Exercise Sheet 10

The field k is assumed to be algebraically closed.

Exercise 1 Let C be a smooth projective curve and D a divisor on C. Consider the linear system |D|, i.e. the set of effective divisors linearly equivalent to D.

- 1. Identify |D| with $\mathbb{P}(L(D))$.
- 2. Let $Bs(|D|) := \bigcap_{E \in |D|} Supp(E)$ be the base locus of |D|. Show that $Bs(|D|) = \emptyset$ iff $\forall p \in C$

$$\dim |D - p| = \dim |D| - 1.$$

We say in this case that |D| is basepoint free.

3. We say that D is very ample if $\forall p, q \in C$

$$\dim |D - p - q| = \dim |D| - 2.$$

Show that

- if deg $D \ge 2g$, then |D| is basepoint free.
- if $\deg D \geqslant 2g+1$, then D is very ample.
- 4. Show that a basepoint free linear system |D| induces a morphism

$$\phi_{|D|} \colon C \to \mathbb{P}(L(D)) \simeq \mathbb{P}^n(k)$$

$$p \mapsto [s_0(p) : \cdots s_n(p)],$$

where the $s_i \in L(D)$ form a basis of L(D) and that $\phi_{|D|}$ is unique up to a projectivity of the target.

5. Show that $\phi_{|D|}$ is injective iff for any $p, q \in C$ distinct points,

$$\dim |D - p - q| = \dim |D| - 2.$$

6. Assume that $\phi_{|D|}$ is injective. Prove that $\phi_{|D|}$ is a closed immersion iff for any $p \in C$,

$$\dim |D - 2p| = \dim |D| - 2.$$

(hint: start proving that $\phi_{|D|}$ is a closed immersion iff $\{s \in L(D) \mid s_p \in \mathfrak{m}_p\}$ generate $\mathfrak{m}_p/\mathfrak{m}_p^2$, for any $p \in C$).

7. Conclude that D is very ample iff $\phi_{|D|}$ is a closed immersion.