# Week 10 at a glance

For Monday, Definition 7.1 (page 276).

For Wednesday, Definition 7.7 (page 279).

For Friday: skim through examples in Chapter 7.

### We will be learning and practicing to:

- Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason about computation and systems.
  - Use mapping reduction to deduce the complexity of a language by comparing to the complexity of another.
    - \* Use appropriate reduction (e.g. mapping, Turing, polynomial-time) to deduce the complexity of a language by comparing to the complexity of another.
    - \* Use polynomial-time reduction to prove NP-completeness
  - Classify the computational complexity of a set of strings by determining whether it is decidable or undecidable and recognizable or unrecognizable.
    - \* Distinguish between computability and complexity
    - \* Articulate motivating questions of complexity
    - \* Define NP-completeness
    - st Give examples of PTIME-decidable, NPTIME-decidable, and NP-complete problems
  - Describe several variants of Turing machines and informally explain why they are equally expressive.
    - \* Define nondeterministic Turing machines
    - \* Use high-level descriptions to define and trace machines (Turing machines and enumerators)

### TODO:

Student Evaluations of Teaching forms: Evaluations are open for completion anytime BEFORE 8AM on Saturday, December 7. Access your SETs from the Evaluations site

https://academicaffairs.ucsd.edu/Modules/Evals

You will separately evaluate each of your listed instructors for each enrolled course.

Homework 6 submitted via Gradescope (https://www.gradescope.com/), due Tuesday 12/3/2024

#### Summary from Week 9

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it's enough to construct an example using any of the equally expressive models.

But: some of the **performance** properties of these models are not equivalent.

# Monday: Church-Turing Thesis and Complexity

In practice, computers (and Turing machines) don't have infinite tape, and we can't afford to wait unboundedly long for an answer. "Decidable" isn't good enough - we want "Efficiently decidable".

For a given algorithm working on a given input, how long do we need to wait for an answer? How does the running time depend on the input in the worst-case? average-case? We expect to have to spend more time on computations with larger inputs.

| A language is <b>recognizable</b> if           |
|------------------------------------------------|
| A language is <b>decidable</b> if              |
| A language is efficiently decidable if         |
| A function is <b>computable</b> if             |
| A function is <b>efficiently computable</b> if |

Definition (Sipser 7.1): For M a deterministic decider, its **running time** is the function  $f: \mathbb{N} \to \mathbb{N}$  given by

 $f(n) = \max$  number of steps M takes before halting, over all inputs of length n

Definition (Sipser 7.7): For each function t(n), the **time complexity class** TIME(t(n)), is defined by  $TIME(t(n)) = \{L \mid L \text{ is decidable by a Turing machine with running time in } O(t(n))\}$ 

An example of an element of TIME(1) is

An example of an element of TIME(n) is

Note:  $TIME(1) \subseteq TIME(n) \subseteq TIME(n^2)$ 

Definition (Sipser 7.12): P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

$$P = \bigcup_{k} TIME(n^k)$$

Theorem (Sipser 7.8): Let t(n) be a function with  $t(n) \ge n$ . Then every t(n) time deterministic multitape Turing machine has an equivalent  $O(t^2(n))$  time deterministic 1-tape Turing machine.

Definitions (Sipser 7.1, 7.7, 7.12): For M a deterministic decider, its **running time** is the function  $f: \mathbb{N} \to \mathbb{N}$  given by

 $f(n) = \max$  number of steps M takes before halting, over all inputs of length n

For each function t(n), the **time complexity class** TIME(t(n)), is defined by

 $TIME(t(n)) = \{L \mid L \text{ is decidable by a Turing machine with running time in } O(t(n))\}$ 

P is the class of languages that are decidable in polynomial time on a deterministic 1-tape Turing machine

$$P = \bigcup_{k} TIME(n^k)$$

Definition (Sipser 7.9): For N a nodeterministic decider. The **running time** of N is the function  $f: \mathbb{N} \to \mathbb{N}$  given by

 $f(n) = \max$  number of steps N takes on any branch before halting, over all inputs of length n

Definition (Sipser 7.21): For each function t(n), the **nondeterministic time complexity class** NTIME(t(n)), is defined by

 $NTIME(t(n)) = \{L \mid L \text{ is decidable by a nondeterministic Turing machine with running time in } O(t(n))\}$ 

$$NP = \bigcup_{k} NTIME(n^k)$$

**True** or **False**:  $TIME(n^2) \subseteq NTIME(n^2)$ 

True or False:  $NTIME(n^2) \subseteq TIME(n^2)$ 

#### Every problem in NP is decidable with an exponential-time algorithm

Nondeterministic approach: guess a possible solution, verify that it works.

