I numeri Naturali - Sommario

I numeri naturali: definizione, proprietà strutturali, definizioni delle operazioni, relazione d'ordine totale \geq , e struttura algebrica $(\mathbb{N},+,\cdot,\geq)$; gli assiomi di Peano, il principio d'induzione e i suoi usi (con vari esempi); successioni a valori in A e suoi usi.

Struttura dell'insieme dei numeri naturali

Definizione intuitiva dell'insieme dei numeri naturali \mathbb{N} , le proprietà strutturali su di esso, definizioni delle operazioni su esso, proprietà delle operazioni. Relazione d'ordine totale \geq su \mathbb{N} , struttura algebrica $(\mathbb{N},+,\cdot,\geq)$

DEF 1. Insieme dei numeri naturali N

DEF 1. Si definisce **l'insieme dei numeri naturali** come *l'insieme dei numeri che servono per contare*, aggiungendoci il numero 0 per motivi di comodità che si vedranno dopo. Viene denotata come

$$\mathbb{N} := \{0, 1, 2, \ldots\}$$

DEF 2. Proprietà strutturali e operazioni di N

DEF 2.1. Operazione di somma/addizione

DEF 2.1. Si definisce su \mathbb{N} l'operazione di **somma** o **addizione** come la seguente funzione

$$egin{aligned} +: \mathbb{N} imes \mathbb{N} & \longrightarrow \mathbb{N} \ (n,m) & \mapsto k := n+m \end{aligned}$$

2.1. Proprietà dell'operazione +

L'operazione somma/addizione gode delle seguenti tre proprietà.

PROPRIETA' 2.1.1. La proprietà associativa dice che

$$orall n, m, k \in \mathbb{N}; n + (m+k) = (n+m) + k$$

PROPRIETA' 2.1.3. La proprietà commutativa dice invece che

$$orall m,n\in\mathbb{N}; m+n=n+m$$

PROPRIETA' 2.1.2. Con l'operazione + esiste l'elemento neutro e (in questo caso 0), tale che

$$\exists e \in \mathbb{N} : 0+m=m+0=m$$

DEF 2.2. Operazione di prodotto/moltiplicazione

DEF 2.2. Si definisce su $\mathbb N$ l'operazione di **prodotto** o **moltiplicazione** come la funzione

$$egin{array}{ll} \cdot: \mathbb{N} imes \mathbb{N} \longrightarrow \mathbb{N} \ (n,m) \mapsto k := (n \cdot m) \end{array}$$

2.2. Proprietà dell'operazione ·

L'operazione *prodotto/moltiplicazione* gode delle seguenti tre proprietà. **PROPRIETA' 2.1.1.** La proprietà **associativa** dice che

$$\forall n, m, k \in \mathbb{N}; n \cdot (m \cdot k) = (n \cdot m) \cdot k$$

PROPRIETA' 2.1.3. La proprietà commutativa dice invece che

$$orall m,n\in\mathbb{N};m\cdot n=n\cdot m$$

PROPRIETA' 2.1.2. Con l'operazione + esiste l'elemento neutro e (in questo caso 1), tale che

$$\exists e \in \mathbb{N}: 1 \cdot m = m \cdot 1 = m$$

2.3. Proprietà distributiva

DEF 2.3. Esiste una proprietà che lega le *operazioni* + e \cdot tra di loro; ovvero la **proprietà distributiva**, che dice

$$orall m, n, k \in \mathbb{N}; n \cdot (m+k) = n \cdot m + n \cdot k$$

DEF 2.4. Relazione d'ordine totale >

DEF 2.4. Su \mathbb{N} è definita una relazione d'ordine totale (**DEF. 4.1.**) che si chiama >.

OSS 2.4.1. Essa è compatibile con le altre operazioni, ovvero

$$orall n, m, k \in \mathbb{N}; n \geq m \implies n+k \geq m+k \ n \geq m \implies n \cdot k \geq m \cdot k$$

DEF 3. Struttura algebrica $(\mathbb{N}, +, \cdot, \geq)$

DEF 3. Avendo appena visto le operazioni +, \cdot e la relazione \geq che vengono tutte definite su \mathbb{N} , possiamo definire la seguente **struttura** algebrica:

$$(\mathbb{N},+,\cdot,\geq)$$

Pertanto d'ora in poi diamo per scontato che quando si parla di $\mathbb N$ vengono già definite le operazioni collegate ad esso.

