Estimation

- What is a good estimate for porosity of this formation based on the sampled data?
- How well does this sample set represent the population?
- How good is this estimate?
 - ✓ How precise is this estimate?
 - ✓ What is the bias on this estimate?

Review on Nomenclature

Sample set:

Population:

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\overline{x} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\hat{p} \sim N\left(p, \frac{p(1-p)}{n}\right), np \ge 15 \quad and \quad n(1-p) \ge 15$$

Confidence Interval

- A confidence interval is constructed by taking a point estimate and adding and subtracting a margin of error.
- → Example: I am 95% confident that population mean will fall in this interval

Example: if sampling distribution is normal, then 95% confidence interval will be equal to:

Point Estimate ± Margin of Error

$$\hat{p}\pm 1.96se$$
 \longrightarrow Standard error

- A 95% confidence interval <u>does not</u> mean that 95% of the sample data lie within the interval.
- The 95% confidence relates to the reliability of the estimation procedure.

Confidence Interval for Population Proportion

→ Estimated standard deviation of a sampling distribution

Example

95% *CI for*
$$p = \hat{p} \pm 1.96se$$

What does 95% Confidence Mean?

95% Confidence

95% Confidence

Confidence Level

Confidence Level	Error Probability	z-Score	Confidence Interval
0.90	0.10	1.645	$\hat{p} \pm 1.645$ se
0.95	0.05	1.96	$\hat{p} \pm 1.96se$
0.99	0.01	2.58	$\hat{p} \pm 2.58se$

How can we calculate it?

Norminv (1-(1-CL)/2,0,1)

How to Calculate z-Score?

Confidence Interval for Population Mean

t-score, Provides wider confidence interval, which is needed because of the approximations

If sample size (n) is huge

 α = 1- confidence level