0.1 Cubrientes

Para calcular grupos de homotopías, es muy útil la idea de cubrientes. Empiezo con un ejemplo:

Considera el mapeo exponencial $\epsilon: \mathbb{R} \to \mathbb{S}^1$, que hace $t \mapsto e^{2\pi i t} = (\cos 2\pi i t, \sin 2\pi i)$ (estoy identificando $\mathbb{S}^1 \subset \mathbb{C}$ con $\mathbb{S}^1 \subset \mathbb{R}^2$). Como \mathbb{R} se puede encajar en \mathbb{R}^3 como $i(t) = (\cos 2\pi i t, \sin 2\pi i t, t)$ entonces el mapeo exponencial ϵ lo puedo pensar como la composición del encaje i seguida de la restricción de la proyección $p:(x_1,x_2,x_3)\mapsto (x_1,x_2) \text{ en } \mathbb{R}^3 \text{ porque:}$

$$(p \circ i)(t) = p(i(t)) = p(\cos 2\pi t, \sin 2\pi t, t) = (\cos 2\pi t, \sin 2\pi t) \in \mathbb{S}^1 \subset \mathbb{R}^2 \qquad \therefore \epsilon = p \circ i.$$

El siguiente dibujo ilustra esta construcción:

Para resumir: encajo $i: \mathbb{R} \hookrightarrow \mathbb{R}^3$ y $j: \mathbb{S}^1 \hookrightarrow \mathbb{R}^3$ mediante:

$$i(t) = (\cos 2\pi t, \sin 2\pi t, t)$$
 y $j(e^{i\theta}) = (\cos \theta, \sin \theta, 0)$.

Identifico $\mathbb{R} = i[\mathbb{R}]$ y $\mathbb{S}^1 = j[\mathbb{S}^1]$. Si $\bar{p} = p|_{\mathbb{R}} : \mathbb{R} \to \mathbb{S}^1$ es la restricción de la proyección $p : (x_1, x_2, x_3) \mapsto$ (x_1, x_2) en \mathbb{R}^3 , entonces claramente $\epsilon = \bar{p}$.

Esta función cumple una propiedad muy importante:

Ejercicio 1. Para toda $x \in \mathbb{S}^1$, existe una vecindad abierta $U \subseteq \mathbb{S}^1$ de x tal que $\epsilon^{-1}[U] = \bigcup U_n$ con $U_n \cap U_m = \emptyset$ donde $\epsilon_n := \epsilon|_{U_n} : U_n \to U$ es un homeomorfismo.

Proof. Veo a \mathbb{S}^1 encajado en el plano complejo y sea $e^{\theta} \in \mathbb{S}^1$. Sin pérdida de generalidad puedo asumir que $e^{\theta} \neq -1$ porque de otra manera nada más encajo \mathbb{S}^1 como $-\mathbb{S}^1 \subset \mathbb{C}$.

Observa que $e^{\theta} \in \mathbb{C} - \{x \in \mathbb{R} \mid x < 0\}$ entonces la rama principal del argumento está bien definida y $\arg(e^{\theta}) = \vartheta \in (-\pi, \pi)$ donde $\theta = \vartheta + 2\pi n$ para alguna $n \in \mathbb{Z}$ (aquí arg es una función continua).

De esta manera para cada $z \in \mathbb{S}^1 - \{-1\}$ hay un único $\vartheta \in (-\pi, \pi)$ tal que $z = e^{\vartheta}$, ie. $\arg(z) = \vartheta$. Con esto puedo definir una función continua $\delta: \mathbb{S}^1 - \{-1\} \to (-\frac{1}{2}, \frac{1}{2})$ como

$$\delta(z) = \delta(e^{\vartheta}) = \frac{\vartheta}{2\pi}.$$

Claramente es continua y además es el inverso de la restricción $\bar{\epsilon} := \epsilon|_{(-\frac{1}{2},\frac{1}{2})}$ porque si $t \in (-\frac{1}{2},\frac{1}{2})$, o equivalentemente $2\pi t \in (-\pi, \pi)$, y si $z = e^{\vartheta} \in \mathbb{S}^1 - \{-1\}$ entonces:

$$\delta(\bar{\epsilon}(t)) = \delta(e^{2\pi t}) = \frac{2\pi t}{2\pi} = t \quad \text{y} \quad \bar{\epsilon}(\delta(e^{\vartheta})) = \bar{\epsilon}\left(\frac{\vartheta}{2\pi}\right) = e^{2\pi \frac{\vartheta}{2\pi}} = e^{\vartheta}.$$

