STATISTICAL INFERENCES (2cr)

Chapter 9 One- and Two-Sample Estimation Problems

Zhong Guan

Math, IUSB

- 1 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 9.9 Paired Observations
 - Based on Paired Data

- 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 2 9.9 Paired Observations
 - Based on Paired Data

- 1 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 2 9.9 Paired Observations
 - Based on Paired Data

- Comparing gas mileage between two types of engines, A and B.
- Fifty experiments were conducted using engine type A: average gas mileage is 36 mpg. Population standard deviation is σ_A = 6.
- Seventy five experiments were conducted using engine type B: average gas mileage is 42 mpg. Population standard deviation is $\sigma_B = 8$.
- Find a 95% confidence interval for the difference of the mean gas mileage, $\mu_A \mu_B$.

- Comparing gas mileage between two types of engines, A and B.
- Fifty experiments were conducted using engine type *A*: average gas mileage is 36 mpg. Population standard deviation is $\sigma_A = 6$.
- Seventy five experiments were conducted using engine type B: average gas mileage is 42 mpg. Population standard deviation is $\sigma_B = 8$.
- Find a 95% confidence interval for the difference of the mean gas mileage, $\mu_A \mu_B$.

- Comparing gas mileage between two types of engines, A and B.
- Fifty experiments were conducted using engine type A: average gas mileage is 36 mpg. Population standard deviation is $\sigma_A = 6$.
- Seventy five experiments were conducted using engine type B: average gas mileage is 42 mpg. Population standard deviation is $\sigma_B = 8$.
- Find a 95% confidence interval for the difference of the mean gas mileage, $\mu_A \mu_B$.

- Comparing gas mileage between two types of engines, A and B.
- Fifty experiments were conducted using engine type A: average gas mileage is 36 mpg. Population standard deviation is $\sigma_A = 6$.
- Seventy five experiments were conducted using engine type B: average gas mileage is 42 mpg. Population standard deviation is $\sigma_B = 8$.
- Find a 95% confidence interval for the difference of the mean gas mileage, $\mu_A \mu_B$.

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- E = ?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

$$95\% = P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT.

$$Z = \frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}} \quad \text{is standard norm}$$

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- \bullet E=?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

$$95\% = P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT,

$$Z = \frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}}$$

is standard normal

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- E =?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

95% =
$$P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT

$$Z = \frac{(\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}}$$

is standard normal

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- E =?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

95% =
$$P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT.

$$Z=rac{(ar{X}_A-ar{X}_B)-(\mu_A-\mu_B)}{\sqrt{\sigma_A^2/n_A+\sigma_B^2/n_B}}$$
 is standard norma

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- E =?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

$$95\% = P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT

$$Z=rac{(ar{X}_A-ar{X}_B)-(\mu_A-\mu_B)}{\sqrt{\sigma_A^2/n_A+\sigma_B^2/n_B}}$$
 is standard normal

- Point estimate of $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B = 36 42 = -6$.
- 95% confidence interval for $\mu_A \mu_B$: $\bar{X}_A \bar{X}_B \pm E$.
- E =?

$$95\% = P(\bar{X}_A - \bar{X}_B - E < \mu_A - \mu_B < \bar{X}_A - \bar{X}_B + E)$$

Equivalently

$$95\% = P(-E < (\bar{X}_A - \bar{X}_B) - (\mu_A - \mu_B) < E)$$

By the CLT,

$$Z = rac{(ar{X}_A - ar{X}_B) - (\mu_A - \mu_B)}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}}$$
 is standard normal.

Known Variances Equal But Unknown Variances Unknown and Unequal Variances

Solution of Example 1(cont.)

• Because P(-1.96 < Z < 1.96) = 0.95

$$\frac{E}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}} = 1.96$$

$$\to E = 1.96\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}$$

$$= 1.96\sqrt{6^2/50 + 8^2/70} = 2.506$$

$$[-6-2.506, -6+2.506] = [-8.506, -3.494] \\$$

Solution of Example 1(cont.)

• Because P(-1.96 < Z < 1.96) = 0.95

$$\frac{E}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}} = 1.96$$

$$\rightarrow E = 1.96\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}$$

$$= 1.96\sqrt{6^2/50 + 8^2/70} = 2.506$$

$$[-6 - 2.506, -6 + 2.506] = [-8.506, -3.494]$$

Solution of Example 1(cont.)

