Middleware and Web Services Lecture 6: Integration Patterns

doc. Ing. Tomáš Vitvar, Ph.D.

tomas@vitvar.com • @TomasVitvar • http://vitvar.com

Czech Technical University in Prague
Faculty of Information Technologies • Software and Web Engineering • http://vitvar.com/courses/mdw

Enterprise Service Bus

- ESB is a central intermediary in SOA
 - Types of services: shared and infrastructure
 - Types of processes: Technical and Business
- ESB Application
 - Application running on an application server
 - Exposes functionality via Web service interface
 - Allows to communicate with various messaging protocols
- Integration Patterns
 - Technical-level interoperability message broker
 - Location transparency
 - Dynamic routing
 - Data transformations mediator
 - Resequencing of messages
 - Session pooling
 - Service orchestrations BPMN, BPEL
 - Message enrichment

Major Vendors

- Oracle
 - Oracle Service Bus (OSB)
 - Oracle SOA Suite
 - Oracle Enterprise Gateway (OEG)
- IBM
 - IBM WebSphere
- SAP
 - SAP NetWeaver
- Microsoft
 - .NET Framework
 - BizTalk server
- Opensource
 - -JBoss
 - Apache ServiceMix
 - WSMX Semantic Web Service Execution Environment

Integration Patterns

- Applied in implementation of business services and processes
 - Usually a combination of more patterns
- Technical patterns
 - Deals with technical aspects of service communication
 - Message broker technical-level interoperability
 - Location transparency
 - Session pooling
- Business patterns
 - Deals with business aspects (message content) of service communication
 - Dynamic routing
 - Data transformations mediator
 - Service orchestrations BPMN, BPEL
 - Message enrichment
 - Resequencing of messages

Message Broker

- Message broker
 - ESB can mix and match transports both standard and proprietary

Location Transparency

- Location transparency
 - ESB can hide changes in location of services
 - Such changes will not affect clients
 - Can also be used for load balancing for multiple service instances

Session Pooling

- Session Pooling
 - ESB can maintain a pool of connections (session tokens) to a back-end app when creating a new connection is expensive
 - A single session token can be reused by multiple instances of business processes

Dynamic Routing

- Dynamic routing
 - ESB exposes a service that routes to various back-end services based on message contents.

Message Enrichment

- Message enrichmenet
 - Enriches a message before invoking back-end application service.

Data Transformation

- Data transformation phases:
 - Definition of mapping and execution of mappings
- Definition of mappings (design-time)
 - A mapping associates one data structure to another data structure and defines a conversion between them.
 - Mapping languages
 - → graphical for design that translates to XSLT, XQuery
 - → Sometimes implemented in 3rd gen. languages (e.g., Java)
- Execution of mappings (runtime)
 - application of mappings to instance data
- CDM terminology
 - Application Business Message back-end app format
 - Enterprise Business Message CDM format

Definitions of Data Mapping Example

- Source and target schemas
 - Source: Order flat data structure
 - Target: UPS order with address as a sub-entity
 - Differences in names of entities
 - Conversion function applied to postal code

Service Orchestration

- Orchestration of multiple business services
 - Includes transformation, message enrichmenet, service callouts, etc.
 - A step in orchestration is an activity
- Patterns
 - Sequential processing of activities
 - Parallel processing of activities with synchronization points
 - Decision branches, iterations
- Technologies
 - Graphical languages
 - Standard representations: BPEL, BPMN
 - Proprietary, for example OSB uses graphical language that translates to XQuery
- Good design
 - Orchestration faciliates communication in CDM
 - Orchestration handles key-mapping

Key Mapping

- What is key mapping
 - Key = identifier of en entity in a back-end application
 - Key Mapping = a mapping of an ID of an entity in one system to an ID of the same entity in another system.
 - Key mapping is realized using universal IDs (UID)
- Example
 - A customer MOON exists in CRM and OMS systems
 - In CRM system, MOON has an CRM-ID=AB1
 - In OMS system, MOON has an CRM-ID=45A
 - Key mappig allows to map the CRM-ID AB1 to the OMS-ID 45A
 - Key mapping is a table

```
CRM-ID → UID → OMS-ID
```

Key Mapping Example

Message Sequencing

- Resequencer in update sales order
 - Every order line item needs to update its status several times (e.g. open, completed)
 - Resequencer makes sure that the update status messages arrive to CRM in the same order as they were created in OMS system (FIFO resequencer)

