

Universidade Federal do Agreste de Pernambuco Av. Bom Pastor s/n - Boa Vista 55292-270 Garanhuns/PE

☎ +55 (87) 3764-5500

http://www.ufape.edu.br

Bacharelado em Ciência da Computação CCMP3079 Segurança de Redes de Computadores Prof. Sérgio Mendonça

Atividade Cap. 04 - Conceitos básicos de Teoria dos Números e Corpos Finitos Para apresentação e discussão em sala de aula, em 31/10/2023.

Nome completo: Thiago Cavalcanti Silva

Questões retiradas do livro-texto da disciplina. Conforme conversamos em sala de aula, as atividades devem ser realizadas para apresentação e discussão em sala, sempre nas aulas das quintas-feiras, atribuindo ao estudante uma nota de 0 ou 1 por cada atividade realizada e apresentada.

1. Defina resumidamente, um grupo, um anel, um corpo.

Grupo é um conjunto de elementos com uma operação binária (•) seja adição, multiplicação ou alguma operação matemática, que associa a cada par ordenado (a, b) de elementos em G um elemento (a • b) em G, obedecendo 4 axiomas: fechamento, associativo, elemento identidade e elemento inverso.

Caso satisfaça o axioma da comutatividade, é chamado de grupo abeliano.

Um anel R, às vezes indicado por {R, +, ×}, é um conjunto de elementos com duas operações binárias, chamadas adição e multiplicação, de forma que, para todo a, b, c em R, deverá obedecer aos axiomas anteriores (ou seja, ser um grupo abeliano), além do fechamento sob multiplicação, associatividade da multiplicação e leis distributivas.

Basicamente, um anel é um conjunto em que podemos realizar adição, subtração [a – b = a + (–b)] e multiplicação sem sair dele.

O anel pode possuir o axioma da comutatividade da multiplicação, identidade multiplicativa e sem divisores de zero, neste caso, torna-se um domínio integral.

Um corpo F, às vezes indicado por {F, +, ×}, é um conjunto de elementos com duas operações binárias, chamadas de adição e multiplicação, de modo que, para todo a, b, c em F, obedece aos axiomas anteriores, ou seja, é um domínio integral, além de possuir o inverso multiplicativo.

Basicamente, um corpo é um conjunto em que podemos realizar adição, subtração, multiplicação e divisão sem sair dele. A divisão é definida com a seguinte regra: $a/b = a(b^{-1})$.

2. O que significa dizer que b é um divisor de a?

Quando a = mb, para algum m, onde a, b e m são inteiros. Ou seja, b divide a se não houver resto na divisão.

3. Para cada uma das seguintes equações, encontre um inteiro x que satisfaça:

(a) $5x \equiv 4 \pmod{3}$

Devemos encontrar a classe inversa do 5 mod 3, ou seja, o número que multiplicado por 5 dividido por 3, deixe resto 1. Começaremos testando com o 1, em diante:

 $5*1 = 5 \equiv 2 \mod 3$

 $5*2 = 10 \equiv 1 \mod 3 \rightarrow$ Achamos o 2, logo, multiplicaremos ambos os lados da equação por ele.

 $2 * 5x \equiv 2 * 4 \pmod{3}$

 $10x = 8 \pmod{3}$

Podemos simplificar, visto que $10 \equiv 1 \mod 3$ e $8 \equiv 2 \mod 3$. Portanto:

 $1*x = 2 \mod 3$

x = 2, podendo ser generalizado para x = 3k + 2

(b) $7x \equiv 6 \pmod{5}$

Devemos encontrar a classe inversa do 7 mod 5, ou seja, o número que multiplicado por 7 dividido por 5, deixe resto 1. Começaremos testando com o 1, em diante:

 $7*1 = 7 \equiv 2 \mod 5$

 $7*2 = 14 \equiv 4 \mod 5$

 $7*3 = 21 \equiv 1 \mod 5 \rightarrow$ Achamos o 3, logo, multiplicaremos ambos os lados da equação por ele.

 $3 * 7x \equiv 3 * 6 \pmod{5}$

 $21x = 18 \pmod{5}$

Podemos simplificar, visto que 21 ≡ 1 mod 5 e 18 ≡ 3 mod 5. Portanto:

 $1x = 3 \mod 5$

x = 3, podendo ser generalizado para x = 5k + 3

(c) $9x \equiv 8 \pmod{7}$

Devemos encontrar a classe inversa do 9 mod 7, ou seja, o número que multiplicado por 9 dividido por 7, deixe resto 1. Começaremos testando com o 1, em diante:

 $9*1 = 9 \equiv 2 \mod 7$

 $9*2 = 18 \equiv 4 \mod 7$

 $9*3 = 27 \equiv 6 \mod 7$

9*4 = 36 = 1 mod 7 → Achamos o 4, logo, multiplicaremos ambos os lados da equação por ele.

 $4 * 9x \equiv 4 * 8 \pmod{7}$

 $36x = 18 \pmod{7}$

Podemos simplificar, visto que $36 \equiv 1 \mod 7$ e $18 \equiv 4 \mod 7$. Portanto:

 $1x = 4 \mod 7$

x = 4, podendo ser generalizado para x = 7k + 4

4. Encontre o inverso multiplicativo de cada elemento diferente de zero em Z₅.

O inverso multiplicativo de um elemento em um conjunto Zn (conhecido como anel de números inteiros módulo n) é um elemento que, quando multiplicado pelo elemento original, resulta em 1.