• Because P(-1.96 < Z < 1.96) = 0.95

$$\frac{E}{\sqrt{\sigma_A^2/n_A+\sigma_B^2/n_B}}=1.96$$

$$\rightarrow \quad E = 1.96 \sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}$$

$$= 1.96\sqrt{6^2/50 + 8^2/70} = 2.506$$

$$[-6 - 2.506, -6 + 2.506] = [-8.506, -3.494]$$

Solution of Example 1(cont.)

• Because P(-1.96 < Z < 1.96) = 0.95

$$\frac{E}{\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}} = 1.96$$

$$\rightarrow E = 1.96\sqrt{\sigma_A^2/n_A + \sigma_B^2/n_B}$$

$$= 1.96\sqrt{6^2/50 + 8^2/70} = 2.506$$

$$[-6-2.506, -6+2.506] = [-8.506, -3.494]$$

- Let X_1, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples of sizes m and n from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$ respectively.
- Since sample means \overline{X} and \overline{Y} are independent and

$$\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{m}), \quad \overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n}).$$

So

$$W = \overline{X} - \overline{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n})$$

$$P\left(-Z_{\alpha/2} \leqslant \frac{X - Y - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \leqslant Z_{\alpha/2}\right) = 1 - \alpha.$$

- Let X_1, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples of sizes m and n from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$ respectively.
- Since sample means \overline{X} and \overline{Y} are independent and

$$\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{m}), \quad \overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n}).$$

Sc

$$W = \overline{X} - \overline{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n})$$

$$P\left(-z_{\alpha/2} \leqslant \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \leqslant z_{\alpha/2}\right) = 1 - \alpha.$$

- Let X_1, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples of sizes m and n from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$ respectively.
- Since sample means \overline{X} and \overline{Y} are independent and

$$\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{m}), \quad \overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n}).$$

So

$$W = \overline{X} - \overline{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n})$$

$$P\left(-z_{\alpha/2} \leqslant \frac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{\frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n}}} \leqslant z_{\alpha/2}\right) = 1 - \alpha.$$

- Let X_1, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples of sizes m and n from $N(\mu_X, \sigma_X^2)$ and $N(\mu_Y, \sigma_Y^2)$ respectively.
- Since sample means \overline{X} and \overline{Y} are independent and

$$\overline{X} \sim N(\mu_X, \frac{\sigma_X^2}{m}), \quad \overline{Y} \sim N(\mu_Y, \frac{\sigma_Y^2}{n}).$$

So

$$W = \overline{X} - \overline{Y} \sim N(\mu_X - \mu_Y, \frac{\sigma_X^2}{m} + \frac{\sigma_Y^2}{n})$$

•

$$P\left(-z_{\alpha/2} \leqslant \frac{X-Y-(\mu_X-\mu_Y)}{\sqrt{\frac{\sigma_X^2}{m}+\frac{\sigma_Y^2}{n}}} \leqslant z_{\alpha/2}\right) = 1-\alpha.$$

Known Variances

Equal But Unknown Variances Unknown and Unequal Variances

Confidence Interval for $\mu_x - \mu_y$: σ_x^2 and σ_y^2 known

$$P\Big[(\overline{X}-\overline{Y})-z_{\alpha/2}\sigma_{W}\leqslant \mu_{X}-\mu_{Y}\leqslant (\overline{X}-\overline{Y})+z_{\alpha/2}\sigma_{W}\Big]=1-\alpha,$$

where

$$\sigma_{W} = \sqrt{\frac{\sigma_{X}^{2}}{m} + \frac{\sigma_{Y}^{2}}{n}}.$$

So we have a 100(1 $-\alpha$)% confidence interval for $\mu_{\chi} - \mu_{\gamma}$:

$$[(\overline{X} - \overline{Y}) - Z_{\alpha/2}\sigma_W, (\overline{X} - \overline{Y}) + Z_{\alpha/2}\sigma_W]$$

Example 2.

