

1. រ៉ិចទ័រក្នុងលំហ

* ឧបមាថា ចំណុច A(x,y,z) និង B(x',y',z')

$$\Rightarrow \overline{AB} = (x' - x, y' - y, z' - z) \Rightarrow \overline{\|AB\|} = \sqrt{x^2 + y^2 + z^2}$$
 ចម្ងាយពីចំណុច A ទៅ B គឺ $AB = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$ (প্লুচ্চনীঠানচাণ্ডিৱৈ)

* វ៉ិចទ័រពីរស្មើគ្នាកាលណា { មានទិសដៅដូចគ្នា មានប្រវែងស្មើគ្នា

បើ
$$\vec{u}=(a,b,c)$$
 និង $\vec{v}=(a',b',c')$ គេបាន $\vec{u}=\vec{v}$ សមមូល
$$\begin{cases} a=a'\\ b=b'\\ c=c' \end{cases}$$

- * វ៉ិចទ័រពីរផ្ទុយគ្នាកាលណា { មានទិសដៅផ្ទុយគ្នា មានប្រវែងស្មើគ្នា
- * វ៉ិចទ័រសូន្យកាលណាណមនៃវ៉ិចទ័រនោះស្ញើសូន្យ កំណត់សរសេរដោយ $ec{t}=ec{0}$
- * កូអរដោនេ I ជាចំណុចកណ្ដាលនៃអង្កត់ [AB] គឺ $I\left(\frac{x'+x}{2},\frac{y'+y}{2},\frac{z'+z}{2}\right)$

2. ផលតុណក្តាលែ

ផលគុណស្កាលែនៃវ៉ិចទ័រ ជ និង 🕏 គឺជាចំនួនពិតដែលកំណត់ដោយ៖

- * $\vec{\mathfrak{V}}\vec{\mathfrak{u}}=0$ $\vec{\mathfrak{V}}\vec{\mathfrak{v}}=0$ fm: $\vec{\mathfrak{u}}\cdot\vec{\mathfrak{v}}=0$
- * បើ $\vec{u} \neq 0$ និង $\vec{v} \neq 0$ នោះ $\vec{u} \cdot \vec{v} = |\vec{u}| \cdot |\vec{v}| \cos \theta$ ដែល θ ជាមុំរវាង \vec{u} និង \vec{v}
- * មើ $\vec{u}=(x,y,z)$ និង $\vec{v}=(x',y',z')$ នោះ $\vec{u}\cdot\vec{v}=xx'+yy'+zz'$

ចំណាំ * បើ $\vec{u}\cdot\vec{v}>0$ នោះមុំរវាងពីរវ៉ិចទ័រ \vec{u} និង \vec{v} ជាមុំស្រួច

- * បើ $\vec{u}\cdot\vec{v}<0$ នោះមុំរវាងពីរវ៉ិចទ័រ \vec{u} និង \vec{v} ជាមុំទាល
- * បើ $\vec{u}\cdot\vec{v}=0$, $\left(\vec{u}\neq0$ និង $\vec{v}\neq0\right)$ នោះមុំរវាងពីរវ៉ិចទ័រ \vec{u} និង \vec{v} ជាមុំកែង។
- * មុំរវាង \overrightarrow{u} និង \overrightarrow{v} កំណត់ដោយ $\cos \theta = \dfrac{\overrightarrow{u} \cdot \overrightarrow{v}}{|\overrightarrow{u}| \cdot |\overrightarrow{v}|}$

3. ផលតុណនៃពីរ]ិចទ័រ $\vec{u} imes \vec{v}$

ឧបមាថា $\vec{u}=(x,y,z)$; $\vec{v}=(x',y',z')$

$$\Rightarrow \vec{u} \times \vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x & y & z \\ x' & y' & z' \end{vmatrix} = \begin{vmatrix} y & z \\ y' & z' \end{vmatrix} \vec{i} - \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} \vec{j} + \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \vec{k} = \underbrace{\vec{i}(yz' - y'z) - \vec{j}(xz' - x'z) + \vec{k}(xy' - x'y)}_{}$$

ចំណាំ * ប៊ើ $\vec{u} \times \vec{v} = 0$ នោះ វ៉ិចទ័រ \vec{u} និង \vec{v} កូលីនេះ៍អ៍រគ្នា ។

- * វ៉ិចទ័រ $\vec{u} \times \vec{v}$ ជាវ៉ិចទ័រកែងនឹង \vec{u} ផង និង \vec{v} ផង
- * បើ $\overrightarrow{AB} \times \overrightarrow{AC} = \overrightarrow{0}$ នោះបីចំណុច A,B និង C រត់ត្រង់គ្នា
- * បើ $\overrightarrow{AB} \times \overrightarrow{AC} \neq \overrightarrow{0}$ នោះបីចំណុច A , B និង C រត់មិនត្រង់គ្នាដែលវាកំណត់ បានប្លង់មួយដែលវ៉ិចទ័រ $\overrightarrow{AB} \times \overrightarrow{AC}$ ជាវ៉ិចទ័រណរម៉ាល់នៃប្លង់ (ABC) ។

