ĐÈ 1 ĐỀ THI MÔN ĐẠI SỐ CUỐI HỌC KỲ 1 20191

MÃ HP: MI1141, Nhóm 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị ký xác nhận số đề.

Câu 1(1đ). Cho $z_n = \left(\frac{1+i\sqrt{3}}{\sqrt{3}+i}\right)^n$, $n \in \mathbb{N}$. Tìm n nhỏ nhất để $\operatorname{Re}(Z_n) = 0$

Câu 2(1đ). Chứng minh $W = \left\{ X \mid X = \begin{pmatrix} 0 & a+b \\ a-b & 0 \end{pmatrix} : a,b \in \mathbf{R} \right\}$ là không gian con của không gian vecto các

ma trân vuông cấp 2 trên \mathbb{R} . Tính dim W

Câu 3(2,5đ) Ký hiệu $P_2(x)$ không gian vecto của các đa thức có bậc ≤ 2

- 1. Hệ $\{u_1(x) = 2 + x + 3x^2; u_2(x) = -1 + 2x; u_3(x) = 1 + 8x + 6x^2\}$ có phải là cơ sở của $P_2(x)$ hay không? Vì sao?
- 2. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ xác định bởi

 $f(a+bx+cx^{2}) = 6a-2b-2c+(2a-3b)x+(4a+b-2c)x^{2}$ a. Viết ma trận của f theo cơ sở chính tắc $\left\{1;x;x^{2}\right\}$ của $P_{2}(x)$ b. Tìm dim Kerfat $\mathbf{4}(\mathbf{2},\mathbf{5}\mathbf{d})$. Trong \mathbf{R}^{3} tích vô hướng của $a=(a_{1};a_{2};a_{3});b=(b_{1};b_{2};b_{3})$ được xác định bởi $a,b\rangle=a_{1}b_{1}+a_{2}b_{2}+a_{3}b_{3}$ 1. Cho $u_{1}=(1,1,0);u_{2}=(0;1;1)$. Tìm vecto $v\neq(0;0;0)$ sao cho $\left\langle u,v\right\rangle=0$ với mọi $u\in Span\left\{u_{1},u_{2}\right\}$ **Câu 4(2,5đ).** Trong \mathbb{R}^3 tích vô hướng của $a = (a_1; a_2; a_3); b = (b_1; b_2; b_3)$ được xác định bởi $\langle a,b\rangle = a_1b_1 + a_2b_2 + a_3b_3$

- 2. Cho toán tử tuyến tính : $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi :

$$f(x, y, z) = (2x - 2y + 2z, -2x + 5y + z, 2x + y + 5z)$$

Tìm cơ sở trực chuyển của \mathbb{R}^3 để ma trận của f theo cơ sở đó là ma trận đường chéo.

Câu 5(1đ). Với 0 < a, ký hiệu $C_{[-a;a]} = \{f(x) | f(x) \text{ liên tục trên } [-a;a]\}$

Ánh xạ $\Phi: C_{[-a;a]} \to \mathbf{R}, \Phi(f) = \int_{-a}^{a} f(x)dx$ có phải là đơn ánh không? tại sao?

Câu 6(1d). Cho A,B là 2 ma trận vuông cùng cấp thỏa mãn $A^{2019} = 0$ và AB = A + B. Chứng minh rằng det(B)=0

Câu 7(1d): Cho V là không gian vecto hữu hạn chiều và toán tử tuyến tính $f: V \to V$.

Chứng minh rằng dim $(Kerf^2) \le 2\dim(Kerf)$

ĐỀ 4 ĐỀ THI MÔN ĐAI SỐ CUỐI HỌC KỲ 1 20191

MÃ HP: MI1141, Nhóm 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị ký xác nhận số đề.

Câu 1(1đ). Cho $f(z) = z^3 + (1+2i)z^2 + (1+2i)z + 2i$. Tính f(-2i) và giải phương trình f(z) = 0.

Câu 2(1đ). Ánh xạ $f: \mathbb{R}^2 \to \mathbb{C}$, $f(x, y) = (x^3 + 2y^2) + (3x^3 + 7y)i$ có toàn ánh không ? Vì sao ?

Câu 3(1đ). Tìm $\lambda, \beta \in \mathbf{R}$ để hệ $\begin{cases} 2x + y + z = \beta - 2 \\ x + \lambda y + 2z = 3 \end{cases}$ có vô số nghiệm $2x - \lambda y - z = 1$

Câu 4(1,5đ). Cho $E = \{e_1, e_2, e_3\}$ là cơ sở trực chuẩn của không gian Euclide V và phép biến đổi tuyến tính :

 $f:V \to V$ có ma trận theo cơ sở E là $A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. Tìm cơ sở trực chuẩn $F = \{f_1, f_2, f_3\}$ sao cho ma trận

của f theo cơ sở F là ma trận đường chéo.

Câu 5(1đ). Cho $E = \{e_1, e_2, e_3\}$ là cơ sở của không gian vecto V. Hệ

 $F = \left\{ f_1 = e_1 + 2e_2 - 2e_3, f_2 = 2e_1 - 3e_2 + e_3, f_3 = 3e_1 - e_2 - e_3 \right\} \text{ c\'o phải là một cơ sở của V hay không ? Vì sao ?}$

Câu 6(2,5đ). Ký hiệu $P_2(x)$ là không gian vecto có đa thức có bậc ≤ 2

1. Cho toán tử tuyến tính $f: P_2(x) \rightarrow P_2(x)$ xác định bởi :

 $f(a+bx+cx^2) = 2a-b+(2b+c)x+(a+b+c)x^2$. Tim dim Im f

Trên $P_2(x)$ cho tích vô hướng $\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x)dx$ và $u_1(x) = 1; u_2(x) = x; v(x) = x^2$. Tìm hình

chiếu trực giao của vecto v(x) lên $Span\{u_1, u_2\}$.

Câu 7(1đ). Cho A là ma trận vuông cấp n khả nghịch thỏa mãn $9A = A^{-1}$. Tính $\det(A - A^{2017})$.

Câu 8(1d). Trong không gian vecto các hàm số liên tục trên [a,b], chứng minh hệ véc tơ

 $\{u_k(x)-|x-\lambda_k|, k=\overline{1,n} \text{ với } \lambda_i\neq\lambda_j, i\neq j; i,j=\overline{1,n}\}$ độc lập tuyến tính.

bkkhongsotach.edu.vn Thảo luận thêm tại:

ĐỀ 4 ĐỀ THI MÔN ĐẠI SỐ CUỐI HỌC KỲ 1 20191

MÃ HP: MI1141, Nhóm 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị ký xác nhận số đề.

Câu 1(1đ). Giải phương trình trong trường số phức:

$$z^4 - (2+3i)z^3 - (1-3i)z^2 = 0$$

Câu 2(1,5đ). Cho $A = \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}$ với c là một số thực cho trước.

- a. Chứng minh rằng A luôn khả nghịch
- b. Tìm ma trận X thỏa mãn phương trình $A^5X(A^{-1})^4 = E$ trong đó E là ma trận đơn vị cấp 2.

Câu 3(1,5đ). Biện luận số nghiệm của hệ phương trình theo hệ số thực a:

$$\begin{cases} x_1 & -2x_2 & -x_3 & +3x_4 = 1 \\ 4x_1 & -8x_2 & -x_3 & +6x_4 = 7 \\ x_1 & -2x_2 & +2x_3 & -2x_4 = a \end{cases}$$

Trong trường hợp hệ số nghiệm, hãy biểu diễn nghiệm theo x_1, x_2

Câu 4(2đ). Cho ánh xạ tuyến tính: $f: P_2[x] \rightarrow P_2[x]$ xác định bởi:

$$f(1) = (x + x^2); f(x) = 1 + x^2; f(x^2) = 1 + x$$

- a. Tìm các giá trị riêng của ánh xạ tuyến tính f.
- b. Tìm một cơ sở \mathbb{R}^3 để ma trận của f theo hệ cơ sở đó có dạng đường chéo.

Câu 5(3đ). Trong không gian vecto \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho:

$$V = Span\{v_1 = (1; -1; 0; 1), v_2 = (1; 1; 0; 0), v_3 = (1; 1; 0; 1), v_4 = (0; -2; 0; -1)\}$$

- a. Hệ vecto $\{v_j\}_{j=1}^4$ có là một hệ trực giao không?
- b. Hãy tìm một hệ cơ sở của V
- c. Tìm hình chiếu của vecto $\omega = (2;0;3;1)$ lên V.

Câu 6(1đ). Giả sử rằng $A \in M_n(R)$ tập các ma trận thực vuông cấp n. $A^{2020} = 0$ và A chéo hóa được. Chứng minh rằng A phải là ma trân không

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotacl

ĐÈ II

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ HỌC KỲ 20182

Mã HP: MI1141 - Tín chỉ - Thời gian 90 phút

Câu 1 (1đ). Cho A, B, C là 3 tập hợp bất kỳ. Chứng minh rằng : $(B \setminus A) \cap C = (B \setminus A) \setminus (A \cup \overline{C})$

Câu 2 (1đ). Cho ánh xạ $f: \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R}$ xác định bởi $f(x) = \frac{2x-1}{x+2}$ và tập A = [-1; 1]. Xác định $f^{-1}(A)$

Câu 3 (1đ). Cho 2 ma trận $A = \begin{bmatrix} -1 & 2 \\ 1 & -3 \end{bmatrix}$ và $B = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$, $\alpha \in \mathbb{R}$. Tìm ma trận X sao cho $(XA)^{-1} = B$.