Por lo tanto $\mathbb{S}^1 - \{-1\} \approx (-\frac{1}{2}, \frac{1}{2})$ mediante la restricción de ϵ . Ahora escribo $U = \mathbb{S}^1 - \{-1\}$ como la vecindad abierta de algún elemento $z \neq -1$ arbitrario de \mathbb{S}^1 . Observa que

$$\epsilon^{-1}[U] = \{t \in \mathbb{R} \mid e^{2\pi t} \neq -1\} = \{t \in \mathbb{R} \mid t \not\in \left(\frac{1}{2} + \mathbb{Z}\right)\} = \bigcup_{n \in \mathbb{Z}} \left(n - \frac{1}{2}, n + \frac{1}{2}\right)$$

donde $\frac{1}{2} + \mathbb{Z} = \{\frac{1}{2} + n \in \mathbb{R} \mid n \in \mathbb{Z}\}$; escribo $U_n := (-\frac{1}{2} + n, \frac{1}{2} + n)$. Claramente las U_n 's son disjuntas porque cada una pertenece a un elemento distinto de la partición $\{[n - \frac{1}{2}, n + \frac{1}{2})\}_{n \in \mathbb{Z}}$ de \mathbb{R} .

Además sea $\varphi_{-n}: U_n \to (-\frac{1}{2}, \frac{1}{2})$ la traslación $\varphi_{-n}(t) = t - n$. Claramente es un homeomorfismo porque es la restricción de un homeomorfismo con el codominio igual a su imagen. Por lo tanto

$$\epsilon_n := \epsilon|_{U_n} = \bar{\epsilon} \circ \varphi_{-n} \quad \text{porque} \quad \bar{\epsilon}(\varphi_{-n}(t)) = \bar{\epsilon}(t-n) = e^{2\pi(t-n)} = e^{2\pi t} = \epsilon_n(t).$$

Esto quiere decir que $\epsilon_n: U_n \to U$ es un homeomorfismo por ser la composición de homeomorfismos. \square

Defino explícitamente esta propiedad:

Definición 1. Sean E y X espacios topológicos y $p: E \to X$ una función continua. La terna (E, p, X) es un *cubriente* si toda $x \in X$ tiene una vecindad abierta $V \subseteq X$ tal que su preimagen es una unión disjunta de abiertos de E, ie. $p^{-1}[V] = \bigsqcup U_j$, tal que la restricción $p|_{U_j}: U_j \to V$ es un homeomorfismo.

Cada ingrediente de la definición tiene un nombre: E es el espacio total, X es el espacio base, la función $p: E \to X$ es una aplicación cubriente, las componentes conexas U_i de $p^{-1}[V]$ se llaman hojas. Además, para un punto $x \in X$ su imagen inversa $E_x := p^{-1}[x]$ se llama la fibra de p sobre x. A veces diré que la función $p: E \to X$ es un cubriente para referirme al cubriente (E, p, X); esto es porque la notación de función ya muestra los tres elementos de la definición de cubriente.

Las fibras de un cubriente cson discretas:

Proposición 1. Sea $p: E \to X$ un cubriente, $x \in X$ y $E_x \subset E$ la fibra de p sobre x. La topología de E_x como subsespacio de E es la topología discreta.

Proof. Sea $V \subset X$ una vecindad de x tal que $p^{-1}[V] = \bigcup U_j$ con $p|_{U_j}$ es un homeomorfismo sobre su imagen. Ahora, si $e \in E_x$ entonces está en un único U_j . Por lo tanto si $e' \in E_x \cap U_j$ entonces p(e) = p(e'), pero $p|_{U_j}$ es inyectivo entonces e = e'. Con esto concluyo que los singuletes $\{e\} = E_x \cap U_j$ son abiertos y que E_x es un espacio discreto.

Ejemplo 1. Todo homeomorfismo es un cubriente. Por el ejercicio 1, la exponencial $\epsilon : \mathbb{R} \to \mathbb{S}^1$ es un cubriente.

Cubrientes cumplen una propiedad fundamental para el estudio de grupos de homotopías:

Teorema 1. (Levantamiento de trayectorias) Sea $p: E \to X$ un cubriente $y \sigma: I \to X$ una trayectoria que empieza en $x = \sigma(0)$. Para toda $e \in E_x$ existe una única trayectoria $\hat{\sigma}_e: I \to E$ que extiende a σ , es decir $p \circ \hat{\sigma}_e = \sigma$.

Proof. Por la definición de cubriente, toda $\sigma(s) \in X$, tiene una vecindad $V_s \subseteq X$ tal que la restricción de la aplicación cubriente p a cada componente conexa de $p^{-1}[V]$ es un homeomorfismo. Como la imagen de σ es compacto, existen $0 = s_0 < s_1 < \dots < s_{n-1} < s_n = 1$ tal que $\{V_{s_k}\}_{k=0,\dots,n}$ es una cubierta de la trayectoria. Observa que dos abiertos consecutivos $V_{s_{k-1}}$ y V_{s_k} deben intersectarse porque si son disjuntas, $\{V_{s_{k-1}}, V_{s_k}\}$ sería una disconexión de conjunto conexo $\sigma[s_{k-1}, s_k]$.

