

#### **Professor:** Gabriel Resende Machado

#### Formação:

- Mestre: Sistemas e Computação (IME, 2019);
- Bacharel: Ciência da Computação (UNIFESO, 2016).



#### Áreas de Especialização:

- Ciência de Dados;
- Banco de Dados;
- Algoritmos.

#### Principais formas de contato:

- E-mail e LinkedIn (disponíveis no slide de capa);
- Plataforma Canvas (plano de aula, ementa, slides de aulas, tarefas e exercícios).

#### Sobre a Disciplina

#### Objetivos gerais:

- Introdução aos conceitos fundamentais das tecnologias da informação e comunicação (TICs) com ênfase em uma abordagem prática (hands-on);
- Manipular ferramentas básicas de desenvolvimento de programas e sistemas de informação.

- Planejamento (arquivos disponíveis no Canvas):
  - Plano de Ensino: https://shorturl.at/vST36;
  - Plano de Aulas: https://shorturl.at/eilFV;
  - Plano de Curso: https://shorturl.at/uxD78.

### **Avaliações**

#### Avaliação 1 (AV1):

- Qstione (previsto para 29/04/24): 40 pontos;
- Projeto 1 (entrega prevista para 22/04/24 via Canvas): 30 pontos;
- Lista de exercícios (entregas ao longo do curso, via Canvas): 30 pontos.

#### Avaliação 2 (AV2):

- Qstione (previsto para 24/06/24): 40 pontos;
- Projeto 2 (entrega prevista para 17/06/24 via Canvas): 30 pontos;
- Lista de exercícios (entregas ao longo do curso, via Canvas): 30 pontos.
- Ambas as avaliações do Qstione serão compostas por 10 questões objetivas e 02 discursivas;
- As avaliações do Qstione compõem 40% da nota trimestral. 60% restantes vêm de trabalhos e/ou atividades.

### Cômputo da nota final



#### Avaliações especiais:

- 2ª chamada (24/06/24): somente para alunos que faltaram em uma das avaliações do Qstione.
- Reavaliação (08/07/24): somente para os alunos com a nota final presente no intervalo [40, 60).

<sup>\*</sup> Frequência abaixo dos 75% das aulas resulta em reprovação por faltas;

<sup>\*\*</sup> A prova de reavaliação compreende toda a matéria do curso e é elaborada livremente pelo professor.



### TICs: Conceito e Motivação

- TICs é uma abreviação para Tecnologias de Informação e Comunicação;
- As TICs consistem em recursos de hardware, software e telecomunicações que oferecem automações ou outras funcionalidades que ajudam a otimizar a transformação digital em empresas;
- Os setores relacionados às TICs, impulsionados principalmente pela computação, estão em constante ascensão:
  - Segundo pesquisa\* da Associação Brasileira de Distribuição de Tecnologia e Informação (Abradisti), o setor de TIC teve um crescimento de 13% em 2020, registrando crescimento de 23% apenas no setor de TI;
  - Além disso, segundo previsão\*\* da IDC (International Data Corporation), até 2024, 70% das empresas latino-americanas irão otimizar suas operações para melhor executar estratégias digitais e para a implantação generalizada de recursos e operações autônomas de TI.

<sup>\*</sup> Disponível em: <a href="https://shorturl.at/giR69">https://shorturl.at/giR69</a>. Acesso em 18/02/24;

<sup>\*\*</sup> Disponível em: <a href="https://shorturl.at/orF25">https://shorturl.at/orF25</a>. Acesso em 18/02/24.

### **TICs: Conceito e Motivação**



### Tecnologia da Informação (TI)

- A área de TI oferece diversas opções de cursos, cada um com foco em diferentes aspectos do desenvolvimento, implementação e gerenciamento de sistemas computacionais;
- Entre os principais cursos na área de TI, destacam-se:

| Curso                    | Foco                                                                                                                                | Objetivo                                                                                                                                             | Habilidades                                                                                                                               | Atuação                                                                                                                            |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| Ciência da Computação    | Teoria e fundamentos da computação, incluindo algoritmos, estruturas de dados, matemática e lógica.                                 | Formar profissionais com base sólida<br>para pesquisa, desenvolvimento de software<br>e inovação na área da computação.                              | Raciocínio lógico, programação,<br>análise de problemas, resolução de<br>problemas complexos.                                             | Pesquisa em computação,<br>desenvolvimento de software,<br>criação de algoritmos,<br>inteligência artificial,<br>ciência de dados. |
| Engenharia da Computação | Hardware, software e sistemas embarcados, com ênfase em projeto, desenvolvimento, teste e implementação.                            | Formar profissionais capazes de projetar, construir e integrar sistemas computacionais completos.                                                    | Hardware, eletrônica, eletromagnetismo, programação, gerenciamento de projetos.                                                           | Desenvolvimento de<br>hardware,firmware,<br>software embarcado,<br>robótica, telecomunicações,<br>redes de computadores.           |
| Sistemas de Informação   | Integração de hardware, software, redes<br>e dados para atender às necessidades<br>de informação das empresas.                      | Formar profissionais aptos a analisar, projetar, implementar e gerenciar sistemas de informação em diferentes organizações.                          | Gestão de projetos, análise de dados,<br>administração de empresas,<br>desenvolvimento de software,<br>banco de dados.                    | Consultoria em TI,<br>desenvolvimento de sistemas,<br>gestão de bancos de dados,<br>análise de negócios.                           |
| Análise de Sistemas      | Análise, planejamento, desenvolvimento e implementação de sistemas de informação para solucionar problemas específicos de empresas. | Formar profissionais aptos a entender<br>às necessidades das empresas e projetar<br>sistemas que atendam a essas necessidades<br>de forma eficiente. | Levantamento de requisitos,<br>modelagem de dados,<br>análise de processos,<br>desenvolvimento de software,<br>gerenciamento de projetos. | Análise de sistemas,<br>desenvolvimento de software,<br>gestão de projetos,<br>suporte técnico,<br>consultoria em TI.              |

## Pilares da Ciência da Computação



Adaptado de: https://shorturl.at/fnrOV. Acesso em 22/02/24.

### Matemática, Computação e Informática

- Matemática é a área do conhecimento que envolve o estudo da aritmética, álgebra, geometria, trigonometria, estatística e cálculo, em busca da sistematização de quantidades, medidas, espaços, estruturas e variações (https://shorturl.at/bnsBU);
- **Computação** é a base matemática usada na informática. Computação é a teoria por trás da informática (https://shorturl.at/dgyzU).
- Informática é o estudo de sistemas computacionais por meio da aplicação da computação, especialmente quando se lida com dados armazenados (https://shorturl.at/EGKQV).

| Recurso     | Matemática                            | Computação                            | Informática                                 |
|-------------|---------------------------------------|---------------------------------------|---------------------------------------------|
| Foco        | Conceitos abstratos, provas           | Computadores e software               | Informação, dados, sistemas                 |
| Ferramentas | Fórmulas, equações                    | Linguagens de programação, algoritmos | Bancos de dados, arquiteturas de informação |
| Aplicações  | Compreendendo estruturas fundamentais | Construindo e usando tecnologia       | Gerenciando e analisando informações        |
| Relação     | Base para outros campos               | Usa conceitos matemáticos             | Usa matemática e computação                 |

### Definição de Computador

# computador \*Dicionário Priberam, 2022

(computar + -dor)

#### substantivo masculino

- 1. O que faz cálculos (pessoa ou máquina). = CALCULISTA
- 2. [Informática] Aparelho eletrônico usado para processar, guardar
- e tornar acessível informação de variados tipos.

Guarda -> Processa -> Torna acessível

Entrada Processamento Saída

### Visão Macro de um Computador



### Algoritmo

- Definição formal: conjunto das regras e procedimentos lógicos perfeitamente definidos que levam à solução de um problema em um número finito de etapas;
- Pense em algoritmo como uma receita de bolo:
  - É um conjunto de instruções bem definidas, passo a passo, para resolver um problema específico;
  - Não leva em consideração a utilização de nenhuma linguagem ou ferramenta específica;
  - Um algoritmo pode ser expresso em português claro, notação matemática ou um fluxograma.



### Programa e Sistema

- **Definição formal:** implementação real de um algoritmo em uma linguagem de programação específica, como C, Python, Java ou C++.
  - É como pegar a receita e traduzi-la em instruções que um computador possa entender e executar. O programa usa sintaxe e estruturas específicas da linguagem escolhida para dar vida ao algoritmo.
  - Um programa basicamente recebe uma entrada (input) e gera uma saída (output).
- **Sistema** é um conceito mais amplo que abrange o programa e seu ambiente. Representa a cozinha onde o bolo é assado.