Câu 4 (1 \mathbf{d}). Tìm a, b sao cho hệ phương trình có nghiệm

$$\begin{cases} x_1 & -2x_2 & +3x_3 & +ax_4 = 6 \\ -2x_1 & +3x_2 & -4x_3 & +x_4 = 3b - 9 \\ -7x_1 & +11x_2 & -15x_3 & +2x_4 = 10b - 39 \end{cases}$$

Câu 5 (1đ). Trong không gian vector $P_3[x]$, đặt

$$V = span\{u_1 = 1 + 2x - 2x^2 + x^3, u_2 = -2 - 3x + 6x^2 - x^3\}$$

$$W = span\{u_3 = 3 + 3x - 11x^2 + 2x^3, u_4 = -3 - 4x + 13x^2 + 5x^3\}$$

Tìm số chiều và một cơ sở của V + W.

Câu 6 (2đ). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ thỏa mãn

$$f(4+x+x^2) = -1-x-2x^2, f(1+2x+x^2) = 4+5x+9x^2,$$

$$f(x^2) = 1 + x^2$$

- a) Tìm ma trận của f đối với cơ sở chính tắc $E = \{1, x, x^2\}$. Tính $f(x + x^2)$.
- b) Tìm số chiều của $\operatorname{Im} f$ và 1 cơ sở của $\operatorname{Ker} f$.

Câu 7 (1đ). Trong \mathbb{R}^3 với tích vô hướng thông thường, cho $H = \{x, y, z | x - y + z = 0\}$. Tìm hình chiếu của $u = \{1, -2, 1\}$ lên H.

Câu 8 (1.5đ). Trong \mathbb{R}^3 với tích vô hướng thông thường, đưa dạng toàn phương $\omega = 2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2$ về dạng chính tắc bằng phương pháp chéo hóa trực giao. Tìm giá trị lớn nhất, nhỏ nhất của ω khi $x_1^2 + x_2^2 + x_3^2 = 5$.

Câu 9 (0.5đ). Cho A là ma trận thực vuông cấp 2019 thỏa mãn điều kiện $A^TA = 0$, ở đó A^T là ma trận chuyển vị của ma trận A. Chứng minh rằng A = 0.

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsot.

ĐÈ 1 ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ HỌC KỲ 20181

MÃ HP: MI1141 Nhóm ngành 1 – Thời gian: 90 phút

Câu 1 (1d). Cho các tập hợp con của \mathbb{R} là A = [1; 3], B = (m; m + 3). Tìm m để $(A \setminus B) \subset (A \cap B)$.

Câu 2 (1đ). Tìm các số phức z thỏa mãn $z^3 = 4\sqrt{3} - 4i$, i là đơn vi ảo.

Câu 3 (1đ). Giải phương trình ma trận $\begin{bmatrix} 3 & 7 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 2 & 3 & 6 \\ 3 & 1 & 4 \end{bmatrix} - X$.

Câu 4 (4đ). Cho hệ phương trình $\begin{cases} x_1 & -x_2 & +x_3 & +x_4 = 0 \\ 2x_1 & -x_2 & +3x_3 & -2x_4 = 0 \text{ (trong đó } m \text{ là tham số).} \\ -x_1 & (m-3)x_2 & -3x_3 & +7x_4 = m \end{cases}$ a) Giải hệ phương trình khi m=2.

- b) Tìm *m* để hệ phương trình có nghiệm.
- c) Khi m=0, các nghiệm của hệ phương trình lập thành một không gian véc tơ con U của \mathbb{R}^4 . Tìm số chiều và một cơ sở của U.
- d) Trong \mathbb{R}^4 với tích vô hướng chính tắc, tìm hình chiếu trực giao của v = (4; 5; -6; -9) lên không gian con U ở câu c.

Câu 5 (2đ). Cho biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi;

$$f(x_1; x_2; x_3) = (-2x_1 + 3x_2 + x_3; -x_1 - x_2 + x_3; -3x_1 + 2x_2 + 2x_3).$$

- a) Tìm m để véc to $u = (1; 3; m) \in Im(f)$. Ánh xạ trên có phải là toàn ánh không? Vì sao?
- b) Tìm cơ sở của \mathbb{R}^3 để đối với cơ sở đó ma trân của f có dang đường chéo.

Câu 6 (1d). Trong không gian véc tơ các hàm số liên tục trên R, chứng minh hệ véc tơ $B = \{\sin x, \cos x, \sin 2x, \cos 2x, ..., \sin 10x, \cos 10x\}$ là hệ độc lập tuyến tính.

MÃ HP: MI1141 Nhóm ngành 1 – Thời gian: 90 phút

Câu 1 (1đ). Cho các tập hợp con của \mathbb{R} là A = [2; 4], B = (m; m + 1). Tìm m để $(B \setminus A) \subset (A \setminus B)$.

Câu 2 (1đ). Tìm các số phức z thỏa mãn $z^3 = 4\sqrt{3} + 4i$, i là đơn vị ảo.

Câu 3 (1đ). Giải phương trình ma trận: $\begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix} X = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + X$

Câu 4 (4đ). Cho hệ phương trình $\begin{cases} x_1 & -x_2 & +x_3 & -x_4 = m \\ 3x_1 & -2x_2 & +2x_3 & +x_4 = 0 \text{ (trong đó } m \text{ là tham số)}. \\ -x_1 & +mx_2 & -2x_3 & -x_4 = 0 \end{cases}$

bkkhongsotach.edu.vn Thảo luận thêm tại: fh com/grouns/bkkhongsota

- a) Giải hệ phương trình khi m = 1.
- b) Tìm *m* để hệ phương trình vô nghiệm.
- c) Khi m=0, các nghiệm của hệ phương trình lập thành một không gian véc tơ con U của \mathbb{R}^4 . Tìm số chiều và một cơ sở của U.
- d) Trong \mathbb{R}^4 với tích vô hướng chính tắc, tìm hình chiếu trực giao của v=(5;2;4;-3) lên không gian con U ở câu c.

Câu 5 (2đ). Cho biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x_1; x_2; x_3) = (2x_1 - 3x_2 + x_3; x_1 + x_2 + x_3; 3x_1 - 2x_2 + 2x_3).$$

- a) Tìm m để véc to $u = (3; 5; m) \in Im(f)$. Ảnh xạ trên có phải là toàn ánh không? Vì sao?
- b) Tìm cơ sở của \mathbb{R}^3 để đối với cơ sở đó ma trận của f có dạng đường chéo.

Câu 6 (1đ). Trong không gian véc tơ các hàm số liên tục trên \mathbb{R} , chứng minh hệ véc tơ $B = \{\sin x, \cos x, \sin 2x, \cos 2x, ..., \sin 10x, \cos 10x\}$ là hệ độc lập tuyến tính.

MÃ HP: MI1141 Nhóm ngành 1 – Thời gian: 90 phút

Câu 1 (1đ). Cho các mệnh đề A, B, C. Lập bảng giá trị chân lý của mệnh đề $(A \lor B) \to \overline{C}$.

Câu 2 (1.5đ). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$ xác định bởi $f(z) = 2z^3 - 1$. Ánh xạ f có phải là đơn ánh không vì sao? Xác định tích các mô đun của các phần tử trong tập nghịch ảnh $f^{-3}(\{5+2i\})$.

Câu 3 (2đ). Cho ma trận $A = \begin{bmatrix} 1 & 3 & -2 \\ 2 & -1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$

- a) Tính $det(A + 2E)^5$, trong đó E là ma trận đơn vị cấp 3.
- b) Giải phương trình ma trận $AX = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$

Câu 4 (1.5đ). Trong không gian $P_3[x]$, cho hệ véc tơ $u_1 = 1 + 2x - x^3$, $u_2 = 2 - x + x^2 + 2x^3$, $u_3 = -1 + x - x^2 + x^3$, $u_4 = 4 + 2x^2$ và các không gian véc tơ con $V_1 = span\{u_1, u_2\}$, $V_2 = span\{u_3, u_4\}$. Tìm số chiều và 1 cơ sở của các không gian con $V_1 + V_2$ và $V_1 \cap V_2$.

$$f(1; 2; -1) = (2; 2; 4), f(2; 1; 3) = (1; 2; -1), f(1; 1; 2) = (2; 3; 1).$$

- a) Xác định dim Im(f)
- b) Tìm các giá trị riêng của f.

Câu 6 (2đ). Cho dạng toàn phương

$$h(x_1, x_2, x_3) = ax_1^2 + 3x_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 2x_2x_3.$$

- a) Tìm điều kiện của a để dạng toàn phương xác định dương.
- b) Với a=2, ta có duy nhất một tích vô hướng $\langle u,v\rangle$ trên \mathbb{R}^3 thỏa mãn $\langle u,u\rangle=h(u)$. Tìm một cơ sở trực chuẩn của \mathbb{R}^3 với tích vô hướng này thông qua việc trực chuẩn hóa Gram-Smith cơ sở chính tắc của \mathbb{R}^3 .

MÃ HP: MI1141 Nhóm ngành 1 – Thời gian: 90 phút

Câu 1 (1đ). Cho các mệnh đề A, B, C. Lập bảng giá trị chân lý của mệnh đề $\overline{A} \to (B \land C)$.

Câu 2 (1.5d). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$ xác định bởi $f(z) = 2z^3 + 1$. Ánh xạ f có phải là toàn ánh không vì sao? Xác định tích các mô đun của các phần tử trong tập nghịch ảnh $f^{-1}(\{5-2i\})$.

Câu 3 (2đ). Cho ma trận $A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & -1 & -3 \\ 3 & 2 & -1 \end{bmatrix}$.

- a) Tính $det(A-2E)^5$, trong đó E là ma trận đơn vị cấp 3.
- b) Giải phương trình ma trận $XA = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$.

