(d) [5 points] Interestingly, the full-adder can also be used to add four 1-bit input tokens. This is a natural extension of the full-adder in the same way we extended the half-adder to create the full-adder itself (in part (b)). Implement the 4-input node below using only a minimum number of full-adders (FA) (i.e., the dataflow node you designed in part (b)). Hint: you may use constant input tokens if necessary.

(e) [15 points] As it turns out, any $n \geq 3$ 1-bit input binary adders can be implemented purely using full-adders. Fill in the table below for the *minimum* number of required full adders to implement an n-input 1-bit adder.

n	# required full-adders
3	1
4	3
5	3
6	4
7	4
8	7

Final Exam Page 36 of 40

12 BONUS: Branch Prediction [40 points]

Assume a processor that implements an ISA with eight registers (R0-R7). In this ISA, the main memory is byte-addressable and each word contains 4 bytes. The processor employs a branch predictor. The ISA implements the instructions given in the following table:

Instructions	Description
$la R_i$, Address	load the Address into R_i
move R_i, R_j	$R_i \leftarrow R_j$
move R_i , (R_j)	$R_i \leftarrow \operatorname{Memory}[R_j]$
move (R_i) , R_j	$Memory[R_i] \leftarrow R_j$
li R_i , Imm	$R_i \leftarrow \text{Imm}$
add R_i , R_j , R_k	$R_i \leftarrow R_j + R_k$
addi R_i , R_j , Imm	$R_i \leftarrow R_j + ext{Imm}$
$\operatorname{cmp} R_i, R_j$	Compare: Set sign flag, if $R_i < R_j$; set zero flag, if $R_i = R_j$
$\operatorname{cmp} R_i, (R_j)$	Compare: Set sign flag, if R_i < Memory $[R_j]$; set zero flag, if R_i = Memory $[R_j]$
cmpi R_i , Imm	Compare: Set sign flag, if $R_i < \text{Imm}$; set zero flag, if $R_i = \text{Imm}$.
jg label	Jump to the target address if both of sign and zero flags are zero.
jnz label	Jump to the target address if zero flag is zero.
halt	Stop executing instructions.

The processor executes the following program. Answer the questions below related to the accuracy of the branch predictors that the processor can potentially implement.

```
la RO, Array
           move R6, R0
           li R1, 4
           move R5, R1
           move R7, R1
           move R2, R0
6
           addi R2, R2, 4
   Loop:
           move R3, (R2)
           cmp R3, (R0)
10
           jg Next_Iteration
11
           move R4, (R0)
12
           move (R0), R3
           move (R2), R4
   Next_Iteration:
15
           addi R0, R0, 4
16
           addi R2, R2, 4
17
           addi R1, R1, -1
18
           cmpi R1, 0
19
           jnz Loop
20
           move R1, R7
21
           addi R5, R5,
22
23
           move R0, R6
24
           move R2, R0
           addi R2, R2, 4
25
           cmpi R5, 0
26
           jnz Loop
27
           halt
28
   .data
29
   Array: word 5, 20, 1, -5, 34
```

Final Exam Page 37 of 40

(a) [15 points] What would be the prediction accuracy using a global one-bit-history (last-time) branch predictor shared between *all* the branches? The initial state of the predictor is "taken".

Answer: 19/36.

Note that initial values of both R_1 and R_5 are 4; and they change only before the branches in lines 20 and 27 respectively. Both branches follow the pattern of T-T-T-NT, which creates a nested loop.

At each iteration of the internal loop, adjacent elements (pointed by R_0 and R_2) are swapped, if $Memory[R_0] \leq Memory[R_2]$. Then, both R_0 and R_4 are incremented by 4. So they point to the next element in the next iteration.

Therefore, the code sorts the elements in *Array* in increasing order.

