Peringkas Berita Otomatis berbasis Website dengan Metode Text Rank

Daflah Tsany Gusra¹, Kenneth Marlon Tan², Ricky Cangniago³, Viny Christanti M⁴.

Fakultas Teknologi Informasi, Teknik Informatika Universitas Tarumanagara Jakarta Barat, Indonesia

e-mail: 1 <u>daflah.535220177@stu.untar.ac.id</u> 2 <u>kenneth.535220183@stu.untar.ac.id</u> 3 <u>ricky.535220210@stu.untar.ac.id</u>

Correspondence: e-mail: vinym@fti.untar.ac.id

Diajukan:; Direvisi:; Diterima:

Abstrak

Rangkuman berita otomatis menjadi semakin penting dalam era informasi saat ini yang dipenuhi oleh banyak artikel berita online. Tujuannya adalah untuk menyajikan informasi yang relevan secara ringkas dari data teks yang besar. Metode seperti TextRank menjadi sebuah metode yang efisien dalam mengatasi tugas seperti ini dengan bantuan perpustakaan seperti Summa dan BeautifulSoup. Penelitian ini bertujuan untuk menguji kinerja metode TextRank dalam menghasilkan rangkuman berita, dengan fokus pada akurasi, efisiensi, dan aplikabilitasnya di berbagai sumber berita dan topik. Dengan mengumpulkan artikel dari berbagai platform online, peringkas berita otomatis pada penelitian ini termasuk peringkasan ekstraktif, program ini hanya dapat membaca dokumen tunggal. Akurasi program diuji dengan membandingkan hasil rangkuman dengan artikel aslinya melalui tautan URL. Dengan kata lain, program mampu merangkum sekitar 80% dari konten artikel, dengan panjang rata-rata 75 kata dari total 387 kata. Telah dilakukan pengujian untuk melihat berapa persentase akurasi hasil ringkasan dengan artikel asli dengan metode MMR Accuracy dengan menyebarkan responden, dari hasil tes yang menunjukkan akurasi sekitar 71%. Secara kesimpulan, pendekatan ini menggabungkan berbagai metode untuk menyajikan versi ringkas dari artikel berita, dengan TextRank untuk mengidentifikasi informasi kunci, Summa untuk merangkum, dan BeautifulSoup untuk pengambilan data web. Hasilnya adalah rangkuman singkat yang mencakup inti dari artikel-artikel tersebut.

Kata kunci: BeautifulSoup, Peringkas Berita, Summa, TextRank.

Abstract

Automatic news summarization is increasingly vital in today's information age inundated with numerous online news articles. Its primary aim is to provide concise, relevant information from vast textual data. Techniques like TextRank have emerged as efficient methods in tackling such tasks, often aided by libraries like Summa and BeautifulSoup. This study seeks to evaluate the performance of TextRank in generating news summaries, with a specific focus on accuracy, efficiency, and applicability across diverse news sources and topics. By collecting articles from various online platforms, the automated news summarization in this study encompasses extractive summarization, albeit limited to processing single documents. Program accuracy is assessed by comparing the summary outputs with the original articles via URL links. In essence, the program is capable of summarizing approximately 80% of the article content, averaging 75 words from a total of 387 words. Testing reveals an accuracy rate of around 71% when comparing the summary results with the original articles using the MMR Accuracy method with distributed respondents. In conclusion, this approach amalgamates various methods to present concise versions of news articles, leveraging TextRank for key information identification, Summa for summarization, and BeautifulSoup for web data extraction. The result is a succinct summary encapsulating the essence of the articles.

Keywords: BeautifulSoup, News Summarization, Summa, TextRank.

1. Pendahuluan

Dalam era teknologi saat ini, website daring menjadi sumber alternatif untuk mencari artikel dan berita [1]. Banyaknya artikel dan berita membuat peringkas berita otomatis menjadi penting untuk efisiensi. Peringkasan berita terdiri dari dua tipe yaitu ekstraktif dan abstraktif. Ekstraktif memilih kalimat dari dokumen asli, sedangkan abstraktif menginterpretasi teks melalui transformasi kalimat [2]. Rangkuman berita otomatis menggunakan teknik pemrosesan bahasa alami untuk menyederhanakan pengambilan informasi [2]. Dengan menyusutkan volume teks menjadi rangkuman yang ringkas, metode rangkuman otomatis bertujuan untuk menyederhanakan proses pengambilan informasi, memungkinkan pengguna untuk mengakses konten relevan dengan cepat dan efektif.

