## ANALYSIS PREDICTIONS OF SPREAD, RECOVERY AND DEATH CAUSED BY COVID-19 IN INDIA

## A Thesis

Submitted in partial fulfillment of the requirements for the award of the Degree of

**MASTER OF TECHNOLOGY** 

IN

INFORMATION TECHNOLOGY

BY

**NIKESH KUMAR** 

(MT/ITY/10011/20)



DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BIRLA INSTITUTE OF TECHNOLOGY

MESRA-835215, RANCHI 2021

## **DECLARATION**

## I certify that

- a. The work contained in the thesis is original and has been done by myself under the general supervision of my supervisor(s).
- b. The work has not been submitted to any other Institute for any degree or diploma.
- c. I have followed the guidelines provided by the Institute in writing the thesis.
- d. I have conformed to the norms and guidelines given in the Ethical Code of Conduct of the Institute.
- e. Whenever I have used materials (data, theoretical analysis, and text) from other sources, I have given due credit to them by citing them in the text of the thesis and giving their details in the references.
- f. Whenever I have quoted written materials from other sources, I have put them under quotation marks and given due credit to the sources by citing them and giving required details in the references.

Signature of the Student Name: Nikesh kumar

Roll No.: MT/ITY/10011/20

## **APPROVAL OF THE GUIDE(S)**

Recommended that the thesis entitled "Analysis predictions of spread, recovery and death caused by COVID-19 in India" prepared by Dr Subrajeet Mohapatra under my/our supervision and guidance be accepted as fulfilling this part of the requirements for the degree of Master of Engineering.

To the best of my/our knowledge, the contents of this thesis did not form a basis for the award of any previous degree to anyone else.

Date: 30.11.2021

Signature (Name of the External Guide/Co-guide, if any) Affiliation Signature
Guide:- Dr Subrajeet Mohapatra
Dept. of Computer Science and
Engineering



## THESIS APPROVAL CERTIFICATE

This is to certify that the work embodied in this thesis entitled "Analysis predictions of spread, recovery and death caused by COVID-19 in India" is carried out by Mr./Ms. - Nikesh Kumar (Roll No. MT/ITY/10011/20) is approved for the degree of Master of Technology of Birla Institute of Technology; Mesra, Ranchi.

Date: 30/11/2021 Place: Ranchi

Internal Examiner(s)
Name & Signature

External Examiner(s)
Name & Signature

Chairman (Head of the Department)

## Content

| Sr.no | chapters          | page no |
|-------|-------------------|---------|
| 1.    | Acknowledgement   | 1       |
| 2.    | Abstract          | 2       |
| 3.    | Introduction      | 3-5     |
| 4.    | Objective         | 6       |
| 5.    | Literature Review | 7-8     |
| 6.    | Methodology       | 9-21    |
| 8.    | Result            | 22      |
| 9.    | Conclusion        | 24      |
| 10    | . Future work     | 24      |
| 11.   | References        | 25-26   |

## **ACKNOWLEDGEMENT**

Thank you to my guide, Dr Subrajeet Mohapatra, for your patience, guidance, and support. I have benefited greatly from your wealth of knowledge and meticulous editing. I am extremely grateful that you took me on as a student and continued to have faith in me over the years.

Thank you to the interviewees, who so generously took time out of their schedules to participate in my research and make this project possible.

## **ABSTRACT**

The novel coronavirus outbreak became first pronounced in December 2019 and greater than 7 million people have been inflamed with this ailment and over 0.forty million global misplaced their lives. The first case became identified on 30 January 2020 in India and the parent crossed 0.24 million as of 6 June 2020. This paper affords a detailed observation of these days evolved forecasting fashions and predicts the variety of confirmed, recovered, and dying instances in India resulting from COVID-19. The correlation coefficients and linear regression implemented for prediction. The anticipated variety of instances shows an awesome settlement with 0.9992 R-squared rating to the real values. The locating shows that lockdown, social distancing and vaccination are vital elements that may assist to suppress the growing unfold fee of COVID-19.

#### INTRODUCTION

Coronavirus virus (CoV) is a special type of virus that is a disease in itself and that aggravates the existing disease in the human body, making it a very dangerous virus. This virus causes wheezing, shortness of breath, poor digestive system and agrimonia, seriously affects the human nervous system, and it also harms animals such as cows, horses and pigs that are kept, raised and used by humans and various wildlife. Acute Respiratory Syndrome (SARS) and, in 2012, the Middle East Respiratory Syndrome (MERS) outbreak have shown the likelihood of newly arrived human-to-human and animal-to-human and vice versa communicable COVID19, although there are far fewer such cases. , yes it does exist. Since the end of December 2019, the effects of secret pneumonia has been a remarkable study topic worldwide.

