

Edital n°05/2023 Programa de Extensão Tecnológica

Curso de Capacitação:

Internet das Coisas Aplicada a Agropecuária de Precisão

Código do processo: ARC-0423-5.03/23

Victor Medeiros victor.wanderley@ufrpe.br

Semana 2

Conceitos Fundamentais de Eletrônica

Internet das Coisas Aplicada a Agropecuária de Precisão

Lei de Ohm e Conceitos Básicos

teoria básica de circuitos

- A corrente elétrica é caracterizada por quatro grandezas fundamentais: tensão; corrente; resistência; e potência;
- a corrente elétrica poder ser contínua (DC) ou alternada (AC)
- Por convenção a corrente flui do pólo positivo para o pólo negativo;
- No entanto, na realidade ela flui do pólo negativo para o polo positivo;
- Unidade S.I.: ampère (A);

teoria básica de circuitos

- Lei de Kirchhoff das correntes
- Valor das correntes que entram = Valor das correntes que saem;
- Em paralelo, a corrente se distribui;
- Em série, a corrente não se altera;

tensão e resistência

- A tensão elétrica ou diferença de potencial (DDP) é uma medida da diferença de potencial elétrico entre dois pontos.
 - Em paralelo, mesmo valor;
 - o Em série, se distribui;
 - Unidade S.I.: Volts (V)
- A resistência elétrica é a medida da capacidade de um corpo qualquer se opor à passagem de corrente elétrica.
 - \circ Unidade S.I.: Ohm (Ω)

potência elétrica

- A potência elétrica é a grandeza física que mede a energia consumida para transpor a resistência em um circuito ou realizar um trabalho de algum tipo.
 - É função da tensão e da corrente. P = i * U, onde:
 - i = corrente elétrica em A;
 - U = tensão elétrica em V;
 - Unidade S.I.: Watts (W);

esquema elétrico

esquema elétrico

exemplo: esquema elétrico do Arduino UNO

componentes de lógica digital

primeira lei de ohm

Enquanto o Volt (tensão elétrica) quer empurrar o Ampere (corrente elétrica), o Ohm (resistência elétrica) quer resistir ao movimento.

$$(\mathbf{V}) = \mathbf{I} \times \mathbf{R}$$

$$\mathbf{I} = \frac{V}{R}$$

$$\mathbf{R} = \frac{V}{I}$$

primeira lei de ohm

 $R = 330 \Omega$

Código de Cores

Cor	1ª Faixa	2ª Faixa	3ª Faixa	Multiplicador	Tolerância
Preto	0	0	0	x 1 Ω	
Marrom	1	1	1	x 10 Ω	+/- 1%
Vermelho	2	2	2	x 100 Ω	+/- 2%
Laranja	3	3	3	x 1K Ω	
Amarelo	4	4	4	x 10K Ω	
Verde	5	5	5	x 100K Ω	+/5%
Azul	6	6	6	x 1M Ω	+/25%
Violeta	7	7	7	x 10M Ω	+/1%
Cinza	8	8	8		+/05%
Branco	9	9	9		
Dourado				χ.1Ω	+/- 5%
Prateado				χ.01 Ω	+/- 10%

resistores

- possuem potências e tolerâncias nominais;
 - 1/10, ½, ¼, ½, 1, 2 e 5 watts
 - 20% à menos de 1% de tolerância

associação de resistores

• podem ser associados em série ou em paralelo

Internet das Coisas Aplicada a Agropecuária de Precisão

Divisores de Tensão

divisor de tensão

Considerando VCC (V+) = 10 V, R1 = 3300 Ω e R2 = 1000 Ω , calcule o valor de **Vout**.

divisor de tensão

Considerando VCC (V+) = 10 V, R1 = 3300 Ω e R2 = 1000 Ω , calcule o valor de **Vout**.

divisor de tensão

Considerando VCC (V+) = 10 V, R1 = 3300 Ω e R2 = 1000 Ω , calcule o valor de **Vout**.

Rt = R1 + R2
$$\rightarrow$$
Rt = 3300 + 1000 = 4300 Ω
I = V / Rt \rightarrow I = 10 / 4300 \approx 0.00233 A
Vout = I * R2 \rightarrow 0.00233 * 1000 \approx 2.33 V

Internet das Coisas Aplicada a Agropecuária de Precisão

Semicondutores

semicondutores

- Sólidos cristalinos de condutividade elétrica intermediária;
- Comumente feitos de Silício, mas também podem ser feitos com outros materiais, como Germânio;
- Apresentam quatro elétrons na camada de valência;
- Empregados em todos os circuitos eletrônicos modernos, incluindo microprocessadores e nanotecnologia;

diodos

- O tipo mais simples de semicondutor;
- Composto de uma junção PN;
- Queda de tensão de acordo com o cristal:
 - Silício ~ 0.7V
 - Germânio ≈ 0.2V

Polarização Direta

Polarização Inversa

LED - diodo emissor de luz

- É comum a utilização de um resistor em série com o LED, a fim de obter uma intensidade de corrente e DDP aceitável;
- DDP LEDs Vermelhos, Amarelos e Laranjas =
 1.5V
- DDP LEDs Verdes = 2.0V
- DDP LEDs Azuis e Brancos = 3.0V
- Corrente (20mA LEDs difusos, 30 mA LEDs Alto-Brilho)

Internet das Coisas Aplicada a Agropecuária de Precisão

Pulse Width Modulation (PWM)

formas de onda

duty cycle

PWM

PWM Timing Diagram

Internet das Coisas Aplicada a Agropecuária de Precisão

Interfaces de Entrada e Saída Digitais

interfaces de entrada e saída digitais

- normalmente utiliza o padrão TTL (transistor-transistor logic)
 - o < 0.8 V '0'
 - o > 2.0 V '1'
 - > 0.8 V e < 2.0 V inválido
- resistores de *pull-up* e *pull-down* são utilizados para evitar o estado inválido.

interfaces de entrada e saída digitais

- a corrente gerada por microcontroladores é normalmente limitada e da ordem de 10 a 20 mA.
- pode-se utilizar transistores para amplificar a corrente elétrica gerada para dispositivos que demandam maior corrente
 - o circuito abaixo é utilizado para ativar um relé, por exemplo.

Internet das Coisas Aplicada a Agropecuária de Precisão

Conversão Analógico Digital

Para aprofundar:

https://makeabilitylab.github.io/physcomp/signals/QuantizationAndSampling/index.html

Quantização

Para aprofundar:

https://makeabilitylab.github.io/physcomp/signals/QuantizationAndSampling/index.html

Quantização

Para aprofundar:

https://makeabilitylab.github.io/physcomp/signals/QuantizationAndSampling/index.html

sinal analógico - DAC

16 output samples per second 62.5 ms per sample

Internet das Coisas Aplicada a Agropecuária de Precisão

Instrumentos de Medição

instrumentos de medição

