https://powcoder.com

The University of Manchester

Add WeChat powcoder

- Cross-section data with heteroscedasticity https://powcoder.com
 - GLS/WLS

Add wednat powcoder

Recall that our model is:

Assignment Project Exam Help where

- CA1: true model is: $y = X\beta_0 + u$.
 https://www.linear.com
- CA3: X is rank k.
- $CA5-NS \ Var[u] = \Sigma \ where \ \Sigma \ is \ a \ T \times T \ positive definite$
- matrix.
- CA6: $\mu \sim \text{Normal}$.

The Generalized Least Squares estimator of β_0 is:

Assignment Project Exam Help

If Assumptions CA1+ CA4, CA5-NS and CA6 hold then: https://powcoder.com

Add $\overset{\hat{\beta}_{GLS}}{\text{WeChat powcoder}} \sim N(\beta_0, (X'\Sigma^{-1}X)^{-1})$.

But need Σ in order to calculate $\hat{\beta}_{GLS}$.

If Σ unknown then GLS is an infeasible estimator.

Solution assume $t - s^{th}$ element of Σ is given by:

Assignment Project Exam Help

- $h_{t,s}$ is some specified function,
- https://powcoder.com
- α is a $p \times 1$ vector of parameters.

so EArdd WeChat powcoder

Estimate α from the sample $\{y_t, x_t', z_t'; t = 1, 2, ..., T\} \rightarrow \hat{\alpha}$.

Then set $\hat{\Sigma} = \Sigma(\hat{\alpha})$.

Does https://pepotwooielest.compaconsider

$$\begin{array}{l} \textbf{\textit{E}}[\hat{\beta}_{\textit{FGLS}}] = \beta_0 + \textbf{\textit{E}}\left[(X'\hat{\Sigma}^{-1}X)^{-1}X'\hat{\Sigma}^{-1}u\right] = \beta_0? \\ \textbf{\textit{Add}} \ \ \textbf{\textit{WeChat powcoder}} \end{array}$$

FGLS does inherit large sample properties of GLS.

Cross-section data with heteroscedasticity

Assumptions:

• CS1: $y_i = x_i' \beta_0 + u_i$

Assignment Telp

- CS3: $E[x_i x_i'] = Q$, finite, p.d.
- https://powcoder.com
- CS5-H: $Var[u_i|x_i] = h(x_i)$, positive, and $h(x_i) \neq h(x_j)$ for some $i \neq j$. WeChat powcoder

Note:

- cross-section data with random sample from homogenous population
- have conditional heteroscedasticity but not unconditional heteroscedasticity

Alastair R. Hall

OLS

Recall:

Assignment Project Exam Help

As in Lecture 4: WLLN & Slutsky's Theorem
$$\rightarrow$$

https://powooder.com

$$\overset{\text{and CLT}}{\underset{N}{\longleftarrow}} \overset{\rightarrow}{\underset{i=1}{\longrightarrow}} \underset{x_i u_i}{\overset{\text{WeChat powcoder}}{\longrightarrow}} N(0, \Omega), \text{ where } \Omega = \lim_{N \to \infty} \Omega_N$$

and

$$\Omega_N = Var \left[N^{-1/2} \sum_{i=1}^N x_i u_i \right].$$

Assumption $CS2 \Rightarrow \{x_i u_i; i = 1, 2, ..., N\}$ are i.i.d. and so

 $Cov[x_iu_i, x_iu_i] = 0 \ (i \neq j).$

https://powcoder.com

 $N^{-1/2}\sum_{i=1}x_iu_i\stackrel{d}{\rightarrow} N(0,\Omega_h).$

https://powcoder.com

Under Assumptions CS1-CS4 and CS5-H:

Add W@Chat powcoder

where $V_h = Q^{-1}\Omega_h Q^{-1}$.

OLS

To use this result as basis for inference, need a consistent estimator of V_h and so Ω_h .

Assignment Project Exam Help

$$N^{-1}\sum_{i=1}^{N}u_{i}^{2}x_{i}x_{i}'\overset{p}{\to}E[u_{i}^{2}x_{i}x_{i}']=\Omega_{h}.$$

https://powcoder.com

Also it can be shown that

and so

$$\hat{\Omega}_h = N^{-1} \sum_{i=1}^N e_i^2 x_i x_i' \overset{p}{
ightarrow} \Omega_h.$$

OLS

Set
$$\hat{Q} = N^{-1}X'X$$
 then

$$\hat{V}_h \ = \ \hat{Q}^{-1} \hat{\Omega}_h \hat{Q}^{-1} \stackrel{p}{\to} V_h.$$

$Assi \hat{y}_n \text{ in the enterior Project Exam Help } \sqrt{\hat{\mathcal{V}}_{h,\ell,\ell}/\textit{N}} \sim \text{ "White standard errors"}$

https://powcoder.com Can then perform infedence using same techniques as in Lecture 4 provided we use modified variance estimator.

