THE DRAWINGS ARE FORMAL AND TIMELY

INITIALS <u>TMH</u>
DATE <u>05/17/06</u>
PTO

HUMAN 1V DNA (CD:225-875)

GAATAGCCCCCTTTCACTTCTGAGTCCCTGCATGTGCGGGGCTGAAGAAGGCAAGGCCAGAAGCCTCCTAGCCTCGCCTCCA CGTTTGCTGAATACCAAGCTGCAGGCGAGCTGCCGGGGGGCTTTTCTCTCCTCCAATTCAGAGTAGACAAACCACGGGGAT TTCTTTCCAGGGTAGGGGGGGGGGGCCGGGGGCCCAACTCGCACTCAAGTCTTCGCTGCCATGGGGGCCGTCATGG GCACCTTCTCATCTCTGCAAACCAAACAAAGGCGACCCTCGAAAGATAAGATTGAAGATGAGCTGGAGATGACCATGGTT TGCCATCGGCCCGAGGGACTGGAGCAGCTCGAGGCCCAGACCTACCCAAGAGGGAGCTGCAGGTCCTTTATCGAGG CTTCAAAAATGAGTGCCCCAGTGGTGTGGTCAACGAAGACACTTCAAGCAGATCTATGCTCAGTTTTTCCCTCATGGAG ATGCCAGCACGTATGCCCATTACCTCTTCAATGCCTTCGACACCACTCAGACAGGCTCCGTGAAGTTCGAGGACTTTGTA ACCGCTCTGTCGATTTTATTGAGAGGAACTGTCCACGAGAAACTAAGGTGGACATTTAATTTGTATGACATCAACAAGGA CGGATACATAAACAAAGAGGAGATGATGGACATTGTCAAAGCCATCTATGACATGATGGGGAAATACACATATCCTGTGC TCAAAGAGGACACTCCAAGGCAGCATGTGGACGTCTTCTTCCAGAAAATGGACAAAAATAAAGATGGCATCGTAACTTTA GATGAATTTCTTGAATCATGTCAGGAGGACGACAACATCATGAGGTCTCTCCAGCTGTTTCAAAATGTCATGTAACTGGT GACACTCAGCCATTCAGCTCTCAGAGACATTGTACTAAACAACCACCTTAACACCCTGATCTGCCCCTTGTTCTGATTTTA ${\tt CACACCAACTCTTGGGACAGAAACACCTTTTACACTTTGGAAGAATTCTCTGGTGAAGACTTTCTTATGGAACCCAGCAT}$ GAAGCATGCTCATCTCCTCACACTGCTGCCCTATGGAAGGTCCCTCTGCTTAAGCTTAAACAGTAGTGCACAAAATATGC ${\tt CACACCATCTCTGATGGCCTCCCAAACCAATGTGCCTGTTTCTCTTTCGTTGGTGGGAAGAATGAGAGTTATCCAGAACA}$ ${\tt ATTAGGATCTGTCATGACCAGATTGGGAGAGCCAGCACCTAACATATGTGGGATAGGACTGAATTATTAAGCATGACATT}$ GTCTGATGACCCAAACTGCCCCG

HUMAN 1V PROTEIN

MGAVMGTFSSLQTKQRRPSKDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVVNEDTFKQIYAQ

 ${\tt FFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKBEMMDIVKAIYDMMGK}$

YTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 1

RAT 1vN (r1vN) DNA (CD: 339-1037)

 ${\tt GGCACACCACCCCTGGATTCTTCGGAGAATATGCCGTGAGGTGTTGCCAATTATTAGTTCTCTTGGCTAGCAGATGTTTA}$ GGGACTGGTtaaGCCTTTGGAGAAATTACCTTAGGAAAACGGGGAAATAAAAGCAAAGATTACCATGAATTGCAAGATTA TGGTGGAAATAACCCTGCACTTGGAACAGCGGCAAAGAAGCGCGATTTTCCAGCTTtaaATGCCTGCCCGCGTTCTGCTT GCCTACCCGGGAACGGAGTGTTGACCCAGGGCGAGTCTGAAGGGCTCCAGACCTTGGGGATAGTAGTGGTCCTGTGTTC CTCTCTGAAACTACTGCACTACCTCGGGCTGATTGACTTGTCGGATGACAAGATCGAGGATGATCTGGAGATGACCATGG TTTGCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGTCCTTTACCGG GGATTCAAAAACGAGTGCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCATGG AGATGCCAGCACATACGCACATTACCTCTTCAATGCCTTCGACACCCCAGACAGGCTCTGTAAAGTTCGAGGACTTTG TGACTGCTCTGTCGATTTTACTGAGAGGAACGGTCCATGAAAAACTGAGGTGGACGTTTAATTTGTACGACATCAATAAA GACGGCTACATAAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGGAAATACACCTATCCTGT GCTCAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGT TAGACGAATTTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAAATGTCATGTAACTG AGGACACTGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCTTGTTCCAGTTTTACACAT CAACTCTCGGGACAGAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCGAGTG ${\tt ATGCCCATCTCCATGCTGCTGCTGCCCTGTGGAAGGCCCCTCTGCTTGAGCTTAAACAGTAGTGCACAGTTTTCTGCG}$ TATACAGATCCCCAACTCACTGCCTCTAAGTCAGGCAGACCCTGATCAATCTGAACCAAATGTGCACCATCCTCCGATGG CCTCCCAAGCCAATGTGCCTGCTTCTCTTCCTCTGGTGGGAAGAAGAACGCTCTACAGAGCACTTAGAGCTTACCATGA **AAATACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTATCAGATGATGCAAACA** GCCCATGTCATTTTTTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAAGTCTTTT AACACATCCAGGAGGGAAACCGCTGCCCAGTGGTCTATCCCTTCTCTCCATCCCTGCTCAAGCCCAGCACTGCATGTCT CTCCCGGAAGGTCCAGAATGCCTGTGAAATGCTGTAACTTTTATACCCTGTTATAATCAATAAACAGAACTATTTCGTAC AAAAAAAAAAAA

Fig. 2

RAT 1vN (r1vN) PROTEIN

$$\label{thm:construction} $$ \begin{align} \mathbf{MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC \\ $$ \mathbf{PSGVVNEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINK \\ $$ \mathbf{EEMMDIVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM \\ \end{align}$$

Fig. 2 Continued

MOUSE 1V (CD:477-1127)

CTCTGGCCCTGGGAGTCAGTGCATGTGCCTGGCTGAAGAAGGCAGCAGCCACGAGCTCCAGGCGCCCCGGCCCCACGTTT ATCCACACGATTTCTTTTCAGGGGAAGAGAGACAGGGCCTGGGGTCCCAAGACGCACAAGTCTTCGCTGCCATGG ATGACCATGGTTTGCCACCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGT CTTGTACCGGGGATTCAAAAACGAGTGCCCTAGCGGTGTGGTCAATGAAGAACATTCAAGCAGATCTACGCTCAGTTTT TCCCTCACGGAGATGCCAGCACATATGCACATTACCTCTTCAATGCCTTCGACACCACCCAGACAGGCTCTGTAAAGTTC GAGGACTTTGTGACTGCTCTGTCGATTTTACTGAGAGGGACAGTCCATGAAAAACTAAGGTGGACGTTTAATTTGTATGA CATCAATAAAGACGGCTACATAAACAAAGAGGAGATGATGGACATAGTCAAAGCCATCTATGACATGATGGGGAAATACA CCTATCCTGTGCTCAAAGAGGACACTCCCAGGCAGCATGTGGATGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGC **ATTGTAACGTTAGATGAATTTCTTGAATCATGTCAGGAGGATGACAACATCATGAGATCTCTACAGCTGTTCCAAAATGT** CATGTAACTGAGGACACTGGCCATTCTGCTCTCAGAGACACTGACAAACACCTTAATGCCCTGATCTGCCCTTGTTCCAA TTTTACACACCCAACTCTTGGGACAGAAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTG GCACCACGTGGCTCTGTCTCTGAGGGACGAGCGGAGATCCGACTTTGTTTTGGAAGCATGCCCATCTCTTCATGCTGCTG CCCTGTGGAAGGCCCCTCTGACTTAATCAATAGTGCACAGTTTTATGCTTACACATATCCCCAACTCACTGCCTC CAAGTCAGGCAGACTCTGATGAATCTGAGCCAAATGTGCACCATCCTCCGATGGCCTCCCAAGCCAATGTGCCTGCTTCT CTTCCTCTGGTGGGAAGAAAGAGTGTTCTACGGAACAATTAGAGCTTACCATGAAAATATTGGGAGAGGCAGCACCTAAC ACATGTAGAATAGGACTGAATTATTAAGCATGGTGATATCAGATGATGCCAAATTGCCCATGTCATTTTTTTCAAAGGTAG GGACAAATGATTCTCCCACACTAGCACCTGTGGTCATAGAGCAAGTCTCTTAACATGCCCAGAAGGGGAACCACTGTCCA GTGGTCTATCCCTCCTCCATCCCCTGCTCAAACCCAGCACTGCATGTCCCTCCAAGAAGGTCCAGAATGCCTGCGAAA

MOUSE 1V PROTEIN

MGAVMGTFSSLQTKQRRPSKDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVVNEETFKQIYAQ FFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMDIVKAIYDMMGK VTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 3

RAT 1VL DNA (CD:31-714)

ACCCTCTAAAGACATCGCCTGGTGGTATTACCAGTATCAGAGAGACAAGATCGAGGATGATCTGGAGATGACCATGGTTT GCCATCGGCCTGAGGGACTGGAGCAGCTTGAGGCACAGACGAACTTCACCAAGAGAGAACTGCAAGTCCTTTACCGGGGA TTCAAAAACGAGTGCCCCAGTGGTGTGGTTAACGAAGAGACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCATGGAGA TGCCAGCACATACGCACATTACCTCTTCAATGCCTTCGACACCACCCAGACAGGCTCTGTAAAGTTCGAGGACTTTGTGA $\tt CTGCTCTGTCGATTTTACTGAGAGGAACGGTCCATGAAAAACTGAGGTGGACGTTTAATTTGTACGACATCAATAAAGAC$ GGCTACATAAACAAAGAGGAGATGATGGACATAGTGAAAGCCATCTATGACATGATGGGGGAAATACACCTATCCTGTGCT CAAAGAGGACACTCCCAGGCAGCACGTGGACGTCTTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGTTAG ACGAATTTCTCGAGTCCTGTCAGGAGGATGACAACATCATGAGGTCTCTACAGCTGTTCCAAAATGTCATGTAACTGAGG ACACTGGCCATCCTGCTCTCAGAGACACTGACAAACACCTCAATGCCCTGATCTGCCCCTTGTTCCAGTTTTACACATCAA CTCTCGGGACAGAAATACCTTTTACACTTTGGAAGAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCGCGTGGCT $\tt CCCATCTCCCATGCTGCTGCCCCTGTGGAAGGCCCCTCTGCTTGAGCTTAAACAGTAGTGCACAGTTTTCTGCGTAT$ ACAGATCCCCAACTCACTGCCTCTAAGTCAGGCAGACCCTGATCAATCTGAACCAAATGTGCACCATCCTCCGATGGCCT CCCAAGCCAATGTGCCTGCTTCTCTCTCTGGTGGGAAGAAGAACGCTCTACAGAGCACTTAGAGCTTACCATGAAAA TACTGGGAGAGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGGTATCAGATGATGCAAACAGCC CATGTCATTTTTTTCCAGAGGTAGGGACTAATAATTCTCCCACACTAGCACCTACGATCATAGAACAAGTCTTTTAACA CATCCAGGAGGGAAACCGCTGCCCAGTGGTCTATCCCTTCTCCCATCCCTGCTCAAGCCCAGCACTGCATGTCTCTCC CGGAAGGTCCAGAATGCCTGTGAAATGCTGTAACTTTTATACCCTGTTATAATCAATAAACAGAACTATTTCGTACAAAA AAAAAAAAAAA

RAT 1VL PROTEIN
MGAVMGTFSSLQTKQRRPSKDIAWWYYQYQRDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVV
NEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMD
IVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFQNVM

Fig. 4

MOUSE 1VL DNA (CD:77-760)

ATCCACACCGATTTCTTTTCAGGGGAGGGAAGAGACAGGGCCTGGGGTCCCAAGACGCACAAGTCTTCGCTGCCATGG TATCAGAGACAAGATTGAGGATGAGCTAGAGATGACCATGGTTTGCCACCGGCCTGAGGGACTGGAGCAGCTTGAGGC ACAGACGAACTTCACCAAGAGAGAACTGCAAGTCTTGTACCGGGGATTCAAAAACGAGTGCCCTAGCGGTGTGGTCAATG ${\tt AAGAAACATTCAAGCAGATCTACGCTCAGTTTTTCCCTCACGGAGATGCCAGCACATATGCACATTACCTCTTCAATGCC}$ TTCGACACCCAGACAGGCTCTGTAAAGTTCGAGGGCTTTGTGACTGCTCTGTCGATTTTACTGAGAGGGACAGTCCA TGAAAAACTAAGGTGGACGTTTAATTTGTATGACATCAATAAAGACGGCTACATAAACAAAGAGGAGATGATGGACATAG TCAAAGCCATCTATGACATGATGGGGAAATACACCTATCCTGTGCTCAAAGAGGACACTCCCAGGCAGCATGTGGATGTC TTCTTCCAGAAAATGGATAAAAATAAAGATGGCATTGTAACGTTAGATGAATTTCTTGAATCATGTCAGGAGGATGACAA CATCATGAGATCTCTACAGCTGTTCCAAAATGTCATGTAACTGAGGACACTGGCCATTCTGCTCTCAGAGACACTGACAA ${\tt ACACCTTAATGCCCTGATCTGCCCTTGTTCCAATTTTACACACCCAACTCTTGGGACAGAAATACCTTTTACACTTTGGAA}$ GAATTCTCTGCTGAAGACTTTCTACAAAACCTGGCACCACGTGGCTCTGTCTCTGAGGGACGAGCGGAGATCCGACTTTG TTTTGGAAGCATGCCCATCTCTTCATGCTGCCCCTGTGGAAGGCCCCTCTGCTTGAGCTTAATCAATAGTGCACAGTT ${\tt TTATGCTTACACATATCCCCAACTCACTGCCTCCAAGTCAGGCAGACTCTGATGAATCTGAGCCAAATGTGCACCATCCT}$ $\tt CCGATGGCCTCCCAAGCCAATGTGCCTGCTTCTCTCTCTGGTGGGAAGAAGAGTGTTCTACGGAACAATTAGAGCTT$ ${\tt ACCATGAAAATATTGGGAGGGCAGCACCTAACACATGTAGAATAGGACTGAATTATTAAGCATGGTGATATCAGATGAT}$ ${\tt GCAAATTGCCCATGTCATTTTTTCAAAGGTAGGGACAAATGATTCTCCCACACTAGCACCTGTGGTCATAGAGCAAGTC}$ TCTTAACATGCCCAGAAGGGGAACCACTGTCCAGTGGTCTATCCCTCCTCCATCCCCTGCTCAAACCCAGCACTGCAT GTCCCTCCAAGAAGGTCCAGAATGCCTGCGAAACGCTGTACTTTTATACCCTGTTCTAATCAATAAACAGAACTATTTCG TACAAAAAAAAAAAA

