

4. RELATIONENALGEBRA

- Einleitung
- Selektion, Projektion, Umbenennung
- Mengenoperatoren
 - Vereinigung, Durchschnitt, Differenz
 - kartesisches Produkt
- Verbundoperationen (Join)
 - Theta-Join
 - natürlicher Verbund
 - Semi-Join
 - äußerer Verbund
- Division
- Beispielanfragen

SPRACHEN FÜR DAS RELATIONENMODELL

- Datenmodell = Datenobjekte + Operatoren
- im RM wird vereinheitlichte Sprache angestrebt für:
 - Anfragen (Queries) im 'Stand-Alone'-Modus
 - Datenmanipulation und Anfragen eingebettet in eine Wirtssprache
 - Datendefinition
 - Zugriffs- und Integritätskontrolle
 - Unterstützung verschiedener Benutzerklassen:
 Anwendungsprogrammierer, DBA, gelegentliche Benutzer
- verschiedene Grundtypen von Sprachen
 - formale Ansätze: Relationenalgebra und Relationenkalkül
 - abbildungsorientierte Sprachen (z. B. SQL)
 - graphik-orientierte Sprachen (z. B. Query-by-Example)

RELATIONENALGEBRA

- Algebra: ein System, das aus einer nichtleeren Menge und einer Familie von Operationen besteht
 - Relationen sind Mengen
 - Operationen auf Relationen arbeiten auf einer oder mehreren Relationen als Eingabe und erzeugen eine Relation als Ausgabe (Abgeschlossenheitseigenschaft)⇒mengenorientierte Operationen
- Operationen

Klassische Mengenoperationen	Relationenoperationen
VereiningungDifferenzKartesisches ProduktDurchschnitt	 Restriktion (Selektion) Projektion Umbenennung Verbund (Join) (ableitbar) Division (ableitbar)
- 1-stellige und	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SELEKTION (RESTRIKTION)

- Auswahl von Zeilen einer Relation über Prädikate, abgekürzt σ_P

$$\sigma_{P}(R) = \{ t \mid t \in R \land P(t) \}$$

- P = log. Formel (ohne Quantoren!) zusammengestellt aus:
- Operanden: Attributnamen oder Konstanten
- Vergleichsoperatoren $q \in \{ <, =, >, \le, \ne, \ge \}$
- logische Operatoren: ∨ , ∧ , ¬
- Beispiele:
 - $\sigma_{SALARY < BONUS}$ (PERS)
 - $\sigma_{OCCUPATION='Programmer' \land AGE < 50}$ (PERS)
- Eigenschaften
 - grad $(\sigma_{P}(R)) = \text{grad}(R)$
 - card (σ_P(R)) ≤ card (R)

PROJEKTION

– Auswahl der Spalten (Attribute) $A_1, A_2, ..., A_k$ aus einer Relation R (Grad n ≥ k)

$$\pi_{A1, A2,..., Ak}(R) = \{ p \mid \exists t \in R : p = \langle t [A_1],..., t [A_k] \rangle \}$$

- Beispiel: $\pi_{Name, Salarv}(PERS)$
- Eigenschaften:
 - wichtig: Duplikate werden entfernt ! (Mengeneigenschaft) z.B. für $\pi_{DNO}(PERS)$
 - grad $(\pi_A(R)) \le \operatorname{grad}(R)$
 - card $(\pi_A(R)) \le card(R)$

UMBENNUNG

- Umbennung von Attributnamen und Relationsnamen einer Relation R(B₁,...B_n)
 - Wichtig zum Auflösen von Mehrdeutigkeiten bei reflexiven Verbünden für eindeutige Adressierung des Attributs

 $\rho_{S(A_1,...,A_n)}(R) \Rightarrow$ Umbenennung der Attribute und des Namens von R zu $S(A_1,...A_n)$

 $\rho_{S}(R) \Rightarrow Umbenennung der Relation R zu S$

- Beispiel: $\rho_{MA(Nachname,Gehalt)}(\pi_{Name,Salary}(PERS))$

RELATIONENALGEBRA: BEISPIEL-DB

DEPT PERS

DNO	DNAME	CITY
K51	Planung	Leipzig
K53	Einkauf	Frankfurt
K55	Vertrieb	Frankfurt

<u>PNO</u>	NAME	AGE	SALARY	DNO(FS auf DEPT)	MGR(FS auf PERS)
406	Abel	47	50700	K55	123
123	Schulz	32	43500	K51	-
829	Müller	36	40200	K53	406
574	Schmid	28	36000	K55	123

- Finde alle Angestellten aus Abteilung K55, die mehr als 40.000 verdienen
- $-\sigma_{DNO='K55' \land SALARY > 40000}$ (PERS)
- Finde alle Abteilungsorte
- $-\pi_{CITY}$ (DEPT)
- Finde den Abteilungsnamen von Abteilung K53
- $-\pi_{DNAME}(\sigma_{DNO='K53'}(DEPT))$

KLASSISCHE MENGENOPERATIONEN

- Voraussetzung: Vereinigungsverträglichkeit der beteiligten
 Relationen: (A₁, A₂, ... A_n) (B₁, B₂, ..., B_n)
 - gleicher Grad und gleiche Bereiche:
 - \rightarrow W(A_i) = W(B_i) : i = 1, n

 D_k

 D_{i}

 D_{i}

- Vereinigung: $R \cup S = \{t | t \in R \lor t \in S\}$
 - card (R \cup S) <= card (R) + card (S)
- Differenz: $R S = \{t \mid t \in R \land t \notin S\}$
 - $\operatorname{card} (R S) \le \operatorname{card} (R)$

– Durchschnitt:

$$R \cap S = R - (R - S) = \{t \mid t \in R \land t \in S\}$$

- card (R ∩ S) ≤ min (card (R), card (S))

– Beispielanfrage: Welche Abteilungen (DNO) haben keine Mitarbeiter?

(ERWEITERTES) KARTESISCHES PRODUKT

 $-R(A_1,...A_r)$ (Grad r) und $S(B_1,...B_s)$ (Grad s) beliebig

Relationsschema: $(R \times S)(A_1,...,A_r, B_1,...,B_s)$

Relation: $R \times S = \{k = x \circ y \mid x \in R \land y \in S\}$

- Beachte: $k = x \circ y = (x_1, \dots, x_r, y_1, \dots, y_s)$ <u>nicht</u> $((x_1, \dots, x_r), (y_1, \dots, y_s))$ wie übliches kart. Produkt
- $\operatorname{grad}(R \times S) = \operatorname{grad}(R) + \operatorname{grad}(S)$
- $\operatorname{card} (R \times S) = \operatorname{card} (R) \cdot \operatorname{card} (S)$

$R \times S$

Beispiel

R

A	В	С
а	g	1
d	а	2
b	b	3

S

D	Ш	H.
b	g	3
d	а	2

Α	В	С	D	ш	F
а	g	1	b	g	3
а	g	1	d	а	2
d	а	2	b	g	3
d	а	2	d	а	2
b	b	3	b	g	3
b	b	3	d	а	2

VERBÜNDE

- Operatoren für die Verknüpfung von Tupeln r∈R und s∈S unter Berücksichtigung eines Verbundprädikats P
- Allgemeiner Verbund Theta Join
 - Spezialfall Gleichverbund → Equi-Join
- Natürlicher Verbund Natural Join
 - Equi Join über gleichnamige Attribute
- [linker, rechter] Semi-Join
 - Erhaltung der Attribute einer Relation
- Verlustfreie Verbünde
 - Erhalt der Tupel auch ohne Verbundpartner
 - [linker, rechter] Äußerer Verbund

ALLGEMEINER VERBUND (THETA-JOIN)

- grob: kartesisches Produkt zwischen zwei Relationen R und S.
 - eingeschränkt durch Θ -Bedingungen o.B.d.A. zwischen Attribut A_k
 von R und Attribut B_I von S → verallgemeinerbar für mehrere Attribute

Relationsschema: (
$$R \bowtie_{A_k \Theta B_l} S$$
) ($A_1,...,A_r$, $B_1,...,B_s$)

Relation:
$$(R \bowtie_{A_k \Theta B_l} S) = \{k = x \circ y \mid x \in R \land y \in S \land R: x[A_k] \Theta y[B_l]\}$$

— ⊕-Verbund zwischen R und S ableitbar:

$$R \underset{A \Theta}{\bowtie} S = {}^{\sigma}A\Theta B^{(R \times S)}$$

mit arithm. Vergleichsoperator $\Theta \in \{<, =, >, \leq, \neq, \geq\}$

- grad $(R \bowtie S)$ = grad $(R \times S)$ = grad(R) + grad (S)
- card (R \bowtie S) ≤ card (R x S)
- für häufigen Fall des *Gleichverbunds (Equi-Join)* gilt $\Theta = '='$:

NATÜRLICHER VERBUND (NATURAL JOIN)

- grob: Gleichverbund über <u>alle</u> gleichnamigen Attribute und Projektion über die verschiedenen Attribute
- natürlicher Verbund zwischen R und S:

gegeben: R
$$(A_1, A_2, ..., A_{r-j+1}, ..., A_r)$$
, S $(B_1, B_2, ..., B_j, ..., B_s)$
o.B.d.A. (sonst. Umsortierung): $B_1 = A_{r-j+1}$, $B_2 = A_{r-j+2}$... $B_j = A_r$

$$R \bowtie S = \pi(A_1, A_2, ..., A_r, B_{j+1}, ..., B_s) \sigma_{A_{r-j+1}=B_1 \wedge \cdots \wedge A_r=B_j} (R \times S)$$
 \bowtie Zeichen für Natural Join $\Rightarrow \Theta = '='$

- Join-Attribute sind durch Übereinstimmungsbedingung gegeben
- grad(R ⋈ S) = grad(R) + grad(S) j
 - mit j Anzahl der gemeinsamen Attribute

R			
А	В	С	
a ₁	b ₁	C ₁	
a_2	b_2	C_2	

	S	
С	D	ш
C_1	d_1	e_1
C ₃	d_2	e_2

Resultat				
Α	В	С	D	Е
a_1	b_1	C ₁	d_1	e_1

JOIN-BEISPIEL

DEPT

K55

DNODNAMECITYK51PlanungLeipzigK53EinkaufFrankfurt

Vertrieb

Frankfurt

PERS

<u>PNO</u>	NAME	AGE	SALARY	DNO(FS auf DEPT)	MGR(FS auf PERS)
406	Abel	47	50700	K55	123
123	Schulz	32	43500	K51	-
829	Müller	36	40200	K53	406
574	Schmid	28	36000	K55	123

- Finde alle Angestellten (PNO, AGE, DNAME), die in einer Abteilung in Frankfurt arbeiten und älter als 30 sind
- $\pi_{PNO,AGE,DNAME}$ ($\sigma_{City='Frankfurt'∧AGE>30}$ (DEPT ⋈ PERS)

PNO	AGE	DNAME
406	47	Vertrieb
829	36	Einkauf

SEMI-JOIN

 Ergebnisbeschränkung des Gleichverbundes auf eine der beiden Eingaberelationen R und S

$$R \bowtie S = \pi_{R-Attribute}(R \bowtie S)$$

$$R \rtimes S = \pi_{S-Attribute}(R \bowtie S)$$
 rechter Semi-Join

linker Semi-Join rechter Semi-Join

	R	
Α	В	С
a_1	b_1	C ₁
a_2	b_2	C ₂

Resultat		
С	D	П
C_1	d_1	e_1

 e_2

ÄUßERER VERBUND (OUTER JOIN)

- Ziel: verlustfreier Verbund soll erzwungen werden
- Gleichverbund zwischen R und S ist verlustfrei, wenn alle Tupel von R und S am Verbund teilnehmen. Die inverse Operation Projektion erzeugt dann wieder R und S (lossless join).
- $R \bowtie S$ verlustfrei $\Leftrightarrow \pi_{R-Attribute} R \bowtie S = R \land \pi_{S-Attribute} R \bowtie S = S$
- bisher: R S liefert nur "vollständige Objekte"
 - es sollen aber auch Teilobjekte als Ergebnis geliefert werden (z. B. komplexe Objekte)
 - Trick: Einfügen künstlicher Verbundpartner, um verlustfreien Verbund zu erreichen

OUTER JOIN (2)

Definition: seien A die Verbundattribute, {≡} der undefinierte Wert

$$R' \coloneqq R \cup ((\pi_A(S) - \pi_A(R)) \times \{ \underbrace{(\equiv, \dots, \equiv)}_{grad(R) - grad(\pi_A(R))} \}$$

$$S' \coloneqq S \cup ((\pi_A(R) - \pi_A(S)) \times \{ \underbrace{(\equiv, \dots, \equiv)}_{grad(S) - grad(\pi_A(S))} \}$$

äußerer natürlicher Gleichverbund $R\bowtie S \coloneqq R'\bowtie S'$

- linker und rechter äußerer Gleichverbund
 - nur die linke bzw. rechte Eingaberelation bleibt verlustfrei (Einfügen künstlicher Verbundpartner in rechter bzw. linker Eingaberelation)

linker äußerer Gleichverbund
$$R\bowtie S \coloneqq R\bowtie S'$$

rechter äußerer Gleichverbund $R\bowtie S \coloneqq R'\bowtie_{R'.A=S.B} S$

verallgemeinerbar auf 2 (oder mehr) Joins, z.B. R⋈S⋈T

selbst isolierte Tupel k\u00f6nnen zu einem vollst\u00e4ndigen Pfad expandiert werden

OUTER JOIN - BEISPIEL

PERS

PNO	DNO
P1	D1
P2	D1
P3	D2
P4	-
P5	-

DEPT

DNO	DNAME
D1	Α
D2	В
D3	С

PERS ⋈ **DEPT**

PNO	DNO	DNAME
P1	D1	Α
P2	D1	Α
Р3	D2	В

PNO	DNO	DNAME
P1	D1	Α
P2	D1	Α
P3	D2	В

DEDS			DEPT	
PERS	0*	01	DEPT	
	-			•

PERS ⋈ DEPT

PNO	DNO	DNAME
P1	D1	Α
P2	D1	Α
P3	D2	В

PNO	DNO	DNAME
P1	D1	Α
P2	D1	Α
P3	D2	В

DBS II WS 24/25

PERS⋈DEPT

DIVISION

- Beantwortung von Fragen, bei denen eine "ganze Relation" zur Qualifikation herangezogen wird
- Simulation des Allquantors ⇒ eine Attributwert-Kombination aus R steht mit allen Tupeln aus S in einer bestimmten Beziehung

Definition

Voraussetzung: S-Attribute \subset R-Attribute sei R vom Grad r und S vom Grad s, r > s t sei (r-s)-Tupel, u sei s-Tupel;

dann gilt:
$$R \div S = \{t \mid \forall u \in S : tu \in R\}$$

grad
$$(R \div S) = r - s$$

$$card(R \div S) <= card(R)$$

DIVISION (2)

Beispiel supply

SNR	PRO	PART
L1	P1	T1
L1	P2	T1
L2	P1	T1
L2	P1	T2
L2	P2	T1

– welche Lieferanten beliefern alle Projekte?

$$\pi_{SNR,PRO} \ (SUPPLY) \div \pi_{PRO} \ (PP)$$

– welche Lieferanten liefern alle Teile?

$$\pi_{SNR,PART}$$
 (SUPPLY) ÷ π_{PART} (PP)

 Zusammenhang zwischen Division und kartesischem Produkt: (R×S) ÷ S = R

$$(R \times S) \div S = R$$

 $(R \div S) \times S = R$?

BEISPIEL-DB: DBS1 MOVIEDB

https://dbis-uibk.github.io/relax/calc/gist/d37f667154aec34f5c4954723ae01db9/DBS1_MovieDB/0

Abteilung Datenbanken

BEISPIELANFRAGEN

– Welche Filme haben Überlänge (Runtime> 120)?

```
\pi_{\text{Title}} (\sigma_{\text{Runtime} > 120} (\text{Movies}))
```

 Welche Personen (Firstname, Lastname) waren an Filmen des Genres ,Fantasy' beteiligt?

 $\pi_{\text{Firstname, Lastname}} \sigma_{\text{Genres.Name}='\text{Fantasy'}}(\text{Genres} \bowtie \text{Movies} \bowtie \text{PersonsMovies} \bowtie \text{Persons})$

- Finde alle Filme (Title), wo mindestens 2 Personen die Regie (Role = "direction") geführt haben.
- ρ_{P2} (PersonsMovies) $\bowtie_{P2.Movie_ID}$ = P1.Movie_ID ∧ P1.Person_ID ≠ P2.Person_ID ρ_{P1} (PersonsMovies)
- Finde die Genres (Name), zu denen kein Film existiert

$$\pi_{Genre\ ID}$$
 (Genres) -

 Welche Personen (Person_ID) waren an allen Filmen des Genres ,Drama' beteiligt?

ZUSAMMENFASSUNG RELATIONENALGEBRA

- saubere mathematische Definition
- mengenorientierte Operationen
- keine Änderungsoperationen!
- für Laien nicht leicht verständlich

Projektion

X

У

Abteilung Datenbanken

b C 3

DBS II WS 24/25

a