CAPÍTULO 3

Equilíbrio de uma partícula

Quando esta carga é levantada com velocidade constante, ou é simplesmente mantida em suspensão, ela está em um estado de equilíbrio. Neste capítulo, estudaremos o equilíbrio para uma partícula e mostraremos como essas ideias podem ser usadas para calcular as forças nos cabos usados para manter cargas suspensas.

(© Igor Tumarkin/ITPS/Shutterstock)

3.1 Condição de equilíbrio de uma partícula

Dizemos que uma partícula está em *equilíbrio* quando continua em repouso se, originalmente, se achava em repouso, ou quando tem velocidade constante se, originalmente, estava em movimento. Muitas vezes, no entanto, o termo "equilíbrio" ou, mais especificamente, "equilíbrio estático", é usado para descrever um objeto em repouso. Para manter o equilíbrio, é *necessário* satisfazer a primeira lei do movimento de Newton, segundo a qual a *força resultante* que atua sobre uma partícula deve ser igual a *zero*. Essa condição é expressa pela *equação de equilíbrio*,

$$\Sigma \mathbf{F} = \mathbf{0} \tag{3.1}$$

onde $\Sigma \mathbf{F}$ é a soma vetorial de todas as forças que atuam sobre a partícula.

A Equação 3.1 não é apenas uma condição necessária do equilíbrio; é também uma condição *suficiente*. Isso decorre da segunda lei do movimento de Newton, a qual pode ser escrita como $\Sigma \mathbf{F} = m\mathbf{a}$. Como o sistema de forças satisfaz a Equação 3.1, então $m\mathbf{a} = \mathbf{0}$ e, portanto, a aceleração da partícula $\mathbf{a} = \mathbf{0}$. Consequentemente, a partícula move-se com velocidade constante ou permanece em repouso.

3.2 O diagrama de corpo livre

Para aplicar a equação de equilíbrio, devemos considerar *todas* as forças conhecidas e desconhecidas ($\Sigma \mathbf{F}$) que atuam *sobre* a partícula. A melhor maneira de fazer isso é pensar na partícula de forma isolada e "livre" de seu entorno. Um esboço mostrando a partícula com *todas* as forças que atuam sobre ela é chamado *diagrama de corpo livre* (DCL) da partícula.

Antes de apresentarmos o procedimento formal para traçar o diagrama de corpo livre, vamos considerar três tipos de conexão encontrados frequentemente nos problemas de equilíbrio de uma partícula.

Objetivos

- Introduzir o conceito do diagrama de corpo livre (DCL) para uma partícula.
- Mostrar como resolver problemas de equilíbrio de uma partícula usando as equações de equilíbrio.

$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

Cabo submetido a uma tração

FIGURA 3.1

Molas

Se uma mola (ou fio) linearmente elástica, de comprimento não deformado l_o , é usada para sustentar uma partícula, o comprimento da mola varia em proporção direta à força $\bf F$ que atua sobre ela (Figura 3.1a). Uma característica que define a "elasticidade" de uma mola é a constante da mola ou rigidez k.

A intensidade da força exercida sobre uma mola linearmente elástica de rigidez k, quando deformada (alongada ou comprimida) de uma distância $s = l - l_o$, medida a partir de sua posição $sem\ carga$, é:

$$F = ks (3.2)$$

Se s for positivo, causando um alongamento, então ${\bf F}$ "puxa" a mola; ao passo que, se s for negativo, causando um encurtamento, então ${\bf F}$ a "empurra". Por exemplo, se a mola mostrada na Figura 3.1a não esticada tem comprimento de 0.8 m e rigidez k=500 N/m e é esticada para um comprimento de 1 m, de modo que $s=l-l_o=1$ m -0.8 m =0.2 m, então é necessária uma força F=ks=(500 N/m)(0.2 m) =100 N.

Cabos e polias

A menos que se indique o contrário, ao longo deste livro, exceto na Seção 7.4, será considerado que todos os cabos (ou fios) têm peso desprezível e não podem esticar. Além disso, um cabo pode suportar *apenas* uma força de tração ou "puxão", que atua sempre na direção do cabo. No Capítulo 5, veremos que a força de tração sobre um cabo contínuo que passa por uma polia sem atrito deve ter uma intensidade *constante* para manter o cabo em equilíbrio. Portanto, para qualquer ângulo θ mostrado na Figura 3.1b, o cabo está submetido a uma tração constante T ao longo de todo o seu comprimento.

Contato liso

Se um objeto se apoia sobre uma *superfície lisa*, então a superfície exerce uma força sobre o objeto que é normal no ponto de contato. Um exemplo disso aparece na Figura 3.2a. Além dessa força normal **N**, o cilindro também é submetido ao seu peso **W** e à força **T** da corda. Como essas três forças são concorrentes no centro do cilindro (Figura 3.2b), podemos aplicar a equação do equilíbrio a essa "partícula", que é o mesmo que aplicá-la ao cilindro.

Procedimento para traçar um diagrama de corpo livre

Como devemos considerar todas as forças que atuam sobre a partícula quando aplicamos as equações de equilíbrio, deve-se enfatizar a importância de se traçar um diagrama de corpo livre como primeira etapa na abordagem de um problema. Para construir um diagrama de corpo livre, é necessário realizar os três passos indicados a seguir.

Desenhe o contorno da partícula a ser estudada

Imagine a partícula isoladamente ou "recortada" de seu entorno. Para isso, remova todos os suportes e desenhe o contorno de sua forma.

Mostre todas as forças

Indique nesse esboço todas as forças que atuam sobre a partícula. Essas forças podem ser ativas, as quais tendem a pôr a partícula em movimento, ou reativas, que são o resultado das restrições ou apoios que tendem a impedir o movimento. Para levar em conta todas estas forças, pode ser útil traçar uma linha que contorne a partícula na figura original, observando cuidadosamente à medida que cada força que age sobre ela é cruzada pela linha.

Identifique cada força

As forças conhecidas devem ser marcadas com suas respectivas intensidades e direções. As letras são usadas para representar as intensidades e direções das forças desconhecidas.

A caçamba é mantida em equilíbrio pelo cabo e, instintivamente, sabemos que a força no cabo deve ser igual ao peso da caçamba. Desenhando o diagrama de corpo livre da caçamba, podemos compreender por que isso ocorre. Esse diagrama mostra que há apenas duas forças atuando sobre a caçamba, ou seja, seu peso \boldsymbol{W} e a força \boldsymbol{T} do cabo. Para o equilíbrio, a resultante dessas forças deve ser igual a zero e, assim, T = W.

A peça de 5 kg está suspensa por dois cabos A e B. Para determinar a força em cada cabo, devemos considerar o diagrama de corpo livre da peça. Conforme observado, as três forças atuando sobre ela formam um sistema de forças concorrentes no centro.

3.3 Sistemas de forças coplanares

Se uma partícula estiver submetida a um sistema de forças coplanares localizadas no plano x—y, como mostra a Figura 3.4, então cada força poderá ser decomposta em suas componentes \mathbf{i} e \mathbf{j} . Para haver equilíbrio, essas forças precisam ser somadas para produzir uma força resultante zero, ou seja,

$$\Sigma \mathbf{F} = \mathbf{0}$$
$$\Sigma F_{x} \mathbf{i} + \Sigma F_{y} \mathbf{j} = \mathbf{0}$$

Para que essa equação vetorial seja satisfeita, as componentes x e y da força resultante devem ser iguais a zero. Portanto,

$$\begin{aligned}
\Sigma F_x &= 0 \\
\Sigma F_y &= 0
\end{aligned} \tag{3.3}$$

Essas duas equações podem ser resolvidas, no máximo, para duas incógnitas, geralmente representadas como ângulos e intensidades das forças mostradas no diagrama de corpo livre da partícula.

Quando aplicamos cada uma das duas equações de equilíbrio, precisamos levar em conta o sentido da direção de qualquer componente usando um *sinal algébrico* que corresponda à direção da seta da componente ao longo dos eixos *x* ou *y*. É importante notar que, se a força tiver *intensidade desconhecida*, o sentido da seta da força no diagrama de corpo livre poderá ser *assumido*. Caso a *solução* resulte em um *escalar negativo*, isso indicará que o sentido da força atua no sentido oposto ao assumido.

Por exemplo, considere o diagrama de corpo livre da partícula submetida às duas forças mostradas na Figura 3.5. Nesse caso, *supõe-se* que a *força incógnita* **F** atua para a direita (sentido positivo de *x*) a fim de manter o equilíbrio. Aplicando-se a equação do equilíbrio ao longo do eixo *x*, temos:

$$\stackrel{+}{\Rightarrow} \Sigma F_x = 0;$$
 $+F + 10 \text{ N} = 0$

Os dois termos são "positivos", uma vez que ambas as forças atuam no sentido positivo de x. Quando essa equação é resolvida, F=-10 N. Nesse caso, o *sinal negativo* indica que \mathbf{F} deve atuar para a esquerda a fim de manter a partícula em equilíbrio (Figura 3.5). Observe que, se o eixo +x na Figura 3.5 fosse direcionado para a esquerda, ambos os termos da equação seriam negativos, mas, novamente, após a resolução, F=-10 N, indicando que \mathbf{F} deveria ser direcionado para a esquerda.

 O primeiro passo na solução de qualquer problema de equilíbrio é desenhar o diagrama de corpo livre da partícula. Isso requer remover todos os suportes e isolar ou liberar a partícula de seu entorno, para depois mostrar todas as forças que atuam sobre ela.

Pontos importantes

Equilíbrio significa que a partícula está em repouso ou movendo-se em velocidade constante. Em duas dimensões, as condições necessárias e suficientes para o equilíbrio exigem $\Sigma F_x = 0$ e $\Sigma F_y = 0$.

Procedimento para análise

Os problemas de equilíbrio de forças coplanares para uma partícula podem ser resolvidos usando--se o procedimento indicado a seguir.

Diagrama de corpo livre

- Estabeleça os eixos x, y com qualquer orientação adequada.
- Identifique todas as intensidades e direções das forças conhecidas e desconhecidas no diagrama.
- O sentido de uma força que tenha intensidade desconhecida pode ser assumido.

Equações de equilíbrio

- Aplique as equações de equilíbrio $\Sigma F_x = 0$ e $\Sigma F_y = 0$. Por conveniência, setas podem ser escritas ao longo de cada equação para definir os sentidos positivos.
- As componentes serão positivas se apontarem para o sentido positivo de um eixo, e negativas, caso contrário.
- Se existirem mais de duas incógnitas e o problema envolver uma mola, deve-se aplicar F = ks para relacionar a força da mola à sua deformação s.
- Como a intensidade de uma força é sempre uma quantidade positiva, se a solução para uma força produzir um resultado negativo, isso indica que seu sentido é oposto ao mostrado no diagrama de corpo livre.

As correntes exercem três forças sobre o anel em A, como mostra seu diagrama de corpo livre. O anel não se moverá, ou se moverá com velocidade constante, desde que a soma dessas forças ao longo dos eixos x e y seja zero. Se uma das três forças for conhecida, as intensidades das outras duas poderão ser obtidas a partir das duas equações de equilíbrio.

$$T_{B}$$