0110110001 1011110110 BINARYLOGIC 0111011010 0101100011

BINARY LOGIC

Boolean Algebra

Today the computing (information) technology is based on Binary logic

Binary (True-False) logic

- The Greek philosopher Aristotle (384-322 BC) founded a system of logic based on two types of propositions: True and False. This lead to the four foundational laws of logic:
 - Law of Identity: ("A" is "A" or ("A" = "A");
 - Law of Non-contradiction: ("A" is not "non-A");
 - Law of the Excluded Middle: (Something is either "A" or "non-A");
 - Law of Rational Inference...
 - all letters are characters
 - A is a Letter
 - A is a Character

Aristotle gestures to the earth, representing his belief in knowledge through empirical observation and experience, while holding a copy of his Nicomachean Ethics_in his hand, while Plato gestures to the heavens, representing his belief in The Forms.

Centuries later...

Mathematicians (Leibniz, Boole, ...) and Engineers (Shannon, Shestakov) extended the Aristotelian Logic to symbolic logic to algebra of logic to logic circuits ...

Gottfried Wilhelm von LEIBNIZ (1646-1716)

TABLE 86 MEMOIRES DE L'ACADEMIE ROYALE

Nombres.	bres entiers au-deffo plus haut degré. Ca me si on disoit, par e	r ici, c'ess exemple, qu	com- 10	2 I
	ou 7 est la somme d	e quatre, a	e deux [111	1171 & a'un.
1111-11	Et que 1101 ou 13 est	la fomme d	e huit, quatr	e 1000 8
000010 2	& un. Cette propriét	é lert aux E	mayeurs pou	1r 100 4
1 1 1 1 7	peser toutes sortes de	mailes avec	peu de poids	5, 1 1
000100 4	& pourroit servir dans	les monnoy	es pour doi	1- 1101 13
000101	ner plusieurs valeurs av	rec peu de p	ieces.	Cours à Grina
000110 6	Cette expression des	S Nombres	etant etablic	, left a faire
000111 7	très-facilement toutes	fortes d'ope	rations.	
0 0 1000 8		110 6	101 5	1110 14
0 1001 0	Pour l'Addition 3	111 7	1011	10001 17
01 0101 0	par exemple.		10000 16	11111 31
0 0 1011 11		1101 13		
0 0 1 100 12	Pour la Soustrac-	1101 13	10000116	11111 31
0 0 1101 13	tion.	$\frac{111}{110} \frac{7}{6}$	1011	10001 17
0 0 1110 14	******	11011 6	101 5	1110 14
0 0 1111 15		11 3	101 5	101 5
0 100000 16		11 3	11 3	101 5
0 10001 17	Pour la Multi-	11	101	11
010010 18	plication.	11	101	1010
0 10011 19		1001 9	1111	11001 25
0 10100 20		,,, ,		-2002/1-9,
0 10101 21	D 1. D''.	5 4+11	101 5	
0 10110 22	Pour la Division.	311 *** 1) Н	

0	0	0	0	o¦	0		1
O	0	0	o	0	I		
0	0	0	0	1	0		
0	0	o	0	i	I		
0	o	0	1	00	5		
0	0	o	ſ	0	I		ļ
	0		Į	I	2		
0	0	0	I	1	I		
		'			_	Į	

George Boole, Mathematician, 1815-1864

«The Mathematical Analysis of Logic»

«The Laws of Thought »

Symbolic Algebra Boolean algebra

Claude Shannon, Victor Ivanovich Shestakov

Claude Shannon (1916-2001):
 «A symbolic analysis of relay and switching circuits», Thesis (M.S.E.E)-Massachusetts
 Institute of Technology, 1940.

Victor Ivanovich Shestakov (1907-1987):
 «Mathematical logic and foundations»,
 Ph.D. Dissertation-Moscow State
 University, 1939.

Applied the Algebra of logic -> Logic Circuits

Logic ... logic circuits

George Boole

- Aristotle (400 B.C): Logic (True and False)
- Muslim mathematicians (middle ages) → survived Aristotelian and other manuscripts
- Leibniz (1679-1701): Aristotelian logic → Mathematical Logic
- Boole (1854): Gave a meaning to Mathematical Logic → Algebra of Logic
- Claude Shannon (1937) and Victor Ivanovich Shestakov (1935): Applied the Algebra of logic → Logic Circuits

Basic Theorems of Boolean algebra

Boolean Theorems

- Single Variable: f(A)
- Multiple variable: f(A,B,C,...).

Single Variable Boolean Theorems

$$f(A) = A \bullet o$$

Operation with zero (1); $A \cdot 0 = ?$

Operation with zero (1); $A \cdot 0 = ?$

A	0	Output
0	0	0
1	0	0

Operation with one (2); $A \cdot 1 = ?$

Operation with one (2); $A \cdot 1 = ?$

Α	1	Output
0	1	0
1	1	1

Idempotent theorem (3); $A \cdot A = ?$

Idempotent theorem (3); $A \cdot A = ?$

Α	A	Output
0	0	0
1	1	1

Complementary (4); $A \cdot A' = ?$

Complementary (4); $A \cdot A' = ?$

Α	A'	Output
0	1	0
1	0	0

Operation with zero (5); A + 0 = ?

Operation with zero (5); A + 0 = A

Α	0	Output
0	0	0
1	0	1

Operation with one (6); A + 1 = ?

Operation with one (6); A + 1 = 1

Α	1	Output
0	1	1
1	1	1

Idempotent (7); A + A = ?

Idempotent (7); A + A = A

Α	A	Output
0	0	0
1	1	1

Complementary (8); A + A' = ?