4. ជលតុណចម្រុះ $\vec{u}\cdot(\vec{v} imes \vec{w})$

ឧបមាថា $\vec{u}=(x,y,z)$; $\vec{v}=(x',y',z')$; $\vec{w}=(\alpha,\gamma,\beta)$

$$\Rightarrow \vec{u} \times \vec{v} = \begin{vmatrix} \alpha & \gamma & \beta \\ x & y & z \\ x' & y' & z' \end{vmatrix} = \begin{vmatrix} y & z \\ y' & z' \end{vmatrix} \alpha - \begin{vmatrix} x & z \\ x' & z' \end{vmatrix} \gamma + \begin{vmatrix} x & y \\ x' & y' \end{vmatrix} \beta = \boxed{\alpha(yz' - y'z) - \gamma(xz' - x'z) + \beta(xy' - x'y)}$$

ចំណាំ * $\vec{u} \cdot (\vec{v} \times \vec{w}) = (\vec{u} \times \vec{v}) \cdot \vec{w}$

- * បើ $\overrightarrow{AB} \cdot (\overrightarrow{AC} \times \overrightarrow{AD}) = 0$ នោះ បួនចំណុច A , B , C និង D នៅក្នុងប្លង់តែមួយ $\Big($ បួនចំណុចនោះបង្កើតបានជាចតុកោណប៉ោងមួយ $\Big)$
- * បើ $\overrightarrow{AB} \cdot \left(\overrightarrow{AC} \times \overrightarrow{AD} \right) \neq 0$ នោះបួនចំណុច A,B,C និង D មិនឋិតនៅក្នុងប្លង់តែមួយ $\Big($ មានន័យថាចំណុចមួយមិនមែនជារបស់ប្លង់ ដែលកើតឡើងដោយចំណុចបីទៀត $\Big)$
- * ក្រឡាផ្ទៃប្រលេឡូក្រាម ABCD គឺ $S = |\overrightarrow{AB} \times \overrightarrow{AC}|$ ឬ $S = |\overrightarrow{BA} \times \overrightarrow{BC}| = |\overrightarrow{CB} \times \overrightarrow{CD}| = |\overrightarrow{DA} \times \overrightarrow{DC}|$
- * ក្រឡាំផ្ទៃត្រីកោណ ABC គឺ $S = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}| = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}| = \frac{1}{2} |\overrightarrow{CA} \times \overrightarrow{CB}|$
- * មាឌប្រលេពីថែត ABCDEFGH គឺ $V = |(\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD}|$ ឬ $V = |(\overrightarrow{BA} \times \overrightarrow{BE}) \cdot \overrightarrow{BF}| = \cdots$
- * មាឌតេត្រាអែត ឬពីវ៉ាមីត ឬចតុមុខ ABCD គឺ $V = \frac{1}{6} | (\overrightarrow{AB} \times \overrightarrow{AC}) \cdot \overrightarrow{AD} |$ ឬ $V = \frac{1}{6} | (\overrightarrow{BA} \times \overrightarrow{BC}) \cdot \overrightarrow{BD} | = \cdots$

5. ក្រាយថាត្រីកោណ ΔABC ជាត្រីកោណសមបាត

ត្រីកោណសមបាតជាត្រីកោណដែលមានប្រវែងជ្រុងពីរស្មើគ្នា ដូចរូបគ្រាន់តែបង្ហាញថា AB = BC នោះ ABC ជាត្រីកោណសមបាត។

6. ក្រាយថាត្រីកោណ ABC ជាត្រីកោណសម័ង្ស

ត្រីកោណសម័ង្សជាត្រីកោណដែលមានប្រវែងជ្រុងទាំងថីស្មើគ្នា។ ថើ ABC ជាត្រីកោណសម័ង្សយើងគ្រាន់តែបង្ហាញថា AB = AC = BC ។

7. ក្រាយថាត្រីកោណABC ជាត្រីកោណកែង

បើ ABC ជាត្រីកោណកែងត្រង់ A យើងអាចបង្ហាញថាផលគុណស្កាលែ $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ នោះមានន័យថា $\overrightarrow{AB} \perp \overrightarrow{AC}$ ។ឬ យើងអាចបង្ហាញតាមទ្រឹស្តីបទពីតាគ័រដែល $a^2 = b^2 + c^2$ ដែល aជាប្រវែងBC , b ជាប្រវែង AB និង c ជាប្រវែង AC ។

8. ស្រាយថាត្រីកោណABC ជាត្រីកោណកែងសមបាត

ជាងំបូងយើងត្រូវបង្ហាញថា ABC ជាត្រីកោណសមបាតសិនដោយបង្ហាញឱ្យឃើញប្រវែងជ្រុងពីរស្មើគ្នា បន្ទាប់មកចាំ បង្ហាញវាជាត្រីកោណកែងតាមរយៈផលគុណស្ដាលែឬតាមទ្រឹស្ដីបទពីតាគ័រ។

9. ក្រាយថាចតុកោណ *ABCD* ជាប្រលេឡក្រាម

យើងអាចបង្ហាញថាABCD ជាប្រលេឡូក្រាមគឺគ្រាន់តែបង្ហាញថា $\overrightarrow{AD} = \overrightarrow{BC}$ ឬ $\overrightarrow{AD} = -\overrightarrow{BC}$ មានន័យថា AD = BC និង $\overrightarrow{AD} \parallel \overrightarrow{BC}$ ។

