2B Linear Algebra

True/False

- a) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ is a diagonal matrix.
- b) Any matrix $A \in M_{n \times n}(\mathbb{R})$ is similar to itself.
- c) Similar matrices have the same eigenvalues.
- d) A square matrix is diagonalisable if it is similar to a diagonal matrix.
- e) For all diagonalisable matrices A, there is a unique diagonal matrix D and a unique invertible matrix P so that $P^{-1}AP = D$.
- f) *k* eigenvectors corresponding to *k* distinct eigenvalues are linearly independent.
- g) An $n \times n$ matrix with real entries is diagonalisable if and only if it has n distinct real eigenvalues.
- h) $\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ is diagonalisable.
- i) The geometric multiplicity of an eigenvalue λ of the square matrix A is the number of vectors in the λ -eigenspace of A.
- j) The sum of the algebraic multiplicities of the eigenvalues of an $n \times n$ real matrix is n.

Solutions to True/False

a) T b) T c) T d) T e) F f) T g) F h) T i) F j) T

Tutorial Exercises

- **T1** Let $A, B \in M_{n \times n}$.
- a) Show that if *A* and *B* are similar, then *A* is invertible if and only if *B* is invertible.
- b) Prove that if A and B are similar and both invertible, then A^{-1} and B^{-1} are similar.

¹ True/False Questions

Every Exercise Sheet will have a section containing true/false questions. They are designed to test your understanding from lectures. You should look at your lecture notes and/or the textbook to help you answer these questions, but you should not need to write anything to work out the solution.

- a) The matrix A is invertible if and only if $det(A) \neq 0$ and the matrix B is invertible if and only if $det(B) \neq 0$. Since det(A) = det(B) the result follows.
- b) We have $B^{-1} = (P^{-1}AP)^{-1} = P^{-1}A^{-1}(P^{-1})^{-1} = P^{-1}A^{-1}P$. Since P is invertible, this means that A^{-1} and B^{-1} are similar.
- Consider the matrices

$$A = \begin{bmatrix} 2 & 3 & 2 & 4 \\ -1 & 2 & 1 & 1 \\ 2 & 3 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -1 & 1 & 2 & 3 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}.$$

By considering determinants, show that *A* and *B* are *not* similar.

Solution ——

Suppose by way of contradiction that A and B are similar. Then det(A) = det(B). Now we need only notice that det(A) = 0 (expand along the bottom row), and det(B) = 4 (it's upper triangular, so the determinant is the product of the entries on the main diagonal). These numbers are different, so A and B cannot be similar.

For each of the matrices in T7 and T9 on Exercise Sheet 6:

- Determine whether the matrix is diagonalisable, and if it is diagonalisable, find a diagonal matrix D and an invertible matrix P such that $P^{-1}AP = D$ (replace A by B or C as appropriate).
- Find the algebraic and geometric multiplicities of each of the eigenvalues.

Solution ———

For T₇ on Exercise Sheet 6:

a) Since A has two distinct eigenvalues, A is diagonalisable. Using the answers to T7(a), if

$$D = \begin{pmatrix} 1 & 0 \\ 0 & -4 \end{pmatrix} \text{ and } P = \begin{pmatrix} 1 & -\frac{3}{5} \\ 0 & 1 \end{pmatrix}$$

then $P^{-1}BP = D$.

Each of the eigenvalues of A has algebraic multiplicity 1 and geometric multiplicity 1.

b) The only eigenvalue is $\lambda = -2$ and we have

$$E_{-2} = \operatorname{Span}\left\{ \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$$

which is one-dimensional. Thus \mathbb{R}^2 does not have a basis consisting of eigenvectors of B, hence B is not diagonalisable.

The eigenvalue $\lambda = 2$ has algebraic multiplicity 2 and geometric multiplicity 1.

c) Since C has two distinct eigenvalues, C is diagonalisable. Using the answers to T₇(c), if

$$D = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \text{ and } P = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{3} \\ 1 & 1 \end{pmatrix}$$

then $P^{-1}CP = D$.

Each of the eigenvalues of C has algebraic multiplicity 1 and geometric multiplicity 1.

