# PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-251125

(43)Date of publication of application: 17.09.1999

(51)Int.CI.

H01F 1/08 **B22F** 3/00 B22F C22C 33/02 C22C 33/02

C22C 38/00 H01F 1/053 H01F 41/02

(21)Application number : 10-357893

(71)Applicant : SHIN ETSU CHEM CO LTD

(22)Date of filing:

16.12.1998

(72)Inventor: ITO TAKU

**MINOWA TAKEHISA** 

(30)Priority

Priority number: 09350550

Priority date: 19.12.1997

Priority country: JP

# (54) RARE-EARTH-IRON-BORON SINTERED MAGNET AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To stably obtain a rare-earth-iron-boron sintered magnet, having a high coercive force and a high specific electric resistance at a low cost. SOLUTION: A rare-earth-iron-boron sintered magnet has an R-B-(Fe, Co) alloy composition containing 0.0005-40 wt.% of one or more kinds of rare-earth oxides R'mOn (where, R' represents Y, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Rb, or Lu and (m) and (n) respectively represent 2, 3 and 6, 11 for Pr, 2, 3 and 4, 7 for Tb, or 2, 3 for all the others), 8-20 at.% for R (one or more kinds of rare-earth elements including Y), 2-10 at.% for B, and the balance Fe and/or for Co.

## LEGAL STATUS

[Date of request for examination]

20.06.2002

[Date of sending the examiner's decision of

25.11.2004

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision

of rejection

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

## (19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平11-251125

(43)公開日 平成11年(1999)9月17日

| (51) Int.Cl. <sup>6</sup> | 識別記号              |      | FΙ     |       |        |      |         |            |
|---------------------------|-------------------|------|--------|-------|--------|------|---------|------------|
| H01F 1/08                 |                   |      | H 0    | 1 F   | 1/08   |      | В       |            |
| B22F 3/00                 |                   |      | C 2    | 2 C 3 | 33/02  |      | н       |            |
| 3/02                      |                   |      |        |       |        |      | J       |            |
| C 2 2 C 33/02             |                   |      |        |       |        |      | 103A    | ·          |
|                           |                   |      |        |       | 38/00  |      | 303D    |            |
|                           |                   | 審査請求 | 未請求    | 請求以   | 頁の数8   | OL   | (全 7 頁) | 最終頁に続く     |
| (21)出願番号                  | 特願平10-357893      |      | (71)   | 人類出   | 000002 | 060  |         |            |
|                           |                   |      |        |       | 信越化    | 学工業  | 株式会社    |            |
| (22)出顧日                   | 平成10年(1998)12月16日 |      | 1      |       | 東京都    | 千代田  | 区大手町二丁  | 目6番1号      |
|                           |                   |      | (72) § | 発明者   | 伊藤     | 卓    |         |            |
| (31)優先権主張番号               |                   |      |        |       | 福井県    | 武生市: | 比府2丁目1月 | 番5号 信越化    |
| (32)優先日                   | 平 9 (1997)12月19日  |      |        |       | 学工業    | 朱式会  | 生磁性材料研9 | <b>党所内</b> |
| (33)優先権主張国                | 日本(JP)            |      | (72)多  | 色明者   |        |      |         |            |
|                           |                   |      | •      |       |        |      | 比府2丁目14 |            |
|                           |                   |      |        |       |        |      | 上磁性材料研9 |            |
|                           |                   |      | (74) f | 人野分   | 弁理士    | 山本   | 亮一 (外:  | 2名)        |
|                           |                   | A    |        |       |        | 1.11 | •       | •          |
|                           |                   |      | -      |       |        |      |         |            |
|                           |                   |      |        |       |        |      |         |            |
|                           |                   |      |        |       |        |      |         |            |

# (54) 【発明の名称】 希土類元素・鉄・ポロン系焼結磁石およびその製造方法

## (57)【要約】

【課題】 安価で高保磁力、高比電気抵抗の希土類元素 ・鉄・ボロン系焼結磁石を安定して得る。

【解決手段】 1種以上の希土類酸化物 R'm On (R'はY, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Luで、m, nはPrは2, 3および6, 11、Tbは2, 3および4, 7、その他はすべて2, 3である)を0.0005~40重量%含んで、残部がR(RはYを含む希土類元素の1種以上)、B、Feまたは/およびCoからなり、Rが8~20原子%、Bが2~10原子%、残部がFeまたは/およびCoからなるR-B-(Fe, Co)系合金組成物である希土類元素・鉄・ボロン系焼結磁石。

