Imperial College London

Applied Statistics Lab Project 1: Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

Introduction to Statistical Thinking and Data Analysis
MSc in Epidemiology / Health Data Analytics
Autumn 2022

17 October 2022

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

BLOOD PRESSURE CATEGORY	SYSTOLIC mm Hg (upper number)		DIASTOLIC mm Hg (lower number)		
NORMAL	LESS THAN 120	and	LESS THAN 80		
ELEVATED	120 - 129	and	LESS THAN 80		
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 1	130 – 139	or	80 – 89		
HIGH BLOOD PRESSURE (HYPERTENSION) STAGE 2	140 OR HIGHER	or	90 OR HIGHER		
HYPERTENSIVE CRISIS (consult your doctor immediately)	HIGHER THAN 180	and/or	HIGHER THAN 120		

Blood Pressure Blood Flow

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

Serious health risk:

- 1. Stroke, CVD
- 2. Kidney disease
- 3. Vision loss
- Vascular dementia
- 1. = often fatal or very debilitating

- Lead risk factor of preventable morbidity/ mortality worldwide
- Treatment
 - Medication: ACE inhibitors, ARBs, diuretics,...
 - Life-style change: weight loss, health diet, quit smoking...

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

- Lead risk factor of preventable morbidity/ mortality worldwide
- Treatment
 - Medication: ACE inhibitors, ARBs, diuretics,...
 - Life-style change: weight loss, health diet, quit smoking...

Project 1 – Aims

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

- 1. Describe Epidemiology of blood pressure (BP) in Adults in USA dataset
 - 1. Mean BP estimate
 - 2. Identify demographic groups with higher BP average

2. Identify lifestyle risk factors

- 1. Targetable by public health campaigns,
- 2. Aim: reduce prevalence of hypertension

Project 1 – Data set

Epidemiology and Lifestyle Determinants of High Blood Pressure in the United States

- Data set: National Health and Nutrition Examination Survey (NHANES)
 - 75 variables
 - 10,000 subjects
 - Collected between 2009 - 2012

Access: in Rstudio

install.package("NHANES")
 library(NHANES)
 data(NHANES)

Project 1 – Timeline

Week 1: 17 October (today) - Develop analysis plan

- Specify research questions
 - Identify 2-3 specific hypotheses
- Define dataset
 - Inclusion or exclusion criteria
- Identify variables to use
 - Exploratory data analysis
 - Quality of measurement and data missingness
- Agree on statistical methods
- Define table shells for reporting results

After 45 minutes:

 Each group present 1 slide stating your hypotheses.

15 minutes before session end:

 Each group present 1 slide defining outcome and exposure variables for each hypothesis.

Project 1 – Timeline

Week 2: 24 October - Statistical analysis + interpretation

- Carry out your statistical analysis plan developed in Week 1.
- Interpret results with respect to research questions and hypotheses.
- Check any important assumptions
 - Sensitivity analyses
 - Enumerate any important limitations
- Contextualize your findings compared to other evidence.
- Identify key recommendations

For 3rd and final session:

- Prepare a 10-minute presentation of your results, including:
 - Background, research question, and hypotheses.
 - Methods: variables used and statistical analyses.
 - Results
 - Interpretation and conclusions

Project 1 – Timeline

Week 3: 31 October - Present results

- Present your work in groups
 - One person 'share screen' to present slides.
 - Each group member expected to participate in presentation.
- Debrief project 1
 - One thing your group did well.
 - One thing you would do differently next time.
 - One thing you liked about a different group's presentation

Structure of presentation day:

- 10 minutes at the start of the session for any final coordination of your presentation.
- 10 minutes presentation for each group
 - followed by 3 minutes for questions + discussion from peers.
- 10 minutes debrief in small groups
- 20 minutes sharing debriefs with all groups

Imperial College London

Criteria	Marks (Total 40)
Introduction	
Research question and population of interest identified.	3
Clear motivation for why research is important and rationale for study.	3
Specific objectives and testable hypotheses articulated.	3
<u>Methods</u>	
Dataset, inclusion criteria, and data processing clearly described and suitable to address question.	3
Clear description of analysis plan to adjudicate hypotheses, including clear identification of primary outcome and exposure variables.	3
Clear description of choice of statistical model to address the hypothesis and why chosen.	3

