Stochastic Processes

Week 01
Review of Probability
Introduction to Stochastic Processes

Hamid R. Rabiee Fall 2021

Outline of Week 01 Lectures

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

History & Philosophy

- Started by gamblers' dispute!
- Probability as a game analyzer
- Formulated by B. Pascal and P. Fermet
- First Problem (1654):
 - "Double Six" during 24 throws!
- First Book (1657):
 - Christian Huygens, "De Ratiociniis in Ludo Aleae", In German, 1657.

- Rapid development during 18th Century
- Major Contributions:
 - J. Bernoulli (1654-1705)
 - A. De Moivre (1667-1754)
- A renaissance: Generalizing the concepts from mathematical analysis of games to analyzing scientific and practical problems: P. Laplace (1749-1827)
- New approach first book:
 - P. Laplace, "Théorie Analytique des Probabilités", In France, 1812.

- 19th century's developments:
 - Theory of errors
 - Actuarial mathematics
 - Statistical mechanics
- Modern theory of probability (20th Century):
 - A. Kolmogorov : Axiomatic approach
- First modern book:
 - A. Kolmogorov, "Foundations of Probability Theory", Chelsea, New York, 1950.
- Other giants in the field:
 - Chebyshev, Markov and Kolmogorov

- Two major philosophies:
 - Frequentist Philosophy
 - Observation is enough!
 - Bayesian Philosophy:
 - Observation is NOT enough
 - Prior knowledge is essential

Frequentist philosophy

- There exist fixed parameters like mean,θ.
- There is an underlying distribution from which samples are drawn
- Likelihood functions(L(θ))
 maximize parameter/data
- For Gaussian distribution the L(θ) for the mean happens to be 1/N∑_ix_i or the average.

Bayesian philosophy

- Parameters are variable
- Variation of the parameter defined by the prior probability
- This is combined with sample data p(X/θ) to update the posterior distribution p(θ/X).
- Mean of the posterior, $p(\theta/X)$, can be considered a point estimate of θ .

An Example:

 A coin is tossed 1000 times, yielding 800 heads and 200 tails. Let p = P(heads) be the bias of the coin. What is p?

Bayesian Analysis

- Our prior knowledge (believe): $\pi(p)=1$ (Uniform(0,1))
- Our posterior knowledge: $\pi(p|Observation) = p^{800}(1-p)^{200}$

Frequentist Analysis

- Answer is an estimator \hat{p} such that
 - Mean: $E[\hat{p}] = 0.8$
 - Confidence Interval: $P(0.774 \le \hat{p} \le 0.826) \ge 0.95$

Nowadays, Probability Theory is considered to be a part Measure Theory!

- Further reading:
 - http://www.leidenuniv.nl/fsw/verduin/stathist/st athist.htm
 - http://www.mrs.umn.edu/~sungurea/introstat/h istory/indexhistory.shtml
 - www.cs.ucl.ac.uk/staff/D.Wischik/Talks/histpro
 b.pdf

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Random Variables

- Probability Space
 - A triple of (Ω, F, P)
 - Ω represents a nonempty set, whose elements are sometimes known as outcomes or states of nature.
 - F represents a set, whose elements are called events. The events are subsets of Ω . F should be a "Borel Field".
 - *P* represents the probability measure.
- Fact: $P(\Omega) = 1$

Random Variables (Cont'd)

Random variable is a "function" ("mapping")
from a set of possible outcomes of the
experiment to an interval of real (complex)
numbers.

In other words:

Random Variables (Cont'd)

• Example I:

 Mapping faces of a dice to the first six natural numbers.

• Example II:

 Mapping height of a man to the real interval (0,3] (meter or something else).

• Example III:

 Mapping success in an exam to the discrete interval [0,20] by quantum 0.1.

Random Variables (Cont'd)

- Random Variables
 - Discrete
 - Dice, Coin, Grade of a course, etc.
 - Continuous
 - Temperature, Humidity, Length, etc.
- Random Variables
 - Real
 - Complex

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Density/Distribution Functions

- Probability Mass Function (PMF)
 - Discrete random variables
 - Summation of impulses
 - The magnitude of each impulse represents the probability of occurrence of the outcome
- Example I:
 - Rolling a fair dice

$$P(X)$$

$$\frac{1}{6}$$

$$1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

$$PMF = \frac{1}{6} \sum_{i=1}^{6} \delta(X - i)$$

$$PMF = \frac{1}{6} \sum_{i=1}^{6} \mathcal{S}(X-i)$$

- Cumulative Distribution Function (CDF)
 - Both Continuous and Discrete
 - Could be defined as the integration of PDF

$$CDF(x) = F_X(x) = P(X \le x)$$
$$F_X(x) = \int_{-\infty}^{x} f_X(x) . dx$$

- Some CDF properties
 - Non-decreasing
 - Right Continuous
 - F(-infinity) = 0
 - F(infinity) = 1

