Group Theory

J. S. Milne

January 27, 2022

Contents

1	Basic Definitions and Results					
	1.1	Definitions and examples	2			
	1.2	Normal subgroups	4			
	1.3	Theorems concerning homomorhisms	5			
	1.4	Direct products	6			
	1.5	Commutative groups	7			
	1.6	The order of ab	9			
	1.7	Exercises	10			
2	Free Groups and Presentations; Coxeter Groups					
	2.1	Free monoids	11			
	2.2	Free groups	11			
	2.3	Generators and relations	13			
	2.4	Finitely presented groups	13			
	2.5	Coxeter groups	14			
	2.6	Exercises	14			
3	Automorphisms and Extensions 1					
	3.1	Automorphisms of groups	14			
	3.2	Characteristic subgroups	17			
	3.3	Semidirect products	17			
	3.4	Extensions of groups	20			
	3.5	The Hölder program	20			
	3.6	Exercises	20			

4	Groups Acting on Sets				
	4.1	Defini	ition and examples	21	
		4.1.1	Orbits	22	
		4.1.2	Stabilizers	23	
		4.1.3	Transitive actions	24	
		4.1.4	The class equation	25	
		4.1.5	<i>p</i> -groups	27	
		4.1.6	Action on the left cosets	28	
		4.1.7	Permutation groups	28	
5	TOI	DO skij	p and problems	31	

1 Basic Definitions and Results

1.1 Definitions and examples

The **order** |G| of a group is its cardinality. A finite group whose order is a power of a prime p is called a p-group

 C_n denote any cyclic group of order n

Example 1.1 (The quaternion group Q). Let $a=\left(\begin{smallmatrix}0&\sqrt{-1}&\sqrt{-1}\\\sqrt{-1}&0\end{smallmatrix}\right)$ and $b=\left(\begin{smallmatrix}0&1\\-1&0\end{smallmatrix}\right)$. Then

$$a^4 = e$$
, $a^2 = b^2$, $bab^{-1} = a^3$

The subgroup of $GL_2(\mathfrak{C})$ generated by a and b is

$$Q = \{e, a, a^2, a^3, b, ab, a^2b, a^3b\}$$

The group Q can also be described as the subset $\{\pm 1, \pm i, \pm j, \pm k\}$ of the quaternion algebra \mathbb{H} . Recall that

$$\mathbb{H} = \mathbb{R}1 \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$$

with the multiplication determined by

$$i^2=-1=j^2,\quad ij=k=-ji$$

The map

Example 1.2. Let V be a finite-dimensional vector space over a field F. A bilinear form on V is a mapping $\phi:V\times V\to F$ that is linear in each variable. An **automorphism** of such a ϕ is an isomorphism $\alpha:V\to V$ s.t.

$$\phi(\alpha v, \alpha w) = \phi(v, w)$$
 for all $v, w \in V$

The automorphism of ϕ form a group ${\rm Aut}(\phi).$ Let $\{e_1,\dots,e_n\}$ be a basis for V , and let

$$P = (\phi(e_i,e_j))_{1 \leq i,j \leq n}$$

be the matrix of ϕ . The choice of the basis identifies $\operatorname{Aut}(\phi)$ with the group of invertible matrices A s.t.

$$A^T \cdot P \cdot A = P$$

When ϕ is symmetric, i.e.,

$$\phi(v, w) = \phi(w, v)$$
 all $v, w \in V$

and nondegenerate, $Aut(\phi)$ is called the **orthogonal group** of ϕ

Theorem 1.1 (Cayley). *There is a canonical injective homomorhism*

$$\alpha: G \to \operatorname{Sym}(G)$$

Corollary 1.2. A finite group of order n can be realized as a subgroup of S_n

Proposition 1.3. Let H be a subgroup of a group G

- 1. An element $a \in G$ lies in a left coset C of H iff C = aH
- 2. Two left cosets are either disjoint or equal
- 3. $aH = bH \text{ iff } a^{-1}b \in H$
- 4. Any two left cosets have the same number of elements

The **index** (G:H) of H in G is defined to be the number of left cosets of H in G. For example, (G:1) is the order of G

Theorem 1.4 (Lagrange). *If* G *is finite, then*

$$(G:1) = (G:H)(H:1)$$

Proof. The left cosets of H in G form a partition of G, there are (G:H) of them

Corollary 1.5. The order of each element of a finite group divides the order of the group

Proof. Consider
$$H = \langle g \rangle$$

Proposition 1.6. For any subgroups $H \supset K$ of G

$$(G:K) = (G:H)(H:K)$$

Proof.
$$G = \coprod_{i \in I} g_i H$$
, and $H = \coprod_{j \in I} h_j K$

1.2 Normal subgroups

A subgroup N of G is **normal**, denoted $N \triangleleft G$, if $gNg^{-1} = N$ for all $g \in G$ it suffices to check that $gNg^{-1} \subset N$

Example 1.3. Let $G = \operatorname{GL}_2(\mathbb{Q})$ and let $H = \{\begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z}\}$. Then H is a subgroup of G; in fact $H \cong \mathbb{Z}$. Let $g = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}$. Then

$$g\begin{pmatrix}1&n\\0&1\end{pmatrix}g^{-1}=\begin{pmatrix}5&0\\0&1\end{pmatrix}\begin{pmatrix}1&n\\0&1\end{pmatrix}\begin{pmatrix}5^{-1}&0\\0&1\end{pmatrix}=\begin{pmatrix}1&5n\\0&1\end{pmatrix}$$

Hence $gHg^{-1} \subsetneq H$ and $g^{-1}Hg \not\subset H$

Proposition 1.7. subgroup N of G is normal iff every left coset of N in G is also a right coset

Example 1.4. 1. Every subgroup of index two is normal. Indeed, let $g \in G \setminus H$, then $G = H \coprod gH = H \coprod Hg$

A group G is **simple** if it has no normal subgroups other than G and $\{e\}$.

Proposition 1.8. If H and N are subgroups of G and N is normal, then HN is a subgroup of G. If H is also normal, then HN is a normal subgroup of G

Intersection of normal subgroups of a group is again a normal subgroup. Therefore we can define the **normal subgroup generated by a subset** X of a group G to be the intersection of the normal subgroups containing X. We say that a subset X of a group G is **normal** if $gXg^{-1} \subset X$ for all $g \in G$

Lemma 1.9. *If* X *is normal, then the subgroup* $\langle X \rangle$ *generated by it is normal*

Lemma 1.10. For any subset X of G, the subset $\bigcup_{g \in G} gXg^{-1}$ is normal, and it is the smallest normal set containing X

Proposition 1.11. The normal subgroup generated by a subset X of G is $\langle \bigcup_{g \in G} gXg^{-1} \rangle$

Proposition 1.12. The map $a\mapsto aN:G\to G/N$ has the following universal property: for any homomorhism $\alpha:G\to G'$ of groups s.t. $\alpha(N)=\{e\}$, there exists a unique homomorhism $G/N\to G'$ making the diagram

$$G \xrightarrow{a \mapsto aN} G/N$$

$$\downarrow \qquad \qquad \downarrow$$

$$G'$$

commute

Proof. Define
$$\bar{\alpha}: G/N \to G'$$
, $\bar{\alpha}(gN) = \alpha(g)$

1.3 Theorems concerning homomorhisms

The kernel of the homomorhism $\det: \mathrm{GL}_n(F) \to F^{\times}$ is the group of $n \times n$ with determinant 1 - this group $\mathrm{SL}_n(F)$ is called the **special linear group** of degree n

