Chamblandes 2010 — Problème 2

La somme des aires du fond, des faces latérales et des rebords vaut :

$$xy + 4x + 4x + 4y + 4y + 3y + 3y = xy + 8x + 14y$$

Sachant que l'aire du fond vaut xy=448, on en tire que $y=\frac{448}{x}$.

Dès lors, la somme des aires du fond, des faces latérales et des rebords s'écrit :

$$f(x) = 448 + 8x + 14 \cdot \frac{448}{x} = 448 + 8x + \frac{6272}{x}$$

Pour déterminer le minimum de cette fonction, il convient d'étudier sa croissance sur $[0; +\infty[$:

$$f'(x) = \left(448 + 8x + \frac{6272}{x}\right)' = (448 + 8x + 6272x^{-1})'$$
$$= 8 - 6272x^{-2} = 8 - \frac{6272}{x^2} = \frac{8x^2 - 6272}{x^2} = \frac{8(x^2 - 784)}{x^2} = \frac{8(x + 28)(x - 28)}{x^2}$$

	-28 0 28			
8	+	+	+	+
x + 28	- () +	+	+
x-28	ı	-	- () +
x^2	+	+	+	+
f'	+ 0 -		- 0 +	
f	→ max		min 7	

On conclut que la somme des aires du fond, des faces latérales et des rebords est minimale si x=28 cm. Dans ce cas, $y=\frac{448}{28}=16$ cm.