An Inequality for Projections and Convex Functions

Sami Abdullah Abed^{1,*}

(Submitted by Oleg Tikhonov)

¹ Kazan (Volga Region) Federal University, Kremlevskaya ul. 18, Kazan, 420008 Tatarstan, Russia Received November 24, 2016

Abstract—We propose the conditions for a continuous function to be projection-convex, i.e. $f(\lambda p + (1-\lambda)q) \le \lambda f(p) + (1-\lambda)f(q)$ for any projections p and q and any real $\lambda \in (0,1)$. Also we obtain the characterization of projections commutativity and the characterization of trace in terms of equalities for non-flat functions.

2010 Mathematical Subject Classification: 47A56, 47A60, 47A63, 47C15

Keywords and phrases: Hilbert space, von Neumann algebra, projection, measure space, commutativity, convex function, operator inequality

1. INTRODUCTION

The present paper is inspired by [1] and [2]. We establish new criteria for the commutation of projections in terms of operator equalities involving functional calculus. We obtain a trace characterization for the class of all positive normal functionals on a von Neumann algebra. Other trace characterizations may be found in [3]–[8] and [11].

2. PRELIMINARIES

Let H be a Hilbert space over the field $\mathbb C$ and I be the identity operator on H, let B(H) be the *-algebra of all linear bounded operators on H. The *commutant* of a set $X \subset B(H)$ is the set

$$X' = \{ y \in B(H) : xy = yx \text{ for all } x \in X \}.$$

A *-subalgebra \mathcal{M} of the algebra B(H) is called a *von Neumann algebra* acting in the Hilbert space H if $\mathcal{M} = \mathcal{M}''$. If $X \subset B(H)$, then X' is a von Neumann algebra and X'' is the least von Neumann algebra containing X. For a von Neumann algebra \mathcal{M} of operators on H, let \mathcal{M}^{pr} , \mathcal{M}^+ , $\mathcal{Z}(\mathcal{M})$ be the lattice of projections, the cone of positive operators and the center of the algebra \mathcal{M} , respectively. For $p \in \mathcal{M}^{pr}$ put $p^{\perp} = I - p$ and let $\mathcal{M}_p = \{px|_{pH} : x \in \mathcal{M}\}$ be a reduced von Neumann algebra. Let \mathcal{M}^* denote the set of all $\|\cdot\|$ -continuous linear functionals on \mathcal{M} . A linear functional φ on \mathcal{M} is *positive*, if $\varphi(x) \geq 0$ for any $x \in \mathcal{M}^+$. A positive functional φ on \mathcal{M} is tracial if $\varphi(xx^*) = \varphi(x^*x)$ for any $x \in \mathcal{M}$.

The set $K = \{f \in C[0,1]: f(x) \le f(1)x + f(0)(1-x) \text{ for all } x \in [0,1]\}$ is a subcone in C[0,1]. The set of all convex functions $f \in C[0,1]$ and $K_1 = \{f \in C[0,1]: f(x) < f(1)x + f(0)(1-x) \text{ for all } x \in (0,1)\}$ are subcones in K. The non-convex function

$$f(x) = \begin{cases} 1/6 + x/3, & 0 \le x \le 1/3, \\ 5/18, & 1/3 < x < 2/3, \\ 31x/18 - 19/18, & 2/3 \le x \le 1 \end{cases}$$

lies in K_1 .

^{*} E-mail: samialbarkish@gmail.com

Lemma 1 ([10], Chap. 5, Theorem 1.41, item (ii)). If the von Neumann algebra \mathcal{N} is generated by two projections $p, q \in B(H)^{\operatorname{pr}}$ then there exists a unique projection $z \in \mathcal{Z}(\mathcal{N})$ such that the algebra \mathcal{N}_z is of type I_2 and $\mathcal{N}_{z^{\perp}}$ is Abelian with $\dim_{\mathbb{C}} \mathcal{N}_{z^{\perp}} \leq 4$.

