PHYS305 Homework#1

Part I due 26Sep2021

Problem 1.3 Find the angle between the body diagonals of a cube.

Problem 1.8

- (a) Prove that the two-dimensional rotation matrix (1.29) preserves dot products. (That is, show that $\overline{A}_y \overline{B}_y + \overline{A}_z \overline{B}_z = A_y B_y + A_z B_z$.)
- (b) What constraints must the elements (R_{ij}) of the three-dimensional rotation matrix (1.30) satisfy in order to preserve the length of A (for all vectors A)?

Problem 1.11 Find the gradients of the following functions:

(a)
$$f(x, y, z) = x^2 + y^3 + z^4$$
.

(b)
$$f(x, y, z) = x^2y^3z^4$$
.

(c)
$$f(x, y, z) = e^x \sin(y) \ln(z)$$
.

Problem 1.15 Calculate the divergence of the following vector functions:

(a)
$$\mathbf{v}_a = x^2 \,\hat{\mathbf{x}} + 3xz^2 \,\hat{\mathbf{y}} - 2xz \,\hat{\mathbf{z}}$$
.

(b)
$$\mathbf{v}_b = xy\,\hat{\mathbf{x}} + 2yz\,\hat{\mathbf{y}} + 3zx\,\hat{\mathbf{z}}.$$

(c)
$$\mathbf{v}_c = y^2 \,\hat{\mathbf{x}} + (2xy + z^2) \,\hat{\mathbf{y}} + 2yz \,\hat{\mathbf{z}}.$$

Problem 1.25 Calculate the Laplacian of the following functions:

(a)
$$T_a = x^2 + 2xy + 3z + 4$$
.

(b)
$$T_b = \sin x \sin y \sin z$$
.

(c)
$$T_c = e^{-5x} \sin 4y \cos 3z$$
.

(d)
$$\mathbf{v} = x^2 \,\hat{\mathbf{x}} + 3xz^2 \,\hat{\mathbf{y}} - 2xz \,\hat{\mathbf{z}}$$
.

Problem 1.26 Prove that the divergence of a curl is always zero. *Check* it for function \mathbf{v}_a in Prob. 1.15.

Problem 1.27 Prove that the curl of a gradient is always zero. *Check* it for function (b) in Prob. 1.11.

Problem 1.28 Calculate the line integral of the function $\mathbf{v} = x^2 \,\hat{\mathbf{x}} + 2yz \,\hat{\mathbf{y}} + y^2 \,\hat{\mathbf{z}}$ from the origin to the point (1,1,1) by three different routes:

- $(a) \ (0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1);$
- (b) $(0,0,0) \to (0,0,1) \to (0,1,1) \to (1,1,1)$;
- (c) The direct straight line.
- (d) What is the line integral around the closed loop that goes *out* along path (a) and *back* along path (b)?

Problem 1.31 Check the fundamental theorem for gradients, using $T = x^2 + 4xy + 2yz^3$, the points $\mathbf{a} = (0, 0, 0)$, $\mathbf{b} = (1, 1, 1)$, and the three paths in Fig. 1.28:

- (a) $(0,0,0) \to (1,0,0) \to (1,1,0) \to (1,1,1)$;
- (b) $(0,0,0) \rightarrow (0,0,1) \rightarrow (0,1,1) \rightarrow (1,1,1)$;
- (c) the parabolic path $z = x^2$; y = x.

Figure 1.28

Part II due 03Oct2021

Problem 1.32 Test the divergence theorem for the function $\mathbf{v} = (xy)\,\hat{\mathbf{x}} + (2yz)\,\hat{\mathbf{y}} + (3zx)\,\hat{\mathbf{z}}$. Take as your volume the cube shown in Fig. 1.30, with sides of length 2.

Figure 1.30

Problem 1.33 Test Stokes' theorem for the function $\mathbf{v} = (xy)\,\hat{\mathbf{x}} + (2yz)\,\hat{\mathbf{y}} + (3zx)\,\hat{\mathbf{z}}$, using the triangular shaded area of Fig. 1.34.

Figure 1.34

Problem 1.37 Express the unit vectors $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ in terms of $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ (that is, derive Eq. 1.64). Check your answers several ways ($\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} \stackrel{?}{=} 1$, $\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}} \stackrel{?}{=} 0$, $\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \stackrel{?}{=} \hat{\boldsymbol{\phi}}$, ...). Also work out the inverse formulas, giving $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ in terms of $\hat{\mathbf{r}}$, $\hat{\boldsymbol{\theta}}$, $\hat{\boldsymbol{\phi}}$ (and θ , ϕ).

Problem 1.38

- (a) Check the divergence theorem for the function $\mathbf{v}_1 = r^2 \hat{\mathbf{r}}$, using as your volume the sphere of radius R, centered at the origin.
- b) Do the same for $\mathbf{v}_2 = (1/r^2)\hat{\mathbf{r}}$. (If the answer surprises you, look back at Prob. 1.16.)

Problem 1.42

(a) Find the divergence of the function

$$\mathbf{v} = s(2 + \sin^2 \phi)\,\hat{\mathbf{s}} + s\sin\phi\cos\phi\,\,\hat{\boldsymbol{\phi}} + 3z\,\,\hat{\mathbf{z}}.$$

- (b) Test the divergence theorem for this function, using the quarter-cylinder (radius 2, height 5) shown in Fig. 1.43.
- (c) Find the curl of v.

Figure 1.43

Problem 1.43 Evaluate the following integrals:

(a)
$$\int_2^6 (3x^2 - 2x - 1) \, \delta(x - 3) \, dx$$
.

(b)
$$\int_0^5 \cos x \, \delta(x - \pi) \, dx.$$

(c)
$$\int_0^3 x^3 \delta(x+1) \, dx$$
.

(d)
$$\int_{-\infty}^{\infty} \ln(x+3) \, \delta(x+2) \, dx$$
.

Problem 1.46

- (a) Write an expression for the electric charge density $\rho(\mathbf{r})$ of a point charge q at \mathbf{r}' . Make sure that the volume integral of ρ equals q.
- (b) What is the charge density of an electric dipole, consisting of a point charge -q at the origin and a point charge +q at \mathbf{a} ?
- (c) What is the charge density of a uniform, infinitesimally thin spherical shell of radius R and total charge Q, centered at the origin? [Beware: the integral over all space must equal Q.]