Automated Customer Review Sentiment Analysis

NLP Project - Traditional ML vs Transformers

Table of Contents

- 1. Introduction & Business Case
- 2. Data Collection & Preparation
- 3. Traditional ML Approach
- 4. Transformer Approach (HuggingFace)
- 5. Results & Comparison
- 6. Conclusions & Recommendations

1. Introduction & Business Case

Problem Statement

- · Retail companies receive thousands of text reviews monthly
- · Manual categorization is time-consuming and costly
- Need for automated sentiment classification

Key Challenges

- Users don't always leave numeric scores
- Different users interpret ratings differently (4/5 varies by user)
- Need real-time insights into customer sentiment

Project Goals

- ✓ Classify reviews as Positive, Negative, or Neutral
- ✓ Compare Traditional ML vs Deep Learning (Transformers)
- ✓ Evaluate which approach yields better results

2. Data Collection & Preparation

Dataset Overview

• Total reviews: 55,000 (IMDB + Amazon local datasets)

• After cleaning: 54,615 reviews

Sources: HuggingFace IMDB + Local Amazon CSVs

Sentiment Mapping Logic

• Ratings 1, 2, 3 → Negative

• Rating 4 → Neutral

• Rating 5 → Positive

Sentiment Distribution

Sentiment	Count	Percentage	
Positive	33,252	60.5%	
Negative	14,958	27.2%	
Neutral	6,776	12.3%	

Handling Class Imbalance

- Class weights applied (balanced/balanced_subsample)
- Mild oversampling for Neutral class
- Test set kept untouched for honest evaluation

3. Traditional ML Approach

Data Preprocessing Pipeline

Step 1: Text Cleaning

- · Convert to lowercase
- · Remove special characters and digits
- Remove extra whitespace

Step 2: Advanced NLP Processing

• Tokenization: Break text into individual words

• Stopword Removal: Filter common non-informative words

• **Lemmatization:** Convert words to base form (running → run)

Step 3: Vectorization

• CountVectorizer: Word frequency counting

- **TF-IDF Vectorizer:** Importance-weighted word frequency
- Features: 5,000 (unigrams + bigrams)
- Train/Test split: 80/20

Models Trained

- 1. Naive Bayes
- 2. Logistic Regression (class_weight='balanced')
- 3. Linear SVM (class_weight='balanced')
- 4. Random Forest (class_weight='balanced_subsample')
- 5. XGBoost (with sample weights)
- 6. Gradient Boosting
- 7. Extra Trees (class_weight='balanced')

Best Performance

Random Forest: ~80% accuracy

- · Fast training and inference
- Interpretable features
- Good balance across all classes

4. Transformer Approach (HuggingFace)

What are Transformers?

- · Revolutionary deep learning architecture
- Use **self-attention mechanisms** to process text
- Learn contextual relationships from raw text
- Pre-trained on massive text corpora

Key Advantages

- ✓ Contextual understanding: Words have different meanings based on context
- ✓ Automatic feature learning: No manual engineering needed
- ✓ Transfer learning: Pre-trained models fine-tuned for specific tasks
- ✓ Bidirectional processing: Read text in both directions

Models Evaluated

- 1. **BERT** (bert-base-uncased) Pioneering transformer
- 2. Roberta (roberta-base) Optimized BERT variant
- 3. DistilBERT (distilbert-base-uncased) 60% smaller, 97% performance
- 4. **ELECTRA** (google/electra-base-discriminator) Efficient pre-training

Preprocessing Pipeline

1.1 Data Cleaning & Tokenization

- HuggingFace tokenizers (WordPiece, BPE)
- Special tokens: [CLS], [SEP], [PAD]
- Max sequence length: 256 tokens

1.2 Data Encoding

- · Convert tokens to numerical IDs
- Create attention masks for variable-length sequences
- Handle padding and truncation

Baseline Results (No Fine-tuning)

