Calc III Sections

Fall 2025

Hui Sun

September 30, 2025

Calc III-Week 6 (9/29-10/3)

Topics: (1) Higher-order derivatives, (2) Taylor expansion.

Proposition 1 (symmetry of second partials). Let f(x,y) be twice continuously differentiable, then

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2}{\partial y \partial x}$$

Definition 1 (First order Taylor expansion). Let $f:U\subset\mathbb{R}^n\to\mathbb{R}$ be differentiable at $a\in U$, then

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + R_1(a, x)$$

where

$$\frac{R_1(a,x)}{\|x-a\|} \to 0 \text{ as } x \to a$$

Definition 2 (Alternative Definition (First-order)). Let $f:U\subset\mathbb{R}^n\to\mathbb{R}$ be differentiable at $a\in U$. Then

$$f(a+h) = f(a) + \sum_{i=1}^{n} h_i \frac{\partial f}{\partial x_i}(a) + R_1(a,h)$$

where $R_1(a,h)/\|h\| \to 0$ as $h \to 0$.

Definition 3 (Second order Taylor expansion). Let $f:U\subset\mathbb{R}^n\to\mathbb{R}$ be twice continuously differentiable at $a\in U$, then

$$f(x) = f(a) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(x_i - a_i) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_j}(a)(x_i - a_i)(x_j - a_j) + R_2(a, x)$$

where

$$\frac{R_2(a,x)}{\|x-a\|} \to 0 \text{ as } x \to a$$

Problem 1. Find all the second partial derivatives of $f(x,y) = xy + \log(x-y)$. (This includes $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial y^2}$).

Problem 2. Write the second-order Taylor expansion for the following function,

$$f(x,y) = e^{x+y}$$

centered at (x, y) = (0, 0).