Theory of Computation

Exercise 13&14: (Pumping Lemma for NonCFL)

Prove by P.L. that the following languages are not CFL.

1. L1 ={
$$a^n b^{n+1} c^{n+2}$$
: $n \ge 0$ }

<u>Proof</u>: Assume that L1 is CFL. There is PDA accepts L1 with m number of states

- 1) We pick a string $w = a^m b^{m+1} c^{m+2}$, |w| >= m
- 2) Opponent decomposes w into uvxyz, |vxy|<=m, |vy|>=1.

$$\frac{m}{2.3}$$
 $\frac{m+1}{aa...a}$ $\frac{m+2}{bb...b}$ $\frac{m+2}{cc...c}$

aa ... a bb ... b cc ... c

Similar analysis to case 2.1.

Let
$$|v|=k1$$
, $|y|=k2$, $k1+k2 >=1$

We pick i=0, $a^{m-k1} b^{m+1-k2} c^{m+2} \notin L1$ since k1+k2 >= 1.

We pick i=2, $a^m b^{k2} a^{k1} b^{k2+m+1} c^{m+2} \notin L1$.

aa ... a bb ... b cc ... c

m+1

Similar analysis to case 2.5.

- 2.7) 2.9) vxy overlaps b^{m+1} and c^{m+2} which have similar analysis to 2.4) - 2.6.
- 3) We can reach contradiction with P.L. in all cases. Therefore, L1 is not CFL.

2. L2 ={
$$w \in \{a, b, c\}^*$$
: $n_a(w) = \min(n_b(w), n_c(w))$ }

<u>Proof</u>: Short version (You suppose to show a full version in the exam).

- Case 5) vxy overlaps a^mb^m , v overlaps a^mb^m , $y=b^k$ i=2,3,...
- Case 6) vxy overlaps a^mb^m , $v = a^k$, y overlaps a^mb^m i = 2, 3, ...
- Case 7) vxy overlaps $b^m c^m$, $v=b^{k1}$, $y=c^{k2}$ Similar analysis to Case 4.
- Case 8) vxy overlaps $b^m c^m$, v overlaps $b^m c^m$, $y=c^k$ i=0, 2, 3, ...
- Case 9) vxy overlaps $b^m c^m$, $v=b^k$, y overlaps $b^m c^m$ i=0,2,3,...