Understanding Logistic Regression Models

Vitthal Srinivasan CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Logistic regression fits an S-curve between probabilities and causes

S-curves have a standard mathematical form that is easy to estimate

Two equivalent methods of fitting S-curves are commonly used

One of these methods cleverly utilises linear regression in logistic regression

Logistic regression can be easily extended to more than 2 categories in the effect

The Intuition Behind Logistic Regression

Tipping Point

A point in time when a group—or a large number of group members—rapidly and dramatically changes its behavior by widely adopting a previously rare practice

S-curves are widely studied, well understood

$$y = \frac{1}{1 + e^{-(A+Bx)}}$$

Logistic regression uses S-curve to estimate probabilities

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Given a set of points where x "predicts" probability of success in y, use logistic regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Two Approaches to Deadlines

Start 5 minutes before deadline
Good luck with that

Start 1 year before deadline

Maybe overkill

Neither approach is optimal

Time to deadline

Time to deadline

Start too late, and you'll definitely miss

Time to deadline

Start too early, and you'll definitely make it

Time to deadline

Working smart is knowing when to start

Y-axis: probability of meeting deadline

X-axis: time to deadline

Meeting or missing deadline is binary

Probability curve flattens at ends

- floor of O
- ceiling of 1

Logistic Regression helps estimate how probabilities of categorical variables are influenced by causes

Hitting Deadlines

Probability of hitting deadline p(y)

Deadline: Hit or miss?

y = 1 or O

Time of starting work

X

Logistic Regression helps estimate how probabilities of categorical variables are influenced by causes

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

 $y_i = 1$ or 0 (hit or miss) $x_i =$ time spent working on deadline $p(y_i) =$ probability that $y_i = 1$ $1 - p(y_i) =$ probability that $y_i = 0$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Logistic regression involves finding the "best fit" such curve

- A is the intercept
- B is the regression coefficient

(e is the constant 2.71828)

Represent all n points as (x_i,y_i) , where i = 1 to n

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Objective of regression is to find A, B that "best fit" the data

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Objective of regression is to find A, B that "best fit" the data

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Relationship is already linear (by assumption)

Logistic Regression

$$ln(\frac{p(y_i)}{1-p(y_i)}) = A + Bx_i$$

Relationship can be made linear (by log transformation)

Similar, yet Different

Linear Regression

$$y_i = A + Bx_i$$

Logistic Regression

$$logit(p) = A + Bx_i$$

$$logit(p) = ln(\frac{p}{1-p})$$

Solve regression problem using cookiecutter solvers Solve regression problem using cookiecutter solvers

Represent all n points as (x_i,y_i) , where i = 1 to n

Represent all n points as (x_i,y_i) , where i = 1 to n

Linear Regression

$$y = A + Bx$$

$$y_1 = A + Bx_1$$
 $y_2 = A + Bx_2$
 $y_3 = A + Bx_3$
...
 $y_n = A + Bx_n$

Logistic Regression

$$p(y) = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

$$p(y_1) = \frac{1}{1 + e^{-(A+Bx_1)}}$$

$$p(y_n) = \frac{1}{1 + e^{-(A+Bx_n)}}$$

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are positive

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

If A and B are negative

Working Hard, Fast, Smart

Time to deadline

Working Hard, Fast, Smart

Minimum value of p(y_i)

Working Hard, Fast, Smart

Maximum value of p(y_i)

Working Hard, Fast, Smart

Between maximum and minimum values of p(yi)

Logistic Regression

Logistic Regression fits an **S-curve** to estimate how probabilities of categorical variables are influenced by causes

Solving the Logistic Regression Problem via Maximum Likelihood Estimation (MLE)

Represent all n points as (x_i,y_i) , where i = 1 to n

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Regression Equation:

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Toss n coins

Head: $y_i = 1$

Tail: $y_i = 0$

Probability of Head = p_i

Probability of Tail = $1-p_i$

Coin i	Result	y i	Probability
1	Heads	1	p ₁
2	Tails	0	1-p ₂
3	Heads	1	p ₃
4	Heads	1	p ₄
5	Tails	0	1-p ₅
6	Tails	0	1-p ₆
7	Heads	1	p ₇
8	Heads	1	p ₈
9	Heads	1	p 9
	•••		•••
n	Tails	0	1-p _n

