Reconstruction (of micro-objects) based on focus-sets using blind deconvolution

Jan Wedekind

November 19th, 2001

Jan. Wedekind@stud.uni-karlsruhe.de

http://www.uni-karlsruhe.de/~unoh

MINIMAN-project

Esprit Project No. 33915 Miniaturised Robot for Micro Manipulation

http://www.miniman-project.com/

Miniman III

people: SHU staff

Sheffield Hallam University microsystems & machine vision lab

http://www.shu.ac.uk/mmvl/

Prof. J. Travis

B. Amavasai

F. Caparrelli

no picture

A. Selvan

people: UKA staff

Universität Karlsruhe (TH)

Institute für Prozeßrechentechnik, **Automation und Robotik**

http://wwwipr.ira.uka.de/microrobots/

J. Wedekind

overview: environment

- Leica DM RXA microscope
 - 2 channel illumination
 - motorized z-table (piezo-driven $0.1 \mu m$)
 - filter-module
- motorized xy-table
- Dual Pentium III with 1GHz processors
 - Linux OS
 - C++ and KDE/QT
- CCD camera 768×576
 - \Rightarrow resolution up to 0.74 $\frac{\mu m}{\text{pixel}}$

Leica DM RXA microscope

overview: objective

- reconstruct from focus-set:
 - surface
 - luminosity and coloring
- identify model-parameters and quality of assembly

basics: discrete fourier transform

• 1D DFT

definition
$$F_k := \sum_{x=0}^{N-1} \mathbf{f}_x \ e^{-\frac{2\pi x k i}{N}}$$
 where $i^2 = -1$

$$\Leftrightarrow \mathbf{f}_x = \frac{1}{N} \sum_{k=0}^{N-1} F_k \ e^{+\frac{2\pi x k i}{N}}$$

2D DFT

analogous
$$F_{kl} := \sum_{x,y=0}^{N-1} \mathbf{f}_{xy} e^{-\frac{2\pi xki}{N}} e^{-\frac{2\pi yli}{N}}$$
, $i^2 = -1$
 $\Leftrightarrow \mathbf{f}_{xy} = \frac{1}{N^2} \sum_{k,l=0}^{N-1} F_{kl} e^{+\frac{2\pi xki}{N}} e^{+\frac{2\pi yli}{N}}$

basics: 1D discrete fourier transform

image domain

frequency domain

$$\forall x \in \mathbf{R} : f(x) = \int_{-\infty}^{\infty} f(x) \sum_{n=-\infty}^{\infty} \delta(x - Tn) \, \mathrm{d}x$$

$$\forall x \in \mathbf{R} : f(x) = \int_{-\infty}^{\infty} f(x) \sum_{n = -\infty}^{\infty} \delta(x - Tn) \, dx$$

$$\Leftrightarrow \forall \omega \in \mathbf{C} : F(\omega) = (F \otimes \lambda \widetilde{\omega}. \left[\frac{2\pi}{T} \sum_{n = -\infty}^{\infty} \delta(\widetilde{\omega} - n \frac{2\pi}{T}) \right])(\omega)$$

basics: 1D discrete fourier transform

image domain

frequency domain

$$\forall x \in \mathbf{R} : f(x) = f(x) \operatorname{rect}(\frac{t}{2T})$$

$$\forall x \in \mathbf{R} : f(x) = f(x) \operatorname{rect}(\frac{t}{2T})$$

$$\Leftrightarrow \forall \omega \in \mathbf{C} : F(\omega) = (F \otimes \lambda \widetilde{\omega}. \left[2T \frac{\sin(\widetilde{\omega}T)}{\widetilde{\omega}T}\right])(\omega)$$

sparse matrices and vectors: images

conservative:
$$\mathbf{x} = \begin{pmatrix} x_{00} & \cdots & x_{0(N-1)} \\ \vdots & \ddots & \vdots \\ x_{(N-1)0} & \cdots & x_{(N-1)(N-1)} \end{pmatrix} \in \mathbf{R}^{N \times N}$$
vector repr.: $\vec{x} = \begin{pmatrix} \vec{x}_0 \\ \vec{x}_1 \\ \vdots \\ \vec{x}_{N-1} \end{pmatrix} = \begin{pmatrix} x_{00} \\ x_{01} \\ \vdots \\ x_{10} \\ \vdots \\ x_{(N-1)(N-1)} \end{pmatrix} \in \mathbf{R}^{NN}$

vector repr.:
$$\vec{x} = \begin{bmatrix} \vec{x}_1 \\ \vdots \\ x_{10} \end{bmatrix} = \begin{bmatrix} \vdots \\ x_{10} \end{bmatrix} \in \mathbf{R}^{NN}$$

sparse matrices and vectors: convolution (i)

matrix repr. of convolution with a 1D-LSI-filters

$$\underbrace{\begin{pmatrix} \widetilde{g}_0 \\ \widetilde{g}_1 \\ \vdots \\ \widetilde{g}_{K+N-1} \end{pmatrix}}_{\in \mathbf{R}^{(K+N-1)}} = \underbrace{\begin{pmatrix} \widetilde{h}_0 & 0 & \cdots & 0 \\ \widetilde{h}_1 & \widetilde{h}_0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ \widetilde{h}_{K-1} & & \widetilde{h}_0 \\ 0 & \ddots & & \widetilde{h}_1 \\ \vdots & \ddots & & \vdots \end{pmatrix}}_{\in \mathbf{R}^{(K+N-1)\times N}} * \underbrace{\begin{pmatrix} \widetilde{f}_0 \\ \widetilde{f}_1 \\ \vdots \\ \widetilde{f}_{N-1} \end{pmatrix}}_{\in \mathbf{R}^N}$$

