Longitudinal Data Analysis Practice using the Multi-Center AIDS Cohort Study (MACS) dataset

Miles Xi

May, 2025

Contents

1.	Data Preparation	1
	1.1 Subject Selection	2
	1.2 Categorizing Viral Load	2
	1.3 Processing Time Information	3
2.	Exploratory Data Analysis	3
	2.1 Group Means Over Time	3
	2.2 Individual Variation	6
	2.3 Correlation Analysis	8
3.	Derived Variable Analysis	9
	3.1 Individual Slopes Analysis	9
	3.2 Mean Slopes by Category	10
	3.3 Data Attrition Analysis	11
4.	Mixed Effects Regression Models	11
	4.1 Random Intercept Model	11
	4.2 Random Intercept and Slope Model $\ \ldots \ \ldots$	12
	4.3 Model Comparison	13
	4.4 Model Diagnostics	13
5.	Conclusion	16

1. Data Preparation

We model CD4 cell counts and viral load data from subjects who experienced seroconversion.

```
# Load libraries
library(haven) # For reading Stata files
# Load lab result data, select CD4 cell count and viral load for each subject
lab = read dta("~/Desktop/lab rslt.dta")
lab = as.data.frame(lab[, c("CASEID", "VISIT", "LEU3N", "VLOAD")]) # "RO2VL", "RZSVL", "RTQ2VL", "RCOB
# Load HIV status data, select subjects who experienced seroconversion
status = as.data.frame(read dta("~/Desktop/hivstats.dta"))
seroconversion = status[status$STATUS==4, ]
# From all subjects in 'lab', select those with seroconversion
data_match = lab[lab$CASEID %in% seroconversion$CASEID, ]
# Add a column, POSVIS, indicating the first positive visit
data_match$POSVIS = seroconversion$POSVIS[match(data_match$CASEID, seroconversion$CASEID)]
# Keep visits after or at seroconversion only
lab_post_sroconv = data_match[data_match$VISIT >= data_match$POSVIS, ]
# Get all subjects
subjects = unique(lab_post_sroconv$CASEID)
```

1.1 Subject Selection

Now, we'll filter out subjects whose viral load at seroconversion is missing (NA).

```
# Remove subjects whose viral load at seroconversion is NA
valid_subjects = c()  # Keep these
for (id in subjects){
   data_subset = lab_post_sroconv[lab_post_sroconv$CASEID == id, ]  # Select a subset of data
   viral_load_at_posvis = data_subset[1, 'VLOAD']  # The first (1) row
   if (!is.na(viral_load_at_posvis)){
     valid_subjects = c(valid_subjects, id)
   }
}
lab_post_sroconv = lab_post_sroconv[lab_post_sroconv$CASEID %in% valid_subjects, ]
```

1.2 Categorizing Viral Load

We'll categorize subjects based on their initial viral load into low, medium, and high groups.

```
# Determine the category (low, medium, high) of the viral load of each subject
get_category = function(vl){
   if (vl < 15000){
      return('low')
   } else if (vl > 46000){
      return('high')
   } else {
      return('medium')
```

```
}

vl_class = data.frame(
    CASEID = numeric(),
    vload = numeric(),
    category = character()
)

for (id in valid_subjects){
    data_subset = lab_post_sroconv[lab_post_sroconv$CASEID == id, ] # Get a subset by id
    viral_load = data_subset[1, 'VLOAD'] # Get the first viral load (vl)
    category = get_category(viral_load)
    vl_class = rbind(vl_class, data.frame(CASEID = id, vload=viral_load, category=category))
}

# Merge back to the main dataset, 'lab_post_sroconv'
lab_post_sroconv = merge(lab_post_sroconv, vl_class, by='CASEID')
```

1.3 Processing Time Information

Converting visit numbers to years since seroconversion for easier interpretation.

```
# Convert the visit number (e.g., 10, 20) to year (0, 1, 2)
lab_post_sroconv$year = ((lab_post_sroconv$VISIT - lab_post_sroconv$POSVIS) / 10) / 2
lab_post_sroconv$year = round(lab_post_sroconv$year * 2) / 2  # Round values such as 0.45 to 0.5
lab_post_sroconv$year_group = floor(lab_post_sroconv$year) # Group two consecutive visits (e.g., 0.0 a
write.csv(lab_post_sroconv, "lab_post_sroconv.csv", row.names = FALSE)
```

