3401. Найти
$$\frac{dx}{dz}$$
 и $\frac{dy}{dz}$, если $x + y + z = 0$, $x^2 + y^2 + z^2 = 1$.

3402. Найти $\frac{dx}{dz}$, $\frac{dy}{dz}$, $\frac{d^3x}{dz^2}$ и $\frac{d^3y}{dz^2}$ при $x = 1$, $y = -1$, $z = 2$, если $x^2 + y^2 = \frac{1}{2}z^2$, $x + y + z = 2$.

3403. Найти $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$ и $\frac{\partial v}{\partial y}$, если $xu - yv = 0$, $yu + xv = 1$.

3403.1. Система уравнений

$$xe^{u+v} + 2uv = 1,$$

$$ye^{u-v} - \frac{u}{1+v} = 2x$$

определяет дифференцируемые функции u=u(x, y) и v=v(x, y) такие, что u(1, 2)=0 и v(1, 2)=0. Найти du(1, 2) и dv(1, 2).

3404. Найти du, dv, d^2u и d^2v , если

$$u+v=x+y$$
, $\frac{\sin u}{\sin v}=\frac{x}{y}$.

3405. Найти du, dv, d^2u и d^2v при x=1, y=1, u=0, $v=\frac{\pi}{4}$, если

$$e^{u/x}\cos\frac{v}{y} = \frac{x}{\sqrt{2}}$$
, $e^{u/x}\sin\frac{v}{y} = \frac{y}{\sqrt{2}}$.

3406. Пусть

$$x = t + t^{-1}, y = t^2 + t^{-2}, z = t^3 + t^{-3}.$$

Найти
$$\frac{dy}{dx}$$
, $\frac{dz}{dx}$, $\frac{d^2y}{dx^2}$ II $\frac{d^2z}{dx^2}$.

3407. В какой области плоскости Оху система уравнений

$$x = u + v$$
, $y = u^2 + v^2$, $z = u^3 + v^3$.

где параметры u и v принимают всевозможные вещественные значения, определяет z как функцию от переменных x и y? Найти производные $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial y}$.

3407.1. Найти $\frac{\partial z}{\partial x}$ и $\frac{\partial z}{\partial u}$ в точке $u=1,\ v=1,$ если