数理统计复习提纲(茆诗松版)

1 统计量与抽样分布

- 统计量的概念
 - ◇ 样本的函数,且不含有任何参数
- χ^2 -分布, t-分布, F-分布的性质, α 分位点查表; • χ^2 -分布(X- $\chi^2(n)$): 图像; E(X) = n,D(X) = 2n; 可加性; 分位点($P(X \le \chi^2_{\alpha}(n)) = \alpha$) • t-分布(X-t(n)): 图像; 分位点($P(X \le t_{\alpha}(n)) = \alpha$); $t_{1-\alpha}(n) = -t_{\alpha}(n)$ • F-分布(X-F(m,n)): 图像; $\frac{1}{X} = F(n,m)$; 可加性; 分位点($P(X \le F_{\alpha}(m,n)) = \alpha$); $F_{1-\alpha}(m,n) = \frac{1}{F_{\alpha}(n,m)}$
- 正态总体八种抽样分布:

$\frac{\bar{X} - \mu}{\sigma} \sqrt{n} \sim N(0, 1)$	σ 已知时, 对 μ 的推断
$\frac{\bar{X} - \mu}{S} \sqrt{n} \sim t(n-1)$	σ 未知时, 对 μ 的推断
$\sum \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$	μ 已知时, 对 σ 的推断
$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$	μ 未知时, 对 σ 的推断
$\frac{\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)}{\frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1}{m} + \frac{\sigma_2}{n}}} \sim N(0,1)$	σ_1, σ_2 已知时, 对 $\mu_1 - \mu_2$ 的推断
$\bar{X} - \bar{V} - (\mu_1 - \mu_2)$	$\sigma_1 = \sigma_2$ 且未知时, 对 $\mu_1 - \mu_2$ 的推断
$\frac{(X_i - \mu_1)^2 / \sigma_1^2}{(Y_i - \mu_2)^2 / \sigma_2^2} \sim F(m, n)$	μ_1 和 μ_2 已知时,对 $\frac{\sigma_1}{\sigma_2}$ 的推断
$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(m-1, n-1)$	μ_1 和 μ_2 未知时, 对 $\frac{\sigma_1}{\sigma_2}$ 的推断

2 参数点估计

• 无偏估计; 无偏估计的有效性; 相合估计的概念; $\diamond E(\hat{\theta}) = \theta$

$$\diamond E(\hat{\theta}_1) = \theta, \ E(\hat{\theta}_2) = \theta, \ \tilde{\Xi}D(\hat{\theta}_1) < D(\hat{\theta}_2)$$
 $\diamond \hat{\theta} \stackrel{P}{\to} \theta$,即任意 $\varepsilon > 0$, $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| < \varepsilon) = 1$ 或者 $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| \ge \varepsilon) = 0$

• 矩估计方法与最大似然估计法.

例1: 设简单随机样本 X_1, X_2, \cdots, X_n 为取自密度函数为

$$f(x;\theta) = \begin{cases} \frac{2x}{\theta^2} & x \in [0,\theta] \\ 0 & \sharp : \exists \end{cases}$$

的总体. 求

- 1. θ 的矩估计量 $\hat{\theta}_M$;
- 2. θ 的最大似然估计量 $\hat{\theta}_L$.

1答:

$$E(X) = \int_0^\theta \frac{2x^2}{\theta^2} = \frac{2}{3}\theta$$
$$\theta = \frac{3}{2}E(X)$$
$$\hat{\theta}_M = \frac{3}{2}\overline{X}$$

2答: 似然函数为:

$$L(\theta) = \begin{cases} \frac{2^n}{\theta^{2n}} \prod_{i=1}^n x_i & x_1, \dots, x_n \leq \theta \\ 0 & \not\exists \dot{\Xi} \end{cases}$$
$$= \begin{cases} \frac{2^n}{\theta^{2n}} \prod_{i=1}^n x_i & \theta \geq x_{(n)} \\ 0 & \theta < x_{(n)} \end{cases}$$

