AVIDD ASAP: NS2B-GSG-NS3 fusions for assays

PAGE22-01614

Author: **Fairhead, Michael**Date Started: **2022-Sep-22**Experiment Started:

Projects: **Cloning**;**ASAP**

Related Pages:

Referenced by: PAGE22-01756

Tags:

Title missing - double click to edit

>U87411.1 Dengue virus type 2 (strain 16681) polyprotein mRNA, complete cds

>AF404756.1 West Nile virus isolate WN NY 2000-crow3356, complete genome

>MH158237.1 Zika virus isolate PRVABC59, complete genome

>DV2-NS2BgsgNS3

 $\label{eq:advkwedqaeisgsspilsitisedgsmsikneeeeqtlggggsgggggggvlwdvpspppmgkaeledgayrikqkgilgys\\ Qigagvykegtfhtmw{\color{red}{\textbf{H}}} vtrgavlmhkgkriepswadvkk{\color{red}{\textbf{D}}} lisygggwklegewkegeevqvlalepgknpravqtkpglfktnagtig\\ avsldfspgt{\color{red}{\textbf{S}}} gspiidkkgkvvglygngvvtrsgayvsaiaqteksiednpeieddifrk\\ \end{aligned}$

>DV2-NS2BgsgNS3-DEAD

ADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLGGGGSGGGGGGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYS QIGAGVYKEGTFHTMWAVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIG AVSLDFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK

>WNV-NS2BqsqNS3

STDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSY QAGAGVMVEGVFHTLW<mark>H</mark>TTKGAALMSGEGRLDPYWGSVKE<mark>D</mark>RLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIG AVTLDFPTGT<mark>S</mark>GSPIVDKNGDVIGLYGNGVIMPNGSYISAIVOGERMDEPIPAGFEPEMLRKK

>WNV-NS2BgsgNS3-DEAD

STDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSY QAGAGVMVEGVFHTLWATTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIG AVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK

>ZV-NS2BasaNS3

SGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGGALWDVPAPKEVKKGETTDGVYRVMTR RLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKT KDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVE

>ZV-NS2BgsgNS3-DEAD

SGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGGALWDVPAPKEVKKGETTDGVYRVMTR
RLLGSTQVGVGVMQEGVFHTMWAVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKT
KDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVE

For direct golden gate cloning of TWIST gene add to ends

AAAAAA<u>GGTCTC</u>AC<mark>ATG</mark>

TARGET

ALIGNMENTS to guesstimate boundary constructs

AF404756.1	STDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWK
2GGV	MSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGA
2YOL	SMTDMWIERTADI <mark>T</mark> WESDAEITGSSERVDVRLDDDGNFQLMNDPGAPW
21J0	MSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPW
2FP7	SMTDMWIERTADITWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWK

AF404756.1

2GGV	GGGGSGGG
2YOL	AGGGGSGGGGG
21J0	AGGGGSGGGG
2FP7	GGGGGSGGGG

AF4U4/56.1	GVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLW <mark>H</mark> TTKGAALMSGEGRLDPYWGSVKE
2GGV	RRGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLW <mark>A</mark> TTKGAALMSGEGRLDPYWGSVKE
2YOL	VLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKE
21J0	GVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKE
2FP7	DTTTGVYRIMTRGLLGSYOAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKE

AF404756.1	DRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGT <mark>S</mark> GSPIVDKNGDVIGL
2GGV	DRLCYGGPW <mark>O</mark> LQHKWNGQDEVQMIVVEPG <mark>R</mark> NVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGL
2YOL	DRLCYGGPWKLQHKWNG DEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDYPTGTSGSPIVDKNGDVIGL
21J0	DRLCYGGPW <mark>O</mark> LQHKWNGQDEVQMIVVEPG <mark>R</mark> NVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGL
2FP7	DRLCYGGPWKLQHKWNG DEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLD PTGTSGSPIVDKNGDVIGL

AF404756.1	YGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK
2GGV	YGNGVIMPNGSYISAIVQGERMDEPIPAGKGHHHHHH
2YOL	YGNGVIMPNGSYISAIVQGEP
21J0	YGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLKGHHHHHH
2FP7	YGNGVIMPNGSYISAIVQGERMEEP <mark>H</mark> PAGFEPEMLRKK

U87411.1 ADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTL

4M9T

U87411.1

4M9T GGGGSGGG

U87411.1 AGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKOLISYGGG

4M9T AGVLWDVPSPPPWGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLISYGGG

U87411.1 WKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSLDFSPGT<mark>S</mark>GSPIIDKKGKVVGLYGNGVVTRSGAYVSA

4M9T WKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNEGTIGOVSLDFSPGTSGSPIVDKKGKVVGLYGNGVVTRSGAYVSA

U87411.1 IAQTEKSIEDNPEIEDDIFRK

4M9T IANTEKSIEDNPEIEDDIFRK

MH158237.1 SGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMRE

5TFN GSSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMA

5T1V GKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEEDGPPMREIIL

5GPI MTGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEEDGPPMRE

MH158237.1

5TFN GGGGSGGG

5T1V GGGGSGGG

5GPI

MH158237.1 SGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVS

5TFN GSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVS

5T1V GSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGAALRSGEGRLDPYWGDVKQDLVS

5GPI GSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGAALRSGEGRLDPYWGDVKQDLVS

MH158237.1 YCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVI

 ${\tt 5TFN} \qquad {\tt YCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDIGAVALDYPAGTAGSPILDKCGRVIGLYGNGVVII}$

5T1V YCGPWKLDAAWDGLSEVQLLAVPPGERARNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVI

5GPI YCGPWKLDAAWDGLSEVQLLAVPPGERAKNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVI

MH158237.1 KNGSYVSAITQGRREEETPVE

5TFN KNGSYVSAITQGRREEETPVECFEPS

5T1V KNGSYVSAITQGKREEETPVECFEPS

Title missing - double click to edit

TWIST CLONES (DEAD ones have Catalytic His to Ala mutation)

QQ01D2VNS2B-s002

>DV2-NS2BqsqNS3

AAAAAAGGTCTCACATGGCAGATTTGGAGCTGGAGCGCCGCGGACGTCAAATGGGAAGATCAAGCTGAGATTTCAGGTAG
CTCGCCAATACTTTCTATTACTATCTCTGAGGACGGTTCTATGTCCATTAAGAACGAGGAAGAGAGAAACGCTCGGCGGT
GGTGGTAGTGGCGGTGGTGGTGCGGGTGTTTTGTGGGATGTACCGTCTCCACCACCCATGGGGAAAGCTGAGTTAGAGGATG
GAGCCTATCGCATCAAGCAGAAGGGAATACTGGGCTACTCACAAATCGGGGCCGGGGTATATAAAGAGGGCACTTTCCACAC
AATGTGGCACGTGACACGCGGTGCCGTCCTTATGCACAAAGGGAAGCGCATCGAACCTTCTTGGGCGGATGTGAAGAAGGAC
CTCATCTCTTACGGTGGCGGTTGGAAGTTGGAAGGTGAATGGAAAGAGGGCGAGAAGTGCAGGTCCTTGCCCTGGAGCCC
GTAAGAATCCGCGCGCAGTACAGACGAAACCCGGCCTGTTCAAGACTAACGCCGGCACTATCGGCGCCGTGTCATTAGACTT
CTCGCCCGGTACTTCGGGATCTCCGATCATAGATAAGAAGAGGTAAGGTTGTCGGGTTGTACGGTAACGGCAAGACCCAGAGATGACATATTCCGTA
AGCGGGGCGTACGTGAGAGACCAAAAAA

>DV2-NS2BgsgNS3

MADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLGGGGSGGGAGVLWDVPSPPPMGKAELEDGAYRI KQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPR AVQTKPGLFKTNAGTIGAVSLDFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK

MHHHHHHSSGASWSHPQFEKGGGSGGSGWSHPQFEKGSGVDLGTENLYFQSMADLELERAADVKWEDQAEISGSSPILSITISEDG SMSIKNEEEEQTLGGGGSGGGGGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPS WADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSLDFSPGTSGSPIIDKKGKVVGLYGNGVVTRS GAYVSAIAQTEKSIEDNPEIEDDIFRK

471017301_DV2_T7F_A06.seq

NNNNN

redo

Score Expect	Method	Identities	Positives	Gaps	
591 bits(1524) 0.0 Co					
Query 1 MHHHHHHSSGA					
Sbjct 1				6	0
Query 61 LERAADVKWE Sbjct 61					
Query 121 SPPPMGKAE	ELEDGAYRIKQKGILGYSÇ	QIGAGVYKEGTFHT:	MWHVTRGAVLM	HKGKRIEPS	180
Sbjct 121			A		180
Query 181 WADVKKDLI	SYGGGWKLEGEWKEGEEV	/QVLALEPGKNPRA	VQTKPGLFKTN.	AGTIGAVSL	240
Sbjct 181	· • • • • • • • • • • • • • • • • • • •				240

Query 241 DFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK 297 Sbjct 241 297

DEAD NOT ALIVE

471017301_DV2_T7F_H12_082.seq

NNNNNNNNNNNNNNNNNNNNNTCCCTCTAGAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGCACCATCATCAT CATTCTTCTGGTGCGAGCTGGAGTCACCCACAATTCGAGAAAGGTGGTGGCTCTGGTGGCGGTTCAGGCGGCTCCGCCTG GTCCCATCCACAGTTTGAAAAGGGTTCTGGTGTAGATCTGGGTACCGAGAACCTGTACTTCCAATCCATGGCCGACCTCGAA TTAGAAAGAGCCGCAGATGTCAAGTGGGAAGATCAGGCCGAGATCTCCGGTTCTTCACCCATACTCAGCATAACTATTAGCG AGGATGGATCCATGTCAATCAAGAACGAAGAGGAAGAGCAGACACTGGGCGGAGGAGGAAGCGGCGGTGGCGGGGCAGG TGTATTATGGGACGTCCCAAGTCCGCCCCAATGGGAAAAGCCGAACTGGAAGATGGCGCCTATCGCATAAAGCAAAAGGG AAGCTCGAAGGCGAGTGGAAAGAGGGCGAAGAGGTCCAAGTTCTGGCCCTGGAGCCTGGTAAGAACCCGCGTGCGGTGC AAACCAAGCCAGGCCTGTTCAAGACAAACGCGGGAACTATAGGTGCCGTGTCGCTGGACTTCTCCCCTGGCACCTCAGGTT AATTGCCCAAACGGAGAAGAGCATCGAGGATAACCCGGAGATCGAGGACATTTTCAGAAAATAATGACTCGAGCACCCG TCGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTG AGTTGGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAA AGGGAGGAACTATATCCGGATTGGCGAATGGGACNNCGCCCTNTAGCGGCGCATTAANGCCNNGGNGGNTNGGGGGGGGT TACNNCNAGGGTGGACCGCNTACNNTTTGCCAAGCCCCCTTAAGNGCCNNNCTCCTTTTNNNTTTNCTTCCCTTTCTTTTC

MHHHHHHSSGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMADLELERAADVKWEDQAEISGSSP ILSITISEDGSMSIKNEEEEQTLGGGGSGGGGGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMWA VTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSLDFSPG TSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK

>DV2-NS2BgsgNS3-DEAD

>DV2-NS2BgsgNS3-DEAD

MADLELERAADVKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLGGGGSGGGGGVLWDVPSPPPMGKAELEDGAYRI KQKGILGYSQIGAGVYKEGTFHTMWAVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPR AVQTKPGLFKTNAGTIGAVSLDFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK

 $\label{eq:mandleleraadvkwedqaeisgssgsawshpqfekgsgvdlgtenlyfqsmadleleraadvkwedqaeisgsspilsitisedg smsikneeeeqtlggggsgggagvlwdvpspppmgkaeledgayrikqkgilgysqigagvykegtfhtmwavtrgavlmhkgkrieps wadvkkdlisygggwklegewkegeevqvlalepgknpravqtkpglfktnagtigavsldfspgtsgspiidkkgkvvglygngvvtrs gayvsaiaqteksiednpeieddifkk$

