I3 WITH RCOS QUESTIONS

1 (i) Express $\cos \theta + (\sqrt{3}) \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .

(ii) Hence show that
$$\int_0^{\frac{1}{2}\pi} \frac{1}{\left(\cos\theta + (\sqrt{3})\sin\theta\right)^2} d\theta = \frac{1}{\sqrt{3}}.$$
 [4]

9709/03/M/J/07

- 2 (i) Express $4\cos\theta + 3\sin\theta$ in the form $R\cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the value of α correct to 4 decimal places. [3]
 - (ii) Hence

(a) solve the equation
$$4\cos\theta + 3\sin\theta = 2$$
 for $0 < \theta < 2\pi$, [4]

(b) find
$$\int \frac{50}{(4\cos\theta + 3\sin\theta)^2} d\theta.$$
 [3]

9709/31/M/J/13

- 3 (i) Express $(\sqrt{3})\cos x + \sin x$ in the form $R\cos(x \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$, giving the exact values of R and α .
 - (ii) Hence show that

$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \frac{1}{\left((\sqrt{3})\cos x + \sin x\right)^2} \, \mathrm{d}x = \frac{1}{4}\sqrt{3}.$$
 [4]

9709/33/M/J/13

- 4 Throughout this question the use of a calculator is not permitted.
 - (i) Express $\cos \theta + 2 \sin \theta$ in the form $R \cos(\theta \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$. Give the exact values of R and $\tan \alpha$.
 - (ii) Hence, showing all necessary working, show that $\int_{0}^{4\pi} \frac{15}{(\cos \theta + 2\sin \theta)^2} d\theta = 5.$ [5]

9709/33/M/J/18