Assiomi di Peano, il principio di induzione

Assiomi di G. Peano; significato nella matematica, quali sono. Il principio di induzione; le applicazioni del principio di induzione: dimostrazione per induzione e definizioni. Successioni.

1. Riflessioni sui fondamenti dei numeri $\mathbb N$

OSS 1. Mi pongo il seguente *problema*: è possibile trovare degli *assiomi* (ovvero delle prime proprietà che non vengono dimostrate ma sapute a priori) su $\mathbb N$ in modo che tutte le *proprietà* (descritte in Struttura dell'insieme dei numeri naturali) siano deducibili da questi? Quindi sto riflettendo sui *fondamenti* della matematica, in particolare sui numeri *naturali* $\mathbb N$, poi per trovare una sistemazione particolarmente conveniente per noi.

2. Assiomi di Peano

Gli **assiomi di Peano** soddisfano tutte le seguenti regole enunciate: (0.) Esiste un insieme \mathbb{N} che denomineremo come l'insieme dei *numeri* naturali

1. Esiste un elemento di questo insieme, che chiamo 0; $0 \in \mathbb{N}$

- 2. Esiste una funzione successivo $\sigma: \mathbb{N} \longrightarrow \mathbb{N}$ che soddisfa le seguenti proprietà:
 - 1. σ è iniettiva, ovvero $\forall x_1, x_2 \in \mathbb{N}; x_1 \neq x_2 \implies \sigma(x_1) \neq \sigma(x_2)$
 - 2. $0 \notin \sigma(\mathbb{N})$; ovvero lo 0 non è successivo di nessun numero in \mathbb{N} .
- 3. (principio di induzione) Sia l'insieme $S\subseteq \mathbb{N}$ e si suppone che: $0\in S$ e $\forall n,n\in S\implies \sigma(n)\in S$; allora $S=\mathbb{N}.$

OSS 2.1. Dagli assiomi **2.1.** e **2.2.** appena enunciate è possibile dedurre che l'insieme $\mathbb N$ dev'essere necessariamente *infinito*: se il codominio della funzione $\mathbb N$ ha più elementi del dominio della funzione $\mathbb N$ (visto che σ è iniettiva ed il numero 0 non fa parte dell'immagine), **ma** si tratta del medesimo insieme $\mathbb N=A=B$, pertanto $\mathbb N$ dev'essere infinita in quanto è l'unico modo per soddisfare le condizioni dedotte.

DEF 2.1. II sistema di Peano

Secondo gli seguenti assiomi appena enunciati, si può definire un **sistema di Peano** come la terna $(\mathbb{N}, 0, \sigma)$.

OSS 2.2. Si nota che la scelta dell'"elemento iniziale" (ovvero in questo caso 0) è una scelta arbitraria che può essere cambiata; infatti si può "spostare" questo "punto di partenza" e si avrebbe comunque un sistema di Peano in cui valgono le stesse regole enunciate; infatti si può dimostrare che tutti i sistemi di Peano sono isomorfi, cioè che sono sostanzialmente lo stesso con qualche nome dei numeri alterati. Questa osservazione diventerà molto importante per il principio di induzione.

APPROFONDIMENTO. (tratto da Analisi Matematica Vol. 1, E. Giusti). Se si vuole essere bibliograficamente accurati, allora bisognerebbe specificare che ci sono altri quattro *assiomi di Peano*, che sono piuttosto assiomi logici e abbastanza intuitivi, ovvero:

$$1. \ \forall a \in \mathbb{N}, a = a;$$

$$2. \ \forall a,b \in \mathbb{N}, a=b \iff b=a$$

$$3. \ orall a,b,c \in \mathbb{N}, (a=b) \wedge (b \wedge c) \implies a=c$$

$$4.\ (a=b) \lor b \in \mathbb{N} \implies a \in \mathbb{N}$$

3. Il principio di induzione

Uno degli *assiomi* più importanti appena enunciati è *l'assioma 4.*, che viene definito anche come il **principio di induzione**, che enuncia il

seguente:

$$[(S\subseteq \mathbb{N}) \land (0\in S) \land (orall n\in \mathbb{N}, n\in S \implies (n+1)\in S)] \implies S=\mathbb{N}$$

