Schrittmotoren

Als Antriebsmotoren und für manche Hilfsfunktionen haben sich Schrittmotoren bewährt. Es bieten sich verschiedene Typen und Größen an. Ein möglicher Distributor mit großer Auswahl ist "Stepperonline" (https://www.omc-stepperonline.com/de).

Bei der Auswahl ist zu beachten, dass die Motoren eine Nennspannung von etwa 4.5 – 6 V haben sollten, obwohl die Betriebsspannung des Motor Controllers etwa 12 V beträgt. Die Motortreiber begrenzen den Strom, so dass an den Motoren nicht mehr als deren Nennspannung ankommt. Durch diese Maßnahme lassen sich eine höhere Drehzahl und ein größeres Drehmoment erreichen.

Zur Verbindung mit der Motor Controller Platine sind die Motorleitungen per Crimpen oder Löten mit einem 4-pin JST Stecker zu versehen (Blick auf Buchse am Controller):

Kerbe	_			_
Stift	•	•	•	•
#	1	2	3	4
Funktion	A+	A-	B+	B-
Kabel	SW	gn	rt	bl

Auf den nachfolgenden Seiten sind die Daten von vier möglichen Schrittmotoren. Der eingestellte Strom des Motor-Controllers sollte dem maximalen Motorstrom entsprechen. Fahrmotor groß

Fanrmotor gross	
Art	Schrittmotor (bipolar)
Тур	14HS13-0804S von stepperonline.com
Standard	NEMA 14
Motorstrom	max. 0.8 A
Wicklungswiderstand	6.8 Ohm
Wicklungsinduktivität	10 mH
Strom von 12V-Speisung über Motor Controller	Mittelwert mit PWM-Ansteuerung: typisch 0.2 A, max. 0.4 A
Elektrischer Anschluss	14 cm Kabel JST 4-polig
Schrittweite	1.8° (Vollschritt) , 0.9° (Halbschritt)
Drehmoment	12 Ncm @ < 2.5 U/s , 7.5 Ncm @ < 5 U/s siehe Grafik unten
Drehzahl	im Halbschrittbetrieb, empirisch: max. 5 U/s
Achse	Ø 5 mm mit Abflachung , 22 mm lang einseitig
Größe	37 mm x 35 mm (ohne Achse)
Höhe	35 mm
Masse	190 g
Befestigung	4x Innengewinde M3 Abstand 26 mm (ca. 3 Legolöcher)

Fahrmotor lang (auch als Hilfsmotor)

Fair inotor lang (auch als Finismotor)		
Art	Schrittmotor (bipolar)	
Тур	11HS20-0674S von stepperonline.com	
Standard	NEMA 11	
Motorstrom	max. 0.67 A	
Wicklungswiderstand	9.2 Ohm	
Wicklungsinduktivität	5.7 mH	
Strom von 12V-Speisung über Motor Controller	Mittelwert mit PWM-Ansteuerung: typisch 0.2 A, max. 0.35 A	
Elektrischer Anschluss	14 cm Kabel JST 4-polig	
Schrittweite	1.8° (Vollschritt) , 0.9° (Halbschritt)	
Drehmoment	13 Ncm @ < 9 U/s siehe Grafik unten	
Drehzahl	im Halbschrittbetrieb, empirisch: max. 5 U/s	
Achse	Ø 5 mm mit Abflachung , 20 mm lang einseitig	
Größe	51 mm x 28 mm (ohne Achse)	
Höhe	28 mm	
Masse	190 g	
Befestigung	4x Innengewinde M2.5 Abstand 23 mm (ca. 3 Legolöcher)	

Hilfsmotoren klein

HIIISMOtoren kiein	
Art	Schrittmotor (bipolar)
Тур	8HS15-0604D von stepperonline.com
Standard	NEMA 8
Motorstrom	max. 0.6 A
Wicklungswiderstand	10 Ohm
Wicklungsinduktivität	5.5 mH
Strom von 12V-Speisung über Motor Controller	Mittelwert mit PWM-Ansteuerung: typisch 0.15 A, max. 0.3 A
Elektrischer Anschluss	14 cm Kabel JST 4-polig
Schrittweite	1.8° (Vollschritt), 0.9° (Halbschritt)
Drehmoment	2.4 Ncm @ < 5 U/s siehe Grafik unten
Drehzahl	im Halbschrittbetrieb, empirisch: max. 3 U/s
Achse	Ø 4 mm , beidseitig, 8 mm bzw. 6 mm lang Achsadapter: 5mm-Welle oder 20mm-Flansch
Größe	40 mm x 20 mm (ohne Achsen)
Höhe	20 mm (ohne Kabelanschluss)
Masse	85 g (mit Achsadapter)
Befestigung	4x Innengewinde M2 Abstand 15.4 mm (ca. 2 Legolöcher)

