Tuan Rios

Mafthew Mendoza Melvin Evans Lab 09 - Thin Lenses

Complete this lab worksheet and turn it in for credit. Show all your work including the calculations you performed (attach additional sheets if necessary).

9.4.1

1	ъ.		c 1		c	
Ι.	Determine	the	tocal	length	of your	lens.

9.4.2

1. Measure the height of the object. As $3\frac{3}{10}$ cm = 3.3 cm	Iva
---	-----

nge height 3cM

$$h_0 = 3.3 \, \mathrm{cm}$$

1 4

Lens	configuration	$d_{\scriptscriptstyle 0} \ (\mathrm{cm})$	d_i (cm)	<i>h</i> _i (cm)	Real/Virtual	Upright/Inverted	Larger/Smaller
Converging	do>2f	60	193	1.5	virtual	Invertel	Smaller
	do=2f	50	20.5	1.7	VICtual	inverted	Smaller
	f <d0<2f< td=""><td>33</td><td>2b</td><td>2.6</td><td>real</td><td>inverted</td><td>snaller</td></d0<2f<>	33	2b	2.6	real	inverted	snaller
	do=f	25	N	0	IMAG	je Will	be Mo

1 Fill in the table. For virtual images leave d and h blank.

Magnification $M = \frac{h_i}{h} = -\frac{h_i}{h}$

Page Break	<u>vnvera.ng</u>	1605					111	7		40		
	f(cm) use your	m Use your	m use your									
configuration	measurements	measurements	use your measurements	Lens	configuration	d _s (cm)	d, (cm)	h, (cm)	Real/Virtual	Upright/Inverted	Larger/Smaller	
	of d_i and d_o	of h_i and h_o	of d_i and d_o	Converging	dn>2f	60	193	1.5	virtual	Investel	Smaller	
d0>2f					do-2f	50	20,9	1.7	VICtual	inverted	smaller	
Q0>21	virtual,60cm	Virtual, S.3cm	virtual, 60cm		f≤do<2f	33	2b	2,6	real	inverted	sha ller	
	,	-			do=f	25	М	0	IMAG	e will	be Mo	дe
d0=2f	virtual 50cm	wichial 3.3cm	virtual 50cm									
	75001	VIIII	111100		de≤f	10	T0 C	11		T	,	
f <d0<2f< td=""><td>26cm, 33cm</td><td>Z.Gcm, 3.3cm</td><td>26.4,33cm</td><td></td><td></td><td>14</td><td>21.5</td><td>11</td><td>Virtual</td><td>I n Vei +a</td><td>Larger</td><td></td></d0<2f<>	26cm, 33cm	Z.Gcm, 3.3cm	26.4,33cm			14	21.5	11	Virtual	I n Vei +a	Larger	
	14,54 cm	,7%	-,7%									

1. Compute the percent different between each value of f above, and the value you

$$diff = \left| \frac{x_1 - x_2}{\left(\frac{x_1 + x_2}{2} \right)} \right| \cdot |00\%|$$

diff =
$$\left|\frac{x_1 - x_2}{\left(\frac{x_1 + x_2}{2}\right)}\right| \cdot \left|\frac{25 - 14.54}{\left(\frac{25 + 14.54}{2}\right)}\right| = 524 \times 100\%$$

1. Compute the average value of m for each column in the table above. Then compare the two values of m. Do they agree? Explain.

We only have 2 magnifications
With both being the same but opposite
Sign. Therefore not enough data to find on
9.4.3 Ray Tracing a luncte average. Due to Virtual = blank.
On the graph included graph paper draw ray diagrams for the cases below. Make each diagram
cupatitatively correct. The height should be 1:1 (1 hox = 1 cm), but you will need to decide on

quantitatively correct. The height should be 1:1 (1 box = 1 cm), but you will need to decide on the proper scale for the horizontal direction.

1 The case

 $d_0>2f$

for the converging lens. Use only the values for f, ho and do. Then measure h, and d, from the diagram. How does it compare to what you measured and computed above?

Page Break	unveraina	lens_	
configuration	f (cm) use your measurements of d, and d.	m Use your measurements of h, and h.	m use your measurements of d_i and d_s
d0>2f	virtual,60cm	virtual, 3.3cm	virtual, 60an
d0=2f	urtual 50cm	urtual, 3.3 cm	virtuaj 50cm
f <d0<2f< th=""><th>26cm,33cm</th><th>Z.Gcn, 3.3cm</th><th>г<i>с</i>и,33cm</th></d0<2f<>	26cm,33cm	Z.Gcn, 3.3cm	г <i>с</i> и,33cm

2 The case

d0 < f

for the converging lens. Use only the values for f, h_a and d_a . Then measure h_i and d_a from the diagram. Compare do what you get using equations 9.1 and 9.2.

3 The case

d0 < f

for the diverging lens. Use only the values for f, h_a and d_a . Then measure h_i and d_a from the diagram. Compare do what you get using equations 9.1 and 9.2.

$$\frac{h_i}{h_0} = -\frac{d_i}{d_0} =) h_i = -\frac{h_0 d_i}{d_0} =) h_i = -\frac{(3)(1-b_0)}{15} = 12cm$$

The case

 $d_0>2f$

for the converging lens. Use only the values for f, ho and do. Then measure h, and d, from the diagram. How does it compare to what you measured and computed above?

Page Break	priverging	1ens	
	f(cm)	m	m
configuration	use your	Use your	use your
configuration	measurements	measurements	measurements
	of d_i and d_o	of h_i and h_o	of d_i and d_o
do>2f	virtual,60cm	virtual, 3.3cm	virtual, 60cm

Lens: Converging Case: One Scale: 1:3 boxes/cm

50U

Lens	ens configuration		d_i (cm)	h_i (cm)	Real/Virtual	Upright/Inverted	Larger/Smaller	
converging	f <d0<2f< th=""><th>33</th><th>2b</th><th>2,6</th><th><i>leal</i></th><th>inverted</th><th>snaller</th></d0<2f<>	33	2b	2,6	<i>leal</i>	inverted	snaller	

Lens: Converging Case: TWO Scale: 1:5 boxes/cm

$$\frac{1}{4} = \frac{1}{10} + \frac{1}{11} = \frac{1}{20} = \frac{1}{15} + \frac{1}{11} = \frac{1}{15} + \frac{1}{12} = \frac{1}{15} = -\frac{1}{15} = -\frac$$

$$\frac{h_{i}}{h_{0}} = -\frac{d_{i}}{dv} = \frac{h_{0}}{h_{0}} = \frac{h_{0}}{h_{$$

$$\frac{h_{i}}{h_{0}} = -\frac{d_{i}}{d_{0}} =) h_{i} = -\frac{h_{0}d_{i}}{d_{0}} =) h_{i} = -\frac{(3)(1-b_{0})}{15} = \frac{15}{15}$$

$$\frac{d_{0}}{d_{0}} = \frac{15}{15}$$

$$\frac{d_{i}}{d_{0}} = \frac{15}{15}$$

$$\frac{d_{i}}{d_{0}} = \frac{15}{15}$$

$$\frac{d_{i}}{d_{0}} = \frac{15}{15}$$

6:212

Lens: Diverging

