Digital Image Processing COSC 6380/4393

Lecture – 9

Sept. 19th, 2023

Pranav Mantini

Slides from Dr. Shishir K Shah and Frank (Qingzhong) Liu

UNIVERSITY of **HOUSTON**

Review: BINARY IMAGES

- How do binary images arise?
- Since **binary** = **bi-valued**, the (logical) values '0' or '1' usually indicate the **absence** or **presence** of an **image** property in an associated gray-level image:
 - Points of high or low intensity (brightness)
 - Points where an object is present or absent
 - More abstract properties, such as smooth vs. nonsmooth, etc.
- **Convention** We will make the associations
- '1' = BLACK
- '0' = WHITE

Review: BINARY IMAGE GENERATION

- Tablet-Based Input:
- Binary images can derive from **simple sensors** with binary output
- Simplest example: tablet, resistive pad, or light pen
- All pixels initially assigned value '0':
 I = [I(i, j)], I(i, j) = '0' for all (i, j) = (row column)
- When pressure or light is applied at (i_0, j_0) , the image is assigned the value '1': $I(i_0, j_0) = '1'$
- This continues until the user completes the drawing

Review: Grey Level -> Binary Image

8X8 image → white box on black background

Binary image

What is good value of T?

UNIVERSITY of HOUSTON

Review: Example: How to find T

- Determine peaks
- Choose T between peaks(say average)

Review: Algorithm

Initialize
$$T = K/2$$

Do

$$Compute \mu_1 = E(X) \forall X < T$$

$$Compute \mu_2 = E(X) \forall X \ge T$$

$$Set T = \frac{\mu_1 + \mu_2}{2}$$

$$While \Delta \mu_1! = 0 \& \Delta \mu_2! = 0$$

AKA: Expectation Maximization (simple version)

bimodal histogram well separated peaks

Otsu's Binarization

- Popular thresholding method
- It works on the histogram of the image
- It assumes that the histogram is bimodal

T=200

Compute a statistical value

Compute a statistical value

Compare
Pick Threshold
UNIVERSITY of HOUSTON

Intra-class Variance

Compare intra-class var

Pick Threshold that minimizes this value UNIVERSITY of HOUSTON

Compare intra-class var

Pick Threshold that minimizes this value UNIVERSITY of HOUSTON

$$fn = w_1 var1 + w_2 var2$$

UNIVERSITY of HOUSTON

Algorithm

- 1. Compute Histogram
- 2. Compute probabilities
- 3. Iterate through all possible threshold values (t=0 to t= 255)
 - 1. Compute weights (q_1, q_2)
 - 2. Compute mean (μ_1, μ_2)
 - 3. Compute intra-class variance (σ_1^2, σ_2^2)
 - 4. Compute weighted sum of intra-class variance $(q_1\sigma_1^2 + q_2\sigma_2^2)$
- 4. Pick threshold that minimizes the weighted sum of intraclass variance

DISCUSSION OF HISTOGRAM TYPES

- We'll return to the histogram later in the context of quantitative gray-level properties
- Some general qualitative observations are worth making now
 - Bimodal histograms often imply objects and background of significantly different average brightnesses
 - **Bimodal histograms** are the easiest to threshold
 - The result of thresholding a bimodal histogram is (ideally) a simple binary image showing object/background separation
- Examples. Images of
 - Printed type
 - Blood cells in solution
 - Machine parts on an assembly line

HISTOGRAM TYPES

- Multi-modal histograms often occur when the image contains different objects of different average brightnesses on a uniform background
- Flat or level histograms usually imply more complex images, containing detail, non-uniform background, etc.
- Thresholding rarely gives perfect results
- Usually, some kind of **region correction** must be applied

THE BASIC LOGICAL OPERATIONS

- We will use only a **few simple** logical operations
- Suppose that $X_1, ..., X_n$ are binary variables
- For example, pixels from one or more binary images
- Here is the notation we will use:
- **Logical Complement**: $NOT(X_1) = complement of X_1$
- Logical AND: AND $(X_1, X_2) = X_1 \wedge X_2$

X_1	NOT(X ₁)
0	1
1	0

TRUTH TABLE

UNIVERSITY

X_1	X_2	$X_1 \wedge X_2$
0	0	0
O	1	0
1	0	0
1	1	1

ΓRUTH TABLE

LOGICAL OPERATIONS

• Multi-Variable Logical AND:

AND(
$$X_1, X_2, ..., X_n$$
) = $X_1 \wedge X_2 \wedge \cdots \wedge X_{n-1} \wedge X_n$
= $\bigwedge_{i=1}^{n} X_i$
= 1 if $X_1 = X_2 = X_3 = \cdots = X_{n-1} = X_n = 1$ (all 1's)
= 0 otherwise

• Logical OR: $OR(X1, X2) = X1 \vee X2$

X_1	X_2	$X_1 \vee X_2$
0	0	0
0	1	1
1	0	1
1	1	1

UNI

TRUTH TABLE

USTON

LOGICAL OPERATIONS

• Multi-Variable Logical OR:

$$\begin{aligned} & OR(X_1,\,X_2,\,...,\,X_n) = X_1 \,\vee\;\; X_2 \,\vee\;\; \cdots \, \vee\;\; X_{n\text{-}1} \,\vee\;\; X_n \\ & = \bigvee_{i=1}^n \;\; X_i \end{aligned}$$

= 0 if
$$X_1 = X_2 = X_3 = \cdots = X_{n-1} = X_n = 0$$
 (all 0's)
= 1 otherwise

SIMPLE BOOLEAN ALGEBRA PROPERTIES

- 1. NOT [NOT(X)] = X
- 2. $X1 \wedge X2 \wedge X3 = (X1 \wedge X2) \wedge X3$ = $X1 \wedge (X2 \wedge X3)$
- 3. $X1 \lor X2 \lor X3 = (X1 \lor X2) \lor X3$ = $X1 \lor (X2 \lor X3)$
- 4. $X1 \wedge X2 = X2 \wedge X1$
- 5. $X1 \lor X2 = X2 \lor X1$
- 6. $(X1 \land X2) \lor X3 = (X1 \lor X3) \land (X2 \lor X3)$
- 7. $(X1 \lor X2) \land X3 = (X1 \land X3) \lor (X2 \land X3)$
- 8. NOT(X1 \wedge X2) = NOT(X1) \vee NOT(X2)
- 9. NOT(X1 \vee X2) = NOT(X1) \wedge NOT(X2)

SIMPLE BOOLEAN ALGEBRA PROPERTIES

1.
$$NOT[NOT(X)] = X$$

2.
$$X1 \wedge X2 \wedge X3 = (X1 \wedge X2) \wedge X3$$

$$= X1 \wedge (X2 \wedge X3)$$

(Associative Law)

3.
$$X1 \lor X2 \lor X3 = (X1 \lor X2) \lor X3$$

$$= X1 \vee (X2 \vee X3)$$

(Associative Law)

4.
$$X1 \wedge X2 = X2 \wedge X1$$

5.
$$X1 \lor X2 = X2 \lor X1$$

6.
$$(X1 \land X2) \lor X3 = (X1 \lor X3) \land (X2 \lor X3)$$

7.
$$(X1 \lor X2) \land X3 = (X1 \land X3) \lor (X2 \land X3)$$

8. NOT(X1
$$\wedge$$
 X2) = NOT(X1) \vee NOT(X2)

9. NOT(X1
$$\vee$$
 X2) = NOT(X1) \wedge NOT(X2)

BOOLEAN ALGEBRA

• Binary Majority (odd # of variables only)

X_1	X_2	X_3	$MAJ(X_1, X_2, X_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

TRUTH TABLE

UNIVERSITY of HOUSTON

BOOLEAN ALGEBRA

- Multi-Variable Binary Majority:
- $MAJ(X_1, X_2, ..., X_n) = 1$ if more 1's than 0's = 0 if more 0's than 1's

Comments

- Any binary operation can be created from 'NOT', 'AND', 'OR' Boolean
- Algebra is an entire math discipline built on these
- However, we will restrict ourselves to using 'NOT', 'AND', 'OR', and 'MAJ' in a few simple applications

LOGICAL OPERATIONS ON IMAGES

- Let I_1 , I_2 , ..., I_n be binary images
- We define logical operations on images on a point-wise basis

The complement of an image:

- $J_1 = NOT(I_1)$ if $J_1(i, j) = NOT[I_1(i, j)]$ for all (i, j)
- This reverses the **contrast** it creates a **binary negative**:

BINARY AND

- The AND or intersection of two images:
- $J_2 = AND(I_1, I_2) = I_1 \wedge I_2 \text{ if } J_2 (i, j) =$ $AND[I_1 (i, j), I_2 (i, j)] \text{ for all } (i, j)$
- Shows the overlap of BLACK regions in I_1 and I_2

BINARY OR

- The OR or union of two images:
- $J_3 = OR(I_1, I_2) = I_1 \vee I_2$ if $J_3(i, j) = OR[I_1(i, j), I_2(i, j)]$ for all (i, j)
- Shows the **overlap** of the WHITE regions in I_1 and I_2

$$\mathbf{J}_{3} = \mathbf{I}_{1} \vee \mathbf{I}_{2}$$

BINARY OPERATIONS

Comments

- The usefulness of **globally** applying AND, OR and MAJ to images is very limited.
- Later, we will find that AND, OR, and MAJ are very useful when applied to small, local image regions
- There are exceptions ...

• An assembly-line image inspection system. Similar to many marketed by industry:

• Objective: Numerically compare the stored image I_{model} and the acquired image I

UNIVERSITY of HOUSTON

• Observe that the object in I has been shifted very slightly

Logical AND

• The logical AND conveys the **overlap**

- A measurement of the **displacement** is given by:
- $XOR(I, I_{model}) = OR\{AND[I_{model}, NOT(I)], AND[NOT(I_{model}), I]\}$

DISPLACEMENT

UNIVERSITY of HOUSTON

- XOR shows where the displacement errors occur
- To decide if there is a problem or flaw, the ratio or percentage
- PERCENT = [# black pixels in XOR(I, I_{model})] / [# black pixels in I_{model}]
- may be compared to a pre-determined tolerance percentage
- If PERCENT > P, then the part may be flawed or incorrectly placed

- A simple technique for region classification and correction
- **Motivation**: Gray-level image thresholding **usually** produces an imperfect binary image:
 - Extraneous blobs or holes due to noise
 - Extraneous blobs from thresholded objects of little interest
 - Nonuniform object/background surface reflectances

typical thresholded image result

- It is usually desired to extract a small number of objects or even a single object by thresholding
- Blob coloring is a very simple technique for **listing** all of the blobs or objects in a binary image

BLOB COLORING ALGORITHM

- For binary image I, define a "region color" array R:
- R(i, j) = region number of pixel I(i, j)
- Set $\mathbf{R} = \mathbf{0}$ (all zeros) and k = 1 (k = region number counter)
- While scanning the image left-to-right and top-to-bottom **do**
 - if I(i, j) = 1 and I(i, j-1) = 0 and I(i-1, j) = 0 then
 - set R(i, j) = k and k = k + 1;
 - if I(i, j) = 1 and I(i, j-1) = 0 and I(i-1, j) = 1 then
 - set R(i, j) = R(i-1, j);

BLOB COLORING ALGORITHM (contd.)

- if I(i, j) = 1 and I(i, j-1) = 1 and I(i-1, j) = 0 then
 - set R(i, j) = R(i, j-1);
- if I(i, j) = 1 and I(i, j-1) = 1 and I(i-1, j) = 1 then
 - set R(i, j) = R(i-1, j);
 - if R(i, j-1) = /= R(i-1, j) then
 - record R(i, j-1) and R(i-1, j) as equivalent (same color)

• Counting the pixels in each blob (by color) is then simple

Using blob coloring

blob coloring result

blob counting result

• "Color" of largest blob: 2

REMOVING MINOR REGIONS

- Let m = "color" of largest region
- While scanning the image left-to-right and top-to-bottom **do**
- if I(i, j) = 1 and R(i, j) != m then
- set I(i, j) = 0;

minor region removal

- The process is not complete! To obtain a cohesive, connected object, repeat the procedure on the WHITE pixels
- Complement the last result:

complement

UNIVERSITY of HOUSTON

• Then apply all the same steps:

blob counting

• "Color" of largest blob: 1

• Simple and effective, but doesn't "cure" everything

UNIVERSITY of HOUSTON