Fatemeh Sadat Hashemi Pour

Data Report: Correlation Between CO₂ Emissions and COVID-19 Deaths

Question

How much does CO₂ emission correlate with COVID-19 death levels per state in the USA?

This analysis investigates whether states with higher CO₂ emissions exhibit higher COVID-19 death levels. By combining environmental and public health datasets, this project seeks to uncover potential relationships and trends between pollution and health outcomes.

Data Sources

1. COVID-19 Deaths by State

- Source: The New York Times COVID-19 Dataset
- Why Chosen: This dataset provides live, state-level data on confirmed COVID-19 cases and deaths in the U.S., essential for analyzing health impacts across states.
- Content:
 - Fields: state, cases, deaths.
 - Structure: CSV format with live updates.
 - Quality: High coverage of states and consistent updates. However, potential missing or null values for deaths are handled in the pipeline.
- License: Creative Commons Attribution 4.0 International (CC BY 4.0).
 - Obligations: Proper attribution to The New York Times in any derived work.
 - o Plan to Fulfill: Clearly cite the source in this report and any published results.

2. Energy-Related CO2 Emissions Data

- Source: <u>EIA Energy-Related CO₂ Emissions Data</u>
- Why Chosen: The dataset provides annual state-level CO₂ emissions, a key variable for assessing environmental impact.
- Content:
 - Fields: State, Carbon Dioxide Emissions (million metric tons).
 - Structure: Excel format; annual data with structured rows and headers.
 - Quality: Comprehensive but includes footnotes and irrelevant rows that require cleaning.

- License: Public domain data from the U.S. Energy Information Administration (EIA).
 - Obligations: Acknowledge EIA as the source in this report and analysis outputs.

Data Pipeline

Overview

The pipeline automates the data acquisition, cleaning, integration, and analysis processes to produce a merged dataset for correlation analysis. The pipeline was implemented in Python using libraries like pandas, requests, and sqlite3.

Steps

1. Data Acquisition

 The CO₂ emissions data (Excel) and COVID-19 deaths data (CSV) are downloaded using requests from their respective sources.

2. Data Cleaning

- o CO, Data:
 - Removed footnotes and irrelevant rows.
 - Renamed columns for consistency (State → state, Carbon Dioxide Emissions → co2_emissions).
- o COVID-19 Data:
 - Handled missing values by filling null deaths and cases with zero.
 - Standardized state names for compatibility.

3. Data Integration

- Merged both datasets on the state column using a case-insensitive match.
- Ensured consistent naming conventions and data types.

4. Analysis

Computed Pearson's correlation coefficient to assess the relationship between
 CO₂ emissions and COVID-19 death levels.

5. Data Storage

 Cleaned and merged data were stored in an SQLite database (eia_covid_data) for efficient querying.

- Challenge: Mismatched state names between datasets.
 Solution: Used a mapping function to standardize state names before merging.
- Challenge: Extra footnotes and irrelevant rows in CO₂ data.
 Solution: Skipped rows during data loading and dynamically identified relevant columns.
- 3. Challenge: Live updates in COVID-19 data causing discrepancies.

 Solution: Focused analysis on a snapshot of the data to ensure consistency.

Result and Limitations

Output Data

- Structure:
 - Fields: state, co2_emissions, deaths.
 - Data Type: Tabular data stored in SQLite database (eia_covid_data).
- Quality:
 - Cleaned and integrated dataset, with consistent state names and no missing values.
 - Ready for further analysis and visualization.

Output Format

- SQLite:
 - Efficient for structured data storage and querying.

Limitations

- 1. Granularity:
 - CO₂ data is annual, while COVID-19 data is updated live. Temporal mismatches may affect correlation strength.
- 2. Confounding Factors:
 - Other variables (e.g., population density, healthcare quality) that influence
 COVID-19 deaths are not included.
- 3. Causality:
 - \circ Correlation does not imply causation. The analysis cannot establish that CO_2 emissions directly influence COVID-19 deaths.