Logical AND problem

Hard Linear SVM

AND problem. Hard linear SVM.

The training set that belongs to class -1 is

$${X_1 = (0,0)^t, X_2 = (0,1)^t, X_3 = (1,0)^t};$$

that which belongs to class +1 is $X_4 = (1,1)^t$.

KKT Conditions.

(1)
$$W = (w_1, w_2)^t = \sum_i \alpha_i y_i X_i = \begin{pmatrix} \alpha_4 - \alpha_3 \\ \alpha_4 - \alpha_2 \end{pmatrix}$$

(2)
$$\Sigma \alpha_i y_i = 0 \Rightarrow \alpha_1 + \alpha_2 + \alpha_3 = \alpha_4$$

- (3) $\alpha_i \geq 0$, $\forall i$. From geometry, we can infer that $\alpha_1 = 0$. $\alpha_2 = \alpha_3$.
- (4) $\alpha_i (1 y_i(W \cdot X_i + b)) = 0, \forall i$. We get 3 equations, solving which gives,

$$w_1 = 2, w_2 = 2, b = -3.$$

The decision boundary is given by $2x_1 + 2x_2 - 3 = 0$.

We get,
$$\alpha_1 = 0$$
, $\alpha_2 = \alpha_3 = 2$, $\alpha_4 = 4$.

Margin is
$$\frac{2}{\|W\|} = \frac{1}{\sqrt{2}}$$
.