Ahora, si elijo un $e \in E_x$, entonces existe un único componente U_0 de $p^{-1}[V_{s_0}]$ tal que $e \in U_0$. Además, como $p|_{U_0}: U_0 \to V_{s_0}$ es un homeomorfismo, entonces defino

$$\widehat{\sigma}_e^0 : [0, s_1] \longrightarrow V_{s_0} E \quad \text{con} \quad \widehat{\sigma}_e^0(s) = (p|_{U_0})^{-1}(\sigma(s))$$

Observa que $p(\widehat{\sigma}_e^0(s_1)) = \sigma(s_1) \in V_{s_1}$, entonces se determina un único componente U_1 de $p^{-1}[V_{s_1}]$ tal que $\widehat{\sigma}_e^0(s_1) \in U_1$. De la misma manera, $p|_{U_1}$ es un homeomorfismo y defino

$$\widehat{\sigma}_e^1 : [s_1, s_2] \longrightarrow V_{s_1} E$$
 con $\widehat{\sigma}_e^1(s) = (p|_{U_1})^{-1}(\sigma(s)).$

De manera inductiva defino las (únicas) n funciones continuas $\widehat{\sigma}_e^k : [s_k, s_{k+1}] \to U_k$ que coinciden en sus intersecciones. Entonces existe una única función continua $\widehat{\sigma}_e : I \to \bigcup U_k \subseteq E$ que se restrinje a cada $\widehat{\sigma}_e^k$.

Por último, para toda $s \in I$, existe una k tal que $s \in [s_k, s_{k+1})$ entonces:

$$(p \circ \widehat{\sigma}_e)(s) = p(\widehat{\sigma}_e^k(s)) = p(p|_{U_k})^{-1}(\sigma(s)) = \sigma(s)$$

y la trayectoria $\hat{\sigma}_e$ es la buscada.

Se puede generalizar el concepto de un cubriente:

Definición 2. Una función continua $p: E \to X$ es una fibración si dadas funciones $g, f: Y \to E$ y una homotopía $H: Y \times I \to X$ entre $p \circ f: Y \to X$ y $p \circ g: Y \to X$, existe una única homotopía $\widehat{H}: Y \times I \to E$ entre $f \circ g$ que extiende a H, es decir se tiene el siguiente diagrama commutativo:

Teorema 2. Todo cubriente $p: E \to X$ es una fibración.

En el caso del teorema del levantamiento, la elección de $e \in E$ es equivalente a tomar $Y = \{e\}$. Ahora me enfoco en usar los cubrientes para calcular los grupos fundamentales:

Proposición 2. Sea $p: E \to X$ un cubriente con (X, x) un espacio basado y $e \in E_x$. Entonces el morfismo inducido $(p_\#): \pi_n(E, e) \to \pi_n(X, x)$ es un monomorfismo de grupos para toda n.

Proof. Sea $[\alpha] \in \pi_n(E, e)$ (en particular $\alpha : \mathbb{S}^n \to E$) tal que $(p_\#)[\alpha] = [p \circ \alpha] = 1$, es decir que $p \circ \alpha \simeq \operatorname{cte}_x : \mathbb{S}^n \to \{x\} \subset X$. Sea $H : I \times I \to E$ tal homotopía con $H_0(t) = \operatorname{cte}_x(t) = x \text{ y } H_1(t) = (p \circ \alpha)(t)$. Por el teorema 2, $p : E \to X$ es una fibración y si tomo Y = I entonces existe una homotopía $\widehat{H} : I \times I \to E$ entre α y el lazo constante $\operatorname{cte}_e(s) = e \in E$ (que es el que cumple $p \circ \operatorname{cte}_e = \operatorname{cte}_x$). Por lo tanto $(p_\#)[\alpha] = [p \circ \alpha] = [\operatorname{cte}_e] = 1 \in \pi_n(E, e)$ y $p_\#$ es un monomorfismo.

Ahora si restrinjo al caso n > 1 el morfismo $(p_{\#}) : \pi_n(E) \to \pi_n(X, x)$ es un ismorfismo! Esto sucede porque bajo ciertas condiciones, cualquier función continua $f : Y \to X$, en particular $Y = \mathbb{S}^n$, se factoriza a través del cubriente $p : E \to X$:

Teorema 3. Sea $p: E \to X$ un cubriente visto en \mathbf{Top}_* con (E, e) y (X, x) tal que $e \in E_x$. Si (Y, y) es conexo y localmente conectable por trayectorias y $f: Y \to X$ es basada, entonces:

$$Y \xrightarrow{\exists ! \widehat{f}} X \xrightarrow{p} \iff f_{\#}[\pi_{1}(Y)] \subseteq p_{\#}[\pi_{1}(E)]$$

Ejercicio 2. Prueba "⇒" del teorema 3.

