

# **ELEC2005 Electrical and Electronic Systems**

MOSFETS- PART 1
DAVID PAYNE



# In Today's Lecture



- Introduction to MOSFETS
- MOSFETS Vs. BJTs
- Device Structure
- Device Operation
- P and N channel MOSFETS
- Characteristics and Operating Modes









# Lecture 5

- 1. Intro to MOSFETs
- 2. Device Structure & Operation
- 3. Examples



#### WHAT ARE THEY?

- Metal Oxide Semiconductor Field Effect Transistor
- Very well established and widely used technology (especially in the IC industry)
- Metal used for the contacts, though polycrystalline silicon can also be used
- Oxide Unlike BJTs, in a MOSFET the gate is separated from the rest of the device by a thin insulating layer (usually silicon dioxide)
- Semiconductor most commonly fabricated on silicon (though other semiconductors can be used, including compounds like SiGe)
- Field effect Applying a voltage between the gate and body terminals creates an electric field which penetrates the oxide and creates an inversion layer at the semiconductor interface



#### MOSFETS VS BJTS

**Q:** What are two major types of three-terminal semiconductor devices?

- metal-oxide-semiconductor field-effect transistor (MOSFET)
- bipolar junction transistor (BJT)

Q: Why are MOSFET's more widely used?

- size (smaller)
- ease of manufacture
- lower power requirements

MOSFET are more widely used in implementation of modern electronic devices



#### **MOSFETS VS BJTS**

### **MOSFET technology**

- Allows placement of approximately 2 billion transistors on a single IC
- Backbone of very large scale integration (VLSI)
- Preferable to BJT technology for many applications (for example digital circuits).
- But NO simple equivalent circuit (such as the 0.7Vdrop model)

MOSFET are more widely used in implementation of modern electronic devices





# Lecture 5

- 1. Intro to MOSFETs
- 2. Device Structure & Operation
- 3. Examples



#### **DEVICE STRUCTURE**

General structure of the n-channel MOSFET (nMOSFET):

See Sedra
Chapter 5.1 for
further
information



Physical structure of the enhancement-type NMOS transistor: (a) perspective view, (b) cross-section. Note that typically L = 0.03um to 1um, W = 0.1um to 100um, and the thickness of the oxide layer ( $t_{ox}$ ) is in the range of 1 to 10nm.

(a)



#### **DEVICE STRUCTURE**

General structure of the n-channel MOSFET (nMOSFET): SiO2 layer separates source and drain two n-type regions (Drain, source) Metal on SiO2 forms gate electrode Metal Drain (D) Source (S) 2 (G) Oxide (SiO<sub>2</sub>) Oxide (SiO<sub>2</sub>) (thickness =  $t_{o}$ Source region Channel region *p*-type substrate p-type substrate (Body) (Body) Channel region В One p-type region Body Drain region (B) (body)

Physical structure of the enhancement-type NMOS transistor: (a) perspective view, (b) cross-section. Note that typically L = 0.03um to 1um, W = 0.1um to 100um, and the thickness of the oxide layer ( $t_{ox}$ ) is in the range of 1 to 10nm.

(b)



#### **DEVICE STRUCTURE**

- The MOSFET consists of two pn junctions
  - Essentially two back-to-back diodes
- Diodes between drain and source prevent current when voltage V<sub>DS</sub> is applied
  - Yields very high resistance (10<sup>12</sup> ohms!)



#### **CREATING A CHANNEL**



**Q:** What happens if (1) source and drain are grounded and (2) positive voltage is applied to gate? *Refer to figure to right* 

**step #1:**  $v_{GS}$  is applied to the gate terminal, causing a positive charge build up along metal electrode.

**step #2:** This "build up" causes free holes to be repelled from region of *p*-type substrate under gate.



#### **CREATING A CHANNEL**



**Q:** What happens if (1) source and drain are grounded and (2) positive voltage is applied to gate? *Refer to figure to right* 

step #3: This 'migration' results in the uncovering of negative bound charges, originally neutralized by the free holes

step #4: The positive gate
voltage also attracts electrons
from the n<sup>+</sup> source and drain
regions into the channel



