

运筹学

目标规划

Chp.5 Goal Programming

5.0 引言——目标规划的提出

2014/4/14 3

• 最优和满意

- 在现实经济生活中,没有最优 (max, min) 只有满意。
 - 一开始,资产阶级经济学家的一个基本假设就是认为企业的决策者是"经济人",他们的行为只受"最大化"的行为准则所支配,只以追求最大经济利益(利润)为唯一目标。
 - 社会的发展已经证明, "经济人"的假设根本不适应现代管理的需要。
 - H. A. 西蒙 (H. A. Simon-美国卡内基-梅隆大学,1916-) 教授着眼于现代企业的管理职能,否定了"经济人"概念和"最大化"行为准则,提出了"管理人"的概念和"令人满意"的行为准则。由于西蒙教授对现代经济管理的决策科学进行了开创性的研究,荣获了1978年诺贝尔经济学奖。他提出满意行为模型要比最大化行为模型丰富得多。从而现代管理决策所追求的不是绝对意义下的最优解,而是相对意义下的满意解。
 - 目标规划的有关概念和模型最早在1961年由美国学者A.查恩斯和W.库伯在他们合著的《管理模型和线性规划的工业应用》一书中提出,以后这种模型又先后经尤吉·艾吉里、杰斯基莱恩和桑·李不断完善改进。1976年伊格尼齐奥发表了《目标规划及其扩展》一书,系统归纳总结了目标规划的理论和方法。

2014/4/14

线性规划的不足

- 线性规划只研究在满足一定条件下,单一目标函数取得最优解, 而在企业管理中, 经常遇到多目标决策问题, 如拟订生产计划时, 不仅考虑总产值,同时要考虑利润,产品质量和设备利用率等。 这些指标之间的重要程度(即优先顺序)也不相同,有些目标之 间往往相互发生矛盾。
- 线性规划致力于某个目标函数的最优解,这个最优解若是超过了 实际的需要,很可能是以过分地消耗了约束条件中的某些资源作 为代价。
- 线性规划把各个约束条件的重要性都不分主次地等同看待,这也 不符合实际情况。

5.0 引言——目标规划的提出(cont.)

2014/4/14

水解线性规划问题,首先要求约束条件必须相容,如果约束条件中,由于人力,设备等资源条件的限制,使约束条件之间出现了矛盾,就得不到问题的可行解,但生产还得继续进行,这将给人们进一步应用线性规划方法带来困难。

• 目标规划的提出

- 为了弥补线性规划问题的局限性,解决有限资源和计划指标之间的矛盾,在线性规划基础上,建立目标规划方法,从而使一些线性规划无法解决的问题得到满意的解答。
- 在实际问题中,可能会同时考虑几个方面都达到最优:产量最高,成本最低,质量最好,利润最大,环境达标,运输满足等。多目标规划能更好地兼顾统筹处理多种目标的关系,求得更切合实际要求的解。
- 目标规划可根据实际情况,分主次地、轻重缓急地考虑问题。

5.1 目标规划的数学模型

2014/4/14 6

- 一个典型例子
 - 某企业在计划期内生产甲乙丙三种产品,这些产品分别需要在设备A、B上加工,需要消耗材料 和 II,单件产品需要消耗的原料、台时及利润如下表,为该企业制定生产计划。

产品消耗资源	甲	٢	丙	现有资源
原材料1(千克)	3	1	2	200
原材料Ⅱ(千克)	2	2	4	200
设备A(台时)	4	5	1	360
设备B(台时)	2	3	5	300
利润 (元/件)	40	30	50	

$$\max z = 40x_1 + 30x_2 + 50x_3$$

$$\begin{cases} 3x_1 + x_2 + 2x_3 \le 200 \\ 2x_1 + 2x_2 + 4x_3 \le 200 \\ 4x_1 + 5x_2 + x_3 \le 360 \\ 2x_1 + 3x_2 + 5x_3 \le 300 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

解得上述线性规划问题 最优解为 z = 3400, X = (50,30,10)

