МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н.Э. БАУМАНА

И.Н. Фетисов

ЕСТЕСТВЕННАЯ РАДИОАКТИВНОСТЬ КАЛИЯ

Методические указания к выполнению лабораторной работы Я-61 по курсу общей физики

Под редакцией Г.В Балабиной

Москва Издательство МГТУ им. Н.Э.Баумана 2008 *Цель работы* — ознакомление с радиоактивностью, взаимодействием излучений с веществом, дозиметрией; измерения периода полураспада, пробега и энергии β -частиц, коэффициента поглощения γ -излучения.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Виды радиоактивных превращений

Атомы состоят из ядра и электронной оболочки. Линейные размеры атома $\approx 10^{-10}\,\mathrm{m}$, а ядра — на 4-5 порядков меньше. Ядра (нуклиды) состоят из протонов и нейтронов — частиц, называемых нуклонами. Между нуклонами действуют ядерные силы притяжения. Протон имеет положительный элементарный заряд $e=1,6\cdot10^{-19}\,\mathrm{K}$ да нейтрон не имеет электрического заряда. Масса нуклонов примерно в 1840 раз больше массы электрона. Химические элементы различаются количеством протонов Z (зарядовое число, порядковый номер элемента). Число нуклонов A в ядре называют массовым числом. Ядро элемента X записывают в виде ${}^A_{z}X$, например, ядро гелия ${}^4_{2}$ Не. Атомы одного и того же химического элемента с различным числом нейтронов называются u зомолами. Например, для водорода известны три изотопа: ${}^1_{1}\mathrm{H}, {}^2_{1}\mathrm{H}$ и ${}^3_{1}\mathrm{H}$.

Некоторые ядра (радионуклиды) самопроизвольно (спонтанно) превращаются в другое ядро, испуская частицы, (А. Беккерель, 1896г.). Это явление получило название *радиоактивность*. Распадающееся ядро называют материнским, а образующееся после распада — дочерним. Дочернее ядро может быть как стабильным, так и радиоактивным.

К основным радиоактивным превращениям относятся α - и β -распады.

Альфа-распад. При α -распаде ядро (обычно тяжелое) испускает ядро гелия, состоящее из двух протонов и двух нейтронов, которое называют α -частицей. Схему α -распада представляют в виде

$${}^{A}_{z}X \rightarrow {}^{4}_{2} \text{ He} + {}^{A-4}_{z-2}Y$$

где X и Y – символы химических элементов. Например, превращение радия в радон происходит по схеме

$$^{226}_{88}$$
 Ra $^{\rightarrow}$ $^{4}_{2}$ He + $^{222}_{86}$ Rn

Квантовая механика объясняет α -распад туннельным эффектом — проникновением α -частицы через потенциальный барьер на поверхности ядра, образующийся под действием сил ядерного притяжения нуклонов и кулоновского отталкивания протонов.

Бета-распад. При таком распаде в ядре происходит превращение нейтрона в протон и электрон (электронный распад) или протона - в нейтрон и позитрон (позитронный распад), при этом число нуклонов в ядре не изменяется, а зарядовое число изменяется на ± 1 . Известны три разновидности β -распада.

1. Электронный β -распад (β - распад). Примером такого распада служит превращение свободного нейтрона n в протон p, электрон $_{-1}$ ^{0}e и электронное антинейтрино γ_{e} :

$$n \rightarrow p + {}_{-1}{}^{0}e + v_{e}$$
.

Подобные превращения нейтрона происходят во многих нестабильных ядрах, при этом электрон и антинейтрино покидают ядро. Электронный распад в ядре протекает по схеме:

$${}^{A}_{z}X \xrightarrow{} {}^{A}_{z+1}Y + {}_{z}{}^{0}e + \mathcal{V}_{e} \tag{1}$$

2. Позитронный β -распад (β^+ - распад). В этом случае ядро испускает позитрон и электронное нейтрино:

$${}^{A}_{z}X \rightarrow {}^{A}_{z-1}Y + {}^{0}_{+1}e + \nu_{e}$$

При позитронном распаде в ядре происходит превращение протона в нейтрон, позитрон и нейтрино:

$$p \rightarrow n + {}_{+1}{}^{0}e + v_{e}$$

Позитрон является античастицей электрона, имеющей такую же массу, но противоположные по знаку электрический заряд, лептонный заряд и магнитный момент.

3. Электронный захват. Третий вид β - распада — захват ядром собственного орбитального электрона, чаще с ближайшей K — оболочки:

$${}^{A}_{z}X + {}_{-1}{}^{0}e \xrightarrow{A} {}^{A}_{z-1}Y + \nu_{e}$$
 (2)

При этом в ядре протон и электрон превращаются в нейтрон и нейтрино

$$p + {\scriptstyle -1}{}^{0}e \xrightarrow{} n + v_{e}.$$

Нейтрино и антинейтрино – электрически незаряженные элементарные частицы, различающиеся знаком лептонного заряда. Масса покоя этих частиц много меньше массы электрона (вопрос о массе нейтрино – предмет современных исследований). Нейтрино и антинейтрино чрезвычайно слабо взаимодействуют с веществом, поэтому их можно зарегистрировать только в специальных опытах.

К радиоактивным превращениям относят также спонтанное деление тяжелых ядер - урана, плутония и др.

