혜령 06 - 기하와 벡터[수능특강]

4단원 : 평면벡터의 성분과 내적

2016년 6월 23일

차 례

차	례		1
	1	02-실력2	2
	2	03-실력2	3
	3	04-예제1-1	3
	4	04-예제1-2	4
	5	04-예제3-1	5
	6	04-예제3-2	5
	7	04-예제4	6
	8	04-예제8	6
	9	04-기초3	6
	10	04-기초5	6
	11	04-기본1	7
	12	04-기본2	7
	13	04-기본4	8
	14	04-실력1-1	8
	15	04-실력1-2	8
	16	04-실력1-3	9
	17	04-실력1-4	9
	18	04-실력2	10
	19	04-실력3	11
	20	04-기출	12

1 02-실력2

그림과 같이 자연수 n에 대하여(n>1) 타원 $\frac{x^2}{(n^2+1)^2}+\frac{y^2}{4n^2}=1$ 의 초점 중 x 좌표가 양수인 점을 $F_n(a_n,0)$ 이라 하고, 타원 위의 점 $P_n(a_n,b_n)$ $(b_n>0)$ 에서의 접선이 x축, y축과 만나는 점을 각각 A_n , B_n 이라고 할 때, 삼각형 OA_nB_n 의 넓이를 S_n 이라고 하자. $\lim_{n\to\infty}\frac{S_n}{n^4}$ 의 값은? (단 O는 원점이다.)

2 03-실력2

그림과 같이 선분 AB 위의 두 점 $O_1,\,O_2$ 에 대하여 $\overline{AO_1}=\overline{O_1O_2}=\overline{O_2B}=1$ 일 때, 두 선분 $AO_2,\,O_1B$ 를 각각 지름으로 하는 두 반원의 호 $AO_2,\,O_1B$ 가 만나는 점을 C 라고 하자. 호 O_2C 위를 움직이는 점 P와 호 O_1C 위를 움직이는 점 Q에 대하여 $|\overrightarrow{O_1P}+\overrightarrow{O_2Q}|$ 의 최댓값을 M, 최솟값을 m이라고 할 때, Mm의 값은?

3 04-예제1-1

그림과 같이 삼각형 ABC에서 변 AB의 중점을 M이라 하고, 선분 CM을 4:3으로 내분하는 점을 D라고 하자. $\overrightarrow{BD}=m\overrightarrow{AB}+n\overrightarrow{AC}$ 를 만족시키는 두 실수 m,n에 대하여 m+n의 값은?

4 04-예제1-2

그림과 같이 삼각형 ABC에서 선분 AB를 2:1로 내분하는 점을 D라고 하고, 선분 CD의 중점을 M이라고 하자. $\overrightarrow{BM}=m\overrightarrow{AB}+n\overrightarrow{AC}$ 를 만족시키는 두 실수 m,n에 대하여 m+n의 값은?

5 04-예제3-1

그림과 같이 지름이 선분 AB 인 원 위의 두 점 P,Q에 대하여 $\overline{AP}=3,\overline{BQ}=5$ 일 때, $\overline{AB} \bullet \overline{AP} + \overline{AB} \bullet \overline{BQ}$ 의 값은?(단, $\overline{AB} > 5$ 이다.)

6 04-예제3-2

그림과 같이 $\overline{BC}=6$, $\angle B=\frac{\pi}{2}$ 인 직각삼각형 ABC에서 $\angle A=\theta$ 라고 하자. $\cos\theta=\frac{2\sqrt{10}}{7}$ 일 때, $\overrightarrow{AC}\bullet\overrightarrow{AB}+\overrightarrow{CA}\bullet\overrightarrow{CB}$ 의 값은?

7 04-예제4

세 단위벡터 \vec{a} , \vec{b} , \vec{c} 가 $\vec{a}+\vec{b}+\vec{c}=\vec{0}$ 을 만족시킨다. 두 벡터 \vec{a} , \vec{b} 가 이루는 각의 크기를 θ 라고 할 때 $\cos \theta$ 의 값은?

①-1 ② $-\frac{\sqrt{3}}{2}$ ③ $-\frac{\sqrt{2}}{2}$ ④ $-\frac{1}{2}$

50

8 04-예제8

한 변의 길이가 3인 정삼각형 ABC에 대해 M은 선분 AB의 중점이고 $\vec{a} = \overrightarrow{AC}$, $\overrightarrow{b}=\overrightarrow{AM}$ 이라고 하자. $\overrightarrow{c}=\frac{\overrightarrow{a}}{|\overrightarrow{a}|}+\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$ 일 때, $|\overrightarrow{c}|$ 의 값은? ①1 ② $\sqrt{2}$ ③ $\sqrt{3}$ ④2

 $\sqrt{5}$

9 04-기초3

두 벡터 $\vec{a} = (k, 1), \vec{b} = (k - 2, -3)$ 가 서로 수직일 때, k의 값은? (단 $|\vec{a}| \neq |\vec{b}|$ 이다.)

 $^{\circ}-3$

2 - 1

31

43

⑤5

10 04-기초5

좌표평면에서 두 직선 $\frac{x+1}{9}=\frac{y}{2}, \frac{x-4}{7}=\frac{y-2}{6}$ 가 이루는 각의 크기를 $\theta(0\leq\theta\leq\frac{\pi}{2})$ 라고 할 때, $\cos \theta$ 의 값은?

① $-\frac{1}{17}$ ② $\frac{3}{17}$

 $3\frac{7}{17}$ $4\frac{11}{17}$ $5\frac{15}{17}$

11 04-기본1

그림과 같이 \overline{AB} =4, \overline{BC} =9, \overline{CA} =8인 삼각형 ABC의 내접원의 중심을 P라고 하자. $\overrightarrow{AP}=m\overrightarrow{AB}+n\overrightarrow{AC}$ 를 만족시키는 두 실수 m,n에 대하여 m-n의 값은?

12 04-기본2

그림과 같이 한 평면 위에 길이가 2인 두 정삼각형 ABD, BCD가 있다. 선분 AB의 중점을 M이라고 할 때 $\overrightarrow{DM} \bullet \overrightarrow{MC} + \overrightarrow{BC} \bullet \overrightarrow{AC}$ 의 값을 구하시오.

13 04-기본4

좌표평면에서 직선 $\frac{x}{2}=y-3$ 위의 점 P(a,b)에서 x축에 내린 수선의 발을 Q, y축에 내린 수선의 발을 R이라고 할 때, 직선 $\frac{x}{2}=y-3$ 와 직선 QR은 서로 수직이다. a+b의 값은?

 $^{\circ}-6$

2 - 3

30

43

56

14 04-실력1-1

선분 AB 내부의 점 P에 대하여

$$2\overrightarrow{PA} + \overrightarrow{PB} = \vec{0}$$

가 성립한다. 선분 AB의 길이가 12일 때, 선분 AP의 길이를 구하시오.

1

22

33

44

56

15 04-실력1-2

선분 AB 내부의 점 P에 대하여

$$3\overrightarrow{AP} + 5\overrightarrow{BP} = \vec{0}$$

가 성립한다. 선분 AB의 길이가 24일 때, 선분 AP의 길이를 구하시오.

①3

26

39

412

⑤15

16 04-실력1-3

삼각형 ABC의 내부의 한 점P에 대하여

$$3\overrightarrow{PA} + 2\overrightarrow{PB} + \overrightarrow{PC} = \vec{0}$$

가 성립한다. 삼각형 ABP의 넓이가 2일 때, 삼각형 ABC의 넓이를 구하시오. ①4 ②8 ③12 ④16 ⑤20

17 04-실력1-4

삼각형 ABC의 내부의 한 점 P에 대하여

$$\overrightarrow{AP} + 3\overrightarrow{BP} + 4\overrightarrow{CP} = \vec{0}$$

가 성립한다. 삼각형 ACP의 넓이가 3일 때, 삼각형 ABC의 넓이를 구하시오. 28 310 412 514

18 04-실력2

좌표평면 위에 세 점 $A,\,B,\,D$ 가 있다. 두 선분 $AD,\,BC$ 가 평행하도록 점 C 를 잡을 때,

$$\overrightarrow{AB} = (1, -2), \quad \overrightarrow{BC} = (x, y), \quad \overrightarrow{CD} = (-5, 1)$$

이다. $\overrightarrow{BC}=\overrightarrow{OP}$ 를 만족시키는 점 P에 대하여 $4\leq x\leq 8$ 일 때, 점 P가 나타내는 도형의 길이는? (단, O는 원점이고, $xy\neq 0$ 이다.)

19 04-실력3

그림과 같이 원점이 O인 좌표평면 위의 두 점 $A(2,0),\,B(0,2)$ 에 대하여 선분 AB 중점을 C라고 하고, $\overrightarrow{OA}=\vec{a},\,\overrightarrow{OB}=\vec{b},\,\overrightarrow{OC}=\vec{c}$ 라고 하자.

$$\vec{p} = \vec{a} + \vec{c}, \quad \vec{q} = 2\vec{b} - \vec{c}$$

라고 할 때, 등식

$$|x\vec{p} + y\vec{q}| = 2\sqrt{10}$$

이 성립하도록 하는 두 실수 x,y의 순서쌍 (x,y)를 좌표로 하는 점 P가 그리는 도형의 길이를 구하시오.

 $@\pi$

 22π

 33π

 44π

 $\mathfrak{S}5\pi$

20 04-기출

한 변의 길이가 2인 정삼각형 ABC에서 변 AB의 중점을 D라고 하고, 변 AC 를 2:1과 1:2로 내분하는 점을 각각 E,F라고 할 때, $|\overrightarrow{BF}+\overrightarrow{DE}|^2$ 의 값은?

1	3	2	3	3	1	4	2
5	5	6	3	7	4	8	3
9	2	10	5	11	2	12	2
13	5	14	4	15	⑤	16	3
17	2	18	4	19	4	20	⑤