Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Versuch Kapillarität und Viskosität Protokoll

Praktikant: Michael Lohmann

Felix Kurtz

E-Mail: m.lohmann@stud.uni-goettingen.de

felix.kurtz@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Versuchsdatum: 26.05.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

1 Einleitung					
2	Theorie 2.1 Kapillarität 2.1.1 Mohrsche Waage 2.2 Viskosität	4			
3	S .	6 6			
4	Auswertung4.1 Dichte der Flüssigkeiten4.2 Oberflächenspannung	7 7 8			
5	Diskussion	8			
6	5 Anhang				
Lit	teratur	8			

1 Einleitung

In diesem Versuch sollen folgende Effekte untersucht werden: Kapillarität, die bei der Wechselwirkung zwischen Flüssigkeiten und Oberflächen auftritt. Viskosität, die innere Reibung eines Fluids.

Diese beiden Phänomene spielen im alltäglichen Leben eine große Rolle und sind deshalb besonders untersuchenswert. Pflanzen transportieren Wasser und darin enthaltene Nährstoffe durch Kapillarwirkung von den Wurzeln nach oben in die Blätter.

Die Viskosität einer Flüssigkeit beeinflusst maßgeblich deren Fließverhalten. So ist der Asphalt der Straßen nicht fest, sondern nur sehr zähflüssig und kann so (in kleinem Maße) Spannungen und Risse ausgleichen.

2 Theorie

2.1 Kapillarität

Zwischen Molekülen wirken *Dipolkräfte* und *Van-der-Waals-Kräfte*. Van-der-Waals-Kräfte bilden sich vor allem bei langkettigen Molekülen aus, die polarisierbar sind. Wird dann durch die statistische Bewegung der Elektronen für eine kurze Zeit ein Dipol ausgebildet, kann dieser per Influenz ein nahegelegenes Molekül ebenfalls polarisieren und zieht dieses an. An der Oberfläche einer Flüssigkeit wirken also nur die Kräfte ins Innere der

Abbildung 1: Modell zur Oberflächenspannung aus [2, S. 198]

Flüssigkeit, während in der Flüssigkeit auf ein Molekül Kräfte von allen Seiten wirken und sich so ausgleichen.

Die Oberflächenspannung einer Flüssigkeit σ ist durch den Energiegewinn dW definiert, der sich ergibt wenn sie eine Oberfläche dA benetzt: $\sigma = \frac{dW}{dA}$

Ist eine Kapillare mit Radius r und eine Flüssigkeit mit der Oberflächenspannung σ und der Dichte ρ gegeben, so wird diese in der Kapillare um h ansteigen, da sie durch das Benetzen Energie gewinnt. Diese wird in potentielle Energie umgewandelt. Es gilt also:

$$\sigma \cdot A = mgh$$

Dabei ist $A=2\pi\ r\cdot h$ und $m=\rho\pi\ r^2\cdot h$. Für die Steighöhe h folgt also:

$$h = \frac{2\sigma}{\rho \ g \ r} \tag{1}$$

oder für die Oberflächenspannung σ

$$\sigma = \frac{1}{2}h \ \rho \ g \ r \tag{2}$$

Man unterscheidet zwischen Kohäsion, Kräfte zwischen gleichartigen Molekülen, und Adhäsion, Kräfte, die an Grenzschichten auftreten.

2.1.1 Mohrsche Waage

Mit der Mohrschen Waage kann man die Dichte einer Flüssigkeit bestimmen. Sie beruht auf dem *archimedische Prinzip*, welches besagt, dass die Auftriebskraft eines Körpers so groß ist, wie die Gewichtskraft der verdrängten Flüssigkeit.