0: não existe

1: 1 * $x \equiv 1 \pmod{5} \rightarrow x = 1$, pois 1 mod 5 = 1.

2: $2 * x \equiv 1 \pmod{5} \rightarrow x = 3$, pois 6 mod 5 = 1.

3: $3 * x \equiv 1 \pmod{5} \rightarrow x = 2$, pois 6 mod 5 = 1.

4: $4 * x \equiv 1 \pmod{5} \rightarrow x = 4$, pois 16 mod 5 = 1.

5. Determine os MDC:

(a) mdc(24140, 16762):

24140 = 1 * 16762 + 7378

16762 = 2 * 7378 + 2006

7378 = 3 * 2006 + 1360

2006 = 1 * 1360 + 646

1360 = 2 * 646 + 68

646 = 9 * 68 + 34

68 = 2 * 34 + 0

(b) mdc(4655, 12075).

4655	12075	3
4655	4025	5 (divide ambos)
931	805	5
931	161	7 (divide ambos)
133	23	7
19	23	19
1	23	23
1	1	

Como temos 5 e 7 como fator em comum, logo o mdc é 5 * 7 = 35.

6. Usando o algoritmo de Euclides estendido, encontre o inverso multiplicativo de:

(a) 1234 mod 4321;

Q	A1	A2	А3	B1	B2	В3
-	1	0	4321	0	1	1234
3	0	1	1234	1	-3	619
1	1	-3	619	-1	4	615
1	-1	4	615	2	-7	4
153	2	-7	4	-307	1075	3
1	-307	1075	3	309	-1082	<mark>1</mark>

O inverso multiplicativo é -1082.

(b) 24140 mod 40902;

Q	A1	A2	A3	B1	B2	В3
-	1	0	40902	0	1	24140
1	0	1	24140	1	-1	16762
1	1	-1	16762	-1	2	7378
2	-1	2	7378	3	-5	2006
3	3	-5	2006	-10	17	1360
1	-10	17	1360	13	-22	646
2	13	-22	646	-36	61	68
9	-36	61	68	337	-571	34
2	337	-571	34	-710	1203	<mark>0</mark>

Não existe, pois não são relativamente primos.

(c) 550 mod 1769.

Ī	q	r	Х	У	Α	b	X2	X1	Y2	Y1
					550	1769	1	0	0	1

0	550	1	0	1769	550	0	1	1	0
3	119	-3	1	550	119	1	-3	0	1
4	74	13	-4	119	74	-3	13	1	-4
1	45	-16	5	74	45	13	-16	-4	5
1	29	29	-9	45	29	-16	29	5	-9
1	16	-45	-14	29	16	29	-45	-9	14
1	13	74	-23	16	13	-45	74	14	-23
1	3	-119	37	13	3	74	-119	-23	37
4	1	550	-171	3	1	-119	550	37	-171
3	0	-1769	550	1	0	550	-1769	-171	550

O inverso multiplicativo é 550.

7. Determine o inverso multiplicativo de $x^3 + x + 1$ em $GF(2^4)$, com $m(x) = x^4 + x + 1$.

Q	A1	A2	A3	B1	B2	В3
-	1	0	$x^4 + x + 1$	0	1	$x^3 + x + 1$
х	0	1	$x^3 + x + 1$	1	Х	x ² + 1
х	1	х	x ² + 1	х	$x^2 + 1$	<u>1</u>

O inverso multiplicativo é $x^2 + 1$.

8. Para a aritmética de polinômios com coeficientes em Z¹0, realize os seguintes cálculos:

(a)
$$(7x + 2) - (x^2 + 5)$$

$$0x^2 + 7x + 2$$

$$-x^2 + 0x + 5$$

$$-1x^2 + 7x + 7 \rightarrow -1 \mod 10 = 9$$
, 7 mod 10 = 7.

Logo,
$$9x^2 + 7x + 7$$
.

(b)
$$(6x^2 + x + 3) \times (5x^2 + 2)$$

$$6x^2 + x + 3$$

$$X 5x^2 + 0x + 2$$

$$12x^2 + 2x + 6$$

$$+30x^4+5x^3+15x^2$$

 $30x^4 + 5x^3 + 27x^2 + 2x + 6 \Rightarrow 30 \mod 10 = 0$, 5 mod 10 = 5, 27 mod 10 = 7, 2 mod 10 = 2, 6 mod 10 = 6.

Logo,
$$0x^4 + 5x^3 + 7x^2 + 2x + 6 = 5x^3 + 7x^2 + 2x + 6$$

9. Estruture uma calculadora simples de quatro funções em GF(2⁴). Você pode usar uma tabela com valores pré-calculados para os inversos multiplicativos.

Notebook do SageMath disponibilizado no arquivo "Exercícios do capítulo 4.ipynb".

https://cocalc.com/projects/715090fc-6c4e-4dae-a5a7-272936e472a9/files/Exerc%C3%ADcios%20do%20cap%C3%ADtulo%204.ipynb#id=1503d2

https://github.com/ThiagoCavalcantiSilva/seguranca-de-redes

Livro-texto da disciplina: STALLINGS, William. Criptografia e segurança de redes. Princípios e práticas, Ed. 6. 2014