If
$$m=$$
 15, $n=$ 8, $\bar{x}=$ 70.1, $\bar{y}=$ 75.3, $\sigma_{\chi}=$ 60, $\sigma_{\gamma}=$ 40, and 1 $-\alpha=$ 0.95, then from Table A-3, $z_{\alpha/2}=z_{0.025}=$ 1.96, $\bar{x}-\bar{y}=-$ 5.2 and

$$1.96\sigma_{W} = 1.96\sqrt{\frac{60^2}{15} + \frac{40^2}{8}} = 5.88.$$

Thus a 95% confidence interval for $\mu_{\rm X} - \mu_{\rm Y}$ is

$$[-5.2 - 5.88, -5.2 + 5.88] = [-11.08, 0.68].$$

- 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 2 9.9 Paired Observations
 - Based on Paired Data

Confidence Interval for $\mu_x - \mu_y$: $\sigma_x^2 = \sigma_y^2 = \sigma^2$ unknown

A 100(1 $-\alpha$)% confidence interval for $\mu_{x} - \mu_{y}$:

$$(\overline{X}-\overline{Y})\pm E$$

$$E=t_{\frac{\alpha}{2}}(m+n-2)S_p$$

$$S_p = \sqrt{\frac{(m-1)S_\chi^2 + (n-1)S_\gamma^2}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$

Example 3:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with equal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

Example 3:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with equal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

Example 3:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$ with equal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$
- The pooled standard error

$$S_{p} = \sqrt{\frac{(m-1)S_{\chi}^{2} + (n-1)S_{\gamma}^{2}}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$

$$=\sqrt{\frac{5+7-2}{5+7-2}}\left(\frac{1}{5}+\frac{7}{7}\right)=14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_{\rho} = t_{0.025}(10)S_{\rho} = 2.228(14.10) = 31.41$
- The 95% CI

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- The pooled standard error

$$S_p = \sqrt{\frac{(m-1)S_\chi^2 + (n-1)S_\gamma^2}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$

$$=\sqrt{\frac{(5-1)78.8+(7-1)913.3}{5+7-2}\left(\frac{1}{5}+\frac{1}{7}\right)}=14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_p = t_{0.025}(10)S_p = 2.228(14.10) = 31.41$
- The 95% CI

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- The pooled standard error

$$S_p = \sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$

$$=\sqrt{\frac{(5-1)78.8+(7-1)913.3}{5+7-2}\left(\frac{1}{5}+\frac{1}{7}\right)}=14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_p = t_{0.025}(10)S_p = 2.228(14.10) = 31.41$
- The 95% CI

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- The pooled standard error

$$S_p = \sqrt{\frac{(m-1)S_\chi^2 + (n-1)S_\gamma^2}{m+n-2} (\frac{1}{m} + \frac{1}{n})}$$

$$=\sqrt{\frac{(5-1)78.8+(7-1)913.3}{5+7-2}\left(\frac{1}{5}+\frac{1}{7}\right)}=14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_p = t_{0.025}(10)S_p = 2.228(14.10) = 31.4$
- The 95% CI

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- The pooled standard error

$$S_p = \sqrt{\frac{(m-1)S_{\chi}^2 + (n-1)S_{\gamma}^2}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$

$$=\sqrt{\frac{(5-1)78.8+(7-1)913.3}{5+7-2}\left(\frac{1}{5}+\frac{1}{7}\right)}=14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_p = t_{0.025}(10)S_p = 2.228(14.10) = 31.41$
- The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- The pooled standard error

$$S_p = \sqrt{\frac{(m-1)S_X^2 + (n-1)S_Y^2}{m+n-2} \left(\frac{1}{m} + \frac{1}{n}\right)}$$
$$= \sqrt{\frac{(5-1)78.8 + (7-1)913.3}{5+7-2} \left(\frac{1}{5} + \frac{1}{7}\right)} = 14.10$$

- $E = t_{\frac{\alpha}{2}}(m+n-2)S_p = t_{0.025}(10)S_p = 2.228(14.10) = 31.41$
- The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-44.01, 18.81)$$

Solution of Example 3 using TI8x

```
CALC TESTS
 SortA(
:SortD(
:ClrList
:SetUpEditor
```


ropZTes nterva]

-SampTInt Stats Inpt: _ist1: _ist2: Freq1:1 Freq2: C-Level:.95 Pooled:No

```
·SampTInt
 ist1:| 1
 1st.7:
Freq1:1
Freq2:1
C-Level:.95
Pooled:No
Calculate
```

