

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

И ПРОЦЕССЫ УПРАВЛЕНИЯ N 1, 2008

Электронный журнал, per. N П2375 от 07.03.97 ISSN 1817-2172

 $http://www.neva.ru/journal \ http://www.math.spbu.ru/diffjournal/ \ e-mail: jodiff@mail.ru$

ФАЗОВЫЕ ПОТОКИ ОДНОГО СЕМЕЙСТВА КУБИЧЕСКИХ СИСТЕМ В КРУГЕ ПУАНКАРЕ. II 1

 $A. \Phi. Aндреев, И. A. Андреева$ ²

Мы продолжаем изучение на расширенной плоскости $\overline{\mathbb{R}^2}_{x,y}$ системы дифференциальных уравнений

$$\frac{dx}{dt} = p_0 x^3 + p_1 x^2 y + p_2 x y^2 + p_3 y^3 \equiv X(x, y),$$

$$\frac{dy}{dt} = ax^2 + bxy + cy^2 \equiv Y(x, y),$$
(0.1)

где $a, b, c, p_0, \ldots, p_3$ ($\in \mathbb{R}$) — параметры, X, Y — взаимно простые формы от x и y. В части I этого исследования [3] изучена единственная конечная особая точка O(0,0) системы (0.1). Цель настоящей II-ой его части — изучить поведение траекторий этой системы в окрестности бесконечности. Применяется метод преобразований Пуанкаре [4, § 13]. Конструкция его такова. Рассматривается пространство \mathbb{R}^3 , в нем вводится правая декартова прямоугольная система координат $O_*\xi\eta\zeta$ и берется единичная сфера S^2 ; фазовая плоскость $\mathbb{R}^2_{x,y}$ системы (0.1) отождествляется с плоскостью $\zeta=-1$ пространства \mathbb{R}^3 так, что произвольная ее точка (x,y) совпадает с точкой $(x,y,-1)\in\mathbb{R}^3$ (в частности, точка O(0,0) совпадает с точкой (0,0,-1)). Посредством центрального проектирования (из центра O_*) плоскость $\overline{\mathbb{R}^2}_{x,y}$ отображается на сферу S^2 , в

 $^{^1}$ Работа выполнена при частичной финансовой поддержке Совета по грантам Президента Российской Федерации по поддержке ведущих научных школ (НШ-4609.2006.1) и РФФИ (05-01-01079), НИИММ им. акад. В.И.Смирнова СПбГУ.

² (c) А. Ф. Андреев, И. А. Андреева, 2008

частности, ее бесконечно удаленная прямая L_{∞} — на экватор E этой сферы. Диаметрально противоположные точки сферы отождествляются. Эта сфера S^2 называется (по отношению к плоскости $\mathbb{R}^2_{x,y}$) сферой Пуанкаре. С помощью преобразований Пуанкаре (см. § 2) система (0.1) переносится на сферу S^2 . Там (в координатах Пуанкаре u,z и v,z) ищутся и исследуются ее бесконечно удаленные особые точки. Результаты исследования (с помощью ортогонального проектирования нижней половины сферы S^2 на плоскость $\mathbb{R}^2_{x,y}$) переносятся в замкнутый единичный круг $\overline{\Omega}$ этой плоскости — круг Пуанкаре, в окрестность его границы Γ (диаметрально противоположные точки которой также отождествляются). Сфера Пуанкаре S^2 и круг Пуанкаре $\overline{\Omega}$ суть модели проективной плоскости $\overline{\mathbb{R}^2}$ [4, § 13].

Во ІІ-ой части мы используем понятия и обозначения, введенные в І-ой части. В частности, считаем действующим соглашение І.О.1, т. е. считаем, что в системе (0.1) первый ненулевой из коэффициентов c, b, a и первый ненулевой из коэффициентов p_3, p_2, p_1, p_0 положительны. Ссылки на объекты (формулы, теоремы и т. п.) из І-ой части даем в виде: римская цифра І, точка, номер объекта (как сделали в предыдущей фразе). Нумерацию параграфов продолжаем.

§ 2. Бесконечно удаленные особые точки системы (0.1)

Первое преобразование Пуанкаре

$$x = \frac{1}{z}$$
, $y = \frac{u}{z}$, $z \neq 0$ $\left(z = \frac{1}{x}$, $u = \frac{y}{x}$, $x \neq 0\right)$

и замена времени $dt=-z^2\,d au$ преобразуют систему (0.1) в систему

$$\frac{du}{d\tau} = P(u)u - Q(u)z, \quad \frac{dz}{d\tau} = P(u)z, \tag{2.1}$$

где $P(u) \equiv X(1,u) = p_0 + \ldots + p_3 u^3$ и $Q(u) \equiv Y(1,u) = a + bu + cu^2$ — взаимно простые полиномы. Эта система определена на сфере S^2 , кроме ее большого круга $\xi = 0$, или, что равносильно, на плоскости $\mathbb{R}^2_{u,z}$ (касающейся сферы S^2 в точке $(\xi, \eta, \zeta) = (1, 0, 0)$), на которой мы и будем ее рассматривать.

