

Statistik I

Prof. Dr. Simone Abendschön 10. Einheit

Plan heute

Statistische Verteilungen

- Hintergrund Inferenzstatistik (Warum müssen wir uns damit beschäftigen?)
- Wahrscheinlichkeiten für diskrete und kontinuierliche Zufallsvariablen
- Rolle der (Standard-) Normalverteilung
- Übungsbeispiele

Lernziele

- (Übergeordnetes Lernziele der restlichen Einheiten: Sie wissen, warum wir uns mit Wahrscheinlichkeiten beschäftigen)
- Sie wissen was eine statistische Verteilung bzw.
 Wahrscheinlichkeitsverteilung ist
- Sie erweitern Ihre Kenntnisse über die sog.
 "Normalverteilung" und wissen wozu sie in der Statistik dient
- Sie können Flächenanteile und damit Wahrscheinlichkeiten innerhalb der Normalverteilung berechnen

Inferenzstatistik

- Forschungsfragen der quantitativen emp.
 Sozialforschung beziehen sich i.d.R. auf Grundgesamtheiten (Ziel: Verallgemeinerung)
- Datenerhebung und Datenanalysen werden i.d.R. anhand einer (Zufalls-) Stichprobe durchgeführt

"Müssen Corona endlich verstehen"

Statistikerin: Wer repräsentative Tests ablehnt, hat die Pandemie nicht verstanden

"Müssen Corona endlich verstehen"

Statistikerin: Wer repräsentative Tests ablehnt, hat die Pandemie nicht verstanden

FORDERUNG NACH REPRÄSENTATIVEN STUDIEN

Warum Statistiker bei Corona-Tests ein Wörtchen mitreden sollten

von Sabine Hedewig-Mohr Samstag, 28. März 2020

Repräsentative Umfrage und Stichprobe

 "Meinungsumfragen nennen sich oft 'repräsentativ', tatsächlich aber werden die Befragten meist nach dem Zufallsprinzip ausgewählt." (in "Vorwärts", 10/1994, S. 23)

- "Meinungsumfragen nennen sich oft 'repräsentativ', tatsächlich aber werden die Befragten meist nach dem Zufallsprinzip ausgewählt." (in "Vorwärts", 10/1994, S. 23)
- Def. "repräsentativ" quantitative Sozialforschung:
 - Stichprobenkennwerte sind erwartungstreue Schätzer für die Parameter der Grundgesamtheit
 - Voraussetzung: Jedes Element hat die gleiche oder eine angebbare Wahrscheinlichkeit in die Stichprobe zu gelangen

Grundlage Stichprobenziehung

- Stichproben sollen möglichst exaktes Abbild der Grundgesamtheit abgeben, "repräsentativ" sein
 - → Zufallsgesteuerte Auswahlverfahren können das am Besten gewährleisten
 - → Nur bei einer Zufallsstichprobe kann innerhalb statistischer Fehlergrenzen ein Befund auf die Grundgesamtheit übertragen werden
 - → Nur sie liefern unverzerrte und "erwartungstreue" Schätzer für die Parameter der Grundgesamtheit

Einfache Zufallsstichprobe

Einfache Zufallsstichprobe

Untersuchungseinheiten werden zufällig aus der Auswahlgesamtheit entnommen

"Urnenmodell"

Alle Einheiten haben die gleiche Wahrscheinlichkeit, in die Auswahl aufgenommen zu werden

Zufallsauswahl in der Praxis

- In der Praxis allerdings wird oft von einer reinen Zufallsauswahl abgewichen: Stufen, Schichten und Klumpen
- Warum?
 - Fehlendes bundesweites Adressenverzeichnis oder Telefonnummernverzeichnis aus denen gezogen werden kann
 - Man möchte Aussagen über eine bestimmte Gruppe treffen oder Vergleiche zwischen sozialen Gruppen vornehmen
 - Forschungspraktische Gründe

Geschichtete Zufallsauswahl

 Ziehung einfacher Zufallsstichproben innerhalb von Gruppen der Grundgesamtheit (Schichten), die entsprechend der Forschungsfrage definiert werden

Klumpenstichprobe

 Ziehung einer (Zufalls-) Stichprobe von Makroeinheiten (Schulen, Organisationen, Haushalten,... = Klumpen), innerhalb derer eine Befragung der Erhebungseinheiten erfolgt

