# Spin:

The *complete* state of an electron (say) includes not only its position wave function, but also a **spinor**, describing the orientation of its **spin**:

$$\psi(\mathbf{r})\chi$$
.

In the absence of coupling between spin and position, we are free to assume that the state is *separable* in its spin and spatial coordinates.

The probability of getting spin up is independent of the *location* of the particle.

In the presence of coupling, the general state would take the form of a linear combination:

$$\psi$$
+(**r**)  $\chi$ + +  $\psi$ -(**r**)  $\chi$ -.

The two-particle state is:

$$\psi(\mathbf{r}_1, \mathbf{r}_2)\chi(1, 2)$$

Where  $\chi(1,2)$  stand for the combined spin state. in Dirac notation it is some linear combination of the states  $|s_1s_2m_1m_2\rangle$ . We assume that the state is again a simple product of a position state and a spin state.

# Spin:

The two-particle state is:

$$\psi(\mathbf{r}_1, \mathbf{r}_2)\chi(1, 2)$$

And it has to be antisymmetric with respect to exchange:

$$\psi(\mathbf{r}_1, \mathbf{r}_2)\chi(1, 2) = -\psi(\mathbf{r}_2, \mathbf{r}_1)\chi(2, 1).$$

Thus, the Pauli principle actually allows *two* electrons in a given position state, as long as their spins are in the singlet configuration (but they could not be in the same position state *and* in the same spin state—say, both spin up).

$$\left\{ |00\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle) \right\} \quad s = 0 \text{ (singlet)}$$

$$\begin{cases} |1 \ 1\rangle &= |\uparrow\uparrow\rangle \\ |1 \ 0\rangle &= \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle) \end{cases} s = 1 \text{ (triplet)}$$
$$|1 - 1\rangle &= |\downarrow\downarrow\rangle$$

# Generalised Symmetrisation Principle

For the sake of simplicity, we have assumed that:

- the particles are noninteracting,
- the spin and position are decoupled (with the combined state a product of position and spin factors), and
- the potential is time-independent.

But the fundamental symmetrisation/antisymmetrisation requirement for identical bosons/fermions is much more general.

Let us define the **exchange operator**,  $\hat{P}$ , which interchanges the two particles:

$$\hat{P} |(1,2)\rangle = |(2,1)\rangle$$

 $\hat{P}$  switches the particles (1  $\leftrightarrow$  2), exchanging their positions, their spins, and any other properties they might possess.

Here,  $\hat{P}^2=1$ , and the eigenvalues of  $\hat{P}$  are ±1. If the two particles are identical, the Hamiltonian must treat them the same:

$$m_1 = m_2$$
 and  $V(\mathbf{r}_1, \mathbf{r}_2, t) = V(\mathbf{r}_2, \mathbf{r}_1, t)$ .

# Generalised Symmetrisation Principle

It follows that  $\hat{P}$  and  $\hat{H}$  are compatible observables,  $\left[\hat{P},\hat{H}\right]=0$ ,

and hence: 
$$\frac{d\left\langle \hat{P}\right\rangle}{dt}=0.$$

If the system starts out in an eigenstate of  $\hat{P}$ , symmetric  $\langle \hat{P} \rangle = 1$  or antisymmetric  $\langle \hat{P} \rangle = -1$ , it will stay that way forever.

The **symmetrisation axiom** says that for identical particles the state is not merely *allowed*, but *required* to satisfy:

$$|(1,2)\rangle = \pm |(2,1)\rangle,$$

with the plus sign for bosons, and the minus sign for fermions.

# Generalised Symmetrisation Principle

If you have *n* identical particles, of course, the state must be symmetric or antisymmetric under the interchange of *any two*:

$$|(1,2,\ldots,i,\ldots,j,\ldots,n)\rangle = \pm |(1,2,\ldots,j,\ldots,i,\ldots,n)\rangle,$$

This is the **generalised symmetrisation principle**, of which the following equation is a special case.

$$\psi_{\pm}(\mathbf{r}_1, \mathbf{r}_2) = A \left[ \psi_a(\mathbf{r}_1) \psi_b(\mathbf{r}_2) \pm \psi_b(\mathbf{r}_1) \psi_a(\mathbf{r}_2) \right]$$

It is perfectly possible to imagine a system of two *distinguishable particles* (say, an electron and a positron) for which the Hamiltonian is symmetric, and yet there is no requirement that the state be symmetric (or antisymmetric).

