

Relational Algebra

Chapter 4

"Formal" Query Languages

- Foundation for commercial query languages like SQL
- Two types
 - Declarative: Relational Calculus
 - Describe what a user wants, rather than how to compute it.
 - Procedural : Relational Algebra
 - Operational, very useful for representing execution plans.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Understanding Algebra & Calculus is key to understanding SQL, query processing!

Relational Algebra Preliminaries

- 'Query:
 - Input: Relational instances
 - Output: Relational instances!

Relational Algebra is "closed"

- Specified using the schemas.
 - May produce different results for different instances.
 - But schema of the result is fixed.
- The algebra assumes "set semantics" for relations. OK – this is a formal model!

Relational Algebra

- Basic operations on relations:
 - Selection (σ) Selects a subset of rows from relation.
 - Projection (π) Deletes unwanted columns from relation.
 - Cross-product (X) Allows us to combine two relations.
 - Set-difference () Tuples in reln. 1, but not in reln. 2.
 - Union (U) Tuples in reln. 1 and in reln. 2.
- Additional operations (constructed from basic ops):
 - Intersection, Join, Division, Renaming
 - Not essential, but (very!) useful.
- Because algebra is closed, we can <u>compose</u> operators

 Retrieve rows that satisfy a logical condition

 $\sigma_{predicate}(relation)$

Athlete

aid	name	sport	country
1	Mary Lou Retton	gymnastics	USA
2	Jackie Joyner-Kersee	track	USA
3	Michael Phelps	swimming	USA
4	Johann Koss	skating	Norway
5	Natalie Coughlin	swimming	USA
6	Gabby Douglas	gymnastics	USA

Example:

 $\sigma_{sport='gymanstics'} \wedge country='_{USA'}$ (Athlete)

aid	name	sport	country
1	Mary Lou Retton	gymnastics	USA
6	Gabby Douglas	gymnastics	USA

 $\pi_{projectionlist}$ (Relation)

Delete attributes that are not in projection list

- Projectionlist: a list of columns
- The result is a set (relational algebra uses set semantics)
- Remove duplicates!

Athlete

aid	name	sport	country
1	Mary Lou Retton	gymnastics	USA
2	Jackie Joyner-Kersee	track	USA
3	Michael Phelps	swimming	USA
4	Johann Koss	skating	Norway
5	Natalie Coughlin	swimming	USA
6	Paul Hamm	gymnastics	USA

$$\pi_{sport,country}(Athlete)$$

sport	country
gymnastics	USA
track	USA
swimming	USA
skating	Norway

Set Operations: Union (u), Intersection(n), Set-Difference (-)

- Input: Two <u>union-compatible</u> relations
 - Same number and type of attributes, in same order
- Field names of result: uses the name from the FIRST input

Duplicates? Relational algebra uses set semantics. So no duplicates. Difference from SQL

Cross-Product (Cartesian Product) X

- Result Schema
 - One field from both relations (Names inherited)
- If both input relations have a field with the same name, can use the rename operator p. (See 4.2.2 and 4.2.3)

in textbook)

Athlete

aid	name	sport	country
1	Mary Lou Retton	gymnastics	USA
2	Jackie Joyner-Kersee	track	USA

Venue

vid	venue
1	Los Angeles
2	Barcelona

aid	name	sport	country	vid	venue
1	Mary Lou Retton	gymnastics	USA	1	Los Angeles
2	Jackie Joyner-Kersee	track	USA	1	Los Angeles
1	Mary Lou Retton	gymnastics	USA	2	Barcelona
2	Jacki Joyner-Kersee	track	USA	2	Barcelona

Derived Operators: Joins

- Most common way of combining information from two tables
- Conditional join (sometimes called a Θ-join)
 - Definition: $R \bowtie_c S = \sigma_c(R \times S)$, where *c* is a condition
- Equijoin
 - Join condition consists only of equalities
- Natural Join
 - Equijoin in which equalities are specified on all fields with the same name in R and S
- Despite equivalence, usually faster ways to evaluate joins than to compute cross-product!

