Taller de Programación Algoritmo de Inferencia de Tipos

Paradigmas de Lenguajes de Programación

19 de Mayo de 2020

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

Ejemplos

₩(true) =

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

- $\mathbb{W}(\mathsf{true}) = \emptyset \rhd \mathsf{true} : \mathsf{Bool}$
- $\mathbb{W}(\operatorname{succ}(x)) =$

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el juicio de tipado $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

- $\mathbb{W}(\mathsf{true}) = \emptyset \rhd \mathsf{true} : \mathsf{Bool}$
- $\mathbb{W}(\operatorname{succ}(x)) = \{x : \operatorname{Nat}\} \triangleright \operatorname{succ}(x) : \operatorname{Nat}$
- ₩(x) =

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M$: σ más general para U, o bien una **falla** si U no es tipable

Estrategia recursión sobre la estructura de U

- $\mathbb{W}(\mathsf{true}) = \emptyset \rhd \mathit{true} : \mathit{Bool}$
- $\mathbb{W}(\operatorname{succ}(x)) = \{x : \operatorname{Nat}\} \rhd \operatorname{succ}(x) : \operatorname{Nat}$
- $\mathbb{W}(x) = \{x : s_0\} \rhd x : s_0$
- $\mathbb{W}(\lambda \times Nat. 0) =$

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

- $\mathbb{W}(\mathsf{true}) = \emptyset \rhd \mathsf{true} : \mathsf{Bool}$
- $\mathbb{W}(\operatorname{succ}(x)) = \{x : \operatorname{Nat}\} \triangleright \operatorname{succ}(x) : \operatorname{Nat}$
- $\mathbb{W}(x) = \{x : s_0\} \triangleright x : s_0$
- $\mathbb{W}(\lambda \times Nat. 0) = ERROR$
- $\mathbb{W}(\lambda \times .0) =$

Resumen

Entrada una expresión U de λ sin anotaciones

Salida el **juicio de tipado** $\Gamma \triangleright M : \sigma$ más general para U, o bien una falla si U no es tipable

Estrategia recursión sobre la estructura de U

- $\mathbb{W}(\mathsf{true}) = \emptyset \rhd \mathsf{true} : \mathsf{Bool}$
- $\mathbb{W}(\operatorname{succ}(x)) = \{x : \operatorname{Nat}\} \triangleright \operatorname{succ}(x) : \operatorname{Nat}$
- $\mathbb{W}(x) = \{x : s_0\} \triangleright x : s_0$
- $\mathbb{W}(\lambda \times Nat. 0) = ERROR$
- $\mathbb{W}(\lambda \times .0) = \emptyset \triangleright (\lambda x : s_0.0) : s_0 \rightarrow Nat$

(2) Tipos de datos y funciones auxiliares Tipos

Expresiones de tipo

$$\sigma ::= s \mid Nat \mid Bool \mid \sigma \rightarrow \tau$$

(2) Tipos de datos y funciones auxiliares

Expresiones de tipo

$$\sigma ::= s \mid Nat \mid Bool \mid \sigma \rightarrow \tau$$

En Haskell

(3) Tipos de datos y funciones auxiliares Expresiones

Expresiones anotadas

```
M ::= 0 \mid true \mid false \mid x

\mid succ(M) \mid pred(M) \mid iszero(M)

\mid if M then P else Q \mid M N

\mid \lambda x : \sigma.M
```


(4) Tipos de datos y funciones auxiliares Expresiones

Expresiones sin anotar

```
M ::= 0 \mid true \mid false \mid x

\mid succ(M) \mid pred(M) \mid iszero(M)

\mid if M then P else Q \mid M N

\mid \lambda x. M
```


(5) Tipos de datos y funciones auxiliares

Expresiones

```
En Haskell
```

```
type Symbol = String
data Exp a = ZeroExp
           | TrueExp
            FalseExp
            VarExp Symbol
           | SuccExp (Exp a)
           | PredExp (Exp a)
           | IsZeroExp (Exp a)
           | IfExp (Exp a) (Exp a) (Exp a)
           | AppExp (Exp a) (Exp a)
```

(5) Tipos de datos y funciones auxiliares **Expresiones**

En Haskell

```
type Symbol = String
data Exp a = ZeroExp
            | TrueExp
            FalseExp
            | VarExp Symbol
            | SuccExp (Exp a)
            | PredExp (Exp a)
            | IsZeroExp (Exp a)
            | IfExp (Exp a) (Exp a) (Exp a)
            | AppExp (Exp a) (Exp a)
            | LamExp ???
```