For example and the local possible of for $\beta_{0,\ell}$ is given by,

$$\left(\,\hat{\beta}_{\mathsf{N},\ell}\pm z_{1-\alpha/2}\sqrt{\hat{V}_{\mathsf{h},\ell,\ell}/\mathsf{N}}\,\right).$$

For other inference procedures see Lecture Notes Section 4.3.1.

Alastair R. Hall

GLS

Impose Assumptions CS1-CS4, & CS5-H: \Rightarrow E[u|X] = 0 & (with $\sigma_i^2 = h(x_i)$)

and transformed regression model is

$$\frac{y_i}{\sigma_i} = \left(\frac{1}{\sigma_i}\right) \beta_{0,1} + \left(\frac{x_{i,2}}{\sigma_i}\right) \beta_{0,2} + \ldots + \left(\frac{x_{i,k}}{\sigma_i}\right) \beta_{0,k} + \left(\frac{1}{\sigma_i}\right) u_i$$

Assignment on Project t Exam Help consistent estimator for β_0 .

Theology power coders commen:

where
$$A_{GLS}^{N^{1/2}(\hat{\beta}_{GLS} - \beta_0)} \stackrel{d}{\rightarrow} N(0, V_{GLS}),$$

Need to assume functional form for $\Sigma(\alpha)$:

Assignment Project Exam Help

• suffices to divide variables by $\sqrt{v(x_i)}$ (see example later)

. https://powcoder.com

• $E[u_i^2|x_i] = h(x_i,\alpha) \Rightarrow$

Add WeChat, powcoder

ullet So estimate lpha using model via Nonlinear LS (NLS) or OLS

$$e_i^2 = h(x_i, \alpha) + \text{"error"}.$$

Weighted Least Squares

Let $\{w_i; i = 1, 2, ..., N\}$ be a set of positive constants and use to weight observations in regression model:

Assignment Project Exam Help

Weighted Least Squares (WLS) is OLS estimator based on weighted regression/model: $\hat{\beta}_{WLS} = (X'W_2X)^{-1}X'W_2y$.

where Add We Chat powcoder

It can be shown that under Assumptions CS1-CS4, & CS5-H that

$$N^{1/2}(\hat{\beta}_{WLS} - \beta_0) \stackrel{d}{\rightarrow} N(0, V_{WLS})$$

where $V_{WLS}=Q_w^{-1}\Omega_wQ_w^{-1}$, $Q_w=plim_{T\to\infty}N^{-1}X'W_2X$, $\Omega_w=plim_{T\to\infty}N^{-1}X'W_2\Sigma W_2X$.

OLS, GLS & WLS

• $w_i = 1$ for all $i \Rightarrow WLS = OLS$

Assignment-Project Exam Help

Re-weighting of observations is source of efficiency gains from GLS over https://powcoder.com

What happens if assume incorrect model for σ_i^2 ?

- · Adds Wre Chatt power code bls;
- inferences based on "GLS" valid but must be performed with heteroscedasticity robust estimator of WLS variance formula (see Lecture Notes).

Breusch-Pagan test for heteroscedasticity

Assume:

$$\sigma_i^2 = h(\delta + z_i'\alpha)$$

where Assignment Project Exam Help independent of i, and $h(\cdot) > 0$,

- z_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables, p_i is a $(p \times 1)$ yector of observable variables,

- Test:

 Haddo Whe Chater powcoder., p
 - Test stat is $BP_N = NR^2$ where R^2 is from regression of e_i^2 on $(1, z_i')$.
 - Under H_0 : $BP_N \stackrel{d}{\to} \chi_p^2$ see Lecture Notes for regularity conditions.

Alastair R. Hall

- statistic does not depend on $h(\cdot)$.
- https://powcoder.com
 - White's (1980) direct test for heteroscedasticity (see Lecture

Add WeChat powcoder

Empirical example

Suppose a researcher is interested in studying the savings behaviour of households:

Assignment Project Exam Help

- y_i is the level of savings of household i • https://powcoder.com
- $Var[u_i|x_i]$ arguably depends on m_i .

OLS And results. eChat powcoder

$$y_i = 124.84 + 0.147 m_i.$$
 $(655.39) (0.058)$
 $[522.91] [0.061]$

where (\cdot) = conventional OLS s.e.'s, $[\cdot]$ = White s.e.'s

Empirical example

Assignment Project Exam Help

WLS estimation results:

The number in parentheses are the standard errors assuming have correct model for heteroscedasticity; the number in brackets are heteroscedasticity robust standard errors.

• Greene:

```
httipeson/bowcoder.com
```

- Heteroscedasticity: OLS, Section 9.4
- Testing for heteroscedasticity, Section 9.5
- A Hyderoscodasticity: GLS/WLS, Section 9.6 Powcoder