**CREATING A CHANNEL** 



**Q:** What happens if (1) source and drain are grounded and (2) positive voltage is applied to gate? Refer to figure to right

**step #5:** Once a sufficient number of these electrons accumulate, an n-region is made (connecting S and D!)

**step #6:** This provides a path for current flow between S and D





### A CURRENT SOURCE WITH SQUARE-LAW DEPENDENCE

- Channel is induced when the gate source voltage exceeds the threshold voltage
- Additional voltage beyond the threshold point is the overdrive

$$v_{GS} > V_t$$
 Threshold voltage  $v_{OV} = v_{GS} - V_t$  Overdrive voltage

 Drain current has a square-law dependence on the overdrive voltage:





Different constants for n and p channel MOSFETs

### **Class Exercise**

### MACQUARIE University

#### **OVERDRIVE VOLTAGE**

#### PollEv.com/davidpayne187

A MOSFET's threshold voltage is 0.5V. If you apply 2V between Gate and Source, what is the overdrive voltage?



### P-Channel MOSFET



#### A CURRENT SOURCE WITH SQUARE-LAW DEPENDENCE

- P-Channel MOSFETs have a similar but opposite structure to n-channel
- They are complementary devices
- PMOS originally dominated the MOS field. but as manufacturing difficulties with NMOS were solved, NMOS took over
- Q: Why is NMOS advantageous?
  - Because electron mobility  $\mu_n$  is 2 -
  - **4 times greater** than hole mobility  $\mu_p$



Complementary MOS (**CMOS**) is the technology for fabrication of both NMOS and PMOS on the same chip

### MACQUARIE University

Modified Symbol D

### **CIRCUIT SYMBOLS**

Numerous circuit symbols used

There are four terminals:
 Drain (D), Gate (G), Body (B) and
 Source (S)

Simplified circuit symbol for the case when body and source are connected or body effect can be ignored



(c)

Standard

### **REGIONS OF OPERATION**



### **Regions of Operation**





Note the differences and similarities with the BJT!



18

### **REGIONS OF OPERATION**







### **REGIONS OF OPERATION**







### **REGIONS OF OPERATION**









### **OPERATING MODE VOLTAGES**



The relative levels of the terminal voltages of the enhancement NMOS transistor for operation in the triode region and in the saturation region.



#### **OPERATING MODE VOLTAGES**



 $V_{GS} < V_t$ : no channel in cut-off;  $i_D = 0$ 



 $V_{GS} = V_t + V_{OV}$ : channel induced : in triode or saturation region, depending on state:



Triode Region

ontinuous channel, obtained by:

$$v_{GD} > V_{tn}$$

equivalently:

$$v_{DS} < v_{OV}$$

nen

$$i_D = k_n' \left( \frac{W}{L} \right) \left[ (v_{GS} - V_{tn}) v_{DS} - \frac{1}{2} v_{DS}^2 \right]$$

equivalently,

$$i_D = k'_n \left(\frac{W}{L}\right) \left(v_{OV} - \frac{1}{2}v_{DS}\right) v_{DS}$$

Saturation Region

Pinched-off channel, obtained by:

$$v_{GD} \leq V_{tn}$$

or equivalently:

$$v_{DS} \ge v_{OV}$$

Then

$$i_D = \frac{1}{2} k_n' \left( \frac{W}{L} \right) (v_{GS} - V_{tn})^2$$

or equivalently,

$$i_D = \frac{1}{2} k_n' \left( \frac{W}{L} \right) v_{OV}^2$$



#### **OPERATING MODE VOLTAGES**



Triode mode when,

$$V_{DS} < V_{OV}$$

Saturation mode when,

$$V_{DS} \ge V_{OV}$$

MOSFET: Amplify in Saturation mode

BJT: Amplify in Active mode







Consider an NMOS transistor fabricated in a 0.18- $\mu$ m process with  $L=0.18~\mu$ m and  $W=2~\mu$ m. The process technology is specified to have  $C_{ox} = 8.6 \text{ fF/}\mu\text{m}^2$ ,  $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$ , and  $V_{tn} = 0.5 \text{ V}$ .

