section a 1-inch diameter hole was observed. This hole seems
STRUCTURE TO ABUTMENT/EMBANKMENT JUNCTIONS	Significant deterioration/undercutting of the left and right abutment walls at the spillway crest level at the junction of the spillway and abutment walls.	to have been a source of seepage in the past, as evidenced by the lime deposited on the concrete below the hole. This hole was not seeping at time of inspection; appeared to be self-plugged.
DRAINS	Not applicable.	
WATER PASSAGES	See section on outlet works.	
FOUNDATION	Dam appears to be sited on soil.	

CONCRETE/MASONRY DAMS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS CONCRETE SURFACES	Substantial deterioration of the ogee spillway. Chunks of concrete missing, especially near middle third of spillway and towards left abutment. Rooster tails across dam face, indicating some deterioration of spillway face.	Concrete of non-overflow sections was tapped with hammer - indicated concrete to be pretty sound.
STRUCTURAL CRACKING	Minor cracks in abutment walls. Toe of right abutment wall has been eroded and the masonry wall of channel in that area is in ruins.	Tree roots in toe oi .ight abutment adjacent to dam.
VERTICAL & HORIZONTAL ALIGNMENT	Slightly arched toward upstream, which appears to conform with plans.	
MONOLITH JOINTS	None visible.	
CONSTRUCTION JOINTS	None visible.	
STAFF GAGE OF RECORDER	Not applicable.	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SURFACE CRACKS	Not applicable.	
UNUSUAL MOVEMENT OR CRACKING AT OR BEYOND THE TOE	Not applicable.	
SLOUGHING OR EROSION OF EMBANKMENT AND ABUTMENT SLOPES	None observed.	
VERTICAL AND HORIZONTAL ALINEMENT OF THE CREST	Not applicable.	
RIPRAP FAILURES	Not applicable.	

EMBANKMENT

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
JUNCTION OF EMBANKMENT AND ABUTMENT, SPILLWAY AND DAM	Abutments appear to be keyed into natural ground.	
ANY NOTICEABLE SEEPAGE	None observed.	
STAFF GAGE AND RECORDER	Not applicable.	
DRAINS	Not applicable.	

UNGATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE WEIR	Ogee crested. Portions of concrete spalled as previously noted.	
APPROACH CHANNEL	Formed by pond behind dam.	
DISCHARGE CHANNEL	Contained by masonry walls to the electric substation downstream. Wall near right abutment has toppled into stream. Rest of wall appears to still be standing.	
BRIDGE AND PIERS	Not applicable.	

GATED SPILLWAY

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONCRETE S!LL	Not Applicable.	
APPROACH CHANNEL	Not Applicable.	
DISCHARGE CHANNEL	Not Applicable.	
BRIDGE AND PIERS	Not Applicable.	
GATES AND OPERATION EQUIPMENT	Not Applicable.	

OUTLET WORKS

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CRACKING AND SPALLING OF CONCRETE SURFACES IN OUTLET CONDUIT	Not applicable.	
INTAKE STRUCTURE		Bar rack at intake to penstock.
OUTLET STRUCTURE	36-inch diameter metal pipe (waste tube) used as low level outlet, through left non-overflow section.	Also 5'-4" diameter (per plans) penstock extends to former generating station downstream. Not used now, but supposedly operational.
OUTLET CHANNEL	Stream below dam, at left abutment.	Reportedly, the penstock has been breached somewhere between dam and powerhouse, and flow from the pipe diverted back to Chubb River.
EMERGENCY GATE	Gate mechanism appeared to be operable. Reportedly, some debris caught in gate so couldn't be fully closed at time of inspection. Sluice gate controlled from the top of non-overflow wall.	Manually-operated wooden gate controls flow through penstock. The rack appeared to be somewhat in the open position at the time of inspection.

water flowing through waste tube at time of inspection.

DOWNSTREAM CHANNEL

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
CONDITION (OBSTRUCTIONS, DEBRIS, ETC.)	Some trees in stream, although fairly clean for most of reach to substation. Stream contained by masonry walls as wide as 45 ft.	Bridge 400 ft. downstream of dam; 28 ft. wide by 10 ft. high.
SLOPES	Supercritical slope until at least past the substation.	
APPROXIMATE NO. OF HOMES AND POPULATION	Electrical substation and offices at site of former generating station, approximately 800 ft. downstream. Normally 3-4 people work at these offices, could be as many as 12 or more people	Ground floor of offices approximately 11 ft, above stream bottom.
	including the field personnel that works out of this office.	
		•
	والمراقبة	

INSTRUMENTATION

]

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
MONUMENTATION/SURVEYS	None.	
OBSERVATION WELLS	None.	
WEIRS	None.	
PIEZOMETERS	None.	
OTHER	None.	

RESERVOIR

VISUAL EXAMINATION OF	OBSERVATIONS	REMARKS OR RECOMMENDATIONS
SLOPES	Steep, up to 15-20%.	
SEDIMENTATION	Not observable.	

CHECK LIST
ENGINEERING DATA
DESIGN, CONSTRUCTION, OPERATION
PHASE 1

NAME OF DAM Lake Placid Village Dam

01

NY 781

ITEM	REMARKS
AS-BUILT DRAWINGS	None.
REGIONAL VICINITY MAP	USGS Map.
CONSTRUCTION HISTORY	Very limited, mostly limited to proposed construction and not as-builts and most information more than 40 years old.
TYPICAL SECTIONS OF DAM	Proposed typical section and plan dated 1936.
OUTLETS - PLAN - DETAILS - CONSTRAINTS - DISCHARGE RATINGS	As per 1936 plan.
RAINFALL/RESERVOIR RECORDS	None available.

ITEM	REMARKS
DESIGN REPORTS	None.
GEOLOGY REPORTS	None.
DESIGN COMPUTATIONS HYDROLOGY & HYDRAULICS DAM STABILITY SEEPAGE STUDIES	Results of stress computations shown on 1936 section.
MATERIALS INVESTIGATIONS BORING RECORDS LABORATORY FIELD	Boring logs from Hydroelectric Feasibility Study of Chubb River Sites for Village of Lake Placid, January 1979.
POST-CONSTRUCTION SURVEYS OF DAM	None.
BORROW SOURCES	None.

ITEM	REMARKS
MONITORING SYSTEMS	None.
MODIFICATIONS	As per 1936 proposed plan.
HIGH POOL RECORDS	None available.
POST CONSTRUCTION ENGINEERING STUDIES AND REPORTS	None available.
PRIOR ACCIDENTS OR FAILURE OF DAM DESCRIPTION REPORTS	Correspondence, see Appendix B.
MAINTENANCE OPERATION: RECORDS	None Available.

TEM	REMARKS
SPILLWAY PLAN	Typical section and plan per 1936 proposed plans.
SECTIONS	
DETAILS	
OPERATING EQUIPMENT PLANS & DETAILS	None Available.

CHECK LIST HYDROLOGIC & HYDRAULIC ENGINEERING DATA

DRAINAGE	AREA CHARACTERISTICS: Mountainous, many lakes.	
ELEVATION	ON TOP NORMAL POOL (STORAGE CAPACITY): 70 acft. @ elev. 170	06
ELEVATION	ON TOP FLOOD CONTROL POOL (STORAGE CAPACITY): 102 acft. @ ele	ev. 1710
ELEVATION	ON MAXIMUM DESIGN POOL: Unknown.	
ELEVATION	ON TOP DAM: 1710	
CREST:		
a.	Elevation 1706	
b.	Type Ogee spillway.	
	Width Not Applicable.	
с.		
α.	Length	
a. e.	Location Spillover Middle of dam	
a. e.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None	
e. f. OUTLET WO	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock	
e. f. OUTLET WO a. b.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock Location North abutment	
o. e. f. OUTLET WO a. b.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown	
o. e. f. OUTLET WO a. b. c.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown Exit Inverts Unknown.	
o. e. f. OUTLET WO a. b. c.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown	
o. e. f. OUTLET WO a. b. c. d. e.	Length 70 feet Location Spillover Middle of dam Number and Type of Gates None VORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown Exit Inverts Unknown.	
d. e. f. OUTLET WO a. b. c. d. e.	Location Spillover Middle of dam Number and Type of Gates None NORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown Exit Inverts Unknown. Emergency Draindown Facilities 36" diameter waste tube	
d. e. f. OUTLET WO a. b. c. d. e. HYDROMETE	Location Spillover Middle of dam Number and Type of Gates None NORKS: Type 5'-4" penstock Location North abutment Entrance Inverts Unknown Exit Inverts Unknown. Emergency Draindown Facilities 36" diameter waste tube	

APPENDIX B
PREVIOUS INSPECTION REPORTS/RELEVANT CORRESPONDENCE

ار	RB CTY	36 000 YR AP. DAN	777 : xo.	OBO970	CO2	TYPE
	AS ECOLO 1889ACT	'way	•	Elevations Geometry of Ron-overflow	section	•
	CHEERAL CONDITION Settlement Joints Joints Undermining Downstream Slope Slope Conditions Conditions	TION OF NON-OVERVI	Z Crac Surf Conc Sett Embo	iace of crete lement of mkmont	Leak	t of Dum
	GENERAL COND. Auxiliary Spillway Joints Mechanical Equipment	OF SP'UAY AND OUT	Serv Cond		Still Basis Spill Toe Drain	n Iway
	Maintenance Byaluation COMMENTS:	•		[] Nazard C		
	Surface of Some crack		pa//5		king	

substation below dom

L. River Basin - Nos. 1-23 on Compilation Sheets

f. County - Nos. 1-62 Alphabetically

3. Year Approved -

4. Inspection Date - Month, Day, Year

5. Apparent use -

- 1. Fish & Wildlife Management
- 4. Power

2. Recreation

5. Farm

3. Water Supply

No Apparent Use

6. Type -

- 1. Earth with Aux. Service Spillway
- 2. Earth with Single Conc. Spillway
- 3. Earth with Single non-conc. Spillway
- 4. Concrete
- 5. Other
- 7. As-Built Inspection Built substantially according to approved plans and specifications

Location of Spillway and Outlet Works

- 1. Appears to meet originally approved plans and specifications.
- 2. Not built according to plans and specifications and location appears to be detrimental to structure.
- 3. Not built according to plans and specifications but location does not appear to be detrimental to structure.

Elevations

- 1. Generally in accordance to approved plans and specifications as determined from visual inspection and use of hand level.
- 2. Not built according to plans and specifications and elevation changes appear to be detrimental to structure.
- 3. Not built according to plans and specifications but elevation changes do not appear to be detrimental to structure.

Size of Spillway and Outlet Works

- 1. Appears to meet originally approved plans and specifications as determined by field measurements using tape measure.
- 2. Not built according to plans and specifications and changes appear detrimental to structure.
- 3. Not built according to plans and specifications but changes do not appear detrimental to structure.

Geometry of Non-overflow Structures

- 1. Generally in accordance to originally approved plans and specifications as determined from visual inspection and use of hand level and tape measure.
- 2. Not built according to plans and specifications and changes appear detrimental to structure.
- 3. Not built according to plans and specifications but changes do not appear detrimental to structure.

General Conditions of Non-Overflow Section

- 1. Adequate No apparent repairs needed or minor repairs which can be covered by periodic maintenance.
- 2. Inadequate Items in need of major repair.

For boxes listed on condition under non-overflow section.

- 1. Satisfactory.
- 2. Can be covered by periodic maintenance.
- 3. Unantistactory Above and beyond normal maintenance.

- Adequate No apparent repairs needed or minor repairs which can be covered by periodic maintenance.
 Inadequate Items in need of major repair.
- Items) For boxes listed conditions listed under spillway and outlet works.
 - 1. Setisfactory.
 - 2. Can be covered by periodic maintenance.
 - 3. Unsatisfactory Above and beyond normal maintenance.
 - 4. Dam does not contain this feature.

Maintenance

- 1. Evidence of periodic maintenance being performed.
- 2. No evidence of periodic maintenance.
- 3. No longer a dam or dam no longer in use.

(S.C.S.) Hazard Classification Downstream

- 1: (A) Damage to agriculture and county roads.
- 2. (B) Damage to private and/or public property.
- 3. (C) Loss of life and/or property.

Evaluation - Based on Judgment and Classification in Box Nos.

Evaluation for Unsafe Dam

- 1. Unsafe Repairable.
- 2. Unsafe Not Repairable.
- 1. Insufficient evidence to declare unsafe.
 RIVER BASINS

COUNTIES

CLASSIFICAT

CORPS ENGRS

		COUNT	F2
(1)	LOWER HUDSON		≈ LIVINGSTON
(2)	UPPER HUDSON .		27 MADISON
(3)	MOHAWK	STATE HAME: NEW YORK	A MONROE
(4).	LAKE CHAMPLAIN		as Massau
(5)	DELAWARE	STATE ABUREVIATION: NY	
		STATE CODE: 36	BI NEW YORK
(6)	SUSQUEHANNA	STATE CODE:	39 NIAGARA 83 ONLIDA
· (7)	CHEMUNG	CODE COUNTY NAME	B4 ONONDAGA
(3)	OSWEGO		85 ONTARIO
(9)	GENESEE	1 ALBANY	36 OPANGE
		ALLEGAIN C	37 ORICANS
(10)	ALLECHENY	5 BROWK 4 BROOME	38 OSWEGO
(11)	LAKE ERIE	5 CATTARAUGUS	DISTGO
(12)	WESTERN LAKE ONTARIO		40 PUTHAM
(13)	CENTRAL LAKE ONTARIO	& CAYUGA 7 CHAUTAUQUA	41 QUEERS
(14)	EASTERN LAKE ONTARIO	B CHEATUNG	40 RENSSELAER
		9 CHENANGO	48 RICHMOND 44 ROCKLAND
(15)	SALMON RIVER	10 CHNION	45 STLAWRINCE
(16)	BLACK RIVER	N COLUMBIA	
(17)	WEST ST. LAWRENCE	13 CORTLAND	4 SARATOGA 47 SCHENECTALY
. (18)	EAST ST. LAWRENCE	13 DELAWARE	48 SCHOHARIE
(19)	RACQUETTE RIVER	M. DUTCHESS 15 ERIE	49 SCHUYLER
			50 SENECA
(20)	ST. REGIS RIVER	₩ [55fx	S STEUPEN
(21)	HOUSATORIC	17 FRANKLIN 18 FULTON	53 SUFFORK
(22)	LONG ISLAND	19 GINESEE	63 SULLIVAN
(23)	OSEECATCHIE	SO GREENE	64 TIOGA 65 TOMPKINS
(24)	GRASSE	21 HAMIITON	DD 10m Kms
· /~~/	durant .	33 HERKIMER	W UISTER
•		23 JEFFERSON	57 WARRIN
		a4 KINGS	58 WASHINGTON
	•	99 ICANS	60 WESTCHESTER
		· ·	61 WYOMING .
	•		SILAY CO

STATE OF NEW YORK

DEPARTMENT OF PUBLIC WORKS DIVISION OF ENGINEERING

ALBANY Disposition Sept. 18, 1934 Foundation inspected..... Structure inspected. Application for the Construction or Reconstruction of a Dam Application is hereby made to the Superintendent of Public Works, Albany, N. Y., in compliance with the provisions of Section 948 of the Conservation Law (see last page of this application) for the approval of specifications and detailed drawings, marked Lake Placid Village - Uam Construction (2 sheets) No detail drawings can be made until site is unwatered and test pits dug. herewith submitted for the { Construction } of a dam herein described. All provisions of law will be complied with in the erection of the proposed dam. It is intended to complete the work covered by the application about Nov. 15. 1936 (Date) 1. The dam will be on Shubb river flowing into Ausable river in the County of SSEX North Elba town of..... and one-half mile southeast of D. & H.R.R. station Lake 2. Location of dam is shown on the... auadrangle of the United States Geological Survey. 3. The name of the owner is Lake Placid Village 4. The address of the owner is Lake Placid N.Y. 5. The dam will be used for Power development 6. Will any part of the dam be built upon or its pond flood any State lands?______

7. The watershed above the proposed dam is thirty-nine

and will impound Approx. 1.000.00 Rubic feet of water.

8. The proposed dam will create a pond area at the spillcrest elevation of ________

9. The m	aximum height of the proposed dam above the bed of the stream is 10 feet inches
10. The lo	west part of the natural shore of the pond is four feet vertically above the spillcrest
and everywhere	else the shore will be at leastfeet above the spillcrest.
11. State i	f any damage to life or to any buildings, roads or other property could be caused by any possible
failure of the p	roposed dam No. Then dom was undergined and isiled auring
flood cond	itions no damage resulted.
12. The na	atural material of the bed on which the proposed dam will rest is (clay, sand, gravel, boulders,
granite, shale, s	late, limestone, etc.) hardpen and boulders.
13. Facing	down stream, what is the nature of material composing the right bank? As above and
covered mi	th topsoil
14. Facing	down stream, what is the nature of the material composing the left bank? As above.
15. State	the character of the bed and the banks in respect to the hardness, perviousness, water bearing,
effect of exposu	re to air and to water, uniformity, etc. Impervious. nonweterbearing.
16. Are th	ere any porous seams or fissures beneath the foundation of the proposed dam? LO.
17. Wasti	Es. The spillway of the above proposed dam will be 70 feet long in the clear; the waters
will be held at t	he right end by a Conc. wingwall the top of which will be four feet above
the spillcrest, an	nd have a top width of four feet; and at the left end by a Conc. wingwell
the top of which	will be four feet above the spillcrest, and have a top width of four feet.
18. The sp	pillway is designed to safely discharge Did discharge on Oct. 2, 1924, cubic feet per second.
19. Pipes,	1517 sec.ft. sluice gates, etc., for flood discharge will be provided through the dam as follows:
As at pres	ent, one 42" pipe for draining pond, and bo" penstock.