Proof. Sea $f_{\#}[\alpha] = [f \circ \alpha] \in f_{\#}[\pi_1(Y)] \subseteq \pi_1(X)$ con $\alpha : I \to Y$ un lazo y sea $\widehat{f} : Y \to E$ la función basada garantizada por la hipótesis. Observa que $\widehat{f}_{\#}[\alpha] = [\widehat{f} \circ \alpha] \in \pi_1(E)$. Como $X \mapsto \pi_1(X)$ es funtorial, entonces $p_{\#} \circ \widehat{f}_{\#} = f_{\#}$. En particular $f_{\#}[\alpha] = p_{\#}(\widehat{f}_{\#}[\alpha]) \in p_{\#}[\pi_1(E)]$.

Nota. Para la ida no se requirió que Y fuese conexa y localmente conectable por trayectorias.

El regreso de del teorema 3 se hace de la siguiente manera:

Sea $\sigma: I \to Y$ una trayectoria que empieza en $\sigma(0) = y$ y termina en $\sigma(1) = y'$. Entonces $\widehat{f_*(\sigma)} := f \circ \sigma: I \to X$ es una trayectoria y por el teorema del levantamiento existe una única trayectoria $\widehat{f_*(\sigma)}_e: I \to E$ que extiende a $f_*(\sigma)$. Con esto defino:

$$\widehat{f}: Y \longrightarrow E \quad \text{con} \quad \widehat{f}(y') = \widehat{f_*(\sigma)}(1)$$

Ve:

Observa que \widehat{f} está bien definido porque si $\tau:I\to Y$ es otra trayectoria que empieza en y y termina en y'.....

Corolario 4. Sea $p: E \to X$ un cubriente. Entonces para toda n > 1, el monomorfismo $p_{\#}: \pi_n(E) \to \pi_n(Y)$ es un isomorfismo, en símbolos:

$$p: E \to X$$
 es un cubriente \Longrightarrow $\pi_n(E) \cong \pi_n(X)$ $(n > 1)$.

Proof. Nada má tengo que probar que $p_{\#}$ es sobre. Observa que \mathbb{S}^n es conexa y y contectable por trayectorias. Además $\pi_1(\mathbb{S}^n) = 0$ por la ecuación (??) entonces para toda $\alpha : \mathbb{S}^n \to X$ tengo $\alpha_{\#}[\pi_1(\mathbb{S}^n)] = 0 \subset p_{\#}[\pi_1(E)]$, por el teorema 3 existe un $\widehat{\alpha} : \mathbb{S}^n \to E$ que extiende α . Claramente

$$p_{\#}[\widehat{\alpha}] = [p \circ \widehat{\alpha}] = [\alpha]$$

y $p_{\#}$ es sobre.

Ejemplo 2. $\pi_n(\mathbb{S}^1) = 0$ para toda n > 1 porque la exponencial $\epsilon : \mathbb{R} \to \mathbb{S}^1$ es un cubriente y \mathbb{R} es contraible.

El único grupo de homotopía que falta calcularle a \mathbb{S}^1 es $\pi_1(\mathbb{S}^1)$. Para esto desarrollo la teoría de acciones de grupos.

0.1.1 Acciones de grupos

En esta parte generalizo las acciones de grupos a espacios topológicos.

Definición 3. Sea G un grupo topológico con neutro $1 \in G$ y X un espacio topológico. Una acción izquierda de G en X es una función continua $G \times X \to X$ con $(g, x) \mapsto gx$ que cumple dos propiedades:

- (i) 1x = x para toda $x \in X$.
- (ii) (gg')x = g(g'x) para todas $g, g' \in G$.

En general una acción de grupo se define sin topologías pero este caso es un caso particular de la definición anterior si G y X tienen la topología discreta.

Ejemplo 3. Si $G = GL_n(\mathbb{R})$ y $X = \mathbb{R}^n$ entonces la multiplicación de matrices $(A, x) \mapsto Ax$ es una acción de grupo.

Ejercicio 3. Sea $X^n = X \times \cdots \times X$ y $G = S_n$ el grupo simétrico (de permutaciones de un conjunto con n elementos). Entonces $X^n \times S_n \to X^n$ definido por

$$((x_1,\ldots,x_n),\sigma)\mapsto (x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

es una acción derecha de S_n sobre X^n .

Proof. Primero observa que el neutro $1 \in S_n$ es la identidad, entonces

$$(x_1,\ldots,x_n)1=(x_{1(1)},\ldots,x_{1(n)})=(x_1,\ldots,x_n).$$

Ahora sea $\sigma, \tau \in S_n$. Entonces

$$(x_1, \dots, x_n)(\sigma \tau) = (x_{(\sigma \tau)(1)}, \dots, x_{(\sigma \tau)(n)}) = (x_{\sigma(\tau(1))}, \dots, x_{\sigma(\tau(n))}) = (x_{\tau(1)}, \dots, x_{\tau(n)})\sigma$$

= $((x_1, \dots, x_n)\sigma)\tau$.