其中 $x_{(n)} = \max(x_1, \dots, x_n)$. 当 $\theta \ge x_{(n)}$ 时, $L(\theta)$ 是 θ 的单调递减函数, 而当 $\theta < x_{(n)}$ 时, $L(\theta) = 0$, 于是 $L(\theta)$ 在 $x_{(n)}$ 处达到最大值, 即得 $\hat{\theta}_L = x_{(n)}$, θ 的最大似然估计量为 $\hat{\theta}_L = X_{(n)}$

3 正态总体参数的区间估计与假设检验

- μ , σ^2 的置信度为1 α 区间估计:
 - 1. 从上表中选择合适的 $T(X_1, \cdots, X_n; \theta)$;
 - 2. 根据 $T(X_1, \dots, X_n; \theta)$ 的分布,确定分位点 $c_{1-\frac{\alpha}{2}}, c_{\frac{\alpha}{2}},$ 使得 $P\{c_{1-\frac{\alpha}{2}} \leq T(X_1, \dots, X_n; \theta) \leq c_{\frac{\alpha}{2}}\} = 1 \alpha.$ (注: 当 $T(X_1, \dots, X_n; \theta)$ 的密度关于Y-轴对称时, $c_{1-\frac{\alpha}{2}} = -c_{\frac{\alpha}{2}}$);
 - 3. 解不等式: $c_{1-\frac{\alpha}{2}} \leq T(X_1, \dots, X_n; \theta) \leq c_{\frac{\alpha}{2}}$, 即得 θ 的置信度为 1α 区间估计.
- 显著性水平为 α 的 μ , σ^2 的假设检验:
 - 1. 从上表中选择合适的随机变量, 其中的 θ 取 H_0 中等号后的数值: $T(X_1, \dots, X_n; \theta_0)$;
 - 2. 根据 H_0 和 H_1 的形式,判断 $T(X_1, \dots, X_n; \theta_0)$ 何时对 H_0 有利,何时不利,比如越大对 H_1 越有利,则拒绝域的形式为 $W = \{T | T(X_1, \dots, X_n; \theta) > c\}$;

- 3. 根据 $T(X_1, \dots, X_n; \theta_0)$ 的分布,确定c使得 $P\{T \in W | \theta = \theta_0\} = \alpha$.
- 4. 将样本观测值带入T 得到 T_0 ,若 $T_0 \in W$,则 $RejH_0$,否则, $AccH_0$.
- 显著性水平 α , 两类错误的概念
 - $\Diamond P(T ∈ W | H_0) = \alpha$ —第一类错误
 - $♦ P(T ∈ \overline{W}|H_1) = \beta$ —第二类错误

例2. 设某种职业的年收入 $\mathbb{X} \sim N(\mu, \sigma^2)$, 现从该种职业人群中随机抽取一组容量为36的样本, 算得样本均值 $\bar{x} = 6.5(万元)$, 样本标准差s = 1.0(万元).

- 1. 求总体标准差σ的置信度为0.95的区间估计;
- 2. 在显著性水平 $\alpha = 0.05$ 下,能否认为该种职业的平均年收入超过了6万元.

1答: 总体标准差σ的置信度为0.95的区间估计为:

$$\begin{split} & \left[s\sqrt{\frac{n-1}{\chi^2_{\alpha/2}(n-1)}}, s\sqrt{\frac{n-1}{\chi^2_{1-\alpha/2}(n-1)}} \right] \\ = & \left[\sqrt{\frac{35}{53.2033}}, \sqrt{\frac{35}{20.5694}} \right] \\ = & \left[0.8111, \ 1.3044 \right] \end{split}$$

2答: 构造假设:

$$H_0: \mu \le 6 \quad H_1: \mu > 6$$

的拒绝域为:

$$W = \left\{ \boldsymbol{x} | \bar{x} > 6 + \frac{s}{\sqrt{n}} t_{\alpha} (n-1) \right\}$$
$$= \left\{ \boldsymbol{x} | \bar{x} > 6 + \frac{1}{\sqrt{36}} 1.6896 \right\}$$
$$= \left\{ \boldsymbol{x} | \bar{x} > 6.2816 \right\}$$

由于 $\bar{x} = 6.5 \in W$, 因此拒绝 H_0 , 即可以认为该种职业的平均年收入超过了6万元.

