Analysis of Cross-Sectional Data

Kevin Sheppard

Course Structure

- Course presented through three channels:
 - 1. Pre-recorded content with a focus on technical aspects of the course
 - Designed to be viewed in sequence
 - Each module should be short
 - Approximately 2 hours of content per week
 - 2. In-person lectures with a focus on applied aspects of the course
 - Expected that pre-recorded content has been viewed before the lecture
 - 3. Notes that accompany the lecture content
 - Read before or after the lecture or when necessary for additional background
- Slides are primary material presented during lecturers, either pre-recorded or live is examinable
- Notes are secondary and provide more background for the slides
- Slides are derived from notes so there is a strong correspondence

Monitoring Your Progress

- Self assessment
 - Review questions in pre-recorded content
 - Multiple choice questions on Canvas made available each week
 - Answers available immediately
 - Long-form problem distributed each week
 - Answers presented in a subsequent class
- Marked Assessment
 - Empirical projects applying the material in the lectures
 - Both individual and group
 - Each empirical assignment will have a written and code component

Analysis of Cross-Sectional Data

Introduction to Regression Models

- Notation
- Factor Models
- Data
- Variable Transformations

Linear Regression

Scalar Notation

$$Y_i = \beta_1 X_{1,i} + \beta_2 X_{2,i} + \dots + \beta_k X_{k,i} + \epsilon_i$$

- Y_i : Regressand, Dependent Variable, LHS Variable
- $X_{j,i}$: Regressor, also Independent Variable, RHS Variable, Explanatory Variable
- ϵ_i : Innovation, also Shock, Error or Disturbance
- n observations, indexed i = 1, 2, ..., n
- k regressors, indexed j = 1, 2, ..., k

Linear Regression

Matrix Notation

Common to use convenient matrix notation

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

- \mathbf{y} is n by 1
- \mathbf{X} is n by k
- **β** is k by 1
- ϵ is n by 1

Factor Models

- Factor models are widely used in finance
 - Capital Asset Pricing Model (CAPM)
 - Arbitrage Pricing (APT)
 - Risk Exposure
- Basic specification $R_i = \mathbf{f}_i \boldsymbol{\beta} + \epsilon_i$
 - R_i : Return on dependent asset, often excess (R_i^e)
 - \mathbf{f}_i : 1 × k vector of factor innovations
 - ϵ_i innovation, $corr(\epsilon_i, F_{j,i}) = 0, j = 1, 2, ..., k$
- Special Case: CAPM

$$R_{i} - R_{i}^{f} = \beta (R_{i}^{m} - R_{i}^{f}) + \epsilon_{i}$$
$$R_{i}^{e} = \beta R_{i}^{me} + \epsilon_{i}$$

Data

- Data from the Fama-French 3 factors + Momentum
 - *VWM*^e Excess return on Value-Weighted-Market
 - *SMB* Return on the size portfolio
 - *HML* Return on the value portfolio
 - *MOM* Return on the momentum portfolio
- Size-Value sorted portfolio return data
 - Size
- S: Small
- o B: Big
- Value
- ∘ H: High BE/ME
- M: Middle BE/ME
- L: Low BE/ME
- 49 Industry Portfolios
- All returns excess except *SMB*, *HML*, *MOM*

Fama-French Factors

Summary Statistics

```
In [3]: summ_plot(factors)
```


Fama-French Factors

Correlation Structure

In [4]: factors.corr() **HML** VWM^e **SMB MOM** Out[4]: 1.000000 0.300958 -0.226222 VWM^e -0.149518 0.300958 1.000000 -0.174962 -0.024014 **SMB** *HML* -0.226222 -0.174962 1.000000 -0.195242

MOM -0.149518 -0.024014 -0.195242

1.000000

Size and Value components

In [6]:
summ_plot(components)

Industry Portfolios

In [7]: summ_plot(subset)

Variable Transformations

- Dummy variables
 - 0-1 variables based on an indicator function

$$I_{[X_{i,j}>0]}$$

- Asymmetries at 0
- Monthly Effects

In [9]:

monthly_dummies.head(8)

Out[9]:

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	0	0	0	0	1	0	0	0	0	0
1	0	0	0	0	0	0	0	1	0	0	0	0
2	0	0	0	0	0	0	0	0	1	0	0	0
3	0	0	0	0	0	0	0	0	0	1	0	0
4	0	0	0	0	0	0	0	0	0	0	1	0
5	0	0	0	0	0	0	0	0	0	0	0	1
6	1	0	0	0	0	0	0	0	0	0	0	0
7	0	1	0	0	0	0	0	0	0	0	0	0

Variable Transformation: Interactions

- Interactions dramatically expand the functional forms that can be specified
 - Powers and Cross-products: $X_{i,j'}^2 X_{i,j} X_{i,m}$
 - Dummy Interactions to Produce Asymmetries: $X_{i,j} \times I_{[X_{i,j} < 0]}$

In [11]:

interactions.tail(10)

Out[11]:

	Market Negative	Negative Return	Squared Returns
2019-11-30	0	0.00	14.9769
2019-12-31	0	0.00	7.6729
2020-01-31	1	-0.11	0.0121
2020-02-29	1	-8.13	66.0969
2020-03-31	1	-13.38	179.0244
2020-04-30	0	0.00	186.3225
2020-05-31	0	0.00	31.1364
2020-06-30	0	0.00	6.0516
2020-07-31	0	0.00	33.2929
2020-08-31	0	0.00	58.0644

Analysis of Cross-Sectional Data

Parameter Estimation and Model Fit

- Parameter Estimation
- Models with Interactions
- Other estimated quantities
- Regression Coefficient in Factor Models

Parameter Estimation

Least Squares

$$\operatorname{argmin}_{\beta} \sum_{i=1}^{n} (Y_i - \mathbf{x}_i \boldsymbol{\beta})^2$$

```
In [13]:
    ls = smf.ols("BHe ~ 1 + VWMe + SMB + HML + MOM", data).fit(cov_type="HC0")
    summary(ls)
```