Гамма-излучение. Атомное ядро, состоящее из двух и более нуклонов, может находиться в состояниях с различными дискретными значениями внутренней энергии. Состояние с минимальной энергией называется основным, а с

большей энергией – возбужденным. Материнское ядро перед распадом находится в основном состоянии, а дочернее ядро может оказаться как в основном, так и в возбужденном состоянии. В последнем случае практически мгновенно

Рис. 1. Схема распада кобальта-60

после распада дочернее ядро переходит в основное состояние, испуская один или несколько фотонов большой энергии, называемых у-квантами. Это у-излучение часто сопровождает все виды распадов. Примером такого процесса является электронный распад кобальта-60 (см. рис. 1). Дочернее ядро никель-60 образуется во втором возбужденном состоянии и испускает последовательно два у - кванта с энергиями 1,17 МэВ и 1,33 МэВ. (Электронвольт – энергия, приобретаемая частицей с элементарным заря-

дом в электрическом поле с разностью потенциалов 1 В; 1 эВ = $1,6\cdot 10^{-19}$ Дж.) γ - Излучение — электромагнитное излучение, отличающееся от света значительно большей частотой ν . Электромагнитные волны имеют двойственную природу: волна — частица. В таких явлениях, как интерференция и дифракция, проявляются волновые свойства. Однако в процессах испускания и поглощения они выступают как частицы (фотоны, γ - кванты) с энергией E= $h\nu$ и импульсом p = $h\nu/c$, где h — постоянная Планка. Чем выше энергия фотона, тем ярче проявляются его корпускулярные свойства и слабее волновые. Энергия γ - кванта радиоактивного распада может достигать нескольких МэВ, в то время как энергия фотонов видимого излучения составляет примерно 2 эВ.

Некоторые ядра находятся в возбужденном состоянии длительное время (до 10^6 лет). Такие состояния называются *изомерными*. Например, технеций $^{99}_{43}$ Тс переходит из возбужденного состояния в основное с периодом полураспада 6 часов, испуская γ - квант с энергией 0,14 МэВ. Изомеры являются источниками только γ - излучения. Упомянутый технеций применяется в медицинской радиоизотопной диагностике.

Энергия распада. Радиоактивный распад может происходить, если он не противоречит закону сохранения полной энергии, включающей энергию покоя $m_0 c^2$, т.е. если разность между массой исходного ядра и суммарной массой продуктов распада положительна. Суммарная масса покоя протона, электрона и антинейтрино меньше массы нейтрона, поэтому свободный нейтрон распадается, а свободный протон (ядро $_1^1$ H) - нет. В сложном ядре протон при превращении в нейтрон и позитрон получает недостающую энергию от других нуклонов.

При радиоактивном распаде выделяется определенная для данного нуклида энергия в интервале примерно от 20 кэВ до 17 МэВ. Эта энергия делится между продуктами распада таким образом, чтобы выполнялся закон сохранения импульса. Наиболее простой случай распределения энергии распада между частицами — это α - распад без испускания γ - кванта. Материнское ядро перед распадом практически покоится, поэтому α - частица и дочернее ядро разлетаются в противоположных направлениях с одинаковыми по модулю импульсами p. При этом кинетическая энергия частиц (случай нерелятивистский) равна $E=p^2/2m_0$, где m_0 — масса частицы. Таким образом, энергия распада делится между частицами однозначно: отношение энергий α - частицы и дочернего ядра энергия α - частицы примерно в 50 —60 раз больше энергии дочернего ядра.

Рис. 2. Энергетический спектр электронов β-распада

При β^{-} -распаде энергия делится между тремя частицами: дочерним ядром, электроном и антинейтрино. При этом реализуется множество вариантов разлета трех частиц, удовлетворяющих закону сохранения импульса. Отсюда следует разнообразие в делении энергии распада между тремя частицами. Дочернее ядро по-прежнему получает небольшую долю энергии распада. Однако деление энергии между электроном и антинейтрино неоднозначное. В результате электроны распада

имеют различную энергию — от очень малой до максимальной энергии E_{\max} , близкой к энергии распада (рис. 2). Средняя энергия электронов обычно близка к трети максимальной энергии.

2. Закон радиоактивного распада

Радиоактивные превращения представляют собой случайный процесс, экспоненциальный закон распада которого имеет следующее теоретическое объяснение.

Пусть в момент времени t имеется большое число N одинаковых ядер. Вероятность λ распада ядра в единицу времени называется *постоянной распада*. Тогда за время dt распадется

$$dN = \lambda N dt \tag{3}$$

ядер. Среднее число распадов за единицу времени

$$A = dN / dt = \lambda N \tag{4}$$

называется *активностью* препарата. Единица активности – *беккерель* (Бк) соответствует одному распаду в секунду. Часто также используют внесистемную единицу активности *кюри*, равную 1 Ки = $3.7\cdot10^{10}$ Бк (такова активность 1 г радия). Активность единицы массы вещества, Бк/кг,

$$a = A/m \tag{5}$$

называется удельной активностью.

Приращение числа нераспавшихся ядер за время dt (см. (3)):

$$dN = -\lambda N dt$$
.

Интегрируя это выражение по времени, получим

$$N = N_0 \exp(-\lambda t), \tag{6}$$

где N - число нераспавшихся ядер в момент времени t; N_0 - число нераспавшихся ядер в произвольный начальный момент времени t=0.

Соотношение (6) выражает *закон радиоактивного распада*: число нераспавшихся ядер убывает со временем по экспоненциальной зависимости. Активность, пропорциональная числу нераспавшихся атомов, убывает по такому же закону (см. рис. 3):

$$A = \lambda N = \lambda N_0 \exp(-\lambda t) = A_0 \exp(-\lambda t), \tag{7}$$

где $A_0 = \lambda N_0$ — активность момент времени t = 0. Опыты подтверждают зависимость (7).

Рис. 3. Зависимость активности от времени

Время жизни радионуклида характеризуют средним временем жизни или периодом полураспада. Можно показать, что *среднее время жизни \tau*, с, обратно пропорционально постоянной распада:

$$\tau = 1/\lambda$$
.

Периодом полураспада T называют время, за которое распадается половина ядер. Легко получить следующее соотношение:

$$T = (\ln 2) / \lambda = 0.693 / \lambda = 0.693 \tau$$
. (8)

Период полураспада связан с активностью и числом атомов соотношением (см. (7), (8))

$$T = 0.693 \, N/A$$
 (9)

Запишем закон распада через период полураспада:

$$N(t) = N_0 \exp(-0.693 t / T);$$
 (10)

$$A(t) = A_0 \exp(-0.693 t / T).$$
 (11)

Для различных радионуклидов период полураспада изменяется от менее микросекунды до 10^{18} лет.