C			T:-		1		
Company	<u> </u>		Hir	nes(minut	es)		
1	102	86	98	109	92		
2	2 81	165	97	134	92	87	114
Confiden	ce Interval:	Unknown	equal Vari	ances			
m	5						
n	7						
alpha	0.05						
Xbar1	=AVERAGE	(C5:G5)					
Xbar2	110						
Sp	14.09584						
CI:	-44.0075	18.80748					

Company			Tin	nes(minut	es)		
1	102	86	98	109	92		
2	81	165	97	134	92	87	114
Confiden	Confidence Interval: Unknown equal Variances						
m	5						
n	7						
alpha	0.05						
Xbar1	97.4						
Xbar2	=AVERAGE	(C6:16)					
Sp	14.09584						
CI:	-44.0075	18.80748					

Company			Tin	nes(minut	es)		
1	102	86	98	109			
2	81	165	97	134	92	87	114
Confiden	ce Interval:	Unknown (equal Vari	ances			
m	5						
n	7						
alpha	0.05						
Xbar1	97.4						
Xbar2	110						
Sp	=SQRT((((C	9-1)*VAR(C5:G5)+(C	10-1)*VAR	(C6:I6))/(C	9+C10-2))*	(1/C9+1/C
CI:	-44.0075	18.80748					

Company	/		Tin	nes(minut	es)		
1	102	86	98	109	92		
2	2 81	165	97	134	92	87	114
Confiden m	ce Interval:	Unknown	equal Vari	ances			
	ce interval:	Unknown	equal vari	ances			
n	7						
alpha	0.05						
Xbar1	97.4						
Xbar2	110						
Sp	14.09584						
CI:	=C12-C13-	TINV(C11.	C9+C10-2)*	C14			

Company			Tin	nes(minut	es)		
1	102	86	98	109	92		
2	81	165	97	134	92	87	114
Confiden	ce Interval: l	Jnknown	equal Vari	ances			
m	5						
n	7						
alpha	0.05						
Xbar1	97.4						
Xbar2	110						
Sp	14.09584						
CI:	-44.0075 =	C12-C13+	TINV(C11,	C9+C10-2)	*C14		

Company			Tim	nes(minute	es)		
1	102	86	98	109	92		
2	81	165	97	134	92	87	114
	e Interval:	Unknown	equal Vari	ances			
m n	7						
alpha	0.05						
Xbar1	97.4						
Xbar2	110						
Sp	14.09584						
CI:	-44.0075	18.80748					

Outline

- 1 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 2 9.9 Paired Observations
 - Based on Paired Data

Unknown and Unequal Variances

(a) If $m, n \ge 30$, then by the C.L.T. approximately

$$Z = rac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{S_X^2/m + S_Y^2/n}} \sim N(0, 1),$$

(b) If m < 30 or n < 30, then approximately,

$$W = rac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{S_X^2/m} + S_Y^2/n} \sim t(\lfloor r \rfloor),$$

where |r|, "floor" of r, is the integer part of r and

$$\frac{1}{r} = \frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}, \quad c = \frac{S_X^2/m}{S_X^2/m + S_Y^2/n}.$$

$$r = \frac{\left(S_X^2/m + S_Y^2/n\right)^2}{\frac{1}{m-1}\left(\frac{S_X^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{S_Y^2}{n}\right)^2}.$$

Unknown and Unequal Variances

(a) If $m, n \ge 30$, then by the C.L.T. approximately

$$Z = rac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{S_X^2/m + S_Y^2/n}} \sim N(0, 1),$$

(b) If m < 30 or n < 30, then **approximately**,

$$W = rac{\overline{X} - \overline{Y} - (\mu_X - \mu_Y)}{\sqrt{S_X^2/m + S_Y^2/n}} \sim t(\lfloor r \rfloor),$$

where |r|, "floor" of r, is the integer part of r and

$$\frac{1}{r} = \frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}, \quad c = \frac{S_\chi^2/m}{S_\chi^2/m + S_\gamma^2/n}.$$

$$r = \frac{\left(S_\chi^2/m + S_\gamma^2/n\right)^2}{\frac{1}{m-1}\left(\frac{S_\chi^2}{m}\right)^2 + \frac{1}{n-1}\left(\frac{S_\gamma^2}{n}\right)^2}.$$