Для системы (2.1) ось z=0 инвариантна. На ней лежат особые точки системы: O(0,0) и $O_i(u_i,0)$, где $u_i, i=\overline{1,m}, m\in\{0,\ldots,3\}$, — все вещественные корни полинома P(u). Равенство m=0 означает отсутствие у P(u) вещественных корней. При $m\geqslant 1$ может существовать $i_0\in\{1,\ldots,m\}:u_{i_0}=0$; при $m\geqslant 2$ $u_1<\ldots< u_m$.

Второе преобразование Пуанкаре

$$y = \frac{1}{z}$$
, $x = \frac{v}{z}$, $z \neq 0$ $\left(z = \frac{1}{y}$, $v = \frac{x}{y}$, $y \neq 0\right)$

и та же замена времени преобразуют систему (0.1) в систему

$$\frac{dv}{d\tau} = -X(v,1) + Y(v,1)vz, \quad \frac{dz}{d\tau} = Y(v,1)z^2,$$
 (2.2)

где $X(v,1) = p_0 v^3 + \ldots + p_3$, $Y(v,1) = av^2 + bv + c$ — взаимно простые полиномы. Эта система определена на сфере S^2 , кроме ее большого круга $\eta = 0$, или, что равносильно, на плоскости $\mathbb{R}^2_{v,z}$ (касающейся сферы S^2 в точке $(\xi, \eta, \zeta) = (0, 1, 0)$), на которой мы и будем ее рассматривать.

Ось z=0 инвариантна для системы (2.2). Если $v_{\circ} \in \mathbb{R}$ и $X(v_{\circ},1)=0$, то точка $(v_{\circ},0)$ — особая точка системы (2.2). Но, если при этом $v_{\circ} \neq 0$, то эта точка в координатах u,z имеет вид $\left(\frac{1}{v_{\circ}},0\right)$ (причем $P\left(\frac{1}{v_{\circ}}\right)=0$), т. е. она дублирует особую точку $(u_{\circ},0)=\left(\frac{1}{v_{\circ}},0\right)$ системы (2.1). Точка $(v_{\circ},0)=(0,0)$ является особой для системы (2.2) лишь при $p_{3}=0$.

Определение 2.1. Особые точки систем (2.1) и (2.2), расположенные на оси z=0, называются бесконечно удаленными особыми точками системы (0.1).

Из предварительного анализа систем (2.1) и (2.2) и определения 2.1 вытекает следующая теорема.

Теорема 2.1. Бесконечно удаленными особыми точками системы (0.1) являются: 1) особая точка O(0,0) системы (2.1), 2) особые точки системы $O_i(u_i,0)$, $i=\overline{1,m},\ m\in\{0,\ldots,3\}$, соответствующие вещественным корням полинома P(u), 3) особая точка O(0,0) системы (2.2) (она является таковой лишь при $p_3=0$).

Первую и последнюю из этих бесконечно удаленных особых точек будем обозначать (в этом их качестве) соответственно символами O_0 и O^0 . Каждой из бесконечно удаленных особых точек $O_i, i = \overline{0,m}, O^0$ системы (0.1) соответствуют в круге Пуанкаре $\overline{\Omega}$ две диаметрально противоположные точки его границы Γ . Будем обозначать их символами: $O_i^+ \ (\in \Gamma|_{x>0}), O_i^- \ (\in \Gamma|_{y>0}), i = \overline{0,m}, O_+^0 \ (\in \Gamma|_{y>0}), O_-^0 \ (\in \Gamma|_{y<0}).$

Замечание 2.1. Координатные системы u, z и v, z, индуцируемые преобразованиями Пуанкаре в круге Пуанкаре $\overline{\Omega}$, являются первая — правой,

вторая — левой. Они выглядят следующим образом. Начало системы $u, z - O_0^+(0,0)$, ось O_0^+u — дуга $(O_0^0O_0^+O_+^0)$ окружности Γ , ось O_0^+z — составной диаметр $(OO_0^-O_0^+O$ круга $\overline{\Omega}$ (или симметричные им относительно центра O объекты круга $\overline{\Omega}$). Начало системы v, z — точка $O_+^0(0,0)$, ось O_+^0v — дуга $(O_0^-O_+^0O_0^+O_0^+)$ окружности Γ , ось O_+^0z — составной диаметр $(OO_0^-O_+^0O)$ круга $\overline{\Omega}$ (или симметричные им относительно O объекты круга $\overline{\Omega}$).

