This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

Intyg Certificate

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

- (71) Sökande Volvo Lastvagnar AB, Göteborg SE Applicant (s)
- (21) Patentansökningsnummer 0101947-0 Patent application number
- (86) Ingivningsdatum
 Date of filing

2001-06-05

Stockholm, 2004-02-20

För Patent- och registreringsverket For the Patent- and Registration Office

Hjördis Segerlund

Avgift

Fee

170:-

 τZ

TITEL

System för tryckluftförsörjning och fordon innefattande ett system för tryckluftförsörjning.

5

TEKNISKT OMRÅDE

Föreliggande uppfinning avser ett system för tryckluftförsörjning enligt ingressen till patentkravet 1 samt ett fordon innefattande ett system för tryckluftsförsörjning enligt ingressen till patentkravet 12. I synnerhet avses ett system för tryckluftförsörjning innefattande en reglerbar fläkt vilken är anordnad att generera en luftström för kylning av från kompressorn genererad tryckluft i de fall att temperaturen hos tryckluften anses vara för hög.

TEKNIKENS STÅNDPUNKT

15

10

System för tryckluftsförsörjning innefattar generellt en kompressor, tryckluftsledningar, en eller flera aktiva komponenter och en eller flera tryckluftstankar, vilka matas av kompressorn. När kompressorn komprimerar luften uppvärms luften. Om höga tryck skall erhållas erhåller den sammanpressade luften en hög temperaturer, vilken i ett normalt tryckluftssystem på ett tungt fordon med ett systemtryck på 13 bar kan uppgå till ca 300 °C. En temperatur av den storleksordningen är skadlig för komponenter ingående i tryckluftssystemet, exempelvis för tätningar av polymera material.

25

20

Vidare upptar varm luft större mängd vatten än kall luft varför belastningen på lufttorkar anslutna till systemet för tryckluftförsörjning ökar i det fall att inkommande luft har en högre temperatur. Dessutom uppvisar torkmedlet i lufttorkarna en lägre verkningsgrad vid höga temperaturer.

.:.3

För att säkerställa god funktion skall luften vid ingången till lufttorken företrädesvis uppvisa en temperatur understigande ca 60 °C. Enligt en del kända utföringsformer uppnås detta genom att montera den första komponenten på tillräckligt stort avstånd från kompressorn varvid tillräckligt god kylning erhålles. Denna lösning uppvisar dock den nackdelen att det är svårt att konstruera rörledningen med kontinuerligt fall i de fall rörledningen är lång. Detta

innebär att röret måste böjas varvid fickor där vatten kan upplagras skapas med risk för bildande av isproppar som följd vid kall väderlek.

För att reducera risken för förekomst av isproppar har därför fordon med ett tryckluftsystem innefattande en kort och kontinuerligt fallande rörledning fram till en första komponent i form av en lufttork tillhandahållits. För att tillse att i lufttorken ingående komponenter inte skadas av alltför varm luft har luftledningen monterats så att den passerar luftflödet från den till fordonets kylsystem tillhörande kylfläkten. Denna fläkt styrs dock oberoende av kylbehovet av tryckluften, vilket medför risk för att överhettad luft når lufttorken.

10

15

5

KORT BESKRIVNING AV UPPFINNINGEN

Ändamålet med uppfinningen är att tillhandahålla ett system för tryckluftförsörjning där risken för att en första komponent exponeras av luft med för hög temperatur reduceras samtidigt som risken för bildande av isproppar i luftledningen reduceras. Detta ändamål uppnås genom ett system för tryckluftförsörjning enligt den kännetecknande delen av patentkravet 1 samt genom ett fordon enligt den kännetecknande delen av patentkravet 12. Genom att till ett system för tryckluftförsörjning innefattande en av en kontrollenhet reglerbar fläkt där kontrollenheten är anordnad att fastställa kylbehov hos den av kompressorn levererade tryckluften och att generera en aktiveringssignal för den reglerbara fläkten då kylbehov föreligger varvid nämnda första aktiva komponent skyddas från termisk överbelastning av från kompressorn inmatad tryckluft tillses att tryckluften uppvisar en temperatur inom ett önskvärt intervall då den når den första komponenten.

