	Este enunciado está en el archivo "PrácticaStereo2021_Alumnos.ipynb" o su versión "pdf" que puedes encontrar en el Aula Virtual. Objetivos Los objetivos de esta práctica son: • reconstruir puntos de una escena a partir de una serie de correspondencias manuales entre dos imágenes calibradas; • determinar la geometría epipolar de un par de cámaras a partir de sus matrices de proyección; • hacer una reconstrucción densa de la escena.
	Requerimientos Para esta práctica es necesario disponer del siguiente software: Python 3.X Jupyter http://jupyter.org/. Las librerías científicas de Python: NumPy, SciPy, y Matplotlib. La librería OpenCV El material necesario para la práctica se puede descargar del Aula Virtual en la carpeta MaterialesPractica del tema de visión estéreo. Esta carpeta contiene: Una serie de pares estéreo en el directorio images; el sufijo del fichero indica si corresponde a la cámara izquierda (_left) o a la derecha (_right). Bajo el directorio rectif se encuentran varios pares estéreo rectificados.
	 Un conjunto de funciones auxiliares de Python en el módulo misc.py. La descripción de las funciones puede consultarse con el comando help o leyendo su código fuente. El archivo cameras.npz con las matrices de proyección del par de cámaras con el que se tomaron todas las imágenes con prefijo minoru. Condiciones La fecha límite de entrega será el viernes 10 de mayo de 2021 a las 23:55 (en el Aula Virtual) La entrega consiste en dos archivos con el código, resultados y respuestas a los ejercicios: Un "notebook" de Jupyter con los resultados. Las respuestas a los ejercicios debes introducirlas en tantas celdas de código o texto como creas necesarias, insertadas inmediatamente después de un enuciado y antes del siguiente. Un documento "pdf" generado a partir del fuente de Jupyter, por ejemplo usando el comando
	jupyter nbconvertexecuteto pdf notebook.ipynb, o simplemente imprimiendo el "notebook" desde el navegador en la opción del menú "File->Print preview". Asegúrate de que el documento "pdf" contiene todos los resultados correctamente ejecutados.
In [1]:	En esta práctica se usarán las matrices de proyección de dos cámaras para determinar la posición tridimensional de puntos de una escena. Esto es posible siempre que se conozcan las proyecciones de cada punto en ambas cámaras. Desafortunadamente, esta información no suele estar disponible y para obtenerla es preciso emplear el contenido de las imágenes (sus píxeles) en un proceso de búsqueda conocido como puesta en correspondencia. Conocer las matrices de proyección de las cámaras permite acotar el área de búsqueda gracias a las restricciones que proporciona la geometría epipolar.
In [2]:	1. Reconstrucción Teniendo un conjunto de correspondencias entre dos imágenes, con matrices de calibración P_i conocidas, es posible llevar a cabo una reconstrucción tridimensional de dichos puntos. En el fichero cameras.npz se encuentran las matrices de proyección para las dos cámaras. Para cargar este fichero: $ cameras = np.load("cameras.npz") \\ P1 = cameras["left"] \\ P2 = cameras["right"] \\ print("P1=\n", P1) \\ print("P2=\n", P2) $ P1=
In [3]:	[[-1.59319023e+02
In [5]:	# Recomendación: Una vez marcados la primera vez con toda la precisión # posible, generar dos arrays de numpy aquí, pt1 y pt2, con las # coordenadas marcadas (para no tener que volver a marcarlas). # Una vez colocadas esas variables ;comentar el código que llama a # miscaskpoints! pt1 = np.array([[202.56676669, 105.1264066, 207.05588897, 304.76031508,
Out[6]:	der reconstruct (points), points, P1, P2):
	<pre># """Reconstruct a set of points projected on two images.""" # Transform homog to cartesian co-ordinates points1 = points1.T points2 = points2.T p11 = P1[0] p12 = P1[1] p13 = P1[2] p21 = P2[0] p22 = P2[1] p23 = P2[2] Ms = [] for p1, p2 in zip(points1, points2): i1, j1 = p1[1], p1[0] i2, j2 = p2[1], p2[0] A = np.array([</pre>
	Reconstruye los puntos marcados y pinta su estructura 3D. # reconstruct mM = reconstruct(pt1, pt2, P1, P2) # convert from homog to cartesian # plot 3D plt.figure() misc.plot3D(mM[0,:],mM[1,:],mM[2,:]) <axes3d:xlabel='x', ylabel="Y"> Ejercicio 2. Elige un par estéreo de las imágenes del conjunto "building" de la práctica de calibración y realiza una reconstrucción de un conjunto de puntos de dicho edificio estableciendo las correspondencias</axes3d:xlabel='x',>
In [10]:	En este caso tenemos la cámara calibrada dado que las imágenes las hemos capturado con la misma cámara que en la práctrica de calibración. Nos faltarian la posición relativa entre una cámara y la otra. Utilizar algunas funciones de OpenCV en el módulo de calibración de calib3d puede ser de gran ayuda. # De la práctica de calibración K building = pp.array([
