2025학년도 대학수학능력시험

강대모의고사K 17회 정답 및 해설

강남대성

수학 영역

정답

공통과목											
1	(5)	2	2	3	3	4	4	5	1		
6	3	7	2	8	3	9	4	10	2		
11	3	12	1	13	2	14	3	15	(5)		
16	9	17	28	18	64	19	180	20	15		
21	34	22	20								

확률과 통계											
23	2	24	3	25	4	26	3	27	(5)		
28	2	29	10		290						

미적분											
23	1	24	4	25	3	26	(5)	27	2		
28	2	29	270	30	10						

기하											
23	1	24	1	25	(5)	26	4	27	(5)		
28	3	29	64	30	108			-	1.0		

MEMO

공통과목

1.
$$4^{\log_2 2\sqrt{2}} = 2^{2\log_2 2\sqrt{2}} = 2^{\log_2 8} = 8$$

2.
$$f(x) = x^3 + 3x^2 + 4x$$
 $|x|$
 $f'(x) = 3x^2 + 6x + 4$

$$\lim_{h \to 0} \frac{f(h)}{h} = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h}$$

$$= f'(0)$$

$$= 4$$

3.
$$3\sin^2\theta + 5\cos\theta = 5$$
에서
$$3(1-\cos^2\theta) + 5\cos\theta = 5 \ (\because \sin^2\theta + \cos^2\theta = 1)$$
$$3\cos^2\theta - 5\cos\theta + 2 = 0$$
$$(\cos\theta - 1)(3\cos\theta - 2) = 0$$
이때 $0 < \theta < \pi$ 이므로
$$\cos\theta = \frac{2}{3} \ (\because -1 < \cos\theta < 1)$$
이코
$$\sin\theta = \sqrt{1-\cos^2\theta} = \frac{\sqrt{5}}{3}$$

4.
$$\lim_{x \to -1} f(x) = 1$$
, $\lim_{x \to 1+} f(x) = 1$ 이므로
$$\lim_{x \to -1} f(x) + \lim_{x \to 1+} f(x) = 2$$

5. 모든 항이 자연수인 등비수열 $\{a_n\}$ 의 공비를 r이라 $a_4 - a_3 = 18$ 이 사 $a_1 r^2 (r-1) = 3^2 \times 2$

$$a_4-a_3=18$$
에서 $a_1r^2(r-1)=3^2\times 2$ $a_1,\ r(r-1>0)$ 이 자연수이므로 $r=3,\ a_1=1$ 따라서 $a_2=a_1r=3$

6. $f(x) = x^3 - 12x + k$ 에서 $f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$ 함수 f(x)는 x=-2에서 극대, x=2에서 극소이다. 곧, 닫힌구간 [1,3]에서 함수 f(x)의 최솟값은 f(2)이므로 f(2) = -16 + k = 0, k = 16

따라서 $f(x) = x^3 - 12x + 16$ 이고, f(1) = 5, f(3) = 7이므로 닫힌구간 [1,3]에서 함수 f(x)의 최댓값은 7이다.

7. $\{xf(x)\}' = f(x) + xf'(x)$ 이므로 $f(x) + xf'(x) = 3x^2 - 4x$ 의 양변을 적분하면 $xf(x) = x^3 - 2x^2 + C(C$ 는 적분상수) 양변에 x=0을 대입하면 C=0곧, 다항함수 f(x)는 $f(x) = x^2 - 2x$ 이므로 $\int_{0}^{2} f(x) dx = \int_{0}^{2} (x^{2} - 2x) dx$ $=\left[\frac{1}{3}x^3-x^2\right]_0^2$

8. 등차수열
$$\{a_n\}$$
의 공차를 d 라 하자.
$$S_7 = \frac{7(a_1 + a_7)}{2} = 7a_4 = 0$$
에서

$$a_1 + 3d = 0$$
, 곧 $a_1 = -3d$
 $S_{10} = \frac{10(2a_1 + 9d)}{2}$
 $= \frac{10(-6d + 9d)}{2}$
 $= 15d$
 $= 10$
에서 $d = \frac{2}{3}$, $a_1 = -2$
따라서
 $S_{13} = \frac{13(2a_1 + 12d)}{2}$
 $= \frac{13(-4 + 8)}{2}$
 $= 26$

9. 세 점 O, P, Q를 지나는 원을 C라 하고, 원 C의 중심을 C라 하자.

곡선 $y=x^2$ 위의 점 P의 x좌표는 양수이고, y좌표 는 t이므로 $P(\sqrt{t}, t)$ 이다.

삼각형 OPQ에서 \angle OQP = $\frac{\pi}{2}$ 이므로 선분 OP는 원 C의 지름이다.

곧, 점 C는 선분 OP의 중점이므로 $C\left(\frac{\sqrt{t}}{2}, \frac{t}{2}\right)$ 이다. 이때 원 C의 반지름의 길이는

$$\frac{1}{2}\overline{OP} = \frac{1}{2}\sqrt{(\sqrt{t})^2 + t^2} = \frac{1}{2}\sqrt{t + t^2}$$

점 C와 직선 y=t 사이의 거리가 $\frac{t}{2}$ 이므로 호 PQ 위의 점과 직선 y=t 사이의 거리의 최댓값 f(t)는 .

$$f(t) = \frac{\overline{\mathrm{OP}}}{2} - \frac{t}{2} = \frac{1}{2} \left(\sqrt{t + t^2} - t \right)$$

따라서

$$\begin{split} & \lim_{t \to \infty} f(t) = \lim_{t \to \infty} \frac{1}{2} \left(\sqrt{t + t^2} - t \right) \\ & = \frac{1}{2} \lim_{t \to \infty} \frac{\left(\sqrt{t + t^2} - t \right) \left(\sqrt{t + t^2} + t \right)}{\sqrt{t + t^2} + t} \\ & = \frac{1}{2} \lim_{t \to \infty} \frac{t}{\sqrt{t + t^2} + t} \\ & = \frac{1}{2} \lim_{t \to \infty} \frac{1}{\sqrt{\frac{1}{t} + 1} + 1} \\ & = \frac{1}{2} \times \frac{1}{2} \\ & = \frac{1}{4} \end{split}$$

10. $f(x) = |2^x - k|, \ g(x) = |2^{x-5} - k|$ \$\text{\$\sigma}\$ 네 점 A(a, 1) (a < 0), B(b, 4), C(c, 1), D(d, 4)에 대하여 $|2^x-k|=0$ 일 때 $x=\log_2 k$ 이므로 곡선 y = f(x)가 x축과 만나는 점의 x좌표 $\log_2 k$ 는 $\log_2 k > 0 > a \, (\because k > 1)$ 이고, 곡선 y = f(x)의 점근선은 y = k(1 < k < 2)이다.