Exercises 1.9

Exercise 1.9.1

A factory has n suppliers that produce quantities $x_1
dots x_n$ per day. The factory is connected with suppliers by a system of roads, which can be at variable capacities $c_1
dots c_n$, so that the factory is supplied daily the amount $x = c_1 x_1 + \dots + c_n x_n$.

- a. Given that the factory production process starts when the supply reaches the critical daily level b, write a formula for the daily factory revenue.
- b. Formulate the problem as a learning problem.

Exercise 1.9.2

A number of finantial institutions, each having a wealth x_i , deposit amounts of money in a fund, at some adjustable rates of deposit w_i , so the money in the fund is given by $x = x_1w_1 + \cdots + x_nw_n$. The fund is set up to function as in the following: as long a sthe fund has less than a certain reserve fund M, the fund manager does not invest. Only the money exceeding the reserve found M is invested. Let $k = e^{rt}$, where r and t denote the investment rate of return and time of investment, respectively.

- a. Find the formula for the investment.
- b. Formulate the problem as a learning problem.

Exercise 1.9.3

- a. Given a continous function $f:[0,1]\to\mathbb{R}$, find a linear function L(x)=ax+b with L(0)=f(0) and such that $\frac{1}{2}\int_0^1(L(x)-f(x))^2dx$ is minimized.
- b. Given a continous function $f:[0,1]\times[0,1]\to\mathbb{R}$, find a linear function L(x,y)=ax+by+c with L(0,0)=f(0,0) and such that the error $\frac{1}{2}\int_{[0,1]^2}(L(x,y)-f(x,y))^2dx$ is minimized

Exercise 1.9.4

For any compact $K \subset \mathbb{R}^n$ we associate the symetric matrix $\rho_{ij} = \int_K x_i x_j dx_1 \dots dx_n$ The invertibility of the matrix (ρ_{ij}) depends both on the shape of K and the dimension n.

- a. Show that if n=2 then $\det(\rho_{ij})\neq 0$, for any compact $K\subset\mathbb{R}^2$.
- b. Asume $K = [0,1]^n$. Show that $\det(\rho_{ij}) \neq 0$, for any $n \geq 1$.

SOLUTIONS

1.9.1 (a)

Let $\mathbf{c} := (c_1, \dots, c_n)$ and $\mathbf{p} := (x_1, \dots, x_n)$ the roads variable capacities and the produced quantities, respectively. Then $x = \mathbf{c} \cdot \mathbf{p}$. Suppose the cost of product per item is k, so if the production starts after the critical daily level b is meet. This is, x - b > 0. It is clear that the revenue L_r will be given by the formula:

$$L_r(\mathbf{p}; \mathbf{c}, b) = \begin{cases} k(\mathbf{c} \cdot \mathbf{p} - b), & \text{if } \mathbf{c} \cdot \mathbf{p} - b > 0 \\ 0, & \text{otherwise.} \end{cases}$$

1.9.1 (b)

The learning problem can be stated like this: "Given a vector of road variable capacities \mathbf{c} and a daily critical level b, provided that the production of the n factories is expressed by the vector \mathbf{p} . The goal is find a vector \mathbf{p}^* and a scalar b^* such that the ideal revenue $r(\mathbf{p}) = \mathbf{c} \cdot \mathbf{p}$ is close that provided by the data $L_r(\mathbf{p}; \mathbf{c}, b)$ (obtained in 1.9.1 (a))". In other words, the pair (\mathbf{c}^*, b^*) minimizes the distance (in the \mathcal{L}_2 sense) between $r(\mathbf{p})$ and $L_r(\mathbf{p}; \mathbf{c}, b)$. In symbols:

$$(\mathbf{c}^{\star}, b^{\star}) = \underset{\mathbf{c} \in \mathbb{R}^n, \ p \in \mathbb{R}}{\arg \min} \int_{\mathcal{K}} (r(\mathbf{p}) - L_r(\mathbf{p}; \mathbf{c}, b))^2 d\mathbf{p}.$$

1.9.2 (a)

