Universidad de Guadalajara

Departamento de Electrónica

Apuntes de clase

 $M\'{e}todos~Matem\'{a}ticos~2 \ (con~Maxima)$

Eduardo Vázquez Díaz lalohao@gmail.com

${\rm \acute{I}ndice}$

1.	Repa	aso	3	
	1.1.	Solución	4	
2.	Func	iones de varias variables	14	
	2.1.	Definición de una función de varias variables	14	
	2.2.	Ejemplos de funciones de varias variables	14	
			14	
			14	
3.	Difer	renciales	17	
	3.1.	Definición	17	
			17	
4.	Deriv	vadas parciales	18	
	4.1.	Notación para derivada parcial	18	
	4.2.	Ejemplo	18	
5.	Regla de la cadena para funciones de varias variables 23			
	5.1.	Ejemplo	23	
6.	Deriv	vada direccional	24	
	6.1.	Vectores en el espacio	24	
		6.1.1. Ejemplo		
		Derivadas direccionales y gradientes		
		6.2.1. Derivada direccional de f en la dirección de u		
		6.2.2. Ejemplo		

1. Repaso

Graficar, obtener el dominio y codominio (rango) de las siguientes funciones:

1.
$$x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$$

$$2. \ \frac{z^2}{4} - \frac{y^2}{9} - \frac{x^2}{4} = 1$$

$$3. \ \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$

4.
$$z = x^2 + y^2$$

5.
$$z^2 = \frac{x^2}{4} + \frac{y^2}{9}$$

$$6. \ z - y^2 + x^2 = 0$$

7.
$$16z + x^2 + 4y^2 = 0$$

$$8. \ 36 - x^2 - 4y^2 = 9z^2$$

9.
$$4x^2 + y^2 - z^2 = 16$$

$$10. 9z^2 - 4y^2 - x^2 = 36$$

Solución 1.1.

1. $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$ Despejamos z y graficamos con intervalos definidos, en este caso $\{x:$ (-5,5); y: (-5,5):

(%i0) solve(
$$[(x^2)+((y^2)/4)+((z^2)/9)=1]$$
, [z]);

(%00)
$$[z = -\frac{3\sqrt{-y^2 - 4x^2 + 4}}{2}, z = \frac{3\sqrt{-y^2 - 4x^2 + 4}}{2}]$$

(%i1) wxplot3d(($3*sqrt(-y^2-4*x^2+4)$)/2, [x,-5,5], [y,-5,5])

3*sqrt(-y^2-4*x^2+4)/2

$$2. \ \frac{z^2}{4} - \frac{y^2}{9} - \frac{x^2}{4} = 1$$

(%i2) solve(
$$[((z^2)/4)-((y^2)/9)-((x^4)/4)=1]$$
, [z]);

(%o2)
$$[z = -\frac{\sqrt{4y^2 + 9x^4 + 36}}{3}, z = \frac{\sqrt{4y^2 + 9x^4 + 36}}{3}]$$

(%i3) wxplot3d(sqrt($4*y^2+9*x^4+36$)/3, [x,-5,5], [y,-5,5])\$

$$3. \ \frac{x^2}{4} + \frac{y^2}{9} - \frac{z^2}{16} = 1$$

(%i4) solve([((x^2)/4)+((y^2)/9)-((z^2)/16)=1], [z]);

(%o4)
$$[z = -\frac{2\sqrt{4y^2 + 9x^2 - 36}}{3}, z = \frac{2\sqrt{4y^2 + 9x^2 - 36}}{3}]$$

(%i5) wxplot3d(($2*sqrt(4*y^2+9*x^2-36)$)/3, [x,-5,5], [y,-5,5])\$

4. $z = x^2 + y^2$

(%i6) wxplot3d((x^2)+(y^2), [x,-5,5], [y,-5,5])\$

$$5. \ z^2 = \frac{x^2}{4} + \frac{y^2}{9}$$

(%i7) solve($[z^2=((x^2)/4)+((y^2)/9)]$, [z]);

