Hamming Distances

Time limit: 5000 ms Memory limit: 256 MB

You are given an array A of N non-negative integers and integer M. All elements in A are less than 2^M .

For each i from 1 to N and x from 0 to M find the number of indices j such that $1 \leq j < i$ and Hamming distance between binary representations of numbers A_i and A_j is equal to x.

Standard input

The first line contains two integers N and M.

The second line contains N integers representing the elements of A.

Standard output

For each i from 1 to N print a separate line containing M+1 numbers: answer for $x=0,1\dots M$.

Constraints and notes

- $1 \le N \le 2 \cdot 10^5$
- $1 \le M \le 16$
- \bullet $0 \stackrel{-}{\leq} A_i \stackrel{-}{<} 2^M$

Input	Output	
4 2	0 0 0	
0 1 2 3	0 1 0	
	0 1 1	
	0 2 1	
4 2	0 0 0	
0 1 1 0	0 1 0	
	1 1 0	
	1 2 0	