Dinámica inversa.

La formulación de Newton-Euler

El método de Newton-Euler permite obtener un conjunto de ecuaciones recursivas hacia delante de velocidad y aceleración lineal y angular las cuales están referidas a cada sistema de referencia articular. Las velocidades y aceleraciones de cada elemento se propagan hacia adelante desde el sistema de referencia de la base hasta el efector final. Las ecuaciones recursivas hacia atrás calculan los pares y fuerzas necesarios para cada articulación desde la mano (incluyendo en ella efectos de fuerzas externas), hasta el sistema de referencia de la base.

Sistemas de coordenadas en movimiento.

La formulación de N-E se basa en los sistemas de coordenadas en movimiento.

Figura 3.1. Sistemas de coordenadas en movimiento

Con respecto a la figura 3.1 se tiene que el sistema de coordenadas 0* se desplaza y gira en el espacio respecto del sistema de referencia de la base 0, el vector que describe el origen del sistema en movimiento es h y el punto P se describe respecto del sistema 0* a través del vector r *, de acuerdo a esto, la descripción del punto P respecto del sistema de la base es:

$$r = r^* + h \tag{3.1}$$

$$\frac{dr}{dt} = \frac{dr^*}{dt} + \frac{dh}{dt} = v^* + v_h \tag{3.1}$$

donde v^* es la velocidad del punto P respecto del origen del sistema 0^* en movimiento y vh es la velocidad del origen del sistema 0^* respecto de la base.

Si el punto P se desplaza y gira respecto del sistema 0* la ecuación (3.2) debe escribirse como:

$$v = \frac{dr^*}{dt} + \frac{dh}{dt} = \left(\frac{d^*r^*}{dt} + w \times r^*\right) + \frac{dh}{dt}$$
 (3.3)

donde d*r*/dt es la velocidad lineal del punto P respecto del origen 0* y w× r* es la velocidad angular del punto P respecto del origen 0*. [1]

De manera similar la aceleración general del sistema de puede describir como:

$$a = \frac{dv}{dt} = \frac{d^2r^*}{dt^2} + \frac{d^2h}{dt^2} = a^* + a_h \tag{3.4}$$

$$a = \frac{d^{*2}r^{*}}{dt^{2}} + 2w \times \frac{d^{*}r^{*}}{dt} + w \times (w \times r) + \frac{dw}{dt} \times r^{*} + \frac{d^{2}h}{dt^{2}}$$
 (3.5)

Cinemática de los eslabones del Robot.

A partir de las ecuaciones (3.1) a (3.5) de la sección anterior se desarrolla a continuación el planteamiento general para la cinemática de los eslabones del robot [1]

Figura 3.2. Relaciones vectoriales entre los sistemas de referencia 0.0° y 0°

De acuerdo a la figura 3.2 las ecuaciones cinemáticas para los eslabones de un robot, se pueden escribir como:

$$v_{i} = \frac{d^{*}p_{i}^{*}}{dt} + w_{i-1} \times p_{i}^{*} + v_{i-1}$$

$$w_{i} = w_{i-1} + w_{i}^{*}$$
(3.6)

Debe notarse que la velocidad angular del sistema de referencia wi es igual a la suma de la velocidad angular absoluta del sistema i-1 más la velocidad angular relativa wi* del eslabón referida a su propio sistema de coordenadas.

La aceleración lineal del sistema de coordenadas de la articulación i es:

$$\dot{v}_{i} = \frac{d^{*2}p_{i}^{*}}{dt^{2}} + \dot{w}_{i-1} \times p_{i}^{*} + 2w_{i-1} \times \frac{d^{*}p_{i}^{*}}{dt} + w_{i-1} \times (w_{i-1} \times p_{i}^{*}) + \dot{v}_{i-1}$$

$$\dot{w}_{i} = \dot{w}_{i-1} + \dot{w}_{i}^{*}$$
(3.7)

La aceleración angular del sistema de referencia i (xi, yi, zi) respecto del sistema (xi-1, yi-1, zi-1) se consigue de manera similar a la ecuación (3.3)

$$\dot{w}_{i}^{*} = \frac{d^{*}w_{i}^{*}}{dt} + w_{i-1} \times w_{i}^{*}$$
(3.9)

por lo que la ecuación (3.8) queda como:

$$\dot{w}_{i} = \dot{w}_{i-1} + \frac{d^{*}w_{i}^{*}}{dt} + w_{i-1} \times w_{i}^{*}$$
(3.10)

En general para un robot los sistemas de coordenadas (xi-1, yi-1, zi-1) y (xi, yi, zi) están unidos a los eslabones i-1 e i. La velocidad del eslabón i respecto del sistema de coordenadas i-1 es qi & . Si el eslabón es prismático, la velocidad será una velocidad de traslación relativa respecto del sistema (xi-1, yi-1, zi-1) y si es rotacional le corresponderá una velocidad rotacional relativa del eslabón i respecto del sistema (xi-1, yi-1, zi-1), por lo tanto:

$$w_i^* = \begin{cases} z_{i-1}\dot{q}_i & \text{si el eslabón i es rotacional} \\ 0 & \text{si el eslabón i es traslacional} \end{cases}$$
(3.11)

donde qi & es la magnitud de la velocidad angular del eslabón i con respecto al sistema de coordenadas (xi-1, yi-1, zi-1). De manera similar:

$$\frac{d^* w^*}{dt} = \begin{cases}
z_{i-1} \ddot{q}_i & \text{si el eslabón i es rotacional} \\
0 & \text{si el eslabón i es traslacional}
\end{cases} (3.12)$$

Debe notarse que el vector i-1 z es igual a (0, 0, 1)T.

