

인공지능과 수학적 배경

Classification Disease class prediction

◆ Supervised classification problem: Predict the disease class (discrete value) of patient given existing medical data features (tumor size).

Is the tumor benign/malign?
Supervised classification predicts benign.

Classification More examples

- Examples of binary classification tasks:
 - **Email: Spam (1) or not spam (0)**
 - Online financial transaction: Fraudulent (1) or legitimate (0)

- **◆** From binary to multi-class classification:
 - **Email:** Spam (0), work (1), friends (2), family (3)
 - Medical diseases: Benign (0), malign I (1), malign II (2), malign III (3)

Multi-value variable:
$$y = \{0, 1, 2, ..., K\}$$

Classification Formalization

Supervised classification learning:

Classification Model representation

- How to represent a (discrete) class prediction function?
 - Linear model? (like for regression)

$$f_w(x) = w_0 + w_1 x$$

Class prediction might be:

if
$$f_w(x) \ge 0.5$$
 then predict $y = 1$

if
$$f_w(x) < 0.5$$
 then predict $y = 0$

Classification Limitation of linear model

◆ Linear classification models are not robust to large variations of data features:

- **◆** The new data has changed significantly the classification result.
 - \Rightarrow Linear model is not a good solution to the classification problem.

Classification Model representation

◆ Prediction function for classification of *d*-dim data:

$$x = \begin{bmatrix} 1 \\ x_{(1)} \\ x_{(2)} \\ \vdots \\ x_{(d)} \end{bmatrix} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_d \end{bmatrix}$$

Classification Probabilistic interpretation

◆ The prediction function with logistic regression is a probability function:

$$f_w(x) = \Pr_w(y=1|x)$$
Probability to have $y=1$ given data x
Probability is parametrized by w

Example: If x = 5mm (tumor size) and $f_w(x) = 0.3$ then the patient has 30% chance of tumor being malign.

New notation for prediction function:

$$f_w(x) \Rightarrow p_w(x) = \Pr_w(y = 1|x) = \frac{1}{1 + e^{-w^T x}}$$
Probability function

Classification Class prediction

◆ Soft (continuous) class predictive function:

$$p_w(x) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

- **◆** Observe this predicative function is not a "hard" prediction (discrete value {0, 1} to have class 1 or class 2), but a "soft" prediction (probability value between [0, 1] to have class 1 or class 2).
- **◆** Hard (discrete) class predicative function:

if
$$p_w(x) \ge 0.5$$
 then $y = 1$

if
$$p_w(x) < 0.5$$
 then $y = 0$

Classification Decision boundary

◆ Interpretation of

if
$$p_w(x) \ge 0.5$$
 then $y = 1$
if $p_w(x) < 0.5$ then $y = 0$

As
$$\sigma(\eta = w^T x) \ge 0.5$$
 when $\eta = w^T x \ge 0$

Therefore
$$p_w(x) = \sigma(w^T x) \ge 0.5$$
 if $w^T x \ge 0$ (and $y = 1$)

And
$$p_w(x) = \sigma(w^T x) < 0.5 \text{ if } w^T x < 0 \text{ (and } y = 0)$$

Classification Decision boundary for d = 2 features

Decision boundary in higher dimensional spaces:

$$p_w(x) = \sigma(w_0 + w_1 x_{(1)} + w_2 x_{(2)}) = \sigma(w^T x)$$

Classification **Decision boundary for** *d* **features**

◆ Plan in 3D and hyper-plan in *d*-D

Classification

Non-linear decision boundary

Beyond flat boundaries (straight lines, plans):

Class decision function:

if
$$p_w(x) \ge 0.5$$
 or $w^T x \ge 0$ then $y = 1$
if $p_w(x) < 0.5$ or $w^T x < 0$ then $y = 0$

Classification

Non-linear decision boundary

Example:

$$w_0 = -R^2, \ w_1 = w_2 = 0, \ w_3 = w_4 = 1$$

$$w^T x = -R^2 + x_{(1)}^2 + x_{(2)}^2$$

All x such that $w^T x = 0$ $x^2_{(1)} + x^2_{(2)} = R^2$

Decision boundary Circle equation

Classification Loss function

Predictive function:

$$p_w(x) = \sigma(w^T x) = \frac{1}{1 + e^{-w^T x}}$$

• How to choose the parameters w of the predictive function p_w ?

We need:

- A loss/cost function to assess the prediction.
- A training set of examples (x_i, y_i) (supervised learning)
- **◆ Candidate:** Loss function used for regression?

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(p_w(x_i) - y_i \right)^2$$
 Mean square error (MSE)

Good choice for classification?

Classification

MSE loss for regression and classification

Linear regression predictive function:

$$f_w(x) = w^T x$$

MSE loss:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(w^{T} x_{i} - y_{i} \right)^{2}$$

- **◆** L function is convex [◎]
 - GD guarantees to find (global) minimum

Classification predictive function:

$$p_w(x) = \frac{1}{1 + e^{-w^T x}}$$

MSE loss:

$$L(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1}{1 + e^{-w^{T} x_{i}}} \right)^{2}$$

- **◆** L function is non-convex ⊗
 - GD no guaranteed to converge to global minimum