3/13/23, 3:50 PM OneNote

Assignment 2: Problem Statement

20 January 2022 08:19 AM

CE Dept., IIT Kanpur Semester 2021-22-II C. Kolay

CE 629A: Earthquake Analysis and Design of Structures Assignment #2: Response of Inelastic SDF Systems Due Thursday, January 27, 2022

Problem 1 [20 + extra credit]

Determine the response of an elastic perfectly plastic (EPP) SDF system with $T_n=0.5$ sec, $\zeta=0\%$, and $R_y=8$ to the El Centro ground motion that you used in Assignment #1. Use $\Delta t=0.005$ sec for numerical integration of the equation of motion. Perform the analysis for a duration of ground motion duration (t_{dur}) plus 20 sec, where $\ddot{u}_g(t)=0$ for $t\geq t_{dur}$ (i.e., zero padding at the end of the accelerogram). Plot the following:

- (i) Time history of normalized deformation $\frac{u(t)}{u_y}$,
- (ii) time history of normalized resisting force $f_{\mathcal{S}}(t)/f_{\mathcal{Y}}$,
- (iii) normalized force $\left(\frac{f_S(t)}{f_y}\right)$ and normalized deformation $\left(\frac{u(t)}{u_y}\right)$ hysteretic response for the entire duration of the simulation, and
- (iv) redo plot (iii) for the free vibration response only (i.e., when $t \ge t_{dur}$).

From the above results determine the ductility demand (μ) and normalized permanent (residual) deformation $\left(\frac{u_p}{u_y}\right)$.

Note: You can receive extra credit as noted below.

Method	Extra credit
Central difference method	0
KR-α method	10
Newmark's average acceleration with Newton-Raphson or modified Newton-Raphson iteration	20
All the above algorithms with comparison of results for (i)-(iv)	40

Problem 2 [20]

Redo Problem #1 but for a bilinear plastic (BP) system with post-yield stiffness ratio $\alpha = 0.05$.

Problem 3 [20]

Redo Problem #1 but for a bilinear elastic (BE) system with post-yield stiffness ratio $\alpha = 0.05$.

Problem 4 [35+45=80]

Consider the three types of force-deformation behaviour studied in Problems 1-3 (i.e., EPP, BP, and BE) and the same El Centro ground motion.

Part-A

For each of the three types of force-deformation behaviour, determine and plot the following:

- (i) constant- R_y ductility spectra, i.e., a plot of μ vs T_n for a given value of R_y ; and,
- (ii) constant- R_y residual deformation spectra, i.e, a plot of $\frac{u_p}{u_y}$ vs T_n for a given value of R_y .

Consider $\zeta = 5\%$, $R_y = 1$, 2, 4, 6, and 8. Use a range of 0.02 sec to 50 sec for T_n . Plot the data in loglog scale. Comment on your results. You will get a total of 6 plots, and your first plot corresponding to the EPP force-deformation behaviour should be similar to Figure 7.4.5 of Chopra.

Page 1 of 2

CE Dept., IIT Kanpur Semester 2021-22-II C. Kolay

<u>Part-B</u>

Now, for each of $R_y = 2$, 4, 6 and 8, compare the constant- R_y ductility spectra and constant- R_y residual deformation spectra for the EPP, BP and BE force-deformation behaviour. Comment on your results. You will get a total of 8 plots here.

Note: For Problems 2-4, use an appropriate time-stepping method of your choice.

3/13/23, 3:50 PM OneNote

Page 2 of 2