## Um Primeiro Programa

O Robô Aspirador de Pó



#### **Possível Programa**

- Avançar
- Avançar
- Virar 90° Esquerda
- 4. Avançar
- 5. Limpar

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



# Um Primeiro Programa

- O Robô Aspirador de Pó



#### **Possível Programa**

- I. Avançar 🔷
- Avançar
- 3. Virar 90° Esquerda
- 4. Avançar
- 5. <u>Limpar</u>

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



# Um Primeiro Programa

- O Robô Aspirador de Pó



#### Possível Programa

- Avançar
- Avançar
- 3. Virar 90° Esquerda
- 4. Avançar
- Limpar

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



# Um Primeiro Programa

- O Robô Aspirador de Pó



#### Possível Programa

- 1. Avançar
- Avançar
- 3. <u>Virar 90° Esquerda</u> ←
- 4. Avançar
- 5. Limpar

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



## Um Primeiro Programa

O Robô Aspirador de Pó



#### Possível Programa

- Avançar
- 2. Avançar
- Virar 90° Esquerda
- Avançar ←
- Limpar

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



# Um Primeiro Programa

- O Robô Aspirador de Pó



#### Possível Programa

- Avançar
- 2. Avançar
- 3. Virar 90° Esquerda
- 4. Avançar
- Limpar ←

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



## Um Primeiro Programa

O Robô Aspirador de Pó



#### **Possível Programa**

- 1. Avançar
- Avançar
- Virar 90° Esquerda
- 4. Avançar
- 5. Limpar

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar



### Novo Exemplo de Programa

# Um Primeiro Programa

- Programando um robô hipotético

- Avançar
- Virar 90° Esquerda
- Virar 90° Direita
- Limpar







 Principal característica da Matemática: utilizar bases sólidas, construidas a partir de argumentos elementares e devidamente fundamentados, para provar uma determinada afirmação, sem que haja erros e ambiguidades.

Um astrônomo, um físico e um matemático estavam passando férias na Escócia. Olhando pela janela do trem eles avistaram uma ovelha preta no meio de um campo. "Que interessante", observou o astrônomo, "na Escócia todas as ovelhas são pretas." Ao que o físico respondeu: "Não, nada disso!. Algumas ovelhas escocesas são pretas." O matemático olhou para cima em desespero e disse: "Na Escócia existe pelo menos um campo, contendo pelo menos uma ovelha e pelo menos um lado dela é preto." [1].

- Áreas da Ciência da Computação que se beneficiam diretamente da Matemática:
  - Análise e construção de algoritmos e estruturas de dados;
  - Modelagem e simulação;
  - Lógica e teoria da computação;
  - Criptografia e segurança;
  - Computação gráfica;
  - Inteligência Artificial;
  - Computação numérica e otimização.

#### Primórdios matemáticos:



- Necessidade de contar coisas (animais, objetos): milênios a.C.;
- Desenvolvimento da escrita numérica: entre 3000 a.C. (escrita egípcia) a 876 d.C. (presença do zero em inscrições indo-arábicas);



- Desenvolvimento do ábaco pelos babilônios (aprox. 2400 a.C)
- Euclides e o desenvolvimento do método axiomático (330 a.C 277 a.C);
- Al-Kharazmi e o desenvolvimento da álgebra para a escrita dos cálculos ao invés do ábaco.



- Avanços no sistema lógico-matemático:
  - Desenvolvimento do Cálculo por Isaac Newton (1643-1727) e Gottfried Leibniz (1646-1716): estudo do comportamento de mudanças de variáveis e funções ao longo do tempo;
  - Formalização da lógica por George Boole (1847):
    sistema formal que lida com valores Verdadeiro (1) e
    Falso (0);
  - A utopia matemática: defendida por David Hilbert, promovia a construção de um conjunto de axiomas capazes de provar qualquer proposição matemática de forma completa e consistente.