	<pre># plt.imshow(cv2.cvtColor(img1_building, cv2.COLOR_BGR2RGB)) # plt.plot(pt1_building.T[:,0], pt1_building.T[:,1]) # plt.figure() # plt.imshow(cv2.cvtColor(img2_building, cv2.COLOR_BGR2RGB)) # plt.plot(pt2_building.T[:,0], pt2_building.T[:,1])</pre>
	P2_building = K_building @ rhs2 print("P2_building:\n", P2_building) # # reconstruct mM_building = reconstruct(pt1_building, pt2_building, P1_building, P2_building) # plot 3D plt.figure() misc.plot3D(mM_building[0,:],mM_building[1,:],mM_building[2,:], azim=90, elev=-90) P1_building: [[3.20506009e+03 0.00000000e+00 1.97863570e+03 0.00000000e+00] [0.0000000e+00 3.20506009e+03 1.45074623e+03 0.00000000e+00] [0.00000000e+00 0.0000000e+00 1.00000000e+00 0.00000000e+00]] P2_building: [[3.30637548e+03 2.70778914e+01 1.80403919e+03 1.32391017e+03] [[8.04470310e+01 3.22860332e+03 1.39525041e+03 -2.63974873e+03] [5.35275184e-02 1.65337598e-02 9.98429487e-01 2.43123227e-01]] <axes3d:xlabel='x', ylabel="Y"> # E1 resto de la práctica lo podemos hacer con los datos de las # dos imágenes de prefijo minoru o las dos seleccionadas del directorio</axes3d:xlabel='x',>
	# building usar_par_estereo_building = False if usar_par_estereo_building: P1 = P1_building P2 = P2_building img1 = img1_building img2 = img2_building pt1 = pt1_building pt1 = pt1_building pt2 = pt2_building R = K_building M = MM_building Ejercicio 3. Reproyecta los resultados de la reconstrucción en las dos cámaras y dibuja las proyecciones
In [15]:	sobre las imágenes originales. Pinta también en otro color los puntos seleccionados manualmente. Comprueba si las proyecciones coinciden con los puntos marcados a mano. Comenta los resultados. Para dibujar los puntos puedes usar la función plothom de la práctica anterior o la versión que se distribuye con esta práctica (misc.plothom). # Proyecto los puntos en ambas cámaras proy1 = P1 @ mM proy2 = P2 @ mM # Pinto con misc.plothom() plt.figure() misc.plothom(proy1, 'r.') plt.plot(pt1.T[:,0], pt1.T[:,1], 'bx') plt.imshow(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)) plt.show() plt.figure() misc.plothom(proy2, 'r.') plt.plot(pt2.T[:,0], pt2.T[:,1], 'bx') plt.imshow(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)) plt.show()
	2. Geometría epipolar La geometría epipolar deriva de las relaciones que aparecen en las proyecciones de una escena sobre un par de cámaras. La matriz fundamental F , que depende exclusivamente de la configuración de las cámaras y no de la escena que éstas observan, es la representación algebráica de dicha geometría: a partir de ella se pueden calcular los epipolos y las líneas epipolares. La relación entre un par de cámaras P ₁ , P ₂ y la matriz fundamental es de n -a- 1 (salvo factor de escala). Es decir, dadas dos cámaras calibradas, sólo tienen una matriz fundamental (excepto un factor de escala); dada una matriz fundamental existen infinitas configuraciones de cámaras posibles asociadas a ella. 2.1 Estimación de la matriz fundamental Fiercicio 4 Implementa la función E = project 2 (P1 P2) que dadas dos matrices de proyección
In [16]:	Ejercicio 4. Implementa la función $F = projmat2f(P1, P2)$ que, dadas dos matrices de proyección, calcule la matriz fundamental asociada a las mismas. F debe ser tal que, si m_1 de la imagen 1 y m_2 de la imagen 2 están en correspondencia, entonces $m_2^{T}Fm_1=0$. def projmat2f(P1, P2): """ Calcula la matriz fundamental a partir de dos matrices de proyeccion""" K1, R1, t1,,,, = cv2.decomposeProjectionMatrix(P1) K2, R2, t2,,,, = cv2.decomposeProjectionMatrix(P2) # Correct ts t1 /= t1[-1] t2 /= t2[-1] t1 = t1[:-1] t2 = t2[:-1] t1 = -R1 @ t1 t2 = -R2 @ t2 e = -K2 @ R2 @ R1.T @ t1 + K2 @ t2 # epipolo generico if e[-1] != 0: e /= e[-1] # epipolo normalizado print("Epipolo:", e.T) $F = misc.skew(e)$ @ P2 @ npla.pinv(P1) if $F[2,2]$!= 0:
In [17]:	<pre>return F / F[2,2] else: return F</pre>
0.000000006 [0.00000000 np.array([[-0 -0.48748274 [-0.86435436 = npla.inv(K)	Una matriz de zeros. Comprobación para el caso particular: t1 = 0. y([[4.22521094e+02, 0.0, 1.49785224e+02], [0.0000000e+00, 4.23213410e+02, 1.27642797e+02], [
In [19]:	F es matriz fundamental [[0.00.0.00308] [-0.00164] [-0.0034 -0.00167 1.]] También se puede comprobar geométricamente la bondad de una matriz F, si las epipolares con ella estimadas pasan por el homólogo de un punto dado en una de las imágenes. Dada la matriz fundamental \mathbf{F} entre las cámaras 1 y 2, se puede determinar, para un determinado punto m_1 en la imagen de la cámara 1, cuál es la recta epipolar l_2 donde se encontrará su homólogo en la cámara 2: $l_2 = \mathbf{F} m_1.$ Las siguientes dos funciones sirven para comprobar esta propiedad. En primer lugar, se necesita una función que dibuje rectas expresadas en coordenadas homogéneas, es decir, la versión de plothom para rectas en lugar de puntos. Ejercicio 7. Implementa la función plothline(line) que, dada una línea expresada en coordenadas homogéneas, la dibuje.
