Curvalyser and Paramalyser

v1.10/v1.10

The Curvalyser is intended for the analysis of force-extension curves obtained by atomic force spectroscopy measurements with biological cells. It provides an objective means to evaluate a large batch of recorded datasets automatically. This includes baseline correction, noise reduction using a novel wavelet-based technique, contact point calibration, step detection, fitting procedures, extraction of characteristic curve parameters, plotting, and a quality check to sort out erroneous data. The extracted parameters can then be filtered, statistically analysed and plotted by the Paramalyser. This manual explains how to use these programs. Basic Python skills are required to customise some configuration settings, such as the user-defined callback functions.

1. LICENSE

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License version 3 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of merchantability or fitness for a particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

The software included in this distribution was developed by Jan Opfer, j [at] opfer [dot] net.

2. INSTALLATION

The software runs on different platforms, including Windows, Linux and Mac OS. It was tested with Python 2.7.1, NumPy 1.5.1 and matplotlib 1.0.1, but should work with newer versions as well. Please follow these instructions to install the required components:

- download and install Python 2.7.1 (or higher): http://www.python.org/download/
- download and install NumPy 1.5.1 (or higher): http://sourceforge.net/projects/numpy/files/NumPy/
- download and install matplotlib 1.0.1 (or higher): http://sourceforge.net/projects/matplotlib/files/matplotlib/
- unpack the contents of the ZIP file
- open a command line window and change to the directory containing the unpacked files

Note: It is essential to select Numpy and matplotlib versions matching your Python version.

On <u>Linux</u> it might be easier to use the package manager of your distribution. If you run into trouble or want to install the software on <u>Mac OS</u>, we recommend using the <u>Enthought Python Distribution</u> instead. It contains all required components and is available for Windows, Linux and Mac OS.

Optional: To speed up the wavelet-based noise reduction algorithm, we provide a Python module, which needs to be compiled before use. A compatible C compiler must be set up properly. For details see http://docs.python.org/install/index.html. To install the module, execute the following command in the directory *C library (optional)*:

```
> python setup.py install
```

After successful installation the module will be detected automatically.

3. CURVALYSER

3.1. Basic configuration

Before first use, the format and location of the input files must be specified. To this end, open the configuration file *config-curvalyser* in a text editor. If the data is saved in text files, set the variable file_format to 'text' and columns to the column numbers of the extension and force records, respectively (note that counting starts with 0). The columns can either be separated by any whitespace (default) or by the string given in column_delimiter. This example assumes that the data is contained in the comma-separated columns 2 and 3.

```
file_format = 'text'
columns = (1,2)
column_delimiter = ','
```

In case of Curvalyser (*.crv) and old JPK files (*.out), a single line is sufficient, as the correct columns are determined automatically:

```
file_format = 'crv'
file_format = 'jpk-old'
```

<u>New</u> JPK files (*.jpk-force) can contain multiple "segments". Therefore, <u>JPK_segments</u> must be defined to select the number of the trace and of the retrace segment, respectively:

```
file_format = 'jpk'
JPK segments = (0,1)
```

Extension and force can optionally be scaled to a decent order of magnitude:

```
multiplier_x = 1e6
multiplier_y = 1e12
```

Negative values may be needed if the extension does not increase with the distance from the surface or if indentation does not correspond to a positive sign of the force. All program output is based on the units of the values in the input files, which are multiplied by these factors.

A separate configuration file should be created for each set of force spectra ("experiment") and stored in the directory *config* (e.g. 001, 002 and so on). This allows distinguishing the corresponding input and output files. Common configuration parameters can still be defined in *config-curvalyser* and included in each experiment-specific configuration file (such as *config/001*):

```
execfile('config-curvalyser')
file_pattern = 'data/001/*.txt'
```

Here, only a different set of input files is selected by the variable <u>file_pattern</u>, which points to the absolute or relative directory containing the force spectra to be analysed.

By default, the name of the configuration file (e.g. 001) is used as output directory below base_output_dir (here: output/001). This can be overridden by the parameter output dir:

```
output dir = 'output2/001'
```

Further parameters are listed in section 3.10 (e.g. to select a certain range of input files or to define the limits of experimental settings to be checked).

