

■ CS286 AI for Science and Engineering

Lecture 3: Traditional Machine Learning (Part 1)

Jie Zheng (郑杰)

PhD, Associate Professor

School of Information Science and Technology (SIST), ShanghaiTech University

Fall Semester, 2020

- Regression
- Bayesian statistics
- Support vector machines

Regression

What is regression?

• Given a set of attributes $x:(x_1,x_2,x_3,...,x_n)$ of an object, estimate the mapping function from input x to a continuous output variable y base on training examples.

What is Linear Regression?

• Linear Regression model : A linear model makes a prediction by simply computing a weighted sum of the input features x:

$$\hat{y} = h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots \theta_n x_n$$

- \hat{y} : predicted value
- *n* : number of the features
- x_i : the i^{th} feature value
- θ_i : the j^{th} model parameter (including bias term θ_0)

Linear Regression

A Linear Regression model (in vectorized form):

$$\hat{y} = \boldsymbol{\theta} \cdot \boldsymbol{x} = \boldsymbol{\theta}^T \boldsymbol{x}$$

- 0: model parameter vector, containing a bias term and feature weights from θ_0 to θ_n
- x: feature vector of instances
- $\theta \cdot x$ is the dot product of the vectors θ and x which is equal to : $\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots \theta_n x_n$

Linear Regression 's objective

- How to obtain a proper Linear Regression model from training examples?
 - Training a model means setting its parameters so that the model best fits the training dataset
- What does "best fit" mean?
 - The most common performance measure of a regression model is the Root Mean Square Error (RMSE):

RMSE(
$$\mathbf{X}, h$$
) = $\sqrt{\frac{1}{m} \sum_{i=1}^{m} \left(h(\mathbf{x}^{(i)}) - y^{(i)} \right)^2}$

• In practice, it is simpler to minimize the Mean Square Error (MSE):

$$MSE(\mathbf{X}, h_{\boldsymbol{\theta}}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^{T} \mathbf{x}^{(i)} - y^{(i)})^{2}$$

Lower RMSE or MSE scores represent better model fitting

Linear Regression's objective

 After combining the MSE and Linear Regression model, we can build a cost function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2$$

 Our objective is to minimize the MSE cost by tuning the parameter θ , i.e. to make the model fit to the training samples.

Gradient Descent

- Goal: To decrease the MSE cost via updating parameter θ
- Approach: Gradient Descent
 - Filling θ with random values
 - Keep changing θ to reduce the objective function $J(\theta)$

Gradient Descent

• How to change the parameter θ ?

$$\theta_j^{k+1} = \theta_j^k - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}^k)$$
$$\frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta}^k) = \frac{2}{m} \sum_{i=1}^m (\boldsymbol{\theta}^T \boldsymbol{x}^{(i)} - y^{(i)}) x_j^{(i)}$$

- k: iteration count
- θ_i^k : the j^{th} parameter in the k^{th} iteration
- α : step size (also known as learning rate)

Learning rate in Gradient Descent

• If the learning rate is too small, it is hard to converge

Learning rate in Gradient Descent

• If the learning rate is too large, results are unstable

Pitfalls of Gradient Descent

Some cost functions may cause problems:

 Local Minimum: It cannot reach the optimal solution by being stuck in local minimum

• Plateau : It takes a long time to cross the plateau

Other Gradient Descent methods

- Batch Gradient Descent: Instead of individually computing the partial derivatives, solve them all in one in vectorized form
- Stochastic Gradient Descent (SGD): Pick one random instance in training set each iteration to compute gradient based on that instance

 Mini-batch Gradient Descent: Compute the gradients on small random sets of instances

Polynomial Regression

- Linear Regression sometimes cannot fit the training sample well, if the data is nonlinear
- How to use a linear model to fit nonlinear data?
- Polynomial Regression is a technique that adds the powers of each feature as new features, and then train a linear model on this extended set of features