3. Радиоактивность калия

Радионуклиды подразделяют на естественные и искусственные, между которыми нет принципиального различия. К основным естественным относятся радиоактивные семейства урана и тория, а также калий. Природный калий состоит из смеси трех изотопов — стабильных ³⁹К и ⁴¹К и радиоактивного ⁴⁰К. Доля радиоактивного изотопа составляет $\delta = 1,18 \cdot 10^{-4}$. Его период полураспада порядка возраста Земли.

Калий в 89% случаев испытывает β -распад (см. (1)), превращаясь в стабильный кальций:

$$^{40}_{19}\text{K}^{\to 40}_{20}\text{Ca} + _{-1}{}^{0}e + v_{e}$$
 (12)

В 11% случаев – электронный захват (см. (2)):

$${}^{40}_{19}K + {}_{-1}{}^{0}e \xrightarrow{} {}^{40}_{18}Ar + \nu_e + \gamma$$
 (13)

где γ -- γ - квант.

Ядро аргона образуется в возбужденном состоянии и испускает γ -квант с энергией 1,46 МэВ, переходя в основное, нерадиоактивное состояние (рис. 4).

Электроны распада имеют максимальную энергию $E_{max} = 1,3$ МэВ. Таким образом, на 100 распадов испускается в среднем 89 электронов и 11 γ - квантов. Распады первого типа регистрируют по испускаемым электронам, а распады второго типа — по γ -излучению.

Рис. 4. Схема распада калия-40

Содержание калия в земной коре составляет 2,5%. Наиболее важные минералы – это сильвин KCl, сильвинит (K,Na)Cl и др. За счет радиоактивного распада калия Земля получает заметное количество внутреннего тепла.

Калий играет важную роль в жизнедеятельности животных и растений; поэтому в почву вносят калийные удобрения.

Соли калия – доступный и безопасный источник слабой радиоактивности, используемые в данной работе.

4. Поглощение излучений в веществе

Заряженные частицы. Скорость β -частиц близка к скорости света, а α -частиц — в несколько раз меньше. В веществе между пролетающей частицей и атомными электронами действуют кулоновские силы, в результате частица теряет энергию на ионизацию и возбуждение атомов. Такой процесс называется ионизационным торможением. На образование одного иона в среднем затрачивается энергия в несколько десятков эВ. Частица с энергией 500 кэВ образует 10^4 ионов.

Для целей защиты от излучений необходимо знать пробег частиц в веществе до остановки. Для этого между радиоактивным источником и счетчиком вставляют пластины и измеряют зависимость интенсивности излучения I от толщины поглотителя x (рис. 5).

Для направленного пучка α - частиц одинаковой энергии зависимость I(x) показана на рис. 5, a. В этом случае все α -частицы имеют практически одинаковый пробег x_0 до остановки, который зависит от энергии и вещества. В воздухе $x_0 \approx 5$ см для E=5 МэВ. Альфа-излучение поглощается листом бумаги; оно практически не способно проникнуть через наружный слой кожи, образованный отмершими клетками. Поэтому α -излучение не представляет опасности до тех пор, пока радиоактивные вещества, испускающие α -частицы, не попадут внутрь организма через открытую рану, с пищей или с вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.

Для β -частиц зависимость I(x) (рис. 5, δ) имеет отличия. Даже тонкий слой

Рис. 5. Кривые поглощения в веществе: a - для α -частиц; δ - для β -частиц

вещества уже ослабляет излучение. Это происходит, потому что спектр β - частиц сплошной, от E_{max} до малых энергий, а также в связи с большим рассеянием β -частиц в кулоновском поле ядер и электронов. Последнее приводит к сильной изломанности траектории. В этом случае пробегом β -частиц считают толщину поглотителя x_0 , которая практически полностью поглощает излучение.

При одинаковой энергии пробег β -частиц на три порядка больше, чем α -частиц, потому что они быстрее и их заряд меньше. α -Частицы, пролетая мимо атома, дольше взаимодействуют с его электронам. Поэтому, согласно закону динамики $\Delta p = F \Delta t$, α -частицы могут сообщить электронам необходимый для ионизации импульс Δp с большего пролетного расстояния. Вследствие этого α -частицы создают больше ионов на единицу пути и быстрее тормозятся.

Толщину поглотителя можно выражать не только в сантиметрах, но и массой поглотителя на единицу площади $d_0 = \rho \ x_0$, где ρ , г/см³, - плотность. Для β -частиц эмпирически установлена зависимость между максимальной энергией E_{max} , МэВ, и пробегом d_0 , г/см²:

$$E_{\text{MAKC}} = 1,85 (d_0 + 0,133). \tag{14}$$

Формула (14) справедлива для алюминия, хлористого калия и других веществ со средним атомным номером для $E_{max} \ge 0.8$ МэВ. Согласно (14), β - излучение с энергией несколько МэВ может проникнуть в ткани организма на глубину один-два сантиметра.

 Φ отоное излучение. При взаимодействии фотонов большой энергии (рентгеновского или γ -излучения) с атомами происходят три основных процесса: эффект Комптона, атомный фотоэффект и рождение пары электрон-позитрон.

Эффект Комптона – упругое рассеяние фотона на свободных или слабо связанных атомных электронах, при котором часть энергии и импульса фотон передает электрону, покидающему атом. Применяя законы сохранения энергии и импульса, получена формула для энергии фотонов <math>E, МэВ, рассеянных на угол θ :

$$E = E_0 / [1 + E_0 (1 - \cos \theta) / (m_0 c^2)],$$

где E_0 , МэВ, – энергия до рассеяния, m_0 с² = 0,51 МэВ – энергия покоя электрона. Угол рассеяния может быть любым.