If $\mathbf{w} := (w_1 \dots w_n)$ encodes the adjustable rates of deposit corresponding to each of the n finantial institutions and $\mathbf{x} := (x_1 \dots x_n)$ the wealth of each of the n institutions, the money in the fund is expressed by $x = \mathbf{w} \cdot \mathbf{x}$. It's known that the fund is set to function if the revenue exceds a given capital M and that the investment grows proportional to e^{rt} (profit per investment), then it is clear that the investment is given by the formula:

$$L_I(\mathbf{x}; \mathbf{w}, M) = \begin{cases} e^{rt}(\mathbf{w} \cdot \mathbf{x} - M), & \text{if } \mathbf{w} \cdot \mathbf{x} > M \\ 0, & \text{otherwise.} \end{cases}$$

1.9.2 (b)

Let $I(\mathbf{x}) = x = \mathbf{w} \cdot \mathbf{x}$ be the ideal investment, $L_I(\mathbf{x}; \mathbf{w}, M)$ given in 1.9.2 (b). Then the learning problem can be stated as follows: "Given the vector of wealth of the n institutions \mathbf{x} , the vector of adjustable rates of deposit \mathbf{w} and that inversions are placed in the fund if the capital exceeds the quantity M. It is needed to find a tuple (\mathbf{w}^*, M) that minimizes the distance (in the \mathcal{L}_2 sense) between the functions $I(\mathbf{x})$ and $L_I(\mathbf{x}; \mathbf{w}, M)$ "

In mathematical terms this means that:

$$(\mathbf{w}^{\star}, M^{\star}) = \underset{\mathbf{w} \in \mathbb{R}^n, \ M \in \mathbb{R}}{\arg \min} \int_{\mathcal{K}} (I(\mathbf{x}) - L_I(\mathbf{x}; \mathbf{c}, M))^2 d\mathbf{x}.$$

1.9.3 (a)

It follows from the constrain f(0) = L(0) that b = f(0). From now on the notation L(x; a) will be used. That said, the task is now to find an a^* such that

 $a^* = \underset{a \in \mathbb{R}}{\arg\min} \|f(x) - L(x; a)\|_{\mathcal{L}_2([0,1])}^2$. Now, let $C(a) := \|f(x) - L(x; a)\|_{\mathcal{L}_2([0,1])}^2$, then C(a) has the most explicit form:

$$C(a) = \int_{[0,1]} (f(x) - ax - f(0))^2 dx.$$

The extremizing a^* can be found by computing critical points and applying the second derivative test to determine the nature of the critical point. Then one has:

$$\frac{d}{da}C(a) = \int_{[0,1]} -2(f(x) - ax - f(0))xdx = a \int_{[0,1]} 2x^2 dx + \int_{[0,1]} 2(f(0) - f(x))xdx.$$
 To find the critical point a^* we solve the equation $\frac{d}{da}C(a) = 0$. Solving for a one finds that such extrema is meet at:

$$a^* = \frac{\int_{[0,1]} (f(x) - f(0))xdx}{\int_{[0,1]} x^2 dx}$$
. Now, lets compute the second derivative to determine the nature

of this critical point. A straight-forward calculation for finding the second derivative yields:

 $\frac{d^2}{dx^2}C(a)=2\int_{[0,1]}x^2dx$. Because the even function $2x^2$ satisfies $2x^2>0, \forall x\in[0,1]$ and the interval of integration is not symetric, is clear that $\frac{d^2}{dx^2}C(a)=2\int_{[0,1]}x^2dx>0, \forall a\in\mathbb{R}$. From this follows that a^* is a

minimum. Then,
$$L(x) = \frac{\int_{[0,1]} (f(t) - f(0))tdt}{\int_{[0,1]} t^2 dt} x + f(0).$$

1.9.3 (b)

The condition f(0,0) = L(0,0) implies b = f(0,0). Lets be more explicit by writing L(x,y;a,b). The goal is to find (a^{\star},b^{\star}) satisfying $(a^{\star},b^{\star}) = \underset{a \in \mathbb{R},b \in \mathbb{R}}{\arg \min} \|f(x,y) - L(x,y;a,b)\|_{\mathcal{L}_2([0,1]^2)}^2$. If $C(a,b) = \|f(x,y) - L(x,y;a,b)\|_{\mathcal{L}_2([0,1]^2)}^2$, it's necessary to solve the linear system:

$$\begin{cases} \frac{\partial}{\partial a} C(a, b) = 0\\ \frac{\partial}{\partial b} C(a, b) = 0. \end{cases}$$
 (1)

