2017-09-21

- Asymptotic notations:
 - f(n) = O(g(n)): upper bound. $\exists k > 0, n_0 > 0$ such that $f(n) \le k \cdot g(n) \ \forall n > n_0$
 - $f(n) = \Theta(g(n))$: tight bound. $\exists k_1 > 0, k_2 > 0, n_0 > 0$ such that $k_1 \cdot g(n) \le f(n) \le k_2 \cdot g(n) \ \forall \ n > n_0$
 - $f(n) = \Omega(g(n))$: lower bound. $\exists k > 0, n_0 > 0$ such that $k \cdot g(n) \le f(n) \forall n > n_0$
 - f(n) = o(g(n)): strict upper bound. $\forall k > 0 \exists n_0 > 0$ such that $f(n) < k \cdot g(n) \forall n > n_0$
 - $f(n) = \omega(g(n))$: strict lower bound. $\forall k > 0 \exists n_0 > 0$ such that $k \cdot g(n) < f(n) \forall n > n_0$
- The property of f(n) = O(g(n)) holds after summation, multiplication, and power, but not logarithm and exponential.
- Average-case analysis requires the assumption about the probability distribution of problem instances.
- Time complexity and space complexity focus on the worst-case complexity.
- The (worst-case) time complexity of an algorithm is said to be $\Theta(f(n))$ if $\exists f(n)$ s.t. A runs in time O(f(n)) and $\Omega(f(n))$.
- Algorithm *A* is *no worse than* Algorithm *B* in terms of worst-case time complexity if $\exists f(n)$ s.t. *A* runs in time O(f(n)) and *B* runs in time $\Omega(f(n))$.
- Algorithm A is (strictly) better than Algorithm B in terms of worst-case time complexity if $\exists f(n)$ s.t. either
 - A runs in time O(f(n)) and B runs in time $\omega(f(n))$.
 - A runs in time o(f(n)) and B runs in time $\Omega(f(n))$.
- The (worst-case) time complexity of a problem is said to be $\Theta(f(n))$ if both
 - The time complexity of the problem is O(f(n)), i.e. there exists an O(f(n))-time algorithm that solves the problem.
 - The time complexity of the problem is $\Omega(f(n))$, i.e. any algorithm that solves the problem requires $\Omega(f(n))$ time.
- Problem P is no harder than Problem Q in terms of (worst-case) time complexity if $\exists f(n)$ s.t. the time complexity of P is O(f(n)) and that of Q is $\Omega(f(n))$.
- Problem P is (strictly) easier than Problem Q in terms of (worst-case) time complexity if $\exists f(n)$ s.t. either
 - The time complexity of *P* is O(f(n)) and that of *B* runs in time $\omega(f(n))$.
 - The time complexity of *P* is o(f(n)) and that of *B* runs in time $\Omega(f(n))$.