Zadanie 1. (Niedeklarowalne)

Przekonaj się, że z dokładnością do izomorfizmu, istnieje 11 grafów prostych z czterema wierzchołkami.

Zadanie 2. (Pisemne)

Załóżmy, że w komputerze są dane dwa grafy G i H, określone na tym samym zbiorze wierzchołków V (G) = V (H) = $\{1, 2, 3, ..., n\}$. Niech m oznacza liczbę krawędzi grafu G. Podaj algorytm sprawdzający w czasie O(m + n), czy te grafy są identyczne.

Zadanie 3.

Rozważ reprezentacje grafu G: macierzową (za pomocą macierzy sąsiedztwa), listową. Dla każdej z tych reprezentacji, określ złożoność wykonania na grafie G następujących operacji:

- (a) oblicz stopień ustalonego wierzchołka,
- (b) przeglądnij wszystkie krawędzie grafu,
- (c) sprawdź, czy krawędź (u, v) należy do grafu G,
- (d) usuń z grafu G krawędź (u, v),
- (e) wstaw do grafu G krawędź (u, v).

Niech n to ilość wierzchołków, m to ilość krawędzi.

operacja	Reprezentacja listowa	Macierz sąsiedztwa
Obliczanie stopnia	$O(\deg(v))$	O(n)
wierzchołka		
przeglądanie wszystkich	O(n+m)	$O(n^2)$
krawędzi grafu		
sprawdzanie, czy	$O(\deg(u))$	0(1)
krawędź należy do grafu		
Usuwanie krawędzi	$O(\deg(u))$	0(1)
Wstawianie krawędzi	$O(\deg(u) + \deg(v))$	0(1)

Zadanie 4. (Niedeklarowalne)

Pokaż, że jeśli w grafie G istnieje droga z u do v, to istnieje też ścieżka z u do v.

Z definicji droga to marszruta, w której żadna krawędź nie występuje dwukrotnie, a ścieżka to marszruta, w której żaden wierzchołek nie jest odwiedzany dwukrotnie.

Dowód nie wprost:

Załóżmy, że w grafie G istnieje marszruta, w której żadna krawędź nie występuje dwukrotnie oraz istnieje wierzchołek odwiedzany dwukrotnie. Skoro dany wierzchołek w występuje dwa razy na ścieżce S to oznacza, że zawiera ona cykl postaci (w, w1, w2, ..., wn, w).

Usuńmy ze ścieżki S ten cykl, wtedy S nadal jest ścieżką, bo nadal jest marszrutą z u do v bez powtórzeń krawędzi, ale żaden wierzchołek nie jest odwiedzany dwukrotnie, co jest sprzecznością z założeniem.

Zadanie 5. (Pisemne)

Udowodnij, że graf G jest spójny wtedy i tylko wtedy, gdy przynajmniej dwa grafy z rodziny $\{G_v \colon v \in V\}$ są spójne, gdzie G_v jest grafem powstałym z G przez usunięcie wierzchołka v i incydentnych z nim krawędzi.

Dowód =>

Załóżmy, że graf G jest spójny. Pokażę, że istnieją przynajmniej dwa grafy z rodziny $\{G_v\colon v\in V\}$, które są spójne.

Rozważmy przypadki w zależności od istnienia cyklu w grafie G:

1) cykl nie istnieje, wtedy G jest drzewem.

Z wykładu wiemy, że każde drzewo rozmiaru minimum 2 zawiera co najmniej 2 liście (nazwijmy je v_0, v_1), a usunięcie liścia z drzewa i incydentnych z nim krawędzi tworzy nowe drzewo, które z definicji jest grafem spójnym. Zatem grafy $G \setminus \{v_0\}, G \setminus \{v_1\}$ są grafami spójnymi.

2) cykl istnieje, wtedy weźmy drzewo rozpinające grafu G i podobnie jak w 1) możemy usunąć 2 liście v_0, v_1 tworząc grafy spójne $G \setminus \{v_0\}, G \setminus \{v_1\}$.

Dowód <=

Załóżmy, że istnieją przynajmniej dwa grafy z rodziny $\{G_v: v \in V\}$, które są spójne. Pokażę, że G jest grafem spójnym.

Weźmy 2 dowolne wierzchołki $v_1,v_2\in G$, wtedy $G_1=G\backslash v_1,G_2=G\backslash v_2$. Są to z założenia grafy spójne. Weźmy dowolny inny wierzchołek $v\in G$ i zauważmy, że $v\in G\backslash v_1,v\in G\backslash v_2$. Skoro $v\in G\backslash v_1$ oraz $v_2\in G\backslash v_1$ to krawędź $\{v,v_2\}\in G\backslash v_1$. Analogicznie $\{v,v_1\}\in G\backslash v_2$. Wiedząc, że każda krawędź należąca do $G\backslash v_1$ lub $G\backslash v_2$ należy też do G,

to skoro $\{v, v_2\} \in G$ or $az\{v, v_1\} \in G$ to też $\{v_1, v_2\} \in G$.

Skoro dla dowolnych 2 wierzchołków z 2 różnych składowych spójnych istnieje ścieżka, to graf G jest spójny.

Zadanie 6.

Udowodnij, że w grafie spójnym każde dwie najdłuższe ścieżki mają wspólny wierzchołek.

Dowód nie wprost:

Weźmy 2 dowolne najdłuższe ścieżki (nazwijmy je s1,s2) grafu spójnego i załóżmy, że nie istnieje wierzchołek wspólny dla nich.

