Visão Geral

MO601 - Arquitetura de Computadores II

http://www.ic.unicamp.br/~rodolfo/mo601

Rodolfo Azevedo - rodolfo@ic.unicamp.br

Como processadores evoluem?

- Novas descobertas microarquiteturais
 - Caches
 - Predição de desvio
 - Renaming, ...
- Melhorias tecnológicas
 - Velocidade relativa entre transistor e fios
- Evolução de software
 - Novos softwares (desktop, mobile, servidor, UI, ...)

Arquitetura vs Microarquitetura

- Arquitetura é o modelo
 - x86, ARM, RISC-V, Power
- Microarquitetura é a implementação
 - Intel i7 geração 11, AMD Ryzen 3, ARM Cortex-A53, RISC-V RV32IMAC, PowerPC 970
- Conjunto de instruções pode ser visto como a borda
 - o Pode facilitar ou dificultar a implementação em cada um dos lados

ISA é importante?

Instruction Set Architecture

Conjuntos de Instruções do Processador - ISA

- "The portion of the computer that is visible to the programmer or the compiler writer." Computer Architecture: A quantitative approach
- "An instruction set architecture (ISA) is an abstract model of a computer. It is also referred to as architecture or computer arquiteture." Wikipedia
- "A contract HW and SW designers agreed to obey" Minha definição de uma linha
- "Um contrato em que os projetistas de hardware e software concordaram em obedecer" - Minha definição de uma linha

Lei de Moore

- Densidade de transistores dobra a cada 2 anos
 - 90nm, 65nm, 45nm, 32nm, 22nm, 14nm, 10nm, ...
- Há um fator de $\sqrt{2}$ entre cada geração, o que significa uma diminuição do tamannho de 1 para 0,7 em cada dimensão

Classificações

- RISC vs CISC
- Pipeline vs Sem Pipeline
- Execução Em Ordem vs Fora de Ordem
- Escalar vs Superescalar
- Vetorial
- Multicore
- Multithread

RISC vs CISC

- O conjunto de instruções de um processador pode ser complexo ou simples
 - CISC: Complex Instruction Set Computer
 - RISC: Reduced Instruction Set Computer
- Esse conceito foi mudando um pouco com o tempo, hoje temos ISAs RISC com muitas instruções e com um bom grau de complexidade
- Arquiteturas RISC são baseadas em modelos load/store onde todo o acesso à memória só se dá através de instruções explicitas
- É comum arquiteturas RISC possuírem mais registradores
- É comum arquiteturas CISC possuírem instruções com mais sub-ações
- É comum arquiteturas CISC serem implementadas total ou parcialmente com microinstruções

Pipeline vs Sem Pipeline

- Divide a execução de uma instrução em fases
- Aumenta o ILP (Instruction Leval Parallelism)
- Boa relação custo-benefício
- Praticamente todos os processadores atuais

Execução Em Ordem vs Fora de Ordem

- Execução Em Ordem segue a sequência de instruções do código binário
- Execução Fora de Ordem executa instruções assim que possível
- Como um processador pode executar uma instrução antes da anterior?
 - O que é necessário?
 - O que acontece com o ILP?
 - O que acontece com a complexidade do hardware?

```
a = 5;
b = 7;
```

Escalar vs superescalar

- Processador escalar não pode executar mais de uma instrução em ao menos um de seus estágios de pipeline
 - IPC <= 1</p>
- Superescalar é capaz de executar mais de uma instrução em qualquer dos estágios de pipeline
 - IPC pode ser maior que 1
- VLTW
 - Em ordem
 - Ordem indicada no código binário
 - Latências expostas ao programador/compilador

Vetorial

- Instruções que operam sobre vetores de dados
 - Antigamente eram grandes processadores com imensos vetores
 - Hoje são normalmente extensões para operações vetoriais
- SIMD (Single Instruction, Multiple Data)
- Intel AVX-2 possui vetores de até 512 bits

Multicore

- Múltiplos cores no mesmo chip (die)
- Pode executar múltiplos programas ou múltiplas threads
 - Processo vs thread?
- Cada core é, normalmente, completamente independente
- Surge a necessidade de coerência de cache dentro do chip

Multithread

- Compartilha os recursos entre múltiplas threads no mesmo core (SMT)
- Poucos recursos precisam de replicação
 - o PC
 - Banco de Registradores
 - Alguns registradores de controle/status
- Utiliza menos recursos que um multicore
- Um processador multicore pode ser multithread

Visão multithread

Segmentos de Mercado

- Servidores
 - Múltiplos processadores, desempenho, dissipação de energia
- Desktop
 - Desempenho, barulho
- Mobile
 - Consumo de energia, desempenho
- Ultramobile
 - Consumo de energia
- Embarcado
 - Múltiplos aspectos com tradeoffs entre eles como desempenho vs consumo de energia

19

22

Pipeline superescalar

