MP* KERICHEN 2021-2022

DS nº8

Sujet X-ÉNS

Des sous-groupes finis de $GL_2(\mathbf{C})$

Le but de ce problème est de caractériser les sous-groupes finis de $GL_2(\mathbf{C})$ ne contenant pas d'homothétie autre que l'identité.

Notations et conventions

Soit G un groupe fini (noté multiplicativement) de cardinal |G|. On note $\mathbf{1}_G$ l'unité de G. On rappelle que tout élément g de G vérifie $g^{|G|} = \mathbf{1}_G$ et on admet que si p est un nombre premier qui divise |G|, alors il existe $g \in G \setminus \{\mathbf{1}_G\}$ tel que $g^p = \mathbf{1}_G$.

Si E est un C-espace vectoriel de dimension finie, on note GL(E) le groupe des endomorphismes inversibles de E et Id_E l'identité de E. Si ϕ est un endomorphisme de E, on note $Tr(\phi)$ la trace de ϕ et $det(\phi)$ son déterminant.

Si G est un sous-groupe fini de $\operatorname{GL}(E)$ et V un sous-espace vectoriel de E, on note V^G l'ensemble des vecteurs fixés par $G:V^G=\{v\in V\mid \forall g\in G, g(v)=v\}$. On dit que V est **stable** par G si quels que soient $g\in G, v\in V$, on a $g(v)\in V$ et on dit que E est **irréductible** pour G si ses seuls sous-espaces stables par G sont E et $\{0\}$.

On note $\mathcal{M}_n(\mathbf{C})$ l'espace des matrices carrées de taille n à coefficients complexes et $\mathrm{GL}_n(\mathbf{C})$ le groupe des matrices inversibles dans $\mathcal{M}_n(\mathbf{C})$.

On note D_n le sous-groupe de $\mathcal{GL}_2(\mathbf{C})$ à 2n éléments formé des matrices $\begin{pmatrix} c^k & 0 \\ 0 & c^{-k} \end{pmatrix}$ et $\begin{pmatrix} 0 & -c^k \\ -c^{-k} & 0 \end{pmatrix}$, où k est un entier compris entre 0 et n-1 et $c=\mathrm{e}^{2\mathrm{i}\pi/n}$ (on ne demande pas de vérifier que D_n est un groupe).

I — Sous-groupes finis de GL(E)

1. Soit E un C-espace vectoriel de dimension finie et soit G un sous-groupe fini de GL(E). Démontrer que, pour tout $g \in G$, g est diagonalisable et que, si G est commutatif, tous les éléments de G sont diagonalisables dans une même base.

II — Isométries du triangle

- 2. On se place dans le plan euclidien, muni d'un repère orthonormé centré en O. On s'intéresse au sous-groupe $\widetilde{D_3}$ des isométries du plan qui préservent un triangle équilatéral ABC de centre O.
 - **2a.** Faire l'inventaire des éléments de $\widetilde{D_3}$ et démontrer que $\widetilde{D_3}$ est de cardinal 6.
 - **2b.** En se plaçant dans la base (non orthonormée) $(\overrightarrow{OA}, \overrightarrow{OB})$, démontrer que le groupe $\widetilde{D_3}$ est isomorphe à un sous-groupe de $\operatorname{GL}_2(\mathbf{C})$ formé de matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où a,b,c,d sont dans $\{-1,0,1\}$.
 - **2c.** Diagonaliser dans **C** la matrice $\begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$. En déduire que le groupe $\widetilde{D_3}$ est isomorphe au groupe D_3 .

III — Lemme de Schur

Notons $A = \mathcal{M}_n(\mathbf{C})$ et $E = \mathbf{C}^n$. Notons I_n la matrice identité de $\mathcal{M}_n(\mathbf{C})$. On appelle homothétie une matrice de la forme λI_n , $\lambda \in \mathbf{C}$. Soit G un sous-groupe fini de $\mathrm{GL}_n(\mathbf{C})$. Pour tout $B \in G$, on note i(B) l'application :

$$i(B): \left\{ \begin{array}{l} \mathcal{A} \longrightarrow \mathcal{A} \\ M \longmapsto BMB^{-1} \end{array} \right.$$

3. Montrer que $i: B \mapsto i(B)$ est un morphisme de groupes de G dans GL(A), et que i est injectif si et seulement si G ne contient pas d'homothéties autres que l'identité.