Criteria	Marks
Results	
Appropriate presentation of descriptive statistics; communicated understanding of key relevant features of the study population.	3
Presentation of results inferential statistical analyses proves clear and concise answers to study hypotheses	3
Clear and focused figures and tables used effectively to aid communication of results narrative.	3
Accurate and elegant presentation and interpretation of statistical outcomes and sensitivity analyses.	3
Conclusions	
Clear statement and interpretation of results linked to overall study aims and hypotheses	3
Findings are contextualized and implications for public health practice and research articulated	3
Presentation in allotted time and well paced	2
Overall quality and clarity of presentation slides	2

Steps in a statistical analysis

- 1. Identify the research question and hypothesis
- 2. Define target population
- 3. Select the dataset and define inclusion/exclusion criteria.
- 4. Identify variables to be used in main analysis (outcome, main exposure, stratifying variables)
- 5. Define key shell tables

Steps in a statistical analysis

- 6. Conduct exploratory data analysis: understand your dataset.
- 7. Conduct inferential statistics: answer your research question
- 8. Check assumptions and sensitivity analysis: are the findings robust
- 9. Interpret the results: state the conclusion to the research question Should be as close to a 'yes'/'no' answer to your hypothesis as possible.
- 10. Contextualize the findings: how do the findings compare to existing evidence.
- 11. Implications for policy and practice

Imperial College London Communicating statistical analyses

- Communication of statistical findings almost *never* involves computer code or screen output from statistical programs.
- The exact steps and processes of statistical analysis (R commands run, assumptions checked, etc.) are usually not the focus reporting on an analysis.
- But it is important that the reporting of results communicates that statistical steps have been done properly.
 - This will also be the standard for assessment in this course.

Helpful notes

- Blood pressure is measured in 'millimeters of mercury' (mmHg).
- Systolic blood pressure is most closely monitored.
 - Most predictive of increased risk for stroke and heart disease.
 - See variable BPSysAve for consensus systolic blood pressure measurement.
- Identify one or two hypotheses for each aim.
 - Don't seek to analyse every variable in the dataset.
- Not expected or encouraged to do additional research about risk factors of high blood pressure.
 - Focus effort on defining testable hypotheses and clearly reporting statistical analyses to test.

Imperial College London

Today

- Specify research questions for Aims 1 and 2.
 - Identify the target population.
 - Identify 2-3 statistical hypothesis that you will test

After 45 minutes: Present 1 PowerPoint slide stating your target population and hypotheses.

- Define dataset: any inclusion or exclusion criteria
- Identify variables that you will use: primary outcome(s), main exposure(s), covariates.
 - Quality of measurement and missingness
- Agree statistical methods
- Develop shell tables

15 minutes before session end: Present 1 PowerPoint slide identifying your outcome and exposure variables for each hypothesis.

Imperial College London Applied Stats Lab: Room Assignments

G64			G65				
Group 1	Jingxian Huang	Group 4	Yuchen Xie	Group 7	Xihao Cao	Group 10	Ciara Hamilton
	Elena Venero Garcia		Elin Rowlands		Thomas Allwright		Alia Rafiq
	Hailey Gu		Daniel Adams		Emily Knight		Huike Cheng
	Jian Chen		Lea Maria Khoueiry		Mehak Gurnani		Ria Sachdeva
	Seth Howes		Vaishnavi Shridar		Xheni Prebibaj		Helena Bicanic-Popovic
Group 2	Yiyang Shi	Group 5	Bing Chen	Group 8	Chiara Pligersdorffer	Group 11	Sandra Gudziunaite
	Emmanuelle Kern		Oliver Simmons		Angela Aumonier		Aditya Ramani
	Anu Bode-Favours		Daniel Huntley		Fiona Rice		Jaidip Gill
	Ka Ki Lui		Marina Berger		Nicole Cizauskas		Robert Campbell
	Siwei Wu		Wenjia Zhang		Yang Shen		Onyango Sangoro
Group 3	Shuhui Li	Group 6	Mi Ma	Group 9	Mathias Brugel	Group 12	Juliet Arukwe
	Pin-Chun Wang		Harrison Goldspink		Abdul-Hakeem Khan		Gillian Sigle-Hall
	Cameron Appel		David Ensor		Gabrielle Provost		James Tait
	Kheerthiharan Saravanan		Megan Pete		Omar Eweis		Samuel Quill
	Sreenidhi Venkatesh		Wenqi Cho		Yuju Ahn		