METHOD OF OPTICAL AUTHENTICATION AND IDENTIFICATION OF OBJECTS AND DEVICE THEREFOR

The present invention pertains to a method of optical authentication and identification of objects and to a device for implementing this method.

it is To authenticate an object, possible incorporate therein a mark which is difficult reproduce or to falsify, such as a holographic label, 10 or else it is possible to structure in a particular manner its support material, for example, again, it is possible to include in the material of one of the parts of the object particles or components that 15 can be sensed only by physical observation with the aid of special apparatus.

Patent GB 2 221 870 discloses a method of authenticating objects based on the observation of the "speckle" backscattered by a structure embossed on these objects, or else by the superposition of two materials of different refractive indices, or else by phase objects that are incorporated thereinto and which create scatter in the volume of one of their layers.

25

30

35

20

Moreover, for the authentication of bank notes, the direct use of the random structure of their support has been proposed and used, which structure is observed under incoherent light and associated with an electronic signature based on the encoding of the image with a public key encoding algorithm.

The authentication methods cited above require the modification of the objects to be authenticated, this not always being possible (works of art, fragile objects, etc.) or being applicable only to certain categories of objects (bank notes, etc.).

The subject of the present invention is a method of

authenticating and/or identifying objects which requires no modification of these objects, which allows their definite authentication, which allows easy recognition of counterfeit objects, and which is easy to implement.

5

10

15

20

25

30

35

The subject of the present invention is also a device for authenticating and/or identifying objects which is easy to produce and to use, which may easily be adapted to any sort of object and which is as inexpensive as possible.

The method in accordance with the invention consists in illuminating with coherent light a volume-wise at least partially scattering surface of reference objects under specified illumination conditions, in recording the speckle patterns thus obtained for various nominal values of illumination parameters and in a range of values around these nominal values, then, upon the verification of other objects or of the same objects, in illuminating these objects under the same nominal conditions and in comparing each time the speckle pattern thus obtained with those which were recorded and in retaining the objects if their speckle pattern corresponds to one of those that was recorded.

The device in accordance with the invention comprises an optical recording device with laser source, a storage device and an optical reading device with laser source, parameters of these optical devices being modifiable.

According to a characteristic of the invention, the modifiable parameters of the optical devices are one at least of the following parameters: wavelength of the laser source, direction of emission of the laser beam, focusing of the laser beam, position of the laser source, inclination and position of the object with respect to the laser beam.

The present invention will be better understood on reading the detailed description of several embodiments, taken by way of nonlimiting examples and illustrated by the appended drawing, in which:

5

- figures 1 and 2 are block diagrams of two different embodiments of the optical reading device of the authentication and identification device in accordance with the invention,
- 10 figure 3 is a block diagram of an embodiment of the optical recording device of the authentication and identification device in accordance with the invention,
- figure 4 is a simplified view of a spectral domain of images serving to construct the references upon the recording of the speckle patterns according to the method of the invention, and
- figure 5 is a simplified block diagram of an embodiment of an optical device in accordance with the invention for the recording of references by electronic holography.

The invention is directed both to the authentication and the identification of objects with the same recording and reading devices. Hereinafter, only authentication will be dealt with, for simplicity, it being understood that the same apparatus and methods apply to identification.

- If one were to apply a known method of forming speckles on the surface of an object such as an opaque object or a phase screen, while complying when reading with approximately the same conditions of illumination as when recording, the same patterns would be obtained.
- 35 However, the counterfeiting of such an object is relatively easy and can be done by various methods (molding, optical copying, etc.).

