柱状图分析

相关性分析

```
In [11]:
            1
                 corr matrix = data.corr()
                 corr_matrix["Label"]. sort_values (ascending=False)
            2
Out[11]: Label
                                  1.000000
          MAX_peak ratio
                                  0. 242459
          MAX blink time
                                  0. 144644
          MAX_close time
                                  0. 142896
          A peak ratio
                                  0. 111361
          MIN_neg_peak_time
                                  0.109658
          A_pos_peak_time
                                  0.093964
          MIN_area ratio
                                  0.064174
          A area ratio
                                  0.052850
          MAX_peak dist ratio
                                  0.028506
          A_peak dist ratio
                                  0.018295
          MIN close time
                                  0.017658
          MIN_peak dist ratio
                                  0.011860
          MIN blink time
                                  0.010979
          A_neg_peak_time
                                  0.005635
          MIN_peak ratio
                                 -0.000321
          MAX_neg_peak_time
                                 -0.002566
          MIN_open time
                                 -0.007667
          MIN_pos_peak_time
                                 -0.008977
          A_blink time
                                 -0. 021028
          A_close time
                                 -0. 022535
          MAX_pos_peak_time
                                 -0. 024888
          A_open time
                                 -0.026971
          MAX_open time
                                 -0. 032130
          MAX_area ratio
                                 -0.060555
```

Name: Label, dtype: float64

测试集与训练集制作

根据Label的比例进行分层抽取 在测试集中设置 k-fold-cv 这里用 7

confusion_matrix

训练集

```
array([[25,
                                               1, 0],
              0,
                   2,
                        3,
                            0,
                                 1,
                                     0,
                                          0,
         1, 28,
                   0,
                        0,
                            0,
                                 5,
                                     1,
                                          0,
                                               2,
                                                   0],
                            2,
                                               0, 0],
              0,
                 22,
                                 0,
                                          0,
                        0,
          0,
                                                   2],
              0,
                  1,
                        3,
                            0,
                                 0,
                                     1,
                                          0,
                                               0,
                                 2,
                   0,
                                               0,
                                                   1],
                        0,
                                     0,
                                          0.
              2,
                   0,
                       1,
                            2,
                                 9,
                                      2,
                                          5,
                                               1,
                                                   0],
                                 0, 12,
         0,
              1,
                   0, 2,
                            0,
                                          1,
                                               1,
                                                   0],
                      2,
                                     2,
                                          6,
                                                   1],
              1,
                   0,
                            1,
                                 0,
                                               1,
        [ 1,
              3,
                                                   0],
                   0,
                        0,
                            0,
                                 1,
                                     1,
                                          0, 12,
                                               1, 14]], dtype=int64)
                                      0,
```

测试集

```
array([[7, 0, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 9, 0, 0, 0, 0, 0, 0, 0, 0],
        [0, 0, 7, 0, 0, 0, 0, 0, 0, 0],
        [1, 0, 0, 1, 0, 0, 0, 0, 0, 0],
        [0, 1, 1, 1, 0, 3, 0, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 2, 0, 0, 0],
        [0, 1, 0, 0, 0, 0, 0, 3, 0, 0],
        [0, 0, 0, 0, 0, 0, 0, 1, 3, 0],
        [1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3]], dtype=int64)
```

precision 与 recall

训练集

	precision	recall	fl-score	support
0.0	0.81	0. 78	0. 79	32
1.0	0. 72	0. 76	0.74	37
2.0	0.85	0.85	0.85	26
3.0	0. 19	0.43	0. 26	7
4.0	0. 58	0.50	0.54	14
5. 0	0. 50	0.41	0.45	22
6.0	0. 63	0.71	0.67	17
7.0	0. 50	0.40	0.44	15
8.0	0. 63	0.67	0.65	18
9. 0	0. 78	0.64	0.70	22
micro avg	0. 66	0.66	0.66	210
macro avg	0.62	0.61	0.61	210
weighted avg	0. 67	0.66	0.66	210

测试集

		precision	recal1	f1-score	support
	0.0	0. 78	0.88	0. 82	8
	1.0	0.75	1.00	0.86	9
	2.0	0.70	1.00	0.82	7
	3.0	0. 50	0. 50	0. 50	2
	4.0	1. 00	0.75	0.86	4
	5.0	1. 00	0. 50	0.67	6
	6.0	0.67	0. 50	0. 57	4
	7.0	0.75	0.75	0. 75	4
	8.0	1. 00	0.75	0.86	4
	9. 0	0.75	0.60	0. 67	5
micro	avg	0. 77	0. 77	0. 77	53
macro	avg	0. 79	0.72	0.74	53
weighted	avg	0.80	0.77	0.76	53

MLP Learning Curve

在加入 12 正则化之后,过拟合情况有所缓解。