STAT 105 Exam II Reference Sheet

Factorial Analysis (Two Factors)

Assuming

- Factor A with levels 1, 2, ..., I,
- Factor B with levels 1, 2, ..., J,
- \bullet *n* is the total number of observations,
- n_{ij} is the total number of observations with Factor A at level i and Factor B at level j,
- n_i is the total number of observations with Factor A at level i,
- n_{ij} is the total number of observations with Factor B at level j.
- y_{ijk} is the kth observation where Factor A is at level i and Factor B is at level j.

$$y_{ij} = \sum_{k=1}^{n_{ij}} y_{ijk}$$
 $\bar{y}_{ij} = \frac{1}{n_{ij}} \sum_{k=1}^{n_{ij}} y_{ijk}$

$$\bar{y}_{i\cdot} = \frac{1}{J} \sum_{j=1}^{J} \bar{y}_{ij} \quad \bar{y}_{\cdot j} = \frac{1}{I} \sum_{i=1}^{I} \bar{y}_{ij}$$

$$\bar{y}_{\cdot \cdot} = \frac{1}{I} \sum_{i=1}^{I} \bar{y}_{i \cdot} = \frac{1}{J} \sum_{j=1}^{J} \bar{y}_{\cdot j}$$

Main effect of Factor A at level i

$$a_i = \bar{y}_{i\cdot} - \bar{y}_{\cdot\cdot}$$

Main effect of Factor B at level j

$$b_i = \bar{y}_{.i} - \bar{y}_{.i}$$

Interaction of Factor B at level j and Factor A at level i $ab_{ij} = \bar{y}_{ij} - a_i - b_j + \bar{y}$.

$$ab_{ij} = \bar{y}_{ij} - a_i - b_j + \bar{y}_{..}$$

Fitted Value (no interactions)

$$\hat{y}_{ij} = a_i + b_j + \bar{y}_{..}$$

Fitted Value (including interactions)

$$\hat{y}_{ij} = a_i + b_j + ab_{ij} + \bar{y}..$$

Basic Probability Rules

Probability A given B $P[A|B] = \frac{P[A,B]}{P[B]}$

Probability A and BP[A, B] = P[A|B]P[B] = P[B|A]P[A]

P[A or B] = P[A] + P[B] - P[A, B]Probability A or B

Discrete Random Variables

Probability function $P[X=x]=f_X(x)$

Cumulative probability function $P[X \le x] = F_X(x)$

 $\mu = E(X) = \sum_{x} x f_X(x)$ Expected Value

 $\sigma^2 = Var(X) = \sum_x (x - \mu)^2 f_X(x)$ Variance

 $\sigma = \sqrt{Var(X)}$ Standard Deviation

Geometric Random Variables

X is the trial count upon which the first successful outcome is observed performing independent trials with probability of success p.

Possible Values $x = 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = p^x(1-p)^{x-1}$

Expected Value $\mu = E(X) = \frac{1}{n}$

 $\sigma^2 = Var(X) = \frac{1-p}{r^2}$ Variance

Binomial Random Variables

X is the number of successful outcomes observed in n independent trials with probability of success p.

Possible Values $x = 0, 1, 2, \dots, n$

Probability function $P[X=x] = f_X(x) = \frac{n!}{(n-x)!x!}p^x(1-p)^{n-x}$

Expected Value $\mu = E(X) = np$

Variance $\sigma^2 = Var(X) = np(1-p)$

Poisson Random Variables

X is the number of times a rare event occurs over a predetermined interval (an area, an amount of time, etc.) where the number of events we expect is λ .

Possible Values $x = 0, 1, 2, 3, \dots$

Probability function $P[X = x] = f_X(x) = \frac{e^{-\lambda} \lambda^x}{e^{-\lambda}}$

Expected Value $E(X) = \lambda$

Variance $Var(X) = \lambda$

Continuous Random Variables

 $P[a < X < b] = \int_{a}^{b} f_X(x) dx$ Probability density function

 $P[X \le x] = F_X(x) = \int_{-\infty}^x f_X(t)dt$ Cumulative probability function

 $\mu = E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ Expected Value

 $\sigma^2 = Var(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f_X(x) dx$ Variance

 $\sigma = \sqrt{Var(X)}$ Standard Deviation