ÉRETTSÉGI VIZSGA • 2013. május

FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2013. május 16. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma						
Tisztázati						
Piszkozati						

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1311 2 / 16 2013. május 16.

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. A mi csillagrendszerünk a Tejút. Hány ehhez hasonló galaxis létezik a világegyetemben?
 - A) A galaxisok száma több ezerre tehető.
 - B) Több tízezer galaxis van.
 - C) A galaxisok száma közel egymillió.
 - **D)** A galaxisok száma százmilliárdos nagyságrendű.

2. Az ábrán látható, vízszintesen gyorsuló lejtőhöz képest az m tömegű test nyugalomban van. Milyen irányú eredő erő hat az m tömegű testre?

- A) A testre ható eredő erő nulla.
- **B)** A testre ható eredő erő a lejtővel párhuzamos.
- C) A testre ható eredő erő a lejtőre merőleges.
- **D)** A testre ható eredő erő vízszintes.

- 3. Mekkora az elektromos potenciál egy feltöltött tömör fémgömb belsejében a felületi potenciálhoz képest?
 - A) Az elektromos potenciál a fémgömb belsejében nulla.
 - **B)** A fémgömb belsejében a potenciál a felületi potenciálértéknél kisebb, a középponttól mért távolságtól függő érték.
 - C) A fémgömb belsejében a potenciál a felületi potenciálértékkel egyenlő.

4. Az ábrán látható elrendezésben a csigák és a kötelek ideálisak. Mekkora G súlyú a teher, ha a kötelet F erővel kell tartanunk, hogy egyensúlyban legyen a rendszer?

- **A)** G = F/3
- **B)** G = F
- C) G = 2F
- **D)** G = 3F

- 5. Egy dugattyúval elzárt hengerben ideális gáz van. Az alább felsorolt folyamatok melyikében kell a legtöbb hőt közölni a gázzal?
 - A) A gáz nyomását állandó térfogaton megduplázzuk.
 - B) A gáz térfogatát állandó nyomáson megduplázzuk.
 - C) A gáz térfogatát adiabatikusan a kétszeresére növeljük.
 - **D)** A gáz térfogatát állandó hőmérsékleten megduplázzuk.

- 6. Két test a közöttük ható gravitációs erő hatására egymás felé gyorsul. Mit állíthatunk a közöttük levő távolságról?
 - A) A testek között lévő távolság biztosan csökken.
 - B) A testek között lévő távolság biztosan változik.
 - C) A testek között lévő távolság nőhet, csökkenhet, vagy akár állandó is lehet.

2 pont	

Fiz	ika —	emelt szint	Azonosii jel:	.0									
7.	áran körü veze tarta feszi ugya	végtelen hosszúnak tek nát egyenletesen csökke ilvesszük egy 5 cm és eg tőhurokkal, amelyek eg almaznak. Az 5 cm-es su ültségmérő $U_1 = 140$ mV anekkor a 10 cm sugarú ültségmérő?	entjük. A teke gy 10 cm sugar gy-egy feszülts ugarú hurokb / feszültséget j	rcset 'ú égméi an a jelez.]	rőt Mit n	nut	at						
		$U_2 = 140 \text{ mV}.$ $U_2 = 280 \text{ mV}.$ $U_2 = 70 \text{ mV}.$ $U_2 = 35 \text{ mV}.$											
										2 pc	ont		
8.	és 0	lázatokban található ad °C között pozitív érték: érséklet-változás hatásá	5,07·10 ⁻⁵ K ⁻¹ .	jég li Mi tö	neári rténi	s ho	őtág bef	gulás agyo	si egy ott ta	vüttha vak je	tója egévo	−10 el	°C
	A) B)	A jég, miközben hűl, ö hidegben. A jég felszíne se nem r			-								
	C)	csak a vastagsága változ A jég melegedéskor hú jelensége.		ezért l	ép fe	el ta	vas	szal	az ú	n. riar	nás		
										2 pc	ont		
9.		omféle radioaktív mintá ma-sugárzást bocsát ki.										k ped	lig
	A) B) C)	Az alfa-sugárzást kiboc A béta-sugárzást kibocs A gamma-sugárzást kib	sátó mintának. ocsátó mintána	ak.	et ald	önt	ani				Γ		

Azonosító								
jel:								

10. Egy D_1 rugóállandójú rugó végéhez egy $D_2 = 2$ D_1 rugóállandójú rugót rögzítünk úgy, hogy a két rugó egy egyenesbe essen. A rugók szabad végeit széthúzzuk. Melyik rugónak lesz nagyobb a rugalmas energiája?

