MULTI-LEVEL MODELLING OF GEOGRAPHICALLY AGGREGATED HEALTH DATA: A CASE STUDY ON MALIGNANT MELANOMA MORTALITY AND UV EXPOSURE IN THE EUROPEAN COMMUNITY

IAN H. LANGFORD^{1*}, GRAHAM BENTHAM¹ AND ANNÉ-LISE McDONALD^{1,2}

Sara Serafino's project for Bayesian Statistics

¹ Centre for Social and Economic Research on the Global Environment, University of East Anglia and University College, London, U.K.

² Health Policy and Practice Unit, School of Health and Social Work, University of East Anglia, Norwich, U.K.

Goals of the project

- Analyse the data using a Bayesian approach
- Build a model for the number of male deaths, taking into account the hierarchical data structure
- Check the model and comment the results
- Compare the results with those of Langford et al. (1998):

what can be said about the effect of the UVB dose on the malignant melanoma mortality?

Data

354 observations on 6 variables:

- Nation: Belgium, West Germany (WG), Denmark, France,
 United Kingdom (UK), Italy, Ireland, Luxembourg, Netherlands
- Region: Region ID a factor from 1 to 79, skipping 26
- County: County ID a factor from 1 to 354
- **Deaths:** Number of male deaths due to malignant melanoma during 1971–1980 (for some nations it is from 1975-1976 onwards)
- Expected: Number of expected deaths
- **UVB:** Centered measure of the UVB dose reaching the earth's surface in each county.

Table I. The geographical hierarchy of the IARC mortality data

Nation	Regions	Counties
1. Belgium 2. West Germany 3. Denmark 4. France 5. United Kingdom 6. Italy 7. Ireland 8. Luxembourg	3 11 3 21 11 20 4	11 30 14 94 70 95 26 3
9. Netherlands	4	11

Geographical hierarchy: counties within regions within nations

multi-level model hierarchy

If they were too different, there could be some unconsidered factors influencing the observed deaths.

type

Deaths

Expected Deaths

Nation	deaths	people /km²*
Belgium	449	384
WG	2949	234
Denmark	681	139
France	1495	101
UK	2179	281
Italy	1462	195
Ireland	67	65
Luxembourg	23	255
Netherlands	546	520

^{*} From most recent data, just for the big picture

UK, Ireland, Netherlands, Luxembourg:

Low exposure to UVB

Positive relationship

Belgium, WG, Denmark:

Low exposure to UVB

Negative relationship

Italy:

High(est) exposure to UVB

Negative relationship

France:

Mid exposure to UVB

(slightly) Negative relationship

UK, Ireland, Netherlands, Luxembourg:

Belgium, WG, Denmark:

Italy:

High(est) exposure to UVB

France:

Mid exposure to UVB

(slightly) Negative relationship

Northern Europeans more at risk of intermittent high exposures.

Less sun exposure at home & more recreational travel to warmer climates?

Other factors influencing the behaviour:

- Use of sunscreen
- Effective UVB exposure
- History of deceased
- Origin different from nation

Differences within nations – especially Italy and France – depending on north-south and genetic factors

- Boxes extend from 25% to 75% of data.
- Whiskers extend from minimum to maximum within 1.5 times its box.
- Outliers are regions with deaths exceptionally higher than the average.

- West Germany has the highest number of deaths and variation
- Ireland and Luxembourg have lower mortality rates with less variation

Methods

Multi-level model based on generalized least squares estimation:

$$Y = X\beta + Z\theta$$

- X design matrix associated with a vector of fixed parameters β
- Z design matrix associated with a vector of random parameters θ
- Y vector of responses

At level 1, Y is a Poisson distributed response vector of observed cases (O), hence we need to include an offset of expected numbers of cases (E) with a logarithmic link function:

$$O \sim Poisson(\mu)$$

$$\ln(\mu) = \ln(E) + X\beta + Z\theta$$

Since counties have very heterogeneous populations (hence variance), it is theoretically more appropriate to consider level 1 random effects as following a negative binomial distribution. However, the paper found no improvement of fit with this.

