

Γλώσσες Προγραμματισμού ΙΙ

http://courses.softlab.ntua.gr/pl2/

Κωστής Σαγώνας

Νίχος Παπασπύρου

kostis@cs.ntua.gr

nickie@softlab.ntua.gr

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών

Εργαστήριο Τεχνολογίας Λογισμικού

Πολυτεχνειούπολη, 15780 Ζωγράφου.

(i)

- Alonso Church, αρχές δεκαετίας 1930
- Θεωρία για τη θεμελίωση των μαθηματικών
- Απλό αλλά πλήρες υπολογιστικό μοντέλο
- Βάση για τη δημιουργία του
 συναρτησιακού μοντέλου προγραμματισμού
- Πρόσφορος συμβολισμός για την περιγραφή
 της σημασιολογίας γλωσσών προγραμματισμού
- Αρχική μορφή: χωρίς τύπους
- Παραλλαγές με τύπους προτάθηκαν αργότερα (Curry, Church, κ.λπ.)

(ii)

- Διαισθητική περιγραφή: μια θεωρία συναρτήσεων
 - x
 - FA
 - $\bullet \lambda x. E[x]$

μεταβλητή εφαρμογή αφαίρεση

- Αν x είναι μια μεταβλητή και E[x] μια έκφραση που περιέχει το x, τότε $\lambda x. E[x]$ είναι η συνάρτηση f, όπου f(x) = E[x]
- lacktriangle Παράδειγμα: $\lambda x. \, x^2 3x + 2$

$$(\lambda x. x^2 - 3x + 2)8 = 8^2 - 3 \cdot 8 + 2 = 42$$

Μεταβλητές ελεύθερες και δεσμευμένες

$$\lambda x. x^2 - 3y + 2$$

 $(\lambda x. x^2 - 3y + 2) (4x + 1)$

- Ανάλογο στα μαθηματικά: $\int_{-\pi}^{\pi} \frac{\sin x + \cos y}{\cos x \sin y} dx$
- Αντικατάσταση μεταβλητής με έκφραση

$$(\lambda x. x^2 - 3y + 2)[y := z + 1]$$

 $\equiv \lambda x. x^2 - 3(z + 1) + 2$

(iv)

- Αντικατάσταση (συνέχεια)
 - Αποφυγή προβλημάτων $\int_{-\pi}^{\pi} \frac{\sin x + \cos y}{\cos x \sin y} \, dx$
 - Όχι σε δεσμευμένες μεταβλητές!

$$\int_{-\pi}^{\pi} \frac{\sin 42 + \cos y}{\cos 42 - \sin y} \, d42$$

• Να μην προκαλεί δέσμευση μεταβλητών!

$$\int_{-\pi}^{\pi} \frac{\sin x + \cos(3x+1)}{\cos x - \sin(3x+1)} \, dx$$

(i)

- Σύνταξη: $x \in V$ και $M, N \in \Lambda$ $M, N ::= x \mid (\lambda x. M) \mid (MN)$
- Συντακτικές συμβάσεις
 - Οι εξωτερικές παρενθέσεις δε γράφονται $(\lambda x.\,x) \qquad \lambda x.\,x$
 - Η εφαρμογή είναι αριστερά προσεταιριστική $(\dots(FM_1)M_2)\dots M_n)$ $FM_1M_2\dots M_n$
 - Η αφαίρεση εκτείνεται όσο είναι δυνατόν $\lambda x. \, (M_1 \, M_2 \, \dots \, M_n) \qquad \lambda x. \, M_1 \, M_2 \, \dots \, M_n$

(ii)

- Παραδείγματα

(x y)	xy
$(\lambda x. x)$	$\lambda x. x$
$(\lambda x. (\lambda y. (x y)))$	$\lambda x. \lambda y. x y$
$(((\lambda x. x) y) (\lambda x. z))$	$((\lambda x. x) y) (\lambda x. z)$
$((\lambda x.(\lambda y.z))(\lambda x.x))$	$(\lambda x. \lambda y. z) (\lambda x. x)$
$(\lambda x. ((\lambda y. y) (\lambda z. x)))$	$\lambda x. (\lambda y. y) (\lambda z. x)$

