

EAFIT

Escuela de Ciencias - Departamento de Matemáticas Taller 2 Cálculo en Varias Variables, 01-2020

1. Aplique la regla de la cadena para hallar dz/dt.

a)
$$z = x^2 + y^2 + xy$$
, $x = sen(t)$, $y = e^t$

c)
$$z = \tan^{-1}(y/x), x = e^t, y = 1 - e^t$$

b)
$$z = \cos(x+4y), x = 5t^4, y = 1/t$$

2. Mediante la regla de la cadena encuentre $\partial z/\partial s$ y $\partial z/\partial t$.

a)
$$z = \operatorname{sen}(\theta) \cos(\phi)$$
, $\theta = st^2$, $\phi = s^2t$.

c)
$$z = \tan(u/v), u = 2s + 3t, v = 3s - 2t$$

b)
$$z = e^r \cos(\theta), r = st, \theta = \sqrt{s^2 + t^2}$$

3. Calcular $\partial w/\partial s$ y $\partial w/\partial t$ utilizando la regla de la cadena y evaluar cada derivada parcial en los valores de s y t dados.

a)
$$w = x^2 + y^2$$
, $x = s + t$, $y = s - t$, $s = 1$ y $t = 0$.

b)
$$w = x^2 - y^2$$
, $x = s\cos(t)$, $y = s\sin(t)$, $s = 3$ y $t = \frac{\pi}{4}$.

4. Si z = f(x, y), donde f es diferenciable, y x = g(t), y y = h(t), se sabe que

i.
$$g(3) = 2$$
, $h(3) = 7$

ii.
$$g'(3) = 5, h(3) = -4$$

iii.
$$f_x(2,7) = 6$$
 y $f_y(2,7) = -8$,

determine dz/dt cuando t=3.

5. Sea w(s,t) = f(u(s,t),v(s,t)) donde:

•
$$u(1,0) = 2$$
, $u_s(1,0) = 1$, $u_t(1,0) = 3$, $v(1,0) = 3$, $v_s(1,0) = 2$ y $v_t(1,0) = -4$

•
$$f_u(1,0) = 2 f_v(1,0) = 0, f_u(2,3) = 2 y f_v(2,3) = -2$$

Encuentre $w_s(1,0)$ y $w_t(1,0)$.

6. Use la regla de la cadena para calcular $\frac{dw}{dt}$, donde $w = \frac{x}{y} + \frac{y}{z}$, $x = \sqrt{t}$, $y = \cos(2t)$ y $z = e^{-3t}$.

7. Sea
$$w(s,t) = f(u(s,t), v(s,t))$$
 donde $u(1,0) = 2$, $u_s(1,0) = -2$, $u_t(1,0) = 6$, $v(1,0) = 3$, $v_s(1,0) = 5$, $v_t(1,0) = 4$, $f_u(2,3) = -1$ y $f_v(2,3) = 10$. Encuentre $w_s(1,0)$ y $w_t(1,0)$.

8. Sean $z = \frac{x}{y}$, $x = re^{st}$, $y = rse^t$. Emplee la regla de la cadena para hallar las derivadas parciales $\frac{\partial z}{\partial r}$, $\frac{\partial z}{\partial s}$, $\frac{\partial z}{\partial t}$ cuando r = 1, s = 2 y t = 0.

- 9. Sea T(x,y) la temperatura en el punto (x,y), medida en grados Celsius. Un gusano se arrastra de tal forma que, su posición (x, y) en cierto tiempo t (medido en segundos), viene dada por las ecuaciones paramétricas $x = \sqrt{1+t}$, $y = 2 + \frac{1}{3}t$, donde x y y son medidas en centímetros. La función de la temperatura satisface además las condiciones $T_x(2,3)=4$ y $T_y(2,3)=3$. ¿Cuán rápido aumenta la temperatura en la senda del gusano después de 3 segundos?
- 10. La producción de trigo en un año determinado W, depende de la temperatura promedio T y de la precipitación pluvial anual R. Los científicos estiman que la temperatura promedio aumenta a razón de 0,15C al año y que la precipitación pluvial disminuye a razón de 0,1cm al año. También estiman que para los actuales niveles de producción $\partial W/\partial T = -2$ y $\partial W/\partial R = 8$.
 - a) ¿Qué significan los signos de estas derivadas parciales?
 - b) Calcule la razón actual de cambio de la producción de trigo dW/dt.
- 11. El voltaje V en un circuito eléctrico simple disminuye con lentitud a medida que la batería se gasta. La resistencia R se incrementa lentamente cuando el resistor se calienta. Mediante la ley de Ohm, V = IR, determine cómo cambia la corriente I en el momento en que $R = 400\Omega$, I = 0.08A $dV/dt = -0.01V/s \text{ y } dR/dt = 0.03\Omega/s.$
- 12. La presión P, en kilopascales, el volumen V, en litros y la temperatura T, en kelvin, de un mol de un gas ideal, están relacionados mediante la ecuación PV = 8,31T. Determine la razón de cambio del volumen cuando la presión es de 20kPa y la temperatura es de 320K.
- 13. Determine una ecuación del plano tangente a la superficie dada en el punto específico.

