Московский физико-технический институт

Лабораторная работа 1.2.5 ИССЛЕДОВАНИЕ ВЫНУЖДЕННОЙ РЕГУЛЯРНОЙ ПРЕЦЕССИИ ГИРОСКОПА

Отчет студента группы Б02-303 Долговой Екатерины

Лабораторная работа 1.2.5

Исследование вынужденной регулярной прецессии гироскопа

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа; определить скорость вращения ротора гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии.

В работе используются: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

Теоретические сведения

Уравнения движения твердого тела:

$$\frac{d\vec{p}}{dt} = \vec{F},\tag{1}$$

$$\frac{d\vec{L}}{dt} = \vec{M}. (2)$$

Уравнение (1) описывает поступательное движение твердого тела, уравнение (2) — вращаетльное, т.е. они независимы. Запишем момент импульса \vec{L} в главных осях x, y и z:

$$\vec{L} = \vec{i}I_x\omega_x + \vec{j}I_y\omega_y + \vec{k}I_z\omega_z,\tag{3}$$

где $I_x,\ I_y$ и I_z — главные моменты инерции, $\omega_x,\ \omega_y$ и ω_z — компоненты вектора угловой скорости $\vec{\omega}$.

Гироскопом принято называть тела, для которых справедливо, например,

$$I_z\omega_z\gg I_x\omega_x,I_y\omega_y$$

Уравновешенным гироскопом называется гироскоп, чей центр масс неподвижен.

Т.к. гироскопы обладают хорошей устойчивостью, то можем рассчитать, какие силы нужно приложить к гироскопу, чтобы изменить направление его оси. В качестве примера возьмем маховик (см. рис. 1).

$$\omega_x = 0, \quad \omega_y = 0, \quad \omega_z = \omega_0$$

$$d\varphi = \Omega dt$$

Будем считать, что $L_{\Omega} \ll L_{\omega_0}$, тогда

$$\begin{cases} |d\vec{L}| = Ld\varphi = \Omega Ldt \\ d\vec{L} \uparrow \uparrow Ox \end{cases} \rightarrow \frac{d\vec{L}}{dt} = \vec{\Omega} \times \vec{L}.$$

Таким образом, получаем

$$\vec{M} = \vec{\Omega} \times \vec{L}$$
. (5) Рис. 1: Маховик

Данная формула (5) справделива, когда выполняется условие $L_{\Omega} \ll L_{\omega_0}$.

Вращение маховика по действием момента \vec{M} вокруг оси y называется **регулярной прецессией гироскопа**.

В данной работе исследуется регулярная прецессия уравновешенного гироскопа. Подробная схема гироскопа приведена на рис. 2.

Для гироскопа массой $m_{\rm r}$, у которого ось собственного вращения наклонена на угол α от вертикали, скорость прецессии, происходящей вокруг вертикальной оси под действием силы тяжести, равна

$$\Omega = \frac{m_{\rm r}gl_{\rm II}}{I_z\omega_0},\tag{6}$$

где $l_{\rm ц}$ — расстояние от точки подвеса до центра масс гироскопа, скорость прецессии не зависит от угла α .

Для изучения регулярной прецессии часто подвешивают дополнительные грузы. Тогда справделиво

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{7}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа (см. рис. 3).

Рис. 2: Схема гироскопа

Рис. 3: Установка

Расчитывать скорость прецесии будем по формуле (7). С ее помощью можно будет найти скорость вращения ротора. Момент инерции ротора I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на жесткой проволоке. Период крутильных колебаний T_0 зависит от I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}. (8)$$

Чтобы исключить f, подвесим цилиндр с известным $I_{\mathfrak{q}}$ и измерим $T_{\mathfrak{q}}$:

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2}.$$
 (9)

Ход работы

- 1. Установим ось гироскопа в горизонтальное положение.
- 2. Включим питание гироскопа и подождем, пока вращение ротора не стабилизируется.
- 3. До стабилизации вращения попробуем отклонить по вертикали рычаг: видим прецессию в горизонтальной плоскости. Убедимся в том, что ротор вращается достаточно быстро: при легком воздействии на рычаг, последний не меняет своего положения в пространстве.
- 4. Подвесим к рычагу С на расстоянии $l=(119,0\pm0,1)$ мм (величина указана на установке) от центра масс груз Г. Видим, что начинается прецессия: рычаг медленно опускается.

