CH13、有限狀態機

有限狀態機

目錄:

13-1 有限狀態機

輸入/輸出、狀態集、轉換函數、輸出函數

Mealy Model

13-2 有限狀態機的簡化

狀態等價、將態簡化演算法(Moore State Reduction Algorithm)

13-3 語言學

符號集、空字串

語言、串連、正包、Kleene 包

13-4 文法

文法、直接推導出、推導出、推導過程

生成的語言

型態 0~型態 3

13-5 自動狀態機

自動狀態機

接受狀態、拒絕狀態、接受字串、拒絕字串

有限狀態語言

Pumping 引理

13-6 非決定性自動狀態機

Non-deterministic Finite State Automata, NFSA

13-7 正規化表示法

正規化表示法、正規集

Kleene's 定理

13-8 Turing 機

(略)

13.1 有限狀態機

定義:

一個 Finite State Machine(FSM)

M = [I, o, S, v, w]

I = Input Set \cdot o = Output Set \cdot S = State Set, $|S| < \infty$

 $v = S \times I \rightarrow S$ (狀態轉換函數 State Transition Function),w = Output Function

w分為兩種:

1. Moore Mode

		v		W
$start \rightarrow$	State	0	1	
	S	A	В	0
	A	A	S	1
	В	S	В	1
(Z)				

Input: 0011

$$S \xrightarrow{0} A \xrightarrow{0} A \xrightarrow{1} S \xrightarrow{1} B$$

Output: 01101

2. Mearly Mode(較常見)

	v		W	
State	0	1	0	1
S	S	A	0	1
A	S	A	1	0

Input: 0011

$$S \stackrel{00}{\longrightarrow} S \stackrel{00}{\longrightarrow} S \stackrel{11}{\longrightarrow} A \stackrel{10}{\longrightarrow} A$$

Output: 0010 無 Hard Disk

*表示法:

- 1. State Table
- 2. State Diagram

例:設計二元加法器

 $I = \{00, 01, 10, 11\}, o = \{0, 1\}$ $S = \{S_0, S_1\}$ //No carry, carry

13.2 有限狀態機簡化

定義:

M = [I, o, S, v, w] = FSM

在 S 上定義 Equivalent Relation:

Ek: k-equivalent E: State-Equivalent

1. aEkb ⇔ 在 input 長度為 k 時,a,b 具相同 Output

$$0 \rightarrow 0 \cdot 00 \rightarrow 01 \cdot 1 \rightarrow 1$$
 $0 \rightarrow 0 \cdot 00 \rightarrow 00 \cdot 1 \rightarrow 1$ a, b為1等價 \cdot 非2等價

2. aEb ⇔ a, b 在任意 Input 具相同 Output

Note:

1. $Ek+1 \subseteq Ek$

∀ Ek+1 都符合 Ek, 但 Ek 未必符合 Ek+1

2. 對應分割 Pk, Pk+1,則 Pk+1為 Pk之加細分割(關係愈小,切得愈細)

例:

V 4				
	v		W	
State	0	1	0	1
1	5	7	1	0
2	7	2	1	0
3	6	1	1	0
4	3	4	0	0
5	3	5	0	0
6	2	7	1	0
7	4	1	1	0

- 1. 求 Reduced(最簡) Machine?
- 2. 求將 State 3 及 6 分開之最短字串?

1. 步驟:

- (1) P1 = {{1, 2, 3, 6, 7}, {4, 5}} 1 等價,看 Output(1, 0)與(0, 0)
- (2) P2:看 State Transition:到1等價的 State 則 Output 相同 若CD 為1等價,則A,B 為2等價→輸入1也是2等價的話,才可將A,B 歸到2等價

其餘不用看,因為 Equivalent Relation 有 Transitive,故: P2 = {{1, 7}, {2, 3, 6}, {4, 5}}

- (3) $P3 = \{\{1, 7\}, \{2\}, \{3, 6\}, \{4, 5\}\}$
- (4) P4 = {{1, 7}, {2}, {3}, {6}, {4, 5}} //無法再細切 令 A = {1, 7}, B = {2}, C = {3}, D = {4, 5}, E = {6}

 \longrightarrow

	ν		W	
State			0	1
A	Ε	A	1	0
В	A	В	1	0
C	D	A	1	0
D	В	A	1	0
Ε	C	Е	0	0

2. 回推步驟

- (1) {3}, {6} 回看為{6}, {2},輸出為0,0
- (2) {6}, {2} 回看為{7}, {2}, 輸出為1,1
- (3) {7}, {2} 回看為{4}, {7}, 輸出為 0, 0
- (4) {4}, {7}回看輸出為0,1 → 0100

