```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

import warnings
warnings.filterwarnings('ignore')

df=pd.read_csv('/Churn_Modelling.csv')

df.head()

₽		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ва
	0	1	15634602	Hargrave	619	France	Female	42	2	
	1	2	15647311	Hill	608	Spain	Female	41	1	838
	2	3	15619304	Onio	502	France	Female	42	8	1596
	3	4	15701354	Boni	699	France	Female	39	1	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
	4									•

df.describe()

Balaı	Tenure	Age	CreditScore	CustomerId	RowNumber	
10000.0000	10000.000000	10000.000000	10000.000000	1.000000e+04	10000.00000	count
76485.8892	5.012800	38.921800	650.528800	1.569094e+07	5000.50000	mean
62397.4052	2.892174	10.487806	96.653299	7.193619e+04	2886.89568	std
0.0000	0.000000	18.000000	350.000000	1.556570e+07	1.00000	min
0.0000	3.000000	32.000000	584.000000	1.562853e+07	2500.75000	25%
97198.5400	5.000000	37.000000	652.000000	1.569074e+07	5000.50000	50%
127644.2400	7.000000	44.000000	718.000000	1.575323e+07	7500.25000	75%
250898.0900	10.000000	92.000000	850.000000	1.581569e+07	10000.00000	max

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64

2	Surname	10000	non-null	object
3	CreditScore	10000	non-null	int64
4	Geography	10000	non-null	object
5	Gender	10000	non-null	object
6	Age	10000	non-null	int64
7	Tenure	10000	non-null	int64
8	Balance	10000	non-null	float64
9	NumOfProducts	10000	non-null	int64
10	HasCrCard	10000	non-null	int64
11	IsActiveMember	10000	non-null	int64
12	EstimatedSalary	10000	non-null	float64
13	Exited	10000	non-null	int64
المستعدات	Cl+C4/2\ :.	-+C1/01	\ _b/	٠.

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

df.head(2)

	RowNumber	RowNumber CustomerId		CreditScore	Geography Gender		Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.distplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3218f00d0>

sns.distplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3212ccc10>

df.Gender.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb321198e10>

df.Geography.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb321186790>

df.Tenure.value_counts().plot(kind='barh')

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3210fcd90>

sns.distplot(df.EstimatedSalary)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3210101d0>

sns.barplot(df.Geography, df.Exited)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3210eb510>

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.barplot(x='Geography',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb320f2df10>

sns.barplot(x='Gender',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb320f34d10>

sns.barplot(x='NumOfProducts',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb320ea9ad0>

sns.barplot(x='HasCrCard',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb320e074d0>

sns.barplot(x='IsActiveMember',y='Exited',data=df)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb320d57b10>

sns.pairplot(df)

plt.figure(figsize=(8,5))
sns.heatmap(df.corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb31b376610>

df.Exited.value_counts()

0 79631 2037

Name: Exited, dtype: int64

df.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0

dtype: int64

#No missing values

df.head(2)

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

sns.boxplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3198e5190>

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3198f9090>

sns.boxplot(df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb319806a90>

sns.boxplot(df.HasCrCard)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3197e8310>

sns.boxplot(df.IsActiveMember)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3197a9d90>

sns.boxplot(df.EstimatedSalary)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3196cc510>

sns.boxplot(df.Tenure)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb319685450>

sns.boxplot(df.Balance)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb319621b50>

#Outlier Removal

2 50000 300000 350000 350000

def outlier_credit_score(df):

IQR = df['CreditScore'].quantile(0.75) - df['CreditScore'].quantile(0.25)

lower_range = df['CreditScore'].quantile(0.25) - (1.5 * IQR)
upper_range = df['CreditScore'].quantile(0.75) + (1.5 * IQR)

df.loc[df['CreditScore'] <= lower_range, 'CreditScore'] = lower_range
df.loc[df['CreditScore'] >= upper_range, 'CreditScore'] = upper_range

outlier_credit_score(df)

sns.boxplot(df.CreditScore)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb31959b250>


```
def outlier_NOP(df):
    IQR = df['NumOfProducts'].quantile(0.75) - df['NumOfProducts'].quantile(0.25)

lower_range = df['NumOfProducts'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['NumOfProducts'].quantile(0.75) + (1.5 * IQR)

df.loc[df['NumOfProducts'] <= lower_range, 'NumOfProducts'] = lower_range
    df.loc[df['NumOfProducts'] >= upper_range, 'NumOfProducts'] = upper_range
```

outlier_NOP(df)

sns.boxplot(df.NumOfProducts)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb3218d5790>


```
def outlier_age(df):
    IQR = df['Age'].quantile(0.75) - df['Age'].quantile(0.25)

lower_range = df['Age'].quantile(0.25) - (1.5 * IQR)
    upper_range = df['Age'].quantile(0.75) + (1.5 * IQR)

df.loc[df['Age'] <= lower_range, 'Age'] = lower_range
    df.loc[df['Age'] >= upper_range, 'Age'] = upper_range

outlier_age(df)
```

sns.boxplot(df.Age)

<matplotlib.axes._subplots.AxesSubplot at 0x7fb318ab5150>


```
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CustomerId	10000 non-null	int64
2	Surname	10000 non-null	object
3	CreditScore	10000 non-null	int64
4	Geography	10000 non-null	object
5	Gender	10000 non-null	object
6	Age	10000 non-null	int64
7	Tenure	10000 non-null	int64
8	Balance	10000 non-null	float64
9	NumOfProducts	10000 non-null	float64
10	HasCrCard	10000 non-null	int64
11	IsActiveMember	10000 non-null	int64
12	EstimatedSalary	10000 non-null	float64
13	Exited	10000 non-null	int64
d+vn	$0.5 \cdot f_{0.0} + 64(3) i$	n+64(8) object(3 /

dtypes: float64(3), int64(8), object(3)

memory usage: 1.1+ MB

df.head(2)

	RowNumber	owNumber CustomerId Surr		CreditScore	Geography	Gender	Age	Tenure	Bala
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	8380

df.drop(['CustomerId','RowNumber','Surname'],axis=1,inplace=True)

df.head(2)

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	1
0	619	France	Female	42	2	0.00	1.0	1	
1	608	Spain	Female	41	1	83807.86	1.0	0	

```
from sklearn.preprocessing import LabelEncoder
le_geo = LabelEncoder()
le_gen = LabelEncoder()
df['Sex']=le_gen.fit_transform(df.Gender)
df['Country']=le_geo.fit_transform(df.Geography)
df.drop(['Geography','Gender'],axis=1,inplace=True)
```

df.head(2)

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Esti
0	619	42	2	0.00	1.0	1	1	
1	608	41	1	83807.86	1.0	0	1	

X=df.drop('Exited',axis=1)
y=df.Exited

Χ

	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember
0	619	42	2	0.00	1.0	1	1
1	608	41	1	83807.86	1.0	0	1
2	502	42	8	159660.80	3.0	1	0
3	699	39	1	0.00	2.0	0	0
4	850	43	2	125510.82	1.0	1	1
•••							
9995	771	39	5	0.00	2.0	1	0
9996	516	35	10	57369.61	1.0	1	1
9997	709	36	7	0.00	1.0	0	1
9998	772	42	3	75075.31	2.0	1	0
9999	792	28	4	130142.79	1.0	1	0

10000 rows × 10 columns

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X = sc.fit_transform(X)
```

Colab paid products - Cancel contracts here