Math 341: Homework 2

Daniel Ko

Spring 2020

§1 A

Let D be the set of all differentiable functions defined on \mathbb{R} . Note that D is a subset of C because differentiable functions are continuous.

Proof. D is a subspace of C

a. $0 \in D$

Zero vector is defined as f(x) = 0 where $x \in \mathbb{R}$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{0 - 0}{0}$$
$$= 0$$

Because the derivative of f(x) = 0 exists, $0 \in D$

b. $f + g \in D$ where $f, g \in D$

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f(x+h) + g(x+h)) - (f(x) + g(x))}{h}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$
$$= f'(x) + g'(x)$$

Because the derivative of f + g exists, $f + g \in D$

c. $cf \in D$ where $c \in \mathbb{R}$ and $f \in D$

$$cf'(x) = \lim_{h \to 0} \frac{cf(x+h) - cf(x)}{h}$$
$$= c \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Because the derivative of cf exists, $cf \in D$

 \therefore D is a subspace of C

§2 B

Prove the set of even functions in $F(F_1, F_2)$ and odd functions in $F(F_1, F_2)$ are subspaces of $F(F_1, F_2)$

Proof. Let O be the set of all odd functions in $F(F_1, F_2)$ and E be the set of all even functions in $F(F_1, F_2)$.

a. $0 \in O$ and $0 \in E$ Zero function is defined as g(x) = 0

 $0 \in O$ is odd:

$$g(-x) = 0$$
$$-g(x) = 0$$
$$g(-x) = -g(x)$$

 $0 \in E$ is even:

$$g(x) = 0$$
$$g(-x) = 0$$
$$g(x) = g(-x)$$

b. $X + Y \in O$ where $X, Y \in O$ and $t \in F_1$

$$(X+Y)(-t) = X(-t) + Y(-t) = -X(t) + -Y(t) = -(X+Y)(t)$$
 (X, Y \in O)

 $X + Y \in E$ where $X, Y \in E$ and $t \in F_1$

$$(X+Y)(t) = X(t) + Y(t)$$

$$= X(-t) + Y(-t)$$

$$= (X+Y)(-t)$$

$$(X,Y \in E)$$

c. $cX \in O$ where $c \in F$ and $X \in O$ and $t \in F_1$

$$(cX)(-t) = cX(-t)$$
$$= -cX(t)$$

 $cY \in E$ where $c \in F$ and $Y \in E$ and $t \in F_1$

$$(cY)(t) = cY(t)$$
$$= cY(-t)$$

Therefore, O and E are subspaces of $F(F_1, F_1)$

Math 341: Homework 2

§3 C

```
W_1 = \{(a_1, a_2, \dots, a_n) \in F^n : a_n = 0\}

W_2 = \{(a_1, a_2, \dots, a_n) \in F^n : a_1 = a_2 = \dots = a_{n-1} = 0\}

Show F^n = W_1 \oplus W_2
```

Proof. Definition of direct sum is $W_1 \cap W_2 = \{0\}$ and $W_1 + W_2 = F^n$

a.
$$W_1 \cap W_2 = \{0\}$$

Let $v \in W_1, W_2$
 $v = (a_1, a_2, \dots, a_n)$
 $v \in W_1 \Rightarrow a_n = 0$
 $v \in W_2 \Rightarrow a_1 = a_2 = \dots = a_{n-1} = 0$

 $v = (0, 0, \dots, 0) \Rightarrow W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = F^n$$

Let
$$v \in F^n$$

 $v = (a_1, a_2, \dots, a_n)$
Let $w_1 \in W_1$ and $w_2 \in W_2$
 $w_1 = (a_1, a_2, \dots, a_{n-1}, 0)$
 $w_2 = (0, 0, \dots, a_n)$
 $w_1 + w_2 = (a_1, a_2, \dots, a_n) = v$

