1. **Definition.** The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x, x+h]$$
 = $\begin{pmatrix} \text{average rate of secant over} \\ \text{change over} \\ [x, x+h] \end{pmatrix}$ = $\begin{pmatrix} \text{slope of secant over} \\ \text{secant} \\ \text{secant over} \\ [x, x+h] \end{pmatrix}$ = $\begin{pmatrix} \frac{\Delta y}{\Delta x} & = \frac{y_2 - y_1}{x_2 - x_1} & = \end{pmatrix}$ = $\begin{pmatrix} \text{definition of difference over} \\ \text{quotient} \end{pmatrix}$

velocity at
$$x$$
 = $\frac{\text{rate of change}}{\text{at } x}$ = $\frac{\text{slope of tangent}}{\text{at } x}$ = $\lim_{h \to \infty}$ = $\lim_{h \to \infty}$ = $\lim_{h \to \infty}$ = definition of derivative written y' or $\frac{dy}{dx}$ or $f'(x)$ or $\frac{d}{dx}f(x)$

y = f(x)

1. **Definition.** The Limit Definition of Derivative

Suppose the distance a train has traveled is a function of time y = f(x).

average velocity over
$$[x, x+h]$$
 = $\begin{pmatrix} \text{average rate of secant over } \\ \text{over } \\ [x, x+h] \end{pmatrix}$ = $\begin{pmatrix} \text{average rate of secant over } \\ \text{over } \\ [x, x+h] \end{pmatrix}$ = $\begin{pmatrix} \text{between } \\ \text{between } \\ \text{constant} \end{pmatrix}$ = $\begin{pmatrix} \frac{\Delta y}{\Delta x} \\ \text{definition of difference quotient} \end{pmatrix}$ = $\begin{pmatrix} \text{definition of difference quotient} \end{pmatrix}$

2. **EXAMPLE.** Use the definition of difference quotient to find the slope of the **secant** line through $y = f(x) = 15 + \frac{5}{8}x^4$ between x and x + h.

Hint:
$$f(x+h)$$
 = $15 + \frac{5}{8}x^4 + \frac{20}{8}x^3h + \frac{30}{8}x^2h^2 + \frac{20}{8}xh^3 + \frac{5}{8}h^4$

3. **Exercise.** Use the definition of derivative and your answer to **Example 2** to find the slope of the **tangent** line to $y = f(x) = 15 + \frac{5}{8}x^4$ at x.

4. Exercise. Use the diagram to estimate the slope of

the secant through $y = 15 + \frac{5}{8}x^4$ between 2 and 4.

5. Exercise. Use the diagram to estimate the slope of

the tangent line to $y = f(x) = 15 + \frac{5}{8}x^4$ at 2.

- 6. Exercise. Use your answer to Exercise 3 to confirm your answer to Exercise 5.
- 2. **EXAMPLE.** Use the definition of difference quotient to find the slope of the **secant** line through $y = f(x) = 15 + \frac{5}{8}x^4$ between x and x + h.

 Hint: $f(x+h) = 15 + \frac{5}{8}x^4 + \frac{20}{8}x^3h + \frac{30}{8}x^2h^2 + \frac{20}{8}xh^3 + \frac{5}{8}h^4$
- 3. **Exercise.** Use the definition of derivative and your answer to **Example 2** to find the slope of the **tangent** line to $y = f(x) = 15 + \frac{5}{8}x^4$ at x.

4. **Exercise.** Use the **diagram** to estimate the slope of

the secant through $y = 15 + \frac{5}{8}x^4$ between 2 and 4.

5. **Exercise.** Use the **diagram** to estimate the slope of the **tangent** line to $y = f(x) = 15 + \frac{5}{8}x^4$ at 2.

6. Exercise. Use your answer to Exercise 3 to confirm your answer to Exercise 5.