MOUSE 1VL PROTEIN
MGAVMGTFSSLQTKQRRPSKDIAWWYYQYQRDKIEDELEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNECPSGVV
NEETFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLRWTFNLYDINKDGYINKEEMMD
IVKAIYDMMGKYTYPVLKEDTPRQHVDVFFQKMDKNKDGIVTLDEFLESCQEDDNIMRSLQLFONVM

Fig. 5

RAT 1VN DNA (FIRST-PASS, PARTIAL; CD: 345-955)

RAT 1VN PROTEIN (PARTIAL)

MLTQGESEGLQTLGIVVVLCSSLKLLHYLGLIDLSDDKIEDDLEMTMVCHRPEGLEQLEAQTNFTKRELQVLYRGFKNEC PSGVVNEETFKXIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEKLKWTFNLYDINKDGYINK EEMMDIVKAIYDMMGKYTYLVLKEDTSRQHVDVFFQKMDKNKD

Fig. 6

HUMAN 9QL DNA (CD:207-1019)

CTCACCTGCTGCCTAGTGTTCCCTCTCCTGCTCCAGGACCTCCGGGTAGACCTCAGACCCCGGGCCCATTCCCAGACTCA GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTCACGGGCCACCCTCCAGGGCCCACTAAAAAAGCGCTGAAGCAGCGA CCCCACAGACCCCGCCTGCTGGACCCAGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCACCGGCCTGAGG GTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGGCTTCAAGAACGAATGT CCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGACTCCAGCACCTATGC CACTTTTCTCTTCAATGCCTTTGACACCAACCATGATGGCTCGGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCCGTGA TTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAAG GAGGANATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGGAGGAGGCCCC AAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTGACCATTGAGGAATTCATTGAGT CTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCCAGGAGAGGGGGGTCAGT CTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTCTGGAGCTGAAGGGGCCAGAGAGTGGG CCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACACTAGAGCGATGTCTCCTGCTATGGTGC CTTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTGAGTCAATGGA TAGGTCCTAGGAGGTGGGGTTGAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCAGGTTATAGCT CCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTCTCCTTAGAAA TGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCCAGATATCTGGCTCATCTCTGGCATTGCT TCCTCTCCTTCCTTCCTGCATGTGTTGGTGGTGGTGGTGGGGGGAATGTGGGGGGATGTCCTGGCTGATGCCTGC CAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACTTGAGGTTTTTGTTTCCCATGTTCTCTA TAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCTTAGAAGGGAGAGGGAAGGAGGGGAGAGGG AGGCATAGC

Fig. 7

HUMAN 9QL PROTEIN

 $\label{thm:composition} MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRLLDPDSVDDE\\ FELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSTYATFLFNAFDTNHDGSV\\ SFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNK\\ DGVVTIEEFIESCQKDENIMRSMQLFDNVI$

Fig. 7 Continued

RAT 9QL DNA (PARTIAL; CD: 2-775)

 $\tt CCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCCACCCTCCAGGGCCCAGTAAAAAGCCCTGAAGCAGCGTTTCC$ CACAGACCCCGCCGCTGGACCCAGACAGCGTAGAGGGTTTGAATTATCCACGGTGTGTCACCGACCTGAGGGCCT GGAACAACTCCAGGAACAGACCAAGTTCACACGCAGAGAGCTGCAGGTCCTGTACCGAGGCTTCAAGAACGAATGCCCCA GTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTATGCTACT TTTCTCTTCAATGCCTTTGACACCAACCACGATGGCTCTGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCGGTGATTCT TCGGGGGACCATAGATGATAGACTGAGCTGGGCTTTCAACTTATATGACCTCAACAAGGACGGCTGTATCACAAAGGAGG AAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAAGTACACATACCCTGCCCTCCGGGAGGAGGCCCCCAAGA GAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGGAACAAGGACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTG TCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTTTGATAATGTCATCTAGCTCCCCAGGGAGAGGGGTTAGTGTG CCTGGGGGCTGTAGGGATTCAATATCCTGGGGCTTCAGTAGTCCAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGT AGGCAAGCTAAATCTGGGGGCTTCCCAACCCCCGACAGCTCTCACCCCTTCTCAACTGATACCTAGTGCTGAGGACACCC $\tt CTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGT$ GCTTTCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGG GGACATGGACAGAGCGTGTTCTCTAGTTCTAGATCGCGAGCGGCCGC

RAT 9QL PROTEIN (PARTIAL)

RDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLDPDSVEDEFELSTVCHRPEGL

EQLQEQTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVIL

RGTIDDRLSWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESC

QQDENIMRSMOLFDNVI

Fig. 8

MOUSE 9QL DNA (CD:181-993)

 $\tt GGAGCGGGGCCCATGCGGGGCCAAGGCCGAAAGGAGATTTGTCCGAATCCCGAGATTTGGACGGCTCCTAT$ GACCAGCTTACGGGCCACCCTCCAGGGCCCAGTAAAAAAGCCCCTGAAGCAGCGTTTCCTCAAGCTGCTGCCGTGCTGCCGG ${\tt AAGTTCACACGCAGAGAGTTGCAGGTCCTGTACAGAGGCTTCAAGAACGAATGTCCCAGCGGAATTGTCAACGAGGAGAA}$ $\tt CTTCAAGCAAATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTACGCTACTTTTCTCTTCAATGCCTTTGACA$ ${\tt CCAACCATGATGGCTCTGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCAGTGATTCTTCGGGGAACCATAGATGATAGA}$ CTGAACTGGGCTTTCAACTTATATGACCTCAACAAGGATGGCTGTATCACGAAGGAGGAAATGCTCGACATCATGAAGTC $\verb|CCCTAGTCCAGGCAAACCTAACCCTCCTCCCCGGGTCTGTCCTCATCCTACCTGTACCCTGGGGGCTGTAGGGATTCA||$ $\tt GGCGCGCAGATTCCCAACCCCCGACGACTCTCACCCCTTTCTCGACTGATACCCAGTGCTGAGGCTACCCCTGGTGTCGG$ TTTTCAGCCTAGCCTTTGAGGACCCTGTGGGAGGGGAGAATAAGAAAGCAGACAAAATCTTGGCCCTGAGCCAGTGGTTA ${\tt GGTCCTAGGAATCAGGCTGGAGTGGAGACCAGAAAGCCTGGGCAGGCTATGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGAGAGCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGCCTAGGAGAGCCCCCAGGTTGGCTTGTCACCGCCAGGCTAGGCCAGGCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCCAGGCTTGGCCTTGTCACCGCCAGGCCCAGGCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCTAGGCCCCAGGCTTGGCCTAGGCCCCAGGCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCCCAGGCCCCAGGCCCCAGGCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCAGGCCCCCAGGCCCCAGGCCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCCAGGCCAGGCCAGGCCCAGGCCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCAGGCCCCCAGGCCAGGCCCAGGCCAGGCCAGGCCAGGCCCAGGCCAGGCCAGGCCCAGGCCAGGCCCCCAGGCCAGGCCCAGGCCCAGGCCCCA$ GTTCCACAGGGCTGCTGCTCTGGGTCAGCAGAGTATGAGTTTCCAGACTTTCCAGAAGGCCTTATGTCCTTAGCAATGTC ${\tt TGGCAGCCTTAGGGGGAATGGGAAGAACGAGAGGGGGCACTCCATCTGAACCCAGTGTGGGGGGCATCCATTCGAATCTTTGC}$ CTGGCTCCCCACATGCCCTAGGATCCTCTAGGGTCCCCACCCCCACTCTTTAGTCTACCCAGAGATGCTCCAGAGCTCA ${\tt CCTAGAGGGCAGGGACCATAGGATCCAGGTCCAACCTGTCATCAGCATCCGGCCATGCTGCTGCTTATTAATAAACC}$ ${\tt TGCTTGTCGTTCAGCGCCCCTTCCCAGTCAGCCAGGGTCTGAGGGGGAAGGCCCCCACTTTCCCGCCTCCTGTCAGACATT}$ ТАТССАСАЛАЛАЛАЛАЛАЛАЛАЛА

MOUSE 9QL PROTEIN

MRGQGRKESLSESRDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSETLAAPASLRPHRPRPLDPDSVEDE FELSTVCHRPEGLEQLQEQTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSV SFEDFVAGLSVILRGTIDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNK DGVVTIEEFIESCQQDENIMRSMQLFDNVI HUMAN 9QM DNA (CD:207-965)

GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC ${\tt ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTCACGGGCCCACCTCCAGGGCCCACTAAAAAAGCGCTGAAGCAGCGA}$ GTCCACCGTGTGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCC TGTACCGGGGCTTCAAGAACGAATGTCCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTT GGACTTTGTGGCTGGTTTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACC TTAACAAGGACGGCTGCATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACG TACCCTGCACTCCGGGAGGAGGCCCCAAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGT GGTGACCATTGAGGAATTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCA TCTAGCCCCCAGGAGAGGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCTCACCCTTCTC TTCCCAGGTCTATCCTCATCCTACGCCTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTC TGGAGCTGAAGGGGCCAGAGAGTGGGCAGAGTGCATCTCGGGGGGTGTTCCCAACTCCCACCAGCTCTCACCCCCTTCCT GCCTGACACCCAGTGTTGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACAC TAGAGCGATGTCTCCTGCTATGGTGCTTCCCCCATCCCTGACCTCATAAACATTTCCCCTAAGACTCCCCTCTCAGAGAG AATGCTCCATTCTTGGCACTGGCTTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGACAAGAATGTATAGGG TTGCTCAGGCATACCAGGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTT TGCAGAAGACCTTGTCTCCTTAGAAATGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCCAG $\tt TGGGGGATGTCCTGGCTGATGCCTGCCAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACT$ ${\tt TGAGTTTTTGTTTCCCATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCT$ TAGAAGGGAGGGAAGGAAGGCATAGC

Fig. 10

HUMAN 9QM PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFLKLLPCCGPQALPSVSENSVDDEFELSTVCHRPEGLEQLQE
QTKFTRKELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSTYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTVD
DRLNWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQKDEN
IMRSMQLFDNVI

Fig. 10 Continued

RAT 9QM DNA (CD:214-972)

CTCACTTGCTGCCCAAGGCTCCTGCTCCTGCCCCAGGACTCTGAGGTGGGCCCTAAAACCCAGCGCTCTCTAAAGAAAAG GGCCACCCGGCGCCCCTCCCACGGCCAGGCGGGAGCGGGGCGCCCGGGGGCCATGCGGGGCCAAGGCAGAAAGGAGAGT TTGTCCGAATCCCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCACCCTCCAGGGCCCAGTAAAAAAGCCCTGAA TTGAATTATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAACAGACCAAGTTCACACGCAGAGAGCTG CAGGTCCTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTTATTCTCA GTTTTGAGGACTTTGTGGCTGGTTTGTCGGTGATTCTTCGGGGGACCATAGATGATAGACTGAGCTGGGCTTTCAACTTA TATGACCTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAA GTACACATACCCTGCCCTCCGGGAGGAGGCCCCAAGAGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGGAACAACG ACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTTTGAT AATGTCATCTAGCTCCCCAGGGAGAGGGGTTAGTGTGTCCTAGGGTGACCAGGCTGTAGTCCTAGTCCAGACGAACCTAA CCCTCTCTCCAGGCCTGTCCTCATCTTACCTGTACCCTGGGGGCTGTAGGGATTCAATATCCTGGGGCTTCAGTAGTC CAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGGGGGGCTTCCCAACCCCCGACAGCTCTC ${\tt ACCCCTTCTCAACTGATACCTAGTGCTGAGGACACCCCTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTC}$ TAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCC TTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTTTGAGGGCCCTGTGGGGAGGCCGGGGAC AAGAAAGCAGAAAAGTCTTGGCCCCGAGCCAGTGGTTAGGTCCTAGGAATTGGCTGGAGTGGAGGCCAGAAAGCCTGGGC AGATGATGAGAGCCCAGCTGGGCTGTCACTGCAGGTTCCGGGGCCTACAGCCTGGGTCAGCAGAGTATGAGTTCCCAGA CTTTCCAGAAGGTCCTTAGCAATGTCCCAGAAATTCACCGTACACTTCTCAGTGTCTTAGGAGGGCCCGGGATCCAGATG TCTGGTTCATCCCTGAATCCTCTCCCTCCTTCTTGCTCGTATGGTGGGAGTGGTGGCCAGGGGAAGATGAGTGGTGCCC GGATGATGCCTGTCAAGGTCCCACCTCCCCTCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATCTAGA TGTAGAGGCATGGAGTGAGTCAGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGGAATGGG AAGAACCCAGTGTGGGGGCACCCATTAGAATCTTTGCCCGGCTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCCGCTC CCTCTGTTTAGTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCTCCAG

RAT 9QM PROTEIN
MRGQGRKESLSESRDLDGSYDQLTGHPPGPSKKALKQRFLKLLPCCGPQALPSVSENSVEDEFELSTVCHRPEGLEQLQE
QTKFTRRELQVLYRGFKNECPSGIVNEENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTID
DRLSWAFNLYDLNKDGCITKEEMLDIMKSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDEN
IMRSMQLFDNVI

Fig. 11

HUMAN 9QS DNA (CD:207-869)

GCCTCAGCCCGGACTTCCCCAGCCCCGACAGCACAGTAGGCCGCCAGGGGGGCGCCGTGTGAGCGCCCTATCCCGGCCACC ATTCCCGAGACCTGGACGGCTCCTACGACCAGCTCACGGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCAC GAACGAATGTCCCAGCGGAATTGTCAATGAGGAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGACTCCA TTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTG CATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGG AGGAGGCCCCAAGGGAACACGTGGAGAGCTTCTTCCAGAAGATGGACAGAAACAAGGATGGTGTGGTGACCATTGAGGAA TTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCCAGGAGA ${\tt GGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCTCACCCTTCTCTCCCAGGTCTATCCT}$ ${\tt CATCCTACGCCTCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTCTGGAGCTGAAGGGGCCCCAGATCTCTGGAGCTGAAGGGGCCCCAGATCTCTGGAGCTGAAGGGGCCCCAGATCTCTGGAGCTGAAGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCAGATCTCTGGAGCTGAAGGGGGCCCCAGATCTCAGATCAGATCTCAGATCTCAGATCTCAGATCTCAGATCTCAGATCTCAGATCAGATCTCAGATCTCAGATCAGATCTCAGATCTCAGATCTCAGATCAGATCTCAGATCA$ TGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTACCCTACTCTAGAAACACACTAGAGCGATGTCTCCT GCTATGGTGCTTCCCCCATCCCTGACCTCATAAACATTTCCCCTAAGACTCCCCTCTCAGAGAGAATGCTCCATTCTTCG CACTGGCTGGCTTCTCAGACCAGCCATTGAGAGCCCTGTGGGAGGGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTG AGTCAATGGATAGGTCCTAGGAGGTGGGGTTGAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCA GGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTC TCCTTAGAAATGCCCCAGAAATTTTCCACACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCAGATATCTGGCTCATCTC TGATGCCTGCCAAAATTTCATCCCACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGGCTATGACTTGAGTTTTTGTTTCCC ATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCTATCACTCCCCACAGTGGATGCCTTAGAAGGGAGAGGGAA GGAGGGAGGCAGGCATAGC