25

20

FIGURBESKRIVNING

Uppfinningen kommer nedan att närmare beskrivas med hänvisning till bifogade ritningsfigurer, där

-:-30

Fig. 1 visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt en första utföringsform av uppfinningen,

Fig. 2 visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt en första variant av en andra utföringsform av uppfinningen visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt Fig. 3 5 en andra variant av en andra utföringsform av uppfinningen visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt Fig. 4 en tredje variant av en andra utföringsform av uppfinningen visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt 10 Fig. 5 en fjärde variant av en andra utföringsform av uppfinningen, visar schematiskt ett system för kylning av tryckluft genom fläktreglering enligt Fig. 6 en femte variant av en andra utföringsform av uppfinningen, 15 visar schematiskt en metod för fastställande av kylbehov, Fig. 7 visar schematiskt en alternativ metod för fastställande av kylbehov och Fig. 8 visar schematiskt en metod för fastställande av att en kompressor i ett 20 Fig. 9

UTFÖRINGSEXEMPEL

25

30

tryckluftssystem arbetar.

I figur 1 visas schematiskt ett system för tryckluftsförsörjning. Systemet innefattar en kompressor 2 vilken är av konventionellt slag och därför inte kommer att beskrivas närmare. Kompressorn 2 uppvisar en utloppsport 3 till vilken en tryckluftsledning 4 är kopplad. Tryckluftsledningen sammanbinder nämnda utloppsport med en inloppsport 5 hos en första aktiv komponent 6. Den första aktiva komponenten 6 utgörs företrädesvis av en lufttork Lufttorken 6 uppvisar vidare en första utloppsport 7 till vilken en andra tryckluftsledning 8 är ansluten. Den andra tryckluftsledningen 8 förbinder lufttorken 6 med en inloppsport 9 till en trycktank 10. Trycktanken 10 försörjer därefter en uppsättning icke visade luftförbrukare. I en alternativ utföringsform utgörs den första aktiva komponenten av en kretsdelningsventil vilken uppdelar tryckluftsystemet i två eller flera separata kretsar. Systemet för

 Π

tryckluftsförsörjning kan även innefatta fler än en trycktank. I det visade utföringsexemplet uppvisar lufttorken 6 även en andra utloppsport 11 vilken via en tredje tryckluftsledning 12 är ansluten till kompressorns avlastningsmekanism och fungerar som förmedlare av en pneumatisk styrsignal till nämnda avlastningsmekanism.

5

10

Systemet för tryckluftsförsörjning uppvisar även en reglerbar fläkt 13. Fläkten styrs av en kontrollenhet 14. Styrningen av fläkten 13 utformas så att fläkten 13 åtminstone kan slås på och av, alternativt kan styrningen utformas så att fläkten kan varvtalskontrolleras. Enligt en utföringsform av uppfinningen drivs fläkten 13 av en varvtalsreglerad elmotor, men kan även vara mekaniskt kopplad via en variabel transmission till en motor av annat slag, exempelvis en förbränningsmotor 20. Den variabla transmissionen kan utformas på ett för fackmannen välkänt sätt, exempelvis kan varvtalsregleringen ske via en viskokoppling vilken förbinder ett kraftuttag från motorn 20 med fläktens 13 rotationsaxel.

15

I det visade utföringsexemplet utgörs fläkten 13 av en reglerbar fläkt vilken ingår i förbränningsmotorns 20 kylsystem. Kylsystemet innefattar en uppsättning icke visade kylkanaler anordnade inuti förbränningsmotorn, in- och utloppskanaler 15 vilka leder kylvätskan från förbränningsmotorn 20 till en kylare 16. Kylsystemet innefattar vanligtvis även en pump 17 monterad i en inloppskanal. Fläkten 13 är företrädesvis monterad nedströms kylaren 16, vilket medför att, i det fall att systemet är monterat på ett fordon, fartvinden ger en god kylande effekt på kylaren 16.