20. What	is the maximum height of flash boards which will be used on this dam? 12"
	Below the proposed dam there will be an apron built of sesent apron shown on plans. the stream, feet wide and feet thick.
_	this dam constitute any part of a public water supply?
	and and any and have as a known and any and any any and any any and any any and any any and any any and any and any and any

INSTRUCTIONS

Read carefully on the last page of this application the law setting forth the requirements to be complied with in order to construct or reconstruct a dam.

Each application for the construction or reconstruction of a dam must be made on this standard form, copies of which will be furnished upon request to the Chief Engineer, Division of Engineering, Department of Public Works, Albany, N. Y. The application must be accompanied by three sets of plans, and specifications. The information furnished must be in sufficient detail in order that the stability and safety of the dam can be determined. In cases of large and important dams assumptions made in calculating stresses and stability should be given.

Samples of materials to be used in the dam and of the material on which the dam is to be founded may be asked for, but need not be furnished unless requested.

If the dam constitutes a part of a public water supply, application should be made to the Water Power and Control Commission under Article XI of the Conservation Law.

An application for the construction or reconstruction of a dam must be signed by the prospective owner of the dam or his duly authorized agent. The address of the signer and the date must be given as provided for on the last page of the application form.

The present dam, which is of concrete, was built about thirty years ago, but the footing was not carried down to a firm foundation at that time. However, failure would probably not have taken place except for the fact that a testpit was dug last fall to determine the depth of the present footing and was not backfilled. The high water early in the summer forced a channel thru underneath the structure, and now the dam is undermined for nearly the entire length and remains suspended by the wingwalls. The wingwalls apparently have a good bearing and have shown no indication of failure.

The superstructure of the present dam will remain unchanged as it has stood for thirty years. The reconstruction will consist only of carrying the concrete down to a solid, impervious foundation.

No detail plans will be available until testpits have been made.

SECTION 948 OF THE CONSERVATION LAW

§ 948. Structures for impounding water; inspection of docks; penalties. No structure for impounding water and no dock, pier, wharf or other structure used as a landing place on waters shall be erected or reconstructed by any public authority or by any private person or corporation without notice to the superintendent of public works, nor shall any such structure be erected, reconstructed or maintained without complying with such conditions as the superintendent of public works may by order prescribe for safeguarding life or property against danger therefrom. No order made by the superintendent of public works shall be deemed to authorize any invasion of any property rights, public or private, by any person in carrying out the requirements of such order. The superintendent of public works shall have power, whenever in his judgment public safety shall so require, to make and serve an order directing any person, corporation, officer or board, constructing, maintaining or using any structure hereinbefore referred to, remove, repair or reconstruct the same within such reasonable time and in such manner as shall be specified in such order, and it shall be the duty of every such person, corporation, officer or board, to obey, observe and comply with such order and with the conditions prescribed by the superintendent of public works for safeguarding life or property against danger therefrom, and every person, corporation, officer or board failing, omitting or neglecting so to do, or who hereafter erects or reconstructs any such structure hereinbefore referred to without submitting to the superintendent of public works and obtaining his approval of plans and specifications for such structures when required so to do by his order or who hereafter fails to remove, erect or to reconstruct the same in accordance with the plans and specifications so approved shall forfeit to the people of this state a sum not to exceed five hundred dollars to be fixed by the court for each and every offense; every violation of any such order shall be a separate and distinct offense, and, in case of a continuing violation, every day's continuance thereof shall be and be deemed to be a separate and distinct offense. This section shall not apply to a dam where the area draining into the pond formed thereby does not exceed one square mile, unless the dam is more than ten feet in height above the natural bed of the stream at any point or unless the quantity of water which the dam impounds exceeds one million gallons; nor to a dock, pier, wharf or other structure under the jurisdiction of the department of docks, if any, in a city of over one hundred and seventy-five thousand population. This section as hereby amended shall not impair the effect of an order heretofore made by the conservation commission or commissioner under this section prior to the taking effect of chapter four hundred and ninety-nine of the laws of nineteen hundred and twenty-one, nor require the approval by the superintendent of public works of plans and specifications heretofore approved by such commission or commissioner under this section.

The foregoing information and accompanying plans and specifications are correct to the best of my knowledge and belief.

LAKE PLACID VILLAGE, INCORPORATED ,, Owner	• .
By Village Clerk author	ized agent of owner.
Address of signer Lake Placid, New York	Date September 26th, 1936

(NOTICE: After filling out one of these forms as completely as possible for each dam in your district, return it at once to the Conservation Commission, Albany.)

STATE OF NEW YORK CONSERVATION COMMISSION ALBANY

DAM REPORT

Q_{z}	eli.	23		191.9
		(Date)	,	,

CONSERVATION COMMISSION,

DIVISION OF WATERS.

GENTLEMEN:

I have the honor to make the following report in relation to the structure known as
the Land Hange Dam.
This dam is situated upon the Carlo History (Give name of stream)
(Give name of stream)
in the Town of That Elba, Essex County,
about from the Village or City of There is a second of There is a second of There is a second of the
The distance stream from the dam, to the Give name of nearest important stream or of a pridge)
is about
The dam is now owned by 9 10 18 (Give name and address in full)
and was built in or about the year 1905, and was extensively repaired or reconstructed
during the year
As it now stands, the spillway portion of this dam is built of (State whether of masonry, concrete or timber)
and the other portions are built of (State whether of masonry, concrete, earth or timber with or without rock fill)
As nearly as I can learn, the character of the foundation bed under the spillway portion
of the dam is to the family and under the remaining portions such
foundation bed is 12 15 17 12 12 12 12 12 12 12 12 12 12 12 12 12

NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY ALBANY, NEW YORK

SUBCONTRACT NO. 1 TO PRIME CONTRACT NO. EW-F-07-1771

CHUBB RIVER SITES

VILLAGE OF LAKE PLACID, NEW YORK

JANUARY 1979

O'BRIEN & GERE ENGINEERS, INC.

1304 BUCKLEY ROAD

SYRACUSE, NEW YORK 13221

SECTION 2 - HYDROLOGY

2.01 General

The Mill pond and Power Pond Dams are located about one third of a mile apart on the Chubb River. The drainage area upstream of the dams is approximately 40 square miles and lies within the "High Peaks" region of the Adirondack Mountains, which is typified by steep, tree-covered terrian. The Chubb River drainage basin is divided into two sub-basins with different hydrologic characteristics. The southern part of the basin has an area of approximately 21 square miles and contributes runoff and groundwater flows directly into the Chubb River. The northern portion of the basin has an area of about 19 square miles and is dominated by Lake Placid, which has a surface area of about 3.5 square miles. Discharge from the two sub-basins is combined at the Mill Pond reservoir and continues down the Chubb River to it's confluence with the West Branch of the Ausable River about 2 miles to the east. (See Figure 2-1)

2.2 Flow-Duration Curves

Two indirect methods were used to determine the flow-duration curves for the Chubb River at the dams, since there are no stream gages located on the Chubb River. The first method was to evaluate stream flow records at a nearby location and transpose the results to the Chubb River at the dams. A United States Geological Survey stream flow gage, located about 2 miles downstream from the confluence of the Chubb River and the West Branch of the Ausable River, was in continuous use from 1919 to 1968. The drainage area of the West Branch of the Ausable River

upstream of this gage is about 116 square miles. Average daily discharges from this gage were used to develop a Flow-Duration Curve at this location. A Flow-Duration Curve for the Chubb River at the dams was then developed from this curve based on a direct relationship of the drainage areas (Curve B, Figure 2-2).

The second method involved the use of monthly power production records for the Village electric system hydroelectric plant downstream of the Power Pond Dam which was in operation from 1905 to 1957. The available records covered the years 1939 to 1957. Since the hydraulic characteristics of the penstock supplying water to the turbines is known, an equation relating power and discharge was used to calculate discharges (Curve A, Figure 2-2).

Figure 2-2 indicates that Curve B yields about 20% more discharge than Curve A. This difference is attributable to the following factors: (1) Curve A excludes discharges in the Chubb River not used for power generation. (2) The transposed Flow-Duration Curve from the West Branch of the Ausable River gage does not fully reflect the regulating effect of Lake Placid upon the Chubb River. (3) The power generation records are based on average monthly flow, not daily flows, whereas the records for the West Branch of the Ausable River are based on daily flows. The correlation between these curves is reasonable and provides a good basis for determining the availability of flow for the production of power at the two sites. Since Curve A was developed from historical data reflecting the Chubb River flows actually used for power production, it is considered to be more reliable and has been used as a basis of estimating average annual power production.

2.03 Flood Flows

The United States Army Corps of Engineers has established hydrologic guidelines for evaluating the safety of existing dams. According to the "Recommended Guidelines for Safety Inspection of Dams," by the Corps of Engineers, both Mill Pond and Power Pond Dams should be classified as "high hazard" structures because failure of either structure would result in extensive property damage. Therefore, according to the Guidelines, the spillway capacity of each dam should be sufficient to pass 50% of the Probable Maximum Flood (PMF). The PMF is defined as the flood that may be expected from the most severe combination of critical meteorologic and hydrologic conditions that are reasonably possible in the region. The Probable Maximum Precipitation (PMP), which is used as a basis for determining the PMF, was obtained from "Hydrometeorological Report No. 33" prepared by the United States Weather Service. Unit hydrographs were calculated using average basin coefficients. Calculations were made with the assistance of computer program HEC-I, developed by the Hydrologic Engineering Center, U.S. Army Corps of Engineers. PMG runoff hydrographs were computed for each sub-area, and were combined and routed through the Mill Pond and Power Pond Reservoirs. The PMF at the dams has a peak discharge of 8,200 cubic feet per second (cfs), which is reduced only slightly by storage in the reservoirs. This peak discharge would produce a reservoir elevation of about 10 feet over the Mill Pond spillway crest and about 8.5 feet over the Power Pond spillway crest. Since the Mill Pond Dam abutments are overtopped when the flow over the spillway exceeds 5.5 feet and the Power Pond abutments are overtopped when the flow over the spillway exceeds 4 feet, neither spillway is hydraulically adequate to pass one-half of the PMF without affecting the areas adjacent to the dams.

2.04 Existing Water Quality

Water Quality data for the Chubb River is limited to information available from the NYSDEC Water Quality Analysis Unit and the New York State Department of Health. Water Quality criteria and standards have been assigned to all surface waters in the state as defined by Chapter 10 of the Environmental Conservation Law. Classifications and definitions for the Chubb River and tributaries can be found in Tables 1 and 2. The water quality classification for the Mill Pond and Power Pond is C(T) as shown on the biological resources map (Figure 5-5).

In November 1976 the Survey and Analysis Section of DEC conducted a Waste Assimilative Capacity study (WAC) on the Chubb River below the wastewater discharge of the Lake Placid Sewage Treatment Plant (STP). The survey also established New York Pollution Discharge Elimination System (NYPDES) permit effluent limitations for the Village STP discharge. The physical and chemical parameters were analyzed by the laboratories of the NYS Department of Health. Altogether five (5) sites were sampled on the Chubb River and can be located on Figure 2-3 according to station number.

2.05 Water Quality Impact

The New York State Department of Environmental Conservation has established a minimum flow requirement for the Chubb River above the Village of Lake Placid's STP. A critical stream flow of 7 cubic feet per second was assigned to the Chubb River above the STP so that the assimilative capacity of the river with the wastewater discharge from the STP would meet State Pollutant Discharge Elimination System effluent limitations. Operation of the hydroelectric generating facilities at both

dam sites would comply with the minimum stream flow standards set by the State. The DEC has determined that the 7 cfs stream flow regulation includes the discharges from the generators.

Short term water quality impacts can be associated with generator construction and dam repair activities. Construction of generating facilities along the Chubb River stream bank at both Power Pond and Mill Pond Dam sites would cause a disruption of soil layers. Due to the close proximity of the generating sites to the stream bank, it is conceivable that siltation of the river waters might occur which could create turbid water conditions downstream. However, these impacts can be minimized by precautionary reseeding and sod covering techniques.

Permanent alteration of existing water quality will not occur as a result of hydroelectric generating operations on the Chubb River.

3.02 Power Pond Dam and Appurtenances

The Power Pond Dam, constructed in 1905, is an ogee-shaped, concrete gravity overflow structure. The dam is about 20 feet high, 136 feet long and has a top width of about 6 feet. (See Figures 3-2 and 3-3) A concrete gatehouse with a wood frame superstructure is located at the north abutment of the dam. The gatehouse contains a manually operated wooden gate which controls discharge into a 5'-4" diameter steel penstock. The penstock extends about 800 feet downstream and terminates at the powerhouse, which is presently being used for offices and storage by the Lake Placid Municipal Electric Department. The penstock has been breached about 530 feet downstream of the dam, and flow through the pipe is diverted into the Chubb River by a 30" diameter corrugated metal pipe. A 36" waste tube pipe with an outlet invert about 17 feet below the spillway crest runs through the dam between the spillway section and the gatehouse. Discharge into the pipe is controlled by a sluice gate operated from the dam crest.

The Power Pond reservoir covers an area of about 9 acres, has a maximum length of about 1,200 feet and has an estimated storage volume of 100 acre-feet at the spillway crest elevation.

Visual inspections of the Power Pond Dam and its appurtenances were performed on November 29, 1978 and on December 29, 1978. River discharge over the spillway and ice and snow restricted visual observations during the inspection. The concrete forming the spillway crest contains minor cracks and some irregular-shaped sections about two inches thick have been broken away. Both concrete abutments showed evidence of deterioration with aggregate being exposed over much of their surface area. The abutment adjacent to the south end of the spillway

The powerhouse once contained both a vertical axis turbine and a horizontal axis turbine. The turbine runner and case of the horizontal unit were damaged in 1952. The damage was never repaired and all vestiges of the horizontal unit, with the exception of a gate valve and a

short riser from the penstock, have been removed. The turbine housing, wicket gates, runner, and draft tube for the vertical unit are still in place. A 2' x 3' hole has been cut in the turbine casing and the wicket gates are frozen in the shut position. Heavy and deep rust was noted. The turbine shaft has been cut about 4' above the wicket gates and the opening above the turbine has been covered and concreted. The generator and all control equipment has been removed. The runner was not accessable for inspection. The turbine has not been operated or maintained during the last 10 years.

The stability of the Power Pond Dam was analyzed with the reservoir at the spillway crest, for headwater and tailwater conditions produced by 50% of the Probable Maximum Flood, and for conditions between these extremes. The cross-section for the dam was taken from drawings provided by the Village of Lake Placid (See Figures 3-2, 3-3, and 3-4). Detailed design or as-built information of the dam was not available for our review.

The available drawings for the Power Pond Dam do not indicate the type of foundation on which the dam is based nor what type of seepage barrier, if any, exists beneath the dam foundation. Therefore, a subsurface investigation was undertaken to obtain information regarding the dam foundation. O'Brien & Gere Engineers contracted with Atlantic Testing Laboratories, Limited, of Canton, New York, to make two borings at the Power Pond Dam. Boring B-1, located near the north abutment, was driven to a depth of 50 feet, or about 25 feet below the base of the dam as shown on Figure 3-3. Boring B-2, located near the south abutment, was terminated at a depth of 40 feet, or about 15 feet below the base of the dam. The location of these borings is shown on Figure 3-2.

The soils encountered consisted of dense, well-graded sand and medium to fine gravel with a small fraction of silt. Significantly, neither boring encountered bedrock. The boring logs for this work are included in the Appendix.

It is concluded from the boring program that the Power Pond Dam is founded on overburden, not rock. Therefore, some type of seepage barrier must have been included in the design to prevent the progressive piping of fine-grained soil from underneath the dam. However, there is no record of the type or depth of this barrier.

The results of the stability analysis of the Power Pond Dam are shown on Figure 3-4 and in Table 3-1. This analysis is based on the assumption of full uplift over one hundred percent of the base. The presence of a seepage barrier would reduce the uplift pressures and increase the factors of safety. However, the assumption of full uplift is necessary until further information regarding the type, extent and effectiveness of the seepage barrier is known or until measurements of actual uplift pressures are made.

TABLE 3-1

Height of Pool Above Spillway Crest	Factors of Safety		
in Feet	Overturning	Sliding	
0	1.77	1.18	
1	1.54	0.95	
2	1.42	0.83	
3	1.32	0.73	
8.5 (1/2 PMF)	0.96	0.34	

It is concluded from the results of the dam stability analysis that the Power Pond Dam may be unstable for reservoir elevations greater than one foot above the spillway crest. However, as stated above, the information regarding the construction of the dam is very limited and additional information is required to make definite conclusions regarding the stability of the dam and any remedial measures which may be required.

The additional investigations required, which are outside the scope of this Study, should consist of the following:

- 1. Borings upstream of the dam to determine whether a horizontal seepage barrier may have been constructed.
- 2. Borings in the channel downstream of the dam.
- 3. Borings through the dam to measure uplift pressure at the base of the structure.

