МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«Нижегородский государственный университет им. Н.И. Лобачевского» Национальный исследовательский университет

Институт информационных технологий, математики и механики Кафедра математического обеспечения и суперкомпьютерных технологий

ОТЧЕТ ПО УЧЕБНОЙ ПРАКТИКЕ «Структуры хранения для матриц специального вида»

Выполнил:
студент группы 361706-1
Резанцев Сергей Алексеевич
Подпись
Научный руководитель:
ассистент каф. МОСТ ИИТММ
Лебедев И. Г.

Содержание

Введение	3
Постановка задачи	4
Руководство пользователя	5
Руководство программиста	6
Описание структуры программы	6
Описание структур данных	6
Описание алгоритмов	7
Заключение	9
Литература	10

1. Введение

Целью данной лабораторной работы является рассмотрения треугольных матриц и их представления в виде вектора, состоящего из векторов, и для реализации этой программы понадобится создать классы с шаблонами, различными функциями и перегрузить арифметические операторы.

Треугольная матрица — в линейной алгебре квадратная матрица, у которой все элементы, стоящие ниже (или выше) главной диагонали, равны нулю. Служат для более компактного хранения данных.

2. Постановка задачи

Реализовать классы TMatrix и TVector для работы с матрицами. Поля классов должны быть закрыты. TMatrix наследуется от TVector.

В каждом классе обязательно должны присутствовать методы:			
	инициализации значений полей объектов класса;		
	доступа к полям класса на чтение и запись;		
	ввода значений объектов с клавиатуры и вывода на консоль output;		
Должны	ы быть перегружены операции:		
	объединения и пересечения и отрицания;		
	арифметические – сложение, вычитание, умножение и деление;		
	оператор присваивания, сравнения;		
□ дружественн	операции ввода/вывода в поток (в классе эти функции объявлены как ые для доступа к закрытым полям класса);		
Должны быть реализованы конструкторы: по умолчанию, копирования и инициализатор.			

Предоставить пример использования и обеспечить работоспособность тестов, покрывающих все методы классов TMatrix и TVector.

3. Руководство пользователя

Чтобы начать работу с программой запустите приложение Matrix.

На экране появится следующее:

Результат программы, выведенный на консоль.

Затем программа завершится.

4. Руководство программиста

4.1. Описание структуры программы

Для реализации алгоритмов будут использованы классы TMatrix и TVector.

Лабораторная работа состоит из следующих модулей:

VectorLib

Библиотека, содержащая заголовочный файл TVector.h, в котором содержится класс TVector и реализация его методов, и файл TVector.cpp

MatrixLib.

Библиотека, содержащая заголовочный файл Matrix.h, в котором содержится класс TMatrix - наследник TVector, и реализация его методов, и файл TMatrix.cpp

Matrix

Пример использования программы.

test

В файле test_matrix.cpp прописаны тесты, покрывающие каждый метод класса TMatrix. В файле test_vector.cpp прописаны тесты, покрывающие каждый метод класса TVector.

4.2. Описание структур данных

В программе описаны классы:
TVector
В нем 2 поля:
int size;
T *vector;
И реализованы следующие методы:
TVector < T > (int n = 0);
TVector <t>(const TVector<t> &A);</t></t>
virtual ~TVector <t>();</t>

```
int GetSize() const;
T& operator[](int i);
bool operator==(const TVector<T>&A);
TVector& operator=(const TVector<T>&A);
TVector operator++();
TVector operator++(int);
TVector operator--();
TVector operator--(int);
TVector operator+() const;
TVector operator-() const;
TVector operator+(const TVector<T> &A);
TVector operator-(const TVector<T>&A);
T operator*(const TVector<T>&A);
TVector operator*(T A);
   TMatrix: Наследник класса TVector. Не имеет полей.
Реализованы следующие методы:
TMatrix(int n = 10);
TMatrix(const TMatrix &B);
TMatrix(const TVector<TVector<T>> &B);
bool operator==(const TMatrix &B) const;
bool operator!=(const TMatrix &B) const;
TMatrix& operator= (TVector<TVector<T>> &B);
TMatrix operator+ (const TMatrix &B);
TMatrix operator- (const TMatrix &B);
TMatrix operator*(TMatrix<T> &A);
TMatrix operator/(TMatrix<T> &A);
```

4.3. Описание алгоритмов

В данном разделе не будут рассматриваться тривиальные методы и методы из класса TVector, так все они довольно простые. И большинство функций класса TMatrix работает с помощью вызова соответствующего метода из TVector.

1. Умножение матриц

Опр. Произведением матрицы A на матрицу B называется такая матрица C, что элемент матрицы c, стоящий в i-ой строке j-ого столбца, является произведением элементов i-ой строки на соответствующие элементы j-го столбца.

Для перегрузки данного оператора использовались три цикла:

- 1) По строкам матрицы А
- 2) По столбцам матрицы В
- 3) По элементам матрицы С

2. Деление матриц

В теории матриц нет понятия «деления матрицы», матрицы можно только умножать. Если нужно разделить матрицу на некоторое число k, то

используется термин умножить матрицу на дробь \hat{k} . А вместо «разделить матрицу A на матрицу B » говорят, что нужно умножить матрицу A на матрицу B^{-1} , где B^{-1} — обратная матрица к матрице B .

Находим обратную матрицу с помощью метода Гаусса(в нашем случае она получится треугольной) и умножаем матрицу A на B^{-1} .

4.4. Оценка сложности некоторых алгоритмов

Характеристики компьютера:

Intel Core i5

8 GB DDR3 L Memory

128 GB SSD + 1000 GB HDD

Размер матрицы	Т Сложения	Т Умножения
10	0	0.001
100	0.004	0.013
500	0.35	1.363

1000	2.897	10.851

5. Заключение

В данном курсовом проекте при разработке программы были рассмотрены треугольные матрицы и их реализация с помощью векторов. И провели вычисления с матрицами. Классы и перегрузки, наследование оказались очень полезными и удобными и упростили работу с программой. Также была закреплена техника составления тестов на базе GoogleTest.

6. Литература

- 1. Васильев А.Н. Самоучитель С++ с примерами и задачами. -СПб.: Наука и Техника, 2016. -480с.
- 2. Т. А. Павловская C/C++ Программирование на языке высокого уровня. СПб.:Питер, 2011. 461 с.
- 3. Крапенко С. Н. и др. Методы объектно-ориентированного программирования. http://e-learning.unn.ru/course/view.php?id=251.
- 4.Страуструп. Б. Курс «Язык программирование С++ для профессионалов» http://www.intuit.ru/studies/courses/98/98/info
- 5.Гергель В.П. Методические материалы по курсу "Методы программирования 2": [http://www.itmm.unn.ru/files/2018/10/Primer-1.1.-Struktury-hraneniya-mnozhestva.pdf], 2015.
- 6. http://ru.solverbook.com/spravochnik/matricy/