

Mid-Point Circle Drawing Algorithm

What is a circle?

- The set of all points on a plane that are a fixed distance from a center.
- Let us put that center at (a,b).
- So the circle is all the points
 (x,y) that are "r" away from
 the center (a,b).

Standard formula of a circle

- Now we can work out **exactly** where all those points are by making a right-angled triangle (as shown), and then use Pythagoras theorem (a² + b² = c²):
- $(x-a)^2 + (y-b)^2 = r^2$

Class Exercise

• What is the center of the circle $(x - 5)^2 + (y + 3)^2 = 49$?

• What is the radius of the circle $(x + 2)^2 + (y - 4)^2 = 36$?

• Routines for generating basic curves such as circles and ellipses are not included as primitive functions in OpenGL core library.

Then how do we display curves?

- 1.We can generate a curve approximating its dimensions using a polyline.
 - This involves locating a set of points along the curve path and connecting the points with straight line segments.
 - -The more line sections we include, the smoother the curve/circle.

2. We can generate a curve by writing curve generation functions based on some algorithms. For example midpoint circle algorithm.

A Simple Circle Drawing Algorithm

The equation for a circle is:

$$x^2 + y^2 = r^2$$

where $\it Y$ is the radius of the circle So, we can write a simple circle drawing algorithm by solving the equation for $\it Y$ at unit $\it X$ intervals using:

$$y = \pm \sqrt{r^2 - x^2}$$

$$y_0 = \sqrt{20^2 - 0^2} \approx 20$$

$$y_1 = \sqrt{20^2 - 1^2} \approx 20$$

$$y_2 = \sqrt{20^2 - 2^2} \approx 20$$

$$y_{19} = \sqrt{20^2 - 19^2} \approx 6$$

$$y_{20} = \sqrt{20^2 - 20^2} \approx 0$$

A Simple Circle Drawing Algorithm (cont...)

However, unsurprisingly this is not a brilliant solution!

Firstly, the resulting circle has large gaps where the slope approaches the vertical

Secondly, the calculations are not very efficient

- The square (multiply) operations
- The square root operation try really hard to avoid these!

We need a more efficient, more accurate solution

Eight-Way Symmetry

The first thing we can notice to make our circle drawing algorithm more efficient is that <u>circles centred at (0, 0) have eight-way symmetry</u>

Mid-Point Circle Algorithm

Similarly to the case with lines, there is an incremental algorithm for drawing circles - the *mid-point* circle algorithm

In the mid-point circle algorithm we use eight-way symmetry so only ever calculate the points for the top right eighth of a circle, and then use symmetry to get the rest of the points

The mid-point circle algorithm was developed by Jack Bresenham, Remember him?

Assume that we have just plotted point (x_k, y_k) The next point is a choice between (x_k+1, y_k) and (x_k+1, y_k-1)

We would like to choose the point that is nearest to the actual circle
So how do we make this choice?

Midpoint Circle Algorithn Strathmore

Let's re-jig the equation of the circle slightly to give us:

$$f_{circ}(x, y) = x^2 + y^2 - r^2$$

Any point (x, y) on the boundary of the circle with radius (r) satisfies the equation

$$f_{circle}(x,y) = x^2 + y^2 - r^2 = 0$$

The equation evaluates as follows:

$$f_{circ}(x, y) \begin{cases} < 0, & \text{if } (x, y) \text{ is inside the circle boundary} \\ = 0, & \text{if } (x, y) \text{ is on the circle boundary} \\ > 0, & \text{if } (x, y) \text{ is outside the circle boundary} \end{cases}$$

By evaluating this function at the midpoint between the candidate pixels we can make our decision

Assuming we have just plotted the pixel at (x_k, y_k) so we need to choose between (x_k+1, y_k) and (x_k+1, y_k-1) Our decision variable can be defined as:

$$p_k = f_{circ}(x_k + 1, y_k - \frac{1}{2})$$
$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

If p_k < 0 the midpoint is inside the circle and the pixel at y_k is closer to the circle

Otherwise the midpoint is outside and y_k -1 is closer

 Successive decision parameters are obtained using incremental calculations, thus avoiding a lot of computation at each step. We obtain a recursive expression for the next decision parameter i.e. at the k+1th step, in the following manner.