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.0859	0.043	-1.991	0.046	-0.170	-0.001
VWMe	1.0798	0.012	93.514	0.000	1.057	1.102
SMB	0.0019	0.017	0.110	0.912	-0.032	0.036
HML	0.7643	0.021	36.380	0.000	0.723	0.805
MOM	-0.0354	0.013	-2.631	0.009	-0.062	-0.009

Least Absolute Deviations

$$\operatorname{argmin}_{\beta} \sum_{i=1}^{n} |Y_i - \mathbf{x}_i \boldsymbol{\beta}|$$

lad = smf.quantreg("BHe ~ 1 + VWMe + SMB + HML + MOM", data).fit(q=0.5)
summary(lad)

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0306	0.044	-0.696	0.487	-0.117	0.056
VWMe	1.0716	0.010	103.257	0.000	1.051	1.092
SMB	0.0161	0.015	1.090	0.276	-0.013	0.045
HML	0.7503	0.016	47.702	0.000	0.719	0.781
МОМ	-0.0272	0.011	-2.581	0.010	-0.048	-0.007

Estimating Models with Interactions

Added an asymmetry and a square of VWM to the 4-factor model

$$Util_{i} = \beta_{1} + \beta_{2}VWM_{i}^{e} + \beta_{3}\left(VWM_{i}^{e}\right)^{2} + \beta_{4}VWM_{i}^{e}I_{[VWM_{i}^{e} < 0]} + \beta_{5}SMB_{i} + \beta_{6}HML_{i} + \beta_{7}MOM_{i} + \epsilon_{i}$$

```
model = f"Util ~ 1 + VWMe + I(VWMe**2) + I(VWMe * (VWMe < 0)) + SMB + HML + MOM"
ls_interact = smf.ols(model, data).fit(cov_type="HC0")
summary(ls_interact)</pre>
```

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	0.2857	0.225	1.268	0.205	-0.156	0.727
VWMe	0.4594	0.089	5.154	0.000	0.285	0.634
I(VWMe ** 2)	0.0159	0.007	2.240	0.025	0.002	0.030
I(VWMe * (VWMe < 0))	0.3524	0.188	1.870	0.061	-0.017	0.722
SMB	-0.1972	0.048	-4.087	0.000	-0.292	-0.103
HML	0.3470	0.060	5.810	0.000	0.230	0.464
MOM	0.0611	0.039	1.578	0.114	-0.015	0.137

Expected and Fitted Values

• Fitted values:

$$\hat{Y}_i = \mathbf{x}_i \hat{\boldsymbol{\beta}}$$

• Expected values:

$$E[Y|X=\mathbf{x}]=\mathbf{x}\hat{\boldsymbol{\beta}}$$

Expected and Fitted Values

```
In [18]:
   plot_market_interactions()
```


Typical Regression Coefficients

Factor Components

In [20]:
 beta_plot(betas, titles)

Typical Regression Coefficients

Industry Portfolios

In [22]:
 beta_plot(betas, titles)

Evidence of Non-linear returns

• Add square and asymmetry to 4-factor model

In [24]:
 beta_plot(betas, titles)

• Coefficient of Determination

$$R^2 = 1 - \frac{SSE}{TSS} = \frac{RSS}{TSS}$$

- Based on a complete decomposition TSS = SSE + RSS
- Total Sum of Squares

$$TSS = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

• Sum of Squared Errors

$$SSE = \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2}$$

• Regression Sum of Squares

$$RSS = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2 = \sum_{i=1}^{n} (\mathbf{x}_i \hat{\boldsymbol{\beta}} - \bar{Y})^2$$

```
In [25]:
    ls = smf.ols("BHe ~ 1 + VWMe + SMB + HML + MOM", data).fit(cov_type="HC0")
    summary(ls, [0])
```

OLS Regression Results

Dep. Variable:BHeR-squared:0.954Model:OLSAdj. R-squared:0.954

Component and Industry Fits

```
In [27]: r2_plot()
```


Shifting variables

```
BH_i^e + 99 = \beta_1 + \beta_2 VWM_i^e + \beta_3 SMB_i + \beta_4 HML_i + \beta_5 MOM_i + \epsilon_i
```

```
In [28]:

ls_shift = smf.ols("I(BHe + 99) ~ 1 + VWMe + SMB + HML + MOM", data).fit(cov_type="HC0")

summary(ls_shift, [0])

OLS Regression Results

Dep. Variable: | (BHe + 99) | R-squared: 0.954

Model: OLS Adj. R-squared: 0.954

In [29]:

summary(ls, [0])

OLS Regression Results

Dep. Variable: BHe R-squared: 0.954

Model: OLS Adj. R-squared: 0.954
```

Rescaling variables

Model: OLS Adj. R-squared: 0.954

```
\pi B H_i^e = \beta_1 + \beta_2 V W M_i^e + \beta_3 S M B_i + \beta_4 H M L_i + \beta_5 M O M_i + \epsilon_i
```

Changing the LHS Variable

```
(BH_i^e - VWM_i^e - HML_i) = \beta_1 + \beta_2 VWM_i^e + \beta_3 SMB_i + \beta_4 HML_i + \beta_5 MOM_i + \epsilon_i
```

Caveats when model excludes the constant

$$BH_i^e + 99 = \beta_1 VWM_i^e + \beta_2 SMB_i + \beta_3 HML_i + \beta_4 MOM_i + \epsilon_i$$

```
In [34]:
    ls_p99 = smf.ols("I(BHe + 99) ~ VWMe + SMB + HML + MOM - 1", data).fit(cov_type="HC0")
    summary(ls_lhs, [0, 1])
```

OLS Regression Results

Dep. Variable:	I(BHe - VWMe - HML)	R-squared:	0.382
Model:	OLS	Adj. R-squared:	0.378

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.0859	0.043	-1.991	0.046	-0.170	-0.001
VWMe	0.0798	0.012	6.910	0.000	0.057	0.102
SMB	0.0019	0.017	0.110	0.912	-0.032	0.036
HML	-0.2357	0.021	-11.219	0.000	-0.277	-0.195
MOM	-0.0354	0.013	-2.631	0.009	-0.062	-0.009

