PRICE LEVEL DETERMINATION IN A MONETARY ECONOMY

FISCAL AND MONETARY POLICY 2023

Piotr Żoch

December 30, 2023

PLAN

- We study how the price level (and inflation) is determined in a monetary economy.
- This will later serve us as a framework to study interactions of fiscal and monetary policy.
- We will start with a very simple environment and then gradually add more features.

ENDOWMENT ECONOMY

- We start with a simple economy in which every period there is an endowment of nonstorable goods y_t.
- For simplicity assume $y_t = y$ for all t.
- We denote the price level in period t by P_t .
- One unit of goods costs P_t units of account.
- There is a representative household that trades contingent claims (Arrow securities).
- The household maximizes $\mathbb{E} \sum_{t=0}^{\infty} \beta^t u(c_t)$.
- No government expenditures,

NOMINAL INTEREST RATES

- Let $q_{t,t+1}$ be the real price (in goods) of a claim that pays one unit of goods in period t+1 in particular state of the world.
- The nominal contingent claim price is

$$Q_{t,t+1} = q_{t,t+1} \frac{P_t}{P_{t+1}}.$$

The nominal interest rate i_t satisfies

$$\frac{1}{1+i_t} = \mathbb{E}_t \, Q_{t,t+1}.$$

NOMINAL INTEREST RATES

- In this economy we have $c_t = y$.
- The SDF is constant and equal to β.
- The real interest rate is also constant r:

$$\frac{1}{1+r} = \beta.$$

- The nominal discount factor is $Q_{t,t+1} = \beta \frac{P_t}{P_{t+1}}$.
- Define $\Pi_{t+1} = \frac{P_{t+1}}{P_{+}}$.
- We obtain the Fisher equation

$$\frac{1}{1+i_t} = \frac{1}{1+r} E_t \frac{P_t}{P_{t+1}} = \frac{1}{1+r} E_t \frac{1}{\Pi_{t+1}} = \beta E_t \frac{1}{\Pi_{t+1}}.$$

FISHER EQUATION

 The usual formulation of the Fisher equation is obtained by linearization:

$$i_t = r + \mathbb{E}_t \, \pi_{t+1}$$
.

- We already used the constancy of the real interest rate.
- In general, the Fisher equation is

$$i_t = r_t + \mathbb{E}_t \, \pi_{t+1}.$$

 This is a no-arbitrage condition: you should be indifferent between two types of investment (real and nominal).

FISHER EQUATION

In this endowment economy

$$\frac{1}{1+i_t} = \beta E_t \frac{1}{\prod_{t+1}}$$

is the only equilibrium condition.

- What does it imply for the sequence of price levels $\{P_t\}_{t=0}^{\infty}$?
- In particular, we say that the level of inflation is unique or determinate in equilibrium if:
 - 1. There is a unique scalar P_0 in equilibrium.
 - 2. If Π^p rime and Π'' are two sequences that satisfy equilibrium conditions, then $\Pi' = \Pi''$.

- The question of determinacy may seem esoteric, but it is important.
- It boils down to the question of whether some policy can control prices.
- In this simple economy, the only available policy is the choice of the nominal interest rate.
- Suppose we have some target for the price level (or inflation rate) –
 can we achieve it by setting interest rates?

- Consider the simplest possible policy: interest rate peg.
- The central bank sets i_t = i for all t.
- We have

$$\frac{1}{1+i} = \beta E_t \frac{1}{\prod_{t+1}}.$$

- This determines $E_{t \frac{1}{\prod_{t+1}}}$ approximately the expected inflation rate.
- But it does not determine Π_{t+1} the actual inflation rate.

- What if we have perfect foresight?
- The Π_{t+1} is determined by the peg, but P_0 is not (because Π_0 is not)
- Conclusion: interest rate peg does not ensure price level determinacy.

- Consider a interest rate rule $i_t = r + \phi \pi_t$.
- We call these rules Taylor rules.
- Use the linearized Fisher equation $i_t = r + \mathbb{E}_t \pi_{t+1}$ to obtain

$$\phi\pi_t=\mathbb{E}_t\,\pi_{t+1}.$$

- If $\phi > 1$ the only solution that does not diverge is $\pi_t = 0$ for all t.
- Taylor principle: ϕ > 1, increase real rates when inflation increases.

To see it solve

$$\phi\pi_t=\mathbb{E}_t\,\pi_{t+1}.$$

forward as

$$\pi_t = \lim_{T \to \infty} \Phi^{-T} \mathbb{E}_t \, \pi_{t+T}.$$

- If $\phi > 1$ and $E_t \pi_{t+T}$ does not diverge, $\pi_t = 0$ for all t.
- Inflation is determinate in all periods, even at t = 0 so P_0 is determined.
- Where does the assumption $E_t \pi_{t+T}$ does not diverge come from?

- The terminal condition is not an optimality condition.
- In this model φ > 1 has nothing to do with the logic like "increase real rates to reduce aggregate demand"
- In a way, the central bank makes a threat: if you do not behave, I will
 make inflation explode. Is it reasonable? Is it how central banks do it?
- Moreover, nothing bad would happen in this economy if inflation diverges.
- See Cochrane (2011) for a discussion of Taylor rules.
- My advice: you might not like the model (it is obviously simple) but do not apply some outside logic to understand these results!

- The usual justification is that when inflation gets out of control, the central bank will switch to something else.
- But then, it is not a Taylor rule with $\phi > 1$ that ensures determinacy!
- What is this other thing that would ensure determinacy?
- For example, the ECB has a monetary pillar, understood as a commitment to switch to a monetary approach to pin down inflation if inflation starts exploding.
- We will now turn to these monetary approaches.

- Assume there is some money demand in this economy: $m_t = p_t + y \eta i_t$, where $\eta > 0$ is a semielasticity of money demand.
- Use the Fisher equation to obtain

$$m_t = p_t + y - \eta [r + \mathbb{E}_t \pi_{t+1}].$$

- Let the central bank follow some money growth rule $m_t = m_{t-1} + \bar{m}$.
- Is it enough to ensure price level determinacy?

We have a formula

$$(1+\eta)\left(p_t-\bar{m}\cdot t\right)=\eta\left(\mathbb{E}_t\ p_{t+1}-\bar{m}\cdot t\right)-y+p_t+\eta r.$$

we can solve it forward and there will be a term like $\lim_{T\to\infty} \mathbb{E}_t \ p_{t+T} - \bar{m} \cdot (t+T-1)$.

- This term will be equal to 0 by the household's optimality condition (transversality condition).
- Intuition: households do not want to hold too much or too little money.
- We get

$$p_t = \bar{m} \cdot t + \eta \bar{m} + \frac{1}{1+\eta} \sum_{j=0}^{\infty} \left(\frac{\eta}{1+\eta} \right)^{J} (\eta r - y).$$

- Money growth rule ensures price level determinacy (in this case).
- This is true even if there are shocks u_t to money demand.
- With different microfoundations for money demand, conclusions might be different.
- We can solve for the implied nominal interest rate:

$$i_t = \frac{1}{\eta} \left(p_t - m_t + y \right)$$

- Note it responds to price level. This is an equilibrium outcome.
- If we instead started with a rule that responds to price levels it would be a Wicksellian rule.