

COMP47350: Data Analytics (Conv)

Dr. Georgiana Ifrim

georgiana.ifrim@ucd.ie

Insight Centre for Data Analytics School of Computer Science University College Dublin

2018/19

Module Topics

- Python Environment (Anaconda, Jupyter Notebook)
- Getting Data (Web scrapping, APIs, DBs)
- Understanding Data (slicing, visualisation)
- Preparing Data (cleaning, transformation)
- Modeling & Evaluation (machine learning)

Data Analytics Project Lifecycle: CRISP-DM

CRISP-DM: CRoss-Industry Standard Process for Data

Mining

Modeling Data

- Modeling:
 - How to build prediction models
 - How to evaluate prediction models

 Regression: predicting a numeric target feature

Supervised Machine Learning

- Regression: Automatically learn/estimate a model (i.e., function) for the relationship between a set of descriptive features and a numeric target feature
 - E.g., learn the relationship between <u>descriptive</u> <u>features</u>, **SIZE**, **LOCATION**, **FLOOR SPACE** and <u>target feature</u>, **RENTAL PRICE**.

Recap: Linear Regression

 Assumes a linear relationship between descriptive features and target feature

```
predicted_target = w_0 + w_1 *feature_1 + w_2*feature_2 + 
+...+ w_n*feature_n
```

- The model is described by a set of parameters also known as weights (e.g., w_0, w_1, ..., w_n, where n is the number of features)
- Training stage: Estimate (aka learn) the parameters w_0, w_1, ..., w_n
- <u>Prediction stage:</u> Apply the weights learned during training, to the descriptive features of each example, to get a predicted target
- Evaluation: Measure the <u>difference between actual target and the predicted</u> target to get a measure for how well the model works

Linear Regression

Topics covered in this lecture:

- 1. Model Interpretability
- 2. Categorical Features
- 3. Non-linear Relationship

Linear Regression

Topics covered in this lecture:

1. Model Interpretability (interpreting a linear regression model)

Linear Regression: Example

Table: The **office rentals dataset**: a dataset that includes office rental prices and a number of descriptive features for 10 Dublin city-centre offices.

			BROADBAND	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING	PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
_10	1,000	9	24	В	620

Can we predict the **rental price**, given the descriptive features (**size**, **floor**, broadband rate, energy rating) for an office?

Simple Linear Regression (1 feature)

Figure: A scatter plot of the SIZE and RENTAL PRICE features from the office rentals dataset.

Simple Linear Regression

- Regression line estimates relationship between SIZE and RENTAL PRICE
- Learned model using our training set with 10 examples is: w_0 = 6.47, w_1 = 0.62

Rental Price $= 6.47 + 0.62 \times Size$

Simple Linear Regression: Interpretation

• Interpretation:

$$\text{Rental Price} = 6.47 + 0.62 \times \text{Size}$$

- $w_0 = 6.47$: Start is from a base price of 6.47 euro (adjustment parameter called <u>bias</u>).
- w_1 = 0.62: For every increase of a square foot in SIZE, the RENTAL PRICE increases by 0.62 euro.

Multiple Linear Regression: Interpretation

Linear regression model using all continuous features:

Rental Price =
$$\mathbf{w}[0] + \mathbf{w}[1] \times \text{Size} + \mathbf{w}[2] \times \text{Floor} + \mathbf{w}[3] \times \text{Broadband Rate}$$

Multiple linear regression model learned from our 10 training examples:

Rental Price
$$= -0.1513 + 0.6270 \times \text{Size}$$

$$- 0.1781 \times \text{Floor}$$

$$+ 0.0714 \times \text{Broadband Rate}$$

- For every unit increase in SIZE (everything else being fixed), the PRICE increases by 0.627 euro.
- For every unit increase in FLOOR, the PRICE decreases by 0.1781 euro.
- For every unit increase in BROADBANDRATE, the PRICE increases by 0.0714 units.

Multiple Linear Regression: Prediction

Using this model:

```
Rental Price = -0.1513 + 0.6270 \times \text{Size}
- 0.1781 \times \text{Floor}
+ 0.0714 \times \text{Broadband Rate}
```

 we can, for example, predict the expected rental price of a 690 square foot office on the 11th floor of a building with a broadband rate of 50 Mb per second as:

```
RENTAL PRICE = -0.1513 + 0.6270 \times 690
-0.1781 \times 11 + 0.0714 \times 50
= 434.0896
```

Linear Regression

Topics covered in this lecture:

2. Categorical Features (linear regression expects numeric feature values; need to transform categorical features values into numeric values)

Table: The **office rentals dataset**: a dataset that includes office rental prices and a number of descriptive features for 10 Dublin city-centre offices.

