Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики Факультет информационных технологий и программирования

Методы оптимизации

Отчёт по лабораторной работе N = 3

Работу

выполнили:

И. О. Шахов

М. А. Гордиенко

А. В. Андреев

Группа: М3236

Преподаватель:

Михаил Свинцов

 ${
m Caнкт-}\Pi{
m erep}{
m бург}$ 2022

Содержание

1.	Постановка задачи	3			
2.	Профильный формат хранения матриц	4			
3.	Вычислительная схема алгоритма 3.1. LU - разложение	4 4 5 5			
4.	Число обусловленности	6			
5.	Исследование матриц с диагональным преобладанием	6			
6.	. Исследование Гильбертовых матриц				
7.	Сравнение метод Гаусса по точности получаемого решения и по количеству действий с реализованным прямым методом LU-разложения	8			
8.	Бонусное задание	9			
	8.1. Метод сопряженных градиентов	9			
	гональными элементами	9 10			
	8.1.3. Матрицы Гилберта	11			
	8.2. Note	12			
9.	Выволы	13			

1. Постановка задачи

- 1. Реализовать прямой метод решения СЛАУ на основе LU-разложения с учетом следующих требований:
 - формат матрицы профильный;
 - размерность матрицы, элементы матрицы и вектор правой части читать из файлов, результаты записывать в файл;
 - в программе резервировать объём памяти, необходимый для хранения в нем только одной матрицы и необходимого числа векторов;
 - элементы матрицы обрабатывать в порядке, соответствующем формату хранения, то есть необходимо работать именно со столбцами верхнего и строками нижнего треугольников.
- 2. Провести исследование реализованного метода на матрицах, число обусловленности которых регулируется за счёт изменения диагонального преобладания. Для этого необходимо решить последовательность СЛАУ:
 - Для каждого k, для которого система вычислительно разрешима, оценить погрешность найденного решения. Исследования представить в виде таблицы.
 - Для одного из значений k попытаться найти операцию, вызывающую скачкообразное накопление погрешности, пояснить полученные результаты.
- 3. Провести аналогичные исследования на матрицах Гильберта различной размерности. Матрица Гильберта размерности k строится следующим образом:

$$a_{ij} = \frac{1}{i+j-1}; i, j = 1..k$$

4. Реализовать метод Гаусса с выбором ведущего элемента для **плотных матриц**. Сравнить метод Гаусса по точности получаемого решения и по количеству действий с реализованным прямым методом LU-разложения.

2. Профильный формат хранения матриц

Профильные форматы хранения матриц используется, когда матрица не обладает определенной структурой и ненулевые элементы расположены в произвольном порядке, но при этом они расположены, так что в строке можно выделить так называемый профиль – это часть строки от первого ненулевого элемента в строке до диагонального элемента. Причем, если между первым ненулевым элементом и элементом диагонали есть нулевые элементы, то они будут храниться в профиле. Есть два вида профильных формато:

- 1. **симметричный профильный** это когда расположение элементов матрицы является симметричным относительно главной диагонали. Такой формат позволяет сэкономить помять.
- 2. **несимметричный профильный** если портрет матрицы относительно главной диагонали несимметричный.

В процессе исследования мы будем использовать симметричный профильный формат, так как он занимает меньше места в памяти. И в рамках нашего исследования ничем не уступает несимметричному формату. За хранение матрицы в профильном формате отвечает класс **ProfileMatrix**, в котором каждая симметричная матрица представима в виде 4 вещественных массивов:

- di массив всех диагональных элементов.
- al массив нижних внедиагональных элементов, хранящихся по строкам.
- au массив верхних внедиагональных элементов, хранящихся по столюцам.
- іа массив, хранящий профиль матрицы А.

NOTE: Данный формат хорошо подходит для матриц, представленных на рисунке, в которых количество нулей превалирует над количеством ненулевых элементов:

$$A = \begin{bmatrix} a_{11} & & & & & & & \\ & a_{22} & a_{23} & a_{24} & & & & & \\ & \underline{a_{32}} & a_{33} & 0 & a_{35} & a_{36} & & \\ & \underline{a_{42}} & 0 & a_{44} & a_{45} & 0 & a_{47} & & \\ & \underline{a_{53}} & a_{54} & a_{55} & a_{56} & 0 & a_{58} & a_{59} \\ \text{профиль} & \underline{a_{63}} & 0 & a_{65} & a_{66} & 0 & a_{68} & 0 \\ \text{строки} & \underline{a_{74}} & 0 & 0 & a_{77} & 0 & a_{79} \\ & \underline{a_{85}} & a_{86} & 0 & a_{88} & 0 \\ & \underline{a_{95}} & 0 & a_{97} & 0 & a_{99} \end{bmatrix}$$

3. Вычислительная схема алгоритма

3.1. LU - разложение

В процессе разложения мы пытаемся представить матрицу A в виде произведения нижне треугольной матрицы L на верхне треугольную матрицу U. Если все главные миноры квадратной матрицы A отличны от нуля, то существует такие нижняя L и верхняя U треугольные матрицы, A = LU. Если элементы диагонали одной из матриц L или U ненулевые, то такое разложение единственное. Формулы необходимые для разложения:

•
$$L_{ii} = A_{ii} - \sum_{k=1}^{i-1} L_{ik} * U_{ki}$$

•
$$U_{ii} = 1$$

•
$$L_{ij} = A_{ij} - \sum_{k=1}^{j-1} L_{ik} * U_{kj}$$

•
$$U_{ij} = \frac{1}{L_{ii}} * (A_{ij} - \sum_{k=1}^{j-1} L_{ik} * U_{kj})$$

3.2. Модификация метода Гаусса с использованием LU - разложения

Одним из способов решения СЛАУ являться модификация метода Гаусса с использованием LU-разложения матрицы A. У этого алгоритма есть три этапа:

- 1. Разложение матрицы A на произведение нижне треугольной матрицы L на верхне треугольную матрицу U.
- 2. Решить уравнение Ly=b прямым ходом метода Гаусса
- 3. Решить уравнение Ux = y обратным ходом метода Гаусса

Данную логику реализует класс GaussMethod

3.3. Время работы алгоритма

Нетрудно заметить, что для разложения матрицы A на L и U требуется:

$$Q = \sum_{i=1}^{n} \sum_{j=i}^{n} (i-1) + \sum_{j=1}^{n} \sum_{i=j+1}^{n} j = \sum_{i=1}^{n} [(i-1)(n-i+1) + i(n-i)] =$$

$$= 2 \sum_{i=1}^{n} [(n+1)i - i^{2}] - n(n+1) = n(n+1)^{2} - \frac{n(n+1)(2n+1)}{3} -$$

$$- n(n+1) = \frac{n(n^{2}-1)}{3} = \frac{n^{3}}{3} + O(n) \approx \frac{n^{3}}{3}$$

действий деления и умножения.

Для второго и третьего шага суммарно потребуется:

$$Q = \sum_{i=1}^{n} (i-1) + \sum_{k=1}^{n} (n-k+1) \approx O(n^{2})$$

NOTE: Из вышеописанных формул следует, что при больших n основной объем работы, которуго нужно выполнить для решения системы описанным методом, падает на преобразование коэффициентов матрищы системы, т.е. на построеиие треугольного разложения, в то время как для второго и третьего шага трудозатраты сравниетельно невелики. В связи с этим при больпих n решение несколиких систем с различными правыми частями и одной и той же матрицей оказывается очень быстрым.

4. Число обусловленности

Число обусловленности (cond) - это характеристика матрицы A, благодаря которому мы можем судить о погрешности возникающей в процессе решения системы линейных уравнений. Это число показывает насколько небольшие изменения коэффициентов матрицы или правой части (вызванные различными источниками погрешности: ошибки округления, погрешности различных численных методов и т.д.) могут изменить решение системы.

Величина ошибки в решениии \approx величина решения *Cond(A)*e

Система уравнений считается хорошо обусловленной, если малые изменения в коэффициентах матрицы или в правой части вызывают малые изменения в решении.

Система уравнений считается плохо обусловленной, если малые изменения в коэффициентах матрицы или в правой части вызывают большие изменения в решении.

Число обусловленности матрицы показывает насколько матрица близка к вырожденной матрицы. Причем эта характеристика намного превосходит в точности модуль определителя матрицы или Величину невязки.

Для Cond() верно следующее:

- 1. $Cond(A) = ||A|| * ||A^{-1}||$
- 2. $\frac{||\delta x||}{||x||} \le cond(A) \frac{||\delta b||}{||b||}$

5. Исследование матриц с диагональным преобладанием

Можно заметить, что число обусловленности для каждой из таких матриц будет порядка 10^k . Из-за этого погрешность также растет экспоненциально при увеличениии k.

Анализ работы алгоритмов

n	k	$ x^* - x_k $	$\frac{ x^* - x_k }{ x^* }$
10	0	5.882610046374853E-12	9.739634188024238E-14
10	1	2.4020629153195516E-11	3.97701256880842E-13
10	2	4.446584633330111E-11	7.362056531592419E-13
10	3	4.963557506392386E-10	8.217990654212248E-12
10	4	1.5548671974716424E-8	2.574339892487792E-10
10	5	5.854937509939354E-7	9.693817725635638E-9
10	6	9.886513451284276E-8	1.636875870598103E-9
10	7	1.2762583902821704 E5	2.1130569173806022E-7
10	8	3.550155517331681E-5	5.877869819148501E-7
10	9	1.7750873458308004E-4	2.9389507827120033E-6
10	10	0.008674364166805736	1.4361845019874697E-4
10	11	0.05497123174326156	9.101396893958874E-4
10	12	0.36332551840231025	0.006015455065891137
10	13	2.6596639923270375	0.044035137709474446
10	14	62.19146064997814	1.0296825245504184
10	15	61.733159539808675	1.0220945914291897
10	16	239.70064664076318	3.968640781063815
10	17	234.64100238449447	3.884869999405488
10	18	30.990321069650037	0.5130960376573257
10	19	129.65338406690358	2.14662627999494

NOTE: Самая страшная операция - это деление. Особенно если мы делим на маленькое число, или что эквивалентно, наличие близких к нулю чисел на главной диагонали матрицы L. Данная операция очень сильно увеличивает погрешнось.

6. Исследование Гильбертовых матриц

Для матриц Гилберта известно, что число обусловленности растет экспоненциально(с экспонентой равной $(1+\sqrt{2})^{4n}\approx 33.97^n$. Из-за этого даже на маленьких размерностях метод показывает плохие результаты.

Анализ работы алгоритмов

n	k	$ x^* - x_k $	$\frac{ x^* - x_k }{ x^* }$
2	2	7.549516567451064E-15	4.682011418603125E-16
3	3	1.2105321216467374E-13	$2.564019263739988 \hbox{E-}15$
4	4	3.2092692313566654E- 12	6.302384479893696E-14
5	5	6.514952254689429E- 10	1.0366035444550542E-11
6	6	4.096833458313071E-9	$7.688924800200609 \hbox{E-}11$
7	7	1.922525484415186E-7	4.616869072857117E-9
8	8	9.644738479660421E-6	1.531103764750622E-7
9	9	3.1565524387235696E-4	4.930307983278756E-6
10	10	7.686465193803585E-4	1.2823248436366196E-5
11	11	0.6870238615985188	0.007810115535570093
12	12	25.719064467919683	0.2989780515095726
13	13	86.41915334228263	1.316808348507866
14	14	1895.132777978463	23.36467260960835
15	15	627.5445545037558	6.827592815986029
16	16	4785.444778707639	49.753996194164785
17	17	768.6360747296161	9.27077411794524
18	18	1729.6485499850116	19.559353262812532
19	19	803.7219144590815	10.583537046815836
20	20	1133.885236560034	12.207143010679097
21	21	1217.061766214259	14.28775459877165

