Лабораторная работа № 5.1.2

Исследование эффекта Комптона

Аль Мажариш Гасем Группа Б01-202а

Цель работы

С помощью сцинтилляционного спектрометра исследуется энергетический спектр γ -квантов, рассеянных на графите. Определяется энергия рассеянных γ -квантов в зависимости от угла рассеяния, а также энергия покоя частиц, на которых происходит комптоновское рассеяние.

Теоретические сведения

Эффект Комптона — увеличение длины волны рассеянного излучения по сравнению с падающим — интерпретируется как результат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона. Волновая теория испытывает трудности при описании эффекта Комптона, поэтому в данном случае удобно считать электрон и γ -квант частицами, а их взаимодействие - упругим соударением. Запишем законы сохранения энергии и импульса для рассматриваемого явления:

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$dfrac\hbar\omega_{0}c = \gamma mv\cos\varphi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\varphi = \frac{\hbar\omega_{1}}{c}\sin\theta$$

Решая совместно эти уравнения и переходя от частот к длинам волн, получаем изменение длины рассеянного излучения

$$\Delta \lambda = \lambda_1 - \lambda_0 = \frac{h}{mc} (1 - \cos \theta) = \Lambda_k (1 - \cos \theta), \tag{1}$$

где $\Lambda_k = \frac{h}{mc} = 2.42\dot{1}0^{-10}$ см - комптоновская длина волны электрона. Основной целью работы является проверка соотношения (1). Преобразуем его от длин волн к энергии γ -квантов:

$$\frac{1}{\varepsilon(\theta)} - \frac{1}{\varepsilon_0} = 1 - \cos\theta,\tag{2}$$

где $\varepsilon_0 = E_0/(mc^2)$ - энергия γ -квантов, падающих на рассеиватель (в единицах mc^2), $\varepsilon(\theta)$ - выраженная в тех же единицах энергия квантов, испытавших комптоновское рассеяния на угол θ , m - масса электрона.

Оборудование и инструментальные погрешности

Источником излучения служит $^{137}\mathrm{Cs}(1)$, испускающий γ -кванты с энергией 662кэВ. Узкий пучок после коллиматора попадает на графитовую мишень (2). Кванты, испытавшие комптоновское рассеяния в мишени, регистрируются сцинтилляционным счетчиком и проходят на ФЭУ. Сигналы, возникающие на ФЭУ, подаются на ЭВМ для амплитудного анализа. Штанга с измерительным блоком может вращаться относительно мишени.

Рис. 1: Схема эффекта Комптона. Источник: [3]]

Рис. 2: Схема установки. Источник: [3]

Результаты измерений и обработка данных

Расчёт значений

Устанавливая сцинтилляционный счётчик под разными углами θ к первоначальному направлению полета γ -квантов, получим амплитудные спектры и определим положения фотопиков на них.

Запишем формулу (2) в удобном виде:

$$\frac{1}{N(\theta)} - \frac{1}{N(0)} = 1 - \cos(\theta). \tag{3}$$

Здесь $N(\theta)$ – номер канала.

Теперь построим график, откладывая $(1 - \cos \theta)$ по оси абсцисс, а $\frac{1}{N(\theta)}$ по оси ординат.

Как видно из графика, качественно результаты сходятся с теорией и зависимость действительно соответствует прямой:

$$y = (0.0016 \pm 0.00005) \times x + (0.0013 \pm 0.00001)$$

$$N_{\text{наил}}(0) = 769 \pm 6$$

$$N_{\text{наил}}(90^{\circ}) = 344 \pm 5$$

Исходя из этих данных определим энергию покоя частицы, на которой происходит комптоновское рассеяние (по всем признакам – электрон):

$$mc^2 = E_\gamma \frac{N(90^\circ)}{N(0) - N(90^\circ)} = 0.536 \text{M} \cdot \text{B}$$

Рис. 3: Зависимость $\frac{1}{N(\theta)}$ от $1-\cos\theta$

Расчёт погрешностей

Погрешность угла примем $\Delta \theta = 2^{\circ}$, ΔN будем оценивать после каждого измерения. Для получения крестов погрешности воспользуемся формулой:

$$\Delta f(x) = |f'(x)| \times \Delta x$$

Тогда:

$$\Delta \cos \theta = |\sin \theta \times \Delta \theta|$$
$$\Delta \frac{1}{N(\theta)} = \frac{\Delta N}{N^2}$$

Оценим погрешность выражения энергии покоя электрона как погрешность частного с абсолютными погрешностями $\Delta N(90^\circ)$ и $(\Delta N(90^\circ) + \Delta N(0))$.

$$\varepsilon \geq \frac{\Delta N(90^\circ)}{N(90^\circ)} + \frac{\Delta N(90^\circ) + \Delta N(0)}{N(0) - N(90^\circ)}$$

= 0.04

следовательно

$$mc^2 = (0.536 \pm 0.021)$$
MəB

Что, хоть и не совпадает с табличными данными в пределах погрешности, но очень близко к ним.

Вывод

По результатам работы, исследовали эффект Комптона на графитовом образце с помощью сцинтилляционного спектрометра. Выяснили зависимость энергии рассеянного -кванта от угла рассеяния, а также определили по порядку величины энергию покоя электрона.

При подсчёте энергии покоя электрона получили несовпадение с табличными данными, скорее всего это из-за заниженной погрешности, что, в свою очередь, является следствием оценки погрешности канала "на глаз".

Список литературы

- [1] Сивухин Д. В. Общий курс физики. Том 5 Атомная и ядерная физика, 2004
- [2] Кириченко Н. А. Начальные главы квантовой механики, 2014
- [3] Лабораторный практикум по общей физике. Квантовая физика. под ред. Ю. М. Ципенюка