

Introduction to basic Electronic devices and Electronic Components Part 1

Instructed By: Mr. Supun Dissanayaka

Voltage

"The potential difference between two points" "Measured in Volts (V)"

Independent voltage source

Dependent voltage source

Current

"An amount of charges flow through a cross section of conductor per amount of time" "Measured in Ampere (A)"

Independent current source

Dependent current source

Resistance

"An ability to resists the flow of current measured in Ohm (Ω) "

Power "The time rate of expending or absorbing energy measured in Watt (W)"

Passive sign convention (Absorb power)

Active sign convention (Deliver power)

Absorb power = -(Deliver power)

Total Resistance

Series connection

Parallel connection

$$\frac{1}{R_t} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$

Sora

2 Resistor connected in parallel

What if...

Parallel and Series circuit properties

Same voltage for all elements different current.

Same current for all elements different voltage.

Basic Components

United States Patent Office

Des. 228,136 Patented Aug. 14, 1973

BREADBOARD FOR ELECTRONIC COMPONENTS OR THE LIKE

Ronald J. Portugal, North Haven, Conn., assignor to El Instruments Incorporated, Derby, Conn.

Filed Dec. 1, 1971, Ser. No. 203,938

Term of patent 14 years

Int. Cl. D13-03

Des. 228,136 PAGE S

FIG. 4 is an end view.

The ornamental design for a breadboard for electronic components or the like, as shown and described,

UNITED STATES PATENTS D. 221,000 6/1971 Bess, Sr. et al. D26-1 R

OTHER REFERENCES

API/AMP Terminal and Connector Handbook, 3rd ed., sub-section © 1964, p. 410, coaxial patch cord board

Breadboard

Example circuit

Power supply unit

Power supply unit

Resistors

Resistor types

Variable Resistors: Potentiometer

Image of a Potentiometer

Internal structure of a Pot

Non-linear resistors: LDR

Image of LDR or Photo resistor

Symbol for LDR or Photo resistor

Resistor color code

Capacitors

Types of Capacitors

Ohm's law

Capacitor reading: Large capacitors

Capacitor reading: Compact capacitors

CODE	MAX. VOLTAGE
OJ	6.3V
1A	10V
1C	16V
1E	25V
1H	50V
2A	100V
2D	200V
2E	250V

Capacitor reading: Compact capacitors

Digital multi-meter

Digital multi-meter: Resistance measuring

Digital multi-meter: Resistance measuring

Schematic diagram

Digital multi-meter: Resistance measuring

Digital multi-meter: Current measuring

Schematic diagram

Digital multi-meter: Current measuring

Breadboard

^{*}Connection is in series

Thank you & have fun...