OBSERVATION BOOK

Electronic Circuit Analysis Lab (EC408PC)

(For 2nd Year, ECE, II Semester)

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

Chaitanya Bharathi P.O., Gandipet, Hyderabad – 500 075

Department of Electronics and Communication Engineering

Prepared By **Mr.A.Bala Raju.** Assistant Professor

Dr.S.P.SinghProfessor & Head of the Department

Mr.A.Bala Raju Assistant Professor Faculty In-Charge

MAHATMA GANDHI INSTITUTE OF TECHNOLOGY

(Affiliated to Jawaharlal Technological University, Hyderabad) **Department of ECE**

This Observatio	n Book belongs to
Name	
Roll No	
Class	
Academic Year	
	Faculty
	1
	2
	Lab Technician
	1
	2

WORK DAIRY

S.No	Date	Details of Practical done	Marks	Signature

LIST OF EXPERIMENTS

- 1. Common Emitter Amplifier (*)
- 2. Two Stage RC coupled Amplifier
- 3. Cascode Amplifier Circuit (*)
- 4. Darlington Pair Circuit
- 5. Current shunt feedback amplifier Circuit
- 6. Voltage series feedback amplifier Circuit (*)
- 7. RC Phase shift Oscillator Circuit (*)
- 8. Hartley & Colpitts's Oscillators Circuit
- 9. Class A Power Amplifier (Transformer less)
- 10. Class B Complementary Symmetry Amplifier (*)
- 11. Design a Monostable Multivibrator
- 12. The output voltage waveform of Miller Sweep Circuit

Note:

- 1. Experiments marked with * has to be designed, simulated and verified in hardware.
- 2. Minimum of 9 experiments to be done in hardware.

SOFTWARE LAB

COMMON EMITTER AMPLIFIER

<u>AIM:</u> To find the voltage gain and plot the frequency response of a single stage CE amplifier using MULTISIM software and calculate the gain and bandwidth.

APPARATUS REQUIRED: PC & MULTISIM 7 / 2001

CIRCUIT DIAGRAM

- 1. Start MULTISIM. A blank circuit window will appear on the screen along with a component tool bar.
- 2. Using component tool bar place all the components on the circuit window and connect the circuit.
- 3. Save the circuit file.
- 4. Without applying the input ($V_s = 0$), find the operating point V_{BE} for transistor Q using DC analysis. Ensure that the transistor is in active region.
- 5. Determine using multi-meter V_B, V_E, V_C, V_{BE}, V_{CE}, I_E, I_C by simulating the circuit using SIMULATE switch.

- 6. Set $R_S = 1\Omega$ and $V_S = 10$ mV (peak) at 1 KHz and determine the voltage gain A_V using CRO.
- 7. Using AC analysis obtain the frequency response for the frequency range 10Hz to 100MHz.
- 8. Compare the practical and theoretical values.

OBSERVATIONS:

1. Quiescent dc voltages:

$$V_{CC} = V_{CC}$$
a. $V_{B} = V_{CC}$
b. $V_{C} = V_{CC}$
c. $V_{C} = V_{CC}$
d. $V_{BE} = V_{CC}$
e. $V_{CE} = V_{CC}$
f. $I_{C} = 0$
g. $I_{E} = 0$
mA

PARAMETERS	THEORITICAL	PRACTICAL
$V_{\rm B}$		
$V_{\rm E}$		
$V_{\rm C}$		
V_{BE}		
V_{CE}		
I_{C}		
$I_{\rm E}$		
Av		

=μA

RESULT: - Thus, the frequency response of CE amplifier is obtained and

h. I_B

Lower cut-off frequency =

Upper cut-off frequency =

Band width =

Viva Questions

- 1. Define different operating regions of transistor.
- 2. Define α and β of a transistor.
- 3. What do you understand by DC and AC load lines?
- 4. What is the need of coupling capacitors in an amplifier?
- 5. What are the advantages of CE amplifier over CB and CC amplifiers?

CASCODE AMPLIFIER

<u>AIM:</u> To find the voltage gain and plot the frequency response of a Cascode amplifier using MULTISIM.

APPARATUS REQUIRED: PC & MULTISIM 7 / 2001

CIRCUIT DIAGRAM

- 1. Start MULTISIM. A blank circuit window will appear on the screen along with a component tool bar.
- 2. Using component tool bar place all the components on the circuit window and wire the circuit.
- 3. Save the circuit file.

- **4.** Without applying the input (Vs = 0), find the operating point V_{BE1} for transistor Q_1 and V_{BE2} for transistor Q_2 using DC analysis. Ensure that both transistors are in active region.
- 5. To find the voltage gain A_V of the cascode amplifier, feed a low input signal (of order in mV) of 1 KHz to the input of amplifier.
- 6. Determine the gain of cascode amplifier.
- 7. Using AC analysis obtain the frequency response of the cascode amplifier.
- 8. Note down the 3 dB gain points i.e lower cut off (f_L) and higher cut off frequencies (f_H).
- 9. Determine bandwidth.

OBSERVATIONS:

- 10. Quiescent dc voltages: $V_{CC} =$ _____ V.
 - a. $V_{BE1} = V \& V_{BE2} = V$
- 11. Input voltage (V_s) =
- 12. Output voltage of Cascode amplifier (Vo) =
- 13. Voltage gain of Cascode amplifier =
- 14. Lower cutoff frequency of Cascode amplifier $f_L =$
- 15. Higher cutoff frequency of Cascode amplifier f_H =
- 16. Bandwidth =

RESULT:

Hence, the frequency response of cascode amplifier was obtained.