a)
$$z = 4x^2 - y^2 + 2y$$
, $(-1, 2, 4)$

c)
$$z = y\cos(x - y), (2, 2, 2)$$

b)
$$z = 3(x-1)^2 + 2(y+3)^2 + 7$$
, $(2, -2, 12)$ d) $z = e^{x^2 - y^2}$, $(1, -1, 1)$

d)
$$z = e^{x^2 - y^2}$$
, $(1, -1, 1)$

14. En los siguientes ejercicios hallar la derivada direccional de la función en el punto P en la dirección de u.

a)
$$f(x,y) = 3x - 4xy + 9y$$
, $P = (1,2)$, $u = \langle \frac{3}{5}, \frac{4}{5} \rangle$

b)
$$f(x,y) = x^3 - y^3$$
, $P = (4,3)$, $u = \frac{\sqrt{2}}{2}\langle 1, -1 \rangle$

c)
$$f(x,y) = xy$$
, $P = (0,-2)$, $u = \frac{1}{2}\langle 1, \sqrt{3} \rangle$

15. En los siguientes ejercicios hallar la derivada direccional de la función en el unto P en la dirección de $u = \langle \cos(\theta), \sin(\theta) \rangle$.

a)
$$f(x,y) = x^2y^3 - y^4$$
, $P = (2,1)$, $\theta = \pi/4$ c) $f(x,y) = x \operatorname{sen}(xy)$, $P = (2,0)$, $\theta = \pi/3$

c)
$$f(x,y) = x \sin(xy)$$
, $P = (2,0)$, $\theta = \pi/3$

b)
$$f(x,y) = ye^{-x}, P = (0,4), \theta = 2\pi/3$$

16. Calcule la derivada direccional de la función en el punto dado en la dirección del vector v.

2

a)
$$f(x,y) = 1 + 2x\sqrt{y}$$
, $P = (3,4)$, $v = \langle 4, -3 \rangle$ b) $f(x,y) = \ln(x^2 + y^2)$, $P = (2,1)$, $v = \langle -1, 2 \rangle$

- 17. La superficie de una montaña se modela mediante la ecuación $h(x,y) = 5000 0,001x^2 0,004y^2$. Un montañista se encuentra en el punto (500,300,4390). ¿En qué dirección debe moverse para ascender con la mayor rapidez?
- 18. La temperatura en el punto (x,y) de una placa metálica se modela mediante

$$T(x,y) = 400e^{-(x^2+y^2)/2}, x \ge 0, y \ge 0.$$

- a) Hallar las direcciones, sobre la placa en el punto (3,5), en las que no hay cambio en el calor.
- b) Hallar la dirección de mayor incremento de calor en el punto (3,5).
- 19. Deteriminar la ecuación del plano tangente y de la recta normal a la superficie dada en el punto especificado.

a)
$$2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10, (3,3,5)$$

b)
$$y = x^2 - z^2$$
, $(4, 7, 3)$

c)
$$x - z = xe^y \cos(z)$$
, $(1, 0, 0)$

d)
$$yz = \ln(x+z), (0,0,1)$$

e)
$$xyz = 10, (1, 2, 5)$$

20. Sea S la superficie dada por la ecuación $xe^{yz} = 1$. Determine una ecuación para el plano tangente y una ecuación para la recta normal a S en el punto (1,0,5).