

TFT LCD Approval Specification

MODEL NO.: V470H2 - P01

Customer:	
Approved by:	
Note:	

Approved Dy	TV Head Division	
Approved By	LY Chen	

Reviewed By —	QA Dept.	Product Development Div.	
rteviewed by	Hsin-nan Chen	WT Lin	

Dropored Dv	LCD TV Marketing and Product Management Div.			
Prepared By	CY Chang TC Chao			

CONTENTS

REVISION HISTORY	4
1. GENERAL DESCRIPTION	F
1.1 OVERVIEW	
1.2 FEATURES	
1.3 MECHANICAL SPECIFICATIONS	5
2. ABSOLUTE MAXIMUM RATINGS	•
2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO MODULE V470H2-P01)	
2.2 PACKAGE STORAGE	
2.3 ELECTRICAL ABSOLUTE RATINGS	
2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)	7
3. ELECTRICAL CHARACTERISTICS	
3.1 TFT LCD MODULE	
3.2 Mini-LVDS CHARACTERISTICS	8
4. BLOCK DIAGRAM OF INTERFACE	o
4.1 TFT LCD MODULE	
4.1 II I LOD MODOLE	
5. INPUT TERMINAL PIN ASSIGNMENT	10
5.1 TFT LCD Module Input	10
5.2 COLOR DATA INPUT ASSIGNMENT	12
6. INTERFACE TIMING	13
6.1 INPUT SIGNAL TIMING SPECIFICATIONS(Ta = 25 ± 2 °C)	13
6.2 POWER ON/OFF SEQUENCE	17
7. OPTICAL CHARACTERISTICS	18
7.1 TEST CONDITIONS	18
7.2 OPTICAL SPECIFICATIONS	18
8. PRECAUTIONS	21
8.1 ASSEMBLY AND HANDLING PRECAUTIONS	21
8.2 SAFETY PRECAUTIONS	21

Preliminary
Model No.: V470H2-P01
Issue Date:Jun.11.2009

9. DEFINITION OF LABELS	22
9.1 OPEN CELL LABEL	22
9.2 CARTON LABEL	22
10. Packaging	23
11. MECHANICAL CHARACTERISTICS	25

REVISION HISTORY

SION HISTORY						
Version	Date	Page(New)	Section	Description		
Ver. 1.0	Jun. 11.2009	All	All	The preliminary specification was first issued.		

1. GENERAL DESCRIPTION

1.1 OVERVIEW

V470H2-P01 is a 47" TFT Liquid Crystal Display module with driver ICs and 2ch-LVDS interface. This product supports 1920 x 1080 Full HDTV format and can display 16.7M colors (8-bit/color). The backlight unit is not built-in.

1.2 FEATURES

CHARACTERISTICS ITEMS	SPECIFICATIONS
Screen Diagonal [in]	47"
Pixels [lines]	1920 × 1080
Active Area [mm]	1039.68 (H) x584.82 (V) (47" diagonal)
Sub-Pixel Pitch [mm]	0.5405(V) ×0.1805(H)
Pixel Arrangement	RGB vertical stripe
Weight [g]	2560
Physical Size [mm]	$1059.78(W) \times 605.87(H) \times 1.80(D)$ Typ.
Display Mode	Transmissive mode / Normallly black
Contrast Ratio	4000:1 Typ.
	(Typical value measure at CMO's module)
Glass thickness (Array / CF) [mm]	0.7 / 0.7
Viewing Angle (CR>20)	+88/-88(H), +88/-88(V) Typ. (CR≥20)
	(Typical value measure at CMO's module)
Color Chromaticity	R = (0.652, 0.327)
	G = (0.274, 0.588)
	B = (0.150, 0.086)
	W= (0.307, 0.318)
	* Please refer to "color chromaticity" on p.14
Cell Transparency [%]	4.6%
Polarizer Surface Treatment	Anti-Glare coating (Haze 11%), Hard coating (3H)

1.3 MECHANICAL SPECIFICATIONS

Item	Min.	Тур.	Max.	Unit	Note
Weight	2510	2560	2610	g	-
I/E connector mounting position	The mounting incli		(2)		
I/F connector mounting position	screen center with		(2)		

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Connector mounting position

2. ABSOLUTE MAXIMUM RATINGS

2.1 ABSOLUTE RATINGS OF ENVIRONMENT (BASE ON CMO MODULE V470H2-P01)

Itom	Curah al	Va	Lloit	Note		
Item	Symbol	Min.	Max.	Unit	Note	
Storage Temperature	TST	-20	+60	°C	(1)	
Operating Ambient Temperature	TOP	0	50	°C	(1), (2)	
Shock (Non-Operating)	SNOP	-	50	G	(3), (5)	
Vibration (Non-Operating)	VNOP	-	1.0	G	(4), (5)	

- Note (1) Temperature and relative humidity range is shown in the figure below.
 - (a) 90 %RH Max. (Ta \leq 40 °C).
 - (b) Wet-bulb temperature should be 39 °C Max. (Ta > 40 °C).
 - (c) No condensation.
- Note (2) The maximum operating temperature is based on the test condition that the surface temperature of display area is less than or equal to 65 °C with LCD module alone in a temperature controlled chamber. Thermal management should be considered in final product design to prevent the surface temperature of display area from being over 65 °C. The range of operating temperature may degrade in case of improper thermal management in final product design.
- Note (3) 11 ms, half sine wave, 1 time for $\pm X$, $\pm Y$, $\pm Z$.
- Note (4) 10 ~ 200 Hz, 10 min, 1 time each X, Y, Z.
- Note (5) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

2.2 PACKAGE STORAGE

Storage condition: With shipping package.

Storage temperature rang: $25\pm5^{\circ}$ C Storage humidity range: $50\pm10^{\circ}$ RH

Shelf life: a month

2.3 ELECTRICAL ABSOLUTE RATINGS

2.3.1 ELECTRICAL ABSOLUTE RATINGS (OPEN CELL)

ltem	Value			11!4	
	Symbol	Min. Max.	Unit	Note	
Power Supply Voltage	V _{AA}	-0.5	+18.5	V	
Power Supply Voltage	V_{GH}	-0.3	+30.0	V	
Power Supply Voltage	V_{GL}	-10.0	-0.3	V	(1)
Logic Input Voltage	V_{DD}	-0.3	4.0	V	

Note (1) Permanent damage to the device may occur if maximum values are exceeded. Function operation should be restricted to the conditions described under Normal Operating Conditions.

Global LCD Panel Exchange Center

Issue Date:Jun.11.2009 Model No.: V470H2-P01 **Preliminary**

3. ELECTRICAL CHARACTERISTICS

3.1 TFT LCD MODULE

 $(Ta = 25 \pm 2 \, ^{\circ}C)$

		Symbol		Value			
	Parameter		Min.	Тур.	Max.	Unit	Note
			29	30	31	V	
			-8.5	-8.0	-7.5	V	
Power Sup	ply Voltage	V _{AA}	17.4	17.7	18	V	
		V _{DD}	3.2	3.3	3.4	V	
		V_{REF}	16.85	17.00	17.15	V	
		I _{GH}	-	15		mA	
Dower Sun	nly Current	I _{GL}	-	8	-	Α	
rower Sup	ply Current	I _{AA}	-	380	-	Α	
		I _{DD}		250		Α	
CMOS	Input High Threshold Voltage	V _{IH}	0.7V _{DD}	-	V_{DD}	V	
interface	Input Low Threshold Voltage	VIL	0	-	0.3V _{DD}	V	

Note (1) The module should be always operated within the above ranges.

