신 입 직 원 (종합기획직원 G5) 채 용 고 시 (2022. 9. 24. (토) 시행)

학 술 (통계학)

< 유의사항 >

- 1. 성명 및 접수번호는 때 페이지마다 기재하시기 바랍니다.
- 2. 문제지(또는 답안지)를 낱장으로 뜯어서 사용하는 경우에도 최종 제출시 **페이지 번호 순으로 정렬** 되었는지 확인하시기 바랍니다.
- 3. 필요시 답안을 영어로 작성할 수 있습니다.
- 4. 문제에 별도 안내가 없는 경우 답은 소수점 셋째 자리에서 반올림하여 소수점 둘째 자리까지 기재하시기 바랍니다.
- 5. 통계분포표는 본 문제지 15~18쪽에 수록되어 있으니 참고하시기 바랍니다.

Problem. 1. 다음 물음에 답하시오.

- (a) 완비충분통계량의 정의에 대해 약술하시오.
- (b) 회귀분석에서 더빈-왓슨 검정에 대해 약술하시오.
- (c) 시계열분석에서 그레인저 인과성에 대해 약술하시오.
- (d) 표본조사론에서 집락추출에 대해 단순확률추출과 비교하여 약술하시오.
- (e) 실험계획법에서 교호작용에 대해 약술하시오.

Problem. 2. 아래 물음에 답하시오.

(a) 형상모수 α 와 속도모수 β 의 감마분포는

$$f(x) = \frac{1}{\Gamma(\alpha)} \beta^{\alpha} x^{\alpha - 1} e^{-\beta x} I(x > 0)$$

를 확률밀도함수로 가진다. 이 감마분포의 누적분포함수를 $G_{\alpha,\beta}(\cdot)$ 라 하자. 평균이 μ 인 푸아송분포의 누적분포함수를 $F_{\mu}(\cdot)$ 라 할 때,

$$F_{\mu}(x) = 1 - G_{x+1,1}(\mu)$$

 $rac{T}{T} x \in \mathbb{Z}^+ \cup \{0\}$ 에 대해 성립함을 보이시오.

(b) μ_u 와 μ_l 을 각각 $F_{\mu_n}(x) = \alpha/2$, $F_{\mu_l}(x-1) = 1 - \alpha/2$ 인 $x \in \mathbb{Z}^+ \cup \{0\}$ 의 함수라고 하자. 이들이

$$\mu_u(x) = \Gamma_{x+1,1,1-\alpha/2}, \quad \mu_l(x) = \Gamma_{x,1,\alpha/2}$$

로 써질 수 있음을 보여라. $\Gamma_{\alpha,\beta,\theta}$ 는 α,β 를 모수로 하는 감마분포의 100θ 퍼센타일이다.

(c) A사의 스마트폰은 1년 동안 백만 대가 팔렸다. 지금까지 총 6건의 리콜 요청이 접수되었다. 이로부터 A사는 1년 동안의 평균 리콜 횟수가 평균이 6건인 푸아송 분포를 따른다고 추정하였다. (b)로부터 신뢰구간 (μ_l,μ_u]의 포함확률이 95퍼센트 이상임을 밝히고, 이를 이용하여 실제 고장 비율의 95퍼센트 신뢰구간을 구하여라. 이때, $\Gamma_{5,1,0.025}=1.623,\Gamma_{5,1,0.975}=10.24,\Gamma_{6,1,0.025}=2.202,\Gamma_{6,1,0.975}=11.67,$ $\Gamma_{7,1,0.025}=2.814,\Gamma_{7,1,0.975}=13.06,\Gamma_{8,1,0.025}=3.454,\Gamma_{8,1,0.975}=14.42$ 이다.

Problem. 3. 두 확률변수 X와 Y에 대하여, X와 Y의 결합확률밀도함수가

$$f(x,y) = \frac{1}{k} I_{(1 \leq \max(|x|,|y|) \leq 2)}$$

으로 주어진다. (i) k의 값을 구하고, (ii) Cov(X,Y)을 구하여라. 또한 (iii) X와 Y의 주변확률밀도함수를 구하고 이로써 (iv) X와 Y가 독립인지 판단하여라.

Problem. 4. 아래의 물음에 답하여라.

(a) 균등분포 $U(\theta_1,\theta_2)$ 로부터 비롯된 랜덤표본 X_1,\cdots,X_n 의 결합밀도함수를 구하여라.