Lemma 2 ([9], Theorem 2.3.3). Let a von Neumann algebra \mathcal{N} be of type I_n (n is a cardinal). Then the algebra \mathcal{N} is *-isomorphic to the tensor product $\mathcal{Z}(\mathcal{N})\overline{\otimes}B(K)$, where K is a Hilbert space with $\dim K = n$.

3. A CONVEXITY INEQUALITY FOR PROJECTIONS

Lemma 3. For each pair $p, q \in B(H)^{pr}$ such that pq = qp and any function $f \in K$ the inequality $f(\lambda p + (1 - \lambda)q) \le \lambda f(p) + (1 - \lambda)f(q)$ holds for any $\lambda \in [0, 1]$.

Proof. For projections p, q we consider the von Neumann algebra $\{p, q\}''$. It is Abelian, therefore $\{p, q\}'' \cong L_{\infty}(\Omega, \Sigma, \mu)$ for some measure space (Ω, Σ, μ) and there exist $A, B \in \Sigma$ such that $p \sim I_A$, $q \sim I_B$. Clearly,

$$f(\lambda I_A + (1 - \lambda)I_B) = f(1)I_{A \cap B} + f(0)I_{(A \cup B)^c} + f(\lambda)I_{A \setminus B} + f(1 - \lambda)I_{B \setminus A},$$

also

$$\lambda f(I_A) + (1 - \lambda)f(I_B) = f(1)I_{A \cap B} + f(0)I_{(A \cup B)^c} + (\lambda f(1) + (1 - \lambda)f(0))I_{A \setminus B} + ((1 - \lambda)f(1) + \lambda f(0))I_{B \setminus A}.$$

Remark 1. For each commutative pair $p, q \in B(H)^{\mathrm{pr}}$ and any $f \in K_1$ the equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds if and only if either $\lambda = 1$ or $\lambda = 0$, or $I_{A \setminus B} = I_{B \setminus A} = 0$ (the latter means that p = q).

Lemma 4. For $\lambda \in [0,1]$ and each pair $p,q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}}$ and any function $f \in K$ the inequality $f(\lambda p + (1-\lambda)q) \leq \lambda f(p) + (1-\lambda)f(q)$ holds for all $\lambda \in [0,1]$.

Proof. It suffices to consider p = diag(1,0) and

$$q = \begin{pmatrix} t & \delta\sqrt{t(1-t)} \\ \overline{\delta}\sqrt{t(1-t)} & 1-t \end{pmatrix},\tag{1}$$

where $t \in [0,1]$ and $\delta \in \mathbb{C}$ with $|\delta| = 1$ (see [1]). There exists $r \in \mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$ such that $\lambda p + (1-\lambda)q = \mu_1 r + \mu_2 r^{\perp}$, μ_1 , $\mu_2 \in [0,1]$, $\mu_1 + \mu_2 = 1$. Therefore, $f(\lambda p + (1-\lambda)q) = f(\mu_1)r + f(\mu_2)r^{\perp}$. On the other hand,

$$\lambda f(p) + (1 - \lambda)f(q) = \lambda f(1)p + \lambda f(0)(I - p) + (1 - \lambda)f(1)q + (1 - \lambda)f(0)(I - q)$$

$$= f(0)I + (f(1) - f(0))(\lambda p + (I - \lambda)q) = (f(1)\mu_1 + f(0)(1 - \mu_1))r + (f(1)\mu_2 + f(0)(1 - \mu_2))r^{\perp}.$$

Remark 2. Note that $\mu_{1,2} = \frac{1}{2}(1 \mp \sqrt{1 - 4\lambda(1 - \lambda)(1 - t)})$. For each pair $p, q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}}$ and any $f \in K_1$ the equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds if and only if either $\lambda = 1$ or $\lambda = 0$ or p = q.

Theorem 1. For each pair $p, q \in B(H)^{\operatorname{pr}}$ and any function $f \in K$ the inequality $f(\lambda p + (1 - \lambda)q) \leq \lambda f(p) + (1 - \lambda)f(q)$ holds for any $\lambda \in [0, 1]$.

