Universidad de San Andrés Práctica 9: Sucesiones y Series

1. Escribir los primeros 7 términos de las siguientes sucesiones.

(a)
$$a_n = \frac{n}{n+1}$$
.

(c)
$$a_n = \frac{(-1)^n}{n+1}$$
.

(e)
$$a_n = \frac{\cos(n\pi)}{n}$$
.

(b)
$$a_n = \frac{\sqrt{n}}{n+1}$$
.

(d)
$$a_n = \frac{1}{n!}$$
.

(f)
$$a_n = \frac{2^{n-1}}{(2n-1)^2}$$
.

2. Para cada una de las siguientes sucesiones, hallar el término general a_n y determinar cuales son convergentes, divergentes u oscilantes. En caso de ser posible, calcular $\lim_{n\to\infty}a_n$.

(a)
$$-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots$$

(c)
$$\frac{1}{2}$$
, $-\frac{1}{4}$, $\frac{1}{8}$, $-\frac{1}{16}$, ...

(e)
$$3, 7, 11, 15, 19, \dots$$

(b)
$$1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16}, \dots$$

(d)
$$1, 1, \frac{1}{2}, 2, \frac{1}{3}, 3, \dots$$

(a)
$$-1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, \dots$$
 (c) $\frac{1}{2}, -\frac{1}{4}, \frac{1}{8}, -\frac{1}{16}, \dots$ (e) $3, 7, 11, 15, 19, \dots$ (b) $1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16}, \dots$ (d) $1, 1, \frac{1}{2}, 2, \frac{1}{3}, 3, \dots$ (f) $0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{8}, 0, \frac{1}{16} \dots$

3. Calcular, si existe, el límite de las siguientes sucesiones. Para usar la regla de L'Hospital, definir una función auxiliar con variable real x, calcular el límite para $x \to +\infty$, y aplicar el resultado para el límite que se desea calcular.

(a)
$$a_n = \frac{5^{n+1}+2}{5^n-7}$$
.

(d)
$$a_n = \frac{n}{2^n}$$
.

(g)
$$a_n = n \sin(\frac{1}{\pi})$$
.

(b)
$$a_n = \frac{2^{n-2}+3}{6^n+1}$$
.

(e)
$$a_n = \left(\frac{3n+1}{3n-5}\right)^n$$
.

(h)
$$a_n = \sqrt[n]{4}$$
.

(c)
$$a_n = \frac{3n^n + 2}{2n^2 + 5n}$$
.

(f)
$$a_n = \frac{(-1)^n \sin(n)}{n}$$
.

(i)
$$a_n = \sqrt[n]{3n+1}$$
.

4. Determinar si las siguientes series geométricas convergen o no. En caso de que converjan calcular la suma.

(a)
$$\sum_{n=1}^{\infty} 2^{n-2}$$
.

(d)
$$\sum_{n=3}^{\infty} \frac{3}{2^{n-1}}$$
.

(g)
$$\sum_{n=4}^{\infty} \frac{2 \cdot 3^{n+1} - 4^{n+2}}{6^n}.$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n 3$$
.

(e)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{3^{n-1}}$$
.

(h)
$$\sum_{1}^{\infty} \frac{3 \cdot 4^{n+1} - 8^n}{4^{2n}}.$$

(c)
$$\sum_{n=2}^{\infty} \left(\frac{3}{2}\right)^{n-1}.$$

(f)
$$\sum_{n=1}^{\infty} (-1)^{n-1} 2^{2-n}$$
.

5. Hallar, cuando sea posible, todos los valores de $a \in \mathbb{R}$ para los que se cumple:

(a)
$$\sum_{n=5}^{\infty} \frac{a^n}{9^n}$$
 es convergente.

(c)
$$\sum_{n=1}^{\infty} \frac{2 \cdot a^n}{9^n} = 1.$$

(b)
$$\sum_{n=0}^{\infty} \frac{a^n}{9^n} = \frac{9}{4}$$
.

(d)
$$\sum_{n=0}^{\infty} \frac{a^n}{9^n} = -1.$$

6. Calcular todos los valores de $a \in \mathbb{R}$ para que $\sum_{n=0}^{\infty} \frac{1+2^n}{a^n} = \frac{35}{12}$.

- 7. Hallar todos los valores de x para los que cada una de las siguientes series convergen y calcular la suma correspondiente al x_0 dado.
 - (a) $\sum_{n=0}^{\infty} 5\left(\frac{x}{7}\right)^n$. Dar la suma si $x_0 = 2$. (d) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{8^n}$. Dar la suma si $x_0 = 5$.
 - (b) $\sum_{n=1}^{\infty} (x-3)^n$. Dar la suma si $x_0 = \frac{5}{2}$. (e) $\sum_{n=1}^{\infty} \frac{4^{n+2}}{x^n}$. Dar la suma si $x_0 = 6$.
 - (c) $\sum_{n=0}^{\infty} (2x-1)^n$. Dar la suma si $x_0 = \frac{1}{4}$.
- 8. Para cada una de las series del Ejercicio 7 hallar la fórmula de la suma en términos de x. Usar la fórmula hallada para calcular la suma correspondiente al x_0 dado. Comparar los resultados y el esfuerzo de hacerlo de una y otra manera.
- 9. (*) A partir de la igualdad $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$, para |x| < 1, deducir las siguientes fórmulas:
 - (a) $1 + x^2 + x^4 + \dots + x^{2n} + \dots = \frac{1}{1 x^2}$, para |x| < 1.
 - (b) $x + x^3 + x^5 + \dots + x^{2n+1} + \dots = \frac{x}{1-x^2}$, para |x| < 1.
 - (c) $1 + 2x + 4x^2 + 8x^3 + \dots + 2^n x^n + \dots = \frac{1}{1 2x}$, para $|x| < \frac{1}{2}$.
- 10. Analizar, usando el criterio de la integral, si las siguientes series son convergentes o no.
 - (a) $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

- (c) $\sum_{n=0}^{\infty} ne^{-n}$.
- (e) $\sum_{n=1}^{\infty} \frac{1}{n\sqrt{\ln(n)}}.$

- (b) $\sum_{n=0}^{\infty} \frac{1}{n^2 + 1}$.
- (d) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{2n+1}}.$ (f) $\sum_{n=1}^{\infty} \frac{\ln(n)}{n}.$
- 11. (*) Mostrar, usando el criterio de la integral, que la serie $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converge para todo p > 1y diverge para $0 \le p \le 1$.
- 12. Analizar, usando el criterio de comparación, si las siguientes series son convergentes o no.
 - (a) $\sum_{n=0}^{\infty} \frac{\sin^2(n\pi)}{2^n}.$
- (b) $\sum_{n=0}^{\infty} \frac{n+1}{n^2+1}$.
- (c) $\sum_{n=0}^{\infty} \frac{1}{2^n + n}.$
- 13. Analizar la convergencia de las siguientes series
 - (a) $\sum_{n=1}^{\infty} \frac{1}{2n+1}$

(c) $\sum_{n=0}^{\infty} \sqrt{\frac{2n-1}{n^3}}$

(b) $\sum_{n=1}^{\infty} \frac{1}{4^n(2n+1)}$

(d) $\sum_{n=1}^{\infty} \frac{2}{n^2 + 3n}$