Additional Material

- ☐ The following slides are for reference and completeness...
- ☐ They will **NOT** be examined!

Big-Oh Notation – Part 1

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that:

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- \square Is $2n + 10 \equiv O(n)$?
- \square Can we find c and n_0 ?

$$2n + 10 \le cn$$

$$(c-2)n \ge 10$$

$$n \ge 10/(c-2)$$
Pick $c = 3$ and $n_0 = 10$

f(n) is O(g(n)) iff $f(n) \le cg(n)$ for $n \ge n_0$

Big-Oh Notation — Part 2

- \square Example: the function n^2 is not O(n)? Why?
 - \square $n^2 \leq cn$
 - \square $n \leq c$
- ☐ The above inequality cannot be satisfied since *c* must be a constant

Big-Oh and Growth Rate

- ☐ The Big-Oh notation gives an upper bound on the growth rate of a function
- ☐ The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- $\Box f(n)$ grows no faster than g(n)
- ☐ We can use the Big-Oh notation to rank functions according to their growth rate

Relatives of Big-Oh

 $\Omega(g)$: functions that grow at least as fast as g

 $\Theta(g)$: functions that grow at the same rate as g

O(g): functions that grow no faster than g

Asymptotic Notation

Big-Oh is the interesting one

- Because we are interested in efficiency, $\Omega(g)$ will not be of much interest to us because $\Omega(n^2)$ includes all functions that grow faster than n^2 , for example, n^3 and 2^n
- \square For a similar reason, we are not much interested in $\Theta(g)$, the class of functions that grow at the same rate as the function g

- Big-Oh is the class of functions that will be of the greatest interest to us
- Considering two algorithms, we will want to know if the first is in Big-Oh of the second
- If yes, we know that the second algorithm does not do better than the first in solving the problem