Cs, Sr, Ga, As, P, Ar

In English Log ud

Søren Kegnæs

O Vis rigtige svar

Skjul rigtige svar

INSIDE CampusNet / 26050 Indledende kemi for biovidenskaberne 16F / Opgaver Eksamen Indledende Kemi Forår 2016 Side 1 Spørgsmål 1 Vægtning 5%: Hvilket udsagn er sandt? Sb har 15 valenselektroner. Elektronkonfigurationen for dem er: Sb har 5 valenselektroner. Elektronkonfigurationen for dem er: $5s^25p^3$ Sb har 3 valenselektroner. Elektronkonfigurationen for dem er: \Box $5p^3$ Sb har 15 valenselektroner. Elektronkonfigurationen for dem er: $5s^25d^{10}5p^3$ Sb har 51 valenselektroner. Elektronkonfigurationen for dem er: \square [Kr]5s²4d¹⁰5p³ Spørgsmål 2 Vægtning 5%: Hvad er elektronkonfigurationen i grundtilstanden for Fe³⁺ : \square [Ar]4s²3d⁵ \square [Ar]4s²3d⁶ ☐ [Ar]3d⁵ [Ar]3d⁶ \square [Ar]4s²3d¹ Spørgsmål 3 Opstil i rækkefølge efter forventet stigende 1. ioniseringsenergi følgende grundstoffer: Ar, As, Cs, Ga, P, Sr Ar, Cs, P, Sr, Ga, As Ga, As, Ar, P, Sr, Cs Ar, P, As, Ga, Sr, Cs

Side 2
Molekylorbitalteori
Vedhæftet er molekylorbitaldiagrammet for F ₂
Filer: MO_for_F2.jpg
Spørgsmål 4
Vægtning 2%:
Molekylorbitalteori:
Angiv om F_2 er stabilt og angiv de magnetiske egenskaber for F_2 .
☐ F₂ er stabilt og paramagnetisk
F ₂ er ustabilt og diamagnetisk
☐ F₂ er ustabilt og paramagnetisk
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
☐ F₂ er stabilt og antimagnetisk
Spørgsmål 5
Vægtning 2%:
Molekylorbitalteori:
Angiv bindingsordenen for C2 ²⁻
☐ Bindingsorden = 0
☐ Bindingsorden = 1
Bindingsorden = 2
☐ Bindingsorden = 3
☐ Rindingsorden = 4

Side 3
ewisstrukturer
Spørgsmål 6
/ægtning 3%: Angiv hvilken af følgende forbindelser der er isoelektronisk med NaCl
□ BaO
☐ MgS
LiF
□ NaI
□ ^{HCI}
Spørgsmål 7
/ægtning 1%: Angiv antallet af lonepairs på O for forbindelsen OF₂
□ 0
□ 1
□ 2
□ 3
4
Spørgsmål 8
/ægtning 1%: Angiv antallet af lonepairs på hver F for forbindelsen OF₂
□ 0
_ 1
□ 2
□ 3
4
Spørgsmål 9
/ægtning 1%: Angiv antallet af lonepairs på P for forbindelsen PH₃
□ 0
□ 1
□ ²
□ 3
□ 4

Spørgsmål 10
Vægtning 1%:
Angiv antallet af lonepairs på hver H for forbindelsen $\mbox{\rm PH}_3$
□ 0
□ 1
<u> </u>
□ 3
□ 4

Side 4
Navngivning
Spørgsmål 11
Vægtning 1%: Navngiv HNO₃
☐ Saltsyre
☐ Svovlsyre
☐ Salpetersyre
☐ Kongevand
☐ Hydrogennitrit
Spørgsmål 12 Vægtning 1%: Navngiv KO ₂
☐ Kaliumoxid
☐ Kaliumperoxid
☐ Kaliumsuperoxid
☐ Calciumoxid
Calciumdioxid
Spørgsmål 13
Vægtning 1%: Opskriv formlen for magnesiumcarbonat.
☐ MgCO ₃
□ MgCO ₂
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
☐ MgCO ₄
Spørgsmål 14
Vægtning 1%: Opskriv formlen for tin(II)chlorid.
☐ SnCl ₂
☐ SbCl₂
☐ TiCl ₂
□ Sb ₂ Cl ₂
□ Sn ₂ Cl ₂

Spørgsmål 15
Vægtning 1%:
Opskriv formlen for ammoniumnitrat.
☐ NH ₃ (NO ₃) ₂

☐ NH₄NO₃

☐ NH₃NO₂

☐ NH₄NO₂

☐ NH₃NO₃

Side 5
Navngivning
Spørgsmål 16
Vægtning 1%:
Opskriv formlen for jern(III)sulfid.
☐ FeS ₃
☐ FeS₂
☐ FeS
Fe ₂ (SO ₄) ₃
Fe ₂ S ₃