Fig. 12

MONKEY 9QS DNA (CD:133-795)

TGTCCGATTCCCGAGACCTGGACGGATCCTACGACCAGCTCACGGACAGCGTGGAGGATGAATTTGAATTGTCCACCGTG TGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGGAGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGG CTTCAAGAACGAATGTCCGAGCGGAATTGTCAATGAGGAGAACTTCAAGCAAATTTACTCCCAGTTCTTTCCTCAAGGAG ${\tt GCTGGTTTGTCCGTGATTCTTCGGGGAACTGTAGATGACAGGCTTAATTGGGCCTTCAACTTGTATGACCTCAACAAGGA}$ CGGCTGCATCACCAAGGAGGAAATGCTTGACATCATGAAGTCCATCTATGACATGATGGGGCAAGTACACATACCCTGCAC TCCGGGAGGAGGCCCCAAGGGAACATGTGGAGAACTTCTTCCAGAAGATGGACAGAAACAAGGATGGCGTGGTGACCATT GAGGAATTCATTGAGTCTTGTCAAAAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGACAATGTCATCTAGCCCCC TATCCTTGTCCTAGGCCTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAGTAGTCCAGATCTCTGGAGCTGAA CAGTGTTGAGAGTGCCCCTCCTGTAGGAACTGAGTGGTTCCCCACCTCCTACCCCCACTCTAGAAACACACTAGACAGAT GTCTCGTGCTATGGTGCTTCCCCCATCCCTGACTTCATAAACATTTCCCCTAAAACTCCCTTCTCAGAGAGAATGCTCCA TTCTTGGCACTGGCTGCTTCTCAGACCAGCCTTTGAGAGCCCTGTGGGAGGGGGGACAAGAATGTATAGGGGAGAAATCT TGGGCCTGAGTCAATGGATAGGTCCTAGGAGGTGGCTGGGGTTGAGAATAGAAAGGCCTGGACAATGTGATTGCTCAG GCATACCAAGTTATAGCTCCAAGTTCCACAGGTCTGCTACCACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAG ACCTTGTCTCCTTGGAAATGCCCCAGATATTTTCCATACCCTCCTCGATATCCATGGAGAGCCTGGGGCTAGATATCTGG CATATCCCTGGCATTGCTTCCTCCTTCCTTCCTGCATGTGTTGGTGGTGGTTGTGGGGGGGAATGTGGATAGGAGAT TGTTTCCCATGTTCTCTATAGACTTGGGACCTTCCTGAACTTGGGGCCCTATCACTCCCCACAGTGGATGCCTTAGAAGGG CCCCAACCCCCAGATAACCTCCTCAGTTCCCTAGAGTCTCCTCTTGCTCTACTCAATCTACCCAGAGATGCCCCTTAGC ACACTCAGAGGGCAGGGACCATAGGACCCAGGTTCCAACCCCATTGTCAGCACCCCAGGCCATGCTGCCATCCCTTAGCAC ACCTGCTCGTCCCATTCAGCTTACCCTCCCAGTCAGCCAGAATCTGAGGGGAGGGCCCCCAGAGAGCCCCCTTCCCCATC AGAAGACTGTTGACTGCTTTGCATTTTGGGCTCTTCTATATATTTTGTAAAATAAGAACTATACCAGATCTAATAAAACA CAATGGCTATGCAAAAAAAAAAAAAAAAA

MONKEY 90S PROTEIN

MRGQGRKESLSDSRDLDGSYDQLTDSVEDEFELSTVCHRPEGLEQLQEQTKFTRKELQVLYRGFKNECPSGIVNEENFKQ IYSQFFPQGDSSTYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTVDDRLNWAFNLYDLNKDGCITKEEMLDIMKSIYD MMGKYTYPALREEAPREHVENFFOKMDRNKDGVVTIEEFIESCOKDENIMRSMOLFDNVI RAT 9QC DNA (CD:208-966)

TGCTGCCCAAGGCTCCTGCTCCTGCCCCAGGACTCTGAGGTGGGCCCTAAAACCCAGCGCTCTCTAAAGAAAAGCCTTGC GAATCCCGAGATCTGGACGGCTCCTATGACCAGCTTACGGGCCACCCTCCAGGGCCCAGTAAAAAAGCCCTGAAGCAGCG TATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAACAGCCAAGTTCACACGCAGAGAGCTGCAGGTC $\tt CTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAGGAGAACTTCAAGCAGATTTATTCTCAGTTCTT$ ${\tt AGGACTTTGTGGCTGGTTTGTCGGGGGGACCATAGATGATGATGAGCTGGGCTTTCAACTTATATGAC}$ $\tt CTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATGAAGTCCATCTATGACATGATGGGCAAGTACAC$ TGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACATCATGAGGTCCATGCAGCTCTCACCCCTTCTC ${\tt AACTGATACCTAGTGCTGAGGACCACCCTGGTGTAGGGACCAAGTGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCAC}$ ATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCATCCCTAATCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGA ACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTTTGAGGGCCCTGTGGGGAGGCGGGACAAGAAAGCAG ${\tt AGCCCAGCTGGGCTGTCACTGCAGGTTCCGGGGCCTACAGCCCTGGGTCAGCAGAGTTTGCCAGACTTTCCAGAA}$ GGTCCTTAGCAATGTCCCAGAAATTCACCGTACACTTCTCAGTGTCTTAGGAGGGCCCGGGATCCAGATGTCTGGTTCAT TGTCAAGGTCCCACCTCCCCCTCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATCTAGATGTAGAGGCA ${\tt TGGAGTGAGTCAGGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGAATGGGAAGAACCCAG}$ TGTGGGGGCACCCATTAGAATCTTTGCCCGGCTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCCGCTCCCTCTGTTTA GTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAGGTCAGCACCC

RAT 90C PROTEIN

$$\label{thm:composition} \begin{align} mrgqgrkeslsesrdldgsydqltghppgpskkalkqrflkllpccgpqalpsvsensvedefelstvchrpegleqlqe\\ Qtkftrrelqvlyrgfknecpsgivneenfkqiysqffpqgdssnyatflfnafdtnhdgsvsfedfvaglsvilrgtid\\ drlswafnlydlnkdgcitkeemldimksiydmmgkytypalreeaprehvesffqkmdrnkdgvvtieefiescqqden\\ imrsmqlsplln\\ \end{align}$$

RAT 8T (9Q SPLICE VARAIANT) DNA (MAY NOT BE FULL LENGTH, CD: 1-678) GTCGCCAGACAGCGTAGAGGATGAGTTTGAATTATCCACGGTGTGTCACCGACCTGAGGGCCTGGAACAACTCCAGGAAC AGACCAAGTTCACACGCAGAGAGCTGCAGGTCCTGTACCGAGGCTTCAAGAACGAATGCCCCAGTGGGATTGTCAACGAG GAGAACTTCAAGCAGATTTATTCTCAGTTCTTTCCCCAAGGAGACTCCAGCAACTATGCTACTTTTCTCTTCAATGCCTT TGACACCAACCACGATGGCTCTGTCAGTTTTGAGGACTTTGTGGCTGGTTTGTCGGTGATTCTTCGGGGGGACCATAGATG ATAGACTGAGCTGGGCTTTCAACTTATATGACCTCAACAAGGACGGCTGTATCACAAAGGAGGAAATGCTTGACATTATG AAGTCCATCTATGACATGAGGGCAAGTACACATACCCTGCCCTCCGGGAGGAGGCCCCAAGAGAACACGTGGAGAGCTT CTTCCAGAAGATGGACAGGACAAGGACGGCGTGGTGACCATCGAGGAATTCATCGAGTCTTGTCAACAGGACGAGAACA TGTAGTCCTAGTCCAGACGAACCTAACCCTCTCTCTCCCAGGCCTGTCCTCATCTTACCTGTACCCTGGGGGCTGTAGGGA TTCAATATCCTGGGGCTTCAGTAGTCCAGATCCCTGAGCTAAGTCACAAAAGTAGGCAAGAGTAGGCAAGCTAAATCTGG TGGTTCTCCACCTTCTAGTCCCACTCTAGAAACCACATTAGACAGAAGGTCTCCTGCTATGGTGCTTTCCCCATCCCTAA TCTCTTAGATTTTCCTCAAGACTCCCTTCTCAGAGAACACGCTCTGTCCATGTCCCCAGCTGGCTTCTCAGCCTAGCCTT TGAGGGCCCTGTGGGGAGGCGGGACAAGAAAGCAGAAAAGTCTTGGCCCCGAGCTAGTGGTTAGGTCCTAGGAATTGGC TGGAGTGGAGGCCAGAAAGCCTGGGCAGATGATGAGAGCCCAGCTGGGCTGTCACTGCAGGTTCCAGGGCCTACAGCCCT GGGTCAGCAGAGTATGAGTTCCCAGACTTTCCAGAAGGTCCTTAGCAATGTCCCAGAAATTCACCATACACTTCTCAGTG TCCCGGATGATGCCTGTCAAGGTCCCACCTCCCCTCCGGCTGTTCTCATGACAGCTGTTTGGTTCTCCATGACCCCTATC TAGATGTAGAGGCATGGAGTCAGGGATTTCCCGAACTTGAGTTTTACCACTCCTCCTAGTGGCTGCCTTAGGGGGAA TGGGAAGAACCCAGTGTGGGGGCACCCATTAGAATCTTTGCCCGGTTCCTCACAATGCCCTAGGGTCCCCTAGGGTACCC GCTCCCTCTGTTTAGTCTACCCAGAGATGCTCCTGAGCTCACCTAGAGGGTAGGGACGGTAGGCTCCAGGTCCAACCTCT

RAT 8T (9Q SPLICE VARAIANT) PROTEIN (MAY NOT BE FULL LENGTH)
MNHCPRRCRSPLGQAARSLYQLVTGSLSPDSVEDEFELSTVCHRPEGLEQLQEQTKFTRRELQVLYRGFKNECPSGIVNE
ENFKQIYSQFFPQGDSSNYATFLFNAFDTNHDGSVSFEDFVAGLSVILRGTIDDRLSWAFNLYDLNKDGCITKEEMLDIM
KSIYDMMGKYTYPALREEAPREHVESFFQKMDRNKDGVVTIEEFIESCQQDENIMRSMOLFDNVI

>human KChIP3 cds=1-7:

ATGCAGCCGGCTAAGGAAGTGACAAAGGCGTCGGACGGCAGCCTCCTGGGGGACCTCGGGCACACACCACTTAGCAAGAA

GGAGGGTATCAAGTGGCAGAGGCCGAGGCTCAGCCGCCAGGCTTTGATGAGATGCTGCCTGGTCAAGTGGATCCTGTCCA

 ${\tt CAGCTGCAGGCCCAGACCAAGTTCACCAAGAAGGAGCTGCAGTCTCTCTACAGGGGCTTTAAGAATGAGTGTCCCACGGG}$

CCTGGTGGACGAAGACACCTTCAAACTCATTTACGCGCAGTTCTTCCCTCAGGGAGATGCCA CCACCTATGCACACTTCC

TCTTCAACGCCTTTGATGCGGACGGGAACGGGGCCATCCACTTTGAGGACTTTGTGGTTGGCCCTCTCCATCCTGCTGCGG

 ${\tt GGCACAGTCCACGAGAAGCTCAAGTGGGCCTTTAATCTCTACGACATTAACAAGGATGGCT} \\ {\tt ACATCACCAAAGAGGAGAT}$

GCTGGCCATCATGAAGTCCATCTATGACATGATGGGCCGCCACACCTACCCCATCCTGCGGGAGGACGCCGCCGGCGGAGC

 ${\tt ACGTGGAGAGGTTCTTCGAGAAAATGGACCGGAACCAGGATGGGGTAGTGACCATTGAAGAGTCCTGGAGGCCTGTCAG}$

 ${\tt AAGGATGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAATGTCATCTAGgacacgtccaaaggagtgcatggcacag}$

ccacctccaccccaagaaacctccatcctgccaggagcagcctccaagaaacttttaaaaaatagatttgcaaaaagtg gctgcctctgggtgagtggctgacagagcaggtctgcaggccaccagctgctggatgtcaccaagaaggggctcgagtgc ccctgcaggggagggtccaatctccggtgtgagcccacctcgtcccgttctccattctgctttcttgccacacagtgggc cggccccaggctcccctggtctcctccccgtagccactctctgcccactacctatgcttctagaaagcccctcacctcag gaccccagagggaccagctggggggcaggggggagagggggtaatggaggccaagcctgcagctttctggaaattcttcc gtggtgaggggccactgggccccattctccctccatggcaggaaggcgggggatttcaagtttagggattgggtcgtggt ggagaatctgagggcactctctgccagctccacagggtgggatgagcctctccttgccccagtcctggttcagtgggaat gcagtgggtggggctgtacacaccctccagcacagactgttccctccaaggtcctcttaggtcccggggaggaacgtggtt cagagactggcagccaggggcagagctcagaggagtctgggaagggggtgtccctcctcttcctgtagtgcccctcccatggcccagcagcttaggctgagcccctttcctgaagcagtgtcgccgtccctctgccttgcacaaaaagcac aagcattccttagcagctcaggcgcagccctagtgggagcccagcactgcttctcggaggccaggccctcctgctggc tgaggcttgggcccagtagccccaatatggtggccctggggaagaggccttgggggtctgctctgtgcctgggatcagtg gggccccaaagcccagccggctgaccaacattcaaaagcacaaaccctggggactctgcttggctgtcccctccatctg caggaggagagagatgctgctcccgcctgattggggcctcacccagaaggaacccggtcccaggccgcatggcccctcca ggaacattcccacataatacattccatcacagccagcccagctccactcagggctggcccggggagtccccgtgtgoccc aagaggctagccccagggtgagcagggccctcagaggaaaggcagtatggcggaggccatgggggcccctcggcattcac acacagectggeeteeeetgeggagetgeatggaegeetggeteeaggeteeaggetgaetgggggeetetgeeteeagg agggcatcagetttecetggetcagggatetteteceteceetcaeeegetgeceageeetcecagetggtgtcaetetg $\verb|cctctaaggccaaggcctcaggaggagcatcaccaccaccacccctgccggccttggccttggggccagactggctgcacag$ $\verb|cccaaccaggaggggtctgcctcccacgctgggacacagaccggccgcatgtctgcatggcagaagcgtctcccaggcc|$ acggcctgggagggtggttcctgttctcagcatccactaatattcagtcctgtatattttaataaaataaacttgacaaa ggaaaaaaaaaaaaaaattcctgcggccgcgttctcca