2014/4/14 7

- 现在决策者根据企业的实际情况和市场需求,需要重新定制经营目标:
 - 利润不少于3200元;
 - 产品甲与产品乙的产量比例尽量不超过1.5;
 - 提高产品丙的产量使之达到30件;
 - 设备加工能力不足可以加班解决,但能不加班最好不加班;
 - 受到企业资金限制,只能使用现有材料而不能再购进。
- 加入上述条件,可得不等式组:

$$\begin{aligned} & 40x_1 + 30x_2 + 50x_3 \ge 3200 \\ & x_1 - 1.5x_2 \le 0 \\ & x_3 \ge 30 \\ & 3x_1 + x_2 + 2x_3 \le 200 \\ & 2x_1 + 2x_2 + 4x_3 \le 200 \\ & 4x_1 + 5x_2 + x_3 \le 360 \\ & 2x_1 + 3x_2 + 5x_3 \le 300 \\ & x_1, x_2, x_3 \ge 0 \end{aligned}$$

该不等式组无解,即使令设备B加班10小时仍然无解。而在实际生产过程中,生产方案总是存在的,无解只能说明在现有资源条件下,不可能完全满足所有的经营目标。

2014/4/14 8

- 例**5.1** 某工厂生产Ⅰ,Ⅱ两种产品,已知有关数据见下表,试求获利最大的方案。

	I	II	拥有量
原材料 (kg)	2	1	11
设备(台时)	1	2	10
利润 (元/件)	8	10	

• 解: 这是一个单目标的规划问题,用线性模型表述为:

$$\max z = 8x_1 + 10x_2$$

$$\begin{cases} 2x_1 + x_2 \le 11 \\ x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

• 用图解法易求得最优方案为: $x_1^* = 4, x_2^* = 3, z^* = 62$ 元

2014/4/14 9

- 实际上工厂在做决策时,要依次考虑市场等一系列其他条件,如:
 - 根据市场信息,产品 I的销售量有下降趋势,故考虑产品 I的产量不能高于产品 II;
 - 超过计划供应的原材料时,需用高价采购,这就使成本增加;
 - 应尽可能充分利用设备台时,但不希望加班;
 - 应尽可能达到并超过计划利润指标56元。
- 一 这样,在考虑产品决策时,便为多目标决策问题。目标规划方法 是解决这类决策问题的方法之一。

• 目标规划数学模型的有关概念:

- 设 x_1 、 x_2 为决策变量,此外,引进正、负偏差变量 d^+ , d^- ,这两个偏差变量均≥0。
 - 正偏差分量d+表示决策值超过目标值的部分; 负偏差分量d-表示决策值未达 到目标值的部分。以上例说明:
 - 设上例中, d_3^- 为未达到利润目标的土土, d_3^+ 为超出利润目标的 土值当利润小于56时, $d_3^->0$ 且 $d_3^+=0$,有 $8x_1+10x_2+d_3^-=56$ 成立;当利润大于56时, $d_3^+>0$ 且 $d_3^-=0$,有 $8x_1+10x_2-d_3^+=56$ 成立;当利润等于56时, $d_3^-=0$ 且 $d_3^+=0$,有 $8x_1+10x_2=56$ 成立;
 - 实际利润只有上述三种情况之一发生,即决策值不可能既超过目标值同时又 未达到目标值,因此恒有d+×d-=0。因而可以将三个等式写成一个等式:

$$8x_1 + 10x_2 + d_3^- - d_3^+ = 56$$

• 利润尽可能达到并超过56元,理解为即使不能达到也要尽可能接近56,即: $\min d_3^-$

2014/4/14 11

- 绝对约束和目标约束
 - 绝对约束是指必须严格满足的等式约束和不等式约束。目标约束是目标规划特有的,可把约束右端项看作要追求的目标值,在达到目标值时允许发生正或负偏差。因此线性规划问题在约束条件或目标函数中加入正、负偏差变量可变换为目标约束。以上例说明:
 - 如果超过了原材料的限制,需用高价采购,则利润就会大幅度降低,因此应 严格满足,即

$$2x_1 + x_2 \le 11$$

- 优先因子(优先等级)与权系数
 - 一个规划问题常常有若干目标,但决策者在要求达到这些目标时,是有主次、轻重、缓急的不同。凡要求第一位达到的目标赋予优先因子 P_1 ,次位的赋予 P_2 ,依次类推,并规定 $P_k>>P_{k+1}$, $k=1,2,\cdots,K$ 。表示 P_k 比 P_{k+1} 有更大的优先权,即首先保证高级别优先因子的目标的实现。若要区别具有相同优先因子的两个目标,可分别赋予它们权系数 ω_i 。

