线性代数 (3 学时) 期终试卷 A 卷

2006年1月9日

专业	学号								
题号	_	=	=	四	五	六	七	八	总分
得分							1		
-, (24 5	〉)填空题	Į:							
1. 已知 4	a_1, a_2, b_1, b_2	2 是三维列	向量,设	$A = (a_1,$	(a_2,b_1) ,	$B = (a_1, a_2)$	$(a, b_2), [a$	4 = 2,	B =3 , $ B $
A+	B + 2A-	5 B =	· .		•				
2. 设 <i>A</i> , I	3 是 n 阶实	买对称阵,	则下列命题	题不正确的	勺是	o			
(A) A	(+ B 是实	对称阵			(B) $A - B$	是实对称	阵		
(C) A	(B 是实对	称阵			(D) $\begin{pmatrix} A & O \\ O & A \end{pmatrix}$	O B)是实为	称阵		
3. 设 <i>A</i> ガ	n阶方阵	A =a	≠0, A	['] 是 A 的件	随 矩阵,	当 k =	时	, <i>kA</i> 是 2	$A^* + 3A^{-1}$
的逆矩	阵(这里	$2A^{\bullet} + 3A$	⁻¹ 可逆)。						
4. A =	x 1 1 1 x 1 1 1 x	1 -2 1	LA 的秩 B	R(A)=2,	则 <i>x</i> =		•		
5. n维向	量组 a ₁ ,a	$_2$, a_3 ($n > 3$	3)线性无法	关的充要多	·件是	°			
(A) a	$a_{1}, a_{2}, a_{3} +$	任意两个向	量线性无	关	(B) a ₁ , a	a ₂ ,a ₃ 全是	非零向量		
(C)存	在n维向	量 b , 使得	$\{a_1,a_2,a_3\}$,b线性相	关				
(D) a	$a_{1}, a_{2}, a_{3} +$	任何一个向	可量都不能	由其余两	个向量线	生表示			
6. 设4县	em×n矩	阵, <i>B</i> 是,	n×m 矩阵	,则	°				
(A) <i>n</i>	n > n时,	必有 AB	≠ 0		(B) m >	n时,必	有 AB =	0	
(C) n	> <i>m</i> 时,	必有 AB	≠ 0		(D) n >	m 时,必 ²	有 <i>AB</i> =	0	
7. 3 阶方	阵 A 的特	征值为 0、	4、9, <i>E</i>	是3阶单	位矩阵,则	A-3E	=	o	

8. 矩阵
$$A = \begin{pmatrix} 4 & 2 & 0 \\ 2 & 4 & \lambda \\ 0 & \lambda & 1 \end{pmatrix}$$
 为正定矩阵,则 λ 的取值范围是______

二、(6分) 求方程
$$\begin{vmatrix} 1 & 0 & 0 & x \\ 0 & 2 & x & 0 \\ 0 & x & 3 & 0 \\ x & 0 & 0 & 4 \end{vmatrix} = 0 的根.$$

三、 (10 分) 求一个 2 次多项式 f(x), 满足 f(1)=1, f(-1)=9, f(2)=3.

四、(10 分) $\boldsymbol{a}_1, \boldsymbol{a}_2, \cdots, \boldsymbol{a}_s$ 为齐次线性方程组 $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$ 的一个基础解系, $\begin{cases} \boldsymbol{\beta}_1 = k\boldsymbol{a}_1 + l\boldsymbol{a}_2 \\ \boldsymbol{\beta}_2 = k\boldsymbol{a}_2 + l\boldsymbol{a}_3 \\ \cdots \\ \boldsymbol{\beta}_s = k\boldsymbol{a}_s + l\boldsymbol{a}_1 \end{cases}$, k, l 为实

常数,问k,l满足什么关系时, $\beta_1,\beta_2,\cdots,\beta_s$ 也是Ax=0的一个基础解系。

五、(12分) 已知
$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \\ 1 & 1 \end{pmatrix}$$
 $X = \begin{pmatrix} 1 & 2 \\ a & 1 \\ 0 & b \end{pmatrix}$, 求 a,b , 使得 X 存在,并求矩阵 X 。

六、(16 分) 求一个正交变换
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = P \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$
, 将二次曲面方程:

$$x^2 + 3y^2 + z^2 + 2xy + 2xz + 2yz = 4$$

化为标准形方程,并问该二次曲面是什么类型的曲面?

八、(12分)判别下列命题是否正确,正确的需要证明,错误的需要给出一个反例。

1. 若n阶方阵A,B满足A+B=E,则AB=BA。

2. A 为n阶方阵,对任意n维列向量x,均有 $x^{T}Ax=0$,则A=O。

七、(10 分) 设
$$\mathcal{A}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ -x_1 \end{pmatrix}$$
, $\mathcal{B}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_2 \end{pmatrix}$,

- 1. 证明: \mathcal{A} , \mathcal{B} 是向量空间 $\mathbf{R}^2 = \left\{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \middle| x_1, x_2 \in \mathbf{R} \right\}$ 的两个线性变换:
- 2. 若线性变换的加法 $\mathcal{A}+\mathcal{B}$ 定义为 $(\mathcal{A}+\mathcal{B})a=\mathcal{A}a+\mathcal{B}a$,乘法 $\mathcal{A}\mathcal{B}$ 定义为 $(\mathcal{A}\mathcal{B})a=\mathcal{A}(\mathcal{B}a)$, $a\in R^2$,求 $\mathcal{A}+\mathcal{B}$, $\mathcal{A}\mathcal{B}$ 的矩阵表达式。