Топологический тип любой бесконечно удаленной особой точки O' системы (0.1) мы будем описывать в терминах пучков O'-кривых системы типов N (узловой пучок) и S (седловой пучок, состоит из одной O'-кривой) с помощью ее A^{\pm} -схем и B^{\pm} -схем.

Определение 2. 2. Пусть O' — произвольная бесконечно удаленная особая точка системы (0.1). 1) Слово из букв N, S, порядок следования которых в нем совпадает с порядком следования пучков типов N, S O'-кривых системы, примыкающих к O' из области z > 0 (z < 0,) при полуобходе точки O' в этой области в направлении возрастания u или, что равносильно, в направлении убывания v, будем называть $A^{+(-)}$ -cxemoй movku O' и обозначать символом $A_{O'}^{+(-)}$.

2) Слово из букв E, H, P, порядок следования которых в нем совпадает с порядком следования O'-секторов Бендиксона типов E, H, P при полуобходе точки O' в области z>0 (z<0) в направлении возрастания u или, что то же, убывания v, будем называть $\mathrm{B}^{+(-)}$ -cxemoй точки O' и обозначать символом $B_{O'}^{+(-)}$.

Отметим, что $B^{+(-)}$ -схема особой точки O' легко может быть составлена по ее $A^{+(-)}$ -схеме по тому же правилу, по которому в части I составлялась В-схема точки O по ее A-схеме.

§ 3. Исследование бесконечно удаленной особой точки O_0

Речь идет об особой точке O(0,0) системы (2.1). Пусть число u=0 — корень полинома P(u) кратности $k \ge 0$. Тогда $P(u) = p_k u^k + \ldots + p_3 u^3$, $k \in \{0, \ldots, 3\}, p_k \ne 0$.

3.1. k=0, т. е. $p_0 \neq 0$. В этом случае система (2.1) имеет вид

$$\frac{du}{d\tau} = (p_0 u + \dots) - (a + \dots)z, \quad \frac{dz}{d\tau} = (p_0 + \dots)z, \tag{3.1}$$

где ... всюду означает члены высшего порядка относительно u. Линейная часть системы (3.1) невырожденная: корни ее характеристического уравнения $\lambda_1 = \lambda_2 = p_0 \Longrightarrow [2, \, \text{гл. III, § 5}]$ для (3.1) справедливо следующее утвер-

ждение.

Лемма 3.1. Если в системе (2.1) $P(0) = p_0 \neq 0$, то для нее особая точка O(0,0) - yзел: при $a \neq 0$ — вырожденный, при a = 0 — особый $(\partial u \kappa p u m u u e c \kappa u \ddot{u})$, $A_O^{+(-)} = N(N)$. В частности, при $a p_0 > 0$ (< 0) $A_O^+ = N_+(N_-)$, $A_O^- = N_-(N_+)$. Здесь $N_+(N_-)$ — пучок типа N, состоящий из O_+ -кривых $(u \exists O_-$ -кривых).

3.2. $k \in \{1, 2, 3\}$, т. е. $p_0 = 0$, $a \neq 0$. В этом случае для системы (2.1) особая точка O — нильпотентна (для нее $\lambda_1 = \lambda_2 = 0$, $a \neq 0$). В общем случае такая особая точка \mathbb{R}^2 -системы изучена, например, в [1, гл. 6; 2, гл. V]. Имея ввиду воспользоваться результатами из [2], сделаем следующее замечание.

Замечание 3. 1. В [2] на стр. 142–144 есть небольшие погрешности. Пользуясь случаем, покажем, как их исправить. Для этого достаточно сделать следующее.

- 1) Стр. 142. Окончание (пп. 4), 5)) теоремы 2.1 лучше сформулировать так: "4) α четное, $a>0 \Longrightarrow m$ очка O седло-узел, ее Б-тип PH^2 (рис. 2.5, если $(-1)^{\beta+1}b>0$; его отражение относительно оси Ox, если $(-1)^{\beta+1}b<0$; 5) α четное, a<0: этот случай приводится к случаю 4) заменой в уравнении $(2.3): x \to -x$."
- 2) Стр. 143. В 6-ой строке надо оставить лишь равенство "i=1,2."В п. 2.2.1 последнюю фразу второго абзаца и первую фразу третьего надо заменить следующими: "Отметим, что при a>0 $u_1u_2<0$. При a<0 для уравнения (2.15) особая точка $(0,u_1), |u_1|<|u_2|, —$ узел; через нее проходит решение $x=0, |u-u_1|<\delta, \delta>0$, к ней примыкают решения вида $u=u(x), 0< x<\delta.$ "
- 3) Стр. 144. Фразу во 2-ой и 3-ей строках надо заменить следующей: "Отметим, что при a<0 имеют место неравенства: $bu_i>0, i=1,2.$ " 12-ю строку надо заменить на "2) $a<0, \beta$ четное, b>0 (b<0): Π,K,Π,K (K,Π,K,Π);"

Замечание 3. 2. В [2] пучки O-кривых системы типов N и S обозначены соответственно символами Π и K.

