Caos y el péndulo doble Un problema de valores iniciales

Luis A. Núñez

Escuela de Física Universidad Industrial de Santander Bucaramanga, Colombia

1 de junio de 2021

Resumen

Presentamos una propuesta de experimento numérico para explorar el caos determinísta. El sistema mecánico será el péndulo doble

1. El problema

Explorar la evolución de las variables dinámicas de un péndulo doble El péndulo doble es un sistema como se muestra en la figura : dos masas m_1 y m_2 atadas a dos varillas sin masas de longitudes l_1 y l_2 , respectivamente.

Consideremos las siguientes ecuaciones diferenciales ordinarias de segundo orden que describen la dinámica del sistema antes mencionado:

$$\ddot{\theta}_1 = \frac{g(\operatorname{sen}\,\theta_2 \cos \Delta\theta - M \operatorname{sen}\,\theta_1) - (l_2\dot{\theta}_2^2 + l_1\dot{\theta}_1^2 \cos \Delta\theta)\operatorname{sen}\Delta\theta}{l_1(M - \cos^2 \Delta\theta)} \tag{1}$$

$$\ddot{\theta}_2 = \frac{gM(\operatorname{sen}\,\theta_1\cos\Delta\theta - \operatorname{sen}\,\theta_2) - (Ml_1\dot{\theta}_1^2 + l_2\dot{\theta}_2^2\cos\Delta\theta)\operatorname{sen}\Delta\theta}{l_2(M - \cos^2\Delta\theta)}.$$
(2)

Donde $M \equiv 1 + m_1/m_2$ y $\Delta \theta = \theta_1 - \theta_2$.

- 1. A partir del sistema de ecuaciones diferenciales (1) y (2), construya un sistema de cuatro ecuaciones diferenciales de primer orden
- 2. Intégrelo numéricamente, tanto para pequeñas como para grandes amplitudes.
- 3. Valide el comportamiento de su integración con los simuladores disponibles en línea, i.e. https://www.myphysicslab.com/pendulum/double-pendulum-en.html
- 4. ¿Cuándo y por qué el sistema muestra el comportamiento caótico? Discuta el espacio de condiciones iniciales para el cual el sistema presenta ese comportamiento caótico
- 5. Analice el comportamiento de su señal en términos del un espectro de potencias de Fourier y de la huella en un espectrograma, para grandes y pequeñas amplitudes. ¿qué puede concluir de ambos comportamientos?
- 6. Linealice el sistema. Esto es: considere $\theta_1 << 1$, $\theta_1 << 1$ y $\theta_1^2 \sim \theta_1^2 \sim 0$, sen $\theta_1 \sim \theta_1$, sen $\theta_2 \sim \theta_2$, $\cos \theta_1 \sim 1$ y $\cos \theta_2 \sim 1$. Muestre que las ecuaciones (1) y (2) se reducen al siguiente sistema de ecuaciones

$$\ddot{\theta}_1 \approx \frac{g(\theta_2 - M\theta_1)}{l_1(M - 1)} \quad \text{y} \quad \ddot{\theta}_2 \approx \frac{gM\Delta\theta}{l_2(M - 1)}$$
 (3)

- 7. Estime la transición entre pequeñas oscilaciones y grandes amplitudes. Esto es, para cuales amplitudes la integración del sistema (1) y (2) reobtiene el sistema (3).
- 8. Compare el comportamiento del espectro de potencias y el espectrograma para ambos sistemas de ecuaciones diferenciales.

Mayores detalles de los conceptos y las ecuaciones que describen este sistema se encuentran en:

- https://en.wikipedia.org/wiki/Double_pendulum
- http://scienceworld.wolfram.com/physics/DoublePendulum.html

Descripciones de la evolución de este sistema están en muchos videos y simuladores. Son particularmente buenos y recomendables los siguientes videos

- https://www.youtube.com/watch?v=fDek6cYijxI
- https://www.youtube.com/watch?v=pEjZd-AvPco