

Rodzaj dokumentu:	Zasady oceniania rozwiązań zadań					
Egzamin:	Egzamin maturalny					
Przedmiot:	Matematyka					
Poziom:	Poziom podstawowy					
	EMAP-P0-100, EMAP-P0-200,					
Formy orkusza:	EMAP-P0-300, EMAP-P0-400,					
Formy arkusza:	EMAP-P0-600, EMAP-P0-700,					
	EMAP-P0-Q00, EMAP-P0-Z00					
Termin egzaminu:	2 czerwca 2023 r.					

ZADANIA ZAMKNIĘTE

Zadanie 1. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 2. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 3. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 4. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 5. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 6. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 7. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 8. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 9. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 10. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 11. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 12. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 13. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 14. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 15. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 16. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 17. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 18. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 19. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 20. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 21. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

C

Zadanie 22. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 23. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 24. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 25. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

В

Zadanie 26. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

Zadanie 27. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

С

Zadanie 28. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

Α

Zadanie 29. (0-1)

Zasady oceniania

1 pkt – odpowiedź poprawna.

0 pkt – odpowiedź niepoprawna albo brak odpowiedzi.

Rozwiązanie

D

ZADANIA OTWARTE

Uwagi ogólne:

- 1. Akceptowane są wszystkie rozwiązania merytorycznie poprawne i spełniające warunki zadania.
- 2. Jeżeli zdający poprawnie rozwiąże zadanie i otrzyma poprawny wynik, lecz w końcowym zapisie przekształca ten wynik i popełnia przy tym błąd, to może uzyskać maksymalną liczbę punktów.
- 3. Jeżeli zdający popełni błędy rachunkowe, które na żadnym etapie rozwiązania nie upraszczają i nie zmieniają danego zagadnienia, lecz stosuje poprawną metodę i konsekwentnie do popełnionych błędów rachunkowych rozwiązuje zadanie, to może otrzymać co najwyżej (n-1) punktów (gdzie n jest maksymalną możliwą do uzyskania liczbą punktów za dane zadanie).

Zadanie 30. (0-2)

Zasady oceniania

- 2 pkt spełnienie jednego z warunków określonych w zasadach oceniania za 1 pkt **oraz** zapisanie zbioru rozwiązań nierówności: $\left(0,\frac{3}{2}\right)$ lub $x\in\left(0,\frac{3}{2}\right)$ *ALBO*
 - spełnienie jednego z warunków określonych w zasadach oceniania za 1 pkt oraz przedstawienie zbioru rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziału

1 pkt – obliczenie lub podanie pierwiastków trójmianu kwadratowego $2x^2 - 3x$:

$$x_1 = 0$$
 oraz $x_2 = \frac{3}{2}$
ALBO

- zaznaczenie na wykresie funkcji kwadratowej $f(x)=2x^2-3x\,$ miejsc zerowych tej funkcji i podanie tych miejsc zerowych: $x_1=0\,$ oraz $x_2=\frac{3}{2}\,$, ALBO
- poprawne rozwiązanie nierówności x(2x-1) < 2x dla dwóch przypadków (spośród trzech) rozpatrywanych w sposobie 2.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

1. Jeżeli zdający, obliczając pierwiastki trójmianu $2x^2 - 3x$, popełni błąd (ale otrzyma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu zapisze zbiór rozwiązań nierówności, to otrzymuje **1 punkt** za całe rozwiązanie.

- **2.** Jeżeli zdający wyznacza pierwiastki trójmianu kwadratowego w przypadku, gdy błędnie obliczony przez zdającego wyróżnik Δ jest ujemny, to otrzymuje **0 punktów** za całe rozwiązanie.
- **3.** Jeżeli zdający rozpatruje inny niż podany w zadaniu trójmian kwadratowy, który nie wynika z błędu przekształcenia (np. $2x^2 x$) i w konsekwencji rozpatruje inną nierówność (np. $2x^2 x < 0$), to otrzymuje **0 punktów** za całe rozwiązanie.
- **4.** Jeżeli zdający dzieli obie strony nierówności przez x (albo 2x) bez stosownego założenia, to otrzymuje **0 punktów** za całe rozwiązanie.