(iii)

ullet Σχέση ταυτότητας: $M\equiv N$

$$\begin{array}{lll} x & \equiv & y & \text{an } x=y \\ (M\,N) & \equiv & (P\,Q) & \text{an } M \equiv P \text{ man } N \equiv Q \\ (\lambda x.\,M) & \equiv & (\lambda y.\,N) & \text{an } x=y \text{ man } M \equiv N \end{array}$$

Ελεύθερες και δεσμευμένες μεταβλητές

$$M \equiv (\lambda x. yx) (\lambda y. xy)$$
 ελεύθερη $\frac{1}{\delta}$ δεσμευμένη δεσμευμένη ελεύθερη

(iv)

Ελεύθερες μεταβλητές

$$FV(x) = \{x\}$$

$$FV(MN) = FV(M) \cup FV(N)$$

$$FV(\lambda x. M) = FV(M) - \{x\}$$

Κλειστοί όροι (closed terms ή combinators)

```
\begin{split} \mathsf{I} & \equiv \lambda x. \, x \\ \mathsf{K} & \equiv \lambda x. \, \lambda y. \, x \\ \mathsf{K}_* & \equiv \lambda x. \, \lambda y. \, y \\ \mathsf{S} & \equiv \lambda x. \, \lambda y. \, \lambda z. \, (x \, z) \, (y \, z) \end{split}
```

(iii)

- Αντικατάσταση

$$x[x:=N] \equiv N$$

$$y[x:=N] \equiv y \qquad \text{an } y \neq x$$

$$(PQ)[x:=N] \equiv P[x:=N] \ Q[x:=N]$$

$$(\lambda x. P)[x:=N] \equiv \lambda x. P \qquad \text{(In } (\lambda y. P)[x:=N] \equiv \lambda y. P[x:=N]$$

$$\text{an } y \neq x, \text{ hai } (y \not\in \mathrm{FV}(N) \text{ if } x \not\in \mathrm{FV}(P))$$

$$(\lambda y. P)[x:=N] \equiv \lambda z. P[y:=z][x:=N]$$

$$\text{an } y \neq x, \text{ hai } y \in \mathrm{FV}(N) \text{ hai } x \in \mathrm{FV}(P),$$

$$\text{otherwise} x \not\in \mathrm{FV}(P) \cup \mathrm{FV}(N)$$

Μετατροπές στο λ-λογισμό (i)

- Συμβατές σχέσεις

$$M \sim N \Rightarrow (MP) \sim (NP)$$

 $M \sim N \Rightarrow (PM) \sim (PN)$
 $M \sim N \Rightarrow (\lambda x. M) \sim (\lambda x. N)$

• Μετατροπές $\rightarrow_{\alpha}, \rightarrow_{\beta}, \rightarrow_{\eta}$: οι ελάχιστες συμβατές σχέσεις που πληρούν τα παρακάτω

$$\lambda x. M \longrightarrow_{\alpha} \lambda y. M[x := y] \quad y \notin FV(M)$$
 $(\lambda x. M) N \longrightarrow_{\beta} M[x := N]$
 $\lambda x. M x \longrightarrow_{\eta} M \quad x \notin FV(M)$

Μετατροπές στο λ-λογισμό

(ii

• α-μετατροπή

$$\lambda x. M \rightarrow_{\alpha} \lambda y. M[x := y] \quad y \notin FV(M)$$

Παραδείγματα

Μετατροπές στο λ-λογισμό

(iii)

