SOLUCION HOJA DE TRABAJO No. 7

1)

5.
$$x = t^2 + t$$
, $y = t^2 - t$; $t = 0$. $\frac{dy}{dt} = 2t - 1$, $\frac{dx}{dt} = 2t + 1$, so $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t - 1}{2t + 1}$. When $t = 0$, $x = y = 0$ and $\frac{dy}{dx} = -1$. An equation of the tangent is $y - 0 = (-1)(x - 0)$ or $y = -x$.

8. $x = t \sin t$, $y = t \cos t$; $t = \pi$. $\frac{dy}{dt} = \cos t - t \sin t$, $\frac{dx}{dt} = \sin t + t \cos t$, and $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{\cos t - t \sin t}{\sin t + t \cos t}$. When $t = \pi$, $(x, y) = (0, -\pi)$ and $\frac{dy}{dx} = \frac{-1}{-\pi} = \frac{1}{\pi}$, so an equation of the tangent is $y + \pi = \frac{1}{\pi}(x - 0)$ or $y = \frac{1}{\pi}x - \pi$.

2)

19.
$$x = t(t^2 - 3) = t^3 - 3t$$
, $y = 3(t^2 - 3)$. $\frac{dx}{dt} = 3t^2 - 3 = 3(t - 1)(t + 1)$; $\frac{dy}{dt} = 6t$. $\frac{dy}{dt} = 0 \iff t = 0 \iff (x, y) = (0, -9)$. $\frac{dx}{dt} = 0 \iff t = \pm 1 \iff (x, y) = (-2, -6)$ or $(2, -6)$. So there is a horizontal tangent at $(0, -9)$ and there are vertical tangents at $(-2, -6)$ and $(2, -6)$.

	t < -1	-1 < t < 0	0 < t < 1	<i>t</i> > 1
dx/di	+	-	-	+
dy/dt	-	-	+	+
x	→	←	←	\rightarrow
у	↓	1	1	1
curve	7	<	_	7

20.
$$x = t^3 - 3t^2$$
, $y = t^3 - 3t$. $\frac{dx}{dt} = 3t^2 - 6t = 3t (t - 2)$, $\frac{dy}{dt} = 3t^2 - 3 = 3 (t - 1) (t + 1)$. $\frac{dy}{dt} = 0 \iff t = +1 \text{ or } -1 \iff (x, y) = (-2, -2) \text{ or } (-4, 2)$. So the tangent is horizontal at $(-2, -2)$ and vertical at $(0, 0)$. At $(-4, 2)$ the curve crosses itself and there are two tangents, one horizontal and one vertical.

	t < -1	-1 < t < 0	0 < t < 1	1 < t < 2	t > 2
dx/dt	+	+	_	_	+
dy/dt	+	-	_	+	+
x	\rightarrow	\rightarrow	←	←	\rightarrow
У	1	↓	↓	1	1
curve	7	7	V	Κ.	7

36. By symmetry,
$$A = 4 \int_0^a y \, dx = 4 \int_{\pi/2}^a a \sin^3 \theta \left(-3a \cos^2 \theta \sin \theta \right) d\theta = 12a^2 \int_0^{\pi/2} \sin^4 \theta \cos^2 \theta \, d\theta$$
. Now

$$\int \sin^4 \theta \cos^2 \theta \, d\theta = \int \sin^2 \theta \left(\frac{1}{4} \sin^2 2\theta \right) d\theta = \frac{1}{8} \int (1 - \cos 2\theta) \sin^2 2\theta \, d\theta$$
$$= \frac{1}{8} \int \left[\frac{1}{2} \left(1 - \cos 4\theta \right) - \sin^2 2\theta \cos 2\theta \right] d\theta = \frac{1}{16} \theta - \frac{1}{64} \sin 4\theta - \frac{1}{48} \sin^3 2\theta + C$$

3)

8.
$$x = e^t + e^{-t}$$
, $y = 5 - 2t$, $0 \le t \le 3$. $dx/dt = e^t - e^{-t}$ and $dy/dt = -2$, so $(dx/dt)^2 + (dy/dt)^2 = e^{2t} - 2 + e^{-2t} + 4 = e^{2t} + 2 + e^{-2t} = (e^t + e^{-t})^2$ and $L = \int_0^3 (e^t + e^{-t}) dt = [e^t - e^{-t}]_0^3 = e^3 - e^{-3} - (1 - 1) = e^3 - e^{-3}$.

4)
$$\mathbf{30}. \ x = e^{t} - t, \ y = 4e^{t/2}, \ 0 \le t \le 1. \ \left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2} = \left(e^{t} - 1\right)^{2} + \left(2e^{t/2}\right)^{2} = e^{2t} + 2e^{t} + 1 = \left(e^{t} + 1\right)^{2}.$$

$$S = \int_{0}^{1} 2\pi \left(e^{t} - t\right) \sqrt{\left(e^{t} - 1\right)^{2} + \left(2e^{t/2}\right)^{2}} dt = \int_{0}^{1} 2\pi \left(e^{t} - t\right) \left(e^{t} + 1\right) dt$$

$$= 2\pi \left[\frac{1}{2}e^{2t} + e^{t} - (t - 1)e^{t} - \frac{1}{2}t^{2}\right]_{0}^{1} = \pi \left(e^{2} + 2e - 6\right)$$

5) $32. \ t + 1/t = 2.5 \Leftrightarrow t = \frac{1}{2} \text{ or } 2 \text{ , and for } \frac{1}{2} < t < 2 \text{ , we have } t + 1/t < 2.5 . \ x = -\frac{3}{2} \text{ when } t = \frac{1}{2} \text{ and } x = \frac{3}{2} \text{ when } t = \frac{1}{2} \text{ and } x = \frac{3}{2} \text{ when } t = \frac{1}{2} \text{ or } 2 \text{ .}$

$$A = \int_{-3/2}^{3/2} (2.5 - y) dx = \int_{1/2}^{2} \left(\frac{5}{2} - t - 1/t \right) (1 + 1/t^{2}) dt \left[x = t - 1/t, dx = (1 + 1/t^{2}) dt \right]$$

$$= \int_{1/2}^{2} \left(-t + \frac{5}{2} - 2t^{-1} + \frac{5}{2} t^{-2} - t^{-3} \right) dt = \left[-\frac{t^{2}}{2} + \frac{5t}{2} - 2\ln|t| - \frac{5}{2t} + \frac{1}{2t^{2}} \right]_{1/2}^{2}$$

$$= \left(-2 + 5 - 2\ln 2 - \frac{5}{4} + \frac{1}{8} \right) - \left(-\frac{1}{8} + \frac{5}{4} + 2\ln 2 - 5 + 2 \right) = \frac{15}{4} - 4\ln 2$$