Estimating the residual variance

Small-sample corrected estimator

• Variance of shock estimated using model residuals

$$s^{2} = \frac{1}{n-k} \sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \frac{\hat{\epsilon}' \hat{\epsilon}}{n-k}$$

```
In [36]: pretty(eps.T @ eps / (n - k))
```

1.1318069626411305

Large-sample estimator

• Asymptotic results usually use the large-sample version of the variance estimator

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n \hat{\epsilon}_i^2 = \frac{\hat{\epsilon}' \hat{\epsilon}}{n}$$

1.123557640755991

Scores and the first-order condition of OLS

• The FOC of a regression is

$$\mathbf{X}'\hat{\boldsymbol{\epsilon}} = \sum_{i=1}^{n} \mathbf{x}'_{i}\hat{\boldsymbol{\epsilon}}_{i} = \mathbf{0}$$

- Estimated residuals are *always* orthogonal with included regressors
- Later we will see these can be used to test models if ≈ 0

n [39]:	scores	
ut[39]:		Scores
	Intercept	2.513545e-13

	300.05
Intercept	2.513545e-13
VWMe	5.968559e-13
SMB	3.151257e-12
HML	1.691092e-12
МОМ	-7.602807e-13

Analysis of Cross-Sectional Data

Properties of OLS Estimators

- Invariance to Affine Transformations
- Asymptotic Distribution
- Feasible Central Limit Theorems
- Bootstrap Estimation of the Covariance

Variable Transformations

Rescaling by a constant

$$\frac{Y_i}{100} = \beta_1 + \beta_2 \frac{X_{i,2}}{100} + \dots + \beta_k \frac{X_{i,k}}{100} + \epsilon_i$$

```
model = "BHe ~ 1 + VWMe + SMB + HML + MOM"
rescaled_ls = smf.ols(model, data / 100.0).fit(cov_type="HC0")
show_params(rescaled_ls, ls, columns=["Rescaled", "Orig"])
```

Out[40]:		Rescaled	Orig
	Intercept	-0.000859	-0.085899
	VWMe	1.079785	1.079785
	SMB	0.001894	0.001894
	HML	0.764300	0.764300
	МОМ	-0.035397	-0.035397

Variable Transformations

Rescaling single variables

$$Y_{i} = \beta_{1} + \beta_{2} \left(2VWM_{i}^{e}\right) + \beta_{3}SMB_{i} + \beta_{4} \frac{HML_{i}}{2} + \beta_{4}MOM_{i} + \epsilon_{i}$$

Out[41]:		Plus 10
	Intercept	-0.085899
	I(2 * VWMe)	0.539893
	SMB	0.001894
	I(1 / 2 * HML)	1.528600
	МОМ	-0.035397

Variable Transformations

Affine Transformations

$$(3BH^{e} + 7) = \beta_{1} + \beta_{2}(2VWM_{i}^{e} - 9) + \beta_{3}\frac{SMB_{i}}{2} + \beta_{4}HML_{i} + \beta_{4}MOM_{i} + \epsilon_{i}$$

```
In [42]:
model = "I(3 * BHe + 7) ~ 1 + I(2 * VWMe - 9) + I(1/2 *SMB) + HML + MOM"
ls_affine = smf.ols(model, data).fit(cov_type="HC0")
show_params(ls_affine, columns=["Affine"])
```

```
Out[42]:

| Intercept | 21.319408 |
| I(2 * VWMe - 9) | 1.619678 |
| I(1 / 2 * SMB) | 0.011361 |
| HML | 2.292901 |
| MOM | -0.106192
```

```
In [43]:
pretty(f"The ratio is {ls_affine.params['I(2 * VWMe - 9)'] / ls.params['VWMe']:0.3f}")
```

The ratio is 1.500

Characterizing Parameter Estimation Error

• Central Limit Theorem

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) \stackrel{d}{\to} N(\mathbf{0}, \boldsymbol{\Sigma}_{XX}^{-1} \mathbf{S} \boldsymbol{\Sigma}_{XX}^{-1})$$

- Covariance components $\mathbf{\Sigma}_{XX} = E\left[\mathbf{x}_{i}^{'}\mathbf{x}_{i}\right]$ and $\mathbf{S} = \mathbf{p} \lim_{n \to \infty} \mathrm{Var}\left[\sqrt{n}\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}^{'}\epsilon_{i}\right]$ $\mathbf{S} = \mathbf{p} \lim_{n \to \infty} \mathrm{Var}\left[\sqrt{n}\frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}^{'}\epsilon_{i}\right]$
- In practice

$$\hat{\boldsymbol{\beta}}_{n} \stackrel{\approx}{\sim} N \left(\boldsymbol{\beta}, \frac{\hat{\boldsymbol{\Sigma}}_{XX}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{XX}^{-1}}{n} \right)$$

In [44]:

ls.cov_params()

Out[44]:

	Intercept	VWMe	SMB	HML	MOM
Intercept	0.001860	-0.000171	0.000079	-0.000157	-0.000154
VWMe	-0.000171	0.000133	-0.000060	0.000039	0.000019
SMB	0.000079	-0.000060	0.000297	0.000042	0.000019
HML	-0.000157	0.000039	0.000042	0.000441	0.000122
MOM	-0.000154	0.000019	0.000019	0.000122	0.000181

Characterizing Parameter Estimation Error

Estimating the Covariance

$$\hat{\Sigma}_{XX} = \frac{1}{n} \mathbf{X}' \mathbf{X} \text{ and } \hat{\mathbf{S}} = \sum_{i=1}^{n} \epsilon_i^{2} \mathbf{x}_i' \mathbf{x}_i$$

```
In [45]:
    xe = x * eps
    S = xe.T @ xe / n
    Sigma = x.T @ x / n
    Sigma_inv = np.linalg.inv(Sigma)
    cov = 1 / n * (Sigma_inv @ S @ Sigma_inv)
    cov.columns = x.columns
    cov.index = x.columns
    cov
```

Out[45]:

	Intercept	VWMe	SMB	HML	МОМ
Intercept	0.001860	-0.000171	0.000079	-0.000157	-0.000154
VWMe	-0.000171	0.000133	-0.000060	0.000039	0.000019
SMB	0.000079	-0.000060	0.000297	0.000042	0.000019
HML	-0.000157	0.000039	0.000042	0.000441	0.000122
 MOM	-0.000154	0.000019	0.000019	0.000122	0.000181

