New Directions In Automated Traffic Analysis

github.com/nprint/

Jordan Holland, Paul Schmitt, Nick Feamster, Prateek Mittal

Network Traffic Analysis?

Can we identify remote devices by probing them?

How can we identify and stop attacks?

Can we improve performance by analyzing traffic?

• Can users be tracked via their network traffic?

Network Traffic Analysis?

• Can we identify remote devices by probing them?

How can we identify and stop attacks?

Can we improve performance by analyzing traffic?

Can users be tracked via their network traffic?

• Recently - Can machine learning techniques solve these problems?

Classic ML Pipeline

Bespoke Solutions

Application Identification

Bespoke Solutions

Application Identification

Anomaly Detection

Generalizable Solutions?

Where We Are Headed

• Introduce <u>nPrint</u>, a generalizable packet representation that works across multiple traffic analysis tasks

 Combine nPrint and AutoML to create <u>nPrintML</u>, an open source system that generates full analysis pipelines

Classic ML Pipeline

Features Are Expensive

Are We Working Too Hard?

Goal Pipeline

Inspiration

Image recognition

• Website fingerprinting on Tor traffic [1,2]

Network Traffic Issues

Image recognition

• Website fingerprinting on Tor traffic [1,2]

• Problem - outside of Tor, network traffic not as simple!

Different Protocols

			TCP Segm	ent l	Heade	r Forma	it	
Bit #	0	7	8	15	16	23	24	31
0		Sour	ce Port			Destinat	tion Port	
32			Se	quence	Number			
64			Ackno	wledgn	nent Numbe	er		
96	Data Offset	Res	Flags			Windo	w Size	
128	He	eader and [Data Checksum			Urgent	Pointer	
160				Opti	ons			

	UDP D	atagram	Heade	r Forma	t	
0	7 8	15	16	23	24	31
S	Source Port			Destinat	ion Port	
	Length			Header and D	ata Checksum	
	0	0 7 8 Source Port	0 7 8 15 Source Port	0 7 8 15 16 Source Port	0 7 8 15 16 23 Source Port Destinat	Source Port Destination Port

[3]

Different Values

		-	TCP Segme	nt	Headei	r Forma	it	
Bit #	0	7	8	15	16	23	24	31
0		Sourc	e Port			Destinat	tion Port	
32			Seq	uence	Number			
64			Acknow	vledgn	nent Numbe	r		
96	Data Offset	Res	Flags			Windo	w Size	
128	Н	eader and D	ata Checksum			Urgent	Pointer	
160				Opti	ions			

		U	DP Data	agram	Heade	r Forma	ıt	
Bit #	0	7	8	15	16	23	24	31
0		Source	ce Port			Destinat	tion Port	
32		Lei	ngth		ŀ	Header and D	ata Checksum	1

Different Lengths

	<u>.</u>		TCP Segr	ment	Heade	r Forma	ıt	
Bit #	0	7	8	15	16	23	24	31
0		Sour	ce Port			Destinat	tion Port	
32				Sequence	Number			
64			Acl	knowledgn	nent Numbe	er		
96	Data Offset	Res	Flags			Windo	w Size	
128	Н	eader and D	ata Checksum			Urgent	Pointer	
160				Opti	ions			

	U	DP Datag	ram	Heade	r Forma	ıt	
Bit #	0 7	8	15	16	23	24	31
0	Source	ce Port			Destinat	tion Port	
32	Le	ngth			Header and D	ata Checksum	1
				de la companya de la			-

Generic Packet Representation

The Semantic View

• Encode each header field as a feature

Semantic Representation: (IP / TCP) Packet

IP	IP	IP	TCP	TCP	Payload
Verison	IHL		Source Port		
4	5		80		?

Semantic Issues

- Semi-structured fields
- Domain expertise
- Normalization
- Payloads

Semantic Representation: (IP / TCP) Packet

IP	IP	IP	TCP	TCP	Payload
Verison	IHL		Source Port		
4	5		80		?

The Binary View

• Insight: packets are a collection of bits

Semantic Representation:	(TCP	/ IP)	Packet
--------------------------	------	-------	---------------

IP Verison	IP IHL	IP 	IP Options	TCP Source Port	TCP 	TCP Options	Payload
4	5	•••	?	80	•••	?	?

