Звіт до лабораторної роботи №6: «Перевірка гіпотези про однорідність вибірок за допомогою статистики Петуніна»

студента 1-го курсу магістратури факультету комп'ютерних наук та кібернетики Кравця Олексія

Зміст

1	Теоретичні відомості	2
2	Практичні результати	2
Лi	Література	

1 Теоретичні відомості

Статистика Петуніна (р-статистика) — міра близькості між вибірками, запропонована українським математиком Юрій Петуніним. Використовується для перевірки гіпотези про рівність функцій розподілу двох вибірок.

Розглянемо дві генеральні сукупності G, G' та відповідні функції розподілу $F_G, F_{G'}$.

Нехай задано дві вибірки $x=(x_1,x_2,\ldots,x_n)\in G$ та $x'=(x'_1,x'_2,\ldots,x'_m)\in G'$, а $x_{(1)}\leq x_{(2)}\leq\ldots\leq x_{(n)}$ та $x'_{(1)}\leq x'_{(2)}\leq\ldots\leq x'_{(m)}$ – відповідні порядкові статистики та необхідно визначити, чи вони належать однаковим розподілам. Припустимо, що $F_G(u)=F_{G'}(u)$, тоді

$$P(A_{ij}) = P(x'_k \in (x_{(i)}, x_{(j)})) = p_{ij} = \frac{j-i}{n+1}$$

Якщо маємо вибірку $x' \in (x'_{(1)}, x'_{(2)}, \dots, x'_{(m)})$, можемо знайти частоту h_{ij} випадкової події A_{ij} та довірчі інтервали $(p_{ij}^{(1)}, p_{ij}^{(2)})$ для ймовірності p_{ij} при заданому рівні значущості β , тобто $B = \left\{ p_{ij} \in (p_{ij}^{(1)}, p_{ij}^{(2)}) \right\}, P(B) = 1 - \beta$. Тоді

$$p_{ij}^{(1)} = \frac{h_{ij}m + \frac{g^2}{2} - g\sqrt{h_{ij}(1 - h_{ij})m + \frac{g^2}{4}}}{m + g^2}$$

$$p_{ij}^{(2)} = \frac{h_{ij}m + \frac{g^2}{2} + g\sqrt{h_{ij}(1 - h_{ij})m + \frac{g^2}{4}}}{m + g^2}$$

де g задовольняє умову $\phi(g) = 1 - \frac{\beta}{2} \ (\phi(g) - \text{щільність нормального розподілу}).$ Покладемо g = 3. Величина g визначає рівень значущості довірчого інтервалу $I_{ij}^{(n,m)} = (p_{ij}^{(1)}, p_{ij}^{(2)})$. В силу правила 3σ рівень значущості цього інтервалу не перевищує 0.05.

правила 3σ рівень значущості цього інтервалу не перевищує 0.05. Позначимо через N кількість довірчих інтервалів $I_{i,j}=(p_{ij}^{(1)},p_{ij}^{(2)})$, також $N=\frac{n(n-1)}{2}$. Позначимо L – кількість тих інтервалів I_{ij} , які містять ймовірність $p_{ij}^{(n)}$. Статистику $h_{ij}=\frac{L}{N}$ будемо називати p-статистикою і вона буде мірою близькості $\rho(x,x')$ між вибірками x,x'.

2 Практичні результати

Для тестування візьмемо вибірку з нормального розподілу N(0,1), розмір вибірки m=200 елементів.

Перевіримо гіпотезу про рівність функцій розподілу для нормальних розподілів $N(\mu,1)$, де μ змінюється від -2 до 2 з кроком 0.1. Розмір кожної вибірки n=100. Отримаємо рисунок 1. Бачимо на осі абсцис значення μ на осі ординат значення p-статистики.

Рис. 1: Перевірка гіпотези при зміщенні по мат. сподіванню

Гіпотезу **не відхиляємо** при наступних значеннях μ :

Перевіримо гіпотезу про рівність функцій розподілу для нормальних розподілів $N(0,\sigma)$, де σ змінюється від 0.1 до 3 з кроком 0.1. Розмір кожної вибірки n=100. Отримаємо рисунок 2. Бачимо на осі абсцис значення μ на осі ординат значення p-статистики

Рис. 2: Перевірка гіпотези при зміщенні σ

Гіпотезу **не відхиляємо** при наступних значеннях σ :

Література

- [1] https://uk.wikipedia.org/wiki/Статистика_Петуніна
- [2] Лекція 13. Непараметрична класифікація за допомогою р-статистики, Клюшин Дмитро Анатолійович