Characterizing Parameter Estimation Error

Standard Errors

• Root of diagonal elements of VCV

In [46]:	pretty(ls.bse)
Out[46]:	Intercept	0.043134
	VWMe	0.011547
	SMB	0.017224
	HML	0.021009
	MOM	0.013455

Bootstrapping the Covariance

- Simulate from data to estimate covariance
- Randomly sample n observation with replacement (y_i, \mathbf{x}_i)
- Estimate $\hat{\beta}_b$ from random sample
- Repeat *B* times
- Compute covariance from bootstrapped $\hat{\beta}_b$

```
betas = []
g = np.random.default_rng(2020)
for i in range(100):
    idx = g.integers(n, size=n)
    xb = x.iloc[idx]
    y = xb @ ls.params + eps[idx, 0]
    beta = sm.OLS(y, xb).fit().params
    betas.append(beta)
betas = np.array(betas)

betas = pd.DataFrame(betas, columns=x.columns)
```

In [48]:

betas.cov()

Out[48]:

	Intercept	VWMe	SMB	HML	MOM
Intercept	0.001791	-0.000111	0.000246	-0.000082	-0.000127
VWMe	-0.000111	0.000099	-0.000066	-0.000005	0.000011
SMB	0.000246	-0.000066	0.000355	0.000079	0.000029
HML	-0.000082	-0.000005	0.000079	0.000462	0.000121
МОМ	-0.000127	0.000011	0.000029	0.000121	0.000208

In [49]:

ls.cov_params()

Out[49]:

	Intercept	VWMe	SMB	HML	MOM
Intercept	0.001860	-0.000171	0.000079	-0.000157	-0.000154
VWMe	-0.000171	0.000133	-0.000060	0.000039	0.000019
SMB	0.000079	-0.000060	0.000297	0.000042	0.000019
HML	-0.000157	0.000039	0.000042	0.000441	0.000122
МОМ	-0.000154	0.000019	0.000019	0.000122	0.000181

Analysis of Cross-Sectional Data

Wald and *t*-tests

- Linear Equality Hypotheses
- Testing a Single Restriction with a *t*-tests
- The *t*-statistic
- Multiple Restrictions and the Wald tests
- The *F*-stats

• Null in a Linear Equality Test

$$H_0$$
: $\mathbf{R}\beta = r$

- Three classes of tests
 - Wald and *t*-test
 - Lagrange Multiplier
 - Likelihood Ratio

t-tests

- Asymptotically normally distributed
- Test a single restriction
- Values outside of $\pm 1.96 \approx \pm 2$ lead to rejection using a 5% size
- Can be used to test 1-sided hypotheses

t-test Example

Testing the additional total effect is 0

$$H_0$$
: $SMB + HML + MOM = 0$

$$R = [0, 0, 1, 1, 1], r = 0$$

In [50]:

summary(ls)

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.0859	0.043	-1.991	0.046	-0.170	-0.001
VWMe	1.0798	0.012	93.514	0.000	1.057	1.102
SMB	0.0019	0.017	0.110	0.912	-0.032	0.036
HML	0.7643	0.021	36.380	0.000	0.723	0.805
МОМ	-0.0354	0.013	-2.631	0.009	-0.062	-0.009

t-test Example

```
In [51]:
    R = np.array([[0, 0, 1, 1, 1]])
    c = ls.cov_params()
    h0_vcv = np.squeeze(R @ c @ R.T)
    t = (R @ ls.params) / np.sqrt(h0_vcv)
    pretty(t[0])
```

20.385884770084235

t-test Example on Industry Portfolios

```
In [54]:
  test_plot(t_tests, title="$H_0: SMB + HML + MOM = 0$")
```


t-stats

- *t*-stat is special case for $H_0: \beta_j = 0$
- Most commonly reported test statistic
- Asymptotic normal
- 5% critical values $\pm 1.96 \approx \pm 2$

 SMB
 0.109934

 HML
 36.380381

MOM -2.630803

Significance in Industry Portfolios

In [57]:
 multi_test_plot(t_stats)

Wald Tests

- Test multiple hypothesis
- Exploit properties of multivariate normals
- χ_m^2 distributed in large samples
- Test statistic is

$$W = n \left(\mathbf{R} \hat{\boldsymbol{\beta}} - \mathbf{r} \right)' \left[\mathbf{R} \hat{\boldsymbol{\Sigma}}_{XX}^{-1} \hat{\mathbf{S}} \hat{\boldsymbol{\Sigma}}_{XX}^{-1} \mathbf{R}' \right]^{-1} \left(\mathbf{R} \hat{\boldsymbol{\beta}} - \mathbf{r} \right)$$

Wald Tests

Example

• Multiple β all zero: H_0 : SMB = HML = MOM = 0

$$R = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, r = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

```
In [58]:
    R = np.zeros((3, 5))
    R[0, 2] = R[1, 3] = R[2, 4] = 1
    r = np.zeros(3)
    h0_vcv = R @ c @ R.T
    h0_vcv.columns = h0_vcv.index = [f"Restr {i}" for i in range(1, 4)]
    h0_vcv
```

Restr 1 Restr 2 Restr 3 Restr 1 0.000297 0.000042 0.000019 Restr 2 0.000042 0.0000441 0.0000122 Restr 3 0.000019 0.0000122 0.0000181

```
In [59]:
    numerator = R @ ls.params - r
    wald = numerator @ np.linalg.inv(h0_vcv) @ numerator.T
    pretty(f"W={wald:0.1f}")

W=1749.6
```

```
In [61]:
    dof = 3
    pretty(f"The critical value is {stats.chi2(dof).ppf(0.95):0.2f} from a $\chi^2_{dof}$")
    test_plot(walds, cv=stats.chi2(dof).ppf(0.95), title="Wald Statistics")
```

