## Problem Set - 1

# Inferring population properties of compact binary mergers

Mukesh Kumar Singh, Aditya Vijaykumar

August 11, 2021

### Problem 1: A simple 1 -dimensional example

There is an infinite number of audio speakers arranged along the x-axis. An audio detector is placed at some distance as in the figure below.



When one speaker at position x emits a sound, the detector records:

$$d = x + n \tag{1}$$

where x (in meters) is the true position of the speaker, and  $n \sim \mathcal{N}(0,1)$  is a random number drawn from a normal distribution with mean 0 and standard deviation 1 meter.

Let's assume that there exists a maximum value of x such that detectors placed at  $x > x_{\text{max}}$  would not produce a measurable sound (this could be let's say due to mountains present between speaker and detector as shown in figure). Hence the detection criteria:

$$d \le x_{\text{max}} \leftrightarrow \rho(d) > \rho_{\text{thr}}$$
 (2)

Can you see that even a source with  $x_{\text{true}} = x_{\text{max}}$  will produce a detectable signal 50% of the time? Using the gaussian nature of noise, we can write the likelihood for the data d given x.

$$p(d|x) = \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{2}(d-x)^2\right]$$
 (3)

Let us now focus on the inference of the property of the speakers, given a set of detections. We will assume that positions of the speakers that will play are scattered around some central value  $\mu_{\lambda}^{T}$  and are drawn from a normal distribution:

$$\pi(x|\mu_{\lambda},\sigma_{\lambda}) = \mathcal{N}(x-\mu_{\lambda},\sigma_{\lambda}) \tag{4}$$

Someone has told us the value of  $\sigma_{\lambda}$  and our goal is to find out the true value of  $\mu_{\lambda}$ ,  $\mu_{\lambda}^{T}$ , given the data d recorded by the detector. As you might see that there exists only one hyper parameter  $\mu_{\lambda}$  (the true mean of the distribution of speakers that produce sound). The posterior on hyper parameter  $\mu_{\lambda}$  (using  $\vec{\lambda} = \mu_{\lambda}$  and  $\vec{\theta} = x$  in eq. (108) of Salvatore et al):

$$p(\mu_{\lambda}|D) = \frac{\pi(\mu_{\lambda})}{p(D|\mathcal{H}_{\Lambda})} \Gamma(N^{\text{tr}} - 1) \prod_{i=1}^{N^{\text{tr}}} \frac{\int dx p(d_i|x) \pi(x|\mu_{\lambda})}{\alpha(\mu_{\lambda})}$$
(5)

The selection effects (detection efficiency) can be estimated by equation:

$$\alpha(\mu_{\lambda}) = \int dx \ \pi(x|\mu_{\lambda}) p(\rho_{\uparrow}|x) \tag{6}$$

with the probability of a source being detectable given true value of the parameter (i.e. data with  $d < x_{\text{max}}$ )

$$p(\rho_{\uparrow}|x) = \int_{\mathcal{D}_{\uparrow}} dd \ p(d|x) = \frac{1}{2} \left[ 1 + \operatorname{erf}\left(\frac{x_{\max} - x}{\sqrt{2}}\right) \right]$$
 (7)

#### (a) Analytical Integration of likelihood

Using the likelihood expression (eq. [3]) for individual data  $d_i$ , the integration over  $\vec{\theta} = x$  in eq. [5] can be carried out analytically rendering the hyper posterior for  $\mu_{\lambda}$  upto a normalization as:

$$p(\mu_{\lambda}|D) \propto \pi(\mu_{\lambda}) \prod_{i=1}^{N^{\text{tr}}} \frac{\exp\left[-\frac{(d_i - \mu_{\lambda})^2}{2(1 + \sigma_{\lambda}^2)}\right]}{\alpha(\mu_{\lambda})}$$
(8)

Now given the analytical expression for the likelihood, a possible implementation of the algorithm to estimate the hyper parameter  $\mu_{\lambda}$  would be (interested people may embark upon solving the integration and confirming if they get the above expression):

- Choose the values of  $\mu_{\lambda}^{T}$ ,  $\sigma_{\lambda}$ , and  $x_{\text{max}}$  which will be used to generate the synthetic set of measurements.
- Generate N random numbers  $\vec{x}_T \sim \mathcal{N}(\mu_{\lambda}^T, \sigma_{\lambda})$ , the true positions of the speakers that will be playing, and we do not have access to those directly.
- Generate N random numbers for noise  $n \sim \mathcal{N}(0,1)$ , add noise to true positions  $\vec{x}_T$  to get the data d.
- Select the only data points that satisfy the detection criteria:

$$d_i \in D$$
 if  $d_i < x_{\text{max}}$ 

where D is our catalog of  $N^{tr}$  detected sources that will be used for the inference.

- Grid the  $\mu_{\lambda}$  axis with enough points, and at each point calculate selection effects  $\alpha(\mu_{\lambda})$ . Plot it and see if this is according to our expectations.
- Pick a prior for  $\mu_{\lambda}$ , flat is just fine, and calculate eq. (8). Plot the hyper posterior on  $\mu_{\lambda}$  and see if this recovers the true value of  $\mu_{\lambda}$ , i.e.  $\mu_{\lambda}^{T}$ .

### (b) Numerical Integration of Likelihood

In general, we will not be able to perform likelihood integration analytically as we did in the previous section, due to higher dimensionality, correlations, non-trivial priors etc. In that case, using Bayes theorem in eq. (5):

$$p(\mu_{\lambda}|D) \propto \pi(\mu_{\lambda}) \prod_{i=1}^{N^{\text{tr}}} \frac{\int dx p(x|d_i) \frac{\pi(x|\mu_{\lambda})}{\pi(x|\mathcal{H}_{\text{PE}})}}{\alpha(\mu_{\lambda})}$$
 (9)

$$\propto \frac{\pi(\mu_{\lambda})}{\alpha(\mu_{\lambda})^{N^{\text{tr}}}} \prod_{i=1}^{N^{\text{tr}}} \frac{1}{N_{\text{samples}}} \sum_{j=1}^{N_{\text{samples}}} \frac{\pi(x_i^j | \mu_{\lambda})}{\pi(x_i^j | \mathcal{H}_{\text{PE}})} \Big|_{x_i^j \sim p(x|d_i)}$$
(10)

where in the last equality the ratio of the population prior over sampling prior [i.e. the prior used to produce the posterior samples  $p(x|d_i)$ ] has been evaluated at values x of size  $N_{\text{samples}}$  fairly drawn from the posterior of each trigger.