# Clase 18 Introducción a Modelos Lineales Mixtos

Diplomado en Análisis de datos con R para la Acuicultura.

Dra. María Angélica Rueda

Pontificia Universidad Católica de Valparaíso

28 May 2022

#### **PLAN DE LA CLASE**

#### 1.- Introducción

- Modelos lineales mixtos (MLM).
- Efectos fijos y efectos aleatorios.
- Ecuación del modelo lineal mixto (MLM).
- ► Interpretación de MLM con R.

#### 2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales mixtos.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato html.

#### **MODELOS LINEALES MIXTOS**

Los modelos lineales mixtos (MLM) son una generalización del modelo lineal de regresión clásico, contemplando la posible existencia de observaciones correlacionadas (ej. Medidas repetidas en el mismo individuo) o con variabilidad heterogénea, vinculadas a la presencia de factores aleatorios.

$$Y = X\beta + Zu + \epsilon$$

Efectos fijos  $(X\beta)$ 

Efectos aleatorios  $(Zu + \epsilon)$ 

Los modelos lineales mixtos surgen cuando no se cumplen los siguientes supuestos:

- Que hayan observaciones correlacionadas.
- Que NO haya homogeneidad de varianzas.

# ¿QUÉ SON LOS EFECTOS FIJOS?

- Los efectos fijos se asumen que son determinados a propósito por el analista de los datos, eso dependerá de las variables a las que se les desea estimar **efectos promedios**.
- Los efectos fijos estiman las medias de las variables predictoras.
- En un modelo lineal mixto las variables cuantitativas continuas (e.g., Edad) o factores (e.g., Dieta) son considerados como efectos fijos.

# ¿QUÉ SON LOS EFECTOS ALEATORIOS?

- Los efectos aleatorios están asociados a grupos de observaciones. Los efectos aleatorios estiman varianzas.
- Para considerar una variable predictora cualitativa como un efecto aleatorio del modelo lineal mixto, dicha variable debe tener al menos 5 niveles.
- Una variable predictora categórica con dos niveles (binaria) NO puede ser un efecto aleatorio.
- Una variable aleatoria continua NO puede ser un efecto aleatorio.

#### ALGUNOS EJEMPLOS DE EFECTOS ALEATORIOS

- Medidas repetidas sobre un mismo individuo, los individuos se pueden incluir como efecto aleatorio.
- ii) Respuestas observadas en grupos de unidades experimentales homogéneas, ej. jaulas o estanque se puede considerar como efecto aleatorio.
- iii) Mediciones de los animales de diferentes familias, familia se puede incluir como efecto aleatorio.

### ¿EFECTO FIJO O ALEATORIO?

- 1). ¿Cuál es el número de niveles?
  - ▶ Pequeño (Fijo) (e.g., Dieta con tres niveles D1, D2 y D3).
  - ▶ Grande o infinito (Posiblemente aleatorio) (e.g., Jaulas con 10 niveles por 10 centros de cultivo j1, j2...j00).
- 2). ¿Son los niveles repetibles?
  - Sí (Fijo) (e.g., Dieta podrías aplicarlas en diferentes lugares).
  - No (Aleatorio) (e.g., Jaula no podría repetirse en distintos centros de cultivo).
- **3).** ¿Se necesitan realizar inferencias para niveles no incluidos en el muestreo?
  - ▶ No (Posiblemente fijo) (e.g., **Dieta** D4 y D5).
  - Sí (Posiblemente aleatorio) (e.g., Jaula j200, j300).

# ESTUDIO DE CASO: ANALISIS DE PRODUCCIÓN Y CALIDAD

En este estudio de caso trabajaremos con un set de datos de producción y calidad de salmón Chinook (n=204) publicado en la revista aquaculture.