Isaac Newton



Gottfried Leibniz



George Boole



David Hilbert

#### A Crise dos Fundamentos:

- Problema da incompletude: demonstrado por Kurt Gödel em 1931. Afirma que qualquer sistema formal suficientemente complexo, como a matemática, é intrinsecamente incompleto. Ou seja, sempre haverá afirmações verdadeiras que não podem ser devidamente provadas;
- Problemas como a trissecção do ângulo, a quadratura do círculo e a duplicação do volume do cubo são exemplos de problemas verdadeiros, porém indemonstráveis no campo da geometria utilizando apenas régua e compasso.



Kurt Gödel

#### • Turing: o Pai da Computação:

- Motivado pelos trabalhos de Hilbert e Gödel, Turing definiu uma máquina teórica em 1936 conhecida posteriormente como Máquina de Turing (MT);
- A MT embutia as regras de um sistema lógico formal para leitura, processamento e escrita, o que acabou definindo o conceito de computabilidade (o que pode ou não ser computável - Tese de Church-Turing);
- Turing também trabalhou em temas relacionados às linguagens de programação e IA (Teste de Turing).
- Alan Turing contribuiu grandemente para o governo britânico durante a 2ª GM na decriptação de mensagens nazistas elaboradas pela máquina Enigma.



Alan Turing



Máquina Enigma

### História da Computação - Evolução dos Computadores

- Os computadores foram originalmente designados a realizarem cálculos considerados repetitivos e monótonos;
- Somente após os trabalhos de Turing e Von Neumann (décadas de 1930 1940), a aplicação dos computadores foi generalizada, visando a execução de diferentes programas, por meio de entradas, processamento e saídas;
- A evolução dos computadores pode ser organizada em diferentes eras:
  - Dispositivos mecânicos de cálculo (séc. 17 até séc. 19);
  - Dispositivos eletromecânicos (séc. 19 até o início do séc. 20);
  - Computadores de primeira geração (1940 a 1950);
  - Computadores de segunda geração (1950 a 1960);
  - Computadores de terceira geração (1960 a 1970);
  - Computadores de quarta geração (1970 a até o presente);
  - Computadores de quinta geração (presente e futuro).

### História da Computação - Computadores Mecânicos I

- Os computadores mecânicos eram formados principalmente por engrenagens e discos para realizarem operações aritméticas básicas. Entre as principais contribuições, pode-se citar:
  - Pascalina (1642): criada por Blaise Pascal para realizar somas e subtrações;
  - Máquina escalonada (1672): criada por Gottfried Leibniz, era capaz de realizar somas, subtrações, multiplicações e divisões.



"... está abaixo da dignidade de homens excelentes desperdiçar seu tempo com cálculos quando qualquer camponês pode fazer o trabalho com a ajuda de uma máquina." (Gottfried Leibniz).



Pascalina



Máquina escalonada

## História da Computação - Computadores Mecânicos II

- Máquina das Diferenças (1822): idealizada por Charles Babbage, trata-se de um dispositivo mecânico que seria capaz de computar e imprimir extensas tabelas científicas. Contudo, apenas em 1854, o sueco George Scheutz finalizou a construção do dispositivo;
- Máquina Analítica (1837): também idealizada por Babbage, tinha como premissa realizar qualquer tipo de cálculo a partir da troca manual da ordem em que as peças interagem.
   O conceito da Máquina Analítica está muito próximo do que hoje define-se como computador;
- Ada Lovelace é considerada a primeira programadora ao escrever sequências de instruções para a Máquina Analítica de Babbage baseadas em subrotinas, loops e saltos.
   Influenciou posteriormente os trabalhos de Alan Turing.



Charles Babbage



Máquina das diferenças

#### História da Computação - Computadores Eletromecânicos I

- Máquinas eletromecânicas são dispositivos que combinam elementos mecânicos e elétricos em seu funcionamento. Essas máquinas geralmente utilizam motores elétricos para gerar movimento mecânico, transmitindo energia elétrica para realizar tarefas específicas.
  - Herman Hollerith desenvolveu uma máquina eletromecânica baseada na leitura de cartões perfurados para a realização do censo dos EUA em 1890, o que diminuiu o tempo de processamento dos dados de 8 para 2 anos e meio. Futuramente, Hollerith ajudou a fundar a IBM (1924);
  - Konrad Zuse construiu as primeiras máquinas programáveis para a realização de cálculos, sendo a primeira versão chamada Z1 (1938) e a última, Z4 (1950). Zuse também foi o primeiro a comercializar suas máquinas, tendo sua empresa posteriormente sendo absorvida pela Siemens.



