	C2 (EDEXCEL)						
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources		

		ng like terms, multiplying a single term over a bracket, to pressions including the difference of two squares and ca	aking out common factors, expand the product of two linear ncelling common factors in rational expressions	expressions
	Simple algebraic division;	*BOTM* Long division	* <u>On Target</u> *	
	Use of the Factor Theorem	*BOTM* Factor Theorem Theorem mix	True, Never, Sometimes; Teacher Notes	*A11 FACTORISING CUBICS*
1	Use of the Remainder Theorem	*BOTM* Remainder Theorem I Remainder Theorem II Theorem mix	* <u>Mathsnet Exam</u> Questions*	<u>RISP 11</u>

	C2 (EDEXCEL)							
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources			
	Prior Knowledge: Solve quadratic equations by factorisation, comp Recall the definition of a circle and the meaning of the Understand that the tangent at any point on a circle perpendicular from the centre to a chord bise subtended by an arc at the centre of a circle is two angles in the same segment are equal, and that of Construct the graphs of simple loci, including the	of related terms, including centre, radiocale is perpendicular to the radius at the cts the chord; understand that inscribe vice the angle subtended at any point copposite angles of a cyclic quadrilatera	us, chord, diameter, circumference, tang at point; understand and use the fact the ed regular polygons can be constructed in on the circumference, the angle subtend al sum to 180 degrees; prove and use the radius r centred at the origin of coordina	at tangents from an external point by equal division of a circle; provi led at the circumference by a sen e alternate segment theorem ates	e and use the facts that the angle nicircle is a right angle, that			
Co-ordinate geometry in the (x,y) plane	Coordinate geometry of the circle using the equation of a circle in the form (x-a)² + (y-b)² = r² and including the use of the following circle properties: i) the angle in a semicircle is a right angle; ii) the perpendicular from the centre to a chord bisects the chord; iii) the perpendicularity of the radius and tangent.	BOTM *Completing the square* Circles I Circles II	Completing the square song 1 Completing the square song 2 *Dizzy; Teacher Notes* *Matching Cards Teacher Notes*	* <u>Treasure Hunt;</u> Teacher Notes* True, Never, Sometimes; Teacher Notes * <u>Mathsnet Exam</u> Questions*	RISP 9 RISP 15 NRich Orthogonal Circle Baby Circle			
		Things to make you	go hmmmmmm					

	C2 (EDEXCEL)							
Торіс	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources			
Prio	Prior Knowledge:							

Prior Knowledge: 	and position-to-term definitions of to nteger values of x and simple position te terms, multiplying a single term ov	he sequence ve values of k ver a bracket, taking out common factors,	expand the product of two linear	expressions
The sum of a finite geometric series; the sum to infinity of a convergent geometric series, including the use of Irl<1	BOTM Identifying GPs Geometric progressions *Infinite sums*	Introducing Sequences and Series Introducing GP - Powers of 10	* <u>On Target</u> *	N13 ANALYSING SEQUENCES
Iri<1	Pocket Money Scam	*TRIO; Teacher Notes*		<u>RISP 14</u>
	EXCEL Pocket Money	* <u>Proof Unjumble*</u> <u>GP Loop</u>	True, Never, Sometimes; Teacher Notes	<u>RISP 20</u>
		Kangaroo Love; Teacher Notes		NRich
		Does 0.9999 = 1?	*Treasure Hunt;	Clickety Click and A Sixes

	C2 (EDEXCEL)						
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources		
	Binomial expansion of (1+x) ⁿ for a positive integer n. The notations of n! and (n)	BOTM Notation Binomial Expansion I Binomial Expansion II *MUM Binomial Expansion*	The 'Nice' Lottery Pascal and the Lottery *Coefficient Loop*	*Mathsnet Exam Questions* NRich Tens (proofs use Bimomial Theorem and other methods) Summit Binomial			
		Things to make you	go hmmmmmm				

	C2 (EDEXCEL)							
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources			
	© Calculate the lengths of arcs and the areas o © Understand, recall and use Pythagoras' theol	rem in 2D, then 3D problems	a thasa to solva problems, including	those involving bearings then us	ea thasa ralationshins in 30			
		rem in 2D, then 3D problems elationships in right-angled triangles, and use n a line and a plane (but not the angle betwe sin C onometric functions for angles of any size, in	een two planes or between two skew	v lines)				
rigonometry	 Understand, recall and use Pythagoras' theol Understand, recall and use trigonometrical recontexts, including finding the angles between Calculate the area of a triangle using ½ a b s Draw, sketch and describe the graphs of trigo 	rem in 2D, then 3D problems elationships in right-angled triangles, and use n a line and a plane (but not the angle betwe sin C onometric functions for angles of any size, in	een two planes or between two skew	v lines)				

Trigonometry	Area of a triangle = ½absinC	*BOTM* Sine and Cosine Rules	What is triq? Area of a Triangle Song Sine Rule Song	* <u>On Target*</u>	NRich Cosines Rule Hexi-metry (cosine rule) Pythagoras for a Tetrahedron (cosine rule, area formula)
Trigo	Radian measure, including use for arc length and area of sector.	Maths 2 ∞ + beyond *BOTM* Radians Circle Problems		True, Never, Sometimes; Teacher Notes	RISP 23 NRich Pericut Quadarc
	Sine, cosine and tangent functions. Their graphs, symmetries and periodicity.	GSP Trig graphs AUTOGRAPH Transforming Graphs, Teacher Notes Plotting Trig Functions	The Unit Circle *TRIO (Graphs): Teacher Notes*		A12 EXPLORING TRIGONOMETRICAL GRAPHS <u>RISP 29</u>

