

Hyun-Lim YANG

Department of Information and Communication Engineering

DGIST

2017.07.20

DGVIS

Contents

Chapter 5. Machine Learning Basics

Part 1

- 5.1 Learning algorithms
- 5.2 Capacity, overfitting and underfitting
- 5.3 Hyperparameters and validation sets
- 5.4 Estimators, bias and variance
- 5.5 Maximun likelihood estimation

Part 2

- 5.6 Bayesian statistics
- 5.7 Supervised learning algorithms
- 5.8 Unsupervised learning algorithms
- 5.9 Stochastic gradient descent
- 5.10 Building a machine learning algorithm
- 5.11 Challenges motivating deep learning

Chapter 5. Machine Learning Basics

Part 1

- 5.1 Learning algorithms
- 5.2 Capacity, overfitting and underfitting
- 5.3 Hyperparameters and validation sets
- 5.4 Estimators, bias and variance
- 5.5 Maximun likelihood estimation

Part 2

- 5.6 Bayesian statistics
- 5.7 Supervised learning algorithms
- 5.8 Unsupervised learning algorithms
- 5.9 Stochastic gradient descent
- 5.10 Building a machine learning algorithm
- 5.11 Challenges motivating deep learning

Bayesian statistics

Chapter 5. Machine Learning Basics

Part 1

- 5.1 Learning algorithms
- 5.2 Capacity, overfitting and underfitting
- 5.3 Hyperparameters and validation sets
- 5.4 Estimators, bias and variance
- 5.5 Maximun likelihood estimation

Frequentist statistics
Point estimation

Part 2

- 5.6 Bayesian statistics
- 5.7 Supervised learning algorithms
- 5.8 Unsupervised learning algorithms
- 5.9 Stochastic gradient descent
- 5.10 Building a machine learning algorithm
- 5.11 Challenges motivating deep learning

Bayesian statistics

Bayesian statistics

Bayesian perspective

- Uses probability to reflect degrees of certainty of states of knowledge
- The dataset is directly observed and so is not random
- Parameter θ is represented as random variable

The prior

- We represent our knowledge of θ using the prior probability distribution, notation with $p(\theta)$, before observing data
- Select broad priori distribution (with high degree of uncertainty), such as finite range of volume, with a uniform distribution, or Gaussian.

Mathematical description

- Set of data samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- The dataset is directly observed and so is not random
- Combine the data likelihood with the prior via Bayes' rule:

$$p(\theta | x^{(1)}, \cdots, x^{(m)}) = \frac{p(x^{(1)}, \cdots, x^{(m)} | \theta)p(\theta)}{p(x^{(1)}, \cdots, x^{(m)})}$$

Mathematical description

- Set of data samples $\{x^{(1)}, x^{(2)}, \dots, x^{(m)}\}$
- The dataset is directly observed and so is not random
- Combine the data likelihood with the prior via Bayes' rule:

$$p(\theta|x^{(1)},\cdots,x^{(m)}) = \frac{p(x^{(1)},\cdots,x^{(m)}|\theta)p(\theta)}{p(x^{(1)},\cdots,x^{(m)})}$$

Bayesian inference

Relative to MLE

- Make prediction using a full distribution over θ
- After observing m samples, predict distribution over the next data sample, $x^{(m+1)}$, is given by:

$$p(x^{(m+1)}|x^{(1)}, \dots, x^{(m)}) = \int p(x^{(m+1)}|\theta)p(\theta|x^{(1)}, \dots, x^{(m)})d\theta$$

- Prior distribution has influence by shifting probability toward the parameter space
- Bayesian method typically generalize much better
- But high computational cost

Maximum A Posterior (MAP) Estimation

Chose the point of maximal posterior probability

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} p(\theta|x) = \underset{\theta}{\operatorname{arg max}} \log p(x|\theta) + \underset{prior}{\log p(\theta)}$$

Similar with weight decay term

- Has the advantage of leveraging information that is brought by the prior
- Additional information helps the variance of MAP estimation
- But it increase bias
- Regularized estimation strategies can be interpreted as making the MAP approximation

MLE vs MAP

Bayesian statistics

1st sampled data point

2nd sampled data point

20th sampled data point

Supervised Learning Algorithms

Definition

- Two-class classification problem in direct way
- Find a plane that separates the classes in feature space as far as possible

Separating Hyperplane

Maximal Margin Classifier

Margin M

$$\left| \frac{|1 - b|}{\|w\|} - \frac{|-1 - b|}{\|w\|} \right| = \frac{1}{2} \frac{2}{\|w\|^2} = \frac{1}{\|w\|^2}$$

Let separating Hyperplane $\mathcal H$ as

$$w^T x + b = 0$$

if we rescale the margin with 1, then

$$w^T x + b \le -1 (for y_i = -1)$$

 $w^T x + b \ge +1 (for y_i = 1)$

combining two equation,

$$y_i(w^Tx^i+b)-1\geq 0$$

so, the maximal margin is as follows:

