Computer Animation

Lab 5 - A2 - Inverse Kinematics

COMP 477

Preliminaries and Readings

Slides based on [Buss et al. 2004] ← I highly suggest you read this

Assignment 2

Implement 2D Inverse Kinematics with Obstacle Avoidance

- Forward Kinematics:
 - Going from local positions and rotations to global positions and rotations
- Inverse Kinematics:
 - Going from global positions to local positions and rotations

References

Assignment 2

Goal:

Implement Inverse Kinematics with Obstacle Avoidance

Instructions:

https://moodle.concordia.ca/moodle/pluginfile.php/5166842/mod_resource/content/0/A2.pdf

Github:

https://github.com/tiperiu/COMP477_A2

Jacobian

How much does each joint position change with each angle change?

$$J(\boldsymbol{\theta}) = \left(\frac{\partial \mathbf{s}_i}{\partial \theta_j}\right)_{i,j}$$

Then, **FK** can be described as: $\ \dot{ec{\mathbf{s}}} = J(oldsymbol{ heta}) \dot{oldsymbol{ heta}}$

For **IK**, we wish to find a set of joint angles Δθ such that: $~m{ heta}~:=~m{ heta}+\Deltam{ heta}$

We then get: $\Delta \vec{\mathbf{s}} \approx J \Delta \boldsymbol{\theta}$

When we change the angle of a rotational joint by a small δ , how much does the

position of an end effector change?

$$\frac{\partial \mathbf{s}_i}{\partial \theta_j} = \mathbf{v}_j \times (\mathbf{s}_i - \mathbf{p}_j)$$

0 ← The rotation of joint 4 does not affect our end effector, thus the entries are 0. Generically, an entry is only non-zero if the given joint is a parent of the end effector.

$$\frac{\partial \mathbf{s}_i}{\partial \theta_i} = \mathbf{v}_j \times (\mathbf{s}_i - \mathbf{p}_j)$$

 $\mathbf{v}_j imes (\mathbf{s}_i - \mathbf{p}_j)$

We can interpret this formula visually, it gives us a tangent in the direction of the joint's rotation!

$$\frac{\partial \mathbf{s}_i}{\partial \theta_i} = \mathbf{v}_j \times (\mathbf{s}_i - \mathbf{p}_j)$$

Jacobian - Size

For IK, our jacobian will have the following size:

```
num_columns = 2 * num_end_effectors
```

num_rows = num_rotational_joints

For A2, you need only consider a single end effector at a time (the locked joint), and the number of rotational joints is equal to the number of joints in the hierarchy - 1

Jacobian - Solving

Now that we have our Jacobian, which describes how the end effector moves when we move a joint, it is sufficient to invert it to give us the opposite \rightarrow by how much to move the joints to get the end effectors to a given target.

But wait...

Conditions for matrix invertibility:

- Square Matrix
- Non-zero determinant

Transpose Method

Find $\Delta\theta$ such that:

 $\Delta oldsymbol{ heta} = J^T \, ec{\mathbf{e}}$

vector from the end-effector to the target

Most "naive" method, can work ok for very simple applications, but it will be insufficient for our use case!

Pseudoinverse Method

Find $\Delta\theta$ such that:

$$\Delta oldsymbol{ heta} \, = \, J^\dagger ec{\mathbf{e}}_{oldsymbol{\epsilon}}$$

Compute the Moore-Penrose inverse of J:

$$\Delta oldsymbol{ heta} = J^T (JJ^T)^{-1} \vec{\mathbf{e}}$$

Better than the transpose method, but suffers from instabilities near singularities. System will oscillate near solution, resulting in poor performance. Still insufficient for our use case!

Damped Least Squares

Similar to previous mentioned pseudoinverse method, with one catch:

$$\Delta \boldsymbol{\theta} = J^T (JJ^T + \lambda^2 I)^{-1} \vec{\mathbf{e}}$$

What is λ ?

Damping Factor

- Factor that ensures numerical stability
- Depends on details of your hierarchical structure
- Depending on implementation, values usually in the ballpark of 5 50

Obstacle Avoidance

Next Lab...

Meanwhile, here's a resource to get you started:

https://www.researchgate.net/profile/Anthony_Maciejewski/publication/242483646_Obstacle_Avoidance_for_Kinematically_Redundant_Manipulators_in_Dynamically_Varying_Environments/links/542ae1ed0cf27e39fa9177a3.pdf