Zadanie 1

Dla układu o schemacie blokowym i danych z tabeli:

wariant	Α	В	a	b	С	Т
0	4	1	2	1	4	0,1
1	2	1	2	3	1	0,1
2	3	1	4	1	2	0,1
3	4	1	5	3	1	0,1
4	5	1	2	1	4	0,1
5	6	1	3	1	5	0,1
6	3	1	5	4	1	0,1
7	2	1	4	5	2	0,1
8	2	1	5	2	3	0,1
9	3	1	3	2	4	0,1

1. Przekształcić do postaci

- 2. Podać postaci transmitancji $G_1(s)$ i $G_2(s)$.
- 3. Obliczyć dyskretną transmitancję toru głównego i układu otwartego oraz układu zamkniętego. W obliczeniach można skorzystać z Matlab'a .
- 4. Czy układ zamknięty jest stabilny?
- 5. Obliczyć wartość ustaloną dyskretnej odpowiedzi jednostkowej.
- 6. Jeżeli wartość ustalona odpowiedzi jednostkowej wynosi h_{ust} , to ile wynosi wartość ustalona ciagłego sygnału e(t)?
- 7. Dla obliczonej transmitancji wyznaczyć dyskretne równania stanu.

Zadanie 2

Dane są dwa układy a. i b.

Okres impulsowania T jest taki, że $e^{-\frac{T}{\tau}} = 0.2$.

Oblicz odpowiedź dyskretną y(kT) dla u(t) = 1(t) w obu układach a. i b.