On note \widetilde{G} l'image par i de G et $\mathcal{A}^{\widetilde{G}}$ l'ensemble des matrices $M \in \mathcal{A}$ telles que i(B)(M) = M pour tout B dans \widetilde{G} .

- **4.** Soit $M \in \mathcal{A}^{\widetilde{G}}$. Démontrer que $\operatorname{Ker}(M)$ et $\operatorname{Im}(M)$ sont des sous-espaces stables par G.
- 5. On suppose que E est irréductible pour G. Soit $M \in \mathcal{A}^{\widetilde{G}}$; démontrer que M est soit nulle, soit inversible. En déduire que $\mathcal{A}^{\widetilde{G}}$ est de dimension 1.
- **6.** Soient $M, N \in \mathcal{A}$. On considère l'endomorphisme de \mathcal{A} suivant, $\Phi : X \longmapsto MXN$. Démontrer que $\text{Tr}(\Phi) = \text{Tr}(M) \, \text{Tr}(N)$.
- 7. Soit $P = \frac{1}{|G|} \sum_{B \in G} B$.

7a. Démontrer que $P^2=P.$ En déduire que P est diagonalisable.

- **7b.** Démontrer que $\operatorname{Im}(P)=E^G$ et en déduire que $\dim\left(E^G\right)=\frac{1}{|G|}\sum_{B\in G}\operatorname{Tr} B.$
- 8. Démontrer que dim $\left(\mathcal{A}^{\widetilde{G}}\right) = \frac{1}{|G|} \sum_{B \in G} \operatorname{Tr}\left(B^{-1}\right) \operatorname{Tr}(B)$. On pourra considérer d'abord le cas où i est injectif.

On suppose, jusqu'à la fin de cette partie, que E est irréductible pour G.

- 9a. Soit X dans \mathcal{A} une matrice qui commute avec toutes les matrices de G. Démontrer que $X = \frac{1}{n}\operatorname{Tr}(X)I_n$.
- **9b.** Soit $Y = \sum_{B \in G} \operatorname{Tr} (B^{-1}) B$. Démontrer que $Y = \frac{|G|}{n} I_n$.
- 10. On garde la notation Y jusqu'à la fin de cette partie. Soit $\zeta = e^{2i\pi/|G|}$. On note

$$\mathbf{Z}_G = \left\{ a_0 \zeta^0 + a_1 \zeta^1 + \ldots + a_{|G|-1} \zeta^{|G|-1}, a_i \in \mathbf{Z} \right\}$$

et $\mathbf{Z}_G[G]$ les combinaisons linéaires, à coefficients dans \mathbf{Z}_G , de matrices de G.

- **10a.** Démontrer que pour tout $B \in G$, Tr(B) est dans \mathbf{Z}_G , puis que Y est dans $\mathbf{Z}_G[G]$.
- **10b.** On note $(C_k)_{1 \le k \le |G|^2}$ les $|G|^2$ matrices $\zeta^i B$ (où $1 \le i \le |G|$ et $B \in G$) de $\mathbf{Z}_G[G]$. Démontrer que pour tous $1 \le k \le |G|^2$, on peut trouver des coefficients $(a_{ij})_{1 \le i,j \le |G|^2}$ dans \mathbf{Z} tels que $YC_k = \sum_{1 \le \ell \le |G|^2} a_{\ell k} C_{\ell}$.
- **10c.** On pose $A = (a_{ij})_{1 \le i,j \le |G|^2}$ et $R = \frac{|G|}{n} I_{|G|^2} A$. Démontrer que $\det(R) = 0$.
- **10d.** Démontrer que $\frac{|G|}{n}$ est racine d'un polynôme à coefficients dans \mathbb{Z} de degré $|G|^2$ et de terme dominant égal à 1. En déduire que n divise |G|.

IV — Une caractérisation de D_n , n impair

Soit G un sous-groupe fini de $\mathrm{GL}_2(\mathbf{C})$. Notons $\langle \cdot, \cdot \rangle$ le produit scalaire hermitien usuel sur \mathbf{C}^2 , et posons pour tout $(v, w) \in \mathbf{C}^2$

$$\langle v, w \rangle_0 = \frac{1}{|G|} \sum_{B \in G} \langle B(v), B(w) \rangle$$

