Exercício 4

November 7, 2020

1 Exercício PA2-4

Exercício com data de entrega para 9 de novembro de 2020.

Aluno: Noé de Lima Bezerra

noe_lima@id.uff.br

```
import numpy as np
import sympy as sp
import matplotlib.pyplot as plt
from IPython.display import display, Math, Image, IFrame
#from sympy.abc import x, y, z
sp.init_printing(use_latex='mathjax',latex_mode='equation*')
```

[2]: Image("Figuras/PA2-4-0.png")

[2]:

AVALIAÇÃO 4 – FLAMBAGEM – CARGA CENTRADA– VÍDEOS 9 E 10

Para as estruturas mostradas a seguir, apresentar:

- a) Os índices de esbeltez nos dois planos principais;
- b) A definição de qual índice de esbeltez será usado para uma verificação à flambagem

O índice de esbeltez de uma coluna é definido por $\frac{L_e}{r}$, onde:

- L_e é o comprimento efetivo, definido em funcão do tipo de apoio (condições de contorno);
- r é o raio de giração, definido por $r=\sqrt{\frac{I}{A}}$, sendo I o menor momento de inércia da seção transversal e A a área desta seção.

A partir disso, temos como calcular a tensão crítica de flambagem:

$$\sigma_{cr} = \frac{\pi^2 E}{\left(\frac{L_e}{r}\right)^2}$$

Portanto, quanto maior o índice de esbeltez, menor a tensão crítica admissível. Assim, o maior valor de esbeltez encontrado deverá ser utilizado para verificação à flambagem.

[3]: b,h,L_e = sp.symbols("b,h,L_e")
I = (b*h**3)/12 # Momento de inércia retangular
A = b*h # Área retangular
r = sp.sqrt(I/A) # Raio de giração
Esb = L_e/r # Índice de Esbeltez
display(Esb)

$$\frac{2\sqrt{3}L_e}{\sqrt{h^2}}$$

Temos, portanto, que para uma seção retangular,

$$\frac{L_e}{r} = 2\sqrt{3} \frac{L_e}{h}$$

[4]: Image("Figuras/PA2-4-1.png")

[4]:

1) ESTRUTURA 1

b=2a

Vista pelo plano xy, a imagem tem a seguinte forma das reações de apoio:

```
[5]: Image("Figuras/PA2-4-1-1.png")
```

[5]:

Esta configuração resulta em $L_e=0,7\times L$, e $I_z=\frac{2\times a\times a^3}{12}$. Assim, o índice de esbeltez é $\frac{7\sqrt{3}}{5a}L$.

[6]:
$$L,a = sp.symbols("L,a")$$

display(Esb.subs(b,2*a).subs(h,a).subs(L_e,7*L/10))

$$\frac{7\sqrt{3}L}{5\sqrt{a^2}}$$

Vista pelo plano xz, a imagem tem a seguinte forma das reações de apoio:

[7]:

Esta configuração, com uma estrutura de base engastada e topo livre, resulta em $L_e=2\times L$, e $I_z=rac{a imes(2 imes a)^3}{12}$.

Ou seja, o índice de esbeltez é $\frac{2\sqrt{3}}{a}L.$

[8]: display(Esb.subs(b,a).subs(h,2*a).subs(L_e,2*L))

$$\frac{2\sqrt{3}L}{\sqrt{a^2}}$$

Portanto, comparando ambos, $\frac{7\sqrt{3}}{5a}L$ e $\frac{2\sqrt{3}}{a}L$, temos que:

$$\frac{7}{5} \frac{\sqrt{3}L}{a} < 2 \frac{\sqrt{3}L}{a}$$

Portanto, o segundo índice deverá ser adotado para verificar a flambagem.

[9]: Image("Figuras/PA2-4-2.png")

[9]:

2) ESTRUTURA 2

Esta estrutura apresenta, no plano xy, um engaste na base e um engaste no topo, pois impede a rotação neste plano. Para a estrutura bi-engastada, $L_e=\frac{L}{2}$, e $I_z=\frac{a\times\left(\frac{a}{2}\right)^3}{12}$.

[10]: $display(Esb.subs(b,a).subs(h,a/2).subs(L_e,L/2))$

$$\frac{2\sqrt{3}L}{\sqrt{a^2}}$$

No plano xz, temos uma estrutura engastada na base e articulada na outra extremidade. Assim, temos $L_e=0,7\times L$ e $I_y=\frac{\left(\frac{a}{2}\right)\times a^3}{12}$.

[11]: $display(Esb.subs(b,a/2).subs(h,a).subs(L_e,7*L/10))$

$$\frac{7\sqrt{3}L}{5\sqrt{a^2}}$$

Assim, o primeiro índice, $2\sqrt{3}\frac{L}{a}$, é maior e, portanto, deverá ser utilizado.

[12]: Image("Figuras/PA2-4-3.png")

[12]:

3) ESTRUTURA 3

A=4570mm²

 $I_x = 34,5 \times 10^6 \text{mm}^4$

 $I_y = 7,62 \times 10^6 \text{mm}^4$

Esta estrutura, no plano yz, é uma estrutura bi-rotulada de comprimento 2L, que é o mesmo comprimento efetivo.

Temos, então,

$$r = \sqrt{\frac{I_x}{A}} = 86,89 \ mm$$

Isso resulta em um índice de esbeltez igual a $23,02 \times L$, para L em metros.

Já no plano zx, temos uma estrutura bi-articulada, mas com uma rótula no centro. Desta forma, $L_e=L$, resultando em:

$$r = \sqrt{\frac{I_y}{A}} = 40,83 \ mm$$

E, portanto, um índice de esbeltez, para L em metros, igual a $24,49~\times~L$, que é ligeiramente maior e, portanto, deverá ser adotado.

[13]: I_x = 34.5e6
I_y = 7.62e6
A_3 = 4570
r_x = sp.sqrt(I_x/A_3)/1000
r_y = sp.sqrt(I_y/A_3)/1000
display(r_x,r_y)
display(2*L/r_x)
display(L/r_y)

0.0868863288191381

0.0408337612922095

23.0185810262876L

24.4895392526768L

[]: