Invitation to the Utility Era

2024/04/05
Tamiya Onodera
IBM Research – Tokyo

Path to the Utility era in Quantum Computing

The goal of this course is to learn how to implement utility-scale applications on a quantum computer. To achieve the goal, the course covers from the basics of quantum information to recent advances of quantum algorithms for noisy quantum devices as well as circuit optimization and error mitigation techniques. The course also introduces how to implement quantum algorithms using open-source framework of quantum computing and real quantum device with more than 127 qubits. The course is intended to help students understand the potential and limitations of currently available quantum devices.

In May of 1981, IBM and MIT hosted the Physics of Computation Conference

1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly, it's a wonderful problem, because it doesn't look so easy."

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Proceedings of the 35th Annual Symposium of Foundations of Computer Science, Pages 124-134

"This paper gives Las Vegas algorithms for finding discrete logarithms and factoring integers on a quantum computer that take a number of steps which is polynomial in the input size," 1994

Algorithms for Quantum Computation: Discrete Logarithms and Factoring

Peter W. Shor
AT&T Bell Labs
Room 2D-149
600 Mountain Ave.
Murray Hill, NJ 07974, USA

Proceedings of the 35th Annual Symposium of Foundations of Computer Science, Pages 124-134

"Currently, nobody knows how to build a quantum computer,"

"It is hoped that this paper will stimulate research on whether it is feasible to actually con-struct a quantum computer." 1994

IBM Quantum System One at Shin-Kawasaki

IBM **Quantum**

Quantum Computers

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

Quantum Circuits

Quantum State: a single qubit

 Mathematically represented as a unit vector in a 2-dimensional complex vector space

The special states known as computational basis.

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad |1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

• The arbitrary state can be represented as a linear combination of the two.

$$\alpha |0\rangle + \beta |1\rangle$$
 s.t. $|\alpha|^2 + |\beta|^2 = 1$

Quantum State: *n*-qubit

- Mathematically represented as a unit vector in a 2^n -dimensional complex vector space
- For instance, the 3-qubit state with each being $\frac{1}{\sqrt{2}} {1 \choose 1}$:

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} \otimes \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \frac{1}{\sqrt{8}} \begin{pmatrix} 1\\1\\1\\1\\1\\1 \end{pmatrix}$$

where the computational basis are $|000\rangle$ (= $|0\rangle \otimes |0\rangle \otimes |0\rangle$), $|001\rangle$, $|010\rangle$, $|011\rangle$, $|100\rangle$, $|101\rangle$, $|110\rangle$, $|111\rangle$

Quantum Gate: n-qubit

• Mathematically represented as a 2^n by 2^n unitary matrix

$$H|0\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$

$$H|1\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$CNOT|00\rangle = |00\rangle$$

 $CNOT|01\rangle = |01\rangle$
 $CNOT|10\rangle = |11\rangle$
 $CNOT|11\rangle = |10\rangle$

Example

$$(CNOT \circ (H \otimes I)) (|0\rangle \otimes |0\rangle)$$

$$= CNOT ((\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle) \otimes |0\rangle)$$

$$= CNOT (\frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |0\rangle)$$

$$= \frac{1}{\sqrt{2}}|0\rangle \otimes |0\rangle + \frac{1}{\sqrt{2}}|1\rangle \otimes |1\rangle$$

- The resulting state is called an entangled state.
 - Cannot be represented as a tensor product
 - The source of the tremendous computational power of quantum computation.

Measurement

- The only way to access the state of a qubit.
- Assume that the state is $\alpha|0\rangle + \beta|1\rangle$ s.t. $|\alpha|^2 + |\beta|^2 = 1$.

- Measuring the qubit in the computational basis, we will obtain the outcome 0 or 1 with the probabilities $|\alpha|^2$ and $|\beta|^2$, respectively.
 - The final state is in the state $|0\rangle$ or $|1\rangle$, corresponding to the outcome.
 - The superposition collapsed!

Quantum Circuits

An Example of Execution Results

Exponential growth

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

Important Landmarks of Quantum Algorithms

Farhi, Goldstone, Gutmann, 2014

Run on (hypothetical) Fault-Tolerant Quantum Computers

1994 1996

2009

Shor's Prime Factorization

$$N = p \times q$$

HHL Algorithm (Quantum Algorithm for Linear Equations)

$$A|x\rangle = |b\rangle$$

Grover's Quantum Search

$$x \in \{0,1\}^n \text{ s.t. } f(x) = 1$$

Run on Noisy Quantum Computers

2014

2022

Variational Quantum Eigensolvers (VQE)

$$\min_{\phi} \left\langle \phi \right| H \left| \phi \right\rangle$$

Quantum Approximate Optimization Algorithm

(QAOA)
$$H = \sum_{e_{ij} \in E} \frac{1}{2} (I - Z_i Z_j)$$
 $\min_{z \in \{0,1\}^n} \langle z | H | z \rangle$

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

IBM Quantum Platform

Dashboard

Compute resources

Jobs

IBM Quantum

Use our suite of applications to support your quantum research and development needs.

Learning

Take a course, browse tutorials, and start experimenting with Composer or Lab.

Sign in to IBM Quantum

New to IBM Quantum?

Create an IBMid

Having trouble signing in?

Try signing in with an IBMid. If you are still having issues, contact the IBMid help desk.

