MA 101 (Mathematics-I)

Consider the "sequence" of rationals

 $1.4, 1.41, 1.414, 1.4142, 1.41421, \dots$

Consider the "sequence" of rationals

$$1.4, 1.41, 1.414, 1.4142, 1.41421, \dots$$

Their squares are:

```
1.96, 1.9881, 1.99396, 1.99996164, 1.9999899241, \dots
```

Consider the "sequence" of rationals

$$1.4, 1.41, 1.414, 1.4142, 1.41421, \dots$$

Their squares are:

```
1.96, 1.9881, 1.99396, 1.99996164, 1.9999899241, \dots
```

It seems that the above numbers are getting closer and closer to 2.

Consider the "sequence" of rationals

$$1.4, 1.41, 1.414, 1.4142, 1.41421, \dots$$

Their squares are:

```
1.96, 1.9881, 1.99396, 1.99996164, 1.9999899241, \dots
```

It seems that the above numbers are getting closer and closer to 2.

Therefore, the rationals 1.4, 1.41, 1.414, 1.4142, 1.41421, . . . are getting closer and closer to $\sqrt{2}$.

Definition (Sequence)

A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f: \mathbb{N} \to \mathbb{R}$. We write x_n for $f(n), n \in \mathbb{N}$ and it is customary to denote a sequence as $\langle x_n \rangle$ or $\{x_n\}$.

Definition (Sequence)

A sequence of real numbers or a sequence in \mathbb{R} is a mapping $f: \mathbb{N} \to \mathbb{R}$. We write x_n for $f(n), n \in \mathbb{N}$ and it is customary to denote a sequence as $\langle x_n \rangle$ or $\langle x_n \rangle$ or $\langle x_n \rangle$.

Example

There are different ways of expressing a sequence. For example:

- **1** Constant sequence: (a, a, a, ...), where $a \in \mathbb{R}$
- **2** Sequence defined by listing: (1, 4, 8, 11, 52, ...)
- **3** Sequence defined by rule: (x_n) , where $x_n = 3n^2$ for all $n \in \mathbb{N}$
- **4** Sequence defined recursively: (x_n) , where $x_1 = 4$ and $x_{n+1} = 2x_n 5$ for all $n \in \mathbb{N}$

Convergence: What does it mean?

Think of the examples:

- **1** (2, 2, 2, . . .)
- $2\left(\frac{1}{n}\right)$
- 3 $((-1)^n \frac{1}{n})$
- $(1, 2, 1, 2, \ldots)$
- \circ (\sqrt{n})
- 6 $((-1)^n(1-\frac{1}{n}))$

Definition (Convergent sequence)

A sequence (x_n) is said to be convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$. We say that ℓ is a limit of (x_n) .

Definition (Convergent sequence)

A sequence (x_n) is said to be convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$. We say that ℓ is a limit of (x_n) .

Notation: We write $\lim_{n\to\infty} x_n = \ell$ or $x_n \to \ell$.

Definition (Convergent sequence)

A sequence (x_n) is said to be convergent if there exists $\ell \in \mathbb{R}$ such that for every $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ satisfying $|x_n - \ell| < \varepsilon$ for all $n \ge n_0$. We say that ℓ is a limit of (x_n) .

Notation: We write $\lim_{n\to\infty} x_n = \ell$ or $x_n \to \ell$.

Theorem

Limit of a convergent sequence is unique.

Using the definition of convergence of a sequence, show that $\lim_{n\to\infty}\frac{1}{n}=0$.

Using the definition of convergence of a sequence, show that $\lim_{n\to\infty}\frac{1}{n}=0$.

Example

If p > 0, then $\frac{1}{n^p} \to 0$.

Using the definition of convergence of a sequence, show that $\lim_{n\to\infty}\frac{1}{n}=0$.

Example

If p > 0, then $\frac{1}{n^p} \to 0$.

Example

Consider the sequence (x_n) where $x_n = (-1)^n$. The terms of the sequence are $-1, 1, -1, 1, -1, 1, \ldots$ It is intuitively clear that this sequence does not approach to any real number. Therefore, the sequence does not converge. We now establish this fact by using the definition.

Bounded sequence: Given a sequence (x_n) , we can ask whether the set $\{x_1, x_2, x_3, \ldots\}$ is bounded or not. If this set is bounded then we call that the sequence (x_n) is bounded. Equivalently, the sequence (x_n) is bounded if there is a positive number M such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. If (x_n) is not bounded then it is said to be unbounded.