In India, the first case of Coronavirus Disease 2019 (COVID19) was reported on January 30, 2020, which spread to all of India (in its various districts) by the end of April 2020.In India, the total number of announced cases was 5,734, of which 472 recovered and 166 people died as of April 9, 2020. In India, the total number of announced cases was 236,184, of which 113,233 died as of June 6, 2020 and 6649 people recovered After this date, new cases will continue to be known every day, around 10,000. In India, the infection rate of COVID19 was lower than in some other countries to earlier. The worldometers website gives us all these details in a precise manner. Figure 1 is showing the structure of COVID-19, this structure looks like a crown. The different parts of this virus are also introduced in this diagram.



Fig. 1 Structure of coronavirus.

#### Transmission of Virus

In China, COVID-19 first case became mentioned in Huanan Seafood Wholesale Market, Wuhan. The predominant cause which became intended for the unfold of this virus is the

transmission from animal-to-human. Even so, the approaching COVID-19 instances had been now no longer associated with the subjection method. Hence the belief is that virus transmission is from people to people, and those with viruses indicative are the principle recurrent cause for the unfold of COVID-19. Before the signs progress, the transmission opportunity of COVID-19 seems to be very rare, even though, this virus transmission can't be prohibited. Besides these, the recommendation for everyone is that the folks that are symptomless or asymptomatic should by skip at the virus and social distancing is the simplest manner to be steady from this virus. Including rhinovirus and flu, extra wheezing bacterium, it's miles believed that the droplets of sneeze and cough of someone are the principle cause for virus imparting. In closed places, aerosol transmission is likewise feasible in case of lengthy publicity to deep-mouthed aerosol concentrations. In China, the end result of facts evaluation of SARS-CoV-2 unfold is that the near touch of human beings is the demanded situation for the unfold of the virus. The virus extension is particularly constrained to someone's own circle of relatives members, different almost contacted human beings and healthcare experts.

## **Treatment and prevention**

- Wear a mask that covers your nose and mouth to help protect yourself and others.
- Stay 6 feet apart from others who don't live with you.
- Get a COVID-19 vaccine when it is available to you.
- Avoid crowds and poorly ventilated indoor spaces.
- Wash your hands often with soap and water. Use hand sanitizer if soap and water aren't available.

## **Symptoms**

People with COVID-19 have had a wide range of symptoms reported – ranging from mild symptoms to severe illness. Symptoms may appear 2-14 days after exposure to the virus. Anyone can have mild to severe symptoms. People with these symptoms may have COVID-19:

- Fever or chills
- Cough
- Shortness of breath or difficulty breathing
- Fatigue
- Muscle or body aches
- Headache
- New loss of taste or smell
- Sore throat
- Congestion or runny nose
- Nausea or vomiting

## • Diarrhea

This list does not include all possible symptoms. CDC will continue to update this list as we learn more about COVID-19. Older adults and people who have severe underlying medical conditions like heart or lung disease or diabetes seem to be at higher risk for developing more serious complications from COVID-19 illness.

## **OBJECTIVES**

Owing to the widespread of COVID-19 and its devastating effects on humans, several research groups have investigated various aspects of the virus, such as its epidemiological characteristics, socio-economic effects, and factors and parameters aiding the spread of the virus.

The present work is report with the following objectives:

- Prediction of discharge ratio using linear regression.
- To observe the correlation between active cases and discharge.
- Visualization of other variables.
- To systematically review the prediction models that have been developed for COVID-19.

