Non-bipartite k-common graphs

Jan Volec

Czech Technical University in Prague

Joint work with D. Král', J. Noel, S. Norin and F. Wei.

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$

$$R(3) = 6 \Rightarrow \text{any } \frac{\mathsf{RED}}{\mathsf{BLUE}} \text{ col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$$

Goodman's bound:
$$\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24}$$
 mono- Δ

 $R(3)=6\Rightarrow \text{any RED/BLUE col of }E(K_n) \text{ contains }pprox rac{n^3}{120} \text{ mono-}\Delta$ Goodman's bound: $inom{n}{3}-\left\lfloor rac{n}{2}\left\lfloor \left(rac{n-1}{2}\right)^2\right\rfloor \right\rfloor \geq rac{n(n-1)(n-5)}{24} \text{ mono-}\Delta$ #H in $G:=\left\lfloor t:V(H)
ightarrow V(G) \text{ homomorphism} \right\rfloor / v(G)^{v(H)}$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$ Goodman's bound: $\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24} \text{ mono-} \Delta$ #H in $G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism} \right\rfloor / v(G)^{v(H)}$ #mono-H := #H in RED + #H in BLUE

 $R(3)=6\Rightarrow {\sf any\ RED/BLUE\ col\ of\ } E(K_n)\ {\sf contains} pprox {n^3\over 120}\ {\sf mono-}\Delta$ Goodman's bound: ${n\choose 3}-\left\lfloor {n\over 2}\left\lfloor {(n-1\over 2})^2\right\rfloor \right\rfloor \geq {n(n-1)(n-5)\over 24}\ {\sf mono-}\Delta$ #H in $G:=\left\lfloor t:V(H)\to V(G)\ {\sf homomorphism}\right\rfloor /v(G)^{v(H)}$ #mono- $H:=\#H\ {\sf in\ RED}+\#H\ {\sf in\ BLUE}$ Goodman: $\forall {\sf R/B}:\ \#{\sf mono-}\Delta\gtrsim {1\over 4}$

 $R(3)=6\Rightarrow \text{any RED/BLUE col of }E(K_n) \text{ contains } pprox rac{n^3}{120} \text{ mono-}\Delta$ Goodman's bound: $\binom{n}{3}-\left\lfloor \frac{n}{2}\left\lfloor \left(\frac{n-1}{2}\right)^2\right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24} \text{ mono-}\Delta$ #H in $G:=\left\lfloor t:V(H)\to V(G) \text{ homomorphism}\right\rfloor/v(G)^{v(H)}$ #mono-H:=#H in RED+#H in BLUE Goodman: $\forall \mathsf{R}/\mathsf{B}:\#\mathsf{mono-}\Delta\gtrsim \frac{1}{4} pprox \mathbb{E}\left[\#\mathsf{mono-}\Delta \text{ in random R/B}\right]$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$ Goodman's bound: $\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24} \text{ mono-} \Delta$ #H in $G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism} \right\rfloor / v(G)^{v(H)}$ #mono-H := #H in RED + #H in BLUEGoodman: $\forall R/B : \#\text{mono-} \Delta \gtrsim \frac{1}{4} \approx \mathbb{E} \left[\#\text{mono-} \Delta \text{ in random } R/B \right]$ H is common $\equiv \forall R/B \#\text{mono-} H \gtrsim \mathbb{E} \left[\#\text{mono-} H \text{ in random } R/B \right]$

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$ Goodman's bound: $\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24} \text{ mono-} \Delta$ #H in $G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism} \right\rfloor / v(G)^{v(H)}$ #mono-H := #H in RED + #H in BLUE

Goodman: $\forall R/B : \#\text{mono-} \Delta \gtrsim \frac{1}{4} \approx \mathbb{E} \left[\#\text{mono-} \Delta \text{ in random } R/B \right]$ H is common $\equiv \forall R/B \#\text{mono-} H \gtrsim \mathbb{E} \left[\#\text{mono-} H \text{ in random } R/B \right]$ Conjecture (Erdős '62): K_k is common for every k

 $R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$ Goodman's bound: $\binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2}\right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24}$ mono- Δ #H in $G:=|t:V(H)\to V(G)$ homomorphism $|/v(G)^{v(H)}$ #mono-H := #H in RED + #H in BLUE Goodman: $\forall R/B$: #mono- $\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} [\text{#mono-}\Delta \text{ in random } R/B]$ H is common $\equiv \forall R/B \# mono-H \geq \mathbb{E} [\# mono-H \text{ in random } R/B]$ Conjecture (Erdős '62): K_k is common for every kConjecture (Burr-Rosta '80): every graph H is common

$$R(3)=6\Rightarrow \text{any RED/BLUE col of }E(K_n) \text{ contains } pprox rac{n^3}{120} \text{ mono-}\Delta$$
 Goodman's bound: $\binom{n}{3}-\left\lfloor\frac{n}{2}\left\lfloor\left(\frac{n-1}{2}\right)^2\right\rfloor\right\rfloor\geq rac{n(n-1)(n-5)}{24} \text{ mono-}\Delta$ #H in $G:=\left\lfloor t:V(H)\to V(G) \text{ homomorphism}\right\rfloor/v(G)^{v(H)}$ #mono- $H:=\#H \text{ in RED}+\#H \text{ in BLUE}$ Goodman: $\forall R/B:\#\text{mono-}\Delta\gtrsim \frac{1}{4}\approx\mathbb{E}\left[\#\text{mono-}\Delta \text{ in random }R/B\right]$ H is common $\equiv \forall R/B \#\text{mono-}H\gtrsim \mathbb{E}\left[\#\text{mono-}H \text{ in random }R/B\right]$ Conjecture (Erdős '62): K_k is common for every k Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H

$$R(3)=6\Rightarrow \text{any RED/BLUE col of }E(K_n) \text{ contains } pprox rac{n^3}{120} \text{ mono-}\Delta$$
 Goodman's bound: $\binom{n}{3}-\left\lfloor\frac{n}{2}\left\lfloor\left(\frac{n-1}{2}\right)^2\right\rfloor\right\rfloor\geq rac{n(n-1)(n-5)}{24} \text{ mono-}\Delta$ #H in $G:=\left\lfloor t:V(H)\to V(G) \text{ homomorphism}\right\rfloor/v(G)^{v(H)}$ #mono- $H:=\#H \text{ in RED}+\#H \text{ in BLUE}$ Goodman: $\forall R/B:\#\text{mono-}\Delta\gtrsim \frac{1}{4}\approx\mathbb{E}\,[\#\text{mono-}\Delta \text{ in random }R/B]$ H is common $\equiv \forall R/B \#\text{mono-}H\gtrsim \mathbb{E}\,[\#\text{mono-}H \text{ in random }R/B]$ Conjecture (Erdős '62): K_k is common for every k Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H

Sidorenko ('89): Δ + pendant-edge

Thomason ('89): $K_{\geq 4}$

$$R(3) = 6 \Rightarrow \text{any RED/BLUE col of } E(K_n) \text{ contains } \approx \frac{n^3}{120} \text{ mono-} \Delta$$
 $Goodman's \text{ bound: } \binom{n}{3} - \left\lfloor \frac{n}{2} \left\lfloor \left(\frac{n-1}{2} \right)^2 \right\rfloor \right\rfloor \geq \frac{n(n-1)(n-5)}{24} \text{ mono-} \Delta$
 $\#H \text{ in } G := \left\lfloor t : V(H) \to V(G) \text{ homomorphism} \right\rfloor / v(G)^{v(H)}$
 $\#\text{mono-}H := \#H \text{ in RED} + \#H \text{ in BLUE}$
 $Goodman: \forall R/B: \#\text{mono-}\Delta \gtrsim \frac{1}{4} \approx \mathbb{E} \left[\#\text{mono-}\Delta \text{ in random } R/B \right]$
 $H \text{ is common } \equiv \forall R/B \text{ } \#\text{mono-}H \gtrsim \mathbb{E} \left[\#\text{mono-}H \text{ in random } R/B \right]$
 $Conjecture \text{ (Erdős '62): } K_k \text{ is common for every } k$

Conjecture (Burr-Rosta '80): every graph H is common

NO, there are uncommon H

Sidorenko ('89): Δ + pendant-edge

Thomason ('89): $K_{\geq 4}$

YES, if H is

Cycles, even-wheels, 5-wheel Sidorenko graphs

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E} [\#H$ in $ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E} [\#H \text{ in } ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E}\left[\#H \text{ in } ER(n,d(G))\right] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E} [\#H$ in $ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E}[\#H$ in $ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

In general widely open, the smallest open H is $K_{5,5}-\mathit{C}_{10}$

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E} [\#H$ in $ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

In general widely open, the smallest open H is $K_{5,5}-C_{10}$

By convexity, H is Sidorenko $\Longrightarrow H$ is common

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E}\left[\#H \text{ in } ER(n,d(G))\right] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

In general widely open, the smallest open H is $K_{5.5} - C_{10}$

By convexity, H is Sidorenko $\Longrightarrow H$ is common

H is locally Sidorenko if instead comparing $\mathbb{E}\#H$ vs min #H in G for all G, we consider only G that are "close" to being random (close in subgraph counts \equiv cut-distance)