ATLANTIC TESTING LABORATORY PAGE 1 OF 3

				20	182	urface in	VEST	GATION Report No	-
CLIENT: O'Brien & Gere Engineers, Inc.								Location of Boring: See Plan	
		JUS	tin & CC	ourtney.	נאנם	LSION			-]
PF	PROJECT Power Pond Dam Village of Lake Placid							12/27/78 Finis 12/29/	78
	Village of Lake Placid							Date, start	-
Be-	rina N	oB-	1	Sheet	L	2	• .	Ground Water Observations	
			•					Date Time Dopth Coming 12/27 4:30 11.0' 13.0'	e l
	Car	ung H	ammer .		Son	pler Hammer		11/26 5:00 13.0' 40.0'	
y	Mt. , .		. ــــــــــــــــــــــــــــــــــــ	s. Wi		140 lbe 30 in I.D. Casing	i. —	11/29 8:00 20.01 40.0	
	OII		u	``o'`		I.D. Casing	ı. —		
Gr	ound I	lev_	_:	_ 🖾 3-1/4	ť.D.	H.S. Auger			••
	المسيخ		_						
	۔ ا			EPYH	1 _	Brows on		CLASSIFICATION OF MATERIAL F-FINE AND -24-40*	•
100	CASING CASING CASING	1		of MPLE	1	PER	- \$ 2 }	# — MESHAR	1
•	. 5 5	: *	[·		- :	**************************************	1 8	C-COTUGG , PILLES - 10-00.	8
<u> </u>		1	700	10	1	•••	L	701—0, — 33as7	
			0.0	1.0		Auger		1.0' Frost Penetration	
								Brown cmf SAND; little mf GRAVEL;	
 	╂╌╂╼	1-	1.0	3.0	55	6-8-19-21	l I	trace SILT (dry, non-plastic)	
 	╂╌╂╼	┼	 					trace sini (my, non-preserv)	
}	-	 	5.0	5.2	88	20/0.2		No Recovery - Spoon bouncing on	
								cobble; several cobbles from 3.0'	
	7							to 5.0'	
	3	<u> </u>	 					Brown cm SAND; trace SILT; trace	
-	8	2	6.0	6.5	58	110		mf GRAVEL (moist, non-plastic)	
	#-	 	 		-			ar difficult (money) their forms and	
		3	10.0	11.5	55	42-49-57		Dark Brown cmf SAND; little mf	
			·					GRAVEL; trace SILT (wet, non-plast	
		 	13.0	14.0			13.0 14.0	Boulder	
	├-┼-		13.0	14.0	 -		14.0		
		4	15.0	16.5	55	41-34-67		Ditto (wet, non-plastic)	
				,				Flowing Sand at 17.0'	
		5	20.0	21.5	88	45-73-85		Brown cmf SAND; trace mf GRAVEL;	<u></u>
	\vdash		 					trace SILT (wet, non-plastic)Rock F Flowing Sand at 20.0'	ays
	┝╼╂╼	6	25.0	26.5	58	55-61-87		Brown cmf SAND; trace f GRAVEL;	
								trace SILT (wet, non-plastic)	
	7					AP 144		No Recovery - cobble	
		<u> </u>	30.0	31.0	.88	85-100	•	Flowing Sand at 30.0'	<u> </u>
	<u> </u>								
	#	7	35.0	36.5	88	3-4-41		Brown mf SAND; trace SILT (wet,	
	7							non-plastic)	
\vdash	-	83	40.0	41.0		67-85		Ditto (moit, non-plastic)	}
┝╾┥	-1-	an.	40.0	41.0		<u> </u>	41.0		<u> </u>
		88	41.0	41.5		110		Dark Grey SILT; and f SAND	
								(moist, non-plastic)	
	** -	0PLIT 8	7900 0407LE	DRILLE	RS.	Levis Rice		Patrick Sullivan	

ATLANTIC TESTING LABORATORY PAGE 2 OF 3

				-		CANT	ON, NEV	YORK		
	·			SU	BSI	JRFACE IN	VEST	GATION	Report No. 1283-1-1-7	2
		Jus		our they	NTAT	2 TOU		Location of Boring:		
PF	OIECT	V11	wer Pond lage of	lake Pl	acid			Date, start. 12/27	/78 Finish 12/29/7	8_
Вс	_					<u>2</u>	•	Date Time	Water Observations Depth Casing	αt
,		——∵ mg H	lb	s. Wi	See	pler Hammer 140 lbs 30 in (.D. Casing	. —			
G:	ound E]ev		Fall	'I.D	I.D. Casing H.S. Auger	· —			
1		7 2		PTH F PLE	37.00	BLOWA ON SAMPLER PER		C L A D B 1 F 1 C A 1 F — FINE M — MEBRUM C — CDARDE	710 N O F N A T E A I A L AND3000^ 90ME1010^ LITTLE1000^	a. a
			from			0.0		<u> </u>	79AEE — 9—101	L
	7	9	45.0	46.5		51-108-125		Greyish Brown (moist, non-p	mf SILT; little f SA lastic)	
	4°I								• • •	
	AŽ.	10	50.0	51.5		47-56-85		Ditto	•	
	2									-
	7								•	
								Bottom Boring	; 51.5'	├
										
										├
								:		-
					\Box			. •		
										-
					二					
				,						-
							;			
										-
							ļ	•		
					_		• •	••		F
_	· ·						-			
					\dashv			• • •		

0 - OPLIT SPOOM SAMPLE U - UNGIS. SHOULD DRILLERS Lewis Rice

Patrick Sullivan

ATLANTIC TESTING LABORATORY

CANTON, NEW YORK

				30	حمر	urface ii	4 A E D T	IGNIION	•	39
CI	IENT:	O'B	rien & (Gere Eng	ine	ers, Inc.		Location of Boring	See Plan	
-		Jus	tin & Co	ourtney	Div	ision				
PR	OIEC	Po	wer Pon	d Dam	•	· · · · · · · · · · · · · · · · · · ·	·	·		_
		<u> </u>	lage_of	Lake Pl	<u>aci</u>	4		Date, start 12/2	29/78Finish_12/30)/]
		. 10	_2		•	. 1		Ground	Water Observations	
0	ring N	O		Sheet	٠	ــــــــــــــــــــــــــــــــــــــ	•	Date Time		
	Ca	ainer H	ammer		Sam	pler Hammer	_1	2/29 4:00	18.0' 40.	<u>.و</u>
u	y .		` lh	. w		140 lb	.]	2/29 4:15	Caved in at 1	۱7'
F	all	•••••	· i	n. Fo	n	30	 n			
٠				<u></u>		30 I.D. Casing DH.S. Auger	· ·			
31	ound !	Elev_		_E-1/4	ri"	DH.S. Auger	• •			
_		7	-			معدنا سے وائدان ہے		,	أكأن والمراجع المناط المساور	- 7
		1		2974	1	orane ex			ATION OF MATERIAL	
		1 2 .		or MPLE	1 2 3	94MPLER PER		- 7 FINE	Amp - 20-004	ı
	-3 5	1					1 3 3	5-504908	PILL 1000	
	•	1	7000	10	1	0.0	1		79ACE - 9-10"	
۲	eq	IA	0.0	0.5	lss	1 16		TOPSOIL and C	RGANIC Material (wet	. 1
		+	0.0	- •••	1		1 .	non-plastic)		
							0.5		<u>.</u>	
		18	0.5	1.5	88	12-10			ID; trace of GRAVEL;	
_		ļ	<u> </u>		 				S; trace SILT (moist	-
4	-4-	↓	.	<u> </u>	 			non-plastic)		
-		12	5.0	6.5	58	41-50-55	-	Light Brown cmf SAND; trace f		
-	-	 	3.0	6.3	**	41-30-33	-		SILT (moist, non-	
7		 			\vdash	 	•	plastic)		
							1	[- 1
		3	10.0	11.5	58	21-32-37].		ND; trace SILT (mois	ιt
4		 			ļ		1	non-plastic)	•	
4		-	15.0	100	 	34/0.4!-100	-	Craviah Brown	n c'mf SAND; trace SI	rt.
4		-	13.0	13.3	58	24/0.4/-100	40- 1	(moist, non-		
٦	<u> </u>	1		•	 	 		,		
7	2	•	18.0	24.0	·]	Unable to sar	mple due to continuou	18
1	1		·			- 40.0]	cobbles and l		
4	_		- 22 A	- 22 2		103-100/0		B 631	D.1441 C. co.	
ł	+	5	26.0	26.5	58	103-100/0	1	with 1/2" 4-	Dilittle mf GRAVEL 1/2" pockets of SILT	
ł		 			 	 	1	(wet, non-pla	ric) porests of STFI	ľ.
t	_	6	30.0	31.0	88	56-97	1 .	Ditto	· · · · · · · · · · · · · · · · · · ·	
t] .		•	
İ		7	35.0	35.5	88	41-100/0"		Ditto	•	
ĺ						200 400	40.0	0		
Į		8	40.0	40.5	88	38-100/0*			comf SAND; little	
ļ	 -						:	SILT (wet, no	ou-breeffc)	
ŀ	\blacktriangleleft	—		· · · · ·	_		'	·		
t			· .				1:	Bottom Boring	40.5'	
t		\cdot							,	
Ī						·		•		
							-			7

APPENDIX C HYDROLOGIC AND HYDRAULIC COMPUTATIONS

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF

PROJECT NAME /Y. Y. S. DOM LIBOUT TOPE MENT	HATE
SUBJECT LAKE Placid- Fower Ford Dum	PROJECT NO.

Snyder Parameters

Longth of years through Lake Placid

Longth of years through Lake 20,800'

Velocity, V= 192m 9= 32,2ft/see

Where mean depth im 20' lassumed)

V= 25fps

t = 20,800' 1 lne.

25fps 36005e = .23he.

<u>i</u>	N V - 1 St. t. D T and at	
PROJECT NAME	New YORK State Dam Inspections	_ DATE
SI IECT	Uillage of Lake Flacis Fower Fond Dam	PROJECT NO.
36 1601	Lizth-AREa-Zuration	DEAWN BY
:		

Approx. Location of Basin: Long., Lat. = 74°00', 44°20'

PMF

Index Kainfall

16.2" -200mi2, 24 hz.

Luration	% Index	Zepth
6 hz	96	15.55
12 hz	<i>108</i>	17.5
24 hR	119	19.28
48 hE	126	20.41

Ullage of Lake Placed Fower Ford Dam PROJECT NO Spillway Kating Coloniations Ogec crested spillway L= 70' Design Head Ha = 4.5 (Assumed based on Profile of downstream face) $Q = CLH^{3/2}$ h/Ha 71.33 (h= height of spillway) based on discharge head (Fig. 14-4-Open Channel Hydraulies -Chow) Cy = 4.03 EKU. 1706 224 cfs 1707 0.22 . 795 3.20 0.44 1.708 .88 703 3.55 . 935 1709 0.67 3.77 1371 3.95 1710 .98 0.89 2212 4.07 1711 1,01 3185 1.11 1.33 4228 1712 1.02 1.56 1.03 4.15 1713 5380 1714 1.78 1.03 4.15 6573 2.22 4.15 1716 10 9185 1.03 12,075 4.15 17/8 2.67 1.03 15,215 1720 1.03 34,156 1730 24 4.15

ROJECT NAM	WE Village of Lake Flourd	DATE
BJECT	tower tond Dani Stage Storage Curve	PROJECT NO.
	Stage - Storage Caroc	DRAWN BY
	2 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 6 7 5 6 6 7 5 6 6 7 5	102 102 139 181 230 345 345
	S7029	
	[68 k] [68 k] [68 k] [69 k] [6	1706 1710 1714 1718 1722 1726 1730 200 240 240 240 240 240 240 240 240 24
		- 8
	The year from High High	16.90

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF TFL 315-797-5800

DATE	ctions -1980	spectio	Dan II	E N. 1/5.	PROJECT
PROJECT NO.	Dam	Dam	Placid	Lane	UBJECT_
DRAWN BY					

Lake Fracis Spillway Rating

Using C= 2.65 Q= C H, L, 3/2 + C H2 L2

Elev.	<u>H,</u>	H_2	Q,	Q ₂	Q Total
1858 1859 1860 1861 1862 1863	- 1 2 3 4 5 6	- 0,33 1.33 2,33 3,33 4.33 5,33	8	68.8 556.9 1291.2 2206 3271 4467	C 77 cfs. 579 1332 2270 3360 4585
1865 1866	? 8	6.33 7.33	147 180	5782 7205	5930 7385

Storage Capacity

Eleu.	Area (ac)	15 (acft)	ZAS (acit)
1858	1990	4240	0
1860	2250	24 675	4240
1870	2685	_, _	28915

PROJECT NAME	DATE
BJECT	PROJECT NO.
	DRAWN BY
Stage - Discharge (Bridge 400°)	s of Dam
Top of Road	/
28'	
Head, it. 4/2 01w 0 3 0.3 15 4200	.fs
5 0.5 28 785 8 0.8 58 1625	
10 10 81 2270 12 1.2 105 2940	
15 1.5 135 3780 20 2.0 172 4820) ;) _
30 3) 235 6580 Flow over Rd. (Elec ~ 695)	
160 H B	
1698 3 2125 1163 8 10,975	• • • • • • • • • • • • • • • • • • •
108 13 27,600 18 50,900	

ROJECT NAME			DATE
IBJECTStage	-Discharge	@ Bruge 400 = 7	PROJECT
			many sprompers and some
	Elev.	Storage (a	1c-ft)
	/683	-	
	1685	.08	
	1690 1695	.90	
* * 1	1700	2.8 7.2	
	1705	14.1	
	17/3	28	en granden de en
i : : : : : : : : : : : : : : : : : : :	Elev.	Q (C/3)	Storage ac-li
	/683	0	O ,
# 1	1686 1688	420 785	0.24
*	1691	1625	0.43
	1693	2270	1,9
	1695	2940	2.8
	1698	5900	5.1
	1703	15,800	//
· · · · · · · · · · · · · · · · · · ·	1708	33.400	19
	1713	57,500	29.5
	· · · · · · · · · · · · · · · · · · ·		
	garanina arabahan darih		
	ing sa tanàna ang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang a Tanàng ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang ara-daharang		
	*		
<u>.</u>			
			. ,
$\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{$	i		

PROJECT NAME	NYS. Dom	Inspecto	15-1980	DATE
BJECT	Lake Thered	-fower	FOND DON	PROJECT NO
	RESERVOIR L	Rain Disc	harge kating	DRAWN BY
in the second	. Material organization of the contraction of the c	erengi e e e e e e e e e e e e e e e e e e e		
	36" waste	: tube 1	E invert eleo. ~	1690.
			el as oxitice	
	$Q \in CA$	Tag H	,	· · · · · · · · · · · · · · · · · · ·
	C from	Table 4-11	Handbook of Hydrad	ules - Ring & Brute
	a s	n' values	are Quite Close	2
	C=0,77			
	$A = \pi R^2$	= 7(15)2=7	7.07+6	
				f
	Elev.	<u> </u>	Ø (cfs)	
	1690			
	1695	. 5	78	
	1700	10	/38	
	1706	16	125	
	1910	20	/9.5	
•			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
-				
(
•				
			_	
· •	Anna A			and the same of th
* 1				
				· ·
	3			
				edining of the second of the s
	:			*
				i

4

WILLAGE OF LAKE FLACIO-FFEER POND DAN

PAGE DCC1

S PAR
SET TANGENT OF THE CANADA SET THE CA
្រ
_
· •
•
1 RUNDEF SUBAREA
14.0
0 10.2 16 10
0 0
4.5 6.4
-20.1 1.
301
CHAMNEL ROUTE THRU SUBA
c)
.76 .04 .06 172
100 1750 3sC 173
426 1729 446 1
6 206 · ·
1 RUNOFF SUBAFEA
1 1 26.6
2 16.2 9
ن ن
29
-20.1 1.
1 250
1 ROUTE THRU LAKE PLACID
) O O
-
1859 1865 186
77 579 133
S 3 4246 28915
1650 1860 187
\$0 1861 3.6 1.5 150

٠<u>.</u>

				1781					,	.075									1716		9185		230		1722								6	7500	7	5
				685				,		0									1714		6575		181		1718									400 5	1708	400 5
				1781				U	,	0.1				S A O				-	1713		538C		139		1714								11	90	170	∞
F		-	0.0095	799		-		ت	į	1.C				POWER POWD		•		-1706	1712		4230		102		1710				-			-1	5.1	5,400	1698	2565
C:		r.j	\circ	1785	85	, m		0	126	О			(4	1 0 - A01	ပ	1		0	1711		5165		0.2		1736				O			O		2940	5	76
(J))	ں	1837	654	9	L 2		•	119	U			c	LINF	O		,	ں	1710		2212		45.2		1752				ں	G.E		מ		2276	Ò	27
C SUBARE	, ,	ر ،	1721	Š	1804	ر:		O	108				r:	PHS - TUTA	၁	POND DAM		0	1709		1371		54.9		3691			99	ပ	AM ERID	_	9	•	1625	5	62
RUBTE THRO		٠,	• : e		. 1	ر.	BAREA 3	3.7	ýĆ	ر. ,		1.6		RYDROGRAF	O	FOWER	()	c		1750	2	15	11.6		1654			1.5	د.	DOWNSTR	٠,	1.5	. \$	205	V:	S 22 /
	1 5, 3	ca	ز	Q	28	ر:	رى س	-	16.2		73	-0.1		u	100	0	ت	ပ	\tilde{z}	1720	22		•	4	Š	73		40.7	3	ULTE THRU		د:	Ü	466	ယ်	.7
,				100 0	シ	•***1		-	.3	တ	2.1	-2-	~)	5		œ		, -		1718		12075		œ	œ.	1726	5	7		Œ	. ¬	-	ר:	ပ	1683	
* 2	>	, <u>,</u>	45.	۲ ک	17	×	ž	£	<u>-</u>	-	.5	×	¥	Ϋ́	×	۲,	>	۲1	7 4	7 4	15	Υ 5	\$ 8	\$ \$	₩ ₩	71	- A -A	₩	×	7	>	, ,		۲3		
(6639)	((341)	4	-3	4	(6045)	3	4	- 3	4	2	5	S	3	24	\sim	Ş	3	50	.61	(0900)	5	79	O	a	3	٠.	J	Ü	•		(112011)		~	(9034)	~	~

(2617)	¥		96	(J	ပ	C	O	,-			
(00/00)	χ Έ		CHANNEL R	DUTE TO	NEL ROUTE TO SUBSTATION - OFFICES OF ELCTRIC CO.	- OFF1	ICES OF	ELCTRIC	• O	:	
(30075)	> -	د.	ن	O	***	_					
(0000)	۲1		u	O	G	rs	C	-			
(0021)	٧6	0.000	0.055	0.100	1673	1695	380	C. 026	:		:
(0085)	77		1681	392	168₫	271	1679	273	1673	290	1673
(60e3)	77		1680	350	1685	367	1695			!)
(0094)	¥								•		
(0085)	∢										
(9800)	⋖										
(1800)	⋖							•			:
(Gob)	⋖										
(4300)	∢										

FARVIEW OF SEMLENCE OF STREAM RETWORK CALCULATIONS

150	301	f.1 7	2.0	3.5	303	5.3	160	66	86	
RUMOFF HYDROGRAPH AT	ROUTE HYDROGRAPH TO	RUNOFF SYDROGRAFH AT	ROUTE BYDREGRAPH TO	RUUTE HYDEOGRAFH TO	RUNGFF HYDROGRAFH AT	COMBINE & HYDROGRAPHS AT	ROUTE HYDROGRAPH TO	ROUTE HYDROGRAPH TO	RCUTE HYDRUGRAPH TO	END OF METWORK

PELCO CYDYCHRAPHTHAN TARRAHAN (VECTO)
OAM SAFETY VEOSION COLY 1970
LACT P CIFICATION CO FEE 19 中放水 医拉拉拉甘油 医安日 经条件 医拉拉耳氏结核 医阿拉拉拉氏试验检

RUN DATE 2 1ED 4 MIG 15 14:0 TIME 2 7 157150

VILLAUE OF LAKE PLACID-POWER POND DAM HEC-106 (SNYDER'S PARAMETERS)
PMF-DAM OVERTOPPING ANALYSIS

IFRT 161. 0 THACE 0 JOE SPECIFICATION taupt G 1 0 E 1637 JOPER ς Τ & --

ر در چ

NSTAN 0

MULTI-PLAN ANALYSES TO BE PEFFORMED NPLAN= 1 NRTIO= 7 LRTIU= 1 U.30 0.4C 0.5C 0.03 0.80 1.

