

Characterization and Impact of Large-Signal Dielectric Properties in MnZn Ferrites

Thomas Guillod¹, William V. R. Roberts², and Charles R. Sullivan¹

¹ Dartmouth College, NH, USA

² Princeton University, NJ, USA

IEEE APEC, February 25-29, 2024, CA, USA

Introduction

Ferrite material

- Low losses & wide frequency range
- Broadly used in power magnetics

Dielectric effects

- Varying magnetic field ⇒ induced electric field
- Induced electric field ⇒ eddy-current & dielectric effects
- Dependent of the core shape and size

Dimensional resonance

- $\mu_r \in [500, 5000]$ and $\varepsilon_r \in [10^4, 10^6]$
- Extremely slow propagation speed
- Impact on the core performance?

Characterization of the Dielectric Properties

Plate Capacitor Setup

- Ferrite plate capacitor
- Ferrite has a very low conductivity
- Pressure contact
 - Difficult to obtain a reliable contact
 - Mechanical stress is changing the ferrite properties

Chemical contact

- Silver (epoxy / colloidal) or carbon paint
- Difficult to obtain a reproducible low-ohmic contact
- Contact is non-linear (observed with silver)
- Contact is humidity-dependent (observed with silver)
- How to obtain good contacts?

Gold Sputtering

Sputter coater

- Plasma with low-pressure argon
- Typical process for SEM

Advantages

- It's shiny!!!
- Cold process
- Gold is non-reactive
- No surface tension
- Coating of the individual grains
- Deposition: 60 nm of gold

Test Fixture

Ferrites are not perfectly flat

Indium foil

- Malleable metal
- Homogeneous contact
- Thermally conductive

Mounting

- Brass: wiring and heat sink
- Silicone: limit pressure

Conditioning

- Drying: reproducible condition
- Oil: prevent humidity diffusion
- Oil: temperature control

Small-Signal Properties

• EPCOS/TDK N87

- Impedance analyzer
- $\circ \hat{E} < 0.05 \text{ V/mm}$

Permittivity

- Extremely large
- Decrease with frequency

Conductivity

- Increase with frequency
- Increase with temperature

Large-Signal Measurements

- EPCOS/TDK N87
 - Power analyzer
 - Power amplifier

- Amplitude variation
 - Ellipsoid hysteresis loops
 - Permittivity is mostly linear

- Frequency variation
 - Permittivity is dropping
 - Loss per cycle is dropping

Large-Signal Measurements

Permittivity

- Decrease with the frequency
- Almost amplitude independent

Conductivity

- Increase with the frequency
- Slight increase with the amplitude
- Consistent with microscopic models
- Increased conductivity ⇒ increased losses

• EPCOS/TDK N87: slightly non-linear

Impact of the Dielectric Properties

Induced Electric Field

Ferrite cylinder

- Homogeneous magnetic flux
- Faraday's law of induction

Electric field distribution

- Quasi-static approximation
- Linear increase with the radius
- Spatial RMS value of the field

$$\circ \hat{E}_{int} = \sqrt{\frac{1}{A}} \iint \left| \hat{E} \left(\rho \right) \right|^2 dA$$

- Induced field: up to 2 V/mm
- Corresponds to the meas. range

Dimensional Resonance

Fundamental principle

- Varying magnetic flux ⇒ induced el. field
- Induced el. field ⇒ el. eddy current
- El. eddy current ⇒ magnetic field

Characterization

- Wavelength (lossless resonance)
- Penetration depth (loss damping)

$$\circ k = 2\pi f \sqrt{\varepsilon_0 \varepsilon_r \mu_0 \mu_r} = \frac{2\pi}{\lambda} - j \frac{1}{\delta}$$

- Resonances are more critical with large-signal models
- Mostly due to the non-linear permeability

Field Calculation

- Quasi-static approximation at LF
- Helmholtz wave equation at HF

$$\circ \ \nabla^2 \vec{E} = -k^2 \vec{E}$$

$$\circ \nabla \times \vec{E} = -\mathrm{j}2\pi f \vec{B}$$

$$\circ \left| \iint \vec{B} \cdot d\vec{A} \right| = \hat{B}_{\rm src} A$$

- Material parameters
 - Large-signal parameters
 - Spatially-dependent
 - Locally linearized

Electric / Magnetic Field Distribution

• EPCOS/TDK N87

- 10 cm² cross section
- 300 kHz and 100 mT

Comparison

- Quasi-static approximation (red)
- Full-wave solution (blue)

Impact of the Dielectric Effects

• EPCOS/TDK N87

- Variable cross section
- 300 kHz and 100 mT

Comparison

- Quasi-static approximation (dotted)
- Full-wave solution (solid)

Impact of the Dielectric Effects

• EPCOS/TDK N87

- Variable cross section
- 300 kHz and 100 mT

Comparison

- Quasi-static approximation (dotted)
- Full-wave solution (solid)

Conclusion

Conclusion

Measurement of dielectric properties

- Test fixture and conditioning are critical
- Gold sputtering / indium foil / oil

- o Increase of the conductivity with amplitude
- Non-linearities are not massive

Dimensional effects

- More critical with large-signal parameters
- Helmholtz wave equation with large-signal parameters
- With dimensional resonance: more than 100% additional losses
- Below dimensional resonance: up to 25% additional losses

Dataset & Code

github.com/otvam/large_signal_ferrite_apec24

zenodo

doi.org/10.5281/zenodo.10059533

Thank you! Questions?

Supported by the National Science Foundation under Grant No. 2242514