Algorithms for finding maximal cliques and their application in Sociology Zubrilina Sofia

Lipetsk, Russia

Lyceum Nº44, Lipetsk Educational Center "Strategy", ninth-grade student

An independent set is a set of pairwise nonadjacent vertices. Clique in a graph is a set of pairwise adjacent vertices.

The problem of finding a maximal clique in a graph is NP-hard.

Ramsey's theorem

For any two natural numbers, s and t, there exists a natural number, R(s,t) = N, so any graph of size at least N must contain an independent set of size s or a clique of size t.

						R(S, T) tor differ	ent s and t.
r/s	1	2	3	4	5	6	7	8
1	1	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8
3	1	3	6	9	14	18	23	28
4	1	4	9	18	25	36–41	49–61	58-84
5	1	5	14	25	43–49	58-87	80–143	101-216
6	1	6	18	36–41	58-87	102-165	113-298	132–495
7	1	7	23	49–61	80-143	113-298	205-540	217-1031
8	1	8	28	58-84	101-216	132–495	217-1031	282-1870

Algorithms for finding maximal cliques

Polynomial algorithms	Non polynomial algorithms
Greedy algorithm O(n*logn + n²)	Bron-Kerbosch algorithm $O(3^{n/3})$
Heuristic algorithm O(n ²)	Enumerative algorithm $O(2^n)$
Randomized algorithm O(n ²)	

I have implemented Ramsey's algorithm:

- ·recursion
- ·returns the maximal clique and the maximal independent set
- •transforms graph into a binary tree where a root vertex is adjacent to all of its right descendants and non-adjacent to all of its left descendants
- -complexity: O(n²)
- development environment: Microsoft Visual Studio
- programming language: C#

$$I = max(I_2 \cup \{v\}, I_1)$$

 $C = max(C_1 \cup \{v\}, C_2)$

