МИНИСТЕРСТВО ЦИФРОВОГО РАЗВИТИЯ, СВЯЗИ И МАССОВЫХ КОММУНИКАЦИЙ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет телекоммуникаций и информатики"

Кафедра телекоммуникационных систем и вычислительных средств (TC и BC)

РЕФЕРАТ

по дисциплине

"Моделирование систем мобильной связи"

по теме: ОБРАБОТКА СИГНАЛА В OFDM СИСТЕМЕ

Студент: Γ *руппа № хххх*

Н. Е. Ляпин

Преподаватель:

доцент, к.т.н.

Р. В. Ахпашев

СОДЕРЖАНИЕ

1	ТЕОРЕТИЧЕСКИЕ ОСНОВЫ OFDM			4
	1.1	Принципы OFDM		
	1.2	Кодирование и модуляция		
	1.3	Эффекты канала		
2	ОБРАБОТКА СИГНАЛА В OFDM СИСТЕМАХ			5
	2.1	Обработка на стороне передатчика		
	2.2	Моделирование канала		
	2.3	Обработка на стороне приемника		
	2.4	Описание функций MATLAB		6
		2.4.1	Функция calculateBER	6
		2.4.2	Функция channel_config	6
		2.4.3	Функция convolutionalEncoder	6
		2.4.4	Функция deinterleaver	6
		2.4.5	Функция getAlphabet	7
		2.4.6	Функция getCodingParameters	7
		2.4.7	Функция interleaver	7
		2.4.8	Функция multipathChannel	7
		2.4.9	Функция ofdm_config	8
		2.4.10	Функция ofdmDemodulator	8
		2.4.11	Функция ofdmModulator	8
		2.4.12	Функция qpskDemodulator	8
		2.4.13	Функция qpskModulator	8
		2.4.14	Функция symbolDecoder	9
		2.4.15	Функция symbolEncoder	9
		2.4.16	Функция viterbiDecoder	9
3	МОДЕЛИРОВАНИЕ И РЕЗУЛЬТАТЫ			10
	3.1	3.1 Настройка моделирования		
	3.2	Результаты и анализ 10		
	3.3	Выводы		

ВВЕДЕНИЕ

Система с ортогональным частотным разделением каналов (OFDM, Orthogonal Frequency Division Multiplexing) — это метод модуляции, широко используемый в современных системах связи, таких как Wi-Fi, LTE и DVB-T [vanNee2000]. Благодаря использованию ортогональных поднесущих, OFDM обеспечивает высокую устойчивость к многолучевому распространению сигнала и эффективное использование частотного спектра.

Цель данного проекта — реализация и анализ полного цикла обработки сигнала в OFDM системе с использованием MATLAB. Проект включает кодирование текстового сообщения, модуляцию, передачу через моделируемый многолучевой канал с аддитивным белым гауссовым шумом (AWGN), демодуляцию и декодирование. Отчет описывает теоретические основы, этапы обработки сигнала, результаты моделирования и анализ качества передачи.

1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ОГОМ

1.1 Принципы OFDM

OFDM основан на разделении широкополосного сигнала на множество узкополосных поднесущих, которые ортогональны друг другу. Это позволяет минимизировать межсимвольную интерференцию. На стороне передатчика данные преобразуются с помощью обратного быстрого преобразования Фурье (IFFT), а на стороне приемника — с помощью прямого быстрого преобразования Фурье (FFT). Добавление циклического префикса (CP) помогает устранить эффекты многолучевого распространения [оррепheim1999].

1.2 Кодирование и модуляция

Процесс передачи данных включает несколько этапов:

- **Знаковое кодирование**: преобразование текста в битовую последовательность с использованием заданного алфавита.
- Сверточное кодирование: повышение устойчивости к ошибкам с помощью сверточного кода.
- Перемежка: случайное перераспределение битов для защиты от пакетных ошибок.
- QPSК модуляция: преобразование бит в комплексные символы с использованием квадратурной фазовой манипуляции.

1.3 Эффекты канала

Канал передачи моделируется с учетом многолучевого распространения, где сигнал приходит по нескольким путям с разными задержками и затуханиями. Добавление AWGN имитирует шум реальных систем связи.

2 ОБРАБОТКА СИГНАЛА В OFDM СИСТЕМАХ

2.1 Обработка на стороне передатчика

Передатчик выполняет следующие шаги:

- Знаковое кодирование текста в биты с использованием алфавита, включающего буквы, цифры, пробел и точку.
- Сверточное кодирование с длиной ограничения 7 и генераторными полиномами [171, 133].
- Перемежка для защиты от пакетных ошибок.
- QPSK модуляция, преобразующая пары бит в комплексные символы.
- ОFDM модуляция с использованием 64 поднесущих и циклического префикса.

2.2 Моделирование канала

Канал моделируется как многолучевой с 7 лучами, случайными задержками и затуханиями. Мощность шума задается параметром noisePowerBW = -120 дБ. Полоса пропускания канала составляет 13 МГц, а несущая частота — 1.9 ГГц.

2.3 Обработка на стороне приемника

Приемник выполняет обратные операции:

- OFDM демодуляция с удалением циклического префикса и применением FFT.
- QPSK демодуляция для преобразования комплексных символов в биты.
- Деперемежка для восстановления исходного порядка бит.
- Декодирование Витерби для исправления ошибок.
- Знаковое декодирование для получения исходного текста.

2.4 Описание функций МАТLAВ

Для реализации OFDM-системы использовались функции MATLAB, обеспечивающие кодирование, модуляцию, моделирование канала и обработку сигнала. Ниже приведено подробное описание каждой функции с примерами кода.

