EHM2141 LOJİK DEVRELER

2024-2025 BAHAR DÖNEMİ

HAFTA 14 – DERS 1 20 Mayıs 2025

Dr. Sibel ÇİMEN

Genel bir ardışıl devre: yazmaçlar

- Büyük çaplı ardışıl devrelerin tasarımında kullanılabilirler.
- Flip-flop'lar tek bir bit tutarken yazmaçlar daha büyük miktarda veri tutabilmektedir.
- yazmaçlar modern işlemci tasarımının merkezidir.

Flip-flop'lar sadece tek bir bit tutabilirler.

- -Örneğin, iki bitlik sayıcı tasarımı için iki tane flip-flop kullanmak zorundayız.
- Pek çok bilgisayar "integer" lar ve "single-precision floating-point number" lar ile çalışır ve bunlar da 32-bit uzunluğundadır.

Bir yazmaç (register) bir flip-flop'un birden fazla bit (tutacak) saklayacak halde geliştirilmiş halidir.

- -Yazmaçlar genellikle işlemcilerde geçici saklama işi olarak kullanılır (temporary storage).
- Ana hafızaya göre daha hızlı ve daha elverişlidir.
- Ayrıca yazmaçlar kompleks hesaplamaları hızlandırır

N-bir register

N-bir register

Örnek: Aşağıdaki özelliklere sahip 3-bitlik register yapısını tasarlayınız.

Reset	Preset	CE (clock Enable)	Q(n+1)
0	X	x	0
1	1	x	1
1	0	0	Q(n)
1	0	1	Data

Örnek: Aşağıdaki özelliklere sahip 3-bitlik register yapısını tasarlayınız.

Ayrıntılı devre şemasını çizelim.

Örnek: Aşağıdaki özelliklere sahip 3-bitlik register yapısını tasarlayınız.

Aynı devreyi 8x1 MUX ve DD FF'lar kullanarak gerçekleyelim.

Örnek: Aşağıdaki özelliklere sahip 5-bitlik sayıcı devresini tasarlayınız.

Reset	Paralel Yükleme (PY)	İleri/ <i>Geri</i>	Q(n+1)
1	X	Х	0
0	1	Х	D
0	0	1	Q(n)+1
0	0	0	Q(n)-1

Örnek: Aşağıdaki özelliklere sahip 5-bitlik sayıcı devresini tasarlayınız.

Ayrıntılı devre şemasını çizelim.

YAZMAÇ (Register)

Örnek: 3-14 Arası ileri ve geri sayma yapabilen, PY yükleme özelliğine sahip 5-bitlik sayıcı devresini tasarlayınız.

Devreyi GAL22v10 entegresine uygun olacak şekilde tasarlayalım. Wincupl programında yazılacak programa bakalım. Simülasyonunu yapalım.

WinCUPL videosu paylaşılacak!

REFERANSLAR:

- 1. 'Lojik Devreler', Tuncay UZUN Ders Notları, http://tuncayuzun.com/Dersnot_LDT.htm, 2020.
- 2. 'Lojik Devre Tasarımı', Taner ASLAN ve Rifat ÇÖLKESEN, Papatya Yayıncılık, 2013.
- 3. M. Morris Mano, Sayısal Tasarım (Çeviri), Literatür Yayıncılık: İstanbul, 2003.
- 4. 'Lojik Devreler', Prof. Dr. Ertuğrul ERİŞ Ders Notları, 1995.