CEIFADORES E GRAMPEADORES

Ceifadores e grampeadores são circuitos compostos por diodos para a obtenção de formas de ondas especiais, cada um deles, desempenhando uma função específica como sugere o nome.

CEIFADORES:

A saída dos circuitos ceifadores (às vezes chamados limitadores) aparece como se uma parte do sinal de entrada fosse cortada.

Os ceifadores classificam-se basicamente em *ceifadores não polarizados* e *ceifadores polarizados*, em série ou em paralelo.

As figuras abaixo ilustram dois circuitos básicos de ceifadores *série* não polarizados ou simples:

O ceifador negativo é assim denominado por cortar o semiciclo negativo da senóide aplicada à entrada, enquanto que, no ceifador positivo é cortado ou ceifado o semiciclo positivo da senóide.

Podemos dizer que os ceifadores série simples são, em última análise, retificadores de meia onda.

As figuras abaixo ilustram dois ceifadores *paralelos* simples ou não polarizados negativo e positivo respectivamente:

Analisando os ceifadores *série* e *paralelo*, conclui-se que o funcionamento dos mesmos é semelhante, em termos de tensão de saída.

É conveniente salientar que os ceifadores, sejam eles simples ou polarizados, em série ou em paralelo operam com qualquer forma de onda de sinal na entrada.

CEIFADORES SÉRIE POLARIZADOS

Nos ceifadores série polarizados adiciona-se uma bateria ou fonte em série com o diodo e com a tensão de entrada.

Os ceifadores série polarizados podem classificar-se em *negativo* e *positivo*, dependendo da posição do diodo no circuito.

A análise dos ceifadores é bastante simples, sendo bastante útil considerar instantes particulares do sinal de entrada e sua variação em função do tempo.

Isto significa que, um determinado sinal de entrada pode ser substituído por uma fonte de mesmo valor, para efeito de análise.

A figura a seguir ilustra um ceifador série polarizado $\underline{\textit{negativo}}$ cuja tensão de entrada é de $20V_{RMS}$.

Vin = 28,2Vp ou 56,4Vpp

Vout = 18,2Vp

Calibração vertical: 10V/div

Observa-se a existência de uma fonte de 10V em série com o diodo, caracterizando assim a polarização do circuito. A tensão de pico da tensão de entrada é de 28,2V, pois 20 x 1,41 = 28,2V.

No semiciclo positivo, a fonte de 10V opõe-se a tensão de 28,2Vp, suficiente para polarizar o diodo (neste caso, diodo ideal) e na saída obtém-se: 28,2Vp - 10V = 18,2Vp.

Durante o semiciclo negativo o diodo estará reversamente polarizado e não circulará corrente pelo circuito.

A figura a seguir mostra o mesmo circuito, porém com a fonte de 10V invertida, e uma fonte de entrada de $15V_{RMS}$ cuja análise é idêntica a anterior, exceção feita pela polaridade da fonte que está em série com o diodo.

A figura a seguir mostra um ceifador série polarizado $\underline{\textit{positivo}}$ cuja tensão de entrada é $15V_{RMS}$.

Como no exemplo anterior, o valor de pico da tensão de entrada é de 21,15V que, poderá ser substituído por uma fonte de tensão equivalente.

Convém salientar que os ceifadores série negativos e positivos, diferenciam-se unicamente em função do posicionamento dos diodos no circuito.

A polaridade da fonte (bateria) entre o diodo e a fonte de tensão na entrada, influencia apenas nos valores da tensão de saída do circuito, bem como, no aspecto de sua forma de onda.

A figura a seguir mostra o mesmo circuito, porém com a fonte de 10V invertida, e tensão de entrada de $20V_{RMS}$ cuja análise é idêntica a anterior, exceção feita pela polaridade da fonte que está em série com o diodo.

CEIFADORES PARALELOS POLARIZADOS

A diferença básica entre ceifadores *série* e *paralelo* está no posicionamento da fonte de tensão de polarização.

A figura abaixo ilustra um ceifador polarizado *paralelo* positivo.

Observa-se que a bateria de polarização deslocou o nível de corte para -10V em relação ao nível zero, isto é, aumentando-se ou diminuindo-se a tensão de entrada, o nível de corte permanecerá em -10V, porém a tensão de saída tenderá a aumentar ou diminuir.

Suponhamos que a tensão de entrada diminua para 15V e mantenhamos a polarização em - 10V. O aspecto da forma de onda na saída é mostrado a seguir:

O funcionamento do ceifador polarizado, também pode ser analisado através de circuitos equivalentes.

