

DO NOT WRITE ANYTHING ON QUESTION PAPER EXCEPT YOUR NAME, DEPARTMENT AND ENROLMENT No.

Name of Student	Enrolment No
Department / School	
BENNETT UNIVERSITY, GREA	TER NOIDA
End Term Examination, Fall SEM	ESTER 2019-20
COURSE CODE: ECSE209L	MAX. DURATION: 2 Hours
COURSE NAME: Discrete Mathematical Structures	MAX. MARKS: 40
Note: Attempt all the questions. All the questions are	,
Q.1 Determine whether each of the following functions	s is an injection and/or a surjection:
(a) $f: Z^+ \to Z^+$, defined by $f(x) = x^2 + 2$	(1+1=2 Marks)
(b) $f: R \to R$, defined by $f(x) = -4x^2 + 12x - 9$	
Q.2 (a) Consider the set $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, for the following membership function:	compute the corresponding fuzzy set
$\mu_A(x) = \left(\frac{1}{1+10x}\right)$	

Also, represent the membership function graphically.

(2 Marks)

(b) Determine whether the following sets are equal (Justify your answer):

(1 Mark)

 $A = \{x: x \text{ is a letter in the word REAP}\}$ and $B = \{x: x \text{ is a letter in the word PAPER}\}$

- (c) Let A and B be two sets with A' and B' as their complements respectively, then the set $(A-B) \cup (B-A) \cup (A \cap B)$ is equal to: (1 Mark)
 - (i) $A \cup B$
 - (ii) $A' \uplus B'$
 - (iii) $A \cap B$
 - (iv) $A' \cap B'$
- Q.3 Translate the following statements into their symbolic representations (using quantifiers, variables and predicate symbols): (2 Marks)
 - (a) There is a student who can speak Tamil and who knows C++.
 - (b) Given any integer whose square is odd, that integer is itself odd.

- **Q.4 (a)** Determine the truth value of $[P \rightarrow ((Q \land (\neg R)) \lor S)] \land [(\neg T) \leftrightarrow (S \land R)]$, where P, Q, R and S are all true while T is false. (2 Marks)
- **(b)** Show that $[(P \lor Q) \lor ((Q \lor (\neg R)) \land (P \lor R))] \Leftrightarrow \neg[(\neg P) \land (\neg Q)]$ using laws of equivalence. (2 Marks)
- Q.5 Of 30 personal computers (PCs) owned by faculty members in a certain university department, 20 do not have A drives, 8 have 19-inch monitors, 25 are running Windows XP, 20 have at least 2 of these properties and 6 have all three. Considering the stated scenario, compute the following:

 (2 Marks)
 - (a) Number of PCs that have at least one of these properties.
 - (b) Number PCs that have exactly one property.
- Q.6 Comment on the truth value of the following statements:

(3 Marks)

- (a) If A_1 , A_2 and A_3 are pairwise disjoint sets with $|A_1| = 6$, $|A_2| = 8$, and $|A_3| = 5$, then $|A_1 \cup A_2 \cup A_3| = 6 \times 8 \times 5 = 240$.
- **(b)** There are 8 ways of choosing a chairperson for a committee consisting of 5 men and 3 women.
 - (c) The number of different ways of answering 10 True/False type questions is 2^{10} .
- Q.7 Discuss the following statement using the concept of pigeonhole principle: (1 Mark)
 "In a group of 49 people, there must be 6 who have their birthdays in the same month."
- Q.8 (a) Determine the number of edges in a graph with 6 vertices, 2 of degree 4 and 4 of degree 2. Draw two such graphs. (3 Marks)
 - (b) Show that the following graphs are isomorphic:

(2 Marks)

Fig. 1: Graphs G and G'

(c) Determine the minimum spanning tree for the following graph using Prim's algorithm:

(2 Marks)

Fig. 2: Weighted Graph G_2

Q.9 Draw a graph corresponding to the map shown below and find a colouring that requires the least number of colours (vertex colouring). Calculate the chromatic number of the graph.

(3 Marks)

Fig. 3: A map representing important locations of a city

Q.10 (a) Compute the number of ways in which 6 boys and 6 girls can be arranged in a row under the following conditions: (2 Marks)

- (i) All boys are to be seated together and all girls are to be seated together.
- (ii) Boys and girls take their seats alternately.
- (b) Determine the number of ways in which 20 students out of a class of 32 can be chosen to attend class on a late thursday afternoon if: (2 Marks)
 - (i) Paul refuses to go to the class.
 - (ii) Jim and Michelle insist on going to the class.

Q.11 (a) The set $L = \{1, 2, 3, 4, 5, 6, 12\}$ of factors of 12 under divisibility forms a lattice. Prove by Hasse Diagram. (2 Marks)

(b) Determine whether the group $(G, +_6)$ is a cyclic group where $G = \{0, 1, 2, 3, 4, 5\}$. If yes, point out the generators. (3 Marks)

(c) Show that $S = \{a + b\sqrt{2}\}$ where $a, b \in Z$ for the operations + , \times is an integral domain but not a field. (3 Marks)

-----GOOD LUCK-----