#### Project: Predictive Analytics Capstone

Complete each section. When you are ready, save your file as a PDF document and submit it here: https://coco.udacity.com/nanodegrees/nd008/locale/enus/versions/1.0.0/parts/7271/project

## Task 1: Determine Store Formats for Existing Stores

1. What is the optimal number of store formats? How did you arrive at that number? The optimal number of store formats is 3 as it is stated in the supporting material that cluster must not have less than 20 and not over 40 stores.

|              | 2         | 3        | 4        | 5        | 6        | 7        | 8        |
|--------------|-----------|----------|----------|----------|----------|----------|----------|
| Minimum      | -0.012332 | 0.085005 | 0.129167 | 0.198479 | 0.172868 | 0.211424 | 0.197457 |
| 1st Quartile | 0.055047  | 0.28273  | 0.279896 | 0.303745 | 0.294079 | 0.281472 | 0.321616 |
| Median       | 0.492542  | 0.428163 | 0.388131 | 0.353296 | 0.351385 | 0.333331 | 0.353529 |
| Mean         | 0.406457  | 0.411914 | 0.372189 | 0.366041 | 0.367644 | 0.354859 | 0.369188 |
| 3rd Quartile | 0.61678   | 0.50506  | 0.450843 | 0.41474  | 0.453322 | 0.409187 | 0.404819 |
| Maximum      | 1         | 0.925732 | 0.70085  | 0.586379 | 0.5548   | 0.703966 | 0.660004 |

Calinski-Harabasz Indices:

|              | 2         | 3         | 4        | 5        | 6         | 7         | 8         |
|--------------|-----------|-----------|----------|----------|-----------|-----------|-----------|
| Minimum      | 9.056197  | 9.683921  | 11.14097 | 11.15269 | 9.474469  | 8.797239  | 8.769803  |
| 1st Quartile | 17.976426 | 15.402516 | 13.27496 | 12.65426 | 11.988572 | 11.311079 | 10.838622 |
| Median       | 19.836525 | 16.618434 | 14.49044 | 13.49543 | 12.537825 | 12.043325 | 11.303199 |
| Mean         | 18.604945 | 16.309418 | 14.37112 | 13.46494 | 12.624375 | 11.910413 | 11.376818 |
| 3rd Quartile | 20.889876 | 17.734502 | 15.56523 | 14.30924 | 13.365637 | 12.535052 | 11.963996 |
| Maximum      | 21.992647 | 18.908142 | 16.79342 | 16.32568 | 15.329887 | 14.179165 | 13.936724 |

#### **Adjusted Rand Indices**



#### Calinski-Harabasz Indices



2. How many stores fall into each store format?

Cluster 1 has 23 stores, cluster 2 has 29 stores and cluster 3 has 33 stores.

| Cluster | Size | Ave Distance | Max Distance | Separation |
|---------|------|--------------|--------------|------------|
| 1       | 23   | 2.320539     | 3.55145      | 1.874243   |
| 2       | 29   | 2.540086     | 4.475132     | 2.118708   |
| 3       | 33   | 2.115045     | 4.9262       | 1.702843   |

3. Based on the results of the clustering model, what is one way that the clusters differ from one another?

Based on the result shown below, cluster 1 sells more of General Merchandise compared to the others. Cluster 2 sells more of Produce compared to the others.

|   | Percent_Dry_Grocery | Percent_Dairy               | Percent_Frozen_Food | Percent_Meat | Percent_Produce | Percent_Floral | Percent_Deli |
|---|---------------------|-----------------------------|---------------------|--------------|-----------------|----------------|--------------|
| 1 | 0.327833            | -0.761016                   | -0.389209           | -0.086176    | -0.509185       | -0.301524      | -0.23259     |
| 2 | -0.730732           | 0.702609                    | 0.345898            | -0.485804    | 1.014507        | 0.851718       | -0.554641    |
| 3 | 0.413669            | -0.087039                   | -0.032704           | 0.48698      | -0.53665        | -0.538327      | 0.64952      |
|   | Percent_Bakery      | Percent_General_Merchandise |                     |              |                 |                |              |
| 1 | -0.894261           | 1.208516                    |                     |              |                 |                |              |
| 2 | 0.396923            | -0.304862                   |                     |              |                 |                |              |
| 3 | 0.274462            | -0.574389                   |                     |              |                 |                |              |

4. Please provide a Tableau visualization (saved as a Tableau Public file) that shows the location of the stores, uses color to show cluster, and size to show total sales.

https://public.tableau.com/views/Task1\_15578447757820/Sheet1?:embed=y&:display\_c\_ount=yes&:origin=viz\_share\_link



## Task 2: Formats for New Stores

1. What methodology did you use to predict the best store format for the new stores? Why did you choose that methodology? (Remember to Use a 20% validation sample with Random Seed = 3 to test differences in models.)