Beispiel Integrationsbarometer des SV PTUS-LIEBIGUNIVERSITAT GIESSEN

Tab. 1 Eckdaten zum SVR-Integrationsbarometer 2018

Grundgesamtheit	Bevölkerung ohne und mit Migrationshintergrund in Deutschland ab 15 Jahren	
Art der Befragung	telefonische Interviews (CATI)	
realisierte Stichprobe	9.298 Fälle	
Erhebungszeitraum	19.07.2017 - 31.01.2018	
Stichprobendesign	Dual-Frame; disproportionale Schichtung nach Herkunftsgruppen und Bundesländern	
Auswahlgrundlagen	ADM-Telefonauswahlgrundlage 2017 Festnetz und Mobilnetz mit den Schichten Standard- und Auslandstarife, zusätzlich für spezielle Sprachgruppen onomastisch markierte Telefonbucheinträge	

Inferenzstatistik

Inferenzstatistik

Stichprobe	Wahrscheinlichkeits- verteilungen	Grundgesamtheit
Kennwerte	Parameter	Parameter
Mittelwert \bar{x}	Erwartungswert μ	Mittelwert μ
Standardabweichung s	Standardabweichung σ	Standardabweichung σ
Varianz s ²	Varianz σ^2	Varianz σ^2

Inferenzstatistik für SoWi

Beispiele

- Wie wahrscheinlich ist es, dass sich ein in einer Stichprobe gefundener Zusammenhang zwischen Bildungsniveau und Wahlentscheidung zugunsten einer Partei auch auf die Grundgesamtheit übertragen lässt?
- Lassen sich Lernerfolge auf ein neu entwickeltes E-Learning-Programm zurückführen oder sind sie dem Zufall geschuldet?
- Schüler*innen mit sozioökonomisch "gutem"
 Familienhintergrund haben wahrscheinlich einen höheren Lernerfolg beim "Home-Schooling" als welche deren Eltern sozioökonomisch schlechter gestellt sind.

Wahrscheinlichkeit und Zufall

- Stochastik
- Def. Wahrscheinlichkeit: Ein Maß für die Chance, dass bei einem Zufallsexperiment ein bestimmtes Ereignis eintritt.
- Lässt sich in einer (Dezimal-)Zahl zwischen 0 und 1 angeben, wird auch als Bruchzahl, bzw.
 Prozentwert ausgedrückt (0 bis 100%)

Wahrscheinlichkeit und Zufall

Zufallsexperiment:

- Münz-/Würfelwurf, Ziehung aus Urne...
- Unter gleichen Bedingungen beliebig oft wiederholbar
- Ausgang unterliegt dem Zufall (kann nicht vorhergesagt werden)

Ereignis:

 Ausgang eines Zufallsexperiments ("Kopf oder Zahl" etc.)

Zufallsexperiment A

- Ziehen einer Murmel aus einem Gefäß mit 50 weißen und 50 schwarzen Murmeln
 - 100 Murmeln entsprechen der Grundgesamtheit
 - Auszuwählende Murmel entspricht der Stichprobe

Zufallsexperiment A

- Ziehen einer Murmel aus einem Gefäß mit 50 weißen und 50 schwarzen Murmeln
 - 100 Murmeln entsprechen der Grundgesamtheit
 - Auszuwählende Murmel entspricht der Stichprobe
- Farbe der gezogenen Murmel kann nicht exakt vorhergesagt werden

Zufallsexperiment A

- Ziehen einer Murmel aus einem Gefäß mit 50 weißen und 50 schwarzen Murmeln
 - 100 Murmeln entsprechen der Grundgesamtheit
 - Auszuwählende Murmel entspricht der Stichprobe
- Farbe der gezogenen Murmel kann nicht exakt vorhergesagt werden
- ABER: die Wahrscheinlichkeit der Auswahl einer schwarzen oder weißen Murmel kann vorhergesagt werden!
 - 50/50 Chance schwarz bzw. weiß (0.5; 0,5, 50%-Wahrscheinlichkeit)

Zufallsexperiment B

Auswahl einer Murmel aus einem Gefäß mit 10 weißen und 90 schwarzen Murmeln

Zufallsexperiment B

- Auswahl einer Murmel aus einem Gefäß mit 10 weißen und 90 schwarzen Murmeln
- Farbe der Murmel kann nicht exakt vorhergesagt werden

Zufallsexperiment B

- Auswahl einer Murmel aus einem Gefäß mit 10 weißen und 90 schwarzen Murmeln
- Farbe der Murmel kann nicht exakt vorhergesagt werden
- ABER: die Wahrscheinlichkeit der Auswahl einer schwarzen oder weißen Murmel kann vorhergesagt werden!
 - Hohe Wahrscheinlichkeit schwarz

Zufallsexperiment C

- Gefäß 1: 50 weiße und 50 schwarze Murmeln,
 Gefäß 2: 10 weiße und 90 schwarze Murmeln
- Gegeben sei eine Stichprobe von n = 4; alle diese 4
 Murmeln seien schwarz

Zufallsexperiment C

- Gefäß 1: 50 weiße und 50 schwarze Murmeln,
 Gefäß 2: 10 weiße und 90 schwarze Murmeln
- Gegeben sei eine Stichprobe von n = 4; alle diese 4
 Murmeln seien schwarz
- → "Aus welchem Gefäß stammen die Murmeln?"