2014/4/14 12

- 目标规划的目标函数
 - 目标规划的目标函数(准则函数)是按各目标约束的正、负偏差变量和赋予相应的优先因子而构造的。当每一目标值确定后,决策者的要求是尽可能缩小偏差量。目标规划的目标函数基本形式有三种:
 - (1)要求恰好达到目标值,即正、负偏差变量都要尽可能的小,这时:

$$\min z = f(d^+, d^-)$$

- (2)要求不超过目标值,即允许达不到目标值,即正偏差变量要尽可能的小,这时: $min_z = f(d^+)$
- (3)要求超过目标值,即超过量不限,但负偏差变量要尽可能的小,这时:

$$\min z = f(d^-)$$

目标规划是按事先制定的目标顺序逐项检查,尽可能使得结果达到 预定目标,即使不能达到目标,也应使得离目标的差距最小。 这就是目标规划的求解思路,对应的解称为<u>满意解</u>。

2014/4/14 13

- 例5.2 将例5.1依次考虑以下目标:产品Ⅱ的产量不低于产品Ⅱ;充分利用台时不加班;利润额不小于56元,求决策方案。
 - 解:

原问题线性规划模型

$$\max z = 8x_1 + 10x_2$$

$$\begin{cases} 2x_1 + x_2 \le 11 \\ x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

按目标顺序分别赋予 \rightarrow 目标优先因子: P_1, P_2, P_3 。 数学模型为:

$$\min z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-$$

$$\begin{cases} 2x_1 + x_2 \le 11 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \\ x_1 + 2x_2 + d_2^- - d_2^+ = 10 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3 \end{cases}$$

2014/4/14

目标规划的一般数学模型为:

$$\min z = \sum_{l=1}^{L} P_{l} \left(\sum_{k=1}^{K} \omega_{lk}^{-} d_{k}^{-} + \omega_{lk}^{+} d_{k}^{+} \right)$$

$$\sum_{j=1}^{n} c_{lj} x_{j} + d_{k}^{-} - d_{k}^{+} = g_{k}, k = 1, \dots, K$$

$$\left\{ \sum_{i=1}^{n} a_{ij} x_{j} \leq (=, \geq) b_{i}, i = 1, \dots, m \right\}$$

$$\begin{vmatrix} x_j \ge 0, j = 1, \dots, n \\ d_k^-, d_k^+ \ge 0, k = 1, \dots, K \end{vmatrix}$$

$$d_{k}^{-}, d_{k}^{+} \geq 0, k = 1, \dots, K$$

目标约束

系统约束

5.2 目标规划的图解法

2014/4/14 15

- 对只具有两个决策变量的目标规划的数学模型,可以用图解法来分析 求解。
 - 以例5.2说明:绝对约束条件的作图与线性规划相同。作目标约束时,先令 $d_i^-,d_i^+=0$,作相应的直线,然后在这直线旁标上 d_i^-,d_i^+ ,表明目标约束可以沿着 d_i^-,d_i^+ 所示的方向平移。

$$\begin{cases} 2x_1 + x_2 \le 11 & (1) \\ x_1 - x_2 + d_1^- - d_1^+ = 0 & (2) \\ x_1 + 2x_2 + d_2^- - d_2^+ = 10 & (3) \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 & (4) \\ x_1, x_2, d_i^-, d_i^+ \ge 0, i = 1, 2, 3 \end{cases}$$

5.2 目标规划的图解法(cont.)

2014/4/14 16

· 首先考虑绝对约束条件;

再考虑具有 P_1 优先因子的目标的实现 x_2 在目标函数中要求实现 ind_1^+ ,从图中看出, x_1,x_2 在 ΔOBC 的边界和内部取值才能满 $\mathcal{Q}_1^+=0$ 。

接着考虑 P_2 , 要求实现 $\min(d_2^+ + d_2^-)$, x_2 $3d_2^+, d_2^- = 0$ 时, x_1, x_2 可在线段ED上取值。BC

最后考虑 P_3 ,要求实现 $\min d_3^-$,当 $d_3^-=0$ 时, x_2 使 x_1,x_2 的取值范围缩小到线 $\mathcal{B}D$ 上取值。 \mathcal{B}

最终可求得: G的坐标为(2,4), D的坐标为(10/3,10/3), G、D的线性组合都是该目标规划问题的满意解。

5.2 目标规划的图解法(cont.)

