Windy Path

There are n obstacles placed in a field. Your task is to design a course that visits each obstacle exactly once, in any order, following a straight line between consecutive obstacles, without ever crossing itself.

The catch? The sequence of turn directions (left or right) has already been decided, in a string of length n-2. If the *i*th character of the turn sequence is 'L', then the locations of the *i*th, (i+1)th, and (i+2)th obstacles, in that order, must form a counterclockwise angle. If it is 'R', they must form a clockwise angle.

Input

The first line of input contains a single integer n ($3 \le n \le 50$).

Each of the next n lines contains two space-separated integers x_i and y_i ($1 \le x_i, y_i \le 1,000$), giving the coordinates of obstacle i.

The next and final line will contain a single string with exactly n-2 characters consisting of only 'L' and 'R', representing the sequence of turn directions.

It is guaranteed that no three obstacles will be collinear.

Output

If no solution is possible, print, on a single line, the integer '-1'. Otherwise, print, on a single line, any permutation of the obstacles that satisfies the requirements. The permutation should be given as n distinct space-separated integers p_i with $1 \le p_i \le n$, and this ordering of the points should satisfy the turn directions indicated by the turn sequence.

If there are multiple possible solutions, print any of them.

Sample Input	Sample Output
4	1 3 2 4
2 2	
2 1	
1 2	
1 1	
LR	