1. Suppose that there is not a number that greater or equal than m.

The original sum of a_i , $\sum_{i=1}^n a_i = n \cdot m$.

Since there is not a number that greater than m.

Let t be the largest less than m, we have t < m .

Under this situation, let the new numbers we get be a_i' . The maximal possible sum of a_i' is $\sum_{i=1}^n a_i' = t \cdot n < n \cdot m = \sum_{i=1}^n a_i$. Which is contradictory to the original sum of a_i .

Thus, there must be a number that grater or equal than m.

2. Suppose that $(A-B) \cap (B-A) \neq \emptyset$

Which means
$$\{x\mid x\in A\ \land\ x\not\in B\}\ \cap\ \{x\mid x\in B\ \land\ x\not\in A\}
eq \varnothing$$

$$\exists x,x\in A \ \land \ x
otin B \ \land \ x
otin A$$
 is True.

Since
$$x \in A \ \land x \not\in A = F, x \in B \ \land \ x \not\in B = F$$

So, there is a contradictory in our assumption.

Thus,
$$(A-B) \, \cap \, (B-A)
eq \varnothing$$

3. (a) Let
$$(\neg r \ \land \ (p \to \neg q)) \to r$$
 be A , $p \to (q \to r)$ be B .

p	q	r	p o eg q	eg r	$ eg r \ \land \ (p ightarrow eg q)$	A	q ightarrow r	В
Т	Т	Т	F	F	F	Т	Т	Т
Т	Т	F	F	Т	F	Т	F	F
Т	F	Т	Т	F	F	Т	Т	Т
Т	F	F	Т	Т	Т	F	Т	Т
F	Т	Т	Т	F	F	Т	Т	Т
F	Т	F	Т	Т	Т	F	F	Т
F	F	Т	Т	F	F	Т	Т	Т
F	F	F	Т	Т	Т	F	Т	Т

It can be shown that column A and B are **not** identical. So, $(\neg r \land (p \to \neg q)) \to r$ and $p \to (q \to r)$ are **not** logically equivalent.

(b) Let
$$p \leftrightarrow q$$
 be C , $(p \ \land \ q) \ \lor \ (\neg p \ \land \ \neg q)$ be D .

p	q	C	$p \wedge q$	$ eg p \ \land \ eg q$	D
Т	Т	Т	Т	F	Т
Т	F	F	F	F	F
F	Т	F	F	F	F
F	F	Т	F	Т	Т

It can be shown that column C and column D are identical. So $p\leftrightarrow q$ and $(p\ \land\ q)\ \lor\ (\lnot p\ \land\ \lnot q)$ are logically equivalent.

4. (a)
$$D = \{6, 8, 9, 10, 12, 14, 15, 16, 18, 20\}$$

P(x) can be $x \bmod 2 = 0$, Q(x) can be $x \bmod 2 = 1$.

Within D, $\{6, 8, 10, 12, 14, 16, 18, 20\}$ can satisfy P(x), $\{9, 15\}$ can satisfy Q(x)

And since any integer x can not satisfy $x \ mod \ 2=0$ and $x \ mod \ 2=1$ at the same time due to the only value of the remainder. So, $\neg(\exists z \in D \ P(z) \ \land \ Q(z))$ is true.

(b) Try to prove $(A \cap B)' = A' \cup B'$

It can be shown that both the area of $(A \cap B)'$ and $A' \cup B'$ can be represent by the area colored **blue** in the graph. So, we can prove that $(A \cap B)' = A' \cup B'$.

5. (a)

Let students choose **AloT** within the set A, choose **Data Science** within the set D, and choose **Metaverse** within the set M. The Venn Diagram can be represent by the graph above.

$$\begin{split} |A\ \cup\ D| &= |A| + |D| - |A\ \cap\ D| = 150 + 140 - 50 = 240 \\ |(A\ \cap\ M)\ \cup\ (D\ \cap\ M)| &= |A\ \cap\ M| + |D\ \cap\ M| - |A\ \cap\ D\ \cap\ M| = 45 + 55 - 30 = 70 \\ |A\ \cup\ D\ \cup\ M| &= |A\ \cup\ D| + |M| - |(A\ \cap\ M)\ \cup\ (D\ \cap\ M)| = 240 + 160 - 70 = 330 \\ \text{So, the total number of Year 4 COMP students of this Academic Year is 330.} \end{split}$$

(b)

Suppose the student completes above or equal than two elective courses are within the set P Then, $|P|=|A\ \cap\ D|+|D\ \cap\ M|-|A\ \cap\ D\ \cap\ M|=55+50-30=75.$

So, there are 75 persons will be eligible to receive this.

6. (a)

1.
$$b o m$$

2.
$$r
ightarrow b$$

3.
$$(b \ \land \lnot r) o f$$

(b)

Since David is a member of the library, and he borrowed a book but did not return the book within two weeks. So be can obtain $m, b, \neg r$.

According to the (a)3, $(b \ \land \neg r) o f.$ So, f is true, which means David will be fined.