Esta prueba muestra que esta acción no es izquierda porque tendría $(\sigma \tau)x = \tau(\sigma(x))$, es decir que la segunda propiedad de acción izquierda no se cumple porque se invierte el orden de las acciones.

Nada más falta probar que $X^n \times S_n \to X^n$ es continua. Sea $U_1 \times \cdots U_n \subseteq X^n$ un abierto arbitrario, es decir $U_i \subseteq X$ es abierto para toda $i = 1, \ldots, n$. Entonces $((x_1, \ldots, x_n), \sigma)$ está en la preimagen de la acción si $x_{\sigma(i)} \in U_i$ para toda i, pero esto es equivalente a que

$$x_i \in U_{\sigma^{-1}(i)} \quad \forall i = 1, \dots, n.$$

La equivalencia se da porque si $x_i \in U_i$ para toda i, entonces $x_{\tau(i)} \in U_{\tau(i)}$ para toda permutación τ ; en particular $\tau = \sigma^{-1}$.

Por lo tanto la preimagen de U en $X \times S_n$ es:

$$\bigcup_{\sigma \in S_n} \left(\left(U_{\sigma^{-1}(1)} \times \cdots \times U_{\sigma^{-1}(n)} \right) \times \{\sigma\} \right)$$

que es abierto ya que $\{\sigma\} \subset S_n$ es abierto porque S_n tiene la topología discreta.

Definición 4. Sea $G \times X \to X$ una acción izquierda de un grupo G y $x \in X$ un elemento arbitrario. El grupo de isotropía de x es el conjunto de elementos de G que fijan a x bajo la acción, es decir:

$$G_x := \{ g \in G \mid gx = x \}.$$

Ejercicio 4. El grupo de isotropía de x siempre es un subrupo.

Proof. Si $1 \in G$ es el neutro, entonces por definición 1x = x, entonces $1 \in G_x$. Ahora sean $g, h \in G_x$, en particular hx = x Esto implica que

$$(gh^{-1})x = g(h^{-1}x) = g(h^{-1}(hx)) = g((h^{-1}h)x) = g(1x) = gx = x.$$

Por lo tanto $gh^{-1} \in G_x$ y G_x es un subgrupo de G.

Definición 5. Sea $G \times X \to X$ una acción izquierda de un grupo G y $x \in X$ un elemento arbitrario. La *órbita* de x es el subconjunto de X definido por

$$\mathcal{O}(x) := \{ gx \in X \mid g \in G \}.$$

Resulta que las órbitas de una acción de grupos sobre X particionan a X:

Ejercicio 5. La relación

$$x \sim y \iff \exists g \in G \text{ tal que } gx = y \iff y \in \mathcal{O}(x)$$

definida sobre X es una relación de equivalencia.

Proof. Pruebo algo equivalente: $\{\mathcal{O}(x)\}_{x\in X}$ es una partición de X. Si $x\in X$, entonces 1x=x y así $x\in \mathcal{O}(x)$. Por lo tanto

$$X = \bigcup_{x \in X} \mathcal{O}(x). \tag{1}$$

Ahora sean $x, y \in X$ tales que $\mathcal{O}(x) \cap \mathcal{O}(y) \neq \emptyset$; sea $z \in X$ un elemento en esta intersección. Esto implica que existen $q, h \in G$ tal que qz = x y hz = y. Por lo tanto

$$(hg^{-1})x = (hg^{-1})(gz) = (hg^{-1}g)z = (h1)z = h(1z) = hz = y$$

y así $y \in \mathcal{O}(x)$. Con esto tengo que $g'y \in \mathcal{O}(x)$ implica $g'y = (g'hs^{-1})x$ y $g'y \in \mathcal{O}(x)$ entonces $\mathcal{O}(y) \subseteq \mathcal{O}(x)$. De manera análoga tengo que $\mathcal{O}(x) \subseteq \mathcal{O}(y)$.

Por lo tanto si $\mathcal{O}(x) \cap \mathcal{O}(y)$ se intersectan, entonces son iguales. Por lo tanto la unión en la ecuación (1) es disjunta y así $\{\mathcal{O}(x)\}_{x\in X}$ es una partición en X. Esto significa que la relación inducida $x \sim y \iff y \in \mathcal{O}(x)$ es una relación de equivalencia.

Definición 6. Sea $G \times X \to X$ una acción de grupos entonces el espacio de cocientes módulo la relación de equivalencia $x \sim y \iff y \in \mathcal{O}(x)$ se llama el *espacio de órbitas* y viene equipada de la topología cociente; se denota por X/G.

Nota. Las fibras de la identificación $\nu: X \to X/G$ son las órbitas $\nu^{-1}[x] = \mathcal{O}(x)$.

