PROBLEM SET 1.6

FAMILIES OF CURVES

Represent the given family of curves in the form G(x, y; c) = 0 and sketch some of the curves.

- 1. All ellipses with foci -3 and 3 on the x-axis.
- 2. All circles with centers on the cubic parabola $v = x^3$ and passing through the origin (0, 0).
- 3. The catenaries obtained by translating the catenary $y = \cosh x$ in the direction of the straight line y = x.

Sketch or graph some of the given curves. Guess what their OTs may look like. Find these OTs.

4.
$$y = x^2 + c$$

5.
$$y = cx$$

6.
$$xy = c$$

7.
$$y = c/x^2$$

8.
$$y = \sqrt{x + c}$$

9.
$$y = ce^{-x^2}$$

10.
$$x^2 + (y - c)^2 = c^2$$

11-16 **APPLICATIONS. EXTENSIONS**

- 11. Electric field. Let the electric equipotential lines (curves of constant potential) between two concentric cylinders with the z-axis in space be given by $u(x, y) = x^2 + y^2 = c$ (these are circular cylinders in the xyz-space). Using the method in the text, find their orthogonal trajectories (the curves of electric force).
- 12. Electric field. The lines of electric force of two opposite charges of the same strength at (-1,0) and (1,0) are the circles through (-1, 0) and (1, 0). Show that these circles are given by $x^2 + (y - c)^2 = 1 + c^2$. Show that the equipotential lines (which are orthogonal trajectories of those circles) are the circles given by $(x + c^*)^2 + \tilde{y}^2 = c^{*2} - 1$ (dashed in Fig. 25).

Fig. 25. Electric field in Problem 12

- 13. Temperature field. Let the isotherms (curves of constant temperature) in a body in the upper half-plane y > 0 be given by $4x^2 + 9y^2 = c$. Find the orthogonal trajectories (the curves along which heat will flow in regions filled with heat-conducting material and free of heat sources or heat sinks).
- 14. Conic sections. Find the conditions under which the orthogonal trajectories of families of ellipses $x^2/a^2 + y^2/b^2 = c$ are again conic sections. Illustrate your result graphically by sketches or by using your CAS. What happens if $a \rightarrow 0$? If $b \rightarrow 0$?
- 15. Cauchy-Riemann equations. Show that for a family u(x, y) = c = const the orthogonal trajectories v(x, y) = $c^* = \text{const}$ can be obtained from the following Cauchy-Riemann equations (which are basic in complex analysis in Chap. 13) and use them to find the orthogonal trajectories of $e^x \sin y = \text{const.}$ (Here, subscripts denote partial derivatives.)

$$u_x = v_y, \qquad u_y = -v_x$$

16. Congruent OTs. If y' = f(x) with f independent of y, show that the curves of the corresponding family are congruent, and so are their OTs.

Problem Set 1.6, page 38

1.
$$x^2/(c^2+9) + y^2/c^2 - 1 = 0$$

3.
$$y - \cosh(x - c) - c = 0$$

1.
$$x^2/(c^2 + 9) + y^2/c^2 - 1 = 0$$
 3. $y - \cosh(x - c) - c = 0$ **5.** $y/x = c$, $y'/x = y/x^2$, $y' = y/x$, $\widetilde{y}' = -x/\widetilde{y}$, $\widetilde{y}^2 + x^2 = \widetilde{c}$, circles

7.
$$2\widetilde{y}^2 - x^2 = \widetilde{c}$$
9. $y' = -2xy, \widetilde{y}' = 1/(2x\widetilde{y}), x = \widetilde{c}e^{\widetilde{y}^2}$

11.
$$\widetilde{y} = \widetilde{c}x$$

13.
$$y' = -4x/9y$$
. Trajectories $\widetilde{y}' = 9\widetilde{y}/4x$, $\widetilde{y} = \widetilde{c}x^{9/4}$ ($\widetilde{c} > 0$). Sketch or graph these curves.

15.
$$u = c$$
, $u_x dx + u_y dy = 0$, $y' = -u_x/u_y$. Trajectories $\tilde{y}' = u_{\tilde{y}}/u_x$. Now $v = \tilde{c}$, $v_x dx + v_y dy = 0$, $y' = -v_x/v_y$. This agrees with the trajectory ODE in u if $u_x = v_y$ (equal denominators) and $u_y = -v_x$ (equal numerators). But these are just the Cauchy-Riemann equations.