Wk-05-Lab-Steps

Linking directory (on unix like systems)

In -s <SOURCE> <LINK>

In -s dataZ data

In -s dataT data

Linking directory (on window like systems)

mklink /D <LINK> <SOURCE>

mklink /D data dataZ

mklink /D data dataT

to remove link use: rmdir data (be careful)

-> do not use del

You are supplied a working module that plots 2 scatterplot involving the symbols.

symbols = ['SPY', 'XOM', 'GLD'].

One scatterplot plots XOM against the benchmark SPY and the other GLD vs. SPY.

The data is from directory **dataT**. The model reads from a directory data, make

sure you link that directory (dataT) to data/ before running the program.

— For your LAB:

- You will evaluate symbols from directory dataZ/ and evaluate (and rank) their:
 - o alpha, beta and correlation coefficients against SPY (as X).
- You need to evaluate the symbols listed below against the benchmark SPY
 - symbols = ['SPY', 'TLT', 'GLD', 'AAPL', 'XOM', 'JPM', 'IBM', 'PYPL']
- Use the data range: '2021-01-01', '2021-12-31'

Use the data dataZ

Step 1 - Step 3 - Clean up the Code

Step 1: Add a legend that lists the regression equation on the plot. use label in .plot(), and use f-string.

See Example 3 in below link.

https://www.geeksforgeeks.org/matplotlib-pyplot-legend-in-python/

You resulting legend should look like the below:

Step 2: Have plot_scatter return beta, alpha

Step 3: Create a frame **df**. that is indexed by 'symbols' and contains column names:

alpha & beta

Step 4: Create a **for** loop that calls plot_scatter iterative through the list of symbols, and fills in the values for alpha & beta each symbol.

Step 4: For the correlation matrix, only print the first row, that corresponds to the correlations with SPY.

Add this column to df the 0-th position using insert. Call the column n.

df.insert(loc, [new column name], correlation_matrix.iloc[0], allow_duplicates=False)

Step 5: convert each column to floats. Example for the alpha

column.

df.alpha = df.**alpha**.astype(float)

Step 6: Sort according each column, for each column display 2 top and 2 bottom ranked value.

Example: df = df.sort_values(by=['alpha'], ascending=True)
Example: print(f"\nfinal_df = {df.head(2)}\n\n{df.tail(2)}")

Columns: r, alpha, beta.

Example for r output should be:

===

df r = r alpha beta TLT -0.140287 0.000014 -0.150733 GLD 0.192728 -0.000470 0.201348

r alpha beta
GOOG 0.688814 0.000808 1.261902
SPY 1.000000 0.000000 1.000000
===

Analyze - each heuristics according to the guide - fill in the below.

top 2 - bottom 2.

Symbol (Low to High)	Correlation Value (r)	Heuristics See r Guide
1.		
2.		
7.		
8.		

Symbol (Low to High)	β - Beta	Heuristics See β Guide
1.		
2.		
7.		
8.		
Symbol (Low to High)	α - Alpha	Heuristics See α Guide
	α - Alpha	
High)	α - Alpha	
High) 1.	α - Alpha	