2.4.1 Функция calculateBER

Вычисляет коэффициент битовых ошибок (BER) между исходной и декодированной последовательностью.

```
originalBits = [1 0 1 1 0];
decodedBits = [1 0 0 1 1];
ber = calculateBER(originalBits, decodedBits);
```

Функция сравнивает биты и делит количество ошибок на длину последовательности.

2.4.2 Функция channel_config

Возвращает структуру с параметрами канала: 7 лучей, шум -120 дБ, полоса 13 МГц, несущая частота 1.9 ГГц.

```
params = channel_config();
```

2.4.3 Функция convolutionalEncoder

Выполняет сверточное кодирование с треллисом (длина ограничения 7, полиномы [171, 133]).

```
inputBits = [1 0 1];
encodedBits = convolutionalEncoder(inputBits);
```

2.4.4 Функция deinterleaver

Восстанавливает порядок бит, используя сохранённый вектор перестановки.

```
setappdata(0, 'permutationVector', [2 1 3]);
inputBits = [0 1 1];
deinterleavedBits = deinterleaver(inputBits);

disp(deinterleavedBits); % [1 0 1]
```

2.4.5 Функция getAlphabet

Возвращает алфавит (63 символа) и количество бит на символ (6).

```
[alphabet, bitPerSymbol] = getAlphabet();
disp(bitPerSymbol); % 6
```

2.4.6 Функция getCodingParameters

Возвращает параметры кодирования: длина ограничения 7, полиномы [171, 133].

```
[constraintLength, codeGenerator] = getCodingParameters();
disp(codeGenerator); % [171 133]
```

2.4.7 Функция interleaver

Перемешивает биты для защиты от ошибок, сохраняя перестановку.

```
inputbits = [1 0 1 1];
interleavedBits = interleaver(inputbits);
```

2.4.8 Функция multipathChannel

Моделирует многолучевой канал с 7 лучами и AWGN.

```
params = channel_config();

txSignal = randn(1, 100);

receivedSignal = multipathChannel(txSignal, params);

disp(length(receivedSignal)); % 100
```

2.4.9 Функция ofdm config

Задаёт параметры OFDM: 64 поднесущие, циклический префикс 1/16.

```
params = ofdm_config();

disp(params.cpLength); % 4
```

2.4.10 Функция ofdmDemodulator

Выполняет OFDM-демодуляцию, извлекая QPSK-символы.

```
setappdata(0, 'cpLength', 4);
receivedSignal = randn(68, 1);
qpskSymbols = ofdmDemodulator(receivedSignal);
disp(length(qpskSymbols)); % 64
```

2.4.11 Функция ofdmModulator

Выполняет OFDM-модуляцию с циклическим префиксом.

```
params = ofdm_config();

qpskSymbols = randn(64, 1);

ofdm_stream = ofdmModulator(qpskSymbols, params);

disp(length(ofdm_stream)); % 68
```

2.4.12 Функция qpskDemodulator

Демодулирует QPSK-символы в биты по квадрантам.

```
receivedSymbols = [0.707+0.707j, -0.707-0.707j];
demodulatedBits = qpskDemodulator(receivedSymbols);
disp(demodulatedBits); % [0 0 1 1]
```

2.4.13 Функция qpskModulator

Модулирует биты в QPSK-символы.

```
inputBits = [0 0 1 1];
modulatedSymbols = qpskModulator(inputBits);
disp(modulatedSymbols); % [0.707+0.707j -0.707-0.707j]
```

2.4.14 Функция symbolDecoder

Декодирует биты в текстовое сообщение.

```
1    encodedBits = [0 0 0 0 1 0];
2    decodedMessage = symbolDecoder(encodedBits);
3    disp(decodedMessage); % 'b'
```

2.4.15 Функция symbolEncoder

Кодирует текст в биты.

```
message = 'b';
encodedBits = symbolEncoder(message);
disp(encodedBits); % [0 0 0 0 1 0]
```

2.4.16 Функция viterbiDecoder

Выполняет декодирование Витерби.

```
encodedBits = [1 1 0 1 0 0];
decodedBits = viterbiDecoder(encodedBits);
```

3 МОДЕЛИРОВАНИЕ И РЕЗУЛЬТАТЫ

3.1 Настройка моделирования

Моделирование проводилось с использованием следующих параметров:

- Количество поднесущих: 64;
- Длина циклического префикса: 1/16 от числа поднесущих;
- Тип модуляции: QPSK;
- Количество лучей в канале: 7;
- Полоса пропускания: 13 МГц.

Тестовое сообщение: HELLO WORLD THIS IS A TEST MESSAGE.

3.2 Результаты и анализ

Моделирование показало успешное восстановление тестового сообщения. Основные результаты:

- Спектр переданного OFDM символа демонстрирует равномерное распределение энергии по поднесущим (см. рисунок 1a).
- Спектр до эквалайзирования показывает искажения, вызванные каналом (см. рисунок 16).
- Созвездие QPSK в передатчике имеет четкие точки, соответствующие четырем фазам, тогда как в приемнике наблюдается шум (см. рисунок 1_B , Γ).
- Коэффициент битовых ошибок (BER) до знакового декодирования составил 10^{-3} , что указывает на высокую точность передачи.

Рисунок 1 — Графический анализ сигналов

3.3 Выводы

Реализация полного цикла обработки сигнала в OFDM системе показала успешное кодирование, передачу и восстановление сообщения. Моделирование многолучевого канала и добавление шума позволили оценить устойчивость системы. Графический анализ подтвердил корректность модуляции и демодуляции. Дальнейшие исследования могут включать анализ при различных уровнях шума и адаптивную модуляцию.