(b) $\theta=(\theta_1,\theta_2)^T$ 이 존재할 수 있는 모수공간 Θ 를 묘사하고, θ 의 최대가능도추정량 $\hat{\theta}^{\mathrm{MLE}}$ 를 구하여라.

(a)	(h) A] A] 7 5h	최대가능도추정량이	1 4세 비행	키 ㅅ ᄎ ㅂ ㅌ 게기	こうしょうしょうしょうしょうしょう	.ㅇ 바뭐긔
ICI	10191171 7791	<i>対りパラエージ</i> はり	७ था भारा	対立大士大川は	기기도 뭐	글 닭 떠니.

(d) (b)에서 구한 최대가능도추정량이 θ 에 대한 완비충분통계량이기도 함을 밝혀라.

Problem. 5. (a) 베타분포 $Beta(\alpha,1)$ 의 확률밀도함수는

$$f(x;\alpha) = \alpha x^{\alpha - 1} I_{(0,1)}(x)$$

으로 주어진다. 이때 $\alpha > 0$ 이다. 이를 따르는 n개의 랜덤표본 X_1, \cdots, X_n 을 얻었을 때,

$$Y = \sum_{i=1}^{n} \log X_i$$

가 α에 대한 완비충분통계량임을 밝혀라.

(b) $-\alpha \log X_i$ 의 분포를 구하고, 이를 통해 $-\alpha Y$ 의 분포를 구하여라.

/ \	^1	=1-11-11	1 A	전역최소분산불편추정량을 구하여라.
101	~ 01		1 1 	4946 LAF 1164 AF 1560 H
$I \cup I$	$\alpha - 1$	$A \cap A \cap$	T. 13 509 UA	

(d) (c)에서 구한 전역최소분산불편추정량의 분산을 (b)를 통하여 구하고, 이를 라오-크래머 하한과 비교 하여라.

Problem. 6. 아래의 물음에 답하여라.

(a) 지수분포 $\mathrm{Exp}(1)$ 에서의 랜덤표본 n개에 기초한 $X_{(1)} < X_{(2)} < \cdots < X_{(n)}$ 에 대하여,

$$Z_r = (n-r+1)(X_{(r)} - X_{(r-1)}), \quad r = 1, 2, \dots, n$$

을 정의하자. $(Z_1,\cdots,Z_n)^T$ 의 결합확률밀도함수를 구하여라.

(b) (a) $A = X_{(r)} = \frac{1}{n} Z_1 + \dots + \frac{1}{n-r+1} Z_r, \quad Z_r \sim_{i.i.d.} \text{Exp}(1), \ r = 1, 2, \dots, n$

임을 밝혀라.

(c) 모집단 분포가 연속형이고 그 누적분포함수가 F(y)일 때, 모집단에서 얻은 Y_i 에 대해 $F(Y_i)$ 의 분포를 구하여라.

 $(d) \ \ Z 집단 분포가 연속형이고 그 누적분포함수가 <math>F(y)$ 일 때, 랜덤표본 n개에 기초한 순서통계량을 $Y_{(1)},\cdots,Y_{(n)}$ 이라 하면 $h(z)=F^{-1}(1-e^{-z})I_{(0,\infty)}(z)$ 로 정의된 함수 h에 대하여

$$Y_{(r)} \stackrel{d}{=} h\left(\frac{1}{n}Z_1 + \dots + \frac{1}{n-r+1}Z_r\right), \quad Z_r \sim_{i.i.d.} \text{Exp}(1), \ r = 1, 2, \dots, n$$

임을 밝혀라.

Problem. 7. (a) 네이만-피어슨 보조정리를 서술하고, 증명하여라. 유의수준은 α 로 한다.

(b) 평균이 θ 인 지수분포 $\mathrm{Exp}(\theta), 0 < \theta < \infty$ 에서의 랜덤표본 X_1, \cdots, X_n 을 이용하여

$$H_0: \theta = \theta_0, \quad v.s. \quad H_1: \theta = \theta_1$$

을 검정할 때, 유의수준 α 에서의 최강력검정을 구하여라. 단, $\theta_1 < \theta_0$ 라 한다.

(c) 평균이 θ 인 지수분포 $\operatorname{Exp}(\theta), 0 < \theta < \infty$ 에서의 랜덤표본 X_1, \dots, X_n 을 이용하								
	이용하여	X . ≙	래던표보 X_1	< ~에서이	$) < \theta <$	지수보포 $Exp(\theta)$ 0	평균이 A이	(c)

$$H_0: \theta = \theta_0$$
, v.s. $H_1: \theta < \theta_0$

을 검정할 때, 유의수준 α 에서의 전역최강력검정이 존재하는지 논하고, 존재한다면 구하여라.

