- 1. 不等式 $\frac{2-x}{x+4} > 0$ 的解集是______.
- 2. 若复数 $z = 1 2i(i 为虚数单位), 则 z \cdot \overline{z} + z = ____.$
- 3. 动点 P 到点 F(2,0) 的距离与它到直线 x+2=0 的距离相等, 则 P 的轨迹方程为_____
- 4. 行列式 $\begin{vmatrix} \cos \frac{\pi}{3} & \sin \frac{\pi}{6} \\ \sin \frac{\pi}{3} & \cos \frac{\pi}{6} \end{vmatrix}$ 的值是______
- 5. 圆 $C: x^2 + y^2 2x 4y + 4 = 0$ 的圆心到直线 1:3x + 4y + 4 = 0 的距离 d =______
- 6. 随机变量 ξ 的概率分布率由下表给出:

x	7	8	9	10
$P(\xi = x)$	0.3	0.35	0.2	0.15

则随机变量 ξ 的均值是_____.

7. 2010 年上海世博会园区每天 9:00 开园, 20:00 停止入园. 在下面的框图中, S 表示上海世博会官方网站在每个整点报道的入园总人数, a 表示整点报道前 1 个小时内入园人数, 则空白的执行框内应填入_____.

- 8. 对任意不等于 1 的正数 a, 函数 $f(x) = \log_a(x+3)$ 的反函数的图像都经过点 P, 则点 P 的坐标是______.
- 9. 从一副混合后的扑克牌 (52 张) 中随机抽取 1 张, 事件 A 为 "抽得红桃 K", 事件 B 为 "抽得为黑桃", 则概率 $P(A \cup B) =$ _______.(结果用最简分数表示)

10. 在
$$n$$
 行 n 列矩阵
$$\begin{pmatrix} 1 & 2 & 3 & \cdots & n-2 & n-1 & n \\ 2 & 3 & 4 & \cdots & n-1 & n & 1 \\ 3 & 4 & 5 & \cdots & n & 1 & 2 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ n & 1 & 2 & \cdots & n-3 & n-2 & n-1 \end{pmatrix}$$
中,记位于第 i 行第 j 列的数为 $a_{ij}(i,j)$

- 11. 将直线 $l_1: nx + y n = 0$ 、 $l_2: x + ny n = 0 (n \in \mathbb{N}^*, n \ge 2)x$ 轴、y 轴围成的封闭图形的面积记为 S_n , 则
- 12. 如图所示, 在边长为 4 的正方形纸片 ABCD 中, AC 与 BD 相交于 O, 剪去 $\triangle AOB$, 将剩余部分沿 OC、 OD 折叠, 使 OA、OB 重合, 则以 A(B)、C、D、O 为顶点的四面体的体积为______

13. 如图所示, 直线 x=2 与双曲线 $\Gamma:\frac{x^2}{4}-y^2=1$ 的渐近线交于 $E_1,\,E_2$ 两点, 记 $\overrightarrow{OE_1}=\overrightarrow{e_1},\,\overrightarrow{OE_2}=\overrightarrow{e_2},$ 任取 双曲线 Γ 上的点 P, 若 $\overrightarrow{OP} = a\overrightarrow{e_1} + b\overrightarrow{e_2}(a, b \in \mathbf{R})$, 则 a、b 满足的一个等式是

- 14. 在集合 $U = \{a, b, c, d\}$ 的子集中选出 2 个不同的子集, 需同时满足以下两个条件: ① $a \times b$ 都要选出; ② 对选 出的任意两个子集 A 和 B, 必有 $A \subseteq B$ 或 $B \subseteq A$, 那么共有______ 种不同的选法.
- 15. " $x = 2k\pi + \frac{\pi}{4}(k \in \mathbf{Z})$ " 是 " $\tan x = 1$ " 成立的 ().
 - A. 充分不必要条件

 $\lim_{n\to\infty} S_n = \underline{\qquad}.$

B. 必要不充分条件

C. 充分条件

- D. 既不充分也不必要条件
- 16. 直线 l 的参数方程是 $\begin{cases} x=1+2t, & (t\in\mathbf{R}), \ \text{则 } l \ \text{的方向向量是 } \overrightarrow{d} \ \text{可以是} \ (). \\ y=2-t, & \end{cases}$
 - A. (1,2)
- B. (2,1)
- C. (-2,1) D. (1,-2)

17. 若 x_0 是方程 $(\frac{1}{2})^x = x^{\frac{1}{3}}$ 的解, 则 x_0 属于区间 ().

A.
$$(\frac{2}{3}, 1)$$

B.
$$(\frac{1}{2}, \frac{2}{3})$$

C.
$$(\frac{1}{3}, \frac{1}{2})$$

C.
$$(\frac{1}{3}, \frac{1}{2})$$
 D. $(0, \frac{1}{3})$

18. 某人要制作一个三角形, 要求它的三条高的长度分别为 $\frac{1}{13}$, $\frac{1}{11}$, $\frac{1}{5}$, 则此人能(

A. 不能作出这样的三角形

B. 作出一个锐角三角形

C. 作出一个直角三角形

D. 作出一个钝角三角形

- 19. 已知 $0 < x < \frac{\pi}{2}$,化简: $\lg(\cos x \cdot \tan x + 1 2\sin^2\frac{x}{2}) + \lg[\sqrt{2}\cos(x \frac{\pi}{4})] \lg(1 + \sin 2x)$.
- 20. 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $S_n = n 5a_n 85$, $n \in \mathbb{N}^*$.
 - (1) 证明: $\{a_n 1\}$ 是等比数列;
 - (2) 求数列 $\{S_n\}$ 的通项公式, 并求出 n 为何值时, S_n 取得最小值, 并说明理由.
- 21. 如图所示, 为了制作一个圆柱形灯笼, 先要制作 4 个全等的矩形骨架, 总计耗用 9.6 米铁丝, 骨架把圆柱底面 8 等份, 再用 S 平方米塑料片制成圆柱的侧面和下底面 (不安装上底面).

- (1) 当圆柱底面半径 r 取何值时, S 取得最大值? 并求出该最大值 (结果精确到 0.01 平方米);
- (2) 在灯笼内, 以矩形骨架的顶点为点, 安装一些霓虹灯, 当灯笼的底面半径为 0.3 米时, 求图中两根直线 A_1B_3 与 A_3B_5 所在异面直线所成角的大小 (结果用反三角函数表示).
- 22. 若实数 x、y、m 满足 |x-m| > |y-m|, 则称 x 比 y 远离 m.
 - (1) 若 $x^2 1$ 比 1 远离 0, 求 x 的取值范围:
 - (2) 对任意两个不相等的正数 $a \cdot b$, 证明: $a^3 + b^3$ 比 $a^2b + ab^2$ 远离 $2ab\sqrt{ab}$;
 - (3) 已知函数 f(x) 的定义域 $D = \{x | x \neq \frac{k\pi}{2} + \frac{\pi}{4}, k \in \mathbf{Z}, x \in \mathbf{R}\}$. 任取 $x \in D$, f(x) 等于 $\sin x$ 和 $\cos x$ 中 远离 0 的那个值. 写出函数 f(x) 的解析式, 并指出它的基本性质 (结论不要求证明).
- 23. 已知椭圆 Γ 的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$, 点 P 的坐标为 (-a,b).
 - $(1) \ {\bf 若直角坐标平面上的点} \ M \ {\bf \raisebox{0.5ex}{A}}(0,-b) \ {\bf \raisebox{0.5ex}{B}}(a,0) \ {\bf 满足} \ \overrightarrow{PM} = \frac{1}{2}(\overrightarrow{PA} + \overrightarrow{PB}), \ {\bf \rlap{x}} \ {\bf \rlap{x}} \ {\bf \rlap{x}} \ {\bf \rlap{M}} \ {\bf \rlap{o}} \ {\bf \rlap{w}} \ {\bf \rlap{w}} \ {\bf \rlap{o}} \ {\bf \rlap{w}} \ {\bf \rlap{o}} \ {\bf \rlap{w}} \ {\bf \rlap{o}} \ {\bf \rlap{o}}$
 - (2) 设直线 $l_1: y = k_1 x + p$ 交椭圆 Γ 于 C、D 两点, 交直线 $l_2: y = k_2 x$ 于点 E. 若 $k_1 \cdot k_2 = -\frac{b^2}{a^2}$, 证明: E为 CD 的中点;

(3) 对于椭圆 Γ 上的点 $Q(a\cos\theta,b\sin\theta)(0<\theta<\pi)$, 如果椭圆 Γ 上存在不同的两点 P_1 、 P_2 满足 $\overrightarrow{PP_1}+\overrightarrow{PP_2}=\overrightarrow{PQ}$, 写出求作点 P_1 、 P_2 的步骤, 并求出使 P_1 、 P_2 存在的 θ 的取值范围.