- A) A D_1 rugóállandójú rugónak lesz nagyobb a rugalmas energiája.
- **B)** A D_2 rugóállandójú rugónak lesz nagyobb a rugalmas energiája.
- C) A két rugó rugalmas energiája egyenlő lesz.

11. Ősszel gyakran hallani időjárás-jelentésekben, hogy "hajnalban talajmenti köd alakulhat ki". Miért a talaj mentén alakul ki a köd?

- **A)** Azért, mert a talaj mentén hűl le legjobban a levegő, ezért itt csapódik ki belőle a pára.
- **B)** Azért, mert a levegőben lévő víz hajnalban hideg, ezért lesüllyed a talaj szintjére.
- C) Azért, mert hajnalban a talaj felső rétegéből a víz elpárolog, és a talaj fölött ködöt képez.

2 pont	
--------	--

12. Három darab egyforma izzót kötöttünk egy állandó kapocsfeszültségű áramforrásra az ábra szerint. Először mindegyik izzó világít, azonban az 1. számú izzó hirtelen kiég. Hogyan változik meg ekkor a 3. izzó fényereje?

- A) A 3. izzó ekkor erősebben fog világítani.
- **B)** A 3. izzó fényereje ettől nem változik.
- C) A 3. izzó ekkor gyengébben fog világítani.
- **D)** Ha nem ismerjük az egyes izzók ellenállásának értékét, a kérdést nem lehet megválaszolni.

2 pont

13. Miért kapott Nobel-díjat Gábor Dénes?

- A) A lézer egyik feltalálójaként megosztott díjat kapott.
- B) A holográfia módszerének kifejlesztéséért egyedül kapta meg a díjat.
- C) Az atomi szimmetriák területén végzett kutatásai hoztak megosztott díjat számára.

2 pont

- 14. Mihez szükséges több elektron: fél mólnyi Ca⁺⁺-ion, vagy pedig egy mólnyi Na⁺-ion semlegesítéséhez?
 - **A)** Fél mólnyi Ca⁺⁺-ion semlegesítéséhez kell több elektron.
 - **B)** Egy mólnyi Na⁺-ion semlegesítéséhez kell több elektron.
 - C) Pontosan ugyanannyi elektron szükséges mindkét esetben.

2 pont

- 15. Egy L_1 hosszúságú, mindkét végén nyitott, és egy L_2 hosszúságú, egyik végén nyitott, másik végén zárt síp alaphangja megegyezik. Mit állíthatunk a sípok hosszának arányáról?
 - $\mathbf{A)} \qquad \frac{L_1}{L_2} = 2$
 - **B)** $\frac{L_1}{L_2} = \frac{2}{3}$
 - C) $\frac{L_1}{L_2} = \frac{1}{2}$
 - **D)** $\frac{L_1}{L_2} = \frac{3}{2}$

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. A vonalas színkép és a Bohr-modell

A kvantum tisztel téged. Minden zsenge Elektron viselkedését parancsszavad Rendeli el: arra rohan, amerre A pálya kényszeríti általad. És hogy mikor milyen szint Azt nagyszerűen tudja mind, És arról álmodik – tudva merre halad –, Hogy pályájáról majd letér, S másikra ugrik; így remél Menekülést, nem értve meg hatalmadat.

Vlagyimir Fock orosz fizikus verse Gamow: A fizika története, Budapest, 1965.

Niels Bohr

Ismertesse a vonalas színkép fogalmát, mutassa be, hogy milyen kísérleti elrendezéssel hozhatjuk létre az anyagok elnyelési, illetve kibocsátási színképét!

Milyen állítást fogalmazhatunk meg Max Planck kvantumhipotézise alapján a különböző színű színképvonalakról?

Helyezze el térben és időben Max Planck munkásságát, és ismertesse kvantumhipotézisét! Mutassa be Rutherford atommodelljét!

Helyezze el térben és időben Rutherford munkásságát!

Mutassa be a Bohr-féle atommodellt! Mutasson rá, hogy Bohr mit vett át Rutherfordtól, és mennyiben fejlesztette tovább atommodelljét!

