Objective:

The primary objective of the traffic light control system is to ensure a safe and efficient flow of traffic at the two-intersection road network, thereby minimizing congestion and reducing the risk of accidents.

Interface:

The interface consists of:

Physical inputs

No	Symbol	Function	Lock	Parameters	Location of (L/C)	Comment
11	1	Discrete inputs		No parameters	(40/1)	Car_A
12	I	Discrete inputs		No parameters	(40/2)	Car_B/C
13	1	Discrete inputs	-	No parameters	(40/3)	Car_D/F
14		Discrete inputs		No parameters	(32/2) (33/3) (35/4) (40/4)	Car_E
17	I	Discrete inputs	-	No parameters	(40/5)	Circuit_Breaker

Physical outputs

No	Symbol	Function	Latching	Location of (L/C)	Comment
Q1	ٰ	Discrete outputs	No	(13/6)	A_R
Q2	Ů o	Discrete outputs	No	(16/6)	B_R
Q3	ٰ	Discrete outputs	No	(31/6)	C_R
Q4	ٰ	Discrete outputs	No	(17/6)	D/F_R
Q5	ٰ	Discrete outputs	No	(21/6)	E_R
Q7	ٰ	Discrete outputs	No	(30/6)	A_Y
Q8	ٰ	Discrete outputs	No	(15/6)	B_Y
Q9	ٰ	Discrete outputs	No	(14/6)	C_Y
QA	ٰ	Discrete outputs	No	(22/6)	D/F_Y
QB	ٰ	Discrete outputs	No	(28/6)	E_Y
QC	Ů o	Discrete outputs	No	(27/6)	E_G
QD	ٰ	Discrete outputs	No	(29/6)	A_G
QE	ٰ	Discrete outputs	No	(20/6)	B_G
QF	ٰ	Discrete outputs	No	(25/6)	C_G
QG	ٰ	Discrete outputs	No	(26/6)	D/F_G

Time: 005.0 s

TTx

Tx

Configurable functions

No	Symbol	Function	Lock	Latching	Parameters	Location of (L/C)	Comment
C1	061	Counters	No	No	Value to attain: 0 Pulses Output ON when the preset value is reached	(2/6) (37/6)	Pair_Counter
M1	₽M	Auxiliary relays		No	No parameters	(3/6) (12/1) (29/1) (30/2)	FSM_1
M2	₽M	Auxiliary relays		No	No parameters	(8/6) (11/1) (29/2) (30/1)	FSM_2
МЗ	₽M	Auxiliary relays	-	No	No parameters	(4/6) (10/1) (13/1) (14/4) (24/1) (25/1) (41/1)	FSM_3
M4	₽W	Auxiliary relays	-	No	No parameters	(9/6) (14/1) (17/1) (21/1) (23/3) (24/2) (42/1)	FSM_4
M5	₽W	Auxiliary relays		No	No parameters	(5/6) (7/1) (22/1) (23/2) (24/3) (26/1) (43/1)	FSM_5
М6	₽W	Auxiliary relays	1	No	No parameters	(6/1) (10/6) (23/1) (24/4) (32/1) (33/1) (34/1) (44/1)	FSM_6
М7	Ü,	Auxiliary relays	1	No	No parameters	(4/1) (6/6) (18/1) (20/4) (27/1) (35/1) (36/1)	FSM_7
МВ	Ů.W	Auxiliary relays	1	No	No parameters	(5/1) (11/6) (19/1) (20/5) (28/1) (35/2) (37/1)	FSM_8
N1	₽M	Auxiliary relays	-	No	No parameters	(126) (201)	FSM_1/2/3
N2	□ M	Auxiliary relays	-	No	No parameters	(7/6) (14/5) (15/1) (29/3) (30/3) (31/1)	FSM_5/6/7/8
N9	□ M	Auxiliary relays	-	No	No parameters	(32/6) (33/2) (35/3) (38/2) (41/6)	E_Detected
NA	□ M	Auxiliary relays	1	No	No parameters	(33/6) (34/2) (35/5) (36/3) (42/6)	E_Trigger
NB	Ů W	Auxiliary relays	-	No	No parameters	(1/2) (36/6)	E_FSM_Jump
T1	Ů,	Timers	No	No	See details below	(1/6) (2/1) (3/1) (8/1) (38/6)	FSM_Clock
T2	ĕ¹	Timers	No	No	See details below	(346) (362) (396)	FSM_E_Min
T3	Ĉ [™]	Timers	No	No	See details below	(1/3) (35/6) (40/6)	FSM_E_Done
V1	0 4 V	Counter comparators	No	-	C1 + 0 = 1	(3/3) (8/3)	FSM_(1?2)
V3	ALV	Counter comparators	No		C1+0=2	(4/3) (9/3)	FSM_(3?4)
V5	ALV	Counter comparators	No	-	C1+0=3	(5/3) (10/3)	FSM_(5?6)
V7	ALV	Counter comparators	No		C1+0=4	(6/3) (11/3) (38/1)	FSM_(7?8)
V8	ALV	Counter comparators	No		C1+0=5	(39/1)	
X1	1223	Text blocks	-	-	See details below	(24/6) (43/6)	
X2	TRAN	Text blocks		-	See details below	(23/6) (44/6)	

