1 sequential xor count based on words

Denote a 4×4 MDS matrix M_1 as

$$M_1 = \left(egin{array}{ccccc} I & A^2 \oplus I & A^2 & A^2 \oplus A \ I & A^2 \oplus A \oplus I & A^2 \oplus A & A^2 \ A & A & I & I \ A & A^2 \oplus A & A^2 \oplus I & A^2 \oplus A \oplus I \end{array}
ight).$$

Then, the matrix M_1 can be decomposed as

$$M_{1} = \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & I & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 & 0 \\ I & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 & I \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix} \begin{pmatrix} I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ 0 & 0 & I & 0 \\ 0 & 0 & 0 & I \end{pmatrix},$$

which also can be represented as

$$M_1 = \overline{\mathbf{12}}(1)\overline{\mathbf{4}}(1)\overline{\mathbf{3}}(1)E_{(4)}(A)\overline{\mathbf{11}}(1)\overline{\mathbf{7}}(A)E_{(2)}(A)\overline{\mathbf{5}}(1)\overline{\mathbf{1}}(1)\overline{\mathbf{9}}(1).$$

Figure 1: An implementation circuit of MDS matrix M_1 based on the words, where (x_0, \dots, x_3) are input words, (y_0, \dots, y_3) are output words.

2 sequential xor count based on bits

Denote the matrix A is $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{pmatrix}$. Then the matrix M_1 can be expressed as

1	$x_8 \leftarrow x_{12} \oplus x_8$	19	$x_{12} \leftarrow x_4 \oplus x_{12}$
2	$x_9 \leftarrow x_{13} \oplus x_9$	20	$x_{13} \leftarrow x_5 \oplus x_{13}$
3	$x_{10} \leftarrow x_{14} \oplus x_{10}$	21	$x_{14} \leftarrow x_6 \oplus x_{14}$
4	$x_{11} \leftarrow x_{15} \oplus x_{11}$	22	$x_{15} \leftarrow x_7 \oplus x_{15}$
5	$x_0 \leftarrow x_4 \oplus x_0$	23	$x_{14} \leftarrow x_{15} \oplus x_{14}$
6	$x_1 \leftarrow x_5 \oplus x_1$	24	$y_0 \leftarrow x_{12} \oplus x_0$
7	$x_2 \leftarrow x_6 \oplus x_2$	25	$y_1 \leftarrow x_{13} \oplus x_1$
8	$x_3 \leftarrow x_7 \oplus x_3$	26	$y_2 \leftarrow x_{14} \oplus x_2$
9	$x_4 \leftarrow x_4 \oplus x_8$	27	$y_3 \leftarrow x_{15} \oplus x_3$
10	$x_5 \leftarrow x_5 \oplus x_9$	28	$y_4 \leftarrow y_0 \oplus x_4$
11	$x_6 \leftarrow x_6 \oplus x_{10}$	29	$y_5 \leftarrow y_1 \oplus x_5$
12	$x_7 \leftarrow x_7 \oplus x_{11}$	30	$y_6 \leftarrow y_2 \oplus x_6$
13	$x_6 \leftarrow x_6 \oplus x_7$	31	$y_7 \leftarrow y_3 \oplus x_7$
14	$y_8 \leftarrow x_8 \oplus x_1$	32	$y_{12} \leftarrow y_8 \oplus x_{12}$
15	$y_9 \leftarrow x_9 \oplus x_2$	33	$y_{13} \leftarrow y_9 \oplus x_{13}$
16	$x_{10} \leftarrow x_{10} \oplus x_3$	34	$y_{14} \leftarrow y_{10} \oplus x_{14}$
17	$y_{11} \leftarrow x_{11} \oplus x_0$	35	$y_{15} \leftarrow y_{11} \oplus x_{15}$
18	$y_{10} \leftarrow x_{10} \oplus x_0$		

Table: An implementation of MDS matrix M_1 with 35 xor gates, where (x_0, \dots, x_{15}) are input bits, (y_0, \dots, y_{15}) are output bits.

Figure 2: An implementation circuit of MDS matrix M_1 based on the bits, where (x_0, \dots, x_{15}) are input signals, (y_0, \dots, y_{15}) are output signals.