Polynomial Regression

An example of Polynomial Regression:

$$\hat{y} = \theta_2 x_1^2 + \theta_1 x_1 + \theta_0$$

- The example input x only has one feature x_1
- The degree of this model is 2

Learning curves

- Learning curves are plots of the model performance (e.g. cost function RMSE) on the training and validation sets as the training set size (or training iteration) changes
 - e.g. training two models on the same data:

Linear regression: **Underfitting**

Polynomial regression: Overfitting

Regularized linear model

- Can we do better for point fitting?
 - Increase the degree of model
- High-degree Polynomial Regression:
 - Low error
 - Overfitting!

Regularization

- Constraining the model to make it simpler and harder for it to overfit the data
- Example: to regularize a polynomial model by reducing the number of polynomial degrees

Regularized linear model

- Add a regularized term in Linear Regression Cost
- Ridge Regression : $J(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_i^2$
 - Enforce the parameter θ to be small
- Lasso Regression : $J(\theta) = MSE(\theta) + \alpha \frac{1}{2} \sum_{i=1}^{n} |\theta_i|$
 - Enforce the parameter θ to be sparse
- α controls the extent to which you want to regularize a model

Lasso Regression with different α values

Logistic Regression

- Regression can be used for classification
- Probability is naturally considered in this case

$$\hat{p} = h_{\theta}(\mathbf{x})$$

- Let \hat{p} denote the probability of x with label 1
- Then, $1 \hat{p}$ is the probability of x with label 0

Sigmoid function

• Using the **Sigmoid function** to define the probability \hat{p}

$$\hat{p} = h_{\theta}(\mathbf{x}) = \sigma(\mathbf{x}^T \boldsymbol{\theta})$$

where
$$\sigma(t) = \frac{1}{1 + \exp(-t)}$$

Logistic Regression Cost Function

- Training objective: To set the parameter vector θ so that the model estimates high probabilities for positive instances and low probabilities for negative instances
- Cost function of a single training instance :

$$c(\mathbf{\theta}) = \begin{cases} -\log(\hat{p}) & \text{if } y = 1\\ -\log(1 - \hat{p}) & \text{if } y = 0 \end{cases}$$

 Logistic Regression cost function is the average over all training instances:

$$J(\mathbf{\theta}) = -\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log(\hat{p}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{p}^{(i)})]$$

Softmax Regression

- Logistic Regression can only handle binary classification
- But Logistic Regression can be generalized to support multiple classes, using **Softmax** Regression
- Basic idea:
 - 1. Compute a score $s_k(x)$ for each class k
 - Estimate the probability of each class by applying the softmax function to the scores

$$\hat{p}_k = \sigma(\mathbf{s}(\mathbf{x}))_k = \frac{\exp(s_k(\mathbf{x}))}{\sum_{j=1}^K \exp(s_j(\mathbf{x}))}$$

上海科技大学 ShanghaiTech University

Bayesian Statistics

Conditional probability

- Joint probability $P(e_1, e_2)$ is the probability that two (or more) events, say e_1 and e_2 , have happened together and is given by the probability of the intersection of two events.
- Conditional probability $P(e_1|e_2)$ of two events, say e_1 given e_2 , is the probability of event e_1 given that the event e_2 (the *prior* event) has already occurred, and is given by

$$P(e_1 | e_2) = \frac{P(e_1, e_2)}{P(e_2)}$$

- Therefore, $P(e_1, e_2) = P(e_1 | e_2) P(e_2)$
- Independent events: The probability of one event does not depend on the other event. Therefore, $P(e_1 | e_2) = P(e_1)$ and $P(e_2 | e_1) = P(e_2)$
- That is, the joint probability of independent events is equal to the product of their individual probabilities:

$$P(e_1, e_2) = P(e_1)P(e_2)$$

Bayes' Theorem

• For two events e_1 and e_2 , since $P(e_1, e_2) = P(e_1 | e_2)P(e_2) = P(e_2 | e_1)P(e_1)$, Bayes' theorem is given by

