

Лекция 6

Алгебра операторных полиномов

Содержание лекции:

В данной лекции мы применим некоторые результаты, полученные для алгебры скалярных полиномов к новым объектам - операторным полиномам. Мы получим ряд результатов, ксающихся структуры ядер таких операторов и сформулируем важное утверждение о разложении пространства ядра полинома в прямую сумму ядер вза-имно простых его делителей.

Ключевые слова:

Операторный полином, аннулирующий полином оператора, минимальный аннулируюзий полином, теорема о ядре и образе, теорема о проекторах.

Авторы курса:

Трифанов А. И.

Москаленко М. А.

Ссылка на ресурсы:

mathdep.ifmo.ru/geolin

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

6.1 Операторные полиномы

Nota bene Пусть $X(\Bbbk)$ линейное пространство, $\dim_{\Bbbk} X = n$, и $\varphi \in \operatorname{End}_{\Bbbk}(X)$ - эндоморфизм. Определим отображение $\sigma_{\varphi} : \Bbbk[t] \to \operatorname{End}_{\Bbbk}(X)$ следующим образом:

$$\sigma_{\varphi}: \quad p(t) = \sum_{i=1}^{m} \alpha_i t^i \quad \mapsto \quad p(\varphi) = \sum_{i=1}^{m} \alpha_i \varphi^i,$$

и при этом

$$\varphi^0 = \mathcal{I}, \quad \varphi^1 = \varphi, \quad \varphi^2 = \varphi \circ \varphi, \quad \dots$$

 \parallel **Операторным полиномом** называется образ полинома p при отображении σ_{arphi} .

Лемма 6.1. Отображение σ_{φ} является гомоморфизмом.

Все свойства гомоморфности очевидным образом выполняются.

4

Nota bene Из леммы следует, что образ σ_{φ} является подалгеброй алгебры $\operatorname{End}_{\Bbbk}(X)$:

$$\operatorname{Im} \sigma_{\varphi} = \mathbb{k}[\varphi]$$

Nota bene Напомним, что ядро $\ker \sigma_{\varphi}$ - это идеал, который состоит из всех всех таких полиномов $p \in \mathbb{k}[t]$, для которых $\sigma_{\varphi}(p) = \theta$, где θ - нулевой оператор.

 \parallel Всякий полином из $\ker \sigma_{\varphi}$ называется **аннулирующим полиномом** оператора φ .

Лемма 6.2. Идеал $\ker \sigma_{\varphi}$ нетривиален.

▶

Заметим, что $\mathbb{k}[\varphi] \leq \operatorname{End}_{\mathbb{k}}(X)$ и поэтому

$$\dim_{\mathbb{k}} \mathbb{k}[\varphi] \le \dim_{\mathbb{k}} \operatorname{End}_{\mathbb{k}}(X) = n^2.$$

Набор $\left\{\mathcal{I}, \varphi, \varphi^2, \dots \varphi^{n^2}\right\}$ является линейно-зависимым в $\operatorname{End}_{\Bbbk}(X)$ и, следовательно, существует нетривиальная линейная комбинация, такая что

$$p(\varphi) = \sum_{i=1}^{n^2} \alpha_i \varphi^i = \theta \quad \Rightarrow \quad p \in \ker \sigma_{\varphi}.$$

4

Минимальным аннулирующим полиномом линейного оператора φ называется минимальный порождающий полином идеала $\ker \sigma_{\varphi}$.

 ${\it Nota~bene}~$ Будем обозначать минимальный порождающий полином оператора φ через $p_{\varphi},$ тогда можно записать:

$$p_{\varphi}(\varphi) = \theta.$$

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

Лемма 6.3. Пусть $p, q \in \mathbb{k}[t]$, тогда

$$p(\varphi) = q(\varphi) \quad \Leftrightarrow \quad (p-q) \stackrel{:}{:} p_{\varphi},$$

 $p = gp_{\varphi} + r \quad \Rightarrow \quad r(\varphi) = p(\varphi).$

Лемма 6.4. В силу вышесказанного, имеем:

$$\mathbb{k}[\varphi] \simeq \mathbb{k}[t]/p_{\varphi}\mathbb{k}[t]$$

6.2 Структурная теорема

Nota bene Рассмотрим специальный случай, когда $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$.

Лемма 6.5. Пусть $p_1,\,p_2\in \Bbbk[t],\,$ такие что $(p_1,p_2)=1,\,$ тогда

$$\exists q_1, q_2 \in \mathbb{k}[t] : p_1(\varphi)q_1(\varphi) + p_2(\varphi)q_2(\varphi) = \mathcal{I}.$$

Доказательство следует из леммы о разложении НОД.

