An Integrated Flexible Wirelessly Rechargeable Li-ion Battery

Guangqi Ouyang, Grace Whang, Emily Macinnis, CHIPS, UCLA

Motivation & Introduction

Background

- Development of wearable device has been increasing rapidly in the past decade
- The global pandemic has highlighted the need for continuous monitoring of physiological data

Motivation

- Current wearable devices uses Li-polymer battery, which is:
 - ✓ Thick & rigid package
 - ✓ Safety concerns
 - ✓ Unbalanced weight distribution

Target specs of flexible battery for powering a sEMG 8 hours

Properties		Target
Electrical & Mechanical	Total capacity	60 mWh (18.2 mAh @ 3.3 V)
	Materials	LiFePO ₄ / C
	Area capacity	3.3 mWh/cm ² (1 mAh/cm ² @ 3.3 V)
	Output power	10 (Average) / 20(Peak) mW
	Cycling life	80% initial capacity after 200 times (1 year)
Mechanical & Geometrical	Bending radius	5 mm
	Bending cycles	1000 times
	Area	20 cm ²
	Thickness	< 500 μm

ECG/EMG **sEMG @ UCLA CHIPS** (Zhao et al., 2020) (Alam et al., 2020)

0 mAh LiPo **ECG**

(Kim et al., 2019)

FlexPower: an integrated flexible wirelessly rechargeable Li-ion battery

- Flexible Li-ion battery
 - ✓ A battery integration scheme for flexibility with high area capacity density and output Wireless charger 0.5 mm power
 - ✓ Safe for use in biocompatible applications
 - ✓ Wirelessly rechargeable
- 3D Heterogenous integration of different flexible modules
 - ✓ Efficient use of space with three-D stacking of low form factor FlexTrateTM

Flexible devices

Flexible Li-ion Battery Using "Battlet" Approach

Features of "battlet" battery

- Embedded cathode and anode cell matrix in PDMS substrate
- Deposited flexible collector current interconnects
- Nonflammable electrolyte & Biocompatible encapsulation

Advantages

- Thin thickness (< 500 um) and 5 mm bending radius
- High area capacity (> 1 mAh/cm²) and output power (20 mW/cm²)
- Addressed safety concern using nonflammable ionic liquid electrolyte

Exploded view of battlet approach

Fabrication Process

PDMS

2nd Glass handler

2nd Glass handler

4 Release of 1st handler 5 Deposition of Al layer

6 Placement of 3rd handler and

7 Deposition of Al current

collector 1um for LFP

5 Filling and drying LiFePO₄ electrode slurry

release of the 2nd handler

9 Release of substrate

Separator & Ionic Liquid electrolyte

10 Using same way to fabricate anode and assembly

Flexible Li-ion Battery –"Battlet" Design

- Improved active area, high utilize efficiency
- 0.5 mm radius (r)
- 2 mm length (I)
- 0.1-1 mm disk distance (d)
- Filling factor of unit cell is 0.4 0.86

Electrode Filling Factors

UV Laser Cutting of PDMS

LFP Slurry Filling

- 5W UV laser light
- Diameters from 1 ~ 4 mm
- Clean and sharp edges
- Can scale down to hundreds µm
- Electrode thickness 100 ~ 120 μm
- Active materials loading density is $5-6 \text{ mg/cm}^2$ (~0.8 mAh/cm²) in each cell

Summary & Future Plan

- Completed design review of materials and performance requirement of FlexPower
- Developed and optimized the fabrication routine of flexible electrodes
- Setup battery assembly tools in the lab

