MPAMF_ESR, MPAM Error Status Register

The MPAMF ESR characteristics are:

Purpose

Indicates MPAM error status for this MSC.

MPAMF_ESR_s reports Secure MPAM errors. MPAMF_ESR_ns reports Non-secure MPAM errors. MPAMF_ESR_rt reports Root MPAM errors. MPAMF_ESR_rl reports Realm MPAM errors.

Software should write this register after reading the status of an error to reset ERRCODE to 0×0000 and OVRWR to 0 so that future errors are not reported with OVRWR set.

Configuration

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF ESR are res0.

MPAMF_ESR is 64-bit register when MPAM v0.1 or v1.1 is implemented and MPAMF_IDR.HAS_EXTD_ESR == 1.

Otherwise, MPAMF_ESR is a 32-bit register.

If an MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Armâ® Architecture Reference Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598), both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

The power and reset domain of each MSC component is specific to that component.

Attributes

MPAMF_ESR is a:

- 64-bit register when (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF IDR.HAS EXTD ESR == 1
- 32-bit register otherwise

Field descriptions

When (FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented) and MPAMF_IDR.HAS_EXTD_ESR == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0			RIS		
OVRWF	RES0	ERRCODE	PMG	PARTID_MON	
31	30 29 28	27 26 25 24	23 22 21 20 19 18 17 16	151413121110 9 8 7 6 5 4	3 2 1 0

Bits [63:36]

Reserved, res0.

RIS, bits [35:32] When MPAMF_IDR.HAS_RIS == 1:

Resource Instance Selector. Where applicable to the ERRCODE, captures the RIS value for the error.

Otherwise:

Reserved, res0.

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is nonzero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is nonzero, multiple errors have occurred and this register records the most recent error.

The state where this bit is 1 and ERRCODE is zero must not be produced by hardware and is only reached when software writes this combination into this register.

Bits [30:28]

Reserved, res0.

ERRCODE, bits [27:24]

Error code.

ERRCODE	Meaning
000000	No error.

0b0001	PARTID_SEL_Range.
0b0010	Req_PARTID_Range.
0b0011	MSMONCFG_ID_RANGE.
0b0100	Req_PMG_Range.
0b0101	Monitor_Range.
0b0110	intPARTID_Range.
0b0111	${\tt Unexpected_INTERNAL}.$
0b1000	Undefined_RIS_PART_SEL.
0b1001	RIS_No_Control.
0b1010	Undefined_RIS_MON_SEL.
0b1011	RIS_No_Monitor.
0b1100	Reserved.
0b1101	Reserved.
0b1110	Reserved.
0b1111	Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0x00 on an error that does not capture PMG.

PARTID MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0.

Otherwise:

31	30 29 28	27 26 25 24	23 22 21 20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
OVRWF	RES0	ERRCODE	PMG	PARTID	MON

OVRWR, bit [31]

Overwritten.

If 0 and ERRCODE == 0b0000, no errors have occurred.

If 0 and ERRCODE is nonzero, a single error has occurred and is recorded in this register.

If 1 and ERRCODE is nonzero, multiple errors have occurred and this register records the most recent error.

The state where this bit is 1 and ERRCODE is 0 must not be produced by hardware and is only reached when software writes this combination into this register.

Bits [30:28]

Reserved, res0.

ERRCODE, bits [27:24]

Error code.

ERRCODE	Meaning
0b0000	No error.
0b0001	PARTID_SEL_Range.
0b0010	Req_PARTID_Range.
0b0011	MSMONCFG_ID_RANGE.
0b0100	Req_PMG_Range.
0b0101	Monitor_Range.
0b0110	$int PARTID_Range.$
0b0111	$Unexpected_INTERNAL.$
0b1000	Reserved.
0b1001	Reserved.
0b1010	Reserved.
0b1011	Reserved.
0b1100	Reserved.
0b1101	Reserved.
0b1110	Reserved.
0b1111	Reserved.

PMG, bits [23:16]

Program monitoring group.

Set to the PMG on an error that captures PMG. Otherwise, set to 0×00 on an error that does not capture PMG.

PARTID_MON, bits [15:0]

PARTID or monitor.

Set to the PARTID on an error that captures PARTID.

Set to the monitor index on an error that captures MON.

On an error that captures neither PARTID nor MON, this field is set to 0x0000.

Accessing MPAMF_ESR

This register is within the MPAM feature page memory frames.

In a system that supports Secure, Non-secure, Root, and Realm memory maps, there must be MPAM feature pages in all four address maps:

- MPAMF_ESR_s must only be accessible from the Secure MPAM feature page.
- MPAMF_ESR_ns must only be accessible from the Non-secure MPAM feature page.
- MPAMF_ESR_rt must only be accessible from the Root MPAM feature page.
- MPAMF_ESR_rl must only be accessible from the Realm MPAM feature page.

MPAMF_ESR_s, MPAMF_ESR_ns, MPAMF_ESR_rt, and MPAMF_ESR_rl must be separate registers:

- The Secure instance (MPAMF_ESR_s) accesses the error status used for Secure PARTIDs.
- The Non-secure instance (MPAMF_ESR_ns) accesses the error status used for Non-secure PARTIDs.
- The Root instance (MPAMF_ESR_rt) accesses the error status used for Root PARTIDs.
- The Realm instance (MPAMF_ESR_rl) accesses the error status used for Realm PARTIDs.

MPAMF ESR can be accessed through the memory-mapped interfaces:

Component	Frame	Offset	Instance	
MPAM	MPAMF_BASE_s	0x00F8	MPAMF_ESR_s	

Accesses on this interface are RW.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_ns	0x00F8	MPAMF_ESR_ns

Accesses on this interface are **RW**.

Component	Frame	Offset	Instance
MPAM	MPAMF_BASE_rt	0x00F8	MPAMF_ESR_rt

When FEAT RME is implemented, accesses on this interface are **RW**.

|--|

MPAM	MPAMF_BASE_rl	0x00F8	MPAMF_ESR_rl
------	---------------	--------	--------------

When FEAT RME is implemented, accesses on this interface are RW.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.