Engenharia de Software e Arquitetura de Sistemas

Entrega 1

Guilherme Barioni RA:24026140 Iury Xavier da Silva Mangueira RA:24026311 Lilian Mercedes Paye Conde RA:24026462 Marcus Miranda Duque RA:24026080 Murilo de Souza Vieira RA:24025726

Aplicação dos Métodos Ágeis

Durante o desenvolvimento do projeto, adotamos os conceitos dos métodos ágeis com o objetivo de simplificar e acelerar as entregas. Ao dividir o trabalho em sprints semanais, conseguimos manter o ritmo constante de progresso, assegurando que o projeto evoluísse de forma consistente e eficiente.

Scrum

O Scrum desempenhou um papel essencial na organização do nosso trabalho, permitindo que o desenvolvimento fosse dividido em ciclos curtos e gerenciáveis. Essa abordagem facilitou a entrega contínua de resultados, mesmo diante de tarefas complexas e desafios inesperados.

Product Backlog

Nas primeiras duas semanas do semestre, realizamos o planejamento inicial e a definição dos objetivos do projeto. Com isso, elaboramos o Product Backlog, que contém todos os itens e funcionalidades essenciais a serem desenvolvidos ao longo do projeto.

Sprint

As sprints foram estruturadas em ciclos semanais, com pelo menos uma tarefa designada a cada integrante da equipe. Cada ciclo incluía as seguintes etapas: Sprint Planning, Sprint Backlog, Daily Scrum e Sprint Review, garantindo uma organização clara e um fluxo de trabalho contínuo.

Sprint Planning

As reuniões de Sprint Planning ocorreram semanalmente, logo após o término de cada sprint. Nessas reuniões, discutíamos o progresso do trabalho realizado, avaliávamos as novas prioridades de desenvolvimento e selecionávamos as tarefas do Product Backlog que seriam focadas na próxima sprint.

Sprint Backlog

Durante o Sprint Planning, organizávamos o Sprint Backlog, selecionando as tarefas a serem realizadas no ciclo. Em geral, cada sprint incluía de quatro a

seis tarefas, distribuídas de maneira equilibrada entre os membros da equipe. Isso permitiu que o trabalho fosse dividido de forma justa, sem sobrecarregar nenhum integrante.

Daily Scrum

O Daily Scrum era realizado todos os dias, geralmente na Fecap, com reuniões rápidas de cerca de 5 minutos. Durante essas reuniões, discutíamos o progresso de cada tarefa, identificávamos possíveis obstáculos e ajustávamos as responsabilidades, se necessário. Essa prática ajudou a manter a equipe alinhada, controlando expectativas e avaliando a capacidade de entrega de cada membro.

Sprint Review

Ao final de cada sprint, realizávamos uma Sprint Review para avaliar os resultados. Discutíamos as entregas realizadas, o que foi concluído, o que ficou pendente e a qualidade das entregas. Essa reunião era sempre realizada antes da próxima Sprint Planning, permitindo que fizéssemos ajustes contínuos nas prioridades e no foco do projeto.

Kanban

Para gerenciar o fluxo de trabalho, utilizamos o GitHub Projects, uma ferramenta baseada no método Kanban. Cada item foi organizado de acordo com as seguintes categorias:

- Backlog: Contém os itens do Product Backlog.
- **Sprint**: Representa o Sprint Backlog dentro do Kanban, com as tarefas selecionadas durante o Sprint Planning.
- In Progress: Itens que estão sendo trabalhados ativamente.
- In Review: Tarefas concluídas, aguardando revisão por outro membro da equipe.
- **Done**: Quando a entrega é finalizada, revisada e aprovada, sendo marcada como concluída.

Com o uso do Kanban, aumentamos nossa produtividade ao ter um controle constante sobre o andamento de cada tarefa, além de garantir uma distribuição equilibrada das responsabilidades.

Engenharia de Requisitos

Os requisitos do sistema foram definidos previamente pela a FECAP e a PicMoney. Eles foram organizados em três categorias principais: requisitos funcionais, requisitos não funcionais e requisitos de domínio.