To ensure very good protection against counterfeiting,

the invention makes provision to illuminate objects that scatter or partially scatter in their volume. Thus, the copying of these objects is made very difficult. However, the structure of the light scattered becomes much more sensitive to any variation of each of the observation parameters.

wavelength used during checking the if different from that during recording, on account of the the laser diodes natural dispersions of the 10 observed pattern the sources, illumination completely different from that recorded. If the device serving for the check (herein called the reading device) is the same as that which served for recording, good reproducibility may be expected. On the other 15 hand, if one wishes to develop a system comprising several low-cost readers, it is necessary to solve this The complexity of the structure of speckles and its sensitivity to the various observation characteristics on the depend parameters 20 scattering medium: its mean scattering wavelength, its geometrical the and number the absorption, characteristics of the inhomogeneities. If the design of the object to be protected is within one's control, it is possible to choose according to the application a 25 weakly 3D medium (that is to say one that is strongly absorbing and weakly scattering) or, on the contrary a medium in which an illumination wave undergoes complex path, with numerous scatterings, so that the probability of copying or of false decision is made 30 low. It is also possible to alter the thickness of the area(s) where the scattering occurs.

The invention makes provision, by construction of the reading system, to reduce the number of parameters on which the result depends. Thus, an inclination-tolerant optical configuration is advantageously chosen. To reduce the effect of the parameters that cannot be completely controlled, the following characteristics

are implemented:

35

characteristics consists these first of The recording the speckle patterns with the various values that these uncontrolled parameters take, can coherent wavelength of the the when example beam can differ from reader one illumination another, the speckle patterns of an object are recorded for the various possible wavelengths when reading. This method requires a complex and expensive recording system, but the recording operation is one-off, 10 borne out with a small number of recording systems, while the readers are generally numerous and should be inexpensive. However, the speckle patterns may not be recorded for a large number of values of parameters, since the reference database for a given object would 15 increase rapidly and could bring about a reduction in the performance during the recognition step.

The second of these characteristics consists, in the reading phase, in varying the parameter considered 20 within the span of allowable values. Thus possible, by modifying the value of the current of the span small scan laser diode, to which Among the parameters for wavelengths. invention makes provision to vary the value, are in 25 particular: the focusing of the reading beam, the position of the illumination source, the inclination of the object with respect to this beam. Of course, the number of these parameters to be adjusted and the number of different values that they can take should 30 preferably be kept to a minimum, since the complexity of the reader and the duration of the reading operation increase rapidly as a function of the number parameters and of their various values.

According to a second mode of implementation of the invention, the system is made interactive by verifying that, for a given parameter, drawn randomly from the

span of admissible values (for example in the case of a

particular position of the reading system with respect to the object), the signal observed is indeed the one that is expected. It is thus possible to choose the security level desired: with one and the same system it is possible to favor swiftness of identification or authentication, or security by multiplying up the number of verificatory checks. This characteristic makes the method of the invention both robust and more difficult to tamper with.

10

15

35

An embodiment of the device of this invention for the application to a reader of badges or tickets allowing access to protected areas will now be described. Of course, the invention is not limited to this application, and may be implemented in numerous other applications requiring identification or authentication of very diverse objects (works of arts, bills, bank notes, etc.).

- 20 The recognition performance is related to the quantity of information gathered during the acquisition step. This quantity I of information may be defined by the relation:
 - I = Log(a posteriori probability/a priori probability),
- the a posteriori probability being the probability that the object recognized is the right one, given the observation made, and the a priori probability is the probability that the observation that was made occurs.
- 30 To maximize the quantity of information of the acquisitions, it is necessary:
 - 1) for the a priori probability to be as low as possible, this being obtained by choosing as large as possible a number of illuminated pixels, and by ensuring that the intensity values of these pixels are as mutually independent as possible (this not being the case if the size of the pixels is substantially smaller than that of the speckle grains);

for the a posteriori probability to be as large as possible. For this it is necessary for the measurement conditions to be reproducible enough for an object not to give results that differ too much over time or according to the reader.

It is understood that these two constraints act in opposite directions. Designing a system that allows a large number of independent pixels presupposes that the reproducibility of the system and the stability of the object are perfectly controlled. In practice, if one is able to acquire 10 000 independent pixels and if two possible states are defined by thresholding for each of these pixels, after a suitable preprocessing (intended specifically to render them independent), the a priori i.e. of the order of probability is $1/(2^10 000)$, is that it saying to amounts which theoretically possible to recognize 10^3000 different objects. In practice, it will not be possible to make full use of this performance, because purporting to recognize each of these objects would presuppose that the pixels of certain of each acquisition, or that the a posteriori probability is This is not the case since analog equal to 1. information that is fairly dependent on the observation and since provision must accessed, conditions is therefore be made for a comparison procedure and a decision threshold that are suited to the acquisition made.