>human KChip3
MQPAKEVTKASDGSLLGDLGHTPLSKKEGIKWQRPRLSRQALMRCCLVKWILSSTAPQGSDSSD
SELELSTVRHQPEGLD
QLQAQTKFTKKELQSLYRGFKNECPTGLVDEDTFKLIYAQFFPQGDATTYAHFLFNAFDADGNG
AIHFEDFVVGLSILLR
GTVHEKLKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPAEHVERFFEKMD
RNQDGVVTIEEFLEACQ
KDENIMSSMQLFENVI

Fig. 16 Continued

RAT P19 DNA (FIRST PASS, PARTIAL; CD:1-330)

TTTGAGGACTTTGTGGTTGGGCTCTCCATCCTGCTGAGGGGCCGTCCATGAGAAGCTCAAGTGGGCCTTCAATCTCTA

CGACATCAACAAGGACGGTTACATCACCAAAGAGGAGATGCTGGCCATCATGAAGTCCATCTACGACATGATGGGCCGCC

ACACCTACCCTATCCTGCGGGAGGACGCACCTCTGGAGCATGTGGAGAGGTTCTTCCAGAAAATGGACAGGAACCAGGAT

GGAGTAGTGACTATTGATGAATTTCTGGAGACTTGTCAGAAGGACGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAA

CGTCATCTAGGACATGTAGGAGGGGGACCCTGGGTGGCCATGGGTTCTCAACCCAGAGAAGCCTCAATCCTGACAGGAGAA

GCCTCTATGAGAAACATTTTTCTAATATATTTTGCAAAAAGTG

RAT P19 PROTEIN (PARTIAL)
FEDFVVGLSILLRGTVHEKLKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPLEHVERFFQKMDRNQD
GVVTIDEFLETCQKDENIMSSMQLFENVI

Fig. 17

MOUSE P19 DNA (CD: 49-819)

 $\tt CGGGCTGCAAAGCGGGAAGSTTAGTGACGGTCCCTTTCAGCAGCAGAGATGCAGGAGGCAAGGAAGCCGTGAAGGCATC$ AGATGGCAACCTCCTGGGAGATCCTGGGCGCATACCACTGAGCAAGAGGGGAAAGCATCAAGTGGCAAAGGCCACGGTTCA AGTGAACTGGAGTTATCCACGGTGCGCCATCAGCCAGAGGGCTTGGACCAGCTACAAGCTCAGACCAAGTTCACCAAGAA GGAGCTGCAGTCCCTTTACCGAGGCTTCAAGAATGAGTGTCCCACAGGCCTGGTGGATGAAGACACCTTCAAACTCATTT ATTCCCAGTTCTTCCCTCAGGGAGATGCCACCACCTATGCACACTTCCTCTTCAATGCCTTTGATGCTGATGGGAACGGG ${\tt GCCATCCACTTTGAGGACTTTGTGGTTGGGCTCTCCATCCTGCTTCGAGGGACGGTCCATGAGAAGCTCAAGTGGGCCCTT}$ CAATCTCTATGACATTAACAAGGATGGTTGCATCACCAAGGAGGAGATGCTGGCCATCATGAAGTCCATCTACGACATGA TGGGCCGCCACACCTACCCCATCCTGCGGGAGGATGCACCCCTGGAGCATGTGGAGAGGTTCTTTCAGAAAATGGACAGG GTTTGAGAACGTCATCTAGGACATGTGGGAGGGGACCCCAGTGGTCATTGCTTCTCAACCCAGAGSAGCCTCAATCCTGA ${\tt CAGGAGAAGCCTCTATGAGAAACATTTTTCTAATATATTTGCAAAAAGTGAGCAGTTTACTTCCAAGACACCAGCCACCGT}$ AGAAGGCACCCCGCCTATTCCTAGGTCAATAAAAAAGGCTGCCTCTGGGATGGCCAGCCCTGGCTAGATGTTACCCACA AGGAACTCAGAGATCGAGAGGACCAGGTCTACAAAGCTAAGGTCCCTGTGTCTTTTCTACCACTCGGGAGATCAAACTAC TCCCTGCCTATGGACCCATGCTCTTAGGAAGCTCCCAGAAACTCCAAGGGGGACAAAGAGGGGGAGAGGTCTATAGGAAGAA TGCCGTGAGCTTAGATAGTGAGGGGCCATTGGACTAAGACCTCCTGTAAGAGTGGGGCAGGATTGAGGTTTTTGGAGAAA CTGAGGAAACAATTTGTCCATACCACTGGGTGAAGACTGCTGGCCAGTGGGAATTTGGCTGGAGATTTCCCAACTTC CAGCACCAGGATGGCCTCTCCAAGGTCCTCTTTGATTCCCTGGGGAGATCACCTGGCTCATAGACTGACAACCAGGGAAC TGGGCTGAAATGGGAGGTCTGGTAGGGGGCATCCCCCTCCTTTTCCCTGGCCACTTGCCACCCAGTTCCTTAACACAGTG GATCGGCCACACCTCTGTGGCTGCCCTTGAACAGACTCATCCCGACCAAGACAAAAAAGCACTAACTCCTAGCAGCTCAG CCTCGGAGCCTTGGGGGTCTCACAGCCCTTTCCCAGCCCCAGCTCGCCAACATTCTAAAGCACAAACCTGCGGATTCTGCT TGCTTGGGCTGCGCCCTGGGGATTGAAGGCCACTGTTAACCCTAAGCTGGAGCTAGCCCTGAGGGCTGGGGACCTGTGAC TCTACAGACCACCAGTTCTCCCTGGCTCAGGGACCCCCTGTCCCCAGTCTGACTCTTCCCATCGAGGTCCCTGTCTTGT GGGTCTGTCCCCTTTGCAGGGACACAGACTGGCCGCATGTCCGCATGGCAGAGCGTCTCCCTTGGGTGCAGCCTGGAAG AAAA

Fig. 18

>AI 352454 (partial) cds = 1-339

CACGAGGTGGAAAGCATTTCGGCTCAGCTGGAGGAGGCCAGCTCTACAGGCGGTTTCCTGT ACGCTCAGAACAGCACCAA

GCGCAGCATTAAAGAGCGGCTCATGAAGCTCTTGCCCTGCTCAGCTGCCAAAACGTCGTCTC CTGCTATTCAAAACAGCG

 ${\tt TGGAAGATGAACTGGAGATGGCCACCGTCAGGCATCGGCCCGAAGCCCTTGAGCTTCTGGA}$

AGCCCAGAGCAAATTTACC

>AI352454

HEVESISAQLEEASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHR PEALELLEAQSKFT KKELQILYRGFKNVRTFFLTLPSHNSQRSIEK

Fig. 19

P193 (AA349365) DNA (CD:2-127, patial)

TGAAAGGTTCTTCGAGAAAATGGACCGGAACCAGGATGGGGTAGTGACCATTGAAGAGTTCCTGGAGG CTGTCAGAAGGATGAGAACATCATGAGCTCCATGCAGCTGTTTGAGAATGTCATCTAGGACACGTCCAAA GGAGTGCATGGCCACAGCCACCTCCACCCCCAAGAAACCTCCATCCTGCCAGGAGCAGCCTCCAAGAAA GGGCCGAGTCCAGGAGCCCAGCCAGCCCTTCCCAGGCCAGCGAGGCGAGGCTGCCTCTGGGTGAGTGG $\tt CTGACAGAGCAGGTCTGCAGGCCACCAGCTGCTGGATGTCACCAAGAAGGGGGCTCGAGTGCCCCTGCAG$ GGGAGGGTCCAATCTCCGGTGTGAGCCCACCTCGTCCCGTTCTCCATTCTGCCTTTCTTGCCACACAGTGGG CCGGCCCCAGGCTCCCCTGGTCTCCTCCCCGTAGCCACTCTCTGCCCACTACCTATGCTTCTAGAAAGCCC CTCACCTCAGGACCCCAGAGGGACCAGCTGGGGGGGCAGGGGGGAGAGGGGGGTAATGGAGGCCAAGCCT GCAGCTTTCTGGAAATTCTTCCCTGGGGGTCCCAGGATCCCCTGCTACTCCACTNACCTGGAAGAGCTGG CAGGAAGGCGGGGATTTCAAGTTTAGGGATTGGGTCGTGGTGGAGAATCTGAGGGCACTCTCTGCCAG ACACACCCTCCAGCACAGACTGTTCCCTCCAAGGTCCTCTTAGGTCCCGGGAGGAACGTGGTTCAGAGAC TGGCAGCCAGGGAGCCCGGGGCAGAGCTCAGAGGAGTCTGGGAAGGGGCGTGTCCCTCCTCTTCCTGTA GTGCCCCTCCCATGGCCAGCAGCTTGGCTGAGCCCCCTCTCCTGAAGCAGTGTCGCCGTCCCTCTGCCTT GCACAAAAAGCACAAGCATTCCTTAGCAGCTCAGGCGCAGCCCTAGTGGGAGCCCAGCACACTGCTTCT $\tt CGGAGGCCAGGCCTGCTGGCTGAGGCTTGGGCCCAGTAGCCCCAATATGGTGGCCCTGGGGAAGA$ GGCCTTGGGGGTCTGCTCTGTGCCTGGGATCAGTGGGGCCCCAAAGCCCAGCCCGGCTGACCAACATTCA AAAGCACAAACCCTGGGGACTCTGCTTGGCTGTCCCCTCCATCTGGGGATGGAGAATGCCAGCCCAAAG CTGGAGCCAATGGTGAGGGCTGAGAGGGCTGTGGCTGGGTCAGCAGAAACCCCCAGGAGGAGAGA GATGCTGCTCCCGCCTGATTGGGGCCTCACCCAGAAGGAACCCGGTCCCAGGCCGCATGGCCCCTCCAGG AACATTCCCACATAATACATTCCATCACAGCCAGCCCAGCTCCACTCAGGGCTGGCCCGGGGAGTCCCCG TGTGCCCCAAGAGGCTAGCCCCAGGGTGAGCAGGGCCCTCAGAGGAAAGGCAGTATGGCGGAGGCCATG GGGGCCCCTCGGCATTCACACACAGCCTGGCCTCCCCTGCGGAGCTGCATGGACGCCTGGCTCCAGGCTC $\tt CTCACCCGCTGCCCAGCCTCCCAGCTGGTGTCACTCTGCCTCTAAGGCCAAGGCCTCAGGAGAGCATCA$ $\tt CCACCACACCCCTGCCGGCCTTGGCCCTGGGCCAGACTGGCTGCACCCAACCAGGGGGGTCTGC$ CTCCCACGCTGGGACACAGACCGGCCGCATGTCTGCATGGCAGAAGCGTCTCCCTTGGCCACGGCCTGGG AGGGTGGTTCCTGTTCTCAGCATCCACTATATTCAGTCCTGTATATTTTAATAAAATAAACTTGACAAAG GAAAAAAAAAAAAAA

P193 PROTEIN (PARTIAL)
ERFFEKMDRNQDGVVTIEEFLEACQKDENIMSSMQLFENVI

Fig. 20

Fig. 21

Human 9q genomic DNA sequences:

A. excal sequence (with introns included):

B. Exon 2-11 sequence (with introns included):

AGCCNANTGGGTCNCCATGTGTATGCATCCTGTTTACTTAGGTCACATTTGTATATGTTGTGTAAGGAGTACCAGGT CAATGTGTGTGTGTGTGAGCATGNATAAACGCCANCAGGTGTGAGTTANTGAATATCAAGCTGTCACTGGCACCC ATCACTGTGATGTATTGTTCATACATGTCACNAACACGGCCTGTCACTGTAGGTGTGTATRAGAGAGGTGTTCTT ACCCAGGCAATCCTTGGGTTGGACATCATCNTGAGAGGTCCAGCCATGGCACTTGAGCCAAGGGTACTAGGTCAGCA AAGACATTGAGGCCACTGCCACCTCATCCTTGCCGCCTCGCTGTCACCGGCCACGTCCCATTAAACCAAGTGCNTGA GCCTCACCTCTATGGACTCACTGGGCTCCCCTAACCCGATTCCAACCACCCTTGCCATTCCTTTCCTCCCCTTAATT CCTCCCCAGCCCGGTCCCCAGATGGGGTTGATTTGTGACTGGCGGGGAGGGGGACAGGGAACAGAGGGACCCCGGGA GTTAATGTGCCTTCCTGGGGTCTTCTCTCTCNCAGGCCACCCTCCAGGGCCCACTAAAAAAAGCGCTGAAGCAGCGA CCGGGGCGGGCTCGATGTGTGCGTGCGTGTCTGTGCATGANTGTGTGCGCGTGTGCCCCAGGCCTGCRAGTGTKCS GCGTGTGTATGTGTGCGTGCGTGCGCRCGAGCGTRCCCCAGACCGGCGTGTGTGTGTGTGTGGGGGGCGTGCCCTACCCC TGCATGTGTGGGGGGGGGGGCCCCAKGCCCKCGGCGNGTTGTTTGTTGTGTATGGGAAGGCGTACCGCACGCCTGC TGGCGAGGGCGGGTGCTGGCAAGGCTGGAGCATAAGNGGGCGNGGCTACATGTGTGNGTGTACGNCTGAAGCCAGCG TGTGTGGGCGTGGTCAGTTGGNAGCGGGTGTGTGTCACCGCTCCCGCAAAACTGTGGGACCCGAGAGTGTGGGTGTG ACCATTGTGACCAGGNTGAGGCCTGAGCCTGTGTAGCTGTGGCGGCCTGTGTAGACCAGGCGGCCGTGAGGGTCTGT ATGTGGCTTAGCTGGGTTAGTGTCTTCAACTCCGTGCGGCCGCCCCCTTCCCCACCGTGTTTTGGACCCCTGATGTG TGTTGCCTATGCCCCGACAGGATGGTGACAGGTGTAGAGGATGGCGCCTGCCCTCCCAGACGCCAGGGTATTTGG GTTTTCTGTGCCAGCCTGGTCCCCTGAAGTGATCTCCAGTTGAGTGACCTCGCTTTGTCTCTAGGTCTCCATTT CCTCAGTTGGGCCTTGCCCACCTCATAGGATCATACTGCATTTTGCAAACCATAAAGGCCCGCTTTGTAGTTATTTG AGCATGCTGTTGTGTTGGACTTAGATGGGTCCCACACGGGGGTGGATTCGGARAAGGACAGGCGTGAGTCCCGCAAG CTTGTGTGCATGGGGTCCGTTTCGTGTGTGTCTGTGCTGGGTTGGGTGTGCCTTTGCACGGGCTGGGTTGTCAGGTTT GCTCTGAGTGTGAGGGGCCAGGTGTGTATGCAGTTGGCCGGGTCTTCCGCTTTCTCGGTGWCAGTTCGCTCCCTT CAGCATTAGCCGCCCCAGCCTCCCTCCGCCCCACAGACCCCGCCTGCTGGACCCAGGTGACTTACGCTCCTGGTGG GGGCGGGGCGGCCAGGCCTTTGCCATCTTGGGGTGGGGGGCACTTGCCTGGGGGCTGGACGTTGGGGGGCGGG CAGGATTGAGATGGGGCCGGGGGTGGGGTCTGGATGGAGGTTGGCTGAGCTGGGCGGGGCATGGCTAGGCATGGCT GCTGGGCGGATCTGAGTTGGTCCCCGAAGGCCCGGAGCTCTGACCCTCAGACGCCCCCTCTTGAACTGGCTTTTCCC ACTCCTCCTTTCTAAAACGAAGATGCGGCTGGGGGCCTTCCCCTCCAACGAGGGATCGAGGGCCGCGGGGCGAGCA $\tt CTGAGTCGGATCCCTGGCTCTGGGCCAGGCCAGGCCTTGGCCCGCTGATAGACCTCGAAGATGGCCATCATCTTT$ CTCCTTACCTCAGTGTCCTTGGCTCGGGGCCCAGGGAACTGGCAGCCTGGTCTCCGGCATCGGATGGGACCGGGGGG CGGGGAGGGGTGAATGGGGCAGTGATTTGAAGAGGGGGTCGCGGAGGCTGGGCATGAGGCGGGCTGTCCTCACCGC TCCCGCAGACAGCGTGGACGATGAATTTGAATTGTCCACCGTGTGTCACCGGCCTGAGGGTCTGGAGCAGCTGCAGG AGCAAACCAAATTCACGCGCAAGGAGTTGCAGGTCCTGTACCGGGGCTTCAAGAACGTGAGTGCNGGGCGAGGCCAA ACTCAGCGNGGGTGGGACAGGAGGACCCAANCCGGTCCANATTTTTCCCANAAAGCATGGCTTNGATGCTTGAGGNG ACGGAAGGGGATTTTGTCTCTGCCCTCAGCCTGGTGCCCTCTCCTTCCAGGGAATGTCCCAGCGGAATTGTCAATGAG GAGAACTTCAAGCAGATTTACTCCCAGTTCTTTCCTCAAGGAGGTGAGGGGGACAAGGCCCCAAGGGGAAGCAGTTGTC CTTCTCTAGGCTGAGGGAGGGAGTTCTGGAGGAGCTGGGAATGCCAAGGTGATGGGGGGTATGGGGAGCTCCTT ${\tt AGAGGGAGGAAGTCCTCTCTGTGTGGAAGCCAACTTCTCCACACTCACCCTGCAGACTCCAGCACCTATGCCACTT}$ TTCTCTTCAATGCCTTTGACACCAACCATGATGGCTCGGTCAGTTTTGAGGTGAGCTGGGCGAGGTGGGCCAGGGAA GCCTGTTTCCTGGAGTTCAGGGCCAGGATCTCCAGGCCAAACCCAGAGAAGGAGTTGGGTGAAGAGKACCCGAGGAC ACAGCTCCCTNCTGCCTTCTTCCCAGGACTTTGTGGCTGGTTTGYCCGTGATTCTTCGGGGAACTGTAGATGACAGG CTTAATTGGGCCTTCAACCTGTATGACCTTAACAAGGACGGCTGCATCACCAAGGAGGTGCAGGGCAACTGAAGGGC **AATGGGATCAAGGGAGGCTGGAGGCTCTGAGGAAGGATCCTCTTCTCTCTTTGGCCTAACAGGAAATGCTTGACATCA** TGAAGTCCATCTATGACATGATGGGCAAGTACACGTACCCTGCACTCCGGGAGGAGGCCCCCAAGGGAACACGTGGAG TGGACAGAAACAAGGATGGTGGTGACCATTGAGGAATTCATTGAGTCTTGTCAAAAGGTACAGCTCCCTGCCCTC TACATTACCCTGACCTGGACTCAGGCCTGATTTAGTAATGCAGGGAAAAGCTTCTTTGGGAAGAATACCACCTTCCC ${\tt ACCTCACCCCATATTTCAATCCTATTCCTTTGTGGGAGGCTTACCCCTTCCCTACCTCAGGTCTCTCTGGGCATCT}$ CCTTCCTCTGTGCTTTTGAATGTCCCCGTCTGTGACTCAAGTGTCCCTCTCACTGTCTCTGATAAAGCTCCTTCTCT TTCTCTCTCTCAATCTGCCTCGCTCACATCATGGCCACAGGATGAGAACATCATGAGGTCCATGCAGCTCTTTGAC AATGTCATCTAGCCCCCAGGAGAGGGGGTCAGTGTTTCCTGGGGGGACCATGCTCTAACCCTAGTCCAGGCGGACCT CACCCTTCTCTCCCAGGTCTATCCTCATCCTACGCCTCCCTGGGGGCTGGAGGGATCCAAGAGCTTGGGGATTCAG TAGTCCAGATCTCTGGAGCTGAAGGGGCCAGAGAGTGGGCAGAGTGCATCTCGGGGGGTGTTCCCAACTCCCACCAG CTCTCACCCCCTTCCTGACCACCACACTGTTGAGAGTGCCCCTCCTGTAGGAATTGAGCGGTTCCCCACCTCCTA CCCCTACTCTAGAAACACACTAGACAGATGTCTCCTGCTATGGTGCTTCCCCCCATCCCTGACCTCATAAACATTTCC TGGGAGGGGACAAGAATGTATAGGGAGAAATCTTGGGCCTGAGTCAATGGATAGGTCCTAGRAGGTGGCTGGGGTT GAGAATAGAAGGGCCTGGACAGATTATGATTGCTCAGGCATACCAGGTTATAGCTCCAAGTTCCACAGGTCTGCTAC CACAGGCCATCAAAATATAAGTTTCCAGGCTTTGCAGAAGACCTTGTCTCCTTAGAAATGCCCCAGAAATTTTCCAC ACCCTCCTCGGTATCCATGGAGAGCCTGGGGCCAGATATCTGGCTCATCTCTGGCATTGCTTCCTCTCTTCTTTCC CACCCTCCTTGCTTATCGTCCCTGTTTTGAGGGCTATGACTTGAGTTTTTGTTTCCCATGTTCTCTATAGACTTGGG TCCTCAGKTCCCTAGGGTCTCTTCTYGCTTGACTCAATCTACCCAGAGATGCCCCTTAGCACACCTAGAGGGCAGGG ACCATAGGACCCAGGTTCCAACCCCATTGTCAGCACCCCAGCCATGCGGCCACCCCTTAGCACACCTGCTCGTCCCA TTTAGCTTACCCTCCCAGTTGGCCAGAATCTGAGGGGAGAGCCCCCAGAGAGACCCCCTTCCCCATCAGAAGACTGTT GACTGCTTTGCATTTTGGGCTCTTCTATATATTTTGTAAAGTAAGAAATATACCAGATC: TAATAAAACACAATGGC TATGCACAGGCTGCCGTCTCTGCCTTTTGTCCCTCCCACCTACAAATACTACAAACCCCTAACGAATGCACCTGCA GCCTTTTAGATCCCCAAGAAAGTGGCTTTCTTTTCCATAGTTGGCCATACCTTGGCATGAGACTGAGACACAGGCTC TTTTTTTTTTT

Fig. 22 Continued

>monkey KChIP4 cds = 265

TGGCCACTGTCAGGCATCGGCCTGAGGCCCTTGAGCTTCTGGAAGCCCAGAGCAAATTTACC AAGAAAGAGCTTCAGATC

CTTIACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAACCTTCAAAGAGATTTACTCGCAGTTCTT

TCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACA ATGGAGCTGTGAGTTTCG

AGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGG GCATTTAATCTGTATGAT

 ${\tt ATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGGGTAAATGTAC}$

ATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATTGG

ACAAAATAAAGATGGGG

TTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGCTCCATGCAGCTCTTTGAAAATGTG

ATTTAActtgtcaactagatcctgaatccaacagacaaatgtgaactattctaccacccttaaagtcggagctaccactt ttagcatagattgctcagcttgacactgaagcatattatgcaaacaagctttgttttaatataaagcaatccccaaaaga tttgagtttctcagttataaatttgcatcctttccataatgccactgagttcatgggatgttctaactcatttcatactctgtgaatattcaaaagtaatagaatctggcatatagttttattgattccttagccatgggattattgaggctttcacata actgacatctgcatttaatttccagaaattaaattaattttcatgtctgaatgctgtaattccatttatatactttaagt aaacaaataagattactacaattaaacacatagttccagtttctatggccttcccttcccaccttctattataaattaat tttatctggtatttttaaacatttaaaaatttatcatcagatatcagcatatgcctaattatgcctaatgaaacttaata aggatatetateeteeagtatatgttaatgettaataacaagtaateetaacagcattaaaggeeaaatetgteetettt cccctgacttccttacagcatgtttatattacaagccattcagggacaaagaaaccttgactaccccactgtctactagg aacaaacaacagcaagcaaaattcactttgaaagcaccagtggttccattacattgacaactactaccaagattcagta gaaaataagtgctcaacaactaatccagattacaatatgatttagtgcatcataaaattccaacaattcagattatttt gaccaagaggctacagaaggaggaaatttgcaactgtctttgcaacaataaatcaggtatctattctggtgtagagatag gatgttgaaagctgccctgctatcaccagtgtagaaattaagagtagtacaatacatgtacactgaaatttgccatcgcg tgtttgtgtaaactcaatgtgcacattttgtatttcaaaaagaaaaaataaaagcaaaataaaatgttwawaamwmwaaa aaaaaaaaaaa

>monkey KChIP4

MLTLEWESEGLQTVGIVVIICASLKLLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT KKELQILYRGFKNE CPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNW AFNLYDINKDGYIT KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIM RSMQLFENVI >monkey KChIP4 C terminal splice variant cds = 265-966

 ${\tt TGGCCACTGTCAGGCATCGGCCTGAGGCCCTTGAGCTTCTGGAAGCCCAGAGCAAATTTACC} \\ {\tt AAGAAAGAGCTTCAGATC}$

CTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGA GATTTACTCGCAGTTCTT

TCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACA ATGGAGCTGTGAGTTTCG

AGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGG GCATTTAATCTGTATGAT

ATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGATGATAATGTAC

ATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGGCTGTTT TCCATTGTATCATCAAGT

GGAAGTTCAAGACGCATCAAACAAAACAAGGATGTTTACAGACATATGCAAAGGGTCAGG ATATCTATCCTCCAGTATA

>monkey KChIP4 C terminal splice variant

MLTLEWESEGLQTVGIVVIICASLKLLHLLGLIDFSEDSVEDELEMATVRHRPEALELLEAQSKFT KKELQILYRGFKNE

CPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLNW AFNLYDINKDGYIT

KEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQAVFHCIIKWKFKTASNKTRMFTDICK GSGYLSSSIC

```
KChip1_1v -----RRP------SSLQTKQ----RRP-----
KChip2_9q1 MRGQGRKESLSDSRDLDGSYDQLTGHPPGPTKKALKQRFTKLLPCCGPQALPSVSETLAA
KChip3_p19 --MQPAKEVTKAS---DGSLLGDLGH----TPUSKKEGIKWQRPRLSRQALMRCCLVKWI
KChip4_352 ---MLTLEWESEGLQTVGIVVIICAS----LKLLHLLGLIDFSE----
KChIP4_231 ---MLTLEWESEGLQTVGIVVIICAS----LKLLHLLGLIDFSE--
hsncspara ----HEVESISAQLEEASSTGGFLYAQN-STKRSIKERLMKLLECS-----
KChip1_1v ------SKDKIEDELEMTMVCHRPEGLEOLEAQTNFTKRELQVLYRGFKNECPS
KChip2_9q1 PASLRPHRPRLLDPDSVDDEFELSTVCHRPEGLEOLOEQTKFTRKELQVLYRGFKNECPS
KChip3_p19 LSSTAPQ-----GSDSSDSELELSTVRHQPEGLDQLQAQTKFTKKELQSLYRGFKNECPT
                      DSVEDELEMATVRHRPEALE LEAQSKFTKKELQILYRGFKNECPS
KChIP4_352 -----
KChip4_231 -----DSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNECPS
hsncspara -AAKTSSP---AIQNSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNVRTF
KChip1_1v GVVNEDTFKQIYAQFFPHGDASTYAHYLFNAFDTTQTGSVKFEDFVTALSILLRGTVHEK
KChip2_9q1 GivneenfkQiysQffpQgdsstyanflfnafdtnHdgsvsfedfvaglsvilrgtvddr
KChip3 p19 GLVDEDTFKIIYAQFFPQGDATTYAHFLFNAFDA ENGAIHFEDFVVGLSILLRGTVHEK
KChip4_352 GVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVCEK
KChip4_231 GVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVOEK
hsncspara FUTLPSHNSORSIEK-----
KChip1_1v LRWDFNLYDINKDGYINKEEMMDIVKAIYDMMGKYTYPVLKEDDPRQHVDVFFQKMD-
KChip2_9q1 LNWAFNLYDLNKDGGITKEEMLDINKSIYDMMGKYTYPALREEAPREHVESFFQKMD-
KChip3_p19 LKWAFNLYDINKDGYITKEEMLAIMKSIYDMMGRHTYPILREDAPAEHVERFFEKMD-
hsncspara -
KChIP1_1v --- KNKDGIVTLDEFLESCOEDDNIMRSLQLFONVM
KChIP2_9q1 --- RNKDGVVTIEEFIESCQKDENIMRSMQLFDNVI
KChip3_p19 --- RNODGVVTIEEFLEACQKDENIMSSMQLFENVI
KChIP4_352 --- KNKDGVVTIDEFIESCQKDENIMRSMQLFENVI
KChIP4_231 IKWKFKTASNKTRMFTDICKGSGYLSSSIC-----
hsncspara
```

Rat 33b07 protein

MMGVEGNNELPLANTSTSALVPEDLDLKQDQPLSEETDTVREMEAAGEAGAEGGASPDSEHCDPQLCLRVAENGCAAAAG
EGLEDGLSSSKCGDAPLASVAANDSNKNGCQLAGPLSPAKPKTLEASGAVGLGSQMMPGPKKTKVMTTKGAISATTGKEG
EAGAAMQEKKGVQKEKKAAGGGKDETRPRAPKINNCMDSLEAIDQELSNVNAQADRAFLQLERKFGRMRRLHMQRRSFII
QNIPGFWVTAFRNHPQLSPMISGQDEDMMRYMINLEVEELKHPRAGCKFKFIFQSNPYFRNEGLVKEYERRSSGRVVSLS
TPIRWHRGQEPQAHIHRNREGNTIPSFFNWFSDHSLLEFDRIAEIIKGELWSNPLQYYLMGDGPRRGVRVPPRQPVESPR
SFRFQSG.

Rat 33b07 DNA (coding: 85-1308)

CAAAATGAACGGCGTGGAAGGGAACAACGAGCTCCCTCTCGCTAACACCTCGACCTCCGCCCTTGTCCCGGAAGATCTGG ATCTGAAGCAAGACCAGCCGCTCAGCGAGGAAACTGACACGGTGCGGGAGATGGAGGCTGCAGGTGAGGCCGGTGCGGAG GGAGGCGCGTCCCCGATTCGGAGCACTGCGACCCCCAGCTCTGCCTCCGAGTGGCTGAGAATGGCTGTGCTGCCGCAGC ATAAAAATGGCTGTCAGCTTGCAGGGCCGCTCAGCCCTGCTAAGCCAAAAACTCTGGAAGCCAGTGGTGCAGTGGGCCCTG GGGTCGCAGATGATGCCAGGGCCGPAAGAAGACCAAGGTAATGACTACCAAGGGCGCCATCTCTGCGACTACAGGCAAGA CTCGTCCTAGAGCCCCTAAGATCAATAACTGCATGGACTCCCTGGAAGCCATCGATCAAGAGCTGTCAAATGTAAATGCG CAAGCTGACAGGGCCTTCCTCCAGCTGGAACGCAAATTTGGGCGGATGAGAAGGCTCCACATGCAGCGCCGAAGTTTCAT CATCCAAAACATCCCAGGTTTCTGGGTCACAGCGTTTCGGAACCACCCGCAACTGTCACCGATGATCAGTGGCCAAGATG AAGACATGATGAGGTACATGATCAATTTAGAGGTGGAGGAGCTTAAGCACCCAAGAGCAGGGTGCAAATTTAAGTTCATC TTCCAAAGCAACCCCTACTTCCGAAATGAGGGGCTGGTCAAAGAGTACGAGCGCAGATCCTCAGGTCGAGTGGTGTCGCT CTCTACGCCAATCCGCTGGCACCGGGGTCAAGAACCCCAGGCCCATATCCACAGGAATAGAGAGGGGAACACGATTCCCA GTTTCTTCAATTGGTTCTCAGACCACAGCCTCCTAGAATTCGACAGAATAGCTGAAATTATCAAAGGGGAGCTTTGGTCC AATCCCCTACAATACTACCTGATGGGCGATGGGCCACGCAGAGGAGTTCGAGTCCCACCAAGGCAGCCAGTGGAGAGTCC CAGGTCCTTCAGGTTCCAGTCTGGCTAAGCTCTGCCCTCGTGAGAAGCTCTTACAGAAGAGTCCTTACCACCTTCTCAGC TTGGCTAGCAGCATGCAGCCTTCTGTCTGCTTTCTCTTCCTTGGATTGTGTCCTTTGGTTCTTAAGTCTCCGGTAGTT TCAAGGTTGTGGCTTCCAAGTCTTTGCTCTTCTTTCTCTTGGCCATCACGATGTCCTGCATAGTGTTAATGGTGTTCCAA GTGCATGGCCTCCAAACTGCTTCTATGCCAAGCTCACGTGCTGTAGTTTGTACTGCTTTTCTTTGCATGGCTTGGTTCCT GAACTAGCCAGATTTCATACTGTGTTCCCGATATCTATGTACTGTGAAGAACTGTGAGTTTCGCCACTGCAAGATGGGAC TGTATCCCAATCCAGCCATCAGCCCAACAGGACATTCCAAGCTGTCACCAACTGATCCTAGCTGTCTTCCTGGGCCTTTG CCATTTACCCTGCTTTTTATCTATAGAATGAGCAGGTGGCTGGTAGGTGACTACTAGGTAAGAGTGAAGTATTAGGTGAG

Human 33b7 (106d5) DNA (coding: 88-1332)

GGGGTGGTGCTAGACGTTTCGGGCAGAGCTCGGCCGCTGCGGAGGACAAGGAACTCTCCCTCTCCCACTAGTCTGACTTC TTCCAAAATGAGCGGCCTGGATGGGGGCAACAAGCTCCCTCTCGCCCAAACCGGCGGCCTGGCTGCTCCCGACCATGCCT $\tt CAGGAGATCCGGACCTAGACCAGTGCCAAGGGCTCCGTGAAGAAACCGAGGCGACACAGGTGATGGCGAACACAGGTGGG$ GGCAGCCTGGAGACCGTTGCGGAGGGGGGGTGCATCCCAGGATCCTGTCGACTGTGGCCCCGCGCTCCGCGTCCCAGTTGC CGGGAGTCGCGGCGGTGCAGCGACCAAAGCCGGGCAGGAGGATGCTCCACCTTCTACGAAAGGTCTGGAAGCAGCCTCTG CCGCCGAGGCTGCTGACAGCAGCCAGAAAAATGGCTGTCAGCTTGGAGAGGCCCCGTGGCCCTGCTGGGCAGAAGGCTCTA GAAGCCTGTGGCGCAGGGGGCTTGGGGTCTCAGATGATACCGGGGAAGAAGGCCAAGGAAGTGACGACTAAAAAACGCGC CATCTCGGCAGCAGTGGAAAAAGGAGGAGAAGCAGGGGCGGCGATGGAGGAAAAGAAGGTAGTGCAGAAGGAAAAAAAGG TGGCAGGAGGGGTGAAAGAGAGACACGGCCCAGGGCCCCGAAGATCAATAACTGCATGGACTCACTGGAGGCCATCGAT CCACATGCAGCGCAGAAGTTTCATTATCCAGAATATCCCAGGTTTCTGGGTTACTGCCTTTCGAAACCACCCCCAGCTGT CACCTATGATCAGTGGCCAAGATGAAGACATGCTGAGGTACATGATCAATTTGGAGGTGGAGGAGCTTAAACACCCCAGA GCAGGCTGCAAATTCAAGTTCATCTTTCAGGGCAACCCCTACTTCCGAAATGAGGGGGCTTGTCAAGGAATATGAACGCAG ATCCTCTGGCCGGGTGGTGTCTCTTTCCACTCCAATCCGCTGGCACCGAGGCCAAGACCCCCAGGCTCATATCCACAGAA **ACCGGGAAGGGAACACTATCCCTAGTTTCTTCAACTGGTTTTCAGACCACAGCCTTCTAGAATTCGACAGAATTGCAGAG ATTATCAAAGGAGAACTGTGGCCCAATCCCCTACAATACTACCTGATGGGTGAAGGGCCCCGTAGAGGAATTCGAGGCCC** ACCAAGGCAGCCAGTGGAGAGCGCCAGATCCTTCAGGTTCCAGTCTGGCTAATCTCTGTCCTGTGAGAAGCTTCTGCACA AGTTTCCTTACCACCTCCTCTTGGACCTATGCTTGGCCAACAGCATGCAGTCTTCCATCTGCTTTCTTCATACTGTGG GGGCCTTCATGCTTTTCTGCATTGTGTTAACATGTTTCAAGTGCATGGCCTTCTACGGCCTTCTATGCCAAGCGTATGATA CTATAGATATAGTGTACCATACTGCCTTTCTTTGCATGGCTTGGACCCTATCTGTGACCATGCTCTTCTCCCAATTTAAG ATACCCATGTACTTATGGTAAGCTATTTGGGTATTACCACTGCAAGACAAAACTGATATCTTAACCCGGCCATCAACCCA **AATTGGACATTCCAGACTACCAACTGGATCCCAGCTGCCTTCCTGGGCTTGTGCCATCCACCCTACTGGTTATCTGA** TAGAACAAGCTGGTGGCTGATGGGTGACTGCTAGGCGTGACTGAGGTAATAGATGAAAAGTGTTCTATGTTATCACATTG GTTTTCCTGTACCTTTGGTTACTCTACGTCATGACCAGCTGCTGGTGAGTATGAAGCCTGTGCTATAGCCCCACCCCTACT CACTCTCACCTTCTGGTTGAACTTTGCTTAGGCCACCATTGTCTGCCTCATCAGGAACTATCTGTAGACGTAGCTCCCAG GGAGCTCACAGCAACACCCCCTACCACCAGGATGGGCAGTAATATGTGACAGAGCCCAAAGCAAGGCTGGAACGCAGTCC CTTCCAGCTTAGTCTTTCTGACTCCTAGCCAACAAACCATCCTTAATGTGAGCAACTTCTTTAGGCATTTCCTCTTTTCC CCGCCTGCACCCACTCTGAACATGACAAAAGTTGCCAGAGTTGGGGCATTGAGGAAGAGATATTTCTGGAATGTGAGACT CTCTGAAGCAGTTTTAGCTTATTAACAGAAAACAAAACTGGCAAAGCAGGCTTTTTGTTTAATTTGCTCTTTTCCCTGATT GTGTTCAGAGAAAAGGTTATGATTAAATGGGCTCCAGATCTCTTATTGCCCTTATTCCTCCACCCCACTTCTTTTAGCA AGGTCTGAAAGTTTCAAAGGGAGACCTATAGGTTAATTGTTTAGTTATAGGCAGTGTTAAATTAGGCAGATTTTGACATA AGGGCCTCACAGTGATGGGTTCAGGACGGGTCAAAGGCAAAGGCCTTTGTGATGTGAGCAAAGGCAACCAAAACTTAGCC TCACTCCACTTTTCTAAAGATGGAAATTCTTTTTTGGGCCTTGGACTGCTTCTAGGGTAGCATTTTGTAGGTCACTCTTC TCCTTTGTACTATTTTGTTTCTGCCCTGATGTCCCTTGGGTCTCCATCCTACTGCCTGGCTTTCTTGGCCCTCATTTCTC AGCTTCTGCATTTCCTTCCCTGCTCCTAACAAATGAAGAAGCAGGCTGCAGCCTGCATTGTGGAAGATCTCCAGCCTCCT tgtaggggataaggggatgtgtagcatctgtgtggattttcacggacaagttccagtaggtgggacagtgatgccgtcaa GGCTTAGTTATGATCATGTGTGGTGATAAAGACCATCCACCATCACCCTTTTCCCCCTTTGGTTTTGAAGGCCTTGCCCTA AGCTACCTGAGGGTTTAGGAGGTCTGAACACACACAGTGGAGAGGTTAATCTAGGTTGGGAAACTGAGTAAAAGTCCAGA GCAGGAATGAGCCTGCTGTGGCGTGGGTTTGGAAAGGCTCACAGGAAAGAACCTGCAGGATCAGGGGTGGGAGGGGAAGGC CCCTGAGGTGCTCTCCAGGGAAGAGGGGCTGGGGTTTAAATAGCATGCTTGGAGGAAGATTTTCCTAATTTTTCCTAA GTCCTTGAATTCACCAGTAGATTTTTGTAAACAAAATGTAAGTCGATGTTTTCTCTCAATTATCCTAGGAGTGACCTTTA TATGTGTGGAAGATTAATGGTATATGCTCCTTATGTCACTGTTTTTGAGTAAAATCCATTTCCTTTCTCTGTTTCAGCCT ATGACAAAATTGATGTTTACAGGCCTGCTTTTTGCTTATAATTGACAACATGTGCAAAAATACCAAATTTGTGTCCTGTG CAGTATGAAGAATTCAGTGAATATTCATTAATGTATTAGCTTGTTTTGCTCTCTGTTCATATATGGCTCTAFTCTTAGAA ATATAATTTGAATGTGATCTTTCAATAGTCTGAATATTTTACAAATTATAGCTATGTCTTGTGAAAATAACCTCAAAAAG **AAAAATACGACTCTGTTGTCTTACTTGATATTTTCTTGCCCTAGTAATGTACTTGACATTTATGTTCCTAAGCAGTGTAAG** TACCAGTAGAATTTCTCTGTCAAACTCAATGATCATTTAGTACTTTTGTCTTCTCCCATGTGCTTGAAGGAAAATAAAG

Human 33b7 (106d5) protein

MSGLDGGNKLPLAQTGGLAAPDHASGDPDLDQCQGLREETEATQVMANTGGGSLETVAEGGASQDPVDCGPALRVPVAGS RGGAATKAGQEDAPPSTKGLEAASAAEAADSSQKNGCQLGEPRGPAGQKALEACGAGGLGSQMIPGKKAKEVTTKKRAIS AAVEKEGEAGAAMEEKKVVQKEKKVAGGVKEETRPRAPKINNCMDSLEAIDQELSNVNAQADRAFLQLERKFGRMRRLHM QRRSFIIQNIPGFWVTAFRNHPQLSPMISGQDEDMLRYMINLEVEELKHPRAGCKFKFIFQGNPYFRNEGLVKEYERRSS GRVVSLSTPIRWHRGQDPQAHIHRNREGNTIPSFFNWFSDHSLLEFDRIAEIIKGELWPNPLQYYLMGEGPRRGIRGPPR QPVESARSFRFQSG

Rat 1p protein (partial)

LKGARPRVVNSTCSDFNHGSALHIAASNLCLGAAKCLLEHGANPALRNRKGQVPAEVVPDPMDMSLDKAEAALVAKELRT LLEEAVPLSCTLPKVTLPNYDNVPGNLMLSALGLRLGDRVLLDGQKTGTLRFCGTTEFASGQWVGVELDEPEGKNDGSVG GVRYFICPPKQGLFASVSKVSKAVDAPPSSVTSTPRTPRMDFSRVTGKGRREHKGKKKSPSSPSLGSLQQREGAKAEVGD QVLVAGQNRDCAFLWEDRLCSRLLVWH

Rat 1p DNA (partial, coding:1-804)

CTGAAAGGGGCGAGGCCCAGGGTGGTGAACTCCACCTGCAGTGACTTCAACCATGGCTCAGCTCTGCACATCGCTGCCTC GAATCTGTGCCTGGGCGCCGCCAAATGTTTACTGGAGCATGGTGCCAACCCAGCGCTGAGGAATCGAAAAGGACAGGTAC CTGCTAGAAGAGGCTGTGCCACTGTCCTGCACCCTTCCTAAAGTCACACTACCCAACTATGACAACGTCCCAGGCAATCT CATGCTCAGCGCGCTGGGCCTGCGTCTAGGAGACCGAGTGCTCCTCGATGGCCAGAAGACGGGGCACGCTGAGGTTCTGCG GGACCACCGAGTTCGCCAGTGGCCAGTGGGTGGGCGTGGAGCTAGATGAACCGGAAGGCAAGAACGACGGCAGCGTTGGG GGTGTCCGGTACTTCATCTGCCCTCCCAAGCAGGGTCTCTTTGCATCTGTGTCCAAGGTCTCCAAGGCAGTGGATGCACC AAGGGAAGAAGTCCCCATCTTCCCCATCTCTGGGCAGCCTGCAGCAGCGTGAAGGGGGCCAAAGCTGAAGTTGGAGAC TTGAACTGGACCAGCCCACGGGCAAGCATGACGGCTCTGTGTTCGGTGTCCGGTACTTTACCTGTGCCCCGAGGCACGG GTCTTTGCACCAGCATCTCGTATCCAGAGGATTGGTGGATCCACTGATCCCCCTGGAGACAGTGTTGGAGCAAAAAAAGT GCATCAAGTGACAATGACACAGCCCAAACGCACCTTCACAACAGTCCGGACCCCAAAGGACATTGCATCAGAGAACTCTA TCTCCAGGTTACTCTTCTGCTGCTGGTTTCCTTGGATGCTGAGGGCGGAGATGCAGTCTTAGAGACCTGGATACCTGACA CAGAGACAGAGTCCCCTCTAGCATCTCCTGACACAAGGAGACCCCAGTCACCCTAAGATAGAGATTCCCAGTGACACCTC CAGAATAGAAACCCCGTTAGCCAGCCCTCGATTACTGAGGTCCCATTATTAACAGATCTCCCCATGACGACTCCCCCAAAT ACAGACCTCATGTTACCCCAAAAGAGATTCCCTGAGTAGCACCTTCAGGCTAGTCCCTGTCCCCTACCCCTCAGAGCAGA TTTCCCCCAATAAACATTTTCCACATCACCCAAGGGATGCTGACCCTCTCCACGACAGGACGTTCTTGAGTTACCAGTGG TCACTATCCCCATGTAACATCAGTCTCCTCAAAATGGCGTGAGGTCACTAGAAAGACCTTATACTCTCCTCCTCCTCTCA GAGATGCCCTCCATTCACTTAAGTCCCTGTTCTCACCCCTGAACAAGACACCTAATTAACCGGCCCACTCACCTCAATTA CAAACACCAAAATCGTCCTGGAAGCATGAATTACAGGACAGGCAAGTCTTCCTGCCCCTCTGCACCCTTGAGAAACCCCCCAG TGCCTTGTATGAAGCCCACCCCACATGGCCCACAGTCCCTGTGCTGGCCAAGGCTCCCAGAAAATTCTCTATTTTTTAAA GTAATAACTTCCCCCCTTTGGGGGGATCCCCAAATTTGGAGACCCCATTCTAGAACACTGGGGAGTTCAAATTCCAGAG AGAATATATATATATAATCCCCAATTCCCCATGCTTCCAAGCCCTACAATCTCTAGAAGACCCCAAATTTCTAATTC CCAGGACTTCCCCTACCCAAGTCACAGAATCTTCAAATCCCCAGGGAATCCCAAACTTAAGATACCAATCCCAAACCCTC TCTCAAACCTGACTCCCAGGCACCAGGAGACCCCCAAACAGAAAGTCCCATCTTTGGAACAAGGATAGGACTCTAATACCC TTAGTCCATGGATCTTTAATTTCCCAACCTCCAAACTCCATGGGCCCCACCCTCAAGGGAACCCCCAAGATCCAAATCTC TGATAACTAATATGTGCAGGGCCCCAGGGCTCTAACAGGACCCCAAATCATGGAGTCCCTACTTCAATCTACCTTCTGGT CACAGGTCCAAGACACTAAATCTGAGTCATTGGCCCCAAAGGACTTCACAGCACCTGGGCCAGACTAACAGCCTGAGGGA GAACCTGAGGGCCCCGTGGGTCCAGAGCAGACCTGGGGCCCTGACCACCAAGGACAGCTCACGACTGCCCCTTCACTGCA AAA

Rat 7s Protein (partial)

ADSTSRWAEALREISGRLAEMPADSGYPAYLGARLASFYERAGRVKCLGNPEREGSVSIVGAVSPPGGDFSDPVTSATLG
IVQVFWGLDKKLAQRKHFPSVNWLISYSKYMRALDEYYDKHFTEFVPLRTKAKEILQEEEDLAEIVQLVGKASLAETDKI
TLEVAKLIKDDFLQQNGYTPYDRFCPFYKTVGMLSNMISFYDMARRAVETTAQSDNKITWSIIREHMGEILYKLSSMKFK
DPVKDGEAKIKADYAQLLEDMONAFRSLED

Rat 7s DNA (partial, coding: 1-813)

GCTGACTCTACCTCTAGATGGGCTGAGGCCCTCAGAGAAATCTCTGGTCGCTTAGCTGAAATGCCTGCAGATAGTGGATA **AAGGGAGTGTCAGCATTGTAGGAGCAGTTTCTCCACCTGGTGGTGATTTTTCTGATCCAGTCACATCTGCTACTCTGGGT** ${\tt CAGCAAGTACATGCGCGCCCTGGACGAGTACTATGACAAACACTTCACAGAGTTCGTGCCTCTGGAGACCAAAGCTAAGG}$ AGATTCTGCAGGAAGAGGAGGATCTGGCGGAAATCGTGCAGCTCGTGGGAAAGGCGTCTTTAGCAGAGACAGATAAAATC ACCCTGGAGGTAGCAAAACTTATCAAAGATGACTTCCTACAACAAAATGGGTACACTCCTTATGACAGGTTCTGTCCATT GTGACAATAAGATCACATGGTCCATTATCCGTGAGCACATGGGGGGAGATTCTCTATAAACTTTCCTCCATGAAATTCAAG GATCCAGTGAAGGATGGCGAGGCAAAGATCAAGGCCGACTACGCACAGCTTCTTGAAGATATGCAGAACGCATTCCGTAG CCTGGAAGATTAGAACTGTGACTTCTCCTCCTCCTCCTCCGCAGCTCATATGTGTATATTTTCCTGAATTTCTCATCTCCA ACCCTTTGCTTCCATATTGTGCAGCTTTGAGACTAGTGCCTCGTGCGTTCTCGTTCATTTTGCTGTTTCTTTGGTAGGTC TTATAAAACACACATTCCTGTGCTCCGCTGTCTGAAGGAGCTCCTGACCTTTGTCTGAAGTGGTGAATGTAGTGCATATG AGTAAACTGTAAACAGGACTACTGCATGTGCTCTATTGGGGATGGAAGGCCAGATCTCCATACCGTGGACAGGTACATAA GGAAACTAGACCACTTGCAACTTAGTGTTTGTTGAGTAACCATTTTGCAGGAAGTATTTCCATTTAAAAAACAAAAGATT AATGTTCCAATTATTTGTAGCTTCCCCAGTATCAATCAGGACTGTTTGTGGCGCACTTGGGAACTATTTTGTTTTCCTAA CAGACGTTTGCAAGGCTGAACGTAATAGATAAATCAGTTCCCTCTGAAAGTGTGAAAGTAAAAAGAGAGCTAGGTGGTCA GACTTAAATTGACATCGTCTTGTTTAAGCATATTTTATTTCACTGAGAGATTTAATATCAAGGACTTTTATATACTCAAT TACTAGGAAATCTTTTTTTAAGTACAATTTAAAAATCATTGAAAATGTGATCCACATCATAGCCATTTTCCTTATATTTA TACCAGTTCCAGGAAATATTTTGTTTTCTTTCACTGGCTCAGAAAGCTCCTCAAAGTACCTGGTCCCTGAAGCTTCCTAT TGTTTTGGTGTGTTTAAATAATAATTCCATATTTGCATAACGAGGCTCGCTTCTGAGAGCTTGGAGATCGTGCTCCCTCT ${\tt TCACTCTCGGGGTGATAATGCTGGCGCCATGCTACCTCTTCAGGAGGGGAAGGGGATTGAACATGGCTAACACTCTCAA}$ GTACACAAGCGTAACGACAAAGTATTTATTTTAAGCCTTGGTATGTTTAAATTATTAGGTGGTGCATTTCTTATGGT CTTTTGGGTAGACATAGTATACACTTCAGATGTAATGTGTAAATCCTTGCTAGTGCATGTCTACACGATAGACTGCTATT ${\tt CAAGAAGGATATTCTTCCACATAACAATTTAAAAACTATTAAAATCAGATATGGATTATGCAATGACTTGTTGAGAGGTGG}$ ATTAACGGTGCTGCTTAATCAGTTTGCTTCCAATATGGCTTCGTATCCAGAAGCCCTGACTAGTGGAGATGAGAAAGATT ${\tt GAAACAACGCTCAGATTTTCACGGTAACTTTCCCTCTGCCCACACTGTAGAGTTTCAGATTGTTCACTGATAGTGCTTCT}$ AGTGCAGCCGGTTAAACAAGTTTCATATGTATTTTTCCAGTGTTAAATCTCATACCTATGCCCTTTGGAAAGCTCCATCC TGAACAATGAATAGAAGAGGCTATATAAATTGCCTCCTTATCCTTAAGATTTCACTATCTTTATGTTAAGAGTAATGTAT AATTATTAAAATCTATGAAAAATAAAAAGTGGATTTAAATTAAGAGATC

Rat 29x protein

ARLPAPEHARQQPLLSGPEPGSSARVPVPGVASRRQPRGGKPPSGDGLESGPSPRPLLHARGEAGLHRQSGRVPHTGTAY FADEPTEAQAPGGFCVSPSLLGVRWPACATRTPGSLPLSPPSAQPRTLWPTPPAGPSSRMVARNQVAADNAISPASEPRR RPEPSSSSSSSPAAPARPRPCPVVPAPAPGDTHFRTFRSHSDYRRITRTSALLDACGFYWGPLSVHGAHERLRAEPVGT FLVRDSRQRNCFFALSVKMASGPTSIRVHFQAGRFHLDGSRETFDCLFELLEHYVAAPRRMLGAPLRQRRVRPLQELCRQ RIVAAVGRENLARIPLNPVLRDYLSSFPFOI

Rat 29x DNA (coding: 433-1071)

AGTTCCCGGCGTGGCCAGTAGGCGGCAGCCGCGAGGCGGCAAGCCCAGCGGGGACGCCTGGAGTCGGGCCCCTCTC $\tt CTGTGCCACCCGGACGCCCGGCTCACTGCCTCTGTCTCCCCCATCAGCGCAGCCCCGGACGCTATGGCCCACCCCTCCAG$ CTGGCCCCTCGAGTAGGATGGTAGCACGTAACCAGGTGGCAGCCGACAATGCGATCTCCCCGGCATCAGAGCCCCGACGG ${\tt CCCGGCTCCGGGGGGACACTCACTTCCGCACCTTCCGCTCCCACTCTGATTACCGGGGGCATCACGCGGGACCAGCGCTCTCCC}$ TGGACGCCTGCGGCTTCTACTGGGGACCCCTGAGCGTGCATGGGGCGCACGAACGGCTGCGTGCCGAGCCCGTGGGCACC TTCTTGGTGCGCGACAGTCGCCAGCGGAACTGCTTCTTCGCGCTCAGCGTGAAGATGGCTTCGGGCCCCACGAGCATTCG TGTGCACTTCCAGGCCGGCCGCTTCCACCTGGACGGCAGCCGCGAGACCTTCGACTGCCTCTTCGAGCTGCTGGAGCACT CGCATCGTGGCCGCCGTGGGTCGCGAGAACCTGGCACGCATCCCTCTTAACCCGGTACTCCGTGACTACCTGAGTTCCTT TGTGTCTGGGGCCAGGACCTGAACTCCACGCCTACCTCTCCATGTTTACATGTTCCCAGTATCTTTGCACAAACCAGGGG TGGGGGAGGGTCTCTGGCTTCATTTTTCTGCTGTGCAGAATATTCTATTTTATATTTTACATCCAGTTTAGATAATAAA

Fig. 30

Rat 25r DNA (coding 130-

Fig. 31

Rat 5p protein

 ${\tt MPSQMEHAMETMMLTFHRFAGEKNYLTKEDLRVLMEREFPGFLENQKDPLAVDKIMKDLDQCRDGKVGFQSFLSLVAGLIIACNDYFVVHMKQKK}$

Rat 5p DNA (coding: 52-339)

Fig. 32

Rat 7q protein

 $\label{thm:constraint} {\tt MAYAYLFKYIIIGDTGVGKSCLLLQFTDKRFQPVHDLTIGVEFGARMITIDGKQIKLQIWDTAGQESFRSITRSYYRGAA\\ {\tt GALLVYDITRRDTFNHLTTWLEDARQHSNSNMVIMLIGNKSDLESRREVKKEEGEAFAREHGLIFMETSAKTASNVEEAF\\ {\tt INTAKEIYEKIQEGVFDINNEANGIKIGPQHAATNASHGGNQGGQQAGGGCC} \\$

Rat 7q DNA (coding 1-639)

Fig. 33

Rat 19r protein

MVLLKEYRVILPVSVDEYQVGQLYSVAEASKNETGGGEGVEVLVNEPYEKDDGEKGQYTHKIYHLQSKVPTFVRMLAPEG ALNIHEKAWNAYPYCRTVITNEYMKEDFLIKIETWHKPDLGTQENVHKLEPEAWKHVEAIYIDIADRSQVLSKDYKAEED PAKFKSIKTGRGPLGPNWKQELVNQKDCPYMCAYKLVTVKFKWWGLQNKVENFIHKQEKRLFTNFHRQLFCWLDKWVDLT MDDIRRMEEETKRQLDEMRQKDPVKGMTADD

Rat 19r DNA (coding 1-816)

Fig. 34

Monkey KChIP4c (jlkxa053c02) DNA sequence (CD: 122-811)

CACTTCTCAGTGGCTGTGGTCGGACCATGACCTAGCTGACCATGAACTTGGAAGGGCTTGAAATGATAGCAGTTCTGATC GTCATTGTGCTTTTTGTTAAATTATTGGAACAGTTTGGGCTGATTGAAGCAGGTTTAGAAGACAGCGTGGAAGATGAACT ${\tt AGATCCTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGAGATTTACTCGCAG}$ TTCTTTCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACAATGGAGCTGTGAG TTTCGAGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGGGCATTTAATCTGT ATGATATAAATAAAGATGGCTACATCACTAAAGAGGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGGGTAAA TGTACATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATGGACAAAAATAAAGA TGGGGTTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGCTCCATGCAGCTCTTTGAAA ATGTGATTTAACTTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACTATTCTACCACCCTTAAAGTCGGAGCTAC CACTTTTAGCATAGATTGCTCAGCTTGACACTGAAGCATATTATGCAAACAAGCTTTGTTTTAATATAAAGCAATCCCCA AAAGATTTGAGTTTCTCAGTTATAAATTTGCATCCTTTCCATAATGCCACTGAGTTCATGGGATGTTCTAACTCATTTCA TACTCTGTGAATATTCAAAAGTAATAGAATCTGGCATATAGTTTTATTGATTCCTTAGCCATGGGATTATTGAGGCTTTC TTAAGTAAACAAATAAGATTACTACAATTAAACACATAGTTCCAGTTTCTATGGCCTTCACTTCCCACCTTCTATTAGAA ATTAATTTATCTGGTATTTTTAAACATTTAAAAATTTATCATCAGATATCAGCATATGCCTAATTATGCCTAATGAAAC AGGGTCAGGATATCTATCCTCCAGTATATGTTAATGCTTAATAACAAGTAATCCTAACAGCATTAAAGGCCAAATCTGTC CTCTTTCCCCTGACTTCCTTACAGCATGTTTATATTACAAGCCATTCAGGGACAAAGAAACCTTGACTACCCCACTGTCT ACTAGGAACAAACAACAGCAAGCAAAATTCACTTTGAAAGCACCAGTGGTTCCATTACATTGACAACTACTACCAAGAT TCAGTAGAAAATAAGTGCTCAACAACTAATCCAGATTACAATATGATTTAGTGCATCATAAAATTCCAACAATTCAGATT CACAAAGACCAAGAGGCTACAGAAGGAAGGAAATTTGCAACTGTCTTTGCAACAATAAATCAGGTATCTATTCTGGTGTAG AGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAGAGTAGTACAATACATGTACACTGAAATTTGCC ATCGCGTGTTTGTGTAAACTCAATGTGCACATTTTGTATTTCAAAAAGAAAAATAAAAGCAAAATAAAATGTTTATAAC TCTAAAAAAAAAAAAAAAAA

Monkey KChIP4c protein sequence

 $\label{thm:constraint} $$ MNLEGLEMIAVLIVIVLFVKLLEQFGLIEAGLEDSVEDELEMATVRHRPEALELLEAQSKFTKKELQILYRGFKNECPSG $$ VVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEKLMWAFNLYDINKDGYITKEEM $$ LDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIMRSMQLFENVI.$

Monkey KChIP4d (jlkx015b10) DNA sequence (CD:64-816)

GTCGACAGACGCCCCTGGCCGGTGGACTCCTGAGTCTTACTCCTGCACCCTGCGTCCCCAGACATGAATGTGAGGAGAGT GGAAAGCATTTCGGCTCAGCTGGAGGAGGCCAGCTCCACAGGCGGTTTCCTGTATGCTCAGAACAGCACCAAGCGCAGCA TTAAAGAGCGGCTCATGAAGCTCTTGCCCTGCTCAGCTGCCAAAACATCGTCTCCTGCTATTCAAAACAGCGTGGAAGAT GCTTCAGATCCTTTACAGAGGATTTAAGAACGAATGCCCCAGTGGTGTTGTTAATGAAGAAACCTTCAAAGAGATTTACT ${\tt CGCAGTTCTTTCCACAGGGAGACTCTACAACATATGCACATTTTCTGTTCAATGCGTTTGATACGGACCACAATGGAGCT}$ GTGAGTTTCGAGGATTTCATCAAAGGTCTTTCCATTTTGCTCCGGGGGACAGTACAAGAAAAACTCAATTGGGCATTTAA TCTGTATGATATAAATAAAGATGGCTACATCACTAAAGAGGAAATGCTTGATATAATGAAAGCAATATACGACATGATGG GTAAATGTACATATCCTGTCCTCAAAGAAGATGCACCCAGACAACACGTCGAAACATTTTTTCAGAAAATGGACAAAAAT AAAGATGGGGTTGTTACCATAGATGAGTTCATTGAAAGCTGCCAAAAAGATGAAAACATAATGCGCTCCATGCAGCTCTT TGAAAATGTGATTTAACTTGTCAACTAGATCCTGAATCCAACAGACAAATGTGAACTATTCTACCACCCTTAAAGTCGGA GCTACCACTTTTAGCATAGATTGCTCAGCTTGACACTGAAGCATATTATGCAAACAAGCTTTGTTTTAATATAAAGCAAT $\tt CCCCAAAAGATTTGAGTTTCTCAGTTATAAATTTGCATCCTTTCCATAATGCCACTGAGTTCATGGGATGTTCTGACTCA$ TTTCATACTCTGTGAATATTCAAAAGTAATAGAATCTGGCATATAGTTTTATTGATTCCTTAGCCATGGGATTATTGAGG ATACTTTAAGTAAACAAATAAGATTACTACAATTAAACACATAGTTCCAGTTTCTATGGCCTTCACTTCCCACCTTCTAT TAGAAATTAATTTTATCTGGTATTTTTAAACATTTAAAAATTTATCATCAGATATCAGCATATGCCTAATTATGCCTAAT TGCAAAGGGTCAGGATATCTATCCTCCAGTATATGTTAATGCTTAATAACAAGTAATCCTAACAGCATTAAAGGCCAAAT CTGTCCTCTTTCCCCTGACTTCCTTACAGCATGTTTATATTACAAGCCATTCAGGGACAAAGAAACCTTGACTACCCCAC TGTCTACTAGGAACAAACAAACAGCAAGCAAAATTCACTTTGAAAGCACCAGTGGTTCCATTACATTGACAACTACTACC AAGATTCAGTAGAAAATAAGTGCTCAACAACTAATCCAGATTACAATATGATTTAGTGCATCATAAAATTCCAACAATTC AATATCACAAAGACCAAGAGGCTACAGAAGGAGGAAATTTGCAACTGTCTTTGCAACAATAAATCAGGTATCTATTCTGG TGTAGAGATAGGATGTTGAAAGCTGCCCTGCTATCACCAGTGTAGAAATTAAGAGTAGTACAATACATGTACACTGAAAT AAAAAAAAAAAAAA

Monkey KChIP4d protein sequence

 $\label{thm:minimizer} $$ MNVRRVESISAQLEEASSTGGFLYAQNSTKRSIKERLMKLLPCSAAKTSSPAIQNSVEDELEMATVRHRPEALELLEAQS$$ KFTKKELQILYRGFKNECPSGVVNEETFKEIYSQFFPQGDSTTYAHFLFNAFDTDHNGAVSFEDFIKGLSILLRGTVQEK$$$ LNWAFNLYDINKDGYITKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKNKDGVVTIDEFIESCQKDENIM RSMQLFENVI.$

P.	ALIGNMENT OF MONKEY	r KChIP4	50	30		40	
ਜਜਜਜ	M LTI M	LEWESEGLOTV LEWESEGLOTV NLEGLEMI EASSTOGFLYA	GIVVIICASLK GIVVIICASLK AVLIVIVLFVK ONSTRRSIKER	LTHLLG	LIDFS.	3 C 3 A S C 3 B C 3 A S A S C 3 A S C	KChip4N1 KChip4C KChip4N2 KChip4N3
	2,0	0.9	7.0	0-	06	100	
444	LEMATVRHRPEALEL LEMATVRHRPEALEL LEMATVRHRPEALEL LEMATVRHRPEALEL	LEAQSKTTKKE LEAQSKTTKKE LEAQSKTTKKE LEAQSKTTKKE	LOILYRGFKN LOILYRGFKN LOILYRGFKN LOILYRGFKN	RCPSGVVNN RCPSGVVNN RCPSGVVNN RCPSGVVNN	TERKITES TERKITES TERKITES TERKITES TERKITES	### ### ### ### ### #### #####	KChip4N1 KChip4C KChip4N2 KChip4N3
	otr	120	130 1	140 1	150	160	
104 101 121	STTYAHFLFHAFDT STTYAHFLFHAFDT STTYAHFLFHAFDT	DHNGAVSFEDFI DHNGAVSFEDFI DHNGAVSFEDFI DHNGAVSFEDFI	RGLSILLRGT RGLSILLRGT RGLSILLRGT RGLSILLRGT	VOEKLNWAFN VOEKLNWAFN VOEKLNWAFN VOEKLNWAFN	LYDINKDG LYDINKDG LYDINKDG LYDINKDG		KChip4N1 KChip4C KChip4N2 KChip4N2
	170	190	190 200	0	210		
164 164 160 181	MLDIMKAIYDMNGKC MLDIMKAIYDMNGKC MLDIMKAIYDMNGKC	TYPVLKEDAPR TYPVLKEDAPR TYPVLKEDAPR	ONVETPFORM ONVETPPORM ONVETPPORM	HCIIKWKEK	DGVVTIDE TASNKTRM DGVVTIDE DGVVTIDE	FINESCO FINESCO FINESCO FINESCO	KChIP4N1 KChIP4C KChIP4N2 KChIP4N3
	220 230						
218 223 214 235	KDENIMRSMOLFENV KGBGYLSSSI KDENIMRSMOLFENV KDENIMRSMOLFENV	 Пон н					KChip4N1 KChip4C KChip4N2 KChip4N3
			i	1			•

Fig. 37

BEST AVAILABLE COPY

	СНО	
CURRENT PARAMETER	rKv4.2	rKv4.2 +KChlP2
PEAK CURRENT (nA/cell, at 50 mV)	0.51 ±0.098	3.3 ±0.45
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	18.6 ±2.8	196.6 ±26.6
INACTIVATION TIME CONSTANT (ms, at 50 mV)	28.47 ±3.5	95.14 ±8.3
RECOVERY FROM INACTIVATION TIME CONSTANT (ms, at -80 mV)	257.9	49.5
ACTIVATION V _{1/2} (mV)	20.5	-2.2
STEADY-STATE INACTIVATION V _{1/2} (mV)	-47.1	-45.7

Fig. 38

BEST AVAILABLE COPY

	CHO		
CURRENT PARAMETER	rKv4.2 +RBG4	rKv4.2 +KChlP3	
PEAK CURRENT (nA/cell, at 50 mV)	0.46 ±0.084	3.5 ±0.99	
PEAK CURRENT DENSITY (pA/pF, at 50 mV)	29.7 ±11.2	161.7 ±21.8	
INACTIVATION TIME CONSTANT (ms, at 50 mV)	29.5 ±9.5	67.2 ±14.1	
RECOVERY FROM INACTIVATION TIME CONSTANT (ms, at -80 mV)	435.9	130.8	
ACTIVATION V _{1/2} (mV)	4.1	6.1	

Fig. 39

THEFT	KKKKO	×	99999		विव विव विव विव विव	
1 4 63 1 1	[24 [24 [24 [24 [24		ままままま	2	医医鼠医鼠	
1 1 60 1 1	ជ មុខមេខ		エエエロ	•	ОМММО	
11411	PHUMA		NNNK		прини	
THIL	医医医VA		विक विक विक विक	×	E E E O E	
11811	X ZZGZG		HAKAK		ててんんへ	
IONELI	ててAAA		33333	7	エマVRR	
1 4 5 1 1	DHTH4 4		KZKZK	둽	00000	
10411	<u> </u>		нанана	12	99999	
10011	K WNEEN		** **		KKOZK	
10011	PH PH PH PH		医口医Q区	×	ZZZZZ	
1 24 25 1 1	× 00000		はひままり		我我我忠我	
1 H M 1 1	ымыры		ててなる	×	99999	
1991	XXXXXX		6 6 6 A 6		N N N N N N	
1 1 4 1 1	XXX UH		o o o o o		X K K O M	
11011	fu fu fu fu fu		******		O O E E A	
	00000		SOSTITION		医医耳耳氏	
1 (2) (2) 1	我我我就		нныны		PHH리되다	
1 [4 4] [1	***************************************		H>H>>		> 00 00 00 00 00 00 00 00 00 00 00 00 00	
164611	HHHES		0000000		DMMMD	
I OPP I I	>>0110		ччччч		>>> #>	
1 1 64 1 1	99999		4004A		医耳耳及员	
1 1 01 1	44445		R 4 > H Q		OMMKK	
11811	医瓦克瓦瓦		>>> HH		K K K E E	
	KKKIK		Pu Pu Pu Pu Pu		A A A A A	
IAHII	XXXBD	7-			844BB	
14011	EH EH EH EV EH		医医医鼠员		B M D M M	
I SE MILI	[24 [24 [24 [24		Pa la la la la		医医医医皮	
MMMII	KWWXK	×	よら耳口豆		张哀哀口至	
SO EN EL I	88888		>> HHH		计寸寸配置	
H H W H H	OOOZK	, 12 14	3 3 4 E A		> < H Pr Pr	
K G H I I	AMAMA	뛉	00000		电阻电量电	
CHELL	MOOKE	N	HAZAA		軍権よれる	
X H H I I	OOOO H	١.	OHONE		8882>	
E C C C I I	MACCHA	74	REDEE		14人姓氏文	
OF HILL	4555				KKKKK	
HAALI	000×>	~			00000	
2010 1 1	пипип		44465		44EE	
маніі	AAAAA		ZZZZZ		BEEEE	
I I FIKE	KKOKK				******	
E O O I I	HHHHH		4444		ннннн	
00011	OOKII		直到直直直		~ W W ~ ~	
MARII	>>> 1		2012年12日日		KKKOD	
1 1 20 1 1	2881 1		***		>==>>	
10411	E G G I I		>> >> >= E4		ннннн	
1 1 1 1 1 1	対立はここ		HZHXX		DOAMO	
1 03 54 1 1	មាស្ស!!		SSESE		로너디디디	
10111	। दिव्य		4 0 4 4 A		BEBBB	
103111	H M M M I		AAAAA	Ņ	医医医医氏	
14111	99911		00000	•	MMMMM	
וו<מי	MAD:		M G G S F		XXXXX	
। घघ। ।	H>OII		A A A A A	×	2 to to to	
· KKKK	₹ 00 00 1 1		Can Can Can Can Can	1	ннннн	
· 真真 S S S	PEDII		Can the Can Can Can	تر بخ	まままひょ	
I Q W Z Z	IMMII		ggggg		00000	•
1 01010112	וופמו		4044	ы	ABAZA	
A D I KK	1>011		******		KKKGZ	
0 % 1 0 0	1 02 04 1 1		нннн	×	ZZZAA	
XXXX	1 24 4 1 1		GGUKK		нанач	
193 193	1122		444		1157 1157 1157 1157	
KChip1 KChip2 KChip3 KChip3 RIP NCS1	KChIP1 KChIP2 KChIP3 KChIP3 HIP		KChIP1 KChIP2 KChIP3 HIP NCS1		KChIP1 KChIP2 KChIP3 KChIP3 HIP	
A H S H S H S H S H S H S H S H S H S H	KCh KCh NCS		A A A B S		K H K Ch	
надан	чачч н		aaaa u		надан	

Fig. 41

ZHH&> >>>01 22200 Q D M K D 甲甲异乙子 그 그 그 이 그 1 1 1 1 1 1 1 1 1 2 1 1 1 0 1 999991 これはじょ \$ \$ \$ \$ \$ \$ **44540** ZZZ>> ннннн ZZZGG 口包包含品 88888 医浆浆谷丸 **000KK** 00040 0 0 × 0 0 医医医氏区 **ВИБИБ**

KChiP1 KChiP2 KChiP3 RIP NCS1

дддд н

