Введение в комбинаторику и дискретную математику Лекция 4

Проф. Андрей Фролов

План

Рекуррентность

- Базовые понятия
- Числа Фибоначчи
- Рекуррентные соотношения
 - Линейные однородные порядка 2
 - ullet Линейные однородные порядка k

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

```
010010100010 +
```

000000100001 +

000001100000 -

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

Пусть F(n) – общее число таких строк.

Пусть $F_0(n)$ – число таких строк, заканчивающихся на 0.

Пусть $F_1(n)$ – число таких строк, заканчивающихся на 1.

$$F(n) = F_0(n) + F_1(n)$$

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

 $F_0(1)=1$, так как есть только одна строка длины 1, заканчивающаяся на 0: 0

 $F_1(1)=1$, , так как есть только одна строка длины 1, заканчивающаяся на 1: 1

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

 $F_0(2) = 2$, так как есть две строки длины 2,

заканчивающаяся на 0: 00, 10

 $F_1(2) = 1$, так как есть только одна строка длины 2,

заканчивающаяся на 1: 01

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

Добавим 0 к строке длины n:

Следовательно,
$$F_0(n+1) = F_0(n) + F_1(n)$$
.

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

Можем добавить 1 только к строке, заканчивающуюся на 0:

Следовательно, $F_1(n+1) = F_0(n)$

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

Так как
$$F_0(n+1) = F_0(n) + F_1(n) \& F_1(n+1) = F_0(n)$$
,
Имеем $F_0(n+1) = F_0(n) + F_0(n-1)$.

Или
$$F_0(n+2) = F_0(n+1) + F_0(n)$$
, где $F_0(1) = 1$, $F_0(2) = 2$.

Пример

Сколько бинарных строк длины n, в которых нет двух подряд 1.

Пусть F(n) – общее число таких строк.

Пусть $F_0(n)$ – число таких строк, заканчивающихся на 0.

Пусть $F_1(n)$ – число таких строк, заканчивающихся на 1.

$$F(n) = F_0(n) + F_1(n)$$

Где
$$F_1(n+1) = F_0(n)$$
, $F_0(n+2) = F_0(n+1) + F_0(n)$, $F_1(1) = 1$, $F_0(1) = 1$, $F_0(2) = 2$

Определение (общее понятие)

Рекурсией называется концепция, когда некоторое определение или некоторый процесс зависит от более простой версии самой себя.

$$F_0(n+2) = F_0(n+1) + F_0(n)$$
, где $F_0(1) = 1$, $F_0(2) = 2$

Определение

Последовательностью является функцией (отображением) из подмножества множества натуральных чисел (обычно $\{0,1,2,\ldots\}$ или $\{1,2,3,\ldots\}$ в некоторое множество.

1.
$$a_n = (-1)^n$$
, где $n \in \{1, 2, 3, \ldots\}$

$$-1, 1, -1, 1, -1, 1, \dots$$

2.
$$a_n = 2^n$$
, где $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$

$$1, 2, 4, 8, 16, 32, \dots$$

Определение

Арифметическая прогрессия – это последовательность вида

$$a_0, a_0 + d, a_0 + 2d, \ldots, a_0 + nd, \ldots$$

$$a_n = a_0 + nd, n \in \mathbb{N}$$

•
$$a_n = -10 + 5n$$

$$-10, -5, 0, 5, 10, 15, \dots$$

Определение

Геометрическая прогрессия – это последовательность вида

$$a_0, a_0 \cdot t, a_0 \cdot t^2, \ldots, a_0 \cdot t^n, \ldots$$

$$a_n = a_0 \cdot t^n, n \in \mathbb{N}$$

•
$$a_n = (-2)^n$$

$$1, -2, 4, -8, 16, -32, \dots$$

Определение

Говорим, что n-ый элемент последовательности $\{a_n\}$ определяется **рекурсивно**, если он выражается черезпредыдущие элементы и некоторое число начальных элементов.

