

Logic Gates

Shinwoong Kim

Binary Logic

Binary logic

✓ Binary logic consists of binary variables and a set of logical operations

Two values as the variables

- ✓ True and false, yes or no, etc.
- ✓ In terms of binary bits, '0' and '1' → e.g., 0V and 5V

Logical operation

✓ Three basic logical operation: AND, OR, NOT

Q is '1' when A='1' and B='1' Otherwise, Q is '0'

Q is '1' when A='1' or B='1' Otherwise, Q is '0'

Complement operation So, output is not A

Basic Logic Gates

Name	Graphic symbol	Algebraic function	Truth table
AND	<i>x</i> — <i>F</i>	$F = x \cdot y$	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$
OR	$x \longrightarrow F$	F = x + y	$\begin{array}{c cccc} x & y & F \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ \end{array}$
Inverter	x— F	F = x'	$\begin{array}{c c} x & F \\ \hline 0 & 1 \\ 1 & 0 \end{array}$
Buffer	<i>x</i> —— <i>F</i>	F = x	$\begin{array}{c cc} x & F \\ \hline 0 & 0 \\ 1 & 1 \end{array}$

Basic Logic Gates

Name	Graphic symbol	Algebraic function		ruth able	
			х	y	F
NAND	$x \longrightarrow F$	F = (xy)'	0	0	1
NAND	y	1 (4))	0	1	1
			1	0	1
			1	1	0
			х	y	F
Non	x — — — — — — — — — — — — — — — — — — —	$E = (a_1 + a_2)t$	0	0	1
NOR	$y \longrightarrow F$	F = (x + y)'	0	1	0
			1	0	0
			1	1	0
			х	y	F
Exclusive-OR	$x \longrightarrow -$	$F = xy' + x'y \\ = x \oplus y$	0	0	0
(XOR)	V \longrightarrow F		0	1	1
(2232)		x \psi y	1	0	1
			1	1	0
			x	y	F
Exclusive-NOR	$x \longrightarrow -$	F = xy + x'y'	0	0	1
or	$y \longrightarrow F$	$= (x \oplus y)'$	0	1	0
equivalence		(- //	1	0	0
			1	1	1

IC

- ✓ is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon
- ✓ For example, Inverter (7404) gates
 - Power (VCC), Ground (GND), input pins, output pins

Datasheet

- ✓ 각 칩에 대해서 자세한 설명을 해 놓은 자료
- ✓ 제품명만 검색해도 많은 datasheet가 검색 됨

August 1986 Revised March 2000

SEMICONDUCTORTM

DM74LS04 Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function.

Ordering Code:

Order Number	Package Number	Package Description		
DM74LS04M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow		
DM74LS04SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide		
DM74LS04N N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide				
Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.				

Connection Diagram

Function Table

Y = A				
Input	Output			
Α	Y			
L	Н			
Н	L			

H = HIGH Logic Level L = LOW Logic Level

DM74LS04 Hex Inverting Gates

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
ОН	HIGH Level Output Current			-0.4	mA
OL	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
VI	Input Clamp Voltage	V _{CC} = Min, I _I = -18 mA			-1.5	V
V _{OH}	HIGH Level Output Voltage	$V_{CC} = Min, I_{OH} = Max,$ $V_{IL} = Max$	2.7	3.4		٧
V _{OL}	LOW Level Output Voltage	$\bigvee_{CC} = Min, I_{OL} = Max,$ $\bigvee_{IH} = Min$		0.35	0.5	٧
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4	
l _l	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
l _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μА
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
ССН	Supply Current with Outputs HIGH	V _{CC} = Max		1.2	2.4	mA
ICCL	Supply Current with Outputs LOW	V _{CC} = Max		3.6	6.6	mA

Note 2: All typicals are at \/ E\/ T 2E00

IC type

- ✓ TTL(transistor-transistor logic)
 - 74LS00, 74LS02 ... (low power shorttky TTL)
- ✓ CMOS (Complementary metal-oxide semiconductor)
 - 74HC00, 74HC02 ... (high speed CMOS)

Noise margin

- $V_{NH} = V_{OH(min)} V_{IH(min)}$
- $V_{NL} = V_{IL(max)} V_{OL(max)}$

• **Issue** CMOS

```
CMOS --> TTL

Sending Low (0.1V -> 0.8V)

Sending High (4.9V -> 2.0V)

TTL --> CMOS

Sending Low (0.4V -> 1.5V) Pass

Sending High (2.4V -> 3.5V) No Pass!
```


e.g., Datasheet (74LS04)

