Euclid's proof of angle bisector corollary

Consider the following $\triangle ABC$, with $\angle BAC$ bisected by AE.

The angle bisector theorem says that AB : BD = AC : DC, and the corollary says that AB + AC : BC is the same ratio.

Euclid's proof

Euclid's proof is Book 6, proposition 3.

Draw CE parallel to DA. Then, $\angle DAC = \angle ACE$ (by alternate interior angles).

We are given that $\angle DAB = \angle CAD$, and now see that $\angle AEC$ and $\angle DAB$ are equal as corresponding angles of a line cutting two parallel lines. Therefore all four angles (marked ϕ) are equal.

Therefore, $\triangle ACE$ is isosceles, with AC = AE.

Furthermore, $\triangle ABD$ is similar to $\triangle EBC$. Therefore, AB:BD=EB:BC.

And since EB = EA + AB and AC = AE, we have that AB : BD = AB + AC : BC.

reverse

This proof just reverses each statement above. We are given AB: AC = BD : DC.

Both are equal to AB : AE, by similar triangles, so AC = AE.

Therefore $\triangle ACE$ is isosceles with $\angle ACE = \angle AEC$.

But $\angle AEC = \angle BAD$ (isosceles)

and $\angle ACE = \angle CAD$ (alternate interior angles)

so $\angle CAD = \angle BAD$.