Laborato	rium Elektroniki C	Cyfrowej
Ćwiczenie nr: 4 Temat zajęć: Automaty	Data wykonania: 09.04.2018	
Kierunek/semestr: AiR / 4	Data uruchomienia:	
Wykonali: Katarzyna Kowalska	12 .04.2018	

Zadanie A:

1. Cel zadania / wymagania projektowe

- kodowanie stanów automatu w kodzie NKB;
- prezentacja stanów wyjść automatu na diodach LED;
- prezentacja stanów wewnętrznych automatu na wyświetlaczu 7-segmentowym;
- budowa modułowa urządzenia: automat → układ prezentacji danych;
- realizacja przy pomocy dowolnych układów z biblioteki Spartan3E.

Tabela automatu A1 wg generatora zadań dla numeru indeksu 132100:

automat A1

stan obecny	•	astepny x ='1'	stan wyjscia
S 0 S 1 S 2 S *	S 1 S 2 S 3 S 0	S 4 S 6 S 0 S 0	100 110 000

^{* -} wszystkie pozostale stany

$Q_2^t Q_1^t Q_0^t$	X	$Q_2^{t+1}Q_1^{t+1}Q_0^{t+1}$	Wyjście BIN	Wyjście DEC	
000	0	001	100	4	
000	1	100	100	4	
001	0	010	110	6	
001	1	110	110	Ü	
010	0	011	000	0	
010	1	000	000	U	
011	0	000	000	0	
011	1	000	000	U	
100	0	000	000	0	
100	1	000	000	U	
101	0	000	000	0	
101	1	000	000	U	
110	0	000	000	0	
110	1	000	000	U	
111	0	000	000	0	
111	1	000	000	0	

2. Schemat przejść automatu

3. Minimalizacja automatu w oparciu o tablicę prawdy

Tabela dla Q_0^{t+1}

$Q_2^t Q_1^t$	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	0	0	0	0
10	0	0	0	0

$$Q_0^{t+1} = \overline{Q_2^t} \; \overline{Q_0^t} \; \overline{x}$$

Tabela dla Q_1^{t+1}

$Q_2^t Q_1^t$	00	01	11	10
00	0	0	1	1
01	1	0	0	0
11	0	0	0	0
10	0	0	0	0

$$Q_1^{t+1} \text{=} \overline{Q_2^t} \ \overline{Q_1^t} Q_0^t + \overline{Q_2^t} Q_1^t \ \overline{Q_0^t} \overline{x}$$

Tabela dla Q_2^{t+1}

$Q_2^t Q_1^t$	00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

$$Q_2^{t+1} = \overline{Q_2^t} \ \overline{Q_1^t} \ x$$

4. Wykonanie logiki automatu

5. Symulacja działania logiki automatu

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force -freeze sim:/logika/x 0 0, 1 {5000 ps} -r 10ns

force -freeze sim:/logika/Q0t0 0 0, 1 {10000 ps} -r 20ns

force -freeze sim:/logika/Q1t0 0 0, 1 {20000 ps} -r 40ns

force -freeze sim:/logika/Q2t0 0 0, 1 {40000 ps} -r 80ns

Tablica automatu

$Q_2^t Q_1^t Q_0^t$	X	$Q_2^{t+1}Q_1^{t+1}Q_0^{t+1}$
000	0	001
000	1	100
001	0	010
001	1	110
010	0	011
010	1	000
011	0	000
011	1	000
100	0	000
100	1	000
101	0	000
101	1	000
110	0	000
110	1	000
111	0	000
111	1	000

• Symulacja w programie modelsim

Wyniki na wyjściach są zgodne z oczekiwanymi dla automatu.

