LOG111 Hand-in 3

Frank Tsai

September 30, 2024

1

Proof. By construction, the set $\Gamma_1 \cup \Gamma_2$ is unsatisfiable, so by compactness, there is a finite unsatisfiable subset $\Delta \subseteq \Gamma_1 \cup \Gamma_2$.

Consider

$$\Delta_1 := \Delta \setminus \Gamma_2$$
 $\Delta_2 := \Delta \setminus \Gamma_1$.

We claim that Δ_1 and Δ_2 respectively axiomatize $\mathsf{Th}(\Gamma_1)$ and $\mathsf{Th}(\Gamma_2)$. We prove that this is the case for Δ_1 ; the argument for Δ_2 is completely analogous.

We need to prove that for any formula φ , $\Gamma_1 \vdash \varphi$ iff $\Delta_1 \vdash \varphi$. To this end, it suffices to prove their semantic counterpart by soundness and completeness.

The if direction is an immediate consequence of monotonicity. In the other direction, suppose that $\Gamma_1 \models \varphi$ and let $M \models \Delta_1$. If $M \models \Gamma_1$ then we are done. On the other hand, if $M \not\models \Gamma_1$ then it follows that $M \models \Delta_2$, but this means that $M \models \Delta_1 \cup \Delta_2$ contradicting the fact that $\Delta = \Delta_1 \cup \Delta_2$ is unsatisfiable. \square

2

1.

$$\frac{[c_x < c_y]^2 \qquad [c_y < c_x]^1}{\frac{\frac{c_x < c_x}{\bot}}{c_x \nleq c_y}} \underset{RAA_2^2}{\xrightarrow{T}} T$$

$$\frac{\frac{\bot}{c_x \nleq c_x} \underset{RAA_2^1}{RAA_2^1}}{\xrightarrow{L} \underset{C_y \nleq c_x}{RAA_2^1}} \bot$$