

Summary Report for CAPE SARINA [9490612] dated 14-Feb-2024

COMPANY NAME	UNION MARITIME LTD
VESSEL NAME	CAPE SARINA
IMO NUMBER	9490612
SAMPLE RECEIVED	08-Feb-2024
REPORT RELEASED	18-Mar-2024
PORT SAMPLES LANDED	Indonesia

TOTAL NUMBER OF SAMPLES	6
NORMAL	2
CAUTION	0
CRITICAL	4

SNo	Machinery	Oil Condition	Remarks
1	AUXILIARY ENGINE 1 (CRANKCASE & CYLINDERS)	Critical	High KV@40°C,High Soot/Insoluble,High Vanadium (V)
2	STERN TUBE (SEAL STAND PIPE DRAIN POINT #2)	Critical	High KV@40°C,High AN,High PQ Index/2ml,High Iron (Fe)
3	STERN TUBE (SEAL STAND PIPE DRAIN POINT #3)	Critical	High AN,High Iron (Fe)
4	STERN TUBE (SEAL STAND PIPE DRAIN POINT #4)	Critical	High AN,High Iron (Fe)
5	AUXILIARY ENGINE 2 (CRANKCASE & CYLINDERS)	Normal	
6	STERN TUBE (BEARINGS & SEALS)	Normal	

TOTAL NUMBER OF SAMPLES – TO DATE (Yearly) 37	,
---	---

Critical

YANMAR

6N18AL-UV

Equipment Information

Company Name UNION MARITIME LTD **Equipment Make** Vessel Name CAPE SARINA **Equipment Model**

IMO Number 9490612 **Machinery Unit AUXILIARY ENGINE 1** 14-Feb-2024 **Equipment S/N** 7321 FSK Report Date

GULFSEA POWER 3030 Product Name Sample Location **FILTER**

TOGGOT TGING	OLITI OTTLITO	000		oumpio Loout	
Sample Information	11	12	13	14	15
Sample No	23032466	23071057	23116144	24000320	24509183
Bottle No	60066155	60116158	60227961	60227840	60237079
Date Received	30-Mar-23	19-Jul-23	27-Nov-23	02-Jan-24	08-Feb-24
Sampled Date	21-Mar-23	15-Jun-23	02-Oct-23	19-Dec-23	02-Feb-24
Port of Origin	Richards Bay	Kamsar	Mundra	Singapore	Indonesia
Oil on Label	GS 3030	GS 3030	GS 3030	GS 3030	GS 3030
Fuel In Use (Sulphur)(%)	3.0500	3.0500	2.7500	2.7500	3.0500
Total Machine Hours	56971	58754	60687	61909	62560
Lubricant Hours	2248	2254			
Lubricant Condition	Normal	Normal	Normal	Critical	Critical
Results					
<u>Analysis</u>					
KV@40°C [mm²/s]	113.7	105.1	110.8	125.8	129.5
KV@100°C [mm²/s]	12.79	12.26	12.48	13.82	14.89
Viscosity Index [-]	106	108	104	108	117
Water [%wt]	0.06	0.08	0.18	0.09	0.10
BN [mgKOH/g]	28.1	28.4	26.7	23.1	21.3
Flash Point [°C]	Pass	Pass	Pass	Pass	Pass
Soot/Insoluble [%wt]	0.80	0.40	0.70	2.1	2.3
PQ Index/2ml	<10	<10	<10	<10	<10
Wear Elements [ppm]					
Aluminium (Al)	4	2	3	7	<1
Chromium (Cr)	1	1	1	2	2
Copper (Cu)	1	<1	1	2	5
Iron (Fe)	11	5	13	20	38
Lead (Pb)	<1	<1	<1	<1	<1
Tin (Sn)	<1	<1	<1	2	<1
Cont. Elements [ppm]					
Sodium (Na)	13	6	12	16	24
Silicon (Si)	13	18	18	11	<1
Molybdenum (Mo)	1	<1	<1	1	<1
Nickel (Ni)	15	6	14	38	58
Silver (Ag)	<1	<1	<1	<1	<1
Vanadium (V)	48	21	60	241	299
Barium (Ba)	<1	<1	<1	<1	<1
Lithium (Li)	<1	<1	<1	<1	<1

Recommendations:

Excessive blow-by or partly or unburned fuel might have caused the viscosity and soot increase. The oil is not suitable for further use provided the landed used oil sample is representative for the application.