Tryckluftsledningen 4, vilken förbinder kompressorn 2 med den första aktiva komponenten 6

placeras så att den löper förbi den av fläkten 13 genererade luftströmmen, vilket medför att

fläkten förmås kyla den av kompressorn komprimerade och därigenom uppvärmda luften

25

20

30

innan den når den första aktiva komponenten 6. Företrädesvis placeras tryckluftsledningen 4 så att den uppvisar en kontinuerligt fallande bana mellan kompressorns utloppsport 3 och den första aktiva komponentens inloppsport 5. Detta medför att fickor där vatten kan uppsamlas saknas och att därigenom bildandet av isproppar vid kallt väderlag undviks. Med kontinuerligt fallande bana avses att vid montering på plant underlag att det vinkelräta avståndet mellan det plana underlaget och ledningen minskar längs bana från utloppsporten 3 till inloppsporten 5.

Kontrollenheten 14 är vidare anordnad att fastställa kylbehov hos den av kompressorn 2 levererade tryckluften och generera en aktiveringssignal till den reglerbara fläkten 13 då

kylbehov föreligger varvid nämnda första aktiva komponent skyddas från termisk överbelastning av från kompressorn inmatad tryckluft.

5

10

15

20

25

30

Enligt en första utföringsform av uppfinningen monteras en temperatursond 18 i anslutning till tryckluftsledningen 4 för uppmätning av temperaturen hos den av kompressorn 2 levererade tryckluften. Temperatursonden 18 är signalmässigt förbunden med kontrollenheten 14. I kontrollenheten görs en jämförelse mellan uppmätt temperatur och ett gränsvärde för temperaturen. Om temperaturen överstiger detta gränsvärde genererar kontrollenheten en signal för inkoppling av fläkten, alternativt i det fall att fläkten är varvtalskontrollerad en signal om ökat önskat varvtal hos fläkten 13.

I en andra utföringsform av uppfinningen uppskattas luftledningens kylbehov ur information om kompressorns 2 arbetstillstånd. Varianter av denna andra utföringsform kommer nedan att beskrivas i anslutning till figurerna 2 – 5. Denna information innefattar information om huruvida kompressorn är aktiv eller inte, där med aktiv avses att kompressorn förser tryckluftsystemet med luft. Vidare nyttjas information om kompressorns arbetsvarvtal eftersom temperaturen hos den komprimerade luften stiger med ökat kompressorvarvtal.

Kompressorn 2 är sålunda utformad för att dels arbeta i en aktiv driftsmod då kompressorn försörjer tryckluftsystemet med tryckluft, dels vara avlastad eller inaktiv då kompressorn inte försörjer systemet. Detta kan åstadkommas på ett flertal för fackmannen välkända sätt. Enligt en utföringsform kan en ventil öppnas mellan i kompressorn befintliga cylinderrum varvid den volymetriska verkningsgraden hos kompressorn sjunker och kompressorn i detta tillstånd inte förmår generera tryckluft med ett tryck som överstiger systemtrycket. Enligt en annan utföringsform öppnas en ventil vilken förbinder kompressorns cylinderrum med omgivande atmosfår. En tredje möjlighet är att driva kompressorn via en frikopplingsbar transmission.

I figur 2 visäs schematiskt en första variant av den andra utföringsformen. Information om huruvida kompressorn arbetar eller inte erhålles enligt denna variant genom en trycksensor 21 vilken är monterad nedströms kompressorn 2 och uppströms i tryckluftsystemet ingående trycktankar 10. Trycksensorn 2 uppmäter trycket varvid kontrollenheten 14 noterar huruvida trycket överstiger ett gränsvärde. I det fall att gränsvärdet överskrids registrerar kontrollenheten 14 att kompressorn 2 arbetar. I annat fall noterar kontrollenheten 14 att kompressorn 2 är inaktiv. Företrädesvis utformas detta genom att en speciell position i

