CS370 Operating Systems

Colorado State University Yashwant K Malaiya Fall 2016 Lecture 4

Slides based on

- Text by Silberschatz, Galvin, Gagne
- Various sources

Introduction: FAQ

- User mode vs supervisor mode
 - LC-3 Traps are System Calls that run in supervisor mode.
- Time-sharing vs multiprogramming
- CPU vs core
- CPU vs OS
- OS vs kernel
- Process vs thread (more later)

Operating-System Operations (cont.)

- Dual-mode operation allows OS to protect itself and other system comporcial supervisor mode in LC3
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as **privileged**, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - i.e. virtual machine manager (VMM) mode for guest VMs

Transition from User to Kernel Mode

- User process makes a system call
- Timer to prevent process hogging resources
 - Timer is set to interrupt the computer after some time period
 - Keep a counter that is decremented by the physical clock.
 - Operating system set the counter (privileged instruction)
 - When counter zero generate an interrupt
 - Set up before scheduling process to regain control or terminate program that exceeds allotted time

Process Management

- A process is a program in execution. It is a unit of work within the system. Program is a *passive entity*, process is an *active entity*.
- Process needs resources to accomplish its task
 - CPU, memory, I/O, files
 - Initialization data
- Process termination requires reclaim of any reusable resources
- Single-threaded process has one program counter specifying location of next instruction to execute
 - Process executes instructions sequentially, one at a time, until completion
- Multi-threaded process has one program counter per thread
- Typically system has many processes, some user, some operating system running concurrently on one or more CPUs
 - Concurrency by multiplexing the CPUs among the processes / threads

Process Management Activities

The operating system is responsible for the following activities in connection with process management:

- Creating and deleting both user and system processes
- Suspending and resuming processes
- Providing mechanisms for process synchronization
- Providing mechanisms for process communication
- Providing mechanisms for deadlock handling

Memory & Storage Management

Means main memory here

Memory Management

- To execute a program all (or part) of the instructions must be in memory
- All (or part) of the data that is needed by the program must be in memory.
- Memory management determines what is in memory and when
 - Optimizing CPU utilization and computer response to users
- Memory management activities
 - Keeping track of which parts of memory are currently being used and by whom
 - Deciding which processes (or parts thereof) and data to move into and out of memory
 - Allocating and deallocating memory space as needed

CPU scheduling

Storage Management

- OS provides uniform, logical view of information storage
 - Abstracts physical properties to logical storage unit file
 - Each medium is controlled by device (i.e., disk drive, tape drive)
 - Varying properties include access speed, capacity, datatransfer rate, access method (sequential or random)
- File-System management
 - Files are organized into directories
 - Access control on most systems to determine who can access what
 - OS activities include
 - Creating and deleting files and directories
 - Primitives to manipulate files and directories
 - Mapping files onto secondary storage
 - Backup files onto stable (non-volatile) storage media

Mass-Storage Management

- Usually disks used to store data that does not fit in main memory or data that must be kept for a "long" period of time
- The speed of computer operation hinges on disk subsystem and its algorithms
- OS activities
 - Free-space management
 - Storage allocation
 - Disk scheduling
- Some storage need not be fast
 - Tertiary storage includes optical storage, magnetic tape
 - Still must be managed by OS or applications
 - Varies between WORM (write-once, read-many-times) and RW (read-write)

Performance of Various Levels of Storage

Level	1	2	3	4	5
Name	registers	cache	main memory	solid state disk	magnetic disk
Typical size	< 1 KB	< 16MB	< 64GB	< 1 TB	< 10 TB
Implementation technology	custom memory with multiple ports CMOS	on-chip or off-chip CMOS SRAM	CMOS SRAM	flash memory	magnetic disk
Access time (ns)	0.25 - 0.5	0.5 - 25	80 - 250	25,000 - 50,000	5,000,000
Bandwidth (MB/sec)	20,000 - 100,000	5,000 - 10,000	1,000 - 5,000	500	20 - 150
Managed by	compiler	hardware	operating system	operating system	operating system
Backed by	cache	main memory	disk	disk	disk or tape

Movement between levels of storage hierarchy can be explicit or implicit

Migration of data "A" from Disk to Register

 Multitasking environments must be careful to use most recent value, no matter where it is stored in the storage hierarchy

- Multiprocessor environment must provide cache coherency in hardware such that all CPUs have the most recent value in their cache
- Distributed environment situation even more complex
 - Several copies of a datum can exist
 - Various solutions covered in Chapter 17 (will not get to it)

I/O Subsystem

- One purpose of OS is to hide peculiarities of hardware devices from the user
- I/O subsystem responsible for
 - Memory management of I/O including
 - **buffering** (storing data temporarily while it is being transferred),
 - caching (storing parts of data in faster storage for performance),
 - **spooling** (the overlapping of output of one job with input of other jobs) like printer queue
 - General device-driver interface
 - Drivers for specific hardware devices

Chap2: Operating-System Structures

Objectives:

- services OS provides to users, processes, and other systems
- structuring an operating system
- how operating systems are designed and customized and how they boot

OS Services for the User 1/3

- Operating systems provide an environment for execution of programs and services to programs and users
 - User interface Almost all operating systems have a user interface (UI).
 - Varies between Command-Line (CLI), Graphics User Interface (GUI), Batch
 - Program execution The system must be able to load a program into memory and to run that program, end execution, either normally or abnormally (indicating error)
 - I/O operations A running program may require I/O, which may involve a file or an I/O device

OS services for the User 2/3 (Cont.)

- File-system operations read and write files and directories, create and delete them, search them, list file Information, permission management.
- Communications Processes may exchange information, on the same computer or between computers over a network
 - via shared memory or through message passing (packets moved by the OS)
- Error detection OS needs to be constantly aware of possible errors
 - May occur in the CPU and memory hardware, in I/O devices, in user program
 - For each type of error, OS should take the appropriate action to ensure correct and consistent computing

OS services for system 3/3 (Cont.)

