CS 3313 Foundations of Computing:

Regular Expressions and Regular Languages

http://gw-cs3313-2021.github.io

© slides based on material from Peter Linz book, Hopcroft & Ullman, Narahari

1

Review...where are we?

- Review of languages, proof methods
- Model for Deterministic finite state machines Deterministic Finite Automata (DFA)
- Add non-determinism to a DFA
 - Machine has more than one choice of moves in a current configuration
 - From current state, read input and can go to one of several states
 - Machine can change states (make a move) on empty string
 - Without reading any input, it can change states
 - Non-determinism = examine all parallel paths at once
 - Machine accepts if at least one sequence/choice of moves leads to a final state
- Question: Can DFA simulate NFA? i.e, are they equivalent in power?Proof (simulation) next class

Next...Formal methods to define languages

- Can we provide formal methods to define a language
 - Instead of defining it as accepted by an automaton?
- Grammars is one option
- For regular languages, we have a simpler formalism:

Regular Expressions

- Applications of Regular Expressions:
 - Substring search
 - Did you know perl scripts for DNA sequence matching was a big thing
 - Knowing perl = well paid intern at BioInfo labs a decade ago
 - Unix Commands use an extended RE notation
 - Web search (Amazon's module): integrating want ads
 - Lexical analysis first job of compiler is to break a program into tokens
 - Substrings that together represent a unit

3

RE's: Introduction

- ◆ Regular expressions describe languages by an algebra.
- ◆ They describe exactly the regular languages.
- ◆ If E is a regular expression, then L(E) is the language it defines.
- ◆ We'll describe RE's and their languages recursively.

Recall Definitions and Notations:

- Alphabet: set of symbols, i.e. $\Sigma = \{a, b\}$
- String: finite sequence of symbols from Σ
 - Empty string: denoted λ or ε
- Operations on strings:Concatenation, Reverse, ...
- Length of a string: number of symbols
- Σ* = set of all strings formed by concatenating zero or more symbols in Σ
- Σ^+ = set of all non-empty strings formed by concatenating symbols in Σ , i.e., Σ^+ = Σ^* { λ }
- A formal language L is any subset of Σ*
- Convention: we use w,x,y to denote strings and a,b,c to denote symbols from the alphabet

5

Operations on Languages

- ◆ RE's use three operations: *union, concatenation,* and *Kleene star*.
- ◆ The union of languages is the usual thing, since languages are sets.
- \bullet Example: $\{01,111,10\} \cup \{00,01\} = \{01,111,10,00\}.$

Concatenation and Kleene star

- The *concatenation* of languages L and M is denoted LM.
- It contains every string wx such that w is in L and x is in M.
 - Example: $\{01,111,10\}.\{00,01\} = \{0100,0101,11100,11101,1000,1001\}.$
- ◆ If L is a language, then L*, the Kleene star or just "star," is the set of strings formed by concatenating zero or more strings from L, in any order.
- - \bullet Example: $\{0,10\}$ * = $\{\lambda, 0, 10, 00, 010, 100, 1010,...\}$

-

7

Regular Expressions

- Regular Expressions provide a concise way to describe some languages
- Regular Expressions are defined recursively. For any alphabet:
 - the empty set, the empty string, or any symbol from the alphabet are *primitive regular expressions*
 - the union (+), concatenation (·), and star closure (*) of regular expressions is also a regular expression
 - any string resulting from a finite number of these operations on primitive regular expressions is also a regular expression

Definition: Languages & Regular Expressions

- A regular expression (RE) r denotes a language L(r)
- Basis: Assuming that r_1 and r_2 are regular expressions:
 - 1. The regular expression \emptyset denotes the empty set
 - 2. The regular expression λ denotes the set $\{\lambda\}$
 - 3. For any a in the alphabet, the regular expression a denotes the set { a }
 - Inductive step: if r_1 and r_2 are regular expressions, denoting languages $L(r_1)$ and $L(r_2)$ respectively, then
 - 1. $r_1 + r_2$ is a RE denoting the language $L(r_1) \cup L(r_2)$
 - 2. $\mathbf{r}_1 \cdot \mathbf{r}_2$ is a RE denoting the language $L(r_1)$. $L(r_2)$
 - 3. (r_1) is a RE denoting the language $L(r_1)$
 - 4. r_1 * is a RE denoting the language $(L(r_1))$ *

Is this form of defining expressions ringing a bell with DB stuff?

