

Frequentists and Bayesian methods to incorporate recruitment rate stochasticity at the design stage of a clinical trial

Pilar Pastor Martínez

Supervision by Malgorzata Roos

Index

- 1. Recruitment and Patient Leakage
- 2. Methods for Recruited Counts
- 3. Methods for Waiting Time
- 4. Comparison Exact methods vs Monte Carlo
- 5. Conclusions

Recruitment and Patient Leakage

Why recruitment rates?

According to Carter (2004)

- Timely recruitment vital to the success of a clinical trial
- Inadequate number of subjects → lack of power
- Recruitment period too long → competing treatments
- Recruitment of patients varies at each stage
- Methods applicable to all the stages

Target Population

Target Population

Eligibility

Enrollment

Randomization

Statistical Analysis

CONSORT

Patient Leakage

Definitions

- Recruitment rate: Per time-unit (Piantadosi, 2024)

$$\lambda = \frac{\Delta C}{\Delta T} = \frac{C_1 - C_0}{T_1 - T_0} = \frac{C_1}{T_1}$$

- Accrual: Cumulative Recruitment
- Aleatory uncertainty: randomness inherent and unpredictable
- Epistemic uncertainty: arises from limited knowledge about parameters

Methods for Recruited Counts

Motivation Models for Counts

Models for Counts

Recruitment in unit of time (t=1):

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C = \lambda$	λ	0	No	No
Poisson	$C \sim Po\left(\lambda ight)$	λ	λ	Yes	No
Poisson - Gamma	$\mathit{C} \sim \mathit{Po}(\Lambda); \Lambda \sim \mathit{G}(\alpha, \beta)$	$\frac{\alpha}{\beta}$	$\frac{\alpha(\beta+1)}{\beta^2}$	Yes	Yes

Accrual for time t [0,t]:

Methods	Counts	Expectation	Variance	Aleatory	Epistemic
Expectation	$C(t) = \lambda t$	λt	0	No	No
Poisson	$C(t) \sim Po(\lambda t)$	λt	λt	Yes	No
Poisson - Gamma	$C(t) \sim Po(\Lambda t); \Lambda \sim G(\alpha, \beta)$	$t\frac{\alpha}{\beta}$	$t^{\frac{\alpha(\beta+t)}{\beta^2}}$	Yes	Yes

University of

Master Thesis Biostatistics

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days

Multicenter Trial on Palliation in Terminal Esophageal Cancer

Example from Carter (2004):

- Recruitment Rate $\lambda = \frac{Counts}{Time} = 0.591$ per day
- Time t = 550 days
- Models for Counts at time point t:
 - Expectation: $EC(t) = \lambda t$
 - − Poisson: $C(t) \sim Po(\lambda t)$
 - Poisson Gamma: $C(t) \sim Po(\Lambda t)$; $\Lambda \sim G(\alpha, \beta)$

Accrual at time point t

- Expectation:
$$EC(t) = E(C + ... + C) = tEC = \lambda t$$
- Poisson: $Po(\lambda) + ... + Po(\lambda) = Po(\lambda t)$

May 20, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Accrual of 1 study

Accrual of 1 study

Accrual of 2 studies

Accrual of 2 studies

Accrual of 100 studies

Poisson-Gamma's uncertainty bands

Different Versions for generating λ

- 1. λ fixed over time and varies across studies
- 2. λ varies over time and across studies

Version 1 different from Version 2

version i different from version a

Negative binomial derived from Poisson-Gamma model at time point t

Let $C(t)|\Lambda \sim Po(\Lambda t)$ and $\Lambda \sim G(\alpha, \beta)$

$$\begin{split} p(c) &= \int_0^\infty p(c|\lambda) p(\lambda) d\lambda \\ &= \int_0^\infty \frac{(\lambda t)^c \exp(-\lambda t)}{c!} \bigg[(\lambda)^{\alpha - 1} \exp(-\beta \lambda) \frac{\beta^\alpha}{\Gamma(\alpha)} \bigg] d\lambda \\ &= \frac{\beta^\alpha t^c \Gamma(\alpha + c)}{c! \Gamma(\alpha)(\beta + t)^{\alpha + c}} \underbrace{\int_0^\infty \frac{(\beta + t)^{\alpha + c}}{\Gamma(\alpha + c)} \lambda^{\alpha + c - 1} \exp(-(\beta + t)\lambda) d\lambda}_{=1} \\ &= \binom{\alpha + c - 1}{\alpha - 1} \left(\frac{t}{\beta + t} \right)^c \left(\frac{\beta}{\beta + t} \right)^\alpha, \end{split}$$

$$C(t) \sim \textit{NBin} \bigg(\alpha, \frac{\beta}{\beta + t} \bigg)$$

May 20, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Expectation and Variance for Counts

Using the expressions of iterated expectation and variance (Held and Bové, 2014)

$$E(C(t)) = E_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] = E_{\Lambda}[\Lambda t] = t\alpha/\beta$$

$$Var(C(t)) = Var_{\Lambda}[E_{C(t)}(C(t)|\Lambda)] + E_{\Lambda}[Var_{C(t)}(C(t)|\Lambda)]$$

$$= Var_{\Lambda}[\Lambda t] + E_{\Lambda}[\Lambda t]$$

$$= t^{2}\alpha/\beta^{2} + t\alpha/\beta = \frac{t\alpha(\beta + t)}{\beta^{2}}$$

May 20, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Methods for Waiting Time

Motivation Models for Waiting Time

Models for Waiting Time with fixed sample sixe c

Methods	Time	Expectation	Variance	Aleatory	Epistemic
Expectation	$T(c) = c/\lambda$	c/\lambda	0	No	No
Erlang	$T(c) \sim \mathrm{G}(c,\lambda)$	c/λ	c/λ^2	Yes	No
Gamma-Gamma	$T(c) \sim G(c, \Lambda); \Lambda \sim G(\alpha, \beta)$	$c\frac{\beta}{\alpha-1}$	$\frac{c\beta^2(c+\alpha-1)}{(\alpha-1)^2(\alpha-2)}$	Yes	Yes

Expectation and Variance for Waiting Times

Using the expressions of iterated expectation and variance (Held and Bové, 2014) and that when $\Lambda \sim \mathrm{G}(\alpha,\beta)$ then, $\frac{1}{\Lambda} \sim \mathrm{IG}(\alpha,\beta)$

$$\mathrm{E} T(c) = \mathrm{E}_{\Lambda}[\mathrm{E}_{T(c)}(T(c)|\Lambda)] = \mathrm{E}_{\Lambda}\left[\frac{c}{\Lambda}\right] = c\mathrm{E}_{\Lambda}\left[\frac{1}{\Lambda}\right] = c\frac{\beta}{\alpha - 1}, \ \alpha > 1$$

$$\begin{split} \operatorname{Var}(\mathcal{T}(\boldsymbol{c})) &= \operatorname{Var}_{\Lambda}[\operatorname{E}_{\mathcal{T}(\boldsymbol{c})}(\mathcal{T}(\boldsymbol{c})|\Lambda)] + \operatorname{E}_{\Lambda}[\operatorname{Var}_{\mathcal{T}(\boldsymbol{c})}(\mathcal{T}(\boldsymbol{c})|\Lambda)] \\ &= \operatorname{Var}_{\Lambda}\left[\frac{c}{\Lambda}\right] + \operatorname{E}_{\Lambda}\left[\frac{c}{\Lambda^{2}}\right] \\ &= c^{2}\operatorname{Var}_{\Lambda}\left[\frac{1}{\Lambda}\right] + c\operatorname{E}_{\Lambda}\left[\frac{1}{\Lambda^{2}}\right] \\ &= \frac{c\beta^{2}(c+\alpha-1)}{(\alpha-1)^{2}(\alpha-2)}, \; \alpha > 2 \end{split}$$

May 20, 2025 Recruitment rate stochasticity at the design stage of a clinical trial

Sensitivity Analysis for Time

Comparison Exact Methods vs Monte Carlo

Comparison Exact Methods vs Monte Carlo

Model	Estimated Probabilty	MCse	Exact Probability
$C(T) \sim Po(\lambda T)$	$P(C(T) \ge 324) = 0.504$	0.005	0.508
$C(T) \sim \text{PoG}(T, \alpha, \beta)$	$P(\textit{C(T)} \geq 324) = 0.48$	0.005	0.501

Model	Estimated Probabilty	MCse	Exact Probability
$T(C) \sim G(C, \lambda)$	$P(T(C) \ge 548) = 0.498$	0.005	0.496
$T(C) \sim \mathrm{GG}(C, \alpha, \beta)$	$P(T(C) \ge 548) = 0.52$	0.005	0.52

Comparison Exact Methods vs Monte Carlo – Poisson-Gamma Counts

MC simulation vs theoretical PMF

Comparison Exact Methods vs Monte Carlo – Gamma-Gamma Time

MC simulation vs theoretical density

Carter's Questions

- $M = 10^3$ from Carter's → 580 days (innacurate)
- 90% chance of accruing N = 324 patients:
 - Erlang exact distribution → 588 days
 - Gamma-Gamma exact distribution → 707 days

Conclusions

- Visual tools: Graphs clarify recruitment flow, delays, and patient leakage in trials
- Unified Notation: Consistent math framework allows precise analysis of count and time models
- Exact Methods: Extended Monte Carlo methods to capture both aleatory and epistemic uncertainty
- Flexible Recruitment: Framework supports both fixed and time-varying recruitment rates
- Practical Impact: Exact methods aid trial design; open-source R code enables real-world use

References

Carter, R. E. (2004). Application of stochastic processes to participant recruitment in clinical trials. Controlled Clinical Trials, 25(5):429-436.

Held, L. and Bové, D. S. (2014). Applied Statistical Inference. Springer.

Piantadosi, S. (2024). Clinical Trials: A Methodologic Perspective. John Wiley & Sons.

Thank you for your attention