Лекция 4. Карты Кохонена, автокодировщики, перенос обучения, генеративно-состязательные сети

Александр Юрьевич Авдюшенко

МКН СП6ГУ

10 марта 2022

Факультет математики и компьютерных наук СПбГУ

Пятиминутка

- ▶ Перечислите недостатки сверточных нейронных сетей
- ▶ Выпишите формулу простейшей (vanilla) рекуррентной сети
- ► Какие фильтры (gates) есть в LSTM?

Дано:

 $X^\ell=\{x_1,\dots,x_\ell\}$ — обучающая выборка объектов $x_i\in\mathbb{R}^n$ $ho:X\times X o [0,\infty)$ — функция расстояния между объектами **Найти**:

Y — множество кластеров, например, задаваемых своими центрами $w_y \in \mathbb{R}^n$

Пусть алгоритм кластеризации

$$a(x) = \arg\min_{y \in Y} \rho(x, w_y)$$

«Правило жёсткой конкуренции» (WTA, Winner Takes All) Критерий: среднее внутрикластерное расстояние

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \rho^2(x_i, w_{a(x_i)}) \to \min_{w_y: y \in Y}$$

Сеть Кохонена — двухслойная нейронная сеть

Градиентный шаг в методе стохастического градиента:

$$w_y = w_y + \eta(x_i - w_y)[a(x_i) = y]$$

Если x_i относится к кластеру y, то w_y сдвигается в сторону x_i

T. Kohonen. Self-organized formation of topologically correct feature maps. 1982.

Стохастический градиентный спуск

Вход: выборка X^ℓ , темп обучения η , параметр λ **Выход**: центры кластеров $w_1,\ldots,w_K\in\mathbb{R}^n$

- 1. инициализировать центры $w_y, \ y \in Y$
- 2. оценку функционала:

$$Q = \sum_{i=1}^{\ell} \rho^2(x_i, w_{a(x_i)})$$

- 3. повторять
 - ightharpoonup выбрать объект x_i из X^ℓ (например, случайный)
 - ightharpoonup вычислить кластер: $y = \arg\min_{y \in Y} \rho(x_i, w_y)$
 - ightharpoonup сделать градиентный шаг: $w_{y} = w_{y} + \eta(x_{i} w_{y})$
 - ightharpoonup оценить функционал: $Q = \lambda \rho^2(x_i, w_y) + (1 \lambda)Q$
- 4. пока значение Q и/или веса w_v не сойдутся

Правило жёсткой конкуренции (WTA, Winner Takes All)

$$w_y = w_y + \eta(x_i - w_y)[a(x_i) = y], y \in Y$$

Недостатки правила WTA

- медленная скорость сходимости
- ► некоторые центры кластеров могут никогда не выбираться Правило мягкой конкуренции (WTM, Winner Takes Most)

$$w_v = w_v + \eta(x_i - w_v)K(\rho(x_i, w_v)), y \in Y$$

где ядро $K(\rho)$ — неотрицательная невозрастающая функция Теперь центры всех кластеров смещаются в сторону x_i , но чем дальше от x_i , тем меньше величина смещения

Kарта Koхoнена (Self Organizing Map, SOM)

Вводим прямоугольную сетку кластеров $\{1,\ldots,\mathit{SizeX}\} \times \{1,\ldots,\mathit{SizeY}\}$

Каждому узлу (x, y) приписан нейрон Кохонена $w_{xy} \in \mathbb{R}^n$ Наряду с метрикой $\rho(x_i, w_{xy})$ вводится метрика на сетке:

$$r((x,y),(a,b)) = \sqrt{(x-a)^2 + (y-b)^2}$$

Обучение карты Кохонена

Вход: выборка X^ℓ , темп обучения η Выход: $w_{xy} \in \mathbb{R}^n$ — векторы весов,

- 1. инициализировать веса: $w_{\mathrm{xy}} = \mathrm{random}\left(-rac{1}{2MH},rac{1}{2MH}
 ight)$
- 2. повторять
 - ightharpoonup выбрать случайный объект x_i из X^ℓ
 - ► WTA: вычислить координаты кластера:

$$(a_i, b_i) = \arg\min_{(a,b)} \rho(x_i, w_{ab})$$

- ▶ для всех $(a,b) \in \mathsf{О}$ крестность (a_i,b_i) WTM: сделать шаг градиентного спуска: $w_{ab} = w_{ab} + \eta(x_i w_{ab}) \mathcal{K}(r((a_i,b_i),(a,b)))$
- 3. пока кластеризация не стабилизируется

Интерпретация карт Кохонена

Два типа графиков — цветных карт $SizeX \times SizeY$

- ▶ Цвет узла (a, b) локальная плотность в точке (a, b) среднее расстояние до k ближайших точек выборки
- ▶ По одной карте на каждый признак: цвет узла (a,b) значение j-й компоненты вектора w_{ab}

Посмотрим на карты Кохонена, построенные на шести признаках, собранных у 1000 человек.

Достоинства и недостатки карт Кохонена

- + возможность визуального анализа многомерных данных
- Искажения. Близкие в исходном пространстве могут перейти в далёкие точки на карте, и наоборот.
- Субъективность. Карта зависит не только от кластерной структуры данных, но и от...
 - свойств сглаживающего ядра
 - (случайной) инициализации
 - (случайного) выбора x_i в ходе итераций

Хорошо подходят для разведочного анализа даннных.

Автокодировщики

Автокодировщики

Вопрос

Какой метод из первой части курса похож на автокодировщик?

Способы использования автокодировщиков

- ► Генерация признаков (feature generation), например, для эффективного решения задач обучения с учителем
- ► Снижение размерности (dimensionality reduction)
- ▶ Сжатие данных с минимальными потерями
- Обучаемая векторизация объектов, встраиваемая в более глубокие нейросетевые архитектуры
- ▶ Генерация синтетических объектов, похожих на реальные

Rumelhart, Hinton, Williams. Learning Internal Representations by Error Propagation. 1986.

David Charte et al. A practical tutorial on autoencoders for nonlinear feature fusion: taxonomy, models, software and guidelines. 2018.

Линейный автокодировщик и метод главных компонент

$$\mathscr{L}_{AE}(A,B) = \sum_{i=1}^{\ell} \| \underline{B} \underline{A} x_i - x_i \|^2 \to \min_{A,B}$$

Метод главных компонент: $F = (x_1 \dots x_\ell)^T, U^T U = I_m, G = FU,$

$$||F - GU^T||^2 = \sum_{i=1}^{\ell} ||UU^T x_i - x_i||^2 \to \min_{U}$$

Автокодировщик обобщает метод главных компонент:

- ightharpoonup не обязательно $B = A^T$ (хотя часто так делают)
- ightharpoonup произвольные A,B вместо ортогональных
- нелинейные модели
- lacktriangle произвольная функция потерь ${\mathscr L}$ вместо квадратичной
- ► SGD оптимизация вместо сингулярного разложения (SVD)

Разреживающий автокодировщик (Sparse AE)

Напоминание из SVM

Если у функции потерь излом, то отбор объектов. Если в регуляризаторе, то признаков.

- ightharpoonup Применение L_1 или L_2 -регуляризации к векторам весов
- lacktriangle Применение L_1 -регуляризации к кодовым векторам $z_i = A x_i$
- Энтропийная регуляризация

D.Arpit et al. Why regularized auto-encoders learn sparse representation? 2015

Please drag the black and white circle around the heat map to explore the 2D font manifold!

2d font manifold demonstration

Шумоподавляющий автокодировщик (Denoising AE)

Устойчивость кодовых векторов z_i относительно шума в x_i :

$$\mathscr{L}_{DAE}(\alpha,\beta) = \sum_{i=1}^{\ell} \frac{\mathsf{E}_{\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x}_i)} \mathscr{L}(g(f(\tilde{\mathbf{x}},\alpha),\beta),\mathbf{x}_i) \to \min_{\alpha,\beta}$$

Вместо вычисления матожидания $E_{\tilde{x}}$ в методе стохастического градиента объекты x_i сэмплируются и зашумляются по одному: $\tilde{x} \sim q(\tilde{x}|x_i)$

- ▶ гауссовский шум: $\tilde{x} \sim N(x_i, \sigma^2 I)$
- обнуление компонент вектора x_i с вероятностью p_0

P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML-2008.