9

Determining the Language Denoted by a Regular Expression

- By combining regular expressions using the given rules, arbitrarily complex expressions can be constructed
 - The concatenation symbol (·) is usually omitted
- we have the following precedence rules:
 - star closure precedes concatenation
 - concatenation precedes union
- Parentheses are used to override the normal precedence of operators

Two regular expressions are equivalent if they denote the same language. Consider, for example, $(a + b)^*$ and $(a^*b^*)^*$

Algebraic Laws for RE's

- Union and concatenation behave sort of like addition and multiplication.
 - + is commutative and associative; concatenation is associative.

$$r_1 \cdot (r_1 + r_2) = (r_2 + r_1)$$
 $r_1 \cdot (r_2 \cdot r_3) = (r_1 \cdot r_2) \cdot r_3$

■ Concatenation distributes over +

$$r_1.(r_2+r_3)=(r_1r_2+r_1r_3)$$

- Exception: Concatenation is not commutative.
- Ø is the identity for +.
 - $\blacksquare R + \emptyset = R$
- λ (ε) is the identity for concatenation.
- Ø is the annihilator for concatenation.
 - $\emptyset R = R\emptyset = \emptyset$

11

11

Examples: RE's

- \bullet L(01) = {01}.
- $L(01+0) = \{01, 0\}.$
- \bullet **L(01. 0)** = {01}.{0}= {010}
- \bullet L(0(1+0)) = {01, 00}.
 - ▶ Note order of precedence of operators.
- $L(0^*) = \{\lambda, 0, 00, 000, \dots \}.$
- $lack L((01)^*) = \{\lambda, 01, 0101, 010101,\}$

Examples.....

- $(a+b)^* = \{a,b\}^* =$
- (ab)* =
- a (bb)* =
- $L = \{a^i b^j\} =$
- R.Exp for binary strings containing at least one pair of consecutive
 0's =
- Binary strings of odd length =
- $L = \{a^i b^j \mid (a) \text{ i is even and } j \text{ is odd or (b) i is odd and } j \text{ is even },$ $i,j >=0\}$

13

Sample Regular Expressions and Associated Languages

Regular Expression	Language	
(ab)*	{ (ab) ⁿ , n ≥ 0 }	
a + b	{ a, b }	
(a + b)*	{ a, b }* (in other words, any string formed with a and b)	
a(bb)*	{ a, abb, abbbb, abbbbbb, }	
a*(a + b)	{ a, aa, aaa,, b, ab, aab, }	
(aa)*(bb)*b	{ b, aab, aaaab,, bbb, aabbb, }	
(0 + 1)*00(0 + 1)*	Binary strings containing at least one pair of consecutive zeros	

Two regular expressions are equivalent if they denote the same language. Consider, for example, $(a + b)^*$ and (a*b*)*

Exercises:

- 1. Write a regular expression for the language $L=\{w \mid w \text{ contains the substring 101 and } w \text{ is a string over alphabet } \{0,1\} \}$
- 2. Write a regular expression for the language $L=\{w\mid w\in\{0,1,2\}^* \ and\ (a)\ w$ contains two consecutive 0's (and can be more than one such pair) or (b) w=xy and x contains substring 101 and y ends with two 2's. $\}$
- 3. Describe the language denoted by regular expression $((0+10)*(\lambda +1))$

15

UNIX Regular Expressions

- UNIX, from the beginning, used regular expressions in many places, including the "grep" command.
 - grep = "Global (search for a) Regular Expression and Print."
 - Check out grep if you have not used it before.... man grep
- Most UNIX commands use an extended RE notation that still defines only regular languages.
- Did you know Python supports Reg.Ex. Search?
 - import re

UNIX RE Notation

- $[a_1a_2...a_n]$ is shorthand for $a_1+a_2+...+a_n$.
- Ranges indicated by first-dash-last and brackets.
 - Order is ASCII.
 - Examples: [a-z] = "any lower-case letter," [a-zA-Z] = "any letter."
- Dot = "any character."
- | is used for union instead of +.
- But + has a meaning: "one or more of."
 - E+ = EE*.
 - Example: [a-z]+ = "one or more lower-case letters.
- ? = "zero or one of."
 - E? = $E + \lambda$.
 - Example: [ab]? = "an optional a or b."

