BACHELOR-THESIS BAT

HOCHSCHULE LUZERN T&A

STUDIENGANG ELEKTROTECHNIK
SIGNALVERARBEITUNG & KOMMUNIKATION,
AUTOMATION & EMBEDDED SYSTEMS

PIR Personendetektor

Schlussbericht

Autor: Dozent:

Daniel Zimmermann Kilian Schuster daniel.zimmermann.01@stud.hslu.ch kilian.schuster@hslu.ch

Industriepartner:
Hr. Markus Kappeler
Schindler Aufzüge AG
6030 Ebikon
markus.kappeler@ch.schindler.com

 $\label{eq:experte:Ex$

Klassifikation | Rücksprache Horw, 14. März 2018

Eigenständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Sämtliche verwendeten Textausschnitte, Zitate oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennzeichnet.

Wolfenschiessen, den 8. Juli 2017

Abstract

Diese Dokumentation ist das Resultat einer Bachelorarbeit an der Hochschule Luzern Technik & Architektur für den Industriepartner Schindler Aufzüge AG.

Im Rahmen der Arbeit soll geklärt werden, inwieweit sich bildgebende passiv Infrarot Sensoren für den Einsatzbereich eignen. Für d

Thema und Zielsetzung: Stellen Sie zunächst Thema und Zielstellung der Arbeit vor.

Theorie: Vermitteln Sie Ihre Theorie(n) über das Thema und geben Sie an, auf was sich Ihre Theorie stützt.

Fragestellung: Teilen Sie mit, welche Fragen in der folgenden Arbeit beantwortet werden.

Quellen: Welche Quellen haben Sie für Ihre Arbeit genutzt bzw. wie haben Sie Ihre Frage(n) beantwortet?

Ergebnis: Führen Sie Ihre Ergebnisse auf, also teilen Sie mit, was Sie herausgefunden haben.

Fazit: Stellen Sie am Ende des Abstracts eine Quintessenz auf. Sie können Ihr Fazit auch mit einer Zukunftsprognose verbinden.

Zu Diagnosezwecken soll die Anwesenheit von Personen in Aufzugskabinen erfasst werden. Dazu bieten sich, unter anderem, Sensoren zur Erfassung der thermischen Strahlung an. Im Rahmen der Arbeit soll daher geklärt werden, inwieweit sich bildgebende PIR (passiv Infrarot) Sensoren dazu eignen.

Abstract

This documentation is the result of a bachelor thesis at the Lucerne School of Engineering and Architecture for the industry partner Schindler Aufzüge AG.

The task was the realisation of a module, that maps the environment and creates a point cloud with the measured data. The 3D-sensor Velodyne VLP-16 is available for this purpose. The following chapters contain the experiences and results during the project from September to December 2017. State-of-the-art projects have been investigated and compared. After that, components and software for implementation were analysed and eunvaluated. A total of three concepts were elaborated, which have different approaches. The first concept turns the 3D sensor in a wide range of angle, while using servo motors. The two other concepts are based on a endlessly rotating "tower". The idea behind it, are the state-of-the-art projects. The difference between the two concepts is the position of the signal processing unit. In the unrotated version, the unit is below in a static case. Only the 3D-sensor is rotating for mapping. In the other version, the unit in the case is also rotating. Only the interface is static. The realised concept is similar to the unrotated version before. The realisation describes the process, how the case and the electronic parts are assembled. In a separate topic, it describes, how the Software with the Framework ROS is implemented and how it works together with the hardware. After the realisation the prototype was tested. Because of a