- Рекурсивно: $a_0 = 1, a_{n+1} = a_n + 2$
- Перечислением: 1, 3, 5, 7, . . .
- Формулой (не рекурсивно): $a_n = 1 + 2n$

Арифметическая прогрессия

- Рекурсивно: a_0 ; $a_{n+1} = a_n + d$
- ullet Перечислением: $a_0, a_0 + d, a_0 + 2d, \dots, a_0 + nd, \dots$
- ullet Формулой (не рекурсивно): $a_n = a_0 + nd, n \in \mathbb{N}$

Геометрическая прогрессия

- Рекурсивно: a_0 ; $a_{n+1} = a_n t$
- Перечислением: $a_0, a_0 \cdot t, a_0 \cdot t^2, \dots, a_0 \cdot t^n, \dots$
- ullet Формулой (не рекурсивно): $a_n = a_0 \cdot t^n, n \in \mathbb{N}$

Примеры

- 1 Рекурсивно: $a_0 = -1, a_{n+1} = 3a_n$
 - Перечислением: $-1, -3, -9, -27, \dots$
 - Формулой (не рекурсивно): $a_n = -3^n$

- Рекурсивно: $f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n$
 - Перечислением: 0, 1, 1, 2, 3, 5, 8, 13...
 - Формулой (не рекурсивно):

$$f_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight)$$

План

Рекуррентность

- Базовые понятия
- Числа Фибоначчи
- Рекуррентные соотношения
 - Линейные однородные порядка 2
 - ullet Линейные однородные порядка k

Определение

- Рекурсивно: $f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n$
- Перечислением: 0, 1, 1, 2, 3, 5, 8, 13...
- Формулой (не рекурсивно):

$$f_n = rac{1}{\sqrt{5}} \left(\left(rac{1+\sqrt{5}}{2}
ight)^n - \left(rac{1-\sqrt{5}}{2}
ight)^n
ight)^n \Phi_0 p \gamma_3 q q \qquad \sigma_5 q q q$$

Задача о кроликах (Леонардо Пизанский, 1202 г.)

- Новорожденная пара кроликов начинает давать потомство через месяц;
- взрослая пара кроликов раз в месяц производит на свет одну новорожденную пару;
 ли∽ (*** по 2 → 2.12
- изначально есть одна новорожденная пара кроликов.
- Сколько кроликов будет через год?

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Доказательство (по индукции)

Базис индукции. 1) n = 0

$$f_0 = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^0 - \left(\frac{1-\sqrt{5}}{2}\right)^0}{\sqrt{5}} = \frac{1-1}{\sqrt{5}} = 0$$

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Доказательство (по индукции)

Базис индукции. 2) n = 1

$$f_1 = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^1 - \left(\frac{1-\sqrt{5}}{2}\right)^1}{\sqrt{5}} =$$

$$=\frac{1+\sqrt{5}-(1-\sqrt{5})}{2\sqrt{5}}=\frac{2\sqrt{5}}{2\sqrt{5}}=1$$

Доказательство (по индукции)

Предположение индукции. Предположим, что для всех $m \in \{0, 1, \dots, k\}$, $k \ge 1$, формула верна, т.е.

$$f_m = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^m - \left(\frac{1-\sqrt{5}}{2}\right)^m}{\sqrt{5}}$$

Доказательство (по индукции)

extstyleetaг индукции. Докажем для n=k+1

$$f_{k+1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\sqrt{5}}$$

Доказательство (по индукции)

Так как $f_{k+1} = f_k + f_{k-1}$, имеем

$$f_{k+1} = f_k + f_{k-1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}$$

$$+\frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}$$

$$f_{k+1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}}{\sqrt{5}}$$

$$\frac{\left(\frac{1+\sqrt{5}}{2}\right)^k + \left(\frac{4+\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} - \frac{\left(\frac{1-\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}}}{\sqrt{5}}$$

$$= \frac{1}{\sqrt{5}} \left(\frac{\left(\frac{4+\sqrt{5}}{2}\right)^k}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^k \cdot \frac{3-\sqrt{5}}{2}}{2}$$

$$\frac{3+\sqrt{5}}{2} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k}{2^2}$$

$$\frac{1+2\sqrt{5}+5}{2\cdot 2} = \frac{3+\sqrt{5}}{2}$$

Доказательство (по индукции)