Bounded sequence: Given a sequence (x_n) , we can ask whether the set $\{x_1, x_2, x_3, \ldots\}$ is bounded or not. If this set is bounded then we call that the sequence (x_n) is bounded. Equivalently, the sequence (x_n) is bounded if there is a positive number M such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. If (x_n) is not bounded then it is said to be unbounded.

Theorem

Every convergent sequence is bounded.

Bounded sequence: Given a sequence (x_n) , we can ask whether the set $\{x_1, x_2, x_3, \ldots\}$ is bounded or not. If this set is bounded then we call that the sequence (x_n) is bounded. Equivalently, the sequence (x_n) is bounded if there is a positive number M such that $|x_n| \leq M$ for all $n \in \mathbb{N}$. If (x_n) is not bounded then it is said to be unbounded.

Theorem

Every convergent sequence is bounded.

Remark

- From the above theorem, it follows that if a sequence is not bounded then it is not convergent. For example, the sequence (\sqrt{n}) is unbounded and hence is not convergent.
- Every bounded sequence is not convergent. For example, $((-1)^n)$ is a bounded sequence but it does not converge.

Limit rules for convergent sequences

Theorem

Let $x_n \to x$ and $y_n \to y$. Then

- (a) $x_n + y_n \rightarrow x + y$.
- (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.
- (c) $|x_n| \rightarrow |x|$.
- (d) $x_n y_n \to xy$.
- (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Limit rules for convergent sequences

Theorem

Let $x_n \to x$ and $y_n \to y$. Then

- (a) $x_n + y_n \rightarrow x + y$.
- (b) $\alpha x_n \to \alpha x$ for all $\alpha \in \mathbb{R}$.
- (c) $|x_n| \rightarrow |x|$.
- (d) $x_n y_n \to xy$.
- (e) $\frac{x_n}{y_n} \to \frac{x}{y}$ if $y_n \neq 0$ for all $n \in \mathbb{N}$ and $y \neq 0$.

Example

The sequence $(\frac{2n^2-3n}{3n^2+5n+3})$ is convergent with limit $\frac{2}{3}$.

Theorem (Sandwich theorem)

Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \leq y_n \leq z_n$ for all $n \geq n_0$ for some $n_0 \in \mathbb{N}$. If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Theorem (Sandwich theorem)

Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \leq y_n \leq z_n$ for all $n \geq n_0$ for some $n_0 \in \mathbb{N}$. If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Example

$$\lim_{n\to\infty}\frac{\cos n}{n}=0.$$

Theorem (Sandwich theorem)

Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \leq y_n \leq z_n$ for all $n \geq n_0$ for some $n_0 \in \mathbb{N}$. If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Example

$$\lim_{n\to\infty}\frac{\cos n}{n}=0.$$

Example

The sequence $(\sqrt{n+1} - \sqrt{n})$ is convergent with limit 0.

Theorem (Sandwich theorem)

Let (x_n) , (y_n) , (z_n) be sequences such that $x_n \leq y_n \leq z_n$ for all $n \geq n_0$ for some $n_0 \in \mathbb{N}$. If both (x_n) and (z_n) converge to the same limit ℓ , then (y_n) also converges to ℓ .

Example

$$\lim_{n\to\infty}\frac{\cos n}{n}=0.$$

Example

The sequence $(\sqrt{n+1} - \sqrt{n})$ is convergent with limit 0.

Example

If $\alpha > 0$, then the sequence $(\alpha^{\frac{1}{n}})$ converges to 1.

The sequence $(n^{\frac{1}{n}})$ converges to 1.

The sequence $(n^{\frac{1}{n}})$ converges to 1.

Example

If
$$p > 0$$
 and $\alpha \in \mathbb{R}$, then $\frac{n^{\alpha}}{(1+p)^n} \to 0$.

The sequence $(n^{\frac{1}{n}})$ converges to 1.

Example

If
$$p > 0$$
 and $\alpha \in \mathbb{R}$, then $\frac{n^{\alpha}}{(1+p)^n} \to 0$.

Theorem

Let $r \in \mathbb{R}$. Then there exists a sequence (x_n) of rational numbers such that $\lim_{n \to \infty} x_n = r$.

Divergent sequences

A sequence (x_n) is said to be divergent if it has no limit.

Divergent sequences

A sequence (x_n) is said to be divergent if it has no limit.

