Please complete all problems below.

- 1. Let $\vec{a} = \begin{bmatrix} 3 \\ -1 \\ 2 \end{bmatrix}, \vec{b} = \begin{bmatrix} 0 \\ 1 \\ -2 \end{bmatrix}, \vec{c} = \begin{bmatrix} 3 \\ 0 \\ -1 \end{bmatrix}.$
 - (a) Calculate $\vec{a} \times \vec{b}$
 - (b) Find the area of the parallelogram spanned by the vectors \vec{a} and \vec{b} .
 - (c) Calculate the volume of the parallelepiped spanned by the vectors $\vec{a}, \vec{b}, \vec{c}$.
- 2. Find the equation of the plane that passes through the points (2,1,3), (3,-1,5), and (1,2,-3).
- 3. Find the equation of the plane that contains the lines

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix} + s \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + t \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}.$$

- 4. Show that the shortest distance from a point P to the line L through P_0 with direction vector \vec{d} is $\frac{\|\vec{P_0P} \times \vec{d}\|}{\|\vec{d}\|}$.
- 5. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation such that

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\-3\end{bmatrix}$$
 and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\-2\end{bmatrix}$.

- (a) Find a matrix A such that $T(\vec{x}) = A\vec{x}$ for all vectors \vec{x} in \mathbb{R}^2 .
- (b) Describe the effect of T on the square $0 \le x, y \le 1$. What is the resulting region, and what is its area?

Name:

Tutorial time:

Please submit **one** completed solution from the worksheet for feedback.

Note: Please recopy the question you are solving so we know which solution you're submitting.