

Comparisons of in-situ snow depth measurements with airborne data

Michael Studinger

Nathan Kurtz

Christian Haas

Webster et al., JGR, 2014

Comparing in-situ measurements with airborne measurements: where are we?

- How well do existing ground measurements characterize snow depth for comparisons with airborne data?
- Are existing in-situ sampling strategies suitable for comparisons in terms of spatial sampling, measuring parameters and statistics?
- What is the statistical significance of existing in-situ and airborne data comparisons?
- What do we need to do to the design experiments that are likely to provide definite answers?

Existing in-situ/EM/airborne data sets

Year	Area	Organizations/PI	Experiment	Data Availability	Publication
2009	Fast ice north of Cape Morris Jesup	CRREL, DTU Space	GreenArc	no	yes
2011	Beaufort Sea	NRL, CRREL	ICEX 2011	published on 9/15/2014 at NSIDC	submitted
2011	North of Alert	ESA, UCL, York Univ	CryoVEx	ESA (no 20 m grids)	no
2012	Barrow, AK Elson Lagoon	JPL, CRREL, UW APL	BROMEX	on request	yes
2012	North of Alert	ESA, DTU Space, York U	CryoVEx – no ground data	ESA	no
2012	Fram Strait	ESA, DTU Space, York U	CryoVEx – no ground data	ESA	no
2012	Qaanaaq Fjord, Greenland	J Wilkinson (SAMS), S Hanson (DMI), P Elosegui (ICE), H Singh, P Kimball (WHOI)	Qaanaaq Sea Ice Field Campaign	no	no
2013	Barrow, AK	UW APL, NRL, U Delaware	NRL/BROMEX/AOX/ NAICEX/MERLIN	no	no
2014	Barrow, AK	CRREL, NRL	NRL DISTANCE	no	
2014	Canada Basin	CRREL, ONR, NRL, ESA, York University	ONR MIZ, CryoVEx	no	
2014	North of Alert	ESA, DTU Space, York U	CryoVEx – no ground data	no	
2014	Cape Morris Jesup	ESA, York University	CryoVEx	no	
2014	Eureka Sound	Environment Canada	In support for NASA/CSA agreement	will be	

Note: airborne data have been acquired at significant cost/flight hours for IceBridge.

Challenges

- Logistics and costs involved in obtaining in-situ data
- “Only” opportunistic coordination so far.
 - No dedicated experiments that were specifically designed to provide answers once and for all.
- Very small in-situ survey areas (statistical significance?)
- Profile data often don’t even span or barely exceed the width of the radar cross-track footprint
 - (2014 data are a significant improvement in this regard)
- High resolution grids barely cover the along-track and across-track size of the radar footprint
- Radar speckle and small in-situ area limit significance

Challenges – cont.

- Targets are moving with up to 200 meters/hour
- Co-locating high-resolution grids and corner reflectors with airborne measurements is a challenge.
- Geodetic quality dual frequency post-processed DGPS or PPP?

April 15, 2011: the “golden day”

Site: South Orange (West) - South Blue (East) is to the right

Site: South Orange (West) Grid: 21×21 pts $\sigma = 19.4$ cm $\mu = 52.3$ cm

Subsampling Experiments

- simulate 5 meter profile measurements using subsamples from 20 meter high-resolution grids spaced 5 meters apart:
how well can we characterize snow depths along profiles using 5 meter spacing?
- subsample grids using bootstrapping method with 1000 subsets

Site: South Orange (West) Grid: 21 × 21 pts $\sigma = 12.0$ cm $\mu = 30.4$ cm

Bootstrap - Site: South Orange (West) Grid: 21×21 pts $\sigma = 19.4$ cm $\mu = 52.2$ cm

South Blue (East)

Site: South Blue (East) Grid: 21×21 pts $\sigma = 12.0$ cm $\mu = 30.4$ cm

Site: South Blue (East) Grid: 21×21 pts $\sigma = 12.0$ cm $\mu = 30.4$ cm

Bootstrap - Site: South Blue (East) Grid: 21×21 pts $\sigma = 12.0$ cm $\mu = 30.4$ cm

Data: MIZONR_CAMP2_5M_GRID Year: 2014

Data: MIZONR_CAMP2₅M_GRID Year: 2014 Grid: 81 × 13 pts $\sigma = 13.1$ cm $\mu = 30.0$ cm

Data: NORD_CAMP_5M_GRID Year: 2014

Data: NORD_CAMP₅M_GRID Year: 2014 Grid: 81 × 13 pts $\sigma = 17.2$ cm $\mu = 37.9$ cm

General concerns with in-situ data

- Existing literature of in-situ snow depth measurements lacks thorough discussion of error estimates.
- Literature quotes 1 cm accuracy but errors up to 10 cm have been reported.
- Histograms suggest that magna-probe does not resolve snow-depths < 7-8 cm. True? Bias?
Similar to minimum thickness that radar can resolve.
- Geolocation errors. GPS is quoted as accurate to within 10 m (realistic).
A geolocation error of the same order of magnitude as the size of the radar footprints makes exact comparisons difficult.

Corner reflectors can help with geolocation uncertainty

Other challenges: pressure ridges

A problem for everyone (in-situ, airborne, modelers)

No EM data, but snow depth.

What do snow depth measurements over pressure ridges represent?