Тогда

$$\begin{split} f_{k+1} &= \frac{\left(\frac{1+\sqrt{5}}{2}\right)^k - \left(\frac{1-\sqrt{5}}{2}\right)^k}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \\ &= \frac{\left(\frac{1+\sqrt{5}}{2}+1\right)\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}+1\right)\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \\ &= \frac{\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{3-\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \end{split}$$

Доказательство (по индукции)

$$f_{k+1} = \frac{\left(\frac{3+\sqrt{5}}{2}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{3-\sqrt{5}}{2}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^2\left(\frac{1+\sqrt{5}}{2}\right)^{k-1} - \left(\frac{1-\sqrt{5}}{2}\right)^2\left(\frac{1-\sqrt{5}}{2}\right)^{k-1}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\sqrt{5}} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{k+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{k+1}}{\sqrt{5}} = \frac{1+2\sqrt{5}+5}{4} = \frac{3+\sqrt{5}}{2}$$

Доказательство (по индукции)

Заключение Следовательно, для любого *п* верно, что

$$f_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}$$

Упражнения (используйте мат. индукцию)

1
$$F_k F_t + F_{k-1} F_{t-1} = F_{k+t-1}$$

2
$$F_1 + F_2 + \cdots + F_n = F_{n+2} - 1$$

3
$$F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}$$

4
$$F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1$$

```
1 F_k F_t + F_{k-1} F_{t-1} = F_{k+t-1}
  K. Gepro K+1
 Fuel Fe + Fu Fe-1 = Fuet = Free-1 + Fuet-2
 FK F+ + FK, F+ = FK+1
Fuel Fe + Fu Fe-, = FK Fe + FK, Fe + FK, Fe-, + Fx- F.
                    (FK F4 + FK-1 F4-1) + (FK-1F4+FK-1F4-1) = FK++1, + F- = FK++2
                         = F<sub>K++-1</sub> = F<sub>K-1+++</sub>
2 F_1 + F_2 + \cdots + F_n = F_{n+2} - 1
2.) Mycro lupus gre
gu nec:
 F, + ... + Fn + Fn =
 Fn+2 - 1 + Fn+1 = Fms -1
3 F_1 + F_3 + \cdots + F_{2n-1} = F_{2n}
Myon que n
Mes:
   F1 + ... + F2n-1 + F2n+1 = F2n + F= F = F2n+2 = F2(nex)
4 F_2 + F_4 + \cdots + F_{2n} = F_{2n+1} - 1
5M n=n+[:
   FL + Fy + ... + Fin + Finer - 1 + Finer = Finer - 1 = Finer - 1
```

План

Рекуррентность

- Базовые понятия
- Числа Фибоначчи
- Рекуррентные соотношения
 - Линейные однородные порядка 2
 - ullet Линейные однородные порядка k

Линейные однородные рекурсии порядка 2

Определение

Последовательность a_0, a_1, a_2, \ldots называется линейной однородной рекурсивной последовательностью (порядка k), если

$$Q_{n+k} = \sum_{i=1}^{k} t_i \cdot Q_{n+k-i}$$

$$a_{n+k} = t_1 \cdot a_{n+k-1} + \cdots + t_k \cdot a_n = \sum_{i=1}^{k} t_i \cdot a_{n+k-i}, (*)$$

где t_i – некоторые фиксированные коэффициенты.

