MATH 321 FINAL EXAM F18 RUBRIC

KENAN INCE

In the following questions, \mathbb{N} refers to the set $\{1, 2, 3, \dots\}$ of natural numbers and \mathbb{I} refers to the set of irrational numbers.

- (1) (58 points) True or false? Prove if true, and disprove or give a counterexample if false.
 - (a) (8 points) If (a_n) and (b_n) are sequences and both (a_n/b_n) and (b_n) converge, then (a_n) converges.
 - (i) True; define $c_n := a_n/b_n$ for all n. By assumption, $\lim c_n$ exists; call it c. Also by assumption, $\lim b_n$ exists; call it b. Now consider the sequence $(c_n b_n)$. We have that

$$c_n b_n = \left(\frac{a_n}{b_n}\right) b_n = a_n$$

for all n. Now, by part (iii) of the Algebraic Limit Theorem, since $(c_n) \to c$ and $(b_n) \to b$, it must be that

$$\lim a_n = \lim (c_n b_n) = cb$$

exists.

- (b) (8 points) If $(x_n) \to x$, then $(|x_n|) \to |x|$.
 - (i) True; let $\epsilon > 0$ be arbitrary and assume that $(x_n) \to x$. Hence there exists $N \in \mathbb{N}$ such that $|x_n x| < \epsilon$. But then, by the reverse triangle inequality,

$$||x_n| - |x|| \le |x - x_n| < \epsilon$$

whenever $n \geq N$, hence $(|x_n|) \rightarrow |x|$. (The converse, however, is false.)

- (c) (9 points) If K_1, K_2, \ldots, K_n are compact sets, then $\bigcup_{i=1}^n K_i$ is compact.
 - (i) True. Boundedness is preserved by the finite union operation; just take the max of the bounds.
 - (ii) For closedness, you'll have to show that a limit point of $\bigcup_{i=1}^n K_i$ is a limit point of at least one of the K_i , hence is contained in the union. Assume x is a limit point of the union and let $\epsilon > 0$ be arbitrary. By the definition of limit point, there exists $y \in \bigcup_{i=1}^n K_i$ such that $y \in V_{\epsilon}(x)$. But then $y \in K_i$ for some i, which means x is a limit point of K_i since ϵ was arbitrary.
- (d) (9 points) If C_1, C_2, \ldots, C_n are connected sets, then $\bigcap_{i=1}^n C_i$ is connected. [Hint: is \emptyset connected?]
 - (i) Yes, \(\psi \) is connected because it's explicitly excluded in the definition of disconnected.
 - (ii) True; for contradiction assume $C := \bigcap_{i=1}^n C_i$ is disconnected. Then there exist $A, B \subseteq \mathbb{R}$ such that $A \cup B = C$ and

$$\overline{A} \cap B = A \cap \overline{B} = \emptyset.$$

If any of the C_i is empty or if $C = \emptyset$, then $C = \emptyset$ is connected. So assume none of the C_i , nor C, is empty and let $i \in \{1, ..., n\}$ be arbitrary. Since $A \cap B \subseteq \overline{A} \cap B = \emptyset$, $A \cap B = \emptyset$, hence any $C_i \subseteq C$ is contained in either A or B, but not both. Define $E := A \cap C_i$ and $F := B \cap C_i$. Then certainly

$$E \cup F = (A \cap C_i) \cup (B \cap C_i) = (A \cup B) \cap C_i = C \cap C_i = C_i$$
.

Moreover, $\overline{E} \cap F \subseteq \overline{A} \cap B = \emptyset$ and $E \cap \overline{F} \subseteq A \cap \overline{B} = \emptyset$, hence E and F are a separation of C_i , contradicting that C_i is connected. Hence C is connected.

(e) (8 points) The set

$$S:=\{\sqrt{n}:n\in\mathbb{N}\}\subset\mathbb{I}$$

is uncountable.

- (i) False. The function $f: \mathbb{N} \to S$ given by $f(n) = \sqrt{n}$ is a 1-to-1 correspondence between \mathbb{N} and S because $\sqrt{n} = \sqrt{m} \iff n = m$ and every element of S is the square root of a natural number. Since \mathbb{N} is countable, it must be that S is countable as well.
- (f) (8 points) The set S from part (e) is closed.
 - (i) False. Let $\epsilon > 0$ be arbitrary. You proved in your homework that, if $(x_n) \to x$, then $(\sqrt{x_n}) \to \sqrt{x}$. Thus, $(\sqrt{n}) \to \sqrt{0} = 0$, but $0 \notin S$.
- (g) (8 points) If E is a nonempty subset of \mathbb{R} that is bounded below, then $\inf E + 1 \in E$.
 - (i) False. Consider the set $E = \{\frac{1}{n} : n = 2, 3, 4, \dots\} \subseteq \mathbb{R}$. Certainly E is bounded below by 0, and in fact inf E = 0. However, inf $E + 1 = 1 \notin E$ by construction.
- (2) (25 points) Let $a \in \mathbb{R}$ with a > -1. Prove that $(1+a)^n \ge 1 + na$ for all $n \in \mathbb{N}$.
 - (a) Base case: n=1

$$(1+a)^1 = 1+a = 1+(1)a$$
.

(b) Inductive step: assume that $(1+a)^n \ge 1 + na$ and consider $(1+a)^{n+1}$. Then

$$(1+a)^{n+1} = (1+a)(1+a)^n$$

$$\geq (1+a)(1+na)$$

$$= 1+na+a+na^2$$

$$= 1+a(n+1)+na^2$$

$$\geq 1+(n+1)a \text{ since } a > -1 \implies 0 \leq a^2 < 1 \text{ and } n > 0.$$

(3) (17 points) Compute

$$\lim_{n \to \infty} \left(-\frac{3}{2} + \frac{3}{4} - \frac{3}{8} + \frac{3}{16} \mp \dots + (-1)^n \frac{3}{2^n} \right).$$

- (a) Note that the term inside the limit is the *n*th partial sum of the series $\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n}$.
- (b) Now, note that

$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n} = \sum_{n=0}^{\infty} (-1)^n \frac{3}{2^n} - \frac{3}{2^0}$$
$$= 3\sum_{n=0}^{\infty} (-1)^n \frac{1}{2^n} - 3$$
$$= 3\sum_{n=0}^{\infty} \left(\frac{-1}{2}\right)^n - 3$$

(c) Hence, applying the geometric series formula yields

$$\sum_{n=1}^{\infty} (-1)^n \frac{3}{2^n} = 3\left(\frac{1}{1 - (-1/2)}\right) - 3$$
$$= 3\left(\frac{2}{3}\right) - 3$$
$$= 2 - 3 = -1$$

- (4) (Bonus) Let T be the set of all $x \in [0,1]$ whose decimal expansion contains only the digits 3 and 8. Answer the following questions regarding T and explain why or why not.
 - (a) (3 points) Is T countable?
 - (i) No, T is uncountable. To see this, we mimic our proof that [0, 1] is uncountable. Assume for contradiction that T is countable; then

$$T = \{x_1, x_2, \dots\}$$

and each $x_i \in T$ has a decimal expansion of the form $x_i = .a_{i1}a_{i2}a_{i3}...$ where $a_{ij} \in \{3, 8\}$ for all $i, j \in \mathbb{N}$. Then define x via the decimal representation $x = .a_1a_2a_3...$, where

$$a_i = \begin{cases} 3 & \text{if } a_{ii} = 8 \\ 8 & \text{if } a_{ii} = 3. \end{cases}$$

Then $x \in T$ because its decimal expansion consists entirely of 3s and 8s, but $x \neq x_i$ for any i because they disagree in the ith decimal place. This contradiction shows that T is uncountable.

- (b) **(5 points)** Is T compact?
 - (i) Clearly T is bounded by the interval [-1, 1].
 - (ii) It remains to show T is closed. So let x be an arbitrary limit point of T. Then $x = \lim x_n$, where (x_n) is a sequence of points of T, hence each x_n has a decimal expansion $x_n = .a_{n1}a_{n2}a_{n3}\ldots$ with $a_{ij} \in \{3,8\}$ for all $i,j \in \mathbb{N}$. Since $(x_n) \to x$, for all $k \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that

$$|x_n - x| < \frac{1}{10^k}$$
 whenever $n \ge N$.

In other words, x_n and x must be equal up to the kth decimal place whenever $n \geq N$. Therefore, given any k, the decimal representation of xmust consist entirely of 3s and 8s up to the kth decimal place. This implies that the decimal representation of x must consist entirely of (a perhaps infinite string of) 3s and 8s. Hence, $x \in T$, and since x was arbitrary, T is closed.

- (iii) Since T is closed and bounded, T is compact.
- (c) (5 points) Is T perfect?
 - (i) Since T is closed, it must be that T contains its set of limit points.
 - (ii) However, points of T with terminating decimal expansions, such as $\frac{3}{10} = 0.3$, are not limit points of T, hence T is not perfect. This is because we may consider the distance from $\frac{3}{10}$ to the next nearest point of T. The closest point of T which is less than 0.3 is 0.08, while the closest point of T which is greater than 0.3 is 0.33, a distance of 0.03. Hence, if we let $\epsilon < 0.03$, the neighborhood

$$V_{\epsilon}(0.3) \subseteq (0.27, 0.33)$$

does not contain any points of T other than 0.3. Hence 0.3 is an isolated point of T.