Theorem 1.13 (HOMOMORPHISM THEOREM). For any homomorhism $\alpha: G \to G'$ of groups, $\ker \alpha \lhd G$, $\operatorname{im} \alpha \leq G'$, and α factors in a natural way into the composite of a surjection, an isomorphism, and an injection

$$G \xrightarrow{\alpha} G'$$

$$\downarrow^{g \mapsto gN} \qquad \uparrow$$

$$G/N \xrightarrow[gN \mapsto \alpha(g)]{} I$$

Theorem 1.14 (ISOMORPHISM THEOREM). $H \leq G$, $N \triangleleft G$. Then $HN \leq G$, $H \cap N \triangleleft G$

$$h(H \cap N) \mapsto hN : H/H \cap N \to HN/N$$

is an isomorphism

link

 \overline{G} is a quotient group of G

Theorem 1.15 (CORRESPONDENCE THEOREM). Let $\alpha: G \twoheadrightarrow \overline{G}$ be a surjective homomorhism, and let $N = \ker \alpha$. Then there is a one-to-one correspondence

$$\{subgroups \ of \ G \ containing \ N\} \leftrightarrow \{subgroups \ of \ \overline{G}\}$$

under which a subgroup H of G containing N corresponds to $\overline{H}=\alpha(H)$ and a subgroup \overline{H} of \overline{G} corresponds to $H=\alpha^{-1}(\overline{H})$. Moreover, if $H\leftrightarrow \overline{H}$ and $H'\leftrightarrow \overline{H}'$, then

- 1. $\overline{H} \subset \overline{H}' \Leftrightarrow H \subset H'$, in which case $(\overline{H}' : \overline{H}) = (H' : H)$
- 2. $\overline{H} \lhd \overline{G} \Leftrightarrow H \lhd G$, in which case α induces an isomorphism

$$G/H \xrightarrow{\simeq} \overline{G}/\overline{H}$$

Corollary 1.16. $N \triangleleft G$; then there is a one-to-one correspondence between the set of subgroups of G containing N and the set of subgroups of G/N, $H \leftrightarrow H/N$. Moreover $H \triangleleft G \Leftrightarrow H/N \triangleleft G/N$, in which case the homomorhism $g \mapsto gN : G \rightarrow G/N$ induces an isomorphism

$$G/H \cong (G/N)/(H/N)$$

1.4 Direct products

Let G be a group, and let H_1, \ldots, H_k be subgroups of G. G is a **direct product** of the subgroups H_i if the map

$$(h_1,\dots,h_k)\mapsto h_1\dots h_k: H_1\times\dots\times H_k\to G$$

is an isomorphism of groups

note that if $g=h_1\dots h_k$ and $g'=h'_1\dots h'_k$, then

$$gg'=(h_1h_1')\dots(h_kh_k')$$

Proposition 1.17. A group G is a direct product of subgroups H_1, H_2 iff

- 1. $G = H_1 H_2$
- 2. $H_1 \cap H_2 = \{e\}$
- 3. every element of H_1 commutes with every element of H_2

Proof. 3 shows that $(h_1,h_2)\to h_1h_2$ is a homomorhism, 2 injective, 1 surjective

Proposition 1.18. A group G is a direct product of subgroups H_1, H_2 iff

- 1. $G = H_1 H_2$
- 2. $H_1 \cap H_2 = \{e\}$
- 3. $H_1, H_2 \triangleleft G$

Proof. The elements h_1, h_2 of a group commute iff their commutator

$$[h_1,h_2] := (h_1h_2)(h_2h_1)^{-1}$$

is e. But

$$(h_1h_2)(h_2h_1)^{-1} = h_1h_2h_1^{-1}h_2^{-2} = \begin{cases} (h_1h_2h_1^{-1})\cdot h_2^{-1} \\ h_1\cdot (h_2h_1^{-1}h_2^{-1}) \end{cases}$$

which is in H_2 because H_2 is normal, and is in H_1 because H_1 is normal $\ \ \Box$

Proposition 1.19. A group G is a direct product of subgroups H_1, \dots, H_k iff

- 1. $G = H_1 \dots H_k$
- 2. for each $j, H_j \cap (H_1 \dots H_{j-1} H_{j+1} \dots H_k) = \{e\}$
- $3. \ H_1, \dots, H_k \lhd G$

1.5 Commutative groups

Let M be a commute group. The subgroup $\langle x_1,\ldots,x_k\rangle$ of M generated by the elements x_1,\ldots,x_k consists of the sums $\sum m_1x_i,\ m_i\in\mathbb{Z}$. A subset $\{x_1,\ldots,x_k\}$ of M is a **basis** of M if it generates M and

$$\sum m_i x_i = 0, m_i \in \mathbb{Z} \Longrightarrow m_i x_i = 0 \text{ for every } i$$

then

$$M = \langle x_1 \rangle \oplus \cdots \oplus \langle x_k \rangle$$

Lemma 1.20. Let x_1, \ldots, x_k generate M. For any $c_1, \ldots, c_k \in \mathbb{N}$ with $\gcd(c_1, \ldots, c_k) = 1$, there exist generators y_1, \ldots, y_k for M s.t. $y_1 = c_1x_1 + \cdots + c_kx_k$

Proof. We argue by induction on $s=c_1+\cdots+c_k$. The lemma certainly holds if s=1, and so we assume s>1. Then, at least two c_i are nonzero, say, $c_1\geq c_2>0$. Now

- $\{x_1, x_2 + x_1, x_3, \dots, x_k\}$ generates M
- $gcd(c_1 c_2, c_2, c_3, \dots, c_k) = 1$
- $\bullet \ (c_1-c_2)+c_2+\cdots+c_k < s$

and so, by induction, there exist generators y_1, \dots, y_k for M s.t.

$$\begin{split} y_1 &= (c_1 - c_2)x_1 + c_2(x_1 + x_2) + c_3x_3 + \dots + c_kx_k \\ &= c_1x_1 + \dots + c_kx_k \end{split}$$

Theorem 1.21. Every finitely generated commutative group M has a basis; hence it is a finite direct sum of cyclic groups

Proof. Induction on the generators of M.

Among the generating sets $\{x_1,\ldots,x_k\}$ for M with k elements there is one for which the order of x_1 is the smallest possible. We shall show that M is the direct sum of $\langle x_1 \rangle$ and $\langle x_2,\ldots,x_k \rangle$

If M is not the direct sum of $\langle x_1 \rangle$ and $\langle x_2, \dots, x_k \rangle$, then there exists a relation

$$m_1 x_1 + \dots + m_k x_k = 0$$

with $m_1x_1 \neq 0$. After possibly changing the sign of some of the x_i , we may suppose that $m_1, \ldots, m_k \in \mathbb{N}$ and $m_1 < \operatorname{order}(x_1)$. Let $d = \gcd(m_1, \ldots, m_k) > 0$

0, and let $c_i=m_i/d$. According to the lemma, there exists a generating set y_1,\dots,y_k s.t. $y_1=c_1x_1+\dots+c_kx_k$. But

$$dy_1 = m_1 x_1 + \dots + m_k x_k = 0$$

and $d \leq m_1 < \operatorname{order}(x_1)$, and so this contradicts the choice of $\{x_1, \dots, x_k\}$

Corollary 1.22. A finite commutative group is cyclic if, for each n > 0, it contains at most n elements of order dividing n

Proof. After Theorem 1.21, we may assume that $G=C_{n_1}\times\cdots\times C_{n_r}$ with $n_i\in\mathbb{N}$. If n divides n_i and n_j with $i\neq j$, then G has more than n elements of order dividing n First consider n=p, then in C_p there are p-1 elements of order dividing p by Lagrange theorem.