(%o7)
$$[z = -\frac{\sqrt{4y^2 + 9x^2}}{6}, z = \frac{\sqrt{4y^2 + 9x^2}}{6}]$$

(%i8) wxplot3d(sqrt($4*y^2+9*x^2$)/6, [x,-5,5], [y,-5,5])\$

6.
$$z - y^2 + x^2 = 0$$

(%i9) solve(
$$[z-y^2+x^2=0]$$
, $[z]$);

$$(\%09) [z = y^2 - x^2]$$

(%i10) wxplot3d(
$$y^2-x^2$$
, [x,-5,5], [y,-5,5])\$

7.
$$16z + x^2 + 4y^2 = 0$$

(
$$\%$$
i11) solve([16*z+x^2+4*y^2=0], [z]);

$$(\% \text{o}11) [z = -\frac{4 \, y^2 + x^2}{16}]$$

(%i12) wxplot3d($-(4*y^2+x^2)/16$, [x,-5,5], [y,-5,5])\$

(-4*y^2-x^2)/16

$$8. \ 36 - x^2 - 4y^2 = 9z^2$$

(%i13) solve([36-x^2-4*y^2=9*z^2], [z]);

(%o13)
$$[z = -\frac{\sqrt{-4y^2 - x^2 + 36}}{3}, z = \frac{\sqrt{-4y^2 - x^2 + 36}}{3}]$$

(%i14) wxplot3d(sqrt($-4*y^2-x^2+36$)/3, [x,-5,5], [y,-5,5])\$

sqrt(-4*y^2-x^2+36)/3

9.
$$4x^2 + y^2 - z^2 = 16$$

(
$$\%$$
i15) solve([4*x^2+y^2-z^2=16], [z]);

(%o15)
$$[z = -\sqrt{y^2 + 4x^2 - 16}, z = \sqrt{y^2 + 4x^2 - 16}]$$

(%i16) wxplot3d(sqrt(y^2+4*x^2-16), [x,-5,5], [y,-5,5])\$

$$10. 9z^2 - 4y^2 - x^2 = 36$$

(%i17) solve([9*z^2-4*y^2-x^2=36], [z]);

$$(\%017) [z = -\frac{\sqrt{4 y^2 + x^2 + 36}}{3}, z = \frac{\sqrt{4 y^2 + x^2 + 36}}{3}]$$

(%i18) wxplot3d(sqrt(y^2+4*x^2-16), [x,-5,5], [y,-5,5])\$

2. Funciones de varias variables

Una función de 2 variables se escribe como $z = f(x, y) = x^2 + xy$ Una función de 3 variables se escribe como f(x, y, z) = x + 2y - 3z

2.1. Definición de una función de varias variables

Sea D un conjunto de pares ordenados de números reales en \mathbb{R}^2 . Y a cada par ordenado (x,y) de D le corresponde un numero real f(x,y) entonces se dice que f es una función de x e y. El conjunto D es el dominio de f y el correspondiente conjunto de valores de f(x,y) es el rango de f.

Si f es una función de 2 variables independientes x e y el dominio de f es una región en el plano xy.

Si f es una función de 3 variables independientes x,y e z el dominio es una región en el espacio.

Si z = f(x, y) las variables independientes son x e y, y z es la variable independiente.

2.2. Ejemplos de funciones de varias variables

Algunas magnitudes físicas:

Trabajo realizado por una fuerza $v = f \cdot d$ Volumen de un cilindro circular recto $v = \pi r^2 h$ Volumen de un solido rectangular v = lwh

2.3. Ejemplo

2.3.1. Evaluación de funciones

Sea $f(x,y) = x^2y + 1$ encontrar (evaluar):

1.
$$f(2,1) = (2)^2(1) + 1 = 4 + 1 = 5$$

```
(%i1) subst(1, y, subst(2, x, y*x^2+1));
(%o1) 5
```

2.
$$f(1,2) = (1)^2(2) + 1 = 2 + 1 = 3$$

(%12) subst(1, x, subst(2, y, y+1));

(%02) 3

3. $f(0,0) = (0)^2(0) + 1 = 1$

(%13) subst(0, y, subst(0, x, y*x^2+1));

(%03) 1

4. $f(1,-3) = (1)^2(-3) + 1 = -3 + 1 = -2$

(%14) subst(-3, y, subst(1, x, y*x^2+1));

(%04) -2

5. $f(3a,a) = (3a)^2(a) + 1 = 9a^2 \cdot a + 1 = 9a^3 + 1$

(%15) subst(a, y, subst(3*a, x, y*x^2+1));

(%05) $9a^3 + 1$

6. $f(ab,a-b) = (ab)^2(a-b) + 1 = a^2b^2(a-b) + 1 = a^3b^2 - a^2b^3 + 1$

(%16) subst(a-b, y, subst(a*b, x, y*x^2+1));