Identical particles have to occupy symmetric or antisymmetric states, and this is a new fundamental law—on a par, logically, with Schrödinger's equation and the statistical interpretation.

Quantum mechanics allows for the possibility of identical particles.

#### **Atoms:**

A neutral atom, of atomic number Z, consists of a heavy (assumed stationary) nucleus, with electric charge Ze, surrounded by Z electrons (mass m and charge -e).

The Hamiltonian for this system is:

$$\hat{H} = \sum_{j=1}^{Z} \left\{ -\frac{\hbar^2}{2m} \nabla_j^2 - \left( \frac{1}{4\pi\epsilon_0} \right) \frac{Ze^2}{r_j} \right\} + \frac{1}{2} \left( \frac{1}{4\pi\epsilon_0} \right) \sum_{j \neq k}^{Z} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_k|}$$

The term in curly brackets represents the kinetic plus potential energy of the *j*th electron, in the electric field of the nucleus.

The second sum (which runs over all values of j and k except j = k) is the potential energy associated with the mutual repulsion of the electrons (the factor of 1/2 in front corrects for the fact that the summation counts each pair twice).

The problem is to solve Schrödinger's equation for the wave function  $\psi(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_z)$ :

$$\hat{H}\psi = E\psi$$
,

This cannot be solved exactly, except for the very simplest case, Z = 1 (hydrogen). We must resort to elaborate approximation methods (you will study them in QM II).

### **Helium:**

After hydrogen, the simplest atom is helium (Z = 2).

The Hamiltonian consists of two hydrogenic Hamiltonians (with nuclear charge 2e), one for electron 1 and one for electron 2, together with a final term describing the repulsion of the two electrons.

$$\hat{H} = \left\{ -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{1}{4\pi \epsilon_0} \frac{2e^2}{r_1} \right\} + \left\{ -\frac{\hbar^2}{2m} \nabla_2^2 - \frac{1}{4\pi \epsilon_0} \frac{2e^2}{r_2} \right\} + \frac{1}{4\pi \epsilon_0} \frac{e^2}{|\mathbf{r}_1 - \mathbf{r}_2|},$$

It is this last term that causes all the trouble.

If we simply *ignore* it, the Schrödinger equation separates, and the solutions can be written as products of *hydrogen* wave functions:

$$\psi(\mathbf{r}_1,\mathbf{r}_2)=\psi_{n\ell m}(\mathbf{r}_1)\psi_{n'\ell'm'}(\mathbf{r}_2),$$

only with half the Bohr radius and four times the Bohr energies.

The total energy would be:

$$E=4\left( E_{n}+E_{n^{\prime }}\right) ,$$

where:  $E_n = -13.6/n^2 \text{ eV}$ .

### **Helium:**

The ground state would be:

$$\psi_0(\mathbf{r}_1,\mathbf{r}_2) = \psi_{100}(\mathbf{r}_1)\psi_{100}(\mathbf{r}_2) = \frac{8}{\pi a^3}e^{-2(r_1+r_2)/a},$$

and its energy would be:

$$E_0 = 8 (-13.6 \,\mathrm{eV}) = -109 \,\mathrm{eV}$$

Because  $\psi_0$  is a symmetric function, the spin state has to be *antisymmetric*, so the ground state of helium should be a *singlet* configuration, with the spins "oppositely aligned."

The *actual* ground state of helium is indeed a singlet, but the experimentally determined energy is –78.975 eV, so the agreement is not very good as we ignored electron–electron repulsion, which is certainly *not* a small contribution.

The excited states of helium consist of one electron in the hydrogenic ground state, and the other in an excited state:

$$\psi_{n\ell m}\psi_{100}$$

### **Helium:**

If we try to put *both* electrons in excited states, one immediately drops to the ground state, releasing enough energy to knock the other one into the continuum (E > 0), leaving you with a helium *ion* (He+) and a free electron.

We can construct both symmetric and antisymmetric combinations. The former go with the *antisymmetric* spin configuration (the singlet)—they are called **parahelium**—while the latter require a *symmetric* spin configuration (the triplet)—they are known as **orthohelium**.

The ground state is necessarily parahelium; the excited states come in both forms.

Because the symmetric spatial state brings the electrons closer together, we expect a higher interaction energy in parahelium, and indeed, it is experimentally confirmed that the parahelium states have somewhat higher energy than their orthohelium counterparts.

