(6) Sea $A \in \mathbb{K}^{n \times n}$. Probar que el polinomio $\tilde{\chi}_A(x) = \det(A - x \operatorname{Id}_n)$ y el polinomio característico de A tienen las mismas raíces.

$$\widetilde{\mathcal{X}}_{\Delta}(\kappa) = \det(\Delta - \kappa \mathrm{Id}_{\lambda})$$

$$= \det(-\mathrm{Id}_{\lambda}(\kappa \mathrm{Id}_{\lambda} - \Delta))$$

$$= \det(-\mathrm{Id}_{\lambda}) \cdot \det(\kappa \mathrm{Id}_{\lambda} - \Delta)$$

= $(-1)^n \det(\kappa Id_n - \Delta)$

 $= (-1)^{N} \mathcal{X}_{A}(k)$

Luego, $\widetilde{\chi}_{a}(k)$ y $\chi_{a}(k)$ son polinomios que difieren por el factor $(-1)^{n}$, es decir, tienen les mismas raíces.