MATHEMATICS METHODS

MAWA Semester 1 (Unit 1) Examination 2015 Calculator-free Marking Key

Section One: Calculator-free (60 Marks)

Question 1(a)

X 3 3 3 3 3 1 - (3)	
Solution	
$\frac{\pi}{6} = 30^{\circ} \Rightarrow \frac{7\pi}{6} = 7 \times 30^{\circ} = 210^{\circ}$	
Marking key/mathematical behaviours	Marks
$\frac{7\pi}{6} = 210^{\circ}$ • Determines	1
• Determines	

Question 1(b)

$$\cos\theta = -\sqrt{1 - \sin^2\theta} = -\sqrt{1 - \left(-\frac{1}{2}\right)^2} = -\sqrt{\frac{3}{4}} = -\frac{\sqrt{3}}{2}$$
 by using the right triangle identity or
$$\cos\theta = \cos\frac{7\pi}{6} = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$
 by knowledge of exact values

$$\cos\theta = \cos\frac{7\pi}{6} = -\cos\frac{\pi}{6} = -\frac{\sqrt{3}}{2}$$
 by knowledge of exact values

$$\tan \theta = \tan \left(\frac{7\pi}{6}\right) = \tan \left(\frac{\pi}{6}\right) = \frac{\sqrt{3}}{3}$$

Similarly

Marking key/mathematical behaviours	Marks
• indicates use of $\frac{\cos \frac{7\pi}{6}}{=-\cos \frac{\pi}{6}}$ or uses $\sin \theta = -\frac{1}{2}$ meaningfully	1
$\cos \frac{7\pi}{3}$ $-\frac{\sqrt{3}}{3}$ or $-\frac{3}{3}$	1
• states correct exact value of $\frac{2}{6}$ (accept $\frac{2}{3}$) $\tan \frac{7\pi}{1} = \tan \frac{\pi}{1}$	1
• indicates use of 6 6	

CALCULATOR-FREE MARKING KEY

1

		$\tan \frac{7\pi}{2}$	$\frac{\sqrt{3}}{2}$ or	$r = \frac{3}{2\sqrt{5}}$	
•	states correct exact value of	⁶ (acce _l	ot ³	^{3√3})	

Question 1(c)

Solution

From exact values and use of unit circle, $\theta = \frac{3}{4}$ or $-\frac{3}{4}$

Marking key/mathematical behaviours	Marks
indicates method of determination on diagram	1
- states both correct values of $^{\theta}$	1

Question 2(a)

Solution

$$\frac{x+3}{4} - \frac{x-3}{5} = \frac{x}{2}$$

$$5(x+3) - 4(x-3) = 10x$$

$$5x + 15 - 4x + 12 = 10x$$

$$9x = 27 \implies x = 3$$

Marking key/mathematical behaviours	Marks
multiplies the equation by the LCD	1
expands brackets and simplifies	1
• solves for <i>x</i>	1

Question 2(b)

Solution

$$x^{2} + x - 72 = 0$$

 $(x - 8)(x + 9) = 0$
 $x = -9 \text{ or } x = 8$

Marking key/mathematical behaviours	Marks
factorises trinomial	1
• solves for <i>x</i>	1

CALCULATOR-FREE MARKING KEY

Page **4** © MAWA 2015

Question 2(c)

Solution
$x^2 - 4x + 1 = 0$
$\left((x-2)^2 - 4 + 1 = 0 \right)$
$\left(x-2\right)^2=3$
$x-2=\pm\sqrt{3}$
$x=2\pm\sqrt{3}$

Marking key/mathematical behaviours	Marks
completes the square	1
• equates $(x-2)^2 = 3$	1
takes square root	
• solves for x	

Marking key/mathematical behaviours	Marks
• sketches $2x + 3y = 6$ accurately, showing x and y intercepts	1+1
• sketches $y = -x^2 - 4x - 3$ reflecting the correct turning point, orientation and intercepts	1+1+1
• sketches $(x-2)^2 + (y-4)^2 = 4$ with correct radius and centre	2

Question 4

Solution	
	$y = -\sqrt{x+3}$

Graph B: $y = \frac{-3}{x+1}$

rking key/mathematical behaviours	Marks
Graph A	
o correct horizontal translation	1
o recognition of reflection in x - axis	1
Graph C	1
o correct horizontal translation	1
o correct dilation factor	1
o recognition of reflection in x - axis	

Question 5(a)