Brute-force (worst-case exponential time) approach: iterate over all possible solutions, for each one, check if it works.

# Wednesday: P and NP

## Examples in P

Can't use nondeterminism; Can use multiple tapes; Often need to be "more clever" than naïve / brute force approach

 $PATH = \{ \langle G, s, t \rangle \mid G \text{ is digraph with } n \text{ nodes there is path from s to t} \}$ 

Use breadth first search to show in P

$$RELPRIME = \{\langle x, y \rangle \mid x \text{ and } y \text{ are relatively prime integers} \}$$

Use Euclidean Algorithm to show in P

$$L(G) = \{w \mid w \text{ is generated by } G\}$$

(where G is a context-free grammar). Use dynamic programming to show in P.

### Examples in NP

"Verifiable" i.e. NP, Can be decided by a nondeterministic TM in polynomial time, best known deterministic solution may be brute-force, solution can be verified by a deterministic TM in polynomial time.

 $HAMPATH = \{\langle G, s, t \rangle \mid G \text{ is digraph with } n \text{ nodes, there is path from } s \text{ to } t \text{ that goes through every node exactly}$   $VERTEX - COVER = \{\langle G, k \rangle \mid G \text{ is an undirected graph with } n \text{ nodes that has a } k\text{-node vertex cover}\}$   $CLIQUE = \{\langle G, k \rangle \mid G \text{ is an undirected graph with } n \text{ nodes that has a } k\text{-clique}\}$ 

 $SAT = \{\langle X \rangle \mid X \text{ is a satisfiable Boolean formula with } n \text{ variables} \}$ 

| Problems in $P$                           | Problems in $NP$   |
|-------------------------------------------|--------------------|
| (Membership in any) regular language      | Any problem in $P$ |
| (Membership in any) context-free language |                    |
| $A_{DFA}$                                 | SAT                |
| $E_{DFA}$                                 | CLIQUE             |
| $EQ_{DFA}$                                | VERTEX-COVER       |
| PATH                                      | HAMPATH            |
| RELPRIME                                  |                    |
| • • •                                     |                    |

Notice:  $NP \subseteq \{L \mid L \text{ is decidable}\}\ \text{so } A_{TM} \notin NP$ 

Million-dollar question: Is P = NP?

One approach to trying to answer it is to look for *hardest* problems in NP and then (1) if we can show that there are efficient algorithms for them, then we can get efficient algorithms for all problems in NP so P = NP, or (2) these problems might be good candidates for showing that there are problems in NP for which there are no efficient algorithms.

| Definition       | (Sipser  | 7.29)  | Language  | A is  | polyr   | ${f nomial-tim}$ | e r                  | mapping           | redu           | cible | to  | language    | B,  | written        |
|------------------|----------|--------|-----------|-------|---------|------------------|----------------------|-------------------|----------------|-------|-----|-------------|-----|----------------|
| $A \leq_P B$ , n | neans th | ere is | a polynom | ial-t | ime cor | nputable fu      | $\operatorname{nct}$ | ion $f: \Sigma^*$ | $\to \Sigma^*$ | such  | tha | at for ever | y x | $\in \Sigma^*$ |

$$x \in A$$
 iff  $f(x) \in B$ .

The function f is called the polynomial time reduction of A to B.

**Theorem** (Sipser 7.31): If  $A \leq_P B$  and  $B \in P$  then  $A \in P$ .

Proof:

Definition (Sipser 7.34; based in Stephen Cook and Leonid Levin's work in the 1970s): A language B is **NP-complete** means (1) B is in NP and (2) every language A in NP is polynomial time reducible to B.

**Theorem** (Sipser 7.35): If B is NP-complete and  $B \in P$  then P = NP.

Proof:

# Friday: NP-Completeness

## NP-Complete Problems

**3SAT**: A literal is a Boolean variable (e.g. x) or a negated Boolean variable (e.g.  $\bar{x}$ ). A Boolean formula is a **3cnf-formula** if it is a Boolean formula in conjunctive normal form (a conjunction of disjunctive clauses of literals) and each clause has three literals.

$$3SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable 3cnf-formula} \}$$

Example string in 3SAT

$$\langle (x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee y \vee z) \wedge (x \vee y \vee z) \rangle$$

Example string not in 3SAT

$$\langle (x \lor y \lor z) \land (x \lor y \lor \bar{z}) \land (x \lor \bar{y} \lor z) \land (x \lor \bar{y} \lor \bar{z}) \land (\bar{x} \lor y \lor z) \land (\bar{x} \lor y \lor \bar{z}) \land (\bar{x} \lor \bar{y} \lor z) \land (\bar{x} \lor \bar{y} \lor \bar{z}) \rangle$$

Cook-Levin Theorem: 3SAT is NP-complete.

