Tax Collection

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Dictator S wants to collect taxes from his citizens. He is given a list of N towns, each with A_i citizens, representing the order for tax collector K to visit these N towns. Dictator S can reorder the list by swapping the positions of certain towns on the list.

On the i^{th} day $(1 \le i \le N)$, tax collector K will visit the towns from 1 to i on the list and collect taxes from the citizens. In other words, on the i^{th} day, tax collector K will collect taxes from the **prefix sum** of citizens in the first i towns on the list. For example, if the list is (5, 10, 9, 22), then the total number of citizens taxed is 5 + 15 + 24 + 46 = 90.

However, dictator S has political enemies and can only reorder certain towns. Help dictator S collect taxes from the **maximum number of citizens** possible!

Input

The first line of input contains one integer, N $(1 \le N \le 10^5)$.

The second line of input contains N integers, with the i^{th} integer representing A_i ($1 \le A_i \le 10^5$).

The third line of input contains N integers, with the i^{th} integer being either 0 or 1.

- 0 indicates that the order of the i^{th} town cannot be changed, meaning it must remain on the i^{th} position on the list.
- 1 indicates that the order of the i^{th} town can be changed, meaning it can be swapped with another town on a different position.

Output

Output one integer, the maximum number of citizens Dictator S can tax.

Scoring

Subtask	Score	N	Additional constraints
1	20	-	$A_i = 1$
2	20	$N \le 10^3$	The order of all towns can be changed
3	60	-	-
4	0	Sample Testcases	

Examples

standard input	standard output
4	115
5 10 9 22	
0 1 1 1	
6	76
1 2 3 4 5 6	
1 1 1 1 1 0	

Note

For sample testcase 1:

Initial list: 5, 10, 9, 22 (Position of 5 cannot be changed)

Optimal list: $\underline{5}$, 22, 10, 9

$$(5) + (5 + 22) + (5 + 22 + 10) + (5 + 22 + 10 + 9) = 115$$

For sample testcase 2:

Initial list: 1, 2, 3, 4, 5, 6 (Position of 6 cannot be changed)

Optimal list: 5, 4, 3, 2, 1, 6

$$(5) + (5+4) + (5+4+3) + (5+4+3+2) + (5+4+3+2+1) + (5+4+3+2+1+6) = 76$$