hương 6: ệu trong mô hình
uan hệ
GVLT: ThS. Đỗ Thị Minh Phụng

Nhắc lại mô hình quan hệ

- Quan hệ Q
 - Định nghĩa trên một tập thuộc tính $(A_1,\,A_2,\ldots,A_n)$
 - Tân từ $\,\,\left\|\,Q\,\right\|\,$ để mô tả mối liên hệ ngữ nghĩa giữa những thuộc tính trong Q
- Ký hiệu:
 - $-\,Q(A_1,A_2,\dots A_n)$: quan hệ Q định nghĩa trên tập các thuộc tính $A_1,A_2,\dots A_n$
 - $-\,Q_{^+}\!=\{A_1,A_2,\ldots A_n\}$
 - $-\operatorname{Dom}(A)$: miền giá trị (domain) của thuộc tính A

Mô hình quan hệ (tt)

- Một bộ q của quan hệ Q(A1, A2, ...An) là một tổ hợp giá trị (a1, a2, ...,an) thoả 2 điều kiện:
 - $-a_i \in Domain(A_i), \forall A_i \in Q^+$
 - Tân từ $\left\| \left. Q(a_1,a_2,...,a_n) \right\| \,$ được thỏa
- Một thể hiện của Q là tập các bộ của Q, ký hiệu TQ

Mô hình quan hệ (tt)

• Phép chiếu

- Chiếu một bộ q của Q lên một tập thuộc tính $\mathbb{X} \subset \mathsf{Q}^+(\text{giả}$ sử $X = \{A_1,...A_m\})$:
 - Là phép trích các giá trị tương ứng với các thuộc tính trong X từ bộ $\mathfrak a$
 - Ký hiệu: q.X hoặc q[A1,...Am]
- Chiếu một thể hiện TQ của Q lên X

Là phép trích các giá trị tương ứng với các thuộc tính trong X từ tất cả các bộ trong TQ

Ký hiệu: TQ[X] hoặc $TQ[A_1,...A_m]$

Mô hình quan hệ (tt)

· Ví dụ:

$$-q = (a_1, a_2, ..., a_m, a_{m+1}, ...a_n)$$

$$=>q.X = (a_1, a_2, ..., a_m)$$

- TQ:

Aı	A2	 Am	Am+1	 An
aı a'ı	a2 a2	 am a'm	am+1 am+1	 an a'n

=>TQ[X]:

Aı	A2	 Am
aı	a2	 am
a'ı	a2	a'm

Mô hình quan hệ(tt)

• Khoá(key) của một quan hệ

- $\ \mathbb{K} \subseteq \mathbb{Q}^+$ là khóa của quan hệ \mathbb{Q} khi và chỉ khi hai điều kiện sau được thỏa:
 - (i) Mỗi giá trị k của khóa K xác định duy nhất một bộ của \boldsymbol{Q}
 - (ii) K là tập thuộc tính nhỏ nhất thỏa điều kiện (i)
- Nếu chỉ thỏa điều kiện (i), K được gọi là một $\underline{\it siêu}$ $\it khóa$ của Q

Phụ thuộc hàm (functional dependency)- Định nghĩa

- Phụ thuộc hàm (PTH) thể hiện sự phụ thuộc của một tập thuộc tính (Y) đối với một tập thuộc tính khác(X)
 - Định nghĩa dựa trên những ngữ nghĩa, qui tắc tìm hiểu được từ môi trường ứng dụng
 - Ký hiệu: X \rightarrow Y
- Cho quan hệ Q(X, Y, Z), với X, Y, Z là các tập thuộc tính, X ≠ Ø, Y ≠ Ø
 - Một thể hiện TQ của Q <u>thóa</u> PTH X \rightarrow Y nếu: $\[\] \] q,q' \in TQ,q.X = q'.X \Rightarrow q.Y = q'.Y$

Phụ thuộc hàm – Định nghĩa(tt)

- $TQ \underline{vi \ pham} \ PTH \ X \rightarrow Y \ \text{n\'eu}$: $\exists q, q' \in TQ, q.X = q'.X \ v\grave{a} \ q.Y \neq q'.Y$
- PTH X \to Y được gọi là định nghĩa trên Q nếư \Box TQ là thể hiện của Q, TQ thỏa PTH này
- PTEX \rightarrow Y gọi là *phụ thuộc hàm hiển nhiên* \Leftrightarrow Y \subseteq X

8

Ví dụ

- Xét lịch xếp lớp của một cơ sở giảng dạy trong một ngày, ta có các phụ thuộc hàm sau:
 - (1) GV, Giờ→Lớp

(nếu biết giảng viên và giờ dạy, ta sẽ biết được lớp mà giảng viên dạy vào giờ đó)

- (2) Giờ, Lớp→Phòng

(Cho một giờ học và lớp học cụ thể, ta sẽ biết được lớp đang học phòng nào vào giờ đó)

- ⇒Nếu biết giảng viên và giờ dạy, ta sẽ biết Phòng mà giảng viên dạy vào giờ đó
- ⇒(3) GV,Giờ→Phòng

(3) Là <u>hệ quả</u> của (1) và (2)

Hệ quả của tập PTH

- Cho F là tập các PTH định nghĩa trên Q
 - PTH f là <u>hê quả</u> của F, ký hiệu F ⊨ f nếu f được thỏa trong tất cả các thể hiện TQ của Q
 - Tập tất cả các phụ thuộc hàm hệ quả của F gọi là <u>bao</u>
 <u>đóng</u> (closure) của F, ký hiệu F+ (F⊆F+)

10

Phụ thuộc hàm suy dẫn từ F

- f là một PTH được <u>suy dẫn</u> từ F, ký hiệu F | f,
 - Tồn tại một chuỗi phụ thuộc hàm f1, f2,...fn,với $f_n = f$

 $\tilde{\mathbf{n}} \in \emph{F}$ hoặc được suy từ những phụ thuộc hàm f
j, j=1..i-1 nhờ vào $\underline{\mathit{luật}}\, d\tilde{\underline{\mathit{an}}}$

- F' là tập các PTH suy dẫn từ Fnhờ vào tập luật dẫn R $(F{\subseteq}F')$
- Tập luật dẫn R là *hợp lệ và đầy đủ* nếu và chỉ nếu $F' = F_+$

11

Hệ tiên đề Amstrong

- · Gồm 3 luật dẫn:
 - (FD1) Luật phản xạ: $\forall\,Y\subseteq X,X\to Y$
 - (FD2) Luật cộng:

Nếu X \rightarrow Y và Z \subseteq W thì X,W \rightarrow Y,Z

- (FD3) Luật bắc cầu:
 Nếu X→Y và Y→Z thì X→Z
- Neu X I va I Z uli X Z
- Hệ tiên đề Amstrong là một tập luật dẫn hợp lệ và đầy đủ
- Là cơ sở để tính F+

	,		~			
1/124	~ ^	1 24	12	thông	4	1.1. 4.
VIOT	SO	111/11	aan	THONG	auno	KHAA

- Từ các luật dẫn trong tiên đề Amstrong ta có thể suy ra các luật dẫn khác, một số sau đây thường được sử dụng:
 - Luật bắc cầu giả:

Nếu X \rightarrow Y và Y,W \rightarrow Z thì X,W \rightarrow Z

- Luật hội:

Nếu X \rightarrow Y và X \rightarrow Z thì X \rightarrow Y,Z

Luật phân rã:

Nếu $X \rightarrow Y$ và $Z \subseteq Y$ thì $X \rightarrow Z$

Ghi chú: X,Y hay XY có nghĩa là X∪ Y

13

Bao đóng của tập PTH - Nhận xét

- F+ thường rất lớn
- Thực tế: cho một phụ thuộc hàm f: X→Y, xác định xem f có thuộc F+(có thỏa với mọi thể hiện của quan hệ Q?)
- →Có cần phải xác định F+ để trả lời câu hỏi này?

14

Bao đóng của một tập thuộc tính

 Bao đóng của tập thuộc tính X nhờ vào tập phụ thuộc F, ký hiệu X+F, được định nghĩa:

 $X+F= \{Y | X \rightarrow Y \text{ dược suy dẫn từ } F\}$

- $\rightarrow X \subseteq X_{+F}$;
- $\mathop{\rightarrow}_{X^{\scriptscriptstyle +F}\subseteq\ Q^{\scriptscriptstyle +}}$
- Khái niệm bao đóng của một tập thuộc tính được sử dụng để kiểm tra xem một phụ thuộc hàm f có được suy dẫn từ F hay không (f∈ F+?)

Thuật toán để xác định X+F

- · Vào:
 - Q+: tập các thuộc tính của quan hệ Q (hữu hạn)
 - $-\ F$: tập các phụ thuộc hàm định nghĩa trên Q
 - X⊆Q+
- Ra: X+F
- Thuật toán:
 - 1. X+F := X
 - 2. Lặp

{ Nếu ($\exists f: U \rightarrow V \text{ thuộc } F \mid U \subseteq X_{+F}$)

 $X_{^+\!F} := X_{^+\!F} \cup V$

} cho đến khi (X+F= Q+ hoặc không còn thay đổi nữa)

...

Bài toán thành viên

• Bổ đề (2.1):

– Cho f: X→Y

 $F \vdash f \Leftrightarrow Y \subseteq X + F$

17

Bài toán thành viên

- Bài toán thành viên:
 - $-\operatorname{Cho} F$ là tập PTH định nghĩa trên Q
 - −f: X $\xrightarrow{\hspace{-3pt} \hspace{-3pt} \hspace{$

Bài toán: f∈ F+?

Theo bổ đề 2.1, để chứng minh $f \in F$ +, ta chỉ cần chứng minh $Y \subseteq X$ +F

ightarrowĐể giải quyết bài toán thành viên, chỉ cần xác định X_{+F} , không cần xác định F_{+}

Ví dụ 2.1	7	
Cho Q(ABCDEG)		
$F = \{AB \rightarrow C; D \rightarrow EG; C \rightarrow A; BE \rightarrow C; BC \rightarrow D$		
$CG \rightarrow BD; ACD \rightarrow B; CE \rightarrow AG $		
Phụ thuộc hàm BD→A có đúng với mọi thể hiện của q không?		
	-	
19		
Phű- khái niệm liên quan		
Tập phụ thuộc hàm tương đương		
 Định nghĩa: Hai tập PTH F và F' gọi là tương đương, ký hiệu F ≡ F ' nếu F+ = F '+ 		
$-B\hat{o} d\hat{e} 2.2$: $F \equiv F' \Leftrightarrow F \models F' v\hat{a} F' \models F$		
$\Leftrightarrow F \mid F$ và F \ $\mid F$		
 Ví dụ 2.2: Xét tính tương đương của hai tập phụ thuộc hàm sau, định nghĩa trên Q(ABCDE) 	-	
$F = \{A \rightarrow BC; A \rightarrow D; CD \rightarrow E\}$		
$F' = \{A \rightarrow BCE; A \rightarrow ABD; CD \rightarrow E\}$		
20		
Phů		
. Dinh nghĩa		
 Định nghĩa: Một tập phụ thuộc hàm F' được gọi là phủ của F nếu 		
$F' \equiv F$		
• Ví dụ:		
Trong ví dụ 2.2 , F ' là một phủ của F .		

Phủ tối thiểu – khái niệm liên quan

• Phụ thuộc hàm đầy đủ

- Định nghĩa:

Cho F là tập các phụ thuộc hàm và f: $X \rightarrow Y \in F$ f là một phụ thuộc hàm đầy đủ trong F nếu:

 $\neg\exists\ X' \subset\ X\ sao\ cho: \not\vdash = (\not\vdash \{X \rightarrow Y\} \cup \{X \rightarrow Y\}),$

nghĩa là, từ F không suy dẫn ra được PTH X' \rightarrow Y

– Ví dụ 2.3

 $F = \{ A \rightarrow BCD; BCD \rightarrow E; CD \rightarrow I; I \rightarrow E \}$

BCD→ E là phụ thuộc hàm không đầy đủ,

vì $F \mid CD \rightarrow E$

22

Phủ tối thiểu

· Định nghĩa:

Cho F là tập các PTH mà vế phải chỉ chứa một thuộc tính (dùng luật phân rã để biến đổi các PTH mà vế phải có nhiều hơn một thuộc tính)

G là một phủ tối thiểu của F nếu G là một phủ của F và thoả hai điều kiện:

(1) G chỉ chứa các PTH đầy đủ

 $(2) \neg \exists f: X \rightarrow A \in G \text{ sao cho } G \equiv (G - \{X \rightarrow A\})$

Ký hiệu: G = PTT(F)

23

Phủ tối thiểu (tt)

· Thuật toán tìm phủ tối thiểu

- $-\ \ \,$ Vào: Tập phụ thuộc hàm F
- Ra: PTT(*F*)
- Thực hiện:
 - 1. Nếu ∃f: X→Y ∈ F với card(Y)>1, phân rã f.
 - 2. Thay các PTH không đầy đủ bằng PTH đầy đủ
 - 3. Loại bó các phụ thuộc hàm thừa (có thể được suy dẫn từ các PTH còn lại trong F)
- <u>Ghi chú:</u> Một tập PTH F có thể có nhiều hơn 1 phủ tối thiểu

Ví dụ

• Ví dụ 2.4:

Cho $F = \{A \rightarrow BC; B \rightarrow AC; C \rightarrow A\}$ Tìm phủ tối thiểu của F?

• Ví dụ 2.5:

- Cho $F = \{AB \rightarrow C; A \rightarrow B; B \rightarrow A\}$ Tìm phủ tối thiểu của F

25

Đồ thị phụ thuộc hàm

- Đồ thị phụ thuộc hàm là một đồ thị vô hướng, với :
 - Một tập nút tượng trưng cho tập PTH, ký hiệu O với tên PTH bên cạnh.
 - Một tập nút tượng trưng cho các thuộc tính, ký hiệu với tên thuộc tính bên cạnh
 - Một tập cung có hướng nối một nút PTH(thuộc tính) đến một nút thuộc tính (PTH).
 - Một cung xuất phát từ nút thuộc tính A đến một nút PTH f, cùng với một cung từ nút PTH f đến nút thuộc tính B, biểu diễn cho PTH A →B
- Khi F có nhiều PTT, đồ thị của F có chứa chu trình.

26

Ví dụ 2.6

Cho $F = \{f_1: A \rightarrow BC; f_2: B \rightarrow A; f_3: AD \rightarrow E; f_4: BD \rightarrow E \}$ Đồ thị của F:

Tính chất của phụ thuộc hàm

• Tính chiếu

f: $X \rightarrow Y$ định nghĩa trên Q Lấy Q' = Q[W] với $W \supseteq X$ và $W \cap Y < >0$ Khi đó, trên Q' ta có PTH f': $X \rightarrow W \cap Y$

· Tính phản chiếu:

f: X→Y định nghĩa trên Q'[W] Lấy Q(V) sao cho V⊇W Khi đó, PTH X→Y định nghĩa trên cả Q

28

Ứng dụng phụ thuộc hàm vào khóa

- Định nghĩa lại khóa theo khái niệm phụ thuộc hàm:
 - Cho quan hệ Q và F là tập PTH định nghĩa trên Q
 - K⊆ Q+ là một khóa của Q nếu:
 - i. f: $K \rightarrow Q + \in F + (hay K + F = Q +)$
 - ii. $\neg \exists K' \subseteq K \mid K' \rightarrow Q$ +

29

Ứng dụng phụ thuộc hàm vào khóa (tt)

- Thuật toán xác định khóa của quan hệ:
 - 1. Xây dựng các tổ hợp có thể có từ Q+
 - Tìm tập S chứa tất cả các tổ hợp K⊆ Q+ thỏa điều kiện (i), mỗi tổ hợp K như vậy là một siêu khóa của Q.
 - ₹ K∈ S

Nếu $\exists K'\,|\, K\,{\subset}\, K$ thì loại K ra khỏi S

- Thực tế, kết hợp bước 2 và bước 3: bắt đầu xét từ những tổ hợp có ít phần từ nhất, nếu tìm được một tổ hợp K: thòa điều kiện (i) thì loại bỏ ngay các tổ hợp có chứa K:
- Vấn đề: Số tổ hợp có thể có từ Q+ sẽ rất lớn nếu Q+ lớn → Cần giới hạn số tổ hợp cần khảo sát

Ứng dụng phụ thuộc hàm vào khóa(tt)

• Giới hạn số lượng tổ hợp:

- Thuộc tính nguồn:

A là một thuộc tính nguồn nếu $\neg \exists f\colon X \longrightarrow Y \in F \mid A \in Y$ Trên đồ thị PTH, thuộc tính nguồn không có cung vào Nhận xét: mọi thuộc tính nguồn phải xuất hiện trong mọi khóa của Q

- Thuộc tính đích:

B là một thuộc tính đích nếu $\neg \exists f\colon X \longrightarrow Y \in F \mid B \in X$ Trên đồ thị PTH, thuộc tính đích chỉ có cung vào, không có cung ra.

Nhận xét: thuộc tính đích không xuất hiện trong bất kỳ khóa nào của \mathbf{Q}

31

Ví dụ 2.7

· Cho Q(ABCDEG) với

 $F = \{f_1: AD \rightarrow B; f_2: EG \rightarrow A; f_3: BC \rightarrow G\}$

Xác định các khóa của Q