

JUMA API 说明

1 JUMA API 的简单描述

1.1. 当外部事件发生时会被回调的操作(回调函数无返回值)

```
on_load( void );
on_ready(void);
on_lock_state_changed(uint8_t is_locked);
on_gpio_pin_state_changed(uint8_t new_state);
on_connection_state_changed(uint8_t is_connected);
on_message_from_phone(uint8_t message_type, uint8_t* data, uint32_t size);
on_message_from_serial(uint8_t message_type, uint8_t* data, uint32_t size);
```

1.2. 与时间相关的操作

```
void run_when_idle(function_t func, void* args);
void run_at_time(function_t func, void* args, uint32_t time);
void run_after_delay(func, args, delay);
uint32_t current_time(void);
```

1.3. 与 GPIO 有关的操作

```
void watch_gpio_pin_state(uint8_t pin, uint8_t change_direction);
void unwatch_gpio_pin_state(void);
void set_gpio_pin_mode(uint8_t pin, uint8_t mode);
void set_gpio_pin_state(uint8_t pin, uint8_t state);
uint8_t get_gpio_pin_state(uint8_t pin);
void read_analog_input(uint8_t pin, function_t on_complete);
```


1.4. 与手机相关的操作

```
uint8_t is_phone_connected(void);
void disconnect_phone(void);
void send_to_phone(uint8_t message_type, uint8_t* data, uint32_t size);
```

1.5. 与串口相关的操作

```
void setup_serial_port(uint8_t rx_pin, uint8_t tx_pin, uint8_t irq_pin);
void send_to_serial(uint8_t message_type, uint8_t* data, uint32_t size);
```

1.6. 与蜂鸣器相关的操作

void setup_buzzer(uint8_t is_passive, uint8_t pin, uint8_t is_active_high);

1.7. 与指示器相关的操作

void setup_indicator(uint8_t pin, uint8_t is_active_high);

1.8. 与灯光相关的操作

```
void setup_light(uint8_t* pins, uint8_t is_active_high);
void set_light_power(uint8_t on);
void set_light_color(const uint8_t* rgb_values);
```

1.9. 与蓝牙相关的操作

void setup_beacon(uint8_t* uuid, uint16_t major, uint16_t minor, uint8_t rssi); void set_device_name(const char* device_name);

2. JUMA API 使用说明

2.1. void on_load(void);

函数调用: 由系统在板子上电时调用

函数功能:处理需要在板子上电时的事物(如指定蓝牙模块的名字)

函数特点:必须实现,并且不能为空

参数:无 返回:无

2.2. void on_ready(void);

函数调用:由系统在蓝牙模块已经开始发送广播后调用

函数功能:处理在开始广播后的事物

函数特点:

参数: 无 返回: 无

2.3. void on_lock_state_changed(uint8_t is_locked);

函数调用:由系统在锁的状态被改变后调用

函数功能: 当锁状态改变后处理其他的一些东西

函数特点:

参数: 当前锁的状态

返回:无

2.4. void on_gpio_pin_state_changed(uint8_t new_state);

函数调用:由系统在外部中断 GPIO 的状态被改变后调用

函数功能: 当接收到外部中断事件发生后的处理

函数特点:

参数: 当前引脚的状态

返回: 无

2.5. void on_connection_state_changed(uint8_t is_connected);

函数调用:由系统在连接状态发生改变时调用

函数功能:连接状态改变后的处理

函数特点:

参数: 当前的连接状态

返回:无

2.6. void on_message_from_phone(uint8_t message_type, uint8_t* data,

uint32_t size);

函数调用:由系统在接收到来自手机的消息后调用

函数功能:接收到来自手机的消息后的处理

函数特点:

参数:

message_type 表示手机消息的类型 data 表示手机的消息数据 size 表示手机消息的长度

返回:无

2.7. void on_message_from_serial(uint8_t message_type, uint8_t* data,

uint32_t size);

函数调用: 由系统在接收到来自串口的数据后调用

函数功能:接收到来自串口的消息后的处理

函数特点:

参数:

message_type 表示串口消息的类型 data 表示串口消息的数据 size 表示串口消息的长度

返回:无

2.8. void run_when_idle(function_t func, void* args);

函数调用:由用户使用

函数功能: 向系统注册一个在系统空闲的时候运行的函数

函数特点: 要执行的函数对时间要求不高

参数:

func 要执行的函数的位置(函数指针)

args 执行函数时传入函数的参数(只能是一个指针)

返回:无

2.9. void run at time(function t func, void* args, uint32 t time);

函数调用: 由用户使用

函数功能: 向系统注册一个在指定的时间点上运行的函数

函数特点: 要执行的函数对时间点有要求

参数:

func 要执行的函数的位置(函数指针)

args 执行函数的时候传入函数的参数(只能是一个指针)

time 函数执行的时间点

返回:无

2.10. void run after delay(func, args, delay);

函数调用: 由用户调用

函数功能: 向系统注册一个在指定时间后运行的函数

函数特点: 要执行的操作对时间点有要求

事实上这是一个由 run at time 和 current time 构成的宏

参数:

func 要执行的函数的位置(函数指针)

args 执行函数的时候传入的参数(只能是一个指针)

time 等待的时间长度

返回:无

2.11. uint32_t current_time(void);

函数调用:由用户调用

函数功能: 获取当前时间计数器值

函数特点:

参数:无返回:无

2.12. void watch_gpio_pin_state(uint8_t pin, uint8_t change_direction);