β-μετατροπή

$$|(\lambda x. M) N| \rightarrow_{\beta} M[x := N]$$

Παραδείγματα

$$\begin{array}{lll} (\lambda x.\,z\,x)\,w & \to_{\beta} & z\,w \\ (\lambda x.\,\lambda y.\,z\,x\,y)\,w & \to_{\beta} & \lambda y.\,z\,w\,y \\ (\lambda y.\,z\,y\,(\lambda x.\,x\,y))\,w & \to_{\beta} & z\,w\,(\lambda x.\,x\,w) \\ (\lambda x.\,\lambda y.\,z\,x\,y)\,(w\,y) & \not\to_{\beta} & \lambda y.\,z\,(w\,y)\,y & \text{giati;} \\ (\lambda x.\,\lambda y.\,z\,x\,y)\,(w\,y) & \to_{\beta} & \lambda t.\,z\,(w\,y)\,t & t \text{ yéa.} \end{array}$$

Μετατροπές στο λ-λογισμό (iv)

η-μετατροπή

$$\lambda x. M x \rightarrow_{\eta} M \qquad x \notin FV(M)$$

Παραδείγματα

$$\lambda x. z x \longrightarrow_{\eta} z$$

$$\lambda y. z x y \longrightarrow_{\eta} z x$$

$$\lambda x. z x x \not\rightarrow_{\eta} z x$$

Μετατροπές στο λ-λογισμό

 (\mathbf{v})

- lacktriangle Αναγωγές και ισότητες (κλείσιμο της ightarrow)
 - —» ανακλαστικό + μεταβατικό
 - = ανακλαστικό + μεταβατικό + συμμετρικό
- lacksquare M o N

$$M \equiv N_0 \rightarrow N_1 \rightarrow N_2 \rightarrow N_3 \rightarrow N_4 \rightarrow N_5 \equiv N$$

M = N

$$M \equiv N_0 \rightarrow N_1 \leftarrow N_2 \rightarrow N_3 \leftarrow N_4 \leftarrow N_5 \equiv N$$

- Κανονική μορφή όρος N χωρίς β και η -redex
- Παραδείγματα

$$x \qquad \lambda x. x \qquad \lambda f. f (\lambda x. x f)$$

$$\lambda z. \left[(\lambda f. \left[\lambda x. f z x \right]) (\lambda y. y) \right]$$

Ισοδυναμία κανονικών μορφών Αν ο όρος $M \in \Lambda$ είναι σε κανονική μορφή και ισχύει $M \to N$ για κάποιον όρο $N \in \Lambda$, τότε

$$M =_{\alpha} N$$
.

(ii)

 Στρατηγική αναγωγής: ποιο redex να επιλεγεί για μετατροπή;

$$M_{1} \equiv \lambda z. \left[(\lambda f. \lambda x. f z x) (\lambda y. y) \right]$$

$$\rightarrow_{\beta} \lambda z. \lambda x. \left[(\lambda y. y) z \right] x$$

$$\rightarrow_{\beta} \lambda z. \left[\lambda x. z x \right] \rightarrow_{\eta} \lambda z. z$$

$$M_{1} \equiv \lambda z. \left[(\lambda f. \lambda x. f z x) (\lambda y. y) \right]$$

$$\rightarrow_{\beta} \lambda z. \left[\lambda x. (\lambda y. y) z \right] x$$

$$\rightarrow_{\eta} \lambda z. \left[(\lambda y. y) z \right] \rightarrow_{\beta} \lambda z. z$$

- Κανονικοποιήσιμος όρος όρος M με M o N και N κανονική μορφή
- Υπάρχουν όροι που δεν είναι κανονικοποιήσιμοι;

$$\Omega \equiv (\lambda x. x x) (\lambda x. x x)
\rightarrow_{\beta} \Omega \rightarrow_{\beta} \Omega \rightarrow_{\beta} \dots
M_2 \equiv (\lambda x. x x y) (\lambda x. x x y)
\rightarrow_{\beta} M_2 y \rightarrow_{\beta} M_2 y y \rightarrow_{\beta} \dots$$

- Ισχυρά κανονικοποιήσιμος όρος
 κάθε ακολουθία μετατροπών καταλήγει σε κανονική μορφή
- Υπάρχουν κανονικοποιήσιμοι όροι που δεν είναι ισχυρά κανονικοποιήσιμοι;

$$M_{3} \equiv (\lambda z. y) \boxed{((\lambda x. x x) (\lambda x. x x))}$$

$$\rightarrow_{\beta} M_{3} \rightarrow_{\beta} M_{3} \rightarrow_{\beta} \dots$$

$$M_{3} \equiv \boxed{(\lambda z. y) ((\lambda x. x x) (\lambda x. x x))}$$

$$\rightarrow_{\beta} y$$

Ιδιότητες του λ-λογισμού

(i)

- Θεώρημα Church-Rosser Έστω $M, N_1, N_2 \in \Lambda$ τ.ω. $M \twoheadrightarrow N_1$ και $M \twoheadrightarrow N_2$. Τότε υπάρχει $N \in \Lambda$ τ.ω. $N_1 \twoheadrightarrow N$ και $N_2 \twoheadrightarrow N$.
- N_1 N_2
- Μοναδικότητα κανονικών μορφών αν υπάρχουν και modulo $=_{\alpha}$
- Θεώρημα χανονιχοποίησης Αν ο όρος M έχει κανονιχή μορφή, τότε η μετατροπή του αριστερότερου redex οδηγεί σε αυτήχ

Ιδιότητες του λ-λογισμού

(ii)

- Τελεστής σταθερού σημείου: F(YF) = YF $Y \equiv \lambda f. (\lambda x. f(xx)) (\lambda x. f(xx))$
- Χρησιμεύει για την αναπαράσταση αναδρομικών συναρτήσεων

$$F \equiv \lambda f. \lambda n. \text{ if } n = 0 \text{ then } 1 \text{ else } n \cdot f(n-1)$$
 $M \equiv YF$ παραγοντικό

$$M2 \equiv YF2 = F(YF)2$$

= **if** $2 = 0$ **then** 1 **else** $2 \cdot (YF)(2-1)$
 $= 2 \cdot YF1 = 2 \cdot F(YF)1 = ...$

(i)

- Λογικές τιμές

true $\equiv \lambda x. \lambda y. x$ false $\equiv \lambda x. \lambda y. y$ not $\equiv \lambda z. z$ false true if B then N else $M \equiv BNM$

Θεώρημα: not true = false

not true $\equiv (\lambda z. z \text{ false true}) \text{ true}$

 $ightarrow_{eta}$ true false true

 $\equiv (\lambda x. \lambda y. x)$ false true \rightarrow_{β} false

(ii)

- Διατεταγμένα ζεύγη

$$\langle N, M \rangle \equiv \lambda z. z N M$$

fst $\equiv \lambda z. z \text{ true}$

snd $\equiv \lambda z. z \text{ false}$

Θεωρήματα

$$\mathbf{fst} \langle N, M \rangle = N$$

$$\mathbf{snd} \langle N, M \rangle = M$$

(iii)

Φυσικοί αριθμοί (αριθμοειδή του Church)

$$\mathbf{c}_{n} \equiv \lambda f. \, \lambda x. \, f^{n}(x)$$

$$F^{0}(A) \equiv A$$

$$F^{n+1}(A) \equiv F(F^{n}(A))$$

$$\mathbf{succ} \equiv \lambda n. \, \lambda f. \, \lambda x. \, n \, f(f \, x)$$

$$\mathbf{A}_{+} \equiv \lambda n. \, \lambda m. \, \lambda f. \, \lambda x. \, n \, f(m \, f \, x)$$

$$\mathbf{A}_{*} \equiv \lambda n. \, \lambda m. \, \lambda f. \, n \, (m \, f)$$

$$\mathbf{A}_{\exp} \equiv \lambda n. \, \lambda m. \, m \, n$$

(iv)

- Πέρασμα παραμέτρων στις γλώσσες προγραμματισμού.
 - οι λ -όροι αντιστοιχούν σε εκφράσεις ή εντολές
 - η αφαίρεση και η εφαρμογή αντιστοιχούν στον ορισμό και την κλήση συναρτήσεων ή διαδικασιών
 - η διαδικασία της αναγωγής αντιστοιχεί στην αποτίμηση εκφράσεων ή την εκτέλεση εντολών.