4 分布拟合检验

- 一般步骤:
- $H_0:X \sim F(x)$
 - 1. 将总体X的取值范围分成k个互不相交的区间 A_1, \ldots, A_k ;
 - 2. 计算样本观察值落入每个小区间 $(A_i, A_{i+1}]$ 的频数 $f_i, i = 1, \ldots, k-1$.
 - 3. 计算 H_0 为真时,总体X落入区间 $(A_i,A_{i+1}]$ 的概率 $p_i = P(A_i < X \le A_{i+1}), i = 1, ldots, k-1.$ (注意,若F(x) 中含有r 个未知数,则需要先用MLE 估计未知数,然后再计算 p_i .)
 - 4. 构造<mark>检验统计量 $K = \sum_{i=1}^{k} \frac{(f_i np_i)^2}{np_i}$,由Pearson定理知道, $K \sim \chi^2(k-1)$.</mark> (注意,若F(x) 中含有r 个未知数,则需要先用MLE 估计这r个未知数,此时, $K \sim \chi^2(k-1-r)$.)

- 5. 拒绝域 $W = K > \chi_{\alpha}^{2}(k-1-r)$. 若K 的观察值 $K_{0} \in W$, 则 $RejH_{0}$, 否则, $AccH_{0}$.
- 掌握具体检验方法(例子). 掷一颗骰子60次, 结果如下:

点数	1	2	3	4	5	6
次数	7	8	12	11	9	13

试在显著性水平为下检验这颗骰子是否均匀。

解:
$$H_0$$
: $F(x)$ 是离散分布 $P(X=k) = \frac{1}{6}$, $k=1,\dots,6$ 。

组频率: ↵

k₽	1₽	2₽	3₽	4₽		6₽ 4
f_{k} $^{\wp}$	0.117₽	0.133₽	0.2₽	0.184₽	0.15₽	0.216
	k n					

$$\chi^2 = \sum_{i=1}^k \frac{n}{p_i} (n_i / n - p_i)^2 = 2.780$$
, \Leftrightarrow

拒绝域
$$W = \{\chi^2 = \sum_{i=1}^k \frac{n}{p_i} (n_i/n - p_i)^2 \ge \chi^2_{\alpha}(k-1)\} = \{\chi^2 \ge \chi^2_{0.05}(5) = 11.07\}$$
 e

所以接受。₽

单因子方差分析 5

单因子方差分析步骤: 步骤: 假设 H_0 : $a_1=a_2=\cdots=a_r=0$ vs H_1 : a_1,a_2,\cdots,a_r 不全等于 0,

统计量
$$F = \frac{S_A/f_A}{S_e/f_e} = \frac{MS_A}{MS_e} \sim F(r-1,n-r)$$
 ,

显著水平 α ,右侧拒绝域 $W = \{f \ge f_{1-\alpha}(r-1, n-r)\}$,

计算f,并作出判断.

这是F检验法.

单因子方差分析数据:

在单因子方差分析中通常将试验数据及基本计算结果写成表格形式

因子水平		试验	数据	和	和的平方	平方和	
A_1	Y ₁₁	Y_{12}		Y_{1m}	T_1	T_1^2	$\sum Y_{1j}^2$
A_2	Y ₂₁	Y_{22}		Y_{2m}	T_2	T_2^2	$\sum Y_{2j}^2$
1	1			1	1		
A_r	Y_{r1}	Y_{r2}		Y_{rm}	T_r	T_r^2	$\sum Y_{ij}^2$
Σ					Т	$\sum_{i=1}^{r} T_i^2$	$\sum_{i=1}^{r} \sum_{j=1}^{m} Y_{ij}^2$

方差分析表:

通常列成方差分析表:

	01.64.			
来源	平方和	自由度	均方和	F比
因子	S_A	$f_A = r - 1$	$MS_A = S_A / f_A$	$F = MS_A / MS_e$
误差	S_e	$f_e = n - r$	$MS_e = S_e / f_A$	
总和	S_T	$f_T = n - 1$		

记

$$T_i = \sum_{i=1}^m Y_{ij} \ , \quad T = \sum_{i=1}^r T_i = \sum_{i=1}^r \sum_{j=1}^m Y_{ij} \ ,$$

可得

$$\begin{split} S_T &= \sum_{i=1}^r \sum_{j=1}^m (Y_{ij} - \overline{Y})^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - n \overline{Y}^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{n} \left(\sum_{i=1}^r \sum_{j=1}^m Y_{ij} \right)^2 = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{n} T^2 \;, \\ S_A &= m \sum_{i=1}^r (\overline{Y}_{i.} - \overline{Y})^2 = m \left[\sum_{i=1}^r \overline{Y}_{i.}^2 - r \overline{Y}^2 \right] = m \sum_{i=1}^r \left(\frac{1}{m} \sum_{j=1}^m Y_{ij} \right)^2 - m r \left(\frac{1}{n} \sum_{i=1}^r \sum_{j=1}^m Y_{ij} \right)^2 = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{1}{n} T^2 \;, \\ S_e &= S_T - S_A = \sum_{i=1}^r \sum_{j=1}^m Y_{ij}^2 - \frac{1}{m} \sum_{i=1}^r T_i^2 \;. \end{split}$$

例题:

例 在饲料养鸡增肥的研究中,现有三种饲料配方: A_1, A_2, A_3 , 为比较三种饲料的效果,特选 24 只相似的雏鸡随机均分为三组,每组各喂一种饲料,60 天后观察它们的重量.实验结果如下表所示:

饲料		鸡重/g							
A_1	1073	1009	1060	1001	1002	1012	1009	1028	
A_2	1107	1092	990	1109	1090	1074	1122	1001	
A_3	1093	1029	1080	1021	1022	1032	1029	1048	

在显著水平 $\alpha = 0.05$ 下检验这三种饲料对雏鸡增重是否有显著差别.

解: 假设 H_0 : $a_1 = a_2 = a_3 = 0$ vs H_1 : a_1, a_2, a_3 不全等于 0,

统计量
$$F = \frac{S_A/f_A}{S_e/f_e} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$
,平方和

显著水平 $\alpha=0.05,\ n=24,\ r=3,\ m=8,\ 右侧拒绝域 W=\{f\geq f_{0.95}(2,21)\}=\{f\geq 3.47\},$

试验数据计算表

因子水平		试验数据 Y_{ij}						T_i	T_i^2	$\sum_{j=1}^{m} Y_{ij}^2$	
A_1	1073	1009	1060	1001	1002	1012	1009	1028	8194	67141636	8398024
A_2	1107	1092	990	1109	1090	1074	1122	1001	8585	73702225	9230355
A_3	1093	1029	1080	1021	1022	1032	1029	1048	8354	69789316	8728984
总和									25133	210633177	26357363

计算可得

$$S_A = \frac{1}{m} \sum_{i=1}^r T_i^2 - \frac{1}{n} T^2 = \frac{1}{8} \times 210633177 - \frac{1}{24} \times 25133^2 = 9660.0833 \; ,$$

$$S_e = \sum_{i=1}^r \sum_{i=1}^m Y_{ij}^2 - \frac{1}{m} \sum_{i=1}^r T_i^2 = 26357363 - \frac{1}{8} \times 210633177 = 28215.875$$
,

方差分析表

		73 /11/10 11-100		
来源	平方和	自由度	均方和	F比
因子	9660.0833	2	4830.0417	3.5948
误差	28215.875	21	1343.6131	
总和	37875.9583	23		

有 F 比 f = 3.5948 ∈ W,

故拒绝 H_0 ,接受 H_1 ,可以认为这三种饲料对雏鸡增重有显著差别,

并且检验的p值 $p = P{F \ge 3.5948} = 1 - 0.9546 = 0.0454 < <math>\alpha = 0.05$.