Voltage Gain =

Lower cut-off frequency =

Upper cut-off frequency =

Band width =

VIVA QUESTIONS:

- 1. What is the need of cascode amplifier?
- 2. Difference between cascade connection and cascode connection?
- 3. What are the stages is used in cascode amplifier.
- 4. Write the applications of cascode amplifier?
- 5. What is gain and bandwidth of cascode amplifier?

VOLTAGE SERIES FEEDBACK AMPLIFIER

AIM: To find the voltage gain and plot the frequency response of a voltage series feedback amplifier.

APPARATUS REQUIRED: PC & MULTISIM 7 / 2001

CIRCUIT DIAGRAM

- 1. Start MULTISIM. A blank circuit window will appear on the screen along with a component tool bar.
- 2. Using component tool bar place all the components on the circuit window and wire the circuit.
- 3. Save the circuit file.

4. Without applying the input (Vs = 0), find the operating point and make sure the circuit in active region.

To find the voltage gain:

(a) Without Feedback:

- 5. To find the voltage gain A_V of the amplifier without feedback, disconnect emitter and feed a low input signal (of order in mV) of 1 KHz to the input of amplifier.
- 6. Connect the oscilloscope channel 'A' to input and channel 'B' to output i.e at V_o. Ensure that the colors of two (input and output) wires connected to oscilloscope are different. Reduce the input signal if the output is distorted.
- 7. Determine the gain A_v of the amplifier without feedback.

(b) With Feedback:

- 8. To find the voltage gain of the amplifier with feedback A_{Vf} , connect emitter resistance. Connect CRO channel 'B' at V_o to find the output voltage.
- 9. Determine the gain A_{Vf} of the amplifier with feedback.

To find the frequency response:

(a) Frequency response of amplifier without feedback:

- 10. For plotting the frequency response of the amplifier without feedback, remove the feedback resistance R_E .
- 11. Apply input signal (V_s) of **mV**, 1 KHz to the amplifier and connect a CRO at V_o.
- 12. Using AC analysis, obtain the frequency response of the amplifier with frequency range 1Hz to 100 MHz.
- 13. Note down the -3 dB gain points i.e lower cut off (f_L) and higher cut off frequencies (f_H) .
- 14. Determine the bandwidth of the amplifier without feedback. $BW = f_H f_L$

(b) Frequency response of amplifier with feedback:

- 15. For plotting the frequency response of the voltage series feedback amplifier connect the feedback resistance R_E . Connect a CRO at V_o .
- 16. Repeat steps 12&13 for amplifier with feedback and determine bandwidth.

OBSERVATIONS:

- 1. Quiescent dc voltages: $V_{CC} = V_{CC}$
 - $V_{BE} = \underline{\hspace{1cm}} V$
- 2. Input voltage $(V_s) =$

Without Feedback (disconnect Emitter resistance R_E):

- 3. Output voltage Vo =
- 4. Voltage gain $(A_V) =$
- 5. Lower cutoff frequency $f_L =$
- 6. Higher cutoff frequency f_H =
- 7. Bandwidth =

With Feedback (connect Emitter resistance R_{E}):

- 8. Output voltage Vo =
- 9. Voltage gain (A_{Vf}) =
- 10. Lower cutoff frequency $f_{Lf} =$
- 11. Higher cutoff frequency $f_{Hf} =$
- 12. Bandwidth =

RESULT:

Hence, the frequency response of voltage series feedback amplifier is obtained.

With Emitter resistor Without Emitter resistor

Gain = Gain =

Lower cut-off frequency = Lower cut-off frequency =

Upper cut-off frequency = Upper cut-off frequency =

Band width = Band width =

Viva Questions

- 1. What is the input and output impedance of voltage series feedback amplifier?
- 2. Which is the sample and mixer outputs in voltage series feedback amplifier?
- 3. Give the circuit example of voltage series feedback amplifier?
- 4. What is the other names of voltage series feedback amplifier?
- 5. Draw the topologies of voltage series and voltage shunt feedback.

RC PHASE SHIFT OSCILLATOR

<u>AIM:</u> To find the frequency of oscillations of a RC phase oscillator using MULTISIM and compare with the theoretical value.

APPARATUS REQUIRED: PC & MULTISIM 7 / 2001

CIRCUIT DIAGRAM:

- 1. Start MULTISIM. Wire the circuit as per the circuit diagram with the three capacitors $C=0.01\mu F$ as shown in the circuit diagram.
- 2. Find the operating point V_{BE} for transistor Q using DC analysis. Ensure that the transistor is in active region.
- 3. Save the circuit file.
- 4. Connect the output of the RC Phase shift oscillator to the CRO.
- 5. Find the frequency of oscillations f_0 by measuring the time period of the output waveform.

6. Compare with the theoretical value.

- 7. The theoretical value of frequency is given by $f_o = \frac{1}{2\pi RC\sqrt{6+4K}}$ where $K = \frac{R_C}{R}$
- 8. Repeat steps 1 through 6 for other set of values for capacitors $C = 0.0033 \mu F$ and $0.0022 \mu F$.

