

N = 16 < 30 X = 45474	517de18
S = \$ 764 98% C.	I. for U.
X ± Zah Vn	
· Normal:	u T
£:	
$5474 \pm t_{1/2}$ 76 $d.f. = n-1=15$	16
5474 ± 497.07 98% C.I. for U is: [4976.93, 597/.03

n > 30 (arge), When ~ Normally distributed U= = U with 0= = 1/Vn (P

point estimate X ± Zyz. Vn C. I. for us: St. deviation C.I. for M, - Mz: X, - X2) + Zy. In + T2

point estimate

of M.-M2

top of X1-X2 Assume that our two samples are independent: variance $(\bar{\chi}_1 - \bar{\chi}_2) = \sigma_1^2 + \sigma_2^2$ n = 56 x = 6.82 $n_2 = 40$ $x_2 = 625$ $S_2 = 0.75$ $(6.82 - 6.25) \pm 1.9855.$ 0.64^{2} 0.64^{2} 0.75^{2} 0.64^{2} 0.75^{2} 0.64^{2} 0.64^{2} 0.75^{2} 0.57 ± 0.29 (0.23, 0.86) Yes! 99.5%: (-0.11,0.95)
parade jn conclusive