Metody Probabilistyczne i Statystyka - wykład 9.

Charakterystyki liczbowe dwuwymiarowych zmiennych losowych Analiza korelacji

6 maja 2025

Założenie:

Niech $g:\mathbb{R}^2 \to \mathbb{R}$ będzie funkcją taką, że g(X,Y) jest zmienną losową jednowymiarową.

Twierdzenie

Jeśli (X, Y) ma rozkład dyskretny, to

$$E(g(X,Y)) = \sum_{(x,y) \in S_{XY}} g(x,y) \cdot P(X=x,Y=y).$$

Twierdzenie

Jeśli (X, Y) ma rozkład dyskretny, to

$$E\left(g(X,Y)\right) = \sum_{(x,y)\in S_{XY}} g(x,y) \cdot P(X=x,Y=y).$$

$$EX = \sum_{(x,y)\in S_{XY}} x \cdot P(X = x, Y = y)$$

Twierdzenie

Jeśli (X, Y) ma rozkład dyskretny, to

$$E\left(g(X,Y)\right) = \sum_{(x,y)\in S_{XY}} g(x,y) \cdot P(X=x,Y=y).$$

$$EX = \sum_{(x,y)\in S_{XY}} x \cdot P(X = x, Y = y)$$

$$EY = \sum_{(x,y)\in S_{XY}} y \cdot P(X = x, Y = y)$$

Twierdzenie

Jeśli (X,Y) ma rozkład dyskretny, to

$$E\left(g(X,Y)\right) = \sum_{(x,y)\in S_{XY}} g(x,y) \cdot P(X=x,Y=y).$$

$$EX = \sum_{(x,y)\in S_{XY}} x \cdot P(X = x, Y = y)$$

$$EY = \sum_{(x,y)\in S_{XY}} y \cdot P(X = x, Y = y)$$

$$E(XY) = \sum_{(x,y)\in S_{XY}} x \cdot y \cdot P(X = x, Y = y).$$

Przykład 1.

Wektor (X, Y) ma rozkład dyskretny o funkcji prawdopodobieństwa

$X \setminus Y$	-1	0	1	2
1	0.1	0.2	0	0.1
2	0.1	0	0.3	0.2

Obliczyć EX, EY, E(XY).

Twierdzenie

Jeśli (X,Y) ma rozkład ciągły, to

$$E(g(X,Y)) = \iint_{\mathbb{R}^2} g(x,y) f_{XY}(x,y) dx dy.$$

Twierdzenie

Jeśli (X, Y) ma rozkład ciągły, to

$$E(g(X,Y)) = \iint_{\mathbb{R}^2} g(x,y) f_{XY}(x,y) dx dy.$$

$$EX = \iint_{\mathbb{R}^2} x \cdot f_{XY}(x, y) \, dx \, dy$$

Twierdzenie

Jeśli (X,Y) ma rozkład ciągły, to

$$E\left(g(X,Y)\right) = \iint_{\mathbb{R}^2} g(x,y) f_{XY}(x,y) \, dx \, dy.$$

$$EX = \iint_{\mathbb{R}^2} x \cdot f_{XY}(x, y) \, dx \, dy$$

$$EY = \iint_{\mathbb{R}^2} y \cdot f_{XY}(x, y) \, dx \, dy$$

Twierdzenie

Jeśli (X,Y) ma rozkład ciągły, to

$$E(g(X,Y)) = \iint_{\mathbb{R}^2} g(x,y) f_{XY}(x,y) dx dy.$$

$$EX = \iint_{\mathbb{R}^2} x \cdot f_{XY}(x, y) \, dx \, dy$$

$$EY = \iint_{\mathbb{D}^2} y \cdot f_{XY}(x, y) \, dx \, dy$$

$$E(XY) = \iint_{\mathbb{D}^2} x \cdot y \cdot f_{XY}(x, y) \, dx \, dy.$$

Przykład 2.

Wektor (X, Y) ma rozkład jednostajny w prostokącie $D = [0; 6] \times [0; 2]$. Wyznaczyć EX, EY, E(XY).

Uwagi:

 Punkt o współrzędnych (EX, EY) jest środkiem ciężkości nośnika rozkładu łącznego zmiennej losowej (X, Y).

Uwagi:

- Punkt o współrzędnych (EX, EY) jest środkiem ciężkości nośnika rozkładu łącznego zmiennej losowej (X, Y).
- Jeśli X i Y są niezależnymi zmiennymi losowymi, to

$$E(X \cdot Y) = EX \cdot EY$$
.

Przykład 3.

Wektor (X, Y) ma rozkład jednostajny w trójkącie D o wierzchołkach $(0,0),\ (1,0),\ (0,1).$

$$f_{XY}(x,y) = 2 \cdot 1_D(x,y).$$

Sprawdzić, czy $E(XY) = EX \cdot EY$.

Analiza korelacji - badanie istnienia i siły liniowego związku między cechami populacji (zmiennymi losowymi).

