

数学分析

作者: hapo

时间: December 15, 2022

目录

1	1 集合与映射	2
2	2 实数的完备性	3
	2.1 数列极限	4
	2.2 无穷大量	6
	2.2.1 无穷大的运算	7
	2.3 收敛准则	8
3	3 函数极限与连续函数	13

记录本书的原因是因为我觉得自己的数学分析实在太烂了。因此我决定使用费曼学习法。这是一个链式反应,在我学习随机过程的时候,我发现自己的概率论太差了,而当我学习概率论的时候,我又发现我的测度论太差了,而我学习测度论的时候,我最终发现,我差的是数学分析。而这个最初始的问题是我并没有系统地学过数学分析。而在学习数学分析的过程中,我发现我对好多概念并不明晰,这使得学习的进度缓慢,并且经常容易在概念上卡壳,而卡壳结束后又很快忘记。因此,为了能够更好地记住,我决定使用费曼学习法。在此,我记录下我学习数学分析的过程。

1

第1章 集合与映射

定义 1.1 (集合)

是具有某种特定性质的具体的或抽象的对象汇集的总体,其中的对象称为集合的元素。

集合通常记为A, B, C, X, Y 元素通常记为s, t, a, b, x, y x是集合S的元素,记为 $x \in S$ 4

第2章 实数的完备性

内容提要

□ 有理数的定义 2.2

在本章中,我们将介绍实数的完备性。在介绍实数之前,我们需要将实数定义或者说引入。而对于实数的定义是有很多的,而我在此介绍无穷十进制小数表示和戴德金(Dedekind)分割。这部分我将结合陈纪修教授的教材和Ayumu的讲义。

在引入实数之前,我们需要先介绍有理数,而在介绍有理数之前,我们需要规定一些常用集合的记号。而介绍常用集合,则需要先介绍集合(set),在此我们并不介绍集合,我们暂时默认我们已经知道了集合的概念,将来我们会对该部分内容进行扩充。现在让我们来列举一些常用的集合。

定义 2.1 (常用集合表示)

 $\mathbb{N} = \{1, 2, 3, \cdots, n, \cdots\}$

 $\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots, \pm n, \cdots\}$

 $\mathbb{Z}^+ = \{n | n \in \mathbb{Z}, n > 0\}$

在定义了以上的集合表示之后,我们就能以上的符号来表示有理数:

定义 2.2 (有理数)

若一个数x可以表示成 $\frac{q}{p}$ 的形式,其中 $q \in \mathbb{Z}$, $p \in \mathbb{Z}^+$,则称x为**有理数**(rational number)。而由有理数组成的集合称为**有理数集**,有理数集常用 \mathbb{Q} 表示,其可以表示为:

$$\mathbb{Q} = \{x | x = \frac{q}{p}, q \in \mathbb{Z}, p \in \mathbb{Z}^+\}$$

在这里,我们可以看到p只需要属于 \mathbb{Z}^+ ,这是因为若x为负的,我们总可以规定负号出现在分子上。

有理数对加减乘除都封闭,并且我们在有理数上定义了大小关系,即有理数也是良序的。但是它并不能满足研究所需。例如,存在长度无法用有理数表示。并且有理数之间存在"空隙",即有理数不连续。而在我们之后的研究中,我们往往需要研究连续性,因此我们需要对有理数进行扩充。在这之前,我们先来证明确实有一些数无法用有理数表示。

命题 2.1

 $\sqrt{2}$ 不是有理数。

证明 我们用反证法。假设 $\sqrt{2}$ 为有理数,那么存在 $q \in \mathbb{Z}, p \in \mathbb{Z}^+$,使得 $\sqrt{2} = \frac{q}{p}$ 。 而且有的函数在实数域和有理数域上的表现完全不一样,比如狄利克雷(dirichlet)函数。

定理 2.1 (确界存在定理—实数系连续性定理)

非空有上界的数集必有上确界, 非空有下界的数集必有下确界。

2.1 数列极限

定义 2.3 (数列极限的定义)

对于数列 $\{a_n\}$,存在一个实常数a,对 $\forall \epsilon>0$, $\exists N\in\mathbb{Z}^+$,使得当n>N时, $|a_n-a|<\epsilon$ 成立,则称 $\{a_n\}$ 收敛(convengent)于a或者 $\{a_n\}$ 的极限(limit)为a,记作

$$\lim_{n \to \infty} a_n = a \quad 或者 \quad a_n \to a(n \to +\infty)$$

若不存在实数a,满足上述性质,则称数列 $\{a_n\}$ 发散(divergent)。

一个数列收敛与否,收敛的话,收敛于哪个数,这与数列的前有限项无关。

命题 2.2

$$\lim_{n \to \infty} q^n = 1(q < 1)$$

证明

命题 2.3

$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$

证明

命题 2.4

$$\lim_{n\to\infty}\sqrt[n]{n}=1$$

证明

命题 2.5

设
$$a_n > 0$$
, $\lim_{n \to \infty} a_n = a$, 证明

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

证明

定义 2.4 (无穷小量的定义)