#### 【特許請求の範囲】

【請求項1】 1種以上の希土類酸化物 R'。O。 (R' ty, La, Pr, Nd, Sm, Eu, Gd, Tb, Dy、Ho、Er、Tm、Yb、Luであり、m, nは Prがそれぞれ2, 3および6, 11、Tbが2, 3およ び4, 7、その他はすべて2, 3である)を0.0005~40 重量%含み、残部がR (RはYを含む希土類元素の1種 以上)、B、Feまたは/およびCoからなり、残部の うちRが8~20原子%、Bが2~10原子%、残りがFe または/およびCoからなるR-B-(Fe, Co)系 合金組成物であることを特徴とする希土類元素・鉄・ボ ロン系焼結磁石。

【請求項2】 希土類酸化物R'。O。 の含有量が0.000 5~10重量%である請求項1記載の希土類元素・鉄・ボ ロン系焼結磁石。

【請求項3】 希土類酸化物R'm O m の平均粒径が 0. 1~ 100 µ m である請求項1または2記載の希土類元素 ・鉄・ボロン系焼結磁石。

【請求項4】 R(RはYを含む希土類元素の1種以 上)、B、Feまたは/およびCoからなり、Rが8~ 20原子%、Bが2~10原子%、残部がFeまたは/およ びCoのR-B-(Fe, Co) 系合金組成物のインゴ ット合金または急冷薄帯を粉砕する工程において、1種 以上の希土類酸化物粉末R'。O。 (R'はY、La、 Pr. Nd. Sm. Eu. Gd. Tb. Dy. Ho. E r、Tm、Yb、Luであり、m, nはPrがそれぞれ 2, 3および6, 11、Tbが2, 3および4, 7、その 他はすべて2,3である)を、前記粉砕した合金組成物 に0.0006~50重量%混合し、磁場中配向成形後、焼結す ることを特徴とする希土類元素・鉄・ボロン系焼結磁石 の製造方法。

【請求項5】 希土類酸化物粉末R'。O。 の混合量を 0.0006~15重量%とする請求項4記載の希土類元素・鉄 ・ボロン系焼結磁石の製造方法。

【請求項6】 請求項4または5記載の希土類元素・鉄 ・ボロン系焼結磁石の製造方法により製造した希土類元 素・鉄・ボロン系焼結磁石を熱処理することを特徴とす る希土類元素・鉄・ボロン系焼結磁石の製造方法。

【請求項7】 希土類酸化物粉末R'。O。 のR' が Y, La, Pr, Nd, Gd, Tb, Dy, Ho, E r、Tm、Yb、Luである請求項4~6のいずれかに 記載の希土類元素・鉄・ボロン系焼結磁石の製造方法。

【請求項8】 希土類酸化物粉末R'。O。 の平均粒径 が  $0.1\sim 100\,\mu$  m である請求項 $4\sim7$  のいずれかに記載 の希土類元素・鉄・ボロン系焼結磁石の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、回転機器、電子部 品、電気機器等の産業分野で有用な、希土類元素・鉄・

る。

[0002]

【従来の技術】R (RはYを含む希土類元素の1種以 上、以下同じ)、Fe、Co、Bからなる永久磁石、特 にRとしてNdを主成分とする希土類磁石は、その磁気 特性の高さから電子・電気機器産業の分野において、広 く利用されている。

【0003】例えば、永久磁石式回転機器には、従来安 価なフェライト磁石が主に使用されてきた。しかし近 年、回転機器のさらなる小型化、効率化の要求に対し 10 て、高価ではあるが磁気特性の高い希土類磁石が使用さ れるようになった。一般に市販されている希土類磁石の うち、Sm-Co系磁石は、キュリー温度が高いため、 磁気特性の温度変化が小さい。また耐食性も高く、表面 処理を必要としない。しかし、原料としてCoを使用し ているため、非常に高価である。一方Nd-Fe-B系 磁石は永久磁石の中で飽和磁化が最も高く、また原料で Coを使用しないので安価である。しかし、キュリー温 度が低いため、磁気特性の温度変化が大きく耐熱性に劣 る。同時に耐食性も劣っているため、用途によっては適 当な表面処理を必要とする。いずれの材料も金属である ので、比電気抵抗は酸化物であるフェライトの比電気抵 抗の100 分の1程度の100 ~200 μΩ·cm程度と小さ い。したがって、モータなど回転機器でこの希土類磁石 が変動する磁界にさらされながら使用される場合、電磁 誘導により発生した渦電流が大量に流れ、その電流によ るジュール熱により永久磁石が発熱する。永久磁石の温 度が高くなると、とくにNd-Fe-B系磁石は磁気特 性の温度変化が大きいため、磁気特性が低下し、その結 果モータの効率も落ちる。従って、永久磁石1個あたり の大きさを小さくしたり、磁石同士の間に絶縁体を挟む などして、誘導電流を抑え発熱量を抑制しているが、こ れらはいずれもモータにかかるコストを上げている。

