- curves sofer: graphs of equations 1(x), g(y), F(x,y). o
- analyer time of case: trajectory of point maving in coaddinate plane

maken of point described by (x(+), +(+))

becameles + (independent to.)

parametric arus pair of functions x - f(+), y - g(+) guing x and y continuous functions of + E I in R

- note

- we come may be the stap of different section in step and set me shall see a come may be a come and the stap of peremolerizations.
- to another in aster series if it is it is the personal experience of it is in the personal design of the interest of the inter

Tangents

ces litter is cased small if it is de confidence are confident in the same para si its is it is it.

- -o in some neighborhood of each point the ____ the case can be described in one a both of the tains each of a smooth parametric oute ____ y: F(x), x: G(1).
- suppose 5'(+) > 0 on I => } has invested, + \$(x) => y=g(+) = g(\$(x)) = F(x)
- all solves of the solvest of the so

 $\Rightarrow \frac{9t_1}{9_5^4} \cdot \frac{9t}{9^4} \cdot \frac{9t}{9^4} \cdot \frac{9t}{9x} \cdot \frac{9t}{9_5^4} \cdot \frac{9t}{9^4} \cdot \frac{9t}{94_1/9t}$

Patr curves as Permetric curves

(- 1(0) coupe wengeg or botomerus ni botomera o

x - lone . Pleyone

A - Leur - Projetue

 $\frac{\partial x}{\partial t} = \frac{\partial x}{\partial t} \frac{\partial x}{\partial t} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta)) \cos(\theta)} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta)) \cos(\theta)}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0) \cos(\theta - f(\theta))}{\int (0) \cos(\theta - f(\theta))} = \frac{\int (0)$