4. 識別 一統計的手法一

• 数值特徵

・最大事後確率則による識別

$$C_{MAP} = rg \max_{i} P(\omega_{i} | \boldsymbol{x})$$
 \boldsymbol{x} :特徴ベクトル ω_{i} $(1 \leq i \leq c)$: クラス

- データから直接的にこの確率を求めるのは難しい
- ベイズの定理 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\boldsymbol{x})$$

$$= \arg \max_{i} \frac{P(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= \arg \max_{i} P(\boldsymbol{x}|\omega_{i})P(\omega_{i})$$

- ベイズ統計とは
 - 結果から原因を求める
 - ベイズ識別
 - 観測結果 x から、それが生じた原因 ω_{i} を求める
 - 通常、確率が与えられるのは原因→結果(尤度)
 - ベイズ識別では、事前分布 $P(\omega_i)$ が、観測によって事後分布 $P(\omega_i | \mathbf{x})$ に変化したと考えることができる

- 例題 4.1 観測からの原因の計算
 - 1.白玉が出る確率は
 - 2.白玉が出たときの箱 A の確率は
 - 3.事前確率が 9:1 のときの 2 の確率は

- Weka Bayes net editor を用いた解法
 - 起動画面から Tools → Bayes net editor
 - Tools → Show Margins で確率値が見えるように
 - Edit → Add node で確率変数にあたるノードを配置
 - Name に確率変数名
 - Cardinality は取り得る値の数 (真偽値ならば 2)
 - 結果ノードを右クリックし、 Add parent で原因を 指定
 - Edit CPT で条件付き確率を設定
 - 観測結果を設定するときは Set evidence

Weka Bayes net editor を用いた解法

- 事前確率 $P(\omega_i)$
 - 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス ω_i のデータ数

- 尤度 $P(x|\omega_i)$
 - 特定のクラスから、ある特徴ベクトルが出現する尤もらしさ
- d 次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

4.2 ベイズ識別

4.2.1 学習データの対数尤度

- データの尤度
 - データを生成するモデルを考え、そのモデルがパラ メータ θ に従ってデータを生成していると仮定

$$P(oldsymbol{x}|\omega_i,oldsymbol{ heta})$$
 以後、1 クラス分のデータを全データとみなす

- 全データは、それぞれ独立に生成されていると仮定
 - i.i.d (independent and identically distributed)

$$P(D|\boldsymbol{\theta}) = \prod_{i=1}^{N} P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

4.2.1 学習データの対数尤度

- 対数尤度
 - 確率の積のアンダーフローを避けるため、対数尤度 で計算

$$\mathcal{L}(D) = \log P(D|\boldsymbol{\theta}) = \sum_{i=1}^{N} \log P(\boldsymbol{x}_i|\boldsymbol{\theta})$$

4.2.1 学習データの対数尤度

- 最尤推定法
 - 特徴ベクトルが 1 次元、値 0 or 1 で、ベル ヌーイ分布に従うと仮定
 - ベルヌーイ分布:確率 θ で値 1 、確率 1- θ で値 0 をとる分布

$$\mathcal{L}(D) = \sum_{i=1}^{N} \log \theta^{x_i} (1 - \theta)^{1 - x_i}$$

$$= \sum_{i=1}^{N} x_i \log \theta + (N - \sum_{i=1}^{N} x_i) \log(1 - \theta)$$

4.2.1 学習データの対数尤度

• 対数尤度を最大にするパラメータ

•
$$\frac{d\mathcal{L}(D)}{d\theta} = 0$$
 の解を求める

$$\hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} x_i$$
 値 x_i をとる回数を全データ数で割ったもの

4.2.2 ナイーブベイス識別

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d | \omega_i)$$

$$\approx \prod_{j=1}^d P(x_j | \omega_i)$$

$$C_{NB} = \arg \max_i P(\omega_i) \prod_{j=1}^d P(x_j | \omega_i)$$

4.2.2 ナイーブベイス識別

• 尤度の最尤推定

$$P(x_j|\omega_i) = \frac{n_{ij}}{n_i}$$

 n_{ij} : クラス ω_i のデータのうち、j 次元目の値が x_i の個数

ゼロ頻度問題

確率の m 推定

$$P(x_j|\omega_i) = \frac{n_{ij} + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

ラプラス推定

- m: 特徴値の種類数、 p: 等確率 とすると、 mp=1

- ベイジアンネットワークの仮定
 - 変数の部分集合が、ある分類値のもとで独立である

親ノードの値

$$P(x_1, \dots, x_d) \approx \prod_{i=1}^{d} P(x_i | Parents(X_i))$$

- ベイジアンネットワークの構成
 - Head-to-tail

- ベイジアンネットワークの構成
 - Tail-to-tail

- ベイジアンネットワークの構成
 - Head-to-head

• ベイジアンネットワークの学習

```
Algorithm 4.2 K2 アルゴリズム
```

```
ノードの順番を決める(通常はクラスを表す特徴を最初に)
repeat
 for all n \in Node do
   for all n+1 以降のノード do
    if 対数尤度が増加 then
      n から、現在のノードへエッジを作成
    end if
   end for
 end for
 ノードの順番を変える
until 対数尤度が変化しない
```

return 学習されたベイジアンネット

確認問題

- 1.ある病気の検査法は、その病気の患者には 99%、そうでない人には 3%の確率で陽性反応を示す。また、その病気の患者の割合は 0.1% であるとする。この検査で陽性反応が出たとき、その病気である確率を求めよ。
- 2.同じ病気に対する別種の検査は、その病気の患者には 98%、そうでない人には 2%の確率で陽性反応を示す。 1 に続いて、この別種の検査でも陽性が出たときに、その病気である確率を求めよ。

確認問題 解答例

1.

P(病気 | 陽性) =
$$\frac{0.99 \times 0.001}{0.999 \times 0.03 + 0.001 \times 0.99} = 0.032$$

2.

P(病気 | 陽性) =
$$\frac{0.98 \times 0.032}{0.968 \times 0.02 + 0.032 \times 0.98} = 0.618$$