Macroprudential policy cross-border spillovers and international banking - Any use for the gravity model?

Anni Norring

University of Helsinki

September 11, 2018

Introduction

Research questions

- Can the gravity model tell us something about the cross-border spillovers of macroprudential regulation through international lending?
- Does the implementation of macroprudential instruments in the origin country or the destination country have an effect on the bilateral cross-border bank asset holdings?

Preliminary results

- The gravity model appears to confirm that there are spillovers
- Changes in the use of macroprudential instruments have mostly statistically significant effects on the cross-border bank asset holdings

Motivation for studying the use and effectiveness of macroprudential regulation

- The field has been expanding rapidly, but much better understanding still needed on the use and effectiveness of macroprudential policy tools
- Multi-country studies have been limited by the lack of data, but this no longer entirely true:
 - Cerrutti et al. (2017a): The use and effectiveness of macroprudential policies: New evidence
 - Cerrutti et al. (2017b): Changes in the prudential policy instruments - A new cross-country database
- My contribution: combine the data from Cerrutti et al. (2017a) with data on cross-border bilateral bank asset holdings

Motivation for studying the cross-border spillovers of macoprudential policies

- Evidence that the effects of macroprudential instruments occasionally spill over borders through international bank lending
 - Buch and Goldberg (2017): Cross-border regulatory spillovers: How much? How important? Evidence from the International Banking Research Network, & and the related papers
- This may reduce the effectiveness of national macroprudential policies due to regulatory arbitrage
 - Reinhardt and Sowerbutts (2015): Regulatory arbitrage in action: evidence from banking flows and macroprudential policy
- My contribution: a multi-country look at spillovers and the effects on bilateral bank asset holdings with a large set of countries

Motivation for using the gravity model of financial asset trade for international banking

- The gravity model has been a workhorse of international trade literature for decades (e.g. survey by Head and Mayer, 2014)
- The gravity model of trade in financial assets spread after Portes and Rey (2005) and IMF's CPIS-data
- The gravity model of international banking also produces the classic gravity result
 - Buch (2005): Distance and international banking
 - Brei and von Peter (2018): The distance effect in banking and trade
- My contribution: using the gavity model for studying the spillovers from macroprudential policy
 - With a clear emphasis on macroprudential regulation, differing from Houston et al. (2012): Regulatory arbitrage and international bank flows

Goal of this paper

- Consider in parallel new data on macroprudential instruments and bilateral cross-border bank asset holdings
- Provide a multi-country look at the spillovers of macroprudential policy via international lending with a set of countries larger than in previous studies
- Use the gravity model of international banking to study the effects of macroprudential policy that leak across borders via international lending

... in order to answer...

- Can the gravity model tell us something about the cross-border spillovers of macroprudential regulation through international lending?
- Does the implementation of macroprudential instruments in the origin country or the destination country have an effect on the bilateral cross-border bank asset holdings?

Data: The use of macroprudential instruments

- From the IMF Global Macroprudential Instruments Survey
- Annual index for 2000-2013
- 119 countries, 117 of which are BIS reporting countries or counterpart countries to BIS reporting countries
- Data includes two aggregate indices: for instruments targeting financial institutions (mpif) and those targeting borrowers (mpib)
 - mpif aggregates 10 tools that include e.g. different capital requirements, limits on interbank exposures, loan growth, leverage ratio etc.
 - mpib aggregates 2 tools; LTV-ratio and DTI-ratio
- Described in Cerrutti et al. (2017a) and used to show that there is a link between slower credit growth and the use of macroprudential policy

Data: The use of macroprudential instruments

Variable	Mean	Std. dev.	Min	Max	Range	Obs.
mpif	1.38	1.24	0	6	0-10	1 638
mpib	0.36	0.66	0	2	0-2	1 638

Table 1: Macroprudential indices targeting financial institutions and borrowers

Value	0	1	2	3	4	5	6	7-10
mpif	28.9%	29.9%	23.8%	11.7%	3.7%	1.7%	0.4%	-
mpib	74.6%	15.3%	10.2%	-	-	-	-	-