471017301 DV2 DEAD T7F B06.seq

NNNNNNNNNNNNNNCTCTAGAATANTTTTGTTTAACTTTAAGAAGGAGATATACATATGCACCATCATCANCNTNATTCTTCT GGTGCGAGCTGGAGTCACCCACAATTCGAGAAAGGTGGTGGCTCTGGTGGCGGTTCAGGCGGCTCCGCCTGGTCCCATCC ACAGTTTGAAAAGGGTTCTGGTGTAGATCTGGGTACCGAGAACCTGTACTTCCAATCCATGGCAGATTTGGAGCTGGAGCGC GCCGCGGACGTCAAATGGGAAGATCAAGCTGAGATTTCAGGTAGCTCGCCAATACTTTCTATTACTATCTCTGAGGACGGTT CTATGTCCATTAAGAACGAGGAAGAGGAACAAACGCTCGGCGGTGGTGGTGGTGGTGGTGGTGGTGCGGGTGTTTTTGTGG GATGTACCGTCTCCACCACCCATGGGGAAAGCTGAGTTAGAGGATGGAGCCTATCGCATCAAGCAGAAGGGAATACTGGGC TACTCACAAATCGGGGCCGGGGTATATAAAGAGGGCACTTTCCACACAATGTGGCACGTGACACGCGGTGCCGTCCTTATGC ACAAAGGGAAGCCCTCCTTCTTGGGCGGATGTGAAGAAGGACCTCATCTCTTACGGTGGCGGTTGGAAGTTGGAAG GTGAATGGAAAGAGGGCGAGGAAGTGCAGGTCCTTGCCCTGGAGCCCGGTAAGAATCCGCGCGCAGTACAGACGAAACCC GGCCTGTTCAAGACTAACGCCGGCACTATCGGCGCCGTGTCATTAGACTTCTCGCCCGGTACTTCGGGATCTCCGATCATAG ATAAGAAGGGTAAGGTTGTCGGGTTGTACGGTAACGGTGTCGTAACACGCAGCGGGGCGTACGTGAGTGCAATAGCCCAG TTGCGGCCGCACTCGAGCACCACCACCACCACCACTGAGATCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTG CTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAAC TATATCCGGATTGGCGAATGGGACGCCCTGTAGCGGCGCATTAAGCGCGGGGGGTTGGTGGTTACGCGCAGNNNGAC AAGNNNNAAATCGGGGGCTCCCTTTTAGGNTTCCNAATTTANGGNTTTTACNGNCCCTNCCC

MHHHXXXSSGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMADLELERAADVKWEDQAEISGSSP ILSITISEDGSMSIKNEEEEQTLGGGGSGGGGGVLWDVPSPPPMGKAELEDGAYRIKQKGILGYSQIGAGVYKEGTFHTMW HVTRGAVLMHKGKRIEPSWADVKKDLISYGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSLDFSP GTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEIEDDIFRK

	e Expect		Identities		Gaps	
Query 1	мнннннн	Compositional matrix a	GGSGGSAWSHPQFEKG	SGVDLGTENLYE	FQSMADLE (
		VEDQAEISGSSPILSI				
		AELEDGAYRIKQKGIL				
		LISYGGGWKLEGEWKE				
		GSPIIDKKGKVVGLYGI				
NOT DEVI	D BIIT ATTVI	7				

NOT DEAD BUT ALIVE

0001WNVNS2B-s002

>WNV-NS2BqsqNS3

>WNV-NS2BgsgNS3

MSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRI MTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVK NVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK atgcaccat cat cat cat cat tott ctggt gcgagct gagt caccca ca attcgagaa aggt ggt gctctggt gcggt to aggcg ctcgcctggt cocat cat cat cat tott ctggt gtagat ctggt gtagat ctggagaa cctgt act to caat ccat gag caccat at cat ccat gag caccat caccat caccat to act ccat gag caccat caccat gag caccat caccat gag caccat caccat gag caccat gag caccat caccat gag caccat g

 $\label{thm:constraint} $$\operatorname{MHHHHHSSGASWSHPQFEKGGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSTDMWIERTADISWESDAEITGSSERVDVRLDDD GNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPY WGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPN GSYISAIVQGERMDEPIPAGFEPEMLRKK$

471017301_WNV_T7F_E06.seq

MHHHHXXXXGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSTDMWIERTADISWESDAEITGSSERVDVRLDDD GNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPY WGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPN GSYISAIVQGERMDEPIPAGFEPEMLRKK

Sc	ore	Expec	t	Method		Identit	ties F	Positives	Gaps	
597 bit	s(154	0.0(0	Compos	itional matr	ix adjust.	. 295/299(99%) 295	5/299(98%	0)0/299(0%)	
-									YFQSMSTDM	
	- •					• • • • • •			• • • • • • • •	00
									GGGGVLWDTF	
Sbjct	61		• • • • • •	• • • • • • • •		• • • • • • •				120
Onerv	121	SPKEYK	KGDTTTG	VYR TMTRG	T.T.GSYOA	GAGUMUE	GVFHTI.V	JHTTKGAA.	LMSGEGRLDF	Y 180
									TPEGEIGAVI	
Sbjct	181		• • • • • •	• • • • • • • •	• • • • • •	• • • • • • •				. 240
Query	241	DFPTGT	SGSPIVD	KNGDVIGL	YGNGVIM	IPNGSYIS.	AIVQGEF	RMDEPIPA	GFEPEMLRKK	299
Sbjct	241									299

>WNV-NS2BqsqNS3-DEAD

CGCCTCTGTTATGGTGGGCCTTGGAAATTACAACACAAATGGAACGGTCAAGATGAGGTTCAAATGATCGTAGTGGAGCCGG GTAAGAACGTAAAGAACGTTCAAACAAAGCCAGGCGTATTTAAAACCCCCGAAGGCGAGATCGGCGCGCTCACGCTGGACTT TCCCACAGGTACAAGCGGTTCTCCTATTGTAGACAAGAATGGTGACGTAATTGGCCTCTACGGCAATGGTGTCATAATGCCG AACGGCTCGTATATCAGCGCAATTGTACAAGGTGAACGGATGGACGAGCCTATCCCGGCTGGTTTCGAACCTGAGATGTTGC GTAAGAAGTAATGACTCGAGAGACCAAAAAA