1.00 0.7

SUB-AREA RUNOFF COMPUTATION

01	
I = UTO	ع پ
ISTAGE 0	LOCAL
	ISAME 1
INAME 1	
JERT	ISNOR
JPLT	RATIC C. JOE
•	DATA RSPC U.P.C
ITAFE O	PAP4
LE C ON	TRSDA TRSPC 38.30 0.00
	SMAP C.CC
5 4 //0 0 1	
SUBAREA 1 ISTAG 100	TAREA 14.00
SUBAR IST	1086 1
UNOFF	-
ž	IHYDG

R12 R24 R48 108.00 119.00 1ze.00 PRECIP SATA 86 9€.0€ SPPE PMS
C.0. 10.20
TRSPC COPPUTED BY THE PROGRAM IS C.842

() #**4**| 7 UNIT HYDPOGRAPH DATA CP=0.63 6.53 " "

RT134P

ALSWX C.CC

CNSTL 5.13

STRTL 1.00

PT 1 0 K

LOSS DOTA STRKS C.C.

ERAIN

9**T10L**

SLTKR .J.

STRKR C.C.

LRCPT

RIIOR= 1.63 1 RECESSIO, DATA URCSR = -2.10 STRIGE

4.50 HCURS, CP= 0.62 VOL= 1.00 896. 706. 556. 890. 2, U II HYDEGERAFF 20 END-0F-FERIOD OPDINATES, LAG= 755. 1115. 1240. 1126. 105. 1240. 133. 1115. 15. 755. <14. 7, 415. 25.

17.19 13.87 3.32 143714. (437.) (352.) (84.) (4069.52) COMP COSS PO.DA HR.MN PERIOD RAIN EXCS SUM 17.19 13.87 J AMOU C 6.5.5 EXCS RAIX HR.4% PERIOD 40. CF

HYDROGRAPH ROUTING

LSTR ISTAGE STORA ISFRAT INABE 1SK 0.000 daidI JPRT 0.00.0 1 CFT JPL T ROUTING DATA AMSKK 0.00 IECON ITAFE ISAVE IRES LAG CHANNEL ROUTE THRU SUBAREA 3 ICCMP 6.00 0.00 NSTOL ISTAG CL.) \$8 ۸ NSTPS 6L ° SS

MORMSL DEFTH CHANNEL ROLTING

50.90 CROSS SECTION COURDINATES—-STAZELEVZTAZELEV—ETC 100-JJ 175J-30 SKLJU 175 JON 405.01 1729.00 404.30 1725.00 422.03 1725.03 426.00 1729.00 446.00 1730.00 650.00 1750.00 32.05 445.71 381.84 8200. 0.00370 16.34 uP(1) GN(2) GN(3) ELMVT ELMAX 0.0600 0.0400 0.0600 1725.0 1750.0 269.10 3.65 225.25 5.00 176.36

667.33 4614.30 1735.53 3179.35 74.76 1734.21 2083.49 32628.48 1732.89 1285.25 27211.39 1731.58 746.28 405.58 18175.59 1728.95 2.3.86 14496.10 17:7.6: 11353.5. 43.95 1766.30 0.69 0655.24 11622.1 OUTFLUI ST. 246:

SMD-OF-FERIOD FLOW

	1738.10	14.9651	17475	1742.10	1743.46	1144.14	1746.25	1,41.51	1748.68	
FLCs	79°2 5055.44	03.9. 11333.5.	263.87	405.5.	746.2c 22403.75	128 5.25 27211.39	2083.49 32628.48	3179.35	4614.30	
MARITON STAGE 1S		1735.0								
SAKINUM STAGE IS		1735.1								
HAMERUN STAGE IS		1736.1								
MAXIPUP STAGE IS		1,51.1							\ .	1
MAXIMUM STAGE IS		1737.9			,					
MAXIBUM STACE IS		1739.3							· ·	
MAXIMUM STAGE IS		1745.4								

SUSTAREA RUNDEF COMPUTATION

	2	200	7 4 1 1 1								
		-	ISTAG ICENE	JA: J		ITAFE		JFRT 1	INAME	STAGE	IAUTO
			230	0	C	0	C	0	-	0	O
					HYDROGR	APH DATA					
	IHYDG	1040			TRSDA	TRSPC	RATIC	MONSI	ISAME	LOCAL	٠
		~	20.05		38.55	30*0	000*1		•		0
					PRECI	PRECIP DATA					
		SPFE	の製化		F12	R24	×48		896		
16.20		. · •	16.20	•	10.301	119.00	12c.0u	0°0	(.uū		
F AC CULTURACE			C / 3								

TRSPC COPFUTED BY THE PROGRAM IS 5.842

RTIME 0.15 ALSMX C.CC CNSTL 0.10 STRTL 1.30 ERAIN STRKS RIIOK C.30 7.00 1.05 RTIOL 1.30 DLTKR STRKR G. CG LROPT

UNIT HYDROGRAPH DATA
2.60 CP=0.63 NTA= C

UMIT PYDROCRAD 14 END-OF-FERIOU ORDINATES, LAGE 2.58 HCURS, CP# 0.63 VOL# 1.5C 664. 2184. 3375. 2568. 1672. 1089. 759. 462. 3C1. 126. 83. 54. 55.

PECESSION DATA
-2.EC GRCSN= -0.10 RIIOR= 1.60

STRTG=

1055 EXCS RAIL ENG-OF-EGRIOD FLOW LOSS COMP or MO.DA MR.MO. PERIOD SONA WAN GULFAA FRANK FA. .

17.19 14.35 2.84 236834. (437.) (365.) (72.) (6705.39) SUM

COMP 0

HYDROGRAFH ROUTING

:		1860.00				₹
17UTO 0		1:65.00	5 /30,00			
SECON STAFE JELF JERT INAME ISTAGE O 0 0 0 1 0 = OUTING DATA IPES ISAFE SOFT STAFE 1 0 0 0	ISFRAT -1	1864.CC	30.8884			EXPL 0.0
I NAME	TSK STOPA 0.000 -1858.	*				CAREA E
JFRT 0 1+MF	15K 0.000	1863.30	33 (0.00			L CAR
JFLF 0 10FT	x 0.00.0	1862.00	2275.05			ELEVL COGL
ITAFE O NG DATA ISAFE	AMSKK 3. (60 0.00)	186	227			ELEV
IECOM O Soute IPES	LA6 D	1861.3	1332.35			E K PE
FLACID FCORP 1 AVG 0.00	NSTDL	: 1	377.00	15.	1870.	70 40 0 40 0 0
FRU LAKE ISTAB 250 CLESS 0.000	NSTES 1	186(.33	577	. 28915.		SPWID
ROUTE THRU LAKE PLACID ISTAG ICORP 2.0 1 4LOSS CLOSS AVG C.C 0.000 0.00	-	1859,00	77.CL	424	18cj.	CREL 1250.0
			் ந்	. ,	1858.	
		1858.00	ن. ن.	: T Y =	= 401	
		STAGE	Ho.	CAPACITY	ELEVST104=	

EXFD DAMEID DAM DATA CCGD EXFD 10PEL 1851.J

301. AT TIME 63.00 nouss 52.03 HOURS 56.39 HOURS 5€.50 HoUFS 49.50 HOURS 45.00 HOURS OIE. AT TIME 387. AT TIME 1410. AF 31ME 2051, AT TIME SEZO, AT TIME FEAK SUTFECK IS PEAK PUTFLOW IS PEAK JUTELUE IS PEAR DUTFLUM 15 FEAR OUTFLOW IS PERK JUTFLG. 15 OTELUM IS F E & K

\$4000 F0008 5454. AT TIME

HYL: OURAPH ROUTING

CHANNEL	ROUTE	THRU SUBA	INER 3						
	ISTAG	ISTAG ICOMP IECON ITABE JALT JAR	IECON	1T / P.E.	JPLT.	I JERT I	INAME	ISTAGE INUTO	INUTO
	;	•	FUOA	IING DATA		÷.	•	Þ	•
SS. Jo	CLUSS	4 46	IRES	ISAME	LOFT	TEMP		LSTR	
-, •	7.00g	စ္ ပ	-	-	_	a		0	:
	F.STF.S	MSTFS NSTOL	LAG	LAG AMSKK X TSK	×	TSK	STORA	ISFRAT	
	-	-	-	-	-	-	•	-	

RCPMAL DEFTH CHANNEL SCUTING

GROSS SECTION COORDINATES -- STAZELEVZSTAZELEV

PRICED BACED GNOSD ELNAT ELMAN FLATE SEL 47032 0404 0 0406 0 1831.1 1837.C 16640.0430955 (ROSS SECTION COGNOINATES-STAMELEVASTAMELEV-ETC 152.30 1647.30 372.01 1634.30 654.00 1785.31 661.30 1781.90 685.0) 1781.30 543.30 1785.80 652.00 1654.30 965.00 1837.00

1809.56 8066.03	70033.53 558894.C0	1804.58	70033.53
1355.35	48731.72	1201.63	48/31.72
967.59	32340.25 422532.25	1798.62	32390.20 422532.25
646.99	200.2.55 501c(7.5c	1795.74	273c2.55 561cc7.56
393.56 5216.33	11515.57 5.6695.5	1792.79 1822.24	11315.57
207.31	5555±13 255123±16	1759.84	5555.13 455125.0e
88 <u>.22</u> 3965.84	2203.83	1786.85	2203.83 k-8819.50
32.75	167293.53	1285.55	579.64
C4*6282		181.5	5.00 El el
35 a c. 15	4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4	1	د د

MAXIMI STAGE 19 1766-1

SAMERUM STAGE IS 1784.

MAXIMUS UTAGE TO TERRES

BAKETLY CTRUE IF 17 5.5

DISTREMENT OF STREET STREET

SAAL VITOR IS TONE

SEBTAKER AUNCEFF COMPLIATION

1. UTC 0
15T26E
IBANE 1
31 F.T 0
11 (7) 11 (1)
174F1 0
lecon O
5 IC: #P
Fiusaceas Istac IC
RUNGER

	LOCAL			
	ISAME 1		P.9c	6.33
	# 2 2 5 E		975	00°
	300°3		∴ † ℃	120.30
4 K C W	188FC 0.0	D A TA	3 3	175.03
せてこつせつこれ	1850a 38.00	FRECIP	- 1 - 1 - 1	105
	94.50 0.00 0.00			1 · · · · · · · · · · · · · · · · · · ·
	IAREA 3.7		Si	10.2
	10.			SI A SH A SA
	3 12 4			7 1 1 2 E 4 F
				K
				18.62

THE ALSO THE COST OF THE STATE OF THE STATE COST OF THE COST OF TH

C mail officerate DATA

374Fus -22/5 08CSvs -0.10 01Luss 1,00

THE PERIOD RAIN ENCS LOSS 568 17.15 14. 9 5.10 41601. (427.)(350.)(79.)(1174.71)

CHARGE IN BRACKS

STOCKED OF STORM MARKS OF TOTAL I RESERVE A RESERVED BANKS

1936g 15166g 1787 - -11.1 i.): ₩ • ~ • ...

	* * * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * * *	*	***	*	****	*	我我说你人会能够就	
				41000	Appropriate Courties					
		The state of the s	ISTAC TO PET US.	18091 19091 19091	5		JEST IMAKE ISTAGE JAUTO O 1 0 0	ISTAGE	IAUTO G	
		SS . Te	000 001.0		HOUTING GRAN	4 M + M + M + M + M + M + M + M + M + M	J 0	LSTR		•
			25165 AS16L	1. L36	* 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		TSK STURA]	ISPRAT		
5 T F C :	17.0.00 1713.00	17.50.07	17:8.cf 1730.00	1799.3	1716.0.	171	1711.99 17	1712.00	1713.50	1714.09
; 	12.173.	15615.1	24155.70	1371.J	2216.33	318	3185.30 42	4230.00	5080.00	6575.00
CA+ ACITY=	11Y= 200.	9 40	11.	, , ,	· '0		1.12.	135.	181.	230.
ELEVATIO:,≈	10;≠ 1680. 1720.	169u.	1.94.	1698.	1736.	17.6.	1719.	1714.	1716.	1722.
		Chall 1765. i	SPAID	C-048 EXI	ExFG ELEVL	0.0 0.0	CAREA E	EAPL 0.0	•	:
				101.61	ATAN KAN		•			

EALU DAMEID 1.5 th. ر د. ن ک T0FEL 1716.5

44.00 HOURS 5 704 . 6. 57 84900 00.54 44.00 EUUES 44.10 #5045 *4.0% houses 3505. AT TIME - 411 TA - 1 Sec 7465. AT TIV. 15957. AT 1120 5493. AT 118 11596. AT TIK FEAK CUTFLUE IS BEAR SUTPENESS PEAK COTFECIALIS FEAK DUTFLUN IS PEAK HIFELLA 15 PEAK LUTHOW IS

PEAK RIFLIN 35

44.00 Frtis

E. Cer. AT TIRE

HYDRUGRAFH ROUTING

		ROUTE TE	ROUT: TEKU DUWNSTREAM UKINGE ISTAG ICCMF IRC	TREAM UM	IPSE IECON	16CON STAFE	JFLT	JFRT.	INARE	JFKT INAME ISTAGE ISUTO	I . UTQ		
		3°7 88078	200*0 \$\$070	- 90 4:0	POUT RRES	POUTING DATA IRES ISAME IOPT 1 1 1 3	1401	သ ရုန္တေ နွေ မျ	· i	LSTR			
			NSTPS	NSTEL	L ≜6 0	APSKK 0.:C0	× 000.40	15K 0.000	STORA -1.	ISPRAT			
STURAGE	3.0.0	C.24		64.0	1.23		1.93	2.80		5.16	11.00	19.00	
CUTFLOS		420.00		785.00	1625.90		2270,30	2940.67		30.0065	15/00.00	33400.00	
STAGE	16.3.68	1466.00		1688.00	1691.00		1693.00	1695.00		1698.00	1703.00	1708.00	:
FLG.		426.00		705.60	1625.00		2275.00	2940.00		59:00°CC	15:00.00	33400.00	
MAAIMUM STAGE IS	F 15 1595.c	٠,٠											
RAKENOR STAGE IS	E IS 1697.6	7.6										i	
MAXINUM STAGE 15	E 18 1698.8	ر در در								; ;	:	:	•
MANINUM STAGE IS	E 15 1699.8	x) •											
MAAIMUM STAGE 15	E 15 3705.9	3.							•			:	
HANITUM STAGE IS	E 15 1773.3	3. 5							:				;
MAXIPUM STAGE IS	E IS 1704.4	4.4											

MTEFOGRAFH SOUTING

	14010	C			
	ISTAGE	0		LSTR	9
	INAME	-			
.03	JFRT	n		IFMP	C
ELCTRIC	JFLT	•		1401	- ,
FICES OF	ITAPE	0	ING DATA	IRES ISAME	-
10 - NOT	IECON	Ċ:	FOUT	IRES	•
SUBSTAT	1COMP	-		9 4 (2	60
ROUTE TO SUBSTAILON - OFFICES OF ELCIRIC CO.	ISTAG	86		CLUSS	96 9. See 30
CHANNEL				WL SS	~

STORA ISPEAT 0000 0 00000 AMSKK 0.000 LAG U 1816L 0 ASTES 1

VCRMAL DESTH CHANSEL ROUTING

	CHOSS SECTION COGRDINATES—STAZELEVZSTAZELEV—ETC 145.0-168104 266.8-168206 271.00-1689.00 275.00-1673.00 290.00-1673.00 30. 00-1680.00 280.00 380 380 380 00-1680.00
	.10 1673.36
8LNTH SEL	ETC
340. 0.02500	36 273,
\$LNTH	1, ELEV
340.	30 1679.
EL! 44	ELEV.STA
1695 • C	C 271.C
ELNYT ELNAA	TESSTA.
1673.U 1695.E	99 1680.3
0×(5)	COGRDINA
0.1000	33 260.
GL(1) 9N(2)	SECTION 3× 1681.
61.(1)	140.