Example

- If (x_n) is unbounded then it is divergent.
- (\sqrt{n}) , $(3n^2)$, $((-1)^n n^3)$ are all divergent.

Example

The sequence $((-1)^n)$ is not convergent, and so it is a divergent sequence although it is bounded.

Definition

A sequence (x_n) is said to approach infinity or diverges to infinity if for any real number M>0, there is a positive integer n_0 such that $x_n\geq M$ for all $n\geq n_0$. Similarly, (x_n) is said to approach $-\infty$ or diverges to $-\infty$ if for any real number M>0, there is a positive integer n_0 such that $x_n<-M$ for all $n>n_0$.

Definition

Definition

A sequence (x_n) is said to be increasing if $x_{n+1} \ge x_n$ for all $n \in \mathbb{N}$. Similarly, (x_n) is said to be decreasing if $x_{n+1} \le x_n$ for all $n \in \mathbb{N}$. We say that (x_n) is monotonic if it is either increasing or decreasing.

1 The sequence $(\frac{1}{n})$ is decreasing.

Definition

- **1** The sequence $(\frac{1}{n})$ is decreasing.
- **2** The sequence $(n + \frac{1}{n})$ is increasing.

Definition

- **1** The sequence $(\frac{1}{n})$ is decreasing.
- **2** The sequence $(n + \frac{1}{n})$ is increasing.
- **3** The sequence $(\cos \frac{n\pi}{3})$ is not monotonic.

Definition

- **1** The sequence $(\frac{1}{n})$ is decreasing.
- **2** The sequence $(n + \frac{1}{n})$ is increasing.
- **3** The sequence $\left(\cos \frac{n\pi}{3}\right)$ is not monotonic.
- The sequence $((-1)^n)$ is not monotonic.

Convergence of Monotone sequences

Theorem

If (x_n) is increasing and not bounded above then (x_n) diverges to ∞ . If (x_n) is decreasing and not bounded below then (x_n) diverges to $-\infty$.

Convergence of Monotone sequences

Theorem

If (x_n) is increasing and not bounded above then (x_n) diverges to ∞ . If (x_n) is decreasing and not bounded below then (x_n) diverges to $-\infty$.

Theorem (Monotone convergence theorem)

Let (x_n) be a sequence of real numbers.

- (a) If (x_n) is increasing and bounded above then (x_n) converges to $\sup\{x_n : n \in \mathbb{N}\}.$
- (b) If (x_n) is decreasing and bounded below then (x_n) converges to $\inf\{x_n : n \in \mathbb{N}\}.$
- (c) A monotonic sequence converges if and only if it is bounded.

Example

Let $x_1 = 1$ and $x_{n+1} = \frac{1}{3}(x_n + 1)$ for all $n \in \mathbb{N}$. Then the sequence (x_n) is convergent and $\lim_{n \to \infty} x_n = \frac{1}{2}$.

Example

Let $x_1=1$ and $x_{n+1}=\frac{1}{3}(x_n+1)$ for all $n\in\mathbb{N}$. Then the sequence (x_n) is convergent and $\lim_{n\to\infty}x_n=\frac{1}{2}$.

Example

Let $x_1 = 1$ and $x_{n+1} = \frac{3}{x_n}$ for all $n \ge 1$. Then (x_n) diverges.

Solution: Let $x_n = (1 + 1/n)^n$. Then

$$x_n = \sum_{k=0}^n \binom{n}{k} \left(\frac{1}{n}\right)^k = 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot \dots \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^n}$$
$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n}\right) \left(1 - \frac{2}{n}\right) \dots \left(1 - \frac{n-1}{n}\right).$$

Solution: Let $x_n = (1 + 1/n)^n$. Then

$$x_n = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^k = 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot \dots \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^n}$$

$$=1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)\cdots\left(1-\frac{n-1}{n}\right).$$

$$X_{n+1}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

Solution: Let $x_n = (1 + 1/n)^n$. Then

$$x_n = \sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{n}\right)^k = 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^2} + \dots + \frac{n(n-1) \cdot \dots \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$$

 X_{n+1}

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

Therefore, we have

$$2 \le x_1 < x_2 < \cdots < x_n < x_{n+1} < \cdots$$

Solution: Let $x_n = (1 + 1/n)^n$. Then

$$x_{n} = \sum_{k=0}^{n} {n \choose k} \left(\frac{1}{n}\right)^{k} = 1 + \frac{n}{1} \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}} + \dots + \frac{n(n-1)\cdots 2\cdot 1}{n!} \cdot \frac{1}{n^{n}}$$