以零为极限的变量称为无穷小量。

定理 2.2 (数列极限的有界性)

若 $\{x_n\}$ 的极限存在,则 $\{x_n\}$ 有界。

定理 2.3 (数列极限的保序性)

存在两个数列 $\{x_n\}$ 和 $\{y_n\}$,并且

$$\lim_{n \to \infty} x_n = a, \lim_{n \to \infty} y_n = b, \quad \mathbb{L} \quad a < b$$

则 $\exists N \in \mathbb{Z}^+$, 当n > N时, $x_n < y_n$ 。

证明

定理 2.4 (数列极限的四则运算)

- 若 $\lim_{n \to \infty} x_n = a$, $\lim_{n \to \infty} y_n = b$, 则

 1. $\lim_{n \to \infty} (\alpha x_n + \beta y_n) = \alpha a + \beta b$ 2. $\lim_{n \to \infty} (x_n y_n) = ab$ 3. $\lim_{n \to \infty} (\frac{x_n}{y_n}) = \frac{a}{b}(b \neq 0)$

证明

命题 2.6

$$\cancel{x} \lim_{n \to \infty} \frac{5^{n+1} - (-2)^n}{3 \cdot 5^n + 2 \cdot 3^n}$$

证明

命题 2.7

当
$$a > 0$$
时, $\lim_{n \to \infty} \sqrt[n]{a} = 1$

证明

命题 2.8

$$\label{eq:limits} \dot{\mathcal{R}} \lim_{n \to \infty} n \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 1} \right)$$

证明

命题 2.9

$$\not \stackrel{1}{\underset{n\to\infty}{\lim}} \left(\frac{1}{\sqrt{n^2+1}} + \frac{1}{\sqrt{n^2+2}} + \cdots + \frac{1}{\sqrt{n^2+n}} \right)$$

证明

有限个

命题 2.10

设
$$a_n > 0$$
, $\lim_{n \to \infty} a_n = a$, 证明

$$\lim_{n \to \infty} \sqrt[n]{a_1 a_2 \cdots a_n} = a$$

证明

命题 2.11

若 $\{x_n\}$ 是无穷小量, $\{y_n\}$ 有界 $(|y_n|<0)$,则 $\{x_ny_n\}$ 也是无穷小量。

证明

2.2 无穷大量

定义 2.5 (无穷大量)

对于一个数列 $\{x_n\}$,若对于任意给定的G>0,可以找到正整数N,使得当n>N时, $|x_n|>G$,则称数列 $\{x_n\}$ 是无穷大量,记为

$$\lim_{n \to \infty} x_n = \infty$$

若对于该数列 $\{x_n\}$, $|x_n|>G$ 可以恒表示为 $x_n>G$, 则称数列 $\{x_n\}$ 是正无穷大量,记为 $+\infty$ 。若对于该数列 $\{x_n\}$, $|x_n|>G$ 可以恒表示为 $x_n<-G$, 则称数列 $\{x_n\}$ 是负无穷大量,记为 $-\infty$ 。

命题 2.12

设|q| > 1, 证明 $\{q^n\}$ 是无穷大量。

证明

命题 2.13

证明 $\left\{\frac{n^2-1}{n+5}\right\}$ 是无穷大量。

证明

引理 2.1

证明

引理 2.2

设 $\{x_n\}$ 是无穷大量, $\{y_n\}$ 满足 $\exists N_0 \in \mathbb{Z}^+, \forall n > N_0$,有 $|y_n| \ge \delta > 0$,则 $\{x_n y_n\}$ 也是无穷大量。

证明

引理 2.3

设 $\{x_n\}$ 是无穷大量, $\{y_n\}$ 极限存在,且 $\lim_{n\to\infty}y_n=b\neq 0$,则 $\{x_ny_n\}$ 与 $\Big\{\frac{x_n}{y_n}\Big\}$ 都是无穷大量。

证明

命题 2.14

 $\left\{\frac{n}{\sin(n)}\right\}$ 和 $\left\{n \cdot \arctan(n)\right\}$ 是无穷大量。

证明

命题 2.15

讨论极限

$$\lim_{n \to \infty} \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_{k-1} n + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_{l-1} n + b_k}$$

其中 $a_0, b_0 \neq 0, k, l \in \mathbb{Z}^+$

证明 从分子上提出 n^k ,分母上提出 n^l 次

2.2.1 无穷大的运算

若 $\lim_{n\to\infty} x_n = +\infty$,则记 $\{x_n\}$ 为" $+\infty$ "。

若 $\lim_{n\to\infty} y_n = +\infty$,则记 $\{y_n\}$ 为"+∞"。

若 $\lim_{n\to\infty} z_n = \infty$,则记 $\{z_n\}$ 为"+ ∞ "。

若 $\lim_{n\to\infty} w_n = 0$,则记 $\{z_n\}$ 为"0"。

定理 2.5

- 1. $(+\infty) + (+\infty) = +\infty$
- 2. $(+\infty) (-\infty) = +\infty$
- 3. $(+\infty) \pm (有界量) = +\infty$
- 4. $(+\infty) \cdot (+\infty) = +\infty$
- 5. $(+\infty) \cdot (-\infty) = -\infty$

定义 2.6

- 1. $(+\infty) (+\infty) = ?$
- 2. $(+\infty) + (-\infty) = ?$
- 3. $0 \cdot \infty = ?$
- 4. $\frac{0}{0} = ?$
- 5. $\frac{\infty}{\infty} = ?$
- 6. ...

上述情况称为"待定型"

定义 2.7

若数列 $\{x_n\}$,有 $x_n \leq x_{n+1}$, $\forall n \in \mathbb{N}^+$,则称数列 $\{x_n\}$ 单调增加,记为 $\{x_n\}$ 个。若有 $x_n < x_{n+1}$,则称数列 $\{x_n\}$ 严格单调增加,记为 $\{x_n\}$ 严格↑。

若数列 $\{x_n\}$,有 $x_n \geq x_{n+1}$, $\forall n \in \mathbb{N}^+$,则称数列 $\{x_n\}$ 单调减少,记为 $\{x_n\}$ ↓。若有 $x_n > x_{n+1}$,则称数列 $\{x_n\}$ 严格单调减少,记为 $\{x_n\}$ 严格↓。

定理 2.6 (Stolz定理)

假设 $\{y_n\}$ 严格单调增加数列,且 $\lim_{n\to\infty}y_n=+\infty$ 。若

则

$$\lim_{n \to \infty} \frac{x_n}{y_n} = a$$

证明

命题 2.16

用Stolz定理证明, 若 $\lim_{n\to\infty} a_n = a$, 则

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a$$

证明

命题 2.17

证明

命题 2.18

证明

2.3 收敛准则

收敛数列一定有界,但是收敛数列不一定有界。

- 1. 那么有界数列加什么条件收敛?
- 2. 有界数列不加条件的情况下,可以得到什么弱一些的结论?

定理 2.7

单调有界数列必定收敛。

 \bigcirc

证明 不妨设 $\{x_n\}$ 单调增加,有上界。

定理意义: 从定义证明时,我们需要知道极限a,相当于验证极限为a,而当极限未知时,则无法证明。而定理则从数列本身的性质出发,不需要知道极限是多少。

命题 2.19

设
$$x_1 > 0, x_{n+1} = 1 + \frac{x_n}{1+x_n}, n = 1, 2, 3, \cdots$$
, 证明 $\{x_n\}$ 收敛, 并求极限。

证明

命题 2.20

设
$$0 < x_1 < 1, x_{n+1} = x_n(1-x_n), n = 1, 2, 3, \dots$$
, 证明 $\{x_n\}$ 收敛, 并求极限。

证明

无穷小量的趋近速度。

命题 2.21

对于上题的
$$\{x_n\}$$
,求极限, $\lim_{n\to\infty} nx_n$

证明

命题 2.22

$$x_1 = \sqrt{2}, x_{n+1} = \sqrt{3+2x_n}, n = 1, 2, 3, \dots, \text{ 证明}\{x_n\}$$
收敛, 并求极限。

证明

兔子

命题 2.23 (Fibonacci数列)

 $\{a\check{\ }\ n\}$ 为Fibonacci数列,令 $b_n=rac{a_{n+1}}{a_n}$,讨论 $\{b_n\}$ 数列。

证明

接下来我们来研究π和e

关于π:

命题 2.24

证明 $\left\{L_n = n \sin\left(\frac{180^\circ}{n}\right)\right\}$ 收敛。求圆的面积公式。

证明

关于e:

命题 2.25

考虑两个数列:

$$\left\{ x_n = \left(1 + \frac{1}{n}\right)^n \right\} \quad \text{fo} \quad \left\{ y_n = \left(1 + \frac{1}{n}\right)^{n+1} \right\}$$

证明这两个数列极限存在且相等。

证明

定义 $\ln = \log_e$ 为自然对数,e自然对数的底数。

命题 2.26

令 $a_n = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p}, (p > 0)$,证明 $\{a_n\}$ 当p > 1时收敛,当 $p \le 1$ 时发散。

证明

p=1时, $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ 为调和级数,它是正无穷大量,我们想知道它趋近无限的速度。

命题 2.27

证明

$$b_n = \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) - \ln n$$

收敛。

证明 极限记为 γ , 称为欧拉常熟。 $\gamma >= 0.577215$

命题 2.28

证明

$$\lim_{n\to\infty}\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2n}=\ln 2$$

证明 除了夹逼准则,还能用上一个数列相减计算。

命题 2.29

$$d_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{n+1} \frac{1}{n}$$

证明

以上是与e相关的数列

定义 2.8 (闭区间套)

有一列闭区问 $\{[a_n,b_n]\}$,满足:

- 1. $[a_{n+1}, b_{n+1}] \subset [a_n, b_n], n = 1, 2, 3, \cdots$
- 2. $b_n a_n \to 0 (n \to \infty)$

则称这样的一列闭区间是一个闭区间套。

定理 2.8 (闭区间套定理)

假如 $[a_n,b_n]$ 是一个闭区间套,则存在唯一的实数 ξ ,它属于一切闭区间 $[a_n,b_n]$ 。 且 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=\xi$ 。

证明

定理 2.9

实数集不可列。

m

证明 反证法

子列

定义 2.9

存在一个数列 $\{x_n\}$,取一列严格单调增加的正整数 $n_1< n_2< n_3< \cdots< n_k< \cdots$,则 $x_{n_1},x_{n_2},\cdots,x_{n_k}$ ·称为 $\{x_n\}$ 的一个子列,记为 $\{x_{n_k}\}$,k代表子列中的第k项,又恰好是 $\{x_n\}$ 中的第 n_k 项。

其中 $n_k \geq k, \forall k, n_j > n_k, \forall j > k$ 。

定理 2.10

设 $\{x_n\}$ 收敛于a,则它的任何一个子列也收敛于a。即 $\lim_{n\to\infty}x_n=a$,证明 $\lim_{k\to\infty}a_{n_k}=a$

 \sim

证明

可以用于证明数列不收敛。

命题 2.30

若 $\{x_n\}$ 存在两个子列收敛于不同的极限,则 $\{x_n\}$ 发散。

_

证明

定理 2.11 (Bolzano-Weierstrass定理)

有界数列必有收敛子列。

证明

定理 2.12

假设 $\{x_n\}$ 是无界数列,则存在子列 $\{x_{n_k}\}$,它是无穷大量。

 \sim

证明

Cauchy收敛原理

定义 2.10

 $\{x_n\}$ 满足:

$$\forall \xi > 0, \exists N, \forall n, m > N, |x_n - x_m| < \xi$$

则称 $\{x_n\}$ 为基本数列。

也可以是 $\forall m > n > N$

证明

命题 2.31

判断

$$x_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

是否为基本数列。

证明

命题 2.32

判断

$$x_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

是否为基本数列。

证明

定理 2.13 (Cauchy收敛原理)

 $\{x_n\}$ 收敛的充分必要条件是 $\{x_n\}$ 是基本数列。

m

证明 必要性:

充分性:

命题 2.33

 $\{x_n\}$ 满足压缩性条件,即

$$|x_{n+1} - x_n| \le k |x_n - x_{n-1}|, 0 < k < 1, \forall n = 2, 3, \dots$$

则 $\{x_n\}$ 是收敛的。

证明

实数系的基本定理

- 1. 确界存在定理(实数系的连续性定理)
- 2. 单调有界数列收敛定理
- 3. 闭区间套定理
- 4. Bolzano-Weierstrass定理
- 5. Cauchy收敛原理(实数系完备性)

以上都是在实数系中考虑, 实数系上的基本数列必然是收敛数列, 因此Cauchy收敛原理也被称为实数系的完备性定理。实数系有完备性, 有理数不具备完备性。例如 $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ 是有理数列, 但是它的极限是无理数。以上五个定理等价。我们需要证明这五个定理等价。从Cauchy收敛原理推出闭区间套定理, 再从闭区间套定理推出确界存在定理。

定理 2.14

实数系的完备性等价于实数系的连续性。

- 证明 (1)Cauchy收敛原理⇒闭区间套定理。
 - (2)闭区间套定理⇒确界存在定理。

第3章 函数极限与连续函数

函数极限

$$\lim_{x \to x_0} \frac{\sin x}{x} = 1$$

定义 3.1

y=f(x)在 $O(x_0,\rho)\setminus\{x_0\}$ 上有定义,如果存在一个数A,使得对任意给定的 $\epsilon>0$,可以找到 $\delta>0$,当 $0<|x-x_0|<\delta$ 时,成立 $|f(x)-A|<\epsilon$,则称A是f(x)在 x_0 点的极限,记为 $\lim_{x\to x_0}f(x)=A$ 或者 $f(x)\to A(x\to x_0)$ 。如果不存在满足上述性质的A,则称f(x)在 x_0 点极限不存在。

 $O(x_0,\rho)\setminus\{x_0\}$ 称为去心邻域。