Inhaltsverzeichnis

	Glos	sar	1
	Abb	ildungen	2
	Tabe	ellen	3
	Forn	neln	4
	Lite	raturverzeichnis	5
1	Ein	eitung	6
	1.1	Aufgabenstellung	6
	1.2	Ziele	7
	1.3	Methodik	7
2	Info	rmationsbeschaffung	8
	2.1	Physikalische Aspekte	8
	2.2	verwendete Sensorik	10
	2.3	zu messende Objekt	12
	2.4	geometrische Aspekte	13
	2.5	zu messende Objekt	13
	2.6	Störquellen	14
	2.7	verwendete Software	14
3	Test	phase 1	15
	3.1	Grundlagenmessungen 	15
	3.2	Streuung	15
	3.3	Reflektion	15
	3.4	Einfluss externe Quellen	15
	3.5	Personenmessungen	15
	3.6	Fazit	15
4	Pers	sonendetektion	16
	4.1	Datenverarbeitung	16

	4.2	Musterauswertung	16
	4.3	Interpolation	16
	4.4	Aufbau neuronales Netzwerk	16
	4.5	Fazit	16
5	$\mathbf{Em}_{\mathbf{j}}$	pfehlung und weiteres Vorgehen	17
	5.1	Fazit	17
	5.2	Empfehlung	17
	5.3	Weiteres Vorgehen	17
6	Ref	lexion	18
	6.1	Erläuterungen zum Projektmanagement	18
	6.2	Schlusswort	18
	6.3	Danksagung	18
\mathbf{A}	Pro	jektanhänge	19
	A 1	Ordnerstruktur CD	10

Glossar

ASIC Anwendungsspezifische integrierte Schaltung eine elektronische

Schaltung, die als integrierter Schaltkreis realisiert wurde

IoT Internet of Things

Technologien einer globalen Infrastruktur der

In formations gesells chaften

PIR passiv Infrarot Sensoren

Sensorik

Abbildungen

2.1	Schema des AMG8834 Sensors	10
2.2	Messgenauigkeit	11
2.3	physikalischer Aufbau AMG8834 Sensors	11
2.4	Schema des AMG8834 Sensors	12
2.5	Schema des AMG8834 Sensors	14
2.6	Schema des AMG8834 Sensors	14

Tabellen

2.1	Legende physikalische Grössen Konzeptzeichnungen	8
2.2	Infrarothereiche	8

Formeln

2.1.Plank'sches Strahlungsgesetz	9
2.1. Wärmestrahlung	9
2.1. Planksches Strahlungsgesetz	9
2.1. Strahlung Energieerhaltung	9
2.1. S trahlung Energieerhaltung Festkörper	9
2.1. 6 chwarzer Stahler, Energieerhaltung	C
2.1. Schwarzer Stahler, Energieerhaltung	C

Literaturverzeichnis

- [AG16] Panasonic Automotive und Industrial Systems Europe GmbH. *GRID-EYE STATE OF THE ART THERMAL IMAGING SOLUTION*. März 2016. URL: https://eu.industrial.panasonic.com/grideye-evalkit (besucht am 25.02.2018).
- [Spe05] Prof. Dr.-Ing. E. Specht. Der Mensch als waermetechnisches System. Mai 2005.

 URL: http://www.uni-magdeburg.de/isut/TV/Download/Der_

 Mensch_als_waermetechnisches_System.pdf (besucht am 26.02.2018).

1 Einleitung

Durch den technologischen Wandel, den die Industrie 4.0 sowie Internet of Things (IoT) mit sich bringen, entstehen in verschiedensten Einsatzbereichen neue Möglichkeiten. Da Sensoren zunehmend kleiner, vernetzter und günstiger werden, sowie stetig schnellere Prozessoren und größere Speicherkapazitäten zur Verfügung stehen, werden vermehrt auch in alltäglichen Situation intelligente Systeme eingesetzt.

Gerade für Wartungs- und Diagnosezwecke von Personenaufzügen bieten solche intelligente Systeme ein bedeutendes Potential. Durch die ortsunabhängige Kommunikation von übergreifenden Netzwerken und der Echtzeitverarbeitung bieten solche Messeinheiten Alternativen zu teuren Servicegängen. Mittels ständiger Überwachung und Fernwartung können Probleme frühzeitig erkannt und behoben werden. Die Anforderungen an eine solche Messeinheit hängt jedoch stark von Einsatzort ab. Dabei spielen Langzeiteinsatz, Zuverlässigkeit, Flexibilität sowie auch der Energieverbrauch eine bedeutende Rolle.

