Lecture 8

Normal Random Variables

Text: Chapter 4

STAT 8010 Statistical Methods I February 3, 2020 Normal Random Variables

Normal Density

Standard Normal

ums of Normal andom Variables

Whitney Huang Clemson University

Agenda

Normal Random Variables

Normal Densit Curves

Standard Normal

ums of Normal andom Variables

Normal Density Curves

Standard Normal

tums of Normal landom Variables

Probability Density

CLEMS N U N I V E R S I T Y

Normal Density

Standard Norma

ums of Normal andom Variables

Different μ but same σ^2

CLEMS N

Normal Density

Standard Norma

ums of Normal andom Variables

Same μ but different σ^2

CLEMS#N

Normal Density

Standard Norma

ums of Normal andom Variables

ullet The parameter μ determines the center of the distribution

CLEMS N

Normal Density Curves

Standard Norma

- ullet The parameter μ determines the center of the distribution
- \bullet The parameter σ^2 determines the spread of the distribution

Normal Density Curves

- \bullet The parameter μ determines the center of the distribution
- ullet The parameter σ^2 determines the spread of the distribution
- Also called bell-shaped distribution

Normal Random Variables

Normal Density Curves

Standard Norma

Let X be a Normal r.v.

• The support for $X: (-\infty, \infty)$

Normal Random Variables

Normal Density Curves

Standard Normal

Let X be a Normal r.v.

• The support for $X: (-\infty, \infty)$

Normal Random Variables

Normal Density Curves

Standard Normal

Let X be a Normal r.v.

• The support for $X: (-\infty, \infty)$

• Parameters: μ : mean and σ^2 : variance

Normal Random Variables

Normal Density Curves

Standard Normal

Let X be a Normal r.v.

• The support for $X: (-\infty, \infty)$

• Parameters: μ : mean and σ^2 : variance

Normal Random Variables

Normal Density Curves

Standard Normal

Sums of Normal Random Variables

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$

Sums of Normal Random Variables

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$

- The support for $X: (-\infty, \infty)$
- Parameters: μ : mean and σ^2 : variance
- The probability density function (pdf): $\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ for $-\infty < x < \infty$
- The cumulative distribution function (cdf): No explicit form, look at the value $\Phi(\frac{x-\mu}{\sigma})$ for $-\infty < x < \infty$ from standard normal table
- The expected value: $\mathbb{E}[X] = \mu$
- The variance: $Var(X) = \sigma^2$

Standard Normal $Z \sim N(\mu = 0, \sigma^2 = 1)$

• Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

Curves

Standard Normal

Normal Density Curves

Standard Normal

Sums of Normal Random Variables

• Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table

Normal Density Curves

Standard Normal

Sums of Normal Random Variables

• Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

• The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table

• Normal random variable X with mean μ and standard deviation σ can be converted to standard normal Z by the following :

$$Z = \frac{X - \mu}{\sigma}$$

- The cdf of the standard normal, denoted by $\Phi(z)$, can be found from the standard normal table
- The probability $\mathbb{P}(a \le X \le b)$ where $X \sim N(\mu, \sigma^2)$ can be computed

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma})$$
$$= \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$

Curves

Standard Normal (Z) Table

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9144	0.9750	0.9756	0.9761	0.9767

Normal Random Variables

Normal Density

Standard Normal

Standard Normal (Z) **Table Cont'd**

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Normal Random Variables

Normal Density

Standard Normal

Standard Normal (Z) Table Cont'd

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767

Normal Random Variables

Normal Density
Curves

Standard Normal

Properties of Φ

Normal Random Variables

Normal Densit

Standard Norma

Standard Normal

Sums of Normal Random Variables

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

Standard Normal

Sums of Normal Random Variables

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$

- $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0
- $\Phi(-z) = 1 \Phi(z)$

• $\Phi(0) = .50 \Rightarrow$ Mean and Median (50_{th} percentile) for standard normal are both 0

- $\Phi(-z) = 1 \Phi(z)$

The Empirical Rules provide a quick way to approximate certain probabilities for the Normal Distribution as the following table:

Interval	Percentage with interval
$\mu \pm \sigma$	68%
$\mu \pm 2\sigma$	95%
$\mu \pm 3\sigma$	99.7%

Normal Density

Standard Norma

Random Variables

Let us examine Z. Find the following probabilities with respect to Z:

- Z is at most -1.75
- Z is between -2 and 2 inclusive
- Z is less than .5

Example Cont'd

Normal Random Variables

Normal Densit

Standard Normal

Sums of Normal Random Variables

Solution.

1
$$\mathbb{P}(Z \le -1.75) = \Phi(-1.75) = .0401$$

Example Cont'd

Normal Random Variables

Normal Densit

Standard Normal

ums of Normal andom Variables

Solution.

1
$$\mathbb{P}(Z \le -1.75) = \Phi(-1.75) = .0401$$

Example Cont'd

Normal Densit

Standard Normal

lanuaru Normai

Solution.

Suppose a STAT-8020 exam score follows a normal distribution with mean 78 and variance 36. Let *X* to denote the exam score. answer the following questions:

- What is the probability that a randomly chosen test taker got a score greater than 84?
- Suppose the passing score for this exam is 75. What is the probability that a randomly chosen test taker got a score greater than 84 given that she/he pass the exam?
- Using the empirical rule to find the 84_{th} percentile.

tums of Normal tandom Variables

Find the following percentile with respect to Z

- 0 10_{th} percentile 0
- 2 55_{th} percentile •
- 90_{th} percentile

$$Q$$
 $Z_{10} = -1.28$

$$Z_{55} = 0.13$$

3
$$Z_{90} = 1.28$$

CLEMS N UNIVERSITY

Normal Densit

Standard Normal

Sums of Normal Random Variables Let X be Normal with a mean of 20 and a variance of 49. Find the following probabilities and percentile:

- igotimes X is between 15 and 23 igotimes
- X is more than 30
- X is more than 12 knowing it is less than 20
- What is the value that is smaller than 20% of the distribution?

CLEMS N

Normal Densit

Standard Normal

Sums of Normal Random Variables

Solution.

$$\mathbb{P}(X > 30) = 1 - \mathbb{P}(X \le 30) = 1 - \Phi(\frac{30-20}{7}) = 1 - .9236 = .0764$$

Sums of Normal Random Variables

Normal Random Variables

Curves

Standard Normal

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

Sums of Normal Random Variables

Normal Random Variables

Normal Density Curves

tandard Normal

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

Sums of Normal Random Variables

Normal Random Variables

Normal Density Curves

tandard Normal

Sums of Normal Random Variables

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

• Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$

If X_i $1 \le i \le n$ are independent normal random variables with mean μ_i are variance σ_i^2 , respectively.

- Let $S_n = \sum_{i=1}^n X_i$ then $S_n \sim N(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2)$
- This can be applied for any integer n

Let X_1 , X_2 , and X_3 be mutually independent, Normal random variables. Let their means and standard deviations be 3k and k for k = 1, 2, and 3 respectively. Find the following distributions:

- (2) $X_1 + 2X_2 3X_3$

②
$$X_1 + 2X_2 - 3X_3 \sim N(\mu = 3 + 12 - 27 = -12, \sigma^2 = 1^2 + 4 \times 2^2 + 9 \times 3^2 = 98)$$
 ①

3
$$X_1 + 5X_3 \sim N(\mu = 3 + 45 = 48, \sigma^2 = 1^2 + 25 \times 3^2 = 226)$$