10. ក្រាយថាចតុកោណ *ABCD* ជាចតុកោណកែង

ចតុកោណកែង ជាចតុកោណដែលមានរាងទ្រវែង ដែលមានជ្រុងស្របគ្នា ពីរ ពីរ និងកែងគ្នា ដែលបង្កើតបានជាមុំកែង៤។ ជ្រុងវែងស្របគ្នា ហៅថាបណ្ដោយ ហើយជ្រុងខ្លីស្របគ្នាហៅ ថាទទឹង។ចតុកោណកែង គឺជាប្រលេឡូក្រាមដែលមានមុំកែង៤។ យើងអាចបង្ហាញវាជា ប្រលេឡូក្រាមសិន រួចចាំបង្ហាញជ្រុងកែងណាមួយរបស់វាតាមផលគុណស្កាលែ។

ចំណាំ៖ បើជ្រងទាំង៤របស់វាមានប្រវែងស្មើៗគ្នានោះ ABCD ជាការេ។

11. ក្រាយថាចតុកោណ ABCD ជាចតុកោណស្មើ

ចតុកោណស្មើ ជាប្រលេឡូក្រាមដែលមានជ្រុងជាប់គ្នាមានប្រវែងស្មើគ្នា។ ដូចនេះជា ដំបូងយើងត្រូវបង្ហាញវាជាប្រលេឡូក្រាម បន្ទាប់មកបង្ហាញជ្រុងជាប់របស់វាមាន ប្រវែងស្មើគ្នា។

12. សមីការប៉ារ៉ាមែត្រ និងសមីការឆ្លុះនៃបន្ទាត់

បន្ទាត់ (L)កាត់តាមចំណុច $M(x_0,y_0,z_0)$ និងមានវ៉ិចទ័រប្រាប់ទិស ec u=(a,b,c) មានសមីការប៉ារ៉ាម៉ែត្រកំណត់ដោយ៖

$$(L): \begin{cases} x = x_0 + at \\ y = y_0 + bt , t \in \mathbb{R} \\ z = z_0 + ct \end{cases}$$
 និងសមីការឆ្លុះកំណត់ដោយ $(L): \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$

<u>សម្គាល់</u>៖ ដើម្បីសរសេរសមីការបន្ទាត់បានយើងត្រូវស្គាល់ចំណុចកាត់តាមនិងវិចទ័រប្រាប់ទិសរបស់វា។

13. សមីការបន្ទាត់កាត់តាមពីរចំណុច $A(x_1,y_1,z_1)$ និង $B(x_2,y_2,z_2)$

បើបន្ទាត់កាត់តាមពីរចំណុច A(x,y,z) និងB(x',y',z') យក \overline{AB} ឬ \overline{BA} ជាវ៉ិចទ័រប្រាប់ទិសរបស់បន្ទាត់ វីឯចំណុចកាត់តាមយក A ក៏បាន B ក៏បាន ។

14. បន្ទាត់កាត់ចំណុច A(x,y,z) ហើយកែងនឹងប្តង់ (P)

បើបន្ទាត់កាត់ចំណុច A(x,y,z) ហើយកែងនឹងប្លង់ (P)ជែល(P): ax + by + cz + d = 0មានវ៉ិចទ័រណរម៉ាល់ $\vec{n} = (a,b,c)$ នោះយើងយក \vec{n} ជាវ៉ិចទ័រប្រាប់ទិសរបស់បន្ទាត់ ។

15. $\,$ សមីការបន្ទាត់ (L) កាត់តាមចំណុច A ហើយក្របនឹងបន្ទាត់ (D)

បើបន្ទាត់(L)កាត់ចំណុច A(x,y,z) ហើយស្របនឹងបន្ទាត់ (D)នោះគេបានវ៉ិចទ័រប្រាប់ទិសរបស់វាស្មើគ្នា ។

16. បន្ទាត់កើតឡើងដោយប្រកាព្ធរវាងប្លង់ពីរ

គេមាន
$$\begin{cases} (P_1): a_1x+b_1y+c_1z+d_1=0\\ (P_2): a_2x+b_2y+c_2z+d_2=0 \end{cases}$$
 យក $z=t$, $t\in\mathbb{R}$ ជំនួសក្នុងប្រព័ន្ឋសមីការ
$$\begin{cases} a_1x+b_1y=-c_1t-d_1\\ a_2x+b_2y=-c_2t-d_2 \end{cases}$$
 បន្ទាប់ពីដោះស្រាយប្រព័ន្ឋសមីការយើងនឹងទទួលបានសមីការបន្ទាត់

$$\tilde{\tilde{n}} \begin{cases} x = x_o + at \\ y = y_o + bt \\ z = z_o + ct \end{cases}$$

17. បន្ទាត់(D)កាត់ចំណុច A ហើយកែងនឹងពីរបន្ទាត់ (L_1) និង (L_2)

ដោយបន្ទាត់ (L_1) មានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_1=(a_1,b_1,c_1)$ និងបន្ទាត់ (L_2) មានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_2=(a_2,b_2,c_2)$ នោះគេបាន $\vec{u}_1\times\vec{u}_2$ ជាវ៉ិចទ័រប្រាប់ទិសនៃបន្ទាត់ (D)។

18. បន្ទាត់(L)កាត់ចំណុច A ហើយក្របនឹងពីរប្តង់ (α_1) និង (α_2)

ដោយ ប្លង់ (α_1) មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}_1=(a_1,b_1,c_1)$ និងប្លង់ (α_2) មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}_2=(a_2,b_2,c_2)$ នោះ គេបាន (L)មានវ៉ិចទ័រប្រាប់ទិស $\vec{n}_1 \times \vec{n}_2$

19. ក្រោយថាបន្ទាត់ (L_1) ប្រការព្ធនឹងបន្ទាត់ (L_2) ឬទេ ?

