MTE 204 Project 2

Isaac Zhang

Stepped Shaft

The stiffness matrix for an element in the global coordinate system for a 2D FEM problem is as follows:

$$[K] = \frac{EA}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

where E is Young's elastic modulus, A is the cross-sectional area of the element, and L its length. Then, consider the setup and constants obtained from the project outline:

Element	Length L [m]	Area A [m ²]
1	0.08	0.0016π
2	0.16	0.0064π
3	0.24	0.0144π

Young's elastic modulus E = 69 GPa

Then, the stiffness matrices for individual elements in the global coordinate system are as follows, in ascending order from the 1^{st} element to the 3^{rd} element, with its corresponding displacement vector:

$$[K]_1 \begin{Bmatrix} u_A \\ u_B \end{Bmatrix} = \frac{EA_1}{L_1} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_A \\ u_B \end{Bmatrix} = 6.0967 \times 10^8 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_A \\ u_B \end{Bmatrix}$$

$$[K]_{2} \begin{Bmatrix} u_{B} \\ u_{C} \end{Bmatrix} = \frac{EA_{2}}{L_{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_{B} \\ u_{C} \end{Bmatrix} = 1.3548 \times 10^{8} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_{B} \\ u_{C} \end{Bmatrix}$$

$$[K]_{3} \begin{Bmatrix} u_{C} \\ u_{D} \end{Bmatrix} = \frac{EA_{3}}{L_{2}} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_{C} \\ u_{D} \end{Bmatrix} = 2.2580 \times 10^{7} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{Bmatrix} u_{C} \\ u_{D} \end{Bmatrix}$$

Combining the above elemental stiffness matrices based on u and v components of each node's displacement vector yield the following expression for the global stiffness matrix:

$$\begin{pmatrix} P_A \\ P_B \\ P_C \\ P_D \end{pmatrix} = 10^6 \cdot \begin{bmatrix} 60.97 & -60.97 & 0 & 0 \\ -60.97 & 74.51 & -13.55 & 0 \\ 0 & -13.55 & 15.81 & -22.58 \\ 0 & 0 & -22.58 & 22.58 \end{bmatrix} \begin{pmatrix} u_A \\ u_B \\ u_C \\ u_D \end{pmatrix}$$

Recall that node A is the fixed end incapable of having displacements in the x or y direction, the boundary conditions for this stepped shaft. This means that the rows and columns associated with u_A , and v_A can be omitted from the prior expression, as these displacements are equal to zero. Substituting the value of the external applied force in for P_D , a new expression is obtained:

$$\begin{cases} P_B = 0 \\ P_C = 0 \\ P_D = 1600 \end{cases} = 10^6 \cdot \begin{bmatrix} 74.51 & -13.55 & 0 \\ -13.55 & 15.81 & -22.58 \\ 0 & -22.58 & 22.58 \end{bmatrix} \begin{cases} u_B \\ u_C \\ u_D \end{cases}$$

Using Matlab's linsolve, the following displacements are obtained, with node A being stationary:

Node	Displacement (mm)	
2	-0.03151	
3	-0.17327	
4	-0.10241	

Then, the stress and engineering strain for each element is as follows:

Element	1	2	3
Stress (MPa)	2.2635	5.093	20.3718
Strain	3.2805e-05	7.3811e-05	0.00029524

2D Truss

The stiffness matrix for an element in the global coordinate system for a 2D FEM problem is as follows:

$$[K] = \frac{EA}{L} \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix}$$

where $c = \cos \theta$ and $s = \sin \theta$ and E is Young's elastic modulus, A is the cross-sectional area of the element, and E its length. Then, consider the setup and constants obtained from the project outline:

Element	Length L [m]	Angle θ [°]	
1	4	0	
2	$2\sqrt{2}$	45	
3	$2\sqrt{2}$	135	
4	2	0	

Young's elastic modulus $E=200~\mathrm{GPa}$ Cross-sectional area $A=4\times10^{-4}~\mathrm{m^2}$ Yield Strength $\sigma_{v}=250~\mathrm{MPa}$

Then, the stiffness matrices for individual elements in the global coordinate system are as follows, in ascending order from the 1st element to the 4th element, with its corresponding displacement vector:

$$[K]_{1} \begin{Bmatrix} u_{A} \\ v_{A} \\ u_{B} \\ v_{B} \end{Bmatrix} = \frac{EA}{4} \begin{bmatrix} c^{2} & cs & -c^{2} & -cs \\ cs & s^{2} & -cs & -s^{2} \\ -c^{2} & -cs & c^{2} & cs \\ -cs & -s^{2} & cs & s^{2} \end{bmatrix} \begin{Bmatrix} u_{A} \\ v_{A} \\ u_{B} \\ v_{B} \end{Bmatrix} = 2 \times 10^{7} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{Bmatrix} u_{A} \\ v_{A} \\ u_{B} \\ v_{B} \end{Bmatrix}$$

$$[K]_2 \begin{cases} u_B \\ v_B \\ u_C \\ v_C \end{cases} = \frac{EA}{2\sqrt{2}} \begin{bmatrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{bmatrix} \begin{cases} u_B \\ v_B \\ u_C \\ v_C \end{cases} = 2.83 \times 10^7 \begin{bmatrix} 0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \end{bmatrix} \begin{pmatrix} u_B \\ v_B \\ u_C \\ v_C \end{pmatrix}$$

$$[K]_{3} \begin{cases} u_{A} \\ v_{A} \\ u_{C} \\ v_{C} \end{cases} = \frac{EA}{2\sqrt{2}} \begin{bmatrix} c^{2} & cs & -c^{2} & -cs \\ cs & s^{2} & -cs & -s^{2} \\ -c^{2} & -cs & c^{2} & cs \\ -cs & -s^{2} & cs & s^{2} \end{bmatrix} \begin{pmatrix} u_{A} \\ v_{A} \\ u_{C} \\ v_{C} \end{pmatrix} = 2.83 \times 10^{7} \begin{bmatrix} 0.5 & -0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5 \end{bmatrix} \begin{pmatrix} u_{A} \\ v_{A} \\ u_{C} \\ v_{C} \end{pmatrix}$$

$$[K]_4 \left\{ \begin{matrix} u_C \\ v_C \\ u_D \\ v_D \end{matrix} \right\} = \frac{EA}{2} \left[\begin{matrix} c^2 & cs & -c^2 & -cs \\ cs & s^2 & -cs & -s^2 \\ -c^2 & -cs & c^2 & cs \\ -cs & -s^2 & cs & s^2 \end{matrix} \right] \left\{ \begin{matrix} u_C \\ v_C \\ u_D \\ v_D \end{matrix} \right\} = 4 \times 10^7 \left[\begin{matrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right] \left\{ \begin{matrix} u_C \\ v_C \\ u_D \\ v_D \end{matrix} \right\}$$

Combining the above elemental stiffness matrices based on u and v components of each node's displacement vector yield the following expression for the global stiffness matrix, with external:

Recall that nodes A and D are pinned joints incapable of having displacements in the x or y direction, the boundary conditions for this truss. This means that the rows and columns associated with u_A , v_A , u_D , and v_D can be omitted from the prior expression, as these displacements are equal to zero. Substituting the value of the external applied force in for $P_{B,v}$, a new expression is obtained:

$$\begin{cases} P_{B,x} = 0 \\ P_{B,y} = -50000 \\ P_{C,x} = 0 \\ P_{C,y} = 0 \end{cases} = 10^6 \cdot \begin{bmatrix} 34.14 & 14.14 & -14.14 & -14.14 \\ 14.14 & 14.14 & -14.14 & -14.14 \\ -14.14 & -14.14 & 68.28 & 0 \\ -14.14 & -14.14 & 0 & 28.28 \end{bmatrix} \begin{bmatrix} u_B \\ v_B \\ u_C \\ v_C \end{pmatrix}$$

Using Matlab's linsolve, the following displacements are obtained, with nodes A, D being stationary:

Node	Direction	Displacement (mm)	
В	Horizontal	2.5	
	Vertical	-14.5721	
С	Horizontal	-2.5	
	Vertical	-6.0361	

Then, the stress, internal force, change in length, and engineering strain for each element is as follows:

Element	1	2	3	4
Stress (MPa)	125	-176.8034	176.8034	-250
Internal Force (kN)	50	-70.7214	70.7214	-100
Change in Length (mm)	2.5	-2.5004	2.5004	-2.5
Engineering Strain	0.000625	-0.00088402	0.00088402	-0.00125
Factor of Safety	0.5	0.70721	0.70721	1

The above factor of safety is calculated from the elements stress and the material's yield strength of $\sigma_y = 250$ MPa. Evidently, the 4th element in the original setup is at the threshold for yielding. One method to address this is with a second 4th element, effectively doubling its cross-sectional area A.