Lets now compute both partial derivatives. For a we have:

$$\begin{split} \frac{\partial}{\partial a}C(a,b) &= \int_{[0,1]^2} -2(f(x,y)-ax-by-f(0,0))xdxdy \\ &= a\int_{[0,1]^2} 2x^2dxdy + b\int_{[0,1]^2} 2xydxdy + \int_{[0,1]^2} 2(f(0,0)-f(x,y))xdxdy \end{split}$$

Likewise, for b we find:

$$\begin{split} \frac{\partial}{\partial b}C(a,b) &= \int_{[0,1]^2} -2(f(x,y)-ax-by-f(0,0))ydxdy \\ &= a\int_{[0,1]^2} 2xydxdy + b\int_{[0,1]^2} 2y^2dxdy + \int_{[0,1]^2} 2(f(0,0)-f(x,y))ydxdy. \end{split}$$

System (1) is equivalent to:

$$\begin{cases} a \int_{[0,1]^2} 2x^2 dx dy + b \int_{[0,1]^2} 2xy dx dy = \int_{[0,1]^2} 2(f(x,y) - f(0,0))x dx dy \\ a \int_{[0,1]^2} 2xy dx dy + b \int_{[0,1]^2} 2y^2 dx dy = \int_{[0,1]^2} 2(f(x,y) - f(0,0))y dx dy \end{cases}$$
(2)

Because the function L(x,y;a,b) is continous, then the mixed partial derivatives coincide. It's easy to verify $\frac{\partial^2}{\partial a\partial b}C(a,b)=\int_{[0,1]^2}2xydxdy$. Similarly, is straight-forward to see that $\frac{\partial^2}{\partial a^2}C(a,b)=\int_{[0,1]^2}2x^2dxdy$ and $\frac{\partial^2}{\partial b^2}C(a,b)=\int_{[0,1]^2}2y^2dxdy$. Then, system (2) can be represented in the following matricial form:

$$\begin{bmatrix}
\int_{[0,1]^2} 2x^2 dx dy & \int_{[0,1]^2} 2xy dx dy \\
\int_{[0,1]^2} 2xy dx dy & \int_{[0,1]^2} 2y^2 dx dy
\end{bmatrix}
\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix}
\int_{[0,1]^2} 2(f(x,y) - f(0,0))x dx dy \\
\int_{[0,1]^2} 2(f(x,y) - f(0,0))y dx dy
\end{bmatrix}$$
(3)

Lets denote H_C the matrix on the l.h.s of the equation (3). By the Cauchy–Bunyakovsky–Schwarz inequality follows that:

 $\det(H_C) = 4 \int_{[0,1]^2} x^2 dx dy \int_{[0,1]^2} y^2 dx dy - 4 \int_{[0,1]^2} xy dx dy > 0$. Since $\det(H_C) \neq 0$ there's a unique solution to the system (3). Such solutions are given explicitly by:

$$a^{\star} = \frac{\det \left[\int_{[0,1]^2} x^2 dx dy \int_{[0,1]^2} (f(x,y) - f(0,0)) x dx dy \right]}{\int_{[0,1]^2} xy dx dy \int_{[0,1]^2} (f(x,y) - f(0,0)) y dx dy} \right]}{\int_{[0,1]^2} x^2 dx dy \int_{[0,1]^2} y^2 dx dy - \int_{[0,1]^2} xy dx dy}$$

$$b^{\star} = \frac{\det \left[\int_{[0,1]^2} (f(x,y) - f(0,0)) x dx dy \int_{[0,1]^2} x^2 dx dy \right]}{\int_{[0,1]^2} (f(x,y) - f(0,0)) y dx dy \int_{[0,1]^2} xy dx dy} \right]}{\int_{[0,1]^2} x^2 dx dy \int_{[0,1]^2} y^2 dx dy - \int_{[0,1]^2} xy dx dy}$$

$$(4)$$

Note that (1,1) minor of $det(H_C)$ also has positive determinant, then by the Sylvester's criterion H_C is positively defined, and the critical point (a^*, b^*) is a minimum.

1.9.4 (a)