Part A The file Carseats.csv records child car seat sales in 400 locations. The following linear regression model attempts to predict Sales in non-US locations (US = No):

Sales ~ Income + Price + ShelveLoc + Urban + Urban:Income where the categorical feature ShelveLoc is coded according to the sum-to-zero contrast, and Urban is coded according to the treatment contrast.

We can easily fit the regression model in python using statsmodels as follows.

- [a] Run the above code and let your code report the fitted parameters and the residual sum of squares.
- [b] Instead of the above, please code in python to estimate the regression coefficients using the gradient descent method with the following loss function and starting coefficient vector:

loss =
$$\sum_{i}^{n} (y_i - \hat{y}_i)^2$$
, $\hat{\beta}^{(0)} = (0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)^T$

If one uses a fixed learning rate of 0.0000003 or 3×10^{-7} , the gradient descent approach achieves a loss of 403.92700086 at 5,000,000 iterations (... 411.338296 and 404.221267 at 1,000,000 and 2,000,000 iterations ...) There is hope in navigating a seven-dimensional parameter space:) You are encouraged to explore different learning rates and investigate how they affect convergence (or non-convergence).

Please let your code report the following:

- learning rate
- the minimum loss achieved
- the number of iterations (or epochs) needed to achieve the reported minimum loss
- \bullet the estimated coefficients associated with the reported minimum loss

	OLS coef	GD coet
Intercept	11.757081	11.754978
C(ShelveLoc, sum_contrast)[S.Bad]	-1.956725	-1.956716
C(ShelveLoc, sum_contrast)[S.Good]	2.297505	2.297466
C(Urban, treatment_contrast)[T.Yes]	1.887842	1.889406
Income	0.026715	0.026732
$\textbf{C(Urban, treatment_contrast)[T.Yes]:} Income$	-0.024027	-0.024048
Price	-0.057761	-0.057753

Page 2 is the last page.

[c] Please plot the estimated loss as a function of iterations (or epochs).

Please submit your work as hw8.ipynb and hw8.html to Canvas.