Например, фотон с энергией 1 МэВ после рассеяния назад ($\theta = 180^{0}$) имеет энергию E = 0.2 МэВ. Разность энергий E_{0} - E = 0.8 МэВ была передана электрону, вылетевшему из атома. Как видим, в одном акте рассеяния электрон получает значительную часть энергии кванта, в среднем половину для квантов с энергией 1 МэВ.

При *атомном фотоэффекте* фотон <u>поглощается</u> одним из атомных электронов, обычно из внутренних оболочек, а электрон покидает атом. Энергия вылетевшего электрона равна разности энергии фотона и энергии связи электрона в атоме.

Рождение пары электрон-позитрон. В электрическом поле атомного ядра фотон может превратиться в электрон и позитрон:

$$\gamma \rightarrow e^- + e^+$$
.

Этот процесс происходит, если энергия γ -кванта превышает суммарную энергию покоя электрона и позитрона $E=2~m_0~c^2=1,02~{\rm M}$ ЭВ. Рождение пары наглядно демонстрирует взаимосвязь массы и энергии и превращение энергии электромагнитного поля в вещество.

В отличие от заряженных частиц, которые теряют энергию часто и мелкими порциями, и поэтому замедляются постепенно, γ -квант теряет энергию редко, но крупными порциями или целиком в одном взаимодействии, причем эти процессы имеют характер случайных событий. Вследствие этого поглощение моноэнергичного γ -излучения (как и вообще фотонного излучения) следует экспоненциальному закону Бугера (рис. 6):

$$I = I_0 \exp(-\mu_{\rm M} d),$$
 (15)

где I_0 - интенсивность без поглотителя; I – интенсивность после прохождения слоя массовой толщины d, г/см 2 ; $\mu_{\rm M}$, см 2 / г, – массовый коэффициент поглощения. В слое толщины d_e = 1 / $\mu_{\rm M}$ γ -излучение ослабляется в e = 2,72 раза, а при вдвое большей толщине – в e^2 раз и т.д. Слой половинного ослабления равен

$$d_{0.5} = \ln 2 / \mu_{\rm M}. \tag{16}$$

Коэффициент поглощения зависит от вещества и энергии квантов. Для поглощения γ -излучения часто используют свинец. В нем минимальное ослабление имеют кванты с энергией несколько МэВ (здесь преобладает комптонов-

Рис. 6. Кривая поглощения у-излучения в веществе

ское рассеяние); для них $\mu_{min} = 50 \text{ м}^{-1}$, а слой половинного ослабления $x_{0,5} = 0,014 \text{ м}$. При энергии 100 кэВ основным механизмом поглощения является фотоэффект, при этом $\mu_{\text{м}}$ возрастает примерно в 100 раз. При очень высоких энергииях (десятки МэВ) доминирует процесс рождения пар. Из приведенного примера видно, что проникающая способность γ -излучения очень велика; его может задержать лишь толстая пластина из свинца или бетонная плита.

Для энергий квантов 1...4 МэВ величины $\mu_{\rm M}$ и $d_{0,5}$ почти не зависят от состава вещества (можно проверить в данной работе для Fe и Al). Это потому,что при таких энергиях поглощение обусловлено эффектом Комптона на атомных электронах, число которых мало отличается в железных и алюминиевых пластинах одинаковой массы.

5. Дозиметрия излучений

Для оценки биологических последствий воздействия ионизирующих излучений необходимо контролировать их дозы. *Поглощенной дозой* называют отношение поглощенной энергии излучения к массе поглощающего вещества:

$$D = E / m. (17)$$

Единица поглощенной дозы - грей: 1 Гр = 1 Дж / кг.

Однако при одной и той же поглощенной дозе биологические последствия для разных видов излучения различны. Это связано с различием потерь энергии заряженной частицей на единицу длины трека. Чем больше эти потери, тем опаснее излучение. Поэтому поглощенную дозу умножают на коэффициент K, называемый коэффициентом качества излучения. В результате получают эквивалентную дозу

$$H = KD. (18)$$

Единица эквивалентной дозы - *зиверт* (Зв). Для β - и γ - излучений K = 1. При этом поглощенной дозе 1 Гр соответствует эквивалентная доза H = 1 Зв. Для α - излучения K = 20, поэтому при поглощенной дозе 1 Гр эквивалентная доза составит 20 Зв.

На человека постоянно воздействуют излучения естественных радиоактивных веществ внутри организма и вне его, а также космические лучи. В различных районах дозы могут различаться. Средняя годовая эквивалентная доза от естественных источников радиации

$$H = 2 \text{ m}3\text{B}.$$
 (19)

Помимо естественных источников излучения, имеются также искусственные. Вредное воздействие внешнего облучения можно уменьшить, сокращая время облучения, увеличивая расстояние до источника и применяя поглощающие экраны.

Радиоактивные вещества поступают в организм с воздухом, водой и продуктами питания. В частности, естественный калий поступает с пищей растительного происхождения. Биологическая потребность человека составляет примерно 2,5 г калия в сутки. В теле человека содержится примерно 140 г калия, его распад вносит вклад в дозу облучения (см. задание 7).

6. Счетчик Гейгера-Мюллера

В установке используются газоразрядные счетчики Гейгера-Мюллера. Они представляют собой баллон с двумя электродами, заполненный инертным газом. Счетчик β -излучения имеет окно из тонкой слюды, слабо поглощающее частицы. Для γ -квантов пригодны более простые цилиндрические счетчики, описанные ниже.

По оси металлической трубки проходит тонкая вольфрамовая нить. К нити и трубке прикладывают напряжение 400 В. Заряженная частица, пролетая через счетчик, ионизирует небольшое количество атомов газа, отрывая электроны от атомов. Электроны, разгоняясь в электрическом поле, вызывают вторичную ионизацию, и т.д. В результате происходит электрический пробой газа, а в цепи кратковременно протекает ток. Импульс тока регистрируют пересчетным устройством. Таким образом, число зарегистрированных импульсов равно числу прошедших через счетчик ядерных частиц.