Solution

$$P(X \cup Y) = 0.9 \Rightarrow X = P(X \cap Y) = 0.3 : P(X) = 0.7$$

(ii) From part (i), P(X) = 0.7 and P(Y) = 0.5

 $P(X) \times P(Y) = 0.35 \neq 0.3$

 $\therefore X$ and Y are not independent

flarking key/mathematical behaviours	Marks
)	
 determines x = 0.3 	1
P(X)	1
determines correct value for	
i)	
$P(X)\times P(Y)$	1
• determines	1
• shows that $P(X) \times P(Y) \neq P(X \cap Y)$	1
 concludes that the two events are not independent 	

CALCULATOR-FREE MARKING KEY

Question 5(b)

Solution

(i)
$$P(X \mid Y) = \frac{P(X \cap Y)}{P(Y)} \Rightarrow \frac{2}{7} = \frac{X}{0.2 + X}$$

$$\therefore$$
 0.4 + 2x = 7x

i.e.
$$0.4 = 5x$$

i.e.
$$0.08 = x$$
 $\therefore P(X) = 0.48$

(ii) From part (i)
$$P(X) = 0.48$$
 and so $P(X \cup Y) = 0.48 + 0.2 = 0.68$

$$P(\overline{X \cup Y}) = 1 - P(X \cup Y) = 1 - 0.68 = 0.32$$

Marking key/mathematical behaviours	Marks
(i)	
applies the conditional probability formula	1
substitutes correctly	1
multiplies correctly and simplifies	1
• determines correct value for $P(X)$	1
(ii)	
$P(X \cup Y)$	1
• determines	1
applies complimentary property and arrives at the correct result	

Page **7** © MAWA 2015

Question 6(a)

Solution

Has the form $y = a \tan bx + c$

$$\frac{1}{2}$$

Period = 2π hence $b = \frac{1}{2}$

Vertical translation 1 unit up, hence C = 1.

Dilation parallel to y axis, scale factor = 3. Hence, a = 3

$$\therefore y = 3\tan\frac{x}{2} + 1$$

Marking key/mathematical behaviours	Marks
ullet determines the period and hence b	1
 identifies vertical translation and determines ^C = 1 	1
	1
• determines ^a	1
 states the correct equation 	

Question 6(b)

Solution

Marking key/mathematical behaviours	Marks
graph is drawn over the correct domain	1
graph is a cosine curve with the correct amplitude	1
graph has the correct period	1
phase shift is correct	1
 graph is accurate passing through (0,-3) and has smooth turning points 	1

CALCULATOR-FREE MARKING KEY

Question 7 (a)

Solution	
$\left[\left(\alpha + \frac{\beta}{2}\right)^4 = \alpha^4 + 4\alpha^3 \cdot \frac{\beta}{2} + 6\alpha^2 \left(\frac{\beta}{2}\right)^2 + 4\alpha \left(\frac{\beta}{2}\right)^3 + \left(\frac{\beta}{2}\right)^4\right]$	
Marking key/mathematical behaviours	Marks
uses the correct binomial coefficients	1
• each term has the correct powers for lpha and eta	1
$\frac{\beta}{2}$	1
uses ² correctly in each term	

Question 7(b)

Solution

The mouse has six choices to enter and five choices to leave by another door.

 $6 \times 5 = 30$

CO,	
Marking key/mathematical behaviours	Marks
states the correct result	1

Question 7(c)

Solution

$$\binom{7}{2} = \frac{7 \times 6}{1 \times 2} = 21$$

(i) 1×2
 (ii) There is only one card with an even number on it.(2)

There are six other numbers that the 2 can be combined with to give an even product.

$$\therefore P(\text{even product}) = \frac{6}{21}$$

(iii) For the product to be prime, one of the cards must be ONE(1)

Any of the other six cards can be combined with 1 to give a prime product

$$\therefore$$
 P(prime product) = $\frac{6}{21}$

(iv) There are only 4 possible combinations of two of the numbers that sum to a prime number. 1+2, 2+3, 2+5, 2+11.

$$\therefore$$
 P(prime sum) = $\frac{4}{21}$

CALCULATOR-FREE MARKING KEY

Marking key/mathematical behaviours	Marks
(i)	
states correct sample space	1
(ii)	
determines that there are 6 pairs of numbers (listing or logic) that have an even product and determines the correct probability of an even product	1+1
(iii)	
 indicates that the only way that the product can be prime is if one of the cards has a one on it. 	1
determines the correct probability of a prime product (iv)	1
 (iv) provides some form of exhaustive listing of the sum of two numbers 	
	1
determines that there are only 4 possibilities of prime sums	1
determines the correct probability of the sum being prime	1

Page **10** © MAWA 2015