Semaine du 19 au 23 septembre

Rev An 0:

- Logique des rédactions mathématiques
- Récurrences
- Binôme de Newton, somme des termes d'une suite géométrique
- Méthodes de calculs (usage des \sum , \prod , sommes téléscopiques...)

Rev An 1: Fonctions

- arctan, partie entière
- Limites, croissances comparées, équivalents, DL
- $f \neq f(x)$: par ex « $\forall x, f$ est croissante » n'a pas de sens...
- Allure locale de la courbe représentative de f à partir d'un DL

Rev An 1: Fonctions convexes

- Segment, Partie convexe: Exemples
- Définition de fonction convexe, Inégalité de Jensen
- Croissance des pentes des cordes, thm des trois pentes
- Cas des fonctions \mathscr{C}^2
- Position de la courbe par rapport aux cordes, aux tangentes
- Exemples d'inégalité obtenues par convexité : exp, $x \mapsto \ln(1+x)$, majoration et minoration du sin

Révisions sur les suites

- Convergence des suites $(-1)^n$, $(\sin(n\theta))_{n\in\mathbb{N}}$ et $(\cos(n\theta))_{n\in\mathbb{N}}$
- Sommes de Riemann, Théorème de Césaro (réciproque fausse) : moyennes...
- Thm des gendarmes, à ne pas confondre avec le passage à la limite.
- Suites adjacentes, suites extraites
- Suites équivalentes ; utilisation pour la convergence des suites : $u_n = \left(1 + \frac{1}{n}\right)^n$ par exemple.
- Suites récurrentes $u_{n+1} = f(u_n)$ (*): Exemple d'équivalent dans le cas non contractant par Césaro
- Suites implicites (définies comme racine d'une équation...) : Exemple de DA.

An 1 : Série réelle et complexe - Compléments

- Formule de Stirling
- Vocabulaire, exemples, dont série géométrique.
- Absolue convergence, elle implique la convergence.
- Règle de d'Alembert. Exemples, dont série exponentielle.
- Série alternée; Condition suffisante de convergence. Majoration du reste.
- DA si le TSSA ne s'applique pas.
- Comparaison série intégrale; Exemples des séries de Riemann, de $\sum \frac{1}{n \ln(n)}$

Application à la recherche d'un équivalent de la somme ou du reste.

- Majoration du reste : 3 cas à connaître...
- Lien suite/série : la série de terme général $a_{n+1} a_n$ est de même nature que la suite (a_n) .
- Attention : Pas de Produit de Cauchy de deux séries...

Page 1/2MCOL01.tex

Questions de cours:

- * $(\sin(n\theta))_{n\in\mathbb{N}}$ et $(\cos(n\theta))_{n\in\mathbb{N}}$
- * $u_0 \in [0, \pi/2]$ et $\forall n \in \mathbb{N}, u_{n+1} = \sin(u_n)$: étude de la suite, de $\sum u_n^3$, équivalent de u_n par Césaro
- * $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \frac{1}{u_n}$: étude de la suite, de $\sum (-1)^n/u_n$, équivalent de u_n par Césaro
- * DA de la suite définie par $\forall n \geqslant 1$, u_n est l'unique racine dans $[n\pi, n\pi + \pi/2]$ de l'équation $\tan(x) = x$
- * Exemple d'allure locale de la courbe à partir d'un DL
- * Combinaison linéaire de séries convergentes, absolument convergentes, d'une série convergente et d'une série divergente...
 - * $u_n = O(v_n)$ où $\sum v_n$ CVA $\Longrightarrow \sum u_n$ CVA. * Série géométrique : CV, Somme, Reste...

 - * Comparaison série intégrale : Série de riemann, $\sum \frac{1}{n \ln(n)}$
 - * Thm de d'Alembert (*)
 - * Série exponentielle
 - * TSSA
 - * Nature de $\sum \frac{(-1)^n}{n^{\alpha}}$
 - * Nature de $\sum \frac{(-1)^n}{\sqrt{n} + (-1)^n}$
 - (*) : Lorsqu'un dessin s'impose, celui-ci DOIT être réalisé...

Remarque: Les démonstrations des guestions de cours DOIVENT être maîtrisées. La note doit être adaptée en conséquence si ce n'est pas le cas.