Séquence : 01 Document : DS01 Lycée Dorian

Juliette Genzmer Willie Robert Renaud Costadoat

Avec Correction

DS01 Informatique

Référence S01- DS01

Compétences Alg-C6 : Justifier qu'une itération (ou boucle) produit l'effet attendu

au moyen d'un invariant

Alg-C7 : démontrer qu'une boucle se termine effectivement

Déc-C1: Manipuler en mode utilisateur les principales fonctions d'un système d'exploitation et d'un environnement de développement Déc-C2: Appréhender les limitations intrinsèques à la manipulation

informatique des nombres

Déc-C3: Initier un sens critique au sujet de la qualité et de la préci-

sion des résultats de calculs numériques sur ordinateur

Description Fait le 03/10/2020

1 Introduction

Question 1 Écrire sur le diagramme de Contexte donné en document réponse le nom des composants de l'unité centrale.

2 Analyse d'une réponse temporelle

Le tracé de la figure 1 correspond à la tension $v(t) = V_{r\ max} \cdot sin(k \cdot \theta(t)) \cdot cos(\theta(t))$ (avec $\theta(t) = 2 \cdot \pi \cdot f_r \cdot t$) induite dans l'un des enroulements fixes des deux secondaires du moteur du bras du système de pulvérisation de nacre (vu en DS de SI).

On sait que $f_r = 0, 6$ Hz, mais l'objectif va être de déterminer grâce à python les valeurs des **entiers** $V_{r \ max}$ et k.

FIGURE 1 – Tracé de la réponse temporelle v(t)

Cette fonction est définie comme suit dans un script python qui va être complété :

```
def theta(t):
    return 2*np.pi*fr*t

def v(t):
    return Vr*np.sin(k*theta(t))*np.cos(theta(t))

t=np.linspace(0,2,1000)
plt.plot(t,v(t))
```


2.1 Recherche de $V_{r\ max}$

On propose deux scripts pour compléter le précédent afin de déterminer la valeur de $V_{r\ max}$.

Solution A Solution B

Question 2 Choisir en justifiant la solution qui permet de déterminer $V_{r\ max}$. Le résultat affiché par le script qui convient est 9.9519.

Question 3 En déduire en justifiant la valeur de $V_{r max}$.

2.2 Identification de k

On montre que la courbe de la figure 1, coupe $2 \cdot k$ fois la droite d'équation y = 1 sur l'intervalle $\left[0, \frac{1}{f_r}\right]$. L'objectif de la suite est de déterminer le nombre d'intersections afin d'en déduire k.

Recherche des intervalles [t, t+dt], incluant un passage par y=1

On souhaite dans cette partie créer une liste bornes, contenant l'ensemble des intervalles [t, t+dt] tels qu'il existe un $t_p \in [t, t+dt]$ tel que $v(t_p) = 1$.

Une fois la liste créée, en tapant print (bornes [0:last]), on obtient le résultat suivant : [[0.0, 0.002002002002002], [0.050050050050050046, 0.05205205205205205], [0.1041041041041, 0.1061061061061061], [0.15415415415415415, 0.15615615615615616]] Cela signifie que la courbe v(t) coupe y=1 entre 0 et 0.002002002002002002002, etc...

Question 4 Quelle valeur de last permet l'affichage précédent?

Question 5 Écrire un script python permettant de détecter puis d'écrire dans la liste bornes l'ensemble des intervalles définis précédemment.

Recherche des solutions par dichotomie

Voici le principe de la dichotomie :

- Au rang 0.
 - soient $a_0 = a$, $b_0 = b$. Il existe une solution x_0 de l'équation (f(x) = 0) dans l'intervalle $[a_0, b_0]$.
- Au rang 1,
 - si $f(a_0).f(\frac{a_0+b_0}{2}) \le 0$, alors on pose $a_1=a_0$, $b_1=\frac{a_0+b_0}{2}$,

- sinon on pose $a_1 = \frac{a_0 + b_0}{2}$ et $b_1 = b$.
- dans les deux cas, il existe une solution x_1 de l'équation (f(x) = 0) dans l'intervalle $[a_1, b_1]$.
- Au rang n, supposons construit un intervalle $[a_n, b_n]$, de longueur $\frac{b-a}{2^n}$, et contenant une solution x_n de l'équation (f(x) = 0). Alors :
 - si $f(a_n).f(\frac{a_n+b_n}{2}) \le 0$, alors on pose $a_{n+1}=a_n,\,b_{n+1}=\frac{a_n+b_n}{2}$,
 - sinon on pose $a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=b_n$,
 - dans les deux cas, il existe une solution x_{n+1} de l'équation (f(x) = 0) dans l'intervalle $[a_{n+1}, b_{n+1}]$.

À chaque étape, on a $a_n \le x_n \le b_n$, on arrête le processus dès que $|f(\frac{a_n+b_n}{2})|$ est inférieure à la précision souhaitée.

