PMATH 451: Measure and Integration

Professor Boyu Li LaTEXer Iris Jiang

Fall 2021

Contents

1	Chapter 1	2
1.1	Lecture 1 A brief review of Riemann integrals	2
1.2	Lecture 2 Introduction to Sigma Algebra	3
1.3	Lecture 3 Properties of Sigma Algebra	4
1.3.1	Borel σ -algebra	5
1.4	Lecture 4 Measure	6

1. Chapter 1

Lecture 1 A brief review of Riemann integrals

Limitations of Riemann Integration (R-int)

- (1) Heavily rely on the structure of real line \mathbb{R}
- (2) Not many functions are R-int

 $f[a,b] \to \mathbb{R}$ is R-int if and only if the set of discontinuity of f is Lebesgue null set (has Lebesgue measure 0). (i.e. $\exists (a_n,b_n)$ s.t. the set of discontinuities $\subseteq \bigcup_{n=1}^{\infty} (a_n,b_n)$, $\sum (b_n-a_n) < \epsilon$)

- Example 1.1 $f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$, $x \in [0,1]$. f is nowhere continuous. f is NOT R-int
- (3) NOT well behaved under limits
 - Example 1.2 Let $\{r_k\}_{k=1}^{\infty}$ be all \mathbb{Q} in [0,1], $f_n(x) = \begin{cases} 1 & \text{if } x \in \{r_1,\ldots,r_n\} \\ 0 & \text{otherwise} \end{cases}$
 - f_n is R-int
 - $\lim_{n\to\infty} f_n(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1] \\ 0 & \text{if } x \notin \mathbb{Q} \cap [0,1] \end{cases} = f(x) \text{ (pointwise limit) is not R-int}$

Lebesgue's Idea

Ideally, define $m: \mathcal{P}(\mathbb{R}) \to [0, \infty]$

- m([a,b]) = b a
- m(A + x) = m(A)• $m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n), A_n$ disjoint **Problem**: m does not exists

Proof. Define $x \sim y$ if $x - y \in \mathbb{Q}$, consider [0, 1].

Let $A = \text{pick one } x \text{ from each eq-class of } \sim$.

Let $\{r_k\}_{k=1}^{\infty}$ be all rationals in [-1,1].

Let $A_k = A + r_k$

(1) A_k are disjoint. If $x \in A_k \cap A_\ell$, then

$$x = \underbrace{a}_{\in A} + r_k = \underbrace{b}_{\in A} + r_\ell \implies a - b = r_\ell - r_k \in \mathbb{Q}$$
$$\implies a \sim b, a \neq b$$

not possible

(2) $[0,1] \subseteq \bigcup_{n=1}^{\infty} A_n \subseteq [-1,2]$

(a) $A \subseteq [0,1], -1 \le r_k \le 1, -1 \le a + r_k \le 2, A + r_k \subseteq [-1,2]$ (b) $\forall x \in [0,1], \exists a \in A, \ a \sim x, \ x - a \in \mathbb{Q}, \ -1 \le x - a \le 1, \implies x - a = r_k$ for some $k, x = a + r_k \in A + r_k \subseteq \bigcup_{n=1}^{\infty} A_n$

(c)

$$1 = m([0,1]) \le m(\bigcup_{n=1}^{\infty} A_n) \le m([-1,2]) = 3$$

$$m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n) = \sum_{n=1}^{\infty} m(A)$$

not possible

1.2 Lecture 2 Introduction to Sigma Algebra

Definition 1.1 — algebra.

Let X be a set. An **algebra** \mathcal{A} is a collection of subsets of X ($\mathcal{A} \subseteq (x)$) s.t.

(1) $\varnothing \in \mathcal{A}$ (2) $X \setminus A \in \mathcal{A}$ for all $A \in \mathcal{A}$ (3) If $A_1, \ldots, A_n \in \mathcal{A}$, then $\bigcup_{i=1}^n A_i \in \mathcal{A}$ We call \mathcal{A} a σ -algebra if (3') If $A_1, \ldots, A_n, \ldots \in \mathcal{A}$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$

■ Example 1.3

(1) X be any set, $\{\emptyset, X\}$ is a σ -algebra

Note 1.1 If \mathcal{A} is a σ -algebra, then it's an algebra

- (2) $\mathcal{P}(X)$ is a σ -algebra
- (3) Let X be an uncountable set (real line, Cantor set, etc.) Let $\mathcal{A} = \{E \subseteq X : A \in \mathcal{A} : A \in \mathcal{A} \in \mathcal{A} : A \in \mathcal{A} \in \mathcal{A} : A \in \mathcal{A} : A$ either E is countable, or $X \setminus E$ is countable.

Claim: \mathcal{A} is a σ -algebra

Proof. (a) $\varnothing \in \mathcal{A}$, \varnothing is countable

- (b) Let $E \in \mathcal{A}$,
 - Case 1: E is countable, $X \setminus (X \setminus E) = E$ is countable, $\Longrightarrow X \setminus E \in \mathcal{A}$
 - Case 2: $X \setminus E$ is countable, $\implies X \setminus E \in \mathcal{A}$
- (c) Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$, consider $\bigcup_{n=1}^{\infty} E_n$
 - Case 1: If all E_n are countable, $\bigcup_{n=1}^{\infty} E_n$ is countable $\Longrightarrow \bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$

• Case 2: $\exists E_N$, s.t. $X \setminus E_N$ is countable.

$$X \setminus \left(\bigcup_{n=1}^{\infty} E_n\right) = \bigcap_{n=1}^{\infty} (X \setminus E_n) \subseteq X \setminus E_N \implies \bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$$

Hence \mathcal{A} is a σ -algebra.

Lecture 3 Properties of Sigma Algebra

Basic properties of Algebra and σ -algebra

Let \mathcal{A} be an algebra, \mathcal{B} be a σ -algebra

• $E, F \in \mathcal{A} \implies E \cap F, E \backslash F \in \mathcal{A}$

• $\{E_n\} \subseteq \mathcal{B} \implies \bigcap_{n=1}^{\infty} E_n \in \mathcal{B}$

Proof.

$$\begin{split} X\backslash(E\cap F) &= \underbrace{(X\backslash E)}_{\in\mathcal{A}} \cup \underbrace{(X\backslash F)}_{\in\mathcal{A}} \in \mathcal{A} \\ E\cap F &= X\backslash(X\backslash(E\cup F)) \in \mathcal{A} \\ E\backslash F &= E\cap(X\backslash F) \in \mathcal{A} \end{split}$$

Exercise 1.1 $\bigcup_{n=1}^k E_n \in \mathcal{A}$, induction

$$X \setminus \left(\bigcap_{n=1}^{\infty} E_n\right) = \bigcup_{n=1}^{\infty} (X \setminus E_n) \in \mathcal{B}$$

Proposition 1.2

Let \mathcal{A} be an algebra, $\forall \{A_n\}_{n=1}^{\infty}$ disjoint $\implies \bigcup_{n=1}^{\infty} A_n \in \mathcal{A}$. Then \mathcal{A} is a σ -algebra

Proof. Let $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{A}$, goal is to show $\bigcup_{n=1}^{\infty} E_n \in \mathcal{A}$. Consider

$$E_1: A_1 = E_1$$

 $E_2: A_2 = E_2 \backslash E_1$
 $E_3: A_3 = E_3 \backslash (E_1 \cup E_2)$

$$E_n: A_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right)$$

Claim:

- (1) $\bigcup_{n=1}^{k} A_n = \bigcup_{n=1}^{k} E_n$ (exercise using induction) (2) A_n are disjoint.

$$A_n \cap \left(\bigcup_{i=1}^{n-1} E_i\right) = \varnothing$$
$$A_n \cap \left(\bigcup_{i=1}^{n-1} A_i\right) = \varnothing$$