i

STURAGE	0 8 0 4 0 4 0 8	10.57	12.71.	14.87	17,06	1.2n 15.26	1.56 21.4E	2.69	4.50 25.99
CUTFLUA	0.06 11445.00	94.05 16357.94	300.62	599.53 27113.14	987,83 3 33 64.00	1466.35 40165.68	2081.47	3164.09	5303.50 63691.93
STAGE	1073.9	1674.15	1675.30	1676.47 1688.75	1677,63	1678.79 1095.37	1679.95	1681.10	1682.26
FLo:	0.04 11945.30	94.03 16357.94	300.62	599.50 27113.14	987.83 3 3364.0 5	1466.35 40165.68	2081.47	3164.09 55:44.00	5303.50 63691.93
MANIMUM STAGE IS		1641.5							:
PAXIBUR STAGE 1S		1682.5							

1683.1 1643. 1654.5 16<5.6 MARIFUY STAGE IS VAAITUM STALE IS MAXIMUM STAGE IS MAXIMUM STAGE IS

******* *********

1,650.7

MARINUT STAGE 15

;	
•	

PEAK FLOW AND STORAGE (END OF PERIOD) SUMMARY FOR MULTIFLE PLAN-RATIO ECONOMIC COMPUTATIONS PLAN AND STORAGE IN CUBIC FEET PER SECOND (CUBIC METERS PER SECOND)
AREA 11 SGUARE MILES (SQUARE KILOMETERS)

		i	•			i		i	•	
1.00 T	13712.	13657. 386.7 <u>3</u>) (28781.	5454.	5453. 154.41)(5034. 142.56) (20695. 586.02)(20686.	20673. 585.38)(20671. 585 <u>.33)</u> (
	10975. 310.63)(10918. 309.15) (23025. 651.98).0	3629. 102.76) (3616.	4027.	15948. 451.59) (15937.	15940.	15938.
RATIC 5	8227. 232.9 <u>73</u> (8183.	17268. 488.99)(2051. 58.08)(2546. 57.94) (3021. 85.53) (11596. 328.37)(11596. 328.36) (11597. 328.39) (11593. 328.29) (
RATIO 4 8010 4 0.50	6856.	682C. 193.12)(14390.	1410.	1409. 39.90) (2517. 71.28) (9520.	952ů. 269.58)(9515. 269.43)(9514.
RATICS APPLIED TO FLOWS RATIC S RATIO 6 RATIC 5 RATIO 6 C.40 0.50 0.80	5465. 155.31)(5454. 154.43)(11512. 325.95)(997.	545. 28.22) (2014.	7462.	7467.	7465. 211.34) (7466.
8ATIO 2 0.50	4114.	4024.	8634. 244.49) (612. 17.33)(612. 17.33)(1510.	5487. 155.39)(5493. 155.53) (5591. 155.73)(5507. 155.95)(
RATIC 1	2746.	2719. 77.31) (5756. 163.30)(331. 8.52)(351. č.52) (1037. 28.51) (3557. 104.72)(3563.	\$557. 100.72)(5554. 100.63)(
PLAN	- ~	-~	- ~	-~	Ę	۔ ت	-~	_ ~	* :	-
AREA	14.50 36.26)	14.50	20.60	25.60	20.60 53.35)	3.76	38°30 5°45	38.30	38.30	38.30
STATION	1.1.1	301	565 565) 98 7	305	330	158 1	190	56	ر د د
OPERATION	NYGROOKARD AT	Routeo T	HYDR SKALL AT	ROUTED TO	Fours T.	HUDROGRAFH AT	3 COVETNED	ROUTED TO	RILIFO TO	FUNTED TO

PLAN 1 STATION 301

7 I ME	HOURS	44.00	20-77
KOK LX4K	STAGE . FT	1753.7	1735.0
ボコモ T X Y E	FLOWACFS	6719.	4004
	RATIO	3.20	0.30

5.40 5454, 1736.1 44.00 6820, 1737.1 44.00 7.60 3183, 1737.9 44.00 6.50 10916, 1739.3 44.00 1.00 13657, 1740.4 44.00

SUMMARY OF DAM SAFETY ANALYSIS

	TIME OF	FAILURE	HOURS	00.0	00.0	00.0	00.0	00.0		00.0
TOF OF DAM 1861.00 6707.	TIME OF	MAX OUTFLOW	HOURS	63.00	26.00	52.00	20.00	49.00	00.84	48.00
	DURATION	CVER TOP	HOURS	0.09	0.33	00.0	13.00	29.00	66.34	CO*6%
SFILLWAY CREST 1858.CC C. C.	MAXIMUS	CUTFLOW	CF 5	301.	612.	. 265	1410.	2051.	5629.	5454.
∨A∟ue ≎9 0. 0.	MANIMUR	STORAGE	みらードす	3066.	4348	2605	6689.	× 460.8	1392.	12555.
1858.	*AXIMUM	DEPTH	OVER DAM	00.00	ပ (၁	0°0	0.07	0.56	1.45	2.37
ELEVATION STORAGE SUTFLOW	SURIXUE	RESERVOIR	W.S.ELEV	1059.45	1800.04	1060.55	1-61-67	1:61.56	1:02.45	1003.37
	HATIO	10.	u ac	0.20	1.8.1	04.0	0.50	Q 9- 5	39•r	1. 00
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\										

*AXI *UM flow.cfs 301. 9012. 907. 1409. 3616. 5483.

302

STATION

FLAN 1

SUMMARY OF DAM SAFETY ANALYSIS

FLAS 1

	1		; ; ;	•
	FAILURE OF 10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.		· :	
7 0 € ВАН 1710. <u>00</u> 102. 2212.	TIME OF HOURS HOURS 44.00 44.00 44.00 44.00 44.00 44.00 44.00 44.00 44.00	:		
¥	DURATION QVER TOP HOURS 6.33 18.33 13.30 17.40 28.31 35.50 46.30	79 THE TIME TO THE TO THE TO THE TO THE TO THE THE TO THE	26 20 20 20 20 20 20 20 20 20 20 20 20 20	######################################
SFILLWAY CREST 1736.C3 70.	MAKIMUM OUTFLOW CFS 3563. 3563. 5493. 7467. 7520. 11596.	STATION FAXIBUR STAGE*FT 1697.6	1099.8 1700.9 1703.0 1734.4 STATION	7 A STAGE I TO STAGE I
	MAXIXGE STORAGE AC-FT 113. 113. 125. 125. 125. 125.	_ \$_ <u>\</u>		MAX LRUM FLOW CFS 3554. 557. 7466. 11593. 1593. 20571.
INITIAL VALUE 1706.39 70. 0.	2	RATIO 0.20 0.30	6.50 6.60 1.80 1.30	00000000 #25.6000 #25.6000 #25.6000 #25.6000
ELEVATION STOPAGE GUTFLON	RESERVOIR F.S. ELEV 1711.16 1712.20 1713.71 1714.04 1715.90 1717.90		<u> </u>	
-				

		: :			
			1725	.153	
4	-	0	224	- 6	1866 7385
o		0.1	1725	0.1	1865 593C
0	+ D	1.0	-1 -0037 +04	0	-1858 1864 4585
D A B O		0 0 0	5200 1729 1750	126	-0 1863 3363
ER PCND RS)	Ф М°	နပ ပ - - - -	1 17 17 14 14 10 10 10 10 10 10 10 10 10 10 10 10 10	38.3 119 6	1 C 1862 227C
ACID-FOW FARAMETE NALYSIS O	0 0	TCS 0 0 SUBAREA	1 0 1725 1730 1730	-	LACID 1 1861 1332 150 :
F LAKE PL SPYDER'S AMBREAK A 10	REA 14.	o 1. UTE T	ų C	20.6 9.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	780 LAKE P 1860 1860 1876 1876 1876 1876 1876 1876 1876 1876
VILLAGE OF HEC-106 (S 0.5 PMF DA C	ф.,	0.625 0.625 0.625 0.101 0.011	1750 1729 205	16.2 16.2 625 200	001E THR 1859 4240 1860 3.0
VI HE 300)		.05 100 100 426	2.60 2.60 2.60	1858 1858 1858 1858 1858
A A A A A A A A A A A A A A A A A A A	- ZÁZE:	*-3××Z	, 44¢4 , x44<	KETHBXX.	ちゃまららかし しょうしょう
(0003) (0003) (0004) (0004)	(0000) (00009) (0010)	0012) (0013) (0014) (0015)	(0017) (0018) (0020) (0021) (0021)	(0052) (0052) (0052) (0052)	(0036) (0037) (0038) (0038) (0036) (0038)

	•	í	í	Ć	í	•	,			
~ ′	_	7		.	ن. ا	ب	-			
Z		CHANNEL	ROUTE THRU	SUBAREA	· •					
>	. 7	~	co	,- -	-					
71		Ü	ာ	C	ت	0	-			
76	•	70°	92.	1781	1837	16040	T. 0095			· Andrews Colonia Val. 4
77	_	1867	370	1804	654	1785	399	1781	685	1781
77	69	1785	∞ ∞ ∞	1804	965	1837	i •	•	,	
×		300	0	ධ	ငှာ 	þ				
X			SUBAREA 3							
£		-		0		0	O	U	_	
<u>.</u>	10	16.2	96	108	-	126			•	
-	C)	_	O	0	ပ	0	1.	0.1	C	6.075
3	2.7	0.625								
×	~	-0-1	1.6					:		•
×	~)	300	j)	0	Ü	0	,- -			
Z		COMBINE 3	3 HYDROGRAPHS	•	AL INFL	10 - NO.	PULER FOND	DAM		
¥	_	100	O	O	ن	0		İ	:	
X	_	ROUTE OVE	VER POWER POND	۵						
>	C	0	3	-	-					
11			0	Ö	ပ	O	-1706	-	•	:
X	170		1708	1709	1716	1711	1712	1713	1714	1716
7,4	1718	1720	1730							
7 5		~		1371	2212	3185	4230	538 0	6575	9185
75	12075	~	34155							
\$ S	0	•	11.2	54.9	45.2	70	102	139	181	230
\$ \$		•				•				
S E	_	0	1654	1698	1752	17:16	1710	1714	1718	1722
SE	_	M								
\$\$	1706									
8	_	2.64	1.5	46						
\$			1687	0.1	1706	1714.8				
8	~	<u>ت</u>	1607	0.3	1706	1714.8				
*	2	C			1706					
<u>×</u>		55			ָ ֪֖֖֖֖		-			
Z		ROUTE THE	HRU DOENSTRE	9	لفا	ı				
>	כי		S	-						
71		O	O	ပ	0	0	-1			
					,					

DAR
POND
PLACID-PUWER
LAKE
J.
VILLAGE
۲۷

PAGE 0003

(2200)	¥3	n	324	785	1625	2276	294C	2966	15800	33400	57500
(8600)	*	1683	1686	1688	1691	1693	1695	1698	1703	1708	1713
(6200)	75	ບ	420	785	1625	2270	2940	5900	15800	33400	57500
(0800)	¥	-	86 6	C	0	U	2	-			
(0081)	Z.	_	CHANNEL R	CUTE TO	SUBSTATION	•	OFFICES OF ELCTRIC CO	LETRIC	co.	:	
(500)	>	3	C	0	_						
(0083)	Y 1		O	O	Ö	0	ပ	-			
(0084)	¥6	0.068	٠	6.100	1673	1695	380-	6:956		:	:
(0085)	11	140		2 60	1680	271	1679	273	1673	290	1673
(9800)	17	304		350	1685	367	1695				
- (6087)	¥	66				•	;			1	
(: <u>800</u>)	<				•						
(F.35.4)	4										
(0400)	•						:		:		:
(0001)	<										•
(0035)	⋖										

EA OF SERLENCE OF STREAM NETWCRK CALCULATIONS
RUNOFF HYDROGRAPH AT
ROUTE HYDROGRAPH TO
RUNOFF HYDROGRAPH AT
RCUTE HYDROGRAPH TO
RCUTE HYDROGRAPH TO
RCUTE HYDROGRAPH TO
RCUTE HYDROGRAPH TO
RCUTE HYDROGRAPH TO
ROUTE HYDROGRAPH T f-FVIEA

FLUCE PYDROGRAPH PACKAGE (HEC-1)
DAW SAFETY WENSION
LAST MUDIFICATION 26 FEB 79

RUN DATETHED AUG 15 1980 TIME?11:43:17 VILLAGE OF LAKE PLACIO-POWER POND DAM HEC-1DE (SNYDER'S PARAMETERS) Q.S F*F DAMBREAK ANALYSIS JOB SPECIFICATION

NG NHR NMIN IDAY IHR IMIN METRC JFLT IFRT

300 0 10 0 10 0 6

NSTAN

MULII-PLAN ANALYSES TO BE PERFORMED NFLAN= 3 NRTIO= 1 LPTIO= 1

RTICS= L.50

SUB-AREA RUNOFF COMPUTATION

1 A U T O	:
ISTAGE	LOCAL
INAME IS	ISAME 1
JERT II	HONSI
r in	8AT10
ITAFE J	H DATA TRSPC 0.00
IECCN II	TRSDA T
ICUPP IE	SNAP 0.00
-	TAREA 14.00
ISTAG 100	IUHG 1
	IMVDG 1

872 6.00 848 126.00 PRECIP DATA R12 R24 108.00 119.00 86.00 PMS 16.20 SPFE F C.OC 16. TRSPC COMPUTED BY THE PROGRAM IS 0.842

6.00

ALSHX 0.CC CNSTL 0.16 STRTL 1.0C 1.00 LOSS DATA ERAIN STRKS I C.OO 0.0C PTI0L 1.00 6.0C STRKR C.00 LROPT

871FP 0.01

UNIT HYDROGFAPH DATA

TF= 4.50 CP=0.65 NTAH G

	RT10R= 1.60	
CATE	-0.10	
FECESS10N	GRC SN=	
	-2.CC	
	STRTG=	

	491.	1161.	1236.	831.	558.	375.	252.	169.	114.	76.
40T = 0.57	421.	1113.	1275.	864.	581.	390.	262.	176.	118.	29.
CP= 0.63	355.	1659.	1296.	.005	. 409	* 00	273.	183.	123.	83.
54.	251.									
LA6=	230.	932.	1306.	. 726	654.	439.	295.	198.	133.	89.
ORDINATES,	173.	859.	1299.	1014.	681.	457.	307.	200.	139.	93.
-0f-FERICO	121.	783.	1285.	1655.	708.	470.	320.	215.	144.	. 25
FFT END.	75.	7 Co.	1264.	1098.	737.	495.	333.	223.	15	101.
FYDR	36.	634.	1256.	1142.	767.	515.	346.	233.	156.	105.
11:0	10.	562.	1201.	1166.	798.	530.	36.1.	-747	163.	199.

SUM 17.19 13.87 3.32 641583. (437.)(352.)(84.)(18167.59)

RAIN EXCS LOSS COMP &

COMP G MOLAN PERIOD RAIN EXCS LGSS COMP G MOLDA HR.MN PERIOD

HYDROGRAPH ROUTING

4 26.4	POUTE TI	HRU SUBAS	REA 3						
	15TAQ 3C1	ICOPP 1	IECON	ITAPE	JPLT 3	TRAT.	INAME	ISTAQ ICOPP IECON ITAPE JFLT JPRT INAME ISTAGE 1AUTO 3C1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 4 U T O
			ALL PLAMS HAVE SAME ROUTING DATA	S HAVE S					
91.3S	CLOSS J.CJO	9×€ 0•00	IRES 1	ISAME	IUPT	d Med I		LSTR	
	NSTPS 1	NSTPS NSTOL LAG AMSKK X TSK STORA ISPRAT 1 0 0 0.000 0.000 -1. 0	LAG	AMSKK 0.000	× 000°	1.5K 0.000	STORA -1.	ISPRAT 0	; ;

MCRMAL DEFTY CHANNEL ROUTING

94(1) 24(2) 94(3) ELNVT ELMAX RLNTH SEL 0.0600 0.0400 0.0600 1725.0 1750.0 5200.0.00370

CRUSS SECTION COORDINATES -- STAJELEVISTAJELEV-- ETC

1750.01
650.00
440.0: 1730.33 650.00 1753.0:
.D.044
.26.03 1729.63
420-03

DUTFLOW 3.00 63.93 203.87 405.58 740.26 12:5.25 2083.49 3179.35 4614.30 STAGE 1725.07 1726.32 1722.95 1730.26 1731.58 1732.89 1734.21 1735.53 STAGE 1756.16 1739.47 1744.74 1746.05 1744.37 1746.05 1744.37 1746.05 FLOW 5.00 63.93 263.87 405.58 74C.28 1265.25 2083.49 3179.35 4614.30 FLOW 5.00 63.93 263.87 405.58 74C.28 1265.25 2083.49 3179.35 4614.30 FLOW 5.00 63.93 14496.1C 18175.59 22403.75 27211.39 32628.48 38684.29 45407.39	ST. RAGE	176.34	3.75	6.45 269.10	10.34	12.17 3c1.84	32.03	50.90 514.59	74.76	103.63
1725.US 1726.32 1727.63 1728.95 1730.26 1731.58 1732.89 1734.21 1736.15 1739.47 1746.05 1744.74 1746.05 1747.37 1756.16 1739.37 405.58 74C.28 1265.25 2083.49 3179.35 8655.29 11333.58 14496.1C 18175.59 22403.75 27211.39 32628.48 38684.29	utfloa	ु ७ .८ ७ ७.८	63.93 11335.58	203.87 14496.10	405.58 18175.59	740.26	1285.25	2083.49	3179.35	4614.30
5.46 63.93 263.87 405.58 746.28 1265.25 2083.49 3179.35 4655.29 11333.56 14496.1C 18175.59 22403.75 27211.39 32628.48 38684.29	STAGE	1725.00 1736.16	1726.32 1739.47	1727.63	1728.95	1736.26	1731.58	1732.89	1734.21	1735.53
	FLOW	5-46 8655-29	63.93 11333.58	203.87 14496.10	405.58 18175.59	74C.28 22403.75	1285.25	2083.49	3179.35	4614.30

