Student Retention at Open University: Business Insights and Potential Solutions

Shiwen Xu

Presentation to Adobe Customer and Product Analytics Team

Agenda

- Outline of Steps in Formulating the Problem and Exploring the Data
- •Motivation and Key Question: How to Improve Student Retention (Reduce Withdrawal)?
- Explore 3 Underlying Drivers of Course Withdrawal
- Prediction Model
- Regression Analysis
- Summary, Recommendations, and Next Steps
- Appendix: additional analysis

Steps in Analyzing Data and Identifying Problems

- 1. Understand the business context and Identify the problem
- 2. Prepare Data Infrastructure
 - 1. Upload each CSV files to Google Cloud Storage
 - 2. Build a Database in Google BigQuery using Relational Data Model
- 3. Explore Data and Identify the problem with the largest impact
 - 1. SQL in Google BigQuery
 - 2. R for further analysis
 - 3. Identify student retention as a major problem
- 4. Explore 3 Underlying Drivers of Course Withdrawal
- Prediction Model
- 6. Regression Analysis
- 7. Recommendation on Potential Solution

Motivation: why focusing on student retention

Goal of Open University:

- Scale by enrolling more students (Acquisition)
- Engage each student (Retention)

Student Acquisition and Retention at University and Course Level

	Acquisition	Retention
University-level	Sign-up Online	Actively Taking Courses or Get Degree
Course-level	Enroll into a Course	Complete a Course

Motivation: why focusing on student retention

Why:

- Business angle:
 - In distance learning, customer acquisition is relatively simple (no geographic constraint)
 - But student retention may face a fundamental challenge due to the lack of physical interaction
- •Data angle:
 - We do not have data on customer acquisition (e.g. advertising channel & spending)
 - Thus can make little data-driven recommendations along this line.

	Acquisition	Retention
University-level	Sign-up Online	Actively Taking Courses or Get Certificate
Course-level	Enroll into a Course	Complete a Course

Problems & Insights

Student Retention

- Long-term: not finish the degree / complete enough courses
- Short-term: not complete the course (Withdrawal)
 - Course Design
 - Student Education Level
 - Student Activities

Prepare Data Infrastructure (Google BigQuery)

SQL Queries are included in the Notepad.

The Distribution of Number of Courses Enrolled Per Students during the Data Period

The Distribution of Number of Courses Enrolled Per Students Decomposed by Course Withdrawal or not

The Distribution of Withdrawal

Retention Problem

Two Aspects of the Retention Problem (Conclude from Slides Above)

- Students at Open University only register for a small number of courses (mostly one)
- Even worse, a big portion of students drop the course

Why?

I found three aspects related with this problem:

- 1. Course design
- 2. Education Background
- 3. Student Activity

Whether the course withdrawal caused by the course design?

The Total Enrollment for Courses

Percentage of Student Performance for Each Course

Percentage of Student Performance for Each Course

Percentage of Student Performance for Each Course

The Number of Students Taking Tests for Course CCC

First Test: CMA, 2%

Second Test: TMA, 9%

Third Test: CMA, 7%

Fourth Test: CMA, 8%

Fifth Test: TMA, 22%

Sixth Test: TMA 22%

Seventh Test: TMA 22%

Eighth Test: CMA 8%

The Number of Students Taking Tests for Course AAA

First Test: TMA, 10%

Second Test: TMA, 20%

Third test: TMA, 20%

Fourth TMA, 20%

Fifth TMA, 30%

Whether the course withdrawal caused by the diverse education background?

Student Education Background by Student Performance

Pass

Final Result

Fail

Withdrawn

Student Performance of Each Education Level for Course CCC

Student Performance of Each Education Level for Course AAA

Whether course withdrawal caused by the student activity?

Average Daily Activity for Withdrawal by Activity Types

Average Daily Activity for Complete by Activity Types

Decision Tree Model: Predicting Students at Risk of Course Withdrawal

Baseline Accuracy: when predicting all student WILL NOT drop the class (drop=0)

75.48%

Decision Tree Model: Predicting Students at Risk of Course Withdrawal

Outcome:

Drop=0/1 (after a student register a specific course in a specific semester)

Predictors (Ranked by Importance):

Total click (up to registration),

Current credits,

Date of registration,

Highest education,

Number of previous attempts

Training dataset:

75% of the total observations, 21,921 rows

Testing:

25% of the total observations, 7307 rows

	Confusion Matrix - Testing				
	Prediction				
Actual		0	1		
	0	5118	1035	6153	
	1	414	740	1154	
		5532	1775	7307	

Accuracy: 80.17%

Decision Tree Model: Predicting Students at Risk of Course Withdrawal

It is not a full image of the decision tree model.