Для изучения особой точки O(0,0) системы (2.1) в настоящем случае 3.2 применим результаты $[2, \S V.2]$, откорректированные согласно замечанию 3.1. Следуя [2, лемма V.2.1] произведем в системе (2.1) замену переменных по формулам

$$Q(u)d au=-dt_1,\quad z=\psi(u)+z_1,$$
 где $\psi(u)=R(u)u,\ R(u)\equiv rac{P(u)}{Q(u)}=r_ku^k+\dots,\ r_k=rac{p_k}{a}
eq 0,$ так что $\psi(u)=$

 $r_k u^{k+1} + \dots$ Получим систему

$$\frac{du}{dt_1} = z_1, \quad \frac{dz_1}{dt_1} = f_1(u) + g_1(u)z_1,$$
(3.2)

где

$$f_1(u) = -R^2(u)u = -r_k^2 u^{2k+1} + \dots \equiv a_1 u^{\alpha} + \dots,$$

$$g_1(u) = -R(u) - \psi'(u) = -(k+2)r_k u^k + \dots \equiv b_1 u^{\beta} + \dots.$$

Это система вида (V.2.2) [2], причем для нее (в обозначениях близких к таковым из (V.2.2)) $\alpha=2k+1,$ $\beta=k,$ $a_1=-r_k^2<0,$ $b_1=-(k+2)r_k\neq 0,$ т. е. имеет место случай 2 [2, с. 142]: $\alpha=2\beta+1,$ его подслучай 1) $d_1\equiv b_1^2+4a_1(\beta+1)=(kr_k)^2>0 \Longrightarrow ([2, c. 143],$ замечание 3.1, п. 2)) система (2.2) имеет следующие O-кривые:

$$z_1 = h_1(u) \equiv -\frac{r_k}{k+1} u^{k+1} + \dots$$
 (3.3₁)

И

$$z_1 = h_2(u) \equiv -r_k u^{k+1} + \dots$$
 (3.3₂)

В каждой из областей |u|>0 первые образуют пучок типа N, вторые — пучок типа S.

Возвращаясь к переменным τ , u, z и к системе (2.1), заключаем, что последняя имеет в рассматриваемом случае лишь следующие O-кривые:

$$z = \psi(u) + h_1(u) \equiv -\frac{kp_k}{(k+1)a} u^{k+1} + \dots, \ u \neq 0,$$
 (3.4₁)

И

$$z_1 = \psi(u) + h_2(u) \equiv 0, \ u \neq 0.$$
 (3.4₂)

Первые в каждой из областей |u| > 0 образуют один пучок типа N, вторые суть полуоси оси z = 0.

Из этого (с учетом асимптотики O-кривых (3.4_1) при $u \to 0$) вытекает следующее утверждение.

Лемма 3.2. Если в системе (2.1) $P(u) = p_k u^k + \ldots + p_3 u^3$, $k \geqslant 1$, $ap_k \neq 0$, то ее O-кривые, отличные от полуосей оси z = 0, образуют два пучка типа $N: N_+$ и N_- . Если k = 1 или 3, эти пучки лежат в области $ap_k z > 0$ так, что при $ap_k > 0$ $A_O^{+(-)} = N_- N_+(\emptyset)$, а при $ap_k < 0$ $A_O^{+(-)} = \emptyset$ $(N_- N_+)$. Если k = 2, то они лежат в областях $ap_2 uz > 0$ так, что при $ap_2 > 0$ $A_O^{+(-)} = N_+(N_-)$, а при $ap_2 < 0$ $A_O^{+(-)} = N_-(N_+)$.

3.3. A^{\pm} -схемы и B^{\pm} -схемы точки O_0 . Из лемм 3.1 и 3.2 вытекает следующя теорема.

Теорема 3.1. Пусть для полинома P(u) из системы (2.1) число u=0 является корнем кратности $k \in \{0, \ldots, 3\}$. Тогда в зависимости от значения числа k и знака числа ap_k A^{\pm} -схемы и B^{\pm} -схемы особой точки O системы (2.1), m. e. бесконечно удаленной особой точки O_0 системы (0.1), имеют вид, указанный в таблице 3.1.

k	ap_k	$A_{O_0}^+$	$A_{O_0}^-$	$B_{O_0}^+$	$B_{O_0}^-$
0	0	N	N	P	P
0, 2	+(-)	$N_{+}\left(N_{-} ight)$	$N_{-}\left(N_{+} ight)$	P(P)	P(P)
1, 3	+(-)	$N_{-} N_{+} $ (\emptyset)	$\emptyset (NN_+)$	E(H)	$H\left(E\right)$

Таблица 3.1. A^{\pm} - и B^{\pm} -схемы точки O_0 .

