Chương 4: Giới thiệu VĐK AVR ATmega32

Đoàn Duy 04/2020

Kiến thức cần ôn tập

- □ Phân biệt VXL và VĐK?
- □ Ôn tập kiến trúc của 8086 và 8051
- □ Xem lại các chương trình ví dụ về sử dụng VĐK 8051

Mục tiêu

- ☐ Biết được kiến thức cơ bản về VĐK ATmega32 để xây dựng các giải pháp Hệ thống nhúng.
- □ Xây dựng được các giải pháp đơn giản sử dụng ATmega32

Nội dung

- □ Tổng quan về AVR
- ☐ Giới thiệu ATmega32
- □ Nguồn tham khảo, ví dụ

Nội dung

- □ Tổng quan về AVR
- ☐ Giới thiệu ATmega32
- □ Nguồn tham khảo, ví dụ

Lịch sử AVR và ATmega32

- Thiết kế lần đầu bởi Alf-Egil Bogen và Vegard Wollan, Norwegian Institute of Technology
- AVR = Alf and Vegard's RISC processor
- AVR MCU phát triển đầu tiên bởi Nordic VLSI, Na
 Uy → Nordic Semiconductor
- Atmel mua lại công nghệ từ Nordic
- Hiện tại, Microchip sở hữu Atmel

Các họ chip AVR

tinyAVR – the ATtiny series

- 0.5–32 KB program memory
- 6–32-pin package
- Limited peripheral set

megaAVR – the ATmega series

- 4–256 KB program memory
- 28–100-pin package
- Extended instruction set)
- Extensive peripheral set

Các họ chip AVR

AVR Dx – Chip tăng cường ngoại vi analog

- 24 MHz at 1.8-5.5v
- 14-64-pins
- 4-16 K SRAM, 512b EEPROM
- 12-bit ADC, 10-bit DAC

XMEGA – the ATxmega series

- 16–384 KB program memory
- 44–64–100-pin package (A4, A3, A1)
- 32-pin package: XMEGA-E (XMEGA8E5)
- DMA, "Event System", cryptography

32-bit AVRs

Nội dung

- □ Tổng quan về AVR
- □ Giới thiệu ATmega32
- □ Nguồn tham khảo, ví dụ

Tính năng chính của ATmega32

- Vi điều khiển 8 bit công suất thấp, kiến trúc RISC
- Bộ nhớ chương trình và dữ liệu tích hợp:
 - 32KB flash
 - 2KB SRAM
 - 1024B EEPROM
 - Hỗ trợ JTAG để lập trình bộ nhớ, debug
 - Tính năng hoạt động:
 - Power-on reset, RC Oscillator,
 - 6 chế độ tiết kiệm năng lượng: Idle, ADC Noise Reduce, Power save, Power down, Standby và Extended standby

Ngoại vi chính của ATmega32

- 02 8-bit Timer/Counter, 01 16-bit Timer/Counter
- 04 kênh PWM
- 08 kênh 10-bit ADCU
- Serial USART khả lập trình.
- SPI
- Watch Dog Timer
- Tích hợp Analog Comparator
- 32 chân I/O khả lập trình

Đóng gói và đặc tính hoạt động

- Dạng đóng gói chip:
 - 40-pin PDIP
 - 44-lead TQFP
 - 44-pad MLF
 - Điện áp hoạt động:
 - 2.7-5.5 V cho ATmega32L
 - 4.5-5.5 V cho ATmega32
 - Tần số hoạt động:
 - 0-8 MHz cho ATmega32L
 - 0-16 MHz cho ATmega32

Dạng đóng gói chip

PDIP

Dạng đóng gói chip

12 13 14 15 16 17 18 19 20 21 22

PD6

PD7 VCC GND GND PC1 PC2 PC3

Sơ đồ khối

CPU Core

Tập thanh ghi

Thanh ghi trạng thái

Bit 6 5 Н SREG s ٧ Read/Write R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 Initial Value

Thanh ghi stack

Bit 13 12 11 SP14 SP13 **SP15 SP12 SP11 SP10** SP9 SP8 SPH SP7 SP5 SP0 SPL SP6 SP4 SP3 SP2 SP1 R/W Read/Write R/W R/W R/W R/W R/W R/W R/W RW R/W R/W R/W R/W 0 0 Initial Value

Thanh ghi đa dụng

7 0	Addr.
R0	\$00
R1	\$01
R2	\$02
R13	\$0D
R14	\$0E
R15	\$0F
R16	\$10
R17	\$11
R26	\$1A
R27	\$1B
R28	\$1C
R29	\$1D
R30	\$1E
R31	\$1F

