第四讲 初等数论

本讲提要

□ 同余(续)

1 中国剩余定理(CRT)

$$x \equiv 23 \pmod{105} \Rightarrow \begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

中国剩余定理揭示这一过程是可逆的。

定理1设 m_1 , m_2 ,…, m_k 是k个两两互素的正整数,

 $m = m_1 m_2 \cdots m_k$, $m = m_i M_i (i = 1, 2, \cdots, k)$ 则同余式组

 $x \equiv b_1 \pmod{m_1}, \quad x \equiv b_2 \pmod{m_2}, \dots, \quad x \equiv b_k \pmod{m_k}$

有唯一解

 $x \equiv M_1' M_1 b_1 + M_2' M_2 b_2 + \dots + M_k' M_k b_k \pmod{m},$ $\not \equiv p$

$$M_i'M_i \equiv 1 \pmod{m_i} (i = 1, 2, \dots, k)_{\circ}$$

定理1证明.

曲
$$m = m_i M_i$$
,有 $(M_i, m_i) = 1$,且

$$x \equiv \sum_{j=1}^{k} M'_{j} M_{j} b_{j} \equiv M'_{i} M_{i} b_{i} \equiv b_{i} \pmod{m_{i}} (i = 1, 2, \dots, k),$$

因此, x为同余组的解。

若x₁, x₂同为同余组的解,则

$$x_1 \equiv x_2 \pmod{m_i} (i = 1, 2, \dots, k)_{\circ}$$

因为当 $i \neq j$,有 $(m_i, m_j) = 1$,

所以 $x_1 \equiv x_2 \pmod{m}$ (第二讲定理9)。

2.1 同余定义与概念(续)

定理9 若 $a \equiv b \pmod{m_i}$, $i = 1, 2, \dots$, n, 则 $a \equiv b \pmod{[m_1, m_2, \dots, m_n]}$ 。 定理9证明. 可知 $m_i \mid a - b$, $i = 1, 2, \dots$, n。 a - b, m_i 按标准分解式展开可知 $[m_1, m_2, \dots, m_n] \mid a - b$ 。 $\therefore a \equiv b \pmod{[m_1, m_2, \dots, m_n]}$ 。

定理2一次同余式组

$$x \equiv b_1(\operatorname{mod} m_1), \quad x \equiv b_2(\operatorname{mod} m_2), \tag{1}$$

可解的充分必要条件是 $(m_1, m_2)|b_1-b_2$,且当式(1)可解时对模 $[m_1, m_2]$ 有唯一解。定理2证明.

 \rightarrow 如果(1)有公解 x_0 。 令 $(m_1, m_2) = d$,显然有 $x_0 \equiv b_1 \pmod{d}$, $x_0 \equiv b_2 \pmod{d}$, 因此, $d \mid b_1 - b_2$ 。

 \leftarrow 因为 $x \equiv b_1 \pmod{m_1}$ 的解可写为 $x = b_1 + m_1 y$,其中y为任意整数,代入 $x \equiv b_2 \pmod{m_2}$,有 $m_1 y \equiv b_2 - b_1 \pmod{m_2}$ 。因为 $(m_1, m_2) = d$, $d \mid b_2 - b_1$,所以根据上一讲定理11知 $m_1 y \equiv b_2 - b_1 \pmod{m_2}$ 有解,

且对模
$$\frac{m_2}{d}$$
有唯一解 $y \equiv y_0 \pmod{\frac{m_2}{d}}$,即 $y = y_0 + \frac{m_2}{d}t$ $(t = 0, \pm 1, \pm 2, \cdots)$ 。

所以(1)的全部解为:

$$x = b_1 + m_1 \left(y_0 + \frac{m_2}{d} t \right) = b_1 + m_1 y_0 + \frac{m_1 m_2}{d} t (t = 0, \pm 1, \pm 2, \cdots)_{\circ}$$

这些解对模 $[m_1, m_2]$ 都同余,故对模 $[m_1, m_2]$ 唯一。

3一次同余式(续)

定理11 设(a,m) = d, m > 0, $d \mid b$, 则同余式 $ax \equiv b \pmod{m}$

有d个解。

定理11证明.

