Exercise Sheet 7 Linear Algebra (AAI)

Exercise 7.1 (H)

Consider $F: \mathbb{R}^3 \to \mathbb{R}^3$ from Exercise 6.1.

- a) Let \mathcal{E} be the standard basis of \mathbb{R}^3 . Determine $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(F)$ and $\mathcal{M}_{\mathcal{E}}^{\mathcal{E}}(F^{-1})$.
- b) Determine $\mathcal{M}_{\mathcal{E}}^{\mathcal{A}}(F)$ for the basis

$$\mathcal{A} = \left((0, 0, -1)^\top, (1, 1, 0)^\top, (-1, 1, 0)^\top \right).$$

Hint: Express the images of the basis vectors of A in terms of E.

c) Determine bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 such that

$$\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

d) Are there bases \mathcal{B} and \mathcal{C} of \mathbb{R}^3 such that

$$\mathcal{M}_{\mathcal{C}}^{\mathcal{B}}(F) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}?$$

Exercise 7.2 (H)

Let V be a \mathbb{R} -vector space, let (v_1, v_2) be a basis of V, and let $F \in L(V, V)$ be given by

$$F(v_1) = v_1$$
 and $F(v_2) = -v_2$.

Moreover, let

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Are there bases \mathcal{A} and \mathcal{B} such that $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = A$ or $\mathcal{M}_{\mathcal{B}}^{\mathcal{A}}(F) = B$?

Hint: Use $A = (v_1, v_2)$ and try to find B.

Exercise 7.3 (H)

Let $A, B \in \mathbb{R}^{n \times n}$. Prove or disprove:

- a) A, B invertible $\Rightarrow A + B$ invertible.
- b) $A \cdot B = B \cdot A \implies A = B$.

Exercise 7.4 (H)

Let $v_1, v_2, v_3 \in \mathbb{R}^{\mathbb{R}}$ be given by

$$v_1(x) = 1 + x,$$
 $v_2(x) = x,$ $v_3(x) = 1 + \exp(x)$

for $x \in \mathbb{R}$.

- a) Show that $A = (v_1, v_2, v_3)$ is a basis of $V = \text{span}(\{v_1, v_2, v_3\})$.
- b) Let $v \in V$ be given by $v(x) = 4 + 3x \exp(x)$ for $x \in \mathbb{R}$. Determine the family of coordinates $\Phi_{\mathcal{A}}^{-1}(v) \in \mathbb{R}^3$ of v w.r.t. the basis \mathcal{A} .
- c) Let $F: V \to \mathbb{R}^{\mathbb{R}}$ be given by F(v) = v'.
 - i) Show that F is linear.
 - ii) Show that im $F \subseteq V$ and that $\mathcal{B} = (F(v_2), F(v_3))$ is a basis of im F.
 - iii) Let $G \colon V \to \operatorname{im} F$ be given by G(v) = F(v). Determine $\mathcal{M}^{\mathcal{A}}_{\mathcal{B}}(G)$.