By definition, $A_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right) \in \mathcal{A}$

$$\Longrightarrow \bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n \in \mathcal{A} \text{ (by assumption)}$$

 $\Longrightarrow \mathcal{A} \text{ is } \sigma\text{-algebra}$

Proposition 1.3

Suppose $\{\mathcal{B}_{\lambda}\}_{{\lambda}\in\Lambda}$ are σ -algebras (on X). Then $\bigcap_{{\lambda}\in\Lambda}\mathcal{B}_{\lambda}$ is a σ -algebra

- $(1) \varnothing \in \mathcal{B}_{\lambda}, \ \forall \lambda \implies \varnothing \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$
- (2) Take

$$A \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \implies A \in \mathcal{B}_{\lambda} \ \forall \lambda$$

$$\implies X \backslash A \in \mathcal{B}_{\lambda} \ \forall \lambda$$

$$\implies X \backslash A \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \ \forall \lambda$$

(3) Take

$$\{A_n\}_{n=1}^{\infty} \subseteq \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \implies \bigcup_{n=1}^{\infty} A_n \in \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \text{ (exercise)}$$

Let $\mathcal{F} \subseteq \mathcal{P}(X)$. Define σ -algebra generated by \mathcal{F} to be $\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$, $\{\mathcal{B}_{\lambda}\}_{\lambda \in \Lambda}$ are all σ -algebra containing \mathcal{F}

- (1) $\mathcal{F} \subseteq \mathcal{P}(X)$, $\mathcal{P}(X)$ is a σ -algebra, so this intersection makes sense.
- (2) Since \mathcal{B}_{λ} is σ -algebra $\Longrightarrow \bigcup_{\lambda \in \Lambda} \mathcal{B}_{\lambda}$ is a σ -algebra ($\sigma(\mathcal{F})$ is a σ -algebra)

Proposition 1.4

 $\sigma(\mathcal{F})$ is the **smallest** σ -algebra containing \mathcal{F} .

By smallest: if $\exists \mathcal{B} \ \sigma$ -algebra, $\mathcal{B} \supseteq \mathcal{F}$, then $\sigma(\mathcal{F}) \subseteq B$

Proof. By defn,
$$\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} B_{\lambda}$$
, σ -alg $\mathcal{B} \supseteq \mathcal{F} \implies \mathcal{B} = \mathcal{B}_{\lambda_0}$ for some λ_0 . $\sigma(\mathcal{F}) = \bigcap_{\lambda \in \Lambda} \mathcal{B}_{\lambda} \subseteq \mathcal{B}_{\lambda_0} = \mathcal{B}$

Borel σ -algebra

Let X be a metric space, let $g = \{A \subseteq X : A \text{ open}\}\$

Definition 1.3 — Borel σ -algebra.

the Borel σ -alg on X is $\sigma(\mathcal{G})$. Denote by $\mathcal{B}_X = \sigma(\mathcal{G})$

Notation 1.1.

- G = set of open sets
- $\mathcal{F} = set of closed sets$
- $\mathcal{G}_{\delta} = \{\bigcap_{n=1}^{\infty} A_n : A_n \in \mathcal{G}\}$ $\mathcal{F}_{\sigma} = \{\bigcup_{n=1}^{\infty} A_n : A_n \ closed\}$ $\mathcal{G}_{\delta}, \mathcal{F}_{\sigma} \subseteq \mathcal{B}_{X}$
- $a \ set \ A \subseteq X \ is \ Borel \ if \ A \in \mathcal{B}_X$ - open set

$$-\mathcal{G}_{\delta}, \mathcal{F}_{\sigma}$$

$$-X=\mathbb{R}, (a,b]\in\mathcal{B}_X$$

1.4 Lecture 4 Measure

Let \mathcal{B} be a σ -algebra on X.

Definition 1.4 — measure, measurable space, measure space.

A measure on (X, \mathcal{B}) is a map $\mu : \mathcal{B} \to \mathbb{R}$, s.t.