Boosted and Random\_Forest have the same accuracy, but Boosted Model is chosen due to higher F1 value of 0.8889.

| Model Comparison Report |          |        |            |            |            |  |  |  |
|-------------------------|----------|--------|------------|------------|------------|--|--|--|
| Fit and error measures  |          |        |            |            |            |  |  |  |
| Model                   | Accuracy | F1     | Accuracy 1 | Accuracy 2 | Accuracy_3 |  |  |  |
| Decision_Tree           | 0.7059   | 0.7685 | 0.7500     | 1.0000     | 0.5556     |  |  |  |
| Boosted                 | 0.8235   | 0.8889 | 1.0000     | 1.0000     | 0.6667     |  |  |  |
| Random_Forest           | 0.8235   | 0.8426 | 0.7500     | 1.0000     | 0.7778     |  |  |  |

2. What format do each of the 10 new stores fall into? Please fill in the table below.

| Store Number | Segment |
|--------------|---------|
| S0086        | 3       |
| S0087        | 2       |
| S0088        | 1       |
| S0089        | 2       |
| S0090        | 2       |
| S0091        | 1       |
| S0092        | 2       |
| S0093        | 1       |
| S0094        | 2       |
| S0095        | 2       |
|              |         |

## Task 3: Predicting Produce Sales

1. What type of ETS or ARIMA model did you use for each forecast? Use ETS(a,m,n) or ARIMA(ar, i, ma) notation. How did you come to that decision?



The time series decomposition plot shown above allows us to observe the seasonality, trend and error terms of a time series. There is no clear trend, so no trend component is included (N). The size of the seasonal fluctuations tends to increase or decrease with the level of time series, so we apply it multiplicatively (M). The error plot is fluctuating between large and small errors over time, we apply it multiplicatively (M).

#### Actual and Forecast Values: Actual and Forecast Values: Actual Actual 26338477.15 26907095.61191 26338477.15 27997835.63764 23130626.6 23946058.0173 23130626.6 22916903.07434 20774415.93 20342618.32222 20774415.93 21751347.87069 20359980.58 19883092.31778 20359980.58 20352513.09377 21936906.81 20479210.4317 21936906.81 20971835.10573 20462899.3 21211420.14022 20462899.3 21609110.41054

Accuracy Measures:

Accuracy Measures:

| Model | ME       | RMSE     | MAE      | MPE    | MAPE   | MASE   | Model | ME        | RMSE    | MAE    | MPE     | MAPE   | MASE   |
|-------|----------|----------|----------|--------|--------|--------|-------|-----------|---------|--------|---------|--------|--------|
| ETS   | 210494.4 | 760267.3 | 649540.8 | 1.0288 | 2.9678 | 0.3822 | ARIMA | -604232.3 | 1050239 | 928412 | -2.6156 | 4.0942 | 0.5463 |

By comparing the forecast and actual results, we can see that ETS model's accuracy is higher with overall lower errors across all variable. The ETS model's RMSE (760,267.3) and MASE (0.3822) are lower.

Based on the above, ETS(M,N,M) is chosen as our forecasting mode.

2. Please provide a table of your forecasts for existing and new stores. Also, provide visualization of your forecasts that includes historical data, existing stores forecasts, and new stores forecasts.

| Month    | <b>Existing Stores</b> | New Stores |
|----------|------------------------|------------|
| Jan 2016 | 21,539,936             | 2,587,451  |
| Feb 2016 | 20,413,771             | 2,477,353  |
| Mar 2016 | 24,325,953             | 2,913,185  |
| Apr 2016 | 22,993,466             | 2,775,746  |
| May 2016 | 26,691,951             | 3,150,867  |
| Jun 2016 | 26,989,964             | 3,188,922  |
| Jul 2016 | 26,948,631             | 3,214,746  |
| Aug 2016 | 24,091,579             | 2,866,349  |
| Sep 2016 | 20,523,492             | 2,538,727  |
| Oct 2016 | 20,011,749             | 2,488,148  |
| Nov 2016 | 21,177,435             | 2,595,270  |
| Dec 2016 | 20,855,799             | 2,573,397  |

https://public.tableau.com/views/TotalSalesForecast\_15593713505240/Sheet1?:embed=y&:dis play count=yes&publish=yes&:origin=viz share link



# Alteryx Data Flow











# Before you submit

Please check your answers against the requirements of the project dictated by the rubric. Reviewers will use this rubric to grade your project.