Instructor name- Shruti Bajpai

Date-03/10/2024

Sub- Algorithm Analysis and Design-1 (CSE2631)

Section-23412C3

Full Marks-10

Time- 30 minutes

CO1- To apply knowledge of computing and mathematics to algorithm, running time, Asymptotic analysis

Question 1

Consider the following three functions.

$$f_{_1}=10^n \quad f_{_2}=n^{\log n} \quad f_{_2}=n^{\sqrt{n}} \ f$$

Which one of the following options arranges the functions in the increasing order of asymptotic growth rate?

- (A) f₁, f₂, f₃
- (B) f_3, f_2, f_1 (C) f_2, f_3, f_1 (D) f_2, f_1, f_3

Question 2

Consider the following recurrence relation

$$T(n) = \begin{cases} T(n/2) + T(2n/5) + 7n & \text{if } n > 0 \\ 1 & \text{if } n = 0 \end{cases}$$

Which one of the following options is correct?

(A) $T(n) = \Theta(n \log n)$

(B) $T(n) = \Theta((\log n)^{5/2})$

(C) $T(n) = \Theta(n^{5/2})$

(D) $T(n) = \Theta(n)$

Question 3

Which one of the following correctly determines the solution of the recurrence relation with T(1) = 1?

$$T(n) = 2 T(n/2) + \log n$$

- (A) $\theta(n)$
- (B) $\theta(n \log n)$ (C) $\theta(n^2)$ (D) $\theta(\log n)$

Question 4: For given pairs of functions, determine whether f(n) = O(g(n)) or g(n) = O(f(n)).

$$f(n) = 2 (\log n)^2 \text{ and } g(n) = \log n + 1$$

Question 5: Given an array, write a pseudocode to find the largest sum contiguous subarray in O(n) complexity.