(%06) $a^2(a-b)b^2 + 1$

Sea $f(x,y) = x + \sqrt[3]{xy}$ encontrar:

1.
$$f(t, t^2) = t + \sqrt[3]{t \cdot t^2} = t + \sqrt[3]{t^3} = t + t = 2t$$

```
subst(t^2, y, subst(t, x, x+(x*y)^(1/3)));
       (\%01) 2t
   2. f(2y^2, 4y) = 2y^2 + \sqrt[3]{2y^24y} = 2y^2 + \sqrt[3]{8y^3} = 2y^2 + 2y
Sea g(x) = xsenx encontrar:
   1. g\left(\frac{x}{y}\right) = \frac{x}{y}sen\left(\frac{x}{y}\right)
        (%i1) subst(x/y, x, x*sen(x));
    2. g(xy) = xysen(xy)
        (\%i2)
                   subst(x*y, x, x*sen(x));
       (\%02) xy \operatorname{sen}(xy)
   3. g(x-y) = (x-y) sen(x-y) = xsen(x-y) - ysen(x-y)
        (%i3)
                subst(x-y, x, x*sen(x));
       (%o3) sen(x-y)(x-y)
Encontrar F\left(g\left(x\right),h\left(y\right)\right) si F\left(x,y\right)=xe^{xy};g\left(x\right)=x^{3};h\left(y\right)=3y+1 F\left(x^{3},3y+1\right)=x^{3}e^{x^{3}(3y+1)}=x^{3}e^{3x^{3}y+x^{3}}
```

 $subst(3*y+1, y, subst(x^3, x, x*e^(x*y)));$

(%i5)

 $(\%05) e^{x^3(3y+1)} x^3$

Encontrar $g\left(u\left(x,y\right),\tau\left(x,y\right)\right)$ si $g\left(x,y\right)=ysen\left(x^{2}y\right);u\left(x,y\right)=x^{2}y^{3};\tau\left(x,y\right)=\pi xy$

```
(%i7) subst(pi*x*y, y, subst((x^2)*y^3, x, y*sen(y*(x^2))));
(%o7) \pi x y \operatorname{sen} (\pi^7 x^{11} y^7)
```

3. Diferenciales

Para calculo de una variable se define como diferencial de y o dy = f'(x) dx.

Para funciones de dos variables $z=f\left(x,y\right)$ usamos la terminología Δx y Δy a los incrementos de x e y respectivamente, el incremento de z esta dado por $\Delta z=f\left(x+\Delta x,y+\Delta y\right)$

3.1. Definición

Si $z=f\left(x,y\right)$ y $\Delta x, \Delta y$ son incrementos de x e y entonces los diferenciales de x e y son:

```
\begin{array}{l} dx = \Delta x \\ dy = \Delta y \\ \text{Y la diferencial total de la variable dependiente $z$ es:} \\ dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = f_x\left(x,y\right) dx + f_y\left(x,y\right) dy \\ \text{Si } w = f\left(x,y,z,u\right) \text{ entonces} \\ dx = \Delta x \\ dy = \Delta y \\ dz = \Delta z \\ du = \Delta u \\ \text{y el diferencial de $w$ es:} \\ dw = \frac{\partial w}{\partial x} dx + \frac{\partial w}{\partial y} dy + \frac{\partial w}{\partial z} dz + \frac{\partial w}{\partial u} du \end{array}
```

3.2. Ejemplo

Calcula el diferencial total para $z=xseny-3x^2y^2$ $\frac{\partial z}{\partial x}=2seny-6xy^2$ $\frac{\partial z}{\partial y}=2xcosy-6x^2y$

$$dz = (2seny - 6xy^2) dx + (2xcosy - 6x^2y) dy$$

4. Derivadas parciales

Estudiaremos derivadas relacionadas con funciones de 2 variables.

Sea f(x,y), si $y=y_0$ se toma como constante al considerar a x como variable entonces $f(x,y_0)$ solo esta en función de x.

Si esta función es derivable en $x = x_0$ entonces el valor de esta derivada se denota por $f_x(x_0, y_0)$ y se le llama derivada parcial en f con respecto a x en el punto (x_0, y_0) .

Para obtener $f_x(x,y)$ se deriva f(x,y) con respecto a x, tratando a y como constante.

Para obtener $f_y\left(x,y\right)$ se deriva $f\left(x,y\right)$ con respecto a y, tratando a x como constante.

4.1. Notación para derivada parcial

```
\frac{\partial}{\partial x} derivada parcial de x.
\frac{\partial f}{\partial x} derivada parcial de x.
\frac{\partial f}{\partial y} derivada parcial de y.
\frac{\partial}{\partial z} derivada parcial de z.
Derivadas parciales en el punto (x_0, y_0)
\frac{\partial f}{\partial x}|_{x=x_0, y=y_0}
\frac{\partial f}{\partial y}|_{x=x_0, y=y_0}
```

4.2. Ejemplo

Hallar las derivadas parciales primeras con respecto a x e y

1.
$$f(x,y) = 2x - 3y + 5$$

 $f_x(x,y) = 2$

```
(%i1) diff(2*x-3*y+5,x,1);
(%o1) 2
```

```
f_y\left(x,y\right) = -3
    (%i2)
              diff(2*x-3*y+5,y,1);
    (\%02) - 3
2. f(x,y) = x^2 - 3y^2 + 7
   f_x\left(x,y\right) = 2x
    (%i3) diff(x^2-3*y^2+7,x,1);
   (\%03) 2x
    \overline{f_y\left(x,y\right) = -6y}
              diff(x^2-3*y^2+7,y,1);
    (%i4)
    (\%o4) - 6y
3. f(x,y) = xy
   f_x\left(x,y\right) = y
    f_y\left(x,y\right) = x
    (%i5) diff(x*y,x,1);
              diff(x*y,y,1);
    (\%05) y
    (\%06) x
4. f(x,y) = \frac{x}{y}f_x(x,y) = \frac{1}{y}f_y(x,y) = \frac{-x}{y^2}
```

```
(%i1) f(x,y) := x/y;
                diff(f(x,y),x,1);
                diff(f(x,y),y,1);
    (%o1) f(x,y) := \frac{x}{y}
    (\%o3)
5. f(x,y) = x\sqrt{y}
    f_x(x,y) = \sqrt{y}
f_y(x,y) = \frac{x}{2\sqrt{y}}
    (%i22) f(x,y) := x * sqrt(y);
                diff(f(x,y),x,1);
                diff(f(x,y),y,1);
    (\%022) f(x,y) := x\sqrt{y}
    (\%023)\sqrt{y}
    (\%o24) \frac{1}{2\sqrt{y}}
6. z = y\sqrt{x}
\frac{\partial z}{\partial x} = \frac{y}{2\sqrt{x}}
\frac{\partial z}{\partial y} = \sqrt{x}
    (%i25) f(x,y) := y * sqrt(x);
                diff(f(x,y),x,1);
                diff(f(x,y),y,1);
    (\%025) \text{ f } (x,y) := y\sqrt{x}
    (\%027) \sqrt{x}
```

```
7. z = x^2 - 3xy + y^2
   \frac{\partial z}{\partial x} = 2x - 3y
\frac{\partial z}{\partial y} = -3x + 2y
   (%i28) f(x,y) := x^2-3*x*y+y^2;
             diff(f(x,y),x,1);
             diff(f(x,y),y,1);
   (\%o28) f (x, y) := x^2 - 3xy + y^2
   (\%029) 2x - 3y
   (\% o30) 2y - 3x
8. f(x,y) = 3x - 2y^4
   f_x\left(x,y\right) = 3
   f_y(x,y) = -8y^3
   (%i31) f(x,y):=3*x-2*y^4;
             diff(f(x,y),x,1);
             diff(f(x,y),y,1);
   (\%031) f (x, y) := 3x - 2y^4
    ( %o32) 3
   (\%033) - 8y^3
9. f(x,y) = x^5 + 3x^3y^2 + 3xy^4
   f_x(x,y) = 5x^4 + 9x^2y^2 + 3y^4
   f_y(x,y) = 6x^3y + 12xy^3
   (%i34) f(x,y) := x^5 + 3*(x^3)*y^2 + 3*x*y^4;
             diff(f(x,y),x,1);
             diff(f(x,y),y,1);
   (\% \text{o}34) \text{ f}(x,y) := x^5 + 3x^3y^2 + 3xy^4
   (\%035) 3 y^4 + 9 x^2 y^2 + 5 x^4
   (\%036) 12 x y^3 + 6 x^3 y
```

```
10. z = xe^{3y}
      \frac{\partial z}{\partial x} = e^{3y}
\frac{\partial z}{\partial y} = 3xe^{3y}
      (%i37) f(x,y) := x e^{(3*y)};
                  diff(f(x,y),x,1);
                  diff(f(x,y),y,1);
      (\%037) f(x,y) := x e^{3y}
      (\%038) e^{3y}
      (\%039) 3 e^{3y} \log(e) x
11. z = yln(x)
      \frac{\partial z}{\partial x} = \frac{y}{x}
\frac{\partial z}{\partial y} = \ln(x)
      (%i43) f(x,y) := y * log(x);
                   diff(f(x,y),x,1);
                  diff(f(x,y),y,1);
      (\%043) f(x,y) := y \log(x)
      (\%o44)\frac{y}{x}
      (\%045) \log (x)
12. z = x^2 e^{2y}
      \frac{\partial z}{\partial z} = 2xe^{2y}
\frac{\partial z}{\partial y} = 2x^2e^{2y}
      (%i46) f(x,y) := (x^2) *e^(2*y);
                  diff(f(x,y),x,1);
                  diff(f(x,y),y,1);
      (\%046) f(x,y) := x^2 e^{2y}
      (\%047) 2 e^{2y} x
      (\%048) 2e^{2y}\log(e) x^2
```