The critical value is 7.81 from a χ_3^2

The F-stat

• Special case of Wald for

$$H_0: \beta_2 = \beta_3 = \dots = \beta_k = 0$$

- Never test constant
 - **Note**: If no constant

$$H_0: \beta_1 = \beta_2 = \dots = \beta_k = 0$$

• Example restrictions

$$R = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, r = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

```
In [63]:
    dof = 4
    cv = stats.chi2(dof).ppf(0.95)
    pretty(f"The critical value is {cv:0.2f} from a $\chi^2_{dof}$")
    test_plot(f_stats, cv=cv, title="$F$-Statistics")
```

The critical value is 9.49 from a χ_4^2

Analysis of Cross-Sectional Data

LM and LR Tests

- Imposing a LER on a Linear Regression
- LM Tests
- LR Tests
- Comparing Wald, LM and LR tests

Imposing the null on the model

$$H_0: \beta_{SMB} + \beta_{HML} + \beta_{MOM} = 0 \Rightarrow \beta_{SMB} = -\beta_{HML} - \beta_{MOM}$$

Initial model

$$Ships = \beta_1 + \beta_2 VWM^e + \beta_3 SMB + \beta_4 HML + \beta_5 MOM + \epsilon_i$$

becomes

$$Ships = \beta_1 + \beta_2 VWM^e + (-\beta_4 - \beta_5)SMB + \beta_4 HML + \beta_5 MOM + \epsilon_i$$

and then finally

$$Ships = \beta_1 + \beta_2 VWM^e + \beta_4 (HML - SMB) + \beta_5 (MOM - SMB) + \epsilon_i$$

In [64]:

```
model = "Ships ~ 1 + VWMe + I(HML-SMB) + I(MOM-SMB)"
imposed = smf.ols(model, data).fit(cov_type="HC0")
summary(imposed)
```

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	0.0676	0.202	0.335	0.738	-0.328	0.463
VWMe	1.1401	0.058	19.805	0.000	1.027	1.253
I(HML - SMB)	0.1897	0.061	3.133	0.002	0.071	0.308
I(MOM - SMB)	-0.1304	0.061	-2.148	0.032	-0.249	-0.011

Lagrange Multiplier (LM) tests

- Uses property that scores should be 0 when model is correct
- Define scores

$$s_i = \mathbf{x}_i \hat{\epsilon}_i$$

• Estimate score covariance using

$$\tilde{S} = \frac{1}{n} \sum_{i=1}^{n} s_i' s_i$$

• LM test statistic is defined

$$LM = n\bar{s}\tilde{S}\bar{s}' \stackrel{d}{\to} \chi_m^2$$

```
In [65]:
          imposed_eps = imposed.resid.to_numpy()
          scores = x * imposed_eps[:, None]
          mean_scores = scores.mean()
          pretty(mean_scores)
Out[65]: Intercept 9.063045e-18
           VWMe 2.983037e-15
             SMB 1.614948e+00
             HML 1.614948e+00
            MOM 1.614948e+00
In [66]:
          S = scores.T @ scores / n
          LM = n * mean_scores @ np.linalg.inv(S) @ mean_scores
          LM
```

Out[66]: 18.912996411664214

LM Tests on Industry Portfolios

```
In [68]:
    dof = 1
    cv = stats.chi2(dof).ppf(0.95)
    pretty(f"The critical value is {cv:0.2f} from a $\chi^2_{dof}$")
    test_plot(lms, cv=cv, title="LM test statistics")
```

The critical value is 3.84 from a χ_1^2

Likelihood Ratio (LR) tests

• Nearly identical to LM, only using unrestricted model to estimate score covariance

$$\hat{s}_i = \hat{\mathbf{x}}_i \hat{\epsilon}_i$$

• Covariance uses $\hat{\epsilon}_i$ instead of $\tilde{\epsilon}_i$

$$\hat{S} = \frac{1}{n} \sum_{i=1}^{n} s_i s_i$$

• LR test statistic is defined

$$LR = n\bar{s}\hat{S}\bar{s}' \xrightarrow{d} \chi_m^2$$

```
In [69]:
    unres = smf.ols("Ships ~ 1 + VWMe + SMB + HML + MOM", data).fit()
    eps = unres.resid.to_numpy()
    s_hat = x * eps[:, None]
    S = s_hat.T @ s_hat / n
    LR = n * mean_scores @ np.linalg.inv(S) @ mean_scores
    LR
```

Out[69]: 4.189010948813023

LM Tests on Industry Portfolios

```
In [71]:
    test_plot(lrs, cv=cv, title="LR test statistics")
```


Comparing the Three Classes of Test

Analysis of Cross-Sectional Data

Heteroskedasticity

- Testing for Heteroskedasticity
- Covariance Estimation for Homoskedastic Data
- Boostrap Covariance Estimation for Homoskedastic Data

Testing for Heteroskedasticity

White's test

• Key insight of White: Heteroskedasticity robust estimator only needed when

$$E[\epsilon_i^2 X_{i,o} X_{i,p}] \neq \sigma^2 E[X_{i,o} X_{i,p}]$$

• Use a regression to test if covariances are all 0

$$\hat{\epsilon}_{i}^{2} = \mathbf{z}_{i} \mathbf{y} + \mathbf{\eta}_{i}$$

- ullet z contains all distinct cross-products of X
- Test statistic is nR^2 from auxiliary model
- $\chi^2_{k(k+1)/2-1}$ distribution when initial model includes a constant

eps2 ~ 1 + VWMe + SMB + HML + MOM + I(VWMe * VWMe)+ I(VWMe * SMB)+ I(VWMe * HML)+ I(VWMe * MOM)+ I(SMB * VWMe)+ I(SMB * SMB)+ I(SMB * HML)+ I(SMB * MOM)+ I(HML * VWMe)+ I(HML * SMB)+ I(HML * HML)+ I(HML * MOM)+ I(MOM * VWMe)+ I(MOM * SMB)+ I(MOM * HML)+ I(MOM * MOM)

```
In [75]:
    white = smf.ols(formula, data).fit()
    summary(white, [0])
```

OLS Regression Results

Dep. Variable:eps2R-squared:0.109Model:OLSAdj. R-squared:0.090

In [77]: summary_white()