Table below shows the behavior of each branch through the code. Here T means that the corresponding branch is taken at specified turn, whereas N indicates that it is not taken.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Line11	Т		N		N		Т			N		N		Т		Т		
Line20		\mathbf{T}		\mathbf{T}		\mathbf{T}		N			\mathbf{T}		\mathbf{T}		\mathbf{T}		N	
Line 27									${\rm T}$									${ m T}$
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Line11	19 N	20	21 T	22	23 T	24	25 T	26	27	28 T	29	30 T	31	32 T	33	34 T	35	36
Line11 Line20	_	20 T		22 T		24 T		26 N	27		29 T		31 T		33 T		35 N	36

One-bit-history branch predictor suggests that the next branch's behavior will be the same with the last one. Table below shows the predictor states, hits, and misses through the execution.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Predictor State	Т	Τ	Т	N	Т	N	T	Τ	N	Т	N	Т	N	T	\overline{T}
Branch Behavior	T	${\rm T}$	N	\mathbf{T}	N	${\rm T}$	${\rm T}$	N	\mathbf{T}	N	${\rm T}$	N	\mathbf{T}	${\rm T}$	${ m T}$
$\mathrm{Hit}/\mathrm{Miss}$	Н	Η	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	Η	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{H}	Η
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Predictor State	Т	Τ	Ν	Τ	N	Τ	Τ	Τ	Τ	Τ	Τ	Ν	Τ	Τ	T
Branch Behavior	T	N	\mathbf{T}	N	${ m T}$	${\rm T}$	${\rm T}$	\mathbf{T}	\mathbf{T}	${\rm T}$	N	\mathbf{T}	\mathbf{T}	${\rm T}$	${ m T}$
$\mathrm{Hit}/\mathrm{Miss}$	Н	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{M}	\mathbf{H}	\mathbf{H}	Η	\mathbf{H}	\mathbf{H}	\mathbf{M}	\mathbf{M}	Η	\mathbf{H}	Η
,															
	31	32	33	34	35	36									
Predictor State	Т	Т	Т	Т	Τ	N									
Branch Behavior	Т	${ m T}$	${ m T}$	Τ	N	N									
$\mathrm{Hit/Miss}$	Н	\mathbf{H}	\mathbf{H}	Η	\mathbf{M}	\mathbf{H}									

Final Exam Page 38 of 40

Initials: Solutions

(b) [15 points] What would be the prediction accuracy using a global two-bit-history (two-bit counter) branch predictor shared between all the branches? Assume that the initial state of the two-bit counter is "weakly taken". The "weakly taken" state transitions to the "weakly not-taken" state on misprediction. Similarly, the "weakly not-taken" state transitions to the "weakly taken" state on misprediction. A correct prediction in one of the "weak" states transitions the state to the corresponding "strong" state.

Answer: 26/36.

Explanation:

Table below shows the predictor states, hits, and misses through the code. Used abbreviations are as follows: ST: Strongly Taken, WT: Weakly Taken, WN: Weakly Not-taken, SN: Strongly Not-taken.

Branch behavior is the same with question (a), since both of them are shared predictors.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Predictor State	WT	ST	ST	WT	ST	WT	ST	ST	WT	ST	WT	ST	WT	ST
Branch Behavior	Т	\mathbf{T}	N	${ m T}$	N	${ m T}$	Τ	N	${ m T}$	N	${ m T}$	N	${ m T}$	T
$\mathrm{Hit}/\mathrm{Miss}$	Н	Η	\mathbf{M}	\mathbf{H}	Μ	Η	Η	\mathbf{M}	\mathbf{H}	\mathbf{M}	\mathbf{H}	Μ	\mathbf{H}	H
	15	16	17	18	19	20	21	22	23	24	25	26	27	28
Predictor State	ST	ST	ST	WT	ST	WT	ST	ST	ST	ST	ST	ST	WT	ST
Branch Behavior	Γ	\mathbf{T}	N	${ m T}$	N	${ m T}$	Τ	${ m T}$	${ m T}$	\mathbf{T}	${ m T}$	N	${ m T}$	Γ
$\mathrm{Hit}/\mathrm{Miss}$	Н	Η	\mathbf{M}	\mathbf{H}	Μ	Η	Η	\mathbf{H}	\mathbf{H}	Η	\mathbf{H}	Μ	\mathbf{H}	H
	29	30	31	32	33	34	35	36						
Predictor State	ST	ST	ST	ST	ST	ST	ST	WT						
Branch Behavior	Т	\mathbf{T}	\mathbf{T}	${ m T}$	\mathbf{T}	${ m T}$	N	N						
$\mathrm{Hit}/\mathrm{Miss}$	Н	Η	Η	Η	Η	Η	\mathbf{M}	\mathbf{M}						

Final Exam Page 39 of 40