

Tecnologias de Redes de Comunicações 2006/2007

O protocolo PPP

Fernando M. Silva

Fernando. Silva@ist.utl.pt

Instituto Superior Técnico

Sumário

- O protocolo PPP
- Tramas HDLC
- Componentes do protocolo PPP
- Diagrama de estados
- Análise das componentes do protocolo
- Variantes do protocolo PPP

PPP- Point to Point Protocol

- Ligação directa enre dois nós
- Acesso "dial-up"
- Vantagem: permite a identificação e autenticação do utilizador
- Configuração automática
 - Mecanismo automático que permite a dois terminais negociarem as características
- Meios de acesso
 - Linha série
 - GSM/GPRS
 - ADSL
 - Links rádio
 - Fibra óptica
- Pode encapsular vários protocolos de transporte

Diagrama de protocolos

Localização do protocolo PPP no modelo OSI

5–7	Aplicaçao	5–7	Aplicaçao
4	TCP/UDP	4	TCP/UDP
3	IP	3	IP
2	PPP	2	PPP
1	Fisico	1	Fisico
ι			

- O protocolo PPP é baseado no protocolo HDLC (High Level Data Link Control)
- Existem muitos outros protocolos baseados em HDLC:
 - SDLC (Synchronous Dala Link Control, LLC (Logical Link Control), LAPB (Link Access Control Balanced), LAPD, LPDm, LAPM, LAPF...

• HDLC

- Norma ISO (International Organization for Standardization) 13239
- Inicialmente desenhada para suportar ligações multi-ponto ou ponto a ponto
- Actualmente usada quase exclusivamente para ligações ponto a ponto

Tramas HDLC

Flag 0x7E	Address	Control	Information data	FCS	Flag 0x7E
1 byte	1 byte	1 ou 2 bytes	0 a N bytes	1 ou 2 bytes	1 byte

- \bullet As Tramas HDLC são delimitadas no início e no fim com um byte de flag 0x7E, 0X7E = 01111110
- Address Permite identificar o destinatário
- Control Especifica o tipo de frame
- FCS Fram Control Sequence Detecção de erro

- Como identificar o campo de flag na stream, caso existam dados com esta configuração?
 - Ligações síncronas (orientada ao bit):
 "bit stuffing" Inserção de um zero sempre que é detectado uma sequência de 5 uns nos dados
 - Ligações assíncronas (orientadas ao byte):
 "byte stuffing": Os caratceres especiais são precedidos de um caracter de escape seguido do "ou exclusivo" do caracter com 20H
 - * Flag 7E 7D 5E
 - * Escape 7D 7D 5D
 - * ETX 03 7D 23
 - * XON 11 7D 31
 - * XOFF 13 7D 33
- Questão: qual o formato de uma eventual trama com conteúdo "AA 7E 03 7D 7D 45 56 13"?

- Como identificar o campo de flag na stream, caso existam dados com esta configuração?
 - Ligações síncronas (orientada ao bit):
 "bit stuffing" Inserção de um zero sempre que é detectado uma sequência de 5 uns nos dados
 - Ligações assíncronas (orientadas ao byte):
 "byte stuffing": Os caratceres especiais são precedidos de um caracter de escape seguido do "ou exclusivo" do caracter com 20H
 - * Flag 7E 7D 5E
 - * Escape 7D 7D 5D
 - * ETX 03 7D 23
 - * XON 11 7D 31
 - * XOFF 13 7D 33
- Questão: qual o formato de uma eventual trama com conteúdo "AA 7E 03 7D 7D 45 56 13"?

R. 0F AA 7D 5E 7D 23 7D 5D 7D 5D 45 56 7D 33

As tramas PPP utilizam o formato HDLC, herdando deste o formato genérico

Trama HDLC	Flag 0x7E 1 byte	Address 1 byte	Control 1 ou 2 bytes		Information data 0 a N bytes	FCS 1 ou 2 bytes	Flag 0x7E 1 byte
Trama PPP	Flag 0x7E	Address 0xFF	Control 0x03H	Protocol 2 bytes	PPP info 0 a N–2 bytes	FCS 1 ou 2 bytes	Flag 0x7E

O campo protocolo define o tipo de trama do protocolo PPP.