Proof. Consider the von Neumann algebra $\mathcal{N}=\{p,q\}''$. By Lemma 1 there exists a projection $z\in\mathcal{Z}(\mathcal{N})$ such that an algebra $\mathcal{N}_{z^{\perp}}$ is Abelian and $\mathcal{N}=\mathcal{N}_z\oplus\mathcal{N}_{z^{\perp}}$. Now by Lemma 3 we have $f(\lambda pz^{\perp}+(1-\lambda)qz^{\perp})\leq \lambda f(pz^{\perp})+(1-\lambda)f(qz^{\perp})$. Since $\mathcal{N}_z\cong\mathbb{M}_2(C(\Omega))$ (see Lemmas 1, 2) by Lemma 4 we have $f(\lambda pz+(1-\lambda)qz)\leq \lambda f(pz)+(1-\lambda)f(qz)$. To finish the proof it suffices to note that $f(p)=f(pz\oplus pz^{\perp})=f(pz)\oplus f(pz^{\perp})$.

LOBACHEVSKII JOURNAL OF MATHEMATICS

Remark 3. For each pair $p, q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}}$ and any function $f \in K_1$ the equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds if and only if either $\lambda = 1$ or $\lambda = 0$ or p = q.

Corollary 1. For each pair $p, q \in B(H)^{pr}$ and a convex function $f \in C[0,1]$ the inequality $f(\lambda p + (1-\lambda)q) \le \lambda f(p) + (1-\lambda)f(q)$ holds for any $\lambda \in [0,1]$.

Corollary 2. For each pair $p, q \in B(H)^{pr}$, any strictly convex function $f \in C[0, 1]$ and all $\lambda \in (0, 1)$ the equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds if and only if p = q.

Proof. Consider the von Neumann algebra $\mathcal{N}=\{p,q\}''$. By Lemma 1 there exists a projection $z\in\mathcal{Z}(\mathcal{N})$ such that the algebra $\mathcal{N}_{z^{\perp}}$ is Abelian, $\mathcal{N}=\mathcal{N}_z\oplus\mathcal{N}_{z^{\perp}}$. Note that $f(p)=f(pz\oplus pz^{\perp})=f(pz)\oplus f(pz^{\perp})$, hence

$$f((\lambda p + (1 - \lambda)q)z) \oplus f((\lambda p + (1 - \lambda)q)z^{\perp}) = f((\lambda p + (1 - \lambda)q)z \oplus (\lambda p + (1 - \lambda)q)z^{\perp})$$

$$= f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q) = \lambda f(pz \oplus pz^{\perp}) + (1 - \lambda)f(qz \oplus qz^{\perp})$$

$$= \lambda (f(pz) \oplus f(pz^{\perp})) + (1 - \lambda)(f(qz) \oplus f(qz^{\perp}))$$

$$= (\lambda f(pz)) \oplus (\lambda f(pz^{\perp})) + ((1 - \lambda)f(qz)) \oplus ((1 - \lambda)f(qz^{\perp}))$$

$$= (\lambda f(pz) + (1 - \lambda)f(qz)) \oplus (\lambda f(pz^{\perp}) + (1 - \lambda)f(qz^{\perp})).$$

Thus $f((\lambda p + (1 - \lambda)q)z) = (\lambda f(pz) + (1 - \lambda)f(qz))$ and $f((\lambda p + (1 - \lambda)q)z^{\perp}) = (\lambda f(pz^{\perp}) + (1 - \lambda)f(qz^{\perp}))$. The algebra $\mathcal{N}_{z^{\perp}}$ is Abelian, hence $pz^{\perp} = qz^{\perp}$ by Remark 1. Since $\mathcal{N}_z \cong \mathbb{M}_2(C(\Omega))$ we have pz = qz by Remark 2. Finally, we note that $p = pz + pz^{\perp} = qz + qz^{\perp} = q$.

