# MIDS W207 Applied Machine Learning

Spring 2022

Week 3 Live Session Slides

- Random Variable
- Probability Distribution
- Joint Distribution
- Marginal Distribution

- Random Variable
- Probability Distribution
- Joint Distribution
- Marginal Distribution







- Random Variable
- Probability Distribution
- Joint Distribution
- Marginal Distribution

| P(Temperature) |     |  |
|----------------|-----|--|
| Т              | P   |  |
| hot            | 0.5 |  |
| cold           | 0.5 |  |
|                |     |  |

| P(Weather) |     |  |
|------------|-----|--|
| W          | Р   |  |
| sun        | 0.6 |  |
| rain       | 0.3 |  |
| fog        | 0.1 |  |
| meteor     | 0.0 |  |
|            |     |  |

- Random Variable
- Probability Distribution
- Joint Distribution
- Marginal Distribution

|      | P(Temperature) |     |
|------|----------------|-----|
| Т    | W              | Р   |
| hot  | sun            | 0.4 |
| hot  | rain           | 0.1 |
| cold | sun            | 0.2 |
| cold | rain           | 0.3 |
|      |                |     |

- Random Variable
- Probability Distribution
- Joint Distribution
- Marginal Distribution

| P(Temperature, Weather) |      |     |  |
|-------------------------|------|-----|--|
| Т                       | W    | Р   |  |
| hot                     | sun  | 0.4 |  |
| hot                     | rain | 0.1 |  |
| cold                    | sun  | 0.2 |  |
| cold                    | rain | 0.3 |  |
|                         |      |     |  |

| P(Temperature) |     |  |
|----------------|-----|--|
| Т              | Р   |  |
| hot            | 0.5 |  |
| cold           | 0.5 |  |
|                |     |  |

| P(Weather) |     |  |
|------------|-----|--|
| W          | Р   |  |
| sun        | 0.6 |  |
| rain       | 0.4 |  |
|            |     |  |



p(head) = 1/2









4 queens, 52 total cards

P(queen) = 4/52 = 1/13



Total diamonds = 13

Queen = 1

P(queen/diamond)= 1/13

## Conditional Probability

P(queen/diamond)= 1/13

P(A/B)= Probability of event A knowing that event B has already occurred

#### **Conditional Probability**

$$P(A|B) = P(A, B) / P(B)$$
  
 
$$P(A, B) = P(A|B) P(B)$$



```
select
                                     normalize
    P(T, W)
                        P(T, W= rain)
                                              P(T|W= rain)
      W
            P
     sun
           0.4
                             rain
                                                   0.25
hot
     rain
           0.1
                       cold
                            rain
                                   0.3
                                             cold 0.75
hot
cold
           0.2
     sun
cold
     rain
           0.3
```

$$P(A/B) = \frac{P(B/A) * P(A)}{P(B)}$$

$$P(queen/diamond) = \frac{P(diamond/queen) * P(queen)}{P(diamond)}$$

= 1/13

P(diamond/queen) = 1/4 = 
$$\frac{1/4 * 1/13}{1/4}$$
  
P(queen) = 1/13

P(diamond) = 1/4

#### Bayes Rule: Example

- P(meningitis) = 1/50000
- P(stiff neck) = 1/20
- P(stiff neck | meningitis) = 1/2

$$P(m|s) = P(m) P(S|m) / P(s)$$
  
= (1/50000) (1/2)/(1/20)  
= (1/5000)











### **Spam Classification**



#### **Spam Classification**

| message                                        | class_label |      |
|------------------------------------------------|-------------|------|
| Go until jurong point, crazy Available only    | ham         | 0    |
| Ok lar Joking wif u oni                        | ham         | 1    |
| Free entry in 2 a wkly comp to win FA Cup fina | spam        | 2    |
| U dun say so early hor U c already then say    | ham         | 3    |
| Nah I don't think he goes to usf, he lives aro | ham         | 4    |
|                                                | ***         |      |
| This is the 2nd time we have tried 2 contact u | spam        | 5567 |
| Will i_b going to esplanade fr home?           | ham         | 5568 |
| Pity, * was in mood for that. Soany other s    | ham         | 5569 |
| The guy did some bitching but I acted like i'd | ham         | 5570 |
| Rofl. Its true to its name                     | ham         | 5571 |
|                                                |             |      |

5572 rows × 2 columns

#### **Spam Classification**

Now use a set of features:

$$\begin{split} P(Y|X) &\sim P(Y|F_1, F_2, ..., F_n) \\ &= P(Y, F_1, F_2, ..., F_n) \, / \, P(F_1, F_2, ..., F_n) \\ &= P(Y) \, P(F_1, F_2, ..., F_n | Y) \, / \, P(F_1, F_2, ..., F_n) \\ &\text{Here we make the key independence assumption!} \\ &\sim \frac{P(Y) \, P(F_1 | Y) \, P(F_2 | Y) ... \, P(F_n | Y)}{P(F_1, F_2, ..., F_n)} \\ &= \frac{P(Y) \prod_i P(F_i | Y)}{\sum_v P(Y) \prod_i P(F_i | Y)} \end{split}$$

## Code Review

#### Smoothing

#### **Laplace Smoothing**

- Idea: Pretend we saw every outcome k more times than we actually did.
- E.g., if we observed [hht]:
  - MLE: P(heads) = 2/3
  - $\circ$  LAP<sub>1</sub>: P(heads) = 3/5
  - $\circ$  LAP<sub>100</sub>: P(heads) = 102/203
- Smoothing conditionals:
  - LAP<sub>k</sub>: P(x|y) = [count(x,y)+k]/[count(y)+k|X|]