### **Cobot C1 Technical Specifications**

### **Technical Data**

**Number of axes** 4 + Gripper (2)

Maximum Reach 81 cm Weight 2.3 Kg **Payload** 1.0 Ka

**Mounting Position** Floor/Desired angle

Workspace  $2.23 \, \text{m}^3$ 

### **Link Lengths**

Link 1 length 11 cm Link 2 length 29 cm Link 3 length 31 cm Link 4 length 20 cm Link 5 length 0 cm

### **Joint Axis Data**

Joint 1 -180° to 180° Joint 2 -180° to 180° Joint 3 -135 ° to 165 ° Joint 4 -165 ° to 170 ° Joint 5 -180 ° to 180 °

### **Operating Conditions**

-5°C to 40°C **Operating Temperature Peak Current** 20A

Voltage 24

### **Actuator Data**

Controller FOC

**QDD** Actuator QDD A2 (3 in total)

**Peak Actuator Torque** 12 Nm



## COBOT CI **6 DOF ROBOTIC ARM**







## Cobot C1

### Introduction and Features

6 DOF Robotic Arm for Educational Excellence Empowering Future Engineers with Advanced Robotics

# **Empowering Education Through Robotics**

At the forefront of educational innovation, our 6 DOF robotic arm is designed to provide hands-on learning in robotics and automation. Built using advanced Quasi-Direct Drive (QDD) actuators, the robotic arm ensures high precision and dynamic motion, making it the perfect tool for students and educators to explore robotics.



### **Key Features**

### 6 Degrees of Freedom (DOF)

Enable diverse movement, offering students the opportunity to learn complex maneuvers.

### • Quasi-Direct Drive (QDD) Actuator Technology

This advanced actuator offers high torque density, reduced noise, and excellent force feedback, providing a realistic control experience.

#### • Lightweight and Compact Design

With a weight of only 2.5 kg and a payload capacity of 0.5 kg, this robotic arm is perfect for educational setups, balancing functionality with accessibility.

### • Plug-and-Play Integration

Ready-to-use with popular simulation software like ROSI (Robot Operating System) and Gazebo, ensuring easy integration into classroom settings and research labs.

### Modular and Customizable

The arm's modular structure allows for the attachment of different grippers and sensors, providing flexibility in learning and experimentation.

### • Applications in Education

#### STEM Labs

Ideal for hands-on teaching of robotics, mechanics, and control systems in universities.

### Research & Development

Enables students and researchers to experiment with automation and robotics technology in real-world applications.