$$= (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

Mid-Point Circle Algorithm (pk+1)

$$Pk = (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

$$p_{k \pm 1} = f\left(x_{k+1} + 1, y_{k+1} - \frac{1}{2}\right) = \left(x_{k+1} + 1\right)^2 + \left(y_{k+1} - \frac{1}{2}\right)^2 - r^2$$

Or,
$$p_{k+1} = (x_k + 1 + 1)^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$

$$\operatorname{Or}_{k+1} = (x_k + 2)^2 + (y_{k+1} - \frac{1}{2})^2 - r^2$$
 ----(5)

(5)-(4) gives

$$p_{k+1} - p_k = (x_k + 2)^2 - (x_k + 1)^2 + (y_{k+1} - \frac{1}{2})^2 - (y_k - \frac{1}{2})^2 - r^2 + r^2$$

Or,
$$p_{k+1} = p_k + (2x_k + 3).1 + (y_{k+1} + y_k - 1)(y_{k+1} - y_k) - (6)$$

Mid-Point Circle Algorithm (pk<=0)

Now if P_k <=0, then the midpoint of the two possible pixels lies within the circle, thus north pixel is nearer to the theoretical circle. Hence, $Y_{k+1} = Y_k$. Substituting this value in the previous equation we have;

$$p_{k+1} = p_k + (2x_k + 3) + (y_k + y_k - 1)(y_k - y_k)$$
Or, $p_{k+1} = p_k + (2x_k + 3)$

Mid-Point Circle Algorithm (pk>0)

If p_k , 0 then the midpoint of the two possible pixels lies outside the circle, thus south pixel is nearer to the theoretical circle. Hence, $Y_{k+1} = Y_k$ -1. we have . Substituting this value in the previous equation we have ;

$$p_{k+1} = p_k + (2x_k + 3) + (y_k - 1 + y_k - 1)(y_k - y_k - 1)$$

Or,
$$p_{k+1} = p_k + 2(x_k - y_k) + 5$$

Mid-Point Circle Algorithm (Starting value)

For the boundary condition, we have x=0, y=r. Substituting these values , we have

$$p_k = f\left(x_k + 1, y_k - \frac{1}{2}\right) = (x_k + 1)^2 + (y_k - \frac{1}{2})^2 - r^2$$

$$p_0 = (0+1)^2 + (r-\frac{1}{2})^2 - r^2 = 1 + r^2 + \frac{1}{4} - r - r^2 = \frac{5}{4} - r$$

To see the mid-point circle algorithm in action lets use it to draw a circle centred at (0,0) with radius 8.

K	X previous	Y previous	Decision parameter (p)	X _{new}	Ynew
0			1-r= -7	1	8
1	0	8	-7+0+3=-4	2	8
2	1	8	-4+2+3=1	3	7
3	2	8	1+(4-16)+5=-6	4	7
4	3	7	-6+6+3=3	5	6
5	4	7	3+(8-14)+5=2	6	5
				(Stop when x>=y)	

Class exercise

- Calculate the required points in the first quadrant to plot a circle with a radius of 10 and centered at the origin using the midpoint circle algorithm.
- Complete all the other points in other quadrants

Solution

K	X previous	Y previous	Decision parameter (p)	X _{new}	Ynew
0			1-10= -9	1	10
1	0	10	-9+0+3=-6	2	10
2	1	10	-6+2+3=-1	3	10
3	2	10	-1+4+3=6	4	9
4	3	10	6+(6-20)+5=-3	5	9
5	4	9	-3+8+3=8	6	8
6	5	9	8+(10-18)+5=5	7	7

Class exercise

- Calculate the required points in the first quadrant to plot a circle with a radius of 10 and centered at (3, 4)using the midpoint circle algorithm.
- Complete all the other points in other quadrants

Ole Sangale Road, Madaraka Estate. PO Box 59857-00200, Nairobi, Kenya Tel: (+254) (0)703 034000/200/300 Fax: +254 (0)20 607498 Email: info@strathmore.edu Website: www.strathmore.edu