Đoàn Duy 17 Vi điều khiển AVR

Ánh xạ bộ nhớ

\$0000	Register File	Data Address Space
	R0	\$0000
	R1	\$0001
	R2	\$0002
Application Flash Section	7225	· W系
, approached the second	R29	\$001D
	R30	\$001E
	R31	\$001F
	I/O Registers	
	\$00	\$0020
	\$01	\$0021
	\$02	\$0022
	***	1440
	\$3D	\$005D
	\$3E	\$005E
	\$3F	\$005F
		Internal SRAM
		\$0060
Boot Flash Section	-	\$0061
\$3FFF		100
		\$085E
		\$085F

Phân bố Clock trong hệ thống

Quản lý năng lượng

Bit	7	6	5	4	3	2	1	0	
	SE	SM2	SM1	SM0	ISC11	ISC10	ISC01	ISC00	MCUCR
Read/Write	R/W	R/W	RW	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

SM2	SM1	SM0	Sleep Mode	
0	0	0	Idle	
0	0	1	ADC Noise Reduction	
0	1	0	Power-down	
0	1	1	Power-save	
1	0	0	Reserved	
1	0	1	Reserved	
1	1	0	Standby ⁽¹⁾	
1	1	1	Extended Standby ⁽¹⁾	

Note: 1. Standby mode and Extended Standby mode are only available with external crystals or resonators.

Quản lý ngắt

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	INT2	External Interrupt Request 2
5	\$008	TIMER2 COMP	Timer/Counter2 Compare Match
6	\$00A	TIMER2 OVF	Timer/Counter2 Overflow
7	\$00C	TIMER1 CAPT	Timer/Counter1 Capture Event
8	\$00E	TIMER1 COMPA	Timer/Counter1 Compare Match A
9	\$010	TIMER1 COMPB	Timer/Counter1 Compare Match B
10	\$012	TIMER1 OVF	Timer/Counter1 Overflow
11	\$014	TIMER0 COMP	Timer/Counter0 Compare Match
12	\$016	TIMER0 OVF	Timer/Counter0 Overflow
13	\$018	SPI, STC	Serial Transfer Complete
14	\$01A	USART, RXC	USART, Rx Complete
15	\$01C	USART, UDRE	USART Data Register Empty
16	\$01E	USART, TXC	USART, Tx Complete
17	\$020	ADC	ADC Conversion Complete
18	\$022	EE_RDY	EEPROM Ready
19	\$024	ANA_COMP	Analog Comparator
20	\$026	TWI	Two-wire Serial Interface
21	\$028	SPM_RDY	Store Program Memory Ready

Cổng nhập xuất (I/O)

Sơ đồ chân IO

COMPUTER

Sơ đồ chân tín hiệu số

Đặc tính về điện áp hoạt động

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin except RESET with respect to Ground0.5V to V _{CC} +0.5V
Voltage on RESET with respect to Ground0.5V to +13.0V
Maximum Operating Voltage 6.0V
DC Current per I/O Pin
DC Current V _{CC} and GND Pins

Vi điều khiển AVR 23 Đoàn Duy

Đặc tính về điện áp hoạt động

DC Characteristics

 $T_A = -40$ °C to 85°C, $V_{CC} = 2.7$ V to 5.5V (Unless Otherwise Noted)

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IL}	Input Low Voltage	Except XTAL1 pin	-0.5		0.2 V _{CC} ⁽¹⁾	V
V _{IL1}	Input Low Voltage	XTAL1 pin, External Clock Selected	-0.5		0.1 V _{CC} ⁽¹⁾	V
V _{IH}	Input High Voltage	Except XTAL1 and RESET pins	0.6 V _{CC} ⁽²⁾		V _{CC} + 0.5	٧
V _{IH1}	Input High Voltage	XTAL1 pin, External Clock Selected	0.7 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH2}	Input High Voltage	RESET pin	0.9 V _{CC} ⁽²⁾		V _{CC} + 0.5	٧
V _{OL}	Output Low Voltage ⁽³⁾ (Ports A,B,C,D)	I _{OL} = 20 mA, V _{CC} = 5V I _{OL} = 10 mA, V _{CC} = 3V			0.7 0.5	V
V _{OH}	Output High Voltage ⁽⁴⁾ (Ports A,B,C,D)	I _{OH} = -20 mA, V _{CC} = 5V I _{OH} = -10 mA, V _{CC} = 3V	4.0 2.2			V
lıL	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin low (absolute value)			1	μА
Ін	Input Leakage Current I/O Pin	V _{CC} = 5.5V, pin high (absolute value)			1	μА
R _{RST}	Reset Pull-up Resistor		30		60	kΩ
R _{pu}	I/O Pin Pull-up Resistor		20		50	kΩ

