

# **Evidence 2 - Review 1**

# **Modeling of Multi-Agent Systems with Computer Graphics**

Grupo 101

| Ana Elena Velasco García     | A01639866 |
|------------------------------|-----------|
| Baltazar Servín Riveroll     | A01643496 |
| Emilio Pardo Gutiérrez       | A01644781 |
| Jozef David Hernández Campos | A01644644 |
| Maria José Medina Calderón   | A01639205 |

101/200/

Iván Axel Dounce Nava

Jesús Israel Hernández Hernández

Oscar Guadalupe Hernández Calderon

Fecha de entrega:

20 ago 2025

#### Team

The team is formed with the participants whose names appear on the cover; these are the strengths:

#### Baltazar

- Strengths: Strong individual team member with a systematic approach and solid technical fundamentals. Demonstrates excellent potential for technical leadership.
- Areas of Opportunity: Further development of collaborative skills and expansion of advanced technical knowledge.

#### **Jozef**

- Strengths: Excellent practical skills, systematic thinking, and a positive team attitude.
   Organized and growth oriented, which supports steady academic and professional progress.
- Areas of Opportunity: Expanding theoretical knowledge to deepen understanding of advanced concepts.

# Ana

- Strengths: Well rounded computer science student with strong practical experience and excellent interpersonal skills. Natural ability to explain and teach concepts effectively.
- Areas of Opportunity: Gaining deeper experience with advanced topics like
   multiagent systems and building leadership experience through team oriented roles.

# Maria José

- Strengths: Strong practical skills combined with a collaborative mindset, making her a reliable and valuable team player.
- Areas of Opportunity: Strengthening theoretical foundations to complement existing abilities.

#### **Emilio**

- Strengths: Brings practical skills and a cooperative mindset that enhance team dynamics. Reliable in contributing to shared goals.
- Areas of Opportunity: Building a stronger theoretical background to balance technical proficiency with conceptual understanding.

# **Expectations for the block**

Our primary expectation for this block is to develop a functional and intelligent multiagent system capable of solving a non-trivial task in a simulated environment. Specifically, we aim to design and implement a drone agent that can autonomously navigate a 3D environment and accurately identify and land near a designated target person. This challenge will require us to apply the core principles of multiagent systems, including perception, action, communication, and coordination, within a collaborative team setting.

# What We Hope to Achieve:

- Technical comprehension of MAS Concepts
- Extend our understanding of perception, decision-making, and interaction protocols in multiagent systems.
- Apply these concepts in practice through Unity and Blender simulations.
- Have a successful Project
- Implement meaningful interaction protocols between agents (Drone ↔ Ground Control).
- Good Team Collaboration and Role Development
- Take into account individual strengths to divide responsibilities efficiently.
- Enhanced Communication and Leadership

- Encourage cross-role communication and peer feedback.
- Foster leadership and accountability by rotating responsibilities and learning from one another's contributions.
- Critical Thinking and Problem Solving
- Reflect on failures and iterate on solutions with a growth mindset.

### **Commitments to Achieve These Goals**

- Collaboration and knowledge sharing: We will ensure frequent check-ins and collaborative debugging to maintain project cohesion. Each member will support others in closing knowledge gaps.
- Adhering to the Work Plan: We will follow a defined schedule and divide the
  workload based on strengths and learning goals. All deliverables will be completed on
  time.
- Fostering Growth Opportunities: Each member will take on tasks that challenge their areas of opportunity.
- Quality and Integrity: We commit to writing clean, modular, and well-documented code.

#### Collaborative tools

This is our Github repository as a shared platform to collaborate and communicate:

https://github.com/Jozefhdez/MAS-Reto

# Formal proposal

Description: We will try to develop an agent that will control the movements of a drone in a unity simulation. Using blender, we will create a park landscape with several trees, bushes,

grass, and people. The objective of the agent is to land the drone in a 2 meter radius from the person wearing an orange vest and a construction helmet.

# **Agents involved**

- Drone Agent
  - Autonomous decision-maker.
  - Perceives environment (object detection).
  - Executes actions (fly, hover, land).
  - Objective: land within 2m of the target person.
- Ground Control Agent
  - Acts as supervisor of the drone.
  - o Could override or monitor the drone.
- Person of Interest (Target Person)
  - Identified by unique features (orange vest + helmet).
- Other People (Distractors)
  - Represent background actors.
  - Force the drone agent to differentiate between targets.

# Relationships

- Drone ↔ Ground Control: command + telemetry.
- Drone ↔ Person of Interest: detection + navigation target.
- Drone ↔ Other People: recognition (avoid false positives).

# **Class Diagram**



# **Interaction Protocol Diagram**

- 1. Ground Control → Drone: "Mission: Find person with vest + helmet, land within 2m."
- 2. Drone → Environment: Perceives surroundings via sensors.
- 3. Drone → People: Detects multiple humans.
- 4. Drone → Target Person: Identifies orange vest + helmet → sets as target.
- 5. Drone → Ground Control: Sends confirmation: "Target acquired, approaching."
- 6. Drone → Environment: Avoids trees, bushes, obstacles.
- 7. Drone → Target Person: Lands within 2m radius.
- 8. Drone → Ground Control: "Landing successful."

# Work plan

# **Pending activities**

- 3D Environment Creation (Blender): Park with trees, bushes, grass, people. (2 Weeks)
- Drone Agent Coding: Perception + Navigation + Landing. (1 Week)
- Interaction Protocol Implementation: Communication logic between agents. (1 Week)
- Testing & Calibration: Run simulations, adjust detection threshold (2m radius). (1 Week)

# **Acquired Learning**

- Learned to model environments in Blender.
- Learned that communication protocols and its importance in MAS.

# Responsible individuals

| Activity                                                                           | Responsible      | Dates              | Effort |
|------------------------------------------------------------------------------------|------------------|--------------------|--------|
| 3D Park Environment (Blender) – trees, bushes, terrain, grass                      | Baltazar         | Week 3 -<br>Week 4 | 5 hrs  |
| 3D People Models – target person (vest + helmet) + distractors                     | Marijo           | Week 3 -<br>Week 4 | 5 hrs  |
| Drone Movement Physics in<br>Unity – basic flight, landing<br>mechanics            | Jozef, Ana       | Week 3             | 8 hrs  |
| Detection Logic – recognize<br>orange vest + helmet, differentiate<br>people       | Baltazar, Emilio | Week 3             | 8 hrs  |
| Interaction Protocol Design – define agent communication & sequence diagrams       | Marijo, Ana      | Week 4             | 8 hrs  |
| Integration & First Simulation Test – put together environment + drone + detection | Jozef, Emilio    | Week 4             | 5 hrs  |