Геометрия в компьютерных приложениях

Лекция 4: Геометрия в системах компьютерной алгебры

Богачев Николай Владимирович

Московский физико-технический институт, Кафедра дискретной математики, Лаборатория продвинутой комбинаторики и сетевых приложений

5 октября 2017 г.

5. Элементы общей топологии

5.2. Дополнение.

Пусть (X, τ_X) — топологическое пространство.

Определение

- Точка a некоторого подмножества A называется **внутренней**, если существует такая **окрестность**, что $a \in U(a) \in \tau_X$
- ullet Пусть $Y\subset X$. Индуцированная топология: $au_Y=\{U\cap Y\mid U\in au_X\}$
- Пусть $f: X \to Y$ некоторое отображение. Тогда $\tau_f = \{V \subset Y \mid f^{-1}(V) \in \tau_X\}$ топология на Y, порожденная отображением f.
- Топология прямого произведения $X \times Y \tau_{X \times Y} = \{ \cup_{\alpha} (U_{\alpha} \times V_{\alpha}) \mid U_{\alpha} \in \tau_{X}, V_{\alpha} \in \tau_{Y} \}$
- Связное топологическое пространство $X \neq U \cup V$, где $U \cap V = \emptyset$, $U, V \in \tau_X, \ U, V \neq \emptyset$.

Пример

Рассмотрим окружность \mathbb{S}^1 . На ней есть две топологии — индуцированная с \mathbb{R}^2 и порожденная параметризацией $x(t)=\cos t, y(t)=\sin t.$

$$\mathbb{S}^1 = \{(\cos\mathsf{t}, \mathsf{sin}\,\mathsf{t}) \mid \mathsf{t} \in [0, 2\pi]\}$$

Под топологиями стандартных пространств $(\mathbb{R}^n, \mathbb{C}^n, \mathbb{S}^n)$ автоматически подразумеваются топологии метрического пространства.

Пример-упражнение

Совпадает ли топология \mathbb{R}^n с топологией прямого прямого произведения $\mathbb{R} \times \ldots \times \mathbb{R}$?

Определение

Связная компонента — максимальное по включению связное подпространство. Пространство однозначно распадается на дизъюнктное объединение своих связных компонент.

Предложение

Связная компонента является одновременно и открытым, и замкнутым множеством.

Доказательство.

- Замыкание связной компоненты связно (докажите!).
- Значит, замыкание совпадает с самой компонентой, то есть она замкнута.
- Поскольку все остальные связные компоненты замкнуты, то эта компонента также и открыта.

Пусть $f: X \to Y$ — гомеоморфизм, и X разбивается на N связных компонент U_1, \ldots, U_N . Тогда и Y распадается на N связных компонент V_1, \ldots, V_N , причем так, что $f(U_i) = V_i$.

Доказательство.

- Непрерывный образ связного множества связен (докажите!)
- Следовательно, $Y = f(U_1) \sqcup \ldots \sqcup f(U_N)$ дизъюнктное разбиение на связные открыто-замкнутые подмножества
- Ясно, что они максимальные, то есть являются связными компонентами

6. Геометрия в системах компьютерной алгебры.

Wolfram Mathematica

- платная
- закрытый исходный код,
- + шикарная документация.

Веб-версия Wolfram Alpha (wolframalpha.com)

- + бесплатная
- + понимает нечётко записанные команды
 - крайне урезанная: нет интерактива, невозможны сложные функции

Документация https://www.wolframalpha.com/examples/Math.html (Alpha)

Sage Math sagemath.org

- + бесплатная
- + открытый исходный код,
 - ужасная документация.
- + содержит интерфейсы к прочим СКА (gp/pari, gap, singular, maxima)
- + Надстройка над Python

Веб-версия CoCalc (cocalc.com)

- условно бесплатная плата за приличные вычислительные ресурсы
- + открытый код можно развернуть на своём сервере

Python Sympy www.sympy.org/ru

- + бесплатная
- + открытый исходный код,
- хорошая документация.

Веб-версия Anaconda Cloud (anaconda.org)

- условно бесплатная плата за приватные проекты
- + Содержит большинство полезных Python-модулей
- + открытый код, в т.ч. можно установить на своём компьютере

Algebrite algebrite.org

- + Ha JavaScript для работы достаточно текстового редактора и любого современного браузера.
- + открытый исходный код (лицензия МІТ)
- \pm минималистичен
- + встраивается в любую веб-страницу, соединяется с javascript-библиотеками, запускается из javascript.

Веб-версия — не требуется

Геометрия в системах компьютерной алгебры

Список литературы