

Índice

- 1. Maldición de la dimensionalidad
- 2. Métodos de Acceso Métrico

Combinatorial explosion

Combinatorial explosion

Muestreo

Una dimensión

Muestreo

Dos dimensiones

Muestreo

Tres dimensiones

Hughes Phenomenon

Reducción de Dimensionalidad

Maldición de la Dimensionalidad

$$V_n = \frac{\pi^{n/2}R^n}{\Gamma\left(1 + \frac{n}{2}\right)} = \frac{\pi^{n/2}R^n}{\left(\frac{n}{2}\right)!}$$

Maldición de la Dimensionalidad

Maldición de la Dimensionalidad

Espacio métrico

$$M = (D, d)$$
 $d: M \times M \to \mathbb{R}$

$$d: M \times M \to \mathbb{R}$$

Dominio de Función los datos distancia

Simetría: d(x,y) = d(y,x)

Identidad: $x = y \leftrightarrow d(x, y) = 0$

Desigualdad triangular: $d(x,z) \le d(x,y) + d(y,z)$

No negatividad: $d(x,y) \ge 0$

Distancia Hamming

Distancia Hamming

Distancia Levenshtein

Distancia Levenshtein

$$\operatorname{lev}(a,b) = egin{cases} |a| & ext{if } |b| = 0, \ |b| & ext{if } |a| = 0, \ |\operatorname{lev} ig(\operatorname{tail}(a), \operatorname{tail}(b) ig) & ext{if } a[0] = b[0], \ 1 + \min \left\{ egin{cases} \operatorname{lev} ig(\operatorname{tail}(a), b ig) \ \operatorname{lev} ig(\operatorname{tail}(b) ig) & ext{otherwise}, \ |\operatorname{lev} ig(\operatorname{tail}(a), \operatorname{tail}(b) ig) & ext{otherwise}, \end{cases} \end{cases}$$

		h	е	1	1	0
82	0	1	2	3	4	5
k	1	1	2	3	4	5
е	2	2	1	2	3	4
	3	3	2	1	2	2
m	4	4	3	2	2	3

Métricas continuas

Distancias Minkowski

$$D\left(X,Y
ight) = \left(\sum_{i=1}^{n}\left|x_{i}-y_{i}
ight|^{p}
ight)^{rac{1}{p}}.$$

Distancia Manhattan

$$d_{\mathrm{T}}(\mathbf{p},\mathbf{q}) = \left\lVert \mathbf{p} - \mathbf{q}
ight
Vert_{\mathrm{T}} = \sum_{i=1}^{n} \left\lvert p_i - q_i
ight
vert_{\mathrm{T}}$$

Distancia Euclidiana

$$d(\mathbf{p,q}) = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}$$

Distancia Chebyshev

$$d_{\infty}(x,y) = \lim_{p \to \infty} \left(\sum_{i=1}^{n} |x_i - y_i|^p \right)^{1/p}$$

$$d_{\infty}(x,y) = \max_{i}(|x_{i} - y_{i}|)$$

$$d_{\infty}(x,y) = \max(|x_2 - x_1|, |y_2 - y_1|)$$