Tabuladora de Hollerith



Réplica do Z1

### História da Computação - Computadores Eletromecânicos II

- George Stibitz, da Bell Telephones, desenvolveu o primeiro computador binário baseado em relés em 1939, o chamado Modelo 1. Os relés do Modelo 1 trabalhavam com dois estados, sendo que o 1 indica passagem de corrente e o 0 fechamento de corrente;
- Baseado nas ideias da Máquina Analítica de Babbage, em 1944, Howard Aiken conceituou o funcionamento da máquina a partir da aplicação dos relés e apresentou o projeto à IBM, que finalizou a construção em 1944. O Mark I era formado por 765 mil componentes, 3 milhões de conexões, centenas de quilômetros de fios e pesava 4,5 toneladas. Realizava 3 adições por segundo, uma multiplicação a cada 6 segundos e uma divisão a cada 15 segundos;
- Os computadores eletromecânicos faziam muito barulho e esquentavam muito, atraindo insetos para seus interiores (os chamados bugs).



George Stibitz



Harvard Mark I

### História da Computação - 1ª Geração de Computadores I

- A 1ª geração dos computadores foi caracterizada pelo surgimento dos computadores formados puramente por componentes eletrônicos para a manipulação de sinais elétricos e na execução de instruções codificadas em linguagem binária.
  - ENIAC (Electronic Numerical Integrator and Computer): construída por Eckert, Mauchly e Goldstine em 1946. Era capaz de realizar 5000 adições, 357 multiplicações ou 38 divisões por segundo. Possuía 18.000 válvulas. Era programável a partir de fios e chaves e executava desvios condicionais, até agora inédito. Os dados a serem processados entravam via cartões perfurados;
  - COLOSSUS: computador eletrônico desenvolvido pelos britânicos durante a 2ª GM para ajudar na descriptografia das mensagens nazistas escritas a partir da máquina Enigma. Sua construção foi fortemente influenciada pelos trabalhos de Alan Turing.



**ENIAC** 



COLOSSUS

### História da Computação - 1º Geração de Computadores II

- Von Neumann foi um matemático e engenheiro químico contemporâneo de Turing e teve contato direto com seus trabalhos;
- Tinha um grande conhecimento do funcionamento das máquinas mecânicas mencionadas, como o ENIAC e COLOSSUS, e propôs o primeiro programa armazenado na memória: um algoritmo para ordenação de valores por intercalação (Merge Sort);
- Dentre seus muitos projetos, trabalhou com Oppenheimer na construção da bomba atômica, parte do Projeto Manhattan;
- Em 1945, propôs uma nova arquitetura para computadores voltada para o armazenamento de programas, conhecida posteriormente como Arquitetura de Von Neumann, utilizada até hoje nos computadores modernos;



John Von Neumann



Von Neumann e Oppenheimer

### História da Computação - 1º Geração de Computadores III

- Formada por cinco componentes principais: (i) unidade de entrada;
  (ii) unidade de controle (UC); (iii) unidade lógico-aritmética (ULA);
  (iv) unidade de memória e (v) unidade de saída;
- A unidade de entrada envia as instruções para a CPU que as armazena temporariamente na memória;
- A UC coordena as operações do computador, buscando instruções na memória, decodificando-as e controlando a execução das operações;
- A ULA é responsável por realizar operações aritméticas (como adição, subtração, multiplicação e divisão) e operações lógicas (como AND, OR e NOT) nos dados;
- A unidade de saída envia as informações processadas para o mundo externo ou para um dispositivo de armazenamento de dados.



### História da Computação - 2ª Geração de Computadores

- A 2ª geração dos computadores foi marcada pela substituição das válvulas de vácuo pelos transistores de silício, levando a computadores menores, mais rápidos e eficientes;
- O primeiro computador dessa geração foi o UNIVAC I (1951), produzido pelos mesmos criadores do ENIAC. Foi vendido em larga escala para fins comerciais, sendo inclusive adquirido pelo IBGE em 1961. Armazenava tanto números quanto letras;
- Outras empresas também criaram seus computadores comerciais, como a IBM (IBM 700, IBM 1401 e IBM 608) e a CDC (CDC 1604);
- Surgimento das linguagens de alto nível: COBOL, FORTRAN e ALGOL facilitaram o desenvolvimento de programas como compiladores e sistemas operacionais;
- Surgimento dos primeiros dispositivos de armazenamento em memória magnética.





