sysuse auto

Stata tip 53: Where did my p-values go?

Maarten L. Buis Department of Social Research Methodology Vrije Universiteit Amsterdam Amsterdam, The Netherlands m.buis@fsw.vu.nl

A useful item in the Stata toolkit is the returned result. For example, after most estimation commands, parameter estimates are stored in a matrix e(b). However, these commands do not return the t statistics, p-values, and confidence intervals for those parameter estimates. The aim here is to show how to recover those statistics by using the results that are returned. Consider the following OLS regression:

(1978 Automobile Data) . regress price mpg foreign Source SS df MS Number of obs = F(2, 71) = 0.0000 180261702 90130850.8 Model Prob > F Residual 454803695 6405685.84 R-squared 0.2838 Adj R-squared = 0.2637 Total 635065396 73 8699525.97 Root MSE 2530.9 [95% Conf. Interval] price Coef. Std. Err. t P>|t| 55.69172 -183.1494 -294.1955 -5.28 0.000 -405.2417mpg 1767.292 700.158 2.52 0.014 371.2169 3163.368 foreign

10.28

0.000

9595.164

14215.67

1158.634

1 t statistic

_cons

The t statistic can be calculated from $t=(\widehat{b}-b)/\text{se}$, where \widehat{b} is the estimated parameter, b is the parameter value under the null hypothesis, and se is the standard error. The null hypothesis is usually that the parameter equals zero; thus we have $t=\widehat{b}/\text{se}$. The t statistic for one parameter (foreign) can be calculated by

```
. di _b[foreign]/_se[foreign]
2.5241336
```

11905.42

All the parameter estimates are also returned in the matrix e(b). A vector of all standard errors is a bit harder to obtain; they are the square roots of the diagonal elements of the matrix e(V). In Mata that vector can be created by typing diagonal(cholesky(diag(V))). Continuing the example, a vector of all t statistics can be computed within Mata by

```
: b = st_matrix("e(b)") `
: V = st_matrix("e(V)")
```

M. L. Buis 585

2 p-value

The p-value can be calculated from p = 2 * (1 - T(df, |t|)), where T is the cumulative distribution function of Student's t distribution, df is the residual degrees of freedom, and |t| is the absolute value of the observed t statistic. The t statistic was calculated before, and the residual degrees of freedom are returned as $e(df_x)$. The absolute value can be calculated by using the abs() function, and (1 - T(df, t)) can be calculated by using the ttail(df, t) function. The calculation is put together as follows:

```
. local t = _b[foreign]/_se[foreign]
. di 2*ttail(e(df_r),abs(`t'))
.01383634
```

Using Mata, the vector of all p-values is then

3 Confidence interval

The lower and upper bounds of the confidence interval can be calculated as $\hat{b} \pm t_{\alpha/2}$ se, where $t_{\alpha/2}$ is the critical t-value given a significance level $\alpha/2$. This critical value can be calculated by using the invttail(df, $\alpha/2$) function. The lower and upper bounds of the 95% confidence interval for the parameter of foreign are thus given by

```
. di _b[foreign] - invttail(e(df_r),0.025)*_se[foreign] 371.2169 
 . di _b[foreign] + invttail(e(df_r),0.025)*_se[foreign] 3163.3676
```

(Continued on next page)

586 Stata tip 53

The vectors of lower and upper bounds for all parameters follow suit in Mata as

4 Models reporting z statistics

If you are using an estimation command that reports z statistics instead of t statistics, the values become

- _b[foreign]/_se[foreign] for the z statistic;
- 2*normal(-abs('z')) for the p-value (where the minus sign comes from the fact normal() starts with the lower tail of the distribution, whereas ttail() starts with the upper tail);
- _b[foreign] invnormal(0.975)*_se[foreign] for the lower bound of the 95% confidence interval, and _b[foreign] + invnormal(0.975)*_se[foreign] for the upper bound (.975 is used instead of .025 for the same kind of reason).

5 Further comments

Often it is unnecessary to do these calculations. In particular, if you are interested in creating custom tables of regression-like output the estimates table command or the tools developed by Jann (2005, 2007) are much more convenient. Similarly, if the aim is to create graphs of regression output, take a good look at the tools developed by Newson (2003) before attempting to use the methods described here. This tip is for situations in which no such command does what you want.

References

Jann, B. 2005. Making regression tables from stored estimates. Stata Journal 5: 288–308.

———. 2007. Making regression tables simplified. Stata Journal 7: 227–244.

Newson, R. 2003. Confidence intervals and p-values for delivery to the end user. Stata Journal 3: 245–269.