Machine Learning Assignment

Rajkumar Bhandari

Objective

To understand fundamental machine learning concepts and apply basic models to real-world data, focusing on interpretability and bias-variance behavior.

Part A – Theory (Short Answer Questions)

- 1. Define the following:
 - Machine Learning
 - Supervised vs Unsupervised Learning
 - Overfitting and Underfitting
 - Training, Validation, and Test Sets
 - Cross-Validation
- 2. Explain the bias-variance tradeoff with a diagram and example.
- 3. Describe how the following models work, with advantages and limitations:
 - Linear Regression
 - Logistic Regression
 - Decision Tree
 - K-Nearest Neighbors (KNN)
- 4. Discuss:
 - One feature selection method (e.g., correlation, chi-square)
 - One feature scaling technique (e.g., normalization, standardization)
- 5. What is **regularization**? How do L1 and L2 regularization reduce overfitting?

Part B – Practical (Python)

Dataset: Use one of the following or your own dataset:

- Iris Dataset
- Titanic Dataset

- UCI Soil Moisture Dataset
- Your Smart Irrigation Dataset

Tasks:

1. Data Preprocessing

- Load the dataset using Pandas
- Handle missing values
- Encode categorical variables (if any)
- Apply feature scaling
- Split the dataset (e.g., 80% train, 20% test)

2. Model Training

- Linear Regression (for regression)
- Logistic Regression (for classification)
- Decision Tree
- K-Nearest Neighbors (KNN)

3. Model Evaluation

- For regression: MSE, RMSE, R² Score
- For classification: Accuracy, Precision, Recall, F1-Score, Confusion Matrix
- Present comparison in a table

4. Bias-Variance Behavior

- Vary complexity: e.g., max_depth for Decision Tree, k value for KNN
- Plot training and testing error curves

5. Bonus (Optional)

- Apply k-Fold Cross Validation
- Tune hyperparameters manually using for-loops

Submission Guidelines

- Submit a Jupyter Notebook (.ipynb) with well-commented code.
- Submit a separate PDF with Part A answers.
- Clearly mention dataset source and preprocessing steps.
- Include a short conclusion summarizing the best model and justification.