7. Сравнение метод Гаусса по точности получаемого решения и по количеству действий с реализованным прямым методом LU-разложения

Таблица 7.1

Абсолютная	погрешность

No	LU	Гаусс
1	6.485527231180542E-14	6.385355818152482E-14
2	7.509701076800464E-11	3.5986050226656436E-11
3	1.2105321216467374E-13	3.552713678800501E-15
4	86.41915334228263	113.71850612097018
5	0.6870238615985188	0.45560543036042767
6	4.2467050156556166E-5	2.9210148559820782 E-6
7	0.005127636445647528	4.493882424683919E-6

Относительная погрешность

$N_{\overline{0}}$	LU	Гаусс
1	7.923923941584198E-16	7.801535949110859E-16
2	9.175244823660709E-13	4.396723886735562E-13
3	2.564019263739988E-15	7.524976948654103E-17
4	1.316808348507866	1.732781130669442
5	0.007810115535570093	0.005179341284404299
6	5.188563141731489E-7	3.568853961442133E-8
7	6.264872499503823E-5	5.490560946906319E-8

Из данных видно, что алгоритм Гаусса с выбором ведущего элемента в среднем более точен, чем LU-разложение, это связано с тем, что в алгоритме Гаусса мы специально выбираем самый большой подходящий делитель в столбце, тем самым уменьшая погрешность.

Оба алгоритма работают за $O(n^3)$, но если мы используем одну матрицу A и много разных векторов b, то быстрее будет работать LU-Разложение, так как нам требуется разложить матрицу всего лишь один раз.

8. Бонусное задание

8.1. Метод сопряженных градиентов

8.1.1. Метод с диагональным преобладанием(с отрицательными внедиагональными элементами

Можно заметить, что при больших n количество итераций довольно мало – на порядки меньше, чем n. И метод сопряженных градиентов более устойчивый на матрицах с диагональным преобладанием.

Таблица 8.1

n	Кол-во итер	$ x^* - x_k $	$\frac{ x^*-x_k }{ x^* }$	cond
10	10	2.918852133354296E-14	3.1822672555516894E-16	0.505064630379227
10	10	3.061317943962309 E-14	3.337590054864757E-16	0.8510515965122979
10	10	3.687812631630062E-14	4.020623466376109 E-16	0.9712870104156643
10	10	1.5987211554602254E-14	1.7429995598757174E-16	0.48129211167281494
10	10	1.591302455776226E-14	1.7349113512222586E-16	0.6546978136311814
100	20	3.04705261009266E-13	1.2284505271777308E-15	0.7886707437947946
100	20	2.2193414424829854E-12	8.947502763736993E-15	6.51441683026551
100	20	1.2626021315776737E-12	5.090310055739908E-15	4.8129960441025466
100	20	1.1547604970565037E-12	4.6555354399671565E-15	3.7045197647703025
100	20	6.823473959628005E-13	2.750953546100288E-15	1.603049616391079
100	20	1.6827429152793053E-12	6.784150738101605E- 15	8.340145983247742
100	20	1.723845668551135E- 12	6.949860705687954E-15	9.885629754278892
1000	20	1.1524547323475842E-11	1.602877917927813E-14	0.9711161824007813
1000	19	8.469066002294167E-11	1.1779099429700005E-13	8.224069778328492
1000	20	2.348028230048009E-10	3.2657270563230807E-13	33.10108527918489
1000	20	2.6208713867109127E-11	3.6452077062760944E-14	1.7417738484689862
1000	20	3.3700016020246344E-11	4.6871265305694184E-14	5.507805955229237

8.1.2. Метод с диагональным преобладанием(с положительными внедиагональными элементами

Аналогично предыдущему.

Таблица 8.2

n	Кол-во итер	$ x^* - x_k $	$\frac{ x^*-x_k }{ x^* }$	cond
10	10	1.1039525408621247E-13	1.3795096466509057E-15	1.366363268360722
10	10	8.684242563041271E-13	1.0851912510854966E-14	5.322123849991214
10	10	5.700970908109047 E-14	7.12398773671089E-16	1.5339888594032365
10	10	1.990490868221337E-14	2.4873364140613114E-16	0.4494131643405799
10	10	1.7269304132442729E-13	2.1579887504084675E-15	2.9134387407542257
10	10	1.1122196307383265E-13	1.3898402811771363E-15	1.6060455210253668
10	10	3.5891640506194644E-14	4.485053702920521E-16	1.2752697097958392
10	12	2.1920740023942506E-13	2.739236625257428E-15	3.466261093120791
10	10	1.0261920599488963E-13	1.2823394064662693E-15	1.6411658136526361
10	12	2.0938464815690109E-13	2.6164905763745668E-15	1.7642050711634036
100	21	2.761294378873267E-12	1.1381967397913733E-14	21.155089279475206
100	20	2.439888201448791E-12	1.0057141381201167E-14	9.512117533002053
100	23	9.23478511686305E-13	3.806548984095055E-15	2.6245943401107548
100	23	5.006292798674455E-12	2.063577931237232E-14	16.68912414260768
100	20	1.709474387737383E-13	7.046398927134615E-16	0.7013810927281072
100	23	3.0774190111964125E-12	1.2685023054097592E-14	12.944536632547736
100	20	1.0897394970315712E-13	4.491871465183437E-16	0.6096532270225912
100	23	5.9112309916734685E-12	2.4365905693915383E-14	20.949201844454116
100	23	2.7720744362031937E-12	1.1426402450552681E-14	14.644194220129378
100	23	5.853300585843004E-12	2.412711840793999E-14	18.1909113300921
1000	20	1.1850399451039258E-11	1.6310027401518396E-14	0.9521325846177723
1000	20	1.4982122422849033E-10	2.062030299140179E-13	27.020260029722326
1000	20	7.232445601641877E-10	9.954211790930408E-13	163.11248397010877
1000	20	1.0515046339981457E- 10	1.4472144558662365E-13	12.899745315925028
1000	20	4.353686358673411E-11	5.992097068200755E-14	13.468293524540808
1000	20	1.2014209310121524E-10	1.653548337043397E-13	12.496337620172568
1000	20	8.605404336617474E-11	1.1843852277829118E-13	14.375476093170724
1000	20	4.621796148956468E-11	6.361103872080985E-14	16.073960329273266
1000	20	5.32808227290218E-10	7.333184693698903E-13	75.04053180306127
1000	20	4.9583340261917055E-11	6.824290115045493E-14	10.831058351209512

8.1.3. Матрицы Гилберта

Можно заметить, что метод сопряженных градиентов решил задачу оптимальнее чем методы в исследованиях ранее. Ранее было замечено, что погрешность растет экспоненциально в зависимости от k. Тут же погрешить тоже растет экспоненциально, но у нее другой порядок роста. Можно сделать вывод, что данный метод более учтойчивый. Также, несмотря на большое число обусловленности, можно заметить, что метод совершает достаточно мало итераций.