如果某整数是 $\frac{a}{d}x \equiv \frac{b}{d} \pmod{\frac{m}{d}}$ 的解,则同样为 $ax \equiv b \pmod{m}$ 的解,反之亦然。

$$\frac{a}{d}x \equiv \frac{b}{d}x \left(\text{mod } \frac{m}{d} \right)$$
有唯一解,假定是 t 。则全体整数 $t + k\frac{m}{d}$, $k = 0, \pm 1, \pm 2, \cdots$

是 $ax \equiv b \pmod{m}$ 的解。对模 m而言,恰有 t, $t + \frac{m}{d}$, $t + 2\frac{m}{d}$ …, $t + (d-1)\frac{m}{d}$ 个互

不同余的整数解。这是 因为对于 $t+k\frac{m}{d}$,设 k=qd+r, $0 \le r < d$,代入得

$$t + k\frac{m}{d} \equiv t + qm + r\frac{m}{d} \equiv t + r\frac{m}{d} \pmod{m}$$
。 又若 $0 \le e < d, 0 \le f < d$,则

$$t+e\frac{m}{d} \equiv t+f\frac{m}{d} \pmod{m}$$
,有 $f=e$,说明 t , $t+\frac{m}{d}$, $t+2\frac{m}{d}$ …, $t+(d-1)\frac{m}{d}$ 模 m 互不同余。

所以解为 $x \equiv 80 \pmod{105}$ 。

例子1 解 $x \equiv 3 \pmod{7}$, $x \equiv 5 \pmod{15}$ 。 由于80(mod 7) = 3(mod 7),80(mod 15) = 5(mod 15),

定理3 若 m_1 , m_2 ,…, m_k 是k个两两互素的正整数, $m = m_1 m_2 \cdots m_k$, 则同余式

$$f(x) \equiv 0 \pmod{m} \tag{2}$$

有解的充分必要条件是每一个同余式

$$f(x) \equiv 0 \pmod{m_i} (i = 1, 2, \dots, k) \tag{3}$$

有解。并且,若用 T_i 表示式(3)的解数,T表示式(2)的解数,则 $T = T_1 T_2 \cdots T_k$ 。

定理3证明.

 \rightarrow 设 x_0 是适合(2)的整数,则由 $f(x_0) \equiv 0 \pmod{m}$,可得 $f(x_0) \equiv 0 \pmod{m_i}$ $(i=1,2,\cdots, k)_{\circ}$ \leftarrow 反之, 若 x_i 适合 $f(x_i) \equiv 0 \pmod{m_i} (i = 1, 2, \dots, k)$, 因为 $1 \le i < j \le k$ 时, $(x_i, x_i) = 1$, 由定理1,有唯一的 $x_0, 0 \le x_0 < m$, 适合 $x_0 \equiv x_i \pmod{m_i}$ $(i = 1, 2, \dots, k), \quad \coprod f(x_0) \equiv f(x_i) \equiv 0 \pmod{m_i} (i = 1, 2, \dots, k), \quad \text{id}$ $f(x_0) \equiv 0 \pmod{m}$ 。这就证明了充要条件。 现设 $f(x) \equiv 0 \pmod{m_i}$ 的 T_i 个不同解是 $x \equiv u_{i,e_i} \pmod{m_i}, 0 \le u_{i,e_i} \le m_i (e_i = 1, 2, \dots, T_i; i = 1, 2, \dots, k),$ 对其中任一组 $(u_{1,e_1}, u_{2,e_2}, \dots, u_{k,e_k})$,应用定理1可得唯一的x, $0 \le x < m$ 是(2) 的解。不同组,得到的解x也不同,故 $T_1T_2\cdots T_k \leq T$ 。反之,令 x_1 , x_2,\cdots , x_n $0 \le x_i < m(i = 1, 2, \dots, T)$ 是(2)的T个解,则对某个 $j(0 \le j \le T)$, $(x_j \pmod{m_1})$, $x_j \pmod{m_2}$,…, $x_j \pmod{m_k}$))应是某个一组 $(u_{1,e_1}, u_{2,e_2}, ..., u_{k,e_k})$, 故 $T \leq T_1 T_2 \cdots T_k$ 。 这就证明了 $T = T_1 T_2 \cdots T_k$ 。

例子2 解同余式 $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$ 。由定理3解同余式可先分别解以下两个同余式:

$$6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{5}$$

和

$$6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{6}$$

第一个同余式有解

$$x \equiv 0, 1, 2 \pmod{5}$$

第二个同余式有解

$$x \equiv 2,5 \pmod{6}$$

由定理1,当 (b_1,b_2) 取(0,2),(0,5),(1,2),(1,5),(2,2),(2,5)时,得 $6x^3 + 27x^2 + 17x + 20 \equiv 0 \pmod{30}$ 的6个解 $x \equiv 6b_1 + 25b_2 \equiv 2,5,11,17,20,26 \pmod{30}$ 。

2 模是素数幂的同余式

模是素数幂的同余式

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \equiv 0 \pmod{p^{\alpha}}, \tag{4}$$

 $n > 0, p^{\alpha} \nmid a_n$, 其中p是素数, $\alpha \ge 1$ 。

适合(4)式的每个整数都适合同余式

$$f(x) \equiv 0 \pmod{p}_{\circ} \tag{5}$$

如果(5)式无解,自然(4)式也无解。

2 模是素数幂的同余式(续)

定理4 设 $x \equiv x_1 \pmod{p}$ 即

$$x \equiv x_1 + pt_1 \quad (t_1 = 0, \pm 1, \pm 2, \cdots)$$
 (6)

是(5)式的一个解,且 $p \nmid f'(x_1)$,这里 $f'(x) = \sum_{i=1}^{n} ia_i x^{i-1}$

表示f(x)的导数,则(6)式恰好给出(4)式的一个解

 $x \equiv x_{\alpha} \pmod{p^{\alpha}}$, \mathbb{R}^{3}

$$x \equiv x_{\alpha} + p^{\alpha} t_{\alpha} \qquad (t_{\alpha} = 0, \pm 1, \pm 2, \cdots),$$

推论1 设 $f(x) \equiv 0 \pmod{p}$ 和 $f'(x) \equiv 0 \pmod{p}$ 无公解,则同 余式 $f(x) \equiv 0 \pmod{p^{\alpha}}$ 和 $f(x) \equiv 0 \pmod{p}$ 的解数相同。

2 模是素数幂的同余式(续)

定理4证明.

归纳法。

2.1 同余定义与概念(续)

定理8 如果 $ac \equiv bc \pmod{m}$, 且若(m,c) = d, 则

$$a \equiv b \left(\bmod \frac{m}{d} \right) \circ$$

定理8证明.

由定理6知
$$m \mid ac - bc = c(a - b) \Rightarrow \frac{m}{d} \mid \frac{c}{d}(a - b),$$

$$\therefore a \equiv b \left(\bmod \frac{m}{d} \right) \circ$$

3整数的剩余表示

定义1 设 $m_1 > 0$, $m_2 > 0$,…, $m_k > 0$, $(m_i, m_j) = 1$, $0 < i < j \le k$, $< a >_b$ 表示b模a的非负最小剩余,一个整数x对于模 m_1 , m_2 ,…, m_k 的剩余表示是指序列 $(< x >_{m_1}, < x >_{m_2}, …, < x >_{m_k})$, 记作 $x \leftrightarrow (< x >_{m_1}, < x >_{m_2}, …, < x >_{m_k})$ 。

定理5 设 $m_1 > 0$, $m_2 > 0$,…, $m_k > 0$, $(m_i, m_j) = 1$, $0 < i < j \le k$, 两个整数x, x'对模 m_1 , m_2 ,…, m_k 的剩余表示相同的充分必要条件是 $x \equiv x' \pmod{M}$, 这里 $M = m_1 m_2 \cdots m_k$ 。

定理5证明.

$$\rightarrow$$
 设 x 和 x' 对于模 m_1 , m_2 ,..., m_k 的剩余表示分别为 $(\langle x \rangle_{m_1}, \langle x \rangle_{m_2}, \dots, \langle x \rangle_{m_k})$ 和 $(\langle x' \rangle_{m_1}, \langle x' \rangle_{m_2}, \dots, \langle x' \rangle_{m_k})$,其中 $\langle x \rangle_{m_i} = x - q_i m_i, 0 \le \langle x \rangle_{m_i} < m_i, \langle x' \rangle_{m_i} = x' - q'_i m_i, 0 \le \langle x \rangle_{m_i} < m_i, \langle x' \rangle_{m_i} = x' - q'_i m_i, 0 \le \langle x' \rangle_{m_i} < m_i, i = 1, 2, \dots, k$ 。如果 $\langle x \rangle_{m_i} = \langle x' \rangle_{m_i}$, $i = 1, 2, \dots, k$,则 $m_i \mid x - x'$,故 $M \mid x - x'$ 。 $\langle x \rangle_{m_i} = \langle x' \rangle_{m_i} < x' > \langle x \rangle_{m_i} + \langle x \rangle_{m_i} - \langle x' \rangle_{m_i} - \langle x' \rangle_{m_i}$, $i = 1, 2, \dots, k$ 。由此推出 $\langle x \rangle_{m_i} = \langle x' \rangle_{m_i}$, $i = 1, 2, \dots, k$ 。

