Лекции 6-7. Уравнение плоскости и прямой в пространстве.

Теорема. Плоскость Π , проходящая через точку $A_o(x_o, y_o, z_o)$, перпендикулярно вектору $\vec{\mathbf{n}}(A, B, C)$, задается в декартовой системе координат уравнением

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0.$$
 (6)

2. Плоскость Π , проходящая через точку $A_o(x_o, y_o, z_o)$, параллельно двум неколлинеарным векторам \vec{a} u \vec{b} задается уравнением

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = 0.$$
 (7)

3. Плоскость Π , проходящая через три точки $A_0(x_0, y_0, z_0)$, $A_1(x_1, y_1, z_1)$, $A_2(x_2, y_2, z_2)$, не лежащие на одной прямой задается уравнением

$$\begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ x_2 - x_0 & y_2 - y_0 & z_2 - z_0 \end{vmatrix} = 0.$$
 (8)

4. Плоскость Π , отсекающая на координатных осях ненулевые отрезки $a,\ b,\ c$ задается уравнением

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1 \tag{9}$$

Доказательство.

Следствие. Всякая плоскость П может быть задана уравнением

$$Ax + By + Cz + D = 0$$
, (10)

Вектор \vec{n} =(A,B,C) ортогонален плоскости П.

Доказательство.

Определение. Уравнение плоскости

$$Ax + By + Cz + D = 0$$
.

имеет нормальную форму, если $A^2+B^2+C^2=1$. Это эквивалентно тому, что вектор $\vec{\mathbf{n}}=(A,B,C)$ –имеет единичную длину.

Если уравнение не имеет нормальной формы, оно приводится к ней делением на $\gamma = \sqrt{A^2 + B^2 + C^2}$.

Теорема. Пусть плоскость π определяется уравнением (10) θ нормальной форме. Тогда расстояние от *точки* $M(x_1, y_1, z_1)$ до прямой вычисляется по формуле

$$h = |Ax_1 + By_1 + Cz_1 + D|. (11)$$

Доказательство.

Следствие. Для произвольной плоскости с уравнением (10),

$$h = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$
 (12)

Пусть две плоскости в пространстве заданы общими уравнениями:

$$\pi_1$$
: $A_1x + B_1y + C_1z + D_1 = 0$,
 π_2 : $A_2x + B_2y + C_2z + D_2 = 0$.

Тогда мы сразу можем сделать вывод, что $\vec{\mathbf{n}}_1$ =(A_1, B_1, C_1) и $\vec{\mathbf{n}}_2$ =(A_2, B_2, C_2) – это векторы нормали к π_1 и π_2 .

Теорема. Угол между плоскостями π_1 и π_2 может быть найден по

формуле

$$\cos \alpha = \frac{|\vec{\mathbf{n}}_1 \cdot \vec{\mathbf{n}}_2|}{|\vec{\mathbf{n}}_1| |\vec{\mathbf{n}}_2|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_1^2}}.$$
 (13)

Если $\cos \alpha = 1$, то плоскости параллельны.

Доказательство.

Теорема. Расстояние между двумя параллельными плоскостями

$$Ax + By + Cz + D_1 = 0$$
 и $Ax + By + Cz + D_2 = 0$ равно $\rho = \frac{|D_1 - D_2|}{\sqrt{A^2 + B^2 + C^2}}$. (14)

Доказательство.

Примеры.

Теорема.

а). Прямая l, проходящая через точку A (x_0 , y_0 , z_0), параллельно вектору $\vec{\mathbf{a}}$ =(a_1 , a_2 , a_3) задается *каноническим* уравнением

$$\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3},\tag{15}$$

или параметрическими уравнениями

$$\begin{cases} x = x_0 + a_1 t, \\ y = y_0 + a_2 t, \\ z = z_0 + a_3 t, t \in \mathbf{R}, \end{cases}$$
 (16)

в векторном виде: $\vec{\mathbf{r}} = \vec{\mathbf{r}}_0 + t\vec{\mathbf{a}}$, $t \in \mathbf{R}$, где $\vec{\mathbf{r}}_0 = \overrightarrow{\mathbf{OA}} - paduyc$ -вектор точки A.

б). Прямая, проходящая через две точки $A(x_0, y_0, z_0)$ $u(x_1, y_1, z_1)$, задается уравнением

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0},\tag{17}$$

в). Прямая, проходящая через точку $A(x_0, y_0, z_0)$, перпендикулярно двум векторам нормали $\vec{\mathbf{n}}_1 = (A_1, B_1, C_1)$ $u \vec{\mathbf{n}}_2 = (A_2, B_2, C_2)$ задается в декартовой системе координат системой уравнений

$$\begin{cases}
A_1(x - x_0) + B_1(y - y_0) + C_1(z - z_0) = 0, \\
A_2(x - x_0) + B_2(y - y_0) + C_2(z - z_0) = 0.
\end{cases}$$
(18)

Доказательство. Примеры.

