Zestaw 1 Ruch postępowy punktu materialnego

1. Dla podanych ruchów określić położenie początkowe i predkość początkowa oraz obliczyć przyspieszenie.

a)
$$x(t) = t^2 + 2t$$
 b) $x(t) = t^2 + 2t + 4$ c) $x(t) = 3t^2$ d) $x(t) = 4t^2 - 2$ e) $x(t) = 5t^2 - 10t + 2$ f) $x(t) = t^3 + 2t - 10$

e)
$$x(t) = 5t^2 - 10t + 2$$
 f) $x(t) = t^3 + 2t - 10$

2. Mając dane przyspieszenie [m/s²] oraz warunki początkowe (w [m/s] i [m]) znajdź zależność prędkości od czasu oraz trajektorię ciała w ruchu jednowymiarowym.

a)
$$a = 2$$
, $v_{x0} = 0$, $x_0 = 0$ b) $a = 5$, $v_{x0} = -2$, $x_0 = 4$

a)
$$a = 2$$
, $v_{x0} = 0$, $x_0 = 0$
b) $a = 5$, $v_{x0} = -2$, $x_0 = 4$
c) $a = 0$, $v_{x0} = 4$, $x_0 = 0$
d) $a = 10$, $v_{x0} = -1$, $x_0 = -3$
e) $F_x = 200$ N, $m = 50$ kg $v_{x0} = -5$, $x_0 = 5$
f) $a = 0$, $v_{x0} = 0$, $x_0 = 6$

e)
$$F_x = 200 \text{ N}, m = 50 \text{ kg } v_{x0} = -5, x_0 = 5 \text{ f) } a = 0, v_{x0} = 0, x_0 = 6$$

3. Dane są wektory $\vec{a}=[2,\,3],\,\vec{b}=[2,\,0],\,\vec{c}=[-2,\,2].$ Narysować wektory oraz obliczyć ich długość. Wykonać poniższe działania oraz narysować wektor \vec{d} .

a)
$$\vec{d} = 5\vec{a}$$
 b) $\vec{d} = 0.5\vec{c}$
c) $\vec{d} = 2\vec{a} + \frac{\vec{b}}{2}$ d) $\vec{d} = -2\vec{c}$
e) $\vec{d} = \frac{3}{2}\vec{a} - 3\vec{c}$ f) $\vec{d} = 2\vec{b} - \frac{\vec{a}}{3} + 2\vec{c}$

4. (1-1) Dwa samochody poruszają się w tym samym kierunku, z prędkościami v_1 i v_2 po tym samym torze prostym. W pewnej chwili drugi samochód wyprzedza pierwszy o odległość $x_0 > 0$.

Znaleźć: a) czas t_s , po którym się spotkają, b) miejsce spotkania, c) określić jak zmienia się w czasie odległość między samochodami, d) podać w którym z przypadków: $v_1 > v_2$, $v_1 < v_2$, $v_1 = v_2$ zadanie ma rozwiązanie.

5. (1-5) Dwaj studenci postanowili sprawdzić zasadę niezależności ruchów. Wypłynęli więc na jednakowych motorówkach na środek rzeki, rzucili na wodę koło ratunkowe i skierowali swe łodzie w przeciwne strony. Po upływie godziny każdy z nich zawrócił i popłynął w kierunku koła. Obie łodzie względem wody miały jednakową prędkość v. Zbadać, czy motorówki spotkają się przy kole ratunkowym równocześnie. Obliczyć prędkość rzeki v_1 , jeżeli koło do chwili spotkania motorówek przepłynęło 10 km względem brzegów.

- 6. (1-8) Z przystani A, znajdującej się nad rzeką płynącą z prędkością v_1 , wypływa w dół rzeki łódź motorowa z prędkością v_2 względem wody. Z przystani B, znajdującej się w dole rzeki w odległości s_0 od A, wypływa także łódź motorowa z prędkością v_3 w kierunku przystani A. Jak daleko od przystani A łodzie się spotkają?
- 7. (2-1) Samochód jadący z miasta A do odległego o 100 km miasta B przebywa pierwsze 40 km z prędkością $v_1=80$ km/h, następnie zaś 60 km drogi z prędkością $v_2=30$ km/h. Obliczyć średnią prędkość samochodu v_r na trasie AB. Sporządzić wykres prędkości samochodu w funkcji czasu oraz wykres drogi s w funkcji czasu.
- 8. (2-6) W jakim czasie ciało swobodnie spadające przebędzie n-ty metr swej drogi?
- 9. (2-7) Chłopiec biegnie wzdłuż drogi ze stałym przyspieszeniem. Ile razy mniejszy będzie czas, w którym chłopiec przebędzie drugą połowę drogi w porównaniu z pierwszą, jeżeli jego prędkość początkowa wynosiła zero?
- 10. (2-10) Ciało wyrzucone z prędkością v_0 w górę dwukrotnie mija punkt A znajdujący się na wysokości y_A . Czas między przejściami przez punkt A wynosi δt . Znaleźć prędkość początkową ciała oraz czas t, po którym ciało wróci do miejsca wyrzucenia.
- 11. (2-14) Ciało spadające swobodnie ma w punkcie A prędkość 40 cm/s, a w B prędkość 250 cm/s. Obliczyć odległość AB.
- 12. (3.2) Obliczyć jakiego przyspieszenia, wynikającego z obrotu Ziemi, doznaje ciało będące na równiku? Załóż, że Ziemia jest kulą o promieniu $R_z=6370$ km.
- 13. (3-2) Na pionowej idealnie gładkiej tylnej ściance wagonu znajduje się ciało na wysokości h nad podłogą. W chwili gdy wagon ruszył z przyspieszeniem a, ciało zaczęło się zsuwać wzdłuż ściany. Znaleźć równanie toru ciała w układzie związanym z szynami, po których toczy się wagon, oraz odległość l jaką przebędzie ciało w chwili, gdy spadnie na podłogę.
- 14. (3-21) Na jakiej wysokości h pocisk wystrzelony z punktu O z prędkością v_0 pod kątem α do poziomu, trafi w pionową ścianę odległą o x_0 od punku O.
- 15. (3-9) Z jaką prędkością poziomą v_1 powinien lecieć lotnik na wysokości h nad ziemią, w chwili gdy przelatuje on nad punktem A, aby puszczony przez niego ładunek trafił w uciekający z prędkością v_2 pociąg, który znajduje się w odległości d od A na linii równoległej do linii lotu?

16. (3-16) Dwa ciała wyrzucono równocześnie z dwóch różnych punktów. Jedno ciało zostało wyrzucone z prędkością v_{0x} w kierunku poziomym z wieży o wysokości h, drugie zaś z pewną prędkością v_0 pod pewnym kątem α do poziomu z podnóża wieży (rys). Jakie powinny być prędkość v_0 oraz kąt α , aby ciała spotkały się nad ziemią?

- 17. (3-17) Dwa pociski wystrzelono jednocześnie z dwóch punktów odległych o x_0 . Pierwszy pocisk wystrzelono z prędkością v_0 pod kątem α . Z jaką prędkością v_0' i pod jakim kątem β powinien być wystrzelony drugi pocisk, aby zderzenie pocisków nastąpiło w najwyższym punkcie obu torów?
- 18. (4-1) Koło o promieniu 10 cm wiruje z prędkością kątową 628 rad/s. Znaleźć czas pełnego obiegu T oraz prędkość liniową v punktu znajdującego się na obwodzie koła. Znaleźć liczbe obrotów koła w ciągu minuty.
- 19. (4-4) Punkt materialny porusza się po okręgu o promieniu R=20 cm ze stałym co do wartości przyspieszeniem liniowym $a_s=5$ cm/s². Po jakim czasie t od chwili rozpoczęcia ruchu przyspieszenie dośrodkowe będzie co do wartości 2 razy większe od przyspieszenia liniowego?

Ważne stałe fizyczne:

Ziemskie przyspieszenie grawitacyjne* $g=9.81~\mathrm{m/s^2}\approx 10~\mathrm{m/s^2}$