1. Bosse step
$$n>0$$
 $T(-)=0\leq 0^2>0$

10. Induction step

The Assume $T(-)=n$, we need to prove $T(-)=n$ (at i) $= (-)^2$

Assume $T(-)=n$ (a) $= n$.

The formula reach the end when $n-k=0$, so we substate $k=n$.

The formula reach the end when $n-k=0$, so we substate $k=n$.

The formula reach the end when $1-k=0$, so we substate $1-k=0$.

Since $1-k=0$ $1-k=0$ $1-k=0$ $1-k=0$ $1-k=0$ $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$ so $1-k=0$.

The formula reach the end when $1-k=0$ so we substate $1-k=0$ so $1-$

ラネがの