Chapter 3: Using the Eucalyptus polybractea Genome Improved

Genetic Variant Identification Compared to Using a Pseudo-

Reference

Swapan Chakrabarty

College of Forest Resources and Environmental Science, Michigan Technological University,
Houghton, 49931 MI, USA

Supplementary Information 3.1

Figure S1. Venn diagram showing the number of significant associations identified from GWAS (FamCPU, BLINK, and MLMM) with *E. grandis*, *E. polybractea* pseudo and *E. polybractea* reference genome.

Figure S2. Manhattan plots of genome-wide association studies (GWAS) of six different terpene traits using BLINK model. (a, b, c) *E. grandis*, *E. polybractea* pseudo and *E. polybractea* reference genome mapped GWAS hits using 0.23 m, 0.51 m and 0.58 m single nucleotide polymorphisms (SNPs) in 478 *E. polybractea* samples, respectively. The x-axes showing the 11 chromosomes and y-axes show the $-\log_{10}(P)$ value.

Figure S3. Manhattan plots of genome-wide association studies (GWAS) of six different terpene traits using MLMM model. (a, b, c) *E. grandis*, *E. polybractea* pseudo and *E. polybractea* reference genome mapped GWAS hits using 0.23 m, 0.51 m and 0.58 m single nucleotide polymorphisms (SNPs) in 478 *E. polybractea* samples, respectively. The x-axes showing the 11 chromosomes and y-axes show the $-\log_{10}(P)$ value.

Figure S4. QQ plots of genome-wide association studies (GWAS) of six different terpene traits. (a, b, c) QQ plots for *E. grandis*, *E. polybractea* pseudo and *E. polybractea* reference genome mapped GWAS hits using FarmCPU, BLINK, and MLMM model.