Ora, riscrivendolo in un modo più comprensibile, questo principio enuncia che:

- 1. Supponendo che esista un insieme $S \subseteq \mathbb{N}$ (verificando così la prima condizione)
- 2. Poi supponendo che un numero 0 appartenga a S, quindi il "punto di partenza"
- 3. E infine se è vero che se un qualsiasi elemento n appartiene a S, allora il suo successivo $\sigma(n)$ appartiene anch'esso a S,
- 4. Allora $S = \mathbb{N}$.

3.1. L'idea fondamentale

Per capire fino a fondo l'idea del *principio d'induzione* si può riflettere sulla funzione $successivo\ \sigma$, ovvero: cos'è?

Se $\sigma(0)=1$ e $\sigma(n)=n+1$, allora si può pensare che a partire da 0 posso raggiungere tutti i numeri in \mathbb{N} . Ad esempio,

$$(5 = \sigma(4) = \sigma(\sigma(3)) = \sigma(\sigma(\sigma(2))) = \sigma(\sigma(\sigma(\sigma(1)))) = \sigma(\sigma(\sigma(\sigma(0))))$$

Si può utilizzare la seguente analogia: se voglio salire di un piano, devo percorrere un numero di gradini; se posso salire sul primo gradino, che lo chiamo gradino 0, allora posso salire sul prossimo (analogia con la funzione successiva σ), poi sul prossimo e sul prossimo, finché raggiungo il prossimo piano.

4. Applicazioni del principio di induzione

Il **principio di induzione** può essere utilizzato principalmente per due scopi: o definire *oggetti* o verificare/dimostrare delle *proprietà* (ovvero dei predicati unari); nel primo caso si parla di **definizione per ricorrenza** e invece nel secondo di **dimostrazione per induzione**.

4.1. Dimostrazione per induzione

In questa pagina si parlerà principalmente di dimostrazione per induzione, corredato da vari esempi.

L'idea per la dimostrazione per induzione consiste nel seguente:

- 1. Ho una *proprietà* (ovvero un predicato unario) $\mathcal{P}(n)$ e voglio dimostrare che essa è *verificata* per ogni $n \in \mathbb{N}$;
- 2. Si crea quindi l'insieme dei numeri che verificano $\mathcal{P}(n)$ e la chiamiamo S.
- 3. Ora per dimostrare $\mathcal{P}(n)$ basta verificare le due condizioni:
 - 1. $0 \in S$, ovvero $\mathcal{P}(0)$ è vera;
 - 2. $\forall n \in S \implies \sigma(n) \in S$; ovvero se $\mathcal{P}(n)$ è vera, allora $\mathcal{P}(n+1)$. Da notare che si tratta **solo** di dimostrare *l'implicazione materiale*.
 - 3. Allora $S=\mathbb{N}$, ovvero tutti i valori che rendono $\mathcal{P}(n)$ vera sono tutti i numeri in \mathbb{N} .

Si vedono alcuni esempi sulla *dimostrazione* per induzione in Esempi di Induzione

4.2. Definizioni per ricorrenza

DEF. 4.2.1. Successione a valori in *A*.

Sia A un insieme qualunque e f una funzione

$$f: \mathbb{N} \longrightarrow A; n \mapsto f(n) = a_n$$

Quindi saranno determinati

$$f(0) = a_0, f(1) = a_1, \dots, f(n) = a_n$$

Questa funzione f si chiama, tradizionalmente, una **successione a valori** in A (cioè nell'insieme A).

Lo rappresentiamo con

$$(a_n)_n:(a_0,a_1,\ldots,a_n,\ldots)$$

DEF 4.2.2. La sommatoria

Si può definire la sommatoria

$$\sum_{j=0}^n a_i = a_0 + \ldots + a_n$$

in una maniera rigorosa usando il *principio di induzione* e la definizione di *successione*:

DEF 4.2.2. Si pone

$$\sum_{j=0}^n a_n = s_n$$

poi, ponendo il caso base

$$s_0 = a_0$$

e in seguito

$$\forall n, s_{n+1} = s_n + a_{n+1}$$

definendo così la sommatoria, in quanto sono partito dall'elemento *base* a_0 , e potendo generare la sommatoria di n+1 a partire da n; pertanto la successione $(s_n)_n$ viene definita su $\mathbb N$ a partire da 0.

DEF 4.2.3. Produttoria

Similmente si definisce la produttoria

$$\prod_{i=0}^n a_i = a_0 \cdot \ldots \cdot a_n$$

come

$$egin{aligned} \prod_{i=0}^n a_i &= p_n \ p_0 &= a_o \ orall n, p_{n+1} &= p_n \cdot a_{n+1} \end{aligned}$$

ESEMPIO 4.2.3.1. Fattoriale. Un caso particolare della *produttoria* è il cosiddetto **fattoriale**; la si definisce come

$$\Pi_{i=0}^n i = n!$$

Quindi

$$egin{aligned} 0! &= 1 \ orall n; (n+1)! &= n!(n+1) \end{aligned}$$

Esempi di Induzione

Esempi sulle prove per induzione. Articolo creato ad-hoc per la quantità presente degli esempi, rendendo il file originario troppo pesante.

1. Esempi di dimostrazione per induzione

ESEMPIO 1.1. Aneddoto di Gauss.

Si racconta che quando il matematico C. F. Gauss frequentava le scuole elementari, il suo professore di matematica aveva dato un esercizio da fare in quanto punizione: ovvero quello di sommare tutti i numeri da 0 a 100; quindi tutti i numeri $0+1+2+\ldots+100$.

Alla sorpresa del professore e dei suoi compagni, Gauss riuscì, non solo a risolvere il problema quasi immediatamente consegnando la sua lavagna sulla cattedra, ma anche essere l'unico alunno ad aver dato la risposta corretta: 5050.

Grazie alla sua intuizione, Gauss riuscì a ingegnare un metodo per calcolare quel numero con una velocità strabiliante: ovvero quella di determinare la somma da 0 a 100 come A, che è uguale alla somma da 100 a 1 (proprietà commutativa); Quindi sommando A con sé stesso ma disposti in una maniera diversa (ovvero la prima con un criterio crescente, la seconda decrescente), ottiene $2A = 100(101) \iff A = \frac{100(101)}{2}$

Generalizzando da questo aneddoto abbiamo la seguente proprietà:

$$\mathcal{P}(n)=0+1+2+\ldots+n=rac{n(n+1)}{2}$$

Ora vogliamo dimostrarla rigorosamente per induzione.

DIM.

1. Caso base: verificare $\mathcal{P}(0)$;

$$\mathcal{P}(0): 0 = \frac{0(1)}{2} = 0 \text{ OK}$$

2. Ipotesi induttiva; supponendo che $\forall n, \mathcal{P}(n)$ è vera, allora anche $\mathcal{P}(n+1)$ è vera.

$$\mathcal{P}(n):0+1+\ldots+n=rac{n(n+1)}{2}$$

Avvolte è utile anche già "prevedere" dove vogliamo arrivare a partire da

 $\mathcal{P}(n)$, ovvero $\mathcal{P}(n+1)$. In questo caso si potrebbe anche utilizzare l'ipotesi induttiva, ovvero

$$\mathcal{P}(n+1): 0+1+\ldots+n+(n+1) = \frac{(n+1)(n+2)}{2}$$

$$\mathcal{P}(n)+(n+1) = \frac{(n+1)(n+2)}{2}$$

$$\frac{n(n+1)}{2}+(n+1) = \ldots$$

$$(n+1)(\frac{n}{2}+1) = \ldots$$

$$(n+1)(\frac{n+2}{2}) = \ldots$$

$$\frac{(n+1)(n+2)}{2} = \frac{(n+1)(n+2)}{2} \text{ OK}$$

3. Pertanto si verifica che i numeri che rendono $\mathcal{P}(n)$ vera sono tutti i numeri naturali $\mathbb N$ a partire da 0.