$$P(e_1 | e_2) = \frac{P(e_2 | e_1)P(e_1)}{P(e_2)}$$

• For a given set of mutually exclusive and exhaustive event $e, e_1, e_2, ..., e_n$, the probability of event e is give by the total probability formula (marginalization):

$$P(e) = \sum_{i=1}^{n} P(e, e_i) = \sum_{i=1}^{n} P(e \mid e_i) P(e_i)$$

For such events, the Bayes' theorem is extended to

$$P(e_i | e) = \frac{P(e | e_i)P(e_i)}{P(e)} = \frac{P(e | e_i)P(e_i)}{\sum_{i=1}^{n} P(e | e_i)P(e_i)}$$

Probabilistic modeling

- Most biological phenomena are due to random events or interpreted with probability
- How to build probabilistic models for biological data, processes, or phenomena?
 - E.g. sequences (DNA, protein, etc.), gene expressions, protein structures, evolution
- Such a model assigns high probability to data/information when it fits the phenomenon well, and low probability for those it does not fit well
- Issues in probabilistic modeling:
 - What is the best model? multiple models; methods to assess how well a given dataset *D* fits a model instance *M*; the model selection problem
 - What is the <u>learning algorithm</u>? That is, how to determine the parameters of the model?
 - Amount of data available for model training (or parameter estimation)?
 - Characteristics of data (noise, independence, redundancies, biases)?
 - Unless stated otherwise, the data $d \in D$ are generally assumed to be independent

Maximum Likelihood (ML)

- Once the model M is chosen, the parameters of the model have to be inferred from the data. This is referred to as learning or training of the model
- Given the model M and its parameters α , the **likelihood** of data D is given by $P(D \mid \alpha, M)$
- The likelihood indicates how well the model predicts the data
- The maximum likelihood (ML) estimator maximizes the likelihood of the data given the model. That is, it finds the optimal set of parameters α^{ML} that maximize the likelihood:

$$\alpha^{\mathrm{ML}} = \arg \max_{\alpha} P(D \mid \alpha, M)$$

 Often the log-likelihood (natural logarithm of the likelihood function) is used for computational efficiency.

Strengths and drawback of ML

- Consistency: Maximum likelihood is consistent in the sense that the true (unknown) parameter α_0 will also, in the limit of a large amount of data, be the value that maximizes the likelihood, i.e., $\alpha \rightarrow \alpha_0$ as the data size $n \rightarrow \infty$
- Other nice properties of ML:
 - Efficient: needs less data than other estimators to achieve a given performance
 - Invariance to parameter transformation: If θ^* is the MLE of θ , then for any function $f(\theta)$, the MLE of $f(\theta)$ is $f(\theta^*)$
- Drawback: When the data are scanty, ML can give poor results
 - Example: In rolling a die, to estimate the probabilities of the 6 faces, θ_1 , θ_2 , ..., θ_6 , if we use only 3 different rolls of the die, then the ML estimate is

$$\theta_i = n_i / \sum n_k$$

- But then, at least 3 of the 6 parameters have values 0, a bad estimator
- Solution: To incorporate *prior* knowledge (e.g. θ_1 , θ_2 , ..., θ_6 should all be near 1/6)

Maximum a posteriori (MAP)

- Given the data D and the model M, the **posterior probability** is the probability of parameters, $P(\alpha \mid D, M)$
- From Bayes' theorem:

$$P(\alpha \mid D, M) = \frac{P(D \mid \alpha, M)P(\alpha, M)}{P(D, M)} = \frac{P(D \mid \alpha, M)P(\alpha \mid M)P(M)}{P(D, M)}$$