6. Tablica dekodera

$Q_2Q_1Q_0$	$B_2B_1B_0$
000	100
001	110
010	000
011	000
100	000
101	000
110	000
111	000

7. Minimalizacja dekodera

Tabela dla B_0

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	0	0	0	0
1	0	0	0	0

$$B_0 = 0$$

Tabela dla B_1

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	0	1	0	0
1	0	0	0	0

$$B_1 = \overline{Q_2^t} \; \overline{Q_1^t} \; Q_0$$

Tabela dla B_2

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	1	1	0	0
1	0	0	0	0

$$\boldsymbol{B}_2 = \overline{\boldsymbol{Q}_2^t} \, \overline{\boldsymbol{Q}_1^t}$$

8. Wykonanie dekodera

9. Symulacja działania dekodera

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force -freeze sim:/logika/Q0 0 0, 1 {10000 ps} -r 10ns

force -freeze sim:/logika/Q1 0 0, 1 {20000 ps} -r 20ns

force -freeze sim:/logika/Q2 0 0, 1 {40000 ps} -r 40ns

Tablica dekodera

$Q_2Q_1Q_0$	$B_2B_1B_0$
000	100
001	110
010	000
011	000
100	000
101	000
110	000
111	000

• Symulacja w programie modelsim

Wyniki na wyjściach są zgodne z oczekiwanymi dla dekodera.

10. Wykonanie automatu

11. Implementacja / testowanie prototypu

• Interfejs testowanego urządzenia (wg schematu):

Port urządzenia testowanego	Sygnał płyty prototypowej
X	SW7
but	BTN0
sel	SW0
dis	SW1
clk	Zegar 50Hz
rst	BTN3
sseg(0)	CA
sseg(1)	СВ
sseg(2)	CC
sseg(3)	CD
sseg(4)	CE
sseg(5)	CF
sseg(6)	CG
an(0)	AN0
an(1)	AN1
an(2)	AN2
an(3)	AN3

Testowanie polega na podaniu na wejścia Q_0 , Q_1 , Q_2 , x bloku logiki i wejścia Q_0 , Q_1 , Q_2 bloku dekodera sekwencji 4-bitowych i 3-bitowych i obserwacji zachowania układu przy pomocy wyświetlacza 7-segmentowego. Wyświetlacz znajduje się bezpośrednio na płytce. Częstotliwość zegara licznika (wejście clk dla automatu) wynosi ~1kHz.

• Pinout Report

2 H 3 C 4 F1 5 B	17 117 118	an<0> an<1>	IOB	IO_L19N_1	OUTPUT				Rate		Delay		Register
3 C 4 F1 5 B	18		IOB		COTFOI	LVCMOS	1	12	SL	NONE**		LOCATED	NO
4 F1				IO_L16N_1/A0	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
5 B	15	an<2>	IOB	IO_L24P_1/LDC1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
_		an<3>	IOB	IO_L21P_1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
	318	but	IBUF	IP	INPUT	LVCMOS	1				NONE	LOCATED	NO
6 B	38	clk	IBUF	IP_L13P_0/GCLK8	INPUT	LVCMOS	0				NONE	LOCATED	NO
7 H	118	dis	IBUF	IP/VREF_1	INPUT	LVCMOS	1				NONE	LOCATED	NO
8 H	H13	rst	IBUF	IP	INPUT	LVCMOS	1				NONE	LOCATED	NO
9 G	518	sel	IBUF	IP	INPUT	LVCMOS	1				NONE	LOCATED	NO
10 L1	.18	sseg<0>	IOB	IO_L10P_1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
11 F1	18	sseg<1>	IOB	IO_L19P_1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
12 D)17	sseg<2>	IOB	IO_L23P_1/HDC	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
13 D)16	sseg<3>	IOB	IO_L23N_1/LDC0	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
14 G	514	sseg<4>	IOB	IO_L20P_1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
15 J1	17	sseg<5>	IOB	IO_L13P_1/A6/RHCLK4/IR	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
16 H	114	sseg<6>	IOB	IO_L17P_1	OUTPUT	LVCMOS	1	12	SL	NONE**		LOCATED	NO
17 R		x	IBUF	IP	INPUT	LVCMOS					NONE	LOCATED	NO

Zadanie B:

1. Cel zadania / wymagania projektowe

- kodowanie stanów automatu w kodzie Graya;
- prezentacja stanów wyjść automatu na diodach LED;
- prezentacja stanów wewnętrznych automatu na wyświetlaczu 7-segmentowym;
- budowa modułowa urządzenia: automat → układ prezentacji danych;
- realizacja przy pomocy dowolnych układów z biblioteki Spartan3E.

