

Redes Neurais Artificiais

(Prof. Giovani Guarienti Pozzebon)

EPC-4

Para a confecção de um sistema de ressonância magnética, observou-se que é de extrema importância para o bom desempenho do processador de imagens que a variável $\{y\}$ que mede a energia absorvida do sistema possa ser estimada a partir da medição de três outras grandezas $\{x_1, x_2, x_3\}$. Entretanto, em função da complexidade do sistema, sabe-se que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para representação do mesmo não fornece resultados satisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar uma rede perceptron multicamadas como um aproximador universal de funções, tendo como objetivo final de que dado como entrada os valores de $\{x_1, x_2, x_3\}$ a mesma possa estimar (após o treinamento) o respectivo valor da variável $\{y\}$ que representa a energia absorvida. A topologia da rede perceptron constituída de duas camadas neurais está ilustrada na figura abaixo.

Utilizando o algoritmo de aprendizagem *backpropagation* (Regra Delta Generalizada) e os dados de treinamento apresentados no Anexo, sendo que as variáveis de entrada $\{x_1, x_2, x_3\}$ já estão todas normalizadas, realize as seguintes atividades:

- 1. Execute 5 treinamentos para a rede PERCEPTRON inicializando as matrizes de pesos em cada treinamento com valores aleatórios entre 0 e 1. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento de tal forma que os elementos das matrizes de pesos iniciais não sejam os mesmos. Utilize a função de ativação *logística* para todos os neurônios, taxa de aprendizado $\eta = 0.1$ e precisão $\varepsilon = 10^{-6}$.
- 2. Registre os resultados finais desses 5 treinamentos na tabela abaixo:

Treinamento	Erro Quadrático Médio	Número de Épocas
1° (T1)		
2° (T2)		
3° (T3)		
4° (T4)		
5° (T5)		

- 3. Para os dois treinamentos acima com maiores números de épocas, trace os respectivos gráficos dos valores de erro quadrático médio (EQM) em função de cada época de treinamento. Imprima os dois gráficos numa mesma folha de modo não superpostos.
- 4. Baseado na tabela do item 2, explique de forma detalhada por que tanto o erro quadrático médio quanto o número de épocas variam de treinamento para treinamento.
- 5. Para todos os treinamentos efetuados no item 2, faça a validação da rede aplicando o conjunto de teste fornecido na tabela abaixo. Forneça para cada treinamento o erro relativo médio (%) entre os valores desejados e os valores fornecidos pela rede em relação a todos os padrões de teste. Obtenha também a respectiva variância.

6.	Amostra	x_1	x_2	<i>X</i> ₃	d	y _{rede} (T1)	y _{rede} (T2)	<i>y</i> _{rede} (T3)	y _{rede} (T4)	y _{rede} (T5)
	1	0.0611	0.2860	0.7464	0.4831		, ,			
	2	0.5102	0.7464	0.7464 0.0860						
	3	0.0004	0.6916	0.5006	0.5318					
	4	0.9430	0.4476	0.2648	0.6843					
	5	0.1399	0.1610	0.2477	0.2872					
	6	0.6423	0.3229	0.8567	0.7663					
	7	0.6492	0.0007	0.6422	0.5666					
	8	0.1818	0.5078	0.9046	0.6601					
	9	0.7382	0.2647	0.1916	0.5427					
	10	0.3879	0.1307	0.8656	0.5836					
	11	0.1903	0.6523	0.7820	0.6950					
	12	0.8401	0.4490	0.2719	0.6790					
	13	0.0029	0.3264	0.2476	0.2956					
	14	0.7088	0.9342	0.2763	0.7742					
	15	0.1283	0.1882	0.7253	0.4662					
	16	0.8882	0.3077	0.8931	0.8093					
	17	0.2225	0.9182	0.7820	0.7581					
	18	0.1957	0.8423	0.3085	0.5826					
	19	0.9991	0.5914	0.3933	0.7938					
	20	0.2299	0.1524	0.7353	0.5012					
			Erre	o Relativo l	Médio (%)					
				Var	riância (%)					

Baseado nas análises da tabela acima, indique qual das configurações finais de treinamento {T1, T2, T3, T4 ou T5} seria a mais adequada para o sistema de ressonância magnética, ou seja, qual delas está oferecendo a melhor generalização.