§ 4. Исследование бесконечно удаленных особых точек $O_i, i = \overline{1,m},$

отличных от O_0

В этом параграфе речь идет об особых точках системы (2.1) $O_i(u_i, 0)$, $i = \overline{1, m}$, для которых $u_i \neq 0$. Пусть $(u_i, 0)$ — любая из них, $k_i \in \{1, 2, 3\}$ — кратность корня u_i полинома P(u).

Полагая в (2.1) $u = u_i + v$, получим систему

$$\frac{dv}{d\tau} = P(u_i + v)(u_i + v) - Q(u_i + v)z,$$

$$\frac{dz}{d\tau} = P(u_i + v)z,$$
(4.0)

где $P(u_i+v)=\frac{1}{k_i!}P^{(k_i)}(u_i)v^{k_i}+\dots$, $Q(u_i+v)=Q(u_i)+\dots$, $P^{(k_i)}(u_i)Q(u_i)\neq 0$, \dots означает члены высшего порядка относительно v. Для нее мы должны изучить особую точку O(0,0).

4.1. $k_i = 1$. В этом случае система (4.0) принимает вид

$$\frac{dv}{d\tau} = (P'(u_i)u_iv + \dots) - (Q(u_i) + \dots)z,$$

$$\frac{dz}{d\tau} = (P'(u_i)v + \dots)z.$$
(4.1)

Ее характеристические корни в точке O суть $\lambda_1 = P'(u_i)u_i \neq 0, \ \lambda_2 = 0.$ Последовательные замены переменных

$$P'(u_i) u_i d\tau = dt_1, \quad v = \frac{1}{r_i u_i} z + y_1, \quad r_i = \frac{P'(u_i)}{Q(u_i)},$$

и перестановка уравнений приводят систему (4.1) к виду

$$\frac{dz}{dt_1} = z \left(\frac{1}{r_i u_i^2} z + \frac{1}{u_i} y_1 + \dots \right) \equiv \xi(z, y_1),
\frac{dy_1}{dt_1} = y_1 + \eta(z, y_1),$$
(4.1')

где ... означает члены высшего порядка относительно z и y_1 , а $\eta(z,y_1)$ — полином, состоящий из таких членов. Система (4.1') есть система вида (V.1.1) [2,c.120]. Чтобы изучить ее особую точку O(0,0), применим к ней теорему V.1.1 [2,c.130]. Для этого разрешим уравнение $y_1+\eta(z,y_1)=0$ в окрестности точки (0,0) относительно y_1 и подставим полученную функцию $y_1=\psi(z)\equiv o(z)$ под знак функции $\xi(z,y_1)$. Получим функцию $\alpha(z)=\frac{1}{r_iu_i^2}z^2+\ldots$, для которой $\alpha'(0)=0$, $\alpha''(0)=\frac{2}{r_iu_i^2}\neq 0\Longrightarrow [2$, теорема V.1.1] для системы (4.1') O(0,0) — седло-узел: ось z=0 — сепаратрисное многообразие, разделяющее седловую и узловую области, область $r_iz>0$ — узловая, область $r_iz<0$ — седловая. В этих областях O-кривые системы примыкают к точке O вдоль полуосей оси $y_1=0$.

Возвращаясь к переменным v, z, τ и к системе (4.1), на основании предыдущего заключаем, что для нее справедливо следующее утверждение.

Лемма 4.1. Особая точка O(0,0) системы (4.1) (т. е. бесконечно удаленная особая точка $O_i(u_i,0)$ системы $(0.1), u_i \neq 0, k_i = 1)$ — седло-узел. Седловую и узловую области разделяет инвариантная прямая z = 0; область $r_i z > 0$ — узловая, область $r_i z < 0$ — седловая; в любой из них О-кривые системы примыкают к точке O вдоль прямой $z = r_i u_i v$. A^{\pm} -схемы точки O (O_i) имеют вид:

$$u_i > 0 \ (< 0), \ r_i > 0 \implies A_O^+ = N_+ (N_-), \ A_O^- = S_- (S_+),$$

 $u_i > 0 \ (< 0), \ r_i < 0 \implies A_O^+ = S_- (S_+), \ A_O^- = N_+ (N_-).$

4.2. $k_i \in \{2, 3\}$. В этом случае для системы (4.0) особая точка O(0,0) нильпотентна: для нее $\lambda_1 = \lambda_2 = 0, \, Q(u_i) \neq 0$. Замена времени $Q(u_i + v) \, d\tau =$