30

35

25

5

10

15

20

The comparison procedure of the invention takes account of the nature of the acquisitions that take the form of images. A conventional procedure for comparing images is the correlation of the raw images or those arising from a preprocessing intended to normalize them. A correlation is a global comparison of the images, and one decides that two images are identical if the correlation maximum is greater than a given threshold. The choice of the threshold has a significant impact in

the a priori probability: if working on binary signals of length 1000 bits and if the threshold is fixed at. 0.5, the a priori probability goes from 10^-301 to 10^-58. In practice, and for reasons of robustness, it is often necessary to fix the decision threshold at a substantially lower value, that is to say to tolerate a much bigger error percentage. However, for the example signals 1000 bits long, a correlation with a threshold fixed at 0.1 leads to a priori probability of 10^-3. It is thus seen that with these methods, it is 10 not unreasonable to start from images comprising around 10 000 independent pixels. Another factor reducing the performance is the fact the location of the image is not perfectly defined. One is therefore led to consider not only the "central" correlation product, but also 15 the correlation products corresponding to translations of images within a given bracket.

A first embodiment of a reader in accordance with the invention will be described with reference to figure 1. 20 This reader 1 comprises a laser source 2, for example a monomode laser diode, considered to be a point source 2a followed by a lens 3 at the image focus 4 of which is formed the image of the source 2a. The focus 4 coincides with the object focus of a second lens 5 of 25 short focal length (for example 4 mm) whose optical axis is perpendicular to that of the lens 3. The image focus of the lens 5 coincides with the surface of the object 6 to be examined. The lens 5 is immediately followed by a diaphragm 7. The focus 4 is brought onto 30 the oblique splitting face of a polarization splitter cube 8. Perpendicularly to the optical axis of the lens 5, on the opposite side from the object 6 with respect to the cube 8, is disposed a detector 9.

35

In this device 1, the lens 3 forms an image of the source point 2a at the object focus of the lens 5. Thus, the beam 10 illuminating the object 6 is collimated, and its cross section is determined by the

The lens 5 forms an image of diaphragm 7. illuminated area of the object 6 on the detector 9. On the outward leg, the cube 8 reflects the polarized illumination beam towards the object 6, while in the through allows direction it opposite polarization with beam only the reflecting it) the first polarization. Thus, orthogonal to specular reflection of the object 6 is eliminated or greatly reduced.

10

15

30

35

The numerical aperture of the reading system 1 and the value of its optical magnification are chosen in such a way that the size of the grains of the speckles is greater than that of the pixels of the detector 9, so as to avoid aliasing phenomena that will impair the quality of recognition. By way of example, possible to work on an object field having dimensions of the order 500 μm \times 500 μm . If the useful surface area optical the $5 \text{ mm} \times 5 \text{ mm}$ is the detector 9 If the detector 9 magnification may be 10 times. 20 comprises a matrix of 256×256 pixels, it will be possible to sample correctly only 10.e4 grains of speckles. The resolution of the reading system is intentionally limited to 5 μm in the object plane, for example by limiting the numerical aperture to 0.1 with 25 the aid of the diaphragm 7.

comprises means also reader positioning (not represented) of the object 6 as well as means of calculation (not represented) making it possible to compare the digital image observed with the for the object image expected (recorded) verified. Advantageously, the system 1 also comprises means of reading (not represented) of the information contained on the surface or in the interior of the object 6 (magnetic track, electronic chip, optical storage area, bar code, etc.).

