🖝 Cxerice sur le Théorème du Rang< 🔊

Exercice 1.

Soit \mathbb{E} un \mathbb{K} -espace vectoriel de dimension n>0 et soit u un endomorphisme de \mathbb{E} . On définit :

$$u^0 = Id_{\mathbb{E}}, \ u^1 = u, \ u^2 = u \circ u \text{ et } \forall p \in \mathbb{N}^* \ u^p = u \circ u^{p-1}$$

- 1- a) Montrer que $\ker u \subset \ker u^2$
 - b) Montrer que $\forall p \in \mathbb{N}$, $\ker u^p \subset \ker u^{p+1}$
 - c) Montrer que $\operatorname{Im} u^2 \subset \operatorname{Im} u$
 - d) Montrer que $\forall p \in \mathbb{N}$, $\operatorname{Im} u^{p+1} \subset \operatorname{Im} u^p$
 - e) En déduire que la suite $(\operatorname{rg} u^p)_{p\in\mathbb{N}}$ est constante à partir d'un certain rang p_0 .
- 2- Montrer que $\forall p \geqslant p_0$, $\operatorname{Im} u^p = \operatorname{Im} u^{p+1}$
- 3- En déduire $\forall p \geqslant p_0$, $\ker u^p = \ker u^{p+1}$
- 4- En déduire la valeur maximale de p_0 .
- 5- Montrer qu'on a toujours $\ker u^{p_0} \oplus \operatorname{Im} u^{p_0} = \mathbb{E}$
- 6- Montrer que si $\ker u^p \oplus \operatorname{Im} u^p = \mathbb{E}$, alors $\ker u^p = \ker u^{p+1}$ et $\operatorname{Im} u^p = \operatorname{Im} u^{p+1}$