(*) называется <u>линейным однородным рекурсивным</u> соотношением/уравнением

$$a_{n+2} = a_{n+1} + a_n$$

Определение

Последовательность x_0, x_1, x_2, \ldots называется частичным решением рекурсивного соотношения

$$a_{n+k} = t_1 \cdot a_{n+k-1} + \cdots + t_k \cdot a_n,$$

если соотношение верно для $a_n = x_n$.

Пример

$$a_{n+2} = a_{n+1} + a_n$$

$$0, 1, 1, 2, 3, 5, 8, 13, \dots$$

Определение

Для рекурсивного соотношения $a_{n+k}=t_1\cdot a_{n+k-1}+\cdots+t_k\cdot a_n$ следующая функция называется характеристической

$$\chi(\lambda) = \lambda^k - t_1 \lambda^{k-1} - t_2 \lambda^{k-2} - \dots - t_{k-1} \lambda^1 - t_k.$$

Пример

$$a_{n+2} = a_{n+1} + a_n$$

$$a_{n+2} - a_{n+1} - a_n = 0$$

$$\chi(\lambda) = \lambda^2 - \lambda - 1$$

Лемма

Дано $a_{n+k} = t_1 \cdot a_{n+k-1} + \cdots + t_k \cdot a_n$. Пусть p – корень характеристического многочлена $\chi(\lambda)$. Тогда

$$1, p, p^2, \ldots, p^n, \ldots$$

является решением для a_n .

Доказательство

Имеем $\chi(p)=0$. Следовательно,

$$p^{n+k} - \sum_{i=1}^k t_i p^{n+k-i} = p^n \left(p^k - \sum_{i=1}^k t_i p^{k-i} \right) = p^n \chi(p) = 0$$

Таким образом,
$$p^{n+k} = \sum_{i=1}^k t_i p^{n+k-i}$$
.

 $P^{n+R} - \sum_{i=1}^{n} t_i P^{k-i} = P^{n} \left(P^{k} - \sum_{i=1}^{n} t_i P^{k-i} \right) = P^{n} \cdot \chi \left(p \right) = 0$ $P^{k} = \sum_{i=1}^{n} t_i P^{k-i} = t_i P^{k-i} + t_2 P^{k-2} + ... + t_K$ $\mathcal{X}(k) = \lambda^{k} - \epsilon_{1} - \epsilon_{2}\lambda - \epsilon_{1}\lambda^{2} - \dots - \epsilon_{1k}\lambda^{k-1}$ $P^{k} = t_{1} P^{n+k-r} + t_{2} P^{n+k-2} + \dots + t_{k} P^{n-k-2}$ $P^{k} = t_{1} P^{n-r} + t_{2} P^{k-2} + \dots + t_{k} P^{n-k-2}$ $Q_{n+k} = t_{7} Q_{n+k-r} + t_{2} Q_{n+k-2} + \dots + t_{k} Q_{n}$ $To iga \qquad Ci_{n} = P^{n}$ uneen Parch. Be Kropuse no-30 W, Cocrolage 43 peuso. Cin+K + t, Cin+K-1 + ... + t Cin = 0

Лемма

Дано $a_{n+k} = t_1 \cdot a_{n+k-1} + \cdots + t_k \cdot a_n$. Пусть p – корень характеристического многочлена $\chi(\lambda)$. Тогда

$$1, p, p^2, \ldots, p^n, \ldots$$

является решением для a_n .

Пример

$$a_{n+2} = a_{n+1} + a_n, \chi(\lambda) = \lambda^2 - \lambda - 1, \ p = \frac{1 + \sqrt{5}}{2}$$

$$1, \frac{1 + \sqrt{5}}{2}, \left(\frac{1 + \sqrt{5}}{2}\right)^2, \left(\frac{1 + \sqrt{5}}{2}\right)^3, \dots$$

Лемма

Пусть последовательности x_0, x_1, x_2, \ldots и y_0, y_1, y_2, \ldots являются решениями некоторого линейного однородного рекуррентного соотношения. Тогда

 $\alpha x_0 + \beta y_0, \alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2, \dots$ также явлется решением этого рекуррентного соотношения.

