Ordering Code =

^{*} The reduction ratio value is based on the following configuration: Input: wave generator, fixed: circular spline, output: flexspline

Technical Data

CSD-2A Component Set

Size	Gear ratio	Rated tor			repeated torque	Limit for	average que		nomentary corque	Maximu speed	m input (rpm)	Limit for	average eed (rpm)	Moment	of inertia
	Tallo	Nm	kgfm	Nm	kgfm	Nm	kgfm	Nm	kgfm	Oil	Grease	Oil	Grease	l x 10 ⁻⁴ kgm ²	J x 10 ⁻⁵ kgfms ²
	50	3.7	0.38	12	1.2	4.8	0.49	24	2.4						
14	80	5.4	0.55	16	1.6	7.7	0.79	31	3.2	14000	8500	6500	3500	0.021	0.021
	100	5.4	0.55	19	1.9	7.7	0.79	31	3.2						
	50	11	1.1	23	2.3	18	1.8	48	4.9	,					
17	80	15	1.5	29	3.0	19	1.9	55	5.6	10000	7300	6500	3500	0.054	0.055
''	100	16	1.6	37	3.8	27	2.8	55	5.6	10000	7000	0000	3300	0.034	0.055
	120	16	1.6	37	3.8	27	2.8	55	5.6						
	50	17	1.7	39	4.0	24	2.4	69	7.0						
20	80	24	2.4	51	5.2	33	3.4	76 (65)	7.7 (6.6)	10000	6500	6500	3500	0.090	0.092
20	100	28	2.9	57	5.8	34	3.5	76 (65)	7.7 (6.6)	10000	0000	0000	0000	0.000	
	120	28	2.9	60	6.1	34	3.5	76 (65)	7.7 (6.6)						
	50	27	2.8	69	7.0	38	3.9	127	13						
25	80	44	4.5	96	9.8	60	6.1	152 (135)	15 (14)	7500	5600	5600	3500	0.282	0.288
20	100	47	4.8	110	11	75	7.6	152 (135)	15 (14)	7000	0000	0000	0000	0.202	0.200
	120	47	4.8	117	12	75	7.6	152 (135)	15 (14)						
	50	53	5.4	151	15	75	7.6	268	27						
32	80	83	8.5	213	22	117	12	359 (331)	37 (34)	7000	4800	4600	3500	1.09	1.11
02	100	96	9.8	233	24	151	15	359 (331)	37 (34)	, 555	1000		0000	1.00	
	120	96	9.8	247	25	151	15	359 (331)	37 (34)						
	50	96	9.8	281	29	137	14	480	49						
40	80	144	15	364	37	198	20	685 (580)	70 (59)	5600	4000	3600	3000	2.85	2.91
, , ,	100	185	19	398	41	260	27	694 (580)	71 (59)		1000	0000		2.00	
	120	205	21	432	44	315	32	694 (580)	71 (59)						
	50	172	18	500	51	247	25	1000	102						
50	80	260	27	659	67	363	37	1300	133	4500	3500	3000	2500	8.61	8.78
	100	329	34	686	70	466	48	1440 (1315)	147 (134)					8.61	
	120	370	38	756	77	569	58	1441	147 (134)						

1. Moment of inertia: I = ¹/, GD²
2. *The maximum allowable momentary torque value marked by an asterisk(*) is restricted by the tightening torque of the flexspline.
3. The parenthesized value indicates the value when the bore of the flexspline has the maximum value (BB type).
4. See "Rating Table Definitions" on Page 12 for details of the terms.
5. When the max allowable momentary torque is expected to be applied, see "Bolt tightening of the flexspline" on p. 75.

Outline Dimensions

You can download the CAD files from our website: harmonicdrive.net

■ Structure and shape of the wave generator

There is a difference in appearance of the the ball separator depending on the size.

Dimensions

Table 065-1
Unit : mm

Symbol		Size	14	17	20	25	32	40	50
	φA h7		50 025	60 -0.030	70 -0.030	85 -0.035	110 -0.035	135 -0.040	170 -0.040
	фВ Н7		11 +0.018	15 +0.018	20 +0.021	24 +0.021	32 +0.025	40 +0.025	50 +0.025
	C*		11	12.5	14	17	22	27	33
	D*		6.5 +0.2	7.5 +0.2	8 +0.3	10 +0.3	13 +0.3	16 ^{+0.3}	19.5 ∜0.3
	Е		1.4	1.7	2	2	2.5	3	3.5
	F		4.5	5	6	7	9	11	13.5
	G ,*		0.3 +0.2	0.3 +0.2	0.3 +0.2	0.4 0.2	0.5 0.2	0.6 0.2	0.8 0.2
	Н		4 -0.1	5 -0.1	5.2 -0.1	6.3 -0.1	8.6 -0.1	10.3 %	12.7 🗓
	фЈ		23	27.2	32	40	52	64	80
	фК Н6	Standard	11 *0.011	11 *0.011	16 *0.011	20 +0.013	30 +0.013	32 +0.016	44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	фк по	BB spec.	11 +0.011	11 +0.011	20 +0.013	24 +0.013	32 +0.016	40 +0.016	50 ^{+0.016}
	L		6	8	12	12	12	12	12
	φМ		3.4	3.4	3.4	3.4	4.5	5.5	6.6
	N		M3	M3	M3	M3	M4	M5	M6
	0		_	_	3.3	3.3	4.4	5.4	6.5
	φР		_	_	6.5	6.5	8	9.5	11
	φQ		44	54	62	75	100	120	150
	φR		17	21	26	30	40	50	60
	S		M3	M3	M3	M3	M4	M5	M6
	φТ	Standard	17	19.5	24	30	41	48	62
	Ψι	BB spec.	17	19.5	26	32	42	52	65
	U	Standard	9	8	9	9	11	10	11
	U	BB spec.	9	8	12	12	14	14	14
	ФΛ	Standard	3.4	4.5	4.5	5.5	6.6	9	11
	Ψν	BB spec.	3.4	4.5	3.4	4.5	5.5	6.6	9
	φΖι		0.2	0.2	0.2	0.2	0.25	0.25	0.3
	ϕZ_2		0.25	0.25	0.2	0.2	0.25	0.25	0.3
	φΖ₃	Standard	0.2	0.25	0.25	0.25	0.3	0.5	0.5
	ΨΔ3	BB spec.	0.2	0.25	0.2	0.25	0.25	0.3	0.5
Minimum	фа		38	45	53	66	86	106	133
housing	b		6.5	7.5	8	10	13	16	19.5
clearance	С		1	1	1.5	1.5	2	2.5	3.5
	Mass (kg)		0.06	0.10	0.13	0.24	0.51	0.92	1.9

(Note) Standard dimension for size 14 and 17 is the maximum bore.

- Surface A is the recommended mounting surface.
- The following dimensions can be modified to accommodate customer-specific requirements.

Wave Generator: B
Flexspline: U and V
Circular Spline: L and M

*C, D and G₁ values indicate relative position of individual gearing components (wave generator, flexpline, circular spline). Please strictly adhere to these values when designing your housing and mating parts.

Component Set CSD

 Due to the deformation of the Flexspline during operation, it is necessary to provide a minimum housing clearance, dimensions φa, b, c

The wave generator, flexspline, and circular spline are not assembled when delivered.

Positional	Positional accuracy See "Engineering data" for a description of terms. Table 066-1									
Ratio		14	17	20	25	32	40	50		
Positional	×10 ^{-⁴} rad	4.4	4.4	2.9	2.9	2.9	2.9	2.9		
Accuracy	arc min	1.5	1.5	1.0	1.0	1.0	1.0	1.0		

Hyste	Hysteresis loss See "Engineering data" for a description of terms. Table 066-2									
Ratio	Size	14	17	20	25	32	40	50		
50	×10 ⁻⁴ rad	7.3	5.8	5.8	5.8	5.8	5.8	5.8		
30	arc min	2.5	2.0	2.0	2.0	2.0	2.0	2.0		
80 or	×10 ⁻ rad	5.8	2.9	2.9	2.9	2.9	2.9	2.9		
more	arc min	2.0	1.0	1.0	1.0	1.0	1.0	1.0		

Torsio	Torsional stiffness See "Engineering data" for a description of terms. Table 066-3										
Symbol	_	Size	14	17	20	25	32	40	50		
	Tı	Nm	2.0	3.9	7.0	14	29	54	108		
	11	kgfm	0.2	0.4	0.7	1.4	3.0	5.5	11		
	T ₂	Nm	6.9	12	25	48	108	196	382		
	12	kgfm	0.7	1.2	2.5	4.9	11	20	39		
	K ₁	×10⁴Nm/rad	0.29	0.67	1.1	2.0	4.7	8.8	17		
	1	kgfm/arc min	0.085	0.2	0.32	0.6	1.4	2.6	5.0		
	K ₂	×10⁴Nm/rad	0.37	0.88	1.3	2.7	6.1	11	21		
	T\2	kgfm/arc min	0.11	0.26	0.4	0.8	1.8	3.4	6.3		
Reduction	K₃	×10⁴Nm/rad	0.47	1.2	2.0	3.7	8.4	15	30		
ratio	13	kgfm/arc min	0.14	0.34	0.6	1.1	2.5	4.5	9		
50	θ	×10 ⁻ ⁴rad	6.9	5.8	6.4	7.0	6.2	6.1	6.4		
	U1	arc min	2.4	2.0	2.2	2.4	2.1	2.1	2.2		
	θ.	×10⁻⁴rad	19	14	19	18	18	18	18		
	02	arc min	6.4	4.6	6.6	6.1	6.1	5.9	6.2		
	Kı	×10⁴Nm/rad	0.4	0.84	1.3	2.7	6.1	11	21		
	IX1	kgfm/arc min	0.12	0.25	0.4	0.8	1.8	3.2	6.3		
	K ₂	×10⁴Nm/rad	0.44	0.94	1.7	3.7	7.8	14	29		
Reduction	N2	kgfm/arc min	0.13	0.28	0.5	1.1	2.3	4.2	8.5		
ratio 80 or	K₃	×10 ⁴ Nm/rad	0.61	1,3	2.5	4.7	11	20	37		
more	13	kgfm/arc min	0.18	0.39	0.75	1.4	3.3	5.8	11		
	θ	×10⁻⁴rad	5.0	4.6	5.4	5.2	4.8	4.9	5.1		
	J	arc min	1.7	1.6	1.8	1.8	1.7	1.7	1.7		
	e	×10⁻⁴rad	16	13	15	13	14	14	13		
	u	arc min	5.4	4.3	5.0	4.5	4.8	4.8	4.6		

 $^{^{\}star}$ The values in this table are reference values. The minimum value is approximately 80% of the displayed value.

	Starting torque See "Engineering data" for a description of terms. Please use as reference values; the values vary based on use conditions.									
Size 14 17 20 25	32	40	50							
50 3.7 5.7 7.3 14	28	50	94							
80 2.7 3.8 4.8 8.8	19	32	63							
100 2.4 3.3 4.3 7.9	18	29	56							

Backdriving to	orque	See "Engineering d conditions.	See "Engineering data" for a description of terms. Please use as reference values; the values vary based on use conditions.					
Size Ratio	14	17	20	25	32	40	50	
50	2.5	3.8	4.4	8.3	17	30	57	
80	2.6	3.7	4.9	8.8	19	32	62	
100	3.1	4.1	5.2	9.6	21	35	67	
120	_	4.5	5.7	11	22	38	74	

Ratcheting torque See "Engineering data" for a description of terms. Table 067-3 Unit: Nm									
Size Ratio	14	17	20	25	32	40	50		
50	60	105	150	315	685	1260	2590		
80	75	140	245	475	980	1960	3780		
100	55	110	180	350	700	1470	2870		
120	_	80	165	325	685	1330	2660		

Buckling torqu	Je See "Enginee	"Engineering data" for a description of terms. Table 06 Unit:						
Size	14	17	20	25	32	40	50	
All ratios	190	330	560	1000	2200	4300	8000	

No-load running torque

No-load running torque is the torque which is required to rotate the input side (high speed side), when there is no load on the output side (low speed side).

Measurement condition

Table 068-1

Ratio 100:1								
	_		Harmonic Grease SK-1A (size 20 or larger)					
Lubricant	Grease Jubrication	Name	Harmonic Grease SK-2 (size 14, 17)					
	labrication	Quantity	Recommended quantity (See page 71)					
Torque value is measured after 2 hours at 2000rpm input.								

^{*} Contact us for oil lubrication.

■ Compensation value in each ratio

No load running torque of the gear varies with ratio. The graphs indicate a value for ratio 100. For other gear ratios, add the compensation values from table on the right.

Compensation coefficient for no-load running torque Table 068-1 Unit: Non

Ratio	50
14	+0.56
17	+0.95
20	+1.4
25	+2.6
32	+5.4
40	+9.6
50	+18

Ambient Temperature (°C)

■ No-load running torque for a reduction ratio of 100

^{*} The values in this graph are average value "X".

Ambient Temperature (°C)

Efficiency

The efficiency varies depending on the following conditions.

- Reduction ratio
- Input rotational speed
- Load torque
- Temperature
- Lubrication (Type and quantity)

Measurement condition Table 069-1 Installation Based on recommended tolerance Load torque The rated torque shown in the rating table (see page 63) * When load torque is smaller than rated torque, the efficiency value is lowered. See efficiency compensation coefficient below. Lubricant Grease Iubrication Quantity Americant Quantity Harmonic Grease SK-2 (size 14, 17) Recommended quantity (see page 71)

Component Set CSD

■ Efficiency compensation coefficient

If the load torque is lower than the rated torque, the efficiency value decreases. Calculate the compensation coefficient Ke from Graph 069-1 to calculate the efficiency using the following calculation example.

* Efficiency Compensation coefficient Ke=1 holds when the load torque is greater than the rated torque.

Efficiency compensation coefficient

^{*} Contact us for oil lubrication.

■ Efficiency at rated torque

Reduction ratio 50:1

Reduction ratio 80, 100, 120:1

