Elevational Distribution of Insecta Species Richness in Costa Rica

Sam Imamovic, Jessica Robichaud, Micha Sibolibane, Min Xi

What is species richness?

 A quantification of the species in a given area, usually measured as either alpha, beta, or gamma diversity

enchating-costarica.com

Alpha diversity

The richness of species within a community in an ecosystem

Beta diversity

The diversity of species between communities in an ecosystem

Gamma diversity

The diversity of species across geographic regions

Species richness is an ecosystem indicator

- Ecosystem health
- Ecosystem functioning
- Food web stability

rainforests.mongabay.com

Species richness is affected by space and time

Spatially

- Latitudinally
- Longitudinally
- Altitudinally

Temporally

- Land development
- Environmental conditions

costa-rica-guide.com

Species respond to climate change by adapting or moving

- Morphological/physiological/ behavioral responses
 - Radmacher and Strohm (2011)
- Range shifts
 - Musolin et al. (2007)

carnivora.net

entnemdept.ufl.edu

How do insects respond to changes in time and space?

How species richness changes with elevation

How maximum species richness changes by elevation and over year

Methods - Dataset used

- Occurrence data for insecta of Costa Rica
- Instituto Nacional de Biodiversidad (INBio)
- Retrieved from GBIF online repository

Methods - Data collected

Taxonomic Classification

Order

Family

Genus

Species

Spatial Factors

Site of data collection (locality)

Province

Elevation

Longitude

Latitude

Temporal Factors

Year

Table 1 - Variables included in the Insecta of Costa Rica dataset.

Methods - Analysis: Species richness by elevation and time

- Plotted species richness by elevation, year, and province
- Constructed linear models to see the relationship between species richness (response) and two predictor variables (year & elevation)
- Fitted linear models to plots to see how the model predicts changes in species richness

Methods- Analysis: Maximum species richness

- Plotted maximum species richness by year, elevation, and province
- Constructed linear models to see the relationship between maximum species richness (response) and two predictor variables (year & elevation)
- Fitted linear models to plots to see how the model predicts changes in maximum species richness

Most of the insect orders are shared across provinces

Species richness varies across elevation and by province

Figure 3 – Scatterplots of species richness by elevation and province.

Figure 4 – Map showing the altitudes of regions across Costa Rica.

Species richness decreases with elevation and with year

Figure 5 - Mixed effects models for the effects of elevation and year on species richness.

Fixed effects model (year and elevation) indicates a decrease in species richness

Figure 6 - Scatterplots of mixed effects model fitted to species richness data.

Maximum species richness varies over time

Figure 7 – Scatterplots of the change in maximum species richness over time and elevation.

Maximum species richness decreases significantly with year

Figure 8 – Mixed effects model of the effect of year and elevation on maximum species richness.

Fixed effects model (year/elevation) indicates a decrease in maximum species richness over time

Figure 9 – Scatterplots of the mixed effects model fitted to species richness data.

Average elevation of maximum species richness varies over province

Figure 10 – Bar graph of the average elevation of maximum species richness by province.

Conclusions

- Species richness declines with elevation and year, indicating temporal and spatial factors affect diversity
- Maximum species richness declines by year but not by elevation

nashvillescene.com

Significance

The results of this study can be used to help protect species into the future

- Help model for the effects of future environmental changes
- Determine where species are moving and which areas are sensitive to change

Information can be used to aid in conservation efforts

Limitations of an open source dataset

- GBIF data are prone to misidentification of species
- Method of data collection is unclear, but points to observational data collected by a variety of sources
- 1976 Costa Rica NPAS (National Protected Area System)¹
- Confounding factors: temperature, precipitation, variations in conservation efforts

References:

1. González-Maya, J. F., Víquez-R, L. R., Belant, J. L. & Ceballos, G. Effectiveness of Protected Areas for Representing Species and Populations of Terrestrial Mammals in Costa Rica. *Plos One* **10**, (2015).

References

- Batt, R. D., J. W. Morley, R. L. Selden, M. W. Tingley, and M. L. Pinsky. (2017). Gradual changes in range size accompany long-term trends in species richness. *Ecology Letters* 20(9): 1148-1157.
- Bishop, T. R., M. P. Robertson, B. J. van Rensburh, and C. L. Parr. (2015). Contrasting species and functional beta diversity in montane ant assemblages. *Journal of Biogeography* 42(9):1776-1786
- Chen, I. C., H. J. Shiu, S. Benedick, J. D. Holloway, V. K. Chey, H. S. Barlow, J. K. Hill, and C. D.Thomas. (2009). Elevation increases in moth assemblages over 42 years on tropical mountain. *Proceedings of the National Academy of Sciences of the United States of America* 106(5): 1479-1483.
- Escobar, F., J. M. and Lobo, G. Halffter. (2005). Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. *Global Ecology and Biogeography* 14(4): 327-337.
- Fernandes, G. W., E. D. Almada, and M. A. A. Carnerio. (2010). Gall-inducing insect species richness as indicators of forest age and health. *Environmental Entomology* 39(4): 1134-1140.
- González-Maya, J. F., Víquez-R, L. R., Belant, J. L. & Ceballos, G. (2015). Effectiveness of Protected Areas for Representing Species and Populations of Terrestrial Mammals in Costa Rica. *Plos One* 10, (2015).
- Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. *Biological Reviews* 80(2): 489-513.
- Perillo, L. N., F. Neves, Y. Antonini, and R. P. Martins. (2017). Compositional changes in bee and wasp communities along Neotropical mountain altitudinal gradient. *PLoS ONE* 12(7): 1-14.
- Sepkoski, J. J. (1988). Alpha, beta, or gamma: where does all the diversity go? Paleobiology 4(3): 221-234.
- Staunton, K. M., A. Nakamura, C. J. Burwell, S. K. A. Robson, and S. E. Williams. (2016). Elevational distribution of flightless ground beetles in the tropical rainforests of north eastern Australia. *PLoS ONE* 11(5): 1-21.
- Wehn, S., S. Lundemo, and J. I. Holten. (2014). Alpine vegetation along multiple environmental gradients and possible consequences of climate change. *Alpine Botany* 124(2): 155-164.