SLA - Gruppe 4

Clemens Danninger, Christian Hotz-Behofsits und Thomas Schmidleithner

Aufgabe

- SLA Modell erstellen
- en_savings und availabilty haben dem gegeben Modell zu entsprechen

Resultat

- Script lädt CSV-Files mit Preisen und Temperaturen
- Daten werden entsprechend aufbereitet und konvertiert
- Modell wurde in Form von R-Funktionen umgesetzt

Aufgabe

- Adäquate Workload Annahmen aus Traces treffen
- User modellieren und Gruppen finden

Resultat

- 3 verschiedene "Kunden"
 - Skype (P2P)
 - Microsoft Pings (Desktop)
 - Websites (Server)
- Quelle: "FAILURE TRACE ARCHIVE"
- Websites wurden weiter aufgesplittet, da unterschiedliche Anforderungen

Skype

- 29217 P2P-Sessions
- 29 Tage

Format:

[ID] [NUM S.] [S1-start] [S1-end] ... [Sn-start] [Sn-end]

- Die Daten stammen aus dem Failure Trace Archive und wurden von S. Guha zur Verfügung gestellt. (Als Format wurde raw gewählt)
- 2. Die enthaltene avt-Datei enthält unterschiedliche Informationen, wobei nur die Zeitspannen der Sessions von Interesse waren (alle anderen Spalten wurden verworfen).
- 3. Die Zeitspannen wurden in Zeitpunkte umgewandelt indem nur die Startzeiten verwendet (und Endzeiten verworfen) wurden.

Skype Auswertung

Ansatz 1: Anzahl/Dauer der Zeitspannen ohne "Telefonate"

Problem: Es gab keine.

Ansatz 2: Nur Signalisierungsdienste betrachten.

- Neue Session alle 83s
- Datenset enthält einen Bereich von 689h
- 42h ohne Session (645h mit)

~ 93,61 %

Ansatz 3: Auswertung auf Tagesbasis

- Daten wurden tageweise gruppiert
- Beim Ø wurde eine Verfügbarkeit von 100% angenommen.

Durchschnittliche Verfügbarkeit: 86,5%

Zusammenfassung Skype Auswertung

- Ansatz 1: -
- Ansatz 2: 93,61%
- Ansatz 3: 86,5%

Zur Sicherheit wurde der höchste Wert (93,61%) als Requirement angenommen.

Microsoft Traces

- Beobachtung: 51 663 Rechner
- Stündlicher Ping
 - 0 Rechner nicht verfügbar
 - 1 Rechner verfügbar
- Zeitraum: 35 Tage

Verfügbarkeit Microsoft

- Start am 6. Juli 1999 (Dienstag)
- geringere Verfügbarkeit an bestimmten Tagen
 - → wiederholt sich alle 5 6 Tage
- Ø-Availability: 81.24 %

Verfügbarkeit pro Wochentag über Zeitraum von 35 Tagen

x-Achse:

$$days = [1 ... 7] \Leftrightarrow [Di ... Mo]$$

- 1. **Dienstag:** 64.50 %
- 2. **Mittwoch:**66.61 %
- 3. **Donnerstag:** 67.31 %
- 4. **Freitag:** 67.47 %
- 5. **Samstag:** 62.92 %
- 6. **Sonntag:** 47.58 %
- 7. **Montag:** 48.95 %

Anmerkung Microsoft Traces

- Die Daten stammen aus dem Failure Trace Archive
- 2. Jeder Eintrag repräsentiert einen Ping der zu einem bestimmten Zeitpunkt verfügbar (Wert 1) oder nicht verfügbar (Wert 0) ist.
- 3. Anhand dieser Daten wurde jeweils der Mittelwert genommen und jedem Tag im Intervall [1-35] gemapped.
- 4. Weiters wurden die Daten anhand der Wochentage aufgeteilt:
 - Insgesamt gibt es 35 Tage, diese wurden in einer Schleife modulo 7 (für eine Woche) durchiteriert und die entsprechende durchschnittliche Tages-Verfügbarkeit berechnet.

Websites:

- 130 Websites
- ~200 Tage
- Zeitabschnitte für verfügbar/nicht verfügbar

Profil wie zu erwarten (abgesehen von offensichtlichen Fehlern)

- an bestimmten Tagen Ausfälle
- → Beachtung einzelner Tage nicht sinnvoll
- stattdessen Mittelung über gesamten Zeitraum

Statusbericht vom 27.11. (∅-downtime)

Availability Gruppen (wird später verbessert):

Gruppierung d. Verfügbarkeits-Requirements in 6 gleich große Intervalle

SLA entspricht jeweils der oberen Grenze

Ergebnisse

Availability (SLA)	Kosten	Energieersparnis
0.931	0.09387	0.106
0.966	0.09954	0.052
0.981	0.101955	0.029
0.987	0.1029	0.02
0.992	0.10374	0.012
0.998	0.104685	0.003

Statusbericht vom 09.01.

Aufgabe

- Utility Model basierend auf der Prospect Theory erstellen
- WTP für jeden Nutzer und dessen angenommene Verfügbarkeitsanforderung berechnen
- Anzahl der angebotenen SLAs berechnen

Statusbericht vom 09.01.

Resultat - Prospect Th. Satisfaction Function

Verteilung WTP

Statusbericht vom 15.01.

Aufgabe

- Vorteile von Kunden und Dienstleister auswerten
- Matched und Unmatched Users der SLAs
- Provider Benefits Conversion Rate

User-Clustering

Anzahl User pro #SLAs

SLA-Auswahl d. User (11 SLAs)

SLA selection

Kostenersparnis der Nutzer

Abgabe

- slides.pdf
- sla.R
 - Berechnungen der jeweiligen Übungen
- microsoft.m
 - Extrahierung der Traces und Availability Berechnung des Microsoft Traces (PingData00.txt ist nur ein Auschnitt der gesamten Pings da die Originaldatei ~86 MB groß ist)