Probability of independent events = product of individual probabilities

Overall likelihood of getting these results

$$L = (p_1)*(1-p_2)*(p_3)*(p_4)*(1-p_5)...*(1-p_n)$$

Conveniently combine probabilities of head or tail into one expression

Outcome of coin $i = p_i^{y_i}(1-p_i)^{1-y_i}$

If outcome = Head

$$y_i = 1$$

$$p_i^{y_i}(1-p_i)^{1-y_i} = p_i^{1}(1-p_i)^{0}$$

= p_i

If outcome = Tail

$$y_i = 0$$

$$p_i^{y_i}(1-p_i)^{1-y_i} = p_i^0(1-p_i)^1$$

= 1 - p_i

Tossing n Coins

$$L = (p_1)*(1-p_2)*(p_3)*(p_4)*(1-p_5)...*(1-p_n)$$

$$p_i^{y_i}(1-p_i)^{1-y_i}$$

$$L = \prod_{i=1}^{n} p_i^{y_i}(1-p_i)^{1-y_i}$$

T denotes product of multiple terms

Tossing n Coins

$$L = \prod_{i=1}^{n} p_i y_i (1-p_i)^{1-y_i}$$
Transform equation by taking natural log (ln)
$$LL = \ln L = \sum_{i=1}^{n} [y_i \ln(p_i) + (1-y_i) \ln(1-p_i)]$$

D denotes sum of multiple terms

Logistic Regression

$$p(y_i) = \frac{1}{1 + e^{-(A+Bx_i)}}$$

Solve for A and B that "best fit" the data

Tossing n Coins

LL=
$$\ln L = \sum_{i=1}^{n} [y_i \ln(p_i) + (1-y_i) \ln(1-p_i)]$$

The "best fit" values of A and B are those that maximise this likelihood

Maximum Likelihood Estimation (MLE)

Solving the Logistic Regression Problem via Linear Regression

Toss n coins

Head: $y_i = 1$

Tail: $y_i = 0$

Probability of Head = p_i

Probability of Tail = $1-p_i$

Coin i	Result	y i	Probability
1	Heads	1	p ₁
2	Tails	0	1-p ₂
3	Heads	1	p ₃
4	Heads	1	p ₄
5	Tails	0	1-p ₅
6	Tails	0	1-p ₆
7	Heads	1	p ₇
8	Heads	1	p ₈
9	Heads	1	p 9
	•••		•••
n	Tails	0	1-p _n

Coin i	Result	y i	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p ₄
5	Tails	0	X 5	1-p ₅
6	Tails	0		1-p ₆
7	Heads	1	•••	p ₇
8	Heads	1		p ₈
9	Heads	1	•••	p ₉
•••				
n	Tails	0	Xn	1-p _n

Coin i	Result	y i	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p ₄
5	Tails	0	X 5	1-p ₅
6	Tails	0		1-p ₆
7	Heads	1		p ₇
8	Heads	1		p ₈
9	Heads	1	•••	p ₉
n	Tails	0	Xn	1-p _n

Coin i	Result	Уi	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X ₂	1-p ₂
3	Heads	1	X 3	p ₃
4	Heads	1	X 4	p ₄
5	Tails	O	X 5	1-p ₅

Coin i	Result	Уi	Xi	Probability
1	Heads	1	X 1	p ₁
2	Tails	0	X 1	1-p ₁
3	Heads	1	X 1	P ₁
4	Heads	1	X 1	p ₁
5	Tails	0	X 1	1-p ₁

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5

Collapse these 5 rows into a single row, where the probabilities "fit" the data

If x is continuous, we will need to create ranges of x-values

Frequency Table

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5
X ₂	8	12	$p_2 = 8/(8+12) = 2/5$	3/5
•••	•••	•••	•••	•••

Create a frequency table with 1 row for each unique value of x

Frequency Table

Unique x _i	Frequency(y = 1)	Frequency(y = 0)	p(y _i)	1 - p(y _i)
X 1	3	2	$p_1 = 3/(3+2) = 3/5$	2/5
X ₂	8	12	$p_2 = 8/(8+12) = 2/5$	3/5
•••	•••	•••	•••	•••

