Promo-code activation:)

You have two options!

You can try to solve all the proposed problems and submit your solutions as a pdf file. In this case I will honestly grade them.

You can write a promo-code #beta_hot. In this case I will ignore your solutions and grade your exam as 4/10.

Problems

1. James Bond estimates the model $y_t = \beta x_t + u_i$ with OLS. We know that u_t are independent and identically distributed with unknown heteroskedasticity structure. We also know that $x_t = 1$ for odd t and t and t are independent and identically distributed with unknown heteroskedasticity structure. We also know that t are independent and identically distributed with unknown heteroskedasticity structure. We also know that t are independent and identically distributed with unknown heteroskedasticity structure. We also know that t are independent and identically distributed with unknown heteroskedasticity structure. We also know that t are independent and identically distributed with unknown heteroskedasticity structure.

	all odd t	all even t
$\sum y_t$	300	200
$\sum \hat{u}_t^2$	1000	800

- (a) Find $\hat{\beta}_{ols}$
- (b) Calculate ordinary and robust standard errors, $se(\hat{\beta}_{ols})$ and $se_{HC}(\hat{\beta}_{ols})$;
- (c) Construct 95% ordinary and robust confidence intervals for β .
- 2. James Bond estimates the model $y_t = \beta x_t + u_i$ with OLS. We know that u_t are normal $\mathcal{N}(0; x_t \cdot \sigma^2)$ and independent. We also know that $x_t = 1$ for odd t and $x_t = 2$ for even t. The total number of observations n is even.
 - (a) Find expected value and variance of $\hat{\beta}_{ols}$.
 - (b) Construct the most efficient unbiased linear estimator $\hat{\beta}_{best}$ and find its variance.
 - (c) Calculate probability limit of $\hat{\beta}_{ols}$. Is $\hat{\beta}_{ols}$ consistent?
- 3. James Bond assumes that observations y_i are independent and probability distribution for y_i is given by the table

$$y_i$$
 $y_i = 1$ $y_i = 2$ $y_i = 3$ probability a b $1-a-b$

James Bond has collected 400 observations: 120 observations are equal to 1,80 observations equal to 2,80 observations equal to 3.80 observations equal t

- (a) Estimate unknown a and b using maximum likelihood;
- (b) Construct 95% confidence interval for a and 95% confidence interval for a+b.
- (c) Using likelihood ratio statistic test the hypothesis a=b. You may assume that the critical value of the statistic is 4 but you should clearly state the degrees of freedom.

4. Using 400 observation James Bond estimated the logistic regression for probability of passing econometrics exam using x_i — number of study hours as predictor:

$$\hat{\mathbb{P}}(pass) = \Lambda(0.15 - 0.025x_i^2 + 0.9x_i),$$

The estimate of coefficient covariance matrix is:

$$\begin{pmatrix}
0.0004 & -0.0001 & 0 \\
-0.0001 & 0.0001 & 0 \\
0 & 0 & 0.0009
\end{pmatrix}$$

- (a) Estimate the number of study hours that maximizes the probability of passing the exams. What is the maximal probability of passing the exam?
- (b) Construct approximate 95% confidence interval for the number of study hours that maximizes the probability of passing the exams. Hint: use Taylor expansion to obtain a linear function of $\hat{\beta}$.
- 5. James Bond would like to check whether the econometrics final exam score, y_i , varies for students that dinner at Khatchapuri. Once again x_i is the number of study hours.

He estimates the same model using four datasets:

dataset	equation	RSS	observations
all students	$\hat{y}_i = 40 + 2x_i$	14000	600
two or more Khatchapuri dinners	$\hat{y}_i = 60 + 4x_i$	4000	200
exactly one Khatchapuri dinner	$\hat{y}_i = 50 + 3x_i$	3000	200
no Khatchapuri dinner	$\hat{y}_i = 37 + 1.8x_i$	2000	200

- (a) Using appropriate test check whether the econometrics final exam score varies for three type of students.
- (b) Which unique equation should James Bond estimate to obtain all given beta estimates at once?

You may assume that $F_{critical}$ for $\alpha=0.05$ is approximately equal to 2.4. However you should clearly state the degrees of freedom.

6. The last problem:)

James Bond would like to estimate the model $y_i = \beta x_i + u_i$, where y_i — is the econometrics final exam centered result, x_i is the centered number of study hours.

The problem is that James has only data on self-reported $x_i^* = x_i \cdot f_i$ where f_i is the famous Russian exageration factor. We know that $x_i \sim \mathcal{N}(0; 9)$, $u_i \sim \mathcal{N}(0; \sigma^2)$, f_i is uniform on [0; 4].

James Bond also has estimates of the famous Russian exageration factor, f_i^* for each student. Here $f_i^* = f_i + \nu_i$ where $\nu_i \sim \mathcal{N}(\delta, \sigma_{\nu}^2)$. The parameters δ and σ_{ν}^2 are unknown.

Variables (x_i) , (u_i) , (ν_i) and (f_i) are independent. The dataset is a random sample.

- (a) Find the probability limit of $\hat{\beta}$ in the regression $\hat{y}_i = \hat{\beta} \cdot x_i^*$.
- (b) Provide explicit formulas or algorithms for consistent estimators of all parameters: ν , σ_{ν}^2 , β , σ^2 .