EXAMINATION DATA SHEET FOR THE PHYSICAL SCIENCES (CHEMISTRY)

TABLE 1 PHYSICAL CONSTANTS

NAME	SYMBOL	VALUE
Magnitude of charge on electron	е	$1,6 \times 10^{-19} \mathrm{C}$
Mass of an electron	m _e	$9,1 \times 10^{-31} \text{ kg}$
Standard pressure	p^{θ}	1,01 × 10 ⁵ Pa
Molar gas volume at STP	V_{m}	22,4 dm ³ ⋅mol ⁻¹
Standard temperature	Τ ^θ	273 K
Avogadro's constant	N _A	$6,02 \times 10^{23} \text{ mol}^{-1}$
Faraday's constant	F	96 500 C·mol ⁻¹

TABLE 2 CHEMISTRY FORMULAE

$n = \frac{m}{M}$		$n = \frac{N}{N_A}$	$n = \frac{V}{V_m}$			
$c = \frac{n}{V}$ OR $c = \frac{r}{M}$	m IV	$K_w = [H_3O^+] \cdot [OH^-] = 1 \times 10^{-14} \text{ at } 298 \text{ K}$				
Q = It	E _c	$E_{cell}^{ heta}=E_{catho}^{ heta}$	$_{ m ode}^{}-E_{ m anode}^{ heta}$ ent $^{}-E_{ m reducing}^{ heta}$ agent			

IEB Copyright © 2017 PLEASE TURN OVER

TABLE 3 PERIODIC TABLE

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 2,1 H 1			Atomio	numk	oer (Z)	1 		Electr	onega	ativity							He
2	3 1,0 Li 7	Be 9		Relative atomic mass									5 2,0 B 10,8 13 1,5	C	N 14	O	F 19	Ne 20
3	11 0,9 Na 23	Mg 24,3											A ℓ	14 1,8 Si 28	P 31	S	Cℓ 35,5	Ar 40
4	19 0,8 K 39	20 1,0 Ca	21 1,3 Sc 45	22 1,5 Ti 48	23 1,6 V 51	24 1,6 Cr 52	25 1,5 Mn 55	26 1,8 Fe 56	27 1,8 Co 59	28 1,8 Ni 59	29 1,9 Cu 63,5	30 1,6 Zn 65,4	31 1,6 Ga	32 1,8 Ge 72,6	33 2,0 As 75	34 2,4 Se 79	35 2,8 Br 80	36 Kr 84
5	37 0,8 Rb	38 1,0 Sr	39 1,2 Y	40 1,4 Zr	41 1,6 Nb	42 1,8 Mo	43 1,9 Tc	44 2,2 Ru	45 2,2 Rh	46 2,2 Pd	47 1,9 Ag	48 1,7 Cd	49 1,7 In	50 1,8 Sn	51 1,9 Sb	52 2,1 Te	53 2,5	54 Xe
6	85,5 55 Cs	56 Ba	89	91 72 Hf	93 73 Ta	96 74 W	99 75 Re	101 76 Os	103 77 Ir	78 Pt	108 79 Au	112 80 Hg	115 81 T2	119 82 Pb	121 83 Bi	128 84 Po	127 85 At	131 86 Rn
7	133 87 Fr	137,3 88 Ra		178,5	181	184	186	190	192	195	197	200,6	204,4	207	209			

ſ	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
F	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Ac	Th	Pa	U	Νp	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
	AU	•••	· u		, itp	· u	/ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0		•			IVIG	110	

TABLE 4 STANDARD ELECTRODE POTENTIALS

	f-reaction	on	E°/volt
Li ⁺ + e ⁻	\rightleftharpoons	Li	-3,05
K ⁺ + e ⁻	\rightleftharpoons	K	-2,93
Cs ⁺ + e ⁻	\rightleftharpoons	Cs	-2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	-2,90
Sr ²⁺ + 2e ⁻		Sr	-2,89
Ca ²⁺ + 2e ⁻		Ca	-2,87
Na ⁺ + e ⁻		Na	-2 ,71
$Mg^{2+} + 2e^{-}$		Mg	-2,37
$A\ell^{3+} + 3e^{-}$	÷	Αℓ	_1,66
Mn ²⁺ + 2e ⁻		Mn	_1,18
2H ₂ O + 2e ⁻		H ₂ (g) + 2OH ⁻	-0,83
$Zn^{2+} + 2e^{-}$		Zn	-0,76
Cr ³⁺ + 3e ⁻		Cr	-0,74
Fe ²⁺ + 2e ⁻		Fe	-0,44
Cd ²⁺ + 2e ⁻		Cd	-0, 44 -0,40
Co ²⁺ + 2e ⁻		Co	-0, 4 0 -0,28
Ni ²⁺ + 2e ⁻		Ni	-0,26 -0,25
Sn ²⁺ + 2e ⁻		Sn	
Pb ²⁺ + 2e ⁻		Pb	-0,14 0.13
Fe ³⁺ + 3e ⁻			-0,13
2H ⁺ + 2e ⁻		Fe	-0,04
		$H_2(g)$	0,00
S + 2H ⁺ + 2e ⁻ Sn ⁴⁺ + 2e ⁻		$H_2S(g)$	+0,14
		Sn ²⁺	+0,15
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻ Cu ²⁺ + 2e ⁻		$SO_2(g) + 2H_2O$	+0,17
		Cu	+0,34
$2H_2O + O_2 + 4e^-$		40H ⁻	+0,40
$SO_2 + 4H^+ + 4e^-$		S + 2H ₂ O	+0,45
$l_2 + 2e^-$		21-	+0,54
$O_2(g) + 2H^+ + 2e^-$	₹	H ₂ O ₂	+0,68
Fe ³⁺ + e ⁻		Fe ²⁺	+0,77
Hg ²⁺ + 2e ⁻		Hg	+0,79
$NO_3^- + 2H^+ + e^-$		$NO_2(g) + H_2O$	+0,80
$Ag^{+} + e^{-}$		Ag	+0,80
NO ₃ ⁻ + 4H ⁺ + 3e ⁻		NO(g) + 2H ₂ O	+0,96
Br ₂ + 2e ⁻		2Br ⁻	+1,09
Pt ²⁺ + 2e ⁻		Pt	+1,20
$MnO_2 + 4H^+ + 2e^-$		$Mn^{2+} + 2H_2O$	+1,21
$O_2 + 4H^+ + 4e^-$		2H ₂ O	+1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^-$		2Cr ³⁺ + 7H ₂ O	+1,33
$C\ell_2(g) + 2e^-$		2Cℓ¯	+1,36
Au ³⁺ + 3e ⁻		Au 2+ 444 O	+1,42
$MnO_4^- + 8H^+ + 5e^-$			+1,51
$H_2O_2 + 2H^+ + 2e^-$		2H ₂ O	+1,77
$F_2(g) + 2e^-$	=	2F ⁻	+2,87

Increasing reducing ability

Increasing oxidising ability