Theory of Computation: Log-space

Languages in L

- EVEN: The set of strings with an even number of 1s.
- EVEN is in L: We basically need to keep a counter of the number of 1s in the input string. And later check if this is even by checking the last bit. The space required is $O(\log n)$.

Languages in NL

- PATH: The set of all < G, s, t > such that G is a directed graph which has a path from s to t.
- PATH ∈ NL: First, if there is a path from s to t, then there is one of length at most n.
- Create a non-deterministic walk starting at s, making a non-deterministic choice of a neighbour from the current vertex and stopping after n steps. If the walk ends at t then this is a desired path.
- $O(\log n)$ space required: Only need to know the number of steps so far and the index of the current vertex.

$$NL = L$$
?

- It is not known whether PATH belongs to L. This is an open question.
- It is quite possible that even 3-SAT could belong to L.
- Consequence of $3 SAT \in L$: Recall that $NSPACE(f(n)) \in DTIME(2^{f(n)})$ for space constructible f. So, $L \subseteq NL \subseteq P$.

$$3 - SAT \in L \implies NP = P$$
. (Does not imply $L = NL!$)

NL-completeness

- Polynomial time reductions are too expensive!
- Logspace computable functions: A function $f:\{0,1\}^* \to \{0,1\}^*$ that is polynomially bounded (there is a c such that $f(x) \leq |x|^c$ for all x) and the languages $L_f = \{< x, i > |f(x)_i = 1\}$ and $L_f' = \{< x, i > |i \leq |f(x)|\}$ are in L. Eg. f(x) = |x|.

NL-completeness

- Logspace reducibility: A language B is logspace reducible to language C, denoted as $B \leq_l C$, if there is a function $f: \{0,1\}^* \to \{0,1\}^*$ that is logspace computable and $x \in B$ iff $f(x) \in C$ for every x.
- NL-completeness: C is NL-complete if it is in NL and for every B in NL, $B \leq_l C$.

NL-completeness

- Log space reductions: For logspace computable functions, it is possible to compute in $O(\log n)$ space whether the i^{th} bit of f(x) is 1, and whether all of f(x) has been computed or not.
- So, log space reductions can also be thought of as reductions where the output tape (whose space does not count towards space bound of the machine) is a write-only tape: you can write a bit or move to the right; you cannot move left to reread a previous bit.
- Actually, the two notions are equivalent.

Composition of logspace computable functions

- For logspace computable functions f, g, h such that h(x) = g(f(x)) is also logspace computable.
- Proof: Let M_f and M_g be logspace machines computing $f(x)_i$ and $g(y)_i$ respectively.
- We will compute M_h to output $g(f(x))_j$. Input tape of M_h has $\langle x, j \rangle$ written.
- M_h has to simulate M_g on f(x) and then read the j^{th} bit from the output. So it tries to maintain M_g 's bit by bit simulation on f(x) cannot do the whole thing as it will require much more than logspace.

Composition of logspace computable functions

- Suppose M_g needs to know the bit at the i^{th} cell of f(x) for its simulation.
- M_h stores the current worktape of M_g safely.
- It invokes M_f on input $\langle x, i \rangle$ to get $f(x)_i$.
- Then it resumes simulation of M_g on this bit.
- Total space required = $(O(\log(|g(f(x))| + |x| + |f(x)|)))$. As $|f(x)| \le \operatorname{poly}(x)$ and similar properties for g, this becomes $O(\log(|x|))$.

Composition of logspace computable functions

- Similar argument to show that L'_h = {< x, i > |i ≤ h(x)} is in L: Again the machine for h has to "pretend" that it also has access to f(x) on its input tape and not just < x, j >.
- This shows that *h* is logspace computable.

Transitivity of logspace reductions

- If $B \leq_l C$ and $C \leq_l D$ then $B \leq_l D$: B reduces to C by logspace computable function f, and C to D by logspace computable function g. We know that h such that h(x) = g(f(x)) is also logspace computable.
- If $B \le_I C$ and $C \in L$ then $B \in L$: Let f be the reduction from B to C and g be the funtion such that g(y) = 1 iff $y \in C$. Then h such that h(x) = g(f(x)) is such that h(y) = 1 iff $y \in B$ and it requires deterministic computation taking logspace. So B is in L.
- In particular if an NL-complete language is in L iff NL = L.