5

10

15

20

25

En andra variant av den andra utföringsformen av uppfinningen visas i figur 3. Kompressorn drivs enligt denna utföringsform av ett kraftuttag hos en förbränningsmotor 14. För att undvika att kompressorn belastar förbränningsmotorn 14 då tryckluftssystemet har fulla tryckluftstankar har kompressorn 2 en pneumatisk styrd avlastningsmekanism som stoppar kompressorns pumpning av luft till tryckluftssystemet då systemet har fulla tryckluftstankar 10. Den pneumatiskt styrda avlastningsmekanismen styrs via den tredje tryckluftsledning 12 vilken avkänner trycket i torken 6. Enligt den andra varianten registreras den pneumatiska styrsignalen via en trycksensor 22, företrädesvis placerad nedströms lufttorkens 6 andra utloppsport 11 och uppströms kompressorns inloppsport 23 för den tredje luftledningen 12. Systemet för tryckluftförsörjning innefattar en (icke visad) styrkrets i lufttorken vilken via den tredje tryckluftsledningen genererar en pneumatisk styrsignal till en avlastningsanordning ingående i kompressorn, varvid kompressorn 2 är anordnad att i- och urkopplas i beroende av ett luftförsörjningsbehov.

Enligt en tredje variant av den andra utföringsformen av uppfinningen styrs kompressorns avlastningsmekanism av en från lufttorken separat kontrollenhet 26, nämligen en governor eller regulator vilken pneumatiskt registrerar trycket i tryckluftssystemet. Enligt denna variant, vilken visas i figur 4, fastställer kontrollenheten att kompressorn arbetar genom att på samma sätt som i förra varianten registrera den pneumatiska styrsignalen till kompressorn 2 via trycksensorn 22.

Enligt en fjärde variant av den andra utföringsformen av uppfinningen, vilken visas i figur 5, fastställer kontrollenheten 14 att kompressorn 2 arbetar genom att en trycksensor 25 vilken är monterad i anslutning till trycktanken eller trycktankarna 10 registrerar tryck i trycktanken 10. Vid för lågt tryck skickar kontrollenheten 14 en elektrisk styrsignal till lufttorken 6 som i sin tur styr avlastningen av kompressorn. Kontrollenheten 14 registrerar i denna variant den elektriska styrsignalen för att fastställa att kompressorn arbetar

Enligt en femte variant av den andra utföringsformen av uppfinningen, vilken visas i figur 6 fastställer kontrollenheten, utan att själv generera styrsignal till kompressorn, att denna arbetar genom att en trycksensor 25 vilken är monterad i anslutning till trycktanken registrerar tryck och tryckförändringar hos trycktanken 10. Detta sker genom att kontrollenheten

fastställer att kompressorn arbetar när nämnda trycksensor registrerar ett tryck i trycktanken understigande ett första gränsvärde; att kontrollenheten fastställer att kompressorn inte arbetar när nämnda trycksensor registrerar ett tryck i trycktanken överstigande ett andra gränsvärde och att kontrollenheten fastställer att kompressorn arbetar när nämnda trycksensor registrerar ett tryck i trycktanken mellan nämnda första och andra gränsvärden och sensorn registrerar att trycket stiger samt att kontrollenheten fastställer att kompressorn inte arbetar när nämnda trycksensor registrerar ett tryck i trycktanken mellan nämnda första och andra gränsvärden och sensorn registrerar att trycket sjunker eller är konstant.

Vidare kan enligt en utföringsform av uppfinningen kylbehovet fastställas i beroende av temperatur hos omgivande luft och hastighet hos fordonet i det fall att systemet för tryckluftsförsörjning är monterat på ett fordon.

