Applied Statistical Methods

Data and Variables

Xuemao Zhang East Stroudsburg University

January 20, 2023

Outline

- Sample and Population
- Types of data
 - Classification of variables and data
- Descriptive statistics and inferential statistics
 - Parameter and statistics
 - Descriptive statistics
 - Inferential statistics

Sample and Population

 An investigation will typically focus on a well-defined collection of subjects constituting a population of interest.

- Population : The complete collection of all subjects that are being considered.
- Sample: Subcollection of subjects selected from a population.

Data

- A data set is a collection of measurements of one variable or several variables for some individuals or subjects.
- Often, a data set is a file, in which each column (or field) corresponds to an variable(or attribute) and each row corresponds to measurements of all variables for each subject. This type of data sets is called record-based data.

##	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear o
## Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4
## Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4
## Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4
## Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3
## Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3
## Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3

• There are other types of data sets.

Variables

- A variable (or attribute) is a property or characteristic that can vary from one subject to another or frome one time to another.
 - A data set is obtained by measuring variables.
- Examples
 - Hair color
 - Body temperature

 - time to failure of a computer component.

Variables

Classification of variables by the type of measurements

Categorical Variables

- Categorical variables take category or label/name values, and place an individual into one of several groups.
 - ▶ They cannot be used for computations.
- Categorical variables can be further classified using levels of measurement by looking at what is being measured.
 - Nominal, when there is no natural ordering among the categories.
 - Common examples would be gender, eye color, ethnicity or social security numbers.
 - Ordinal, when there is a natural order among the categories, such as, ranking scales or letter grades.
 - * Examples: Course grades A, B, C, D, or F; Ranks Gold, Silver, Bronze.
 - However, ordinal variables are still categorical and do not provide precise measurements.
 - ★ Differences between data values either cannot be determined or are meaningless.

Numerical Variables

- Numerical variables take numerical values, and represent some kind of measurement.
- Numerical variables are often further classified by the number of values:
 - Discrete, when the variable takes on a finite or countably infinite number of values.
 - Most often these variables indeed represent some kind of count such as the number of prescriptions an individual takes daily.
 - Continuous, when the variable takes infinitely many values corresponding to the points on a real line interval
 - ★ Units should be provided.
 - ★ Our precision in measuring these variables is often limited by our instruments.
 - * Common examples would be height (inches), weight (pounds), or time to recovery (days).

Univariate and Multivariate data

- A univariate data set consists of observations on a single variable.
 - ► For example, the following sample of lifetimes (hours) of brand D batteries put to a certain use is a numerical univariate data set:

5.6 5.1 6.2 6.0 5.8 6.5 5.8 5.5

- We have bivariate data when observations are made on each of two variables.
 - ▶ Example: A data set consists of a (height, weight) pair for each basketball player on a team, with the first observation as (72, 168), the second as (75, 212), and so on.
- **Multivariate** data arises when observations are made on more than one variable (so bivariate is a special case of multivariate).

Parameter and Statistic

- Parameter is a numerical summary describing some variable of a population.
 - For example, population mean μ , population proportion p
- Statistic is a numerical summary describing some variable of a sample
 - A statistic is an estimator of some parameter in a population.
 - For example, sample mean \bar{x} , sample proportion \hat{p}

Descriptive statistics

- When desired information is available for all subjects in the population, we have what is called a census.
 - Census is costly and time-consuming. For example, the United States Bureau of the Census is conducting the U.S. Census every ten years.
- DESCRIPTIVE STATISTICS: Procedures used to summarize and describe a set of measurements.
 - Only Descriptive statistics is needed to analyze census data

Inferential statistics

- INFERENTIAL STATISTICS: Procedures used to draw conclusions or inferences about the population (parameter or distribution) from information contained in a random sample selected from the population.
 - When we cannot enumerate the whole population, we use both Descriptive Statistics and Inferential Statistics.
 - ▶ **Probability theory** is necessary for us to make statistical inferences.

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.