(1)
$$\mu(\varnothing) = 0$$

(2) (Positivity)
$$\mu: \mathcal{B} \to [0, +\infty]$$

(3)
$$(\sigma$$
-additivity) $\forall \{A_n\} \subseteq \mathcal{B}$ disjoint, $u(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} \mu(A_n)$

We call (X, \mathcal{B}) a measurable space, (X, \mathcal{B}, μ) a measure space

■ Example 1.4

(1) Let
$$\mu(B) = 0, \forall B \in \mathcal{B}$$

(2) Let
$$\mu(B) = \begin{cases} +\infty, & \forall B \in \mathcal{B} \\ 0, & B = \emptyset \end{cases}$$

(3) (Dirac's measure)
$$x \in X$$
, $\delta_x(B) = \begin{cases} 1, & \text{if } x \in B \\ 0, & \text{if } x \notin B \end{cases}$

Proof. δ_x is a measure:

(a)
$$\delta_x(\varnothing) = 0, x \notin \varnothing$$

(b)
$$\delta_x : \mathcal{B} \to \{0,1\} \subseteq [0,+\infty]$$

(c) Let
$$\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{B}$$
 disjoint. Consider $\delta_x (\bigcup_{n=1}^{\infty} A_n)$

(c) Let
$$\{A_n\}_{n=1}^{\infty} \subseteq \mathcal{B}$$
 disjoint. Consider $\delta_x \left(\bigcup_{n=1}^{\infty} A_n\right)$ case 1: $x \in \bigcup_{n=1}^{\infty} A_n$, $\delta_x \left(\bigcup_{n=1}^{\infty} A_n\right) = 1$. $\exists k, \ x \in A_k$, $\delta_x(A_k) = 1$. $\forall n \neq k$, by A_n disjoint, $x \notin A_n \cap A_k = \varnothing \implies x \notin A_n \implies \delta_x(A_n) = 0$. $\sum_{n=1}^{\infty} \delta_x(A_n) = \delta(A_k) = 1 = \delta_x \left(\bigcup_{n=1}^{\infty} A_n\right)$

case 2:
$$x \notin \bigcup_{n=1}^{\infty} A_n = \delta(A_k) = 1 = \delta_x (\bigcup_{n=1}^{\infty} A_n)$$

 $\delta_x (\bigcup_{n=1}^{\infty} A_n) = 0 \implies \sum_{n=1}^{\infty} \delta_x (A_n) = 0$

(4) Assume μ_1, μ_2 are measures on (X, \mathcal{B}) . μ_1, μ_2 are finite $(\mu_i(B) < +\infty)$. Consider $t_1, t_2 \ge 0$, let $\mu = t_1 \mu_1 + t_2 \mu_2$ (a linear combination). $\mu(B) = t_1 \dot{\mu}_1(B) + t_2 \dot{\mu}_2(B)$. Claim: μ is a measure (exercise)

Definition 1.5 — finite, σ -finite, semi-finite, probability measure.

Let μ be a measure

- (1) μ is **finite** is $\mu(B) < +\infty$ for all $B \in \mathcal{B}$. (equivalent to say $\mu(X) < +\infty$)
- (2) μ is σ -finite if $X = \bigcup_{n=1}^{\infty} E_n$, $E_n \in \mathcal{B}$, $\mu(E_n) < +\infty$. $(\mathbb{R} = \bigcup [-n, n])$
- (3) μ is semi-finite if $\forall F \in \mathcal{B}, \ \mu(F) \neq 0$, then $\exists E \subseteq F, \ 0 < \mu(E) < \infty$
- (4) μ is a probability measure if $\mu(X) = 1$

Proposition 1.5 — Properties of Measures.