OBSERVATIONS & CALCULATIONS:

Quiescent DC voltages: $V_{CC} =$ _____ V.

 $V_{BE} = \underline{\hspace{1cm}} V$

 $R = 10 \text{ K}\Omega$

S.No.	Capacitor	Theoretical frequency	Practical fr Time period (T)	requency Frequency (f)
1.	0.0022μF			
2.	0.0033µF			
3.	0.01μF			

RESULT: Hence Frequency of oscillation for the given oscillator is determined.

For $C = 0.0022 \mu F$

 $C = 0.0033 \mu F$

 $C = 0.01 \mu F$

Frequency of oscillations 'fo' =

Viva Questions

- 1. What is the major difference between RC oscillators and LC oscillators?
- 2. Why RC oscillators are not suitable for high frequency generation?
- 3. Obtain the condition for oscillations in a RC phase shift oscillator?
- 4. Write the formula for frequency of oscillations?
- 5. What is the phase shift produced by RC phase shift network?

CLASS B COMPLEMENTARY SYMMETRY POWER AMPLIFIER

<u>AIM:</u> To determine efficiency of class B complementary symmetry power amplifier.

APPARATUS REQUIRED: PC & MULTISIM 7 / 2001

CIRCUIT DIAGRAM:

- 1. Start MULTISIM. A blank circuit window will appear on the screen along with a component tool bar.
- 2. Using component tool bar place all the components on the circuit window and wire the circuit and save the circuit file.
- 3. Measure the supply voltage V_{CC} and the base to emitter voltage V_{BE} of transistors Q_1 and Q_2 using DC analysis. Ensure that both the transistors are in active region.
- 4. Using a signal generator apply the signal of 5V, 1KHz to the input terminals as (V_s).

- 5. Connect a CRO across the load resistance R_L of $1K\Omega$. Increase the input voltage till distortion sets in. Measure the output voltage V_O . (change the load resistance R_L to get crossover distortion if required).
- 6. Using an ammeter in ac mode measure the ac current ' I_{rms} ' through the load resistance (R_L)

OBSERVATIONS & CALCULATIONS:

1. Quiescent dc voltages:

$$V_{CC} = V$$

$$-V_{CC} = \underline{\hspace{1cm}} V.$$

$$V_{BE1}$$
 of transistor $Q_1 = \underline{\hspace{1cm}} V$

$$V_{BE2}$$
 of transistor $Q_2 =$ _____ V

- 2. Output voltage: $V_0 =$ _____Volts p to p.
- 3. AC current through R_L $I_{rms} =$ mA.
- 4. a) AC output power $P_{ac} = \frac{V_o^2}{8R_I} =$
- b) DC input power $P_{dc} = 2 \times I_{dc} \times V_{CC}$

$$= 2 \times \frac{\text{Im}}{\pi} \times V_{\text{CC}} = 2 \times \frac{I_{\text{rms}} \times \sqrt{2}}{\pi} \times V_{\text{CC}} = (\frac{2\sqrt{2}I_{\text{rms}}}{\pi}) \times V_{\text{CC}}$$

=

∴ Efficiency
$$\eta = \frac{P_{ac}}{P_{dc}} \times 100 \% =$$

RESULT:

Hence determined the efficiency (η) of class – B complementary symmetry power amplifier.

Efficiency
$$(\eta) =$$

Viva Questions

- 1. Classify Power Amplifiers?
- 2. Define cross over distortion?
- 3. What is the difference between class B push pull & complementary symmetry amplifier?
- 4. What is the maximum power dissipation in class B power amplifier?
- 5. What is the maximum conversion efficiency of class B complementary symmetry power amplifier?

HARDWARE LAB

COMMON EMITTER AMPLIFIER

AIM:

To study the frequency response of a CE amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30)V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM
- 5. Experimental kit with components as per circuit diagram
- 6. Connecting wires.

CIRCUIT DIAGRAM:

- 1. Connect the circuit as shown in circuit diagram.
- 2. Switch on the power supply V_{CC} . With the help of DMM measure the quiescent voltages V_{BE} and V_{CE} and note down. Ensure that the transistor is in active region.

Amplifier gain measurement 'Av':

- 2. Apply an input signal of 1 KHz to get an undistorted output V_O. Observe the output waveform on a CRO.
- 3. Using CRO measure the voltage V_{in} and V_{o} .
- **4.** Evaluate A_V, voltage gain using the equation $A_V = \frac{V_O}{V_{in}}$ and record the gain of amplifier.

To find frequency response:

- 5. Apply an input signal Vin of 1KHZ to the amplifier to get an undistorted output V_0 . Observe the output waveform on a CRO.
- 6. To obtain the frequency response, vary the frequency of the audio signal generator from 10 HZ to 1MHz in suitable steps. Measure the output V_o at each step using CRO.
- 7. Take more readings in low frequency and high frequency regions of the frequency response.
- 8. Tabulate the readings. Calculate the gain in dB using the relation

Gain in dB = 20 log
$$\frac{V_o}{V_{in}}$$
.

9. Plot the frequency response i.e. Gain A_V in dB versus frequency on a semi log paper.

OBSERVATIONS:

1. Quiescent Voltages:

$$V_{BE}$$
 = ----- volts V_{CE} = ----- volts

2. Amplifier gain A_V

Input voltage
$$V_{in} = ------volts$$

Output voltage
$$V_o =$$
 ------ volts.