ESEMPIO 1.2. Somma dei quadrati

Provare che per ogni $n \in \mathbb{N}$ vale

$$P(n): 0+1+4+\ldots+n^2 = rac{(n)(n+1)(2n+1)}{6}$$

Anche qui possiamo usare l'induzione, dato che anche qui si tratta di una proprietà sui numeri naturali \mathbb{N} .

1. Caso base:

$$P(0): 0 \stackrel{?}{=} \frac{0(0+1)(2(0)+1)}{0}$$

 $0 = 0 \text{ OK}$

2. Ipotesi induttiva:

$$P(n): 0+1+4+\ldots+n^2=rac{n(n+1)(2n+1)}{6} \ P(n+1): 0+1+4+\ldots+n^2+(n+1)^2=rac{(n+1)(n+2)(2(n+1))}{6} \ P(n+1): 0+1+4+\ldots+n^2+(n+1)^2=rac{(n+1)(n+2)(2(n+1))}{6}$$

Sviluppando P(n+1),

$$P(n+1): 0+1+4+\ldots+n^2+(n+1)^2 = \frac{(n+1)(n+2)(2(n+1))^2}{6}$$

$$P(n)+(n+1)^2 = \ldots$$

$$\frac{n(n+1)(2n+1)}{6}+(n+1)^2 = \ldots$$

$$(n+1)(\frac{n(2n+1)}{6}+(n+1)) = \ldots$$

$$\frac{(n+1)(n)(2n+1)+6(n+1)^2}{6} = \frac{(n+1)(n+2)(2n+1)}{6}$$

$$\frac{(n+1)((n)(2n+1)+6n+6)}{6} = \frac{(n+1)(n^2+7n+6)}{6}$$

$$(n+1)(2n^2+n+6n+6) = (n+1)(n^2+n+6n+6)$$
OK

ESEMPIO 1.3. Disuguaglianza di Bernoulli.

Sia a>-1, $a\in\mathbb{R}$. Allora $\forall n\in\mathbb{N}$ vale la seguente:

$$(1+a)^n \ge 1 + na$$

DIM. Sia $P(n): (1+a)^n \ge 1 + na$.

1. Verificare P(0);

$$P(0): (1+a)^1 \ge 1 \iff 1 \ge 1 \text{ OK } \blacksquare$$

2. Supponendo che P(n) sia vera, verificare $P(n) \implies P(n+1)$.

$$P(n): (1+a)^n \geq 1+na \ (1+a)^n (1+a) \geq (1+na)(1+a) \ (1+a)^{n+1} \geq 1+(n+1)a+na^2$$

Sapendo che 1+(n+1)a è sicuramente maggiore o uguale a P(n+1) ovvero 1+(n+1)a, in quanto na^2 è necessariamente positivo, allora consegue che

$$P(n+1): (1+a)^{n+1} \ge 1 + (n+1)a$$

è vera, verificando $P(n) \implies P(n+1)$.

ESEMPIO-ESERCIZIO 1.4. Disuguaglianza di Bernoulli incrementata.

PROVARE CHE VALE LA PROPRIETA' $P(n): (1+a)^n \geq 1+na+\frac{n(n-1)}{2}a^2$, **OVE a>0 e $\forall n\geq 1.$

1. Provare P(1);

$$P(0): 1+a \ge 1+a+0 \text{ OK}$$

2. Supponendo che P(n) sia vera, provare che $P(n) \implies P(n+1)$

$$P(n): (1+a)^n \geq 1 + na + \frac{n(n-1)}{2}a^2$$

ed è utile "prevedere" P(n+1), quindi

$$P(n+1): (1+a)^{n+1} \geq 1 + (n+1)a + rac{(n+1)(n)}{2}a^2$$

3. Ora prendiamo P(n) e moltiplichiamo per (1+a) da ambo le parti (che è possibile in quanto la relazione d'ordine \geq è compatibile con (1+a))

$$egin{align} P(n): (1+a)^n(1+a) &\geq (1+na+rac{n(n-1)}{2}a^2)(1+a) \ &(1+a)^{n+1} \geq (1+na+rac{n(n-1)}{2}a^2) + (a+na^2+rac{n(n+1)}{2}a^2) \ &(1+a)^{n+1} \geq 1 + (n+1)a + (rac{n(n-1)}{2}+n)a^2 + \dots a^3 \ \end{cases}$$