Para calcular las órbitas de una acción $G \times X \to X$ restrinjo la acción a $G \times \{x\} \to X$, entonces la imagen es exactamente la órbita de x. Como $G \approx G \times \{x\}$, la restricción de la acción se puede ver como la función continua:

$$\mathfrak{a}_x: G \longrightarrow \mathcal{O}(x)$$
 , $\mathfrak{a}_x(g) = gx$.

Además $\mathfrak{a}_x(g) = \mathfrak{a}_x(h) \iff gx = hx \iff gh^{-1} \in G_x$. Por lo tanto se factoriza a través de la identificación $\nu: G \twoheadrightarrow G/G_x$. Por lo tanto el siguiente diagrama conmuta:

$$G \xrightarrow{\mathfrak{a}_x} \mathcal{O}(x)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \\ \frac{G}{G_x} \qquad \qquad \mathfrak{a}_x = \bar{\mathfrak{a}}_x \circ \nu.$$

Está definida por $\mathfrak{a}_x(gG_x) = \mathfrak{a}_x(g) = gx$. Como \mathfrak{a}_x es continua, $\bar{\mathfrak{a}}_x$ es continua. Claramente es sobreyectiva porque $\mathcal{O}(x)$ es por definición la imagen de \mathfrak{a}_x . Además:

Ejercicio 6. $\bar{\mathfrak{a}}_x:(G/G_x)\to\mathcal{O}(x)$ es inyectiva. Por lo tanto es una función continua y biyectiva.

Proof. Como $\bar{\mathfrak{a}}_x(qG_x) = \mathfrak{a}_x(q) = qx$, entonces

$$\bar{\mathfrak{a}}_x(gG_x) = \bar{\mathfrak{a}}_x(hG_x) \iff \mathfrak{a}_x(g) = \mathfrak{a}_x(h) \iff gx = hx \iff (gh^{-1})x = x \iff gh^{-1} \in G_x$$

dice que \mathfrak{a}_x está bien definida y es inyectiva. Además es sobreyectiva porque $\mathcal{O}(x)$ se define como la imagen de \mathfrak{a}_x . Por lo tanto \mathfrak{a}_x es biyectiva.

Por último, $\mathfrak{a}_x = \bar{\mathfrak{a}}_x \circ \nu$ donde $\nu : G_x \twoheadrightarrow G/G_x$ es la identificación inducida por \mathfrak{a}_x , entonces, como \mathfrak{a}_x es continua, $\bar{\mathfrak{a}}_p$ es continua.

Nota. Si X es Hausdorff y G es compacto (y por lo tanto también G/G_x), entonces por el resultado anterior $\bar{\mathfrak{a}}_x$ es un homeomorfismo, ie $(G/G_x) \approx \mathcal{O}(x)$.

Definición 7. Una acción $G \times X \to X$ de grupos es *libre* si $gx = x \Longrightarrow g = 1$ o equivalentemente $G_x = 1$. Es transitiva si para cualesquiera $x, y \in X$ existe un $g \in G$ tal que xg = y o equivalentemente $X = \mathcal{O}(x)$.

Si $G \times X \to X$ es una acción libre, la nota anterior dice que si G es compacto y X hausdorff, entonces $G \approx \mathcal{O}(x)$ Observa que este homeomorfismo depende de que $x \in X$ eligimos. Por lo tanto $\mathcal{O}(x)$ no hereda una estructura de grupo topológico. Pero las fibras de la identificación $X \twoheadrightarrow X/G$ son $\mathcal{O}(x) \approx G$. Por lo tanto si G tiene la topología discreta, entonces $\nu: X \to X/G$ es casi un cubriente; necesitamos que las fibras se vean así localmente.

Definición 8. Sea G un grupo discreto. Una acción $G \times X \to X$ es propiamente discontinua si para toda $x \in X$ tiene una vecindad abierta $U \subseteq X$ tal que

$$gU \cap U = \emptyset \qquad \forall g \neq 1$$

donde gU es la imagen de la restricción de la acción a $G \times U$.

Ejercicio 7. Sea G un grupo discreto y $\mathfrak{a}: G \times X \to X$ una acción de grupos. Entonces:

 \mathfrak{a} es propiamente discontinua \implies \mathfrak{a} es libre.

Proof. Sea $x \in X$ y $U \subseteq X$ una vecindad garantizada por la definición de propiamente discontinua. Ahora sea $g \in G$ tal que gx = x Entonces $gU = U \Longrightarrow U \cap gU \neq \emptyset$ por lo tanto necesariamente g = 1 y $\mathfrak a$ es una acción libre.

La importancia de acciones propiamente discontinuas lo muestra el siguiente teorema:

Teorema 5. La identificación $X \to X/G$ es un cubriente cuando la acción es propiamente discontinua:

$$G \times X \to X$$
 es propiamente discontinua $\implies \nu: X \longrightarrow X/G$ es un cubriente.

