A Propos de la Computation Binaire

La moins appréciée des mathématiques. D'ailleur, qui aime les maths, hein?

- 2 afficheurs sont présents sur ce module:
 - 1. L'opérateur binaire (AND, OR, XOR, NOT)
 - 2. La saisie de la résultante

• Uitiliser la table des octets ci-dessouset l'opérateur binaire de l'afficheur pour déterminer la réponse. Dans cette table, MSB est le bit le plus significatif, LSB le moins significatif.

Octet 1	Bit	Octet 2	
Sans piles AA	MSB	l pile D ou plus	
Prise parallèle		3 prises ou plus	
Indicateur NSA allumé		2 compartiments à piles ou plus	
Nbr de modules supérieur au temps de départ en minutes		Indicateur BOB allumé	
Plus d'un indicateur allumé		Plus d'un indicateur éteind	
Nombre de modules multiple de 3		Numéro de série impair	
Moins de 2 piles D		Nbr de modules pair	
Moins de 4 ports	LSB	2 piles ou plus	

Voici le détail de chaque opérateur binaire:

Info	AND	OR	XOR	NOT
COMMENT	Si les deux octets sont à 1, le résultat est 1. Sinon le résultat est 0.	Si l'un des deux octets est à l (ou les 2), le résultat est l. Sinon le résultat est 0.	Si l'un des deux octets est à l (pas les 2), le résultat est l. Sinon le résultat est 0.	Ignorer le second octet. A chaque bit, le résultat est son opposé.
MATH	bitl && bit2	bitl bit2	(bitl && !bit2) (!bitl && bit2)	!bitl