WAXIPUP STAGE 15 1737.2

MAXIMUM STAGE IS 1737.2

SUB-AREA RUNOFF COMPUTATION

IAUTO	
ISTAGE Q	
INARE	
J PRT 0	
JPLT	
ITAFE 0	
1ECON 0	
100MP 0	
RUNOFF SUBAREA 2	
RUNOFF	

			•	TYDROGRAP	H DATA					
HYDG	1046	TAREA	SNAP	TRSDA	TRSPC	RATIO	ISNO	ISAME	LOCAL	
-	-	20 . 02		38.30	0.00	C.00C	0	-	D	
				PRECIP	DATA					

896 0.00 R72 0.00 Rc R12 R24 R45 96.6C 108.00 119.00 126.00 SPFE PMS C.OC 16.20 TRSPC COMPUTED BY THE PROGRAM IS 5.842

LOSS DATA
LROPT STRKR DLTKR RTIGL ERAIN STRKS RTIOK STRTL CNSTL

2 0.0C U.OG 1.PC C.GO C.OG 1.00 1.00 0.10

#T1*P 0.15

ALS#X 0.00

UNIT HYDROGRAFH DATA

TF= 2.60 CP=C.63 NTA= C

UNIT HYDRUCRAFF &6 END-OF-PERIOD GRDINATES, LAG= 2.58 HOUPS, CP= 0.63 VOL= 1.CC

RECESSION DATA SIRTG= -2.CC QRCSN= -0.10

RT10R= 1.60

							***			The state of the s		
	2724) (31189879)	***			•		1866.00	7385.00			•	
256898 13689 1389 1676 1676				LAUTO	:		1865.00	5530.00		•	:	
875. 2262. 690. 2883. 543. 1439. 770. 718. 384. 359. 192. 179. 96. 89.	RAIN EXCS	*		ISTAGE	LSTR	ISPRAT	864.00	4585.00		,	ExPt. 0.0	
1552. 1875. 3252. 3690. 1654. 1543. 472. 770. 472. 384. 266. 192. 153. 96.	PERIOD	*****		SPRT INAME	97 7 8 97 0	TSK STORA 0.000 -1856.	1863.00	3360.00 4		:	CAREA 0.0	DAMEID 15G.
1240. 3314. 3314. 3314. 172. 442. 221. 110. 25.	FLOE RO.DA HR.MN		ROUTING	JPLT	SAME TA 101T	0.000	1862,00	2276.00 3			ELFVL CORL	A DATA EXPD 1.5
9445. 9987. 9987. 1186. 599.	END-OF-PERIOD COMP Q	****	HYDRUGRAPH ROI	IECOM ITAPE 3 D	PLANS HAVE SOFTING DATA	LAG AMSKK 0 0.000	1861.00 10	1332.00 2			EXFW E	10PEL CUCD 861.0 3.0
26.65 96.65 96.65 86.65 86.65	F 0 2 S	* *	*	PLACID ICCPP	7°C 9°C	NSTOL 0	1860.00 18	579.00 13	28915.	1870.	10 CCCH	186
2140. 2140. 21040. 1003. 344. 150.	RAIN EXCS	****		ROUTE THAU LAKE ISTAG ZCO	050°0 0 0000 0 0000	NSTPS			4240. 2E	1860.	CREL SPHID 1855.0 C.0	
2722. 23426. 11680. 583. 291. 36.	PERICO	:		ROUTE	0-0 8507 6		30.2581 B	0 77.00	•	1858.	•	
54. 25.50. 12.55. 62.5. 31.2. 31.2. 31.2. 32.	C HR.M.	****					1858.00	0.00	CAFACITY=	ELEVATIONS	·	
	2 0 E						STAGE	FLOY	CAFA	ELEVA		

1374, AT TIME 49,50 HOURS 1374, AT TIME 49,50 HOURS

PEAK OUTFLOW IS PEAK OUTFLOW IS

***		****	****	*	***		***	***	*	***
				HYDROGH	HYDROGRAFH ROUTING	ING				
	CHANNEL	ROUTE ISTAG 302	THRU SUBJ ICOMP	AREA 3 TECON	ITAFE	JPLT	J.P.R.T O	INAME	CHANNEL ROUTE THRU SUBAKEA 3 ISTAG ICOMP ITAFE JPLT JFHT INAME ISTAGE IAUTO 3.02 1 0 0 0 0 1 0	1 4 4 1 0
				ALL PLAN	ALL PLANS HAVE SAME ROUTING DATA	AME				
	0-0 0-0	000°G	0.00	IRES 1	IRES 15AME 10FT	10FT 0	1 PMP 0	,	LSTR	
		#STPS	MSTOL		AMSKK J.CCO	× 000°0	LAG AMSKK X TSK STORA ISPRAT 0 0.000 0.000 0.000 -1. 0	STORA -1.	ISPRAT	

NCRMAL DEFTH CHANNEL ROUTING

CROSS SECTION COORDINATES--STAZELEV-STAZELEV--ETC 103.00 1867.00 376.00 1504.00 654.00 1785.00 660.00 1781.00 98(1) GM(2) GN(3) ELNVT ELMAX RLNTH SEL 5-6630 6-3400 0-0666 1761-0 1837-0 16640, 0.00950

;	3888.25 58833.25 58833.25	1804.58	70033.53 558894.00
	1355:35	1801.63	488176.56
	6565554 655555554 655555554	1798.68	32390.2C 422532.25
	56665.37 36985.33 36985.55	1795.74	20082.55 361867.56
	5283.35 30835355	1792.79 1822.26	11315.57 306093.00
965.00 1837.00	4598:32 255555:33	1789.84	5555.13 255123.06
1864.00 965	3965.05	1786,89	2203.83 208879.56
. 23*808 00	3382.73 167295-53	1783.95	579.84 167293.53
693.00 1785.00 808.60 1884.00	2829:45 3332:79 130309:28 167295:53	1781.09 1783.95 1815.47 1813.42	0.00 130509.2a 16
	STORAGE	STAGE	FLOW

MAXIMUM STAGE IS 1785.4

MANIBUM STAGE IS 1785.4

MANIMUM STAGE 1S 1785.4

SUB-AREA RUNCEF COMPUTATION

	-
	ISTAGE
	A A M F
	1607
	1 1 1
	ITAFE
	IFCOV
'n	3 4 C 3 Y
SUBAREA	ISTAG
RUNCEF	

									•
		Ŧ	YOROSRA	PH DATA					
T DHUI 90HI	TAREA	SNAF	TRSDA	TRSFC	PATIO	BONSE	ISAME	LOCAL	
,		0 0 0	38.30	0°0	0.350	i.	-	a	
			PRECIP	PRECIP DATA					
SPFE	PMS	Re	812	R24	30 4 01	R72	R96		
0.00	.20	56.00 1	00.30	115.00	126.95	00.0	00.3		

8714P J.:7 ALSMX 0.00 CNSTL 0.10 STRTL 1.00 LOSS DATA
EPAIN STRKS RTIOK
C.00 G.05 1.00 UNIT HYDROGRAPH DATA TF# 2.70 CP#C.63 N1 8710L 1.00 DLTKR 0.00 STRKE C.C. LROFT

RT198= 1.60 -6.13 RECESSION DATA -2.00 GRCSN= -6.1 STRIGE

	409.	489.	252.	130.	67.	35.	18.	6	,
_	357.	522.	270.	139.	72.	37.	19.	10.	,
_						40.			
72 HOURS	251.	567.	308	159.	62.	42.	22.	11.	4
LAG* 2.	200.	570.	329.	170.	67.	45.	23.	12.	ė
ORDINATES,	152.	563.	351.	181.	93.	4 8 •	25.	13.	٠,
CF-FERICD	107.	548.	375.	194.	100.	52.	27.	14.	۲.
H 9C END-	. 19	525.	401.	207.	107.	55.	e V.V	15.	٥
HYDRCGRAFF	33.	. 767	428.	221.	114.	59.	3¢.	16.	*
TIVO	.	455.	, 5d.	234.	122.	63.	32.	17.	•

COMP LOSS EXCS RAIN MO.DA ER.MN PERIOD END-OF-PERICO FLOW L.0.55 EXCS RAIN PO.DA HR.MW PERIOD

17.19 14.09 3.10 195129. (437.)(358.)(79.)(5525.43) SUR

COMBINE HYDRUGRAFHS

14UTO 0 INAME ISTAGE COMBINE S HYDROGRAFIS - TOTAL INFLO. - B POIER POND DAM ISTAG ICOPF IECON ITAFE JPLT JFRT SCO S 0 0 0 0 0

A resemble.

******* ******

cn.
ING
2007
_
APX
06R
œ
HYD

IAUTO	! !	; ;	1713.00 1714.00	5280.00 6575.00	181. 230.	1718. 1722.			
INAME ISTAGE IA		ISPRAT	12.00	4230.00	139.	1714.	EXFL 0.0	5	
BEASE TROUB	स इ. इ.	TSK STORA 0.000 -1706.	1711.05	3125.00 4	. 132.	. 1710.	CAREA 0.0	DAMWID 66.	DATA TFAIL WSEL FAILEL
ITAPE JPLT 0 0	S HAVE SARE TING DATA ISAME IOFT	AMSKK X 0.000	1710.00	2212.00	45. 70.	1702. 1706.	ELEVL COOL	COUD EXFD D	A C.
IECON	ALL PLAN Rout IRES	LAG U	1739.03	1371.00	25.	1698.	CCGW EXPW C.O O.O	TOPEL C: 1710.0	DAM BRE
OVER POWER POND DAM ISTAG ICCMP	50*0 666*6	NSTPS NSTOL	1768.00 1730.00	703.00 34155.00	:	1694.	SPale 0.0		BR 12
ROUTE OVER	0.0 0.0 0.0	2	1707.00 1726.00	224.00 15215.00		1650.	CREL 1706.0		٠
			1736.09 1715.00	0,00 12075,00	17= ü. 286.	0N= 1686. 1726.	:		
			STAGE	FLOW	CAFACITY	ELEVATION=			

BEGIN DAM FAILURE AT 43.17 HOURS

21328. AT TIME 43.27 HOURS FEAK OUTFLOW IS

WSEL FAILEL

. .

DAM BREACH DATA Z ELBW TFAIL 8K.10

76. 6.50 1567.00 0.33 1736.00 1714.80

HEGIN DAY FAILURE AT 43.17 HOURS
PEAK PUTFLOW IS 15003. AT TIME 43.46 HOURS

DAM BREACH DATA

SPAID

Z ELBM TFAIL WSEL FAILE

7C. 0.20 1687.60 0.55 1706.00 1714.80

BEGIN DAM FAILURE AT 43.17 POLRS

FEAR CUTFLCH IS 13:91. AT TIME 43.67 HOURS

HYDROGRAPH ROUTING

		:	19.00	33400.00	1708.00	33400*00
1 AUTO 0			11.00	15 400.00	1,03.00	15 ECO . 00
ISTAGE	LSTR	STORA ISPRAT	5.16	20.3065	1698.00	20*2065
INAME		STORA -1.		89	16	8
RU DUWNSTREAM GRIDGE ISTAG ICOPP IECON ITAPE JPLT JPRT INAME ISTAGE IAUTO 99 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 % 9 T	TSK C.000	2.83	2640.00	1695.00	2940.00
FILT 1	AME IOPT	× 0.00.0	1.90	227C.00	1693.00	2275.00
ITAFE	L FLASS HAVE SO ROUTING DATA IRES ISAME	LAG AMSKK D 0.000		227		
IECON U	ALL FLASS HAVE SAME ROUTING DATA IPES ISAME IO	0 ()	1.20	1625.00	1691.00	1625.0ն
THRU DOWNSTREAM BRIDGE ISTAG ICOMP IEC 99 1	9 × 6	2		20.00	1688.CC	785.00
RU DUWNS ISTAG 99	000°0 0°000	NSTPS 1			160	18
ROUTE TA	SS (18)		5.24	79.024	1650.88	70-524
			rar mo •	3 0° 0	15.3.00	3.04
			STORAGE	OUTFLOW	STAGE	£10.

MAXIMUM STAGE IS 1701.5

MAXIMUM STAGE IS 1701.6

MANIFUM STAGE IS 1701.6

HYDROGRAPH ROUTING

I AUTO		
INAPE ISTAGE 1 0	LSTR	ISPRAT
IN APE		STORA-1.
CO. JPRT	d ₩ 4 I	TSK C.000
ELCTRIC JPLT 0	AME IOFT D	× 000.0
CHATARL WOUTE TO SUBSTATION - OFFICES OF ELCTRIC CO. 1 STAG 100FF 1ECON 11AFE JPL1 JPR1 9 0 0 2	ALL PLANS HAVE SAME ROUTING DATA IRES ISAME IO	A#SKK 0.000
IECON O	ALL PLAN Rout Ires	LAG
SUE STAT	9.≱₹ 0.00 0.00	NSTOL
40078 TO 15149 58	0000 C 000 0000 0.0	35175
CHATABL	0-0 55019	

NORMAL DEFITH CHANNEL ROUTING

	1.60°	5.055 3.055 3.055	98(5) 6.1660	1c/3.	4N(3) ELNVT ELMAN 8.1888 16/3.1 1095.5	380. J.C265C	SEL :2650			
	14.25 3.4.2	SECTION 00 10c1. 00 1650.	CCCRDINATION (CCCRDINATION CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	76.5-57A 30.16.00. 30.1085.	#ELEV#STA 00 271.00 00 367.0	.ELEVETC 1679.00 1695.33	CRUSS SECTION COURDINATESTSTAZELEVZSTAZELEV—ETC 143.00 10c1.00 260.00 1620.00 271.00 1679.00 273.00 1673.00 290.00 1673.00 504.00 1650.00 350.00 1055.00 367.00 1695.30	290.00	1673.00	
STORAGE	u	00°	0.14		16.71	14.87	6.91 17.06	1.20	1.56 21.48	23.73
OUTFLO.		0.03 11945.08	94.09		350.62 21434.48	599.50 27113.14	987.03	1466.35	2081.47	3164.09
STAGE		1673.00 1654.5c	1674.14		1675.32	1676.47	1677.63	1678.79 1690.37	1679.55	1681.10 1692.68
10,		30°C 11945.08	94°0.		3_C.62 21434.4c	599.54 27113.14	987,83 33364,63	1466.35	2081.47	3164.09
					STATION		960 FLAN TO RTIU T			

4.50 25.99 5303.50 63691.93

1682.26 1693.84 5303.50 63691.93

	14.	•	•	;	m	ņ	۲.	ņ	•	•
	14.	10.	•	4	۳	3.	۲.	2.	÷.	*
	14.	10.	۲.	4.	۳,	۳,	۶.	۶.	4	8 0
	14.	:	7.	۶.	3,	m	.7	۶.	4.	7.
						3.				
PUTFLCE	14.	11.	7.	٠,	۳,	w M	۵.	. 2	۵.	.
	13.	12.	ġ.	۸.	4.	۶.	 	۶.	3.	• •
	11.	12.	ů.	5.	•	3.	5.	۲,	5.	۸,
	æ,	13.	æ	•	÷	M	, ,	۶.	3.	۶.
	, ,	13.	•	.	.,	3.	3.	5.	٠ <u>,</u>	5.

 	9. ō	12. 37. 188.	. 099 460.	1370.	7115.	8931.	6931.	3961.	
14. 15. 9.		12. 50.	637	1254.	6730.	9276.	7069.	4063.	,
15.	~ ~ ° °	12. 143.	412.	1149.	6337.	9191.	7351.	4173.	
	∴ ≿ & .	12. 21.	- M - 6	1055.	5925.	97.9	55.04.	4277.	ອີດີບໍ່ດີ ບໍ່ດີບໍ່ດີບໍ່ດີດີ ດີນີ້ດີຕໍ່ດີບໍ່ດີຕໍ່ດີຕໍ່ຕໍ່ ເຂົ້າໄດ້ເຂົ້ ທີ່
255.	~ • • • •	11. 18.	302.	.D72	5514.	9279.	5759.	4398.	
7000	~	11. 90.	335. 566.	. 164	5101.	10097.	7945.	4500.	
14. 16. 14.	~ • »	11.	308.	633,	4696	9141.	£207.	4638.	
	င်းက ခံ	11. 65.	278.	761.	4314	1.436.	5323. 6276.	4747.	င်းလုံးလုံလုံးသည်သို့ လို့လုံးလုံးသို့ လို့လုံးလုံးလုံးသို့ လို့လုံးလုံးလုံးသို့ လို့လုံးလုံးသို့ လို့လုံးလုံးသို့ လို့လုံးလုံးသို့ လို့လုံးလုံးသို့ လို့လုံးလုံးသို့ လို့လုံးသို့ လို့လုံးသို့လုံးသို့သို့လုံးသို့သို့သို့သို့သို့သို့သို့သို့သို့သို့
554E	ထွားက စွေ		241.	732.	3954.	8911.	6569.	4.890	
2 2 A E	72 VO P-		21°.	691.	3602.	9879.	8821.	5993.	် ဗော်မွန်းကိုလ်တွင်လိုက်လိုင်တိုင်တိုင်းသို့ မြော်မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်သို့ မြော်မြော်မြော်သို့ မြော်မြော်မြော်သို့ မြော်မြော်မြော်မြော်သို့ မြော်မြော်မြော်သို့ မြော်မြော်မြော်မြော်မြော်မြော်မြော်မြော်

とうらたらりらりょう										
					9	,				
	•	•	1673.2	16	1673.2	167	2	73.2	Mì	73.
	3.2	š	673	1673	673	167	9	73.1	•	3
		73.	673	1673	673	1673	10	73.1	~	73.
		2	673	1673	673	1673	16	73.1	~	73
		73	£73	1673	673	1673	_	73.0	₩	73.
		~	673	1673	673	1673	_	73.5	~	73.
င် ကြောင့်		673	5/3	1673	673	1673	_	(.5.)	N	73.
91	0.8	1675.0	1e73.C	1673	673	167	•	73.0	M	
		1673.0	£73	1673	673	1673		73.0		73,
		1673.1	673	1673	673	1673	_	73.1	m	73.
10		1673.1	673	1673	673	1673	_	73.2	-	73.
7		1073.2	673	1673	673	1673	_	73.2	673	2
1	7		673	1673	673	1673	_	73.1		73
			, ,	1075		1673	_	73.1	673	73
	•	673.1	67.4	,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1673		74.1	` N	
		× × × ×	, r	1673	1 10	1673		74.1	7 2 3	
) ~ }	1674	, ~	1673			\ N	
				46.46	. ~	1673	_		7 6 7	! K
- +)))))	7674	7 ~ ~	7675	- •	- ~	3 8	•
		3.670) P	0.0			• •		֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֡֓֓֓֓֓֡֓֓֡	
<u>-</u> ;	- ·	000101	2 5	* 10.7	* (10.4	- (3.5	* !	Ė
•		675.2	S	1675	S	1675	-	75.7	Λ.	ċ
-		2.970	1676.5	1676	910	1676	,	76.5	929	9
.7	٠. د	E*.24€	-	1677	1577.6	1677	_	78.0	3.1	8
.9 16	Φ.		653	168-	1080.2	1680	_	80.7		91.
1.5 168	•	æ,	رج د	1682	1682.3	1632	_	82.7	\sim	83.
160	~	1663.4	520	1683	1683.6	1683	_	83.7	NA.	84.
.9 168	m	1684.1	663	1684	1683.7	1683	•	63.7	-	83.
3.6 168	м	83	6c3	1683	1683.2	1683	_	83.1	~	82.
391 8-7	· N	-	6.82	1682	1682.5	1682	_	82.3	•	82.
2.1 168	2.0	1682.0	1681.9	1641.8	1621.8	1681.7	_	681.6	1681.6	1681.5
			EAKÖ	0UP 24-	CUR 72	Ŧ	TAL VO	LUME		
	•	12	616.	422. 3		1543.	462	.986		
	S .:		^	36.	5	3	m	110.		
	INCHES	•		.05	3.12	٣.		3.12		
	*	-		1.96 7	9.1	9.3	~	9.34		
	AC-F1	p -	•	176. 6	3 e 1	377	9	377		
7#6	HOUS CU Y			5151. 7	940	7856.	~	. 666.		
			MAKA	LM STORAGE	11	•				
S 1584.8										
			STATICA	*36 NO	FLAN 20	RTIº 1				
		,		CUTF	#0.7	•		,	•	,
• •	•	-	13.	•	14.	. 4.		14.	- 4 -	14.

