(b) Montrer que si $|a_n| \sim |b_n|$, alors R = R'.

Exercice 4. Soit $\sum_{n\in\mathbb{N}} a_n z^n$ une série entière. Montrer que les deux séries $\sum_{n\geqslant 0} a_n z^n$ et $\sum_{n\geqslant 0} |a_n|z^n$ ont même rayon de convergence. Les domaines de convergence sont-ils nécessairement égaux?

Et si on applique 3b) c1-dessus avec bn = |an|?

Pow les domaines de CVS on doit chercher un exemple "simple" gente an = (-1)" facile à voir que R=1

⇒ J-1,1E c le domaine de CVS

etudier CVS en x = ± 1

Exercice 5. Soit $\sum a_n x_{n\in\mathbb{N}}^n$ une série entière de rayon R>0 et de somme f sur]-R,R[.

- 1. Montrer que f est paire si et seulement si pour tout $k \in \mathbb{N}$, $a_{2k+1} = 0$.
- 2. Montrer que f est impaire si et seulement si pour tout $k \in \mathbb{N}$, $a_{2k} = 0$.
- 3. Montrer que $f^{(n)}$ est la fonction nulle si et seulement si pour tout $k \ge n$, $a_k = 0$.

Lire la section II 3 du poly sur la regularité covollary 3 35

Si
$$\sum a_k x^k$$
, $\sum b_k x^k$ ont rayon de $CV > 0$
et $\sum a_k x^k = \sum b_k x^k$ alors $a_k = b_k \ \forall k$

léxo est facile après

Exercice 6. [CC du 05/05/2010]

- 1) Développer en série entière de la variable x la fonction $x\mapsto \frac{1}{1-x^3}$.
- 2) En déduire le développement en série entière de $\frac{1}{1+x+x^2}\cdot$

On a que
$$\sum_{n \ge 0} y^n = \frac{1}{1-y}$$
 et $R = 1 > 0$

Il s'ensuit que $\frac{1}{1-y^3} = \sum_{n \ge 0} (x^3)^n$ par substitution $y = x^3$

$$= \sum_{n \ge 0} x^{3n}$$

2) on commence par
$$\frac{1}{1}$$
 identite $1-x^3 = (1-x)(x^2+x+1)$

$$\Rightarrow \frac{(1-x)}{1-x^3} = \frac{1}{(x^2+x+1)}$$

maintenant il vous teste un petit ralcul

Exercice 7. Trouver le rayon de convergence des séries entières dont les termes généraux sont :

(a)
$$2^n z^{2n}$$
, c'est-à-dire la série entière $\sum_{n\geqslant 0} a_n z^n$ avec $a_n = \begin{cases} 0 & \text{si } n \text{ est impair,} \\ 2^{n/2} & \text{si } n \text{ est pair.} \end{cases}$

(b)
$$a_n z^n$$
 avec $a_n = \begin{cases} 1 & \text{si } n \text{ est impair,} \\ 2^n & \text{si } n \text{ est pair.} \end{cases}$

vous devez utiliser l'autre façon à détérminer R à savoir

Exercice 8. [CC du 05/05/2010] Déterminer le rayon de convergence R puis la somme pour $x \in]-R, R[$ de la série entière $\sum_{n\geqslant 0} \frac{1}{2n+1} x^{2n+1}$.

le rayon de (v est facile à trouver R=1faites le calcul vous m pour verifier lPour la somme $\int_{0}^{\infty} t^{2n} dt = \frac{3t^{2n+1}}{2n+1} = non^{2}$ et $\sum t^{2n} = \frac{1}{1-t^{2}} = \frac{1}{2} \left(\frac{1}{1-t} + \frac{1}{1+t} \right)$

> puis il fant justifier qu'on a le droit déchanger l'ordre le $\sum \int_{0}^{\infty} = \int_{0}^{\infty} \sum$