МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

(НИЯУ МИФИ)

Институт интеллектуальных кибернетических

систем

Кафедра Кибернетики

Отчет по Лабораторной работе 1 "Фазовые портреты кусочно-линейных систем" по курсу «Методы анализа динамических систем» Вариант 2

Выполнил студент группы M22-501: Верендеев И.М. Проверил: Ктитров С.В

Цель работы

Изучение особенностей фазовых портретов кусочно-линейных систем и практическое освоение компьютерных способов построения фазовых портретов нелинейных систем.

Условия задачи

Исследуется нелинейная система 2-го порядка с двузначной кусочнолинейной функцией (Рис. 1), которая находится в структурной схеме (Рис. 2). Входной сигнал отсутствует.

Линейная часть:

$$W(p) = \frac{k}{p(Tp+1)}$$

Рис. 1 – Двузначная кусочно-линейная функция

Рис. 2 – Структурная схема

Подготовка к работе

Рассмотрим данную двузначную кусочно-линейную функцию:

$$x' > 0$$
:

$$F(x) = \begin{cases} -p_1, & x < -b; \\ k_1 x - p_2, & -b < x < -c; \\ k_2 x - p_3, & -c < x < b; \\ k_1 x + p_4, & b < x < a; \\ p_1, & a < x; \end{cases}$$

$$x' < 0$$
:

$$x' < 0:$$

$$F(x) = \begin{cases} -p_1, & x < -a; \\ k_1 x - p_4, & -a < x < -b; \\ k_2 x + p_3, & -b < x < c; \\ k_1 x + p_2, & c < x < b; \\ p_1, & b < x; \end{cases}$$
Page MOTPHM BY OTHER CTPARTYPHYS

$$\begin{cases} x' = y \\ y' = -\frac{(k * F(x) + y)}{T} \end{cases}$$

Рассмотрим 6 случаев для данной двузначной кусочно-линейной функции, подставляя в полученную систему дифференциальных уравнений.

1)
$$x' > 0$$
; $x < -b$;

2)
$$x' > 0; -b < x < -d;$$

3)
$$x' > 0; -d < x < c;$$

4) $x' > 0; c < x < a;$

4)
$$x' > 0; c < x < a;$$

5)
$$x' > 0; a < x$$

5)
$$x' > 0; a < x$$

6) $x' < 0; x < -a;$

7)
$$x' < 0; -a < x < -c;$$

8)
$$x' < 0; -c < x < d;$$

9)
$$x' < 0; d < x < b;$$

10)
$$x' < 0; b < x;$$

1)
$$\frac{dy}{dt} = -\frac{1}{T}(-kp_1 + y), x < -by$$

1)
$$\frac{dy}{dt} = -\frac{1}{T}(-kp_1 + y), x < -b;$$
2)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x - p_2) + y), -b < x < -d;$$
3)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_2 * x - p_3) + y), -d < x < c;$$
4)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x + p_4) + y), c < x < a;$$
5)
$$\frac{dy}{dt} = -\frac{1}{T}(kp_1 + y), a < x;$$

3)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_2 * x - p_3) + y), -d < x < c;$$

4)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x + p_4) + y), c < x < a;$$

5)
$$\frac{dy}{dt} = -\frac{1}{T}(kp_1 + y), a < x;$$

6)
$$\frac{dy}{dt} = -\frac{1}{T}(-kp_1 + y), x < -a;$$

7)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x - p_4) + y), -a < x < -c;$$
8)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_2 * x + p_3) + y), -c < x < d;$$
9)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x + p_2) + y), d < x < b;$$
10)
$$\frac{dy}{dt} = -\frac{1}{T}(kp_1 + y), b < x;$$

8)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_2 * x + p_3) + y), -c < x < d;$$

