

$$7\sin(x) = \frac{\pi}{4} \times$$

$$T\sin(x) = 2x$$

$$x = \pm \frac{\pi}{2}$$

$$Tutesval when $x > 0$

$$0 \le x \le \frac{\pi}{2}$$

$$g(x) \le y \le F(x)$$

$$A_1 = \int_0^{\frac{\pi}{2}} \int_{-\frac{\pi}{4}x}^{2\sin(x)} 1 \, dy \, dx$$

$$= \int_0^{\frac{\pi}{2}} \left(7\sin(x) - \frac{H}{\pi}x\right) \, dx$$

$$= \left(-7\cos(x) - \frac{H}{\pi}\left(\frac{1}{2}x^2\right)\right) \Big|_0^{\frac{\pi}{2}}$$

$$= \left(-7\cos(x) - \frac{\pi}{\pi}x^2\right) \Big|_0^{\frac{\pi}{2}}$$

$$= \left(-7\cos(x) - \frac{\pi}{$$$$

J., (5+7x3+9x2) dy dx
$= \int_{-1}^{1} \left(5y + 7x^{3}y + \frac{9}{8}y^{8} \right) \Big _{-1}^{1} dx$
$= \int_{-1}^{1} \left(5 + 7x^3 + \frac{q}{8} \right) - \left(-5 - 7x^3 + \frac{q}{8} \right) dx$
$= \int_{-1}^{1} 5 + 7x^3 + \frac{9}{8} + 5 + 7x^3 - \frac{9}{8} (x)$
$=\int_{-1}^{1} O + 14x^3 dx$
$= \left(\left \right \right \right \right \right \right \right \right \right)$
$=(10+\frac{14}{4})-(-10+\frac{14}{4})$
= 10+10+14-14
= 20
the average value of the function $h(x, y) = x^3y^2$ on the region bounded by $f(x) = 2x + 1$, $g(x) = -x^2 - 1$, $x = 0$, and $x = 1$.

Aug =
$$\int_{0}^{1} \int_{9cx}^{4cx} h(x,y) \, dy \, dx$$

$$= \int_{0}^{1} \int_{9cx}^{4cx} h(x,y) \, dy \, dx$$

$$= \int_{0}^{1} \int_{9cx}^{2x+1} x^{3}y^{2} \, dy \, dx$$

$$= \int_{0}^{1} \left(\frac{1}{3}x^{3}y^{3}\right) \Big|_{-x^{2}-1}^{2x+1} \, dx$$

$$= \int_{0}^{1} \frac{1}{3}x^{3} \left[(2x+1)^{3} - (-x^{2}-1)^{3} \right] \, dx$$

$$= \int_{0}^{1} \frac{1}{3}x^{3} \left[(2x+1)^{3} + (x^{2}+1)^{3} \right] \, dx$$

$$= \frac{1}{3} \int_{0}^{1} x^{3} \left[(4x^{2} + 4x + 1)(2x+1) + (x^{4} + 2x^{2} + 1)(x^{2} + 1) \right] \, dx$$

$$2x + 2x + 2x + 2x + 1$$

$$4x^{2} \left[8x^{3} + 4x + 2x^{2} + 1 \right] \left[x^{4} + 3x^{4} + 3x^{2} + 1 \right]$$

$$8x^{3} + 12x^{2} + 6x + 1 + x^{4} + 3x^{4} + 3x^{2} + 1$$
Add both

$$x^{6} + 3x^{3} + 3x^{4} + |5x^{2} + 6x + 2|$$

$$= \frac{1}{3} \int_{0}^{1} x^{3} (x^{6} + 3x^{3} + 3x^{4} + |5x^{2} + 6x + 2) dx$$

$$= \frac{1}{3} \int_{0}^{1} x^{4} + 8x^{6} + 3x^{7} + |5x^{5} + 6x^{4} + 2x^{3} dx$$

$$= \frac{1}{3} \left(\frac{1}{10} x^{6} + \frac{8}{7} x^{7} + \frac{3}{7} x^{8} + \frac{15}{6} x^{6} + \frac{6}{5} x^{5} + \frac{2}{4} x^{4} \right) \Big|_{0}^{1}$$

$$= \frac{1}{3} \left(\frac{1}{10} + \frac{8}{7} + \frac{3}{7} + \frac{15}{6} + \frac{6}{5} + \frac{1}{2} \right)$$

$$= \frac{54^{3}}{280}$$

$$= \int_{0}^{1} \int_{-x^{2}}^{4x^{3}} |1 dy dx$$

$$= \int_{0}^{1} \int_{-x^{2}}^{2x^{4}} |1 dy dx$$

$$= \int_{0}^{1} \int_{-x^{2}}^{2x^{4}} |1 dy dx$$

$$= \int_{0}^{1} \left(2x + 1 \right) - \left(-x^{2} + 1 \right) dx$$

$$= \int_{0}^{1} \left(2x + 1 + x^{2} + 1 \right) dx$$

$$= \left(\frac{1}{3} x^{3} + \frac{1}{2} x^{2} + 2x \right) \Big|_{0}^{1}$$

$$= \frac{1}{3} + |1 + 2$$

$$= \frac{16}{3}$$

543 A 280					
	-				
3					
1/20	4				
=\frac{1620}{2800}					
2800					

ne value of a such that	the average value of $f(x, y) = 1$	$1 + x + y$ on the region $D = \{(x \mid x) \mid x \neq y \}$	$(x, y) \mid 0 \le x \le a, 0 \le y \le a$	4} is equal to 6.	1	1	
0 = x =	- O						
0 = 4 =	4						
	So So 1+x+7	dydx					
avg =	10 Jo 1 dy	dx					
Ca	1 + x+7 (1 1					
$=\int_0^a$	(4+x4+	$\frac{1}{2}\gamma^2$	Κ				
= \int_{\theta}^{\text{Q}}	(4+4x+	$\frac{1}{2}(4)^2$) d	X				
= \ a	(4+4x+	8) 1x					
	$x + \frac{4}{2}x^2 + 8$	5x) ₀					
= 12	$a + \frac{1}{2}a^2$						

