Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 11E Displays and Buffers

Graphics Architecture

- Graphics hardware overview
 - Display devices
 - Raster displays
 - Buffers and memory usage
- Graphics Architecture
 - Taxonomy
 - Bus and memory bandwidth
 - Case studies

Simple Raster Graphics System

- Most computer graphics systems today are raster display systems
 - Example: computer with video monitor or flat panel display
- CPU runs programs that generate computer graphics images
 - Image is stored in framebuffer
 - Image is presented on a display surface
 - E.g., CRT monitor or flat panel display
 - Video display controller scans the framebuffer and outputs to display surface
- Resolution: number of pixels that can be displayed
 - · Horizontal and vertical
 - Common systems today are 1280x1024 or greater

Block Diagram of a Simple Computer Graphics System

Scanning the Frame Buffer

- Video display controller (VDC) reads pixel data from the framebuffer and produces a video signal to control the display device
 - So the proper pixel in the display device is drawn with proper color
 - Runs autonomously not under program control
 - Synchronized with output device
 - Hardware support for common interfaces (VGA, DVI, HDMI)
 - Analog output
 - Video controller converts digital values in the framebuffer to analog signals sent to the display device
 - Digital to Analog Converters (DAC)
 - Gamma correction should be performed before data reaches DAC
 - Digital output
 - Standard digital interface for flat panel devices recently specified
- Data is read in raster scan order
 - Row by row through the framebuffer
 - Creates output for one scan line of pixels from left to right
- VDC may perform other functions

Refresh Rates

- Image decays quickly on video display devices
 - CRTs and flat panels
 - Phosphors that emit colored light only glow for a fraction of a second
 - Called persistence
 - Displays must be constantly refreshed
 - At least 60 Hz is standard, but up to 600 Hz can be achieved
- Horizontal / Vertical retrace movement of electron beam from right to left and bottom to top
 - Line rate or horizontal refresh rate
 - Time it takes to scan one left-right-left cycle
 - Vertical refresh rate
 - Number of times per second the beam goes from bottom to top-left corner
- Flicker effects occur if the image is not refreshed often enough
 - Most noticeable in the peripheral vision
 - Can be very distracting
 - Most viewers notice flicker at refresh rates less than 72 Hz

Interlaced and Progressive Scans

- Computer monitors are usually non-interlaced
 - Also called progressive scan
- Televisions are generally interlaced
 - Alternates between even and odd horizontal lines each refresh

Color Buffer

- Framebuffer memory stores pixel display values
 - Most commonly part of the graphics card
- True color stores the color directly in the pixel value
 - Usually 3-4 bytes per pixel with 8 bits per color component

- High Dynamic Range (HDR)
 - 10 bits per channel
 - 10 times the brightness and 100 times the contrast of a typical monitor
- High color
 - 16 bits to represent color per pixel
 - Generally 5 bits R, 6 bits G, 5 bits B
 - More bits for green since it has largest luminance impact on visual system
 - Can lead to banding or contouring

Indexed Color and Color Lookup Tables

- Indexed color pixel value stores an index into a color table
 - Uses less memory usually 8 bits per pixel
 - Number of bit planes is number of bits per pixel in the framebuffer
 - Color Lookup Tables associate pixel values and displayed colors
 - · Programmable color selection
- Palette total set of colors the system is capable of displaying
 - Number of bits in each entry in the lookup table LUT width
 - Typically 24 bits: 8 bits red, 8 bits green, 8 bits blue 16.7M possible colors
- Color capability in indexed color systems

A system with b bit planes and an LUT width of w can display 2^b simultaneous colors from a palette of 2^w

True Color

- True color often uses 4 bytes per pixel
 - RGBA where A is for alpha
 - 32 bit representation also can improve performance
 - Some architectures optimized for groups of 4 bytes
 - 24 bit representation (RGB) is called **packed pixel format**
 - Saves memory
 - 24 bits is usually acceptable for real-time rendering
 - Banding effects much less noticeable
 - Gamma correction can reduce effective number of color levels slightly
 - Some systems use higher than 24 bits for internal color representation
 - For multi-pass methods
 - Uses higher precision to improve fidelity of color computations
- OpenGL supports color as float values in range [0.0f,1.0f]
 - Essentially 24 bits per color
 - Mantissa

Z Buffer and Stencil Buffer

- Z Buffer or depth buffer is used for visible surface detection
 - Generally 16, 24 or 32 bits per pixel
 - 8 bit stencil buffer stand-alone, or if 24 bits dedicated to depth
- Orthographic projection
 - Distances between z values are constant
- Perspective projection
 - Non-uniform depth distribution
 - More precision near the near clipping plane
 - Depths are compressed near the far plane
 - Higher depth precision can help avoid z buffer aliasing issues
 - Called z fighting
 - Text gives example of sheet of paper on desk
 - Keeping ratio of near over far plane high helps

Single Buffering

- Single buffering not generally acceptable for real time graphics
 - If it takes longer than one refresh to generate a frame we will see partial images as they are being drawn
 - If frame can be drawn within refresh rate can see tearing
 - When clearing buffer of drawing large polygons
 - See partial images as beam passes areas being drawn
 - Older architectures allowed queries for where the refresh / beam was
 - Could synchronize drawing to avoid tearing
 - Single buffering can be useful for pipeline optimization

Double Buffering

- Most systems provide double buffering
 - Ability to draw image to background buffer (called backbuffer) and then swap it to the screen
 - Essential for smooth animation and scene redraw
 - Memory required is at least as large as the framebuffer
- Applications that control the whole screen
 - Use color buffer flipping or page flipping
 - Change address of buffer memory areas
 - Swaps role of the buffers
- Windowed applications copy back buffer to front buffer
 - Hardware called the BitBLT engine performs **BLT swapping** or **blitting**

Double Buffering	frame 0	frame 1	frame 2	frame 3
buffer 0	front	back	front	back
buffer 1	back	front	back	front

Triple Buffering

- Can augment the double buffer with a 2nd double buffer
 - Called the pending buffer
 - Technique called triple buffering
- Advantage better load balancing
 - Can start drawing new scene more quickly
 - Clear pending buffer and start redrawing while back buffer waits for swap
- Disadvantage
 - Latency can increase delayed response to user events
- Supported in DirectX, OpenGL extensions, Vulkan, Metal

Triple Buffering	frame 0	frame 1	frame 2	frame 3
buffer 0	pending	back	front	pending
buffer 1	front	pending	back	front
buffer 2	back	front	pending	back

Stereo Buffers

- Some hardware supports stereo rendering and viewing
 - Two images are used to make objects look three dimensional
 - Stereo vision or stereopsis
 - Section 21.3.1 (18.1.4 in 3rd Edition)
 - One view is rendered for left eye and one for the right eye
 - Images are called a stereo pair
 - Several hardware options to display these images
 - 2 small screens in front of each eye head mounted display
 - Shutter glasses in which each eye is only allowed to view one image at a time
 - Synchronized with monitor which alternates images

Image plane is shared between 2 frustums Frustums are asymmetric