Kryteria uwzględniające specyficzne trudności w uczeniu się matematyki

Jeśli zdający pomyli porządek liczb na osi liczbowej, np. zapisze zbiór rozwiązań nierówności w postaci $\left(\frac{3}{2},0\right)$ (lub $x\in\left(\frac{3}{2},0\right)$), to otrzymuje **2 punkty**.

Przykładowe pełne rozwiązania

Sposób 1.

Przekształcamy nierówność równoważnie:

$$x(2x-1) < 2x$$

$$2x^{2} - x - 2x < 0$$

$$2x^{2} - 3x < 0$$

$$2x\left(x - \frac{3}{2}\right) < 0$$

Odczytujemy i zapisujemy pierwiastki trójmianu $2x\left(x-\frac{3}{2}\right)$: x=0 lub $x=\frac{3}{2}$.

Podajemy zbiór rozwiązań nierówności: $\left(0,\frac{3}{2}\right)$ lub $x \in \left(0,\frac{3}{2}\right)$, lub zaznaczamy zbiór rozwiązań na osi liczbowej

Inna realizacja obliczenia pierwiastków trójmianu:

Przekształcamy równoważnie nierówność do postaci $2x^2-3x<0$, obliczamy wyróżnik Δ trójmianu $2x^2-3x$, a następnie pierwiastki tego trójmianu:

$$\Delta = (-3)^2 - 4 \cdot 2 \cdot 0 = 9$$

$$x = \frac{-(-3) - 3}{2 \cdot 2} = 0 \quad \text{lub} \quad x = \frac{-(-3) + 3}{2 \cdot 2} = \frac{3}{2}$$

Egzamin maturalny z matematyki na poziomie podstawowym – termin dodatkowy 2023 r.

Sposób 2.

Rozpatrujemy trzy przypadki:

a)
$$x \in (-\infty, 0)$$

Przekształcamy nierówność, otrzymując:

$$x(2x-1) < 2x /: x$$

$$2x-1 > 2$$

$$x > \frac{3}{2}$$

Nierówność x(2x-1) < 2x nie ma rozwiązań w zbiorze $(-\infty, 0)$.

b)
$$x = 0$$

Gdy x=0, to otrzymujemy nierówność $0\cdot(2\cdot 0-1)<2\cdot 0$, która jest fałszywa. Zatem liczba 0 nie jest rozwiązaniem nierówności x(2x-1)<2x.

c)
$$x \in (0, +\infty)$$

Przekształcamy nierówność, otrzymując:

$$x(2x-1) < 2x /: x$$

$$2x - 1 < 2$$

$$x < \frac{3}{2}$$

W zbiorze $(0, +\infty)$ rozwiązaniami nierówności x(2x-1) < 2x są wszystkie liczby z przedziału $\left(0, \frac{3}{2}\right)$.

Ostatecznie zbiorem wszystkich rozwiązań nierówności x(2x-1) < 2x jest $\left(0, \frac{3}{2}\right)$.

Zadanie 31. (0-2)

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i uzyskanie poprawnego wyniku: $-\sqrt{7}$, $-\frac{3}{2}$, 0, $\sqrt{7}$.

1 pkt – zapisanie alternatywy równań $2x^2 + 3x = 0$ lub $x^2 - 7 = 0$ Al BO

– wyznaczenie/podanie wszystkich rozwiązań równania $2x^2+3x=0$: x=0 oraz $x=-\frac{3}{2}$, ALBO

– wyznaczenie/podanie wszystkich rozwiązań równania $x^2-7=0$: $x=-\sqrt{7}$ oraz $x=\sqrt{7}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający dzieli obie strony równania $(2x^2 + 3x)(x^2 7) = 0$ przez wielomian $2x^2 + 3x$ (lub przez x, lub przez $x^2 7$) bez stosownego założenia i wyznacza rozwiązania tak powstałego równania, to otrzymuje **0 punktów** za całe rozwiązanie.
- **2.** Jeżeli zdający poprawnie wyznaczy wszystkie rozwiązania równania $2x^2 + 3x = 0$ oraz równania $x^2 7 = 0$, lecz poda błędną odpowiedź, np. $x \in \mathbb{R} \left\{-\sqrt{7}, -\frac{3}{2}, 0, \sqrt{7}\right\}$, to otrzymuje **1 punkt** za całe rozwiązanie.