Model	Accuracy	Precision	Recall	F1-Score
BERT	73.8%	75.9%	73.8%	74.7%
RoBERTa	73.0%	74.3%	73.0%	73.4%
DistilBERT	78.0%	70.2%	78.0%	73.7%

Best Baseline: DistilBERT (78% accuracy)

Fine-Tuning Implementation

• External module: fine-tuning.py

• Custom SentimentDataset class

- HuggingFace Trainer with TrainingArguments
- Early stopping callback
- Class-weighted loss function

5. Results & Comparison

Performance Summary

Approach	Best Model	Accuracy	Speed	Interpretability
Traditional ML	Random Forest	~80%	≠ Fast	✓ High
Transformer (Baseline)	DistilBERT	78%	Slower	X Low

Traditional ML Results

Random Forest (TF-IDF)

• Accuracy: ~80%

• Training time: Minutes

• Inference: Milliseconds per review

• Features: 5,000 interpretable n-grams

Transformer Results

DistilBERT (Baseline)

• Accuracy: 78%

• Training time: Hours (with fine-tuning)

• Inference: ~100ms per review

• Features: 768-dim contextual embeddings

Evaluation Metrics

Both approaches evaluated using:

• Accuracy: Overall correctness

• Precision: True positives / All predicted positives

• Recall: True positives / All actual positives

• F1-Score: Harmonic mean (macro & weighted)

• Confusion Matrix: Per-class performance

Trade-offs Analysis

Traditional ML Advantages:

- ✓ Fast training and inference
- ✓ Interpretable features (word importance)
- ✓ Lower computational requirements
- ✓ Easy deployment in production

Transformer Advantages:

- ✓ Contextual understanding
- ✓ Better with complex language patterns
- ✓ Pre-trained knowledge from massive corpora
- ✓ State-of-the-art performance (with fine-tuning)

6. Conclusions & Recommendations

Key Findings

✓ Both approaches successfully meet project requirements

- Traditional ML: 7 models trained and evaluated
- Transformers: 4 models evaluated (baseline + fine-tuning setup)

✓ Random Forest delivers excellent production performance

- 80% accuracy with fast inference
- · Interpretable and easy to maintain

✓ DistilBERT provides strong baseline

- 78% accuracy without fine-tuning
- · Room for improvement with fine-tuning

- Class weights and mild oversampling
- Macro-F1 tracking minority class performance

Project Requirements Fulfilled

README.md Requirements:

✓ Traditional ML Approach

- Data preprocessing (cleaning, tokenization, lemmatization)
- Vectorization (Count & TF-IDF)
- · Multiple models trained
- · Comprehensive evaluation metrics

✓ Transformer Approach

- Data cleaning and tokenization (HuggingFace)
- Data encoding (numerical IDs)
- Model selection (BERT, RoBERTa, DistilBERT, ELECTRA)
- Baseline evaluation

• Fine-tuning framework (external module)

✓ Deliverables

- Reproducible Jupyter notebook
- Documentation and analysis
- Presentation materials

Recommendations

For Production Deployment:

- 1. Start with Random Forest for speed and interpretability
- 2. Consider Distilbert for complex reviews needing context
- 3. Use ensemble approach combining both methods

For Future Improvements:

- 1. Fine-tune transformers on full dataset
- 2. Implement threshold tuning for Neutral class
- 3. Explore BERT/RoBERTa for maximum accuracy
- 4. Build dashboard for real-time monitoring

Architecture Decision:

- **High-volume, real-time:** Traditional ML (Random Forest)
- Complex analysis, batch processing: Transformers (DistilBERT+)
- **Hybrid system:** ML for filtering, Transformers for edge cases

Thank You!

Questions?

Project Demonstrates:

- · Comprehensive NLP pipeline
- Traditional ML vs Deep Learning comparison
- Production-ready implementations
- Proper evaluation methodology

Key Takeaway: Both approaches have their place - choose based on your specific requirements for speed, accuracy, and interpretability.