Las velocidades y aceleraciones de los sistemas de coordenadas ligados a cada eslabón son absolutas y se calculan como:

$$w_{i} = \begin{cases} w_{i-1} + z_{i-1}\dot{q}_{i} & \text{si el eslabón i es rotacional} \\ w_{i-1} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.13)

$$\dot{\psi}_{i} = \begin{cases} \dot{w}_{i-1} + z_{i-1}\ddot{q}_{i} + w_{i-1} \times (z_{i-1}\dot{q}_{i}) & \text{si el eslabón i es rotacional} \\ \dot{w}_{i-1} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.14)

Las velocidades lineales de los sistemas de referencia de cada eslabón se calculan como:

$$\frac{d^* p_i}{dt} = \begin{cases} w_i \times p_i^* & \text{si el eslabón i es rotacional} \\ z_{i-1} \dot{q}_i & \text{si el eslabón i es traslacional} \end{cases}$$
(3.15)

$$\frac{d^{*2}p_{i}^{*}}{dt^{2}} = \begin{cases} \frac{d^{*}w_{i}^{*}}{dt} \times p_{i}^{*} + w_{i}^{*} \times \left(w_{i}^{*} \times p_{i}^{*}\right) & \text{si el eslabón i es rotacional} \\ z_{i-1}\ddot{q}_{i} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.16)

por lo que la velocidad lineal absoluta del sistema de coordenadas ligado a cada eslabón se calcula como:

$$v_{i} = \begin{cases} w_{i} \times p_{i}^{*} + v_{i-1} & \text{si el eslabón i es rotacional} \\ \\ z_{i-1}\dot{q}_{i} + w_{i} \times p_{i}^{*} + v_{i-1} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.17)

La aceleración se calcula como:

$$\dot{v}_{i} = \begin{cases} \dot{w}_{i} \times p_{i}^{*} + w_{i} \times (w_{i} \times p_{i}^{*}) + \dot{v}_{i-1} & \text{si el eslabón i es rotacional} \\ z_{i-1}\ddot{q}_{i} + \dot{w}_{i} \times p_{i}^{*} + 2w_{i} \times (z_{i-1}\dot{q}_{i}) + w_{i} \times (w_{i} \times p_{i}^{*}) + \dot{v}_{i-1} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.18)

Ecuaciones de movimiento recursivas.

A partir de las ecuaciones cinemáticas del apartado anterior y aplicando el principio de D'Alembert del equilibrio estático para todos los instantes de tiempo, se obtienen las ecuaciones recursivas de Newton-Euler.[1]

Si se utiliza la nomenclatura de la figura 3.2 sobre un eslabón cualquiera del robot, tal y como se muestra en la figura 3.3

⇒ NOTA: Es importante que se identifiquen estas variables sobre el dibujo del robot, para poder seguir los siguientes desarrollos.

Si se omiten los efectos del rozamiento viscoso en las articulaciones, y se aplica el principio de D'Alembert, se obtiene para cada eslabón:

$$F_i = \frac{d(m_i \overline{v}_i)}{dt} = m_i \overline{a}_i \tag{3.18}$$

$$N_i = \frac{d(I_i w_i)}{dt} = I_i \dot{w}_i + w_i \times (I_i w_i)$$
(3.19)

realizando el balance de pares y fuerzas en la figura 3.3:

$$F_i = f_i - f_{i+1} (3.20)$$

$$N_{i} = n_{i} - n_{i+1} + (p_{i-1} - \bar{r}_{i}) \times f_{i} - (p_{i} - \bar{r}_{i}) \times f_{i+1}$$
(3.21)

$$= n_i - n_{i+1} + (p_{i-1} - \bar{r}_i) \times F_i - p_i^* \times f_{i+1}$$
(3.22)

que utilizando la relación geométrica:

$$\bar{r}_i - p_{i-1} = p_i^* + \bar{s}_i \tag{3.23}$$

se obtienen las ecuaciones recursivas:

$$f_i = F_i + f_{i+1} = m_i \overline{a}_i + f_{i+1}$$
 (3.24)

$$n_{i} = n_{i+1} + p_{i}^{*} \times f_{i+1} + (p_{i}^{*} + \overline{s}_{i}) \times F_{i} + N_{i}$$
(3.25)

Se observa que estas ecuaciones son recursivas y permiten obtener las fuerzas y momentos en los elementos i =1,2,...,n para un robot de n elementos. i+1 f y ni+1 representan la fuerza y momento ejercidos por la mano del robot sobre un objeto externo.

Por lo tanto, el par/fuerza para cada articulación se expresa como:

$$\tau_{i} = \begin{cases} n_{i}^{T} z_{i-1} + b_{i} \dot{q}_{i} & \text{si el eslabón i es rotacional} \\ f_{i}^{T} z_{i-1} + b_{i} \dot{q}_{i} & \text{si el eslabón i es traslacional} \end{cases}$$
(3.26)

donde bi es el coeficiente de rozamiento viscoso de la articulación.

Bibliografía:

https://nbio.umh.es/files/2012/04/practica3.pdf