MATH 320: Probability

Lecture 1: Set Theory

Chapter 1: Probability (1.1)

Where does data come from

Definitions

- An **experiment** is the process by which an observation/outcome is made, which cannot be predicted with certainty (outcomes are random).
- An **outcome** of an experiment is any possible observation of that experiment (often called sample points).

Examples: Write the set of all possible outcomes for the following experiments.

- 1. Sampling students and computing the average number of study hours each day:
- 2. Roll die, record number that appears:
- 3. Roll die, record first role that a one appears:

What is probability and how to calculate it

Intuitively, probability is the likelihood of something occurring.

One approach (simplest case)

• Probability by counting equally likely outcomes

Probability of an event =

- Example: Flip a fair coin, P(Heads) =
- Events are not always equally likely, so cannot determine probabilities by counting. But there is a simple way to estimate that probability.

Set Theory 1-2

Another approach

- Empirical probability (based on collected data).
- Relative frequency estimate of the probability of an event

Probability of an event =

- These are two ways of looking at probability.
 - If outcomes are equally likely, relative frequency \approx counting for a very large number of trials (e.g. if we simulated rolling a fair die 10,000 times, $\frac{\# 6s}{10,000} \approx \frac{1}{6}$).

Third approach

- Subjective probability is asking a well-informed person for his/her personal estimate of the probability of an event (relying on experience and personal recollections of relative frequencies in the past).
- The rest of this chapter will be building in more precise mathematical framework for probability.
- Counting will play a big role, but keep in mind that in practice many probability numbers actually used in calculations may come from relative frequencies or subjective estimates.

Set Theory

The mathematical basis of probability is sets. Set theory is useful here to provide a precise language for dealing with the outcomes in a probability experiment.

Definitions

• <i>F</i>	A set is a c	collection of	ĊО	bjects (such	as i	the	num	$_{ m bers}$	1, 2	3	, 4	, 5,	6).
------------	-----------------------	---------------	----	----------	------	------	-----	-----	--------------	------	---	-----	------	---	----

—	The objects are	called elements of the set.	C	of an	experiment
	correspond to	in a set.			

- Writing sets: Notation is important!
We use capital letters to denote sets such as A, B, C.
Can list the elements in braces if only a few, or use set-builder notation for large or infinite sets.
- Example: All positive numbers can be written as
"A = the set of all x 's such that (condition) $x > 0$ "
• Subset $A \subset B$ means that in A is also an element of B .
\bullet The sample space S (aka outcome space) is the set of outcomes of an experiment.
 There are different types of sample spaces.
 Countable or uncountable and if numeric: discrete or continuous.
• An event is a collection of possible outcomes of an experiment, that is, any of S.
1. Examples: Roll die, record the number that appears.
- Define notation:
- Show event:
An event occurs when at least one element in the event has occurred.
2. Is S an event?
• The null (empty) set is the set containing
Basic operations (algebra of sets)
• Union:
The set of elements that belong to
• Intersection:
The set of elements that belong to

• Complement:

The set of elements (in the sample space) that are ______ So all elements of A from the original sample space S.

• Example: Let $S = \{1, 2, 3, 4, 5, 6\}$ and $A_1 = \{1\}, A_2 = \{2, 3, 4\}, A_3 = \{4, 5, 6\}.$ Find each of the following events:

$$A_1 \cup A_2 =$$
 $A_2 \cup A_3 =$ $A_1 \cap A_2 =$ $A_2 \cap A_3 =$ $A_2 \cap A_3 =$ $A_2 \cap A_3 =$ $A_2 \cap A_3 =$

Set identities

- These laws help simplify (rewrite) events that are stated verbally or in set notation when solving problems.
- Commutative Law: Reordering

Order doesn't matter

 $A \cup B =$

 $A \cap B =$

• Associative Law:

Changing location of parentheses Order of operations with () doesn't matter

$$(A \cup B) \cup C =$$

$$(A \cap B) \cap C =$$

ullet **Distributive Law**: Distribute set operation Distribute to items in ()

$$A \cap (B \cup C) =$$

$$A \cup (B \cap C) =$$

• De Morgan's Law: Distributing complement (flip everything)
$\sim (A \cup B) =$
$\sim (A \cap B) =$
Relationships among sets
• Definitions
- Two events are mutually exclusive (or disjoint) if
- The events A_1, A_2, \ldots are pairwise mutually exclusive if is mutually exclusive.
Formally, the condition is stated as: if $A_i \cap A_j = $ for all $i \neq j$.
- Events A_1, \ldots, A_k are exhaustive if when combined, they form
Formally, this is written as: $\bigcup_{i=1}^k A_i = A_1 \cup \cdots \cup A_k =$
i=1

- Events A_1, \ldots, A_k form a **partition** of S if they are _____ and ____

• Examples: Given the sample space and events below, classify the relationship between events.

$$S = \{1, 2, 3, 4, 5, 6\}$$
 and $A_1 = \{1\}, A_2 = \{2, 3, 4\}, A_3 = \{4, 5, 6\}, A_4 = \{5, 6\}.$

- (a) A_1 and A_2 are _____
- (b) A_2 and A_3 are _____
- (c) A_1, A_2, A_3 are _____

but are _____

(d) A_1, A_2, A_4 are

To check:

1.
$$A_1 \cup A_2 \cup A_4 = \{1\} \cup \{2,3,4\} \cup \{5,6\} =$$

2.
$$A_1 \cap A_2 = A_1 \cap A_4 = A_2 \cap A_4 =$$