Quadratures

Marcin Kuta

Quadratures

Quadrature	Nodes	Cost
	Equispaced nodes Chebyshev nodes Legendre nodes	$O(1)$ $O(n \log n)$ $O(n^2)$

Simple quadratures

Midpoint rectangular formula

$$M(f) = (b-a)f(\frac{a+b}{2}) \tag{1}$$

Trapezoidal formula

$$T(f) = \frac{b-a}{2} \big[f(a) + f(b) \big] \tag{2}$$

Simpson formula

$$S(f) = \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right] \tag{3}$$

Simple quadratures

Quadrature	Degree of exactness	Order of convergence
Midpoint rule	1	3
Trapezoid rule	1	3
Simpson $1/3$ (parabolic)	3	5
Simpson 3/8 (cubic)	3	5

Simple quadratures and error bounds

Quadrature	Error bound
Midpoint rule	$\frac{1}{24}f''(\eta)(b-a)^3$
Trapezoid rule	$-\tfrac{1}{12}f''(\eta)(b-a)^3$
Simpson 1/3 (parabolic)	$-rac{1}{2880}f^{(4)}(\eta)(b-a)^5$
Simpson 3/8 (cubic)	$-\frac{1}{6480}f^{(4)}(\eta)(b-a)^5$

Composite quadratures

Quadrature	Order of convergence
Midpoint rule	2
Trapezoid rule	2
Simpson 1/3 (parabolic)	4
Simpson 3/8 (cubic)	4

Composite quadratures and error bounds

Let $H = \frac{b-a}{M}$.

Quadrature	Error bound
Midpoint rule	$\frac{b-a}{24}f''(\eta)H^2$
Trapezoid rule	$-\frac{b-a}{12}f''(\eta)H^2$
Simpson 1/3 (parabolic)	$-rac{b-a}{2880}f^{(4)}(\eta)H^4$
Simpson 3/8 (cubic)	$-rac{b-a}{6480}f^{(4)}(\eta)H^4$

Hermite quadrature

- Quadratures considered so far are based on Lagrange interpolation
- If we also know values of derivatives at quadrature nodes, we can use quadratures based on Hermite interpolation

Trapezoidal formula

$$T(f) = \frac{b-a}{2} [f(a) + f(b)] \tag{4}$$

Corrected trapezoidal formula

$$T(f) = \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^2}{12} [f'(a) - f'(b)]$$
 (5)

Hermite quadrature

Trapezoidal formula

$$T(f) = \frac{b-a}{2} \big[f(a) + f(b) \big] \tag{6}$$

$$E(f) = -\frac{h^3}{12}f''(\xi) \tag{7}$$

Corrected trapezoidal formula

$$T(f) = \frac{b-a}{2} [f(a) + f(b)] + \frac{(b-a)^2}{12} [f'(a) - f'(b)]$$
 (8)

$$E(f) = \frac{h^5}{720} f^{(4)}(\xi) \tag{9}$$

Gaussian quadratures and scaling

$$\int_{-1}^{1} f(\xi) \, d\xi \approx \sum_{i=0}^{n} A_{i} f(\xi_{i})$$
 (10)

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} \sum_{i=0}^{n} A_{i} f(x_{i})$$
 (11)

$$x_i = \frac{b+a}{2} + \frac{b-a}{2}\xi_i \tag{12}$$

- Poor accuracy for functions that are not well behaved at endpoints
- High initialization time

Clenshaw-Curtis quadratures

$$\int_{-1}^{1} f(x) dx \approx \sum_{i=0}^{n} A_{i} f(x_{i})$$
 (13)

$$x_i = \cos(i\pi/n) \tag{14}$$

$$A_i = \int_{-1}^1 \ell_i(x) \, \mathrm{d}x \tag{15}$$

Empirical order of convergence

$$E(h) \approx Ch^p$$
 (16)

$$\log E(h) \approx \log(C) + p \log(h) \tag{17}$$

$$p \approx \frac{\log(\frac{E(h_{k+1})}{E(h_k)})}{\log(\frac{h_{k+1}}{h_k})} \tag{18}$$

Tanh-sinh quadratures

$$\int_{-1}^{1} f(t) \, \mathrm{d}t \tag{19}$$

$$x = g(t) = \tanh(\frac{\pi}{2}\sinh t)$$
 (20)

$$g'(t) = \frac{\frac{\pi}{2}\cosh t}{\cosh^2(\frac{\pi}{2}\sinh t)}$$
 (21)

$$\int_{-1}^{1} f(t) dt = \int_{-\infty}^{\infty} f(g(t))g'(t) dt$$
 (22)

Quadratures over infinite interval

$$\int_0^\infty f(t) \, \mathrm{d}t \tag{23}$$

$$s = \frac{1}{t+1} \tag{24}$$

$$t = \frac{1}{s} - 1 = \frac{1 - s}{s} \tag{25}$$

$$dt = -\frac{ds}{s^2} \tag{26}$$

$$\int_0^\infty f(t) \, \mathrm{d}t = \int_0^1 f\left(\frac{1-s}{s}\right) \frac{\mathrm{d}s}{s^2} \tag{27}$$

References

[1] Michael T. Heath, Scientific Computing. An Introductory Survey, 2nd Edition, Chapter 8: Numerical Integration and Differentation 2002