Methods (brief): We convert the official NANOGrav 15-yr KDE free-spectrum to CSV, construct a simple likelihood in $(\lambda, \Delta N_{eff})$ with a Planck-2018 prior, and obtain posteriors via grid sampling. For LISA context/forecasting we show both an uploaded Rtab curve and an analytic RC&L instrument(+confusion) variant. Late-time consistency is ensured by the $\rho \ll \lambda$ limit (PPN/binary pulsars).

PTA→LISA instrument vs instrument+confusion

References (selected)

Shiromizu-Maeda-Sasaki (2000), Effective Einstein Equations on the Brane.

Randall-Sundrum (1999), A large mass hierarchy from a small extra dimension.

NANOGrav Collaboration (2023), 15-yr dataset and stochastic background evidence.

Planck Collaboration (2018), Planck 2018 results (N_eff with BAO).

Robson-Cornish-Liu (2019), LISA sensitivity curves.

Prepared: Aug 13, 2025 (UTC)

Letter: A testable brane-world unification with early-time ρ^2 and dark radiation

Ricardo Maldonado (corresponding: sales@rank.vegas)

Abstract

We obtain an effective 4-D cosmology with a ρ^2 correction and a dark-radiation term from a higher-D brane setup. The brane tension λ sets a GW spectral break (f_br \propto $\lambda^{1/4}$) and correlates with ΔN_eff , enabling a falsifiable joint test using PTA \rightarrow LISA and CMB/BBN. We provide posteriors using the official NANOGrav 15-yr KDE spectrum with a Planck- $\frac{1}{18}$ \frac

$$f_{\rm br}(\lambda) \propto \lambda^{1/4}$$
, $C/\rho_{\gamma, 0} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff}$

Posterior: λ vs ΔN_eff 3500 0.75 3000 0.50 2500 0.25 Delta N_eff 72000 weight 0.00 1500 -0.25 1000 -0.50500 -0.75 0.0 10.0 2.5 5.0 7.5 12.5

lambda (arb. units)

PTA→LISA (Rtab vs instrument)

References (selected)

Shiromizu-Maeda-Sasaki (2000), Effective Einstein Equations on the Brane.

Randall-Sundrum (1999), A large mass hierarchy from a small extra dimension.

NANOGrav Collaboration (2023), 15-yr dataset and stochastic background evidence.

Planck Collaboration (2018), Planck 2018 results (N_eff with BAO).

Robson-Cornish-Liu (2019), LISA sensitivity curves.

Prepared: Aug 13, 2025 (UTC)

PRESS RELEASE — Testable Unified Theory of Everything

Ricardo Maldonado presents a brane-world framework in which the early universe obeys a modified expansion law with a ρ^2 term and a dark-radiation component. One parameter (the brane tension λ) sets a gravitational-wave spectral break and correlates with ΔN_eff . The same λ must jointly fit pulsar-timing arrays (now) and LISA (next) while respecting CMB/BBN bounds—making the theory immediately falsifiable. The late-time/weak-field limit reduces to standard General Relativity.

Contact: Ricardo Maldonado — sales@rank.vegas

Prepared: Aug 13, 2025 (UTC)

Cover Letter — PRL

Physical Review Letters Editorial Office

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas

Cover Letter — PRD

Physical Review D Editorial Office

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas

Cover Letter — JCAP

JCAP Editorial Office (SISSA/IOP)

Subject: Presubmission — testable brane-world unification

Dear Editors,

I submit "A testable brane-world unification with early-time ρ^2 and dark radiation" (Ricardo Maldonado). From a higher-D action we derive the SMS equations and a modified Friedmann relation featuring a ρ^2 term and dark-radiation. A single parameter λ sets a GW spectral break f_br $\propto \lambda^{1/4}$ and correlates with ΔN_eff . We present posteriors using the official NANOGrav 15-year KDE spectrum with a Planck-2018 prior, plus a PTA \rightarrow LISA context figure. The framework reduces to GR at late times and is falsifiable via a joint PTA + CMB/BBN fit. We request consideration as a Letter/Article.

Sincerely,

Ricardo Maldonado

sales@rank.vegas

To: prl@aps.org

Subject: Submission: Testable brane-world unification (ρ^2 + dark radiation; GW break) — PRL

Dear PRL Editors,

Please find attached a submission derived from a higher-dimensional brane setup leading to a 4-D Friedmann equation with a ρ^2 correction and a dark-radiation term. A single parameter (the brane tension λ) predicts a gravitational-wave spectral break (f_br $\propto \lambda^1/4$) and correlates with ΔN_eff , enabling a falsifiable, joint PTA \rightarrow LISA + CMB/BBN test. We provide compact posteriors using the official NANOGrav 15-yr KDE spectrum with a Planck-2018 N eff prior; late-time consistency reduces to GR (PPN/binary-pulsar safe).

