基礎生物学研究所 ゲノムインフォマティクストレーニングコース RNA-seq入門: 実践編 2020年 6月

機能アノテーション & Gene Ontology解析

Shuji Shigenobu 重信 秀治

基礎生物学研究所 生物機能解析センター

RNA-seq analysis pipeline (de novo strategy)

ORF prediction

- Special consideration in ORF prediction after de novo RNA-seq assembly
 - Sometimes partial: Start Met or terminal codon may be missing.
 - Ideally one ORF is present per contig, but erroneously joined contigs may include multiple ORFs.
 - Possible frame shifts.
 - Frame shifts do not occur so often in Illumina, while it happens very frequently in 454 and IonProton.
- Recommended software: TransDecoder

Functional Annotation of Predicted ORFs

BLAST

- NCBI NR (or UniProt)
- species of interest (model organisms, close relatives etc)
- specific DB (SwissProt, rRNA DB, CEGMA etc)
- self (assembly v.s. assembly)

Motif search

Pfam, SignalP etc.

Ortholog analysis

- vs model organism
- ortholog database (OrthoDB, eggNOG, OrthoMCL etc)
- close relatives
- Gene Ontology term assignment

Quick annotation by BLASTX

- Query: assembled contigs
 (nucleotide sequences in multi-fasta format)
- DB: Protein sequences of a model organism

Format DB

```
$ makeblastdb —in protein.fa -dbtype prot
```

Search

```
$ blastx -query trinity_contigs -db protein.fa \
-num_threads 8 -evalue 1.0e-8 -outfmt 0 > blastxout.txt
```


基礎生物学研究所 ゲノムインフォマティクス・トレーニングコース2018秋

「BLAST自由自在~配列解析の極意をマスターする~」

日時: 2018年9月6日(木) 13:30~7日(金) 17:30

場所:基礎生物学研究所 (愛知県岡崎市)

2020年度の開催は未定 過去のテキスト等はgithub にて公開中

講師:

内山 郁夫 (基礎生物学研

重信 秀治(基礎生物学研 https://github.com/nibbgitc/gitc2018-blast/wiki

重信 秀治 特任准教授

内山 郁夫 助教

Protein motif search using InterProScan

- Query: Translated ORF sequences
- Software: InterProScan
 - https://github.com/ebi-pf-team/interproscan/wiki

Search

```
(example)
$ interproscan.sh -i proteins.fasta -f XML,TSV \
   --goterms --pathways --appl pfam
```

Assign Gene Ontology terms

What is Gene Ontology (GO)?

- ▶ GO project describes gene products from all organisms using a consistent and computable language.
- GO produces sets of explicitly defined, structured vocabularies in both a computer- and human-readable manner.
- 3 categories
 - Biological processes
 - Molecular functions
 - Cellular components
- ▶ 2 components
 - Ontology: term definition and the structured relationships between them
 - Associations between gene products and the GO terms.

Two components of GO

- Ontology
- Gene associations

Gene Ontology Consortium

Search GO data

Search for terms and gene products...

Search

Ontology

Filter classes

Download ontology

Gene Ontology: the framework for the model of biology. The GO defines concepts/classes used to describe gene function, and relationships between these concepts. It classifies functions along three aspects:

molecular function

molecular activities of gene products cellular component where gene products are active biological process pathways and larger processes made up of the activities of multiple

more

gene products.

Annotations

Download annotations (standard files)

Filter and download (customizable files <100k lines)

GO annotations: the model of biology. Annotations are statements describing the functions of specific genes, using concepts in the Gene Ontology. The simplest and most common annotation links one gene to one function, e.g. FZD4 + Wnt signaling pathway. Each statement is based on a specified piece of evidence. more

Ontology structure

- Ontologies are represented as a directed acyclic graph (DAG).
- Parent-child relationship
 - ▶ is_a
 - part_of
- Ontology can be changed / updated

vesicle fusion

http://amigo.geneontology.org/amigo/term/GO:0006906

- GO:0008150 biological_process
 - GO:0071840 cellular component organization or biogenesis
 - GO:0009987 cellular process
 - GO:0016043 cellular component organization
 - GO:0044699 single-organism process
 - P GO:0051179 localization
 - GO:0061024 membrane organization
 - GO:0044763 single-organism cellular process
 - GO:0051234 establishment of localization
 - GO:0061025 membrane fusion
 - GO:0006996 organelle organization
 - GO:0044802 single-organism membrane organization
 - GO:0048284 organelle fusion
 - GO:0044801 single-organism membrane fusion
 - GO:1902589 single-organism organelle organization
 - **P** GO:0006810 transport
 - GO:0090174 organelle membrane fusion
 - GO:0016050 vesicle organization
 - GO:0016192 vesicle-mediated transport
 - ▼ GO:0006906 vesicle fusion
 - GO:0034058 endosomal vesicle fusion
 - GO:0048210 Golgi vesicle fusion to target membrane
 - GO:0031339 negative regulation of vesicle fusion
 - GO:0090385 phagosome-lysosome fusion
 - ♠ GO:0031340 positive regulation of vesicle fusion
 - R GO:0031338 regulation of vesicle fusion

[capable_of part of relation] GO:0031201 SNARE complex

- GO:0035493 SNARE complex assembly
- GO:0099500 vesicle fusion to plasma membrane
- GO:0048279 vesicle fusion with endoplasmic reticulum
- GO:1990668 vesicle fusion with endoplasmic reticulum-Golgi int

membrane

- GO:0048280 vesicle fusion with Golgi apparatus
- GO:1990670 vesicle fusion with Golgi cis cisterna membrane
- GO:0007086 vesicle fusion with nuclear membrane involved in m
- GO:0019817 vesicle fusion with peroxisome
- GO:0051469 vesicle fusion with vacuole
- GO:0061782 vesicle fusion with vesicle

Gene association

- Gene <=> GO
- ▶ A gene may associate with multiple GO terms.
- ▶ Evidence codes.

Evidence code	Evidence code description	Source of evidence	Manually checked
IDA	Inferred from direct assay	Experimental	Yes
IEP	Inferred from expression pattern	Experimental	Yes
IGI	Inferred from genetic interaction	Experimental	Yes
IMP	Inferred from mutant phenotype	Experimental	Yes
IPI	Inferred from physical interaction	Experimental	Yes
ISS	Inferred from sequence or structural similarity	Computational	Yes
RCA	Inferred from reviewed computational analysis	Computational	Yes
IGC	Inferred from genomic context	Computational	Yes
IEA	Inferred from electronic annotation	Computational	No
IC	Inferred by curator	Indirectly derived from experimental or computational evidence made by a curator	Yes
TAS	Traceable author statement	Indirectly derived from experimental or computational evidence made by the author of the published article	Yes
NAS	Non-traceable author statement	No 'source of evidence' statement given	Yes
ND	No biological data available	No information available	Yes
NR	Not recorded	Unknown	Yes

nanos

Gene Product Information ②

http://amigo.geneontology.org/amigo/gene_product/FB:FBgn0002962

Symbol nos Name(s) nanos

Name	s) nanos									
annotations: 29	9; showing: 1-10		«First <	Prev Ne	ext> Last»	① Download (up to 100000)			
Gene/product	Gene/product name	Annotation qualifier	GO class (direct)	Annotati extensio		Organism	Evidence	Evidence with	PANTHER family Isoform	Reference
nos	nanos		germ cell migration		FlyBase	Drosophila melanogaster	TAS		nanos protein pthr12887	FB:FBrf0107500 PMID:9988212
nos	nanos		oogenesis		FlyBase	Drosophila melanogaster	IMP		nanos protein pthr12887	FB:FBrf0107609 PMID:10101171
nos	nanos		spermatogenesis		FlyBase	Drosophila melanogaster	IMP		nanos protein pthr12887	FB:FBrf0107609 PMID:10101171
nos	nanos		pole plasm		FlyBase	Drosophila melanogaster	TAS		nanos protein pthr12887	FB:FBrf0110978 PMID:10449356
nos	nanos		anterior/posterior axis specification, embryo		FlyBase	Drosophila melanogaster	TAS		nanos protein pthr12887	FB:FBrf0111327 PMID:10494038
nos	nanos		oocyte anterior/posterior axis specification		FlyBase	Drosophila melanogaster	NAS		nanos protein pthr12887	FB:FBrf0128774 PMID:10878576
nos	nanos		protein binding		FlyBase	Drosophila melanogaster	IPI	FB:FBgn0000392	nanos protein pthr12887	FB:FBrf0131417 PMID:11060247
nos	nanos		germ-line stem cell division		FlyBase	Drosophila melanogaster	NAS		nanos protein pthr12887	FB:FBrf0132358 PMID:11131516
nos	nanos		protein binding		UniProt	Drosophila melanogaster	IPI	FB:FBgn0010300	nanos protein pthr12887	FB:FBrf0135777 PMID:11274060
nos	nanos		female meiosis chromosome segregation		FlyBase	Drosophila melanogaster	IMP		nanos protein pthr12887	FB:FBrf0135802 PMID:11290718

How to annotate GO in non-model organisms?

- Ortholog grouping with a model organism and then transfer the GO terms from the reference organism to your target organism.
- BLAST2GO
- InterProScan

Gene Ontology enrichment analysis

- What is GO enrichment analysis?
- Why GO enrichment analysis is required in DEG studies?
- ▶ Type of GO enrichment analysis.
 - gene set
 - gene score

Software

- gene set type: DAVID (web), metascape (web), goseq (R), GOstat (R)
- gene score: GSEA, roast, camera
- both: ErmineJ

Basic over-representation test: 2 x 2 table and Fisher's exact test

- Suppose we perform a test of DE and find a list of 200 significant genes out of 10,000
- ▶ Consider a specific GO term, apoptosis. Among the 200 DE genes, 20 genes are annotated as apoptosis related, while 300 / 10,000 are associated with apoptosis in the whole gene set.
- Question: Is the gene set "apoptosis" over-represented among "significant" genes?

	apoptosis	non-apoptosis	total
DE	20		200
non-DE			
total	300		10,000

	apoptosis	non-apoptosis	total
DE	20	180	200
non-DE	280	9,520	9,800
total	300	9,700	10,000

```
> mat < matrix(c(20,200-20,300-20, 10000-300-(200-20)),
nrow=2, byrow=T)
> fisher.test(mat, alternative="greater")
   Fisher's Exact Test for Count Data
data: mat
p-value = 2.269e-06
alternative hypothesis: true odds ratio is greater than 1
95 percent confidence interval:
2.418508
               Tnf
sample estimates:
odds ratio
  3.777069
```

Try gene set testing

ex10: Gene set testing

Gene score type enrichment analysis

Drawback of basic 2x2 table method

- ▶ Threshold value is arbitral
- Magnitude of significance is ignored

GSEA

http://software.broadinstitute.org/gsea/ index.jsp

ROAST, CAMERA

implemented within edgeR

Tutorial: ErmineJ

http://erminej.chibi.ubc.ca/

- Easy to use Java software with both GUI and CUI
- Three enrich methods supported
 - ORA: overrepresentation analysis
 - ▶ GSR: gene score resampling
 - ▶ ROC: rank-based gene score in receiver-operator curves