- (1) Monotonicity: $E, F \in \mathcal{B}, E \subseteq F$, then $\mu(E) \leq \mu(F)$
- (2) σ -subadditivity: If $\{E_n\}_{n=1}^{\infty} \subseteq \mathcal{B}, \, \mu\left(\bigcup_{n=1}^{\infty} E_n\right) \ge \sum_{n=1}^{\infty} \mu(E_n)$ (3) Continuity from below: If $E_1 \subseteq E_2 \subseteq \cdots$, then $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu(E_n)$

(4) Continuity from above If $E_1 \supseteq E_2 \supseteq \cdots$ and $\mu(E_1) < \infty$, then $\mu(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} \mu(E_n)$

Proof.

- (1) $\mu(F) = \mu(E \cup (F \setminus E)) = \mu(E) + \mu(F \setminus E) \ge \mu(E)$
- (2) write a countable union as a countable disjoint union $\bigcup_{n=1}^{\infty} E_n = \bigcup_{n=1}^{\infty} A_n, A_n \text{ disjoint. } (A_n = E_n \setminus \left(\bigcup_{i=1}^{n-1} E_i\right)). \ \mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) \leq \sum_{n=1}^{\infty} \mu(E_n) \left(\sigma \text{additivity.} \right). \ \text{(Each } \mu(A_n \leq \mu(E_n))).$

Note 1.2
$$\mu\left(\bigcup_{n=1}^{N} E_n\right) \leq \sum_{n=1}^{N} \mu(E_n)$$
 this is called "subadditivity"

(3) Claim: Let $\{F_n\}_{n=1}^{\infty} \subseteq \mathcal{B}, \, \mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \lim_{k \to \infty} \mu\left(\bigcup_{n=1}^{k} F_n\right).$

Proof. Write
$$\bigcup_{n=1}^{\infty} F_n = \bigcup_{n=1}^{\infty} A_n$$
, A_n disjoint. $A_n = F_n \setminus \left(\bigcup_{i=1}^{n-1} F_i\right)$, $\bigcup_{n=1}^k F_n = \bigcup_{n=1}^k A_n$. $\mu\left(\bigcup_{n=1}^{\infty} F_n\right) = \mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n) = \lim_{k \to \infty} \sum_{n=1}^k \mu(A_n) = \lim_{k \to \infty} \mu\left(\bigcup_{n=1}^k F_n\right) = \lim_{k \to \infty} \mu\left(\bigcup_{n=1}^k F_n\right)$

Now
$$E_1 \subseteq E_2 \subseteq \cdots$$
, $\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{k \to \infty} \mu\left(\bigcup_{n=1}^k E_n\right) = \lim_{k \to \infty} k$

Definition 1.6 — complete.

A measure μ on (X, \mathcal{B}) is **complete** if $\forall N \in \mathcal{B}$ with $\mu(N) = 0, E \subseteq N \implies E \in \mathcal{B}$

■ Example 1.5 Take m, the Lebesgue measure on \mathbb{R} , (\mathbb{R}, m) is complete. (is the Lebesgue measurable sets). $(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m)$ is not complete $(\mathcal{B}_{\mathbb{R}})$ is the Borel σ -algebra). In \mathbb{R} you can find some measure zero set that is not Borel

Theorem 1.6

Let μ be a measure on (X, \mathcal{B}) , let $\overline{B} = \sigma(\mathcal{B}, \{E : E \subseteq N, \mu(N) = 0\})$. Then there is a unique complete measure $\overline{\mu}$ on (X, \overline{cB}) , $\overline{\mu}_{\mathcal{B}} = \mu$ (i.e. $\forall B \in \mathcal{B}, \overline{\mu}(B) = \mu(B)$)

Lemma 1.7

$$\overline{B} = \{ E \cup F : E \in \mathcal{B}, F \subseteq N, \mu(N) = 0 \}$$

Proof. Suffices to show the RHS is a σ -alg.