Now consider $n=p_1p_2$. If $(k,p_1p_2)=1$, then order of k is p_1p_2 . Hence there are at least $p_1p_2-p_1-p_2-1$ elements. Check THIS! Therefore the hypothesis implies that the n_i are relatively prime. Let a_i generate the ith factor. Then (a_1,\ldots,a_r) has order $n_1\ldots n_r$, and so generates G

Example 1.5. Let F be a field. The elements of order dividing n in F^{\times} are the roots of the polynomial X^n-1 . Because unique factorization holds in F[X], there are at most n of these, and so corollary shows that every finite subgroup of F^{\times} is cyclic

Theorem 1.23. A nonzero finitely generated commutative group M can be expressed

$$M \approx C_{n_1} \times \cdots \times C_{n_n} \times C_{\infty}^r$$

for certain integers $n_1, \dots, n_s \geq 2$ and $r \geq 0$. Moreover

- 1. r is uniquely determined by M
- 2. the n_i can be chosen so that $n_1 \geq 2$ and $n_1 \mid n_2, \dots, n_{s-1} \mid n_s$, and then they are uniquely determined by M
- 3. the n_i can be chosen to be powers of prime numbers, and then they are uniquely determined by M

The number r is called the **rank** of M. By r being uniquely determined by M, we mean that two decompositions of M of the form , the number of copies of C_{∞} will be the same. The integers in (2) are called the **invariant factors** of M. Statement (3) says that M can be expressed

$$M \approx C_{p_1^{e_1}} \times \dots \times C_{p_t^{e_t}} \times C_{\infty}^r, \quad e_i \geq 1$$

for certain prime powers $p_i^{e_i}$, and that the integers $p_1^{e_1}, \dots, p_t^{e_t}$ are uniquely determined by M; they are called the **elementary divisors** of M

Proof. The first assertion is a restatement of Theorem 1.21

1. For a prime p not dividing any of the n_i

$$M/pM \approx (C_{\infty}/pC_{\infty})^r \cong (\mathbb{Z}/p\mathbb{Z})^r$$

and so r is the dimension of M/pM as an \mathbb{F}_p -vector space suppose $C_n=\langle a\rangle$ and $f:C_n\to pC_n:a\mapsto a^p.$ Since (p,n)=1, $|a^p|=n.$ Thus this is an isomorphism

2. 3. If $\gcd(m,n)=1$, then $C_m\times C_n$ contains an element of order mn, and so

$$C_m \times C_n \approx C_{mn}$$

In this way we can decomposite C_{n_i} into products of cyclic groups of prime power order. Then we can construct what we want

To prove the uniqueness of (2) and (3), we can replace M with its torsion subgroup (and so assume r = 0).

uniqueness of elementary divisors is clear.

 n_s is the smallest integer >0 s.t. $n_sM=0$; n_{s-1} is the smallest integer >0 s.t. $n_{s-1}M$ is cyclic; n_{s-2} is the smallest integer s.t. $n_{s-2}M$ can be expressed as a product of two cyclic groups, and so on

in the end, we will get a factoring like

$$\begin{array}{cccc} C_{p_1^{r_1}} & C_{p_1^{r_2}} & C_{p_1^{r_3}} & C_{p_1^{r_4}} \\ \\ C_{p_2^{s_1}} & C_{p_2^{s_2}} & \\ \\ C_{p_3^{t_1}} & C_{p_3^{t_2}} & C_{p_3^{t_3}} \end{array}$$

and get out invariant factors

1.6 The order of ab

Theorem 1.24. For any integers m, n, r > 1, there exists a finite group G with elements a and b s.t. a has order m, b has order n, and ab has order r

Proof. We shall show that, for a suitable prime power q, there exist elements a and b of $\mathrm{SL}_2(\mathbb{F}_q)$ s.t. a,b and ab have orders 2m,2n and 2r respectively. As -I is the unique element of order 2 in $\mathrm{SL}_2(\mathbb{F}_q)$, the image of a,b,ab in $\mathrm{SL}_2(\mathbb{F}_q)/\{\pm I\}$ will then have orders m,n and r as required.

Let p be the prime number not dividing 2mnr. Then p is a unit in the finite ring $\mathbb{Z}/2mnr\mathbb{Z}$, and so some power of it, q say, is 1 in the ring. This means that 2mnr divides q-1. As the group \mathbb{F}_q^{\times} has order q-1 and is cyclic (1.5), there exist element $u,v,w\in\mathbb{F}_q^{\times}$ having orders 2m,2n and 2r respectively. Let

$$a = \begin{pmatrix} u & 1 \\ 0 & u^{-1} \end{pmatrix} \in \operatorname{SL}_2(\mathbb{F}_q) \quad b = \begin{pmatrix} v & 0 \\ t & v^{-1} \end{pmatrix} \in \operatorname{SL}_2(\mathbb{F}_q)$$

where t has been chosen so that

$$uv + t + u^{-1}v^{-1} = w + w^{-1}$$

The characteristic polynomial of a is $(X-u)(X-u^{-1})$ $\hfill \Box$

1.7 Exercises

Exercise 1.7.1. Let $n=n_1+\cdots+n_r$ be a partition of the positive integer n. Use Lagrange's theorem to show that n! is divisible by $\prod_{i=1}^r n_i!$

Proof. n_1,\ldots,n_r is a partition of n elements, and S_{n_i} is the permutation group of each part.

Apparently each
$$S_{n_i}$$
 is normal. Thus $S_{n_1}\dots S_{n_r}$ is a subgroup of S . Also $S_{n_i}\cap S_{n_i}=\{\mathrm{id}\}.$ Therefore $S_{n_1}\dots S_{n_r}\cong S_{n_1}\times\dots\times S_{n_r}$

Exercise 1.7.2. Let $N \triangleleft G$ of index n. Show that $g \in G \Rightarrow g^n \in N$

Proof. Because the group G/N has order n, $(gN)^n = 1$ for every $g \in G$. \square

Exercise 1.7.3. A group G is said to have **finite exponent** if there exists an m > 0 s.t. $a^m = e$ for every $a \in G$; the smallest such m is then called the **exponent** of G

1. Show that every group of exponent 2 is commutative

2. Show that, for an odd prime p, the group of matrices

$$\left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} \mid a,b,c \in \mathbb{F}_p \right\}$$

has exponent *p*, but is not commutative

Proof. 1. ba = (abab)ba = ab

Exercise 1.7.4. Two subgroups H and H' of a group G is **commensurable** if $H \cap H'$ is of finite index in both H and H'. Show that commensurability is an equivalence relation on the subgroups of G

2 Free Groups and Presentations; Coxeter Groups

2.1 Free monoids

Let $X = \{a, b, c, \dots\}$. A **word** is a finite sequence of symbols from X. Empty sequence is denoted by 1. Write SX for the set of words together with the binary concatenation. Then SX is a monoid, called the **free monoid** on X

 $X \to SX$ has the following universal property: for any map of sets $\alpha: X \to S$ from X to a monoid S, there exists a unique homomorhism $SX \to S$ making the diagram

commute

2.2 Free groups

We want to construct a group FX contianing X and having the same universal property. Define

$$X' = \{a, a^{-1}, b, b^{-1}, \dots\}$$

Let W' be the set of words using symbols from X'. A word is **reduced** if it contains no pairs of the form aa^{-1} or $a^{-1}a$. Starting with a word w, we can perform a finite sequence of cancellations to arrive at a reduced word, which will be called the **reduced form** w_0 of w.

Proposition 2.1. There is only one reduced form of a word

Proof. Induction on the length of the word w. If w is reduced, there is nothing to prove. Otherwise a pair of the form $a_0a_0^{-1}$ or $a_0^{-1}a_0$ occurs - assume the first

Observe that any two reduced forms of w obtained by a sequence of cancellations in which $a_0a_0^{-1}$ is cancelled first are equal, because the induction hypothesis can be applied to the shorter word.

Next observed that any reduced forms of w obtained by a sequence of cancellations where $a_0a_0^{-1}$ is cancelled at some point are equal, because the result of such a sequence of cancellations will not be affected if $a_0a_0^{-1}$ is cancelled first

finally consider a reduced form w_0 obtained by a sequence where no cancellation cancels $a_0a_0^{-1}$ directly. Since $a_0a_0^{-1}$ doesn't remain in w_0 , at least one of a_0 or a_0^{-1} is cancelled. But the word obtained after this cancellation is the same as if our original pair were cancelled

w,w' are **equivalent**, denoted $w\sim w'$, if they have the same reduced form

Proposition 2.2. products of equivalent words are equivalent, i.e.,

$$w \sim w', v \sim v' \Rightarrow wv \sim w'v'$$

Let FX be the set of equivalence classes of words. Proposition 2.2 shows that the binary operation on W' defines a binary operation on FX, which obviously makes it into a monoid. It also has inverses. Thus FX is a group, called the **free group**

Proposition 2.3. For any map of sets $\alpha: X \to G$ from X to a group G, there exists a unique homomorhism $FX \to G$ making the following diagram commute

$$\begin{array}{ccc} X & \xrightarrow{a \mapsto a} & FX \\ & & \downarrow \\ & & \downarrow \\ & & G \end{array}$$

Proof. Consider a map $\alpha: X \to G$, and extend it to $X' \to G$ letting $\alpha(a^{-1}) = \alpha(a)^{-1}$. Because G is a monoid, α extends to a homomorhism of monoids $SX' \to G$. This map will send equivalent words to the same element of G, and so will factor through $FX = SX' / \sim$.

Corollary 2.4. Every group is a quotient of a free group

Proof. Choose a set X of generators for G (e.g. X=G), and let F be the free group generated by X. According to 2.3 the map $a\mapsto a:X\to G$ extends to a homomorhism $F\to G$, and the image, being a subgroup containing X, must equal G

Theorem 2.5 (Nielsen-Schreier). Subgroups of free groups are free

Two free groups FX and FY are isomorphic iff |X| = |Y|. Thus **rank** of a free group G to be the cardinality of any free generating set (subset X of G for which the homomorhism $FX \to G$ given by 2.3 is an isomorphism)

2.3 Generators and relations

Consider a set X and a set R of words made up of symbols in X'. Each element of R represents an element of the free group FX, and the quotient G of FX by the normal subgroup generated by these elements is said to have X as **generators** and R as **relations**. (X,R) is a **presentation** for G, and denotes G by $\langle X \mid R \rangle$

Proposition 2.6. $G = \langle X \mid R \rangle$, for any group H and map $\alpha : X \to H$ sending each element of R to 1, there exists a unique homomorhism $G \to H$ making the diagram commute

2.4 Finitely presented groups

A group is **finitely presented** if it admits a presentation (X,R) with both X and R finite

Example 2.1. Consider a finite group G. Let X = G, and let R be the set of words

$$\{abc^{-1}\mid ab=c\}$$

(X,R) is a presentation of G, and so G is finitely presented: let $G'=\langle X\mid R\rangle$. The extension of $a\mapsto a:X\to G$ to FX sends each element of R to 1, and therefore defines a homomorhism $G'\to G$, which is obviously surjective. But every element of G' is represented by an element of X, and so $|G'|\leq |G|$. Therefore the homomorhism is bijective

2.5 Coxeter groups

A **Coxeter system** is a pair (G, S) consisting of a group G and a set of generators S for G subject only to relations of the form $(st)^{m(s,t)} = 1$

$$\begin{cases} m(s,s) = 1 \text{ for all } s\\ m(s,t) \ge 2\\ m(s,t) = m(t,s) \end{cases} \tag{1}$$

When no relation occurs between s and t, we set $m(s,t)=\infty$. Thus a Coxeter system is defined by a set S and a mapping

$$m: S \times S \to \mathbb{N} \cup \{\infty\}$$

satisfying (1), and the group $G = \langle S \mid R \rangle$ where

$$R = \{(st)^{m(s,t)} \mid m(s,t) \neq \infty\}$$

The **Coxeter groups** are those that arise as part of a Coxeter system. The cardinality of *S* is called the **rank** of the Coxeter system

2.6 Exercises

Exercise 2.6.1. Let $D_n=\langle a,b\mid a^n,b^2,abab\rangle$ be the nth dihedral group. If n is odd, prove that $D_{2n}\approx\langle a^n\rangle\times\langle a^2,b\rangle$, and hence that $D_{2n}\approx C_2\times D_n$

Proof. first, $ab(b^{-1}a^{-1})=ab(b^{-1}a^{-1})(abab)=abab=e$, hence D_n is commutative for any n. Since n is odd, (n,2)=1 and so $D_{2n}\approx C_2\times C_n$

3 Automorphisms and Extensions

3.1 Automorphisms of groups

For $g \in G$, the map i_q "conjugation by g"

$$x\mapsto gxg^{-1}:G\to G$$

is an automorphism of G, called an **inner automorphism** and others are called **outer**

As $i_{gh}(x)=(i_g\circ i_h)(x)$ and so the map $g\mapsto i_g:G\to \operatorname{Aut}(G)$ is a homomorhism, its image is denoted by $\operatorname{Inn}(G)$. It's kernel is the center of G

$$Z(G) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$$

and so

$$G/Z(G) \cong Inn(G)$$

 $Inn(G) \triangleleft Aut(G)$: for $g \in G$ and $\alpha \in Aut(G)$, we have

$$\alpha \circ i_q \circ \alpha^{-1} = i_{\alpha(q)}$$

Example 3.1. 1. $G = \mathbb{F}_p^n$. The automorphisms of G as a commutative group are just the automorphisms of G as a vector space over \mathbb{F}_p ; thus $\operatorname{Aut}(G) = \operatorname{GL}_n(\mathbb{F}_p)$

2. As a particular case of (1), we see that

$$\operatorname{Aut}(C_2\times C_2)=\operatorname{GL}_2(\mathbb{F}_2)$$

Definition 3.1. A group G is **complete** if the map $g\mapsto i_g:G\to \operatorname{Aut}(G)$ is an isomorphism

G is complete iff

- 1. Z(G) is trivial
- 2. every automorphism of G is inner

Let G be a cyclic group of order n, say $G=\langle a\rangle$. Let m be an integer ≥ 1 . The smallest multiple of m divisible by n is $m\cdot \frac{n}{\gcd(m,n)}$. Therefore a^m has order $\frac{n}{\gcd(m,n)}$, and so the generators of G are exactly the elements a^m with $\gcd(m,n)=1$. An automorphism α of G must send a to another generator of G, and so $\alpha(a)=a^m$ for some m relatively prime to n. The map $\alpha\mapsto m$ defines an isomorphism

$$\operatorname{Aut}(C_n) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$$

where

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{ \text{units in } \mathbb{Z}/n\mathbb{Z} \} = \{ m + n\mathbb{Z} \mid \gcd(m, n) = 1 \}$$

If $n=p_1^{r_1}\dots p_s^{r_s}$ is the factorization of n into a product of powers of distinct primes, then

$$\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}/p_1^{r_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p_s^{r_s}\mathbb{Z}, \quad m \mod n \leftrightarrow (m \mod p^{r_1}, \dots)$$

by the Chinese remainder theorem. This is an isomorphism of rings, and so

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{r_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_s^{r_s}\mathbb{Z})^{\times}$$

It remains to consider the case $n = p^r$, p prime

Suppose first that p is odd. Then $\{0,1,\ldots,p^r-1\}$ is a complete set of representatives for $\mathbb{Z}/p^r\mathbb{Z}$, and one pth of its elements are divisible by p. Hence $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ has order $p^r-\frac{p^r}{p}=p^{r-1}(p-1)$. The homomorhism

$$(\mathbb{Z}/p^r\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$$

is surjective with kernel of order p^{r-1} , and we know that $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is cyclic. Let $G=(\mathbb{Z}/p\mathbb{Z})^{\times}$ and suppose G is not cyclic. Suppose each i has order m_i . Let $d=[m_1,\ldots,m_{p-1}]$. Then there is an element c with order d and d< p-1. Now if we consider X^d-1 , it has p-1 roots in G. A contradiction. link Let $a\in (\mathbb{Z}/p^r\mathbb{Z})^{\times}$ map to a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Then $a^{p^r(p-1)}=1$ and a^{p^r} again maps to a generator of $(\mathbb{Z}/p\mathbb{Z})^{\times}$. Therefore $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ contains an element $\xi:=a^{p^r}$ of order p-1. Using the binomial theorem, one finds that 1+p has order p^{r-1} in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$. Therefore $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$ is cyclic with generators $\xi\cdot(1+p)$ and every element can be written uniquely in the form

$$\xi^i \cdot (1+p)^j, \quad 0 \leq i < p-1, \quad 0 \leq j < p^{r-1}$$

On the other hand

$$(\mathbb{Z}/8\mathbb{Z})^{\times} = \{\bar{1},\bar{3},\bar{5},\bar{7}\} = \langle \bar{3},\bar{5}\rangle \approx C_2 \times C_2$$

is not cyclic

reference

Summary

- 1. For a cyclic group of G of order n, $\operatorname{Aut}(G) \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$. The automorphism of G corresponding to $[m] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$ is $a \mapsto a^m$
- 2. If $n=p_1^{r_1}\dots p_s^{r_s}$ with the p_i distinct primes, then

$$(\mathbb{Z}/n\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{r_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_s^{r_s}\mathbb{Z})^{\times}$$

3. For a prime p

$$(\mathbb{Z}/p^r\mathbb{Z})^\times \approx \begin{cases} C_{(p-1)p^{r-1}} & p \text{ odd} \\ C_2 & p^r = 2^2 \\ C_2 \times C_{2^{r-2}} & p = 2, r > 2 \end{cases}$$

3.2 Characteristic subgroups

Definition 3.2. A **characteristic subgroup** of a group G is a subgroup H s.t. $\alpha(H) = H$ for all automorphism α of G

- Remark. 1. Consider a group G and $N \triangleleft G$. An inner automorphism of G restricts to an automorphism of N, which may be outer. Thus a normal subgroup of N need not be a normal subgroup of G. However, a characteristic subgroup of N will be a normal subgroup of G. Also a characteristic subgroup of a characteristic subgroup is a characteristic subgroup
 - 2. The center Z(G) of G is a characteristic subgroup
 - 3. If H is the only subgroup of G of order m, then it must be characteristic, because $\alpha(G)$ is again a subgroup of G of order m
 - 4. Every subgroup of a commutative group is normal but not necessarily characteristic. For example, every subspace of dimension 1 in \mathbb{F}_p^2 is a subgroup of \mathbb{F}_p^2 , but it is not characteristic because it is not stable under $\operatorname{Aut}(\mathbb{F}_p^2) = \operatorname{GL}_2(\mathbb{F}_p)$

3.3 Semidirect products

 $N \lhd G$. Each element $g \in G$ defines an automorphism of N, $n \mapsto gng^{-1}$, and this defines a homomorphism

$$\theta: G \to \operatorname{Aut}(N), \quad g \mapsto i_g \mid N$$

If there is a subgroup Q of G s.t. $G \to G/N$ maps Q isomorphically onto G/N, then we can construct G from N,Q and the restriction of θ to Q. Indeed, an element g of G can be written uniquely in the form

$$g = nq, \quad n \in N, \quad q \in Q$$

Thus we have a one-to-one correspondence

$$G \leftrightarrow N \times Q$$

If g = nq and g' = n'q', then

$$qq' = (nq)(n'q') = n(qn'q^{-1})qq' = n\theta(q)(n')qq'$$

Definition 3.3. A group G is a **semidirect product** of its subgroups N and Q if $N \triangleleft G$ and $G \rightarrow G/N$ induces an isomorphism $Q \rightarrow G/N$

Equivalently, G is a semidirect product of subgroup N and Q if

$$N \triangleleft G$$
; $NQ = G$; $N \cap Q = \{1\}$

written as $G = N \rtimes Q$ (or $N \rtimes_{\theta} Q$, where $\theta : Q \to \operatorname{Aut}(N)$ gives the action of Q on N by inner automorphism)

Example 3.2. 1. In D_n , $n \ge 2$, let $C_n = \langle r \rangle$ and $C_2 = \langle s \rangle$; then

$$D_n = \langle r \rangle \rtimes_{\theta} \langle s \rangle = C_n \rtimes_{\theta} C_2$$

where $\theta(s)(r^i) = r^{-i}$

From a semidirect product $G = N \rtimes Q$, we obtain a triple

$$(N, Q, \theta: Q \to \operatorname{Aut}(N))$$

and that the triple determines G. We now prove that every such triple arises from a semidirect product. As a set, let $G = N \times Q$, and define

$$(n,q)(n',q') = (n\theta(q)(n',qq'))$$

Proposition 3.4. The composition law above makes G into a group, in fact, the semidirect product of N and Q

Example 3.3 (Groups of order 6). Both S_3 and C_6 are semidirect products of C_3 by C_2 .

Note that $\operatorname{Aut}(C_3)\cong (\mathbb{F}_3)^{\times}\cong C_2$ and there are two homomorhism of $C_2\to C_2$, the identity function and the constant function. If θ is the constant function, then $C_6\cong C_3\rtimes_{\theta} C_2$. Otherwise, suppose $C_2=\{1,b\}$ and $C_3=\{1,a,a^2\}$, $\theta(b)=a\mapsto a^2$. Then $abab=a\theta(b)(a)bb=a^3b^2=1$. Hence $C_3\rtimes_{\theta} C_2=D_3\cong S_3$.

Example 3.4 (Groups of order p^3 (element of order p^2)). Let $N=\langle a\rangle$ be cyclic of order p^2 and let $Q=\langle b\rangle$ be cyclic of order p, where p is an odd prime. Then $\operatorname{Aut}(N)\cong (\mathbb{Z}/p^2\mathbb{Z})^\times\cong C_{(p-1)p}\cong C_p\times C_{p-1}$, and C_p is generated by $\alpha:a\mapsto a^{1+p}$. Define $Q\to\operatorname{Aut} N$ by $b\mapsto \alpha$. The group $G:=N\rtimes_\theta Q$ has generators a,b and defining relations

$$a^{p^2} = 1$$
, $b^p = 1$, $bab^{-1} = a^{1+p}$

It is a noncommutative group of order p^3 , and possesses an element of order p^2

Example 3.5 (Groups of order p^3 without element of order p^2). Let $N = \langle a,b \rangle$ be the product of two cyclic groups $\langle a \rangle$ and $\langle b \rangle$ of order p, and let $Q = \langle c \rangle$ be a cyclic group of order p. Define $\theta: Q \to \operatorname{Aut}(N)$ to be the homomorhism s.t.

$$\theta(c^i)(a) = ab^i, \quad \theta(c^i)(b) = b$$

If we regard N as the additive group $N=\mathbb{F}_p^2$ with a and b the standard basis elements, then $\theta(c^i)$ is the automorphism of N defined by the matrix $(\begin{smallmatrix} 1 & 0 \\ i & 1 \end{smallmatrix})$. The group $G:=N\rtimes_\theta Q$ is a group of order p^3 , with generators a,b,c and defining relations

$$a^p = b^p = c^p = 1$$
, $ab = cac^{-1}$, $[b, a] = 1 = [b, c]$

Lemma 3.5. Given two triples (N, Q, θ) and (N, Q, θ') , if there exists an $\alpha \in Aut(N)$ s.t.

$$\theta'(q) = \alpha \circ \theta(q) \circ \alpha^{-1}$$
, all $q \in Q$

then the map

$$(n,q)\mapsto (\alpha(n),q):N\rtimes_{\theta}Q\to N\rtimes_{\theta'}Q$$

is an isomorphism

Lemma 3.6. *If* $\theta = \theta' \circ \alpha$ *with* $\alpha \in Aut(Q)$ *, then the map*

$$(n,q)\mapsto (n,\alpha(q)):N\rtimes_{\theta}Q\approx N\rtimes_{\theta'}Q$$

is an isomorphism

Lemma 3.7. *If* Q *is finite and cyclic and the subgroup* $\theta(Q)$ *of* Aut(N) *is conjugate to* $\theta'(Q)$ *, then*

$$N \rtimes_{\theta} Q \approx N \rtimes_{\theta'} Q$$

Summary. Let G be a group with subgroups H_1 and H_2 s.t. $G=H_1H_2$ and $H_1\cap H_2=\{e\}$, so that each element g of G can be written uniquely as $g=h_1h_2$ with $h_1\in H_1$ and $h_2\in H_2$

- 1. If H_1 and H_2 are both normal, then G is the direct product of H_1 and H_2 , $G = H_1 \times H_2$ (1.18)
- 2. If $H_1 \triangleleft G$, then G is the semidirect product of H_1 and H_2 , $G = H_1 \rtimes H_2$
- 3. If neither H_1 nor H_2 is normal, then G is the Zappa-Szép product of H_1 and H_2

3.4 Extensions of groups

$$1 \longrightarrow N \stackrel{\iota}{\longrightarrow} G \stackrel{\pi}{\longrightarrow} Q \longrightarrow 1$$

An exact sequence is called an **extension of** Q **by** N. An extension is **central** if $\iota(N) \subset Z(G)$. For example, a semidirect product $N \rtimes_{\theta} Q$ give rise to an extension of Q by N

$$1 \longrightarrow N \longrightarrow N \rtimes_{\theta} Q \longrightarrow Q \longrightarrow 1$$

which is central iff θ is the trivial homomorhism and N is commutative The extensions of Q by N are said to be **isomorphic** if there exists a commutative diagram

An extension of Q by N is **split** if it is isomorphic to the extension defined by a semidirect product. Equivalently

- 1. there is a subgroup $Q' \subset G$ s.t. π induces an isomorphism $Q' \to Q$; or
- 2. there exists a homomorhism $s:Q\to G$ s.t. $\pi\circ s=\mathrm{id}$

Theorem 3.8 (Schur-Zassenhaus). *An extension of finite groups of relatively prime order is split*

3.5 The Hölder program

3.6 Exercises

Exercise 3.6.1. $\operatorname{GL}_2(\mathbb{F}_2) \approx S_3$

Proof. In \mathbb{F}_2^2 , the vectors are $\{0, u, v, w\}$ and there are three bases $\{u, v\}, \{u, w\}, \{v, w\}$. An element $A \in GL_2(\mathbb{F}_2)$ is an automorphism of \mathbb{F}_2^2 and also that two linear map are the same if they carry one basis to another.

Exercise 3.6.2. Find the automorphism groups of C_{∞} and S_3

4 Groups Acting on Sets

4.1 Definition and examples

Definition 4.1. Let X be a set and let G be a group. A **left action** of G on X is a mapping $(g,x)\mapsto gx:G\times X\to X$ s.t.

- 1. 1x = x, for all $x \in X$
- 2. $(g_1g_2)x = g_1(g_2x)$, all $g_1, g_2 \in X$, $x \in X$

A set together with a (left) action of G is called a (left) G-set. An action is **trivial** if gx = x for all $g \in G$

The condition imply that, for each $g \in G$, left translation by g,

$$g_L: X \to X, \quad x \mapsto gx$$

has $(g^{-1})_L$ as an inverse, and therefore g_L is a bijection, i.e., $g_L \in Sym(X)$. Axiom (2) now says that

$$g \mapsto g_L : G \to \operatorname{Sym}(X)$$
 (2)

is a homomorhism. Conversely, every such homomorhism defines an action of G on X. The action is **faithful** (or **effective**) if the homomorhism (2) is injective, i.e., if

$$gx = x$$
 for all $x \in X \Rightarrow g = 1$

Example 4.1. 1. Every subgroup of the symmetric group S_n acts faithfully on $\{1, 2, ..., n\}$

2. Every subgroup H of a group G acts faithfully on G by left translation

$$H \times G \to G$$
, $(h, x) \mapsto hx$

3. Let *H* be a subgroup of *G*. The group *G* acts on the set of left cosets of *H*,

$$G \times G/H \to G/H, \quad (g,C) \mapsto gC$$

The action is faithful if, for example, $H \neq G$ and G is simple

4. Every group G acts on itself by conjugation. For any $N \lhd G$, G acts on N and G/N by conjugation

A **right action** $X \times G \to X$ is defined similarly. To turn a right action into a left action, set $g*x = xg^{-1}$. For example, there is a natural right action of G on the set of right cosets of a subgroup H in G, namely $(C,g) \mapsto Cg$, which can be turned into a left action $(g,C) \mapsto Cg^{-1}$

A map of G-sets (G-map, G-equivariant map) is a map $\varphi: X \to Y$ s.t.

$$\varphi(gx) = g\varphi(x), \quad \text{all } g \in G, \quad x \in X$$

4.1.1 Orbits

Let G act on X. A subset $S \subset X$ is **stable** under the action of G if

$$g \in G, x \in S \Rightarrow gx \in S$$

The action of G on X then induces an action of G on S

Write $x \sim_G y$ if y = gx for some $g \in G$. This is an equivalence relation. The equivalence classes are called G-orbits. Thus the G-orbits partition X. Write $G \setminus X$ for the set of orbits

By definition, the G-orbit containing x_0 is

$$Gx_0 = \{gx_0 \mid g \in G\}$$

It is the smallest G-stable subset of X containing x_0

Example 4.2. 1. Suppose G acts on X, and let $\alpha \in G$ be an element of order n. Then the orbits of $\langle \alpha \rangle$ are the set of the form

$$\{x_0,\alpha x_0,\dots,\alpha^{n-1}x_0\}$$

- 2. The orbits for a subgroup H of G acting on G by left multiplication are the right cosets of H in G. We write $H \setminus G$ for the set of right cosets. Note that the group law on G will **not** induce a group law on G/H unless H is normal
- 3. For a group G acting on itself by conjugation, the orbits are called **conjugacy classes**: for $x \in G$, the conjugacy class of x is the set

$$\{gxg^{-1}\mid g\in G\}$$

of conjugates of x.

A subset of X is stable iff it is a union of orbits. For example, a subgroup H of G is normal iff it is a union of conjugacy classes

The action of G on X is said to be **transitive**, and G is said to act **transitively** on X if there is only one orbit. The set X is called a **homogeneous** G-set. For example, S_n acts transitively on $\{1,2,\ldots,n\}$. For any subgroup H of a group G, G acts transitively on G/H, but the action of G on itself is never transitive if $G \neq 1$ because $\{1\}$ is always a conjugacy class

The action of G on X is **doubly transitive** if for any two pairs (x_1,x_2) , (y_1,y_2) of elements of X with $x_1\neq x_2$ and $y_1\neq y_2$, there exists a (single) $g\in G$ s.t. $gx_1=y_1$ and $gx_2=y_2$. Define k-fold transitivity for $k\geq 3$ similarly

4.1.2 Stabilizers

Let *G* acts on *X*. The **stabilizer** (or **isotropy group**) of an element $x \in X$ is

$$\mathsf{Stab}(x) = \{ g \in G \mid gx = x \}$$

It is a subgroup, but it need not be a normal subgroup. The action is **free** if ${\sf Stab}(x) = \{e\}$ for all x

Lemma 4.2. For any $g \in G$ and $x \in X$

$$\operatorname{Stab}(gx) = g \cdot \operatorname{Stab}(x) \cdot g^{-1}$$

$$\bigcap_{x\in X}\operatorname{Stab}(x)=\ker(G\to\operatorname{Sym}(X))$$

which is a normal subgroup of G. The action is faithful iff \bigcap Stab $(x) = \{1\}$

Example 4.3. 1. Let *G* act on itself by conjugation. Then

$$Stab(x) = \{ g \in G \mid gx = xg \}$$

This group is called the **centralizer** $C_G(x)$ of x in G. It consists of all elements of G that commute with, i.e., centralize, x. The intersection

$$\bigcap_{x \in G} C_G(x) = \{g \in G \mid gx = xg \text{ for all } x \in G\}$$

is the centre of G

2. Let G act on G/H by left multiplication. Then $\operatorname{Stab}(H) = H$, and the stabilizer of gH is gHg^{-1}

For $S \subseteq X$, we define the **stabilizer** of S to be

$$Stab(S) = \{ g \in G \mid gS = S \}$$

Then $\operatorname{Stab}(S)$ is a subgroup of G, and the same argument as in the proof of 4.2 shows that

$$\operatorname{Stab}(gS) = g \cdot \operatorname{Stab}(S) \cdot g^{-1}$$

Example 4.4. Let G act on G by conjugation, and let H be a subgroup of G. The stablizer of H is called the **normalizer** $N_G(H)$ of H in G

$$N_G(H)=\{g\in G\mid gHg^{-1}=H\}$$

Clearly ${\cal N}_G({\cal H})$ is the largest subgroup of ${\cal G}$ containing ${\cal H}$ as a normal subgroup

It is possible for $gS \subset S$ but $g \notin Stab(S)$ 1.3

4.1.3 Transitive actions

Proposition 4.3. *If* G *acts transitively on* X, *then for any* $x_0 \in X$, *the map*

$$g\operatorname{Stab}(x_0)\mapsto gx_0:G/\operatorname{Stab}(x_0)\to X$$

is an isomorphism of G-sets

Proof. G-equivariant

Thus every homogeneous G-set X is isomorphic to G/H for some subgroup H of G, but such a realization of X is not canonical: it depends on the choice of $x_0 \in X$. The G-set G/H has a preferred point, namely, the coset H; to give a homogeneous G-set X together with a preferred point is essentially the same as to give a subgroup of G

Corollary 4.4. Let G act on X, and let $O = Gx_0$ be the orbit containing x_0 . Then the cardinality of O is

$$|O| = (G : \mathsf{Stab}(x_0))$$

For example, the number of conjugates gHg^{-1} of a subgroup H of G is $(G:N_G(H))$

Proof. The action of *G* on *O* is transitive

Proposition 4.5. *Let* $x_0 \in X$. *If* G *acts transitively on* X, *then*

$$\ker(G \to \operatorname{Sym}(X))$$

is the largest normal subgroup contained in $Stab(x_0)$

Proof.

$$\ker(G \to \operatorname{Sym}(X)) = \bigcap_{x \in X} \operatorname{Stab}(x) = \bigcap_{g \in G} \operatorname{Stab}(gx_0) = \bigcap g \cdot \operatorname{Stab}(x_0) \cdot g^{-1}$$

Hence the proposition is a consequence of the following lemma

Lemma 4.6. For any subgroup H of a group G, $\bigcap_{g \in G} gHg^{-1}$ is the largest normal subgroup contained in H

Proof. $N_0 := \bigcap_{g \in G} gHg^{-1}$ is still a subgroup. It is normal since

$$g_1N_0g_1^{-1}=\bigcap_{g\in G}(g_1g)H(g_1g)^{-1}=N_0$$

If N is a second such group, then

$$N = qNq^{-1} \subset qHq^{-1}$$

for all $g \in G$, and so $N \subset N_0$

4.1.4 The class equation

When *X* is finite, it is a disjoint union of a finite number of orbits:

$$X = \bigcup_{i=1}^{m} O_i$$

hence

Proposition 4.7.

$$|X| = \sum_{i=1}^m |O_i| = \sum_{i=1}^m (G:\operatorname{Stab}(x_i)), \quad x_i \in O_i$$

When *G* acts on itself by conjugation, this formula becomes

Proposition 4.8 (Class equation).

$$|G| = \sum (G: C_G(x))$$

(x runs over a set of representatives for the conjugacy classes), or

$$|G|=|Z(G)|+\sum (G:C_G(y))$$

(y runs over set of representatives for the conjugacy classes containing more than one element)

Theorem 4.9 (Cauchy). *If the prime* p *divides* |G|, then G contains an element of order p

Proof. Induction on |G|. If for some y not in the center of G, p doesn't divide $(G:C_G(y))$, then p divides the order of $C_G(y)$ and we can apply induction to find an element of order p in $C_G(y)$. Thus we may suppose that p divides all of the terms $(G:C_G(y))$ in the class equation (second form), and so also divides Z(G). But Z(G) is commutative and it follows from the structure theorem¹ of such groups that Z(G) will contain an element of order p

Corollary 4.10. A finite group G is a p-group iff every element has order a order a power of p

Proof. If |G| is a power of p, then Lagrange's theorem shows that the order of every element is a power of p. The converse follows from Cauchy's theorem

Corollary 4.11. Every group of order 2p, p an odd prime, is cyclic or dihedral

Proof. From Cauchy's theorem, we know that such a G contains elements s and r of orders 2 and p respectively. Let $H = \langle r \rangle$. Then H is of index 2, and so is normal. Obviously $s \notin H$, and so $G = H \cup Hs$:

$$G=\{1,r,\ldots,r^{p-1},s,rs,\ldots,r^{p-1}s\}$$

As H is normal, $srs^{-1}=r^i$, some i. Because $s^2=1$, $r=s^2rs^{-2}=s(srs^{-1})s^{-1}=r^{i^2}$ and so $i^2\equiv 1\mod p$. Because $\mathbb{Z}/p\mathbb{Z}$ is a field, its only elements with square 1 are ± 1 , and so $i\equiv 1$ or $-1\mod p$. In the first case, the group is commutative; in the second case $srs^{-1}=r^{-1}$ and we have the dihedral group

 $^{^1}$ Here is a direct proof that the theorem holds for an abelian group Z. We use induction on the order of Z. It suffices to show that Z contains an element whose order is divisible by p. Let $g \neq 1$ be an element of Z. If p doesn't divide the order of g, then it divides the order of $Z/\langle g \rangle$, in which case there exists an element of G whose order in $Z/\langle g \rangle$ is divisible by g. But the order of such an element must itself be divisible by g.

4.1.5 *p*-groups

Theorem 4.12. Every nontrivial finite p-group has nontrivial center

Proof. By assumption, (G:1) is a power of p, and so $(G:C_G(y))$ is a power of p for all y not in the center of G. Thus $p\mid |Z(G)|$

Corollary 4.13. A group of order p^n has normal subgroups of order p^m for all $m \le n$

Proof. Induction on n. The center of G contains an element of order p, and so $N=\langle g\rangle$ is a normal subgroup of G of order p. Now the induction hypothesis allows us to assume the result for G/N, and the correspondence theorem 1.15 then gives it to use for G

Proposition 4.14. Every group of order p^2 is commutative, and hence is isomorphic to $C_p \times C_p$ or C_{p^2}

Proof. We know that the center Z is nontrivial, and that G/Z is therefore has order 1 or p. In either case it is cyclic, and the next result implies that G is commutative

Lemma 4.15. Suppose G contains a subgroup H in its center (hence H is normal) s.t. G/H is cyclic. Then G is commutative

Proof. Let a be an element of G whose image in G/H generates it. Then every element of G can be written $g=a^ih$ with $h\in H$, $i\in\mathbb{Z}$. Now

$$a^i h \cdot a^{i'} h' = a^i a^{i'} h h' = a^{i'} h' \cdot a^i h$$

The above proof shows that if $H \subset Z(G)$ and G contains a set of representatives for G/H whose elements commute, then G is commutative

For p odd, it is now not difficult to show that any noncommutative group of order p^3 is isomorphic to exactly one of the groups constructed in 3.4 3.5

Proof. Suppose $|G|=p^3$. Then |Z(G)| is either p or p^2 . If |Z(G)|=p. Then G/Z(G) is commutative. Z(G) is also cyclic

If
$$|Z(G)| = p^2$$
, then

Example 4.5. Let G be a noncommutative group of order 8. Then G must contain an element a of order 4 (1.7.3). If G contains an element b of order 2 not in $\langle a \rangle$, then $G \simeq \langle a \rangle \rtimes_{\theta} \langle b \rangle$ where θ is the unique isomorphism $\mathbb{Z}/2\mathbb{Z} \to (\mathbb{Z}/4\mathbb{Z})^{\times}$, and so $G \approx D_4$. If not, any element b of G not in $\langle a \rangle$ must have order 4, and $a^2 = b^2$. Now bab^{-1} is an element of order 4 in $\langle a \rangle$. It can't equal a, because otherwise G would be commutative, and so $bab^{-1} = a^3$. Therefore G is the quaternion group

4.1.6 Action on the left cosets

Let X = G/H. Recall that

$$\mathsf{Stab}(gH) = g\,\mathsf{Stab}(1 \cdot H)g^{-1} = gHg^{-1}$$

and the kernel of

$$G \to \operatorname{Sym}(X)$$

is the largest normal subgroup $\bigcap_{g \in G} gHg^{-1}$ of G contained in H

Remark. 1. Let H be a subgroup of G not containing a normal subgroup of G other than 1. Then $G \to \operatorname{Sym}(G/H)$ is injective, and we have realized G as a subgroup of a symmetric group of order much smaller than (G:1)!.

4.1.7 Permutation groups

Consider a permutation

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ \sigma(1) & \sigma(2) & \sigma(3) & \dots & \sigma(n) \end{pmatrix}$$

The ordered pairs (i,j) with i < j and $\sigma(i) > \sigma(j)$ are called the **inversions** of σ , and σ is said to be **even** or **odd** according as the number of inversions is even or odd. The **signature**, $\operatorname{sgn}(\sigma)$ of σ is 1 or -1 according as σ is even or odd.

Remark. To compute the signature of σ , connect each element i in the top row to the element i in the bottom row, and count the number of times that the lines cross. For example, is even

For a permutation σ , consider the products

$$V = \prod_{1 \leq i < j \leq n} (j-i) = (2-1)(3-1)\dots(n-1)$$

$$(3-2)\dots(n-2)$$

$$\dots$$

$$(n-(n-1))$$

$$\begin{split} \sigma V &= \prod_{1 \leq i < j \leq n} (\sigma(j) - \sigma(i)) = (\sigma(2) - \sigma(1))(\sigma(3) - \sigma(1)) \dots (\sigma(n) - \sigma(1)) \\ &\qquad \qquad (\sigma(3) - \sigma(2)) \dots (\sigma(n) - \sigma(2)) \\ &\qquad \qquad \dots \\ &\qquad \qquad (\sigma(n) - \sigma(n-1)) \end{split}$$

Both products run over the 2-element subsets $\{i, j\}$ of $\{1, 2, ..., n\}$ and the terms corresponding to a subset are the same except that each inversion introduces a negative sign. Therefore

$$\sigma V = \operatorname{sgn}(\sigma)V$$

Now let P be the additive group of maps $\mathbb{Z}^n \to \mathbb{Z}$. For $f \in P$ and $\sigma \in S_n$, let σf denote the element of P defined by

$$(\sigma f)(z_1,\dots,z_n)=f(z_{\sigma(1)},\dots,z_{\sigma(n)})$$

For $z\in\mathbb{Z}^n$ and $\sigma\in S_n$, let z^σ denote the element of \mathbb{Z}^n s.t. $(z^\sigma)_i=z_{\sigma(i)}$. Then $(z^\sigma)^\tau=z^{\sigma\tau}$. By definition, $(\sigma f)(z)=f(z^\sigma)$, and so $((\sigma\tau)f)(z)=f(z^{\sigma\tau})=f((z^\sigma)^\tau)=(\tau f)(z^\sigma)=(\sigma(\tau f))(z)$, i.e.

$$\sigma(\tau f) = (\sigma \tau) f$$

Let $p \in P$ defined by

$$p(z_1,\dots,z_n) = \prod_{1 \leq i < j \leq n} (z_j - z_i)$$

The same argument as above shows that

$$\sigma p = \operatorname{sgn}(\sigma) p$$

On putting f = p, we finds that

$$\operatorname{sgn}(\sigma)\operatorname{sgn}(\tau) = \operatorname{sgn}(\sigma\tau)$$

Therefore "sign" is a homomorhism $S_n \to \{\pm 1\}$. When $n \ge 2$, it is surjective, and so its kernel is a normal subgroup of S_n of order $\frac{n!}{2}$, called the **alternating group** A_n

Remark. We show shown that there exists a homomorhism $\operatorname{sgn}: S_n \to \{\pm 1\}$ s.t. $\operatorname{sgn}(\sigma) = -1$ for every transposition. The transposition generate S_n , and so sign is uniquely determined by this property. Now let $G = \operatorname{Sym}(X)$, where X is a set with n elements. The choice of an ordering of X determines an isomorphism of G with S_n sending transpositions to transpositions. Therefore G also admits a unique isomorphism $\epsilon: G \to \{\pm 1\}$ s.t. $\epsilon(\sigma) = -1$ for every transposition σ . Once we have chosen an ordering of X, we can speak of the inversions of an element σ of G, and define a sign homomorphism $G \to \{\pm 1\}$ as before. This must agree with ϵ , and so $\epsilon(\sigma)$ equals 1 or -1 according as σ has an even or an odd number of inversions.

A cycle is a permutation of the following form

$$i_1 \mapsto i_2 \mapsto i_3 \mapsto \cdots \mapsto i_r \mapsto i_1$$

The i_j are required to be distinct. We denote this cycle by $(i_1 i_2 \dots i_r)$ and call r its **length**. The **support of the cycle** $(i_1 \dots i_r)$ is the set $\{i_1, \dots, i_r\}$ and cycles are **disjoint** if their supports are disjoint. Disjoint cycles commute

Proposition 4.16. Every permutation can be written as a product of disjoint cycles

Proof. $\sigma \in S_n$, and let $O \subset \{1, ..., n\}$ be an orbit for $\langle \sigma \rangle$. If |O| = r, then for any $i \in O$,

$$O = \{i, \sigma(i), \dots, \sigma^{r-1}(i)\}$$

Therefore σ and the cycle $(i \ \sigma(i) \dots \sigma^{r-1}(i))$ have the same action on any element of O. Let

$$\{1,2,\dots,n\}=\bigcup_{j=1}^m O_j$$

be the decomposition of $\{1, \dots, n\}$ into a disjoint union of orbits for $\langle \sigma \rangle$, and let γ_j be the cycle associated with O_j . Then

$$\sigma = \gamma_1 \dots \gamma_m$$

is a decomposition of σ into a product of disjoint cycles.

Corollary 4.17. Each permutation σ can be written as a product of transpositions; the number of transpositions in such a product is even or odd according as σ is even or odd

Proof.

$$(i_1i_2\dots i_r)=(i_1i_2)\dots (i_{r-2}i_{r-1})(i_{r-1}i_r)$$

Because sign is a homomorhism, and the signature of a transposition is -1, ${\rm sgn}(\sigma)=-1^{\#{\rm transpositions}}$

5 TODO skip and problems

1.6 2.5 4.1.6