Câu 4 (1.5đ). Trong không gian $P_3[x]$, cho hệ véc tơ $u_1 = 1 - 2x - x^3$, $u_2 = 2 - x - x^2 + 2x^3$, $u_3 = -1 + x - x^2 - x^3$, $u_4 = 4 - 4x + 2x^2 + 2x^3$ và các không gian véc tơ con $V_1 = span\{u_1, u_2\}$, $V_2 = span\{u_3, u_4\}$. Tìm số chiều và 1 cơ sở của các không gian con $V_1 + V_2$ và $V_1 \cap V_2$.

Câu 5 (2đ). Cho biến đổi tuyến tính trên không gian \mathbb{R}^3 xác định bởi

$$1f(2;3;-1) = (6;2;-2), f(1;1;3) = (2;3;-1), f(3;1;-1) = (5;4;-2).$$

a) Xác định dim Im(f)

b) Tìm các giá trị riêng của f.

Câu 6 (2đ). Cho dạng toàn phương

$$h(x_1, x_2, x_3) = ax_1^2 + 3x_2^2 + 2x_3^2 + 4x_1x_2 - 2x_1x_3 + 2x_2x_3.$$

- a) Tìm điều kiện của a để dạng toàn phương xác định dương.
- b) Với a=2, ta có duy nhất một tích vô hướng $\langle u,v\rangle$ trên \mathbb{R}^3 thỏa mãn $\langle u,u\rangle=h(u)$. Tìm một cơ sở trực chuẩn của \mathbb{R}^3 với tích vô hướng này thông qua việc trực chuẩn hóa Gram-Smith cơ sở chính tác của \mathbb{R}^3 .

Đề 5:

ĐỀ THI MÔN ĐẠI SỐ 20181

Nhóm ngành 2. Mã HP 1142-Thời gian: 90 phút

Câu 1: Tìm các nghiệm phức của phương trình thỏa mãn điều kiện $z^4 = \left(\sqrt{3} + i\right)^6$ thỏa mãn điều kiện |z - 2i| < 3

Câu 2 : Cho các ma trận $A = \begin{bmatrix} 1 & 3 \\ 4 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 8 & 7 \\ 14 & 11 \end{bmatrix}$

Tìm ma trận X thỏa mãn AX = B - X

Câu 3: Trong không gian $P_2[x]$ cho các vecto

$$v_1 = 1 + x + x^2, v_2 = 2 + mx - x^2, v_3 = 4 + 5x + x^2, v = 10 + 11x - 5x^2$$

- a) Xác định m để hệ $B = \{v_1, v_2, v_3\}$ phụ thuộc tuyến tính.
- b) Với m=2, chứng minh B lập thành cơ sở của không gian $P_2[x]$. Tìm tọa độ của vecto v đối với cơ sở B

Câu 4: Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ thỏa mãn f(1,1,0) = (3,3,9), f(2,-1,1) = (-1,3,1), f(0,1,1) = (1,1,3)

- a) Lập ma trận của f đối với cơ sở chính tắc của \mathbb{R}^3
- b) Xác định f(3,4,5)
- c) Xác định số chiều và một cơ sở của ker f

Câu 5: Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho các vecto:

$$v_1 = (1;1;2;-1), v_2 = (1;2;1;1), v_3(3;4;5;-1)$$

 $\text{Dặt } V = Span\{v_1, v_2, v_3\}$

- a) Xác định số chiều và một cơ sở của V
- b) Tìm hình chiếu trực giao của vecto V = (4,1,0,4) lên V

Câu 6: Cho ma trận A và $m \times n$ với $m \le n$, có hạng bằng m. CM tồn tại ma trận B cỡ $n \times m$ sao cho AB=E, với E là ma trận đơn vị.

bkkhongsotach.edu.vn Thảo luận thêm tại: fh com/erouns/bkkhongsotae

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ - 20181

Mã số MI1143 – Nhóm ngành 3 – Thời gian: 90 phút

Câu 1. (1đ) Cho mệnh đề $P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: y > x''$

- a) Xác định mệnh đề phủ định của P.
- b) Mệnh đề P muốn khẳng định điều gì?

Câu 2. (1đ) Cho các tập hợp A, B, C. Chứng minh rằng:

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Câu 3. (2đ) Cho các vector:

$$v_1 = (2,1,5,8); v_2 = (1,-1,3,5); v_3 = (0,2,1,6); v_4 = (-3,5,2,1)$$

- a) Chứng minh v_1, v_2, v_3, v_4 lập thành một cơ sở của không gian \mathbb{R}^4 .
- b) Tìm tọa độ của vector v = (-5,15,15,13) đối với cơ sở trên.

Câu 4. (3đ) Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(3,2,1) = (8,3,3); f(3,2,0) = (6,5,3); f(3,0,0) = (6,3,9)$$

- a) Tìm ma trận của f đối với cơ sở chính tắc của \mathbb{R}^3 .
- b) Tìm các giá trị riêng, vector riêng của f.
- c) Tìm số chiều của không gian hạt nhân và không gian ảnh của f.

Câu 5. (2đ) Trong không gian \mathbb{R}^5 với tích vô hướng chính tắc cho các vector; $v_1=(-1,1,1,-1,-1); v_2=(2,1,4,-4,2); v_3=(5,-4,-3,7,1).$ Ký hiệu V là không gian sinh bởi v_1,v_2,v_3 .

- a) Tìm một cơ sở trực chuẩn của V bằng phương pháp Gramm-Schmidt.
- b) Tìm hình chiếu trực giao của vector v = (1,2,3,4,5) lên V.

Câu 6. (1đ) Chứng minh rằng nếu ma trận A đồng dạng với ma trận B thì A^4 cũng đồng dạng với B^4 .

bkkhongsotach.edu.vn Thảo luận thêm tại:

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ - 20181

Mã số MI1143 – Nhóm ngành 3 – Thời gian: 90 phút

Câu 1. (1d) Cho mệnh đề $P: \forall x \in \mathbb{R}, \exists y \in \mathbb{R}: y < x''$.

- a) Xác định mệnh đề phủ định của P.
- b) Mệnh đề P muốn khẳng định điều gì?

Câu 2. (1d) Cho các tập hợp A, B, C. Chứng minh:

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

Câu 3. (2đ) Cho các vector:

$$v_1 = (2,1,0,-3); v_2 = (1,-1,2,5); v_3 = (5,3,1,2); v_4 = (8,5,6,1)$$

- a) Chứng minh v_1, v_2, v_3, v_3 lập thành một cơ sở của không gian \mathbb{R}^4 .
- b) Tìm tọa độ của vector v = (23,14,17,-5) đối với cơ sở trên.

Câu 4. (3d) Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(1,2,3) = (13,-7,-2); f(1,2,0) = (4,2,-2); f(2,0,0) = (4,0,4)$$

- a) Tìm ma trân của f đối với cơ sở chính tắc của \mathbb{R}^3 .
- b) Tìm các giá trị riêng, vector riêng của f.
- c) Tìm số chiều của không gian hạt nhân và không gian ảnh của f.

Câu 5. (2d) Trong không gian \mathbb{R}^5 với tích vô hướng chính tắc cho các vector: $v_1 = (1, -1, -1, 1, 1)$; $v_2 = (2,1,4,-4,2)$; $v_3 = (4,-3,-2,6,0)$. Ký hiệu V là không gian sinh bởi v_1, v_2, v_3 .

- a) Tìm một cơ sở trực chuẩn của V bằng phương pháp Gramm-Schmidt.
- b) Tìm hình chiếu trực giao của vector v = (0,2,4,6,8) lên V.

Câu 6. (1đ) Chứng minh rằng nếu ma trận A đồng dạng với ma trận B thì A^4 cũng đồng dạng với B^4 .

bkkhongsotach.edu.vn Thảo luận thêm tại: th com/grouns/bkkhongsotae

ĐỀ THI MÔN ĐẠI SỐ CUỐI HỌC KỲ HÈ 20173

MÃ HP: MI 1141, Nhóm 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và Giám thị phải ký xác nhận số đề vào bài thi của sinh viên.

Câu 1(2d). 1. Cho p, q, r là 3 mệnh đề. Hỏi hai mệnh đề

$$(p \leftrightarrow q) \land (q \leftrightarrow r) \land (r \leftrightarrow p) \ var(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow p)$$

có tương đương hay không? Tại sao?

2. Ánh xạ $f: \mathbb{R} \setminus \{1\} \to \mathbb{R}$, $f(x) = \frac{x+1}{x-1}$ là đơn ánh không? Tại sao?

Câu 2 (1đ). Tìm phần thực và phần ảo của số phức $z = (-1+i)^{10} (\sqrt{3}-i)^{15}$.

Câu 3 (1d). Tìm m dể phương trình ma trận sau có vô số nghiệm

$$\begin{pmatrix} 2 & -1 & 3 \\ 1 & 3 & m \\ 5 & 1 & 3 \end{pmatrix} X = \begin{pmatrix} -2 \\ 1 \\ -3 \end{pmatrix}.$$

bkkhongsotach.edu.vn Thảo luận thêm tại:

Câu 4 (1đ). Chứng minh rằng $F\left\{\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in M_2 : a, b, c \in \mathbf{R} \right\}$ là không gian con của không gian M_2 các ma

trận vuông cấp 2. Tìm số chiều của F.

Câu 5 (2đ). Cho ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z) = (2x - y + z; -x + 2y - z; z).$$

- 1. Chứng minh f là một phép biến đổi tuyến tính và tìm ma trận của f theo cơ sở chính tắc của \mathbb{R}^3 .
- 2. Tìm trị riêng và vector riêng của f.

Câu 6 (1đ). Nhận dạng đường bậc hai $4xy - 4\sqrt{2}y = 1$.

