面向时空交通数据修复及预测的低秩机器学 习模型

陈新宇(https://xinychen.github.io)

伍元凯(https://kaimaoge.github.io)

赵熙乐 (https://zhaoxile.github.io)

孙立君 (https://lijunsun.github.io)

发布时间: 2023 年 2 月 更新时间: 2023 年 2 月

本文唯一下载网址:

https://xinychen.github.io/books/spatiotemporal_low_rank_models.pdf

目录

第一章	研究进展综 述	9
第二章	代数结构与交通数据类型	11
2.1	基本代数结构	11
	2.1.1 向量与矩阵	11
	2.1.2 高阶张量	12
	2.1.3 高阶张量矩阵化	14
	2.1.4 高阶张量向量化	15
2.2	时空交通数据类型	15
第三章	张量分解基础	17
3.1	Kronecker 积定义	17
	3.1.1 基本定义	
	3.1.2 Khatri-Rao 积	19
3.2	Kronecker 积基本性质	19
	3.2.1 结合律与分配律	19
	3.2.2 矩阵相乘	20
	3.2.3 求逆矩阵	21
	3.2.4 向量化	22
3.3	Kronecker 积特殊性质	23
	3.3.1 矩阵的迹	23
	3.3.2 矩阵的 Frobenius 范数	24
	3.3.3 矩阵的行列式	25
	3.3.4 矩阵的秩	25
3.4	向量外积	26
	3.4.1 定义	26
	3.4.2 性质	27
3.5	CP 张量分解	28
	3.5.1 CP 分解形式	28
	3.5.2 低秩逼近问题	29
第四章	时序矩阵分解	31
4.1	平滑矩阵分解	31
	4.1.1 模型表达式	31
	4.1.2 求解过程	32
4.2	时序矩阵分解	36

4

第九章	低秩深度学习时空预测模型	67		
第八章	基于延迟嵌套的张量分解 65			
7.4	Python 实现代码	64		
- .	7.3.4 二维低秩拉普拉斯卷积模型			
	7.3.3 一维低秩拉普拉斯卷积模型			
	7.3.2 拉普拉斯时序正则			
	7.3.1 拉普拉斯卷积核			
7.3	低秩拉普拉斯卷积模型			
	7.2.4 循环矩阵核范数最小化问题			
	7.2.3 ℓ ₁ 范数最小化问题			
	7.2.2 循环矩阵核范数			
	7.2.1 循环矩阵定义			
7.2	离散傅立叶变换与循环矩阵核范数			
	7.1.3 Parseval 定理			
	7.1.2 二维卷积定理			
	7.1.1 一维卷积定理	53		
7.1		53		
第七章		53		
	THE CONTRACT OF THE PROPERTY O			
6.3	基于张量核范数的张量填充			
6.2	基于多重截断核范数的张量填充			
6.1	基于多重核范数的张量填充			
第六章	低秩张量填充	51		
5.5	Python 实现代码	49		
5.4	算法实现			
<u>.</u> .	5.3.4 精度参数的后验分布			
	(2) 34(4) 4 424	45		
	F 4 7 F 1 1 1 4 7 F 4 7 7 F	43		
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	42		
5.3	Gibbs 采样与后验推断			
	5.2.4 张量分解的贝叶斯网络			
	5.2.3 精度参数的先验分布			
	5.2.2 因子矩阵的先验分布			
	5.2.1 共轭分布			
5.2	2 1/2/11 4 · H	40		
5.1	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39		
第五章	贝叶斯张量分解 39			
	413/3/42/04			
		38		
	4.2.2 求解过程			
	4.2.1 模型表达式	36		

目录		To the second se
日水		•

附录 A	公开交通数据集	69
A.1	波特兰高速公路交通流量数据集	69
A.2	西雅图高速公路交通速度数据集	69

6 目录

插图

2.1	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 及其第 (i, j, k) 个元素 $x_{i,j,k}$	12
2.2	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的纤维	13
2.3	三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的切片	13
3.1	向量外积得到的三阶张量 $\boldsymbol{\mathcal{Y}}\in\mathbb{R}^{n_1 imes n_2 imes n_3}$	26
3.2	三阶张量 $\mathbf{y} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ 的 CP 分解	29
4.1	使用共轭梯度法求解二元一次方程组	34
5.1	贝叶斯高斯张量分解的贝叶斯网络	42
7.1	循环矩阵示意图	56
7.2	基于关系型数据 $\{x_1, x_2, \dots, x_5\}$ 的无向循环图 \dots	61
7.3	低秩拉普拉斯卷积模型的示意图	62
7.4	某高速公路断面交通流的车速时间序列,其中,蓝色曲线表示车速时间序列;蓝	
	色圆圈表示抽取的部分观测值。	64
7.5	基于一维低秩拉普拉斯卷积模型的 90% 缺失率的车速时间序列重构, 其中, 红	
	色曲线表示重构出来的车速时间序列。	64

插图

第一章 研究进展综述

第二章 代数结构与交通数据类型

2.1 基本代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本文要讨论的张量分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用 [Kolda and Bader, 2009, Sidiropoulos et al., 2017],但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是一阶张量,英文表述为 first-order tensor;矩阵是二阶张量,英文表述为 second-order tensor;三阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本文的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第i7、第j7列",即要描述某一元素的位置需用到行和列索引构成的组合 (i,j)。类似地,在一个三阶张量中,描述某一元素的位置需用到三个索引构成的组合,例如 (i,j,k)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的位置会节省下一些不必要的存储开支。

2.1.1 向量与矩阵

向量

向量包括行向量与列向量。在写法上,为避免混淆,向量在没有特别申明的情况下是指列向量,给定任意向量 $x \in \mathbb{R}^n$ 表示大小为 n 的向量,写作

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\top} \tag{2.1}$$

或

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{2.2}$$

其中,符号· 表示转置 (transpose)。

矩阵

一般而言,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$,矩阵的行数为 m、列数为 n,其第 (i,j) 个元素 (即矩阵的第 i 行、第 j 列元素)为

$$x_{i,j} = \boldsymbol{X}_{i,j} \tag{2.3}$$

其中, i = 1, 2, ..., m 与 j = 1, 2, ..., n。

单位矩阵一般记作 I_n ,大小为 $n \times n$,其对角线上的元素均为 1、其他位置上的元素均为 0。

矩阵向量化

给定任意矩阵 $X \in \mathbb{R}^{m \times n}$, 若矩阵的列向量为 $x_1, x_2, \dots, x_n \in \mathbb{R}^m$, 即

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_n \\ | & | & & | \end{bmatrix}$$
 (2.4)

则可对矩阵按列进行向量化,得到的向量为

$$\operatorname{vec}(\boldsymbol{X}) = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix} \in \mathbb{R}^{mn}$$
(2.5)

其中, 符号 vec(·) 表示向量化操作。

与矩阵向量化相反, 也可定义向量的矩阵化规则。

2.1.2 高阶张量

一般而言,高阶张量可写成 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,张量的阶数为 d,大小为 $m_1 \times m_2 \times \cdots \times m_d$ 。

三阶张量中的元素

这里以三阶张量为例,给定任意三阶张量 $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{m \times n \times t}$,其第 (i,j,k) 个元素可写作如下形式:

$$x_{i,j,k} = \mathcal{X}_{i,j,k} \tag{2.6}$$

其中, i = 1, 2, ..., m, j = 1, 2, ..., n 与 k = 1, 2, ..., t.

图 2.1: 三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 及其第 (i, j, k) 个元素 $x_{i, j, k}$

图2.1直观地展现了三阶张量元素的示意图,可以看出:描述三阶张量中的某一元素需用到三个索引构成的组合,例如 (i,j,k)。

2.1 基本代数结构 13

三阶张量中的纤维

给定任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$, 其各个方向的纤维 (fiber) 都是向量, 如图2.2所示, 这些纤维分别为向量 $\mathcal{X}_{:,j,k} \in \mathbb{R}^m$ 、 $\mathcal{X}_{i,:,k} \in \mathbb{R}^n$ 与 $\mathcal{X}_{i,j,:} \in \mathbb{R}^t$,其中, $i=1,2,\ldots,m$ 、 $j=1,2,\ldots,n$ 与 $k=1,2,\ldots,t$ 。与矩阵中的行向量、列向量类似,纤维是张量的基本组成部分。

图 2.2: 三阶张量 $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的纤维

三阶张量中的切片

对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$,可用三个维度的切片 (slice) 书写该张量,其中,horizontal 切片共有 m 个,分别为

$$\boldsymbol{\mathcal{X}}_{1:::}, \boldsymbol{\mathcal{X}}_{2:::}, \dots, \boldsymbol{\mathcal{X}}_{m:::} \in \mathbb{R}^{n \times t}$$
 (2.7)

lateral 切片共有 n 个,分别为

$$\boldsymbol{\mathcal{X}}_{:,1,:}, \boldsymbol{\mathcal{X}}_{:,2,:}, \dots, \boldsymbol{\mathcal{X}}_{:,n,:} \in \mathbb{R}^{m \times t}$$
(2.8)

frontal 切片共有 t 个, 分别为

$$\mathcal{X}_{\cdots 1}, \mathcal{X}_{\cdots 2}, \dots, \mathcal{X}_{\cdots t} \in \mathbb{R}^{m \times n}$$
 (2.9)

如图2.3所示,这些矩阵结构的切片是张量的基本组成部分。

图 2.3: 三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$ 自三个维度的切片

例 1. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$, 若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(2.10)

试写出张量 X 的 lateral 切片与 horizontal 切片。

解. 张量 \mathcal{X} 的 lateral 切片为

$$\boldsymbol{\mathcal{X}}_{:,1,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{211} & x_{212} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,2,:} = \begin{bmatrix} x_{121} & x_{122} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$$
(2.11)

张量 X 的 horizontal 切片为

$$\mathcal{X}_{1,:,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{121} & x_{122} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} \quad \mathcal{X}_{2,:,:} = \begin{bmatrix} x_{211} & x_{212} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 8 \end{bmatrix}$$
(2.12)

2.1.3 高阶张量矩阵化

给定任意张量 $\boldsymbol{\mathcal{X}} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,阶数为 d,若其自第 k 维度展开得到的矩阵为 $\boldsymbol{X}_{(k)}$,大小为 $n_k \times \prod_{h \neq k} n_h$,则张量 $\boldsymbol{\mathcal{X}}$ 的第 (i_1, i_2, \ldots, i_d) 个元素对应着矩阵 $\boldsymbol{X}_{(k)}$ 的第 (i_k, j) 个元素:

$$j = 1 + \sum_{h=1, h \neq k}^{d} (i_h - 1)J_h \tag{2.13}$$

其中, $J_h = \prod_{l=1, l \neq k}^{h-1} n_l$ 。 张量展开的过程往往也被称为张量矩阵化 (matricization)。

为更容易理解张量展开的规则,不妨以大小为 $3\times4\times2$ 的张量 $\boldsymbol{\mathcal{X}}$ 为例 [Kolda and Bader, 2009]。

例 2. 给定张量 $\mathcal{X} \in \mathbb{R}^{3\times 4\times 2}$, 若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} 1 & 4 & 7 & 10 \\ 2 & 5 & 8 & 11 \\ 3 & 6 & 9 & 12 \end{bmatrix} \qquad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} 13 & 16 & 19 & 22 \\ 14 & 17 & 20 & 23 \\ 15 & 18 & 21 & 24 \end{bmatrix}$$
(2.14)

试写出张量矩阵化的结果 $X_{(1)} \in \mathbb{R}^{3\times8}$ 、 $X_{(2)} \in \mathbb{R}^{4\times6}$ 与 $X_{(3)} \in \mathbb{R}^{2\times12}$ 。

解. 根据张量矩阵化规则,张量 X 自第 1 维度展开得到的矩阵为 $X_{(1)}$ 为

$$\boldsymbol{X}_{(1)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,:,1} & \boldsymbol{\mathcal{X}}_{:,:,2} \end{bmatrix} = \begin{bmatrix} 1 & 4 & 7 & 10 & 13 & 16 & 19 & 22 \\ 2 & 5 & 8 & 11 & 14 & 17 & 20 & 23 \\ 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 \end{bmatrix}$$
(2.15)

张量 X 自第 2 维度展开得到的矩阵为 $X_{(2)}$ 为

$$\boldsymbol{X}_{(2)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,:,1}^{\top} & \boldsymbol{\mathcal{X}}_{:,:,2}^{\top} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 13 & 14 & 15 \\ 4 & 5 & 6 & 16 & 17 & 18 \\ 7 & 8 & 9 & 19 & 20 & 21 \\ 10 & 11 & 12 & 22 & 23 & 24 \end{bmatrix}$$
(2.16)

张量 X 自第 3 维度展开得到的矩阵为 $X_{(3)}$ 为

$$\boldsymbol{X}_{(2)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,1,:}^{\top} & \boldsymbol{\mathcal{X}}_{:,2,:}^{\top} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 \end{bmatrix}$$
(2.17)

对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times t}$, 其自三个维度展开得到的矩阵分别为

$$\begin{cases}
\boldsymbol{X}_{(1)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,:,1} & \boldsymbol{\mathcal{X}}_{:,:,2} & \cdots & \boldsymbol{\mathcal{X}}_{:,:,t} \end{bmatrix} \in \mathbb{R}^{m \times (nt)} \\
\boldsymbol{X}_{(2)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,:,1}^{\top} & \boldsymbol{\mathcal{X}}_{:,:,2}^{\top} & \cdots & \boldsymbol{\mathcal{X}}_{:,:,t}^{\top} \end{bmatrix} \in \mathbb{R}^{n \times (mt)} \\
\boldsymbol{X}_{(3)} = \begin{bmatrix} \boldsymbol{\mathcal{X}}_{:,1,:} & \boldsymbol{\mathcal{X}}_{:,2,:} & \cdots & \boldsymbol{\mathcal{X}}_{:,t,:} \end{bmatrix} \in \mathbb{R}^{t \times (mn)}
\end{cases}$$
(2.18)

2.1.4 高阶张量向量化

给定任意张量 $\mathbf{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,阶数为 d,若其以第一个维度展开得到的矩阵为 $\mathbf{X}_{(1)}$,则张量向量化可写作如下形式:

$$\operatorname{vec}(\boldsymbol{\mathcal{X}}) = \operatorname{vec}(\boldsymbol{X}_{(1)}) \tag{2.19}$$

在张量 \mathcal{X} 中, 第 (i_1, i_2, \ldots, i_d) 个元素通过张量向量化之后,该元素在向量中的位置为

$$\left(\sum_{k=1}^{d-1} m_k\right) \cdot i_d + \left(\sum_{k=1}^{d-2} m_k\right) \cdot i_{d-1} + \dots + m_1 \cdot i_2 + i_1 \tag{2.20}$$

例 3. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$, 若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(2.21)

试写出张量向量化的结果 $\text{vec}(\boldsymbol{\mathcal{X}})$ 。

解. 根据张量向量化规则, 有

$$\operatorname{vec}(\boldsymbol{\mathcal{X}}) = \operatorname{vec}(\boldsymbol{X}_{(1)})$$

$$= \operatorname{vec}([\boldsymbol{\mathcal{X}}_{:,:,1} \quad \boldsymbol{\mathcal{X}}_{:,:,2}])$$

$$= (1, 3, 2, 4, 5, 7, 6, 8)^{\top}$$
(2.22)

2.2 时空交通数据类型

第三章 张量分解基础

本章将要介绍的内容包括:

- Kronecker 积的定义及性质
- 向量外积的定义及性质
- 经典的 CP 张量分解形式

3.1 Kronecker 积定义

3.1.1 基本定义

Kronecker 积是以德国数学家 Leopold Kronecker 的名字命名的运算规则,已广泛应用于各类矩阵计算以及张量计算算法中。从定义出发,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则两者之间的 Kronecker 积为

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} x_{11}\boldsymbol{Y} & x_{12}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ x_{21}\boldsymbol{Y} & x_{22}\boldsymbol{Y} & \cdots & x_{2n}\boldsymbol{Y} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & x_{m2}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$
(3.1)

其中,符号 \otimes 表示 Kronecker 积。这里的 Kronecker 积得到的矩阵大小为 $(mp) \times (nq)$,在写法上符合线性代数中对分块矩阵 (block matrix) 的定义,其中,分块矩阵的子矩阵是由矩阵 X 的每个元素与矩阵 Y 相乘得到。

矩阵 X 与 Y 之间的 Kronecker 积存在前后顺序,根据 Kronecker 积的定义,可得到矩阵 Y 与 X 之间的 Kronecker 积为

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} y_{11}\boldsymbol{X} & y_{12}\boldsymbol{X} & \cdots & y_{1q}\boldsymbol{X} \\ y_{21}\boldsymbol{X} & y_{22}\boldsymbol{X} & \cdots & y_{2q}\boldsymbol{X} \\ \vdots & \vdots & \ddots & \vdots \\ y_{p1}\boldsymbol{X} & y_{p2}\boldsymbol{X} & \cdots & y_{pq}\boldsymbol{X} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$
(3.2)

尽管矩阵 $X \otimes Y$ 与矩阵 $Y \otimes X$ 大小一致,但两者并不相等,因此,Kronecker 积不存在交换律。

例 4. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出两者之间的 Kronecker 积 $X \otimes Y$ 与 $Y \otimes X$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.3)

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} 5 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 6 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 7 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ 8 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 9 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40 \end{bmatrix}$$
(3.4)

例 5. 给定矩阵 $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $\mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试问等式 $(\mathbf{X} \otimes \mathbf{Y})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \otimes \mathbf{Y}^{\mathsf{T}}$ 是否成立。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X}^{\top} \otimes \boldsymbol{Y}^{\top} = \begin{bmatrix} 5 & 8 \\ 1 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 2 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} & 3 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 & 15 & 24 \\ 6 & 9 & 18 & 27 \\ 7 & 10 & 21 & 30 \\ 10 & 16 & 20 & 32 \\ 12 & 18 & 24 & 36 \\ 14 & 20 & 28 & 40 \end{bmatrix}$$
(3.5)

在这里, 等式 $(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top}$ 是成立的。

例 6. 给定向量 $\boldsymbol{x} = (1,2)^{\top}$ 与 $\boldsymbol{y} = (3,4)^{\top}$, 试写出 $\boldsymbol{x} \otimes \boldsymbol{y}$ 与 $\boldsymbol{x} \otimes \boldsymbol{y}^{\top}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{x} \otimes \boldsymbol{y} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\ 2 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 (3.6)

$$\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 & 4 \\ 2 \times \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (3.7)

在这里, $x \otimes y^{\top} = xy^{\top}$, 即向量外积。

例7(向量自回归).对于多元时间序列,向量自回归可写作如下形式(参见例3):

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$
(3.8)

若令

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \cdots & \mathbf{A}_d \end{bmatrix} \in \mathbb{R}^{N \times (dN)}$$

$$\mathbf{\Psi} = \begin{bmatrix} \mathbf{\Psi}_1 & \mathbf{\Psi}_2 & \cdots & \mathbf{\Psi}_d \end{bmatrix} \in \mathbb{R}^{(T-d) \times (dT)}$$
(3.9)

则向量自回归可进一步写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \boldsymbol{A}(\boldsymbol{I}_{d} \otimes \boldsymbol{X})\boldsymbol{\Psi}^{\top} + \boldsymbol{E}$$
(3.10)

3.1.2 Khatri-Rao 积

以 Kronecker 积为基础,可定义另一种十分重要的运算规则,即 Khatri-Rao 积。给定任意矩阵

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_d \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{m \times d} \quad \boldsymbol{Y} = \begin{bmatrix} | & | & & | \\ \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_d \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{n \times d}$$
(3.11)

若两个矩阵列数相同,则两者之间的 Khatri-Rao 积为

$$\boldsymbol{X} \odot \boldsymbol{Y} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_1 \otimes \boldsymbol{y}_1 & \boldsymbol{x}_2 \otimes \boldsymbol{y}_2 & \cdots & \boldsymbol{x}_d \otimes \boldsymbol{y}_d \\ | & | & | \end{bmatrix} \in \mathbb{R}^{(mn) \times d}$$
(3.12)

其中, 列向量是由 X 与 Y 的列向量进行 Kronecker 积运算得到的。

例 8. 给定矩阵
$$m{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $m{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{bmatrix}$,试写出 $m{X} \odot m{Y}$ 。

解. 根据 Khatri-Rao 积定义,有

$$\mathbf{X} \odot \mathbf{Y} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \otimes \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} \quad \begin{bmatrix} 2 \\ 4 \end{bmatrix} \otimes \begin{bmatrix} 6 \\ 8 \\ 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 12 \\ 7 & 16 \\ 9 & 20 \\ 15 & 24 \\ 21 & 32 \\ 27 & 40 \end{bmatrix}$$
(3.13)

3.2 Kronecker 积基本性质

3.2.1 结合律与分配律

在小学数学中,我们学习了加减乘除的运算规则。以乘法为例,不妨重温一下烙印在我们 脑海中的基本概念:

- 乘法结合律: $x \times y \times z = x \times (y \times z)$
- 乘法分配律: $x \times z + y \times z = (x + y) \times z$

