

分类:基本概念、决策树、 贝叶斯方法、模型评价

> 朱卫平 博士 计算机学院 武汉大学

分类

■ 分类是利用一个分类函数(分类模型、分类器), 该模型能把数据库中的数据映射到一个给定类别中。

Test Set

决策树中Entropy的计算

■给定结点t的 Entropy值计算:

$$Entropy(t) = -\sum_{j} p(j | t) \log p(j | t)$$

(p(j/t) 是在结点t中,类j发生的概率).

- 当类分布均衡时, Entropy值达到最大值 (log n_c)
- -相反当只有一个类时,值达到最小值0
- Entropy 与 GINI相似

计算 Entropy的例子

$$Entropy(t) = -\sum_{j} p(j|t) \log_{2} p(j|t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
Entropy = $-0 \log 0 - 1 \log 1 = -0 - 0 = 0$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy =
$$-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

不纯性的测量:信息增益

Information Gain:

$$GAIN_{split} = Entropy(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} Entropy(i)\right)$$

 n_i = 孩子结点 i的记录数, n = 结点 p的记录数.

- 在 ID3 和 C4.5中使用

基于信息增益的划分

■ 增益率(Gain Ratio):

$$GainRATIO_{split} = \frac{GAIN_{split}}{SplitINFO}$$

$$SplitINFO = -\sum_{i=1}^{k} \frac{n_{i}}{n} \log \frac{n_{i}}{n}$$

- 熵和Gini指标等不纯性趋向于有利于具有大量不同值的 属性!
 - 如: 利用雇员id产生更纯的划分,但它却毫无用处
- 每个划分相关联的记录数太少,将不能做出可靠的预测
- 解决该问题的策略有两种:
 - ▶限制测试条件只能是二元划分
 - ▶使用增益率。K越大Split Info越大增益率越小

不纯性的测量: Classification Error

■ 给定结点t的 Classification Error值计算:

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- 当类分布均衡时, error值达到最大值 (1 1/n_c)
- •相反当只有一个类时, error值达到最小值0

计算Classification Error的例子

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

不纯性度量之间的比较

二元分类问题:

课堂练习:对下列数据集进行二元分类

Customer ID	Gender	Car Type	Shirt Size	Class
1	M	Family	Small	C0
2	M	Sports	Medium	C0
3	M	Sports	Medium	C0
4	M	Sports	Large	C0
5	M	Sports	Extra Large	C0
6	M	Sports	Extra Large	C0
7	F	Sports	Small	C0
8	F	Sports	Small	C0
9	F	Sports	Medium	C0
10	F	Luxury	Large	C0
11	M	Family	Large	C1
12	M	Family	Extra Large	C1
13	M	Family	Medium	C1
14	M	Luxury	Extra Large	C1
15	F	Luxury	Small	C1
16	F	Luxury	Small	C1
17	F	Luxury	Medium	C1
18	F	Luxury	Medium	C1
19	F	Luxury	Medium	C1
20	F	Luxury	Large	C1

课堂练习:对下列数据集进行二元分类

ALLElectronics 顾客数据库标记类的训练元组

RID	age	income	student	credit_rating	Class:buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no
-					

income	student	credit_ra	class
		ting	
high	no	fair	no
high	no	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	excellent	yes

income	student	credit_ra	class
		ting	
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

income	student	credit_rati	class
		ng	
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

决策树

- ■决策树归纳的设计问题
 - 如何分裂训练记录
 - 怎样为不同类型的属性指定测试条件?
 - 怎样评估每种测试条件?
 - 如何停止分裂过程

停止分裂过程

- 当所有的记录属于同一类时,停止分裂
- 当所有的记录都有相同的属性时,停止分裂
- 提前终止树的生长

三种著名的决策树

■ Cart: 基本的决策树算法

■ Id3: 利用增益比不纯性,树采用二叉树,停止准则为当所有的记录属于同一类时,停止分裂,或当所有的记录都有相同的属性时,停止分裂

■ C4.5: id3的改进版本,也是最流行的分类数算法。采用多重分支和剪枝技术。

决策树

■特点:

- 决策树是一种构建分类模型的非参数方法
- 不需要昂贵的的计算代价
- 决策树相对容易解释
- 决策树是学习离散值函数的典型代表
- 决策数对于噪声的干扰具有相当好的鲁棒性
- 冗余属性不会对决策树的准确率造成不利影响
- 数据碎片问题。随着数的生长,可能导致叶结点记录数太少,对于叶结点代表的类,不能做出具有统计意义的判决
- 子树可能在决策树中重复多次。使决策树过于复杂

贝叶斯分类

- <u>一种统计分类器</u>: 进行概率性预测, 也就是预测元组属于 某类的概率
- 理论基础: 基于贝叶斯定理(Bayes' Theorem)
- <u>性能:</u> 朴素贝叶斯分类法(*naïve Bayesian classifier*)可以媲美于决策树和特定的神经网络
- <u>增量式</u>:每一个训练实例会逐渐增加(或减少)某一假设的概率,也就是说观察数据可以与先验知识合并