Are there other NP-complete problems? To prove that X is NP-complete

- From scratch: prove X is in NP and that all NP problems are polynomial-time reducible to X.
- Using reduction: prove X is in NP and that a known-to-be NP-complete problem is polynomial-time reducible to X.



$$CLIQUE = \{\langle G, k \rangle \mid G \text{ is an undirected graph with a } k\text{-clique}\}$$

Example string in CLIQUE

Example string not in CLIQUE

Theorem (Sipser 7.32):

$$3SAT <_{P} CLIQUE$$

Given a Boolean formula in conjunctive normal form with k clauses and three literals per clause, we will map it to a graph so that the graph has a clique if the original formula is satisfiable and the graph does not have a clique if the original formula is not satisfiable.

The graph has 3k vertices (one for each literal in each clause) and an edge between all vertices except

- vertices for two literals in the same clause
- vertices for literals that are negations of one another

Example:  $(x \vee \bar{y} \vee \bar{z}) \wedge (\bar{x} \vee y \vee z) \wedge (x \vee y \vee z)$ 

| Model of Computation                                                                                                                                                                                                                                                                                                                                                                                                        | Class of Languages                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Deterministic finite automata: formal definition, how to design for a given language, how to describe language of a machine? Nondeterministic finite automata: formal definition, how to design for a given language, how to describe language of a machine? Regular expressions: formal definition, how to design for a given language, how to describe language of expression? Also: converting between different models. | Class of regular languages: what are the closure properties of this class? which languages are not in the class? using pumping lemma to prove nonregularity.                          |
| Push-down automata: formal definition, how to design for a given language, how to describe language of a machine? Context-free grammars: formal definition, how to design for a given language, how to describe language of a grammar?                                                                                                                                                                                      | Class of context-free languages: what are the closure properties of this class? which languages are not in the class?                                                                 |
| Turing machines that always halt in polynomial time                                                                                                                                                                                                                                                                                                                                                                         | P                                                                                                                                                                                     |
| Nondeterministic Turing machines that always halt in polynomial time                                                                                                                                                                                                                                                                                                                                                        | NP                                                                                                                                                                                    |
| <b>Deciders</b> (Turing machines that always halt): formal definition, how to design for a given language, how to describe language of a machine?                                                                                                                                                                                                                                                                           | Class of decidable languages: what are the closure properties of this class? which languages are not in the class? using diagonalization and mapping reduction to show undecidability |
| <b>Turing machines</b> formal definition, how to design for a given language, how to describe language of a machine?                                                                                                                                                                                                                                                                                                        | Class of recognizable languages: what are the closure properties of this class? which languages are not in the class? using closure and mapping reduction to show unrecognizability   |

| Given | a | language, | prove | it | is            | regui | ar |
|-------|---|-----------|-------|----|---------------|-------|----|
| Given | а | language, | prove | ւլ | $\mathbf{IS}$ | regu  | aı |

Strategy 1: construct DFA recognizing the language and prove it works.

Strategy 2: construct NFA recognizing the language and prove it works.

Strategy 3: construct regular expression recognizing the language and prove it works.

"Prove it works" means . . .

**Example**:  $L = \{w \in \{0,1\}^* \mid w \text{ has odd number of 1s or starts with 0}\}$ 

Using NFA

Using regular expressions

**Example**: Select all and only the options that result in a true statement: "To show a language A is not regular, we can..."

- a. Show A is finite
- b. Show there is a CFG generating A
- c. Show A has no pumping length
- d. Show A is undecidable

**Example**: What is the language generated by the CFG with rules

$$S \rightarrow aSb \mid bY \mid Ya$$
 
$$Y \rightarrow bY \mid Ya \mid \varepsilon$$



| T 1      | D 41       | 1              | <i>c</i> 1 · 1 11 | 1 .         | 1 1          | 1            | ,.     |  |
|----------|------------|----------------|-------------------|-------------|--------------|--------------|--------|--|
| Example: | Prove that | at the class ( | of decidable      | languages 1 | s closed unc | ler concaten | ation. |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |
|          |            |                |                   |             |              |              |        |  |