Очевидно?

an+k+ t, an+k-1+ t, an+k-2+ ... + tkan =0 $X: X_0 + \ell_1 X_{n+k-1} + \dots + \ell_k X_k = 0 \quad | \cdot \lambda$ $Y: Y_0 + \ell_1 Y_{n+k-1} + \dots + \ell_k Y_k = 0 \quad | \cdot \lambda$ => (Lxo+Ax) + tr (Lxnox-,+ p gnox-,)+...+ tr (Lxx+pgn) =0 Pavotas

Теорема (общее решение)

Пусть $a_{n+2}=t_1\cdot a_{n+1}+t_2\cdot a_n$, где $t_1^2+t_2^2\neq 0$. И пусть p_1,p_2- два корня характеристического многочлена $\chi(\lambda)$. Тогда

- 1) Если $p_1
 eq p_2$, то любое решение имеет вид
- $x_n = \alpha \cdot p_1^n + \beta \cdot p_2^n$;
- 2) если $p_1 = p_2$, то любое решение имеет вид

$$x_n = (\alpha \cdot n + \beta) \cdot p_1^n.$$

Пример

$$a_{n+2} = a_{n+1} + a_n, \chi(\lambda) = \lambda^2 - \lambda - 1, \frac{1+\sqrt{5}}{2} \neq \frac{1-\sqrt{5}}{2}$$

$$a_n = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

```
nopegua 2
                                     t, 2++,2 =0 => (t, t) = (0,0)
  anz = t, anz + + an
 \chi_{-(\lambda)} = \lambda^2 - \xi_1 \lambda - \xi_2 = 0 = \lambda = P_2
1)
| an=2 = t : an=1 + t . an
 P, = +, P, + + 2 P,
                                     an = LP + 1>P"
   P2 = + P2 + + 2 P2
 2) P1=P2=P
             \lambda^2 = \epsilon_{\tau} \lambda + \epsilon_{\tau}
          \mathcal{X}(\lambda) = \lambda^2 - t_1 \lambda - t_2 = (\lambda - P_1)(\lambda - P_2) = P_1 = P_2 = (\lambda - P_1)^2
                 \lambda^2 - 2\lambda P + P^2
                  t,= LP t_=-P2
    an+2 = +1 an+1 + 6, an = 2p an+1 - p2 an // Nogcioben an=npn
    an = 2 p = (n+1) - p = (n+1) p = (n+1) p = 1
      an = (Lnep)pa
  and = 2 (Ln. ATA) p" - & (Anon) pa
   anel = (2-4n+24+2p-2n-13/p"+2
  an== (dn+2d+/3) p ===
   can = Qn+BJP
```

Доказательство

1) Пусть $p_1 \neq p_2$. Из леммы выше $x_n = \alpha \cdot p_1^n + \beta \cdot p_2^n$ является решением.

Пусть $\{y_0, y_1, y_2, \ldots\}$ – любое другое решение.

$$\begin{cases} \alpha \cdot p_1^0 + \beta \cdot p_2^0 &= y_0 \\ \alpha \cdot p_1^1 + \beta \cdot p_2^1 &= y_1 \end{cases} \Rightarrow \alpha = \frac{y_0 p_2 - y_1}{p_2 - p_1}, \beta = \frac{y_1 - p_1 y_0}{p_2 - p_1}$$

Так как $y_{n+2} = t_1 \cdot y_{n+1} + t_2 \cdot y_n$, остальные y_n однозначно определены по y_0 и y_1 . Следовально, решение $\{y_0, y_1, y_2, \ldots\}$ описывается формулой $x_n = \alpha \cdot p_1^n + \beta \cdot p_2^n$.

