

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
27 January 2005 (27.01.2005)

PCT

(10) International Publication Number
WO 2005/008291 A1

(51) International Patent Classification⁷:

G01V 1/28

(21) International Application Number:

PCT/IB2004/002617

(22) International Filing Date: 20 July 2004 (20.07.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

0308861 21 July 2003 (21.07.2003) FR

(71) Applicant (for all designated States except US): COM-PAGNIE GENERALE DE GEOPHYSIQUE [FR/FR]; 1, rue Louis Migaux, F-91300 Massy (FR).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SILIQI, Risto [FR/FR]; 29, rue Saint-André des Arts, F-75006 Paris (FR).

(74) Agents: CALLON DE LAMARCK, Jean-Robert et al.; Cabinet Régimbeau, 20, rue de Chazelles, F-75847 Paris Cédex 17 (FR).

(54) Title: METHOD FOR BISPECTRAL PICKING OF ANELLIPTICAL NMO CORRECTION PARAMETERS

(57) Abstract: Method of determining the velocity V and anellipticity η parameters for processing seismic traces in a common midpoint (CMP) gather comprising: - a preliminary step to define a plurality of nodes (dt_n, t_0) - for each node (dt_n, t_0) defined in the preliminary step, the following steps: - for static NMO correction of traces in the CMP gather as a function of the values of the said parameters dt_n and t_0 at the node considered, and calculation of the semblance function associated with the said NMO correction for the node considered; and - for each picked time t_0 , a step including determination of the maximum semblance node ($dt_n(t_0), t_0(t_0)$) - and a final step to convert the $dt_n(t_0)$ and $t_0(t_0)$ parameters, so as to obtain the velocity (t_0) and anellipticity $\eta(t_0)$ laws.

WO 2005/008291 A1