Elemental analysis is provided for your reference. Your attention is drawn to the level of elemental analysis. The cause of the results should be investigated. Please check injectors and injection viscosity to achieve an optimal spray cone in the combustion chamber. Efficient purification of the oil shall be ensured with reduced purifier throughput at 93°C to 98°C, daily five times for the entire sump. In case the lubricant condition cannot be maintained in line with the OEM's recommendations e.g. due to low oil consumption, it might be necessary to freshen the sump with new oil from time to time to be in line with the OEM's specific lube oil consumption.

Critical

Equipment Information

Company Name UNION MARITIME LTD **Equipment Make KEMEL** Vessel Name CAPE SARINA **Equipment Model** DX-750 **IMO Number** 9490612 **Machinery Unit** STERN TUBE 14-Feb-2024 **Equipment S/N** X-38961 Report Date

SEAL STAND PIPE DRAIN POINT #2 **Product Name GULFSEA SUPERBEAR 3006** Sample Location

Sample Information	1	2
Sample No	24000325	24509186
Bottle No	60273105	60237076
Date Received	02-Jan-24	08-Feb-24
Sampled Date	19-Dec-23	02-Feb-24
Port of Origin	Singapore	Indonesia
Oil on Label	HYDROX BIO 100	HYDROX BIO 100
Fuel In Use (Sulphur)(%)		
Total Machine Hours	82496	83114
Lubricant Hours		
Lubricant Condition	Critical	Critical
Results		
<u>Analysis</u>		
KV@40°C [mm²/s]	138.6	128.5
Water [%wt]	0.30	0.40
Oxidation [Abs/0.1mm]	3.84	3.12
AN [mgKOH/g]	10.3	7.92
PQ Index/2ml	13	67
<u> Wear Elemental Analysis [ppm]</u>		
Aluminium (Al)	3	<1
Silver (Ag)	<1	<1
Chromium (Cr)	1	<1
Copper (Cu)	38	26
Iron (Fe)	588	1111
Lead (Pb)	<1	3
Tin (Sn)	6	9
Nickel (Ni)	1	1
Cont. Elements [ppm]		
Boron (B)	<1	1
Sodium (Na)	44	50
Magnesium (Mg)	7	5
Silicon (Si)	7	<1
Manganese (Mn)	3	3
Potassium (K)	<1	<1
Barium (Ba)	1	<1
Additive Elements [ppm]		
Calcium (Ca)	121	113

Recommendations:
Please note the increase in Viscosity & Acid number. Oil oxidation reaction, oil quality degradation, hydrolysis, mix up with another oil grade etc. are the typical reasons for viscosity & acid number increase. Apart from degrading the oil quality, increased acidity can create issues on seal lips. Presence of lube oil additive metal presence in this sample is indicative of other oil grade mix up which might have been caused either by the inadequate flushing during the transition or during top up. The oil is not suitable for further use provided the landed used oil sample is representative for the application.

PQ Index and Elemental Fe results shows the severe wear condition in the system. Higher PQ Index & Fe results indicates the presence of ferromagnetic particles in the oil which might have been caused by the abrasive wear on ferrous components in the system.

Ensure correct grade is used for top-up. Please investigate the contamination sources of water ingress & ferromagnetic particles in the lube oil and take appropriate corrective measures.

Critical

Equipment Information

Company Name UNION MARITIME LTD **Equipment Make KEMEL** Vessel Name CAPE SARINA **Equipment Model** DX-750 **IMO Number** 9490612 **Machinery Unit** STERN TUBE 14-Feb-2024 **Equipment S/N** X-38961 Report Date

SEAL STAND PIPE DRAIN POINT #3 Product Name GULFSEA SUPERBEAR 3006 Sample Location

