Category Theory

Q: What is Category Theory?

A:

- 1. Understanding math objects via relations with each other, i.e. taking an external view, so you do not inspect the internal structure of the objects.
- 2. A whole independent field of study.

Q: What is a category?

A: objects + morphisms

Example:

- **Set** *objects*: sets; *morphisms*: functions
- Group objects: groups; morphisms: group homomorphisms
- Top *objects*: topological spaces; *morphisms*: continuous functions
- **Program Spec** *objects*: program specifications; *morphisms*: programs that trun any program metting one spec into a program meeting another spec
- **Prop** *objects*: propositions; *morphisms*: derivation/implication
- Type *objects*: types; *morphisms*: derivation/function
- Type Theory objects: type theories; morphisms: translations

Counterexample: what is the category of probablistics?

What if two kinds of notions of morphisms are all useful? **Double category!**

Example:

- Set objects: sets; morphisms: functions
- Set objects: sets; morphisms: relations

Definition

A category C is

- a collection of objects ob $\mathcal C$
- for every $X,Y\in {\operatorname{ob}}\ {\mathcal C},$ a collection of morphisms ${\operatorname{hom}}_{\mathcal C}(X,Y)$
- **Id**: for each $X \in \text{ob } \mathcal{C}$, an id morphism $\text{id}_X \in \text{hom}_{\mathcal{C}}(X, X)$
- Comp: for each $f: X \to Y, g: Y \to Z$, a morphism $g \circ f: X \to Z$ in $\hom_{\mathcal{C}}(X, Z)$, such that
 - $f \cap \operatorname{id}_X = f = \operatorname{id}_Y \cap f$

NOTE Normally we don't differentiate left and right identity. There was one particular notion that did, but then they were shown to be equivalent.

• for any $f: X \to Y, g: Y \to Z, h: Z \to A, h \cap (g \cap f) = (h \cap g) \cap f$.

Commutative Diagrams

E.g.
$$f \cap id_X = f$$

Notice how the two paths from *X* to *Y* yield the same morphism.

NOTE There are also *string diagrams*, which is very similar to *proof nets*.

Let's get back to a concrete example.

Prop Category

- ob Prop the collection of propositions
- $\mathrm{hom}_{\mathrm{Prop}(P,Q)} = \begin{cases} \{\top\} \text{ if } P \to Q \\ \emptyset & \text{otherwise} \end{cases}$
- Id: $id_P = T$ for all $P \in ob$ Prop, because $P \to P$ is always true.
- Comp: by modus ponens, $Q \to P$ and $P \to R$ implies $Q \to R$. Properties: trivial.

TODO this is cat but i don't see how it is useful. all morphisms are trivial.. maybe it serves as a gentle introduction to the concept of category that does not serve any real-world purpose?

Terminal Object

A **terminal object** (*) T in a category \mathcal{C} is an object such that for every object $Z \in \mathcal{C}$, there is a unique morphism $Z \to T$.

E.g.

- a singleton set $(\{\top\})$ in *Set*
- unit type (1) in Ty
- A in a category that contains exactly one object A.

Isomorphic

Two objects X, Y in a category $\mathcal C$ are **isomorphic** if there exists morphisms $f: X \to Y$ and $g: Y \to X$ such that $g \odot f = \operatorname{id}_X$ and $f \odot g = \operatorname{id}_Y$.

NOTE If $x \cong y$, we say

1. f is an isomorphism that $f: X \cong Y$, $f: X \xrightarrow{\sim} Y$ 2. g as f^{-1} , and $f^{-1}: Y \cong X$, $f^{-1}: Y \xrightarrow{\sim} X$

E.g.

- bijection in Set
- bi-implication in Prop

Lemma. If $f: X \cong Y$, then for any Z, we have

- $f_* : \text{hom}(Z, X) \cong_{Set} \text{hom}(Z, Y)$.
- $f^* : \text{hom}(Z, X) \cong_{Set} \text{hom}(Z, Y)$.

Proof. (f_*)

- \Rightarrow For any $g \in \text{hom}(Z, X)$, we have $g: Z \to X$. Also we know $X \stackrel{f}{\to} Y$. So, $f \ominus g: Z \stackrel{g}{\to} X \stackrel{f}{\to} Y$.
- \Leftarrow For any $h \in \text{hom}(Z,Y)$, we have $h:Z \to Y$. Also we know $Y \overset{f^{-1}}{\to} X$. So, $f^{-1} \odot h:Z \overset{h}{\to} Y \overset{f^{-1}}{\to} X$.

Lemma. Terminal objects are unique up to isomorphism.

Proof. Let T, T' be two terminal objects in a category \mathcal{C} .

Since T is terminal, there exists a unique morphism $f: T' \stackrel{!}{\to} T$. Similarly, there exists a unique morphism $g: T \stackrel{!}{\to} T'$.

Now $! \bigcirc !' : T \xrightarrow{!'} T' \xrightarrow{!} T = \mathrm{id}_T$. Similarly, $!' \bigcirc ! = \mathrm{id}_{T'}$.

NOTE We know $T \stackrel{!'}{\to} T' \stackrel{!}{\to} T$ is id_T because T is terminal, which means for every object Z there is a *unique* morphism $Z \stackrel{!}{\to} T$. In particular, for Z = T, there is a *unique* morphism $T \stackrel{!}{\to} T$. And we know $\mathrm{id}_T : T \to T$ is one of the morphisms, so that's it.

Generally, there could be multiple morphisms to oneself, but in this case it's the terminal part that makes it unique.

Duality

Given a category \mathcal{C} , we can define its **dual category** $\mathcal{C}^{\{op\}}$ by reversing the direction of all morphisms.

ob
$$\mathcal{C}^{\mathsf{op}} \coloneqq \mathsf{ob}\ \mathcal{C}, \mathsf{hom}^{\{\mathsf{op}\}}_{\mathcal{C}}(X,Y) \coloneqq \mathsf{hom}_{\mathcal{C}}(Y,X)$$

Lemma. \mathcal{C}^{op} is a category.

Lemma. If $X \cong Y$ in \mathcal{C} , then $X \cong Y$ in $\mathcal{C}^{\{op\}}$.

Initial Object

An **initial object** I in a category \mathcal{C} is the terminal object in \mathcal{C}^{op} .

or,

An **initial object** I in a category \mathcal{C} is an object such that for every object $Z \in \mathcal{C}$, there is a unique morphism $I \stackrel{\text{i}}{\to} Z$.

Lemma. Initial objects are unique up to isomorphism.

Proof. Follows dually from the uniqueness of terminal objects.

E.g.

- empty set (\emptyset) in *Set*
- empty type (0) in *Ty*
- false (\perp) in *Prop*