	· · · · · · · · · · · · · · · · · · ·	·
204WWWW40WWE	127. 188. 460. 1370. 1370. 7715. 7715. 9894. 8959.	
รัฐระพพบบรรมรักษ์ที่มากระ เกีย	437. 437. 639. 639. 6733. 6733. 6716. 6717. 6065.	်င်ဝိတ်ဝိတ်တိတ်ဝိတ်ဝိတ်ဝိတ် ကို မိတ်
อับ รมพบบรม รักบับ บบ เล	619. 1149. 1149. 1149. 1149. 1149. 1113. 1113. 1113.	
	288. 388. 1085. 2883. 8983. 9383. 6183.	က်မရိတ်သည်တွင်တွင်လုပ်ခဲ့တွင် ခေါ် တို့သို့ မြောင်ခေါ်တွင်
	284. 284. 284. 2870. 2876. 2727. 2728.	
E PROMONONONONONO	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ရှိ စီးလုံးကိုင်းမိုင်ကိုင်းမိုင်းသိုင်းမိနှင့်မိနှင်မိနှင့်မိနှင်မ
รักง งานพบานจ ับจัจ รับการต่	5.05 5.05 5.46 5.46 5.469 5.469 5.194 6.124	
ည်း ဂိုလ်နေသည်လိုက်တိုင်း ခိုင် ကို ခိုတ်တိုင်း	220 270 220 520 721 1807 4319 8175 6376 6315	က်မံမံမံကိုလ်ခံခံခံကိုလာတို့သိလိုအမ်ားလိုလ်လို
N 40 4 4 4 4 4 4 4 4 5 5 5 5 5 6 4 9 9 6		ದಿತ ಿತ ಕ ನ್ನಡದ ಪ್ರತಿವರಿಗೆ ನಡೆದೆ ನಿನ್ನಡೆಯ
5. 4. 9. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	24.5. 24.5. 20.5. 36.0. 36.0. 37.5.6. 37.5.6. 37.5.6. 37.6.6. 37.6.6.	းသံက်ထံသောက် ဒီမိတ်ကိုသိတ်တိက် ခြိမ်းမိုး ခိုင်းသိ

;

•		
	168845.55	
	7.1.5.00 0.0	
9449444	1673.1 1673.1 1673.1 1673.1 1673.0 1673.0 1673.1 1673.1 1673.1 1673.1 1673.1 1682.7 1682.7 1682.3 1682.3 1682.3 1682.3 1682.3 1682.3	79.90 6422. 7522.
	1673.1 1673.1 1673.1 1673.1 1673.1 1673.0 1673.0 1673.2 1673.1 1673.1 1673.1 1683.1 1683.7 1683.8 1683.8 1683.8 1683.8 1683.8	9¢.
icininicion;	1673.2 1673.1 1673.1 1673.1 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1673.2 1683.9 16	.
:N4670W4	00000000000000000000000000000000000000	O
34	# # # # # # # # # # # # # # # # # # #	52. 422 520
G	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	& F 7
	1.01.01.01.01.01.01.01.01.01.01.01.01.01	AC-1 THOUS CU
**********	1073.1 1073.1 1073.1 1073.1 1073.1 1073.1 1073.1 1073.1 1073.1 1083.1 1083.1 1083.1 1083.1 1083.1	

.............

00000000000000000000000000000000000000	66 84 84 84 84 84 84 84 84 84 84 84 84 84
	24 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
000000000000000000000000000000000000000	2011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
0000000000	5.1.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
330383360eennnn	######################################
อ่องเอื่องต่ออีกีลีกับการ	STAEF 1673.1 1673.1 1673.1 1673.0 1673.0 1673.0 1673.1 1673.1 1673.1 1673.1 1683.6 1684.0 1684.0
00000000000000000000000000000000000000	######################################
မြောက်လိုင်းကို လိုင်းချိန်းမိုင်း ခဲ့လို့ခဲ့ ကိုနှင့်	16733.2 16733.2 16733.2 16733.2 16733.2 16733.2 16733.2 16733.2 16733.3 1673.3
u::3638366666666666	10000000000000000000000000000000000000
ರ ಿವರ ಕನ್ನಲಿಕೆಕೆಕೆ ಕರೆತಿಸುತ್ತ	10073.2 10073.2 10073.2 10073.2 10073.2 10073.2 10073.2 10073.2 10073.2 10073.2 10083.2 10083.2 10083.2 10083.2 10083.2

	FEAK	C-FOUR	24-11CUR	72-HOUR	TOTAL VOLUME
CFS	12070.	2565.	3243.	1560.	462120.
Sico	365.	243.	45.	44.	13256.
ACHES		2.38	3.15	5.16	3,16
I.		52.84	80.05	80.22	86.22
AC-FT		4247.	6432.	6446.	6448.
THOUS CU M		5230.	7933.	7953.	7553.

MAXIMUM STORAGE =

1684.8 MAXIMUM STAGE IS ******* ********

INOMIC COMPETATIONS IND)

OPERATION		STATION	AREA	% 1 d	RATEC 1
HADE. CRAPE	4	196	14.60 36.26)	- , , , ,	7642. 199.41)(7642. 199.41)(7642. 199.41)(
ROUTED TO		363	14.00 36.26)	1 2 3 5 0	7621. 192.42)(7621. 198.582)(7621. 190.62)(
MYDROGRAFIE AT	A	542	20.60	-	14639. 419.35)(14809. 419.35)(14809. 419.35)(
SCUTED TO) 342	20.66 53.35)	1 2 5	1374. 38.91)(1374. 38.91)(1374. 3c.91)(
series To		392	2160 5353		1573. 38.87)(1373. 5. 57)(1573. 38.87)(
ATORCORADI AT	¥	337	3.70	۲,	2526.

2580. (3.06)(25.00. 73.06)(9721. 275.26) (9721. 275.26) (9721.	13149. 372.34) (13350. 376.61) (13091.	12560. 364.15)(12999. 36c.08)(12962. 367.05)(12616. 357.25)(13202. 373.84)(12878. 364.67)(
	- J. J. M. J	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_~~~~	- "" "
	38,30	36.30	38.30 99.20)	3c.30 99.26)
	3.55	196	66	°6
	3 Comeste	ROUTED TO	RGUTED TO	ROUTED To

301	
STATION	
_	
FLAN	

TIME HOURS	
FAXIMUM STAGE FT 1737.2	٠
MAXINUM FLOWACES 7021.	
RAT10 0.50	

PLAN 2 STATION 3C1

TIME	HOURS	74.00
MAX IMUM	STAGE,FT	1737.2
*AXIFUM	FLOWACES	7021.
	RATIC	05-0

PLAN 3 STATION 301

TIME HGURS 44.00 MAXIPUM STAGE FT 1737.2 FLOWACES 7021

RATIO C.SC

SURMARY OF DAM SHEETY ANALYSIS

	TIME OF FAILURE HOURS 0.00		TIME OF FAILURE HOURS 0.00		TIME OF FAILURE HOURS
TOF OF DAM 1861.00 6707.	TIME OF MAX CUTFLOW HOURS	TOF OF DAM 1861.00 6707. 1332.	TIME OF MAX OUTFLOW HOURS	TOP OF DAM 1861.00 6707.	TIME OF MAX GUTFLOW HOURS 49.50
	DURATION GVER TOP HOURS 2.54		DURATION CVER TOP HOURS 2.50		DURATION GVER TOP Hours 2.59
SPILLMAY CREST 1.58.00 0.	# # X 1 # UB CO1 F LOS CFS 1574.	SFILLWAY CREST 1254.CC C.	SAXIMUE CUTFLOS CFS 1874.	SPILLWAY CREST 1858.00 C.	RAXINUM CUTFLOW CFS 1374.
VALUE .33 0.	STOKEST ACTOR SOLD SOLD SOLD SOLD SOLD SOLD SOLD SOLD	VAL UE .00 9.	MAXIMUM STURAGE AC-FT 6800.	VALUE .70 0.	MANIAUP STORAGE AC+FT 6808.
INITIAL VALUE 1858.33 0.	BENETHUR DERTHUR CER DAR C. CA	181111 VALUE 1856-00 1.	RAXIMUM DEPTS OFF DAR O.C4	INITIAL VALUE 1858.70 0. 0.	PAXIME DEPTH OVER DAR U.C4
ELEWATEON STORAGE SUMFLOR	MANUAL SERVICE	ELEVATION STORAGE CLTFLOW	MANAGENT AND STREET AN	ELEVATION Storage Jutflow	MANIMUM RESERVOIR W.S.ELEV 1c61.14
	RATIO OF FAR	2	# H V V V V V V V V V V V V V V V V V V		5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
FLA2		PLAS		FLAN	

PLAN 1 STATION 312

TIME	43 URS
MAXINUE	STAGE.FT 1755.4
HOWIXEN	FLOWACES 1573.
	RAT10

PLAN 2 STATION 3C2

TAXING MAXINGS TIME

P0URS TIME HOURS 50.30 PLAY 3 STATION 302 MAXIMUM STAGE.FT 1785.4 RATIO FLUGACES STAGEAFT 1785.4 MAXIMUM FLOWACES 1373. RAT10

SUMMANY OF DAR SAFETY ANALYSIS

			•		
	TIME OF FAILURE HOURS		TIME OF FAILURE HOURS 43.17		TIME OF FAILURE HOURS 43.17
10P OF DAM 1713.00 102. 2212.	TIME OF MAX OUTFLOW HOURS	TOF OF DAM 1710.0C 102. 2212.	TIME OF MAX OUTFLOW HOURS 43.46	TOP OF DAM 1710.00 102. 2212.	TIME OF MAX OUTFLOW HOURS
	DURATION OVER TOP HOURS 4.03		DURATION OVER TOF Hours		DURATION CVER TOP Hours 4.27
SFILLWAY CREST 1706.CC 7C.	MAXIMUM CUTFLOW CFS 21328.	SPILLWAY CREST 1706.00 75.	MAXIMUM CUTFLOW CFS 15CO3.	SPILLWAY CREST 1726.CO 7C.	MAKIMUM COUTFLOW CFS 15091.
. VALUE 1.90 70.	BANIBUR STOPAGE AC-FT 147.	. VALUE 00 75.	MAKERUN STORAGE ACLET	71AL VALUE 1796.00 70.	MAXIMUM Storace AC-FT 147.
INITIAL VALUE 1706.39 70.	FAXIPUM DEPTH SVER DAM 4.50	INITIAL VALUE 1706.03 73. 0.	BAXBEUR DEFIN CVER DAR	INITIAL VALUE 1706.00 70.	* AXIII NO CER DAY
ELEVATION STORAUE GUTFLOM	EANIEUR RESERVOIR E.S.ELEV 1714.	ELEVATION STORAGE OUTFLOW	MAXIMUM RESERVITE No. Select 1714.	ELEVATION STORAGE SUTFLOM	MANAMUN RESERVCIR W.S.ELEV 1714.F.
	RAT OF STREET OF	2	01140 404 404 02.0	3	0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FLA:		a a		PLAN	

TIME HOURS 43.33

STAGE FT

MAXINUM RATIO FLOW/CFS 0.50 12c60.

STATION

PLAN 1

1 1 ME

FAXIMUR

MAKIMEN

55

PLAN 2 STATION

FUURS 43.33		71%E HOURS 43.67		TIME HOURS 43.33		T186 HOURS 43.50		TIME HOURS 43.67
	55		86		12 35		**	
STAGE.FT 1701.0	STATION	PAXIMUM STAGE FT 1701.6	STATION	STAGE FT STAGE TO THE STAGE ST	STATION	#AX1#U# STAGE.FT 16c4.9	STATION	FAXIPUM STAGE/FT 1684.6
FLOE.CFS 12959.	FLAW 3	MAXIPUM FLOWACES 12962.	PLAN 1	SAXIMUM FLOW,CFS 12616.	PLAN 2	MAXIMUM FLOW.CFS 13202.	FLAN 3	MAXIMUM FLOW.CFS 12878.
RAT10 C.50	1.	KAT10 C.50	Н	RATTO C.50	14	RATIO C.50	3	RAT10 C.50

APPENDIX D

STABILITY ANALYSIS

PLACID VILLAGE DAM STARILITY ANALYSIS Assumed Section and Loading Conditions U. 1720. 7 €1.1714.B¥ PART downst- slaw El.1706> 2 El. 17044 = 54905 ₹ £1. 1699.8 11.1672 2) (normal) - 1982: 1186 psf 133X -27.8 Kw-1734psf 13180= 1935 pcf 7 45 Kw ≥ 39,8 **%** = 2484 psf = 2800psf 7184:11935 1984=1166 Resisting moment a paint D due to mass of original dan section only = = (150 (3x21x21) + (= x16x12)(8+4) + (5x16)(18.5)) = 494 1K Resulting moment we point a due to mass of original plus new foundation sections = 494 + (15)(12x21x2): 891 *

1.	TEL 315-797-5800	
1	PROJECT NAME L.P.	_ DATE
1.	BUBJECT	PROJECT NO
į.		- DRAWN BY
	Case I. W.L @ Spillway Elevation	
	condition (1), assume original dam and new foundation is	integral unit
	condution (2), assume original dam section and foundation not forces on original dam only	bonded, analyse
(4)	verturning condition (1)	une K=0.4
•	Ma caucing overturning due to horz water proscure, upli	ft, ice earth prisse
	= (1935 x16 x 31 x 2 x 31) + (1,00 x 21 x 21) + (1875 x 21 x 2) + (180 x 21 x 21) + (100	K30)+(14)(. QLXISA
•	= 310" + (234+128)"+ 300"+14" = 986""	
• 1.07	The reciting overturning due to mais of dan, possive ea	ith prossure 78, w
	= 891"+ (3)(0.06 x 15x = x =) + (.0024x17x = x =) =	1043
	FS against overturing = 1043 = 1.52 (no ice)	
	FS against overturning = $\frac{1043}{680} = 1.52$ (no ice) FS against overturning = $\frac{1043}{986} = 1.06$ (mi	dica) (lan)
	Partion of Resultant R: d = ZMING	
Ι.	where \(\frac{2}{2}\) = \(\text{wt.dam} - \text{whift} = (.150) \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\))+(nay)-(1.06+1.435)
1.	d= (1043-186)= 8.46 = 8.46/2 (6)= .406 (100) d= (1043-986)16 = 1.46 (ontile mid-this	ં
L	d= (1043-986) = 11.4 (ontrite mid ithis	(n.c.)

