

First year.

Biology • Metabolism

* In Glycolysis

- From Glucose $\xrightarrow{1 \text{ ATP}}$ Glucose-phosphate .
- Glucosephosphate $\xrightarrow{1 \text{ ATP}}$ Fructose diphosphate.
- Fructose diphosphat (Gc)

So, the produced ATP in PGAL respiration?

so the produced energy is: 2 + 1 = 3 ATP

F.A Ex. 20 C

- No. of Acetyl = No. of "C" $\div 2$
- No. of B-oxidations (s) = No. of Acetyl - 1
- * Q: How many ATP are produced?

No. of Acetyl = $20 \div 2 = 10$ Acetyl.
 \therefore ATP produced = 10 ATP

$\downarrow 1 \text{ ATP}$
- NADH: from acetyl:
 $10 \text{ Acetyl} \rightarrow 10 \text{ Krebs' cycles}$
 every Krebs' cycle contains $3 \text{ NADH} + \text{H}^+$
 $\therefore \text{NADH} + \text{H}^+ = 3 \times 10 = 30 \text{ NADH} + \text{H}^+$
 from Krebs' cycles
 $+ \text{ from } \beta\text{-oxidations} = 9 \text{ NADH} + \text{H}^+$
 So, the produced $\text{NADH} + \text{H}^+$ (all of them)
 $= 30 + 9 = 39 \text{ NADH} + \text{H}^+$
- FADH₂:
 $* \text{ from Acetyl (s) "Krebs' cycles"} \\ = \frac{10}{\text{each cycle}} \times 1 = 10 \text{ FADH}_2$
 $* \text{ from } \beta\text{-oxidations} = 1 \times 9 = 9 \text{ FADH}_2$
- The produced $\text{FADH}_2 = 10 + 9 = 19$
- The produced ATP from $\text{FADH}_2 = 19 \times 2 = \underline{\underline{38 \text{ ATP}}}$

.. "Metabolism" ..

- * Pyruvic acid is converted to Acetyl in the cytoplasm.
- * Pyruvi acid^(3C), when it converted to Acetyl(2C) it only loss one "C" and gives ["]CO₂"
- * Counting "ATP produced" only when we start the respiration from the beginning "Giving Glucose 2 ATP", but we can't count the ATP produced if we "for ex" Start pyruvic acid or PGAL respiration, because there's no consumed ATP in these steps.
- * Converting Ketoglutaric acid (5c) to Succinic acid(4c) by losing 1C → CO₂ & producing ^{ATP direct formation.}

Because the released energy from "C-C" in the Ketoglutaric acid was sufficient (enough) to produce 1 ATP.

* Q: How many ATP are produced from PGAL respiration?

A : 3 ATP , Explanations

Fatty acid (20C):

- In every β -oxidation we'll get 2C (Acetyl) + (Fatty acid - 2C) + 1 FADH₂ + 1 NADH + H⁺.
- The fatty acid will enter the Kreb's cycle to produce 1 ATP + 3 NADH + H⁺ + 1 FADH₂.

So:

$$\begin{aligned}\text{No. of acetyl} &= \text{No. of C} \div 2 \\ &= 20 \div 2 = 10 \text{ Acetyl molecules}\end{aligned}$$

$$\begin{aligned}\text{No. of } \beta\text{-oxidations} &= \text{No. of acetyl} - 1 \\ &= 10 - 1 = 9 \text{ } \beta\text{-oxidations}\end{aligned}$$

No. of NADH + H⁺:

$$\begin{aligned}① \text{ from } \beta\text{-oxidations} &= \text{No. of } \beta\text{-oxidations} \times 1 \\ &= 9 \times 1 = 9\end{aligned}$$

$$\begin{aligned}② \text{ from Kreb's cycle} &= \text{No. of Kreb's cycle} \times 3 \\ &= 10 \times 3 = 30\end{aligned}$$

$$\text{the produced NADH} + \text{H}^+ = 30 + 9 = 39 \text{ NADH} + \text{H}^+$$

No. of produced FADH₂:

$$\begin{aligned}① \text{ from } \beta\text{-oxidations} &= 9 \times 1 \\ &= 9\end{aligned}$$

$$\begin{aligned}② \text{ from Kreb's cycle} &= 10 \times 1 = 10 \\ &= 10\end{aligned}$$

$$\text{the produced FADH}_2 = 9 + 10 = 19 \text{ FADH}_2$$

$$* \text{ATP produced from NADH} + \text{H}^+ = \frac{①}{39} \times \frac{3}{3} \rightarrow 0$$

$$* \text{ATP produced from FADH}_2 = \frac{①}{19} \times 2 \rightarrow 2$$

$$\text{net gain} = 117 + 38 + 10 = 165 - 1 = 164$$

Total energy is counted for the 3 fatty acids

$$= 164 \times 3 = 492 \text{ ATP}$$