3.2 Mini-LVDS CHARACTERISTICS

(Ta = -20 to + 85 °C)

Item	Symbol	Condition		Value		Unit
item	Symbol	Condition	Min.	Тур.	Max.	
mini-LVDS differential voltage (amplitude: peak to peak)	V _{ID}	-	100	-	600	mV
mini-LVDS common mode input voltage range (center)	Vı	-	VSS+0.5	1.2	VDD-1.2	V

4. BLOCK DIAGRAM OF INTERFACE

4.1 TFT LCD MODULE

5. INPUT TERMINAL PIN ASSIGNMENT

5.1 TFT LCD Module Input

Pin assignment

CN1(XL) Connector Pin Assignment

Pin	Symbol	Description	Pin	Symbol	Description
1	GND	Ground	41	GM6	Gamma Power supply
2	NC	No connection	42	GM5	Gamma Power supply
3	NC	No connection	43	GM4	Gamma Power supply
4	GND	Ground	44	GM3	Gamma Power supply
5	NC	No connection	45	GM2	Gamma Power supply
6	NC	No connection	46	GM1	Gamma Power supply
7	NC	No connection	47	GND	Ground
8	NC	No connection	48	NC	No connection
9	NC	No connection	49	POL	Polarity invert
10	NC	No connection	50	A_TP1	Mini-LVDS data latch input
11	GND	Ground	51	GND	Ground
12	ML5N_F	Mini-LVDS data input	52	VAA	Driver power supply
13	ML5P_F	Mini-LVDS data input	53	VAA	Driver power supply
14	ML4N_F	Mini-LVDS data input	54	GND	Ground
15	ML4P_F	Mini-LVDS data input	55	VDD	Logic Power supply
16	ML3N_F	Mini-LVDS data input	56	VDD	Logic Power supply
17	ML3P_F	Mini-LVDS data input	57	GND	Ground
18	GND	Ground	58	VGH	Driver Power supply
19	CLKN_F	Mini-LVDS Clock input	59	VGH	Driver Power supply
20	CLKP_F	Mini-LVDS Clock input	60	GND	Ground
21	GND	Ground	61	NC	No connection
22	ML2N_F	Mini-LVDS data input	62	VCM	VCM Power supply
23	ML2P_F	Mini-LVDS data input	63	VCM	VCM Power supply
24	ML1N_F	Mini-LVDS data input	64	GND	Ground
25	ML1P_F	Mini-LVDS data input	65	VGL	Driver Power supply
26	ML0N_F	Mini-LVDS data input	66	OE1	Scan driver output enable
27	ML0P_F	Mini-LVDS data input	67	CKV	Scan driver clock
28	GND	Ground	68	STV	Scan driver start pulse
29	GM18	Gamma Power supply	69	GND	Ground
30	GM17	Gamma Power supply	70	OE2	Scan driver output enable
31	GM16	Gamma Power supply	71	NC	No connection
32	GM15	Gamma Power supply	72	NC	No connection
33	GM14	Gamma Power supply	73	NC	No connection
34	GM13	Gamma Power supply	74	NC	No connection
35	GM12	Gamma Power supply	75	NC	No connection
36	GM11	Gamma Power supply	76	NC	No connection
37	GM10	Gamma Power supply	77	NC	No connection
38	GM9	Gamma Power supply	78	NC	No connection
39	GM8	Gamma Power supply	79	NC	No connection
40	GM7	Gamma Power supply	80	GND	Ground