Доказательство

2) Пусть
$$p_1 = p_2 = p$$
, $\chi(\lambda) = \lambda^2 - t_1 \lambda - t_2 = (\lambda - p)^2$. Тогда

$$t_1=2p, t_2=-p^2.$$

Покажем, что np^n также является решением:

$$t_1a_{n+1} + t_2a_n = 2p(n+1)p^{n+1} - p^2np^n =$$

$$=2(n+1)p^{n+2}-np^{n+2}=(n+2)p^{n+2}=a_{n+2}$$

Доказательство

2) Таким образом, $x_n = (\alpha \cdot n + \beta) \cdot p_1^n$ является решением. Пусть $\{y_0, y_1, y_2, \ldots\}$ –другое решение.

$$\begin{cases} (\alpha \cdot 0 + \beta) \cdot p^0 &= y_0 \\ (\alpha \cdot 1 + \beta) \cdot p^1 &= y_1 \end{cases} \Rightarrow \alpha = \frac{y_1 - py_0}{p}, \beta = y_0$$

Так как $y_{n+2} = t_1 \cdot y_{n+1} + t_2 \cdot y_n$, остальные y_n однозначно определены по y_0 и y_1 . Следовально, решение $\{y_0, y_1, y_2, \ldots\}$ описывается формулой $x_n = (\alpha \cdot n + \beta) \cdot p_1^n$.

$$f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n$$

$$\chi(\lambda) = \lambda^2 - \lambda - 1$$

$$p_1 = \frac{1+\sqrt{5}}{2}, p_2 = \frac{1-\sqrt{5}}{2}$$

Общее решение

$$f_n = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^n + \beta \left(\frac{1-\sqrt{5}}{2}\right)^n$$

Так как
$$f_0 = 0, f_1 = 1$$

$$\begin{cases} 0 = f_0 = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^0 + \beta \left(\frac{1-\sqrt{5}}{2}\right)^0 = \alpha + \beta \\ 1 = f_1 = \alpha \left(\frac{1+\sqrt{5}}{2}\right)^1 + \beta \left(\frac{1-\sqrt{5}}{2}\right)^1 \end{cases}$$

Или
$$egin{cases} eta=&-lpha\ 1=&lpha\left(rac{1+\sqrt{5}}{2}
ight)-lpha\left(rac{1-\sqrt{5}}{2}
ight) \end{cases}$$

$$\beta = -\alpha$$

$$1 = \alpha \left(\frac{1 + \sqrt{5}}{2} - \frac{1 - \sqrt{5}}{2} \right) = \alpha \frac{2\sqrt{5}}{2} = \alpha \sqrt{5}$$

$$\begin{cases} \alpha = & \frac{1}{\sqrt{5}} \\ \beta = - & \frac{1}{\sqrt{5}} \end{cases}$$

$$f_0 = 0, f_1 = 1, f_{n+2} = f_{n+1} + f_n$$

Частичное/частное решение

$$f_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

Алгоритм

 $a_{n+2} = t_1 \cdot a_{n+1} + t_2 \cdot a_n$ – дано рекурсивное соотношение порядка 2.

1) Найдем характеристический многочлен (заменой $a_{n+i} \to \lambda^i$):

$$\chi(\lambda) = \lambda^2 - t_1 \lambda^1 - t_2.$$

- $^{2})$ Найдем его корни: p_{1} и p_{2}
- 3) если $p_1 \neq p_2$, то общее решение: $a_n = \alpha_1 \cdot p_1^n + \alpha_2 \cdot p_2^n$;
 - если $p_1 = p_2$, то общее решение: $a_n = (\alpha_1 \cdot n + \alpha_2) \cdot p_1^n$.
- 4^*) Используя a_0 и a_1 , найдем $lpha_1$ and $lpha_2$

Примеры

1
$$a_{n+2} - 2a_{n+1} + a_n = 0$$

$$\chi(x) = x^2 - 2x + 1 = 0$$

один корень p=1 кратности 2 $(p_1=1,p_2=1)$

Общее решение:
$$a_n = (\alpha_1 + \alpha_2 n)1^n = \alpha_1 + \alpha_2 n$$

Примеры

$$a_{n+2} - a_n = 0$$

$$\chi(x) = x^2 - 1 = 0$$

Два корня
$$p_1 = 1, p_2 = -1$$

Общее решение:
$$a_n = \alpha_1 1^n + \alpha_2 (-1)^n = \alpha_1 + \alpha_2 (-1)^n$$