Table 2: Use of macroprudential tools: % of all observations with n tools implemented

Data: The dependent variable

Bilateral cross-border bank asset holdings

- From BIS Locational Banking Statistics
- I build a network of bilateral holdings for pairs of origin countries and destination countries that are both BIS reporting countries or where either the origin country or the destination country is a BIS reporting country (following Brei and von Peter, 2018):
 - O reports to BIS: use data on assets
 - O does not report to BIS, but D does: use data on liabilities
 - Neither O nor D reports to BIS: missing value
- Maximum coverage: 44 reporting countries, 216 counterpart countries and quarterly data since 1977
- For the purpose of this paper: 33 reporting countries, 84 counterpart countries and annual data for 2000-2013

Data: The dependent variable

	ba _{od}	<i>ba_{od}</i> > 0	$log(ba_{od} + 1)$	log(ba _{od})
N of pairs	6 112	4 674	6 112	4 674
N of periods	14	14	14	14
N of observations	85 560	51 013	85 560	51 013
Mean	6 277 587	11 281 030	6.73	12.10
Standard deviation	56 285 910	75 081 810	6.45	3.12
Min	0	0.01	0	2.30
Max	2 962 748 000	2 962 748 000	21.81	21.81
Share of 0s	44.35 %	_	44.35 %	-

Mean, standard deviations, min and max in thousands of US dollars.

Table 3: Summary statistics of the dependent variable.

Data: Other independent variables

Economic mass

- Annual GDP from World Bank
- Size of the banking sector?

Frictions, data from CEPII's gravity database

- Population-weighted distance
- Gravity controls: contiguity, common language, common colonial history, common currency
- Financial sophistication: income group, financial openness, membership in the WTO, membership in the EU

Other controls

Time fixed effects, country fixed effects or a regional dummy

The gravity model of financial asset trade

The gravity equation in the most simple form:

$$log(asset_{od,t}) = \alpha_1 log(M_{o,t}) + \alpha_2 log(M_{d,t})$$

$$+ \alpha_3 log(\tau_{od,t}) + u_{od,t},$$

$$o, d = 1, ..., N \text{ and } t = 1, ..., T.$$

$$(1)$$

The gravity equation in the form often estimated:

$$\begin{split} log(asset_{od,t}) = & \alpha_1 log(GDP_{o,t}) + \alpha_2 log(GDP_{d,t}) + \alpha_3 log(dist_{od}) \\ & + \text{information variables} \\ & + \text{transaction technology variables} \\ & + \text{multilateral resistance} + \text{time dummies} \\ & + \text{constant} + u_{od,t}, \\ & o, d = 1, ..., N \text{ and } t = 1, ..., T. \end{split}$$

The gravity model for the purpose of this paper

$$log(ba_{od,t}) = \alpha_1 log(GDP_{o,t}) + \alpha_2 log(GDP_{d,t}) + \alpha_3 log(distw_{od})$$

$$+ \alpha_4 mpif_{d,t} + \alpha_5 mpif_{o,t} + \alpha_6 mpib_{d,t} + \alpha_7 mpib_{o,t}$$

$$+ \text{ gravity controls}$$

$$+ \text{ controls for financial sophistication}$$

$$+ \text{ multilateral resistance}$$

$$+ \text{ time dummies}$$

$$+ \text{ constant} + u_{od,t},$$

$$o, d = 1, ..., 117 \text{ and } t = 1, ..., 14.$$

$$(3)$$

Hypotheses in more detail

Hypotheses - regulations differ

- Tightening capital requirements for financial institutions leads to domestic agents borrowing more abroad
- Tightening regulation that applies to domestic borrowers does not lead to more borrowing from abroad, but instead banks might move lending to less regulated markets