>WNV-NS2BqsqNS3-DEAD

MSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRI MTRGLLGSYQAGAGVMVEGVFHTLWATTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVK NVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK

 $\label{thm:construction} $$ MHHHHHSSGASWSHPQFEKGGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSTDMWIERTADISWESDAEITGSSERVDVRLDDD GNFQLMNDPGAPWKGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWATTKGAALMSGEGRLDPY WGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPN GSYISAIVQGERMDEPIPAGFEPEMLRKK$

471017301_WNV_DEAD_T7F_F06.seq

NNNNNNNNNNNNNNCCCTCTAGAATAATTTTGTTTAACTTTAAGAAGGAGATATACATATGCACCATCATCATCATCATGCTT CTGGTGCGAGCTGGAGTCACCCACAATTCGAGAAAGGTGGTGGCTCTGGTGGCGGTTCAGGCGGCTCCGCCTGGTCCCAT CCACAGTTTGAAAAGGGTTCTGGTGTAGATCTGGGTACCGAGAACCTGTACTTCCAATCCATGAGCACGGATATGTGGATAG AACGTACAGCCGACATTAGCTGGGAAAGTGACGCTGAAATAACCGGATCCAGTGAGCGCGTCGATGTGCGCTTAGATGACG ACGGAAATTTCCAGTTGATGAATGATCCGGGTGCTCCGTGGAAAGGTGGCGGCGGGTCGGGTGGCGGCGGCGGTGTTCTG TGGGATACACCCTCACCTAAGGAATATAAGAAAGGGGACACGACAACAGGGGTATACAGAATCATGACGCGCGGTCTGCTT GGCTCCTACCAGGCAGGGGCTGGTGTCATGGTAGAAGGCGTCTTCCACACTCTCTGGGCTACGACTAAAGGGGCGGCTCT GATGTCTGGTGAAGGTCGGTTGGACCCGTACTGGGGCTCTGTAAAGGAAGACCGCCTCTGTTATGGTGGGCCTTGGAAATT GCCAGGCGTATTTAAAACCCCCGAAGGCGAGATCGGCGCCGTCACGCTGGACTTTCCCACAGGTACAAGCGGTTCTCCTATT GTAGACAAGAATGGTGACGTAATTGGCCTCTACGGCAATGGTGTCATAATGCCGAACGGCTCGTATATCAGCGCAATTGTAC AAGGTGAACGGATGGACGAGCCTATCCCGGCTGGTTTCGAACCTGAGATGTTGCGTAAGAAGTAATGACTCGAGCACCCGT CGACAAGCTTGCGGCCGCACTCGAGCACCACCACCACCACCACCACGAGTCCGGCTGCTAACAAAGCCCGAAAGGAAGCTGA GTTGGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTTGCTGAAA GGAGGAACTATATCCGGATTGGCGAATGGGACGCCCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGGGGTTACGCGC AGGNTGACCGCTANNNTTGCCNNGNCCNTAGCGCCCGCTCCTTTNNNTTTTCTNCCCCTTCCTTTCCNNCNNGGTTCNCNG GGTTTTCCCCGNNAAGCNCNAANTCGGGGGCTCCCTTNAGGGTTCCAATTNNNGGCTTNANNGCCCCNNNCCCCAAAAAN NN

MHHHHHASGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSTDMWIERTADISWESDAEITGSS ERVDVRLDDDGNFQLMNDPGAPWKGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFH TLWATTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVT LDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK

Score	Expect	Method	Identities	Positives	Gaps	
606 bits(1563)) 0.0 Com	positional matrix adjust	. 298/299(99%)	299/299(100%)(0/299(0%)
Query 1 MHH	HHHHSSGASV	NSHPQFEKGGGSGGSG(GSAWSHPQFEKGS	GGVDLGTENLYFÇ)SMSTDM	60
Sbjct 1	A				. 	60

Sbjct	61		120
		SPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWATTKGAALMSGEGRLDPY	
_		WGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTI	
_		DFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK	

QQ01ZVNS2B-s001

>ZV-NS2BqsqNS3

>ZV-NS2BgsgNS3

MSGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGALWDVPAPKEVKKGETT DGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVP PGERARNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVE

MHHHHHHSSGASWSHPQFEKGGGSGGSGWSHPQFEKGSGVDLGTENLYFQSMSGKSVDMYIERAGDITWEKDAEVTGNSPRLDVAL DESGDFSLVEDDGPPMREGGGGSGGGGGGGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGE GRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGN GVVIKNGSYVSAITOGRREEETPVE

471017301_ZV_T7F_C06.seq

MHHHXXXSSGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSGKSVDMYIERAGDITWEKDAEVT GNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGGGGGGGKUDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQ EGVFHTMWHVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDI GAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVE

Score	Expect	Method	Identities	Positives	Gaps	
587 bits(151	3) 0.0 Compos	itional matrix adjust.	. 292/295(99%) 2	92/295(98%)0/	295(0%)	
		PQFEKGGGSGGSGG				
Sbjct 1 .	XXX				6	0
		KDAEVTGNSPRLDVA				
- 4		GETTDGVYRVMTRRI				
		LVSYCGPWKLDAAWD				
- 4		GSPILDKCGRVIGLY		-		