7. The photo is attached below.

$$C^{T} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \Rightarrow (C^{T})^{T} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
$$(C^{T})^{T}B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 1 \times 2 + 2 \times 1 & 1 \times (-1) + 2 \times 3 \\ 3 \times 2 + 4 \times 1 & 3 \times (-1) + 4 \times 3 \\ 5 \times 2 + 6 \times 1 & 5 \times (-1) + 6 \times 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 10 & 9 \\ 16 & 13 \end{bmatrix}$$

(b)

Let
$$X = A^2 + 2AB + B^2, Y = (A+B)^2$$

$$X = A^{2} + 2AB + B^{2}$$

$$= \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} + 2 \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -2 \\ 6 & -10 \end{bmatrix} + \begin{bmatrix} 3 & -5 \\ 5 & 8 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & -7 \\ 11 & -1 \end{bmatrix}$$

$$Y = (A+B)^{2}$$

$$= \begin{pmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} + \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \end{pmatrix}^{2}$$

$$= \begin{pmatrix} \begin{bmatrix} 3 & -1 \\ 3 & 2 \end{bmatrix} \end{pmatrix}^{2}$$

$$= \begin{bmatrix} 6 & -5 \\ 15 & 1 \end{bmatrix}$$

$$X! = Y, :: A^2 + 2AB + B^2 \neq (A+B)^2$$

(c)

$$D \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} = E$$

$$\begin{bmatrix} -6 & 5 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} x & 3 \\ y & 3 \end{bmatrix} = \begin{bmatrix} -20 & -3 \\ 22 & 15 \end{bmatrix}$$

$$\begin{bmatrix} -6x + 5y & -3 \\ 4x + y & 15 \end{bmatrix} = \begin{bmatrix} -20 & -3 \\ 22 & 15 \end{bmatrix}$$

$$\begin{cases} -6x + 5y = -20 \\ 4x + y = 22 \end{cases}$$

We can obtain $x=5,\ y=2$, from the equation.

Insertion-Sort(Array A, Integer n)

1. for integer $i \leftarrow 2$ to n

2.
$$k \leftarrow A[i]$$

3.
$$j \leftarrow i-1$$

$$\text{while } j > 0 \text{ and } A[j] > k \ do$$

5.
$$A[j+1] \leftarrow A[j]$$

6.
$$j \leftarrow j-1$$

7.
$$A[j+1] = k$$

For Selection-Sort

Line	Cost	Frequency(Best case)	Frequency(Worst case)
1. for integer $i \leftarrow 1$ to $n-1$	c_1	n-1	n-1
$2.k \leftarrow i$	c_2	n-1	n-1
$3. ext{ for integer } j \leftarrow i+1 ext{ to } n$	c_3	at most n^2	at most n^2
4. if $A[k] > A[j]$ then	c_4	at most n^2	at most n^2
$5.\ k \leftarrow j$	c_5	at most n	at most n^2
6. swap $A[i]$ and $A[k]$	c_6	n-1	n-1

We can obtain that both Best case and Worst case for Selection-Sort the complexity is $O(n^2)$ For Insertion-Sort

Line	Cost	Frequency(Best case)	Frequency(Worst case)
1. for integer $i \leftarrow 2$ to n	c_1	n-1	n-1
$2.\ k \leftarrow A[i]$	c_2	n-1	n-1
$3.\ j \leftarrow i-1$	c_3	n-1	n-1
4. while $j > 0$ and $A[j] > k do$	c_4	n-1	at most n^2
$5.\ A[j+1] \leftarrow A[j]$	c_5	0	at most n^2
$6.\ j \leftarrow j-1$	c_6	0	at most n^2
7.A[j+1]=k	c_7	n-1	n-1

We can obtain that the complexity for the Best case of Insertion-Sort is O(n), while the Worst case is $O(n^2)$

From the analysis above, we find that for Selection-Sort, the complexity is same for all the cases, but Insertion-Sort works at a lower complexity for better case. And their complexity at the worst case is the same. So, Insertion-Sort is more efficient.

10. When n=1,

$$LHS=\sum_{r=1}^{1}r^2=1^2=1$$
 $RHS=rac{1}{6} imes1 imes(1+1) imes(2 imes1+1)=1$ $LHS=RHS$

Assume that for some $k\in\mathbb{N}$, we have $\sum_{r=1}^k r^2=rac{1}{6}k(k+1)(2k+1).$ For n=k+1,

$$LHS = \sum_{r=1}^{k+1} r^2 = \sum_{r=1}^{k} r^2 + (k+1)^2$$

$$= \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$$

$$= (k+1)(\frac{2k^2 + k + 6k + 6}{6})$$

$$= \frac{1}{6}(k+1)(2k^2 + 7k + 6)$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3)$$

$$= \frac{1}{6}(k+1)((k+1) + 1)(2(k+1) + 1)$$

$$= RHS$$

By the principle of Mathematical Induction we can obtain that for $\forall n \in \mathbb{N}$, we have the conclusion that:

$$\sum_{r=1}^n r^2 = rac{1}{6} n(n+1)(2n+1)$$