Thermal Design Concepts

Energy Usage

Energy Efficiency

For Any System, Work Done < E_i

Work Done = $\eta E_i \mid \eta < 1$

Energy Efficiency

Work Done = $\eta E_i \mid \eta < 1$

for i5, $\eta \sim 70\%$

Wasted Energy

for i5, $\eta \sim 70\%$

Heat Dissipation

Wasted Energy → Dissipated as Heat

Temperature Rise

Wasted Energy → Dissipated as Heat

IC Temperature Rises

The Problem

Temperature Rise Leads to,

- 1. Reduced Performance
- 2. Permanent Damage

Quantify Temp Rise

IC Temperature Rises

But, How much?

Heat Flow

$$T_J^{\circ} > T_C^{\circ} > T_A^{\circ}$$

Thermal Model

Example

$$R\theta_{JC} = 1 \text{ °C/W}$$
 $R\theta_{CA} = 6 \text{ °C/W}$
 $P_{J} = 10 \text{ W}$
 $T_{A} = 30 \text{ °C}$
 $T_{J} = 10*1+ 10*6 + 30 = 100 \text{ °C}$

What if the rated max T_J of the die is 80 °C?

Solution – Use Heat Sink!

Heat Sink

Heat sink improves the heat transfer from the die to ambient \rightarrow lower T_1 .

But how?

Thermal Model with HS

$$T_J = 10*1 + 10* (R\theta_{HA}) + 30 < 100 °C$$

Design of HS

$$R\theta_{JC} = 1 \text{ °C/W}$$

 $R\theta_{CA} = 6 \text{ °C/W}$
 $P_J = 10 \text{ W}$
 $T_A = 30 \text{ °C}$
Rated max T_J of the die is 80 °C.

$$T_J = 10*1 + 10* (R\theta_{HA}) + 30 = 80 °C$$

Required
$$R\theta_{HA} = 4 \text{ °C/W}$$

PSoC® 4: PSoC 4100_BLE Family Datasheet Programmable System-on-Chip (PSoC®)

E.g., PSoC

Table 56	Package Characteristics
----------	-------------------------

Parameter	Description	Conditions	Min	Тур	Max	Units
T _A	Operating ambient temperature	-	-40	25.00	105	°C
TJ	Operating junction temperature	-	-40	-	125	°C
T_JA	Package θ_{JA} (56-pin QFN)	-	-	16.9	-	°C/wat
T _{JC}	Package θ _{JC} (56-pin QFN)	-	-	9.7	-	°C/wat t
T _{JA}	Package θ_{JA} (76-ball WLCSP)	-	-	20.1	-	°C/wat
T _{JC}	Package θ _{JC} (76-ball WLCSP)	-	-	0.19	-	°C/wat
T _{JA}	Package θ_{JA} (76-ball Thin WLCSP)	-	-	20.9	-	°C/wat
T _{JC}	Package θ _{JC} (76-ball Thin WLCSP)	-	-	0.17	-	°C/wat
T _{JA}	Package θ _{JA} (68-ball WLCSP)		-	16.6	-	°C/wat
T _{JC}	Package θ _{JC} (68-ball WLCSP)		-	0.19	-	°C/wat
T_JA	Package θ _{JA} (68-ball Thin WLCSP)		-	16.6	-	°C/wat
Tic	Package θ _{IC} (68-ball Thin		-	0.19	-	°C/wat

56-Pin QFN Ref: DigiKey

49-Ball WLCSP Ref: DigiKey

Reading

- What is a thermal capacitance ?
- Does thermal capacitance affect heat sink design?
- MacBook Air and MacBook Pro (What is the difference ?)