Вариационный автокодировщик (Variational AE)

Строится генеративная модель, способная порождать новые объекты x, похожие на объекты выборки $X^\ell=\{x_1,\ldots,x_\ell\}$ $q_{\alpha}(z|x)$ — вероятностный кодировщик с параметром α $p_{\beta}(\hat{x}|z)$ — вероятностный декодировщик с параметром β

$$egin{aligned} \mathscr{L}_{V\!AE}(lpha,eta) &= \sum_{i=1}^{\ell} \log p(x_i) = \sum_{i=1}^{\ell} \log \int q_lpha(z|x_i) rac{p_eta(x_i|z)p(z)}{q_lpha(z|x_i)} dz \geq \ &\geq \sum_{i=1}^{\ell} \int q_lpha(z|x_i) \log p_eta(x_i|z) dz - \mathit{KL}(q_lpha(z|x_i) \| p(z))
ightarrow \max_{lpha,eta} \ &lpha_eta(z|x_i) \| p(z) > \max_{lpha$$

D.P.Kingma, M.Welling. Auto-encoding Variational Bayes. 2013. C.Doersch. Tutorial on variational autoencoders. 2016.

$$\sum_{i=1}^{\ell} \underbrace{ extstyle E_{z \sim q_lpha(z|x_i)} \log p_eta(x_i|z)}_{ extstyle extsty$$

где p(z) — априорное распределение, обычно $N(0,\sigma^2I)$

$$\sum_{i=1}^{\ell} \underbrace{ extstyle E_{z \sim q_{lpha}(z|x_i)} \log p_{eta}(x_i|z)}_{ extstyle ex$$

где
$$p(z)$$
 — априорное распределение, обычно $N(0,\sigma^2I)$ Репараметризация $q_{\alpha}(z|x_i): z=f(x_i,\alpha,\varepsilon), \ \varepsilon\sim N(0,I)$

Метод стохастического градиента:

- lacktriangle сэмплировать $x_i \sim X^\ell, \ arepsilon \sim N(0,I), \ z = f(x_i,lpha,arepsilon)$
- ▶ градиентный шаг $\alpha = \alpha + h\nabla_{\alpha}[\log p_{\beta}(x_i|f(x_i,\alpha,\varepsilon)) \textit{KL}(q_{\alpha}(z|x_i)||p(z))]$ $\beta = \beta + h\nabla_{\beta}[\log p_{\beta}(x_i|z)]$

Генерация похожих объектов:

$$x \sim p_{\beta}(x|f(\mathbf{x}_i,\alpha,\varepsilon)), \varepsilon \sim N(0,I)$$

Автокодировщики для обучения с учителем

Данные: неразмеченные $(x_i)_{i=1}^\ell$, размеченные $(x_i,y_i)_{i=\ell+1}^{\ell+k}$

Совместное обучение кодировщика, декодировщика и предсказательной модели (классификации, регрессии или др.)

$$\sum_{i=1}^{\ell} \mathcal{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=\ell+1}^{\ell+k} \tilde{\mathcal{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

Функции потерь:

$$\mathscr{L}(\hat{x}_i, x_i)$$
 — реконструкция $\widetilde{\mathscr{L}}(\hat{y}_i, y_i)$ — предсказание

Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020.

$$z_i = f(x_i, \alpha)$$
 — кодировщик $\hat{x}_i = g(z_i, \beta)$ — декодировщик $\hat{y}_i = \hat{y}(z_i, \gamma)$ — классификатор

Пред-обучение нейронных сетей (pre-training)

Свёрточная сеть для обработки изображений:

- $ightharpoonup z = f(x, \alpha)$ свёрточные слои для векторизации объектов
- $y = g(z, \beta)$ полносвязные слои под конкретную задачу

Jason Yosinski, Jeff Clune, Yoshua Bengio, Hod Lipson. How transferable are features in deep neural networks? 2014.

