Graded Quiz • 50 min

▲ Try again once you are ready

Grade received 70%

Latest Submission Grade 70%

To pass 80% or higher

Try again

⊘ Correct

✓ Correct

Yes. This value is useful in the calculation of $dW^{[l]}$ in the backward propagation.

2. Among the following, which ones are "hyperparameters"? (Check all that apply.)

1/1 point

parameter['W' + str(i)] = np.random.randn(iayer_dims[i], iayer_dims[i-1]) ^ U.U1 parameter['b' + str(i)] = np.random.randn(layer_dims[i-1], 1) * 0.01

for i in range(1, len(layer_dims)):

parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01

parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01

6. Consider the following neural network:

What are all the values of $n^{[0]}$, $n^{[1]}$, $n^{[2]}$, $n^{[3]}$ and $n^{[4]}$?

- 0 4, 4, 3, 2, 1
- 4, 3, 2, 1
- 4, 3, 2
- 0 4, 4, 3, 2

∠ Expand

⊘ Correct

Yes. The $n^{[l]}$ are the number of units in each layer, notice that $n^{[0]}=n_x$.

 x_4

Whi	ich of the following statements are true? (Check all that apply).	
	$W^{[2]}$ will have shape (3, 4)	
	$b^{[1]}$ will have shape (4, 1)	
	$W^{[2]}$ will have shape (1, 3)	
	$W^{[1]}$ will have shape (3, 4)	
	\checkmark Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
	$b^{[1]}$ will have shape (1, 3)	
	$W^{[2]}$ will have shape (4, 3)	
	\checkmark Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
	$W^{[2]}$ will have shape (3, 1)	
	$b^{[1]}$ will have shape (3, 1)	
	\checkmark Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.	
	$W^{[1]}$ will have shape (4, 3)	
	_⊌ ^ス Expand	
Q	Correct Great, you got all the right answers.	
	3.cc, y = 2.cc, tic. (2.cc, tic.)	
10. In t	the general case if we are training with m examples what is the shape of $A^{[l]}$?	1/1 point
($(m,n^{[l]})$	
	$(n^{[l+1]}, m)$	
(
	$(m, n^{[l+1]})$	

Z Expand

⊘ Correct

Yes. The number of rows in $A^{[1]}$ corresponds to the number of units in the l-th layer.