Theoriesammlung Analysis 1

Danilo Bargen, Michael Gysel 10. Oktober 2011

Inhaltsverzeichnis

1	Funk	ktionen					
	1.1	Gerade, ungerade und periodische Funktion					
	1.2	Injektive, surjektive und bijektive Funktionen					
	1.3	Umkehrbarkeit					
	1.4	Allgemeine Gleichungsregel					
	1.5	Gleichungsregel für das Wegschaffen von Wurzeln					
	1.6	Monotone Funktionen					
	1.7	Allgemeine Ungleichungsregel					
	1.8	Verkettung oder Komposition					
	1.9	Graphen der Verkettung von Funktionen mit linearen Funktionen					
	1.10	Umkehrfunktion					
		Graphen von Umkehrfunktionen					
		Verkettung einer Funktion mit ihrer Umkehrfunktion					
		Eigentliche und Uneigentliche Grenzwerte					
		Stetigkeit					
2		Differenzialrechnung					
	2.1	Ableitung					
	2.2	Wichtige Ableitungsfunktionen					
	2.3	Linearitätsregeln für die Ableitung					
	2.4	Produkt- und Quotientenregel für Ableitungen					
	2.5	Kettenregel für Ableitungen					
	2.6	Kurvendiskussion					
	2.7	Linearisierungsformel					
	2.8	Algorithmus von Newton					
	2.9	Regel von Bernoulli-l'Hôpital					
	2.10						
	2.11	Konvergenz von Taylorreihen					

1 Funktionen

1.1 Gerade, ungerade und periodische Funktion

Die Funktion f heisst

• gerade, wenn

$$\forall x \in DB(f) : f(-x) = f(x)$$

 \bullet ungerade, wenn

$$\forall x \in DB(f) : f(-x) = -f(x)$$

 \bullet periodisch mit der Periode p, wenn

$$\forall x \in DB(f) : f(x+p) = f(x)$$

Die kleinste positive Periode heisst primitive Periode.

1.2 Injektive, surjektive und bijektive Funktionen

Man nennt eine Funktion f

- injektiv, wenn $x, y \in D$ mit $x \neq y$ gilt: $f(x) \neq f(y)$
- surjektiv, wenn Zielmenge und das Bild der Funktion identisch sind, dh. wenn die Bedingung Z = f(D) gilt.
- bijektiv, wenn die Funktion sowohl injektiv, als auch surjektiv ist.

Eine bijektive Funktion ist umkehr
bar und die Umkehrfunktion hat Z als Definitionsbereich und
 D als Zielmenge.

1.3 Umkehrbarkeit

Die Funktion f heisst umkehrbar, wenn

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

1.4 Allgemeine Gleichungsregel

Für jede umkehrbare Funktion f gilt: Man darf beidseitig einer Funktion dieselbe umkehrbare Funktion anwenden, wenn beide Seiten in ihrem Definitionsbereich liegen. Mathematisch ausgedrückt:

$$\forall x_1, x_2 \in DB(f) : x_1 = x_2 \Leftrightarrow f(x_1) = f(x_2)$$

1.5 Gleichungsregel für das Wegschaffen von Wurzeln

Um die Wurzel auf der linken Seite der Gleichung

$$\sqrt{R} = S$$

wegzuschaffen, sind zwei Fälle zu unterscheiden:

- Wenn $S \ge 0$ ist, so ist die Gleichung äquivalent zu $R = S^2$
- \bullet Wenn S < 0 ist, ist die Gleichung unerfüllbar.

oder auf eine kurze Formel gebracht:

$$\sqrt{R} = S \Leftrightarrow R = S^2 \land S \ge 0$$

1.6 Monotone Funktionen

 \bullet Sei f eine monoton steigende Funktion. Dann gilt

$$f(x_1) < f(x_2) \Rightarrow x_1 < x_2$$

• Ist aber f eine monoton fallende Funktion, so gilt

$$f(x_1) < f(x_2) \Rightarrow x_1 > x_2$$

1.7 Allgemeine Ungleichungsregel

Für jede streng monoton steigende Funktion f gilt: Man darf beidseitig einer Ungleichung dieselbe streng monoton steigende Funktion anwenden, wenn beide Seiten in ihrem Definitionsbereich liegen. Oder mathematisch ausgedrückt:

$$\forall x_1, x_2 \in DB(f) : x_1 < x_2 \Leftrightarrow f(x_1) < f(x_2)$$

Ferner gilt für jede streng monoton fallende Funktion f: Man darf beidseitig einer Ungleichung dieselbe streng monoton fallende Funktion anwenden, wenn beide Seiten in ihrem Definitionsbereich liegen. Dabei ist aber des Vergleichszeichen umzudrehen. Mathematisch ausgedrückt:

$$\forall x_1, x_2 \in DB(f) : x_1 < x_2 \Leftrightarrow f(x_1) > f(x_2)$$

1.8 Verkettung oder Komposition

Gegeben seien die Funktionen f und g. Dann nennt man die Funktion

$$x \mapsto f(q(x))$$

die Verkettung oder Komposition der Funktionen f und g. Man bezeichnet sie mit

$$f \circ g$$

und liest das als f nach g.

1.9 Graphen der Verkettung von Funktionen mit linearen Funktionen

Der Graph der Funktion f sei bekannt. Dann geht der Graph der Funktion

$$x \mapsto af(x) + b$$

aus jenem von f durch folgende geometrische Operationen hervor (Reihenfolge wesentlich!)

- 1. Vertikale Skalierung um den Faktor |a|
 - \bullet Wenn a<0 zusätzlich eine Spiegelung an der 1. Koordinatenachse
- 2. Vertikalverschiebung um |b| und zwar
 - Nach oben, wenn b > 0
 - Nach unten, wenn b < 0

Ferner geht der Graph der Funktion

$$x \mapsto f(ax + b)$$

aus jenem f durch folgende geometrische Operationen hervor (Reihenfolge wesentlich!)

- 1. Horizontalverschiebung um |b| und zwar
 - Nach links, wenn b > 0
 - Nach rechts, wenn b < 0
- 2. Horizontale Skalierung um den Faktor $\frac{1}{|a|}$
 - \bullet Wenn a < 0 zusätzlich eine Spiegelung an der 2. Koordinatenachse

1.10 Umkehrfunktion

Sei f eine umkehrbare Funktion. Dann heisst die Funktion f^{-1} , für welche gilt

$$f^{-1}(y) = x \Leftrightarrow y = f(x)$$

die Umkehrfunktion von f. Für termdefinierte Funktionen gilt also

$$f = x \mapsto y \Leftrightarrow f^{-1} = y \mapsto x$$

In anderen Worten: Bei der Umkehrfunktion werden einfach die Rollen von Argument und Funktionswert vertauscht. Dies läuft auf eine Spiegelung des Graphen der gegebenen Funktion an der ersdten Quadrantenhalbierenden hinaus.

1.11 Graphen von Umkehrfunktionen

Sei f eine umkehrbare Funktion. Dann ist der Graph von f^{-1} das Spiegelbild des Graphen von f an der 1. Quadrantenhalbierenden.

1.12 Verkettung einer Funktion mit ihrer Umkehrfunktion

Sei f eine umkehrbare Funktion. Dann gilt

$$\forall x \in DB(f) : f^{-1}(f(x)) = x$$

oder knapper

$$f^{-1} \circ f = id_{DB(f)}$$

1.13 Eigentliche und Uneigentliche Grenzwerte

Eigentliche Grenzwerte sind Grenzwerte, welche gegen eine reelle Zahl streben. Uneigentliche Grenzwerte sind Grenzwerte, welche gegen Unendlich (positiv oder negativ) streben.

1.14 Stetigkeit

Wenn die reelle Funktion f an der Stelle a definiert ist und

$$\lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = f(a)$$

gilt, dann heisst die Funktion bei a stetig.

Vereinfacht gesagt, kann man sagen, dass eine stetige Funktion gezeichnet werden kann, ohne den Stift abzusetzen.

2 Differenzialrechnung

2.1 Ableitung

f sei eine reelle Funktion und x ein Argument. Wenn der Grenzwert

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

im eigentlichen Sinne existiert, so heisst die Funktion f an der Stelle x differenzierbar und der Grenzwert heisst die Ableitung von f an der Stelle x.

In physikalischen und technischen Anwendungen treten häufig Funktionen auf, in denen das Argument die Zeit t bedeutet. In diesem Fall hat es sich eingebürgert, die Ableitung mit einen über das Funktionssymbol geschriebenen Punkt zu bezeichnen, also

$$\dot{f}(t)$$
 statt $f'(t)$

2.2 Wichtige Ableitungsfunktionen

Funktion	Ableitungsfunktion
$x \mapsto 1$	$x \mapsto 0$
$id:=x\mapsto x$	$x\mapsto 1$
$sqr:=x\mapsto x^2$	$x \mapsto 2x$
$rez := x \mapsto \frac{1}{x}$	$x \mapsto -\frac{1}{x^2}$
$sqrt := x \mapsto \sqrt{x}$	$x \mapsto \frac{1}{2\sqrt{x}}$
$x \mapsto x^n$	$x \mapsto nx^{n-1}$
$x \mapsto e^x$	$x \mapsto e^x$
$x \mapsto e^{-x}$	$x \mapsto -e^{-x}$
$x \mapsto a^x$	$x \mapsto \ln(a) \cdot a^x$
ln	$x\mapsto \frac{1}{x}$ für $x>0$
$\log_b(x)$	$\frac{1}{\ln(b)\cdot x}$
sin	cos
cos	$-\sin$
tan	$1 + \tan^2 = \frac{1}{\cos^2}$
arcsin	$\frac{1}{\sqrt{1-x^2}}$
arccos	$-\frac{1}{\sqrt{1-x^2}}$
arctan	$\frac{1}{1+x^2}$

2.3 Linearitätsregeln für die Ableitung

f und gseien differenzierbare Funktionen und ceine Konstante. Dann gelten diese beiden sogenannte ${\it Linearit\"{a}tsregeln}$

•
$$(f+g)' = f' + g'$$

•
$$(c \cdot f)' = c \cdot f'$$

Wenn die Fuktionen durch Terme S und T definiert sind, so kann man die Regeln auch auf die Terme übertragen:

•
$$\frac{d}{dx}(S+T) = \frac{dS}{dx} + \frac{dT}{dx}$$

•
$$\frac{d}{dx}(c \cdot T) = c \cdot \frac{dT}{dx}$$

2.4 Produkt- und Quotientenregel für Ableitungen

f und g seien differenzierbare Funktionen. Dann ist

•
$$(f \cdot g)' = f' \cdot g + f \cdot g'$$

$$\bullet \left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$$

Wenn die Funktionen mit Hilfe von Zuordnungstermen S und T definiert sind, so lassen sich diese Regeln auf die Terme übertragen.

•
$$\frac{d}{dx}(S \cdot T) = \left(\frac{dS}{dx}\right)T + S\left(\frac{dT}{dx}\right)$$

•
$$\frac{d}{dx} \left(\frac{S}{T} \right) = \frac{\left(\frac{dS}{dx} \right) T - S \left(\frac{dT}{dx} \right)}{T^2}$$

2.5 Kettenregel für Ableitungen

f und g seien differenzierbare Funktionen. Dann ist die Ableitung ihrer Verkettung an der Stelle x gegeben durch

$$(f \circ q)'(x) = f'(q(x))q'(x)$$

oder in der Termschreibweise

$$\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot \frac{d}{dx}g(x)$$

Wenn wir beachten, dass $f'(g(x)) = (f' \circ g)(x)$ ist, bekommen wir für die Ableitungsfunktion

$$(f \circ g)' = (f' \circ g) \cdot g'$$

2.6 Kurvendiskussion

Ableitungen helfen, wichtige Eigenschaften über Funktionen zu ermitteln. Unter der Voraussetzung, dass f im Intervall (a, b) differenzierbar ist, gelten die folgenden Aussagen:

$f'(x) > 0$ für alle $x \in (a, b)$	\Rightarrow	f ist im Intervall (a, b) streng monoton wachsend
$f'(x) \ge 0$ für alle $x \in (a, b)$	(f ist im Intervall (a,b) schwach monoton wachsend
$f'(x) < 0$ für alle $x \in (a, b)$	\Rightarrow	f ist im Intervall (a, b) streng monoton fallend
$f'(x) \le 0$ für alle $x \in (a, b)$	(f ist im Intervall (a,b) streng monoton fallend
f'(x) = 0	=	f hat im Punkt $x \in (a, b)$ ein (lokales oder
		globales) Maximum oder ein (lokales oder globales) Minimum
f'(x) = 0 und f''(x) < 0	\Rightarrow	f hat im Punkt $x \in (a,b)$ ein (lokales oder globales) Maximum
f'(x) = 0 und f''(x) > 0	\Rightarrow	f hat im Punkt $x \in (a,b)$ ein (lokales oder globales) Minimum

2.7 Linearisierungsformel

f sei eine an der Stelle x_0 differenzierbare Funktion. Dann ist der Graph der Funktion

$$T := x \mapsto f'(x_0)(x - x_0) + f(x_0)$$

die Tangente an den Graphen von f im Punkt $(x_0, f(x_0))$.

Der Ausdruck $x-x_0$ kann auch als Δx geschrieben werden.

2.8 Algorithmus von Newton

Wir betrachten die Gleichung

$$f(x) = 0$$

 x_0 sei eine Schätzung für die exakte Lösung x^* . Die Funktion f sei zwischen x_0 und x^* differenzierbar.

Dann strebt die durch die Vorschrift

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

konstruierte Folge unter gewissen, hier nicht näher präzisierten Bedingungen gegen die exakte Lösung x^* .

2.9 Regel von Bernoulli-l'Hôpital

f und gseien differenzierbare Funktionen. Dann gelten folgende Regeln:

• Wenn

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0$$

oder

$$\lim_{x \to x_0} f(x) = \pm \infty \land \lim_{x \to x_0} g(x) = \pm \infty$$

dann

$$\lim_{x \to x_0} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to x_0} \left(\frac{f'(x)}{g'(x)} \right)$$

• Wenn

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

oder

$$\lim_{x \to \infty} f(x) = \pm \infty \wedge \lim_{x \to \infty} g(x) = \pm \infty$$

dann

$$\lim_{x \to \infty} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to \infty} \left(\frac{f'(x)}{g'(x)} \right)$$

• Wenn

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} g(x) = 0$$

oder

$$\lim_{x \to -\infty} f(x) = \pm \infty \land \lim_{x \to -\infty} g(x) = \pm \infty$$

dann

$$\lim_{x \to -\infty} \left(\frac{f(x)}{g(x)} \right) = \lim_{x \to -\infty} \left(\frac{f'(x)}{g'(x)} \right)$$

oder kurz und unpräzis:

Man darf bei Grenzwerten den Zähler und den Nenner ableiten, wenn entweder beide nach 0 oder beide nach $\pm \infty$ gehen.

2.10 Taylor-Polynom

Die Funktion f sei an der Stelle x_0 mindestens (n+1)-mal differenzierbar. Dann gilt

$$f(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)^2 + \dots + c_n(x - x_0)^n + R_n(x)$$

oder mit dem ∑-Zeichen geschrieben

$$f(x) = \left(\sum_{k=0}^{n} c_k (x - x_0)^k\right) + R_n(x)$$

Dabei gilt

$$c_k = \frac{f^k x_0}{k!} \text{ für } k = 0...n$$

Das Polynom $c_0 + c_1(x - x_0) + ... + c_n(x - x_0)^n$ heisst Taxlor-Polynom.

Das sogenannte Restglied beträgt

$$R_n(x) = \frac{f^{(n+1)}\xi}{(n+1)!}(x-x_0)^{n+1}$$

für ein gewisses ξ zwischen x_0 und x.

2.11 Konvergenz von Taylorreihen

Die Funktion f sei bei x_0 beliebig oft differenzierbar. Dann konvergiert die an der Stelle x_0 konstruierte Taylorreihe entweder überall, oder dann in einem Intervall mit den Grenzen x_0-r und x_0+r , gegen $f(x_0)$. Ob das Intervall offen oder geschlossen ist, kann nicht allgemein gesagt werden. r heisst der Konvergenzradius der Taylorreihe.

Die an der Stelle 1 konstruierte Taylorreihe der Funktion ln hat den Konvergenzradius 1. Sie konvergiert bei 1+1=2 gerade noch. Bei 1-1=0 kann sie nicht konvergieren, da hier der Funktionswert nicht existiert. Die Taylorreihekonvergiert also im Intervall