ROYAUME DU MAROC

Ministère de l'Éducation Nationale Enseignement Secondaire et Technique Ministère de l'Enseignement Supérieur, de la Formation des Cadres et de la Recherche Scientifique

Concours National Commun d'Admission aux Grandes Écoles d'Ingénieurs

Session 2000

ÉPREUVE DE CHIMIE

Durée 2 heures

Concours MP

L'énoncé de cette épreuve comporte 4 pages. L'usage de la calculatrice est **autorisé**.

On veillera à une présentation claire et soignée des copies. Il convient en particulier de rappeler avec précision les références des questions abordées.

En plus de son rôle primordial dans notre vie, l'eau a une importance capitale en chimie. Ce sujet propose d'aborder quelques propriétés physico-chimiques de l'eau. Il se compose de 3 parties largement indépendantes entre elles et pouvant être traitées dans un ordre quelconque.

Données numériques

- Données générales :
 - Charge élémentaire $e \approx 1, 6 \times 10^{-19} \text{ C.}$
 - Constante des gaz parfaits $R \approx 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$.
 - $\frac{RT}{F}\ln 10 \approx 0,06~{
 m V}$ à 298 K, où F désigne la constante de FARADAY et \ln le logarithme népérien.
 - $-1 pm = 10^{-12} m$, (pm : picomètre).
 - $1D = \frac{1}{3}10^{-29} C.m$, (D : debye).
- Masses molaires atomiques $(g.mol^{-1})$:

Élément	H	C	N	0	Cl	Ca	Zn
Masse molaire	1,01	12, 0	14, 0	16, 0	35, 5	40, 1	65, 4

• Enthalpies standard de formation, entropies standard absolues et capacités calorifiques standard à 298 *K* (*g* : gaz, *l* : liquide) :

	$H_{2(g)}$	$O_{2(g)}$	$H_2O_{(l)}$	$N_{2(g)}$
$\Delta_r H_f^{\circ} \left(kJ.mol^{-1} \right)$	-	-	-286	-
$S^{\circ}\left(J.K^{-1}.mol^{-1}\right)$	132	205	69, 9	ı
$c_p^{\circ} \left(J.K^{-1}.mol^{-1}\right)$	28, 3	31, 2	75, 5	29, 7

- Chaleur latente de vaporisation de l'eau sous pression atmosphérique : $L_v \approx 40,7 \; \mathrm{kJ.mol^{-1}}$.
- $pK_a\left(NH_4^+/NH_3\right)\approx 9, 2.$
- Potentiels standard d'oxydoréduction (solution aqueuse à 298~K) :

$$\begin{array}{c|cccc} \textbf{Couple Oxydant/R\'educteur} & Zn^{2+}/Zn & 2H^+/H_2 \\ \hline & E^{\circ}\left(V\right) & -0.76 & 0.00 \\ \end{array}$$

- Composition molaire de l'air : $\{\frac{1}{5}O_2, \frac{4}{5}N_2\}$.
- Tous les gaz rencontrés dans le problème seront considérés parfaits.