 $-dt_1$ приводит (4.0) к виду

$$\frac{dz}{dt_1} = -R_i(v)z, \quad \frac{dv}{dt_1} = z - R_i(v)(u_i + v), \tag{4.2}$$

где
$$R_i(v) = \frac{P(u_i + v)}{Q(u_i + v)} \equiv r_i v^{k_i} + \dots, r_i = \frac{P^{(k_i)}(u_i)}{k_i!Q(u_i)} \neq 0.$$

Это система вида (V.2.1) [2, с.131]. Следуя [2], произведем в ней замену

$$z = \psi(v) + z_1, \quad \psi(v) \equiv R_i(v)(u_i + v) \equiv r_i u_i v^{k_i} + \dots$$
 (4.3)

Получим систему вида

$$\frac{dv}{dt_1} = z_1, \quad \frac{dz_1}{dt_1} = f_1(v) + g_1(v)z_1 \equiv Z_1(v, z_1), \tag{4.4}$$

где
$$f_1(v) = -R_i^2(v)(u_i + v) \equiv -r_i^2 u_i v^{2k_i} + \dots = :$$

 $a_1 v^{\alpha} + \dots, g_1(v) = -\psi'(v) = -k_i r_i u_i v^{k_i-1} + \dots$

 $+\dots=:b_1v^{\beta}+\dots$ Здесь $\alpha=2k_i,\ \beta=k_i-1,\ a_1=-r_i^2u_i,\ b_1=-k_ir_iu_i$ \Longrightarrow для системы (4.4) имеет место случай V.2.1 [2, с.136]: $\alpha>2\beta+1$. На основании результатов исследования этого случая в [2, с. 139–140] заключаем: система (4.4) имеет лишь следующие O-кривые

$$-z_1 = \frac{b_1}{\beta + 1} v^{\beta + 1} + \dots = r_i u_i v^{k_i} + \dots, \quad v \neq 0, \tag{4.5_1}$$

одну O_+ -кривую и одну O_- -кривую, и

$$z_1 = -\frac{a_1}{b_1} v^{\alpha-\beta} + \dots = -\frac{r_i}{k_i} v^{k_i+1} + \dots, \quad v \neq 0,$$
 (4.5₂)

пучок O-кривых типа N в области $u_i v > 0$ и пучок O-кривых типа S в области $u_i v < 0$.

Возвращаясь по формулам (4.3) к переменным v, z и к системе (4.2), на основании сказанного выше заключаем, что для последней справедливо следующее утверждение.

Лемма 4. 2. Особая точка системы (4.2) O(0,0) (т. е. бесконечно удаленная особая точка системы (0.1) $O_i(u_i,0)$, для которой $u_i \neq 0$, $k_i \in \{2,3\}$) есть седло-узел. К ней примыкают следующие О-кривые системы: z=0, $v \neq 0$, u

$$z = r_i u_i v^{k_i} + \dots, \quad v \neq 0. \tag{4.6}$$

Если $k_i = 2$, то О-кривые (4.6) лежат в области $r_i u_i z > 0$ и образуют в ее подобласти $u_i v > 0$ пучок типа N, а в подобласти $u_i v < 0$ — пучок типа S; A^{\pm} -схемы точки $O(O_i)$ имеют вид:

$$u_i > 0 \ (< 0), r_i > 0 \implies A_O^+ = S_- N_+ (\emptyset), \ A_O^- = \emptyset (N_- S_+),$$

 $u_i > 0 \ (< 0), r_i < 0 \implies A_O^+ = \emptyset (N_- S_+), \ A_O^- = S_- N_+ (\emptyset).$

Если $k_i = 3$, то О-кривые (4.6) лежат в областях $r_i u_i vz > 0$ и образуют в области $u_i v > 0$ пучок типа N, а в области $u_i v < 0$ — пучок типа S; A^{\pm} -схемы точки $O(O_i)$ таковы жее, что и при $k_i = 1$.

4. 3. A^{\pm} -схемы и B^{\pm} - схемы особых точек $O_i, i = \overline{1,m},$ отличных от O_0 . Из леми 4.1 и 4.2 вытекает следующая теорема.

Теорема 4.1. Пусть u_i , $i \in \{1, \ldots, m\}$, — ненулевой вещественный корень полинома P(u), k_i ($\in \{1, 2, 3\}$) — его кратность, $r_i := \frac{P^{(k_i)}(u_i)}{k_i!Q(u_i)}$. Тогда в зависимости от значения k_i и знаков чисел r_i и u_i A^{\pm} -схемы и B^{\pm} -схемы особой точки $O_i(u_i, 0)$ системы (2.1), (т. е. бесконечно удаленной особой точки $O_i \neq O_0$ системы (0.1)), имеют вид, указанный в таблице 4.1.

