Unit 3 - Thermochemistry

Thermochemistry

Thermochemistry: the study of the energy changes involved in chemical and physical processes.

- kinetic energy is the energy of motion
- potential energy is the stored energy an object has as a result of its condition
- the joule (J) is equivalent to a kg·m²/s²
- 1 kJ = 1000 J
- the density of water is 1.00 g/mL
- $\Delta T = T_{\text{final}} T_{\text{initial}}$

Thermal Energy: the sum of all the kinetic energies of all the particles of a sample of matter.

Temperature: a measure of the average kinetic energy of all the particles of a sample of matter.

The ΔT is dependent on:

- amount of heat exchanged
- mass of the substance being measured
- type of substance being measured

Endothermic: describes the process during which heat enters a system.

- $\hookrightarrow \Delta H$ is +ve because the enthalpy of the system \uparrow **Exothermic**: describes the process during which heat leaves a system.
- $\hookrightarrow \Delta H$ is -ve because the enthalpy of the system \downarrow A *system* is the object or substance being studied, and the *surroundings* are everything else in the universe.

Open System: a system that can exchange both matter and energy with the surroundings.

- e.g. uncovered pot of potatoes boiling on the stove **Closed System**: a system that can exchange only energy with the surroundings.
- e.g. pressure cooker with potatoes boiling on the stove **Isolated System**: a system that cannot exchange either energy or matter with the surroundings.
- e.g. a pot of potatoes inside an insulated container
- \star It is difficult to completely isolate a system; there is no truly isolated system except the universe itself.

First Law of Thermodynamics

First Law of Thermodynamics: energy can be converted from one form to another but cannot be created or destroyed.

- $E_{\text{universe}} = \text{constant}$
- $\Delta E_{\text{universe}} = 0$
- universe = system + surroundings
- $E_{\text{universe}} = E_{\text{system}} + E_{\text{surroundings}}$
- $\Delta E_{\text{universe}} = \Delta E_{\text{system}} + \Delta E_{\text{surroundings}} = 0$
- $\Delta E_{\text{system}} = -\Delta E_{\text{surroundings}}$

When a system absorbs energy, the surroundings release it and when a system releases energy, the surroundings absorb it.

Enthalpy

Enthalpy, H: the total energy of the system plus the pressure times the volume, or H = E + PV.

- e.g. $CO(g) + 2 H_2(g) \longrightarrow CH_3OH(l) + 128.6 \text{ kJ}$ or $CO(g) + 2 H_2(g) \longrightarrow CH_3OH(l) \Delta H = -128.6 \text{ kJ}$
- \rightarrow Sometimes called the *heat content* of the system.
- \rightarrow The enthalpy change of a system depends only on the initial state (condition) and on the final state of the system and is represented as $\Delta H = \Delta E + \Delta (PV)$. **Enthalpy of Solution**, $\Delta H_{\text{solution}}$: the enthalpy change associated with a solute dissolving in a solvent.
 - bond energy is the energy required to break a chemical bond
 - $\bullet\,$ larger bond energies result in stabler bonds
 - $\bullet\,$ stable bonds have low potential energy

 ΔH = Reactant Bond energy – Product Bond energy \rightarrow The difference between the total amount of energy used to break bonds and the total energy released when the bonds reform is equal to the enthalpy change of the reaction.

 \star Strong bonds have low potential energy and weak bonds have high potential energy.

Second Law of Thermodynamics

Second Law of Thermodynamics: when two objects are in thermal contact, heat is always transferred from the object at a higher temperature to the object at a lower temperature until the two objects are at the same temperature (related to entropy).

 \star When two systems have reached the same temperature, they are in *thermal equilibrium*.

Calorimetry

The following equation enables you to calculate the amount of heat absorbed or released by a substance. e.g. the *law of conservation of energy*

$$Q = m \cdot c \cdot \Delta T$$

- $Q \rightarrow heat(J)$
- $m \to mass (g)$
- $c \to \text{specific heat capacity } (J/g \cdot^{\circ} C)$
- $\Delta T \rightarrow \text{change in temperature (°C)}$
- \rightarrow If ΔT is positive, then Q is positive.
- +ve value for Q means that heat entered the system.
- \rightarrow If ΔT is negative, then Q is negative.
- $-\mathrm{ve}$ value for Q means that heat left the system.