Requisitos Funcionais:

Exibição personalizada de KPIs por tipo de executivo

O sistema deverá apresentar indicadores de desempenho (KPIs) personalizados de acordo com o perfil do usuário:

- CEO: visão geral da performance da empresa
- CFO: dados financeiros consolidados
- CTO: informações operacionais e técnicas

Filtros interativos e dinâmicos

A aplicação deverá permitir ao usuário aplicar múltiplos filtros (por período, região, campanha, parceiro, etc.), com atualização automática dos dados exibidos.

Sistema de alertas para anomalias

O sistema deverá identificar e notificar automaticamente valores atípicos ou comportamentos fora dos padrões estabelecidos.

Atualização de dados simulada em tempo real

Os dados exibidos deverão ser atualizados periodicamente de forma automatizada, simulando um fluxo contínuo em tempo real.

Design responsivo para múltiplos dispositivos

A interface deverá se adaptar adequadamente a diferentes resoluções de tela (desktop, tablet, smartphone), mantendo a usabilidade.

Exportação de relatórios analíticos

O usuário deverá conseguir exportar relatórios completos nos formatos PDF e Excel.

Ambiente de simulação para projeções

O sistema deverá disponibilizar uma área específica para projeções financeiras e operacionais com base em dados históricos e parâmetros definidos pelo usuário.

Requisitos Não Funcionais:

Interface intuitiva e centrada na experiência do usuário (UX/UI)
 A navegação deve ser simples, clara e consistente, proporcionando uma boa experiência ao usuário.

- Baixo tempo de resposta
 - As interações com o sistema (como aplicação de filtros ou geração de gráficos) devem ter tempo de resposta inferior a 2 segundos.
- Alta disponibilidade e funcionamento offline
 A aplicação deve estar disponível de forma contínua, com possibilidade de operação offline usando dados armazenados localmente, se necessário.
- Compatibilidade com dispositivos móveis

 A aplicação deve ser plenamente funcional em smartphones e tablets,
 garantindo uma boa experiência em qualquer dispositivo.
- Código modular e documentação clara
 A estrutura do código deve ser organizada em módulos independentes,
 acompanhada de documentação técnica clara, visando facilitar a manutenção
 e futuras evoluções.

Com isso, estabelecemos os requisitos de domínio com base nos requisitos levantados anteriormente:

Requisitos de Domínio:

- Dashboard interativa desenvolvida em Python com Plotly Dash
 A interface gráfica de visualização de dados será construída utilizando o
 framework Dash, que permite a criação de dashboards dinâmicos com base
 em Plotly.
- Backend desenvolvido em Node.js para processamento de dados Toda a lógica de processamento, integração de dados e APIs será implementada com **Node.is**, garantindo escalabilidade e desempenho.
- Banco de dados em nuvem com MySQL
 O armazenamento dos dados será realizado em um banco MySQL
 hospedado em nuvem, possibilitando acessibilidade, segurança e flexibilidade no gerenciamento das informações.

Conclusão

A adoção dos métodos ágeis, especialmente o framework Scrum aliado ao uso do Kanban, foi fundamental para o bom andamento do projeto. A divisão do trabalho em sprints semanais permitiu uma organização clara das atividades, promovendo entregas contínuas e alinhamento constante entre os membros da equipe. Com as reuniões diárias, revisões de sprint e planejamento estruturado, conseguimos manter um fluxo de trabalho eficiente e adaptável aos desafios que surgiram ao longo do desenvolvimento.

Paralelamente, a definição criteriosa dos requisitos funcionais, não funcionais e de domínio garantiu que o sistema fosse desenvolvido de acordo com as expectativas dos stakeholders, respeitando tanto os aspectos técnicos quanto as necessidades de negócio. A clareza desses requisitos foi essencial para orientar o desenvolvimento e evitar retrabalho, proporcionando maior assertividade nas decisões técnicas e de design.

Como resultado, o projeto avançou de forma colaborativa, organizada e com foco na entrega de valor, demonstrando a eficácia dos métodos ágeis quando aplicados com disciplina e alinhamento de equipe. Essa experiência reforça a importância de práticas ágeis bem estruturadas, combinadas a uma boa engenharia de requisitos, como pilares para o sucesso em projetos de desenvolvimento de software.