Таблица 4.1. A^\pm -схемы и B^\pm -схемы точки $O_i \neq O_0$.						
u_i	k_i	r_i	$A_{O_i}^+$	$A_{O_i}^-$	$B_{O_i}^+$	$B_{O_i}^-$

u_i	k_i	r_i	$A_{O_i}^+$	$A_{O_i}^-$	$B_{O_i}^+$	$B_{O_i}^-$
+(-)	1, 3	+	$N_{+}\left(N_{-}\right)$	$S_{-}\left(S_{+}\right)$	$P\left(P\right)$	HH
+(-)	1, 3		$S_{-}\left(S_{+}\right)$	$N_{+}\left(N_{-}\right)$	HH	$P\left(P\right)$
+(-)	2	+	$S_{-}N_{+}\left(\emptyset\right)$	$\emptyset (N S_+)$	$HP\left(H\right)$	H(PH)
+(-)	2		$\emptyset (N S_+)$	$S_{-}N_{+}\left(\emptyset\right)$	H(PH)	HP(H)

\S 5. Исследование бесконечно удаленной особой точки O^0

Пусть в системе (0.1) $p_3=0$. Тогда система (2.2) имеет изолированную особую точку O(0,0), которую мы и должны сейчас изучить. Учитывая соглашение I.0.1, достаточно рассмотреть нижеследующие случаи 5.1–5.3. В каждом из них в процессе исследования мы будем записывать систему (2.2) в правой системе координат zOv.

5.1. $p_3 = 0, p_2 > 0, c > 0$. В этом случае система (2.2) имеет вид

$$\frac{dz}{d\tau} = Y(v,1)z^2, \quad \frac{dv}{d\tau} = -X(v,1) + Y(v,1)zv, \tag{5.1}$$

где $X(v,1)=p_2v+p_1v^2+p_0v^3,\,Y(v,1)=c+bv+av^2,\,$ Ее характеристические корни в особой точке O суть $\lambda_1=0,\,\lambda_2=-p_2<0.$ Замена времени $p_2d\tau=-dt_1$ придает ей вид

$$\frac{dz}{dt_1} = -\frac{c}{p_2}z^2(1+\ldots) \equiv \xi(z,v) \quad \frac{dv}{dt_1} = v(1+\ldots) \equiv v + \eta(z,v), \quad (5.1')$$

где . . . означает члены высшего порядка относительно v или относительно z и v. Это система вида (V.1.1) [2, с. 120]. Применим к ней теорему V.1.1 [2, с. 130].

Разрешая уравнение $v+\eta(z,v)=0$ в окрестности точки (0,0) относительно v, получим функцию $v=\psi(z)\equiv 0$; подставляя ее под знак $\xi(z,v)$, получим функцию $\alpha(z)=-\frac{cz^2}{p_2}$, для которой $\alpha'(0)=0$, $\alpha''(0)=-\frac{2c}{p_2}<0$. Следовательно [2, теорема V.1.1], для системы (5.1') особая точка O- седлоузел, для которого ось z=0 разделяет седловую (z>0) и узловую (z<0) области. Ось v=0 также инвариантна. Все это верно и для системы (5.1). A^\pm -схемы точки O системы (5.1) (т. е. особой точки O^0 системы (0.1)) таковы: $A_O^+=S_0$, $A_O^-=N_0$, (здесь S_0 лежит на оси v=0, N_0 — пучок O-кривых, касающихся в O оси v=0).

5. 2. $p_3=p_2=0,\ p_1>0,\ c>0.$ В этом случае система (2.2) имеет вид

$$\frac{dz}{d\tau} = cz^2(1+\ldots), \quad \frac{dv}{d\tau} = v(cz - p_1v + \ldots). \tag{5.2}$$

Она имеет невырожденное однородное квадратичное приближение, которое и определяет топологический тип ее особой точки O(0,0) [2, § III.4]. Последнее же в данном случае легко исследуется методом изоклин. Оказывается, что к точке O примыкают лишь следующие O-кривые системы (5.2): полуоси осей z и v и два пучка O-кривых типа N — по одному в каждой из координатных четвертей zv < 0.

 A^\pm -схемы точки O (O^0) (с учетом замечания 2.1 и определения 2.2) выглядят так: $A_{O^0}^+=S_0N_+,\,A_{O^0}^-=N_-S_0.$

5.3. $p_3=p_2=p_1=0,\ p_0>0,\ c>0.$ В этом случае система (2.2) имеет вид

$$\frac{dz}{d\tau} = (c+\ldots)z^2, \quad \frac{dv}{d\tau} = (c+\ldots)zv - p_0v^3, \tag{5.3}$$

где ... означает члены высшего порядка относительно v. Чтобы изучить ее особую точку O(0,0) применим метод исключительных направлений [2, гл. II].