13.3 語言學

定義:

 Σ = Symbol Set

 $\Sigma^{n} = \{a_{1}a_{2}...a_{n} \mid a_{1}, ..., a_{n} \in \Sigma\}$

 $\alpha \in \Sigma n$, $|\alpha| = n (\pounds \underline{\mathcal{E}})$

 $\Sigma^+ = U_1 \Sigma^n$

 $\Sigma^* = U_0 \Sigma^n = \Sigma + U \Sigma^0$

 $\Sigma 0 = {\lambda}$, $\lambda \not A$ Empty String

 $A \subseteq \Sigma^*$, $A \triangleq \Delta$ Language over Δ

$A, B \subseteq \Sigma^*$

- 1. $A \cdot B = \{\alpha \cdot \beta \mid \alpha \in A, \beta \in B\}$
- 2. A+B = AVB = A|B = AUB
- 3. $A^2 = AA$

 $A^n = AA...A$

4. $A^+ = U_1 A^n$, $A^* = A^+ U \{\lambda\}$

例: True/False

 $(A^*)^2 = (A^2)^*$

 $A = \{a\}, A^2 = \{aa\}, (A^2)^* = \{\lambda, a^2, a^4, ...\}$

 $A^* = {\lambda, a, a^2, a^3, ...}$

 $(A^*)^2 = {\lambda, a, a^2, a^3, ...} \Longrightarrow False$

例: $(A^*)^* = A^*$

例(96 台大): A={1,10},下列何者在 A*中?

- 1. λ
- 2. 1101
- 3. 1110110
- 4. 10110
- 5. 110011

True: 1, 2, 3, 4; False: 5

例(97 中原): 遞迴定義下列 Language

- 1. 開頭 1,長度偶數之 Bit String?
- 2. 1的個數比 0的個數多之 Bit String
- 1 10 11

1000 1001 1010 1011 1100 1101 1110 1111 ...

Base Case : 10, 11 ∈ S(所求)

Recursive Step:

if $x \in S$, x00, x01, x10, $x11 \in S$

2. Base Case: 1 ∈ S (所求)

Recursive Stap:

if $x, y \in S$, then 0xy, x0y, xy0, $xy \in S$

```
13.4 文法
定義:
一個 Grammer G = (S, N, T, P)
S = Starting Symbol
N = Nonterminals Set (大寫)
T = Terminals Set ( / / / 2 )
P = Production Rule (每1 條具型式 \alpha \rightarrow \beta)
       \alpha \in (NUT)^* - T^* (不可全小寫)
       \beta \in (NUT)^*
分成四種 Type:
1. Type 0:無限制
2. Type 1(𝒯 𝔻 𝔻 𝔻 𝔻 Context-Sensitive Grammer) : δAw→nrΦ, δ, w, n, Φ ∈ (NUT)*, A∈N,
     r \in (NUT)^* - \lambda
3. Type 2(又稱為 Context-Free Grammer): A→B, A∈N, B∈(NUT)*
4. Type 3(又稱為 Regular Grammer): A→a, A→aB, a→λ, A, B∈N, a∈T
其中:G可導出之所有字串集合記作L(G)
例:
G:
S \rightarrow 0A
S\rightarrow 1A
A\rightarrow 0B
B\rightarrow 1
B\rightarrow 1A
A \rightarrow 0B \rightarrow 01A \rightarrow 010B \rightarrow 0101A \rightarrow 01010B \rightarrow 010101
\Rightarrow L(G) = \{0(01)^k \mid k \ge 1\} \cup \{1(01)^k \mid k \ge 1\}
例(96 中央): L: \{w \in \{0, 1\}^* \mid w = wR\}, 求 G \ni L(G) = L
G:
S \rightarrow 0S0
S\rightarrow 1S1
S \rightarrow 1
S\rightarrow 0
S \rightarrow \lambda
例(94 中正): L: \{0^m1^{m+n} \mid m, n \ge 0\}, 求 G \ni L(G) = L
G:
S \rightarrow AB
A \rightarrow 0A1
B\rightarrow 1B0
A \rightarrow \lambda
B \rightarrow \lambda
或寫成
A \rightarrow 0A1 \mid \lambda
B\rightarrow 1B0 \mid \lambda
```

13.5 自動狀態機

定義

一個 Finite State Automatation(FSA)

 $M = [S_0, I, S, v, A]$

 S_0 =Starting State; I, S, v \square FSM

 $A \subseteq S$

1. a ∈ A ,稱 a 為 Accept State , 記作

a ∉ A ,稱 a 為 Reject State , 記作

2. $\alpha \in I^*$,在 Input α 之下,若停在 Accept State 稱 M accept α $\alpha \in I^*$,在 Input α 之下,若停在 Reject State 稱 M reject α