- **11a.** Montrer que $\langle \cdot, \cdot \rangle_0$ est un produit scalaire hermitien sur \mathbf{C}^2 , vérifiant : quels que soient $(v, w) \in \mathbf{C}^2$ et $B \in G$, $\langle B(v), B(w) \rangle_0 = \langle v, w \rangle_0$.
- 11b. Démontrer que si \mathbb{C}^2 n'est pas irréductible pour G, il existe une base orthogonale de \mathbb{C}^2 pour le produit scalaire hermitien $\langle \cdot, \cdot \rangle_0$ qui diagonalise les matrices de G. En déduire que G est commutatif.
- 12a. On note $SL_2(\mathbf{C})$ le sous-groupe de $GL_2(\mathbf{C})$ des matrices de déterminant 1. Quelles sont les matrices $B \in SL_2(\mathbf{C})$ telles que $B^2 = I_2$?
- **12b.** Démontrer que si $G \subset SL_2(\mathbf{C})$ est non commutatif, alors |G| est pair. En déduire que $-I_2 \in G$ (utiliser les rappels du préambule).

On suppose par la suite que G est un sous-groupe fini de $GL_2(\mathbf{C})$ ne contenant aucune homothétie autre que l'identité. On note $G_0 = G \cap SL_2(\mathbf{C})$.

- 13a. Démontrer que G_0 est commutatif. En déduire qu'il existe P dans $\operatorname{GL}_2(\mathbf{C})$ et un sous-groupe Γ_0 de $\operatorname{GL}_2(\mathbf{C})$ formé de matrices diagonales de la forme $\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$ tels que $B \longmapsto PBP^{-1}$ soit un isomorphisme de G_0 sur Γ_0 .
- **13b.** Démontrer qu'il existe un entier m tel que Γ_0 soit le groupe \mathcal{Z}_m des matrices $\begin{pmatrix} c^k & 0 \\ 0 & c^{-k} \end{pmatrix}$ où $c = e^{2i\pi/m}$ et k prend les valeurs de 0 à m-1.
- **13c.** Si $G_0 = \{I_2\}$, démontrer qu'alors G est sommutatif (considérer le morphisme de groupes det : $G \longrightarrow \mathbb{C}^*$).

On suppose dans les questions 14 et 15 que G n'est pas commutatif et que G_0 est exactement le groupe \mathcal{Z}_m .

- 14. Soit B_0 une matrice dans G qui n'est pas diagonale.
 - **14a.** Démontrer que pour tout $C \in \mathcal{Z}_m$ on a $B_0CB_0^{-1} \in \mathcal{Z}_m$. En déduire que B_0 est de la forme $B_0 = \begin{pmatrix} 0 & b \\ b' & 0 \end{pmatrix}$ avec $b, b' \in \mathbf{C}$.
 - 14b. Calculer B_0^2 et en déduire que $b'=b^{-1}$.
 - **14c.** Montrer qu'il existe $Q \in GL_2(\mathbf{C})$ diagonale telle que $QB_0Q^{-1} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.
 - **15a.** Soit B une matrice diagonale dans G. Montrer que $B \in \mathcal{Z}_m$.
 - **15b.** Montrer que $B \mapsto QBQ^{-1}$ est un isomorphisme de G sur le groupe D_m .
- 16. Soit G un sous-groupe fini commutatif de $GL_2(\mathbb{C})$ qui ne contient pas d'homothétie autre que l'identité.
 - **16a.** Montrer qu'il existe une matrice $P \in GL_2(\mathbf{C})$ et deux morphismes de groupes $\chi_1, \chi_2 : G \longrightarrow \mathbf{C}^*$ tels que toute matrice de G s'écrive $B = P\begin{pmatrix} \chi_1(B) & 0 \\ 0 & \chi_2(B) \end{pmatrix} P^{-1}$.
 - **16b.** Montrer que $B \longmapsto \chi_1(B)\chi_2(B)^{-1}$ est un isomorphisme de G dans le groupe des racines |G|-ièmes de l'unité.
 - **16c.** Montrer que G est le groupe des matrices de la forme $P\begin{pmatrix} c^k & 0 \\ 0 & d^k \end{pmatrix}P^{-1}$, k variant de 0 à |G|-1, où l'on a posé $c=\mathrm{e}^{2\mathrm{i}\pi p/|G|}$ et $d=\mathrm{e}^{2\mathrm{i}\pi q/|G|}$, p et q étant deux entiers tels que p-q est premier avec |G|.
- 17. Décrire à partir des questions précédentes tous les sous-groupes finis de $GL_2(\mathbf{C})$ ne contenant pas d'homothétie autre que l'identité.
- 18. Montrer que le groupe fini commutatif $\mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$ ne peut pas être isomorphe à un sous-groupe de $GL_2(\mathbf{C})$.