Praca 2. Analiza łącznego rozkładu log-zwrotów

Jeśli s_0, s_1, \ldots, s_n są cenami zamknięcia z kolejnych dni, to dzienne log-zwroty definiujemy jako

 $r_1 = \ln \frac{S_1}{S_0}, \ r_2 = \ln \frac{S_2}{S_1}, \dots, r_n = \ln \frac{S_n}{S_{n-1}}.$

Dla dziennych log-zwrotów dwóch spółek (z tego samego sektora), za rok 2020-2021, wykonaj poniższe analizy.

- A. Estymacja parametrów z próby r_1, r_2, \ldots, r_n oraz analiza rozkładu dwuwymiarowego normalnego o wyestymowanych parametrach.
 - 1. Zrób wykres rozrzutu z histogramami rozkładów brzegowych.
 - 2. Korzystając z omówionych na wykładzie estymatorów, wyznacz wektor średnich $\hat{\mu}$, kowariancję, współczynnik korelacji, macierz kowariancji $\hat{\Sigma}$ oraz macierz korelacji.
 - 3. Zapisz wzór gęstość rozkładu normalnego o wyestymowanych parametrach $N(\hat{\mu}, \hat{\Sigma})$ oraz wzory gęstości rozkładów brzegowych. Narysuj wykres gęstości.
- B. Analiza dopasowania rozkładu $N(\hat{\mu}, \hat{\Sigma})$ do danych.
 - 1. Wygeneruj próbę liczności danych z rozkładu $N(\hat{\mu}, \hat{\Sigma})$, porównaj wykresy rozrzutu otrzymane na podstawie danych oraz w oparciu o wygenerowaną próbę.
 - 2. Oblicz kwadraty odległości Mahalanobisa d_1, d_2, \ldots, d_n każdej pary cen od średniej $\hat{\mu}$. Zrób histogram. Korzystając z próby d_1, d_2, \ldots, d_n , przetestuj hipotezę, że kwadrat odległości Mahalanobisa wektora cen od średniej mają rozkład $\chi^2(2)$. Zrób wykres diagnostyczny typu QQ-plot. Skomentuj uzyskane wyniki.
 - 3. (dodatkowe) Wykorzystując funkcję mvn z biblioteki MVN wykonaj testy statystyczne na normalność rozkładu wektora log-zwrotów (R_1, R_2) oraz normalność rozkładów brzegowych.

Całość ładnie opracuj, skomentuj otrzymane wyniki.

Sposób rozliczenia zadania.

- 1. Wyniki zamieszczamy na PE do 18.12.2022 (trzy pliki: Nazwisko_Nazwisko.pdf, Nazwisko_Nazwisko.tex, Nazwisko_Nazwisko.R).
- 2. Przeprowadzona analiza stanowi drugi rozdział Projektu egzaminacyjnego.