Miscellaneous Examples

Example 12 Find the conjugate of
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
.

Solution We have,
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$

$$= \frac{6+9i-4i+6}{2-i+4i+2} = \frac{12+5i}{4+3i} \times \frac{4-3i}{4-3i}$$

$$= \frac{48 - 36i + 20i + 15}{16 + 9} = \frac{63 - 16i}{25} = \frac{63}{25} - \frac{16}{25}i$$

Therefore, conjugate of
$$\frac{(3-2i)(2+3i)}{(1+2i)(2-i)}$$
 is $\frac{63}{25} + \frac{16}{25}i$.

Example 13 Find the modulus and argument of the complex numbers:

(i)
$$\frac{1+i}{1-i}$$
,

(ii)
$$\frac{1}{1+i}$$

Solution (i) We have, $\frac{1+i}{1-i} = \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{1-1+2i}{1+1} = i = 0+i$

Now, let us put $0 = r \cos \theta$,

Squaring and adding, $r^2 = 1$ i.e., r = 1 so that

$$\cos \theta = 0$$
, $\sin \theta = 1$

Therefore, $\theta = \frac{\pi}{2}$

Hence, the modulus of $\frac{1+i}{1-i}$ is 1 and the argument is $\frac{\pi}{2}$.

(ii) We have
$$\frac{1}{1+i} = \frac{1-i}{(1+i)(1-i)} = \frac{1-i}{1+1} = \frac{1}{2} - \frac{i}{2}$$

 $\frac{1}{2} = r \cos \theta, -\frac{1}{2} = r \sin \theta$ Let

Proceeding as in part (i) above, we get $r = \frac{1}{\sqrt{2}}$; $\cos \theta = \frac{1}{\sqrt{2}}$, $\sin \theta = \frac{-1}{\sqrt{2}}$

 $\theta = \frac{-\pi}{4}$ Therefore

Hence, the modulus of $\frac{1}{1+i}$ is $\frac{1}{\sqrt{2}}$, argument is $\frac{-\pi}{4}$.

Example 14 If $x + iy = \frac{a+ib}{a-ib}$, prove that $x^2 + y^2 = 1$.

Solution We have,

 $x + iy = \frac{(a+ib)(a+ib)}{(a-ib)(a+ib)} = \frac{a^2 - b^2 + 2abi}{a^2 + b^2} = \frac{a^2 - b^2}{a^2 + b^2} + \frac{2ab}{a^2 + b^2}i$

So that,
$$x - iy = \frac{a^2 - b^2}{a^2 + b^2} - \frac{2ab}{a^2 + b^2}i$$

Therefore,

$$x^{2} + y^{2} = (x + iy)(x - iy) = \frac{(a^{2} - b^{2})^{2}}{(a^{2} + b^{2})^{2}} + \frac{4a^{2}b^{2}}{(a^{2} + b^{2})^{2}} = \frac{(a^{2} + b^{2})^{2}}{(a^{2} + b^{2})^{2}} = 1$$
Example 15 Find real θ such that

Example 15 Find real θ such that

$$\frac{3+2i\sin\theta}{1-2i\sin\theta}$$
 is purely real.

Solution We have,

$$\frac{3+2i\sin\theta}{1-2i\sin\theta} = \frac{(3+2i\sin\theta)(1+2i\sin\theta)}{(1-2i\sin\theta)(1+2i\sin\theta)}$$

$$= \frac{3+6i\sin\theta+2i\sin\theta-4\sin^2\theta}{1+4\sin^2\theta} = \frac{3-4\sin^2\theta}{1+4\sin^2\theta} + \frac{8i\sin\theta}{1+4\sin^2\theta}$$
given the complex we do not set the second of the complex we do not set the second of the complex we do not set the second of the complex we do not set the second of the complex we do not set the second of the complex we do not set the second of the second of the complex we do not set the second of the second of

We are given the complex number to be real. Therefore

$$\frac{8\sin\theta}{1+4\sin^2\theta} = 0, \text{ i.e., } \sin\theta = 0$$

Thus

$$\theta = n\pi, n \in \mathbb{Z}$$

Example 16 Convert the complex number $z = \frac{i-1}{\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}}$ in the polar form.

Solution We have,
$$z = \frac{i-1}{\frac{1}{2} + \frac{\sqrt{3}}{2}i}$$

$$= \frac{2(i-1)}{1+\sqrt{3}i} \times \frac{1-\sqrt{3}i}{1-\sqrt{3}i} = \frac{2(i+\sqrt{3}-1+\sqrt{3}i)}{1+3} = \frac{\sqrt{3}-1}{2} + \frac{\sqrt{3}+1}{2}i$$

Now, put
$$\frac{\sqrt{3}-1}{2} = r\cos\theta$$
, $\frac{\sqrt{3}+1}{2} = r\sin\theta$

Squaring and adding, we obtain

$$r^{2} = \left(\frac{\sqrt{3} - 1}{2}\right)^{2} + \left(\frac{\sqrt{3} + 1}{2}\right)^{2} = \frac{2\left(\left(\sqrt{3}\right)^{2} + 1\right)}{4} = \frac{2 \times 4}{4} = 2$$

Hence, $r = \sqrt{2}$ which gives

$$\cos\theta = \frac{\sqrt{3} - 1}{2\sqrt{2}}, \quad \sin\theta = \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Therefore,
$$\theta = \frac{\pi}{4} + \frac{\pi}{6} = \frac{5\pi}{12}$$
 (Why?) EINSPIRATION

Hence, the polar form is

$$\sqrt{2}\left(\cos\frac{5\pi}{12} + i\sin\frac{5\pi}{12}\right)$$

Summary

- \oint Let $z_1 = a + ib$ and $z_2 = c + id$. Then
 - (i) $z_1 + z_2 = (a+c) + i(b+d)$
 - (ii) $z_1 z_2 = (ac bd) + i (ad + bc)$
- For any non-zero complex number z = a + ib $(a \neq 0, b \neq 0)$, there exists the

complex number
$$\frac{a}{a^2+b^2}+i\frac{-b}{a^2+b^2}$$
, denoted by $\frac{1}{z}$ or z^{-1} , called the

multiplicative inverse of z such that
$$(a+ib)$$
 $\left(\frac{a^2}{a^2+b^2}+i\frac{-b}{a^2+b^2}\right)=1+i0=1$

- For any integer k, $i^{4k} = 1$, $i^{4k+1} = i$, $i^{4k+2} = -1$, $i^{4k+3} = -i$
- The conjugate of the complex number z = a + ib, denoted by \overline{z} , is given by $\overline{z} = a ib$.
 - The polar form of the complex number z = x + iy is $r(\cos\theta + i\sin\theta)$, where $r = \sqrt{x^2 + y^2}$ (the modulus of z) and $\cos\theta = \frac{x}{r}$, $\sin\theta = \frac{y}{r}$. (θ is known as the argument of z. The value of θ , such that $-\pi < \theta \le \pi$, is called the *principal argument* of z.
- \bullet A polynomial equation of n degree has n roots.
- \spadesuit The solutions of the quadratic equation $ax^2 + bx + c = 0$, where $a, b, c \in \mathbb{R}$,

$$a \neq 0$$
, $b^2 - 4ac < 0$, are given by $x = \frac{-b \pm \sqrt{4ac - b^2}i}{2a}$