$$| \cdot (a) \rangle = \frac{tr}{2} \langle 4| \sqrt{14} \rangle | paint$$

$$= \frac{tr}{2} \left(\frac{1}{z}\right) (1-\lambda) \left(\frac{0-\lambda'}{\lambda}\right) \left(\frac{1}{\lambda}\right)$$

$$= \frac{tr}{4} (1-\lambda) \left(\frac{1}{\lambda}\right) = \frac{tr}{2}$$

You may notice that 14> is an eigenstate of Sy (spin-up along y-axis)

i.
$$\Delta Sy = 0$$

(otherwise use $\Delta A = \sqrt{\langle A^2 \rangle - \langle A \rangle^2}$)

(b):
$$14>$$
 is spin-up along +y
 $(5x>=(5z>=0)$
 $\Delta Sx = \Delta Sz = \frac{t_1}{z}$

2. (a) Same as Prob. 3.15 The Hertbook

(In Extra Problem Solution" on Mood/e) $\Rightarrow 11,1>x \rightarrow \frac{1}{z} \left(\sqrt{z}\right)$

$$\langle S_{\times} \rangle = |K|, ||\widehat{J}_{\times}||, |\rangle_{n, y}$$

or by physics intuition $|\widehat{J}_{+}\rangle_{\times}$
that $\langle S_{\times} \rangle = t_1 \cos A$

$$\begin{bmatrix}
A & O \\
A & O
\end{bmatrix}
\begin{pmatrix}
X_1 \\
X_2
\end{pmatrix} = -A \begin{pmatrix}
X_1 \\
X_2
\end{pmatrix}$$

$$\begin{pmatrix}
-A X_2 \\
-A X_1
\end{pmatrix} \Rightarrow X_1 = X_2, \quad |E_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$E_2=A$$
, $\chi_1=-\chi_2$, $|E_2\rangle=\frac{1}{\sqrt{2}}\begin{pmatrix}1\\-1\end{pmatrix}$

(-1 if doesn't get normalized)

3. (b)
$$|E| > = \frac{1}{\sqrt{2}} (|a\rangle + |-a\rangle)$$
 $|E| > = \frac{1}{\sqrt{2}} (|a\rangle - |-a\rangle)$
 $|V(t) > = e^{-\lambda \frac{At}{h}} \frac{1}{\sqrt{2}} (|E| > - |E| >)$
 $|V(t) > = e^{-\lambda \frac{At}{h}} \frac{1}{\sqrt{2}} (|E| > - |E| >)$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{+\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{+\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{+\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{+\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} + (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) > = (\frac{1}{\sqrt{2}})^2 e^{-\lambda \frac{At}{h}} = coz(\frac{At}{h})$
 $|V(t) >$

4. (a)
$$\hat{H} = \omega_0 \hat{S}_x \Rightarrow \text{eigenvalues} = \pm \frac{t\tau}{2}\omega_0$$

eigenstates = same as $\hat{S}_x = 1\pm x > 0$

(b) : $[\hat{H}, \hat{S}_x] = 0^{V}$; $\langle S_x \rangle$ is constant in time at $t = 0$ the e^- is in $1+27 \Rightarrow \langle S_x \rangle = 0$ always

(c) $1+27 \Rightarrow \frac{1}{\sqrt{2}}\left(1+x \rangle + 1-x \rangle\right)$, $ot = \frac{t}{N}$
 $e^{-\frac{\lambda}{1}} \frac{1}{\sqrt{2}} + e^{-\frac{\lambda}{2}} \frac{\omega_0(\sigma t)}{2} + e^{-\frac{\lambda}{2}} \frac{\omega_0(\sigma t)}{2}$

4.(d) $\lim_{N\to\infty} \omega_2^{2N} \left(\frac{\omega_0 t}{2N} \right) = 0$ $\lim_{N\to\infty} \left(\ln \left(\frac{\omega_2^{2N}}{2N} \right) \right)$ $\lim_{N\to\infty} 2N \ln \omega 2 \left(\frac{\omega + \omega}{2N}\right) = 2 \lim_{N\to\infty} \frac{\ln (\omega 2 \frac{\omega + \omega}{2})}{N}$ $(x-0, \omega_{x}(\frac{\omega^{t}}{x})=1, ln(1)=0$ $\rightarrow \frac{d}{dx} \left(\ln \omega_2 \left(\frac{\omega_{\text{ot}}}{z} \chi \right) \right) \Big|_{\chi=0}$ $=\frac{\sin\left(\frac{wot}{2}x\right)}{\cos\left(\frac{wot}{2}x\right)}\frac{wot}{2}=\frac{wot}{2}\tan\left(\frac{wot}{2}x\right)\Big|_{x=0}$:, P(->) = Quantum Zeno Effect " (half-credit if you argue that when st > 0, Prob. of observing 1+2> each time -1)

A particle which is continuously measured will not change state, even if its not a stationary state.