PARCIAL 2

1	2	3	4	5	Total
	1	1 10 0			

Nombre y Apellido:

Justifique todas sus respuestas (cada ejercicio vale 2 puntos).

Ejercicio I. Sean $A=(1,-1,1),\ B=(2,2,2),\ C=(1,1,1)$ y sea π el plano de \mathbb{R}^3 que contiene a los buntos A, B y C.

- a) Encontrar una ecuación vectorial del plano π .
- b) Encontrar una ecuación normal del plano π .
- e) Decidir cuales de los siguiente puntos pertenecen a π : (0,0,0), (1,0,0). (0,1,0).

Ejercicio 2. Sea $f(x, y, z) = x^2yz + sen(x + z)$. Calcular:

- a) Las derivadas parciales $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$. b) El gradiente de f en el punto P = (2, 1, -2).
- c) La derivada direccional $\frac{\partial f}{\partial v}|_{P}$, donde $v=(\frac{2}{3},\frac{1}{3},\frac{2}{3})$ y P es el del item anterior.

Ejercicio 3. Sea $f(x, y, z) = x^2yz^2$ y sea $c(t) = (t, t^2, t)$.

- a) Calcular, usando la regla de la cadena, la derivada respecto a t de la composición f(c(t)), en t=0.
- b) En que dirección unitaria debemos movernos, a partir del punto P=(1,1,2) para obtener la mayor tasa de crecimiento de f(x, y, z)?

Ejercicio 4. Calcular la ecuación del plano tangente al gráfico de $f(x,y) = x^3 + y$ en el punto (1,0,1).

Ejercicio 5. Determinar en qué punto se intersecan las siguientes curvas, $r_1(t)=(t,1-t,3+t^2)$ y $r_2(s) = (3 - s, s - 2, s^2)$, y calcular el ángulo de la intersección.