3.5 Chains in Distributive Lattices3.6 Incidence Algebras

shino16

2022年6月18日

目次

0	復習	1
1	線形順序拡大	2
1.1	格子パスとの対応	2
1.2	具体例	4
1.3	パスカルの三角形との関係	5

0 復習

命題 (3.5.1). 有限半順序集合 $P, m \in \mathbb{N}$ について以下は全て等しい:

- a. 順序を保つ $\sigma: P \rightarrow m$ の写像の個数,
- b. J(P) における長さ m の多重鎖 $\hat{0}=I_0\leq I_1\leq \cdots \leq I_m=\hat{1}$ の個数.
- c. $J(P \times m 1)$ の位数.

図1 $P=\Pi_3$, m=3 の例

命題 1 (3.5.2). 有限半順序集合 $P, m \in \mathbb{N}$ について以下は等しい:

- a. 順序を保つ全射 $\sigma: P \to m$ の写像の個数,
- b. J(P) における長さ m の鎖 $\hat{0} = I_0 < I_1 < \dots < I_m = \hat{1}$ の個数.

1 線形順序拡大

定義・#P = p のとき,順序を保つ全単射 $\sigma: P \to p$ を線形順序拡大 (linear extension) またはトポロジカルソートといい,線形順序拡大の個数を e(P) で表す.

1.1 格子パスとの対応

命題 1より,

$$e(P) = (J(P) \perp の鎖 \hat{0} = I_0 < I_1 < \dots < I_{\#P} = \hat{1}$$
 の個数)
= $(J(P) \perp の極大なパスの個数)$.

そこで、J(P)上の鎖をある種の格子上のパスと対応付ける.

P の鎖への分割 C_1, \ldots, C_k をとる. $\delta: J(P) \to \mathbb{N}^k$ を

$$\delta(I) = (\#(I \cap C_1), \#(I \cap C_2), \dots, \#(I \cap C_k))$$

で定める.

1.2 具体例 1 線形順序拡大

補題. \mathbb{N}^k を辞書式順序のもとで半順序集合 (特に東) とみなすとき, δ は

- a. 単射,
- b. 束同士の準同型写像,
- c. $J(P) \cong \operatorname{Im} \delta$.

したがって J(P) 上の極大なパスは ${\rm Im}\,\delta$ における格子パスと一対一 に対応する.

- 証明. a. 順序イデアル $I \in J(P)$ は,I の極大元の集合で特徴づけられる.各鎖は I の極大元を高々 1 個しか含まないので,極大元の集合が異なれば δ の像も異なる.
 - b. $I_1 \vee I_2 = I_1 \cup I_2$, $I_1 \wedge I_2 = I_1 \cap I_2$ に注意. \mathbb{N}^k 上では \vee は各点 max, \wedge は各点 min.

鎖 C_i について,

$$\#((I_1 \cup I_2) \cap C_i) = \max(\#(I_1 \cap C_i), \#(I_2 \cap C_i))$$

$$\#((I_1 \cap I_2) \cap C_i) = \min(\#(I_1 \cap C_i), \#(I_2 \cap C_i)).$$

c. $I_1, I_2 \in J(P)$ について,

$$I_1 \leq I_2 \iff I_1 \wedge I_2 = I_1$$

 $\iff \delta(I_1 \wedge I_2) = \delta(I_1)$ (: a.)
 $\iff \delta(I_1) \wedge \delta(I_2) = \delta(I_1)$ (: b.)
 $\iff \delta(I_1) \leq \delta(I_2),$

3.5 Chains in Distributive Lattices

1.2 具体例 1 線形順序拡大

図2 例 3.5.3

1.2 具体例

例 (3.5.4). 位数 m,n の鎖 C_1,C_2 をとり, $P=C_1+C_2$ とする. このとき $\operatorname{Im}\delta\cong \boldsymbol{m}\times\boldsymbol{n}$. したがって $e(P)=\binom{m+n}{m}$. より一般に, $P=P_1+\cdots+P_k$, $n_i=\#P_i$ とすると,

$$e(P) = \binom{n_1 + \dots + n_k}{n_1, \dots, n_k} e(P_1) e(P_2) \cdots e(P_k).$$

例 (3.5.5). $P = \mathbf{2} \times \mathbf{n}$, $C_1 = \{(2, j) : j \in \mathbf{n}\}$, $C_2 = \{(1, j) : j \in \mathbf{n}\}$ とする.

このとき $\operatorname{Im} \delta = \{(i,j): 0 \leq i \leq j \leq n\}$. この上での格子パスの個

4

3.5 Chains in Distributive Lattices

3.6 Incidence Algebras

数はカタラン数 $C_n = \frac{1}{n+1} \binom{2n}{n}$.

図3 $P = \mathbf{2} \times \mathbf{3}$ と standard Young tableau の例

1.3 パスカルの三角形との関係

各 $I \in J(P)$ について、I を半順序集合とみなしたときの線形順序拡大の個数を e(I) とする. I のトポロジカルソートを最後の点で分けて数えると、

$$e(I) = \sum_{\substack{I' \in J(P) \\ I' \lessdot I}} e(I').$$

3.5 Chains in Distributive Lattices

例. $P=\mathbb{N}+\mathbb{N}$ とし、P の有限順序イデアルの集合を $J_f(P)$ とする. このとき $J_f(P)\cong\mathbb{N}\times\mathbb{N}$.

 $J_f(P)$ のハッセ図において各 $I \in J_f(P)$ を e(I) でラベル付けすると、パスカルの三角形が得られる.

定義. 有限的分配束 $L=J_f(P)$ と、対応する $e:L\to\mathbb{P}$ をあわせて 一般パスカル三角形と呼ぶ.