Facial Expression Recognition Using Vision Transformers and Convolutional Neural Networks

by Muhammet Hakan Taştan

Approved by **Prof. Dr. Duygun Erol Barkana** (Advisor)

Faculty of Engineering
Department of Electrical and Electronics Engineering
Istanbul, 2020

Introduction

- Facial expression recognition (FER) is categorizing human expressions from face images.
- FER has many practical applications in fields such as security, advertising, healthcare, and entertainment
- Recent advancements in deep learning have led to significant progress in FER
- Current methods are often resource-intensive and may not be suitable for real-time or mobile applications

- Human-computer interaction: used to improve the naturalness and effectiveness of interactions between humans and computers
- Healthcare: used to monitor patient progress and detect emotional states in mental health treatment
- Entertainment: used to create more engaging and personalized experiences.
- Retail: used to analyse customer satisfaction and improve customer service.
- Advertising: used to gauge customer engagement and measure the effectiveness of advertising campaigns
- **Education**: used to assess student engagement and performance in online learning environments.

- This project tries to find a lightweight and efficient method to achieve high performance for the FER task.
- Proposed models combines CNNs and transformers for efficient facial expression recognition (FER)
- Achieves 55.54% accuracy on 8 classes with lightweight 5.67M parameters on AffectNet database

Emotion Modeling

Dimensional Model:

- The emotions are defined in a multidimensional continuous space.
- Two dimensional models use valence and arousal as dimensions
- Three dimensional models add also dominance to the valence and arousal.
- Valence signifies the intensity of the pleasantness
- Arousal indicates the level of physiological activity
- Dominance is recognized as attention.
- Exp. Circumplex Model, PAD

Categorical Model:

- The emotions are defined as distinct classes.
- Basic set of emotions or more complex set tailored to problem domain
- Basic emotions can be combined to create more complex emotions
- Widespread use for annotations of emotions in datasets.
- Exp. Ekman's 6 basic emotions, Plutchik's emotional wheel

Sadness

Fear

Disgust

Plutchik's emotional wheel

Ekman's 6 Basic Emotions

- CNNs were default choice for vision tasks for a considerable time
- Recently, vision transformers or attentionbased approaches becoming more popular
- CNNs don't scale as well as transformers
- Transformers require large amounts of data and compute power
- Efforts are being made to combine CNNs and transformers

Method

Image Source: A. Hassani, S. Walton, N. Shah, A. Abuduweili, J. Li and H. Shi, "Escaping the Big Data Paradigm with Compact Transformers," *arXiv preprint arXiv:2104.05704*, 2022.

- Backbone Network for extracting fine level features.
- MFN or Truncated VGG19

- Patch extractor is applied to extract relevant features from facial patches.
- The patch extractor consisted of two depthwise separable convolutions and one pointwise convolution
- Compact Convolutional Transformer
- Original Encoder layers followed by Sequence pooling.
- Sequence pooling allows the network to concentrate on specific segments of the input sequence after the encoder has processed it.

VGG19:

- Truncated after 4th pooling layer
- Simple and uniform architecture
- Applied various tasks and data sets

Mixed Feature Network (MFN):

- Lightweight network
- Specifically designed to be suitable for face verification tasks

Data Pre-processing

- Training and evaluation performed on AffectNet database.
- Official small version of dataset employed
- All images collected by querying the web and manually annotated by professionals
- Officially provided validation set used for testing purposes
- 500 examples randomly sampled from each category for validation
- Channel-wise normalization and Random Augmentation is applied.

Labels	Training	Validation	Test
	Number		
Neutral	74374	500	500
Нарру	133915	500	500
Sad	24959	500	500
Surprise	13590	500	500
Fear	5878	500	500
Disgust	3303	500	500
Anger	24382	500	500
Contempt	3250	500	499

- Dataset has a huge imbalance between classes.
- To address this problem oversampling is applied.
- N_c : Total number of examples in the dataset for category c

$$w_c = \frac{1}{N_c}$$

Class	Weight
Neutral	0.477
Happiness	0.265
Sadness	1.421
Surprise	2.609
Fear	6.032
Disgust	10.735
Anger	1.454
Contempt	10.91

Training Procedure

- Batch size: 32
- Optimizer AdamW with $\beta_1=0.9$ and $\beta_2=0.999$
- Learning rate = 0.001
- 12 Model is trained using 6 variants for at least
 10 epoch
- First letter denotes the backbone network
- The number represents the number of encoder layers
- Models with a * trained without oversampling

Results

Model	Performance	#Params
VCCT-1	%53.49	11.26M
VCCT-2	%53.41	11.71M
*MCCT-1	%48.19	3.00M
MCCT-1	%53.24	3.00M
*MCCT-2	%44.16	3.44M
MCCT-2	% 54.19	3.44M
*MCCT-3	%41.49	3.89M
MCCT-3	%51.21	3.89M
*MCCT-6	% 45.26	5.23M
MCCT-6	% 52.79	5.23M
*MCCT-7	% 40.79	5.67M
MCCT-7	% 55.54	5.67M

With Oversampling Training & Validation Loss

VCCT-1 With Oversampling Training & Validation Accuracy

MCCT-1 With Oversampling Training & Validation Loss

MCCT-1 With Oversampling Training & Validation Accuracy

VCCT-1 With Oversampling Training & Validation Loss

VCCT-1 With Oversampling Training & Validation Accuracy

MCCT-1 (OS)

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

- 0.1

MCCT-1 (OS)

- 0.8

- 0.6

- 0.4

MCCT-1 (OS)
MCCT-2 (OS)

- 0.8

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

VCCT-1 (OS)

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

MCCT-1 (OS)
MCCT-7 (OS)

- 0.7

- 0.6

- 0.5

- 0.4

- 0.3

- 0.2

Image Source: S. Zhang, Y. Zhang, Y. Zhang, Y. Wang and Z. Song, "A Dual-Direction Attention Mixed Feature Network for Facial Expression Recognition," *Electronics*, vol. 12, no. 17, p. 3595, 2023.

AffectNet (8 cls)

Image Source: J. Mao, R. Xu, X. Yin, Y. Chang, B. Nie and A. Huang, "POSTER V2: A simpler and stronger facial expression recognition network," *arXiv preprint arXiv:2301.12149*, 2023.

MCCT-7 (OS)

Conclusion

- Best performing variant MCCT-7 achieved %55.54 on officially provided AffectNet validation set on 8 classes.
- Performing closer to or better than current best performing models in some categories
- Oversampling proved to enhance performance in all variants experimented with
- MCCT-1 showed better performance on 20
 epochs compared to 10 epochs, even though it
 was overfitting.
- This suggests that MCCT-7 could also benefit from increased training epochs.

Future Work

- Explore use of different backbone networks to improve efficiency
- Explore use of different optimizers
- Conduct more rigorous search for hyperparameters of random augmentation or explore different data augmentation techniques
- Switch optimizer from AdamW to Stochastic Gradient
 Descent (SGD) to improve generalization ability

Thank You For Listening