Przykładowe pełne rozwiązanie

Przekształcamy równanie do postaci alternatywy i otrzymujemy:

$$(2x^{2} + 3x)(x^{2} - 7) = 0$$

$$2x^{2} + 3x = 0 \quad \text{lub} \quad x^{2} - 7 = 0$$

$$x(2x + 3) = 0 \quad \text{lub} \quad x^{2} = 7$$

$$x = 0 \quad \text{lub} \quad 2x + 3 = 0 \quad \text{lub} \quad x = -\sqrt{7} \quad \text{lub} \quad x = \sqrt{7}$$

$$x = 0 \quad \text{lub} \quad x = -\frac{3}{2} \quad \text{lub} \quad x = -\sqrt{7} \quad \text{lub} \quad x = \sqrt{7}$$

Rozwiązaniami równania są liczby: $-\sqrt{7}$, $-\frac{3}{2}$, 0, $\sqrt{7}$.

Zadanie 32. (0-2)

Zasady oceniania

2 pkt – przeprowadzenie pełnego rozumowania, tzn. spełnienie kryterium określonego w zasadach oceniania za 1 pkt oraz sformułowanie poprawnego wniosku z powołaniem się na założenie.

1 pkt – przekształcenie nierówności $a^2+3b^2+4>2a+6b$ do postaci równoważnej $(a-1)^2+3(b-1)^2>0$

ALBO

- obliczenie wyróżnika Δ trójmianu $a^2-2a+(3b^2-6b+4)$ zmiennej a i zapisanie go w postaci $\Delta=-12(b-1)^2,$ *ALBO*
- obliczenie wyróżnika Δ trójmianu $3b^2-6b+(a^2-2a+4)$ zmiennej b i zapisanie go w postaci $\Delta=-12(a-1)^2$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeśli zdający sprawdza prawdziwość nierówności tylko dla wybranych wartości a i b, to otrzymuje **0 punktów** za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1.

Przekształcamy równoważnie nierówność $a^2 + 3b^2 + 4 > 2a + 6b$:

$$a^{2} - 2a + 3b^{2} - 6b + 4 > 0$$

$$a^{2} - 2a + 1 + 3b^{2} - 6b + 3 > 0$$

$$(a - 1)^{2} + 3(b^{2} - 2b + 1) > 0$$

$$(a - 1)^{2} + 3(b - 1)^{2} > 0$$

Liczby $(a-1)^2$ oraz $(b-1)^2$ są nieujemne jako kwadraty liczb rzeczywistych. Z założenia wiadomo, że $b \neq a$, więc liczby a-1 oraz b-1 nie mogą być jednocześnie zerami. Stąd co najmniej jedna z liczb: $(a-1)^2$ lub $(b-1)^2$ jest dodatnia. Zatem $(a-1)^2+3(b-1)^2$ jest liczbą dodatnią jako suma liczby nieujemnej i liczby dodatniej. Ponieważ nierówność $(a-1)^2+3(b-1)^2>0$ jest prawdziwa, więc nierówność $a^2+3b^2+4>2a+6b$ również jest prawdziwa. To należało pokazać.

Sposób 2.

Przekształcamy równoważnie nierówność $a^2+3b^2+4>2a+6b$ i otrzymujemy $a^2-2a+3b^2-6b+4>0$.

Wyrażenie $a^2-2a+(3b^2-6b+4)$ traktujemy jako trójmian kwadratowy zmiennej np. a. Obliczamy wyróżnik Δ trójmianu:

$$\Delta = (-2)^2 - 4 \cdot (3b^2 - 6b + 4)$$

$$\Delta = 4 - 12b^{2} + 24b - 16$$

$$\Delta = -12(b^{2} - 2b + 1)$$

$$\Delta = -12(b - 1)^{2}$$

Gdy $b \neq 1$, to $\Delta < 0$ i funkcja kwadratowa $f(a) = a^2 - 2a + (3b^2 - 6b + 4)$ zmiennej a nie ma miejsc zerowych, a ponieważ współczynnik przy drugiej potędze zmiennej jest dodatni, więc żaden fragment wykresu funkcji f nie leży poniżej osi odciętych. Zatem funkcja przyjmuje wtedy tylko wartości dodatnie.

Gdy b=1, to $\Delta=0$ i funkcja f ma dokładnie jedno miejsce zerowe: a=1. Ponieważ współczynnik przy drugiej potędze zmiennej jest dodatni, więc żaden fragment wykresu funkcji f nie leży poniżej osi odciętych. Zatem funkcja f przyjmuje wartości dodatnie dla każdego $a \neq 1$. Czyli dla $a \neq b$ funkcja przyjmuje wartości dodatnie.

Ostatecznie, gdy $a \neq b$, to funkcja f przyjmuje wartości dodatnie. Oznacza to, że dla każdych liczb rzeczywistych a i b takich, że $b \neq a$ spełniona jest nierówność $a^2 + 3b^2 + 4 > 2a + 6b$. To należało pokazać.

Zadanie 33. (0-2)

Zasady oceniania

2 pkt – zastosowanie poprawnej metody i uzyskanie poprawnego wyniku:

$$f(x) = -\frac{3}{4}x^2 + 3$$
 [lub $f(x) = -\frac{3}{4}(x-0)^2 + 3$, lub $f(x) = -\frac{3}{4}(x-2)(x+2)$].

- 1 pkt zapisanie wzoru funkcji f w postaci $f(x) = ax^2 + 3$ lub $f(x) = a(x 0)^2 + 3$ ALBO

 - zapisanie wzoru funkcji f w postaci f(x) = a(x-2)(x+2), *ALBO*
- obliczenie/zapisanie wartości współczynników b oraz c: b=0 oraz c=3. 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwaga:

Jeśli zdający przyjmuje/zapisuje wzór funkcji w postaci $f(x)=ax^2+3$ lub $f(x)=a(x-0)^2+3$ z konkretną ustaloną liczbą a [różną od 0 i różną od $\left(-\frac{3}{4}\right)$], to otrzymuje **1 punkt**.

Przykładowe pełne rozwiązania

Sposób 1.

Zapisujemy wzór funkcji kwadratowej f w postaci kanonicznej: $f(x) = a(x-0)^2 + 3$. Obliczamy a, korzystając z informacji, że punkt B = (2,0) leży na wykresie funkcji f:

$$0 = a(2-0)^2 + 3$$
$$0 = 4a + 3$$
$$a = -\frac{3}{4}$$

Zapisujemy wzór funkcji f: $f(x) = -\frac{3}{4}x^2 + 3$.

Sposób 2.

Punkt B=(2,0) leży na wykresie funkcji f, więc liczba 2 jest miejscem zerowym tej funkcji. Obliczamy drugie miejsce zerowe (x_2) funkcji f, korzystając z informacji, że punkt A=(0,3) jest wierzchołkiem paraboli:

$$p = \frac{x_1 + x_2}{2}$$
$$0 = \frac{2 + x_2}{2}$$
$$x_2 = -2$$

Zapisujemy wzór funkcji kwadratowej f w postaci iloczynowej: f(x) = a(x-2)(x+2). Obliczamy a, korzystając z informacji, że punkt A = (0,3) leży na wykresie funkcji f:

$$3 = a(0-2)(0+2)$$
$$3 = -4a$$
$$a = -\frac{3}{4}$$

Zapisujemy wzór funkcji f: $f(x) = -\frac{3}{4}(x-2)(x+2)$.

Sposób 3.

Zapisujemy wzór funkcji f w postaci ogólnej: $f(x) = ax^2 + bx + c$. Ponieważ A = (0,3) jest wierzchołkiem paraboli, więc

$$-\frac{b}{2a} = 0 \quad \text{oraz} \quad -\frac{\Delta}{4a} = 3$$

Stad

$$b = 0 \quad \text{oraz} \quad -\frac{0^2 - 4ac}{4a} = 3$$
$$b = 0 \quad \text{oraz} \quad c = 3$$

Zatem $f(x) = ax^2 + 3$. Wyznaczamy współczynnik a, korzystając z informacji, że punkt B = (2,0) leży na wykresie funkcji f:

$$0 = a \cdot 2^2 + 3$$
$$0 = 4a + 3$$
$$a = -\frac{3}{4}$$

Zapisujemy wzór funkcji f: $f(x) = -\frac{3}{4}x^2 + 3$.

Zadanie 34. (0-2)

Zasady oceniania

- 2 pkt zastosowanie poprawnej metody i uzyskanie poprawnego wyniku: $4\sqrt{5}+2\sqrt{10}$ (lub $2\sqrt{5}(2+\sqrt{2})$).
- 1 pkt obliczenie długości jednego z boków trójkąta ABC, np. $|AB|=2\sqrt{5}$ ALBO
 - zapisanie równania z jedną niewiadomą, które wynika z zastosowania twierdzenia Pitagorasa do trójkąta CAD , i zapisanie obwodu trójkąta ABC w zależności od tej niewiadomej, np. $a^2 + \left(\frac{1}{2} \cdot a\right)^2 = 5^2$ i $L = 2a + a\sqrt{2}$ (gdzie $a = |\mathit{AC}|$).
- 0 pkt rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Przykładowe pełne rozwiązanie

Oznaczmy przez a długość przyprostokątnej trójkąta ABC. Stosujemy do trójkąta CAD twierdzenie Pitagorasa i otrzymujemy:

$$a^{2} + \left(\frac{1}{2}a\right)^{2} = 5^{2}$$
$$\frac{5}{4}a^{2} = 25$$
$$a^{2} = 20$$
$$a = 2\sqrt{5}$$

Obliczamy obwód L trójkąta ABC: $L=2a+a\sqrt{2}=2\cdot2\sqrt{5}+2\sqrt{5}\cdot\sqrt{2}=4\sqrt{5}+2\sqrt{10}.$

Zadanie 35. (0-2)

Zasady oceniania

- 2 pkt zastosowanie poprawnej metody obliczenia prawdopodobieństwa zdarzenia A i uzyskanie poprawnego wyniku: $P(A) = \frac{8}{56}$.
- 1 pkt wypisanie wszystkich zdarzeń elementarnych lub obliczenie/podanie liczby tych zdarzeń: $|\Omega|=8\cdot 7$ ALBO
 - wypisanie (zaznaczenie w tabeli) wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A i niewypisanie żadnego niewłaściwego:
 (1,3), (1,7), (2,6), (3,1), (3,5), (5,3), (6,2), (7,1),
 ALBO
 - podanie liczby wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A: |A|=8, jeśli nie została otrzymana w wyniku zastosowania błędnej metody, ALBO
 - sporządzenie fragmentu drzewa stochastycznego, które zawiera wszystkie gałęzie sprzyjające zdarzeniu A oraz zapisanie prawdopodobieństwa $\frac{1}{8}$ na co najmniej jednym z odcinków pierwszego etapu doświadczenia i prawdopodobieństwa $\frac{1}{7}$ na co najmniej jednym z odcinków drugiego etapu doświadczenia, ALBO
 - zapisanie tylko $P(A) = \frac{8}{56}$.

0 pkt – rozwiązanie, w którym zastosowano niepoprawną metodę, albo brak rozwiązania.

Uwagi:

- **1.** Jeżeli zdający zapisuje tylko liczby 8 oraz 56 i z rozwiązania nie wynika znaczenie tych liczb, to otrzymuje **0 punktów** za całe rozwiązanie.
- Jeżeli zdający sporządzi jedynie tabelę o 64 (lub 56) pustych polach, to otrzymuje
 punktów za całe rozwiązanie.

Przykładowe pełne rozwiązania

Sposób 1. (klasyczna definicja prawdopodobieństwa)

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ i $a \neq b$.

Liczba wszystkich zdarzeń elementarnych jest równa $|\Omega| = 8 \cdot 7 = 56$.

Zdarzeniu *A* sprzyjają następujące zdarzenia elementarne:

$$(1,3), (1,7), (2,6), (3,1), (3,5), (5,3), (6,2), (7,1),$$

więc |A| = 8.

Prawdopodobieństwo zdarzenia *A* jest równe: $P(A) = \frac{|A|}{|\Omega|} = \frac{8}{56} = \frac{1}{7}$.

Sposób 2.

Zdarzeniami elementarnymi są wszystkie uporządkowane pary liczb (a, b), gdzie $a, b \in \{1, 2, 3, 4, 5, 6, 7, 8\}$ i $a \neq b$.

Jest to model klasyczny. Budujemy tabelę ilustrującą sytuację opisaną w zadaniu.

I losowanie

		1	2	3	4	5	6	7	8
II losowanie	1	X		+				+	
	2		\times				+		
	3	+		\times		+			
	4				\times				
	5			+		\times			
	6		+				\times		
	7	+						X	
	8								X

Białe pola tabeli odpowiadają zdarzeniom elementarnym. Symbolem "+" oznaczono pola odpowiadające zdarzeniom elementarnym sprzyjającym zdarzeniu A.

Wszystkich zdarzeń elementarnych w tym doświadczeniu jest 56.

Liczba wszystkich zdarzeń elementarnych sprzyjających zdarzeniu A jest równa 8.

Stąd
$$P(A) = \frac{|A|}{|\Omega|} = \frac{8}{56} = \frac{1}{7}$$
.

Zadanie 36. (0-5)

Zasady oceniania

Rozwiązanie składa się z dwóch etapów.

Pierwszy etap polega na obliczeniu współrzędnych wierzchołka A trapezu: $A = \left(\frac{7}{2}, 2\right)$. Za poprawne rozwiązanie tego etapu zdający otrzymuje **3 punkty**.

Podział punktów za pierwszy etap rozwiązania:

1 punkt zdający otrzymuje, gdy obliczy/zapisze współczynnik kierunkowy prostej AB: $a=\frac{3}{4}$.

2 punkty zdający otrzymuje, gdy obliczy współrzędne punktu $E: E = \left(\frac{15}{2}, 5\right)$.

3 punkty zdający otrzymuje, gdy obliczy współrzędne punktu A: $A = \left(\frac{7}{2}, 2\right)$.

Drugi etap polega na obliczeniu pola trapezu: $P = \frac{225}{4}$.

Za poprawne rozwiązanie tego etapu zdający otrzymuje 2 punkty.

Podział punktów za drugi etap rozwiązania:

1 punkt zdający otrzymuje, gdy obliczy długość podstawy AB lub długość odcinka EB, lub wysokość trapezu: |AB|=10 lub |EB|=5, lub $h=\frac{15}{2}$.

2 punkty zdający otrzymuje, gdy obliczy pole trapezu: $P = \frac{225}{4}$.

Przykładowe pełne rozwiązanie

Oś symetrii trapezu równoramiennego jest prostopadła po podstaw tego trapezu. Zatem prosta AB jest prostopadła do prostej $y=-\frac{4}{3}x+15$.

Wyznaczamy równanie prostej AB: y = ax + b.

Z warunku prostopadłości prostych obliczamy współczynnik kierunkowy a prostej AB:

$$-\frac{4}{3} \cdot a = -1$$

$$a = \frac{3}{4}$$

Prosta AB przechodzi przez punkt $B = \left(\frac{23}{2}, 8\right)$, więc

$$8 = \frac{3}{4} \cdot \frac{23}{2} + b$$

$$b = -\frac{5}{8}$$

Równanie prostej AB: $y = \frac{3}{4}x - \frac{5}{8}$.

Obliczamy współrzędne punktu E przecięcia osi symetrii z prostą AB:

$$-\frac{4}{3}x + 15 = \frac{3}{4}x - \frac{5}{8} \quad / \cdot 24$$

$$-32x + 360 = 18x - 15$$

$$-50x = -375$$

$$x = \frac{15}{2}$$

$$y = \frac{3}{4} \cdot \frac{15}{2} - \frac{5}{8} = 5$$

$$E = \left(\frac{15}{2}, 5\right)$$

Obliczamy współrzędne wierzchołka $A = (x_A, y_A)$:

$$\frac{x_A + x_B}{2} = x_E \quad \text{oraz} \quad \frac{y_A + y_B}{2} = y_E$$

$$\frac{x_A + \frac{23}{2}}{2} = \frac{15}{2} \quad \text{oraz} \quad \frac{y_A + 8}{2} = 5$$

$$x_A = \frac{7}{2} \quad \text{oraz} \quad y_A = 2$$

Obliczamy długości podstawy AB i wysokość h trapezu:

$$|AB| = 2 \cdot |EB| = 2 \cdot \sqrt{\left(\frac{23}{2} - \frac{15}{2}\right)^2 + (8 - 5)^2} = 2 \cdot \sqrt{16 + 9} = 2 \cdot 5 = 10$$

$$h = |EF| = \sqrt{\left(3 - \frac{15}{2}\right)^2 + (11 - 5)^2} = \sqrt{\frac{81}{4} + 36} = \sqrt{\frac{225}{4}} = \frac{15}{2}$$

Obliczamy pole P trapezu:

$$P = \frac{|AB| + |CD|}{2} \cdot h = \frac{10 + 5}{2} \cdot \frac{15}{2} = \frac{225}{4}$$