Las variables de estudio se describen a continuación:

| Variable  | Descripción                                     |
|-----------|-------------------------------------------------|
| ID        | Identificación del individuo                    |
| Family    | Identificación familiar                         |
| Weight    | Peso en la cosecha (g)                          |
| Fat_Meter | Concentración de lípidos medido con sensor      |
| Dry_Lipid | Concentración de lípidos medido por gravimetría |

#### **BASE DE DATOS**

| ID | Family | Weight | Fat_Meter | Dry_Lipid |
|----|--------|--------|-----------|-----------|
| 1  | 369512 | 2164   | 8.9       | 33.35     |
| 2  | 91524  | 1838   | 8         | 25.51     |
| 3  | 40     | 1739   | 7.4       | 21.89     |
| 4  | CH13   | 1670   | 9         | 28.73     |
| 5  | 101829 | 1883   | 10.4      | 27.57     |
| 6  | 55     | 1354   | 8.7       | 19.66     |
| 7  | 44     | 803    | 3         | 11.93     |
| 8  | 51     | 1890   | 11.3      | 29.25     |
| 9  | 369512 | 1485   | 6.7       | 13.48     |
| 10 | 95776  | 1877   | 9.4       | 17.74     |

# DISTRIBUCIÓN DE LA VARIABLE RESPUESTA (WEIGHT)



Dra. María Angélica Rueda Clase 18 Introducción a Modelos Lineales Mixtos

#### **MODELO LINEAL**

|                        | Weight     |            |                 |         |
|------------------------|------------|------------|-----------------|---------|
| Predictors             | Estimates  | std. Error | CI              | p       |
| (Intercept)            | 595.99     | 63.25      | 471.26 - 720.71 | < 0.001 |
| Dry Lipid              | 10.71      | 2.75       | 5.28 - 16.14    | <0.001  |
| Fat Meter              | 81.00      | 8.14       | 64.95 - 97.05   | <0.001  |
| Observations           | 204        |            |                 |         |
| $R^2  /  R^2$ adjusted | 0.504 / 0. | 499        |                 |         |
| AIC                    | 2890.477   | ,          |                 |         |

#### Independencia

```
##
## Durbin-Watson test
##
## data: Weight ~ Dry_Lipid + Fat_Meter
## DW = 1.502, p-value = 0.0003308
## alternative hypothesis: true autocorrelation is not 0
```

#### Homogeneidad de varianzas

```
##
## studentized Breusch-Pagan test
##
## data: lm.quality
## BP = 15.685, df = 2, p-value = 0.0003926
```

#### **Normalidad**

```
##
## Shapiro-Wilk normality test
##
## data: lm_residuals
## W = 0.99393, p-value = 0.5743
```

#### Multicolinealidad







# GRÁFICO DE DISPERSIÓN POR FAMILIA



#### **MODELOS LINEALES MIXTOS**

library(lme4)

Función Imer

Cantidad de Familias

58

Familia se puede considerar como efecto aleatorio.

#### **MODELO LINEAL MIXTO**

|                                                      | Weight    |            |                 |        |
|------------------------------------------------------|-----------|------------|-----------------|--------|
| Predictors                                           | Estimates | std. Error | CI              | р      |
| (Intercept)                                          | 539.49    | 65.84      | 409.55 - 669.43 | <0.001 |
| Dry Lipid                                            | 11.24     | 2.71       | 5.89 - 16.58    | <0.001 |
| Fat Meter                                            | 84.85     | 8.10       | 68.88 - 100.82  | <0.001 |
| Random Effects                                       |           |            |                 |        |
| $\sigma^2$                                           | 71637.80  | )          |                 |        |
| τ <sub>00 Family</sub>                               | 8374.14   |            |                 |        |
| ICC                                                  | 0.10      |            |                 |        |
| $N_{Family}$                                         | 58        |            |                 |        |
| Observations                                         | 204       |            |                 |        |
| Marginal R <sup>2</sup> / Conditional R <sup>2</sup> | 0.529 / 0 | .578       |                 |        |

Dra. María Angélica Rueda

Clase 18 Introducción a Modelos Lineales Mixtos

## $R^2$ Marginal **y** $R^2$ Condicional

- $ightharpoonup R_{Marginal}^2$ : proporción de la varianza explicada solo por los efectos fijos.
- ► R<sup>2</sup><sub>Condicional</sub>: proporción de la varianza explicada por todo el modelo.

```
r2_nakagawa(MLM)
```

```
## # R2 for Mixed Models
##
## Conditional R2: 0.578
## Marginal R2: 0.529
```

# **SELECCIÓN DE MODELOS (AIC)**

Criterios de selección de modelos AIC

AIC %>% kable()

|                     | AIC      |
|---------------------|----------|
| Modelo lineal       | 2890.477 |
| Modelo lineal mixto | 2867.282 |

#### **RESUMEN DE LA CLASE**

- 1). Modelos lineales mixtos.
- 2). Construir y ajustar modelos lineales mixtos.