Sveučilište u Zagrebu Geotehnički fakultet

Riješeni zadaci					Ocjena
1	2	3	4	5	

2. kolokvij iz kolegija Fizika I

Akademska godina 2023./2024.

03. lipanj 2024.

Obavezno ispuniti:

Prezime:		
Ime:		
Vlastoručni p	otnis [.]	

1. Na vrhu brežuljka visine 3 m gurnemo saonice početnom brzinom od 18 kmh^{-1} . Kolika bi bila brzina saonica kad se spuste u podnožje, kad bi mogli zanemariti trenje klizanja i otpor zraka?

Rješenje: $v = 9{,}16 \ ms^{-1}$

2. Automobil mase 1200 kg koji se gibao brzinom 72 kmh^{-1} udario je u kamion mase 4 tona koji se u istom smjeru gibao brzinom 18 kmh^{-1} . U trenutku sudara prestali su im raditi motori te su se nastavili zajedno gibati još 30 metara dok se nisu zaustavili. Koliki je bio iznos sile trenja tijekom zaustavljanja?

Rješenje: $F_{tr}=6205,13\ N$

3. Dva homogena valjka gustoće 2700 kgm^{-3} , polumjera 6 cm i visine 12 cm spojena su štapom zanemarive mase duljine 8 cm (vidi skicu). Koliki je moment tromosti sustava oko osi koja prolazi polovištem štapa? Moment tromosti valjka oko osi simetrije valjka je $I=\frac{1}{2}MR^2$.

Rješenje: $I = 0.0865 \ kgm^2$

Moment tromosti sustava I je zbroj momenta tromosti svakog valjka, $I=2I_{valajak}$. Kako bismo odredili moment tromosti koristimo teorem o paralelnim osima (Steinerov teorem):

$$I_{valjka} = I_T + Md^2$$

. . .

$$I = 0.0865 \ kgm^2$$
.

4. Umjetni satelit giba se oko Zemlje po kružnoj putanji s periodom vrtnjem $T=132\,\mathrm{min}$. Koliki je polumjer putanje satelita?

Rješenje: r = 8589592, 25 m

$$F_{cp} = F_{gr}$$

$$ma_{cp} = \gamma \frac{M_Z m}{r^2}$$

Centripetalnu akceleraciju možemo zapisati preko perioda vrtnje

$$a_{cp} = \frac{v^2}{r} = \omega^2 r = \left(\frac{2\pi}{T}\right)^2 r$$

$$\left(\frac{2\pi}{T}\right)^2 r = \gamma \frac{M_Z m}{r^2}$$

$$r = \sqrt[3]{7M_Z \left(\frac{T}{2\pi}\right)^2}$$

$$r = \sqrt[3]{6,67 \cdot 10^{-11} \ Nm^2 kg^{-2}5,98 \cdot 10^{24} \ kg \left(\frac{7920 \ s}{2\pi}\right)^2}$$

$$r = 8589592,25 \ m$$

5. Do koje maksimalne visine će se dići metak ispaljen s površine Mjeseca vertikalno u vis brzinom iznosa 715 ms^{-1} ? Masa Mjeseca je $7,34\cdot 10^{22}~kg$, a polumjer Mjeseca 1737 km.

Rješenje: $h = 173 \ 239.9 \ m$

Koristimo zakon očuvanja energije. Metak na površini Mjeseca ima gravitacijsku potencijalnu energiju i kinetiču energiju, kada se popne na visinu h ima samo gravitacijsku potencijalnu energiju

$$E_{p,g}(h=0) + E_k(h=0) = E_{p,g}(h) + E_k(h)$$
$$-\gamma \frac{M_M m}{R_M} + \frac{1}{2} m v_0^2 = -\gamma \frac{M_M m}{R_M + h} + 0$$
$$R_M + h = \frac{-\gamma M_M}{-\gamma \frac{M_M m}{R_M} + \frac{1}{2} v_0^2}$$
$$h = \frac{-2\gamma M_M R_M}{-2\gamma M_M + v_0^2 R_M} - R_M$$

$$h = \frac{-2 \cdot 6,67 \cdot 10^{-11} \ Nm^2 kg^{-2} 7,34 \cdot 10^{22} \ kg 1,737 \cdot 10^6 \ m}{-2 \cdot 6,67 \cdot 10^{-11} \ Nm^2 kg^{-2} 7,34 \cdot 10^{22} \ kg + (715 \ ms^{-1})^2 1,737 \cdot 10^6 \ m} -1,737 \cdot 10^6 \ m$$

$$h = 173 \ 239,9 \ m$$