2014/4/14 20

- 注意:目标规划问题求解时,把绝对约束作最高优先级考虑。但在大多数问题中可能出现非可行解,故将目标规划问题的最优解称为满意解。
 - 例5.3 某电视厂装配黑白、彩色两种电视,每装配一台电视占用装配线1小时,装配线每周计划开动40小时。预计市场每周彩色电视销量是24台,每台可获利80元;黑白是30台,每台可获利40元。该厂确定的目标为:
 - 第一优先级: 充分利用装配线, 每周计划开动40小时;
 - 第二优先级:允许装配线加班,但加班时间每周不超过10小时;
 - 第三优先级:装配电视的数量尽量满足市场需求,因彩色电视利润高,所以其权系数为2;
 - 试建立这个问题的目标规划模型,并求解黑白和彩色电视的产量。

5.2 目标规划的图解法

60

解: 其目标规划模型为:

 $\min z = P_1 d_1^- + P_2 d_2^+ + P_3^0 (2d_3^{4/14} + d_4^{-21})$

$$x_1 + x_2 + d_1^- - d_1^+ = 40$$
 (a)

$$x_1 + x_2 + d_2^- - d_2^+ = 50$$
 (b)

$$x_1 + d_3^- - d_3^+ = 24$$
 (c)

$$x_2 + d_4^- - d_4^+ = 30$$
 (d)

$$x_1, x_2, d_i^-, d_i^+ \ge 0$$
 $(i = 1, \dots, 4)$

从图中看出,在考虑 $_1, P_2$ 的目标实现后, x_1, x_2 的取值范围为ABCD。

考虑 P_3 的目标要求时,团 $_3$ 的权系数大于 d_4 ,故先取 $d_3^-=0$,这时 x_1,x_2 的取值范围为ABEF。在ABEF中,只有E点使 d_4 取值最小,故E点为满意解。

5.3 解目标规划的单纯形法

2014/4/14 22

- 目标规划的数学模型与线性规划基本相同,所以用单纯形法求解时的方法步骤也基本相同。但要考虑目标规划的一些特点,作以下规定:
 - 因目标规划问题的目标函数都是最小化,所以以 $c_j z_j \ge 0$ **j=1,2,···,n**为最优准则;
 - 因非基变量的检验数中含有不同等级的优先因子, 既:

$$c_{j}-z_{j}=\sum \alpha_{kj}P_{k}, j=1,2,\dots,n, k=1,2,\dots,K$$

因 $P_1 >> P_2 >> \cdots >> P_K$; 从每个检验数的整体看:

检验数的正负首先决定 P_1 的系数 α_1 ,的正负。

2014/4/14 23

- 解目标规划问题的单纯形法的计算步骤:
 - (1)建立初始单纯形表,在表中将检验数行按优先因子个数分别列成K行,置k=1;
 - (2)检查该行中是否存在负数,且对应的前k-1行的系数是0:若有取其中最小者对应的变量为换入变量,转(3);若无负数,则转(5);
 - (3)按最小比值规则确定换出变量,当存在两个或两个以上相同的最小比值时,选取具有较高优先级别的变量为换出变量;
 - (4)按单纯形法进行基变换运算,建立新的计算表,返回(2);
 - (5)当 k=K时, 计算结束,表中的解即为满意解。否则置 k=k+1,返回到
 (2)。
- 注: 当非基变量的检验数全部为0时,该问题有多重解。

2014/4/14 24

- 例5.4 试用单纯形法求解例5.2。
 - 解:标准化数学模型为:

$$\min z = P_1 d_1^+ + P_2 (d_2^- + d_2^+) + P_3 d_3^-$$

$$\begin{cases} 2x_1 + x_2 + x_s = 11 \\ x_1 - x_2 + d_1^- - d_1^+ = 0 \\ x_1 + 2x_2 + d_2^- - d_2^+ = 10 \\ 8x_1 + 10x_2 + d_3^- - d_3^+ = 56 \end{cases}$$

 $(x_1, x_2, x_s, d_i^-, d_i^+ \ge 0, i = 1, 2, 3)$

(1)取 x_s,d_1^-,d_2^-,d_3^- 为初始基变量,列初始纯形表:

	C _j						P ₁	P ₂	P ₂	P ₃		θ
CB	X _B	b	X ₁	X ₂	Xs	d_1^-	d ₁ +	d_2^-	d_2^+	d_3^-	d_3^+	ð
	Xs	11	2	1	1							
	d_1^-	0	1	-1		1	-1					
P_2	d_2^-	10	1	[2]				1	-1			10/2
P_3	d_3^-	56	8	10						1	-1	
		P₁					1					
$c_i - z$	z _i	P_2	-1	-2					2			
	1	P_3	-8	-10							1	

2014/4/14 25

- 检验数的求法:

$$\sigma_{1} = c_{1} - z_{1} = 0 - (0, 0, P_{2}, P_{3}) \begin{bmatrix} 2 \\ 1 \\ 1 \\ 8 \end{bmatrix} = -P_{2} - 8P_{3}$$

$$\sigma_2 = c_2 - z_2 = 0 - (0, 0, P_2, P_3) \begin{bmatrix} 1 \\ -1 \\ 2 \\ 10 \end{bmatrix} = -2P_2 - 10P_3$$

$$\sigma_5 = c_5 - z_5 = P_1 - (0, 0, P_2, P_3) \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \end{bmatrix} = P_1$$

以下略,可求得 $\sigma_7 = 2P_2, \sigma_9 = P_3$

2014/4/14 20

- (2)取k=1, 检查检验数的介, 因该行无负检验数 故转(5);
- (5)因(k=1) < K(=3), 置k=k+1=2, 返回到(2);
- (2)查出检验数 P_2 行中有-1,-2, 取min(-1,-2) = -2。

它对应的变量。为换入变量,转入(3);

(3)在上表中计算最小比值 $\theta = \min(11/1, -, 10/2, 56/10) = 10/2$

它对应的变量/2为换出变量,转入(4);

(4)进行基变换,得到下表

	\mathbf{c}_{j}						P ₁	P ₂	P ₂	P_3		0
CB	X _B	b	X ₁	X ₂	Xs	d_1^-	d ₁ +	d_2^-	d_2^+	d_3^-	d_3^+	θ
	Xs	6	3/2		1			-1/2	1/2			
	d_1^-	5	3/2			1	⊢ −1	1/2	-1/2			
P_2	X ₂	5	1/2	1				1/2 -5	-1/2			
_	d_3^-	6	[3]					-5	5	1	-1	6/3
		P_1					1					
$ \mathbf{c_i} - \mathbf{c_i} $	z _i	P_2						1	1			
		P_3	-3					5	-5		1	

Computer Science and Technology

Sc

• 以次类推,直到得到最终表(见下表)为止。

2014/4/14 27

	c j						P ₁	P ₂	P ₂	P ₃		
CB	X _B	b	X ₁	X ₂	Xs	d_1^-	d ₁ +	d_2^-	d ₂ +	d_3^-	d ₃ ⁺	θ
	Xs	3			1			2	-2	-1/2	1/2	
	d_1^-	2				1	-1	3	-3	-1/2	1/2	
	X ₂	4		1				4/3	-4/3	 1/6	1/6	
	X ₁	2	1					-5/3	5/3	1/6	— 1/3	
		P₁					1					
$c_i - z$	z _i	P_2						1	1			
		P_3								1		

• 上表中得到的解 x_1 *=2, x_2 *=4相当于例5.2图解法中的G点。检查上表中的检验数行,发现非基变量 d_3 +的检验数为0, 这表示存在多重解。以非基变量 d_3 +为换入变量, d_1 -为换出变量,经迭代可得另一最终表。

2014/4/14 28

	Cj						P ₁	P ₂	P ₂	P ₃		θ
CB	X _B	b	X ₁	X ₂	Xs	d_1^-	d_1^+	d_2^-	d_2^+	d_3^-	d_3^+	0
	Xs	1			1	-1	1	-1	1			
	d_3^+	4				2	- 2	6	-6	-1	1	
	X ₂	10/3		1		-1/3	1/3	1/3	-1/3			
	X ₁	10/3	1			2/3	-2/3	1/3	-1/3			
		P ₁					1					
$c_i - z$	z _i	P ₂						1	1			
		P_3								1		