Complementary (8); A + A' = 1

Α	A'	Output
0	1	1
1	0	1

Involution theorem (9); A" = ?

Involution theorem (9); A'' = A

Α"	A'	Output
0	1	0
1	0	1

The 9 basic Boolean theorems

$$\rightarrow$$
 A • 0 = 0

$$\rightarrow$$
 A • 1 = A

$$\rightarrow$$
 $A \cdot A = A$

$$\rightarrow$$
 A • A' = 0

$$\rightarrow$$
 A + 0 = A

$$\rightarrow$$
 A + 1 = 1

$$\rightarrow$$
 A + A = A

$$\rightarrow$$
 A + A' = 1

$$A' = \overline{A}$$

MultiVariable Boolean theorems

$$f(A,B) = A + B$$

Multivariable theorems(1)

Commutative Laws:

- **♦** A+B = B+A
- $A \bullet B = B \bullet A$

Multivariable theorems(2)

Associative Laws:

$$A+(B+C) = (A+B)+C = A+B+C$$

$$A \bullet (B \bullet C) = (A \bullet B) \bullet C = A \bullet B \bullet C$$

Multivariable theorems(3)

Distributed Law over Multiplication

$$(D+A) \bullet (B+C) = D \bullet B + D \bullet C + A \bullet B + A \bullet C$$

$$A \bullet (B+C) = A \bullet B + A \bullet C$$

Multivariable theorems(3)

Distributed Law over Addition

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

Since it is not obvious...

•
$$A+(B \bullet C) \stackrel{?}{=} (A+B) \bullet (A+C)$$

Prove it ... (5 minutes)

Proof ...

$$A+(B\bullet C)=(A+B)\bullet (A+C)$$

Distribute ...

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$
$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

... A•A

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

Factor-out common terms

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

Remove: (1+C)=1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A +A \bullet C+A \bullet B+B \bullet C$$

$$= A \bullet (1+C)+A \bullet B+B \bullet C$$

$$= A \bullet 1 +A \bullet B+B \bullet C$$

$A \bullet 1 = A$

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A +A \bullet C+A \bullet B+B \bullet C$$

$$= A \bullet (1+C)+A \bullet B+B \bullet C$$

$$= A \bullet 1 +A \bullet B+B \bullet C$$

Factor-out common terms

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A + A \bullet C + A \bullet B + B \bullet C$$

$$= A + A \bullet C + A \bullet B + B \bullet C$$

$$= A \bullet (1+C) + A \bullet B + B \bullet C$$

$$= A + A \bullet B + B \bullet C$$

$$= A + A \bullet B + B \bullet C$$

$$= A \bullet (1+B) + B \bullet C$$

Remove (1+B)=1

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A +A \bullet C+A \bullet B+B \bullet C$$

$$= A \bullet (1+C)+A \bullet B+B \bullet C$$

$$= A +A \bullet B+B \bullet C$$

$$= A +A \bullet B+B \bullet C$$

$$= A \bullet (1+B)+B \bullet C$$

$A \circ 1 = A$

$$A+(B \bullet C) = (A+B) \bullet (A+C)$$

$$= A \bullet A+A \bullet C+A \bullet B+B \bullet C$$

$$= A +A \bullet C+A \bullet B+B \bullet C$$

$$= A \bullet (1+C)+A \bullet B+B \bullet C$$

$$= A +A \bullet B+B \bullet C$$

$$= A +A \bullet B+B \bullet C$$

$$= A +A \bullet B+B \bullet C$$

Done ...

$$A+(B \circ C) = (A+B) \circ (A+C)$$

$$= A \circ A + A \circ C + A \circ B + B \circ C$$

$$= A \circ + A \circ C + A \circ B + B \circ C$$

$$= A \circ (1+C) + A \circ B + B \circ C$$

$$= A \circ + A \circ B + B \circ C$$

$$= A \circ A \circ A \circ B + B \circ C$$

$$= A \circ A \circ A \circ B + B \circ C$$

 $A+(B \bullet C)$

$$A+(B\bullet C)=(A+B)\bullet (A+C)$$

Another way to prove the equation?

$A+(B\bullet C)=(A+B)\bullet (A+C)$

A	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$A+(B\bullet C)=(A+B)\bullet (A+C)$

Α	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)
0	0	0	0				
0	0	1	0				
0	1	0	1				
0	1	1	1				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	1				

$$A+(B\bullet C)=(A+B)\bullet (A+C)$$

Α	В	С	A+B	A+C	(A+B)(A+C)	BC	A+(BC)
0	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1
1	0	1	1	1	1	0	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Perfect induction

Useful formula (UF-1)

• A+A•B = A

• Proof ...

Useful formula

- A+A•B = A
- A•(1+B)
- A

More useful formulas

•
$$A+A'B = A+B$$
 (UF-2)

•
$$A' + AB = A' + B$$
 (UF-3)

•
$$A(A+B) = A$$
 (UF-4)

$$A + A'B = A + B$$
; Proof- 1

$$A + A'B = A + AB + A'B$$
 $(A = A + AB)$
= $A + B(A + A')$ $(A + A' = 1)$
= $A + B$

A' + AB = A' + B; proof-2

$$A' + AB = A' + A'B + AB$$
 $(A' = A' + A'B)$
= $A' + B(A' + A)$ $(A + A' = 1)$
= $A' + B$

A(A+B) = A; proof-3

$$A(A+B) = AA + AB$$

$$= A + AB$$

$$= A(1+B)$$

$$= A 1$$

$$= A$$