		C2 (EI	DEXCEL)		
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources
	Knowledge and use of tanx = sinx/cosx and sin²θ +cos²θ=1.	BOTM Graphs Common Angles I Common Angles II MUM Basic Trig Basic angles (radians) Basic angles(degrees)	Graphs Special Angles Special Angles Match Teacher Notes *Trig Loop Degrees* *Trig Loop Radians* Happy Families; Teacher Notes		
	Solution of simple trigonometric equations in a given interval.	BOTM Solving Equations I Solving Equations II	Trig Snap Unjumble easy Unjumble hard; Teacher notes *TRIO (10 versions!); Teacher Notes* Follow on Cards (Degrees); Teacher Notes Follow on Cards (Radians); Teacher Notes Trig Equation Hierachy Trig song	*Treasure Hunt (Degrees); Teacher Notes* *Treasure Hunt (Radians) Teacher Notes* lvor Cocked Up; Teacher Notes Cue Cards Teacher Notes *Mathsnet Exam Questions*	
		Things to make you	ı go hmmmmmm		

	C2 (EDEXCEL)						
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources		

Prior Knowledge:

S

- © Mental methods to recall integer squares from 2 * 2 to 15 * 15 and the corresponding square roots, the cubes of 2, 3, 4, 5 and 10, the fact that n 0 = 1 and n 1 = 1 divided by n for positive integers n [for example, 10 0 = 1; 9 1 = one-ninth], the corresponding rule for negative numbers [for example, 5 2 = 1 divided by 5 2 = one-twenty-fifth], n to the power half = square root n and n to the power one-third = cube root n for any positive number n [for example, 25 to the power half = 5 and 64 to the power one-third = 4]
- \bigcirc Plot graphs of the exponential function $y = k^x$ for integer values of x and simple positive values of k
- Use index laws to simplify and calculate the value of expressions involving multiplication and division of integer powers, zero powers, fractional and negative powers (C1)

E					
Exponentials and Logarithm	y = a ^x and its graph	EXCEL Pocket Money AUTOGRAPH y = a ^x ; Teacher Notes Maths 2 ∞ + beyond Indices	Asian Tsunami/Pocket Money Scam Starter Problems *Graph Loop* Exponent Song	*On Target* True, Never, Sometimes; Teacher Notes	

C2 (EDEXCEL)							
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources		
	The laws of logarithms	BOTM Logarithm Laws Changing bases MUM Log laws	History - John Napier *TRIO; Teacher Notes* Evaluating Log Loop; Teacher Notes Evaluating Log Follow on; Teacher Notes Musical Logs; Teacher Notes Match your logs; Teacher Notes Proof of the laws; Student sheet *Log Laws Loop I; Loop 2 Teacher Notes* ATM 1955 Solution		*A13 SIMPLIFYING LOGARITHMIC EXPRESSIONS* RISP 31 NRich Log On		
	The solution of equations of the form $a^x = b$	BOTM *Logarithmic equations* *Exponential equations* Harder equations	*'Simple' Follow on; Teacher Notes* Horrid equations Horrid Loop & Teacher Notes Answers Hard Follow on;	*Treasure Hunt; Teacher Notes* Ivor Cocked Up; Teacher Notes *Mathsnet Exam Questions*	NRich Log Attack How many?		
		Things to make you	go hmmmmmm				

C2 (EDEXCEL)						
Торіс	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources	

Differentiation	Prior Knowledge: ☐ Generate points and plot graphs of simple quad ☐ Plot graphs of more complex quadratic and cub ☐ Differentiation of x n and related sums and differentiations of differentiation to gradients, tanged Applications of differentiating to maxima and minima and stationary points, increasing and decreasing functions.	ic functions; estimate values at specific prences.		C2 FUNCTIONS INVOLVING FRACTIONAL AND NEGATIVE POWERS C3 MATCHING FUNCTIONS WITH DERIVATIVES *C5 - FINDING STATIONARY POINTS OF CUBIC
			Mathsnet Exam Questions	FUNCTIONS* RISP 6 RISP 7
				NRich Witch of Agnesi

Things to make you go hmmmmmm......

C2 (EDEXCEL)						
Topic	Objectives	ICT Resources including Bring on the Maths (BOTM) Match Up Maths (MUM)	GlosMaths Resources	Assessment	Success For All and other resources	

	 Indefinite integration as the reverse of differential integration of xⁿ. Find areas of shapes made from triangles, rectain the properties of the p			*On Target*	
on		BOTM *Definite Integration I* Definite Integration II			
Integration	Interpretation of the definite integral as the area under a curve.	BOTM Evaluating areas I Evaluating area I Harder Integration I	FTC vs Summation Area under a curve practical Teacher Notes *Matching Cards; Teacher Notes*	* <u>Treasure Hunt</u> <u>Teacher Notes*</u>	RISP 25 NRich Area L
	Approximation of area under a curve using the trapezium rule.	*BOTM* Trapezium Rule I Trapezium Rule II Trapezium Rule III	Why is the area below the axis negative? *The Severn Tunnel Problem Teacher Notes*	True, Never, Sometimes; Teacher Notes *Mathsnet Exam Questions*	

Formulae that students are expected to remember and that may not be included in formulae booklets.

Laws of logarithms

$$\log_a x + \log_a y \equiv \log_a(xy)$$
$$\log_a x - \log_a y \equiv \log_a \left(\frac{x}{y}\right)$$
$$k \log_a x \equiv \log_a(x^k)$$

Trigonometry

In the triangle ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$area = \frac{1}{2}ab\sin C$$

Area

Area under a curve = $\int_a^b y \, dx \ (y \ge 0)$