GIS-2A, Polytech'Lille, Université Lille1

DS de Calcul Numérique de 2h, avec calculette et documents

Vendredi 13 octobre 2017

Exercice I

Soit la matrice
$$A = \begin{pmatrix} -1 & 1 & 2 \\ 3 & -1 & 1 \\ -1 & 3 & 4 \end{pmatrix}$$

Question I.1 Donnez la factorisation LU de cette matrice. Donnez les matrices intermédiaires, i.e. après chaque étape de la méthode. On utilisera la méthode vue en cours et en TD à l'exclusion de toute autre.

Question I.2 A l'aide de cette factorisation, résolvez le système linéaire $Ax = (2, 6, 4)^T$.

Question I.3 Nous souhaitons maintenant utiliser la méthode de Housolder pour résoudre ce système linéaire. Lors de la première étape, nous allons utiliser la matrice H(v), comment choisit-on v, pourquoi, donnez ce vecteur?

Question I.4 Calculez la première étape de cette méthode, explicitez bien les calculs intermédiaires et les choix effectués.

Question I.5 Quelles sont les différences entre ces méthodes?

Exercice II

Soit la matrice
$$B = \begin{pmatrix} -4 & 0 & 2 \\ 0 & 5 & -1 \\ 2 & -1 & 5 \end{pmatrix}$$

Question II.1 On considère le système linéaire Bx = b, avec $b = (2, -1, 2)^T$. Calculez trois itérations de la méthode de Gauss-Seidel, avec $(0, 0, -1)^T$ comme vecteur initial, pour résoudre ce système linéaire. Pour chaque itération, les vecteurs seront donnés.

Question II.2 Sommes nous certain de converger? Pourquoi? Comment proposez vous de tester la convergence, appliquez le test choisi sur les itérations calculées, discutez.

Exercice III (bonus)

Montrez qu'une matrice de Householder est orthogonale et symétrique, que pouvons nous en déduire?