Счетчик непосредственно от γ -квантов не срабатывает, т.к. они не ионизируют газ. Его срабатывание вызывают вторичные электроны и позитроны, образующиеся в рассмотренных выше процессах (эффект Комптона и др.). Поскольку электроны имеют небольшой пробег в плотном веществе, счетчик может зарегистрировать γ -кванты, которые провзаимодействовали в тонком слое вещества, примыкающего к газу счетчика, или в газе. Поскольку взаимодействия в тонком слое происходят редко, мала вероятность регистрации γ -квантов счетчиком Гейгера ($\leq 1\%$).

Если небольшой препарат калиевой соли поднести к счетчику, он будет срабатывать почти исключительно от β - частиц, т.к. распады с испусканием γ - кванта редкие (11%) и мала вероятность их регистрации. Для опытов с γ - квантами необходимы большие массы соли (несколько кг); при этом между излучателем и счетчиком помещают пластину, которая поглощает β -частицы, но пропускает γ -излучение.

7. Методика измерений

В данной работе выполняют три упражнения: 1) определяют пробег и энергию β -частиц; 2) находят период полураспада калия – 40; 3) измеряют коэффициент поглощения γ -излучения в железе и алюминии.

Схематически установки показаны на рис. 7. Радиоактивный источник β - излучения (рис. 7, a) или γ -излучения (рис. 7, δ) устанавливают вблизи счетчиков Гейгера и измеряют количество срабатываний счетчиков (импульсов) N за

Рис.7 Схемы измерительных установок:

a – для β -излучения; 1 – источник; 2 – счетчик Гейгера;

 δ – для γ -излучения; 1 – источник; 2- поглотитель; 3 - счетчики

время t. Из результатов измерения находят среднюю скорость счета импульсов n = N / t.

При измерении слабой радиоактивными вводят поправку на фоновое радиоактивное излучение. Убрав радиоактивное вещество от счетчика, находят среднюю скорость счета импульсов фона

$$n_{\Phi} = N_{\Phi} / t$$
.

Вычитая фон, получают исправленную скорость счета импульсов, называемую регистрируемой активностью препарата:

$$n_{\rm p} = n - n_{\rm \phi} = (N - N_{\rm \phi}) / t$$
 (20)

Величина n_p характеризует интенсивность излучения в относительных единицах. Если оба измерения выполнить за <u>одинаковое</u> время, то интенсивностью в относительных единицах является также величина

$$N_{\rm p} = N - N_{\rm \phi} \tag{21}$$

Измерение периода полураспада. Если период полураспада небольшой, то его находят по убыванию активности в процессе измерений согласно формуле (11). Для долгоживущих ядер урана, калия и др. этот метод неприемлем, поэтому воспользуемся соотношением (9):

$$T = 0.693 \, N_{40} \, / \, A \tag{22}$$

Здесь N_{40} - количество атомов калия-40 в препарате KCl массы m, г:

$$N_{40} = \delta N_A m / M, \tag{23}$$

где $N_A = 6,02 \cdot 10^{23}$ моль⁻¹ — число Авогадро; M = 75 г/моль — молярная масса соли, $\delta = 1,18 \cdot 10^{-4}$ — доля радиоактивного изотопа.

Период полураспада определяют по β -излучению калия, которое испускается в 89% распадов (см. (12)). Всего несколько грамм соли КСІ в виде тонкого слоя, в котором поглощение β -частиц незначительное, располагают под счетчиком Гейгера (рис. 7, a). Он детектируют частицы, испущенные в направлении счетчика. Каждую секунду в источнике происходит A распадов (активность, Бк), из них счетчик регистрирует n_p распадов (см. (20)). Отношение

$$f = n_{\rm p} / A \tag{24}$$

называют коэффициентом регистрации. Коэффициент f меньше единицы по нескольким причинам. Основная из них — геометрическая: только немногие частицы испущены в направлении счетчика (см. рис. 7, a). Коэффициент регистрации был рассчитан и приведен на препарате.

Для нахождения периода полураспада T необходимо измерить n_p (см. (20)); вычислить A (см. (24)), N_{40} (см. (23)) и T (см. (22)).

Измерение пробега и энергии β -частиц. Пробег d_0 , г/см², β -частиц в веществе находят методом самоослабления, когда частицы тормозятся в самом радиоактивном препарате. Для этого под счетчиком устанавливают препараты КСІ в виде слоев различной толщины d, г/см². За одинаковое время измерения находят величину $N_{\rm p}$, (см. (21)), которая является интенсивностью выходящего из препарата излучения. По результатам измерений строят графическую зависимость $N_{\rm p}$ от d (рис. 8). Кривая достигает насыщения при толщине слоя d_0 , которую принимаем за пробег β -частиц с максимальной энергией E_{max} .

Из результатов измерения пробега по формуле (14) находят значение E_{max} . Этот простой метод дает приближенное значение энергии. Для точных измерений используют приборы, в которых частицы отклоняются в магнитном поле.