Preliminary

CN1(XR) Connector Pin Assignment

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	GND	Ground	41	GM12	Gamma Power supply
2	VSCM	VCM adjust from VR	42	GM11	Gamma Power supply
3	NC	No connection	43	GM10	Gamma Power supply
4	NC	No connection	44	GM9	Gamma Power supply
5	NC	No connection	45	GM8	Gamma Power supply
6	NC	No connection	46	GM7	Gamma Power supply
7	NC	No connection	47	GM6	Gamma Power supply
8	NC	No connection	48	GM5	Gamma Power supply
9	NC	No connection	49	GM4	Gamma Power supply
10	NC	No connection	50	GM3	Gamma Power supply
11	OE2	Scan driver output enable	51	GM2	Gamma Power supply
12	GND	Ground	52	GM1	Gamma Power supply
13	OE1	Scan driver output enable	53	GND	Ground
14	CKV	Scan driver clock	54	ML5N_B	Mini-LVDS data input
15	STV	Scan driver start pulse	55	ML5P_B	Mini-LVDS data input
16	VGL	Driver Power supply	56	ML4N_B	Mini-LVDS data input
17	GND	Ground	57	ML4P B	Mini-LVDS data input
18	VCM	VCM Power supply	58	ML3N B	Mini-LVDS data input
19	VCM	VCM Power supply	59	ML3P B	Mini-LVDS data input
20	NC	No connection	60	GND	Ground
21	GND	Ground	61	CLKN B	Mini-LVDS Clock input
22	VGH	Driver Power supply	62	CLKP B	Mini-LVDS Clock input
23	VGH	Driver Power supply	63	GND	Ground
24	GND	Ground	64	ML2N B	Mini-LVDS data input
25	VDD	Logic Power supply	65	ML2P B	Mini-LVDS data input
26	VDD	Logic Power supply	66	ML1N B	Mini-LVDS data input
27	GND	Ground	67	ML1P B	Mini-LVDS data input
28	VAA	Driver power supply	68	MLON B	Mini-LVDS data input
29	VAA	Driver power supply	69	MLOP B	Mini-LVDS data input
30	GND	Ground	70	GND	Ground
31	POL	Polarity invert	71	NC	No connection
32	B TP1	Mini-LVDS data latch input	72	NC	No connection
33	NC	No connection	73	NC	No connection
34	GND	Ground	74	NC	No connection
35	GM18	Gamma Power supply	75	NC	No connection
36	GM17	Gamma Power supply	76	NC	No connection
37	GM16	Gamma Power supply	77	GND	Ground
			78	NC	No connection
	GM15				
38 39	GM15 GM14	Gamma Power supply Gamma Power supply	79	NC	No connection

Note (1) CN1、2 Connector Part No.: GB5RF801-125C-7F,Foxconn KunShan(富士康昆山) or equal.

Note (2) The OE1 and OE2 must be connected to the OE.

Preliminary

5.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input, the brighter the color. The table below provides the assignment of the color versus data input.

	0.1											Da		Sigr											
	Color				Re									reer							Βlι				
	ln	R7	R6	R5	R4	R3	R2	R1	R0	G7	G6		G4	G3		G1	G0	B7	B6	B5			B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Crov	Red (2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	:	:	:	:	:	:	:	:	:	:	:	:	:			:		:	:	:	:	l :	:	:	:
Scale Of	:	:	:	:	:	:	:	:	:	:	:	:	:	÷		\sim		:	:	:	:	:	:	:	:
	Red (253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Red	Red (254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red (255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
	Green (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Gray	· :	l :	:	:	:	:	:	1				:	:	:	:	:	:	:	:	:	:	l :	:	:	:
Scale	:	l :	l :	:	:	:	:		į.		:	:	:	:	:	:	:	:	l :	:	:	l :	:	l :	:
Of	Green (253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
Green	Green (254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green (255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue (0) / Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue (1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
	Blue (2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	ō	0	1	0
Gray	:	:				:		:	:	:	:	:	:	:	:	:	:	l :	l :	:	Ė	l :	:	l :	
Scale	:	l :				l :	:	:	:		:	:	:	:				:	:		:	l :	:	:	
Of	Blue (253)	Ö	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	Ö	1
Blue	Blue (254)	0	ō	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue (255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	i	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