PATH is NL-complete

- Note: If PATH is in L then NL = L.
- We have seen that PATH is in NL.
- PATH is NL-hard: Take L to be in NL that is decided by an O(log n)-space nondeterministic machine M.
- Need to define a logspace computable function f for the reduction $L \leq_I PATH$.
- For input x, f(x) will be the configuration graph $G_{M,x}$: each configuration in a logspace machine can be described in $O(\log n)$ bits; $G_{M,x}$ has $2^{O(\log n)}$ vertices.

PATH is NL-complete

- Correctness of reduction: $G_{M,x}$ has a path from C_s to C_t iff M accepts x.
- How to compute f(x): The graph can be represented as an adjacency matrix: contains 1 in position (C, C') if there is an edge from C to C' in $G_{M,x}$.
- We need to show that the adjacency matrix can be computed by a logspace reduction: need to describe a logspace machine that can compute any desired bit in it.
- Given a C and C', a deterministic machine can in space $O(|C| + |C'|) = O(\log(|x|))$ examine if the two configurations have valid form and if C can transition to C' according to the transition function of M.

Immerman-Szelepcsenyi Theorem

- Statement: For every space constructible $S(n) \ge \log n$, NSPACE(S(n)) = coNSPACE(S(n)).
- Corollary: NL = coNL.
- Comment: Space complexity classes behave very differently from time complexity classes:
 Savitch's Theorem has no analogue in time complexity.
 I-S Theorem has no analogue in time complexity.

- Take a problem Π in NL with a O(S(n))-space machine M.
- Configurations are of size O(S(n)),; Configuration graph has $2^{O(S(n))}$ vertices.
- An input x belongs to Π iff $G_{M,x}$ has a path from C_s to C_t .

- If $x \in L$ there is an algorithm to verify if $G_{M,x}$ has a path from C_s to C_t : Starting from C_s , guess a path of length at most $2^{O(S(n))}$ till C_t .
- If $x \notin L$ we need an algorithm to verify if $G_{M,x}$ does not have a path from C_s to C_t . (Then $\overline{L} \in NL$)
- Notation: C_i is the set of all vertices C in $G_{M,x}$ that are reachable from C_s in exactly i steps.
- Note that C_0 only contains C_s .

- Primer: Suppose I know that the number of vertices in C_i is
 m_i, can I check if a given vertex C_v is in C_i or not?
- Each $m_i = 2^{O(S(n))}$, which can be stored in O(S(n)) space.
- If C_v belongs to C_i then again we can guess an i-length path. What if C_v does not belong?
- Design a new algorithm: For each C_u, u ≠ v, check if C_u belongs to C_i.
 If at the end the number of u for which it is verified that C_u belongs to C_i is m_i then it must be the case that C_v ∉ C_i.
 If the number is < m_i then it must be the case that C_v ∈ C_i.

- So how do we find m_i correctly: It must be correct in order for the previous algorithm to work.
- Algorithm to find m_i if m_{i-1} is correctly known: First, let's design an algorithm that can check if a C_v belongs or not to C_i if m_{i-1} is known.
- Take a C_v . Check for each vertex C_w that has an edge to C_v whether or not it belongs to C_{i-1} (Previous algorithm can be used each time). This can answer whether or not C_v belongs to C_i .

- Algorithm to find m_i if m_{i-1} is correctly known:
- Initially $m_i = m_{i-1}$. Run through all C_{ij} and check whether it belongs to C_{ij} or not from previous algorithms. If there is an *i*-path from C_s , then increment m_i .

- Now we know $C_0 = \{C_s\}$ and $m_0 = 1$.
- Iteratively, find $m_{2^{O(S(n))}}$, as the path from C_s to C_t can be of length at most $N = 2^{O(S(n))}$. Counter for $i \leq N$ can be stored in O(S(n)) space.
- Finally, check whether C_t belongs to C_N or not.