Если плоскость π задана общим уравнением, а прямая l – каноническим уравнением:

$$\pi: Ax + By + Cz + D = 0$$
, $l: \frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$.

то можем заметить, что $\overrightarrow{\mathbf{n}} = (A, B, C)$ —вектор нормали к плоскости π , $\overrightarrow{\mathbf{a}} = (a_1, a_2, a_3)$ — направляющий вектор прямой l и точка $A_o(x_0, y_0, z_0) \in l$.

Теорема. а).
$$l \in \pi \iff \begin{cases} Aa_1 + Ba_2 + Ca_3 = 0, \\ Ax_0 + By_0 + Cz_0 + D = 0, \end{cases}$$
 (19)

6).
$$l \mid \mid \pi \ u \ l \notin \pi \iff \begin{cases} Aa_1 + Ba_2 + Ca_3 = 0, \\ Ax_0 + By_0 + Cz_0 + D \neq 0, \end{cases}$$
 (21)

B).
$$l \perp \pi \iff \frac{A}{a_1} = \frac{B}{a_2} = \frac{C}{a_3}$$
. (23)

г). Угол между l u π вычисляется по формуле

$$\sin \alpha = \frac{|\vec{\mathbf{n}} \cdot \vec{\mathbf{a}}|}{|\vec{\mathbf{n}}| |\vec{\mathbf{a}}|} = \frac{|Aa_1 + Ba_2 + Ca_3|}{\sqrt{A^2 + B^2 + C^2} \sqrt{a_1^2 + a_2^2 + a_3^2}}$$
(24)

Доказательство.

Примеры.

Пара скрещивающихся прямых имеют единственный общий перпендикуляр. Его длина называется расстоянием между прямыми.

Если две прямые заданы своими каноническими уравнениями:

$$l_0$$
: $\frac{x - x_0}{a_1} = \frac{y - y_0}{a_2} = \frac{z - z_0}{a_3}$, l_1 : $\frac{x - x_1}{b_1} = \frac{y - y_1}{b_2} = \frac{z - z_1}{b_3}$. (35)

то $\vec{\mathbf{a}}$ = $(a_1, a_2, a_3) \mid\mid l_0, \ \vec{\mathbf{b}}$ = $(b_1, b_2, b_3) \mid\mid l_1, \ A_0(x_0, y_0, z_0) \in l_0, \ A_1(x_1, y_1, z_1) \in l_1.$ Определим матрицу

$$\mathbf{A} = \begin{bmatrix} x_1 - x_0 & y_1 - y_0 & z_1 - z_0 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} ,$$

и пусть $\Delta = \det \mathbf{A}$.

Теорема. а). Угол между l u π вычисляется по формуле

$$\cos \alpha = \frac{|\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}|}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|} = \frac{|a_1b_1 + a_2b_2 + a_3b_3|}{\sqrt{a_1^2 + a_2^2 + a_3^2} \sqrt{b_1^2 + b_2^2 + b_3^2}}.$$
 (36)

- **б).** Прямые l_0 u l_1 скрещиваются $\Leftrightarrow \Delta \neq 0$.
- **в).** Прямые l_0 и l_1 пересекаются $\Leftrightarrow \Delta = 0$ и $\vec{\mathbf{a}}$ не коллинеарен $\vec{\mathbf{b}}$.
- **Γ).** $l_0 | | l_1 \Leftrightarrow \text{rank } \mathbf{A} = 2 \text{ и } \vec{\mathbf{a}} | | \vec{\mathbf{b}}.$
- д). $l_0 = l_1 \Leftrightarrow \operatorname{rank} \mathbf{A} = 1$.

Доказательство.

Примеры.

Теорема. Пусть две прямые l_0 u l_1 в пространстве заданы своими каноническими уравнениями (35). Тогда

а). если $l_0 || l_1$, то расстояние между $l_0 u l_1$ находится по формуле

$$h = \frac{|\overrightarrow{A_0 A_1} \times \overrightarrow{\mathbf{a}}|}{|\overrightarrow{\mathbf{a}}|} , \qquad (37)$$

б). если $l_{\rm o}\,u\,\,l_{\rm l}$ скрещиваются, то расстояние между ними находится по формуле

$$h = \frac{|\overrightarrow{A_0 A_1 \cdot \mathbf{a}} \cdot \overrightarrow{\mathbf{b}}|}{|\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}|}.$$

Доказательство.

Примеры.