(d) 평균이 θ 인 지수분포 $\mathrm{Exp}(\theta), 0 < \theta < \infty$ 에서의 랜덤표본 X_1, \cdots, X_n 을 이용하여

$$H_0: \theta = \theta_0, \quad \text{v.s.} \quad H_1: \theta \neq \theta_0$$

을 검정할 때, 유의수준 α 에서의 전역최강력검정이 존재하는지 논하고, 존재한다면 구하여라.

Problem. 8. 아래 물음에 답하여라.

(a) Y는 평균이 μ 이고 분산이 Σ 인 랜덤벡터이다. A가 대칭인 상수행렬일 때,

$$\mathbb{E}[Y^T A Y] = \operatorname{tr}(AV) + \mu^T A \mu$$

임을 보여라.

(b) 회귀모형 $Y=X\beta+\epsilon$ 에 대하여, 잔차제곱합(SSE)를 ϵ 에 대한 이차형식의 형태로 표현하고, (a)를 이용해 그 기댓값을 구하여라. $X\in\mathbb{R}^{n\times p}, \beta\in\mathbb{R}^p, \epsilon\sim N_n(0,\sigma^2I_n)$ 이다.

Problem. 9. 아래의 두 모형을 이용하여 다중회귀분석을 진행하였다.

$$\begin{aligned} & \text{Model 1}: Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \epsilon_i \\ & \text{Model 2}: Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \epsilon_i \end{aligned}$$

이때 $\epsilon_i \sim_{i.i.d.} N(0,\sigma^2)$ 임을 가정한다. 모형 1에 대한 결과는 아래와 같다.

> fit12 = lm(Y ~ X1 + X2)
> summary(fit12)
Call:

lm(formula = Y ~ X1 + X2)

Residuals:				
Min	1Q	Median	3Q	Max
-1.72610	-0.71385	0.03204	0.62244	3.04545
Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.002956	0.094429	-0.031	0.975
X1	2.171693	0.108222	20.067	<2e-16
X2	2.949736	0.098936	29.814	<2e-16
Posidual stand		128 on 97 degre		

Multiple R-squared: 0.938, Adjusted R-squared: ???
F-statistic: 733.5 on 2 and 97 DF, p-value: < 2.2e-16

(a) 위 결과로부터 조정된 잔차제곱합을 소수점 네 자리까지 구하여라.

(b) 위 결과로부터 $H_0: \beta_1 = \beta_2 = 0$ 을 유의수준 $\alpha = 0.05$ 에서 검정하여라.

(c) 모형 2에 대한 결과가 아래와 같았다.

모형 1에 대한 결과와 비교함으로써 설명변수 X_3 의 추가가 통계적으로 유의한지, 혹은 그렇지 않은지 유의수준 $\alpha=0.05$ 에서 **F검정을 이용해** 검정하시오.

Problem. 10. 아래 물음에 답하시오.

(a) 정상시계열 X_t 가 아래의 모형을 따른다.

$$X_t = \phi X_{t-1} + \epsilon_t - \theta \epsilon_{t-1}, \ \epsilon_t \sim WN(0, \sigma_1^2)$$

 X_t 의 자기상관함수 $\rho_X(h)$ 를 구하여라.

(b) 정상시계열 Y_t 가 아래의 모형을 따른다.

$$Y_t = \phi Y_{t-1} + a_t + \theta a_{t-1}, \ a_t \sim WN(0, \sigma_2^2)$$

 X_t 와 Y_t 가 모두 가역시계열이며 $\{\epsilon_t\}$ 와 $\{a_t\}$ 는 서로 독립인 확률과정일 때, $Z_t=X_t+Y_t$ 는 어떤 모형을 따르는가?

Problem. 11. 아래 물음에 답하시오.

 $(a) \ X_1, \cdots, X_n$ 은 모수가 m, θ 인 음이항분포로부터 비롯된 랜덤표본이다. 음이항분포의 확률질량함수는

$$f(x; m, \theta) = \frac{\Gamma(m+x)}{\Gamma(x+1)\Gamma(m)} \theta^m (1-\theta)^x$$

으로 주어진다. 이때 $m\in\mathbb{Z}^+,x\in\mathbb{Z}^+\cup\{0\}$ 이다. θ 의 사전분포가 $\mathrm{Beta}(\alpha,\beta)$ 일 때, 사후분포를 구하여라.

