- 1. (a) A valley can modeled by the equation $z = f(x,y) = 3e^{xy}$ where x is kilometers north and y is kilometers east. From a helicopter you observe a hiking trail that appears to be modeled by $x^3 + y^3 = 27$. Find the highest and lowest points along the hiking trail.
 - (b) If possible, write down an equation of the tangent plane (in vector form) at the minimum and maximum points along the hiking trail.

2. Let
$$A = \int_{x=0}^{x=6} \int_{y=x/3}^{y=2} x\sqrt{y^3 + 1} \, \mathrm{d}y \mathrm{d}x$$
.

- (a) Find a region R and a function f so that $A = \iint_R f(x, y) \, dV$.
- (b) Find A.
- 3. Let C be a circular path in \mathbb{R}^3 that passes through the points $\vec{a} = (1, 2, 3)$, $\vec{b} = (1, 1, 3)$, and $\vec{c} = (-1, 1, 1)$. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be distance from the origin. That is, $f(\vec{x}) = ||\vec{x}||$.
 - (a) Find the radius of C. Then find two functions $g: \mathbb{R}^3 \to \mathbb{R}$ and $h: \mathbb{R}^3 \to \mathbb{R}$ so that $g(\vec{x}_0) = h(\vec{x}_0) = 0$ if and only if $\vec{x}_0 \in C$. (Hint, think about how to make two surfaces intersect at exactly C.)
 - (b) Could you find a single function $r: \mathbb{R}^3 \to \mathbb{R}$ so that $r(\vec{x}_0) = 0$ if and only if $\vec{x}_0 \in \mathbb{C}$? Why or why not?
 - (c) Find a tangent vector to C at the point \vec{c} , and call this vector $T_{\vec{c}}$. Write down vector form of the plane of vectors orthogonal to $T_{\vec{c}}$.
 - (d) Moving along C from the point \vec{c} , how fast is f changing with respect to distance?
 - (e) Find the minimum and maximum values f attains along the curve C. (Hint, it's much easier to find the minimum and maximum values of f^2 and use those to minimize/maximize f.)
- 4. Consider the stretched polar coordinates system \mathcal{SP} . Coordinates in \mathcal{SP} are given by pairs (ρ, ϕ) and relate to rectangular coordinates via the equations $x = \rho \cos \phi$ and $y = 2\rho \sin \phi$ where $\rho \in [0, \infty)$ and $\phi \in [0, 2\pi)$.
 - (a) Draw the level curves $\rho = m$ for $m \in \{0, 1, 2, 3\}$ and $\phi = n$ for $n \in \{0, \pi/8, \pi/4, 3\pi/8, \pi/2\}$.
 - (b) Compute the area enclosed by the curves $\rho = \rho_0$, $\rho = \rho_0 + \Delta \rho$, $\phi = \phi_0$, and $\phi = \phi_0 + \Delta \phi$ and call this area $\Delta V(\rho_0, \phi_0)$.
 - (c) Give an isometric parameterization for... just kidding. Instead of forcing a parameterization to preserve area, let's measure how much it changes area. We'd like to compute the density of the coordinate system \mathcal{SP} . Consider the following: Let $G_n = \{(\frac{i}{n}, \frac{j}{n}) : i, j \in \mathbb{Z}\}$ be a grid of regularly spaced points. If we interpret G_n as points given in rectangular coordinates and we look at a square of size $\frac{1}{n} \times \frac{1}{n}$, we expect to find one point in that square. That is, if $S_n(x,y) = [x,x+\frac{1}{n}) \times [y,y+\frac{1}{n})$ is the square of width $\frac{1}{n}$ with lower left corner at the point (x,y), then the size of $S_n(x,y) \cap G_n = 1$ regardless of (x,y) and regardless of n. However, if we interpret G_n as specified in \mathcal{SP} coordinates, suddenly the size of $S_n(x,y) \cap G_n$ depends on (x,y) and on n. The density of \mathcal{SP} coordinates at the point (x,y) is defined as

$$\operatorname{den}(x,y) = \lim_{n \to \infty} \operatorname{expected size of } S_n(x,y) \cap G_n,$$

when G_n is interpreted in \mathcal{SP} coordinates. Alternatively (if the *expected size* language is too ambiguous), let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by $(a, b) \mapsto (a \cos b, 2a \sin b)$ that takes \mathcal{SP} coordinates to rectangular coordinates. Then,

$$\operatorname{den}(x,y) = \lim_{n \to \infty} \frac{\text{area of } S_n(x,y)}{\text{area of } f(S_n(x,y))},$$

where $f(S_n(x,y))$ is the image of $S_n(x,y)$ under f.

Compute the density of SP coordinates.