Naive Binary Representation: (TCP / IP) Packet

IP Bit	1							IF	pti Bit :		S		'CF Bit																7	ГСI)pt it 1		nsI		ylo 3it			
О	1 0	0	0	1	0	1	 		 0	1	1	1	0	0	0	О	0	0	О	0	0	1	О	1	0	0	0	0	 		 1	1	0	0	1	0	1	1

Naive Noise

Naive Binary Representation: (TCP / IP) Packet

Naive Binary Representation: (TCP / IP) Packet: No Options

E	IP 3it	1										T E	'CI 3it	1																P	Pay B	lo: it	ad 1			
0 1 0 0 0 1 0 1 0 0 0									0	0	0	0	0	0	1	0	1	0	0	0	0	 			1	0	1	1								

Naive Noise

nPrint

	IPv4 480 Features	TCP 480 Features	UDP 64 Features	ICMP 64 Features	Payload n Features	
	Maximum Size of IPv4 Header (60 Bytes)	Maximum Size of TCP Header (60 Bytes)	Size of UDP Header (8 Bytes)	Size of ICMP Header (8 Bytes)	User Defined Number of Bytes	
	nPrint (TCP / IP) Packet					
0 1 0 0 0 1 1 1 1 1 0 1 0 1						
nPrint (UDP / IP) Packet						
	0 1 0 0 0 1 1 1 1 1					

Classic ML Pipeline

nPrint Replaces Feature Engineering

New Bottleneck

Can We Automate This Step?

Classic Model Training

Pick favorite model(s)

Search some hyper-parameters for that model

Choose best model

Automated Machine Learning

Model selection

Feature selection

Hyperparameter search

AutoGluon AutoML

 Model ensembling achieves higher performance than other AutoML techniques_[8]

- Train models from 7 base classes
 - Random forests
 - DNN
 - KNN

Original Goal Pipeline

Detailed Traffic Analysis

nPrint Transforms And Represents Packets

AutoML Finds The Best Model

nPrintML

nPrintML Combines Both!

nPrintML

Let's Try it!

Defining The Problem

Remote device fingerprinting

Building A Dataset

Remote device fingerprinting

- Labeled Targets
 - Routers_[4]
 - IoT Devices (Shodan)

Labeled Dataset

Vendor	Device Type	Labeled Devices				
Adtran	Network Device	1,449				
Avtech	IoT Camera	2,152				
Axis	IoT Camera	2,653				
Chromecast	IoT Streaming	2,872				
Cisco	Network Device	1,451				
Dell	Network Device	1,449				
H3C	Network Device	1,380				
Huawei	Network Device	1,409				
Juniper	Network Device	1,445				
Lancom	Network Device	1,426				
Miktrotik	Network Device	1,358				
NEC	Network Device	1,450				
Roku	IoT Streaming	2,403				
Ubiquoss	Network Device	1,476				
ZTE	Network Device	1,425				

Gathering Traffic

Leveraging Nmap

Leveraging Nmap

Transforming Packets

44

nPrint Packet Transformation

• 21 uniquely named responses

 Sort responses by name and concatenate individual nPrints UDP Response
ICMP Response 1
ICMP Response 2
TCP Response 1
Response ...

21 Rows

Nmap Packet Transformation

Test Name	Summary	Nmap Weight
Explicit Congestion Notification	TCP Explicit Congestion control flag.	100
ICMP Response Code	ICMP Response Code.	100
Integrity of returned probe IP Checksum	Valid checksum in an ICMP port unreachable.	100
Integrity of returned probe UDP Checksum	UDP header checksum received match.	100
IP ID Sequence Generation Algorithm	Algorithm for IP ID.	100
IP Total Length	Total length of packet.	100
Responsiveness	Target responded to a given probe.	100
Returned probe IP ID value	IP ID value.	100
Returned Probe IP Total Length	IP Length of an ICMP port unreachable.	100
TCP Timestamp Option Algorithm	TCP timestamp option algorithm.	100
Unused Port unreachable Field Nonzero	Last 4 bytes of ICMP port unreachable message not zero.	100
Shared IP ID Sequence Boolean	Shared IP ID Sequence between TCP and ICMP.	80
TCP ISN Greatest Common Divisor	Smallest TCP ISN increment.	75
Don't Fragment ICMP	IP Don't Fragment bit for ICMP probes.	40
TCP Flags	TCP flags.	30
TCP ISN Counter Rate	Average rate of increase for the TCP ISN.	25
TCP ISN Sequence Predictability Index	Variability in the TCP ISN.	25
IP Don't Fragment Bit	IP Don't Fragment bit.	20
TCP Acknowledgment Number	TCP acknowledgment number.	20
TCP Miscellaneous Quirks	TCP implementations, e.g, reserved field in TCP header.	20
TCP Options Test	TCP header options, preserving order.	20
TCP Reset Data Checksum	Checksum of data in TCP reset packet.	20
TCP Sequence Number	TCP sequence number.	20
IP Initial Time-To-Live	IP initial time-to-live.	15
TCP Initial Window Size	TCP window size.	15

