Федеральное государственное бюджетное образовательное учереждение высшего образования

Омский государственный университет им. Ф.М. Достоевского

Кафедра теоритической физики

Отчет о выполнении учебного задания M1 по «Вычислительной физике» Исследование статистических характеристик ГПСЧ, входящих в стандартную библиотеку C++

Выполнил: студент группы ФПБ - 603 Ватолкин Михаил Александрович

Проверил: Попов И.С.

Заведующий кафедрой: доктор физ.-мат. наук, профессор Прудников В.В.

Содержание

1	Нам	иагниченность	3
2	Boo	приимчивость	3
3	Пог	ск критической температуры	4
4	Исс 4.1	ледование времени расчетов Метод суперпозиции	5
5	Рез	ультаты	7
	5.1	Равномерное распределение	7
	5.2	Распределение Пуассона	8
	5.3	Распределение Стьюдента	
	5.4	Экспоненциальное распределение	10
	5.5	Логнормальное распределение	11
	5.6	Распределение хи-квадрат	12
	5.7	Гамма распределение	13
	5.8	Нормальное распределение	14

Введение

В данной работе исследование проводилось для решеток с линейными размерами 128, 256, 512, в температурном диапазоне $T \in [1.8, 2.8]$. Было исследовано поведение восприимчивости, кумулянты Биндера и намагниченности. Поиск критической точки осуществлялся наложением графиков зависимости кумулянты Биндера от времени. Так же прилагается исследование времени расчетов для разных систем на разных разных ЭВМ.

1 Намагниченность

Вблизи критической точки мы можем наблюдать резкое падение намагниченности, причем как мы можем видеть из графика, с ростом системы намагниченность стремится принять значение 0 в этой точке.

2 Восприимчивость

Здесь мы видим, что восприимчивость имеет пик, но он не совпадает с критической точкой, т.к он для систем с разными размерами принимает свое значение, но мы можем заметить, что с ростом системы он

стремится к конкретной точки на оси T и к бесконечности по оси χ , такое поведение связано с конечно-разностными эффектами, обусловленными ограниченными размерами системы, что приводит к зависимости характеристик системы от ее размеров.

Так же на интервале $T \in [1.8, 1.9]$ можно заметить скачек восприимчивости, его природа еще не определена. Будут проведены дополнительные исследования этой области.

3 Поиск критической температуры

Кумулянта Биндера определятся как $U=\frac{1}{2}(3-\frac{< M^4>}{< M^2>^2})$, так же нам известно, что $U\sim (T-T_C)$, это означает , что кумулянта систем с разными размерами будет иметь точку пересечения в T_C , но так как рассчитанная кумулянта имеет погрешность, вместо точки мы получим треугольник, центр тяжести которого мы выберем в качестве T_C . В результате моделирования были получены результаты , представленные на графике ниже

Следующий интервал для исследования $-T \in [2.26, 2.28]$. Исходя из ранее полученного опыта и результатов, можно предположить, что после изучения этого интервала T_C будет получена с точностью $\sim 10^{-5}$.

4 Исследование времени расчетов

L						
Модель процессора	ryzen 3 1200	Аналитическое	Модуль разницы			
Мат. ожидание	0.499988	0.5	0.000012			
Дисперсия	0.0833343	0.8333333	0.000001			
Ассиметрия	0.000204552	0	0.000204552			
Эксцесс	-1.20006	-1.2	0.00006			