Câu 7 (1đ). Cho $a_1, a_2, a_3, a_4 \in \mathbb{R}$. Chứng minh rằng ma trận sau khả nghịch

$$A = \begin{pmatrix} 1 + a_1^2 & -a_2 & -a_3 & -a_4 \\ a_2 & 1 + a_1^2 & -a_4 & a_3 \\ a_3 & a_4 & 1 + a_1^2 & -a_2 \\ a_4 & -a_3 & a_2 & 1 + a_1^2 \end{pmatrix}.$$

Câu 8 (1đ). Gọi $C(\mathbb{R})$ là không gian véc tơ các hàm số liên tục trên \mathbb{R} . Cho n số thực $\lambda_1; \lambda_2; \ldots; \lambda_n$ từng đôi một khác nhau. Chứng minh rằng hệ các véc tơ $\{f_1(x) = e^{\lambda_1 x}; f_2(x) = e^{\lambda_2 x}; \ldots; f_n(x) = e^{\lambda_n x}\} \subset C(\mathbb{R})$ độc lập tuyến tính.

ĐỀ 2 ĐỀ THI MÔN ĐẠI SỐ CUỐI HỌC KỲ HÈ 20173

MÃ HP: MI 1141, Nhóm 1, Thời gian: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và Giám thị phải ký xác nhận số đề vào bài thi của sinh viên. Câu 1 (2đ).

1. Cho p, q, r là 3 mệnh đề. Hỏi hai mệnh đề

 $(p \lor q) \land (q \lor r) \land (r \lor p)$ và $(p \land q) \lor (q \land r) \lor (r \land p)$

2. Ánh xạ $f: \mathbb{R} \setminus \{3\} \to \mathbb{R}$, $f(x) = \frac{4x-5}{x-3}$ là đơn ánh không? Tại sao?

Câu 2 (1đ). Tìm phần thực và phần ảo của số phức $z = (1-i)^{20} \left(-1+i\sqrt{3}\right)^{10}$.

Câu 3 (1d). Tìm m để phương trình ma trận sau có vô số nghiệm

$$\begin{pmatrix} 3 & -1 & m \\ 1 & 2 & -2 \\ 2 & -3 & 3 \end{pmatrix} X = \begin{pmatrix} 5 \\ -2 \\ 7 \end{pmatrix}.$$

Câu 4 (1đ). Chứng minh rằng $F = \{(x, y, z, t) \in \mathbb{R}^4 : 2x - y - z + t = 0\}$ là không gian con của \mathbb{R}^4 . Tìm số chiều của F.

Câu 5 (2đ). Cho ánh xạ $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi

$$f(x, y, z) = (2x - y + z; x + 3z; y + z).$$

1. Chứng minh f là một phép biến đổi tuyến tính và tìm ma trận của f theo cơ sở chính tắc của \mathbb{R}^3 .

2. Tìm trị riêng và vector riêng của f.

Câu 6 (1đ). Nhận dạng đường bậc hai $2xy + 2\sqrt{2}x = 1$.

Câu 7 (1đ). Cho $x, y, z, t \in \mathbb{R}$. Chứng minh rằng ma trận sau khả nghịch

$$M = \begin{pmatrix} x & -y & -z & -(1+t^2) \\ y & x & -(1+t^2) & z \\ z & 1+t^2 & x & -y \\ 1+t^2 & -z & y & x \end{pmatrix}.$$

Câu 8 (1đ). Gọi $C(\mathbb{R})$ là không gian véc tơ các hàm số liên tục trên \mathbb{R} . Cho n số thực $\lambda_1; \lambda_2; \ldots; \lambda_n$ từng đôi một khác nhau. Chứng minh rằng hệ các véc tơ $\{f_1(x) = e^{\lambda_1 x}; f_2(x) = e^{\lambda_2 x}; \ldots; f_n(x) = e^{\lambda_n x}\} \subset C(\mathbb{R})$ độc lập tuyến tính.

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotae

okkhongsotach.edu.vn

ĐÈ 5

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ HỌC KỲ 20173 MÃ HP MI 1143 Nhóm 3 Thời gian: 90 phút

Câu 1 (2đ).

- 1) Cho ánh xạ $f: [1; +\infty) \to (-2; +\infty)$ xác định bởi f(x) = 2x 2. Ánh xạ f là ánh xạ toàn ánh không? Tại sao?
- 2) Cho số phức $z = \frac{1+2i}{2-i}$, $(i^2 = -1)$. Tính $\sqrt[6]{z}$.

Câu 2 (2đ). Cho các ma trận $A = \begin{pmatrix} 2 & -1 & 2 \\ 4 & 1 & 3 \\ m & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 6 & 1 \\ 15 & 4 \\ 4 & 1 \end{pmatrix}, m là tham số.$

- 1) Khi m = 1, tìm ma trận X thỏa mãn AX = B.
- 2) Tìm m để ma trận A có hạng nhỏ nhất.

 $C\hat{a}u$ 3 (3 \hat{d}). Kí hiệu G là tập nghiệm của hệ phương trình

$$\begin{cases}
-3x_1 & +x_2 & +3x_3 & +x_4 = 0 \\
-2x_2 & +x_2 & +x_3 & +x_4 = 0 \\
-7x_1 & +2x_2 & +8x_3 & +2x_4 = 0
\end{cases}$$

- 1) Chứng minh G là không gian con của \mathbb{R}^4 .
- 2) Xác định một cơ sở của G.
- 3) Tìm hình chiếu trực giao của véc to u = (1; -2; 0; 1) trên G.

Câu 4 (2đ). Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(2; 1; -1) = (0; 1; 3), f(1; 2; 1) = (3; 2; 3), f(1; -1; 2) = (1; 3; 0).$$

- 1) Tìm ma trận A của f theo cơ sở chính tắc của \mathbb{R}^3 .
- 2) Tìm một cơ sở của \mathbb{R}^3 (nếu có) để ma trận của f theo cơ sở đó là ma trận đường chéo.

Câu 5 (1đ).

Cho A là ma trận thực, vuông cấp n và E là ma trận đơn vị cùng cấp. Chứng minh $det(A^2 + 4E) \ge 0$.

Chú ý: Thí sinh không được sử dụng tài liệu và phải làm đúng số đề được phát. Giám thị coi thi không giải thích gì thêm.

ĐỀ THI CUỐI KỲ MÔN ĐẠI SỐ HỌC KỲ 20173

Mã HP MI 1143 Nhóm 3 Thời gian: 90 phút

Câu 1(2đ).

1) Cho ánh xạ $g:(-\infty;-1] \to [-2;+\infty)$ xác định bởi g(x)=-2x-2. Ánh xạ g là ánh xạ đơn ánh không? Tại sao?

2) Cho số phức
$$z = \frac{5+i}{3-2i}$$
, $(i^2 = -1)$. Tính z^{2018} .

Câu 2(2đ). Cho các ma trận $A = \begin{pmatrix} 2 & 1 & 3 \\ 1 & n & 2 \\ 3 & 1 & 4 \end{pmatrix}$, $C = \begin{pmatrix} 13 & 4 & 19 \\ 4 & 1 & 6 \end{pmatrix}$, n là tham số.

- 1) Khi n = 0, tìm ma trận X thỏa mãn XA = C.
- 2) Tìm n để ma trận A có hạng lớn nhất.

 $C\hat{a}u 3(3d)$. Kí hiệu S là tập nghiệm của hệ phương trình

$$\begin{cases} 2x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + 3x_4 = 0 \\ 5x_1 + 2x_2 + 2x_3 = 0 \end{cases}$$

- 1) Chứng minh S là không gian con của \mathbb{R}^4 .
- 2) Xác định một cơ sở của S.
- 3) Tìm hình chiếu trực giao của véc tơ x = (0; 1; 2; 5) trên S.

Câu 4(2đ). Kí hiệu $P_2[x]$ là không gian các đa thức hệ số thực, có bậc ≤ 2 . Cho toán tử tuyến tính $g: P_2[x] \rightarrow P_2[x]$ xác định bởi:

$$g(2+x-x^2) = x + 3x^2, g(1+2x+x^2) = 3 + 2x + 3x^2, g(1-x+2x^2) = 1 + 3x.$$

- 1) Tìm ma trận B của g theo cơ sở chính tắc của $P_2[x]$.
- 2) Tìm một cơ sở của $P_2[x]$ (nếu có) để ma trận của g theo cơ sở đó là ma trận đường chéo.

Câu 5(2đ).

Cho A là ma trận thực, vuông cấp n và E là ma trận đơn vị cùng cấp. Chứng minh $det(A^2 + 9E) \ge 0$.

Chú ý: Thí sinh không được sử dụng tài liệu và phải làm đúng số đề được phát. Giám thị coi thi không giải thích gì thêm.

bkknongsotacn.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsota

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Nhóm ngành I, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

Câu 1 (1đ) Giải phương trình trong trường số phức:

$$\left(\frac{z+1}{z}\right)^2 - 3(1+2i)\left(\frac{z+1}{z}\right) - 8 + 6i = 0$$

<u>Câu 2</u> (1đ) Giải phương trình ma trận: $X^2 - 2X = \begin{pmatrix} -1 & 0 \\ 6 & 8 \end{pmatrix}$.

