Quille pendulaire*

B2-07

Le comportement d'un vérin est défini par le modèle continu ci-dessous.

$$q(t) = S \frac{\mathrm{d}x(t)}{\mathrm{d}t} + \frac{V}{2B} \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t}$$
 (a);

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

$$p(t) = S \frac{dx(t)}{dt} + \frac{V}{2B} \frac{d\sigma(t)}{dt} \text{ (a)};$$

On a:

- $\mathcal{L}(q(t)) = Q(p)$: débit d'alimentation du vérin $[m^3s^{-1}]$;
- $\mathcal{L}(\sigma(t)) = \Sigma(p)$: différence de pression entre les deux chambres du vérin [Pa];
- $\mathcal{L}(x(t)) = X(p)$: position de la tige du vérin [m];
- $\mathcal{L}(f_R(t)) = F_R(p)$: composante selon l'axe de la tige du vérin de la résultante du torseur d'inter-effort de la liaison pivot entre tige et quille [N].

Les constantes sont les suivantes :

- ► S: section du vérin $[m^2]$;
- ▶ k: raideur mécanique du vérin $[N m^{-1}]$;
- ▶ V: volume d'huile de référence $[m^3]$;
- ▶ B : coefficient de compressibilité de l'huile $[N m^{-2}]$;
- ▶ *M* : masse équivalente à l'ensemble des éléments mobiles ramenés sur la tige du vérin [kg];
- $\rightarrow \lambda$: coefficient de frottement visqueux [N m⁻¹s].

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Le schéma-blocs de la figure précédente peut se mettre sous la forme suivante.

$$Q(p) \qquad H_1 \qquad X(p)$$

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Question 3 Pour ce vérin non perturbé ($F_R = 0$), donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

1.
$$A_1 = \frac{1}{Sp}$$
, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.
2. $H_1(p) = A_1 A_2 A_3$ et $H_2 = \frac{A_4}{1 + A_2 A_3 A_4}$.
3. $\frac{X(p)}{Q(p)} = \frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$.

Corrigé voir ??.

