report.md 2025-05-30

CUDA 2025 HW1

Result

Threads Per Block	GPU Time (ms)	CPU Time (ms)	Speedup (×)
64	15.200	143.920	9.44
128	7.900	142.600	18.04
256	4.400	143.720	32.78
512	2.600	143.240	55.30
1024	1.600	143.480	91.34

Threads Per Block

report.md 2025-05-30

1. Treand Observation

- Increasing threadsPerBlock (Block Size) improves GPU time.
- GPU time drops from 15.2 ms (64 threads) to 1.6 ms (1024 threads), a nearly 10× reduction.

2. Speedup

- The GPU achieves a speedup of up to \sim 91× over the CPU at 1024 threads per block.
- Speedup improves as thread count increases but shows diminishing returns beyond a certain point (e.g., 512 → 1024 is not a 2× gain).

3. Conclusion:

• The optimal threadsPerBlock for this kernel and dataset on your GPU appears to be 1024, achieving both minimal GPU time and maximum speedup.

Enviroment

• OS: Ubuntu 22.04.3 LTS

CPU: Intel(R) Core(TM) i7-9800X CPU @ 3.80GHz

• GPU: NVIDIA GeForce RTX 2080 Ti

Usage

1. Source Files

Cuda Code: hw1.cuDriver Code: driver.py

report.md 2025-05-30

2. Compile

nvcc hw1.cu -o hw1

3. Single Run

./hw1 <threadsPerBlock> <blocksPerGrid>

4. Block Size Experiment

python3 driver.py