SMARTFARMER- IOT ENABLED SMART FARMING APPLICATION

IBM-Project-5276-1658755062

NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READINESS FOR INNOVATION, EMPLOYNMENT AND ENTERPRENEURSHIP

TEAM ID: PNT2022TMID35659

FACULTY MENTOR: Dr. V. P. Jayachitra **DEPARTMENT**: Computer Technology

COLLEGE: Madras Institute of Technology, Anna University

A PROJECT REPORT BY

Danush Gupta V K (2019503012) Sham Ganesh M (2019503559) Premal Raj Vellaisamy (2019503032) Cyril Tony A (2019503010)

1. INTRODUCTION

- Project Overview
- Purpose

2. LITERATURE SURVEY

- Existing solutions and problems
- References
- Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- Empathy Map Canvas
- Ideation & Brainstorming
- Proposed Solution
- Problem Solution fit

4. REQUIREMENT ANALYSIS

- Functional requirements
- Non-functional requirements

5. PROJECT DESIGN

- Data Flow Diagrams
- Solution & Technical Architecture

6. PROJECT PLANNING & SCHEDULING

- Sprint Planning, Schedule & Estimation
- 7. CODING & SOLUTIONING (Explain the features added in the project along with code)
 - Feature

8. TESTING

- Test Cases
- User Acceptance Testing

9. RESULTS

• Performance Metrics

10. ADVANTAGES & DISADVANTAGES

11. CONCLUSION

12. FUTURE SCOPE

13. APPENDIX

- Source Code
- Demo video link

1. INTRODUCTION

a. Project Overview

The global agriculture industry contributes USD 2.4 trillion, making the agriculture field as important as any other industry in the world. All around the world, 45 percentage of people are reliant on agriculture for their livelihood an in India almost 60 percentage of the population are involved in agriculture and related activities. The agriculture sector, currently valued at US\$ 370 billion, is one of the major sectors in the Indian economy. According to the Economic Survey 2020-21, GDP contribution by the agriculture sector is likely to be 19.9% in 2020-21, increasing from 17.8% recorded in 2019-20. So these facts prove that agriculture is inevitable process as everyone still eats food.

But nowadays agriculture itself has become a tedious task due to climate change, natural calamities, water scarcity etc... These things make agriculture a big challenge and force the farmers to quit. Using technologies would be an solution for making agriculture easier and help the farmers increase their productivity. There are many existing technologies and methods to enhance farming but these are not feasible. But this scenario should change and farmer should become smart and take the help of technology to overcome these challenges. Hence we have come with a solution SmartFarmer an Iot enabled smart farming application which helps the farmer to monitor the soil and weather conditions and can water the crops remotely.

With rising population, there is a need for increased agricultural production. In order to support greater production in farms, the requirement of the amount of fresh water used in irrigation also rises. Currently, agriculture accounts 83% of the total water consumption in India. Unplanned use of water inadvertently results in wastage of water. Watering of crops is also decided by the soil moisture level, weather conditions and amount of water content in air.

b. Purpose

To efficiently water crops we need to monitor the soil moisture, temperature and humidity. In our project we accomplish the task of monitoring the parameter by deploying various sensors and farmers can monitor all the sensor parameters by using a web or mobile application even if the farmer is not near his field. They can make the decision whether to water the crop or postpone it by monitoring the sensor parameters and controlling the motor pumps from the mobile application itself. Implementing these technological solutions enable reliable management and monitoring of farms. As farmers get a complete digital analysis of farms in real-time, they can act accordingly. The advantages of the system are

- Increases agriculture productivity and lowers production cost
- Inhibits soil degradation
- Promotes effective and efficient use of water resources
- Uplifts socio-economic statuses of farmers
- Reduces environmental and ecological impacts
- Augments worker safety

2. LITERATURE SURVEY

a. Existing Solutions and Problems

Prathibha S R et al. [1] offered a system that uses a CC3200 microcontroller unit and also employed a GPRS module to send the air temperature values and air humidity values using temperature and humidity sensors to the farmer via MMS. It also has a camera which takes pictures and sends the images to the farmer. According to their approach, the system can be only implemented for green house and temperature dependent plants which is a major drawback. The system only sends the details of the sensors to the farmer but is not capable of taking actions such as automatic irrigation based on the values of the sensors.

Rahul Dagar et al. [2] have offered a model which can only be implemented in Poly Houses (closed spaces), which uses a number of sensors such as water volume sensor, pH sensor, moisture sensor, temperature sensor and motion detector sensor. This system takes actions according to the values produced by the sensors. But, their system has no benchmarks produced for the values under which the server takes appropriate actions. Each crop has different threshold values which need to be satisfied for better yield. Also, the system works only for closed spaces under their proposed strategy.

Vaishali Puranik et al. [3] proposed a method that incorporates two sensors. Soil moisture sensor measures the moisture and if less than threshold value it irrigates the crops. They have also developed a rectification process of any error in the irrigation system by notifying the farmer and technician if the irrigation system is not working properly. The second sensor, pH sensor measures the Nitrogen value of the soil and compares with the threshold value. If there is any deficiency or excess, the system sends an alert to the farmer. The model was unreliable because it is using the same threshold value for all crops but each crop has a different level of moisture and fertilizers needed. Also the number of sensors used is very minimal and is not sufficient to increase the crop yield for the farmers.

Abhiram MSD et al. [4] have elucidated an approach by using NodeMCU and moisture, temperature, humidity and rain intensity sensors. The system is connected with the Blynk application where the farmer can see the readings and actions of the sensor. The major limitation

of the proposed method was that the threshold values must be manually set by the farmer who may or may not know the accurate values for getting better crop yields. Also the rain intensity sensor can provide false positives in cases where it is not raining and the water from the pump motor is detected wrongly as rain water.

Nor Adni Mat Leh et al. [5] have proposed a model in which Arduino Mega is connected with a soil sensor and DHT11 sensor. The sensor values are sent to the Blynk application using the Internet where the farmer can see the readings. According to the values from the sensors, water pumps are turned on. The suggested approach has a drawback because the system is wholly dependent only on the soil moisture and a fixed threshold value.

A. Anitha et al. [6] have offered a system that uses an Arduino UNO microcontroller unit employed with an ESP8266 WiFi module to send the values of the sensor readings to a cloud storage ThingSpeak. Here, the farmer can view the reading using the Internet. Based on manually fixed threshold values the motor pumps are switched on or off automatically. The major drawback of this system is the manually fixed thresholds which are kept common for all crops. Each plant variety requires different types of conditions to produce more yield.

Sameer Qazi et al. [7] have done a survey on IoT-Equipped and AI-Enabled Next Generation Smart Agriculture which discusses about the available advancements in the field of smart agriculture systems through IoT technologies and AI techniques in detail and have done a critical review of these two available technologies and challenges in their widespread deployment; and an in-depth discussion about the future trends including both technological and social, when smart agriculture systems will be widely adopted by the farmers globally. The authors of the paper have also discussed wireless sensor network (WSN) technology and use-cases of IoT in SAS and the smart irrigation technologies used currently in the world. They have also presented an overview of the use of UAVs, which is a current driving force behind AI-powered solutions for SAS and discussed these solutions in detail, which are possible via DL applications.

Muhammad Ayaz et al. [8] have published the journal, Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk. This journal is a compendium of knowledge that can help the researchers and agriculture engineers implementing the IoT-based technologies to achieve the desired smart agriculture. It discusses about the role of IoT in advanced agriculture

practices, like vertical farming (VF), hydroponics, and phenotyping, to manage the issues of increased urban population and highlights various technologies and equipment, like sensors, robots, tractors, and communication devices, being used to implement IoT in this industry. It also explores scenarios which cannot be handled even by using the latest technologies.

Muhammad Shoaib Farooq et al. [9] have done a Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming. This paper presents major components of IoT based smart farming along with relevant technologies and a detailed discussion on network architecture of IoT that involves network architecture and layers, network topologies used; and devices and protocols used in agriculture IoT. The authors have also covered the security and privacy issues in IoT based agriculture and also the open issues and challenges to improve IoT based agricultural technologies from different aspects.

Maanak Gupta et al. [10] have published the journal, Security and Privacy in Smart Farming: Challenges and Opportunities. This journal presents a holistic study on security and privacy in a smart farming ecosystem. The journal also outlines a multi-layered architecture relevant to the precision agriculture domain and discusses the security and privacy issues in this dynamic and distributed cyber physical environment. It identifies potential cybersecurity issues in smart farming and illustrates scenario specific cyber attacks, which have been categorized into data, network, supply chain, and other common attacks. It presents an extensive evaluation of the current cybersecurity research, countermeasures in smart farming, and also enlists the focus, contributions and weaknesses of current research works. It provides a clear view of the open security research challenges in different areas including next generation network security, trustworthy supply chain and compliance, adversarial machine learning and AI, and access control, trust and information sharing.

S.	Authors	Title	Hardware	Proposed	Disadvantages
No			Used	Work	
1	D 4111 CD	I TO 1	GG2200	OCC 1	TTI
1	,		Offered a system	The system can be	
	Anupama	Monitoring	microcontroll	that uses a	only implemented
	Hongal, Jyothi M	System In	er unit, GPRS	CC3200	for green house
	P	Smart	module,	microcontroller	and temperature
		Agriculture	temperature,	unit and also	dependent plants
			humidity	employed a	which is a major
			sensors and	GPRS module to	drawback. The
			camera	send the air	system only sends
				temperature	the details of the
				values and air	sensors to the
				humidity values	farmer but is not
				using	capable of taking
				temperature and	actions such as
				humidity sensors	automatic
				to the farmer via	irrigation based on
				MMS. It also	the values of the
				has a camera	sensors.
				which takes	
				pictures and	
				sends the images	
				to the farmer.	
2	Rahul Dagar,	Smart Farming	Water	Offered a model	The system has
	Subhranil Som,	– IoT in	volume	which can only	no benchmarks
	Sunil Kumar	Agriculture	sensor, pH	be implemented	produced for the
	Khatri		sensor,	in Poly Houses	values under
			moisture	(closed spaces),	which the server
			moisture	(closed spaces),	which the serve

					<u> </u>
			sensor,	which uses a	takes appropriate
			temperature	number of	actions. Each
			sensor and	sensors such as	crop has different
			motion	water volume	threshold values
			detector	sensor, pH	which need to be
			sensor	sensor, moisture	satisfied for better
				sensor,	yield. Also, the
				temperature	system works
				sensor and	only for closed
				motion detector	spaces under their
				sensor. This	proposed
				system takes	strategy.
				actions	
				according to the	
				values produced	
				by the sensors.	
3	Mrs. Vaishali	Automation in	Arduino	Proposed a	The model was
	Puranik, Mrs.	Agriculture	UNO, Soil	method that	unreliable
	Sharmila, Mr.	and IoT	moisture	incorporates two	because it is
	Ankit Ranjan,		sensor, pH	sensors. Soil	using the same
	Ms. Anamika		sensor,	moisture sensor	threshold value
	Kumari		temperature	measures the	for all crops but
			sensor,	moisture and if	each crop has a
			humidity	less than	different level of
			sensor and	threshold value	moisture and
			GSM module	it irrigates the	fertilizers needed.
				crops. They	Also the number
				have also	of sensors used is
				developed a	very minimal and
				rectification	is not sufficient to

				process of any	increase the crop
				process of any error in the	•
					yield for the
				irrigation system	farmers.
				by notifying the	
				farmer and	
				technician if the	
				irrigation system	
				is not working	
				properly. The	
				second sensor,	
				pH sensor	
				measures the	
				Nitrogen value	
				of the soil and	
				compares with	
				the threshold	
				value. If there is	
				any deficiency	
				or excess, the	
				system sends an	
				alert to the	
				farmer.	
4	Abhiram MSD,	Smart Farming	NodeMCU,	Elucidated an	The major
	Jyothsnavi	System using	moisture,	approach by	limitation of the
	Kuppili,	IoT for	temperature,	using	proposed method
	N.Alivelu Manga	Efficient Crop	humidity and	NodeMCU and	was that the
		Growth	rain intensity	moisture,	threshold values
			sensors.	temperature,	must be manually
				humidity and	set by the farmer
				rain intensity	who may or may

	T	I	I		
				sensors. The	not know the
				system is	accurate values
				connected with	for getting better
				the Blynk	crop yields. Also
				application	the rain intensity
				where the farmer	sensor can
				can see the	provide false
				readings and	positives in cases
				actions of the	where it is not
				sensor.	raining and the
					water from the
					pump motor is
					detected wrongly
					as rain water.
5	Nor Adni Mat	Smart	Arduino	Proposed a	The suggested
	Leh, Muhammad	Irrigation	Mega, soil	model in which	approach has a
	Syazwan	System Using	sensor and	Arduino Mega is	drawback
	Ariffuddin Mohd	Internet of	DHT11	connected with a	because the
	Kamaldin,	Things	sensor	soil sensor and	system is wholly
	Zuraida			DHT11 sensor.	dependent only
	Muhammad, Nur			The sensor	on the soil
	Atharah			values are sent	moisture and a
	Kamarzaman			to the Blynk	fixed threshold
				application	value.
				using the	
				Internet where	
				the farmer can	
				see the readings.	
				According to the	
				values from the	

				sensors, water pumps are turned on.	
6	A. Anitha, N. Sampath and M. A. Jerlin, "Smart Irrigation system using Internet of Things," 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 2020, pp. 1-7, doi: 10.1109/ic-ETITE47903.202 0.271.	Smart Irrigation system using Internet of Things	Arduino UNO, ESP8266 WiFi module, DHTll temperature and humidity sensor, water level sensor, soil moisture sensor.	turned on. Offered a system that uses an Arduino UNO microcontroller unit employed with an ESP8266 WiFi module to send the values of the sensor readings to a cloud storage ThingSpeak. Here, the farmer can view the reading using the Internet. Based on manually fixed threshold values	The major drawback of this system is the manually fixed thresholds which are kept common for all crops. Each plant variety requires different types of conditions to produce more yield.
				the motor pumps are switched on or off automatically.	

b. References

- S. R. Prathibha, A. Hongal and M. P. Jyothi, "IOT Based Monitoring System in Smart Agriculture," 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), 2017, pp. 81-84, doi: 10.1109/ICRAECT.2017.52.
- R. Dagar, S. Som and S. K. Khatri, "Smart Farming IoT in Agriculture," 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 2018, pp. 1052-1056, doi: 10.1109/ICIRCA.2018.8597264.
- 3. V. Puranik, Sharmila, A. Ranjan and A. Kumari, "Automation in Agriculture and IoT," 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019, pp. 1-6, doi: 10.1109/IoT-SIU.2019.8777619.
- 4. M. S. D. Abhiram, J. Kuppili and N. A. Manga, "Smart Farming System using IoT for Efficient Crop Growth." 2020 IEEE International Students' Conference Electrical, Electronics Computer Science and (SCEECS), 2020, 1-4, doi: pp. 10.1109/SCEECS48394.2020.147.
- N. A. M. Leh, M. S. A. M. Kamaldin, Z. Muhammad and N. A. Kamarzaman, "Smart Irrigation System Using Internet of Things," 2019 IEEE 9th International Conference on System Engineering and Technology (ICSET), 2019, pp. 96-101, doi: 10.1109/ICSEngT.2019.8906497.
- A. Anitha, N. Sampath and M. A. Jerlin, "Smart Irrigation system using Internet of Things," 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), 2020, pp. 1-7, doi: 10.1109/ic-ETITE47903.2020.271.
- 7. S. Qazi, B. A. Khawaja and Q. U. Farooq, "IoT-Equipped and AI-Enabled Next Generation Smart Agriculture: A Critical Review, Current Challenges and Future Trends," in IEEE Access, vol. 10, pp. 21219-21235, 2022, doi: 10.1109/ACCESS.2022.3152544.
- 8. M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour and E. -H. M. Aggoune, "Internet-of-Things (IoT)-Based Smart Agriculture: Toward Making the Fields Talk," in IEEE Access, vol. 7, pp. 129551-129583, 2019, doi: 10.1109/ACCESS.2019.2932609.

- M. S. Farooq, S. Riaz, A. Abid, K. Abid and M. A. Naeem, "A Survey on the Role of IoT in Agriculture for the Implementation of Smart Farming," in IEEE Access, vol. 7, pp. 156237-156271, 2019, doi: 10.1109/ACCESS.2019.2949703.
- M. Gupta, M. Abdelsalam, S. Khorsandroo and S. Mittal, "Security and Privacy in Smart Farming: Challenges and Opportunities," in IEEE Access, vol. 8, pp. 34564-34584, 2020, doi: 10.1109/ACCESS.2020.2975142.

c. Problem Statement Definition

The soil moisture sensor measures wetness content in the soil. The Arduino UNO microcontroller used to receive input from a various sensors and it can be controlled automatically. When soil moisture sensor goes low the water pump will be on and it exceeds defined levels of the water motor will turn off automatically. We can constantly monitor the growth of a crop using ultrasonic sensor. PIR sensor detects the motion or unusual movement in the agricultural land. This device his very helpful to the former to monitor and control environmental parameters at their field. The farmers did not go to theirfield, they can remotely monitor and control using cloud.

3. IDEATION & PROPOSED SOLUTION

a. Empathy Map Canvas

b. Ideation and Brainstorming

• Step 1: Team Gathering, Collaboration and Select the Problem Statement

• Step 2: Brainstorm, Idea Listing and Grouping

• Step 3: Idea Prioritization

c. Proposed Solution

S.No.	Parameter	Description
1.	Problem Statement (Problem to besolved)	• Remote irrigation considering various parameters like temperature, soil moisture andhumidity.
		• Efficient usage of water such as to maximise the yield.
2.	Idea / Solution description	IoT enabled Smart Farming using various sensors which helps to make the decision moreprecise.
3.	Novelty / Uniqueness	 Considering weather forecast and making accurate decision. Using solar energy to power IoT device andsensors. Alert farmers when attention is required and also notify if any fault occurs in the motor.
4.	Social Impact / Customer Satisfaction	 Reduces Human effort and almost saves seventypercent of time of farmers. Eco-friendly and reduces the water wastage. Automate the process and makes the farmers toget used to technology.
5.	Business Model (Revenue Model)	 Subscription based model, charges for predicting and suggesting precise decision. Charging for installation and replacement of sensors and other hardware.

Scalability of the Solution
 Easily scalable even for huge farms just by increasing the number of sensor and changingthe communication medium.
 Analysis of data is also scalable and different decisions can be made for different regions of the same farm.
 System is dynamic and can be customised foreach crop accordingly.

d. Problem solution fit

4. REQUIREMENT ANALYSIS

a. Functional Requirements

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement	Sub Requirement (Story / Sub-Task)
	(Epic)	
FR-1	User Registration	Registration through Gmail
		Create an username and password
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	User Log in	Checking for valid user credentials
FR-4	Sensor values	View the values provided by different types of
		sensors
		such as humidity, moisture, pH,
FR-5	Manage motors and	Automatically operate the switches of motors and
	sprinklers	sprinklers whenever required
FR-6	Log out	Exit

b. Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	It is very user friendly. People with less
		knowledge can also easily understand.
		Remote Management. With farms being in
		far-off areas and distant lands,
		farmers enable this for better solution.

NFR-2	Security	Smart farming, which involves the application
		of sensors and automated irrigation practices,
		can helpmonitor agricultural land, temperature,
		soil moisture, etc. This would enable farmers
		to monitor
		crops from anywhere.
NFR-3	Reliability	It has good consistency and accuracy as it
		activelyhelps farmers to understand better
		about the important factors such as water
		level, weather,
		humidity, and soil moisture.
NFR-4	Performance	The performance of smart farming is high,
		and it is very efficient as it is very easy to
		understand and
		has high security and scalability.
NFR-5	Availability	This smart farming is enabled at any
		system likelaptop, mobile phone, desktops
		and is very user
		friendly.
NFR-6	Scalability	Smart farming refers to the adaptability of a
		systemto increase the capacity, the number of
		technology
		devices such as sensors and actuators, while

5. PRODUCT DESIGN

a. Data flow diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and

where data is stored.

DFD Level0 (Industry Standard):

User Stories:

User Type	Functional Requireme nt (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	I can receive confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	I can register & access the dashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail	I can register & access the dashboard with Gmail Login	Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password	I can access dashboard with email login	High	Sprint-1
	Dashboard	USN-6	As a user I can enter into dashboard by using navigation panel	I can access the dashboard by using navigation panel	High	Sprint-1
Customer (Web user)	Registration	USN-1	As a user, I can register for the web application by entering my email, password, and confirming my password.	I can access my account / dashboard	High	Sprint-2
		USN-2	As a user, I will receive confirmation email once I have registered for the web application	I can receive confirmation email & click confirm	High	Sprint-2

	Login	USN-3	As a user, I can log into the web application by entering email & password	I can access dashboard with email login	High	Sprint-2
	Dashboard	USN-4	As a user I can enter into web dashboard by using navigation panel	I can access into dashboard by using navigation panel	High	Sprint-2
Customer Care Executive	Registration	USN-1	As a user I can contact the customer care service through phone or mail medium	I can receive confirmation SMS or email	High	Sprint-3
		USN-2	As a user I want customer care to answer the questions related to product and services	I can get the problem solved within a day	High	Sprint-3
		USN-3	As a user I want customer care to register my complaints	I can receive a confirmation message stating my complaint is registered	High	Sprint-3
		USN-4	As a user I want customer care to collect and analyse consumer feedback	I can get the status of my feedback	High	Sprint-3
		USN-5	As a user I want customer care to troubleshoot technical problems	I can get the problem solved within a day	High	Sprint-3
Administrator		USN-1	As a user I want the administrator to use good working hardware	I can get a guarantee and warranty card	High	Sprint-4
		USN-2	As a user I want the administrator to sell the product in a reasonable rate	I can get the cost of bill of materials	High	Sprint-4
		USN-3	As a user I want the administrator to refund my amount if I am not satisfied with the product	I can get an assurance stating I will get my amount back	High	Sprint-4

b. Solution and Technical Architecture

Solution Architecture Diagram:

• Solution Architecture:

- Various sensors such as soil moisture sensor, temperature and humidity sensor,
 PH sensor and light intensity records values and upload it to cloud.
- These sensors data are considered as parameters and also weather forecast data is also fetched using weather API's. These data act as input for the Arduino UNO.
- Arduino UNO is used as a processing unit which processes the data obtained from sensors and weather data from weather API. Based on these values the farmers are suggested with possible decisions.
- Farmer can control the motor remotely using the application developed using MIT App inventor.
- o If the farmer wants to water the crop then the Arduino switches on the motor and the water volume sensor ensures that the crops are not watered excessively.
- o The application also alerts the farmer at necessary situation.

Technical Architecture:

Table-1: Components & Technologies:

S.No	Component	Description	Technology
1.	User Interface	Web UI, Node-RED, MIT app	MIT App Inventor
2.	Arduino UNO	It is used as a processing unit.	Python
3.	Sensors	Temperature, humidity and moisture sensors, whichsends data for the application.	Python
4.	MQTT Protocol	The data to be collected and sent to farmer via MQTT protocol providing the data to easily monitor the crops.	IBM Watson IoT, IBM Watson Assistance
5.	Application Logic-1	Controlling the water pumps remotely.	IBM Watson, IBM Cloudant service, IBM Node-Red
6.	Application Logic-2	Notifying the farmer based on water requirements and based on weather.	Python
7.	Application Logic-3	Allowing the farmer to customise his field based ondifferent crops.	Python
8.	Database	Data Type, Configurations etc.	MySQL

9.	Cloud Database	Database Service on Cloud	IBM DB2, IBM
			Cloudant
10.	File Storage	System Storage.	IBM Block Storage
11.	External API	Using this IBM Weather API we can track the weather in the agriculture land and based on the weather reading the sensors will activate.	IBM Weather API
12.	Machine Learning Model	To predict the yield based on the crop growth.	Crop prediction model.
13.	Infrastructure (Server / Cloud)	Application Deployment on Local System / CloudCloud Server Configuration.	IBM Cloudant, IBM IoT Platform

Table-2: Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source Frameworks	Python, Arduino and MIT app Inventor	MIT License
2.	Security Implementations	Sensitive and private data must be protected from their production until the decision-making and storage stages.	Encryptions, IBM Controls
3.	Scalable Architecture	Scalable for more number of devices and for morearea of the farm.	Node Red Service
4.	Availability	Mobile, laptop, desktop.	MIT app, Web UI
5.	Performance	Design consideration for the performance of the application (number of requests per sec, use of Cache, use of CDN).	MIT app inventor.

6. PROJECT PLANNING AND SCHEDULING

Product Backlog, Sprint Schedule, and Estimation:

Sprint	Function al Requirem ent(Epic)	User Story Num ber	User Story / Task	Stor y Poin ts	Priority	Team Members
Sprint-1	Simula tion creatio n	USN-1	Connect Sensors and Arduino with python code	2	High	Danush Gupta V K, Sham Ganesh M, Premal Raj Vellaisamy, Cyril Tony A
Sprint-2	Software	USN-2	Creating device in the IBM Watson IoT platform, workflow for IoTscenarios usingNode- Red	2	High	Danush Gupta V K, Sham Ganesh M, Premal Raj Vellaisamy, Cyril Tony A
Sprint-3	MIT App Inve ntor	USN-3	Develop an applicatio n for the Smart farmer project using MITApp Inventor	2	High	Danush Gupta V K, Sham Ganesh M, Premal Raj Vellaisamy, Cyril Tony A
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Danush Gupta V K, Sham Ganesh M, Premal Raj Vellaisamy, Cyril Tony A
Sprint-4	Web UI	USN-4	To make the user to interact with software.	2	High	Danush Gupta V K, Sham Ganesh M, Premal Raj Vellaisamy, Cyril Tony A

Project Tracker, Velocity & Burndown Chart:

Sprint	Tota I Stor y Poin ts	Duratio n	Sprint Start Date	Sprint End Date (Plann ed)	Story Points Complete d (as on Planned EndDate)	Sprint Relea se Date (Actu al)
Sprint -1	20	7 Days	30 Oct 2022	06 Nov 2022	20	29 Oct 2022
Sprint -2	20	9 Days	31 Oct 2022	09 Nov 2022	20	05 Oct 2022
Sprint -3	20	6 Days	06 Nov 2022	13 Nov 2022	20	12 Oct 2022
Sprint -4	20	6 Days	11 Nov 2022	17 Nov 2022	20	15 Oct 2022

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

7. CODING AND SOLUTIONING

```
import wiotp.sdk.device
import time
import os
import datetime
 import random
myConfig = {
"identity": {
     "orgId": "ir6i21",
     "typeId": "DeviceNode",
     "deviceId": "73585"
     },
     "auth": {
           "token": "43218765"
      }
}
client = wiotp.sdk.device.DeviceClient (config=myConfig,
logHandlers=None)
client.connect ()
def myCommandCallback (cmd) :
     print ("Message received from IBM IoT Platform: %s" %
     cmd.data['command']) m=cmd.data['command']
     if (m=="motoron"):
          print ("Motor is switched on")
     elif (m=="motoroff"):
          print ("Motor is switched OFF") print (" ")
```

```
soil=random.randint (0,100)

temp=random.randint (-20, 125)

hum=random.randint (0, 100)

myData={"soil moisture": soil, "temperature":temp,
    "humidity":hum} client.publishEvent (eventId="status",
    msgFormat="json", data=myData, qos=0 , onPublish=None)

print ("Published data Successfully: %s", myData)

time.sleep (2)

client.commandCallback = myCommandCallback

client.disconnect ()
```

8. TESTING

while True:

Test case

Web application using Node Red

IoT Watson Platform

Device creation and connection to node-red

Python code connected to Iot watson platform

```
Ф
                                                                                                       main.py X
                                                                                          import wiotp.sdk.device
import time
                                                                                           import os
import datetime
              > Video

→ Build A Web Application Using Node...

☐ Create and Configure IBM Cloud Ser...

                 Develop a Mobile Application.pdf
                                                                                          client = wiotp.sdk.device.DeviceClient (config=myConfig, logHandlers=None)
client.connect ()
             Develop a python script to publish a...
IBM_Asignement1.docx
              IBM_Asignement3.docx
                                                                                          def mycommandCallback (cmd) :
    print ("Message received from IBM IOT Platform: %s" % cmd.data['command'])
    m-cmd.data['command']
    if (m--"motoron'):
        print ("Motor is switched on")
    elif (m--"motoroff"):
        print ("Motor is switched OFF")
    print ("Motor is switched OFF")
    print ("Notor is switched OFF")

    IBM_Assignment2_Sham_Ganesh.pdf
    IBM_Assignment3_Sham_Ganesh.pdf

                                                                                                le True:
soil-random.randint (0,100)
temp-random.randint (-20, 125)
hum-random.randint (0, 100)
myObata=['soil moisture': soil, "temperature":temp, "humidity":hum)
client.publishevent (eventide "status", msgformat="json", data-myData, qos=0 , onPublish=None)
print ("Published data Successfully: %s", myOata)
            SmartFarmer-Abstract.docx
                                                                                                  print ("Published data Successfully: %s", m
time.sleep (4) |
client.commandCallback = myCommandCallback
          > OUTLINE
                                                                                                                                   ■ Q ■ □ © Ø ■ △ ⋈ ■
```

9. RESULTS

a. Performance Metrics

10. Advantages and disadvantages

a. Advantages:

- A remote control system can help in working irrigation system valves dependent
 on schedule. Irrigating remote farm properties can be exceptionally troublesome
 and labor- intensive. It gets hard to comprehend when the valves were started
 and whether the ideal measure of water was distributed.
- For situations where a quick reaction is required, manual valve actuation may not be conceivable constantly. Thus, remote observing and control of irrigation systems, generators or wind machines or some other motor-driven hardware become the next logical step.

- Various solutions are available to monitor engine statistics and starting or stopping the engine. When the client chooses to begin or stop the motor, the program transmits a sign to the unit within seconds by means of a mobile phone system.
- Submersible weight sensors or ultrasonic sensors can screen the degree of tanks, lakes, wells and different kinds of fluid stockpiling like fuel and compost. The product figures volume dependent on the tank or lake geometry after some time.
 It conveys alarms dependent on various conditions.

b. Disadvantages:

- The smart agriculture needs availability of internet continuously. Rural part of
 most of the developing countries does not fulfil this requirement. Moreover
 internet connection is slower.
- The smart farming based equipment require farmers to understand and learn the
 use of technology. This is major challenge in adopting smart agriculture farming
 at large scale across the countries.

11.CONCLUSION

Farmers can benefit greatly from an IoT-based smart agriculture system. As a result of the lack of irrigation, agriculture suffers. Climate factors such as humidity, temperature, and moisture can be adjusted dependent on the local environmental variables. This technology also detects animal invasions, which are a major cause of crop loss. This technology aids in the scheduling of irrigation based on present data from the field and records from a climate source. It helps in deciding the farmer to whether to do irrigation or not to do. Continuous internet connectivity is required for continuous monitoring of data from sensors. This also can be overcome by using GSM unit as an alternative of mobile app. By GSM, SMS can be sent to farmers phone.

12.Future scope

In the current project we have implemented the project that can protect and maintain the the crop. In this project the farmer monitor and control the field remotely. In future we can add or update few more things to this project

- We can create few more models of the same project, so that the farmer can have information of a entire.
- We can update this project by using solar power mechanism. So that the power supply from electric poles can be replaced with solar panels. It reduces the power line cost. It will be a one time investment. We can add solar fencing technology to this project.
- We can use GSM technology to this project so that the farmers can get the information directly to his home through SMS. This helps the farmer to get information if there is a internet issues.
- We can add camera feature so that the farmer can monitor his field in real time.

 This helps in avoiding thefts.

13.Appendix

Source Code:

```
import wiotp.sdk.device
import time
import os
import datetime
import random
myConfig = {
  "identity": {
      "orgId": "ir6i21",
      "typeId": "DeviceNode",
      "deviceId": "73585"
      },
      "auth": {
```

```
"token": "43218765"
      }
}
client = wiotp.sdk.device.DeviceClient (config=myConfig,
logHandlers=None)
client.connect ()
def myCommandCallback (cmd) :
     print ("Message received from IBM IoT Platform: %s" %
     cmd.data['command']) m=cmd.data['command']
     if (m=="motoron"):
          print ("Motor is switched on")
     elif (m=="motoroff"):
          print ("Motor is switched OFF") print (" ")
while True:
     soil=random.randint (0,100)
     temp=random.randint (-20, 125)
     hum=random.randint (0, 100)
     myData={"soil moisture": soil, "temperature":temp,
     "humidity":hum} client.publishEvent (eventId="status",
     msgFormat="json", data=myData, qos=0 , onPublish=None)
     print ("Published data Successfully: %s", myData)
     time.sleep (2)
     client.commandCallback = myCommandCallback
```

DEMO VIDEO LINK:

https://drive.google.com/file/d/1gCMWTlDmOyfcEq10csHek4iPRkN7_9pN/view?usp=share_link