Zufallsexperiment C

- Gefäß 1: 50 weiße und 50 schwarze Murmeln,
 Gefäß 2: 10 weiße und 90 schwarze Murmeln
- Gegeben sei eine Stichprobe von n = 4; alle diese 4
 Murmeln seien schwarz
- "Aus welchem Gefäß stammen die Murmeln?"
 - Geringe Wahrscheinlichkeit für Gefäß 1, hohe Wahrscheinlichkeit für Gefäß 2 (weil 90 von 100 Murmeln schwarz sind)

Wahrscheinlichkeit

- Berechnung A-priori oder Laplace-Wahrscheinlichkeit für ein Ereignis A
- $P(A) = \frac{Zahl der f \ddot{u}r A g \ddot{u}nstigen Ereignisse}{Zahl aller m \ddot{o}glichen Ereignisse}$

Wahrscheinlichkeit

- Berechnung A-priori oder Laplace-Wahrscheinlichkeit für ein Ereignis A
- $P(A) = \frac{Zahl der f \ddot{u}r A g \ddot{u}nstigen Ereignisse}{Zahl aller m\"{o}glichen Ereignisse}$

Beispiele:

- Kartenspiel mit 52 Karten, Wahrscheinlichkeit für "Herz König": $\frac{1}{52}$
- Wahrscheinlichkeit für "Ass": $P(Ass) = \frac{4}{52}$

- "Wie hoch ist die Wahrscheinlichkeit, dass eine zufällig gezogene Karte die Farbe 'Pik' hat?"
- $P(Pik) = \frac{13}{52} = \frac{1}{4}$
- Brüche können auch in Dezimalschreibweise bzw. in Prozent dargestellt werden:
- $P(Pik) = \frac{13}{52} = \frac{1}{4} = 0.25 = 25\%$
- $P(Kopf) = \frac{1}{2} = 0.5 = 50\%$
- Wahrscheinlichkeit von 0 bis 100%

Kleine Übung

 Wie hoch ist die Wahrscheinlichkeit, dass bei einem Wurf mit einem "fairen" Würfel die Zahl "6" gewürfelt wird?

Wahrscheinlichkeitsverteilung

- Gibt Wahrscheinlichkeit an, dass ein bestimmtes Ereignis eintrifft
- Bei (leicht) abzählbaren Ereignissen in Form von Säulendiagrammen

Abb. 5-2: Wahrscheinlichkeitsverteilung für den Würfelwurf

Abbildung aus Kuckartz et al. 2013: 121

Empirische Wahrscheinlichkeit

- Schätzwert für eine Wahrscheinlichkeit
- Zufallsexperiment wird sehr häufig wiederholt und dabei die relative Häufigkeit von Ereignisausgängen ermittelt (heutzutage mit Computersimulation)

- Zusammenhang zwischen Wahrscheinlichkeit und relativen Häufigkeit
- Wahrscheinlichkeit für ein Ereignis entspricht genau seinem relativen Anteil am Ereignisraum

- Beispiel:
 - 100 Teilnehmer einer politikwissenschaftlichen Univeranstaltung, 70 aus BASS-Studiengang, 30 aus Master.

Beispiel:

- 100 Teilnehmer einer politikwissenschaftlichen Univeranstaltung, 70 aus BASS-Studiengang, 30 aus Master.
- Sie wählen zufällig eine Person für eine Befragung aus. Wie hoch ist die Wahrscheinlichkeit, dass diese Person aus dem BA kommt?