5. Regla de la cadena para funciones de varias variables

Sea w = f(x, y) donde f es una función diferenciable de x e y. Si x = g(t)y y = h(t) siendo g y h funciones diferenciables en t entonces w es una función diferenciable en t y se denota:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

5.1. **Ejemplo**

Sea $w=x^2y-y^2$ donde $x=sen\left(t\right);y=e^t,$ encontrar $\frac{dw}{dt}$ cuando t=0Sea $w = x^2y - y^2$ donde x = sen(t); $y = e^x$, encontrar \overline{dt} cuando t = 0 $\frac{\partial w}{\partial x} = 2xy$ $\frac{\partial w}{\partial y} = x^2 - 2y$ $\frac{dx}{dt} = \cos(t)$ $\frac{dy}{dt} = e^t$ $\frac{dw}{dt} = (2xy)(\cos(t)) + (x^2 - 2y)(e^t)|_{x = sen(t), y = e^t|_{t = 0}} = 2(sen(t))(e^t)(\cos(t)) + ((sen(t))^2 - 2(e^t))(e^t)|_{t = 0} = -2$ Utilice la regla de la cadena para encontrar $\frac{dz}{dt}$ o $\frac{dw}{dt}$

Othice in regin de la cadena para encontrar
$$\frac{1}{dt}$$
 o $\frac{1}{dt}$ o $\frac{1}{dt}$

1. $z = x^2y + xy^2; x = 2 + t^4; y = 1 - t^3$

$$\frac{\partial z}{\partial x} = 2xy + y^2$$

$$\frac{\partial z}{\partial y} = x^2 + 2xy$$

$$\frac{dx}{dt} = 4t^3$$

$$\frac{dy}{dt} = -3t^2$$

$$\frac{dz}{dt} = (2xy + y^2) 4t^3 - 3t^2 (x^2 + 2xy) |_{x=2+t^4,y=1-t^3} = -24t^2 + 20t^3 + 12t^5 - 42t^6 + 8t^7 + 10t^9 - 11t^{10}$$

2.
$$z = \sqrt{x^2 + y^2}; x = e^{2t}; y = e^{-2t}$$

$$\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}$$

$$\frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}$$

$$\frac{dx}{dt} = 2e^{2t}$$

$$\frac{dy}{dt} = -2e^{-2t}$$

$$\frac{dz}{dt} = 2e^{2t} \left(\frac{x}{\sqrt{x^2 + y^2}}\right) - 2e^{-2t} \left(\frac{y}{\sqrt{x^2 + y^2}}\right) = \frac{2e^{4t} - 2e^{-4t}}{\sqrt{e^{4t} + e^{-4t}}}$$

3.
$$z = sen(x) cos(y); x = \pi t; y = \sqrt{t}$$

 $\frac{\partial z}{\partial x} = cosxcosy$

$$\frac{\partial z}{\partial y} = -senxseny$$

$$\frac{dx}{dx} = \pi$$

$$\frac{dy}{dy} = \frac{1}{1}$$

$$\begin{array}{l} \frac{\partial z}{\partial y} = -senxseny \\ \frac{dx}{dt} = \pi \\ \frac{dy}{dt} = \frac{1}{2\sqrt{t}} \\ \frac{dz}{dt} = \pi cosxcosy - \frac{senxseny}{2\sqrt{t}}|_{x=\pi t, y=\sqrt{t}} = \pi cos \end{array}$$