5

15

20

25

I figur 7 visas schematiskt de steg som enligt en utföringsform av uppfinningen genomlöps för fastställande om kylbehov föreligger eller inte. I ett första metodsteg 30 fastställs huruvida kompressorn 2 matar luft till systemet eller inte. Detta kan fastställas enligt någon av de metoder som angivits ovan. Om kompressorn inte arbetar föreligger inte något kylbehov. I ett andra steg 31 avgörs huruvida kompressorns arbetsvarvtal överstiger ett vist gränsvärde. I en utföringsform, där kompressorn drivs av en förbränningsmotor, noteras förbränningsmotorns arbetsvarvtal och kylbehov anses kunna föreligga om arbetsvarvtalet överstiger tomgångsvarvtalet hos förbränningsmotorn, vilket motsvarar ett varvtal om ca 700 varv per minut. I ett tredje steg 32 avgörs huruvida yttertemperaturen överstiger ett bestämt gränsvärde. Kylbehov föreligger enbart om yttertemperaturen överstiger detta gränsvärde. Enligt en utföringsform är detta gränsvärde satt till 0° C. I ett fjärde steg 33 avgörs huruvida ett fordon där tryckluftssystemet är monterat framdrivs med en hastighet överstigande ett gränsvärde. Kylbehov föreligger enbart då hastigheten understiger detta gränsvärde. Enligt en utföringsform är gränsvärdet satt till 50 km/h. Då kontrollerna enligt stegen ett till och med fyra utförts och besvarats jakande genererar kontrollenheten i ett femte steg 34 en aktiveringssignal till den elektriskt styrda fläkten.

I figur 8 visas en alternativ utföringsform för fastställande om kylbehov föreligger eller inte. I ett första metodsteg 30 fastställs huruvida kompressorn 2 matar luft till systemet eller inte. Detta kan fastställas enligt någon av de metoder som angivits ovan. Om kompressorn inte arbetar föreligger inte något kylbehov. I ett andra steg 31 avgörs huruvida kompressorns

arbetsvarvtal överstiger ett vist gränsvärde. I en utföringsform, där kompressorn drivs av en förbränningsmotor, noteras förbränningsmotorns arbetsvarvtal och kylbehov anses kunna föreligga om arbetsvarvtalet överstiger tomgångsvarvtalet hos förbränningsmotorn, vilket motsvarar ett varvtal om ca 700 varv per minut. I ett tredje steg 35 nyttjas parametrarna yttertempetatur T och fordonshastighet som indata till en styrfunktion i parameterrymden hastighet och yttertemperatur. Beroende av kombinationen på dessa två värden generas en utsignal som indikerar om kylbehov föreligger eller inte. I ett fjärde steg 26 generar kontrollenheten 14 en aktiveringssignal till den reglerbara fläkten om kylbehov föreligger.

I figur 9 visas schematiskt en metod för att avgöra om kompressorn 2 drivs i ett aktivt läge då kompressorn matar luft till en trycktank 10 eller inte. I ett första steg 40 avgörs huruvida trycket i trycktanken överstiger ett första gränsvärde P_{max}. Om så är fallet är kompressorn inaktiv.I ett andra steg 41 avgörs om trycket understiger ett andra gränsvärde P_{min}.Om så är fallet är kompressorn aktiv. I ett tredje steg 42 noteras om trycket i tanken stiger. Om så är fallet är kompressorn aktiv. I annat fall är kompressorn inaktiv.

Uppfinningen avser även ett fordon innefattande en förbränningsmotor 14, ett till förbränningsmotorn kopplat kylsystem 15, 16, 17, en av en kontrollenhet 14 styrd reglerbar fläkt 13 och ett system för tryckluftförsörjning 1 innefattande en kompressor 2, en tryckluftsledning 4 vilken sammanbinder ett utlopp 3 från nämnda kompressor 2 med ett inlopp 5 till en första aktiv komponent 6 där nämnda reglerbara fläkt 13 är ämnad att generera en luftström avsedd att kyla dels en radiator 16 ingående i nämnda kylsystem dels nämnda tryckluftsledning 4. Kontrollenheten 14 är anordnad att fastställa kylbehov hos den av kompressorn 2 levererade tryckluften och generera en aktiveringssignal för den reglerbara fläkten 13 då kylbehov föreligger varvid nämnda första aktiva komponent 6 skyddas från termisk överbelastning av från kompressorn inmatad tryckluft.

20

25

I detta fall nyttjas företrädesvis fordonets drivmotor 14 som kraftkälla för såväl fläkt som kompressor. Fläkten 13 är företrädesvis driven av motorn 14 via en variabel transmission och kompressorn 2 via en frikopplingsbar transmission. Fläkten nyttjas sålunda både i förbränningsmotorns kylsystem och för att kyla tryckluftsledningen 4. Fläkten styrs i detta fall av en logik där den enhet som kräver störst kylning bestämmer varvtalet hos fläkten alternativt bestämmer huruvida fläkten skall vara på- eller avslagen.

Systemet för tryckluftförsörjning i det fall det är monterat på ett fordon kan givetvis uppvisa övriga, ovan i samband med beskrivning av det generella systemet, angivna särdrag. I synnerhet kan information om fordonets hastighet nyttjas för att bestämma huruvida fläkten behöver inkopplas eller inte. Detta sker genom att fläkten enbart inkopplas i det fall att hastigheten hos fordonet understiger ett bestämt gränsvärde.

PATENTKRAV

- System för tryckluftförsörjning innefattande en kompressor (2), en tryckluftsledning (4) vilken sammanbinder ett utlopp (3) från nämnda kompressor (2) med ett inlopp (5) till en första aktiv komponent (6) och en av en kontrollenhet (14) styrd reglerbar fläkt (17) vilken är ämnad att generera en luftström avsedd att kyla nämnda tryckluftsledning (4) kännetecknad av att nämnda kontrollenhet (14) är anordnad att fastställa kylbehov hos den av kompressorn (2) levererade tryckluften och generera en aktiveringssignal för den reglerbara fläkten (17) då kylbehov föreligger varvid nämnda första aktiva komponent (6) skyddas från termisk överbelastning av från kompressorn (2) inmatad tryckluft.
- System för tryckluftförsörjning enligt patentkravet 1, kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kylbehov föreligger i de fall kompressorn (2) är aktiv och kompressorns (2) arbetsvarvtal överstiger ett bestämt gränsvärde.
 - System för tryckluftförsörjning enligt patentkravet 2, kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kylbehov föreligger i de fall temperaturen hos omgivande luft överstiger ett bestämt gränsvärde.
 - System för tryckluftförsörjning enligt något av patentkraven 1-3, där systemet innefattar en eller flera trycktankar (10) och kompressorn (2) är anordnad att inta ett aktivt läge då kompressorn (2) matar luft till nämnda trycktankar (10) samt ett passivt läge då kompressorn (2) inte matar luft till nämnda trycktankar (10) och att kompressorn (2) är anordnad att inta ett av dessa lägen i beroende av ett luftförsörjningsbehov genom påverkan av en styrsignal kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kompressorn (2) är aktiv genom registrering av nämnda styrsignal.

System för tryckluftförsörjning enligt patentkravet 4, kännetecknad av att styrsignalen är elektrisk och att styrsignalen registreras och generas av kontrollenheten (14).

6

8

9

10

System för tryckluftförsörjning enligt något av patentkraven 1 – 3, vilket system innefattar en eller flera trycktankar (10) vilka är anordnade att lagra av nämnda kompressor inmatad tryckluft, där kompressorn (2) är anordnad inta ett aktivt läge då kompressorn matar luft till nämnda trycktankar (10) samt ett passivt läge då kompressorn (2) inte matar luft till nämnda trycktankar (10) och att kompressorn (2) är anordnad att inta ett av dessa lägen i beroende av ett luftförsörjningsbehov kännetecknad av att en trycksensor (25) är anordnad i trycktanken och att kontrollenheten (14) är anordnad att fastställa att kompressorn (2) är aktiv genom av trycksensorn (25) registrerat tryck och tryckförändring hos trycktanken (10).

System för tryckluftförsörjning enligt patentkravet 7, kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kompressorn (2) är aktiv när nämnda trycksensor (25) registrerar ett tryck i trycktanken (10) understigande ett första gränsvärde.

System för tryckluftförsörjning enligt patentkraven 7 eller 8, kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kompressorn (2) är inaktiv när nämnda trycksensor (25) registrerar ett tryck i trycktanken (10) överstigande ett andra gränsvärde.

System för tryckluftförsörjning enligt patentkraven 7, 8 eller 9, kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kompressorn (2) är aktiv när nämnda trycksensor (25) registrerar ett tryck i trycktanken (10) mellan nämnda första och andra gränsvärden och sensorn (25) registrerar att trycket stiger samt att kontrollenheten (14) är anordnad att fastställa att kompressorn (2)

är inaktiv när nämnda trycksensor (25) registrerar ett tryck i trycktanken (10) mellan nämnda första och andra gränsvärden och sensorn (25) registrerar att trycket sjunker eller är konstant.

System för tryckluftförsörjning enligt något av patentkraven 1-3, kännetecknad av att en temperatursond (18) är anordnad för uppmätning av temperaturen hos den av kompressorn (2) levererade tryckluften och att kontrollenheten (14) är anordnad att fastställa att kylbehov föreligger i de fall temperaturen hos den av kompressorn (2) levererade tryckluften överstiger ett bestämt gränsvärde.

Fordon innefattande en förbränningsmotor (20), ett till förbränningsmotorn kopplat kylsystem (15, 16, 17), en av en kontrollenhet (14) styrd reglerbar fläkt (13) och ett system för tryckluftförsörjning innefattande en kompressor (2), en tryckluftsledning (4) vilken sammanbinder ett utlopp (3) från nämnda kompressor (2) med ett inlopp (5) till en första aktiv komponent (6) där nämnda reglerbara fläkt (13) är ämnad att generera en luftström avsedd att kyla dels en radiator (16) ingående i nämnda kylsystem (15,16,17) dels nämnda tryckluftsledning (4) kännetecknad av att nämnda kontrollenhet (14) är anordnad att fastställa kylbehov hos den av kompressorn (2) levererade tryckluften och generera en aktiveringssignal för den reglerbara fläkten (13) då kylbehov föreligger varvid nämnda första aktiva komponent (6) skyddas från termisk överbelastning av från kompressorn (2) inmatad tryckluft.

13

Fordon enligt patentkrav 12, där systemet för tryckluftsförsörjning innefattar en eller flera trycktankar (10) och kompressorn (2) är anordnad att inta ett aktivt läge då kompressorn (2) matar luft till nämnda trycktankar (10) samt ett passivt läge då kompressorn (2) inte matar luft till nämnda trycktankar (10) och att kompressorn (2) är anordnad att inta ett av dessa lägen i beroende av ett luftförsörjningsbehov kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kylbehov hos den av kompressorn (2) levererade tryckluften föreligger då kompressorn (2) är inkopplad och motorvarvtalet hos förbränningsmotorn (20) överstiger ett bestämt gränsvärde.

Fordon enligt patentkrav 12 eller 13, där systemet för tryckluftsförsörjning innefattar en eller flera trycktankar (10) och kompressorn (2) är anordnad att inta ett aktivt läge då kompressorn (2) matar luft till nämnda trycktankar (10) samt ett passivt läge då kompressorn (2) inte matar luft till nämnda trycktankar (10) och att kompressorn (2) är anordnad att inta ett av dessa lägen i beroende av ett luftförsörjningsbehov kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kylbehov hos den av kompressorn (2) levererade tryckluften föreligger då kompressorn (2) är inkopplad och fordonshastigheten understiger ett bestämt gränsvärde.

15

Fordon enligt patentkrav 12, 13 eller 14, där systemet för tryckluftsförsörjning innefattar en eller flera trycktankar (10) och kompressorn (2) är anordnad att inta ett aktivt läge då kompressorn (2) matar luft till nämnda trycktankar (10) samt ett passivt läge då kompressorn (2) inte matar luft till nämnda trycktankar (10) och att kompressorn (2) är anordnad att inta ett av dessa lägen i beroende av ett luftförsörjningsbehov kännetecknad av att kontrollenheten (14) är anordnad att fastställa att kylbehov hos den av kompressorn (2) levererade tryckluften föreligger då kompressorn (2) är inkopplad och yttertemperaturen överstiger ett bestämt gränsvärde.

SAMMANDRAG

System för tryckluftförsörjning innefattande en kompressor, en tryckluftsledning vilken sammanbinder ett utlopp från nämnda kompressor med ett inlopp till en första aktiv komponent och en av en kontrollenhet styrd reglerbar fläkt vilken är ämnad att generera en luftström avsedd att kyla nämnda tryckluftsledning samt fordon innefattande ett sådant system.

FIG.1

П

1 10,0

<u>FIG.5</u>

.