Рис. 8. Зависимость интенсивности β -излучения от толщины препарата

Измерение коэффициента поглощения γ-излучения. Коэффициент поглощения находят следующим способом. Из (15) логарифмированием получаем

$$\ln(I/I_0) = -\mu_{\rm M} d. \tag{25}$$

В опыте за <u>одинаковое время</u> измеряют количество импульсов: N_{Φ} -фона, N_0 - источника в отсутствие поглотителя и N – источника с поглотителем толщины d. Тогда отношение интенсивностей в (25) можно заменить, согласно (21), на отношение числа импульсов:

$$\ln \left[\left(N\text{-}\ N_{\boldsymbol{\upphi}} \right) \ / \ (\ N_0\text{-}N_{\boldsymbol{\upphi}}) \right] = -\ \mu_{\ \tiny M}\ d\ .$$

Отсюда получаем

$$\mu_{\rm M} = (1/d) \ln \left[(N_0 - N_{\phi}) / (N - N_{\phi}) \right] \tag{26}$$

8. Статистические погрешности при измерении радиоактивности

Случайные (статистические) погрешности обусловлены самой природой распада. Пусть за некоторое время счетчик зарегистрировал N_i частиц. Повторяя измерения в тех же условиях, получим различные значения N_i : N_1 , N_2 , ... N_k , изменяющиеся случайным образом. Вероятность появления того или иного значения N_i дается распределением Пуассона [3]. Из него следует, что случайную погрешность можно найти из <u>одного</u> измерения (а не из нескольких, как для обычных измерений [4]).

Для достаточно большого числа N зарегистрированных частиц среднеквадратическая статистическая погрешность

$$\sigma = \sqrt{N}$$
.

Следовательно, с доверительной вероятностью P искомая величина N^{*} находится в доверительном интервале

$$N^* = (N - \sigma) \dots (N + \sigma)$$
 для $P = 0.68$ или $N^* = (N - 2\sigma) \dots (N + 2\sigma)$ для $P = 0.95$.

Например, для N = 100 доверительный интервал $N^* = 90...110$ с вероятностью P = 0,68 или $N^* = 80...120$ с вероятностью P = 0,95. Если счетчик регистрировал все распады, а фоновое излучение мало, то N^* - искомое число распадов за данное время.

Относительная погрешность измерения величины N равна

$$\varepsilon = \sigma / N = 1 / \sqrt{N}$$
.

С ростом N абсолютная погрешность $\sigma = \sqrt{N}$ растет, а относительная ε – уменьшается. Например, $\varepsilon = 0,1 = 10\%$ при N = 100 и $\varepsilon = 0,01 = 1\%$ при $N = 10^4$.

Чтобы измерить радиоактивность с малой статистической ошибкой, необходимо зарегистрировать большое число частиц.

Рассмотрим погрешности в случае, когда фоновым излучением пренебречь нельзя. Пусть за одинаковое время зарегистрировано $N_{\rm \varphi}$ импульсов фона со статистической погрешностью $\sigma_2 = \sqrt{N}_{\rm \varphi}$ и N импульсов от источника со статистической погрешностью $\sigma_1 = \sqrt{N}$. Погрешность измерения величины $N_{\rm p} = N$ - $N_{\rm \varphi}$ равна (см. [4])

$$\sigma_{\rm p} = (\sigma_1^2 + \sigma_2^2)^{1/2} = (N + N_{\rm \phi})^{1/2}.$$
 (27)

ЭКСПЕРИМЕТАЛЬНАЯ ЧАСТЬ 1. В-ИЗЛУЧЕНИЕ

(суммарное время экспозиций примерно 1 час)

Порядок выполнения работы. Работа состоит из двух частей, выполняемых на различных установках одновременно двумя бригадами. В первой части изучают β -излучение, во второй - γ -излучение. После выполнения своей части бригады меняются местами.

Задание 1. Ознакомиться с установкой

Установка (рис. 9) состоит из счетчика Гейгера-Мюллера, слюдяное окошко которого обращено вниз, и блока регистрации. Под счетчиком устанавливают β -препараты из соли KCl. На передней панели блока регистрации расположены цифро-буквенный индикатор и управляющие кнопки. На задней стенке находятся сетевой выключатель и клемма заземления.

Рис. 9. Схема установки для β -излучения: 1 – препарат; 2 – счетчик Гейгера; 3 – бокс для препаратов; 4 – блок регистрации; 5 – индикатор; 6 – кнопки управления

- 1. Проверить наличие заземления. При отсутствии заземления обратиться к дежурному по лаборатории.
- 2. Вставить сетевую вилку в розетку и включить выключатель "Сеть" на задней стенке. После чего должны появиться подсветка выключателя, а на индикаторе "time $10.0 \ s$ ". Эта запись означает, что время счета (экспозиция) будет $10 \ c$. С помощью кнопок "+" и "-" можно задать экспозицию от $1 \ до 999 \ c$.
- 3. Установить небольшую экспозицию, например 20 с. Если под счетчиком есть препарат, убрать его. Нажать и отпустить кнопку "Пуск". При этом начинается регистрация импульсов фона. Верхняя строка индикатора показывает прошедшее время, а нижняя число зарегистрированных импульсов (*imp*.). Показание индикатора считывают, когда секундомер остановится. Для повторения измерения нажать кнопку "Пуск".

Задание 2. Измерить пробег и энергию β -частиц

- 1. Ознакомиться с методикой измерений (см. раздел 7 "Теоретической части").
 - 2. Подготовить табл. 1 и 2.
- 3. Установить экспозицию t = 500 с. Все измерения в заданиях 2, 3 выполнять с <u>одинаковой</u> экспозицией. Значение t записать в табл. 1. *Примечание*: во время длительных экспозиций необходимо обрабатывать результаты измерений (см. ниже).
- 4. Измерить фоновое излучение, когда под счетчиком отсутствует препарат. Нажать и отпустить кнопку "Пуск". Когда счет прекратится, записать число импульсов фона N_{ϕ} в табл.1.

$t = \dots$	$N_{\rm d} = \dots$	$d_0 = \dots$	$E_{max} = \dots$	ε=
	1 · 0 — · · ·	• • • • • • • • • • • • • • • • • • • •	$\boldsymbol{\omega}_{max}$	· · · ·

Таблица 2

d, г/см ²	N	$N_{\rm p} = N - N_{\rm \phi}$	σ_{p}

Примечание: в табл. 5 строк

- 5. Измерить излучение препарата № 2. Толщину d слоя соли записать в табл.
- 2. Установить препарат под счетчиком до упора, измерить количество импульсов N, результат записать в табл. 2.
 - 6. Повторить измерения п. 5 с препаратами № 3 6.