(b) θ 의 사후평균 $\hat{\theta}_B$ 를 구하여라.

Problem. 12. 아래 자료는 XX시에 존재하는 450개의 동 중 20개의 동에서, 고등학교의 수와 바이올린을 켤 줄 아는 고등학생의 수를 조사한 결과이다. 이를 바탕으로 아래의 물음에 답하시오.

번호	고등학교 수	바이올린을 켤 줄 아는 고등학생 수
1	4	20
2	3	12
3	6	30
4	4	22
5	5	18
6	2	42
7	10	11
8	7	18
9	3	15
10	4	20
11	6	29
12	6	28
13	3	20
14	2	5
15	4	20
16	3	13
17	2	10
18	4	18
19	3	20
20	5	20

(a) XX시 각 고등학교에서 바이올린을 켤 줄 아는 고등학생 수의 평균을 추정하고, 그 분산추정량을 구하시오.

(b) 이 자료를 예비표본으로 할 때, 추후 평균의 오차한계를 1 이하로 하기 위해 필요한 조사 집락의 개수를 구하여라.

Problem. 13. 모 타이어 주식회사 제품개발부에서는 타이어 직경을 네 인자 수준 A_1, A_2, A_3, A_4 로 나누고, 아래처럼 반복수가 같지 않은 실험을 반복하여 안전점수를 측정하였다.

	A_1	A_2	A_3	A_4
	49	31 40	46	45
	73	40	41	73
실험의 반복	58	43	58	76
결업의 반속	58 38	44	31	
	42	34	65	
		20		

이를 바탕으로 아래 물음에 답하시오.

(a) 아래의 분산분석표를 작성하고, 이를 바탕으로 타이어 직경에 따라 안전수준이 달라진다고 말할 수 있는지 유의수준 $\alpha = 0.05$ 에서 검정하시오.

요인	S	$\phi(\mathrm{df})$	V	F_0
\overline{A}				
E				-
\overline{T}			-	-

(b) $\mu(A_i)$ 의 점추정값이 가장 낮은 수준을 A_j , 가장 높은 수준을 A_k 라 할 때, j와 k를 구하고, $\mu(A_k)$ — $\mu(A_j)$ 의 95퍼센트 신뢰구간을 구하여라.

Problem. 14. 아래 문제에 답하시오.

(a) 아래는 붓스트랩 과정에 대한 설명이다. 빈칸 (ㄱ), (ㄴ)과 (ㄷ)을 채우시오.

통계적 추론 하에서 모집단의 분포족을 모르는 (τ) 적 상황의 경우, 추정량의 표본분포를 알수 없으므로 이에 기반하여 신뢰구간을 구하거나 가설검정을 수행하기 어렵다. 붓스트랩은 표본을 모집단을 근사하는 데 사용함으로써 표본분포를 추정하는 (τ) 적 방법이다. 붓스트랩의 과정은 아래와 같다. 모집단 F로부터 얻은 랜덤표본 X_1, \cdots, X_n 와 그를 이용한 추정량 $\hat{\theta}_n = T(X) = T(X_1, \cdots, X_n)$ 을 고려하자. 붓스트랩에서는 먼저 정해진 붓스트랩 반복수 B 번만큼 붓스트랩 표본을 추출한다. 붓스트랩 표본은 랜덤표본으로부터 (ι) 개만큼의 값을 (ι) 으로 추출하여 만들어진다. 그 다음 이렇게 만든 크기가 (ι) 인 i번째 붓스트랩 표본 $X^{*(i)}$ 을 이용하여 통계량 $\hat{\theta}_n^{*(i)} = T(X^{*(i)})$ 를 얻어내면, B개의 통계량 $\hat{\theta}_n^{*(i)}$ 이 가지는 경험적 분포가 $\hat{\theta}_n$ 의 붓스트랩 표본분포이자, 표본분포의 추정량이 된다.

Hint: (ㄱ)은 모수/비모수 중 하나, (ㄷ)은 복원/비복원 중 하나이다.

