3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

3.23 Fall 2007 – Lecture 23 FERMI'S GOLDEN RULE

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Study

 Fox, Optical Properties of Solids: 3.1 to 3.6 (skip 3.3.5 and 3.3.6), 4.1, 4.2, and Appendix B.2

Boundary conditions

$$\hat{n} \cdot \left(\vec{B}_2 - \vec{a}_1\right) = 0$$

$$\hat{n} \cdot (\vec{D}_2 - \vec{D}_1) = \sigma \ (\sigma = \text{surface charge density})$$

$$\hat{n} \times \left(\vec{E}_2 - \vec{E}_1\right) = 0$$

$$\hat{n} \times (\vec{H}_2 - \vec{H}_1) = \vec{K}$$

 $(\vec{K} = \text{surface current density})$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Snell's law

$$\left(\vec{k}_{1t} \cdot \vec{r}_{t}\right) = \left(\vec{k}_{1t}' \cdot \vec{r}_{t}\right) = \left(\vec{k}_{2t} \cdot \vec{r}_{t}\right)$$

$$k_{1z} = \left| \vec{k}_1 \right| \sin \theta_1 = n_1 \frac{\omega}{c} \sin \theta_1$$

$$k_{2z} = \left| \vec{k}_2 \right| \sin \theta_2 = n_2 \frac{\omega}{c} \sin \theta_2$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Image from Wikimedia Commons, http://commons.wikimedia.org

Energy conservation

$$\int \vec{J} \cdot \vec{E} dv + \frac{\partial}{\partial t} \int \underbrace{\left(\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B}\right)}_{\text{total energy stored in electrical and magnetic field per volume}} dv + \int \underbrace{\left(\vec{E} \times \vec{H}\right)}_{\text{energy surface flux per unit area}} \cdot \hat{n} dS = 0$$

$$\vec{S} = \frac{c}{4\pi} \vec{E} \times \vec{H}$$

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Optical processes

- Reflection and refraction
- Absorption
- Luminescence
- Scattering

Optical coefficients

T: ratio of transmitted vs incident power R+T=1 (no absorption, scattering)

Absorption:

Transmission:

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Modeling Optical Constants with a Damped Harmonic Oscillator

$$\varepsilon = (n+ik)^2 = \underbrace{n^2 - k^2}_{\varepsilon_1} + i\underbrace{2nk}_{\varepsilon_2}$$

$$\varepsilon = 1 + 4\pi\chi + 4\pi \frac{Ne^{2}\left(\omega_{0}^{2} - \omega^{2}\right)}{m_{0}\left(\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \gamma^{2}\omega^{2}\right)} - i 4\pi \frac{Ne^{2}\gamma\omega}{m_{0}\left(\left(\omega_{0}^{2} - \omega^{2}\right)^{2} + \gamma^{2}\omega^{2}\right)}$$

Amorphous silica

Figure by MIT OpenCourseWare.

Courtesy of Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Kramers-Kronig relations

$$n(\omega) = 1 + \frac{1}{\pi} \, \mathsf{P} \int_{-\infty}^{\infty} \frac{\kappa(\omega')}{\omega' - \omega} \, d\omega'$$

$$\kappa(\omega) = -\frac{1}{\pi} \, \mathsf{P} \int_{-\infty}^{\infty} \frac{n(\omega') - 1}{\omega' - \omega} \, d\omega'$$

Optical materials

Image removed due to copyright restrictions.

Please see: Fig. 1.4 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Infrared active modes

Image removed due to copyright restrictions.

Please see Fig. 1a and 2a in Giannozzi, Paolo, et al.

"Ab initio Calculation of Phonon Dispersions in Semiconductors." Physical Review B 43 (March 15, 1991): 7231-7242.

Optical materials

Image removed due to copyright restrictions.

Please see: Fig. 1.7 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Optical materials

Image removed due to copyright restrictions.

Please see: Fig. 1.5 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

Interband absorption

Image removed due to copyright restrictions.

Please see: Fig. 3.1 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Direct and indirect transitions

Image removed due to copyright restrictions.

Please see: Fig. 3.2 in Fox, Mark. Optical Properties of Solids. Oxford, England: Oxford University Press, 2001.

Transition rate for direct absorption

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Transition rates: perturbing Hamiltonian

Transition rates: perturbing Hamiltonian

3.23 Electronic, Optical and Magnetic Properties of Materials - Nicola Marzari (MIT, Fall 2007)

Transition rate for direct absorption