គេមាន
$$(L_1)$$
: $\begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \\ z=z_1+c_1t \end{cases}$ កាត់តាម $M_1(x_1,y_1,z_1)$ និងមាន វិចទ័រប្រាប់ទិស $\overrightarrow{u}_1=(a_1,b_1,c_1)$

និង
$$(L_2): \begin{cases} x=x_2+a_2t\\ y=y_2+b_2t \ , t\in \mathbb{R} \ \text{ himber} \ M_2(x_2,y_2,z_2) \ \text{និងមាន } \} \ \text{ចទ័រប្រាប់ទិស} \ \vec{u}_2=(a_2,b_2,c_2) \ \text{sate } \}$$

គេបាន $\overline{M_1M_2}=(a_o,b_o,c_o)$ និង \vec{u}_1 មិនគូលីនេអ៊ែ \vec{u}_2 បន្ទាត់ (L_1) ប្រសព្វនឹងបន្ទាត់ (L_2) កាលណា៖ $\overline{M_1M_2}\cdot(\vec{u}_1\times\vec{u}_2)=0$ ។ បើ $\overline{M_1M_2}\cdot(\vec{u}_1\times\vec{u}_2)\neq0$ នោះ (L_1) មិនប្រសព្វ (L_2) ។

20. ក្រោយថាបន្ទាត់ (L_1) និង បន្ទាត់ (L_2) ជាបន្ទាត់តែមួយ

គេមាន
$$(L_1)$$
: $\begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \end{cases}$, $t\in\mathbb{R}$ កាត់តាម $M_1(x_1,y_1,z_1)$ និងមាន វ៉ិចទ័រប្រាប់ទិស $\overrightarrow{u}_1=(a_1,b_1,c_1)$ $z=z_1+c_1t$

និង
$$(L_2)$$
:
$$\begin{cases} x=x_2+a_2t \\ y=y_2+b_2t \ , t \in \mathbb{R} \ \text{ This ans} \ M_2(x_2,y_2,z_2)$$
និងមានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_2=(a_2,b_2,c_2)$ $z=z_2+c_2t$

គេបាន $\overline{M_1M_2}=(a_o,b_o,c_o)$ បើបន្ទាត់ (L_1) និង បន្ទាត់ (L_2) ជាបន្ទាត់តែមួយកាលណា៖ \vec{u}_1 គូលីនេអ៊ែ \vec{u}_2 និង គូលីនែអ៊ែ $\overline{M_1M_2}$ បានន័យថា $\vec{u}_1\parallel\vec{u}_2\parallel \overline{M_1M_2}$ ។

21. ក្រាយថាបន្ទាត់ (L_1) និង បន្ទាត់ (L_2) ក្ថាតក្នុងប្លង់តែមួយ

គេមាន
$$(L_1)$$
: $\begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \\ z=z_1+c_1t \end{cases}$ កាត់តាម $M_1(x_1,y_1,z_1)$ និងមាន វិចទ័រប្រាប់ទិស $\vec{u}_1=(a_1,b_1,c_1)$

និង
$$(L_2)$$
:
$$\begin{cases} x=x_2+a_2t\\ y=y_2+b_2t\\ z=z_2+c_2t \end{cases}$$
 កាត់តាម $M_2(x_2,y_2,z_2)$ និងមានវ៉ិចទ័រប្រាប់ទិស $\overrightarrow{u}_2=(a_2,b_2,c_2)$

ករណីទី១៖ ថើ \vec{u}_1 មិនគូលីនេអ៊ែ \vec{u}_2 គេបាន $\overline{M_1M_2} \cdot (\vec{u}_1 \times \vec{u}_2) = 0$ នោះ បន្ទាត់ (L_1) និង បន្ទាត់ (L_2) ស្ថិតក្នុងប្លង់តែមួយ ។ ករណីទី២៖ ថើ \vec{u}_1 គូលីនេអ៊ែ \vec{u}_2 នោះ បន្ទាត់ (L_1) និង បន្ទាត់ (L_2) ស្ថិតក្នុងប្លង់តែមួយ ។

22. ក្រាយថាបន្ទាត់ (L) កាត់ប្លង់ (P) បានមួយចំណុច

$$(P)$$
: $a_1x + b_1y + c_1z + d = 0$ មាន វី្ចទ័រណរម៉ាល់ $\vec{n} = (a_1, b_1, c_1)$

បើបន្ទាត់ (L) កាត់ប្លង់ (P)បានមួយចំណុចកាលណា៖ $\vec{u}_2 \cdot \vec{n} \neq 0$ មានន័យថា \vec{u}_2 មិនអតូកូណាល់ \vec{n} ។

23. ក្រាយថាបន្ទាត់ (L) ក្រាប នឹងប្លង់ (P)

ដោយ (L):
$$\begin{cases} x=x_2+a_2t\\ y=y_2+b_2t \ , t\in \mathbb{R} \ \text{កាត់តាម} \ M_2(x_2,y_2,z_2) \ \text{និងមានវ៉ិចទ័រប្រាប់ទិស } \vec{u}_2=(a_2,b_2,c_2) \\ z=z_2+c_2t \end{cases}$$

$$(P)$$
: $a_1x + b_1y + c_1z + d = 0$ មានវ៉ីចទ័រណរម៉ាល់ $\vec{n} = (a_1, b_1, c_1)$

