POTENTIAL OUTCOMES

Denis Cohen

Mannheim Centre for European Social Research (MZES)

- ✓ denis.cohen@mzes.uni-mannheim.de
- **②** denis-cohen.github.io
- **y** @denis_cohen

Social Science Data Lab MZES, University of Mannheim September 10, 2019

Logistics

- Workshop materials: github.com/socialsciencedatalab/potential-outcomes
- Live stream: zoom.us/j/386654642

General information

- Introduction to Potential Outcomes (60 min)
- Simulation Exercise (30 min)
- Prep course for Florian Foos "Randomized Experiments and Randomization Inference", Sept 16, 15:30-17:00

Introduction

USING CORRELATIONS/ASSOCIATIONS FOR CAUSAL INFERENCE

- we nearly always find notable correlations/associations among variables in (observational) data
- correlation/association indicates that there may be an effect that may have a causal interpretation
- exact identification hinges on the assumption of no unobserved heterogeneity (aka exogeneity, no confounding bias)

CONFOUNDING BIAS (IMAI 2017, P. 58)

A pretreatment variable that is associated with both the treatment and the outcome variables is called a **confounder** and is a source of **confounding bias** in the estimation of the treatment effect.

CAUSAL IDENTIFICATION

- We can try to make this assumption more credible, for instance by
 - subsetting the sample to rather homogeneous subgroups
 - using covariate adjustment to reduce unit heterogeneity
 - matching
 - randomization
- Ultimately, causal identification requires that all observed <u>and</u> unobserved confounders are accounted for – or 'eliminated' by design
- This assumption remains untestable no matter the research design!
- Causal inference thus requires making untestable assumption
- Causal identification: Development and application of an identification strategy that makes these assumptions as plausible and defensible as possible

Potential Outcomes

- "What if?": Potential outcomes is all about hypothetical counterfactuals
- More specifically: Comparing factual and the counterfactual states
- Core assumption: Every unit in the population has a potential outcome Y_i under each possible treatment condition.
- For a binary treatment *D* (received=1, not received=0), we speak of treatment and control
- Causal effects can only be identified in comparison of different treatment states at the unit level: $\tau_i = Y_i(D_i = 1) Y_i(D_i = 0)$

- i = 1, ..., N: subscript to denote a unit
- $D_i \in \{0, 1\}$: hypothetical treatment status (here: binary)
- $d_i \in \{0, 1\}$: factual treatment status
- $z_i \in \{0, 1\}$: assignment to treatment/control group (may differ from d_i !)
- $(Y_i(0), Y_i(1))$: potential outcomes of unit i in its untreated and treated state (general: $Y_i(D_i)$)
- $Y_i(d_i)$: factual/observed outcome of unit i
- X_i: covariate(s) (potential confounder(s)) for unit i
- $E[Y_i(1)]$: expectatation of outcome across all units under treatment
- $E[Y_i(1)|D_i=0]$: expectatation of outcome across all units under treatment conditional on being in the control group a counterfactual conditional expectation

Setup

- We have a sample of N = 1000 students. Our outcome of interest, Y_i , is knowledge about counterfactual causality measured by test scores in a quiz on causal inference.
- The treatment of interest, D_i , is attending a 90 minute talk titled "Introduction to the Potential Outcomes Framework".
- Assignment of treatment status equals actual receipt of treatment, $z_i = d_i$.
- Students' potential outcomes under the control, $Y_i(0)$, range between 20 and 80.
- Individual treatment effects, τ_i , range between 0 and 20.
- Potential outcomes under the treatment, $Y_i(1)$, range between 20 and 100.

i	$Y_i(0)$	$Y_i(1)$	$ au_{i}$
1	42.1	49.1	7
2	33.3	46	12.7
3	60.7	71.4	10.8
:	÷	÷	÷
998	61.1	73.6	12.5
999	54.8	61.8	7
1000	43.6	52.9	9.3
(mean)	50.5	60.6	10.1

Table 1: What if students took the class? What if they didn't? Potential Outcomes under treatment and control plus idiosyncratic treatment effects

THE FUNDAMENTAL PROBLEM OF CAUSAL INFERENCE (FPCI)

- we never observe more than one potential outcome for a given unit at a time
- if $D_i \in \{0, 1\}$, we observe $Y_i = d_i Y_i(1) + (1 d_i) Y_i(0)$
 - we observe $Y_i(1)$ if $d_i = 1$
 - we observe $Y_i(0)$ if $d_i = 0$
- if $D_i \in \{0, 1, ..., K\}$, we observe $Y_i = \sum_{k=1}^{K} 1\{d_i = k\}Y_i(k)$ i.e., we observe $Y_i(k)$ if and only if $d_i = k$

i	$Y_i(0)$	$Y_i(1)$	$ au_{i}$
1	42.1	?	?
2	?	46	?
3	?	71.4	?
:	:	÷	÷
998	61.1	?	?
999	?	61.8	?
1000	?	52.9	?
(mean*)	51.2	59.7	8.5

Table 2: The fundamental problem of causal inference illustrated.

* sample means based on observed values.

Remember: Idiosyncratic causal effects can only be identified in comparison of different treatment states at the unit level: $\tau_i = Y_i(1) - Y_i(0)$.

- 1 Assume temporal stability and causal transience
 - expose each unit i to control, measure $Y_i(0)$; then expose to treatment, measure $Y_i(1)$
 - calculate $\tau_i = Y_i(1) Y_i(0)$
- 2 Assume unit homogeneity
 - expose one unit to control, measure $Y_i(0)$; expose other unit to treatment, measure $Y_i(1)$
 - calculate $\tau_{ij} = Y_i(1) Y_i(0)$
- 3 Statistical Method
 - shift the focus to expected causal effects
 - observe average outcomes of units in treatment and control groups
 - estimate $E[\tau] = E[Y_i(1)] E[Y_i(0)]$ per $\overline{Y(1)} \overline{Y(0)}$

- Remember: $Y_i(1)$ and $Y_i(0)$ are hypothetical random variables defined over all units for different treatment conditions
- ATE is the average in potential outcomes:

$$\begin{split} E[\tau_i] &= E[Y_i(1) - Y_i(0)] \\ &= E[Y_i(1)] - E[Y_i(0)] \\ &= \{ \pi E[Y_i(1)|D_i = 1] + (1 - \pi)E[Y_i(1)|D_i = 0] \} \\ &- \{ \pi E[Y_i(0)|D_i = 1] + (1 - \pi)E[Y_i(0)|D_i = 0] \} \end{split}$$

 Which of these can we estimate from observed data? Which are unobservable counterfactual quantities?

AVERAGE TREATMENT EFFECT (ATE)

What we want to know:
$$E[\tau_i] = E[Y_i(1)] - E[Y_i(0)]$$

$$\{\pi\underbrace{E[Y_i(1)|D_i=1]}_{\text{factual}} + (1-\pi)\underbrace{E[Y_i(1)|D_i=0]}_{\text{counterfactual}}\}$$

$$-\{\pi\underbrace{E[Y_i(0)|D_i=1]}_{\text{counterfactual}} + (1-\pi)\underbrace{E[Y_i(0)|D_i=0]}_{\text{factual}}\}$$

What we do know:

$$\hat{\tau} = E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0]$$
naive estimator

Cohen (MZES) Potential Outcomes 14 / 27

ESTIMATING THE ATE

- The naive estimator: difference-in-means, $\hat{\tau} = \overline{Y(1)} \overline{Y(0)}$
- When does this estimator yield an unbiased estimate? What assumption do we make?

