

Instituto Superior de Engenharia de Lisboa

DEPARTAMENTO DE ENGENHARIA DE ELETRÓNICA E DE TELECOMUNICAÇÕES E COMPUTADORES

Licenciatura em Engenharia Informática e Multimédia

Processamento de Imagem e Visão

1º Semestre 2023/2024

Exame de Época Normal – 9 de janeiro de 2024 – Duração: 2H30M

Justifique todas as respostas dadas.

As soluções apresentadas carecem do desenvolvimento e justificações necessárias para a resposta completa.

 Descreva as características do olho humano que contribuem para que o detalhe da visão humana não seja uniforme em toda a retina.

Solução: Desenvolver as características dos fotorreceptores do olho humano e a sua distribuição ao longo da retina.

2. Descreva os motivos porque os aparelhos de digitalização (*scanners*) têm um sensor linha e não um sensor bidimensional. (1)

Solução: Desenvolver a análise em relação ao custo do aparelho e os aspetos físicos (movimento longitudinal do sensor com aquisição na dimensão transversal).

3. As imagens médicas são normalmente adquiridas com uma grande resolução e 1024 níveis de cinzento. Considerando uma resolução de 4000 *X* 4000, qual o espaço em disco (MBytes) necessário para armazenar a imagem, não considerando compressão nem a meta-informação (cabeçalho)? (1)

Solução: 20MBytes (megabyte = 1000^2) ou 19,07MiB (mebibyte = 1024^2)

- 4. Considere que os ângulos do campo de visão de uma câmara são $\phi_H=20^\circ$ (altura) e $\phi_L=27^\circ$ (largura).
 - a. Determine a altura e a largura da região que a câmara observa a uma distância de 20 metros. (1)

Solução: 7,05m (altura) X 9,60m (largura).

b. Se a distância focal for de 10 mm, qual a dimensão do sensor?

Solução: 3,53mm (altura) X 4,80mm (largura)

(1)

5. Considere que dispõe da seguinte imagem em níveis de cinzento, representados no intervalo [0,1]:

0	0,125	0,25	0,375
0,125	0,25	0,375	0,5
0,25	0,375	0,5	0,75
0,375	0,5	0,75	1

a. Determine a imagem de saída se aplicar a seguinte transformação de níveis de cinzento:

$$f(x) = x^2 \tag{0.5}$$

Solução:

0	0,016	0,063	0,141
0,016	0,063	0,141	0,25
0,063	0,141	0,25	0,563
0,141	0,25	0,563	1

b. Diga que tipo de operação aplicou e qual o seu objetivo.

(1)

Solução: Desenvolver a alteração de contraste realizada pela correção gama.

6. Dadas as seguintes imagens binárias, descreva o operador morfológico (tipo de operação e elemento estruturante) que se aplicou à imagem 1 para se obter a imagem 2. (1)

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	1	1	1	1	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Imagem 1

Imagem 2

Solução: A operação de Dilatação com elemento estruturante:

Em que a célula de referência se encontra assinalada a sombreado.

7. Considere a seguinte imagem binária de resolução 5x5:

0	1	0	1	0
1	1	0	1	0
0	0	0	1	0
1	1	1	0	0
0	0	0	0	1

a. Realize a etiquetação das regiões conexas e indique o seu número, utilizando vizinhança N_4 .

Apresente os passos seguidos (formação da imagem de etiquetas e tabela de correspondências, se necessário).

(1)

Solução: Existem 4 regiões conexas

Tabela de Correspondências

1	2	3	4	5	
0	0	1	0	0	

1º passo

- passe						
0	1	0	2	0		
3	1	0	2	0		
0	0	0	2	0		
4	4	4	0	0		
0	0	0	0	5		

Após aplicação das correspondências

0	1	0	2	0
1	1	0	2	0
0	0	0	2	0
4	4	4	0	0
0	0	0	0	5

Após Renumeração (opcional)

0	1	0	2	0
1	1	0	2	0
0	0	0	2	0
3	3	3	0	0
0	0	0	0	4

b. Sem voltar a realizar a etiquetação, diga, justificando, se a vizinhança utilizada fosse N_8 obteria o mesmo número de regiões conexas. (0,5)

Solução: Não seria obtido o mesmo número de regiões conexas, o número obtido com N₈ seria 3 regiões conexas

0	1	0	1	0
1	1	0	1	0
0	0	0	1	0
1	1	1	0	0
0	0	0	0	1

As duas células a sombreado encontram-se na vizinhança N₈ uma da outra, pois os vizinhos nas diagonais passam a ser considerados. Assim o número de regiões conexas passa a ser inferior.

8. Considere que dispõe dos seguintes padrões de treino e teste, respetivamente:

$z_i = \begin{bmatrix} x_i \end{bmatrix}$	0,7	1	1,7	2,5	3,2	3
$z_i = \begin{bmatrix} y_i \end{bmatrix}$		2,1	1,2	3,7	3	1
ω_{i}	1	1	1	2	2	2

Padrões de Treino

$q_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$	1,2	2	1,6	3,6
	0,9	2	4	2,2
ω_i	1	1	2	2

Padrões de Teste

onde ω_i indica a classe verdadeira.

a. Proceda à classificação dos padrões de teste utilizando o algoritmo da distância ao centróide, determinados com base no conjunto de treino.

Solução:

$\begin{bmatrix} x_i \end{bmatrix}$	1,2	2	1,6	3,6
$q_i = \begin{bmatrix} i \\ y_i \end{bmatrix}$	0,9	2	4	2,2
ω_i	1	1	2	2
Classe estimada $\widehat{\omega}_i$	1	1	2	2

b. Determine a probabilidade de erro do classificador.