បើបន្ទាត់ L ស្របនឹងប្លង់ (P)កាលណា៖ $\vec{u}_2 \cdot \vec{n} = 0$ មានន័យថា $\vec{u}_2 \perp \vec{n}$ និង $M_2 \notin (P)$ ។

24. ស្រាយថាបន្ទាត់ L ស្ថិតនៅក្នុងប្លង់ (P)

ដោយ (L):
$$\begin{cases} x=x_2+a_2t\\ y=y_2+b_2t\\ z=z_2+c_2t \end{cases}$$
 កាត់តាម $M_2(x_2,y_2,z_2)$ និងមានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_2=(a_2,b_2,c_2)$

$$(P)$$
: $a_1x + b_1y + c_1z + d = 0$ មាន វី្ថេទ័រណរម៉ាល់ $\vec{n} = (a_1, b_1, c_1)$

បើបន្ទាត់ (L)ស្ថិតនៅក្នុងប្លង់ (P)កាលណា៖ $\vec{u}_2 \cdot \vec{n} = 0$ មានន័យថា $\vec{u}_2 \perp \vec{n}$ និង $M_2 \in (P)$ ។

25. ចម្ងាយពីចំណុច M ទៅបន្ទាត់ (L)

គេមានចំណុច $M(x_M,y_M,z_M)$ និងបន្ទាត់ (L) ដែលកាត់តាម $A(x_A,y_A,z_A)$ មាន វិចទ័រប្រាប់ទិស $\vec{u}=(a,b,c)$ នោះគេបានចម្ងាយពីចំណុច M ទៅបន្ទាត់(L) កំណត់ដោយ $d[M,(L)]=\frac{\left|\overrightarrow{AM}\times \vec{u}\right|}{|\vec{u}|}$

26. ចម្ងាយរវាងបន្ទាត់ពីរ

គេមាន
$$(L_1)$$
: $\begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \\ z=z_1+c_1t \end{cases}$ កាត់តាម $M_1(x_1,y_1,z_1)$ និងមានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_1=(a_1,b_1,c_1)$

និង
$$(L_2)$$
:
$$\begin{cases} x = x_2 + a_2 t \\ y = y_2 + b_2 t , t \in \mathbb{R} \text{ กลัสษ } M_2(x_2, y_2, z_2)$$
និងមាន វីមទ័រប្រាប់ទិស $\vec{u}_2 = (a_2, b_2, c_2)$ $z = z_2 + c_2 t$

គេបាន ចម្ងាយរវាងបន្ទាត់ (L_1) និង (L_2) កំណត់ដោយ $d=\frac{\left|(\vec{u}_1 imes \vec{u}_2) \cdot \overline{M_1 M_2}\right|}{\left|\vec{u}_1 imes \vec{u}_2\right|}$

27. រកចំណុច H ប្រកាព្វរវាងបន្ទាត់ (L_1) និង បន្ទាត់ (L_2)

ឧបមាថាគេមាន
$$(L_1)$$
:
$$\begin{cases} x=x_1+a_1t_1\\y=y_1+b_1t_1\\z=z_1+c_1t_1 \end{cases}$$
, $t\in\mathbb{R}$ និង (L_2) :
$$\begin{cases} x=x_2+a_2t_2\\y=y_2+b_2t_2\\z=z_2+c_2t_2 \end{cases}$$

ផ្ចឹម
$$x$$
 និង x , y និង y , z និង z គេបាន
$$\begin{cases} x_1 + a_1t_1 = x_2 + a_2t_2 & (i) \\ y_1 + b_1t_1 = y_2 + b_2t_2 & (ii) \end{cases}$$
 តាម (i) និង (ii) ឃើអាចរកបាន $t_1 = \alpha$ $z_1 + c_1t_1 = z_2 + c_2t_2$ (iii)

និង $t_2=\beta$ បន្ទាប់មកយកចម្លើយ t_1 និង t_2 ជំនួសក្នុង (iii) បើផ្ទៀងផ្ទាត់នោះ (L_1)ប្រសព្វ (L_2) បានមួយចំណុច H

ដែលយក $t_1=lpha$ ជំនួសចូលក្នុង (L_1) គេបាន $H(x_1+a_1lpha,y_1+b_1lpha,z_1+c_1lpha)$

សម្គាល់៖ បើយក t_1 និង t_2 ជំនួសក្នុង (iii) មិនផ្ទៀងផ្ទាត់ទេ នោះ (L_1) មិនប្រសព្វ (L_2) ទេ ។

28. សមីការប្លង់កាត់តាមចំណុច A និងមាន្សិចទ័រនរម៉ាល់ $ec{n}$

ប្លង់កាត់តាមចំណុច $A(x_A,y_A,z_A)$ និងមានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=(a,b,c)$ មានសមីការស្ដង់ជា

កំណត់ដោយ $(P): a(x - x_A) + b(y - y_A) + c(z - z_A) = 0$

កម្នាហ់៖ ថើគេពន្លាតសមីការប្លង់ (P) គេបាន (P): ax + by + cz + d = 0 ហៅថាសមីការទូទៅនៃប្លង់ ។

29. ប្លង់កាត់តាមចំណុច M ហើយកែងនឹងបន្ទាត់ (L)

បន្ទាត់ (L)មានវ៉ិចទ័រប្រាប់ទិស $\vec{u}=(a,b,c)$ បើប្លង់ (P)កាត់តាមចំណុច Mហើយកែងនឹងបន្ទាត់ (L)គេបាន (P) មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=\vec{u}=(a,b,c)$ ។