Ze spójności grafu musi istnieć ścieżka C długości >=1, która łączy ścieżki s1,s2 w wierzchołkach $x1 \in s1, x2 \in s2$.

Skoro tak, to istnieją takie wierzchołki $k1 \in s1, k2 \in s2$,

$$\dot{z}e |k1 - x1| \ge \frac{|s1|}{2} \text{ oraz } |k2 - x2| \ge \frac{|s2|}{2}.$$

Długość ścieżki K z k1 do k2 wynosi minimum $\frac{|s1|}{2} + \frac{|s2|}{2} + |C|$.

Załóżmy bez straty ogólności, że $|s1| \ge |s2|$.

Wtedy
$$\frac{|s1|}{2} + \frac{|s2|}{2} + |C| \ge \frac{|s2|}{2} + \frac{|s2|}{2} + |C| = |s2| + |C| > |s2|$$
, zatem

ścieżka K jest dłuższa od ścieżki s2, co jest sprzecznością z założeniem.

Zadanie 7.

Wykaż, że przynajmniej jeden z grafów G = (V, E) i $G^-(G^-)$ jest dopełnieniem grafu G) jest spójny. Dopełnienie $G^- = (V, E')$ grafu G zdefiniowane jest jako graf (V, E') taki, że $\{u, v\} \in E' \Leftrightarrow \{u, v\} \notin E$.

Załóżmy, że G nie jest spójny (w przeciwnym przypadku dowód jest trywialny).

Oznacza to, że zawiera on przynajmniej 2 spójne składowe A,B

rozłączne ze sobą, czyli $\forall a \in A, \forall b \in B : \{a, b\} \notin E$.

Z definicji dopełnienia musi zachodzić $\{a,b\} \in E'$.

Skoro w dopełnieniu każdy wierzchołek A ma krawędź

z każdym wierzchołkiem B, to graf G' jest spójny,

bo każde 2 wierzchołki z A można połączyć w ścieżkę za pośrednictwem dowolnego wierzchołka z B, formalnie:

$$\forall a1, a2 \in A, \forall b \in B : \{a1, b\} \in E' \land \{b, a2\} \in E'$$

 $\forall a1, a2 \in A : \{a1, a2\} \in E'$

(analogicznie dla pozostałych spójnych składowych).

Zadanie 8.

Udowodnij następujące twierdzenie:

Niech G będzie grafem prostym, w którym każdy wierzchołek ma stopień przynajmniej k. Wówczas G zawiera ścieżkę o długości k. Jeśli $k \ge 2$, to G zawiera cykl o długości przynajmniej k + 1.

Istnienie ścieżki o długości k

Podstawa indukcji: istnieje ścieżka długości 0, trywialne Krok indukcji:

Załóżmy, że istnieje ścieżka o długości a < k postaci $v_1 \to v_2 \to \cdots \to v_a$. Pokażę, że istnieje ścieżka o długości a+1 postaci $v_1 \to v_2 \to \cdots \to v_a \to v_{a+1}$.

Skoro v_a ma k > a sąsiadów, to istnieje taki sąsiedni wierzchołek, którego dotychczas nie odwiedziliśmy, więc można go dodać do ścieżki. Możemy kontynuować przedłużanie ścieżki tą metodą co najmniej do momentu, w którym a = k, zatem G zawiera ścieżkę o długości k.

Istnienie cyklu o długości k + 1

Weźmy najdłuższą możliwą ścieżkę długości a >= k, postaci

$$w_1 \to w_2 \to \cdots \to w_a$$
.

Z maksymalności tej ścieżki wiemy, że wszyscy sąsiedzi w_a już znajdują się na tej ścieżce (w p.p. można by tą ścieżkę przedłużyć).

Niech w_i będzie sąsiadem w_a o najmniejszym indeksie.

Wtedy istnieje ścieżka $w_i \to w_{i+1} \to \cdots \to w_a$, długości k, więc skoro w_i jest sąsiadem w_a , to możemy tą ścieżkę przedłużyć i otrzymamy cykl k+1 elementowy postaci $w_i \to w_{i+1} \to \cdots \to w_a \to w_i$.

Zadanie 9.

Niech ti oznacza liczbę wierzchołków stopnia i w drzewie. Wyprowadź dokładny wzór na t1, liczbę liści w dowolnym drzewie. Dlaczego ta liczba nie zależy od t2?

Zadanie 10.

Pokaż, że graf G jest drzewem wtedy i tylko wtedy gdy dla dowolnej pary wierzchołków u, $v \in G$ w G istnieje dokładnie jedna ścieżka je łącząca.

Dowód =>

Załóżmy, że G jest drzewem.

Pokażę, że dla dowolnej pary wierzchołków u, $v \in G$ w G istnieje dokładnie jedna ścieżka je łącząca.

Z definicji drzewa jest to graf spójny, acykliczny, a zatem istnieje dokładnie 1 ścieżka między u,v.

Dowód <=

Załóżmy, że dla dowolnej pary wierzchołków u, $v \in G$ w G istnieje dokładnie jedna ścieżka je łącząca.

Pokażę, że G jest drzewem.

Założenie oznacza, że dodanie 1 krawędzi do grafu stworzy cykl, co daje sprzeczność z definicją drzewa. Zatem drzewo n-wierzchołkowe musi mieć dokładnie n – 1 krawędzi, stąd G jest drzewem.