【0004】Nd-Fe-B系磁石はそのキュリー温度 の低さから磁気特性の温度変化が大きく、一般にあまり 高温では使えない。従来、この希土類元素・鉄・ボロン 系焼結磁石の保磁力を高める様々な試みがなされてき た。一般に、希土類焼結磁石の主相となるR<sub>2</sub> (Fe, Co) 14 B相には、Rとして、NdやPrといった軽希土類 が用いられる。これは、軽希土類の場合、希土類原子の 磁気モーメントとFe、Co原子の磁気モーメントが平 行な方向を向くことにより、飽和磁化が大きくなるため である。一方、RとしてTb、Dyといった重希十類を 用いた場合、希土類原子の磁気モーメントとFe、Co の磁気モーメントが反平行の方向を向き、飽和磁化は小 さくなる。しかし、これらの原子を用いたR2(Fe, Co) 14 B相は、結晶磁気異方性が軽希土類のものよりも大 きいため、保磁力も大きくなる。

【0005】したがって、現在まで希土類焼結磁石の保 ボロン系焼結磁石およびその製造方法に関するものであ 50 磁力を高めるのに最も効果が現れた方法は、希土類焼結

磁石の主相となるR<sub>2</sub> (Fe, Co)<sub>14</sub> B相のRの一部をD yやTbといった重希土類に置換し、結晶磁気異方性を 高めるやり方であった。この代表的方法として二合金法 が挙げられる。二合金法は、希土類永久磁石中で強磁性 相であり主相のR₂(Fe, Co)14 B相となる部分の合金 (主相合金)と、焼結を促進し同時に主相表面をクリー ニングし保磁力を増大させる希土類リッチ相となる合金 (助剤合金) を別々に作り、混合、粉砕、焼結する方法 である。この方法を用いれば、主相 R 2 (Fe, Co) 14 B 相の部分と粒界相の希土類リッチ相の部分を別々に最適 化できる。この方法において、助剤合金にのみ重希土類 を添加すれば、重希土類のR<sub>2</sub> (Fe, Co)<sub>14</sub> Bは主相の 外側のみに生成される。R2 (Fe, Co)14 B相の保磁力 機構は核生成型であるため、主相の外側部分の結晶磁気 異方性がこのように大きくなると、保磁力は大きくな る。さらにこのとき助剤合金のみに重希土類金属を添加 すればよいので、全体に添加する場合と比べ、添加量は 少量で同じ保磁力を得ることが出来る。同時に、飽和磁 化の低下も小さい。

【0006】さて前述の通り、R2 (Fe, Co)14 B相の 保磁力機構は核生成型であるため、焼結磁石中の一つ一 つのR₂(Fe,Co)、 B相の結晶粒が小さくなると表面 積も小さくなり、逆磁区を発生しにくくなり、焼結磁石 全体としての保磁力も大きくなる。このように保磁力に 大きな影響を与える結晶粒径を制御するためには、焼結 温度、焼結時間が非常に重要である。希土類・鉄・ボロ ン系焼結磁石では、焼結の際に1,000 ℃を超えたあたり から液相量が増え、密度が急速に上がると同時に主相R 2 (Fe, Co)14 B相が結晶成長を始める。この変化は、 焼結温度、焼結時間、組成に非常に敏感で、綿密な管理 が必要とされる。この結晶成長を制御する方法として、 V、Mo、W、Nb、Ti等の元素を添加する方法があ る。これらの元素は、焼結磁石中では粒界にFe、B等 と融点の高い安定な化合物をつくって存在し、R2 (Fe, Co)」 B結晶粒の粒成長をある程度抑制する (J. Fidle r et al.,7th Int. Symposium on Magnetic Anisotropy &Coercivity in RE-TM Alloys, Session 1,11)

【0007】また、添加物として希土類酸化物、おもに重希土類の酸化物を用いる方法がある(特公平4-26525号公報)。これによれば、主相R2(Fe,Co)14 B相のRを置換すると効果のある重希土類元素の酸化物ほど、効果が大きい。したがって、これは添加した酸化物が還元されて、主相のR2(Fe,Co)14 B相のRを置換したため、保磁力が増大したものと考えられる。その他、A1、Cr、Mg、Zn等の酸化物を添加物として用いて保磁力を向上させる方法がある[Zhongmin Chen et a1., Journal of Magnetism and Magnetic Materials,162(1996),307]。これらの元素の酸化物は、酸化物中の酸素1原子当たりの標準生成ギブズエネルギーが焼結磁石の主相のR2(Fe,Co)14 B相のRの酸化物のものより

大きいことを考えると、希土類焼結磁石中で還元されて しまい、実際にはこれらの金属単体を添加した場合と同 様の効果が起きているものと考えられる。

#### [0008]

【発明が解決しようとする課題】前述のように、保磁力を上げるには、重希土類元素の金属を添加することが最も有効であるが、重希土類元素金属は非常に高価で、また同時に保磁力の増加と共に飽和磁化が下がってしまう。また、V、Mo、W、Nb、Ti等の元素の添加による方法は、粒成長をある程度抑制するが、やはり保磁力は焼結温度、焼結時間、組成に非常に敏感で、綿密な管理が必要とされる。

【0009】また誘導電流によるジュール熱により永久 磁石が発熱する問題を解決するには、希土類磁石そのも のの比電気抵抗が高ければよいが、これまで高い比電気 抵抗と十分な磁気特性を両立するような方法はなかっ た。本発明はこれらの問題の解決を課題とする。

### [0010]

【課題を解決するための手段】そこで本発明者らは、高 い比電気抵抗と十分な磁気特性を併せ持つような安価で 保磁力の高い希土類元素・鉄・ボロン系焼結磁石を得る ために様々な方法を考察、検討した。その結果、R-B - (Fe, Co) 系合金組成物のインゴット合金または 急冷薄帯を粉砕する工程において、1種以上の希土類酸 化物粉末R'm O。 (R' はY、La、Pr、Nd、S m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y b、Luであり、m, nはPrが2, 3および6, 11、 Tbが2, 3および4, 7、その他の元素はすべて2, 3である)を0.0006~50重量%混合し、磁場中配向成形 後、焼結することにより、希土類酸化物R'。O。 (R' La Pr. Nd. Sm. Eu, Gd. T b、Dy、Ho、Er、Tm、Yb、Luであり、m. nはPrが2, 3および6, 11、Tbが2, 3および 4,7、その他の元素はすべて2,3である)を0.0005 ~40重量%含み、残部がR、B、Feまたは/およびC oからなるR-B-(Fe, Co)系合金組成物である 希土類元素・鉄・ボロン系焼結磁石合金を得られること を見いだし、さらに諸条件を確認して本発明を完成し た。すなわち本発明の要旨は、1種以上の希土類酸化物 R'm On を0.0005~40重量%含み、残部がR、B、F eまたは/およびCoからなり、Rが8~20原子%、B が2~10原子%、残部がFeまたは/およびCoからな るR-B-(Fe, Co)系合金組成物であることを特 徴とする希土類元素・鉄・ボロン系焼結磁石合金にあ り、また、R、B、Feまたは/およびCoからなり、 Rが8~20原子%、Bが2~10原子%、残部がFeまた は/およびCoのR-B-(Fe,Co)系合金組成物 のインゴット合金または急冷薄帯を粉砕する工程におい て、1種以上の希土類酸化物粉末 R'。O。 を、0.0006 50 ~50重量%混合し、磁場中配向成形後、焼結することを

40

特徴とする希土類元素・鉄・ボロン系焼結磁石の製造方 法にある。

#### [0011]

【発明の実施の形態】以下、本発明を詳細に説明する。 本発明によれば、

ΦR、B、Feまたは/およびCoからなり、Rが8~ 20原子%、Bが2~10原子%、残部がFeまたは/およ びCoのR-B-(Fe, Co)系合金組成物のインゴ ット合金または急冷薄帯を粉砕する工程において、1種 以上の希土類酸化物粉末R'm O。 を前記粉砕した合金 10 組成物に0.0006~50重量%混合し、磁場中配向成形後焼 結する。

②得られた合金を熱処理する。ことにより、1種以上の 希土類酸化物 R'm O m を0.0005~40重量%含んでい て、残部がR、B、Feまたは/およびCoからなり、 Rが8~20原子%、Bが2~10原子%、残部がFeまた は/およびCoのR-B-(Fe, Co)系合金組成物 である希土類元素・鉄・ボロン系焼結磁石を製造できる というものである。希土類酸化物R'm Om は絶縁体 で、焼結磁石全体の比電気抵抗を大きくする。この焼結 磁石中では、希土類酸化物 R'。O。 が分散して存在し ているため、焼結の際に主相のR2(Fe,Co)14 B相が 粒成長することを妨げ、その結果個々の結晶粒の粒径が 小さくなると同時に表面積が小さくなり、焼結磁石全体 の保磁力が上がる。また同様の理由で、焼結温度を上げ たり、焼結時間をのばしても粒が成長をしにくくなり、 焼結温度や焼結時間に非常に敏感だった保磁力が鈍感に なり、綿密な温度、時間制御が不要になり、生産効率が 上がる。

【0012】以下に、これをさらに詳述する。R-B-(Fe, Co) 系合金組成物の粉末を作製する。この合 金組成物の粉末は、例えば熔解、鋳造したインゴット合 金を粉砕してもよいし、酸化物等から直接還元拡散法を 用いて作製しても良い。熔解したものをストリップキャ スティング法を用いて急冷した急冷薄帯を粉砕したもの でもよい。また、得られた合金を水素化、脱水素化する ことによって粉砕したものでも良い。また二合金法を用 いて、主相のR<sub>2</sub> (Fe, Co)<sub>14</sub> B相をおもに含む主相合 金粉末と、希土類リッチ相を含む助剤合金粉末を別々に 前記のように作製して、混合したものでもよい。

【0013】このR-B- (Fe, Co) 系合金粉末 は、全体でRが8~20原子%、Bが2~10原子%、残部 がFeまたは/およびCoとなるようにする。R、Bが 上記範囲外では、粗大なαーFeが析出することにより 保磁力を低下させたり、強磁性相である主相のR2 (Fe, Co)14 B相の存在比が少なくなり、残留磁化を低下さ せたりし、好ましくない。

【0014】上記R-B- (Fe, Co) 系合金粉末を 1種以上の希土類酸化物粉末R'... O. と混合する。 R'は、Y、La、Pr、Nd、Sm、Eu、Gd、T 50 パターンで行うが、必要に応じてこれを繰り返したり、

b、Dy、Ho、Er、Tm、YbまたはLuであり、 その元素の酸化物中の酸素1原子当たりの標準生成ギブ ズエネルギーが小さく合金の焼結過程で他の金属に還元 されにくいという点からY、La、Pr、Nd、Gd、 Tb、Dy、Ho、Er、Tm、Yb、Luが好まし い。m, nはPrが2, 3および6, 11、Tbが2, 3 および4、7、その他の元素は2、3である。

【0015】希土類酸化物粉末R'm Om としては、Y 2 O3 Laz O3 Pr2O3 Pr6  $O_{11}$  ,  $N\,d_{\,2}$   $O_{\,3}$  ,  $S\,m_{\,2}$   $O_{\,3}$  ,  $E\,u_{\,2}$   $O_{\,3}$ Gd2O3 Tb2O3 Tb4O7 Dy2O 3 Ho2 O3 Er2 O3 Tm2 O3 Y b<sub>2</sub> O<sub>3</sub> 、Lu<sub>2</sub> O<sub>3</sub> が例示される。他の元素の酸 化物は、磁石を焼結する温度において、酸化物中の酸素 1原子当たりの標準生成ギブズエネルギーが、主相のR 2 (Fe, Co)14 B相中の希土類Rの酸化物R。 O。 の ものより大きいので、添加しても焼結工程中に還元され てしまい、結果的に焼結磁石中で希土類Rの酸化物Rm O. となる。一例として、Ti、Zr、Al、Mg、 Caの酸化物をNd金属で還元する反応およびYの酸化 物をNd金属で還元する反応の標準ギブズエネルギーの 温度変化を図1に示す。磁石を焼結する温度では、T i、Zr、Al、Mg、Caの場合標準ギブズエネルギ ーが負となって還元反応が起こるが、Yの場合標準ギブ ズエネルギーが正となって還元反応は起こらない。

【0016】希土類酸化物粉末R'm Om の混合量は、 該合金への含有量を0.0005~40重量%とする必要から、 0.0006~50重量%とすることが必要であり、好ましくは 0.0006~15重量%である。

【0017】希土類酸化物粉末R'。O。 の平均粒径 は、 0.1~ 100μmがよい。粒径が 0.1μm未満では、 酸化物粉末は凝集してしまって、粒径の大きな酸化物粉 ·末を使用した場合と同じ結果になる。一方、 100 μmを 超える粒径の酸化物粉末を使用すると、大きすぎて焼結 磁石中に均一に分散しない。

【0018】希土類酸化物粉末R'm O。 を前記のよう に合金組成物粉末に混合後、微粉砕し、次に磁場中成形 するが、磁場中配向成形の条件は、磁場5~15kOe、 成形圧力 300~2,000 kgf/cm<sup>2</sup> が好ましい。

【0019】次いで磁場中配向成形した圧粉体を焼結す る。焼結条件は、N2 、Ar等の不活性雰囲気中また は真空中で、焼結温度は1,000 ~1,200 ℃がよい。焼結 温度が1,000 ℃より低いと、焼結体の密度が十分上がら ず、同時に保磁力も上がらない。焼結温度が1,200 ℃よ り高くなると、R<sub>2</sub> (Fe, Co)<sub>14</sub> B相の融点を超えるた め、大きく粒成長し保磁力が下がる。

【0020】焼結後、さらに磁気特性を向上させるため に熱処理を行うとよい。この熱処理は一般に、温度 400 ~ 800℃、時間 0.5~10時間で昇温、保持、降温という

段階または連続的に温度を変化させるパターンでも良

【0021】本発明の焼結磁石に含まれる希土類酸化物 は式R'm Om で表され、R'は、Y、La、Pr、N d, Sm, Eu, Gd, Tb, Dy, Ho, Er, T m、YbまたはLuで、m, nはPrが2, 3および 6,11、Tbが2,3および4,7、その他の元素は 2, 3である。

【0022】希土類酸化物R'm O。 の含有量は、0.00 05~40重量%となるようにし、好ましくは0.0005~10重 量%とする。酸化物の量が0.0005重量%未満では、量が 少なすぎて比電気抵抗をあげる効果を示さないと同時に 焼結の際に十分に結晶成長を抑える効果を示さず、40重 量%を超えると、焼結磁石の磁気特性、特に飽和磁化を 落とす。希土類酸化物R'。O。 の含有量は、焼結磁石 に必要とされる比電気抵抗と磁気特性との兼ね合いで決 めればよい。

【0023】希土類酸化物R'。O。 の平均粒径は、 0.1~ 100 μ mがよい。希土類酸化物粒径が 0.1 μ m未 満の焼結磁石を得ようとすると、原料として平均粒径が 0.1μ m未満の希土類酸化物粉末R'。O。 を使用せね ばならず、これは前記の通り、結果的に粒径の大きな酸 化物粉末を使用した場合と同じ結果になり、一方、希土 類酸化物粒径が 100μmを超えると、もはや焼結磁石中 に均一に分散しておらず、主相のR2 (Fe, Co)14 Bの 粒成長を抑える働きがなく、高い保磁力は得られない。 [0024]

【実施例】次に本発明の実施の形態を実施例を挙げて具 体的に説明するが、本発明はこれらに限定されるもので はない。

(実施例1~5および比較例1) Nd 15 原子%、Fe\*

【表 2】 酸化物 添加量 含有量 残留磁化 比電気抵抗 [ kOe ] [ kG ] Y. O. 10 6.4 10.8 10. 7 7 Tb. 0, 10 5. 8 11. 2 10.3 10. 2 8 Dy. O. 10 5. 6 9 Ho. O. 10 5. 9 10.6 10.5 10. 5 10. 5 4. 4×10 10 Gd. O. 10 6.0

【0028】 (実施例11~16および比較例2~7) 実施例1で得られた合金インゴットを粗粉砕した粉末 に、平均粒径 2 μ m の Y 2 O 3 粉末を 0.5 重量%添加 40 混合し (ただし比較例2~7は添加なし) 、ジェットミ ルを用いて微粉砕した。微粉砕して得た粉末を、磁場中 配向成形後、表 3 に示すように1,060 ~1,160 ℃で2時 間焼結して、焼結磁石を作製した。表3に、この焼結磁

\* 75 原子%、Co 2原子%、B 8原子%となるように 金属原料を熔解し、合金インゴットを得た。上記合金イ ンゴットを粗粉砕した粉末に、平均粒径約2 μmのY2 O3 , Tb2 O3 , Dy2 O3 , Ho2 O3 , Gd2 〇3 粉末を0.5 重量%添加混合し(比較例1は 添加なし)、ジェットミルを用いて微粉砕して得た粉末 を、磁場中配向成形後、1,120 ℃で2時間焼結して、焼 結磁石を作製した。表1に、この焼結磁石の磁気特性お よび酸化物の含有量、比較例1の磁石の磁気特性を示 す。表1から、希土類酸化物の添加により残留磁束密度 はやや低下するが、保磁力は増加することがわかる。