Side 6
Kompleksforbindelser
Vedhæftet er ligandfeltopsplitningen af d-orbitaler for oktaedriske komplekser (uden elektroner)
Filer: ligandfeltopsplitning.jpg
Spørgsmål 17
Vægtning 1%:
Angiv centralatomets koordinationstal for den ioniske kompleksforbindelse: $[{\rm NiCl_4}]^{2\text{-}}$
□1
□ 2
□ 3
□ 4
□ 6
Spørgsmål 18
Vægtning 2%:
Angiv centralatomets oxidationstrin for den ioniske kompleksforbindelse: $\left[\text{Co(CN)}_6\right]^{3-}$
<u>+6</u>
□ -3
□ -6
<u></u> +3
Spørgsmål 19
Vægtning 4%:
Angiv antallet af d-elektroner i e_g og t_{2g} for følgende kompleks:
[Fe(H ₂ O) ₆] ²⁺
e ₉ : 0
□ t _{2g:} 6
$\square \stackrel{e_g: 3}{\mathrel{\vdash}}_{t_{2g: 3}}$
e _g : 2
□ t _{2g:} 6
e _g : 0
eg: 2

Spørgsmål 20
Vægtning 3%:
Navngiv følgende kompleksforbindelse: [Ni(NH ₃) ₆]Cl ₂ .
Nikkelhexanammoniakchlorid
☐ Hexaammindichloronikkel(II)
Hexaamminnikkel(II)chlorid
☐ Heptaamminnikkel(II)chlorid
☐ Nikkel(III)tetraammindichlorid
Spørgsmål 21
vægtning 3%:
Opskriv formlen for hexacyanoferrat(III)-ionen.
☐ [Fe(CN) ₆] ³⁻
\square [Fe(CN) ₆] ³⁺
☐ [Fe(CN) ₆] ²⁻
\square [Fe(CN) $_{6}$] ²⁺

Fe(CN)₆]

Side 7

Reaktionsskemaer

Spørgsmål 22

Vægtning 4%:

Færdiggør og afstem følgende reaktion. Afbrænding i overskud af dioxygen.

$$Li(s) + O_2(g) \rightharpoonup ?$$

- \square 4Li(s) + O₂(g) \rightharpoonup 2Li₂O(s)
- $\ \ \, \underline{\ \ }\ \ \, 2Li(s)+O_2(g) \rightharpoonup Li_2O_2(s)$
- \square Li(s) + O₂(g) \rightharpoonup LiO₂(s)
- \square 2Li(s) + O₂(g) \rightharpoonup 2LiO(s)
- \square 4Li(s) + 3O₂(g) \rightarrow 2Li₂O₃(s)

Spørgsmål 23

Vægtning 4%:

Færdiggør og afstem følgende reaktion, hvori calcium reagerer med stort overskud af vand.

$$Ca(s) + H_2O(l) \rightarrow ?$$

- $\ \ \, \bigsqcup \, \mathrm{Ca}(\mathrm{s}) + \mathrm{H}_2\mathrm{O}(\mathrm{l}) \rightharpoonup \mathrm{CaO}(\mathrm{aq}) + \mathrm{H}_2(\mathrm{g})$
- $\ \ \, \bigsqcup \ \, 2Ca(s) + 2H_2O(l) \rightharpoonup 2CaH_2(s) + O_2(aq)$
- $\ \ \, \underline{\ \ }\ \ \, 2Ca(s)+2H_2O(l) \rightharpoonup 2CaOH(s)+H_2(g)$
- $\ \ \, \underline{\ \ }\ \ \, 2Ca(s)+3H_2O(l) \rightharpoonup Ca_2O_3(s)+3H_2(g)$
- $\ \ \, \bigsqcup \ \, \mathrm{Ca}(s) + 2H_2\mathrm{O}(l) \rightharpoonup \mathrm{Ca}(\mathrm{OH})_2(\mathrm{aq}) + H_2(\mathrm{g})$

Spørgsmål 24

Vægtning 4%:

Opskriv den afstemte reaktionsligning for fremstilling af zinkoxid ud fra zinksulfid ved afbrænding i overskud af dioxygen.

