NYPD data project

2022-11-03

```
knitr::opts_chunk$set(echo = TRUE)
library(tidyverse)
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.3.6 v purrr 0.3.5
## v tibble 3.1.8 v dplyr 1.0.10
## v tidyr 1.2.1 v stringr 1.4.1
## v readr 2.1.3 v forcats 0.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(lubridate)
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
library(tibble)
```

Getting data

```
url_data <- "https://data.cityofnewyork.us/api/views/833y-fsy8/rows.csv?accessType=DOWNLOAD"</pre>
```

Reading the data

```
nypd_data <- read.csv(url_data)</pre>
```

Tidying the data

summary(nypd_data)

```
INCIDENT_KEY
                         OCCUR_DATE
                                             OCCUR_TIME
                                                                   BORO
##
##
   Min.
           : 9953245
                        Length: 25596
                                            Length: 25596
                                                               Length: 25596
   1st Qu.: 61593633
                        Class : character
                                            Class : character
                                                               Class : character
##
   Median: 86437258
                        Mode :character
                                            Mode :character
                                                               Mode :character
##
   Mean
           :112382648
##
   3rd Qu.:166660833
   Max.
           :238490103
##
##
##
       PRECINCT
                     JURISDICTION_CODE LOCATION_DESC
                                                           STATISTICAL_MURDER_FLAG
##
   Min. : 1.00
                            :0.0000
                                        Length: 25596
                                                           Length: 25596
   1st Qu.: 44.00
                     1st Qu.:0.0000
                                        Class :character
                                                           Class : character
##
   Median : 69.00
                     Median :0.0000
                                        Mode :character
                                                           Mode :character
##
##
  Mean
          : 65.87
                     Mean
                            :0.3316
   3rd Qu.: 81.00
                     3rd Qu.:0.0000
##
   Max.
          :123.00
                     Max.
                             :2.0000
##
                     NA's
                            :2
##
   PERP_AGE_GROUP
                         PERP_SEX
                                                              VIC_AGE_GROUP
                                            PERP_RACE
   Length: 25596
                                                              Length: 25596
##
                       Length: 25596
                                           Length: 25596
   Class :character
                       Class :character
                                           Class :character
                                                              Class : character
##
##
   Mode :character
                       Mode :character
                                           Mode :character
                                                              Mode :character
##
##
##
##
                                             X COORD CD
                                                               Y COORD CD
##
      VIC SEX
                         VIC RACE
                       Length: 25596
                                                 : 914928
                                                                    :125757
##
   Length: 25596
                                           Min.
                                                             \mathtt{Min}.
##
   Class :character
                       Class :character
                                           1st Qu.:1000011
                                                             1st Qu.:182782
   Mode :character
                                           Median :1007715
                                                             Median :194038
##
                       Mode :character
##
                                           Mean :1009455
                                                             Mean
                                                                    :207894
##
                                           3rd Qu.:1016838
                                                             3rd Qu.:239429
                                           Max.
                                                  :1066815
                                                             Max.
                                                                    :271128
##
##
##
       Latitude
                      Longitude
                                        Lon_Lat
                          :-74.25
                                      Length: 25596
##
   Min.
          :40.51
                    Min.
##
   1st Qu.:40.67
                    1st Qu.:-73.94
                                      Class : character
   Median :40.70
                    Median :-73.92
                                     Mode :character
##
##
  Mean
          :40.74
                    Mean
                           :-73.91
   3rd Qu.:40.82
                    3rd Qu.:-73.88
##
##
   Max.
           :40.91
                           :-73.70
                    Max.
##
nypd_data <- nypd_data %>%
  select(OCCUR_DATE:VIC_RACE) %>%
  select(-c(PRECINCT:LOCATION_DESC)) %>%
  select(-c(PERP_SEX, PERP_RACE, VIC_SEX, VIC_RACE))
nypd_data <- nypd_data %>% filter(PERP_AGE_GROUP > 0)
nypd_data <- nypd_data %>% filter(VIC_AGE_GROUP > 0)
nypd_data$STATISTICAL_MURDER_FLAG <- replace(nypd_data$STATISTICAL_MURDER_FLAG, nypd_data$STATISTICAL_M
nypd_data$STATISTICAL_MURDER_FLAG <- replace(nypd_data$STATISTICAL_MURDER_FLAG, nypd_data$STATISTICAL_M
nypd_data <- nypd_data %>%
```

```
rename(death = 'STATISTICAL_MURDER_FLAG',
        date = 'OCCUR_DATE',
        time = 'OCCUR_TIME')
nypd_data$death <- as.double(nypd_data$death)</pre>
nypd_data <- nypd_data %>%
 mutate(date = mdy(date)) %>%
 mutate(shooting = 1)
nypd_data <- nypd_data[(nypd_data$PERP_AGE_GROUP != "1020" & nypd_data$PERP_AGE_GROUP != "224" & nypd_d
nypd_data <- nypd_data[(nypd_data$VIC_AGE_GROUP != "UNKNOWN"), ]</pre>
nypd_data <- nypd_data %>%
 mutate(month = month(date), year = year(date))
summary(nypd_data)
                                               BORO
##
        date
                            time
                                                                  death
                       Length: 10579
## Min.
          :2006-01-01
                                           Length:10579
                                                              Min.
                                                                     :0.0000
## 1st Qu.:2009-04-01
                        Class : character Class : character
                                                              1st Qu.:0.0000
                        Mode :character Mode :character
## Median :2013-01-23
                                                              Median :0.0000
## Mean
         :2013-07-23
                                                              Mean
                                                                    :0.2495
## 3rd Qu.:2017-09-10
                                                              3rd Qu.:0.0000
## Max.
          :2021-12-31
                                                              Max.
                                                                    :1.0000
## PERP_AGE_GROUP
                      VIC_AGE_GROUP
                                                         month
                                            shooting
## Length:10579
                      Length: 10579
                                         Min. :1
                                                     Min. : 1.000
## Class :character
                      Class : character
                                         1st Qu.:1
                                                     1st Qu.: 4.000
## Mode :character Mode :character
                                         Median :1
                                                     Median : 7.000
##
                                                     Mean : 6.693
                                         Mean :1
                                                     3rd Qu.: 9.000
##
                                         3rd Qu.:1
##
                                         Max. :1
                                                     Max. :12.000
        year
## Min.
          :2006
## 1st Qu.:2009
## Median :2013
## Mean :2013
## 3rd Qu.:2017
## Max. :2021
all_shootings = sum(nypd_data$shooting)
all_death = sum(nypd_data$death)
partial = all_death / all_shootings
partial
```