- OS functions for ensuring the efficient resource sharing
 - Resource allocation When multiple users or multiple jobs running concurrently, resources must be allocated to each of them
 - Many types of resources CPU cycles, main memory, file storage, I/O devices.
 - Accounting To keep track of which users use how much and what kinds of computer resources
 - Protection and security concurrent processes should not interfere with each other
 - Protection involves ensuring that all access to system resources is controlled
 - Security of the system from outsiders requires user authentication, extends to defending external I/O devices from invalid access attempts

A View of Operating System Services

User Operating System Interface - CLI

CLI or command interpreter allows direct command entry

- Sometimes implemented in kernel, sometimes by systems program
- Sometimes multiple flavors implemented shells
- Primarily fetches a command from user and executes it
- Sometimes commands built-in, sometimes just names of programs
 - If the latter, adding new features doesn't require shell modification

Ex:

Windows: command

Linux: bash

Shell Command Interpreter

```
Last login: Sat Aug 27 22:09:08 on ttys000
Ys-MacBook-Air:~ ymalaiya$ echo $0
-bash
Ys-MacBook-Air:∼ ymalaiya$ pwd
/Users/ymalaiya
Ys-MacBook-Air:~ ymalaiya$ ls
                                                              android-sdks
270
               Desktop
                               Downloads
                                               Music
Applications
               Dialcom
                               Library
                                              Pictures
DLID Books
               Documents
                               Movies
                                               Public
Ys-MacBook-Air:∼ ymalaiya$ w
22:14 up 1:12, 2 users, load averages: 1.15 1.25 1.27
USER
                 FROM
         TTY
                                  LOGIN@ IDLE WHAT
ymalaiva console
                                  21:02
                                           1:11 -
ymalaiya s000
                                  22:14
Ys-MacBook-Air:~ ymalaiya$ ps
  PID TTY
                   TIME CMD
  594 ttys000 0:00.02 -bash
Ys-MacBook-Air:∼ ymalaiya$ iostat 5
         disk0
                             load average
                     cpu
    KB/t tps MB/s us sy id
                                   5m
                            1m
   36.76 17 0.60
                    5 3 92 1.42 1.31 1.28
^C
Ys-MacBook-Air:∼ ymalaiya$ ping colostate.edu
PING colostate.edu (129.82.103.93): 56 data bytes
64 bytes from 129.82.103.93: icmp seq=0 ttl=116 time=46.069 ms
64 bytes from 129.82.103.93: icmp_seq=1 ttl=116 time=41.327 ms
64 bytes from 129.82.103.93: icmp_seq=2 ttl=116 time=58.673 ms
64 bytes from 129.82.103.93: icmp_seq=3 ttl=116 time=44.750 ms
64 bytes from 129.82.103.93: icmp_seq=4 ttl=116 time=48.336 ms
^C
--- colostate.edu ping statistics ---
5 packets transmitted, 5 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 41.327/47.831/58.673/5.877 ms
Ys-MacBook-Air:~ ymalaiya$ ■
```

Common bash commands 1/2

pwd	Working directory		
ls -l	Files in the working dir –ling format		
cd dirpath	Change to dirpath dir		
~username /	This dir, upper, usename's home, root		
cp f1 d1	Copy f1 to dir d1		
mv f1 d1	Move f1 to d1		
rm f1 f2	Remove f1, f2		
mkdir d1	Create directory d1		
which x1	Path for executable file x1		
man cm help cm	Manual entry or help with command cm		
ls > f.txt	Redirect command std, output to f.txt, >> to append		
sort < list.txt	Std input from file		
Is –I less	Pipe first command into second		

Common bash commands 2/2

Echo \$((expression))	Evaluate expression			
echo \$PATH	Show PATH			
Echo \$SHELL	Show default shell			
chmod 755 dir	Change dir permissions to 755			
jobs ps	List jobs or processes			
kill id	Kill job or process with id			
cmd &	Start job in background			
fg id	Bring job id to foreground			
ctrl-z followed by bg or fg	Suspend job and put it in background			
w who	Who is logged on			
ping ipadd	Get a ping from ipadd			
ssh user@host	Connect to host as user			
grep pattern files	Search for pattern in files			
Ctrl-c	Halt current command			

User Operating System Interface - GUI

- User-friendly desktop metaphor interface
 - Usually mouse, keyboard, and monitor
 - lcons represent files, programs, actions, etc
 - Various mouse buttons over objects in the interface cause various actions (provide information, options, execute function, open directory (known as a folder)
 - Invented at Xerox PARC
- Most systems now include both CLI and GUI interfaces
 - Microsoft Windows is GUI with CLI "command" shell
 - Apple Mac OS X is "Aqua" GUI interface with UNIX kernel underneath and shells available
 - Unix and Linux have CLI with optional GUI interfaces (CDE, KDE, GNOME)

Touchscreen Interfaces

- Touchscreen devices require new interfaces
 - Mouse not possible or not desired
 - Actions and selection based on gestures
 - Virtual keyboard for text entry
- Voice commands.

The Mac OS X GUI

System Calls

- Programming interface to the services provided by the OS
- Typically written in a high-level language (C or C++)
- Mostly accessed by programs via a high-level Application Programming Interface (API) rather than direct system call use
- Three most common APIs are Win32 API for Windows, POSIX API for POSIX-based systems (including virtually all versions of UNIX, Linux, and Mac OS X), and Java API for the Java virtual machine (JVM)

Note that the system-call names used throughout our text are generic

Example of System Calls

 System call sequence to copy the contents of one file to another file

