Results are obtained with \boldsymbol{h}_0^P estimated

CALIBRATED PARAMETERS ON WEDNESDAYS, $h_0^Q = ht^P$, THEN 1 WEEK UPDATED UNDER Q									
θ	2010	2011	2012	2013	2014	2015	2016	2017	2018
$\omega \ ext{std} \ ext{median}$	2.9372e - 07 $(1.5899e - 06)$ $4.2959e - 10$	8.3428e - 06 $(2.7177e - 05)$ $2.1679e - 09$	1.9798e - 09 $(4.0482e - 09)$ $1.1009e - 09$	1.4603e - 06 $(4.9823e - 06)$ $1.4234e - 09$	1.9936e - 06 $(6.7868e - 06)$ $1.3082e - 09$	4.7130e - 07 $(2.5577e - 06)$ $1.3856e - 09$	6.9594e - 07 $(3.0411e - 06)$ $7.3148e - 10$	3.5609e - 07 $(2.0030e - 06)$ $2.9299e - 10$	2.8350e - 07 $(1.8911e - 06)$ $4.3848e - 10$
$lpha \mathbf{std} \mathbf{median}$	2.6179e - 05 $(2.1706e - 05)$ $2.1958e - 05$	2.2651e - 05 $(2.2461e - 05)$ $1.9805e - 05$	2.0039e - 05 $(1.7805e - 05)$ $1.4954e - 05$	1.5773e - 05 $(1.2289e - 05)$ $1.5487e - 05$	1.3702e - 05 $(9.1911e - 06)$ $1.3321e - 05$	1.3916e - 05 $(7.4013e - 06)$ $1.2722e - 05$	1.4253e - 05 $(8.6749e - 06)$ $1.3097e - 05$	9.1931e - 06 (5.0026e - 06) 9.1517e - 06	$ \begin{array}{r} 1.4938e - 05 \\ (1.2109e - 05) \\ 1.5464e - 05 \end{array} $
$egin{array}{c} eta \ \mathbf{std} \ \mathbf{median} \end{array}$	0.4597 (0.3333) 0.5280	0.3159 (0.3216) 0.3131	0.4507 (0.3648) 0.6081	0.3427 (0.3819) 0.0023	0.1703 (0.2815) 0.0002	0.1908 (0.2349) 0.0090	0.2213 (0.3006) 0.0006	0.1635 (0.3075) 0.0001	0.2141 (0.3211) 0.0001
γ^* std median	152.9585 (151.4998) 112.7097	257.3214 (289.2871) 148.3374	173.7617 (124.0874) 137.7486	247.3587 (267.6364) 166.2098	220.0693 (206.2198) 189.4759	223.2081 (50.0536) 226.1581	256.9357 (247.3525) 201.7685	271.4808 (186.4748) 233.7905	173.2928 (126.4052) 155.2827
$egin{array}{c} h_0^Q \ ext{std} \ ext{median} \end{array}$	1.2801e - 04 $(8.8249e - 05)$ $1.1288e - 04$	1.5636e - 04 $(1.0402e - 04)$ $1.2644e - 04$	8.7217e - 05 $(4.4206e - 05)$ $8.4289e - 05$	6.0637e - 05 $(3.1147e - 05)$ $4.8973e - 05$	6.3261e - 05 $(3.9811e - 05)$ $5.4695e - 05$	$0.0001 \\ (6.6153e - 05) \\ 9.0858e - 05$	1.0037e - 04 $(7.2105e - 05)$ $8.2538e - 05$	4.1069e - 05 $(2.3358e - 05)$ $3.3382e - 05$	8.9542e - 05 $(8.1160e - 05)$ $5.4201e - 05$
persistency std median	0.8128 (0.1873) 0.8790	0.8243 (0.1406) 0.8230	0.7739 (0.2400) 0.8744	0.7081 (0.2390) 0.7076	0.6449 (0.2471) 0.6817	0.7931 (0.1014) 0.7949	0.7524 (0.1541) 0.7223	0.6538 (0.2214) 0.6810	0.5870 (0.3019) 0.6351
MSE	13.2947	28.6564	11.4011	10.2438	21.2304	21.3190	25.4105	28.6432	47.3356
median MSE	4.3699	6.8225	5.3297	6.1938	9.9733	11.3385	17.2733	25.5157	21.9448
IVRMSE	0.1870	0.2316	0.1562	0.1421	0.1646	0.1853	0.2046	0.1556	0.1809
MAPE	0.2234	0.2721	0.2458	0.2476	0.3149	0.3771	0.3977	0.3412	0.3078
\mathbf{OptLL}	158.1966	159.2829	199.0834	277.2253	269.4976	340.0760	393.7201	495.2178	463.5793