Statistics II: Introduction to Inference

Problem set 7

- 1. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu, 1)$.
 - (a) Consider testing the hypotheses

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_1: \mu > \mu_0.$$

Suppose we want the power of the MP test of size α to be at least $(1-\beta)$, for some fixed $0 < \beta < 1$ when $\mu = \mu_1$ ($\mu_1 > \mu_0$). Determine the minimum sample size n required to achieve this power level.

- (b) Find the confidence interval for μ based on the sample. Then, determine the minimum sample size n such that the length of the confidence interval for μ is at most l.
- 2. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} N(\mu_1, \sigma_1^2)$ and $Y_1, \ldots, Y_n \stackrel{iid}{\sim} N(\mu_2, \sigma_2^2)$, where σ_1^2, σ_2^2 known.
 - (a) Consider testing the hypotheses

$$H_0: \mu_1 = \mu_2$$
 vs $H_1: \mu_1 > \mu_2$.

Suppose we want the power of the MP test of size α to be at least $(1-\beta)$, for some fixed $0 < \beta < 1$ when $\mu_1 - \mu_2 = \delta$ ($\delta > 0$). Determine the minimum sample size n required to achieve this power level

- (b) Construct a confidence interval for the difference $\mu_1 \mu_2$. Determine the minimum sample size n such that length of the confidence interval does not exceed a specified value l.
- 3. Let $X_1, \ldots, X_n \stackrel{iid}{\sim} \mathtt{Uniform}(0, \theta)$.
 - (a) Consider testing the hypotheses

$$H_0: \theta = \theta_0 \quad \text{vs} \quad H_1: \theta > \theta_0.$$

Find the minimum sample size n such that the most powerful (MP) test of size α has power at least $1 - \beta$ for some fixed $0 < \beta < 1$ when $\theta = \theta_1$ ($\theta_1 > \theta_0$).

- (b) Construct a confidence interval (L, U) for θ . Determine the minimum sample size n such that the ratio of the upper bound (U) to the lower bound (L) of the confidence interval does not exceed a specified value l.
- 4. Let $X_1, \ldots, X_n \sim N(\mu, \sigma^2)$. Construct a confidence interval for σ^2 . Determine the minimum sample size n (numerically) such that the ratio of the upper bound and lower bound of the confidence interval does not exceed a specified value l=1.5. The following table provides critical values of the chi-squared distribution for various sample sizes:

Sample Size n	187	188	189	190	191	192	193
$\chi^2_{n-1;1-\alpha/2}$	150.126	151.024	151.923	152.822	153.721	154.621	155.521
$\chi^2_{n-1;\alpha/2}$	225.660	226.761	227.863	228.964	230.064	231.165	232.265

Here, $\chi^2_{n-1;\,\alpha/2}$ and $\chi^2_{n-1;\,1-\alpha/2}$ denote the upper and lower critical values, respectively, of the chi-squared distribution with n-1 degrees of freedom, respectively.