Group 16: Chandana Budaati(1002087323), Sanjana Potluri(1002147971), Deepthi Burada(1002034183), Varshith Konduru(1002132051)

```
In [43]: # Import the required library
from sklearn.neighbors import KNeighborsClassifier
import numpy as np
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
import seaborn as sns
from sklearn.metrics import precision_score, recall_score
import warnings
warnings.filterwarnings("ignore")
```

Loading Dataset

Changing Different K for KNN Classifier

```
In [45]: sc = [] # List to store accuracy
l = [] # List to store k values
#Checking with different k values
for k in range(1,25):
    l.append(k)
    #Create KNN Classifier
    neigh = KNeighborsClassifier(n_neighbors=k)
    neigh.fit(X_train,y_train) # Train the KNN Classifier on the training set
    y_pred = neigh.predict(X_test) # Predict the X_test score and store in y_pred
    accuracy = accuracy_score(y_test, y_pred=y_pred)
    sc.append(accuracy)# Accuracy Calculation
In [46]: #Display of accuracys
for k, accuracys in zip(l, sc):
    print(f"For k={k}, the accuracy is {accuracys}")
For k=1, the accuracy is 0.9436970602889886
```

```
For k=2, the accuracy is 0.9412057797708022
For k=3, the accuracy is 0.9446935724962631 For k=4, the accuracy is 0.9431988041853513
For k=5, the accuracy is 0.9446935724962631
For k=6, the accuracy is 0.9387144992526159 For k=7, the accuracy is 0.9417040358744395
For k=8, the accuracy is 0.9407075236671649
For k=9, the accuracy is 0.9372197309417041
For k=10, the accuracy is 0.9357249626307922
For k=11, the accuracy is 0.9312406576980568
For k=12, the accuracy is 0.9307424015944196
For k=13, the accuracy is 0.929745889387145
For k=14, the accuracy is 0.9292476332835077
For k=15, the accuracy is 0.9302441454907823
For k=16, the accuracy is 0.9272546088689586
For k=17, the accuracy is 0.9257598405580468
For k=18, the accuracy is 0.9217737917289487
For k=19, the accuracy is 0.9227703039362232
For k=20, the accuracy is 0.9177877428998505
For k=21, the accuracy is 0.9192825112107623
For k=22, the accuracy is 0.9192825112107623
For k=23, the accuracy is 0.9192825112107623
For k=24, the accuracy is 0.9172894867962132
```

Cross Validation

CHARLES VIGINALISME

```
In [47]: # Cross Validation
         cv values = []
         for i in range(2,25):
             neigh = KNeighborsClassifier(n neighbors = 10)
              cv values = cross val score(estimator=neigh, X=X train, y=y train, scoring='accuracy', cv=i, n jobs=-1)
             mean = cv values.mean()
             print(f"Cross validation results for {i} folds is {mean}")
         Cross validation results for 2 folds is 0.9422572569522042
         Cross validation results for 3 folds is 0.9496634407309789
         Cross_validation results for 4 folds is 0.9518577566922957
         Cross_validation results for 5 folds is 0.9546006011596345
         Cross validation results for 6 folds is 0.9551489964623494
         {\tt Cross\_validation\ results\ for\ 7\ folds\ is\ 0.9563832945215456}
         Cross validation results for 8 folds is 0.9572063004313748
         Cross validation results for 9 folds is 0.9580301039039679
         Cross_validation results for 10 folds is 0.9585784617697353
         Cross_validation results for 11 folds is 0.9567971274031343
         Cross validation results for 12 folds is 0.9578930207520447
         Cross validation results for 13 folds is 0.9595407043936455
         Cross_validation results for 14 folds is 0.9595418257366435
         Cross validation results for 15 folds is 0.9591271551420613
         Cross_validation results for 16 folds is 0.9595385699826489
         Cross validation results for 17 folds is 0.9598161596512339
         {\tt Cross\_validation\ results\ for\ 18\ folds\ is\ 0.9598130241169832}
         Cross validation results for 19 folds is 0.9591277884659428
         Cross validation results for 20 folds is 0.9599491946409755
         {\tt Cross\_validation\ results\ for\ 21\ folds\ is\ 0.9598107320704956}
         Cross validation results for 22 folds is 0.9600872592264138
         Cross validation results for 23 folds is 0.9599506240570568
         Cross validation results for 24 folds is 0.9594072071680854
```

Confusion Matrix

```
for k in range(1,25):
    #Create KNN Classifier
    neigh = KNeighborsClassifier(n_neighbors=k)
    neigh.fit(X_train,y_train) # Train the KNN Classifier on the training set
    y_pred = neigh.predict(X_test) # Predict the X_test score and store in y_pred
    cm = confusion_matrix(y_test, y_pred) # Calculate the confusion_matrix
    class_labels = np.unique(np.concatenate((y_test, y_pred))) # Find the class_labels
    # Plot the confusion Matrix
    plt.figure(figsize=(8, 6))
    sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=class_labels, yticklabels=class_labels)
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title(f"Confusion Matrix of K={k}")
    plt.show()
```


					Confu	sion M	latrix (of K=2	2			
	0 -	355	0	3	0	0	0	0	0	0	1	- 350
	н-	0	259	0	0	3	0	1	1	0	0	- 300
	٦ -	10	1	181	1	2	0	0	2	1	0	250
	m -	3	0	2	156	0	4	0	0	0	1	- 250
nal	4 -	0	3	4	0	185	1	2	3	0	2	- 200
Actual	rυ -	4	1	2	8	0	143	0	0	1	1	- 150
	o -	4	0	1	0	2	2	161	0	0	0	
	۲-	0	2	1	1	4	0	0	139	0	0	- 100
	∞ -	6	0	3	5	1	1	1	1	146	2	- 50
	თ -	1	1	1	0	5	1	0	4	0	164	
		Ó	i	2	3	4 Pred	5 icted	6	7	8	9	- 0
					Confu	sion M	latrix (of K=3	3			25.0
	0 -	355	0	3	Confu: 0	sion M 0	latrix (of K=3	0	0	1	- 350
	- 1	355	0 258							0	1	
	2 - 1 0 -			3	0	0	0	0	0			- 300
	ч-	0	258	3	0	0	0	0	0	0	0	- 350 - 300 - 250
lan!	3 2 - 1	0	258 0	3 0 183	0 0 1	0 3 1	0 0	0 2 0	0 1 2	0	0	- 300
Actual	3 2 - 1	0 8 3 0	258 0 0	3 0 183 2	0 0 1 153	0 3 1 0	0 0 0 6	0 2 0	0 1 2	0 3 0	0 0 1	- 300 - 250
Actual	4 3 2 - 1	0 8 3 0	258 0 0	3 0 183 2 0	0 0 1 153	0 3 1 0	0 0 0 6 2	0 2 0 0	0 1 2 1	0 3 0	0 0 1 8	- 300 - 250 - 200 - 150
Actual	5 4 3 2 1	0 8 3 0 5	258 0 0 2	3 0 183 2 0 3	0 0 1 153 0	0 3 1 0 183	0 0 0 6 2	0 2 0 0 2	0 1 2 1 2	0 3 0 1	0 0 1 8	- 300 - 250 - 200 - 150
Actual	6 5 4 3 2 1	0 8 3 0 5	258 0 0 2 0	3 0 183 2 0 3	0 0 1 153 0 3	0 3 1 0 183 0	0 0 0 6 2 144	0 2 0 0 2 0	0 1 2 1 2 0 0	0 3 0 1 1	0 0 1 8 4	- 300 - 250 - 200 - 150
Actual	7 6 5 4 3 2 1	0 8 3 0 5 3	258 0 0 2 0 1	3 0 183 2 0 3 1	0 0 1 153 0 3 0	0 3 1 0 183 0 2	0 0 0 6 2 144 0	0 2 0 2 0 163 0	0 1 2 1 2 0 0 138	0 3 0 1 1 0	0 0 1 8 4 0	- 300 - 250 - 200 - 150 - 100

			(Confus	ion Ma	atrix o	f K=1	0			
0 -	354	0	2	0	1	0	1	0	0	1	- 3
٦ -	0	258	0	0	3	0	3	0	0	0	- 3
2 -	7	2	180	2	1	0	0	2	4	0	- 2
m -	3	0	2	153	0	6	0	1	0	1	
ual - 4	0	4	2	0	181	0	2	2	0	9	- 2
Actual 5 4	5	0	1	5	0	143	0	0	1	5	- 1
9 -	4	0	2	0	2	1	160	0	1	0	
۲ -	0	3	1	0	4	1	0	137	0	1	- 1
∞ -	7	3	0	6	0	2	1	1	144	2	- 5
თ -	1	0	0	0	1	1	0	5	1	168	
	Ó	i	2	3	4 Pred	5 icted	6	7	8	9	- (
			C	Confus	ion Ma	atrix o	f K=1	1			
0 -	354										
		0	2	0	1	0	1	0	0	1	- 3
ч -	0	258	2 0	0	1	0	1	0	0	0	
2 -	0 7		01000								- 3
3 2 - 1		258	0	0	3	0	3	0	0	0	- 3
m -	7	258	0 179	0	3	0	3	0	0	0	- 3 - 2
m -	7 3 0	258 2 0	0 179 2	0 2 153	3 1 0	0 0 6	3 1 0	0 2 1	0 4 0	0 0 1	- 3 - 2
4 3	7 3 0	258 2 0 4	0 179 2 2	0 2 153	3 1 0	0 0 6 0	3 1 0	0 2 1 2	0 4 0	0 0 1 12	- 3 - 2 - 2
Actual 5 4 3	7 3 0 6	258 2 0 4	0 179 2 2 0	0 2 153 0 4	3 1 0 178	0 0 6 0	3 1 0 2	0 2 1 2	0 4 0 0	0 0 1 12 5	- 3 - 3 - 2 - 2
6 5 4 3	7 3 0 6 5	258 2 0 4 0	0 179 2 2 0	0 2 153 0 4	3 1 0 178 1 2	0 0 6 0 143	3 1 0 2 0	0 2 1 2 0	0 4 0 0	0 0 1 12 5	- 3 - 2 - 3
7 6 5 4 3	7 3 0 6 5	258 2 0 4 0 0	0 179 2 2 0 2	0 2 153 0 4 0	3 1 0 178 1 2 4	0 0 6 0 143 1	3 1 0 2 0 159	0 2 1 2 0 0	0 4 0 0 1 1	0 0 1 12 5 0	- 3 - 2 - 2

			(Confus	ion Ma	atrix o	f K=1	4			
0 -	354	0	2	0	1	0	1	0	0	1	
н-	0	258	0	0	3	0	3	0	0	0	
۲ -	8	2	179	2	1	0	1	2	3	0	
m -	3	0	2	151	0	7	0	1	0	2	
4 -	0	4	2	0	179	0	2	2	0	11	
5 - 4	7	0	1	5	0	140	0	1	1	5	
9 -	5	0	2	0	2	1	159	0	1	0	
۲-	0	4	1	0	4	1	0	136	1	0	
∞ -	7	3	1	7	0	2	2	2	141	1	
ი -	1	0	0	0	1	0	0	5	2	168	
	0	i	2	3	4 Pred	5 icted	6	7	8	9	
			C	Confus	ion Ma	atrix o	f K=1	5			
0 -	354	0	2	0	1	0	1	0	0	1	
٦ -	0	258	0	0	3	0	3	0	0	0	
7 -	8	2	178	2	1	0	1	2	4	0	
m -	3	0	2	152	0	6	0	1	0	2	
4 -	0	4	2	0	179	0	2	2	0	11	
5 - 4		4 0	2	0	179 0	0 141	2	2	0	11 5	
- 5	7	0	1	4	0	141	0	1	1	5	
- 6	7	0	1	4	0	141	0	1	1	5	
7 6 5	7 5 0	0 0 4	1 2 1	0	0 2 4	141 0 1	0 160 0	1 0	1 1	5 0 0	