Examples: Writing Queries in RA

Example Schema:

Sailors (<u>sid</u>, sname, rating, age) Reserves (<u>sid</u>, <u>bid</u>, <u>day</u>) Boats (<u>bid</u>, bname, color)

Sailors

sid	sname	rating	age
22	Dustin	7	45.0
29	Brutus	1	33.0
31	Lubber	8	55.5
32	Andy	8	25.5
58	Rusty	10	35.0
64	Horatio	7	35.0
71	Zorba	10	16.0
74	Horatio	9	35.0
85	Art	3	25.5
95	Bob	3	63.5

Reserves

sid	bid	day
22	101	10/10/98
22	102	10/10/98
22	103	10/8/98
22	104	10/7/98
31	102	11/10/98
31	103	11/6/98
31	104	11/12/98
64	101	9/5/98
64	102	9/8/98
74	103	9/8/98

Boats

bid	bname	color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

Find names of sailors who've reserved boat #103

Solution 1: (1) Extract reservations for boat ID 103 (2) Join with sailors and project on sname

Solution 2: Same as 1, but give temp names to intermediate results

Solution 3: (1) Join Reserves and Sailors

(2) Select on bid = 103

(3) project on sname

Find names of sailors who've reserved a red boat

$$\pi_{sname}((\sigma_{color='red'}, Boats) \bowtie Reserves \bowtie Sailors)$$

An equivalent solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie Res) \bowtie Sailors)$$

<u>Query optimizer</u> chooses from the (equivalent) expressions and chooses one for efficiency of evaluation.

Find the names of sailors who've reserved at least one boat

 π_{sname} (Reserves \bowtie Sailors)

Sailor appears in this intermediate relation only if there is at least one Reserves tuple with same sid.

Derived Operators: Division

Useful for queries like:

Find customers with accounts at all branches in Brooklyn.

- Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{ \langle x \rangle \mid \forall \langle y \rangle \in B, \langle x, y \rangle \in A \}$
 - A/B contains all x tuples (customers) such that for <u>every</u>
 y tuple (branches in Brooklyn) in B, there is an <x,y>
 tuple in A
- In general, x and y can be lists of fields; y is the list of fields in B, and x ()y is the list of fields of A.

Examples of Division A/B

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
c3	b2
c4	b2
c4	b4

bname	
b2	
B1	

bname
b2
b4
<i>B</i> 2

bname
b1
b2
b4
<i>B3</i>

A

Expressing A/B Using Basic Operators

- Can be equivalently expressed using basic operators
- Idea: For A/B, compute all x values that are not disqualified by some y value in B.
 - x value is disqualified if by attaching y value from B, we obtain an <x,y> tuple that is not in A

operator using basic operators?

Can you express this operator using basic
$$\pi_{\chi}(A) - \pi_{\chi}((\pi_{\chi}(A) \times B) - A)$$

Disqualified x values

Examples of Division A/B

cid	bname
c1	b1
c1	b2
c1	b3
c1	b4
c2	b1
c2	b2
c3	b2
c4	b2
c4	b4

bname
b2
b4
\overline{B}

cid	bname
c1	b2
c 1	b4
c2	<u>b2</u>
c2	b4
-c3	b2
c3	b4
c4	<u>b2</u>
c4	b4
π_{∞}	$A)\times B$

cid	
c1	
c4	
A/B	

A

Find names of sailors who've reserved a red OR green boat

- Identify all red or green boats, then
- find sailors who've reserved one of these boats:

$$\rho$$
 (Tempboats, (σ color = 'red' \vee color = 'green' Boats))
$$\pi_{sname}$$
(Tempboats \bowtie Reserves \bowtie Sailors)

Equivalent:

```
\rho(Tempboats, (\sigma_{color='red'}(Boats) \cup \sigma_{color='green'}(Boats)))
\pi_{sname}(Tempboats \bowtie Reserves \bowtie Sailors)
```

Find names of sailors who've reserved a red AND green boat

- Does this work: Change ∨ to ∧ on previous slide?
- How about this?
 - Identify Sailor ids who've reserved red boats $\rho(TempRed, \pi_{sid}((\sigma_{color='Red'}Boats) \bowtie Reserves))$
 - Identify Sailor ids who' ve reserved green boats $\rho(TempGreen, \pi_{sid} \Big((\sigma_{color='Green'} Boats) \bowtie Reserves \Big))$
 - Then use the intersection to get the names $\pi_{sname}((TempRed \cap TempGreen) \bowtie Sailors)$

Find the sids of sailors over age 20 who have not reserved a red boat

$$\pi_{sid}(\sigma_{age>20}Sailors) - \pi_{sid}((\sigma_{color='Red'}Boats) \bowtie Reserves)$$

Find the names of sailors who've reserved all boats

 Uses division; schemas of the input relations must be carefully chosen:

```
\rho \ (Tempsids, (\pi_{sid,bid} Reserves) / (\pi_{bid} Boats))
\pi_{sname} (Tempsids \bowtie Sailors)
```


- Exercises 4.1, 4.3, 4.5
 - Only RA required for the last two.

Find names of sailors who've reserved boat #103

Solution 1:

$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie Sailors)$$

Solution 2:

$$\rho$$
 (Temp1, $\sigma_{bid=103}$ Reserves)

 ρ (Temp2, Temp1 \bowtie Sailors)

 π_{sname} (Temp2)

Solution 3:

$$\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$$