- 上表中得出另一个解x₁*=10/3, x₂*=10/3就是例5.2图解法中的D点。
- G、D两点的凸线性组合都是上例的满意解。

5.4* 灵敏度分析

2014/4/14 29

- 目标规划的灵敏度分析方法与线性规划相似,除了分析各项系数的变换外,还有优先因子的变化问题。
 - 例5.5 已知目标规划问题:

$$\min z = P_{1}(2d_{1}^{+} + 3d_{2}^{+}) + P_{2}d_{3}^{-} + P_{3}d_{4}^{+}$$

$$\begin{cases} x_{1} + x_{2} + d_{1}^{-} - d_{1}^{+} = 10 \\ x_{1} + d_{2}^{-} - d_{2}^{+} = 4 \end{cases}$$

$$\begin{cases} 5x_{1} + 3x_{2} + d_{3}^{-} - d_{3}^{+} = 56 \\ x_{1} + x_{2} + d_{4}^{-} - d_{4}^{+} = 12 \\ x_{1}, x_{2}, d_{i}^{+}, d_{i}^{-} \geq 0, i = 1, \dots, 4 \end{cases}$$

在得到最终表(下表)后,目标函数的优先等级变化为:

$$(1)\min z = P_1(2d_1^+ + 3d_2^+) + P_2d_4^+ + P_3d_3^-$$

$$(2)\min z = P_1d_3^- + P_2(2d_1^+ + 3d_2^+) + P_3d_4^+$$

试分析原解有什么变化。

5.4 灵敏度分析(cont.)

2014/4/14 30

• 解: 最终表为:

	Cj					2P ₁		3P ₁	P ₂			P_3
CB	X _B	b	X ₁	X ₂	d_1^-	d_1^+	d_2^-	d_2^+	d_3^-	d ₃ +	d_4^-	d_4^+
	X ₂	6		1	1	-1	-1	1				
	X ₁	4	1				1	-1				
P ₂	d ₃	18			-3	3	-2	2	1	-1		
	d_4^-	2			-1	1					1	-1
		P₁				2		3				
c _i - 2	z _i	P ₂			3	-3	2	-2		1		
<u> </u>	- 1	P_3^-										1

- 分析(1),实际是将原目标函数中的 d_4 +、 d_3 -的优先因子对换了一下。这时将上表中的检验数行中的 P_2 、 P_3 行和 c_i 行的 P_2 、 P_3 对换即可。
- 这时可见原解仍满足最优性条件。

5.4 灵敏度分析(cont.)

2014/4/14 31

• (2) 将变化了的优先等级直接反映到原最终表,再计算检验数,得下表:

	Cj					2P ₂		3P ₂	P ₁			P ₃
CB	X_{B}	b	X ₁	X ₂	d_1^-	d ₁ +	d_2^-	d_2^+	d_3^-	d ₃ +	d_4^-	d_4^+
	X ₂	6		1	1	-1	-1	1				
	X_1	4	1				1	-1				
P ₁	d_3^-	18			-3	3	-2	2	1	-1		
- 1	d_4^-	2			-1	[1]					1	-1
		P₁			3	-3	2	-2		1		
$c_i - z$	z _i	P_2				2		3				
	-	P_3^-										1

• 检查上表可知检验行有负数,根据换入换出规则选择换入换出变量,经迭代可以得到新的满意解:

5.4 灵敏度分析(cont.)

2014/4/14 32

	The same of the sa							-				
	\mathbf{c}_{j}					2P ₂		3P ₂	P ₁			P_3
CB	X _B	b	X ₁	X ₂	d_1^-	d ₁ +	d_2^-	d_2^+	d_3^-	d_3^+	d_4^-	d_4^+
	X ₂	8		1			-1	1			1	-1
	X ₁	4	1				1	-1				
P ₁	d_3^-	12					-2	2	1	-1	-3	[3]
2P ₂	d ₁ +	2			-1	1					1	-1
		P_1					2	-2		1	3	-3
C _j -	$-\mathbf{z_i}$	P_2			2			3				2
1 1	•	P_3										1
	X ₂	12		1			-5/3	5/3	1/3	– 1/3		
	X ₁	4	1				1	-1				
	d_4	4					-2/3	2/3	1/3	— 1/3	-1	1
P ₃	d ₁ +	6			-1	1	-2/3	2/3	1/3	– 1/3		
		P ₁							1			
c _j -	-z _j	P_2				2		3				
	·	P_3					2/3	-2/3	-1/3	1/3		