For T9 on Exercise Sheet 6:

a) Since A has three distinct eigenvalues, A is diagonalisable. Using the answers to T9(a), if

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -3 \end{pmatrix} \text{ and } P = \begin{pmatrix} 0 & -2 & -1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

then $P^{-1}AP = D$.

Each of the eigenvalues of A has algebraic multiplicity 1 and geometric multiplicity 1.

b) Since B has three distinct eigenvalues, B is diagonalisable. Using the answers to T9(b), if

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 3i & 0 \\ 0 & 0 & -3i \end{pmatrix} \text{ and } P = \begin{pmatrix} 2 & 1+3i & 1-3i \\ -2 & 3i-1 & -3i-1 \\ 1 & -4 & -4 \end{pmatrix}$$

then $P^{-1}AP = D$.

Each of the eigenvalues of *B* has algebraic multiplicity 1 and geometric multiplicity 1.

c) The only eigenvalue is $\lambda = 2$ and we have

$$E_2 = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\}$$

which is one-dimensional. Thus \mathbb{R}^3 does not have a basis consisting of eigenvectors of C, hence C is not diagonalisable.

The eigenvalue $\lambda = 2$ has algebraic multiplicity 3 and geometric multiplicity 1.

Let $A, B \in M_{3\times 3}(\mathbb{C})$ and suppose the eigenvalues of both Aand B are 1, 2 + i and 4.

- a) Write down a diagonal matrix *D* to which both *A* and *B* are similar.
- b) Hence prove that *A* is similar to *B*.

a) Since A and B have the same three distinct eigenvalues, they are both similar to the diagonal

$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2+i & 0 \\ 0 & 0 & 4 \end{pmatrix}.$$

b) Since A is similar to D, there is an invertible matrix $P \in M_{3\times 3}(\mathbb{C})$ such that $P^{-1}AP = D$. Since B is similar to D, there is an invertible matrix $Q \in M_{3\times 3}(\mathbb{C})$ such that $Q^{-1}BQ = D$. Now this latter equation means $B = QDQ^{-1}$, so we have

$$B = QDQ^{-1} = QP^{-1}APQ^{-1} = (PQ^{-1})^{-1}A(PQ^{-1}).$$

Therefore *A* and *B* are similar matrices.

Construct the matrix A which has eigenvalues 0 and -1, with corresponding eigenspaces

$$E_0 = \operatorname{Span}\left(\begin{bmatrix}1\\-2\end{bmatrix}\right), \qquad E_{-1} = \operatorname{Span}\left(\begin{bmatrix}-1\\3\end{bmatrix}\right).$$

Since A has distinct eigenvalues, we know that it is similar to a diagonal matrix D. Hence, we have $A = PDP^{-1}$ where

$$D = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix}, \qquad P = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}.$$

We compute

$$A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 1 \\ -6 & -3 \end{bmatrix}.$$

Let $A \in M_{n \times n}(\mathbb{R})$ be invertible. Recall that the eigenvalues of an invertible matrix are non-zero.

- a) Suppose that $\lambda \in \mathbb{R}$ is an eigenvalue of A. Prove that λ^{-1} is an eigenvalue of A^{-1} .
- b) Show that if $D = (d_{ii}) \in M_{n \times n}(\mathbb{R})$ is diagonal, with all diagonal entries $d_{ii} \neq 0$, then D is invertible, with D^{-1} the diagonal matrix with diagonal entries d_{ii}^{-1} .
- c) Prove that if A is diagonalisable, then A^{-1} is diagonalisable.

a) Since λ is an eigenvalue of A, there is a non-zero vector v so that $Av = \lambda v$. Now multiply both sides of this equation by A^{-1} to get

$$A^{-1}Av = A^{-1}(\lambda v) \implies \mathbb{I}_n v = \lambda(A^{-1}v) \implies v = \lambda(A^{-1}v).$$

Since $\lambda \neq 0$, we can then multiply both sides of this last equation by λ^{-1} to get

$$\lambda^{-1}v = 1(A^{-1}v) \implies \lambda^{-1}v = A^{-1}v.$$

Since the vector v is non-zero, this means that λ^{-1} is an eigenvalue of A^{-1} .

