APENDICE D

NORMA ANSI/TIA/EIA TSB-67

4. NORMA ANSI/TIA/EIA TSB-67

Especificaciones de Funcionamiento de Transmisión para Pruebas de Campo de Sistemas de Cableado de Par trenzado sin Blindaje

4.1 Propósito y alcance

Especifica los requisitos de funcionamiento para enlaces instalados. Describe métodos de pruebas, interpretación de datos y comparación con los procedimientos de laboratorio. Define especificaciones para prueba de post-instalación, verifica el funcionamiento del enlace diseñado según norma ANSI/TIA/EIA-568.

4.2 Aplicabilidad

- Solamente UTP de cuatro pares de 100 Ohmios.
- Solamente horizontal.
- Puede también aplicarse al cable blindado (ScTP).

4.3 Configuraciones de prueba

4.3.1 Enlace básico (568A)

La configuración de enlace básico consiste en hasta 90 m (295') de cableado horizontal y una conexión a cada extremo, y en hasta 2 metros de cordón manual (Patch cord) para pruebas en el extremo local y remoto. Esquemáticamente puede plantearse de la siguiente manera:

4.3.2 Enlace permanente (568B)

Por ANSI/TIA/EIA-568-B.2-1, el enlace permanente consiste en hasta 90 metros (295') de cableado horizontal y una conexión a cada extremo esta puede también incluir una conexión de punto de consolidación / transición opcional. Nota: la configuración de enlace permanente excluye tanto la porción de cable del cordón de prueba y la conexión hacia el equipo de prueba. Esquemáticamente se define de la siguiente manera:

4.3.3 Canal

Por ANSI/TIE/EIA-568-B.2-1, el canal incluye hasta 90 metros (295') de cable horizontal; un cordón de área de trabajo (Patch cord); una salida o conector de telecomunicaciones; un punto de transición opcional o conector de consolidación; y dos conexiones (interconexiones) conectadas por un cordón de pacheo y un cordón de equipo en el cuarto de telecomunicaciones. Esquemáticamente se define de la siguiente manera:

4.4 Parámetros de prueba

Existen cuatro parámetros primarios de prueba:

- Mapa de alambrado
- Longitud
- Atenuación
- Diafonía del extremo cercano (Near End Cross-talk) (NEXT).

4.5 Mapa de alambrado

Pretende verificar una terminación correcta en los pines. Indica:

- Continuidad
- Cortos circuitos
- Pares separados, opuestos, cruzados

4.6 Longitud

Longitud física del cable entre dos puntos extremos. No esta destinado para medidas precisas debido a la incertidumbre del NVP (Nominal Velocity Propagation)

4.7 Longitud Máxima

- Enlace básico: 94 metros. Incluye 4 metros de cables de prueba.
- Canal: 100 metros, incluye 10 metros de cables conmutadores.

4.8 Atenuación

- Medidas de pérdidas de señal
- El peor caso entre todos los pares debe determinarse
- El máximo permitido es la suma de:
 - Accesorios de conexión
 - Cables conmutadores
 - Cable

TIA/EIA TSB - 67 ATENUACIÓN DEL ENLACE BÁSICO

Frecuencia (MHz)	Categoría 3 (dB)	Categoría 4 (dB)	Categoría 5 (dB)
1	3.2	2.2	2.1
4	6.1	4.3	4.0
8	8.8	6.0	5.7
10	10.0	6.8	6.3
16	13.2	8.8	8.2
20		9.9	9.2
25			10.3
31.25			11.5
62.5			16.7
100			21.6

TIA/EIA TSB - 67 ATENUACIÓN DEL CANAL

Frecuencia (MHz)	Categoría 3 (dB)	Categoría 4 (dB)	Categoría 5 (dB)
1	4.2	2.6	2.5
4	7.3	4.8	4.5
8	10.2	6.7	6.3
10	11.5	7.5	7.0
16	14.9	9.9	9.2
20		11.0	10.3
25			11.4
31.25			12.8
62.5			18.5
100			24.0

- Factores que pueden afectar la atenuación:
 - Temperatura
 - Superficies metálicas cerca del cableado
 - Humedad relativa

4.9 Next

Medida de acoplamiento de señal de un par a otro. Todas las combinaciones de pares deben ser medidas.

TIA/EIA TSB - 67 PÉRDIDA NEXT DEL ENLACE BÁSICO (el peor par a par)

Frecuencia	Categoría 3	Categoría 4	Categoría 5
(MHz)	(dB)	(dB)	(dB)
1	40.1	54.7	>60.0
4	30.7	45.1	51.8
8	25.9	40.2	47.1
10	24.3	38.6	45.5
16	21.0	35.3	42.3
20		33.7	40.7
25			39.1
31.25			37.6
62.5			32.7
100			29.3

TIA/EIA TSB - 67 PÉRDIDA NEXT DE CANALES (el peor par a par)

Frecuencia (MHz)	Categoría 3 (dB)	Categoría 4 (dB)	Categoría 5 (dB)
1	39.1	53.3	60.0
4	29.3	43.3	50.6
8	24.3	38.2	45.6
10	22.7	36.6	44.0
16	19.3	33.1	40.6
20		31.4	39.0
25			37.4
31.25			35.7
62.5			30.6
100			27.1

4.10 Reporte de datos y precisión

Los valores que caen dentro de los límites de precisión del probador deben ser marcados con un asterisco (*)

- (*)PASA se considera pasa total
- (*)FALLA se considera falla total

-20 [FALLA] *Falla -30 Línea de límite -40 *Pasa -50 dB -60 [PASA] -70 -80 100 0 MHz

TIA/EIA TSB - 67 LÍMITES DEL NEXT DEL ENLACE BÁSICO

4.11 Longitud

Los probadores de campo deben tener un rango mínimo de 310 metros. El criterio Pasa/Falla está basado en la longitud máxima más el incertidumbre de NVP de un 10%.

4.12 Atenuación

Reporte de valor y frecuencia al punto de fallo. Para una condición de pasa, reporta el valor más alto.

4.13 Next

• Reporta el peor caso de margen y la frecuencia al punto de falla

 Reporta ya sea el peor caso de margen o el caso de peor valor para una condición Pasa.

4.14 Procedimientos para medidas de campo

- Las pruebas de campo de NEXT deben ser realizadas en ambos extremos simultáneamente.
- Cualquier reconfiguración de componentes de enlace requieren someterse nuevamente a prueba.

4.15 Instrumentos de prueba

- Tres niveles de precisión han sido identificados para instrumentos de prueba de campo:
 - Precisión de Nivel I
 - Precisión de Nivel II
 - Precisión de Nivel III (el más preciso)
 - Cada uno tiene su propio set de requisitos de funcionamiento