$$\begin{split} &\{\pi\underbrace{E[Y_i(1)|D_i=1]}_{\text{as observed}} + (1-\pi)\underbrace{E[Y_i(1)|D_i=0]}_{\text{assume} = E[Y_i(1)|D_i=1]}\} \\ &- \{\pi\underbrace{E[Y_i(0)|D_i=1]}_{\text{assume} = E[Y_i(0)|D_i=0]}\} + (1-\pi)\underbrace{E[Y_i(0)|D_i=0]}_{\text{as observed}}\} \end{split}$$

• If these assumptions hold:

$$\underbrace{\frac{\left\{\pi E[Y_{i}(1)|D_{i}=1]+(1-\pi)E[Y_{i}(1)|D_{i}=0]\right\}}_{=E[Y_{i}(1)]}}_{=E[Y_{i}(0)|D_{i}=1]\}+(1-\pi)E[Y_{i}(0)|D_{i}=0]\}}_{=E[Y_{i}(0)]}$$

• But when are these defensible assumptions to make?

Imagine you were randomly split into two groups. What would be your expectation regarding the distribution of...

- observable characteristics?
- unobservable characteristics?
- idiosyncracies that result in random or systematic measurement error?
- possible responses to an experimental treatment?

Thus, under randomization:

- $Y_i(0), Y_i(1) \perp D_i$ for all i = 1, ..., N
- $X_i \perp D_i$ for all i = 1, ..., N

$$\begin{split} E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] &= \underbrace{E[\tau_i]}_{\text{True ATE}} \\ &+ \underbrace{\left\{E[Y_i(0)|D_i = 1] - E[Y_i(0)|D_i = 0]\right\}}_{\text{selection bias}} \\ &+ \underbrace{\left(1 - \pi\right)\left\{E[\tau_i|D_i = 1] - E[\tau_i|D_i = 0]\right\}}_{\text{differential treatment effect bias}} \end{split}$$

...so?

BIAS IN THE ATE IN THE ABSENCE OF RANDOMIZATION

$$E[Y_i(1)|D_i = 1] - E[Y_i(0)|D_i = 0] = E[\tau_i]$$

only holds if:

1 no selection bias:

$$E[Y_i(0)|D_i = 1] = E[Y_i(0)|D_i = 0]$$

2 no differential treatment effects

$$\begin{split} E[\tau_i|D_i=1] = & E[\tau_i|D_i=0] \\ E[Y_i(1)|D_i=1] - E[Y_i(0)|D_i=1] = & E[Y_i(1)|D_i=0] - E[Y_i(0)|D_i=0] \\ E[Y_i(1)|D_i=1] - E[Y_i(1)|D_i=0] = & E[Y_i(0)|D_i=1] - E[Y_i(0)|D_i=0] \end{split}$$

TWO CORE ASSUMPTIONS ABOUT POTENTIAL OUTCOMES

- 1 Excludability (Exclusion Restriction)
 - Potential outcomes only respond to d, the actual receipt of the treatment
 - Over and beyond d, they are unaffected by assignment to the treatment group, z
- 2 Non-Interference (SUTVA)
 - Potential outcomes are unaffected by the pattern of actual or assigned treatments of other units

Summary

- The Fundamental Problem of Causal Inference does not make causal inference impossible. It makes causal inference without making untested assumptions impossible!
- An identification strategy encompasses the clear statement of these assumptions and a research design that makes them as plausible and defensible as possible.
- The most defensible design is the experimental ideal: Randomized control trials.
- The more your design approximates the experimental ideal, the more defensible it is.

WHEN YOU WANT TO MAKE CAUSAL CLAIMS...

- Identify your causal question.
- Think about the ideal experiment to answer your question.
- How does deviation from the ideal affect your results?
- What if you could more strongly resemble an experiment? What could change?
- What assumptions do you have to make in order for your design to approximate the experimental ideal?
- Justify these assumptions!

