SLR-FM-441

Seat	Set	D
No.	Set	

			E. (Part – I) (New) (CBCS) E Electrical En CTRA HIGH VOLTAGE AC	gine	ering
_		e: Sa	aturday, 14-12-2019 // To 05:30 PM		Max. Marks: 70
Instr	uction		book.		pe solved in first 30 minutes in answer
		2	2) Figures to the right indicate full		
Dura	tion: 3	0 M	MCQ/Objective Ty	ype	Questions Marks: 14
Q.1	Choo 1)		the correct alternatives from the flection coefficient of voltage (K _r) 0 +1		
	2)	cor a)	e most accurate and versatile menpensation is by using Switched capacitors Fixed capacitor with controlled I Saturable reactor with capacitor Switched capacitor with controll	eacto banl	or K
	3)	of ₋ a)	itching over-voltages are more ha Low voltage systems Unbalanced systems		ous than lightning surges in case 11 kV systems EHV and UHV systems
	4)	trai	nich of the following method may namission line? Series capacitor Both a and b	be us b) d)	Sed to inject reactive power in the Synchronous capacitors None of these
	5)		100% series compensation, res Power frequency 40% of Power frequency	onan b) d)	ce occur at 50% of Power frequency None of these
	6)	The a) c)	e conductors of an EHV line is se Current carrying capacity Line voltage	lecte b) d)	d on the basis of Corona and RI performance None of these
	7)	The a) c)	e power loss is important for the o Generator Feeder	desig b) d)	n of Motor Transmission line
	8)	a)	rd mode of propagation is called Line to ground Homopolar	as b) d)	Phase to phase Inter-phase

SLR-FM-441

Set P

9)	For	For Aeolian vibration the frequency of vibration is usually limited to						
,		Hz and the amplitudes less than cm.						
	a)	20 Hz, 2.5 cm	b)	25 Hz, 2.5 cm				
	c)	50 Hz, 2.5 cm	d)	50 Hz. 3.5 cm				
10)	The positive sequence reactance per phase in ohms/km in 750 kV transmission line is							
	a)	0.272	b)	0.227				
	c)	0.722	d)	None of these				
11)	Operating 750 KV line gives AN at a level of							
,	-	50 dB		55.4 dB				
	,	52 dB	d)	58.5 dB				
10\	,	,						
12)		e allowable noise level at one MF						
	,	22 dB	,	26 dB				
	C)	30 dB	d)	32 dB				
13)	a) b)	tage gradient on a transmission I at the surface of the conductor at the centre of the conductor at the distance of one radius fro none of these		-				
4.4\	,							
14)		fraction coefficient of current (J_T)	_					
	a)	$\frac{Z_0}{Z_0+Z_t}$,	$\frac{Z_0 - Z_t}{Z_0 + Z_t}$				
	۵)							
	C)	$\frac{2Z_t}{Z_0 + Z_t}$	u)	$\frac{Z_t - Z_0}{Z_0 + Z_t}$				
		20 12t		20 12t				

	<u>. </u>	
Seat	Set	D
No.	Sei	

B.E. (Part – I) (New) (CBCS) Examination Nov/Dec-2019 Electrical Engineering EXTRA HIGH VOLTAGE AC TRANSMISSION SYSTEM

Day & Date: Saturday, 14-12-2019 Max. Marks: 56

Time: 02:30 PM To 05:30 PM

Instructions: 1) All questions are compulsory.

- 2) Figures to the right indicate full marks.3) Assume suitable data if necessary.
 - Coation

Section – I

Q.2 Attempt any four.

16

- a) How the audible noise is generated and what are the characteristics?
- **b)** Derive equation for line energization with trapped charge voltage.
- c) Derive differential equations and solutions for general case in travelling waves.
- **d)** Explain in detail advantages and disadvantages of high voltage.
- **e)** Explain the relation between temperature rise and current carrying capacity of EHVAC line.
- f) Write short notes on limits for radio interference.

Q.3 Attempt any two.

12

- a) A power of 12000 MW is required to be transmitted over a distance of 1000 km. At voltage levels of 400 kV determine.
 - 1) Possible no. of circuits required with equal magnitudes for sending and receiving end voltages with 30° phase difference.
 - 2) The currents transmitted:
 - 3) The total line losses

Assume the value of x = 0.327 for 400 kV.

- **b)** Explain the charge potential relations of multi-conductor lines.
- c) Explain reflection and refraction of travelling waves.

Section - II

Q.4 Attempt any four.

16

- a) Explain the term power circle diagram and its use.
- **b)** Explain the conductor-tower, conductor-ground and conductor-conductor clearances for the design of EHV lines.
- c) State the factors under steady state in design of EHV lines?
- d) Explain the term ferro-resonance over voltages.
- e) State & explain the sources of over voltages.
- f) Explain in detail static reactive compensating system.

Q.5 Attempt any two.

12

- a) Explain line insulation design based upon transient overvoltages in detail.
- b) Derive the expressions for generalized constants of transmission line.
- c) Explain in detail sinusoidal excitation lumped parameter circuit.