

Module: Réseaux Informatiques 1

Série TD 13 : Adressage IP

Exercice 1:

- 1.1) Trouvez la classe des adresses IP suivantes :
 - 1. 10000000.00001010.11011000.00100111
 - 2. 11101101. 10000011. 00001110. 01011111
 - 3. 01001010.00011011.10001111.00010010
 - 4. 11001001. 11011110. 01000011. 01110101
 - 5. 10000011.00011101.00000000.00000111

Réponse:

On peut classifier les adresses IP ci-dessus (classes A, B, C, D, et E), en analysant juste le premier octet de ces adresses IP :

- 1. 10000000. 00001010. 11011000. 00100111 > Les 02 premiers bits sont positionnés à 10, donc classe
 B.
- 1110 1101. 10000011. 00001110. 010111111: Les 04 premiers bits sont positionnés à 1110, donc classe D.
- 3. **01**001010. 00011011. 10001111. 00010010 : Le 01 premier bit est positionné à **0**, donc **classe A**.
- 4. 11001001. 11011110. 01000011. 01110101 : Les 03 premiers bits sont positionnés à 110, donc classe
 C.
- 5. 1000011. 00011101. 00000000. 00000111 : Les 02 premiers bits sont positionnés à 10, donc classe

 B.

Module : Réseaux Informatiques 1

1.2) Pour chaque adresse, entourez la partie demandée :

PARTIE RESEAU :	13.102.45.177 > Valeur du premier octet entre 0 et 127, donc classe A. Partie réseau est 13.
PARTIE HOTE :	196.22.177.13 > Valeur du premier octet entre 192 et 223, donc classe C. Partie hôte est 13
PARTIE RESEAU :	133.156.55.102 > Valeur du premier octet entre 128 et 191, donc classe B. Partie réseau est 133.156
PARTIE HOTE :	221.252.77.10 > Valeur du premier octet entre 192 et 223, donc classe C. Partie hôte est 10
PARTIE HOTE :	126.252.77.103 > Valeur du premier octet entre 0 et 127, donc classe A. Partie hôte est 252.77.103.
PARTIE HOTE :	171.242.177.109 > Valeur du premier octet entre 128 et 191, donc classe B. Partie hôte est 177.109

Exercice 2:

1. Etablissez le masque de réseau correspondant à chaque notation CIDR/n :

Nombre de bits du masque	Masque	
	Notation binaire : 11111111. 11000000. 00000000. 000000000	
10	Notation décimale : 255.192.0.0	
	Notation binaire : 111111111.111111111. 111111110. 00000000	
23	Notation décimale : 255.255.254.0	
	Notation binaire : 111111111.111111111. 11111111. 11111100	
30	Notation décimale : 255.255.255.252	

Module : Réseaux Informatiques 1

	Notation binaire: 11111111.11111000. 00000000. 00000000
13	Notation décimale : 255.248.0.0
	Notation binaire: 11111111.11111111. 11100000. 00000000
19	Notation décimale : 255.255.224.0
	Notation binaire : 11111111.11111111. 11111000. 00000000
21	Notation décimale : 255.255.248.0

2. Donnez pour les adresses suivantes, l'adresse réseau à laquelle elles appartiennent :

@IP	@Réseau
	Masque en CIDR est /20. Notation binaire est
166.13.21.2/20	11111111. 11111111. <mark>11110000</mark> . <mark>00000000</mark> . Donc ET
	logique entre Masque réseau est
	166.13. <mark>00010101.00000010</mark> donne
	166.13.00010000.0 Alors @réseau est 166.13.16.0
	Masque en CIDR est /10. Notation binaire est
12.66.34.2/10	1111111. 11000000. 00000000. 00000000. Donc ET
	logique entre Masque réseau est
	12. 01000010. 00100010. 00000010 donne
	12. 01000000. 000000000. 000000000 Alors @réseau
	est <mark>12.64.0.0</mark>
	Masque en CIDR est /28. Notation binaire est
220.220.220.35/28	11111111. 11111111. 11111111. 11110000. Donc ET
	logique entre Masque réseau est
	220.220.220. 00100011 donne 220.220.220.
	00100000. Alors @réseau est 220.220.220.32
	Masque en CIDR est /27. Notation binaire est
193.167.1.56/27	11111111. 11111111. 11111111. 11100000. Donc ET
	logique entre Masque réseau est
	193.167.1. 00100011 donne 193.167.1. 00100000.
	Alors @réseau est 193.167.1.32
	Masque en CIDR est /18. Notation binaire est
173.16.100.3/18	11111111. 11111111. 11000000. 00000000. Donc ET
	logique <mark>entre Masque réseau</mark> est
	173.16. <mark>01100100</mark> . <mark>00000011</mark> donne
	173.16. <mark>01000000</mark> . <mark>00000000</mark> . Alors @réseau est
	<mark>173.16.64.0</mark>

Module: Réseaux Informatiques 1

Exercice 3:

Un ordinateur P1 dont les paramètres réseau sont les suivants :

Adresse IP: 200.100.10.60 Masque: 255.255.255.224

- 1) Codez l'adresse IP en binaire.
- 2) Quelle est la classe du réseau?
- 3) Quelle est l'adresse du réseau?
- 4) Quelle est l'adresse de diffusion (broadcast) de ce réseau?
- 5) L'adresse IP 200.100.10.35 appartient-elle à ce réseau?

Réponse:

1) Codage de l'adresse IP 200.100.10.60 en binaire :

Valeur de l'octet de l'adresse IP en	Valeur de l'octet de l'adresse IP en
décimal	binaire
Octet 1 : 200	11001000
Octet 2 : 100	01100100
Octet 3 : 10	00001010
Octet 4 : 60	00111100

- 2) La classe du réseau : Puisque la valeur du premier octet de l'adresse IP est 11001000, donc la valeur de 3 premiers bits est 110, alors c'est une adresse de classe C. Autrement, la valeur du premier octet est entre 192 et 223 donc c'est une adresse de classe C.
- 3) l'adresse du réseau :

@IP de l'ordinateur (200.100.10.60)	11001000. 01100100. 00001010. 00111100
Masque de sous –réseau (255.255.254)	11111111. 11111111. 11111111. 11100000
@ IP du réseau de l'ordinateur (résultat de ET	11001000. 01100100. 00001010. 00100000
logique entre @ IP ordinateur et Masque sous-	
réseau)	
@IP du réseau de l'ordinateur en décimal	200.100.10.32

4) L'adresse de diffusion (broadcast) de ce réseau :

@IP du réseau de l'ordinateur en décimal	200.100.10.32
@IP du réseau de l'ordinateur en binaire	11001000. 01100100. 00001010. 001 <mark>00000</mark>
Masque de sous –réseau (255.255.255.224)	11111111. 11111111. 11111111. 11100000
@IP du broadcast de ce réseau en binaire	11001000. 01100100. 00001010. 001 <mark>11111</mark>
@IP du broadcast de ce réseau en décimal	200.100.10.63

Module : Réseaux Informatiques 1

5) L'adresse IP 200.100.10.35 appartient-elle à ce réseau?

Puisque l'adresse IP du réseau en question est **200.100.10.32** et l'adresse de broadcast est **200.100.10.63** donc :

@IP de la première machine utilisable est : **200.100.10.33** (32 + 1) @IP de la dernière machine utilisable est : **200.100.10.62** (63 - 1)

L'adresse IP **200.100.10.35** est entre **200.100.10.32** <= **200.100.10.35** <= **200.100.10.62** alors **200.100.10.35** fait partie du réseau **200.100.10.32**.