 Korelacja dodatnia - wzrostowi (spadkowi) wartości jednej cechy towarzyszy wzrost (spadek) wartości drugiej cechy

• Korelacja ujemna - wzrostowi (spadkowi) wartości jednej cechy towarzyszy spadek (wzrost) wartości drugiej cechy

• Korelacja zerowa - brak korelacji (cechy są nieskorelowane).

Korelacja nie oznacza przyczynowości:

Korelacja nie oznacza przyczynowości: fakt, że dwie cechy są ze sobą skorelowane, nie musi oznaczać, że jedna jest przyczyną drugiej.

Korelacja nie oznacza przyczynowości: fakt, że dwie cechy są ze sobą skorelowane, nie musi oznaczać, że jedna jest przyczyną drugiej.

Definicja

Kowariancją zmiennych losowych X i Y, dla których istnieją EX, EY, E(XY), nazywamy liczbę

$$cov(X,Y) = E[(X - EX)(Y - EY)].$$

Definicja

Kowariancją zmiennych losowych X i Y, dla których istnieją EX, EY, E(XY), nazywamy liczbę

$$cov(X,Y) = E[(X - EX)(Y - EY)].$$

Uwaga

Miernikiem liniowej zależności między X i Y jest współczynnik korelacji.

Definicja

Kowariancją zmiennych losowych X i Y, dla których istnieją EX, EY, E(XY), nazywamy liczbę

$$cov(X,Y) = E[(X - EX)(Y - EY)].$$

Uwaga

Miernikiem liniowej zależności między X i Y jest współczynnik korelacji.

Definicja

Niech X i Y będą zmiennymi losowymi takimi, że VX>0 i VY>0.

Definicja

Kowariancją zmiennych losowych X i Y, dla których istnieją EX, EY, E(XY), nazywamy liczbę

$$cov(X, Y) = E[(X - EX)(Y - EY)].$$

Uwaga

Miernikiem liniowej zależności między X i Y jest współczynnik korelacji.

Definicja

Niech X i Y będą zmiennymi losowymi takimi, że VX>0 i VY>0. Współczynnikiem korelacji zmiennych X i Y nazywamy liczbę

$$\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{VX \cdot VY}}.$$

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

•
$$cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})$$

Jeśli dysponujemy próbą *n*-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

$$\sum_{k=1}^n (x_k - \bar{x})(y_k - \bar{y}) =$$

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

$$\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1}^{n} (x_k - \bar{x}) \cdot y_k =$$

Kowariancja i współczynnik korelacji dla próby losowej

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

$$\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1}^{n} (x_k - \bar{x}) \cdot y_k = \sum_{k=1}^{n} (y_k - \bar{y}) \cdot x_k,$$

gdzie

Kowariancja i współczynnik korelacji dla próby losowej

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

$$\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1}^{n} (x_k - \bar{x}) \cdot y_k = \sum_{k=1}^{n} (y_k - \bar{y}) \cdot x_k,$$

gdzie

$$\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k,$$

Kowariancja i współczynnik korelacji dla próby losowej

Jeśli dysponujemy próbą n-elementową $(x_1, y_1), \ldots, (x_n, y_n)$, to:

- $cov(X, Y) = \frac{1}{n-1} \cdot \sum_{k=1}^{n} (x_k \bar{x})(y_k \bar{y})$
- Współczynnik korelacji (współczynnik korelacji próbkowej Pearsona) obliczamy zgodnie ze wzorem:

$$r(X,Y) = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sqrt{\sum_{k=1}^{n} (x_k - \bar{x})^2 \cdot \sum_{k=1}^{n} (y_k - \bar{y})^2}},$$

przy czym

$$\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y}) = \sum_{k=1}^{n} (x_k - \bar{x}) \cdot y_k = \sum_{k=1}^{n} (y_k - \bar{y}) \cdot x_k,$$

gdzie

$$\bar{x} = \frac{1}{n} \sum_{k=1}^{n} x_k, \ \ \bar{y} = \frac{1}{n} \sum_{k=1}^{n} y_k.$$

Korelacja

• Dodatnia korelacja między cechami X i Y: cov(X, Y) > 0, $\rho(X, Y) > 0$

Korelacja

- Dodatnia korelacja między cechami X i Y: cov(X, Y) > 0, $\rho(X, Y) > 0$
- Ujemna korelacja między cechami X i Y: cov(X, Y) < 0, $\rho(X, Y) < 0$

Korelacja

- Dodatnia korelacja między cechami X i Y: cov(X, Y) > 0, $\rho(X, Y) > 0$
- Ujemna korelacja między cechami X i Y: cov(X, Y) < 0, $\rho(X, Y) < 0$
- Cechy X i Y nieskorelowane: cov(X, Y) = 0, $\rho(X, Y) = 0$

Własności współczynnika korelacji

• $|\rho(X, Y)| \leq 1$;

Własności współczynnika korelacji

- $|\rho(X, Y)| \leq 1$;
- $|\rho(X,Y)| = 1 \longleftrightarrow \text{istnieja} \ a,b \in \mathbb{R} \ \text{takie, że} \ Y = aX + b$

Własności współczynnika korelacji

- $|\rho(X, Y)| \leq 1$;
- $|\rho(X,Y)|=1 \longleftrightarrow \text{istniejq } a,b \in \mathbb{R} \text{ takie, } \text{że } Y=aX+b$
- X i Y są nieskorelowane $\longleftrightarrow \rho(X,Y)=0$.