 Zusammenhang zwischen Wahrscheinlichkeit und relativen Häufigkeit

■ Relative Häufigkeit für BA: 70/100=7/10=0,7 → 70% Wahrscheinlichkeit

 Zusammenhang zwischen Wahrscheinlichkeit und relativen Häufigkeit

Tabelle: Wirksamkeit von Comirnaty

Wie viele Personen erkrankten an Covid-19?	Placebo	Comirnaty	Prozentuale Verringerung des Risikos
Alle Teilnehmenden	93 von 10.000	5 von 10.000	ca. 95 %
16 bis 55 Jahre	115 von 10.000	5 von 10.000	ca. 96 %
Über 55 Jahre	64 von 10.000	4 von 10.000	ca. 94 %

Quelle: https://www.gesundheitsinformation.de/der-impfstoff-comirnaty-bnt162b2-biontech-pfizer-zur-impfung-gegen-corona.html

- Wahrscheinlichkeit entspricht der relativen Häufigkeit eines Ereignisses
- Funktioniert v.a. gut für leicht abzählbare Ereignisse (diskrete "endliche" Zufallsvariablen)
- Was tun bei Variablen mit vielen Ausprägungen oder stetigen kontinuierlichen Variablen?

 Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1; P(X > 4) = ?$$

Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1$$
; $P(X > 4) = 2/10$

Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n= 1; P(X > 4) = 2/10 P(X < 5) = ?$$

•Wahrscheinlichkeiten können als Anteile konzeptualisiert und entsprechend grafisch dargestellt werden

$$n=1$$
; $P(X > 4) = 2/10 (20\%) P(X < 5) = 8/10 (80\%)$

Übung

Bestimmen Sie die Wahrscheinlichkeiten anhand der Grafik:

a.
$$P(X > 2) = ?$$

b.
$$P(X > 5) = ?$$

c.
$$P(X < 3) = ?$$

- Wahrscheinlichkeit entspricht der relativen Häufigkeit eines Ereignisses
- Funktioniert v.a. gut für leicht abzählbare Ereignisse (diskrete "endliche" Zufallsvariablen)
- Was tun bei Variablen mit vielen Ausprägungen oder stetigen kontinuierlichen Variablen?

- Bei kontinuierlichen Zufallsvariablen wird mit Verteilungsfunktionen gearbeitet, da es unendlich viele mögliche Ereignisse gibt
- Wahrscheinlichkeit für ein ganz bestimmtes Ereignis geht gegen 0

 Verschiedene Verteilungsmodelle der Stochastik: Normalverteilung als zentrales Modell

Normalverteilung (Dichtefunktion)

- Wahrscheinlichkeiten für kontinuierliche Variablen können nicht direkt berechnet werden
- Stattdessen: Wie wahrscheinlich ist es, dass eine Zufallsvariable in ein bestimmtes Intervall fällt
- Normalverteilungskurve als Dichtefunktion
- Die Fläche unter einer Dichtefunktion ist 1 (bzw. 100%)

 Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)
- Inferenzstatistik: zentrales Modell für Wahrscheinlichkeitsverteilungen für kontinuierliche Zufallsvariablen, sog. "stetige Verteilungen"

Normalverteilung

- Deskriptiv: symmetrische Verteilungsform ("Glocke"): Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf
- Im "wirklichen Leben": einige Merkmale treten normalverteilt in der Bevölkerung auf (IQ, Körpergröße)
- Inferenzstatistik: zentrales Modell für Wahrscheinlichkeitsverteilungen für kontinuierliche Zufallsvariablen, sog. "stetige Verteilungen"
- (Stichprobenkennwerte sind (unter bestimmten Bedingungen) normalverteilt → nächste Einheit)

Normalverteilung

- Beschreibt eine symmetrische Verteilungsform in Form einer Glocke
- Werte konzentrieren sich in der Mitte, treten mit größerem Abstand zur Mitte immer seltener auf

Normalverteilung

Abbildung 10.4: Normalverteilungen mit verschiedenen Parametern \bar{x} und s^2

Gehring/Weins 2010

- Symmetrisch
- Mittelwert=Median=Modus
- Größte Häufigkeiten in der Mitte, geringere Häufigkeiten rechts/links von der Mitte
- Standardnormalverteilung (z-Transformation): $\mu = 0$ und $\sigma = 1$

Z-Transformation > Standardnormalverteilung

- Ermittlung der Wahrscheinlichkeit, dass eine kontinuierliche (Zufalls-) Variable in ein bestimmtes Intervall fällt über den Flächenanteil, der unterhalb der Dichtefunktion liegt
- Verteilungsfunktion: Integral über der Dichtefunktion gibt an, wie wahrscheinlich es ist, dass eine Zufallsvariable kleiner oder gleich einem gegebenen Wert ist.
- Flächenanteil unterhalb der Dichte entspricht der Wahrscheinlichkeit, dass eine kontinuierliche Zufallsvariable dieser Verteilung in diesem Intervall liegt
- Rechnerische Bestimmung ist sehr aufwendig (→ z-Tabelle,
 Statistikprogramme werden genutzt)

- Wahrscheinlichkeitsdichte für Werte zwischen -∞ und +∞ Fläche unter der Kurve = 1, d.h. 100%
- Wahrscheinlichkeit für Wert aus einem bestimmten Bereich = Fläche über diesem Intervall → Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Häufigkeiten/Wahrscheinlichkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu-1\cdot\sigma;\mu+1\cdot\sigma]$	68.3%
$[\mu-1.96\cdot\sigma;\mu+1.96\cdot\sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu\!-\!2.58\cdot\sigma;\mu\!+\!2.58\cdot\sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Gegeben sei für eine Population von N = 50.000 Personen deren Körpergröße (in cm) mit N(175;5) – wie groß sind 95% aller Personen?