We may directly prove the inequality for some functions.

Example 1. Let $f(x) = x^3$ for $x \in \mathbb{R}$. Then

$$f(\lambda p + (1 - \lambda)q) = \lambda^3 p + \lambda^2 (1 - \lambda)pqp + \lambda (1 - \lambda)^2 qpq + \lambda (1 - \lambda)(pq + qp) + (1 - \lambda)^3 q.$$

Since $(p-q)^2 \ge 0$, we have $pq + qp \le p + q$. Also $pqp \le p$, $qpq \le q$, hence

$$f(\lambda p + (1 - \lambda)q) \le \lambda^3 p + \lambda^2 (1 - \lambda)p + \lambda (1 - \lambda)^2 q + \lambda (1 - \lambda)(p + q) + (1 - \lambda)^3 q$$
$$= \lambda p + (1 - \lambda)q = \lambda f(p) + (1 - \lambda)f(q).$$

The equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds only if pq + qp = p + q, pqp = p and qpq = q. Thus p = q.

Theorem 1 leads us to another class of functions.

Example 2. The function $f(x) = e^x$ lies in K_1 . Therefore, $e^{\lambda p + (1-\lambda)q} \le \lambda e^p + (1-\lambda)e^q$ for any $\lambda \in [0,1]$ and the equality holds only if p=q.

4. THE COMMUTATIVITY OF PROJECTIONS

Lemma 5. Let $f \in C[0,1]$, $\lambda \in (0,1)$ and $p,q \in \mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$, then the equality $f(\lambda p + (1-\lambda)q) = \lambda f(p) + (1-\lambda)f(q)$ yields p+q = I if and only if $\frac{f(\lambda)-f(0)}{\lambda} = \frac{f(1-\lambda)-f(1)}{1-\lambda} = f(1) - f(0)$ and either $f(\mu) \neq \mu f(1) + (1-\mu)f(0)$ or $f(1-\mu) \neq (1-\mu)f(1) + \mu f(0)$ for any $\mu \in (0,1) \setminus \{\lambda, 1-\lambda\}$.

Proof. Consider $p = \text{diag}(1,0), \ t \in [0,1]$ and $\delta \in \mathbb{C}$ with $|\delta| = 1$, and let q be as in (1). Let $\lambda p + (1-\lambda)q = \mu_1 r + \mu_2 r^{\perp}$, then $f(\lambda p + (1-\lambda)q) = \lambda f(p) + (1-\lambda)f(q)$ implies that $f(\mu_1)r + f(\mu_2)r^{\perp} = \lambda (f(1)p + f(0)p^{\perp}) + (1-\lambda)(f(1)q + f(0)q^{\perp})$. We have $f(\mu_k) = f(0) + (f(1) - f(0))\mu_k$ for k = 1, 2. Therefore,

$$\frac{f(\mu_1) - f(0)}{\mu_1} = \frac{f(\mu_2) - f(0)}{\mu_2} = f(1) - f(0).$$

If these equalities hold and for any $\mu \in (0,1) \setminus \{\lambda, 1-\lambda\}$ either $f(\mu) \neq \mu f(1) + (1-\mu)f(0)$ or $f(1-\mu) \neq (1-\mu)f(1) + \mu f(0)$ then $\{\mu_1, \mu_2\} = \{\lambda, 1-\lambda\}$ since $\mu_1 + \mu_2 = 1$, see Remark 2.

On the other hand, if $\mu \in (0,1) \setminus \{\lambda, 1-\lambda\}$ is such that $f(\mu) = \mu f(1) + (1-\mu)f(0)$ and $f(1-\mu) = (1-\mu)f(1) + \mu f(0)$ then the equality $f(\lambda p + (1-\lambda)q) = \lambda f(p) + (1-\lambda)f(q)$ also holds for p and q such that $\lambda p + (1-\lambda)q = \mu r + (1-\mu)r^{\perp}$. The equality

$$\frac{1}{2}(1 - \sqrt{1 - 4\lambda(1 - \lambda)(1 - t)}) = \mu$$

holds for $t = 1 - \frac{\mu(1-\mu)}{\lambda(1-\lambda)}$, hence the equality $f(\lambda p + (1-\lambda)q) = \lambda f(p) + (1-\lambda)f(q)$ does not imply that q = I - p.