(b) X_1, \dots, X_n 이 $U(0,\theta)$ 로부터의 랜덤표본이다. $\theta > 0$ 이다. 이때 $\hat{\theta}_n = X_{(n)}$ 을 θ 의 추정량으로 사용하기로 하였다. $X^{*(1)}, \dots, X^{*(B)}$ 를 붓스트랩 표본으로 하여, B개의 $\hat{\theta}_n^{*(i)}$ 를 얻어냈다. $\hat{\theta}_n^{*(i)}$ 으로써 얻은 붓스트랩 표본분포는 $\hat{\theta}_n$ 의 실제 표본분포를 잘 추정하는가? 즉, $n(\hat{\theta}-\theta)$ 와 $n(\hat{\theta}^{*(i)}-\hat{\theta})$ 의 분포는 $n\to\infty$ 일 때 동일한 분포로 수렴하는가?

 $(Hint: n(\hat{\theta} - \theta) \xrightarrow{d} - Exp(\theta)$ 임이 잘 알려져 있으므로, 분포를 비교함에 있어 정규화를 위한 계수는 n으로 함이 옳다.)

<표 1> 표준정규분포표 : Z
 $Z \sim N(0,1)$ 일 때 $P[Z \leq z_{\alpha}]$ 의 확률

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

 $< { ਼ } Z> \ { t-분포표} \ : \ t(\alpha,\nu)$ $t\sim t(\nu)$ 일 때 $P[t\geq t(\alpha,\nu)]=\alpha$ 를 만족하는 $t(\alpha,\nu)$ 값

-	I					
ν	0.25	0.10	0.05	lpha 0.025	0.010	0.005
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.383	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729			2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.680	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
				,		
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576
	I .					

<표 3> χ^2 -분포표 $X \sim \chi^2(n)$ 일 때 $\Pr[X \leq \chi^2_\alpha(n)] = \alpha$ 를 만족하는 $\chi^2_\alpha(n)$ 의 값을 표시

	α													
n	0.005	0.010	0.025	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.975	0.990	0.995	0.999
1	0.00	0.00	0.00	0.00	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	0.68	0.87	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	0.99	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.12
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.72	26.76	31.26
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.73	40.79
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
21	8.03	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
22	8.64	9.54	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
23	9.26	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
24	9.89	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
30	13.79	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	20.71	22.16	24.43	26.51	29.05	33.66	39.34	45.62	51.80	55.76	59.34	63.69	66.77	73.40
50	27.99	29.71	32.36	34.76	37.69	42.94	49.33	56.33	63.17	67.50	71.42	76.15	79.49	86.66
60	35.53	37.48	40.48	43.19	46.46	52.29	59.33	66.98	74.40	79.08	83.30	88.38	91.95	99.61
70	43.28	45.44	48.76	51.74	55.33	61.70	69.33	77.58	85.53	90.53	95.02	100.42	104.22	112.32
80	51.17	53.54	57.15	60.39	64.28	71.14	79.33	88.13	96.58	101.88	106.63	112.33	116.32	124.84
90	59.20	61.75	65.65	69.13	73.29	80.62	89.33	98.64	107.56	113.14	118.14	124.12	128.30	137.21
100	67.33	70.06	74.22	77.93	82.36	90.13	99.33	109.14	118.50	124.34	129.56	135.81	140.17	149.45

<표 4> F-분포표 (α=0.05) $F \sim F(\nu_1, \nu_2)$ 일 때 $\Pr(F \geq F(\alpha, \nu_1, \nu_2)) = \alpha$ 를 만족하는 $F(\alpha, \nu_1, \nu_2)$ 값 $(F(1-\alpha, \nu_1, \nu_2) = 1/F(\alpha, \nu_2, \nu_1))$

$\begin{array}{c c} \nu_1 \\ \nu_2 \end{array}$	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	∞
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.10	251.14	254.31
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.62
31	4.16	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15	2.08	2.00	1.92	1.88	1.83	1.78	1.61
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.07	1.99	1.91	1.86	1.82	1.77	1.59
33	4.14	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13	2.06	1.98	1.90	1.85	1.81	1.76	1.58
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.05	1.97	1.89	1.84	1.80	1.75	1.57
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.04	1.96	1.88	1.83	1.79	1.74	1.56
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.03	1.95	1.87	1.82	1.78	1.73	1.55
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.14	2.10	2.02	1.95	1.86	1.82	1.77	1.72	1.54
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.02	1.94	1.85	1.81	1.76	1.72	1.53
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08	2.01	1.93	1.85	1.80	1.75	1.70	1.52
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.51
										•		_					
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66	1.61	1.55	1.50	1.25
	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57	1.52	1.46	1.39	1.00