Лемма 6.6. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$X = \ker p_1(\varphi) \oplus \ker p_2(\varphi).$$

Из предыдущей леммы имеем:

$$\mathcal{I} = p_1(\varphi) \cdot q_1(\varphi) + p_2(\varphi)q_1(\varphi), \quad q_1(t), q_2(t) \in \mathbb{k}[t],$$

откуда сразу можно получить

$$\forall x \in X \quad x = \mathcal{I}x = p_1(\varphi) \cdot q_1(\varphi)x + p_2(\varphi)q_1(\varphi)x = x_1 + x_2.$$

Заметим, что

$$p_2(\varphi)x_1 = q_1(\varphi)p_1(\varphi)p_2(\varphi)x = q_1(\varphi)p_{\varphi}(\varphi)x = 0 \quad \Rightarrow \quad x_1 \in \ker p_2(\varphi)$$
$$p_1(\varphi)x_2 = q_2(\varphi)p_1(\varphi)p_2(\varphi)x = q_2(\varphi)p_{\varphi}(\varphi)x = 0 \quad \Rightarrow \quad x_2 \in \ker p_1(\varphi)$$

В заключение докажем, что $\ker p_1(\varphi) \cap \ker p_2(\varphi) = \{0\}$. Действительно,

$$z \in \ker p_1(\varphi) \cap \ker p_2(\varphi) = \{0\} \implies z = p_1(\varphi) \cdot q_1(\varphi)z + p_2(\varphi)q_1(\varphi)z = 0.$$

АЛГЕБРА ОПЕРАТОРНЫХ ПОЛИНОМОВ

Лемма 6.7. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$\ker p_1(\varphi) = \operatorname{Im} p_2(\varphi), \quad \ker p_2(\varphi) = \operatorname{Im} p_1(\varphi).$$

▶

Докажем первое из утверждений (второе доказывается аналогично):

$$0 = p_{\varphi}(\varphi)X = p_1(\varphi)p_2(\varphi) = p_1(\varphi)\operatorname{Im} p_2(\varphi) \quad \Rightarrow \quad \operatorname{Im} p_2(\varphi) \subseteq \ker p_1(\varphi).$$

Кроме того, имеет место:

$$\begin{cases} \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} \ker p_1(\varphi) + \dim_{\mathbb{k}} \ker p_2(\varphi) \\ \dim_{\mathbb{k}} X = \dim_{\mathbb{k}} \ker p_2(\varphi) + \dim_{\mathbb{k}} \operatorname{Im} p_2(\varphi) \end{cases} \Rightarrow \dim_{\mathbb{k}} \ker p_1(\varphi) = \dim_{\mathbb{k}} \operatorname{Im} p_2(\varphi).$$

7

Теорема 6.1. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$, тогда:

$$X \simeq X/\ker p_1(\varphi) \oplus X/\ker p_2(\varphi).$$

ightharpoons

Убеждаемся прямой проверкой:

$$X = \ker p_1(\varphi) \oplus \ker p_2(\varphi) = \operatorname{Im} p_2(\varphi) \oplus \operatorname{Im} p_1(\varphi) \simeq X / \ker p_2(\varphi) \oplus X / \ker p_1(\varphi).$$

4

Nota bene Из теоремы, в частности, следует, что

$$\ker p_1(\varphi) \simeq X/\ker p_2(\varphi), \quad \ker p_2(\varphi) \simeq X/\ker p_1(\varphi).$$

Лемма 6.8. Пусть $p_{\varphi}(t) = p_1(t) \cdot p_2(t)$, причем $(p_1, p_2) = 1$ тогда проекторы на соответствующие подпространства $\ker p_1(\varphi)$ и $\ker p_2(\varphi)$ имеют вид:

$$\mathcal{P}_1 = q_2(\varphi)p_2(\varphi), \quad \mathcal{P}_2 = q_1(\varphi)p_1(\varphi).$$

Прямой проверкой убеждаемся, что выполняются каждое из перечисленных свойств:

$$\mathcal{P}_1 + \mathcal{P}_2 = \mathcal{I}, \quad \mathcal{P}_1 \mathcal{P}_2 = \theta = \mathcal{P}_2 \mathcal{P}_1, \quad \mathcal{P}_i \mathcal{P}_i = \mathcal{P}_i, \quad i = 1, 2.$$

4

Nota bene Следующая теорема обобщает полученные выше результаты на случай произвольного разложения минимального полинома $p_{\varphi}(\varphi)$. Доказательство проводится методом индукции:

Теорема 6.2. Пусть $p_{\varphi}(t) = \prod_{i=1}^k p_i(t)$, где все $p_i(t)$ взаимно простые, тогда:

- $\exists \{q_i(t)\}_{i=1}^m \subset \mathbb{k}[t] : \sum_{i=1}^m q_i(\varphi)p_i'(\varphi) = \mathcal{I};$
- $X = \bigoplus_{i=1}^{m} L_i$, $L_i = \ker p_i(\varphi) \simeq X/\ker p_i'(\varphi)$;
- $\mathcal{P}_i = q_i(\varphi)p_i'(\varphi)$ проектор на L_i .