Вариант 81

V/V	e1	e2	е3	е4	e5	e6	e7	е8	е9	e10	e11	e12
e1	0	2		1					5		4	
e2	2	0		3			4	4	5	4	4	4
e3			0		2	2			5	2	4	5
e4	1	3		0		1						
e5			2		0			1	4	2	2	4
e6			2	1		0				1		
e7		4					0	3				
e8		4			1		3	0			4	2
e9	5	5	5		4				0	3		
e10		4	2		2	1			3	0	1	
e11	4	4	4		2			4		1	0	
e12		4	5		4			2				0

1. Поиск Гамильтонова цикла

Гамильтонов цикл для данного графа: e1->e2->e7->e8->e11->e3->e12->e5->e9->e10->e6->e4

Переименование графа выполнено следующим образом:

После чего исходный граф принимает следующий вид:

2. Построение графа пересечений G'

Rename	ed gi	raph											
										10	11	12	
	e1	e2	e7	e8	e11	е3	e12	е5	е9	e10	e6	е4	
e1													
e2													
e7													
e8													
e11													
e3													
e12													
e5													
e9													
e10													
e6													
e4													

Получена следующая матрица смежности графа пересечений:

3. Построение семейства Ψ_{G}

Found	ed int	ersectio	ons:													
										10	11	12	13	14	15	16
	υ1,5	u2,7	u2,9	u2,10	u1,9	u2,12	υ4,7	υ2,5	υ4,8	υ5,8	υ5,10	u6,8	u6,9	u6,10	u6,11	u8,10
υ 1 ,5																
u2,7																
u2,9																
u2,10																
u1,9					1	1										1
u2,12																
u4,7																
u2,5																
u4,8																
υ5,8																
υ5,10																
u6,8																
u6,9																
u6,10										1						
u6,11										1						
u8,10																
psi(1)=1 5	8 10 12		0.40												

 $\Psi(1)=1581012$

 $\Psi(2)=1581213$

 $\Psi(3)=1810111216$

 $\Psi(4)=1811121314$

 $\Psi(5)=1811121416$

Ψ(6)=1 8 12 13 14 15

 $\Psi(7)=1812141516$

 $\Psi(8)=23467$

 $\Psi(9)=23468$

 $\Psi(10)=2357$

 $\Psi(11)=2358$

 $\Psi(12)=246716$

 $\Psi(13)=246816$

 $\Psi(14)=34679$

Ψ(15)=3 4 6 8 10 12

 $\Psi(16)=34681213$

 $\Psi(17)=34691012$

Ψ(18)=3 5 7 9

 $\Psi(19)=3581012$

 $\Psi(20)=3581213$

 $\Psi(21)=3591012$

 $\Psi(22)=467916$

 $\Psi(23)=46810111216$

 $\Psi(24)=46811121314$

 $\Psi(25)=46811121416$

 $\Psi(26)=469101216$

Ψ(27)=6 8 12 13 14 15

$\Psi(28)=6812141516$

Для каждой пары считаем значение коэффициента $\alpha_{\gamma\delta}$. Значения записываем в матрицу. Получаем:

Максимальное значение коэффициента = 11. Его дает пара $\Psi(3)$ =1 8 10

11 12 16 и $\Psi(8)$ =2 3 4 6 7. Проводим ребра, вошедшие в $\Psi(3)$ внутри суграфа H, а вошедшие в $\Psi(8)$ – снаружи. Получаем:

Удалим из $\Psi_{G'}$ ребра, вошедшие в $\Psi(3)$ и $\Psi(8)$.

Получаем следующие оставшиеся элементы из семейства Ψ_G :

$$\Psi(1) = 5$$

$$\Psi(2) = 5.13$$

$$\Psi$$
 (3) = 13 14

$$\Psi$$
 (4) = 14

$$\Psi$$
 (5) = 13 14 15

$$\Psi$$
 (6) = 14 15

$$\Psi(7) = 9$$

$$\Psi$$
 (8) = 13

$$\Psi(9) = 59$$

Аналогично считаем коэффициенты. Максимальный равен 5 и получен парой Ψ (5) и Ψ (9). Ребра из Ψ (5) расположим внутри, Ψ (9) — снаружи. Получаем:

Удалим из Ψ_{G} ребра, вошедшие в $\Psi(5)$ и $\Psi(9)$. Больше ребер не осталось, все ребра реализованы. Толщина графа m=2.