Perkembangan artikel berita online di berbagai platform, telah memperburuk kebutuhan akan teknik rangkuman yang kuat. Dengan jutaan artikel yang dipublikasikan setiap hari, individu menghadapi tugas yang menakutkan untuk menyaring sejumlah besar informasi untuk mendapatkan wawasan kunci [3]. Dalam konteks ini, algoritma seperti TextRank dengan asisten perpustakaan seperti Summa, dan BeautifulSoup telah menjadi terkenal karena kemampuannya untuk menguraikan data teks kompleks menjadi rangkuman yang mudah dicerna [4].

PageRank merupakan algoritma yang digunakan oleh mesin pencarian Google yang memberikan bobot numerik pada setiap dokumen dengan tujuan untuk mengukur hubungan kepentingan dalam kumpulan dokumen, PageRank juga menjadi referensi untuk metode TextRank [5]. TextRank merupakan sebuah algoritma peringkat berbasis grafik, menggunakan representasi grafik dari teks untuk mengidentifikasi kalimat dan frasa penting, merankingnya berdasarkan kepentingan mereka dalam dokumen [6], [7]. Summa, di sisi lain, adalah perpustakaan Python yang dirancang khusus untuk tugas rangkuman teks. Ini menggunakan algoritma seperti TextRank untuk menghasilkan rangkuman dengan mengekstrak kalimat kunci dari teks masukan. BeautifulSoup, sementara itu, memfasilitasi web scraping, memungkinkan pengguna untuk mengekstrak data dari dokumen HTML dengan mudah [4]. Bersama-sama, metode ini menawarkan kumpulan alat untuk rangkuman berita otomatis, masing-masing dengan pendekatan dan keunggulan uniknya.

Adapun alasan menggunakan metode Text Rank antara lain; tidak memerlukan data terlatih atau data training, menjadikannya ideal digunakan di berbagai bahasa dan domain tanpa memerlukan sumber daya dan waktu yang signifikan untuk pelatihan model; fleksibilitas, TextRank dapat digabungkan dengan berbagai teknik pra dan pasca-pemrosesan untuk meningkatkan kualitas rangkuman [4]. Ini termasuk penggunaan teknik Pemrosesan Bahasa Alami untuk mengidentifikasi entitas bernama, frasa penting, dan lainnya yang dapat dimasukkan ke dalam proses pemilihan kalimat; dan terakhir implementasi yang sederhana, algoritma TextRank memiliki struktur yang sederhana dan mudah diimplementasikan, menjadikannya pilihan yang baik untuk pengembangan yang cepat dan efektif.

2. Metode Penelitian

Metode Penelitian dimulai dengan pra pemrosesan (*preprocessing*) yaitu tokenisasi, *lowercase*, *stopword removal*, *stemming*, dan pembuatan graf diikuti oleh ringkasan ekstraktif (*extractive summarization*) dimana teks dianalisis dan disajikan sedemikian rupa sehingga siap untuk disajikan [8]. Ringkasan Ekstraktif bertujuan untuk mengekstrak kalimat penting dari seluruh dokumen.

Gambar 1. Text Rank Diagram Processing

Metode yang digunakan adalah TextRank. TextRank merupakan model peringkat berbasis graf dalam pemrosesan teks yang diusulkan oleh Mihalcea dan Paul. Ada dua pendekatan pembelajaran tanpa pengawasan yang diterapkan: satu untuk ekstraksi kata kunci dan satu untuk ekstraksi kalimat. TextRank

itu sendiri adalah perluasan dari PageRank, dan graf yang dihasilkan dalam model ini adalah graf tidak berarah. Algoritma TextRank terinspirasi oleh algoritma PageRank, yang utamanya digunakan untuk menentukan peringkat halaman web dalam pencarian online.

Gambar 2. Algoritma Metode Pagerank

Algoritma PageRank menilai pentingnya halaman web berdasarkan jumlah dan kualitas tautan yang mengarah ke halaman tersebut. Halaman dengan lebih banyak "suara" dari halaman berkualitas tinggi akan mendapatkan peringkat lebih tinggi, dengan memperhitungkan juga PageRank halaman yang memberikan tautan [9].

Dalam implementasi digunakan juga konsep sentence similiarity dimana sentence similarity merupakan konsep untuk menghitung kesamaan antara dua kalimat dengan melihat berapa banyak kata yang sama antara keduanya [10]. Untuk menghindari bias terhadap kalimat yang panjang, kita menggunakan logaritma dari jumlah kata di masing-masing kalimat sebagai pembagi. Ini membantu memberikan perbandingan yang lebih adil, terutama ketika membandingkan kalimat dengan panjang yang berbeda.

$$Similarity(S_i, S_j) = \frac{|w_k|w_k \in S_i \& w_k \in S_j|}{\log(|S_i|) + \log(|S_i|)}$$
(1)