- (a) Find  $V_{GS}$  and  $V_{DS}$  that result in the MOSFET operating at the edge of saturation with  $I_D = 100 \, \mu A$ .
- (b) If  $V_{GS}$  is kept constant, find  $V_{DS}$  that results in  $I_D = 50 \mu A$ .
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with  $V_{DS} = 0.3 \text{ V}$ . Find the change in  $i_D$  resulting from  $v_{GS}$  changing from 0.7 V by +0.01 V and by -0.01 V.

Triode mode:

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ \left(\upsilon_{GS} - V_t\right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right] \qquad i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_t$ 

$$k_n' = C_{ox} \mu_n$$

Saturation:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$



#### PollEv.com/davidpayne187

 $C_{ox} = 8.6 \text{ fF/}\mu\text{m}^2$ ,  $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$ , and  $V_{tn} = 0.5 \text{ V}$ .

 $L = 0.18 \ \mu m \text{ and } W = 2 \ \mu m.$ 

edge of saturation with  $I_D = 100 \mu A$ .

Triode mode:

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ \left(\upsilon_{GS} - V_t\right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right]$$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_t$ 

$$k_n' = C_{ox} \mu_n$$

Saturation:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$





Consider an NMOS transistor fabricated in a 0.18- $\mu$ m process with  $L=0.18~\mu$ m and  $W=2~\mu$ m. The process technology is specified to have  $C_{ox} = 8.6 \text{ fF/}\mu\text{m}^2$ ,  $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$ , and  $V_{tn} = 0.5 \text{ V}$ .

- (a) Find  $V_{GS}$  and  $V_{DS}$  that result in the MOSFET operating at the edge of saturation with  $I_D = 100 \, \mu A$ .
- (b) If  $V_{GS}$  is kept constant, find  $V_{DS}$  that results in  $I_D = 50 \mu A$ .
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with  $V_{DS} = 0.3 \text{ V}$ . Find the change in  $i_D$  resulting from  $v_{GS}$  changing from 0.7 V by +0.01 V and by -0.01 V.

Triode mode:

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ \left(\upsilon_{GS} - V_t\right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right] \qquad i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_t$ 

$$k'_n = C_{ox} \mu_n$$
  
 $C_{ox} \mu_n \left(\frac{W}{L}\right) = 4.3 \times 10^{-3} \text{ A/V}^2 = 4.3 \text{ mA/V}^2$ 

Careful with the units!

#### Saturation:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$

See example 5.2 of Sedra for more details



Consider an NMOS transistor fabricated in a 0.18- $\mu$ m process with  $L=0.18~\mu$ m and  $W=2~\mu$ m. The process technology is specified to have  $C_{ox}=8.6~\mathrm{fF}/\mu\mathrm{m}^2$ ,  $\mu_n=450~\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$ , and  $V_{tn}=0.5~\mathrm{V}$ .

- (a) Find  $V_{GS}$  and  $V_{DS}$  that result in the MOSFET operating at the edge of saturation with  $I_D = 100 \, \mu A$ .
- (b) If  $V_{GS}$  is kept constant, find  $V_{DS}$  that results in  $I_D = 50 \mu A$ .
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with  $V_{DS} = 0.3 \text{ V}$ . Find the change in  $i_D$  resulting from  $v_{GS}$  changing from 0.7 V by +0.01 V and by -0.01 V.

Triode mode:

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ \left(\upsilon_{GS} - V_t\right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right]$$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_t$ 

Saturation:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$

$$C_{ox}\mu_n\left(\frac{W}{L}\right) = 4.3 \times 10^{-3} \text{ A/V}^2 = 4.3 \text{ mA/V}^2$$

a) Edge of saturation: 
$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2 = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \upsilon_{OV}^2 = 100 \ \mu A \Rightarrow$$

$$\upsilon_{GS} = 0.71 \ \mathrm{V}$$

$$\upsilon_{DS} = 0.21 \ \mathrm{V}$$



Consider an NMOS transistor fabricated in a 0.18- $\mu$ m process with  $L=0.18~\mu$ m and  $W=2~\mu$ m. The process technology is specified to have  $C_{ox} = 8.6 \text{ fF/}\mu\text{m}^2$ ,  $\mu_n = 450 \text{ cm}^2/\text{V} \cdot \text{s}$ , and  $V_{tn} = 0.5 \text{ V}$ .