• 可得新的满意解为: X₁*=4, X₂*=12。

5.5 应用举例

2014/4/14 33

- 例5.6 某单位领导在考虑本单位职工的升级调资方案时,依次遵守以下规定:
 - 不超过年工资总额60000元;
 - 每级的人数不超过定编规定的人数;
 - II, III级的升级面尽可能达到现有人数的20%;
 - · Ⅲ级不足编制的人数可录用新职工,又Ⅰ级的职工中有10%要退休。
- 有关资料在下表中,问该领导应如何拟定一个满意方案。

等级	工资额 (元/年)	现有人数	编制人数
ı	2000	10	12
II	1500	12	15
Ш	1000	15	15
合计		37	42

解:设 x_1 、 x_2 、 x_3 分别表示提升到、II级和录用到II级的新职工人数 对各目标确定的优先因为:

 P_1 ——不超过年工资总额0000元;

 P_2 — — 每级的人数不超过 \mathfrak{A} 规定的人数;

 P_3 ——I、II级的升级面尽可能达现有人数的20%;

• 建立目标约束为: 年工资总额不超过0000元:

$$2000(10-10\times10\%+x_1)+1500(12-x_1+x_2)+$$

$$1000(15-x_2+x_3)+d_1^--d_1^+=60000$$
 • 每级的人数不超过定编规定的人数:

$$I$$
级: $10(1-10\%) + x_1 + d_2^- - d_2^+ = 12$

$$II$$
级: $12-x_1+x_2+d_3^--d_3^+=15$

$$III$$
级 :15 - $x_2 + x_3 + d_4^- - d_4^+ = 15$

• II, III级升级面不大于现有人数的20%, 但尽可能多提:

$$I$$
级: $x_1 + d_5^- - d_5^+ = 12 \times 20\%$

$$III$$
级: $x_2 + d_6^- - d_6^+ = 15 \times 20\%$

2014/4/14 35

- 目标函数: $\min z = P_1 d_1^+ + P_2 (d_2^+ + d_3^+ + d_4^+) + P_3 (d_5^- + d_6^-)$
- 以上目标规划模型可用单纯形法求解得到多个方案(过程略),如下。

变量	含义	解1	解2	解3	解4
x ₁	晋升到┃级的人数	2.4	2.4	3	3
X ₂	晋升到Ⅱ级的人数	3	3	3	5
X ₃	新招收到Ⅲ级的人数	0	3	3	5
d_1^-	工资总额的结余额	6300	3000	3000	0
d_2^-	■级缺编人数	0.6	0.6	0	0
d_3^-	Ⅱ级缺编人数	2.4	2.4	3	1
d_4^-	Ⅲ级缺编人数	3	0	0.6	0
d_5^+	Ⅱ级超编人数	0	0	0	0.6
d_6^+	Ⅲ级超编人数	0	0	0	2

2014/4/14 36

- 例5.7 已知有三个产地给四个销地供应某种产品,产销地之间的供需量和单位运价如下表。有关部门在研究调运方案时依次考虑以下七项目标,并规定其相应的优先等级:
 - P₁——B₄是重点保护单位,必须全部满足要求;
 - P₂——A₃向B₁提供的产量不少于100;
 - P₃——每个销地的供应量不小于其需要量的80%;
 - P₄——所订调运方案的总运费不超过最小运费调运方案的10%;
 - P₅——因路段问题,尽量避免安排将A₂的产品运往B₄;
 - P₆——给B₁和B₃的供应率要相同;
 - P₇——力求总运费最省。
- 试求满意的调度方案。

产地销地	B1	B2	В3	B4	产量
A 1	5	2	6	7	300
A2	3	5	4	6	200
A3	4	5	2	3	400
销量	200	100	450	250	900/1000

· Computer Science and Technology

解: 先用表上作业法求得最小运费方案,此时最小运费392950元。37

产地销地	B1	B2	В3	B4	产量
A1 A2 A3 虚设点	200 0	100	200 250	150 100	300 200 400 100
销量	200	100	450	250	1000/1000

• 供应约束:
$$x_{11} + x_{12} + x_{13} + x_{14} \le 300$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 200$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 400$$

