Closed form of hessian of negative binomial GLM with model for dispersion and mean parameter

David Fischer

August 3, 2018

Contents

1	Mod	el description	1	
	1.1	Likelihood	1	
	1.2	Parameter models	2	
	1.3	Derivatives of parameter models	2	
2	Mis	ancellous	2	
	2.1	Polygamma function	2	
3	Jaco	bians	3	
	3.1	Jacobian mean model	3	
	3.2	Jacobian dispersion model	4	
4	Block-wise entries of hessian matriy			
	4.1	Mean-model block $H^{m,m}$	5	
		4.1.1 Mean-model block diagonal elements	5	
		4.1.2 Mean-model block off-diagonal elements	5	
		4.1.3 Mean-model block elements	6	
	4.2	Dispersion-model block $H^{r,r}$	7	
		4.2.1 Dispersion-model block diagonal elements	7	
		4.2.2 Dispersion-model block off-diagonal elements	8	
	4.3	Offdiagonal-model block $H^{r,m}$	10	
		4.3.1 Offdiagonal-model block derived from mean-model jacobian	11	
		4.3.2 Offdiagonal-model block derived from dispersion-model jacobian	12	
		4.3.3 Offdiagonal-model block elements	12	

1 Model description

1.1 Likelihood

The negative binomial likelihood of the GLM is:

$$L(y|\theta_i^m, \theta_i^r) = \frac{\Gamma(r(\theta^r) + y)}{y!\Gamma(r(\theta^r))} \left(\frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)}\right)^y \left(\frac{r(\theta^r)}{r(\theta^r) + m(\theta^m)}\right)^{r(\theta^r)} \tag{1}$$

The negative binomial log-likelihood of the GLM is:

$$LL(y|\theta_{i}^{m},\theta_{i}^{r}) = \log L(y|\theta_{i}^{m},\theta_{i}^{r})$$

$$= \log(\Gamma(r(\theta^{r}) + y)) - \log(y!\Gamma(r(\theta^{r}))) + y * (\log(m(\theta^{m})) - \log(r(\theta^{r}) + m(\theta^{m})))$$

$$+ r(\theta^{r}) * (\log(r(\theta^{r})) - \log(r(\theta^{r}) + m(\theta^{m})))$$
(2)

1.2 Parameter models

The mean (m) and dispersion (r) model of the GLM with design matrices X^m and X^r look as follows:

$$r(\theta^r) = \exp(\langle X^r, \theta_i^r \rangle) \tag{3}$$

$$m(\theta^m) = \exp(\langle X^m, \theta_i^m \rangle) \tag{4}$$

1.3 Derivatives of parameter models

Using the chain rule $\frac{f(m)}{d\theta_i^m} = \frac{f(m)}{m} \frac{m}{d\theta_i^m}$ we can decompose the first derivative. Firstly, the derivative of the mean model with respect to its parameters is:

$$\frac{d}{d\theta_i^m} m(\theta^m) = \frac{d}{d\theta_i^m} \exp(\langle X^m, \theta_i^m \rangle)$$

$$= \exp(\langle X^m * \theta^m \rangle) * X_i^m$$

$$= m(\theta^m) * X_i^m$$
(5)

Where X_i^m is the column of X^m that corresponds to θ_i^m . Equivalently for the dispersion model:

$$\frac{d}{d\theta_i^r} r(\theta^r) = \frac{d}{d\theta_i^r} \exp(\langle X^r, \theta_i^r \rangle)$$

$$= \exp(\langle X^r * \theta^r \rangle) * X_i^r$$

$$= r(\theta^r) * X_i^r$$
(6)

2 Miscancellous

2.1 Polygamma function

In the following, we also need the polygamma function ψ to compute the derivative of the gamma function:

$$\frac{d^{(n+1)}}{dy^{(n+1)}}\log(\Gamma(y)) = \psi_n(y) \tag{7}$$

$$\frac{d}{d\theta_i^r} \log \Gamma(r(\theta^r)) = \frac{d}{d\theta_i^r} \left(r(\theta^r) \right) * \psi_0(r(\theta^r))$$

$$= r(\theta^r) * X_i^r * \psi_0(r(\theta^r))$$
(8)

$$\frac{d^2}{d(\theta_i^r)^2} \log \Gamma(r(\theta^r)) = \frac{d}{d\theta_i^r} \frac{d}{d\theta_i^r} \log(\Gamma(y))$$

$$= \frac{d}{d\theta_i^r} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \right)$$

$$= X_i^r * \frac{d}{d\theta_i^r} \left(r(\theta^r) \right) * \psi_0(r(\theta^r)) + X_i^r * r(\theta^r) * \frac{d}{d\theta_i^r} \left(\psi_0(r(\theta^r)) \right)$$

$$= X_i^r * r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) + X_i^r * r(\theta^r) * r(\theta^r) * X_i^r * \psi_1(r(\theta^r))$$

$$= r(\theta^r) * (X_i^r)^2 * (\psi_0(r(\theta^r)) + r(\theta^r) * \psi_1(r(\theta^r)))$$
(9)

 $\psi_0(y)$ and $\psi_1(y)$ can be directly evaluated with scipy.special.polygamma().

Note that due to the chain rule, both homogenous and heterogenous secondary derivatives of the polygamma function can be computed via ψ_1 :

$$\frac{d^2}{dx_i x_j} \log \Gamma(y(x)) = \frac{dy}{dx_i} \frac{dy}{dx_j} \frac{d^2}{dy^2} \log \Gamma(y(x))$$

$$= \frac{dy}{dx_i} \frac{dy}{dx_j} \psi_1(y(x))$$
(10)

$$\frac{d^2}{d\theta_i^r \theta_j^r} \log \Gamma(r(\theta^r)) = \frac{d}{d\theta_j^r} \frac{d}{d\theta_i^r} \log(\Gamma(y))$$

$$= \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \right)$$

$$= X_i^r * \frac{d}{d\theta_j^r} \left(r(\theta^r) \right) * \psi_0(r(\theta^r)) + X_i^r * r(\theta^r) * \frac{d}{d\theta_j^r} \left(\psi_0(r(\theta^r)) \right)$$

$$= X_i^r * r(\theta^r) * X_j^r * \psi_0(r(\theta^r)) + X_i^r * r(\theta^r) * r(\theta^r) * X_j^r * \psi_1(r(\theta^r)) \right)$$

$$= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r)) + r(\theta^r) * \psi_1(r(\theta^r)))$$
(11)

3 Jacobians

3.1 Jacobian mean model

The Jacobians of the GLM wrt to the m model is:

$$\frac{d}{d\theta_{i}^{m}}LL(y|\theta^{m},\theta^{r}) = \frac{d}{d\theta_{i}^{m}}\log(\Gamma(r(\theta^{r})+y)) - \frac{d}{d\theta_{i}^{m}}\log(y!\Gamma(r(\theta^{r})))$$

$$+ \frac{d}{d\theta_{i}^{m}}y*\left(\log(m(\theta^{m})) - \log(r(\theta^{r}) + m(\theta^{m}))\right)$$

$$+ \frac{d}{d\theta_{i}^{m}}r(\theta^{r})\left(\log(r(\theta^{r})) - \log(r(\theta^{r}) + m(\theta^{m}))\right)$$

$$= y*\left(\frac{d}{d\theta_{i}^{m}}\log(m(\theta^{m})) - \frac{d}{d\theta_{i}^{m}}\log(r(\theta^{r}) + m(\theta^{m}))\right)$$

$$+ r(\theta^{r})*\left(\frac{d}{d\theta_{i}^{m}}\log(r(\theta^{r})) - \frac{d}{d\theta_{i}^{m}}(\log(r(\theta^{r})) + m(\theta^{m}))\right)$$

$$= y*\left(\frac{1}{m(\theta^{m})}\frac{dm(\theta^{m})}{d\theta_{i}^{m}} - \frac{1}{r(\theta^{r}) + m(\theta^{m})}\frac{dm(\theta^{m})}{d\theta_{i}^{m}}\right)$$

$$- \frac{r(\theta^{r})}{r(\theta^{r}) + m(\theta^{m})}\frac{dm(\theta^{m})}{d\theta_{i}^{m}}$$

$$= \frac{dm(\theta^{m})}{d\theta_{i}^{m}}\left(\frac{y}{m(\theta^{m})} - \frac{y + r(\theta^{r})}{r(\theta^{r}) + m(\theta^{m})}\right)$$

$$= m(\theta^{m})*X_{i}^{m}\left(\frac{y}{m(\theta^{m})} - \frac{y + r(\theta^{r})}{r(\theta^{r}) + m(\theta^{m})}\right)$$

$$= X_{i}^{m}*y - X_{i}^{m}*(y + r(\theta^{r}))*\frac{m(\theta^{m})}{r(\theta^{r}) + m(\theta^{m})}$$

3.2 Jacobian dispersion model

The Jacobians of the GLM wrt to the r model is:

$$\begin{split} \frac{d}{d\theta_i^r} LL(y|\theta^m,\theta^r) &= \frac{d}{d\theta_i^r} \log(\Gamma(r(\theta^r)+y)) - \frac{d}{d\theta_i^r} \log(y!\Gamma(r(\theta^r))) \\ &+ y* \frac{d}{d\theta_i^r} \bigg(\log(m(\theta^m)) - \log(r(\theta^r)+m(\theta^m)) \bigg) \\ &+ \frac{d}{d\theta_i^r} \bigg(r(\theta^r)* \bigg(\log(r(\theta^r)) - \log(r(\theta^r)+m(\theta^m)) \bigg) \bigg) \\ &= r(\theta^r)* X_i^r * \psi_0(r(\theta^r)+y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \\ &- y* \frac{d}{d\theta_i^r} \bigg(\log(r(\theta^r)+m(\theta^m)) \bigg) \\ &+ \frac{d}{d\theta_i^r} \bigg(r(\theta^r)* \log(r(\theta^r)) \bigg) - \frac{d}{d\theta_i^r} \bigg(r(\theta^r) \log(r(\theta^r)+m(\theta^m)) \bigg) \\ &= r(\theta^r)* X_i^r * \psi_0(r(\theta^r)+y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \\ &- y* \frac{1}{r(\theta^r)+m(\theta^m)} r(\theta^r) * X_i^r \\ &+ \bigg(r(\theta^r)* X_i^r * \log(r(\theta^r)) + r(\theta^r) * r(\theta^r) * X_i^r * \frac{1}{r(\theta^r)} \bigg) \\ &- \bigg(r(\theta^r)* X_i^r * \log(r(\theta^r)+m(\theta^m)) + r(\theta^r) * r(\theta^r) * X_i^r * \frac{1}{r(\theta^r)+m(\theta^m)} \bigg) \\ &= r(\theta^r)* X_i^r * \psi_0(r(\theta^r)+y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \\ &- \frac{1}{r(\theta^r)+m(\theta^m)} r(\theta^r) * X_i^r * (r(\theta^r)+y) \\ &+ r(\theta^r)* X_i^r * \bigg(\log(r(\theta^r)) + 1 - \log(r(\theta^r)+m(\theta^m)) \bigg) \end{split}$$

4 Block-wise entries of hessian matriy

The hessian can be decomposed into a block-wise hessian of the form $H = [[H^{m,m}, H^{m,r}], [H^{r,m}, H^{r,r}]],$ where $H^{r,m} = H^{m,r}$ as H is symmetric.

4.1 Mean-model block $H^{m,m}$

4.1.1 Mean-model block diagonal elements

The diagonal elements of the mean-model-block of the hessian (using the quotient rule) are:

$$\begin{split} H_{i,i}^{m,m} &= \frac{d^2}{d\theta_i^m d\theta_i^m} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_i^m} \frac{d}{d\theta_i^m} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_i^m} \left(X_i^m * y - X_i^m * (y + r(\theta^r)) * \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \right) \\ &= -X_i^m * (y + r(\theta^r)) \frac{d}{d\theta_i^m} \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \\ &= -X_i^m * (y + r(\theta^r)) * \frac{\frac{d}{d\theta_i^m} \left(m(\theta^m) \right) * (r(\theta^r) + m(\theta^m)) - m(\theta^m) * \frac{d}{d\theta_i^m} \left(r(\theta^r) + m(\theta^m) \right)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * \frac{m(\theta^m) * X_i^m * (r(\theta^r) + m(\theta^m)) - m(\theta^m) * m(\theta^m) * X_i^m}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * m(\theta^m) * X_i^m * \frac{r(\theta^r) + m(\theta^m) - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * m(\theta^m) * X_i^m * \frac{r(\theta^r) + m(\theta^m) - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * m(\theta^m) * X_i^m * \frac{r(\theta^r)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * X_i^m * m(\theta^m) * \frac{y/r(\theta^r) + 1}{(1 + m(\theta^m)/r(\theta^r))^2} \end{split}$$