## LITERATURE REVIEW

| No.  | Study                                                                             | Objective                                    | Type<br>of model |                                                                                                                                         | Quality<br>assessment    |  |
|------|-----------------------------------------------------------------------------------|----------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| 1.   | Bhandari To predict the progression et al., 2020 of COVID-19 in India using ARIMA |                                              | n ARIMA          | The COVID-19 forecast helps the government and pol makers to optimize resources and make decisions.                                     | the<br>nd policy<br>mize |  |
| 2.   | Chatterjee et al. 2.28,                                                           | , To develop a stochastic                    | SEIR             | To help in healthcare                                                                                                                   | e R0 was                 |  |
|      | 2020                                                                              | mathematical model to                        |                  | preparedness and in                                                                                                                     | growth                   |  |
| rate |                                                                                   |                                              |                  |                                                                                                                                         |                          |  |
|      |                                                                                   | predict COVID-19 cases                       |                  | allocations of resource                                                                                                                 | epidemic in India was    |  |
|      |                                                                                   |                                              |                  | <ul> <li>The model suggested<br/>that herd immunity<br/>may be achieved whe<br/>55% to 65% of the<br/>population is infected</li> </ul> |                          |  |
| 3.   | Arora et al.,                                                                     | To forecast the number                       | Deep learning    | : · Model was highly                                                                                                                    | · MAPE                   |  |
|      | 2020                                                                              | of COVID-19 positive                         | LSTM, RNN        | accurate for short-t                                                                                                                    |                          |  |
|      | <3%                                                                               | or covid to positive                         | ESTIVI, ICIT     | accurate for short                                                                                                                      | erm range                |  |
|      | • , ,                                                                             | cases in 32 states and                       |                  | predictions (1–3 day                                                                                                                    | ys) · Week               |  |
|      |                                                                                   | union territories of India                   |                  | ahead.                                                                                                                                  | Forecas                  |  |
|      |                                                                                   | using deep learning-                         |                  |                                                                                                                                         | 4%-8%                    |  |
|      |                                                                                   | based models.                                |                  |                                                                                                                                         |                          |  |
| 4    |                                                                                   | T. C. A. COMID 10                            | CED 11           |                                                                                                                                         | 1 * 11                   |  |
| 4.   | Salgotra et al.,                                                                  | To forecast COVID-19                         | GEP model        | · The model                                                                                                                             | was nigniy               |  |
|      | Lowest R                                                                          | andhuadha in India and                       |                  | offo odino in forma and                                                                                                                 | ing malman               |  |
|      | 2020                                                                              | outbreaks in India and use time series study |                  | effective in forecast both reported cases                                                                                               | _                        |  |
|      |                                                                                   | and model on CC and                          |                  | deaths around Indi                                                                                                                      |                          |  |
|      |                                                                                   | DC in 3 states of India,                     |                  | ucatiis arounu mur                                                                                                                      | a. DC III                |  |
|      |                                                                                   | Delhi.                                       |                  |                                                                                                                                         |                          |  |
|      |                                                                                   | Maharashtra, Gujarat,                        |                  |                                                                                                                                         | highest                  |  |
|      |                                                                                   | and Delhi.                                   |                  |                                                                                                                                         | value wa                 |  |
|      |                                                                                   |                                              |                  |                                                                                                                                         |                          |  |
|      |                                                                                   |                                              |                  |                                                                                                                                         | 0.999,R                  |  |

| 5. | Ghosal et al., | To forecast the number        | Multiple regression | The estimated       | Multiple R     |  |
|----|----------------|-------------------------------|---------------------|---------------------|----------------|--|
|    | 2020           | of deaths due to              | and auto-regression | mortality rate      | (n) at was     |  |
|    | 0.9903         |                               |                     |                     |                |  |
|    |                | Covid-19 in India             | technique           | the end of the 5th  | h and R        |  |
|    | squared        |                               |                     |                     |                |  |
|    |                |                               |                     | 6th weeks was 21    | 11 and was     |  |
|    |                | ,                             | 7                   |                     |                |  |
|    |                |                               |                     | 467.                | 0.9807.        |  |
|    |                |                               |                     |                     |                |  |
|    |                |                               |                     |                     | Adjusted       |  |
|    |                |                               |                     |                     | R was 0.97     |  |
|    |                |                               |                     |                     | standard error |  |
|    |                |                               |                     |                     | Was 234.13.    |  |
|    |                |                               |                     |                     |                |  |
| 6. | Sujath et al., | To forecast COVID-19          | Machine learning:   | 95% CI with         | 95%            |  |
|    | CI             |                               | O                   |                     |                |  |
|    | 2020           | pandemic using machine        | MLP                 | MLP                 |                |  |
|    |                | learning                      |                     |                     |                |  |
| 7. | Tomar & Gupta, | To predict new COVID-         | LSTM                | Predict             | ion            |  |
|    | ±5% CI         | -                             |                     |                     |                |  |
|    | 2020           | 2020 19 cases ases using LSTM |                     | corresponded to the |                |  |
|    |                | based techniques.             |                     | original informa    |                |  |
|    |                | •                             |                     | with a reasonabl    |                |  |

## 8

## **METHODOLOGY**

## **Dataset and its features**

Coronaviruses are a large family of viruses that may cause illness in animals or humans. In humans, several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases, such as MERS and SARS. The most recently discovered coronavirus causes coronavirus disease in 2019 (COVID-19). The number of new cases is increasing day by day around the world. This dataset has information from the states and union territories of India daily. The effect of preventing measures, like social distancing, face mask, and the lockdown, has also been considered.

