- 2014 Algebra SEP \sim Groups Day 2 Problems, by E. Dummit
 - 1. (Aug-13.1): Let p be prime and V a 3-dimensional vector space over \mathbb{Z}/p .
 - (a) Construct an explicit bijection between ordered bases of V and elements of $GL_3(\mathbb{Z}/p)$, and find the order of $GL_3(\mathbb{Z}/p)$.
 - (b) Show that the kernel of the natural homomorphism from $GL_3(\mathbb{Z}/p^2)$ to $GL_3(\mathbb{Z}/p)$ is abelian of exponent p, and find the order of $GL_3(\mathbb{Z}/p^2)$.
 - 2. (Jan-97.3) Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree 5 that is not solvable by radicals and let S be its splitting field over \mathbb{Q} .
 - (a) Show that there exists at most one subfield E of S such that $[E:\mathbb{Q}]=2$.
 - (b) If $\alpha, \beta \in S$ are irrational and satisfy $\alpha^2 \in \mathbb{Q}$ and $\beta^2 \in \mathbb{Q}$, show that $\alpha\beta \in \mathbb{Q}$.
 - 3. (Jan-13.1): A finite group is said to have property C if, whenever $g \in G$ and n is relatively prime to the order of g, g and g^n are conjugate in G.
 - (a) Give infinitely many nonisomorphic finite groups which have property C.
 - (b) Give infinitely many nonisomorphic finite groups which do not have property C.
 - (c) Show that if G has property C and $\rho: G \to GL_m(\mathbb{C})$ is a homomorphism, then the trace of $\rho(g)$ lies in \mathbb{Q} for every $g \in G$.
 - 4. (Aug-92.5): Let G be the group of 2×2 integer matrices with determinant 1, and let G act by right multiplication on the set Ω of all 1-dimensional subspaces of \mathbb{Q}^2 .
 - (a) Find all elements of G which fix every element of Ω .
 - (b) Prove that G acts transitively on Ω .
 - 5. (Aug-05.5): Let $G = GL_n(\mathbb{Z})$, fix a prime p, and let S be the subset of G of matrices of the form I + pX.
 - (a) Prove that S is a subgroup of G.
 - (b) Suppose $M \in S$ has prime order q. Show that q = p.
 - (c) If p > 2, show that no element of S has order p. Conclude S has no nonidentity element of finite order.
 - 6. (Jan-91.5) Let G be a nontrivial group whose subgroups are totally ordered by inclusion: thus if H, K are subgroups, then either $H \subseteq K$ or $K \subseteq H$.
 - (a) Show that G is abelian and that the orders of the elements of G are all powers of the same prime p.
 - (b) If $G_n = \{g \in G : g^{p^n} = 1\}$, show that $|G_n| \le p^n$.
 - 7. (Aug-11.5): Let A be an additive abelian group.
 - (a) If A is free abelian, show that A contains no nonzero divisible element.
 - (b) Now let $A = \prod \mathbb{Z}$ be the countably infinite direct product of copies of \mathbb{Z} , and B be the subgroup given by the direct sum (i.e., with all but finitely many coordinates equal to 0). Prove that A/B contains a nonzero divisible element and conclude that A/B is not free abelian.
 - 8. (Aug-09.5): Let A be a multiplicative abelian group.
 - (a) If A is divisible, show that any homomorphic image \bar{A} of A is divisible.
 - (b) If A is a finite divisible group, prove that A = 1.
 - (c) Suppose A is divisible and $A \subseteq B$. If $A \cap X > 1$ for all nonidentity subgroups X of B, show that A = B.