Ejemplo 4. Considera la acción de $G = \mathbb{Z}_2$ sobre $X = \mathbb{S}^n$ definida como $(\pm 1, x) \mapsto \pm x$. Esta acción es libre porque en \mathbb{S}^n , siempre se cumple que $-x \neq x$. Además, \mathbb{S}^n es Hausdorff y G es compacto (por ser finito y discreto), entonces el teorema anterior aplica:

$$\mathbb{S}^n \longrightarrow \mathbb{S}^n/Z_2 = \mathbb{R}P^2$$
 es un cubriente.

Los espacios cubrientes nos permiten estudiar los grupos fundamentales porque para todo cubriente existe una acción de grupo especial:

Definición 9. Sean $p: E \to X$ un cubriente, $x \in X$ fijo y E_x la fibra de p sobre x. El grupo fundamental $\pi_1(X,x)$ actúa sobre la fibra E_x de la siguiente manera:

$$E_x \times \pi_1(X) \longrightarrow E_x \quad , \quad (e, [\sigma]) \mapsto \widehat{\sigma}_e(1)$$

donde $\hat{\sigma}_e: I \to E$ es el levantamiento de σ a E garantizado por el teorema 1.

Ejercicio 8. Sea $p: E \to X$ un cubriente. Si E es conectable por trayectorias entonces la acción $E_x \times \pi(X) \to E_x$ es transitiva.

Proof. Sean $e, e' \in E_x$. Como E es conectable por trayectorias, existe un $\tau : I \to E$ tal que $\tau(0) = e$ y $\tau(1) = e'$. Entonces $\sigma := p \circ \tau$ es un lazo en X porque

$$\sigma(0) = p(\tau(0)) = p(e) = x = p(e') = p(\tau(1)) = \sigma(1).$$

Por lo tanto si elijo $e \in E$, el lazo σ se levanta a una única trayectoria $\hat{\sigma}_e$ tal que $\hat{\sigma}_e(0) = e$ y $p \circ \hat{\sigma}_e = \sigma$. Pero τ también cumple estas propiedades ($\sigma = p \circ \tau$ por definición y $\tau(0) = e$). Por la unicidad del levantamiento tengo que $\hat{\sigma}_e = \tau$, por lo tanto:

$$e[p \circ \tau] = e[\sigma] = \widehat{\sigma}_e(1) = \tau(1) = e'$$

y la acción es transitiva.

Ejercicio 9. Sean $p: E \to X$ un cubriente y $p_{\#}: \pi_1(E,e) \to \pi_1(X,x)$ el homomorfismo inducido donde $x \in X$ es fija y $e \in E_x$. Si denoto $G = \pi_1(X,x)$, el grupo de isotropía de e bajo la acción inducida por el cubriente es:

$$G_e = p_{\#} [\pi_1(E, e)].$$

Proof.

(\subseteq) Sea $[\sigma] \in G_e$ con $\sigma: I \to X$ un lazo y $\widehat{\sigma}_e: I \to E$ su levantamiento, en particular $\widehat{\sigma}_e(0) = e$. Como $[\sigma] \in G_e$, entonces:

$$e[\sigma] = \widehat{\sigma}_e(1) = e$$

y así $\hat{\sigma}_e$ es un lazo en E, ie. $[\hat{\sigma}_e] \in \pi_1(E)$. por último, como $\hat{\sigma}_e$ es el levantamiento de σ , entonces $p \circ \hat{\sigma}_e = \sigma$ y así:

$$p_{\#}[\widehat{\sigma}_e] = [p \circ \widehat{\sigma}_e] = [\sigma].$$

Por lo tanto $[\sigma] \in p_{\#}[\pi_1(E)].$

(\supseteq) Sea $p_{\#}[\sigma] = [p \circ \sigma] \in p_{\#}[\pi_1(E)]$ donde $[\sigma] \in \pi_1(E, e)$, ie. $\sigma(0) = e = \sigma(1)$. Si escribo $\tau := p \circ \sigma$ para el lazo en X, su levantamiento es $\widehat{\tau}_e$ donde $p \circ \widehat{\tau}_e = \tau$ y $\widehat{\tau}_e(0) = e$. Observa que σ también cumple estas dos propiedades entonces la unicidad del levantamiento dice que $\widehat{\tau}_e = \sigma$. Por lo tanto:

$$e[p \circ \sigma] = e[\tau] = \widehat{\tau}_e(1) = \sigma(1) = e \implies [p \circ \sigma] \in G_e.$$

Si aplico estos dos resultados al ejemplo 4 puedo calcular el grupo fundamental del espacio proyectivo: Proposición 3. Para toda n > 1, $\pi_1(\mathbb{R}P^n) \cong \mathbb{Z}_2$.

Proof. Por el ejemplo 4, la identificación $p: \mathbb{S}^n \to \mathbb{R}P^n$ es un cubriente inducido por la acción de \mathbb{Z}_2 sobre \mathbb{S}^n . Si escribo $G = \pi_1(\mathbb{R}P^n)$ entonces G actúa sobre las fibras $E_{[x]} = \{x, -x\}$.

