W02 - Examples

Trig power products

05 - Power product - odd power

Compute the integral:

$$\int \cos^2 x \cdot \sin^5 x \, dx$$

Solution

1. **E** Swap over the even bunch.

• Max even bunch leaving power-one is $\sin^4 x$:

$$\sin^5 x$$
 $\gg \gg$ $\sin x (\sin^2 x)^2$ $\gg \gg$ $\sin x (1 - \cos^2 x)^2$

• Apply to $\sin^5 x$ in the integrand:

$$\int \cos^2 x \cdot \sin^5 x \, dx \qquad \gg \gg \qquad \int \cos^2 x \cdot \sin x \, \left(1 - \cos^2 x\right)^2 dx$$

2. \sqsubseteq Perform *u*-substitution on the power-one integrand.

- Set $u = \cos x$.
- Hence $du = \sin x \, dx$. Recognize this in the integrand.
- Convert the integrand:

$$\int \cos^2 x \cdot \sin x (1 - \cos^2 x)^2 dx \qquad \gg \gg \qquad \int \cos^2 x \cdot (1 - \cos^2 x)^2 (\sin x dx)$$

$$\gg \gg \qquad \int u^2 \cdot (1 - u^2)^2 du$$

 $3. \equiv \text{Perform the integral}.$

• Expand integrand and use power rule to obtain:

$$\int u^2 \cdot (1 - u^2)^2 \, du = \frac{1}{3} u^3 - \frac{2}{5} u^5 + \frac{1}{7} u^7 + C$$

• Insert definition $u = \cos x$:

$$\int \cos^2 x \cdot \sin^5 x \, dx \quad \gg \gg \quad \int u^2 \cdot (1 - u^2)^2 \, du$$

$$\gg \gg \quad \frac{1}{3} \cos^3 x - \frac{2}{5} \cos^5 x + \frac{1}{7} \cos^7 x + C$$

 $4. \equiv$ This is our final answer.

06 - Power product - tan and sec

Compute the integral:

$$\int \tan^5 x \cdot \sec^3 x \, dx$$

Solution

1. \implies Try $du = \sec^2 x \, dx$.

• Factor *du* out of the integrand:

$$\int \tan^5 x \cdot \sec^3 x \, dx \qquad \gg \gg \qquad \int \tan^5 x \cdot \sec x \, \left(\sec^2 x \, dx \right)$$

- We then must swap over remaining $\sec x$ into the $\tan x$ type.
- Cannot do this because $\sec x$ has odd power. Need even to swap.

2. \Rightarrow Try $du = \sec x \tan x dx$.

• Factor *du* out of the integrand:

$$\int \tan^5 x \cdot \sec^3 x \, dx \qquad \gg \gg \qquad \int \tan^4 x \cdot \sec^2 x \, \left(\sec x \, \tan x \, dx \right)$$

• Swap remaining $\tan x$ into $\sec x$ type:

$$\int (\tan^2 x)^2 \cdot \sec^2 x \left(\sec x \, \tan x \, dx \right)$$

$$\gg \gg \int (\sec^2 x - 1)^2 \cdot \sec^2 x (\sec x \tan x dx)$$

• Substitute $u = \sec x$ and $du = \sec x \tan x dx$:

$$\gg \gg \int (u^2-1)^2 \cdot u^2 du$$

3. \sqsubseteq Compute the integral in u and convert back to x.

• Expand the integrand:

$$\gg \gg \int u^6 - 2u^4 + u^2 du$$

• Apply power rule:

$$\gg \gg \frac{u^7}{7} - 2\frac{u^5}{5} + \frac{u^3}{3} + C$$

• Plug back in, $u = \sec x$:

$$\gg \gg \frac{\sec^7 x}{7} - 2 \frac{\sec^5 x}{5} + \frac{\sec^3 x}{3} + C$$

$4. \equiv$ This is our final answer.