Amplifier gain
$$A_V = \frac{V_O}{V_{in}}$$

Frequency response:

Input voltage
$$V_i = -----volts$$

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

EXPECTED GRAPH:

RESULT:

(i) Mid Band gain Avm = -----

$$A_{Vm} \ in \ dB = ---- \ dB$$

- (ii) Lower cut of frequency $f_L = -----Hz$
- (iii) Upper cut of frequency $f_H = ----- Hz$
- (iv) Bandwidth of amplifier ($f_H f_L$) = -----Hz

Viva Questions:

- 1. Draw the small signal equivalent model of CE amplifier with R_E.
- 2. What are the advantages of voltage divider bias?
- 3. Compare CE, CB and CC amplifiers.
- 4. What is the unit of gain? Why is measured in dB?
- 5. What is effect on gain and input resistance in CE amplifier with R_E?

TWO STAGE RC COUPLED AMPLIFIER

<u>AIM:</u> To find the voltage gain and plot the frequency response of a single stage and twostage RC coupled amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30) V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM (Digital Multimeter)
- 5. Experimental kit with components as per circuit diagram.
- 6. Connecting wires.

CIRCUIT DIAGRAM

- 1. Connect the circuit as shown in circuit diagram.
- 2. Switch on the power supply V_{CC} . With the help of a DMM measure the voltages V_{BE1} and V_{BE2} and note down.
- 3. Switch ON the audio signal generator and connect to the input of the amplifier. Set the frequency at 1KHz and signal at minimum (30mV).

To find the voltage gain:

- 4. To find the voltage gain A_{V1} of the first stage disconnect the second stage and vary the input frequency, keeping input voltage V_{in} is constant and note down the output voltage using DMM/CRO.
- 5. Calculate A_{v1} , voltage gain using below equation and record the gain of the amplifier.

$$A_{V} = \frac{V_{O}}{V_{in}}$$

- 6. Draw a graph between frequency and gain in dB.
- 7. To find the voltage gain of two-stage amplifier A_{V2} connect the second stage and vary the input frequency, keeping input voltage same and note down the output voltage using DMM/CRO.
- 8. Determine the gain of two stages (overall) using $A_V = \frac{V_O}{V_{in}}$ and draw a graph between frequency and gain in dB.

OBSERVATIONS:

1. Quiescent dc voltages: $V_{CC} = \underline{\hspace{1cm}} V.$ $V_{BE1} = \underline{\hspace{1cm}} V$ $V_{BE2} = \underline{\hspace{1cm}} V$

Frequency response of Single stage Amplifier:

Input voltage $V_i = -----volts$

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(Av)
1.				
2.				
3.				

Mid Band gain Avm = -----

$$A_{Vm} \ in \ dB = ---- \ dB$$

Upper cut of frequency $f_H = ----- Hz$

Bandwidth (
$$f_H - f_L$$
) = -----Hz

Frequency response of Two stage Amplifier:

Input voltage
$$V_i = -----volts$$

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{o}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

Mid Band gain Avm = -----

 $A_{Vm} \ in \ dB = ---- \ dB$

Lower cut of frequency $f_L = ----- Hz$

Upper cut of frequency $f_H = ----- Hz$

 $Bandwidth \; (\; f_H - f_L) \; = ------Hz$

EXPECTED GRAPH:

RESULT:

Hence, the frequency response of a single stage and two-stage RC coupled amplifier obtained.

Single Stage Two Stage

Gain = Gain =

Band width = Band width =

Viva Questions:

- 1. How total decibel gain is determined from a cascade amplifier?
- 2. What is meant by a bypass capacitor and what is its importance in the circuit?
- 3. What is meant by a coupling capacitor and what is its importance in the circuit?
- 4. Which mode of transistor configuration is suitable for cascading? Why?
- 5. What is the need of coupling amplifier stages?

CASCODE AMPLIFIER CIRCUIT

<u>AIM</u>: To study the frequency response Cascode amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30)V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM
- 5. Experimental kit with components as per circuit diagram
- 6. Connecting wires.

CIRCUIT DIAGRAM

PROCEDURE:

- 1. Connect the circuit as shown in circuit diagram.
- 2. Switch on the power supply V_{CC} . With the help of DMM measure the quiescent voltages V_{BE} and V_{CE} and note down. Ensure that the transistor is in active region.

Amplifier gain measurement 'Av':

- 3. Apply an input signal of 1 KHz to get an undistorted output V_O. Observe the output waveform on a CRO.
- 4. Using CRO measure the voltage V_{in} and V_{o} .
- 5. Evaluate A_V, voltage gain using the equation $A_V = \frac{V_O}{V_{in}}$ and record the gain of amplifier.

To find frequency response:

- 6. To obtain the frequency response, vary the frequency of the audio signal generator from 10 Hz to 1MHz in suitable steps. Measure the output V_0 at each step using CRO.
- 7. Take more readings in low frequency and high frequency regions of the frequency response.
- 8. Tabulate the readings. Calculate the gain in dB using the relation Gain in dB = $20 \log \frac{V_o}{V_{in}}$.
- 9. Plot the frequency response i.e. Gain A_V in dB versus frequency on a semi log paper.

OBSERVATIONS:

1. Quiescent Voltages:

$$V_{BE} = ---- volts$$

$$V_{CE} = ----- volts$$

2. Amplifier gain A_V

Input voltage
$$V_{in} = ------volts$$

Output voltage
$$V_o =$$
 ------ volts.

