<u>Help</u>

sandipan_dey >

Course Pro

Progress

<u>Dates</u>

Discussion

MO Index

☆ Course / 8 Initial Value Problems, Python Classes, and Discretization / 8.7 Discretization

< Previous	= 4	Next >
8.7.1 Discret		
☐ Bookmark this pa	age	

MO2.4

The basic philosophy of the numerical methods we will study for solving IVPs is to start from a known initial state, $\underline{u}\left(t_{I}\right)=\underline{u}_{I}$, and somehow approximate the solution a small time forward, $\underline{u}\left(t_{I}+\Delta t\right)$ where Δt is a small time increment. Then, we repeat this process and move forward to the next time to find an approximation to $\underline{u}\left(t_{I}+2\Delta t\right)$, and so on. This is known as discretizing the solution, as we have moved from representing infinitely many times t, i.e. all t from t_{I} to t_{F} to a representation at a discrete (i.e. finite) set of time points. This discrete representation is shown in Figure 8.12. In the limit as $\Delta t \rightarrow 0$, the discrete solution representation approaches the exact solution.

Discussions

All posts sorted by recent activity

© All Rights Reserved

Aboutigure 8.12: Discrete representation of the exact Afsolution in which u(t) is sampled at $t^n = t_I + n\Delta t$ edX for Business giving $u^n = u(t^n)$ Of Weight will consider the situation in which Δt is fixed for Ciperatire integration from $t = t_I$ to t_F . However, the News methods for solving IVPs tend to be adaptive methods in which Δt is adjusted depending on the

Legal approximation.

Terms of service and constation of place. Superscripts will Private Superscripts will a particular iteration, that is t^n Accessibility of the at iteration n. Thus, assuming Trademark Policy

<u>Sitemap</u>

Cookie Policy

(8.54)

Your Privacy Cho $^n_{\mathbb{C}} \in t_I + n\Delta t$.

defined as \underline{v} . Thus, using the superscript notation,

Contact Us

Help Center the approximation of $\underline{u}(t^n)$.

(8.55)

Security

Media Kit

here

the delta t, that's

Next >

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>

