SOLUTION FOR HOMEWORK ASSIGNMENT NO. 05

Nils Hoyer, Maurice Morgenthaler

Exercise 5.1

a) We are asked to find the position α for a given distance $\beta = 30$. To do this we maximize a likelihood function based on the probability $p(x; \alpha, \beta)$ which is given as

$$p(x; \alpha, \beta) = \prod_{i=1}^{n}$$
 (1)

Exercise 5.2

After importing the dataset we plotted it to confirm that we indeed have a gaussian distribution

$$p(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (2)

The negative loglikelihood function then looks like

$$l(\mu, \sigma; x) = \ln \left(\prod_{i=1}^{n} p(x_i; \mu, \sigma) \right)$$
$$= \sum_{i=1}^{n} \left(-\ln \left(\sigma \sqrt{2\pi} \right) - \frac{(x - \mu)^2}{2\sigma^2} \right)$$
$$= -\sum_{i=1}^{n} \left(\ln \left(\sigma \sqrt{2\pi} \right) + \frac{(x - \mu)^2}{2\sigma^2} \right)$$

The resulting plot is illustrated in figure 1. The output by the fit is given in tabke 1.

Figure 1: Distribution of data points given in the file 'data_05.h'. The distribution of points seem to follow a gaussian distribution.

Distribution of measurements

Table 1: Summary of all fitted parameters.

Parameter	Value	
	$\mathbf{fixed}\ \sigma$	$\mathbf{unfixed}\ \sigma$
μ	39.916	39.916
σ	0.15	0.089