4.1.2 Mean-model block off-diagonal elements

The off-diagonal elements of the mean-model-block of the hessian are:

$$\begin{split} H_{i,j}^{m,m} &= \frac{d^2}{d\theta_i^m d\theta_j^m} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^m} \frac{d}{d\theta_i^m} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^m} \left(X_i^m * y - X_i^m * (y + r(\theta^r)) * \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \right) \\ &= -X_i^m * (y + r(\theta^r)) \frac{d}{d\theta_j^m} \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \\ &= -X_i^m * (y + r(\theta^r)) * \frac{\frac{d}{d\theta_j^m} \left(m(\theta^m) \right) * (r(\theta^r) + m(\theta^m)) - m(\theta^m) * \frac{d}{d\theta_j^m} \left(r(\theta^r) + m(\theta^m) \right)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * \frac{m(\theta^m) * X_j^m * (r(\theta^r) + m(\theta^m)) - m(\theta^m) * m(\theta^m) * X_j^m}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * m(\theta^m) * X_j^m * \frac{r(\theta^r) + m(\theta^m) - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * (y + r(\theta^r)) * m(\theta^m) * X_j^m * \frac{r(\theta^r) + m(\theta^m) - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -X_i^m * X_j^m * m(\theta^m) * \frac{y/r(\theta^r) + 1}{(1 + m(\theta^m)/r(\theta^r))^2} \end{split}$$

5

4.1.3 Mean-model block elements

The equation is always the same and does not simplify for the diagonal:

$$H_{i,j}^{m,m} = -X_i^m * X_j^m * m(\theta^m) * \frac{y/r(\theta^r) + 1}{(1 + m(\theta^m)/r(\theta^r))^2}$$
(16)

This is also the result from Zwilling et al.

4.2 Dispersion-model block $H^{r,r}$

4.2.1 Dispersion-model block diagonal elements

The diagonal elements of the dispersion-model-block of the hessian (using the quotient rule) are: This should yield the same apart of i, j as the off-diagonal elements in the next section. This is

true.

$$\begin{split} &H_{i,i}^{r,r} = \frac{d^2}{d\theta_i^2} d\theta_i^r L L(y|\theta^m,\theta^r) \\ &= \frac{d}{d\theta_i^2} \frac{d}{d\theta_i^m} L L(y|\theta^m,\theta^r) \\ &= \frac{d}{d\theta_i^r} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \right) \\ &- \frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * \left(r(\theta^r) + y \right) \\ &+ r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= \frac{d}{d\theta_i^r} \left(\frac{d}{d\theta_i^r} \log \Gamma(r(\theta^r) + y) \right) + \frac{d}{d\theta_i^r} \left(\frac{d}{d\theta_i^r} \log \Gamma(r(\theta^r)) \right) \\ &- \frac{d}{d\theta_i^r} \left(\frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * (r(\theta^r) + y) \right) \\ &+ \frac{d}{d\theta_i^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r))) \\ &- \frac{d}{d\theta_i^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ \frac{d}{d\theta_i^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ \frac{d}{d\theta_i^r} \left(\frac{d}{d\theta_i^r} r(\theta^r) + m(\theta^m) * (r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * (X_i^r)$$

$$H_{i,i}^{r,r} = r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ + r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r))) \\ - \left(\frac{r(\theta^r) * X_i^r * X_i^r * m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) + \frac{r(\theta^r) * X_i^r}{(r(\theta^r) + m(\theta^m)} * r(\theta^r) * X_i^r\right) \\ + X_i^r * \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m))\right) + r(\theta^r) * X_i^r * \left(1 - \frac{r(\theta^r)}{r(\theta^r) + m(\theta^m)}\right)\right) \\ = r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ + r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r))) \\ - \frac{r(\theta^r) * (X_i^r)^2 * m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) - \frac{r(\theta^r) * X_i^r}{r(\theta^r) + m(\theta^m)} * r(\theta^r) * X_i^r \\ + r(\theta^r) * (X_i^r)^2 * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m))\right) \\ + r(\theta^r) * (X_i^r)^2 * \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \\ = r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ + r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r))) \\ - \frac{r(\theta^r) * (X_i^r)^2 * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r)))}{r(\theta^r) + m(\theta^m)^2} * (r(\theta^r) + m(\theta^m)) \\ + r(\theta^r) * (X_i^r)^2 * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m))\right) \\ + r(\theta^r) * (X_i^r)^2 * \left(\psi_0(r(\theta^r) + y) + \psi_0(r(\theta^r)) - \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) + \log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) + \frac{m(\theta^m) - r(\theta^r)}{r(\theta^r) + m(\theta^m)}} \right) \\ + r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)))$$

4.2.2 Dispersion-model block off-diagonal elements

The off-diagonal elements of the dispersion-model-block of the hessian are:

$$\begin{split} &H_{i,j}^{rr} = \frac{d^2}{d\theta_i^2 d\theta_i^r} L L(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^r} \frac{d}{d\theta_j^m} L L(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \right) \\ &- \frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * \left(r(\theta^r) + y \right) \\ &+ r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= \frac{d}{d\theta_j^r} \left(\frac{d}{d\theta_i^r} \log \Gamma(r(\theta^r) + y) \right) + \frac{d}{d\theta_j^r} \left(\frac{d}{d\theta_i^r} \log \Gamma(r(\theta^r)) \right) \\ &- \frac{d}{d\theta_j^r} \left(\frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * (r(\theta^r) + y) \right) \\ &+ \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * \frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &+ X_i^r * \left(\frac{d}{d\theta_j^r} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * r(\theta^r) * X_j^r * \left(r(\theta^r) * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * r(\theta^r) * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * r(\theta^r) * X_j^r * \psi_0(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y) + r(\theta^r) * X_j^r * \left(r(\theta^r) * X_j^r * \psi_0(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + m(\theta^m)) + r(\theta^r) * X_i^r * r(\theta^r) * X_j^r * r(\theta^r) * x_j^r$$

$$\begin{split} H_{i,j}^{r,r} &= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r))) \\ &- \left(\frac{r(\theta^r) * X_j^r * X_i^r * m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) + \frac{r(\theta^r) * X_i^r}{r(\theta^r) + m(\theta^m)} * r(\theta^r) * X_j^r \right) \\ &+ X_i^r * \left(r(\theta^r) * X_j^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &+ r(\theta^r) * X_j^r * \left(1 - \frac{r(\theta^r)}{r(\theta^r) + m(\theta^m)} \right) \right) \\ &= r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * \psi_1(r(\theta^r) + y)) \\ &+ r(\theta^r) * X_i^r * X_j^r * \psi_0(r(\theta^r) + r(\theta^r) * \psi_1(r(\theta^r))) \\ &- \left(r(\theta^r) * X_j^r * X_i^r * \frac{m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) - r(\theta^r) * X_i^r * X_j^r * \frac{r(\theta^r)}{r(\theta^r) + m(\theta^m)} \right) \\ &+ r(\theta^r) * X_i^r * X_j^r \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * X_i^r * X_j^r * \left(\psi_0(r(\theta^r) + y) + \psi_0(r(\theta^r) - \frac{m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) \right) \\ &- \frac{r(\theta^r)}{r(\theta^r) + m(\theta^m)} + \log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) + \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \\ &= r(\theta^r) * X_i^r * X_j^r * \left(\psi_0(r(\theta^r) + y) + \psi_0(r(\theta^r) - \frac{m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} * (r(\theta^r) + y) \right) \\ &+ \frac{m(\theta^m) - r(\theta^r)}{r(\theta^r) + m(\theta^m)} + \log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + y)) + r(\theta^r) * \psi_1(r(\theta^r) + m(\theta^m)) \right) \\ &+ r(\theta^r) * \psi_1(r(\theta^r) + \psi_1(r(\theta^r) + \psi_1(r(\theta^r) + \psi_1(r(\theta^r) + \psi_1(r($$

4.3 Offdiagonal-model block $H^{r,m}$

Two-alternative derivations which should and do yield the same.

4.3.1 Offdiagonal-model block derived from mean-model jacobian

The off-diagonal elements of the off-block-diagonal hessian (mean-dispersion-model-block) are:

$$\begin{split} H_{i,j}^{r,m} &= \frac{d^2}{d\theta_i^m d\theta_j^r} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^r} \frac{d}{d\theta_i^m} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^r} \left(X_i^m * y - X_i^m * (y + r(\theta^r)) * \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \right) \\ &= -X_i^m * \frac{d}{d\theta_j^r} \left((y + r(\theta^r)) \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} \right) \\ &= -X_i^m * \left(r(\theta^r) * X_j^r * \frac{m(\theta^m)}{r(\theta^r) + m(\theta^m)} - (y + r(\theta^r)) * r(\theta^r) * X_j^r * \frac{m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \right) \\ &= -m(\theta^m) * X_i^m * r(\theta^r) * X_j^r * \frac{1}{r(\theta^r) + m(\theta^m)} - \frac{y + r(\theta^r)}{r(\theta^r) + m(\theta^m))^2} \\ &= -m(\theta^m) * X_i^m * r(\theta^r) * X_j^r * \frac{r(\theta^r) + m(\theta^m) - y - r(\theta^r)}{(r(\theta^r) + m(\theta^m))^2} \\ &= -m(\theta^m) * X_i^m * r(\theta^r) * X_j^r * \frac{m(\theta^m) - y}{(r(\theta^r) + m(\theta^m))^2} \\ &= m(\theta^m) * X_i^m * r(\theta^r) * X_j^r * \frac{y - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= X_i^m * X_j^r * m(\theta^m) * \frac{y - m(\theta^m)}{(1 + m(\theta^m)/r(\theta^r))^2} \end{split}$$

4.3.2 Offdiagonal-model block derived from dispersion-model jacobian

Validation of the off-diagonal elements of the off-block-diagonal hessian (mean-dispersion-model-block) via the Jacobian of the dispersion model:

$$\begin{split} H_{i,j}^{r,m} &= \frac{d^2}{d\theta_j^m d\theta_j^r} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^m} \frac{d}{d\theta_i^r} LL(y|\theta^m, \theta^r) \\ &= \frac{d}{d\theta_j^m} \left(r(\theta^r) * X_i^r * \psi_0(r(\theta^r) + y) + r(\theta^r) * X_i^r * \psi_0(r(\theta^r)) \right) \\ &- \frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * (r(\theta^r) + y) \\ &+ r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= -\frac{d}{d\theta_j^m} \left(\frac{1}{r(\theta^r) + m(\theta^m)} r(\theta^r) * X_i^r * (r(\theta^r) + y) \right) \\ &+ \frac{d}{d\theta_j^m} \left(r(\theta^r) * X_i^r * \left(\log(r(\theta^r)) + 1 - \log(r(\theta^r) + m(\theta^m)) \right) \right) \\ &= -r(\theta^r) * X_i^r * (r(\theta^r) + y) * \frac{d}{d\theta_j^m} \frac{1}{r(\theta^r) + m(\theta^m)} \\ &- r(\theta^r) * X_i^r * (r(\theta^r) + y) * m(\theta^m) * X_j^m \frac{1}{r(\theta^r) + m(\theta^m)} \\ &= r(\theta^r) * X_i^r * m(\theta^m) * X_j^m \frac{1}{r(\theta^r) + m(\theta^m)} \\ &= r(\theta^r) * X_i^r * m(\theta^m) * X_j^m \frac{r(\theta^r) + y}{(r(\theta^r) + m(\theta^m))^2} - \frac{1}{r(\theta^r) + m(\theta^m)} \\ &= r(\theta^r) * X_i^r * m(\theta^m) * X_j^m \frac{r(\theta^r) + y - r(\theta^r) - m(\theta^m)}{(r(\theta^r) + m(\theta^m))^2} \\ &= r(\theta^r) * X_i^r * m(\theta^m) * X_j^m \frac{y - m(\theta^m)}{r(\theta^r) + m(\theta^m))^2} \\ &= r(\theta^r) * X_i^r * m(\theta^m) * X_j^m \frac{y - m(\theta^m)}{r(\theta^r) + m(\theta^m))^2} \\ &= X_i^m * X_j^r * m(\theta^m) * \frac{y - m(\theta^m)}{r(\theta^r) + m(\theta^m))^2} \end{split}$$

4.3.3 Offdiagonal-model block elements

$$H_{i,j}^{r,m} = X_i^m * X_j^r * m(\theta^m) * \frac{y - m(\theta^m)}{(1 + m(\theta^m)/r(\theta^r))^2}$$
(23)

This is the result from Zwilling et al. *-1.