Prijelazne pojave

Prijelazne pojave

Ponavljanje

- definicija kapaciteta: $C = \frac{Q}{U}$
- jedinica za kapacitet je Farad [F], zbog praktičnih razloga koriste se dijelovi jedinice $(\mu F \ nF \ pF)$
- kapacitet postoji između elektroda na koje je doveden naboj tako da između njih vlada razlika potencijala
- idealni kondenzator je pasivni dvopol koji realizira željeni iznos kapaciteta
- realni kondenzator osim kapaciteta posjeduje i omski otpor. Za većinu praktičnih slučajeva je taj otpor dovoljno malen tako da se može zanemariti
- prelazno i stacionarno stanje

Priključak kondenzatora (1)

Priključak nenabijenog kondenzatora na izvor konstantnog napona

• priključak *nenabijenog* ($U_{CO} = 0$) kondenzatora C na izvor konstantnog napona:

kondenzator se nabije na napon izvora (izvor preda odgovarajuću količinu naboja kondenzatoru): $E = U_C = \frac{Q}{C}$ (prema IIKZ)

Priključak kondenzatora (2)

Priključak nabijenog kondenzatora na izvor konstantnog napona

• za priključak prethodno nabijenog kondenzatora ($U_{CO} \neq 0$) na izvor konstantnog napona postoje tri slučaja. Zatvaranjem sklopke **S**:

⊕-polaritet početnog napona

- 1) $E < U_{CO}$ kondenzator će se izbiti (predati višak naboja izvoru) dok se ne uspostavi stacionarno stanje
- 2) $E = U_{CO}$ stacionarno stanje, nema izbijanja niti nabijanja kondenzatora
- 3) $E > U_{CO}$ izvor predaje naboje kondenzatoru dok se ne uspostavi stacionarno stanje

Prelazna pojava sa kondenzatorom: serija otpornika R i kondenzatora C

- ullet prethodno nenabijeni $U_{CO}=0$ kondenzator C spajamo preko otpornika R na idealni naponski izvor U
- ullet napon na kondenzatoru ne dostiže trenutačno iznos napona izvora $U=U_C$
- ullet prelazna pojava: vrijeme od trenutka $t=0^+$ do uspostave stacionarnog stanja
- ullet u stacionarnom stanju vrijedi i(t)=0 i $u_C(t)=U$ uz $t o\infty$
- ullet trajanje prelazne pojave: uzima se $5\cdot au$ ili $3\cdot au$ (teoretski prelazna pojava traje beskonačno dugo)

Vremenske ovisnosti kod prelaznih pojava

Primjer prelazne pojave

U krugu prema slici treba odrediti (kondenzator je bio prethodno nenabijen):

- a) napone $u_R(t)$ i $u_C(t)$ te struju i(t) 90ms poslije prebacivanja sklopke u položaj ${\bf 1}$
- b) nacrtati promjene struja i napona na kondenzatoru za vrijeme od t=0 do t=5 au

Zadano: E=500V, $R_i=100\Omega$, $R=800\Omega$, $C=100\mu F$

Prijelazna pojava na L

Prijelazne pojave u spoju kapaciteta i induktiviteta

OSNOVE ELEKTROTEHNIK

Primjer: serija *RLC* priključena na istosmjerni izvor

- Tražimo valni oblik struje i(t) nakon zatvaranja sklopke S.
- Početni uvjeti u trenutku t = 0+ nakon zatvaranja sklopke S:
 - > kondenzator je nenabijen: $u_c(t = 0) = 0$
 - > kroz induktivitet ne teče struja $i_L(t = 0) = 0$

Za seriju RLC prema slici vrijedi jednadžba:

$$Ri(t) + L\frac{di(t)}{dt} + \frac{1}{C}\int i(t)dt = E$$

izračunavanje struje i(t) svodi se na rješavanje nehomogene linearne diferencijalne jednadžbe drugog reda koju dobijemo deriviranjem prethodne jednadžbe:

$$\frac{d^2}{dt^2}i(t) + \frac{R}{L}\frac{d}{dt}i(t) + \frac{1}{LC}i(t) = 0$$

Napomena: ne ulazimo u matematički postupak rješavanja, nego analiziramo dobivene rezultate za *i*(*t*):

rješenje dif. jedn. sastoji se od dvije komponente:

$$i(t) = i_{pr}(t) + i_{st}(t)$$

- $i_{pr}(t)$ predstavlja prijelaznu pojavu (opće rješenje dif. jedn.): ne ovisi o izvoru E, nego o iznosima R, L i C. Iznos struje i(t) teži prema nuli.
- $i_{st}(t)$ predstavlja stacionarno stanje (partikularno rješenje dif. jedn.): ovisi o izvoru E. U našem primjeru, u stacionarnom stanju $i_{st}(t)=0.$

Prijelazne pojave u spoju kapaciteta i induktiviteta

OSNOVE ELEKTROTEHNIK

Fizikalna slika:

- u stacionarnom stanju kondenzator ne propušta istosmjernu struju,
- tijekom prijelazne pojave energija akomulirana u polju kondenzatora odnosno zavojnice titra između C i L i usput disipira na otporniku R. Iznos struje i(t) teži prema nuli.
- Precizniji prikaz je graf funkcije i(t), no prije toga potrebno je uvesti različite slučajeve funkcije i(t).

Valni oblik struje i(t) ovisi o vrijednostima elemenata R, L i C, tako da razlikujemo slijedeće slučajeve:

- > aperiodski za $R > \sqrt{2\frac{L}{C}}$
- > granični $R = \sqrt{2\frac{L}{C}}$
- > prigušeno titranje $R < \sqrt{2\frac{L}{C}}$
- \triangleright neprigušeno titranje ili oscilacije za $\overline{R=0}$

OSNOVE ELEKTROTEHNIKI

$$i(t)$$
: aperiodski i granični slučaj $R \ge \sqrt{2\frac{L}{C}}$ $i(t)$

Za periodu T struje i(t) kod graničnog i aperiodskog slučaja vrijedi $T \to \infty$.

 $i(t) \sim k_1 e^{-k_2 t} \sin(\omega t)$

OSNOVE ELEKTROTEHNIK

Prijelazne pojave u spoju kapaciteta i induktiviteta

i(t): neprigušeno titranje ili oscilacije R = 0

Idealni slučaj:

- Ne postoji omski otpor koji prigušuje amplitudu titranja
- frekvencija titranja $\omega_0 = \frac{1}{\sqrt{LC}}$ (Thompsonova formula)
- oscilatori proizvodnja elektromagnetskih valova