### Helium:



**Figure 5.1:** Energy level diagram for helium (the notation is explained in Section 5.2.2). Note that parahelium energies are uniformly higher than their orthohelium counterparts. The numerical values on the vertical scale are relative to the ground state of ionized helium (He<sup>+</sup>):  $4 \times (-13.6)$  eV = -54.4 eV; to get the *total* energy of the state, subtract 54.4 eV.

### The Periodic Table:

The ground state electron configurations for heavier atoms can be pieced together in much the same way.

To first approximation (ignoring their mutual repulsion altogether) the individual electrons occupy one-particle hydrogenic states (n, l, m), called **orbitals**, in the Coulomb potential of a nucleus with charge Ze.

If electrons were bosons (or distinguishable particles) they would all shake down to the ground state (1, 0, 0), but electrons are in fact identical fermions, subject to the Pauli exclusion principle, so only *two* can occupy any given orbital (one with spin up, and one with spin down—or, more precisely, in the singlet configuration).

There are  $n^2$  hydrogenic wave functions (all with the same energy  $E_n$ ) for a given value of n, so the n = 1 **shell** has room for two electrons, the n = 2 shell holds eight, n = 3 takes 18, and in general the nth shell can accommodate  $2n^2$  electrons.

#### The Periodic Table:

Qualitatively, the horizontal rows on the **Periodic Table** correspond to filling out each shell (if this were the whole story, they would have lengths 2, 8, 18, 32, 50, etc., instead of 2, 8, 8, 18, 18, etc.; we'll see in a moment how the electron–electron repulsion throws the counting off).



### The Periodic Table:

With helium, the n=1 shell is filled, so the next atom, lithium (Z=3), has to put one electron into the n=2 shell. Now, for n=2 we can have  $\ell=0$  or  $\ell=1$ ; which of these will the third electron choose?

In the absence of electron–electron interactions, they have the same energy (the Bohr energies depend on n, remember, but not on  $\ell$ ). But the effect of electron repulsion is to favor the lowest value of  $\ell$ , for the following reason.

Angular momentum tends to throw the electron outward, and the farther out it gets, the more effectively the inner electrons **screen** the nucleus (roughly speaking, the innermost electron "sees" the full nuclear charge *Ze*, but the outermost electron sees an effective charge hardly greater than *e*).

Within a given shell, therefore, the state with lowest energy (which is to say, the most tightly bound electron) is  $\ell = 0$ , and the energy increases with increasing  $\ell$ . Thus the third electron in lithium occupies the orbital (2,0,0). The next atom (beryllium, with Z = 4) also fits into this state (only with "opposite spin"), but boron (Z = 5) has to make use of  $\ell = 1$ .

#### The Periodic Table:

For reasons known best to nineteenth-century spectroscopists:

```
\ell = 0 is called s (for "sharp")

\ell = 1 is p (for "principal"),

\ell = 2 is d ("diffuse"),

\ell = 3 is f ("fundamental").
```

It continues alphabetically (g, h, i, skip j, k, l, etc.)

The state of a particular electron is represented by the pair  $n\ell$ , with n (the number) giving the shell, and  $\ell$  (the letter) specifying the orbital angular momentum.

The magnetic quantum number m is not listed, but an exponent is used to indicate the number of electrons that occupy the state in question. Thus the configuration:

$$(1s)^2 (2s)^2 (2p)^2$$

There are two electrons in the orbital (1,0,0), two in the orbital (2,0,0), and two in some combination of the orbitals (2,1,1), (2,1,0), and (2,1,-1). This happens to be the ground state of carbon.

#### The Periodic Table:

The carbon configuration:  $(1s)^2 (2s)^2 (2p)^2$ 

There are two electrons in the orbital (1,0,0), two in the orbital (2,0,0), and two in some combination of the orbitals (2,1,1), (2,1,0), and (2,1,-1). This happens to be the ground state of carbon.

There exist rituals, known as **Hund's Rules** for figuring out what *total* orbital angular momentum quantum number, *L*, the *total* spin quantum number *S*, *and* the *grand* total (orbital plus spin), *J*, will be, for a particular atom.

The result is recorded as the following:

$$^{2S+1}L_J$$
,

The ground state of carbon happens to be  ${}^{3}P_{0}$ : the total spin is 1 (hence the 3), the total orbital angular momentum is 1 (hence the P), and the *grand* total angular momentum is zero (hence the 0).