30. ប្លង់កាត់តាមបីចំណុច A , B និង C

ប្លង់កាត់តាមបីចំណុច A,B និង C មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=\overrightarrow{AB}\times\overrightarrow{AC}$

31. **ប្លង់មេដ្យាទ័រនៃអង្កត់** [*AB*]

ប្លង់ (P)ជាប្លង់មេង្យាទ័រនៃអង្កត់ [AB] កាត់តាមចំនុច Iជាចំណុចកណ្ដាលនៃអង្កត់ [AB]និងមានវ៉ិចទ័រណរម៉ាល់ \overline{AB} ។

32. ប្លង់ដែលកើតឡើងដោយពីរបន្ទាត់ប្រកាព្វក្នា

គេមាន
$$(L_1)$$
: $\begin{cases} x=x_1+a_1t \\ y=y_1+b_1t \\ z=z_1+c_1t \end{cases}$ កាត់តាម $M_1(x_1,y_1,z_1)$ និងមាន វិចទ័រប្រាប់ទិស $\vec{u}_1=(a_1,b_1,c_1)$ $(x=x_2+a_2t)$

និង
$$(L_2)$$
:
$$\begin{cases} x = x_2 + a_2 t \\ y = y_2 + b_2 t , t \in \mathbb{R} \text{ } \ \text{$$

ដោយប្លង់ (P)កើតឡើងដោយ (L_1) កាត់ (L_2) គេបាន (P)កាត់តាម M_1 និងមានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=\vec{u}_1\times\vec{u}_2$ ។

33. ប្លង់ដែលកើតឡើងពីរបន្ទាត់ស្របគ្នា (L_1) ស្របនឹង (L_2)

គេមាន
$$(L_1)$$
:
$$\begin{cases} x=x_1+a_1t\\ y=y_1+b_1t\\ z=z_1+c_1t \end{cases}$$
 កាត់តាម $M_1(x_1,y_1,z_1)$ និងមាន ថៃទ័រប្រាប់ទិស $\vec{u}_1=(a_1,b_1,c_1)$

និង
$$(L_2)$$
:
$$\begin{cases} x = x_2 + a_2 t \\ y = y_2 + b_2 t , t \in \mathbb{R} \text{ }$$
 កាត់តាម $M_2(x_2, y_2, z_2)$ និងមានវ៉ិចទ័រប្រាប់ទិស $\vec{u}_2 = (a_2, b_2, c_2)$ $z = z_2 + c_2 t$

គេបាន $M_1 \overline{M}_2$ មិនកូលីនេអ៊ែ $ec{u}_1$ តែ $ec{u}_1$ កូលីនេអ៊ែ $ec{u}_2$

ង៉ិចនេះ គេបានប្លង់ (P)កាត់តាម M_1 និងមានវ៉ិចទ័រណរម៉ាល់ $ec{n}=\overline{M_1M_2} imesec{u}_1$ ។

34. ប្លង់កាត់តាមពីរចំណុច M_1 , M_2 និងក្រាបនឹងបន្ទាត់ (L) មួយ

ដោយឬង់ (P)កាត់តាមពីរចំណុច M_1 , M_2 និងស្របនឹងបន្ទាត់ (L) ដែលមានវ៉ិចទ័រប្រាប់ទិស $\vec{u}=(a,b,c)$

ដូចនេះ គេបានប្លង់ (P)មានវ៉ិចទ័រណរម៉ាល់ $\vec{n} = \overrightarrow{M_1 M_2} \times \vec{u}$

35. ឬងំ(P) ដែលកាត់តាមចំណុច M និង ក្របនឹងប្លង់ $(P\prime)$

ដោយប្លង់ (P') មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=(a,b,c)$ ហើយ $(P')\parallel(P)$ ជិចនេះ គេបានប្តង់ (P)កាត់តាម M និងមានវ៉ិចទ័រណរម៉ាល់ \vec{n} ។

36. ប្លង់កាត់តាមពីរចំណុច M_1 និង M_2 និងកែងនឹងប្លង់ (lpha) មួយ

ដោយប្លង់ (α) មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}_1=(a,b,c)$ នោះគេបាន ប្លង់ (P)កាត់តាម M_1 , M_2 និងកែងនឹងប្លង់ (α) មានវ៉ិចទ័រណរម៉ាល់ $\vec{n}=\overline{M_1M_2}\times \vec{n}_1$ ។

37. តណនាចម្ងាយពីប្លង់ (α_1) ទៅប្លង់ (α_2)

គេមាន (α_1) : $a_1x+b_1y+c_1z+d_1=0$ និង (α_2) : a_2x+b_2y $c_2z+d_2=0$ ដោយ $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\neq\frac{d_1}{d_2}$ គេបាន $(\alpha_1)\parallel(\alpha_2)$ យក x=0 , y=0 ជំនួសក្នុង (α_1) គេបាន $z=-\frac{d_1}{c_1}=\beta$ គេបានចំណុច $M(0,0,\beta)$ ស្ថិតក្នុងប្លង់ (α_1) ដិច្នេះ ចម្ងាយពីចំណុច $M(0,0,\beta)$ ទៅប្លង់ (α_2) គឺជាចម្ងាយរវាងប្លង់ (α_1) និងប្លង់ (α_2) ។ សម្គាល់៖ បើប្លង់ (α_1) មិនស្រប (α_2) គេបានចម្ងាយ d=0 ។

