

1c.) <u>fteration 2:</u>

• Assign points to nearest centroid:

Cluster 1: (2,5), (1,2), (6,4), (7,5)

Cluster 2: (5,8), (7,5), (6,4)

Cluster 3: (2,10), (4,9), (8,4)

5

· update centroids: Centroid 1: ((2+1+6+7)/4, (5+2+4+5)/4)=(4,4) Centroid 2: (6,5.67) Centroid 3: (4.7,7.7)

1c.

Id.) <u>Iteration</u> 3.

The centroids will not change anymore, so we know that the algorithm has converged

Centroid 1: (4,4)

Centroid 2: (6,5.67)

Centroid 3: (4.7,7.7)

1e.

le.) Cluster 1 was most the same as in part a.), after the 1st iteration, but had 2 points added to it after iteration 2.

Cluster 2 was changed only in iteration (after (8,4) was taken from it and placed in Cluster 3.

Cluster 3 was changed only in iteration (after (5,8) was taken from it and placed in Cluster 2.

1f.

If.) 2 iterations are required for the clusters to converge

1g.

2.)		Sing	le_	Link	<u> </u>	<u>(Min</u>					
PI	PI l	P2	<i>P3</i>	P4 0.65	P5		Merge simitari	points	with	least	
P2	0.10	1	.64	.47	.98						
P3	0.41	-64	1	.44	.85						
		-47	-44	١	.16						
PS	1	. 98	.85	.76							
PIUPZ	P	1UP2 1			P4 0-47	P5 0.35					
P3	C)-41		' (0.44	.85		Pı	P ₂	P3	Py Ps
P4	0	7.47	\rightarrow	14	1	-76					
P5	0	.35	1.	85 .	76	1					
		1 9	י ט וי	ח מ	186	P3	194				
P1 U P2	UPS	5	70	1	,,,,	0-41					
P3			0.4	(ſ	0.44	P	P_1	Ps	P3 P4
РЧ			0	.47] [
	0-				P1 () PZ U	P5UP3	P4			
P1 U	Y2	U I	5) P3	3	1		0-44	_		
PY						0.4	14	1			
Final	Т	Domo	4000	a a m	:						
1 11/000		247000)) and	-						
						P ₁ F	2 95	P3	Py		

	PI	P2	93	PY	P5	
PI	_	0.10	0.41	0.65	0.35	I
P2	0.10	1	,64	.47	.98	
P3	0.41	-64		.44	.85	
P4	0.55	-47	-44	1	.16	
PS	0-35	. 98	.85	.76		

Merge points with the most similarity

	P1	P2 U P5	P3	P4_
Pl		0.35	0.41	055
P2 U P5	0.35		0.85	0.76
P3	0.41	0.85	- 1	.44
P4	.59	0.76	.44	I

Pi	P ₂	Ps	P3	Рч

	1 PI	PZUPSUP3	[P4
PI	l	0-41	0.55
P2 U P5 UP3	0-41		0.76
PU	0.95	0 - 76	l.

PS

PI P2

1 P3 P4

Ps

P₂

Pi

P3

Py

Sim
$$(5,8) = \frac{(b-4.7)(5-63)}{(6-4.7)^2} \cdot \frac{(5-6.3)^2}{(5-6.3)^2}$$

User $5,9 \Rightarrow 5xy \Rightarrow Product 3$

Sim $(5,9) = \frac{(3-4.7)(3-4)}{(3-41)^2} \cdot \frac{(3-4)^2}{(3-4)^2} \cdot \frac{(3-4)^2}{(3-4)^2} \cdot \frac{(3-4)^2}{(5-4.7)^2 + (3-4.7)^2 + (6-4.7)^2} \cdot \frac{(5-4.7)(4-2.5)}{(5-4.7)^2 + (3-4.7)^2 + (6-4.7)^2} \cdot \frac{(5-3.5)^2}{(5-3.5)^2 + (4-3.5)^2} = \frac{1.95}{3.58} = 0.54$

Top $\frac{3}{3.58} = 0.54$

User's with the highest absolute of the ents: users $1, e, 9$

Prediction = $1 \cdot \frac{1}{1} \cdot \frac$

3b.

3b.) Hem - Hem Collab Filtering,
$$|N|=2$$
, cosme similarity = $\lim_{z \to 0} (x_1 y_2) = \lim_{z \to 0} (x_2 y_2) = \lim_{z \to 0} (x_1 y_2) = \lim_{z \to 0} (x_2 y_2) = \lim_{z \to 0} (x_1 y_2) = \lim_{z \to 0} (x_2 y_2) = \lim_{z \to 0} (x_1 y_2) = \lim_{z \to 0} (x_2 y_2) = \lim_{z \to 0} (x_1 y_2) = \lim_{$

4a.

Optimal number of clusters (K): 2

4c.

WSSSE for K=2: 2338.7528589985814
WSSSE for K=3: 1956.2269857452052
WSSSE for K=4: 1695.2531197975961
WSSSE for K=5: 1518.2228986203206
WSSSE for K=6: 1450.3193373498814
WSSSE for K=7: 1271.9487840634365
WSSSE for K=8: 1247.457223452873
WSSSE for K=9: 1238.9891012552953
WSSSE for K=10: 1129.940404898411

The smallest WSSSE is when K = 10.

5.

Mean Squared Error (MSE): 0.8294242729268162

6c.

	precision	recall	f1-score	support
0	0.86	0.86	0.86	2495
1	0.86	0.87	0.86	2505
accuracy			0.86	5000
macro avg	0.86	0.86	0.86	5000
weighted avg	0.86	0.86	0.86	5000

86% accuracy - this is above average