Precision and Recall

```
In [49]: for k in range(1,25):
                         neigh = KNeighborsClassifier(n_neighbors=k)
                         neigh.fit(X train,y train) # Train the KNN Classifier on the training set
                         y_pred = neigh.predict(X_test) # Predict the X_test score and store in y_pred
                         precision=precision_score(y_test, y_pred=y_pred,average=None) # Calculate the precision score
                          recall=recall score(y test, y pred=y pred,average=None) # Calculate the recall score
                         print(f"For K={k}, Precision={precision,}, Recall={recall,}") # Print Recall and precision
                 For K=1, Precision=(array([0.95687332, 0.97701149, 0.94329897, 0.92215569, 0.91919192,
                               0.93548387, 0.96470588, 0.92666667, 0.94871795, 0.91351351]),), Recall=(array([0.98885794, 0.96590909, 0
                  .92424242, 0.92771084, 0.91
                                                , 0.96470588, 0.94557823, 0.89156627, 0.95480226]),)
                               0.90625
                 For K=2, Precision=(array([0.92689295, 0.97003745, 0.91414141, 0.9122807, 0.91584158,
                               0.94078947, 0.97575758, 0.92666667, 0.98648649, 0.95906433]),), Recall=(array([0.98885794, 0.98106061, 0
                  .91414141, 0.93975904, 0.925
                               0.89375
                                                 , 0.94705882, 0.94557823, 0.87951807, 0.92655367]),)
                 For K=3, Precision=(array([0.93421053, 0.98473282, 0.93367347, 0.94444444, 0.93367347,
                               .92424242, 0.92168675, 0.915
                                                  , 0.95882353, 0.93877551, 0.90963855, 0.94915254]),)
                 For \ K=4, \ Precision=(array([0.93915344,\ 0.97358491,\ 0.93846154,\ 0.91176471,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.93401015,\ 0.934010150
                               0.95973154, 0.97005988, 0.92567568, 0.96103896, 0.91304348]),), Recall=(array([0.98885794, 0.97727273, 0
                  .92424242, 0.93373494, 0.92
                                                  , 0.95294118, 0.93197279, 0.89156627, 0.94915254]),)
                               0.89375
                 For K=5, Precision=(array([0.93899204, 0.97368421, 0.94791667, 0.92771084, 0.93367347,
                               0.94117647, 0.95882353, 0.93243243, 0.97419355, 0.91304348]),), Recall=(array([0.98607242, 0.98106061, 0
                  .91919192, 0.92771084, 0.915
                                                  , 0.95882353, 0.93877551, 0.90963855, 0.94915254]),)
                               0.9
                 For K=6, Precision=(array([0.93650794, 0.96629213, 0.94300518, 0.91715976, 0.93367347,
                               0.93421053, 0.95294118, 0.92
                                                                                               , 0.96621622, 0.9076087 ]),), Recall=(array([0.98607242, 0.97727273, 0
```

```
.91919192, 0.93373494, 0.915
                        , 0.95294118, 0.93877551, 0.86144578, 0.94350282]),)
               0.8875
         For K=7, Precision=(array([0.93899204, 0.95910781, 0.95287958, 0.93939394, 0.933333333,
               0.93589744, 0.95857988, 0.9261745 , 0.96666667, 0.90322581]),), Recall=(array([0.98607242, 0.97727273, 0
         .91919192. 0.93373494. 0.91
               0.9125
                         , 0.95294118, 0.93877551, 0.87349398, 0.94915254]),)
        For K=8, Precision=(array([0.93157895, 0.96268657, 0.95287958, 0.93373494, 0.933333333,
               0.93548387, 0.95833333, 0.9261745 , 0.96666667, 0.90810811]),), Recall=(array([0.98607242, 0.97727273, 0
         .91919192, 0.93373494, 0.91
               0.90625
                         , 0.94705882, 0.93877551, 0.87349398, 0.94915254]),)
        For K=9, Precision=(array([0.93157895, 0.95571956, 0.93264249, 0.94478528, 0.93717277,
               0.92948718, 0.96407186, 0.93197279, 0.96
                                                          , 0.88888889]),), Recall=(array([0.98607242, 0.98106061, 0
         .90909091, 0.92771084, 0.895
                         , 0.94705882, 0.93197279, 0.86746988, 0.94915254]),)
               0.90625
        For K=10, Precision=(array([0.92913386, 0.95555556, 0.94736842, 0.92168675, 0.93782383,
               0.92857143, 0.95808383, 0.92567568, 0.95364238, 0.89839572]),), Recall=(array([0.98607242, 0.97727273, 0
         .90909091, 0.92168675, 0.905
               0.89375 , 0.94117647, 0.93197279, 0.86746988, 0.94915254]),)
        For K=11, Precision=(array([0.92428198, 0.95202952, 0.94708995, 0.92727273, 0.93193717,
               0.93464052, 0.94642857, 0.91836735, 0.94039735, 0.88888889]),), Recall=(array([0.98607242, 0.97727273, 0
         .9040404 . 0.92168675. 0.89
                         , 0.93529412, 0.91836735, 0.85542169, 0.94915254]),)
               0.89375
        For K=12, Precision=(array([0.921875 , 0.95202952, 0.94210526, 0.93209877, 0.93229167,
               0.92156863, 0.94642857, 0.91216216, 0.95364238, 0.89361702]),), Recall=(array([0.98607242, 0.97727273, 0
         .9040404 , 0.90963855, 0.895
               0.88125
                        , 0.93529412, 0.91836735, 0.86746988, 0.94915254]),)
        For K=13, Precision=(array([0.921875 , 0.95202952, 0.94680851, 0.91515152, 0.93684211,
               0.92763158, 0.94674556, 0.91836735, 0.94078947, 0.88888889]),), Recall=(array([0.98607242, 0.97727273, 0
         .8989899 , 0.90963855, 0.89
                        , 0.94117647, 0.91836735, 0.86144578, 0.94915254]),)
               0.88125
        For K=14, Precision=(array([0.91948052, 0.95202952, 0.94210526, 0.91515152, 0.93717277,
               0.92715232, 0.94642857, 0.91275168, 0.94630872, 0.89361702]),), Recall=(array([0.98607242, 0.97727273, 0
         .9040404 , 0.90963855, 0.895
               0.875
                         , 0.93529412, 0.92517007, 0.84939759, 0.94915254]),)
        For K=15, Precision=(array([0.91948052, 0.95202952, 0.94179894, 0.92121212, 0.93717277,
               0.94
                         , 0.94674556, 0.91275168, 0.94
                                                          , 0.89361702]),), Recall=(array([0.98607242, 0.97727273, 0
         .8989899 , 0.91566265, 0.895
               0.88125 , 0.94117647, 0.92517007, 0.84939759, 0.94915254),)
        For K=16, Precision=(array([0.91709845, 0.95202952, 0.94652406, 0.90419162, 0.93264249,
               .89393939, 0.90963855, 0.9
               0.875
                         , 0.93529412, 0.92517007, 0.84337349, 0.93785311]),)
        For K=17, Precision=(array([0.91472868, 0.94852941, 0.94623656, 0.9047619, 0.92670157,
               0.93959732, 0.94674556, 0.91275168, 0.93877551, 0.88359788]),), Recall=(array([0.98607242, 0.97727273, 0
         .88888889, 0.91566265, 0.885
               0.875
                        , 0.94117647, 0.92517007, 0.8313253 , 0.94350282]),)
        For K=18, Precision=(array([0.91002571, 0.94160584, 0.94086022, 0.90419162, 0.92708333,
               0.93243243, 0.94011976, 0.90066225, 0.93835616, 0.88770053]),), Recall=(array([0.98607242, 0.97727273, 0
         .88383838, 0.90963855, 0.89
                         , 0.92352941, 0.92517007, 0.8253012 , 0.93785311]),)
               0.8625
        For K=19, Precision=(array([0.91002571, 0.94505495, 0.94535519, 0.89411765, 0.92670157,
               0.93877551, 0.94610778, 0.90604027, 0.93959732, 0.88359788]),), Recall=(array([0.98607242, 0.97727273, 0
         .87373737, 0.91566265, 0.885
                         , 0.92941176, 0.91836735, 0.84337349, 0.94350282]),)
               0.8625
        For K=20, Precision=(array([0.90769231, 0.94160584, 0.93989071, 0.88757396, 0.92631579,
               0.91891892, 0.93413174, 0.89473684, 0.93835616, 0.88829787]),), Recall=(array([0.98607242, 0.97727273, 0
         .86868687, 0.90361446, 0.88
                         , 0.91764706, 0.92517007, 0.8253012 , 0.94350282]),)
               0.85
        For K=21, Precision=(array([0.90769231, 0.94160584, 0.94972067, 0.89820359, 0.92592593,
               0.92465753, 0.93529412, 0.88888889, 0.94
                                                          , 0.88359788]),), Recall=(array([0.98607242, 0.97727273, 0
         .85858586, 0.90361446, 0.875
                        , 0.93529412, 0.92517007, 0.84939759, 0.94350282]),)
               0.84375
        For K=22, Precision=(array([0.90537084, 0.93818182, 0.9494382, 0.89880952, 0.92631579,
               0.93150685, 0.93529412, 0.88888889, 0.93918919, 0.88829787]),), Recall=(array([0.98607242, 0.97727273, 0
         .85353535, 0.90963855, 0.88
               0.85
                         , 0.93529412, 0.92517007, 0.8373494 , 0.94350282]),)
        For K=23, Precision=(array([0.90769231, 0.93478261, 0.9494382, 0.89349112, 0.92553191,
               .85353535, 0.90963855, 0.87
                         , 0.94117647, 0.93197279, 0.8373494 , 0.94350282]),)
               0.85
        For K=24, Precision=(array([0.90076336, 0.93478261, 0.94915254, 0.90419162, 0.92063492,
               .84848485, 0.90963855, 0.87
                        , 0.92352941, 0.92517007, 0.84337349, 0.94350282]),)
               0.85
In [50]: # Choose K = 5 because it has best cross validation score and does not lead to overfitting
        best k = 5
         neigh = KNeighborsClassifier(n neighbors=best k,n jobs=-1) # Use KNeighborsClassifier for K=5
        neigh.fit(X_train,y_train) # fit the model
Out[50]: v
               KNeighborsClassifier
```

In [51]: y_pred = neigh.predict(X_test) # Predict the X_test score and store in y_pred

cm = confusion matrix(y test, y pred) # Calculate the confusion matrix

KNeighborsClassifier(n_jobs=-1)

```
class_labels = np.unique(np.concatenate((y_test, y_pred))) #Find the class_labels

# Plot the confusion Matrix
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=class_labels, yticklabels=class_labels)
plt.xlabel("Predicted")
plt.ylabel("Actual")
plt.title("Confusion Matrix")
plt.show()
```


Hog Image feature Extraction and KNN Classifier

```
# Import the required library
In [54]:
          import numpy as np
          from skimage.feature import hog
          from skimage import exposure
          hog feat = []
          orientations = 8 #Declaring Number of orientation bins
          pixels_per_cell = (2, 2) #Setting Cell size in pixels
cells_per_block = (2, 2) #Setting Number of cells per block
          # Define hog features in X_train
          for image in X train:
               features = hog(
                   image.reshape((16, 16)),
                   orientations=orientations,
                   pixels_per_cell=pixels_per_cell,
                   cells_per_block=cells_per_block)
              hog feat.append(features) # Append HOG features to hog feat
          hog_feat = np.array(hog_feat) # Assign hog_feat array to hog_feat
          hog_te = [] # Empty List
```

```
In [55]: # Define hog features in X_test
for image in X_test:
    features = hog(
        image.reshape((16, 16)),
```

```
orientations=orientations,
pixels_per_cell=pixels_per_cell,
cells_per_block=cells_per_block)
hog_te.append(features) # Append HOG features
```

```
scores = [] # Empty list
In [56]:
                     # Empty list 'l'
         l = [1]
         # Define different k values
         knn = [3, 5, 7, 9, 11, 13, 15, 17]
         for k in knn:
             l.append(k)
             neigh = KNeighborsClassifier(n neighbors=k) # KNN Classifier
             neigh.fit(hog_feat,y_train) # Train the KNN Classifier
             y_pred = neigh.predict(hog_te) # Predict the hog_te score
             scores.append(neigh.score(hog_te,y_test))# Accuracy
             accuracy = accuracy_score(y_test, y_pred=y_pred)
             print(f"Accuracy of K={k} is {accuracy}")
             cm = confusion matrix(y test, y pred) # confusion matrix
             class_labels = np.unique(np.concatenate((y_test, y_pred))) # class_labels
             # Plot confusion Matrix
             plt.figure(figsize=(8, 6))
             sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=class labels, yticklabels=class labels)
             plt.xlabel("Predicted") # Xlabel
             plt.ylabel("Actual")
                                     # Ylabel
             plt.title(f"Confusion Matrix of K={k}") # Title
             plt.show()
             precision=precision_score(y_test, y_pred=y_pred,average=None) # Calculate Precision
             recall=recall_score(y_test, y_pred=y_pred,average=None)
                                                                        # Calculate Recall
             print(f"For K={k}, Precision={precision,}, Recall={recall,}") # Print Precision and Recall
```

Accuracy of K=3 is 0.9377179870453413

For K=3, Precision=(array([0.93193717, 0.92170819, 0.96216216, 0.9625 , 0.94475138, 0.96710526, 0.96511628, 0.90604027, 0.97986577, 0.86734694]),), Recall=(array([0.99164345, 0.98106061, 0.8989899, 0.92771084, 0.855 , 0.91875 , 0.97647059, 0.91836735, 0.87951807, 0.96045198]),)
Accuracy of K=5 is 0.9367214748380668

For K=5, Precision=(array([0.93684211, 0.91519435, 0.96195652, 0.95679012, 0.96 , 0.96732026, 0.96491228, 0.91216216, 0.97297297, 0.85221675]),), Recall=(array([0.99164345, 0.98106061, 0.89393939, 0.93373494, 0.84 , 0.925 , 0.97058824, 0.91836735, 0.86746988, 0.97740113]),)
Accuracy of K=7 is 0.9367214748380668

0.91875 , 0.97058824, 0.93197279, 0.86144578, 0.97175141]),) Accuracy of K=9 is 0.9342301943198804

For K=9, Precision=(array([0.93175853, 0.89930556, 0.96703297, 0.97452229, 0.96531792, 0.96103896, 0.95348837, 0.90728477, 0.97260274, 0.85714286]),), Recall=(array([0.98885794, 0.98106061, 0.888888889, 0.92168675, 0.835, 0.925, 0.96470588, 0.93197279, 0.85542169, 0.98305085]),)
Accuracy of K=11 is 0.9337319382162431

For K=11, Precision=(array([0.93211488, 0.88659794, 0.97802198, 0.96855346, 0.97619048, 0.95454545, 0.95930233, 0.90728477, 0.97222222, 0.85714286]),), Recall=(array([0.99442897, 0.97727273, 0 .8989899 , 0.92771084, 0.82 0.91875 , 0.97058824, 0.93197279, 0.84337349, 0.98305085]),)

Accuracy of K=13 is 0.9272546088689586

For K=13, Precision=(array([0.92727273, 0.87162162, 0.97740113, 0.9625 , 0.97560976, 0.96052632, 0.94797688, 0.90728477, 0.97202797, 0.83980583]),), Recall=(array([0.99442897, 0.97727273, 0.87373737, 0.92771084, 0.8 , 0.9125 , 0.96470588, 0.93197279, 0.8373494 , 0.97740113]),)
Accuracy of K=15 is 0.9282511210762332

For K=15, Precision=(array([0.93211488, 0.87205387, 0.97191011, 0.96835443, 0.97546012, 0.95483871, 0.94827586, 0.91333333, 0.97202797, 0.83980583]),), Recall=(array([0.99442897, 0.98106061, 0 .87373737, 0.92168675, 0.795 0.925 , 0.97058824, 0.93197279, 0.8373494 , 0.97740113]),) Accuracy of K=17 is 0.9252615844544095

For K=17, Precision=(array([0.92689295, 0.86912752, 0.97191011, 0.96226415, 0.96932515, 0.96052632, 0.94252874, 0.91333333, 0.96551724, 0.83902439]),), Recall=(array([0.98885794, 0.98106061, 0.87373737, 0.92168675, 0.79, 0.9125, 0.96470588, 0.93197279, 0.84337349, 0.97175141]),)

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js