37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 48 - 49 - 50 - 51

56 = 57 = 58 = 59 = 60 = 61 = 62 = 63 = 64 = 65 = 66 = 67 = 68 = 69 = 70

-76-77-78-79-80-81-82-83-84-85-86-87-88-89

94 - 95 - 96 - 97 - 98 - 99 - 100 - 101 - 102 - 103 - 104 - 105 - 106 - 107 - 108

113 - 114 - 115 - 116 - 117 - 118 - 119 - 120 - 121 - 122 - 123 - 124 - 125

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

Quantum Error Mitigation and Correction

Quantum circuit complexity

September 2017

June 2023

A new era has begun:
Quantum
Utility

127 qubit x 60 entangling layers

2017: 4 qubit, depth 2

• Spin lattice shares **hardware topology** (127Q device)

$$H = -J \sum_{(i,j) \in E} Z_i Z_j + h \sum_{i \in V} X_i$$

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

• Building a 127 qubit system

What made this experiment possible?

- Building a 127 qubit system
- Coherence improvements

IBM **Quantum**

- Building a 127 qubit system
- Coherence improvements
- Advances in device calibration

What made this experiment possible?

- Building a 127 qubit system
- Coherence improvements
- Advances in device calibration
- Noise modeling & error mitigation
 - (1) Scalable noise characterization
 - (2) More accurate noise amplification

IBM **Quantum**

An efficiently learnable noise model

Reduced model complexity:

 \sim 4¹²⁷ \rightarrow \sim 1700 parameters

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

What made this experiment possible?

- Building a 127 qubit system
- Coherence improvements
- Advances in device calibration
- Noise modeling & error mitigation
 - (1) Scalable noise characterization
 - (2) More accurate noise amplification

IBM **Quantum**

 Light cone reductions enable exact verification at Non-Clifford points

Quantum computers today can provide reliable results at a scale that is beyond exact, brute-force classical computation.

(this is not a quantum advantage claim)

Classical benchmarking of ZNE beyond exact verification $< Z_{62} >$

arXiv:2306.14887 (BP-TNS) arXiv:2306.16372 (CPT)

arXiv:2306.15970 (31 qubit)

arXiv:2306.17839 (MPS extrap., Heis.)

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

Mapping the path to useful quantum computing

100x100 land is where we predict we can start looking for quantum advantage

IBM Quantum

^{[1]:} Kandala et al. Nature 567, 491 (2019)

^{[2]:} Kim et al. Nature Physics, in prep (2021)

^{[3]:} van den Berg et al. arXiv:2201.09866 (2022)

^{[4]:} Temme et al. https://research.ibm.com/blog/gammabar-for-quantum-advantage

^{[5]:} Kim et al., Nature **618**, 500–505 (2023), O. Shtanko, et al. arXiv:2307.07552 (2023)

If you're not using 100+ qubits, you're not doing quantum.

Course Schedule 2024

Date	Lecture Title	Lecturer	Date	Lecture Title	Lecturer
4/5	Invitation to the Utility Era	Tamiya Onodera	6/7	Classical Simulation (Clifford Circuit, Tensor Network)	Yoshiaki Kawase
4/19	Quantum Gates, Circuits, and Measurements	Kifumi Numata	6/14	Quantum Hardware	Masao Tokunari / Tamiya Onodera
4/26	Quantum Teleportation / Superdense Coding	Kifumi Numata	6/21	Quantum Circuit Optimization (Transpilation)	Toshinari Itoko
5/10	Quantum Algorithms: Grover Search	Atsushi Matsuo	6/28	Quantum Noise and Quantum Error Mitigation	Toshinari Itoko
5/15 (Wed)	Quantum Algorithms: Phase Estimation	Kento Ueda	7/5	Utility Scale Experiment I	Tamiya Onodera
5/24	Quantum Algorithms: Variational Quantum Algorithms (VQA)	Takashi Imamichi	7/12	Utility Scale Experiment II	Yukio Kawashima
5/30 (Thu)	Quantum Simulation (Ising model, Heisenberg, XY model), Time Evolution (Suzuki Trotter, QDrift)	Yukio Kawashima	7/19	Utility Scale Experiment III	Kifumi Numata / Tamiya Onodera/ Toshinari Itoko

References

- Kim, Y., Eddins, A., Anand, S. *et al.* Evidence for the utility of quantum computing before fault tolerance. *Nature* **618**, 500–505 (2023). https://doi.org/10.1038/
- Evidence for the Utility of Quantum Computing before Fault Tolerance | Qiskit Seminar Series, <u>https://www.youtube.com/watch?v=hIUydsivY9k</u>

© 2024 International Business Machines Corporation

Thank you

Install and set up Qiskit 1.x (macOS)

- Reference URL: https://docs.guantum.ibm.com/guides/install-giskit (For non-macOS users, please refer this.)
- Caution: You must start a new virtual environment to install Qiskit 1.x. It is very tricky and error-prone to upgrade an existing installation of Qiskit 0.x in-place to Qiskit 1.x.
- 1. Create a new virtual environment, using Python 3.8 or later.

python3 -m venv qiskit-1.x-venv

- 2. Activate the environment. source giskit-1.x-venv/bin/activate
- 3. Install Qiskit. pip install qiskit
- 4. Install the necessary packages.

pip install qiskit-ibm-runtime pip install qiskit[visualization] pip install jupyter pip install qiskit-aer

5. With the following command, you can launch Jupyter notebook and start using Qiskit.

jupyter notebook

- 6. Try the first cell of Hello world by copy and paste, and execute it by "Shift"+"Enter".
- 6. If you are not planning to use the environment immediately, use the deactivate command to leave it.

deactivate

zsh users need to put 'qiskit[visualization]' in single quotes.

IBM

