

TIMERS: Error-Bounded SVD Restart on **Dynamic Networks**

Ziwei Zhang Peng Cui Jian Pei Tsinghua U Tsinghua U Simon Fraser U Tsinghua U

Xiao Wang

Wenwu Zhu Tsinghua U

Networks

Social Network

Biology Network

Traffic Network

Matrix Representation

□ Other variants: high-order similarity matrix, transition matrix, Laplacian matrix, etc.

Network Analysis: SVD

- Applications: network embedding, link prediction, characterizing network parameters, etc.
- ☐ Computationally expensive procedure

Dynamic Networks

- Networks are dynamic in nature
 - SVD results need to be updated accordingly

Incremental SVD

Incremental SVD is proposed by inducing approximation

☐ Problem: error accumulation is inevitable

SVD Restarts

■ Solution: restart SVD occasionally

■ What are the appropriate time points?

Naïve Solution

- Naïve solution: fixed time interval or fixed number of changes
- Difficulty: error accumulation is not uniform
 - Validated by preliminary studies

Existing Method

- Existing method: monitor loss (Chen and Candan, KDD 2014)
- Loss in SVD:

$$\mathcal{J} = \|S - U\Sigma V^T\|_F^2$$

S: target matrix, $[U, \Sigma, V]$: results of SVD

- Problem: loss includes approximation error and intrinsic loss in SVD
- Preliminary study results:

Framework: Monitor Margin

- ☐ Observation: the margin between the current loss and intrinsic loss in SVD is the actual accumulated error
 - \square Current loss: $\mathcal{J} = ||S U\Sigma V^T||_F^2$
 - Intrinsic loss: $\mathcal{L}(S, k) = \min_{U^*, \Sigma^*, V^*} ||S U^* \Sigma^* V^{*T}||_F^2$, k: dimensionality

Framework: Monitor Margin

- Framework: monitor the maximum margin
- Formulation: constrained optimization

$$\min_{c_1,...,c_T} \sum_{t=1}^{T} c_t$$
s.t. $\mathcal{G}(\mathbf{S}_0...\mathbf{S}_T, [\mathbf{U}_t, \mathbf{\Sigma}_t, \mathbf{V}_t], 1 \le t \le T) \le \Theta$

 \square c_t : whether to restart; \mathcal{G} : evaluating the margin; Θ : threshold

$$\mathcal{G} = \max_{1 \le t \le T} \frac{\mathcal{J}(t) - \mathcal{L}(\mathbf{S}_t, k)}{\mathcal{L}(\mathbf{S}_t, k)}$$

■ Intuition: keep the maximum margin within a threshold while reducing the number of restarts

Solution: Lazy Restarts

- Lazy restarts: restart only when the margin exceeds the threshold
- Problem: intrinsic loss is hard to compute
 - Direct calculation has the same time complexity as SVD
- Relaxation: an upper bound on margin
 - \blacksquare A lower bound on intrinsic loss $\mathcal{L}(S, k)$

$$\mathcal{L}(\mathbf{S}_t, k) \ge B(t) \Rightarrow \frac{\mathcal{J}(t) - \mathcal{L}(\mathbf{S}_t, k)}{\mathcal{L}(\mathbf{S}_t, k)} \le \frac{\mathcal{J}(t) - B(t)}{B(t)}.$$

 \square $\mathcal{J}(t)$: current loss; $\mathcal{L}(S_t, k)$: intrinsic loss; $\mathcal{B}(t)$: bound of intrinsic loss

A Lower Bound of SVD Intrinsic Loss

■ Idea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). *If* **S** and Δ **S** are symmetric matrices, then:

$$\mathcal{L}(\mathbf{S} + \Delta \mathbf{S}, k) \ge \mathcal{L}(\mathbf{S}, k) + \Delta t r^2(\mathbf{S} + \Delta \mathbf{S}, \mathbf{S}) - \sum_{l=1}^{k} \lambda_l, \quad (9)$$

where $\lambda_1 \geq \lambda_2 ... \geq \lambda_k$ are the top-k eigenvalues of $\nabla_{S^2} = \mathbf{S} \cdot \Delta \mathbf{S} + \Delta \mathbf{S} \cdot \mathbf{S} + \Delta \mathbf{S} \cdot \Delta \mathbf{S}$, and

$$\Delta tr^{2}(\mathbf{S} + \Delta \mathbf{S}, \mathbf{S}) = tr((\mathbf{S} + \Delta \mathbf{S}) \cdot (\mathbf{S} + \Delta \mathbf{S})) - tr(\mathbf{S} \cdot \mathbf{S}).$$

- ☐ Intuition: treat changes as a perturbation to the original network
- Results: need to calculate top-k eigenvalues of $S \cdot \Delta S + \Delta S \cdot S + \Delta S \cdot \Delta S$

Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn (13) is $O(M_S + M_L k + N_L k^2)$, where M_S is the number of the non-zero elements in ΔS , and N_L , M_L are the number of the non-zero rows and elements in ∇_{S^2} respectively.

- If every node has a equal probability of adding new edges, we have: $M_L \approx 2 d_{avg} M_S$, where d_{avg} is the average degree of the network.
- For Barabasi Albert model (Barabási and Albert 1999), a typical example of preferential attachment networks, we have: $M_L \approx \frac{12}{\pi^2} \left[log(d_{max}) + \gamma \right] M_S$, where d_{max} is the maximum degree of the network and $\gamma \approx 0.58$ is a constant.
- Conclusion: the complexity is only linear to the local dynamic changes

TIMERS: Theoretically Instructed Maximum-Error-bounded Restart of SVD

```
Algorithm 1 TIMERS: Theoretically
                                                                Instructed
Maximum-Error-bounded Restart of SVD
Require: Static Adjacency Matrix A_0, Dynamic Changes
     \Delta \mathbf{A}_1...\Delta \mathbf{A}_T, Similarity Function S(\cdot), Dimensionality
     k, Error Threshold \Theta, Incremental SVD method \mathcal{F}(\cdot)
Ensure: SVD results in each time slice [\mathbf{U}_t, \mathbf{\Sigma}_t, \mathbf{V}_t]
 1: Calculate the initial similarity S_0 = \mathcal{S}(\mathbf{A}_0)
 2: Calculate SVD on S_0 to obtain [U_0, \Sigma_0, V_0]
 3: for t in 1:T do
        Calculate the similarity change in that time slice \Delta S_t
        Use \mathcal{F}(\cdot) to get updated SVD results [\mathbf{U}_t, \mathbf{\Sigma}_t, \mathbf{V}_t]
        Compute loss \mathcal{J}(t) and bound B(t) using (13)
        if \frac{\mathcal{J}(t)-B(t)}{B(t)} > \Theta then
           Calculate SVD on S_t to obtain new [U_t, \Sigma_t, V_t]
        end if
 9.
        Return [\mathbf{U}_t, \mathbf{\Sigma}_t, \mathbf{V}_t]
11: end for
```

- General across different types of networks and dynamic scenarios
 - Weighted/unweighted, signed/unsigned networks
 - Add/delete nodes/edges, adjust edge weights
- ☐ Flexible to cooperate with any incremental SVD method

Experimental Setting

- ☐ Five real dynamic networks:
 - ☐ FACEBOOK, MATH, WIKI: social networks
 - □ DBLP: citation network
 - INTERNET: autonomous system connections
- ☐ Types: weighted/unweighted, signed/unsigned

Table 1: The Statistics of Datasets

Table 1. The Statistics of Datasets					
Dataset	Nodes	Static E	Evolving E	Type	
FACEBOOK	52804	962654	632188	SN	
MATH	13586	600000	138408	W	
WIKI	28223	1000000	375270	W,S	
DBLP	28331	200000	79436	W	
INTERNET	32077	111644	196270	W,SN	

W = Weighted, S = Signed, SN = Static Network marked

Experimental Setting

Baselines: Heu-FL: restart SVD after a fixed number of edges changed Heu-FT: restart SVD after a fixed amount of time passed LWI2 (Chen and Candan, KDD 2014): restart SVD whenever the reconstruction loss exceeds a preset threshold ■ Tasks: Approximation error ☐ Fixed number of restarts □ Fixed maximum error Applications Link prediction Eigenvalue tracking Analysis

Experimental Results: Approximation Error

☐ Fixing number of restarts

Dataset	avg(r)			max(r)				
Dataset	TIMERS	LWI2	Heu-FL	Heu-FT	TIMERS	LWI2	Heu-FL	Heu-FT
FACEBOOK	0.005	0.020	0.009	0.011	0.014	0.038	0.025	0.023
MATH	0.037	0.057	0.044	0.051	0.085	0.226	0.117	0.179
WIKI	0.053	0.086	0.071	0.281	0.139	0.332	0.240	0.825
DBLP	0.042	0.110	0.053	0.064	0.121	0.386	0.198	0.238
INTERNET	0.152	0.218	0.196	0.961	0.385	0.806	0.647	1.897

□ Fixing maximum error

27%~42% Improvement

Experimental Results: Applications

☐ Link prediction:

-30%

	Dataset	TIMERS	LWI2	Heu-FL	Heu-FT
	FACEBOOK	1.54^*	4.27	2.21	2.81
	MATH	$\boldsymbol{1.14}^*$	2.68	1.31	1.29
~	WIKI	1.06^{*}	3.44	1.63	4.13
	DBLP	0.18^{*}	0.32	0.22	0.27
	INTERNET	11.27^*	23.36	16.98	34.30

^{*:} outperform other methods at 0.005 level paired t-test in 10 runs.

☐ First eigenvalue tracking:

-50%

Dataset	TIMERS	LWI2	Heu-FL	Heu-FT
FACEBOOK	0.66	0.94	1.11	1.53
MATH	2.27	5.03	4.92	4.80
WIKI	15.45	18.42	17.73	97.08
DBLP	8.31	11.42	13.92	24.66
INTERNET	4.18	12.56	7.95	57.38

Experimental Results: Analysis

☐ Syntactic networks: simulate drastic changes in the network structure

- Robust to sudden changes
- Linear scalability

Conclusion

- When to restart SVD for dynamic networks
 - Key to prevent error accumulation for incremental SVD
- Framework: monitor margin
 - Constrained optimization and lazy restarts
 - ☐ A lower bound of SVD Intrinsic Loss to reduce time complexity
 - Linear time complexity to the local dynamic changes
- Extensive experiments on several dynamic networks
 - 50% improvement in approximation error
 - Robust to sudden changes in the network structure
- ☐ Future direction: generalize to directed networks and non-square matrices (e.g. user-product)

Thanks!

Ziwei Zhang, Tsinghua University

zw-zhang16@mails.tsinghua.edu.cn

https://cn.linkedin.com/in/zhangziwei

Reference:

[1] Zhang, Z; Cui, P; Pei, J; Wang, X; Zhu, W. TIMERS: Error-Bounded SVD

Restart on Dynamic Networks. AAAI, 2018.