>ZV-NS2BgsgNS3-DEAD

AAAAAAGGTCTCACATGAGCGGTAAGTCTGTCGATATGTACATTGAACGTGCCGGTGACATCACCTGGGAGAAGGATGCAGA
AGTGACGGGTAACTCGCCAAGACTTGATGTTGCACTCGACGAGTCGGGCGATTTTAGCTTAGTTGAAGATGACGGTCCGCCT
ATGCGAGAGGGCGGCGGCGGTAGCGGCGGTGGTGGTGGTAGCGGAGCATTATGGGATGTGCCGGCACCCAAGGAAGTAAAGA
AAGGGGAGACGACAGACGGTGTATACAGAGTTATGACGAGAAGACTGTTGGGTAGCACACAAGTTGGTGTTGGCGTAATGCA
GGAAGGAGTCTTCCACACCATGTGGGCGGTCACCAAGGGCAGTGCGCTTCGCAGCGGTGAGGGACGTCTGGATCCGTACTGG
GGAGACGTGAAGCAAGACCTGGTCAGTTATTGTGGTCCGTGGAAGCTTGACGCAGCCTGGGACGGCCATAGCGAGGTGCAAC
TCCTCGCCGTACCGCCGGGAGAGCGCCCCGTAATATTCAAACTCTGCCCGGTATCTTTAAAACCAAGGACGGAGATATAGG
CGCAGTGGCTCTTGATTATCCCGCAGGGACTAGCGGTAGTCCTATTCTGGATAAGTGCGCCGAAGAGACCCCGTAGAATAAT
GACTCGAGAGACCAAAAAA

>ZV-NS2BgsgNS3-DEAD

MSGKSVDMYIERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGALWDVPAPKEVKKGETT DGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWAVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVP PGERARNIOTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITOGRREEETPVE

MHHHHHHSSGASWSHPQFEKGGGSGGSGSAWSHPQFEKGSGVDLGTENLYFQSMSGKSVDMYIERAGDITWEKDAEVTGNSPRLDVAL DESGDFSLVEDDGPPMREGGGGSGGGGGSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWAVTKGSALRSGE GRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGN

471017301_ZV_DEAD_T7F_D06.seq

NNNNNNNNNNNNNNNTCTNNNNNNATTTTNNTTAACTTTAAGAAGGAGATATACATATGCACCATCATCNNCANNNNTCT TCTGGTGCGAGCTGGAGTCACCCACAATTCGAGAAAGGTGGTGGCTCTGGTGGCGGTTCAGGCGGCTCCGCCTGGTCCCA TCCACAGTTTGAAAAGGGTTCTGGTGTAGATCTGGGTACCGAGAACCTGTACTTCCAATCCATGAGCGGTAAGTCTGTCGAT ATGTACATTGAACGTGCCGGTGACATCACCTGGGAGAAGGATGCAGAAGTGACGGGTAACTCGCCAAGACTTGATGTTGCA CTCGACGAGTCGGGCGATTTTAGCTTAGTTGAAGATGACGGTCCGCCTATGCGAGAGGGCGGCGGCGGTAGCGGCGGTGG TCACCAAGGGCAGTGCGCTTCGCAGCGGTGAGGGACGTCTGGATCCGTACTGGGGAGACGTGAAGCAAGACCTGGTCAGT TATTGTGGTCCGTGGAAGCTTGACGCAGCCTGGGACGGCCATAGCGAGGTGCAACTCCTCGCCGTACCGCCGGGAGAGCG CGCCCGTAATATTCAAACTCTGCCCGGTATCTTTAAAACCAAGGACGGAGATATAGGCGCAGTGGCTCTTGATTATCCCGCAG GGACTAGCGGTAGTCCTATTCTGGATAAGTGCGGCCGAGTGATTGGCTTATACGGAAATGGAGTGGTTATCAAGAATGGAAG CTATGTCTCAGCCATAACCCAAGGTCGTCGCGAAGAGGAGACACCCGTAGAATAATGACTCGAGCACCCGTCGACAAGCTT GCGGCCGCACTCGAGCACCACCACCACCACCACCGGGTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGC TGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACT ATTTCCGGATTGGCGAATGGGACGCCCCTGTAGCGGNGNATTAAGCGCGGGGGGTTGGGGGGTTACGCGCAGCNTGACCG CTACCTTTGCCAGGNCCCTAGNNCCCGTTCCTTTNNTTTTTTTCCTTTCTTTTNNGCCNNGGTTNGCCGGNTTTNCCCNGT CANGNNNTAAATCGGGGGGNNNCCTTTAGGGTTC

MHHHXXXSSGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSGKSVDMYIERAGDITWEKDAEVT GNSPRLDVALDESGDFSLVEDDGPPMREGGGGSGGGGGGGGGGGKUDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQ EGVFHTMWAVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFKTKDGDI GAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQGRREEETPVE

Score	Expect Method	Identities	Positives Ga	aps
586 bits(1511	1)0.0 Compositional matrix	c adjust. 292/295(99%) 29	92/295(98%) 0/29	5(0%)
	HHHHHSSGASWSHPQFEKGGGS			
SDJCC 1		• • • • • • • • • • • • • • • • • • • •		00
	DMYIERAGDITWEKDAEVTGNS			
Sbjct 61 .				120
	ALWDVPAPKEVKKGETTDGVYR			
Sbjct 121				180
	GRLDPYWGDVKQDLVSYCGPWK			
Sbjct 181		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	240
- 1	IGAVALDYPAGTSGSPILDKCG			
Sbjct 241				. 295

Title missing - double click to edit

Transformed BL21[DE3]RR with plasmid Used to inoculate 15 mL SOC grown o/n 37C 200 rpm Used 15 mL of o/n to inoculate 1L of AIM-TB and grew 37C 200 rpm 3 h then 21 h 18C 200 rpm Harvested 4000 g 20 minutes
Froze pellet -80C (approx 45 q wcw/L)

Dissolved pellet in 200 mL base buffer + 1 % TX-100 and 0.5 mg/mL lysozyme and 1 ug/mL benzonase Centrifuge $30,000g\ 1\ h\ 12C$

Apply soluble fracction to 5 mL Ni-Speharose FF Wash 50 mL of BaseBuffer + 30 mM Imidazole 3x Elute 2 x 10 mL BaseBuffer + 300 mM Imidazole

ZV A280 = 11 DV2 A280 = 10 WNV A280 = 12.1 ZV DEAD A280 = 3.3 DV2 DEAD A280 = 11.1 WNV A280 = 15.8

pretty good yields except for ZV DEAD

WNV maybe proteolysing

Protein	Volume	A280	Yield (mg)
ZV	20	11	127
DV2	20	10	116
WNV	20	12	115
ZV DEAD	20	3.3	32
DV2 DEAD	20	11	123
WNV DEAD	20	16	178

SDS-PAGE after IMAC

ZV = 31250.5 DV2 = 31543.0 WNV = 32095.6 ZV DEAD = 31184.5 DV2 DEAD = 31477.0 WNV DEAD = 32029.6 Dialyze 6 x20 mL of samples o/n against 3L of base buffer after adding 1:10 TEVsh

Reapply to 5 mL Ni-Sepharose FF (if a lot of protein (>100 mg) ran through a second 5mL column to remove TEV and uncleaved protein. Wash column with 15 mL BaseBuffer + 30 mM Imidazole

Freeze until ready to run SEC

Base Buffer = 10 mM HEPES, 500 mM NaCl, 5 % glycerol, 1 mM TCEP

SDS PAGE After TEV o/n dialysis & rev IMAC

ZV = 25556.5 DV2 = 25849 WNV = 26401.6 ZV DEAD = 25490.5 DV2 DEAD = 25783 WNV DEAD = 26335.6

After o/n dialysis & rev IMAC

Protein	Volume	A280	Yield (mg)
ZV	30	5.2	96
DV2	30	4.7	87
WNV	30	6.1	89
ZV DEAD	30	1.2	17
DV2 DEAD	30	5.1	90
WNV DEAD	30	7.7	136

Concentrated to around 5 mL and loaded onto 125 mL Superose 12 PG column ran at 1.5 ml/min at RT using base buffer as mobile phase (10 mM HEPES pH 7.5, 500 mM NaCl, 5 % glycerol, 0.5 mM TCEP)

Final yields around 6 mL at 200-300 uM each except for ZV dead which is at 40 uM.

CONSTRUCT-ID	Klone ID	Expression ID	Purification Id	Notes
QQ01D2VNS2B-c001	QQ01D2VNS2B-k001	QQ01D2VNS2B-e001	QQ01D2VNS2B-p001	ALIVE
QQ01D2VNS2B-c002	QQ01D2VNS2B-k002	QQ01D2VNS2B-e002	QQ01D2VNS2B-p002	DEAD
QQ01WNVNS2B-c001	QQ01WNVNS2B-k001	QQ01WNVNS2B-e001	QQ01WNVNS2B-p001	ALIVE CLEAN
QQ01WNVNS2B-c002	QQ01WNVNS2B-k002	QQ01WNVNS2B-e002	QQ01WNVNS2B-p002	DEAD
QQ01ZVNS2B-c001	QQ01ZVNS2B-k001	QQ01ZVNS2B-e001	QQ01ZVNS2B-p001	ALIVE
QQ01ZVNS2B-c001	QQ01ZVNS2B-k002	QQ01ZVNS2B-e002	QQ01ZVNS2B-p002	DEAD

DV2_NS2B3_FP_DEAD_SEC_SUPEROSE12PG

 ${\bf WNV_NS2B3_FP_SEC_SUPEROSE12PG}$

WNV_NS2B3_FP_DEAD_SEC_SUPEROSE12PG

ZV_NS2B3_FP_SEC_SUPEROSE12PG

ZV_NS2B3_FP_DEAD_SEC_SUPEROSE12PG

AKTA PRIME SEC REPORTS

WNV_NS2B3_FP_DEAD_SEC_SUPEROSE12PG.pdf
ZV_NS2B3_FP_DEAD_SEC_SUPEROSE12PG.pdf
WNV_NS2B3_FP_SEC_SUPEROSE12PG.pdf
ZV_NS2B3_FP_SEC_SUPEROSE12PG.pdf
DV2_NS2B3_FP_SEC_SUPEROSE12PG.pdf
DV2_NS2B3_FP_DEAD_SEC_SUPEROSE12PG.pdf

Title missing - double click to edit

WNV seems to be self-cleaving linker may need redesigning

2YOL which is also a WNV fusion protein doesn't do this

comparing the sequence we can see NS2B-linker region is not the WT

>2YOL cleaved

SMTDMWIERTADITWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWAGGGGSGGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLG SYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGHDEVQMIVVEPGKNVKNVQTKPGVFKTPEGE IGAVTLDYPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGER

A P W K G G G

but

A P W A G G

if one looks at the cleavage sites of WNV there is a preference of K/R in P1 and G in P1'

shit

mutate to K to A to stabilize fusion

5'3' Frame 1

atg cac cat cat cat cat tct tct ggt gcg agc tgg agt cac cca caa ttc gag aaa Н S S Α W S Н ggt ggt ggc tct ggt ggc ggt tca ggc ggc tcc gcc tgg tcc cat cca cag ttt gaa aag S S S G G Α ggt tot ggt gta gat otg ggt acc gag aac otg tac tto caa too atg agc act gat atg G D L G Т Ε N L F 0 S tgg att gaa cgc acg gca gac atc agc tgg gag tcg gat gct gag atc aca ggt tca agc Α Ε D R D I S Α gaa aga gtg gat gta cga tta gac gat gac ggt aat ttt caa ctg atg aat gac cct ggc Ε R V D V R L D D D G N F 0 L M N $\hbox{$\tt gcg \ ccg \ tgg \ aaa} \ \hbox{$\tt ggc \ ggc \ ggc \ tct \ ggt \ gga \ ggt \ ggc \ gtt \ ttg \ tgg \ gac \ acg \ ccg}$ K G G G S G G G G tcc ccc aaa gaa tac aag aag ggt gac acg act acc ggt gtt tac aga att atg acc cgg E Y K K G D Т т V Y M G R ggt ttg ctt ggg tcg tac cag gcc ggg gca ggg gtg atg gta gag gga gtt ttc cat acc Μ 0 tta tgg cac act acc aaa ggt gcc gca ctt atg tct ggt gag ggt cgc ctt gat cct tat K Μ Ε tgg ggt agc gta aaa gag gat cgg ctc tgt tac ggc gga cca tgg aag ctt caa cac aag G P tgg aac gga cag gat gaa gtt cag atg att gtc gta gag ccg ggc aag aat gtc aag aac Q M qtq caa aca aaq ccc qqt qta ttc aaa acq ccq qaa qqc qaa att qqc qct qtq acc ctt Т Р V F K T Р E G E I K G G A gac ttt cca act ggg acc agc ggc tca cca ata gtc gac aag aat gga gat gtc att ggg N Т ttg tac gga aat ggt gtt att atg ccc aat ggc tcg tac atc tcc gct atc gta caa gga V I M P N G S Y I S A I V O G G N G gag cgc atg gac gaa ccg ata cct gca ggc ttc gaa cct gag atg tta aga aag aag taa

D V R L D D D G N F Q L M N D P G A P W A G G G

Top of Form

Bottom of Form

Required Primers

Name (F/R) Oligo (Uppercase = target-specific primer) Len % GC Tm Ta *

WNV_K2A_FP CGCGCCGTGGGCAGGCGGCG

WNV K2A_RP CCAGGGTCATTCATCAGTTGAAAATTACCGTCATCGTCTAATCGTACATCC 51 43 77°C

* Ta (recommended annealing temperature)

atg cac cat cat cat cat cat tct tct ggt gcg age tgg agt cac cca caa ttc gag aaa M H H H H H S S G A S W S H P Q F E K ggt ggt ggc tct ggt ggc ggt tca ggc ggc tcc gcc tgg tcc cat cca cag ttt gaa aag G G G S G G S G G S A W S H P O F E K

ggt tet ggt gta gat etg ggt ace gag aac etg tae tte eaa tee atg age act gat atg Т Ε N L Y F 0 S Μ cgc acg gca gac atc agc tgg gag tcg gat gct gag atc aca ggt tca agc D Ε D gaa aga gtg gat gta cga tta gac gat gac ggt aat ttt caa ctg atg aat gac cct ggc $\verb|gcg| ccg| tgg| \frac{\texttt{gca}}{\texttt{ggc}} | \texttt{ggc}| | \texttt{ggc}|$ S D Α G G G G G G G G G tcc ccc aaa gaa tac aag aag ggt gac acg act acc ggt gtt tac aga att atg acc cgg D Т S E K G R ggt ttg ctt ggg tcg tac cag gcc ggg gca ggg gtg atg gta gag gga gtt ttc cat acc V V F Υ G G S 0 Α G Α G Μ Ε G Н tta tgg cac act acc aaa ggt gcc gca ctt atg tct ggt gag ggt cgc ctt gat cct tat Τ. Н K G Α M S G R D tgg ggt agc gta aaa gag gat cgg ctc tgt tac ggc gga cca tgg aag ctt caa cac aag W S V K \mathbf{E} D R Τ. Y G G P W 0 Τ. tgg aac gga cag gat gaa gtt cag atg att gtc gta gag ccg ggc aag aat gtc aag aac Ν 0 D Ε Q Μ Ε Р K Ν gtg caa aca aag ccc ggt gta ttc aaa acg ccg gaa ggc gaa att ggc gct gtg acc ctt Р F P K K Ε Α gac ttt cca act ggg acc agc ggc tca cca ata gtc gac aag aat gga gat gtc att ggg ttg tac gga aat ggt gtt att atg ccc aat ggc tcg tac atc tcc gct atc gta caa gga V N Ι Μ Ρ N G S Ι S Α L G G Ι 0 gag cgc atg gac gaa ccg ata cct gca ggc ttc gaa cct gag atg tta aga aag aag taa D Ε Ρ Ρ G F Ε Ρ Ε Α

INVERSE PCR Q5 25 cycles 72C AT

1 = WNV K2A

Sequencing

QQ01WNVNS2B-c003

 Number of amino acids: 299

Molecular weight: 32038.56

Theoretical pI: 5.34

SMSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWAGGGGSGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKG
AALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQG
ERMDEPIPAGFEPEMLRKK

Number of amino acids: 245

Molecular weight: 26344.55

Expect Identities

Theoretical pI: 4.83

471528801 M1 T7R G07.seq

Score

 ${\tt AATTAAACAAAATTATTCCTAGAGGGGAATTGTTATCCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGGGATCGAAAATCTCGATTCNNCTACGCCGGAACC}$

Strand

	S	core	Expect	Identities	Gaps	Strand	
	1663 b	its(9	00) 0.0	900/900(100%)	0/900(0%)	Plus/Minus	
Ç	Query	1	ATGCACCATC	ATCATCATCATTCT	TCTGGTGCGA	GCTGGAGTCACCCACAATTCGAGAAA	60
2	Sbjct	998					939
Ç	Query	61	GGTGGTGGCT	CTGGTGGCGGTTCA	GGCGGCTCCG.	CCTGGTCCCATCCACAGTTTGAAAAG	120
5	Sbjct	938					879
Ç)uery	121	GGTTCTGGTG	TAGATCTGGGTACC	GAGAACCTGT	ACTTCCAATCCATGAGCACTGATATG	180
5	Sbjct	878					819
Ç)uery	181	TGGATTGAAC	GCACGGCAGACATC	AGCTGGGAGT	CGGATGCTGAGATCACAGGTTCAAGC	240
2	Sbjct	818					759
Ç)uery	241	GAAAGAGTGG	ATGTACGATTAGAC	GATGACGGTA	ATTTTCAACTGATGAATGACCCTGGC	300
5	Sbjct						699
	uery		GCGCCGTGGG	CAGGCGGCGGCGC	TCTGGTGGAG	GAGGTGGCGTTTTGTGGGACACGCCG	
5	Sbjct	698					639

Gaps

Query	361	TCCCCCAAAGAATACAAGAAGGGTGACACGACTACCGGTGTTTACAGAATTATGACCCGG	420
Sbjct	638		579
Query	421	GGTTTGCTTGGGTCGTACCAGGCCGGGGCAGGGGTGATGGTAGAGGGAGTTTTCCATACC	480
Sbjct	578		519
Query	481	$\tt TTATGGCACACTACCAAAGGTGCCGCACTTATGTCTGGTGAGGGTCGCCTTGATCCTTAT$	540
Sbjct	518		459
Query	541	TGGGGTAGCGTAAAAGAGGATCGGCTCTGTTACGGCGGACCATGGAAGCTTCAACACAAG	600
Sbjct	458		399
Query	601	TGGAACGGACAGGATGAAGTTCAGATGATTGTCGTAGAGCCGGGCAAGAATGTCAAGAAC	660
Sbjct			339
Query	661	GTGCAAACAAAGCCCGGTGTATTCAAAACGCCGGAAGGCGAAATTGGCGCTGTGACCCTT	720
Sbjct	338		279
Query	721	GACTTTCCAACTGGGACCAGCGGCTCACCAATAGTCGACAAGAATGGAGATGTCATTGGG	780
Sbjct	278		219
Query	781	$\tt TTGTACGGAAATGGTGTTATTATGCCCAATGGCTCGTACATCTCCGCTATCGTACAAGGA$	840
Sbjct	218		159
Query	841	GAGCGCATGGACGAACCGATACCTGCAGGCTTCGAACCTGAGATGTTAAGAAAGA	900
_			99
Sbjct	170		ララ

 $\label{thm:magas} $$ MHHHHHHSGASWSHPQFEKGGGGGGGGGAWSHPQFEKGGGVDLGTENLYFQSMSTDMWIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWAGGGGSGGGGGVLWDTPSPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPYWGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTLDFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK$

 Score
 Expect
 Method
 Identities
 Positives
 Gaps

 607 bits(1565)
 0.0
 Compositional matrix adjust. 299/299(100%) 299/299(100%) 0/299(0%)
 0/299(0%)

Query	1	${\tt MHHHHHHSSGASWSHPQFEKGGGSGGSGGSAWSHPQFEKGSGVDLGTENLYFQSMSTDM}$	60
Sbjct	1		60
Query	61	WIERTADISWESDAEITGSSERVDVRLDDDGNFQLMNDPGAPWAGGGGSGGGGVLWDTP	120
Sbjct	61		120
Query	121	SPKEYKKGDTTTGVYRIMTRGLLGSYQAGAGVMVEGVFHTLWHTTKGAALMSGEGRLDPY	180
Sbjct	121		180
Query	181	WGSVKEDRLCYGGPWKLQHKWNGQDEVQMIVVEPGKNVKNVQTKPGVFKTPEGEIGAVTL	240
Sbjct	181		240
Query	241	DFPTGTSGSPIVDKNGDVIGLYGNGVIMPNGSYISAIVQGERMDEPIPAGFEPEMLRKK	299
Sbjct	241		299

All good check to see if doesn't cut itself

https://doi.org/10.1042/BJ20061136

Table 2

The potential NS2B-NS3pro cleavage sites in the precursor polyprotein

The sequence of the synthesized and tested peptides which span the potential cleavage sites in the WNV and DV polyproteins is shown. The cleavage sites represent the boundaries between the individual proteins in the polyprotein precursor. The additional, dibasic, potential cleavage sites were identified via the analysis of the polyprotein peptide sequence. The efficiency of the cleavage (%) is shown in parentheses.

Proteins	WNV	DV
Capsid C protein	$Q^{102}KKR\downarrow GGTA^{109} (62)$	$R^{97}RRR \downarrow SAGM^{104} (64)$
C/prM	${\tt C^{120}AGA\downarrow VTLS^{127}(1)}$	$\mathtt{T}^{111} \mathrm{VMA} \!\!\downarrow\! \mathtt{FHLT}^{118} \left(0 \right)$
prM	$H^{209}SRR \downarrow SRR S^{216}$ (6)	$R^{202}QKR\!\downarrow\! SVAL^{209}\left(1\right)$
prM	$R^{212}SRR\downarrow SLTV^{219}\left(0\right)$	-
prM/E	$P^{297}AYS\downarrow FNCL^{304}(0)$	$P^{277}SMT{\downarrow}MRCI^{284}\left(1\right)$
E/NS1	$N^{784}VHA\downarrow DTGC^{791}$ (0)	$M^{772}VQA\downarrow DSGC^{779}$ (2)
NS1/NS2A	$R^{1140} \text{VNA} \!\!\downarrow \! \text{YNAD}^{1147} \left(0\right)$	$L^{1124} VTA \downarrow GHGQ^{1131} \ (1)$
NS2A	$K^{1327}EKR\downarrow SSAA^{1334}\left(0\right)$	-
NS2A	$A^{1334}KKK \downarrow GACL^{1341} (31)$	=
NS2A/NS2B	$\mathrm{N^{1367}RKR} \downarrow \mathrm{GWPA^{1374}} (64)$	$\mathtt{S}^{1342}\mathtt{KKR} \!\!\downarrow\! \mathtt{SWPL}^{1349} \left(5\right)$
NS2B-NS3	$Y^{1498}TKR\downarrow GGVL^{1505}\left(73\right)$	$K^{1472}KQR\downarrow AGVL^{1479}$ (11
NS3pro/hel	$R^{1686}KKQ\downarrow ITVL^{1693}\left(4\right)$	$R^{1659} KRR \downarrow LTIM^{1666} (68)$
NS3pro/hel	$K^{1700}TRK\downarrow ILPQ^{1707}\left(3\right)$	$K^{1674}TKR\downarrow YLPA^{1681}$ (31)
NS3pro/hel	$K^{1716}RLR\downarrow TAVL^{1723}\left(0\right)$	$A^{1686}IKR\downarrow GLRT^{1693}\left(6\right)$
NS3hel	$A^{1957}QRR\downarrow GRIG^{1964}\left(2\right)$	A ¹⁹³⁰ QRR↓GRIG ¹⁹³⁷ (45)
NS3/NS4A	$S^{2117}GKR\downarrow SQIG^{2124}(0)$	$A^{2090} GRK \downarrow SLTL^{2097} (1)$
NS4A	$E^{2243}KQR\downarrow SQTD^{2250}\left(0\right)$	$E^{2217}KQR\!\!\downarrow\!TPQD^{2224}\left(0\right)$
NS4A/NS4B	$A^{2266}VAA\downarrow NEMG^{2273}(0)$	A ²²⁴⁰ TMA↓NEMG ²²⁴⁷ (0)
NS4B/NS5	G ²⁵²² LKR↓GGAK ²⁵²⁹ (73)	N ²⁴⁸⁸ TRR↓GTGN ²⁴⁹⁵ (1)