3. 將所有被接受之字串收集成 L,稱 M 認知 L

例(99 長庚): L={w ∈ {0, 1}* | w 有 substring 01 及 10}, 求 M 認知 L

例(99 市北): {α∈{0,1}* | α 含 3 個連續 0}

例(93 師大): 設計一個 FSM 認知所有含 Pattern 0110 之字串(允許 overlap)

Input: 11 0110 1 0110 110 10

Output:000001000100100 (1 為有出現)→比 FSA 更強,可知有幾個、和在哪裡

以FSM 設計FSA 更有彈性+強大

Note:

可被 FSA 認知之語言稱為 Finite State Language (FSL)

例(12 個): 證 L={akbk | k≥1} is not FSL

證明:

by 矛盾證法

設L為FSL

則3 一個FSM: M認知L

令M之State 個數為N

N+1個state

代表SO->SN中至少有2個state相同

By pumping lemma

α 可拆成 u, v, w

其中 $|v| \ge 1$ 且v中只含 $a \ni u \lor w \in L$, $\forall k \ge 0$

 $\mathcal{R}uv^0w = uw \in L \longrightarrow \leftarrow$

有『記憶性』的 FSM/FSA 都沒辦法處理,例: {aP | p: Prime}

例(98 北科): $L: \{w \in \{0, 1\}^* \mid w=w^R\}$

by 矛盾證法 設有一FSA accept L FSA 存在N 個 State 取 $\alpha = 0^{N} 11 0^{N}$

by pumping lemma α 可拆成 uvw 其中 $|v| \ge 1$ 且只含 $0 \ni uv^i w \in L$, $\forall i \ge 0$ $\Rightarrow uv^0 w \in L \Rightarrow uw \in L \rightarrow \leftarrow$

定理

- 1. FSA 轉成 Regular Grammer(Type 3)
- 2. 反之亦可

例(94 清大): 請轉成 Type 3 Grammer

 $A \rightarrow 0B \mid 1A$ $B \rightarrow 0B \mid 1C$ $C \rightarrow 1 \mid 1D \mid 0B$ $D \rightarrow 0 \mid 0E \mid 1A$

 $E \rightarrow 0 \mid 0D \mid 1C$

如何將 Regular Grammer 轉回 DFSA(DFA)呢?

13.6 非決定性自動狀態機

 $S\rightarrow 0A \mid 0$

 $B\rightarrow 1A$

定義:

Nondeterministic FSA (NFSA)

- 1. 一個 State 在同樣 Input 下可有≥1 條路,有任一個結果是 Accept 即算 NFSA accept input
- 2. 所有狀態不用畫出所有 Input 之結果,若無此 Input 之路,即 NFSA reject input

例:將此 Grammer 轉成 NFSA

 $S \rightarrow 1B$

S→0

 $A \rightarrow 1A$

 $A \rightarrow 0B$

 $A\rightarrow 1$

A→0

 $B\rightarrow 1$

例(99 台科): 將此 NFSA 轉成 DFSA(DFA)

	ν	W	
State	0	1	
S	S, C	A	1
A	В	D	0
В	В		0
C		D	0
D	В	В	1

	v		w	
State	0	1		
{S}	{S, C}	{A}	1	
{S, C} ✓	{S, C}	{A, D}	1	
{A}	{B}	{D}	0	
{A, D}	{B}	{B, D}	1	
{B} ▶	{B}	φ	0	
{D} #	{B}	{B}	1	
{B, D} △	{B}	{B}	1	
φ	φ	φ	0	
看State				

只要看S開始走『有經過』的集合點。例:沒有{C}所以State 不用列{C}

13.7 正規表示法

L : {b, ab, aab, aaab, ...} = $\{a^kb \mid k \ge 0\} = a^*b$

 $a^* : \lambda$, a, aa, ... $//a + \not \equiv a \cdot a^*$

a·b: 串接

a+b:或,也可記 aVb

$$_0101... = (0V1)(01)^*(01)$$

例:L:{a^kb^k|k≥0}無法用 Regular Expression 寫出 ⇔ 無法用 DFA, NFSA 表示

13.9 Turing Machine Turing Machine

Turing Machine 之能力即為當今電腦之能力(第一代電腦)
Turing Machine 無法解 Halting Problem(某個程式無法決定另一程式在某 Input 下之 Output)

例:可Compile 所有程式之Compiler 不存在,因為那個Compiler 由誰來Compile?

第二代電腦:可能是量子電腦(目前只有理論,無實作出)