План

Рекуррентность

- Базовые понятия
- Числа Фибоначчи
- Рекуррентные соотношения
 - Линейные однородные порядка 2
 - ullet Линейные однородные порядка k

Любой порядок

$$a_{n+5} = -3a_{n+4} + 4a_{n+3} + 16a_{n+2} - 16a_n$$

$$\lambda^5 + 3\lambda^4 - 4\lambda^3 - 16\lambda^2 + 16 = 0$$

$$p_1 = -2, p_2 = -2, p_3 = -2, p_4 = 1, p_5 = 2$$

Общее решение

$$a_n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2)(-2)^n + \alpha_4 1^n + \alpha_5 2^n$$

Теорема

Пусть p_1, \ldots, p_s – различные корни многочлена $\chi(x)$ для соотношения $a_{n+k} = t_1 \cdot a_{n+k-1} + \cdots + t_k \cdot a_n$.

Причем, p_1 имеет кратность r_1 , . . . , p_s имеет кратность r_s и $r_1+\cdots r_s=k$

Тогда общее решение этого соотношения имеет вид

$$\sum_{j=1}^{s} (\alpha_{j,0} + \alpha_{j,1}n + \cdots + \alpha_{j,r_j-1}n^{r_j-1})p_j^n$$

$$\sum_{j=1}^{s} (\alpha_{j,0} + \alpha_{j,1}n + \cdots + \alpha_{j,r_j-1}n^{r_j-1})p_j^n$$

Любой порядок

$$a_{n+5} = -3a_{n+4} + 4a_{n+3} + 16a_{n+2} - 16a_n$$

$$p_1 = -2, p_2 = -2, p_3 = -2, p_4 = 1, p_5 = 2$$
 кратность 3

Общее решение

$$a_n = (\underbrace{\alpha_1 + \alpha_2 n + \alpha_3 n^2}_{\text{кратность 3}})(-2)^n + \alpha_4 1^n + \alpha_5 2^n$$

Пример

$$a_{n+5} - 32a_n = 0$$

$$\chi(x) = x^5 - 32 = 0$$

один корень p = 2 кратности 5

Общее решение:
$$a_n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2 + \alpha_4 n^3 + \alpha_5 n^4)2^n$$

Пример

Общее решение:
$$a_n = (\alpha_1 + \alpha_2 n + \alpha_3 n^2 + \alpha_4 n^3 + \alpha_5 n^4)2^n$$
 Пусть $a_0 = 1, a_1 = 2, a_2 = 3, a_3 = 4, a_4 = 5$. Тогда

$$\begin{cases} 1 = a_0 = & (\alpha_1 + \alpha_2 0 + \alpha_3 0^2 + \alpha_4 0^3 + \alpha_5 0^4) 2^0 \\ 2 = a_1 & (\alpha_1 + \alpha_2 1 + \alpha_3 1^2 + \alpha_4 1^3 + \alpha_5 1^4) 2^1 \\ 3 = a_2 & (\alpha_1 + \alpha_2 2 + \alpha_3 2^2 + \alpha_4 2^3 + \alpha_5 2^4) 2^2 \\ 4 = a_3 & (\alpha_1 + \alpha_2 3 + \alpha_3 3^2 + \alpha_4 3^3 + \alpha_5 3^4) 3^2 \\ 5 = a_4 & (\alpha_1 + \alpha_2 4 + \alpha_3 4^2 + \alpha_4 4^3 + \alpha_5 4^4) 4^2 \end{cases}$$

Решаем и находим $\alpha_1, \alpha_2, \alpha_3, \alpha_4, \alpha_5$

Спасибо за внимание!

