Watase Data Export Path & Item

No	Authors	Year	Title	Journal	LayaNan	Citation	JournalRank*	Var	Path	Item	Те
1	Alex and Dhiliphan	2021	Taylor-HHO algorithm A hybrid optimization algorithm with deep long short- term for malicious JavaScript detection	International Journal of Intelligent Systems		4	Q1	4	0	0	8
2	Kwon et al.	2017	Lightweight migration for web applications with framework separation	Software: Practice and Experience		2	Q2	2	0	0	0
3	Ocariza and Zhao	2020	Localizing software performance regressions in web applications by comparing execution timelines	Software Testing, Verification and Reliability		3	Q1	1	0	0	0
4	Huang et al.	2021	JSContana Malicious JavaScript detection using adaptable context analysis and key feature extraction	Computers & Security		26	Q1	2	0	0	0
5	Stiévenart et al.	2021	A parallel worklist algorithm and its exploration heuristics for static modular analyses	Journal of Systems and Software		1	Q1	2	0	0	0
6	Lima et al.	2020	Guided just-in- time specialization	Science of Computer Programming		0	Q3	2	0	0	0
7	Solis-Martinez et al.	2020	UXJs Tracking and Analyzing Web Usage Information With a Javascript Oriented Approach	IEEE Access				2	0	0	0
8	Bostanov	2021	Client Puzzle Protocols as Countermeasure Against Automated Threats to Web Applications	IEEE Access		0	Q1	2	0	0	0

No	Authors	Year	Title	Journal	LayaNan	Citation	JournalRank*	Var	Path	Item	Те
9	Vepsäläinen et al.	2024	ResumabilityA New Primitive for Developing Web Applications	IEEE Access		0	Q1	2	0	0	0
10	Kowalczyk and Szandala	2024	Enhancing SEO in Single-Page Web Applications in Contrast With Multi-Page Applications	IEEE Access		0	Q1	2	0	0	0
11	Nakajima et al.	2019	Jact A Playground Tool for Comparison of JavaScript Frameworks					2	0	0	5
12	Diniz-Junior et al.	2022	Evaluating the performance of web rendering technologies based on JavaScript Angular, React, and Vue					2	0	0	0
13	Singh et al.	2023	A Comparative Analysis of Modern Frontend Frameworks for Building Large- Scale Web Applications					2	0	0	0
14	Tong et al.	2023	Comparative Performance Analysis of Javascript Frontend Web Frameworks					2	0	0	0
15	Sianandar and Kerthyayana	2022	Performance Analysis of Hooks Functionality in React and Vue Frameworks					2	0	0	0
16	Sunarto et al.	2023	A Systematic Review of WebAssembly VS Javascript Performance Comparison					2	0	0	0
17	Nabiil et al.	2023	Performance Analysis on Web Development Programming Language (Javascript, Golang, PHP)					2	0	0	0
18	De et al.	2022	WebAssembly versus					2	0	0	0

No	Authors	Year	Title	Journal	LavaNan	Citation	JournalRank*	Var	Path	Item	Те
			JavaScript Energy and Runtime Performance								
19	Stotoglou and Kaskalis	2023	Comparative Study of JavaScript and WebAssembly Derivatives in Browser Engines					2	0	0	0
20	Ren et al.	2024	JavaScript Performance Tuning as a Crowdsourced Service	IEEE Transactions on Mobile Computing		0	Q1	2	0	0	0
21	Wu et al.	2021	X-Check Improving Effectiveness and Efficiency of Cross-Browser Issues Detection for JavaScript- Based Web Applications	IEEE Transactions on Services Computing		0	Q1	0	0	0	0
22	Farzat et al.	2021	Evolving JavaScript Code to Reduce Load Time	IEEE Transactions on Software Engineering		5	Q1	2	0	0	7
23	Malavolta et al.	2023	JavaScript Dead Code Identification, Elimination, and Empirical Assessment	IEEE Transactions on Software Engineering				2	0	0	0
24	Arepalli and Sekharan	2022	Performance Benchmarking of PyScript and Comparative Results with Javascript					2	0	0	0
25	Baxter et al.	2018	Putting in all the stops execution control for JavaScript			1	Q1	2	0	0	7
26	Chadha	2018	JSCore architectural support for accelerating JavaScript execution (short WIP paper)			0	Q1	2	0	0	7
27	Degenbaev et al.	2018	Cross- component garbage collection	Proceedings of the ACM on Programming Languages		9	Q1	2	0	0	7
28	Serrano	2018	JavaScript AOT compilation			3	Q1	2	0	0	7

No	Authors	Year	Title	Journal	LayaNan	Citation	JournalRank*	Var	Path	Item	Те
29	Herrera et al.	2018	Numerical computing on the web benchmarking for the future			6	Q1	2	0	0	0
30	Fragoso et al.	2019	JaVerT 2.0 compositional symbolic execution for JavaScript	Proceedings of the ACM on Programming Languages		9	Q1	2	0	0	0
31	Park et al.	2018	Reusing the Optimized Code for JavaScript Ahead-of-Time Compilation	ACM Transactions on Architecture and Code Optimization		3	Q2	2	0	0	0
32	Pourghassemi et al.	2019	What-If Analysis of Page Load Time in Web Browsers Using Causal Profiling			1	Q3	2	0	0	0
33	Canella et al.	2020	KASLR Break It, Fix It, Repeat					0	0	0	0
34	Serrano	2021	Of JavaScript AOT compilation performance	Proceedings of the ACM on Programming Languages		4	Q1	0	0	0	0
35	Gokhale et al.	2021	Automatic migration from synchronous to asynchronous JavaScript APIs	Proceedings of the ACM on Programming Languages		9	Q1	2	0	0	0
36	Bai	2023	Million.js A Fast Compiler- Augmented Virtual DOM for the Web					2	0	0	0
37	Kirisame et al.	2022	Optimal heap limits for reducing browser memory use	Proceedings of the ACM on Programming Languages		1	Q1	2	0	0	0
38	Yamazaki et al.	2023	Collecting Cyclic Garbage across Foreign Function Interfaces Who Takes the Last Piece of Cake	Proceedings of the ACM on Programming Languages		0	Q1	2	0	0	0
39	Yuan et al.	2018	Portable Implementation of Postquantum Encryption Schemes and Key Exchange Protocols on JavaScript- Enabled Platforms	Security and Communication Networks		2	Q2	2	0	0	0
40	Klochkov and	2021	Improving Ruby	Information		3	Q2	2	0	0	0

No Authors Year Title Journal LayaNan Citation JournalRank* Var Path Item Te Mulawka on Rails-Based Web Application Performance