PDM - Assignment1

Graph Search

Xiaotong Li 5965373

November 2023

Contents

1	Graph Search				
	1.1	Question1.1			
	1.2	Question1.2			
2	Maj	to Graph			
3	Dijl	${ m tra~and~A^*}$			
	3.1	Question3.1			
	3.2	Question3.2			
	3.3	Question 3.3			
4	Dijl	${f tra}$			
	4.1	Question4.1			
	4.2	Duestion 4.2			

1 Graph Search

Consider a directed graph G = (V, E), with distances d(e) for each $e \in E$, and consider two nodes $s, t \in V$. For each node v we define the function $P_s(v)$, which gives the length of the shortest path from s to v. Similar we define the function $P_t(v)$, which gives the length of the shortest path from v to t.

1.1 Question 1.1

Show that for every edge e = (u, v), the length of the shortest path from node s to node t that uses the edge e is $P_s(u) + d(e) + P_t(v)$.

Answer: Since G is a directed graph, so if you want to get to node t via edge e = (u, v) from node s, you must first get to node u from node s, then get to node t from node v. Since d(e) is fixed, it is obvious that the shortest path from s to t is $P_s(u) + d(e) + P_t(v)$.

$$S \xrightarrow{P_{S}(u)} u \xrightarrow{d(e)} v \xrightarrow{P_{v}(t)} t$$

Figure 1: Shortest path from s to t

1.2 Question 1.2

Let Q be the shortest path between the nodes s and t. Use the property obtained in Question 1.1, to propose an algorithm that finds the second shortest path from s to t (i.e., considering all paths that are not exactly equal to Q)

Answer: My algo

2 Map to Graph

- 3 Dijkstra and A^*
- 3.1 Question3.1
- 3.2 Question3.2
- 3.3 Question3.3

- 4 Dijkstra
- 4.1 Question4.1
- 4.2 Question4.2