9)
$$\frac{dy}{dt} = -\frac{1}{T}(k(k_1 * x + p_2) + y), d < x < b;$$

10)
$$\frac{dy}{dt} = -\frac{1}{T}(kp_1 + y), b < x$$

В лабораторной работе взяты следующие значения:

$$p_1 = -9.2, p_2 = 5.2, p_3 = 4, p_4 = 2$$

 $k_1 = 0.8, k_2 = 2$
 $a = 9, b = 5, c = 1$

Рис. 3 – Рисунок нелинейности

Моделирование с помощью программы Sinus

	переменная	тип	правая часть	начальное	минимум	максимум
1	gt	==	func_gt_0(t)			
2	Is	==	func_ls_0(t)			
3	k	==	1			
4	T	==	1			
5	func_gt_0	(?)=	function_x_dir_gt_0(?)			
6	func_ls_0	(?)=	function_x_dir_ls_0(?)			
7	x_forward	'=	y_forward	-2	-1e+25	1e+25
8	y_forward	'=	-(y_forward + k* Forward(x_forward)) / T	-5	-1e+25	1e+25
9	x_backward	'=	y_backward	0	-1e+25	1e+25
10	v backward	'=	-(y backward + k * Backward(x backward))/T	0	-1e+25	1e+25

Рис. 4 – Задание уравнений

Редактируется	Forward	~
Имя функции	Forward	
Тип	Двузначная функция	~
Имена ветвей	func_ls_0;func_gt_0;	

Рис. 5 – Задание двузначной функции для предложенного направления

Редактируется	Backward	~
Имя функции	Backward	
Тип	Двузначная функция	~
Имена ветвей	func_gt_0;func_ls_0;	

Рис. 6 – Задание двузначной функции для направления обратного предложенному

function_x_dir_ls_0	×-
function_x_dir_ls_0	
Кусочно-линейная функция	×-
4 -10 -9.2 -9.2 -9 -9.2 -9.2 -5 -6 -6 1 6 6 5 9.2 9.2 6 9.2 9.2	
	function_x_dir_ls_0 Кусочно-линейная функция

Рис. 7 — Задание кусочно-линейной функции ветвь (x' < 0 — для предложенного направления, x' > 0 — для обратного направления)

Редактируется	function_x_dir_gt_0	*
Имя функции	function_x_dir_gt_0	
Тип	Кусочно-линейная функция	>
Узлы	4 -6 -9.2 -9.2 -5 -9.2 -9.2 -1 -6 -6 5 6 6 9 9.2 9.2 10 9.2 9.2	

Рис. 8 - 3адание кусочно-линейной функции ветвь (x' < 0 - для обратного, x' > 0 - направления для предложенного направления)

Определяем направление методом пробной точки:

1) (-7, 1)
$$\frac{dy}{dt} = -(-5+1) = 4 > 0$$
2) (-1, 1)
$$\frac{dy}{dt} = -(2+1) = -3 < 0$$
3) (7, 1)
$$\frac{dy}{dt} = -(5+1) = -6 < 0$$

4)
$$(7, -1)$$

$$\frac{dy}{dt} = -(5 - 1) = -4 < 0$$
5) $(1, -1)$
$$\frac{dy}{dt} = -(-2 - 1) = -3 > 0$$
6) $(-7, -1)$
$$\frac{dy}{dt} = -(-5 - 1) = 6 > 0$$

6)
$$(-7, -1)$$
 $\frac{dy}{dt} = -(-5 - 1) = 6 > 0$

Рис. 12 – Фазовый портрет обратное направление

Заключение

В данной лабораторной работе были изучены особенности фазовых портретов кусочно-линейных систем и практически освоены компьютерные способы построения фазовых портретов нелинейных систем путем исследования нелинейной системы 2-го порядка с двузначной кусочнолинейной функцией без входного сигнала.

На начальном этапе были написаны уравнения, описывающие выданную кусочно-линейную функцию. Затем была записана система дифференциальных уравнений для предложенной структурной схемы. Были определены границы областей многолистного фазового портрета. Каждой из областей поставлено в соответствие дифференциальное уравнение.

Затем была задана исходная система дифференциальных уравнений с помощью программы Синус (рис. 3 – рис. 6) и построен фазовый портрет (рис. - 7). Далее была смоделирована система с обратным направлением стрелок (рис. 8 – рис. 11) и построен фазовый портрет (рис. - 12).

Для фазовых портретов было оценено направление движения по фазовой траектории в каждой области методом пробных точек.

По полученному фазовому портрету можно увидеть, что исходная система дифференциальных уравнений с двузначной кусочно-линейной функцией имеет периодический режим работы.