The dataset consists of features of COVID-19 data which are taken from <a href="https://www.kaggle.com">https://www.kaggle.com</a> and also from the Ministry of Health & Family Welfare. The dataset consists only of 350 samples of COVID-19 cases in India from 30 January 2020 to 26 May 2020. Table 1 shows the attributes/features used in this study and a glimpse of the dataset is presented in Table 2.

Tabel 1: Feature for the prediction of COVID-19 cases in India.

| Name            | Description                                                |  |  |  |
|-----------------|------------------------------------------------------------|--|--|--|
| State/UTs       | It is the name of the state/union territory of India where |  |  |  |
|                 | Covid-19 cases were found.                                 |  |  |  |
| Total Cases     | It is the total number of confirmed Covid-19 cases found.  |  |  |  |
| Active          | It is the total number of active Covid-19 cases in India.  |  |  |  |
| Discharged      | It is the total number of discharged Covid-19 cases.       |  |  |  |
| Death           | It is the total number of death caused by Covid-19.        |  |  |  |
| Active Ratio    | It is the ratio of active Covid-19 cases.                  |  |  |  |
| Discharge Ratio | It is the ratio of discharge Covid-19 cases                |  |  |  |

9

## **Correlation Matrix**

The correlation gap is the worst-case ratio between the cost when the random variables are correlated to the cost when the random variables are independent. A correlation matrix is a table showing correlation coefficients between variables. Each cell in the table shows the correlation between two variables. A correlation matrix is used to summarize data, as an input into a more advanced analysis, and as a diagnostic for advanced analyses. Applications of a correlation matrix There are three broad reasons for computing a correlation matrix:

- To summarize a large amount of data where the goal is to see patterns. In our example above, the observable pattern is that all the variables highly correlate with each other.
- To input into other analyses. For example, people commonly use correlation matrixes as inputs for exploratory factor analysis, confirmatory factor analysis, structural equation models, and linear regression when excluding missing values pairwise.
- As a diagnostic when checking other analyses. For example, with linear regression, a
  high number of correlations suggests that the linear regression estimates will be
  unreliable.



**Fig:-Correlation matrixes** 

10

## Feature Correlation to Discharge Ratio -0.17 -0.57 -0.6 0.16

Discharge Ratio - -Discharge Ratio Discharged -Total Cases \_ Active Ratio -Death Ratio -Population -Deaths -

