A Duality Theorem for Monoidal Hom Hopf Module Algebras

Botong Gai

Southeast University E-mail: 230228425@seu.edu.cn

We prove a duality theorem for (possibly) infinite dimensional monoidal Hom Hopf algebras (H, α) over k. In the infinite dimensional case, H^* is too big and we replace H^* by finite dual H° of (H, α) or, more generally, a monoidal Hom Hopf subalgebra U of H° . It is also necessary to assume that H and U have bijective antipodes. Let (A, β) be a (H, α) Hom module algebra that the action of (H, α) on (A, β) is locally finite in a sense appropriate to the choice of U, and that the action of $H\sharp U$ satisfies a certain RL-condition. Under these conditions, we we have a Hom algebra isomorphism $(A\sharp H)\sharp U\cong A\otimes (H\sharp U)$.

References

- [1] S. Caenepeel, I. Goyvaerts, Monoidal Hom-Hopf algebras. Comm. Algebra, 39(6) (2011): 2216-2240.
- [2] A. Makhlouf, F. Panaite, Hom-algebras and Hom-coalgebras, Journal of Algebra and Its Applications Vol. 9, No. 4 (2010) 553-589.
- [3] M. VAN DEN BERGH, A duality theorem for Hopf algebras, in "Methods in Ring Theory," NATO ASI Series C, Vol. 129, Reidel, Dordrecht, 1984.
- [4] R. Blattner, S. Montgomery, A duality theorem for Hopf module algebras. J. Algebra 95(1985): 153-172.