Intervall	Flächenanteil
$[\mu-1\cdot\sigma;\mu+1\cdot\sigma]$	68.3%
$[\mu - 1.96 \cdot \sigma; \mu + 1.96 \cdot \sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

- •Wahrscheinlichkeiten/Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Intervall	Flächenanteil
$[\mu - 1 \cdot \sigma; \mu + 1 \cdot \sigma]$	68.3%
$[\mu-1.96\cdot\sigma;\mu+1.96\cdot\sigma]$	95%
$[\mu - 2 \cdot \sigma; \mu + 2 \cdot \sigma]$	95.4%
$[\mu - 2.58 \cdot \sigma; \mu + 2.58 \cdot \sigma]$	99.0%
$[\mu - 3 \cdot \sigma; \mu + 3 \cdot \sigma]$	99.7%

Gegeben sei für eine Population von N = 50.000 Personen deren Körpergröße (in cm) mit N(175;5) – wie groß sind 95% aller Personen? [175–1,96·5; 175+ 1,96·5] = [165,2; 184,8] "95% aller Personen haben eine Körpergröße zwischen 165,2cm und 184,8cm"

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = \frac{X - \mu}{\sigma}$$

$$3.P(z > 2) =$$

Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100.

Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen/auszuwählen ("sampeln")?

$$P(X > 700) = ?$$

- 1.Welcher (Flächen-)Anteil ist größer als 700?
- 2.Exakte Position von X durch z-Wert bestimmen:

$$z = (700-500)/100 = 2.0$$

$$3.P(z > 2) =$$

$$z = \frac{X - \mu}{\sigma}$$

Flächenanteile/Standardnormalverteilung

- •Wahrscheinlichkeiten/ Häufigkeiten werden durch Flächen repräsentiert
- •100% aller Fälle liegen unter der Normalverteilungskurve
- •Bestimmte Intervalle entsprechen bestimmten Flächenanteilen

Beispiel 2: Wie hoch ist die Wahrscheinlichkeit, jdn zufällig mit einem Wert größer 700 zu Ziehen?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimme

$$z = (700-500)/100 = 2.0$$

3.
$$P(z > 2) = 2,28\%$$

- Berechnung der Flächenanteile der Dichte verschiedener Verteilungsmodelle und damit der Wahrscheinlichkeiten für kontinuierliche Variablen ist sehr aufwendig → für viele Verteilungen (auch Standardnormalverteilung) entsprechende Tabellen
- Statistikprogramme berechnen die Flächenanteile
- Z-Tabelle: Typischerweise sind die Flächen links vom Wert der Variablen tabelliert.

z-Tabelle

Anhang A

Tabellen zur Berechnung der Fläche unter den Wahrscheinlichkeitsverteilungen

z-Verteilung

z-Wert	.0	.1	.2	.3		.5	.6	.7	.8	.9
-2,9.	0,0019	0,0018	0,0018	0,0017	0,0016	0,0016	0,0015	0,0015	0,0014	0,0014
-2,8.	0,0026	0,0025	0,0024	0,0023	0,0023	0,0022	0,0021	0,0021	0,0020	0,0019
-2,7.	0,0035	0,0034	0,0033	0,0032	0,0031	0,0030	0,0029	0,0028	0,0027	0,0026
-2,6.	0,0047	0,0045	0,0044	0,0043	0,0041	0,0040	0,0039	0,0038	0,0037	0,0036
-2,5.	0,0062	0,0060	0,0059	0,0057	0,0055	0,0054	0,0052	0,0051	0,0049	0,0048
-2,4.	0,0082	0,0080	0,0078	0,0075	0,0073	0,0071	0,0069	0,0068	0,0066	0,0064
-2,3.	0,0107	0,0104	0,0102	0,0099	0,0096	0,0094	0,0091	0,0089	0,0087	0,0084
-2,2.	0,0139	0,0136	0,0132	0,0129	0,0125	0,0122	0,0119	0,0116	0,0113	0,0110
-2,1.	0,0179	0,0174	0,0170	0,0166	0,0162	0,0158	0,0154	0,0150	0,0146	0,0143