Por el ejercicio 8, como \mathbb{S}^n es conectable por trayectorias, esta acción es transitiva y así $\mathcal{O}([x]) = E_{[x]}$. El ejercicio 6 garantiza que G/G_e y $E_{[x]}$ están en biyección, es decir el grupo G/G_e tiene dos elementos; por lo tanto es isomorfo a \mathbb{Z}_2 . Por último, el ejercicio 9 dice que $G_e = p_{\#}[\pi_1(\mathbb{S}^n)] = p_{\#}[1] = 1$ (donde $\pi_1(\mathbb{S}^n) = 1$ por la fórmula ??) entonces $G/G_e \cong G$ y concluyo que $\pi_1(\mathbb{R}P^n) = \mathbb{Z}_2$.

Ya tengo la herramienta necesaria para poder calcular el último grupo fundamental de \mathbb{S}^1 que falta calcular:

Por el ejercicio 1, la exponencial $\epsilon: \mathbb{R} \to \mathbb{S}^1$ es un cubriente, entonces hay acción \mathfrak{a} sobre la fibra $\mathbb{R}_1 = \epsilon^{-1}(1) = \mathbb{Z}$ asociada al cubriente. Además esta acción es transitiva por el ejercicio 8 y así $\mathcal{O}(n) = \mathbb{Z}$ para toda $n \in \mathbb{Z}$.

Si escribo $G = \pi_1(\mathbb{S}^1, 1)$ entonces $\mathfrak{a}_n : G \to \mathcal{O}(n) = \mathbb{Z}$, induce una biyección continua $\bar{\mathfrak{a}}_n : (G/G_n) \to \mathbb{Z}$. Observa que \mathbb{R} es contraible, entonces el ejercicio ?? garantiza que $G_n = \epsilon_\#[\pi_1(\mathbb{R}, 0)] = \epsilon_\#[1] = 1$. Por lo tanto $G \cong G/G_n$ y $\bar{\mathfrak{a}}_n : G \to \mathbb{Z}$ es una biyección continua para toda n. En general $\bar{\mathfrak{a}}_n$ está definido por $\bar{\mathfrak{a}}_n[\sigma] = n[\sigma] = \widehat{\sigma}_n(1)$. Resulta que:

Ejercicio 10. $\bar{\mathfrak{a}}_0: G \to \mathbb{Z}$ es un homomorfismo de grupos.

Proof. Sean $[\sigma], [\tau] \in G$. Primero calculo (usando las propiedades de acciones de grupo):

$$\bar{\mathfrak{a}}_0[\sigma * \tau] = 0 \cdot [\sigma * \tau] = (0 \cdot [\sigma]) \cdot [\tau] = \widehat{\sigma}_0(1) \cdot [\tau] = \widehat{\tau}_n(1)$$

donde $n = \bar{\mathfrak{a}}_0[\sigma] = \widehat{\sigma}_0(1) \in \mathbb{Z}$. La imagen de $\widehat{\tau}_n : \mathbb{S}^1 \to \mathbb{R}$ es simplemente la imagen de $\widehat{\tau}_0$ trasladado por n, en particular

$$\widehat{\tau}_n(1) = n + \widehat{\tau}_0(1) = \widehat{\sigma}_0(1) + \widehat{\tau}_0(1) = \overline{\mathfrak{a}}_0[\sigma] + \overline{\mathfrak{a}}_0[\tau]$$

Más formalmente, el lazo $\hat{\tau}'_0 := n + \hat{\tau}_0$ también cumple las propiedades de ser un levantamiento de τ que inicia en n.

Por lo tanto he demostrado que

Proposición 4. $\pi_1(\mathbb{S}^1, 1) \cong \mathbb{Z}$.

Los cubrientes forman una categoría:

Definición 10. Sea X un espacio topológico fijo. La categoría de cubrientes sobre X, denotado por $\mathbf{Cub}(X)$, tiene como objetos los cubrientes (E, p, X) y morfismos las funciones continuas $f: (E, p, X) \to (E', p', X)$ que hacen conmutar el siguiente diagrama:

Teorema 6. Sea X un espacio conexo, localmente conectable por trayectorias y semilocalmente 1-conexo (alrededor de cada punto existe una vecindad $U \subseteq X$ cuya inclusión $i: U \to X$ induce el morfismo cero, es decir $i_\# = 0$). Existe una biyección

$$\mathbf{Cub}(X) \longleftrightarrow \{H \le \pi_1(X)\}/_{gHg^{-1}}$$

Ejemplo 5. Si n > 1, $\mathbf{Cub}(\mathbb{S}^n) = \{ \mathrm{Id} \}$ porque $\pi_1(\mathbb{S}^n) = 0$.