Preliminary

6. INTERFACE TIMING

6.1 INPUT SIGNAL TIMING SPECIFICATIONS(Ta = 25 ± 2 °C)

(a) Timing Spec

	Downwoodow	Comple al	Comdittion		Spec		11!4
	Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
	Clock period	tclk	-	4 ⁽¹⁾	-	-	ns
	Clock low pulse width	tclk(L)	-	1.7	-	_	ns
	Clock high pulse width	tclk(H)	-	1.7	-	-	ns
	Data setup time	t SETUP1	-	0.8	-	-	ns
	Data hold time	t HOLD1	-	0.8	-	-	ns
	CLK,LV [5:0] rising time	trise		-	-	0.8	ns
	CLK,LV [5:0] falling time	t _{FALL}		-	<u> </u>	0.8	ns
	Start pulse setup time	tsetup2		0	-	-	ns
	Start pulse delay time	t PLH1	Loading=15pF	-	-	13	ns
	otart puise delay time	t PHL1	Loading=15pF	-	-	13	ns
HD	Reset(RST) high time	treseтн		50ns over 3 CLK	1	-	-
	TP1 high period	t TP1(H)		200	-	-	ns
	POL to TP1 setup time	t POL-TP1	POL toggle to TP1 rising	5	-	-	ns
	TP1 to POL hold time	tTP1-POL	TP1 falling to POL toggle	6	-	-	ns
	Receiver off to TP1 timing	trec-off		5	-	-	CLK
	TP1 to reset input time	ttp-reset		200	-	-	ns
	Reset low to TP1 rising time	treset-tp1		0			ns
	Output delay time1	t _{PD1}	CL=100pF	-	-	5	μs
	Output delay time2	t _{PD2}	CL=100pF	-	-	10	μ s
	Output delay time3	t PD3	CL=100Pf	-	-	5	μ s
	Output delay time4	t PD4	CL=100pF	-	-	10	μ s
	CKV period	t ckv	-	5	-	-	μ s
	CKV pulse width	tckvh, tckvl	50% duty cycle	2.5	-	-	μ s
	OE pulse width	twoE	-	1	-	-	μ s
VD	Data setup time	tsu		0.5	ı	-	μ s
	Data hold time	thd		0.5	-	-	μ s
	CKV to output delay time	t PD1	CL=300pF	-	-	1	μ s
	Start pulse output delay time	t _{PD2}	- CL=300pF	-	-	0.8	μ s
	OE to output delay time	t PD3	CL=300pF	-	-	8.0	μ s

Note (1): When operation frequency=250MHz

(b) Horizontal Timing Chart

Last data sampling to TP1 timing for 726 channel case:

Relationship between EIO(OUT)and EIO(IN) timing for 726 channel case:

Preliminary

6.2 POWER ON/OFF SEQUENCE

To prevent the device from damage due to latch up , the power ON/OFF sequence shown below must be followed.

When power on : VDD \to VGL \to VAA \to VGH , Input signal (t1>0) When power off : Input signal , VGH \to VAA \to VGL \to VDD (t2 \ge 0)

Preliminary

7. OPTICAL CHARACTERISTICS

7.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Ta	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V_{CC}	12	V
Input Signal	According to typical va	alue in "3. ELECTRICAL (CHARACTERISTICS"
Lamp Current	Iμ	9.3±0.5	mA
Oscillating Frequency (Inverter)	F_W	40±3	KHz
Vertical Frame Rate	Fr	60	Hz

7.2 OPTICAL SPECIFICATIONS

The relative measurement methods of optical characteristics are shown in 7.2. The following items should be measured under the test conditions described in 7.1 and stable environment shown in Note (7).

Iter	m	Symbol	Condition	Min.	Typ.	Max.	Unit	Note
	Dod	Rcx			(0.660)		-	
	Red	Rcy			(0.331)		-	
	Green	Gcx	0.000		(0.264)		-	
Color	Green	Gcy	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	Тур -	(0.611)	Typ +	-	(1) (6)
Chromaticity	Blue	Всх	CS-1000T Standard light source "C"	0.03	(0.147)	0.03	ı	(1),(6)
	Dide	Всу	Standard light source C		(0.094)		ı	
	White	Wcx			(0.313)		1	
	vvriite	Wcy			(0.354)		ı	
Center Transmit	ttance	Т%	$\theta_x = 0^\circ, \ \theta_Y = 0^\circ$	-	(4.6)		-	(2), (8)
Contrast Ratio		CR	With CMO Module	(3000)	(4000)		-	(2), (4)
Response Time		Gray to gray	θ_x =0°, θ_Y =0° With CMO Module @60Hz	-	(6.5)	(12)		(5)
White Variation		δW	θ_x =0°, θ_Y =0° With CMO Module	-	-	(1.3)		(2), (7)
	Harizantal	θ_{x} +		(80)	(88)	•		
Viouring Angle	Horizontal	θ_{x} -	CR≥20	(80)	(88)	•	Dog	(2) (2)
Viewing Angle	Vertical	θ _Y +	With CMO Module	(80)	(88)	•	Deg.	(2), (3)
	vertical	θ _Y -		(80)	(88)			