			BROADBAND	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING	PRICE
1	500	4	8	С	320
2	550	7	50	Α	380
3	620	9	7	Α	400
4	630	5	24	В	390
5	665	8	100	С	385
6	700	4	8	В	410
7	770	10	7	В	480
8	880	12	50	Α	600
9	920	14	8	С	570
10	1,000	9	24	В	620

Can we predict the rental price, given the descriptive features (size, floor, broadband rate, energy rating) for an office? ENERGY RATING is a categorical feature, can we still use it?

Two popular approaches:

- 1. Binary encoding (aka dummy encoding, one-hot-encoding)
- Turn each categorical feature into many binary continuous features that encode the levels of the categorical feature
- Example: ENERGY RATING feature (with levels A, B, C) turns into 3 (or 2) continuous features.
- A dummy variable is a variable created to assign numerical value to levels of categorical variables. For L levels, create L-1 variables (first level is reference)

			BROADBAND	ENERGY	ENERGY	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING A	RATING B	RATING C	PRICE
1	500	4	8	0	0	1	320
2	550	7	50	1	0	0	380
3	620	9	7	1	0	0	400
4	630	5	24	0	1	0	390
5	665	8	100	0	0	1	385
6	700	4	8	0	1	0	410
7	770	10	7	0	1	0	480
8	880	12	50	1	0	0	600
9	920	14	8	0	0	1	570
10	1 000	9	24	0	1	0	620

- New model with the categorical feature turned into several continuous features; does not assume ordering of categories
- Downside: if the categorical feature has many levels, we will create many new features (need to handle more features)

```
RENTAL PRICE = \mathbf{w}[0] + \mathbf{w}[1] \times \text{Size} + \mathbf{w}[2] \times \text{Floor}
+ \mathbf{w}[3] \times \text{Broadband Rate}
+ \mathbf{w}[4] \times \text{Energy Rating A}
+ \mathbf{w}[5] \times \text{Energy Rating B}
+ \mathbf{w}[6] \times \text{Energy Rating C}
```

			BROADBAND	ENERGY	ENERGY	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RATING A	RATING B	RATING C	PRICE
1	500	4	8	0	0	1	320
2	550	7	50	1	0	0	380
3	620	9	7	1	0	0	400
4	630	5	24	0	1	0	390
5	665	8	100	0	0	1	385
6	700	4	8	0	1	0	410
7	770	10	7	0	1	0	480
8	880	12	50	1	0	0	600
9	920	14	8	0	0	1	570
10	1 000	9	24	0	1	0	620

- Dummy encoding with dropping the refence column
- RENTAL PRICE = w[0] + w[1] * SIZE + w[2]*FLOOR + w[3]*BROABAND RATE + w[4] * ENERGY RATING B + w[5] * ENERGY RATING C
- Interpretation for categorical features: a change from the reference level (e.g., ENERGY RATING A) to level B results in w[4] change in PRICE

			DDCADDAND	ENERGY	ENERGY	ENERGY	DENITAL
			Broadband	ENERGY	ENERGY	ENERGY	RENTAL
ID	SIZE	FLOOR	RATE	RAT NG A	RATING B	RATING C	PRICE
1	500	4	8	0	0	1	320
2	550	7	50	1/	0	0	380
3	620	9	7	V	0	0	400
4	630	5	24	O	1	0	390
5	665	8	100	ø۱	0	1	385
6	700	4	8	6	1	0	410
7	770	10	7	0	1	0	480
8	880	12	50	/ 1 \	0	0	600
9	920	14	8	/ o \	0	1	570
10	1 000	9	24	0	1	0	620

2. Integer encoding:

- Assign an integer number for each category (preserve meaning of original feature values, e.g., ranking order)
- E.g., Energy Rating A = 1, Energy Rating B = 2, Energy Rating C = 3, or other coding, e.g., Energy Rating A = 1, Energy Rating B = 10, Energy Rating C = 100
- Downside: introduces a (potentially arbitrary) ordering of categories; we can control the category to number mapping (e.g., assign random numbers, assign numbers that preserve the order on categories if any)
- Tends to work well in practice
- Does not increase the number of features
- Interpretation as for regular continuous features

Linear Regression

Topics covered in this lecture:

3. **Non-linear Relationship** (the case where the dependency between descriptive features and target feature is not linear)

 Linear regression assumes a linear relationship between features and target (i.e., the function learned is a line that best approximates the training data)

Trained model for the Office dataset: RENTAL PRICE = w_0 +

w_1 * SIZE

Rental Price = $6.47 + 0.62 \times Size$

What if the relationship is <u>not linear</u>?