Discharge ratio is highly negatively corerlated with Active Ratio

**Tabel 2: Dataset on Covid-19 India** 

|    | State/UTs                                   | Total<br>Cases | Active | Discharged | Deaths | Active<br>Ratio | Discharge<br>Ratio | Death<br>Ratio |
|----|---------------------------------------------|----------------|--------|------------|--------|-----------------|--------------------|----------------|
| )  | Andaman and Nicobar                         | 7629           | 10     | 7490       | 129    | 0.13            | 98.18              | 1.69           |
| 1  | Andhra Pradesh                              | 2055999        | 8310   | 2033447    | 14242  | 0.40            | 98.90              | 0.69           |
| 2  | Arunachal Pradesh                           | 54865          | 389    | 54196      | 280    | 0.71            | 98.78              | 0.51           |
| 3  | Assam                                       | 604536         | 4114   | 594506     | 5916   | 0.68            | 98.34              | 0.98           |
| 4  | Bihar                                       | 725983         | 34     | 716288     | 9661   | 0.00            | 98.66              | 1.33           |
| 5  | Chandigarh                                  | 65273          | 43     | 64410      | 820    | 0.07            | 98.68              | 1.26           |
| 6  | Chhattisgarh                                | 1005485        | 211    | 991705     | 13569  | 0.02            | 98.63              | 1.35           |
| 7  | Dadra and Nagar Haveli and Daman and<br>Diu | 10672          | 2      | 10666      | 4      | 0.02            | 99.94              | 0.04           |
| 8  | Delhi                                       | 1439136        | 399    | 1413649    | 25088  | 0.03            | 98.23              | 1.74           |
| 9  | Goa                                         | 176980         | 748    | 172907     | 3325   | 0.42            | 97.70              | 1.88           |
| 10 | Gujarat                                     | 826099         | 176    | 815838     | 10085  | 0.02            | 98.76              | 1.22           |
| 11 | Haryana                                     | 770975         | 279    | 760821     | 9875   | 0.04            | 98.68              | 1.28           |
| 12 | Himachal Pradesh                            | 220254         | 1402   | 215156     | 3696   | 0.64            | 97.69              | 1.68           |
| 13 | Jammu and Kashmir                           | 330352         | 1099   | 324827     | 4426   | 0.33            | 98.33              | 1.34           |
| 14 | Jharkhand                                   | 348334         | 112    | 343087     | 5135   | 0.03            | 98.49              | 1.47           |
| 15 | Karnataka                                   | 2980170        | 11437  | 2930867    | 37866  | 0.38            | 98.35              | 1.27           |
| 16 | Kerala                                      | 4774639        | 117237 | 4631330    | 26072  | 2.46            | 97.00              | 0.55           |
| 17 | Ladakh                                      | 20848          | 60     | 20580      | 208    | 0.29            | 98.71              | 1.00           |
| 18 | Lakshadweep                                 | 10364          | 3      | 10310      | 51     | 0.03            | 99.48              | 0.49           |
| 19 | Madhya Pradesh                              | 792606         | 111    | 781973     | 10522  | 0.01            | 98.66              | 1.33           |
| 20 | Maharashtra                                 | 6573092        | 36604  | 6397018    | 139470 | 0.56            | 97.32              | 2.12           |
| 21 | Manipur                                     | 121706         | 1683   | 118141     | 1882   | 1.38            | 97.07              | 1.55           |
| 22 | Meghalaya                                   | 82283          | 1326   | 79542      | 1415   | 1.61            | 96.67              | 1.72           |
| 23 | Mizoram                                     | 104659         | 15957  | 88358      | 344    | 15.25           | 84.42              | 0.33           |
| 24 | Nagaland                                    | 31410          | 289    | 30452      | 669    | 0.92            | 96.95              | 2.13           |
| 25 | Odisha                                      | 1030518        | 4566   | 1017714    | 8238   | 0.44            | 98.76              | 0.80           |
| 26 | Puducherry                                  | 126893         | 646    | 124402     | 1845   | 0.51            | 98.04              | 1.45           |
| 27 | Punjab                                      | 601821         | 236    | 585056     | 16529  | 0.04            | 97.21              | 2.75           |
| 28 | Rajasthan                                   | 954354         | 38     | 945362     | 8954   | 0.00            | 99.06              | 0.94           |
| 29 | Sikkim                                      | 31636          | 326    | 30922      | 388    | 1.03            | 97.74              | 1.23           |
| 30 | Tamil Nadu                                  | 2675592        | 16379  | 2623459    | 35754  | 0.61            | 98.05              | 1.34           |
| 31 | Telengana                                   | 667535         | 4345   | 659263     | 3927   | 0.65            | 98.76              | 0.59           |
| 32 | Tripura                                     | 84237          | 136    | 83285      | 816    | 0.16            | 98.87              | 0.97           |
| 33 | Uttar Pradesh                               | 1709928        | 145    | 1686887    | 22896  | 0.01            | 98.65              | 1.34           |
| 34 | Uttarakhand                                 | 343645         | 166    | 336083     | 7396   | 0.05            | 97.80              | 2.15           |
| 35 | West Bengal                                 | 1574801        | 7625   | 1548294    | 18882  | 0.48            | 98.32              | 1.20           |

## **Visualization Of Features**

## Average cases per state



Fig:-Average case per state

# Maharasatra has highest cases 6.5M followed by kerala 4.5M 10 states have total cases morethan 1M

Simple Bar Chart



Fig:-A simple bar chart

13

#### Average cases per state



except mizoram all states had discahrge rate morethan 95%

Fig:-Average cases per state with discharge ratio

## Average cases per state



Fig:-Average cases per state with death ratio





Fig:-Heat map

A heat map (or heatmap) is a data visualization technique that shows the magnitude of a phenomenon as color in two dimensions. The variation in color may be by hue or intensity, giving obvious visual cues to the reader about how the phenomenon is clustered or varies over space.