Find the volume of the solid region F.

The region F is the region below the graph of $f(x, y) = xy\sqrt{x^2 + y^2}$ and above the region in the xy-plane bounded by the lines y = x, y = 5, and x = 0.

The region F is the region in the first octant that is bounded by the two parabolic cylinders $z = 16 - y^2$ and $z = 16 - x^2$.

X	2	
$\frac{2}{2} = \frac{16}{2} \times \frac{2}{2}$	Z=16-7 ² 2=16	$O = 6 - \gamma^2 $ $y = †A$
$0 \le 2 \le 6$ $0 \le x \le \sqrt{16-2}$ $0 \le x \le \sqrt{16-2}$	$\frac{2}{x^2} \times \frac{p_1 a_W}{16-2}$ $x = \sqrt{16-2}$	$C = 6 - x^{\perp} $ $x = 1 4$
	$\frac{2\gamma}{y^2} = 16 - 2$	
	X = 116 - Z	

$$V = \int_{0}^{16} \int_{0}^{16-2} \int$$

A plane lamina with mass density $\sigma(x, y) = 3 + x^2y^2$ occupies the region in the xy-plane bounded by x = 0, $y = e^x$, and y = e. Find the total mass M of the lamina, the moments M_x and M_y , and the center of mass (x, y) of the lamina.

$$M_y =$$

$$(\bar{x}, \bar{y}) = \left(\begin{array}{c} \\ \end{array} \right)$$

Bounds

$$C \le x \le 1$$
 CR
 $C \le x \le 1$
 CR
 CR

$$= \frac{1}{3} e^{3x} x^{2} - \frac{1}{3} \int_{0}^{e^{3x}} e^{3x} 2x dx$$

$$= \frac{1}{3} e^{3x} x^{2} - \frac{2}{3} \int_{0}^{e^{3x}} x dx$$

$$V = x \qquad dv = e^{3x} dx$$

$$V = \frac{1}{3} e^{3x} x - \frac{1}{3} e^{3x} e^{3x}$$

$$= \frac{1}{3} e^{3x} x - \frac{1}{3} e^{3x} e^{3x}$$

$$= \frac{1}{3} e^{3x} x - \frac{1}{3} e^{3x} e^{3x}$$

$$= \frac{1}{3} e^{3x} x - \frac{1}{3} e^{3x}$$

$$= \frac{1}{3} e^{3x} x - \frac{1}{4} e^{7x}$$

$$= \frac{1}{3} e^{3x} x^{2} - \frac{2}{3} (\frac{1}{3} e^{3x} x - \frac{1}{4} e^{3x})$$

$$= (\frac{1}{3} e^{3x} x^{2} - \frac{2}{3} (\frac{1}{3} e^{3x} x - \frac{1}{4} e^{3x})) \Big|_{0}^{1}$$

$$= (\frac{1}{3} e^{3x} - \frac{2}{3} (\frac{1}{3} e^{3x} - \frac{1}{4} e^{3x}) - \frac{2}{3} (\frac{1}{3} e^{3x} - \frac{1}{4} e^{3x})$$

$$= \frac{1}{3} e^{3x} - \frac{2}{3} (\frac{1}{3} e^{3x} - \frac{1}{4} e^{3x}) - \frac{2}{3} (\frac{1}{3} e^{3x} - \frac{1}{4} e^{3x})$$

$$= \frac{1}{3}e^{3} - \frac{2}{3}(\frac{1}{3}e^{3} - \frac{1}{9}e^{3}) - \frac{2}{27}$$

$$= 3e + \frac{e^{3}}{3}(\frac{1}{3}x^{3})|_{0}^{3} - 3(e^{x})|_{0}^{1} - \frac{1}{3}(\frac{1}{3}e^{3} - \frac{1}{9}e^{3}) - \frac{2}{27})$$

$$= 3e + \frac{e^{3}}{3} \cdot \frac{1}{3} - 3(e - 1) - \frac{1}{3}(\frac{1}{3}e^{3} - \frac{1}{9}e^{3}) - \frac{2}{27})$$

$$= 3e + \frac{e^{3}}{3} \cdot \frac{1}{3} - 3(e - 1) - \frac{1}{3}(\frac{1}{3}e^{3} - \frac{1}{9}e^{3}) - \frac{2}{27})$$

$$= 3e + \frac{4}{81}e^{3} + \frac{2}{81}$$

$$= 3 + \frac{4}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{81}$$

$$= 3 + \frac{4}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{81}e^{3} + \frac{2}{8$$

$\frac{1}{\lambda} = \frac{M}{M}$			
	o much time		