EI PH3

2010-11

PHYSIK

Probeklausur 1

Diese Probeklausur ist auf 45 Minuten ausgelegt. Bitte stoppe die Zeit und benutze nur die erlaubten Hilfsmittel (GTR, Formelsammlung). Ein Feedback ist erwünscht!

1. Aufgabe

Im Praktikum hast du eine Feder mit einer dir unbekannten Federhärte ausgemessen. Dabei hast du verschiedene Massestücke m angehängt und dir die dadurch verursachte Ausdehnung s notiert.

s (in cm)	9,9	19,7	29,4	39,2
m (in g)	50	100	150	200

- a) Bestimme rechnerisch die Federhärte D.
- b) Trage die Messwerte in ein passendes Schaubild (x-Achse: s, y-Achse: F) ein.
- c) Wie kann man in diesem Schaubild D ablesen?
- d) Mache eine Vorhersage, um wieviel sich die oben untersuchte Feder dehnt, wenn eine Masse von 137g angehängt wird.

2. Aufgabe

Wir haben im Unterricht das Fadenpendel besprochen.

- a) Skizziere ein solches Pendel und trage die wichtigsten Größen ein.
- b) Welche Kräfte wirken am Fadenpendel? Kannst du argumentieren, wieso es sich bei einer Auslenkung in Bewegung setzt?
- c) Gib die Schwingungsdauer eines Fadenpendels mit der Fadenlänge l=1m für eine kleine Auslenkung an. Ändert sich diese bei verschiedenen angehängten Massen? Und wenn man die Auslenkung ändert?
- d) Wieviel Energie "enthält" die Schwingung bei dem unten gezeigten Pendel?

Welche Energieformen treten wann auf? Und wie schnell ist das Pendel beim Durchgang durch die Ruhelage?

3. Aufgabe

Du untersuchst die Schwingung eines Federpendels und notierst dir folgende Übersicht:

- a) Wie lautet die Gleichung, die diese Bewegung beschreibt, wenn man in Position 1 beginnt? (Achtung: Wir haben die Gleichung notiert für den Fall, dass die Schwingung in Position 4 beginnt!)
- b) Wie lautet die Gleichung, die diese Bewegung beschreibt, wenn sie in Position 2 beginnt?
- c) In welchen Positionen ist die Geschwindigkeit am größten? wo ist sie Null? Wie unterscheiden sich die Geschwindigkeiten in Position 3 und Position 5?
- d) Das Pendel hat diese Eigenschaften: Angehängte Masse m=1kg, Federhärte D=50N/m, Auslenkung A=10cm. Die Schwingung beginne in Position 4. Bestimme die Schwingungsdauer. Bestimme die maximale Beschleunigung a_{max}.

4. Aufgabe

- a) Wie ändert sich die Schwingungsdauer T des Federpendels aus 3d), wenn man 4kg anhängt? Gib diese neue Schwingungsdauer T an!
- b) Wie ändert sich a_{max}, wenn man 4kg anstelle 1kg anhängt?
- c) Wenn man nur 1kg zur Verfügung hat, aber a_{max} des 4kg-Pendels haben möchte, könnte man das über eine Änderung der Amplitude erreichen? Wenn ja, gib diese neue Amplitude an!