Lemma 6. For each pair $p, q \in B(H)^{pr}$ such that pq = qp, $\lambda \in (0,1)$ and any function $f \in C[0,1]$ such that

$$\frac{f(\lambda) - f(0)}{\lambda} = \frac{f(1 - \lambda) - f(0)}{1 - \lambda} = f(1) - f(0)$$

the equality $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ holds.

Proof. For p,q we consider the von Neumann algebra $\{p,q\}''$. It is Abelian, so $\{p,q\}'' \cong L_{\infty}(\Omega,\Sigma,\mu)$ for some measure space (Ω,Σ,μ) and there exist $A,B\in\Sigma$ such that $p\sim I_A,q\sim I_B$. We have

$$f(\lambda p + (1 - \lambda)q) = f(\lambda I_A + (1 - \lambda)I_B) = f(1)I_{A \cap B} + f(0)I_{A^c \cap B^c} + f(\lambda)I_{A \setminus B} + f(1 - \lambda)I_{B \setminus A} =$$

$$= f(1)I_{A \cap B} + f(0)I_{A^c \cap B^c} + (\lambda f(1) + (1 - \lambda)f(0))I_{A \setminus B} + ((1 - \lambda)f(1) + \lambda f(0))I_{B \setminus A}$$

$$= f(0) + (f(1) - f(0))(\lambda I_A + (1 - \lambda)I_B) = (\lambda + 1 - \lambda)f(0) + (f(1) - f(0)(\lambda I_A + (1 - \lambda)I_B)$$

$$= \lambda (f(1)I_A + f(0)I_{A^c}) + (1 - \lambda)(f(1)I_B + f(0)I_{B^c}) = \lambda f(I_A) + (1 - \lambda)f(I_B) = \lambda f(p) + (1 - \lambda)f(q).$$

Theorem 2. Let $p, q \in B(H)^{pr}$, $\lambda \in [0, 1]$ and $f \in C[0, 1]$ be such that

$$\frac{f(\lambda) - f(0)}{\lambda} = \frac{f(1 - \lambda) - f(0)}{1 - \lambda} = f(1) - f(0)$$

and either $f(\mu) \neq \mu f(1) + (1 - \mu) f(0)$ or $f(1 - \mu) \neq \mu f(1) + (1 - \mu) f(0)$ for $\mu \in (0, 1) \setminus \{\lambda, 1 - \lambda\}$. Then $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q)$ if and only if pq = qp.

Proof. Consider the von Neumann algebra $\mathcal{N}=\{p,q\}''$. By Lemma 1 there exists a projection $z\in\mathcal{Z}(\mathcal{N})$ such that $\mathcal{N}_{z^{\perp}}$ is Abelian. By Lemma 6 we have

$$f(\lambda pz^{\perp} + (1-\lambda)qz^{\perp}) = \lambda f(pz^{\perp}) + (1-\lambda)f(qz^{\perp}).$$

Since $\mathcal{N}_z \cong \mathbb{M}_2(C(\Omega))$ by Lemma 5 the equality $f(\lambda pz + (1-\lambda)qz) = \lambda f(pz) + (1-\lambda)f(qz)$ yields pzqz = qzpz. Finally, note that $\mathcal{N} = \mathcal{N}_z \oplus \mathcal{N}_{z^{\perp}}$ and $f(p) = f(pz \oplus pz^{\perp}) = f(pz) \oplus f(pz^{\perp})$.

For some functions we may prove the implication $f(\lambda p + (1 - \lambda)q) = \lambda f(p) + (1 - \lambda)f(q) \Longrightarrow pq = qp$ without Theorem 2.