贝叶斯理论:基础

- 全概率公式: $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- 贝叶斯定理: $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})} = P(\mathbf{X}|H) \times P(H)/P(\mathbf{X})$
 - X 是待测试的数据元组,类标识未知
 - 令H是一个假设(hypothesis): X属于类C
 - 问题在于确定后验概率 P(H|X): 当观测到X时假设H成立的概率
 - P(H) (先验概率):
 - E.g., 任意顾客将购买计算机的概率,不管他们的年龄、收入等
 - P(X): X被观测到的概率
 - P(X|H) (可能性,likelihood): 给定假设H成立,观测数据被观察到的概率
 - E.g., 假设已知X将会购买计算机, X的年龄在31到40之间, 中等收入的概率

朴素贝叶斯分类

- 令 D 是训练元组和他们所关联类标号的集合。每个元组表示为一个n维属性向量 $X = (x_1, x_2, ..., x_n)$
- 假设有 *m* 个类 C₁, C₂, ..., C_m.
- 分类就是要求出最大的后验概率 P(C_i|X)
- 使用贝叶斯定理有:

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

- 可以用以下关系表示 posteriori = likelihood x prior/evidence
- 预测 X 属于 C_i iff P(C_i|X) =max(P(C_k|X)), for all k classes
- 实践困难: 需要许多概率的初始知识, 将需要较大的计算耗费
- 由于 P(X) 对所有类是常数,只需要计算下式的最大值

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

朴素贝叶斯分类

• 类条件独立假设: 各属性之间是条件独立的 (i.e., 各属性之间 不存在相互关系). 那么进行化简:

$$P(\mathbf{X}|C_i) = \prod_{k=1}^{n} P(x_k | C_i) = P(x_1 | C_i) \times P(x_2 | C_i) \times ... \times P(x_n | C_i)$$

- 这可以极大的减少计算开销: 只需计算单个属性的类分布
- If A_k 是标称的, $P(x_k|C_i)$ 等于类为 C_i 的元组中 A_k 值为 x_k 的元组个数除以 $|C_{i,D}|$ (D中属于 C_i 的元组个数)
- If A_k 是连续值属性, $P(x_k|C_i)$ 通常用高斯分布计算

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

$$P(X_K | C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

朴素贝叶斯分类: 训练集

Class:

C1:buys_computer = 'yes'

C2:buys_computer = 'no'

Data to be classified:

X = (age <= 30,

Income = medium,

Student = yes

Credit_rating = Fair)

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

朴素贝叶斯分类: 例子

- $P(C_i)$: $P(buys_computer = "yes") = 9/14 = 0.643$ $P(buys_computer = "no") = 5/14 = 0.357$
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys_computer = "yes")
= 2/9 = 0.222
P(age = "<= 30" | buys_computer = "no")
= 3/5 = 0.6
```

age	income	student	credit_rating	s_compt
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
```

P(income = "medium" | buys_computer = "no") = 2/5 = 0.4

P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667

P(student = "yes" | buys_computer = "no") = 1/5 = 0.2

P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667

P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

 $P(X|C_i)$: $P(X|buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044$ $<math>P(X|buys_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019$

 $P(X|C_i)*P(C_i): P(X|buys_computer = "yes") * P(buys_computer = "yes") = 0.028$ $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$

因此, X 属于类("buys_computer = yes")

避免0概率问题

• Naïve Bayesian 需要每个条件概率非零,否则总概率将为0

$$P(X_K \mid C_i) = \prod_{k=1} P(X_k \mid C_i)$$

- Ex. 假定数据集有 1000 元组, income=low (0), income=medium (990), income = high (10)
- 使用拉普拉斯校准(Laplacian correction)
 - 每个类别的元组加1

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

- "校准的" 概率估计和 "未校准的" 的概率估计很接近,但 避免了0概率问题

朴素贝叶斯分类:分析

- 优势
 - 易于实现
 - 在大量的情况下有较好的结果
- 不足
 - 类条件独立假设假设会引起准确度损失
 - 在实际中,各个属性间可能存在依赖性
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.

评估分类器性能的度量

	预测的类				
		Class=Yes	Class=No	合计	
实际的类	Class=Yes	TP (True Positive)	FN (False Negative)	Р	
	Class=No	FP (False Positive)	TN (True Negative)	N	

混淆矩阵

准确率 (Accuracy) =
$$\frac{TP+TN}{TP+TN+FP+FN} = \frac{TP+TN}{P+N}$$

错误率(error rate) = 1-Accuracy

混淆矩阵-例子

类	buyscomputer =yes	buyscomputer =no	合计	识别率(%)
buys_computer=yes	0054	46	7000	
buys_computer=no	412	2588	3000	
合计	7366	2634	10000	95. 42

类buys_computer=yes和buys_computer=no的混淆矩阵

类不平衡问题-准确率的缺点

- ■在类分布相对平衡时有效
- ■考虑2类问题
 - 类0的样本数 = 9990
 - 类1的样本数 = 10
- 如果模型预测所有的样本为类0, 准确率为 9990/10000 = 99.9 %
 - 准确率的值具有欺骗性
 - 模型并没有分对类1的任何样本

类不平衡问题-准确率的缺点

■ 灵敏性 (sensitivity) 和特效性 (specificity)

$$sensitivity = \frac{TP}{P}$$
 正确识别的正元组的百分比

$$specificity = \frac{TN}{N}$$
 正确识别的负元组的百分比

■考虑2类问题, 类0的样本数 = 9990, 类1的样本数 = 10,如果模型预测所有的样本为类0, 灵敏性和特效性是多少?