4.
$$z = xln(x + 2y); x = sen(t); y = cos(t)$$

5.
$$w = xe^{y/z}$$
; $x = t^2$; $y = 1 - t$; $z = 1 + 2t$

6.
$$w = xy + yz^2; x = e^t; y = e^t sent; z = e^t cost$$

6. Derivada direccional

6.1. Vectores en el espacio

Sean $u = \langle u_1, u_2, u_3 \rangle$ y $v = \langle v_1, v_2, v_3 \rangle$ vectores en el espacio y sea c un escalar

1. Igualdad de vectores

$$u = v \Leftrightarrow u_1 = v_1, u_2 = v_2, u_3 = v_3$$

2. Longitud

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$$

3. Vector unitario en dirección v

$$u = \frac{1}{\|v\|} \left\langle v_1, v_2, v_3 \right\rangle$$

4. Suma de vectores

$$v + u = \langle v_1 + u_1, v_2 + u_2, v_3 + u_3 \rangle$$

5. Producto por un escalar

$$cv = \langle cv_1, cv_2, cv_3 \rangle$$

6. Vectores paralelos

Dos vectores no nulos u y v son paralelos si existe algún escalar c tal que u = cv

7. Producto punto/escalar

$$u \cdot v = u_1 v_1 + u_2 v_2 + u_3 v_3$$

- 8. Vectores ortogonales $u \cdot v = 0$ son ortogonales si $u \cdot v = 0$
- 9. Angulo entre vectores El angulo entre u y v se define como $cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- 10. Desigualdad triangular $||u+v|| \le ||u|| + ||v||$
- 11. Proyección de u sobre v $proy_v u = \frac{u \cdot v}{\|v\|^2} v$

6.1.1. Ejemplo

1. Halla los componentes y la longitud del vector v cuyo punto inicial es (-2,3,1) y cuyo punto final es (0,-4,4), al igual que el vector unitario.

a) Components
$$v = (0 - (-2), -4 - 3, 4 - 1) = (2, -7, 3)$$

b) Longitud
$$||v|| = \sqrt{2^2 + 7^2 + 3^2} = \sqrt{4 + 49 + 9} = \sqrt{62}$$

c) Vector unitario
$$u = \frac{1}{\sqrt{62}} \langle 2, -7, 3 \rangle$$

2. Dados $u=\langle 3,-1,2\rangle$, $v=\langle -4,0,2\rangle$, $w=\langle 1,-1,2\rangle$, $z=\langle 2,0,-1\rangle$ encontrar el angulo entre

a)
$$u y v$$

 $||u|| = \sqrt{14}, ||v|| = \sqrt{20}$
 $cos(\theta) = \frac{\langle 3, -1, 2 \rangle \cdot \langle -4, 0, 2 \rangle}{\sqrt{14}\sqrt{20}} = \frac{-2+4}{2\sqrt{5}\sqrt{14}} = \frac{-8}{2\sqrt{5}\sqrt{14}}$
Por lo tanto $\theta = cos^{-1}\left(\frac{-8}{2\sqrt{5}\sqrt{14}}\right) = 118,56^{\circ}$

b)
$$u y w$$

 $||u|| = \sqrt{14}, ||w|| = \sqrt{6}$
 $\cos(\theta) = \frac{\langle 3, -1, 2 \rangle \cdot \langle 1, -1, 2 \rangle}{\sqrt{14}\sqrt{6}} = \frac{3+1+4}{\sqrt{84}} = \frac{8}{\sqrt{84}}$
 $\theta = 29, 2^{\circ}$

c)
$$v y z$$

 $||v|| = \sqrt{20}, ||z|| = \sqrt{5}$
 $cos(\theta) = \frac{\langle -4,0,2 \rangle \cdot \langle 2,0,-1 \rangle}{\sqrt{20}\sqrt{5}} = \frac{-8-2}{\sqrt{100}} = \frac{-10}{10} = -1$
 $\theta = 180^{\circ}$

3. Encontrar la proyección de u sobre v si u = 3i - 5j + 2k y v = 7i + j - 2k $||v|| = \sqrt{49 + 1 + 4} = \sqrt{54}$ $proy_v u = \frac{\langle 3, -5, 2 \rangle \cdot \langle 7, 1, -2 \rangle}{54} \langle 7, 1, -2 \rangle = \frac{21 - 5 - 4}{54} \langle 7, 1, -2 \rangle = \frac{12}{54} \langle 7, 1, -2 \rangle = \frac{2}{9} \langle 7, 1, -2 \rangle$

6.2. Derivadas direccionales y gradientes

Para determinar la pendiente de una superficie en un punto dado definimos un nuevo tipo de derivada llamada derivada direccional.

Sea $z=f\left(x,y\right)$ una superficie y $P=\left(x_{0},y_{0}\right)$ un punto en el dominio de f

Figura 1: Derivadas direccionales

(a) Especificamos una dirección mediante un vector unitario $u = cos\theta i + sen\theta j$ donde θ es el angulo que forma el vector con el eje x positivo. Para hallar la pendiente deseada reducimos a dos dimensiones mediante la intersección de la superficie con un plano vertical por el punto P y es paralelo a u

(b) Este plano vertical corta a la superficie para formar la curva c y definimos la pendiente de la superficie en $(x_0, y_0, f(x_0, y_0))$ como la pendiente de la curva en ese punto. La pendiente de la curva c se escribe como un limite de calculo de una variable. El plano vertical empleado para formar c corta al plano xy en una recta L que se representa por las ecuaciones parametricas $x = x_0 +$ $tcos\theta; y = y_0 + tsen\theta; \forall t \text{ en el}$ punto $Q(x,y) \in a$ la recta L.

Los puntos dados se representan como $P = (x_0, y_0, f(x_0, y_0)); Q = (x, y, f(x, y))$ La distancia $P \neq Q$ es

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} = \sqrt{(t\cos\theta)^2 + (t\sin\theta)^2}$$

Al escribir la pendiente de la recta secante que pasa por P y Q

$$\frac{f\left(x,y\right) - f\left(x_{0},y_{0}\right)}{t} = \frac{f\left(x_{0} + tcos\theta, y_{0} + sen\theta\right) - f\left(x_{0}, y_{0}\right)}{t}$$

6.2.1. Derivada direccional de f en la dirección de u

La derivada direccional de f en dirección u se escribe:

$$D_u f(x,y) = \lim_{t \to 0} \frac{f(x_0 + t\cos\theta, y_0 + sen\theta) - f(x_0, y_0)}{t}$$

Si f es una función diferenciable en x e y, entonces la derivada direccional de f en la dirección del vector unitario $u = cos\theta i + sen\theta j$ es

$$D_{u}f(x,y) = f_{x}(x,y)\cos\theta + f_{y}(x,y)\sin\theta$$

6.2.2. Ejemplo

1. Calcule la derivada direccional de $f(x,y) = 4 - x^2 - \frac{1}{4}y^2$ en el punto (1,2) en la dirección de $u = \cos\left(\frac{\pi}{3}\right)i + \sin\left(\frac{\pi}{3}\right)j$.

$$f_x = -2x, f_x(1,2) = -2$$

 $f_y = -\frac{1}{2}y, f_y(1,2) = -1$

$$D_u f(1,2) = -2\cos\frac{\pi}{3} - \sin\frac{\pi}{3} = \frac{-2+\sqrt{3}}{2}$$

2. Encontrar la derivada direccional de e^{xy} en (-2,0) en la dirección del vector unitario u que forma un angulo de $\frac{\pi}{3}$ con el eje x positivo.

$$f_x = ye^{xy}, f_x(-2,0) = 0$$

 $f_y = xe^{xy}, f_y(-2,0) = -2$

$$D_u f(-2,0) = -2sen\frac{\pi}{3} = -1$$

3. Encontrar la derivada direccional de $f(x,y) = 3x^2y$ en el punto (1,2) en la dirección del vector a = 3i + 4j.

$$u = \frac{1}{\sqrt{25}} \langle 3, 4 \rangle = \langle \frac{3}{5}, \frac{4}{5} \rangle$$

$$f_x = 6xy, f_x(1,2) = 6(1)(2) = 12$$

 $f_y = 3x^2, f_y(1,2) = 3(1)^2 = 3$

$$D_u f(1,2) = 12\left(\frac{3}{5}\right) + 3\frac{4}{5} = \frac{36+12}{5} = \frac{48}{5}$$