

planetmath.org

Math for the people, by the people.

Brauer's ovals theorem

Canonical name BrauersOvalsTheorem
Date of creation 2013-03-22 15:35:30
Last modified on 2013-03-22 15:35:30

Owner Andrea Ambrosio (7332) Last modified by Andrea Ambrosio (7332)

Numerical id 15

Author Andrea Ambrosio (7332)

Entry type Algorithm Classification msc 15A42

Related topic GershgorinsCircleTheorem

Let A be a square complex matrix, $R_i = \sum_{j \neq i} |a_{ij}|$ $1 \leq i \leq n$. Let's consider the ovals of this kind: $O_{ij} = \{z \in \mathbb{C} : |z - a_{ii}| |z - a_{jj}| \leq R_i R_j\} \quad \forall i \neq j$. Such ovals are called $Cassini\ ovals$.

Theorem (A. Brauer): All the eigenvalues of A lie inside the union of these $\frac{n(n-1)}{2}$ ovals of Cassini: $\sigma(A) \subseteq \bigcup_{i \neq j} O_{ij}$.

Proof: Let (λ, \mathbf{v}) be an eigenvalue-eigenvector pair for A, and let v_p, v_q be the components of \mathbf{v} with the two maximal absolute values, that is $|v_p| \ge |v_q| \ge |v_i| \quad \forall i \ne p$. (Note that $|v_p| \ne 0$, otherwise \mathbf{v} should be all-zero, in contrast with eigenvector definition). We can also assume that $|v_q|$ is not zero, because otherwise $A\mathbf{v} = \lambda \mathbf{v}$ would imply $a_{pp} = \lambda$, which trivially verifies the thesis. Then, since $A\mathbf{v} = \lambda \mathbf{v}$, we have:

$$(\lambda - a_{pp})v_p = \sum_{j=1, j \neq p}^n a_{pj}v_j$$
 and so
$$|\lambda - a_{pp}| |v_p| = \left| \sum_{j=1, j \neq p}^n a_{pj}v_j \right| \leq \sum_{j=1, j \neq p}^n |a_{pj}| |v_j| \leq \sum_{j=1, j \neq p}^n |a_{pj}| |v_q| = R_p |v_q|$$
 that is
$$|\lambda - a_{pp}| \leq R_p \frac{|v_q|}{|v_p|}.$$
 In the same way, we obtain:
$$|\lambda - a_{qq}| \leq R_q \frac{|v_p|}{|v_q|}.$$
 Multiplying the two inequalities, the two fractional terms vanish, and we

Multiplying the two inequalities, the two fractional terms vanish, and we get:

$$|\lambda - a_{pp}| |\lambda - a_{qq}| \le R_p R_q$$
 which is the thesis. \square
Remarks:

1) Much like the Levy-Desplanques theorem states a sufficient condition, based on Gerschgorin circles, for non-singularity of a matrix, Brauer's theorem can be employed to state a similar sufficient condition; namely, the following result of Ostrowski holds:

Corollary: Let A be a $n \times n$ complex-valued matrix; if for all $i \neq j$ we have $|a_{ii}| |a_{jj}| > R_i R_j$, then A is non singular.

The proof is obvious, since, by Brauer's theorem, the above condition excludes the point z=0 from the spectrum of A, implying this way $\det(A) \neq 0$.

2) Since both Gerschgorin's and Brauer's results rely upon the same 2n numbers, namely $\{a_{ii}\}_{i=1}^n$ and $\{R_i\}_{i=1}^n$, one may wonder if Brauer's result is stronger than Gerschgorin's one; actually, the answer is positive, as the following inclusion shows:

Corollary: Let $G(A) = \bigcup_{i=1}^n D_i(A)$ and $B(A) = \bigcup_{i\neq j}^n O_{ij}(A)$ be respectively Gershgorin and Brauer eigenvalues inclusion regions $(D_i(A))$ are the Gerschgorin circles and $O_{ij}(A)$ are the Brauer's Cassini ovals); then

$$B(A) \subseteq G(A)$$
.

Proof: Let O_{ij} be one of the n(n-1)/2 ovals of Cassini for matrix A and be $z \in O_{ij}$. If $R_i = 0$ or $R_j = 0$, Brauer's theorem imply $z = a_{ii}$ or $z = a_{jj}$ respectively; but since both a_{ii} and a_{jj} belong to their respective Gerschgorin circles, we have $z \in (D_i \cup D_j)$. If both $R_i > 0$ and $R_j > 0$, then we can write:

$$\frac{|z-a_{ii}|}{R_i} \cdot \frac{|z-a_{jj}|}{R_j} \le 1.$$

For the left-hand side to be not greater than 1, $\frac{|z-a_{ii}|}{R_i}$ or $\frac{|z-a_{jj}|}{R_j}$ must be not greater than 1, which in turn means $z \in D_i$ or $z \in D_j$, that is $z \in (D_i \cup D_j)$. This way, we proved that $O_{ij} \subseteq (D_i \cup D_j)$; now, we have:

$$B(A) = \bigcup_{i \neq j} O_{ij} \subseteq \bigcup_{i=1}^{n} D_i = G(A).$$

3) It's obvious from definition that there are infinitely many matrices which generate the same ovals of Cassini: namely, let's define

$$\Omega(A) = \{ M \in \mathbf{C}^{n \times n} : m_{ii} = a_{ii}, R_i(M) = R_i(A) \}$$

as the set of all matrices which share the same ovals of Cassini as A. Then, by Brauer's theorem, we have, for all $M \in \Omega$ matrices,

$$\sigma(M) \subseteq B(A)$$
,

and therefore, having defined $\sigma(\Omega) = \bigcup_{M \in \Omega} \sigma(M)$, we have

$$\sigma(\Omega) \subseteq B(A)$$
.

One may then ask how sharp this inclusion is, which, informally speaking, is equivalent to asking how "efficient" is the "use", by Brauer's theorem, of the 2n pieces of information $\{a_{ii}\}_{i=1}^n$ and $\{R_i\}_{i=1}^n$ in the construction of inclusion sets (if for example we found the inclusion to be very loose, that is $\sigma(\Omega)$ to be a very little subset of B(A), we could conjecture that the knowledge of the 2n numbers used by Brauer's theorem should have led to a more precise bounding, since the spectra of all matrices which share these numbers lie in a much smaller region). It has been proven that actually

$$\sigma(\Omega) = B(A),$$

thus showing Brauer's ovals are optimal ones under this point of view.

References

- [1] S. Gerschgorin, *Uber die Abgrenzung der Eigenwerte einer Matrix*, Isv. Akad. Nauk USSR Ser. Mat., 7 (1931), pp. 749-754
- [2] A. Brauer, Limits for the characteristic roots of a matrix II, Duke Math. J. 14 (1947), pp. 21-26
- [3] R. S. Varga and A. Krautstengl, On Gersgorin-type problems and ovals of Cassini, Electron. Trans. Numer. Anal., 8 (1999), pp. 15-20
- [4] Richard S. Varga, Gersgorin-type eigenvalue inclusion theorems and their sharpness, Electronic Transactions on Numerical Analysis. Volume 12 (2001), pp. 113-133