C.I. for $\mu_x - \mu_y$: both σ_x^2 and σ_y^2 unknown

(a) If $m, n \geqslant 30$, then an approximate $100(1 - \alpha)\%$ confidence interval for $\mu_x - \mu_y$ is

$$(\overline{X} - \overline{Y}) \pm Z_{\alpha/2} \sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}$$

(b) If m < 30 or n < 30, then a $1 - \alpha$ confidence interval for $\mu_{\rm x} - \mu_{\rm y}$ is

$$(\overline{X} - \overline{Y}) \pm E$$
 $E = t_{\alpha/2}(\lfloor r \rfloor) \sqrt{\frac{S_X^2}{m} + \frac{S_Y^2}{n}}$

C.I. for $\mu_x - \mu_y$: both σ_x^2 and σ_y^2 unknown

(a) If $m, n \geqslant 30$, then an approximate $100(1 - \alpha)\%$ confidence interval for $\mu_{Y} - \mu_{Y}$ is

$$(\overline{X} - \overline{Y}) \pm z_{\alpha/2} \sqrt{\frac{S_{\chi}^2}{m} + \frac{S_{\gamma}^2}{n}}$$

(b) If m < 30 or n < 30, then a 1 $-\alpha$ confidence interval for $\mu_{\rm X} - \mu_{\rm Y}$ is

$$(\overline{X} - \overline{Y}) \pm E$$
 $E = t_{\alpha/2}(\lfloor r \rfloor) \sqrt{\frac{S_\chi^2}{m} + \frac{S_\gamma^2}{n}}$

Example 4:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ with unequal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

Example 4:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ with unequal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

Example 4:

The following data represent the running times of films produced by two motion-picture companies.

Company	Time (minutes)						
1	102	86	98	109	92		
2	81	165	97	134	92	87	114

Assume the samples are from $N(\mu_1, \sigma_1^2)$ and $N(\mu_2, \sigma_2^2)$ with unequal variances.

Give a 95% confidence interval for the difference $\mu_1 - \mu_2$ of the mean running times of the two companies.

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- $c = \frac{S_\chi^2/m}{S_\chi^2/m + S_\chi^2/n} = 0.11,$
- $r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

The 95% Cl:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,

•
$$c = \frac{S_X^2/m}{S_Y^2/m + S_Y^2/n} = 0.11,$$

•
$$r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$$

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,

•
$$c = \frac{S_X^2/m}{S_Y^2/m + S_Y^2/n} = 0.11$$
,

•
$$r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$$

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

• The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,

•
$$c = \frac{S_X^2/m}{S_X^2/m + S_Y^2/n} = 0.11$$
,

•
$$r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$$

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,

•
$$c = \frac{S_X^2/m}{S_X^2/m + S_Y^2/n} = 0.11$$
,

•
$$r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$$

•

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

• The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

- m = 5, n = 7, $\alpha = 0.05$;
- $\bar{X} = 97.4$, $\bar{Y} = 110$, $S_X^2 = 78.8$, $S_Y^2 = 913.33$,
- $c = \frac{S_X^2/m}{S_Y^2/m + S_Y^2/n} = 0.11$,
- $r = 1/\left[\frac{c^2}{m-1} + \frac{(1-c)^2}{n-1}\right] = 6.26$

•

$$E = t_{.025}(6)\sqrt{\frac{78.8}{5} + \frac{913.3}{7}} = 34.49$$

The 95% CI:

$$(\overline{X} - \overline{Y}) \pm E = (-47.09, 21.89)$$

Outline

- 9.8 Estimating the Differences of Two Means
 - Known Variances
 - Equal But Unknown Variances
 - Unknown and Unequal Variances

- 2 9.9 Paired Observations
 - Based on Paired Data

Example 5. (Reaction Time to Red and Green)

Eight subjects were involved in an experiment was conducted to compare people's reaction times to a red light versus a green light. The reaction times in seconds were recorded as follows.

Find a 90% confidence interval for $\mu_{\scriptscriptstyle Y}-\mu_{\scriptscriptstyle Y}$.