Training Models

Active Device Fingerprinting

nPrint Outperforms Nmap

Representation	Balanced Accuracy	ROC AUC	F1
nPrint	95.4	99.7	95.5
Nmap	92.7	99.3	92.9

nPrint Enables Interpretable Machine Learning

- Map features to packet header semantics!
- Automatically learn
 - IP TTL
 - TCP options, window size
 - Source port identifies IoT vs Routers

(c) *ICMP*

nPrintML's Breadth

Problem Overview				nPrint	ML	Comparison			
Description	Dataset	# Classes	Configuration eAppendix A.4)	Sample Size (# Packets)	Balanced Accuracy		Macro F1	Score	Source
Active Device Fingerprinting (§5.1)	Network Device Dataset [22]	15	-4 -t -i	21	95.4	99.7	95.5	92.9 (Macro-F1)	ML-Enhanced Nmap [31]

8 Discrete Case Studies

Problem Overview				nPrint	ML	Comparison			
Description	Dataset	# Classes	Configuration eAppendix A.4)	Sample Size (# Packets)	Balanced Accuracy	ROC AUC	Macro F1	Score	Source
Active Device Fingerprinting (§5.1)	Network Device Dataset [22]	15	-4 -t -i	21	95.4	99.7	95.5	92.9 (Macro-F1)	ML-Enhanced Nmap [31]
Passive OS Detection (§5.2)	CICIDS 2017 [48]	3 13	-4 -t	1 10 100 100	99.5 99.9 99.9 77.1	99.9 100 100 97.5	99.5 99.9 99.9 76.9	81.3 (Macro-F1) No Previous Work	p0f [40]
Application Identification via DTLS Handshakes (§5.3)	DTLS Handshakes [32]	7	-4 -u -p 10 -p 25 -p 100 -4 -u -p 10	43	99.8 99.9 95.0 99.9 99.9 99.8	96.9 99.7 78.8 99.7 99.7 99.9	99.7 99.5 77.4 99.7 99.7 99.8	99.8 (Average Accuracy)	Hand-Curated Features [32
Malware Detection for IoT Traces (§5.4.1)	netML IoT [6, 28]	2 19	-4 -t -u	10	92.4 86.1	99.5 96.9	93.2 84.1	99.9 (True Positive Rate) 39.7 (Balanced F1)	
Type of Traffic in Capture (§5.4.1)	netML Non-VPN [6, 12]	7 18 31	-4 -t -u -p 10 -4 -t -u	10	81.9 76.1 66.2 60.9	98.0 94.2 91.3 92.2	79.5 75.8 63.7 57.6	67.3 (Balanced F1) 42.1 (Balanced F1) 34.9 (Balanced F1)	NetML Challenge Leaderboard [37]
Intrusion Detection (§5.4.1)	netML CICIDS 2017 [6, 48]	2 8	-4 -t -u	5	99.9 99.9	99.9 99.9	99.9 99.9	98.9 (True Positive Rate) 99.2 (Balanced F1)	
Determine Country of Origin for Android & iOS Application Traces (§5.4.2)	Cross Platform [44]	3	-4 -t -u -p 50	25	96.8	90.2	90.4	No Prev	vious Work
Identify streaming video (DASH) service via device SYN packets	Streaming Video Providers [10]	4	-4 -t -u -R	10 25 50	77.9 90.2 98.4	96.0 98.6 99.9	78.9 90.4 98.6	No Prev	vious Work

Outperforming hand-engineered solutions

Problem Overview			nPrintML						Comparison		
Description	Dataset	# Classes	Configuration eAppendix A.4)	Sample Size (# Packets)		ced acv	ROC AUC	Macro F1	Score	Source	
Active Device Fingerprinting (§5.1)	Network Device Dataset [22]	15	-4 -t -i	21	,	95.4	99.7	95.5	92.9 (Macro-F1)	ML-Enhanced Nmap [31]	
Passive OS Detection (§5.2)	CICIDS 2017 [48]	3 13	-4 -t	1 10 100 100	;	99.5 99.9 99.9 77.1	99.9 100 100 97.5	99.5 99.9 99.9 76.9	81.3 (Macro-F1) No Previous Work	p0f [40]	
Application Identification via DTLS Handshakes (§5.3)	DTLS Handshakes [32]	7	-4 -u -p 10 -p 25 -p 100 -4 -u -p 10	43		99.8 99.9 95.0 99.9 99.9	96.9 99.7 78.8 99.7 99.7	99.7 99.5 77.4 99.7 99.7 99.8	99.8 (Average Accuracy)	Hand-Curated Features [32]	
Malware Detection for IoT Traces (§5.4.1)	netML IoT [6, 28]	2 19	-4 -t -u	10		92.4 36.1		93.2 84.1	99.9 (True Positive Rate) 39.7 (Balanced F1)		
Type of Traffic in Capture (§5.4.1)	netML Non-VPN [6, 12]	7 18 31	-4 -t -u -p 10 -4 -t -u	10		31.9 76.1 66.2 60.9	98.0 94.2 91.3 92.2	79.5 75.8 63.7 57.6	67.3 (Balanced F1) 42.1 (Balanced F1) 34.9 (Balanced F1)	NetML Challenge Leaderboard [37]	
Intrusion Detection (§5.4.1)	netML CICIDS 2017 [6, 48]	2 8	-4 -t -u	5		99.9 99.9	99.9 99.9	99.9 99.9	98.9 (True Positive Rate) 99.2 (Balanced F1)		
Determine Country of Origin for Android & iOS Application Traces (§5.4.2)	Cross Platform [44]	3	-4 -t -u -p 50	25	,	96.8	90.2	90.4	No Pre	rious Work	
Identify streaming video (DASH) (§5.4.3) service via device SYN packets	Streaming Video Providers [10]	4	-4 -t -u -R	10 25 50		77.9 90.2 98.4	96.0 98.6 99.9	78.9 90.4 98.6	No Pre	rious Work	

nPrintML Results

nPrint Is Open Source

• 8 protocols implemented

Relative & absolute timestamps

• Input formats – live capture, PCAP, scan data, nPrints

nPrintML Is Open Source

- Application Identification
 - nprintml —pcap-dir pcaps/ -L labels.csv -a pcap -4 -u -p 10

- Passive OS detection
 - nprintml -P traffic.pcap -L labels.csv -a index -4 -t

Thank You!

github.com/nprint/

References

- 1. Rimmer, Vera, et al. "Automated website fingerprinting through deep learning." 25th Annual Network & Distributed System Security Symposium. NDSS, 2018
- 2. Oh, Se Eun, Saikrishna Sunkam, and Nicholas Hopper. "p1-FP: Extraction, Classification, and Prediction of Website Fingerprints with Deep Learning." *Proceedings on Privacy Enhancing Technologies* 2019.3 (2019): 191-209.
- 3. https://skminhaj.wordpress.com/2016/02/15/tcp-segment-vs-udp-datagram-header-format/
- 4. https://arxiv.org/pdf/2006.13086.pdf
- 5. https://www.shodan.io/
- 6. Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, "Toward Generating a New Intrusion Detection Dataset and Intrusion Traffic Characterization", 4th International Conference on Information Systems Security and Privacy (ICISSP), Portugal, January 2018
- 7. Sambasivan, Nithya, et al. ""Everyone wants to do the model work, not the data work": Data Cascades in High-Stakes AI." proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. 2021.
- 8. Erickson, Nick, et al. "Autogluon-tabular: Robust and accurate automl for structured data." arXiv preprint arXiv:2003.06505 (2020).