Értelmezze a Bohr-modell segítségével a vonalas színkép létrejöttét mind az elnyelési, mind a kibocsájtási színkép esetében!

Helyezze el térben és időben Niels Bohr munkásságát!

Azonosító								
jel:								

2. A síkkondenzátor

Ugyanazon törvény szerint, mely szerint a palack berzzel főlfegyvereztetik, s mely által a berz a berztartóban maradandólag föltartatik, Volta (1783-ban) még egy más igen hasznos készületet is födözett fel, mely által a berznek igen gyönge, csak alig észrevehető fokai is észrevehetővé tétetnek, és melyet ő berzsűrítőnek (condensator) nevezett.

Tapasztalati természettudomány: Tscharner Bodogbul fordította Bugát Pál – Budán, 1836.

Ismertesse a síkkondenzátor felépítését!

Ismertesse a kondenzátor kapacitásának fogalmát, adja meg a síkkondenzátor kapacitásának kiszámítási módját! Említsen két példát a kondenzátorok gyakorlati alkalmazására! Mutassa be a síkkondenzátor lemezei között lévő szigetelőanyag kapacitásmódosító hatását, és magyarázza meg azt! Írja fel a feltöltött síkkondenzátor energiáját! Ismertesse a kondenzátor viselkedését egyen-, illetve váltóáramú áramkörben! Mutassa be a változtatható kapacitású kondenzátor szerepét a rezgőkörben!

3. Hullámok

A vízfölületnek azon sajátias mozgása, mely történik, ha abba vagy követ vetünk, vagy belőle merítünk, vagy szívás által egy részét fölemeljük, vagy más módon a részek egyensúlyát háborítjuk, hullámzásnak, az emelkedett és lesüllyedt víztömegek pedig hullámoknak neveztetnek.

Schirkhuber Móricz: Az elméleti és tapasztalati természettan alaprajza – Pesten, 1851.

Mutassa be a transzverzális és a longitudinális hullámokat! Említsen egy-egy példát a transzverzális és a longitudinális hullámokra!

Adja meg a hullámokat leíró fizikai mennyiségeket és a mennyiségek közötti matematikai kapcsolatokat!

Mutassa be az interferencia jelenségét két pontszerű hullámforrás esetén! Ismertesse az erősítési és gyengítési helyek létrejöttének feltételeit! Térjen ki a koherencia értelmezésére is! Ismertesse a hullámok elhajlásának jelenségét! Magyarázza meg a jelenséget a Huygens–Fresnel-elv alapján!

Ismertesse a polarizáció jelenségét!

Adjon meg egy-egy gyakorlati példát az elhajlás, interferencia és polarizáció jelenségére!

írásbeli vizsga 1311 9 / 16 2013. május 16.

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Két kiskocsi az ábrán látható módon összeütközik úgy, hogy a gyorsabb kocsi utoléri a lassabbat. A gyorsabb kocsi elején egy összenyomásra ideálisan viselkedő rugó található, így a kocsik ütközése tökéletesen rugalmas. (A súrlódás elhanyagolható.)
 - a) Az ütközés folyamán egy pillanatra a két kocsi sebessége azonos lesz. Mekkora ez a sebesség?
 - b) Mennyire közelíti meg egymást a két kiskocsi az ütközés folyamán abban a pillanatban, amikor a sebességük egyenlő?
 - c) Mekkora lesz a kiskocsik sebessége az ütközés után?

Adatok: $m_1 = 0.1$ kg, $v_1 = 0.4$ m/s, $m_2 = 0.2$ kg, $v_2 = 0.1$ m/s; a rugó nyújtatlan hossza $l_0 = 3$ cm, D = 60 N/m. (A rugó tömege elhanyagolható.)

a)	b)	c)	Összesen
3 pont	6 pont	3 pont	12 pont

2. Egy C = 100 nF kapacitású síkkondenzátort egy U = 30 V-os telepre kötünk, és hagyjuk feltöltődni. Ezután a kondenzátor lemezeit széthúzzuk, az eredeti távolságuk háromszorosára. Később a kísérletet megismételjük úgy, hogy miután a kondenzátor feltöltődött, először leválasztjuk a telepről, és csak azután húzzuk szét a lemezeit. (A kondenzátorlemezek között az elektromos teret végig homogénnek tekintjük.)