Represented in figure 2 is another embodiment 10 of the

optical device of the reading system of the invention. In this figure, elements similar to those of figure 1 are assigned like numerical references. The main difference with respect to the device of figure 1 resides in the fact that the optical axes of the lenses 3 and 5 coincide, these two lenses being disposed on either side of the splitter cube 8, between the object 6 and the detector 9. The laser source 2 illuminates the oblique face of the cube 8 directly, and it is situated at the object focus of the lens 3 (taking account of the reflection of the laser beam on the oblique face of the cube 8).

figure 3 an embodiment of to reference With recording system in accordance with the invention will be described. In a general manner, the recording system similar to the reading system. The difference between them resides chiefly in the means making it possible to vary, when recording, various critical parameters which may differ from one reading system to 20 another (these reading systems should generally be cheap, since they are produced in large batches, and hence their characteristics are not identical from one system to another). These critical parameters are in particular the wavelength of the laser source, the 25 focusing distance, the positioning of the object to be examined. This recording system, which is one-off, or produced in small batches, should be of better quality than the reading systems. It serves to record as many reference speckle images as there are combinations of critical parameters to be considered and that may vary. The whole sets of these patterns constitutes the successful that allows database reference authentication or identification.

35

10

In figure 3, elements similar to those of figures 1 and 2 are assigned like numerical references. The device 11 of figure 3 comprises the same optical imaging device of that of figure 2, namely the lenses 3 and 5 with

'coincident optical axes and disposed on either side of the splitter cube 8. The laser source 2 is disposed at the object focus of the lens 3. The diaphragm 7 is disposed immediately after (in the outward direction of the beam of the laser source) the lens 3. The object 6a (one seeks to verify whether it is actually authentic, that is to say the object 6 itself, that served to produce the database) is placed in the same manner as the object 6. Furthermore, represented in figure 3 is an actuator 12 which serves to very finely vary (by a 10 few microns or tens of microns, for example) focusing distance of the laser beam on the object 6a, by varying, for example, the position of the lens 3. It is also possible to vary the aperture of the diaphragm 7. Of course, other means (not represented) make it 15 possible to vary the other critical parameters of the recording system (laser wavelength, etc., as specified hereinabove).

The images recorded in the database may be raw images 20 provided by the detector of the recording system. provision to record invention makes However, the preprocessed images, preferably in compressed form, in particular when the database must comprise a large number of images. The preprocessing may be borne out in 25 numerous ways. On account of the fact that the Fourier transform of the image (obtained for example by FFT) is well suited to recognition by reading, it is one of the preferred preprocessing procedures of the invention. In order to normalize the reference image thus obtained, 30 it is divided by its modulus, that is to say only its information is preserved, this amounting to performing a "whitening" operation on the spectrum of the image. Moreover, in order to conserve only the the information, of the reproducible part 35 frequencies spatial corresponding to the low removed, these comprising terms related to the object (with average reflectivity), to the illumination (so as to avoid inhomogeneities of the illumination beam), and

which may also comprise spectral aliasing residues. The values corresponding to the high spatial frequencies, whose signal-to-noise ratio is lower, are also removed. The values retained are coded with as low as possible a without however reducing number of bits, recognition probability too much. It is necessary to find, depending on the level of security sought, and desired maximum volume depending on the database, a compromise between the number of values retained for each reference and the dynamic range of the references. Represented in figure 4 is an exemplary adopted to construct а reference spectral domain database. In this figure 4, the coordinate axes are graduated as normalized values of spatial frequencies of the speckle patterns, in x and in y. The contour 13, defined for frequencies below half the normalized spatial frequency, encompasses the whole set of spatial frequencies of the image, and delimits a closed surface 14 (shaded) inside which has been plotted an exemplary spectral domain adopted 15 (hatched) contained in the surface 14.

10

15

20

25

30

35

Other image transformations, leading to a reduction in the size of the database with a reduced loss information may be implemented within the framework of the invention, for example wavelet transforms or cosine transforms. As in the conventional image compression procedures, only a certain number of coefficients of transform are retained from among the significant. Given the fairly uniform spectrum of these images that is very different from that of the natural images, the components to be retained can be chosen a for the method described priori, as specified hereinabove, and contrary to what is conventionally done in image coding-compression.

The method of the invention proceeds in the following manner in respect of local authentication. The reading system possesses the public key that allows it to read

and to decrypt on the card the signature of the speckle image. After a preprocessing intended to isolate the useful area of the image, a comparison is made between the optical signature observed and the signature stored on the card. This comparison may be done according to a conventional procedure termed "pattern matching", for example by a correlation between the image observed and the reference image, as specified hereinabove. Given the well-known properties of the correlation, if the reference image was stored in the form of spectral 10 components, as specified hereinabove, the comparison operation consists essentially in taking the Fourier transform of the observed image and in calculating the product of the spectral components retained times those of the reference. The result of the operation is then 15 compared with a threshold to decide on authenticity.

According to an alternative form of the method of the invention, the authenticity decision is taken preferably with the aid of a hybrid criterion weighting several results, for example:

- the logarithm of the deviation between the amplitude of the correlation peak and a predefined threshold,
- 25 the distance between the current position of the correlation peak and the nominal position,
 - the variance of these data over several successive measurements.
- The determination of the position of the correlation 30 peak requires taking the inverse Fourier transform of the product of the image and of the reference, this being more expensive in terms of calculation power. On the other hand, the conjoint use of these various data makes it possible to avoid false alarms and to evaluate 35 likelihood of the measurement before decision If the comparison fails, reader can the taking. operation after having modified a recommence the parameter, for example the wavelength of the laser

source.

20

25

30

35

A variant of the method of authentication according to the invention consists in effecting the authentication on a site remote from the readers, for example at the location of a server linked to the various readers and to a recorder. The authentication step is borne out using the database recorded during the recording step. According to this variant, the optical signature of the speckle image and the reference of the object are provided, as well as the parameters of the reader. The server performs the comparison between the optical image as read by a reader and the reference image of the object corresponding to the parameters provided to the server.

Advantageously, the invention makes provision to perform periodically or with each use of a reader, calibrations of the various parameters required for authentication, in particular the critical parameters. These calibrations are done with the aid of one or more speckle images of calibration objects. As a variant, the calibration object may be the support of the reading system. The parameters of the reader that is used are determined locally or by the server to which it is linked.

According to another aspect of the method of the invention, authentication is performed on the basis of interrogation of a reader. In this case, the reader in question comprises a focusing lens (lens 5 of the embodiments described hereinabove) mounted on actuators allowing displacements in one or two directions of the plane perpendicular to the optical axis of the lens. Advantageously, these actuators allow automatic and accurate adjustment of focusing. A speckle image of the observed area of the object is formed on the two-dimensional sensor of the detector (detector 9). The authentication process is then implemented in the

following manner.

The object observed, for example a card for accessing a protected place, is prepositioned under the lens of the optical reader, by virtue of a suitable mechanical guiding device. The speckle image is transmitted to the same time the at device validation identification data borne by the card or provided by the bearer of the card. The validation device compares the speckle image received with the image corresponding 10 to the object reference (stored in the validation device or transmitted from a database). If the object is indeed the one which is declared, the result of a comparison is positive. If the comparison is based on a correlation, data of positioning of the object with 15 respect to the sensor are provided to the validation device. These data constitute a measure of the error of positioning of the object under the sensor. They may be provided to the object positioning devices so as to make possible to perform a correction of the position 20 of the object. In this case, a second measurement, performed after such a positioning correction, should improve the recognition quality and allow practically certain authentication of the object.

25

30

35

If the second measurement provides results inconsistent with those of the first (for example if the new position error found is not close to zero or if the result is not appreciably improved), it is highly probable that the object examined is not the right one.

In order to increase the robustness of the authentication method, it is possible to "interrogate" the reader. The "zero" position having been determined in accordance with the steps setforth hereinabove, the reader may be asked to position itself on a point whose coordinates will have been drawn at random from among a determined set of values. The reader must then be able to provide a speckle image corresponding to that

recorded in the database for these observation coordinates and this object. The probability of false acceptance is thus substantially diminished. Conversely, this same process can be implemented to confirm the acceptance of an object on a first doubtful recognition result. The coordinates explored may be those of a plane perpendicular to the optical axis of the focusing lens (lens 5) or the coordinate along this optical axis (that is to say a translation of the focusing plane parallel to itself, according to the number of degrees of freedom of said actuators.

10

35

This manner of bearing out the authentication has several advantages. The first is that the system is made more tolerant to positioning errors 15 deformations of the object. The second is that the comparison is done on a more extensive area of the object, thereby making it more difficult to copy, and safeguarding the system from operating problems related to local degradation of the object (which may occur 20 frequently handled objects, which scratched, punctured, etc.). The third is that the reader is able to respond to an unforeseen demand on the system (which randomly draws the coordinates of the point to be observed), this making piracy of the 25 reading device more complex, using a hardware software device that would respond in its stead. this case the pirate would have to be able to access all the data on the surface or in the active volume of 30 the object.

As a variant of the method of the invention, the focusing device can use an auxiliary beam focused onto the surface of the object to be examined. The focusing error detector can, in this case, be of a known type, such as the astigmatic sensor often used in reading heads for optical disks. However, it may be simpler to directly observe the speckle signal which serves to authenticate the object. A possible method consists in

placing the object in its most probable focusing position, in performing the comparison with the expected speckle pattern, then in slightly varying this position. The variation of the result of the comparison makes it possible to evaluate the correction to be made to the position of the objective in order to increase the quality of the result, and hence to get closer to the best focusing position, this being akin to the gradient procedure.

10

In the foregoing, the optical device was considered to be designed in such a way as to produce on the detector an image of the useful area of the object. This device can, as a variant, operate if the detector is not in the image plane of the optical device. The detector can 15 then be in a plane conjugate to the plane of the pupil of the optical device, which is the Fourier plane of the illuminated object. In this case, the spatial filtering of the speckles, complying with the Shannon's sampling conditions may be done either by limiting the 20 dimension of the illumination spot on the object, or by applying a diaphragm to an intermediate image plane. It has been found that the arrangement of the sensor on an "intermediate" plane (between the image plane and the Fourier plane) can represent a better compromise in the 25 design of the system in relation to the adaptation of grains to the spatial size of the speckle resolution of the detector.

- 30 In what was setforth hereinabove, the illumination of the object was considered to be uniform and collimated. The system of the invention also operates even when these conditions are not complied with.
- 35 Represented in figure 5 is the simplified diagram of a recording device in accordance with the invention, in which the recording is done by a method of electronic holography. In this device 16, the laser source 17 is placed at the object focus of a collimating lens 18

which is followed by a splitter cube 19 whose semireflecting oblique face it illuminates. Part of the parallel beam emanating from the lens 18 passes through this oblique face and arrives perpendicularly on a mirror 20 moved by a piezoelectric actuator. The beam reflected by the mirror 20 arrives on the oblique face of the cube 19, from which face it is reflected towards a detector 21. The part of the beam emanating from the lens 18 which does not pass through the oblique face of the cube 19 is reflected towards the object to be examined 22 a diaphragm 23. The part of the parallel beam emanating from the lens 18, which is returned to the detector 21, serves as reference beam for the holographic detector device. The detector 21 therefore receives illumination consisting of the combination of the reference beam and a beam backscattered by the object 22 (which passes directly through the cube 19). According to a well known technique, several histograms thus obtained are recorded, each time varying the optical path length of the reference beam by virtue of actuator of the mirror 20. According to the technique used, three or four images of intensity corresponding to variations of path length of $k.2\pi/3$ or $k.\pi/2$ are recorded. On the basis of acquisitions it is possible to extract the complex field scattered by the object. It is then possible, by applying the well-known laws of the formation of images, to calculate images of intensity corresponding to that which would be observed by a conventional optical device comprising а simple lens intensity detector, such as a CCD, placed at welldefined positions.

10

15

20

25

30

35

The benefit of this method is that it records a holographic image of the object, thereby making it possible to recalculate the image such as it would be viewed by an observation device with characteristics differing slightly from the nominal characteristics. However if the illuminated medium of the object is

highly scattering, it will nevertheless be necessary to record holograms corresponding to the various possible wavelengths for the observation, since, the paths of the light beam being multiple, the backscattered field does not depend in a simple manner on the observation wavelength.

5