2020-Jan-9 Shift-1

AI24BTECH11003 - Badde Vijaya Sreyas

17) If the number of five digit numbers with distinct digits and 2 at the 10th place is 336k,

c) 4

c) $\left(\frac{1}{2}\right)\left(f(1) + 3f\left(\frac{1}{2}\right)\right)$ d) $\frac{1}{6}\left(f(0) + f(1) + 4f\left(\frac{1}{2}\right)\right)$

d) 6

16) If for all real triplets (a,b,c), $f(x) = a + bx + cx^2$; then $\int_0^1 f(x) dx$ is equal to

a) $2\left(3f(1) + 2f\left(\frac{1}{2}\right)\right)$ b) $\left(\frac{1}{3}\right)\left(f(0) + f\left(\frac{1}{2}\right)\right)$

then k is equal to:

b) 7

18) Let the observations x_i ($1 \le i \le 10$) satisfy the equations,

a) 8

	and $\sum_{i=1}^{10} (x_i - 5)^2 = 4$ 3), $(x_2 - 3)$ $(x_10 - 3)$		
a) (6,3)	b) (3,6)	c) (3,3)	d) (6,6)
19) The integral $\int \frac{1}{(x+4)^2}$	$\frac{dx}{\sqrt[8]{(x-3)^{\frac{6}{7}}}}$ is equal to		
a) $-\left(\frac{x-3}{x-4}\right)^{-\frac{1}{7}} + C$	b) $\frac{1}{2} \left(\frac{x-3}{x-4} \right)^{\frac{3}{7}} + C$	c) $\left(\frac{x-3}{x-4}\right)^{\frac{1}{7}} + C$	d) $-\frac{1}{13} \left(\frac{x-3}{x-4} \right)^{-\frac{13}{7}} + C$
20) In a box, there are 20 cards out of which 10 are labelled as A and remaining 10 are labelled as B. Cards are drawn at random, one after the other and with replacement till a second A-card is obtained. The probability that the second A-card appears before the third B-card is:			
a) $\frac{15}{16}$	b) $\frac{9}{16}$	c) $\frac{13}{16}$	d) $\frac{11}{16}$
 21) If the vectors \$\overline{p} = (a+1)\hat{i} + a\hat{j} + a\hat{k}\$, \$\overline{q} = a\hat{i} + (a+1)\hat{j} + a\hat{k}\$, and \$\overline{r} = a\hat{i} + a\hat{j} + (a+1)\hat{k}\$ (a ∈ R) are coplanar and \$3(\overline{p} \cdot \overline{q})^2 - \lambda \overline{r} \times \overline{q} ^2 = 0\$, then the value of \$\lambda\$ is 22) The projection of the line segment joining the points (1, -1, 3) and (2, -4, 11) on the line joining the points (-1, 2, 3) and (3, -2, 10) is 23) The number of distinct solutions of the equation log \$\frac{1}{2}\$ sin \$x\$ = 2 - log \$\frac{1}{2}\$ cos \$x\$ in the interval [0, 2] is: 24) If for \$x ≥ 0\$, \$y = y(x)\$ is the solution of the differential equation (1 + x) dy = \$\begin{bmatrix} (1 + x)^2 + y - 3 \end{bmatrix} dx\$, \$y(2) = 0\$, then \$y(3)\$ is equal to: 25) The coefficient of \$x^4\$ in the expansion of (1 + x + x)^{10}\$ is 			