- $\ \ \, \underline{\ \ } \ \, 2ZnS(s) + O_2(g) \rightharpoonup 2ZnO(s) + 2S(s)$
- $\ \ \, \square \ \, 2Zn_2S_3(s) + 9O_2(g) \rightharpoonup 2Zn_2O_3(s) + 6SO_2(g)$
- \square 2ZnS(s) + 3O₂(g) \rightharpoonup 2ZnO(s) + 2SO₂(g)
- $\ \ \, \bigsqcup \, ZnS(s) + O_2(g) \rightharpoonup ZnO(s) + SO(g)$
- $\ \ \, \square \ \, 2Zn_2S(s) + O_2(g) \rightharpoonup 2Zn_2O(s) + 2S(s)$

Spørgsmål 25

Vægtning 4%:

Angiv den korrekt afstemte reaktionsligning for Al reduktion af nitrat til ammoniak i basisk opløsning

- \square 4Al(s) + NO₃⁻(aq) + 6H₂O(l) \rightharpoonup 4Al²⁺(aq) + NH₃(aq) + 9OH⁻(aq)
- $\ \ \, \square \ \, 3NO_3^-(aq) + 8Al(s) + 2OH^-(aq) + 21H_2O(l) \rightharpoonup 3NH_4^+(aq) + 8[Al(OH)_4]^-(aq)$
- $\ \ \, \square \, \operatorname{NO}_2^-(aq) + 2\operatorname{Al}(s) + \operatorname{OH}^-(aq) + 5\operatorname{H}_2\operatorname{O}(l) \rightharpoonup \operatorname{NH}_3(aq) + 2[\operatorname{Al}(\operatorname{OH})_4]^-(aq)$

Side 8
Støkiometri
Spørgsmål 26
Vægtning 6%: Cisplatin ($Pt(NH_3)_2Cl_2$ bruges i behandling mod cancer. Det laves ved en reaktion mellem ammoniak og kaliumtetrachloroplatinat. Antag at 10,0 g K ₂ PtCl ₄ og 10,0 g NH ₃ sættes til at reagere. $K_2PtCl_4(aq) + 2NH_3(aq) \rightarrow Pt(NH_3)_2Cl_2(s) + 2KCl(aq)$ Hvor meget cisplatin dannes?
☐ 7,23 g ☐ 0,0241 g
□ 300,1 g
□ 0,361 g
☐ 10,0 g

Side 9	
Syre-base- og puffersystemer	
Spørgsmål 27	
Vægtning 7%:	
Hvilken af de følgende blandinger kan klassificeres som en puffer?	
0,25 M HBr + 0,25 M HOBr	
☐ 0,15 M HClO ₄ + 0,20 M RbOH	
☐ 0,50 M Na ₂ CO ₃ + 0,35 M HCl	
0,70 M KOH + 0,70 M HCI	
☐ 0,85 M NaCI + 0,60 M HCI	
Spørgsmål 28	
Vægtning 7%:	
Du har 3 opløsninger:	
(1) 0,10 M opløsning af en svag monovalent syre	
(2) 0,10 M opløsning af en stærk monovalent syre	
(3) 0,10 M opløsning af en svag divalent syre	
Hver opløsning titreres med 0,15 M NaOH. Hvad vil være ens for de 3 titreringer?	
Det volumen NaOH opløsning der skal bruges for at nå det endelige ækvivalenspunkt.	
☐ Det volumen NaOH opløsning der skal bruges for at nå det første ækvivalenspunkt.	
pH i syreopløsningen inden titreringen startes.	
pH ved første ækvivalenspunkt	
pH ved andet ækvivalenspunkt.	
Spørgsmål 29	
Vægtning 7%:	
Mælkesyre, CH₃CH(OH)COOH, har en K $_a$ på $^1.4\cdot 10^{-4}$	
10 g mælkesyre opløses i 1 L vand (volumen uændret). Beregn pH:	
□ 10,1	
7,0	
□ 11,6	
3,9	
2,4	

Side 10
Ligevægte
Spørgsmål 30
Vægtning 7%:
Opløselighedsproduktet K_{sp} af sølvsulfat, Ag_2SO_4 , i vand er $1,2\cdot 10^{-5}$. Beregn opløseligheden for Ag_2SO_4 .
$\square \ 3,46\times 10^{-3}$
$\Box 1.44 \times 10^{-2}$
□ 3,67
$\square 1,2 \times 10^{-5}$
$\Box 0.6 \times 10^{-5}$
Spørgsmål 31
Vægtning 7%:
Man har en container med ren PCI₃ gas med et start-tryk på 0,50 bar ved 523 K. PCI₃ dekomponerer til PCI₃ og CI₂ gas:
$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$ Ved ligevægt er trykket 0,84 bar. Beregn ligevægtskonstanten, K .
Total ingortage of Africa Cycle Date Dorlog. Ingortages constant on your
□ 0,84
□ 0,34
<u> </u>
□ 0,72
2,12