	Intercept	VWMe	SMB	HML	МОМ	VWMe * VWMe	VWMe * SMB	VWMe * HML	VWMe * MOM	SMB * VWMe	SMB * SMB
Parameter	8.134412e-01	-0.044663	0.063097	0.015792	0.009063	0.003135	-0.003666	-0.002738	-0.001518	-0.003666	0.006417
t-test Stat.	8.358941e+00	-2.275155	2.089132	0.535791	0.431262	1.105676	-1.284523	-1.076393	-0.817672	-1.284523	1.354750
p-value	3.645328e-16	0.023211	0.037072	0.592281	0.666416	0.269263	0.199402	0.282138	0.413835	0.199402	0.175953
	SMB *	CNAD +	118 <i>4</i> 1 +	LINAL *	HML *	нмі	* N/	OM *	MOM *	MOM *	MOM *
	HML	SMB * MOM	HML * VWMe	HML *		MO		WMe	SMB	HML	MOM
Parameter	HML	_			HML	МО	M V	WMe	SMB	_	
Parameter t-test Stat.	HML 0.005350	МОМ	VWMe	SMB	HML 0.023196	MO 0.0102	M V	WMe 0.1518 0.	SMB 003334 0	HML	МОМ

```
In [78]: white_stat = n * white.rsquared
    pretty(f"White's stat: {white_stat:0.2f}")

White's stat: 74.76

In [79]: pretty(f"Number of restrictions: {5 * (5 + 1) // 2 + 1}")

Number of restrictions: 16

In [80]: pvalue = 1.0 - stats.chi2(5 * (5 + 1) // 2 + 1).cdf(white_stat)
    pretty(f"The p-value is {pvalue:0.3f}")
```

The p-value is 0.000

Characterizing Parameter Estimation Error

Homoskedastic Data

• Central Limit Theorem when residuals are homoskedastic

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}) \stackrel{d}{\to} N(\mathbf{0}, \sigma^2 \boldsymbol{\Sigma}_{XX}^{-1})$$

- Covariance components $\Sigma_{XX} = E\left[\mathbf{x}_{i}^{'}\mathbf{x}_{i}\right]$ and $\sigma^{2} = E[\epsilon_{i}^{2}]$.
- In practice

$$\hat{\boldsymbol{\beta}}_{n} \stackrel{\approx}{\sim} N \left(\boldsymbol{\beta}, \frac{\hat{\sigma}^{2} \hat{\boldsymbol{\Sigma}}_{XX}^{-1}}{n} \right)$$

In [81]:
 ls_homo = smf.ols("BHe ~ 1 + VWMe + SMB + HML + MOM", data).fit()
 summary(ls_homo)

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-0.0859	0.042	-2.038	0.042	-0.169	-0.003
VWMe	1.0798	0.010	108.710	0.000	1.060	1.099
SMB	0.0019	0.014	0.134	0.893	-0.026	0.030
HML	0.7643	0.015	50.772	0.000	0.735	0.794
МОМ	-0.0354	0.010	-3.504	0.000	-0.055	-0.016

In [82]: summary(1s)

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.0859	0.043	-1.991	0.046	-0.170	-0.001
VWMe	1.0798	0.012	93.514	0.000	1.057	1.102
SMB	0.0019	0.017	0.110	0.912	-0.032	0.036
HML	0.7643	0.021	36.380	0.000	0.723	0.805
МОМ	-0.0354	0.013	-2.631	0.009	-0.062	-0.009

In [83]:

ls_homo.cov_params()

Out[83]:

		Intercept	VWMe	SMB	HML	MOM
Int	ercept	0.001777	-0.000069	-2.196720e-05	-0.000104	-8.770776e-05
1	/WMe	-0.000069	0.000099	-3.737690e-05	0.000033	1.946526e-05
	SMB	-0.000022	-0.000037	1.996325e-04	0.000024	7.559086e-07
	HML	-0.000104	0.000033	2.404199e-05	0.000227	3.602389e-05
	МОМ	-0.000088	0.000019	7.559086e-07	0.000036	1.020344e-04

Heteroskedasticity vs Homoskedasticity

Industry Portfolios

```
In [85]: plot_tvalues()
```


Bootstrap for Homoskedastic Data

- If data are homoskedastic can use improved bootstrap
- Independently sample $\hat{\epsilon}_i$ and \mathbf{x}_j and then build simulated $\tilde{Y}_m = \mathbf{x}_j \hat{\boldsymbol{\beta}} + \hat{\epsilon}_i$
- Estimate model on bootstrapped data
- Repeat b = 1, 2, ..., B times and compute covariance of estimated $\hat{\beta}_b$

```
In [86]:
          eps = ls.resid.to_numpy()
          betas = []
          g = np.random.default_rng(2020)
          x = ls.model.data.orig_exog
          for i in range(1000):
              x_idx = g.integers(n, size=n)
              xb = x.iloc[x_idx]
              eps_idx = g.integers(n, size=n)
              y = xb @ ls.params + eps[eps_idx]
              beta = sm.OLS(y, xb).fit().params
              betas.append(beta)
          betas = np.array(betas)
          betas = pd.DataFrame(betas, columns=x.columns)
          betas.cov()
```

Out[86]:

	Intercept	VWMe	SMB	HML	MOM
Intercept	0.001796	-0.000077	0.000007	-0.000104	-0.000095
VWMe	-0.000077	0.000098	-0.000030	0.000032	0.000013
SMB	0.000007	-0.000030	0.000198	0.000026	0.000011
HML	-0.000104	0.000032	0.000026	0.000229	0.000040
МОМ	-0.000095	0.000013	0.000011	0.000040	0.000103

Analysis of Cross-Sectional Data

Model Selection

- General-to-Specific
- Specific-to-General
- Information Criteria
- Cross-Validation

General-to-Specific

- Start with full model
- Drop variables one-at-a-time when P-value > α
 - Typical sizes 1% or .1%

```
res = smf.ols("Ships ~ 1 + VWMe + SMB + HML + MOM", data).fit(cov_type="HC0")
summary(res)
```

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.1420	0.204	-0.697	0.486	-0.541	0.257
VWMe	1.1551	0.055	20.872	0.000	1.047	1.264
SMB	0.1604	0.084	1.898	0.058	-0.005	0.326
HML	0.4703	0.085	5.513	0.000	0.303	0.637
МОМ	0.0055	0.074	0.074	0.941	-0.140	0.151

res = smf.ols("Ships ~ 1 + VWMe + SMB + HML", data).fit(cov_type="HC0")
summary(res)