5. С помощью секундомера найдем угловую скорость регулярной прецессии гироскопа $\Omega = \frac{1}{T}$. Результаты занесем в таблицу 1.

т, г	t, c	N	\bar{t} , c	ω , c ⁻¹	$\bar{\nu}$, Гц	$\sigma_{ u}$, Гц	$ u_{real}, \Gamma$ ц	$\bar{\Omega}, 10^{-4} c^{-1}$	$\sigma_{\Omega}, 10^{-4} c^{-1}$
	89,13								
	88,52								
57	88,29	0,5	177,4	2441	389	20	387	354	1
	88,75								
	88,91								
	68,91								
	$68,\!65$								
73	$67,\!64$	0,5	136,9	2412	384	19	387	459	1
	68,89								
	68,29								
	53,83								
	54,59								
93	$54,\!58$	0,5	108,7	2439	388	20	387	578	2
	54,18								
	54,49								
	35,89								
1.40	35,67			0.450	204	2.0	20-		,
142	35,79	0,5	71,5	2450	384	20	387	879	4
	35,59								
	35,83								
	28,29								
170	28,36	0.5	F.C. C	9445	200	10	207	1110	C
179	28,26	0,5	56,6	2445	389	19	387	1110	6
	28,42 28,19								
	$\frac{26,19}{23,34}$								
	23,13								
220	23,13	0,5	46,5	2468	393	19	387	1351	9
220	23,24	0,0	40,0	2700	000	1.0	001	1001	
	23,25								
	29,23								
	29,85								
342	29,44	1,0	29,5	2435	388	20	387	2130	20
	29,61	-,0	_==,=	_ 100		_~			_~
	29,40								

Таблица 1

6. Повторим измерения из п.5 для еще 6 других масс грузов. Результаты также занесем в таблицу 1.

Также построим график зависимости $\Omega(m)$ (см. след. стр.)

7. Измерим момент инерции ротора с помощью крутильных колбений. Проделаем то же самое для цилиндра с известным моментом инерции. Результаты измерения времени занесем в таблицу 2. Число крутильных колебаний N=5.

$t_{\text{цилиндра}}$, с	t_{poropa}, c
20,01	16,05
20,26	16,03
19,98	15,63
$20,\!17$	16,14
20,01	15,82

Таблица 2

$$\begin{split} \sigma_t^{\text{peak}} &= 0, 3 \text{ c} \\ \sigma_t^{\text{приб}} &= 0, 03 \text{ c} \\ \\ \sigma_t^{\text{случ}} &= \sqrt{\frac{1}{4 \cdot 5} \sum_i (t_i - \bar{t})^2} \\ \\ \sigma_t &= \sqrt{(\sigma_t^{\text{peak}})^2 + (\sigma_t^{\text{приб}})^2 + (\sigma_t^{\text{случ}})^2} \approx \sigma_t^{\text{peak}} = 0, 3 \text{ c} \\ \\ t_{\text{ц}} &= (20, 1 \pm 0, 3) \text{ c} \\ \\ t_0 &= (15, 9 \pm 0, 3) \text{ c} \end{split}$$

Откуда получим

$$T_{\pi} = (4,02 \pm 0,06) \text{ c}$$

 $T_0 = (3,19 \pm 0,06) \text{ c}$

Диаметр цилиндра:

$$d = (78, 0 \pm 0, 1)$$
 mm

Масса цилиндра:

$$m = (1616, 5 \pm 0, 3)$$
 г

Момент инерции цилиндра:

$$\bar{I}_{\rm II} = \frac{\bar{m}\bar{r}^2}{2} = \frac{\bar{m}\bar{d}^2}{8} = 1,229 \text{ } {\rm \Gamma \cdot M}^2$$

$$\varepsilon_{I_{\rm II}} = \sqrt{(\varepsilon_m)^2 + (2\varepsilon_d)^2} = 0,003$$

