EXPRESS MAIL CERTIFICATE 7 6 7 7 1 9 8 7 5 -43

I hereby certify that, on the date indicated this paper or fee was deposited with the U:S. Postal Service and that it was addressed for delivery to the Assistant Commissioner of Patents & Trademarks, Washington, DC 20231 by "Express Mail Post Office to Addressee" service.

B.V.LEE B.W. Signature

File No:3981/0K014

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Andrew Patrick BAIRD; Jamie STOKES

Serial No:

TBA (U.S. National Phase of PCT/GB00/01855

filed 17 May 2000).

Filed:

Concurrently Herewith

For:

Waveguide Polarisation Rotator

AFFIRMATION OF PRIORITY CLAIM

Hon. Commissioner of Patents and Trademarks Washington, DC 20231

Attn.: Box PCT, DO/EO/US

Sir:

Priority has been claimed on the basis of U.K. Patent Application No. 9911449.8 filed 17 May 1999.

A Certified copy of the the aforesaid U.K. patent application was received by the International Bureau on 23 June 2000, during the pendency of International Application No. PCT/GB00/01855.

Bulke Burker

Applicants herewith affirm the priority claim of the aforesaid U.K.

patent application under U.S.C. §119.

Respectfully submitted,

Date: November 15, 2001

DARBY & DARBY P.C. 805 Third Avenue New York, NY 10022

212-527-7700

Michael J. Sweedler

Reg. No. 19,937

Attorney for Applicants

M:\3982\0K88#\TMK1885.WPD

TUNGDUU1

GB00/1855

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

4

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated

15 JUN 2000

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

An Executive Agency of the Department of Trade and Industry

The Patent Office

Cardiff Road Newbort MAY 1999 Gwent NP9 1RH

Request for grant of a patent (See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to belp

Your reference

you fill in this form)

RSN/ME/P09121GB

2. Patent application number (The Patent Office will fill in this part) 9911449.8

3. Full name, address and postcode of the or of each applicant (underline all surnames)

CAMBRIDGE INDUSTRIES LIMITED, CAMBRIDGE HOUSE, 5 COMMERCE PARK, BRUNEL ROAD, THEALE RG7 4AB

Patents ADP number (If you know it)

If the applicant is a corporate body, give the country/state of its incorporation

UNITED KINGDOM

BERKSHIRE

6725808003

Title of the invention

WAVEGUIDE ROTATOR SYSTEM

Name of your agent (If you have one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

CRUIKSHANK & FAIRWEATHER, 19 ROYAL EXCHANGE SQUARE, GLASGOW G1 3AE, UNITED KINGDOM

Patents ADP number (if you know it)

547002

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country Priority application number (If you know it)

Date of flling (day / month / year)

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of carlier application

Date of filing (day / month / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' if:

a) any applicant named in part 3 is not an inventor, or

b) there is an inventor who is not named as an applicant, r

c) any named applicant is a corporate body. See note (d))

YES

Pater m 1/77

 Enter the number of sheets for any of the following items you are filing with this form.
 Do not count copies of the same document

Continuation sheets of this form

Description

20 / 854

Claim(s)

Abstract

Drawing(s)

700/

If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patent Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

I/We request the grant of a patent on the basis of this application.

Signature

Chukhaul & Favat_P

CRUIKSHANK & FAIRWEATHER

17/05/99

Name and daytime telephone number of person to contact in the United Kingdom

Dr. R.S. Naismith 0141-221 5767

Warning

11.

After an application for a patent bas been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes

- a) If you need belp to fill in this form or you have any questions, please contact the Patent Office on 0645 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.

- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- e) Once you have filled in the form you must remember to sign and date it.
- f) For details of the fee and ways to pay please contact the Patent Office.

10

15

20

25

WAVEGUIDE ROTATOR SYSTEM

The present invention relates to a system and to an apparatus and method for rotating a polarised signal in a waveguide. The present invention is particularly, but not exclusively, suited for use with a dual polarisation waveguide probe system in a low-noise block (LNB) for use with a satellite dish receiving signals broadcast by a satellite which includes two signals orthogonally polarised in the same frequency band.