LOBACHEVSKII JOURNAL OF MATHEMATICS

Example 3. Let $f(x) = x(x - \frac{1}{3})(x - \frac{2}{3})(x - 1)$. The equality $f(\frac{1}{3}p + \frac{2}{3}q) = \frac{1}{3}f(p) + \frac{2}{3}f(q)$ implies that pq = qp. Note that f(p) = f(q) = 0. Then the equality $f(\frac{1}{3}p + \frac{2}{3}q) = 0$ holds, hence

$$(p+2q)(p+2q-I)(p+2q-2I)(p+2q-3I) = 0.$$

Thus $(pq - qp)^2 = 0$ and pq = qp.

Example 4. Let $f(x) = x(x - \frac{1}{2})(x - 1)$. The equality $f(\frac{1}{2}p + \frac{1}{2}q) = \frac{1}{2}f(p) + \frac{1}{2}f(q)$ implies that pq = qp. Since f(p) = f(q) = 0 we have $f(\frac{1}{2}p + \frac{1}{2}q) = 0$. But by straightforward calculations

$$f\left(\frac{1}{2}p + \frac{1}{2}q\right) = \frac{1}{8}(pqp - qp - pq + qpq),$$

then pq = pqpq and qp = qpqp. Hence $(pq - qp)^2 = 0$ and qp = pq.

Example 5. Let $f(x) = x(x - \frac{1}{3})(x - \frac{1}{2})(x - 1)$. The equality $f(\frac{1}{2}p + \frac{1}{2}q) = \frac{1}{2}f(p) + \frac{1}{2}f(q)$ yields pq = qp. Since f(p) = f(q) = 0 we have $f(\frac{1}{2}p + \frac{1}{2}q) = 0$. By straightforward calculations

$$f\left(\frac{1}{2}p + \frac{1}{2}q\right) = \frac{1}{16}\left((qp - pq)^2 + \frac{1}{3}(pqp + qpq - pq - qp)\right),$$

therefore, $3q(qp-pq)^2q+(qpqpq-qpq)=0$. Note that $(pq-qp)^2\leq 0$ and $q(pq-qp)^2q\leq 0$. Also, $qpqpq-qpq\leq 0$, thus qpqpq=qpq. Analogously, pqpqp=pqp. Since $(ipq-iqp)^3=i(qpqp-qpqp+pqpqp-pqpq)=0$ we have pq=qp.

Theorem 2 leads us to more complicated examples.

Example 6. The function $f(x) = \sin(3\pi x)$ meets the conditions of Theorem 2. The equality $f(\frac{1}{3}p + \frac{2}{3}q) = \frac{1}{3}f(p) + \frac{2}{3}f(q)$ implies that pq = qp.

Example 7. The function

$$f(x) = \begin{cases} x \sin(\frac{\pi}{x}), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

(or $f(x) = \sin(2\pi x)$) meets the conditions of Theorem 2. The equality $f(\frac{1}{2}p + \frac{1}{2}q) = \frac{1}{2}f(p) + \frac{1}{2}f(q)$ yields pq = qp.

5. CHARACTERIZATION OF TRACIAL FUNCTIONALS

Lemma 7. Let $p, q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}}$, $f \in C[0,1]$ be such a nonlinear function that f(1-x)+f(x)=f(1)+f(0) for all $x \in [0,1]$, and $f(x) \neq f(0)+(f(1)-f(0))x$ for any $x \in (0,1)\setminus\{\frac{1}{2}\}$. Also, let φ be a positive functional on $\mathbb{M}_2(C(\Omega))$. Then the following conditions are equivalent:

- (i) $\forall \lambda \in (0,1) \ \forall p,q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}} \ (\varphi(f(\lambda p + (1-\lambda)q)) = \varphi(\lambda f(p) + (1-\lambda)f(q)));$
- (ii) $\exists \lambda \in (0,1) \ \forall p,q \in \mathbb{M}_2(C(\Omega))^{\operatorname{pr}} \ (\varphi(f(\lambda p + (1-\lambda)q)) = \varphi(\lambda f(p) + (1-\lambda)f(q)));$
- (iii) φ is tracial.