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND	LOGIC INSTRUCTIO	ons .			'
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	Rd ← Rd - K	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	Rd ← Rd - K - C	Z,C,N,V,H	1
SBIW	Rdi,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	Rd ← Rd • Rr	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	Rd ← Rd • K	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	Rd ← Rd v Rr	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	Rd ← SFF – Rd	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← \$00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FF - K)	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	Rd ← Rd ⊕ Rd	Z,N,V	1
SER	Rd	Set Register	Rd ← \$FF	None	-1
MUL	Rd, Rr	Multiply Unsigned	R1:R0 ← Rd x Rr	Z,C	2
MULS	Rd, Rr	Multiply Signed	R1:R0 ← Rd x Rr	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	R1:R0 ← Rd x Rr	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	R1:R0 ← (Rd x Rr) << 1	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THỐNG TIN

RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
JMP.		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL	k	Relative Subroutine Call	PC ← PC + k + 1	None	3
ICALL	1 6	Indirect Call to (Z)	PC ← Z	None	3
CALL	k	Direct Subroutine Call	PC ← k	None	4
RET	- N	Subroutine Return	PC ← Stack	None	4
RETI	- 	Interrupt Return	PC ← Stack	11000	4
CPSE	Rd.Rr	Compare, Skip if Equal	If (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
CP	Rd.Rr	Compare	Rd – Rr	Z, N,V,C,H	1/2/3
CPC	Rd.Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd.K	Compare Register with Immediate	Rd - K	Z, N,V,C,H	1
SBRC	Rr. b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr. b	Skip if Bit in Register is Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	P. b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if (P(b)=1) PC ← PC + 2 or 3	None	1/2/3
BRBS	5, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC←PC+k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC+-PC+k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC ← PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC ← PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC ← PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC ← PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC ← PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC ← PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC ← PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC ← PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N ⊕ V= 0) then PC ← PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if (N ⊕ V= 1) then PC ← PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC ← PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC ← PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC ← PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC ← PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC ← PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC ← PC + k + 1	None	1/2

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC ← PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (1 = 0) then PC ← PC + k + 1	None	1/2
DATA TRANSFER	INSTRUCTIONS				
MOV	Rd, Rr	Move Between Registers	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Word	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	Rd ← (Y), Y ← Y + 1	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	Rd ← (Z + q)	None	2
LDS	Rd, k	Load Direct from SRAM	Rd ← (k)	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	(X) ← Rr, X ← X + 1	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	X ← X - 1, (X) ← Rr	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	(Y) ← Rr, Y ← Y + 1	None	2
ST	- Y. Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1$, $(Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	(Z) ← Rr, Z ← Z + 1	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	Z ← Z - 1, (Z) ← Rr	None	2
STD	Z+q,Rr	Store Indirect with Displacement	(Z + q) ← Rr	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	Rd ← (Z)	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	
IN	Rd, P	In Port	Rd ← P	None	1
OUT	P, Rr	Out Port	P ← Rr	None	1
PUSH	Rr	Push Register on Stack	Stack ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← Stack	None	2

UIT
TRƯỜNG ĐẠI HỌC
CONG NGHE THONG TIN

SBI	P,b	Set Bit in I/O Register	VO(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C_{i}Rd(n+1)\leftarrow Rd(n)_{i}C\leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C_{,}Rd(n)\leftarrow Rd(n+1)_{,}C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30)\leftarrow Rd(74), Rd(74)\leftarrow Rd(30)$	None	1
BSET	5	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	T	1
BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	1←0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV	ie.	Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET	9	Set T in SREG	T ← 1	T	1
CLT	3	Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
CLH	T .	Clear Half Carry Flag in SREG	H ← 0	Н	1
MCU CONTROL	INSTRUCTIONS		DOMESO 15	100000	
NOP	- Proposition	No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-Chip Debug Only	None	N/A

Nội dung

- □ Tổng quan về AVR
- ☐ Giới thiệu ATmega32
- □ Nguồn tham khảo, ví dụ

Nguồn tham khảo

- 1. Data sheet: 8-bit AVR Microcontroller with 32K Bytes In-System Programmable Flash, Atmel 12/03/2010
- 2. Diễn đàn hướng dẫn học AVR
- www.hocavr.com
- www.dammedientu.vn
- www.academia.edu
- 3. Kênh Youtube hướng dẫn về AVR
- ■HỌC IT ĐIỆN TỬ
- ■Hai Vu Van
- 4. Công cụ lập trình:

CodevisionAVR

Kết thúc chương 4

Đoàn Duy 04/2020