11) Other Considerations in the Regression Model

Vitor Kamada

January 2018

Reference

Tables, Graphics, and Figures from

An Introduction to Statistical Learning

James et al. (2017): Chapters: 3.3, 3.6.4, 3.6.5, 3.6.6

Credit Data Set

Predictors with Only Two Levels

$$Balance_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

 $\beta_0 + \beta_1 + \epsilon_i$ if Female $\beta_0 + \epsilon_i$ if Male

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
<pre>gender[Female]</pre>	19.73	46.05	0.429	0.6690

Predictors with More than Two Levels

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

 $\beta_0 + \beta_1 + \epsilon_i$ if Asian
 $\beta_0 + \beta_2 + \epsilon_i$ if Caucasian
 $\beta_0 + \epsilon_i$ if African American

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

No Interaction vs Interaction

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i1} x_{i2} + \epsilon_i$$
$$\beta_0 + \beta_2 + (\beta_1 + \beta_3) x_{i1} \text{ if student}$$
$$\beta_0 + \beta_1 x_{i1} \text{ if not student}$$

Im.fit=Im(Sales~.+Income:Advertising+Price:Age, data=Carseats); contrasts(ShelveLoc)

```
Estimate Std. Error t value Pr(>|t|)
                     6.5755654
                                              6.519 2.22e-10
(Intercept)
                                 1.0087470
                                                              ***
CompPrice
                     0.0929371
                                 0.0041183
                                             22.567
                                                      < 2e-16
                     0.0108940
                                 0.0026044
                                              4.183 3.57e-05
                                                              ** ** **
Income
Advertising
                     0.0702462
                                 0.0226091
                                              3.107
                                                    0.002030
Population |
                     0.0001592
                                 0.0003679
                                              0.433
                                                    0.665330
Price
                    -0.1008064
                                 0.0074399
                                            -13.549
                                                      < 2e-16
                                                              水水水
SheliveLocGood
                     4.8486762
                                 0.1528378
                                             31.724
                                                     < 2e-16
ShelveLocMedium
                     1.9532620
                                 0.1257682
                                             15.531
                                                      < 2e-16
                                                              ***
                                                              ***
                    -0.0579466
                                 0.0159506
                                             -3.633
                                                    0.000318
Age
                    -0.0208525
                                 0.0196131
                                             -1.063
                                                    0.288361
Education
                                              1.247
UrbanYes
                     0.1401597
                                 0.1124019
                                                    0.213171
                    -0.1575571
                                 0.1489234
                                             -1.058
                                                    0.290729
USYes
                                              2.698
                                                    0.007290
Income: Advertising
                     0.0007510
                                 0.0002784
                     0.0001068
                                 0.0001333
                                              0.801
                                                    0.423812
Price: Age
```

	Good	Medium
Bad	0	0
Good	1	0
Medium	0	1 1

Residuals vs Fitted Values

mpg on HP

mpg on HP HP^2

Uncorrelated Error Terms

$$Cov(\epsilon_t, \epsilon_s | X) = 0$$
, for all $t \neq s$

Correlated Error Terms

Homoscedasticity vs Heteroscedasticity

$$Var(\epsilon_i) = \sigma^2$$

Studentized Residuals (SR)

SR is computed by dividing each e_i by its estimated standard error

> 3 are possible outliers

lm.fit=lm(medv~lstat,data=Boston)

plot(predict(lm.fit), rstudent(lm.fit))

High Leverage Points (Unusual Value for x_i)

$$h_i = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum\limits_{i=1}^{n} (x_i - \bar{x})^2}$$

Im.fit=Im(medv~Istat,data=Boston)

plot(hatvalues(lm.fit))

which.max(hatvalues(lm.fit))

375