由于 Kronecker 积本质上也是元素间相乘,所以同样存在结合律与分配律。对于任意矩阵 X、Y 与 Z,结合律可归纳为

$$X \otimes Y \otimes Z = X \otimes (Y \otimes Z) \tag{3.14}$$

分配律可归纳为

$$X \otimes Z + Y \otimes Z = (X + Y) \otimes Z \tag{3.15}$$

例 9. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $\boldsymbol{Z} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z}$ 与 $\boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
(3.16)

$$\mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix}$$
(3.17)

从而,可得到

$$\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \end{bmatrix} = \boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$$
(3.18)

例 10. 给定
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $X \otimes Z + Y \otimes Z$ 与 $(X + Y) \otimes Z_3$

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Z} + \mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.19)

$$(\mathbf{X} + \mathbf{Y}) \otimes \mathbf{Z} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.20)

3.2.2 矩阵相乘

对于任意矩阵 $X \in \mathbb{R}^{m \times n}$ 、 $Y \in \mathbb{R}^{s \times t}$ 、 $U \in \mathbb{R}^{n \times p}$ 与 $V \in \mathbb{R}^{t \times q}$, 则矩阵 $X \otimes Y \in \mathbb{R}^{(ms) \times (nt)}$ 的列数 nt 与矩阵 $U \otimes V \in \mathbb{R}^{(nt) \times (pq)}$ 的行数 nt 一致,可进行矩阵相乘,两者相乘得到的矩

阵满足:

$$(\boldsymbol{X} \otimes \boldsymbol{Y})(\boldsymbol{U} \otimes \boldsymbol{V}) = \begin{bmatrix} x_{11}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \begin{bmatrix} u_{11}\boldsymbol{V} & \cdots & u_{1p}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ u_{n1}\boldsymbol{V} & \cdots & u_{np}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp}\boldsymbol{Y}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{mk}u_{kp}\boldsymbol{Y}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1} & \cdots & \sum_{k=1}^{n} x_{nk}u_{kp} \end{bmatrix} \otimes (\boldsymbol{Y}\boldsymbol{V})$$

$$= (\boldsymbol{X}\boldsymbol{U}) \otimes (\boldsymbol{Y}\boldsymbol{V}) \in \mathbb{R}^{(ms) \times (pq)}$$

例 11 (矩阵的奇异值分解). 给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,若奇异值分解分别为

$$X = WSQ^{\top} \quad Y = UDV^{\top}$$
 (3.22)

试证明矩阵 $X\otimes Y$ 的奇异值分解可由矩阵 X 与 Y 的奇异值分解计算得到,即

$$X \otimes Y = (W \otimes U)(S \otimes D)(Q \otimes V)^{\top}$$
(3.23)

解. 根据 Kronecker 积性质, 有

$$X \otimes Y = (WSQ^{\top}) \otimes (UDV^{\top})$$

$$= (W \otimes U)((SQ^{\top}) \otimes (DV^{\top}))$$

$$= (W \otimes U)(S \otimes D)(Q^{\top} \otimes V^{\top})$$

$$= (W \otimes U)(S \otimes D)(Q \otimes V)^{\top}$$

$$(3.24)$$

3.2.3 求逆矩阵

对于任意可逆矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,由于

$$(\boldsymbol{X} \otimes \boldsymbol{Y}) (\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}) = (\boldsymbol{X} \boldsymbol{X}^{-1}) \otimes (\boldsymbol{Y} \boldsymbol{Y}^{-1}) = \boldsymbol{I}_m \otimes \boldsymbol{I}_n = \boldsymbol{I}_{mn}$$
 (3.25)

故有

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1} = \boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} \tag{3.26}$$

恒成立。这意味着:若计算 $X \otimes Y$ 的逆矩阵,可先对 X 与 Y 分别求逆矩阵,再对得到的逆矩阵进行 Kronecker 积运算。

例 12. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $(X \otimes Y)^{-1}$ 与 $X^{-1} \otimes Y^{-1}$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.27)

对该矩阵求逆矩阵, 得到

$$(\mathbf{X} \otimes \mathbf{Y})^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
 (3.28)

对矩阵 X 与 Y 分别求逆矩阵:

$$\boldsymbol{X}^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix} \quad \boldsymbol{Y}^{-1} = \begin{bmatrix} -4 & 3\\ 3.5 & -2.5 \end{bmatrix}$$
 (3.29)

再对得到的逆矩阵进行 Kronecker 积运算,有

$$\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
(3.30)

对于任意矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{p \times q}$,由上述 Kronecker 积性质同样可得到如下性质:

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{\dagger} = \boldsymbol{X}^{\dagger} \otimes \boldsymbol{Y}^{\dagger} \tag{3.31}$$

其中, · † 表示伪逆 (Moore-Penrose pseudoinverse)。

3.2.4 向量化

对于任意矩阵 $A \in \mathbb{R}^{m \times n}$ 、 $X \in \mathbb{R}^{n \times p}$ 与 $B \in \mathbb{R}^{p \times q}$, 三者相乘满足:

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{X}) \tag{3.32}$$

由此, 也可得到

$$\begin{cases} \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}) = (\boldsymbol{I}_p \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}) \\ \operatorname{vec}(\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^\top \otimes \boldsymbol{I}_n) \operatorname{vec}(\boldsymbol{X}) \end{cases}$$
(3.33)

例 13. 试证明公式(3.32)。

解.

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = \boldsymbol{A}\boldsymbol{x}_{1}b_{11} + \boldsymbol{A}\boldsymbol{x}_{2}b_{21} + \dots + \boldsymbol{A}\boldsymbol{x}_{p}b_{p1}$$

$$+ \boldsymbol{A}\boldsymbol{x}_{1}b_{12} + \boldsymbol{A}\boldsymbol{x}_{2}b_{22} + \dots + \boldsymbol{A}\boldsymbol{x}_{p}b_{p2}$$

$$+ \dots + \boldsymbol{A}\boldsymbol{x}_{1}b_{1q} + \boldsymbol{A}\boldsymbol{x}_{2}b_{2q} + \dots + \boldsymbol{A}\boldsymbol{x}_{p}b_{pq}$$

$$= \begin{bmatrix} \boldsymbol{A}b_{11} & \boldsymbol{A}b_{21} & \dots & \boldsymbol{A}b_{p1} \\ \boldsymbol{A}b_{12} & \boldsymbol{A}b_{22} & \dots & \boldsymbol{A}b_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{A}b_{1q} & \boldsymbol{A}b_{2q} & \dots & \boldsymbol{A}b_{pq} \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_{1} \\ \boldsymbol{x}_{2} \\ \vdots \\ \boldsymbol{x}_{p} \end{bmatrix}$$

$$= (\boldsymbol{B}^{\top} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X})$$

$$(3.34)$$

其中, $x_1, x_2, \ldots, x_p \in \mathbb{R}^n$ 表示矩阵 X 的列向量。

例 14. 对于任意矩阵 $A \in \mathbb{R}^{n \times n}$ 、 $x \in \mathbb{R}^n$ 与 $B \in \mathbb{R}^{n \times n}$, 试证明三者相乘满足:

$$\operatorname{vec}(\mathbf{A}\operatorname{diag}(\mathbf{x})\mathbf{B}) = (\mathbf{B}^{\top} \odot \mathbf{A})\mathbf{x}$$
(3.35)

解. 根据 Kronecker 积与 Khatri-Rao 积性质,有

$$\operatorname{vec}(\boldsymbol{A}\operatorname{diag}(\boldsymbol{x})\boldsymbol{B}) = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\operatorname{diag}(\boldsymbol{x}))$$
$$= (\boldsymbol{B}^{\top} \odot \boldsymbol{A})\boldsymbol{x}$$
 (3.36)

例 15. Sylvester 方程是一种著名的矩阵方程,由英国数学家 James Joseph Sylvester 于 1884年提出。时至今日,Sylvester 方程已在控制理论中具有极为广泛的应用。具体而言,已知矩阵 $A \in \mathbb{R}^{m \times m}$ 、 $B \in \mathbb{R}^{n \times n}$ 与 $C \in \mathbb{R}^{m \times n}$,则 Sylvester 方程的一般形式为

$$AX + XB = C (3.37)$$

其中, $X \in \mathbb{R}^{m \times n}$ 为待定参数。试根据 Kronecker 积性质写出 Sylvester 方程的解析解。

解. 首先将 Sylvester 方程写成

$$AXI_n + I_mXB = C (3.38)$$

根据 Kronecker 积性质, Sylvester 方程可写成如下形式:

$$(\mathbf{I}_n \otimes \mathbf{A} + \mathbf{B}^{\top} \otimes \mathbf{I}_m) \operatorname{vec}(\mathbf{X}) = \operatorname{vec}(\mathbf{C})$$
(3.39)

因此, Sylvester 方程的解析解¹为

$$\operatorname{vec}(\boldsymbol{X}) = (\boldsymbol{I}_n \otimes \boldsymbol{A} + \boldsymbol{B}^{\top} \otimes \boldsymbol{I}_m)^{-1} \operatorname{vec}(\boldsymbol{C})$$
(3.40)

尽管该解析解形式简洁,但复杂度却很高。在实际问题中,往往需要借助更为高效的数值 计算方法(如 Bartels-Stewart 算法)对 Sylvester 方程进行求解。

3.3 Kronecker 积特殊性质

3.3.1 矩阵的迹

在线性代数中,矩阵的迹 (trace) 表示方阵对角线元素之和,数学符号为 $\operatorname{tr}(\cdot)$ 。对于任意矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,矩阵 $X \otimes Y$ 的迹等于矩阵 X 的迹乘以矩阵 Y 的迹,即

$$tr(X \otimes Y) = tr(X) \cdot tr(Y) \tag{3.41}$$

恒成立。

例 16. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $\operatorname{tr}(\boldsymbol{X})$ 、 $\operatorname{tr}(\boldsymbol{Y})$ 与 $\operatorname{tr}(\boldsymbol{X} \otimes \boldsymbol{Y})$ 。

 \mathbf{M} . 根据定义, 矩阵 \mathbf{X} 的迹与矩阵 \mathbf{Y} 的迹分别为

$$tr(X) = 1 + 4 = 5$$
 $tr(Y) = 5 + 8 = 13$ (3.42)

由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.43)

故 $tr(X \otimes Y) = 5 + 8 + 20 + 32 = 65$ 。

 $^{^1}$ 有时候,可定义 Kronecker 和 (Kronecker sum,数学符号通常为 \oplus) 令 $\mathbf{A} \oplus \mathbf{B}^{\top} = \mathbf{I}_n \otimes \mathbf{A} + \mathbf{B}^{\top} \otimes \mathbf{I}_m$,将该解析解简 记为 $\operatorname{vec}(\mathbf{X}) = (\mathbf{A} \oplus \mathbf{B}^{\top})^{-1} \operatorname{vec}(\mathbf{C})$ 。

在矩阵计算中,矩阵的迹有两条重要性质,给定任意矩阵 $\pmb{X} \in \mathbb{R}^{m \times n}$ 与 $\pmb{Y} \in \mathbb{R}^{n \times m}$,满足

$$tr(\mathbf{A}\mathbf{B}) = tr(\mathbf{B}\mathbf{A}) \tag{3.44}$$

及

$$\operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{vec}(\boldsymbol{A}^{\top})^{\top} \operatorname{vec}(\boldsymbol{B})$$
(3.45)

例 17. 给定矩阵 $A \in \mathbb{R}^{m \times n}$ 、 $B \in \mathbb{R}^{n \times p}$ 、 $C \in \mathbb{R}^{p \times q}$ 与 $D \in \mathbb{R}^{q \times m}$,试证明

$$tr(\mathbf{ABCD}) = vec(\mathbf{B})^{\top}(\mathbf{C} \otimes \mathbf{A}) vec(\mathbf{D}^{\top})$$
(3.46)

解. 根据矩阵的迹与 Kronecker 积性质, 有

$$tr(\mathbf{ABCD}) = tr(\mathbf{D}(\mathbf{ABC}))$$

$$= vec(\mathbf{D}^{\top})^{\top} vec(\mathbf{ABC})$$

$$= vec(\mathbf{D}^{\top})^{\top}(\mathbf{C}^{\top} \otimes \mathbf{A}) vec(\mathbf{B})$$

$$= vec(\mathbf{B})^{\top}(\mathbf{C} \otimes \mathbf{A}) vec(\mathbf{D}^{\top})$$
(3.47)

3.3.2 矩阵的 Frobenius 范数

从定义出发,矩阵的 Frobenius 范数表示矩阵元素的平方和开根号,一般用 $\|\cdot\|_F$ 表示。对于任意矩阵 $\pmb{X} \in \mathbb{R}^{m \times n}$,其 Frobenius 范数为

$$\|\boldsymbol{X}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2}}$$
(3.48)

据此定义,给定任意矩阵 $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ 与 $\boldsymbol{Y} \in \mathbb{R}^{p \times q}$,有

$$\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_{F} = \|\boldsymbol{X}\|_{F} \cdot \|\boldsymbol{Y}\|_{F} \tag{3.49}$$

恒成立。

例 18. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $\|\boldsymbol{X}\|_F$ 、 $\|\boldsymbol{Y}\|_F$ 与 $\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_F$ 。

解. 根据定义, 矩阵 $X \to Y$ 的 Frobenius 范数分别为

$$\|\mathbf{X}\|_F = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30} \quad \|\mathbf{Y}\|_F = \sqrt{5^2 + 6^2 + 7^2 + 8^2} = \sqrt{174}$$
 (3.50)

由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.51)

故 $\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_F = \sqrt{5220}$ 。

Frobenius 范数这一概念不适用于向量,对于任意向量 $x \in \mathbb{R}^m$,其元素的平方和开根号是 ℓ_2 范数,即

$$\|\boldsymbol{x}\|_{2} = \sqrt{\sum_{i=1}^{m} x_{i}^{2}} \tag{3.52}$$

例 19. 给定向量 $x = (1,2)^{\mathsf{T}}$ 与 $y = (3,4)^{\mathsf{T}}$, 试写出 $||x||_2$ 、 $||y||_2$ 与 $||x \otimes y||_2$ 。

 \mathbf{R} . 根据定义,向量 \mathbf{x} 与 \mathbf{y} 的 ℓ_2 范数分别为

$$\|\boldsymbol{x}\|_{2} = \sqrt{1^{2} + 2^{2}} = \sqrt{5} \quad \|\boldsymbol{y}\|_{2} = \sqrt{3^{2} + 4^{2}} = 5$$
 (3.53)

由于 $\mathbf{x} \otimes \mathbf{y} = (3, 4, 6, 8)^{\mathsf{T}}$,故 $\|\mathbf{x} \otimes \mathbf{y}\|_2 = \sqrt{3^2 + 4^2 + 6^2 + 8^2} = 5\sqrt{5}$ 。

3.3.3 矩阵的行列式

矩阵的行列式 (determinant) 是线性代数中非常重要的一个概念,贯穿线性代数的几乎所有内容,一般使用符号 $\det(\cdot)$ 表示。若给定矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,则

$$\det(\mathbf{X} \otimes \mathbf{Y}) = \det(\mathbf{X})^n \cdot \det(\mathbf{Y})^m \tag{3.54}$$

恒成立。

例 20. 给定矩阵
$$X=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 与 $Y=\begin{bmatrix}1&3&2\\4&1&3\\2&5&2\end{bmatrix}$,试写出矩阵的行列式 $\det(X)$ 、 $\det(Y)$ 与 $\det(X\otimes Y)$ 。

 \mathbf{M} . 矩阵 \mathbf{X} 与 \mathbf{Y} 的行列式分别为

$$\det(\mathbf{X}) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \quad \det(\mathbf{Y}) = \begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{vmatrix} = 17 \tag{3.55}$$

故 $\det(\boldsymbol{X})^3 \cdot \det(\boldsymbol{Y})^2 = -2312$ 。

矩阵 $X \otimes Y$ 的行列式为

$$\det(\mathbf{X} \otimes \mathbf{Y}) = \begin{vmatrix} 1 & 3 & 2 & 2 & 6 & 4 \\ 4 & 1 & 3 & 8 & 2 & 6 \\ 2 & 5 & 2 & 4 & 10 & 4 \\ 3 & 9 & 6 & 4 & 12 & 8 \\ 12 & 3 & 9 & 16 & 4 & 12 \\ 6 & 15 & 6 & 8 & 20 & 8 \end{vmatrix} = -2312$$
(3.56)

3.3.4 矩阵的秩

矩阵的秩 (rank) 是线性代数中非常重要的一个概念,在信号处理、图像处理等领域中应用广泛,一般使用符号 rank(·) 表示。若给定矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则

$$rank(X \otimes Y) = rank(X) \cdot rank(Y) \tag{3.57}$$

恒成立。

例 21. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出 $\mathrm{rank}(X)$ 、 $\mathrm{rank}(Y)$ 与 $\mathrm{rank}(X)$ Y)。

解. 在这里, $\operatorname{rank}(\boldsymbol{X}) = 1$, $\operatorname{rank}(\boldsymbol{Y}) = 2$ 。 由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 10 & 12 & 14 & 20 & 24 & 28 \\ 16 & 18 & 20 & 32 & 36 & 40 \end{bmatrix}$$
(3.58)

故 $\operatorname{rank}(\boldsymbol{X} \otimes \boldsymbol{Y}) = 2$ 。

3.4 向量外积

3.4.1 定义

在线性代数中,两向量之间的外积可得到一个矩阵。对于任意向量 $a\in\mathbb{R}^m$ 与 $b\in\mathbb{R}^n$,则两者之间的外积为

$$c = a \otimes_{\text{outer}} b = ab^{\top} \in \mathbb{R}^{m \times n}$$
 (3.59)

其中,符号⊗outer表示向量外积。

依此类推,对任意 d 个向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k=1,2,\ldots,d$,其外积 (outer product) 可定义为

$$\mathbf{\mathcal{Y}} = \mathbf{x}^{(1)} \otimes_{\text{outer}} \mathbf{x}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \mathbf{x}^{(d)} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$$
 (3.60)

其中,符号 \otimes_{outer} 表示向量外积。在张量 $\boldsymbol{\mathcal{Y}}$ 中,任意第 (i_1,i_2,\ldots,i_d) 个元素为

$$y_{i_1, i_2, \dots, i_d} = \prod_{k=1}^d x_{i_k}^{(k)}$$
(3.61)

其中, $i_k = 1, 2, \ldots, n_k, k = 1, 2, \ldots, d$ 。

需要注意的是,由于张量 \mathcal{Y} 是由向量外积得到的,故常被称为秩一张量 (rank-one tensor)。 当 d=3 时,向量外积得到的三阶张量 $\mathcal{Y}=\boldsymbol{x}^{(1)}\otimes_{\text{outer}}\boldsymbol{x}^{(2)}\otimes_{\text{outer}}\boldsymbol{x}^{(3)}\in\mathbb{R}^{n_1\times n_2\times n_3}$ 如图3.1所示,在这里,张量 \mathcal{Y} 的任意第 (i_1,i_2,i_3) 个元素为

$$y_{i_1,i_2,i_3} = \prod_{k=1}^{3} x_{i_k}^{(k)}$$
(3.62)

其中, $i_k = 1, 2, \ldots, n_k, k = 1, 2, 3$ 。

图 3.1: 向量外积得到的三阶张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$

当 d=2 时,向量外积为

$$Y = x^{(1)} \otimes_{\text{outer}} x^{(2)} = x^{(1)} (x^{(2)})^{\top} \in \mathbb{R}^{n_1 \times n_2}$$
 (3.63)

在矩阵 Y 中,任意第 (i,j) 个元素为

$$y_{i,j} = x_i^{(1)} x_j^{(2)} (3.64)$$

其中, $i = 1, 2, \ldots, n_1$ 与 $j = 1, 2, \ldots, n_2$ 。

例 22. 给定向量 $x = (1,2)^{\mathsf{T}}$ 与 $y = (3,4)^{\mathsf{T}}$, 试写出 $x \otimes_{\text{outer}} y$.