In applicant's co-pending published International Application WO 92/22938 there is disclosed a dual polarisation waveguide probe system in which a waveguide is incorporated into a low-noise block receiver in which two probes are located for receiving linearly polarised energy of both orthogonal senses. The probes are located in the same longitudinal plane and on opposite sides of a single cylindrical bar reflector which reflects one sense of polarisation and passes the orthogonal signal with minimal insertion loss and then reflects the rotated orthogonal signal. The probes are spaced $\lambda/4$ from the reflector. A reflection rotator is also formed at one end of the waveguide using a thin plate which is oriented at 45° to the incident linear polarisation with a short circuit spaced approximately a quarter of a wavelength $(\lambda/4)$ behind the leading edge of This plate splits the incident energy into the plate. equal components in orthogonal planes, one component being reflected by the leading edge and the other being

10

15

20

25

.

component being reflected by the waveguide short circuit. The resultant 180° phase shift between the reflected components causes a 90° rotation in the plane of linear polarisation upon recombination so that the waveguide output signals are located in the same longitudinal Furthermore, in applicant's co-pending International Patent Application PCT/GB96/00332, an improved dual polarisation waveguide probe system is disclosed for use with a wider frequency range transmitted by new satellite systems. In this improved probe system, a reflective twist plate was provided within the probe housing, the reflective twist plate having at least two signal reflecting edges so that at least two separate signals reflections are created. multiple signal reflections enable the probe system to operate over a wider frequency range with minimal deterioration and signal output.

Applicant's co-pending International Published
Application PCT/GB97/02428 disclosed a further improved
waveguide which is able to operate across the entire
frequency band of a satellite system with substantially
the same performance. In this system the waveguide
included a rotator which incorporated a reflecting plate
in combination with a differential phase shift portion in
the form of a waveguide of slightly asymmetrical crosssection so that orthogonally polarised signals that
travel through the portion have different cut-off
wavelengths. This results in a signal r tator which

5

10

15

20

25

achieves 180° phase shift between two orthogonal components across the frequency range of signals received by the waveguide. The reflecting plate and the differential phase portion have inverse phase change with frequency characteristics so that the combined phase shift characteristic of the rotator shows a flatter response across the desired frequency range.

Although these systems generally work well, they suffer from a number of disadvantages. waveguide which incorporates an edge reflecting plate can incur inconsistencies over a large number of repeated castings and as the leading edge of the plate becomes thinner, it is more likely that the reflecting edge will be damaged in casting and the materials which can be suitably cast to provide such leading edges becomes limited. Furthermore, these systems are generally used with circular waveguides and it is desirable to provide an improved waveguide rotation system which can be used with other waveguide shapes such as square or rectangular which still provides suitable rotation performance. Furthermore, with such existing waveguides the overall dimensions of the waveguide housing are determined by the Furthermore, the use of solely circular waveguide. waveguides can limit the design options for the circuit board housing and a smaller housing can be afforded by the use of a square waveguide.

An object of th present invention is to provide an improved waveguide structure and waveguide which obviates

10

15

20

25

are mitigates at least one of the aforementioned disadvantages.

This is achieved by providing a waveguide with an internal structure which protrudes into the waveguide such that a first orthogonal component of the incident polarised signal propagates to the end of the waveguide and is reflected therefrom and the second orthogonally polarised component is cut-off by the protruding structure which narrows the waveguide, at a distance from a short circuit at the end of the waveguide, and is reflected substantially at the cut-off point. predetermined distance from the reflecting means and the cut-off point, the first component and the second component are recombined such that the polarisation of the recombined structure is rotated 90° from the incident The protruding interior surface of the polarisation. waveguide which narrows the waveguide creates a pocket or cavity behind the waveguide into which components from a circuit board can be inserted, for example voltage In addition, the protruding surface is regulators. generally planar such that the waveguide can be more easily cast than a thin plate; and can therefore be manufactured with a greater variety of materials.

According to a first aspect of the present invention, there is provided a waveguide rotator for use with a dual polarisation waveguide probe system for receiving at least two signals which are orthogonally polarised, said system having a waveguid into which at

10

15

20

25

least two orthogonally polarised signals are received for transmission therealong, said waveguide having:

a first probe extending from a wall of the waveguide into the interior of the waveguide, said first probe being adapted to receive said orthogonal signal travelling in the same longitudinal plane thereof,

signal isolation means extending from the wall of the waveguide and said isolating means being located downstream of said first probe lying in said longitudinal plane for reflecting a first polarised signal in said longitudinal plate back to said probe means and allowing a second polarised signal, orthogonal to said first polarised signal to pass along said waveguide,

second probe means located downstream of said signal isolating means and extending from the wall of the waveguide in said longitudinal plane,

aignal rotator means disposed in said waveguide downstream of said second probe means and having a protruding surface extending from an interior surface of said waveguide partly across said waveguide towards a short circuit disposed at an end of said waveguide, said signal rotator means being dimensioned and proportioned such that an incident polarisation component of said second polarisation signal propagates to the short circuit at the end of the waveguide and is reflected therefrom and a second incident polarisation component is cut-off by said protruding surface and before reaching the short circuit and is reflected substantially at said

17. MAY. 1999 - 16:22 - C&F GLASGOW 0141 2217739

5

10

15

20

25

cut-off point whereby said reflected first and second components recombine within said waveguide such that the polarisation of the reflected signal is rotated by 90° from the incident polarisation such that the reflected polarised signal is in said longitudinal plane for detection by said second probe means.

In a preferred arrangement a suitably sized wedge-shaped protrusion is located into the short circuit end of the waveguide for rotating a polarised signal 90°, that is vertical to horizontal polarity or vice-versa. This rotation is achieved by introducing a phase shift between the two components of the incident signal.

A forward travelling (incident) vertically polarised signal is separable into two components, El and E2. wavelength of E1 and E2 is determined by the width of the waveguide perpendicular to the component. As the signal propagates along the wedge part of the waveguide, the wavelength of the E2 component remains unaffected because the width of the guide perpendicular to E2 remains Conversely, the wavelength of the E1 constant. component increases as it propagates along the wedge due The result of this to the decreasing waveguide width. is to change the phase of E2 relative to E1, that is E2 leads El in phase, and this effect is doubled when the signal is reflected back along the waveguide. When the wedge is correctly proportioned and dimensioned E2 leads El by 180° when the signal starts to propagat back along the waveguide beyond the wedge-shaped protrusion.

10

15

20

25

Recombining the El and E2 components results in converting the vertically polarised signal EV to horizontal polarisation EH. The wedge-rotator can be optimised to provide a reasonably flat 180° phase shift over the required operating frequency range providing 90° rotation of the incident linearly polarised signal.

Preferably, the waveguide cross-section is substantially square. Alternatively, the waveguide cross-section may be rectangular or circular or any other suitable waveguide cross-section.

Preferably also, the wedge-shaped protrusion extends substantially across the width of the waveguide and narrows to a common location on the waveguide wall to provide a substantially planar surface between the waveguide wall and the rear waveguide reflecting wall.

Alternatively, the waveguide wedge-shaped protrusion may have cut-outs so that it does not extend completely across the width of the waveguide at the rear reflecting wall.

Alternatively, the wedge may be stepped, the wedge being formed by a series of triangular protrusions of increasing waveguide width. It will be appreciated that increasing the number of protrusions or steps approximates the stepped wedge rotator to a smooth surface wedge rotator.

In a further alternative arrangement dual wedgeshaped protrusions may be used on opposed sides of the waveguide. In yet a further embodiment of the invention, one or both dual wedges may be stepped.

5

10

15

20

25

In accordance with another aspect of the present invention, there is provided a method of rotating a polarised signal travelling in a waveguide having a short circuit at one end by substantially 90°, said method comprising the steps of,

providing a protrusion in a waveguide, said protrusion extending partially across said waveguide cavity.

allowing a first component of said polarised signal to travel to the short circuit at the end of said waveguide and be reflected from said end back along the waveguide,

increasing the wavelength of a second component of said polarised signal by decreasing the width of said waveguide by said protrusion,

reflecting said second component at a cut-off point before said second component reaches said short circuit,

recombining the reflected first and second components in said waveguide whereby said recombined polarised signal is rotated substantially 90° from the polarisation of the incident signal.

In accordance with a further aspect of the invention, there is provided a low-noise block (LNB) for use with a satellite dish receiving signals broadcast by a satellite which includes two signals orthogonally polarised in the same frequency band, said LNB comprising:

5

10

15

20

25

a feedhorn,

a waveguide coupled to said feedhorn, said waveguide having a printed circuit board support surface and a short circuit end plate,

a printed circuit board mounted on said support surface and having first and second probes extending into said waveguide, said probes being disposed in the same longitudinal plane,

a second rotator structure disposed within said waveguide between said second probe and said short circuit end plate, said signal rotator structure narrowing the waveguide to a component of a polarised signal to increase the wavelength of the component and reflect the component before it reaches the short circuit, and permitting an orthogonal component of said polarised signal to be reflected by said short circuit, the reflected components being recombined within said waveguide before reaching said second probe whereby the recombined polarised signal rotates 90° from the polarisation of the incident signal into the same longitudinal plane as said probes.

These and other aspects of the present invention will become apparent from the following description when taken in combination with the accompanying drawings in which:

Fig. 1 is a partly broken-away view of a low-noise block receiver with a generally square waveguide including a wedge rotator in accordance with a preferred

embodiment of the present invention;

5

10

15

20

25

Fig. 2 is a sectional view taken on the line 2-2 of Fig. 1 depicting the vertically polarised signal and components E1 and E2;

Fig. 3 is a similar view to Fig 2 but depicting the horizontally polarised signal formed by components El and E2 after reflection from the rear of the waveguide and the wedge rotator;

Fig. 4 depicts a side view through the waveguide showing the profile of the wedge rotator taken on the line 4-4;

Figs. 5a, 5b and 5c depict cross-sectional views through the wedge rotator taken on the lines 5A, 5B and 5C of Fig. 4 and showing the increasing effective cross-section of the wedge rotator within the waveguide housing;

Fig. 6 is a graph of phase vs. frequency for the wedge plate rotator shown in Figs. 1 to 5;

Fig. 7 is a graph of single conversion (insertion loss/return loss) vs. frequency for the wedge rotator waveguide structure shown in Figs. 1 to 5;

Fig. 8 depicts a diagrammatic view of an alternative embodiment of the invention in which the wedge rotator is stepped being formed of triangular sections which extend across the waveguide by different amounts;

Fig. 9 depicts a side view of Fig. 8 taken through the waveguide;

Fig. 10 depicts a graph of phase vs. frequency for

10

15

20

25

the stepped wedge rotator waveguide and shows, for comparative purposes, the response from the cut-off method and the phase shift method;

Fig. 11 depicts a graph of signal conversion (insertion loss/return loss) vs. frequency for the stepped wedge rotator with the corresponding responses for the cut-off method, and for phase shift method being shown separately for comparative purposes;

Fig. 12 depicts a partly perspective view of a circular waveguide with a wedge rotator disposed therein;

Fig. 13a, b and c are cross-sectional views through the waveguide and wedge rotator shown in Fig. 12;

Fig. 14 depicts a further alternative embodiment of the present invention in which a square waveguide has dual wedge rotators inserted therein;

Figs. 15a, b and c are respective cross-sectional views taken on the lines A, B and C in Fig. 14 showing the increasing cross-section of the wedges as the rotators approach the end plate;

Fig. 16 shows a further embodiment of the present invention in which a wedge rotator is provided in a substantially square waveguide where the wedge does not extend the entire width of the waveguide at the reflecting end due to wedge cut-outs;

Fig. 17 shows a graph of phase vs. frequency for the wedge with cut-outs and for the wedge shown in Fig. 1 response also depicted for comparative purpos s, and

Fig. 18 is a graph of single conversion (insertion

loss/return loss) vs. frequency for the wedge rotator with cut-outs with normal wedge response also shown for comparative purposes.

7. MAY. 1999 • 16: 23 - C&F GLASGOW 0141 2217739

5

10

15

20

25

Fig. 19 is a graph of signal conversion (insertion loss/return loss) vs. frequency comparing the response of a wedge rotator in a square waveguide with a 45° twist plate, as in the prior art, in a square waveguide.

Reference is made to Fig. 1 of the drawings which depicts a low-noise block receiver, generally indicated by reference numeral 10, which is adapted to be mounted to a satellite receiving dish via a boom arm (not shown in the interests of clarity) in a way which is well known in the art. As is also well known, the low-noise block receiver 10 is arranged to receive high frequency vertically and horizontally orthogonally polarised radiation signals from the satellite dish and to process these signals to provide an output which is fed to a cable 12 which is, in turn, connected to a satellite receiver decoder unit (not shown) for subsequent The low-noise block receiver 10 includes a processing. cast metal waveguide 14 which is shown partly broken away to depict the interior shape of the waveguide and interior waveguide components. The waveguide is generally square in cross-section. The waveguide has a front aperture 16 for facing a satellite dish for receiving electro-magnetic radiation from an integral circular corrugated feedhorn 18 (shown in broken outline) which is located at the front of the waveguide 14.

Integrally cast with the waveguide 14 and feedhorn 18 is a top surface plate 20 for receiving a printed circuit board 22 containing electronic components for receiving signals from the waveguide 14 and for processing these signals prior to transferring the signals to cable 12. The waveguide and internal components are similar to those disclosed in applicant's co-pending International Patent Applications WO 92/22938 and WO 98/10479. Accordingly, disposed in the waveguide in the same longitudinal plane is a first probe 24, a reflective post 26 and a second probe 28. In this embodiment, the reflective post 26 extends across the entire width of the interior of the waveguide. The outputs of the probes 24 and 28 pass through the waveguide wall 30 in the same longitudinal plane, generally indicated by reference The probes extend through cast plate 20 to numeral 31. The distance between the integrated circuit board 22. probes 24,28 and the reflective post 26 is nominally $\lambda/4$ where λ is the wavelength of the signals in the waveguide. At the downstream end of the waveguide 14 20 which is furthest from the aperture 16, there is disposed a short circuit end plate 32 which, as best seen in Fig. 4 of the drawings, is disposed perpendicular to the longitudinal axis of the waveguide 14. The end plate 32 acts as a short circuit reflecting plate, as is described in detail in WO 92/22938 and WO 98/10479, for signals travelling along the waveguide.

10

15

25

Refer nce is now made to Figs. 2 and 3 of the

drawings which are sectional views through the waveguide 14 towards the short circuit 32. It will be seen from Figs. 2 and 3 that the waveguide is not exactly square. The lower corners of the waveguide 14a are in fact rounded or bevelled to provide a suitable exterior shape for the waveguide 14 receiving a cover 34, shown in broken outline, for enclosing the waveguide 14 and circuitry 22. Also shown in the waveguide 14 is a wedge-shaped protrusion, generally indicated by reference numeral 36, which extends from the interior wall 29 of the waveguide to the short circuit end 32 at which it extends diagonally across the end of the waveguide.

5

10

15

20

25

The wedge-shaped protrusion rotates a polarised signal 90° on reflection, i.e. vertical to horizontal polarity or vice-versa, by introducing a phase shift between the horizontal and vertical components of the incident signal as will be described below. best seen from Figs. 2 and 3 of the drawings. with reference to Fig. 2, an incident, forward travelling (into the paper) horizontally polarised signal EH, can be separated into two components El and E2. The wavelength of E1 and E2 is determined by the width of the waveguide perpendicular to the component. As the signal propagates along the wedge 36, the wavelength of the E2 component remains unaffected because the width of the waveguide 14 perpendicular to component E2 remains constant, On the contrary, the wavelength of the E1 component increases as it propagates along the wedge 36

due to the decreasing width of the waveguide as the waveguide narrows due to the increasing wedge, as best seen in Fig. 4 of the drawings. The effect of this is to change the phase of the E2 component relative to E1; This effect is doubled that is, E2 leads E1 in phase. as the signal is reflected back along the waveguide (out If the wedge 36 is correctly dimensioned of the paper). and proportioned E2 will lead E1 by 180° by the time the signal is propagating back along the waveguide at position 38, as shown in Figs. 1 and 4. Recombining components E1 and E2 results in converting the horizontal polarisation signal EH to a vertical polarisation signal EV, as best seen in Figs. 2 and 3 of the drawings. Thus, the signal which has travelled past the probe 28 has been rotated by 90° such that it can be detected by probe 28 in the same way as the probe detected reflected signals in applicant's co-pending applications WO 92/22938 and WO 98/10479.

5

10

15

20

25

Reference is also made to Figs. 4 and 5 of the drawings where the side view of Fig. 4 depicts the profile of the wedge 36 within the waveguide and shows that the wall 40 of the wedge increasingly projects into the waveguide 14 as it approaches the short circuit end 32. The cross-sectional views in Figs. 5a, b and c show the increasing cross-section of waveguide taken up by the wedge rotator towards the short circuit end. The wall 38 of the wedge rotator defines a cavity 42 behind the wall into which a pocket 43 for electronic components of

the printed circuit board 22 may be disposed to facilitate manufacture and overall compactness of the LNB.

5

10

15

20

25

Reference is now made to Figs. 6 and 7 of the drawings. Fig. 6 depicts a graph of phase vs. frequency and shows that the phase shift created by the polarisation wedge rotator is substantially 180° across the frequency range of interest for such low-noise blocks which is 10.7 to 12.75 GHz for the Astra satellite. Fig. 7 shows the insertion loss (S12)/return loss (S11) in decibels (dB) over the frequency range which shows that there is minimal insertion loss (S12)/return loss (S11) over the desired frequency range.

Reference is now made to Fig. 8 of the drawings which depicts a diagrammatic view of an alternative embodiment of the invention in which like numerals refer to like parts and in which the wedge rotator is formed of triangular sections 46,48 which extend across the In this embodiment two waveguide by different amounts. triangular sections are shown to provide a stepped wedge rotator. A side view of the stepped wedge rotator is The larger triangular section wedge, shown in Fig. 9. generally indicated by reference numeral 46, fills a larger proportion of the waveguide such that only a component perpendicular to the wedge portion 46 can propagate. The phase shift increases with increasing frequency as can be best seen from Fig. 10 of the drawings. The conversion of an incident signal

10

15

20

25

horizontally polarised into a reflected vertically polarised signal is shown in Fig. 11 (S12) and the return loss is also shown (S11). Although this wedge alone can be optimised in the band centre at 11.75 GHz, it has relatively poor performance, on its own, at the band edges.

The smaller wedge 48 fills only a relatively small proportion of the waveguide 14 thus allowing components parallel to, and perpendicular to, the wedge portion 48 to propagate along the waveguide. It will be seen from Fig. 10 that the resultant phase shift between the components reduces with increasing frequency. The conversion of an incident horizontally polarised signal into a reflective vertically polarised signal is shown in Fig. 11 (S12) and the return loss is also shown (S11). The device can be optimised in the band centre at 11.75 GHz but, once again, poor performance is achieved at the band edges.

When the waveguide, as shown in Fig. 8, has combined cross-sections 46 and 48 to create a stepped wedge, a substantially flat phase vs. frequency characteristic is achieved as shown in Fig. 10 of the drawings. The signal conversion and insertion/return loss for this arrangement is also shown in Fig. 11 and it will be seen that the bandwidth is greatly enhanced over the desired Astra satellite frequency range.

It will be appreciated that various modifications may be made to the embodiments hereinbefore described,

MAY. 1999 16:24 C&F GLASGOW 0141 2217739 NO.

without departing from the scope of the invention. For example, the waveguide may be circular in cross-section with a conical section used similar to that shown in Figs. 1 to 5 of the drawings. Fig. 12 shows a longitudinal section through a circular waveguide and Figs. 13a, b and c show respective cross-sections at locations a, b and c showing the increasing protrusion of the wedge into the waveguide as the wedge extends towards the end face 32 of the waveguide 14.

10

15

5

Fig. 14 depicts a side view of a further embodiment of a wedge rotation system in which the waveguide 14 has two wedge-shaped protrusions 50 and 52 extending from the waveguide wall 18 towards the end face 32 instead of a single wedge. Sectional views taken at locations a, b and c are depicted in Figs. 15a, b and c respectively and show the increasing protrusion of the wedges as they extend towards the end face 32 of the waveguide. This arrangement will operate in the same way the previously described embodiments.

20

25

A yet further embodiment is shown in Fig. 16 of the drawings where it can be seen that the wedge does not have to extend across the entire width of the waveguide at the end face. In this arrangement it will be seen that the wedge rotator 36 has cut-outs to define non-enclosed areas 54,56 at the sides of the wedge. This arrangement does not materially affect the performance of the waveguide, as can be seen with reference to Figs. 17 and 18. In this case, Fig. 17 shows a graph of phase

vs. frequency for both the normal wedge of Figs. 1 to 5 and the wedge with cut-outs and it will be seen that the performance is substantially identical over the frequency range of interest, i.e. 11.25 to 12.75 GHz, thereby providing a substantially flat phase shift of 180°. Similarly, the single conversion for the wedge with cut-outs is substantially identical to the normal wedge for both S12 and S11 over the frequency range of interest.

5

10

15

20

25

Reference is now made to Fig. 19 of the drawings which shows the insertion loss (S12) and the return loss (S11), in decibels, for a wedge rotator (wedge plate) of the type shown in Fig. 1 and a twist plate in a square waveguide. The twist plate is oriented at 45° to the incident polarisation and operates like those disclosed in WO 92/22938 and WO 98/10479. It will be seen that the performance of the wedge plate is superior over the frequency range of interest, 10.7 to 12.75 GHz.

. .

It will also be appreciated that further modifications may be made to the embodiments hereinbefore described without departing from the scope of the invention. For example, it will be appreciated that the waveguide may be made of any suitable shape and that the wedge insertion may not be exactly the same shape as that shown. The wedge insertion may be of any suitable shape as long as the wedge protrudes into the waveguide to provide a cut-off at a certain point along its length and signal reflection for recombination, with the signal reflected from the end of the waveguide, to give a

-20-

999-16:25 C&F GLASGOW 0141 2217739

5

10

15

20

25

suitable phase shift along the waveguide at a desired location. It will also be appreciated that this wedge rotator may have application to waveguides other than those for use with low-noise blocks. The principle of a wedge rotator in a waveguide is applicable to many shapes of waveguide and many applications. Furthermore, the waveguide/LNB may be cast or injection moulded in plastic with internal surfaces metallised by vapour or electroplated to create low-loss surfaces.

Advantages of the invention are that manufacturing of such waveguide rotators is facilitated because thin reflector plates do not require to be cast. This allows the use of additional casting materials to facilitate flexibility in choice of materials. The provision of a wedge rotator allows a pocket or cavity to be created in the waveguide into which electronic components on a printed circuit board 22 can be inserted so that the overall dimensions of a waveguide and adjacent integrated circuit may be minimised. The wedge rotator provides improved performance over the desired frequency range in similar waveguides with a twist plate. application to a low-noise block (LNB) this facilitates the insertion of a voltage regulator into the cavity to minimise the onboard integrated circuit area and allow the entire assembly to be encompassed in a housing of minimal volume. This minimises manufacturing costs and storage and transport costs when very large numbers of such low-noise blocks and waveguides have to be made,

17/MAY 1999 16:25 C&F GLASGOW 0141 2217739

PHASE OF WEDGEPLATE

Fig.6

*

fy.7

Brane de la la la la

 $\xi_{i}^{2} = \xi^{2}, \quad \xi_{i+1}^{2}, \quad$

S12 / dB

.7

-10 |--- 10,75

PHASE OF STEPPED WEDGE

12.25

12.75

Fy. 11

11.75

FREQUENCY / GHz

11.25

fy.A

SIGNAL CONVERSION -

Fy.18

The state of the s

C&F GLASGOW 0141 2217739

•