Tabela automatu A2 wg generatora zadań dla numeru indeksu 132100:

									_
2	и.	•	$\overline{}$	m	2	t		Λ	٠,
a '	ш.		u		0	_	,	-	_

stan	stan na	stan	
obecny	x ='0'	wyjscia	
S 0	S 1	S 5	101
S 1	S 2	S 7	111
S2	S 3	S 1	001
S*	S 0	S 0	000

^{* -} wszystkie pozostale stany

$Q_2^t Q_1^t Q_0^t$	X	$Q_2^{t+1}Q_1^{t+1}Q_0^{t+1}$	Wyjście BIN	Wyjście DEC
000	0	001	101	5
000	1	111	101	3
001	0	011	111	7
001	1	100	111	/
011	0	010	001	1
011	1	001	001	1
010	0	000	000	0
010	1	000	000	U
110	0	000	000	0
110	1	000	000	U
111	0	000	000	0
111	1	000	000	U
101	0	000	000	0
101	1	000	000	U
100	0	000	000	0
100	1	000	000	U

2. Schemat przejść automatu

3. Minimalizacja automatu w oparciu o tablicę prawdy

Tabela dla Q_0^{t+1}

$Q_2^t Q_1^t$	00	01	11	10
00	1	1	0	1
01	0	0	1	0
11	0	0	0	0
10	0	0	0	0

$$Q_0^{t+1} = \overline{Q_2^t} \ \overline{Q_1^t} \ \overline{Q_0^t} + \overline{Q_2^t} \ \overline{Q_1^t} \ \overline{x} + \overline{Q_2^t} \ Q_1^t Q_0^t \ x$$

Tabela dla Q_1^{t+1}

$Q_2^t Q_1^t \qquad \qquad Q_0^t x$	00	01	11	10
00	0	1	0	1
01	0	0	0	1
11	0	0	0	0
10	0	0	0	0

$$Q_1^{t+1} \text{=} \overline{Q_2^t} \ \overline{Q_1^t} \ \overline{Q_0^t} x + \overline{Q_2^t} Q_0^t \ \overline{x}$$

Tabela dla Q_2^{t+1}

$Q_2^t Q_1^t$	00	01	11	10
00	0	1	1	0
01	0	0	0	0
11	0	0	0	0
10	0	0	0	0

$$Q_2^{t+1} = \overline{Q_2^t} \; \overline{Q_1^t} \; x$$

4. Wykonanie logiki automatu

5. Symulacja działania logiki automatu

- Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:
 - force -freeze sim:/logika/x 0 0, 1 {5000 ps} -r 10ns
 - force -freeze sim:/logika/Q0 0 0, 1 {10000 ps} -r 20ns
 - force -freeze sim:/logika/Q1 0 0, 1 {20000 ps} -r 40ns
 - force -freeze sim:/logika/Q2 0 0, 1 {40000 ps} -r 80ns
- Tablica automatu

$Q_2^t Q_1^t Q_0^t$	X	$Q_2^{t+1}Q_1^{t+1}Q_0^{t+1}$
000	0	001
000	1	111
001	0	011
001	1	100
011	0	010
011	1	001
010	0	000
010	1	000
110	0	000
110	1	000
111	0	000
111	1	000
101	0	000
101	1	000
100	0	000
100	1	000

• Symulacja w programie modelsim

Wyniki na wyjściach są zgodne z oczekiwanymi dla automatu.

