Executive Summary

For the first part of our paper, we were asked to develop a mathematical model to predict changes to the housing supply over the next 50 years in two cities of our choosing, of which we chose Seattle, Washington and Albuquerque, New Mexico. To solve this, we developed a linear model through regressing historical housing supply data across both cities, and determined that it proves weak at accounting for large unforseen events like war, epidemics, or natural disasters while still successfully guiding public policy decisions under the assumption that such instances rarely, if ever, occur.

For the second part of our paper, we are asked to develop a similar model to track the rate of homelessness across both cities. Again, we regressed historical homelessness data to develop a linear model, except in these models, we chose to develop models designed for each city rather than one aggregate model due to the completely different homelessness situations across each city.

Lastly, for the third and final part of our paper, we are asked to develop a model to best aid local governments in developing public policy to combat homelessness. We conclude that, based on our results from part 2, public policy decisions made by Albuquerque will be the most successful, and as such, we chose to mathematically model the effects of their public policy on homelessness populations. From there, we reflected on our model and determined that it, yet again, fails to account for difficult-to-foresee situations but serves well as a general guideline for local governments when developing public policy decisions.

Observing the United States' Homelessness Crisis through Mathematical Methods

Mufaro Machaya, Nam Le, Ben Stilwell Cy-Fair Senior High School Cypress, Texas

March 3, 2024

Contents

1	Intr	oduction	4
2	It w	as the Best of Times	5
	2.1	Restatement of the Problem	5
	2.2	Assumptions and Justifications	5
	2.3	Model Development	5
	2.4	Results	8
	2.5	Reflecting on the Model	8
3	It w	as the Worst of Times	10
	3.1	Restatement of the Problem	10
	3.2	Assumptions and Justifications	10
	3.3	Model Development	10
	3.4	Results	15
		3.4.1 Albuquerque, New Mexico	15
		3.4.2 Seattle, Washington	15
	3.5	Reflecting on the Model	15
4	Risi	ng from this Abyss	16
	4.1	Restatement of the Problem	16
	4.2	Assumptions and Justifications	16
	4.3	Model Development	16
	4.4	Reflecting on the Model	17

1 Introduction

Understanding the housing shortage has become more important than ever, as rates of homelessness have reached unprecedented and potentially dire level[1]. Moving into the future, it is undeniably critical for promoting the general welfare of United States populations to best understand housing for influencing public policy across major cities in the United States. Thus, we have prepared the following mathematical models to best understand such a trend.

2 It was the Best of Times

2.1 Restatement of the Problem

The first problem asks us to develop a mathematical model to predict changes to the housing supply over the next 50 years in two cities of our choosing: Seattle, Washington; and Albuquerque, New Mexico.

2.2 Assumptions and Justifications

There will be no immense, drastic, and long-term permanent changes to housing production possibility within the next fifty years.

Justification: Events that will drastically change the ability to produce housing, such as immense wars or widespread natural disasters, are neigh-impossible to detect accurately with a simple mathematical model. The only events that can be accurately tracked through mathematical means over short periods of time are cyclical events, like economic recessions or inflation.

Occupied housing will not be considered part of the available total housing supply.

Justification: In regards to fixing the homelessness crisis, housing that can be considered available for allocation to unhoused people inherently must be unoccupied by others.

Differences in median housing costs and median income per capita across regions in both Albuquerque and Seattle will not be considered in determining housing availability.

Justification: These factors hold a strong correlation with housing unavailability, yet we assume them to have no causal relationship.

2.3 Model Development

For our housing availability model, we choose to use a simple vector machine that regresses historical housing availability data for both Albuquerque and Seat-

tle, and from there, we cross-reference this data with historical economic trends across the United States to best model housing availability over time given cyclical economic trends.

To begin, we trained the model on the following datasets for housing availability in Albuquerque and Seattle and the national GDP of the United States.

Year	Total housing units	Occupied units	Vacant units
2010	234,891	217,256	17,635
2011	237,735	220,060	17,675
2012	239,718	222,584	17,134
2013	240,277	222,491	17,786
2014	240,961	222,868	18,093
2015	241,326	222,098	19,228
2016	242,070	221,320	20,750
2017	243,402	221,119	22,283
2018	244,382	222,748	21,634
2019	245,476	224,166	21,310
2020	247,926	229,701	18,225
2021	252,924	236,191	16,733
2022	255,178	239,800	15,378

Table 1: Housing Statistics in Albuquerque, New Mexico [3].

Year	Total housing units	Occupied units	Vacant units
2010	302,465	280,453	22,012
2011	304,164	282,480	21,684
2012	306,694	285,476	21,218
2013	309,205	288,439	20,766
2014	311,286	290,822	20,464
2015	315,950	296,633	19,317
2016	322,795	304,157	18,638
2017	334,739	314,850	19,889
2018	344,503	323,446	21,057
2019	354,475	331,836	22,639
2020	367,337	344,629	22,708
2021	362,809	337,361	25,448
2022	372,436	345,246	27,190

Table 2: Housing Statistics in Seattle, Washington [4].

Due to the limited size of the dataset, we chose to use a \mathcal{C} value for our SVM closer to 1.0 to prevent overfitting or underfitting of the data.

Figure 1: The number of vacancies in Albuquerque and Seattle from 2010 to 2022 [3, 4].

Let H(x) equal the number of available houses for a given year, where x is the current year (absolute from year 0, such as 2024). Simple regression on this dataset results in a total trendline of

$$H_{\text{TOTAL}}(x) = 385x - 735,364$$

where $R_{\mbox{TOTAL}}^2 = 0.586$, and an average trendline of

$$H_{\text{AVG}}(x) = 192x - 367,682$$

where $R_{AVG}^2 = 0.586$.

A coefficient of determination of 0.586 is undeniably subpar due to the immense indifficulty in representing vast differences across the trends with linear functions.

2.4 Results

With this model, we can predict the following housing statistics for 2034 (10 years in the future), 2044 (20 years in the future), and 2074 (50 years in the future):

		Average Available Total Available Homes in Each		
Year	Years from 2024	Homes	City	Change from 2024
2024	0	43,876	20,926	0
2034	10	47,726	22,846	1,920
2044	20	51,576	24,766	1,920
2074	50	63,126	30,526	1,920

2.5 Reflecting on the Model

Overall, our model proves generally weak at predicting immense, unforseen changes to the economic situation of both cities such as the advent of war, the outbreak of a major epidemic/pandemic, or a large-scale natural disaster. This model is best for serving as a general, aggregate predictor of housing availability based on cyclical economic trends. Our coefficient of determination R^2 is certainly low, indicating a lack of accuracy, but this is certainly due to the difficulty of modeling previously-mentioned large-scale events with a linear model.

Altogether, we can conclude that this model's impact serves best as a general guideline for understanding realistic public policy because it is solely based largely on aggregate, cyclical economic factors that can be reasonably relied upon to occur continuously.

3 It was the Worst of Times

3.1 Restatement of the Problem

The first problem asks us to develop a mathematical model to predict changes to the homeless population over the next 50 years in two cities of our choosing: Seattle, Washington; and Albuquerque, New Mexico.

3.2 Assumptions and Justifications

Public policy regarding homelessness will stay roughly the same throughout the next fifty years.

Justification: We assume that there will be no significant changes to government policy that would severely change the homeless population, as these immense changes to public policy require immense predictions of political trends beyond the scope of this study.

3.3 Model Development

For our model, we used yet another linear support vector machine for simple linear regression at C=1.0 as trained on the following data sets:

Year	Total Population	Total Homeless
2007	-	1,276
2008	-	1,276
2009	-	2,002
2010	531,403	2,002
2011	539,000	1,639
2012	545,083	1,431
2013	549,812	1,171
2014	553,576	1,254
2015	556,092	1,287
2016	556,859	1,222
2017	556,718	1,318
2018	559,202	1,340
2019	559,374	1,524
2020	560,447	1,586
2021	562,336	1,567
2022	562,551	1,277

Table 3: Total Population by Year in Albuquerque [2, 5].

Year Total Homeless

Table 4:

Homeless Population vs. Year in Albuquerque (Predicted for 2023-) 2,000 1,500

Figure 2: Total Homeless by Year in Albuquerque, New Mexico

Homeless/Total Population Proportion vs. Year in Albuquerque (Predicted for 2023-)

Figure 3: Percentage of the Population that is Homeless in Albuquerque, New Mexico

Therefore, for Albuquerque, let $A_T(x)$ be total number of homeless people in Albequerque, where x is the current year (which is absolute from 0, such as 2024).

$$A_T(x) = 32,757.7 - 15.54(x)$$

Additionally, let $A_{\%}(x)$ be the percentage of Albuquerque's population that is homeless, where x is the current year (which is absolute from 0, such as 2024).

$$A_{\%}(x) = .08124 - 3.9(x) \times 10^{-5}$$

Year	Total Population	Total Homeless
2007	-	7,902
2008	-	8,501
2009	-	8,952
2010	595,240	9,022
2011	603,174	8,972
2012	612,916	8,899
2013	624,681	9,106
2014	637,850	8,949
2015	653,017	10,122
2016	668,849	10,730
2017	688,245	11,643
2018	708,823	12,112
2019	724,305	11,199
2020	741,251	11,751
2021	726,054	5,183
2022	734,603	13,368

Table 5: Total Population by Year in Seattle [2, 5].

Figure 4: Total Homeless by Year in Seattle, Washington

Figure 5: Percentage of the Population that is Homeless in Seattle, Washington

Therefore, for Seattle, let $S_T(x)$ be total number of homeless people in Seattle, where x is the current year (which is absolute from 0, such as 2024).

$$S_T(x) = 341.625x + 7902$$

Additionally, let $S_{\%}(x)$ be the percentage of Seattle's population that is homeless, where x is the current year (which is absolute from 0, such as 2024).

$$S_{\%}(x) = 0.65 - 2.473(x) \times 10^{-5}$$

3.4 Results

With this model, we can predict the following homelessness statistics for 2034 (10 years in the future), 2044 (20 years in the future), and 2074 (50 years in the future):

3.4.1 Albuquerque, New Mexico

Year	Years from 2024	Homeless Percentage	Total Homeless	Change from 2024
2024	0	2.304×10^{-3}	1,304.74	0
2034	10	1.914×10^{-3}	1,149.34	-155.4
2044	20	1.524×10^{-3}	993.94	-155.4
2074	50	3.54×10^{-3}	527.74	-155.4

3.4.2 Seattle, Washington

Year	Years from 2024	Homeless Percentage	Total Homeless	Change from 2024
2024	0	0.6	699,351	0
2034	10	0.6	702,767.25	3,416.25
2044	20	0.6	706, 183.5	3,416.5
2074	50	0.599	716, 432.25	10,249

3.5 Reflecting on the Model

Reflecting on the Models: Our homeless models for both the city of Seattle and Albuquerque proves a little weak, as the homeless population rate won't have a linear decrease or increase following the year 2023, but will have its ups and downs. Although our data for the graphs are not perfect, it offers a distinct trend between the two cities, since Seattle's estimated homeless population rate is going up, while Albuquerque's homeless population rate is going down. This gives insight on the effectiveness of Albuquerque's methods in solving the homeless crisis, and should be explored furthermore.

4 Rising from this Abyss

4.1 Restatement of the Problem

The third and final question asks us to utilize the results from at least one of our previous models to first develop a final model that can be used to best aid a city in combatting the homelessness crisis then analyze the model for its strengths and weaknesses given situations like natural disasters, economic recessions, or migrant populations.

4.2 Assumptions and Justifications

Job availability will be stimulated primarily through public policy from the government.

The intent of this model is to understand how public policy ought to reflect into homelessness statistics without heavy consideration to external factors, such as the growth or shrinking of privately funded opportunities supplied for homeless people (such as charity or jobs). Such consideration would require more narrow focus on cyclical economic trends, when in reference to the success of implementing simple public policy, such methods would be rendered unnecessary. For the sake of brevity, lawmakers merely need to understand the general impacts of their legislation rather than their impact in context of the entire economic situation of their region.

4.3 Model Development

We developed our model based on the predictions outlined in recent public policy decisions made by Albuquerque city officials of combatting homelessness through policy-funded stimulation of job opportunities directly for homeless shelter residents[7]. Given the immense success Albuquerque has had thus far in reducing homelessness year after year (as shown in our previous results), we can conclude that their success in providing conncting opportunities to the homeless ought to serve as the benchmark for determining public policy for addressing homeless populations throughout the nation.

Thus, we developed the following model through our previous linear regression processes with data from Albuquerque's labor statistics [6]. Let N(x) equal our

homelessness population in Albuquerque for a given year, where x is the number of available jobs for the given market.

$$N(x) = 1,368 - 0.037(x)$$

4.4 Reflecting on the Model

This model provides a strong general basis for understanding how the availability of jobs for homeless populations within Albequerque serves as an inverse relationship, directly combatting the homelessness crisis in an incredibly effective manner. However, we must acknowledge that it is unreliable in consideration to unforseen events that could divert resources from providing economic opportunities like jobs for the homeless, such as war or natural disasters, due to lacking nuance for accounting for such occurances. Additionally, as a linear model, it will be far less accurate for accounting for cyclical movements in the economy, acting as more of an aggregate measure for combatting homelessness through job opportunities than a guaranteed predictor of homelessness statistics.

References

- [1] Chris Arnold, Robert Benincasa, Jacqueline GaNun, and Haidee Chu.
 There's a massive housing shortage across the u.s. here's how bad it is
 where you live. NPR Economy, 14 July 2022. Accessed on 3 March
 2024 https://www.npr.org/2022/07/14/1109345201/
 theres-a-massive-housing-shortage-across-the-u-s-heres-how-bad-it-
- [2] U.S. Census Bureau. Age and sex. U.S. Census Bureau. Accessed on 3 March 2024. https://data.census.gov/table/ACSST1Y2022.S0101?q=seattleage.
- [3] U.S. Census Bureau. Selected housing characteristics. U.S. Census Bureau. Accessed on 3 March 2024. https://data.census.gov/table/ACSDP1Y2010.DP04?q=albquerque%20city%20DP04&q=160XX00US5363000.
- [4] U.S. Census Bureau. Selected housing characteristics. U.S. Census Bureau. Accessed on 3 March 2024. https://data.census.gov/table/ACSDP5Y2018.DP04?q=seattlecityDP04&g=160XX00US5363000.
- [5] U.S. Dept. of Housing and Urban Development. Pit and hic data since 2007. HUD Exchange. Accessed on 3 March 2024. https://www.hudexchange.info/resource/3031/ pit-and-hic-data-since-2007/.
- [6] U.S. Bureau of Labor Statistics. Economy at a glance: Albuquerque, nm. U.S. Bureau of Labor Statistics. Accessed on 3 March 2024. https://www.bls.gov/eag/eag.nm_albuquerque_msa.htm.
- [7] Targeted News Service. Albuquerque city adds medical services, case management, job placement services at westside shelter for first time. *Gale OneFile: News.* Accessed on 3 March 2024. https://link.gale.com/apps/doc/A603516840/STND?u=j101907002&sid=bookmark-STND&xid=bbb71a03.