Hilfsmotoren mittel

Art	Schrittmotor (bipolar)
Тур	11HS18-0674S von stepperonline.com
Standard	NEMA 11
Motorstrom	max. 0.67 A
Wicklungswiderstand	6.8 Ohm
Wicklungsinduktivität	5 mH
Strom von 12V-Speisung über Motor Controller	Mittelwert mit PWM-Ansteuerung: typisch 0.2 A, max. 0.3 A
Elektrischer Anschluss	25 cm Kabel JST 4-polig
Schrittweite	1.8° (Vollschritt) , 0.9° (Halbschritt)
Drehmoment	8 Ncm @ < 7 U/s siehe Grafik unten
Drehzahl	im Halbschrittbetrieb, empirisch: max. 3 U/s
Achse	Ø 5 mm mit Abflachung , 18 mm lang einseitig
Größe	47 mm x 28 mm (ohne Achse)
Höhe	28 mm (ohne Kabelanschluss)
Masse	165 g
Befestigung	4x Innengewinde M2.5 Abstand 23 mm (ca. 3 Legolöcher)

Bereifung

Die Felge muss an die Achse der Schrittmotoren (gewöhnlich 5 mm Durchmesser) angepasst werden.

Dazu sind verschiedene Reifen von Fischertechnik, aus der Lego-Serie oder von Polulo geeignet. Anhand der Polulu-Reihe "for Standard Servo Splines", die es zum Beispiel mit 60 mm, 70 mm oder 80 mm Reifendurchmesser gibt, wird eine Möglichkeit der Ankopplung vorgestellt (Best.Nr. 4925 / 70 mm):

- 1. Mit einem Stufenbohrer wird die Mittelbohrung der Felge auf 10 mm erweitert.
- 2. Eine Flanschkupplung mit 5 mm Innendurchmesser wird in die Felgenbohrung gesteckt und mit einem Zweikomponentenkleber verklebt. Achte darauf, dass der Klebstoff nicht an die Bohrungen für die Madenschrauben kommt und beim Aushärten der Flansch parallel zur Felge steht.
- 3. Mit Hilfe zweier Madenschrauben wird die Flanschkupplung auf der Motorachse fixiert. Falls die Motorachse eine Abflachung besitzt, sollte eine der Madenschrauben diese plan berühren. Ziehe die Madenschrauben vorsichtig im Wechsel an.

Bei anderen Radtypen lässt sich die Flanschkupplung gegebenenfalls auch mit Hilfe von Schrauben fixieren.

Bei breiteren Reifen (z.B. Fischertechnik) kann auch die Felgenbohrung vorsichtig auf 5 mm aufgebohrt und direkt auf die Motorachse gesteckt werden. Sie sollte fest auf der Achse sitzen.

Schrittmotoren für Hilfsfunktionen lassen sich z.B. über eine Achskupplung mit einer Lego-Kreuzstange verbinden:

Servo-Motoren

Für bestimmte Roboterfunktionen können auch Servos eingesetzt werden. Sie bieten zwar nur einen begrenzten Drehbereich (je nach Ausführung 180° - 360°), aber ein hohes Drehmoment und lassen sich einfach digital mit PWM ansteuern.

Auf dem Master Controller befinden sich zwei 3-polige JST-Buchsen für Servoantriebe. Um sie mit den üblichen 4,8 – 6 V zu betreiben, stehen hier 5.5 V zur Verfügung.

Auf dem Markt gibt es eine Vielzahl von Mini-Servos für Modellfahrzeuge. Diese sind sehr preisgünstig und prinzipiell auch für Roboter einsetzbar, aber nur schwierig mit Legoteilen zu kombinieren.

Eine Alternative bietet der so genannte Geek-Servo (graue Ausführung!), der direkt mit 16 Legolöchern zur Befestigung und einer beidseitigen Achse für Lego-Kreuzstangen ausgestattet ist:

Ich habe allerdings nur chinesische Anbieter gefunden.

Technische Daten der Servos:

Geek-Servo

Geekservo grau	
4,8 – 6.4 V	
ca. 200 mA @ 5 V , max. 800 mA (stalled)	
ca. 100 mA , max. 400 mA (stalled)	
Kabel 30 cm mit JST-Stecker 3-polig	
Pulsweite (ca. 500 – 2500 μs)	
0 - 360°	
18 Ncm	
ca. 0.4 s/180°	
AnadigMaster: ServoMotor Servo	
40 mm x 24 mm	
24 mm	
21 g (mit Kabel)	
für Lego-Kreuzstange , beidseitig	
16x Legolöcher, Abst. 8-32mm (1-4 Legolöcher)	

Mini-Servo

TAME SCI VS	
Тур	SG90 3g
Versorgungsspannung	4.8 - 6.4 V
Stromaufnahme	ca. 100 mA @ 5 V

Strom von 12V-Speisung über Master Controller	ca. 50 mA
Anschluss	Kabel 22 cm mit JST-Stecker 3-polig
Steuergröße	Pulsweite (ca. 500 – 2500 μs)
Stellwinkel	0 - 180°
Drehmoment	24 Ncm
Stellzeit	ca. 0.3 s/180°
Unterstützende Bibliotheken	AnadigMaster: ServoMotor Servo
Größe	33 mm x 12 mm
Höhe	33 mm
Masse	11 g (mit Kabel)
Achse	für Servoarm
Befestigungslöcher	2 x 2 mm Ø, Abstand 28 mm