Proof. The implication (i) \Longrightarrow (ii) seems to be clear. It suffices to consider $p,q \in \mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$. Then $\lambda p + (1-\lambda)q = \mu_1 r + \mu_2 r^{\perp}$, where $\mu_1 + \mu_2 = 1$. We have $\varphi(f(\lambda p + (1-\lambda)q)) = \varphi(f(\mu_1)r + f(\mu_2)r^{\perp})$ and

$$\varphi(\lambda f(p) + (1 - \lambda)f(q)) = \lambda f(1)\varphi(p) + \lambda f(0)\varphi(1 - p) + (1 - \lambda)f(1)\varphi(q) + (1 - \lambda)f(0)\varphi(1 - q) =$$

$$= f(0)(\varphi(r) + \varphi(r^{\perp})) + (f(1) - f(0))\varphi(\lambda p + (1 - \lambda)q) =$$

$$= f(0)\varphi(r + r^{\perp}) + (f(1) - f(0))\varphi(\mu_1 r + \mu_2 r^{\perp}) =$$

LOBACHEVSKII JOURNAL OF MATHEMATICS

$$= (f(0) + (f(1) - f(0))\mu_1)\varphi(r) + (f(0) + (f(1) - f(0))\mu_2)\varphi(r^{\perp}).$$

(iii) \implies (i). If f is linear the equality is evident. If φ is tracial then $\varphi(r) = \varphi(r^{\perp})$ and

$$(f(0) + (f(1) - f(0))\mu_1)\varphi(r) + (f(0) + (f(1) - f(0))\mu_2)\varphi(r^{\perp}) =$$

$$= (f(1) + f(0))\varphi(r) = (f(\mu_1) + f(\mu_2))\varphi(r) = \varphi(f(\mu_1)r + f(\mu_2)r^{\perp}).$$

(ii) \implies (iii). If $\varphi(f(\lambda p + (1 - \lambda)q)) = \varphi(\lambda f(p) + (1 - \lambda)f(q))$ then the equality f(1 - x) + f(x) =f(1) + f(0) implies that

$$f(1-x) - (f(1) - f(0))(1-x) + f(x) - (f(1) - f(0))x = 0.$$

Therefore.

$$(f(\mu_1) - f(0) - (f(1) - f(0))\mu_1)\varphi(r) + (f(\mu_2) - f(0) - (f(1) - f(0))\mu_2)\varphi(r^{\perp}) = 0$$

and $\varphi(r) = \varphi(r^{\perp})$ for any one dimensional $r \in \mathbb{M}_2(\mathbb{C})^{\mathrm{pr}}$, this is equivalent to φ being tracial.

Theorem 3. Let \mathcal{M} be a von Neumann algebra, φ be a positive functional on \mathcal{M} , and $f \in C[0,1]$ be such that f(x) + f(1-x) = f(0) + f(1) for all $x \in [0,1]$, and $f(x) \neq f(0) + (f(1) - f(0))x$ for all $x \in (0,1) \setminus \{\frac{1}{2}\}$. Then the following conditions are equivalent:

- $\text{(i)}\ \forall \lambda \in (0,1)\ \forall p,q \in \mathcal{M}^{\mathrm{pr}}\ \left(\varphi(f(\lambda p + (1-\lambda)q)) = \varphi(\lambda f(p) + (1-\lambda)f(q))\right);$
- (ii) $\exists \lambda \in (0,1) \ \forall p,q \in \mathcal{M}^{\operatorname{pr}} \ (\varphi(f(\lambda p + (1-\lambda)q)) = \varphi(\lambda f(p) + (1-\lambda)f(q));$
- (iii) φ is tracial.

Proof. The implications (i) \implies (ii) and (iii) \implies (i) are evident.