## **ELECTROMAGNETIC INTERACTIONS**

#### The Aharonov-Bohm Effect

In classical electrodynamics the potentials  $\bf A$  and  $\bf \phi$  are not uniquely determined; the *physical* quantities are the *fields*,  $\bf E$  and  $\bf B$ . Specifically, the potentials

$$\varphi' \equiv \varphi - \frac{\partial \Lambda}{\partial t}, \quad \mathbf{A}' \equiv \mathbf{A} + \nabla \Lambda$$

yield the same fields as  $\phi$  and  $\mathbf{A}$ . Here,  $\Lambda$  is an arbitrary real function of position and time) This equation is called a **gauge transformation**, and the theory **gauge invariant**.

In quantum mechanics the potentials play a more direct role as they appear in:

$$i\hbar\frac{\partial\Psi}{\partial t} = \left[\frac{1}{2m}\left(-i\hbar\nabla - q\mathbf{A}\right)^2 + q\varphi\right]\Psi.$$

They only by a *phase factor*, so they represent the same physical state, and in this sense the theory *is* gauge invariant.

$$\Psi' \equiv e^{iq\Lambda/\hbar}\Psi$$

## **ELECTROMAGNETIC INTERACTIONS**

## The Aharonov-Bohm Effect

It was believed that there could be no electromagnetic influences in regions where **E** and **B** are zero.

In 1959 **Aharonov and Bohm** showed that the vector potential *can* affect the quantum behaviour of a charged particle, *even when the particle is confined to a region where the field itself is zero.* 

Suppose a particle is moving through a region where **B** is zero (so  $\nabla \times \mathbf{A} = \mathbf{0}$ ), but **A** itself is *not*. Below,  $\mathcal{O}$  is some (arbitrarily chosen) reference point.

$$\left[\frac{1}{2m}\left(-i\hbar\nabla-q\mathbf{A}\right)^{2}\right]\Psi=i\hbar\frac{\partial\Psi}{\partial t},\qquad \Psi=e^{ig}\Psi',\qquad \text{where}\qquad g(\mathbf{r})\equiv\frac{q}{\hbar}\int_{\mathcal{O}}^{\mathbf{r}}\mathbf{A}(\mathbf{r}')\cdot d\mathbf{r}',$$

$$\nabla \times \mathbf{A} = \mathbf{0}$$

The gradient of  $\Psi$  is:

$$\nabla \Psi = e^{ig} (i \nabla g) \Psi' + e^{ig} (\nabla \Psi'); \qquad \nabla g = (q/\hbar) \mathbf{A},$$

## **ELECTROMAGNETIC INTERACTIONS**

#### The Aharonov-Bohm Effect

The gradient of  $\Psi$  is:

$$\nabla \Psi = e^{ig} (i \nabla g) \Psi' + e^{ig} (\nabla \Psi');$$

$$\nabla g = (q/\hbar) \mathbf{A},$$

$$(-i\hbar\nabla - q\mathbf{A})\,\Psi = -i\hbar e^{ig}\nabla\Psi',$$

$$(-i\hbar\nabla - q\mathbf{A})^2\Psi = -\hbar^2 e^{ig}\nabla^2\Psi'$$



Evidently  $\Psi$ ' satisfies the Schrödinger equation without **A**.



### The Aharonov-Bohm Effect

Aharonov and Bohm proposed an experiment in which a beam of electrons is split in two, and they pass either side of a long solenoid before recombining.

The beams are kept well away from the solenoid itself, so they encounter only regions where  $\mathbf{B} = \mathbf{0}$ . But  $\mathbf{A}$  is *not* zero, and the two beams arrive with *different phases*:

$$g = \frac{q}{\hbar} \int \mathbf{A} \cdot d\mathbf{r} = \frac{q \Phi}{2\pi \hbar} \int \left(\frac{1}{r} \hat{\phi}\right) \cdot \left(r \hat{\phi} \, d\phi\right) = \pm \frac{q \Phi}{2\hbar}.$$

The plus sign applies to the electrons traveling in the same direction as **A**, i.e., in the same direction as the current in the solenoid.

The beams arrive out of phase by an amount proportional to the magnetic flux their paths encircle:

phase difference 
$$=\frac{q\Phi}{\hbar}$$
.

This phase shift leads to measurable interference.



There can be electromagnetic effects in regions where the fields are zero.