38. តណនាចម្ងាយរវាងបន្ទាត់ L និង ប្លង់ (P)

គេមាន
$$(L)$$
: $\begin{cases} x = x_o + at \\ y = y_o + bt \\ z = z_o + ct \end{cases}$ និង (P) : $a\prime x + b\prime y + c\prime z + d = 0$ ដោយ $aa\prime + bb\prime + cc\prime = 0$ និង $a\prime x_o + b\prime y_o + c\prime z_o + d \neq 0$ គេបាន $(L) \parallel (P)$ យក $t = 0$ គេបាន $M(x_o, y_o, z_o) \in (L)$ ដូចនេះ គេបានចម្ងាយពីចំណុច M ទៅប្លង់ (P) ជាចម្ងាយរវាងបន្ទាត់ (L) នឹងប្លង់ (P) ។

39. រកចំណុច H ប្រកាញរវាងបន្ទាត់ (L) និង ប្តង់(P)

40. សមីការស្វែមានផ្ចិត I(a;b;c) និងកាំ R

សមីការស្វ៊ែមានផ្ចិត I(a,b,c) និងកាំ R មានសមីការស្គង់ដាំ $(S):(x-a)^2+(y-b)^2+(z-c)^2=R^2$

41. សមីការស៊្វែមានមានអង្កត់ផ្ចិត[*AB*]

ស្ង៊ែ (S)ដែលមានអង្កត់ផ្ចិត [AB]មាន ផ្ចិត I កណ្ដាលអង្កត់ [AB]និងកាំ $R=\dfrac{\left|\overrightarrow{AB}\right|}{2}$

42. ${f n}$ មីការក្សែមានផ្ចិត I និងប៉ះនឹងប្លង់ (P)

ស្វ៊ែមានផ្ចិត I(a,b,c) និងប៉ះនឹងប្លង់ (P): a'x+b'y+c'z+d=0 មានកាំ R ជាចម្ចាយពី I ទៅប្លង់ (P)

43. សមីការស្វ៊ែដែលកាត់តាមបួនចំណុច A; B; C និង D

ដោយស្វ៊ែ (S)មានសមីការទូទៅ (S): $x^2+y^2+z^2+ax+by+cz+d=0$ កាត់តាម $A(x_A,y_A,z_A)$; $B(x_B,y_B,z_B)$;

$$C(x_C, y_C, z_C)$$
 និង $D(x_D, y_D, z_D)$

យកបួនចំណុច A,B,C និង D ជំនួសក្នុងសមីការ (S) គេបានប្រព័ន្ឋសមីការ៖

$$\begin{cases} x_A^2 + y_A^2 + z_A^2 + ax_A + by_A + cz_A + d = 0 \\ x_B^2 + y_B^2 + z_B^2 + ax_B + by_B + cz_B + d = 0 \\ x_C^2 + y_C^2 + z_C^2 + ax_C + by_C + cz_C + d = 0 \\ x_D^2 + y_D^2 + z_D^2 + ax_D + by_D + cz_D + d = 0 \end{cases}$$

បន្ទាប់ពីដោះស្រាយប្រព័ន្ឋសមីការ យកចម្លើយជំនួសចូលក្នុងសមីការ (S) នោះនឹងទទួលបានស្វ៊ែ (S)។

44. រកផ្ចិត និង កាំរង្វង់ដែលកើតឡើងដោយប្រកាព្វរវាងប្លង់ និង ក្ស៊ែ

ដោយ
$$(c)$$
: $\begin{cases} (S): (x-a)^2 + (y-b)^2 + (z-c)^2 = R^2 \\ (P): Ax + By + Cz + D = 0 \end{cases}$ ចម្ងាយពីផ្ចិតស្វែទៅប្លង់

ពី
$$d(I, (P)) = \frac{|Aa + Bb + Cc + D|}{\sqrt{A^2 + B^2 + C^2}} = \beta$$

- * បើ $\beta=0$ នោះស្វ៊ែ (S)មានផ្ចិត I(a,b,c) និងកាំ R
- * បើ eta
 eq 0 ; eta < R នោះស្វ៊ែ (S)មានកាំ $r = \sqrt{R^2 eta^2}$ តាង H ជាផ្ចិតរង្វង់ (c)

គេបាន H ជាចំណុចប្រសព្វរវាងបន្ទាត់ (L)កាត់តាម I(a,b,c)មានវ៉ិចទ័រប្រាប់ទិស $\vec{u}=(A,B,C)$ ជាមួយប្លង់ (P)

គេបាន
$$H$$
: $\{(L): x=a+At: y=b+Bt: z=c+Ct, t\in\mathbb{R} \ (P): Ax+By+Cz+D=0 \}$ យក $x,y,z\in(L)$ ជំនួសក្នុងប្លង់ (P)

គេបាន
$$A(a+At)+B(b+Bt)+C(c+Ct)+D=0 \Rightarrow t=t_o$$
 យក $t=t_o$ ជំនួសចូលក្នុង (L)

45. កំណត់ទីតាំងរវាងក្ងែ (S) និង ប្លង់ (P)

ស្ង៊ែ
$$(S)$$
: $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$ មានផ្ចិត $I(a,b,c)$ និង កាំ R