- (a) Find  $V_{GS}$  and  $V_{DS}$  that result in the MOSFET operating at the edge of saturation with  $I_D = 100 \, \mu A$ .
- (b) If  $V_{GS}$  is kept constant, find  $V_{DS}$  that results in  $I_D = 50 \mu A$ .
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with  $V_{DS} = 0.3 \text{ V}$ . Find the change in  $i_D$  resulting from  $v_{GS}$  changing from 0.7 V by +0.01 V and by -0.01 V.

#### Triode mode:

# $i_D = k_n' \left( \frac{W}{I} \right) \left[ \left( \upsilon_{GS} - V_t \right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right] \qquad i_D = \frac{1}{2} k_n' \left( \frac{W}{I} \right) \left( \upsilon_{GS} - V_t \right)^2$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_t$ 

#### Saturation:

$$i_D = \frac{1}{2} k_n' \left( \frac{W}{L} \right) \left( \nu_{GS} - V_t \right)^2$$

$$C_{ox}\mu_n\left(\frac{W}{L}\right) = 4.3 \times 10^{-3} \text{ A/V}^2 = 4.3 \text{ mA/V}^2$$

b) 
$$v_{GS} = 0.71 \text{ V}$$
  $i_D = 50 \mu\text{A} < 100 \mu\text{A}$  in triode mode

$$i_D = k'_n \left(\frac{W}{L}\right) \left[ (\nu_{GS} - V_t) \nu_{DS} - \frac{1}{2} \nu_{DS}^2 \right] \qquad \dots \quad \rightarrow \nu_{DS}^2 - 0.42 \nu_{DS} + 0.023 = 0 \qquad \qquad \nu_{DS} = 0.35 \text{ V}$$

$$\nu_{DS} = 0.36 \text{ V}$$

**Q:** which solution do we pick?



Consider an NMOS transistor fabricated in a 0.18- $\mu$ m process with  $L=0.18~\mu$ m and  $W=2~\mu$ m. The process technology is specified to have  $C_{ox}=8.6~\mathrm{fF}/\mu\mathrm{m}^2$ ,  $\mu_n=450~\mathrm{cm}^2/\mathrm{V}\cdot\mathrm{s}$ , and  $V_{tn}=0.5~\mathrm{V}$ .

- (a) Find  $V_{GS}$  and  $V_{DS}$  that result in the MOSFET operating at the edge of saturation with  $I_D = 100 \, \mu A$ .
- (b) If  $V_{GS}$  is kept constant, find  $V_{DS}$  that results in  $I_D = 50 \mu A$ .
- (c) To investigate the use of the MOSFET as a linear amplifier, let it be operating in saturation with  $V_{DS} = 0.3 \text{ V}$ . Find the change in  $i_D$  resulting from  $v_{GS}$  changing from 0.7 V by +0.01 V and by -0.01 V.

Triode mode:

$$i_D = k_n' \left(\frac{W}{L}\right) \left[ \left(\upsilon_{GS} - V_t\right) \upsilon_{DS} - \frac{1}{2} \upsilon_{DS}^2 \right]$$

Overdrive voltage:  $\upsilon_{OV} = \upsilon_{GS} - V_{t}$ 

Saturation:

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2$$

$$C_{ox}\mu_n\left(\frac{W}{L}\right) = 4.3 \times 10^{-3} \text{ A/V}^2 = 4.3 \text{ mA/V}^2$$

c)  $v_{DS} = 0.3 \text{ V}$  Q: which mode is the transistor in?

$$i_D = \frac{1}{2} k_n' \left(\frac{W}{L}\right) \left(\upsilon_{GS} - V_t\right)^2 \qquad \upsilon_{GS} = 0.71 \text{ V} \longrightarrow i_D = 94.8 \ \mu\text{A} \qquad \text{, change } 8.8 \ \mu\text{A}$$

$$\upsilon_{GS} = 0.70 \text{ V} \longrightarrow i_D = 86 \ \mu\text{A}$$

$$\upsilon_{GS} = 0.69 \text{ V} \longrightarrow i_D = 77.6 \ \mu\text{A} \qquad \text{, change } -8.4 \ \mu\text{A}$$

**Q:** is it a linear amplifier?

# pMOSFET

### **CIRCUIT SYMBOLS**





(a) Circuit symbol for the *p*-channel enhancement-type MOSFET. (b) Modified symbol with an arrowhead on the source lead. (c) Simplified circuit symbol for the case where the source is connected to the body.