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E} [\#H \text{ in } ER(n, d(G))] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

In general widely open, the smallest open H is $K_{5.5} - C_{10}$

By convexity, H is Sidorenko $\Longrightarrow H$ is common

H is locally Sidorenko if instead comparing $\mathbb{E} \# H$ vs min # H in G for all G, we consider only G that are "close" to being random (close in subgraph counts \equiv cut-distance) & bounded ℓ_{∞} -distance

H Sidorenko $\equiv \#H$ in $G \gtrsim \mathbb{E}\left[\#H \text{ in } ER(n,d(G))\right] = d(G)^{e(H)}$ where G has n vertices and density d(G)

Easy observation: H is Sidorenko $\Longrightarrow H$ is biparite

Conjecture (Sidorenko '91): H is bipartite $\Longrightarrow H$ is Sidorenko?

Known for trees, cycles, complete bipartite graphs, hypercubes... Conlon, Fox, Hatami, Kim, Li, C. Lee, J. Lee, Sidorenko, Sudakov, Szegedy...

In general widely open, the smallest open H is $K_{5.5} - C_{10}$

By convexity, H is Sidorenko $\Longrightarrow H$ is common

H is locally Sidorenko if instead comparing $\mathbb{E} \# H$ vs min # H in G for all G, we consider only G that are "close" to being random (close in subgraph counts \equiv cut-distance) & bounded ℓ_{∞} -distance

Fox-Wei ('17): H locally Sidorenko \equiv the girth of H is even

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$ Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$ Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: *H* is *k*-common $\forall k \Longrightarrow H$ is Sidorenko

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$ Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: H is k-common $\forall k \Longrightarrow H$ is Sidorenko

Cummings-Young ('11): H contains $\Delta \Longrightarrow H$ not 3-common

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E}[\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$ Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: H is k-common $\forall k \Longrightarrow H$ is Sidorenko

Cummings-Young ('11): H contains $\Delta \Longrightarrow H$ not 3-common

Main result: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common

H is k-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$

Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: *H* is *k*-common $\forall k \Longrightarrow H$ is Sidorenko

Cummings-Young ('11): H contains $\Delta \Longrightarrow H$ not 3-common

Main result: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common More precisely, $\forall k \geq 3$: $\exists \ell_0$ s.t. $H_{2\ell,2\ell,C_5}$ is k-common $\forall \ell \geq \ell_0$

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$

Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: *H* is *k*-common $\forall k \Longrightarrow H$ is Sidorenko

Cummings-Young ('11): H contains $\Delta \Longrightarrow H$ not 3-common

Main result: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common More precisely, $\forall k \geq 3$: $\exists \ell_0$ s.t. $H_{2\ell,2\ell,C_5}$ is k-common $\forall \ell \geq \ell_0$

Theorem: Fix $k \ge 3$. H locally k-common \Longrightarrow girth of H is even

H is *k*-common $\equiv \forall k$ -col #mono- $H \gtrsim \mathbb{E} [\#$ mono-H in random]

By convexity, H is Sidorenko $\Longrightarrow H$ is k-common $\forall k$

Observation: H not k-common $\Longrightarrow H$ not (k+1)-common

Proposition: *H* is *k*-common $\forall k \Longrightarrow H$ is Sidorenko

Cummings-Young ('11): H contains $\Delta \Longrightarrow H$ not 3-common

Main result: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common More precisely, $\forall k \geq 3$: $\exists \ell_0$ s.t. $H_{2\ell,2\ell,C_5}$ is k-common $\forall \ell \geq \ell_0$

Theorem: Fix $k \ge 3$. H locally k-common \Longrightarrow girth of H is even Corollary: H locally Sidorenko $\iff H$ locally k-common $\forall k$

For simplicty, here we assume $H=K_{\ell,\ell}\bigvee C_5$

For simplicity, here we assume $H = K_{\ell,\ell} \bigvee C_5$ AIM: induction on k — two cases:

For simplicty, here we assume $H=K_{\ell,\ell}\bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

Lemma F: G is far from (pseudo)random $\Longrightarrow \#H \ge d(G)^{e(H)}$

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C \dots

Lemma F: G is far from (pseudo)random $\Longrightarrow \#H \ge d(G)^{e(H)}$ far $\equiv \#C_4 > d(G)^4 + \varepsilon$

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

Lemma F: G is far from (pseudo)random
$$\Longrightarrow \#H \ge d(G)^{e(H)}$$

far $\equiv \#C_4 > d(G)^4 + \varepsilon \implies \#K_{\ell,\ell} \ge \left(d(G) + \frac{\varepsilon}{10}\right)^{\ell^2} \& \#C_5 \gg 0$