(6) Tipos de datos y funciones auxiliares **Expresiones**

En Haskell (funciones lambda)

El constructor LamExp toma como segundo argumento el tipo.

$$\lambda x : \sigma.M$$

LamExp Symbol a (Exp a)

(6) Tipos de datos y funciones auxiliares **Expresiones**

En Haskell (funciones lambda)

El constructor LamExp toma como segundo argumento el tipo.

$$\lambda x : \sigma.M$$

LamExp Symbol a (Exp a)

Anotadas vs no anotadas

Para diferenciar entre anotadas y no anotadas, a la segunda le pasamos () como tipo

```
type AnnotExp = Exp Type
type PlainExp = Exp ()
```


(7) Tipos de datos y funciones auxiliares Contexto

Contexto

(7) Tipos de datos y funciones auxiliares Contexto

Contexto

El contexto de tipado es el conjunto de pares que asigna a cada variable un único tipo.

Lo vamos construyendo a medida que vamos ejecutando el algoritmo (es una de las 3 partes del juicio de tipado).

En Haskell

Podemos realizar las siguientes operaciones:

```
emptyContext :: Context
```

```
extendC :: Context -> Symbol -> Type -> Context
```

```
removeC :: Context -> Symbol -> Context
evalC :: Context -> Symbol -> Type
```

```
joinC :: [Context] -> Context
domainC :: Context -> [Symbol]
```


(8) Tipos de datos y funciones auxiliares Sustitiuciones y unificación

Sustituciones

(8) Tipos de datos y funciones auxiliares Sustitiuciones y unificación

Sustituciones

Funciones que asignan tipos a variables de tipo. Útiles para cuando aún no podemos inferir el tipo de una expresión: Le asignamos una variable de tipo temporal y, si más adelante obtenemos más información podemos **sustituirla**.

(8) Tipos de datos y funciones auxiliares Sustitiuciones y unificación

Sustituciones

Funciones que asignan tipos a variables de tipo. Útiles para cuando aún no podemos inferir el tipo de una expresión: Le asignamos una variable de tipo temporal y, si más adelante obtenemos más información podemos sustituirla.

Unificación

(8) Tipos de datos y funciones auxiliares

Sustituciones

Sustitiuciones y unificación

Funciones que asignan tipos a variables de tipo. Útiles para cuando aún no podemos inferir el tipo de una expresión: Le asignamos una variable de tipo temporal y, si más adelante obtenemos más información podemos **sustituirla**.

Unificación

Encontrar una sustitución que permita unificar pares de tipos cuando ya sé que ambos deben referirse al mismo tipo. El Unificador Más General (MGU) me asegura no perder soluciones.

(8) Tipos de datos y funciones auxiliares

Sustitiuciones y unificación

Sustituciones

Funciones que asignan tipos a variables de tipo. Útiles para cuando aún no podemos inferir el tipo de una expresión: Le asignamos una variable de tipo temporal y, si más adelante obtenemos más información podemos **sustituirla**.

Unificación

Encontrar una sustitución que permita unificar pares de tipos cuando ya sé que ambos deben referirse al mismo tipo. El Unificador Más General (MGU) me asegura no perder soluciones.

$$\mathbb{W}(\mathsf{x}) = \{x : s_0\} \rhd x : s_0 \qquad \mathbb{W}(\mathsf{y}) = \{y : s_1\} \rhd y : s_1$$

$$\mathbb{W}(\mathsf{if true then y else x}) = \dots$$

(8) Tipos de datos y funciones auxiliares

Sustitiuciones y unificación

Sustituciones

Funciones que asignan tipos a variables de tipo. Útiles para cuando aún no podemos inferir el tipo de una expresión: Le asignamos una variable de tipo temporal y, si más adelante obtenemos más información podemos **sustituirla**.

Unificación

Encontrar una sustitución que permita unificar pares de tipos cuando ya sé que ambos deben referirse al mismo tipo. El Unificador Más General (MGU) me asegura no perder soluciones.

$$\mathbb{W}(\mathsf{x}) = \{x : s_0\} \rhd x : s_0 \qquad \mathbb{W}(\mathsf{y}) = \{y : s_1\} \rhd y : s_1$$
 $\mathbb{W}(\mathsf{if true then y else x}) = \dots$ Tengo que unificar s_0 y s_1

(9) Tipos de datos y funciones auxiliares Sustitiuciones y unificación

En Haskell (Sustituciones)

```
emptySubst :: Subst
extendS :: Int -> Type -> Subst -> Subst
```