<u>Câu 3</u> (1,5d) Giải và biện luận theo hệ số thực a hệ phương trình:

$$\begin{cases} x_1 + x_2 + 2x_3 + a^2x_4 = 0 \\ x_1 + (1-a)x_2 + 2x_3 = 0 \\ 2x_1 + (2-a)x_2 + (6-a)x_3 + 4x_4 = 0 \end{cases}$$

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsota

<u>Câu 4</u> (3đ) Cho ánh xạ tuyến tính $f: \mathbb{R}^4 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z, s) = (x + 2y + z - 3s, 2x + 5y + 4z - 5s, x + 4y + 5z - s), \forall (x, y, z, s) \in \mathbb{R}^4.$$

- a) Tìm một cơ sở và số chiều của ker f.
- b) Trên \mathbb{R}^4 xét tích vô hướng chính tắc, cho u=(1;0;1;0), tìm $\omega\in\ker f$ sao cho $||u-\omega||\leq ||u-v||$, với mọi véc tơ $v\in\ker f$.
- c) Hãy bổ sung thêm các véc tơ vào hệ cơ sở tìm được trong câu (a) để được hệ mới trở thành cơ sở của \mathbb{R}^4 .

<u>Câu 5</u> (1,5d) Rút gọn dạng toàn phương sau bằng phương pháp chéo hóa trực giao $\varphi(x) = (x_1 - x_2 + 2x_3)^2$, $\forall x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Hãy nhận dạng mặt bậc hai sau $\varphi(x) = 6x_3 + 6$.

<u>Câu 6</u> (ld) Cho $G = (\mathbb{R}\setminus\{0\}) \times \mathbb{R}$ và * là một phép toán hai ngôi trên G xác định bởi $(x_1, y_1) * (x_2, y_2) = (x_1x_2, x_1y_2 + y_1)$. Hỏi (G,*) có phải là một nhóm không? Tại sao?

<u>Câu 7</u> (ld) Giả sử rằng $A, B \in \mathfrak{M}_n(\mathbb{R})$ - tập các ma trận thực vuông cấp $n, n \in \mathbb{N} \setminus \{0\}$. Ký hiệu $\sigma_{\mathbb{R}}(AB)$ là tập các giá trị riêng của AB. Chứng minh rằng: $\sigma_{\mathbb{R}}(AB) \subset \sigma_{\mathbb{R}}(BA)$.

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Nhóm ngành I, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

<u>Câu 1</u> (1đ) Giải phương trình trong trường số phức:

$$\left(\frac{z+1}{z}\right)^2 - (5+i)\left(\frac{z+1}{z}\right) + 8+i = 0$$

<u>Câu 2</u> (1đ) Giải phương trình ma trận: $X^2 - 2X = \begin{pmatrix} -1 & 0 \\ 8 & 15 \end{pmatrix}$.

<u>Câu 3</u> (1,5d)) Giải và biện luận theo hệ số thực a hệ phương trình:

$$\begin{cases} x_1 & +2x_2 & +4x_3 & +ax_4 = 0 \\ x_1 & +(2-a)x_2 & +4x_3 & = 0 \\ 2x_1 & +(4-a)x_2 & +(10-a)x_3 & +4x_4 = 0 \end{cases}$$

<u>Câu 4</u> (3đ) Cho ánh xạ tuyến tính $f: \mathbb{R}^5 \to \mathbb{R}^3$ xác định bởi:

 $f(x, y, z, s, t) = (x + 2y + z - 3s + 4t, 2x + 5y + 4z - 5s + 5t, x + 4y + 5z - s - 2t) \quad \forall (x, y, z, s, t) \in \mathbb{R}^5.$

- a) Tìm một cơ sở và số chiều của Im f.
- b) Trên \mathbb{R}^3 xét tích vô hướng chính tắc, cho u=(1;0;2), tìm $\omega\in \mathrm{Im}\ f$ sao cho $||u-\omega||\leq ||u-v||$, với mọi véc tơ $v\in \mathrm{Im}\ f$.
- c) Hãy bổ sung thêm các véc tơ vào hệ cơ sở tìm được trong câu (a) để được hệ mới trở thành cơ sở của \mathbb{R}^3 .

<u>Câu 5</u> (1,5d) Rút gọn dạng toàn phương sau bằng phương pháp chéo hóa trực giao $\varphi(x) = (x_1 - 2x_2 + x_3)^2$, $\forall x = (x_1, x_2, x_3) \in \mathbb{R}^3$. Hãy nhận dạng mặt bậc hai sau $\varphi(x) = 6x_2 + 6$.

<u>Câu 6</u> (ld) Cho $G = (\mathbb{R}\setminus\{0\}) \times \mathbb{R}$ và * là một phép toàn hai ngôi trên G xác định bởi $(x_1, y_1) * (x_2, y_2) = (x_1x_2, x_2y_1 + y_2)$. Hỏi (G,*) có phải là một nhóm không? Tại sao?

<u>Câu 7</u> (ld) Giả sử rằng $A, B \in \mathfrak{M}_n(\mathbb{R})$ - tập các ma trận thực vuông cấp $n, n \in \mathbb{N} \setminus \{0\}$. Ký hiệu $\sigma_{\mathbb{R}}(AB)$ là tập các giá trị riêng của AB. Chứng minh rằng: $\sigma_{\mathbb{R}}(BA) \subset \sigma_{\mathbb{R}}(AB)$.

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotad

ĐỀ 3 ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Nhóm ngành I, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

<u>Câu 1</u> (1đ) Giải phương trình trên trường số phức: $(z+i)^7 = (z-i)^7$.

<u>Câu 2</u> (1đ) Giải phương trình ma trận: $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} X^{-1} = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$.

 $C\hat{a}u \ 3 \ (1,5d)$ Giải và biện luận theo hệ số thực a hệ phương trình:

$$\begin{cases} x_1 & +2x_2 & -x_3 & = 0 \\ & ax_2 & +(1-a)x_3 & +(a^2+1)x_4 = 0 \\ x_1 & +(2-a)x_2 & -x_3 & -2a^2x_4 & = 0 \end{cases}$$

Câu 4 (3đ) Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z) = (4x - 2y + 2z, -2x + y - z, 2x - y + z)$$

- a) Với tích vô hướng chính tắc của \mathbb{R}^3 hãy tìm một cơ sở trực chuẩn để ma trận của f theo hệ cơ sở đó có dạng đường chéo.
- b) Tìm tọa độ của véc tơ $\omega = (1; 0; 1)$ theo hệ cơ sở trực chuẩn đó.
- c) Hãy tìm giá trị lớn nhất của $\phi(x,y,z)=4x^2+y^2+z^2-4xy+4xz-2yz \ \forall (x,y,z)\in \mathbb{R}^3$ thỏa mãn $x^2+y^2+z^2=9$.

<u>Câu 5</u> (1,5d) Trong không gian véc tơ \mathbb{R}^4 trang bị tích vô hướng chính tắc,

cho
$$V_1 = Span\{v_1 = (1; 2; 3; 1), v_2 = (1; 3; 3; 2)\};$$

 $V_2 = Span\{v_3 = (1; 2; 5; 3), v_4 = (1; 3; 4; 3)\}$. Hãy tìm một cơ sở trực chuẩn của $V_1 + V_2$. Tìm hình chiếu của véc tơ $\omega = (1; 1; 2; 0)$ lên $V_1 + V_2$

<u>Câu 6</u> (1đ) Cho $P_2[x]$ là tập các đa thức hệ số thực có bậc nhỏ hơn hoặc bằng 2 và ánh xạ $\varphi: P_2[x] \to \mathbb{R}^3$ xác định bởi $\varphi(p(x)) = (p(0), p(1), p(-1))$. Hỏi φ có phải là một đẳng cấu không? Giải thích?

<u>Câu 7</u> (ld) Ký hiệu $\mathfrak{M}_{n,1}(\mathbb{R})$ là tập các ma trận thực kích cỡ $n \times 1$. Giả sử rằng A,B là hai ma trận vuông thực cấp n, với $0 < n \in \mathbb{N}$ thỏa mãn $X^tAY = X^tBY$, $\forall X,Y \in \mathfrak{M}_{n,1}(\mathbb{R})$. Chứng minh rằng A = B.

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotac

ĐỀ 4 ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Nhóm ngành I, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

<u>Câu 1</u> (1đ) Giải phương trình trên trường số phức: $(z + i)^9 = (z - i)^9$.

<u>Câu 2</u> (1đ) Giải phương trình ma trận: $\begin{pmatrix} 2 & 0 \\ 4 & 2 \end{pmatrix} X \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

<u>Câu 3</u> (1,5d)) Giải và biện luận theo hệ số thực a hệ phương trình:

 $\begin{cases} x_1 & +2x_2 & -2x_3 & -x_4 = 0 \\ ax_2 & +(1-a)x_3 & +(a^2+1)x_4 = 0 \\ 2x_1 & +(4-a)x_2 & -4x_3 & -2(a^2+1)x_4 = 0 \end{cases}$

<u>Câu 4</u> (3đ) Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x, y, z) = (4x + 2y - 2z, 2x + y - z, -2x - y + z)$$

- theo by co physical p
- a) Với tích vô hướng chính tắc của \mathbb{R}^3 hãy tìm một cơ sở trực chuẩn để ma trận của f theo hệ cơ sở đó có dạng đường chéo.
- b) Tìm tọa độ của véc tơ $\omega = (1; 0; 1)$ theo hệ cơ sở trực chuẩn đó.
- c) Hãy tìm giá trị lớn nhất của $\phi(x,y,z)=4x^2+y^2+z^2+4xy-4xz-2yz \ \forall (x,y,z) \in \mathbb{R}^3$ thỏa mãn $x^2+y^2+z^2=16$.

<u>Câu 5</u> (1,5d) Trong không gian véc tơ \mathbb{R}^4 trang bị tích vô hướng chính tắc, cho $V_1 = Span\{v_1 = (1;2;3;1), v_2 = (2;0;-2;1)\};$

 $V_2=Span\{v_3=(1;3;5;2),v_4=(3;8;13;3)\}$. Hãy tìm một cơ sở trực chuẩn của $V_1\cap V_2$. Tìm hình chiếu của véc tơ $\omega=(1;1;0;1)$ lên $V_1\cap V_2$

<u>Câu 6</u> (ld) Cho $P_2[x]$ là tập các đa thức hệ số thực có bậc nhỏ hơn hoặc bằng 2 và ánh xạ $\varphi: P_2[x] \to \mathbb{R}^3$ xác định bởi $\varphi(p(x)) = (p(0), p(-1), p(1))$. Hỏi φ có phải là một đẳng cấu không? Giải thích?

