Mohó algoritmusok **

Ügyelet

Egy nagyszabású rendezvényre ügyeletet vállalók jelentkezését várják. A rendezvény folyamatosan M percig tart. Összesen N jelentkező adta be jelentkezését. Mindegyik megadta, hogy mettőlmeddig vállalna ügyeletet.

Készíts programot, amely kiszámítja, hogy legkevesebb hány jelentkezőt kell kiválasztani, hogy hogy bármely percben legalább két ügyeletes legyen jelen!

Bemenet

A standard bemenet első sora a napok számát ($1 \le M \le 10000$), és a jelentkezettek számát ($1 \le N \le 10000$) tartalmazza. A következő N sor mindegyike egy jelentkező első és utolsó percét tartalmazza ($1 \le A_i \le B_i \le M$), ami azt jelenti, hogy az i. jelentkező az A_i . perctől a B_i . percig vállal ügyeletet (beleértve az A_i . és a B_i . percet is).

Kimenet

A standard kimenet első sorába a legkevesebb jelentkező K számát kell írni, amennyit ki kell választani, hogy minden napon legyen legalább két ügyeletes! Ha nincs megoldás, akkor az egyetlen 0 számot kell kiírni! Ha van megoldás, akkor a második sor a kiválasztott K jelentkező sorszámát tartalmazza, tetszőleges sorrendben! Több megoldás esetén bármelyik megadható.

Példa

Bemenet
6 7
2 3 3 4
4 6
3 6
1 4
1 2
3 5

4 5 6 4 3

Például így lehetnek ügyeletesek az egyes percekben:

5	5	5	5	3	3
9	6	4	4	4	4

Korlátok

Időlimit: 0.2 mp.

Memórialimit: 32 MB

Pontozás

A pontok 20%-a szerezhető olyan tesztekre, ahol N≤100 és M≤100.

A pontok további 20%-a szerezhető olyan tesztekre, ahol N≤1000 és M≤1000.