17

17

Lexical Analysis

- The first thing a compiler does is break a program into tokens = substrings that together represent a unit.
 - Examples: identifiers, reserved words like "if," meaningful single characters like ";" or "+", multicharacter operators like "<=".
- Using a tool like Lex or Flex, one can write a regular expression for each different kind of token.
- Example: in UNIX notation, identifiers = [A-Za-z][A-Za-z0-9]*.
- Each RE has an associated action.
 - Example: return a code for the token found
 - How? Will get clearer when we cover Reg.Expr. To DFA!

Summary

- ◆ Next is NFA = DFA ? Proog ? Constructive proof again!
 - ◆ This proof will not only provide an algorithm to generate DFA from a RE, but shows that the three formalisms (DFA, NFA, Reg.Expr) are equivalent and define Regular Languages
- ◆ Then what ?...Question: what kinds of languages & properties are regular languages
 - ◆ what kinds of language properties can be defined using Res
 - ◆ What kinds of "problems" can be solved using DFAs
- ◆ **Leads to**: Properties of Regular languages
 - ◆ Closure properties what happens when we perform set operations?
 - ◆ Decision properties can we automate checking some properties?
 - ◆ Non-regular lang how do we prove that a language is not regular

19

19

Regular Expressions and Regular Languages

- Theorem: For any regular expression r, there is a nondeterministic finite automaton M that accepts the language denoted by r, i.e., L(M) = L(r)
- regular expressions are associated precisely with regular languages
- A constructive proof provides a systematic procedure for constructing a nfa that accepts the language denoted by any regular expression

Recall design of NFAs with λ -moves

- What does this NFA accept, in terms of languages accepted by M1 and M2?
 - Notation: M1 is M(r1) and M2 is M(r2)?

21

Recall Design of NFAs with E-moves

What does this NFA accept in terms of languages accepted by L(M1) and L(M2)?

Next: Equivalence of Regular Expressions and Finite Automata

- Constructive proof to show that a language is accepted by a DFA
 M if and only if it is represented by a Regular expression
- Given a RE r, construct a finite automaton that accepts L(r)
 - Construct = design algorithm that given RE as input will generate a finite automaton M
 - Why is a constructive proof "interesting"?
- Given a DFA M, construct a RE to represent L(M)

23

Equivalence of RE's and Finite Automata

- We need to show that for every RE, there is a finite automaton that accepts the same language.
 - \circ Pick the most powerful automaton type: the $\epsilon\text{-NFA}$.
- And we need to show that for every finite automaton, there is a RE defining its language.
 - o Pick the most restrictive type: the DFA.

Converting a RE to an

- ◆ Proof is an induction on the number of operators (+, concatenation, *) in the RE.
- ◆ We always construct an automaton of a special form:

25

RE to λ-NFA : Basis

- ◆ Symbol **a**:
- \blacklozenge ϵ (or λ):

♦ Ø:

26

Inductive Step

- Ind. Hypothesis: Assume statement holds for any expressions E₁,E₂ with *n* operators
 - There is a NFA M₁ such that L(M₁) = L(E₁) and an NFA M₂ such that L(M₂) = L(E₂)
 - NFA's have exactly one final state no transitions out of final, and no into start state
 - M_1 has start state q_I and final state f_I
 - M_2 has start state q_2 and final state f_2
- Prove we can construct NFA M that accepts:
 - $E_1 + E_2$
 - E_1 . E_2
 - (E₁)*

27

Recall Definition of acceptance

- A string w is accepted by a NFA M if and only if $\delta(q_0, w) \in F$
- In terms of NFA M₁ such that L(M₁) = L(E₁) and

```
an NFA M_2 such that L(M_2) = L(E_2):
```

 M_1 : function $\boldsymbol{\delta}_l$, start state q_l and one final state f_l

 M_2 : function $\boldsymbol{\delta}_2$, start state q_2 and one final state f_2

- $x \in L(E_2)$ if and only if $\delta_1(q_1, x) = \{f_1\}$
- $y \in L(E_2)$ if and only if $\delta_2(q_2, y) = \{f_2\}$

31

RE to NFA: Example

- The constructive proof results in a procedure to generate an NFA from a regular expression
 - Not a very efficient NFA.....but other algorithms can be applied to reduce the number of states
- Example: (ab)* + (ba)*

DFA/NFA to Regular Expression

- Find the labels of the paths from start state to each final state
 - Concatenate labels on the path
 - If we have two choices of paths with labels w_{l} and w_{2} then "or" the paths to get $w_{l}+w_{2}$
 - If there is a cycle, with path labelled w, then w^*

33

Example: Automaton to Reg. Expression

- Find expression for all paths from start state to a final state
- Example: paths from q_0 to q_0
 - q_0 to q_1 to $q_0 = (ab)$
 - q_0 to q_1 to q_2 to $q_0 = (aba)$
 - But: can repeat cycle from q_0 to q_0
 - q_0 to itself on empty string λ
- Therefore: Reg. Exp. = (ab + aba)*

Algorithm to generate Regular Expression from Finite Automata

- Given a DFA M, construct a RE to represent L(M)
 - Constructive proof that can be implemented as an algorithm
 - What we present here is different from the textbook
- key idea: formulate the problem as a graph theoretic problem and develop dynamic programming solution
 - Dynamic programming is a very important and often used technique to solve problems

35

DFA-to-RE Algorithm

- A strange sort of induction.
- States of the DFA are named 1,2,...,n.
- Induction is on k, the maximum state number we are allowed to traverse along a path.
- Derive set of strings (reg. exp.) that go from state q_i to q_j without passing through any state numbered k or greater
- Similar to the Floyd Warshall algorithm to computer all pairs shortest paths in a graph
 - Did you see this before ?.....VERY useful (and often used) algorithm!

Key Ideas for DFA-to-RE Algorithm

- DFA M= $(Q, \Sigma, \delta, q_1, F)$
- *N* states: $(q_1, q_2, ..., q_n)$
- Start state: *q*₁
- Consider path from state q_i to q_j that pass through states numbered at most k -- call these k-paths
 - Denote the set of strings that take DFA from q_i to q_j going through states at most k as R(i,j,k)
 - Derive regular expression for this set of strings
 - ullet When i=I and q_j is a final state, this represents the set of strings accepted by the DFA

37

k-Paths

- ◆ A *k-path* is a path through the graph of the DFA that goes through no state numbered higher than k.
- ◆ Endpoints are not restricted; they can be any state.
- ◆ *n-paths* are unrestricted can go through any state
- ◆ RE is the union of RE's for the *n-paths* from the start state to each final state.

Example: k-Paths

0-paths from 2 to 3: RE for labels = $\mathbf{0}$.

1-paths from 2 to 3: RE for labels = $\mathbf{0}+\mathbf{11}$.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??

39

39

DFA-to-RE

- ◆ Basis: k = 0; only arcs or a node by itself.
- ◆ Induction: construct RE's for paths allowed to pass through state k from paths allowed only up to k-1.

DFA to RE Constructive Proof:

k-Path Induction

- Let $R_{ij}^{\ k}$ be the regular expression for the set of labels of $\emph{k-paths}$ from state i to state j.
- ◆ Basis: k=0. $R_{ij}^{\ 0} = \text{sum of labels of arc from } i \text{ to } j$.

 - **D** But add λ if i=j.

•
$$R_{12}^0 = \mathbf{0}$$
.

 $R_{11}{}^0 = \emptyset + \lambda = \lambda.$

Notice algebraic law: Ø plus/union anything = that thing.