<u>Câu 7</u> (*lđ*) Ký hiệu $\mathfrak{M}_{n,1}(\mathbb{R})$ là tập các ma trận thực kích cỡ $n \times 1$. Giả sử rằng A,B là hai ma trận vuông thực cấp n, với $0 < n \in \mathbb{N}$ thỏa mãn $X^tAY = X^tBY$, $\forall X,Y \in \mathfrak{M}_{n,1}(\mathbb{R})$. Chứng minh rằng A = B.

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Nhóm học: 2, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

Câu 1 (2đ): Giải phương trình trong tập số phức:

$$a)z^{2} - (\sqrt{3} + 1)iz - 1 - \sqrt{3} + (1 - \sqrt{3})i = 0$$

$$b)\frac{1}{(2z+9)^{23}} - \frac{(\sqrt{3}+1)i}{(2z+9)^{11}} - 1 - \sqrt{3} + (1-\sqrt{3})i = 0$$

Câu 2 (1đ): Cho các ma trận
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 1 & -1 \\ 1 & 0 & 2 \end{pmatrix}; B = \begin{pmatrix} 1 & -3 & 1 \\ 1 & 0 & -2 \\ 2 & 1 & -1 \end{pmatrix}; C = \begin{pmatrix} -1 & -2 & 3 \\ 2 & 3 & -6 \\ -2 & 0 & 0 \end{pmatrix}$$

Tìm ma trận X sao cho AX - B = CX.

 $\underline{Câu\ 3\ (1d)}$: Tìm m và n sao cho không gian nghiệm của hệ phương trình sau có số chiều là 2:

$$\begin{cases} x_1 - 2x_2 + mx_3 + 3x_4 = 0 \\ 2x_1 - x_2 + 2x_3 + 3x_4 = 0 \\ 2x_1 + 2x_2 - x_3 + nx_4 = 0. \end{cases}$$

Câu 4 (1đ): Cho ánh xạ tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^4$ với

$$f(x_1, x_2, x_3) = (x_1 + 2x_2 - 3x_3, 3x_1 - x_2 + 2x_3, -7x_1 + 7x_2 - 12x_3, -5x_1 + 4x_2 - 7x_3)$$

 $\forall (x_1, x_2, x_3) \in \mathbb{R}^3$. Tìm số chiều và cơ sở của không gian Im f.

Câu 5 (2đ): Cho ma trận
$$A = \begin{pmatrix} -6 & -4 & 4 \\ 4 & 4 & -2 \\ -14 & -7 & 9 \end{pmatrix}$$
.

Hãy tính các giá trị riêng của A, sau đó chéo hóa ma trận A.

<u>Câu 6 (2đ)</u>: Trong \mathbb{R}^4 với tích vô hướng chính tắc, cho ba véc-tơ

$$v_1 = (1; 0; -1; 0), v_2 = (1; -2m; m; 1), v_3 = (1; 1; 1; 0).$$

- a) Tìm m để hai véc-tơ v_1, v_2 trực giao với nhau, và với m tìm được đó hãy chứng minh rằng hệ véc-tơ $\{v_1, v_2, v_3\}$ là độc lập tuyến tính.
- b) Với m tìm được ở trên hãy tính hình chiếu trực giao của véc-tơ u=(0;2;1;-1) lên không gian $Span\{v_1,v_2,v_3\}$.

<u>Câu 7 (1đ)</u>: Cho A là ma trận thực vuông cấp n chéo hóa được và $p(\lambda)$ là đa thức đặc trưng của A (tức là $p(\lambda) = |A - \lambda I|$ với $\lambda \in \mathbb{R}$). Chứng minh rằng p(A) = 0.

okkhongsotach.edu.vn Thảo luận thêm tại:

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ - Học kì 20171

Khóa: K62-Mã HP: MI1143, Thời gian; 90 phút.

Chú ý: Thí sinh không sử dụng tài liệu. Giám thị phải ký xác nhận mã số đề vào bài thi.

Câu 1: Xét ánh xạ xác định bởi: $f: \mathbb{R}^2 \to \mathbb{R}^2$

$$f(x_1, x_2) = (x_1 + 2x_2; x_1^3) \forall (x_1, x_2) \in \mathbf{R}^2$$

 $\mathrm{CM}\,f$ là song ánh. Xác định ánh xạ ngược của f

Câu 2: Tìm các nghiệm phức của phương trình: $(x^4 + 16)(x^2 - 2ix + 8) = 0$

Câu 3: Cho ma trận:

$$A = \begin{bmatrix} 3 & 2 \\ 8 & 5 \end{bmatrix}; B = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 2 \end{bmatrix}; C = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Tìm ma trận X thỏa AX - B = C

Câu 4: Trong **R**⁴ cho các vecto $v_1 = (1;1;1;0), v_2(0;1;2;3), v_3(2;1;0;2)$

a) CM $\{v_1; v_2; v_3\}$ lập thành cơ sở của $V = Span(v_1; v_2; v_3)$

b) CM v = (4, 2, 0, 9) thuộc V. Tìm tọa độ của v đối với cơ sở trên.

Câu 5: Trong $P_2[x]$ Xét cơ sở $B = \{u_1; u_2; u_3\}$, trong đó $u_1 = 1 + x$; $u_2 = x$; $u_3 = 1 + x + x^2$. Cho toán tử tuyến

tính
$$f: P_2[x] \rightarrow P_2[x]$$
 có ma trận đối với cơ sở B là $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & -1 \\ 2 & 3 & 2 \end{bmatrix}$

- a) Tìm ma trận của f đối với cơ sở chính tắc: $S = \{1, x, x^2\}$
- b) Xác định v trong $P_2[x]$ để $f(v) = 7 + 4x + 2x^2$
- c) Xác định một cơ sở của Kerf

Câu 6: Trên R³ cho dạng toàn phương w xác định bởi:

$$\mathbf{w}(x_1, x_2, x_3) = x_1^2 + x_2^2 + 2x_3^2 + 2x_1x_2 \forall (x_1, x_2, x_3) \in \square^3$$

Với tích vô hướng thông thường trên □³, tìm cơ sở trực chuẩn để w có dạng chính tắc. Viết dạng chính tắc đó.

Câu 7: Cho A là ma trận vuông cấp 3 thỏa mãn $A^4 = 0$, với O là ma trận không. CM: $A^2 = 0$

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotach

kkhongsotach.edu.vn

Thời gian: 90 phút

Câu 1. Cho ánh xạ $f: X \to Y$ và $A \subset X$. Chứng minh $A \subset f^{-1}[f(A)]$.

Câu 2. Cho phương trình $z^2 - (5+3i)z + (8+4i) = 0$ có hai nghiệm z_1, z_2 với các điểm biểu diễn là A, B. Tính đô dài đoạn AB.

Câu 3. Tìm điều kiện của m để ma trận $\begin{bmatrix} 1+m & 2+m & -m \\ 3+m & -1+m & 2-m \\ -1+m & m & 1-m \end{bmatrix}$ khả nghịch.

Câu 4. Tìm m để hệ phương trình $\begin{cases} x_1 + 2x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + 2x_3 + 4x_4 = 0 \\ x_1 + 3x_2 - 3x_3 - 2x_4 = 0 \\ 2x_1 - x_2 + 2x_3 + mx_4 = 0 \end{cases}$

có nghiệm không tầm thường và khi đó tìm công thức nghiệm.

Câu 5. Trong không gian $P_2[x]$, cho các véc tơ $u_1 = 1 + x - x^2$, $u_2 = 3x - x^2$, $u_3 = 2 - 2x + x^2$, $u_4 = 3 + 2x = 2x^2$. Chứng minh mỗi hệ gồm 3 trong 4 véc tơ kể trên đều là một cơ sở của không gian $P_2[x]$.

Câu 6. Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi:

$$f(x_1, x_2, x_3) = (-7x_1 - 12x_2 + 4x_3, 4x_1 + 7x_2 - 2x_3, -x_1 - 2x_2)$$

- a) Xác định ma trận của f đối với cơ sở $B = \{(1; 0; 1), (0; 1; 1), (0; 0; 1)\}.$
- b) Tìm một cơ sở của \mathbb{R}^3 để ma trận của f theo cơ sở đó có dạng chéo.

Câu 7. Trên không gian Euclide \mathbb{R}^3 với tích vô hướng chính tắc <,> và cơ sở chính tắc $E = \{e_1 = (1;0;0), e_2 = (0;1;0), e_3 = (0;0;1)\}.$

- a) Cho biến đổi tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ xác định bởi $f(e_1) = e_2$, $f(e_2) = e_3$, $f(e_3) = e_1$. Chứng minh $\langle f(u), f(v) \rangle = \langle u, v \rangle$ với mọi $u, v \in \mathbb{R}^3$.
- b) Ma trận của f đối với một cơ sở trực chuẩn bất kỳ có chéo hóa trực giao được không? Tại sao?

Câu 8. Cho A là ma trận vuông thực cấp n thỏa mãn $A^2 + 2017E = 0$. Chứng minh det(A) > 0.