定义2 设 $m_1 > 0$, $m_2 > 0$,…, $m_k > 0$, $(m_i, m_j) = 1$, $0 < i < j \le k$, $M = m_1 m_2 \cdots m_k, 0 \le x < M$, 此时整数x对于模 m_1 , m_2 ,…, m_k 的剩余表示 $(< x >_{m_1}, < x >_{m_2}, \dots, < x >_{m_k})$ 也叫x的模系数记数法。

定理6 设Z表示整数集, $Z_l = \{0,1,\cdots,l-1\}$ 表示最小非负剩余组成的集,设 $m_1 > 0$, $m_2 > 0$,…, $m_k > 0$, $(m_i,m_j) = 1$, $0 < i < j \le k$, $0 \le x < m_1 m_2 \cdots m_k$,则集

 $S = \{x \mid 0 \le x < m_1 m_2 \cdots m_k\}$

与集

$$S_1 = \{(a_1, a_2, \dots, a_k) \mid a_j \in Z_{m_j}, j = 1, 2, \dots, k\}$$

之间存在一一对应关系。

定理7 设x和y的剩余表示分别为 $(< x>_{m_1}, < x>_{m_2}, \cdots, < x>_{m_k})$ 和 $(< y>_{m_1}, < y>_{m_2}, \cdots, < y>_{m_k})$,则有

(1)
$$< x \pm y >_{M}$$
 的剩余表示为 ($<< x >_{m_{1}} \pm < y >_{m_{1}} >_{m_{1}}, << x >_{m_{2}}$ $\pm < y >_{m_{2}} >_{m_{2}}, \cdots, << x >_{m_{k}} \pm < y >_{m_{k}} >_{m_{k}}$)。

$$(2) < xy >_{M}$$
 的剩余表示为 $(<< x >_{m_{1}} < y >_{m_{1}} >_{m_{1}}, << x >_{m_{2}} < y >_{m_{2}} >_{m_{2}},$ $\cdots, << x >_{m_{k}} < y >_{m_{k}} >_{m_{k}})$ 。

定理7证明.

对于任意
$$1 \le i \le k$$
, $x = m_i q_1 + \langle x \rangle_{m_i}$, $y = m_i q_2 + \langle y \rangle_{m_i}$, $\langle x \rangle_{m_i} + \langle y \rangle_{m_i} = m_i q_3 + \langle x \rangle_{m_i} + \langle y \rangle_{m_i} \rangle_{m_i}$, 故 $x + y = m_i q_1 + m_i q_2 + \langle x \rangle_{m_i} + \langle y \rangle_{m_i} \rangle_{m_i}$, 故 $= m_i (q_1 + q_2 + q_3) + \langle x \rangle_{m_i} + \langle y \rangle_{m_i} \rangle_{m_i}$, 故 $\langle x + y \rangle_{m_i} = \langle x \rangle_{m_i} + \langle y \rangle_{m_i} \rangle_{m_i}$, 类似可证明 $\langle x - y \rangle_{m_i} = \langle x \rangle_{m_i} - \langle y \rangle_{m_i} \rangle_{m_i}$, $\langle x y \rangle_{m_i} = \langle x \rangle_{m_i} \langle y \rangle_{m_i} \rangle_{m_i}$ 。 因此,定理 7成立。

例子3 对于模 4,3,5,11。

$$x = 102 \leftrightarrow (2,0,2,3)$$

$$y = 211 \leftrightarrow (3,1,1,2)$$

则

$$\begin{array}{ccc}
102 & (2,0,2,3) \\
+211 & (3,1,1,2) \\
\hline
\langle 313 \rangle_{660} = 313 \leftrightarrow (1,1,3,5)
\end{array}$$

谢谢!