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
Тон	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V _I	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max,	2.7	3.4		V
	Output Voltage	V _{IL} = Max				
V _{OL}	LOW Level Output Voltage	$V_{CC} = Min, I_{OL} = Max,$ $V_{IH} = Min$		0.35	0.5	V
		$I_{OL} = 4 \text{ mA}, V_{CC} = \text{Min}$		0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max, V _I = /V			0.1	mA
	Input Voltage					
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.36	mA
Ios	Short Circuit Output Current	V _{CC} = Max (Note 3)	-20		-100	mA
I _{CCH}	Supply Current with Outputs HIGH	V _{CC} = Max		1.2	2.4	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max		3.6	6.6	mA

e.g., Datasheet (74HC04)

Type 74HC04

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
STIMBUL	PARAMETER	OTHER	V _{cc} (V)	WIIIN.	1176.	WAX.	UNIT
T _{amb} = 25 °C			•			•	
V _{IH}	HIGH-level input voltage		2.0	1.5	1.2	_	V
			4.5	3.15	2.4	_	V
			6.0	4.2	3.2	_	V
V_{IL}	LOW-level input voltage		2.0	_	8.0	0.5	V
			4.5	_	2.1	1.35	V
			6.0	_	2.8	1.8	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = -20 μA	2.0	1.9	2.0	-	V
		$I_{O} = -20 \mu A$	4.5	4.4	4.5	-	V
		$I_0 = -4.0 \text{ mA}$	4.5	3.98	4.32	-	V
		$I_{O} = -20 \mu A$	6.0	5.9	6.0	-	V
		$I_0 = -5.2 \text{ mA}$	6.0	5.48	5.81	_	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		I _O = 20 μA	2.0	_	0	0.1	V
		I _O = 20 μA	4.5	_	0	0.1	V
		$I_0 = 4.0 \text{ mA}$	4.5	_	0.15	0.26	V
		I _O = 20 μA	6.0	_	0	0.1	V
		I _O = 5.2 mA	6.0	_	0.16	0.26	V _
	Linnut loakago current	17. = 17 or (2NII)	a n		0.1	±∩ 1	11. /

Characteristic: Delay

Transition time

- ✓ Transition High-to-Low (t_{THL})
 - 출력이 high 90% → low 10%가 될 때까지의 시간
- ✓ Transition Low-to-High (t_{TLH})
 - 출력이 low 10% → high 90%가 될 때까지의 시간

Characteristic: Delay

Propagation time

- ✓ Propagation High-to-Low (t_{PHL})
 - 출력이 High → Low가 될 때, 입력 신호와의 시간 차이 (50% 지점 간의 차이)
- ✓ Propagation Low-to-High (t_{PLH})
 - 출력이 Low → High가 될 때, 입력 신호와의 시간 차이 (50% 지점 간의 차이)

Light-Emitting Diode (LED)

• 동작

✓ Anode(+) 전압 > Cathode(-) 전압인 경우, 즉 <u>순방향</u>으로 전압을 가했을 경우, 전류가 흐르며 발광(發光)함, 밝기는 전류에 비례함

Light-Emitting Diode (LED)

• 회로 구성

- ✓ 전류 제한을 위해 저항과 함께 사용
 - LED는 일반적으로 V_F=2V에서 20mA 정도 소모
- ✓ 로직 출력이 'High(5V)'일 때 LED가 켜지도록 하는 경우

*필요한 저항 값 계산

$$R = \frac{5V - 2V}{20mA} = 150\Omega$$

✓ 로직 출력이 'Low(0V)'일 때 LED가 켜지도록 하는 경우

LED is "ON" when the output is LOW (current sink)

- 기본 로직 동작 검증 (74LS00 NAND)
 - ✓ DMM을 이용하여 출력 전압을 측정하고 → 출력 논리를 판별

74L	S	00
/ΝΔ	N	וח

입력	논리	예상 출력 논리	측정된 출력 전압	측정된 전압으로부터 얻은 논리
A	В	0 or 1?	? V	0 or 1?
0	0			
0	1			
1	0			
1	1			

• 인가하는 전압 범위에 따른 특성 파악

- ✓ '실험1'에 이어서 진행, 입력 스위치 부분만 변경하면 됨
- ✔ 입력 A (1번 핀): 4.7kΩ을 이용하여 논리 high (VCC 5V)에 고정
- ✓ 입력 B (2번 핀) : VP+ power에 연결하여 다양한 전압을 인가
- ✓ [참고] Datasheet 기준, 74LS00의 V_{IL(max)}=0.8V, V_{IH(min)}=2.0V

입력 전압 [입력 B]	예상 출력 논리	측정된 출력 전압	측정된 전압으로부터 얻은 논리
[V]	0 or 1?	? V	0 or 1?
0			
0.4			
8.0			
1.2			
1.6			
2.0			
3.0			
4.0			
5.0			

• XOR 회로 설계

- Inverter(74LS04) + AND(74LS08) + OR(74LS32) 사용
- LED 사용하여 출력 로직 판별 (출력이 'High'일 때 LED ON)

_

보드 구성 예

- 보드 구성
 - ✓ 전원은 Vcc 사용 (5V)

*https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=specialist0&logNo=221247815110