

Control

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

Ingeniería automática y los sistemas de control

Se ocupa del **control de sistemas dinámicos** en procesos de todo tipo.

• Se considera campo interdisciplinario de la ingeniería y de las matemáticas.

Estudia como llevar sistemas a estados deseados en función de sus entradas (también denominadas **referencia**):

- Tratando de minimizar el tiempo dedicado a ello.
- También el tiempo de rebasamiento y de error estacionario.
- Garantizando un nivel de estabilidad de control
- Persiguiendo el grado de optimalidad.

Otros aspectos de estudio son la controlabilidad y la observabilidad:

- Controlabilidad : Capacidad de mover un sistema en todo su espacio de configuración utilizando sólo ciertas manipulaciones admisibles
- Observabilidad: Medida de lo bien que pueden inferirse los estados internos

Función de transferencia

Función matemática que modela teóricamente la salida de un sistema para cada entrada posible.

El caso más sencillo ofrece una entrada para una salida:

- La gráfica generada de denomina curva de transferencia o curva característica
- Es muy habitual en campos como el procesamiento de señal, la teoría de la comunicación o la teoría del control

Suele utilizarse exclusivamente para referirse a los sistemas lineales invariantes en el tiempo (LTI).

- La mayoría de sistemas tienen características de entrada/salida no lineales
- Muchos de ellos tienen un comportamiento casi lineal dentro de sus parámetros "normales"

Ingeniería automática

Es la disciplina que aplica la Teoría del control, con dos objetivos fundamentales:

- 1. Modelado de sistemas dinámicos (por ejemplo, sistemas mecánicos).
- 2. Diseño de controladores para regular el comportamiento de dichos sistemas.

Muchos controladores son eléctricos y por ello se considera subcampo de la Ingeniería eléctrica

- Aún así, no tiene por qué, tabién existen controladores mecánicos.
- Incluso hay Sistemas software controlados por controladores Software.

Las bases de esta ingeniería se sentaron a mediados del Siglo XX a partir de la cibernética. Sus principales aportaciones corresponden a Norbert Wiener, Rudolf Kalman y David G. Luenberger.

Regulan el comportamiento de otros sistemas mediante bucles de control.

Tres tipos diferentes:

 Naturales: Los sistemas de control existentes en la naturaleza (e.g. coger una pelota)

Artificiales, Febricades per al car burgane (e.g. control de arusero)

Clasificación según anticipación a la salida

Punto de vista donde se determina la relación entre la salida y los valores actual y pasados.

Causales: La salida es consecuencia del valor actual y pasado de la entrada.

• Son con los que trabajaremos normalmente porque modelan sistemas reales

No causales: No es posible determinar la salida en función de la entrada.

 No existen físicamente, son representaciones abstractas donde la salida depende de valores futuros de la entrada

Clasificación según número de entradas y salidas

Clasificación sencilla en función de si hay una o muchas entradas o salidas:

- SISO (Single input, single output)
- **SIMO** (Single input, multipe output)
- MISO (Multiple input, single output)
- MIMO (Multiple input, multiple output)

Clasificación según función de transferencia

Un sistema es lineal si su función característica cumple los principios de:

Homogeneidad

Superposición

Por tanto el controlador se denominará:

- Lineal: Si cumple ambos principios de superposición y homogeneidad.
- No lineal : Si no cumple al menos uno de ellos.

Clasificación según paso del tiempo

Ya que un sistema a controlar es función del tiempo, se pueden clasificar como:

- Tiempo continuo: El tiempo evoluciona de manera continua.
- Tiempo discreto: El tiempo evoluciona de manera discreta.
- Eventos discretos: La tiempo evoluciona cuando ocurren ciertos eventos.

Clasificación según relación entre las variables de entrada

Cuando hablamos de varios controladores, estos se pueden clasificar como:

- Sistemas acoplados: Si las variables de ambos están relacionadas entre sí.
- Sistemas desacoplados: Las variables de un sistema no tienen relación ninguna con las de otro.

Clasificación según evolución de parámetros internos

Los controladores mantienen parámetros que modulan su respuesta. Así diferenciamos dos tipos de controladores:

- Estacionarios: Los parámetros no varían durante su funcionamiento.
- No estacionarios : Los parámetros pueden variar a lo largo del tiempo.

Clasificación según respuesta del sistema

En función de la variabilidad de la respuesta que da un sistema, podemos encontrarnos con sistemas:

- Estables: Para toda entrada acotada la respuesta es acotada.
- Inestables: Existe al menos una entrada acotada que produce una salida no acotada.

Clasificación según realimentación

Realimentación: Relación secuencial de causas y efectos entre variables.

- O de otro modo, cuando una o más variables de salida se pasan a la entrada.
- También se la conoce como retroalimentación o feedback

Dependiendo de la acción correctiva que tome el sistema:

- Si es apoyar la salida: Realimentación positiva o "efecto bola de nieve".
- En caso contrario: Realimentación negativa o regulación autocompensatoria.

Dos tipos, de lazo cerrado y de lazo abierto

Control de lazo cerrado

Cuando se usa la realimentación para minimizar el error de la salida.

• El controlador usa el *feedback* para conocer en cada momento la salida real.

El *feedback* provee al controlador de un comportamiento correctivo:

- 1. El controlador monitoriza una variable de salida (PV, de *Process Variable*).
- 2. La compara con la referencia, consigna o punto de ajuste (SP, de set point).
- 3. SP-PV da lugar a la **señal de error** , que es la salida a minimizar

Ejemplos de estos sistemas de control:

- Convergencia fonética de un humano.
- Control de crucero de un vehículo.

Control de lazo abierto

Aquellos controladores que no tienen en cuenta su influencia en el entorno.

Ejemplos de estos sistemas de control:

- Tostadora (las hay que comprueban el color de la rebanada).
- Secadora estándar (las hay que comprueban la humedad del tambor de secado).

Controladores de lazo abierto vs. lazo cerrado

Lazo abierto

Ventajas

• Sencillos, de fácil mantenimiento

Inconvenientes

- Requieren calibración inicial
- Sensibles a perturbaciones
- Mejor en modelos simples

Lazo cerrado

Ventajas

- Control de sistemas inestables
- Robustez frente perturbaciones

Inconvenientes

- Mayor coste (más sensores)
- Son más complejos de modelar

Clasificación según predictibilidad

En función de lo predecible de la respuesta de un sistema, lo podemos clasificar como:

- Determinista: Si su comportamiento es extremadamente predecible.
- Estocástico: Si es imposible predecir su comportamiento futuro.

Cibernética

Control

¿Hablamos de modelos ocultos de Markov? A lo mejor podemos hablar de ello en un apartado o transparencia aparte de "añadiendo inpredictibilidad" o alguna cosa así

Control y cibernética

Robótica

Alberto Díaz y Raúl Lara Curso 2022/2023 Departamento de Sistemas Informáticos

License CC BY-NC-SA 4.0

¡GRACIAS!