Simulation Exercise

Setup

- We have a sample of *N* = 1000 students. Our outcome of interest, *Y_i*, is knowledge about counterfactual causality measured by test scores in a quiz on causal inference.
- The treatment of interest, D_i, is attending a 90 minute talk titled "Introduction to the Potential Outcomes Framework".
- Assignment of treatment status equals actual receipt of treatment, $z_i = d_i$.
- Students' potential outcomes under the control, $Y_i(0)$, range between 20 and 80.
- Individual treatment effects, τ_i , range between 0 and 20.
- Potential outcomes under the treatment, $Y_i(1)$, range between 20 and 100.
- Students' probability of selecting into the class is a direct function of their prior ability, i.e., of their potential outcomes under the control, $Y_i(0)$.
- Similarly, prior ability affects how much they learn (i.e., the size of their idiosyncratic treatment effects, τ_i) students with a higher prior ability tend get more out of the class.

Two Scenarios

- 1 Randomization: Pure chance determines whether students attend the talk or not
- 2 Self-Selection: Students self-select into the class, based on prior ability

We want to quantify the magnitude of selection bias and differential treatment effect bias under randomization and under self-selection.

- 1 Before you start, set a seed for reproducibility of your random variable generation (set.seed()).
- 2 Generate an integer, N <- 1000L, to be used in determining the length of the variables we create below.</p>
- 3 Generate a variable of potential outcomes under the control, Y_0, containing random draws from a uniform distribution with support [20, 80] (runif()).
- 5 Show a scatter plot with **Y_0** on the *x*-axis and **tau** on the *y*-axis. Briefly interpret the pattern you observe.

- 6 Generate a variable of potential outcomes under the treatment, Y_1, using the two variables you previously generated.
- $\footnote{footnote{O}}$ Generate a randomly assigned binary treatment indicator, \footnote{D} , which takes on values of either 0 or 1 from a Bernoulli distribution, which is a special case of the binomial distribution with n=1, meaning we take n=1 draw for each observation i (rbinom). Suppose everyone has equal probability of being assigned to either treatment or control group.
- 8 Show that the potential outcomes are independent of treatment status. Choose an appropriate test or statistic and give a brief interpretation.
- ⊙ Generate a variable Y_obs that takes the values of Y_0 if D==0 and the values of Y_1 if D==1.
- Run a regression of Y_obs on D to gauge the average treatment effect. Give a brief interpreation.

- Next, generate a variable D_sel that indicates receipt of the treatment in a scenario of self selection. For this, generate a variable prob_sel equal to the potential outcomes under control divided by 100. This gives you each student's probability of selecting into the treatment. Use these probabilities to draw D_sel from a Bernoulli distribution.
- Using the same test you chose above, test if the potential outcomes are independent of D_sel and give a brief interpretation.
- Generate a variable Y_obs_sel that takes the values of Y_0 if D_sel==0 and the values of Y_1 if D_sel==1.
- Run a regression of Y_obs_sel on D_sel to gauge the average treatment effect under selection bias.
- (5) Specify the magnitude of both selection bias and differential treatment effect bias. Explain how the two differ conceptually and interpret the estimates.

References

BIBLIOGRAPHY i

- Abadie, Alberto, Alexis Diamond, and Jens Hainmueller. 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California's Tobacco Control Program." *Journal of the American Statistical Association* 105 (490): 493–505.
- Angrist, Joshua D, and Jörn-Steffen Pischke. 2008. *Mostly Harmless Econometrics: An Empiricist's Companion*. Princeton, NJ: Princeton University Press.
- Gerber, Alan S, and Donald P Green. 2012. Field Experiments. Design, Analysis, and Interpretation. New York, London: W.W. Norton & Company.
- Imai, Kosuke. 2017. Quantitative Social Science. An Introduction. Princeton, NJ: Princeton University Press.
- Morgan, Stephen L, and Christopher Winship. 2015. *Counterfactuals and causal inference*. 2nd. Cambridge: Cambridge University Press.