Hypotheses in more detail

Tightening capital requirements for financial institutions

- Regulation that applies to domestic banks and foreign subsidiaries, but not foreign branches
- Tighter regulation in the destination country leads to higher banking flows from O to D as banks from the origin country take advantage of a funding differential
 - a higher mpif_d is associated with a higher ba_{od}
- Tighter regulation in the origin country may lead to lower banking flows from O to D as banks from the origin country reduce cross-border activity to better comply with the more stringent regulation
 - a higher mpifo is associated with a lower baod

Hypotheses in more detail

Tightening regulation that applies to domestic borrowers

- Regulation that applies to all banks operating in the country
- Tighter regulation in the destination country leads to lower banking flows from O to D as banks from the origin country retreat from a more heavily regulated market
 - a higher mpib_d is associated with a lower ba_{od}
- Tighter regulation in the origin country leads to higher banking flows from O to D as banks from from the origin country move lending to less regulated markets (regulatory arbitrage)
 - a higher mpibo is associated with a higher baod

Possible estimations methods

- Panel fixed effects OLS with zero observations excluded (e.g. Portes and Rey, 2005)
- Poisson pseudo-maximum-likelihood (PPML) approach (proposed by Santos Silva and Tenreyro, 2006)
- Panel probit with a dichotomous dependent variable (proposed Drakos et al., 2014)
- My choice: the double-hurdle model
 - A method first proposed by Cragg (1971) and developed further by Heckman (1976)
 - Ensures an appropriate treatment of zero observations
 - Breaks the equation into a participation equation and a level equation
 - Both parts can be determined by different processes, i.e. an extension to Tobit

Why the double-hurdle?

Why the double-hurdle?

oduction Motivation Goal of this paper Data Model Estimation Results Conclusions

○○○ ○ ○ ○○○○ ○○○○ ○○○○ ○○○○○

Why the double-hurdle?

	Probit (depvar dba _{od})	FE OLS (depvar log(ba _{od}))
$log(GDP_o)$	0.108****	0.356****
	(0.002)	(0.109)
$log(GDP_d)$	0.128****	1.385****
- , - ,	(0.002)	(0.110)
log(distw _{od})	-0.229****	-1.104****
- (00)	(0.006)	(0.050)
mpif _d	-0.008*****	-0.026
effect positive	(0.002)	(0.017)
mpif _o	-0.008****	-0.046* [*] *
effect negative	(0.002)	(0.018)
mpib _d	0.012****	0.056* [*]
effect negative	(0.003)	(0.026)
mpib _o	0.013****	0.068**
effect positive	(0.003)	(0.030)
gravity controls	Yes	Yes
financial soph. ctrls	Yes	Yes
regional	Yes	Yes

Significance at the 10%, 5%, 1% and 0.1% levels is Sdenoted by *, **, *** and **** respectively.

Table 4: Average marginal effects and hypotheses

Standard errors in parentheses.

The effects that are in line with hypotheses are bolded.

The equation to be estimated

$$\begin{split} log(ba_{od,t}) = & \alpha_1 log(GDP_{o,t}) + \alpha_2 log(GDP_{d,t}) + \alpha_3 log(distw_{od}) \\ & + \alpha_4 mpif_{d,t} + \alpha_5 mpif_{o,t} + \alpha_6 mpib_{d,t} + \alpha_7 mpib_{o,t} \\ & + \text{gravity controls} \\ & + \text{controls for financial sophistication} \\ & + \text{multilateral resistance term} \\ & + \text{time dummies} \\ & + \text{constant} + u_{od,t}, \\ & o, d = 1, ..., 117 \text{ and } t = 1, ..., 14. \end{split}$$

- The participation equation: the effect of independent variables on the probability of ba_{od,t} being positive
- The level equation: the effect of a change in independent variables on the level of baod,t conditional on the level being

roduction Motivation Goal of this paper Data Model Estimation Results Conclusions

Marginal effects and hypotheses

Specification	(1)		(2)	
Depvar: $log(ba_{od} + 1)$	Participation	Level	Participation	Level
$log(GDP_o + 1)$	0.08****	0.59****	0.08****	0.62****
	(0.00)	(0.01)	(0.00)	(0.01)
$log(GDP_d + 1)$	0.09****	0.60****	0.09****	0.61****
	(0.00)	(0.01)	(0.00)	(0.01)
$log(distw_{od} + 1)$	-0.16****	-0.81****	-0.10****	-0.88****
	(0.00)	(0.01)	(0.00)	(0.01)
mpif _d	-0.01****	-0.17****	0.02****	-0.10****
effect positive	(0.00)	(0.01)	(0.00)	(0.01)
mpif _o	-0.02****	-0.17****	0.02****	-0.09****
effect negative	(0.00)	(0.01)	(0.00)	(0.01)
mpib _d	0.03****	0.28****	-0.02****	-0.25****
effect negative	(0.00)	(0.02)	(0.00)	(0.01)
mpib _o	0.02****	0.32****	-0.00	-0.14****
effect positive	(0.00)	(0.02)	(0.00)	(0.01)
gravity controls	No	No	Yes	Yes
financial soph. ctrls	No	No	Yes	Yes
regional	No	No	Yes	Yes

Significance at the 10%, 5%, 1% and 0.1% levels is denoted by *, **, *** and **** respectively. Standard errors in parentheses.

The effects that are in line with hypotheses are bolded.

Table 5: Average marginal effects and hypotheses

Interpreting the marginal effects

Specification	(1)		(2)	
Depvar: $log(ba_{od} + 1)$	Participation	Level	Participation	Level
$log(GDP_o + 1)$, %-change	0.08%	0.59%	0.08%	0.62%
$log(\textit{GDP}_d + 1)$, %-change	0.09%	0.60%	0.09%	0.61%
$log(distw_{od}+1)$, %-change	-0.16%	-0.81%	-0.10%	-0.88%
mpif _d , unit change	-1%	-17%	2%	-10%
effect positive mpif _o , unit change effect negative	-2%	-17%	2%	-9%
mpib _d , unit change effect negative	3%	28%	-2%	-25%
mpib _o , unit change effect positive	2%	32%	-0%	-14%
gravity controls	No	No	Yes	Yes
financial soph. ctrls	No	No	Yes	Yes
regional	No	No	Yes	Yes

Significance at the 10%, 5%, 1% and 0.1% levels is denoted by *, **, *** and **** respectively.

Table 6: The percent changes in the dependent variable associated with a change in controls

Conclusions

Can the gravity model tell us something about the cross-border spillovers of macroprudential regulation through international lending?

- This indeed appears to be the case
- Need for robustness checks using different estimation strategies
- Results should be interpreted very carefully

Does the implementation of macroprudential instruments in the origin country or the destination country have an effect on the bilateral cross-border bank asset holdings?

- There appears to be statistically significant marginal effects and they may be non-negligible
- Support for there being significant cross-border spillovers of macroprudential regulation

Thank you!

All comments and suggestions are warmly welcome: anni.norring@helsinki.fi

References

- Avdjiev, S., Koch, C., McGuire, P., von Peter, G., 2017.
 International prudential spillovers: a global perspective.
 International Journal of Central Banking, Vol. 13, No. S1.
- Brei, M., von Peter, G., 2018. The distance effect in banking and trade. Journal of International Money and Finance, 81, 116-137.
- Buch, C., Goldberg, L. (2016). "Cross-border prudential policy spillovers: How much? How important? Evidence from the international banking research network". NBER Working Paper 22874.
- Cerutti, E., Claessens, S., Laeven, L., 2017. "The use and effectiveness of macroprudential policies: New evidence". Journal of Financial Stability, 28 (2017) 203-224.
- Cerrutti, E., Correa, R., Fiorentino, E., Segalla, E., 2017.
 "Changes in Prudential Policy Instruments A New Cross-Country Database," International Journal of Central Banking 13