Economics

Paper 3

Further macroeconomics

Imperial Secondary Examinations Authority January 1920 examinations

Answer questions in the space provided. *If maths are required, show your working.* If you require more space, attach with Treasury tag a piece of paper to this examination, clearly number where you left off, and provide cross-reference to the page where further work is located.

Do not write on the back of examination materials.

Vou	will	receive n	o marks if you	ı interfere	with the	scoring how	at the h	ottom (of this nage
TOU	vvIII	receive ii	O IIIaiks II vol	, ппепеге	· willi tile	SCOTHIP DOX	cai ine o	OHOHI	DI HIIS DAPE

Institution:					
Examinations code: _					

Do not make marks in this table.

Question	1	2	3	4	Total
Marks	14	14	6	16	50
Score					

1. (14 marks) Show that for a household optimising as follows—

$$\max_{c_t, a_{t+1}} \sum_{t=0}^{T} \beta^t \mathbf{u}(c_t)$$
s.t. $c_t + a_{t+1} = w_t + a_t (1 + r_t)$ for all t
 $c_t \ge 0$ for all t

a steady state solution implies that the interest rate is equal to the time discount factor. Recall that $\beta = 1/(1-\rho)$.

2. (a) (12 marks) Show that for a household optimising as follows—

$$\max_{c_t, a_{t+1}} \sum_{t=0}^{T} \beta^t \mathbf{u}(c_t)$$
s.t. $c_t + a_{t+1} = w_t + a_t (1 + r_t)$ for all t
 $c_t \ge 0$ for all t

household consumption is proportional to lifetime income.

(b) (2 marks) Give two compelling reasons why a real world actor would be unable to effect such a outcome.

Page 2 of 4

Paper continues...

3. (6 marks) Assume that the intertemporal elasticity of substitution parameter σ is 2. Using a utility function with the form—

$$\mathbf{u}(c_t) = \frac{c_t^{1-\sigma} - 1}{1-\sigma}$$

show that a equal-disutility taxation policy must be progressive.

4. (16 marks) Show that in an economy directed by a social planner optimising as follows—

$$\max_{c_t, k_{t+1}} \sum_{t=0}^{T} \beta^t \mathbf{u}(c_t)$$
s.t. $c_t + k_{t+1} = k_t^{\alpha} (A_t l_t)^{1-\alpha} + (1-\delta)k^t$ for all t

$$c_t \ge 0; k_t \ge 0 \text{ for all } t$$

labour-augmenting technological growth produces a stable output capital-labour ratio.