Attachments (filenames/links):

- PRL CompiledStyle PREVIEW 20250813 002923.pdf sandbox:/mnt/data/PRL CompiledStyle PREVIEW 20250813 002923.pdf
- MASTER LITE plus Press and Covers 20250813 001252.pdf —

sandbox:/mnt/data/MASTER_LITE_plus_Press_and_Covers_20250813_001252.pdf

- TINY_A_Core_GrandEquation_20250813_000533.pdf sandbox:/mnt/data/TINY_A_Core_GrandEquation_20250813_000533.pdf
- TINY_B_Results_Posteriors_20250813_000533.pdf sandbox:/mnt/data/TINY_B_Results_Posteriors_20250813_000533.pdf
- TINY_C_PTA_LISA_20250813_000533.pdf sandbox:/mnt/data/TINY_C_PTA_LISA_20250813_000533.pdf
- REVTeX42_PRL_src_20250813_002258.zip sandbox:/mnt/data/REVTeX42_PRL_src_20250813_002258.zip

If suitable for PRL, we would be glad to proceed through your submission system. I can also supply full LaTeX sources (REVTeX/JCAP) and data notebooks on request.

Sincerely,
Ricardo Maldonado
sales@rank.vegas
Prepared Aug 13, 2025 (UTC)

To: prd@aps.org

Subject: Submission: Testable brane-world unification (ρ^2 + dark radiation; GW break) — PRD

Dear PRD Editors,

Please find attached a submission derived from a higher-dimensional brane setup leading to a 4-D Friedmann equation with a ρ^2 correction and a dark-radiation term. A single parameter (the brane tension λ) predicts a gravitational-wave spectral break (f_br $\propto \lambda^1/4$) and correlates with $\Delta N_{\rm eff}$, enabling a falsifiable, joint PTA \rightarrow LISA + CMB/BBN test. We provide compact posteriors using the official NANOGrav 15-yr KDE spectrum with a Planck-2018 N eff prior; late-time consistency reduces to GR (PPN/binary-pulsar safe).

Attachments (filenames/links):

- PRD CompiledStyle PREVIEW 20250813 002923.pdf sandbox:/mnt/data/PRD CompiledStyle PREVIEW 20250813 002923.pdf
- MASTER LITE plus Press and Covers 20250813 001252.pdf —

sandbox:/mnt/data/MASTER_LITE_plus_Press_and_Covers_20250813_001252.pdf

- TINY_A_Core_GrandEquation_20250813_000533.pdf sandbox:/mnt/data/TINY_A_Core_GrandEquation_20250813_000533.pdf
- TINY_B_Results_Posteriors_20250813_000533.pdf sandbox:/mnt/data/TINY_B_Results_Posteriors_20250813_000533.pdf
- TINY_C_PTA_LISA_20250813_000533.pdf sandbox:/mnt/data/TINY_C_PTA_LISA_20250813_000533.pdf
- REVTeX42_PRD_src_20250813_002258.zip sandbox:/mnt/data/REVTeX42_PRD_src_20250813_002258.zip

If suitable for PRD, we would be glad to proceed through your submission system. I can also supply full LaTeX sources (REVTeX/JCAP) and data notebooks on request.

Sincerely,
Ricardo Maldonado
sales@rank.vegas
Prepared Aug 13, 2025 (UTC)

To: jcap-eo@jcap.sissa.it

Subject: Submission: Testable brane-world unification (ρ^2 + dark radiation; GW break) — JCAP

Dear JCAP Editors,

Please find attached a submission derived from a higher-dimensional brane setup leading to a 4-D Friedmann equation with a ρ^2 correction and a dark-radiation term. A single parameter (the brane tension λ) predicts a gravitational-wave spectral break (f_br $\propto \lambda^1/4$) and correlates with ΔN_{eff} , enabling a falsifiable, joint PTA \rightarrow LISA + CMB/BBN test. We provide compact posteriors using the official NANOGrav 15-yr KDE spectrum with a Planck-2018 N eff prior; late-time consistency reduces to GR (PPN/binary-pulsar safe).

Attachments (filenames/links):

- JCAP CompiledStyle PREVIEW 20250813 002923.pdf sandbox:/mnt/data/JCAP CompiledStyle PREVIEW 20250813 002923.pdf
- MASTER LITE plus Press and Covers 20250813 001252.pdf —

sandbox:/mnt/data/MASTER_LITE_plus_Press_and_Covers_20250813_001252.pdf

- TINY_A_Core_GrandEquation_20250813_000533.pdf sandbox:/mnt/data/TINY_A_Core_GrandEquation_20250813_000533.pdf
- TINY_B_Results_Posteriors_20250813_000533.pdf sandbox:/mnt/data/TINY_B_Results_Posteriors_20250813_000533.pdf
- TINY_C_PTA_LISA_20250813_000533.pdf sandbox:/mnt/data/TINY_C_PTA_LISA_20250813_000533.pdf
- JCAP_class_src_20250813_002258.zip sandbox:/mnt/data/JCAP_class_src_20250813_002258.zip

If suitable for JCAP, we would be glad to proceed through your submission system. I can also supply full LaTeX sources (REVTeX/JCAP) and data notebooks on request.

Sincerely,
Ricardo Maldonado
sales@rank.vegas
Prepared Aug 13, 2025 (UTC)