Fig:- Scatterplot



Fig:- Boxplot

#### **Feature Selection**

During the process of model building, feature selection is used to select the most relevant features out of all the features. It reduces the complexity of the prediction model. Here, we performed feature selection using random forest importance algorithm in Python programming language. The classification model features are calculated using the above algorithm, whose input parameters are all the features of dataset of COVID-19 cases in India.

## Multiple ways to scale

- Standard Scaler (Standardization): Scale the feature by shifting the mean back to 0 and variance to 1. By this way, we only shift the mean value to 0 and keep the distribution the same. Furthermore, this way can preserve the outliers in case they can contribute additional information to the problem.
- Min-max Scaler (Normalization): This one scales the range of values to between 0 and 1 and also eliminates the outliers.

```
In [117]: X = df.drop('Discharge Ratio', axis = 1)
Y = df['Discharge Ratio']
X_train,X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.3,random_state=44)
```

The train-test split is a technique for evaluating the performance of a machine learning algorithm. It can be used for classification or regression problems and can be used for any supervised learning algorithm. The procedure involves taking a dataset and dividing it into two subsets. The first subset is used to fit the model and is referred to as the training dataset. The second subset is not used to train the model; instead, the input element of the dataset is provided to the model, then predictions are made and compared to the expected values. This second dataset is referred to as the test dataset.

- **Train Dataset:** Used to fit the machine learning model.
- **Test Dataset:** Used to evaluate the fit machine learning model.

The objective is to estimate the performance of the machine learning model on new data: data not used to train the model. This is how we expect to use the model in practice. Namely, to fit it on available data with known inputs and outputs, then make predictions on new examples in the future where we do not have the expected output or target values. The train-test procedure is appropriate when there is a sufficiently large dataset available

## **Linear Regression**

Linear Regression is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting. Different regression models differ based on – the kind of relationship between dependent and independent variables they are considering and the number of independent variables being used.



Linear regression performs the task to predict a dependent variable value (y) based on a given independent variable (x). So, this regression technique finds out a linear relationship between x (input) and y(output). Hence, the name is Linear Regression.

In the figure above, X (input) is the work experience and Y (output) is the salary of a person. The regression line is the best fit line for our model.



Fig: Flow chart for Linear Regression

**Hypothesis function for Linear Regression:** 

$$y = \theta_1 + \theta_2.x$$

While training the model we are given:

x: input training data (univariate – one input variable(parameter))

y: labels to data (supervised learning)

When training the model – it fits the best line to predict the value of y for a given value of x. The model gets the best regression fit line by finding the best  $\theta$ 1 and  $\theta$ 2 values.

 $\theta$ 1: intercept

 $\theta$ 2: coefficient of x

Once we find the best  $\theta 1$  and  $\theta 2$  values, we get the best fit line. So when we are finally using our model for prediction, it will predict the value of y for the input value of x.

## **Cost Function (J):**

By achieving the best-fit regression line, the model aims to predict y value such that the error difference between predicted value and true value is minimum. So, it is very important to update the  $\theta 1$  and  $\theta 2$  values, to reach the best value that minimizes the error between predicted y value (pred) and true y value (y).

$$minimizerac{1}{n}\sum_{i=1}^{n}(pred_i-y_i)^2$$

$$J = rac{1}{n} \sum_{i=1}^n (pred_i - y_i)^2$$

Cost function(J) of Linear Regression is the **Root Mean Squared Error (RMSE)** between predicted y value (pred) and true y value (y).

## **RESULT**

## **Predicted correlation matrices**

## **Predicted Linear Regression**

```
In [121]: plt.scatter(Y_test,pred) plt.xlabel('Y Test (True Values)') plt.ylabel('Predicted values') plt.show()

99.4
99.2
99.0
98.6
98.8
98.8
98.8
97.8
97.8
98.0
97.8
98.0
97.8
98.0
97.8
98.0
97.8
98.0
99.2
99.4
YTest (True Values)
```

## **Predicted variance score**

```
In [122]: metrics.explained_variance_score(Y_test,pred)
Out[122]: 0.9995755453195743
```

## **CONCLUSION**

This study discussed the spread of COVID-19 in different states of India and proposed a model for prediction of discharge ratio using linear regression.