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ-HỌC KÌ 20161 KHÓA: 61 – THỜI GIAN: 90 PHÚT

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 đ). Giải phương trình phức $z^6 + iz^4 - z^2 - i = 0$, với i là đơn vị ảo

Câu 2 (1 đ). Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (x + y, x - y)

và $A = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 1\}$. Tìm a biết

$$f^{-1}(A) = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = a \}$$

Câu 3 (1 đ). Cho $A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 7 \\ 1 & 2 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Tìm ma trận X thỏa mãn $AX = B^T$

Câu 4 (1 đ). Tìm a, b để không gian nghiệm của hệ sau có số chiều là 1:

$$\begin{cases} bx & +3y & +z = 0\\ (1+2b)x+(a+5)y+2z = 0\\ (2b-1)x+(a+2)y+z = 0 \end{cases}$$

Câu 5 (1 đ). Trong không gian \mathbb{R}^4 , cho các véc to

$$v_1 = (1; 2; -1; 0), v_2 = (2; 2; -1; 3), v_3 = (-1; -2; 2; -1), v_4 = (1; 0; 1; 2)$$

Đặt $V_1 = span\{v_1, v_2\}, V_2 = span\{v_3, v_4\}$. Tìm số chiều và một cơ sở của không gian con $V_1 + V_2$

Câu 6 (2 d). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ thỏa mãn :

$$f(1+x^2) = 2 + 5x + 3x^2 \qquad f(-1+2x+3x^2) = 7(x+x^2)$$
$$f(x+x^2) = 3(x+x^2)$$

- a) Tìm ma trận của f và $f^2 = f \circ f$ đối với cơ sở chính tắc $\{1, x, x^2\}$ của $P_2[x]$
- b) Xác định m để véc tơ $v = 2 + mx + 5x^2$ thuộc Im f

Câu 7 (2 đ). Cho dạng toàn phương

$$\omega(x_1, x_2, x_3) = x_1^2 + ax_2^2 + 3x_3^2 - 8x_1x_2$$

- a) Tìm a để $\omega=1$ là một mặt ellipsoid
- b) Khi a = -5, hãy đưa ω về dạng chính tắc bằng phương pháp trực giao (chỉ rõ phép biến đổi)

Câu 8 (1 d). Cho ma trận thực A vuông cấp 2017. Chứng minh rằng

$$det(A - A^7)^{2017} = 2017(det A - det A^T)$$

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsota

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ-HỌC KÌ 20161 KHÓA: 61 – THỜI GIAN: 90 PHÚT

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 d). Giải phương trình phức $z^6 - iz^4 - z^2 + i = 0$, với i là đơn vị ảo

Câu 2 (1 đ). Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x, y) = (x - y, x + y)

 $v a B = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = 4\}$. Tim a biết

$$f^{-1}(B) = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 = a\}$$

Câu 3 (1 đ). Cho $A = \begin{bmatrix} -1 & -3 & 1 \\ 2 & 5 & -2 \\ 0 & -2 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$. Tìm ma trận X thỏa mãn $XA^T = B$.

Câu 4 (1 đ). Tìm a, b để không gian nghiệm của hệ sau có số chiều là 1:

$$\begin{cases} ax & +2y & +z = 0\\ (1+3a)x & +(b+4)y & +3z = 0\\ -2x & -by & -z = 0 \end{cases}$$

Câu 5 (1 đ). Trong không gian \mathbb{R}^4 , cho các véc tơ

$$v_1 = (-1; 3; 2; 1), v_2 = (2; 1; 0; -1), v_3 = (1; 4; 3; 1), v_4 = (2; 8; 5; 1)$$

Đặt $V_1 = span\{v_1, v_2\}, V_2 = span\{v_3, v_4\}$. Tìm số chiều và một cơ sở của không gian con $V_1 + V_2$

Câu 6 (2 d). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ thỏa mãn :

$$f(1+x^2) = 4 + x + 5x^2 \qquad f(1+2x+3x^2) = 10 + 13x + 23x^2$$
$$f(-x+x^2) = -1 - 2x - 3x^2$$

- c) Tìm ma trận của f và $f^2 = f \circ f$ đối với cơ sở chính tắc $\{1, x, x^2\}$ của $P_2[x]$
- d) Xác định m để véc tơ $v = 1 + mx 5x^2$ thuộc Im f

Câu 7 (2 đ). Cho dạng toàn phương

$$\omega(x_1, x_2, x_3) = 3x_1^2 + ax_2^2 - 5x_3^2 - 8x_2x_3$$

- c) Tìm a để $\omega=1$ là một mặt ellipsoid
- d) Khi a = 1, hãy đưa ω về dạng chính tắc bằng phương pháp trực giao (chỉ rõ phép biến đổi)

Câu 8 (1 d). Cho ma trận thực A vuông cấp 2017. Chứng minh rằng

$$det(A - A^{T})^{2017} = 2017(det A - det A^{T})$$

bkkhongsotach.edu.vn Thảo luận thêm tại:

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 đ).Cho A, B là các tập hợp thỏa mãn $A \setminus B \subset B \setminus A$.Chứng minh $A \subset B$

Câu 2 (1 đ). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$, $f(z) = iz^2 + (4-i)z - 9i$, với i là đơn vị ảo. Xác định $f^{-1}(\{7\})$

Câu 3 (1 d). Tìm x biết
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 6 - x^2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 6 - x \end{vmatrix} = 0$$

Câu 4 (1 đ). Tìm a, b để hệ sau có vô số nghiệm phụ thuộc 1 tham số:

$$\begin{cases} x_1 & -x_3 & +ax_4 = 2\\ 2x_1 - 2x_2 & +3x_3 & +(3a+1)x_4 = b+6\\ 3x_1 + 4x_2 & -13x_3 & +(2a-2)x_4 = -b-1 \end{cases}$$

Câu 5 (1 đ).Trong không gian $P_3[x]$ - các đa thức bậc không vượt quá 3, cho các véc tơ $v_1 = 1 + x + x^2 + 2x^3$, $v_2 = x - x^2 - x^3$, $v_3 = 2 + 5x - 2x^2$, $v_4 = 3 + 7x + 3x^3$.

 Đặt $V_1 = span\{v_1,v_2\}, V_2 = span\{v_3,v_4\}$. Tìm số chiều và một cơ sở của không gian con $V_1 \cap V_2$

Câu 6 (2 đ). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ có ma trận

$$A = \begin{bmatrix} -3 & 1 & 2 \\ 6 & 0 & -3 \\ -10 & 2 & 6 \end{bmatrix}$$
 đối với cơ sở chính tắc $\{1, x, x^2\}$ của $P_2[x]$

- a) Tính $f\{1+x+x^2\}$. Tìm m để $v=1-x+mx^2$ thuộc Kerf
- b) Tìm một cơ sở của $P_2[x]$ để ma trận của f đối với cơ sở đó có dạng chéo

Câu 7 (2 đ).Trong không gian \mathbb{R}^3 với tích vô hướng chính tắc :

$$\langle (x_1, x_2, x_3)(y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

cho các véc tơ

$$u_1 = (1; 1; 0), u_2 = (1; 2; 1), u_3 = (3; 4; 1), v = (2; 2; 3)$$

và đặt $H = span\{u_1, u_2, u_3\}$

- a) Tìm một cơ sở trực chuẩn của không gian H
- b) Tìm hình chiếu trực giao của v lên không gian H

Câu 8 (1 đ). Cho A, B là các ma trận vuông cấp $n \ge 1$. Chứng minh rằng

$$r(A+B) \le r(A) + r(B)$$
, ở đó $r(X)$ là hạng của ma trận X

bkknongsotacn.edu.vn Thảo luận thêm tại: fh com/arollies/bkkhongsotacl

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ-HỌC KÌ 20161 KHÓA: 61 – THỜI GIAN: 90 PHÚT

Chú ý :Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 đ).Cho A, B là các tập hợp thỏa mãn $B \setminus A \subset A \setminus B$. Chứng minh $B \subset A$

Câu 2 (1 đ). Cho ánh xạ $f: \mathbb{C} \to \mathbb{C}$, $f(z) = iz^2 + (2-5i)z - 7$, với i là đơn vị ảo. Xác định $f^{-1}(\{-9i\})$

Câu 3 (1 đ). Tìm x biết
$$\begin{vmatrix} 1 & 1 & 3 & 3 \\ 2 & 6 - x & 4 & 4 \\ 4 & 4 & 5 & 5 \\ 3 & 3 & 6 & 7 - x^2 \end{vmatrix} = 0$$

Câu 4 (1 đ). Tìm a, b để hệ sau có vô số nghiệm phụ thuộc 1 tham số:

$$\begin{cases} x_1 & -x_3 & +ax_4 & = 2\\ 2x_1 - 2x_2 & +3x_3 & +(3a+1)x_4 = b+6\\ 3x_1 + 4x_2 & -13x_3 & +(2a-2)x_4 = -b+2 \end{cases}$$

Câu 5 (1 đ). Trong không gian $P_3[x]$ - các đa thức bậc không vượt quá 3, cho các véc tơ $v_1 = 1 + 2x + x^3$, $v_2 = x - x^2 - x^3$, $v_3 = 3 + 7x - 2x^2 + x^3$, $v_4 = 3 + 7x + 3x^3$.

Đặt $V_1 = span\{v_1, v_2\}, V_2 = span\{v_3, v_4\}$. Tìm số chiều và một cơ sở của không gian con $V_1 \cap V_2$

Câu 6 (2 đ). Cho ánh xạ tuyến tính $f: P_2[x] \rightarrow P_2[x]$ có ma trận

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 0 & 2 \\ 2 & -2 & 0 \end{bmatrix} \text{đối với cơ sở chính tắc } \{1, x, x^2\} \text{ của } P_2[x]$$

- c) Tính $f(1 + x + x^2)$. Tìm m để $v = m x + 2x^2$ thuộc Kerf
- d) Tìm một cơ sở của $P_2[x]$ để ma trận của f đối với cơ sở đó có dạng chéo

Câu 7 (2 đ).Trong không gian \mathbb{R}^3 với tích vô hướng chính tắc :

$$\langle (x_1, x_2, x_3)(y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

cho các véc tơ

$$u_1 = (1; 0; 1), u_2 = (1; 1; 2), u_3 = (3; 1; 4), v = (2; 3; 2)$$

và đặt $H = span\{u_1, u_2, u_3\}$

- c) Tìm một cơ sở trực chuẩn của không gian H
- d) Tìm hình chiếu trực giao của v lên không gian H

Câu 8 (1 đ).Cho A, B là các ma trận vuông cấp $n \ge 1$.Chứng minh rằng

$$r(A+B) \leq r(A) + r(B)$$
, ở đó $r(X)$ là hạng của ma trận X

bkkhongsotach.edu.vn Thảo luận thêm tại: th com/groups/bkkhongsotach

Chú ý : Thí sinh không được sử dung tài liệu và giám thị phải ký xác nhận số đề vào bài thi Câu 1 (1 đ). Cho số tự nhiên n . Mệnh đề sau đúng hay sai ? Vì sao ?

A: "Nếu n là số lẻ và n chia hết cho 2 thì nó là số chẵn "

Câu 2 (1 đ). Giải phương trình phức $\bar{z}^2 + 2iz - 1 = 0$, với i là đơn vị ảo

Câu 3 (1 đ).Cho ma trận $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. Tính f(A) với $f(x) = x^2 - 4x$. Tìm ma trận X thỏa mãn $(4A^2 - A^3)X = B$

Câu 4 (1 d). Tìm số chiều và một cơ sở của không gian nghiệm hệ phương trình:

$$\begin{cases} 3x_1 & +x_2 & +12x_3 & +11x_4 & = 0 \\ -2x_1 & +4x_2 & -x_3 & -5x_4 & = 0 \\ x_1 & +x_2 & +5x_3 & +4x_4 & = 0 \end{cases}$$

Câu 5 (1 d). Trong không gian \mathbb{R}^3 , tìm ma trận chuyển cơ sở từ cơ sở

$$B_1 = \{u_1 = (1; 0; 0), u_2 = (1; 1; 0), u_3 = (1; 1; 1)\}$$
 sang co sở

$$B_2 = \{v_1 = (1; 2; 3), v_2 = (2; 0; 3), v_3 = (3; 2; 5)\}$$

Câu 6 (2 đ). Cho toán tử tuyến tính $f: P_2[x] \rightarrow P_2[x]$ thỏa mãn

$$f(1+x) = 5 + 5x^2$$
 $f(1+3x+x^2) = 12 + 3x + 15x^2$

$$f(1+2x-x^2) = 7+7x^2$$

- a) Tìm ma trận của f đối với cơ sở chính tắc $\{1, x, x^2\}$. Ánh xạ f có là một đơn cấu hay không ? Vì sao ?
- b) Tìm số chiều và một cơ sở của Im f

Câu 7 (2 đ). Cho dạng toàn phưương $\omega(x_1, x_2, x_3) = 2x_1^2 - 4x_2^2 + 4x_3^2 + 8x_1x_2$

- a) Đưa ω về dạng chính tắc bằng phương pháp trực giao (chỉ rõ phép biến đổi)
- b) Tìm $\underset{s}{Max\omega}$ và $\underset{s}{Min\omega}$ với $S=\{(x_1,x_2,x_3)\in\mathbb{R}^3|x_1^2+x_2^2+x_3^2=1\}$

Câu 8 (1 đ). Cho ma trận vuông cấp $n \ge 1$, thỏa mãn $A^2 = E$ với E là ma trận đơn vị cấp n. Chứng minh rằng A chéo hóa được

bkkhongsotach.edu.vn Thảo luận thêm tại: fb.com/groups/bkkhongsotac

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ-HỌC KÌ 20161 KHÓA: 61 – THỜI GIAN: 90 PHÚT

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thị

Câu 1 (1 đ). Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi f(x, y) = (2x + 1, y - 1) và $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Phần tử (1; 2) có thuộc f(A) không ? Vì sao ?

Câu 2 (1 đ). Tìm phần thực và phần ảo của số phức z thỏa mãn

 $(1+i)^{14}(2-z) = (\sqrt{3}+i)^8$, với i là đơn vị ảo

Câu 3 (1 đ). Giải hệ phương trình sau bằng phương pháp Gauss:

$$\begin{cases} 3x_1 & +7x_2 & +x_3 & +7x_4 & = 42 \\ x_1 & +2x_2 & +x_3 & +5x_4 & = 22 \\ 2x_1 & +5x_2 & +x_3 & +6x_4 & = 33 \\ 5x_1 & +11x_2 & +3x_3 & +8x_4 & = 50 \end{cases}$$

Câu 4 (1 d). Tìm m để $A = \begin{bmatrix} 1 & 2 & -1 & -1 \\ 2 & m+4 & -2 & -1 \\ 3 & m+6 & -3 & m-3 \end{bmatrix}$ có hạng bé nhất

kkhongsotach.edu.vn hảo luận thêm tại: th com/grouns/bkkhor

Câu 5 (1 d). Trong không gian $P_2[x]$, cho các véc tơ

$$v_1 = 1 + x + 2x^2, v_2 = 1 - x^2, v_3 = 3 + x, v = 3 - 2x + mx^2$$

Tìm m để $v \in span\{v_1, v_2, v_3\}$

Câu 6 (2 đ). Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận đối với cơ sở chính tắc $\{(1;0;0),(0;1;0),(0;0;1)\}$

của
$$\mathbb{R}^3$$
 là $A = \begin{bmatrix} 5 & 1 & -2 \\ -4 & 0 & 2 \\ 4 & 2 & -1 \end{bmatrix}$

- a) Tìm ma trận của fđối với cơ sở $B = \{(1; 1; 1), (1; 1; 2), (1; 2; 3)\}$
- b) Tìm các giá trị riêng và vecto riêng của f

Câu 7 (2 đ). Trong không gian \mathbb{R}^3 với tích vô hướng chính tắc :

$$\langle (x_1, x_2, x_3)(y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

cho các vecto u=(1;2;-1), v=(-5;-2;3)và đặt $H=\{z\in\mathbb{R}^3|z\perp u\}$

- a) Tìm một cơ sở trực chuẩn của không gian H
- b) Tìm hình chiếu trực giao của v lên không gian H

Câu 8 (1 đ). Cho ma trận A vuông cấp 2016, thỏa mãn $A^{2017} = 0$. Chứng minh rằng ma trận (A + 2016E) là khá nghịch, với E là ma trận đơn vị cấp 2016

ĐỀ THI CUỐI KÌ MÔN ĐẠI SỐ-HỌC KÌ 20161 KHÓA: 61 – THỜI GIAN: 90 PHÚT

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải ký xác nhận số đề vào bài thi

Câu 1 (1 đ). Cho ánh xạ $f: \mathbb{R}^2 \to \mathbb{R}^2$ xác định bởi f(x, y) = (2x - 1, x + y) và $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$. Phần tử (1; 0) có thuộc f(A) không ? Vì sao ?

Câu 2 (1 đ). Tìm phần thực và phần ảo của số phức z thỏa mãn

$$(1-i)^{14}(z-i) = (\sqrt{3}-i)^8$$
, với i là đơn vị ảo

Câu 3 (1 đ). Giải hệ phương trình sau bằng phương pháp Gauss:

$$\begin{cases} 3x_1 & +10x_2 & -5x_3 & +15x_4 & = 58 \\ x_1 & +3x_2 & -2x_3 & +4x_4 & = 17 \\ 2x_1 & +7x_2 & -x_3 & +16x_4 & = 55 \\ x_1 & +4x_2 & +x_3 & +13x_4 & = 42 \end{cases}$$

Câu 4 (1 đ). Tìm m để $A = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 2 & m+5 & 4 & -1 \\ 3 & m+7 & 6 & m-4 \end{bmatrix}$ có hạng bé nhất

Câu 5 (1 d). Trong không gian $P_2[x]$, cho các véc tơ

$$v_1 = 1 + x$$
, $v_2 = 1 - x^2$, $v_3 = 3 + x - x^2$, $v = 1 - x + mx^2$

Tìm m để $v \in span\{v_1, v_2, v_3\}$

Câu 6 (2 d). Cho toán tử tuyến tính $f: \mathbb{R}^3 \to \mathbb{R}^3$ có ma trận đối với cơ sở chính tắc $\{(1; 0; 0), (0; 1; 0), (0; 0; 1)\}$

của
$$\mathbb{R}^3$$
 là $A = \begin{bmatrix} -4 & 0 & 2 \\ 3 & 1 & -1 \\ -6 & 0 & 3 \end{bmatrix}$

- c) Tìm ma trận của fđối với cơ sở $B = \{(1;1;1), (2;1;1), (3;2;1)\}$
- d) Tìm các giá trị riêng và vecto riêng của f

Câu 7 (2 đ). Trong không gian \mathbb{R}^3 với tích vô hướng chính tắc :

$$\langle (x_1, x_2, x_3)(y_1, y_2, y_3) \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

cho các vecto u=(1;-2;1), v=(3;-2;5) và đặt $H=\{z\in\mathbb{R}^3|z\perp u\}$

- c) Tìm một cơ sở trực chuẩn của không gian H
- d) Tìm hình chiếu trực giao của v lên không gian H

Câu 8 (1 đ). Cho ma trận A vuông cấp 2016 , thỏa mãn $A^{2017}=0$. Chứng minh rằng ma trận (A+2016E) là khả nghịch , với E là ma trận đơn vị cấp 2016