Перенос обучения (transfer learning)

- $f(x, \alpha)$ универсальная часть модели (векторизация)
- ▶ $g(x, \beta)$ специфичная для задачи часть модели

Базовая задача на выборке $\{x_i\}_{i=1}^\ell$ с функцией потерь \mathscr{L}_i :

$$\sum_{i=1}^{\ell} \mathscr{L}_i(f(x_i, \alpha), g(x_i, \beta)) \to \min_{\alpha, \beta}$$

 $\emph{Целевая}$ задача на другой выборке $\{x_i'\}_{i=1}^m$ с другими \mathscr{L}_i', g' :

$$\sum_{i=1}^m \mathscr{L}_i'(f(x_i',\alpha),g'(x_i',\beta')) \to \min_{\beta'}$$

при $m \ll \ell$ это может быть намного лучше, чем

$$\sum_{i=1}^{m} \mathscr{L}'_{i}(f(x'_{i},\alpha),g'(x'_{i},\beta')) \to \min_{\alpha,\beta'}$$

Многозадачное обучение (multi-task learning)

- ▶ $f(x, \alpha)$ универсальная часть модели (векторизация)
- ightharpoonup g(x,eta) специфичные части модели для задач $t\in T$

Одновременное обучение модели f по задачам $X_t, t \in \mathcal{T}$:

$$\sum_{t \in \mathcal{T}} \sum_{i \in \mathcal{X}_t} \mathcal{L}_{ti}(f(\mathbf{x}_{ti}, \alpha), g(\mathbf{x}_{ti}, \beta_t)) \to \min_{\alpha, \{\beta_t\}}$$

Обучаемость (learnability): качество решения отдельной задачи $\langle X_t, \mathscr{L}_t, g_t
angle$ улучшается с ростом объёма выборки $\ell_t = |X_T|$.

Learning to learn: качество решения каждой из задач $t \in T$ улучшается с ростом ℓ_t и общего числа задач |T|.

Few-shot learning: для решения задачи t достаточно небольшого числа примеров, иногда даже одного.

Y. Wang et al. Generalizing from a few examples: a survey on few-shot learning. 2020

 $[\]it M.Crawshaw$. Multi-task learning with deep neural networks: a survey. 2020

Самостоятельное обучение (self-supervised learning)

Модель векторизации $z = f(x, \alpha)$ обучается предсказывать взаимное расположение пар фрагментов одного изображения

Преимущество: сеть выучивает векторные представления объектов без размеченной обучающей выборки. Их качество не уступает полученным по размеченному ImageNet.

Дистилляция моделей или суррогатное моделирование

Обучение сложной модели a(x, w) «долгое, дорогое»:

$$\sum_{i=1}^{\ell} \mathscr{L}(\mathsf{a}(\mathsf{x}_i,\mathsf{w}),\mathsf{y}_i) \to \min_{\mathsf{w}}$$

Обучение простой модели b(x, w'), возможно, на других данных:

$$\sum_{i=1}^k \mathcal{L}(b(x_i', w'), \mathbf{a}(x_i', \mathbf{w})) \to \min_{w'}$$

Примеры задач:

- замена сложной модели (климат, аэродинамика и др.), которая вычисляется на суперкомпьютере месяцами, «лёгкой» аппроксимирующей суррогатной моделью

Обучение с использованием привилегированной информации

LUPI — Learning Using Priveleged Information

V. Vapnik, A. Vashist. A new learning paradigm: Learning Using Privileged Information // Neural Networks. 2009.

Примеры задач с привилегированной информацией x^*

- ➤ x первичная (1D) структура белка
 - x^* третичная (3D) структура белка
 - у иерархическая классификация функции белка
- ▶ x предыстория временного ряда
 - x^* информация о будущем поведении ряда
 - у прогноз следующей точки ряда
- ▶ x текстовый документ
 - x^* выделенные ключевые слова или фразы
 - у категория документа
- \triangleright x пара (запрос, документ)
 - x^* выделенные асессором ключевые слова или фразы
 - у оценка релевантности

