Notes from MAT296 - Calculus II

Notetaker: Grant Griffiths

Semester: Spring 2012 - Syracuse University

Contents

6	Applications of Integration	2
	3.1 Areas Between Curves	2
	3.2 Volumes	2
	3.3 Volumes by Cylindrical Shells	2
	3.4 Work	2
7	Techniques of Integration	3
	7.1 Integration by Parts	3
	7.2 Trigonometric Integrals	3
	7.3 Trigonometric Substitution	3
	7.4 Integration of Rational Functions by Partial Fractions	3
	7.5 Strategy for Integration	
	7.8 Improper Integrals	
8	Further Applications of Integration	5
	8.1 Arc Length	5
	8.2 Area of a Surface of Revolution	
10	Parametric Equations and Polar Coords	6
	10.3 Polar Coordinates	6
	10.4 Areas and Lengths in Polar Coordinates	
11	Infinite Sequences and Series	7
	11.1 Sequences	7
	11.2 Series	7
	11.3 The Integral Test and Estimates of Sums	8
	11.4 The Comparison Tests	
	11.5 Alternating Series	
	11.6 Absolute Convergence and the Ratios and Roots Tests	
	11.7 Strategy for Testing Series	
	11.8 Power Series	
	11.9 Representations of Functions as Power Series	
	11.10Taylor and Maclaurin Series	

Chapter 6: Applications of Integration

Lesson 6.1: Areas Between Curves

Lesson 6.2: Volumes

• **Definition of Volume** Let S be a solid that lies between x = a and x = b. If the cross-sectional area of S in the plan P_x , through x and perpendicular to the x-axis, is A(x), where A is a continuous function, then the **volume** of S is

$$V = \lim_{n \to \infty} \sum_{i=1}^{n} A(x_i^*) \Delta x = \int_{a}^{b} A(x) dx$$

Lesson 6.3: Volumes by Cylindrical Shells

• The volume of a solid, obtained by rotating about the y-axis under the curve f(x) is

$$-V = \int circumference * height * thickness$$

$$-V = \int_{a}^{b} 2\pi x f(x) dx$$
 where $0 \le a < b$

• The volume of a solid, obtained by rotating about the x-axis under the curve f(y) is

–
$$V = \int circumference * height * thickness$$

$$-V = \int_{a}^{b} 2\pi y f(y) dy$$
 where $0 \le a < b$

Lesson 6.4: Work

• Work: W = Fd

• Hooke's Law (Force on spring): F = kx

 \bullet Work done pulling rope up:

–
$$W = \int weight \ density*displacement*thickness$$

$$-W = \int_{a}^{b} kx \, dx$$
 where k is the weight density

• Work done in moving an object from a to b: $W = \int_a^b f(x)dx$

2

Chapter 7: Techniques of Integration

Lesson 7.1: Integration by Parts

• Formula: $\int u \ dv = uv - \int v \ du$

Lesson 7.2: Trigonometric Integrals

- General Advice: Memorize Trigonometric Identities and set yourself up for an easy substitution.
- Strategy for Evaluating $\int sin^m x \cos^n x \ dx$
 - If the **power of cosine is odd**, save one cosine factor and use $cos^2x = 1 sin^2x$ to express the remaining factors in terms of sine.
 - If the **power of sine is odd**, save one sine factor and use $sin^2x = 1 cos^2x$ to express the remaining factors in terms of cosine.
 - If the powers of both sine and cosine are even, use half angle identities

$$sin^2x = \frac{1}{2}(1 - cos(2x))$$
 $cos^2x = \frac{1}{2}(1 + cos(2x))$

It is sometimes helpful to use the identity

$$sin(x) cos(x) = \frac{1}{2} sin(2x)$$

- Strategy for Evaluating $\int tan^m x \ sec^n x \ dx$
 - If the **power of secant is even**, save a factor of sec^2x and use $sec^2x = 1 + tan^2x$ to express the remaining factors in terms of $tan\ x$ Then substitute $u = tan\ x$
 - If the **power of tangent is odd**, save a factor of sec(x) tan(x) and use $tan^2x = sec^2x 1$ to express the remaining factors in terms of sec(x) Then substitute u = sec(x)
- $\int tan x \, dx = ln|sec x| + C$
- $\int \sec x \, dx = \ln|\sec x + \tan x| + C$

Lesson 7.3: Trigonometric Substitution

• Use the following table to match substitutions and identities depending on what expression you're trying to integrate.

Expression	Substitution	Identity
$\sqrt{a^2-x^2}$	$x = a \sin \theta$	$1 - \sin^2\theta = \cos^2\theta$
$\sqrt{a^2+x^2}$	$x = a \tan \theta$	$1 + tan^2\theta = sec^2\theta$
$\sqrt{x^2-a^2}$	$x = a \sec \theta$	$sec^2\theta - 1 = tan^2\theta$

Lesson 7.4: Integration of Rational Functions by Partial Fractions

• Fractions can be broken down using coefficients.

Lesson 7.5: Strategy for Integration

- Use all integration techniques we have learned so far. Use your judgement to decide which technique to use depending on what problem it is.
- Integration Formulas

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} \quad (n \neq -1)$$

$$2. \int \frac{1}{x} = \ln|x|$$

3.
$$\int e^x dx = e^x$$

$$4. \int a^x \, dx = \frac{a^x}{\ln a}$$

5.
$$\int \sin x \, dx = -\cos x$$

6.
$$\int \cos x \, dx = \sin x$$

7.
$$\int sec^2x \, dx = \tan x$$

8.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$

9.
$$\int \tan x \, dx = \ln|\tan x|$$

Note: Integrals for hyperbolic trigonometric function, cosecant, and cotangent also exist

Lesson 7.8: Improper Integrals

- Formulas for finding infinite improper integrals:
 - 1. If $\int_{a}^{b} f(x) dx$ exists for every number $t \geq a$, then

$$\int_{a}^{\infty} f(x) \ dx = \lim_{t \to \infty} \int_{a}^{t} f(x) \ dx$$

2. If $\int_{a}^{b} f(x) dx$ exists for every number $t \geq a$, then

$$\int_{-\infty}^{b} f(x) \ dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \ dx$$

- Formulas for finding improper integrals with discontinuous points:
 - 1. If f is continuous on [a, b), and is discontinuous at b, then

$$\int_{a}^{b} f(x) \ dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x) \ dx$$

2. If f is continuous on (a, b], and is discontinuous at a, then

$$\int_{a}^{b} f(x) dx = \lim_{t \to a^{+}} \int_{t}^{a} f(x) dx$$

- Convergent Improper Integral: if the limit inside the improper exists
- Divergent Improper Integral: if the limit inside the improper does not exist
- If both of the bounds are infinite, we can break it into the sum of two improper integrals

4

Chapter 8: Further Applications of Integration

Lesson 8.1: Arc Length

• The Arc Length Formula: If f' is continuous on [a,b], then the length of the curve y = f(x), $a \le x \le b$, is

$$L = \int_{a}^{b} \sqrt{1 + f'(x)^2} \, dx$$

 \bullet Same idea but different variables for functions in terms of y

Lesson 8.2: Area of a Surface of Revolution

- Surface Area of Revolution: $S = \int 2\pi x \, ds$ where ds is $\sqrt{1 + f'(x)^2} dx$
- Together, the Formula For a Surface area of Revolution is

$$S = \int_{a}^{b} 2\pi f(x) \sqrt{1 + f'(x)^2} dx \qquad \text{or, in Leibniz notation,} \qquad S = \int_{a}^{b} 2\pi y \sqrt{1 + (\frac{dy}{dx})^2} dx$$

Chapter 10: Parametric Equations and Polar Coords

Lesson 10.3: Polar Coordinates

- Converting from Polar coordinates to Cartesian coordinates and vice versa:
 - 1. $x = r \cos \theta$
 - 2. $y = r \sin \theta$
 - 3. $r^2 = x^2 + y^2$
 - 4. $\tan \theta = \frac{y}{x}$

Finding slopes of parametric curves:

$$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}$$

Lesson 10.4: Areas and Lengths in Polar Coordinates

- Formula for a polar area: $A = \int\limits_a^b \frac{1}{2} r^2 \, d\theta$
- Formula for length of a polar curve: $L = \int\limits_a^b \sqrt{r^2 + (\frac{dr}{d\theta})} \, d\theta$

Chapter 11: Infinite Sequences and Series

Lesson 11.1: Sequences

- Sequence a list of numbers written in definite order.
- Sequences can have limits, both convergent and divergent.
- The limit laws from section 2.3 hold for sequences.

Lesson 11.2: Series

- Infinite Series (or just a series): $\sum_{n=1}^{\infty}$
- Given a series $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + ...$, let s_n denote its nth partial sum:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \dots + a_n$$

- If the sequence $\{s_n\}$ is convergent and $\lim_{n\to\infty} s_n$ exists, then $\sum a_n$ is a **convergent series**.
- If the sequence $\{s_n\}$ is divergent, then the series is called **divergent**.
- The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

if $|r| \ge 1$, the geometric series is divergent.

- If the series $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n\to\infty} a_n = 0$
- Test for Divergence: If $\lim_{n\to\infty} a_n$ does not exist or $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- A series can be broken down into the sum or difference of two series. Constants can also be pulled out of the series.

Lesson 11.3: The Integral Test and Estimates of Sums

• The Integral Test: Suppose f is continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(X) dx$ is convergent. In other words:

If
$$\int_{1}^{\infty} f(x)dx$$
 is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.

If
$$\int_{1}^{\infty} f(x)dx$$
 is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.

