The Adjustment of Hyperparameters and Model Architecture in Prediction Model of OVF Collapse Progression

Sibeen Kim

Short Bio

• B.S. in Biomedical Engineering, Korea University

Research Intern @ *LANIB, Severance Hospital

Research Intern @ Letsur

Research Intern @ **BREIN Lab, Korea University

* Laboratory of Advanced Neuroimaging Biomarker research

** Brain Reverse Engineering by Intelligent Neuroimaging

Mar 2018 - Present

Apr 2023 - Present

Jan 2024 - Present

Feb 2024 - Present

Osteoporotic Vertebral Compression Fracture

CNN for OVF Diagnosis

Output Probabilities Transformer Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward N× Add & Norm N× Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)

Scaled Dot-Product Attention

Vision Transformer

Contrastive Visual Representation Learning from Text

$$\ell_i^{(v \to u)} = -\log \frac{\exp(\langle \mathbf{v}_i, \mathbf{u}_i \rangle / \tau)}{\sum_{k=1}^N \exp(\langle \mathbf{v}_i, \mathbf{u}_k \rangle / \tau)} \qquad \ell_i^{(u \to v)} = -\log \frac{\exp(\langle \mathbf{u}_i, \mathbf{v}_i \rangle / \tau)}{\sum_{k=1}^N \exp(\langle \mathbf{u}_i, \mathbf{v}_k \rangle / \tau)} \qquad \mathcal{L} = \frac{1}{N} \sum_{i=1}^N \left(\lambda \ell_i^{(v \to u)} + (1 - \lambda) \ell_i^{(u \to v)} \right)$$

CLIP

→ e.g. ViT

(2) Create dataset classifier from label text

BiomedCLIP

Demography

Table 1. Demographic data of enrolled patients

Non-Collapse (n=125)	Collapse (n=120)	P-value
Mean (SD) or n (%)	Mean (SD) or n (%)	
72.0 (9.98)	73.6 (8.67)	0.174
-2.72 (1.11)	-2.74 (1.04)	0.852
103 (82.4)	94 (78.3)	0.423
87 (69.6)	73 (60.3)	0.150
28 (22.4)	22 (18.3)	0.430
99 (79.2)	90 (75.0)	0.492
	Mean (SD) or n (%) 72.0 (9.98) -2.72 (1.11) 103 (82.4) 87 (69.6)	Mean (SD) or n (%) 72.0 (9.98) 73.6 (8.67) -2.72 (1.11) -2.74 (1.04) 103 (82.4) 94 (78.3) 87 (69.6) 73 (60.3)

Table 2. Dataset splits across participating institutions

	BRMH	KNUH	HUDSHH	KUDH	SCHH	
Train	109	55	36		0	200
паш	m 100 55	33	50	O	U	(81.6%)
Test	0	0	0	30	15	45 (18.4%)

Abbreviations: BRMH, Boramae Hospital; SNUH, Seoul National University Hospital; KNUH, Kangwon National University Hospital; HUDSHH, Hallym University Dongtan Sacred Heart Hospital; KUDH, Keimyung University Dongsan Hospital; SCHH, Soon Chun Hyang University Hospital

Preprocessing

DICOM < 2 / 196 >

Preprocessing

Model Design: Pretrained Weights

	Internal Validation			External Val	External Validation			
	AUC	Spec	Sens	AUC	Spec	Sens		
CNN scratch	0.7830	0.7844	0.6699	0.7097	0.6963	0.6611		
CNN ImageNet	0.7973	0.7833	0.7123	0.8014	0.7074	0.7833		

Model Design: Pretrained Weights

	Internal Validation			External Valida	External Validation			
	AUC	Spec	Sens	AUC	Spec	Sens		
ViT Scratch	0.8159	0.7996	0.7086	0.7979	0.7630	0.6944		
ViT ImageNet	0.8185	0.8642	0.6517	0.7825	0.7333	0.7333		
VIT PMC	0.8269	0.8057	0.7306	0.8051	0.7296	0.7556		

Model Design: Fine-tuning Methods

Model Design: Fine-tuning Methods

	Internal Validation			External Validation			
	AUC	Spec	Sens	AUC	Spec	Sens	
ViT PMC	0.8269	0.8057	0.7306	0.8051	0.7296	0.7556	
ViT PMC LoRA	0.8404	0.8557	0.7012	0.8113	0.6963	0.8111	

Model Design: Architecture

	# Trainable	Internal Valida	tion		External Validation			
	Parameters	AUC	Spec	Sens	AUC	Spec	Sens	
CNN ImageNet	11.2 M	0.7973	0.7833	0.7123	0.8014	0.7074	0.7833	
VIT PMC LoRA	0.886 M	0.8404	0.8557	0.7012	0.8113	0.6963	0.8111	

Additional Technique

	Internal Validation						
	AUC	Spec	Sens				
VIT PMC LoRA	0.8404	0.8557	0.7012				
ViT PMC LoRA + ensemble	0.8539 0.8230		0.7739				
	External Validation						
	AUC	Spec	Sens				
VIT PMC LoRA	0.8113	0.6963	0.8111				
ViT PMC LoRA + ensemble	0.8656	0.8111	0.7611				

Hyperparameter Tuning

Hyperparameter Tuning

- (1) Short epoch + Broad range fixed learning rate
 - Objective: Identify "possible" range (underfitting X, overfitting X)
- (2) Longer epoch + Narrow range fixed learning rate + Other h.p. tune
 - e.g. weight decay, batch size, lora_rank
 - Objective: Stabilize training... Find good candidates!
- (3) Scheduler selection + Scheduler h.p. tune (e.g. warmup)
 - Objective: Find best setting!
- (4) Excessive epoch + early stop + seed
 - Objective: Find best score!

Hyperparameter Tuning

Grad-CAM

Attention Rollout

Key Results

	# Trainable	Internal Valida	tion		External Validation			
	Parameters	AUC	Spec	Sens	AUC	Spec	Sens	
CNN ImageNet	11.2 M	0.7973	0.7833	0.7123	0.8014	0.7074	0.7833	
ViT PMC LoRA	0.886 M	0.8404	0.8557	0.7012	0.8113	0.6963	0.8111	

	Internal Validation			External Validation		
	AUC	Spec	Sens	AUC	Spec	Sens
VIT PMC LoRA	0.8404	0.8557	0.7012	0.8113	0.6963	0.8111
ViT PMC LoRA + ensemble	0.8539	0.8230	0.7739	0.8656	0.8111	0.7611

Reference

- Yabu, A. et al. Using artificial intelligence to diagnose fresh osteoporotic vertebral fractures on magnetic resonance images. Spine J 21, 1652-1658, doi:10.1016/j.spinee.2021.03.006 (2021).
- Tomita, N., Cheung, Y. Y. & Hassanpour, S. Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. *Comput Biol Med* **98**, 8-15, doi:10.1016/j.compbiomed.2018.05.011 (2018).
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.
- Dosovitskiy, A. et al. An image is worth 16x16 words: transformers for image recognition at scale. In *International Conference on Learning Representations* (ICLR, 2021).
- Zhang, Y., Jiang, H., Miura, Y., Manning, C. D. & Langlotz, C. P. Contrastive learning of medical visual representations from paired images and text. In *Machine Learning* for Healthcare Conference (eds Lipton, Z. et al.) 2–25 (PMLR, 2022).
- Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. 2021. Learning transferable visual models from natural language supervision. In *International Conference on Machine Learning*.
- E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Thank You!