Minimal DNF representation of false point interval Boolean functions

Filip Bártek

February 16, 2015

1 Introduction

When we identify binary vectors with the numbers they express in binary form, we can define n-ary Boolean functions as functions from $\{0, \ldots, 2^n - 1\}$ to the Boolean domain. We continue to define false point interval Boolean functions as functions whose false points, when considered numbers, form a single interval.

In this text, I will show an efficient algorithm for construction of minimal DNF representation (i.e. one with the least clauses) of false point interval Boolean functions. Doing so, I will simplify the method shown in [?]. I will build on the results about true point interval Boolean functions shown in [?].

2 Definitions

Definition 2.1 (Interval Boolean function). Let $a \leq b$ be *n*-bit numbers $(0 \leq a \leq b \leq 2^n - 1)$. Then $f_{[a,b]}^n : \mathbf{B}^n \to \mathbf{B}$ is a function defined as follows:

$$f_{[a,b]}^n(x) = \begin{cases} 1 & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Definition 2.2 (False point interval Boolean function). Let $a \leq b$ be *n*-bit numbers $(0 \leq a \leq b \leq 2^n - 1)$. Then $f^n_{\overline{[a,b]}} : \mathbf{B}^n \to \mathbf{B}$ is a function defined as follows:

$$f_{\overline{[a,b]}}^n(x) = \begin{cases} 1 & \text{if } x \notin [a,b] \\ 0 & \text{otherwise} \end{cases}$$

Definitions of ternary vectors, spanning, bit extraction $a^{[i]}$, sequence extraction $a^{[i,j]}$, vector complement \overline{a} etc. are shown in [?].

3 Spanning false point interval Boolean functions

Let $n \ge 0$ and $0 \le a \le b \le 2^n - 1$. We need to find a set of ternary vectors of minimal cardinality that spans exactly $\overline{[a,b]} = [0,a-1] \cup [b+1,2^n-1]$.

Since we'll solve the problem recursively, let's first simply observe that the optimal spanning set of a 0-bit Boolean function (n = 0) is an empty set. From now on, let n > 1.

We'll consider two cases separately:

- 1. $a^{[1]} = b^{[1]}$
- 2. $a^{[1]} \neq b^{[1]}$

We'll deal with the first case by recursively solving the (n-1)-bit instance $\overline{[a^{[2,n]},b^{[2,n]}]}$ and adding one extra ternary vector.

We'll transform the second case to an instance of spanning a true point interval Boolean function of equal arity, which can be solved optimally using a method introduced in [?].

3.1 $a^{[1]} = b^{[1]}$

Let $a^{[1]} = b^{[1]} = 0$. Note that the other case (MSB of a and b is 1) is symmetric so we'll only discuss the case of 0.

Let $a_2 = a^{[2,n]}$ and $b_2 = b^{[2,n]}$.

Let \mathcal{T}_2 be the (n-1)-bit minimal spanning set of $\overline{[a_2,b_2]}$. We can get such set by recursion.

Let \mathcal{T}_0 be the *n*-bit set we get by prepending each vector from \mathcal{T}_2 by 0.

Let $\mathcal{T}_1 = \{1\phi^{n-1}\}.$

Let $\mathcal{T} = \mathcal{T}_0 \cup \mathcal{T}_1$.

We claim that \mathcal{T} spans exactly $\overline{[a,b]}$ and that \mathcal{T} is minimal such.

Theorem 3.1.1. \mathcal{T} spans exactly $\overline{[a,b]}$.

Proof. Part 1: $span(\mathcal{T}) \subseteq \overline{[a,b]}$

Let $c \in span(T)$, $T \in \mathcal{T}$. We need to show that $c \in \overline{[a,b]}$

- 1. $c^{[1]}=1$: Since $b^{[1]}=0$, necessarily c>b, so $c\in\overline{[a,b]}$.
- 2. $c^{[1]}=0$: Necessarily $T\in\mathcal{T}_0$. Let $T_2=T^{[2,n]}$ and $c_2=c^{[2,n]}$. Since T spans c, T_2 spans c_2 . By construction of \mathcal{T}_0 necessarily $T_2\in\mathcal{T}_2$, so T_2 doesn't span any number in $[a_2,b_2]$. Thus $c_2\in\overline{[a_2,b_2]}$. Observe that prepending a 0 bit to c_2 , a_2 and b_2 preserves the interval membership: $c_2\in\overline{[a_2,b_2]}\Rightarrow 0c_2\in\overline{[0a_2,0b_2]}$. Since $0c_2=c,\ 0a_2=a$ and $0b_2=b,\ c\in\overline{[a,b]}$.

Part 2: $\overline{[a,b]} \subseteq span(\mathcal{T})$

Let $c \in [a, b]$. We need a $T \in \mathcal{T}$ that spans c.

- 1. $c^{[1]} = 1$: $1\phi^{n-1} \in \mathcal{T}_1 \subseteq \mathcal{T}$ spans c.
- 2. $c^{[1]} = 0$: Similarly to a_2 and b_2 , let $c_2 = \underline{c^{[2,n]}}$. Since a, b and c start with a 0 bit, $c_2 \in \overline{[a_2,b_2]}$. Since \mathcal{T}_2 spans $\overline{[a_2,b_2]}$, $\exists T_2 \in \mathcal{T}_2.T_2$ spans c_2 . Prepending 0 preserves spanning, so $0T_2 \in \mathcal{T}_0 \subseteq \mathcal{T}$ spans c.

Theorem 3.1.2. \mathcal{T} is a minimal spanning set of [a,b].

Proof. Clearly T_0 optimally spans $\overline{[a,b]} \cap [0^n,01^{n-1}]$.

The optimal spanning set \mathcal{T}_{opt} of [a,b] must span the binary vector a'= $1a^{[2,n]} \in [a,b]$. Let $T \in \mathcal{T}_{opt}$ be a ternary vector that spans a'. If T spanned any vector that starts with 0, then T would also span a, which is a false point. So T can't span any number that starts with 0.

This means we can't correctly generalize T_0 to span all the true points of [a,b] as we need to add at least one independent ternary vector to span the true point a', which is exactly what the algorithm does (the independent vector $1\phi^{n-1}$ spanning the whole $[10^{n-1}, 1^n]$).

We have shown that in case $a^{[1]} = b^{[1]}$, our algorithm produces a sound and optimal result.

3.2 $a^{[1]} \neq b^{[1]}$

Let $a^{[1]} \neq b^{[1]}$. Since $a \leq b$, necessarily $a^{[1]} = 0$ and $b^{[1]} = 1$.

By flipping the first bit in the external boundary values a-1 and b+1, we'll effectively reduce this case to an instance of spanning a true point interval.

Let $a_1 = a - 1$ and $b_1 = b + 1$. Note that these are exactly the external boundary values of the interval [a, b]. Also note that $a_1^{[1]} = 0$ and $b_1^{[1]} = 1$. Let $a_1' = 1a_1^{[2,n]}$ and $b_1' = 0b_1^{[2,n]}$ (flipping the first bits of a_1 and b_1). Note

that $b_1' \leq a_1'$.

Let \mathcal{T}'_1 be the minimal spanning set of the true point interval $[b'_1, a'_1]$. This set can be computed efficiently using the method introduced in [?].

Let's flip all the non- ϕ first bits of vectors in \mathcal{T}'_1 , forming \mathcal{T} . Note that $|\mathcal{T}| = |\mathcal{T}'_1|$ and also that all the vectors in \mathcal{T}'_1 and \mathcal{T} have the length n.

We claim that \mathcal{T} is an optimal spanning set of [a, b].

Theorem 3.2.1. \mathcal{T} spans exactly $\overline{[a,b]}$.

Proof. Part 1: $span(\mathcal{T}) \subseteq [a, b]$ Let $c \in span(\mathcal{T})$. We need to show that $c \in [a, b]$. Let $T \in \mathcal{T}$ span c. Let $T' = \overline{T^{[1]}}T^{[2,n]}$ (flipping the first bit). By definition of \mathcal{T} , $T' \in \mathcal{T}'_1$. Let $c' = \overline{c^{[1]}} c^{[2,n]}$ (flipping the first bit). Note that T' spans c'. Since \mathcal{T}_1' spans $[b_1', a_1']$ and $T' \in \mathcal{T}_1'$ spans $c', c' \in [b_1', a_1']$. This means that $c' \geq b'_1$ and $c' \leq a'_1$. Let $c'^{[1]} = 0$. Since $b_1'^{[1]} = 0$ (by definition), necessarily $c'^{[2,n]} \ge b_1'^{[2,n]}$. Since $c = 1c'^{[2,n]}$ and $b_1 = 1b_1'^{[2,n]}$, also $c \ge b_1$.

Since $b_1 = b + 1$, c > b, so $c \in \overline{[a,b]}$.

A symmetric argument can be shown for $c'^{[1]} = 1$ using a'_1 .

Proof. Part 2: $\overline{[a,b]} \subseteq span(\mathcal{T})$

Let $c \in \overline{[a,b]}$. We need to show that \mathcal{T} spans c.

Let $c' = \overline{c^{[1]}} c^{[2,n]}$ (flipping the first bit in c).

We'll first show that $c' \in [b'_1, a'_1]$ (see definition of b'_1 and a'_1 in the algorithm description).

1. $c^{[1]} = 0$

From $b^{[1]} = 1$, $c \in \overline{[a,b]}$ and $c^{[1]} = 0$, we get c < a.

Then trivially $c \leq a_1 = a - 1$.

Since $a_1^{[1]} = 0 = c^{[1]}$, the inequality is preserved after flipping the first bit, i.e. $c' < a'_1$.

Since $b_1'^{[1]} = 0$, we get $c' \ge b_1'$.

Altogether, we get $c' \in [b'_1, a'_1]$.

2. $c^{[1]} = 1$

This case is symmetric to the previous one. Using an analogous argumentation, we get $c' \in [b'_1, a'_1]$.

Let $T' \in \mathcal{T}'_1$ span c'. Such vector exists because \mathcal{T}'_1 spans $[b'_1, a'_1]$ by definition and $c' \in [b'_1, a'_1]$.

Let $T = \overline{T'^{[1]}}T'^{[2,n]}$. $T \in \mathcal{T}$ by definition. T spans c because T' spans c' and flipping a fixed bit preserves spanning.

Thus \mathcal{T} spans c.

Theorem 3.2.2. \mathcal{T} is a minimal spanning set of $\overline{[a,b]}$.

Proof. We'll prove the statement by contradiction. Let the size of the minimal spanning set of the interval $[b'_1, a'_1]$ be k. Then trivially $|\mathcal{T}| = k$, and \mathcal{T} spans [a, b] as shown above.

Let a set \mathcal{T}_{k-1} of size k-1 span [a,b]. We'll use \mathcal{T}_{k-1} to construct a set of size k-1 that spans $[b'_1, a'_1]$, reaching a contradiction and thus rejecting the existence of a smaller set spanning exactly [a,b].

Let \mathcal{T}'_{k-1} be the result of flipping all the non- ϕ first bits of vectors in \mathcal{T}_{k-1} . Trivially $|\mathcal{T}'_{k-1}| = |\mathcal{T}_{k-1}| = k-1$. We claim that \mathcal{T}'_{k-1} spans $[b'_1, a'_1]$.

The proof is very similar to the proof of theorem 3.2.1:

1. $span(\mathcal{T}'_{k-1}) \subseteq [b'_1, a'_1]$

Let $c' \in span(\mathcal{T}'_{k-1})$. We'll show that $c' \in [b'_1, a'_1]$.

Let $T' \in \mathcal{T}'_{k-1}$ span c'.

Let $c = \overline{c'^{[1]}} c'^{[2,n]}$ and $T = \overline{T'^{[1]}} T'^{[2,n]}$.

 $T \in \mathcal{T}_{k-1}$, so $c \in \overline{[a,b]}$ by definition of \mathcal{T}_{k-1} .

```
(a) c'^{[1]} = 0:
            c^{[1]} = 1.
            Since c \in \overline{[a,b]}, then c > b.
            Then also c \geq b + 1 = b_1 and c' \geq b'_1.
            Since c'^{[1]} = 0 and a_1'^{[1]} = 1, then c' \le a_1'.
            Altogether c' \in [b'_1, a'_1].
      (b) c'^{[1]} = 1: symmetric.
2. [b'_1, a'_1] \subseteq span(\mathcal{T}'_{k-1})
    Let c' \in [b'_1, a'_1].
    Let c = \overline{c'^{[1]}} c'^{[2,n]}.
    We'll first show that c \in \overline{[a,b]}
     (a) c'^{[1]} = 1:
            c' \leq a_1'
            c \le a_1
            c < a
            c \in \overline{[a,b]}
      (b) c'^{[1]} = 0: symmetric.
    \mathcal{T}_{k-1} spans c
    \mathcal{T}'_{k-1} spans c'
```

Thus we have shown that \mathcal{T}'_{k-1} spans exactly $[b'_1, a'_1]$. Since $|\mathcal{T}'_{k-1}| = k-1$, this contradicts the assumption that the size of the minimal spanning set of the interval $[b'_1, a'_1]$ is k. Thus we reject the existence of a set of size k-1 spanning exactly [a, b], proving that \mathcal{T} constructed by our algorithm $(|\mathcal{T}| = k)$ is optimal.

4 Conclusions

We have shown an linear (in the arity of numbers) time algorithm for constructing minimal DNF representation of a false point interval Boolean function specified by a pair of boundary values.

References

- [1] Jakub Dubovský. A construction of minimum DNF representations of 2-interval functions. Master's thesis, Charles University in Prague, 2012.
- [2] Baruch Schieber, Daniel Geist, and Ayal Zaks. Computing the minimum DNF representation of boolean functions defined by intervals. *Discrete Applied Mathematics*, 149(1–3):154 173, 2005. Boolean and Pseudo-Boolean Functions Boolean and Pseudo-Boolean Functions.

Glossary

 ${f DNF}$ disjunctive normal form. 1, 5

 \mathbf{MSB} most significant bit. 2