Sample Information	1	2
Sample No	24000326	
Bottle No	60273104	
Date Received	02-Jan-24	
Sampled Date	19-Dec-23	
Port of Origin	Singapore	Indonesia
Oil on Label	HYDROX BI 100	O HYDROX BIO 100
Fuel In Use (Sulphur)(%)		
Total Machine Hours		83114
Lubricant Hours		
Lubricant Condition	Critical	Critical
Results		
<u>Analysis</u>		
KV@40°C [mm²/s]	137.5	114.8
Water [%wt]	0.28	0.15
Oxidation [Abs/0.1mm]	3.70	2.36
AN [mgKOH/g]	10.4	5.04
PQ Index/2ml	<10	<10
Wear Elemental Analysis [ppm]		
Aluminium (Al)	3	<1
Silver (Ag)	<1	<1
Chromium (Cr)	<1	<1
Copper (Cu)	39	17
Iron (Fe)	145	218
Lead (Pb)	<1	1
Tin (Sn)	5	4
Nickel (Ni)	1	<1
Cont. Elements [ppm]		
Boron (B)	<1	<1
Sodium (Na)	30	39
Magnesium (Mg)	5	2
Silicon (Si)	4	<1
Manganese (Mn)	1	1
Potassium (K)	<1	<1
Barium (Ba)	<1	<1
Additive Elements [ppm]		
Calcium (Ca)	112	98

Recommendations:
Please note the increase in Acid number. Oil oxidation reaction, Hydrolysis, mix-up with another oil grade etc are the typical reasons for Acid number increase. Apart from degrading the oil quality, increased acidity can create issues on seal lips. Presence of lube oil additive metal presence in this sample is indicative of other oil grade mix up which might have been caused either by the inadequate flushing during the transition or during top up. The oil is not suitable for further use

provided the landed used oil sample is representative for the application.

Elemental analysis shows significant wear rate of Iron. High Fe and low PQ results indicates corrosive wear (rust) on the ferrous components. Ensure correct grade is used for top-up. Wear source of Iron shall be identified and appropriate corrective measures taken.

Critical

Equipment Information

Company Name UNION MARITIME LTD **Equipment Make KEMEL** Vessel Name **CAPE SARINA Equipment Model** DX-750 **IMO Number** 9490612 **Machinery Unit** STERN TUBE 14-Feb-2024 Equipment S/N X-38961 Report Date

SEAL STAND PIPE DRAIN POINT #4 Product Name GULFSEA SUPERBEAR 3006 Sample Location

	· ·	
Sample Information	1	2
Sample No	24000327	24509188
Bottle No	60273106	60237078
Date Received	02-Jan-24	08-Feb-24
Sampled Date	19-Dec-23	02-Feb-24
Port of Origin	Singapore	Indonesia
Oil on Label	HYDROX BIO 100	HYDROX BIO 100
Fuel In Use (Sulphur)(%)		
Total Machine Hours	82496	83114
Lubricant Hours		
Lubricant Condition	Critical	Critical
Results		
<u>Analysis</u>		
KV@40°C [mm²/s]	146.9	114.9
Water [%wt]	0.05	0.17
Oxidation [Abs/0.1mm]	3.54	2.16
AN [mgKOH/g]	9.62	5.01
PQ Index/2ml	<10	<10
Wear Elemental Analysis [ppm]		
Aluminium (Al)	3	<1
Silver (Ag)	<1	<1
Chromium (Cr)	1	<1
Copper (Cu)	145	18
Iron (Fe)	123	221
Lead (Pb)	<1	<1
Tin (Sn)	6	4
Nickel (Ni)	1	<1
Cont. Elements [ppm]		
Boron (B)	<1	<1
Sodium (Na)	34	38
Magnesium (Mg)	7	2
Silicon (Si)	9	<1
Manganese (Mn)	1	1
Potassium (K)	<1	<1
Barium (Ba)	1	<1
Additive Elements [ppm]		
Calcium (Ca)	116	98

Recommendations:
Please note the increase in Acid number. Oil oxidation reaction, Hydrolysis, mix-up with another oil grade etc are the typical reasons for Acid number increase. Apart from degrading the oil quality, increased acidity can create issues on seal lips. Presence of lube oil additive metal presence in this sample is indicative of other oil grade mix up which might have been caused either by the inadequate flushing during the transition or during top up. The oil is not suitable for further use

provided the landed used oil sample is representative for the application.

Elemental analysis shows significant wear rate of Iron. High Fe and low PQ results indicates corrosive wear (rust) on the ferrous components. Ensure correct grade is used for top-up. Wear source of Iron shall be identified and appropriate corrective measures taken.

