

QUANTRONICS LABORATORY

Department of Applied Physics

Yale University

Parasitic Capacitance in Josephson Junction Arrays

Origins and Behavior *Zlatko Minev*

Michel H. Devoret

Nicholas Masluk

loan Pop

Archana Kamal

Flavius Schackert

Outline

1. Fluxonium Junction Array

- Motivation
- Until now: Dolan Bridge Geometry & Constraints

2. Theory & Experiment v.s. Simulation

- Design Study Conclusion & Simple Model
- Resolution: Bridge Free (Ioan Pop)
- Bridge Free Technique Skinny & Long

3. In Progress:

- Q Measurement Simulation & Chip Import
- Ground Up Mathematica Assisted Exploration of Fluxonium
 - Aim Super-Fluxonium & Quantum Feedback on λ Energy Structure

Series Junction Array in Fluxonium

No offset charges!

0.5 2.5 **F**X 9.0

Impedance Control ZPF

Capacitance to Ground

$$\frac{C_{JA}}{N} > N C_g$$

$$N_{\rm max} \approx \sqrt{C_{JA}/C_g} \approx \sqrt{10^3}$$

2. Fluxonium Junction Array

Junction Array Geometry

Dolan Bridge Technique

Evaporation 1 Evaporation 2

Dolan Bridge

Nicholas Masluk

Reality of Junction Array

Simulation

Simulation v. Theory

Parallel Plate Capacitor

Area = $20 \times 20 \text{ mm}$

Simulation v. Empirical Data

Junction Capacitance v. Junction Area

Simulated junction capacitance per junction area:

 $\sim 86 \text{ fF} / (\mu \text{m})^2$

Empirically:

 $\sim 50 \text{ fF} / (\mu \text{m})^2$

Dolan Bridge Geometry

Vary Island Separation by Varying Island Width

Dolan Bridge Geometry

Vary Island Separation by Varying Island Width

Robustness of Results

3 v. 1 Middle Islands

Dolan Bridge Geometry

Model

Other Geometrical Variations

Vary Junction Area, Fix Island Size

Vary Top Island Height

Dolan Bridge Conclusions

- To minimize parasitic capacitance to ground in Josephson junction arrays use:
 - Deeper junction (more rectangular, less square)
 - Larger junctions
 - Thicker second layer
 - There is a lower bound on the parasitic capacitance
 - Capacitance to ground varies linearly with island separation

Bridge Free

Junction Array Q

Junction Array Loss

		W													
		Resonator C			Top Ground			Bott	Bottom C-Pin			Bottom Grnd			
S	L	10	20	30	10	20	30	10	20	30	10	20	30	L	S
60	10	0.05	0.11	0.21	2.21	3.21	3.98	0.75	0.86	0.95	3.01	3.67	4.32	10)
	30	0.14	0.30	0.53	4.08	5.40	6.51	1.11	1.30	1.43	4.46	5.58	6.47	30	
	50	0.26	0.49	0.88	5.68	7.31	8.58	1.49	1.64	1.82	5.99	7.04	8.28	50	60
	70	0.39	0.74	1.25	7.26	9.13	10.56	1.78	2.01	2.17	7.30	8.78	10.02	70	
	90	0.52	0.94	1.59	8.73	10.85	12.42	2.05	2.25	2.43	8.62	10.06	11.52	90	
	110	0.64	1.18	1.94	10.28	12.69	14.45	2.27	2.54	2.72	9.83	11.80	13.35	110	
	120	0.69	1.28	2.15	11.01	13.66	15.63	2.34	2.63	2.85	10.33	12.55	14.50	120	
50	10	0.04	0.07	0.14	2.25	3.23	4.08	0.83	0.92	1.03	2.82	3.31	4.03	10	50
	30	0.11	0.20	0.37	4.13	5.57	6.73	1.34	1.46	1.64	4.50	5.25	6.36	30	
	50	0.18	0.35	0.60	5.85	7.50	8.87	1.70	1.88	2.06	5.69	6.81	7.99	50	
	70	0.28	0.50	0.86	7.44	9.38	10.97	2.10	2.25	2.48	7.16	8.19	9.71	70	
	90	0.37	0.67	1.12	8.94	11.24	13.03	2.43	2.65	2.89	8.46	9.96	11.50	90	
	110	0.46	0.85	1.37	10.56	13.23	15.12	2.67	3.03	3.21	9.58	11.77	13.31	110	
	120	0.49	0.90	1.48	11.31	14.10	16.17	2.75	3.09	3.35	10.03	12.27	14.22	120	
40	10	0.02	0.06	0.10	2.26	3.28	4.18	0.77	1.10	1.19	2.04	3.37	3.93	10	30 50 70 90 110
	30	0.06	0.14	0.25	4.25	5.73	6.89	1.36	1.71	1.86	3.64	5.08	6.03	30	
	50	0.12	0.25	0.42	5.99	7.74	9.20	1.87	2.25	2.41	5.00	6.76	7.79	50	
	70	0.18	0.36	0.60	7.58	9.68	11.33	2.32	2.68	2.90	6.31	8.06	9.38	70	
	90	0.26	0.48	0.80	9.30	11.62	13.50	2.90	3.13	3.40	8.06	9.55	11.23	90	
	110	0.33	0.59	0.97	10.90	13.61	15.69	3.22	3.55	3.79	9.27	11.20	12.93	110	
	120	0.36	0.65	1.07	11.74	14.62	16.85	3.38	3.72	4.02	9.93	11.99	14.06	120	
30	10	0.01	0.04	0.07	2.29	3.40	4.25	0.83	1.26	1.38	1.70	3.04	3.68	10	30
	30	0.04	0.10	0.17	4.32	5.87	7.06	1.53	2.01	2.18	3.13	4.76	5.64	30	
	50	0.08	0.17	0.30	6.15	8.01	9.47	2.21	2.69	2.88	4.56	6.34	7.47	50	
	70	0.12	0.26	0.43	7.84	10.03	11.80	2.73	3.28	3.52	5.71	7.84	9.18	70	
	90	0.17	0.35	0.57	9.63	12.13	14.13	3.34	3.86	4.13	7.17	9.36	10.91	90	
	110	0.23	0.43	0.70	11.31	14.09	16.46	3.87	4.32	4.65	8.58	10.75	12.68	110	
	120	0.25	0.47	0.77	12.18	15.25	17.69	4.08	4.59	4.95	9.21	11.62	13.79	120	
20	10	0.01	0.02	0.05	2.38	3.44	4.42	1.01	1.37	1.74	1.51	2.39		10	0 0 0
	30	0.03	0.06	0.13	4.52	6.07	7.37	1.91	2.36	2.75	2.85	4.11		30	
	50	0.05	0.12	0.22	6.45	8.40	9.95	2.70	3.29	3.67	4.05	5.80		50	
	70	0.08	0.17	0.31	8.29	10.59	12.46	3.45	4.06	4.47	5.25	7.18		70	20

Fluxonium and Beyond

From Scratch = Faster Diagonalization

$$\tilde{H} = \tilde{E}_c \, \tilde{q}^2 + \tilde{E}_L \, \tilde{\phi}^2 - \tilde{E}_J \, \text{Cos} [\tilde{\phi} - \tilde{\phi_e}]$$

Turn analytic problem into algebraic problem

Non-Commutative Algebra in Mathematica

```
(*break up cosine *)
cosList[N] := ExpandXPower @ (List@@ (Cos[x] // Series[#, {x, 0, N}] & // Normal))
cos = cosList[5] /. x \rightarrow (aL + aR) // ExpandNCM
   (*give me taylor expanded cos up to 5th order and then x replaced by aL +
    aR then fully power expanded by noncommutative algebra*)
\left\{1, \frac{1}{2} \left(-aL ** aL - aL ** aR - aR ** aL - aR ** aR\right),\right\}
 1
21 (aL ** aL ** aL ** aL ** aL ** aL ** aL ** aR + aL ** aR ** aR ** aL + aL ** aL ** aR ** aR +
     aL ** aR ** aL ** aL + aL ** aR ** aL ** aR + aL ** aR ** aR ** aL + aL ** aR ** aR **
     aR ** aL ** aL ** aL + aR ** aL ** aL ** aR + aR ** aL ** aR ** aL + aR ** aL ** aR ** aR +
     aR ** aR ** aL ** aL + aR ** aR ** aL ** aR + aR ** aR ** aR ** aL + aR ** aR ** aR ** aR)
```

```
CL = 5;
BL = 100;
\xi = \sqrt{\frac{1}{2} \sqrt[4]{\text{Ec}/\text{El}}} /. \{\text{Ec} \rightarrow 2.5, \text{El} \rightarrow 0.5\};
\phi e = \pi;
cosList[N] := ExpandXPower @ (List @@ (Cos[<math>gx] // Series[fx, {x, 0, N}] & // Normal))
cos0 = cosList[CL] /.x \rightarrow (aL + aR);
cos1 = cos0 // ExpandNCM
(*COSelIJ[i ,j ] := Plus@@(bra[i]**#%/@ ((#**ket[j]%/@ cos1)//ExpandNCM)) *)
COSelIJ[i , j ] := Evaluate[
    cos2 = (# ** ket[j] &/@ cos1) // ExpandNCM;
    cos2 = (bra[i] ** # & /@ cos2) // ExpandNCM;
   Plus @@ cos2
  1;
sinList[N] := ExpandXPower @ (List@@ (Sin[<math>\xi x] // Series[\#, {x, 0, N}] & // Normal))
sin0 = sinList[CL] /. x \rightarrow (aL + aR);
sin1 = sin0 // ExpandNCM;
SINelIJ[i , j ] := Evaluate[
    sin2 = (\# ** ket[j] \& /@ sin1) // ExpandNCM;
    sin2 = (bra[i] ** # & /@ sin2) // ExpandNCM;
   Plus @@ sin2
  1;
(*can keep the numbers factored out might run faster *)
HoMtrx = Table[Cos[\phi e] COSelIJ[n, j] - Sin[\phi e] * SINelIJ[n, j], {n, 0, BL}, {j, 0, BL}];
HoMtrx // MatrixForm // TraditionalForm
evals = Eigenvalues[HoMtrx];
                                                                                                                                      0
                                                                                                         0
                                                                                                                       0
```

From Scratch = Faster Diagonalization

$$\tilde{H} = \tilde{E}_c \, \tilde{q}^2 + \tilde{E}_L \, \tilde{\phi}^2 - \tilde{E}_J \, \text{Cos} [\tilde{\phi} - \tilde{\phi_e}]$$

Turn analytic problem into algebraic problem

