1/2

LECZ - Basic Classes of Functions

Composite Functions

Let f and g such that the range of f is a subset of the domain of g. Then their composition is the function $g \circ f$ defined by $(g \circ f)(x) = g(f(x))$

Example: Suppose f is defined by the table below, and $g(x) = x^2 - 3$. What is $(g \circ f)(2)$?

X	flx)	
0	7	g(f(2)) = g(3)
2	6	\Rightarrow 3 ² -3
3	-1	⇒ 9-3
4	' L	⇒6

Even/Odd Functions

Let F be a function:

If f(-x) = f(x) for all x in the domain of f, then f is an even function even Functions are symmetric about y-axis

If f(-x) = -f(x) for all x in the domain of f, then f is an odd function odd Functions are symmetric about origin (0,0)

Odd
$f(x) = x^3$
f(x)=sinx
$f(x) = x^5$
f(x)= x27

There are 4 main ways to represent Functions. You should be able to use each type, and be able to switch between them freely.

- · Table of values · Graph
- · Formula · Word description

Piecewise-Defined Functions

A piecewise-defined function is a function defined by different formulas on different parts of its domain

Example:

$$f(x) = \begin{cases} x^2, & \text{if } x < 1 \\ 2 - x, & \text{if } 1 \le x \le 3 \\ x - 1, & \text{if } 3 \le x \end{cases}$$

$$f(-3) = (-3)^2$$
 $f(1.5) = 2 - 1.5$
= 9 = 0.5
 $f(3) = 3 - 1$ $f(7) = 7 - 1$
= 2 = 6

