

We will be starting soon

Docker for Public Health Bioinformatics

Week 01 - Introduction to Docker and Containerization

PRESENTED BY:

Inês Mendes, PhD

(Course Introduction

Training Workshop Resources

Training Information, Communication, and Support

- GitHub Repository created to host training resources and information:
 - https://github.com/theiagen/Mid-Atlantic-Docker4PH-2025
- Support contact:
 - support@theiagen.com

Meet the Team

Inês Mendes, PhD

Senior Bioinformatics Scientist with Theiagen Genomics

Andrew Hale, BSc

Bioinformatics Developer with Theiagen Genomics

Training Objectives

Docker for Public Health Bioinformatics

- Articulate the utility of Docker and software containerization and their applications in public health bioinformatics;
- Describe the advantages and challenges of using containerized software for interoperable and reproducible pathogen genomics;
- Gain experience with the steps involved in developing and testing containerized software for use in public health bioinformatics;
- Gain familiarity with community-driven resources for public health bioinformatics, such as StaPH-B's docker container repository.

Course Agenda

Docker for Public Health Bioinformatics

Week 1 - April 01/03, 2025

- Introduction to the use of Docker and software containerization for public health bioinformatics
- Hands-on Exercise: Accessing the Course Repository, VS Code and Docker

OBJECTIVE

Goals by End of Week 1

- Understand the concept of software containerization
- Understand the differences between Virtual Machines (VMs), virtual environments, and containers
- Understand the advantages and challenges of containers
- Learn the applications of containers in public health
- Learn how to utilize a container on the command line

Ease of software install

• Avoid this \rightarrow

How to get a bioinformatics headache

- See tweet about new published tool
- Read abstract sounds awesome!
- 3. Fail to find link to source code eventually Google it
- 4. Attempt to compile and install it
- 5. Google for 30 min for fixes
- 6. Finally get it built
- 7. Run it on tiny data set
- 8. Get a vague error
- 9. Delete and never revisit it again

\$ docker run staphb/spades spades.py --help

Usage: spades.py [options] -o <output dir>

SPAdes genome assembler v3.15.5

One command to download and "install" a program onto your computer:

```
$ docker pull staphb/spades
Using default tag: latest
latest: Pulling from staphb/spades
b549f31133a9: Already exists
bf4358dc43e4: Pull complete
74ff0d5990f9: Pull complete
4f4fb700ef54: Pull complete
Digest:
sha256:b33f57d65cb63d631c6e3ba9b2a1c5a11ff4351475f38a1108ec61a5bf430077
Status: Downloaded newer image for staphb/spades:latest
docker.io/staphb/spades:latest
```


Reproducibility

- A program may behave differently depending on how it and it's dependencies are installed
 - example: SPAdes requires python
 - Which python version is installed? 2.7, 3.4, 3.5?
- Docker images are static, minimizing the chance that the program will run differently when installed on different computers
 - (latest version) StaPH-B SPAdes docker image has python 3.8.10
- Goal = have the software run the same exact way, every time

Reproducibility

- Containers allow for pinning installations of specific:
 - database versions
 - software versions
- Can help with validating assays
 - <u>Example:</u> E. coli/STEC serotyping via SerotypeFinder run via a docker container

Portability

- Run software on almost ANY computer/cluster/server/HPC
- Containers are easy to share
- Solves the issue of the all to familiar phrase:

"Well it works on my computer..."

Build complex & modular workflows

- Spend less time installing software, spend more time doing science
- Nearly all workflow managers utilize & prefer containers:
 - Nextflow
 - WDL
 - Snakemake

Example WDL task, utilizes docker image for genome assembly

```
version 1.0
task shovill pe {
    File read1 cleaned
    File read2 cleaned
    String samplename
   String docker = "quay.io/staphb/shovill:1.1.0"
    INC WIN COULTD LENGTH = 200
  command <<<
    shovill --version | head -1 | tee VERSION
    --outdir out \
    --R1 ~{read1 cleaned} \
    --R2 ~{read2 cleaned} \
    --minlen ~{min contig length}
    mv out/contigs.fa out/~{samplename} contigs.fasta
    mv out/contigs.gfa out/~{samplename} contigs.gfa
    File assembly fasta = "out/~{samplename} contigs.fasta"
    File contigs gfa = "out/~{samplename} contigs.gfa"
    String shovill version = read string("VERSION")
  runtime {
      memory: "16 GB"
      cpu: 4
      disks: "local-disk 100 SSD"
      preemptible: 0
```

Build complex & modular workflows

- Example workflows you may be familiar with:
 - WDL
 - TheiaCov, TheiaProk, TheiaEuk, any WDL workflows available on Terra.bio
- Nextflow
 - <u>Bactopia</u>, <u>Cecret</u>, <u>Donut Falls</u>,
 <u>MycoSNP-nf</u>, <u>PHoeNIx</u>,
 nf-core/viralrecon

```
version 1.0
task shovill pe {
    File read1 cleaned
    File read2 cleaned
    String samplename
   String docker = "quay.io/staphb/shovill:1.1.0"
    INC WIN COULTD LENGTH = 200
  command <<<
    shovill --version | head -1 | tee VERSION
    --outdir out \
    --R1 ~{read1 cleaned} \
    --R2 ~{read2 cleaned} \
    --minlen ~{min contig length}
    mv out/contigs.fa out/~{samplename} contigs.fasta
    mv out/contigs.gfa out/~{samplename} contigs.gfa
    File assembly fasta = "out/~{samplename} contigs.fasta"
    File contigs gfa = "out/~{samplename} contigs.gfa"
    String shovill version = read string("VERSION")
  runtime {
      memory: "16 GB"
```

100 SSD"

All of these use containers

Summary:

- Ease of installing bioinformatics software
- Reproducibility
- Portability
- Build complex and modular bioinformatics workflows

What is a Container?

Containers

- Software container
- A standard unit of software that packages up code and all dependencies so the application runs quickly and reliably from one computing environment to another
 - https://www.docker.com/resources/what-container/
- Leading platforms for containers running containers
 - Docker
 - Appteiner
 - o <u>podman</u>

- Run on existing operating system (OS) & hardware
- Can include an OS and dependencies, but in a smaller format (<1GB usually)
- Boot very fast

- VMs use more compute resources to run than containers
- Have OS, dependencies, but in a much larger format (10+ GB)
- Slow to boot

	Containers	Virtual environments (like conda or venv)
architecture	Includes complete filesystem, and dependencies required to run software	Creates directories only containing required dependencies and python executable

	Containers	Virtual environments (like conda or venv)
architecture	Includes complete filesystem, and dependencies required to run software	Creates directories only containing required dependencies and python executable
portability	Highly portable to any compute environment that can run docker	Usually specific to host operating system, but offers some portability with conda recipe files

	Containers	Virtual environments (like conda or venv)
architecture	Includes complete filesystem, and dependencies required to run software	Creates directories only containing required dependencies and python executable
portability	Highly portable to any compute environment that can run docker	Usually specific to host operating system, but offers some portability with conda recipe files
isolation	Complete isolation from host system	Limited isolation from host system, host system dependencies can affect environment

	Containers	Virtual environments (like conda or venv)
architecture	Includes complete filesystem, and dependencies required to run software	Creates directories only containing required dependencies and python executable
portability	Highly portable to any compute environment that can run docker	Usually specific to host operating system, but offers some portability with conda recipe files
isolation	Complete isolation from host system	Limited isolation from host system, host system dependencies can affect environment
resource requirements	Requires significant resources to operate (cpu, disk space, and memory). Still less than a traditional VM	Requires fewer resources and relies on host

	Containers	Virtual environments (like conda or venv)
architecture	Includes complete filesystem, and dependencies required to run software	Creates directories only containing required dependencies and python executable
portability	Highly portable to any compute environment that can run docker	Usually specific to host operating system, but offers some portability with conda recipe files
isolation	Complete isolation from host system	Limited isolation from host system, host system dependencies can affect environment
resource requirements	Requires significant resources to operate (cpu, disk space, and memory). Still less than a traditional VM	Requires fewer resources and relies on host
deployment	Often used in complex, production environments	Often used for development, testing, and analysis Theigen°

Docker Architecture

Docker image vs Docker container

- A <u>docker image</u> is a <u>read-only</u> template with instructions for creating a Docker container
- Similar to the file type used to install an operating system -ISO

- A <u>docker container</u> is the runnable instance of an image
- Containers are ephemeral (i.e. are temporary and usually deleted after use)

docker **image** is used to create the docker **container**

Central Dogma of Containers

The Dockerfile

- In order to build a docker image, you need at a minimum one file: **the Dockerfile**
 - Dockerfile = set of instructions used to build a docker image
 - Similar to an installation script or a .yml file used for making/sharing conda environments

```
FROM ubuntu:xenial
    LABEL base.image="ubuntu:xenial"
    LABEL software="SPAdes"
     LABEL software.version="3.13.0"
    LABEL description="de novo DBG genome assembler"
    LABEL website="http://cab.spbu.ru/files/release3.13.0/manual.html"
    # Maintainer
    MAINTAINER Curtis Kapsak (curtis.kapsak@state.co.us>
14 RUN apt-get update && apt-get install -y python \
      wget
    RUN wget http://cab.spbu.ru/files/release3.13.0/SPAdes-3.13.0-Linux.tar.gz &&
       tar -xzf SPAdes-3.13.0-Linux.tar.gz && \
      rm -r SPAdes-3.13.0-Linux.tar.gz && \
      mkdir /data
    ENV PATH="${PATH}:/SPAdes-3.13.0-Linux/bin"
     WORKDIR /data
```


The Dockerfile

- Dockerfile instructions (FROM, RUN, COPY, ENV, etc.) will add a "layer" to the docker image
- Images are multi-layered and different images may share layers like the base image
 - FROM ubuntu:focal

Spades Dockerfile

 https://github.com/StaPH-B/docker-builds/blob/master/ spades/3.15.5/Dockerfile

Dockerfile Cheat Sheet

 https://kapeli.com/cheat_sheets/Dockerfile.docset/Cont ents/Resources/Documents/index

```
FROM ubuntu: focal as app
      to make it easier to upgrade for new versions; ARG variables only persist during docker image build time
     ARG SPADES VER="3.15.5"
     LABEL base.image="ubuntu:focal"
     LABEL dockerfile.version="2"
     LABEL software="SPAdes"
     LABEL software.version="${SPADES VER}"
     LABEL description="de novo DBG genome assembler"
     LABEL website="https://github.com/ablab/spades"
     LABEL license="https://github.com/ablab/spades/blob/v3.15.3/assembler/LICENSE"
     LABEL maintainer="Curtis Kapsak"
     LABEL maintainer.email="kapsakcj@gmail.com"
     # install dependencies; cleanup apt garbage
     # python v3.8.10 is installed here; point 'python' to python3
     RUN apt-get update && apt-get install --no-install-recommends -y python3 \
      python3-distutils \
      wget \
      pigz \
      ca-certificates && \
      apt-get autoclean && rm -rf /var/lib/apt/lists/* && \
      update-alternatives --install /usr/bin/python python /usr/bin/python3 10
     # install SPAdes binary; make /data
     RUN wget http://cab.spbu.ru/files/release${SPADES VER}/SPAdes-${SPADES VER}-Linux.tar.gz && \
       tar -xzf SPAdes-${SPADES_VER}-Linux.tar.gz && \
       rm -r SPAdes-${SPADES VER}-Linux.tar.gz && \
       mkdir /data
     # set PATH and locale settings for singularity
    ENV LC_ALL=C.UTF-8 \
34
         PATH="${PATH}:/SPAdes-${SPADES_VER}-Linux/bin"
35
     WORKDIR /data
    # test layer
    FROM app as test
    # print version and run the supplied test flag
    RUN spades.py --version && spades.py --test && spades.py --help
```

The Container

Docker Images can be built locally **or** pre-built images can be downloaded from public repositories like:

- Docker hub: https://hub.docker.com/
- Quay.io: https://quay.io/
- GitHub container registry (GHCR): https://ghcr.io/
- Cloud provider container registries:
 - GCP Artifact Registry
 - Amazon Elastic Container Registry
 - Microsoft Azure Container Registry
- Private registries are an (paid) option

Container Registries

- <u>Docker Hub:</u> https://hub.docker.com
- Quay.io: https://quay.io/

Container Registries

- All bioconda packages are available as docker images on quay.io:
 - https://bioconda.github.io/recipes/spades/README.html

Container Registries

- Sometimes bioinfo tool developers publish their own docker images
 - Bakta https://github.com/oschwengers/bakta
 - NCBI AMRFinderPlus -<u>https://github.com/ncbi/amr/wiki/Installing-AMRFinder</u>

Docker Architecture

Summary:

- Dockerfile is used to create the docker image
- Docker image is used to create the docker container
 - Container is the runnable instance of an image

Docker Architecture

Summary:

- Where can I get docker images?
 - Container registries docker hub, quay.io, github container registry, cloud provider registries (GCP, AWS, Azure)
- Container = A standard unit of software that packages up code and all dependencies so the application runs quickly and reliably from one computing environment to another

Docker on the Command Line

Docker on the Command Line

Common docker commands:

docker pull

docker run

docker build

docker images

docker system prune

• docker rmi

docker inspect

downloads an image from a repository

- run a command in a container

- build an image from a Dockerfile

- list all available images

- delete unused images and containers

- remove an image

- get information about an image

Docker CLI Cheat Sheet:

https://docs.docker.com/get-started/docker_cheatsheet.pdf

Further Reading & Resources

- Docker Documentation a wealth of info here. Note that we use Docker Community Edition, as you have to pay for the Enterprise Edition
 - https://docs.docker.com/
- An awesome tutorial/workshop on docker for bioinformatics
 - https://github.com/PawseySC/bio-workshop-18
- Template for your Dockerfile
- https://github.com/StaPH-B/docker-builds/blob/master/dockerfile-temp late/Dockerfile
- Some best practices
 - https://staphb.org/docker-builds/make_containers/

(Hands-On Exercise

Exercise 01: Accessing the Course Repository, VS Code and Docker

Exercise Goal:

- Access development environment via GitPod
- Use VS Code to most commonly used Docker commands
- Use a docker container to download a Klebsiella pneumoniae genome FASTA file from NCBI
- Use a docker container to run <u>kleborate</u> on FASTA file for subtyping, serotyping, virulence and A.M.R. prediction

www.theiagen.com support@theiagen.com