

# CAI 4104/6108 – Machine Learning Engineering: Gradient Descent

Prof. Vincent Bindschaedler

Spring 2024

## Administrivia: Midterm



- Reminder: Midterm is coming up!
  - Monday 2/19 and Wednesday 2/21 during class time (10:40 11:30) in FLG 0220
    - Topics: everything until 2/16
  - Duration: 50 minutes
  - Schedule:
    - CAI6108: take the exam on 2/19
    - CAI4104: take the exam on 2/21
    - Lecture that week (topic: Unsupervised Learning) will be pre-recorded
  - Format: closed-books, (blank) scratch paper, and physical calculator are allowed (no phones!)
  - Questions: short answers + problems
- Reminder: Sample Midterm (Practice Questions):
  - On Canvas 50 minutes (18 short answers) + 3 problems.
  - This is for you to practice. <u>Do not overfit!</u>

## Reminder: Metrics for Classification



#### Confusion Matrix

- Applicable to classification in general
- Focus on the binary classification case:
  - One of the classes is designated as "positive" (the other is "negative")
  - False positives are Type I errors
    - Think of them as "false alarms"
  - False negatives are Type II errors
    - Think of them as "missed detections"
  - Prevalence (aka base rate):
    - Proportion of positive examples
- Baselines?
  - Statistical mode prediction
  - Random guessing

|           |   | Actual              |                     |  |  |
|-----------|---|---------------------|---------------------|--|--|
|           |   | +                   | -                   |  |  |
| Predicted | + | True Positive (TP)  | False Positive (FP) |  |  |
|           | - | False Negative (FN) | True Negative (TN)  |  |  |

- Accuracy: (TP + TN) / (TP + FP + TN + FN)
- Recall: TP / (TP + FN)
  - Also called: True positive rate (TPR), Sensitivity
- False negative rate (FNR): FN / (TP + FN) = 1 TPR
- False positive rate (FPR): FP / (FP + TN)
- True negative rate (TNR): TN / (FP + TN) = 1 FPR
  - Also called Specificity and Selectivity
- Precision: TP / (TP + FP)
  - Also called: Positive predictive value (PPV)
- False discovery rate (FDR): FP / (TP + FP) = 1 Precision

# Reminder: Precision-Recall Tradeoff



#### Decision Threshold / Function

- (In most cases) when you train a classification model, you actually train a family of classifiers!
  - The model assigns scores (or probabilities) to examples
  - Make predictions based on scores using a specific decision threshold

#### The Tradeoff

- The threshold provides a tradeoff between Type I and Type II errors
- A popular way to express this tradeoff is Precision versus Recall
  - We need to choose between high precision and high recall
  - Q: What if we need to achieve precision above a specific value (e.g., 90%)?

#### Optimizing and Statisficing

- One way of navigating the tradeoff is to set a cutoff for precision or recall
- E.g.: Pick the model with precision ≥95% that maximimizes recall





## Reminder: Performance Curves



- Receiver Operating Characteristics (ROC)
  - Plots true positive rate (TPR) versus false positive rate (FPR)
    - How? Vary the threshold
  - Each point on the curve (a valid pair (TPR,FPR)) is a valid tradeoff point
    - E.g.: Equal Error Rate (EER) point where FPR and FNR are equal
- Area Under Curve (AUC)
  - This is exactly the area under the ROC curve
    - AUC = 0 means the worst possible classifier
    - AUC = 0.5 is a random classifier
    - \* AUC = 1.0 is a perfect classifier
- Note: there are other performance curves
  - For example: Detection Error Tradeoff (DET) curves
    - \* False positive rate (FPR) versus the false negative rate (FNR), usually a log-log plot





## Base Rate Fallacy



#### Example:

- Suppose you have a very accurate classifier (e.g., 99% accurate) to predict whether a person suffers from a specific disease D from features of their blood
- Q: Should we test everyone in the world? Why or why not?
  - It depends on the base rate!

#### Base rate fallacy / base rate neglect

- Error in reasoning: confusing a classifier's prior probability of correct prediction and the posterior probability of a true positive
- Suppose we have a classifier that has a false positive rate of 2% (i.e., 2% of the time it predicts '+' when the true label is '-') and a true positive rate of 100% (i.e., it never fails to detect '+' instances)
- What is the probability that if the classifier predicts '+' the true label is in fact '+'?
  - ★ If the base rate is 0.5 (i.e., 50% of instances are '+') then it is: ~98%
  - # If the base rate is 0.001 (i.e., 0.1% of instances are '+') then it is: ~4.8%

# Base Rate Fallacy



#### Base rate fallacy / base rate neglect

- Suppose we have a classifier that has a false positive rate of 2% (i.e., 2% of the time it predicts '+' when the true label is '-') and a true positive rate of 100% (i.e., it never fails to detect '+' instances)
- What is the probability that if the classifier predicts '+' the true label is in fact '+'?
  - ♦ If the base rate is 0.5 (i.e., 50% of instances are '+') then it is: ~98%

|           |   | Actual |      |
|-----------|---|--------|------|
|           |   | +      | -    |
| Predicted | + | 5000   | 100  |
|           | - | 0      | 4900 |

 $Pr(Actual + | Predicted +) = 5000/5100 \approx 0.98$ 

|           |   | Actual |      |
|-----------|---|--------|------|
|           |   | +      | -    |
| Dundistad | + | 10     | 200  |
| Predicted | - | 0      | 9790 |

 $Pr(Actual + | Predicted +) = 10/210 \approx 0.0476$ 

- Note: there are other (similar) errors in reasoning
  - Examples: Prosecutor's fallacy, Simpson's paradox, etc.