4. Ora vogliamo dimostrare che il membro destro della disuguaglianza è necessariamente maggiore di $1+(n+1)a+\frac{(n+1)(n)}{2}a^2$, rendendo per la proprietà transitiva $(1+a)^{n+1}$ anch'esso maggiore di $1+(n+1)a+\frac{(n+1)(n)}{2}a^2$, verificando così l'implicazione.

$$1+(n+1)a+(rac{n(n-1)}{2}+n)a^2+\dots a^3\geq 1+(n+1)a+rac{(n+1)}{2}a^2+\dots a^3\geq rac{(n+1)(n)}{2}a^2$$

Dato che $\dots a^3$ (parte omessa in quanto non è rilevante, dato che n è sempre un numero positivo) è anch'essa sempre positiva in quanto

a>0, ora basta dimostrare che

$$n(n-1) + 2n \ge (n+1)(n) \ n(n-1+2) \ge (n+1)(n) \ n(n+1) \ge n(n+1) ext{ OK } lacksquare$$

5. Verificando così $P(n) \implies P(n+1)$, dato che da P(n) si verifica P(n+1).

ESEMPIO 1.5. Ridotta della serie geometrica.

Sia $a \neq 1$; allora con $\forall n \in \mathbb{N}$ si ha

$$P(n): a^0 + a^1 + \ldots + a^n = rac{a^{n+1} - 1}{a-1}$$

DIM.

1. Dato che $n\in\mathbb{N}$, si può usare l'induzione; allora partiamo verificando P(0);

$$P(0): a^0 = \frac{a^1 - 1}{a - 1} \iff 1 = 1 \text{ OK}$$

2. Ora supponendo P(n), verifichiamo $P(n) \implies P(n+1)$.

$$P(n): a^0 + a^1 + \ldots + a^n = rac{a^{n+1} - 1}{a - 1} \ a^0 + a^1 + \ldots + a^n + a^{n+1} = rac{a^{n+1} - 1}{a - 1} + a^{n+1} \ P(n+1): a^0 + a^1 + \ldots + a^{n+1} = rac{a^{n+1} - 1 + a^{n+1}(a - 1)}{a - 1} \ \ldots = rac{a^{n+1} - 1 + a^{(n+1)+1} - a^{n+1}}{a - 1} \ P(n+1): \ldots = rac{a^{(n+1)+1} - 1}{a - 1}$$

Da qui si vede che $P(n) \implies P(n+1)$ è vera.

ESEMPIO 1.6.

PROVARE CHE PER OGNI $n \geq 1$ VALE CHE IL NUMERO $n^3 + 5n$ E' DIVISIBILE PER 6.

1. Provare P(1);

$$P(1):\exists k\in\mathbb{Z}\mid 1^3+5=6k\iff 6=6k; k=1 \ \mathrm{OK}$$

2. Provare che, supponendo P(n), allora P(n+1);

$$P(n):\exists k_1|\ n^3+5n=6k_1 \ P(n+1):\exists k_2|\ (n+1)^3+5(n+1)=6k_2 \ \ldots |\ n^3+3n^2+3n+1+5n+5=6k_2 \ \ldots |\ (n^3+5n)+(3n^2+3n+6)=6k_2 \ \ldots |\ 6k_1+3(n^2+n+2)=6k_2 \ \ldots |\ 3(n^2+n+2)=6(k_1-k_2) \ \ldots |\ n^2+n+2=2(k_1-k_2) \ \ldots |\ (n)(n+1)=2(k_1-k_2-1)$$

- 3. Vediamo che il problema si riduce a dimostrare che (n+1)(n) è pari (ovvero divisibile per 2), il che è facile da dimostrare se consideriamo due casi per (n+1)(n):
 - 1. Se n è pari, ovvero della forma 2m, allora

$$(n+1)(n) \iff (2m+1)(2m) \iff 4m^2+2m \iff 2(2m^2)$$

è pari in quanto l'espressione finale è comunque moltiplicata per due.

