OPERAÇÕES UNITÁRIAS I

PROF^a KASSIA G SANTOS

2020/1- CURSO REMOTO

DEPARTMENTO DE ENGENHARIA QUÍMICA

UFTM

AULA 7

2. Caracterização de Partículas

2.2 Morfologia, porosidade e ângulo de repouso

a) Esfericidade (ϕ):

$$\phi = \frac{S_e}{S_p}, \quad 0 < \phi \le 1$$

 S_p = Área Superficial da partícula

 S_e = Área Superficial da esfera de igual volume

Partículas	Esfericidade (ϕ)
Esfera	1,000
Cilindro Equilátero	0,874
Cubo	0,806
Cilindro (h = 5xD)	0,691
Disco (h = D / 6)	0,594
Disco (h = D / 20)	0,323
Disco (h = D / 30)	0,254

b) Esfericidade de partículas irregulares (ϕ):

$$\phi = \frac{6}{\rho_S S_W d_p}, \quad 0 < \phi \le 1$$

 $\phi = \frac{6}{\rho_S S_W d_p}$, $0 < \phi \le 1$ $S_W = \text{Superficie específica medida pela técnica BET}$ (que mede a área superficial por adsorção gasosa)

Partículas	Esfericidade (ϕ)
Areia I	0,80
Hematita	0,70
Areia II	0,67
Itabirito	0,66
Barita	0,55

c) Arredondamento (A) e Circularidade (C):

Comparam a superfície do objeto com a superfície do disco de mesmo perímetro que a partícula.

$$A = \frac{1}{C} = \frac{A_c}{A_p} = \frac{4\pi S_p}{P_e^2}$$

 A_c é área do menor diâmetro de uma esfera circunscrita à partícula; A_p é a área projetada da partícula em posição de repouso; Pe é o perímetro da linha que delimita a partícula S_p é a área superficial da partícula.

Se A<1,25 partícula é circular;

1,25<A<2,0
partícula é dita angular

A>2,0 a partícula é comprida.

c) Arredondamento (A) e Circularidade (C):

Figura 6.7 Padrão de imagens de arredondamento (McLANE, 1995).

Se A<1,25 partícula é circular;

1,25<A<2,0
partícula é dita
angular

A>2,0 a partícula é comprida.

d) Fator de forma (ϕ'):

$$\phi' = \phi^{3/2} = \frac{\text{Volume da Partícula}}{\text{Volume da Esfera de mesma Área Superficial}}$$

e) Alongamento (Al) e Razão de Aspecto (L):

$$A_l = \frac{b}{a}$$
; $L = \frac{a}{b}$ a é a menor dimensão b é a maior dimensão da partícula.

 A_{\rightleftharpoons} 1: a partícula é esférica ou quadrática, $A_{\rightleftharpoons}>$ 1: a partícula se torna alongada.

Uma aproximação empregada para obter a esfericidade a partir de imagens 2D (Peçanha e Massarani, 1986):

$$\phi = \frac{1}{A_l}$$

IV) Densidade ou massa específica de sólidos

a) Densidade Real: é a densidade do material maciço (não há nenhum poro interno). Obtida por picnometria a gás.

$$\rho = \frac{m}{V}$$

b) Densidade Aparente: É a densidade considerando o volume da partícula como o delimitado por sua superfície. Assim, os poros interno são contabilizados. obtida por picnometria tradicional com líquido inerte (a partícula não pode absorver o líquido)

$$\rho_a = \frac{m}{V_p}$$

c) Densidade Bulk: Ela relaciona a massa de material e o volume do recipiente (V_R) que ele ocupa. Assim, no volume entram os espaços vazios entre as partículas.

$$\rho_b = \frac{m}{V_R}$$

V) Porosidade e Empacotamento

Porosidade: é a fração de vazios em relação ao volume total que as partículas ocupam.

$$arepsilon = rac{V_{vazios}}{V_R}$$

Empacotamento: é a fração do volume total que é realmente ocupada pelas

partículas.

$$\alpha_{s} = \frac{V_{partículas}}{V_{R}} = 1 - \varepsilon$$

V) Porosidade e Empacotamento

Porosidade de misturas binárias de partículas esféricas

Ajuste dos modelos de empacotamento aos dados experimentais de porosidade em função da composição da mistura.

V) Porosidade e Empacotamento

Porosidade de misturas binárias de partículas não esféricas

Porosidade da mistura areia e bagaço em função da fração volumétrica de bagaço (X_D).

VI) Ângulo de repouso estático

É o ângulo interno (α) entre a superfície de uma pilha de partículas e a superfície horizontal. Está relacionado à densidade, área superficial e formato da partícula, bem como ao coeficiente de atrito do material.

Resíduo de acerola: (a) experimental $(39,2^{\circ}\pm 1,4^{\circ}.)$, (b) simulado $(39,8)_{12}$

VI) Ângulo de repouso dinâmico

Resíduo de acerola (25 rpm)

Atividades da Aula 5

Individual:

- ☐ Assista os vídeos indicados.
- ☐ Faça exercícios propostos e confira com os colegas.

