COMPTE RENDU PROJET MERCH-TIME

Nous avons généré plusieurs cas de tests aléatoires en modifiant la capacité Q ϵ {10,25,50} et le nombre de goodies N ϵ {10,20,30}, ensuite nous avons sélectionné quelques cas pour chacune des 9 combinaisons, où certains d'entre eux étaient discriminants (c'est-à-dire que les algorithmes candidats n'avaient pas tous les mêmes résultats) et d'autres non.

Combinaison	1	2	3	4	5	6	7	8	9
Q	10	10	10	25	25	25	50	50	50
N	10	20	30	10	20	30	10	20	30

- Avec la combinaison n°3 presque tous les tests donne impossible.
- Avec la combinaison n°6 et n°7 peu de tests sont impossibles

Ensuite nous avons généré deux diagrammes, un pour les instances de la coding battle et un pour les instances que nous avons sélectionnées.

Coding battle:

Notre jeu d'instances :

Nous pouvons observer sur le premier diagramme que les solver H et H-D se sont trompé dans quelques cas tant dis que les autres solvers ont 100% de bonnes réponses.

Sur le diagramme obtenu par nos instances les scores des solvers H et H-D sont également plus faibles que les autres mais il y a également le solver D qui n'a pas 100% de bonne réponse.

Conclusion

Grâce à notre jeu d'instance nous avons pu détecter que le solver D ne résout pas à coup sûr tous les problèmes, contrairement à ce que celui de la coding battle.