3.2. Program execution

The Curvalyser is run using the configuration file config/001 by typing

```
> python Curvalyser.py 001
```

By default, configuration files are searched in the folder *config*. If no configuration file is given, all files in this directory will be processed. Multiple configuration files can be selected individually

```
> python Curvalyser.py 001 002 003 config2/010 config2/020
```

or by file masks:

```
> python Curvalyser.py 00* config2/0?0
```

The following command line options control the tasks performed by the program:

Option	Example	Description
-h		show a help message
-1	-l output/log.txt	set log file
-c	-c"exp_id=='001'"	select experiments by a Python expression
-e	-e WT	select only experiments belonging to the given experiment type
-0		overwrite existing output files
-f	-f data/*.txt	same as configuration parameter file pattern
-r	-r 100:200:10	same as configuration parameter file range
-0	-o output	same as configuration parameter base output dir
-v, -vv		be verbose (-v) or very verbose (-vv)
-d	-d 4.5	set the primary de-noising parameter
-i	-i 5	set the relative indicator threshold
- p		create force plots (-pf), indicator plots (-pi) or both (-pfi)
-s		show plots in a graphical user interface
-V		display program version

A very flexible way to pick out experiments according to some rule is provided by the option "-c". It takes a Python expression as parameter returning either true or false, depending on whether the file is to be included or not. The condition can be attached to the consecutive configuration file number (config_file_no), the file name (config_file), the experiment ID (exp_id) or any configuration parameter (stored in the dictionary config). In this example, only experiments whose ID start with the prefix "WT" are chosen:

```
> python Curvalyser.py -c"exp_id[:2]=='WT'"
```

To select experiments of a certain type (specified by the configuration parameter experiment_type), it is more convenient to use the option "-e".

3.3. Baseline correction

Force curves can be baseline-corrected to compensate instrumental drift and to allow for correct calibration of the contact point as well as of the zero-force level. Depending on the configuration parameter fit_baseline, either a linear (1) or a quadratic fit (2) is subtracted from the retrace curve before any further evaluation is done. Fitting is performed in a smooth part at the end of the retrace curve where the distance from the surface is maximal and only background noise is present. This range must be free of steps, tip-surface interactions or other sample-specific effects and sufficiently long to obtain an accurate fit. Therefore, the length of the retrace extension should not be too short. A baseline fit is calculated iteratively every baseline_step_len data points, starting from the end of the curve. It stops automatically if the residual sum of squares (RSS) locally exceeds the expected value by the factor baseline max_rel_local_RSS. The end point of the fit interval is reverted to the last local minimum of the RSS if baseline_return_to_local_min is set to 1. In case the length of the fit falls below baseline_fit_min_width, the curve is excluded from further analysis. If the baseline fit stops too early, a higher threshold baseline_max_rel_local_RSS or a lower step interval baseline_step_len_should be chosen (and vice versa).

3.4. Noise reduction

Noise reduction is crucial for reliable calculation of step heights (if step_measuring_lt/rt is 0 or 1), contact point calibration, and for accurate determination of some characteristics of the force curves, such as the peak force. Different noise reduction methods can be selected: ReNoiR [1] (a wavelet-based noise filter), Gaussian smoothing [2] and the Savitzky-Golay filter [3]. The first is preferable if the force spectra contain sharp features (such as spikes or steep, narrow steps) and the second is ideal for curves with more or less constant plateaus separated by smooth transitions.

The filter strength of ReNoiR (denoising_method = 'renoir') depends on the parameters T_0 (denoising_param) and T_1 (denoising_param2). The higher the values the more noise is reduced and the more details of the signal are lost. See reference [1] for a description of the algorithm. The number of recursions (denoising_recursions) and levels (denoising_levels) usually do not need to be changed. To minimize border distortion caused by the wavelet filter, the signal can be extended by point reflection at both ends. denoising_padding_lt and denoising_padding_rt are the numbers of padded data points on the left and right, respectively. The resulting number of samples should be a power of two.

If Gaussian smoothing (denoising_method = 'gauss') is performed, denoising_param represents the standard deviation of the smoothing kernel (see [2]).