Обработать результы измерений задания 2

- 1. По результатам измерений вычислить величину $N_{\rm p}$ = N $N_{\rm \phi}$ (см. (21)) и записать ее в табл. 2.
- 2. Вычислить статистическую погрешность σ_p для величины N_p (см. (27)) и записать ее в табл. 2.
- 3. Построить графическую зависимость $N_{\rm p}$ от d (см. рис. 8). Для каждой экспериментальной точки отметить на графике погрешность $\sigma_{\rm p}$ вертикальной чертой длиной $\sigma_{\rm p}$ в обе стороны от экспериментальной точки.
- 4. Через экспериментальные точки с учетом погрешностей провести плавную кривую. Толщину слоя d_0 , при которой кривая выходит на горизонтальный (или пологий) участок, принять за пробег β -частиц с максимальной энергией E_{max} . Результат измерения d_0 записать в табл. 1.
 - 5. Вычислить E_{max} (см. (14)), результат записать в табл. 1.
- 6. Вычислить отклоненение ε , %, результата измерения E_{max} от табличного значения 1,3 МэВ. Результат записать в табл. 1.

Задание 3. Измерить период полураспада

- 1. Ознакомиться с методикой измерений (см. раздел 7 "Теоретической части").
 - 2. Подготовить табл. 3.

Таблица 3

Коэффициент регистрации	f =
Масса, г, KCl в препарате №1	m =
Количество атомов ⁴⁰ К в препарате №1	$N_{40} =$
Количество импульсов	N =
Регистрируемая активность, 1/с	$n_{\rm p}$ =
Активность, Бк	A =
Период полураспада (в секундах и годах)	T =
Погрешность измерения Т, %	ε =

- 3. Характеристики препарата №1 (m, f), приведенные на препарате, записать в табл. 3.
- 4. Для препарата №1 измерить количество импульсов N за 500 с, результат записать в табл. 3.
- 5. Выключить питание установки тумблером на задней стенке блока регистрации.

Обработать результы измерений задания 3

- 1. Вычислить и записать в табл. 3 следующие величины: N_{40} (см. (23)), $n_{\rm p}$ (см. (20)); A (см. (24)); T (см. (22)).
- 2. Вычислить относительное отклонение полученного значения T от табличного $T_{\rm T}$ = 1,3 ·10 9 лет: ε = 100 % (T $T_{\rm T})$ / $T_{\rm T}$.

ЭКСПЕРИМЕТАЛЬНАЯ ЧАСТЬ 2. ү-ИЗЛУЧЕНИЕ

(суммарное время экспозиций примерно 1/2 часа)

Задание 4. Ознакомиться с установкой

Для измерения поглощения γ -излучения используется установка, состоящая из дозиметра, источника излучения и поглотителя (см. рис. 7, б). Внутри дозиметра находятся четыре цилиндрических счетчика Гейгера-Мюллера. Источником γ -излучения служит КСІ массы несколько килограмм. Поглотитель вставляют между излучателем и счетчиками в трубу прямоугольного сечения. Дозиметр работает от 9-вольтового адаптера.

Счетчики обернуты свинцовой фольгой, в которой происходят взаимодействия γ -квантов с передачей энергии электрону (и позитрону). Испущенные калием β -частицы поглощается в корпусе дозиметра и свинце, поэтому не регистрируются.

- 1. Включить питание дозиметра: вставить в розетку сетевую вилку, при этом должен загореться светодиод адаптера. После включения питания прибор начинает работать, а на индикаторе появляются цифры. (Примечание. На правой боковой стенке дозиметра имеется выключатель; нормально он должен быть включен и заклеен скотчем).
 - 2. Ознакомиться с работой дозиметра и его индикатором (рис. 10). Прибор

0.007

00.30

18

6

работает в автоматическом циклическом режиме. При каждом срабатывании счетчиков издается звуковой щелчок, а электрический импульс поступает в пересчетное устройство. В течение 18 с прибор считает импульсы, при этом положение десятичной точки на индикаторе показано на рис. 10, a. По окончании счета прибор издает звуковой сигнал, а на индикаторе в течение нескольких секунд высвечивается результат измерения (рис. 10, δ). Затем результат сбрасывается и начинается новый цикл.

Данный прибор предназначался для измерения мощности дозы γ -излучения в микрозивертах в час (мкЗв/ч). При использовании в данной работе число на индикаторе необходимо увеличить в сто раз (т.е. отбросить десятичную точку), тогда получим число <u>пар</u> зарегистрированных импульсов. В таком виде результат записывают.

Задание 5. Измерить фон и γ -излучение источника

1. Подготовить табл. 4, в которой i - порядковый номер отсчета на индикаторе дозиметра. Во всех столбцах таблицы 4 число измерений должно быть одинаковым и равным 15 (или больше).

Таблица 4

i	Фон	Источник	Fe, $x =$ cm	Al, $x = \dots$ cm
1				
2				
	N_{Φ} =	$N_0 = \dots$	<i>N</i> =	$N = \dots$
	•	N_0 - N_{ϕ} =	$N - N_{\Phi} = \dots$	$N - N_{\Phi} = \dots$

Примечание: в таблице i = 1 - 15.

- 2. Измерить фоновое излучение. Убрать контейнер с солью на расстояние больше полуметра от дозиметра. Записать во второй столбец табл. 4 пятнадцать показаний дозиметра (десятичную точку отбрасывать).
- 3. Вычислить суммарное количество импульсов фона $N_{\phi} = 2\sum N_i$. Результат записать в табл. 4. *Примечание*: умножаем на два, т. к. на индикаторе число пар импульсов.
- 4. Установить контейнер с КСІ вплотную к трубе, в которой не должно быть поглощающих пластин. Если контейнер в плане не квадратный, то к счетчикам должна быть обращена узкая сторона. Повторить измерения п. 2, результаты записать в третий столбец табл. 4. Вычислить количество импульсов $N_0 = 2\sum N_i$. Разность $N_0 N_{\phi}$ равна интенсивности γ -излучения калия в относительных единицах.