Ein relevantes Messobjekt für eine solche Messeinheit ist die Anzahl Personen innerhalb eines Aufzugs. Da übliche Überwachungskameras und bildgebende TOF-Sensoren teuer sind und einen bedeutenden Energiebedarf besitzen, stellt sich in diesem Bereich die Frage nach einer Alternative.

1.1 Aufgabenstellung

An diesem Punkt setzt nun die Aufgabenstellung dieser Bachelorarbeit an. Es soll die Eignung von bildgebenden Passiv Infrarot Sensoren (PIR) für eine solche Messeinheit geprüft werden. PIR in möglichst breiter und wegweisender Form beurteilt

Es wird dabei der State-Of-the-Art Sensor AMG8834 von Panasonic verwendet. Mit diesem werden in einer ersten Phase grundlegende Grenzen und Eigenheiten dieses passiven Messprinzips erarbeitet. In einem weiteren Schritt wird auf der Grundlage von Messresultaten und Testdurchführungen ein Algorithmus entwickelt, mit welchem sich Personen innerhalb

des Messbereichs detektieren lassen. Abschließend wird das Messprinzip in möglichst breiter und wegweisender Form beurteilt und eine Empfehlung für die Weiterführung gebildet werden. In erster Linie soll mit dieser Arbeit die Fragestellung geklärt werden, ob sich bilgebende Passiv Infrarot Sensoren für die Personendetektion eignen.

1.2 Ziele

Ziel dieser Bachelorarbeit ist es, einen breiten und fundierten Katalog über die Möglichkeiten und Grenzen des PIR Sensors zu liefern. Auf der Basis der Testergebnisse wird ein Algorithmus zu erarbieten, mit dem sich Personen in einem Aufzug detektieren lassen.

1.3 Methodik

Die gesamte Arbeit ist Etappenweise gegliedert. Dabei wiederholen sich Testphasen und Datenerfassungen und Auswertungen. Einzelne Testkonzepte geben Auskunft über den Projektablauf, sowie die durchgeführten Testspezifikationen. Das Projektmanagement in

referenz

2 Informationsbeschaffung

Dieses Kapitel bietet fundamentale physikalische Gegebenheiten, sowie die relevanten Informationen über passiv Infrarot Sensoren (PIR) und verwendete

Physikalische Grössen und Symbole

Grösse	Bezeichnung	Einheit
Wärmestrom	\dot{Q}	J
Emission	ϵ	_
Reflektion	ρ	_
Transmission	au	_
Absoprtion	α	_
Geschwindigkeit des Chassis	\dot{Q}	m/s
spektrale spezifische Ausstrahlung	M_{λ}	m/s^2
Planksches Wirkungsquantum	h	Js
Lichtgeschwindigkeit im Vakuum	c	m/s
Stefan-Boltzmann-Konstante	σ	rad/s^2

Tabelleverzeichnis 2.1: Legende physikalische Grössen Konzeptzeichnungen

2.1 Physikalische Aspekte

Die Physikalischen Grundlagen erläutert auf kurze und prägnante Weise die r

IR-A $[\mu m]$	IR-B $[\mu m]$	IR-C $[\mu m]$
0.78 - 1.4	1.4 - 3.0	3 - 1000

Tabelleverzeichnis 2.2: Infrarotbereiche

2.1.1 Allgemein

Formel für die spektrale spezifische Ausstrahlung eines Schwarzkörpers der absoluten Temperatur T. Für sie gilt

$$M_{\lambda} = \frac{2\pi hc^2}{\lambda^5} * \frac{1}{e^{\frac{hc}{\lambda k_B}} - 1}$$
 (2.1.1)

Das Stefan-Boltzmann-Gesetz gibt die Strahlungsintensität Q eines idealen Temperaturstrahlers an (Integral des Plank'schen Gesetzes über alle Wellenlängen). Diese Intensität ist proportional zur 4. Potenz der absoluten Temperatur. Es lautet: Strahlungsleistung

$$\frac{\mathrm{d}Q}{\mathrm{d}t} = \epsilon * \sigma * A * T^4 \tag{2.1.2}$$

Ein grauer Körper im Sinne der Strahlungsphysik ist ein Körper, dessen Oberfläche auftreffende Strahlung nicht vollständig absorbiert und dementsprechend auch nicht bei einer gegebenen Temperatur die maximale Strahlung (Schwarzkörperstrahlung) emittiert (siehe plancksches Strahlungsgesetz). Er hat jedoch einen wellenlängenunabhängigen Emissionsbzw. Absorptionsgrad - er erscheint "grau", wobei sich die fehlende "Farbe" nicht auf den sichtbaren, sondern auf den für die Messung relevanten Bereich des Spektrums bezieht.

$$a^2 + b^2 = c^2 (2.1.3)$$

$$\epsilon = \alpha = 1 \tag{2.1.4}$$

$$\epsilon = \varphi = 1 \tag{2.1.5}$$

2.1.2 Seebeck-Effekt

$$\epsilon = \varphi = 1 \tag{2.1.6}$$

2.2 verwendete Sensorik

Abbildungsverzeichnis 2.1: Schema des AMG8834 Sensors $[{\rm AG16}]$

Der Sensor AMG8834 ist standardmässig auf einen Emissionsgrad von $\epsilon = 0.93$ kalibriert.

Condition: frame rate: 1 fps moving average: Yes

Abbildungsverzeichnis 2.2: Messgenauigkeit [AG16]

Abbildungsverzeichnis 2.3: physikalischer Aufbau des AMG8834 Sensors $[{\rm AG16}]$

Die eintreffenden Infrarotwellen werden durch die Silizium Linse gefiltert. Dabei fallen lediglich langwellige Infrarotstrahlungen mit den Wellenlängen 8-13 μ m. Dies entspricht dem dritten atmosphärischen Fenster.

Anwendungsspezifische integrierte Schaltung (ASIC)

2.3 zu messende Objekt

Abbildungsverzeichnis 2.4: Schema des AMG8834 Sensors $[{\rm AG16}]$

2.4 geometrische Aspekte

2.5 zu messende Objekt

2.5.1 Personen

Die Reaktionen im menschlichen Körper sind auf eine Kerntemperatur von 37 °C eingestellt mit einer Toleranz von etwa + 0,5 Kelvin (Grad). Am wärmsten ist es in der Leber und in der Niere, wo die intensivsten chemischen Reaktionen ablaufen, am kältesten ist die Haut, die etwa 4 bis 7 Kelvin (Grad) kälter ist. Die Aufteilung der verschiedenen Arten der Wärmeabgabe beträgt bei einem ruhenden Menschen in einer Umgebung von 20 °C:

- 1. 46 % Strahlung
 - 33 % Konvektion
 - 19 % Schwitzen
 - 2 % Atmung.

Die Höhe der biologisch notwendigen Wärmeabgabe hängt im wesentlichen - von der Schwere der Tätigkeit und - von der Größe der Körperfläche und damit von der Körpergröße des Menschen ab.

Bei einer Veränderung der oben genannten Voraussetzungen verschieben sich die Anteile. Herrscht ein starker Wind, so erhöht sich der Anteil der Konvektion.

Diese Art der Wärmeabgabe nimmt mit der Umgebungstemperatur bis zum Wert null bei 36°C ab. Hat die Umgebung nämlich die Körpertemperatur erreicht, kann folglich durch Strahlung und Konvektion keine Wärme mehr abgeführt werden.

Der schraffierte Bereich gibt die Höhe dieser Art der Wärmeabgabe an. In einer Umgebung mit Temperaturen oberhalb 37 °C kann also die Wärme nur noch durch Schwitzen abgeführt werden. Bei mittelschwerer Arbeit verdoppelt sich ungefähr die Wärmeabgabe des Menschen gegenüber dem ruhigen Sitzen, da die Muskeln, wie bereits erwähnt, zu 80 auf ca. 300 W ansteigen. Trainierte Sportler können noch höhere Leistungen erzeugen

Die Wärmeabgabe des Menschen ist also proportional seiner Oberfläche und damit von der Körpergröße abhängig. Die Oberfläche eines normalen Menschen beträgt ungefähr 2 m2.

