

TRACKING SYSTEMS TO SUPPORT

THE

COMMON LUNAR LANDER

SEPTEMBER 17, 1991

MISSION PHASES REQUIRING TRACKING INSTRUMENTATION

- O IN TRANSIT TRACKING FOR STATE INFORMATION (DSN AND/OR TDRSS)
 - ACCOMPLISHED IN THE COMMUNICATIONS EQUIPMENT
- O SURFACE RELATIVE TRACKING TO SUPPORT LANDING
 - TOPIC OF THIS PRESENTATION

MAJOR DRIVERS FOR TRACKING SYSTEM DEFINITION

- O TRACKING SUBSYSTEM FLIGHT HARDWARE DUE OCTOBER, 1993
- O PERFORMANCE REQUIREMENTS/COMPLEXITY EQUIVALENT TO SURVEYOR
 - MAXIMUM RANGE: 16 Km
 - VELOCITY ACCURACY: 30 cm/sec + 2% of TOTAL VELOCITY (V< 200 m/s)
 30 cm/sec + 3% of TOTAL VELOCITY (V>200 m/s)
 - RANGE ACCURACY: 9 m + 5% RANGE (R>300 m)
 1.3 m + 5% RANGE (R<300 m)

RESULTS OF VENDOR SURVEY

- O NO LANDING SYSTEM EXISTS OFF-THE-SHELF
- O NEW TECHNOLOGIES, SPECIFICALLY DOD, ARE PROMISING
 - NOT DEVELOPED FOR DE-ORBIT TO LANDING
 - NOT DEVELOPED FOR SPACE
 - EXCITING FOR THE NEXT GENERATION INSTRUMENTATION
- O SURVEYOR/APOLLO/VIKING APPROACHES AVAILABLE
 - KNOWLEDGE/EXPERTISE STILL AVAILABLE
 - UPGRADE TO TODAY'S TECHNOLOGY REASONABLE AND FEASIBLE
 - HISTORICALLY PROVEN

SELECTED BASELINE

THE RECOMMENDED SYSTEM APPROACH FOR THE INITIAL BASELINE FOLLOWS THE VIKING HARDWARE DESIGN UPGRADED TO TODAY'S TECHNOLOGY.

BASIC DESCRIPTION

- O ALTIMETER: PULSE SYSTEM
- O FOUR BEAM VELOCITY SENSING RADAR

BASELINE SYSTEM PROPERTIES

- O LANDING RADAR
 - SIZE: 76.2 cm X 76.2 cm X 8.26 cm
 - WEIGHT: 22.1 Kg; POWER: 68 W
 - ANTENNA: INCORPORATED ON 76.2X76.2 SURFACE
- O ALTIMETER
 - SIZE: 23.4 cm X 14.7 cm X 20.1 cm
 - WEIGHT: 5.1 Kg; POWER: 28.5 W
- O ALTIMETER ANTENNA (CONICAL HORN)
 - WEIGHT: 0.7 Kg; DIAMETER: 15.25 cm; LENGTH: 15.25 cm

LANDING INSTRUMENTATION CONCEPT

William X. Culpepper/EE6/x31479

Tracking and Communications Division

PROGRAMMATIC CONSIDERATIONS

- SCHEDULE (ASSUMING JANUARY 1992 START)
 - FLIGHT HARDWARE DELIVERY JUNE 1, 1994
- COSTING
 - ALTIMETER \$875K/COPY
 - RADAR \$675K/COPY
 - NON-RECURRING COSTS: ALTIMETER \$2.2M; RADAR \$1.8M
 - PRICING ESTIMATED FROM VIKING BUT IN TODAY'S DOLLARS

O CAVEATS

- PARTS TO BE SPACE QUALIFIED WHERE AVAILABLE, MIL SPEC OTHERWISE
- MATERIAL SELECTION AND HANDLING TO BE MIL STANDARD AT TELEDYNE RYAN
- MANUFACTURING, FAB AND PROCESSING TO BE MIL STANDARD AT TELEDYNE RYAN
- DOCUMENTATION TO MIL STANDARDS
- WORK DONE TO VIKING CLEAN ROOM STANDARDS
- ENVIRONMENTAL QUALIFICATION TO NASA STANDARDS