解. 根据外积定义, 有

$$\boldsymbol{x} \otimes_{\text{outer}} \boldsymbol{y} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix} \tag{3.65}$$

3.4 向量外积 27

例 23. 给定向量 $a = (1,2)^{\top}$ 、 $b = (3,4,5)^{\top}$ 与 $c = (6,7,8,9)^{\top}$,试写出 $a \otimes_{\text{outer}} b \otimes_{\text{outer}} c$ 。

解. 令 $\mathcal{Y} = \mathbf{a} \otimes_{\text{outer}} \mathbf{b} \otimes_{\text{outer}} \mathbf{c} \in \mathbb{R}^{2 \times 3 \times 4}$,根据外积定义,有

$$\boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b} = \begin{bmatrix} 3 & 4 & 5 \\ 6 & 8 & 10 \end{bmatrix}$$
 (3.66)

由此,可得张量 \mathcal{Y} 的 frontal 切片为

$$\mathbf{\mathcal{Y}}_{:,:,1} = (\mathbf{a} \otimes_{\text{outer}} \mathbf{b}) \cdot c_1 = \begin{bmatrix} 18 & 24 & 30 \\ 36 & 48 & 60 \end{bmatrix} \quad \mathbf{\mathcal{Y}}_{:,:,2} = (\mathbf{a} \otimes_{\text{outer}} \mathbf{b}) \cdot c_2 = \begin{bmatrix} 21 & 28 & 35 \\ 42 & 56 & 70 \end{bmatrix} \\
\mathbf{\mathcal{Y}}_{:,:,3} = (\mathbf{a} \otimes_{\text{outer}} \mathbf{b}) \cdot c_3 = \begin{bmatrix} 24 & 32 & 40 \\ 48 & 64 & 80 \end{bmatrix} \quad \mathbf{\mathcal{Y}}_{:,:,4} = (\mathbf{a} \otimes_{\text{outer}} \mathbf{b}) \cdot c_4 = \begin{bmatrix} 27 & 36 & 45 \\ 54 & 72 & 90 \end{bmatrix}$$
(3.67)

3.4.2 性质

张量矩阵化

根据 Khatri-Rao 积定义与张量矩阵化规则,由向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k = 1, 2, \dots, d$ 的外积得到的张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d}$,其自第 k 维度展开得到的矩阵可写作如下形式:

$$Y_{(k)} = \mathbf{x}^{(k)} \otimes_{\text{outer}} (\mathbf{x}^{(d)} \odot \cdots \odot \mathbf{x}^{(k+1)} \odot \mathbf{x}^{(k-1)} \odot \cdots \odot \mathbf{x}^{(1)})$$

$$= \mathbf{x}^{(k)} (\mathbf{x}^{(d)} \odot \cdots \odot \mathbf{x}^{(k+1)} \odot \mathbf{x}^{(k-1)} \odot \cdots \odot \mathbf{x}^{(1)})^{\top} \in \mathbb{R}^{n_k \times \prod_{h \neq k} n_h}$$
(3.68)

其中, ⊙表示 Khatri-Rao 积。

例 24. 给定向量 $\boldsymbol{a} = (1,2)^{\top}$ 、 $\boldsymbol{b} = (3,4,5)^{\top}$ 与 $\boldsymbol{c} = (6,7,8,9)^{\top}$,若 $\boldsymbol{\mathcal{Y}} = \boldsymbol{a} \otimes_{\text{outer}} \boldsymbol{b} \otimes_{\text{outer}} \boldsymbol{c}$, 试写出张量 $\boldsymbol{\mathcal{Y}}$ 的矩阵化形式 $\boldsymbol{Y}_{(1)}$ 、 $\boldsymbol{Y}_{(2)}$ 与 $\boldsymbol{Y}_{(3)}$ 。

解. 根据 Khatri-Rao 积定义,有

$$\begin{cases}
\boldsymbol{c} \odot \boldsymbol{b} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45)^{\top} \\
\boldsymbol{c} \odot \boldsymbol{a} = (6, 12, 7, 14, 8, 16, 9, 18)^{\top} \\
\boldsymbol{b} \odot \boldsymbol{a} = (3, 6, 4, 8, 5, 10)^{\top}
\end{cases} (3.69)$$

从而,可得到

$$\boldsymbol{Y}_{(1)} = \boldsymbol{a}(\boldsymbol{c} \odot \boldsymbol{b})^{\top} = \begin{bmatrix} 18 & 24 & 30 & 21 & 28 & 35 & 24 & 32 & 40 & 27 & 36 & 45 \\ 36 & 48 & 60 & 42 & 56 & 70 & 48 & 64 & 80 & 54 & 72 & 90 \end{bmatrix}$$
(3.70)

$$\boldsymbol{Y}_{(2)} = \boldsymbol{a}(\boldsymbol{c} \odot \boldsymbol{b})^{\top} = \begin{bmatrix} 18 & 36 & 21 & 42 & 24 & 48 & 27 & 54 \\ 24 & 48 & 28 & 56 & 32 & 64 & 36 & 72 \\ 30 & 60 & 35 & 70 & 40 & 80 & 45 & 90 \end{bmatrix}$$
(3.71)

$$\boldsymbol{Y}_{(3)} = \boldsymbol{c}(\boldsymbol{b} \odot \boldsymbol{a})^{\top} = \begin{bmatrix} 18 & 36 & 24 & 48 & 30 & 60 \\ 21 & 42 & 28 & 56 & 35 & 70 \\ 24 & 48 & 32 & 64 & 40 & 80 \\ 27 & 54 & 36 & 72 & 45 & 90 \end{bmatrix}$$
(3.72)

张量向量化

根据 Khatri-Rao 积定义与张量向量化规则,由向量 $\boldsymbol{x}^{(k)} \in \mathbb{R}^{n_k}, k = 1, 2, \dots, d$ 的外积得到的张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d}$,其向量化形式为

$$\operatorname{vec}(\mathbf{y}) = \mathbf{x}^{(d)} \odot \mathbf{x}^{(d-1)} \odot \cdots \odot \mathbf{x}^{(2)} \odot \mathbf{x}^{(1)}$$
(3.73)

其中, ⊙表示 Khatri-Rao 积; vec(·)表示向量化操作。

例 25. 给定向量 $a = (1,2)^{\top}$ 、 $b = (3,4,5)^{\top}$ 与 $c = (6,7,8,9)^{\top}$,若 $\mathcal{Y} = a \otimes_{\text{outer}} b \otimes_{\text{outer}} c$,试写出张量 \mathcal{Y} 的向量化形式 $\text{vec}(\mathcal{Y})$ 。

解. 根据 Khatri-Rao 积定义、有

$$\mathbf{c} \odot \mathbf{b} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45)^{\mathsf{T}}$$
 (3.74)

从而,可得到

$$\operatorname{vec}(\mathbf{\mathcal{Y}}) = \mathbf{c} \odot \mathbf{b} \odot \mathbf{a} = (18, 24, 30, 21, 28, 35, 24, 32, 40, 27, 36, 45, 36, 48, 60, 42, 56, 70, 48, 64, 80, 54, 72, 90)^{\top}$$
(3.75)

3.5 CP 张量分解

3.5.1 CP 分解形式

CP 分解全称为 CANDECOMP/PARAFAC 分解,它是以向量外积构成的分解形式,本质上是矩阵分解的高阶泛化 [Kolda and Bader, 2009]。给定任意张量 $\mathbf{y} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$,若令其秩为 R,则 CP 分解可写作如下形式:

$$\mathbf{y} = \sum_{r=1}^{R} \mathbf{u}_{r}^{(1)} \otimes_{\text{outer}} \mathbf{u}_{r}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \mathbf{u}_{r}^{(d)}$$
(3.76)

其中, 因子矩阵为

$$\boldsymbol{U}^{(k)} = \begin{bmatrix} | & | & | \\ \boldsymbol{u}_{1}^{(k)} & \boldsymbol{u}_{2}^{(k)} & \cdots & \boldsymbol{u}_{R}^{(k)} \\ | & | & | \end{bmatrix} \in \mathbb{R}^{n_{k} \times R}, k = 1, 2, \dots, d$$
 (3.77)

在张量 $\boldsymbol{\mathcal{Y}}$ 中,任意第 (i_1, i_2, \ldots, i_d) 个元素为

$$y_{i_1,i_2,\dots,i_d} = \sum_{r=1}^R u_{i_1,r}^{(1)} \times u_{i_2,r}^{(2)} \times \dots \times u_{i_d,r}^{(d)} = \sum_{r=1}^R \prod_{k=1}^d u_{i_k,r}^{(k)}$$
(3.78)

其中, $i_k = 1, 2, \ldots, n_k, k = 1, 2, \ldots, d$ 。

解说 1 (三阶张量的 CP 分解). 给定三阶张量 \mathcal{Y} , 其 CP 分解可写作如下形式:

$$\mathcal{Y} = \sum_{r=1}^{R} \boldsymbol{u}_r^{(1)} \otimes_{\text{outer}} \boldsymbol{u}_r^{(2)} \otimes_{\text{outer}} \boldsymbol{u}_r^{(3)}$$
(3.79)

任意第 (i_1, i_2, \ldots, i_d) 个元素为

$$y_{i_1, i_2, i_3} = \sum_{r=1}^{R} u_{i_1, r}^{(1)} \times u_{i_2, r}^{(2)} \times u_{i_3, r}^{(3)} = \sum_{r=1}^{R} \prod_{k=1}^{3} u_{i_k, r}^{(k)}$$
(3.80)

图3.2给出了三阶张量的 CP 分解示意图。

3.5 CP 张量分解 29

图 3.2: 三阶张量 $\boldsymbol{\mathcal{Y}} \in \mathbb{R}^{n_1 \times n_2 \times n_3}$ 的 CP 分解

由于 CP 分解可写成因子矩阵列向量外积的形式,因此, CP 分解具有以下性质:

• 张量矩阵化。由因子矩阵 $U^{(k)} \in \mathbb{R}^{n_k \times R}, k = 1, 2, \dots, d$ 相乘得到的张量 $\mathbf{y} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d},$ 其自第 k 维度展开得到的矩阵可写作如下形式:

$$\boldsymbol{Y}_{(k)} = \boldsymbol{U}^{(k)} (\boldsymbol{U}^{(d)} \odot \cdots \odot \boldsymbol{U}^{(k+1)} \odot \boldsymbol{U}^{(k-1)} \odot \cdots \odot \boldsymbol{U}^{(1)})^{\top} \in \mathbb{R}^{n_k \times \prod_{h \neq k} n_h}$$
(3.81)

• 张量向量化。由因子矩阵 $U^{(k)} \in \mathbb{R}^{n_k \times R}, k = 1, 2, \dots, d$ 相乘得到的张量 $\mathcal{Y} \in \mathbb{R}^{n_1 \times n_2 \times \dots \times n_d},$ 其向量化形式为

$$\operatorname{vec}(\mathbf{\mathcal{Y}}) = \sum_{r=1}^{R} \mathbf{u}_{r}^{(d)} \odot \mathbf{u}_{r}^{(d-1)} \odot \cdots \odot \mathbf{u}_{r}^{(2)} \odot \mathbf{u}_{r}^{(1)}$$
(3.82)

3.5.2 低秩逼近问题

对于任意张量 $\mathbf{y} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$,可借助 CP 分解结构得到一个低秩张量用于逼近原张量 \mathbf{y} ,给定低秩张量的秩为 R,低秩逼近过程的优化问题为

$$\min_{\{\boldsymbol{U}^{(k)}\}} \frac{1}{2} \left\| \boldsymbol{\mathcal{Y}} - \sum_{r=1}^{K} \boldsymbol{u}_{r}^{(1)} \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(d)} \right\|_{F}^{2} + \frac{\rho}{2} \sum_{h=1}^{d} \|\boldsymbol{U}^{(h)}\|_{F}^{2} \tag{3.83}$$

其中, $U^{(k)} \in \mathbb{R}^{n_k \times R}, k = 1, 2, ..., d$ 为因子矩阵; ρ 为正则项的权重系数。

不妨将优化问题的目标函数进行改写:

$$f = \frac{1}{2} \left\| \boldsymbol{\mathcal{Y}} - \sum_{r=1}^{R} \boldsymbol{u}_{r}^{(1)} \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(d)} \right\|_{F}^{2} + \frac{\rho}{2} \sum_{h=1}^{d} \| \boldsymbol{U}^{(h)} \|_{F}^{2}$$

$$= \frac{1}{2} \left\| \boldsymbol{Y}_{(k)} - \boldsymbol{U}^{(k)} (\boldsymbol{U}^{(d)} \odot \cdots \odot \boldsymbol{U}^{(k+1)} \odot \boldsymbol{U}^{(k-1)} \odot \cdots \odot \boldsymbol{U}^{(1)})^{\top} \right\|_{F}^{2} + \frac{\rho}{2} \sum_{k=1}^{d} \| \boldsymbol{U}^{(h)} \|_{F}^{2}$$

$$(3.84)$$

其中, $k = 1, 2, \ldots, d$ 。

对因子矩阵 $U^{(k)}$ 求偏导数,有

$$\frac{\partial f}{\partial \boldsymbol{U}^{(k)}} = -(\boldsymbol{Y}_{(k)} - \boldsymbol{U}^{(k)} \boldsymbol{A}^{(k)}) (\boldsymbol{A}^{(k)})^{\top} + \rho \boldsymbol{U}^{(k)}$$
(3.85)

其中,

$$\boldsymbol{A}^{(k)} = (\boldsymbol{U}^{(d)} \odot \cdots \odot \boldsymbol{U}^{(k+1)} \odot \boldsymbol{U}^{(k-1)} \odot \cdots \odot \boldsymbol{U}^{(1)})^{\top}$$
(3.86)

此时,令 $\frac{\partial f}{\partial U^{(k)}} = \mathbf{0}$,则因子矩阵 $U^{(k)}$ 的最小二乘解为

$$U^{(k)} = Y_{(k)}(A^{(k)})^{\top} (A^{(k)}(A^{(k)})^{\top} + \rho I_R)^{-1}$$
(3.87)

因此,可采用交替最小二乘法对 CP 分解的低秩逼近进行求解,即在迭代过程中,通过交替更新因子矩阵的最小二乘解最终达到收敛。算法1给出了基于交替最小二乘法的 CP 分解算法。

Algorithm 1 CP 分解算法

Input: 张量 $\mathbf{y} \in \mathbb{R}^{n_1 \times n_2 \times \cdots \times n_d}$,低秩张量的秩 R,超参数 ρ 。

Output: 重构出来的低秩张量 $\hat{oldsymbol{\mathcal{Y}}}$ 。

- 1: 对因子矩阵 $\{U^{(k)}\}$ 进行初始化;
- 2: for i=0 to 最大迭代次数 do
- 3: **for** k = 1 to d **do**
- 4: 根据公式(3.87)对因子矩阵 $U^{(k)}$ 的最小二乘解进行更新;
- 5: end for
- 6: 计算低秩张量 $\hat{\boldsymbol{\mathcal{Y}}} = \sum_{r=1}^{R} \boldsymbol{u}_{r}^{(1)} \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(2)} \otimes_{\text{outer}} \cdots \otimes_{\text{outer}} \boldsymbol{u}_{r}^{(d)};$
- 7: end for

第四章 时序矩阵分解

时序矩阵分解是矩阵分解中的一个重要模型,主要用于对时间序列数据进行建模 [Chen et al., 2022a]。当多元时间序列数据存在缺失值时,时序矩阵分解中的时序建模技术如向量自回归便会起到不可忽视的作用。在时序矩阵分解中,矩阵分解可从部分观测数据中学习出低秩模式,而时序建模则可刻画时序关联特征。本章分别介绍考虑时空平滑的矩阵分解与时序矩阵分解。

4.1 平滑矩阵分解

4.1.1 模型表达式

对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $y_t \in \mathbb{R}^N$,则多元时间序列可写作矩阵形式:

$$\boldsymbol{Y} = \begin{bmatrix} | & | & & | \\ \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_T \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$

$$(4.1)$$

当矩阵中存在缺失值时,可用 Ω 表示被观测元素的索引集合。一般而言,可定义作用于集合 Ω 上的正交映射 (orthogonal projection) $\mathcal{P}_{\Omega}: \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$, 对于矩阵 \mathbf{Y} 任意第 (i,t) 个元素,有

$$[\mathcal{P}_{\Omega}(\boldsymbol{Y})]_{i,t} = \begin{cases} \boldsymbol{y}_{i,t} & \text{if } (i,t) \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
(4.2)

同时,可定义作用于集合 Ω 补集上的正交映射 $\mathcal{P}_{\Omega}^{\perp}: \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$.

例 26. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, \ \boldsymbol{\Xi} \ \Omega = \{(1,1),(2,2)\}, \ 则$$

$$\mathcal{P}_{\Omega}(\boldsymbol{X}) = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \quad \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{X}) = \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix}$$
 (4.3)

通常来说,对于矩阵 Y,矩阵分解的优化问题为

$$\min_{\mathbf{W}, \mathbf{X}} \frac{1}{2} \| \mathcal{P}_{\Omega} (\mathbf{Y} - \mathbf{W}^{\top} \mathbf{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \mathbf{W} \|_{F}^{2} + \| \mathbf{X} \|_{F}^{2})$$
(4.4)

其中, $W \in \mathbb{R}^{R \times N}$ 与 $X \in \mathbb{R}^{R \times T}$ 为因子矩阵,在时空交通数据中,W 与 X 通常被分别称为空间因子矩阵 (spatial factor matrix) 与时序因子矩阵 (temporal factor matrix); ρ 为正则项的权重系数。

在公式(4.4)所示的矩阵分解中,低秩结构能捕捉数据的全局模式,但却往往忽略了局部 的关联特征。为了分别对空间局部信息与时序局部信息进行建模,不妨引入如下形式的矩阵 分解, 即平滑矩阵分解1:

$$\min_{\boldsymbol{W},\boldsymbol{X}} \frac{1}{2} \| \mathcal{P}_{\Omega}(\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2}) + \frac{\lambda}{2} (\| \boldsymbol{W} \boldsymbol{\Psi}_{1}^{\top} \|_{F}^{2} + \| \boldsymbol{X} \boldsymbol{\Psi}_{2}^{\top} \|_{F}^{2})$$
(4.5)

其中,目标函数的最后两项为平滑正则项 (smoothing regularization),正则项的权重系数为 λ ,用于平滑处理的矩阵被定义为

$$\Psi_{1} = \begin{bmatrix} \mathbf{0}_{N \times 1} & \mathbf{I}_{N-1} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_{N-1} & \mathbf{0}_{N \times 1} \end{bmatrix} \in \mathbb{R}^{(N-1) \times N}
\Psi_{2} = \begin{bmatrix} \mathbf{0}_{T \times 1} & \mathbf{I}_{T-1} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_{T-1} & \mathbf{0}_{T \times 1} \end{bmatrix} \in \mathbb{R}^{(T-1) \times T}$$
(4.6)

根据定义, 恒有

$$\boldsymbol{W}\boldsymbol{\Psi}_{1}^{\top} = \begin{bmatrix} | & | & | & | \\ \boldsymbol{w}_{2} & \boldsymbol{w}_{3} & \cdots & \boldsymbol{w}_{N} \\ | & | & | & | \end{bmatrix} - \begin{bmatrix} | & | & | & | \\ \boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \cdots & \boldsymbol{w}_{N-1} \\ | & | & | & | \end{bmatrix}$$

$$\boldsymbol{X}\boldsymbol{\Psi}_{2}^{\top} = \begin{bmatrix} | & | & | & | \\ \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \cdots & \boldsymbol{x}_{T} \\ | & | & | & | \end{bmatrix} - \begin{bmatrix} | & | & | & | \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{T-1} \\ | & | & | & | \end{bmatrix}$$

$$(4.7)$$

4.1.2 求解过程

为了估计优化问题中的待定参数,即 W 与 X,可采用交替优化算法 (alternating minimization algorithm)。交替优化算法(如交替最小二乘法)是求解矩阵分解中非凸优化问题的常用方法,该方法采用迭代过程,可通过交替更新待估计变量的最优解(如最小二乘解)最终达到收敛。

在平滑矩阵分解的优化问题中,令目标函数为

$$f = \frac{1}{2} \| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2}) + \frac{\lambda}{2} (\| \boldsymbol{W} \boldsymbol{\Psi}_{1}^{\top} \|_{F}^{2} + \| \boldsymbol{X} \boldsymbol{\Psi}_{2}^{\top} \|_{F}^{2})$$
(4.8)

更新变量 W

对变量 W 求偏导数,有

$$\frac{\partial f}{\partial \mathbf{W}} = -\mathbf{X} \mathcal{P}_{\Omega}(\mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{W} + \lambda \mathbf{W} \mathbf{\Psi}_{1}^{\top} \mathbf{\Psi}_{1}$$
(4.9)

此时, 令 $\frac{\partial f}{\partial \mathbf{W}} = \mathbf{0}$, 则可得到如下矩阵方程:

$$X\mathcal{P}_{\Omega}(W^{\top}X) + \rho W + \lambda W \Psi_{1}^{\top} \Psi_{1} = X\mathcal{P}_{\Omega}^{\top}(Y)$$
(4.10)

在这里,可采用共轭梯度法对该矩阵方程进行求解。

解说 2 (共轭梯度法求解线性方程组). 共轭梯度法是一种经典的数值计算方法, 主要用于求解线性方程组, 在机器学习中有诸多应用。从算法结构上来看, 共轭梯度法是一种迭代算法, 当线性方程组的规模较大且存在稀疏性问题时, 共轭梯度法便可派上用场。

在线性代数中, 线性方程组的表达式为

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{4.11}$$

其中, 矩阵 $\mathbf{A} \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^n$ 已知, $\mathbf{x} \in \mathbb{R}^n$ 为待求解变量。

不妨采用共轭梯度法对该线性方程组进行求解:

 $^{^{1}}$ 当 $\lambda=0$ 时,则考虑平滑处理的矩阵分解变为标准的矩阵分解。

4.1 平滑矩阵分解 33

1. 明确线性方程组中的矩阵 A 为实对称矩阵和正定矩阵,对变量 x 进行初始化 (可令向量的所有元素均为 0),记作 x_0 ;

- 2. 计算残差向量 $r_0 := b Ax_0$;
- 3. $q_0 := r_0;$
- 4. 定义迭代过程, 令 $\ell = 0$:
 - 计算系数

$$\alpha_{\ell} := \frac{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}}{\boldsymbol{q}_{\ell}^{\top} \boldsymbol{A} \boldsymbol{q}_{\ell}} \tag{4.12}$$

• 更新变量

$$\boldsymbol{x}_{\ell+1} := \boldsymbol{x}_{\ell} + \alpha_{\ell} \boldsymbol{q}_{\ell} \tag{4.13}$$

• 更新变量

$$\boldsymbol{r}_{\ell+1} := \boldsymbol{r}_{\ell} - \alpha_{\ell} \boldsymbol{A} \boldsymbol{q}_{\ell} \tag{4.14}$$

- 判断: 若此时残差 $r_{\ell+1}$ 足够小, 可终止循环;
- 计算系数

$$\beta_{\ell} := \frac{\boldsymbol{r}_{\ell+1}^{\top} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}} \tag{4.15}$$

• 更新变量

$$\boldsymbol{q}_{\ell+1} := \boldsymbol{r}_{\ell+1} + \beta_{\ell} \boldsymbol{q}_{\ell} \tag{4.16}$$

- $\ell := \ell + 1$
- 5. 输出最终迭代结果 $x_{\ell+1}$ 作为线性方程组的近似解。

假设线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 中已知 $\mathbf{A} = \begin{bmatrix} 4 & 1 \\ 1 & 3 \end{bmatrix}$ 与 $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$,即如下二元一次方程组:

$$\begin{cases} 4x_1 + x_2 = 1\\ x_1 + 3x_2 = 2 \end{cases} \tag{4.17}$$

图4.1给出了共轭梯度法求解二元一次方程组的迭代过程,其中,两条直线的交点 $(\frac{1}{11},\frac{7}{11})$ 为方程组的解。在迭代过程中,变量 0 的初始值为坐标原点,第二次迭代结果恰好落在交点上,结果为

$$\boldsymbol{x} = \begin{bmatrix} 0.09090909 \\ 0.63636364 \end{bmatrix} \approx \begin{bmatrix} \frac{1}{11} \\ \frac{7}{11} \end{bmatrix} \tag{4.18}$$

需要注意的是, 共轭梯度法具有快速收敛的性质, 一般仅需少量迭代次数就可得到精准的近似解。

例 27. 试写出求解公式(4.10)所示矩阵方程的共轭梯度法。

解. 对公式(4.10)左边进行向量化操作,并记作

$$g(\mathbf{W}) = \text{vec}(\mathbf{X} \mathcal{P}_{\Omega}(\mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{W} + \lambda \mathbf{W} \mathbf{\Psi}_{1}^{\top} \mathbf{\Psi}_{1})$$
(4.19)

共轭梯度法的具体过程如下:

1. 对变量 W 进行向量化操作, 并初始化为 w_0 ;

图 4.1: 使用共轭梯度法求解二元一次方程组

- 2. 计算残差向量 $\boldsymbol{r}_0 := \operatorname{vec}(\boldsymbol{X} \mathcal{P}_{\Omega}^{\top}(\boldsymbol{Y})) g(\boldsymbol{W}_0);$
- $3. \Leftrightarrow q_0 := r_0;$
- 4. 定义迭代过程, 令 $\ell = 0$:
 - 计算系数

$$\alpha_{\ell} := \frac{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}}{\boldsymbol{q}_{\ell}^{\top} g(\boldsymbol{Q}_{\ell})} \tag{4.20}$$

其中, Q_{ℓ} 是 q_{ℓ} 的矩阵化结果;

• 更新变量

$$\boldsymbol{w}_{\ell+1} := \boldsymbol{w}_{\ell} + \alpha_{\ell} \boldsymbol{q}_{\ell} \tag{4.21}$$

• 更新变量

$$\boldsymbol{r}_{\ell+1} := \boldsymbol{r}_{\ell} - \alpha_{\ell} g(\boldsymbol{Q}_{\ell}) \tag{4.22}$$

- 判断: 若此时残差 $r_{\ell+1}$ 足够小, 可终止循环;
- 计算系数

$$\beta_{\ell} := \frac{\boldsymbol{r}_{\ell+1}^{\top} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}} \tag{4.23}$$

• 更新变量

$$\boldsymbol{q}_{\ell+1} := \boldsymbol{r}_{\ell+1} + \beta_{\ell} \boldsymbol{q}_{\ell} \tag{4.24}$$

• $\ell := \ell + 1$

5. 输出最终迭代结果 $w_{\ell+1}$ 并进行矩阵化,得到的矩阵 $W_{\ell+1}$ 即作为矩阵方程的近似解。

更新变量 X

对变量 X 求偏导数,有

$$\frac{\partial f}{\partial \mathbf{X}} = -\mathbf{W} \mathcal{P}_{\Omega}^{\mathsf{T}} (\mathbf{Y} - \mathbf{W}^{\mathsf{T}} \mathbf{X}) + \rho \mathbf{X} + \lambda \mathbf{X} \mathbf{\Psi}_{2}^{\mathsf{T}} \mathbf{\Psi}_{2}$$
(4.25)

此时,令 $\frac{\partial f}{\partial X} = \mathbf{0}$,则可得到如下矩阵方程:

$$\boldsymbol{W} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{X} + \lambda \boldsymbol{X} \boldsymbol{\Psi}_{2}^{\top} \boldsymbol{\Psi}_{2} = \boldsymbol{W} \mathcal{P}_{\Omega} (\boldsymbol{Y})$$
(4.26)

在这里,同样可采用共轭梯度法对该矩阵方程进行求解。

4.1 平滑矩阵分解 35

例 28. 试写出求解公式(4.26)所示矩阵方程的共轭梯度法。

解. 对公式(4.26)左边进行向量化操作,并记作

$$g(\mathbf{X}) = \operatorname{vec}(\mathbf{W} \mathcal{P}_{\Omega}^{\top}(\mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{X} + \lambda \mathbf{X} \mathbf{\Psi}_{2}^{\top} \mathbf{\Psi}_{2})$$
(4.27)

共轭梯度法的具体过程如下:

- 1. 对变量 X 进行向量化操作, 并初始化为 x_0 ;
- 2. 计算残差向量 $\mathbf{r}_0 := \text{vec}(\mathbf{W}\mathcal{P}_{\Omega}(\mathbf{Y})) g(\mathbf{X}_0)$;
- $3. \Leftrightarrow q_0 := r_0;$
- 4. 定义迭代过程, 令 $\ell = 0$:
 - 计算系数

$$\alpha_{\ell} := \frac{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}}{\boldsymbol{q}_{\ell}^{\top} g(\boldsymbol{Q}_{\ell})} \tag{4.28}$$

其中, Q_{ℓ} 是 q_{ℓ} 的矩阵化结果;

• 更新变量

$$\boldsymbol{x}_{\ell+1} := \boldsymbol{x}_{\ell} + \alpha_{\ell} \boldsymbol{q}_{\ell} \tag{4.29}$$

• 更新变量

$$\boldsymbol{r}_{\ell+1} := \boldsymbol{r}_{\ell} - \alpha_{\ell} g(\boldsymbol{Q}_{\ell}) \tag{4.30}$$

- 判断: 若此时残差 $r_{\ell+1}$ 足够小, 可终止循环;
- 计算系数

$$\beta_{\ell} := \frac{\boldsymbol{r}_{\ell+1}^{\top} \boldsymbol{r}_{\ell+1}}{\boldsymbol{r}_{\ell}^{\top} \boldsymbol{r}_{\ell}} \tag{4.31}$$

• 更新变量

$$\boldsymbol{q}_{\ell+1} := \boldsymbol{r}_{\ell+1} + \beta_{\ell} \boldsymbol{q}_{\ell} \tag{4.32}$$

- $\ell := \ell + 1$
- 5. 输出最终迭代结果 $oldsymbol{x}_{\ell+1}$ 并进行矩阵化,得到的矩阵 $oldsymbol{X}_{\ell+1}$ 即作为矩阵方程的近似解。

算法2给出了考虑平滑处理的矩阵分解算法的具体实现过程。

Algorithm 2 考虑平滑处理的矩阵分解算法

Input: 观测矩阵 $Y \in \mathbb{R}^{N \times T}$, 被观测元素的索引集合 Ω , 超参数 $\{\rho, \lambda\}$.

Output: 重构出来的矩阵 $\hat{Y} \in \mathbb{R}^{N \times T}$.

- 1: 对变量 {**W**, **X**} 进行初始化;
- 2: **for** i = 0 to 最大迭代次数 **do**
- 3: 使用共轭梯度法对公式(4.10)中的变量 W 进行求解;
- 4: 使用共轭梯度法对公式(4.26)中的变量 X 进行求解;
- 5: 计算 $\hat{\boldsymbol{Y}} = \boldsymbol{W}^{\top} \boldsymbol{X}$;
- 6: end for

4.2 时序矩阵分解

4.2.1 模型表达式

在该矩阵分解的优化问题中,可通过增加向量自回归过程使得模型具备时序建模能力。不妨对时序因子矩阵构造向量自回归过程,可得到时序矩阵分解的优化问题为

$$\min_{\boldsymbol{W}, \boldsymbol{X}, \{\boldsymbol{A}_k\}} \frac{1}{2} \left\| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \right\|_F^2 + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_F^2 + \|\boldsymbol{X}\|_F^2 \right) + \frac{\lambda}{2} \sum_{t=d+1}^T \left\| \boldsymbol{x}_t - \sum_{k=1}^d \boldsymbol{A}_k \boldsymbol{x}_{t-k} \right\|_2^2$$
(4.33)

其中, $A_1, A_2, \ldots, A_d \in \mathbb{R}^{R \times R}$ 为向量自回归过程的系数矩阵; $\{\rho, \lambda\}$ 为正则项的权重系数。根据向量自回归的定义,时序矩阵分解的优化问题可写作如下形式:

$$\min_{\boldsymbol{W}, \boldsymbol{X}, \{\boldsymbol{A}_k\}} \frac{1}{2} \left\| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right) + \frac{\lambda}{2} \left\| \boldsymbol{X} \boldsymbol{\Psi}_{0}^{\top} - \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} \right\|_{F}^{2}$$
(4.34)

其中, $\Psi_k \in \mathbb{R}^{(T-d)\times T}$, $k=0,1,\ldots,d$ 为构造出来的矩阵 (参见公式(4.37))。

解说 $\mathbf{3}$ (向量自回归). 对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $\mathbf{x}_t \in \mathbb{R}^N$,则向量自回归的表达式为

$$x_t = \sum_{k=1}^{d} A_k x_{t-k} + \epsilon_t, t = d+1, d+2, \dots, T$$
 (4.35)

其中, $A_1, A_2, \ldots, A_d \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵 (coefficient matrix); d 为自回归过程的阶数 (order); $\epsilon_t \in \mathbb{R}^N$ 为残差向量。

令

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_T \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$

$$(4.36)$$

若构造分块矩阵

$$\Psi_{k} = \underbrace{\begin{bmatrix} 0 & \cdots & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 1 & 0 & \cdots & 0 \end{bmatrix}}_{d-k}$$

$$= \underbrace{\begin{bmatrix} \mathbf{0}_{(T-d)\times(d-k)} & \mathbf{I}_{T-d} & \mathbf{0}_{(T-d)\times k} \end{bmatrix}}_{T-d} \in \mathbb{R}^{(T-d)\times T}, k = 0, 1, \dots, d$$

$$(4.37)$$

则向量自回归可写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$

$$(4.38)$$

其中, $E \in \mathbb{R}^{N \times (T-d)}$ 为残差矩阵。

4.2.2 求解过程

为了估计优化问题中的待定参数,即变量 $W \setminus X$ 以及 A_1, A_2, \ldots, A_d ,可采用交替优化算法。在时序矩阵分解中,每次更新特定变量时,可令其他变量固定不变,仅求解当前变量的最优解(如最小二乘解)或近似解。

4.2 时序矩阵分解 37

更新变量 W

不妨将时序矩阵分解优化问题的目标函数记作 f, 对变量 W 求偏导数, 有

$$\frac{\partial f}{\partial \mathbf{W}} = -\mathbf{X} \mathcal{P}_{\Omega}^{\top} (\mathbf{Y} - \mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{W}$$
(4.39)

此时,今 $\frac{\partial f}{\partial \mathbf{W}} = \mathbf{0}$,则矩阵方程为

$$\boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{W} = \boldsymbol{X} \mathcal{P}_{\Omega}^{\top} (\boldsymbol{Y})$$
(4.40)

对于变量 W,该矩阵方程的最小二乘解为

$$\boldsymbol{w}_{i} = \left(\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} + \rho \boldsymbol{I}_{R}\right)^{-1} \sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} y_{i,t}$$
(4.41)

其中, $i=1,2,\ldots,N$;符号 $\sum_{t:(i,t)\in\Omega}$ 表示固定索引 i 后对索引集合 Ω 内所有索引 t 进行求和。

更新变量 X

$$f = \frac{1}{2} \left\| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2} \right) + \frac{\lambda}{2} \left\| \sum_{k=0}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} \right\|_{F}^{2}$$
(4.42)

对变量 X 求偏导数,有

$$\frac{\partial f}{\partial \mathbf{X}} = -\mathbf{W} \mathcal{P}_{\Omega} (\mathbf{Y} - \mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{X} + \lambda \sum_{k=0}^{d} \mathbf{A}_{k}^{\top} \left(\sum_{h=0}^{d} \mathbf{A}_{h} \mathbf{X} \mathbf{\Psi}_{h}^{\top} \right) \mathbf{\Psi}_{k}$$
(4.43)

此时, 令 $\frac{\partial f}{\partial \mathbf{X}} = \mathbf{0}$, 关于变量 \mathbf{X} 的矩阵方程为

$$\boldsymbol{W} \mathcal{P}_{\Omega}(\boldsymbol{W}^{\top} \boldsymbol{X}) + \rho \boldsymbol{X} + \lambda \sum_{k=0}^{d} \boldsymbol{A}_{k}^{\top} \left(\sum_{h=0}^{d} \boldsymbol{A}_{h} \boldsymbol{X} \boldsymbol{\Psi}_{h}^{\top} \right) \boldsymbol{\Psi}_{k} = \boldsymbol{W} \mathcal{P}_{\Omega}(\boldsymbol{Y})$$
(4.44)

例 29. 试写出求解公式(4.44)所示矩阵方程的共轭梯度法。

解. 对公式(4.26)左边进行向量化操作,并记作

$$g(\boldsymbol{X}) = \operatorname{vec}\left(\boldsymbol{W}\mathcal{P}_{\Omega}(\boldsymbol{W}^{\top}\boldsymbol{X}) + \rho\boldsymbol{X} + \lambda \sum_{k=0}^{d} \boldsymbol{A}_{k}^{\top} \left(\sum_{h=0}^{d} \boldsymbol{A}_{h} \boldsymbol{X} \boldsymbol{\Psi}_{h}^{\top}\right) \boldsymbol{\Psi}_{k}\right)$$
(4.45)

共轭梯度法的具体过程可参考例28。

更新系数矩阵 A_1, A_2, \ldots, A_d

若令

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \cdots & \mathbf{A}_d \end{bmatrix} \in \mathbb{R}^{R \times (dR)}$$

$$\mathbf{\Psi} = \begin{bmatrix} \mathbf{\Psi}_1 & \mathbf{\Psi}_2 & \cdots & \mathbf{\Psi}_d \end{bmatrix} \in \mathbb{R}^{(T-d) \times (dT)}$$
(4.46)

则对于系数矩阵 A 的子问题可改写为

$$\min_{\mathbf{A}} \frac{1}{2} \| \mathbf{X} \mathbf{\Psi}_0^{\top} - \mathbf{A} (\mathbf{I}_d \otimes \mathbf{X}) \mathbf{\Psi}^{\top} \|_F^2$$
(4.47)

因此, 系数矩阵 A 的最小二乘解为

$$\boldsymbol{A} = \boldsymbol{X} \boldsymbol{\Psi}_0^{\top} \left((\boldsymbol{I}_d \otimes \boldsymbol{X}) \boldsymbol{\Psi}^{\top} \right)^{\dagger} \tag{4.48}$$

例 30. 试证明

$$\sum_{k=1}^{d} \mathbf{A}_k \mathbf{X} \mathbf{\Psi}_k^{\top} = \mathbf{A} (\mathbf{I}_d \otimes \mathbf{X}) \mathbf{\Psi}^{\top}$$
(4.49)

解. 根据 Kronecker 定义, 有

$$\sum_{k=1}^{d} \mathbf{A}_{k} \mathbf{X} \mathbf{\Psi}_{k}^{\top} = \mathbf{A}_{1} \mathbf{X} \mathbf{\Psi}_{1}^{\top} + \mathbf{A}_{2} \mathbf{X} \mathbf{\Psi}_{2}^{\top} + \dots + \mathbf{A}_{d} \mathbf{X} \mathbf{\Psi}_{d}^{\top}$$

$$= \begin{bmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{d} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{0} & \cdots & \mathbf{0} \\ \mathbf{0} & \mathbf{X} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \mathbf{X} \end{bmatrix} \begin{bmatrix} \mathbf{\Psi}_{1}^{\top} \\ \mathbf{\Psi}_{2}^{\top} \\ \vdots \\ \mathbf{\Psi}_{d}^{\top} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{A}_{1} & \mathbf{A}_{2} & \cdots & \mathbf{A}_{d} \end{bmatrix} (\mathbf{I}_{d} \otimes \mathbf{X}) \begin{bmatrix} \mathbf{\Psi}_{1}^{\top} \\ \mathbf{\Psi}_{2}^{\top} \\ \vdots \\ \mathbf{\Psi}_{d}^{\top} \end{bmatrix}$$

$$= \mathbf{A} (\mathbf{I}_{d} \otimes \mathbf{X}) \mathbf{\Psi}^{\top}$$

$$(4.50)$$

恒成立。

算法3给出了时序矩阵分解算法的具体实现过程。在这里,不妨使用共轭梯度法对变量 W 与 X 进行求解。

Algorithm 3 时序矩阵分解算法

Input: 观测矩阵 $Y \in \mathbb{R}^{N \times T}$, 被观测元素的索引集合 Ω , 向量自回归的阶数 d, 超参数 $\{\rho, \lambda\}$ 。 **Output:** 重构出来的矩阵 $\hat{Y} \in \mathbb{R}^{N \times T}$ 。

- 1: 对变量 {**W**, **X**, **A**} 进行初始化;
- 2: **for** i = 0 to 最大迭代次数 **do**
- $_{3:}$ 使用共轭梯度法对公式(4.40)中的变量 W 进行求解;
- 4: 使用共轭梯度法对公式(4.44)中的变量 X 进行求解;
- 5: 根据公式(4.48)计算系数矩阵 **A**;
- 6: 计算 $\hat{\boldsymbol{Y}} = \boldsymbol{W}^{\top} \boldsymbol{X}$;
- 7: end for

4.2.3 时间序列预测

第五章 贝叶斯张量分解

本章将要介绍的内容包括:

- 基于高斯分布假设的 CP 分解表达式
- 根据共轭先验的设置规则构建贝叶斯张量分解的贝叶斯网络
- 采用贝叶斯推断方法对贝叶斯张量分解进行求解

5.1 基于高斯假设的 CP 分解表达式

对于任意三阶张量 $\mathbf{\mathcal{Y}}\in\mathbb{R}^{M\times N\times T}$,若 Ω 表示被观测元素的索引集合,则 CP 张量分解的优化问题可写作如下形式:

$$\min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{X}} \frac{1}{2} \left\| \mathcal{P}_{\Omega} \left(\boldsymbol{\mathcal{Y}} - \sum_{r=1}^{R} \boldsymbol{u}_{r} \otimes_{\text{outer}} \boldsymbol{v}_{r} \otimes_{\text{outer}} \boldsymbol{x}_{r} \right) \right\|_{F}^{2} + \frac{\rho}{2} (\|\boldsymbol{U}\|_{F}^{2} + \|\boldsymbol{V}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2})$$
(5.1)

其中, $U \in \mathbb{R}^{M \times R}$ 、 $V \in \mathbb{R}^{N \times R}$ 与 $X \in \mathbb{R}^{T \times R}$ 为因子矩阵; $u_r \in \mathbb{R}^M$ 、 $v_r \in \mathbb{R}^N$ 与 $x_t \in \mathbb{R}^T$ 分别为这些因子矩阵的列向量。

需要注意的是,这一形式等价于

$$\min_{\boldsymbol{U},\boldsymbol{V},\boldsymbol{X}} \frac{1}{2} \sum_{(i,j,t)\in\Omega} \left(y_{i,j,t} - \sum_{r=1}^{R} u_{i,r} v_{j,r} x_{t,r} \right)^{2} + \frac{\rho}{2} (\|\boldsymbol{U}\|_{F}^{2} + \|\boldsymbol{V}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2})$$
(5.2)

其中, $y_{i,j,t}$ 为张量 \mathcal{Y} 的第 (i,j,t) 个元素; $u_{i,r}$ 为因子矩阵 U 的第 (i,r) 个元素; $v_{j,r}$ 为因子矩阵 V 的第 (j,r) 个元素; $x_{t,r}$ 为因子矩阵 X 的第 (t,r) 个元素。

实际上,贝叶斯张量分解的发展在很大程度上得益于先前的各类贝叶斯矩阵分解模型 [Salakhutdinov and Mnih, 2008, Xiong et al., 2010, Zhao et al., 2015, Chen et al., 2019]。通常来说,贝叶斯张量分解需要建立在特定分布假设的基础上,若以高斯分布作为张量元素的分布假设,则CP分解为

$$y_{i,j,t} \sim \mathcal{N}\left(\sum_{r=1}^{R} u_{i,r} v_{j,r} x_{t,r}, \tau^{-1}\right), \, \forall (i,j,t)$$
 (5.3)

其中,符号 $\mathcal{N}(\cdot)$ 是高斯分布的简写;低秩张量 $\sum_{r=1}^R u_{i,r}v_{j,r}x_{t,r}$ 作用于高斯分布的均值项,恰好符合对 CP 分解逼近模型的定义;参数 τ 是高斯分布中方差的倒数,在这里表示精度项。

解说 4 (高斯分布). 高斯分布是统计学中最为常用的分布形式之一,对于随机变量 x,其概率密度函数为

$$\mathcal{N}(x \mid \mu, \tau^{-1}) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x-\mu)^2\right)$$
 (5.4)

其中, μ 是高斯分布的均值项; τ 是高斯分布的精度项。

对于多元随机变量 $x \in \mathbb{R}^n$,多元高斯分布的概率密度函数为

$$\mathcal{N}(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) = \sqrt{\frac{\det(\boldsymbol{\Lambda})}{2\pi}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Lambda}(\boldsymbol{x} - \boldsymbol{\mu})\right)$$
(5.5)

其中, $\mu \in \mathbb{R}^n$ 是刻画随机变量 x 多元高斯分布的均值向量; $\Lambda \in \mathbb{R}^{n \times n}$ 是刻画随机变量 x 多元高斯分布中协方差矩阵的逆矩阵;符号 $\det(\cdot)$ 表示矩阵的行列式。

在这里,高斯分布一方面能刻画实际数据的随机性,另一方面也能契合张量分解优化问题的目标函数。在公式(5.3)中,高斯分布对应的概率密度函数的指数项为

$$-\frac{1}{2}\tau \left(y_{i,j,t} - \sum_{r=1}^{R} u_{i,r}v_{j,r}x_{t,r}\right)^{2}$$
(5.6)

这与 CP 张量分解的目标函数中的第一项

$$\frac{1}{2} \sum_{(i,j,t)\in\Omega} \left(y_{i,j,t} - \sum_{r=1}^{R} u_{i,r} v_{j,r} x_{t,r} \right)^2 \tag{5.7}$$

在形式上存在一致性。所不同的是,采用贝叶斯框架可将优化问题转化为后验推断问题。

5.2 贝叶斯网络

在张量分解的优化问题中,为了从数据张量中学习出因子矩阵 $\{U,V,X\}$,根据贝叶斯准则,需要对这些因子矩阵设置共轭先验,从而可得到这些参数的后验分布,其中,后验分布正比于先验分布与似然函数的乘积。

5.2.1 共轭分布

解说 5 (共轭分布). 共轭分布是贝叶斯推断中十分重要的概念,结合贝叶斯定理,可将"共轭"理解为后验与先验是同一种分布。以高斯分布为例,假设一组观测样本 x_1, x_2, \ldots, x_n 独立同分布于高斯分布,即 $x_i \sim \mathcal{N}(\mu, \sigma^2)$, $i=1,2,\ldots,n$, 其中,均值 μ 未知,方差 σ^2 已知,此时,似然函数为

$$\mathcal{L}(x_1, x_2, \dots, x_n \mid \mu) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu)^2\right)$$

$$\propto \exp\left(-\frac{1}{2\sigma^2} (x_i - \mu)^2\right)$$
(5.8)

若要对均值 μ 进行推断,不妨假设 μ 的先验分布为

$$\mu \sim \mathcal{N}(\mu_0, \sigma_0^2) = \frac{1}{\sqrt{2\pi}\sigma_0} \exp\left(-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2\right)$$
 (5.9)

从而,可推导出后验分布为

$$p(\mu \mid x_1, x_2, \dots, x_n, \mu_0, \sigma_0) \propto p(\mu \mid \mu_0, \sigma_0) \mathcal{L}(x_1, x_2, \dots, x_n \mid \mu)$$

$$\propto \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 + \frac{1}{2\sigma_0^2} (\mu - \mu_0)^2\right)$$

$$\propto \exp\left(-\frac{1}{2} \left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right) \left(\mu - \frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}}\right)^2\right)$$
(5.10)

其中,
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
。

5.2 贝叶斯网络 41

因此, 后验分布满足高斯分布形式, 其均值与方差分别为

$$\frac{\frac{\mu_0}{\sigma_0^2} + \frac{n\bar{x}}{\sigma^2}}{\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}} \tag{5.11}$$

与

$$\left(\frac{1}{\sigma_0^2} + \frac{n}{\sigma^2}\right)$$
(5.12)

5.2.2 因子矩阵的先验分布

假设张量 \mathcal{Y} 的任意元素服从独立的高斯分布,依据共轭先验设置准则,因子矩阵的先验分布为高斯分布。考虑到因子矩阵是由 R 个列向量构成,这些向量被假设服从多元高斯分布,具体形式为

$$\begin{cases} \boldsymbol{u}_{i} \sim \mathcal{N}(\boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u}^{-1}), \ \forall i \in \{1, 2, \dots, M\} \\ \boldsymbol{v}_{j} \sim \mathcal{N}(\boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v}^{-1}), \ \forall j \in \{1, 2, \dots, N\} \\ \boldsymbol{x}_{t} \sim \mathcal{N}(\boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x}^{-1}), \ \forall t \in \{1, 2, \dots, T\} \end{cases}$$

$$(5.13)$$

其中,向量 $u_i \in \mathbb{R}^R$ 为因子矩阵 $U \in \mathbb{R}^{M \times R}$ 的第 i 行,并被假设服从独立的多元高斯分布;类似地,向量 $v_j \in \mathbb{R}^R$ 为因子矩阵 $V \in \mathbb{R}^{N \times R}$ 的第 j 行,向量 x_t 为因子矩阵 $X \in \mathbb{R}^{T \times R}$ 的第 t 行,两者都服从多元高斯分布。

在因子矩阵的先验分布中,参数 $\{(\mu_u, \Lambda_u), (\mu_v, \Lambda_v), (\mu_x, \Lambda_x)\}$ 是贝叶斯模型的超参数。为了避免贝叶斯模型出现过拟合现象,同时增加贝叶斯模型的灵活性,依据共轭先验设置准则,可假设超参数 $\{\mu_u, \mu_v, \mu_x\}$ 服从多元高斯分布、超参数 $\{\Lambda_u, \Lambda_v, \Lambda_x\}$ 服从 Wishart 分布,即

$$\begin{cases}
\boldsymbol{\mu}_{u} \sim \mathcal{N}(\boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{u})^{-1}) & \boldsymbol{\Lambda}_{u} \sim \mathcal{W}(\boldsymbol{W}_{0}, \nu_{0}) \\
\boldsymbol{\mu}_{v} \sim \mathcal{N}(\boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{v})^{-1}) & \boldsymbol{\Lambda}_{v} \sim \mathcal{W}(\boldsymbol{W}_{0}, \nu_{0}) \\
\boldsymbol{\mu}_{x} \sim \mathcal{N}(\boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{x})^{-1}) & \boldsymbol{\Lambda}_{x} \sim \mathcal{W}(\boldsymbol{W}_{0}, \nu_{0})
\end{cases} (5.14)$$

其中,符号 $W(\cdot)$ 表示 Wishart 分布。在这里,超参数的先验分布是由高斯分布与 Wishart 分布共同构成的,先验分布中的 $\{\mu_0, \beta_0, W_0, \nu_0\}$ 为初始化参数,在贝叶斯网络中无需设置共轭 先验。

解说 6 (Wishart 分布). 在共轭分布中,Wishart 分布可用来描述多元高斯分布中协方差矩阵 $\mathbf{\Lambda} \in \mathbb{R}^{R \times R}$ 的先验分布,其概率密度函数为

$$W(\mathbf{\Lambda} \mid \mathbf{W}, \nu) = \frac{1}{C} \det(\mathbf{\Lambda})^{(\nu - r - 1)/2} \exp\left(-\frac{1}{2} \operatorname{tr}(\mathbf{W}^{-1} \mathbf{\Lambda})\right)$$
(5.15)

其中,常数 C 可对概率密度函数做归一化处理; ν 表示 Wishart 分布的自由度; $W \in \mathbb{R}^{R \times R}$ 是正定对称矩阵; 符号 $tr(\cdot)$ 表示矩阵的迹 (trace)。

5.2.3 精度参数的先验分布

在张量元素的高斯分布假设中,即公式(5.3),由于参数 τ 是高斯分布中方差项的倒数,因此,依据共轭先验设置准则, τ 被假设服从伽马分布,即

$$\tau \sim \text{Gamma}(a_0, b_0) \tag{5.16}$$

解说 7. 在统计学中, 给定随机变量 τ , 伽马分布的概率密度函数为

$$Gamma(\tau \mid a, b) = \frac{1}{\Gamma(a)} b^a \tau^{a-1} \exp(-b\tau)$$
(5.17)

其中,符号 $\Gamma(\cdot)$ 表示伽马函数; a 与 b 分别是伽马分布的形状参数与比率参数。

5.2.4 张量分解的贝叶斯网络

图5.1给出了贝叶斯高斯张量分解的贝叶斯网络,在图模型中,灰色节点 $y_{i,j,t},(i,j,t) \in \Omega$ 表示张量 $\mathbf{y} \in \mathbb{R}^{M \times N \times T}$ 中被观测到的元素,作为模型的输入;箭头表示观测值、参数以及超参数之间的概率依赖关系。为保持图模型的可读性,图模型中仅给出了超参数 $(\boldsymbol{\mu}_v, \boldsymbol{\Lambda}_v)$ 及其先验分布,超参数 $\{(\boldsymbol{\mu}_u, \boldsymbol{\Lambda}_u), (\boldsymbol{\mu}_x, \boldsymbol{\Lambda}_x)\}$ 及其先验分布未逐一标出。

图 5.1: 贝叶斯高斯张量分解的贝叶斯网络

该图模型是由参数与超参数共同构成, $\{U,V,X,\tau\}$ 为模型参数,包括张量分解的因子矩阵以及高斯分布的精度参数;超参数可细分为两类,第一类是待估计的超参数,即

$$\{(\boldsymbol{\mu}_u, \boldsymbol{\Lambda}_u), (\boldsymbol{\mu}_v, \boldsymbol{\Lambda}_v), (\boldsymbol{\mu}_x, \boldsymbol{\Lambda}_x)\}$$

需在贝叶斯推断过程中推导其后验分布,第二类是预先设定的超参数,即

$$\{\boldsymbol{\mu}_0, \beta_0, \boldsymbol{W}_0, \nu_0, a_0, b_0\}$$

作为贝叶斯推断的初始化参数。

5.3 Gibbs 采样与后验推断

5.3.1 Gibbs 采样

Gibbs 采样是一种特殊的马尔可夫链蒙特卡洛 (Markov chain Monte Carlo,通常记作 MCMC) 算法,也被称为交替条件采样,隶属于随机型贝叶斯推断算法。对于具体统计学习问题而言,Gibbs 采样的核心是贝叶斯准则,围绕先验分布与似然函数推导后验分布,相应的参数在迭代过程中会被交替使用。

解说 8 (Gibbs 采样的原理). 已知观测值为 \mathbf{y} , 给定参数 $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d)^{\mathsf{T}}$, 若参数 θ_k^ℓ , $k = 1, 2, \dots, d$ 表示第 k 个参数 θ_k 在第 ℓ 次迭代的采样值,则该采样值取自概率分布

$$p(\theta_k^{\ell} \mid \theta_1^{\ell}, \dots, \theta_{k-1}^{\ell}, \theta_{k+1}^{\ell-1}, \dots, \theta_d^{\ell-1}, \boldsymbol{y})$$

例 31. 假设观测值 $\mathbf{y} = (y_1, y_2)^{\top}$ 服从均值为 $\mathbf{\theta} = (\theta_1, \theta_2)^{\top}$ (未知)、协方差为 $\mathbf{\Sigma} = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$ (已知),且变量 $\mathbf{\theta}$ 服从均匀分布,如何利用 Gibbs 采样估计 $\mathbf{\theta}$?

解. 根据贝叶斯准则,后验分布 $p(\theta \mid y)$ 通常被定义为

$$p(\theta \mid y) \propto p(\theta) \times p(y \mid \theta)$$
 (5.18)

其中, $p(\theta)$ 为先验分布, $p(y \mid \theta)$ 是关于观测值的似然函数,符号 \propto 表示正比于。因此,这里的后验分布为

$$p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \mathcal{N}(\boldsymbol{y}, \boldsymbol{\Sigma}) \tag{5.19}$$

尽管 θ 可直接通过后验分布得到,但需要注意的是,Gibbs 采样要求参数 θ_1 与 θ_2 在迭代过程中交替采样,相应的后验分布分别为

$$p(\theta_1^{\ell} \mid \theta_2^{\ell-1}, \mathbf{y}) = \mathcal{N}(y_1 + \rho(\theta_2^{\ell-1} - y_2), 1 - \rho^2)$$

$$p(\theta_2^{\ell} \mid \theta_1^{\ell}, \mathbf{y}) = \mathcal{N}(y_2 + \rho(\theta_1^{\ell} - y_1), 1 - \rho^2)$$
(5.20)

5.3.2 因子矩阵的后验分布

在贝叶斯高斯张量分解模型中,为了从部分观测的张量中学习出合理的分解结构,得到因子矩阵 $\{U,V,X\}$,关键在于推导出这些因子矩阵的后验分布。

因子矩阵 U 的后验分布

由于因子矩阵 $U \in \mathbb{R}^{M \times R}$ 的先验分布直接作用于向量 $u_i \in \mathbb{R}^R$, i = 1, 2, ..., M, 而非整个因子矩阵,因此,推导因子矩阵 U 的后验分布实际上是通过单独推导向量 u_i 的后验分布完成的。根据张量元素的高斯分布假设,即公式(5.3),可得到关于向量 u_i 的似然函数为

$$\mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{u}_{i}, \boldsymbol{V}, \boldsymbol{X}, \tau) \propto \prod_{j,t:(i,j,t)\in\Omega} \exp\left(-\frac{1}{2}\tau(y_{i,j,t} - \hat{y}_{i,j,t})^{2}\right)$$

$$= \exp\left(-\frac{1}{2}\tau \sum_{j,t:(i,j,t)\in\Omega} \left(y_{i,j,t} - \sum_{r=1}^{R} u_{i,r}v_{j,r}x_{t,r}\right)^{2}\right)$$

$$= \exp\left(-\frac{1}{2}\tau \sum_{j,t:(i,j,t)\in\Omega} \left(y_{i,j,t} - \boldsymbol{u}_{i}^{\top}(\boldsymbol{v}_{j} \circ \boldsymbol{x}_{t})\right)^{2}\right)$$
(5.21)

其中, $\mathcal{L}(\cdot)$ 用来表示似然函数; $\hat{y}_{i,j,t}$ 表示张量分解得到的估计值;求积符号 $\prod_{j,t:(i,j,t)\in\Omega}$ 表示在特定索引 i 下,索引集合 Ω 中任意 $j\in\{1,2,\ldots,N\}$ 与 $t\in\{1,2,\ldots,T\}$ 所对应的求积公式;求和符号 $\sum_{j,t:(i,j,t)\in\Omega}$ 表示在特定索引 i 下,索引集合 Ω 中任意 $j\in\{1,2,\ldots,N\}$ 与 $t\in\{1,2,\ldots,T\}$ 所对应的求和公式;符号。表示元素间的点乘 (Hadamard product)。

对该似然函数左右两边同时取对数,有

$$\ln \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{u}_{i}, \boldsymbol{V}, \boldsymbol{X}, \tau) = -\frac{1}{2} \tau \sum_{j,t:(i,j,t)\in\Omega} (y_{i,j,t} - \boldsymbol{u}_{i}^{\top} (\boldsymbol{v}_{j} \circ \boldsymbol{x}_{t}))^{2} + C$$

$$= -\frac{1}{2} \boldsymbol{u}_{i}^{\top} \left(\tau \sum_{j,t:(i,j,t)\in\Omega} (\boldsymbol{v}_{j} \circ \boldsymbol{x}_{t}) (\boldsymbol{v}_{j} \circ \boldsymbol{x}_{t})^{\top} \right) \boldsymbol{u}_{i}$$

$$+ \frac{1}{2} \boldsymbol{u}_{i}^{\top} \left(\tau \sum_{j,t:(i,j,t)\in\Omega} y_{i,j,t} (\boldsymbol{v}_{j} \circ \boldsymbol{x}_{t}) \right) + C$$

$$(5.22)$$

其中, C 表示常数项, 在后续内容中不再赘述。

向量 u_i 的先验分布为多元高斯分布, 其概率密度函数的对数形式为

$$\ln p(\boldsymbol{u}_i \mid \boldsymbol{\mu}_u, \boldsymbol{\Lambda}_u) = -\frac{1}{2} \boldsymbol{u}_i^{\top} \boldsymbol{\Lambda}_u \boldsymbol{u}_i + \frac{1}{2} \boldsymbol{u}_i^{\top} \boldsymbol{\Lambda}_u \boldsymbol{\mu}_u + C$$
 (5.23)

根据贝叶斯准则,后验分布正比于先验分布与似然函数的乘积。由于向量 u_i 的后验分布与先验分布都为多元高斯分布,因此,有

$$p(\boldsymbol{u}_{i} \mid \boldsymbol{\mathcal{Y}}, \boldsymbol{V}, \boldsymbol{X}, \tau, \boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u}) \propto \mathcal{N}(\boldsymbol{u}_{i} \mid \boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u}^{-1}) \times \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{u}_{i}, \boldsymbol{V}, \boldsymbol{X}, \tau)$$

$$\propto \mathcal{N}(\boldsymbol{u}_{i} \mid \tilde{\boldsymbol{\mu}}_{\boldsymbol{u}_{i}}, \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{u}_{i}}^{-1})$$
(5.24)

可推导出向量 u_i 的后验分布参数分别为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{\boldsymbol{u}_i} = \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{u}_i}^{-1} \left(\tau \sum_{j,t:(i,j,t)\in\Omega} y_{i,j,t}(\boldsymbol{v}_j \circ \boldsymbol{x}_t) + \boldsymbol{\Lambda}_u \boldsymbol{\mu}_u \right) \\
\tilde{\boldsymbol{\Lambda}}_{\boldsymbol{u}_i} = \tau \sum_{j,t:(i,j,t)\in\Omega} (\boldsymbol{v}_j \circ \boldsymbol{x}_t)(\boldsymbol{v}_j \circ \boldsymbol{x}_t)^\top + \boldsymbol{\Lambda}_u
\end{cases}$$
(5.25)

在 Gibbs 采样中,有了向量 u_i 的后验分布参数,即可对向量 u_i 进行采样更新。

因子矩阵 V 的后验分布

实际上,因子矩阵 V 的后验分布推导过程与上述因子矩阵 U 的后验分布推导过程如出一辙、原理一致。根据张量元素的高斯分布假设,即公式(5.3),可得到关于向量 $v_j \in \mathbb{R}^R, \forall j \in \{1,2,\ldots,N\}$ 的似然函数为

$$\mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{v}_{j}, \boldsymbol{X}, \tau) \propto \prod_{i,t:(i,j,t)\in\Omega} \exp\left(-\frac{1}{2}\tau(y_{i,j,t} - \hat{y}_{i,j,t})^{2}\right)$$

$$= \exp\left(-\frac{1}{2}\tau \sum_{i,t:(i,j,t)\in\Omega} \left(y_{i,j,t} - \boldsymbol{v}_{j}^{\top}(\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t})\right)^{2}\right)$$
(5.26)

其中,求积符号 $\prod_{i,t:(i,j,t)\in\Omega}$ 表示在特定索引 j 下,索引集合 Ω 中任意 $i\in\{1,2,\ldots,M\}$ 与 $t\in\{1,2,\ldots,T\}$ 所对应的求积公式;求和符号 $\sum_{i,t:(i,j,t)\in\Omega}$ 表示在特定索引 j 下,索引集合 Ω 中任意 $i\in\{1,2,\ldots,M\}$ 与 $t\in\{1,2,\ldots,T\}$ 所对应的求和公式。

对该似然函数左右两边同时取对数,有

$$\ln \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{v}_{j}, \boldsymbol{X}, \tau) = -\frac{1}{2} \tau \sum_{i, t: (i, j, t) \in \Omega} \left(y_{i, j, t} - \boldsymbol{v}_{j}^{\top} (\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t}) \right)^{2} + C$$

$$= -\frac{1}{2} \boldsymbol{v}_{j}^{\top} \left(\tau \sum_{i, t: (i, j, t) \in \Omega} (\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t}) (\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t})^{\top} \right) \boldsymbol{v}_{j}$$

$$+ \frac{1}{2} \boldsymbol{v}_{j}^{\top} \left(\tau \sum_{i, t: (i, j, t) \in \Omega} y_{i, j, t} (\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t}) \right) + C$$

$$(5.27)$$

向量 v_i 的先验分布为多元高斯分布,其概率密度函数的对数形式为

$$\ln p(\boldsymbol{v}_j \mid \boldsymbol{\mu}_v, \boldsymbol{\Lambda}_v) = -\frac{1}{2} \boldsymbol{v}_j^{\top} \boldsymbol{\Lambda}_v \boldsymbol{v}_j + \frac{1}{2} \boldsymbol{v}_j^{\top} \boldsymbol{\Lambda}_v \boldsymbol{\mu}_v + C$$
 (5.28)