6. Tablica dekodera

$Q_2Q_1Q_0$	$B_2B_1B_0$
000	101
001	111
011	001
010	000
100	000
101	000
111	000
110	000

7. Minimalizacja dekodera

Tabela dla B_0

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	1	1	1	0
1	0	0	0	0

$$\boldsymbol{B}_0 = \overline{\boldsymbol{Q}_2^t} \, \overline{\boldsymbol{Q}_1^t} + \overline{\boldsymbol{Q}_2^t} \boldsymbol{Q}_0$$

Tabela dla B_1

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	0	1	0	0
1	0	0	0	0

$$B_1 = \overline{Q_2^t} \, \overline{Q_1^t} \, Q_0$$

Tabela dla B_2

Q_2^t $Q_1^tQ_0^t$	00	01	11	10
0	1	1	0	0
1	0	0	0	0

$$B_2 = \overline{Q_2^t} \; \overline{Q_1^t}$$

8. Wykonanie dekodera

9. Symulacja działania dekodera

• Wymuszenia zdefiniowano zgodnie z poniższym skryptem Tcl:

force -freeze sim:/logika/Q0 0 0, 1 {10000 ps} -r 10ns

force -freeze sim:/logika/Q1 0 0, 1 {20000 ps} -r 20ns

force -freeze sim:/logika/Q2 0 0, 1 {40000 ps} -r 40ns

• Tablica dekodera

$Q_2Q_1Q_0$	$B_2B_1B_0$
000	101
001	111
011	001
010	000
100	000
101	000
111	000
110	000

• Symulacja w programie modelsim

Wyniki na wyjściach są zgodne z oczekiwanymi dla dekodera.

10. Wykonanie automatu

11. Implementacja / testowanie prototypu

• Interfejs testowanego urządzenia (wg schematu):

Port urządzenia testowanego	Sygnał płyty prototypowej
X	SW7
but	BTN0
sel	SW0
dis	SW1
clk	Zegar 50Hz
rst	BTN3
sseg(0)	CA
sseg(1)	СВ
sseg(2)	CC
sseg(3)	CD
sseg(4)	CE
sseg(5)	CF
sseg(6)	CG
an(0)	AN0
an(1)	AN1
an(2)	AN2
an(3)	AN3

Testowanie polega na podaniu na wejścia Q_0, Q_1, Q_2, x bloku logiki i wejścia Q_0, Q_1, Q_2 bloku dekodera sekwencji 4-bitowych i 3-bitowych i obserwacji zachowania układu przy pomocy wyświetlacza 7-segmentowego. Wyświetlacz znajduje się bezpośrednio na płytce. Częstotliwość zegara licznika (wejście clk dla automatu) wynosi \sim 1kHz.

• Pinout Report

	Pin Number	gn. am	Pin Usage	Pin Name	Direction	IO Standard	IO Bank Number	Drive (mA)	Slew Rate	Termination	IOB Delay	Voltage	Constraint	IO Register	Signa Integri
1	F17	an<0>	IOB	IO_L19N_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
2	H17	an<1>	IOB	IO_L16N_1/A0	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
3	C18	an<2>	IOB	IO_L24P_1/LDC1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
4	F15	an<3>	IOB	IO_L21P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
5	B18	but	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
6	B8	clk	IBUF	IP_L13P_0/GCLK8	INPUT	LVCMOS	0				NONE		LOCATED	NO	NONE
7	H18	dis	IBUF	IP/VREF_1	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
8	H13	rst	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
9	G18	sel	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE
10	L18	sseg<	IOB	IO_L10P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
11	F18	sseg<	IOB	IO_L19P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
12	D17	sseg<	IOB	IO_L23P_1/HDC	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
13	D16	sseg<	IOB	IO_L23N_1/LDC0	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
14	G14	sseg<	IOB	IO_L20P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
15	J17	sseg<	IOB	IO_L13P_1/A6/RHCLK4/IR	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
16	H14	sseg<	IOB	IO_L17P_1	OUTPUT	LVCMOS	1	12	SL	NONE**			LOCATED	NO	NONE
17	R17	x	IBUF	IP	INPUT	LVCMOS	1				NONE		LOCATED	NO	NONE