Задание 6. Измерить поглощение γ -излучения в железе и алюминии

1. Три железных пластины толщины примерно по 6 мм сложить вместе и измерить суммарную толщину x, результат записать в табл. 4. Вставить все пластины в трубу. Результаты 15 измерений записать в четвертый столбец табл. 4. Вычислить $N=2\sum_i N_i$. Разность $N-N_{\phi}$ равна интенсивности прошедшего через железо γ -излучения в относительных единицах.

- 2. Взять пластину из алюминия толщины 16 18 мм, измерить толщину x. Повторить измерения п. 1, результаты записать в табл. 4.
 - 3. Выключить установку.

Обработать результаты измерений задания 6

- 1. Подготовить табл. 5.
- 2. Вычислить массовую толщину $d = x^+ \rho$, где ρ , г/см³, x, см. Вычислить $\mu_{\rm M}$ для железа и алюминия (см. (26)). Вычислить $d_{0,5}$ (см. (16)). Результаты записать в табл. 5.
- 3. Объяснить, почему значения $\mu_{\rm M}$ и $d_{0,5}$ для железа и алюминия мало различаются.

Результаты измерения коэффициента поглощения

Таблица 5

Поглотитель	ho ,	x,	d,	$\mu_{\scriptscriptstyle \mathrm{M}}$,	$d_{0,5}$, Γ/cm^2
	г/см ³	СМ	г/см ²	см ² /г	
Железо	7,8				
Алюминий	2,7				

Задание 7. Вычислить дозу облучения

В теле человека присутствует калий, распад которого дает вклад в дозу облучения. Удельная активность калия a_0 , Бк/г, (см. (5), (15), (16)):

$$a_0 = A / m = 0.693 \delta N_A / (M T),$$
 (28)

где M=39 г/моль — молярная масса калия. Из (28) для табличного значения $T=1,3\cdot 10^{-9}$ лет получаем $a_0=31$ Бк/г.

1. Для массы калия в теле человека $m_{\rm q}$ =140 г вычислить активность калия $A_{\rm q}$ = $m_{\rm q}$ a_0 . Результат записать в табл. 6.

Дозиметрия калия

Таблица 6

Активность калия в теле человека, Бк	$A_{\text{\tiny H}}$ =	
Поглощенная энергия, Дж	E =	
Поглощенная доза, Гр	$D_{\scriptscriptstyle m K}$ =	
Эквивалентная доза, Зв	$H_{\scriptscriptstyle m K}$ =	
Доля годовой дозы	$H_{\scriptscriptstyle m K}/H$	

- 2. Вычислить энергию E, Дж, поглощенную в теле человека за год. Принять, что при одном распаде поглощается энергия 0,5 МэВ. Результат записать в табл. 6. *Примечание*: 1 эВ = 1,6 $\cdot 10^{-19}$ Дж.
- 3. Вычислить годовую поглощенную дозу D_{κ} (см. (17)) и эквивалентную дозу H_{κ} (см.(18)). Считать, что калий равномерно распределен по всему телу и его излучение поглощается массой человека. Результаты записать в табл. 6.

4. Вычислить отношение H_{κ}/H , где H – средняя годовая доза естественного излучения (см. (19)). Результат записать в табл. 6. Сделать выводы.

Контрольные вопросы

- 1. Объясните процесс распада нейтрона.
- 2. Из какого места атома вылетает электрон при β^- распаде?
- 3. Что такое электронный захват?
- 4. Какая схема распада калия-40?
- 5. Сформулируйте закон радиоактивного распада.
- 6. Что такое постоянная распада, среднее время жизни, период полураспада и какая связь между ними?
 - 7. Что такое активность и в каких единицах она измеряется?
- 8. Какие измерения необходимо выполнить, чтобы найти период полураспада в случаях малого и большого времени жизни?
 - 9. Как устроен и работает счетчик Гейгера-Мюллера?
- 10. Какие процессы приводят к торможению заряженных частиц в веществе?
 - 11. Какие взаимодействия испытывает γ -квант в веществе?
- 12. Каковы абсолютная и относительная статистические погрешности измерения скорости счета, если за некоторое время t (точно) зарегистрировано 400 импульсов?

Список литературы

- 1. Мартинсон Л.К., Смирнов Е.В. Квантовая физика: Учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. 496 с.
 - 2. Савельев И.В. Курс общей физики в 3 т. М.: Наука, 1988. т. 3. 496 с.
- 3. Иродов И.Е. Квантовая физика. М.: Лаборатория Базовых Знаний, 2001 272 с.
 - 4. Тейлор Дж. Введение в теорию ошибок: Пер. с англ. М.: Мир, 1985.
- 5. Савельева А.И., Фетисов И.Н. Обработка результатов измерений при проведении физического эксперимента. Мет. указ. к лаб. работе М-1. М.: МВТУ, 1984.
 - 6. Радиация. Дозы, эффекты, риск: Пер. с англ. –М.: Мир, 1988. 79.

ОГЛАВЛЕНИЕ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

- 1. Виды радиоактивных превращений
- 2. Закон радиоактивного распада
- 3. Радиоактивность калия
- 4. Поглощение излучений в веществе
- 5. Дозиметрия излучений
- 6. Счетчик Гейгера-Мюллера
- 7. Методика измерений

8. Статистические погрешности при измерении радиоактивности ЭКСПЕРИМЕТАЛЬНАЯ ЧАСТЬ 1. β-ИЗЛУЧЕНИЕ ЭКСПЕРИМЕТАЛЬНАЯ ЧАСТЬ 2. γ-ИЗЛУЧЕНИЕ Контрольные вопросы Список литературы ОГЛАВЛЕНИЕ