将先验分布与似然函数进行相乘,由于 v_j 的后验分布是多元高斯分布,与先验分布的分布形式保持一致,因此,有

$$p(\boldsymbol{v}_{j} \mid \boldsymbol{\mathcal{Y}}, \boldsymbol{U}, \boldsymbol{X}, \tau, \boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v}) \propto \mathcal{N}(\boldsymbol{v}_{j} \mid \boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v}^{-1}) \times \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{v}_{j}, \boldsymbol{X}, \tau)$$

$$\propto \mathcal{N}(\boldsymbol{v}_{j} \mid \tilde{\boldsymbol{\mu}}_{\boldsymbol{v}_{j}}, \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{v}_{j}}^{-1})$$
(5.29)

可推导出向量 v_i 的后验分布参数分别为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{\boldsymbol{v}_{j}} = \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{v}_{j}}^{-1} \left(\tau \sum_{i,t:(i,j,t)\in\Omega} y_{i,j,t}(\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t}) + \boldsymbol{\Lambda}_{v} \boldsymbol{\mu}_{v} \right) \\
\tilde{\boldsymbol{\Lambda}}_{\boldsymbol{v}_{j}} = \tau \sum_{i,t:(i,j,t)\in\Omega} (\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t})(\boldsymbol{u}_{i} \circ \boldsymbol{x}_{t})^{\top} + \boldsymbol{\Lambda}_{v}
\end{cases}$$
(5.30)

因子矩阵 X 的后验分布

根据张量元素的高斯分布假设,即公式(5.3),可得到关于向量 x_t , $\forall t \in \{1, 2, ..., T\}$ 的似然函数为

$$\mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{x}_{t}, \tau) \propto \prod_{i, j: (i, j, t) \in \Omega} \exp\left(-\frac{1}{2}\tau(y_{i, j, t} - \hat{y}_{i, j, t})^{2}\right)$$

$$= \exp\left(-\frac{1}{2}\tau \sum_{i, j: (i, j, t) \in \Omega} \left(y_{i, j, t} - \boldsymbol{x}^{\top}(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j})\right)^{2}\right)$$
(5.31)

其中,求积符号 $\prod_{i,j:(i,j,t)\in\Omega}$ 表示在特定索引 t 下,索引集合 Ω 中任意 $i\in\{1,2,\ldots,M\}$ 与 $j\in\{1,2,\ldots,N\}$ 所对应的求积公式;求和符号 $\sum_{i,j:(i,j,t)\in\Omega}$ 表示在特定索引 t 下,索引集合 Ω 中任意 $i\in\{1,2,\ldots,M\}$ 与 $j\in\{1,2,\ldots,N\}$ 所对应的求和公式。

对该似然函数左右两边同时取对数,有

$$\ln \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{x}_{t}, \tau) = -\frac{1}{2} \tau \sum_{i,j:(i,j,t)\in\Omega} (y_{i,j,t} - \boldsymbol{x}_{t}^{\top}(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j}))^{2} + C$$

$$= -\frac{1}{2} \boldsymbol{x}_{t}^{\top} \Big(\tau \sum_{i,j:(i,j,t)\in\Omega} (\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j})(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j})^{\top} \Big) \boldsymbol{x}_{t}$$

$$+ \frac{1}{2} \boldsymbol{x}_{t}^{\top} \Big(\tau \sum_{i,j:(i,j,t)\in\Omega} y_{i,j,t}(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j}) \Big) + C$$

$$(5.32)$$

向量 x_t 的先验分布为多元高斯分布, 其概率密度函数为

$$\ln p(\boldsymbol{x}_t \mid \boldsymbol{\mu}_x, \boldsymbol{\Lambda}_x) = -\frac{1}{2} \boldsymbol{x}_t^{\top} \boldsymbol{\Lambda}_x \boldsymbol{x}_t + \frac{1}{2} \boldsymbol{x}_t^{\top} \boldsymbol{\Lambda}_x \boldsymbol{\mu}_x + C$$
 (5.33)

根据贝叶斯准则,可得

$$p(\boldsymbol{x}_{t} \mid \boldsymbol{\mathcal{Y}}, \boldsymbol{U}, \boldsymbol{V}, \tau, \boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x}) \propto \mathcal{N}(\boldsymbol{x}_{t} \mid \boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x}^{-1}) \times \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{x}_{t}, \tau)$$

$$\propto \mathcal{N}(\boldsymbol{x}_{t} \mid \tilde{\boldsymbol{\mu}}_{\boldsymbol{x}_{t}}, \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{x}_{t}}^{-1})$$
(5.34)

从而可推导出向量 x_t 的后验分布参数分别为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{\boldsymbol{x}_{t}} = \tilde{\boldsymbol{\Lambda}}_{\boldsymbol{x}_{t}}^{-1} \left(\tau \sum_{i,j:(i,j,t)\in\Omega} y_{i,j,t}(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j}) + \boldsymbol{\Lambda}_{x} \boldsymbol{\mu}_{x} \right) \\
\tilde{\boldsymbol{\Lambda}}_{\boldsymbol{x}_{t}} = \tau \sum_{i,j:(i,j,t)\in\Omega} (\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j})(\boldsymbol{u}_{i} \circ \boldsymbol{v}_{j})^{\top} + \boldsymbol{\Lambda}_{x}
\end{cases} (5.35)$$

5.3.3 超参数的后验分布

在图5.1所示的贝叶斯网络中,待估计的超参数包括 $\{(\mu_u, \Lambda_u), (\mu_v, \Lambda_v), (\mu_x, \Lambda_x)\}$,这些超参数作用于因子矩阵,可保证因子矩阵在贝叶斯后验推断过程中学到尽可能多的隐性信息,使贝叶斯高斯张量分解保持较高的灵活性。

超参数 (μ_u, Λ_u) 的后验分布

在如图5.1所示的贝叶斯网络中,贝叶斯高斯张量分解的因子矩阵 $U \in \mathbb{R}^{M \times R}$ 的所有行向量均被假设服从超参数为 (μ_u, Λ_u) 的多元高斯分布,因此,超参数 (μ_u, Λ_u) 的似然函数为

$$\mathcal{L}(\boldsymbol{U} \mid \boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u}) \propto \det(\boldsymbol{\Lambda}_{u})^{M/2} \prod_{i=1}^{M} \exp\left(-\frac{1}{2}(\boldsymbol{u}_{i} - \boldsymbol{\mu}_{u})^{\top} \boldsymbol{\Lambda}_{u}(\boldsymbol{u}_{i} - \boldsymbol{\mu}_{u})\right)$$

$$\propto \det(\boldsymbol{\Lambda}_{u})^{M/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{M} (\boldsymbol{u}_{i} - \boldsymbol{\mu}_{u})^{\top} \boldsymbol{\Lambda}_{u}(\boldsymbol{u}_{i} - \boldsymbol{\mu}_{u})\right)$$
(5.36)

在贝叶斯高斯张量分解的贝叶斯网络中,超参数 (μ_u , Λ_u) 的共轭先验为高斯分布与 Wishart 分布构成的组合分布,将两者写在一起,则先验分布的概率密度函数为

$$p(\boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u} \mid \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0}) = \mathcal{N}(\boldsymbol{\mu}_{u} \mid \boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{u})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{u} \mid \boldsymbol{W}_{0}, \nu_{0})$$

$$\propto \det(\beta_{0}\boldsymbol{\Lambda}_{u})^{1/2} \exp\left(-\frac{1}{2}\beta_{0}(\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})^{\top}\boldsymbol{\Lambda}_{u}(\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})\right)$$

$$\times \det(\boldsymbol{\Lambda}_{u})^{(\nu_{0} - R - 1)/2} \exp\left(-\frac{1}{2}\operatorname{tr}(\boldsymbol{W}_{0}^{-1}\boldsymbol{\Lambda}_{u})\right)$$
(5.37)

由此,将先验分布与似然函数进行相乘便可写出超参数 (μ_u, Λ_u) 的后验分布形式,即

$$p(\boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u} \mid \boldsymbol{U}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{u} \mid \boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{u})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{u} \mid \boldsymbol{W}_{0}, \nu_{0}) \times \mathcal{L}(\boldsymbol{U} \mid \boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{u} \mid \tilde{\boldsymbol{\mu}}_{u}^{\star}, (\tilde{\beta}_{u}^{\star}\boldsymbol{\Lambda}_{u})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{u} \mid \tilde{\boldsymbol{W}}_{u}^{\star}, \tilde{\nu}_{u}^{\star})$$

$$(5.38)$$

在这里,对超参数 (μ_u, Λ_u) 的后验分布取对数,有

$$\ln p(\boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u} \mid \boldsymbol{U}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} M \ln \det(\boldsymbol{\Lambda}_{u}) - \frac{1}{2} \sum_{i=1}^{M} (\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{u} (\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} \ln \det(\beta_{0} \boldsymbol{\Lambda}_{u}) - \frac{1}{2} \beta_{0} (\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{u} (\boldsymbol{\mu}_{u} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} (\nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{u}) - \frac{1}{2} \operatorname{tr}(\boldsymbol{W}_{0}^{-1} \boldsymbol{\Lambda}_{u}) + C$$

$$(5.39)$$

可将其改写成如下形式:

$$\ln p(\boldsymbol{\mu}_{u}, \boldsymbol{\Lambda}_{u} \mid \boldsymbol{U}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} \ln \det(\boldsymbol{\Lambda}_{u}) - \frac{1}{2} \left(\boldsymbol{\mu}_{u} - \frac{M\bar{\boldsymbol{u}} + \beta_{0}\boldsymbol{\mu}_{0}}{M + \beta_{0}} \right)^{\top} ((M + \beta_{0})\boldsymbol{\Lambda}_{u}) \left(\boldsymbol{\mu}_{u} - \frac{M\bar{\boldsymbol{u}} + \beta_{0}\boldsymbol{\mu}_{0}}{M + \beta_{0}} \right)$$

$$+ \frac{1}{2} (M + \nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{u})$$

$$- \frac{1}{2} \operatorname{tr} \left(\left(\boldsymbol{W}_{0}^{-1} + \sum_{i=1}^{M} (\boldsymbol{u}_{i} - \bar{\boldsymbol{u}})(\boldsymbol{u}_{i} - \bar{\boldsymbol{u}})^{\top} + \frac{M\beta_{0}}{M + \beta_{0}} (\bar{\boldsymbol{u}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{u}} - \boldsymbol{\mu}_{0})^{\top} \right) \boldsymbol{\Lambda}_{u} \right) + C$$

$$(5.40)$$

因此,超参数超参数 (μ_u, Λ_u) 的后验分布参数为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{u}^{\star} = (M\bar{\boldsymbol{u}} + \beta_{0}\boldsymbol{\mu}_{0})/(M + \beta_{0}) \\
\tilde{\beta}_{u}^{\star} = M + \beta_{0} \\
\tilde{\nu}_{u}^{\star} = M + \nu_{0} \\
\tilde{\boldsymbol{W}}_{u}^{\star} = (\boldsymbol{W}_{0}^{-1} + M\boldsymbol{S}_{u} + M\beta_{0}(\bar{\boldsymbol{u}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{u}} - \boldsymbol{\mu}_{0})^{\top}/(M + \beta_{0}))^{-1}
\end{cases} (5.41)$$

其中, $\bar{\boldsymbol{u}} \in \mathbb{R}^R$ 与 $\boldsymbol{S}_u \in \mathbb{R}^{R \times R}$ 分别表示因子矩阵 \boldsymbol{U} 的统计量,即

$$\bar{\boldsymbol{u}} = \frac{1}{M} \sum_{i=1}^{M} \boldsymbol{u}_{i} \qquad \boldsymbol{S}_{u} = \frac{1}{M} \sum_{i=1}^{M} (\boldsymbol{u}_{i} - \bar{\boldsymbol{u}}) (\boldsymbol{u}_{i} - \bar{\boldsymbol{u}})^{\top}$$
(5.42)

超参数 (μ_v, Λ_v) 的后验分布

与超参数 (μ_v, Λ_v) 的后验分布推导过程类似,超参数 (μ_v, Λ_v) 的后验分布形式为

$$p(\boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v} \mid \boldsymbol{V}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{v} \mid \boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{v})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{v} \mid \boldsymbol{W}_{0}, \nu_{0}) \times \mathcal{L}(\boldsymbol{U} \mid \boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{v} \mid \tilde{\boldsymbol{\mu}}_{v}^{\star}, (\tilde{\boldsymbol{\beta}}_{v}^{\star}\boldsymbol{\Lambda}_{v})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{v} \mid \tilde{\boldsymbol{W}}_{v}^{\star}, \tilde{\boldsymbol{\nu}}_{v}^{\star})$$

$$(5.43)$$

在这里,对超参数 (μ_v, Λ_v) 的后验分布取对数,有

$$\ln p(\boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v} \mid \boldsymbol{V}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} N \ln \det(\boldsymbol{\Lambda}_{v}) - \frac{1}{2} \sum_{j=1}^{N} (\boldsymbol{\mu}_{v} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{v} (\boldsymbol{\mu}_{v} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} \ln \det(\beta_{0} \boldsymbol{\Lambda}_{v}) - \frac{1}{2} \beta_{0} (\boldsymbol{\mu}_{v} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{v} (\boldsymbol{\mu}_{v} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} (\nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{v}) - \frac{1}{2} \operatorname{tr}(\boldsymbol{W}_{0}^{-1} \boldsymbol{\Lambda}_{v}) + C$$

$$(5.44)$$

可将其改写成如下形式:

$$\ln p(\boldsymbol{\mu}_{v}, \boldsymbol{\Lambda}_{v} \mid \boldsymbol{V}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} \ln \det(\boldsymbol{\Lambda}_{v}) - \frac{1}{2} \left(\boldsymbol{\mu}_{v} - \frac{N\bar{\boldsymbol{v}} + \beta_{0}\boldsymbol{\mu}_{0}}{N + \beta_{0}}\right)^{\top} \left((N + \beta_{0})\boldsymbol{\Lambda}_{v}\right) \left(\boldsymbol{\mu}_{v} - \frac{N\bar{\boldsymbol{v}} + \beta_{0}\boldsymbol{\mu}_{0}}{N + \beta_{0}}\right)$$

$$+ \frac{1}{2}(N + \nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{v})$$

$$- \frac{1}{2} \operatorname{tr} \left(\left(\boldsymbol{W}_{0}^{-1} + \sum_{j=1}^{N} (\boldsymbol{v}_{j} - \bar{\boldsymbol{v}})(\boldsymbol{v}_{j} - \bar{\boldsymbol{v}})^{\top} + \frac{N\beta_{0}}{N + \beta_{0}}(\bar{\boldsymbol{v}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{v}} - \boldsymbol{\mu}_{0})^{\top}\right) \boldsymbol{\Lambda}_{v}\right) + C$$

$$(5.45)$$

因此, 超参数超参数 (μ_v, Λ_v) 的后验分布参数为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{v}^{\star} = (N\bar{\boldsymbol{v}} + \beta_{0}\boldsymbol{\mu}_{0})/(N + \beta_{0}) \\
\tilde{\beta}_{v}^{\star} = N + \beta_{0} \\
\tilde{\nu}_{v}^{\star} = N + \nu_{0} \\
\tilde{\boldsymbol{W}}_{v}^{\star} = (\boldsymbol{W}_{0}^{-1} + N\boldsymbol{S}_{v} + N\beta_{0}(\bar{\boldsymbol{v}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{v}} - \boldsymbol{\mu}_{0})^{\top}/(N + \beta_{0}))^{-1}
\end{cases} (5.46)$$

其中, $\bar{\boldsymbol{v}} \in \mathbb{R}^R$ 与 $\boldsymbol{S}_v \in \mathbb{R}^{R \times R}$ 分别表示因子矩阵 \boldsymbol{V} 的统计量, 即

$$\bar{\boldsymbol{v}} = \frac{1}{N} \sum_{j=1}^{N} \boldsymbol{v}_{j} \qquad \boldsymbol{S}_{v} = \frac{1}{N} \sum_{j=1}^{N} (\boldsymbol{v}_{j} - \bar{\boldsymbol{v}}) (\boldsymbol{v}_{j} - \bar{\boldsymbol{v}})^{\top}$$
(5.47)

超参数 (μ_x, Λ_x) 的后验分布

与超参数 (μ_u, Λ_u) 的后验分布推导过程类似,超参数 (μ_x, Λ_x) 的后验分布形式为

$$p(\boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x} \mid \boldsymbol{X}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{x} \mid \boldsymbol{\mu}_{0}, (\beta_{0}\boldsymbol{\Lambda}_{x})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{x} \mid \boldsymbol{W}_{0}, \nu_{0}) \times \mathcal{L}(\boldsymbol{X} \mid \boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x})$$

$$\propto \mathcal{N}(\boldsymbol{\mu}_{x} \mid \tilde{\boldsymbol{\mu}}_{x}^{\star}, (\tilde{\beta}_{x}^{\star}\boldsymbol{\Lambda}_{x})^{-1}) \times \mathcal{W}(\boldsymbol{\Lambda}_{x} \mid \tilde{\boldsymbol{W}}_{x}^{\star}, \tilde{\nu}_{x}^{\star})$$

$$(5.48)$$

在这里,对超参数 (μ_x, Λ_x) 的后验分布取对数,有

$$\ln p(\boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x} \mid \boldsymbol{X}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} T \ln \det(\boldsymbol{\Lambda}_{x}) - \frac{1}{2} \sum_{t=1}^{T} (\boldsymbol{\mu}_{x} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{x} (\boldsymbol{\mu}_{x} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} \ln \det(\beta_{0} \boldsymbol{\Lambda}_{x}) - \frac{1}{2} \beta_{0} (\boldsymbol{\mu}_{x} - \boldsymbol{\mu}_{0})^{\top} \boldsymbol{\Lambda}_{x} (\boldsymbol{\mu}_{x} - \boldsymbol{\mu}_{0})$$

$$+ \frac{1}{2} (\nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{x}) - \frac{1}{2} \operatorname{tr}(\boldsymbol{W}_{0}^{-1} \boldsymbol{\Lambda}_{x}) + C$$

$$(5.49)$$

可将其改写成如下形式:

$$\ln p(\boldsymbol{\mu}_{x}, \boldsymbol{\Lambda}_{x} \mid \boldsymbol{X}, \boldsymbol{\mu}_{0}, \boldsymbol{W}_{0}, \nu_{0}, \beta_{0})$$

$$= \frac{1}{2} \ln \det(\boldsymbol{\Lambda}_{x}) - \frac{1}{2} \left(\boldsymbol{\mu}_{x} - \frac{T\bar{\boldsymbol{x}} + \beta_{0}\boldsymbol{\mu}_{0}}{T + \beta_{0}}\right)^{\top} \left((T + \beta_{0})\boldsymbol{\Lambda}_{x}\right) \left(\boldsymbol{\mu}_{x} - \frac{T\bar{\boldsymbol{x}} + \beta_{0}\boldsymbol{\mu}_{0}}{T + \beta_{0}}\right)$$

$$+ \frac{1}{2} (T + \nu_{0} - R - 1) \ln \det(\boldsymbol{\Lambda}_{x})$$

$$- \frac{1}{2} \operatorname{tr} \left(\left(\boldsymbol{W}_{0}^{-1} + \sum_{t=1}^{T} (\boldsymbol{x}_{t} - \bar{\boldsymbol{x}})(\boldsymbol{x}_{t} - \bar{\boldsymbol{x}})^{\top} + \frac{T\beta_{0}}{T + \beta_{0}} (\bar{\boldsymbol{x}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{x}} - \boldsymbol{\mu}_{0})^{\top}\right) \boldsymbol{\Lambda}_{x}\right) + C$$

$$(5.50)$$

因此, 超参数超参数 (μ_x, Λ_x) 的后验分布参数为

$$\begin{cases}
\tilde{\boldsymbol{\mu}}_{x}^{\star} = (T\bar{\boldsymbol{x}} + \beta_{0}\boldsymbol{\mu}_{0})/(T + \beta_{0}) \\
\tilde{\beta}_{x}^{\star} = T + \beta_{0} \\
\tilde{\nu}_{x}^{\star} = T + \nu_{0} \\
\tilde{\boldsymbol{W}}_{x}^{\star} = (\boldsymbol{W}_{0}^{-1} + T\boldsymbol{S}_{x} + T\beta_{0}(\bar{\boldsymbol{x}} - \boldsymbol{\mu}_{0})(\bar{\boldsymbol{x}} - \boldsymbol{\mu}_{0})^{\top}/(T + \beta_{0}))^{-1}
\end{cases} (5.51)$$

其中, $\bar{x} \in \mathbb{R}^R$ 与 $S_x \in \mathbb{R}^{R \times R}$ 分别表示因子矩阵 X 的统计量, 即

$$\bar{\boldsymbol{x}} = \frac{1}{T} \sum_{t=1}^{T} \boldsymbol{x}_{t} \qquad \boldsymbol{S}_{x} = \frac{1}{T} \sum_{t=1}^{T} (\boldsymbol{x}_{t} - \bar{\boldsymbol{x}}) (\boldsymbol{x}_{t} - \bar{\boldsymbol{x}})^{\top}$$
(5.52)