- Because the parameters α do not depend on the terms P(M) or P(D, M), $P(\alpha \mid D, M) \propto P(D \mid \alpha, M) P(\alpha \mid M)$
- The maximum a posteriori (MAP) estimator gives the parameters that maximize the posterior probability of the parameters, i.e. the MAP estimator is given by

$$\alpha^{\text{MAP}} = \arg \max_{\alpha} P(D \mid \alpha, M) P(\alpha \mid M)$$

• The **prior probability** of parameters $P(\alpha \mid M)$ is chosen in some reasonable manner to incorporate *prior* (biological) knowledge (Bayesian statistics)

Bayesian modeling

The Bayes' theorem is from:

$$P(B|A) = P(A \text{ and } B)/P(A)$$

• A and B usually represent observed data Y and parameters θ , and the goal is to infer the posterior distribution of the parameters

$$\pi(\theta|Y) = \pi(\theta)P(Y|\theta)/P(Y)$$

- Example: Y is the genetic marker data for a person, θ is the ethnic origin of the person (e.g. Caucasian, Asian or African)
- Key elements:
 - Model specifications, needed to evaluate $P(Y|\theta)$
 - Prior specifications, needed to define $\pi(\theta)$
 - Computational methods needed to infer the posterior distribution $\pi(\theta|Y)$
- Tips for modeling:
 - The model should be comprehensive enough to appropriately model the obtained data
 - The degree of knowledge about the model parameters can be reflected by the prior distributions
 - Posterior distributions are often inferred using Markov chain Monte Carlo (MCMC)

Graphical model

- Probabilistic graphical models are graphs in which nodes represent random variables, and the (lack of) arcs represent dependence (conditional independence)
 - It provides a compact representation of joint probability distribution
- Markov random field: undirected graphical models (also called Markov networks)
- Two sets of nodes A and B are conditionally independent given a third set C if all paths between A and B are separate by a node in C

$$A \perp B \mid C$$

Bayesian Networks

- Bayesian networks are directed graphical models (also called Belief networks)
- Popular with AI and statistics communities
- A model with both directed and undirected arcs is called a chain graph
- Compared with undirected graphical models, directed models:
 - A->B can encode causal relationship
 - Can encode deterministic relationship and are easier to learn (i.e. fit to data)

Advantages of Bayesian networks

- Compact and intuitive representation
- Captures causal relationships
- Efficient model learning (parameters and structure)
- Deals with noisy data
- Integration of prior knowledge
- Effective inference algorithms

Conditional probability distribution

• Discrete variable: CPT (conditional probability table)

Inference with Bayesian networks

- Probabilistic inference is one of the most common tasks that Bayesian networks are used to solve
- Example: Suppose we observe that the grass is wet. There are two possible causes for this:
 - (1) It is raining, or
 - (2) the sprinkler is on
- Which is more likely? We can use Bayes' rule to compute the posterior probability of each explanation

Support Vector Machines

To separate the points, which line is better?

The line can deal with the more noise data is better

• The margin between two sets should be as large as possible

 Linear SVM aims to find a line that separates two sets with the widest margin, i.e. fitting the widest possible street between the classes

iris dataset

- Sepal and Petal length and width of 150 iris flowers
- There are 3 different species:
 - Iris-Setosa
 - Iris-Versicolor
 - Iris-Virginica

 Build a classifier to distinguish Iris-Virginica and Iris-Setosas based on the two features of petal width and petal length

- Adding more training instances "off the street" will not affect the decision boundary at all:
 - it is fully determined (supported) by the instances located on the edge of the street, which are called support vectors

Hard margin classification

- Hard margin classification : all instances must be
 - off the street, and
 - on the right side
- Two issues:
 - It only works if the data is linearly separable
 - It is quite sensitive to outliers (i.e. instances that are not in accord with the overall data distribution)

Soft margin classification

- To avoid the two issues, it is preferable to find a good balance between:
 - keeping the street as large as possible, and
 - limiting the margin violations,
- This is called **soft margin classification** (allowing some mistakes to make the classifier generalize better)

margin violations

- Another idea is to use nonlinear lines tosssss separate the sets
- Adding features can make this possible:
 - Left figure represents a simple dataset with just one feature, which is not linearly separable
 - If we add a second feature $x_2 = (x_1)^2$, the resulting 2D dataset is perfectly linearly separable