- Probability Density Function (PDF)
 - Continuous random variables
 - The probability of occurrence of $x_0 \in \left(x \frac{dx}{2}, x + \frac{dx}{2}\right)$ will be P(x).dx

- Some famous masses and densities:
 - Uniform Density

$$f(x) = \frac{1}{a}.(U(end) - U(begin))$$

Gaussian (Normal) Density

$$f(x) = \frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}} = N(\mu, \sigma)$$

$$\frac{1}{\sigma \cdot \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2 \cdot \sigma^2}} = N(\mu, \sigma)$$

Binomial Density

$$f(n) = {N \choose n} \cdot (1-p)^n \cdot p^{N-n}$$

Poisson Density

$$f(x) = e^{-\lambda} \frac{\lambda^{x}}{\Gamma(x+1)}$$

$$Note: x \in \mathbb{R} \implies \Gamma(x+1) = x!$$

Important Fact:

For Sufficient ly large
$$N: \binom{N}{n} \cdot (1-p)^{N-n} \cdot p^n \approx e^{-N \cdot p} \cdot \frac{(N \cdot p)^n}{n!}$$

Exponential Density

$$f(x) = \lambda . e^{-\lambda x} . U(x) = \begin{cases} \lambda . e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$

- Expected Value
 - The most likelihood value:

$$E[X] = \int_{-\infty}^{\infty} x. f_X(x) dx$$

Linear Operator:

$$E[a.X+b] = a.E[X]+b$$

- Function of a random variable:
 - Expectation

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$$

- PDF of a function of random variables:
 - Assume RV "Y" such that Y = g(X)
 - The inverse equation $X = g^{-1}(Y)$ may have more than one solution called $X_1, X_2, ..., X_n$
 - PDF of "Y" can be obtained from PDF of "X" as follows:

$$f_Y(y) = \sum_{i=1}^n \frac{f_X(x_i)}{\left. \frac{d}{dx} g(x) \right|_{x=x_i}}$$

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Joint/Conditional Distributions

Joint Probability Functions

• Density
$$F_{X,Y}(x,y) = P(X \le x \text{ and } Y \le y)$$

Distribution

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(x,y) dy dx$$

Example I:

 In a rolling fair dice experiment represent the outcome as a 3-bit digital number "xyz".

$$f_{X,Y}(x,y) = \begin{cases} 1/6 & x = 0; y = 0 \\ 1/6 & x = 0; y = 0 \\ 1/3 & x = 0; y = 1 \\ 1/3 & x = 1; y = 0 \\ 1/6 & x = 1; y = 1 \\ 0 & O.W. \end{cases}$$

$$\begin{array}{c} xyz \\ 2 \to 010 \\ 3 \to 011 \\ 4 \to 100 \\ 5 \to 101 \\ 0 & O.W. \end{cases}$$

- Example II:
 - Two normal random variables

$$f_{X,Y}(x,y) = \frac{1}{2\pi . \sigma_x . \sigma_y . \sqrt{1-r^2}} e^{-\left(\frac{1}{2(1-r^2)}\left(\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2r(x-\mu_x)(y-\mu_y)}{\sigma_x . \sigma_y}\right)\right)}$$

- · What is "r"?
- Independent Events (Strong Axiom)

$$f_{X,Y}(x,y) = f_X(x).f_Y(y)$$

Obtaining one variable density functions:

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$$
$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

 Distribution functions can be obtained just from the density functions. (How?)

- Conditional Density Function:
 - Probability of occurrence of an event if another event is observed (we know what "Y" is).

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

Bayes' Rule:

$$f_{X|Y}(x|y) = \frac{f_{Y|X}(y|x).f_X(x)}{\int\limits_{-\infty}^{\infty} f_{Y|X}(y|x).f_X(x)dx}$$

• Example I:

- Rolling a fair dice:
 - X : the outcome is an even number
 - Y: the outcome is a prime number

$$P(X|Y) = \frac{P(X,Y)}{P(Y)} = \frac{\frac{1}{6}}{\frac{1}{2}} = \frac{1}{3}$$

- Example II:
 - Joint normal (Gaussian) random variables:

$$f_{X|Y}(x|y) = \frac{1}{\sqrt{2\pi} \cdot \sigma_{x} \cdot \sqrt{1 - r^{2}}} e^{-\left(\frac{1}{2(1 - r^{2})}\left(\frac{x - \mu_{x}}{\sigma_{x}} - r \times \frac{y - \mu_{y}}{\sigma_{y}}\right)^{2}\right)}$$

Conditional Distribution Function:

$$F_{X|Y}(x|y) = P(X \le x \text{ while } Y = y)$$

$$= \int_{-\infty}^{x} f_{X|Y}(x|y) dx$$

$$= \int_{-\infty}^{x} f_{X,Y}(t,y) dt$$

$$= \int_{-\infty}^{\infty} f_{X,Y}(t,y) dt$$

 Note that "y" is a constant during the integration.

Independent Random Variables:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

$$= \frac{f_X(x).f_Y(y)}{f_Y(y)}$$

$$= f_X(x)$$

Remember! Independency is NOT heuristic.

- PDF of a functions of joint random variables
 - Assume that (U,V) = g(X,Y)
 - The inverse equation set $(X,Y) = g^{-1}(U,V)$ has a set of solutions $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$
 - Define Jacobean matrix as follows:

$$\boldsymbol{J} = \begin{bmatrix} \frac{\partial}{\partial X} U & \frac{\partial}{\partial X} V \\ \frac{\partial}{\partial X} U & \frac{\partial}{\partial Y} V \end{bmatrix}$$

The joint PDF will be:

$$f_{U,V}(u,v) = \sum_{i=1}^{n} \frac{f_{X,Y}(x_i, y_i)}{absolute\ determinant} \left(J|_{(x,y)=(x_i, y_i)}\right)$$

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Correlation

- Knowing about a random variable "X", how much information will we gain about the other random variable "Y"?
- Shows linear similarity
- More formal: Crr(X,Y) = E[X.Y]
- Covariance is normalized correlation

$$Cov(X,Y) = E[(X - \mu_X).(Y - \mu_Y)] = E[X.Y] - \mu_X.\mu_Y$$

Correlation (cont'd)

- Variance
 - Covariance of a random variable with itself

$$Var(X) = \sigma_X^2 = E[(X - \mu_X)^2]$$

Relation between correlation and covariance

$$E[X^2] = \sigma_X^2 + \mu_X^2$$

- Standard Deviation
 - Square root of variance

Correlation (cont'd)

- Moments
 - nth order moment of a random variable "X" is the expected value of "X"

$$M_n = E(X^n)$$

Normalized form

$$M_n = E((X - \mu_X)^n)$$

- Mean is the first moment
- Variance is second moment added by the square of the mean

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Important Theorems

- Central limit theorem (CLT)
 - Consider i.i.d. (Independent Identically Distributed) RVs "X_k" with finite variances

• Let
$$S_n = \sum_{i=1}^n a_i X_i$$

- Then PDF of "S_n" converges to a normal distribution as *n* increases, regardless of the initial density of RVs.
- Exception: Cauchy Distribution (Why?)

- Law of Large Numbers (Weak)
 - For i.i.d. RVs "X_k"

$$\forall_{\varepsilon>0} \quad \lim_{n\to\infty} \Pr\left\{ \left| \frac{\sum_{i=1}^{n} X_i}{n} - \mu_X \right| > \varepsilon \right\} = 0$$

- Law of Large Numbers (Strong)
 - For i.i.d. RVs "X_k"

$$\Pr\left\{\lim_{n\to\infty} \frac{\sum_{i=1}^{n} X_i}{n} = \mu_X\right\} = 1$$

 Why this definition is stronger than the weak law of large numbers?

- Chebyshev's Inequality
 - Let "X" be a nonnegative RV
 - Let "c" be a positive number, then:

$$\Pr\{X > c\} \le \frac{1}{c} E[X]$$

Another form:

$$\Pr\{|X - \mu_X| > \varepsilon\} \le \frac{{\sigma_X}^2}{\varepsilon^2}$$

• This could also be rewritten for negative RVs. (How?)

Schwarz Inequality

 For two RVs "X" and "Y" with finite second moments:

$$E[X.Y]^2 \le E[X^2].E[Y^2]$$

Equality holds in case of linear dependency.

Outline

- History/Philosophy
- Random Variables
- Density/Distribution Functions
- Joint/Conditional Distributions
- Correlation
- Important Theorems
- Introduction to Stochastic Processes

Introduction to Stochastic Processes

- Let ξ denote the random outcome of an experiment.
- To every such outcome suppose a function $X(t,\xi)$ is assigned. $\uparrow_{X(t,\xi)}$
- The collection of such functions form a stochastic process.
- The set of $\{\xi_k\}$ and the $X(t,\xi_2)$ time index t can be continuous or discrete (countably infinite or finite).
- For fixed $\xi_i \in S$ (the set of all experimental outcomes), $X(t,\xi)$ is a specific time function.

Introduction to Stochastic Processes

- For fixed t, $X_1 = X(t_1, \xi_i)$ is a random variable.
- The ensemble of all such realizations $X(t,\xi)$ over time represents the stochastic process X(t).

Introduction to Stochastic Processes

- Examples:
- Let $X(t) = a\cos(\omega_0 t + \varphi)$, where φ is a uniformly distributed random variable in $(0,2\pi)$, represents a stochastic process.
- Stochastic processes are everywhere:
 - stock market fluctuations
 - various queuing systems
 - Earthquake Signals
 - 1-D Audios
 - 2-D Images
 - 3-D Videos

Next Week:

Stochastic Processes Stationary Stochastic Processes

Have a good day!