At level 2 and 3, the random parameters follow a normal distribution.

Frequentist approach

Generalized linear mixed model with Poisson regression, an intercept for each region and nation and an offset term to take into account the expected deaths:

Frequentist approach

AIC BIC logLik deviance df.resid 2198.7 2214.2 -1095.3 2190.7 350

Must compare with others

 AIC and BIC are not the best for hierarchical models

Scaled residuals:

Min 1Q Median 3Q Max -3.9440 -0.7788 -0.0071 0.6277 3.9102

Symmetrical residuals but with too extreme values: overdispersion

Random effects:

Groups Name Variance Std.Dev. region (Intercept) 0.04829 0.2198 nation (Intercept) 0.13708 0.3702

Variance between nations and regions within nations

Negative relationship

Number of obs: 354, groups: region, 78; nation, 9

Fixed effects:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.06398 0.13351 -0.479 0.6318
uvb -0.02822 0.01139 -2.478 0.0132

Like before, but the Bayes approach relies on Hamiltonian Monte Carlo sampling from the posterior distribution:

Estimates:

mean sd 10% (Intercept) -0.1 0.2 -0.3 uvb 0.0 0.0 0.0

UVB does not have a meaningful effect (contrary to M1)

Fit Diagnostics:

mean sd 10% 50% 90% mean_PPD 27.8 0.4 27.3 27.8 28.3

MCMC diagnostics

 mcse Rhat n_eff

 (Intercept)
 0.0 1.0 1304

 uvb
 0.0 1.0 1596

 mean_PPD
 0.0 1.0 3909

 log-posterior
 0.3 1.0 892

Converges

Credibility intervals:

Solid blue line: 50% credible interval

Tinner light blue line: 95% credible interval

Captures well the uncertainty of estimated parameters

Posterior estimate of UVB for M1: -0.03443

A positive difference of 1 unit in this predictor has a linear effect of -0.03443 on the probability of MM death.

In terms of odds ratios:

$$e^{-0.03443} \approx 0.96616$$

causing a decrease in the odds of 3.4%

Random effects for the regions:

Posterior means of the region intercepts ± standard error of random effect

Variance components model with UVBI in the fixed part of the model so that, for the *i*th county in the *j*th region in the *k*th nation:

$$\ln(O_{ijk}) = \ln(E_{ijk}) + \beta_0 + \beta_1 UVBI_{ijk} + s_k + u_{jk} + e_{ijk}$$
$$s_k \sim N(0, \sigma_s^2) \qquad u_{jk} \sim N(0, \sigma_u^2)$$

- β_0 intercept term
- β_1 mean (fixed) effect of UVBI
- s_k , u_{jk} , e_{ijk} random terms associated with the intercept at levels 3, 2, 1 respectively

Direct measurements of UVB at earth's surface are too sparse for reliable estimates $\longrightarrow UVBI_{ijk}$ calculated for each county

Table III. UVB index: descriptive statistics for each nation

Nation	N	Mean	Standard deviation	Min	Max
Belgium	11	12:70	0.29	12·17	13·10
West Germany	30	12.79	1.35	10.45	15.15
Denmark	14	9.96	0.38	9.47	10.49
France	94	17.18	2.59	12.92	23.24
United Kingdom	70	10.91	1.50	6.69	13.46
Italy	95	21.45	3.51	16.83	28.95
Ireland	26	10.54	0.60	9.64	11.70
Luxembourg	3	13.26	0.05	13.22	13.31
Netherlands	11	11.40	0.47	10.62	11.94

