

第五章:神经网络

主讲:连德富特任教授 | 博士生导师

邮箱: liandefu@ustc.edu.cn

手机: 13739227137

主页: http://staff.ustc.edu.cn/~liandefu

2016年AI技术重大突破

Versions	Hardware	Elo	Date	Results	
AlphaGo Fan	176 GPUs, distributed	3,144	Oct-15	5:0 against Fan Hui	
AlphaGo Lee	48 TPUs, distributed	3,739	Mar-16	4:1 against Lee Sedol	
AlphaGo Master	4 TPUs, single machine	4,858	May-17	60:0 against professional players; Future of Go Summit	
AlphaGo Zero (40 block)	4 TPUs, single machine	5,185	Oct-17	100:0 against AlphaGo Lee 89:11 against AlphaGo Master	
AlphaZero (20 block)	4 TPUs, single machine	5,018	Dec-17	60:40 against AlphaGo Zero (20 block)	

Rank	Name	3,5	Flag	Elo
1	Shin Jinseo	8	(0)	3800
2	Ke Jie	8		3726
3	Park Junghwan	රි	(0)	3692
4	<u>Gu Zihao</u>	ð		3667
5	<u>Lian Xiao</u>	ð		3596
6	<u>Fan Tingyu</u>	ð		3589
7	Fan Yunruo	8	24	3576
8	<u>Jiang Weijie</u>	8		3574
9	Shin Minjun	8		3572
10	Yang Dingxin	8	**	3570
11	<u>Xie Erhao</u>	8	**	3566
12	Mi Yuting	8	**	3562
13	<u>Xie Ke</u>	8		3557
14	<u>Ding Hao</u>	8	***	3556
15	<u>Tuo Jiaxi</u>	8		3555
16	<u>Ichiriki Ryo</u>	8	•	3554
17	Chen Yaoye	8	**	3550
18	<u>Xu Jiayang</u>	8		3538
19	<u>Iyama Yuta</u>	ð	•	3538
20	Tong Mengcheng	8		3530
21	Byun Sangil	ð	(0)	3527
22	Lee Donghoon	ð	(0)	3525
23	Tao Xinran	8		3522
24	Zhao Chenyu	ð		3519
25	<u>Li Weiqing</u>	ð	*	3518
26	Kang Dongyun	රි	(0)	3504
27	<u>Liao Yuanhe</u>	8	*	3501
28	Shi Yue	8	*	3499

AlphaGo中的机器学习

• 策略网络

Policy network

Value network

监督学习

• 预测人类如何下下一步棋

强化学习

• 学习如何下下一步棋以最大化赢率

• 值网络

估计给定棋局的赢率

通过(深度)神经网络来实现

《机器学习概论》 2022-10-16

神经网络是什么?

- 线性模型 $y = \mathbf{w}^{\mathsf{T}} \mathbf{x}$: 无法建模任何两个输入变量之间的相互作用
- 扩展线性模型来表示 x 的非线性函数, $y = \phi(x)^{\mathsf{T}} w$
- 简单机器学习方法常通过<mark>特征工程设计 $\phi(x)$ </mark>

• (深度)神经网络直接<mark>学习特征表示</mark>,即 $y = f(x; \theta, w) = \phi(x; \theta)^T w$

神经网络是什么?

2022-10-16

神经网络发展史—第一阶段

- 1943年, McCulloch和Pitts 提出第一个神经元数学模型, 即M-P模型, 并从原理上证明了人工神经网络能够计算任何算数和逻辑函数
- 1949年, Hebb 发表《The Organization of Behavior》一书, 提出生物神经元学习的机理,即Hebb学习规则
- 1958年, Rosenblatt 提出<mark>感知机网络</mark>(Perceptron)模型和其学习规则
- 1960年, Widrow和Hoff提出自适应线性神经元(Adaline)模型和最小均方学习算法
- 1969年, Minsky和Papert 发表《Perceptrons》一书, 指出单层神经网路不能解决非线性问题, 多层网络的训练算法尚无希望. 这个论断导致神经网络进入低谷

《机器学习概论》 2022-10-16

神经网络发展史—第二阶段

- 1982年, 物理学家Hopfield提出了一种具有联想记忆、优化计算能力的递归网络模型, 即Hopfield 网络
- 1986年, Rumelhart 等编辑的著作《Parallel Distributed Proceesing: Explorations in the Microstructures of Cognition》报告了反向传播算法
- 1987年, IEEE 在美国加州圣地亚哥召开第一届神经网络国际会议 (ICNN)
- 90年代初, 伴随统计学习理论和SVM的兴起, 神经网络由于理论不够清楚, 试错性强, 难以训练, 再次进入低谷

《机器学习概论》 2022-10-16

神经网络发展史—第三阶段

- 2006年, Hinton提出了深度信念网络(DBN), 通过"预训练+微调" 使得深度模型的最优化变得相对容易
- 2012年, Hinton 组参加ImageNet 竞赛, 使用 CNN 模型以超过第二 名10个百分点的成绩夺得当年竞赛的冠军
- 伴随云计算、大数据时代的到来,计算能力的大幅提升,使得深度学习模型在计算机视觉、自然语言处理、语音识别等众多领域都取得了较大的成功

Images & Video

Text & Language

REUTERS :

神经元模型

• 神经网络的定义

"<mark>神经网络</mark>是由具有适应性的<mark>简单单元</mark>组成的广泛并行互联的网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的反应"

[Kohonen, 1988]

- 机器学习中的神经网络通常是指"神经网络学习"或者机器学习与神经网络两个学科的交叉部分
- •神经元模型即上述定义中的"简单单元"是神经网络的基本成分

生物神经网络

每个神经元与其他神经元相连,当它"兴奋"时,就会向相连的神经元发送化学物质,从而改变这些神经元内的电位;如果某神经元的电位超过一个"阈值",那么它就会被激活,即"兴奋"起来,向其它神经元发送化学物质

神经元模型

M-P 神经元模型 [McCulloch and Pitts, 1943]

- 输入:来自其他n个神经云传递 过来的输入信号
- 处理:輸入信号通过带权重的 连接进行传递,神经元接受到总 输入值将与神经元的阈值进行 比较
- 输出:通过激活函数的处理以得到输出

神经元模型—激活函数

1.0 x

0 1 x -1.0 -0.5 0 0.5 $=\begin{cases} 1, & \text{if } x \geq 0; \\ 0, & \text{if } x < 0. \end{cases}$ sigmoid $(x) = \frac{1}{1 + e^{-x}}$ $\xrightarrow{\text{therefore the proof of the pro$

理想激活函数是阶跃函数 0表示抑制神经元;1表示激活神经元 阶跃函数具有不连续、不光滑等不好的 性质, 常用的是 Sigmoid 函数

 \uparrow sigmoid(x)

0.5

感知机

• 感知机由两层神经元组成, 输入层接受外界输入信号传递给输出层, 输出层是M-P神经元(阈值逻辑单元)

《机器学习概论》 2022-10-16

感知机

• 感知机能够容易地实现逻辑与、或、非运算

感知机学习

- 给定训练集, 权重 w_i (i = 1, 2, ..., n)与阈值 θ 可以通过学习得到
- 感知机学习规则

对训练样例(x,y),若当前感知机的输出为 \hat{y} ,则感知机权重调整规则为:

$$w_i \leftarrow w_i + n(y - \hat{y})x_i$$

学习率

对应如下更新规则

若对训练样本(x,y)预测正确,则感知机不发生变化;若预测值更大,降低激活输入的权重;若预测值更小,增加激活输入的权重

感知机学习

- 若两类模式线性可分,则感知机的学习过程一定会收敛;否感知机的学习过程将会发生震荡 [Minsky and Papert, 1969]
- 单层感知机的学习能力非常有限, 只能解决线性可分问题

感知机学习

• 与、或、非问题是线性可分的, 因此感知机学习过程能够求得适当的权值向量

• 异或问题不是线性可分的, 感知机学习不能求得合适解

对于非线性可分问题, 如何求解?

多层感知机

多层感知机

输出层与输入层之间的一层神经元,被称之为隐层或隐含层,隐含层和输出层神经元都是具有激活函数的功能神经元

图 5.5 能解决异或问题的两层感知机

多层感知机

•
$$h = max(0, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ -1 \end{bmatrix})$$

•
$$y = [1, -2] h - 0.5$$

多层前馈神经网络

- 定义:每层神经元与下一层神经元全互联,神经元之间不存在同层连接也不存在跨层连接
- 前馈: 输入层接受外界输入, 隐含层与输出层神经元对信号进行加工, 最终结果由输出层神经元输出
- 学习:根据训练数据来调整神经元之间的"连接权"以及每个功能神经元的"阈值"
- 多层网络: 包含隐层的网络

(a) 单隐层前馈网络

(b) 双隐层前馈网络

多层前馈神经网络—表示能力

 只需要一个包含足够多神经元且具有任何 "挤压" 性质的激活 函数的隐层,多层前馈神经网络就能以任意精度逼近有界闭集上 的任意连续函数

hidden layer 1 hidden layer 2

$$I_1 = \tanh (W_1 x + b_1)$$
 $I_2 = \tanh (W_2 I_1 + b_2)$

多层前馈神经网络

• 如何学习多层前馈神经网络的参数呢?

误差逆传播算法

误差逆传播算法(Error BackPropagation, 简称BP)是最成功的训练多层前馈神经网络的学习算法

输出/维实值向量y

 θ_i : 输出层第j个神经元阈值

whi: 隐层与输出层神经元之间的连接权重

γ_h: 隐含层第h个神经元阈值

v_{ih}: 输入层与隐层神经元之间的连接权重

网络中需要 (d + l + 1)q + l 个参数 需要优化

输入示例x由d个属性描述

BP是一个迭代学习算法, 在迭代的每一轮中采用广义的感知机学习规则对参数进行更新估计, 任意的参数v的更新估计式为

$$v \leftarrow v + \Delta v$$

训练样本

好瓜=是

误差逆传播算法—前向

前向预测

$$\mathbf{x} \xrightarrow{\boldsymbol{\beta}_{h} = \sum_{i} x_{i} v_{ih}} b_{h} \xrightarrow{\boldsymbol{\alpha}_{j} = \sum_{h} b_{h} w_{hj}} \boldsymbol{y}$$

误差逆传播算法—后向

后向传播

$$w_{hj} = w_{hj} + \Delta w_{hj} \qquad \Delta w_{hj} = \eta \operatorname{Error}_{j} \operatorname{Output}_{h} = \eta g_{j} b_{h} \quad E(\mathbf{W}) = \frac{1}{2} \sum_{j=1}^{l} (y_{j} - d_{j})^{2}$$

$$\Delta w_{hj} = -\eta \frac{\partial E(W)}{\partial w_{hj}} = -\eta \frac{\partial E(W)}{\partial y_j} \frac{\partial y_j}{\partial a_j} \frac{\partial a_j}{\partial w_{hj}} = \eta (d_j - y_j) f'_{(2)}(a_j) b_h = \eta g_j b_h$$

误差逆传播算法—后向

后向传播

$$v_{ih} = v_{ih} + \Delta v_{ih}$$

$$\Delta v_{ih} = \eta \text{Error}_{h} \text{Output}_{i} = \eta e_{h} x_{i}$$

$$E(\mathbf{W}) = \frac{1}{2} \sum_{j=1}^{l} (y_{j} - d_{j})^{2}$$

$$\Delta v_{ih} = -\eta \frac{\partial E(W)}{\partial v_{ih}} = -\eta \frac{\partial E(W)}{\partial b_h} \frac{\partial b_h}{\partial \beta_h} \frac{\partial \beta_h}{\partial v_{ih}} = \eta \sum_j g_j w_{hj} f_{(1)}^{(j)} (\beta_h) x_i = \eta e_h x_i$$

BP算法: 简单例子

• 考虑如下简单网络 假设激活函数为Sigmoid函数

Input: 0.35×0.1+0.9×0.8=0.755 0.7525

Output: 0.68 0.6797

Error: $e1=g*w1*o*(1-o)=-0.0406*0.3*0.68*(1-0.68)=-2.650*10^{-3}$

 $w3+w3+e1*A=0.1+(-2.650*10^{-3})*0.35=0.0991$ 0.1Input 0.3 $w1^{+}=w1+g*o1=0.3+(-0.0406)*0.68=0.2724$ A = 0.350.8 0.7976 Output=0.5 0.4-0.3971 Input: 0.3×0.68+0.9×0.6637=0.80133 0.7631 0.6 误差从0.19降到0.1820 Output: 0.69 0.6820 Input 0.9 Error: g=(t-o)(1-o)o=(0.5-0.69)(1-0.69)0.69=-0.0406B = 0.9 $\dot{w}^{2+}=\dot{w}^{2}+g^{*}o^{2}=0.9+(-0.0406)^{*}0.6637=0.8731$ $w6^{+}=w6+e2*B=0.6+(-8.156*10^{-3})*0.9=0.5927$

Input: 0.35×0.4+0.9×0.6=0.68 0.6724

Output: 0.6637 0.6620

Error: $e2=g*w2*o*(1-o)=-0.0406*0.9*0.6637*(1-0.6637)=-8.156*10^{-3}$

BP演示

http://playground.tensorflow.org/


```
输入: 训练集 D = \{(\boldsymbol{x}_k, \boldsymbol{y}_k)\}_{k=1}^m; 学习率 \eta.
```

过程:

1: 在(0,1)范围内随机初始化网络中所有连接权和阈值

2: repeat

3: for all $(\boldsymbol{x}_k, \boldsymbol{y}_k) \in D$ do

4: 根据当前参数和式(5.3) 计算当前样本的输出 $\hat{m{y}}_k;$

5: 根据式(5.10) 计算输出层神经元的梯度项 g_j ;

6: 根据式(5.15) 计算隐层神经元的梯度项 e_h ;

7: 根据式(5.11)-(5.14) 更新连接权 w_{hj}, v_{ih} 与阈值 θ_j, γ_h

8: end for

9: until 达到停止条件

输出:连接权与阈值确定的多层前馈神经网络

图 5.8 误差逆传播算法

图 5.9 在 2 个属性、5 个样本的西瓜数据上, BP网络参数更新和分类边界的变化情况

- 标准 BP 算法
 - 每次针对单个训练样例更新权值与阈值

也称为随机梯度下降

- 参数更新频繁, 不同样例可能抵消, 需要多次迭代.
- •累计 BP 算法
 - 优化的目标是最小化整个训练集上的累计误差

$$E = \frac{1}{m} \sum_{k=1}^{m} E_k$$

• 读取整个训练集一遍才对参数进行更新, 参数更新频率较低.

但在很多任务中, 累计误差下降到一定程度后, 进一步下降会非常缓慢, 这时标准BP算法往往会获得较好的解, 尤其当训练集非常大时效果更明显.

- 标准 BP 算法 Stochastic Gradient Descent
 - 每次针对单个训练样例更新权值与阈值 每次十分
- •累计 BP 算法
 - 优化的目标是最小化整个训练集上的累计误差

$$E = \frac{1}{m} \sum_{k=1}^{m} E_k$$

<mark>读完整个数据集再更新参数</mark> (更快地收敛)

一般是先累计BP再标准BP

• 小批量随机梯度下降法

Mini-Batch Stochastic Gradient Descent

$$\frac{\partial E}{\partial \boldsymbol{\theta}} = \frac{1}{m} \sum_{k=1}^{m} \frac{\partial E_k}{\partial \boldsymbol{\theta}} \approx \frac{1}{n} \sum_{i=1}^{n} \frac{\partial E_i}{\partial \boldsymbol{\theta}}$$

n ≪ m, 称为batch size <mark>批大小</mark>

随机性bias --> shuffle

需要保证梯度无偏性

- 多层前馈网络局限 数据集太少--->过拟合
 - 神经网络由于强大的表示能力, 经常遭遇过拟合

表现为: 训练误差持续降低, 但测试误差却可能上升

早停

• 在训练过程中, 若训练误差降低, 但验证误差升高, 则停止训练

正则化 保证权重不会太大

- •在误差目标函数中增加一项描述网络复杂程度的部分,例如连接权值与阈值的平方和
- 如何设置隐层神经元的个数仍然是个未决问题

实际应用中通常使用"试错法"调整

《机器学习概论》 2022-10-16

激活函数

这两个函数容易陷入饱和 --> 梯 度下降到0

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

对ReLU改进,在 x < 0 改为梯度很小, 可以继续学习

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

x > 0 时梯度恒为1,不会陷入饱和。 但x < 0 后梯度为0,无法继续学习

激活函数

激活函数

- ReLU(整流线性单元)
- 与Softplus函数近似
- $f_{\text{ReLU}}(x) = \max(0, x)$

$$f_{\text{Softplus}}(x) = \log(1 + e^x)$$

蓝色这个激活函数效果不好,导致网络稀疏

ReLU支持稀疏表示

只有一部分神经元被激活

损失函数

均方误差
$$\frac{1}{2}\sum_{j}(y_{j}-d_{j})^{2}$$

种意义上的距离)

one-hot向量

多分类损失 Cross Entropy $-\sum_i d_i \log y_i$

$$-\sum_{j}d_{j}\log y_{j}$$

交叉熵

$$H(P,Q) = \sum_{x} P(x) \log Q(x)$$

$$y_{j} = \frac{\exp(\alpha_{j})}{\sum_{j'} \exp(\alpha_{j'})}$$

二分类损失 Cross Entropy I = 1 $-d \log y - (1 - d) \log (1 - y)$

$$y = \frac{1}{1 + \exp(-a)}$$

深度学习初探

1958 1958 38

层次性地抽取特征 --> 递归性定义

- 深度学习将大千世界表示为嵌套的层次概念体系
 - 由较简单概念间的联系定义复杂概念
 - 从一般抽象概括到高级抽象表示

深度神经网络

共享参数的前窥神经网络

深度卷积网络

循环神经网络

图卷积网络

深度卷积网络

一维卷积

$$s(t) = \int x(a)w(t-a)da$$

$$s(t) = \sum_{a} x(a)w(t-a)$$

• 二维卷积

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,i-n)$$

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i-m,j-n)K(m,n)$$

• 互相关函数

$$S(i,j) = (I * K)(i,j) = \sum_{m} \sum_{n} I(i+m,j+n)K(m,n)$$

输入

卷积网络中的卷积

卷积的例子

卷积的例子

7x7的输入 3x3的核

5x5的输出

卷积的例子

7x7的输入 3x3的核 步幅为2

3x3的输出

卷积

N

	F		
F			
			_

- 输出大小: (N-F)/S+1
 - · S为步幅大小
- 比如N=7, F=3
 - 步幅为1, (7-3)/1+1=5
 - 步幅为2, (7-3)/2+1=3
 - 步幅为3, (7-3)/3+1=2.3..

卷积层

池化层

2x2的核, 步幅为2

6	8		
3	4		
 最大池化			

3.25 5.25 2 2

平均池化

pulling可以带来一定 的平移不变性

手写字符识别

• MNIST (handwritten digits) 数据集

http://yann.lecun.com/exdb/mnist/

6万训练样本和1万测试样本

错误案例

图片分类

ImageNet数据集

大约2万2千个类别,1 千5百万张经过Amazon 众包平台标注过的图片

图片分类

微软ResNet

在ImageNet图像数据库上,达到4.94%的错误率,低于人类5.1%的错误率

• 建模序列数据, 比如文本、时间序列等

有限响应模型

今天的信息只会对未来N天内的 预测有用

$$Y_t = f(X_t, X_{t-1}, \dots, X_{t-N})$$

无限响应模型

今天的信息对未来任何时刻的 预测都有用

$$Y_t = f(X_t, X_{t-1}, \dots, X_{t-\infty})$$

•用隐状态变量(状态)**h**,"存储"直到t时刻的历史数据 $\{x_1, \dots, x_t\}$,并用状态转移方程进行描述

$$\mathbf{h}_t = f_{\mathbf{W}}(\mathbf{h}_{t-1}, \mathbf{x}_t)$$

每个时间步上的函数相同

新状态 参数W 旧状态 t时刻的输入

$$\mathbf{h}_{t} = f_{W}(f_{W}(f_{W}(\mathbf{h}_{t-3}, \mathbf{x}_{t-2}), \mathbf{x}_{t-1}), \mathbf{x}_{t})$$

Time

称Vanilla RNN 或Elman RNN

前向网络

例: 视频帧分类 例: 图像描述 视频帧 -> 类别

图像 -> 句子

例:文本分类 文档 -> 类别

例: 机器翻译 句子 -> 句子

Image Captioning (图像描述)

循环神经网络

Image Captioning (图像描述)

A cat sitting on a suitcase on the floor

A cat is sitting on a tree branch

A dog is running in the grass with a frisbee

A white teddy bear sitting in the grass

Two people walking on the beach with surfboards

A tennis player in action on the court

Two giraffes standing in a grassy field

A man riding a dirt bike on a dirt track

机器翻译

2016年,Google官方将全 产品线的翻译算法换成了基 于神经网络的机器翻译系统

作业

- 5.1
- 讨论 $\frac{\exp(x_i)}{\sum_{j=1}^{C}\exp(x_j)}$ 和 $\log \sum_{j=1}^{C}\exp(x_j)$ 的数值溢出问题
- 计算 $\frac{\exp(x_i)}{\sum_{j=1}^{C} \exp(x_j)}$ 和 $\log \frac{\exp(x_i)}{\sum_{j=1}^{C} \exp(x_j)}$ 关于向量 $\mathbf{x} = [x_1, ..., x_C]$ 的梯度
- 考虑如下简单网络,假设激活函数为ReLU,用平方损失 $\frac{1}{2}$ ($y \hat{y}$) 2 计算误差,请用BP算法更新一次所有参数(学习率为1),给出更新后的参数值(给出详细计算过程),并计算给定输入值x=(0.2,0.3)时初始时和更新后的输出值,检查参数更新是否降低了平方损失值.