Amplifier gain
$$A_V = \frac{V_O}{V_{in}}$$

Frequency response:

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

EXPECTED GRAPH:

RESULT:

(i) Mid Band gain Avm = -----

$$A_{Vm} \ in \ dB = ---- \ dB$$

- (ii) Lower cut of frequency $f_L = -----$ Hz
- (iii) Upper cut of frequency $f_H = -----Hz$
- (iv) Bandwidth of amplifier ($f_H f_L$) = -----Hz

VIVA QUESTIONS:

- 1. What is the use of multistage amplifiers?
- 2. What is darlington pair?
- 3. Write the advantages of darlington amplifer.
- 4. Write the expression for f_L and f_H of multistate amplifiers.
- 5. Write the different types of coupling schemes used in multistage amplifiers.

Procedure:

- **1.** Connect +12V variable dc power supplies at their indicated position from external source or Connect +5V dc at Vin' terminal and connect a patch cord between socket a and socket b.
- 2. Connect a patch cord between socket e and f.
- 3. Now measure the dc voltage between base of transistor T1 and using multimeter.
- 4. Calculate the input current (Ii) by substituting the value in eq.2
- 5. Now connect +5V directly at the base terminal of transistor T1.
- 6. Remove the patch cord between socket e and f and connect a multimeter between these sockets to measure the output current (Io).
- 7. Calculate the input impedance by using eq.3
- 8. Calculate the ratio of output current to input current.
- 9. Ratio of output current to input current gives the overall b of Darlington pair.
- 10. Individual b of transistors can be calculated by considering the transistors having identical b and substituting in eq.1

Result:

Current Gain of Darlington Pair [Io / Ii] = Individual β of transistor =......

CURRENT SHUNT FEEDBACK AMPLIFIER

AIM: To find the voltage gain and plot the frequency response of a current shunt feedback amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30) V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM (Digital Multimeter)
- 5. Experimental kit with components as per circuit diagram.
- 6. Connecting wires.

CIRCUIT DIAGRAM

Fig. Current Shunt Feedback Amplifier

PROCEDURE:

- 1. Connect the circuit as shown in circuit diagram.
- 2. Switch ON the audio signal generator and connect to the input of the amplifier. Set the frequency at 1KHz and 230mV signal.

To find the voltage gain:

- 3. To find the voltage gain A_V of without feedback circuit, disconnect the feedback circuit and vary the input frequency, keeping input voltage V_{in} is constant and note down the output voltage using DMM/CRO.
- 4. Calculate A_v, voltage gain using below equation and record the gain of the amplifier.

$$A_{V} = \frac{V_{O}}{V_{in}}$$

- 5. Draw a graph between frequency and gain in dB.
- 6. To find the voltage gain of with feedback circuit A_{Vf} , connect the feedback network and vary the input frequency, keeping input voltage same and note down the output voltage using DMM/CRO.
- 7. Determine the gain of feedback amplifier using $A_V = \frac{V_O}{V_{in}}$ and draw a graph between frequency and gain in dB.

OBSERVATIONS:

Frequency response of with out feedback Amplifier:

Input voltage $V_i = -----volts$

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

Mid Band gain Avm = -----

$$A_{Vm}$$
 in $dB = ---- dB$

Lower cut of frequency f_L = ------ Hz Upper cut of frequency f_H = ------ Hz Bandwidth (f_H - f_L) = ------Hz

Frequency response of current shunt feedback Amplifier:

Input voltage $V_i = -----volts$

S.No.	Frequency of input signal	Output voltage V_o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(Av)
1.				
2.				
3.				

Mid Band gain Avm =
$A_{Vm} \ in \ dB = \ dB$
Lower cut of frequency f_L = Hz
Upper cut of frequency $f_H = Hz$
Bandwidth ($f_H - f_L$) =Hz

EXPECTED GRAPH:

RESULT:

Hence, the frequency response of current shunt feedback amplifier is obtained.

Without	feedback
williout	recuback

With feedback

Gain =

Gain =

Band width =

Band width =

Viva Question:

- 1. Draw the topologies of current series and current shunt feedback.
- 2. What is the sample and mixer outputs in current shunt feedback amplifier?
- 3. What is the effect of feedback on distortion and stability?
- 4. Give the circuit example of current shunt feedback amplifier?
- 5. What is the other names of current shunt feedback amplifier?

VOLTAGE SERIES FEEDBACK AMPLIFIER CIRCUIT

<u>AIM</u>: To study the frequency response voltage series feedback amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30)V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM
- 5. Experimental kit with components as per circuit diagram
- 6. Connecting wires.

CIRCUIT DIAGRAM:

Fig. Voltage Series Feedback Amplifier

PROCEDURE:

- 1. Connect the circuit as shown in circuit diagram.
- 2. Switch ON the audio signal generator and connect to the input of the amplifier. Set the frequency at 1KHz and 200mV signal.