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n} \right) \left(1 - \frac{2}{n} \right) \dots \left(1 - \frac{n-1}{n} \right).$$

 X_{n+1}

$$= 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1} \right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n-1}{n+1} \right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1} \right) \left(1 - \frac{2}{n+1} \right) \dots \left(1 - \frac{n}{n+1} \right).$$

Therefore, we have

$$2 \le x_1 < x_2 < \cdots < x_n < x_{n+1} < \cdots$$

For n > 1, we have

$$2 < x_n < 1 + 1 + \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}}\right) < 2 + \left(1 - \frac{1}{2^{n-1}}\right) < 3.$$

Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- If L < 1, then $x_n \to 0$.
- 2 If L > 1, then (x_n) is divergent.

Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- If L < 1, then $x_n \to 0$.
- 2 If L > 1, then (x_n) is divergent.

Remark

If $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then (x_n) may converge or diverge. For example, the sequence $((-1)^n)$ diverges and L = 1. For any nonzero constant sequence, L = 1 and constant sequences are convergent.

Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- If L < 1, then $x_n \to 0$.
- 2 If L > 1, then (x_n) is divergent.

Remark

If $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then (x_n) may converge or diverge. For example, the sequence $((-1)^n)$ diverges and L = 1. For any nonzero constant sequence, L = 1 and constant sequences are convergent.

Example

If $\alpha \in \mathbb{R}$, then the sequence $\left(\frac{\alpha^n}{n!}\right)$ is convergent.

Let $x_n \neq 0$ for all $n \in \mathbb{N}$ and let $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right|$ exist.

- If L < 1, then $x_n \to 0$.
- 2 If L > 1, then (x_n) is divergent.

Remark

If $L = \lim_{n \to \infty} \left| \frac{x_{n+1}}{x_n} \right| = 1$, then (x_n) may converge or diverge. For example, the sequence $((-1)^n)$ diverges and L = 1. For any nonzero constant sequence, L = 1 and constant sequences are convergent.

Example

If $\alpha \in \mathbb{R}$, then the sequence $\left(\frac{\alpha^n}{n!}\right)$ is convergent.

Example

The sequence $(\frac{2^n}{n^4})$ is not convergent.

Definition (Subsequence)

Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Definition (Subsequence)

Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Example: Think of some divergent sequences and their convergent subsequences.

Definition (Subsequence)

Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Example: Think of some divergent sequences and their convergent subsequences.

Theorem: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

Definition (Subsequence)

Let (x_n) be a sequence in \mathbb{R} . If (n_k) is a sequence of positive integers such that $n_1 < n_2 < n_3 < \cdots$, then (x_{n_k}) is called a subsequence of (x_n) .

Example: Think of some divergent sequences and their convergent subsequences.

Theorem: If a sequence (x_n) converges to ℓ , then every subsequence of (x_n) must converge to ℓ .

Remark: From the above theorem, we have the following:

- If (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \not\to \ell$, then $x_n \not\to \ell$.
- If (x_n) has two subsequences converging to two different limits, then (x_n) cannot be convergent.

Example: We have

Example: We have

• If $x_n = (-1)^n (1 - \frac{1}{n})$ for all $n \in \mathbb{N}$, then (x_n) is not convergent.

Example: We have

- If $x_n = (-1)^n (1 \frac{1}{n})$ for all $n \in \mathbb{N}$, then (x_n) is not convergent.
- **2** Let (x_n) be a sequence in \mathbb{R} . Then (x_{2n}) and (x_{2n-1}) are two subsequences of (x_n) . Suppose that $x_{2n} \to \ell \in \mathbb{R}$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$.

Example: We have

- If $x_n = (-1)^n (1 \frac{1}{n})$ for all $n \in \mathbb{N}$, then (x_n) is not convergent.
- **2** Let (x_n) be a sequence in \mathbb{R} . Then (x_{2n}) and (x_{2n-1}) are two subsequences of (x_n) . Suppose that $x_{2n} \to \ell \in \mathbb{R}$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$.
- **3** The sequence $\left(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, \ldots\right)$ converges to 1.