 $Similarity(S_i, S_j)$ merupakan skor kesamaan antara dua kata S_i dan S_j , S_i adalah kata pertama, S_j adalah kata kedua, w_k merupakan elemen yang ada didalam kata S_i dan S_j , $|w_k|$ adalah jumlah elemen w_k yang ada di dua kata, log merupakan fungsi logaritma, $|S_i|$ adalah jumlah elemen dari kata S_i , $|S_j|$ adalah jumlah elemen dari kata S_j . Rumus ini bekerja dengan cara pertama – tama menghitung jumlah elemen w_k yang terdapat di kedua kata S_i dan S_j . Setelah itu, jumlah elemen tersebut dibagi dengan jumlah logaritma dari ukuran masing – masing set S_i dan S_j . Skor yang dihasilkan menunjukkan tingkat kesamaan antara kedua kata tersebut dengan nilai yang lebih tinggi menunjukkan tingkat kesamaan yang lebih besar.

Pada pemrograman ini dipakai juga *library* Summa. Summa merupakan perpustakaan Python yang menggunakan algoritma TextRank untuk merangkum teks secara otomatis. Dengan Summa, Anda dapat menyediakan teks dan menerima ringkasan yang berisi kalimat-kalimat kunci. Summa memperlakukan kalimat-kalimat sebagai node dalam graf, menilai pentingnya berdasarkan kesamaannya dengan kalimat-kalimat lain. Ini memungkinkan pembuatan ringkasan yang singkat namun informatif, menjadikannya berguna untuk berbagai tugas pemrosesan bahasa alami.

3. Hasil dan Pembahasan

Algoritma *coding* akan menghitung peringkat untuk setiap node berdasarkan struktur graf dan bobot tepi untuk menentukan tingkat kepentingannya. Hasilnya adalah sebuah ringkasan yang mencakup informasi paling penting dalam teks. Dari total kata pada tautan URL adalah 387 dan program ini akan

menghasilkan 75 kata dari 387 kata tersebut dan juga telah diuji dengan beberapa artikel, program ini akan merangkum sekitar 75% dari konten artikel secara keseluruhan.

Untuk cara kerja program *automatic news summarization* yang dibuat dalam penelitian ini, pengguna menyalin dan menambahkan URL ke dalam program yang sudah bertampilkan *website*. Kemudian program akan berjalan dan menghasilkan ringkasan dari berita atau artikel yang diinginkan, namun artikel ataupun berita yang dapat dibaca oleh program adalah artikel berbahasa inggris saja.

Gambar 3. Tampilan Program News Summarizer

Gambar 3 merupakan hasil atau tampilan dari program News Summarizer kami, program akan menampilkan judul artikel atau berita beserta hasil ringkasan. Melalui beberapa *data testing* yang sudah dijalankan, menghasilkan beberapa tes dan hasil. Pada tes yang pertama dijalankan program dengan 4 artikel yang berbeda bertujuan untuk melihat persentase hasil ringkasan dari beberapa berita ataupun artikel.

Amount of Words in News Website Summary Presentation (%) Result Summary 387 75 80% 1046 340 70% 942 268 71% 1544 463 70% 2464 741 70%

 $Tabel\ 1.\ Total\ Rata-rata\ ringkasan\ program$

Total Average (%) 72%

Dari tes yang pertama, dapat dilihat pada tabel 1 bahwa rata-rata persentase ringkasan dari empat artikel yang sudah dijalankan oleh program menunjukkan bahwa rata-rata program dapat meringkas artikel sebesar 70% dan menghasilkan ringkasan sebesar 30%. Hal ini menunjukkan bahwa program ini cukup efisien dalam mengurangi jumlah teks tanpa mengurangi informasi penting yang ada dalam artikel.

Adapun tes kedua yang berada pada tabel 2, telah diuji pada program adalah untuk mengecek tingkat akurasi kesamaan (similarity) dengan menyebarkan kuesioner berupa pertanyaan singkat. Responden diberikan pertanyaan dan menjawab "ya" atau "tidak", kemudian dilakukan perhitungan dari hasil yang didapatkan.

Untuk rumus yang digunakan dalam perhitungan, digunakan MMR Accuracy, dengan rumus dibawah ini.

$$MMR\ Accuracy\ (setiap\ dokumen) = \left(\frac{Jawaban\ "ya"}{Total\ pertanyaan}\right)\ X\ 100\% \tag{2}$$

Tabel 2. Pengujian akurasi melalui metode *QnA*

Article	Yes Answer	Total Question	Accuracy (%)
1	5	7	71.42%
2	4	7	57.14%
3	5	7	71.42%
4	5	7	71.42%
5	6	7	85.71%
	71.42%		

Total Accuracy (%) 71.42%

Seperti yang dapat dilihat pada tabel 2 hasil tes yang telah dilakukan, total keseluruhan akurasi yang didapatkan adalah 71.42% dari lima dokumen yang telah diuji. Selain itu, pengujian juga telah dilakukan dari berbagai sumber berita atau artikel luar negeri berbahasa Inggris. Hasil pengujian ini menunjukkan dua keberhasilan dan satu *error* terhadap sebuah sumber laman berita.

Tabel 3. Pengujian sumber halaman berita

Source	Rendering	
CNN	Success	
CNA	Success	
BBC	Unsuccess	

Dapat dilihat pada tabel pengujian, bila berita atau artikel diambil dari sumber *website* seperti CNN dan CNA akan berhasil dibaca dan berjalan serta menghasilkan rangkuman yang diinginkan, namun apabila artikel diambil dari BBC tidak terbaca atau timbulnya indikasi *error*.

4. Kesimpulan

Kesimpulan dari penelitian yang sudah dilakukan, analisis peringkasan berita otomatis dengan menggunakan metode TextRank dengan bantuan pustaka Summa, dan BeautifulSoup dalam rangkuman berita mengungkap wawasan berharga tentang kinerja mereka melintasi berbagai metrik. TextRank menunjukkan akurasi dan efisiensi yang tangguh dalam menghasilkan rangkuman, dengan memanfaatkan algoritma peringkat berbasis grafiknya. Summa, dengan perpustakaan Python-nya untuk tugas rangkuman, menunjukkan kinerja yang memuaskan, sementara BeautifulSoup berkontribusi pada pengumpulan data melalui web scraping. Integrasi teknik-teknik ini menawarkan solusi komprehensif untuk mengekstrak informasi penting dari artikel berita online. Namun, penting untuk mengakui batasan dari masing-masing teknik, seperti ketergantungan TextRank pada kualitas input, potensi tantangan Summa dengan jenis teks tertentu, dan ketergantungan BeautifulSoup pada sumber daya online yang dapat diakses. Program rangkuman berita akan merangkum 70-80% dari sumber dan menghasilkan 20-30% rangkuman, juga telah diuji untuk akurasi, di mana akurasi rata-rata program rangkuman berita adalah 71,422%. Dibalik keberhasilan program yang sudah dibuat adapun kelemahan dari program yang dibuat dalam penelitian

seperti, program hanya bisa membaca dan meringkas artikel dengan menggunakan bahasa inggris, selain itu program juga hanya dapat memproses dokumen tunggal. Dengan kelemahan dari program dan penelitian ini diharapkan dapat menjadi referensi dan inspirasi untuk penelitian berikutnya agar lebih baik.

Daftar Pustaka

- [1] E. V. C. M dan J. Pragantha, "PENERAPAN ALGORITMA TEXTRANK UNTUK AUTOMATIC SUMMARIZATION PADA DOKUMEN BERBAHASA INDONESIA," *Jurnal Ilmu Teknik dan Komputer*, vol. 1, p. 8, 2017.
- [2] K. Yoko, V. C. M dan J. Hendryli, "SISTEM PERINGKAS OTOMATIS ABSTRAKTIF DENGAN MENGGUNAKAN RECURRENT NEURAL NETWORK," *Journal of Computer Science and Information Systems*, p. 11, 2018.
- [3] A. Ashari dan M. Riasetiawan, "Document Summarization using TextRank and Semantic Network," *Modern Education and Computer Science*, p. 8, 2017.
- [4] R. Yanuarti dan H. A. Alfaruq, "Implementasi Text Summarization Pada Reading Comprehension," *JASIE "Jurnal Aplikasi Sistem Informasi Dan Elektronika"*, vol. 2, p. 9, 2022.
- [5] P. Joshi, "An Introduction to Text Summarization using the TextRank Algorithm (with Python implementation)," *Analytic Vidhya*, 2023.
- [6] M. A. zamzam, C. Crysdian dan K. F. Hayati Holle, "Sistem Automatic Text Summarization," *MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi*, vol. 12, p. 6, 2020.
- [7] L. N. Fadhila dan K. D. Nuryana, "Teks Ringkas Otomatis pada Portal Berita CNN Indonesia Menggunakan Algoritma Textrank," *Journal of Emerging Information Systems and Business Intelligence*, vol. 5, p. 7, 2024.
- [8] I. A. Fathoni, "IMPLEMENTASI PERINGKASAN TEKS OTOMATIS DENGAN ALGORITMA TEXTRANK UNTUK BERITA ONLINE," p. 51, 2023.
- [9] S. Anand, "Understanding Page Rank," 2018.
- [10] U. Rani dan K. Bidhan, "Comparative Assessment of Extractive Summarization: TextRank, TF-IDF and LDA," *Journal of Scientific Research*, vol. 65, no. 1, p. 8, 2021.