ANEXO

Amostra	x_1	x_2	<i>x</i> ₃	d	Amostra	x_1	x_2	<i>X</i> ₃	d	Amostra	x_1	x_2	<i>x</i> ₃	d
1	0.8799	0.7998	0.3972	0.8399	71	0.3644	0.2948	0.3937	0.5240	141	0.2858	0.9688	0.2262	0.5988
2	0.5700	0.5111	0.2418	0.6258	72	0.2014	0.6326	0.9782	0.7143	142	0.7931	0.8993	0.9028	0.9728
3	0.6796	0.4117	0.3370	0.6622	73	0.4039	0.0645	0.4629	0.4547	143	0.7841	0.0778	0.9012	0.6832
4	0.3567	0.2967	0.6037	0.5969	74	0.7137	0.0670	0.2359	0.4602	144	0.1380	0.5881	0.2367	0.4622
5	0.3866	0.8390	0.0232	0.5316	75	0.4277	0.9555	0.0000	0.5477	145	0.6345	0.5165	0.7139	0.8191
6	0.0271	0.7788	0.7445	0.6335	76	0.0259	0.7634	0.2889	0.4738	146	0.2453	0.5888	0.1559	0.4765

Universidade Federal do Pampa Centro Tecnológico de Alegrete Curso de Engenharia Elétrica

	0.0174	0.9422	0.2220	0.0060	77	0.1071	0.7692	0.0607	0.7207	147	0.1174	0.5426	0.2657	0.4052
8	0.8174	0.8422 0.1468	0.3229	0.8068	77	0.1871 0.3216	0.7682 0.5420	0.9697 0.0677	0.7397 0.4526	147 148	0.1174	0.5436 0.3228	0.3657	0.4953
9	0.0027	0.1468	0.5419	0.3342	79	0.3210	0.7688	0.9523	0.4320	149	0.9532	0.5228	0.6932	0.8426
10	0.1203	0.3200	0.4934	0.4708	80	0.2324	0.7088	0.9323	0.7711	150	0.7954	0.8346	0.0449	0.6676
11	0.6950	1.0000	0.4321	0.8404	81	0.2942	0.1625	0.2745	0.3759	151	0.1427	0.0480	0.6267	0.3780
12	0.0036	0.1940	0.3274	0.2697	82	0.8180	0.0023	0.1439	0.4018	152	0.1516	0.9824	0.0827	0.4627
13	0.2650	0.0161	0.5947	0.4125	83	0.8429	0.1704	0.5251	0.6563	153	0.4868	0.6223	0.7462	0.8116
14	0.5849	0.6019	0.4376	0.7464	84	0.9612	0.6898	0.6630	0.9128	154	0.3408	0.5115	0.0783	0.4559
15	0.0108	0.3538	0.1810	0.2800	85	0.1009	0.4190	0.0826	0.3055	155	0.8146	0.6378	0.5837	0.8628
16	0.9008	0.7264	0.9184	0.9602	86	0.7071	0.7704	0.8328	0.9298	156	0.2820	0.5409	0.7256	0.6939
17	0.0023	0.9659	0.3182	0.4986	87	0.3371	0.7819	0.0959	0.5377	157	0.5716	0.2958	0.5477	0.6619
18	0.1366	0.6357	0.6967	0.6459	88	0.1555	0.5599	0.9221	0.6663	158	0.9323	0.0229	0.4797	0.5731
19	0.8621	0.7353	0.2742	0.7718	89	0.7318	0.1877	0.3311	0.5689	159	0.2907	0.7245	0.5165	0.6911
20	0.0682	0.9624	0.4211	0.5764	90	0.1665	0.7449	0.0997	0.4508	160	0.0068	0.0545	0.0861	0.0851
21	0.6112	0.6014	0.5254	0.7868	91	0.8762	0.2498	0.9167	0.7829	161	0.2636	0.9885	0.2175	0.5847
22	0.0030	0.7585	0.8928	0.6388	92	0.9885	0.6229	0.2085	0.7200	162	0.0350	0.3653	0.7801	0.5117
23	0.7644	0.5964	0.0407	0.6055	93	0.0461	0.7745	0.5632	0.5949	163	0.9670	0.3031	0.7127	0.7836
24	0.6441	0.2097	0.5847	0.6545	94	0.3209	0.6229	0.5233	0.6810	164	0.0000	0.7763	0.8735	0.6388
25	0.0803	0.3799	0.6020	0.4991	95	0.9189	0.5930	0.7288	0.8989	165	0.4395	0.0501	0.9761	0.5712
26	0.1908	0.8046	0.5402	0.6665	96	0.0382	0.5515	0.8818	0.5999	166	0.9359	0.0366	0.9514	0.6826
27	0.6937	0.3967 0.0582	0.6055	0.7595	97 98	0.3726	0.9988	0.3814	0.7086 0.5080	167 168	0.0173	0.9548 0.9070	0.4289 0.6286	0.5527 0.8803
28	0.2391	0.0582	0.3978	0.3604	98	0.4211	0.2668	0.3574	0.3452	169	0.6112	0.9070	0.6286	0.8803
30	0.3332	0.1830	0.2475	0.6287	100	0.2378	0.7637	0.3374	0.7755	170	0.2010	0.9373	0.0791	0.7263
31	0.3625	0.9303	0.2473	0.5948	101	0.9893	0.7637	0.2320	0.7733	171	0.0061	0.9144	0.8621	0.7900
32	0.9259	0.0960	0.1645	0.4716	102	0.6226	0.2146	0.1021	0.4452	172	0.2212	0.4664	0.3821	0.5260
33	0.8606	0.6779	0.0033	0.6242	103	0.4589	0.3147	0.2236	0.4962	173	0.2401	0.6964	0.0751	0.4637
34	0.0838	0.5472	0.3758	0.4835	104	0.3471	0.8889	0.1564	0.5875	174	0.7881	0.9833	0.3038	0.8049
35	0.0303	0.9191	0.7233	0.6491	105	0.5762	0.8292	0.4116	0.7853	175	0.2435	0.0794	0.5551	0.4223
36	0.9293	0.8319	0.9664	0.9840	106	0.9053	0.6245	0.5264	0.8506	176	0.2752	0.8414	0.2797	0.6079
37	0.7268	0.1440	0.9753	0.7096	107	0.2860	0.0793	0.0549	0.2224	177	0.7616	0.4698	0.5337	0.7809
38	0.2888	0.6593	0.4078	0.6328	108	0.9567	0.3034	0.4425	0.6993	178	0.3395	0.0022	0.0087	0.1836
39	0.5515	0.1364	0.2894	0.4745	109	0.5170	0.9266	0.1565	0.6594	179	0.7849	0.9981	0.4449	0.8641
40	0.7683	0.0067	0.5546	0.5708	110	0.8149	0.0396	0.6227	0.6165	180	0.8312	0.0961	0.2129	0.4857
41	0.6462	0.6761	0.8340	0.8933	111	0.3710	0.3554	0.5633	0.6171	181	0.9763	0.1102	0.6227	0.6667
42	0.3694	0.2212	0.1233	0.3658	112	0.8702	0.3185	0.2762	0.6287	182	0.8597	0.3284	0.6932	0.7829
43	0.2706	0.3222	0.9996	0.6310	113	0.1016	0.6382	0.3173	0.4957	183	0.9295	0.3275	0.7536	0.8016
45	0.6282	0.1404 0.6693	0.8474	0.6733	114 115	0.3890 0.2702	0.2369	0.0083	0.3235 0.5319	184 185	0.2435	0.2163 0.8356	0.7625 0.5285	0.5449 0.8991
45	0.5861	0.0093	0.5141	0.7433	116	0.2702	0.8617 0.6507	0.1218	0.3319	186	0.9281	0.8336	0.5283	0.8991
47	0.5915	0.5588	0.3055	0.6787	117	0.7473	0.0307	0.3382	0.6625	187	0.8313	0.7366	0.5033	0.3561
48	0.8359	0.4145	0.5016	0.7597	118	0.4343	0.6028	0.1344	0.5546	188	0.0609	0.0343	0.4306	0.3310
49	0.5497	0.6319	0.8382	0.8521	119	0.6847	0.4062	0.9318	0.8204	189	0.5899	0.9408	0.0369	0.6245
50	0.7072	0.1721	0.3812	0.5772	120	0.8657	0.9448	0.9900	0.9904	190	0.7858	0.5115	0.0916	0.6066
51	0.1185	0.5084	0.8376	0.6211	121	0.4011	0.4138	0.8715	0.7222	191	1.0000	0.1653	0.7103	0.7172
52	0.6365	0.5562	0.4965	0.7693	122	0.5949	0.2600	0.0810	0.4480	192	0.2007	0.1163	0.3431	0.3385
53	0.4145	0.5797	0.8599	0.7878	123	0.1845	0.7906	0.9725	0.7425	193	0.2306	0.0330	0.0293	0.1590
54	0.2575	0.5358	0.4028	0.5777	124	0.3438	0.6725	0.9821	0.7926	194	0.8477	0.6378	0.4623	0.8254
55	0.2026	0.3300	0.3054	0.4261	125	0.8398	0.1360	0.9119	0.7222	195	0.9677	0.7895	0.9467	0.9782
56	0.3385	0.0476	0.5941	0.4625	126	0.2245	0.0971	0.6136	0.4402	196	0.0339	0.4669	0.1526	0.3250
57	0.4094	0.1726	0.7803	0.6015	127	0.3742	0.9668	0.8194	0.8371	197	0.0080	0.8988	0.4201	0.5404
58	0.1261	0.6181	0.4927	0.5739	128	0.9572	0.9836	0.3793	0.8556	198	0.9955	0.8897	0.6175	0.9360
59	0.1224	0.4662	0.2146	0.4007	129	0.7496	0.0410	0.1360	0.4059	199	0.7408	0.5351	0.2732	0.6949
60	0.6793 0.8176	0.6774 0.0358	1.0000 0.2506	0.9141	130 131	0.9123 0.6954	0.3510	0.0682	0.5455 0.8388	200	0.6843	0.3737	0.1562	0.5625
62	0.8176	0.0358	0.2506	0.4707	131	0.6954	0.5500	0.6801	0.8388					
63	0.0937	0.5411	0.8754	0.6980	133	0.3232	0.0329	0.5729	0.7893					
64	0.6553	0.2609	0.8734	0.0980	134	0.3130	0.3831	0.0249	0.0101		<u> </u>			
65	0.8886	0.0288	0.2604	0.4802	135	0.7780	0.4491	0.4614	0.7498					
66	0.3974	0.5275	0.6457	0.7215	136	0.5959	0.8647	0.8601	0.9176					
67	0.2108	0.4910	0.5432	0.5913	137	0.2204	0.1785	0.4607	0.4276					
68	0.8675	0.5571	0.1849	0.6805	138	0.7355	0.8264	0.7015	0.9214					
69	0.5693	0.0242	0.9293	0.6033	139	0.9931	0.6727	0.3139	0.7829					
70	0.8439	0.4631	0.6345	0.8226	140	0.9123	0.0000	0.1106	0.3944					
			-			-								