PCR: Seat position

Gustavo Cepparo and Milica Cudina

Seat Position

We reconsider the **seat position** data set. Recall that it is from the **faraway** library.

```
#install.packages("faraway")
library(faraway)
```

The data set seatpos is used to predict the carseat position (hipcenter) based on biometric data of the driver.

```
data(seatpos)
```

This is what we got when we tried multiple linear regression.

```
lm.fit=lm(hipcenter~.,data=seatpos)
summary(lm.fit)
```

```
##
## Call:
## lm(formula = hipcenter ~ ., data = seatpos)
##
## Residuals:
##
       Min
                1Q Median
                                 3Q
                                        Max
##
  -73.827 -22.833 -3.678
                            25.017
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 436.43213 166.57162
                                       2.620
                                               0.0138 *
                                       1.360
## Age
                            0.57033
                                               0.1843
                 0.77572
## Weight
                 0.02631
                            0.33097
                                      0.080
                                               0.9372
## HtShoes
                            9.75304
                                     -0.276
                                               0.7845
                -2.69241
## Ht
                 0.60134
                           10.12987
                                       0.059
                                               0.9531
## Seated
                 0.53375
                            3.76189
                                       0.142
                                               0.8882
## Arm
                -1.32807
                            3.90020
                                     -0.341
                                               0.7359
## Thigh
                -1.14312
                            2.66002
                                      -0.430
                                               0.6706
                                               0.1824
## Leg
                -6.43905
                            4.71386
                                     -1.366
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 37.72 on 29 degrees of freedom
## Multiple R-squared: 0.6866, Adjusted R-squared: 0.6001
## F-statistic: 7.94 on 8 and 29 DF, p-value: 0.00001306
```

Does PCA help? Let's import the requisite library.

```
library(stats)
```

I will reimagine my predictor variables to be the ones with the biometric data (so, we exclude Age and the

```
response).
data=seatpos[,2:8]
attach(data)
Let's look at the principal components analysis.
pr.out=prcomp(data,scale=TRUE)
pr.out$center
      Weight
               HtShoes
                              Ηt
                                    Seated
                                                  Arm
                                                          Thigh
                                                                      Leg
## 155.63158 171.38947 169.08421 88.95263
                                            32.21579
                                                       38.65526 36.26316
pr.out$scale
      Weight
               HtShoes
                              Ηt
                                    Seated
                                                          Thigh
                                                  Arm
                                                                      Leg
## 35.781183 11.148259 11.173316
                                  4.931791
                                                       3.874985
                                            3.371464
                                                                 3.403688
pr.out$rotation
##
                  PC1
                             PC2
                                        PC3
                                                    PC4
                                                                PC5
                                                                            PC6
## Weight -0.3669000 0.2609907 0.3583572 0.8108919 -0.09990080
                                                                     0.03621216
## HtShoes -0.4115997 0.1407447 -0.1565664 -0.1352201 0.05194816 -0.52851487
           -0.4122101 \quad 0.1256624 \ -0.1677289 \ -0.1229614 \quad 0.03494283 \ -0.50618661
## Ht
## Seated -0.3815355 0.3833142 -0.3163432 -0.1186066 0.51335147
                                                                     0.57430863
## Arm
           -0.3483026 -0.4409166 0.6837027 -0.2740335 0.37316939
                                                                     0.04934303
           -0.3274140 -0.7367171 -0.4882332 0.2871929 -0.08944022
## Thigh
                                                                     0.14451162
           -0.3898319 0.1104287 0.1141931 -0.3706867 -0.75849557 0.33164299
## Leg
##
                    PC7
## Weight -0.003349489
## HtShoes -0.697102953
            0.716654290
## Ht
## Seated -0.000440318
            0.006629621
## Arm
## Thigh
           -0.017704188
## Leg
           -0.009235742
What does the biplot tell us?
biplot(pr.out,scale=0, cex=0.5, xlabs=rep("*", length(Ht)),
       col=c("lightblue", "red"))
```


I am not happy with all the negative loadings, so let's take the negatives.