1^{ère} partie

Étude de quelques propriétés structurales

- 1.1. Donner la structure électronique de l'oxygène dans son état fondamental.
- 1.2. Donner le schéma de LEWIS de la molécule d'eau H_2O ainsi que celle du peroxyde d'hydrogène ou « eau oxygénée » H_2O_2 ; on précisera dans chaque cas les doublets liants et non liants.
- 1.3. Quels sont les nombres d'oxydation de l'oxygène et de l'hydrogène dans H_2O puis dans H_2O_2 ? Expliquer.
- 1.4. Déterminer la géométrie de la molécule d'eau en utilisant la méthode V.S.E.P.R.
- **1.5**. Dans la molécule d'eau, l'angle valentiel \widehat{HOH} vaut $104^{\circ}47'$.
- 1.5.1. Calculer la valeur des angles valentiels dans le cas d'une molécule à géométrie tétraédrique parfaite; on pourra considérer comme exemple celui de la molécule de méthane CH_4 .
- **1.5.2**. Comparer la valeur de l'angle valentiel \widehat{HOH} dans H_2O à celle calculée en 1.5.1. pour la géométrie tétraédrique parfaite. Interpréter.
- 1.6. Dans la molécule d'eau, l'atome d'oxygène et les deux atomes d'hydrogène portent des charges électriques partielles.
 - 1.6.1. Quelle est l'origine de ce phénomène?
- **1.6.2**. Soit $+\delta e$ (e étant la charge élémentaire et $\delta > 0$) la charge partielle portée par l'un des deux atomes d'hydrogène. Quelle est la charge partielle portée par l'atome d'oxygène?
- 1.6.3. Pour déterminer l'ordre de grandeur de δ on admet que le moment dipolaire $\vec{\mu}$ de la molécule d'eau est due à la seule présence des charges partielles sur l'oxygène et sur les deux hydrogènes : on ne tient pas compte de la contribution des doublets non liants au moment dipolaire. Exprimer δ en fonction de la longueur l des liaisons O-H, de l'angle valentiel α et du module μ du moment dipolaire.
 - **1.6.4**. Application numérique : Calculer δ sachant que l=96~pm, $\alpha=104^{\circ}47'$ et $\mu=1,85~D$.

2ème partie

Principe du chalumeau oxhydrique

Le chalumeau oxhydrique utilise l'énergie dégagée par la réaction de combustion du dihydrogène dans le dioxygène dont le bilan s'écrit :

$$2 H_{2(q)} + O_{2(q)} \rightleftharpoons 2 H_2 O_{(l)}$$
 (1)

 H_2 et O_2 sont à l'état gazeux, H_2O est liquide.

- **2.1**. Calculer pour l'équilibre (1), à 298 K, l'enthalpie standard de réaction $\Delta_r H^{\circ}$ ainsi que l'entropie standard de réaction $\Delta_r S^{\circ}$.
- **2.2**. En déduire, à 298K, l'enthalpie libre standard $\Delta_r G^\circ$ et la constante d'équilibre K_1 . Conclusion.

- 2.3. La réaction ne se produit pas spontanément à $298\,K.$ Pourquoi? Comment peut-on l'amorcer?
- 2.4. Sous pression constante $p=10^5$ Pa, un chalumeau reçoit, à $298\,K$, du dihydrogène H_2 mélangé à deux fois le volume *d'air* nécessaire à sa combustion. Calculer, en négligeant les variations des capacités calorifiques avec la température, la température T_f de flamme d'un tel chalumeau en admettant que $10\,\%$ de l'énergie libérée est perdue par rayonnement. On considérera que N_2 est inerte dans ces conditions.
- 2.5. Du point de vue écologique, quel est l'avantage du chalumeau oxhydrique par rapport, par exemple, au chalumeau oxyacétylénique qui utilise la réaction de combustion de l'acétylène C_2H_2 dans le dioxygène?

3ème partie

Détermination expérimentale de la dureté d'une eau de robinet

Une eau est dite dure si elle ne mousse pas quand on y dissout du savon. La dureté est due à la présence dans l'eau de sels calciques et magnésiques qui décomposent les savons alcalins solubles et les transforment en sels insolubles. Lorsqu'on ajoute du savon à une eau contenant les ions Ca^{2+} et/ou Mg^{2+} la mousse ne se produit pas avant que la totalité des ions Ca^{2+} et Mg^{2+} n'ait été précipitée par une quantité correspondante de savon.

3.1. Le degré hydrotimétrique (°HT)

La dureté D d'une eau est proportionnelle à la masse de savon de Marseille qu'il faut ajouter à 1 litre de cette eau pour obtenir une mousse persistante par agitation. D est égal à 1 °HT lorsque cette masse de savon vaut $100\ mg$: cette quantité de savon, ajoutée à une solution contenant suffisamment d'ions Ca^{2+} , permet la précipitation de $10\ mg$ de $CaCO_3$.

Montrer que $D\approx 10^4\frac{c}{c_0}$; où c est la somme des concentrations molaires volumiques en Ca^{2+} et Mg^{2+} exprimées en $mol.L^{-1}$ et $c_0=1\,mol.L^{-1}$.

