PROCESAREA SEMNALELOR CURS 06

FILTRARE, WAVELETS

Cristian Rusu

CUPRINS

- filtrare
- tipuri de filtre și ferestre
- wavelets
- referințe bibliografice

FILTRARE

- filtrarea reprezintă prelucrarea unui semnal în domeniul timpului ce induce o schimbare în componența spectrală
- Schimbarea constă în reducerea sau eliminare anumitor componente: filtrele permit anumitor frecvențe să treacă și le atenuează pe restul

FILTRARE: EXEMPLU

 filtru trece-jos este un filtru care acceptă componentele în frecvență mai mică de o bandă B și le elimină sau atenuează pe cele mai mari decât B

FILTRARE: EXEMPLU

- filtrele digitale sunt tot semnale discretizate și sunt notate cu h[n]
- semnalele de intrare le vom nota cu x[n]
- filtrele sunt de două tipuri
 - Finite Impulse Response (FIR)
 - foloseşte valorile precedente din x[n]
 - are un suport finit
 - folosește operații aritmetice simple
 - Infinite Impulse Response (IIR)
 - folosește valorile precedente din x[n]
 - folosește valorile precedente ale procesului de filtrare
 - reprezintă relații de recurență
 - implementează bucle de feedback

FILTRARE: FIR

• dat un număr finit de intrări nenule x[n], aplicarea unui filtru FIR h[n] va duce tot timpul la o ieșire y[n] ce conține un număr finit de eșantioane nenule

- exemplu banal:
 - fie o aplicație ce contorizează traficul pe un pod
 - în fiecare minut primim numărul de mașini ce au traversat podul
 - vrem să calculăm media mobilă într-un interval de timp (fereastră) de 5 minute

Minut	Nr. mașini	Media per 5 min.	$\frac{10}{5} = 2$
1	10	-	5 10 + 22
2	22	-	$\frac{10+22}{5}=6.4$
3	24	-	$\frac{10+22+24}{5}=11.2$
4	42	-	$\frac{10 + 22 + 24 + 42}{5} = 19.6$
5	37	27	5 $10 \pm 22 \pm 24 \pm 42 \pm 37$
6	77	40.4	5
7	89	53.8	$\frac{22 + 24 + 42 + 37 + 77}{5} = 40.4$
8	22	53.4	:
9	63	57.6	$\frac{77 + 89 + 22 + 63 + 9}{5} = 52$
10	9	52	$\frac{11+33+22+33+3}{5}=52$

care frecvențe sunt filtrate?

• este un filtru trece-jos

• ieșirea 5 este calculată în funcție de ultimele 5 intrări:

$$y[5] = \frac{1}{5}(x[5] + x[4] + x[3] + x[2] + x[1])$$

formula generală la pasul n este:

$$y[n] = \frac{1}{5}(x[n] + x[n-1] + x[n-2] + x[n-3] + x[n-4])$$

$$= \frac{1}{5} \sum_{k=n-4}^{n} x[k]$$

scris echivalent:

$$y[n] = \frac{1}{5}x[n] + \frac{1}{5}x[n-1] + \frac{1}{5}x[n-2] + \frac{1}{5}x[n-3] + \frac{1}{5}x[n-4]$$

$$= \sum_{k=n-4}^{n} \frac{1}{5}x[k]$$

convoluție

semnalul filtrat:

$$y[n] = \frac{1}{5}x[n] + \frac{1}{5}x[n-1] + \frac{1}{5}x[n-2] + \frac{1}{5}x[n-3] + \frac{1}{5}x[n-4]$$
$$= \sum_{k=n-4}^{n} \frac{1}{5}x[k]$$

- în memorie păstrăm doar ultimele 5 valori ale semnalului
- se aruncă mereu cea mai veche valoare a semnalului
 - semnalul este deplasat mereu către dreapta
 - filtrul transversal
- intrările x[n] se numesc *taps*
- ponderile care înmulțesc x[n] se numesc coeficienții filtrului

FILTRARE

- semnalul este reprezentat prin taps x[0], x[1], x[2], ...
- filtrul este reprezentat prin coeficienții $h[0], h[1], h[2], \dots$
- rezultatul, în general, este dat de y[n] = h[4]x[n-4] + h[3]x[n-3] + h[2]x[n-2] + h[1]x[n-1] + h[0]x[n] $= \sum_{k=0}^{4} h(k)x(n-k)$

.