- **Question 6** Écrire un script python permettant de rechercher par dichotomie la solution de l'équation f(x)=0 entre a et b avec une précision p.
- **Question 7** Créer une fonction dichotomie(f,a,b,p) à partir de ce script. (si vous n'avez pas réussi la question précédente, créer une fonction qui permet de calculer f(a+b+p).

Le script suivant utilise la fonction dichotomie (f,a,b,p) précédente.

- **Question 8** Expliquer l'intérêt de la fonction g(t).
- Question 9 Expliquer à quels types de variables appartiennent 11 et 12 et ce qu'elles contiennent.
- **Question 10** Expliquer l'intérêt du test if x<1/fr dans ce script.

La fonction len(list) renvoie le nombre d'éléments de la liste list.

Question 11 Proposer une solution pour déterminer k.

3 Valeur approchée de ξ

On souhaite modifier la valeur de f_r et choisir maintenant $f_r=0,7~{\rm Hz}.$

Question 12 Écrire sous la forme d'un mot de 32 bits respectant la norme IEEE 754 (signe, exposant, mantisse) le float 0, 7.

Question 13 Montrer que $001100110011001100110011_2 = \frac{2^{24}-1}{5}$.

On donne : $\frac{2^{-24}}{5}\approx 1.2*10^{-8}.$

Question 14 Déterminer l'erreur due au stockage de 0,7 à l'aide de la norme IEE74.

4 Document réponse

Nom :..... Prénom :....

1 Correction

Question 1:

Question 2: La solution à choisir est la B, la A ne fonctionne pas dès la première ligne car i n'est pas défini. De plus, il faut ici parcourir toute la liste pour chercher un maximum, il faut donc une boucle for et non while.

Question 3 : La valeur de V_{max} est un entier, vu la valeur obtenue on suppose que le premier entier supérieur doit être la bonne réponse, donc $V_{max}=10~{\rm V}.$

Question 4: Il y a 4 éléments dans la liste, ce sont donc les 0, 1, 2 et 3ème, donc last=4.

Question 5:

```
bornes=[]
for i in range(1,len(t)):
#    if v(t[i-1])>1 and v(t[i])<1 or v(t[i-1])<1 and v(t[i])>1: (autre solution)
    if (v(t[i-1])-1.)*(v(t[i])-1.) < 0:
        bornes.append([t[i-1],t[i]])</pre>
```

Question 6:

```
m=(a+b)/2.
while np.abs(v(m)) > p:
    m=(b+a)/2.
    if v(a)*v(m) > 0:
        a=m
    else:
        b=m
```


Question 7:

```
def dichotomie(f,a,b,p):
    m=(a+b)/2.
    while np.abs(f(m)) > p:
        m=(b+a)/2.
    if f(a)*f(m) > 0:
        a=m
    else:
        b=m
    return m
```

Si pas de question 6

```
def dichotomie(f,a,b,p):
    return f(a+b+p)
```

Question 8: La fonction g(t) = v(t) - 1 permet de rechercher la solution v(t) = 1 et non pas v(t) = 0.

Question 9: 11 et 12 sont des listes qui contiennent :

- 11 : la liste des instants t où v(t) = 1 (abscisses),
- 12 : la liste des v(t) à ces instants là (ce sont des valeurs proches de 1) (ordonnées).

Question 10 : Ce test permet de ne prendre en compte que les solutions dans l'intervalle $\left[0,\frac{1}{f_r}\right]$ comme demandé dans l'énoncé.

Question 11: La courbe passe 2 fois par 1 à chaque période, on a donc k=len(l1)/2.

Question 12: Le nombre à traduire est $0, 7_{10}$.

```
0.7 	 x 	 2 = 1.4 = 1 + 0.4
0.4 	 x 	 2 = 0.8 = 0 + 0.8
0.8 	 x 	 2 = 1.6 = 1 + 0.6
0.6 	 x 	 2 = 1.2 = 1 + 0.2
0.2 	 x 	 2 = 0.4 = 0 + 0.4
0.4 	 x 	 2 = 0.8 = 0 + 0.8
0.8 	 x 	 2 = 1.6 = 1 + 0.6
```

On remarque un récurrence dans l'écriture du $0,7_{10}$ en binaire : $0,7_{10}=0,1011001100..._2$ Le nombre stocké est alors : $1,01100110011001100110011_2*2^{-1}$

23bits

- Signe = 0,
- Mantisse :01100110011001100110011₂,
- Exposant :127 1 = 126_{10}^{250018} = 011111110₂

Question 13:

$$a = \underbrace{001100110011001100110011}_{24bits} = \underbrace{11111111111111111111}_{24bits} - \underbrace{110011001100110011001100}_{24bits} = \underbrace{(2^{24}-1)-4*a, \, \mathsf{donc} \, a = \frac{2^{24}-1}{5}}_{24bits}.$$

Question 14: Le nombre stocké est donc : $101100110011001100110011.2^{-24}=(2^{23}+\frac{2^{24}-1}{5}).2^{-24}=(\frac{1}{2}+\frac{1}{5}-\frac{2^{-24}}{5}).$ L'erreur est donc de $-\frac{2^{-24}}{5}=-1.2*10^{-8}$

