Adversarial Image Generation based on Various Neuron Coverage

Team8

20170181 Taeyoung Kim 20180650 Hyunjoon Cho 20205424 Sunjae Kwon

Table of Contents

- Recap
 - o Related Works, Coverage Variants, Project goal
- Method
- Experimental Set-ups
- Experimental Results
- Analysis and Discussions
- Conclusions

Recap

DeepXplore & DLFuzz

Figure 5: DeepXplore workflow.

Pei, Kexin, et al. "Deepxplore: Automated whitebox testing of deep learning systems." proceedings of the 26th Symposium on Operating Systems Principles. 2017.

Figure 2: Architecture of DLFuzz

Guo, Jianmin, et al. "DLFuzz: differential fuzzing testing of deep learning systems." Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering. 2018.

Recap

- Neuron Coverage (NC1)
 - Basic coverage, used in DeepXplore and DLFuzz
- k-multisection Neuron Coverage (NC2) Expectation: Not Effective
 - Section is bounded by low/high output from training
 - Sections are already covered by training data, less probable to show new behavior
- Strong Neuron Boundary Coverage (NC3) Expectation: Effective
 - Increased coverage may invoke more logic, resulting in unexpected behavior
 - Neurons are activated by output over threshold, thus upper bound would be more influential

Recap(Goal)

- Problem Statement
 - DeepXplore and DLFuzz depends on basic neuron coverage
 - In the meantime, various neuron coverage metric have been proposed
 ex) k-multisection Neuron Coverage, Strong Neuron Boundary Coverage.
 - Need for considering these various neuron coverage

Project Goal

Find which coverage works best in creation of adversarial input

Method

Experimental set-ups

- Dataset : ImageNet / MNIST
- Model: Pretrained VGG / LeNet
- Min-Max Calculation : Extract from training set
 - IMGNET: Divide seeds into training set and adversarial generation set
 - MNIST: Use existing training set

- Hyperparameters

- Loss coeff: adversarial loss 1, neuron activation loss 0.1
- Grad coeff: learning rate 10, 20 steps, 100 seeds
- Coverage: Threshold 0.2, 5 sections

- Evaluation Metrics

- 1. Number of adversarial inputs generated
- 2. Average time for generating single adversarial input
- 3. Coverage of adversarial examples
- 4. L2 distance between the original image and the adversarial image

DeepXplore on MNIST

	Original	Light	Occlusion	Blackout
NC1 (0.2 threshold)	4		4	4
	(4,4,4)	(8,4,4)	(7,7,2)	(2,7,4)
NC2 (5-multisection)	6		6	6
	(6,6,6)	(8,6,4)	(7,2,2)	(6,5,6)
NC3 (Strong)	9	٩	٩	9
	(9,9,9)	(3,9,8)	(7,2,2)	(4,9,4)

- Results of DeepXplore on ImageNet

*Each column corresponds to blackout, light, occlusion.

	# /	# Adv / # Initial		time per Adv (s)		Coverage		Avg L2				
NC1 (Neuron)	97/97	86/95	81/99	4.67	5.13	5.27	0.47	0.47	0.42	376	2586	492
NC2 (k-multi)	97/97	80/97	74/99	4.96	5.09	5.24	0.31	0.28	0.28	386	2708	487
NC3 (Strong)	97/97	76/97	84/96	4.70	4.64	4.73	0.48	0.27	0.44	381	2712	483

DeepXplore on ImageNet

NC1: Basic

NC2: K-multi

NC3: Boundary

Cassette

Max Iteration:

20 times

Constraint:

Light

Flute

Tarantula

Projector

Oboe

Coral Reef

* Constraint - Blackout does not work for ImageNet

Max Iteration:

20 times

Constraint:

OCCL

Table Lamp

Toilet Seat

Flamingo

Lampshade

Bobsled

Crane

- Results of DeepXplore on ImageNet

*Light constraint on Left col, OCCL constraint on Right col *Run for 100 seeds for each NC / constraint on colab w/ GPU

	# Adv / # Identical		time per Adv		Coverage		Avg L2	
NC1(Basic)	40 / 64	46 / 59	7.55	7.06	0.0736	0.0730	46657.4	13792.0
NC2(k-multi)	41 / 65	42 / 67	7.76	8.41	0.0753	0.0737	47316.8	13784.7
NC3(Boundary)	34 / 63	41 / 60	9.28	7.44	0.0754	0.0751	45248.1	14019.5

DLFuzz on MNIST

- Results of DLFuzz on MNIST

	# Adv	time per Adv	Coverage	# Seed	Avg L2 distance
NC1 (Basic)	557	6.18	0.67	37	4.74
NC2 (K-Multi)	632	6.09	0.92	42	5.01
NC3 (Strong)	646	6.12	0.48	44	5

- L2 distance distribution of # adv

DLFuzz on ImageNet

- Results of DLFuzz on ImageNet

	# Adv	time per a Adv	Coverage	# Seed	Avg L2 distance
NC1 (Basic)	178	213	0.496	4	327.66
NC2 (K-Multi)	36	317	0.369	3	389.7
NC3 (Strong)	114	199	0.002	5	326.3

- L2 distance distribution of # adv

NC2

NC3

Analysis

Qualitative

- Different neuron coverage concepts enable each framework to find different adversarial images.
- Constraints of generated adversarial images can influence the performance of the neuron coverage

Quantitative

- Considering evaluation metrics, 3 NCs have similar distribution on both frameworks.
- No certain neuron coverage concept has better performance than others on both frameworks.

Future Works

Implementation

Currently, boundary neuron coverage implementation needs to be fixed.

Improving frameworks

- Neuron loss only considers increasing output, need to be redefined so that it can decrease its output to hit lower boundary.
- Optimize parameters; step size, weight of differential behavior and NC

Analysis

- Each coverage showed various generated inputs, but we don't know they are diverse, or have some pattern.
- By measuring coverage without adversarial example, check whether adversarial examples really increases coverage.

Conclusions

- We confirmed the performance of 3 different neuron coverage concepts on 2 different DNN testing tools.
- No certain neuron coverage concept has better performance than others on both frameworks.
- However, constraints on generated images and type of neuron coverage enable each framework to generate different adversarial images.
- Thus, further study is required about new boundary concept and loss function to aggregate various neuron coverage.