Beliefs paying Rent

Rationaler Umgang mit KI im Game Design

Outline

- 1. From (Server) Farm to Table: How does AI work?
- 2. Mundane Utility
- 3. Straight Lines on a Graph

How do they generate slop?

LLM: Large Language Model

Transformer

allows us to track the relationships of tokens to each other

Gradient descent

learns the relationships by trying to predict the next word billions of times

The model

based on these relationships completes text

SFT and RLHF*

*Supervised Fine Tuning and Reinforcement Learning From Human Feedback

From (Server) Farm to Table

- Base Model
- 2. Supervised Fine Tuning
- 3. Reinforcement Learning From Human Feedback
- 4. Context Window
 - a. Company's System Prompt (hidden, highest priority)
 - b. Your Custom System Prompt !!!
 - c. (Memory Features)
 - d. Current Chat History
 - e. Current Prompt
- 5. Temperature (RNG)

Core Takeaways

Prediction Engine

Scale changes everything.

Excels when close to it's training data.
 Struggles out of distribution.

Paying Rent

General Principles for Utilizing Al

- Doing lots of boring work. Fast.
- Context, Context, Context.
- Manage a Smart Intern
- Write a System Prompt
- Choose your Fighter

Please, pay for one these. And use "reasoning".

Hard Problems = Reasoning Model:

Opus, o3 or Gemini 2.5 Pro

Mundane Utility

The Obvious: Content Generation

- Text: Lore, Dialog, Snippets, Tooltips, Explanations, Localization/Translation, etc.
- Marketing
- Placeholder Assets: Meshy AI + Manual Fixes, DeepMotion for Animation
- Not so Obvious: Content Validation
 - Validating adherence to style, code, vibe or theme
 - Synthetic Focus Groups
 - Good at Scale

Code

Could a Programmer with a week of time solve this? So can Claude.

- QA
 - Generate 50 edge cases for this feature
 - Bug Discovery

- Rubber Ducking
 - Works for Code, works for design

Production Efficiency

Al for the boring, repetitive tasks that slow down development

Automated Documentation is better than no Documentation.

- Asset Organization:
 - Labeling and searching Assets

Data Analysis

- Models are better than you at statistics.
 - Statistical Modelling of whatever data you have.

Not as Obvious:

- Large Language Models are good at analysing Large amounts of Language
- Filtering, compiling and looking at Playtesting data.
- Google does large data best: <u>aistudio.google.com</u>

Transforming Natural Language

Not as Obvious:

- turning human-readable specs into machine-readable logic
- Design docs into pseudocode
- Gameplay into state machines

Lancer: A LLM game design benchmark

ChatGPT o3 with 2 prompts:

- 'Analyze these mechanics and model their dynamics'
- 'Apply lossless compression to find the shortest rules that produce the same gameplay'

What it did well

Quantitative Analysis

Systems Thinking

Compression

Quantitative Analysis

Assumptions

- Both pilots in identical Everest frames (10 HP, 4 Structure, 6 Heat, EVA 8, no armour).
- Each turn they Barrage with an Assault Rifle (1d6 + 2 Kinetic, no Accuracy) at range.
- No cover, talents, or Brace/Overcharge for first-order clarity.

Metric (10 k sims)	Mean	90 % CI	Notes
Rounds to first structure	3.4	2 – 5	Hit chance ≈ 65 %; 5.5 dmg/hit
Rounds to destruction (4 Structure)	11.8	8 – 16	HP resets create "sawtooth" DPR curve
Per-round kill prob. once target at 1 Structure	18 %	_	Direct-Hit + follow-up spike

Systems Thinking

Compression

```
3 — Turn Skeleton
  sql
                                                                                        start-of-turn effects → protocols (free, 1/turn)
  move ≤ speed
  action_pool = 2xQUICK | 1xFULL
  optional: OVERCHARGE once/round → +QUICK, heat ↑ cost_ladder
  free actions any time
  end-of-turn effects
  reaction (max 1/round) when trigger
cost ladder = [1, 1d3, 1d6, 1d6+4] heat; then repeats at top
```

What it did well

Quantitative Analysis

- Monte Carlo simulation of 10,000 combats
- Discovered the "3-4 rounds to first structure damage" pattern
- Calculated that +1 Accuracy saves ~0.4 rounds to first structure

Systems Thinking

• Identified three core feedback loops (Heat-Stress-Action, HP-Structure-Attrition, Status Flag Economy)

Compression Achievement

- Reduced 15,000 words to 1,300 while preserving all mechanics
- Created a functional "codec" that could rebuild the entire system

What it did bad

Missing Details

• NPC rules, mount restrictions, weapon tags

Missing Accuracy

The 'lossless' compression actually lost several subsystems

Great for analysis, but you still need to understand the game to spot errors

Chat History

Analyse

https://chatgpt.com/share/6848a299-049c-8000-a851-fe576862cebe

Compression

https://chatgpt.com/share/684725d a-ff84-8000-bdbb-92a9a56fc458

Straight Lines on a Graph

The length of tasks AI can do is doubling every 7 months

Task length (at 50% success rate)

Cognition To Cheap to Meter

Price decline: 9x to 900x per year, median 50x (Epoch AI, 2025)

Cost decreasing by 10x every year (A16Z, 2024)

Capability Trends

- My Price Cheap
- Agents
- Test-Time Compute
- Multi-modality

- Tool-use
- Fine Tuning and Personalisation
- Memory

The AI you use right now, is the worst it will ever be.

What to do?

- 1. Use the dang thing.
- 2. Pick a benchmark, something you are good at, and test AI against it.
- 3. Don't stop thinking.

Make Your Beliefs Pay Rent

JONAS HEINKE

CO-FOUNDER
PLAYINSIGHT STUDIOS,
TECHNICAL DIRECTOR

playinsightstudios.com

Email me: heinke.jonas@googlemail.com

- API Costs
- Benchmarks, What AI is best at what, etc.
- Open Source vs Closed Source
- GDPR
- Prompt Engineering
- Al Safety
- Chinese Al
- Everything else related to AI

Questions?

On which I can speak, but will not for scope reasons

- Ethics
- Copyright
- How this will affect the Trout population
- The Impact on Jobs
- People Are Worried About Al Killing Everyone

Questions?

Further Reading

- ai-2027.com
- lesswrong.com
- Nick Bostrom Superintelligence (2014)
- Eliezer Yudkowsky, Nate Soares If Anyone Builds It, Everyone Dies (2025)
- Zvi Mowshowitz Don't Worry About the Vase
- Dwarkesh Patel Podcast

Pessimistic estimates of the energy usage of ChatGPT with GPT-40 across for different query lengths: typical (<100 words), long (~7,500 words), and maximum context length (~75,000 words), with an average response length of 400 words.

CC-BY epoch.ai

(People are often curious about how much energy a ChatGPT query uses; the average query uses about 0.34 watt-hours, about what an oven would use in a little over one second, or a high-efficiency lightbulb would use in a couple of minutes.

It also uses about

It also uses about 0.000085 gallons of water; roughly one fifteenth of a teaspoon.)

- Sam Altman (The Gentle Singularity), June 10. 202