山东大学 计算机科学与技术 学院

计算机体系结构 课程实验报告

学号: 202200130048 姓名: 陈静雯 班级: 6

实验题目:实验四:结构相关

实验目的:

通过本实验,加深对结构相关的理解,了解结构相关对 CPU 性能的影响

硬件环境: Windows

软件环境:

0tvdm

实验程序: structure_d. s

代码解读:

1. LHI R2, (A>>16) &0xFFFF 将数组 A 的高 16 位地址加载到寄存器 R2 的高 16 位,低 16 位清零。

2. ADDUI R2, R2, A&0xFFFF 将数组 A 的低 16 位地址加到 R2, 形成完整的 32 位基地址。

3. LHI R3, (B>>16) &0xFFFF 类似地,加载数组 B 的高 16 位地址到 R3。

4. ADDUI R3, R3, B&0xFFFF 补全 B 的 32 位基地址到 R3。

5. ADDU R4, R0, R3

将 R3(B 的基地址) 复制到 R4, 用于循环终止条件。

6. loop: LD F0, 0(R2) 从 R2 指向的 A 数组加载双精度数到浮点寄存器 F0。

7. LD F4. 0(R3)

从 R3 指向的 B 数组加载双精度数到 F4。

8. ADDD F0, F0, F4 计算 A[i] + B[i], 结果存入 F0。

9. ADDD F2, F0, F2 累加 F0 到 F2 (此处存在结构相关导致的暂停)。

10. ADDI R2, R2, #8 指针 R2 递增 8 字节(指向 A 的下一个元素)。

11. ADDI R3, R3, #8 指针 R3 递增 8 字节(指向 B 的下一个元素)。

12. SUB R5, R4, R2 计算剩余元素数 (R4 - R2)。

13. BNEZ R5, loop 若 R5 不为零,继续循环。

14. TRAP #0

退出程序。

15. A: . double 1, ..., 10 定义数组 A, 包含 10 个双精度数。

16. B: . double 1, ..., 10 定义数组 B, 与 A 相同。

实验步骤:

- (1). 用 WinDLX 模拟器运行程序 structure_d.s 。
- (2). 通过模拟,找出存在结构相关的指令对以及导致结构相关的部件。
- (3). 记录由结构相关引起的暂停时钟周期数,计算暂停时钟周期数占总执行周期数的百分比。
- (4). 论述结构相关对 CPU 性能的影响,讨论解决结构相关的方法。

实验内容:

(1) 实验结果

Dioxeoo			o .			-							
Register													
PC=	0x0000013c	R9=	0x0000000	0 F2=		0	F27=		0				
IMAR=	0x00000138	R10=	0x0000000	0 F3=	3	.4297	F28=		ō				
IR=	0x00000000	R11=	0x0000000	0 F4=		0	F29=		0				
A=	0x00000000	R12=	0x0000000	0 F5=	2	.5625	F30=		0				
AHI=	0x00000000	R13=	0x0000000	0 F6=		0	F31=		0				
B=	0x00000000	R14=	0x0000000	0 F7=		0	D0=		20				
BHI=	0x00000000	R15=	0x0000000	0 F8=		0	D2=		110				
BTA=	0x00000000	R16=	0x0000000	0 F9=		0	D4=		10				
ALU=	0x00000000	R17=	0x0000000	0 F10=		0	D6=		0				
ALUHI	=0x00000000	R18=	0x0000000	0 F11=		0	D8=		0				
FPSR=	0x00000000	R19=	0x0000000	0 F12=		0	D10=		0 0 0				
DMAR=	0x00000000	R20=	0x0000000	0 F13=		0	D12=		0				
SDR=	0x00000000	R21=	0x0000000	0 F14=		0	D14=		0				
SDRHI	=0x00000000	R22=	0x0000000	0 F15=		0	D16=		0				
LDR=	0x00000000	R23=	0x0000000	0 F16=		0	D18=		0				
LDRHI	=0x00000000	R24=	0x0000000	0 F17=		0	D20=		0 0 0 0				
R0=	0x00000000	R25=	0x0000000	0 F18=		0	D22=		0				
R1=	0×0000000000		0x0000000	0 F19=			D24=		0				
R2=	0x00000188	R27=	0x0000000	0 F20=		0	D26=		0				
R3=	0x000001d8	R28=	0x0000000	0 F21=		0	D28=		0				
R4=	0x00000188		0x0000000			0	D30=		0				
R5=	0×0000000000		0x0000000			0							
R6=	0x00000000		0x0000000			0							
R7=	0x00000000			0 F25=		0							
R8=	0×0000000000	F1=	2.812	5 F26=		0							

(2) 存在的结构相关指令和部件

ADDD F2, F0, F2 和 ADDI R2, R2, #8 都用到了浮点数加法器,就要等前一条指令用完下一条指令才能用。

(3) 记录由结构相关引起的暂停时钟周期数, 计算暂停时钟周期数占总执行周期数的百分比。

每次循环,总共有箭头指向的 6 处结构相关,每处暂停了一个时钟周期,总共暂停了 6 个周期,总执行周期 30,百分之 20%。

(4) 论述结构相关对 CPU 性能的影响, 讨论解决结构相关的方法。

影响:

- 性能下降:流水线因资源冲突暂停,降低指令吞吐量。
- 资源争用:功能部件(如浮点加法器)成为瓶颈,限制并行性。

解决方法:

1. 增加硬件资源:添加多个浮点加法器,支持并发执行。

- 2. 流水线化部件:将功能部件划分为多级流水,允许指令重叠执行。
- 3. 指令调度:调整指令顺序,插入无关指令或使用编译器优化减少冲突。

结论分析与体会:

1. 结构相关的本质

结构相关(Structural Hazard)源于硬件资源的冲突。例如,两条连续的浮点加法指令(ADDD F0, F0, F4 和 ADDD F2, F0, F2)争用非流水线化的浮点加法器,导致第二条指令必须等待第一条指令完成才能执行,引发流水线暂停。

- 2. 现代 CPU 的解决方案
 - (1) 动态调度 (Tomasulo 算法): 通过寄存器重命名和保留站 (Reservation Station) 动态分配功能部件,缓解资源冲突。
 - (2) 超标量架构:支持同时发射多条指令到不同功能单元,结合乱序执行(Out-of-Order Execution)提升资源利用率。
- 3. 结构相关是流水线设计中不可忽视的性能瓶颈, 其影响在资源受限或指令密集的场景下 尤为显著。硬件增强(如多部件、流水线化)和软件优化(指令调度、循环展开)的结 合是解决结构相关的关键。