2. Se n è dispari, ovvero della forma 2m+1, allora

$$(n+1)(n) \iff (2m+2)(2m+1) = 2(m+1)(2m+1)$$

anche qui è pari per lo stesso ragionamento di prima.

ESEMPIO 1.7.

PROVARE CHE PER OGNI $n \geq 1$ VALE CHE $n! \geq 2^{n-1}$

1. Provare P(1);

$$P(1): 1! \ge 2^0 \iff 1 \ge 1 \text{ OK}$$

2. Supponendo P(n), provare $P(n) \implies P(n+1)$:

$$P(n): n! \geq 2^{n-1} \ n!(n+1) \geq 2^{n-1}(n+1) \ (n+1)! \geq 2^{n-1}(n+1)$$

3. Dato che $n \ge 1$, ne consegue che $n + 1 \ge 2$; quindi possiamo scrivere

$$2^{n-1}(n+1) \ge 2(2^{n-1}) = 2^n$$

4. Quindi per la proprietà transitiva della relazione \geq , si verifica che

$$P(n+1):(n+1)! \geq 2^n$$

Verificando così $P(n) \implies P(n+1) \blacksquare$.

PROBLEMA 1.1.

PROBLEMA. Disegniamo nel piano una retta e notiamo subito che questa retta suddivide il piano in 2 "regioni"; ora disegniamo 2 rette e vediamo che ora abbiamo 4 regioni; ora 3 rette e notiamo che possiamo avere al massimo 7 regioni.

Se si desidera, si può visualizzare il problema con il grafico sottostante. Ora ci poniamo i seguenti problemi.

[GRAFICO DA FARE]

TRACCIA 1. (DA COMPLETARE)

Trovare una formula (o funzione, successione) che individui il numero delle regioni per n rette.

SOLUZIONE 1. L'idea è la seguente.

Individuiamo una retta orizzontale,

Ora, avendo definito la *successione* della funzione delle regioni in n f_n , possiamo usare un metodo simile a quello chiamato "Ansatz", usato per risolvere le equazioni differenziali; ovvero congetturando una *soluzione generale*, poi per inserirla nella definizione di f_n , allora otteniamo la soluzione specifica f(n).

Congetturiamo che

$$f(n) = an^2 + b^n + c$$

[Questa parte è molto complicata da fare, quindi lo farò un weekend in chill; tanto in teoria non è proprio 100% del programma, eh]

TRACCIA 2.

Provare che le regioni individuate con n rette sono al massimo $rac{n^2+n}{2}+1$.

OSS 1.1.1. Si nota, a posteriori (o anche dimostrata sopra), che indicando f_n il numero di regioni con n rette, si ha

$$f_{n+1} = f_n + (n+1)$$

dove $f_1=2$.

SOLUZIONE. Si può dimostrare la formula $f(n) = \frac{n^2+n}{2} + 1$ con il principio di induzione e anche grazie al suggerimento indicato sopra.

1. Provare f(1);

$$f(1):f_1=rac{1+1}{2}+1\iff 2=2 ext{ OK}$$

2. Supponendo f(n), provare f(n+1);

$$f(n): f_n = rac{n^2+n}{2}+1$$
 $f_n + (n+1) = rac{n^2+n}{2}+1+(n+1)$
 $f_{n+1} = rac{n^2+n+2n+2}{2}+1$
 $\ldots = rac{n^2+n+2n+2}{2}+1$
 $\ldots = rac{n^2+3n+2}{2}+1$
 $\ldots = rac{(n+1)^2+(n+1)}{2}+1$

3. Quindi da f(n) si ottiene f(n+1), terminando così la dimostrazione. lacktriangle