Let's look at the variance explained.

Principal Component

What would principal component regression give us?

##

Arm, Ht, HtShoes, Leg, Seated, Thigh, Weight

```
library(pls)

##

## Attaching package: 'pls'

## The following object is masked from 'package:stats':

##

## loadings

set.seed(1)

data=seatpos[,-1]

attach(data)

## The following objects are masked from data (pos = 4):

##
```

```
pcr.fit=pcr(hipcenter~.,data=data,scale=TRUE,validation="CV")
summary(pcr.fit)
            X dimension: 38 7
## Data:
  Y dimension: 38 1
## Fit method: svdpc
## Number of components considered: 7
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
##
          (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
                                                                      6 comps
## CV
                60.45
                         38.63
                                   40.15
                                            40.32
                                                     40.44
                                                               40.99
                                                                        43.53
                60.45
                         38.51
                                   39.93
                                                     40.16
                                                               40.61
                                                                        42.97
## adjCV
                                            40.08
##
          7 comps
            44.07
## CV
## adjCV
            43.49
##
## TRAINING: % variance explained
##
              1 comps
                      2 comps
                                3 comps
                                          4 comps
                                                   5 comps
                                                             6 comps
                                                                      7 comps
## X
                81.04
                         88.50
                                   93.73
                                            97.03
                                                     99.25
                                                               99.98
                                                                       100.00
                62.00
                         62.54
                                   63.50
                                            64.85
                                                     66.51
                                                               66.61
                                                                        66.66
## hipcenter
```

Exactly ${\bf one}$ component works wonderfully. Let's confirm with the validation plot.

```
validationplot(pcr.fit,val.type="MSEP")
```

hipcenter

What if we did the training and testing instead?

```
set.seed(1)
train.ind <- sample(nrow(data), floor(nrow(data)*0.6))
training <- data[train.ind,]</pre>
```

```
test <- data[-train.ind,]</pre>
pcr.fit=pcr(hipcenter~.,data=training,scale=TRUE, validation="CV")
summary(pcr.fit)
## Data:
            X dimension: 22 7
   Y dimension: 22 1
## Fit method: svdpc
## Number of components considered: 7
##
## VALIDATION: RMSEP
## Cross-validated using 10 random segments.
          (Intercept)
                        1 comps
                                 2 comps 3 comps 4 comps
                                                             5 comps
##
                                                                       6 comps
## CV
                50.79
                          30.26
                                   31.05
                                             33.52
                                                      35.74
                                                                42.24
                                                                         44.86
                50.79
                          30.10
                                   30.79
                                                      35.07
                                                                40.94
                                                                         43.38
## adjCV
                                             33.12
##
          7 comps
## CV
            45.93
            44.38
##
  adjCV
##
## TRAINING: % variance explained
##
              1 comps
                        2 comps
                                 3 comps
                                          4 comps
                                                    5 comps
                                                              6 comps
## X
                84.77
                          92.09
                                   96.00
                                             98.58
                                                      99.62
                                                                99.97
                                                                        100.00
## hipcenter
                69.45
                          70.44
                                   70.48
                                             72.27
                                                      72.31
                                                                72.54
                                                                         73.88
validationplot(pcr.fit,val.type="MSEP", legendpos = t(c(1.5,2500)))
```

hipcenter

that the RMSE for 1 principal component is 30.26. This implies that the MSE is $30.26^2 = 915.6676$. Now, we look at the performance on the testing set with 1 principal component.

Note

```
pcr.pred=predict(pcr.fit,newdata=test,ncomp=1)
#pcr.pred
mean((pcr.pred-test$hipcenter)^2)
```

```
## [1] 2229.636
```

The MSE is much higher than on the training set.

It is interesting to consider the scatterplot of the predicted and actual values in the testing set.

Discrepancies

What about the difference?

```
plot(pcr.pred-test$hipcenter, pch=20, col="grey",
    main="Difference",
    xlab="Index", ylab="Difference")
abline(0,0, col="red", lwd=2)
```

Difference

