Nom:

Question de cours :

- Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}$, donner $\sum_{k=0}^{n} a$.
- Soient $q \neq 1$ et $n \in \mathbb{N}$, donner $\sum_{k=1}^{n} q^{k}$.

Exercice:

1) Écrire les sommes suivantes à l'aide du symbole \sum :

a)
$$S_1 = 1 + 3 + 5 + \cdots + 15$$

$$S_2 = -1 + 1 + -1 + 1 - 1$$

a)
$$S_1 = 1 + 3 + 5 + \dots + 15$$
 $S_2 = -1 + 1 + -1 + 1 - 1$ $S_3 = \sqrt{2} + \sqrt{4} + \sqrt{6} + \dots + \sqrt{16}$ 2) Calculer les sommes suivantes :

a)
$$\sum_{k=1}^{n} 2^k$$

a)
$$\sum_{k=1}^{n} 2^k$$
 b) $\sum_{k=2}^{n} (3k+1)$ c) $\sum_{k=0}^{n} 2^k 3^{2-k}$

c)
$$\sum_{k=0}^{n} 2^{k} 3^{2-k}$$

Exercice:

$$\text{V\'erifier que pour } k \geq 0 \text{, on a}: \frac{1}{(k+1)(k+3)} = \frac{1}{2}\frac{1}{k+1} - \frac{1}{2}\frac{1}{k+3}. \text{ En d\'eduire la valeur de } \sum_{k=0}^n \frac{1}{(k+1)(k+3)} \text{ pour tout } n \geq 2.$$

Exercice:

Calculer la somme
$$\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right)$$
.

Commentaire:

Nom:

Question de cours :

- Rappeler ce qu'est la linéarité de la somme.
- Soient $a \in \mathbb{R}$ et $n \in \mathbb{N}$, donner $\prod^n a$.

Exercice:

1) Écrire les sommes suivantes à l'aide du symbole \sum :

a)
$$S_1 = 2 + 4 + 6 + \dots + 20$$

$$S_2 = 1 + 4 + 9 + \dots + 36$$

a)
$$S_1=2+4+6+\cdots+20$$
 $S_2=1+4+9+\cdots+36$ $S_3=-1+\frac{1}{2}-\frac{1}{3}+\cdots+\frac{1}{10}$ 2) Calculer les sommes suivantes :

a)
$$\sum_{k=2}^{n} (2k+1)$$

a)
$$\sum_{k=2}^{n} (2k+1)$$
 b) $\sum_{k=2}^{n} (2k+3^{k})$ c) $\sum_{k=0}^{n} \frac{1}{2^{k}}$

c)
$$\sum_{k=0}^{n} \frac{1}{2^k}$$

Exercice:

- 1) Vérifier que pour $k \ge 1$, on a : $\frac{1}{k(k+1)} = \frac{1}{k+1} \frac{1}{k}$. En déduire la valeur de $\sum_{k=1}^{n} \frac{1}{k(k+1)}$ pour tout $n \ge 1$.
- 2) Montrer par récurrence que pour tout $n \ge 0$, on a : $\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

Exercice:

Calculer les produits suivants pour $n \in \mathbb{N}$:

a)
$$P_1 = \prod_{k=0}^{n} 2^k$$

$$\mathsf{b)}\ P_2 = \prod_{k=0}^n 2k$$

c)
$$P_3 = \prod_{k=1}^{n} 3^k$$

Commentaire:

Nom:

Question de cours :

• Rappeler la définition la factorielle de $n \in \mathbb{N}$ à l'aide du symbole \prod .

• Soit
$$n \in \mathbb{N}$$
, donner $\sum_{k=0}^{n} k$.

Exercice:

1) Écrire les sommes suivantes à l'aide du symbole \sum :

a)
$$S_1 = 3 + 6 + 9 + \dots + 21$$
 $S_2 = -1 + 4 - 9 + \dots + 36$ $S_3 = \frac{1}{2!} + \frac{1}{4!} + \dots + \frac{1}{12!}$

2) Calculer les sommes suivantes : a)
$$\sum_{k=1}^n (3^k+3)$$
 b)
$$\sum_{k=2}^n (4k+2)$$
 c)
$$\sum_{k=0}^n 3^{2k}2^{n-k}$$

Exercice:

1) Soit $n \ge 1$, démontrer que $(n+1)! \ge \sum_{k=0}^{n} k!$.

2) Soit
$$n \ge 1$$
, calcular $\sum_{k=0}^{n} 2k + \sum_{k=0}^{n} (2k+1)$.

Exercice:

Soit $(H_n)_{n\geq 1}$ la suite définie pour tout $n\geq 1$ par : $H_n=\sum_{k=1}^n\frac{1}{k}.$ Le but est de montrer que $H_n\to +\infty.$

On admet que si $H_n \to l$ où $l \in \mathbb{R}$, alors $H_{2n} \to l$.

1. Écrire $H_{2n}-H_n$ en une unique somme.

2. En déduire que $H_{2n} - H_n \ge \frac{1}{2}$.

3. Conclure par l'absurde que $(\tilde{H_n})_{n\geq 1}$ diverge puis que $H_n\to +\infty$.

Commentaire: