目录

第六章	定积分	3
6.1	定积分的概念	3
6.2	定积分的性质	6
6.3	微积分基本公式	9
	6.3.1 引例	9
	6.3.2 积分上限的函数及其导数	10
	6.3.3 牛顿-莱布尼茨公式	12
6.4	定积分的换元积分法	13
6.5	复习与提高	20
6.6	定积分的分部积分法	20
6.7	反常积分和 Γ 函数	24
	6.7.1 无限区间上的反常积分	24
	6.7.2 无界函数的反常积分	27
	6.7.3 Г函数	28
6.8	定积分的几何应用	29
	6.8.1 定积分的元素法	29
	6.8.2 平面图形的面积	31

2				目录
		6.8.3	旋转体的体积	 34
		6.8.4	平行截面面积已知的立体的体积..................	 38
	6.9	定积分	}的经济应用	 39
		6.9.1	由边际函数求原函数	 39
		6.9.2	由变化率求总量	 39
		6.9.3	收益流的现值和将来值	 40
		6.9.4	消费者剩余和生产者剩余	 41

第七章 多元函数微分学

7.1 空间解析几何

- 三个坐标轴
- 三个坐标面
- 八个卦限

在空间直角坐标系中, 我们有

点
$$M \longleftrightarrow$$
 坐标 $(x,y,z) \longleftrightarrow OM$

坐标面上的点:

$$xy$$
 面 $\leftrightarrow z = 0$

$$yz$$
 面 $\leftrightarrow x = 0$

$$zx \ \overline{\text{a}} \leftrightarrow y = 0$$

坐标轴上的点:

$$x \Leftrightarrow y = z = 0$$

$$y \Leftrightarrow z = x = 0$$

$$z \Leftrightarrow x = y = 0$$

7.1 空间解析几何 5

设 $M_1(x_1, y_1, z_1)$ 和 $M_2(x_2, y_2, z_2)$ 为空间中两点. 则它们的距离为

$$|M_1M_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

特别地, 点 M(x,y,z) 到原点 O 的距离为

$$|OM| = \sqrt{x^2 + y^2 + z^2}$$

定义. 给定空间中曲面 S 和方程 F(x,y,z)=0. 如果

点 (x,y,z) 在曲面 S 上

 \Leftrightarrow

点 (x,y,z) 满足 方程 F(x,y,z)=0

则称

- F(x, y, z) = 0 是曲面 S 对应的方程;
- S 是方程 F(x,y,z) = 0 对应的曲面.

例 1. 空间的平面方程为

$$Ax + By + Cz + D = 0$$
.

特别地, 方程 z=0 表示 xy 面, 而方程 z=c 表示平行于 xy 面的平面.

例 2. 球心在 (x_0,y_0,z_0) , 半径为 R 的球面方程为 $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$.

例 **3.** $x^2 + y^2 = R^2$ 圆柱面

由平行于 z 轴的直线沿 xy 面上的圆 $x^2 + y^2 = R^2$ 移动而得.

准线: xy 面的圆 $x^2 + y^2 = R^2$.

母线:平行于 Z 轴的直线. 表示一个柱面.

一般地,方程 F(x,y)=0 在空间中

例 **4.** $z = x^2 + y^2$ 旋转抛物面

例 **5.** $z = y^2 - x^2$ 双曲抛物面(马鞍面)

