

Winning Space Race with Data Science

Utkarsh Goyal 7/4/23

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- As the SpaceX wants to make rockets more affordable and environmentally friendly, we are looking into our rockets launches more successful
- I was able to predict with a 94% accuracy when a rocket will be successfully launched to achieve this goal.
- Using LightGBM, we can make those predictions and find the optimal features to save database costs build a lean model.

Introduction: Background

- In this capstone for the IBM Applied Data Science course, I will try to work as a data scientist.
- I will try to conditions where rockets safely land for SpaceX.

Introduction: Business Problem

- Predict if the Falcon 9 first stage will land successfully
- SpaceX advertises Falcon 9 rocket launches on its website, with a cost of 62 million dollars; other providers cost upward of 165 million dollars each, much of the savings is because SpaceX can reuse the first stage.
- Therefore, if we can determine if the first stage will land then we save a lot money.

Data Collection

- Acquired historical launch data from <u>Open-Source REST API</u> for SpaceX
- Requested and parsed the SpaceX launch data using the GET request
- Clean the data to become more readable

Data Wrangling

- Filtered the data to only include Falcon 9 launches
- Replaced missing payload mass values from classified missions with mean
- Created a landing outcome training label, 'Class', from 'Outcome' column
 - Class = 0; first stage booster did not land
 - None None; not attempted
 - None ASDS; unable to be attempted due to launch failure
 - False ASDS; drone ship landing failed
 - · False Ocean; ocean landing failed
 - · False RTLS; ground pad landing failed
 - Class = 1; first stage booster landed
 - True ASDS; drone ship landing succeeded
 - True RTLS; ground pad landing succeeded
 - True Ocean; ocean landing succeeded

EDA with Data Visualization

- FlightNumber vs PayloadMass
- FlightNumber vs LaunchSite
- Payload vs LaunchSite
- Orbit type vs Success rate
- FlightNumber vs Orbit type
- Payload vs Orbit type
- Success rate over time

EDA with SQL

- Ran SQL queries to understand:
 - Launch sites
 - Payload masses
 - Booster versions
 - Mission outcomes
 - Booster landings

Build an Interactive Map with Folium

- Marked all launch sites on a map
- Marked the successful/failed launches for each site on map
- Calculated the distances between a launch site to its proximities
 - Railways
 - Highways
 - Coastlines
 - Cities

Build a Dashboard with Plotly Dash

- Pie chart showing success rate by launch site
- Scatter chart showing payload mass vs. landing outcome by booster version with range slider for limiting payload amount
- Drop-down menu to choose between all sites and individual launch sites

Predictive Analysis (Classification)

- Split into training data and test data
- Fit the training data to various model types
 - Logistic Regression
 - SVM
 - Decision Tree Classifier
 - KNN Classifier
 - Random Forrest Classifier
 - Xgboost Classifier
 - LightGB Classifier
 - ANN
- Used a GridSearchCV to select the best hyperparameters for each model
- Evaluated accuracy of each model using test data to select the best model

Flight Number vs. Launch Site

CCAFS SCL 40 has a lower success rate compared to the other two launch sites.

Payload vs. Launch Site

CCAFS SLC 40 and KSC LC 39A appear to have a higher success rate for heavier payloads, but this also means increased costs.

Success Rate vs. Orbit Type

SO has not had a successful flight. The GTO has the lowest success rate, after SO.

Flight Number vs. Orbit Type

We have more successes in later flight numbers.

Payload vs. Orbit Type

Lighter payloads are recommended for GTO orbits, however heavier payloads are better for VLEO and ISS.

Launch Success Yearly Trend

We learnt from our mistakes and improved as years went on. Now we have 80% success rates.

All Launch Site Names

Launch Site Names Begin with 'CCA'

```
%%sql
SELECT LAUNCH_SITE
FROM SPACEXTBL
WHERE LAUNCH_SITE LIKE 'CCA%'
LIMIT 5;
 launch_site
CCAFS LC-40
CCAFS LC-40
CCAFS LC-40
CCAFS LC-40
CCAFS LC-40
```

Total Payload Mass

```
%%sql
SELECT SUM(PAYLOAD_MASS__KG_)
FROM SPACEXTBL
WHERE Customer = 'NASA (CRS)';
```

Average Payload Mass by F9 v1.1

```
%%sql
SELECT AVG(PAYLOAD_MASS__KG_)
FROM SPACEXTBL
WHERE Booster_Version LIKE 'F9 v1.0%';
1
340
```

First Successful Ground Landing Date

```
%%sql
SELECT MIN(Date)
FROM SPACEXTBL
WHERE Landing_Outcome = 'Success (ground pad)';

1
2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

```
%%sql
SELECT BOOSTER_VERSION
FROM SPACEXTBL
WHERE LANDING OUTCOME = 'Success (drone ship)'
    AND 4000 < PAYLOAD_MASS__KG_ < 6000;
booster version
  F9 FT B1021.1
  F9 FT B1023.1
  F9 FT B1029.2
  F9 FT B1038.1
  F9 B4 B1042.1
  F9 B4 B1045.1
  F9 B5 B1046.1
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

All Launch Sites

- ¾ launch sites are in Florida
- They are all near the equator

Success/Failures in each locations

- Looking at VAFB SLC-4E
- There are more failures at this location

Launch site proximities

- Looking at CCAFS SLC-40
- It is very far from the city,
 ~50km to minimize danger

Success Rate across all launch sites

SpaceX Launch Records Dashboard

XII Sites

Success Count for all launch sites

KSC LC-39A success rates

SpaceX Launch Records Dashboard

Total Success Launches for site KSC LC-39A

KSC LC-39A

Payload vs. Launch Outcome

Classification Accuracy

- Most Models have 83% test accuracy
- LightGBM has the highest test accuracy, 94%
- Neural Net has the lowest,
 72%

LGB Confusion Matrix

Classification	Report:			
	precision	recall	f1-score	support
0	1.00	0.83	0.91	6
1	0.92	1.00	0.96	12
accuracy			0.94	18
macro avg	0.96	0.92	0.93	18
weighted avg	0.95	0.94	0.94	18

Feature Importance

Conclusions

- We can predict with a 94% accuracy when a rocket will land
- We can save our costs by only launching optimal rockets with optimal features such as payloads at launch sites to the correct orbit
- We can improve our model by having more flights with the optimal features to refine and tune our model until we make the best rockets
- We can save on data storage by only maintaining the important attributes, when we have more data