b) The determinant of D is the product of its diagonal entries. Since each $d_{ii} \neq 0$, we have that

 $det(D) \neq 0$, so D is invertible. If E is the diagonal matrix with $e_{ii} = d_{ii}^{-1}$ then a direct computation shows that $DE = ED = \mathbb{I}_n$. Hence $D^{-1} = E$ as required.

c) If A is diagonalisable there exists an invertible matrix P and a diagonal matrix D so that $P^{-1}AP =$ D. The diagonal entries of D are the eigenvalues of A, so the diagonal entries of D are non-zero as A is invertible. Hence D is invertible and D^{-1} is diagonal, by (ii). So we may take the inverse of both sides of the equation $P^{-1}AP = D$ to get

$$(P^{-1}AP)^{-1} = D^{-1} \implies P^{-1}A^{-1}(P^{-1})^{-1} = D^{-1}.$$

Put $Q = P^{-1}$ then we have $QA^{-1}Q^{-1} = D^{-1}$, with D^{-1} diagonal, hence A^{-1} is diagonalisable.

T7 Let A, B and C be $n \times n$ matrices and suppose that A is similar to B, with $P^{-1}AP = B$, and B is similar to C, with $Q^{-1}BQ = C$, where *P* and *Q* are $n \times n$ invertible matrices. Prove that *A* is similar to *C*.

Solution –

Since P and Q are invertible, PQ is invertible. Now

$$(PQ)^{-1}A(PQ) = Q^{-1}P^{-1}APQ = Q^{-1}BQ = C$$

and so A and C are similar.

Let A and B be $n \times n$ matrices and suppose that A is similar to *B*, with AP = PB for an $n \times n$ invertible matrix *P*.

- a) Recall that row-equivalent matrices have the same row space. Use this to show that rank(B) = rank(PB) and that $rank((AP)^T) =$ $rank(A^T)$.
- b) Deduce that rank(A) = rank(B).

Solution —

a) Since *P* is invertible, *P* is a product of elementary matrices. So *PB* is row-equivalent to *B*, hence row(PB) = row(B) and thus rank(PB) = rank(B).

Now $(AP)^T = P^T A^T$ and P^T is invertible since P is invertible. Thus by the same argument $rank((AP)^T) = rank(A^T).$

b) Using a) and the equation AP = PB, as well as results about rank, we have

$$rank(A) = rank(A^T) = rank((AP)^T) = rank(AP) = rank(PB) = rank(B)$$

and so rank(A) = rank(B) as required.

In the remaining exercises you will prove the Diagonalisation Theorem, Theorem 4.27. The notation is as follows. Suppose $A = (a_{ij}) \in$ $M_{n\times n}(\mathbb{R})$ has eigenvalues $\lambda_1,\ldots,\lambda_k$. For $1\leq i\leq k$ let

 m_i = the algebraic multiplicity of the eigenvalue λ_i

and

 d_i = the geometric multiplicity of the eigenvalue λ_i .

The aim is to show that A is diagonalisable if and only, for each $1 \le i \le k$, we have $d_i = m_i$.

T9

- a) Prove by induction on $n \ge 2$ if $B = (b_{ij}) \in M_{n \times n}(\mathbb{R})$ then $\det(B)$ is a polynomial in the entries of B of degree at most n. This means that for each monomial term of $\det(B)$, the sum of the powers of the b_{ij} appearing in that monomial is at most n.
- b) Using (a), prove by induction on $n \ge 2$ that

$$\det(A - tI) = (a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t) + g(t)$$

where g(t) is a polynomial in the variable t with coefficients in \mathbb{R} and degree strictly less than n.

c) Conclude that det(A - tI) has degree equal to n, hence

$$m_1+m_2+\cdots+m_k=n.$$

Solution

a) In the case n = 2 we have

$$B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$

so $\det(B) = b_{11}b_{22} - b_{12}b_{21}$. Thus $\det(B)$ is a polynomial in the entries of B of degree at most 2. Now assume that for any $k \times k$ real matrix B, $\det(B)$ is a polynomial in the entries of B of degree at most k.