5.3.4 精度参数的后验分布

根据张量元素的高斯分布假设, τ 是作为高斯分布的精度参数,可用于刻画真实数据所带有的随机性与噪声。就精度参数 τ 而言,其似然函数为

$$\mathcal{L}(\mathbf{\mathcal{Y}} \mid \mathbf{U}, \mathbf{V}, \mathbf{X}, \tau) \propto \prod_{(i,j,t) \in \Omega} \tau^{1/2} \exp\left(-\frac{1}{2}\tau (y_{i,j,t} - \hat{y}_{i,j,t})^2\right)$$
(5.53)

根据共轭先验设置准则,由于精度参数 τ 的先验分布为伽马分布,因此,后验分布也为伽马分布,即

$$p(\tau \mid \boldsymbol{\mathcal{Y}}, \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{X}, a_0, b_0) \propto \operatorname{Gamma}(\tau \mid a_0, b_0) \times \mathcal{L}(\boldsymbol{\mathcal{Y}} \mid \boldsymbol{U}, \boldsymbol{V}, \boldsymbol{X}, \tau)$$

$$\propto \operatorname{Gamma}(\tau \mid \tilde{a}_{\tau}, \tilde{b}_{\tau})$$
(5.54)

对该后验分布左右两边同时取对数,有

$$\ln p(\tau \mid \mathbf{\mathcal{Y}}, \mathbf{U}, \mathbf{V}, \mathbf{X}, a_0, b_0)$$

$$= \frac{1}{2} |\Omega| \ln \tau - \frac{1}{2} \tau \sum_{(i,j,t) \in \Omega} (y_{i,j,t} - \hat{y}_{i,j,t})^2 - b_0 \tau + (a_0 - 1) \ln \tau + \text{const}$$

$$= \left(a_0 + \frac{1}{2} |\Omega| - 1\right) \ln \tau - \left(b_0 + \frac{1}{2} \sum_{(i,j,t) \in \Omega} (y_{i,j,t} - \hat{y}_{i,j,t})^2\right) \tau + \text{const}$$
(5.55)

因此, 精度参数 τ 的后验分布参数分别为

$$\begin{cases} \tilde{a}_{\tau} = \frac{1}{2} |\Omega| + a_0 \\ \tilde{b}_{\tau} = \frac{1}{2} \sum_{(i,j,t) \in \Omega} (y_{i,j,t} - \hat{y}_{i,j,t})^2 + b_0 \end{cases}$$
 (5.56)

5.4 算法实现

根据上述推导出的参数与超参数的后验分布,可采用 Gibbs 采样方法对贝叶斯高斯张量分解进行参数估计,具体实现流程如算法??所示。

5.5 Python 实现代码

第六章 低秩张量填充

低秩张量填充 (low-rank tensor completion) 是一种经典的张量模型。

- 6.1 基于多重核范数的张量填充
- 6.2 基于多重截断核范数的张量填充
 - 6.3 基于张量核范数的张量填充

引入多维傅立叶变换

第七章 低秩拉普拉斯卷积模型

7.1 离散傅立叶变换与循环卷积

离散傅立叶变换 (discrete Fourier transform) 是数学中非常重要的一个概念,被应用于众多领域,如信号处理与图像处理。由于离散傅立叶变换通常采用快速傅立叶变换 (fast Fourier transform) 进行高效求解,所以两者经常出现在一起。

7.1.1 一维卷积定理

实际上,循环卷积与离散傅立叶变换联系紧密。卷积定理 (convolution theorem) 可用于描述两者之间的这种关系,给定任意向量 $x,y\in\mathbb{R}^T$,有

$$\boldsymbol{x} \star \boldsymbol{y} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{x}) \circ \mathcal{F}(\boldsymbol{y})) \tag{7.1}$$

恒成立。在这里, $\mathcal{F}(\cdot)$ 表示离散傅立叶变换; $\mathcal{F}^{-1}(\cdot)$ 表示离散傅立叶逆变换;符号。表示元素间的点乘 (Hadamard product)。将向量做离散傅立叶变换的意义在于利用快速傅立叶变换进行高效计算。

假设向量 $\boldsymbol{x} \in \mathbb{R}^T$,给定向量 $\boldsymbol{y} \in \mathbb{R}^\tau, \tau < T$,使用离散傅立叶变换计算循环卷积时需首先令

$$\boldsymbol{y} = (y_1, y_2, \cdots, y_{\tau}, \underbrace{0, \cdots, 0}_{T-\tau})^{\top} \in \mathbb{R}^T$$
(7.2)

然后分别对向量 x 与 y 进行离散傅立叶变换。

例 32. 给定向量 $\boldsymbol{x}=(0,1,2,3,4)^{\top}$ 与 $\boldsymbol{y}=(2,-1,3)^{\top}$,试根据卷积定理计算循环卷积 $\boldsymbol{z}=\boldsymbol{x}\star\boldsymbol{y}$ 。

 \mathbf{W} . 分别对向量 \mathbf{x} 与 \mathbf{y} 进行离散傅立叶变换,有

$$\begin{cases}
\mathcal{F}(\boldsymbol{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top} \\
\mathcal{F}(\boldsymbol{y}) = (4, -0.74 - 0.81i, 3.74 + 3.44i, 3.74 - 3.44i, -0.74 + 0.81i)^{\top}
\end{cases} (7.3)$$

其中, $i = \sqrt{-1}$ 表示复数的虚部。

根据卷积定理, 有

$$z = \mathcal{F}^{-1}(\mathcal{F}(x) \circ \mathcal{F}(y)) = (5, 14, 3, 7, 11)^{\top}$$
 (7.4)

根据卷积定理, 若 z = x * y, 则

$$x = \mathcal{F}^{-1}(\mathcal{F}(z) \oslash \mathcal{F}(y))$$
 $y = \mathcal{F}^{-1}(\mathcal{F}(z) \oslash \mathcal{F}(x))$ (7.5)

其中,符号 ⊘表示元素间的点除 (Hadamard division)。

例 33. 给定向量 $\boldsymbol{x} = (0,1,2,3,4)^{\top}$ 与 $\boldsymbol{z} = (5,14,3,7,11)^{\top}$,若 $\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y}$,试根据卷积定理 计算 \boldsymbol{y} 。

解. 根据卷积定理, 有

$$\boldsymbol{y} = \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{z}) \oslash \mathcal{F}(\boldsymbol{x})) = (2, -1, 3, 0, 0)^{\top}$$
(7.6)

7.1.2 二维卷积定理

对于任意矩阵 $X \in \mathbb{R}^{M \times N}$ 与 $K \in \mathbb{R}^{\nu_1 \times \nu_2}$,其中, $\nu_1 \leq M, \nu_2 \leq N$,若两者之间的循环 卷积为 $Y = K \star X \in \mathbb{R}^{M \times N}$,则矩阵 Y 的任意元素为

$$y_{m,n} = \sum_{i=1}^{\nu_1} \sum_{j=1}^{\nu_2} \kappa_{i,j} x_{m-i+1,n-j+1}, \, \forall (m,n)$$
 (7.7)

其中, $\kappa_{i,j}$ 为矩阵 K 的第 (i,j) 个元素。

根据循环卷积定义, 矩阵 Y 的第 m 行为

$$\mathbf{y}_{m,:} = \sum_{i=1}^{\nu_1} \boldsymbol{\kappa}_{i,:} \star \mathbf{x}_{m-i+1,:}$$

$$= \sum_{i=1}^{\nu_1} \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{\kappa}_{i,:}) \circ \mathcal{F}(\mathbf{x}_{m-i+1,:}))$$
(7.8)

其中, $\kappa_{i,:}$ 为矩阵 K 的第 i 行。

矩阵 Y 的第 n 列为

$$\mathbf{y}_{:,n} = \sum_{j=1}^{\nu_2} \boldsymbol{\kappa}_{:,j} \star \mathbf{x}_{:,n-j+1}$$

$$= \sum_{j=1}^{\nu_2} \mathcal{F}^{-1}(\mathcal{F}(\boldsymbol{\kappa}_{:,j}) \circ \mathcal{F}(\mathbf{x}_{:,n-j+1}))$$
(7.9)

其中, $\kappa_{:,j}$ 为矩阵 K 的第 j 列。

在这里,二维循环卷积与离散傅立叶变换之间的卷积定理也可写作如下形式:

$$Y = K \star X = \mathcal{F}^{-1}(\mathcal{F}(K) \circ \mathcal{F}(X)) \tag{7.10}$$

其中, $\mathcal{F}(\cdot)$ 表示二维离散傅立叶变换; $\mathcal{F}^{-1}(\cdot)$ 表示二维离散傅立叶逆变换。

例 34. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 7 \\ 7 & 8 & 9 & 10 \\ 10 & 11 & 12 & 13 \end{bmatrix}$$
 与 $K = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, 试根据卷积定理计算二维循

环卷积 Y = K * X。

解. 根据卷积定理, 二维循环卷积为

$$\mathbf{Y} = \mathcal{F}^{-1}(\mathcal{F}(\mathbf{K}) \circ \mathcal{F}(\mathbf{X})) = \begin{bmatrix} 405 & 390 & 363 & 408 \\ 360 & 345 & 318 & 363 \\ 207 & 192 & 165 & 210 \\ 342 & 327 & 300 & 345 \end{bmatrix}$$
(7.11)

7.1.3 Parseval 定理

Parseval 定理 (Parseval's thorem) 表明信号的能量在时域与频域相等。在离散傅立叶变换中,对于任意向量 $\boldsymbol{x}=(x_1,x_2,\cdots,x_T)\in\mathbb{R}^T$,离散形式的 Parseval 定理为

$$\|\boldsymbol{x}\|_{2}^{2} = \frac{1}{T} \|\mathcal{F}(\boldsymbol{x})\|_{2}^{2}$$
 (7.12)

例 35. 给定向量 $\mathbf{x} = (0,1,2,3,4)^{\mathsf{T}}$,试写出 $\|\mathbf{x}\|_2^2$ 与 $\|\mathcal{F}(\mathbf{x})\|_2^2$ 。

解. 根据 ℓ_2 范数定义,有

$$\|\boldsymbol{x}\|_{2}^{2} = 0^{2} + 1^{2} + 2^{2} + 3^{2} + 4^{2} = 30 \tag{7.13}$$

由于

$$\mathcal{F}(\mathbf{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.14)

其中, $i = \sqrt{-1}$ 表示复数的虚部。故 $||\mathcal{F}(x)||_2^2 = 150$ 。

针对二维离散傅立叶变量,给定任意矩阵 $X \in \mathbb{R}^{M \times N}$, Parseval 定理为

$$\|\mathbf{X}\|_F^2 = \frac{1}{MN} \|\mathcal{F}(\mathbf{X})\|_F^2$$
 (7.15)

例 36. 给定矩阵 $\boldsymbol{X} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出 $\|\boldsymbol{X}\|_F^2$ 与 $\|\mathcal{F}(\boldsymbol{X})\|_F^2$ 。

解. 根据 F 范数定义, 有

$$\|X\|_F^2 = 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 = 355$$
 (7.16)

由于

$$\mathcal{F}(\mathbf{X}) = \begin{bmatrix} 45 & -3 + 1.73i & -3 - 1.73i \\ -9 & 0 & 0 \end{bmatrix}$$
(7.17)

其中, $i = \sqrt{-1}$ 表示复数的虚部。故 $||\mathcal{F}(X)||_F^2 = 2130$ 。

7.2 离散傅立叶变换与循环矩阵核范数

7.2.1 循环矩阵定义

循环矩阵 (circulant matrix) 是一种特殊的代数结构,广泛应用于信号处理等。从定义出发,给定任意向量 $\boldsymbol{x}=(x_1,x_2,\cdots,x_T)^{\top}\in\mathbb{R}^T$,其对应的循环矩阵可写作如下形式:

$$C(x) = \begin{bmatrix} x_1 & x_T & x_{T-1} & \cdots & x_2 \\ x_2 & x_1 & x_T & \cdots & x_3 \\ x_3 & x_2 & x_1 & \cdots & x_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & x_{T-2} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$
(7.18)

其中, $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$ 表示循环算子 (circulant operator)。该循环矩阵的第一列为向量 x 本身,对角线元素均为 x_1 。

例 37. 给定任意向量 $x = (x_1, x_2, x_3, x_4, x_5)^{\mathsf{T}} \in \mathbb{R}^5$,试写出其对应的循环矩阵。

图 7.1: 循环矩阵示意图

 \mathbf{m} . 向量 \mathbf{x} 对应的循环矩阵为

$$C(\boldsymbol{x}) = \begin{bmatrix} x_1 & x_5 & x_4 & x_3 & x_2 \\ x_2 & x_1 & x_5 & x_4 & x_3 \\ x_3 & x_2 & x_1 & x_5 & x_4 \\ x_4 & x_3 & x_2 & x_1 & x_5 \\ x_5 & x_4 & x_3 & x_2 & x_1 \end{bmatrix} \in \mathbb{R}^{5 \times 5}$$

$$(7.19)$$

图7.1直观描述了循环矩阵的构造规则。

例 38. 给定任意向量 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$ 与 $\mathbf{y} = (y_1, y_2, \cdots, y_T)^{\top} \in \mathbb{R}^T$,若两者之间的循环卷积 (circular convolution) 为 $\mathbf{z} = \mathbf{x} \star \mathbf{y} \in \mathbb{R}^T$,其中,符号 \star 表示卷积运算,则向量 \mathbf{z} 的任意元素为

$$z_{t} = \sum_{k=1}^{T} x_{t-k+1} y_{k}, \, \forall t \in \{1, 2, \dots, T\}$$
(7.20)

其中, 当 $t+1 \le k$ 时,则令 $x_{t-k+1} = x_{t-k+1+T}$ 。试根据循环矩阵的定义写出循环卷积。

解. 在这里, 循环卷积可写作如下形式:

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_{1}y_{1} + x_{T}y_{2} + \dots + x_{2}y_{T} \\ x_{2}y_{1} + x_{1}y_{2} + \dots + x_{3}y_{T} \\ \vdots \\ x_{T}y_{1} + x_{T-1}y_{2} + \dots + x_{1}y_{T} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{T} & \cdots & x_{2} \\ x_{2} & x_{1} & \cdots & x_{3} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T} & x_{T-1} & \cdots & x_{1} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{T} \end{bmatrix} = \mathcal{C}(\boldsymbol{x})\boldsymbol{y} \quad (7.21)$$

7.2.2 循环矩阵核范数

在线性代数中,矩阵的核范数为奇异值之和。对于任意矩阵 $\pmb{X} \in \mathbb{R}^{M \times N}$,其奇异值分解为

$$\boldsymbol{X} = \sum_{r=1}^{\min\{M,N\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$$
 (7.22)

其中, 奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{M,N\}}$; 矩阵的核范数为

$$\|\boldsymbol{X}\|_{*} = \sum_{r=1}^{\min\{M,N\}} \sigma_{r} \tag{7.23}$$

给定向量 $x \in \mathbb{R}^T$, 其循环矩阵为

$$C(\mathbf{x}) = \begin{bmatrix} x_1 & x_T & x_{T-1} & \cdots & x_2 \\ x_2 & x_1 & x_T & \cdots & x_3 \\ x_3 & x_2 & x_1 & \cdots & x_4 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & x_{T-2} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$
(7.24)

对该循环矩阵进行特征值分解,有

$$C(x) = U \operatorname{diag}(\mathcal{F}(x))U^{H}$$
(7.25)

其中, $U \in \mathbb{C}^{T \times T}$ 为酉矩阵 (unitary matrix); · * 表示共轭转置 (conjugate transpose)。 因此,循环矩阵的核范数可写作如下形式:

$$\|\mathcal{C}(\boldsymbol{x})\|_{*} = \|\boldsymbol{U}\operatorname{diag}(\mathcal{F}(\boldsymbol{x}))\boldsymbol{U}^{H}\|_{*}$$

$$= \|\operatorname{diag}(\mathcal{F}(\boldsymbol{x}))\|_{*}$$

$$= \|\mathcal{F}(\boldsymbol{x})\|_{1}$$
(7.26)

由此可见,循环矩阵的核范数可转化为离散傅立叶变换的 ℓ_1 范数。在这里,快速傅立叶变换的计算复杂度为 $\mathcal{O}(T\log T)$,可大大提高求解循环矩阵的核范数最小化问题的计算效率。

例 39. 给定向量 $\mathbf{x} = (0,1,2,3,4)^{\mathsf{T}}$, 试写出循环矩阵 $\mathcal{C}(\mathbf{x})$ 的奇异值与 $\|\mathcal{F}(\mathbf{x})\|_{1}$ 。

解. 根据循环矩阵定义, 有

$$C(\mathbf{x}) = \begin{bmatrix} 0 & 4 & 3 & 2 & 1 \\ 1 & 0 & 4 & 3 & 2 \\ 2 & 1 & 0 & 4 & 3 \\ 3 & 2 & 1 & 0 & 4 \\ 4 & 3 & 2 & 1 & 0 \end{bmatrix}$$
(7.27)

对其进行奇异值分解, 奇异值构成的向量为

$$\boldsymbol{\sigma} = (10, 4.25, 4.25, 2.63, 2.63)^{\top} \tag{7.28}$$

另外, 直接对向量 x 作离散傅立叶变换, 有

$$\mathcal{F}(\mathbf{x}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.29)

其中, $i = \sqrt{-1}$ 表示复数的虚部。

由此,可得到

$$\|\mathcal{F}(x)\|_1 = 10 + 2\sqrt{2.5^2 + 3.44^2} + 2\sqrt{2.5^2 + 0.81^2} = 10 + 8.50 + 5.26 = 23.76$$
 (7.30)

7.2.3 ℓ_1 范数最小化问题

一般而言,假设图优化问题的目标函数为 f(x) = g(x) + h(x) 是由 g(x) 与 h(x) 叠加而成的,其中,限定 g(x) 是不可微的凸函数、h(x) 是可微的凸函数,则这类优化问题可通过近端梯度下降法 (proximal gradient descent) 进行求解。

对于向量 x, 令 $g(x) = ||x||_1$ 表示不可微函数 1 、 $h(x) = \frac{\lambda}{2} ||x - w||_2^2$ (w 已知)表示可微函数,则 ℓ_1 范数最小化问题可归纳为

$$\min_{x} \|x\|_{1} + \frac{\lambda}{2} \|x - w\|_{2}^{2}$$
 (7.31)

在 ℓ_1 范数最小化问题中, 若 $\boldsymbol{w} \in \mathbb{R}^T$ 已知、 $\boldsymbol{x} \in \mathbb{R}^T$ 未知, 则近端算子 (proximal operator) 可写作如下的软阈值函数 (soft thresholding):

$$S_{1/\lambda}(\boldsymbol{w}) = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\boldsymbol{x}\|_1 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{w}\|_2^2$$
 (7.32)

 $^{^1}$ 对于任意向量 $oldsymbol{x} \in \mathbb{R}^T$,其 ℓ_1 范数为 $\|oldsymbol{x}\|_1 = \sum_{t=1}^T |x_t|$,即元素绝对值之和。

对于向量 x 中的任意元素 x_t , 有

$$x_t := \mathcal{S}_{1/\lambda}(w_i) = \begin{cases} w_i - 1/\lambda & \text{if } w_i > 1/\lambda \\ w_i + 1/\lambda & \text{if } w_i \le -1/\lambda \\ 0 & \text{otherwise} \end{cases}$$
 (7.33)

在写法上, 软阈值函数可进一步写作如下形式2:

$$x_t := \frac{w_t}{|w_t|} \cdot \max\{0, |w_t| - 1/\lambda\}, \ t = 1, 2, \dots, T$$
 (7.34)

故向量 x 的解析解为

$$\boldsymbol{x} := \mathcal{S}_{1/\lambda}(\boldsymbol{w}) \tag{7.35}$$

其中, $S_{1/\lambda}(\cdot)$ 表示超参数为 λ 得软阈值函数; $\max\{x,y\}$ 表示取 x 与 y 之间较大的数值。

7.2.4 循环矩阵核范数最小化问题

对于任意观测向量 $\mathbf{y} \in \mathbb{R}^T$,若被观测元素的索引集合为 Ω ,则循环矩阵核范数最小化问题 [Liu and Zhang, 2022] 可描述为

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_{*}$$
s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_{2} \le \epsilon$ (7.36)

其中,约束条件中的 ϵ 表示容许误差。为便于求解,可将上述核范数最小化问题中的约束条件进行改写,令约束条件作为目标函数的正则项,则构造出来的优化问题为

$$\min_{\boldsymbol{x}, \boldsymbol{z}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$
s.t. $\boldsymbol{x} = \boldsymbol{z}$ (7.37)

其中, η 为正则项的权重系数。由于观测向量存在缺失值,为便于求解优化问题,可令中间变量的等价关系作为约束条件。

通常来说,求解上述优化问题可采用 ADMM 算法。使用 ADMM 求解过程中,需首先构造增广拉格朗日函数,即

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$
(7.38)

其中, $\boldsymbol{w} \in \mathbb{R}^T$ 为拉格朗日乘子; λ 为权重系数。符号 $\langle :, : \rangle$ 表示内积 (inner product),满足如下关系:

$$\langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle = \boldsymbol{w}^{\top} (\boldsymbol{x} - \boldsymbol{z}) \in \mathbb{R}$$
 (7.39)

