Enriching Unsupervised User Embedding via Medical Concepts

Xiaolei Huang¹, Franck Dernoncourt², Mark Dredze³

1. University of Memphis 2. Adobe Research 3. Johns Hopkins University

User Embedding

• *User embedding* models user behaviors by mapping all user info into a unified vector space.

An example for cohort selection using user embedding.

- Unsupervised user embedding.
 - No human supervision.

Existing Unsupervised Approaches

- usr2vec¹
 - predict binary relation between users and single tokens.

Token - level

- $doc2vec^2$
 - merge feature vectors of all text documents of users.

Doc - level

- 1. Single tokens may lose important information;
- 2. Clinical notes can be very long, neural networks can suffer long dependency.
 - Amir et al. Quantifying mental health from social media with neural user embeddings
 - 2. Ding, et al. Predicting delay discounting from social media likes with unsupervised feature learning.

Medical Concept Matters

- *Medical concepts*: basic units for medical info, such as disease symptom and clinical drug.
 - Concepts can have more meaningful semantic indications.

• How to incorporate medical concepts and clinical notes into a meaningful way?

Concept-Aware User Embedding (CAUE)

CAUE

Task 1: Patient-Document	Task 2: Patient-Concept
$\mathcal{L}(u,d) = -log(\sigma(v(u) \cdot v(d_u)))$	$\mathcal{L}(u,c) = -log(\sigma(v(u) \cdot v(c_u)))$
$-\log(1-\sigma(v(u)\cdot v(d_{ ilde{u}})))$	$-\log(1-\sigma(v(u)\cdot v(c_{ ilde{u}})))$

simulate diagnosis process:

enforce models to recognize patients (u) of medical notes (d) / concepts (c).

Key Methods

- 1. contrastive learning¹: generate counterfactuals \rightarrow model robustness
- 2. negative sampling: convert to binary prediction (self-supervision)

Counterfactuals:

V.S.

Clinical Data

Dataset	Document Statistics			User Stats				Concept Stats	
	Doc	Vocab	Token-stats	User	Age	F	U-label	Concept	Type
Diabetes 1	1265	34592	2426, 483, 42	288	63.13	0.45	10	68938	89
MIMIC-III ²	54888	390237	7522, 1263, 50	48807	62.47	0.44	276	10761211	94

- Medical notes are too long to fit into neural model.
 - e.g., regular BERT models only fit for 512 tokens.

[.] Stubbs et al. Cohort selection for clinical trials: n2c2 2018 shared task track 1.

^{2.} Johnson, et al. Mimic-iii, a freely accessible critical care database.

Short Snippets by Random Split

• This simulates clinical settings in real-world that physicians can recognize their patients with partial symptom descriptions.

Evaluation

- Intrinsic Evaluation NEW
- - Patient Retrieval
 - Potential application: Information Retrieval System
 - Patient Relatedness
 - Potential application: Cohort Selection
- Extrinsic Evaluation
 - Phenotype Inference
 - In-hospital Mortality Prediction

Evaluation

MAP: Mean Average Precision

Patient Retrieval

$$Jaccard(u_1, u_2) = \frac{|l_1 \cap l_2|}{|l_1 \cup l_2|}$$

Effects of Medical Concepts

+ Concept	Phenotype Prediction		Mortality Patient Relatedness		elatedness	Retrieval		
	Diabetes	MIMIC-III	MIMIC-III	Diabetes	MIMIC-III	Diabetes	MIMIC-III	
word2user	+7.6% (.044)	+40.4% (.130)	+4.8% (.041)	+3.4% (018)	+1.2% (010)	-0.5% (002)	+24.6% (.016)	
doc2user	-43.4% (125)	-32.3% (076)	+2.8% (.012)	+1.1% (006)	+0.8% (02)	+6.1% (.021)	-3.0% (004)	
dp2user	+22.6% (.094)	+52.1% (.164)	+3.8% (.033)	+2.0% (011)	+24.9% (207)	+17.6% (.056)	+18.6% (.021)	
usr2vec	+9.4% (.052)	+249.0% (.394)	+111.1% (.470)	+6.2% (022)	-63.7% (.444)	+9.5% (.033)	-36.5% (050)	
siamese2user	+7.6% (.045)	+45.8% (.116)	+45.8% (.116)	+28.7% (118)	+6.0% (013)	+7.2% (.026)	+19.8% (.023)	
Average	+.8% (.013)	+61.84 (.146)	+33.66% (.134)	+8.28% (035)	-6.16% (.194)	+8.0% (.027)	+4.7 (.001)	
Median	+9.4% (.052)	+45.8% (.116)	+4.8% (.041)	+3.4% (018)	+1.2% (010)	+7.2% (.026)	+18.6% (.021)	

Performance gains of user embedding models combining with medical concepts (+Concept) comparing to standard non-concept information.

Summary

- Our proposed *unsupervised* user embedding is effective to capture patient patterns with broad real-world applications, such as diagnosis, retrieval and cohort selection.
- Medical concepts significantly boost patient modeling & potentially enhance interpretation.

• https://github.com/xiaoleihuang/UserEmb_Explainable