Zuerst wird die Waage außerhalb der Flüssigkeit so eingestellt, dass sie sich in der

Abbildung 2: Mohrsche Waage [1]

Gleichgewichtslage befindet. Dann taucht man den Probekörper in die Flüssigkeit, deren Dichte bestimmt werden soll. Aufgrund der Auftriebskraft beginnt der Körper zu steigen. Deshalb hängt man an die Hebelarmseite des Probekörpers kleine Gewichte verschiedener Massen und in unterschiedlichem Abstand zum Drehpunkt, sodass die

Gleichgewichtslage wiederhergestellt wird. Das von diesen Gewichten verursachte Drehmoment entspricht dem Drehmoment der Auftriebskraft. Wenn man das Volumen des Probekörpers nicht kennt, muss zuerst Wasser als Referenz genommen werden.

$$\rho_F = \frac{\sum_{i=1}^{n} m_{F,i} \cdot r_{F,i}}{\sum_{i=1}^{n} m_{W,i} \cdot r_{W,i}} \cdot \rho_W$$
(3)

Dabei ist $m_{F,i}$ die i-te Masse der Flüssigkeit F, welche im Abstand $r_{F,i}$ angehängt wurde. ρ_W bezeichnet hierbei die Dichte von Wasser, die $\rho_W \approx 997 \text{ kg/m}^3$ beträgt [2, S. 258].

2.2 Viskosität

Viskosität ist ein Maß dafür, wie zähflüssig eine Flüssigkeit ist, also wie stark die innere Reibung ist.

Man unterscheidet zwei Fälle von Strömungen, wenn ein Körper von einem anderen Medium umflossen wird:

- laminare Strömung: Das Fluid strömt in Schichten, die sich nicht miteinander vermischen.
- turbulente Strömung: Es kommt zu Verwirbelungen. Die Beschreibung dieser ist sehr komplex, soll hier aber nicht näher betrachtet werden.

Die Reynoldszahl Re ist ein Maß für den Übergang von laminarer zu turbulenter Strömung. Sie ist so definiert:

$$Re = \frac{\rho \ v \ d}{\eta} \tag{4}$$

Bewegungsgleichung von Flüssigkeiten unter innerer Reibung:

$$F = \eta A \frac{dv}{dr} \tag{5}$$

in einem Rohr:

$$F = \eta \ 2\pi r \frac{dv}{dr} \tag{6}$$

Setzt man diese Kraft gleich der Druckkraft $F_p = \pi r^2 \cdot (p_1 - p_2)$ kann das Hagen-Poiseuille Gesetz der laminaren Rohrströmung hergeleitet werden. [2, S.125]

$$\dot{V} = \frac{\pi(p_1 - p_2)}{8\eta l} r^4 \tag{7}$$

3 Durchführung

Zuerst werden die Durchmesser der 3 verschiedenen Kapillaren jeweils dreimal mit dem Messmikroskop vermessen. Dabei wird die Kapillare fokussiert, dann der linke oder rechte Rand anvisiert. Die Stellung der Micrometerschraube wird abgelesen, bevor man die gegenüberliegende Seite anvisiert und erneut die Skala abliest. Aus der Differenz der beiden ergibt sich der Durchmesser der Kapillare.

3.1 Kapillarität

Man reinigt die Kapillaren gründlich mit Lösungsmittel und destilliertem Wasser, bevor man sie mit der Wasserstrahlpumpe trocknet. Dieser Vorgang muss später nach jeder Flüssigkeit wiederholt werden. Dabei ist darauf zu achten, dass beim Trocknen alle Flüssigkeitsreste entfernt werden und sich ganz besonders kein Film am oberen Ende bildet, der einen erheblich größeren Wiederstand beim steigen hervorrufen würde.

Nun füllt man sich die drei auf Oberflächenspannung zu untersuchende Flüssigkeiten destilliertes Wasser, Methanol und Ethylenglykol in einen Becher ab. Mithilfe der Mohr'schen Waage (Abb. 2) bestimmt man die jeweilige Dichte. Dabei ist darauf zu achten, dass der Probekörper sauber ist und ganz in die Flüssigkeit eintaucht.

Dann misst man für jede der drei Flüssigkeiten und für jede der drei Kapillaren jeweils dreimal den Höhenunterschied h_{Kap} der Flüssigkeitspegel, der sich ergibt, wenn man die Kapillare in die Flüssigkeit taucht und anschließend bis zur Oberfläche herauszieht.

Anschließend werden Methanol und Ethylenglykol in spezielle Behälter gegossen und somit vorschriftsmäßig entsorgt. Nun müssen alle Gefäße und die Kapillaren gereinigt werden.