2. Exploratory Data Analysis

We'll now analyze the processed data to understand CD4 count trends over time and by viral load category.

```
# Clear environment and load the processed data
rm(list = ls())
data = read.csv("lab_post_sroconv.csv")
data = data[data$year < 5, ] # Only use observations of the first 4 years

# Exclude observations with less than 3 observations
data = subset(data, ave(CASEID, CASEID, FUN=length) > 2)
```

2.1 Group Means Over Time

Examining how average CD4 counts change over time by viral load category.

```
# Average response (mean CD4 count), grouped by year & initial viral load
get_mean_and_se = function(x){
  mean = mean(x, na.rm=TRUE)
  se = sd(x) / sqrt(sum(!is.na(x)))
```

Single Plot with Three Lines

```
ggplot(summary_tbl, aes(x=year, y=mean_CD4, color=category)) +
  geom_line(linewidth=0.7) +
  geom_point(size=1) +
  geom_errorbar(aes(ymin=mean_CD4 - 1.96*se_CD4, ymax=mean_CD4 + 1.96*se_CD4), width=0.2, alpha=0.7) +
  labs(title = "CD4 Cell Count Over Time", y='Mean CD4') +
  theme_minimal()
```

CD4 Cell Count Over Time

Three Subplots for Each Category

```
ggplot(summary_tbl, aes(x=year, y=mean_CD4, color=category)) +
  geom_line(linewidth=0.7) +
  geom_point(size=1) +
  geom_errorbar(aes(ymin=mean_CD4 - 1.96*se_CD4, ymax=mean_CD4 + 1.96*se_CD4), width=0.2, alpha=0.7) +
  facet_wrap(~category) +
  labs(title = "CD4 Cell Count Over Time", y='Mean CD4') +
  theme_minimal()
```

CD4 Cell Count Over Time

Summary Table

Table 1: CD4 Count Summary by Year and Viral Load Category

	year	category	$mean_CD4$	se_CD4	n
1	0.0	high	675.3462	28.70453	156
11	0.0	low	803.8614	23.54579	166
21	0.0	medium	726.7800	27.39069	100

	year	category	$mean_CD4$	se_CD4	n
2	0.5	high	558.7748	20.14670	151
12	0.5	low	752.1975	23.03967	162
22	0.5	medium	653.3474	28.56043	95
3	1.0	high	544.0921	20.91783	152
13	1.0	low	691.5329	21.96627	152
23	1.0	medium	620.3778	27.90526	90
4	1.5	high	472.8958	19.57039	144
14	1.5	low	654.9133	21.81179	150
24	1.5	medium	600.3617	26.57541	94
5	2.0	high	500.1049	21.58890	143
15	2.0	low	650.4521	25.97388	146
25	2.0	medium	549.1839	28.69277	87
6	2.5	high	512.7578	27.38669	128
16	2.5	low	619.6835	26.74527	139
26	2.5	medium	524.7733	31.26264	75
7	3.0	high	504.3025	25.95313	119
17	3.0	low	567.5672	24.49994	134
27	3.0	medium	531.7403	36.54966	77
8	3.5	high	437.7983	24.10839	119
18	3.5	low	592.4380	29.32318	121
28	3.5	medium	519.3194	37.72474	72
9	4.0	high	468.5000	29.49013	114
19	4.0	low	565.6935	28.13600	124
29	4.0	medium	500.7867	34.68386	75
10	4.5	high	391.5505	24.53584	109
20	4.5	low	566.5517	28.01962	116
30	4.5	medium	515.5286	36.80610	70

2.2 Individual Variation

Examining how CD4 counts vary among individuals.

Individual Trajectories

Individual CD4 Trajectories

Trajectories by Viral Load Category

2.3 Correlation Analysis

Examining correlations between CD4 counts at different time points.

CD4 Count Correlations Between Times

The diagonal plots show the marginal distribution of the variables. The plot shows within-person correlations are high for observations close together in time, but the correlation tends to decrease with increasing time separation between the measurement times.

