THE SPARKS FOUNDATION By- Arshit Bagdia TASK 1: Prediction using Supervised Learning

IMPORTING THE NECESSARY LIBRARIES:

import pandas as pd

21

47 27

75

30

20

88

60

81

25

85

62

41

42

17

95

30

24 67

69

30

54

35

76

86

CALCULATING THE CONSTRAINTS

5.012000 51.480000

2.525094 25.286887 1.100000 17.000000

2.700000 30.000000 4.800000 47.000000

7.400000 75.000000 9.200000 95.000000

<class 'pandas.core.frame.DataFrame'>

Column Non-Null Count Dtype

CHECKING IF THERE EXISTS ANY NULL VALUE

RangeIndex: 25 entries, 0 to 24 Data columns (total 2 columns):

0 Hours 25 non-null

dataset.isnull == True

sns.set_style('whitegrid')

VISUALIZING THE DATA

plt.show()

of Marks

Percentage

In [29]:

50

20

plt.show()

100

Percentage of Marks

In [30]:

In [31]:

In [32]:

Out[32]:

Out[33]:

In [40]:

0

1

2

3

4

1

2

3

6

of Marks 60

20

In [41]:

In [44]:

hours = [9.25]

Predicted Score: 93.89

plt.show()

print(dataset.corr())

Hours

Hours 1.000000 0.976191 Scores 0.976191 1.000000

MODEL TRAINING

A = dataset.iloc[:, :-1].values B = dataset.iloc[:, 1].values

Scores 25 non-null

dtypes: float64(1), int64(1)memory usage: 528.0 bytes

Scores

DISPLAYING ALL THE COLUMNS AND THEIR DATA TYPES

float64

int64

sns.scatterplot(y= dataset['Scores'], x= dataset['Hours']) plt.title('Marks Vs Study Hours', size=25, color="Purple") plt.ylabel('Percentage of Marks', size=20,color="Red")

plt.xlabel('Study Hours', size=20,color="Red")

Marks Vs Study Hours

Study Hours

sns.regplot(x= dataset['Hours'], y= dataset['Scores']) plt.title('Regression Plot', size=25, color="Purple") plt.ylabel('Percentage of Marks', size=15,color="Red")

Regression Plot

5 Study Hours

Scores

Defining variables A and B from the Dataset

SECONDLY, WE WILL BE DOING DATA FITTING IN THE MODEL

var_prediction_B = var_regression.predict(val_A)

16.844722

33.745575

75.500624

26.786400

60.588106

39.710582

20.821393

16.844722

33.745575

75.500624

26.786400

60.588106

39.710582

20.821393

plt.scatter(x=val_A, y=val_B, color='Green') plt.plot(val_A, var_prediction_B, color='Black')

plt.xlabel('Study Hours', size=15,color="Red")

Actual vs Predicted

Study Hours

print('Mean absolute error: ',mean_absolute_error(val_B,var_prediction_B))

print("Predicted Score : {}".format(round(answer_to_the_question[0],2)))

NOW MOVING ON TOWARDS OUR QUESTION, LET'S FIND THE ANSWER.

answer_to_the_question = var_regression.predict([hours])

As the value of the Mean Absolute Error is very small, it indicates that there are very less possibilities of errors throughout the model.

According to regression model, if a student studies for 9.25 hours per day then the student is likely to score 93.89 marks.

WHAT WILL BE THE PREDICTED SCORE IF A STUDENT STUDIES FOR 9.25 HRS PER DAY?

LET'S CALCULATE THE ACCURACY OF THE MODEL.

Mean absolute error: 4.130879918502486

MODEL EVALUATION

plt.title('Actual vs Predicted', size=25,color="Purple") plt.ylabel('Percentage of Marks', size=15,color="Red")

Splitting the Dataset into two parts

var_regression = LinearRegression() var_regression.fit(train_A, train_B) print("MODEL IS TRAINED SUCCESSFULLY!")

MODEL IS TRAINED SUCCESSFULLY!

Study Hours Predicted Marks

1.5

3.2

7.4

2.5

5.9 3.8

1.9

comparison_of_scores

20

27

69

30

62

35

24

Actual Marks Predicted Marks

Prediction

LET'S PLOT A REGRESSION LINE TO THE ABOVE GRAPH

plt.xlabel('Study Hours', size=15,color="Red")

WE CAN SEE THAT THERE IS A CORRELATION BETWEEN "PERCENTAGE OF MARKS" AND "STUDY HOURS"

FROM THE ABOVE GRAPH WE HAVE VERIFIED THAT THE VARIABLES ARE POSITIVELY CORRELATED.

train_A, val_A, train_B, val_B = train_test_split(A, B, random_state = 0)

NOW WE WILL MOVE ON TO PREDICTION OF THE PERCENTAGE OF THE MARKS.

NOW, COMPARING THE PREDICTED MARKS WITH THE ACTUAL MARKS IN THE DATASET.

comparison_of_scores = pd.DataFrame({'Actual Marks': val_B, 'Predicted Marks': var_prediction_B})

HERE, WE COMPARE THE PREDICTED MARKS WITH THE ACTUAL MARKS USING THE DATA VISUALIZATION

FIRSTLY, WE WILL DEFINE VARIABLES A & B FROM THE DATASET AND THEN SPLIT THE DATASET INTO TWO PARTS

Prediction = pd.DataFrame({'Study Hours': [i[0] for i in val_A], 'Predicted Marks': [j for j in var_prediction_B]})

import numpy as np

import seaborn as sns

In [25]:

READING THE DATASET

import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error

In [14]: dataset = pd.read_csv("https://raw.githubusercontent.com/AdiPersonalWorks/Random/master/student_scores%20-%20student_scores.csv") dataset **Hours Scores** Out[14]:

0

4

2.5 5.1 3.2 8.5 3.5 1.5 6 9.2

5.5 8 8.3

2.7 7.7 10

11 5.9 12 4.5

1.1

8.9

2.5

1.9

6.1

7.4

2.7

4.8

3.8

6.9

7.8

dataset.describe()

Hours

count 25.000000 25.000000

17

18 19

20

21

22

23

24

mean

min

50%

dataset.info()

Out[15]:

In [16]:

In [17]:

In [28]:

Out[17]: False

3.3