Use a truncated norm to generate random deviates for each county starting from nation statistics

$$\beta_0, \beta_1, \sigma_s, \sigma_u, \sigma_e \sim N(0,1)$$

	Model A		
	Estimate	(SE)	
Fixed part			
eta_0	0.0103	(0.134)	
β_1 (UVBI)	-0.0360	(0.0107)	
β_2 (RDENS) β_3 (RGDP)		,	
Random part			
Level 3: nations			
σ_s^2	0.140	(0.0733)	
~		,	
$\sigma_{st} \ \sigma_t^2$			
Level 2: regions			
σ_u^2	0.0424	(0.00956)	
σ_{uv}	0 0 12 1	(0 00)20)	
σ_v^2			
Level 1: counties			
σ_{e1}^2	1.11	(0.0027)	
$\frac{\sigma_{e1}}{\sigma^2}$	1.11	(0.0937)	
<i>(</i>) .			

$$\beta_0$$
, β_1 , σ_s , σ_u , $\sigma_e \sim N(0,1)$

variable rhat ess_bulk ess_tail <dbl> <chr> <dbl> <dbl> beta0 1.00 1992. 2630. beta1 1.00 5855. 6337. 1.00 4764. sigma_s 5310. 1.00 2671. 5089. sigma_u 420. 1.01 287. sigma_e

With 8000 iterations instead of 4000, the warning about bulk and tail ESS too low disappears and $\hat{R}_{\sigma_e} = 1.00$

stan_glmer VS model A

```
comp_model_A <- stan_model('poisson_regression.stan')
fit_model_A <- sampling(comp_model_A, data = stan_data, seed = 123, iter=4000)

poisson_regression.stan:
...
eta[n] = log(expected[n]) + beta0 + beta1 * UVBI[n] + s[k[n]] + u[j[n]] + e[n];
deaths ~ poisson_log(eta)</pre>
```


stan_glmer VS model A: Leave One Out Cross Validation

stan_glmer computed from 4000 by 354 log-likelihood matrix.

Pareto k diagnostic values:

My model A computed from 8000 (or 4000) by 354 log-likelihood matrix.

	Estimate	SE	Estimate	SE
elpd_loo	-1054.2	21.3	-1053.6	20.9
p_loo	112.6	9.5	112.6	9.0
looic	2108.3	42.6	2107.2	41.8

Pareto k diagnostic values:

VS Langford et al. (1998)

			1	
	mean	squared	sd	Parameters of
beta0	-0.07		0.21	
beta1	0.00		0.01	my model A
sigma_s	0.50	0.25	0.16	≠
sigma_u	0.23	0.053	0.03	Parameters of
sigma_e	0.12	0.014	0.02	Langford et al.'s model A

Differences may be due to:

- UVBI for counties were generated from nation stats instead of direct measurements
- β priors were weakly informative $\sim N(0,1)$ instead of not being used
- Bayesian approach instead of frequentist

	Model A		
	Estimate	(SE)	
Fixed part β_0 β_1 (UVBI) β_2 (RDENS) β_3 (RGDP)	0·0103 - 0·0360	(0·134) (0·0107)	
Random part Level 3: nations σ_s^2 σ_{st} σ_t^2	0.140	(0.0733)	
Level 2: regions σ_u^2 σ_{uv} σ_v^2	0.0424	(0.00956)	
Level 1: counties σ_{e1}^2	1.11	(0.0937)	

VS Langford et al. (1998)

UK, Ireland, Belgium, Netherlands:

Positive relationship

WG, Denmark:

Higher mortality rates

Negative relationship

Italy:

Highest exposure to UVB

Negative relationship

France:

Little relationship

VS Langford et al. (1998)

UK, Ireland, Belgium, Netherlands:

Positive relationship

WG, Denmark:

Higher mortality rates

Negative relationship

Italy:

Highest exposure to UVB

Negative relationship

France:

Little relationship

From explorative analysis:

UK, Ireland, Netherlands, Luxembourg:

Positive relationship

Belgium, WG, Denmark:

Negative relationship

Italy:

High(est) exposure to UVB

Negative relationship

France:

(slightly) Negative relationship