# pMOSFET



### COMMON SOURCE CHARACTERISTICS



# pMOSFET



### **OPERATING MODE VOLTAGES**



The relative levels of the terminal voltages of the enhancement-type PMOS transistor for operation in the triode region and in the saturation region.

# **Operating Modes**

### ON FORMULA SHEET



nMOSFET

pMOSFET

#### Large-signal modes of operation for nMOSFET

$$V_t > 0$$
  $V_{DS} > 0$   $V_A = \infty$   $k_n = \mu_n C_{ox} \frac{W}{L}$ 

For pMOSFET use the same current equations but with reversed voltage polarities and



| $V_{GS}$          | $V_{GD}$  | $V_{DS}$                   | Mode                                | $I_D(V_{GS}, V_{DS})$                                      |
|-------------------|-----------|----------------------------|-------------------------------------|------------------------------------------------------------|
| $< V_t $          | $< V_t $  | > 0                        | cut-off                             | $I_D = 0$                                                  |
| >  V <sub>t</sub> | $>  V_t $ | small $\ll V_{GS} -  V_t $ | triode<br>(linear)                  | $I_D = k_n (V_{GS} -  V_t ) V_{DS}$                        |
| >  V <sub>t</sub> | $>  V_t $ | $< V_{GS} -  V_t $         | triode                              | $I_D = k_n [(V_{GS} -  V_t )V_{DS} - \frac{1}{2}V_{DS}^2]$ |
| $>  V_t $         | $=  V_t $ | $=V_{GS}- V_t $            | edge of<br>triode and<br>saturation | $I_D = \frac{1}{2} k_n (V_{GS} -  V_t )^2$                 |
| $>  V_t $         | $< V_t $  | $>V_{GS}- V_t $            | saturation                          | $I_D = \frac{1}{2}k_n(V_{GS} -  V_t )^2$                   |





# Lecture 5

- 1. Intro to MOSFETs
- 2. Device Structure & Operation
- 3. Examples



### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V.

Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.





#### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V.

Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.



Step 1: 
$$R_D$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = 5 \text{ k}\Omega$$

# MACQUARIE University

#### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V.

Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.



Step 1: 
$$R_D$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = 5 \text{ k}\Omega$$

Step 2: 
$$R_S$$

$$R_S = \frac{V_S - V_{SS}}{I_D}$$



#### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V. Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.



Step 1: 
$$R_D$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = 5 \text{ k}\Omega$$

Step 2: 
$$R_S$$

$$R_S = \frac{V_S - V_{SS}}{I_D}$$

**Q:** which mode is the transistor in?

### Need to find $V_S$





#### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V. Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.



Step 1: 
$$R_D$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = 5 \text{ k}\Omega$$

Step 2: 
$$R_S$$

$$R_S = \frac{V_S - V_{SS}}{I_D}$$

**Q:** which mode is the transistor in?

 $V_D > V_G$ , so saturation mode

### Need to find $V_S$



# **Operating Modes**



ON FORMULA SHEET

#### Large-signal modes of operation for nMOSFET

$$V_t > 0$$
  $V_{DS} > 0$   $V_A = \infty$   $k_n = \mu_n C_{ox} \frac{W}{L}$ 

For pMOSFET use the same current equations but with reversed voltage polarities and

