- (a) Wir wählen 2k+1 elemente. Die Wahrscheinlichkeit dass ein zufällig gewählte element kleiner gleich ist als das $\lfloor \frac{1-\epsilon}{2}n \rfloor$ grösste element ist $\frac{\lfloor \frac{1-\epsilon}{2}n \rfloor}{n}$. Durch die Linearität der Erwartungswert erhalten wir für $\mathbb{E}[K] = \frac{(2k+1)(\lfloor \frac{1-\epsilon}{2}n \rfloor)}{n}$. Analog berechnen wir $\mathbb{E}[G]$. Wahrscheinlichkeit dass ein zufällig gewählte element grösser als das $\lceil \frac{1+\epsilon}{2}n \rceil$ -grösste element ist $\frac{n-\lceil \frac{1+\epsilon}{2}n \rceil}{n}$. Durch die Linearität der Erwartungswert erhalten wir für $\mathbb{E}[G] = \frac{(2k+1)(n-\lceil \frac{1+\epsilon}{2}n \rceil)}{n}$
- (b) Wenn wir mindestens $\frac{2k+1}{2}$ der zufällig gewählte elemente in K oder G liegen, dann kriegen wir ein median welche kein ϵ median ist. Wir müssen also zeigen:

1.
$$\frac{2k+1}{2} \geq (1+\epsilon)\mathbb{E}[K]$$

$$2. \ \frac{2k+1}{2} \ge (1+\epsilon)\mathbb{E}[G]$$

Bew 1:
$$(1+\epsilon)\mathbb{E}[K] = \frac{(2k+1)(\lfloor \frac{1-\epsilon}{2}n \rfloor)}{n} \cdot (1+\epsilon) \le \frac{(2k+1)(\frac{1-\epsilon}{2}n)}{n} \cdot (1+\epsilon) \le (2k+1)(\frac{1-\epsilon}{2})(1+\epsilon) \le (2k+1)\frac{(1-\epsilon^2)}{2}$$

$$\le \lim_{\epsilon \to 0} (2k+1) \frac{(1-\epsilon^2)}{2} = \frac{2k+1}{2}$$
 Bew 2:

Bew 2:
$$(1+\epsilon)\mathbb{E}[G] = \frac{(2k+1)(n-\lceil \frac{1+\epsilon}{2}n\rceil)(1+\epsilon)}{n} \leq \frac{(2k+1)(n-\frac{1+\epsilon}{2}n)(1+\epsilon)}{n} \leq (2k+1)(1-\frac{1+\epsilon}{2})(1+\epsilon) = (2k+1)(\frac{1-\epsilon^2}{2})(1+\epsilon) = (2k+1)(\frac{1-\epsilon^2}{2}) \leq \lim_{\epsilon \to 0} (2k+1)(\frac{1-\epsilon^2}{2}) = \frac{2k+1}{2}$$

(c) Wir wählen den Abschätzung von Chernoff:
$$\Rightarrow Pr[K \geq (1+\epsilon)\mathbb{E}[K]] \leq e^{-\frac{1}{3}\epsilon^2\mathbb{E}[K]}$$

$$\Rightarrow Pr[G \geq (1+\epsilon)\mathbb{E}[G]] \leq e^{-\frac{1}{3}\epsilon^2\mathbb{E}[G]}$$

- (d) Unser Erfolgswahrscheinlichkeit ist gegeben durch $1 (Pr[K \ge (1+\epsilon)\mathbb{E}[K]] + Pr[G \ge (1+\epsilon)\mathbb{E}[G]])$ $\Rightarrow 1 - (Pr[K \ge (1+\epsilon)\mathbb{E}[K]] + Pr[G \ge (1+\epsilon)\mathbb{E}[G]]) \le 1 - (e^{-\frac{1}{3}\epsilon^2\mathbb{E}[K]} + e^{-\frac{1}{3}\epsilon^2\mathbb{E}[G]})$ $\Rightarrow 1 - (e^{-\frac{1}{3}\epsilon^2\mathbb{E}[K]} + e^{-\frac{1}{3}\epsilon^2\mathbb{E}[G]}) = 1 - (e^{-\frac{1}{3}\epsilon^2(2k+1)\frac{1-\epsilon}{2}} + e^{-\frac{1}{3}\epsilon^2(2k+1)(1-\frac{1+\epsilon}{2})}) = 1 - 2e^{-\frac{1}{3}\epsilon^2(2k+1)\frac{1-\epsilon}{2}}$ $= 1 - 2e^{-\frac{1}{6}(2k+1)(\epsilon^2 - \epsilon^3)}$
- (e) Wir setzen δ als unsere berechnete wert aus d) i.e $\delta = 2e^{-\frac{1}{6}(2k+1)(\epsilon^2 \epsilon^3)}$ $\Rightarrow \left(\frac{\delta}{2}\right) = -\frac{1}{6}(2k+1)(\epsilon^2 \epsilon^3)$ $\Rightarrow -\frac{6ln(\frac{\delta}{2})}{\epsilon^2 \epsilon^3} = (2k+1)$ $\Rightarrow k = -\frac{3ln(\frac{\delta}{2})}{\epsilon^2 \epsilon^3} \frac{1}{2}$ $\Rightarrow k \in \mathcal{O}\left(\frac{ln\delta}{\epsilon^2 \epsilon^3}\right)$