Now, unlike with the MLE approach, each p_i is a continuous variable

Odds from Probabilities

$$Odds(p) = \frac{p}{1-p}$$

Odds of an Event

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

Odds of an Event

$$1 - p = 1 - \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1 + e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 + e^{A + Bx}$$

$$1 + e^{A + Bx}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds of an Event

$$p = \frac{e^{A + Bx}}{1 + e^{A + Bx}}$$

$$1 - p = \frac{1}{1 + e^{A + Bx}}$$

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

Logit Is Linear

Odds(p) =
$$\frac{p}{1-p}$$
 = $e^{A + Bx}$

$$logit(p) = A + Bx$$

In(Odds(p)) is called the logit function

Logit Is Linear

$$ln Odds(p) = ln(p) - ln(1-p)$$

$$p = \frac{1}{1 + e^{-(A+Bx)}}$$

$$logit(p) = ln Odds(p) = A + Bx$$

This is a linear function!

Logit Is Linear

logit(p) =
$$A + Bx$$

logit(p₁) = $A + Bx_1$
logit(p₂) = $A + Bx_2$
logit(p₃) = $A + Bx_3$
... A + Bx_3
logit(p_n) = $A + Bx_n$

Tossing n Coins - Linear

logit(p) =
$$A + Bx$$

logit(p₁) = $A + Bx_1 + \varepsilon_1$
logit(p₂) = $A + Bx_2 + \varepsilon_2$
logit(p₃) = $A + Bx_3 + \varepsilon_3$
...
logit(p_n) = $A + Bx_n + \varepsilon_n$

Logistic Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Linear Regression

Linear Regression

Represent all n points as (x_i,y_i) , where i = 1 to n

Logistic Regression can be solved via **linear** regression on the logit function (log of the odds function)

Linear Regression Estimation Methods

Method of moments

Method of least squares

Maximum likelihood estimation

Cookie cutter techniques to determine the values of A and B (regression coefficients)

Binomial and Multinomial Logistic Regression

Binomial and Multinomial

Binomial

Two categorical outcomes

(Head/Tail; True/False)

Multinomial

>Two categorical outcomes

(Days in a week; Months in a year)

Whales: Mammals or Fish?

Mammals

Fish

Result	Mammals	Fish
Label (y _i)	0	1
Probability $(p(y_i))$	p	1-p

Whales: Mammals or Fish?

Rule of 50%

If probability < 50%, it's a mammal

If probability > 50%, it's a fish

Probability of whales being Fish < 50%

Probability of whales being Fish > 50%

Binomial and Multinomial

Binomial

Two categorical outcomes

(Head/Tail; True/False)

Multinomial

>Two categorical outcomes

(Days in a week; Months in a year)

Whales: Mammals or Fish or Reptiles?

Mammals

Fish

Reptiles

Result	Mammals	Fish	Reptiles
Label (y _i)	0	1	2
Probability $(p(y_i))$	p_0	p ₁	p ₂
Probability (p(y _i '))	1-p ₀	1-p ₁	1-p ₂

Whales: Mammals or Fish or Reptiles?

Run three logistic regressions

Mammals or Not?

Fish or Not?

Whales: Mammals or Fish or Reptiles?

Choose the highest probability

Mammals or Not?

Fish or Not?

Reptiles or Not?

Mammals

 $p_{mammal} = 0.55$

Fish

 $p_{fish} = 0.4$

Reptiles

 $p_{reptile} = 0.05$

Pmammal > Pfish > Preptile

Pmammal < Pfish > Preptile

Multinomial Is Non-binary **Mammals** Fish **Reptiles**

Pmammal < Pfish < Preptile

Binomial and Multinomial

Binomial

Two categorical outcomes

One logistic regression

Multinomial

N categorical outcomes

N logistic regressions

Regression: Excel, R or Python

Excel

Create a regression slide for an important presentation

R

Create a regression case study for a seminar

Python

Build trading model that scrapes websites, combines sentiment analysis and regression

A simple multinomial logistic regression technique uses N logistic models for N categories

Summary

Logistic regression fits an S-curve between probabilities and causes

S-curves have a standard mathematical form that is easy to estimate

Two equivalent methods of fitting S-curves are commonly used

One of these methods cleverly utilises linear regression in logistic regression

Logistic regression can be easily extended to non-binary categorical variables