Уравнение исключительных прямых для системы (5.3) имеет вид: $F(z,v)\equiv 0$, т.е. исключительными являются все прямые, проходящие через точку O. Все они, кроме z=0, обыкновенные, а потому [2, § II.5] вдоль каждой O-полупрямой, кроме разве лишь полуосей оси z=0, к точке O примыкает единственная O-кривая системы (5.3).

Изучим для особой точки O системы (5.3) особую исключительную прямую z=0. Для этого произведем в (5.3) последовательно две замены:

$$z = uv, \ v \neq 0, \ \text{if} \ v^2 d\tau = dt_1.$$
 (5.4)

Получим систему

$$\frac{du}{dt_1} = p_0 u, \quad \frac{dv}{dt_1} = (c + \ldots)u - p_0 v,$$
(5.5)

для которой мы должны выяснить вопросы о существовании полутраекторий вида

$$u = u(v), \quad u(v) \not\equiv 0, \quad u(v) \to 0 \text{ при } v \to 0,$$
 (5.6)

и о структуре их совокупности. Но для системы (5.5) точка O(0,0)- седло с инвариантными многообразиями u=0 и $u=\frac{2p_0}{c}v+\dots$. Следовательно, она имеет лишь две полутраектории вида (5.6): $u=\frac{2p_0}{c}v+\dots$, $v\neq 0$. Из этого в силу (5.4) следует, что для системы (5.3) к точке O вдоль полуосей оси z=0 примыкают ровно две O-кривые, отличные от этих полуосей: $z=\frac{2p_0}{c}v^2+\dots$, $v\neq 0$.

Таким образом, для системы (5.3) A^{\pm} -схемы точки $O(O^0)$ имеют вид: $A_{O^0}^+=S_+NS_0NS_-=S_0NS_-,\ A_{O^0}^-=NS_0N=N,$ а B^{\pm} -схемы — вид: $B_{O^0}^+=HPH,\ B_{O^0}^-=P.$

Из результатов пп. 5.1–5.3 вытекает следующее утверждение.

Теорема 5. 1. Пусть в системе (2.2) $p_3 = 0$, а полином X(v,1) имеет число v = 0 корнем кратности $k^0 \in \{1,2,3\}$. Тогда в зависимости от значения k^0 (и с учетом соглашения I.0.1) A^{\pm} -схемы и B^{\pm} -схемы особой точки O(0,0) системы (2.2), т. е. бесконечно удаленной особой точки O^0 системы (0.1), имеют вид, указанный в таблице 5.1.

Таблица 5.1. A^{\pm} - и B^{\pm} -схемы точки O^0 .

k^0	$A_{O^0}^+$	$A_{O^0}^-$	$B_{O^0}^+$	$B_{O^0}^-$
1	S_0	N_0	HH	P
2	S_0N	N_+S_0	HP	PH
3	$S_+ N S_0 N S = S_+ N S$	$NS_0N = N$	HPPH = HPH	P

В этой таблице $S_0:=O^0$ -кривая, лежащая на оси $v=0,\ N_0:=$ пучок типа N O^0 -кривых, примыкающих к точке O^0 вдоль оси $v=0,\ S_{+(-)}:=O$ -кривая, примыкающая к O^0 вдоль полуоси $z=0,\ v>0\ (v<0).$

Литература

- 1. Андреев А.Ф. Особые точки дифференциальных уравнений. Минск: Вышэйшая школа, 1979. 136 с.
- 2. Андреев А.Ф. Введение в локальную качественную теорию дифференциальных уравнений. СПб.: Изд. С.-Петербург. ун-та, 2003. 160 с.
- 3. Андреев А.Ф., Андреева И.А. Фазовые потоки одного семейства кубических систем в круге Пуанкаре. І // Дифференциальные уравнения и процессы управления. Электронный журнал. 2007, N 4. C. 17–26.
- 4. Андронов А.А. и др. Качественная теория динамических систем второго порядка. М.: Наука, 1966. 568 с.

Андреев Алексей Федорович — профессор кафедры дифференциальных уравнений математико-механического факультета Санкт-Петербургского государственного университета;

Дом. телефон: 271-64-27

раб. телефон: 428-69-59, местн. 3059

Андреева Ирина Алексеевна — доцент кафедры высшей математики Санкт-Петербургского государственного политехнического университета;

Дом. телефон: 271-64-27

E-mail: irandr@inbox.ru