Line plots on multiple facets

```
import seaborn as sns
sns.set_theme(style="ticks")

dots = sns.load_dataset("dots")

# Define the palette as a list to specify exact values
palette = sns.color_palette("rocket_r")

# Plot the lines on two facets
sns.relplot(
    data=dots,
    x="time", y="firing_rate",
    hue="coherence", size="choice", col="align",
    kind="line", size_order=["T1", "T2"], palette=palette,
    height=5, aspect=.75, facet_kws=dict(sharex=False),
)
```

Out[1]: <seaborn.axisgrid.FacetGrid at 0x1a60607bca0>


```
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set_theme(style="dark")

# Simulate data from a bivariate Gaussian
n = 10000
mean = [0, 0]
cov = [(2, .4), (.4, .2)]
rng = np.random.RandomState(0)
x, y = rng.multivariate_normal(mean, cov, n).T
```

```
# Draw a combo histogram and scatterplot with density contours
f, ax = plt.subplots(figsize=(6, 6))
sns.scatterplot(x=x, y=y, s=5, color=".15")
sns.histplot(x=x, y=y, bins=50, pthresh=.1, cmap="mako")
sns.kdeplot(x=x, y=y, levels=5, color="w", linewidths=1)
plt.show()
```


In [13]: kashti = sns.load_dataset("titanic")
kashti

Out[13]:

age sibsp parch fare embarked class who adult male d survived pclass sex 0 0 22.0 7.2500 S Third 3 male 1 0 True N man 1 1 1 female 38.0 0 71.2833 C First woman False Third woman 2 1 3 female 26.0 0 0 7.9250 S False Ν 3 1 1 female 35.0 0 53.1000 S First woman False 4 0 3 male 35.0 0 0 8.0500 S Third man True Ν 886 0 2 male 27.0 0 0 13.0000 S Second True Ν man 887 1 female 19.0 0 30.0000 S First woman False 888 0 3 female NaN 2 23.4500 S Third woman False 889 1 male 26.0 0 30.0000 C First man True 890 0 3 Third male 32.0 0 7.7500 Q man True N

891 rows × 15 columns

```
In [15]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          sns.set_theme(style="whitegrid")
          # Load the example diamonds dataset
          kashti = sns.load_dataset("titanic")
          # Draw a scatter plot while assigning point colors and sizes to different
          # variables in the dataset
          f, ax = plt.subplots(figsize=(6.5, 6.5))
          sns.despine(f, left=True, bottom=True)
          # clarity_ranking = ["I1", "SI2", "SI1", "VS2", "VS1", "VVS2", "VVS1", "IF"]
          sns.scatterplot(x="age", y="fare",
                          hue="embarked", size="pclass",
                          palette="ch:r=-.2,d=.3 r",
                          sizes=(1, 8), linewidth=0,
                          data=kashti, ax=ax)
          plt.show()
```


In [12]: diamonds = sns.load_dataset("diamonds")
 diamonds

Out[12]:

		carat	cut	color	clarity	depth	table	price	х	у	z
	0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
	1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
	2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
	3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
	4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
5393	35	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
5393	86	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
5393	37	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
5393	88	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
5393	39	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64

53940 rows × 10 columns