6 一元线性回归分析

一元线性回归模型:

一元线性回归模型

$$\begin{cases} Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, & i = 1, 2, \dots, n; \\ \Delta \varepsilon_i \quad \text{相互独立}, \quad \text{且服从相同的正态分布} N(0, \sigma^2). \end{cases}$$

根据观测数据 (x_i, y_i) , 对参数 β_0 , β_1 作出估计, 得到 $\hat{\beta}_0$, $\hat{\beta}_1$, 取

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 x ,$$

称为 Y关于 x 的经验回归函数,也称为回归方程.若给定 x 的值 x_0 ,可得 $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$,称为随机变量 Y 在 x_0 处的回归值或预测值.

模型参数的最小二乘估计:

对于 n 组观测数据 (x_i, y_i) , $i = 1, 2, \dots, n$, 总的误差平方和

$$Q = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 ,$$

选取 β_0 , β_1 的值, 使得 Q 达到最小. 令 Q 关于 β_0 , β_1 的偏导数等于 0, 得

$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i) \cdot (-1) = 0; \\ \frac{\partial Q}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i) \cdot (-x_i) = 0. \end{cases}$$

称为正规方程组,经过整理,可得

$$\begin{cases} n\beta_0 + \beta_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i; \\ \beta_0 \sum_{i=1}^n x_i + \beta_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i. \end{cases}$$

故取 β_0 , β_1 的最小二乘估计为

$$\begin{cases} \hat{\beta}_1 = \frac{l_{xY}}{l_{xx}}; \\ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}. \end{cases}$$

线性回归模型的三种检验:

一. F 检验

步骤: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$F = \frac{S_R}{S_\epsilon/(n-2)} \sim F(1, n-2)$$
,

显著水平 α ,右侧拒绝域 $W = \{f \ge F_{1-\alpha}(1, n-2)\}$,计算 f,并作出判断.

计算公式: $S_R = \hat{\beta}_1^2 l_{xx}$, $S_T = l_{yy}$, $S_e = S_T - S_R = l_{yy} - \hat{\beta}_1^2 l_{xx}$.

二.T检验

因
$$\hat{\beta}_{\rm l} \sim N \left(\beta_{\rm l}, \frac{\sigma^2}{l_{xx}}\right)$$
, $\frac{S_e}{\sigma^2} \sim \chi^2(n-2)$, 且 $\hat{\beta}_{\rm l} = \sqrt{\frac{S_R}{l_{xx}}}$ 与 S_e 相互独立,有 $\frac{\hat{\beta}_{\rm l} - \beta_{\rm l}}{\sigma/\sqrt{l_{xx}}} \sim N(0,1)$,则根据 t 分

布的定义可知:

$$T = \frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma / \sqrt{l_{xx}}}}{\sqrt{\frac{S_e}{\sigma^2} / (n-2)}} = \frac{(\hat{\beta}_1 - \beta_1) \sqrt{l_{xx}}}{\sqrt{\frac{S_e}{n-2}}} = \frac{(\hat{\beta}_1 - \beta_1) \sqrt{l_{xx}}}{\hat{\sigma}} \sim t(n-2) \ .$$

步骤: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$

统计量
$$T = \frac{\hat{\beta}_1 \sqrt{l_{xx}}}{\hat{\sigma}} \sim t(n-2)$$
, 其中 $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}}$,

显著水平 α , 双侧拒绝域 $W = \{|t| \ge t_{1-\alpha/2}(n-2)\}$, 计算t, 并作出判断.

注意到 $T^2 = \frac{\hat{\beta}_1^2 l_{xx}}{\hat{\sigma}^2} = \frac{S_R}{S_e/(n-2)} = F$,可见 T 检验与 F 检验本质上是一致的.

三. 相关系数检验

对应于总体相关系数
$$Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} = \frac{E\{[X-E(X)][Y-E(Y)]\}}{\sqrt{E[X-E(X)]^2}\sqrt{E[Y-E(Y)]^2}}$$
,定义样本相关

系数
$$r = \frac{\displaystyle\sum_{i=1}^{n}(X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\displaystyle\sum_{i=1}^{n}(X_i - \overline{X})^2} \cdot \sqrt{\displaystyle\sum_{i=1}^{n}(Y_i - \overline{Y})^2}}$$
 ,有 $|r| \le 1$,且当 $|r| = 1$ 时, X_i 与 Y_i 具有完全的线性关系,即存在

常数 a、b, 使得 $Y_i = aX_i + b$. 如果 |r| 越接近 1, 表明 X_i 与 Y_i 的线性关系越强; 如果 |r| 越接近 0, 表明 X_i 与 Y_i 的线性关系越弱.

对于假设 H_0 : $\beta_1 = 0$, 可将拒绝域取为 $W = \{|r| \ge c\}$ 的形式.

因
$$r = \frac{l_{xY}}{\sqrt{l_{xx}} \cdot \sqrt{l_{YY}}}$$
 ,则 $r^2 = \frac{l_{xY}^2}{l_{xx} \cdot l_{YY}} = \frac{\hat{\beta}_1^2 l_{xx}}{l_{YY}} = \frac{S_R}{S_T} = \frac{S_R}{S_R + S_e} = \frac{\frac{S_R}{S_e/(n-2)}}{\frac{S_R}{S_e/(n-2)} + (n-2)} = \frac{F}{F + (n-2)}$,可见相关

系数检验(r检验)与F检验本质上是一致的.

为了方便使用,根据F分布的分位数,可得|r|的分位数

$$r_{{\bf l}-\alpha}(n-2) = \sqrt{\frac{F_{{\bf l}-\alpha}(n-2,1)}{F_{{\bf l}-\alpha}(n-2,1) + n - 2}} \ .$$

步骤: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$r = \frac{l_{xY}}{\sqrt{l_{yy}} \cdot \sqrt{l_{yy}}}$$
,

显著水平 α , 拒绝域 $W = \{|r| \ge r_{1-\alpha}(n-2)\}$, 计算样本相关系数 r, 并作出判断.

例题:

例 为了考察某企业产量与成本的关系,调查获得5组数据:

产量 (吨)	25	28	30	32	35
成本 (万元)	384	395	412	417	430

求: (1) 产量与成本的线性回归方程; (2) 对回归方程作显著性检验(α =0.01); (3) 回归系数 β 1与 β 0,误差方差 σ^2 以及产量为 40 时平均成本 $E(Y_0)$ 的置信区间(α =0.01); (4) 产量为 40 时成本 Y_0 的预测区间(α =0.01).

解: (1) 根据试验数据得出计算表:

试验数据计算表

$\Sigma x_i = 150$	n = 12	$\Sigma y_i = 2038$
$\overline{x} = 30$		$\bar{y} = 407.6$
$\Sigma x_i^2 = 4558$	$\sum x_i y_i = 61414$	$\Sigma y_i^2 = 832014$
$n\bar{x}^2 = 4500$	$n\overline{x}\overline{y} = 61140$	$n\overline{y}^2 = 830688.8$
$l_{xx} = 58$	$l_{xy} = 274$	$l_{yy} = 1325.2$
	$\hat{\beta}_1 = l_{xy} / l_{xx} = 4.7241$	
	$\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x} = 265.8759$	

故回归方程为 \hat{Y} = 265.8759 + 4.7241x;

(2) F 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$F = \frac{S_R}{S_e/(n-2)} \sim F(1, n-2)$$
,

显著水平 $\alpha=0.01$, n=5, $F_{1-\alpha}(1,n-2)=F_{0.99}(1,3)=34.12$, 右侧拒绝域 $\textbf{W}=\{f\geq 34.12\}$, 因 $S_R=\hat{\beta}_1^2 l_{xx}=4.7241^2\times 58=1294.4138$, $S_T=l_{yy}=1325.2$, 有 $S_e=S_T-S_R=30.7862$,

$$\text{III} \ f = \frac{1294.4138}{30.7862/3} = 126.1358 \in W \ ,$$

故拒绝 H_0 ,接受 H_1 ,回归方程显著;

方差分析表

来源	平方和	自由度	均方和	F比
回归	1294.4138	1	1294.4138	126.1358
残差	30.7862	3	10.2621	
总和	1325.2	4		

(注: 检验的 p 值为 $p = P\{F \ge 126.1358\} = 0.0015$);

或 r 检验: 假设 H_0 : $\beta_1 = 0$ vs H_1 : $\beta_1 \neq 0$,

统计量
$$r = \frac{l_{xY}}{\sqrt{l_{yy}} \cdot \sqrt{l_{yy}}}$$
 ,

显著水平 $\alpha=0.01,\ n=5,\ r_{1-\alpha}(n-2)=r_{0.99}(3)=0.959,\$ 拒绝域 $W=\{|r|\geq 0.959\},$ 因 $l_{xx}=0.018567,\ l_{xy}=2.4675,\ l_{yy}=345.0625,$

则
$$r = \frac{l_w}{\sqrt{l_w} \cdot \sqrt{l_w}} = \frac{274}{\sqrt{58} \times \sqrt{1325.2}} = 0.9883 \in W$$
,

故拒绝 Ho,接受 H1,回归方程显著

(3)
$$\boxtimes n = 5$$
, $\alpha = 0.01$, $\bar{q} = 30$, $\hat{\sigma} = \sqrt{\frac{S_e}{n-2}} = \sqrt{\frac{30.7862}{3}} = 3.2034$,

$$t_{1-\alpha/2}(n-2) = t_{0.995}(3) = 5.8409$$

$$\chi^2_{\alpha/2}(n-2) = \chi^2_{0.005}(3) = 0.0717$$
, $\chi^2_{1-\alpha/2}(n-2) = \chi^2_{0.995}(3) = 14.8603$,

故回归系数βι的 0.99 置信区间为

$$\left[\hat{\beta}_1 \pm t_{1-\alpha/2}(n-2) \cdot \frac{\hat{\sigma}}{t_{xx}}\right] = \left[4.7241 \pm 5.8409 \times \frac{3.2034}{58}\right] = \left[4.4015, 5.0467\right]$$

回归系数分的 0.99 置信区间为

$$\left[\hat{\beta}_0 \pm t_{1-\alpha/2}(n-2) \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{l_{xx}}}\right] = \left[265.8759 \pm 5.8409 \times 3.2034 \times \sqrt{\frac{1}{5} + \frac{30^2}{58}}\right]$$

误差方差 σ^2 的 0.99 置信区间为

$$\left[\frac{(n-2)\hat{\sigma}^2}{\chi^2_{1-\alpha/2}(n-2)}, \frac{(n-2)\hat{\sigma}^2}{\chi^2_{\alpha/2}(n-2)}\right] = \left[\frac{3\times3.2034^2}{14.8603}, \frac{3\times3.2034^2}{0.0717}\right] = \left[2.0717, 429.3753\right];$$

产量 $x_0 = 40$ (吨) 时平均成本 $E(Y_0)$ 的 0.99 置信区间为

$$\begin{split} \left[\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{1-\alpha/2} (n-2) \cdot \hat{\sigma} \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}} \right] \\ = \left[265.8759 + 4.7241 \times 40 \pm 5.8409 \times 3.2034 \times \sqrt{\frac{1}{5} + \frac{(40 - 30)^2}{58}} \right] \\ = \left[428.8867, 480.79601 \right] \end{split}$$

(4) 产量为 40 时成本 Yo的预测区间为

$$\begin{split} & \left[\hat{\beta}_0 + \hat{\beta}_1 x_0 \pm t_{1-\alpha/2} (n-2) \cdot \hat{\sigma} \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{l_{xx}}} \right] \\ & = \left[265.8759 + 4.7241 \times 40 \pm 5.8409 \times 3.2034 \times \sqrt{1 + \frac{1}{5} + \frac{(40 - 30)^2}{58}} \right] \\ & = [422.8453, 486.8374]. \end{split}$$