Raport

1. Zbiór Protein.Rdata

W tym zbiorze nie istnieją kolumny o innych nazwach ale identycznej zawartości. Histogram korelacji różnych kolumn zamieściłam poniżej.

Kolumny są słabo skorelowane, najwyższa wartość bezwzględna korelacji między kolumnami wynosi 0.1479086.

Najpierw użyłam regresji liniowej z metodą wyboru podzbiorów forward stepwise (przy użyciu funkcji regsubsets z biblioteki leaps) poszukując najlepszych podzbiorów parametrów posiadających co najwyżej 10 parametrów (czyli z parametrem nvmax=10). W celu wybrania liczby parametrów prowadzącej do najmniejszego błędu średniokwadratowego użyłam 10-krotnej kroswalidacji. Najmniejszy błąd kroswalidacji (dążący do estymaji błędu testowego) został osiągnięty dla zbiorów 5-elementowych i wynosił 1.081719. Po zastosowaniu metody forward stepwise do całego zbioru treningowego najlepszy podzbiór 5-elementowy zawierał (najważniejsze) predykatory o nazwach x1, x2, x3, x4, x5.

Następnie użyłam regresji liniowej z metodą regularyzacji ridge korzystając z biblioteki glmnet. Użyłam 10-krotnej kroswalidacji na zbiorze w celu wybrania najlepszego parametru lambda metody, który wyniósł 0.6579332 a odpowiadający mu błąd średniokwadratowy z kroswalidacji 412.3325.

Jako ostatniej użyłam też metody lasso analogicznie jak dla ridge powyżej, dostając z kroswalidacji parametr lambda 0.07054802 i błąd średniokwadratowy 1.128402.

Najlepszy wydaje się być model liniowy używający 5 predykatorów, uzyskany przy użyciu metody forward stepwise, ponieważ prowadzi on do najmniejszego oszacowania błędu z kroswalidacji.

2. Zbiór Cancer.Rdata

Najpierw przekształciłam wszystkie kolumny predyktorów do postaci numerycznej. Były wśród

nich liczne kolumny o innych nazwach ale identycznej zawartości. Po usunięciu powtarzających się kolumn z początkowych 3622 kolumn zostało 1713. Dodatkowo usunęłam jedną zerową kolumnę. Poniżej przedstawiam histogram korelacji różnych pozostałych kolumn.

Około 94,5% wszystkich korelacji zajduje się w przedziale [-0.5, 0.25]. Występują kolumny mocno skorelowane, maksymalna korelacja między kolumnami wyniosła 0.999473. Z tego powodu nie było możliwe skorzystanie z

funkcji anneal z pakietu subselect w celu wybrania najlepszych podzbiorów predyktorów do metody lda (linear discriminant analysis). Żeby zmniejszyć te korelacje zastosowałam funkcję trim.matrix z tego pakietu do macierzy korelaji kolumn, z parametrem tolval=e-3, co pozwoliło zredukować liczbę parametrów do 456. Następnie zastosowałam metodę anneal do wyboru najlepszych 50 i 100 predyktorów dla metody lda. Najlepsze wybrane 50 predyktorów to:

	"ACBD4_ac"		"ASB7_deac"	"ATRN_deac"	"C110RF65_deac"
[6]	"C170RF97_deac"		"CASP8_ac"	_	"CSTF2T_deac"
[11]	"DDAH1_deac"	"DDX51_ac"	"DNM2_deac"	"E2F3_ac"	"ESR1_deac"
[16]	"FAM122A_ac"	"FBRS_ac"	"F0XP1_deac"	"GCSAML_deac"	"HOXA13_ac"
[21]	"IMMP2L_deac"	"IRF2BP1_deac"	"KATNAL1_deac"	"KIAA0368_deac"	"MAPK1_deac"
[26]	"MDGA2_ac"	"MECOM_deac"	"METTL17_deac"	"MSI2_deac"	"PDE11A_deac"
[31]	"PDIA5_ac"	"PHKB_deac"	"PIK3R1_ac"	"PLAGL2_ac"	"PLB1_deac"
[36]	"PMAIP1_ac"	"RASGRF2_deac"	"SAMD4B_ac"	"SFN_deac"	"SLC6A12_deac"
[41]	"SMAD4_deac"	"SPDYC_ac"	"SPON2_deac"	"TCF7L2_ac"	"TET2_ac"
[46]	"TUSC3_deac"	"U2AF1_deac"	"VPS45_ac"	"YWHAZ_ac"	"ZNF703_ac"

Najlepsze wybrane 100 predyktorów to:

[1]	"ACBD4_deac"	"ACTN2_deac"	"ANK1_deac"	"APOLD1_deac"	"ATM_ac"
[6]	"B2M_deac"	"BRCA2_ac"	"C110RF65_deac"	"C170RF97_deac"	"CACNA1A_deac"
[11]	"CALM3_ac"	"CBFB_ac"	"CCL11_ac"	"CCND1_ac"	"CCSER1_deac"
[16]	"CDH8_deac"	"CDK6_deac"	"CDKN2B_deac"	"COLEC12_ac"	"CREBBP_ac"
[21]	"CRKL_ac"	"CSMD1_deac"	"CSNK2A1_ac"	"CSNK2A1_deac"	"CTNNB1_ac"
[26]	"DDAH1_deac"	"DDX51_ac"	"DPF2_deac"	"E2F3_ac"	"ELP4_deac"
[31]	"EMB_deac"	"ERBB3_ac"	"FAT1_ac"	"GIGYF2_deac"	"GMDS_deac"

[36]	"GNAQ_deac"	"HCN4_deac"	"HNRNPA3_ac"	"IMMP1L_ac"	"IMMP2L_ac"
[41]	"INSR_deac"	"ITPR1_ac"	"KATNAL1_deac"	"KCNIP4_deac"	"KDM2B_deac"
[46]	"KIF3A_deac"	"KMT2C_deac"	"KRAS_ac"	"LINS1_ac"	"LRP1B_deac"
[51]	"LTBP4_deac"	"LYRM2_ac"	"MAPK1_deac"	"MDGA2_ac"	"MLLT4_deac"
[56]	"MROH1_ac"	"MTOR_deac"	"MYCN_deac"	"NAPSA_deac"	"NFATC1_deac"
[61]	"NKAIN2_deac"	"NKD2_ac"	"NPEPL1_deac"	"NPM1_ac"	"NRG1_deac"
[66]	"NRXN3_deac"	"OR5H6_ac"	"PAK1_deac"	"PARD3_deac"	"PDGFA_ac"
[71]	"PKD2_ac"	"PLGRKT_ac"	"PMAIP1_ac"	"P0LR2L_ac"	"PRRX1_ac"
[76]	"PTEN_ac"	"PTPRD_deac"	"RCBTB1_deac"	"REL_ac"	"ROBO1_deac"
[81]	"RTF1_ac"	"SDC3_ac"	"SDK1_deac"	"SMARCA4_ac"	"SMYD3_ac"
[86]	"S0X2_deac"	"TCF7L2_deac"	"TGFBR2_deac"	"TMEM94_deac"	"TNRC6A_deac"
[91]	"TP53_ac"	"TRIM33_ac"	"TUBD1_ac"	"TWF1_deac"	"U2AF1_ac"
[96]	"U2AF1_deac"	"USP22_deac"	"VAV2_ac"	"YWHAZ_deac"	"ZNF703_ac"

Zastosowałam trzy różne metody uczenia maszynowego do przewidywania typu nowotworu używając powyższych predyktorów – lda, knn (k-nearest neighbours), i random forest, przewidując dokładność tych metod (zdefiniowaną jak w treści zadania) korzystając z 10-krotnej kroswalidacji. Dla metody lda dostałam oszacowanie dokładności 0.533 dla 50 predyktorów i 0.605 dla 100 predyktorów. Dla metody knn dla 50 predyktorów najwyższą dokładność otrzymałam dla k=8 i wyniosła ona 0.482, natomiast dla 100 predyktorów dla k=7 i wyniosła ona 0.492. Dla metody random forest dla 50 predyktorów i z parametrem mtry=7 otrzymałam dokładność 0.536, a dla 100 predyktorów i z parametrem mtry=10 dokładność 0.587.

Dla 50 predyktorów najlepszy wydaje się model random forest, natomiast dla 100 predyktorów – lda, gdyż dla nich otrzymałam największą oszacowaną dokładność z kroswalidacji.