Exercise 6

To compile: unzip our uploaded code, and run make inside code/. The slurm scripts are stored inside code/slurm/.

To debug: run the debug outputs (*.dbg) and attach gdb to respective pids

6.1 Heat Relaxation II — Parallel Implementation

6.2 Heat Relaxation II — Experiments

The implementation in subsection 6.1 resulted in the values below (Table 1, Table 2, and Table 3). We choose the by-slot-Mapping (default of mpirun) as to reduce the number of hops between nodes. This Mapping starts filling a node's possible slots with ranks until full and then continues with another node. This results in rank 3 and 4 and ranks 7 and 8 communication between nodes (for 9 or more ranks).

Table 1: Time $[\mu s]$ / iteration

	NP = 01	NP = 02	NP = 04	NP = 06	NP = 08	NP = 10	NP = 12	
Grid size								
128x128	68	39	44	526	2373	693	743	
512x512	3363	851	757	3007	932	1417	3294	
1024x1024	19474	9524	5684	6003	2722	3068	2573	
2048×2048	238361	134284	30991	22886	16389	13306	13621	
4096x4096	855031	551723	365791	130806	78609	68622	61378	

Table 2: Speedup

	NP = 01	NP = 02	NP = 04	NP = 06	NP = 08	NP = 10	NP = 12
Grid size							
128x128	1.0000	1.7289	1.5388	0.1299	0.0288	0.0987	0.0920
512x512	1.0000	3.9487	4.4397	1.1185	3.6086	2.3725	1.0209
1024×1024	1.0000	2.0447	3.4260	3.2438	7.1544	6.3462	7.5672
2048×2048	1.0000	1.7750	7.6911	10.4150	14.5433	17.9135	17.4986
4096 x 4096	1.0000	1.5497	2.3375	6.5366	10.8769	12.4600	13.9305

Table 3: Efficiency

	NP = 01	NP = 02	NP = 04	NP = 06	NP = 08	NP = 10	NP = 12
Grid size							
128x128	1.0000	0.8645	0.3847	0.0217	0.0036	0.0099	0.0077
512x512	1.0000	1.9743	1.1099	0.1864	0.4511	0.2373	0.0851
1024x1024	1.0000	1.0224	0.8565	0.5406	0.8943	0.6346	0.6306
2048×2048	1.0000	0.8875	1.9228	1.7358	1.8179	1.7913	1.4582
4096x4096	1.0000	0.7749	0.5844	1.0894	1.3596	1.2460	1.1609

- A speedup is observed, that correlates to the number of jobs (i.e. for 10 jobs we reach a speedup o approx 10, for a sufficiently large problem size)
- For problem sizes too small, performance drops, due to the communication overhead dominating
- Additionally super linear speedups were observed, probably due to better cache utilization.

6.3 Heat Relaxation II — Tracing