## **FUTURE WORK**

In terms of future scope, we extend our work to predict the future risk from Covid-19 and to find more factors that can help us to fight this pandemic. To study the different variants of covid-19 virus, its measure and what precautions we can take.

The proposed model may be extended to predict the end of this pandemic in a particular region. Total causality and total economic losses may be predicted with the help of this model.

Multiple linear regression and autoregression will be used to predict the possible number of cases in the future.

#### REFERENCES

- [1] V. Bhatnagar, R. C. Poonia, P. Nagar, S. Kumar, V. Singh, L. Raja, and P. Dass, Descriptive analysis of COVID-19 patients in the context of India, *Journal of Interdisciplinary Mathematics*, doi: 10.1080/09720502.2020.1761635.
- [2] M. Pal, G. Berhanu, C. Desalegn, and V. Kandi, Severeacute respiratory syndrome coronavirus-2 (SARS-CoY-2):An update, *Cureus*, vol. 12, no. 3, pp. 1-13,2020.
- [3] B. Yellingiri, K. Jayaramayya, M. Iyer, A. Narayanasamy, V. Govindasamy, B. Giridharan, S. Ganesan, A. Yenugopal, D. Yenkatesan, H. Ganesan, et al., COYID-19: A promising cure for the global panic, *Science of the Total Environment*, vol. 725, p. 138277, 2020.
- [4] S. Gupta, G. S. Raghuwanshi, and A. Chanda, Effect of weather on COVID-19 spread in the us: A prediction model for India in 2020, *Science of the Total Environment*, vol. 728, p. 138860, 2020.
- [5] M. Mandal, S. Jana, S. K. Nandi, A. Khatua, S. Adak, and T. Kar, A model-based study on the dynamics of COYID- 19: Prediction and control, *Chaos, Solitons & Fractals*, vol. 136, p. 109889, 2020.
- [6] T. Chakraborty and I. Ghosh, Real-time forecasts and risk assessment of novel coronavirus (COYID-19) cases: A data-driven analysis, *Chaos, Solitons & Fractals*, vol. 135, p. 109 850, 2020.
- [7] S. Tiwari, S. Kumar, and K. Guleria, Outbreak trends of coronavirus disease-2019 in India: A prediction, *Disaster Medicine and Public Health Preparedness*, doi: 10. 1017/dmp.2020. 115.
- [8] A. Bhattacharjee, M. Kumar, and K. K. Patel, When COVID-19 will decline in India? Prediction by combination of recovery and case load rate, *Clinical Epidemiology and Global Health*, doi: 10.1016/j.cegh.2020.06.004.
- [9] K. Sarkar, S. Khajanchi, and J. J. Nieto, Modeling and forecasting the COYID-19 pandemic in India, *Chaos, Solitons & Fractals*, vol. 139, p. 110049,2020.
- [10] COVID-19 open research dataset challenge (CORD-19), https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge, 2020.
- [11] H. Maheshwari, D. Yadav, U. Chandra, and D. S. Rai, Forecasting epidemic spread of COVID-19 in India using ARIMA model and effectiveness of lockdown, *Advances in Mathematics: Scientific Journal*, vol. 9, no. 6, pp. 3417- 3430,2020.

- [12] T. Chakraborty and I. Ghosh, Real-time forecasts and risk assessment of novel coronavirus (COYID-19) cases: A data-driven analysis, *Chaos, Solitons & Fractals*, vol. 135, p. 109 850, 2020.
- [13] S. Ghosal, S. Sengupta, M. Majumder, and B. Sinha, Prediction of the number of deaths in India due to SARS- CoY-2 at 5-6 weeks, *Diabetes & Metabolic Syndrome: Clinical Research & Reviews*, vol. 14, no. 4, pp. 311-315,2020.
- [14] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, and M. Kaur, Classification of the COVID-19 infected patients using densenet201-based deep transfer learning, *Journal of Biomolecular Structure and Dynamics*, doi: 10.1080/07391102.2020.1788642.
- [15] R. Salgotra, M. Gandomi, and A. H. Gandomi, Time series analysis and forecast of the COVID-19 pandemic in India using genetic programming, *Chaos, Solitons & Fractals*, vol. 138, p. 109945,2020.
- [16] M. Majumder and K. D. Mandl, Early transmissibility assessment of a novel coronavirus in Wuhan, China, https://papers.ssrn.com/abstract=3524675, 2020.