Pour déterminer la dureté D d'une eau on réalise un dosage complexométrique des ions Ca^{2+} et Mg^{2+} par une solution titrée d'E.D.T.A qui forme des complexes stables avec des cations métalliques $(Mg^{2+}, Ca^{2+}, Zn^{2+}...)$. Le dosage volumétrique est conduit en présence d'un indicateur coloré de complexation. L'indicateur utilisé est le noir ériochrome T (N.E.T.). À pH compris entre 8 et 11, il est bleu foncé en absence d'ions métalliques et rouge en présence de cations bivalents $(Mg^{2+}, Ca^{2+}, Zn^{2+}...)$.

3.2. Étalonnage de la solution d'E.D.T.A.

L'E.D.T.A. est l'acide éthylène diamine tétracétique, c'est un tétracide que l'on symbolisera dans toute la suite par H_4Y et dont les pK_a valent respectivement : 1, 9 ; 2, 5 ; 6, 3 et 11.

- **3.2.1.** Quelle est la forme prédominante de l'E.D.T.A. au cours du dosage sachant qu'il est réalisé en présence d'un tampon pH=9,5? On tracera le diagramme de prédominance de l'E.D.T.A.
- **3.2.2**. Écrire alors la réaction de dosage d'un cation bivalent M^{2+} par l'E.D.T.A. sachant qu'une mole de M^{2+} réagit avec une mole d'E.D.T.A.

Pour déterminer avec précision la concentration molaire volumique c_1 de la solution d'E.D.T.A., on réalise un dosage préliminaire de cette solution par une solution étalon de $\mathbb{Z}n^{2+}$.

- **3.2.3**. La solution étalon d'ions Zn^{2+} est obtenue par attaque d'une masse $m=1,010\,g$ de zinc métallique par une solution concentrée d'acide chlorhydrique. Écrire la réaction décrivant l'attaque du zinc et calculer sa constante d'équilibre. Conclusion.
- **3.2.4.** Après dissolution complète du zinc on place la solution obtenue dans une fiole jaugée de $500 \, mL$ et on complète avec de l'eau distillée jusqu'au trait de jauge. Calculer la concentration molaire volumique c_2 de la solution étalon ainsi préparée.
- **3.2.5.** Dans un erlenmeyer, on place $v_1=10,0\,mL$ de solution d'E.D.T.A., $5\,mL$ de tampon pH=9,5 et quelques milligrammes de N.E.T. On ajoute ensuite, à l'aide d'une burette, la solution étalon de Zn^{2+} . Le virage de l'indicateur coloré est observé pour un volume $v_2=14,35\,mL$. En déduire le titre exact de la solution d'E.D.T.A.

3.3. Dosage de l'eau du robinet

On place dans un erlenmeyer, $v=80\,mL$ d'eau à doser, $20\,mL$ de tampon pH=9,5 et quelques milligrammes de N.E.T. On verse ensuite, à l'aide d'une burette, la solution d'E.D.T.A. jusqu'au changement de couleur de l'indicateur. Soit v_{1e} le volume de la solution titrante versé à l'équivalence.

- **3.3.1.** Déterminer la concentration totale c de l'eau en ions Ca^{2+} et Mg^{2+} sachant que $v_{1e}=3,3\,mL$.
 - 3.3.2. En déduire sa dureté D.

3.4. Préparation du tampon pH

Le tampon pH=9,5 utilisé dans le dosage complexométrique est un tampon ammoniacal obtenu par dissolution, sans variation de volume, d'une masse m de chlorure d'ammonium (NH_4^+,Cl^-) dans un volume $v=1\,L$ d'ammoniaque de concentration $c=1\,mol.L^{-1}$.

- **3.4.1**. Qu'appelle-t-on solution tampon?
- **3.4.2.** Calculer la masse m de chlorure d'ammonium à ajouter pour obtenir 1 litre de solution tampon pH=9,5.
 - **3.4.3**. Déterminer le pouvoir tampon π (en $mol.L^{-1}$) de cette solution.

FIN DE L'ÉPREUVE