Таблица 8.3

n	Кол-во итер	$ x^* - x_k $	$\frac{ x^* - x_k }{ x^* }$	cond
2	2	3.1401849173675502E-15	1.0467283057891834E-15	0.5755819640586762
3	3	1.2691346157237591E- 11	6.754921975985466E-13	0.7685451154474296
4	4	6.334232991731388E-8	1.6868811204217522E-9	0.6648510134084972
5	6	1.3487309446123833E-6	2.9155361804333597E-8	5.924955864536467
6	6	5.478717937653886	0.13323156774881872	1.3064781426920757E7
7	8	0.2605643635384685	0.005683274890883838	3.860977616937444E8
8	8	8.635834549042833	0.11967695326814425	$2.27813379133689 {\rm E}8$
9	8	9.407325327148806	0.11635282190995182	5.169281976196696E7
10	10	22.44850489487328	0.31693147445580006	4.6805961911258094E7
36	15	61.146615268118936	0.47337935813305615	3.2598336944458085E8
37	11	60.21596209577347	0.4428482353226081	$1.2925184057823665 {\rm E8}$
38	15	60.49391065187019	0.429792132744376	1.3725962145095763E8
39	15	58.36385838056698	0.3975485104057996	$2.842241018354768 {\rm E8}$
40	15	59.789700763933915	0.44453616284802294	9.823792393519478E8
41	15	64.70733947147329	0.46816911041194137	$2.4512913831624815 {\rm E8}$
42	15	67.98145406175126	0.42655357992778875	$2.2692998223580718 {\rm E8}$
43	14	76.73149155898436	0.4688609138960248	$2.1584361219431463 {\rm E8}$
44	15	58.10013612880147	0.3743102411779536	2.2471373339163378 E8
45	19	71.28466240670137	0.4816641193846001	9.089268535418056 E8
46	19	80.90820747761371	0.5161667216547154	6.712566502256564E8
47	19	63.247755171666974	0.43824940120197026	$4.864065279780172\mathrm{E}8$
48	15	63.959737206092406	0.44517501685716354	9.767959790879492E7
49	19	56.525908204071875	0.3659650683446266	$2.1223976211802626 {\rm E9}$
50	19	82.32713044709456	0.534445297282271	1.3894459494202938E9
90	16	105.06650942503052	0.47368121970324234	2.931928471878845E8
91	22	95.09427438485848	0.4132698189788391	$2.5677720732045927\mathrm{E}9$
92	17	100.43999429449781	0.4877107215817948	3.72816434869107E8
93	22	105.68981002604666	0.5022438179635073	$7.936759411434216 \to 8$
94	22	108.60309845864333	0.47610961938701774	2.177064157402331 E8
95	23	102.96115273463121	0.5112395254455704	1.8561360483700087E9
96	17	106.2706753718791	0.46332693146703685	7.310684471975847E8
97	17	115.82914179973085	0.5440326681477503	$1.0794539803563647\mathrm{E}9$
98	21	103.61979417837317	0.46485910042344164	$2.6068650858705175 {\rm E8}$
99	22	115.4109359100076	0.504386824371973	$5.550441266545832\mathrm{E}8$
100	22	105.11063982143918	0.47602327925267846	4.505273127538089 E8
101	17	108.94694119120588	0.4547832873842275	1.728006304324625E8

8.2. Note

На фоне метода сопряженных градиентов для решения СЛАУ, методы Гаусса проявляют себя хуже на матрицах Гильберта: в них наблюдается экспоненциальный рост относительной погрешности, в то время как в методе сопряженных градиентов порядок роста меньше, но все-таки тоже экспоненциальный.

9. Выводы

Оба алгоритма работают за одинаковое время, но в среднем алгоритм Гаусса оказывается точнее. При этом если у нас используется одна и та же матрица A с разными векторами b, то по скорости побеждает LU-разложение. Число обусловленности на Гилбертовых матрицах растет экспоненциально, когда для матриц с диагональным преобладанием будет рости полиномиально. Из бонусного задания можно сделать вывод, что точность меньше зависит от алгоритма, чем от числа обусловленности входной матрицы.

Метод сопряженных градиентов хорошо показывает себя на обусловленных матрицах и совершает сильно меньше итераций, чем n. Для произвольных матриц СЛАУ будет решена за близкое к n^2 количество операций. В отличие от методов Гаусса, метод сопряженных градиентов на матрицах Гильберта более устойчивый.