z-Tabelle

- West		-	-	*3		_	,00	.7	0	.9
z-Wert	0.	.1	.2	.3	.4	.5	.6		.8	
0,0.	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1.	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2.	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3.	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4.	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5.	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6.	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7.	0,7580	0,7611	0,7642	0,7673	0,7703	0,7734	0,7764	0,7794	0,7823	0,7852
0,8.	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9.	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0.	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1.	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2.	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9015
1,3.	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4.	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9319
1,5.	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6.	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7.	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8.	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9.	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0.	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
		1							1	_

(Gehring/Weins Formelsammlung S.

13f) 75

Beispiel 2

- Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100
- Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen ("sampeln")?

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Anteil ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = \frac{X - \mu}{\sigma}$$

$$3.P(z > 2) =$$

-2,0.	0,0228	0,022
-1,9.	0,0287	0,028
-1,8.	0,0359	0,035

Wahrscheinlichkeit und Normalverteilung

Beispiel Wh.:

Gegeben sei eine Verteilung in der Population mit μ = 500 und σ = 100. Wie hoch ist die Wahrscheinlichkeit, aus dieser Population zufällig ein Individuum mit einem höheren Wert als 700 zu ziehen/auszuwählen ("sampeln")

$$P(X > 700) = ?$$

- 1. Welcher (Flächen-)Antel ist größer als 700?
- 2. Exakte Position von X durch z-Wert bestimmen:

$$z = (700-500)/100 = 2.0$$

3.
$$P(z > 2) = 2,28\%$$

- •z-Werte-Tabelle (z-Tabelle, unitnormal table) enthält Anteile für alle z-Werte; Typischerweise sind die Flächen **links** vom jeweiligen z-Wert tabelliert.
- Anhand der Flächenanteile können die z-Werte bestimmt werden
- Wahrscheinlichkeit äquivalent zu den Flächenanteilen

Übungsbeispiel 1)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

z-Werte für Flächenanteile/Wahrscheinlichkeiten bestimmen:

Praktische Vorgehensweise:

- Zunächst Normalverteilung mit der gesuchten Fläche skizzieren
- Dann entsprechende Werte aus z-Tabelle auswählen

Übungsbeispiel 1)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Übungsbeispiel 1)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten >1? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert > 1.0 zu erhalten?

Vorgehen:

- Skizzieren NV und gesuchte Fläche
- Bestimme z = 1.00 in der z-Werte Tabelle: 0,8413
- P(z > 1.0) = 1-0.8413 = 0.1587 = 15.87%

Übungsbeispiel 2)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

z-Werte für Flächenanteile/Wahrscheinlichkeiten bestimmen:

Praktische Vorgehensweise:

- Zunächst Normalverteilung mit der gesuchten Fläche skizzieren
- Dann entsprechende Werte aus z-Tabelle auswählen

Übungsbeispiel 2)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

Übungsbeispiel 2)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <1,5? Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert < 1.5 zu erhalten?

Vorgehen:

- -Skizzieren NV und gesuchte Fläche
- Bestimme z = 1.5 in der z-Werte Tabelle:

$$P(z < 1.5) = 0.9332 = 93.32\%$$

Übungsbeispiel 3)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <-0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Übungsbeispiel 3)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <- 0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Übungsbeispiel 3)

Bsp. c)

Welcher Flächenanteil der Normalverteilung entspricht z-Werten <- 0,5?

Wie groß ist die Wahrscheinlichkeit, für normalverteilte Werte einen z-Wert <-0,5 zu erhalten?

Vorgehen:

Skizzieren NV und gesuchte Fläche

Bestimme z = -0.5 in der z-Werte Tabelle:

$$P(z < -0.5) = 0.3085 = 30.85\%$$

Übungsbeispiel 4)

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

Übungsbeispiel 4)

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

Übungsbeispiel 4)

Welcher z-Wert separiert die obersten 10% aller Werte von den restlichen 90% der Verteilung?

- Skizzieren der Normalverteilung und der gesuchten Fläche
- Bestimme P = 0.90 in der z-Werte Tabelle
- Bestimme korrespondierenden z-Wert: z = 1.28

Übungsbeispiel 5)

Welche z-Werte separieren die mittleren 60% aller Werte von den restlichen 40% der Verteilung?

Übungsbeispiel 5)

Welche z-Werte separieren die mittleren 60% aller Werte von den restlichen 40% der Verteilung?

