

XXXIV OLIMPIADA IBEROAMERICANA DE MATEMÁTICAS

Primer día

15 de septiembre de 2019

Problema 1. Para cada entero positivo n, sea s(n) la suma de los cuadrados de los dígitos de n. Por ejemplo, $s(15) = 1^2 + 5^2 = 26$. Determina todos los enteros $n \ge 1$ tales que s(n) = n.

Problema 2. Determina todos los polinomios P(x) de grado $n \ge 1$ con coeficientes enteros tales que para todo número real x se cumple

$$P(x) = (x - P(0))(x - P(1))(x - P(2)) \cdots (x - P(n - 1)).$$

Problema 3. Sea Γ el circuncírculo del triángulo ABC. La paralela a AC que pasa por B corta a Γ en D ($D \neq B$) y la paralela a AB que pasa por C corta a Γ en E ($E \neq C$). Las rectas AB y CD se cortan en P, y las rectas AC y BE se cortan en Q. Sea M el punto medio de DE. La recta AM corta a Γ en Y ($Y \neq A$) y a la recta PQ en J. La recta PQ corta al circuncírculo del triángulo BCJ en Z ($Z \neq J$). Si las rectas BQ y CP se cortan en X, demuestra que X pertenece a la recta YZ.

Nota. El circuncírculo de un triángulo es la circunferencia que pasa por los vértices del triángulo.

XXXIV OLIMPIADA IBEROAMERICANA DE MATEMÁTICAS

Segundo día

16 de septiembre de 2019

Problema 4. Sea ABCD un trapecio con $AB \parallel CD$ e inscrito en la circunferencia Γ. Sean P y Q dos puntos en el segmento AB (A, P, Q, B están en ese orden y son distintos) tales que AP = QB. Sean E y F los segundos puntos de intersección de las rectas CP y CQ con Γ, respectivamente. Las rectas AB y EF se cortan en G. Demuestra que la recta DG es tangente a Γ.

Problema 5. Don Miguel coloca una ficha en alguno de los $(n+1)^2$ vértices determinados por un tablero de $n \times n$. Una jugada consiste en mover la ficha desde el vértice en que se encuentra a un vértice adyacente en alguna de las ocho posibles direcciones: $\uparrow, \downarrow, \rightarrow, \leftarrow, \nearrow, \searrow, \checkmark, \nwarrow$ siempre y cuando no se salga del tablero. Un recorrido es una sucesión de jugadas tal que la ficha estuvo en cada uno de los $(n+1)^2$ vértices exactamente una vez. ¿Cuál es la mayor cantidad de jugadas diagonales $(\nearrow, \searrow, \checkmark, \nwarrow)$ que en total puede tener un recorrido?

Problema 6. Sean $a_1, a_2, \ldots, a_{2019}$ enteros positivos y P un polinomio con coeficientes enteros tal que, para todo entero positivo n,

$$P(n)$$
 divide a $a_1^n + a_2^n + \cdots + a_{2019}^n$.

Demuestra que P es un polinomio constante.