

Data science for Connected Health Devices

Merck - SDSC

Why this presentation

"Where do you see yourself in 5 years?"

To understand better

- What would you do in the near future
- What is data science in industry like
- Why is Merck an attractive company for data science
- What kind of problems you may need to solve

To ask us questions

Who am I?

B.Eng. in Electronics, Telecom & IT, Technical University Iasi

Erasmus exchange,
Aix-Marseille University

M.Sc. Micro- and
Nanotechnologies of ICT,
PoliTo, Grenoble INP, EPFL

Master thesis
@ CSEM

Application Engineer @ Melexis

COS in Applied Data Science – ML, EPFL

Data Scientist

What my friends think I do

What my boss thinks I do

What my mom thinks I do

What I think I do

What society thinks I do

What I actually do

No, really...

Merck - Setting the Context

 $12\,$ years of experience

500 000 devices produced

20 000 connected patients

50 countries

Data Science in the Merck – SDSC Collaboration

The "Why"

Can we cluster patients in categories?

Can we identify improvements in the use of our services ?

How to visualize all this in a reproducible way?

What are the meaningful insights?

What are the key parameters influencing the behaviour of a patient?

How to extract insights from all this data?

The "How" – Data Process

1

Data Gathering

- via MySQL queries into python
- > 100 tables
- Find your way and merge relevant tables

2

Cleaning

- only patients with at least 1 calculated adherence point
- only patients who started after 2014 and logged no data in 2019
- remove nullentries

3

Feature Engineering

- Patient related data
- Adherence related data
- Device settings data, aggregations, majority voting
- Creating new (relevant) features

Output dataset

- Thousands of patients globally
- One line per patient
 - Features
 - Target

Adherence

Adherence

% of intake dose vs. prescribed dose

Duration of use

Duration of use

for how long is a patient following the treatment

The "What"

Regular Cross-communication

- Business to define their questions and/or demanded visualizations
- Iterative process

Reproducible reports

- Automatic generation of reports
 - Worldwide
 - Per country

generate_graphs.ipynb
generate_reports.ipynb

10.1. Comparison between clinics

The following table is ordered by the number of active users in 2019. When a quantity cannot be calculated 10 users), its corresponding cell is specified as "N/A".

Rank	Clinic	# Active Users 2015	# Active Users 2016	# Active Users 2017	# Active Users 2018	# Active Users 2019	Adherence[%] (median, last 12 months)
1		0	0	0	11	39	96.8
2		22	34	55	53	35	85.7
3		2	2	9	30	33	94.8
4		0	5	21	40	31	92.9
5		0	1	8	18	26	98.6
6		4	23	35	38	25	96.1
7		0	2	14	21	23	95.9
8		3	21	22	19	20	90.5
9		0	3	6	23	17	95.7
10		0	0	0	9	12	89.0

Duration of use of a device, per age group

• What are meaningful insights?

- Feature creation
- Processing
- Reverse cumulative distribution
- Churn analysis & prediction

Duration of use of a device, per country

Interpretability

What are the key parameters influencing the outcome?

Main discriminators:

- Injection speed
- Injection time
- Injection sites

Clustering for patient segmentation

Can we cluster patients in different categories?

- K-Means clustering
- Dimensionality reduction

Conclusions

Pharma is a very rigorous industry, and interpretability is key

"Traditional" machine-learning algorithms are therefore chosen more frequently than Deep Learning

The feeling of seeing your work reaching so many different people is just great!

Thank you!

Swiss Data Science (@SDSCdatascience)

Questions?