然后,可采用如下 ADMM 算法:

$$\begin{cases} \boldsymbol{x} := \underset{\boldsymbol{x}}{\operatorname{arg min}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ \boldsymbol{z} := \underset{\boldsymbol{z}}{\operatorname{arg min}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) \\ \boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} - \boldsymbol{z}) \end{cases}$$
(7.40)

 $^{^{2}}$ 这种写法可确保当 $\boldsymbol{w}, \boldsymbol{x} \in \mathbb{C}^{T}$ 时,软阈值函数依然适用。

对于变量 x,有

$$\mathbf{x} := \underset{\mathbf{x}}{\operatorname{arg \, min}} \| \mathcal{C}(\mathbf{x}) \|_{*} + \frac{\lambda}{2} \| \mathbf{x} - \mathbf{z} \|_{2}^{2} + \langle \mathbf{w}, \mathbf{x} - \mathbf{z} \rangle$$

$$= \underset{\mathbf{x}}{\operatorname{arg \, min}} \| \mathcal{C}(\mathbf{x}) \|_{*} + \frac{\lambda}{2} \mathbf{x}^{\top} \mathbf{x} - \lambda \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{w}, \mathbf{x} \rangle$$

$$= \underset{\mathbf{x}}{\operatorname{arg \, min}} \| \mathcal{C}(\mathbf{x}) \|_{*} + \frac{\lambda}{2} \mathbf{x}^{\top} \mathbf{x} - \lambda \langle \mathbf{z} - \mathbf{w} / \lambda, \mathbf{x} \rangle$$

$$= \underset{\mathbf{x}}{\operatorname{arg \, min}} \| \mathcal{C}(\mathbf{x}) \|_{*} + \frac{\lambda}{2} \| \mathbf{x} - \mathbf{z} + \mathbf{w} / \lambda \|_{2}^{2}$$

$$= \underset{\mathbf{x}}{\operatorname{arg \, min}} \| \mathcal{F}(\mathbf{x}) \|_{1} + \frac{\lambda}{2T} \| \mathcal{F}(\mathbf{x} - \mathbf{z} + \mathbf{w} / \lambda) \|_{2}^{2}$$

$$(7.41)$$

令

$$h = z - w/\lambda \tag{7.42}$$

若 $\{\hat{x}, \hat{h}\} = \{\mathcal{F}(x), \mathcal{F}(h)\}$ 记作离散傅立叶变换之后的变量,根据公式(7.32)中给出的软阈值过程,则变量 \hat{x} 的解析解为

$$\hat{x}_t = \frac{\hat{h}_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - T/\lambda\}, \ t = 1, 2, \dots, T$$
(7.43)

因此,通过离散傅立叶逆变换,则变量x的更新公式为

$$\boldsymbol{x} := \mathcal{F}^{-1}(\hat{\boldsymbol{x}}) \tag{7.44}$$

例 40. 现有循环矩阵核范数最小化问题为

$$\min_{x} \|\mathcal{C}(x)\|_{*} + \frac{\lambda}{2} \|x - z\|_{2}^{2}$$
 (7.45)

其中, $z \in \mathbb{R}^T$ 为已知变量; $x \in \mathbb{R}^T$ 为待优化变量。

通常来说,可将公式(7.45)中的优化问题写作如下形式:

$$\min_{x} \|\mathcal{F}(x)\|_{1} + \frac{\lambda}{2T} \|\mathcal{F}(x-z)\|_{2}^{2}$$
 (7.46)

其中, F(·) 表示离散傅立叶变换。令

$$\hat{\boldsymbol{h}} = \mathcal{F}(\boldsymbol{z}) \tag{7.47}$$

则该 ℓ_1 范数最小化问题的解析解为

$$\mathbf{x} := \mathcal{F}^{-1}(\hat{\mathbf{x}}) \qquad \hat{x}_t = \frac{\hat{h}_t}{|\hat{h}_t|} \cdot \max\{0, |\hat{h}_t| - T/\lambda\}, \ t = 1, 2, \dots, T$$
 (7.48)

其中, $F^{-1}(\cdot)$ 表示离散傅立叶逆变换。

不妨令 $z = (0, 1, 2, 3, 4)^{\mathsf{T}}$ 与 $\lambda = 2$, 试写出公式(7.45)的最优解。

解. 对已知变量 2 进行离散傅立叶变换, 有

$$\hat{\mathbf{h}} = \mathcal{F}(\mathbf{z}) = (10, -2.5 + 3.44i, -2.5 + 0.81i, -2.5 - 0.81i, -2.5 - 3.44i)^{\top}$$
(7.49)

其中, $i = \sqrt{-1}$ 表示复数的虚部。向量 \hat{h} 的绝对值为

$$|\hat{\boldsymbol{h}}| = (10, 4.25, 2.63, 2.63, 4.25)^{\top}$$
 (7.50)

根据公式(7.48), 可得到

$$\boldsymbol{x} = (1.04, 0.86, 1.5, 2.14, 1.96)^{\top} \tag{7.51}$$

在这里,公式(7.45)中的优化问题目标函数为

$$\|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 = 17.51$$
 (7.52)

对于变量 z, 可分别对 $\mathcal{P}_{\Omega}(z)$ 与 $\mathcal{P}_{\Omega}^{\perp}(z)$ 求偏导数:

$$\begin{cases}
\frac{\partial \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w})}{\partial \mathcal{P}_{\Omega}(\boldsymbol{z})} = \lambda \mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{x} - \boldsymbol{w}/\lambda) + \eta \mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y}) \\
\frac{\partial \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w})}{\partial \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{z})} = \lambda \mathcal{P}_{\Omega}^{\perp}(\boldsymbol{z} - \boldsymbol{x} - \boldsymbol{w}/\lambda)
\end{cases} (7.53)$$

令偏导数为 0,则变量 z的解析解为

$$z := \frac{1}{\lambda + \eta} \mathcal{P}_{\Omega}(\lambda x + w + \eta y) + \mathcal{P}_{\Omega}^{\perp}(x + w/\lambda)$$
 (7.54)

算法4给出了循环矩阵核范数最小化算法的具体实现过程。

Algorithm 4 循环矩阵核范数最小化算法

Input: 观测向量 $y \in \mathbb{R}^T$,被观测元素的索引集合 Ω ,超参数 $\{\lambda, \eta\}$ 。

Output: 重构出来的向量 $x \in \mathbb{R}^T$ 。

- 1: 对变量 $\{x, z, w\}$ 进行初始化;
- 2: for i = 0 to 最大迭代次数 do
- 3: 对变量 $\{z, w\}$ 进行快速傅立叶变换;
- 4: 根据公式(7.42)计算 h;
- 5: 根据公式(7.43)计算 \hat{x} ;
- 6: $\diamondsuit x := \mathcal{F}^{-1}(\hat{x});$
- 7: 根据公式(7.54)计算 z;
- 8: 计算 $\boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} \boldsymbol{z});$
- 9: end for

7.3 低秩拉普拉斯卷积模型

7.3.1 拉普拉斯卷积核

一般而言,对关系型数据进行建模时,可对数据之间的关联构造拉普拉斯矩阵。若 $D \in \mathbb{R}^{T \times T}$ 表示度矩阵 (degree matrix)、 $A \in \mathbb{R}^{T \times T}$ 表示邻接矩阵 (adjacency matrix),则对应的拉普拉斯矩阵为

$$L = D - A \tag{7.55}$$

举例来说,图7.2(a)中的图模型为两两相结、首尾相连的循环图,对应的图拉普拉斯矩阵为

$$\mathbf{L} = \begin{vmatrix} 2 & -1 & 0 & 0 & -1 \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 \\ -1 & 0 & 0 & -1 & 2 \end{vmatrix}$$
 (7.56)

图7.2(b)对应的图拉普拉斯矩阵为

$$\boldsymbol{L} = \begin{bmatrix} 4 & -1 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ -1 & -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & -1 & 4 \end{bmatrix}$$
(7.57)

(a) 度为 2 的循环图

(b) 度为 4 的循环图

图 7.2: 基于关系型数据 $\{x_1, x_2, ..., x_5\}$ 的无向循环图

由于这两个拉普拉斯矩阵均为循环矩阵,不妨令其第一列为拉普拉斯核 (Laplacian kernel),则两者的拉普拉斯核分别为

$$\ell = (2, -1, 0, 0, -1)^{\mathsf{T}} \qquad \ell = (4, -1, -1, -1, -1)^{\mathsf{T}}$$
 (7.58)

由此,对于任意向量 $\boldsymbol{x} = (x_1, x_2, \cdots, x_T)^{\top} \in \mathbb{R}^T$,令 $\tau \in \mathbb{N}^+$ 为拉普拉斯核的超参数,其中, $\tau \leq \frac{1}{2}(T-1)$,则拉普拉斯核可被定义 [Chen et al., 2022b] 为

$$\boldsymbol{\ell} = (2\tau, \underbrace{-1, \cdots, -1}_{\tau}, 0, \cdots, 0, \underbrace{-1, \cdots, -1}_{\tau})^{\top} \in \mathbb{R}^{T}$$
(7.59)

该拉普拉斯核同时也是拉普拉斯矩阵的第一列。拉普拉斯核的第一个元素为 2τ ,表示拉普拉斯矩阵的度。

7.3.2 拉普拉斯时序正则

在时间序列中,若数据向量为 $\boldsymbol{x}=(x_1,x_2,\cdots,x_T)^{\top}\in\mathbb{R}^T$,则基于拉普拉斯矩阵的时序正则项为

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2} \|\boldsymbol{L}\boldsymbol{x}\|_{2}^{2} \tag{7.60}$$

根据 Parseval 定理,可得到基于拉普拉斯核的时序正则项为

$$\mathcal{R}_{\tau}(x) = \frac{1}{2} \|\ell \star x\|_{2}^{2} = \frac{1}{2T} \|\mathcal{F}(\ell) \circ \mathcal{F}(x)\|_{2}^{2}$$
 (7.61)

例 41. 试根据 Parseval 定理证明公式(7.61)。

解. 在公式(7.61)中, 不妨令

$$\begin{cases} \alpha = \ell \star x \\ \beta = \mathcal{F}(\ell) \circ \mathcal{F}(x) \end{cases}$$
 (7.62)

根据卷积定理,有

$$\mathcal{F}(\alpha) = \beta \tag{7.63}$$

再根据 Parseval 定理,则

$$\|\boldsymbol{\alpha}\|_{2}^{2} = \frac{1}{T} \|\mathcal{F}(\boldsymbol{\alpha})\|_{2}^{2} = \frac{1}{T} \|\boldsymbol{\beta}\|_{2}^{2}$$
 (7.64)

由此,公式(7.61)得证。

例 42. 对于时间序列 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$ 而言,基于拉普拉斯核的时序正则项可对时间序列的局部趋势 (local trend) 进行建模,以拉普拉斯核 $\ell = (2, -1, 0, \cdots, 0 - 1)^{\mathsf{T}} \in \mathbb{R}^T$ 为例,试解释基于拉普拉斯核的时序正则项在局部趋势建模中所起的作用。

解. 根据定义,时序正则项 $\mathcal{R}_{\tau}(x)$ 可写作如下形式:

$$\mathcal{R}_{\tau}(\boldsymbol{x}) = \frac{1}{2}(2x_1 - (x_2 + x_T))^2 + \frac{1}{2}(2x_2 - (x_3 + x_1))^2 + \dots + \frac{1}{2}(2x_T - (x_1 + x_{T-1}))^2 \quad (7.65)$$

由此可见,该正则项实际上对时间序列进行了平滑处理。

上述定义的拉普拉斯卷积核对于有向图依然适用,若令拉普拉斯卷积核为 $\ell=(1,-1,0,\cdots,0)^{\top}$,则相应的拉普拉斯矩阵 [Takayama and Yokota, 2022] 为

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & -1 \\ -1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & -1 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & 0 & \cdots & -1 & 1 \end{bmatrix}$$
 (7.66)

除去拉普拉斯矩阵的第一行, 可构造如下矩阵:

$$\boldsymbol{\Psi} = \begin{bmatrix} \mathbf{0}_{(T-1)\times 1} & \boldsymbol{I}_{T-1} \end{bmatrix} - \begin{bmatrix} \boldsymbol{I}_{T-1} & \mathbf{0}_{(T-1)\times 1} \end{bmatrix}$$
 (7.67)

由此,相应的时序正则项为 $\frac{1}{2} \| \Psi x \|_2^2$,该正则项对时间序列建模时可起到平滑的作用。

7.3.3 一维低秩拉普拉斯卷积模型

在时间序列缺失值重构任务中,对全局趋势 (global trend) 与局部趋势建模往往缺一不可。对于任意时间序列 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$ 而言,可采用循环矩阵核范数捕捉低秩信息、借助拉普拉斯时序正则项刻画局部趋势(如图7.3所示),由此,得到的低秩拉普拉斯卷积模型的目标函数兼具循环矩阵核范数与循环卷积 [Chen et al., 2022b],即

$$\min_{\boldsymbol{x}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2$$
s.t. $\|\mathcal{P}_{\Omega}(\boldsymbol{x} - \boldsymbol{y})\|_2 \le \epsilon$ (7.68)

其中, $\ell \in \mathbb{R}^T$ 为表征时序关联的拉普拉斯卷积核; γ 为拉普拉斯时序正则项的权重系数;约束条件中的 ϵ 表示容许误差。

图 7.3: 低秩拉普拉斯卷积模型的示意图

为便于求解,可将上述优化问题中的约束条件进行改写,令约束条件作为目标函数的正则项,则构造出来的优化问题为

$$\min_{\boldsymbol{x},\boldsymbol{z}} \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2 + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$
s.t. $\boldsymbol{x} = \boldsymbol{z}$ (7.69)

其中, η 为正则项的权重系数。由于观测向量存在缺失值,为便于求解优化问题,可令中间变量的等价关系作为约束条件。

使用 ADMM 算法求解时,需首先构造增广拉格朗日函数,即

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{w}) = \|\mathcal{C}(\boldsymbol{x})\|_* + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_2^2 + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z}\|_2^2 + \langle \boldsymbol{w}, \boldsymbol{x} - \boldsymbol{z} \rangle + \frac{\eta}{2} \|\mathcal{P}_{\Omega}(\boldsymbol{z} - \boldsymbol{y})\|_2^2$$
 (7.70)

对于变量 x, 子问题为

$$\boldsymbol{x} := \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{C}(\boldsymbol{x})\|_{*} + \frac{\gamma}{2} \|\boldsymbol{\ell} \star \boldsymbol{x}\|_{2}^{2} + \frac{\lambda}{2} \|\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda\|_{2}^{2}$$

$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\mathcal{F}(\boldsymbol{x})\|_{1} + \frac{\gamma}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_{2}^{2} + \frac{\lambda}{2T} \|\mathcal{F}(\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda)\|_{2}^{2}$$

$$(7.71)$$

若 $\{\hat{\boldsymbol{\ell}}, \hat{\boldsymbol{x}}, \hat{\boldsymbol{z}}, \hat{\boldsymbol{w}}\} = \{\mathcal{F}(\boldsymbol{\ell}), \mathcal{F}(\boldsymbol{x}), \mathcal{F}(\boldsymbol{z}), \mathcal{F}(\boldsymbol{w})\}$, 令子问题的正则项为

$$f = \frac{\gamma}{2T} \|\mathcal{F}(\boldsymbol{\ell}) \circ \mathcal{F}(\boldsymbol{x})\|_{2}^{2} + \frac{\lambda}{2T} \|\mathcal{F}(\boldsymbol{x} - \boldsymbol{z} + \boldsymbol{w}/\lambda)\|_{2}^{2}$$

$$(7.72)$$

相应地,对于变量 \hat{x} ,函数 f 的偏导数为

$$\frac{\partial f}{\partial \hat{x}} = \frac{\gamma}{T} \hat{\ell} \circ \hat{\ell} \circ \hat{x} + \frac{\lambda}{T} (\hat{x} - \hat{z} + \hat{w}/\lambda)
= \frac{1}{T} (\gamma \hat{\ell} \circ \hat{\ell} + \lambda \mathbb{1}_T) \circ \hat{x} - \frac{1}{T} (\lambda \hat{z} - \hat{w})$$
(7.73)

其中,向量 $\mathbb{1}_T \in \mathbb{R}^T$ 的所有元素均为 1。

不妨定义

$$\hat{\boldsymbol{h}} = (\lambda \hat{\boldsymbol{z}} - \hat{\boldsymbol{w}}) \oslash (\gamma \hat{\boldsymbol{\ell}} \circ \hat{\boldsymbol{\ell}} + \lambda \mathbb{1}_T)$$
(7.74)

对应于 $\frac{\partial f}{\partial \hat{\mathbf{n}}} = \mathbf{0}$ 。

由此,变量 \hat{x} 的解析解可根据公式(7.43)计算得到,通过离散傅立叶逆变换,变量 x 的更新公式为 $x := \mathcal{F}^{-1}(\hat{x})$ 。

在 ADMM 算法中,变量 z 的解析解与公式(7.54)一致;变量 w 的更新公式参见公式(7.40)。算法5给出了一维低秩拉普拉斯卷积模型的具体实现过程。

Algorithm 5 一维低秩拉普拉斯卷积模型

Input: 观测向量 $y \in \mathbb{R}^T$, 被观测元素的索引集合 Ω , 超参数 $\{\gamma, \lambda, \eta, \tau\}$ 。

Output: 重构出来的向量 $x \in \mathbb{R}^T$ 。

- 1: 对变量 $\{x, z, w\}$ 进行初始化;
- 2: **for** i = 0 to 最大迭代次数 **do**
- 3: 对变量 $\{z, w\}$ 进行快速傅立叶变换;
- 4: 根据公式(7.74)计算 \hat{h} ;
- 5: 根据公式(7.43)计算 \hat{x} ;
- 6: $\diamondsuit \boldsymbol{x} := \mathcal{F}^{-1}(\hat{\boldsymbol{x}});$
- 7: 根据公式(7.54)计算 z;
- 8: 计算 $\boldsymbol{w} := \boldsymbol{w} + \lambda(\boldsymbol{x} \boldsymbol{z});$
- 9: end for

例 43. 给定某高速公路断面交通流的车速时间序列如图 7.4(a)所示,采集数据的时间粒度为 15 分钟,即每天预期可获取 96 个观测值;采集时长为 3 天,预期产生 288 个观测值,即 T=288。现假设该车速时间序列存在 90% 的缺失值,如图 7.4(b)所示,试使用一维低秩拉普拉斯卷积模型对部分观测的车速时间序列进行重构、修复缺失值。

解. 在图 7.5 所示的重构时间序列中,将一维低秩拉普拉斯卷积模型中的超参数设置为 $\lambda=5\times 10^{-3}T, \gamma=2\lambda, \eta=100\lambda, \tau=2$ 。从中不难发现,该模型重构出来的时间序列与真实时间序列趋势吻合。

图 7.4: 某高速公路断面交通流的车速时间序列,其中,蓝色曲线表示车速时间序列;蓝色圆圈表示抽取的部分观测值。

图 7.5: 基于一维低秩拉普拉斯卷积模型的 90% 缺失率的车速时间序列重构,其中,红色曲线表示重构出来的车速时间序列。

7.3.4 二维低秩拉普拉斯卷积模型

7.4 Python 实现代码

Table of functions

第八章 基于延迟嵌套的张量分解

第九章 低秩深度学习时空预测模型

附录 A 公开交通数据集

- A.1 波特兰高速公路交通流量数据集
- A.2 西雅图高速公路交通速度数据集

参考文献

- Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review, 51(3):455–500, 2009.
- Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E Papalexakis, and Christos Faloutsos. Tensor decomposition for signal processing and machine learning. *IEEE Transactions on Signal Processing*, 65(13):3551–3582, 2017.
- Xinyu Chen, Chengyuan Zhang, Xi-Le Zhao, Nicolas Saunier, and Lijun Sun. Nonstationary temporal matrix factorization for multivariate time series forecasting. arXiv preprint arXiv:2203.10651, 2022a.
- Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using markov chain monte carlo. In *Proceedings of the 25th international conference on Machine learning*, pages 880–887, 2008.
- Liang Xiong, Xi Chen, Tzu-Kuo Huang, Jeff Schneider, and Jaime G Carbonell. Temporal collaborative filtering with bayesian probabilistic tensor factorization. In *Proceedings of the* 2010 SIAM international conference on data mining, pages 211–222. SIAM, 2010.
- Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of incomplete tensors with automatic rank determination. *IEEE transactions on pattern analysis and machine intelligence*, 37(9):1751–1763, 2015.
- Xinyu Chen, Zhaocheng He, and Lijun Sun. A bayesian tensor decomposition approach for spatiotemporal traffic data imputation. *Transportation research part C: emerging technologies*, 98:73–84, 2019.
- Guangcan Liu and Wayne Zhang. Recovery of future data via convolution nuclear norm minimization. *IEEE Transactions on Information Theory*, 69(1):650–665, 2022.
- Xinyu Chen, Zhanhong Cheng, Nicolas Saunier, and Lijun Sun. Laplacian convolutional representation for traffic time series imputation. arXiv preprint arXiv:2212.01529, 2022b.
- Hiromu Takayama and Tatsuya Yokota. Fast signal completion algorithm with cyclic convolutional smoothing. In 2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), pages 364–371. IEEE, 2022.