Example: We have

- If $x_n = (-1)^n (1 \frac{1}{n})$ for all $n \in \mathbb{N}$, then (x_n) is not convergent.
- **2** Let (x_n) be a sequence in \mathbb{R} . Then (x_{2n}) and (x_{2n-1}) are two subsequences of (x_n) . Suppose that $x_{2n} \to \ell \in \mathbb{R}$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$.
- **3** The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Theorem

Every sequence of real numbers has a monotone subsequence.

Example: We have

- If $x_n = (-1)^n (1 \frac{1}{n})$ for all $n \in \mathbb{N}$, then (x_n) is not convergent.
- **2** Let (x_n) be a sequence in \mathbb{R} . Then (x_{2n}) and (x_{2n-1}) are two subsequences of (x_n) . Suppose that $x_{2n} \to \ell \in \mathbb{R}$ and $x_{2n-1} \to \ell$. Then $x_n \to \ell$.
- **3** The sequence $(1, \frac{1}{2}, 1, \frac{2}{3}, 1, \frac{3}{4}, ...)$ converges to 1.

Theorem

Every sequence of real numbers has a monotone subsequence.

Theorem (Bolzano-Weierstrass Theorem)

Every bounded sequence in \mathbb{R} has a convergent subsequence.

Definition (Cauchy sequence)

A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Definition (Cauchy sequence)

A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Theorem: Every Cauchy sequence is bounded.

Definition (Cauchy sequence)

A sequence (x_n) is called a Cauchy sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that $|x_m - x_n| < \varepsilon$ for all $m, n \ge n_0$.

Theorem: Every Cauchy sequence is bounded.

Theorem (Cauchy's criterion for convergence)

A sequence in \mathbb{R} is convergent if and only if it is a Cauchy sequence.

Theorem

Let (x_n) satisfy either of the following conditions:

- $|x_{n+1} x_n| \le \alpha^n \text{ for all } n \in \mathbb{N}$
- ② $|x_{n+2} x_{n+1}| \le \alpha |x_{n+1} x_n|$ for all $n \in \mathbb{N}$,

where $0 < \alpha < 1$. Then (x_n) is a Cauchy sequence.

Theorem

Let (x_n) satisfy either of the following conditions:

$$|x_{n+1}-x_n| \leq \alpha^n$$
 for all $n \in \mathbb{N}$

②
$$|x_{n+2} - x_{n+1}| \le \alpha |x_{n+1} - x_n|$$
 for all $n \in \mathbb{N}$,

where $0 < \alpha < 1$. Then (x_n) is a Cauchy sequence.

Proof of (1).

For all $m, n \in \mathbb{N}$ with m > n, we have

$$|x_{m} - x_{n}| \leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_{m}|$$

$$\leq \alpha^{n} + \alpha^{n+1} + \dots + \alpha^{m-1}$$

$$= \frac{\alpha^{n}}{1 - \alpha} (1 - \alpha^{m-n}) < \frac{\alpha^{n}}{1 - \alpha}$$

Proof of (2) For all $m, n \in \mathbb{N}$ with m > n, we have

$$|x_{m} - x_{n}| \leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n} + \dots + \alpha^{m-2})|x_{2} - x_{1}|$$

$$= \frac{\alpha^{n-1}}{1 - \alpha} (1 - \alpha^{m-n})|x_{2} - x_{1}| \leq \frac{\alpha^{n-1}}{1 - \alpha}|x_{2} - x_{1}|$$

Proof of (2) For all $m, n \in \mathbb{N}$ with m > n, we have

$$|x_{m} - x_{n}| \leq |x_{n} - x_{n+1}| + |x_{n+1} - x_{n+2}| + \dots + |x_{m-1} - x_{m}|$$

$$\leq (\alpha^{n-1} + \alpha^{n} + \dots + \alpha^{m-2})|x_{2} - x_{1}|$$

$$= \frac{\alpha^{n-1}}{1 - \alpha} (1 - \alpha^{m-n})|x_{2} - x_{1}| \leq \frac{\alpha^{n-1}}{1 - \alpha}|x_{2} - x_{1}|$$

Example: Let (x_n) be a sequence defined as $x_1=1$ and $x_{n+1}=1+\frac{1}{x_n}$ for $n\in\mathbb{N}$. Then $x_{n+1}x_n=1+x_n>2$. Now,

$$|x_{n+2}-x_{n+1}|=|\frac{x_{n+1}-x_n}{x_{n+1}x_n}|<\frac{1}{2}|x_{n+1}-x_n|.$$

Hence, (x_n) is a Cauchy sequence.

