Homework 3: Qualitative theory of ODES 04/16/23

Jaiden Atterbury

## · Exercise 1:

The roots of fly) are equilibrium points. Thus you and yol are equilibrium points.

To use the linearization criterion, we must find f'(y). It follows that f'(y) = 2.1 - 4.2y.

Since f'(0) = 2.1 > 0, y = 0 is unstable, since f'(1) = -2.1 < 0, y = 1 is asymptotically stable,

The roots of  $f(y) = 1+y^2$  are equilibrium points, however, f(y) has no real roots. Thus there are no equilibrium points.

3 y'=1-y2

The roots of  $f(y) = 1 - y^2$  are equilibrium points. Thus y=-1 and y=1 are equilibrium points.

To use the linearization criterion, we must find f'(y). It follows that P'(y) = -2y.

since 5'(-1) = 270, y = -1 is unstable. since 5'(1) = -2 < 0, y = 1 is asymptotically stable.

① 
$$y' = 2y^2 - y^3$$

The roots of  $f(y) = 2y^2 - y^3 = y^2(2-y)$  are equilibrium points. Thus y=0 and y=2 are equilibrium points.

To use the linearization criterion, we must find f'(y). It tollows that f'(y) = 4y - 3y2, Since f'(0) =0, it follows from the linearization criterian that the stability of yeo is inconclusive. since f'(2) = -4 <0, y=2 is asymptotically stable.

\* Exercise 2:

The roots of f(y) = sincy) are equilibrium points. Thus y = KX where  $K \in \mathbb{Z}$  (the integers) are all equilibrium points.

To use the linearization criterion, we must find f'(y), It follows that  $f'(y) = \cos(y)$ .

If we let @ represent the odd integers  $\{\cdots, -3, -1, 1, 3, \cdots\}$ , and let E represent the even integers  $\{\cdots, -2, 0, 2, \cdots\}$ . Then using the fact that cos(x) = cos(-x) then we can see that:

If  $K \in \mathbb{Q}$ , then  $f'(K\pi)=-1<0$ , thus all of these points are asymptotically stable.

If  $K \in \mathbb{E}$ , then  $f'(K\pi)=1$  70, thus all of these points are unstable.

The following phase-line plot shows this trend:



• Exercise 31

The roots of f(g) = 3y(1-y) are equilibrium points. Thus y = 0 and y = 1 are equilibrium points. To asses the stability of these points, we will use the linearization criterion.

To use the linearization criterion, we must find f'(y), It follows that f'(y) = 3 - 6y.

Since f'(0) = 3 70, y = 0 is unstable, since f'(1) = -3 **Z**0, y = 1 is asymptotically stable

phase-line ploti



@ y'= y2-6y-16

The roots of  $f(y) = y^2 - by - 1b = (y+2)(y-8)$  are equilibrium points. Thus y=-2 and y=8 are equilibrium points, to asses the stability of these points, we will first use the linearization criterion.

To use the linearization criterion, we must find f'(y). It follows that f'(y): 2y-6,

Since f'(-2) = -10 < 0, y=-2 is asymptotically stable, since f'(8) = 10 > 0, y=8 is unstable,

Phase-like ploti

• Exercise 4;

Y'= y(y2-1) where MER

we will consider three cases: 120, 120, 140.

In all three cases, we will find all of the equilibrium points, assess their stability, and draw the phase-line plot.

ocase Li M=0

If M=0, then  $y'=y(y^2-M)$  becomes  $y'=y^3$ .

The roots of  $f(y) = y^3$  are the equilibrium points. Thus the one equilibrium point is y = 0.

Since  $f'(y) = 3y^2$ , and f'(0) = 0, it follows that the linearization criterian is inconclusive. However, for y > 0, f(y) is negative, thus f(y) = 0 will be negative and any solution in this region will be decreasing. For all values of y > 0, f(y) = 0 positive, thus f(y) = 0 will be positive and any solution in this region will be increasing.

Hence, 4:0 is unstable and the phase-line plot looks like

 $\leftarrow$ 

ocase 2: w>o,

If w 70s then y'= Y(y2-W) stays as it is,

The roots of  $f(y) = y(y^2 - m)$  are equilibrium points. Thus  $y = -\sqrt{m}$ , y = 0, and  $y = \sqrt{m}$  are equilibrium points.

To use linearization, we must find fig). It follows that fig) = 3y2-1

Since  $f'(-\sqrt{m}) = 3(-\sqrt{m})^2 - M = 3M - M = 2M > 0$ ,  $y = -\sqrt{m}$  is unstable. Since f'(0) = -M < 0, y = 0 is asymptotically stable. Since  $f'(\sqrt{m}) = 3(\sqrt{m})^2 - M = 3M - M = 2M > 0$ ,  $y = \sqrt{m}$  is unstable.

Phase-line ploti



o case 31 Mco.

If Mco, then y' = y(y2+m) becomes V(y2+m).

The roots of  $f(y) = y(y^2 + w)$  are equilibrium points. Thus the one equilibrium point is y = 0.

To how linearization we must find f'(y). It follows that  $f'(y) = 3y^2 + \mu$ .

Since 5'(0) = 1 70, Y=0 is unstable.

Phase-like plot:



\* Exercise 5:

Consider the system of ODEs that models the spread of Various bacterial infections in a population:

45(t) = 75(t) I(t) + 7 I(t),

4I(t) = 75(t) I(t) - 7 I(t).

where:

N is the total population.

SCE) 70 is the number of susceptible individuals at time to

I(6) 70 is the number of infected individuals at time 6,

 $\lambda$  70 is the infectivity rate.

170 is the curing rate.

Under the assumption that the population stays constant, it follows that Stb) + ICb) = N for all b.

The system of odes is expressed equivalently as one ode  $\frac{Ax(E)}{AE} = \lambda (1-x(E)) x(E) - \gamma x(E) \quad (1)$ 

Where;

 $x(6) = \frac{x(6)}{N}$  is the infected population fraction at time 6.

our goal is to find the equilibrium points of one (1) and assess/interpret in context their stability for different values of the basic reproduction number  $Ro = \frac{1}{2}$ .

We will start by rewriting the equation for  $\frac{dX}{dx}$  in terms of Bo:  $X' = \lambda(1-x)X - \gamma X$   $= \lambda X - \lambda X^2 - \gamma X$ 

= 1/x (\$ -\$x-1)

= 1x (Ro-Box-1)

With this new equation for X', if we let f(x)= 1x(Ro-Rox-1), then the roots of f(x) are the equilibrium solution Sipoints,

Thus the equilibrium points are x=0 and  $-R_0x+R_0-1=0=>$   $R_0x-R_0-1=> x=1-\frac{1}{R_0}$ , we can divide by  $R_0$  since it will hever equal zero, in fact,  $R_0>0$ .

Now we will use linearization to get a general expression to assess stability. Since  $\epsilon(x) = \gamma \times (R_0 - R_0 \times -1)$  it follows that  $F'(X) = \lambda - 2\lambda x - \gamma$ .

Thus e'(0)= スーグ = スー合。 = ス(1-台) and e'(1-台)=スープースステ語 = スーストラース = ス(台ー),

We will now analyze stability for three cases: Ro>1, Ro=1, and O<Ro<1.

when Bo 71, it follows that  $\lambda 71$ .

Going back to the linearization expressions we see:  $f'(0) = \lambda(1-\frac{1}{R_0})$ . Since  $\lambda > 0$ , and  $\beta_0 > 1$ , it follows that  $1-\frac{1}{R_0} > 0$ . Thus f'(0) > 0,  $\chi > 0$  is unstable.

f'(1-方0)= 入(方0-1), since 170, and Ro >1, it follows that 方0-1~00
Thus f'(1-方0) < D, x= 1-方0 is stable, In this case x70,

Here is a theoretical plot of solutions for XI



Thus in the case where  $\lambda 7 \%$ , the fraction of individuals infected Will reach a steady-state proportion of 1-to as  $t + \infty$ .

when ochoc, it follows that 1/2 ),

50lng back to the linearization expressions we see that:  $F'(0) = \lambda(1-\frac{1}{10})$ . Since  $\lambda > 0$ , and  $0 < B_0 < 1$ , it follows that  $1-\frac{1}{10} < 0$ . Thus F'(0) < 0, x = 0 is asymptotically stable.

Also,  $f'(1-\frac{1}{60})=\lambda(\frac{1}{60}-1)$ . Since  $\lambda >0$ , and 0 < 60 < 1, it follows that  $\frac{1}{60}-1>0$ . Thus  $f'(1-\frac{1}{60})>0$ ,  $\chi = 1-\frac{1}{60}$  is unstable. In this case  $\chi <0$ . However  $\chi \in [0,1]$ , thus  $1-\frac{1}{60}$  is not a solution in this case.

Here is a theoretical plot of solutions for X;



Thus in the case where  $\gamma > \lambda$ , the fraction of individuals infected will go to 0 as  $t > \infty$ . Thus in the population the disease will go extinct.

When Bo=1, 1+ follows that 1=7

Hence the equilibrium Solution x=1-to becomes x=0. Thus we now only have one equilibrium solution.

Going back to the linearization we see:  $f'(0) = \lambda(1 - \frac{1}{80}) = 0$ . Thus the criterion is inconclusive.

However, for X70, S(x) is negative, thus  $\frac{dx}{dx}$  will be negative so any solution in this region will be decreasing. Also, for X<0, f(x) is negative, thus the same logic holds. X=0 is therefore semistable.

Here is a theoretical plot of solutions for x;



Thus in the case where  $\lambda > \gamma$ , the fraction of individuals infected will go to 0 as  $t \to \infty$ . Thus in the population the disease will go extinct.

NOTE: In the above plots for the Solution of X, negative solutions can be disregarded since it is a population fraction and thus positive.