Suites numériques

Définition de la suite numérique :

Une suite numérique est une fonction de $\mathbb N$ ou de $\{n\in\mathbb N|n\geq n_0,n_0\in\mathbb N\}$ à valeurs dans $\mathbb K=\mathbb R$ ou $\mathbb C$. On la note $(u_n)_{n\in\mathbb N}$ ou $(u_n)_{n\geq n_0}$

<u>Série :</u>

On note la série de terme général u_n ,

$$\forall n \ge n_0, S_n \coloneqq \sum_{k=n_0}^n u_k$$

 \mathcal{S}_n est la somme partielle d'ordre n de u_n

Convergence des séries :

La série numérique $\sum_{n\geq n_0}u_n$ est dite convergente si la suite de ses sommes partielles converge, ie :

$$\exists S \in \mathbb{R}, S = \lim_{m \to +\infty} \sum_{n=n_0}^m u_n,$$

On note alors
$$S = \sum_{n=n_0}^{+\infty} u_n$$

En cas de converge (ie d'existence de S), on définit pour tout $n \geq n_0$ le reste d'ordre n de $\sum u_n$ par

$$R_n = S - S_n = \sum_{k=n+1}^{+\infty} u_n$$

Une série non convergente est dite divergente.

Limite des restes en cas de convergence :

Si
$$\sum_{n\geq n_0} u_n$$
 converge, alors $(R_n)_{n\geq n_0} \xrightarrow[x\to +\infty]{} 0$

Série télescopique :

Une série télescopique est une série numérique dont le terme général est $u_{n+1}-u_n$ où $(u_n)_{n\in\mathbb{N}}$

On a alors $\sum (u_{n+1} - u_n)$ converge $\iff (u_n)$ converge

Et en cas de convergence,

$$\sum_{n=0}^{+\infty} (u_{n+1} - u_n) = \lim_{n \to +\infty} u_n - u_0$$

Théorème:

Soit $\sum u_n$ une série numérique. Si $\sum u_n$ converge, alors $u_n \underset{n \to \infty}{\longrightarrow} 0$

 $\underline{\text{Contrapos\'ee}:} \text{Si } u_n \text{ ne converge pas vers 0, alors on dit que } \underline{\sum} u_n \text{ diverge grossi\`erement.}$

Opérations sur les séries convergentes :

Soient $\sum u_n$ et $\sum v_n$ deux séries numériques. Si $\sum u_n$ et $\sum v_n$ convergent, alors $\forall \lambda \in \mathbb{K}, \sum (\lambda u_n + v_n)$ converge.

De plus,
$$\sum_{n=0}^{+\infty} (\lambda u_n + v_n) = \lambda \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$$

Ainsi, si $\sum u_n$ converge et $\sum v_n$ diverge, alors $\sum (u_n + v_n)$ diverge.

Séries à termes positifs

Majoration des sommes partielles

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels positifs. La série numérique $\sum u_n$ converge ssi la suite de ses sommes partielles est majorée. En cas de convergence, on a :

$$\sum_{n=0}^{+\infty} u_n = \sup_{n \in \mathbb{N}} \sum_{k=0}^{n} u_k$$

Corollaire:

Soit $\sum u_n$ et $\sum v_n$ deux SATP tq $\forall n \in \mathbb{N}, u_n \leq v_n$

- i) Si $\sum v_n$ converge, alors $\sum u_n$ converge.
- ii) Si $\sum u_n$ diverge, alors $\sum v_n$ diverge.

Convergence et domination :

Soient $\sum u_n$ et $\sum v_n$ deux SATP. On suppose que $u_n = \mathop{O}_{+\infty}(v_n)$

- i) Si $\sum v_n$ converge alors $\sum u_n$ converge.
- ii) SI $\sum u_n$ diverge alors $\sum v_n$ diverge.

Convergence et équivalents :

Soient $\sum u_n$ et $\sum v_n$ deux SATP. On suppose que $u_n \sim v_n$.

Alors $\sum u_n$ et $\sum v_n$ sont de même nature.

Critères d'étude :

Théorème: (Règle d'Alembert)

Soit $\sum u_n$ une suite réelle, en supposant que $\exists n_0 \in \mathbb{N}, \forall n \geq n_0, u_n > 0$

Si
$$\frac{u_{n+1}}{u_n} \xrightarrow[n \to \infty]{} l \in \mathbb{R}_+ \cup \{+\infty\}$$
, alors

- (i) Si l > 1, alors $\sum u_n$ diverge grossièrement.
- (ii) Si l < 1, alors $\sum u_n$ converge.
- (iii) Si l = 1, on ne peut conclure.

Théorème de comparaison série-intégrale :

Soit $p \in \mathbb{N}$ et $f : [p; +\infty[\to \mathbb{R}_+ \text{ une fonction } \underline{\text{continue}}, \underline{\text{décroissante}} \text{ et à } \underline{\text{valeurs } > 0}.$

Alors la série numérique $\sum_{n\geq p} f(n)$ et l'intégrale généralisée $\int_p^{+\infty} f(t)dt$ on même nature.

Séries de référence :

- <u>Suites géométriques :</u> Soit $q\in\mathbb{C}$, la série géométrique $\sum_{n\in\mathbb{N}}q^n$ converge ssi |q|<1 <u>Théorème :</u> (Séries de Riemann)
- <u>Théorème :</u> (Séries de Riemann) Soit $\alpha \in \mathbb{R}$. La série numérique $\sum_{n \in \mathbb{N}} \frac{1}{n^{\alpha}}$ converge ssi $\alpha > 1$.