គណនាចម្ងាយពី
$$I$$
 ទៅប្តង់ (P) : $Ax + By + Cz + D = 0$ ដែល $d(I, (P)) = \frac{|Aa + Bb + Cc + D|}{\sqrt{A^2 + B^2 + C^2}} = \beta$

- * បើ $\beta < R$ នោះស្វ៊ែ (S) និងប្លង់ (P) ប្រសព្វគ្នាបានរង្វង់ (C)
- * បើ $\beta=0$ នោះស្វ៊ែ (S) និងប្លង់ (P)ប្រសព្វគ្នាបានរង្វង់ (C) ដែលមានផ្ចិត I និង កាំ R
- * បើ $\beta=R$ នោះស្វ៊ែ (S)ប៉ះប្លង់ (P)
- * បើ $\beta > R$ នោះស្នែ៍ (S) និងប្លង់ (P)មិនប្រសព្វគ្នា។

46. ទីតាំងស្វែនឹងបន្ទាត់

ទីតាំងស្វ៊ែនឹងបន្ទាត់អាចកើតឡើង៣ទីតាំង បើស្វ៊ែ (S)មានផ្ចិត I និងកាំ R ហើយ (D) ជាបន្ទាត់

ដែលកាត់តាម A និងមានវ៉ិចទ័រប្រាប់ទិស \vec{u} ៖ ដែលគេបានចម្ងាយពី I ទៅបន្ទាត់ (D)គឺ $d[I,(D)] = \frac{|I\vec{A} \times \vec{u}|}{|\vec{u}|} = \beta$

- * បើ $\beta < R$ នោះបន្ទាត់ (D)កាត់ស៊ែបានពីរចំណុច
- * បើ $\beta=R$ នោះបន្ទាត់ (D)ប៉ះនឹងស្វែ
- * បើ $\beta > R$ នោះបន្ទាត់ (D) មិនអាចកាត់ស្នែ ។

47. រកចំណុចប្រកាព្វារវាងបន្ទាត់ (L)និង ក្វែ(S)

ឧបមាថា $\begin{cases} (L): x = x_o + at \; ; y = y_o + bt \; ; z = z_o + ct \; , t \in \mathbb{R} \\ (S): (x - a')^2 + (y - b')^2 + (z - c')^2 = R^2 \end{cases}$ យក $x; y \; ; z \in (L)$ ជំនួសក្នុងស្ងែ (S) គេបាន $(x_o + at - a')^2 + (y_o + bt - b')^2 + (z_o + ct - c')^2 = R^2 \text{ បន្ទាប់មកឃើងដោះស្រាយសមីការដឺក្រេទីពីរដែល មាន } t ជាអថេរតាមរយ: <math>\Delta = b^2 - 4ac$

- * បើ $\Delta>0$ គេបាន $t=t_1$ ឬ $t=t_2$ យក $t=t_1$ ឬ $t=t_2$ ជំនួសក្នុងសមីការ (L) គេបានចំណុចប្រសព្យរវាង(L)និង(S)មានពីរចំណុច
- * បើ $\Delta=0$ គេបាន ឬសឌុបដែល $t=t_o$ យក $t=t_o$ ជំនួសក្នុងសមីការ(L) គេបានចំណុចប្រសព្វរវាង (L)និង (S)មានមួយចំណុច
- * បើ $\Delta < 0$ សមីការគ្មានឬស គេបាន (L)មិនកាត់ (S) ទេ ។

48. ចម្ងាយពីផ្ចិតក្ស៊ែ (S) ទៅប្លង់ (P)

គេមាន ស្វ៊ែ(S): $(x-a)^2+(y-b)^2+(z-c)^2=R^2$ មានផ្ចិត I(a,b,c) កាំ R និងប្លង់ (P): $a_p \ x+b_p \ y+c_p \ z+d=0$ ជុំចនេះ គេបានចម្ងាយពីផ្ចិតស្វ៊ែ (S) ទៅប្លង់ (P)គឺចម្ងាយពីចំណុច I ទៅ (P) ដែល

កំណត់ដោយ
$$d = \frac{\left|aa_p + bb_p + cc_p + d\right|}{\sqrt{a_p^2 + b_p^2 + c_p^2}}$$

49. ចម្ងាយពីផ្ចិតស្វ៊ែ (S_1) ទៅផ្ចិតស្វ៊ែ (S_2)

ស្វ៊ែ (S_1) មានផ្ចិត $I_1(a_1,b_1,c_1)$ និង ស្វ៊ែ (S_2) មានផ្ចិត $I_2(a_2,b_2,c_2)$ ជុំចនេះ ចម្ងាយពីផ្ចិតស្វ៊ែ (S_1) ទៅផ្ចិតស្វ៊ែ (S_2) គឺ $d=|\overrightarrow{I_1I_2}|$

50. ចម្ងាយជិតបំផុតពីផ្ទៃក្ស៊ែ (S_1) ទៅផ្ទៃក្ស៊ែ (S_2)

ស្វ៊ែ (S_1) មានផ្ចិត $I_1(a_1,b_1,c_1)$ និង កាំ R_1 ស្វ៊ែ (S_2) មានផ្ចិត $I_2(a_2,b_2,c_2)$ និង កាំ R_2 គេបាន ចម្ងាយជិតបំផុតពីផ្ទៃស្វ៊ែ (S_1) ទៅផ្ទៃស្វ៊ែ (S_2) គឺ $\boxed{d=\left|\overline{I_1I_2}\right|-(R_1+R_2)}$