Specific Heat Capacity, *c*: the amount of energy needed to increase the temperature of one gram of a substance by one degree Celsius.

Q: If the same amount of heat were added to 1 g samples of water, methanol, and aluminum, which substance would undergo the greatest ΔT ?

- $c_{\text{water}} = 4.19 \text{ J/g} \cdot ^{\circ} \text{C}$
- $c_{\mathrm{methanol}} = 2.918 \mathrm{\ J/g} \cdot ^{\circ} \mathrm{C}$
- $c_{\text{aluminum}} = 0.900 \text{ J/g} \cdot^{\circ} \text{C}$

A: Aluminum would undergo the greatest temperature change because it requires the least amount of energy to increase the temperature of one gram of it.

 \star The range of enthalpy changes is lowest for physical changes, intermediate for chemical changes, and highest for nuclear changes.

Molar Enthalpy of Combustion

Standard Enthalpy of a Reaction, $\Delta H_{\mathbf{r}}^{\circ}$: the enthalpy change for the amount in moles of each reactant and product as determined by the coefficient of the term in the chemical equation.

 \rightarrow The enthalpy change of a reaction is equal to the amount in moles, n, of a specified reactant or product multiplied by the standard molar enthalpy change for the specified reactant or product.

$$\Delta H_{\rm r} = n\Delta H_{\rm r}^{\circ}$$
 or $\Delta H_{\rm comb} = n\Delta H_{\rm comb}^{\circ}$

- $\Delta H_{\rm comb}$ represents enthalpy of combustion
- $\Delta H_{\text{comb}}^{\circ}$ represents the standard molar enthalpy of combustion
- \rightarrow If you know the enthalpy of a reaction, you can use it to determine the amounts of the reactants or products involved.
- \star It is not possible to measure the total enthalpy of a system, but it is possible to measure the *change* in the enthalpy of a system.

${\bf Calorimeter}$

Calorimeter: a device used to measure the heat released or absorbed during a chemical or physical process occurring within it.

Simple Calorimeter: a calorimeter made of two stacked vessels covered by a lid with holes in the top just large enough for a thermometer and a stirrer.

- the process takes place under constant pressure
- the amount of heat that is exchanged between the calorimeter and the system is equal to the change in the enthalpy of the system

Bomb Calorimeter: measures heat released during a combustion reaction at a constant volume.

- the reaction takes place inside an inner metal chamber, called a *bomb*
- the reactants are ignited using an electrical coil
- ullet the units of C are joules per degree Celsius

 $C_{\text{bomb calorimeter}} = C_{\text{water}} + C_{\text{thermometer}} + C_{\text{stirrer}} + C_{\text{container}}$

Thermochemical Equations

The enthalpy of a reaction is directly proportional to the amounts of the substances that react.

What is the thermochemical equation for this dissolution? Given:

$$m_{\mathrm{NaOH}} = 5.50 \mathrm{g}, V_{\mathrm{water}} = 175 \mathrm{mL}, \Delta T_{\mathrm{water}} = 2.1^{\circ} \mathrm{C}$$

$$q_{\text{water}} = m_{\text{water}} + c_{\text{water}} + \Delta T_{\text{water}}$$
 (1)

$$= (175 \text{ g})(4.184 \text{ J/g}^{\circ}\text{C})(2.1^{\circ}\text{C}) \qquad (2)$$

$$= 1537.62 \text{ J or } 1.53762 \text{ kJ}$$
 (3)

$$n_{\mathrm{NaOH}} = \frac{5.50~\mathrm{g}}{39.9971~\mathrm{g/mol}} \approx 0.13751~\mathrm{mol}$$

$$\Delta H_{\rm rxn}^{\circ} = \frac{-1.53762 \text{ kJ}}{0.13751 \text{ mol}} \approx -11 \text{ kJ/mol}$$

 $NaOH(s) \longrightarrow NaOH(aq) + 11 kJ$

 \star Divide the enthalpy of the reaction by the moles of the reactant to solve for the enthalpy term.

Potential Energy Diagram

The slow step (rate-determining) in a chemical process is the step with the highest activation energy.

- breaking a bond is an endothermic process
- \bullet forming a bond is an exothermic process

 \star There is no difference in enthalpy change for the catalyzed and the uncatalyzed reaction.

Hess's Law

Hess's Law: the enthalpy change of a physical or chemical process depends only on the initial and final conditions of the process. The enthalpy change of a multistep process is the sum of the enthalpy changes of its individual steps.

Manipulating chemical equations:

$$2 \text{ NH}_{3}(q) + \frac{7}{2} O_{2}(q) \longrightarrow 2 \text{ NO}_{2}(q) + 3 \text{ H}_{2}O(q)$$

$$-2 \times O \frac{1}{2} \text{ N}_{2}(q) + \frac{3}{2} \text{ H}_{2}(q) \longrightarrow \text{ NH}_{3}(q) \qquad -2 \times \Delta \text{H} = -46.2 \text{ kJ}$$

$$2 \times O \frac{1}{2} \text{ N}_{2}(q) + O_{2}(q) \longrightarrow \text{ NO}_{2}(q) \qquad 2 \times \Delta \text{H} = +33.8 \text{ kJ}$$

$$3 \times O \text{ H}_{2}(q) + \frac{1}{2} O_{2}(q) \longrightarrow \text{ H}_{2}O(q) \qquad 3 \times \Delta \text{H} = -241.8 \text{ kJ}$$

$$O \text{ 2NH}_{3}(q) \longrightarrow \text{ N}_{2}(q) + 3 \text{ H}_{2}(q) \qquad \Delta \text{H} = 92.4 \text{ kJ}$$

$$O \text{ 2NH}_{3}(q) + \frac{3}{2} O_{2}(q) \longrightarrow 2 \text{ NO}_{2}(q) \qquad \Delta \text{H} = 67.6 \text{ kJ}$$

$$O \text{ 3H}_{2}(q) + \frac{7}{2} O_{2}(q) \longrightarrow 2 \text{ NO}_{2}(q) + 3 \text{ H}_{2}O(q)$$

$$\Delta \text{ H} = -725.4 \text{ kJ}$$

$$\Delta \text{ H} = 92.4 \text{ kJ} + 67.6 \text{ kJ} + (-725.4 \text{ kJ})$$

$$\Delta \text{ H} = -565.4 \text{ kJ}$$

$$\therefore \text{ the enthalpy of combustion of ammoria (NH}_{3}(q)) \text{ is } -565.4 \text{ kJ}$$

- if you multiply by a constant, you must multiply the enthalpy change by that same constant
- if you reverse an equation, you must change the sign of the enthalpy change

Standard Molar Enthalpy of Formation, $\Delta H_{\mathbf{f}}^{\circ}$: the change in enthalpy when 1 mol of a compound is formed directly from its elements in their most stable state at SATP (25°C and 100 kPa).

$$\Delta H_{\rm r}^{\circ} = \sum (n\Delta H_{\rm f}^{\circ} {\rm products}) - \sum (n\Delta H_{\rm f}^{\circ} {\rm reactants})$$

- $\Delta H_{\rm r}^{\circ}$ represents the enthalpy change of a chemical reaction
- n represents the stoichiometric coefficients for each substance
- \sum means "the sum of"

Note: Oxygen gas, $O_2(g)$, at SATP is an element in its most stable state. Therefore, its standard enthalpy of formation is zero.

 \star The reactants do not actually break down into their elements and then react to form products.

Unit 3 - Chemical Kinetics

Reaction Rates

Reaction Rate: the speed at which a reaction occurs, or the change in the amount of reactants consumed or products formed over a given time interval.

reaction rate =
$$\frac{[A]_{\text{final}} - [A]_{\text{initial}}}{t_{\text{final}} - t_{\text{initial}}}$$
(1)

$$= \frac{\Delta[\mathbf{A}]}{\Delta t} \tag{2}$$

 \rightarrow The square brackets represent concentration.

Rate Law: a mathematical relationship that must be experimentally determined for a chemical reaction. rate $= k[A]^m[B]^n$, where k is the *rate constant*.

 \rightarrow The order of the overall reaction is m+n.

Average Rate of Reaction: the change in the concentration of a reactant or product per unit time over a given time interval as a chemical reaction proceeds.

 \rightarrow Calculate the slope of a line drawn between the two points that define the time interval.

Instantaneous Rate of Reaction: the rate of a chemical reaction at a particular point in time.

 \to Can be found by calculating the slope of a line that is tangent to that particular point in time.

Factors that affect the rate of reaction:

- \uparrow temperature = \uparrow kinetic energy
- \uparrow concentration of reactants = \uparrow collisions
- catalysts = lowers the activation energy
- \uparrow surface area of a solid reactant = $\uparrow \#$ of sites
- ↑ pressure of gaseous reactants and products = ↑ collisions due to molecules being closer together
- \star A reaction rate is always expressed as a +ve value.

Activation Energy

Activation Energy, $E_{\mathbf{a}}$: the minimum amount of energy (collision energy) required to initiate a chemical reaction.

For an exothermic reaction: $E_{\rm a(rev)} = E_{\rm a(fwd)} + \Delta H$ For an endothermic reaction: $E_{\rm a(rev)} = E_{\rm a(fwd)} - \Delta H$ * The activation energy is independent of tempera-

* The activation energy is independent of temperature; it does not change when temperature changes.

Entropy and Spontaneity

Spontaneous: processes that occur on their own in one particular direction.

 \rightarrow Enthalpy is not the main determining factor in spontaneity (common misconception).

Entropy, **S**: the degree of molecular randomness or disorder in a system.

- \rightarrow An increase in entropy is the main contributing factor in determining spontaneity.
- \hookrightarrow Processes tend towards the higher entropy state due to probabilities.
- \hookrightarrow The most probable state is the most likely to be observed.

$$p = \frac{\# \text{ microstates that create an arrangement}}{\text{total } \# \text{ microstates possible}}$$

- the largest # of microstates is the most likely to be observed (even distribution of atoms)
- such an arrangement has the highest entropy

Second Law of Thermodynamics: the universe tends towards increasing entropy, $\Delta S_{\text{universe}} \geq 0$.

- \rightarrow Systems tend to go toward higher entropy states. Entropy changes involved with state changes:
 - solid < liquid < gas, a substance changes state from a more ordered state to a less ordered state
 - there are fewer microstates available in solids due to the restriction of motion
 - more microstates are allowed for substances in the liquid or gaseous state

$\Delta S > 0$ if

- there are more moles of the products than reactants
- complex molecules are broken into smaller molecules

Q: Which of the following has a higher entropy? 1 mol of $H_2O(s)$ or $H_2O(g)$ at a given temp.? 1 mol of $H_2(g)$ at 1 atm or 0.01 atm at a given temp.? A: $H_2O(g) > H_2O(s)$ and 0.01 atm > 1 atm

Gibbs Free Energy

Gibbs Free Energy, G: the amount of energy available to do work in a chemical system.

$$\Delta G = \Delta H - T \Delta S$$

$$\Delta S^{\circ} = \sum (n \Delta S^{\circ} \text{products}) - \sum (n \Delta S^{\circ} \text{reactants})$$

Exergonic reactions

- $\bullet \ \ {\rm release\ energy} \rightarrow {\rm spontaneous}$
- $\Delta G < 0$

Endergonic reactions

- absorb energy \rightarrow non-spontaneous
- $\Delta G > 0$

Collision Theory

Collision Theory: the theory that a reaction occurs between two particles (atoms, molecules, or ions) if they collide at the correct orientation and with a certain minimum energy.

For a collision between reactants to be effective:

- 1. the orientation of the reactants (the collision geometry) must be favourable.
- 2. the collision must occur with sufficient energy.

The area under a *Maxwell-Boltzmann distribution* curve represents the distribution of the kinetic energy of collisions at a given temperature.

Activated Complex

Activated Complex: a chemical species temporarily formed by the colliding reactant molecules before the final product of the reaction is formed.

 \rightarrow It is a temporary arrangement of atoms that form as bonds are breaking and new bonds are forming.

Transition State: point when reactant(s) are converted to product(s).

 \star Activated complex refers to all possible intermediates whereas the transition state refers to the intermediate with the highest potential energy.