Vamos supor o circuito com uma entrada de 20V_{RMS}, equivalente a 28,2Vp ou 56,4Vpp.

Consideremos inicialmente o semiciclo positivo, conforme ilustra a figura abaixo:

O diodo comporta-se como uma chave eletrônica fechada e a tensão na saída será a tensão da fonte de polarização.

Aplicando-se LKT ao circuito (desprezando-se a resistência interna da fonte), observa-se que a tensão nos extremos do resistor de 10k será de 38,2V.

Sendo a tensão na saída - 10V, o nível 0 passará para -10V.

Durante o semiciclo negativo, o circuito equivalente fica com a aparência mostrada na figura abaixo:

Como nestas condições o diodo comporta-se como uma chave eletrônica aberta, não circulará corrente pelo circuito e não haverá tensão nos extremos do resistor de 10k.

Aplicando-se LKT ao circuito, observa-se então que a tensão na saída será -28,2V (a própria tensão de entrada).

A tensão resultante na saída será: -28.2 - (-10) = -18.2V

A figura abaixo mostra um ceifador <u>paralelo</u> negativo. Observa-se nesse circuito, que apenas a posição do diodo está invertida em relação ao circuito anterior.

Neste caso, por ser um ceifador negativo será aproveitada a parte positiva do sinal de entrada.

Analisemos o mesmo circuito, porém com a fonte de polarização invertida.

Observa-se que a tensão de polarização elevou o nível 0 para 10V. Isto nos faz concluir então que, quanto maior for a tensão de polarização positiva, menor será a tensão de ceifamento na saída.

Se desejarmos ceifamento positivo e negativo simultaneamente, podemos associar ceifadores em um único circuito, conforme mostra a figura abaixo:

Calibração vertical: 10V/div

Observa-se que a tensão V1 é proveniente da bateria de 10V (10Vp) enquanto que a tensão V2 é proveniente da bateria de 15V (-15Vp). A tensão na saída será então 25Vpp.

Como já foi dito anteriormente, os ceifadores podem operar com qualquer forma de onda de tensão na entrada.

Tomemos como exemplo o circuito a seguir.

Trata-se de um ceifador série polarizado, onde a tensão de entrada (AC) tem a forma de onda quadrada e considerando-se ainda, que a mesma não é simétrica.

Uma tensão não é simétrica, quando os valores acima e abaixo do nível de referência, não são iguais.

A forma de onda na saída terá o aspecto mostrado a seguir:

Se no mesmo circuito a fonte de polarização de 5V fosse invertida, então a forma de onda na saída teria o aspecto mostrado na figura abaixo:

GRAMPEADORES:

Os circuitos grampeadores necessitam além dos componentes dos circuitos ceifadores, de um capacitor.

A exemplo dos ceifadores, os grampeadores podem também receber polarização.

Um circuito grampeador típico, não polarizado, é mostrado a seguir:

Um grampeador tem por finalidade levar um sinal da entrada para saída, abaixo ou acima de um determinado nível, dependendo ou não se o mesmo for polarizado.

Para se ter uma idéia melhor de seu funcionamento, consideremos as figuras a seguir, em um grampeador típico sem polarização, considerando nível 0.

Observe atentamente a relação entre os sinais de entrada e saída.

Para que não ocorra a deformação na saída do sinal, os valores de R e C devem ser escolhidos de tal forma que, a constante de tempo $\tau=RC$ seja suficientemente grande para garantir que a tensão nos extremos do capacitor, não sofra variação significativa durante o período em que a tensão assume valor negativo (intervalo), a qual é determinada pela própria característica do sinal (no caso, a freqüência). Tomemos como exemplo um sinal de entrada cuja forma de onda é quadrada.

Analisando a forma de onda apresentada na entrada do circuito, observa-se intervalos entre t1-t2 e t3-t4, nos quais a tensão é negativa, polarizando reversamente o diodo.

Levando-se em conta que a freqüência é de 1kHz, então o período será de 1/T, ou seja, 1ms. Isto significa que o intervalo de tempo entre t1-t2, t3-t4 será de 0,5ms.

Para melhor entender o funcionamento de um circuito grampeador, passemos a analisar passo a passo o funcionamento do circuito mostrado acima, com base no princípio da comutação eletrônica dos diodos.