• 需求约束:
$$x_{11} + x_{21} + x_{31} + d_1^- - d_1^+ = 200$$

$$x_{12} + x_{22} + x_{32} + d_2^- - d_2^+ = 100$$

$$x_{13} + x_{23} + x_{33} + d_3^- - d_3^+ = 450$$

$$x_{14} + x_{24} + x_{34} + d_4^- - d_4^+ = 250$$

2014/4/14 38

- A_3 向 B_1 提供的产量不少于100: $x_{31} + d_5^- d_5^+ = 100$
- 每个销地的供应量不少于其需求量的80%:

$$x_{11} + x_{21} + x_{31} + d_6^- - d_6^+ = 200 \times 80\%$$

$$x_{12} + x_{22} + x_{32} + d_7^- - d_7^+ = 100 \times 80\%$$

$$x_{13} + x_{23} + x_{33} + d_8^- - d_8^+ = 450 \times 80\%$$

$$x_{14} + x_{24} + x_{34} + d_9^- - d_9^+ = 250 \times 80\%$$

• 调运方案的总运费不超过最小运费的10%:

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + d_{10}^{-} - d_{10}^{+} = 2950 \times (1 + 10\%)$$

• 因路段问题,尽量避免安排将A2的产品运往B4:

$$x_{24} + d_{11}^- - d_{11}^+ = 0$$

给B₁和B₃的供应率要相同:

$$(x_{11} + x_{21} + x_{31}) - \frac{200}{450}(x_{13} + x_{23} + x_{33}) + d_{12}^{-} - d_{12}^{+} = 0$$

2014/4/14 39

• 力求总运费最省:

$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij} + d_{13}^{-} - d_{13}^{+} = 2950$$

• 目标函数为:

$$\min z = P_1 d_4^- + P_2 d_5^- + P_3 (d_6^- + d_7^- + d_8^- + d_9^-) + P_4 d_{10}^+ + P_5 d_{11}^+ + P_6 (d_{12}^- + d_{12}^+) + P_7 d_{13}^+$$

• 计算结果可得: (过程略)

产地销地	B1	B2	В3	B4	产量
A 1		100		200	300
A2	90		110		200
A3	100		250	50	400
虚设点	10			90	100
销量	200	100	450	250	1000/1000

5.5 应用举例

2014/4/14 40

• 目标规划在信息领域

- 仅考虑吞吐量目标达到最大情况下的求解为:

$$P: \max(T_{12} + T_{13} + T_{14} + T_{25} + T_{45})$$

$$S: T_{12} + T_{13} + T_{14} \le 1$$
$$T_{25} + T_{45} \le 1$$

$$- T_{12} = 1, T_{45} = 1, T_{13} = 0, T_{14} = 0, T_{25} = 0$$

- 为了避免单个节点出现"饿死"情况而产生的约束条件:

- 不同节点聚集流之和相等;
- 同一个节点流出的不同流分配到的时间片相等。

$$\min z = P_1 \left(\sum_{k=1}^{3} (w_{1k}^- d_k^- + w_{1k}^+ d_k^+) \right) + P_2 \left(\sum_{k=4}^{6} (w_{2k}^- d_k^- + w_{2k}^+ d_k^+) \right)$$

$$\begin{vmatrix} T_{12} + T_{13} + T_{14} - T_{25} + d_1^- - d_1^+ = 0 \\ T_{12} + T_{13} + T_{14} - T_{45} + d_2^- - d_2^+ = 0 \\ T_{25} - T_{45} + d_3^- - d_3^+ = 0 \end{vmatrix} \Rightarrow \frac{\text{TAP1} \cdot \text{TAP2} \cdot \text{TAP4节点的聚集流分}}{\text{配的时间片之和大致相等}}$$

$$\begin{vmatrix} T_{12} - T_{13} + d_4^- - d_4^+ = 0 \\ T_{12} - T_{14} + d_5^- - d_5^+ = 0 \\ T_{13} - T_{14} + d_6^- - d_6^+ = 0 \end{vmatrix}$$
 \Rightarrow 从TAP1发出的不同流分配的时间片大致相等

$$T_{12} + 2 \times T_{13} + 3 \times T_{14} + 2 \times T_{25} \le 1 \Rightarrow \text{Link 2}$$
的独立集时间片之和不超过1

$$|T_{13} + 2 \times T_{14} + 3 \times T_{25} + T_{45} \le 1 \Rightarrow Link3$$
的独立集时间片之和不超过1

$$T_{ij} > 0, 1 \le i < j \le 5$$

$$d_{i}^{-}, d_{i}^{+} \geq 0, i = 1, \dots, 6$$

$$T_{12} = T_{13} = T_{14} = 0.07$$

 $T_{25} = T_{45} = 0.20$

本章完