Chapter 7

Prove the following statements.

Exercise (12). There exists a positive real number x for which $x^2 < \sqrt{x}$.

Proof: Suppose that $x=\frac{1}{4}$. Observe that substituting for x in our inequality $x^2<\sqrt{x}$ gives $(\frac{1}{4})^2=\frac{1}{16}<\frac{1}{2}=\sqrt{\frac{1}{4}}$. Thus $x=\frac{1}{4}$ is such a positive real number.

Exercise (18). There is a set X for which $\mathbb{N} \in X$ and $\mathbb{N} \subseteq X$.

Proof: Suppose that $X = \mathbb{N} \cup \{\mathbb{N}\}$. Observe that $\mathbb{N} \in X$ and that $\mathbb{N} \subseteq X$. Thus $X = \mathbb{N} \cup \{\mathbb{N}\}$ is such a set.

Exercise (21). Every real solution of $x^3 + x + 3 = 0$ is irrational.

Proof: (By Contradiction) Suppose for the sake of contradiction that there exists a rational solution to $x^3 + x + 3 = 0$, that is to say that there is an $x = \frac{a}{b}$ where $a, b \in \mathbb{Z}$ in its most reduced form such that $(\frac{a}{b})^3 + \frac{a}{b} + 3 = 0$. Observe that multiplying our equation by b^3 gives $a^3 + ab^2 + 3b^3 = 0$. Consider these 3 cases:

Case 1: Suppose a is odd and b is odd. Then the left-hand side is a sum of 3 odd numbers, which is odd, meaning 0 is odd. This is a contradiction.

Case 2: Suppose a is odd and b is even. Then the left-hand side is a sum of 2 even numbers and an odd number, meaning 0 is odd. This is also contradiction.

Case 3: Suppose a is even and b is odd, likewise the left-hand side is a sum of 2 even numbers and an odd number, meaning 0 is odd. This is yet again another contradiction.

Thus it follows that every real solution of $x^3 + x + 3 = 0$ must be irrational.

Exercise (31). If $n \in \mathbb{Z}$, then gcd(n, n + 1) = 1.

Proof: Suppose d is an integer and that $d \mid n$ and $d \mid (n+1)$. Then it follows that $d \mid (n+1)-n$ which implies $d \mid 1$. Thus the greatest common divisor of n and n+1 is in fact 1. \square

Exercise (35). Suppose $a, b \in \mathbb{N}$. Then $a = \gcd(a, b)$ if and only if $a \mid b$.

Proof: Suppose $a = \gcd(a, b)$. Then by definition $a \mid a$ and more importantly $a \mid b$.

Conversely suppose $a \mid b$. Then it must be the case that $a \leq \gcd(a, b)$ since a divides

itself and $a \mid b$. Since $gcd(a,b) \mid a$ then a = gcd(a,b) * x where $x \in \mathbb{Z}$. As all integers are positive, it follows that $a \ge \gcd(a, b)$.

Since
$$a \leq \gcd(a, b)$$
 and $a \geq \gcd(a, b)$, then $a = \gcd(a, b)$.

Chapter 8

Use the methods introduced in this chapter to prove the following statements.

Exercise (4). If $m, n \in \mathbb{Z}$, then $\{x \in \mathbb{Z} : mn \mid x\} \subseteq (\{x \in \mathbb{Z} : m \mid x\} \cap \{x \in \mathbb{Z} : n \mid x\}.$

Proof: Suppose $a \in \{x \in \mathbb{Z} : mn \mid x\}$. This means $a \in \mathbb{Z}$ and $mn \mid a$. By definition of divisibility, there is an integer k such that a = mn * k. Therefore a = m(n * k) and a = n(m * k). From a = m(n * k), it follows that $m \mid a$ so that $a \in \{x \in \mathbb{Z} : m \mid x\}$. Similarly from a = n(m * k), it follows that $n \mid a$ so that $a \in \{x \in \mathbb{Z} : n \mid x\}$. Thus by the definition of the intersection of two sets, we have $a \in \{x \in \mathbb{Z} : m \mid x\} \cap \{x \in \mathbb{Z} : x \in \mathbb{Z} : x$ $\mathbb{Z}: n \mid x$. Thus $\{x \in \mathbb{Z}: mn \mid x\} \subseteq (\{x \in \mathbb{Z}: m \mid x\} \cap \{x \in \mathbb{Z}: n \mid x\}.$

Exercise (6). Suppose A, B and C are sets. Prove that if $A \subseteq B$, then $A - C \subseteq B - C$.

Proof: Suppose $A \subseteq B$. Let $x \in (A - C)$, by definition this means $x \in A \land x \notin C$. Since $x \in A$ and $A \subseteq B$, this means $x \in B$. Since $x \in B$ and $x \notin C$ it follows that $x \in B - C$. Thus $A - C \subseteq B - C$.

Exercise (7). Suppose A, B and C are sets. If $B \subseteq C$, then $A \times B \subseteq A \times C$.

Proof: Suppose $B \subseteq C$ and let $(x,y) \in A \times B$. Then by definition of the Cartesian product $x \in A$ and $y \in B$. Since $B \subseteq C$ it follows that $y \in C$. Thus $x \in A$ and $y \in C$ implies $(x,y) \in A \times C$. Therefore $(x,y) \in A \times B$ implies $(x,y) \in A \times C$. Hence $A \times B \subseteq A \times C$.

Exercise (9). If A, B and C are sets, then $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

$$A \cap (B \cup C) = \{x : x \in A \land x \in (B \cup C)\}$$
 definition of interesection
$$= \{x : x \in A \land (x \in B \lor x \in C)\}$$
 definition of union
$$= \{x : (x \in A \land x \in B) \lor (x \in A \land x \in C)\}$$
 distributive law
$$= \{x : (x \in A \cap B) \lor (x \in A \cap C)\}$$
 definition of intersection
$$= (A \cap B) \cup (A \cap C)$$
 definition of union

Thus completing the proof.

Exercise (10). If A and B are sets in a universal set U, then $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

Proof: Observe the following:

$$\overline{A \cap B} = U - (A \cap B) \qquad \text{definition of compliment}$$

$$= \{x : (x \in U) \land (x \notin A \cap B) \qquad \text{definition of negation}$$

$$= \{x : (x \in U) \land \neg ((x \in A) \land (x \in B)) \qquad \text{definition of interesection}$$

$$= \{x : (x \in U) \land (\neg (x \in A) \lor \neg (x \in B)) \qquad \text{demorgans law}$$

$$= \{x : (x \in U) \land (x \notin A) \lor (x \notin B) \qquad (x \in U) = (x \in U) \land (x \in U)$$

$$= \{x : (x \in U) \land ((x \notin A) \lor (x \in U) \land (x \notin B)) \qquad \text{regroup}$$

$$= \{x : (x \in U) \land ((x \notin A)) \cup \{x : (x \in U) \land (x \notin B)\} \qquad \text{definition of union}$$

$$= (U - A) \cup (U - B) \qquad \text{definition of negation}$$

$$= \overline{A} \cup \overline{B} \qquad \text{definition of compliment}$$

Thus completing the proof.

Proof: Observe the following:

$$(A \cup B) - C = \{x : (x \in a \lor x \in B) \land x \notin C\}$$
 def of union and negation
$$= \{x : (x \in a) \land (x \notin C) \lor (x \in B) \land (x \notin C)\}$$
 regroup
$$= \{x : ((x \in a) \land (x \notin C)) \lor ((x \in B) \land (x \notin C))\}$$
 regroup
$$= \{x : ((x \in a) \land (x \notin C))\} \cup \{x : ((x \in B) \land (x \notin C))\}$$
 definition of union
$$= (A - C) \cup (B - C)$$
 definition of negation

Thus completing the proof.

Exercise (Reflection Problem). • How long did it take you to complete each problem? What part of the assignment took the most time? Why?

Response: This one went rather smoothly, a couple of minutes at most for each. The ones that took the most time were the last problems in chapter 8 due to formatting and writing it all out.

• What was easy for you? Why do you think that was so?

Response: Anything involving existence proofs felt really easy, felt like a little dopamine boost. Probably the most relaxing in a newspaper puzzle sort of way but perhaps thats the ultimate aim. To have it all feel that relaxing.

• What was challenging for you? What made it challenging?

Response: That proof involving greatest common divisors (problem 31) weirdly enough, I got hung up on it and my solution differs from the one in the back of the book. Perhaps I'm missing something but I feel like my logic was good albeit simple. I'd like to know why my solution wouldn't work if it doesn't so I stuck to my initial solution.

• Compare your answers to the odd numbered exercises to those in the back of the textbook. What did you learn from this comparison?

Response: I'm not sure this time around to be honest, I'm starting to grow skeptical about whether I should even be consulting them. The most helpful solutions

this time around I felt were for the problems that weren't on the assignment as it demonstrated how one should present. For example, 10 and 14 are very similar problems to 11 and 15. \Box