- a) Mennyivel változott a kondenzátor feszültsége, a lemezein lévő töltés, illetve a kondenzátor energiája az első esetben, amikor a lemezeit úgy távolítottuk el egymástól, hogy a kondenzátor a teleppel összeköttetésben maradt?
- b) Mennyivel változott a kondenzátor feszültsége, a lemezein lévő töltés, illetve a kondenzátor energiája a második esetben, amikor a lemezeit úgy távolítottuk el egymástól, hogy a kondenzátort a telepről leválasztottuk?

a)	b)	Összesen
7 pont	5 pont	12 pont

Azonosító								
jel:								

3. Az ábrán látható hengerben súrlódásmentesen mozgó $A=5~\mathrm{dm^2}$ területű dugattyú $V_1=20~\mathrm{dm^3}$ ideális gázt zár be. A dugattyúhoz egy $D=100~\mathrm{N/cm}$ rugóállandójú ideális rugó van erősítve, mely kezdetben nincsen sem

megnyújtva, sem pedig összenyomva. A bezárt gáz hőmérséklete $t_1 = 27$ °C, a külső nyomás pedig $p_1 = 10 \, \text{N/cm}^2$. A gázt addig melegítjük, amíg térfogata $V_2 = 30 \, \text{dm}^3$ lesz.

Mennyi lesz ekkor a gáz hőmérséklete?

Összesen

Fizika — emelt szint Azonosító jel:															
-------------------------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

4. Az emberi szervezetbe bekerülő radioaktív izotópoknak (akár véletlenül bekerülő szennyezőanyagokról, akár az orvostudományban egyre gyakrabban alkalmazott enyhén radioaktív nyomjelző anyagokról van szó) a szervezetből való kiürülését gyakran hasonló "bomlástörvény" írja le, mint magát a radioaktív bomlást. Ilyenkor az adott anyag biológiai felezési idején azt az időt értjük, ami alatt a radioaktív anyag (illetve bomlástermékének) mennyisége az emberi testben a természetes anyagcsere-folyamatok hatására a felére csökken. Természetesen a biológiai kiürülés a radioaktív bomlástól függetlenül, azzal időben párhuzamosan zajlik, azaz a radioaktív atommagok egy része elhagyja a szervezetet, akár elbomlott, akár nem.

Tegyük fel, hogy egy vizsgálat céljából egy emberbe bevitt izotópmennyiség aktivitása a vizsgálat kezdetekor $A_0 = 10^4$ Bq. Az anyag radioaktív felezési ideje $T_{1/2} = 6$ óra, biológiai felezési ideje a páciensben pedig $T_{\text{biol}} = 12$ óra.

- a) Mennyi lesz a páciensben maradó izotópok aktivitása a vizsgálat kezdete után 12 órával?
- b) Mennyi idő alatt csökkenne ugyanerre az értékre a páciensben lévő izotópok aktivitása, ha az izotóp nem ürülne ki a szervezetből, azaz nem volna biológiai felezési idő?
- c) A vizsgálat kezdetekor a tartóedényben lévő izotópoknak csak a 80%-át vitték be a páciensbe, a maradék az edényben maradt. Mennyi idő elteltével lesz ugyanakkora az edényben maradt mennyiség aktivitása, mint a páciensben maradó mennyiség aktivitása?

a)	b)	c)	Összesen
6 pont	2 pont	4 pont	12 pont

Fizika — emelt szint	Azonosító jel:							

írásbeli vizsga 1311 15 / 16 2013. május 16.

Fizika	— em	elt	szint

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

	maximális pontszám	elért pontszám
Feleletválasztós kérdéssor	30	
I. Esszé: tartalom	18	
I. Esszé: kifejtés módja	5	
II. Összetett feladatok	47	
Az írásbeli vizsgarész pontszáma	100	
	javító	tanár
Dátum:		
Dátum:	elért pontszám egész számra	programba beírt egész pontszám
	elért pontszám egész	beírt egész
I. Feleletválasztós kérdéssor	elért pontszám egész számra	beírt egész
I. Feleletválasztós kérdéssor II. Esszé: tartalom	elért pontszám egész számra	beírt egész
I. Feleletválasztós kérdéssor	elért pontszám egész számra	beírt egész

jegyző

Dátum:

írásbeli vizsga 1311 16 / 16 2013. május 16.

javító tanár

Dátum: