Ústní zkouška

z Úvodu do matematické analýzy, části prvé

Verze: r3kt

Přednášející: His Divine Wisdom Sir Adam Clypatch

19. ledna 2024

NENÍ-LI ŘEČENO JINAK, VŠECHNY POJMY A DŮKAZY FORMULUJTE PEČLIVĚ S DŮRAZEM NA FORMÁLNÍ SPRÁVNOST.

Část	Hodnocení
Základní definice	0 / 0
Lehké úlohy a důkazy	/6
Těžké ulohy a důkazy	/ 12

Základní definice (0 bodů)

Neznalost základních definic znamená bezpodmínečné nesložení zkoušky.

- (1) Okruh a těleso.
- (2) Racionální číslo.
- (3) Konvergentní posloupnost.
- (4) Rozšířená reálná osa.
- (5) Interval a typy intervalů.

Lehké úlohy a důkazy (6 bodů)

Pojmy užité v úlohách nemusíte definovat. Používáte-li k řešení úlohy nebo k důkazu předchozí tvrzení, zformulujte je.

- (1) Dokažte, že každá posloupnost má nejvýše jednu limitu.
- (2) Dokažte, že $\mathbb Q$ jsou hustá v $\mathbb R$, tedy že pro každé $\varepsilon>0$ a každé $x\in\mathbb R$ existuje $r\in\mathbb Q$ splňující $|x-r|<\varepsilon$.

Hint: Využijte definici $\mathbb R$ jako tříd ekvivalence konvergentních racionálních posloupností.

(3) Spočtěte

$$\lim_{n\to\infty} \left(-\frac{1}{2}\right)^n.$$

Ověřte předpoklady všech tvrzení, která k výpočtu používáte.

Těžké úlohy a důkazy (12 bodů)

Nemusíte dokonale zformulovat svá řešení. Obecná idea rozvinutá důležitými detaily postačuje.

(1) Ať c>0 a $a:\mathbb{N}\to\mathbb{R}$ je posloupnost dána rekurentním vztahem

$$a_0 \coloneqq \sqrt{c},$$
 $a_{n+1} \coloneqq \sqrt{a_n + c}.$

Spočtěte lima. Návod:

- (a) Dokažte, že posloupnost a je dobře definovaná. To znamená, že $a_n \in \mathbb{R}$ pro všechna $n \in \mathbb{N}$.
- (b) Dokažte, že a je rostoucí.
- (c) Dokažte, že *a* je shora omezená.
- (d) Z bodů (b) a (c) plyne (užitím věty o limitě monotónní posloupnosti), že a má limitu. Označme ji A. Spočtěte tuto limitu pomocí vhodné kvadratické rovnice využivše rovností

$$a_{n+1}^2 = a_n + c$$
, $\lim_{n \to \infty} a_{n+1} = A$ a $\lim_{n \to \infty} (a_n + c) = A + c$.

(2) Dokažte *Borelovu větu*: Ať I je **uzavřený** interval a $\{S_i \mid i \in \mathbb{N}\}$ je množina **otevřených** intervalů splňující $I \subseteq \bigcup_{i \in \mathbb{N}} S_i$. Pak existuje **konečná** množina $F \subseteq \mathbb{N}$ taková, že $I \subseteq \bigcup_{i \in F} S_i$.

Návod (vřele doporučujeme si při důkaze kreslit):

- (a) Označme I = [a,b]. Ať M je množina takových prvků $x \in [a,b]$, pro něž existuje konečná $F_x \subseteq \mathbb{N}$ taková, že $[a,x] \subseteq \bigcup_{i \in F_x} S_i$. Uvědomte si, že pro důkaz Borelovy věty stačí ukázat, že $b \in M$.
- (b) Dokažte, že M má supremum, které leží v \mathbb{R} . K tomu je třeba ukázat, že není prázdná a že je shora omezená. Existence suprema pak plyne z úplnosti \mathbb{R} . Položme $y \coloneqq \sup M$. Nyní je třeba ukázat, že $y \in M$ a y = b.
- (c) Z předpokladu $y \in I \subseteq \bigcup_{i \in \mathbb{N}} S_i$, a tedy existuje **otevřený** interval S_j takový, že $y \in S_j$. Ovšem, protože je tento interval otevřený, y nemůže být jeho minimem. Dokažte, že z tohoto plyne existence prvku $z \in M \cap S_j$ (nezapomeňte, že y je supremem M).
- (d) Pro tento prvek z definice M existuje konečná množina F_z taková, že $[a,z] \subseteq \bigcup_{i \in F_z} S_i$. Dokažte, že

$$x \in \left(\bigcup_{i \in F_z} S_i\right) \cup S_j$$

pro každé $x \in [a, y]$. Argumentujte, že tento fakt již znamená, že $y \in M$.

- (e) Dokážeme, že y=b. Předpokládejme pro spor, že y < b. Pak existuje $\varepsilon > 0$ takové, že $y+\varepsilon < b$, což znamená, že umíme najít (proč?) otevřený interval S_k takový, že $[y,y+\varepsilon]\subseteq S_k$. Užitím faktu, že $y\in M$, najděte konečnou množinu $\mathscr{S}\subseteq \{S_i\mid i\in\mathbb{N}\}$ otevřených intervalů takovou, že $[a,y+\varepsilon]\subseteq \mathscr{S}$ (nezapomeňte, že takové množiny umíte triviálně najít zvlášť pro [a,y] a $[y,y+\varepsilon]$).
- (f) Argumentujte, že existence $\mathcal S$ z bodu (e) je sporem s definicí y jako suprema M. Tedy, y = b a důkaz je hotov.

4