Thus, any vector in F^n can be expressed as a sum of vectors in W_1 and W_2 . $W_1 + W_2 = F^n$

$$\therefore F^n = W_1 \oplus W_2$$

§4 D

In
$$M_{m\times n}(F)$$

 $W_1 = \{A \in M_{m\times n}(F) : A_{i,j} = 0 \text{ whenever } i > j\}$
 $W_2 = \{B \in M_{m\times n}(F) : B_{i,j} = 0 \text{ whenever } i \leq j\}$
Show that $M_{m\times n}(F) = W_1 \oplus W_2$

Proof.

a.
$$W_1 \cap W_2 = \{0\}$$

Let
$$m \in W_1, W_2$$

 $m \in W_1 \Rightarrow m_{i,j} = 0$ whenever $i > j$
 $m \in W_2 \Rightarrow m_{i,j} = 0$ whenever $i \le j$
Thus, $(\forall i, j)(m_{i,j} = 0)$ which is $\{0\}$
 $\therefore W_1 \cap W_2 = \{0\}$

b.
$$W_1 + W_2 = M_{m \times n}(F)$$

Let
$$q \in M_{m \times n}(F)$$

Let $w_1 \in W_1$ and $w_2 \in W_2$
 $w_1 = \{(w_1)_{i,j} = 0 \text{ whenever } i > j\}$
 $w_2 = \{(w_2)_{i,j} = 0 \text{ whenever } i \leq j\}$

 $w_1 + w_2 = \{(w_1)_{i,j} \text{ wherever } i \leq j \text{ and } (w_2)_{i,j} \text{ wherever } i > j\} = q$ Thus, any matrix in $M_{m \times n}(F)$ can be expressed as a sum of matrices in W_1 and W_2 $\therefore W_1 + W_2 = M_{m \times n}(F)$

 $\therefore M_{m \times n}(F) = W_1 \oplus W_2$

§5 E

Let W be a subspace of a vector space V over a field F.

For any $v \in V$ the set $\{v\} + W = \{v + w : w \in W\}$ is the coset W containing v.

a. Prove that v + W is in the subspace of V if and only if $v \in W$.

Proof.

v + W is in the subspace of $V \Rightarrow v \in W$.

 $0 \in v + W$ because v + W is a subspace.

 $0 = v + w, w \in W$

v = -w

 $v \in W$

 $v \in W \Rightarrow v + W$ is in the subspace of V.

i. $0 \in v + W$

 $w \in W$ and let v = -w

v + w = 0

Thus, $0 \in v + W$

ii. $a + b \in v + W$ where $a, b \in v + W$

Let $a = v + w_a$, $w_a \in W$ and $b = v + w_b$, $w_b \in W$

 $a + b = v + w_a + v + w_b$

Because $v \in W$, $w_a + v + w_b \in W$.

Thus, $a + b \in v + W$

iii. $ca \in v + w, a \in v + W, c \in F$

Let $a = v + w_a$, $w_a \in W$

 $ca = c(v + w_a)$

 $= cv + cw_a$

 $= v + cv + cw_a - v$

 $cv + c_w a - v \in W$ by closure under scalar multplication and vector addition.

Thus, $ca \in v + w$

b. Prove that $v_1 + W = v_2 + W$ if and only if $v_1 - v_2 \in W$

Proof.

i. $v_1 + W = v_2 + W \Rightarrow v_1 - v_2 \in W$

Let $w_1, w_2 \in W$

 $v_1 + w_1 = v_2 + w_2$

 $v_1 - v_2 = w_2 - w_1$

Since, $w_2 - w_1 \in W$ (clourse under addition)

Therefore, $v_1 - v_2 \in W$

ii. $v_1 - v_2 \in W \Rightarrow v_1 + W = v_2 + W$

This means $v_1 - v_2 = w$ where $w \in W$ (*)

Now let $x \in v_1 + W$

By definition, $\exists w_x \in W : x = v_1 + w_x$ By (*) $v_1 = v_2 + w$ So, $x = v_2 + w + w_x$ Since, $w + w_x \in W$ (closure under addition) We have $x \in v_2 + W$ So, $v_1 + W \subseteq v_2 + W$ Similarly, we can show $v_2 + W \subseteq v_1 + W$ Therefore, $v_1 + W = v_2 + W$

c. Show that if $v_1 + W = v_1' + W$ and $v_2 + W = v_2' + W$, then $(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$ and $a(v_1 + W) = a(v_1' + W)$ for all $a \in F$

Proof.

i.
$$(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$$

Let $q \in (v_1 + W) + (v_2 + W)$
 $q \in (v_1 + v_2) + W$ by definition of vector addition
So, $q = v_1 + v_2 + w_q$ where $w_q \in W$
 $= v_1 + v_2 + w_q + v_1' - v_1' + v_2' - v_2'$
 $= v_1' + v_2' + w_q + v_1 - v_1' + v_2 - v_2'$
From b. i, $v_1 - v_1'$ and $v_2 - v_2' \in W$
Which means, $(v_1 - v_1') + (v_2 - v_2') \in W$
Thus, $w_q + v_1 - v_1' + v_2 - v_2' \in W$
So, $q \in (v_1' + v_2') + W$
So, $(v_1 + W) + (v_2 + W) \subseteq (v_1' + W) + (v_2' + W)$
Similarly, we can show $(v_1' + W) + (v_2' + W) \subseteq (v_1 + W) + (v_2 + W)$
Therefore, $(v_1 + W) + (v_2 + W) = (v_1' + W) + (v_2' + W)$

ii. $a(v_1+W)=a(v_1'+W)$ Let $q\in a(v_1+W)$ $q\in av_1+W$ by definition of scalar multplication. So, $q=av_1+w_q$ where $w_q\in W$ $=av_1+w_q+av_1'-av_1'$ $=av_1'+w_q+av_1-av_1'$ $=av_1'1+a(v_1-v_1')+w_q$ From b. i, $a(v_1-v_1')\in W$ $a(v_1-v_1')+w_q\in W$ because closure under vector addition. So, $q\in av_1'+W$ So, $a(v_1+W)\subseteq a(v_1'+W)$ Similarly, we can show $a(v_1'+W)\subseteq a(v_1+W)$ Therefore, $a(v_1+W)=(v_1'+W)$

d. Prove that the set S is a vector space with the operations defined in (c).

i.
$$0 \in S$$

The zero vector in S is $0 = v_0 + W$
Let $s \in S$
So $s = v_s + W$
If the zero vector exists we should be able to show, $s + 0 = s$
 $s + 0 = s \Leftrightarrow (v_s + W) + (v_0 + W) = v_s + W$

 $(v_s + v_0) + W = v_s + W$ by definition of addition Thus $v_0 = 0$ and the zero vector is 0 + W which is just WTherefore, the zero vector is W.

- ii. $X+Y\in S$ where $X,Y\in S$ This means $X=v_x+W$ $Y=v_y+W$ $X+Y=(v_x+W)+(v_y+W)=(v_x+v_y)+W$ by defintion of addition. $(v_x+v_y)\in V$ by closure under vector addition. Therefore $X+Y\in S$
- iii. $aX \in S$ $a \in F$ $aX = a(v_x + W)$ $= av_x + W$ $av_x \in V$ by closure under vector addition. Therefore, $aX \in S$

§6 F

Show that if

$$M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $M_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $M_3 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

then the span of $\{M_1, M_2, M_3\}$ is the set of all symmetric 2x2 matrices.

Proof.

$$Sym(M_{2\times 2}(F)) = \{ m \in M_{2\times 2}(F) : m = \begin{pmatrix} a & b \\ b & c \end{pmatrix} \Leftrightarrow m = m^t \}$$

$$m \in span(\{M_1, M_2, M_3\})$$
 if $m = c_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + c_2 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + c_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, where $c_1, c_2, c_3 \in F$

$$= \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$$

$$m^t = \begin{pmatrix} c_1 & c_3 \\ c_3 & c_2 \end{pmatrix}$$

$$Sym(M_{2\times 2}(F)) = span(\{M_1, M_2, M_3\})$$

§7 G

§8 H

§9 I

§10 J