FILTRARE

• cazul general pentru un filtru FIR cu M tap-uri ieșirea n este:

$$y[n] = \sum_{k=0}^{M-1} h[k]x[n-k]$$

- observaţi:
 - inversarea ordinii axei timpului pentru x[n]
 - iterația deplasează de la dreapta la stânga coeficienții filtrului h[n]
 - pentru fiecare intrare nouă din x[n] efectuăm suma produselor pentru a produce o ieșire y[n]
 - similar cu operația DOT la înmulțirea matricelor
- vom scrie:

$$y[n] = h[k] * x[n]$$

.

FILTRARE: EXEMPLU

ieșirile sunt chiar coeficienții filtrului

TEOREMA DE CONVOLUȚIE

• Transformata Fourier Discretă (DFT) a convoluției dintre răspunsului la impuls a unui filtru (a coeficienților și o secvență de M taps este egală cu produsul dintre DFT-ul intrării și DFT-ul răspunsului la impuls a filtrului

$$y[n] = h[n] * x[n] \stackrel{\mathsf{FFT/IFFT}}{\iff} Y[m] = H[m]X[m]$$

- convoluția în domeniul timpului este produs în domeniul frecvenței!
- produsul în domeniul timpului este convoluție în domeniul frecvenței!

.

TEOREMA DE CONVOLUȚIE: DEMONSTRAȚIE

$$Y[m] = \sum_{n=0}^{N-1} y[n]e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} e^{-j2\pi mn/N} \sum_{k=0}^{M-1} h[k]x[n-k]$$

$$= \sum_{n=0}^{N-1} \sum_{k=0}^{M-1} h[k]x[n-k]e^{-j2\pi mn/N}$$

$$= \sum_{n=0}^{N-1} \sum_{k=0}^{N-1} h[k]x[n-k]e^{-j2\pi mn/N}$$

$$= \sum_{k=0}^{N-1} h[k] \sum_{n=0}^{N-1} x[n-k]e^{-j2\pi mn/N}$$

$$= \sum_{k=0}^{N-1} h[k]e^{-j2\pi mk/N} \sum_{n=0}^{N-1} x[n]e^{-j2\pi mn/N}$$

$$= H[m]X[m]$$

.

CUM ARATĂ FILTRUL DE MEDIERE

CUM ARATĂ FILTRUL DE MEDIERE

filtrul atenuează frecvențele înalte

CUM PROIECTĂM FILTRE

metode de optimizare

CUM PROIECTĂM FILTRE

metode de optimizare

CUM PROIECTĂM FILTRE

metode standard pentru filtrare frecvenţe înalte: Blackman, Cebîşev, Kaiser

WAVELETS

amintiţi-vă principiu incertitudinii timp vs. frecvenţă

WAVELETS - HAAR

transformata Haar de dimensiune 2 este echivalentă cu transformata Fourier

$$\mathbf{H}_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

• pentru toate celelalte dimensiuni:

$$\mathbf{H}_{2n} = \begin{bmatrix} \mathbf{H}_n \otimes [1 & 1] \\ \mathbf{I}_N \otimes [1 - 1] \end{bmatrix}$$

încă un exemplu:

$$\mathbf{H}_4 = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

.

WAVELETS - HAAR

• un ultim exemplu, care să clarifice structura:

- observaţi "balanţa" dintre timp şi frecvenţă
 - unele semnale de bază sunt localizate în timp (deci nu în frecvență)
 - altele sunt localizate în frecvență (deci nu în timp)
 - principiul incertitudinii: $\Delta t \Delta \omega \geq 2\pi$

WAVELETS - HAAR

aşa cum pentru DFT există FFT, şi pentru DWT există FWT

WAVELETS

