2D Matrices

TABLE OF CONTENTS

- 1. Search in row-wise & column-wise sorted 2D array
- 2. Row with maximum number of 1's
- 3. Spiral Matrix
- 4. Sum of all sub-matrices sum

								8-		
-@´	°\\	91	* *	Ш	1!	D	දිය	-1/2	5	

Search in row-wise & column-wise sorted 2D array

N * M

$$TC = O(N * M)$$
 $SC = O(I)$

if (Alr][c] == K) return true else if (Alr][c] < K) & ++ else c--

$$TC = O(N + M)$$
 $SC = O(1)$

Row with maximum number of 1's

Given a binary sorted matrix A of size N*N. Find the row with the maximum

number of 1's [Only rows are sorted]

$$A = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
The first now.

```
A = [ 0 [ 0 , 0 , 0 , 0 ]

1 [ 0 , 0 , 0 , 1 ]

2 [ 0 , 0 , 1 , 1 ]

3 [ 0 , 1 , 1 , 1 ] ]
```


Bruteforce
$$\rightarrow$$
 Vrows, court #1's.
 $TC = O(N^2)$ $SC = O(1)$

Print Boundary Elements

			mat	t[N][N]] —	
		0	1	2	3	4
	0	1	2	3	4	5
	1	6	7	8	9	10
mat[5][5]	2	11	12	13	14	15
	3	16	17	18	19	20
	4	21	22	23	24	25

o/p
$$\rightarrow$$
 [1 , 2 , 3 , 4 , 5 , 10 , 20 , 25 , 24 , 23 , 22 , 21 , 16 , 11 , 6]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \quad op \to 1 \quad 2 \quad 3 \quad 6 \quad 9 \quad 8 \quad 7 \quad 4$$

			mat	[N][N]	
		0	1	2	3	4
_	0	1	2	3	4	5
	1	6	7	8	9	10
mat[5][5]	2	11	12	13	14	15
_	3	16	17	18	19	2 0
_	4	21	22	23	24	25

```
while ( e < (N-1)) &
  print (AleJ[c])
while (r < (N-1)) {
  print (AbrJGJ)
while (c > 0) {
  perint (Abr] [c])
while (x > 0) &
    print (AGr][e])
             TC = O(4 \times (N-1)) \rightarrow O(N)
            SC = 0(1)
```


Spiral Matrix

mat	t[N][N]					
	0	1	2	3	4	5
0	1	2	3	4	5	6
1	7	8	9	10	11	12
2	13	14	15	16	17	18
3	19	20	21	22	23	2 4
4	25	26	27	28	29	3 0
5	31	32	33	34	35	36

 $o/p \rightarrow [1, 2, 3, 4, 5, 6, 12, 18, 24, 30, 36, 35, 34, 33, 32, 31, 25, 19,$

13,7,8,9,10,11,17,23,29,28,27,26,20,14,15,16,22,21]

Quiz:


```
s = 0 c = 0
     while (N>1) &
                                                                                        for (i \rightarrow 1 \text{ to } (N-1)) \stackrel{\checkmark}{} \longrightarrow
                                                                                                                                            print (AbeJ[c])
                                                                                                                                                      L++
                                                                                    for (i \rightarrow 1 \text{ to } (N-1)) % = \frac{1}{2} \left( \frac{1}{N} \right) \left(
                                                                                                                            print (AbrJGJ)
                                                                                       for (i \rightarrow 1 \text{ to } (N-1)) f \leftarrow --
                                                                                                                                    print (Abr][c])
                                                                                    for (i \rightarrow 1 \text{ to } (N-1))  \uparrow
                                                                                                                       print (AGr][e])
                                                                                                        N -= 2
                            if (N==1) print (AGrJGJ)
                                                                                                                                                                                                                                                                                                                              TC = O(N^2) \qquad SC = O(1)
```


Sub - Matrices

· Contiguous part of a matrix

< **Question** >: Given mat[N][M]. Find sum of all sub-matrix sums.

submatrixe =
$$\begin{bmatrix} 4 & 9 \\ 5 & -1 \end{bmatrix} = \begin{bmatrix} 4 & 9 & 6 \\ 5 & -1 & 2 \end{bmatrix} = \begin{bmatrix} 4 &$$

2**3* → 3 *** 6 = <u>18</u>

Contribution Technique

• In how many sub - matrices (2, 2) will be present?

$$9 \times 6 = 54$$

ons = 0

for
$$i \to 0$$
 to $(N-1)$ d

for $j \to 0$ to $(M-1)$ d

ans $+ = A[i][j] \times (i+1) \times (j+1) \times (N-i) \times (M-j)$

}

return ans

$$TC = O(N * M)$$
 $SC = O(1)$

