

1 / 9

FIG. 2
(PRIOR ART)

*FIG. 3
(PRIOR ART)*

FIG. 4
(PRIOR ART)

**FIG. 5
(PRIOR ART)**

FIG. 6 shows a 14-bit parallel-to-serial converter. The input is **DATA**, which is processed by a **S → P** block (labeled 11). The output of this block is connected to a 14-bit register. The register consists of four stages: **O₃**, **E₃**, **O₂**, **E₂**, **O₁**, **E₁**, **O₀**, and **E₀**. The **O_i** outputs are connected to a **BIT** line via switches labeled **13**. The **E_i** outputs are connected to a **CLK** line via switches labeled **15**. The **BIT** line is also connected to a **÷4** block.

2/9

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 9a

4/9

FIG. 11

MASTER BIT CLOCK
PHASE FROM 22

FIG. 12

FIG. 13

5/9

FIG. 15

6/9

FIG. 17

7/9

FIG. 18

8/9

FIG. 19

9/9

FIG. 20

