09017232 刘晓臻 课程研学报告(二)

学号: 09017232 姓名: 刘晓臻 日期: 2020.04.19

一、构建查询需求

报告(一)中已经指出,原文档标题"Effective Online Knowledge Graph Fusion"作为查询,即使是在其本身的(35 篇)文档库中,有关联的文档也仅 3 篇。经过在学术搜索引擎中的查找,哪怕以排序结果的前 10 篇(其中有 7 篇无关)作为理想文档集,对标题中的词排列组合,也无法在 Google Scholar 搜索的前 100 名结果中找到理想文档集里有的内容!

因此,不能使用原标题和原文档库,否则本实验无法进行,因为最终各项评分结果都是 0!

报告(一)中还给出了另外一篇论文(原论文的引文)《Computing semantic relatedness using wikipedia-based explicit semantic analysis》,以及用它构建文档库和查询的结果,在此使用本篇论文的标题构建查询(能够在后续搜索中搜索到理想文档集里有的)如下("queries.txt"):

semantic relatedness computing semantic relatedness semantic relatedness semantic analysis wikipedia semantic relatedness semantic relatedness wikipedia based semantic relatedness wikipedia based semantic analysis relatedness wikipedia based

二、构建理想相关文档集

根据报告(一)中得到的结果,选用向量模型的 top10 文档作为理想相关文档集 "ideal docs.txt"如下:

WikiRelate! Computing semantic relatedness using Wikipedia
Indexing by latent semantic analysis
Overcoming the brittleness bottleneck using Wikipedia: Enhancing text
categorization with encyclopedic knowledge
Evaluating wordnet-based measures of lexical semantic relatedness
Extended gloss overlaps as a measure of semantic relatedness
Exploring unexplored contexts for semantic extraction from syntactic analysis
Centroid-based document classification: Analysis and experimental results
Corpus-based and knowledge-based measures of text semantic similarity
Feature generation for text categorization using world knowledge
Feature Generation for Textual Information Retrieval Using World Knowledge

三、选择搜索系统

选择 Google Scholar 作为搜索系统,对每个查询取前 100 个标题,得到查询结果在 "query results 文件夹下。"

四、评价查询的检索效果

1. 每个查询结果集

通过代码 "evaluation.py" 对每个查询结果集计算得到 Precision-Recall 对应关系及整个结果集的 Precision,Recall 及如 "evaluation results.txt" 所示:

```
semantic relatedness:
recall: 0.4
precision: 0.04
computing semantic relatedness:
\{0.1: 0.5, 0.2: 0.06896551724137931\},
recall: 0.2
precision: 0.02
semantic relatedness semantic analysis:
\{0.1: 0.0666666666666666667, 0.2: 0.06060606060606061\},
recall: 0.2
precision: 0.02
wikipedia semantic relatedness:
\{0.1: 0.5, 0.2: 0.02247191011235955\},\
recall: 0.2
precision: 0.02
semantic relatedness wikipedia based:
recall: 0.2
precision: 0.02
semantic relatedness wikipedia based semantic analysis:
{0.1: 0.041666666666666664, 0.2: 0.029411764705882353},
recall: 0.2
precision: 0.02
relatedness wikipedia based:
\{0.1: 0.5, 0.2: 0.038461538461538464\},
recall: 0.2
precision: 0.02
```

通过以上 P-R 对应关系,可以画出每个查询的 P-R 曲线如下(对应文件在 figures 文件夹 \mathbb{P}):

2. 平均效果

同样使用代码 "evaluation.py" 里,计算出对于 q 的所有查询结果集的平均 Precision 为 0.022857142857142857,对于每个 Recall 值的平均 Precision 结果输出在 "evaluation_results.txt" 里。综上,可以画出平均 Precision-Recall 曲线 "figures/avg pr.png",如下图。