Let $B = (b_{ij})$ be a $(k+1) \times (k+1)$ real matrix. Then

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1,k+1} \\ b_{21} & b_{22} & \cdots & b_{2,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k+1,1} & b_{k+1,2} & \cdots & b_{k+1,k+1} \end{pmatrix}.$$

We calculate det(B) by expanding along the first row. We have

$$\det(B) = \sum_{j=1}^{k+1} (-1)^{j+1} b_{1j} \det(B_{1j}).$$

Now each cofactor B_{1j} is a $k \times k$ matrix, so by the inductive assumption, $\det(B_{1j})$ is a polynomial in the entries of B of degree at most k. Hence each summand $(-1)^{j+1}b_{1j}\det(B_{1j})$ has degree at most k+1, and thus $\det(B)$ has degree at most k+1 as required.

b) In the case n = 2 we have

$$\det(A - tI) = \begin{vmatrix} a_{11} - t & a_{12} \\ a_{21} & a_{22} - t \end{vmatrix} = (a_{11} - t)(a_{22} - t) - a_{12}a_{21}$$

Let $g(t) = -a_{12}a_{21}$. That is, g(t) is the constant polynomial $-a_{12}a_{21} \in \mathbb{R}$. Then we have $det(A - tI) = (a_{11} - t)(a_{22} - t) + g(t)$ with g(t) a real polynomial of degree 0. Since 0 < 2, this proves the statement in the case n = 2.

Now assume that if *A* is $k \times k$ then

$$\det(A - tI) = (a_{11} - t)(a_{22} - t) \cdots (a_{kk} - t) + g(t)$$

where g(t) is a polynomial in the variable t with coefficients in \mathbb{R} and degree less than k. Let *A* be $(k+1) \times (k+1)$. Then

$$\det(A - tI) = \det \begin{pmatrix} a_{11} - t & a_{12} & \cdots & a_{1,k+1} \\ a_{21} & a_{22} - t & \cdots & a_{2,k+1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+1,1} & a_{k+1,2} & \cdots & a_{k+1,k+1} - t \end{pmatrix}.$$

We compute this determinant by expanding along the top row. This gives

$$\det(A - tI) = (a_{11} - t) \det((A - tI)_{11}) + \sum_{j=2}^{k+1} (-1)^{j+1} a_{1j} \det((A - tI)_{1j}).$$

Consider the term $(a_{11} - t) \det((A - tI)_{11})$. The cofactor $(A - tI)_{11} = (A - tI_{k+1})_{11}$ is equal to $(A_{11} - tI_k)$, and so

$$\det((A - tI_{k+1})_{11}) = \det(A_{11} - tI_k).$$

This is the characteristic polynomial of A_{11} , so by inductive assumption, since A_{11} is $k \times k$ we have

$$\det(A - tI_k) = (a_{22} - t) \cdots (a_{k+1,k+1} - t) + g(t)$$

where g(t) is a polynomial in the variable t with coefficients in \mathbb{R} and degree less than k. Thus

$$(a_{11}-t)\det((A-tI_{k+1})_{11})=(a_{11}-t)(a_{22}-t)\cdots(a_{k+1})_{k+1}-t+(a_{11}-t)g(t).$$

Since g(t) has degree less than k, the term $(a_{11} - t)g(t)$ has degree less than (k + 1).

It now suffices to show that

$$\sum_{j=2}^{k+1} (-1)^{j+1} a_{1j} \det((A - tI)_{1j})$$

has degree less than (k + 1). For this, it suffices to show that for each $2 \le j \le n$, the polynomial in t given by $det((A - tI)_{1i})$ has degree at most k. By part (a), since $(A - tI)_{1i}$ is a $k \times k$ matrix, $\det(A-tI)_{1j}$ is a polynomial in the entries of $(A-tI)_{1j}$ of degree at most k. This completes the

c) By part (b), we have

$$\det(A - tI) = (a_{11} - t)(a_{22} - t) \cdots (a_{nn} - t) + g(t)$$

where g(t) has degree less than n. Since the expression $(a_{11}-t)(a_{22}-t)\cdots(a_{nn}-t)$ is a polynomial in t of degree equal to n (the coefficient of t^n is $(-1)^n \neq 0$), it follows that $\det(A - tI)$ has degree n.