41

41

DFA to RE Constructive Proof: k-Path Induction

- Let R_{ij}^k (r.e. for *k-paths* from state i to state j).
- ◆ Inductive case: A *k-path* from *i* to *j* either: (1) Never goes through state *k*, or (2) Goes through k one or more times.

k-Path Inductive Case

- ◆ A k-path from i to j either:
 - 1. Never goes through state k, or
 - 2. Goes through k one or more times.

43

Algorithm:

k=0

■ For each $I \le i,j \le n$, compute compute the table for R(i,j) for k = 0,1,2...n where R(i,j) contains the regular expression for R_{ij}^k (or to visualize as a table, R(i,j,k))

	λ	0	1	
2	1	λ	0	
3	0	1	λ	
	1	2	3	
k=1 1	λ	0	1	
2	1	λ+10	0+11	
3	0	1+00	λ+01	

Example: k=1

- $R_{12}^1 = R_{12}^0 + R_{11}^0 (R_{11}^0)^* R_{12}^0$
 - $0 + \lambda (\lambda)^* 0 = 0$
- $R_{22}^1 = R_{22}^0 + R_{21}^0 (R_{11}^0)^* R_{12}^0$
 - $\lambda + 1(\lambda)^*0 = \lambda + 10$
- $R_{23}^1 = R_{23}^0 + R_{21}^0 (R_{11}^0)^* R_{13}^0$
 - $0 + 1 (\lambda)^* 1 = (0+11)$

45

45

Example: k=2

- $R_{12}^2 = R_{12}^1 + R_{12}^1 (R_{22}^1) R_{22}^1$
 - $0 + 0(\lambda + 10)^* (\lambda + 10) = 0 + 0 (10)^*$
- $R_{31}^2 = R_{31}^1 + R_{32}^1 (R_{22}^1) R_{21}^1$
- $R_{32}^2 = R_{32}^1 + R_{32}^1 (R_{22}^1) R_{22}^*$
- $R_{23}^3 = R_{23}^2 + R_{23}^2 (R_{33}^2) R_{33}^2$

1
(1) 0 (2)
$\left(\begin{array}{cc} 0 & 0 \end{array} \right)$
1 1
3

	1	2	3		
1	λ +(0(λ+10)*1	$0+(\lambda+10)(10)^*(\lambda+10) = 0+0(10)^* = 0 (10)^*$	1+(0(λ+10)*(0+11)		
2	1+(λ+10)(λ+10)*1= 1+(10)*1	$(\lambda+10)+$ $(\lambda+10)(\lambda+10)^*(\lambda+10)=$ $(\lambda+10)^*=(10)^*$	$(0+11)+ (\lambda+10)(\lambda+10)^*(0+11) = (0+11)+(10)^*(0+11)$		
3	0 + (1+00)(λ+10)*(1)= 0 + (1+00)(10)*(1)	(1+00)+ ((1+00).(λ+10)*(λ+10)) = (1+00) (10)*	(λ+01) + ((1 +00) (λ+10)*(0+11))		

DFA to RE: Algorithm - Final Step

- The RE with the same language as the DFA is the sum (union) of $R_{1i}{}^n$, where:
 - 1. n is the number of states; i.e., paths are unconstrained.
 - 2. $1(q_1)$ is the start state.
 - 3. j is one of the final states.
 - In terms of an algorithm,

$$R_{ij}^{k}$$
 is $R(i,j,k)$ with $1 \le i, j \le n$ and $0 \le k \le n$.

• Implies O(n³) algorithm

47

47

Summary

- ◆ Next is NFA = DFA ? Proof ? Constructive proof again!
 - ◆ This proof will not only provide an algorithm to generate DFA from a RE, but shows that the three formalisms (DFA, NFA, Reg.Expr) are equivalent and define Regular Languages
- ◆ Then what ?...Question: what kinds of languages & properties are regular languages
 - ◆ what kinds of language properties can be defined using Res
 - ◆ What kinds of "problems" can be solved using DFAs
- ◆ Leads to: Properties of Regular languages
 - ◆ Closure properties what happens when we perform set operations?
 - ◆ Decision properties can we automate checking some properties?
 - ◆ Non-regular lang how do we prove that a language is not regular