#### \* Composition n°1 de Physique / Chimie – 2<sup>de</sup> – 2h – 2024/2025 – École Amirouche \*

#### Exercice 01: « La respiration » (05 points)

En dormant, un adulte en bonne santé inspire et expire 4,7 L de gaz par minute.

#### Document 1 : Composition volumique de l'air inspiré

| Gaz                | Composition volumique du gaz (en %) |
|--------------------|-------------------------------------|
| Dioxygène          | 20,9                                |
| Diazote            | 78,6                                |
| Eau                | 0,46                                |
| Dioxyde de carbone | 0,04                                |

#### Document 2 : Composition du gaz expiré

| Gaz                | Composition volumique du gaz (en %) |
|--------------------|-------------------------------------|
| Dioxygène          | 9,6                                 |
| Diazote            | 47,2                                |
| Eau                | 0,5                                 |
| Dioxyde de carbone | 2,7                                 |

- 1. À l'aide du document 1, calculez le volume de dioxygène et de dioxyde de carbone inspiré par minute.
- 2. Lorsqu'il court, cet adulte inspire et expire **60 L** de gaz par minute. À **l'aide du document 2**, donnez la composition volumique du gaz expiré.
- 3. En comparant la composition volumique du gaz inspiré et expiré pendant l'effort, expliquez le rôle de la respiration.

#### Exercice 02: « Un antibiotique » (05 points)

De nombreux médicaments buvables se présentent sous forme de poudre à laquelle il faut ajouter de l'eau.



Un flacon contient une masse de  $\mathbf{m} = 3,0$  g d'antibiotique en poudre. On ajoute un volume de  $\mathbf{V} = 60$  mL d'eau dans ce flacon pour préparer le médicament.

Ce médicament est ensuite administré avec une cuillère-mesure d'un volume de  $V_c = 5,0$  mL.

- 1. Calculez la concentration en masse du médicament préparé.
- **2.** Calculez la masse  $\mathbf{m}_c$  de médicament présente dans une cuillèremesure.

### Exercice 03: « L'or » (05 points)

L'or est un métal très ductile. Il est possible d'obtenir des feuilles d'une épaisseur de **20 micromètres**. Ces feuilles d'or sont utilisées pour dorer les statues.

- 1. Donner la composition d'un noyau d'or  $^{197}_{79}Au$  .
- 2. Calculer, avec un nombre correct de chiffres significatifs, la masse approchée d'un atome d'or.
- 3. Déterminer le nombre d'atomes d'or contenus dans une feuille d'or de 4 centièmes de gramme.
- 4. Le rayon d'un atome d'or est de **135 pm**. Déterminer la dimension de son noyau atomique.

Données:  $1\mu = 10^{-6}$  ( $\mu$ : micro);  $1p = 10^{-12}$  (p: pico); m(nucléon) = 1,67.10<sup>-27</sup> kg.

« L'atome est 100 000 fois plus grand que le noyau ».

## Exercice 04: « À propos de l'oxyde de baryum » (05 points)

L'oxyde de baryum **BaO** est utilisé comme additif dans la synthèse de verre Crown. Ce type de verre permet d'optimiser les systèmes optiques comme les télescopes.

#### Données:

- Configuration électronique d'un atome d'oxygène
   O: 1s² 2s² 2p⁴.
- L'oxyde de baryum **BaO** contient des ions monoatomiques issus des atomes des éléments oxygène **O** et baryum **Ba**.
- 1. Déterminer le numéro de la colonne à laquelle appartient l'élément oxygène **O** dans le tableau périodique.
- 2. a. Énoncer la règle de stabilité.
- b. Déduire la formule chimique de l'ion oxyde issu de l'atome d'oxygène.
- 3. Déterminer la charge électrique de l'ion baryum.
- **4.** Déterminer le numéro de la colonne du tableau périodique à laquelle appartient l'élément baryum **Ba**.
- 5. Donner la représentation de Lewis de la molécule d'oxyde de baryum BaO.