Example 5. (Reaction Time to Red and Green)

Eight subjects were involved in an experiment was conducted to compare people's reaction times to a red light versus a green light. The reaction times in seconds were recorded as follows.

Subject	Red(X)	Green(Y)	D = X - Y
1	0.30	0.43	-0.13
2	0.23	0.32	-0.09
3	0.41	0.58	-0.17
4	0.53	0.46	0.07
5	0.24	0.27	-0.03
6	0.36	0.41	-0.05
7	0.38	0.38	0.00
8	0.51	0.61	-0.10

Find a 90% confidence interval for $\mu_{\chi} - \mu_{\gamma}$.

- Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be n independent pairs of (dependent) r.v.'s.
- Assume that $D_i = X_i Y_i, i = 1, 2, ..., n$, is a random sample from $N(\mu_D, \sigma_D^2), \mu_D = \mu_X \mu_Y$.
- A 1 $-\alpha$ confidence interval for $\mu_{x} \mu_{y}$:

$$\overline{D} \pm t_{\alpha/2}(n-1) \frac{S_D}{\sqrt{n}}$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2.$$

- Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be n independent pairs of (dependent) r.v.'s.
- Assume that $D_i = X_i Y_i$, i = 1, 2, ..., n, is a random sample from $N(\mu_D, \sigma_D^2)$, $\mu_D = \mu_{\chi} \mu_{\chi}$.
- A 1 α confidence interval for $\mu_{\nu} \mu_{\nu}$:

$$\overline{D} \pm t_{\alpha/2}(n-1) \frac{S_D}{\sqrt{n}}$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2$$

- Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be n independent pairs of (dependent) r.v.'s.
- Assume that $D_i = X_i Y_i$, i = 1, 2, ..., n, is a random sample from $N(\mu_D, \sigma_D^2)$, $\mu_D = \mu_{\chi} \mu_{\chi}$.
- A 1 $-\alpha$ confidence interval for $\mu_x \mu_y$:

$$\overline{D} \pm t_{\alpha/2}(n-1) \frac{S_D}{\sqrt{n}},$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2$$

- Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be n independent pairs of (dependent) r.v.'s.
- Assume that $D_i = X_i Y_i$, i = 1, 2, ..., n, is a random sample from $N(\mu_D, \sigma_D^2)$, $\mu_D = \mu_X \mu_Y$.
- A 1 $-\alpha$ confidence interval for $\mu_x \mu_y$:

$$\overline{D} \pm t_{\alpha/2}(n-1) \frac{S_D}{\sqrt{n}},$$

$$\overline{D} = \frac{1}{n} \sum_{i=1}^{n} D_i, \quad S_D^2 = \frac{1}{n-1} \sum_{i=1}^{n} (D_i - \overline{D})^2.$$

• Statistics: n = 8, $\overline{D} = -0.0625$, $S_D = 0.0765$

$$t_{\alpha/2}(n-1) = t_{.05}(7) = 1.895$$

- \bullet E = 0.0512
- The 90% confidence interval for $\mu_{x} \mu_{y}$:

$$-0.0625 \pm 0.0512 = [-0.1137, -0.0113].$$

• Statistics: n = 8, $\overline{D} = -0.0625$, $S_D = 0.0765$

$$t_{\alpha/2}(n-1) = t_{.05}(7) = 1.895$$

- \bullet E = 0.0512
- The 90% confidence interval for $\mu_{x} \mu_{y}$:

$$-0.0625 \pm 0.0512 = [-0.1137, -0.0113].$$

• Statistics: n = 8, $\overline{D} = -0.0625$, $S_D = 0.0765$

$$t_{\alpha/2}(n-1) = t_{.05}(7) = 1.895$$

- \bullet E = 0.0512
- The 90% confidence interval for $\mu_{x} \mu_{y}$:

$$-0.0625 \pm 0.0512 = [-0.1137, -0.0113].$$

• Statistics: n = 8, $\overline{D} = -0.0625$, $S_D = 0.0765$

$$t_{\alpha/2}(n-1) = t_{.05}(7) = 1.895$$

- E = 0.0512
- The 90% confidence interval for $\mu_{x} \mu_{y}$:

$$-0.0625 \pm 0.0512 = [-0.1137, -0.0113].$$