No instante em que a entrada assuma 10V o circuito comporta-se conforme ilustra a figura abaixo:

O capacitor carrega-se com a tensão de 10V, conforme polaridade indicada na figura e o diodo atua como uma chave eletrônica fechada, anulando o resistor de 10k

Isto significa que o capacitor se carregará rapidamente, com uma constante de tempo praticamente igual a zero (desprezando-se os valores da resistência interna da fonte e a resistência interna do diodo, por serem muito baixos). Logo $\tau = RC = 0$.

Levando-se em conta que a tensão de saída é tomada diretamente nos terminais do diodo, então, Vout = 0 para este intervalo de tempo.

Quando a entrada assume -20V, o circuito comporta-se como mostra a figura abaixo:

Nestas condições o capacitor tenderá a descarregar-se através do resistor de 10k, cuja constante de tempo $\tau=RC=10\mu F$ x 10k=10ms.

Levando-se em conta que este intervalo de tempo é de $0.5 \, \mathrm{ms}$, presume-se que o capacitor mantenha sua tensão durante esse intervalo, não ocasionando uma variação apreciável da tensão em seus terminais. É bom lembrar que, para que o capacitor descarregue-se totalmente, leva aproximadamente 5τ (cinco constantes de tempo), o que levaria $50 \, \mathrm{ms}$.

Desta forma, a tensão na saída será: -20 - 10 = -30V

Com a diminuição da constante de tempo (pela diminuição do valor do resistor, por exemplo) ocorrerá uma alteração na forma de onda na saída, pois o capacitor se descarregará mais rapidamente durante o intervalo de tempo em que o diodo estiver aberto, por estar polarizado reversamente (t1-t2, t3-t4).

As figuras a seguir, vistas na tela de um osciloscópio, ilustram o que foi dito anteriormente

Observa-se que, com a diminuição do resistor de 10k para 100Ω , a forma de onda na saída aparece distorcida, pois a constante de tempo de 10ms reduziu-se para 1ms.

O grampeador também pode ser polarizado, conforme exemplo ilustrado na figura abaixo:

As formas de onda do sinal de entrada e saída são mostradas abaixo (calibração vertical: 10V/div para as tensões de entrada e saída).

Observa-se que, em virtude da fonte de polarização de 10V, a tensão de entrada aparece grampeada na saída ultrapassando 10V acima do nível 0.

Passemos então, a entender melhor o funcionamento do grampeador através dos circuitos equivalentes.

No semiciclo positivo (20Vp) o circuito equivalente tem o aspecto mostrado abaixo:

O capacitor carrega-se através da fonte e as resistências internas do diodo e da fonte de polarização, que são muito baixas, e conseqüentemente com uma constante de tempo próxima de 0.

A tensão no capacitor será então 10V (conforme polaridade indicada) e a tensão na saída 10V (aplicando-se LKT).

É importante salientar que essa tensão, neste dado instante, estará 10V acima do nível 0.

No semiciclo negativo (-20Vp) o circuito equivalente tem o aspecto mostrado abaixo:

Como nestas condições o diodo está reversamente polarizado, a fonte de polarização de 10V deixa de ter função e a tensão na saída será a soma da tensão de entrada com a tensão armazenada no capacitor no instante anterior.

Assim, a tensão na saída será: -20 - (10) = -30V (LKT)

Esta tensão estará então 30V abaixo do nível 0 e a tensão total será uma composição da tensão obtida na saída durante o semiciclo positivo com a tensão obtida na saída durante o semiciclo negativo.

A figura a seguir ilustra bem essa condição.

Outro exemplo de grampeador polarizado á mostrado abaixo:

As formas de onda de entrada e saída são mostradas a seguir:

Pode-se observar que, a tensão da entrada começa a ser grampeada somente a partir de 10V acima do nível 0.

Outro exemplo de grampeador polarizado é mostrado abaixo:

As formas de onda são mostradas a seguir (calibração vertical: 5V/div para os dois canais).

EXERCÍCIO RESOLVIDO:

Projetar um circuito grampeador para uma tensão de entrada quadrada, simétrica, com 60Vpp de freqüência 200Hz. A resistência de saída deverá ser de $50\text{k}\Omega$ e a tensão de entrada deverá ser grampeada na saída em15V abaixo no nível 0, sem distorção.

Solução:

Para f = 200Hz o período T será 5ms e T/2 será 2,5ms.

Adotaremos como valor aceitável uma constante de tempo 20 vezes maior do que T/2.

Assim $\tau = RC = 50ms$

Calculando o valor do capacitor:

50 . 10
$$^{-3}$$
 = 50 . 10 3 C \clubsuit C = 50 . 10 $^{-3}$ / 50 . 10 3 = 1 μ F

O circuito terá então o seguinte aspecto:

