Welcome Tutorial :-) Tutorial 2

GAO Ming

SE & DaSE @ ECNU

Foundations of Data Science, 2016

Tutorial 3

- 1. Let x_1, x_2, \dots, x_n be n independent samples from the identical Poisson distribution with parameter λ , (i.e., $P(X = k) = \frac{\lambda^k e^{-\lambda}}{k}$). Please find the maximum likelihood estimation (MLE) for parameter λ .
- 2. A sample of size 36 is taken from a population with unknown mean μ and standard deviation $\sigma=3$. In a test of H_0 : $\mu=5$ versus H_1 : $\mu\neq 5$ at significance level 0.05. Please write down the critical region when we reject hypothesis H_0 (note that $P(|X|>1.96)\approx 0.05$ if $X\sim N(0,1)$).
- 3. Stock prices *Y*, are assumed to be affected by the annual rate of dividend of stock *X*. A simple linear regression analysis was performed on 20 observations and the results were:

Variable	Estimation	Std. Error	T-value	$P[\cdot > t]$
INTERCEPT	-7.964	3.111	-2.560	0.0166
X	12.548	1.270	9.874	0.0001

How to understand the analysis result given by R.