07 - Trig power product - differing frequencies

Compute the integral:

$$\int \sin 4x \cdot \cos 5x \, dx$$

Solution

1. \(\triangle \) Convert product to sum using trig identity.

• Use $\sin A \cos B = \frac{1}{2} \left(\sin(A - B) + \sin(A + B) \right)$ with A = 4x and B = 5x:

$$\sin 4x \cdot \cos 5x$$
 $\gg \gg \frac{1}{2} \left(\sin(-x) + \sin(9x) \right)$

$2. \equiv$ Perform the integral.

• Break up the sum:

$$\int \sin 4x \cdot \cos 5x \, dx \quad \gg \gg \quad \frac{1}{2} \int \sin(-x) \, dx + \frac{1}{2} \int \sin(9x) \, dx$$

• Observe chain rule backwards:

$$\frac{1}{2} \int \sin(-x) \, dx + \frac{1}{2} \int \sin(9x) \quad \gg \quad \frac{1}{2} \cos(-x) - \frac{1}{18} \cos(9x) + C$$

 $3. \equiv$ This is our final answer.

Trig substitution

08 - Trig sub in quadratic - completing the square

Compute the integral:

$$\int \frac{dx}{\sqrt{x^2 - 6x + 11}}$$

Solution

- 1. Notice square root of a quadratic.
- 2. ☐ Complete the square to obtain Pythagorean form.
 - Find constant term for a complete square:

$$x^2 - 6x + \left(rac{-6}{2}
ight)^2 = x^2 - 6x + 9 = (x-3)^2$$

• Add and subtract desired constant term:

$$x^2 - 6x + 11$$
 $\gg \gg$ $x^2 - 6x + 9 - 9 + 11$

• Simplify:

$$x^2 - 6x + 9 - 9 + 11$$
 $\gg \gg (x - 3)^2 + 2$

- 3. ➡ Perform shift substitution.
 - Set u = x 3 as inside the square:

$$(x-3)^2 + 2 = u^2 + 2$$

- Infer du = dx.
- Plug into integrand:

$$\int \frac{dx}{\sqrt{x^2 - 6x + 11}} \qquad \gg \gg \qquad \int \frac{du}{\sqrt{u^2 + 2}}$$

- 4. \triangle Trig sub with $\tan \theta$.
 - Identify triangle:

- Use substitution $u = \sqrt{2} \tan \theta$. (From triangle or memorized tip.)
- Infer $du = \sqrt{2} \sec^2 \theta \, d\theta$.
- Plug in data:

$$\int \frac{du}{\sqrt{u^2 + 2}} \qquad \gg \gg \qquad \int \frac{\sec^2 \theta}{\sec \theta} \, d\theta = \int \sec \theta \, d\theta$$

 $5. \equiv$ Compute trig integral.

• Use ad hoc formula:

$$\int \sec \theta \, d\theta = \ln |\tan \theta + \sec \theta| + C$$

6. \Rightarrow Convert trig back to x.

• First in terms of *u*, referring to the triangle:

$$an heta=rac{u}{\sqrt{2}}, \qquad \sec heta=rac{\sqrt{u^2+2}}{\sqrt{2}}$$

- Then in terms of x using u = x 3.
- Plug everything in:

$$\ln |\tan \theta + \sec \theta| + C \qquad \gg \gg \qquad \ln \left| \frac{x-3}{\sqrt{2}} + \frac{\sqrt{(x-3)^2 + 2}}{\sqrt{2}} \right| + C$$

7. ➡ Simplify using log rules.

· Log rule for division gives us:

$$\ln rac{f(x)}{a} = \ln f(x) - \ln a$$

- The common denominator $\frac{1}{\sqrt{2}}$ can be pulled outside as $-\ln\sqrt{2}$.
- The new term $-\ln\sqrt{2}$ can be "absorbed into the constant" (redefine C).
- So we write our final answer thus:

$$\ln\left|x-3+\sqrt{(x-3)^2+2}\right|+C$$