تىرىنهاى توپولوژى

ا- فرض کنید $X \times \mathcal{P}(X)$ و $\delta_1 \cap \delta_2 \times \mathcal{P}(X)$ دو چسبیدگی در مجموعهٔ X باشند. آیا $\delta_1 \cap \delta_2 \cap \delta_3 \cap \delta_4 \cap \delta_5$ لزوماً چرا؟

X- مجموعهٔ X را در نظر بگیرید. در درس دیدیم که چگونه می توان از چسبیدگی δ در X به توپولوژی T بر X رسید. بنابراین اگر مجموعهٔ تمام چسبیدگیها در X را با $\mathfrak X$ و مجموعهٔ تمام توپولوژیها بر X را با $\mathfrak X$ نشان دهیم تابعی چون $\mathfrak X \to \mathfrak X$ تعریف کردهایم. نشان دهید تابع $\mathfrak Y$ وارونپذیر است؛ یعنی، تابعی چون $\mathfrak T \to \mathfrak T$ بیابید که وارون $\mathfrak Y$ باشد.

 $x \in X$ و هر زیرمجموعهٔ A از X تعریف می کنیم $x \in X$ اگر داشته $x \in X$ اگر داشته $x \in X$ مجموعه ای جزئی مرتب باشد. برای هر عضو $x \in X$ او هر زیرمجموعهٔ $x \in X$ اعریف می کنیم $x \in X$ است. باشیم $x \in X$ (یعنی $x \in X$ کوچکترین کران بالای $x \in X$ باشد.) نشان دهید این رابطه، چسبیدگی است.

۴- نشان دهید توپولوژی گسسته ترتیبپذیر است.