BONNE CHANGE!

#### Corrigé de la composition 01 -2024/2025 - 2de

## Exercice 01 : « La respiration »

**1.** Volume de dioxygène :  $V_{0_2} = \frac{20.9}{100} \times 4.7 = 0.98 \text{ L}.$ 



| Gaz                | Composition volumique du gaz (en %) |
|--------------------|-------------------------------------|
| Dioxygène          | 16                                  |
| Diazote            | 78,7                                |
| Eau                | 0,83                                |
| Dioxyde de carbone | 0,05                                |

3. Le but de la respiration est de prélever du dioxygène et de rejeter de l'eau et du dioxyde de carbone dans l'air, on voit effectivement qu'il y a moins de dioxygène et plus d'eau et de dioxyde de carbone à l'expiration qu'à l'inspiration. L'air inspiré permet ainsi d'oxygéner les muscles.

# Exercice 02: « Un antibiotique » 5pt

1. La concentration en masse d'un médicament correspond à la masse de ce médicament contenu dans 1L de solution, d'où la relation :

$$Cm = \frac{m}{V}$$
.

 $Cm = \frac{m}{V}$ . La masse m de médicament est de 3,0 g, le volume V de solution est de 60 mL, à convertir en L: soit  $V = 60 \times 10^{-3}$  L.

D'où 
$$Cm = \frac{3.0}{60 \times 10^{-3}}$$
 soit  $Cm = 50 \text{ g} \cdot \text{L}^{-1}$ .

Les deux grandeurs utilisées ont deux chiffres significatifs, donc la concentration en masse trouvée doit aussi en avoir deux.

2. La concentration en masse reste constante. Si  $m_c$  est la masse recherchée et  $V_c$  le volume de la cuillère, on peut écrire :  $m_c = Cm \times V_c$ . Comme Cm =  $50 \text{ g} \cdot \text{L}^{-1}$  et  $V_c = 5.0 \text{ mL}$ , il faut convertir le volume  $V_c$ de la cuillère en L.

Donc  $m_c = 50 \times 5.0 \times 10^{-3}$  soit  $m_c = 0.25$  g.

- Exercice 03: « L'or » 5pts

  1. Le noyau d'or contient 197 nucléons dont 79 protons et
- 118 neutrons. 2.  $m_{\text{atome}} = A \times m_{\text{nucléon}} = 197 \times 1,67 \times 10^{-27} = 3,29 \times 10^{-25} \text{ kg.}$
- 3. Le nombre N d'atomes d'or contenus dans la feuille d'or vaut:

$$N = \frac{4 \times 10^{-5}}{(3.29 \times 10^{-25})} = 1.2 \times 10^{20}$$



4. L'atome est 100000 fois plus grand que le noyau. Le rayon R du noyau vaut :

$$R = \frac{135 \times 10^{-12}}{100000} = 1,35 \times 10^{-15} \text{ m}$$



# 5pts <u>Exercice 04 :</u> « À propos de l'oxyde de baryum »

- 1. Comme un atome d'oxygène O a pour configuration électronique 1s22s2p4, l'élément oxygène est placé :
- à la 2° période car le nombre n le plus élevé dans sa configuration électronique est n = 2;
- à la 16° colonne car un atome d'oxygène a 6 électrons de valence.
- à la 6° colonne dans tableau périodique simplifié.
- 2. a. Un atome perd ou gagne des électrons pour atteindre la structure électronique du gaz noble le plus proche.
- b. Pour atteindre la structure électronique du néon, l'oxygène
- forme l'ion O<sup>2-</sup>.

  3. Le sel ionique BaO est électriquement neutre donc le baryum
- forme l'ion Ba<sup>2+</sup>.

  4. Un atome de baryum perd deux électrons pour atteindre structure électronique du gaz noble le plus proche, l'élément baryum appartient à la deuxième colonne du tableau périodique.
- 5. Représentation de la molécule selon Lewis :