[0025] 【表 1 】

酸化物添加量 添加量 含有量 保磁力 [重量%][建量%]

| 比較例 | 1        | _      | _    | 1     | 13. 6 | 12.0 |
|-----|----------|--------|------|-------|-------|------|
|     | 15       | Gd. 0. | 0. 5 | 0. 27 | 14.9  | 11.8 |
|     | 4        | Ho. O. | 0. 6 | 0.26  | 15.0  | 11.7 |
|     | 3        | Dy. 0. | 0.5  | 0.32  | 16.3  | 11.4 |
|     |          | Tb. 0. | 0. 5 | 0. 29 | 15. 5 | 11.5 |
|     | <u> </u> | Y. O.  | 0.5  | 0.30  | 15.1  | 11.9 |

【0026】 (実施例6~10) 合金インゴットを粕粉 砕した粉末に、平均粒径約2μmのY2 O3、Tb2 O3 、Dy2 O3 、Ho2 O3 、Gd2 O3 粉 末を10重量%添加混合した以外は実施例1と同様に行っ て、焼結磁石を作製した。表2に、この焼結磁石の磁気 特性、酸化物の含有量、比電気抵抗、および比較例1の 磁石の磁気特性、比電気抵抗を記す。表2から、希土類 酸化物の添加により比電気抵抗は増加することがわか

[0027]

石の磁気特性、酸化物の含有量、密度、および比較例2 ~7の磁石の磁気特性、密度を併記する。表3から、比 較例2~7は焼結温度に対して、保磁力および焼結体の 密度が敏感に変化するのに対し、実施例11~16はな めらかに変化することがわかる。

[0029]

【表3】

| 9           | _   |          |      |        |              |       |          |
|-------------|-----|----------|------|--------|--------------|-------|----------|
|             |     | 添加量      | 焼精温度 | 含有量    | 保磁力<br>[kOe] | 残留磁化  | 密 度      |
| <del></del> | 7   | [45,554] |      | المطما |              |       | [g/car ] |
|             | 111 |          | 1060 |        | 16.0         | 11.3  | 7.22     |
|             | 12  |          | 1080 |        | 15.8         | 11.6  | 7.34     |
| 实施例         | 13  | 0.5      | 1100 | 0.31   | 15. 4        | 11.8  | 7. 41    |
|             | 14  |          | 1120 |        | 16. 1        | 11. 9 | 7.50     |
|             | 15  |          | 1140 |        | 14.8         | 12. 2 | 7. 51    |
|             | 18  |          | 1180 |        | 14.5         | 12.4  | 7. 53    |
| 1           | 2   |          | 1060 |        | 15.0         | 10.8  | 6.80     |
|             | 3   |          | 1080 |        | 14. 7        | 11.4  | 7.16     |
| 比較例         |     |          | 1100 | -      | 13.9         | 11.8  | 7. 43    |
|             | 5   |          | 1120 |        | 13.5         | 12.0  | 7.55     |
| 1           | 6   |          | 1140 |        | 12. 2        | 12.2  | 7. 58    |
| L           | 7   |          | 1160 |        | 10.7         | 12.4  | 7.60     |

【0030】 (実施例17~20) 合金インゴットを粗 粉砕した粉末に、Y2 O3 粉末を表4に示すように種 々の割合で添加混合した以外は、実施例1と同様に行っ て焼結磁石を作製した。表4に、この焼結磁石の磁気特 性、酸化物の含有量、および比較例1の磁石の磁気特性 を併記する。表 4 から、希土類酸化物の添加量 0.2重量 %から3.0 重量%までの増加により、比較例1に比べ残 留磁束密度は低下していくが、保磁力は増大していくこ とがわかる。

[0031]

【表4】

|     |     | 逐加量<br>[重量%] | 合有量   | 保配力<br>[kOe] | 残留磁化<br>[kG] |
|-----|-----|--------------|-------|--------------|--------------|
|     | 17  | 0.2          | 0.08  | 14. 3        | 11.9         |
|     | 18  | 0. 5         | 0.30  | 15. 1        | 11.9         |
| 実施研 | 1.9 | 1:10 _       | 0. 58 | 1.60.        | 1,18         |
|     | 20  | 3. 0         | 1.61  | 16.8         | 11.6         |
| 比較例 | 1   | -            | _     | 13.5         | 12.0         |

\*【0032】 (実施例21~24) 合金インゴットを粗 粉砕した粉末に、平均粒径2μmのY2 O3 粉末を表 5に示すように種々の割合で添加混合した以外は、実施 例1と同様に行って焼結磁石を作製した。表5に、この 焼結磁石の磁気特性、酸化物の含有量、比電気抵抗およ び比較例1の磁石の磁気特性、比電気抵抗を併記する。 表5から、希土類酸化物の添加量5重量%から40重量 %までの増加により、比較例1に比べ比電気抵抗は増大 していくが、残留磁束密度および保磁力は低下していく 20 ことがわかる。

[0033]

【表5】

|     |    | 添加量[重量%] | 含有量[重量%] | 保証力<br>[kOe] | 残留磁化<br>【kG】 | 比電気抵抗<br>[Ω·cm] |
|-----|----|----------|----------|--------------|--------------|-----------------|
|     | 21 | 5        | 3. 0     | 14.0         | 11.3         | 2. 4×10-4       |
|     | 22 | 10       | 6. 4     | 10.8         | 10.7         | 5. 2×10-4       |
| 実施資 | 23 | 20       | 13. 2    | 8. 0         | 9. 8         | 1. 3×10-        |
|     | 24 | 40       | 27. 3    | 4. 2         | 8. 3         | 4. 8×10-4       |
| 比較例 | 1  |          | _        | 13. 5        | 12. 0        | 1. 8×10-4       |

【0034】 (実施例25) 合金インゴットを粗粉砕し た粉末に、表6に示すような組成の希土類酸化物混合物 粉末(平均粒径約3μm)を1重量%添加混合した以外 は、実施例1と同様に行って焼結磁石を作製した。表7 に、この焼結磁石および比較例1の磁石の磁気特性を記 す。表7から、希土類酸化物の混合物の添加でも、比較 例1に比べ保磁力は増大することがわかる。

[0035]

【表6】

| 酸化物    | 組成[重量%] |
|--------|---------|
| Y: 0:  | 54.6    |
| Gd. 0. | 22. 8   |
| Dy: O: | 9. 6    |
| Er. 0. | 4. 3    |
| Yb. 0. | 3. 4    |
| Tb. 0. | 2. 5    |
| Ho. O. | 1.6     |
| Tm. O. | 0. 7    |
| Lu. O. | 0.6     |

[0036]

【表7】

|     |    | 添加量 【震量%】 | 保磁力<br>[k0e] | 残留磁化<br>[kG] |
|-----|----|-----------|--------------|--------------|
| 実施例 | 25 | 1. 0      | 15.8         | i 1. 8       |
| 比較例 | 1  | -         | 13.5         | 12.0         |

【0037】(実施例26)合金インゴットを粗粉砕し た粉末に、表6のような希土類酸化物混合物粉末(平均 粒径約3μm)を10重量%添加混合した以外は、実施例 25と同様に行って焼結磁石を作製した。表8に、この 焼結磁石および比較例1の磁石の磁気特性および比電気 抵抗を記す。表8から、希土類酸化物の混合物の添加で も、比較例1に比べ比電気抵抗は増大することがわか る。

. [0038]

【表 8 】

|     |    | 添加量<br>【重量%】 | 保磁力<br>[kOe] | 残留磁化<br>【kG】 | 比電気抵抗<br>(Ω·cm) |  |  |  |  |
|-----|----|--------------|--------------|--------------|-----------------|--|--|--|--|
| 実施例 | 26 | 10           | 10.6         | 10.6         | 4. 9×10-4       |  |  |  |  |
| 比較例 | 1  |              | 13.5         | 12.0         | 1. 8×10-4       |  |  |  |  |

### [0039]

【発明の効果】本発明によれば、高い保磁力およびモータ等変動する磁界にさらされるような使用条件でも渦電\*

\* 流の発生が抑えられる大きな比電気抵抗を持つ焼結磁石 を、低コストで製造でき、また製造の効率を上げること が出来る。

12

### 【図面の簡単な説明】

【図1】Ti、Zr、A1、Mg、CaおよびYの酸化物をNd金属で還元する反応の標準ギブズエネルギーの温度変化を示すグラフである。

# 【図1】



## フロントページの続き

| (51) Int. Cl. 6 |       | 識別記号  | FΙ      |       |   |
|-----------------|-------|-------|---------|-------|---|
| C 2 2 C         | 33/02 | 103   | H01F    | 41/02 | G |
|                 | 38/00 | 3 0 3 | B 2 2 F | 3/00  | F |
| H01F            | 1/053 |       |         | 3/02  | R |
|                 | 41/02 |       | H01F    | 1/04  | Н |