**UNIVAC** 

#### História da Computação - 3º Geração de Computadores

- A terceira geração de computadores, que começou na década de 1960, foi caracterizada pela introdução dos circuitos integrados (CIs).
- Os Cls são chips que contêm vários transistores e outros componentes eletrônicos em um único substrato de silício, proporcionando maior densidade de componentes, melhorando a eficiência e a diminuição do tamanho final das máquinas;
- Surgimento das primeiras empresas fabricantes de *chips*: Intel (1968) e AMD (1969);
- Surgimento de computadores menores e voltados para fins específicos (acadêmicos, militares e comerciais): IBM 360, DEC PDP-11; HP 2100 e Datapoint 2200;
- Caracterizada também pelas primeiras arquiteturas baseadas em memória RAM e execuções multitarefa.



Circuito integrado



HP 2100

### História da Computação - 4ª Geração de Computadores I

- Caracteriza-se pelo surgimento do primeiro microprocessador: o Intel 4004 (1971). Os microprocessadores contêm milhões de transistores em um único CI, o que aumentou drasticamente a capacidade de processamento;
- Surgimento dos primeiros computadores pessoais, como o Altair 8800 (1974), Apple II (1977) e IBM PC (1981);
- Surgimento da Microsoft em 1975 que, inicialmente, providenciou sistemas operacionais BASIC para os microcomputadores Altair 8800.
   Posteriormente, também providenciou o MS-DOS para os computadores IBM PC em 1981;
- Popularização das linguagens de programação, como C, C++ e Pascal;
- Aumento da capacidade de armazenamento a partir dos primeiros disquetes e discos rígidos.





Altair 8800

## História da Computação - 4ª Geração de Computadores II

- Surgimento das primeiros computadores com interfaces gráficas (GUIs):
  o Macintosh (1984) e o IBM PC AT com Windows 1.0 (1985);
- Implementação do primeiro kernel do sistema operacional Linux de código aberto, por Linus Torvalds (1991);
- Popularização da Internet, juntamente com protocolos como o TCP/IP, possibilitou a conexão global de computadores e o surgimento da World Wide Web (WWW, década de 1990). Guerra dos navegadores (1995-1999);
- Surgimento das primeiras redes sociais: Sixdegrees.com (1997), Orkut (2004), Facebook (2004) e Twitter (2006);
- **Popularização dos** *smartphones***:** Blackberry (2002), iPhone (2007) e celulares *Android* (2008).



Apple Macintosh



Internet e dispositivos móveis

### História da Computação - 5ª Geração de Computadores

- Desenvolvimento dos computadores quânticos;
- Popularização da Internet das Coisas (IoT);
- Computação em nuvem e streamings;
- Aperfeiçoamento da cibersegurança e áreas relacionadas;
- Evolução de áreas relacionadas à Inteligência Artificial e *Big Data*:
  - Robótica e veículos autônomos;
  - Aprendizado profundo: (NLP, reconhecimento de imagens, voz, etc);
  - Modelos generativos: ChatGPT, Gemini (LLMs), Sora,
    Deepfake;
  - Artificial General Intelligence (AGI): a criação de máquinas sencientes é possível?



Computador quântico da IBM



Robôs dotados de AGI

#### História da Computação - Para Refletir...

"Estudar história é importante tanto para a vida individual quanto para a vida social. Com essa ciência, é possível entender como o passado influencia o presente, o porquê das coisas serem como são e quais são os melhores modelos de vida, de sociedade e muitas outras possibilidades." <a href="https://shorturl.at/lxHM1">https://shorturl.at/lxHM1</a>.

#### Perguntas para reflexão:

- Por que a matemática é evitada ou ignorada pela maioria das pessoas?
- Em comparação às contribuições científicas do passado, você acha que atualmente há um declínio intelectual da humanidade (<a href="https://www.bbc.com/portuguese/geral-54736513">https://www.bbc.com/portuguese/geral-54736513</a>)?
- A evolução das tecnologias baseadas em Inteligência Artificial pode contribuir ou prejudicar mais a sociedade?
- Somos usuários da tecnologia ou um produto da tecnologia?