$$\begin{cases} \alpha_{n+1} = \alpha_n - \beta_n \\ \beta_{n+1} = 2\alpha_n + \beta_n \end{cases}$$

$$\alpha_{n+1} = \alpha_n - (\beta_{n+1} - 2\alpha_n)$$

```
a) an 1 = - 14,
                λ = -3
  a_n = \lambda \cdot \lambda^n = \lambda (-1)^n
              (1) C_{1} = 1 
(2) C_{1} = 1
(3) C_{2} = 1
(4) C_{2} = 1
(5) C_{1} = 1
(7) C_{2} = 1
(8) C_{2} =
                                          an = 2 (Ji)"+ 15 (-Ji)"
                  B) ans = 8 an
                   y<sub>2</sub> = 8
                   13-8=0
   3-23 =0
    (\lambda - 2)(\lambda^2 + 2\lambda + 4) = 0
\begin{bmatrix} \lambda = \frac{2 \pm \sqrt{4 - 16}}{2} = -1 \pm \sqrt{3} \end{bmatrix} i
\lambda = 2
                an = 2.2" + B(-1-5i)"+ } (-1+vsi)"
   2) Cin+s = 3 cin+2 + 4 cin+6 - 12 cin
   \lambda^3 = 3\lambda^2 \rightarrow 4\lambda - 72
          \lambda^3 - 3\lambda^2 - 7\lambda + 12 = 0
  λ(λ²-4)-3(λ²-4)=0
                                                                                                                                                                                 an = d.3 + B. 2 + f (-2)
  (\lambda - 3)(\lambda - 2)(\lambda + 2) = 0
```

NZ	
C ₁) C ₁ = 1	
$q_{n+2} = 3q_{n+1} - 2q_n$	
$\lambda^2 = 3\lambda - 2$	
$\lambda^2 - 3\lambda + 2 = 0$	
λ²-λ-21+2=5	
λ (λ-1) -2 (λ-1)=	
$(\lambda - z)(\lambda \cdot L) = 0$ $\alpha_n = \xi^{n}$	2" + 7.1"
(V-5) (V-T) -0 (V=2)	
(3 111 2	9
(1 = 5" + 2	
\(\bar{3} = \bar{2}\bar{7} + \hat{7}	
2 = 3"	
-1 = 7	
$\alpha_n = 2 \cdot 2^n - 1 \cdot 1^n$	
V) a = 2	
G, = 1	
$\alpha_{n+2} = 4 \alpha_{n+1} - 4 \alpha_n$	
) = 4 / -4	
λ ² - 4λ + 4 = 0	$\left(2 = \lambda_1 + \lambda_2 \cdot 0 \qquad d_1 = 2\right)$
	$\begin{cases} 2 = \lambda_1 + \lambda_2 \cdot 0 & d_1 = 2 \\ 1 = (d_1 + d_2 \cdot 1) \cdot 2 & d_2 = 2 \end{cases}$
$(\lambda - 1)(\lambda - 1) = 0$	
	1 = 7 + 2 d ₂
$q_n = (\lambda_1 + \lambda_2 n) \cdot 2^n$	$-\frac{1}{2} = 2$
	$=) \left(a_n = \left(2 - \frac{3}{2}n\right) \cdot 2^n\right)$
	-, (2) - (2 - 7,4) - 5

$$\begin{array}{l} \frac{MS}{Q} \\ Q_{1} & = 2q_{0} + \theta_{1} \\ & = q_{n} - \theta_{n} \\ Q_{1} & = 2q_{n+1} + \theta_{n+1} \\ Q_{1} & = 2q_{n+1} + q_{n} - (q_{1}q_{1} - 2q_{n}) \\ Q_{1} & = 2q_{n+1} + q_{n} - q_{n}q_{1} + 2q_{n} \\ Q_{1} & = 2q_{n}q_{1} + 3q_{n} \\ \lambda^{2} & = \lambda + 3 \\ \lambda^{1} & = \lambda +$$