Introdução ao NAS Parallel Benchmarks Performance Relativa de Kernels Sequenciais, em ambiente de Memória Partilhada e ambiente de Memória Distribuída

Filipe Oliveira

Departamento de Informática Universidade do Minho Email: a57816@alunos.uminho.pt

Abstract—Neste estudo, analisamos a performance de kernels

1. Introduction

This demo file is intended to serve as a "starter file" for IEEE Computer Society conference papers produced under LaTeX using IEEEtran.cls version 1.8b and later. I wish you the best of success.

Filipe Oliveira 1 Março, 2016

1.1. Contextualização das Benchmarks

As "NAS Parallel Benchmarks" [1] englobam 5 kernels (EP, MG, CG, FT, IS) e 3 aplicações que simulam dinâmica de fluídos (LU,SP,BT). No nosso caso de estudo, temos por interesse os 5 kernels, dado que centraremos o nosso estudo da performance relativa via alterações no paradigma de memória e forma de comunicação entre nodos, assim como a própria ferramenta de compilação e respectivas flags. Assim sendo, temos então 5 opções a analisar: EP, MG, CG, FT, IS. Resta-nos portanto analisar primeiramente quais as principais propriedades de cada um antes de qualquer avanço no trabalho.

- EP, tal como o próprio nome indica (Embarrassingly Parallel), que por calcular números aleatórios é um kernel implicitamente embaracosamente paralelo. Tem como propósito estabelecer o Peak Performance em "FP Operations" de um sistema de computação em teste. É então espectável obtermos os melhores resultados de performance neste kernel e, por esse mesmo motivo, este será um dos kernels com grande relevância para o nosso caso de estudo.
- MG, cujo kernel implementa um método numérico multigrid simplificado, numa sequência de malhas de diferentes propriedades, implicando portanto uma elevada comunicação para a resolução do algoritmo. Tanto para as versões em memória distribuída com para a versão de memória partilhada será interessante analisar o comportamento do kernel nos ambientes de teste. Será portanto também incluído no caso de estudo.

- CG,que recorre ao método do Conjugado do Gradiente por forma a calcular uma aproximação ao menor dos valores próprios de uma matriz esparsa de grandes dimensões. Dada o tipo de dados, este kernel testa computação e comunicação não estruturada, sendo portanto expectável uma fraca performance deste kernel quando em comparação com o EP. Será portanto também incluído no caso de estudo.
- FT, que calcula a Transformada de Fourier em 3 dimensões (3 transformadas de Fourier de uma dimensão), sendo o resultado a solução de uma equação diferencial parcial. Dado que a principal propriedade a ser estudada é comunicação, este kernel será portanto excluído do caso de estudo em detrimento do MG.
- IS, que realizar operações de sorting em inteiros. Este kernel testa tanto a capacidade de computação de um sistema em termos de operações sobre inteiros, assim como a performance de comunicação do mesmo dada a irregularidade dos acessos à memória e, quando aplicável, comunicação entre processos. Será também incluído no caso de estudo.

1.1.1. Subsubsection Heading Here. Subsubsection text here.

2. Conclusion

The conclusion goes here.

Acknowledgments

The authors would like to thank...

References

[1] H. Kopka and P. W. Daly, A Guide to ETEX, 3rd ed. Harlow, England: Addison-Wesley, 1999.