类不平衡问题-准确率的缺点

类	yes	no	合计	识别率 (%)
yes	90	210	300	30.00
no	140	9560	9700	98. 56
合计	230	9770	10000	96. 50

类cancer=yes和cancer=no的混淆矩阵

灵敏性和特效性是多少?

精度和召回率

■精度和召回率

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{P} \qquad sensitivity = \frac{TP}{P}$$

- 精度表示的是标记为某一类的元组是正确的概率
- 召回率表示的是实际是某一类元组的元组被正确标记的概率
- 两者存在逆关系,可能降低其中一个提高另一个
- 两者通常同时使用,用固定召回率(如0.75)比较精度

精度和召回率

类	yes	no	合计	
yes	90	210	300	
no	140	9560	9700	
合计	230	9770	10000	

类cancer=yes和cancer=no的混淆矩阵

精度和召回率是多少?

F度量和Fβ度量

■精度和召回率

$$F = \frac{2 \times precision \times recall}{precision + recall}$$

$$F_{\beta} = \frac{(1+\beta^2) \times \text{precision} \times \text{recall}}{\beta^2 \times \text{precision} + \text{recall}}$$

- F度量赋予精度和召回率相同的权重
- F_β度量赋予召回率权重是精度的β倍

度量小结

其他问题

当每个元组可以属于多个类是怎么办?

检验方法

■保持(hold out) 随机固定划分数据集

■ 随机二次抽样: 保持法重复k次取平均值

检验方法

- ■交叉验证
 - K折交叉验证
 - 留一法(特殊的K折交叉验证,K设置为元组数,每次只给检验集留一个样本)
- ■自助法
 - ●.632自助法: d个样本有放回的抽样d次作为训练集,允许多次选择同一样本
 - 63.2%的原数据元组将会出现在训练集中。为什么是 63.2%?

ROC (Receiver Operating Characteristic)

- ROC曲线是一种比较不同分类器的可视化方法。 它显示分类器真正率(TPR)和假正率(FPR)之 间的关系。
- 真正率 TPR = TP / P (灵敏度)
- 假正率 FPR = FP / N (1-特效型)

ROC (Receiver Operating Characteristic)

- ROC曲线显示分类器真正率(TPR)和假正率(FPR)之间的关系。
- ■首先形成以下图表

元组编号	类	概率	TP	FP	TN	FN	TPR	FPR
1	Р	0.90	1	0	5	4	0.2	0.0
2	Р	0.80	2	0	5	3	0.4	0.0
3	N	0.70	2	1	4	3	0.4	0.2
4	Р	0.60	2	1	4	2	0.6	0.2
5	Р	0.55	4	1	4	1	0.8	0.2
6	N	0.54	4	2	3	1	0.8	0.4
7	N	0.53	4	3	2	1	0.8	0.6
8	N	0.51	4	4	1	1	0.8	0.8
9	Р	0.50	5	4	1	0	1.0	0.8
10	N	0.40	5	5	0	0	1.0	1.0

元组按递减得分排序,其中得分是概率分类器返回的值,以此计算第三列中数据为阈值时的TP, FP, TN, FN等数值,然后计算TPR和FPR

ROC

元组 编号	类	概率	ТР	FP	TN	FN	TPR	FPR
1	P	0.90	1	0	5	4	0.2	0.0
2	P	0.80	2	0	5	3	0.4	0.0
2 3	N	0.70	2	1	4	3	0.4	0.2
4	P	0.60	2	1	4	2	0.6	0.2
5	P	0.55	4	1	4	1	0.8	0.2
6	N	0.54	4	2	3	1	0.8	0.4
7	N	0.53	4	3	2	1	0.8	0.6
8	N	0.51	4	4	1	1	0.8	0.8
9	P	0.50	5	4	1	0	1.0	0.8
10	N	0.40	5	5	0	0	1.0	1.0

ROC

ROC 曲线

两个分类模型M1和M2的ROC曲线 (凸包)

ROC (Receiver Operating Characteristic)

■ ROC 曲线上有几个关键点,它们有公认的解释:

- (TPR=0, FPR=0): 把每个实例都预测为负类的模型

- (TPR=1, FPR=1): 把每个实例都预测为正类的模型

- (TPR=1, FPR=0): 理想模型

使用ROC曲线比较模型

- 没有哪个模型能够压倒 对方
 - FRR<0.36, M₁ 较好
 - FRR>0.36, M₂较好
- ROC曲线下方的面积
 - 理想情况:
 - ■面积=1
 - 随机猜测:
 - ■面积 = 0.5

ROC曲线练习

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
→	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
→	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Thank You!

Q&A