- $\bullet \varnothing \in B$
- $E \cup F \in \overline{B}$, $F \subseteq N$, $\mu(N) = 0$, $X \setminus (E \cup F) = \underbrace{X \setminus (E \cup N)}_{\in \mathcal{B}} \cup \underbrace{(N \setminus (E \cup F))}_{\subseteq N, \ \mu(N) = 0} \in \text{RHS}.$

•
$$E_i \cup F_i \in \overline{B}$$
, $F_i \subseteq N_i$, $\mu(N_i) = 0$. $\bigcup_{i=1}^{\infty} (E_i \cup F_i) = \underbrace{\left(\bigcup_{i=1}^{\infty} E_i\right)}_{\in \mathcal{B}} \cup \underbrace{\left(\bigcup_{i=1}^{\infty} F_i\right)}_{\subseteq \cup N_i, \ \mu(\cup N_i) = 0} \in \text{RHS}$
 $\bigcup_{i=1}^{\infty} F_i \subseteq \bigcup_{i=1}^{\infty} N_i, \ 0 = \mu\left(\bigcup_{i=1}^{\infty} F_i\right) \le \sum_{i=1}^{\infty} \mu(N_i) = 0$

Proof. thm 1.6:

On $\overline{\mathcal{B}}$, define $\overline{\mu}$ such that $\overline{\mu}(E \cup F) := \mu(E)$.

(1) We first need to show $\overline{\mu}$ is well-defined. Let $A = E_i \cup F_i = E_2 \cup F_2$, $F_i \subseteq N_i$. $\mu(N_i) = 0$. Need $\mu(E_1) = \mu(E_2)$. We claim $\mu(E_1) = \mu(E_2) = \mu(E_1 \cap E_2)$. Let $E = E_1 \cap E_2$, then

$$\mu(E) \leq \mu(E_i).$$
 $E_1 \subseteq (N_1 \cup N_2) \cup (E_1 \cap E_2) = E \cup N_1 \cup N_2, \ \mu(E) \leq \mu(E_1) \leq \mu(E \cup N_1 \cup N_2) \leq \mu(E) + \mu(N_1) + \mu(N_2) = \mu(E) \implies \mu(E) = \mu(E_1) = \mu(E_1)$

- (2) We need to show $\overline{\mu}$ is a mesaure
 - $\overline{\mu}(\varnothing) = 0, \overline{\mu} \ge 0$
 - Let $E_n \cup F_n \in \overline{\mathcal{B}}$ disjoint.

$$\overline{\mu}\left(\bigcup_{n=1}^{\infty} (E_n \cup F_n)\right) = \overline{\mu}\left(\underbrace{\bigcup_{i=1}^{\infty} E_i}_{\in \mathcal{B}} \cup \underbrace{\bigcup_{i=1}^{\infty} F_i}_{\subseteq \cup N_i, \ \mu(\cup N_i) = 0}\right) = \mu\left(\bigcup_{n=1}^{\infty} E_n\right)$$

$$E_n \text{ disjoint} = \sum_{n=1}^{\infty} \mu(E_n) = \sum_{n=1}^{\infty} \overline{\mu}(E_n \cup F_n)$$

- $\forall B \in \mathcal{B}, B = B \cup \emptyset \in \overline{B}, \overline{\mu}(B \cup \emptyset) = \overline{\mu}(B) = \mu(B), \overline{\mu}|_{\mathcal{B}} = \mu$
- $\overline{\mu}$ is complete. $\forall M \in \overline{\mathcal{B}}, \ \overline{\mu}(M) = 0, \ \forall G \subseteq M. \ \text{Need} \ G \in \overline{\mathcal{B}}.$ $M \in \overline{\mathcal{B}} \implies M \in E \cup F, \ E \in \mathcal{B}, \ F \subseteq N, \ \mu(N) = 0. \ \overline{\mu}(M) = 0 \implies \mu(E) = 0.$ $G \subset M = E \cup F \subseteq E \cup N, \ \mu(E \cup N) = 0 \implies G \in \overline{\mathcal{B}}$

Definition 1.7 — completion.

 $(X, \overline{\mathcal{B}}, \overline{\mu})$ is called the completion of (X, \mathcal{B}, μ)

_