Dwind Method $U_{+} + au_{x} = 0$ One-Sided differences: $()^{n+1}-()^{n}=-\alpha ()^{n}-()$ 15t-order in space and time.

The CFL condition says: Ka <h Necessary Ka <h condition

If a < 0: We can't satisfy the CFL condition.

Method of lines
$$0 < x < 1$$

Stability analysis $U(x=0,t)=0$

Semi-discretization: $U_{i} \approx U(jh,t)$

Then use Euler in time. $U_{i}^{H} = (T_{i} \times L)U_{i}^{H}$
 $U_{i}^{H} = a_{i}^{H} = a_{i}^{H}$

Eigenvalues of L: λ=-a We want KXES

-1 -1 -2 -1

 $-2 \le k \le 0$ $-2 \le -k \le 0$ $-2 \le k \le 2$ Weaker than CFL.

Toeplitz matrices ad. b. c. . . .

Circulant Matrices

Any FD discretization with periodic BCs yields a circulant matrix.

All circulant matrices of a given Size have the same eigenvectors.

(Technique for analyzing stability
$$\frac{Ka}{h} = 0$$
)

We want $|g| \le |+\infty|$

Generation:

 $|g|^2 = (|-v|+v)e^{-ih\xi}(|-v|+v)e^{-i$

1912 SI (=> 0 SVSI g is the eigenvalue of our circulant matrix.

Cond(M)=(M')||·||M||>1 $50 \|A\|_2 \leq \rho(A)$ with equality itt Ris Unitary i.e. if A has a complete set of orthogonal eigenvectors. Matrices with this property are said to be normal. Equivalently: AA*=A*A

tor a normal matrix. if $\rho(A) \leq 1$, then $||A||_2 \leq 1$ Yor a non-normal matrix it P(A) <1 then Non-normal