- Πέρασμα παραμέτρων (συνέχεια)
 - το πέρασμα κατ' αξία / πρόθυμη αποτίμηση (call-by-value / eager evaluation) αντιστοιχεί στη στρατηγική αποτίμησης που ανάγει ένα β-redex μόνο αν το όρισμα είναι κανονική τιμή
 - το πέρασμα κατ' όνομα / οκνηρή αποτίμηση (call-by-name / lazy evaluation) αντιστοιχεί στην στρατηγική αποτίμησης που ανάγει το αριστερότερο β-redex

Εξαγωγή τύπων

(i)

(Type inference)

- Μετασχηματίζει εκφράσεις χωρίς τύπους ή με ελλιπείς τύπους σε εκφράσεις με σωστούς τύπους, συμπληρώνοντας τις πληροφορίες τύπων που λείπουν
- Ενδιαφέροντα θεωρητικά ζητήματα αλλά και πολύ σημαντικές πρακτικές εφαρμογές
- Ιδιαίτερα χρήσιμη σε γλώσσες που υποστηρίζουν (παραμετρικό) πολυμορφισμό

Εξαγωγή τύπων

Μία βιαστική εισαγωγή στα συστήματα τύπων

- ullet Γλώσσα εκφράσεων e και γλώσσα τύπων au
- Σχέση αντιστοίχισης τύπων

$$\Gamma \vdash e : \tau$$

• Περιβάλλον τύπων Γ : απεικόνιση μεταβλητών x σε τύπους τ , π.χ.

$$\Gamma = \{i : int, z : real, f : int \rightarrow int \}$$

- Κανόνες τύπων

$$\frac{\Gamma \vdash e_1 : int \quad \Gamma \vdash e_2 : int}{\Gamma \vdash e_1 + e_2 : int}$$

Εξαγωγή τύπων

- Έστω L_T μια γλώσσα με δηλώσεις τύπων
- Έστω L_U μια παραλλαγή της ίδιας γλώσσας
 στην οποία οι δηλώσεις τύπων παραλείπονται
- Έστω μια συνάρτηση σβησίματος τύπων (type erasure function) erase : $L_T \to L_U$
- Το πρόβλημα της εξαγωγής τύπων: δεδομένης μίας έχφρασης $e_U \in L_U$, βρες μία έχφραση $e_T \in L_T$ τέτοια ώστε
 - erase $(e_T) = e_U$ χαι
 - $\Gamma \vdash e_T : \tau$ (για κάποια τ και Γ)

• Ιδέα: μετασχηματισμός του προβλήματος $? \vdash e : ?$ σε ένα σύνολο E που περιέχει εξισώσεις τύπων, π.χ.

$$E = \{ \alpha = \beta, \\ \gamma \to \alpha = (\beta \to \alpha) \to \gamma \}$$

- Αν το E έχει λύση, βρίσκουμε Γ και τ τέτοια ώστε $\Gamma \vdash e : \tau$
- Διαφορετικά δεν υπάρχουν Γ και τ τέτοια ώστε $\Gamma \vdash e : \tau$

Μερικά παραδείγματα

(i)

Mε τον interpreter της OCaml www.ocaml.org

```
# let inc (x : int) : int = x + 1;;
val f : int -> int = <fun>
# let inc x = x + 1;;
val f : int -> int = <fun>
```

Πώς βρήκε τον τύπο;

- 1. έστω inc : $\alpha \rightarrow \beta$, δηλαδή $x : \alpha$ και $x + 1 : \beta$
- 2. πρέπει x : int άρα $\alpha = int$
- 3. τότε x + 1 : int άρα και $\beta = int$
- 4. επομένως inc : $int \rightarrow int$

(ii)

