Lecture14-homework

13. 设 f = g 为练习题 1 中的置换, $\mathbf{c} = (R, B, B, R, R, R)$ 是用颜色 R = B 对 1, 2, 3, 4, 5, 6 进行的一种着色。求以下对 \mathbf{c} 的作用:

(d)
$$(g \circ f) * \mathbf{c} = (f \circ g) * \mathbf{c}$$

(e) $(g^2 \circ f) * \mathbf{c}$

$$f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 4 & 2 & 1 & 5 & 3 \end{pmatrix} \quad g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 6 & 2 & 4 & 1 \end{pmatrix}$$

Answer:

$$f'' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 6 & 2 & 5 & 1 \end{pmatrix}$$
, $f_{0}g = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 5 & 3 & 4 & 1 & 6 \end{pmatrix}$
 $g_{0}f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 5 & 3 & 4 & 6 \end{pmatrix}$

(b)
$$f' \star C = (R, R, B, R, R, B)$$

(d)
$$(9 \circ f) * c = (R, B, R, R, B, R)$$

20. 用红色与蓝色对等腰但非等边的三角形的顶点进行着色,利用定理 14.2.3 求非等价的着色数。用 p 种 颜色 (参考练习题 4) 重做此练习题。

The permutation group has two permutation:

$$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$
, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$

(1) With the two colors (red and blue), the inequivalent

abrings is
$$N(G, C) = \frac{1}{2}(2^3 + 2^2) = 6$$

(2) With the P colors, the inequivalent colorings is

$$N(G, c) = \frac{1}{2} (p^3 + p^2)$$

26. 用 4 个红色珠子与 3 个蓝色珠子镶成项链,问有多少种不同的项链?

Answer:

? P; rotatje

P; rotation Y: axis-symmetry flip

D	Gde factorization	type	monomial
Po	[1] 0 [2] 0 [3] 0 [4] 0 [5] 0 [6] 0 [7]	1	27
2	[1,2,3,4,5,6,7]	(0,0,0,0,0,0,1)	27
Pi	[1,3,5,7,2,4,6]	(0,0,0,0,0,0,1)	Z_7
P3	[1,4,7,3,6,2,5]	(0, 0, 0, 0, 0, 0, 1)	27
P7 P7	[1,5,2,6,3,7,4]	(0,0,0,0,0,0,1)	Z_7
R5	[1,6,4,2,7,5,3]	(0,0,0,0,0,0,1)	Z_{7}
P7 6	[1,7,6,5,4,3,2]	(0,0,0,0,0,0,1)	Y Z7
Y _I	[1] 0 [2,7] 0 [3,6] 0 [4,5]	(1,3,0,0,0,0,0,0)	Z1 Z1
Y2	[1,3] 0 [2], [4,7] 0 [5,6]	(1,3,0,0,0,0,0)	Z1 Z1
Y 3	[],5]0[2,4]0[3]0[6,7]	(1,3,0,0,0,0,0)	Z1 Z2
ÝΨ	[1,7]0[2,6]0[3,5]0[4]	(1, 3, 0,0,0,0,0)	Z, Z,
V5	[1,2]0[3,7]0[4,6]0[5]	(1, 3,0, 0,0, 0,0)	Z, Z,
Y ₆	[1,4] 0 [2,3] 0 [5,7] 0 [6]	(1,3,0,0,0,0,0)	Z, Z, 3
r 7	[1,6] 0 [2,5] 0 [3,4] 0 [7]	(1, 3,0,0,0,0,0)	Z1Z2 3

: G= L(27+627+72,23)

$$P_{D1}(Y+b, Y^2+b^2, Y^3+b^3, Y^4+b^4, Y^5+b^5, Y^6+b^6, Y^7+b^7)$$

$$= \frac{1}{14} \left((Y+b)^7 + 6 (Y^7+b^7) + 7 (Y+b) (Y^2+b^2)^3 \right)$$

$$\therefore (a+b)^n = G^n a^n b^n + G^n a b^{n-1} + \cdots + G^n a^n b^n$$

$$\therefore \text{ We can get the an afficient of } Y^4b^3 \text{ is } :$$

$$+ (G^4 + 7 \times G^2) = 4$$

... There are 4 different necklaces using four red and three blue beads.

44. 用红色和蓝色对正方形的边进行着色,求非等价着色的生成函数。使用 k 种颜色时有多少种非等价的 着色?(参考练习题 43。)

Answer: 412

Cycle factorization	type	monomial
[] 0 [2] 0 [3] 0 [4]	[4,0,0,0]	Z ⁴
[1,2,3,4]	[0,0,0,1]	Z4
[1,3] [2,4]	[0,2,0,0]	2 2 ₂
[1,4,3,2]	[0,0,0,1]	Zų
[1]0[3]0[2,4]	[2,1,0,0]	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[2].[4].[1,3]	[2, 1, 0, 0]	Z1 Z2
[1,4] 0 [2,3]	[0, 2,0,0]	2
[1,2] 0 [3,4]	[0, 2, 0, 0]	Z ₂
	[1] · [2] · [3] · [4] [1, 2, 3, 4] [1, 3] · [2, 4] [1, 4, 3, 2] [1] · [3] · [2, 4] [2] · [4] · [1, 3] [1, 4] · [2, 3]	$[1] \circ [2] \circ [3] \circ [4] \qquad [4, 0, 0, 0]$ $[1, 2, 3, 4] \qquad [0, 0, 0, 1]$ $[1, 3] \circ [2, 4] \qquad [0, 2, 0, 0]$ $[1, 4, 3, 2] \qquad [0, 0, 0, 1]$ $[1] \circ [3] \circ [2, 4] \qquad [2, 1, 0, 0]$ $[2] \circ [4] \circ [1, 3] \qquad [2, 1, 0, 0]$ $[1, 4] \circ [2, 3] \qquad [0, 2, 0, 0]$

-: PD4(Z1, Z2, Z3, Z4) = = (Z4+2Z4+3Z2+2Z1Z2)

$$= \frac{1}{8} \left((Y+b)^{4} + 2 (Y^{4}+b^{4}) + 3 (Y^{2}+b^{2})^{2} + 2 (Y+b)^{2} (Y^{2}+b^{2}) \right)$$

$$= \frac{1}{8} \left(8Y^{4} + 8Y^{3}b + 16Y^{2}b^{2} + 8Y^{3}b + 8b^{4} \right)$$

$$P_{\Omega_4}\left(\begin{array}{cccc} \frac{k}{i=1} & G_i \\ & \vdots & G_i \end{array}\right)$$

$$= \frac{1}{3} \left[\left(\frac{k}{k} G_{i} \right)^{4} + 2 \left(\frac{k}{k} G_{i}^{4} \right) + 3 \left(\frac{k}{k} G_{i}^{2} \right)^{2} + 2 \left(\frac{k}{k} G_{i}^{2} \right)^{2} + 2 \left(\frac{k}{k} G_{i}^{2} \right)^{2} \right]$$

: the number of inequivalent colorings is:

$$\frac{1}{8}(k^4 + 2k + 3k^2 + 2k^3)$$