$$k_p = \mu_p C_{ox} \frac{W}{L}$$



| $V_{GS}$          | $V_{GD}$  | $V_{DS}$                   | Mode                                | $I_D(V_{GS}, V_{DS})$                                      |
|-------------------|-----------|----------------------------|-------------------------------------|------------------------------------------------------------|
| $< V_t $          | $< V_t $  | > 0                        | cut-off                             | $I_D=0$                                                    |
| >  V <sub>t</sub> | $>  V_t $ | small $\ll V_{GS} -  V_t $ | triode<br>(linear)                  | $I_D = k_n (V_{GS} -  V_t ) V_{DS}$                        |
| >  V <sub>t</sub> | $>  V_t $ | $< V_{GS} -  V_t $         | triode                              | $I_D = k_n [(V_{GS} -  V_t )V_{DS} - \frac{1}{2}V_{DS}^2]$ |
| $>  V_t $         | $=  V_t $ | $=V_{GS}- V_t $            | edge of<br>triode and<br>saturation | $I_D = \frac{1}{2}k_n(V_{GS} -  V_t )^2$                   |
| $>  V_t $         | $< V_t $  | $>V_{GS}- V_t $            | saturation                          | $I_D = \frac{1}{2}k_n(V_{GS} -  V_t )^2$                   |

### MACQUARIE University

#### EXAMPLE-1 (DC)

Design the circuit so that  $I_D$ =0.4 mA and  $V_D$ =+0.5 V. Transistor parameters:  $V_t$ =0.7 V,  $\mu_n C_{ox}$ =100  $\mu$ A/V², L=1 $\mu$ m, W=32  $\mu$ m.



Step 1: 
$$R_D$$

$$R_D = \frac{V_{DD} - V_D}{I_D} = 5 \text{ k}\Omega$$

Step 2: 
$$R_S$$

$$R_S = \frac{V_S - V_{SS}}{I_{SS}}$$

**Q:** which mode is the transistor in?

$$V_D > V_G$$
, so saturation mode

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{OV}^2$$

Solve for  $V_{OV}$ :  $V_{OV} = 0.5V$ 

$$V_{GS} = V_{OV} + V_t = 1.2V$$

$$V_S = -1.2V$$
  $R_S = \frac{V_S - V_{SS}}{I_D} = 3.25 \text{ k}\Omega$ 





### EXAMPLE-2 (DC)

Find the i-v relationship of the following two-terminal device. The transistor parameters,  $V_t$ ,  $\mu_n C_{ox}$ , L and W are given.





#### EXAMPLE-2 (DC)

Find the i-v relationship of the following two-terminal device. The transistor parameters,  $V_t$ ,  $\mu_n C_{ox}$ , L and W are given.



**Q:** Which mode is the transistor in?





#### EXAMPLE-2 (DC)

Find the i-v relationship of the following two-terminal device. The transistor parameters,  $V_t$ ,  $\mu_n C_{ox}$ , L and W are given.



**Q:** Which mode is the transistor in?



A1: Saturation

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$i = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (\upsilon - V_{t})^{2} \qquad V_{GS} > V_{t}$$

$$i = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (\upsilon - V_{t})^{2} \qquad \upsilon > V_{t}$$



#### EXAMPLE-2 (DC)

Find the i-v relationship of the following two-terminal device. The transistor parameters,  $V_t$ ,  $\mu_n C_{ox}$ , L and W are given.



**Q:** Which mode is the transistor in?



A1: Saturation

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{t})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (v - V_{t})^{2}$$

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (v - V_{t})^{2}$$

$$V_{GS} > V_{t}$$

$$V_{GS} < V_{t}$$

$$i = 0$$

$$v < V_{t}$$

A2: Cutoff

$$V_{GS} < V_{t}$$

$$i = 0 \qquad \upsilon < V_{t}$$



#### EXAMPLE-2 (DC)

Find the i-v relationship of the following two-terminal device. The transistor parameters,  $V_t$ ,  $\mu_n C_{ox}$ , L and W are given.



$$\upsilon \le V_t \qquad i = 0$$

$$\upsilon > V_t \qquad i = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (\upsilon - V_t)^2$$



EXAMPLE-3 (DC)

Which mode is this transistor in?  $V_t=1$  V,  $k_n'(W/L)=1$  mA/V<sup>2</sup>





EXAMPLE-3 (DC)

Which mode is this transistor in?  $V_t=1$  V,  $k_n'(W/L)=1$  mA/V<sup>2</sup>





## **Operating Modes**

#### ON FORMULA SHEET





 $V_t$ =1 V,  $k_n$ '(W/L)=1 mA/V<sup>2</sup>

 $I_D = 0.395 \text{ mA}$ 

 $R_D$ =12.4 k $\Omega$ 

#### Large-signal modes of operation for nMOSFET

$$V_t > 0$$
  $V_{DS} > 0$   $V_A = \infty$   $k_n = \mu_n C_{ox} \frac{W}{L}$ 

For pMOSFET use the same current equations but with reversed voltage polarities and  $V_t < 0 \qquad k_p = \mu_p \mathcal{C}_{ox} \frac{W}{I}$ 



| $V_{GS}$          | $V_{GD}$  | $V_{DS}$                   | Mode                                | $I_D(V_{GS}, V_{DS})$                                      |
|-------------------|-----------|----------------------------|-------------------------------------|------------------------------------------------------------|
| $<  V_t $         | $< V_t $  | > 0                        | cut-off                             | $I_D=0$                                                    |
| >  V <sub>t</sub> | $>  V_t $ | small $\ll V_{GS} -  V_t $ | triode<br>(linear)                  | $I_D = k_n (V_{GS} -  V_t ) V_{DS}$                        |
| $>  V_t $         | $>  V_t $ | $< V_{GS} -  V_t $         | triode                              | $I_D = k_n [(V_{GS} -  V_t )V_{DS} - \frac{1}{2}V_{DS}^2]$ |
| $>  V_t $         | $=  V_t $ | $=V_{GS}- V_t $            | edge of<br>triode and<br>saturation | $I_D = \frac{1}{2} k_n (V_{GS} -  V_t )^2$                 |
| $>  V_t $         | $< V_t $  | $> V_{GS} -  V_t $         | saturation                          | $I_D = \frac{1}{2}k_n(V_{GS} -  V_t )^2$                   |



#### EXAMPLE-4 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=1 \text{ mA/V}^2$ .





### EXAMPLE-4 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=1 \text{ mA/V}^2$ .





#### EXAMPLE-4 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=1 \text{ mA/V}^2$ .



Assuming saturation mode:

$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2 \xrightarrow{Expand} 18I_D^2 - 25I_D + 8 = 0$$



#### EXAMPLE-4 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=1 \text{ mA/V}^2$ .



Assuming saturation mode:  $I_D = \frac{1}{2}k_n'\frac{W}{L}(V_{GS} - V_t)^2 \Rightarrow 18I_D^2 - 25I_D + 8 = 0$   $I_D = 0.5mA$ 



#### EXAMPLE-4 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=1 \text{ mA/V}^2$ .



Assuming saturation mode:  $I_D = \frac{1}{2} k_n' \frac{W}{L} (V_{GS} - V_t)^2 \Rightarrow 18 I_D^2 - 25 I_D + 8 = 0$   $I_D = 0.5 mA$ 

# MACQUARIE University

### EXAMPLE-5 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=0.4 \text{ mA/V}^2$ .



See Sedra P5.37c for more details

### MACQUARIE University

#### EXAMPLE-5 (DC)

Determine the voltages at all nodes and the current at all branches in the circuit below in saturation.  $V_t=1 \text{ V}$ ,  $k_n'(W/L)=0.4 \text{ mA/V}^2$ .



$$V_{GS}=-V_3$$
 See Sedra P5.37c for more details  $V_{DS}=5-V_3$   $V_D=5V$   $V_G=0V$   $1=\frac{1}{2}0.4~(V_{GS}-1)^2$   $V_{GS}^2-2V_{GS}-4=0$   $V_{GS}=3.235V~or~-1.235V$   $V_{S}=V_3=-V_{GS}=3.235V~-1.235V$ 

### This week



#### LAB + FIRST ASSIGNMENT

#### **BJT Lab:**

- The worksheet is available on iLearn
- You will use the AD2 and your kit to make a BJT amplifier with biasing
- Complete as much of the lab as you can before attending the support session (prelab part is the minimum requirement)

### First Assignment!

- The first assignment is available now.
- An iLearn quiz on the topics of diodes and BJTs
- Submission is due by midnight Friday 25<sup>th</sup>