In [2]: # Motivation: Try helping the company to achieve their bussines goals using their data. # First we want to check if the are any correlated variables in our original data set. # For this mission we need to import few liabraries that will help us to come up with a conclusion import seaborn as sns from matplotlib import pyplot as plt from pyspark.sql import SparkSession import pandas as pd

#loading the original data set with pandas liabrary df=pd.read csv("data project.txt") spark = SparkSession.builder.appName("new2").getOrCreate() df1=spark.read.csv("data project.txt", header=True, inferSchema=True)

In [4]: #Create a heat map that can help us to find correlation between variables. plt.figure(figsize=(15,8)) sns.heatmap(df.corr(),annot=True,linewidth=0.5) plt.xticks(rotation=90) plt.yticks(rotation=0) plt.title("Correlation Map") plt.show()

Correlation Map

- 1.0

0.0042 -0.0038 0.0037 -0.0024 -0.0027 -0.005 Age -- 0.8 0.0042 -0.0044 0.0026 -0.00084 0.002 0.0066 Occupation --0.0038 0.0027 -0.00046 0.0013 0.011 Purchase 1 --0.00441 - 0.6 0.0037 0.0026 0.0027 1 0.012 -0.0083 -0.003 Purchase 2 -- 0.4 -0.00084 -0.0024 -0.00046 0.012 0.0033 -0.00018 1 Purchase 3 --0.0036 -0.0027 0.002 0.0013 -0.0083 0.0033 1 Purchase 4 -- 0.2 -0.005 0.0066 0.011 -0.003 -0.00018 -0.0036 1 Purchase 5 -Purchase\_3 Purchase\_5 Occupation

# Now, lets load the modified data set to produce some analysis. df1=spark.read.csv("question 8 scenario.txt", header=True, inferSchema=True) dfl.show() |Age|Occupation|Purchase 1|Purchase 2|Purchase 3|Purchase 4|Purchase 5|Range of purchases|

In [7]: # Conclusion: the fact that we have created random data affects the correlation between the variables.

# This is the reason why i have added new varables to the original data set.

# The distribution of the data is uniform and every piece of data has the same probability to appear.



df2["Categories"].value counts().plot(kind='bar') plt.xticks(rotation=90)

In [8]:

plt.title("Categories Distribution") plt.show() Categories Distribution 10000 8000

# these categories based on the Age column that has normal distribution from the original data set.

# lets load the data using pandas and create bar plot to check the distribution of the Categories column.

# I have added few columns: Range of purchases, Categories and Age Range.



Categories | count |

df2 = pd.read csv("question 8 scenario.txt")

|Electrical Products|10299| Fornitures | 10134 | Food| 4390| Travels| 3788| Games| 786| Home Prodcts | 603 | Categories by Age Range Travels Home Prodcts



Categories vs Age\_Range Travels



Out[16]: 9045

# The query that shows the number of buyers in the ages between 43-52 that buy Fornitures: df1.where((col("Categories") == "Fornitures") & (col("Age Range") == "43-52")).count()

Out[17]: 9327

# The ages between 43 and 52 buy Fornitures the most. # My recommendation: Try to find out the reasons why the company has a success in these categories.

In []: # Final conclusion: we can say to the company that the ages between 34 and 43 buy Electrical Products the most. # Afterwards try to implement the keys of this success on other categories as well.