To find the voltage gain:

- 3. To find the voltage gain A_V of without feedback circuit, disconnect the feedback circuit and vary the input frequency, keeping input voltage V_{in} is constant and note down the output voltage using DMM/CRO.
- 4. Calculate A_v, voltage gain using below equation and record the gain of the amplifier.

$$A_{V} = \frac{V_{O}}{V_{in}}$$

- 5. Draw a graph between frequency and gain in dB.
- 6. To find the voltage gain of with feedback circuit A_{Vf} , connect the feedback network and vary the input frequency, keeping input voltage same and note down the output voltage using DMM/CRO.
- 7. Determine the gain of feedback amplifier using $A_V = \frac{V_O}{V_{in}}$ and draw a graph between frequency and gain in dB.

OBSERVATIONS:

Frequency response of with out feedback Amplifier:

Input voltage $V_i = -----volts$

S.No.	Frequency of input signal	Output voltage V _o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

Mid Band gain Avm = -----

$$A_{Vm}$$
 in $dB = ---- dB$

Lower cut of frequency $f_L = ----- Hz$

Upper cut of frequency $f_H = ----- Hz$

Bandwidth ($f_H - f_L$) = -----Hz

Frequency response of voltage series feedback Amplifier:

Input voltage
$$V_i = -----volts$$

S.No.	Frequency of input signal	Output voltage V _o in volts	Voltage gain $A_{V} = \frac{V_{O}}{V_{i}}$	Voltage gain A _V in dB = 20 log(A _V)
1.				
2.				
3.				

Mid Band gain Avm = -----

 $A_{Vm} \ in \ dB = ---- \ dB$

Lower cut of frequency $f_L = -----Hz$

Upper cut of frequency $f_H = ----- Hz$

 $Bandwidth \; (\; f_H - f_L) \; = ------Hz$

EXPECTED GRAPH:

RESULT:

Hence, the frequency response of voltage series feedback amplifier is obtained.

Without feedback With feedback

Gain = Gain =

Band width = Band width =

RC PHASE SHIFT OSCILLATOR CIRCUIT

AIM:

To study the RC phase shift oscillator.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30) V
- 2. RC phase shift oscillator board.
- 3. Cathode ray oscilloscope (CRO).
- 4. Connecting wires.

CIRCUIT DIAGRAM:

- 1. Connect the Circuit as shown in the circuit diagram.
- 2. Connect the three capacitors of value $C = 0.0022 \mu f$ at pts 1-1', 2-2' and 3-3' as shown in the Circuit diagram.
- 3. Switch 'ON' the power supply and connect the output of the R-C Phase shift oscillator to the CRO.
- 4. Observe the waveform on the CRO.
- 5. Find the frequency of oscillations by measuring the time period of the output waveform.
- 6. Compare with the theoretical value.

- 7. The theoretical value of frequency is given by $f_0 = \frac{1}{2\pi RC\sqrt{6}}$
- 8. Repeat steps 1 through 6 for other sets of values for capacitors

 $C = 0.0033 \mu f$ and $0.01 \mu f$.

OBSERVATIONS: $R = 10 \text{ K}\Omega$

S.No.	Capacitor value in µF	Theoretical frequency	Practical frequency Time period = T Frequency f =	
1.	0.0022			
2.	0.0033			
3.	0.01			

RESULT:

$$C = 0.0022 \mu F$$
 $C = 0.0033 \mu F$ $C = 0.01 \mu F$

Frequency of oscillations 'fo' =

- 1. Classify different types of oscillators?
- 2. Explain briefly the oscillatory action in tank circuit?
- 3. What are the factors affecting the frequency stability for an oscillators. Discuss?
- 4. Which amplifier is used for an oscillator and why?
- 5. Which oscillators are more stable either LC or RC?

HARTLEY OSCILLATOR

<u>AIM:</u> To study Hartley oscillator and calculate frequency of oscillations.

COMPONENTS & EQUIPMENT REQUIRED:

- 1. Hartley oscillator trainer kit
- 2. Cathode ray oscilloscope (CRO)
- 3. Connecting wires.

CIRCUIT DIAGRAM:

PROCEDURE:

- 1. Switch on the experimental kit and measure the dc voltage of the power supply.
- 2. Connect L_1 and $L_2 = 1$ mH to form a Hartley oscillator circuit.
- 3. Observe the output of the Hartley oscillator on CRO.
- 4. Adjust the Emitter resistor R_E to get an undistorted sine wave output.
- 5. Find the frequency of oscillations by measuring the time period of output waveform.
- 6. Compare the frequency with the theoretical frequency using the following equation

$$f = \frac{1}{2\pi\sqrt{L_{eq}C}}$$

Where $C = 0.01 \mu F$ and $L_{eq} = L_1 + L_2$

- 7. Now disconnect 1mH inductors and connect L_1 and $L_2 = 10$ mH to the Hartley oscillator circuits.
- 8. Find the frequency of the output wave form by measuring time period of the output wave form using CRO.
- 9. Compare the practical frequency with the theoretical frequency using the above equation.

OBSERVATIONS:

- 1. DC supply voltage = ______ volts
- 2. Frequency of oscillations

S.NO	Capacitor	Inductor	$L_{eq} = L_1 + L_2$	Theoretical frequency	Practical frequency	
					Time period	Frequency
1	- 0.01 μF	L ₁ =L ₂ =1mH				
2		L ₁ =L ₂ =10mH				

RESULT:

L = 1mH

L = 10mH

Frequency of oscillations 'f' =

- 1. What are the factors which influences the frequency stability of an oscillator?
- 2. Explain the concept of oscillatory circuit?
- 3. What is tank circuit?
- 4. What is the amount phase shift given by tank circuit in Hartley oscillatory?
- 5. What is un damped oscillator?

COLPITTS OSCILLATOR

AIM: To study Colpitts Oscillator and calculate frequency of oscillations.

COMPONENTS & EQUIPMENT REQUIRED:

- 1. Colpittts oscillator trainer kit
- 2. Cathode ray oscilloscope (CRO)
- 3. Connecting wires.

PROCEDURE:

- 1. Connect the circuit as shown in the circuit diagram.
- 2. Connect the capacitor $C_1 = 0.0022 \mu F$ and switch on the power supply.
- 3. Connect the output of colpitts oscillator to the CRO.
- 4. Observe the waveform on the CRO.
- 5. Find the frequency of oscillations by measuring the time period of output waveform.
- 6. Compare with the theoretical value.
- $f = \frac{1}{2\pi\sqrt{LC_{eq}}}$ 7. The theoretical value of frequency given by

$$C_{eq} = C_1 || C_2 = \frac{c_1 c_2}{c_1 + c_2}$$

 $C_{eq}=C_1||C_2|=\frac{c_1-c_2}{c_1+c_2}$ 8. Repeat step 1 through 6 for other values of capacitors $C_2=0.0033~\mu F$ and $C_3=0.0047\mu F$.

OBSERVATIONS:

S	Inductor	Capacitor	Theoretical frequency	Practical frequency		
No	mauctor			Time period(T)	Frequency (f)	
1		0.0022 μF				
2	5mH	0.0033 μF				
3		0.0047 μF				

RESULT:

 $C = 0.0022 \mu F$ $C = 0.0033 \mu F$

 $C = 0.0047 \mu F$

Frequency of oscillations 'f' =

- 1. LC oscillator are low frequency or high frequency oscillators?
- 2. What is Damped oscillator?
- 3. Which feedback is used in Colpitts Oscillator?
- 4. What is the purpose of RFC in Colpitts Oscillator?
- 5. What is Barkhausen criterion for Oscillations?

CLASS – A POWER AMPLIFIER

AIM: To obtain the efficiency (η) of a series fed class A power amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30)V
- 2. Audio Signal generator
- 3. Cathode ray oscilloscope
- 4. DMM
- 5. Components as per circuit diagram
- 6. Connecting wires.

CIRCUIT DIAGRAM

PROCEDURE:

- 1. Connect the circuit as per the circuit diagram.
- 2. Apply a voltage of 12V to the terminal of Vcc and measure the value of I_B using a DC ammeter. Calculate the value of I_{CQ} and V_{CEQ} using the DC analysis and ensure that the transistor is operating in class A operation.
- 3. Apply an input signal V_S of (mV) at 1KHz and increase its amplitude value until distortion starts appearing in output waveform.

- 4. Measure the $V_o(p-p)$ using the CRO.
- 5. Find the efficiency of the class A power amplifier using the formula

Efficiency
$$\eta = \frac{P_{ac}}{P_{dc}} \times 100 \%$$

OBSERVATIONS & CALCULATIONS:

1. Quiescent dc voltages: V_{CC}= _____ V.

$$V_{BE} = \underline{\hspace{1cm}} V.$$

$$V_{CE} = \underline{\hspace{1cm}} V.$$

$$I_B = \underline{\hspace{1cm}} \mu A$$

$$I_{CO} = \underline{\hspace{1cm}} mA.$$

2. Efficiency (η):

- a) Current $I_{dc} = \underline{\hspace{1cm}} mA$.
- b) DC input power $P_{dc} = V_{CC} \times I_{dc} =$ _____.
- c) Peak to peak output voltage $V_0 =$ _____ volts.
- d) AC output power $P_{ac} = \frac{V_o^2}{8R_L} =$ ______.

$$\therefore \text{Efficiency } \eta = \frac{P_{ac}}{P_{b}} \times 100 \% = \underline{\qquad} \%$$

RESULT:-

Hence determined the efficiency (η) of a series fed class A power amplifier.

Efficiency
$$\eta =$$

- 1. Which class of operation results in highest efficiency?
- 2. What is the value of β for a power transistor compared normal transistor?
- 3. Write the condition to avoid thermal runaway?
- 4. What is thermal resistance? Give the expression?
- 5. What is the maximum power dissipation in class-A power amplifier?

CLASS B COMPLEMENTARY SYMMETRY POWER AMPLIFIER

AIM: To determine efficiency of class B complementary symmetry power amplifier.

COMPONENTS & EQUIPMENT:

- 1. D.C Regulated Power supply (0-30)V
- 1. Audio Signal generator
- 2. Cathode ray oscilloscope
- 3. DMM
- 4. Ammeter (0-100mA)
- 5. Experimental kit with components as per circuit diagram
- 6. Connecting wires

CIRCUIT DIAGRAM:

Fig. Class-B Complementary Symmetry Power Amplifier

PROCEDURE:

- 1. Measure the supply voltage V_{CC} and the base to emitter voltage V_{BE} of transistors Q_1 and Q_2 using DMM and note down the readings. Ensure that both the transistors are in active region.
- 2. Switch 'ON' the signal generator and set the signal to 5V, 5KHz and apply it to the input terminals (V_s) .
- 3. Connect a CRO across the load resistance R_L of $1K\Omega$. Increase the input voltage till distortion sets in. Measure the output voltage V_O . (change the load resistance R_L to get crossover distortion if required).
- 4. Using an ammeter in ac mode measure the ac current 'Irms' through the load resistance (R_L)

OBSERVATIONS & CALCULATIONS:

1. Quiescent dc voltages:

$$V_{CC} = \underline{\hspace{1cm}} V$$

$$-V_{CC} = \underline{\hspace{1cm}} V.$$

 V_{BE1} of transistor $Q_1 = \underline{\hspace{1cm}} V$

$$V_{BE2}$$
 of transistor $Q_2 =$ _____ V

- 2. Output voltage: $V_0 =$ _____Volts p to p.
- 3. AC current through R_L $I_{rms} =$ MA.

4. a) AC output power
$$P_{ac} = \frac{V_o^2}{8R_I} =$$

b) DC input power $P_{dc} = 2 \times I_{dc} \times V_{CC}$

$$= 2 \times \frac{\text{Im}}{\pi} \times V_{\text{CC}} = 2 \times \frac{I_{rms} \times \sqrt{2}}{\pi} \times V_{\text{CC}} = (\frac{2\sqrt{2}I_{rms}}{\pi}) \times V_{\text{CC}}$$

_

∴ Efficiency
$$\eta = \frac{P_{ac}}{P_{dc}} \times 100 \% =$$

RESULT:

Hence determined the efficiency (η) of class – B complementary symmetry power amplifier.

Efficiency
$$(\eta) =$$

- 1. What is the need of complementary symmetry arrangement is required in Class B.
- 2. Tuned amplifiers make use of which class amplifiers?
- 3. What is meant by thermal resistance? What is the unit of it?
- 4. List out the types of distortions?
- 5. On which bases power amplifiers are classified?

MONOSTABLE MULTIVIBRATOR

AIM: To construct and study the operation of collector coupled Monostable Multivibrator.

EQUIPMENT & COMPONENTS REQUIRED:

- 1. D.C Regulated power supply(0-30V/1A)-----1No
- 2. Cathode Ray Oscilloscope
- 3. Bread board
- 4. Components as per circuit diagram
- 5. Probes & connecting wiresetc

CIRCUIT DIAGRAM:

Procedure:

- 1) Connect the circuit as shown in the circuit diagram.
- 2) Before applying trigger input, check the D.C condition for T1 OFF and T2 ON T1 OFF ∴ Vc1=12V and T2 ON ∴ Vc2≅0.2V(V_{ce (sat)})
- 3) Connect a signal generator to C.R.O to obtain a square wave of 8V peak to peak amplitude and frequency 20KHz after checking using CRO apply it to the circuit as shown.

- 4) Observe 'Vo' using a CRO measure its pulse width verify it with the theoretical value as Tp = 0.69RC, for different values of 'c'
- 5) Vary the trigger frequency and see that the pulse width is not changing for a particular value of 'c'.
- 6) Note down the waveforms at V_{c1} , V_{c2} , V_{B1} , and V_{B2} to scale
- 7) Choose C=4.7Kpf and 10Kpf

EXPECTED WAVEFORMS:

In stable state

$$Vb = Vf = \frac{-VbbR1}{R1 + R2} + \frac{Vce(sat)R2}{R1 + R2}$$

In quasi stable state

$$Vc2 = Vc2 = \frac{VccR1}{R1 + R2} + \frac{Vbe(sat)Rc}{R1 + Rc}$$

VIVA QUESTIONS:

- 1. Define monostable multivibrator?
- 2. What are the other names of monostable multivibrator?
- 3. Write two applications of monostable multivibrator?
- 4. How the time duration of pulse is decided?
- 5. Why –VBB is applied to one of the transistors of monostable multivibrator?
- 6. Calculate the base voltage of "off" transistors when no trigger is applied?
- 7. Draw the equivalent circuit to find out over shoot (o) voltage?
- 8. What happens to pulse width if trigger frequency is changed?
- 9. What is the technique used to give the trigger signal?
- 10. Why monostable multivibrator is called as voltage to time converter?

EXPERIMENT:12

MILLER VOLTAGE SWEEP CIRCUIT

<u>AIM:</u> to study the operation of Miller voltage sweep circuit.

EQUIPMENTS & COMPONENTS REQUIRED:

- 1. D.C Regulated power supply-----0-30V
- 2. Function Generator
- 3. CRO
- 4. Components as per circuit diagram

Circuit Diagram:

PROCEDURE:

- 1) Connect the circuit as shown in diagram.
- 2) Without applying the input square wave switch on the dc supply and check the D.C condition [T_1 on T_2 on i.e V_{CE1} (sat) $\cong 0.2V$ V_{BE} (sat) $\cong 0.7V$]
- 3) Feed the input square wave of frequency 1KHz and peak to peak amplitude 4 volts (see the peak to peak amplitude not crossing 4 volts) using a signal generator. Before feeding check the input signal using CRO.
- 4) Note down the output waveforms to scale using CRO for different values of C [$1\mu F$, (0.047+0.022) =0.069 μF and 10Kpf.]

Considering the effect of capacitance C_1 , the slope speed or sweep speed error is given by $es=Vs\ V(1-A+RRi+CCi)es=Vs\ V(1-A+RRi+CCi)$

Applications:

Miller sweep circuits are the most commonly used integrator circuit in many devices. It is a widely used saw tooth generator.