Regression Analysis

Withdraw	Coefficients	Standard Error	t	p-value (P>t)	Confidence	Interval
Past Behavior						
Total Clicks	-0.000074	0.000001	-54.219	0.0000	-0.000077	-0.000072
Current Credits	0.0017	0.000061	27.522	0.0000	0.0016	0.0018
Number of Previous Attempts	-0.0154	0.005113	-3.012	0.0026	-0.0254	-0.0054

Summary & Recommendations

Student Retention:

- High withdrawal rate
- Most students are only taking one course (part time students)

Course Design:

- Less intense schedule and work load, lower withdrawal rate
- Reduce the work load, allow higher pass rate, focus on the most practical courses

Summary & Recommendations Cont.

Diverse Education Level:

- Student from different education background perform differently
- Students from lower education background perform worse in demanding courses
- Personalized advisors
- Provide instruction of registering the most suitable courses
- Provide additional guidance during the semester (before and after exams)

Student Activities:

- Students who are more active, taking fewer credits, having previous attempts are less likely to drop
- Machine learning model to predict students at risk

Next Steps:

Study the course design of AAA

- Root cause the reason of higher student engagement and lower withdrawal rate
- Redesign the courses with high student withdrawal rate (like CCC)

Collect and analyze the data for long-term retention problem

- Low graduation rate
- Redesign the programs

Design and Build machine-learning based solution

- Predict students at risk (Withdrawal course)
- A/B Testing (e.g. effect of personalized advisors, effect of course recommendation)

Thank you!

Feedback/Questions?

Appendix A

Percentage of Student Performance for Each Semester

Appendix B

Appendix c

Appendix D: The Distribution of Credit Taking per Student for Semester October 2014

The Distribution of When Student Register the Courses

Student Education Background by Student Performance

The Number of Student Drop After Test for Course CCC

The Number of Student Drop After Test for Course AAA

Student Education background in % for Course CCC

A Level: High School Graduate

Lower Than A Level: Middle School Graduate

HE Qualification: Bachelor's Degree

Post Graduate: Master's Degree or higher

Student Education background in % for Course AAA

A Level: High School Graduate

Lower Than A Level: Middle School Graduate

HE Qualification: Bachelor's Degree

Post Graduate: Master's Degree or higher

Average Daily Clicks between Different Final Results

The Average Clicks per Course Between Withdrawal or Not

Regression Analysis

Withdraw	Coefficients	Standard Error	t	p-value (P>t)	Confidence	Interval
Student Education (A level omitted)						
HE Qualification	-0.0001911	0.0069394	-0.03	0.978	-0.0137926	0.0134105
Lower Than A Level	0.0687588	0.0050924	13.5	0	0.0587774	0.0787401
No Formal quals	0.1287799	0.0231421	5.56	0	0.0834204	0.1741395
Graduate Qualification	-0.0194275	0.0229277	-0.85	0.397	-0.0643668	0.0255118
Course (AAA omitted)						
BBB	-0.0573664	0.0155173	-3.7	0	-0.0877809	-0.0269518
ccc	0.1871593	0.0161013	11.62	0	0.1556	0.2187185
DDD	0.0810767	0.015573	5.21	0	0.0505529	0.1116004
EEE	0.0296011	0.0164495	1.8	0.072	-0.0026406	0.0618428
FFF	0.1456321	0.0154433	9.43	0	0.1153626	0.1759016
GGG	-0.1369594	0.0171699	-7.98	0	-0.1706132	-0.1033056
Semester (2013B omitted)						
2013J	-0.0198419	0.0076611	-2.59	0.01	-0.0348581	-0.0048258
2014B	-0.0113292	0.0080602	-1.41	0.16	-0.0271275	0.0044691
2014J	0.0155069	0.0075429	2.06	0.04	0.0007224	0.0302914
Past Behavior						
Total Number of Clicks in VLE	-0.0000885	1.46E-06	-60.63	0	-0.0000913	-0.0000856
studied_credits	0.0011571	0.0000637	18.16	0	0.0010322	0.001282
num_of_prev_attempts	-0.0167268	0.0050063	-3.34	0.001	-0.0265394	-0.0069143