ALGEBRA

LINEARE

LEZIONE 20

Note Title

20/10/2023

1	Esempi	ď	campi	di	base 1
ľ					

						(3)
Spaz	io	B	$\widehat{\mathcal{B}}$	$\mathcal{C} o \mathcal{B}$	$\mathcal{C} \to \widehat{\mathcal{B}}$	$\widehat{\mathcal{B}} o \mathcal{B}$
\mathbb{R}^2		$v_1 = (2,3)$ $v_2 = (1,5)$	$w_1 = (-3, 4)$ $w_2 = (1, -3)$			

1º Metodo: bovius) Prendo i vettori della base vecchia e Di Scriso rispetto alla base nuova. Uso come colonne i coeff. che ottengo

(1)
$$(1,0) = a(2,3) + b(1,5)$$
 (a c) $(0,1) = c(2,3) + d(1,5)$

20 metodo più astuto Calcolo la matrice B→ Canonica

Questo è bourse da colorlare!

$$(2,3) = \alpha(1,0) + b(0,1)$$

$$(1,5) = c(1,0) + b(0,1)$$

$$(35)$$

ho werro a colonna i vettori della bare B

Chi sarà mai la matrice Canonica ~ B? L'inversa

$$\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$$
 no nisposta a 1

INPUT: componenti risp. alla comunica OUTPUT: componenti risp. alla bare B

Prova: preudo
$$(3,-6)$$
 as dispetto alla caucuica ha Componenti $(\frac{3}{6})$. Rispetto alla B ha componenti $\frac{1}{7}(\frac{5}{-1})(\frac{5}{-1})(\frac{5}{-6}) = \frac{1}{7}(\frac{21}{-21}) = (\frac{3}{3})$

Verifica: $3(2,3) - 3(1,5) = (3,-6)$ $(\frac{3}{2})(\frac{5}{-2})(\frac{5}$

	<u>"</u>		
$\mathbb{R}_{\leq 2}[x]$	$v_1 = x^2$ $v_2 = x^2 + x$ $v_3 = x^2 + x + 1$	$w_1 = x^2 + x$ $w_2 = x^2 + x + 1$ $w_3 = x$	
	B	Ê	$\hat{\mathbb{G}} \rightarrow \mathbb{G}$
Se voge		faccio 3 -	Causuica $\longrightarrow \mathcal{B}$ $\{1, \times, \times^2\}$
<u>\$</u> —	» Gurouica	(010)	= M ₁
B ->	Guorica	(0 0 1 0 1 1 1 1 1	- M ₂
ŝ	→ 63	$M_2^{-1} M_1$ calcoo	
		- 0 - 0 -	

V	W	Applicazione	Base di V	Base di W
\mathbb{R}^2	\mathbb{R}^3	(x-y,y,y-x)	$v_1 = (1, 2)$ $v_2 = (1, 3)$	$w_1 = (1, -2, 0)$ $w_2 = (0, 2, 1)$ $w_3 = (1, 1, 1)$

Esercizio: trovare la matrice du rappresenta l'applicazione Qiueare tra le basi indicate

Mahice di f tra Le basi indicate

Povius
$$f(1,2) = (-1,2,1) = aw_1 + bw_2 + cw_3$$

 $f(1,3) = (-2,3,2) = dw_1 + ew_2 + fw_3$

A prende: -> INPOT un vettore colonna Deingo 2 che rappresenta le comp. di (x,y) risp. alla base uz, uz -> OUTPUT: un vettore colonna Demgo 3 che le comp. di f(x,y) risp. alla base W1, W2, W3. Nou bovino ! So fore bene la matrice di & usando in parteura ed arrivo le basi comuniche x = (x, y) = (x - y, y, y - x)P(1,0) = (1,0,-1) $\begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = B$ f (0,1) = (-1,1,1) Jo voglio fare $B_V \rightarrow C_V \rightarrow C_W \rightarrow OS_W$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 3 & 1 & 1 \end{pmatrix}$ $\begin{pmatrix} -2 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ Quiusli $A = \begin{pmatrix} 1 & 0 & 1 \\ -2 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $v_1 = x^2 \qquad w_1 = x^2 + 2x + 1$ $\mathbb{R}_{\leq 2}[x]$ $\mathbb{R}_{\leq 2}[x]$ p(x+1) $v_2 = x$ $v_3 = 1$ $w_2 = x + 1$ $w_3 = 1$ $w_2 = x + 1$ B_v L'applicatione & prende in INPUT un polinourio p (x) e restituisa au OUTPUT il polinomio P(x+1) $p(x) = a + bx + cx^2$ P(x+1) = a+b(x+1)+c(x+1)2 = $(a+b+c)+(b+2c)\times+c\times^2$ Quiudi à come se fosse f: R3 -> R3 definita da f(a,b,c) = (a+b+c,b+2c,c)

Considerando la base comunica {1, x, x2} la matrice di £ sare bbe $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$ Se voglio la matrice di f tra le bassi Br e Br ouived li enes ozzoq € (U1) = € (x2) -> (x+1)2 = 1. W1+0.W2+0W3 $f(v_2) = f(x) \rightarrow x+1 = 0. w_1 + 1. w_2 + 0. w_3$ $f(v_3) = f(v_3) \rightarrow 1 = 0.\omega_1 + 0.\omega_2 + 1.\omega_3$ (100)