Normal

Equipment Information

Company Name UNION MARITIME LTD Vessel Name **CAPE SARINA IMO Number** 9490612

14-Feb-2024 Report Date

GULFSEA POWER 3030 Product Name

Equipment Make YANMAR **Equipment Model** 6N18AL-UV

AUXILIARY ENGINE 2 Machinery Unit

Equipment S/N 7322 FSK Sample Location **FILTER**

				_	
Sample Information	12	13	14	15	16
Sample No	23071058	23545871	23116145	24000321	24509184
Bottle No	60116159	60243445	60227960	60227841	60237080
Date Received	19-Jul-23	16-Aug-23	27-Nov-23	02-Jan-24	08-Feb-24
Sampled Date	15-Jun-23	08-Aug-23	02-Oct-23	19-Dec-23	02-Feb-24
Port of Origin	Kamsar	Singapore	Mundra	Singapore	Indonesia
Oil on Label	GS 3030				
Fuel In Use (Sulphur)(%)	3.0500	3.0500	2.7500	2.7500	3.0500
Total Machine Hours	53870		55105	56247	57221
Lubricant Hours	1520				404
Lubricant Condition	Critical	Normal	Normal	Critical	Normal
Results					
<u>Analysis</u>					
KV@40°C [mm²/s]	129.8	103.1	104.9	123.6	106.6
KV@100°C [mm²/s]	13.68	12.05	11.85	13.69	11.97
Viscosity Index [-]	101	108	102	108	102
Water [%wt]	0.16	0.05	0.15	0.10	0.10
BN [mgKOH/g]	18.6	28.4	28.9	22.7	28.0
Flash Point [°C]	Pass	Pass	Pass	Pass	Pass
Soot/Insoluble [%wt]	3.6	0.70	0.60	2.1	1.1
PQ Index/2ml	<10	<10	<10	<10	<10
Wear Elements [ppm]					
Aluminium (Al)	10	3	2	7	<1
Chromium (Cr)	4	1	<1	2	<1
Copper (Cu)	20	2	1	3	<1
Iron (Fe)	29	7	7	27	15
Lead (Pb)	2	<1	<1	<1	<1
Tin (Sn)	2	<1	<1	2	<1
Cont. Elements [ppm]					
Sodium (Na)	40	13	6	17	6
Silicon (Si)	10	23	17	13	<1
Molybdenum (Mo)	5	1	<1	1	<1
Nickel (Ni)	53	8	6	41	15
Silver (Ag)	<1	<1	<1	<1	<1
Vanadium (V)	180	27	26	275	66
Barium (Ba)	<1	<1	<1	<1	<1
	<1	<1	<1	<1	<1

Recommendations:
The oil is fit for further use provided the landed used oil sample is representative for the application.

Wear rate is normal; no abnormalities are evident.

No action required.

Normal

Equipment Information

UNION MARITIME LTD Company Name **Equipment Make KEMEL** Vessel Name **CAPE SARINA Equipment Model** DX-750 **IMO Number** 9490612 **Machinery Unit** STERN TUBE 14-Feb-2024 **Equipment S/N** Report Date X-38961 **Product Name GULFSEA SUPERBEAR 3006** Sample Location POINT #1

Sample Information	9	10	11	12	13
Sample No	23032470	23071061	23116148	24000324	24509185
Bottle No	60066352	60116165	60227966	60227845	60237075
Date Received	30-Mar-23	19-Jul-23	27-Nov-23	02-Jan-24	08-Feb-24
Sampled Date	21-Mar-23	15-Jun-23	02-Oct-23	19-Dec-23	02-Feb-24
Port of Origin	Richards Bay	Kamsar	Mundra	Singapore	Indonesia
Oil on Label	GS BD 100	GS BD 100	GS BD 100	HYDROX BIO 100	HYDROX BIO 100
Fuel In Use (Sulphur)(%)					
Total Machine Hours		79269		82496	83114
Lubricant Hours					
Lubricant Condition	Normal	Normal	Critical	Critical	Normal
Results					
<u>Analysis</u>					
KV@40°C [mm²/s]	109.8	106.6	127.8	137.1	113.4
Water [%wt]	<0.05	<0.05	<0.05	0.24	0.15
Oxidation [Abs/0.1mm]	2.01	3.01	0.43	3.24	2.01
AN [mgKOH/g]	3.52	3.32	8.27	10.2	4.98
PQ Index/2ml	<10	<10	<10	<10	<10
Wear Elemental Analysis [ppm]					
Aluminium (Al)	1	<1	1	3	<1
Silver (Ag)	<1	<1	<1	<1	<1
Chromium (Cr)	<1	<1	<1	<1	<1
Copper (Cu)	10	10	33	38	17
Iron (Fe)	39	35	95	124	219
Lead (Pb)	<1	<1	1	<1	<1
Tin (Sn)	1	2	4	5	4
Nickel (Ni)	1	1	1	1	1
Cont. Elements [ppm]					
Boron (B)	<1	<1	<1	<1	<1
Sodium (Na)	15	17	21	22	38
Magnesium (Mg)	3	23	4	16	2
Silicon (Si)	5	5	4	4	<1
Manganese (Mn)	<1	<1	1	1	1
Potassium (K)	<1	<1	<1	<1	<1
Barium (Ba)	<1	<1	<1	<1	<1
Additive Elements [ppm]					
Calcium (Ca)	199	99	191	104	93