Let (x_n) be a bounded sequence. Let $y_1 = \sup\{x_1, x_2, \ldots\}$, $y_2 = \sup\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$, $y_n = \sup\{x_n, x_{n+1}, \ldots\} = \sup x_k$.

Let (x_n) be a bounded sequence. Let $y_1 = \sup\{x_1, x_2, \ldots\}$, $y_2 = \sup\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$y_n = \sup\{x_n, x_{n+1}, \ldots\} = \sup_{k \ge n} x_k.$$

We have

$$y_1 \geq y_2 \geq y_3 \geq \cdots$$
.

Let (x_n) be a bounded sequence. Let $y_1 = \sup\{x_1, x_2, \ldots\}$, $y_2 = \sup\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$y_n = \sup\{x_n, x_{n+1}, \ldots\} = \sup_{k \ge n} x_k.$$

We have

$$y_1 \geq y_2 \geq y_3 \geq \cdots$$
.

By Monotone convergence theorem, (y_n) is convergent and converges to the infimum of $\{y_1, y_2, \ldots\}$.

Let (x_n) be a bounded sequence. Let $y_1 = \sup\{x_1, x_2, \ldots\}$, $y_2 = \sup\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$y_n = \sup\{x_n, x_{n+1}, \ldots\} = \sup_{k \ge n} x_k.$$

We have

$$y_1 \geq y_2 \geq y_3 \geq \cdots$$
.

By Monotone convergence theorem, (y_n) is convergent and converges to the infimum of $\{y_1, y_2, \ldots\}$.

The limit of the sequence (y_n) is called the limit superior of the sequence (x_n) , and is denoted by $\limsup x_n$.

Let (x_n) be a bounded sequence. Let $y_1 = \sup\{x_1, x_2, \ldots\}$, $y_2 = \sup\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$y_n = \sup\{x_n, x_{n+1}, \ldots\} = \sup_{k \ge n} x_k.$$

We have

$$y_1 \geq y_2 \geq y_3 \geq \cdots$$
.

By Monotone convergence theorem, (y_n) is convergent and converges to the infimum of $\{y_1, y_2, \ldots\}$.

The limit of the sequence (y_n) is called the limit superior of the sequence (x_n) , and is denoted by $\limsup x_n$. Thus,

$$\limsup x_n := \lim_{n \to \infty} y_n = \inf \{ y_1, y_2, \ldots \} = \inf_n \sup_{k > n} x_k.$$

Similarly, let $z_1=\inf\{x_1,x_2,\ldots\}$, $z_2=\inf\{x_2,x_3,\ldots\}$, and so on. That is, for $n\in\mathbb{N}$,

$$z_n = \inf\{x_n, x_{n+1}, \ldots\} = \inf_{k > n} x_k.$$

Similarly, let $z_1=\inf\{x_1,x_2,\ldots\}$, $z_2=\inf\{x_2,x_3,\ldots\}$, and so on. That is, for $n\in\mathbb{N}$,

$$z_n = \inf\{x_n, x_{n+1}, \ldots\} = \inf_{k > n} x_k.$$

We have

$$z_1 \leq z_2 \leq z_3 \leq \cdots.$$

Similarly, let $z_1=\inf\{x_1,x_2,\ldots\}$, $z_2=\inf\{x_2,x_3,\ldots\}$, and so on. That is, for $n\in\mathbb{N}$,

$$z_n = \inf\{x_n, x_{n+1}, \ldots\} = \inf_{k \ge n} x_k.$$

We have

$$z_1 \leq z_2 \leq z_3 \leq \cdots$$
.

By Monotone convergence theorem, (z_n) is convergent and converges to the supremum of $\{z_1, z_2, \ldots\}$.

Similarly, let $z_1 = \inf\{x_1, x_2, \ldots\}$, $z_2 = \inf\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$z_n = \inf\{x_n, x_{n+1}, \ldots\} = \inf_{k \ge n} x_k.$$

We have

$$z_1 \leq z_2 \leq z_3 \leq \cdots$$
.

By Monotone convergence theorem, (z_n) is convergent and converges to the supremum of $\{z_1, z_2, \ldots\}$.

The limit of the sequence (z_n) is called the limit inferior of the sequence (x_n) , and is denoted by $\liminf x_n$.

