

Spill the TeA:

ARTIFACT

EVALUATED

💋 u s e n ı x

REPRODUCED

An Empirical Study of Trusted Application Rollback Prevention on Android Smartphones

Marcel Busch, Philipp Mao, Mathias Payer EPFL, Lausanne, Switzerland

Trusted Applications on Mobile Devices

Trusted Applications

TA Rollback Attacks

TA Rollback Prevention

Overview

5 OEMs >65% market share

focus on last 4y

>= 5 firmware images per phone

~ 35,500 TAs (293 unique) 4 TEEs

190 rollback counter events

~ 2,500 vulnerable TAs

Rollback Counter Usage Overview

RCs not used although **public** vulnerability advisories exist

TA rollback affects 29 out of 51 devices

Only vendor with RC changes is Samsung

TA Rollback Counter Caveats

X-Product Leakage

Psasurs wig Caip A

Uncoordinated TA Rollback Counter increments can threaten other products

Uncoordinated Rollback Counter Increments (cont.)

14 shared TAs (some vulnerable)

Conclusions

Takeaways

- TA rollback prevention is ineffective at an industry-wide scale
- Questionable TA vulnerability practices
 - No capability for rollback counters
 - Uncoordinated usage of rollback counters
- Lack of transparency regarding TA rollback prevention

Spill the TeA: An Empirical Study of Trusted Application Rollback Prevention on Android Smartphones

Paper

Code