(ii) \Longrightarrow (iii). Consider $p,q\in\mathcal{M}^{\mathrm{pr}}$, then the von Neumann algebra $\mathcal{N}=\{p,q\}''$ is a subalgebra of \mathcal{M} . By Lemma 1 there exists a projection $z\in\mathcal{Z}(\mathcal{N})$ such that the algebra $\mathcal{N}_{z^{\perp}}$ is Abelian. Thus $\varphi|_{\mathcal{N}_{z^{\perp}}}(pz^{\perp}qz^{\perp})=\varphi|_{\mathcal{N}_{z^{\perp}}}(qz^{\perp}pz^{\perp})$. The restriction $\varphi|_{\mathcal{N}_{z}}\in\mathcal{N}_{z}^{*}$ and

$$\varphi|_{\mathcal{N}_z}(f(\lambda p + (1 - \lambda)q)) = \lambda \varphi|_{\mathcal{N}_z}(f(p)) + (1 - \lambda)|_{\mathcal{N}_z}\varphi(f(q))$$

for any $\lambda \in [0,1]$. Since $\mathcal{N}_z \cong \mathbb{M}_2(C(\Omega))$ (see Lemmas 1, 2) by Lemma 7 either f is linear or $\varphi|_{\mathcal{N}_z}$ is tracial and $\varphi|_{\mathcal{N}_z}(pzqz) = \varphi|_{\mathcal{N}_z}(qzpz)$. Finally we note that $\mathcal{N} = \mathcal{N}_z \oplus \mathcal{N}_{z^\perp}$ and

$$\varphi(pq) = \varphi|_{\mathcal{N}_z}(pzqz) + \varphi|_{\mathcal{N}_z^{\perp}}(pz^{\perp}qz^{\perp}) = \varphi|_{\mathcal{N}_z}(qzpz) + \varphi|_{\mathcal{N}_z^{\perp}}(qz^{\perp}pz^{\perp}) = \varphi(qp).$$

Every positive functional on \mathcal{M} belongs to \mathcal{M}^* . Since $\varphi(pq) = \varphi(qp)$ for all $p, q \in \mathcal{M}^{pr} \varphi$ is tracial. \square

Example 8. Let f(x) = x(x-1)(2x-1) (or $f(x) = \sin(2\pi x)$), then f(x) + f(1-x) = 0 = f(1) + f(1-x)f(0). For any $p,q \in \mathcal{M}^{\mathrm{pr}}$ the equality $\varphi(f(\frac{1}{2}p+\frac{1}{2}q))=\frac{1}{2}\varphi(f(p))+\frac{1}{2}\varphi(f(q))$ holds if any only if a positive functional $\varphi \in \mathcal{M}^*$ is tracial.

Acknowledgments. This work was supported by the Ministry of Higher Education and Scientific Research of Republic of Iraq and University of Diyala.

REFERENCES

- 1. A. M. Bikchentaev, Math. Notes 89 (4), 461–471 (2011).
- 2. A. M. Bikchentaev, Int. J. Theor. Physics 54 (12), 4482–4493 (2015).
- 3. A. M. Bikchentaev and O. E. Tikhonov, J. Inequal. Pure Appl. Math. 6 (2), article 49 (2005).
- 4. A. M. Bikchentaev and O. E. Tikhonov, Linear Algebra Appl. 422 (1), 274–278 (2007).
- 5. A. M. Bikchentaev, Math. Notes **64** (2), 159–163 (1998).
- 6. A. M. Bikchentaev, Lobachevskii J. Math. 32 (3), 175–179 (2011).
- 7. G. K. Pedersen and E. Størmer, Canad. J. Math. 34 (2), 370–373 (1982).
- 8. D. Petz and J. Zemánek, Linear Algebra Appl. 111, 43–52 (1988).
- 9. S. Sakai, *C*-algebras and W*-algebras* (Springer-Verlag, New York, 1971). 10. M. Takesaki, *Theory of Operator algebras* (Springer, Berlin, 1979), Vol. 1.
- 11. O. E. Tikhonov, Positivity 9 (2), 259–264 (2005).