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.1372	0.197	-0.697	0.486	-0.523	0.248
VWMe	1.1541	0.056	20.716	0.000	1.045	1.263
SMB	0.1603	0.084	1.900	0.057	-0.005	0.326
HML	0.4683	0.086	5.474	0.000	0.301	0.636

In [89]:

res = smf.ols("Ships ~ 1 + VWMe + HML", data).fit(cov_type="HC0")
summary(res)

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-0.1201	0.197	-0.610	0.542	-0.506	0.266
VWMe	1.1842	0.054	21.870	0.000	1.078	1.290
HML	0.4492	0.084	5.371	0.000	0.285	0.613

In [90]:

res = smf.ols("Ships ~ VWMe + HML - 1", data).fit(cov_type="HC0")
summary(res)

	coef	std err	Z	P> z	[0.025	0.975]
VWMe	1.1802	0.054	22.045	0.000	1.075	1.285
HML	0.4442	0.083	5.332	0.000	0.281	0.608

Specific-to-General

- Start with only a constant
- Add variables one-at-a-time and keep smallest P-value if $> \alpha$

```
In [91]:
    excl = ["VWMe", "SMB", "HML", "MOM"]
    for reg in excl:
        res = smf.ols(f"Ships ~ 1 + {reg}", data).fit(cov_type="HC0")
        pretty(f"{reg}: {res.pvalues[reg]:0.3f}")
```

VWMe: 0.000

SMB: 0.000

HML: 0.793

MOM: 0.014

```
In [92]:
          excl.remove("VWMe")
          for reg in excl:
              res = smf.ols(f"Ships ~ 1 + VWMe + {reg}", data).fit(cov_type="HC0")
              pretty(f"{reg}: {res.pvalues[reg]:0.3f}")
         SMB: 0.263
         HML: 0.000
         MOM: 0.386
In [93]:
          excl.remove("HML")
          for reg in excl:
              res = smf.ols(f"Ships ~ 1 + VWMe + HML + {reg}", data).fit(cov_type="HC0")
              pretty(f"{reg}: {res.pvalues[reg]:0.3f}")
         SMB: 0.057
```

MOM: 0.947

Information Criteria

- Information criteria trade-off fit and cost for additional penalties
- Two most common: AIC and BIC
- Select model that produces the smallest IC from candidate models

```
capm = smf.ols("Ships ~ 1 + VWMe", data).fit()
factor2 = smf.ols("Ships ~ 1 + VWMe + SMB", data).fit()
pretty(f"CAPM AIC: {capm.aic:0.1f}, BIC: {capm.bic:0.1f}")
pretty(f"2 Factor AIC: {factor2.aic:0.1f}, BIC: {factor2.bic:0.1f}")
```

CAPM AIC: 4225.9, BIC: 4234.9

2 Factor AIC: 4225.4, BIC: 4239.0

Global IC Search

```
In [96]:
         pretty(ics.idxmin())
         AIC VWMe,SMB,HML
Out[96]:
         BIC
                VWMe,HML
In [97]:
         plot_ics()
        4240
                                                                                                         AIC
                                                                                                         BIC
        4220
        4200 -
            VW Me
                           V₩Me
                                           VWMe
                                                          VWMe
                                                                          VWMe
                                                                                         VWMe
                                                                                                         VWMe
            SMB
                                           MOM
                                                           SMB
                                                                           SMB
                                                                                          HML
                                                                                                          SMB
                            HML
                                                           HML
                                                                                                          HML
                                                                          MOM
                                                                                          MOM
                                                                                                          MOM
```

k-fold Cross-validation

- Focus on pseudo-out-of-sample prediction
- Split data into *k* equally sized random blocks
- Estimate parameters using k-1 blocks
- Evaluate *SSE* using block not used in estimation
- Repeat *k* times in total computing the *SSE* once in each block
- Sum k SSE values into SSE_{xy}
- Choose model with the lowest out-of-sample SSE_{xy}

```
In [98]:
          mod = "Ships ~ 1 + VWMe"
          rg = np.random.default_rng(132217111120)
          idx = rg.permutation(n)
          fifth = n / 5
          y = data.Ships.copy()
          xv errors = y.copy()
          for i in range(5):
              reserve = idx[int(i * fifth) : int((i + 1) * fifth)]
              use = np.setdiff1d(idx, reserve)
              beta = smf.ols(mod, data.iloc[use]).fit().params
              xv_predictions = smf.ols(mod, data.iloc[reserve]).predict(beta)
              xv_errors.iloc[reserve] = y.iloc[reserve] - xv_predictions
          sse_xv = (xv_errors ** 2).sum()
          full res = smf.ols(mod, data).fit()
          pretty(f"XV SSE: {sse xv:0.1f}, In-sample SSE: {n*full res.mse resid:0.1f}")
```

XV SSE: 19011.3, In-sample SSE: 18963.3

Cross-validation

Analysis of Cross-Sectional Data

Checking for Specification Errors

- Testing Structural Stability
- Testing for Neglected Nonlinearities
- Visual Diagnostics
- Trimming and Windsorization

The Chow Test

- Chow test is a stability test
- Implemented using dummy interaction variables

$$I_{[t>\tau]}$$

• Extend model with copy of variables interacted

$$Y_t = \mathbf{x}_t \boldsymbol{\beta} + I_{[t>\tau]} \mathbf{x}_t \boldsymbol{\gamma} + \epsilon_t$$

• Test using a Wald test (or LM or LR) with a χ^2_k distribution

In [101]: mod = "Banks ~ 1 + VWMe + SMB + HML + MOM" interact_mod = " + IxVWMe + IxSMB + IxHML + IxMOM" ind = data.index > pd.to_datetime("1987-10-1") ind interact = data[["VWMe", "SMB", "HML", "MOM"]] * ind[:, None] interact.columns = [f"Ix{col}" for col in interact] both = pd.concat([data, interact], 1) chow = smf.ols(mod + interact_mod, both).fit(cov_type="HC0") summary(chow, [0, 1])

