- a) We need to show that there exists a min-cost arborescence which enters every 0-cost strongly connected component(ZSCC) exactly once. The proof is very similar to the proof done in Section 4.9 for cycles. Let T be a min-cost arborescence and for any ZSCC, S, let e = (u, v) be the edge closest to the root, r, entering S. Now we delete all other edges entering S and edges (v_1, v_2) where $v_1, v_2 \in S$, and add edges by doing a DFS on S starting from v. Clearly the resulting graph is an arborescence since we have exactly one edge entering every vertex and every vertex is reachable from the root(for $w \in S$, w is reachable from v; for $w \notin S$ if the path to vertex w went through S with l being the last vertex on the path in S, we now have the path r v, v l, l w). Also the cost of the new arborescence is no greater than the cost of T since we only added 0-cost edges. Therefore while contracting we can contract ZSCCs and while opening out we do a DFS to add edges.
- b) We have $c''_e = \max(0, c_e 2y_v)$ where $e = (u, v) \Rightarrow c_e \leq c''_e + 2y_v$. Therefore $c''_e = 0 \Rightarrow c_e \leq 2y_v$. Also $\sum_{v \neq r} y_v$ is a lower bound on $c(T_{opt})$ where T_{opt} is the min-cost arborescence with costs c_e . Since T has 0 c''-cost, we have, $c(T) = \sum_{e \in T} c_e = \sum_{e=(u,v),v \neq r} c_e \leq 2 \sum_{v \neq r} y_v \leq 2c(T_{opt})$.
- c) We will prove this by induction on the no. of recursive calls we make. Let G^i, c^i, T^i, T^i_{opt} denote respectively the graph, cost function, arborescence constructed by the algorithm, and the min-cost arborescence (wrt. costs c^i) at the i^{th} stage(recursive call) of the algorithm. For an edge $e = (u, v) \in E^i$, we have, $y_v \leq c_e^{i-1} c_e^i \leq 2y_v$. Suppose the algorithm terminates after k recursive calls. We will show by induction(on k-i to be precise) that $c^i(T^i) \leq 2c^i(T^i_{opt}) \ \forall i, 1 \leq i \leq k$. The base case is when i = k. So $c^k(T^k) = 0 \leq 2c^k(T^k_{opt})$. For the induction step assuming that $c^i(T^i) \leq 2c^i(T^i_{opt})$, we will show that $c^{i-1}(T^{i-1}) \leq 2c^{i-1}(T^{i-1}_{opt})$. Consider the arborescence T^{i-1}_{opt} with cost function c^i . We may modify T^{i-1}_{opt} by deleting some edges and adding edges of 0 c^i -cost as in a)) so that it induces an arborescence, A of on greater c^i -cost on G^i . So we have, $c^i(T^{i-1}_{opt}) \geq c^i(A) \geq c^i(T^i_{opt})$ since T^i_{opt} is min-cost wrt. costs c^i . Now we have,

$$\begin{array}{ll} c^{i-1}(T^{i-1}) \leq c^{i}(T^{i-1}) + 2\displaystyle\sum_{v \neq r} y_{v} & (c^{i-1}_{c} \leq c^{i}_{c} + 2y_{v}) \\ &= c^{i}(T^{i}) + 2\displaystyle\sum_{v \neq r} y_{v} & (\text{since the edges added to } T^{i} \text{ all have } 0 \ c^{i} - \text{cost}) \\ &\leq 2(c^{i}(T^{i}_{opt}) + \displaystyle\sum_{v \neq r} y_{v}) & (\text{by the Induction Hypothesis}) \\ &\leq 2(c^{i}(T^{i-1}_{opt}) + \displaystyle\sum_{v \neq r} y_{v}) & (\text{using the above lower bound}) \\ &\leq 2c^{i-1}(T^{i-1}_{opt}) & (c^{i}_{e} + y_{v} \leq c^{i-1}_{e}) \end{array}$$

and hence by induction $c(T) = c^0(T^0) \le 2c^0(T_{opt}^0) = 2c(T_{opt})$ where T is the arborescence returned by the algorithm and T_{opt} is the optimal arborescence.

 $^{^{1}}$ ex271.554.851