Recommendations:
Viscosity result is within the normal limit. Please note the increase in Acid number. Oil oxidation reaction, Hydrolysis, mix-up with another oil grade etc are the typical reasons for Acid number increase. Apart from degrading the oil quality, increased acidity can create issues on seal lips. Presence of lube oil additive metal presence in this sample is indicative of other oil grade mix up which might have been caused either by the inadequate flushing during the transition or during top

up.

Elemental analysis shows significant wear rate of Iron. High Fe and low PQ results indicates corrosive wear (rust) on the ferrous components.

Ensure correct grade is used for top-up. Wear source of Iron shall be identified and appropriate corrective measures taken.

Parameters Explanation – UOA

Analysis							
KV@40°C [mm²/s]	A measure of the resistance of a liquid to flow at 40°C. Commonly referred to as the 'thickness of an oil'.						
KV@100°C [mm²/s]	A measure of the resistance of a liquid to flow at 100°C. Commonly referred to as the 'thickness of an oil'.						
Viscosity Index [-]	A measure of an oil's resistance to change in viscosity (thickness or resistance to flow) with temperature variations						
BN [mgKOH/g]	A measure of the reserve alkalinity of an engine oil and its ability to neutralise harmful acids.						
AN [mgKOH/g]	Tests the acidity of the oil. Certain oils have an inherent acidity level related to their additive chemistry. Increasing acidity may be indicative of the presence of organic acids derived from oil oxidation.						
Oxidation [Abs/0.1mm]	A measure of the extent of oxidation that has occurred in an oil sample						
Flash Point [°C] Pass/Fail	Primarily a test for fuel dilution in engine oils. A decrease in flash point is generally an indication of fuel ingress which has contaminated the lubricant.						
Soot/insoluble [%wt]	A test for the total solids contamination in a lubricant such as combustion soot, dirt, oxidation products and metal wear debris.						
Water [%wt]	The percentage (by weight) of the total amount of water contamination.						
PQ index/2ml	A quantitative assessment of the amount of ferrous wear debris in the sample.						
ISO Code	ISO Code It is used to communicate particulate contamination in oil.						
Wear Elemental [ppm]							
Aluminium (Al)	Pistons, bearings, housings, fuel derivative						
Chromium (Cr)	Piston rings						
Copper (Cu)	Bearings, gears, oil coolers, pipe-work, piston-rod glands						
Iron (Fe)	Cylinder liners, crankshafts, piston rings, gears						
Lead (Pb)	Bearings						
Tin (Sn)	Bearings						
	Cont. Elements [ppm]						
Sodium (Na)	Salt water, coolant derivative, fuel derivative						
Silicon (Si)	Dust, dirt, fuel derivative, lubricant derivative						
Molybdenum (Mo)	Piston rings						
Nickel (Ni)	Bearings, valves, gears, fuel derivative						
Silver (Ag)	Bearings						
Vanadium (V)	Fuel derivative						
Additive Elements [ppm]							
Barium (Ba)	Lubricant derivative						
Boron (B)	Lubricant derivative						
Lithium (Li)	Lubricant derivative						
Zinc (Zn)	Lubricant derivative						
Phosphorus (P)	Lubricant derivative						

Calcium (Ca)

Lubricant derivative