7. tetel
Linearis egyenletrendsrevel
$A \times = b$ $X = 0$: homogen
Egysetthedomotric (m elemin) (mxn) igneretlenel verboa (n elemin)
Slomogen lin. egyenletrendorer megoldusa:
$\triangleq \simeq = 0$
de eges nun diadikus elaallitasa:
$\underline{A} = \sum_{k=1}^{\infty} \underline{u}_k \underline{v}_k^T = \underline{U} \underline{V}^T$
$A \times = UV \times = 0$ $Y \times = 0$ reducalt egyenlet (in helyet $Y = 0$ de egyenlet)
The state of ismaretlen and scaled ismaretlen
Ha a szabad ismeretlenetet negvalarstjut, arkor az r-edik egyenlettol vissrafale releurzivan meghatarorhatok a kotott ismeretlenel is.
Altalanos negoldas: (n-r db lin. Itlen negoldusvelstor lin. komb.)
$ \begin{pmatrix} $
\times \times $\frac{1}{1}$

Inhomogen lin. Egyenletrendsser megololasa: Ax = b inhomogén, ha b \$0 A x - & = 0 isszaberettűr homagen esette [A &] = UYT -> YX = 0 A megoldhatosay feltetele, hogy x my szabed ismeretlen leggen (tudjuk -1 étéruse valarstani), vagysis, hagy b horravetelevel az együtthatomatrix rangja ne noveredjen $S(\underline{4}) = S(\underline{4} \, \underline{e})$ Alfalanos negoldas: $\begin{cases} x_{1} \\ x_{2} \\ x_{2} \\ x_{2} \\ x_{3} \\ x_{2} \\ x_{4} \\ x_{2} \\ x_{5} \\ x_{7} \\ x_$ ×1,m-+1 > altalanos megoldasa 1-7/2 -

Projektor egyúthatomátrix esete:

1) Homogen egyenlet (b = 0) megololasa

$$P = 0$$
 mivel $P(E-P) = 0$,

azaz E-P mindem orslopa lielegiti az egyenletet.

Sa
$$S(P)=r$$
, alson $S(E-P)=n-r$, that $E-P-nek$ van $n-r$ db lin. Itlen osslapvestona, igy:

$$x = (E - P)t$$

(2) Juhomogen egyenlet (b +0):

$$P^2 x = Pb$$
, mivel $P = P$

$$\frac{P}{P} \times = \frac{P}{P}$$

$$\frac{P}{P} \times = \frac{P}{P}$$
(eredeti alak)

De = & a megololhatosay feltetele

Ha teljesul, arror = & = b ar egy. sr. egy partirularis

Altalares megoldas:

$$X = (E - P)t + b$$

Settine, hagy $Pb = b$

Linearis transformación (lesepezesel)

Leggen & es y az Rn komplex linednis ter elemei may, hogy A(z) = y. Az A(.) - t linearis leksepsresnek neversiek, ha $\mathcal{A}\left(\lambda_{1} \times_{1} + \lambda_{2} \times_{2}\right) = \lambda_{1} \mathcal{A}\left(\times_{1}\right) + \lambda_{2} \mathcal{A}\left(\times_{2}\right),$ abol 2 es 2 skaleros.

Bazisvektorol: Egy n-dimensios Ru lineans terben mindig talalhato n db linearisan független vektor. Ezek a ter egg bazisát alkatják.

Leggen pl. egy bæzis e1, ez,..., en Elskor barnely & vektor kifejesleta a bazisvektorok lin. kombinaciojakent:

x = \{1 \in 1 \in 5 \in 2 \in 1 \} \in \in n

allal gi, gz, gn az z verton koordinatai.

Linearis transsformació matrixa:

Alkalmassul az A(.) lin. traja-t = -re: 18 = A(x) = A(5, e, + 5, e, + ... + Sn en) = = \(\frac{A(\e_1)}{3\alpha} + \frac{5}{2} \frac{A(\e_2)}{3\alpha} + \dots + \frac{5}{2} \frac{A(\e_n)}{3\alpha} \)

A gr, gr, ..., ga transsformalt barisvertorer is felichater 21, -- , en bazisban:

Legyen A(.) egg linearis transiformació, és tekintsunt ket bazist: @ en,..., en (2) en Transformaljuk a bazisvertororat: $\left[\Delta(\underline{e}_n) - - \Delta(\underline{e}_n) \right] = \left[\underbrace{e}_1 - - \underbrace{e}_n \right] \cdot \left[\underbrace{a}_m - - \underbrace{a}_m \right]$ $\left[A(\underline{e}_{1}^{\prime})\cdots A(\underline{e}_{n}^{\prime})\right] = \left[\underline{e}_{1}\cdots \underline{e}_{n}^{\prime}\right] \cdot \left[\underline{a}_{1}\cdots \underline{a}_{1}\cdots \underline{a}$ Leggen a lat leazis közötti kapcsolatot közvetítő matrix ([e1--- en] = [e1--- en] · [Alkalmarruk az A(.) transiformiciót: $A((e_1 - e_n)) = [e_1 - e_n] \cdot A = [e_1 - e_n] \subseteq A$ $A([e_1 \cdots e_n] \cdot C = [e_1 \cdots e_n] \cdot A \cdot C$ A matrixon a [nemoringularis matrixoral hasonlosagi transformaciót regestine. A es à hasoula matrix.

Hasoulosagi transformació, hasoulo matrixol:

1-7/6-

Sajaterter, sajatuellor, sajatalles
Leggen A(.) egy linearis transformació. Sla az
$A(x) = \lambda \cdot x$
egyenletnek valamely I skalar eseten van megololasa
× +0 esetén, allor:
· 2 az A(.) transformació sajaterteke,
· × αz A(·) transel. λ-hor tartoro sajatueltora.
Sajatalter: Mayahhoz a λ_0 sajatertelhez tartoza sajatuektoraz
A saiatelte - dimensiona eque e'l 2 2
tartoro lin. független sajatuertonor szamaval.
Tetel: Minden lin. transsformacional leterik legalabbe egg sajatuerbora.
Dir .:

Segren [en -- en] egg bazis, es leggen az A(-) trours. matika ebben a bazisban A.

Elskor az $\underline{A}:\underline{\lambda}=\lambda\underline{\times}$ leggenletbol $\underline{\lambda}$ koordinatait az alabli homagen lin egyrész alapjan határozhatjak meg: $(\lambda\underline{E}-\underline{A})\underline{\times}=0$

Ennet csak akkor van a trivialistol kulonlöro ($\pm \pm 0$) megoldása, ha az együthatómátrix nem maximális rangú (szinguláns): $|\lambda \not \equiv -A| = 0$

A determinant lifestie λ -ra n-edblu lygenletet kapunk, amelynek van legalabb egy gyöke. Et behelyettesatul az egyenlet-rendezebe, van nemtrivialis megoldas \pm -re. 1-7/7-1

Marakterisetisees polinom: A | $\lambda = -\Delta$ determinans λ -nak n-edfold polinonge, lz az A mátrix karakterisatikus polinomja. | $\lambda = - \Delta = 0$ -> larakteristikus egyenlet Tetel: Az A(.) transsformació baracteristicas polinomiza finggetlen a bazis megvalastasatol. (A bazis transsformaciójaval szemben invarians.) Biz: Leggen 2 = CAC: $|\lambda = -\lambda| = |\lambda = -\tilde{c}(AC)| = |\lambda CC - \tilde{c}(AC)| =$ = |C^(\lambda E - A)C| = |C^1(\lambda E - A) \close |\lambda E - A| Diagonalizalhatoraa : Tetel: Ha az A() lin trans. mal

Ha az n-dimensios ter A() lin. transslamaciógának n db lin. Itlen sajátveltora van, akkor ezeket választva bezirnak, a transzl. mátrixa diagonálmátrix.

Biz: Leagen $A(u_i) = \lambda_i u_i$, allow $\left[A(u_i) - ... A(u_n)\right] = \left[u_1, ... u_n\right] \cdot \left[\lambda_1 \quad 0\right]$

A

1-7/8-

Diagonalizalhatosag tovalb:

Des Ha ar n-dimensios lin. ter A(·) transsformaciógànal léterik n db lin. süggetlen sajatuektore, akkor ereket egy teljes sajatuektorendszernek nevezziek.

Def: Sa easy lin. transsf.-nat leterit teljes sajatveltomendsære, arlor art diagonalizalheto linearis trunssformacional nevercit.

Def: Hasonlosagi transformacional diagonalizalhato matrixolast Logesserie strukturaju matrixolnak neverziel.