$$\sigma_{I_{\rm II}} = \bar{I}_{\rm II}\varepsilon_{I_{\rm II}} = 0,004 \text{ } {\rm \Gamma \cdot M}^2$$

$$I_{\text{II}} = (1,229 \pm 0,004) \ \text{f} \cdot \text{m}^2$$

Момент инерции ротора:

$$\bar{I}_0 = \bar{I}_{\pi} \frac{\bar{T}_0^2}{\bar{T}_{\pi}^2} = 0,77 \text{ } \Gamma \cdot \text{M}^2$$

$$\varepsilon_{I_0} = \sqrt{(\varepsilon_{I_{\pi}})^2 + (2\varepsilon_{T_{\pi}})^2 + (2\varepsilon_{T_0})^2} = 0,05$$

$$\sigma_{I_0} = \bar{I}_0 \varepsilon_{I_0} = 0,04 \text{ } \Gamma \cdot \text{M}^2$$

$$I_0 = (0,77 \pm 0,04) \ \text{f} \cdot \text{m}^2$$

- 8. См. таблицу 1 и п.7.
- 9. Рассчитаем частоту вращения гироскопа:

Из формулы (7) следует, что

$$\omega = \frac{mgl}{I_0\Omega} = mT\frac{gl}{2\pi I_0} = mTk,$$

где k — коэффициент установки, являющийся постоянным для всех 7 грузов.

$$\bar{k} = \frac{g\bar{l}}{2\pi\bar{I}_0} = 0,24 \text{ } \Gamma^{-1} \cdot \text{c}^{-2}$$

$$\varepsilon_k = \sqrt{(\varepsilon_{I_0})^2 + (\varepsilon_l)^2} = 0,05$$

$$\sigma_k = \bar{k}\varepsilon_k = 0,01 \text{ } \Gamma^{-1} \cdot \text{c}^{-2}$$

$$k = (0, 24 \pm 0, 01) \, \mathrm{r}^{-1} \cdot \mathrm{c}^{-2}$$

Найдем частоту вращения ротора гироскопа:

$$\nu = \frac{\omega}{2\pi} = \frac{mTk}{2\pi}$$

$$\sigma_{\nu} = \bar{\nu}\sqrt{(\varepsilon_m)^2 + (\varepsilon_T)^2 + (\varepsilon_k)^2}$$

Для каждой массы m рассчитаем $\bar{\nu}$ и σ_{ν} . Результаты занесем в таблицу 1.

10. По скорости опускания рычага С на 10° во время прецесии найдем момент сил трения. Проделаем данный опыт на двух массах грузов. Результаты занесем в таблицу 3. Также можно установить, что трение происходит в оси e, а момент трения — в оси a.

$$\alpha = \frac{M_{F_{\rm Tp}}}{M_{mq}} = \frac{\Omega_{\rm Tp}}{\Omega}$$

т, г	t, c	$\Omega_{\rm TP},{ m c}^{-1}$	Ω, c^{-1}	ω, c^{-1}	α	$M_{F_{\text{\tiny Tp}}}, 10^{-3} \text{H} \cdot \text{M}$
142	150	0,001	0,088	2450	0,013	2,2
342	148	0,001	0,213	2435	0,006	2,2

Таблица 3

Видим, что выполняется соотношение $\omega \gg \Omega > \Omega_{\rm Tp}$, поэтому мы можем применить соотношение выше и таким образом найти $M_{F_{\rm Tp}}$. Результаты занесем в таблицу

- 11. По фигурам Лиссажу с помощью осциллографа найдем реальную частоту. Результат занесем в таблицу 1.
- 12. Видим, что в пределах погрешности частоты совпадают.
- 13. Т.к. $\Omega \ll \omega$, то можно говорить, что $L_{\Omega} \ll L_{\omega}$, т.е. формула (5) справедлива для данной установки.

Вывод

Мы исследовали вынужденную прецессию гироскопа, установили зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа и определили скорость вращения ротора гироскопа и сравнили ее со скоростью, рассчитанной по скорости прецессии