3. Derived Variable Analysis

3.1 Individual Slopes Analysis

Regressing CD4 on time for each subject to analyze individual rate of change.

```
# CD4_ij = beta0_i + beta1_i * t_ij + epsilon_ij
ids = unique(data$CASEID)
slopes = data.frame(
   CASEID = ids,
        slopes = numeric(length = length(ids))
)

for (i in seq_along(ids)){
    temp = data[data$CASEID %in% ids[i], ]
    lm = lm(LEU3N ~ year, data=temp)
        slopes[i, 'slopes'] = coef(lm)[2]
}

slopes = merge(slopes, data[, c('CASEID', 'vload', 'category')], by='CASEID')
```

Individual Slope vs Log(Baseline Viral Load)

3.2 Mean Slopes by Category

Analyzing the average rate of CD4 decline by viral load category.

```
# The mean slopes grouped by the baseline viral load category
summarize_slopes_by_category = function(x){
    n = length(x)
    m = mean(x)
    se = sd(x) / sqrt(n) # Fixed: srqt to sqrt
    return(c(mean=m, se=se, n=n))
}
slopes_tbl = aggregate(
    slopes ~ category, data=slopes, FUN = summarize_slopes_by_category
```

```
print(slopes_tbl)

## category slopes.mean slopes.se slopes.n
## 1 high -72.921144 9.620864 175.000000
## 2 low -61.581050 7.513668 182.000000
## 3 medium -71.699915 9.182269 104.000000
```

3.3 Data Attrition Analysis

Examining how many observations we have for each subject.

```
# Data attrition
obs_per_subject = table(data$CASEID)
obs_summary = table(obs_per_subject)
obs_summary = data.frame(
   'Number_of_obs' = as.integer(names(obs_summary)),
   'Number_of_subjects' = as.integer(obs_summary))
)
obs_summary
```

```
Number_of_obs Number_of_subjects
##
## 1
                   3
                   4
## 2
                                       33
                   5
                                       34
## 3
## 4
                   6
                                       34
                  7
                                       37
## 5
                  8
## 6
                                       43
## 7
                  9
                                       96
## 8
                  10
                                      157
```

4. Mixed Effects Regression Models

Using linear mixed effects models to account for individual variations while examining the effect of viral load category on CD4 count over time.

4.1 Random Intercept Model

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: LEU3N ~ category * year + (1 | CASEID)
     Data: data
##
## REML criterion at convergence: 48553.6
##
## Scaled residuals:
      Min
              1Q Median
##
                               3Q
                                      Max
## -3.6592 -0.5648 -0.0790 0.4797 9.5467
##
## Random effects:
## Groups
           Name
                        Variance Std.Dev.
                                  220.9
## CASEID
            (Intercept) 48811
## Residual
                        33492
                                  183.0
## Number of obs: 3580, groups: CASEID, 462
##
## Fixed effects:
                      Estimate Std. Error t value
##
## (Intercept)
                       603.001
                                   18.975 31.779
## categorylow
                       167.557
                                   26.545
                                            6.312
## categorymedium
                        80.506
                                   30.853
                                           2.609
## year
                       -48.511
                                    3.698 -13.120
## categorylow:year
                        -6.000
                                    5.128 -1.170
## categorymedium:year
                        -7.962
                                    5.888 -1.352
##
## Correlation of Fixed Effects:
##
               (Intr) ctgryl ctgrym year
                                          ctgryl:
## categorylow -0.715
## categorymdm -0.615 0.440
              -0.382 0.273 0.235
## year
## catgrylw:yr 0.276 -0.382 -0.169 -0.721
## ctgrymdm:yr 0.240 -0.172 -0.374 -0.628 0.453
```

4.2 Random Intercept and Slope Model

```
# The 2nd model: Y_ij = mu_ij + b_i0 + b_i1 * month_ij + epsilon_ij
lme2 = lmer(LEU3N ~ category*year + (1+year|CASEID), data=data)
summary(lme2)
## Linear mixed model fit by REML ['lmerMod']
## Formula: LEU3N ~ category * year + (1 + year | CASEID)
##
      Data: data
##
## REML criterion at convergence: 47929.6
##
## Scaled residuals:
              10 Median
                                3Q
                                       Max
## -4.1625 -0.4998 -0.0468 0.4558 9.4499
##
## Random effects:
## Groups
           Name
                         Variance Std.Dev. Corr
## CASEID
            (Intercept) 58094
                                  241.0
```

```
##
            year
                         5761
                                  75.9
                                          -0.41
                         22244
                                  149.1
## Residual
## Number of obs: 3580, groups: CASEID, 462
## Fixed effects:
##
                      Estimate Std. Error t value
## (Intercept)
                       609.532
                                   19.769 30.833
## categorylow
                                           5.822
                       160.920
                                   27.638
## categorymedium
                        80.226
                                   32.139
                                            2.496
## year
                       -56.109
                                    6.813 -8.235
## categorylow:year
                        -1.046
                                     9.462 -0.111
## categorymedium:year
                        -6.420
                                    11.028 -0.582
## Correlation of Fixed Effects:
##
               (Intr) ctgryl ctgrym year
                                           ctgryl:
## categorylow -0.715
## categorymdm -0.615 0.440
## year
              -0.477 0.341 0.293
## catgrylw:yr 0.344 -0.476 -0.211 -0.720
## ctgrymdm:yr 0.295 -0.211 -0.471 -0.618
```

Note that the t-values for the interaction terms categorylow/medium:year dramatically decreased after adding the random slope.

4.3 Model Comparison

```
# Overall model significance test & test the random effect
lm_null = lm(LEU3N ~ 1, data=data)
anova(lme2, lme1, lm_null) # The two mixed effects models are highly significant
## Data: data
## Models:
## lm_null: LEU3N ~ 1
## lme1: LEU3N ~ category * year + (1 | CASEID)
## lme2: LEU3N ~ category * year + (1 + year | CASEID)
                      BIC logLik deviance
##
          npar
                AIC
                                             Chisq Df Pr(>Chisq)
## lm null
             2 51093 51106 -25545
                                     51089
                                     48590 2498.83 6 < 2.2e-16 ***
## lme1
             8 48606 48656 -24295
## lme2
            10 47990 48052 -23985
                                     47970 620.36 2 < 2.2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

4.4 Model Diagnostics

Checking model assumptions to ensure valid inference.

```
# Check model assumptions
library(performance) # To visually check assumptions
check_model(lme2, check=c('linearity', 'homogeneity', 'qq', 'outliers'))
```


Homogeneity of Variance

```
# Homogeneity of variance
library(broom.mixed)
data = augment(lme2)
data$semi_std_res = data$.resid / sqrt(1 - data$.hat)
par(mfrow=c(1,2))
plot(semi_std_res ~ year, data=data, main="Residuals vs. Time")
plot(semi_std_res ~ .fitted, data=data, main="Residuals vs. Fitted Values")
```

Residuals vs. Time

Residuals vs. Fitted Values

Influential Points

```
# Influential points
influential = as.data.frame(data[order(data$.cooksd, decreasing=TRUE), ][1:10, c(2:10)])
influential
```

```
##
      LEU3N category year CASEID
                                     .fitted
                                                             .hat
                                                                   .cooksd
                                                                             .fixed
                                                .resid
       3015
                high
                      0.0
                             3210 1605.5953 1409.4047 0.3086153 9.609018 609.5324
## 1
##
  2
       2053
                high
                      0.0
                             5600 1063.6584
                                             989.3416 0.2918011 4.266764 609.5324
## 3
        492
                 low
                      0.5
                             1293 1062.2661 -570.2661 0.3490226 2.006810 741.8751
       1660
                             1007 1045.2060
                                             614.7940 0.2918011 1.647652 609.5324
## 4
                high
                      0.0
                 low
       1684
                      0.0
                             5218 1191.5573
                                              492.4427 0.3379588 1.400989 770.4525
## 5
                                              413.4792 0.3857444 1.309599 770.4525
## 6
       1250
                 low
                      0.0
                             4690
                                  836.5208
                                              399.8816 0.3931474 1.279032 609.5324
## 7
       1613
                high
                      0.0
                             3143 1213.1184
## 8
        414
                high
                      0.0
                             3453
                                   851.6165 -437.6165 0.3461652 1.161889 609.5324
       1210
                high
                      0.0
                                             436.9236 0.3461652 1.158212 609.5324
## 9
                             4603
                                   773.0764
                                             478.3317 0.3140543 1.144230 741.8751
## 10
       1163
                 low
                      0.5
                             7163
                                   684.6683
```

The rows 1, 2, 4, 5, and 7 have more than 1500 CD4 cells which are beyond the normal range (500 - 1500). Rows 3 and 8 have less than 500 CD4 cells.

5. Conclusion

This analysis explored CD4 cell count trajectories in HIV patients after seroconversion, categorized by their initial viral load. We observed that CD4 counts tend to decline over time; however the rate of decline are not significantly associated with the initial viral load level. Mixed effects models were used to account for individual variability while examining the overall trend.

We found that a) patients across all viral load categories show declining CD4 counts over time. b) Individual trajectories show substantial variability. c) The random slope model better accounts for individual differences in CD4 decline rates. d) Some outliers with unusually high or low CD4 counts were identified

Future work could explore additional predictors of CD4 decline.