- Skizzieren der Normalverteilung und der gesuchten Fläche
- Bestimme P = 0.20 in der z-Werte Tabelle
- Bestimme korrespondierende z-Werte:

$$z = -0.84$$
; $z = 0.84$

Anwendungsbeispiel A:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

Anwendungsbeispiel A:

Gegeben sei eine Verteilung von IQ-Werten mit μ= 100 und σ= 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?</p>

- Anwendungsbeispiel A:
- Gegeben sei eine Verteilung von IQ-Werten mit μ = 100 und σ = 15. Wie groß ist die Wahrscheinlichkeit, zufällig eine Person mit einem IQ < 120 auszuwählen?
- 1) Transformieren Rohwerte in z-Werte

$$z = \frac{X-\mu}{\sigma} = \frac{120-100}{15} = \frac{20}{15} = 1.33$$

IQ-Wert von 120 entspricht einem z-Wert von 1.33 IQ-Werte kleiner als 120 entsprechen z-Werten kleiner als 1.33

2) Korrespondierenden z-Wert in Tabelle auswählen:

$$P = 0.9082$$

$$P(X < 120) = P(z < 1.33) = 0.9082 = 90.82\%$$

Anwendungsbeispiel B:

- Wahrscheinlichkeiten bzw. Anteile zwischen zwei (normalverteilten) X-Werten bestimmen
- In der Gießener Innenstadt werden Geschwindigkeitsmessungen für Autofahrer durchgeführt. Bei der letzten Überprüfung sei für Autofahrer eine Durchschnitts-Geschwindigkeit von μ= 58km/h mit einer Standardabweichung von σ= 10 festgestellt worden. Die Messwerte seien (näherungsweise) normalverteilt.
- Wie hoch ist der Anteil der Autofahrer, die zwischen 55km/h und 65km/h in der Gießener Innenstadt fahren?

Anwendungsbeispiel B:

1) Transformieren der Rohwerte in z-Werte

Für X =
$$55$$
km/h: $z = \frac{X-\mu}{\sigma} = \frac{55-58}{10} = -\frac{3}{10} = -0.3$

Für X = 65km/h:
$$z = \frac{X-\mu}{\sigma} = \frac{65-58}{10} = \frac{7}{10} = 0.7$$

2. Verteilung mit gesuchtem Intervall skizzieren

3a. Bestimmen der Fläche links von X = 65

3b. Bestimmen der Fläche links von X = 55

Für
$$z = -.30$$
, $P = 0.38$

4. Subtrahieren: 0.76 - 0.38 = 0.38

Anwendungsbeispiel B:

- Wahrscheinlichkeiten/Anteile zwischen zwei (normalverteilten) X-Werten bestimmen
- In der Gießener Innenstadt werden Geschwindigkeitsmessungen für Autofahrer durchgeführt. Bei der letzten Überprüfung sei für Autofahrer eine Durchschnitts-Geschwindigkeit von μ= 58km/h mit einer Standardabweichung von σ= 10 festgestellt worden. Die Messwerte seien (näherungsweise) normalverteilt.
- Wie hoch ist der Anteil der Autofahrer, die zwischen 55km/h und 65km/h in der Gießener Innenstadt fahren? → 38%

Anwendungsbeispiel C:

X-Werte für Wahrscheinlichkeiten/Anteile bestimmen

- Der Asta der JLU finanziert eine sozialwissenschaftliche Untersuchung zur Belastung durch Pendeln unter Studierenden. Die Ergebnisse zeigen, dass von den Studierenden im Durchschnitt μ= 24.3 Minuten pro Studientag für An-und Abreise verbraucht werden; die Standardabweichung sei σ= 10.
- Wieviel Minuten müssten Sie mindestens pendeln, um zu den 10% Studis mit der höchsten Pendeldauer für An-und Abreise zum Studienort zu gehören?

- Anwendungsbeispiel C: X-Werte für Wahrscheinlichkeiten/Anteile bestimmen
- 1. Bestimme 90% bzw. 0.90 in der z-Werte Tabelle und den dazugehörigen z-Wert: z = 1.282
- 2. Bestimme das Vorzeichen des gesuchten z-Wertes: positiv
- 3. Transformiere den z-Wert in den Rohwert:

$$X=\mu+z\sigma$$

= 24.3 + 1.282·10
= 24.3 + 12.82
= 37.1

Anwendungsbeispiel C:

X-Werte für Wahrscheinlichkeiten/Anteile bestimmen

- Der Asta der JLU finanziert eine sozialwissenschaftliche Untersuchung zur Belastung durch Pendeln unter Studierenden. Die Ergebnisse zeigen, dass von den Studierenden im Durchschnitt μ = 24.3 Minuten pro Studientag für An-und Abreise verbraucht werden; die Standardabweichung sei σ = 10.
- Wieviel Minuten müssten Sie mindestens pendeln, um zu den 10% Studis mit der höchsten Pendeldauer für An-und Abreise zum Studienort zu gehören?
- → ca. 37 Minuten

Anwendungsbeispiel D (gleiche Population wie eben):

- X-Werte zwischen zwei
 Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

Anwendungsbeispiel D (gleiche Population):

- X-Werte zwischen zwei
 Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1) 90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2) Bestimmung der gesuchten z-Werte: ...

Anwendungsbeispiel D (gleiche Population):

- X-Werte zwischen zwei Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1) 90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2) Bestimmung der gesuchten z-Werte: z = +1.65 und z = -1.65 trennen jeweils 5% von der Gesamtfläche
- 3) Bestimmung der X-Werte:
- $X=\mu+z\sigma=24.3+1.65\cdot10=40.8$
- $X=\mu+z\sigma=24.3+(-1.65)\cdot 10=7.8$

- Anwendungsbeispiel D:
- X-Werte zwischen zwei Wahrscheinlichkeiten/Anteilswerten bestimmen
- Wie lautet die Spannweite für die mittleren 90% der Verteilung?

- 1)90% = jeweils 5% auf beiden Seiten der symmetrischen Normalverteilung
- 2)Bestimmung der gesuchten z-Werte: z = +1.65 und z = -1.65 trennen jeweils 5% von der Gesamtfläche
- 3) Bestimmung der X-Werte:
- $X=\mu+z\sigma=24.3+1.65\cdot10=40.8$
- $X=\mu+z\sigma=24.3+(-1.65)\cdot 10=7.8$

90% aller Gießener Studierenden pendeln zwischen 7.8 und 40.8 Minuten zum Studienort, was einer Spannweite von 33 entspricht

Zusammenfassung

- Dichtefunktion der Normalverteilung als Hilfsmittel, um Häufigkeiten bzw. Wahrscheinlichkeiten für kontinuierliche Variablen zu ermitteln
- Wahrscheinlichkeiten können als (Flächen-)Anteile interpretiert werden
- Für normalverteilte Daten liegen tabellarische Darstellungen für interessierende Anteilwerte/Wahrscheinlichkeiten vor, die mit den jeweiligen z-Werten korrespondieren
 - Anhand der Formel zur z-Transformation können X-Werte in z-Werte und z-Werte in X-Werte transformiert werden
 - Für z-Werte können die zugehörigen Wahrscheinlichkeiten/Anteile aus der z-Tabelle entnommen werden

Lernziele

- (Übergeordnetes Lernziele der restlichen Einheiten: Sie wissen, warum wir uns mit Wahrscheinlichkeiten beschäftigen)
- Sie wissen was eine statistische Verteilung bzw.
 Wahrscheinlichkeitsverteilung ist
- Sie erweitern Ihre Kenntnisse über die sog.
 "Normalverteilung" und wissen wozu sie in der Statistik dient
- Sie können Flächenanteile und damit Wahrscheinlichkeiten innerhalb der Normalverteilung berechnen

- Formel Berechnung der Dichtefunktion der Normalverteilung
- Dichtefunktion / Flächenanteil

Verteilungsfunktion

- Integral über der Dichtefunktion gibt an, wie wahrscheinlich es ist, dass eine Zufallsvariable kleiner oder gleich einem gegebenen Wert ist.
- Rechnerische Bestimmung ist sehr aufwendig (→ z-Tabelle, Statistikprogramme werden genutzt)

Verteilungsfunktion

Abbildung 19.9: Verteilungsfunktion der Standardnormalverteilung

Eigenschaften der Normalverteilung

Berechnung Dichtefunktion

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \text{ mit: } -\infty < x < \infty$$

- Exp: Exponentialfunktion e^x mit e = 2,718282 ... (Eulersche Zahl)
- \blacksquare π : 3,142...
- μ : Mittelwert der Verteilung
- σ : Standardabweichung der Verteilung

• Setzt man für μ = 0 und σ = 1 vereinfacht sich die Dichte der Normalverteilung zu:

$$\varphi(\mathbf{x}) = \frac{1}{1 \cdot \sqrt{2\pi}} \exp\left[-\frac{(\mathbf{x} - 0)^2}{2 \cdot 1^2}\right]$$
$$= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{\mathbf{x}^2}{2}\right]$$