[1] 0.2494565

Visualizing and Analyzing the data

```
shootings_by_BORO <- nypd_data %>%
  group_by(BORO) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
```

```
shootings_by_BORO %>%
ggplot(aes(x = BORO, y = shooting)) + geom_bar(stat = "identity")
```



```
shootings_by_perp_age <- nypd_data %>%
  group_by(PERP_AGE_GROUP) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
shootings_by_perp_age %>%
  ggplot(aes(x = PERP_AGE_GROUP, y = shooting)) + geom_bar(stat = "identity")
```



```
shootings_by_vic_age<- nypd_data %>%
  group_by(VIC_AGE_GROUP) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
shootings_by_vic_age %>%
  ggplot(aes(x = VIC_AGE_GROUP, y = shooting)) + geom_bar(stat = "identity")
```



```
shootings_by_date <- nypd_data %>%
  group_by(date) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
shootings_by_date %>%
  ggplot(aes(x = date, y = shooting)) + geom_point(aes(color = "shooting")) + geom_point(aes(y = death, theme(legend.position = "bottom", axis.text.x = element_text(angle = 90)) +
  labs(title = "NYPD data", y = NULL)
```

NYPD data


```
shootings_by_year <- nypd_data %>%
  group_by(year) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
shootings_by_year %>%
  ggplot(aes(x = year, y = shooting, fill = death)) + geom_bar(stat = "identity") +
  theme(legend.position = "bottom", axis.text.x = element_text(angle = 90)) +
  labs(title = "NYPD data", y = NULL)
```



```
shootings_by_year %>%
  ggplot(aes(x = year, y = percentage)) + geom_line(aes(color = "percentage")) + geom_point(aes(color = scale_y_log10() +
  theme(legend.position = "bottom", axis.text.x = element_text(angle = 90)) +
  labs(title = "NYPD data", y = NULL)
```



```
shootings_by_month <- nypd_data %>%
  group_by(month) %>%
  summarize(death = sum(death), shooting = sum(shooting)) %>%
  mutate(percentage = (death / shooting) * 100) %>%
  ungroup()
all_shootings = sum(shootings_by_month$shooting)
shootings_by_month <- shootings_by_month %>%
  mutate(part_of_whole = shooting / all_shootings)
shootings_by_month
```

```
## # A tibble: 12 x 5
##
      month death shooting percentage part_of_whole
##
      <dbl> <dbl>
                      <dbl>
                                  <dbl>
                                                 <dbl>
               191
                        746
                                   25.6
                                                0.0705
##
    1
          1
   2
                        547
                                   23.4
##
          2
               128
                                                0.0517
    3
               166
                        708
                                   23.4
##
          3
                                                0.0669
    4
          4
               214
                        814
                                   26.3
                                                0.0769
##
                                   27.0
    5
##
          5
               273
                       1011
                                                0.0956
          6
##
    6
               252
                       1108
                                   22.7
                                                0.105
##
   7
          7
               270
                       1162
                                   23.2
                                                0.110
##
    8
          8
               275
                       1173
                                   23.4
                                                0.111
    9
                        971
                                   27.7
##
          9
               269
                                                0.0918
## 10
         10
               209
                        851
                                   24.6
                                                0.0804
## 11
               187
                        746
                                   25.1
                                                0.0705
         11
## 12
         12
               205
                        742
                                   27.6
                                                0.0701
```


From the analysis, months May, June, July and August have higher number of shootings than other months. How and why this is the case is an interesting question.

Modeling the data

Predicting number of deaths with month and shooting number as independent variables.

```
mod1 <- lm(death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP + year + month, data = nypd_data)
mod2 <- lm(death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP, data = nypd_data)
summary(mod1)</pre>
```

```
##
## Call:
## lm(formula = death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP +
##
       year + month, data = nypd_data)
##
## Residuals:
                1Q Median
##
       Min
                                ЗQ
                                        Max
## -0.5115 -0.2676 -0.2183 -0.1785 0.8247
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
```

```
## PERP AGE GROUP45-64 0.1360379 0.0205414
                                           6.623 3.70e-11 ***
## PERP_AGE_GROUP65+
                      0.1870450 0.0582256
                                            3.212 0.00132 **
## VIC_AGE_GROUP25-44
                      0.0164761 0.0092067
                                           1.790 0.07355 .
## VIC_AGE_GROUP45-64
                      0.0279200 0.0163164
                                           1.711 0.08708 .
## VIC_AGE_GROUP65+
                      0.0957144 0.0445115
                                            2.150 0.03155 *
## year
                      -0.0009447 0.0008823
                                           -1.071 0.28432
## month
                      0.0012021 0.0013208
                                            0.910 0.36280
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4307 on 10566 degrees of freedom
## Multiple R-squared: 0.01044,
                                  Adjusted R-squared: 0.009319
## F-statistic: 9.292 on 12 and 10566 DF, p-value: < 2.2e-16
summary(mod2)
##
## Call:
## lm(formula = death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP, data = nypd_data)
## Residuals:
##
               1Q Median
      Min
                              3Q
                                     Max
## -0.5016 -0.2692 -0.2197 -0.1902
##
## Coefficients:
##
                      Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      -0.024089 0.010355
## BOROBROOKLYN
                                          -2.326 0.02002 *
                                          -2.172 0.02989 *
## BOROMANHATTAN
                     -0.029505 0.013585
## BOROQUEENS
                     -0.018504 0.013002 -1.423 0.15473
## BOROSTATEN ISLAND
                     -0.009191 0.021618 -0.425 0.67074
## PERP_AGE_GROUP25-44 0.057998 0.008842
                                           6.559 5.66e-11 ***
## PERP_AGE_GROUP45-64 0.134707 0.020495
                                           6.573 5.18e-11 ***
## PERP_AGE_GROUP65+
                      0.185851 0.058209
                                           3.193 0.00141 **
                      0.015610 0.009166
## VIC_AGE_GROUP25-44
                                           1.703 0.08859 .
## VIC_AGE_GROUP45-64
                      0.026935
                               0.016285
                                           1.654 0.09817
## VIC_AGE_GROUP65+
                      0.096008
                                0.044505
                                           2.157 0.03101 *
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4307 on 10568 degrees of freedom
## Multiple R-squared: 0.01025,
                                  Adjusted R-squared: 0.009318
## F-statistic: 10.95 on 10 and 10568 DF, p-value: < 2.2e-16
mod3 <- glm(death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP + year + month, data = nypd_data, family = "b
summary(mod3)
```

1.190 0.23412

-1.431 0.15259

6.629 3.55e-11 ***

2.1126369 1.7755009

-0.0186006 0.0130026

-0.0101094 0.0216275 -0.467 0.64020

(Intercept)
BOROBROOKLYN

BOROMANHATTAN

BOROSTATEN ISLAND

PERP AGE GROUP25-44 0.0588642 0.0088803

BOROQUEENS

```
##
## Call:
## glm(formula = death ~ BORO + PERP AGE GROUP + VIC AGE GROUP +
      year + month, family = "binomial", data = nypd_data)
##
## Deviance Residuals:
      Min
          10
                   Median
                                30
                                       Max
## -1.2318 -0.7883 -0.7002 -0.6355
                                     1.8511
##
## Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
                      8.948512 9.555536
                                         0.936 0.34903
## (Intercept)
## BOROBROOKLYN
                     ## BOROMANHATTAN
## BOROQUEENS
                     ## BOROSTATEN ISLAND
                     -0.053502
                               0.115371
                                         -0.464 0.64283
## PERP_AGE_GROUP25-44 0.321362 0.048301
                                         6.653 2.87e-11 ***
## PERP AGE GROUP45-64 0.676135 0.101646
                                          6.652 2.89e-11 ***
## PERP_AGE_GROUP65+
                      0.884321 0.275997
                                          3.204 0.00135 **
## VIC AGE GROUP25-44
                      0.091378
                              0.050276
                                          1.818 0.06914
## VIC_AGE_GROUP45-64
                     0.150504
                              0.085992
                                          1.750 0.08008
## VIC_AGE_GROUP65+
                      0.468290
                              0.218890
                                         2.139 0.03240 *
## year
                     -0.005102
                                0.004748 -1.074 0.28262
## month
                      0.006541
                                0.007128
                                         0.918 0.35882
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 11885 on 10578 degrees of freedom
## Residual deviance: 11777 on 10566 degrees of freedom
## AIC: 11803
## Number of Fisher Scoring iterations: 4
mod4 <- glm(death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP, data = nypd_data, family = "binomial")
summary (mod4)
##
## Call:
## glm(formula = death ~ BORO + PERP_AGE_GROUP + VIC_AGE_GROUP,
##
      family = "binomial", data = nypd_data)
##
## Deviance Residuals:
               1Q
                    Median
                                       Max
## -1.2087 -0.7915 -0.7023 -0.6542
                                     1.8150
## Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -1.27408
                                0.05306 -24.012 < 2e-16 ***
## BOROBROOKLYN
                     -0.12908
                                0.05557 -2.323 0.02020 *
## BOROMANHATTAN
                     -0.15903
                                0.07368 -2.158 0.03090 *
## BOROQUEENS
                                0.06975 -1.414 0.15750
                     -0.09859
## BOROSTATEN ISLAND
                   -0.04865
                                0.11532 -0.422 0.67313
```

```
## PERP AGE GROUP25-44
                        0.31658
                                   0.04810
                                             6.582 4.63e-11 ***
## PERP_AGE_GROUP45-64
                        0.66883
                                   0.10136
                                             6.598 4.16e-11 ***
## PERP AGE GROUP65+
                        0.87767
                                   0.27586
                                             3.182
                                                    0.00146 **
## VIC_AGE_GROUP25-44
                                                     0.08377 .
                        0.08655
                                   0.05005
                                              1.729
## VIC_AGE_GROUP45-64
                        0.14485
                                   0.08582
                                              1.688
                                                     0.09146
## VIC AGE GROUP65+
                        0.46978
                                   0.21879
                                                     0.03178 *
                                             2.147
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
##
   (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 11885
                             on 10578
                                       degrees of freedom
## Residual deviance: 11779
                             on 10568
                                       degrees of freedom
## AIC: 11801
##
## Number of Fisher Scoring iterations: 4
```

From the first regression, I see that the coefficients for year and month are not statistically significant, so I drop them and do another regression with the other variables. Then I do a logistic regression. I conclude that boroughs, perpetrator age groups and victim age groups are statistically significant variables when predicting if there is a death that results from a shooting incident in NYC. There may be a bias because there could be other important variables that have been omitted in this analysis.