(0,5)

Solução: $P_e = 0$

9. Dada a imagem a cores representada pelos seguintes planos de cor:

200	50
70	90

70 | 90 | 50 | 60 Plano R Plano G

20	100			
220	80			
Plano B				

a. Calcule componentes de luminância e crominância da imagem.

(1)

Solução: Utilizar, por exemplo, o espaço de cor "diagrama cromático r, g" (RG Normalizado)

100

120

Luminância:
$$I = \frac{R+G+B}{3}$$

107	90
113	77

luminância

Cuancin ân aia.	R	. ~		\boldsymbol{G}
Crominância: r	$={R+G+B}$	e <i>g</i>	=	R+G+B

r

0.31	0.44
0.15	0.26

g

b. Considerando a seguinte paleta de cores:

Índice	R	G	В
1	70	50	220
2	115	90	70

Calcule a matriz de índices da imagem anterior, segundo o critério de distância ao vizinho mais próximo. (1)

Solução: Matriz de índices

2	2
1	2

10. Descreva as vantagens e desvantagens entre os métodos de deteção de movimento baseado na diferença entre imagens consecutivas e baseado na diferença para uma imagem de fundo. (1,5)

Solução: Comparar os dois métodos em relação, por exemplo, ás seguintes características: simplicidade; necessidade de estimar o modelo de fundo e sua adaptação; armazenamento; identificação de movimentos prolongados, nomeadamente, detecção quando os objetos ficam imóveis.

11. Considere uma sequência de vídeo, da qual se retiraram duas imagens consecutivas, representadas nas seguintes figuras:

0	1	1	0	0	0	0
0	2	3	5	3	1	1
1	3	5	6	4	2	2
2	5	6	7	6	5	3
2	5	7	7	7	6	3
2	5	6	7	6	5	2
1	2	4	5	5	5	2

Instante t

0	1	1	1	1	1	0
1	2	4	5	6	1	1
1	4	5	7	6	5	2
1	2	6	6	5	2	1
1	2	5	6	3	2	1
1	2	2	3	3	2	1
0	1	2	2	2	1	0

Instante t+1

(1)

a. Determine os histogramas de cada uma das imagens.

Solução: $H_t = [6,6,9,5,2,10,6,5]$ e $H_{t+1} = [4,17,12,3,2,5,5,1]$

b. Considerando a métrica L1 e um limiar de 20, diga justificando, se existe mudança de cena entre as imagens anteriores.

Solução: Como $D_{L1}(H_t, H_{t+1}) = 28 > 20$ considera-se que há mudança de cena entre as imagens.

- 12. Considere uma câmara representada pelo modelo de projeção de perspetiva simples, que se conhecem os seguintes parâmetros intrínsecos, $k_u=k_v=0.25$, que o eixo ótico intersecta o plano da imagem no pixel de coluna 320 e linha 240 e que a lente tem uma distância focal de 8mm.
 - a. Determine qual o pixel que corresponde ao ponto 3D dado por $[1000, 500, 200]^T$ (mm), representado no referencial da câmara $([X^C, Y^C, Z^C]^T)$. (1)

Solução:

$$q = C \times Q^{C} = \begin{bmatrix} 0.25 \times 8 & 0 & 320 \\ 0 & -0.25 \times 8 & 240 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1000 \\ 500 \\ 200 \end{bmatrix} = \begin{bmatrix} 66000 \\ 47000 \\ 200 \end{bmatrix}$$

Onde C define a matriz dos parâmetros intrínsecos, Q^C define o ponto 3D nas coordenadas da câmara e q a sua projeção no plano de imagem em coordenadas homogéneas. As coordenadas do pixel em coordenadas cartesianas são dadas por:

$$\left(u = \frac{66000}{200} = 330, v = \frac{47000}{200} = 235\right)$$

 b. Considerando que o referencial do mundo coincide com o referencial da câmara, determine a sua matriz de projeção.

Solução:

Matriz de projeção:
$$P = C(R|t) = \begin{bmatrix} 0.25 \times 8 & 0 & 320 \\ 0 & -0.25 \times 8 & 240 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

13. Suponha que pretende desenvolver um sistema automático para deteção de semáforos e reconhecimento do seu estado (vermelho, amarelo ou verde) a colocar num veículo automóvel. Considere que a seguinte figura é um exemplo típico da imagem a processar pela aplicação.

Descreva os principais passos e algoritmos que considera importante para a realização do referido sistema. (2)

Solução:

Desenvolver uma possível sequência de operações:

- 1. Deteção de contornos, por exemplo, algoritmo de Canny;
- 2. Etiquetação;
- 3. Extração da área e do retângulo delimitador (bounding-box) de cada região conexa;
- 4. Com base na área e na relação entre a largura e altura do retângulo, detetar os possíveis semáforos;
- 5. Validar se é semáforo (alternativas):
 - Opção A: Binarizar a janela (um pouco maior) correspondente ao semáforo na imagem original e verificar se a região detetada é um polígono com 4 lados;
 - Opção B: Aplicar a transformada de Hough à janela correspondente ao semáforo na imagem original e verificar se existe, pelo menos, um círculo;
- 6. Caso seja semáforo, detetar a cor (alternativas):
 - Opção A: Aplicar a transformada de Hough à janela correspondente ao semáforo e escolher o melhor círculo (mais votado); na região do círculo calcular a cor média da componente de crominância num formato adequado, por exemplo, HSI, e classificar a cor com base na distância ao centroide para as cores padrão dos semáforos.
 - Opção B: Dividir a janela do semáforo em 3 setores (superior vermelho, médio amarelo e inferior verde, para o caso vertical) e verificar qual o setor mais intenso ou com maior saturação de cor.