Projeto 2 - Rede Trófica

Celso Gabriel Vieira Robeiro Lopes Felipe Hikari Kawahama Lucas Eduardo Nogueira Gonçalves

> Instituto de Ciência e Tecnologia Universidade Federal de São Paulo

> > 13 de Abril de 2018

Índice

Rede Simulada

Modelo Matemático

Parâmetros

Simulações

Rede Simulada Modelo Matemático Parâmetros Simulações

Rede Simulada

Representação Gráfica

Figura: Representação em Grafo da rede simulada

Rede Simulada Modelo Matemático Parâmetros Simulações

Modelo Matemático

Populações

Representação das populações

- G(t): a "população" de grama no tempo t. Representa a parte mais baixa da cadeia alimentar.
- R(t): a população de ratos no tempo t. Consideramos aqui, que os ratos se alimentam apenas da grama.
- V(t): a população das vacas no tempo t. Consideramos, novamente, que as vacas de alimentam apenas da grama.
- A(t): a população das águias no tempo t. Consideramos que as águias se alimentam somente da população dos ratos.
- L(t): a população dos leões no tempo t. Consideramos que os leões se alimentam tanto da população dos ratos quanto das vacas.

O Modelo

$$\begin{cases}
\frac{dG}{dt} = G(t)(\kappa(1 - \frac{G(t)}{k}) - \gamma_{G_1}V(t) - \gamma_{G_2}R(t)) \\
\frac{dR}{dt} = R(t)(\theta_R G(t) - \gamma_{R_1}A(t) - \gamma_{R_2}L(t) - \mu_R) \\
\frac{dV}{dt} = V(t)(\theta_V G(t) - \gamma_V L(t) - \mu_V) \\
\frac{dA}{dt} = A(t)(\theta_A R(t) - \mu_A) \\
\frac{dL}{dt} = L(t)(\theta_{L1}R(t) + \theta_{L2}V(t) - \mu_L)
\end{cases}$$
(1)

Rede Simulada Modelo Matemático Parâmetros Simulações

Parâmetros

Parâmetros considerados

Tabela: Resumo dos parâmetros utilizados no sistema.

Símbolo	Significado
γ_{G_1}	Taxa em que G é prejudicada, em proporção a V
γ_{G_2}	Taxa em que G é prejudicada, em proporção a R
γ_{R_1}	Taxa em que R é prejudicado, em proporção a A
γ_{R_2}	Taxa em que R é prejudicado, em proporção a L
γ_V	Taxa em que V é prejudicada, em proporção a L
μ_R	Taxa de mortalidade de R
μ_V	Taxa de mortalidade de V
μ_{A}	Taxa de mortalidade de A
μ_{L}	Taxa de mortalidade de L

Parâmetros considerados

Símbolo	Significado
κ	Taxa de crescimento de G
k	Capacidade de suporte do ambiente
θ_R	Taxa em que R se beneficia de G
θ_V	Taxa em que V se beneficia de G
$\theta_{\mathcal{A}}$	Taxa em que A se beneficia de R
θ_{L_1}	Taxa em que L se beneficia de R
θ_{L_2}	Taxa em que L se beneficia de V

Representação em matriz

Tabela: Matriz relacionando os parâmetros com as populações.

	G	R	V	Α	L
G	κ	$-\gamma_{G_2}$	$-\gamma_{G_2}$	-	-
R	θ_R	- μ_R	$-\gamma_{R_1}$	$-\gamma_{R_2}$	
V	θ_V	-	-μ _V	-	γ_V
Α	-	θ_{A}	-	$-\mu_{A}$	-
L	-	θ_{L_1}	θ_{L_2}	-	$-\mu_{L}$

Rede Simulada Modelo Matemático Parâmetros Simulações

Simulação 1

Foram consideradas as seguintes populações iniciais na primeira simulação:

Populações iniciais

- G(0) = 130
- R(0) = 30
- V(0) = 5
- A(0) = 10
- L(0) = 4

Tabela: Valor dos parâmetros utilizados na Simulação 1.

Símbolo	Valor
γ_{G_1}	0.1
γ_{G_2}	0.2
γ_{R_1}	0.8
γ_{R_2}	0.002
γ_V	0.87
μ_{R}	0.1
μ_V	0.03
μ_{A}	0.8
μ_{L}	0.99

Símbolo	Valor
κ	8
k	1000
θ_R	0.6
θ_V	0.06
$\theta_{\mathcal{A}}$	0.029999
θ_{L_1}	0.001
θ_{L_2}	0.03

Figura: Gráfico das populações, por tempo, da Simulação 1.

Figura: Zoom na figura acima, focando na população de grama.

Figura: Zoom na figura, focando nas populações de ratos, vacas, águias e leões.

Gripe Bovina

No tempo t= 35, aumentamos μ_V , para simular uma doença atingindo essa população. Em t= 60, a população se recupera da doença e μ_V volta ao valor original.

Figura: Gráfico das populações, por tempo, sob a Perturbação 1

Fênomeno Natural

No tempo t= 25, diminuímos a população de G, em 50%, e a cada intervalo de tempo de 25, o fenômeno se repete, simulando um fenômeno natural recorrente, que varre a vegetação da região.

Figura: Gráfico das populações por tempo, sob a Perturbação 2.

Surto Populacional de Ratos

No tempo t=35, aumentamos a taxa de crescimento de R, θ_R , simulando um surto populacional em R, a taxa de crescimento de R volta em t=45.

Figura: Gráfico das populações por tempo, sob a Perturbação 3.

Rede Simulada Modelo Matemático Parâmetros Simulações

Simulação 2

Foram consideradas as seguintes populações iniciais na segunda simulação:

Populações iniciais

- G(0) = 1000
- R(0) = 20
- V(0) = 50
- A(0) = 20
- L(0) = 15

Tabela: Valor dos parâmetros utilizados na Simulação 2.

Símbolo	Valor
γ_{G_1}	0.1
γ_{G_2}	0.1
γ_{R_1}	0.8
γ_{R_2}	0.002
γ_V	0.999
μ_R	0.9
μ_V	0.02
μ_{A}	0.8
μ_{L}	0.99

Símbolo	Valor
κ	8
k	10000
θ_R	0.04
θ_V	0.05
$\theta_{\mathcal{A}}$	0.029
θ_{L_1}	0.001
$ heta_{L_2}$	0.03

Figura: Gráfico das populações, por tempo, da Simulação 2.

Temporada de caça de Águias

Incluímos como uma perturbação na Simulação 2, a temporada de caça de águias, ou seja, aumentamos μ_A . A temporada dura t=5, e se repete a cada t=40.

Figura: Gráfico das populações, por tempo, sob a Perturbação 1.

Temporada de caça de Águias

Figura: Gráfico acima, com escala modificada.

Migração de L

Em t=50, a população de L dobra de tamanho, decorrente de um processo migratório muito rápido.

Figura: Gráfico das populações por tempo, sob a Perturbação 2.

Rede Simulada Modelo Matemático Parâmetros Simulações

Obrigado pela atenção!