Ein nackter Mensch hat beispielsweise einen k-Wert von ungefähr $10~\mathrm{W/(m2\cdot K)}$. Damit ergibt sich aus der obigen Gleichung der Wärmestrom von $120~\mathrm{W}$ für eine Umgebungstemperatur von $26~\mathrm{^{\circ}C}$. [Spe05]

2.5.2 Personenaufzüge

In diesem Unterkapitel wurde das Messobjekt "Personenaufzug"näher betrachtet. Neben räumlichen Parametern wie Höhe, Grundfläche und Volumen spielen vor allem die Oberflächenbeschaffenheit bzw. das Oberflächenmaterial eine wichtige Rolle. Weitere thermische Einflussfaktoren finden sich in der Umgebungstemperatur un der verwendeten Leuchtmittel

Abbildungsverzeichnis 2.5: Schema des AMG8834 Sensors [ino15]

Abbildungsverzeichnis 2.6: Schema des AMG8834 Sensors [ino15]

2.6 Störquellen

2.7 verwendete Software

3 Testphase 1

De

3.1 Grundlagenmessungen

3.2 Streuung

3.3 Reflektion

3.4 Einfluss externe Quellen

Dieser Abschnitt befasst sich mit den Einfluss von externen Quellen auf den Sensor. Dabei spielen natürliche

3.5 Personenmessungen

Bei der Personenmessungen wurden unterschiedliche Probanden in einem Aufzug ausgemessen auf dessen Wärmestrahlung.

3.6 Fazit

4 Personendetektion

- 4.1 Datenverarbeitung
- 4.2 Musterauswertung
- 4.3 Interpolation
- 4.4 Aufbau neuronales Netzwerk
- 4.5 Fazit

5 Empfehlung und weiteres Vorgehen

- 5.1 Fazit
- 5.2 Empfehlung
- 5.3 Weiteres Vorgehen

6 Reflexion

6.1 Erläuterungen zum Projektmanagement

6.2 Schlusswort

6.3 Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich bei der Ausführung dieser Arbeit unterstützt haben. Zuallererst gebührt der Dank an Kilian Schuster, der mich als betreuender Dozent bei dieser Bachelorarbeit tatkräftige unterstützt hat, mit wertvollen Hinweisen und schnellen Rückmeldungen zur Seite gestanden ist. Mein Dank geht auch an Manuel Serquet, der mich bezüglich TensorFlow eingeführt und ...

Ebenfalls bedanken ich mich bei den Gegenlesern Andreas Zimmermann, Marie-Theres Zimmermann und Angela Burch für die syntaktische und inhaltliche Korrektur der wissenschaftlichen Dokumentation.

Ein speziellen Dank geht an die Immobilienverwaltungsfirma ARLEWO in Stans, welche mir ein breites Spektrum an Schindler Aufzügen bereitstellte, damit die Feldmessungen praxisnahe durchgeführt werden konnten.

A Projektanhänge

A.1 Ordnerstruktur CD

Die beiliegende CD hat folgende Ordnerstruktur:

- 1. Abgabedokument
 - Abgabedokument
- 2. Projektmanagement
 - Aufgabenstellung
 - Pflichtenheft
 - Detaillierter Projektplan
 - Risikomanagement
- 3. Graphiken
 - Skizze Konzept Plattform
 - Skizze Konzept Turm unrotierend
 - Skizze Konzept Turm rotierend
- 4. Messdaten
 - Funktionstests 1 7
- 5. OnShape Komponenten
 - dxf-Files
 - stl-Files
- 6. Software

- Laser $_3D$
- 7. Datenblätter
 - Velodyne VLP-16
 - Einplatinencomputer
 - Schrittmotor
 - Schleifringe