Componentes do protocolo PPP

O protocolo PPP tem quatro tipos de tramas, algumas delas correspondendo a subprotocolos utilizados para estabelecer uma ligação PPP:

- O protocolo LCP (Link Control Protocol) permite iniciar a ligação, testar a linha, negociar opções de configuração e terminar a ligação.
- O protocolo NCP (Newtork Control Protocol), que permite multiplexar diversos protocolos da camada de rede (p. ex., IP, IPX, Apple Talk...)
- Protocolos de autenticação (por exemplo, CHAP e PAP)

Valores do campo de protocolo PPP

Lista não exaustiva de valores possíveis do campo protocolo

- 0xC021 LCP Link Control Protocol
- 0xC023 PAP Password Authentication Protocol
- 0xC025 LQR Link Quality Report
- 0xC223 CHAP Challenge Handshake Protocol
- 0x8021 IPCP IP control protocol
- 0x80FD CCP Compression Control Protocol A Microsoft usa uma subopção do CCP para permitir tramas cifradas de PPP usando o algoritmo MPPE. O protocolo PPP-MPPE é usado pela Microsoft é usado para o estabelecimento de VPNs e é hoje também suportado em Linux (e usado, p. ex. na rede sem fios na Alameda).
- 0x0800 Dados IP

Fases do protocolo PPP

Diagrama de estados do protocolo PPP

Link Control Protoco

Formato da Trama LCP

- Code Define o código de operação
- Ident Sequência das mensagens (numeração que permite associar pedidos e respostas)
- Length Auto explicativo

Opções de configuração LCP

- Valores possíveis: Configure-Request, Configure-Ack, Configure-Nak, Configure-Reject, Terminate-Request, Terminate-Ack, Code-Reject, Protocol-Reject, Echo-Request, Echo-Reply, identification, Time-Remaining
- Os pacotes Configure-Request e Configure-Ack têm como função negociar as opções de configuração, enquanto que a maioria dos restantes códigos servem sobretudo para controlar o estado da ligação.
 - Configure-Request Envio das opções (do terminal para o receptor)
 - Configure-Ack OK (do receptor para o terminal)
 - Configure-Nak Valor da opção não suportado pelo receptor
 - Configure-Reject Opção não suportada

Tramas de opção

- O campo de dados das tramas "configure" do LCP tem por sua vez um tipo, comprimento, e informação.
- O tipo permite especificar as opções suportadas:
 Maximum Receive Unit, Authentication Protocol, Quality Protocol Report, Magic
 Number, Protocol Field Compressor, Address and Control Field Compression,
 FCS.
- O transmissor e receptor devem acordar num conjunto de opções suportados por ambos os terminais.

O PPP suporta dois tipos básicos de autenticação:

- PAP Password Authentication Protocol
 - Neste protocolo o cliente envia simplesmente uma trama com um username e uma password e aguarda-se uma resposta com a confirmação ou rejeição das credenciais
- CHAP Challenge Handshake Authentication Protocol
 - Neste protocolo, o servidor envia um "challenge", e o equipamento cliente envia uma resposta calculada em função da senha (password) e de um algoritmo de cifra de via única (one hash key). O servidor verifica se o resultado do cálculo remoto e local coincidem e, neste caso, a autorização é confirmada.

PAP - Password authentication protocol

Trama de PAP

Valores possíveis do campo Code:

- 1 Authenticate-request
- 2 Authenticate-ack
- 3 Authenticate-nak

CHAP - Challenge Handshake Autentication Protocol

Valores possíveis do campo Code:

- 1 Challenge
- 2 Response
- 3 Success
- 4 Failure

Protocolo NCP

- Como referido anteriormente, o protocolo NCP permite negociar os parâmetros de rede a usar durante a fase de transporte.
- O protocolo NCP é agnóstico quanto ao protocolo de rede. No entanto, o protocolo é hoje quase exclusivamente usado para o estabelecimento de ligações IP, pelo que a negociação é neste caso realizada pelo IPCP (IP Control Protocol).
- Código de protocolo 0x8021
- Valores possíveis do campo code:
 - Configure-req, configure-ack, configure-nak, configure-rej, terminate-req, terminate-ack, code-rej
 - Principais Opções de configuração: IP Compression Protocol, IP Address,
 Primary DNS, Secondary DNS
 - * A compressão de protocolo, particularmente importante em links de baixo débito, permitia reduzir a dimensão do cabeçalho dos pacotes IP de 40 para 3 bytes.

Variantes do protocolo PPP

- O protocolo PPP generalizou-se enquanto forma simples de, simultaneamente,
 - Permitir realizar ligações ponto a ponto
 - Permitir a negociação de opções de ligação e de detalhes de rede
 - Permitir a autenticação (e billing, se for caso disso) do cliente/equipamento remoto
- O protocolo PPP foi inicialmente concebido a pensar sobretudo nas linhas série "lentas", com comunicação através de modem.
- A evolução destas ligações para banda larga implicou que o modelo inicial PPP, em que o protocolo assenta directamente no nível físico, deixou de ser válido.
- No entanto, atendendo às vantagens demonstradas pelo protocolo PPP e ao muito software já desenvolvido com base neste protocolo, surgiram posteriormente várias variantes adaptados a diferentes tipos de nível físico e de ligação.
- Todas estas variantes se baseiam no encapsulamento das componentes "protocol" e "information".

Nos protocolos derivados do PPP o formato da trama depende do protocolo de dados ou de rede usado.

Variantes do protocolo PPP

- RFC 1618 PPP sobre RDIS
- RFC 1598 PPP sobre X25
- RFC 2364, RFC 3336 PPP sobre ATM
- RFC 2516 PPP sobre Ethernet (PPPoE)

Exemplo: PPP sobre ATM/AAL5

Trama PPP	DSAP FE	SSAP FE	cnt	NLPID PPP(CF)		PPP	Pad 0–47	U 1	C 1	Len 1	CRC32
					Protocol 2 bytes	PPP info 0 a N-2 bytes					

DSAP - Destination Service Access Point SSAP - Source Service Access Point

PPP sobre Ethernet

- Com a introdução das redes de banda larga, o acesso passou frequentemente a ser realizado através de ligações multi-ponto, com um acesso partilhado.
- O PPP foi desenvolvido inicialmente para ligações ponto a ponto
- O protocolo PPPoE (PPP over Ethernet) permitiu estender este protocolo a ligações multi-ponto sobre ethernet.
- Normalmente, vários terminais são ligados a um mesmo concentrador remoto

- Problemas da extensão do protocolo a uma ligação multi-ponto:
 - Como encontrar o par remoto (concentrador)?
- PPPoE inclui esta facilidade e a permite estabelecer um identificador de sessão único.
- O PPPoE divide-se em duas fases distintas:
 - Fase de descoberta
 - * Fase em que se encontra o par de comunicação e estabelecimento do identificador de sessão
 - Fase de sessão
 - * Fase em que o terminal e o concentrador utilizam uma interface virtual PPP para realizar uma ligação ponto a ponto.

Formato da trama Ethernet nmo protocolo PPPoE

- O terminal transmite em broadcast um pacote de iniciação (PPPoE Active Discover Initiation, PADI)
- Um (ou mais) concentradores de acesso (AC) emitem pacotes de oferta (PPPoE Active Discover Offer, PADO)
- O terminal emite um pacote de pedido de sessão em unicast ao concentrador de acesso seeccionado (PPPoE Actived Discover Request, PADR)
- O concentrador emite um pacote de confirmação (PPPoE Active Discover Session Confirmation, PADS).

- IPoE: IP over Ethernet
- Acesso por DHCP+IP convencional
 - Limitações: ausência de autenticação, acesso ao meio antes de autenticação
 - É possível realizar autenticação em níveis superiores (ver acesso wireless com autenticação web no IST), mas o acesso não autenticado ao meio pode permitir já problemas ou perturbações com origem difícil de localizar.
 - Solução: 802.1X com autenticação EAP e cifra de dados (acesso semelhante ao que hoje em dia existe na rede sem fios e-U/eduroam).
 - O 802.1X é hoje suportado pela maioria do equipamento de distribuição (switchs) de uso profissional (designados switchs com gestão ou "managed switchs").
- Problema: o equipamento de acesso (sobretudo doméstico) nem sempre suporta 802.1X