5.
$$f(x,y) = x^2y - x + 2y + 3$$
 at $(1,2)$

$$f_{x}(x,y) = 2xy - \frac{3}{4}$$

$$f_{y}(x,y) = \frac{3}{4}$$

9.
$$f(x,y) = x^{2}y + 3x^{2} + 4y - 5$$

$$f_{x}(x,y) = 2x^{2}y + 6x$$

$$f_{y}(x,y) = x^{2} + 4$$

$$f_{xy}(x,y) = 2x^{2} + 4$$

$$f_{xy}(x,y) = 2y + 6$$

$$f_{yy}(x,y) = 0$$

$$f_{yy}(x,y) = 0$$

$$f_{yy}(x,y) = 2x$$

$$f_{yx}(x,y) = 2x$$

11.
$$f(x,y) = \frac{x}{y}$$

$$f_{x}(x,y) = \frac{x}{y}$$

$$f_{y}(x,y) = \frac{-x}{y^{2}}$$

$$f_{xy}(x,y) = 0$$

$$f_{yy}(x,y) = 0$$

$$f_{yy}(x,y) = \frac{2x}{y^{3}}$$

$$f_{xy}(x,y) = \frac{2x}{y^{3}}$$

7.
$$z = 3x + 4y$$
, $x = t^2$, $y = 2t$; $t = 1$

$$\frac{12}{dt} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

$$(32) + 4(2) = (+18 = 14)$$

$$D_{\vec{u}}f(x_0,y_0)=f_x(x_0,y_0)u_1+f_y(x_0,y_0)u_2.$$

$$\frac{3}{5}, \frac{9}{5}$$
 $\frac{3}{5}, \frac{9}{5}$
 $\frac{7}{5}, \frac{9}{5}$
 $\frac{7}{5}, \frac{9}{5}$
 $\frac{7}{5}, \frac{9}{5}$

$$f_{x} = -2x$$

$$f_{y} = -2y$$

 $f(x)y) = (os(xy)) \quad \overrightarrow{7} = (\overrightarrow{7}, -2)$ $f_{x} = -y sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$ $f_{y} = -x sin(xy) \quad \overrightarrow{7} = (\overrightarrow{1}, \frac{\pi}{2})$

 $\int f \circ d = f_{\chi}(x,y) \cdot y + f_{\chi}(x,y)$ $\int f \circ d = f_{\chi}(x,y) \cdot y + f_{\chi}(x,y)$

$$f(x,y) = x^{3} + 2x^{2}y + 3y^{2}$$

$$\sqrt{f} = (3x^{2} + 4xy), 2x^{2} + 6y$$

$$\sqrt{f} = (3,1) = (39,24)$$

$$\sqrt{f} = (39,1) = (39,24)$$

$$\sqrt{f} = (3$$

(三, 芒, 0) 十七(元, 亿, 亿)
'