(9) Tipos de datos y funciones auxiliares Sustitiuciones y unificación

En Haskell (Sustituciones)

```
emptySubst :: Subst
extendS :: Int -> Type -> Subst -> Subst
class Substitutable a where
    (<.>) :: Subst -> a -> a
    instance Substitutable Type
                                   -- subst <.> t
    instance Substitutable Context -- subst <.> c
    instance Substitutable Exp
                                   -- subst <.> e
```


(9) Tipos de datos y funciones auxiliares

Sustitiuciones y unificación

En Haskell (Sustituciones)

```
emptySubst :: Subst
extendS :: Int -> Type -> Subst -> Subst
class Substitutable a where
    (<.>) :: Subst -> a -> a
    instance Substitutable Type -- subst <.> t
    instance Substitutable Context -- subst <.> c
    instance Substitutable Exp -- subst <.> e
```

En Haskell (Unificación)

```
type UnifGoal = (Type, Type)
data UnifResult = UOK Subst | UError Type Type
mgu :: [UnifGoal] -> UnifResult
```


(10) La función de inferencia En Haskell

```
type TypingJudgment = (Context, AnnotExp, Type)
data Result a = OK a | Error String
inferType :: PlainExp \rightarrow Result TypingJudgment
```


(10) La función de inferencia En Haskell

```
type TypingJudgment = (Context, AnnotExp, Type)
data Result a = OK a | Error String
inferType :: PlainExp → Result TypingJudgment
inferType e = ...
```


(10) La función de inferencia

```
type TypingJudgment = (Context, AnnotExp, Type)
data Result a = OK a | Error String

inferType :: PlainExp → Result TypingJudgment
inferType (VarExp x) = ...
...
```


(10) La función de inferencia En Haskell

```
type TypingJudgment = (Context, AnnotExp, Type)
data Result a = OK a | Error String
inferType :: PlainExp → Result TypingJudgment
inferType (VarExp x) = ...
```

$$\mathbb{W}(\mathbf{x}) \stackrel{\text{def}}{=} \{x:s\} \triangleright x:s, \quad s \text{ variable fresca}$$


```
type TypingJudgment = (Context, AnnotExp, Type)
data Result a = OK a | Error String
inferType :: PlainExp → Result TypingJudgment
inferType e = case infer' e 0 of
     OK (_, tj) \rightarrow OK tj
     Error s \rightarrow Error s
infer' :: PlainExp
                 \rightarrow Int.
                 → Result (Int, TypingJudgment)
```


(11) ¡A programar!

Consigna

- Completar archivo TypeInference.hs
- Definir la función inferType utilizando infer'
- Definir la función infer' para los casos ZeroExp VarExp **AppExp** LamExp
- Usar pattern matching sobre Exp

(11) ¡A programar!

Consigna

- Completar archivo TypeInference.hs
- Definir la función inferType utilizando infer'
- Definir la función infer' para los casos ZeroExp VarExp AppExp LamExp
- Usar pattern matching sobre Exp

Tip

```
let x = expr1 in expr2
case expr of Pattern1 -> res1
              Paternn -> resn
```


(12) Probando el código

- Cargar el archivo Main.hs
 - inferExpr :: String → Doc
 - Toma una cadena de texto, la convierte a algo de tipo Exp y se lo pasa a inferType
- expr n :: String (en el archivo Examples.hs)
 - Toma un número y devuelve una cadena de texto para pasarle a inferExpr
- Main> inferExpr (expr 1)
- Main> inferExpr "succ(x)"


```
infer' (SuccExp e) n =
case infer' e n of
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
```



```
infer' (SuccExp e) n =
case infer' e n of
   OK ( n', (c', e', t') ) ->
        case mgu [ ??? ] of
```



```
infer' (SuccExp e) n =
case infer' e n of
   OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
```



```
infer' (SuccExp e) n =
case infer' e n of
   OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
```

UError u1 u2 ->

res@(Error _) -> res


```
infer' (SuccExp e) n =
case infer' e n of
   OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
```



```
infer' (SuccExp e) n =
case infer' e n of
   OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                           с',
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                          с',
                           SuccExp e,
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                          с',
                          SuccExp e',
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                           с',
                           SuccExp e',
                           t'
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                           с',
                           SuccExp e',
                          TNat
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                           subst <.> c',
                           subst <.> SuccExp e',
                          TNat
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```



```
infer' (SuccExp e) n =
case infer' e n of
    OK ( n', (c', e', t') ) ->
        case mgu [ (t', TNat) ] of
            UOK subst ->
                OK ( n', (
                           subst <.> c',
                           subst <.> SuccExp e',
                           TNat
                          ) )
            UError u1 u2 ->
                uError u1 u2
    res@(Error _) -> res
```

