Lema

Si todos los vértices de un grafo G tienen grado mayor o igual a 2, entonces G contiene un ciclo.

Teorema

Un grafo G es Euleriano sii tiene a lo sumo una componente no trivial y todos sus vértices tienen grado par.

Teorema

Un grafo G tiene un u, v-sendero Euleriano sii G tiene a lo sumo una componente no trivial y u y v son los únicos vértices de grado impar.

Ges euleriano

Cimitarras de Mahoma

Circuito euleriano

H no es enferiano:

dH tiene sendero euleriano? Si, H tiene un bid-sendero euleriano.

J tiene un a,b-sendero euleriano

Grafo regular

Un grafo G es **regular** si $\Delta(G) = \delta(G)$ y es k-**regular** si d(v) = k $\forall v \in V(G)$.

P: Ges K-regular ¿P es un invariante? NO!

2-regular

$$d(a) = 5$$
 $d(b) = 6$
 $d(c) = 3$
 $d(d) = 6$
 $d(e) = 0$
 $d(e) = 0$

Calcular: d(v) y N(v) \forall $v \in V(G)$. $\Delta(G)$, $\delta(G)$, n(G) y e(G).

$$\gamma(G) = 5$$

$$N(e) = \emptyset$$
 $N(c) = \{a,b\}$
 $N(a) = \{a,b,c\}$

 $\frac{\partial u}{\partial e} = \sum_{v \in V(e)} \frac{\partial v}{\partial v} + \sum_{v$

Corolario

Todo grafo G tiene un número par de vértices de grado impar.

Corolario

Un grafo k-regular con n vértices tiene $\frac{nk}{2}$ aristas.

$$2e = \sum_{c \in A(C)} q(c) = \sum_{c \in A(C)} k = uk$$

$$e = \frac{nk}{2}$$

Q2 -> Cadenas binarias de longitud 2

OD OT 10 11

Vértices •

