朴素贝叶斯算法 Naïve Bayes Algorithms

部分课件来源: 余超老师课程助教团队

目录

1. 朴素贝叶斯法回顾

- 1.1 朴素贝叶斯法的学习与分类
- 1.2 朴素贝叶斯中两种概率模型
- 1.3 拉普拉斯平滑

2. 实验任务

用朴素贝叶斯法完成文本信息情感分类训练,要求使用拉普拉斯 平滑技巧。

贝叶斯概率的基础思想

- □ 概率: 某人对一个命题信任的程度,这个概率不像频率概率 范畴是描述某个随机事件发生的可能性的一个未知的定值,而 是指一个未知的可以变化的值。
- □ 先验概率: 不知道其他信息情况下,根据以往经验和分析得到的概率。
- □ **后验概率:** 在得到随机事件的结果之后对先验概率进行修正之后的概率。
- □ 全概率公式: 将复杂事件的概率求解转换为简单概率求解的方法。
- □ **贝叶斯公式/定理:** 贝叶斯概率与贝叶斯统计的基础, 基本上是用来计算后验概率的公式。

相关公式

□ 变量相互独立:

$$P(X|Y) = P(X)$$
 or $P(Y|X) = P(Y)$ or $P(X,Y) = P(X)P(Y)$

□ 条件概率:

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X,Y)}{\mathbf{P}(X)}$$

□ 贝叶斯规则:

$$\mathbf{P}(Y|X) = \frac{\mathbf{P}(X|Y)\mathbf{P}(Y)}{\mathbf{P}(X)}$$
$$\mathbf{P}(X,Y) = \mathbf{P}(X|Y)\mathbf{P}(Y) = \mathbf{P}(Y|X)\mathbf{P}(X)$$

□ 链式法则:

$$\mathbf{P}(X_1, X_2, ..., X_N)
= \mathbf{P}(X_1 | X_2, ..., X_N) * \mathbf{P}(X_2 | X_3, ..., X_N) * ... * \mathbf{P}(X_{N-1} | X_N) * \mathbf{P}(X_N)$$

考虑一个分类问题,我们希望根据动物的某些特征来区分猫(y=1)和狗(y=0)。

● 判别模型

- 找到将猫和狗分开的决策边界或分类原则。
- 为了分类一只新动物,判别模型会检查它落在决策边界的哪一边,并直接做出决定。

● 生成模型

- 分别建立猫和狗的外观模型。
- 要对新动物进行分类,将其与猫/狗模型进行匹配,并查看它看起来更像哪个模型。

● 判别模型

- 直接估计后验概率 p(y|x) 。
- 常用方法: k-近邻, etc.

● 生成模型

- 估计先验概率 p(y) 和条件概率 p(x|y)。
- 根据贝叶斯定理计算后验概率 p(y|x) 。
- 常用方法: Naïve Bayes, etc.

朴素贝叶斯法根据**贝叶斯定理**来估计每个类 别的**后验概率**。

$$p(y|x) = \frac{p(x,y)}{p(x)} = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{i} p(x|y_{i})p(y_{i})} \propto p(x|y)p(y)$$

朴素贝叶斯法的目标是找到

$$y = \arg\max_{y} p(y|x) = \arg\max_{y} \frac{p(x, y)}{p(x)} = \arg\max_{y} p(x|y)p(y)$$

朴素贝叶斯法对条件概率分布作了**条件独立性假设**。这是一个较强的假设,具体地,该假设是:

$$p(x_1, x_2, ..., x_n | y) = \prod_{k=1}^{n} p(x_k | y)$$

条件独立假设等于是说用于分类的特征在类 确定的条件下都是条件独立的。

给定一个包含 M 个文本的数据集,其中每个有 K 维特征向量 $X = (x_1, ..., x_K)$ 和一个情感标签 e_i ,为了预测测试文本,需要估计:

$$\arg \max_{e_i} p(e_i|X) = \arg \max_{e_i} \frac{P(X|e_i)p(e_i)}{p(X)}$$

$$= \arg \max_{e_i} p(X|e_i)p(e_i)$$

$$= \arg \max_{e_i} \prod_{k=1}^{K} p(x_k|e_i)p(e_i)$$

□ 伯努利模型:

$$\arg\max_{e_i} \prod_{k=1}^K p(x_k|e_i) p(e_i)$$

$$p(x_k|e_i) = \frac{n_{e_i}(x_k)}{N_{e_i}}$$
 $p(e_i) = \frac{N_{e_i}}{N}$

其中, $n_{e_i}(x_k)$ 表示类别为 e_i 的文本中出现 x_k 的文本数量; N_{e_i} 表示类别为 e_i 的文本数量;N表示全部文本的数量。

在伯努利模型中,当某一文本出现单词 x_k ,那么 $n_{e_i}(x_k)$ 则+1。

□ 多项式模型:

$$\arg\max_{e_i} \prod_{k=1}^K p(x_k|e_i) p(e_i)$$

$$p(x_k|e_i) = \frac{nW_{e_i}(x_k)}{nW_{e_i}} \qquad p(e_i) = \frac{N_{e_i}}{N}$$

其中, $nW_{e_i}(x_k)$ 表示类别为 e_i 的文本中出现 x_k 的总次数; nW_{e_i} 表示类别为 e_i 的文本中单词的总数; N_{e_i} 表示类别为 e_i 的文本数量;N表示全部文本的数量。

因此,我们可以得知,伯努利模型中,我们关注的是单词 x_k 是否有在文本中出现;而多项式模型中,则关注的是单词 x_k 在文本中出现的次数。

ID	text	class label
1	good,thanks	joy
2	No impressive, thanks	sad
3	Impressive good	joy
4	No, thanks	?

ID	goods	thanks	no	impressive	class label
1	1	1	0	0	joy
2	0	1	1	1	sad
3	1	0	0	1	joy
4	0	1	1	0	?

Bernoulli Model (伯努利模型):

$$P_{\text{(thanks|joy)}} = 1/2$$

Multinomial Model(多项式模型):

$$P_{\text{(thanks|joy)}} = 1/4$$

思考题:这两个模型分别有什么优缺点

ID	text	class label
1	good,thanks	joy
2	No impressive, thanks	sad
3	Impressive good	joy
4	No, thanks	?

ID	goods	thanks	no	impressive	class label
1	1	1	0	0	joy
2	0	1	1	1	sad
3	1	0	0	1	joy
4	0	1	1	0	?

$$\arg\max_{e_i} \prod_{k=1}^K p(x_k|e_i) p(e_i)$$

Target function:

$$p(joy|d_4) = p(joy) \cdot p(d_4|joy)$$
$$p(sad|d_4) = p(sad) \cdot p(d_4|sad)$$

Example:

$$\begin{split} \textit{p}(\textit{joy}|\textit{d}_4) &= \textit{p}(\textit{d}_4|\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \textit{p}(" \textit{thanks}", " \textit{no}" |\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \textit{p}(" \textit{thansk}" |\textit{joy}) \cdot \textit{p}(" \textit{no}" |\textit{joy}) \cdot \textit{p}(\textit{joy}) \\ &= \frac{1}{4} \times 0 \times \frac{2}{3} = 0 \end{split}$$

1.3 拉普拉斯平滑

思考: 在前面的文本分类算法中,如果测试文本中的单词没有在训练文本中出现会造成什么结果?

会影响到后验概率的计算结果,使分类产生偏差。解决这一问题的方法是采用拉普拉斯平滑 (Laplacian smoothing):

Bernoulli:
$$p(x_k|e_i) = \frac{n_{e_i}(x_k) + 1}{N_{e_i} + 2}$$

Multinomial:
$$p(x_k|e_i) = \frac{nw_{e_i}(x_k) + 1}{nw_{e_i} + V_{e_i}}$$

这里 V_{e_i} 值得是类别为 e_i 的文本中不重复的单词数量。

知识补充

训练集 验证集 测试集的区别

数据类型	有无标签	作用
训练集(training set)	有	用来 <mark>训练模型</mark> 或确定模型参数的,如k-NN中权值的确定等。 相当于平时练习。
验证集(validation set)	有	用来 <mark>确定</mark> 网络结构或者控制模型复杂程度的参数,修正模型。 相当于模拟考试。
测试集(test set)	无	用于检验最终选择最优的模型的性能如何。 相当于期末考试。

实验任务

- □ 第11周: 朴素贝叶斯
- □ 第12周: *k*-近邻算法

- □ 实验任务: 文本情感分析
 - 在朴素贝叶斯分类、k-NN分类与k-NN回归中,至少完成一项;
 - □ 用朴素贝叶斯法完成文本信息情感分类训练,要求使用 拉普拉斯平滑技巧。
 - 鼓励尝试多种算法及算法中的不同策略/参数;
 - 完成一份实验报告,注意实验报告要求。

实验提交

- □ 作业名称:实验5
- 口 截止时间: 5月11日 23:00
- □ 本次实验提交样例:压缩包20******_wangxiaoming.zip, 内含:
 - 20******_wangxiaoming.pdf
 - /code: 文件夹,内含所有实验代码并附上readme
 - /result:文件夹,内含实验结果(根据完成情况,至少包含一个)
 - ☐ 20*****_wangxiaoming_NB_classification.csv
 - □ 20******_wangxiaoming_KNN_classification.csv
 - □ 20***** _ wangxiaoming_KNN_regression.csv