Własności współczynnika korelacji c.d.

Jeśli:

• $0 < |\rho(X, Y)| < 0.25$, to korelacja jest bardzo słaba (pomijalna)

Własności współczynnika korelacji c.d.

- $0 < |\rho(X, Y)| < 0.25$, to korelacja jest bardzo słaba (pomijalna)
- $0.25 \le |\rho(X, Y)| < 0.5$, to korelacja jest **słaba**

Własności współczynnika korelacji c.d.

- $0 < |\rho(X, Y)| < 0.25$, to korelacja jest bardzo słaba (pomijalna)
- $0.25 \leqslant |\rho(X,Y)| < 0.5$, to korelacja jest **słaba**
- $0.5 \le |\rho(X, Y)| < 0.75$, to korelacja jest **umiarkowana**

Własności współczynnika korelacji c.d.

- $0 < |\rho(X, Y)| < 0.25$, to korelacja jest bardzo słaba (pomijalna)
- $0.25 \leqslant |\rho(X,Y)| < 0.5$, to korelacja jest **słaba**
- $0.5 \le |\rho(X, Y)| < 0.75$, to korelacja jest **umiarkowana**
- $0.75 \le |\rho(X, Y)| < 1$, to korelacja jest **silna**

Własności współczynnika korelacji c.d.

- $0 < |\rho(X, Y)| < 0.25$, to korelacja jest bardzo słaba (pomijalna)
- $0.25 \leqslant |\rho(X,Y)| < 0.5$, to korelacja jest **słaba**
- $0.5 \le |\rho(X, Y)| < 0.75$, to korelacja jest **umiarkowana**
- $0.75 \le |\rho(X, Y)| < 1$, to korelacja jest **silna**
- $|\rho(X, Y)| = 1$, to korelacja jest **pełna**.

Uwaga

Jeśli zmienne losowe X i Y są niezależne, to cov(X, Y) = 0.

Uwaga

Jeśli zmienne losowe X i Y są niezależne, to cov(X,Y)=0. Ale: z tego, że X i Y są nieskorelowane nie wynika, że są niezależne!

Uwaga

Jeśli zmienne losowe X i Y są niezależne, to cov(X,Y)=0. Ale: z tego, że X i Y są nieskorelowane nie wynika, że są niezależne!

Wyjątkiem jest rozkład normalny:

Jeśli (X,Y) ma rozkład normalny, to X i Y są niezależne \longleftrightarrow cov(X,Y)=0.

Twierdzenie

$$cov(X, Y) = E(X \cdot Y) - EX \cdot EY.$$

$$ov(X,Y) = cov(Y,X)$$

$$ov(X, Y) = cov(Y, X)$$

$$\circ$$
 $cov(X,X) = VX$

$$ov(X, Y) = cov(Y, X)$$

$$\circ$$
 $cov(X,X) = VX$

$$oldsymbol{o}$$
 $cov(a, X) = 0 dla a \in \mathbb{R}$

- $oldsymbol{o}$ cov(X, Y) = cov(Y, X)
- \circ cov(X,X) = VX
- $oldsymbol{o}$ $cov(a, X) = 0 dla <math>a \in \mathbb{R}$

Własności kowariancji

- ov(X, Y) = cov(Y, X)
- \circ cov(X,X) = VX
- $oldsymbol{o}$ $cov(a, X) = 0 dla <math>a \in \mathbb{R}$

⑤

$$cov(aX_1 + bX_2, cY_1 + dY_2) =$$
= $a \cdot c \cdot cov(X_1, Y_1) + a \cdot d \cdot cov(X_1, Y_2) +$
+ $b \cdot c \cdot cov(X_2, Y_1) + b \cdot d \cdot cov(X_2, Y_2)$

Wariancja sumy i różnicy zmiennych losowych

Twierdzenie

Jeśli X i Y są zmiennymi losowymi, dla których istnieją wariancje, to

$$V(X + Y) = VX + 2cov(X, Y) + VY$$

$$V(X - Y) = VX - 2cov(X, Y) + VY.$$

Wariancja sumy i różnicy zmiennych losowych

Twierdzenie

Jeśli X i Y są zmiennymi losowymi, dla których istnieją wariancje, to

$$V(X + Y) = VX + 2cov(X, Y) + VY$$

$$V(X - Y) = VX - 2cov(X, Y) + VY.$$

Wniosek

Jeśli X i Y są nieskorelowane, to

$$V(X+Y) = V(X-Y) = VX + VY.$$