

Outils numériques, pour quoi faire ?

Physique et photonique

 La physique est la science qui essaie de comprendre, de modéliser et d'expliquer les phénomènes naturels de l'Univers.

EXPERIENCES

OBSERVATIONS

MODELISATION

- Recherche fondamentale
- Physique expérimentale

- ✓ Traiter des données d'expériences
- √ Faire ressortir les « tendances »
- ✓ Simuler / Modéliser les phénomènes

Outils numériques pour la physique

- ✓ Traiter des données d'expériences
- √ Faire ressortir les « tendances »
- ✓ Simuler / Modéliser les phénomènes

- Résolution de systèmes d'équations
- Simulation de modèles physiques / mathématiques
- Affichage et mise en forme de données
- Traitement de données

Outils numériques pour la physique

Acquisition et Traitement de données Simulation / Modélisation Conception Interface de pilotage Contrôle / Commande

Conception Optique - Zemax-OpticStudio

Interface Humain Machine - Pilotage

Deux outils majeurs à SupOptique

Python (et ses librairies)
Langage général
Logiciel open source
Développement d'applications

MatLab® (et ses boites à outils)
Calculs numériques
Logiciel propriétaire
Modélisation / Simulation

Autres langages / Applications

Outils Numériques pour l' Ingénieur.e en Photonique

Objectifs pédagogiques / Traitement Information

Tamns

A travers cette unité d'enseignement, les apprenant.es seront capables :

- de distinguer les différents types de signaux qui peuvent coexister et se superposer
- de proposer des outils de caractérisation de ces différents signaux
- de réaliser une application de traitement de données informatiques simple

Maths et Signal

ONIP

Outils Num. pour l'Ingénieur.e en Phys.

Règlement scolarité	2024-2025
---------------------	-----------

5N-019-SCI: Traitement de l'Information

5N-028-SCI: Outils Numériques pour l'Ingénieur·e en Physique - 1

5N-029-SCI: Mathématiques & signal 1 5N-085-SCI: Mathématiques & signal 2

ECTS	%	h					perso (h)
5,5							
	40	24		24			12
	40	24	12	7,5	4,5		10
	20	1 5	9	6			6

Ressources / ONIP

https://lense.institutoptique.fr/ONIP/

github.com/IOGS-Digital-Methods

Semestre 5

Ce module s'intéresse aux méthodes numériques utiles à tout ingénieur.e. L'idée est de construire une **boite** à **outils de méthodes numériques** pour les étudiant.es en physique, en se basant sur le **langage Python** et les **bibliothèques standards en science**.

Une série de tutoriels pour Python en suivant le lien ci-après.

Python For Science / LEnsE.tech

Ce module est décomposé en 3 thèmes de 4 séances chacun :

- Bloc Intro Python scientifique
- Bloc AM Traitement de données 1D
- Bloc Laser Traitement de données 2D

Déroulement / ONIP

 $I_0(z)$

3 séances introductives (2h/séance)

2 blocs de 4 séances (2h/séance)

- Sur machine
- En binôme
- 2 encadrant.es par séance

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Acquis d'Apprentissage Visés / ONIP

▶ UC dans l'UE Traitement de l'Information

11 séances de TD Machine

Acquis d'Apprentissage Visés

Être capable de **valider un modèle physique simple et fourni** à l'aide d'un outil de calcul scientifique

Être capable de **générer des graphiques scientifiques** légendés

Être capable de d'écrire un script réutilisable dans un langage de haut niveau (à but scientifique)

Acquis d'Apprentissage Visés / ONIP

 $I_0(z)$

Être capable de calculer, d'afficher et d'utiliser la transformée de Fourier discrète d'un signal

Être capable de **traiter une série de données**

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

Outils de travail

Outils de développement

- Utilisation de Python
 - Python 3.9 (ou supérieur) via Anaconda 3

• PyCharm Community Edition

Jupyter Notebook

Ressources

Site du LEnsE

lense.institutoptique.fr/ONIP/

GitHUB

• github.com/IOGS-Digital-Methods

LEnsE.tech

LEnsE.*TECH*

• https://iogs-lense-training.github.io/python-for-science/

Evaluations

Evaluation

Travail réalisé par binôme

- 1 évaluation par bloc faite par un·e encadrant·e
- Évaluation selon les Acquis d'Apprentissage Visés mentionnés précédemment

Modèle physique	/ 5
Graphique	/ 5
Script	/ 5
	4.5
AM / Laser	/ 5

Note Module
50% Bloc AM
50% Bloc Laser

Python pour la science

► Acquis d'Apprentissage Visés

Être capable de valider un modèle physique simple et fourni à l'aide d'un outil de calcul scientifique

- Transcrire/Traduire un modèle physique donné (sous forme d'équations) en algorithme numérique
- Choisir les paramètres de tests adaptés et réfléchis (discrétisation du signal, échantillonnage correct...)
- Analyser la pertinence des résultats obtenus (erreurs de calcul, divergence...)

Être capable de **générer des graphiques scientifiques** légendés

- Réaliser le graphique
- Décrire les axes avec les grandeurs et les unités associées
- Légender le graphique (titre, légende des courbes...)

Être capable d'écrire un script réutilisable dans un langage de haut niveau (à but scientifique)

- Utiliser des fonctions du langage avec des paramètres adaptés
- Ecrire des fonctions dans un langage de haut niveau afin de rendre des parties du code réutilisable
- Fournir un code lisible et réutilisable (convention d'écriture dans le langage, commentaires, documentation...)

Bloc AM - Traitement de données en 1D

Être capable de calculer, d'afficher et d'utiliser la transformée de Fourier discrète d'un signal

- Représenter l'axe des fréquences
- Savoir repérer graphiquement les composantes fréquentielles d'un signal dans un spectre
- Lister les contraintes de la FFT / Hypothèses et propriétés (signaux périodiques, symétrie hermitienne...)

Bloc AM: Traitement de données 1D

Problème 1 : signal modulé en amplitude / acquisition numérique

Bloc Laser - Traitement de données en 2D

 $I_0(z)$

Être capable de **traiter une série de données**

- Extraire des données (dans un fichier ou une série de fichiers) et les afficher
- Simuler un modèle donné et l'ajuster aux données expérimentales

Bloc Laser: Traitement de données 2D

Problème 2: images d'un faisceau LASER en différents points d'un chemin optique

