

American University of Armenia
Artificial Intelligence Project

DYNAMIC MAZE

x x x x

AGENDA

- 1. Maze Game Presentation
- 2. Possible Approaches
- 3. Algorthms' Properties
- 4. Statistical Performance Analysis
- 5. **Q&A Session**

Channeling Our inner Gryffindor to conquer this labyrinth

MAZE GAME PRESENTATION

- 1. Collection of cells, stored in a 10x10 grid
- 2. Fixed starting position of the agent and goal cell: (0,0) and (9,9) respectively
- 3. Inital positions of walls are random and visible to our agent
- 4. Unique path from one cell to another
- 5. At most 10 walls are randomly changed
- 6. Invisible Indicator changing the walls

ENVIRONMENT

POSSIBLE INITIAL STATE

Single-agent
Non-deterministic
Fully observable
Sequential
Agent-centric dynamic
Known

AFTER FIRST MOVE

American University of Armenia

POSSIBLE APPROACHES

• • • • • • • • • •

01

Greedy Algorithm

- Uses Manhattan distance as heuristic
- Guaranteed solution
- Without time and space limit, eventually every wall will be changed

02

Δ*

- Uses Manhattan distance as heuristic
- Guaranteed solution
- Harry, after moving from one cell to another, each time calculates the optimal solution path

03

D* Lite

- Finds solution much faster from computational point of view
- Harry repeatedly determines the shortest paths between his current location and the goal node
 ONLY if the obstacle is on the found path

ALGORTHMS' PROPERTIES

Algorithm	Handles Changes	Cost	Memory Usage	Optimality	Applicability
Greedy-Best-first	No	Low	Low	No	Success depends on the factor of randomness (how the maze is changed)
A* with Real-Time Updates	Yes	High	Moderate	Yes	Suitable for finding optimal paths in frequently changing large environments
D* Lite	Yes	Low	Low	Yes	A more efficient version of A*, suitable for dynamic maze environments where changes are frequent and regional

STATISTICAL PERFORMANCE ANALYSIS

SMALL

LARGE

STATISTICAL PERFORMANCE ANALYSIS

STATISTICAL PERFORMANCE ANALYSIS

ALGORTHMS' PROPERTIES

Algorithm / Size	Small	Large
Greedy-Best-first	96.6	752.3
A* with Real-Time Updates	28.7	66.1
D* Lite	34.7	76.1

Ask Us Anything—But Don't Expect O(1) Responses!

American University of Armenia

THANK YOU

WE TOOK THE LONGEST PATH TO GET HERE, BUT WE MADE IT!

