1. Die stabile Bierdose: Peter und Rolf trinken Bier aus Dosen. Peter stößt versehentlich seine noch fast volle Dose, die am Tisch steht, an. Zum Glück kippt die Dose nicht um.

Peter behauptet, das sei eh klar, die Dose ist ja noch fast voll und daher so schwer, dass sie kaum umkippen kann.

Rolf denkt kurz nach und liefert dann folgende Argumentation, warum die volle Dose nicht am stabilsten steht: Geht man von einer ideal zylindrischen Dose der Höhe h mit verschwindender Wandstärke, aber endlicher Masse m_D , aus, so liegt der Schwerpunkt im vollen wie im leeren Zustand bei h/2.

Beim Entleeren sinkt allerdings der Schwerpunkt mit dem Flüssigkeitsspiegel ab.

- a) Berechnen Sie die Höhe des Flüssigkeitsspiegels, bei der der Schwerpunkt am tiefsten liegt. Gegeben ist, neben m_D und h, die Masse m_F der Flüssigkeit, wenn die Dose voll gefüllt ist.
- b) Wieviel Bier muß Peter aus seiner gut gekühlten 0.5 L Standardgetränkedose ($m_D = 16.1 \text{ g}$, Dichte von Bier bei 8.5°C $\rho_B = 0.995 \text{ g/cm}^3$, Dosenradius $r_D = 3.25 \text{ cm}$) trinken, damit die Lage des Schwerpunktes am tiefsten ist? ($\underline{L\"{o}sung}$: 0.425 L)

<u>Hinweis zu (b)</u>: Der Radius der Flüssigkeitssäule entspreche dem Dosenradius (Wandstärke vernachlässigt) und die die Flüssigkeitssäule sei ideal zylindrisch.

- **2.** Gegeben ist ein homogener **Stab** (sein Querschnitt ist gegenüber der Länge vernachlässigbar) der Länge *l* und Masse *m*, der um eine *Querachse* rotiert.
 - a) Berechnen Sie das Trägheitsmoment I_{MM} des Stabes bezogen auf seinen Schwerpunkt!
 - b) Berechnen Sie das Trägheitsmoment I_{SE} des Stabes bezogen auf eines der Stabenden!
 - **c**) Welchen allgemeinen Zusammenhang gibt es zwischen Trägheitsmomenten, bezogen auf verschiedene parallele Drehachsen?
- 3. Man berechne das Trägheitsmoment eines homogenen Vollzylinders mit dem Radius R und der Höhe L um eine Achse A, senkrecht auf die Längsachse des Zylinders durch seinen Massenmittelpunkt (siehe Skizze) auf zwei Arten:
 - a) Durch Aufbau des Zylinders aus dünnen rechteckigen Platten senkrecht zur Rotationsachse.
 - b) Durch Aufbau des Zylinders aus dünnen Scheiben parallel zur Rotationsachse.

<u>Hinweis</u>: Trägheitsmoment einer dünnen Platte (Länge: a, Breite b, Masse M) um eine senkrechte Achse durch ihren Schwerpunkt: $I = \frac{M}{12} (a^2 + b^2)$. Trägheitsmoment einer dünnen Scheibe (Masse M, Radius R)

um eine Achse durch den Massenmittelpunkt, parallel zur Scheibenebene: $I = \frac{MR^2}{\Delta}$.

Bitte Seite wenden!

4. Energieerhaltung und Rotationsenergie: Ein rotationssymmetrischer Körper mit dem Radius *r* gleite die abgebildete Bahn hinab.

- a) Man berechne die Mindesthöhe H_G , damit der Looping gleitend durchfahren werden kann.
- b) Nun rolle der Körper durch die Bahn. Sein Trägheitsmoment sei I. Wie groß muss die Mindesthöhe H_R sein, um rollend durch die Bahn zu kommen. Berechnen Sie das Verhältnis $\frac{H_G}{H_R}$ und interpretieren Sie das Ergebnis.
- c) Berechnen Sie H_R sowie $\frac{H_G}{H_R}$ für eine **Vollkugel**, einen **Vollzylinder** und einen **Hohlzylinder**.

 (<u>Lösung</u>: $\frac{H_G}{H_R}$: Kugel: 25/27, Vollzylinder: 10/11; Hohlzylinder: 5/6)
- 5. Eine Vollkugel mit Masse m und Radius r rollt über eine schiefe Ebene mit Neigungswinkel α .
 - a) Skizzieren Sie, welche Kräfte, bzw. Drehmomente auf die Kugel wirken.
 - **b)** Wie groß ist die **Beschleunigung** *a* der Kugel?
 - c) Berechnen Sie unter Verwendung des Energiesatzes die Rollgeschwindigkeit v in Abhängigkeit des zurückgelegten Weges s. In welcher Zeit t wird s zurückgelegt?
 - d) In welchem Verhältnis stehen die kinetische Energie der Translation und die kinetische Energie der Rotation zueinander?
- **6.** Eine hölzerne **Stange** der Länge l = 0,4 m und der Masse m = 1 kg kann sich um eine zur Stange senkrechte Mittelpunktsachse drehen. Das Ende der Stange wird von einem **Geschoß** der Masse $m_1 = 10$ g mit der Geschwindigkeit $v_1 = 200$ ms⁻¹ getroffen, das sich senkrecht zur Längsachse der Stange bewegt.
 - → Ermitteln Sie die Winkelgeschwindigkeit ω, mit der sich die Stange zu drehen beginnt, wenn das Geschoß in ihr steckenbleibt! (*Lösung*: 29,1 rads⁻¹)

Hinweis: Es handelt sich um einen total inelastischen Stoß.