	<pre>line : array_like Homogeneous coordinates of the line. axes : AxesSubplot Axes where the line should be plotted. If not given, line will be plotted in the active axis. """ if axes == None: axes = plt.gca() [x0, x1, y0, y1] = axes.axis()</pre>
	# (x0, y0) (x1, y0) #
In [20]:	# # #
In [20]:	<pre># # # # # # # # # # # # # # # # # # #</pre>
In [20]:	# #
	# POR INDER: Compute the intersection of the lane with the image # borders. a. b. c = line yy2 = -(c+tw2) / b yy1 = -(c+tw2) / b plo_line = axesylut([a2, x1], [yy2, yy1], '1-') anse.axis([30, x1, v0, v1]) return pituline Fjerckio 3. Completa la funcion plot_epipolar_lines(image1, image2, f) que, dadas dos imagenes y la mainic fundamental que las relaciona, pide al usuario purtos en la imagen 1 y dibuje sus correspondentes epipolares la imagen 2 avando [potitine] def plot_mpipolar_lines(image1, image2, pii) """his tor points in one image and drow the epipolar lines for trose points. Pormanthorn lange: isasyluke arcond image. P: orrey_live "Sac Juncatement matrix from image1 to image2. P: orrey_live "Sac Juncatement matrix from image1 to image2. P: orrey_live "Sac Juncatement matrix from image1 to image2. 2. g = pit.opi() and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,acd subcoot(1, 2, 1) and instructive void evideous (image2, ev2.colon_mod2no)) and = for,a
	# (x0, v1)
In [21]:	# (vi), yi) r Wh. backer Compare the Encorrection of the Line with the Energy Foresters r r r wh. backer Compare the Encorrection of the Line with the Energy Foresters r r r r r r r r r
In [21]:	# 200 GAZIET Communities the contementation of the same value are because in projection. # 200 GAZIET Communities the contementation of the same value are because in projection of the same value of the contemporary of the con
In [24]: Out [24]:	# PM CARCEST COLORISM for elementarization on the state much line where # PM CARCEST COLORISM for elementarization on the state much line where # PM CARCEST COLORISM for elementarization # PM CAR
In [24]: In [24]: In [25]:	# A CONTRICTORY CONTRICTORY OF A CONTRICTORY OF THE ACTION STATE AND A CONTRICTORY OF A CON
In [24]: In [24]: In [25]:	Security of the control of the contr
	## ACCUPATION CONTRACT SERVICE AND ADMINISTRATION OF THE CONTRACT SERVICE SERV
In [24]: In [24]: In [25]:	The control of the co
In [24]: In [24]: In [25]:	And the company of th

	<pre>ax1 = fig.add_subplot(1, 2, 1) ax1.imshow(image1) ax1.axis('image') ax2 = fig.add_subplot(1, 2, 2) ax2.imshow(image2) ax2.axis('image') plt.draw() ax1.set_xlabel("Choose points in left image (or right click to end)") point = plt.ginput(1, timeout=-1, show_clicks=False, mouse_pop=2, mouse_stop=3) while len(point) != 0: # point has the coordinates of the selected point in the first image. point = np.c_[np.array(point), 1].T ax1.plot(point[0,:], point[1,:], '.r') # POR HACER: Determine the correspondence of 'point' in the second image. # POR HACER: Plot the correspondence with ax2.plot. ax2.plot(POR HACER ,'r.') plt.draw() # Ask for a new point.</pre>								
[]: plo	# Ask point ax1.set_x plt.draw(<pre>for a new ; = plt.ginpu label('')</pre>	ut(1,	timeout=-1		licks =False	, mouse_pop=2	, mouse_sto	