简单DP模拟赛

(请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	后缀自动机	动态树	二次剩余	快速傅里叶变换
英文题目名称	sam	tree	number	transfer
可执行文件名	sam	tree	number	transfer
输入文件名	sam.in	tree.in	number.in	transfer.in
输出文件名	sam.out	tree.out	number.out	transfer.out
提交文件名	sam.cpp	tree.cpp	number.cpp	transfer.cpp
每个测试点时限	1秒	1秒	1秒	2秒
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
内存限制	512MB	512MB	512MB	1024MB
题目类型	传统题	传统题	传统题	传统题

二、编译命令

题目 名称	sam	tree	number	transfer
对于 C++语 言	-o sam sam.cpp - lm -std=c++14 -O2 -Wl, stack=2147483647	-o tree tree.cpp - lm -std=c++14 -O2 -Wl, stack=2147483647	-o number number.cpp -lm - std=c++14 -O2 -Wl, stack=2147483647	-o transfer transfer.cpp -lm - std=c++14 -O2 -Wl, stack=2147483647

三、注意事项

- 1. 文件夹名、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++中函数main()的返回值类型必须是int,程序正常结束时的返回值必须是0。
- 3. 统一评测时采用的机器配置为: windows下lemon评测。
- 4. 请尽力优化,会收获更多的部分得分。
- 5. AK 了不要大声喧哗, 没AK也不要。

后缀自动机(sam)

题目描述

小 X 最近发现了一种非常有趣的数,他将这种数称之为 Sam 数。

Sam 数具有以下特征: 相邻两位的数字之差不超过 2。

小 X 还将 Sam 数按位数进行了分类,他将一个 k 位 Sam 数称之为 k 阶 Sam 数。

但不幸的是小X发现他数不清第k阶的 Sam数一共有多少个,这个时候机智的他想到了向你求助。

答案对 $10^9 + 7$ 取模。

输入格式

输入共一行一个整数 k, 含义见题面。

输出格式

一行一个整数 ans, 表示 k 阶的 Sam 数的个数。

答案对 $10^9 + 7$ 取模。

样例

样例1输入

4

样例1输出

867

数据范围

对于所有数据,满足: $1 < k < 10^{18}$ 。

测试点编号	特殊性质
$1\sim 4$	$k \leq 8$
$5\sim7$	$k \leq 10^6$
$8\sim 10$	$k \leq 10^{12}$
$11\sim 20$	无特殊约束

动态树(tree)

题目描述

给出一棵 n 个节点以 1 为根的有根树。对于第 $2 \leq i \leq n$ 个节点,其父亲 f_i 在 $[l_i,r_i]$ 中均匀随机。每个树的边有边权,初始为 0。

现在有 m 次操作,第 i 次操作表示将 (u_i, v_i) 的路径上所有的边的权值统一加上 w_i 。m 次操作结束后,对于所有 $i=2\sim n$,求 (i,f_i) 边上权值的期望,对 998244353 取模。

输入格式

第一行一个正整数表示 n。

接下来 n-1 行,其中第 i 行两个正整数表示 l_{i+1}, r_{i+1} 。

接下来一行一个正整数表示 m。

接下来 m 行, 第 i 行三个正整数表示 u_i, v_i, w_i 。

输出格式

一行 n-1 个正整数,其中第 i 个表示边 $(i+1,f_{i+1})$ 边权的期望,对 998244353 取模。

样例

样例1输入

```
3
1 1
1 2
1
1 3 2
```

样例1输出

1 2

样例1解释

所有节点的父亲共有2种可能的情况:

- $f_2=1, f_3=1$, 此时 $(f_2,2), (f_3,3)$ 边上的权值分别是 0,2。
- $f_2=1, f_3=2$, 此时 $(f_2,2), (f_3,3)$ 边上的权值分别是 2,2.

于是边 $(f_2,2)$ 边权的期望为 $\dfrac{0+2}{2}=1$,边 $(f_3,3)$ 边权的期望为 $\dfrac{2+2}{2}=2$ 。

样例2输入

```
5
1 1
1 2
3 3
2 4
9
2 5 497855355
1 5 840823564
3 1 295265328
2 3 457999227
4 4 235621825
2 1 86836399
5 2 800390742
5 3 869167938
2 4 269250165
```

405260353 409046983 606499796 13504540

数据范围

对于所有数据,保证 $1 \le n, m \le 5000$, $1 \le l_i \le r_i < i$, $1 \le u_i, v_i \le n$, $1 \le w_i \le 10^9$ 。

测试点编号	约束
$1\sim 3$	$n \leq 10$, $m \leq 10$
$4\sim 6$	$n \leq 50$, $m \leq 50$
$7\sim 10$	$n \leq 500$, $m \leq 500$
$11\sim14$	m = 1
$15\sim 20$	无额外约束

二次剩余(number)

题目描述

Oleg 和 Dasha 参加了一场团队竞赛,但不幸的是,他们未能解决任何问题。Oleg 立刻意识到他们的队伍训练不足。然后,他们共同的朋友提出了一个有趣的练习。这个练习相当简单,要解决它,只需要知道整数加减法的规则。

给定一个长度为 n 的数组 a,初始时所有值均为零。同时给定 m 个数 x_1, x_2, \ldots, x_m 。然后,对于从 1 到 m 的每个 i,你需要选择某个下标 j_i ,并执行更改 $a_{j_i}=x_i-a_{j_i}$ 。

请帮助 Oleg 和 Dasha 确定,如果每次选择都最优,那么在所有更改完成之后,数组 a 的元素之和的最大值可能为多少。

输入格式

本题有多组数据。

第一行包含一个整数 t,表示数据组数,对于每一组数据:

第一行包含两个整数 n 和 m。

第二行包含 m 个整数 x_1, x_2, \ldots, x_m 。

设 N 为所有数据集中 n 的总和,M 为所有数据集中 m 的总和。

保证 N 和 M 均不超过 $300\,000$ 。

输出格式

一个整数,表示答案。

样例

样例1输入

```
4
1 4
1 2 3 4
2 7
10 3 7 1 4 6 3
4 10
103 354 1 227 179 189 142 201 165 140
5 3
-10 11 -4
```

样例1输出

```
2
18
1085
17
```

样例1解释

在第一个数据集中,所有操作都应用于数组 a 的第一个元素。它依次变为 1-0=1, 2-1=1, 3-1=2, 4-2=2, 所以答案是 2。

在第二个数据集中,可以执行以下更改序列:

```
1. 将更改应用于第一个元素: a_1=10-a_1=10-0=10,此时 a=[10,0]。 2. 将更改应用于第一个元素: a_1=3-a_1=3-10=-7,此时 a=[-7,0]。 3. 将更改应用于第一个元素: a_1=7-a_1=7-(-7)=14,此时 a=[14,0]。 4. 将更改应用于第一个元素: a_1=1-a_1=1-14=-13,此时 a=[-13,0]。 5. 将更改应用于第二个元素: a_2=4-a_2=4-0=4,此时 a=[-13,4]。 6. 将更改应用于第一个元素: a_1=6-a_1=6-(-13)=19,此时 a=[19,4]。 7. 将更改应用于第二个元素: a_2=3-a_2=3-4=-1,此时 a=[19,-1]。
```

最后,我们得到 a = [19, -1],所以最终的和是 18。

可以证明不可能得到更好的结果。

数据范围

对于所有测试数据: $1 \leq t \leq 10^4$, $1 \leq n, m \leq 3 \times 10^5$, $|x_i| \leq 10^9$ 。

每个测试点的具体限制见下表:

测试点编号	$n \leq$	$m \leq$	特殊性质
$1\sim 4$	2	20	t = 1
$5\sim 8$	2	$3 imes10^5$	无
$9\sim11$	200	200	$t \leq 5$
$12\sim14$	2000	2000	$t \leq 5$
$15\sim16$	$3 imes10^5$	$3 imes10^5$	$0 \leq x_i$
$17\sim 20$	$3 imes10^5$	$3 imes10^5$	无

快速傅里叶变换 (transfer)

题目描述

在舞台上,有 2N 只海狸排成一列。它们是合唱团的成员。每只海狸唱着高音部或低音部。这些信息由一个字符串 S 给出。具体地,如果 S 的第 i 个字符是 A,编号为 i 的海狸(从右边看台来看)唱高音。如果 S 的第 i 个字符是 B,编号为 i 的海狸唱低音。有 N 只海狸唱高音,有 N 只海狸唱低音。

从现在起,这些海狸将要演唱 K 首歌。然而,因为所有歌曲非常复杂,每只海狸只唱一首歌曲,不会唱其他歌曲。此外,为了使歌声更加美妙,每首歌曲必须满足以下条件:

- 至少有一只海狸唱这首歌。
- 唱这首歌的唱高音和唱低音的海狸数量应当相等。
- 如果只考虑唱这首歌的海狸,所有唱高音的海狸都在唱低音的海狸的右边。

指挥家 Bitaro 想找到一种方案,给出哪些海狸唱哪首歌,满足以上所有条件。由于 Bitaro 特别聪明,他注意到这可能无法实现。为了应对这个问题,Bitaro 将交换相邻两只海狸的位置多次,以便有一种方式可以调配海狸,从而满足上述条件。

由于 Bitaro 认为效率很重要,所以他想最小化要执行的操作数。然而,这是一个非常困难的问题。由于您是一位出色的程序员,Bitaro 请求您解决此问题。

编写一份程序,在给出合唱与演唱歌曲数量 K 的信息时,计算 Bitaro 需要执行的最小操作数。请注意,在本任务的限制下,可以执行操作多次,以便有一种方式可以在海狸之间分配歌曲,满足上述条件。

输入格式

输入共两行。

第一行包含两个数 N , K 。

第二行包含一个长度为 2N 的字符串 S。

输出格式

向标准输出写入一行。输出应该包含 Bitaro 需要执行的最小操作数。

样例

样例1输入

5 2

AABABABBAB

样例1输出

2

样例1解释

在该样例输入中,例如 Bitaro 可以进行如下操作。下划线表示被交换的两个海狸的位置。

1. 交换从舞台右侧数第 3 个和第 4 个海狸。 操作后,表示海狸部件分布的字符串变为。 2. 交換从舞台右侧数第 8 个和第 9 个海狸。 操作后,字符串变为 *AAABBABABB*。

操作完成后, Bitaro 可以按如下方式分配歌曲:

- 从舞台右侧数第 1, 2, 3, 4, 5, 7 个海狸演唱第一首歌
- 从舞台右侧数第 6, 8, 9, 10 个海狸演唱第二首歌

这种分配方式满足条件。若操作次数少于 2 次,则不存在满足条件的分配方式。因此输出 2。

样例2输入

5 3

AABABABBAB

样例2输出

0

样例3输入

3 1

BBBAAA

样例3输出

9

样例4输入

10 3

ABABBBBABBABABAAAA

样例4输出

37

数据范围

对于所有测试点: $1 \le K \le N \le 10^6$ 。

测试点编号	特殊性质
$1\sim 4$	$N \leq 10$
$5\sim 10$	$N \leq 5000$
$11\sim14$	$N \leq 10^5$
$15\sim 20$	无特殊限制