- Note (1) Light source is the standard light source "C" which is defined by CIE and driving voltages are based on suitable gamma voltages. The calculating method is as following:
 - 1. Measure Module's and BLU's spectrums. W, R, G, B are with signal input. BLU(for V420H1-L15) is supplied by CMO.
 - 2. Calculate cell's spectrum.
 - 3. Calculate cell's chromaticity by using the spectrum of standard light source "C"
- Note (2) Light source is the BLU which is supplied by CMO and driving voltages are based on suitable gamma voltages.
- Note (3) Definition of Viewing Angle (θx , θy):
 - Viewing angles are measured by EZ-Contrast 160R (Eldim)

Global LCD Panel Exchange Center

Issue Date:Jun.11.2009 Model No.: V470H2-P01 **Preliminary**

Note (4) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L255 / L0

L255: Luminance of gray level 255

L 0: Luminance of gray level 0

CR = CR (1), where CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (8).

Note (5) Definition of Gray to Gray Switching Time:

Note (6) Measurement Setup:

The LCD module should be stabilized at given temperature for 1 hour to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed

after lighting backlight for 1 hour in a windless room.

Note (7) Definition of White Variation (δW):

Measure the luminance of gray level 255 at 5 points

 $\delta W = Maximum [L (1), L (2), L (3), L (4), L (5)] / Minimum [L (1), L (2), L (3), L (4), L (5)]$

Note (8) Definition of Transmittance (T%):

Module is without signal input.

8. PRECAUTIONS

8.1 ASSEMBLY AND HANDLING PRECAUTIONS

- [1] Do not apply rough force such as bending or twisting to the module during assembly.
- [2] It is recommended to assemble or to install a module into the user's system in clean working areas. The dust and oil may cause electrical short or worsen the polarizer.
- [3] Do not apply pressure or impulse to the module to prevent the damage of LCD panel and Backlight.
- [4] Always follow the correct power-on sequence when the LCD module is turned on. This can prevent the damage and latch-up of the CMOS LSI chips.
- [5] Do not plug in or pull out the I/F connector while the module is in operation.
- [6] Do not disassemble the module.
- [7] Use a soft dry cloth without chemicals for cleaning, because the surface of polarizer is very soft and easily scratched.
- [8] Moisture can easily penetrate into LCD module and may cause the damage during operation.
- [9] When storing modules as spares for a long time, the following precaution is necessary.
 - [9.1] Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to 35°C at normal humidity without condensation.
 - [9.2] The module shall be stored in dark place. Do not store the TFT-LCD module in direct sunlight or fluorescent light.
- [10] When ambient temperature is lower than 10°C, the display quality might be reduced. For example, the response time will become slow, and the starting voltage of CCFL will be higher than that of room temperature.

8.2 SAFETY PRECAUTIONS

- [1] The startup voltage of a Backlight is approximately 1000 Volts. It may cause an electrical shock while assembling with the inverter. Do not disassemble the module or insert anything into the Backlight unit.
- [2] If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contact with hands, skin or clothes, it has to be washed away thoroughly with soap.
- [3] After the module's end of life, it is not harmful in case of normal operation and storage.

9. DEFINITION OF LABELS

9.1 OPEN CELL LABEL

The barcode nameplate is pasted on each open cell as illustration for CMO internal control.

9.2 CARTON LABEL

The barcode nameplate is pasted on each box as illustration, and its definitions are as following explanation.

RoHS
N
Quantities
-

- Model Name: V470H2-P01 (a)
- (b) Carton ID: CMO internal control
- Quantities: 8 pcs (c)

Global LCD Panel Exchange Center

Issue Date:Jun.11.2009 Model No.: V470H2-P01 **Preliminary**

10. Packaging

10.1 packing specifications

(1) 8 LCD TV Panels / 1 Box

(2) Box dimensions :1238 (L) X 842 (W) X 240(H)

(3) Weight: approximately 38Kg (8 panels per box)

10.2 packing Method

Figures 10-1 and 10-2 are the packing method

Figure.10-1 packing method

Sea & Land Transportation Gross: 319kg

Air Transportation

Figure.10-2 packing method

Figure.10-2 packing method

Preliminary

11. MECHANICAL CHARACTERISTICS