OLS Regression Results

Dep. Variable:	Banks	R-squared:	0.758
Model:	OLS	Adj. R-squared:	0.755

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.0588	0.126	-0.465	0.642	-0.307	0.189
VWMe	1.1137	0.057	19.469	0.000	1.002	1.226
SMB	-0.0774	0.072	-1.081	0.280	-0.218	0.063
HML	0.2557	0.086	2.990	0.003	0.088	0.423
MOM	-0.2023	0.059	-3.428	0.001	-0.318	-0.087
IxVWMe	0.0683	0.073	0.942	0.346	-0.074	0.211
IxSMB	-0.0842	0.089	-0.942	0.346	-0.259	0.091
IxHML	0.5119	0.103	4.947	0.000	0.309	0.715
IxMOM	0.0977	0.069	1.422	0.155	-0.037	0.232

[0., 0., 0., 0., 0., 0., 0., 1., 0.], [0., 0., 0., 0., 0., 0., 0., 1.]])

The Chow statistic is 27.7 and its p-value is 0.000

Chow Test

Industry Portfolios

```
In [105]:
    cv = stats.chi2(4).ppf(0.95)
    test_plot(chows, title="Chow Test Statistics", cv=cv)
    _ = plt.plot([cv, cv], [-0.5, 8.5], "k:", linewidth=8)
```


The RESET Test

- Test for general neglected nonlinearity
- Include powers of fitted value \hat{Y}_i^p in the model
- Requires initial regression to generate fitted value $Y_i = \mathbf{x}_i \mathbf{\beta} + \gamma_2 \hat{Y}_i^2 \left[+ \gamma_3 \hat{Y}_i^3 \right] + \epsilon_i$

```
In [106]:
    first_stage = smf.ols("FabPr ~ 1 + VWMe + SMB + HML + MOM", data).fit()
    data["FabPrHat"] = first_stage.predict()
    reset_res = smf.ols("FabPr ~ 1 + VWMe + SMB + HML + MOM + I(FabPrHat**2)", data).fit()
    test_and_pval = pd.concat([reset_res.tvalues, reset_res.pvalues], 1)
    test_and_pval.columns = ["t-stat", "p-value"]
    test_and_pval
```

Out[106]:

เ-รเสเ	p-value
-0.406132	6.847736e-01
20.341804	3.244811e-72
8.877870	6.004409e-18
3.095003	2.048885e-03
-2.513712	1.217672e-02
-1.953090	5.121869e-02
	-0.406132 20.341804 8.877870 3.095003 -2.513712

t-ctat

n-value

The RESET Test

Industry Portfolios

```
cv = stats.chi2(1).ppf(0.95)
test_plot(reset_stats, title="RESET Statistics", cv=cv)
```


Rolling Regression Plots

- Estimate many regressions using a fixed window length
- Visual diagnostics for parameter stability
- Confidence intervals are approximate

```
In [110]:
    from statsmodels.regression.rolling import RollingOLS
    rolling_res = RollingOLS.from_formula(
        "Banks ~ 1 + VWMe + SMB + HML + MOM", data, window=60
).fit(cov_type="HC0")
    fig = rolling_res.plot_recursive_coefficient(["VWMe", "HML", "MOM"])
```


Recursive Regression Plots

- Estimate many regressions using an expanding sample
- Visual diagnostics for parameter stability
- Confidence intervals are standard

Residual Plots: Residual vs X

• Residual plots are simple method to detect visible misspecification

In [114]: plot_residual()

Residual Plots: Residual vs $X_i | X_1, X_2, ..., X_{i-1}, X_{i+1}, ..., X_k$

- Sometimes useful to plot residuals against regressors partialed out
- Regress each regressor on the others included in the model
- Residual contains unique component of each regressor

In [116]: plot_partial_residual()

Trimming

0.975 8.650551

- Drop observations with large ϵ_i
- Requires an initial estimator of β
 - "Good" subset of data
 - Typical value in random subset
 - Robust estimator or LAD
- Remove observations with $\hat{\epsilon}_i$ below quantile α and above $1-\alpha$ for small α (1%, 2.5%, 5%)

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.1302	0.141	-0.925	0.355	-0.406	0.146
VWMe	0.9070	0.038	23.716	0.000	0.832	0.982
SMB	-0.1617	0.055	-2.918	0.004	-0.270	-0.053
HML	0.3853	0.062	6.224	0.000	0.264	0.507
MOM	0.0567	0.039	1.448	0.148	-0.020	0.133

```
In [119]:
```

```
full = smf.ols("Oil ~ 1 + VWMe + SMB + HML + MOM", data).fit(cov_type="HC0")
summary(full)
```

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.1240	0.172	-0.722	0.470	-0.461	0.213
VWMe	0.9537	0.053	17.951	0.000	0.850	1.058
SMB	-0.1525	0.065	-2.335	0.020	-0.281	-0.024
HML	0.3944	0.089	4.414	0.000	0.219	0.569
МОМ	0.0609	0.050	1.218	0.223	-0.037	0.159

Windsorization

- Similar to trimming with one key difference
- Replace large ϵ_i with their quantile
- No data dropped

```
In [120]:
    data["Windsorized"] = data.0il
    predicted = lad.predict()
    low = lad.resid < bounds.iloc[0]
    data.loc[low, "Windsorized"] = predicted[low] + bounds.iloc[0]
    high = lad.resid > bounds.iloc[1]
    data.loc[high, "Windsorized"] = predicted[high] + bounds.iloc[1]
    windsorized = smf.ols("Windsorized ~ 1 + VWMe + SMB + HML + MOM", data).fit(
        cov_type="HC0"
    )
    summary(windsorized)
```

	coef	std err	Z	P> z	[0.025	0.975]
Intercept	-0.1163	0.154	-0.755	0.451	-0.419	0.186
VWMe	0.9225	0.042	21.844	0.000	0.840	1.005
SMB	-0.1519	0.059	-2.568	0.010	-0.268	-0.036
HML	0.3700	0.069	5.389	0.000	0.235	0.505
MOM	0.0564	0.043	1.303	0.193	-0.028	0.141