Nonlinear SVM classification (continued)

- Adding features computed using a similarity function that measures how much each instance resembles a particular landmark
 - e.g. Gaussian Radial Basis Function (RBF)

Kernelized SVM

Issue: Adding all features is computationally expensive, especially on large training sets, making the model too slow

Kernel trick

- Using mapping function Φ to transfer original data x into a higher dimensional space, then the transformed data $\Phi(x)$ might be separable
- It gives the same result *as if* you have added many similarity features, without actually adding them

 When we make inverse transformation of the transformed data, the decision boundary become nonlinear

Polynomial kernel

 Control the parameter of classifier (here, the degree of polynomial) in case of underfitting / overfitting

Gaussian RBF kernel

- C controls the bell-shape of curve
- γ acts like a regularization hyperparameter (underfitting / overfitting)

SVM regression

- Objective: To fit as many instances as possible *on* the street while limiting margin violations (i.e., instances *off* the street)
- ϵ , as the hyperparameter, controls the width of the street

SVM Regression

2nd –degree polynomial regression

Applications of SVM

- SVM has been used successfully in many real-world problems:
 - Text (and hypertext) categorization
 - Image classification
 - Bioinformatics (protein classification, cancer classification)
 - Hand-written character recognition

Example: Cancer classification

- Scores on microarray represent intensity of gene expression after being re-scaled to make each chip equivalent
- Dataset: bone marrow samples with two types of labels:
 - acute lymphoblastic leukemia (ALL) (急性淋巴细胞白血病)
 - acute myeloid leukemia (AML) (急性髓细胞样白血病)

Genes				
Samples	g-1	g-2	••••	g-d
s-1				
s-2				
•••••				
s-n				

Cancer classification

Microarray Image File

training data

testing data

0.0 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37 1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37 1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35 1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35

1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22

1:154 2:72 3:81 4:650 5:698 6:5199 7:1397 8:216 9:71 10:22 1:154 2:96 3:58 4:794 5:665 6:5328 7:1574 8:263 9:98 10:37 1.0 1:154 2:98 3:56 4:857 5:642 6:5196 7:1574 8:300 9:95 10:35

Labeled Data File

ALL/AML gene₁: intensity₁ 0.0 1:0.852272

gene₂: intensity₂ 2:0.273378

gene₃: intensity₃ ... 3:0.198784

an instance

Cancer classification

• Associates each feature vector of data (X_i) with its known classification (y_i) :

$$(X_1, y_1), (X_2, y_2), ..., (X_n, y_n)$$

- where each X_1 is a d-dimensional vector of real numbers and each y_i is classification label 1 / 0
- Create an SVM model
- Train it on training data, i.e. select the best model parameters, in order to obtain the best classification accuracy
- Then, test this model on test data

Weakness of SVM

- It is sensitive to noise
 - A small number of mislabeled examples can dramatically decrease the performance
- It only considers two classes
 - How to do multi-class classification with SVM?
 - 1) For m classes, learn m SVM's
 - SVM 1 learns "Output==1" vs "Output!= 1"
 - SVM 2 learns "Output == 2" vs "Output != 2"

 - SVM m learns "Output == m" vs "Output != m"
 - 2)To predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region

- With regression as an example, we learned how to train machine learning models
 - Cost function minimization
 - Gradient Descent
- Techniques to tackle overfitting
 - Regularization
 - Learning curve
- Bayesian statistics (including Bayesian networks) can integrate data with prior knowledge for probabilistic modeling and inference
- SVM is a powerful machine learning technique when the datasets are not too big
- Read A. Geron's book "Hands-On Machine Learning with Scikit-Learn & TensorFlow", Chapters 4 – 5