Table: A dataset describing grass growth on Irish farms during July 2012.

ID	Rain	GROWTH	ID	Rain	GROWTH	I	D	Rain	GROWTH
1	2.153	14.016	12	3.754	11.420	2	:3	3.960	10.307
2	3.933	10.834	13	2.809	13.847	2	4	3.592	12.069
3	1.699	13.026	14	1.809	13.757	2	5	3.451	12.335
4	1.164	11.019	15	4.114	9.101	2	6	1.197	10.806
5	4.793	4.162	16	2.834	13.923	2	7	0.723	7.822
6	2.690	14.167	17	3.872	10.795	2	8	1.958	14.010
7	3.982	10.190	18	2.174	14.307	2	9	2.366	14.088
8	3.333	13.525	19	4.353	8.059	3	0	1.530	12.701
9	1.942	13.899	20	3.684	12.041	3	1	0.847	9.012
10	2.876	13.949	21	2.140	14.641	3	2	3.843	10.885
11	4.277	8.643	22	2.783	14.138	3	3	0.976	9.876

What if the relationship is not linear?

Figure: A scatter plot of the RAIN and GROWTH feature from the grass growth dataset.

- Linear model GROWTH = w0 + w1*RAIN
- The best linear model for this dataset: w0 = 13.510, w1 = -0.667
- Best linear model for this dataset: GROWTH = 13.510 0.667 * RAIN
- We can train a better linear model using basis functions on features:
 GROWTH = w0 + w1*RAIN + w2* RAIN²

Figure: A simple linear regression model trained to capture the relationship between the grass growth and rainfall.

Common solutions (basis functions applied to features):

- Solution1: Create new features that capture non-linear polynomials of original features
 - E.g., original descriptive feature: RAIN. Create a new feature (quadratic polynomial): RAIN²
- **Solution2:** Create feature interactions
 - E.g., original descriptive features: SALARY, HOUSE_PRICE. Create a new feature: the ratio of the two features
 SALARY/HOUSE_PRICE
- Finally: Build linear regression model with original features + new (derived) features that aim to capture non-linear behavior

A linear model using **original** features:
GROWTH = 13.510 - 0.667 * RAIN (This model has a large error!)

A linear model using **original** features <u>and</u> **quadratic** features:

GROWTH = 0.3707 + 0.8475 * RAIN - 1.717 * RAIN²

(This model fits the data better and has lower error)

Linear Regression: Summary

- Main assumption: linear relationship between descriptive features and target feature
- Estimates a linear model from given examples (a set of weights w_0, w_1,..., w_n)
- Expects numeric feature values
- Categorical features can be transformed into continuous features
- Interpretation: proceed with caution (continuous vs categorical features; sanity check interpretation: correlation does not imply causation)
- If scatter plots show non-linear relationship between descriptive and target feature, we can introduce new features to capture non-linearity
- Trade-off: improving model fit (training error) vs increasing model complexity (more features, higher polynomials); evaluate this trade-off using error on a separate test set
- Not covered (advanced topics):
 - Statistical significance testing of feature coefficients
 - Collinearity (effect of correlated features on linear regression)

References

- <u>Chapter7</u> from FMLPDA Book: Fundamentals of Machine Learning for Predictive Data Analytics, by J. Kelleher, B. Mac Namee and A. D'Arcy, MIT Press, 2015 (<u>machinelearningbook.com</u>)
- <u>Chapter3</u> from **An Introduction to Statistical Learning**, by G.
 James, D. Witten, T. Hastie, R. Tibshirani, Springer, 2016 (free book: http://www-bcf.usc.edu/~gareth/ISL/)
- A friendly introduction to linear regression (using Python):
 http://www.dataschool.io/linear-regression-in-python/
- Feature Selection:
 http://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf