El Résoudre les systèmes suivants en utilisant la méthode par substitution.

$$(S_1) egin{cases} -3x+7y=19 \ 3x+y=-11 \end{cases} (S_2) egin{cases} x-6y=14 \ 3x+5y=-4 \end{cases}$$

Méthodes Il existe deux méthodes pour résoudre un système d'équations à deux inconnues :

- La méthode par substitution : on isole une des deux inconnues dans une des équations puis on remplace cette inconnue dans l'autre équation.
- La méthode par combinaison linéaire : on multiplie les équations par des coefficients puis on les additionne ou on les soustrait pour éliminer une des deux inconnues.
- Considérons le système suivant :

$$(S) \begin{cases} 2x - 5y = 14 \\ 3x + 4y = -2 \end{cases}$$

On se propose de résoudre ce système en utilisant la méthode par combinaison linéaire.

Commençons par multiplier la première équation par -3 et la seconde par $2\,.$

$$(S) \begin{cases} -6x + 15y = __ \\ 6x + __ = __ \end{cases}$$

Additionnons les deux équations obtenues.

Résolvons l'équation obtenue.

$$y = 1$$

Remplaçons y par sa valeur dans la première équation.

$$2x + -5($$
 $) =$

Résolvons l'équation obtenue puis le système (S).

Résoudre le système de l'exercice précédent en suivant les mêmes étapes mais en multipliant la première équation par 4 et la seconde par 5.

E4 On considère le système suivant.

$$(S) \begin{cases} 7x + 3y = -33 \\ 2x + 9y = 15 \end{cases}$$

- 1. Multiplier la première équation par -2 et la seconde par 7.
- 2. Additionner les deux équations obtenues.
- 3. Résoudre l'équation obtenue.
- 4. En reprenant le système initial, multiplier la première équation par -3 sans changer la seconde.
- 5. Additionner les deux équations obtenues.
- 6. Résoudre l'équation obtenue.
- **7.** En déduire la solution du système (S).

Pour chaque système, multipliez l'une des deux équations pour que lorsqu'on additionne les deux équations obtenues, l'une des deux inconnues disparaisse.

$$(S_1) egin{cases} 3x - 4y = -11 \ 3x + 2y = 1 \end{cases} \hspace{1cm} (S_2) egin{cases} 12x + 5y = 39 \ -4x + 7y = 13 \end{cases}$$

Remarque Un système d'équations peut se représenter graphiquement par des droites. La solution du système correspond alors au point d'intersection des droites s'il existe.

Rappel Un vecteur directeur d'une droite dont l'équation est de la forme ax+by=c est $\left(\begin{array}{c} b \end{array} \right)$

On considère les deux systèmes suivants.
$$(S_1) egin{cases} 4x+3y=8 \ 8x+6y=-3 \end{cases} (S_2) egin{cases} 2x-5y=1 \ 6x-15y=3 \end{cases}$$

- 1. Donnez un vecteur directeur de chacune des droites représentées par les équations de chaque système.
- Les droites représentées par les équations de chaque système sont-elles parallèles ? Justifiez.
- 3. Le premier système admet-il une solution ?
- 4. Le second système admet-il une solution ?
- On considère le système suivant.

$$(S) egin{cases} 2x+7y=25 \ x-3y=-7 \end{cases}$$

- 1. Tracez les droites représentées par les équations du système (S).
- 2. Déterminez graphiquement la solution du système (S).
- 3. Résolvez le système (S).
- E8 On considère les systèmes suivants.

of considere tes systemes survaints.
$$(S_1) egin{cases} 5x+2y=17 \ 3x-4y=5 \end{cases} (S_2) egin{cases} 4x+3y=-19 \ -3x+2y=10 \end{cases}$$

Résoudre graphiquement les deux systèmes puis les résoudre par le calcul.