For simplicty, here we assume $H=K_{\ell,\ell}\bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

Lemma F: G is far from (pseudo)random
$$\Longrightarrow \#H \ge d(G)^{e(H)}$$

$$\mathsf{far} \equiv \# \mathit{C}_4 > \mathit{d}(\mathit{G})^4 + \varepsilon \implies \# \mathit{K}_{\ell,\ell} \geq \left(\mathit{d}(\mathit{G}) + \frac{\varepsilon}{10}\right)^{\ell^2} \, \& \, \# \mathit{C}_5 \gg 0$$

Lemma C: G is close to (pseudo)random $\Longrightarrow \#H \ge d(G)^{e(H)}$

For simplicty, here we assume $H=K_{\ell,\ell}\bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

Lemma F: G is far from (pseudo)random
$$\Longrightarrow \#H \ge d(G)^{e(H)}$$

far $\equiv \#C_4 > d(G)^4 + \varepsilon \implies \#K_{\ell,\ell} \ge \left(d(G) + \frac{\varepsilon}{10}\right)^{\ell^2} \& \#C_5 \gg 0$

Lemma C: G is close to (pseudo)random $\Longrightarrow \#H \ge d(G)^{e(H)} \#K_{\ell,\ell} \bigvee C_5 \ge d(G)^{\ell^2+5}$ by locally Sidorenko result of Fox-Wei?

For simplicty, here we assume $H = K_{\ell,\ell} \bigvee C_5$

AIM: induction on k — two cases:

1) \exists "large" $V' \subseteq V$ inducing "few" edges of one color \Longrightarrow induction on V' with k-1 colors yields

$$\left(\frac{|V'|}{|V|}\right)^{\Theta(\ell)} \times \left(\frac{1}{k-1}\right)^{\Theta(\ell^2)} > \left(\frac{1}{k}\right)^{\Theta(\ell^2)}$$

2) To every color class apply Lemma F or Lemma C . . .

Lemma F: G is far from (pseudo)random
$$\Longrightarrow \#H \ge d(G)^{e(H)}$$

$$\mathsf{far} \equiv \# C_4 > d(G)^4 + \varepsilon \implies \# K_{\ell,\ell} \ge \left(d(G) + \frac{\varepsilon}{10}\right)^{\ell^2} \& \# C_5 \gg 0$$

Lemma C: G is close to (pseudo)random $\Longrightarrow \#H \ge d(G)^{e(H)} \#K_{\ell,\ell} \lor C_5 \ge d(G)^{\ell^2+5}$ by locally Sidorenko result of Fox-Wei?

Proposition: Alternative spectral-based proof for the cases $K_{\ell,\ell} \bigvee C_5$ and $H_{2\ell,2\ell,C_5}$ that has no $\|\cdot\|_{\infty}$ assumption

Theorem: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common

Theorem: $\forall k \geq 3 : \exists H_k \text{ with } \chi(H_k) = 3 \text{ s.t. } H_k \text{ is } k\text{-common}$

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: $\forall k \geq 3 : \exists H_k \text{ with } \chi(H_k) = 3 \text{ s.t. } H_k \text{ is } k\text{-common}$

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: H is k-common $\forall k \iff H$ is Sidorenko

Theorem: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: H is k-common $\forall k \iff H$ is Sidorenko

Theorem: Fix $k \ge 3$. H locally k-common \iff girth of H is even

Theorem: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: H is k-common $\forall k \iff H$ is Sidorenko

Theorem: Fix $k \ge 3$. H locally k-common \iff girth of H is even

Question: What are locally 2-common graphs?

Theorem: $\forall k \geq 3 : \exists H_k \text{ with } \chi(H_k) = 3 \text{ s.t. } H_k \text{ is } k\text{-common}$

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: H is k-common $\forall k \iff H$ is Sidorenko

Theorem: Fix $k \ge 3$. H locally k-common \iff girth of H is even

Question: What are locally 2-common graphs?

YES: Sidorenko graphs, common graphs NO: K₄ (Csóka-Hubai-Lovász '19)

Conclusion Thank you for your attention!

Theorem: $\forall k \geq 3$: $\exists H_k$ with $\chi(H_k) = 3$ s.t. H_k is k-common

Question: $\forall k, r \geq 3$: $\exists H_k$ with $\chi(H_k) = r$ s.t. H_k is k-common

Theorem: H is k-common $\forall k \iff H$ is Sidorenko

Theorem: Fix $k \ge 3$. H locally k-common \iff girth of H is even

Question: What are locally 2-common graphs?

YES: Sidorenko graphs, common graphs NO: K₄ (Csóka-Hubai-Lovász '19)