In case of Savitzky-Golay filtering (denoising_method = 'savgol'), the same parameter determines the half window size and savgol order the order of the polynomial kernel (see [3]).

denoising param and denoising param2 can be user-defined callback functions. They must take three parameters: noise_level (the estimated standard deviation of the noise), rows (the number of samples), and meta. The latter is a dictionary containing metadata, such as the headers of JPK force spectra (*.out, *.jpk-force) or the additional information comprised by Curvalyser files (*.crv). Example:

denoising param = lambda noise level, rows, meta: noise level * 3

3.5. Contact point calibration

The extension where the indentation force becomes zero for the first time during retraction is referred to as "contact point". Its determination is necessary to calibrate the zero point of the extension, e.g. of detected

steps (see section 3.6) or of the peak force. Although most subsequent calculations are influenced by the calibration, it is only performed if <u>find_contact_pos</u> is 1. Otherwise, the extension at the reversal point between trace and retrace curve defines the zero point.

If no contact point was found in the retrace curve, if it was found further away from the reversal point than stipulated by max_contact_pos, or if the maximum indentation force is lower than min_contact_force, the trace curve is used instead. In case this also fails, the calibration and all parameters depending on it will be omitted.

3.6. Step detection

A moving step fit is deployed to detect upward steps in the retrace curve (see [4] for a description of the algorithm). Briefly, it produces an indicator that is correlated to sharp transitions within the signal. Generally, the sharper a transition is and the longer its range is the higher will be the indicator. Therefore, local maxima correspond to possible step positions. The indicator can be smoothed by convolution with a Gaussian kernel of standard deviation MSF_sigma. Choose higher values if too many local maxima appear and lower values if neighbouring steps are not detected separately. The half window size MSF_window governs the influence of both criteria (sharpness and range of the transition). It should be set to 1 if the steps are narrow or sharp (i.e. showing steep flanks) or to a higher value if the steps are smooth (try e.g. 10 or 100). Higher values increase detection sensitivity for low, wide steps and lower values increase lateral resolution (important for the detection of hardly separated, narrow steps); each at the expense of the other. An absolute threshold (indicator_threshold) and a relative one that is multiplied by the noise level of the indicator (indicator_relative_threshold), define the detection sensitivity (the greater of the two values counts). Increase/decrease the thresholds to reduce false-positives/false-negatives. The step positions are marked by vertical yellow lines in the force curve and indicator diagrams and the effective threshold by a black horizontal line in the indicator diagrams (see section 3.8).

Detected steps can be filtered out by defining the minimum step height (step_min_height), the minimum and maximum step width (step_min_width and step_max_width), or the minimum average slope of the step (step min slope).

Linear fits of the flanks left and right of the detected steps are performed if the distance to the next step (or to the beginning/end of the force curve) is at least step fit min len data points. Then, the slope and interception are recorded. The lengths of the fit intervals are optimized automatically within step fit min len and step fit max len by minimizing the root mean square errors. In any case, the intervals are terminated at the nearest neighbouring step (or at the beginning/end of the force curve). As most steps are not perfectly sharp, the intervals usually should not start right at the detected position, but at the beginning/end of the transition. These points can be located by finding the next local minimum in the denoised retrace curve to the left and the next local maximum to the right of the step position (these will be referred to as "lower/upper edge"). Alternatively, the inner limits of the fit intervals can be specified in terms of a distance to the left and to the right where the indicator curve falls below values determined by the parameters step fit proximity lt and step fit proximity rt, respectively. Both parameters are related to the height of the indicator peak at the step position and can take values between 0 and 1. Higher values correspond to a smaller distance (and vice versa). A value in the middle (e.g. 0.5, the width at half height) is usually a good starting point. 1 means no distance, which only makes sense for extremely sharp transitions. In the force curve diagrams, the fits are represented by red and green lines. Additionally, the intervals are highlighted in red and green on the retrace curve and the edges are marked by red and green circles in the interactive force plots. The latter also appear in the indicator diagrams.

Step heights can be determined by two different methods: If step_measuring_lt/rt = 0, the difference in force at the edges is calculated from the denoised retrace curve. If step_measuring_lt/rt = 1 or 2, the linear fits of the step flanks are extrapolated and the difference of their ordinates at the detected step positions is calculated. In both cases, the step heights are indicated by red and green crosses in the force curve diagrams. If the fit cannot be performed (because the interval would be smaller than step_fit_min_len data points) and step_measuring_lt/rt = 1, the first height calculation method is deployed as a fallback method. If the height cannot be calculated, a detected step is not completely ignored, but its height is not recorded.

To exclude the beginning or end of the retrace curve, indicator_margin_lt or indicator_margin_rt can be set to a positive value.

3.7. Fitting procedures

The slope of the trace or retrace curve is fitted to the left and to the right of the point corresponding to an indentation force given by indentation_fit over intervals specified by indentation_lt_fit_width and indentation_rt_fit_width, respectively. If indentation_curve = 1, the trace curve is used, otherwise the retrace curve.

The indentation part of the trace curve (from the contact point to the left) can be fitted with the user-defined callback function trace_fit_function, which is initialized with the parameters defined in the Python sequence trace_fit_init_params. Analogously, the section of the retrace curve between the contact point and the first step can be fitted using retrace_fit_function and retrace_fit_init_params.

3.8. Plotting

Two types of diagrams can be plotted: Force curves and indicator curves. The indicator curves are useful to adjust and check the step detection algorithm (see section 3.6). To determine if these diagrams are plotted into files of the format plot_format, set plot_force_curves and plot_indicators to either 0 or 1. The plots will be written to the subdirectory plots. Additionally, they are displayed in an interactive graphical user interface if show_plots is 1. The horizontal and vertical data range is specified by plot_xmin, plot_xmax, plot_ymin, and plot_ymax. The resolution of the output files can be changed by setting their width and height in plot_size_force_curves and plot_size_indicator_curves. plot_step_fit_width defines the extension of the lines drawn into the plots to depict the fitted slopes on the left and right edge of the steps. A list of elements to be plotted into the force curves can be specified by the parameter plot_features.

3.9. Output files

All extracted information about the force curves is saved into two files in the output directory (see section 3.1): curves.txt contains all parameters specific to the whole curve and steps.txt all data related to the steps. The first line of the files is a header shortly describing the meaning of the columns. Basically, the units found in the input files are used, but may be scaled by multiplication factors (multiplier_x and multiplier_y).

Plots are written to the subdirectory *plots*. The file names contain the names of the corresponding input files. "(failed)" is appended if a curve could not be analysed (e.g. because the baseline correction failed).

3.10. Overview of important configuration parameters

Parameter	Values / example	Description
Input and output		
file pattern	'data/*.txt'	file mask for force curves to be analysed
file format	'txt'	text format (also set columns!)
_	'jpk'	new JPK format (*.jpk-force)
	'jpk-old'	old JPK format (*.out)
	'crv'	Curvalyser format; default
file range	'100:200:10'	select a range of files (format:
		'start:stop:step,start:stop:step,'; counting starts
		with 1; negative value: count from the end)
columns	(1,2)	specify the columns containing extension and
		force data, respectively (counting starts with 0!)
column_delimiter	1,1	string used to separate values; default: any whitespace
JPK_segments	(0,2)	segment numbers of the trace and retrace data,
		respectively
multiplier_x	1e6	multiplier for rescaling the extension data
multiplier_y	1e12	multiplier for rescaling the force data
output_dir	'output2/001'	output directory (automatically determined by
	11001	base_output_dir and exp_id if omitted)
exp_id	'123'	ID used to distinguish multiple sets of force
		spectra (experiments); default: name of the
	I and sout I	configuration file
base_output_dir	'output'	base output directory; only used if output_dir is omitted
nominal values	{ 'sensitivity':	Python dictionary; first field: nominal value;
	(50e-9, 10e-9) }	second field: maximum deviation
assert nominal values	0	warn only
	1	exclude force curves conflicting with the limits
		defined in nominal values; default
unit x	'um'	unit of the extension data (only used for plots)
unit y	'pN'	unit of the force data (only used for plots)
Baseline correction		
fit baseline	0	do not correct baseline
	1	subtract a linear baseline; default
	2	subtract a quadratic baseline
baseline max rel local RSS	2.5	relative threshold for the termination of the
		baseline fit; default: 2.0
baseline fit min width	4.0	minimum baseline fit length for a curve to be
		further analysed (in units of the extension data)
baseline step len	100	step length for the iterative baseline fit (default:
		automatic)
baseline_return_to_local_min	0	the baseline fit is performed up to the point,
-		where it is terminated
	1	the baseline fit is performed up to the last local
		minimum of the RSS after termination; default
De-noising		
denoising method	'renoir'	use ReNoiR for noise reduction
	'gauss'	use Gaussian smoothing; default
	'savgol'	use the Savitzky-Golay filter
denoising param	4.1	primary parameter for the noise reduction filter
		p , parameter for the holde reduction litter

		or user-defined Python function	
denoising param2	20.8	secondary parameter for the noise reduction	
denoising_paramz	20.0	filter or user-defined Python function	
denoising recursions	1	number of recursions (ReNoiR only); default: 1	
denoising wavelet	'haar'	name of the wavelet used; default: 'haar'	
denoising levels	0		
denoising_levels	U	number of levels (ReNoiR only); default: 0 (automatic)	
savgol_order	5	order of the polynomial kernel (Savitzky-Golay filter only)	
Contact point calibration			
find_contact_pos	0	do not detect the contact point	
	1	detect the contact point; default	
max contact pos	2.0	maximum distance of the contact point from the	
		beginning of the curve; default: do not check	
min_contact_force	0	minimum force at the contact point; default: 0	
Step detection			
MSF sigma	1	Gaussian smoothing of the retrace curve	
MSF window	100	width of the moving fit window (number of	
		samples); default: 1	
indicator margin lt	100	left margin of the indicator; default: 0	
indicator margin rt	100	right margin of the indicator; default: 0	
indicator smoothing sigma	2.5	Gaussian smoothing of the indicator	
indicator threshold	40	step detection sensitivity (absolute value)	
indicator relative threshold	10	step detection sensitivity (relative to noise level	
		after de-noising); default: 5	
max steps	20	maximum number of detected steps	
step fit proximity lt	None	fitting of left step flank starts at next local	
		minimum in the denoised retrace curve; default	
	0-1	proximity between step and left fit window	
step fit proximity rt	None	fitting of right step flank starts at the next local	
1		maximum in the denoised retrace curve; default	
	0 - 1	proximity between step and right fit window	
step fit min len	10	minimum size of the window for step fits	
step_fit_max_len	500	maximum size of the window for step fits; default: no limit	
step measuring lt	0	use denoised retrace curve to determine left step	
boop_modburing_re		flank; default	
	1	use extrapolated linear fit of the left step flank if	
	-	possible and otherwise denoised retrace curve	
	2	only use fits	
step_measuring_rt	0	use denoised retrace curve to determine right step flank; default	
	1	use extrapolated linear fit of the right step flank if	
		possible and otherwise denoised retrace curve	
	2	only use fits	
step_min_height	15	minimum step height; default: do not check	
step_min_width	10	minimum step width; default: do not check	
step_max_width	10	maximum step width; default: do not check	
step_min_slope	250	minimum average step slope (height / width);	
		default: do not check	
Fitting			
indentation fit	None	do not perform fit; default	
	0	fit indentation slopes at contact point	
		The indentation slopes at contact point	

	> 0	fit slopes at specified indentation force
indentation curve	0	use retrace curve; default
	1	use trace curve (never denoised)
indentation lt fit width	0.02	width of the indentation fit to the left; 0 means fit
indentation_ite_ite_width	0.02	up to beginning of the force curve
indentation rt fit width	0.01	width of the indentation fit to the right
indentation fit avg window	3	half size of the averaging window for finding a
indentation_iit_avg_window		specified indentation force; default: 0
trace fit function		fit function for trace curve from beginning to
crace_irc_runction		contact point
trace fit init params		initial fit parameters for trace fit
retrace fit function		fit function for retrace curve from contact point
		to first step (if number of steps is 1)
retrace fit init params		initial fit parameters for retrace fit
single step fit function		fit function for retrace curve from contact point
bringic_beep_fite_function		to first and only step (number of steps must be 1);
		only used if retrace_fit_function is None
single step init params		initial fit parameters for first tether fit
	<u> </u>	Timular in parameters for first tetrier in
Plotting		
plot_force_curves	0	do not plot force curve diagrams
	1	plot force curve diagrams; default
plot_indicators	0	do not plot indicator diagrams
	1	plot indicator diagrams; default
show_plots	0	do not show plots; default
	1	show plots in a graphical user interface
plot_format	'pdf'	file format for plots; default: 'png'
plot_xmin	-1	minimum extension; default: auto-scale
plot_xmax	20	maximum extension; default: auto-scale
plot_ymin	-500	minimum force; default: auto-scale
plot ymax	500	maximum force; default: auto-scale
plot size force curves	(640,480)	plot size (pixels)
plot size indicator curves	(640,480)	plot size (pixels)
plot features	['retrace',	list of features to plot into the force curve
_	'steps']	diagrams (trace, retrace, denoised,
		baseline, indentation fit, contact pos,
		trace fit, retrace fit, steps, step fits,
		markers, aux); default: plot all
plot_step_fit_width	0.01	width of the step slope fits; default: use actual fit
		lengths
Miscellaneous		
verbose	2	level of verbosity (0-2); default: 0
spring constant	0.1	spring constant used for force calibration if not
opining_constant		specified in input file
length correction	0	do not convert extension to distance; default
	1	convert extension to distance
experiment type	'WT'	string used to categorise experiments by a user-
onportment_cype	NA T	defined experiment type
	1	Tuenneu experiment type

4. PARAMALYSER

4.1. Configuration

The Paramalyser uses the same configuration files as the Curvalyser (see section 3.1) and an additional one, which defines the settings needed for statistical evaluation. It is specified by the command line option "-C" (default: *config-paramalyser*). The following configuration parameters are evaluated:

Parameter	Values / example	Description
Input and output		
fixed_input_dir	'output2'	input directory; default: Curvalyser output directory
fixed_output_dir	'output2/stats'	output directory; default: statistics_dir in
		Curvalyser output directory
statistics_dir	'stats'	relative output directory; default: statistics
multiplier_x	1e6	multiplier for rescaling the extension data
multiplier_y	1e12	multiplier for rescaling the force data
experiment_types	['WT','A2','B1']	selection and order of experiment types to be analysed
analyse_all	0	analysed only experiment types specified by experiment types in the given order
	1	analyse all experiment types; the order specified by
	-	experiment types is still regarded
ignore ids	['001','002']	experiment IDs to ignore
curves range start	100	first curve to include (counting starts with 1; negative
		value: count from the end); can be overwritten by
		paramalyser curves range start in Curvalyser
		configuration file
curves_range_stop	200	last curve to include (counting starts with 1; negative
		value: count from the end); can be overwritten by
		paramalyser_curves_range_stop in Curvalyser
		configuration file
curves_range_step	10	step size (negative value: go backwards); default:
		auto +1/-1; can be overwritten by
		paramalyser_curves_range_step in Curvalyser
. 7.1	10	configuration file
autosplit_size	10	split curves into chunks of the given size
autosplit_shift	10	shift between successive auto-split chunks
Tasks		
tasks	['CDF','CDF_cum']	list of tasks to perform (see section 4.3); default: all
plot_params	['force','work']	list of parameters to analyse within each task (see
		section 4.4); default: all
plot_steps	['first','last']	list of subset plots to create (all: all curves, single:
		only curves with exactly one step, first: only first
		step, last: only last step); default: all
Filters		
step filter limits	{'height':	Python dictionary of criteria to filter steps (tuple of
	(10, None),	minimum and maximum for each parameter to be
	'work': (0,100)}	checked); all criteria must be met
curve_filter_limits	{'noise_sigma':	Python dictionary of criteria to filter curves <u>and</u> steps
	(None, 10),	(tuple of minimum and maximum for each parameter
	'steps_ctr':	to be checked); all criteria must be met; applied after
	(1,1)}	step_filter_limits

Plotting			
plot_ranges	{'work': (0,100)}	Python dictionary of default plot ranges (tuple of	
		minimum and maximum for each parameter)	
histogram_ranges		like plot_ranges, but for histograms	
boxplot_ranges		like plot_ranges, but for boxplots	
scatterplot_ranges		like plot_ranges, but for scatterplots	
plot_size	(800,600)	default plot size (tuple of width and height)	
plot_size_histogram		like plot_size, but for histograms	
plot_size_CDF		like plot_size, but for CDFs	
plot_size_scatter		like plot size, but for scatterplots	
plot_size_boxplot		like plot size, but for boxplots	
plot_size_errorbar		like plot size, but for errorbar plots	
plot size errorbar cum		like plot size, but for cumulated errorbar plots	
plot size errorbar corr		like plot size, but for correlated errorbar plots	
histogram bins	100	number of histogram bins; default: 50	
histogram ylim	(0,1)	vertical range of histograms (tuple of minimum and	
		maximum)	
histogram norm curves	0	do not normalise histograms over curve-specific	
		parameters; default	
	1	normalise to one	
	2	normalise to average number of steps	
	3	normalise to adhesion rate	
histogram_norm_steps	0	do not normalise histograms over step-specific	
		parameters; default	
	1	normalise to one	
	2	normalise to average number of steps	
	3	normalise to adhesion rate	
CDF_histogram_bins	100	number of histogram bins for CDF plots (default: sum	
		of counts)	
experiment_type_labels	{ 'WT':	Python dictionary defining custom labels for	
_	'wild-type'}	experiment types	
<pre>experiment_type_colors</pre>	{'WT': 'blue'}	Python dictionary defining custom colours for	
		experiment types	
Miscellaneous			
cumulation_mode	0	cumulate data for errorbar plots globally	
	1	cumulate and calculate averages/medians/modals by	
		experiment type; default	
steps_ctr_averaging	0	consider all curves to calculate the average number of	
		steps	
	1	consider only adhesive curves; default	
output_format	'text'	save data files in standard text format; default	
	'igor'	save data files in an Igor-compatible text format	
custom_script	'custom.py'	custom script to be executed	
curvalyser_config Python dictionary of Curvalyser configuration		Python dictionary of Curvalyser configuration	
		parameters (overwrites other settings)	

4.2. Program execution

The Paramalyser is invoked the same way as the Curvalyser (see section 3.2). Example:

```
> python Paramalyser.py -e WT
```

It understands these command line options:

Option	Example	Description
-h		show a help message
-C	-C pconfig.txt	set the configuration file to be used; default: config-paramalyser
-c	-c"exp_id=='001'"	select experiments by a Python expression
-e	-e WT,A2,B1	selection and order of experiment types (same as configuration parameter
		experiment_types)
-a		analyse all experiment types (same as configuration parameter
		analyse_all); default: only specified types
-i	-i output2	set the input directory (same as configuration parameter
		fixed_input_dir); default: Curvalyser output directory
-0	-o output2/stats	set the output directory (same as configuration parameter
		fixed_output_dir); default: statistics_dir in Curvalyser output
		directory
-t	-t CDF, CDF_cum	same as configuration parameter tasks
-p	-p force, work	same as configuration parameter plot_params
- s	-s first,last	same as configuration parameter plot_steps
-A		display program version

4.3. Tasks

Data can either be analysed per-experiment or cumulated over all experiments of the same type. The following tasks can be performed (specified by tasks, see section 4.1):

Task	Description	Output directory
data	save parameters to text files	data
data_cum	save cumulated parameters to text files	cumulated data
histos	create histograms	histograms/*
histos_cum	create histograms of cumulated data	histograms
CDF	plot cumulative distribution function (CDF)	CDFs
CDF_cum	plot cumulative distribution function (CDF) of cumulated data	cumulated CDFs
CDF_data_cum	save the 50% values of the cumulated CDF plots to text files	cumulated data
scatter	create scatter plots	scatter plots/*
scatter_cum	create cumulated scatter plots	scatter plots
boxplots	create boxplots	boxplots
boxplots_cum	create cumulated boxplots	cumulated boxplots
averages	plot average values	averages
averages_cum	plot cumulated average values	cumulated averages
averages_data	save averages to text files	data
averages_data_cum	save cumulated averages to text files	cumulated data
averages_boxplots	create boxplots of average values	boxplots of averages
medians	plot medians	medians
medians_cum	plot cumulated medians	cumulated medians
medians_data	save medians to text files	data
medians_data_cum	save cumulated medians to text files	cumulated data

medians_boxplots	create boxplots of medians	boxplots of medians
modals	plot modals	modals
modals_cum	plot cumulated modals	cumulated modals
modals_data	save modals to text files	data
modals_data_cum	save cumulated modals to text files	cumulated data
modal_boxplots	create boxplots of modals	boxplots of modals
other	plot adhesion rates and average number of steps	
tests	calculate Mann-Whitney and Kruskal-Wallis tests	
custom	execute the custom script defined by <code>custom_script</code>	

4.4. Parameters

The following parameters can be analysed (specified by plot_params, see section 4.1):

Parameter	Description
Curve-specific	
steps_ctr	number of steps
peak pos	sample number of the peak force (global minimum/maximum force)
peak extension	extension of the peak force
peak force	peak force
indent force	indentation force
work	work (area between the baseline and the retrace curve)
bl itcpt	interception of the baseline
bl slope	slope of the baseline
bl crvtr	curvature of the baseline (in case of a quadratic fit)
bl_fit_len	length of the baseline fit (number of samples)
bl_avg_RSS	average residual sum of squares of the baseline fit
contact_pos	sample number of the contact point
indent_slope_l	left indentation slope of the retrace curve
indent_slope_r	right indentation slope of the retrace curve
indent_slope_r_normed	like indent slope r, but divided by the number of steps
trace_fit1	parameters obtained by the custom fit function trace fit function
trace_fit2	
trace_fit3	
retrace_fit1	parameters obtained by the custom fit function retrace_fit_function
retrace_fit2	
retrace_fit3	
noise_sigma	estimated standard deviation of the noise
denoising_param	value of the actually used primary de-noising parameter
denoising_param2	value of the actually used secondary de-noising parameter
indicator_thld	value of the actually used indicator threshold
Step-specific	
lt_edge	sample number of the left (lower) edge of the step
lmax_pos	sample number of the local maximum position
rt_edge	sample number of the right (upper) edge of the step
extension	extension of the left (lower) edge of the step
force	force at the left (lower) edge of the step
height	relative height of the step (difference of the forces at the upper and lower
	edge)
avg_slope	average value of the indicator
max_slope	maximum value of the indicator
plateau_slope_l	fitted slope on the left of the step

plateau_slope_r	fitted slope on the right of the step
stiffness	height/extension

5. ADDITIONAL TOOLS

plot_force_curves.py creates plots of force curves similar to the Curvalyser, but considers the Paramalyser filter settings. Removed steps are drawn as small symbols and the ones passing all filters as big symbols. This allows for a visual control of the filtering process. Usage is similar to the other programs:

```
> python plot_force_curves.py 001
```

convert_jpk_to_crv.py converts force curves in the <u>old</u> JPK format (*.out) to space-saving Curvalyser files (*.crv). The output directory and the input files are passed as parameters:

```
> python convert_jpk_to_crv.py force_curves data/*.out
```

6. REFERENCES

- 1. Opfer, J. Single-molecule force spectroscopy studies of integrin-mediated cell signaling. PhD thesis. 2012, 2.
- 2. **Gonzalez, R C and Woods, R E.** *Digital Image Processing, 2nd ed.* s.l.: Addison-Wesley Longman Publishing, 1992.
- 3. **Savitzky, A and Golay, M J E.** Smoothing and Differentiation of Data by Simplified Least Squares Procedures. *Analytical Chemistry.* 1964, 36:1627.
- 4. **Opfer, J and Gottschalk, K.** Identifying discrete states of a biological system by a novel step detection algorithm. *PLoS ONE*. 2012, Vol. 7, 11, p. e45896.