Minimize
$$||w||$$

subject to $y_i(w^Tx + b) - 1 \ge 0$, $i = 1, ..., k$

with generalization,

$$\max_{w} M$$
subject to $y_i(w^T x) \ge M$, $i = 1, ..., k$

$$||w||^2 = 1$$

^{*} Image from "Introduction to Statistical Learning with R", springer

Support Vector Classifier

$$\max_{w,\varepsilon} M$$

$$subject to \ y_i(w^T x) \ge M(1 - \varepsilon_i)$$

$$\|w\|^2 = 1$$

$$\varepsilon_i \ge 0, \sum_{i=1}^n \varepsilon_i \le C$$

* Image from "Introduction to Statistical Learning with R", springer

Kernel Method (SVM)

- In SVM, we just need to calculate inner product of vectors
- If the data is not linear separable, we send the data to more high dimensional space and make Support Vector Classifier

* Image from "Introduction to Statistical Learning with R", springer

Decision Tree Classification

^{*} Slides from Seo Hui(LG Electronics), "Gradient Boosting Model"

Decision Tree Regression

* Slides from Seo Hui(LG Electronics), "Gradient Boosting Model"

Decision Tree Complexity

^{*} Slides from Seo Hui(LG Electronics), "Gradient Boosting Model"

Bagging

Bagging

<Model No. 1>

Boosting

Boosting

- Let the problem which we should classify '+', and '-' with tree-based classifier
- First, a weak classifier classify the label with left-sided vertical single line
- Then, weight to the incorrect points(large annotated '+' in second figure), and do weak classify again(right-sided line)
- Repeat those procedure, and finally merge the weak classifiers

Another Supervised Learning Algorithms

- Linear Regression
 - Ridge
 - Lasso
- Logistic Regression
- LDA (Linear Discriminant Analysis)
- Random Forest
- KNN (K-Nearest Neighbor)
- Naïve Bayes
- Neural Network (MLP)

Unsupervised Learning Algorithms

Find the K clusters that best describes the data

- Number of cluster k = 2,
 - Randomly initialize "centroids"

* Slides from Andrew Ng(Stanford Univ.), "Machine Learning"

- Number of cluster k = 2,
 - Assign cluster membership
 - Update the cluster centroid (average of the data points in each cluster)

* Slides from Andrew Ng(Stanford Univ.), "Machine Learning"

- Number of cluster k = 2,
 - Update cluster membership
 - Repeat those procedure until no membership update

* Slides from Andrew Ng(Stanford Univ.), "Machine Learning"

Another Unsupervised Learning Algorithms

- PCA (Principal Component Analysis)
- ICA (Independent Component Analysis)
- ARM (Association Rule Mining)
 - Apriori rule
 - FP-growth
 - Eclat algorithm
- Expectation Maximization
- Density Estimation

Stochastic Gradient Descent (SGD)

Gradient Descent

- The method for parameter update
- Consider the model cost function $J(\theta)$

$$J(\theta) = \mathbb{E}_{x,y \sim \hat{p}_{data}} L(x, y, \theta) = \frac{1}{m} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$$

$$where, L(x, y, \theta) = -\log p(y|x; \theta)$$

• Gradient of $J(\theta)$ respect to θ is:

$$\nabla_{\theta} J(\theta) = g = \frac{1}{m} \nabla_{\theta} \sum_{i=1}^{m} L(x^{(i)}, y^{(i)}, \theta)$$

Update the new parameter $heta_{new}$

$$\theta_{new} \leftarrow \theta - \epsilon g$$

where, epsilon ϵ is the learning rate

Limitation of Gradient Descent

Issue of local minimum

Objective: $min J(\theta)$

$$\theta_{t+1} = \theta_t - \epsilon \frac{\partial J(\theta)}{\partial \theta}$$
(\epsilon: Learning rate)

 If the starting point for gradient descent was chosen inappropriately, cannot reach global minimum

Stochastic Gradient Descent (SGD)

The SGD method

- Extension of gradient descent
- Nearly all of deep learning is powered by this method (deep learning's cost space is not convex)
- Using batch learning (= epoch learning)
 - Calculate the loss function with batch(sample)

$$J_i(\theta) = L(x^{(i)}, y^{(i)}, \theta)$$

- Update the new parameter θ_{new} with gradient of batch loss function

$$\theta_{new} \leftarrow \theta - \epsilon \nabla_{\theta} J_i(\theta)$$

- At each update, loss function will be changed

SGD vs GD

- GD goes in steepest descent direction, but slower to compute per iteration for large datasets
- SGD can be viewed as noisy descent, but faster per iteration

^{*} Slides from Veit-Trung TRAN(Hanoi Univ. of S&T), "From neural network to deep learning"

The next Deep Learning Seminar

[Part 2] Deep Networks: Modern Practice

Chapter 6. Deep Feedforward Networks

- 6.1 Example: Learning XOR
- 6.2 Gradient-Based Learning
- 6.3 Hidden Units
- 6.4 Architecture Design
- 6.5 Back-Propagation and Other Differentiation Algorithm
- 6.6 Historical Notes

Thank you

Any Questions?

