

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS / DEPARTAMENTO DE ESTADÍSTICA

ELM2400 Métodos Estadísticos

Test Chi Cuadrado de Independencia

Profesor: Alexis Peña

Ayudante: Reinaldo González S.

Supongamos que dos variables aleatorias han sido categorizadas en k y l niveles, respectivamente. Podemos, a partir de una muestra de tamaño n, observar los datos de la siguiente manera.

Donde:

$$n_{i\cdot} = \sum_{j=1}^l n_{ij}$$
 y $n_{\cdot j} = \sum_{i=1}^k n_{ij}$

La tabla anterior se conoce como "Tabla de Contingencia". Construiremos una tabla de valores esperados bajo la hipotesis H_0 : Existe Independencia.

Sea e_{ij} : el valor esperado en la celda (i, j), O_{ij} : el valor observado en la celda (i, j). Y por ultimo p_{ij} : la probabilidad de pertenecer a la celda (i, j).

$$e_{ij} = n \cdot p_{ij} = n \cdot \frac{n_{ij}}{n}$$
Bajo H_0 $p_{ij} = \frac{n_{ij}}{n} = \underbrace{\frac{n_{i\cdot}}{n}}_{p_i} \cdot \underbrace{\frac{n_{\cdot j}}{n}}_{p_j}$
Luego $e_{ij} = \frac{n_{i\cdot}n_{\cdot j}}{n}$

En español, se lee:

$$e_{ij} = \frac{\text{Total de Fila * Total de Columnas}}{\text{Gran Total}}$$

Se Rechaza H_0 si:

$$\chi_c^2 = \sum_{j=1}^l \sum_{i=1}^k \frac{(O_{ij} - e_{ij})^2}{e_{ij}} > \chi_{1-\alpha,(k-1)(l-1)}^2$$

Ejemplo: En una muestra aleatoria de 100 universitarios se clasifico cada uno de ellos segun si habia consumido alguna vez droga o no y el promedio de notas. A partir de los datos tabulados en la tabla ¿Proporcionan estos datos evidencia suficiente como para concluir que hay una relacion entre las dos variables? Use $\alpha = 0.05$.

Promedio de Notas	Si Consume	No Consume	Total
≤ 4.0	10	29	39
> 4.0	20	41	61
Total	30	70	100

Las hipotesis son:

 H_0 : Existe independencia entre el consumo de drogas y el promedio de notas

 H_1 : Existe asociacion entre el consumo de drogas y el promedio de notas

Para testear tales hipotesis, se ocupa el estadistico:

$$\chi_c^2 = \sum_{i=1}^l \sum_{i=1}^k \frac{(O_{ij} - e_{ij})^2}{e_{ij}}$$

Donde $e_{ij}=\frac{n_i.n_{.j}}{n_{..}}$. El cual rechaza H_0 cuando $\chi^2_c>\chi^2_{1-\alpha,(I-1)(J-1)}$.

Luego, la tabla de Valores Esperados es:

Promedio de Notas	Si Consume	No Consume	Total
≤ 4.0	11.7	27.3	39
> 4.0	18.3	42.7	61
Total	30	70	100

Por lo tanto el estadistico calculado queda:

$$\chi_c^2 = \frac{(10-11,7)^2}{11,7} + \frac{(29-27,3)^2}{27,3} + \frac{(20-18,3)^2}{18,3} + \frac{(41-42,7)^2}{42,7}$$

$$= 0.578$$

Como $\chi_c^2 = 0.578 < 3.841 = \chi_{0.95,1}^2$, no se rechaza H_0 , es decir, con un 95 % de confianza el consumo de droga no influye en el promedio de notas de los estudiantes.