函数调用:由用户调用

函数功能:向系统注册一个 GPIO 事件,当满足指定条件的引脚状态变化满

足时,on_gpio_pin_state_changed(uint8_t new_state);将会被系统自动调用。

函数特点:用户注册一个 GPIO 的系统事件

参数:

pin 引脚值

chang_direction 变化方式(在 juma_sdk_types.h 中有定义如下)

GPIO_RISING, GPIO_FALLING,

返回:无

2.13. void unwatch_gpio_pin_state(void);

函数调用: 由用户调用

函数功能:解除已经注册的 GPIO 事件

函数特点:

参数:无 返回:无

2.14. void **set_gpio_pin_mode**(uint8_t pin, uint8_t mode);

函数调用:由用户调用

函数功能:用于对一个GPIO引脚的功能进行设定(输入 or 输入)

函数特点:

参数:

pin pin 值

mode 指定该引脚用作的模式(在 juma sdk types.h 中有定义如下)

GPIO_OUTPUT,

GPIO_INPUT_NOPULL,
GPIO_INPUT_PULLUP,
GPIO_INPUT_PULLDOWN,

返回: 无

2.15. void **set_gpio_pin_state**(uint8_t pin, uint8_t state);

函数调用:由用户调用

函数功能:设置 gpio 的状态(非 0 高电平或者 0 低电平)

函数特点:

参数:

pin pin 值

state 状态(非0 or 0)

返回:无

2.16. uint8_t get_gpio_pin_state(uint8_t pin);

函数调用: 由用户调用

函数功能: 获取指定 pin 脚的状态

函数特点:

参数:

pin pin 值

返回: 指定的 pin 的状态

2.17. void read_analog_input(uint8_t pin, function_t on_complete);

函数调用:由用户调用

函数功能:获取指定的 PIN 脚上的模拟信号,并在获取完成后自动调用用户指定的函数

on_complete 来处理获取到的模拟量

函数特点:用户需要指定 pin 和相应的处理函数,当模拟量获取完毕后系统自动调用处理

函数

参数:

pin pin 值

on_complete 模拟信号采集完毕后系统要执行的函数(函数指针)

其格式(在 juma_sdk_types.h 中有定义如下)

void (*function_t)(void* args);

返回:无

2.18. uint8_t is_phone_connected(void);

函数调用:由用户调用

函数功能: 判断当前是否有手机与自身连接

函数特点:

参数:无

返回: 是否有手机与自身连接

2.19. void disconnect_phone(void);

函数调用: 由用户调用

函数功能: 断开与手机的连接

函数特点:

参数: 无 返回: 无

2.20. void **send_to_phone**(uint8_t message_type, uint8_t* data, uint32_t size);

函数调用:由用户调用

函数功能: 向手机端发送数据

函数特点:

参数:

message_type 消息类型

data要发送的数据size数据的大小

返回:无

2.21. void **setup_serial_port**(uint8_t rx_pin, uint8_t tx_pin, uint8_t irq_pin);

函数调用:由用户调用 函数功能:设置串口

函数特点:

参数:

rx_pin指定串口的 RX 脚tx_pin指定串口的 TX 脚

irq_pin 指定当要向外发送数据时的请求信号引脚

返回:无

2.22. void **send_to_serial**(uint8_t message_type, uint8_t* data, uint32_t size);

函数调用:由用户调用

函数功能: 通过串口发送数据

函数特点:

参数:

message_type 消息类型

data要发送的数据size数据大小

返回:无

2.23. void **setup buzzer**(uint8 t is passive, uint8 t pin, uint8 t is active high);

函数调用:由用户调用 函数功能:设置蜂鸣器

函数特点:

参数:

is_passive 指定蜂鸣器的类型 pin 与蜂鸣器连接的引脚

is_active_high 0: 低电平驱动 非 0: 高电平驱动

返回:无

2.24. void **setup_indicator**(uint8_t pin, uint8_t is_active_high);

函数调用:由用户调用

函数功能:设置指示 LED 状态(不一定是 LED,这里为指示器)

函数特点:

参数:

pin pin 值

is_active_high 0: 低电平驱动 非 0: 高电平驱动

返回:无

2.25. void **setup_light**(uint8_t* pins, uint8_t is_active_high);

函数调用:由用户调用

函数功能:设置 RGB 的 light

函数特点:

参数:

pins 引脚数组(在 juma_sdk_types.h 中有定义如下)

uint8_t pins[4]; // pins for RGBW

is_active_high 0: 低电平驱动 非0: 高电平驱动

返回:无

2.26. void **set_light_power**(uint8_t on);

函数调用:由用户调用

函数功能:设置是否打开 light

函数特点:

参数:

on 开关状态

返回:无

2.27. void set_light_color(const uint8_t* rgb_values);

函数调用:由用户调用

函数功能:设置 RGB 的颜色

函数特点:

参数:

rgb_values rgb 的值

返回:无

2.28. void **setup_beacon**(uint8_t* uuid, uint16_t major, uint16_t minor, uint8_t

rssi);

函数调用:由用户调用

函数功能:设置 beacon 的参数

函数特点:

参数:

uuid beacon 的 UUID

major major minor minor

rssi 在距离发射源 1m 处的测量值(用于辅助测距)

返回:无

2.29. void **set_device_name**(const char* device_name);

函数调用:由用户调用

函数功能: 设置设备的名字

函数特点:

参数:

device_name 设备名字

返回:无