3.2 Innere Reibung

Zuerst misst man den Durchmesser des Glasgefäßes und den Abstand der Strichmarken 50 und 45 von diesem, die Länge der Kapillaren und die Temperatur des destillierten Wassers. Dann befestigt man eine der Kapillaren am Auslaufstutzen des Gefäßes, hält die Öffnung zu und befüllt alles mit destillierten Wasser bis zur Strichmarke 50. Es wird die Ausflusszeit bis zum Erreichen der Strichmarke 45 gemessen. Dabei ist das ausfließende Wasser in einem Gefäß aufzufangen und wiederzuverwenden. Diesen Vorgang wiederholt man auch für die anderen beiden Kapillaren.

Nun wählt man die Kapillare mit dem kleinsten Durchmesser und misst zu dieser während des Ausflusses die Zeit in Abhängigkeit der Höhe der Wassersäule.

Abschließend muss alles gesäubert werden und die Arbeitsfläche trocken gewischt werden.

Abbildung 3: Versuchsaufbau zur Messung der Viskosität [1]

Aufhängung einzelner Gewichte	5000mg	500mg	50mg	Dichte $[kg/m^3]$
Dest. Wasser	10cm		1cm	997
Äthylenglykol	10cm	9cm	3cm	1088
Methylalkohol	8cm	4cm		837

Tabelle 1: Position der einzelnen Gewichte an der Moor'schen Waage bei den unterschiedlichen Flüssigkeiten

4 Auswertung

4.1 Dichte der Flüssigkeiten

Um die Dichte von Methylalkohol und Ethylenglykol zu bestimmen, wurde die Moor'sche Waage verwendet. Sie basiert auf dem archimedischen Prinzip und misst über den Auftrieb, den ein (bekannter) Körper in einer unbekannten Flüssigkeit erfährt, deren Dichte. Sie ist so konzipiert, dass die Dichte einer unbekannten Flüssigkeit sich so errechnet:

Die Literaturwerte nach [3] (S. 130-131) lauten für Ethylenglykol $1113 {\rm kg/m^3}$ und für Methanol $790 {\rm kg/m^3}.$

Flüssigkeit	Kapillar	m. Steighöhe [cm]	Oberflächenspannung $[10^{-3}N/m]$
Destiliertes Wasser	grün	1.45 ± 0.04	
	blau	2.327 ± 0.035	
	braun	3.23 ± 0.04	
Ethylenglykol	grün	0.85 ± 0.04	
	blau	1.383 ± 0.022	
	braun	1.98 ± 0.06	
Methylalkohol	grün	0.517 ± 0.022	
	blau	0.98 ± 0.10	
	braun	1.33 ± 0.04	

Tabelle 2: Steighöhe unterschiedlicher Flüssigkeiten in unterschiedlichen Kapillaren

4.2 Oberflächenspannung

Daraus lässt sich die Oberflächenspannung der drei Flüssigkeiten bestimmen. Sie berechnet sich aus der Formel

$$\sigma = \frac{1}{2}h\rho \cdot gr \tag{8}$$

Wobei h die Steighöhe im Kapillar mit dem Radius r der Flüssigkeit mit der Dichte ρ ist und g die Erdbeschleunigung.

5 Diskussion

Aufgrund von fehlender Zeit schafften wir es leider nicht, die Messung der Ausflusszeit des mittleren Kapillars zu bestimmen. Da wir jedoch die Messungen des kleinen und großen Kapillars durchführen konnten, haben wir wenigstens einen Eindruck, wie die Kapillardicke mit der Ausflussgeschwindigkeit zusammenhängt.

6 Anhang

Literatur

- [1] Lehrportal der Universität Göttingen, Kapillarität und Viskosität, https://lp.uni-goettingen.de/get/text/3638, abgerufen 22.06.14 18:32 Uhr
- [2] DIETER MESCHEDE (2010): Gerthsen Physik, 24. Auflage, Springer Heidelberg Dordrecht London New York
- [3] WOLFGANG PFEIL ET. AL. (2009): Das große Tafelwerk (interaktiv), 1. Auflage, Cornelsen Berlin