```
import sklearn
import matplotlib.pyplot as plt
from sklearn import svm
import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.datasets import load_iris
iris = load_iris()
y1=iris.target
x1= iris.data
df = pd.DataFrame(x1,
                  columns = iris.feature_names)
df['species']=y1
df=df.drop(columns=["sepal width (cm)", "sepal length (cm)"])
```

df

₽	petal length (cm)	petal width (cm)	species
0	1.4	0.2	0
1	1.4	0.2	0
2	1.3	0.2	0
3	1.5	0.2	0
4	1.4	0.2	0
145	5.2	2.3	2
146	5.0	1.9	2
147	5.2	2.0	2
148	5.4	2.3	2
149	5.1	1.8	2

150 rows × 3 columns

```
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
```

```
X=df[['petal length (cm)','petal width (cm)']]
```

```
X=X.to_numpy()
X=X[50:150,:]
y= df['species']
y=y.to_numpy()
y=y[50:150]
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC(kernel='linear')
model.fit(X, y)
pred=model.predict(x test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.title("Class 1 and 2")
plt.show()
 C→
```

https://colab.research.google.com/drive/1dxEE5-kb1mY5d7NzLRB6lYm_vpL1W9SU?authuser=1#scrollTo=TBuHXwyz2he-&printMode=true

```
precision
                               recall f1-score
                                                    support
                        1.00
                                            0.93
                1
                                  0.87
                                                         15
                        0 22
                                  1 00
                                             a 91
                                                         15
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
X=X[0:100,:]
y= df['species']
y=y.to_numpy()
y=y[0:100]
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC(kernel='linear')
model.fit(X, y)
pred=model.predict(x_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
#print(xy,clf.decision_function(xy).shape)
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.title("Class 0 and 1")
plt.show()
 С→
```

https://colab.research.google.com/drive/1dxEE5-kb1mY5d7NzLRB6lYm_vpL1W9SU?authuser=1#scrollTo=TBuHXwyz2he-&printMode=true

```
precision
                               recall f1-score
                                                    support
                0
                        1.00
                                   1.00
                                             1.00
                                                         16
                1
                        1.00
                                   1.00
                                             1.00
                                                         14
         accuracy
                                             1.00
                                                         30
        macro avg
                        1.00
                                  1.00
                                             1.00
                                                         30
                                             1.00
                                                         30
     weighted avg
                        1.00
                                  1.00
                          Class 0 and 1
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
a=X[0:50,:]
X=X[100:150,:]
X=np.concatenate((X,a))
y= df['species']
y=y.to numpy()
b=y[0:50]
y=y[100:150]
y=np.concatenate((y,b))
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC(kernel='linear')
model.fit(X, y)
pred=model.predict(x_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='linear', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
#print(xy,clf.decision_function(xy).shape)
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.title("Class 0 and 2")
plt.show()
```

С→

 \Box

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	12
	2	1.00	1.00	1.00	18
accurac	у			1.00	30
macro av	g	1.00	1.00	1.00	30
weighted av	g	1.00	1.00	1.00	30


```
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
y= df['species']
y=y.to_numpy()
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30,random_state=42)
for i in [0.001,1,1000]:
    model=SVC(C=i,kernel='linear')
    model.fit(X, y)
    pred=model.predict(x_test)

print(classification_report(y_test, pred))
```

support	f1-score	recall	precision	
19	0.00	0.00	0.00	0
13	0.58	1.00	0.41	1
13	1.00	1.00	1.00	2
45	0.58			accuracy
45	0.53	0.67	0.47	macro avg
45	0.46	0.58	0.41	weighted avg

```
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
X=X[50:150,:]
y= df['species']
y=y.to_numpy()
y=y[50:150]
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC()
model.fit(X, y)
pred=model.predict(x_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='rbf', C=1000 )
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
#print(xy,clf.decision_function(xy).shape)
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.title("Class 1 and 2")
plt.show()
```

С→

	precision	recall	f1-score	support
1	0.93	1.00	0.97	14
2	1.00	0.94	0.97	16
accuracy			0.97	30
macro avg	0.97	0.97	0.97	30
weighted avg	0.97	0.97	0.97	30

Class 1 and 2 2.4 2.2 2.0 1.8

```
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
X=X[0:100,:]
y= df['species']
y=y.to_numpy()
y=y[0:100]
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC(kernel='rbf')
model.fit(X, y)
pred=model.predict(x_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='rbf', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
#print(xy,clf.decision_function(xy).shape)
Z = clf.decision_function(xy).reshape(XX.shape)
ax.contour(XX, YY, Z, colors='k', levels=[-1, 0, 1], alpha=0.5,
           linestyles=['--', '-', '--'])
ax.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,
           linewidth=1, facecolors='none', edgecolors='k')
plt.title("Class 0 and 1")
plt.show()
```

		precision	recall	f1-score	support
	0	1.00	1.00	1.00	18
	1	1.00	1.00	1.00	12
accura	су			1.00	30
macro a	vg	1.00	1.00	1.00	30
weighted a	vg	1.00	1.00	1.00	30


```
0.25
X=df[['petal length (cm)','petal width (cm)']]
X=X.to_numpy()
a=X[0:50,:]
X=X[100:150,:]
X=np.concatenate((X,a))
y= df['species']
y=y.to_numpy()
b=y[0:50]
y=y[100:150]
y=np.concatenate((y,b))
X,x_test,y, y_test=train_test_split(X,y,test_size=0.30)
model=SVC(kernel='rbf')
model.fit(X, y)
pred=model.predict(x_test)
from sklearn.metrics import classification_report
print(classification_report(y_test, pred))
clf = svm.SVC(kernel='rbf', C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,s=30, cmap=plt.cm.Paired)
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
xx = np.linspace(xlim[0], xlim[1], 30)
yy = np.linspace(ylim[0], ylim[1], 30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(), YY.ravel()]).T
Z = clf.decision_function(xy).reshape(XX.shape)
```

₽		precision	recall	f1-score	support
	0	1.00	1.00	1.00	18
	2	1.00	1.00	1.00	12
	accuracy			1.00	30
	macro avg	1.00	1.00	1.00	30
	weighted avg	1.00	1.00	1.00	30

