決定木アルゴリズム: 発展

経済学のための機械学習入門

川田恵介

Table of contents

交差推定	2
ポイント	2
交差推定	2
交差検証	2
数値例: 単純平均 VS 決定木 (深さ 2)	3
数値例: 単純平均 VS 決定木 (深さ 2)	3
数值例: 単純平均	3
数值例: 単純平均	4
数值例: 単純平均	4
トレードオフの緩和	4
予測研究の典型的ワーク	5
正則化	6
剪定	6
Step 1. 深い木の推定	6
数値例: サイコロゲーム	6
例	7
例	7
Setp 2. 剪定	8
例: 剪定	8
例: 剪定	9
Step 2. 剪定	9
- Setp 2. 剪定: 罰則付き最適化	9
・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	0
余談: "経済理論で学ぶ機械学習"	
Tuning space	
例: 交差推定で生成される決定木	

実例: 2000 事例で取引年予測 (シード値 1)	11
まとめ	12
実例: 2000 事例で取引年予測 (シード値 2)	12
補論: 最適化	12
余談: 良性の過剰適合	13
Reference	1.3

交差推定

- Cross fitting
- "サンプル分割によるサブサンプルサイズ減少"を緩和
 - そこそこのサンプルサイズ $n \le 50000$ で通常推奨される (Bischl et al. 2021)
- 格差/因果推論への応用においても重要
 - "すべての"機械学習 (+ 因果/格差推定) の包括パッケージで実装されている

ポイント

- 誤差項 $u \coloneqq Y E_P[Y|X]$ 分布 ("データ固有") が、推定されたモデルにも、評価用事例にも入り込む
 - 相関が生じ、正しく評価できない
- 誤差項分布が、Training/Validation データで無相関であれば OK
 - 「役割の固定」は本質的ではない

交差推定

- 1. データをいくつか (2,5,10,20 など) に分割
- 2. 第1サブデータ 以外 を用いて予測モデルを試作
- 3. 第1サブデータに予測値を適用
- 4. 全てのサブデータに 2,3 を繰り返す

交差検証

- Cross validation
- 5. 交差推定で導出した予測値と実現値について、予測誤差を推定

数値例: 単純平均 VS 決定木 (深さ 2)

数値例: 単純平均 VS 決定木 (深さ 2)

A tibble: 6 x 5

	${\tt Group}$	Y	X	${\tt PredMean}$	${\tt PredTree}$
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	NA	NA
4	2	5	2	NA	NA
5	3	4	1	NA	NA
6	3	4	1	NA	NA

数值例: 単純平均

A tibble: 6 x 5

	Group	Y	Х	${\tt PredMean}$	PredTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	5.25	6
4	2	5	2	5.25	6
5	3	4	1	NA	NA
6	3	4	1	NA	NA

数值例: 単純平均

A tibble: 6 x 5

Group		Y	Х	PredMean	PredTree
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4
2	1	7	1	4.25	4
3	2	4	3	5.25	6
4	2	5	2	5.25	6
5	3	4	1	5.5	7
6	3	4	1	5.5	7

数值例: 単純平均

A tibble: 6 x 7

	${\tt Group}$	Y	X	${\tt PredMean}$	${\tt PredTree}$	${\tt ErrorMean}$	${\tt ErrorTree}$
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	1	6	3	4.25	4	3.06	4
2	1	7	1	4.25	4	7.56	9
3	2	4	3	5.25	6	1.56	4
4	2	5	2	5.25	6	0.0625	1
5	3	4	1	5.5	7	2.25	9
6	3	4	1	5.5	7	2.25	9

- 平均二乗誤差 (Mean) 2.79
- 平均二乗誤差 (Tree) 6

トレードオフの緩和

- ・ サンプル分割法では、Training データに多くの事例を割くと、Validation データに割ける事例が減り、評価の精度が下がる (推計誤差の拡大 ⇔ Validation データへの依存)
- 交差検証では、すべての事例について予測値を計算し、その平均を取るので、評価の精度を確保できる
- 理論的検討: アルゴリズムの相対比較について有効 (Wager 2019)
 - 最終的な予測モデルの性能検証には使えない

予測研究の典型的ワーク

正則化

- Hyperparameters ~ EmpricialRisk 最小化では決定できないパラメータ
- 決定木については、木の深さ、最小サンプルサイズ、"剪定度合い"などなど

剪定

- 最大分割回数は、自然な Hyper parameter だが、、、
- 浅い木は、将来の重要な分割を見逃してしまう可能性がある
- 剪定: 一旦非常に深い木を推定 (Approximation error を減らす) した後に、単純化 (正則化) を行う
 - 重要ではないサブグループについて、再結合