Similarly, let $z_1 = \inf\{x_1, x_2, \ldots\}$, $z_2 = \inf\{x_2, x_3, \ldots\}$, and so on. That is, for $n \in \mathbb{N}$,

$$z_n = \inf\{x_n, x_{n+1}, \ldots\} = \inf_{k > n} x_k.$$

We have

$$z_1 \leq z_2 \leq z_3 \leq \cdots$$
.

By Monotone convergence theorem, (z_n) is convergent and converges to the supremum of $\{z_1, z_2, \ldots\}$.

The limit of the sequence (z_n) is called the limit inferior of the sequence (x_n) , and is denoted by $\liminf x_n$.

Thus,

$$\liminf_{n\to\infty} x_n := \lim_{n\to\infty} z_n = \sup\{z_1, z_2, \ldots\} = \sup_n \inf_{k\geq n} x_k.$$

Remark: Suppose that $|x_n| < M$ for $n \in \mathbb{N}$. Then $-M \le z_n \le y_n \le M$ for all n. Hence,

 $-M \le \liminf x_n \le \limsup x_n \le M$.

Remark: Suppose that $|x_n| < M$ for $n \in \mathbb{N}$. Then $-M \le z_n \le y_n \le M$ for all n. Hence,

 $-M \le \liminf x_n \le \limsup x_n \le M$.

Example: Consider the sequence (x_n) , where $x_n = (-1)^n$. Clearly, for any n, $y_n = \sup\{x_n, x_{n+1}, \ldots\} = 1$ and $z_n = \inf\{x_n, x_{n+1}, \ldots\} = -1$. Hence,

 $\limsup x_n = 1$ and $\liminf x_n = -1$.

Remark: Suppose that $|x_n| < M$ for $n \in \mathbb{N}$. Then $-M \le z_n \le y_n \le M$ for all n. Hence,

 $-M \le \liminf x_n \le \limsup x_n \le M$.

Example: Consider the sequence (x_n) , where $x_n = (-1)^n$. Clearly, for any n, $y_n = \sup\{x_n, x_{n+1}, \ldots\} = 1$ and $z_n = \inf\{x_n, x_{n+1}, \ldots\} = -1$. Hence,

 $\limsup x_n = 1$ and $\liminf x_n = -1$.

Example: Consider the sequence (x_n) , where $x_n = \frac{1}{n}$. Clearly, for any n, $y_n = \sup\{\frac{1}{k} : k \ge n\} = \frac{1}{n}$ and $z_n = \inf\{\frac{1}{k} : k \ge n\} = 0$. Hence, $\limsup x_n = \lim_{n \to \infty} y_n = \lim_{n \to \infty} \frac{1}{n} = 0$ and $\liminf x_n = 0$.

Let (a_n) and (b_n) be two bounded sequences.

- 1 lim inf $a_n \leq \lim \sup a_n$.
- **2** If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\limsup a_n \leq \limsup b_n$ and $\liminf a_n \leq \liminf b_n$.
- § $\limsup(a_n + b_n) \le \limsup a_n + \limsup b_n$ and $\lim\inf(a_n + b_n) \ge \liminf a_n + \liminf b_n$.

Let (a_n) and (b_n) be two bounded sequences.

- 1 lim inf $a_n \leq \lim \sup a_n$.
- **2** If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\limsup a_n \leq \limsup b_n$ and $\liminf a_n \leq \liminf b_n$.
- **3** lim sup $(a_n + b_n)$ ≤ lim sup a_n + lim sup b_n and lim inf $(a_n + b_n)$ ≥ lim inf a_n + lim inf b_n .

Theorem

If (a_n) is a convergent sequence, then

$$\liminf a_n = \lim_{n \to \infty} a_n = \limsup a_n.$$

Let (a_n) and (b_n) be two bounded sequences.

- 1 lim inf $a_n \leq \lim \sup a_n$.
- **2** If $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $\limsup a_n \leq \limsup b_n$ and $\liminf a_n \leq \liminf b_n$.
- § $\limsup(a_n + b_n) \le \limsup a_n + \limsup b_n$ and $\lim\inf(a_n + b_n) \ge \liminf a_n + \liminf b_n$.

Theorem

If (a_n) is a convergent sequence, then

$$\liminf a_n = \lim_{n \to \infty} a_n = \limsup a_n.$$

Theorem

Let (a_n) be a bounded sequence. If $\limsup a_n = \liminf a_n$, then (a_n) is convergent and $\lim_{n\to\infty} a_n = \limsup a_n$.