Задача обучения с привилегированной информацией

▶ Раздельное обучение модели-ученика и модели-учителя:

$$\sum\limits_{i=1}^\ell \mathscr{L}(\mathsf{a}(\mathsf{x}_i, w), y_i) o \min_w \qquad \sum\limits_{i=1}^\ell \mathscr{L}(\mathsf{a}(\mathsf{x}_i^*, w^*), y_i) o \min_w$$

Модель-ученик обучается повторять ошибки модели-учителя:

$$\sum_{i=1}^{\ell} \mathscr{L}(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \mathsf{y}_i) + \mu \mathscr{L}(\mathsf{a}(\mathsf{x}_i, \mathsf{w}), \overset{\mathsf{a}(\mathsf{x}_i^*, \mathsf{w}^*)}{}) \to \mathsf{min}_{\mathsf{w}}$$

▶ Совместное обучение модели-ученика и модели-учителя:

$$\begin{array}{l} \sum\limits_{i=1}^{\ell} \mathcal{L}(\mathbf{a}(\mathbf{x}_i, \mathbf{w}), \mathbf{y}_i) + \lambda \mathcal{L}(\mathbf{a}(\mathbf{x}_i^*, \mathbf{w}^*), \mathbf{y}_i) + \\ \mu \mathcal{L}(\mathbf{a}(\mathbf{x}_i, \mathbf{w}), \mathbf{a}(\mathbf{x}_i^*, \mathbf{w}^*)) \rightarrow \min_{\mathbf{w}, \mathbf{w}^*} \end{array}$$

D.Lopez-Paz, L.Bottou, B.Scholkopf, V.Vapnik. Unifying distillation and privileged information. 2016.

Генеративная состязательная сеть (Generative Adversarial Net, GAN)

Генератор G(z) учится порождать объекты x из шума z Дискриминатор D(x) учится отличать их от реальных объектов

Antonia Creswell et al. Generative Adversarial Networks: an overview. 2017. Zhengwei Wang, Qi She, Tomas Ward. Generative Adversarial Networks: a survey and taxonomy. 2019.

Постановка задачи GAN

Есть выборка объектов $\{x_i\}_{i=1}^m$ из X Обучаем

- lacktriangle вероятностную генеративную модель $G(z, lpha): x \sim p(x|z, lpha)$
- ightharpoonup вероятностную дискриминативную модель $D(x,\beta)=p(1|x,\beta)$

Критерии:

▶ обучение дискриминативной модели D:

$$\sum_{i=1}^m \ln D(x_i, \boldsymbol{\beta}) + \ln(1 - D(G(z_i, \alpha), \boldsymbol{\beta})) \to \max_{\boldsymbol{\beta}}$$

▶ обучение генеративной модели G по случайному шуму $\{z_i\}_{i=1}^m$:

$$\sum_{i=1}^{m} \ln(1 - D(G(z_i, \alpha), \beta)) \to \min_{\alpha}$$

StyleGAN demo

Посмотрим видео

Статьи тут: https://nvlabs.github.io/stylegan2/versions.html

Резюме

- Кластеризация и карты Кохонена
- Автокодировщики, включая совместное обучение с классификацией
- ► Многозадачное обучение (multi-task learning)
- ► Перенос обучения (transfer learning)
- Дистилляция и суррогатное моделирование
- ► Состязательные сети (GAN)

Резюме

- Кластеризация и карты Кохонена
- Автокодировщики, включая совместное обучение с классификацией
- ► Многозадачное обучение (multi-task learning)
- ► Перенос обучения (transfer learning)
- Дистилляция и суррогатное моделирование
- ► Состязательные сети (GAN)

Что ещё можно посмотреть?

▶ Лекцию 13 курса CS231n про GAN