Text block

X	1	1		7.7	Tex	d bl	ock	(S									
	K	e 0	d	ė	8	ι	٢	1	à	n L	D	9	E	Ł,	ř	Ŋ	
Х	2	1		-	Tex	d bl	ock	(S									
	P		d	e	8	ŧ	г	1	å	n	н	ii	R	Ł,	E C	N	

In the simulation, every input is depicted as a switch, and each output is symbolized by a light bulb. The push button is characterized as Zx Keys. Similarly, counter values and coil states are illustrated below.

No	Function	Label	Туре	Preset	Comment
001	Timer	T1	L: Asymmetr	T1A = 015.0 S T1B = 005.0 S	FSM Clock
002	Timer	T2	L: Asymmetr	T2A = 001.0 S T2B = 005.0 S	FSM_E_Min
003	Timer	T3	B: On pulse	T3 = 005.0 S	FSM_E_Done
004	Counters	C1	Output ON v	C1 = 00000	Pair_Counter
005	Counter c		C1 + 0 = 1		FSM_(1 ? 2)
006	Counter c	V3	C1 + 0 = 2		FSM_(3 ? 4)
007	Counter c	V5	C1 + 0 = 3		FSM (5 ? 6)
800	Counter c	V7	C1 + 0 = 4		FSM_(7 ? 8)
009	Counter c	V8	C1 + 0 = 5		
010	Text block	X1			
011	Text block	X2			

Key Map:

The lamps that will be controlled are the following:

The Design:

Key features include:

- Controlled Left Turns: The system controls left turns on Road A and Road E, allowing them only during specific states and restricting them during others to reduce the risk of accidents.
- Yellow Light Warning: The system provides a yellow light warning before changing the traffic lights to red, allowing drivers to slow down and prepare to stop, and reducing the risk of accidents.
- Fixed Time Intervals: The system operates on fixed time intervals, with each state having a designated duration to ensure a predictable and consistent traffic flow, and minimize congestion.

<u>Traffic Light States (Normal Execution):</u>

- State 1: Green: Road A and B, Red: Road C and D/F and E. (15 seconds)
- State 2: Green: Road B, Yellow: Road A, Red: Road C and D/F and E. (5 seconds)

State 2

- State 3: Green: Road B and C, Red: Road A and D/F and E. (15 seconds)
- State 4: Yellow: Road B and C, Red: Road A and D/F and E. (5 seconds)

State 3

State 4

- State 5: Green: Road D/F, Red: Road A and B and C and E. (15 seconds)
- State 6: Yellow: Road D/F, Red: Road A and B and C and E. (5 seconds)

State 6

Traffic Light States (Car Detected on Road E):

- State 7: Green: Road E, Red: Road A and B and C and D/F. (15 seconds)
- State 8: Yellow: Road E, Red: Road A and B and C and D/F. (5 seconds)

State 7

State 8

The System:

Below is the system design that fulfills the objective and focuses on all the scenarios listed.

Estimated Price Breakdown:

3 Standard Traffic Lights: \$3,500 - \$4,000

• 2 Traffic Light with Arrow: \$3,000 - \$3,200

PLC: \$200 - \$300

Mast Arms: \$28,000 - \$30,000Installation: \$5,000 - \$5,500

• Total: \$39,200 - \$42,400

Additional Suggestions:

- **Traffic Sensors:** Integrate traffic sensors to monitor traffic volume and adjust the timing of the traffic lights accordingly, optimizing traffic flow and reducing congestion.
- Emergency Vehicle Preemption: Implement emergency vehicle preemption to prioritize emergency vehicles and ensure their safe passage through the intersection.
- **Redundancy and Backup Systems:** Incorporate redundancy and backup systems to ensure the system remains operational in the event of a failure or power outage.
- Traffic Light Synchronization: Synchronize traffic lights with adjacent intersections to create a smooth and efficient flow of traffic, reducing congestion and minimizing travel times.

Conclusion:

The system is designed to be simple and efficient, with a straightforward sequence of states that minimizes complexity and reduces the risk of errors, making it easier to implement and maintain.