Since the eigenvalues of A are the roots of det(A - tI), the polynomial det(A - tI) factors as

$$\det(A - tI) = (-1)^n (t - \lambda_1)^{m_1} (t - \lambda_2)^{m_2} \cdots (t - \lambda_k)^{m_k}.$$

As det(A - tI) has degree n, the sum of the m_i must equal n, that is,

$$m_1+m_2+\cdots+m_k=n.$$

T10 Let $\lambda = \lambda_i$ be an eigenvalue of A, let $m = m_i$ be the algebraic multiplicity of λ and let $d = d_i$ be the geometric multiplicity of λ . Let $S: v_1, v_2, \ldots, v_d$ be an ordered basis for the λ -eigenspace E_{λ} .

- a) Let U be the $n \times d$ matrix which has v_1, v_2, \dots, v_d as its columns. Explain why $AU = \lambda U$.
- b) Let Q be any invertible matrix in $M_{n\times n}(\mathbb{R})$ which has v_1, v_2, \ldots, v_d as its first d columns. Then we can write Q as a "partitioned matrix" $Q = (U \mid V)$, where V is $n \times (n d)$. By considering the product $Q^{-1}Q$, prove that if Q^{-1} is the partitioned matrix

$$Q^{-1} = \left(\frac{C}{D}\right)$$

where *C* is $d \times n$ and *D* is $(n - d) \times n$, then the following equations hold:

$$CU = \mathbb{I}_d$$
 $CV = \mathbb{O}_{d,n-d}$ $DU = \mathbb{O}_{n-d,d}$ $CU = \mathbb{I}_{n-d}$.

Here, $\mathbb{O}_{k,l}$ is the $k \times l$ matrix with all entries 0.

c) Hence prove that

$$\det(Q^{-1}AQ - tI) = (\lambda - t)^d \det(DAV - tI).$$

d) Conclude that $d \le m$. That is, for each eigenvalue of A, the geometric multiplicity is less than or equal to the algebraic multiplicity.

Solution

- a) Since $v_1, v_2, ..., v_d$ are all eigenvectors of A with corresponding eigenvector λ , we have $Av_i = \lambda v_i$ for each $1 \le i \le d$. Thus AU is the $n \times d$ matrix with i^{th} column Av_i , and so $AU = \lambda U$.
- b) We have

$$Q^{-1}Q = \begin{pmatrix} C \\ D \end{pmatrix} (U \mid V) = \begin{pmatrix} CU & CV \\ DU & DV \end{pmatrix}$$

But also $Q^{-1}Q = \mathbb{I}_n$ which we partition as

$$Q^{-1}Q = \mathbb{I}_n = \begin{pmatrix} \mathbb{I}_d & \mathbb{O}_{d,n-d} \\ \mathbb{O}_{n-d,d} & \mathbb{I}_{n-d} \end{pmatrix}.$$

By considering the sizes of the products CU, CV, DU and DV we obtain the required equations

$$CU = \mathbb{I}_d$$
 $CV = \mathbb{O}_{d,n-d}$ $DU = \mathbb{O}_{n-d,d}$ $DV = \mathbb{I}_{n-d}$.

c) We first compute $Q^{-1}AQ$:

$$Q^{-1}AQ = \begin{pmatrix} C \\ D \end{pmatrix} A(U \mid V) = \begin{pmatrix} CAU & CAV \\ DAU & DAV \end{pmatrix}$$

Now $AU = \lambda U$ by part (a), and $CU = \mathbb{I}_d$ and $DU = \mathbb{O}_{n-d,d}$ by part (b). So

$$Q^{-1}AQ = \begin{pmatrix} C\lambda U & CAV \\ D\lambda U & DAV \end{pmatrix} = \begin{pmatrix} \lambda CU & CAV \\ \lambda DU & DAV \end{pmatrix} = \begin{pmatrix} \lambda \mathbb{I}_d & CAV \\ \lambda \mathbb{O}_{n-d,d} & DAV \end{pmatrix} = \begin{pmatrix} \lambda \mathbb{I}_d & CAV \\ \mathbb{O}_{n-d,d} & DAV \end{pmatrix}.$$

Hence

$$\det(Q^{-1}AQ - tI) = \det\begin{pmatrix} (\lambda - t)\mathbb{I}_d & CAV \\ \mathbb{O}_{n-d,d} & DAV - t\mathbb{I}_{n-d} \end{pmatrix} = (\lambda - t)^d \det(DAV - t\mathbb{I}_{n-d})$$

as required.

d) Since A and $Q^{-1}AQ$ are similar matrices, they have the same characteristic polynomial. Therefore by part (c),

$$\det(A - tI) = \det(Q^{-1}AQ - tI) = (\lambda - t)^d \det(DAV - tI).$$

Thus the algebraic multiplicity of λ is at least d, and so $d \leq m$ as required.

T11 For $1 \le i \le k$, let

$$S_i: v_{i1}, v_{i2}, \ldots, v_{id_i}$$

be an ordered basis for the λ_i -eigenspace $\text{Eig}_{\lambda_i}(A)$.

a) Prove that

$$S: v_{11}, v_{12}, \ldots, v_{1d_1}, v_{21}, v_{22}, \ldots, v_{2d_2}, \ldots, v_{k1}, v_{k2}, \ldots, v_{kd_k}$$

obtained by taking the union of the S_i is linearly independent. [Hint: remember that eigenspaces are subspaces, and use Theorem 4.20.]

b) Hence prove that \mathbb{R}^n has a basis consisting of eigenvectors of A if and only if $d_1 + d_2 + \cdots + d_k = n$.

a) Suppose that

$$\lambda_{11}v_{11} + \lambda_{12}v_{12} + \dots + \lambda_{1d_1}v_{1d_1} + \lambda_{21}v_{21} + \lambda_{22}v_{22} + \dots + \lambda_{2d_2}v_{2d_2} + \dots + \lambda_{k1}v_{k1} + \lambda_{k2}v_{k2} + \dots + \lambda_{kd_k}v_{kd_k} = \mathbf{0}$$
 where each $\lambda_{ij} \in \mathbb{R}$. Let

$$egin{array}{lll} m{v}_1 &=& \lambda_{11} m{v}_{11} + \lambda_{12} m{v}_{12} + \cdots + \lambda_{1d_1} m{v}_{1d_1} \ m{v}_2 &=& \lambda_{21} m{v}_{21} + \lambda_{22} m{v}_{22} + \cdots + \lambda_{2d_2} m{v}_{2d_2} \ dots &dots &dots \ m{v}_k &=& \lambda_{k1} m{v}_{k1} + \lambda_{k2} m{v}_{k2} + \cdots + \lambda_{kd_n} m{v}_{kd_n}. \end{array}$$

$$v_1 + v_2 + \dots + v_k = \mathbf{0}. \tag{1}$$

Now for each $1 \le i \le k$, we have that $v_i \in \operatorname{Eig}_{\lambda_i}(A)$, since eigenspaces are subspaces. So either $v_i = \mathbf{0}$ or v_i is an eigenvector of A. If there is some $v_i \ne \mathbf{0}$ then the collection $\{v_i \mid v_i \ne \mathbf{0}\}$ is a collection of eigenvectors of A corresponding to distinct eigenvalues. By Theorem 4.20, this collection is linearly independent. However Equation (1) above gives a linear dependence between these eigenvectors, a contradiction. Therefore each $v_i = \mathbf{0}$. Now as each S_i is a basis, and thus linearly independent, the k equations above defining the v_i mean that $\lambda_{ij} = 0$ for all i, j. Hence S is linearly independent.

b) Suppose $d_1 + d_2 + \cdots + d_k = n$. Then the set S is a linearly independent set in \mathbb{R}^n containing n vectors, hence S is a basis. So \mathbb{R}^n has a basis consisting of eigenvectors of A.

Suppose \mathbb{R}^n has a basis consisting of eigenvectors of A. Now by F5 we have $d_i \leq m_i$ for each i, and by T10 we have $m_1 + m_2 + \cdots + m_k = n$. So $d_1 + d_2 + \cdots + d_k \leq n$. If $d_1 + d_2 + \cdots + d_k < n$ then the set S does not span \mathbb{R}^n , since it contains fewer than n vectors. However every eigenvector in the basis of eigenvectors belongs to $\mathrm{Eig}_{\lambda_i}(A)$ for some i, and so must be in the span of S_i . This is a contradiction. Hence $d_1 + d_2 + \cdots + d_k = n$.

T12 It follows from Theorem 4.23 that A is diagonalisable if and only if \mathbb{R}^n has a basis consisting of eigenvectors of A. Use this together with results above to prove that A is diagonalisable if and only if $d_i = m_i$ for each $1 \le i \le k$.

Solution –

Suppose A is diagonalisable. Then it follows from Theorem 4.23 that \mathbb{R}^n has a basis consisting of eigenvectors of A. By T11, this means $d_1 + d_2 + \cdots + d_k = n$. Now by T11, we have $m_1 + m_2 + \cdots + m_k = n$. Thus

$$0 = (m_1 + m_2 + \dots + m_k) - (d_1 + d_2 + \dots + d_k) = (m_1 - d_1) + (m_2 - d_2) + \dots + (m_k - d_k).$$

By F₅, $d_i \le m_i$ for each i, hence $m_i - d_i \ge 0$ for each i. Thus we must have $m_i - d_i = 0$ for all i. That is, the geometric and algebraic multiplicities of each eigenvalue are equal.

Suppose that $d_i = m_i$ for each i. Then using F4 it follows that

$$m_1 + m_2 + \cdots + m_k = n = d_1 + d_2 + \cdots + d_k.$$

Hence by F6, \mathbb{R}^n has a basis consisting of eigenvectors, and so by Theorem 4.23, A is diagonalisable.

T13 Let

$$A = \left[\begin{array}{cc} 5 & -2 \\ 1 & 2 \end{array} \right].$$

Find an expression for A^n , where n is a positive integer, in a form that displays the entries of the matrix explicitly.

Solution -

In To exercise sheet 6, we found that

$$P^{-1}AP = D$$
,

where

$$P = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \quad \text{and} \quad D = \text{diag}(4, 3).$$

Hence

$$A = PDP^{-1}$$
.

So, for any positive integer n,

$$A^{n} = PD^{n}P^{-1}$$

$$= \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 4^{n} & 0 \\ 0 & 3^{n} \end{bmatrix} \frac{1}{1} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(4^{n}) & 3^{n} \\ 4^{n} & 3^{n} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2(4^{n}) - 3^{n} & -2(4^{n}) + 2(3^{n}) \\ 4^{n} - 3^{n} & -4^{n} + 2(3^{n}) \end{bmatrix}.$$

Consider the matrix T14

$$A(x) = \begin{bmatrix} (x-2) & 2 \\ -1 & (x+1) \end{bmatrix},$$

where $x \in \mathbb{R}$. Find an invertible matrix P and a diagonal matrix D(x) (which depends on x) such that $A(x) = P^{-1}D(x)P$. Calculate $A(0)^8 + A(1)^9$.

The eigenvalues λ satisfy the quadratic equation $\lambda^2 + (1-2x)\lambda + x^2 - x = 0$. This has solutions $\lambda_1 = x$ and $\lambda_2 = x - 1$.

Solving $A(x)\mathbf{y} = x\mathbf{y}$ yields the eigenvector $\mathbf{y} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Solving $A(x)\mathbf{y} = (x-1)\mathbf{y}$ yields the eigenvector $\mathbf{y} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Hence $D(x) = \begin{pmatrix} x & 0 \\ 0 & x - 1 \end{pmatrix}$ and $P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$.

$$A(0)^{8} + A(1)^{9} = P^{-1}D(0)^{8}P + P^{-1}D(1)^{9}P$$

$$= P^{-1}(D(0)^{8} + D(1)^{9})P$$

$$= P^{-1}\left(\begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}^{8} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}^{9}\right)P$$

$$= P^{-1}IP$$

$$= I.$$