Unambiguous DNF. from Hex (joint work with Gööd, Ben David, Kuthoni)
A K. DNF is suid le de mantiques if
F. C, VC2 V ··· VCm
of x ∈ do, 13", there exist ≤ 1 C; which is satisfied
FACT: Every v.a MNF can be voitten - a K-(NF.
Conj: This above fuct is tight. (d=2)
TODAY: > R1.5 1.22
(Baladis) > K2-0(1) (Baladis) > K2-0(1) (Baladis) > K2-0(1)
[P1] Does there exist a for f, s.t. Co(f) > UC, Cy1?
$C_{D}(f, x) = \min_{\substack{p \in x \\ p \in x}} f_{p} = f(x) \in \mathbb{N}$ $C_{D}(f) = \max_{\substack{p \in x \\ q \in f'(0)}} C(f, x)$
Co(f) = width of f as a CNF.
UZ,(f):= width of f v.= DNF.
Gap. OR neco, 15
$f(u) = \begin{cases} 1 & \text{if } x \geq \frac{\pi}{2} \\ \neq 0/\omega \end{cases}$
n= (111 ··· 1 000··3
$((f,z)=\frac{n_2}{[L \times \leq 2]}$

DEA: Total for are hard Partial for instead
[P2] Does there exist a partial for $f: (x_0, 1) = (x_$
$n = \underbrace{111 \cdot \cdot \cdot 1}_{N_{L}} \underbrace{00 \cdot \cdot \cdot 0}_{3N_{L}}$ $f(n) = *$ $C_{5}(f, n) = 1$ $C_{7}(f, n) = \frac{1}{2}$
C(f,n) = C=(f,n)+(-(+,n)) ($\forall x \in f^{-}(x)$) min(CC=, (-) = 1 C(f) > C(f,n) = γ_2+2 interesting P3) Does there exist a hypergraph H and a 2 coloning C: V => d >, 15 s.f.
Every comprehenation hitting set has size
Sol" P2 Hex
Alice places of Alice

Ver (2) = do,1, x y

Ver (2) =

C, (Hex) =? 2m (o(Nex) =? 2n

For [PZ], 3 Z, min ((5(Z), E, (Z))) 2 ?

 $n_{in} = C_{i} = n_{i}$ $n_{in} = C_{i} = 5n$ $n_{in} = C_{i} = 5n$

1. Spinal

 $S(n\sqrt{n}) \leq C_0 \leq N\sqrt{n}$ $S(n\sqrt{n}) \leq C_7 \leq O(n\sqrt{n})$ $S(n\sqrt{n}) \leq C_7 \leq O(n\sqrt{n})$

In colais, In-width 1-Springle