Πολυμορφισμός

```
# let id x = x;;
val id : 'a -> 'a = <fun>
# let fst (x, y) = x;;
val fst : 'a * 'b - 'a = <fun>
# let rec map f l =
    match 1 with
             -> []
    | h :: t -> f h :: map f t;;
val map : ('a -> 'b) -> 'a list -> 'b list = <fun>
```


(iii)

Περιορισμός: let polymorphism

```
# let strange f = (f 5, f "hello");;
Characters 24-31:
  let strange f = (f 5, f "hello");;
```

This expression has type string but is here used with type int

ο τύπος του f είναι μονομορφικός!

Εξαγωγή τύπων στην πράξη (i)

- Προσθέτουμε μεταβλητές στη γλώσσα των τύπων
- Έστω { @1, @2,...} ένα αριθμήσιμο υποσύνολο των μεταβλητών τύπων (ακόμα άγνωστοι τύποι)
- Συμπληρώνουμε τους τύπους που λείπουν στην αρχική έκφραση βάζοντας φρέσκες μεταβλητές

```
let f g x = g x (x + 1)
and m a b = a * b
```

γίνεται:

```
let f (g : @1) (x : @2) : @3 = g x (x + 1) and m (a : @4) (b : @5) : @6 = a * b
```

Εξαγωγή τύπων στην πράξη (ii)

Αντικατάσταση τύπων (type substitution):
 απεικόνιση μεταβλητών τύπων σε τύπους

$$\sigma = [\alpha \mapsto int, \beta \mapsto bool \rightarrow \alpha]$$

Εφαρμογή αντικατάστασης τύπων: ταυτόχρονα και μία φορά

$$\sigma(\alpha) = int$$
 $\sigma(\beta) = bool \rightarrow \alpha$
 $\sigma(\beta \rightarrow \gamma) = (bool \rightarrow \alpha) \rightarrow \gamma$

• Σύνθεση αντικαταστάσεων $\sigma_1 \circ \sigma_2$ έτσι ώστε $(\sigma_1 \circ \sigma_2)(\tau) = \sigma_1(\sigma_2(\tau))$

Εξαγωγή τύπων στην πράξη (iii)

- Το πρόβλημα ? $\vdash e$: ? ανάγεται στην εύρεση μίας αντικατάστασης σ και ενός τύπου τ ώστε $\sigma(\Gamma) \vdash \sigma(e)$: τ για το αρχικό περιβάλλον Γ
- Παράδειγμα

```
let f (g : 01) (x : 02) : 03 = g x (x + 1) and m (a : 04) (b : 05) : 06 = a * b in f m 6
```

- Αρχικό περιβάλλον: $\Gamma = \emptyset$
- Αρχικό περιβάλλον για το σώμα f m 6: $\Gamma_b = \{ f : @1 \rightarrow @2 \rightarrow @3, m : @4 \rightarrow @5 \rightarrow @6 \} \}$

Εξαγωγή τύπων στην πράξη (iv)

- Παράδειγμα (συνέχεια)

```
let f (g : 01) (x : 02) : 03 = g x (x + 1) and m (a : 04) (b : 05) : 06 = a * b in f m 6
```

Μια λύση (η μοναδική)

```
 \sigma = \begin{bmatrix} @1 \mapsto int \rightarrow int \rightarrow int, & @2 \mapsto int, & @3 \mapsto int, \\ & @4 \mapsto int, & & @5 \mapsto int, & @6 \mapsto int \end{bmatrix}   \tau = int
```

Γενικά οι λύσεις δεν είναι μοναδικές!

```
let id (x : @1) : @2 = x
```

Περιορισμοί και επίλυση

(i)

- Πώς βρίσκεται η λύση;
- Περιορισμός (constraint): εξίσωση τύπων $au_1= au_2$
- lacktriangle Πρόβλημα 1: εύρεση συνόλου περιορισμών C

```
let f (g : @1) (x : @2) : @3 = g x (x + 1) and m (a : @4) (b : @5) : @6 = a * b in f m 6
```

