Self Driving - Lane Detection Report

-Swaroop Sasikumar

Dataset: CULane Dataset (xingangpan.github.io

Model Used: Auto Encoders

Original Input Image Size: 560x1640

Original Output Type: Text Files containing x,y coordinates of the lanes in that image.

Model Trained: 3 times

Pre Processing:

- Data loaded from tarfiles

- Images are resized to 168x492
- Images are normalized
- Labels are extracted and used to draw lanes onto an np.zeros array of the same shape as input.
- Output defined as Binary Images..

Model Architecture:

- Library: TensorFlow
- **Encoder**: Sequential
 - $1. \ Input Layer (168x492) \\$
 - 2. Flatten()
 - 3. Dense(492)
- **Decoder** : Sequential
 - 1. InputLayer(492)
 - 2. Flatten()
 - 3. Dense(168x492)

Model Train 1

- **X_train**: 2000 2D images

- **y_train**: 2000 binary images

X_test: 400 2D imagesy_test: 400 binary images

- **epochs**: 100

Model Train 2 - weights loaded from previous model

- X_train: 2000 2D images

- **y_train**: 2000 binary images

X_test: 400 2D imagesy_test: 400 binary images

- **epochs**: 100

Model Train 3 - weights loaded from previous model

X_train: 400 2D images
y_train: 400 binary images
X_test: 380 2D images
y_test: 380 binary images

- epochs: 150

