

Escuela Profesional de Física

Ciclo 2016-2

Física General I Laboratorio N° 4 Trabajo y Energía

Apellidos y nombres Avendaño Velasquey Lente código 20162720C

Apellidos y nombres Avendaño Velasquey Lente código código

1. Curvas de calibración de los resortes.

La primera parte de este experimento consiste en obtener las constantes elásticas de los dos resortes que se van a usar. Llamando A y B a ambos resortes, sus longitudes sin deformar son:

$$l_{A0}(cm) = 9/8$$
 $l_{B0}(cm) = 9/7$

Ahora suspenda el resorte verticalmente desde un soporte y en su otro extremo coloque diferentes masas. Registre para cada masa la elongación Δl del resorte cuando éste se halle en equilibrio. Complete la siguiente tabla.

Con los datos así obtenidos realice un ajuste lineal para cada resorte y así determine su constante de elasticidad. Primero, en una hoja de papel milimetrado, realice las gráficas W vs Δl y verifique la tendencia lineal. En el papel milimetrado, junto a las gráficas, muestre las ecuaciones de ajuste lineal y los valores de las constantes de elasticidad obtenidos (en N/cm):

1. ResorteA

Tabla 1. Resorte A

m(g)	W(N)	1/2(cm)	$l_f(\mathrm{cm})$	$\Delta l ({ m cm})$
202,0	1981,6/	9/8//	14,9	5,1
303,5	2977,3	918	1817	8,9
401,0	3933,8	98	21,9	12,1
451,3	4427,2/	918	23,4	13,6
471,9	4629,3	1918	24,4	14,6

Donde $\mathbf{K}_{\mathbf{A}}$ =

2. ResorteB

Tabla 2. Resorte B

m(g)	W(N)	$l_o({ m cm})$	$l_f(\mathrm{cm})$	$\Delta l (\mathrm{cm})$
202,0	1981,6	9,7	16,79	77,0
303,5	29773	9,7	20,1/	10,4
401,0	3933,8	9,7	23/8/	14,1
451,3	442712	9,7	28,8	16,1
471,9	462913	9,7	126,4	16,7

Donde $K_B =$

2. Cálculos y Resultados.

En la gráfica obtenida en la sección anterior, identifique mediante números quince puntos de la trayectoria del puck y mediante letras los puntos medios entre dichos puntos. Usa las letras desde G hasta T. Recuerde que el pequeño trabajo realizado por una fuerza en un pequeño desplazamiento de la partícula (puck) es:

$$\Delta W = \mathbf{F} \cdot \Delta \mathbf{r} \tag{1}$$

que también puede escribirse como:

$$\Delta W = F_t \, \Delta s \tag{2}$$

donde F_t es la componente de la fuerza a lo largo del elemento de trayectoria $\Delta \vec{r}$ y Δs es la longitud de dicho elemento.

Calculemos el trabajo entre los puntos j y j+1, para esto necesitamos evaluar la componente tangencial de la fuerza elástica de los dos resortes en el punto medio entre los puntos j y j+1. Para esto se calcula la longitud de cada resorte en dicho punto, y conociendo sus longitudes naturales (sin deformar), podemos hallar sus elongaciones (columnas 3 y 4 de la tabla 3). Como se conocen previamente las constantes de elasticidad (de la sección de calibración), podemos determinar la fuerza que ejerce cada resorte así como su dirección y sentido.