Step 1. 深い木の推定

- 停止条件を緩めると、一般にどこまでもサブサンプル分割が行われる
 - 平均値が異なるサブグループが見つかる限り止まらない

数値例: サイコロゲーム

- ディーラーは、サイコロを5つふり、4つ $(X_1,..,X_4)$ プレイヤーに見せる
 - プレイヤーは残り一つの出目 Y を予測
- サイコロの出目は、uniform 分布 (完全無相関) に決定
 - 理想の予測モデル $g(X_1,..,X_4)$
- "見"を 200 回行いデータ収集

例

Setp 2. 剪定

• 分割しても平均二乗誤差があまり減らないサブグループから再結合していく

例: 剪定

例: 剪定

Step 2. 剪定

- どこまで剪定する?
- 理想は Population Risk $E_P[(Y-g(X))^2]$ 最小化
 - できない
- ・ Empirical Risk $E[(Y_i g(X_i))^2]$ はナンセンス
 - 練習問題: なぜ?

Setp 2. 剪定: 罰則付き最適化

• 以下を最小化するようにサブグループを再結合

$$EmpiricalRisk + \underbrace{\lambda \times \big| T \big|}_{\text{filling}}$$

- λ : Hyper Parameter (rpart 関数では cp)
 - 交差推定で選択

余談: "経済理論で学ぶ機械学習"

- 経済理論の典型的問題設定: 社会厚生"関数"を明示
 - エージェントの意思決定と社会厚生との齟齬を解消
 - エージェントの意思決定を利得最大化問題として記述
- 典型的アイディア: エージェントの最大化問題の修正 (課税/補助金/所得移転)
 - エージェントの意思決定を活用しつつ、社会厚生との齟齬解消

余談: "経済理論で学ぶ機械学習"

- Population Risk = 社会厚生
- Empirical Risk = 利得
- 罰則項 = 複雑さへの税金

Tuning space

- 多くのアルゴリズムは、複数の Hyper paramter を持つ
 - 有界の範囲から探す必要がある
 - どの範囲で探すか?
- mlr3tuningspaces
 - λ (cp) , 最小サンプルサイズ (minsplit), 分割を試みる最小サンプルサイズ (minbucket) を交差推定で最適化

例: 交差推定で生成される決定木

3.5 100%

実例: 2000 事例で取引年予測 (シード値 1)

まとめ

- Approximation error の削減は、現代的な PC + アルゴリズムであれば容易
 - 複雑にすればいいだけ!!!
- モデルを適切に単純化 (HyperParameter を適切に選択) することで、Estimation error を削減する (正 則化) に工夫が必要
- 正則化を行ったとしても、一般に決定木の EstimationError は大きい
 - 対策: モデル集計 (RandomForest)

実例: 2000 事例で取引年予測 (シード値2)

補論: 最適化

- 本講義では、Random Search を使用
 - 複雑なシステムについての最適化は、長年の研究課題
 - mlr3tuning (mlr3verse に同梱) では、Grid Search や Iterated Racing なども実装
 - より発展的なアルゴリズムも mlr3mbo (baysian optimization) や mlr3hyperband (hyperband) で実装

- Hyper parameter のスペースの具体例は、mlr3tuningspace (mlr3verse に同梱) で提案
- サーベイ: Bischl et al. (2021) (mlr3verse の author も含む)

余談: 良性の過剰適合

- 剪定などによる推定パラメタの削減は、教師付き学習の伝統的戦略
 - 伝統的な実証研究でも、研究者が頑張ってやっていた
- パラメタを大幅に増やす (サンプルサイズを超える) と、過剰適合が"減り!!;'、予測性能が改善する場合がある (Bartlett et al. 2020; Hastie et al. 2022)
 - Benign overfitting

Reference

Bartlett, Peter L, Philip M Long, Gábor Lugosi, and Alexander Tsigler. 2020. "Benign Overfitting in Linear Regression." *Proceedings of the National Academy of Sciences* 117 (48): 30063–70.

Bischl, B., Martin Binder, Michel Lang, Tobias Pielok, Jakob Richter, Stefan Coors, Janek Thomas, et al. 2021. "Hyperparameter Optimization: Foundations, Algorithms, Best Practices, and Open Challenges." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.

Hastie, Trevor, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. 2022. "Surprises in High-Dimensional Ridgeless Least Squares Interpolation." *The Annals of Statistics* 50 (2): 949–86.

Wager, Stefan. 2019. "Cross-Validation, Risk Estimation, and Model Selection." arXiv: Methodology.