• The p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

Lesson 11.4: The Comparison Tests

• The Comparison Test: Suppose that $\sum A_n$ and $\sum B_n$ are series with positive terms.

 $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent. If $\sum b_n$ is divergent and $a_n \geq b_n$ for all n, then $\sum a_n$ is also divergent.

• The Limit Comparison Test: Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

where c is a finite number and c > 0, then either both series converge or both diverge.

Lesson 11.5: Alternating Series

• Alternating Series Test: If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \dots \qquad b_n > 0$$

satisfies

1.
$$b_{n+1} \leq b_n$$
 for all n

$$2. \lim_{n \to \infty} b_n = 0$$

8

then the series is convergent.

Lesson 11.6: Absolute Convergence and the Ratios and Roots Tests

- **Definition:** A series $\sum a_n$ is called **absolutely convergent** if the series of absolute values $\sum |a_n|$ is convergent.
- Definition: A series $\sum a_n$ is called **conditionally convergent** if the series of absolute values $\sum |a_n|$ is convergent.
- Theorem: If a series $\sum a_n$ is absolutely convergent, then it is convergent.
- The Ratio Test:

– If
$$\lim_{n \leftarrow \infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- If
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$$
 or $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

- If $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, the ratio test is inconclusive. No conclusion can be drawn.
- The Root Test:

- If
$$\lim_{n \leftarrow \infty} \sqrt[n]{\left|\frac{a_{n+1}}{a_n}\right|} = L < 1$$
, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent.

- If
$$\lim_{n \leftarrow \infty} \sqrt[n]{\left|\frac{a_{n+1}}{a_n}\right|} = L > 1$$
 or $\lim_{n \leftarrow \infty} \sqrt[n]{\left|\frac{a_{n+1}}{a_n}\right|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

- If
$$\lim_{n\to\infty} \sqrt[n]{\left|\frac{a_{n+1}}{a_n}\right|} = 1$$
, the root test is inconclusive. No conclusion can be drawn.

Lesson 11.7: Strategy for Testing Series

- Series can be tested in more than one way. However, there is usually an easiest way to test a given series.
- This is one way to prioritize the tests:
 - 1. If the function inside the series appears to not go to zero, then try the **Test for Divergence**.
 - 2. If it is a **geometric series**, you can easily find out if it converges or not.
 - 3. If the series has $(-1)^n$ in it, try the **Alternating Series Test**.
 - 4. If the series has a form similar to a p-series or geometric series, then try a **Comparison Test**.
 - 5. If the series involves factorials, try the Ratio Test.
 - 6. If the series is of the form $(b_n)^n$, then the **Root Test** may be useful.
 - 7. If the function inside the series can be integrated, try the **Integral Test**.
- Warning: Always remember to check if the series satisfies the pre-requirements of each test.

Lesson 11.8: Power Series

- A **power series** is a series in the form $\sum_{n=0}^{\infty} c_n x^n$
- \bullet The c_n terms are called the coefficient terms.
- \bullet The a term is called the center
- Theorem For a given power series $\sum_{n=0}^{\infty} c_n(x-a)^n$ there are only three possibilities:
 - 1. The series converges only when x = a
 - 2. The series converges for all x.
 - 3. There is a positive number R such that the series converges if |x-a| < R and diverges if |x-a| > R
- Radius of convergence: The number "R" from above is the radius of converge
- Interval of Convergence: The interval that consists all values of x for which the series converges.

Lesson 11.9: Representations of Functions as Power Series

• **Theorem** If the power series $\sum c_n(x-a)^n$ has a radius of convergence R>0, then the function defined by

$$f(x) = \sum_{n=0}^{\infty} c_n (x - a)^n$$

is differentiable (and therefore) continuous on the interval (a-R,a+R) and

$$-f'(x) = \sum_{n=1}^{\infty} n c_n (x-a)^{n-1}$$
$$-\int f(x) dx = C + \sum_{n=1}^{\infty} c_n \frac{(x-a)^{n+1}}{n+1}$$

The radii of convergence of the power series in the two equations above are both R

• Representing: In order to represent a function as a power series, you have to get it into the general form $\frac{1}{1-x}$. Once in this form, the function can be represented as a power series:

$$\sum_{n=0}^{\infty} (x)^n$$
 where x is any function.

10

Lesson 11.10: Taylor and Maclaurin Series

• Taylor Series:
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$$

- Maclaurin Series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$
- $\lim_{n \to \infty} \frac{x^n}{n!} = 0$ for every real number x
- Taylor Series expansions to remember:

$$1. e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

2.
$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

3.
$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

4.
$$tan^{-1}x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$$

5.
$$\ln|1+x| = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$

Bibliography

Book used: Calculus Early Transcendentals 7th Edition

Professor: Notes from Dr. Graham Leuschke's Spring 2012 Calculus II course