## **Gradient Descent**



- To solve an optimization problem, we can use Gradient Descent (or one of its variants)
  - Generic iterative procedure to update the parameters based on the gradient
- We want to minimize the loss function:  $L(\theta)$ 
  - Here  $\theta$  are the parameters (weights)
  - η is the learning rate size of steps we take towards the minimum
  - $\bullet$   $\nabla_{\theta}L(\theta)$  is the gradient of the loss with respect to the parameters



## **Gradient Descent**



- Inputs: dataset X, y; model f, loss function L; learning rate  $\eta > 0$ ; max number of iterations k
- Output: parameter vector θ
- Procedure:
  - Initialize θ<sup>(1)</sup> randomly
  - For j = 1, 2, ..., k-1
    - \* Take a batch of data  $X_B$ ,  $y_B$
    - \* Compute the gradient  $\mathbf{g} = \nabla_{\boldsymbol{\theta}} L(f(\boldsymbol{X_B}; \boldsymbol{\theta}^{(j)}), \boldsymbol{y_B})$
    - Update parameters:  $\theta^{(j+1)} = \theta^{(j)} \eta g$
  - ◆ Output *θ*<sup>(k)</sup>

Update parameters by taking steps of size  $\eta$  in the **opposite direction** of the gradient

This is the gradient of the loss L given current model parameters taken with respect to the parameters  $\theta$ 



• Q: Are we guaranteed to converge to optimal parameters  $\theta^*$ ?

# Reminder: Convex Sets & Convexity



#### Convex Sets:

Set  $\mathcal{X}$  is convex if for any  $a, b \in \mathcal{X}$  the line  $\lambda a$ +(1- $\lambda$ ) $b \in \mathcal{X}$  for  $\lambda \in [0,1]$ 

#### Convexity:

Function f on a convex set  $\mathcal{X}$  is convex if for any  $x, y \in \mathcal{X}$  and  $\lambda \in [0,1]$ :  $\lambda f(x)+(1-\lambda)f(y) \geq f(\lambda x+(1-\lambda)y)$ 





# Types of Gradient Descent



#### Procedure:

- Initialize θ<sup>(1)</sup> randomly
- For j = 1, 2, ..., k-1
  - \* Take a batch of data  $X_B$ ,  $y_B$
  - Compute the gradient  $g=\nabla_{\theta} L(f(X_B; \theta^{(j)}), y_B)$
  - **⊗** Update parameters:  $\theta^{(j+1)} = \theta^{(j)} \eta g$
- Output **θ**<sup>(k)</sup>



 $x_1$ 

- Batch Gradient Descent (GD)
  - In each iteration: calculate the gradient of the entire dataset

[i.e., 
$$(X_B, y_B) = (X, y)$$
]

- Stochastic ("on-line") Gradient Descent
  - In each iteration, randomly pick a single example and calculate its gradient [i.e.,  $(X_B, y_B) = (x_i, y_i)$ ]
- Mini-batch Stochastic Gradient Descent ("SGD")
  - Randomly shuffle the entire dataset and process it in mini-batches steps [i.e.,  $(X_B, y_B)$  is a mini-batch of m examples]
    - One epoch is the number of iterations to process the entire dataset
  - What we typically use in practice: has stochasticity but does not require computing the gradient over the entire dataset

# Important Considerations



- Major consideration: learning schedule
  - Way to set the learning rate in each iteration
    - \* E.g.: constant, time-based decay, step decay, exponential decay, etc.
- Variants / Optimizers:
  - AdaGrad, RMSProp, Adam, etc.
- Feature scaling: we should rescale features before doing gradient descent
  - What happens if we don't?
    - Convergence may be slow...



x

# Illustrated Example



- Let's train a linear regression model using gradient descent
  - Loss: Mean Squared Error (MSE)
  - $MSE(w,b) := 1/n \sum_{i} [w x_i + b y_i]^2 = 1/n \sum_{i} [\theta x_i y_i]^2 = MSE(\theta)$ 
    - Here:  $\theta = (b, w)$  and we extend X to incorporate a constant feature  $(x_{i,0}=1 \text{ for all } i)$
- Gradient step:  $\theta^{(j+1)} = \theta^{(j)} \eta \nabla_{\theta} MSE(\theta)$ 
  - η is the learning rate (hyperparameter)
- What is the gradient of  $MSE(\theta)$ ?
  - $\nabla_{\theta} MSE(\theta) = 2/n X^{T} (\theta X y)$
  - Q: What about the gradient for ridge regression?

# Learning Rate?



■ How do we set the learning rate?



## **Next Time**



Friday (2/16): Exercise and (or) Q&A

- Upcoming:
  - Midterm on 2/19 and 2/21