οδηγεί στο σύνολο περιορισμών:

$$C = \{ ext{ Q1} = ext{ Q2}
ightarrow int
ightarrow ext{ Q3}, ext{ Q2} = int, \ ext{ Q4} = int, ext{ Q5} = int, ext{ Q6} = int, \ ext{ Q1} = ext{ Q4}
ightarrow ext{ Q5}
ightarrow ext{ Q6}, ext{ Q2} = int \}$$

Περιορισμοί και επίλυση

(ii)

- Παραγωγή τύπων με περιορισμούς

$$\Gamma \vdash E : \tau' \mid C$$

- Πρόβλημα 2: επίλυση συνόλου περιορισμών
- Μια αντικατάσταση σ λέγεται ενοποιητής (unifier) για τον περιορισμό $\tau_1=\tau_2$ αν οι τύποι $\sigma(\tau_1)$ και $\sigma(\tau_2)$ ταυτίζονται $\sigma(\tau_1)\equiv\sigma(\tau_2)$
- Λύση για το πρόβλημα της εξαγωγής τύπων:
 - ullet ένας ενοποιητής σ για κάθε περιορισμό του C
 - ullet ο τύπος $au=\sigma(au')$

Περιορισμοί και επίλυση

- Ο ενοποιητής σ είναι πιο γενικός από τον σ' αν υπάρχει αντικατάσταση σ_δ τέτοια ώστε $\sigma' = \sigma_\delta \circ \sigma$
- Πιο γενικός ενοποιητής (most general unifier): ενοποιητής σ τέτοιος ώστε να είναι πιο γενικός από κάθε άλλον ενοποιητή σ'
- Αν υπάρχει πιο γενικός ενοποιητής, αυτός δίνει τον πρωτεύοντα τύπο (principal type)
- Ο αλγόριθμος W για το λ-λογισμό (διαφ. 42)
 υπολογίζει τον πιο γενικό ενοποιητή

Εφαρμογή στο λ-λογισμό

(i)

Τύποι

$$\sigma, \tau ::= \alpha \mid (\sigma \rightarrow \tau)$$

Το \rightarrow είναι δεξιά προσεταιριστικό, π.χ.

$$(\alpha \to (\beta \to \gamma))$$
 $\alpha \to \beta \to \gamma$

Κανόνες τύπων à-la Curry

$$\begin{array}{c|c}
(x:\sigma) \in \Gamma & \Gamma, x:\sigma \vdash M:\tau \\
\hline
\Gamma \vdash x:\sigma & \Gamma \vdash (\lambda x.M):(\sigma \to \tau) \\
\hline
\Gamma \vdash M:(\sigma \to \tau) & \Gamma \vdash N:\sigma \\
\hline
\Gamma \vdash (MN):\tau
\end{array}$$

Εφαρμογή στο λ-λογισμό

(ii)

Ενοποίηση: επίλυση συνόλου περιορισμών

```
unify(\emptyset) = \sigma_0
                                              {η κενή αντικατάσταση}
\mathsf{unify}(\{\,\tau_1 = \tau_2\,\} \cup C) =
   if \tau_1 \equiv \tau_2 then
      \mathsf{unify}(C)
   else if \tau_1 \equiv \alpha και δεν εμφανίζεται στο \tau_2 then
      unify([\alpha \mapsto \tau_2]C) \circ [\alpha \mapsto \tau_2]
   else if \tau_2 \equiv \alpha και δεν εμφανίζεται στο \tau_1 then
      \mathsf{unify}([\alpha \mapsto \tau_1]C) \circ [\alpha \mapsto \tau_1]
   else if \tau_1 \equiv \tau_{11} \rightarrow \tau_{12} xal \tau_2 \equiv \tau_{21} \rightarrow \tau_{22} then
       unify(C \cup \{ \tau_{11} = \tau_{21}, \tau_{12} = \tau_{22} \})
   else
      η ενοποίηση αποτυγχάνει
```