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF TEL 315-797-5800

PROJECT NAME L.P.	DATE
SUBJECT	PROJECT NO.
	DRAWN BY
(6) Sliding condition (1)	
•	metrean
FS = H.D eystream + 1ce + Lat. Soil Paers	ere Upstream
(0.6×42.2)+(X,000 x15×12) + (20+x	17×17) 54.5 (10x)
(1.935x >2)+10+(.060×15×2×14)	17×2) = 54.5 (10%) 42.7 [with nice
FS = 54.5 = 1.67 [no ice]	
(e) Overturning condition (2)	
Mb causing overturning due to horizewater pro	essure, ice, uplift (neglect socipresson work and date and date
= (1.186 x 19 x 19) + (10 x 18') + (0.31x21x2)	+ (1186-0.31)(31)(42)] =
- 71.4 + 180 + 197.2 = 448.6	
Me receiving overtwing due to mass of dam,	dnotream wile, naglect tenicle bond
= 494 1k + (0.31x = x = 495.7 445.5 FS against overturning = 495.3 (415.6-120) = 200.6 FS against overturning = 445.3 (415.6 120) = 200.6	ar with the section
FS against overturning = 495.3 (418.6-180) = 248.6	= 1.84 \ "ice]
FS against overturning = 445.3 " 1.10	[ob, low) [with ice]
Position of Revoltant R: d = EMINE	for the
25 (0.314)	11/16 (C.) = 30 ° «
where 2 V = wt.dom -uplift = (15/230) (-	2 /(11) = 2012 EN
where $2V = \omega t$, do $\omega = \omega t$ and $\omega = \omega t$	from the (outside mid think)
=0.92 p [mo ms] = 11.p	Imire ice 7

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF

PROJECT NAME	DATE
SUBJECT	PROJECT NO.
(d) Sliding condition (2) ES = UN + downti when pressure (0.65 x2) (1.186 x	0.1 (0.3\x \frac{S}{2})
15 Upstream With Pressure +ice (1.186 x	19)+10 = 0.65 chap
FS = 13.9 (mo 14)	
Sase II. WL @ PMF Elevation	
Secopet 2800 pet	
2) Overturning condition () (a) (a) (a) (b) (a) (c) (c) (c) (d)	pod Pérals
ma causing overturning due to horizonator pressure up = [(.874 x34) + (2,408874)(\frac{21}{2} x \frac{31}{3})] + [(1.875 x21 x \frac{21}{2}) + (2) = (420+310) + (404+143) + 14 = 1292	104 - lat. early processes Ka 30/4 = 14" = 143

\$

PROJECT	NAME	<u></u>)ATE	
_						

SUBJECT _____PROJECT NO.____

Me recicting overfurning the to mass of dam passive earthpress, bother 75 motor

= 891" + 1101. + (1851 x 29.4 x 39.4) = 1256 16

FS against overturning = 1292 in = 0.97 (ole)

Pocition of Resultant R: outside of base because F.S. < 1.0

N= wt. tem - uplift = 73.6 k - (240 x + 1.815)(21) = 24.8 k

) Sliding, condition(1)

FS = H20 mystream + Lat. soil Passs mytream.

$$= \frac{(0.6 \times 24.8) + (20.2) + (1.835 \times 21.4)}{(1.835 \times 21.8)} = \frac{52}{59.8} = \frac{1.04}{1.04}$$

PROJECT NAME L.P	DATE
SUBJECT	PROJECT NO.
g) Overturning (andition (2)	DRAWN BY
	er pressure, uplift (neglect soul pressure, smo
Mb caucing overturning due to horiz, water 150 = [(.874×19×2)+(2.06-1874) = 11.4	- [(1,000×21×31)+(2.06-1006)(31 × 42)]=1
My recesting overturning due to make of a	dam, dritream water reglect families of section
= 494 " + (1.0x6 x 7 x 73) = 5	ug 1º
FS = 549" = 690 (c	nseije)
Position of Resultant, R: d = EMA	•
where V = ut.dam - upliff = 36" -	(2.06+108-)(21) = 3 = N
$d = (\frac{541-612}{3}) = -21'$	(fiet.tious)
	11steer on
n) Sliding (andition (2)	ment love (sleen)
FS = uN + donnet. He priscurs	
135 415	11 2
(0.65 x 3) + (1.86 x 2) =	27.9 = 0.44 (marke)

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF TEL 315-797-5800

Case III. E. 12 PMF Conditions TWEETER, 14998 128 138 1 12404 por 2484 p	Placed fower for	(Dam DATE	
The Elev. 1697.8 The Elev. 1714.8 The Elev. 1		PROJECT I	10
The Elev. 1697.8 The Elev. 1714.8 The Elev. 1		DRAWN BY	·
The Elev. 1697.8 The Elev. 1714.8 The Elev. 1	TT 6 4 PMF 1. J.		
128' 128' 129 1586 158 158 158 158 158 158 158 158 158 158	ac e 12 THE CONDU		
1) Overturning, Condition (1) My Causing Overturning due to horize water present uplift, lat. Soil presente. = [0.549k × (81) ² + 31014] + [1.548(21) ² + (2.484-1.548)(21 ² + 1/3,121)] = 264+310 +341+138+14=1067+K My Resisting everturning due tomass of dom, 4/5 water 1015 kill boil from (Kp). = 8911111 + [(1.548) (248) ²] + 1011-1 = 891+159+101 = F.S. against execturning = 1151-1067 Tosition of Recultant = EM = 1151-1067 1151-1067 1151-1067 1151-1067	7704	E/w. 1/1/4.8	
1) Overturning, Condition (1) My Causing Overturning due to horize water present uplift, lat. Soil presente. = [0.549k × (81) ² + 31014] + [1.548(21) ² + (2.484-1.548)(21 ² + 1/3,121)] = 264+310 +341+138+14=1067+K My Resisting everturning due tomass of dom, 4/5 water 1015 kill boil from (Kp). = 8911111 + [(1.548) (248) ²] + 1011-1 = 891+159+101 = F.S. against execturning = 1151-1067 Tosition of Recultant = EM = 1151-1067 1151-1067 1151-1067 1151-1067	1, W. C. Elev., 1699.8	7 549 PSI	
1) Overturning, Condition (1) My Causing Overturning due to horize water present uplift, lat. Soil presente. = [0.549k × (81) ² + 31014] + [1.548(21) ² + (2.484-1.548)(21 ² + 1/3,121)] = 264+310 +341+138+14=1067+K My Resisting everturning due tomass of dom, 4/5 water 1015 kill boil from (Kp). = 8911111 + [(1.548) (248) ²] + 1011-1 = 891+159+101 = F.S. against execturning = 1151-1067 Tosition of Recultant = EM = 1151-1067 1151-1067 1151-1067 1151-1067	, mans () b () way	1734 059	
1) Overturning, Condition (1) My Causing Overturning due to horize water present uplift, lat. Soil presente. = [0.549k × (81) ² + 31014] + [1.548(21) ² + (2.484-1.548)(21 ² + 1/3,121)] = 264+310 +341+138+14=1067+K My Resisting everturning due tomass of dom, 4/5 water 1015 kill boil from (Kp). = 8911111 + [(1.548) (248) ²] + 1011-1 = 891+159+101 = F.S. against execturning = 1151-1067 Tosition of Recultant = EM = 1151-1067 1151-1067 1151-1067 1151-1067	1675	2484 05	
1) Overturning, Condition (1) Ma causing overturning due to horiz, water present uplift, lot. Soil pressure. = \[\left(\frac{1}{40} \) \right(\frac{1}{2} \) + \[\frac{1}{2} \) \frac{1}{2} \] + \[\left(\frac{1}{2} \) \right)^2 + \[\frac{1}{2} \) \] \[\frac{1}{2} \] + \[\left(\frac{1}{2} \) \right)^2 + \[\left(\frac{1}{2} \) \] \] = 264+310 + 341+138 + 14 = 1067 + \[\frac{1}{2} \] Ma Resisting overturning due tomass of dom, \(\frac{1}{2} \) \	i .		
M_{a} causing overturning due to horiz, water pressure uplift, lot, soil pressure. $= \begin{bmatrix} 0.549 \text{ K} \times 30^{1/2} + 3.10^{1-6} \end{bmatrix} + \begin{bmatrix} 1.548(21)^2 + (2.484 - 1.548)(21 + 1.548) \\ 2 + 1.548 \end{bmatrix} + \begin{bmatrix} 2.484 - 1.548 \end{bmatrix} = 2.64 + 3.10 + 3.41 + 13.8 + 14 = 10.67 + 16.54 + 1$	1378 248.	f	
M_{a} causing overturning due to horiz, water pressure uplift, lot, soil pressure. $= \begin{bmatrix} 0.549 \text{ K} \times 30^{1/2} + 3.10^{1-6} \end{bmatrix} + \begin{bmatrix} 1.548(21)^2 + (2.484 - 1.548)(21 + 1.548) \\ 2 + 1.548 \end{bmatrix} + \begin{bmatrix} 2.484 - 1.548 \end{bmatrix} = 2.64 + 3.10 + 3.41 + 13.8 + 14 = 10.67 + 16.54 + 1$			
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[rexturning, Condition (/	
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[Alama di amata na		
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[causing overturning c	e to noriz, water press	urc,
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[uplite, lat.	pressure.	
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[0.549 x x x x 2 2 2 2 10/- x 7.	1 eug / 2012 12 ugd - 1549 120 -	7 50
= 264+310 +341+138+14 = 1067+K Ma Resisting poesturning due tomass of dom, of water parties to the soil press (kp). = 8471" + \[(1.548) (248) \] + \[\left(1.548) \] + \[2 + 3/0] +	1 1 (21) 1 (21 + 1/3)	21) + 17
Ma Resisting everturing due tomass of dom, of water partial to the soil press (kp). $= \frac{1}{248} \cdot \frac{1}{1} \cdot \frac{1}{$			
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	264+310 +341+138+14=	067 FX	
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$		7	
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	Resisting queeturning a	domass at dom, d's wat	er pre
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	de 40	attend boil press (k)	o).
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	(() / 240 / 240 X	t _e	
F.S. against occedurating = $\frac{1151}{1067} = 1008$ Thosition of Resultant = $\frac{EM}{78.6} = \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	+ (1.548) (470)	101-6 = 871+ 159+10	/ = <i>//</i> 5
Tosition of Resultant $= \frac{EM}{1000} = \frac{1151 - 1067}{73.6 - (1.548 + 2.484)(21)} = \frac{84}{73.6 - 42.3} = 2.7' = 0.13 b$	~ · · · · · · · · · · · · · · · · · · ·		
Tosition of Resultant $= \frac{EM}{1000} = \frac{1151 - 1067}{73.6 - (1.548 + 2.484)(21)} = \frac{84}{73.6 - 42.3} = 2.7' = 0.13 b$	against occeturains	1151 100	
Tosition of Resultant $= \frac{EM}{1000} = \frac{1151 - 1067}{73.6 - (1.548 + 2.484)(21)} = \frac{84}{73.6 - 42.3} = 2.7' = 0.13 b$		1067 = 1000	
$= \frac{EM}{78.6} - \frac{1151 - 1067}{78.6 - (1.548 + 2.484)(21)} = \frac{84}{736 - 42.3} = 2.7' = 0.13 b$	ion of Resultant		
	M 1151-1067	84 = 22' = 0.13	3 h
	13.6 (1.548+2.484)(2	736-42.3	
	: · · · · · · · · · · · · · · · · · · ·	•	
j) Sliding (Condition 1) F.S. = H.W. pressure + T.W. press = 0.6 (736-423) + 20.2+ 24.8' H.W. press + lat Soil press 4/5 [1544+2444) (21) + 2.2	ing (Condition 1)	Kp.	24.81

STETSON • DALE BANKERS TRUST BUILDING DESIGN BRIEF TEL 315-797-5800

PROJECT NAME Lake Hacid - Tower Pord Dam	DATE
"SUBJECT————————————————————————————————————	PROJECT NO.
	DRAWN BY
R) Overturning, condition (2)	
Mb causing overturing ducto hours. was	ter press a aplift
$ \left[0.549 \left(\frac{19}{2} \right)^{2} + \left(\frac{1.734549}{6} \right) \left(\frac{19}{6} \right)^{2} \right] + \left[0.799 \left(\frac{21}{2} \right)^{2} + \left(\frac{1.734}{2} \right)^{2} \right] $	4-0.8) (21) ²]
$= (99 + 71.3) + (176 + 137) = 484^{-18}$	
My resisting overturning due to mass	of dam,
= 494 tx + 1/2 (12.8') (.799) (128')=	= 494 + 22 = 516
F.S. against overturing = 516 = 1.07	
Fosition of Resultant 1 5/6-484 32 -211-0	16 h
$d = \frac{5^{\circ}/6 - 484}{35.9 - (199 + 1.73)(2)} = \frac{32}{9.3} = 3.4' = 0.$	
e) Sliding, cond. 2	
F.S. = MN + T.W. Press. 0.65(9.34),	(0.799)(128)
$\frac{\sqrt{2777}}{2}$	(134)(19·)
- 6.0 +5.1 Ex	

217

FS against sliding = .6(385)+29.2° (327+8:2)

STETSON - DALE BANKERS TRUST BUILDING DESIGN BRIEF

	TEL 315-797-5800	
PROJECT NAME LIP		DATE 5/21/80
SUBJECT		PROJECT NO
		DRAWN BY SEM
Case IV. WL @ Spil	Iway Elavation Plus Seismic Effe	ets Notce
(m) Overturning about @ Me. Case I , Me.	cousing (exclude ice) = 686 reacting (excluding second) = 1043	u. ec
(i) Additional Ma use fact	due to seismic effects, applying compore = 0.1 W for honzontal = 0.05 W for vertical	If for Zone 3 to W (neighbor affect on Ka)
a 221 4 121 145 W	= (= (= x 12x16x,15)(.1) (= + 15) + (= 16x5x.15)(.1) (= + 15) + (= 16x5x.15)(.1)	= + (11) (20.) (20.) + (11) (20.) (20.) +
a	+ (3xs1x12)(1)(1st3) + (3xs1	(2i)(2i)(2i)
	+ (15 x51 x112)(1) (12) + (15)	
=	29.2 + 8.6+ 27.6 + 11.1 + 12.	8 + 50 + 227 + 19.8 = 136
(ii) Additional Ma	due to inortial effect on reserv	oir water
Wa: (0.73)(135	Ve=.8" x.107,0024x1646)[15+(.41 x16)] = 18.9	t _{ik}
FS egainst over	turning: $\frac{1043}{(686+137+18)}$ = $\frac{10}{8}$	41 = 1.24
▼	$5.2'^{\pm} = \frac{5.2}{21}(1) = 0.2$	
n) Sliding addition of dem	nel horry forces causing sliding of mass plus acceleration of units = N + V = (0.1)(7.3.6)+0.85 =	ue to horry acceleration in (incressed effect on ka).

PROJECT NAME L.C.	DATE 5/21/60
BUBJECT	PROJECT NO.
() Overturning about (
Ref. Leve I, Mr coursing (suchede ice) = 268.6 1/4 = 495.35 1/4	
(iii) Additional Mb due to seisnic effects, une 0.1 W for	hongald a.05W setin
M= (= x12x16x15)(1)(3+16) + (= x12x16x)	+ (8+4)(20.)(21.
+(5x16x.15)(1)(3+8) + (5x16x.15)(109	s)(16+ =>) +
+ (3x21x.15)(1)(31.x15x15)+ (5x16x.15)(05)	1) =
= 12+8.6+13.2+11.1+1.4+5=	Sli3 12
(iv) Additional Mo due to inortial effect on reservoi	ir water
Mb= (0.854)(3'+0.41+16') = 8.1K	
FS against overturning = 495.3 " = 1.5	
1= (495.3-328) 18 = 9.1 = 9.1 = 9.1 (6) = 0.436	
(p) Sliding additional horiz forest causing sliding of dam mass plus acceleration of water	due to acceptation

FS against sliding = (11.3+4.45°) = 0.81 pm 0.8 =

LAKE PLACID VILLAGE DAM

eate .	SALUN	
5-9-80	O.M.E.	TYPICAL
701	APPE	SECTION
2599		

APPENDIX E REFERENCES

APPENDIX

REFERENCES

- 1. Department of the Army, Office of the Chief of Engineers. National Program of Investigation of Dams; Appendix D: Recommended Guidelines for Safety Inspection of Dams, 1976
- 2. U.S. Nuclear Regulatory Commission: Design Basis Floods for Nuclear Power Plants, Regulating Guide 1.59, Revision 2, August 1977
- 3. Linsley and Franzini: Water Resources Engineering, Second Edition, McGraw-Hill (1972)
- 4. W. Viessman, Jr., J. Knapp, G. Lewis, 1977, 2nd Edition, Introduction to Hydrology
- 5. Ven Te Chow: Handbook of Applied Hydrology, McGraw-Hill, 1964
- 6. The Hydrologic Engineering Center: Computer Program 723-X6-L2010, HEC-1 Flood Hydrograph Package, User's Manual, Corps of Engineers, U.S. Army, 609 Second Street, Davis, California 95616, January 1973
- 7. The Hydrologic Engineering Center, Computer Program: Flood Hydrograph Package (HEC-1) Users Manual For Dam Safety
- 8. Soil Conservation Service (Engineering Division): Urban Hydrology for Small Watersheds, Technical Release No. 55, U.S. Department of Agriculture, January 1975
- 9. H.W. King, E.F. Brater: Handbook of Hydraulics, McGraw-Hill, 5th Edition, 1963
- 10. Ven Te Chow: Open Channel Hydraulics, McGraw-Hill, 1959
- 11. Bureau of Reclamation, United States Department of the Interior, Design of Small Dams: A Water Resources Technical Publication, Third Printing, 1965
- 12. J.T. Riedel, J.F. Appleby and R.W. Schloemer: Hydrometeorological Report No. 33, U.S. Department of Commerce, U.S. Department of Army, Corps of Engineers, Washington, D.C., April 1956. Available from Superintendent of Documents, U.S. Government Printing Office, Washington, D.C.
- 13. North Atlantic Regional Water Resources Study Coordinating Committee: Appendix C, Climate, Meteorology and Hydrology, February 1972

- 14. Sherard, Woodward, Gizienski, Clevenger: Earth and Earth Rock Dams, John Wiley and Sons, Inc., 1963
- 15. The University of the State of New York The State Education Department, State Museum and Science Service, Geological Survey: Geologic Map of New York, 1970
- 16. Y.W. Isachsen and W.G. McKendree, 1977, Preliminary Brittle Structures Map of New York, Adirondack Sheet, New York State Museum Map and Chart Series No. 31A
- 17. W.J. Miller and H.L. Alling, 1918, Geology of the Lake Placid Quadrangle, New York State Museum Bulletins 211-212.
- 18. O'Brien & Gere Engineers, Inc., Hydroelectric Feasibility Study Chubb River Sites Village of Lake Placid, New York, January 1979.