- vectors of different size \Rightarrow not feasible
- matrix is clumsy and baffles mathematical approaches

sparse matrices and vectors: circulant matrices

$$\mathcal{A} = \begin{pmatrix} a(0) & a(N-1) & \cdots & a(1) \\ a(1) & \ddots & \ddots & \vdots \\ \vdots & \ddots & a(N-1) \\ a(N-1) & \cdots & a(1) & a(0) \end{pmatrix}$$

without proof:

• eigenvalues of
$$A$$
: $\lambda(k) = \sum_{j=0}^{N-1} a(j) e^{-\frac{2\pi k j i}{N}}$

•
$$\mathcal{A} = \mathcal{F}Q_A\mathcal{F}^{-1}$$
 with

$$-Q_A = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_N)$$
 and

- fourier-kernel \mathcal{F}^{-1}

sparse matrices and vectors: fourier kernel

definition of fourier-kernel:
$$\mathcal{F}^{-1} := \left(e^{\frac{2\pi u_{kl}i}{N}}\right)$$
with $\mathcal{U} := \begin{pmatrix} 0 & 0 & 0 & \cdots \\ 0 & 1 & 2 & \cdots \\ 0 & 2 & 4 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$ and $i^2 = -1$

note:

- $\mathbf{X} = \mathrm{DFT}\{\mathbf{x}\} \widehat{=} X = \mathcal{F}^{-1}\vec{x}$
 - $\mathbf{x} = \mathrm{DFT}^{-1}\{\mathbf{X}\} \widehat{=} \vec{x} = \mathcal{F}X \text{ where } \mathcal{F} = \frac{1}{N}(\mathcal{F}^{-1})^*$
 - \bullet $\mathcal{F} = \mathcal{F}^{\top}$

sparse matrices and vectors: convolution (ii)

approximated 1D convolution

$$\underbrace{\begin{pmatrix} \widetilde{g}_{0} \\ \widetilde{g}_{1} \\ \vdots \\ \widetilde{g}_{N-1} \end{pmatrix}}_{=:\widetilde{\widetilde{g}} \in \mathbf{R}^{N}} \approx \underbrace{\begin{pmatrix} h_{0} & h_{N-1} & \cdots & h_{1} \\ h_{1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & & h_{N-1} \\ \vdots & \ddots & & h_{1} & h_{0} \end{pmatrix}}_{=:\widetilde{H} \in \mathbf{R}^{N \times N}} * \underbrace{\begin{pmatrix} \widetilde{f}_{0} \\ \widetilde{f}_{1} \\ \vdots \\ \widetilde{f}_{N-1} \end{pmatrix}}_{=:\widetilde{\widetilde{f}} \in \mathbf{R}^{N}}$$

$$\vec{\widetilde{g}} = \widetilde{H}\vec{\widetilde{f}}$$

sparse matrices and vectors: convolution (iii)

$$\vec{g}_{k} = \sum_{l=0}^{N-1} H_{(k-l) \mod N} \vec{f}_{l}$$

$$\underbrace{\begin{pmatrix} \vec{g}_{0} \\ \vec{g}_{1} \\ \vdots \\ \vec{g}_{N-1} \end{pmatrix}}_{=:\vec{g} \in \mathbf{R}^{N^{2}}} \approx \underbrace{\begin{pmatrix} H_{0} & H_{N-1} & \cdots & H_{1} \\ H_{1} & \ddots & \ddots & \vdots \\ \vdots & \ddots & H_{N-1} \\ H_{N-1} & \cdots & H_{1} & H_{0} \end{pmatrix}}_{=:H \in \mathbf{R}^{N^{2} \times N^{2}}} * \underbrace{\begin{pmatrix} \vec{f}_{0} \\ \vec{f}_{1} \\ \vdots \\ \vec{f}_{N-1} \end{pmatrix}}_{=:\vec{f} \in \mathbf{R}^{N^{2}}}$$

- $\Rightarrow \vec{g} = H\vec{f}$ is 2D convolution!
- \Rightarrow H is (block) circulant

EM-algorithm: description

• "incomplete" data-set y

given:

- many-to-one transform $y = g(z_1, z_2, \dots, z_M) = g(z)$
- pdf $p_z(z;\theta)$ and cond. pdf $p(z|y;\theta)$ 1. expectation: Determine expected
- log-likelihood of complete data

$$U(\theta, \theta_p) := E_z \{ \ln p_z(z; \theta) | y; \theta_p \}$$
$$= \int \ln p_z(z; \theta) p(z|y; \theta_p) dz$$

EM-algorithm:

- 2. maximisation: Maximize $\theta_{p+1} = \operatorname{argmax} U(\theta, \theta_p)$
- 3. goto step 1 until θ converges

EM-algorithm: overview of representations

meaning	conversative		sparse matrices	
	real	fourier	real	fourier
sets	$\mathbf{R}^{N imes N}$	$\mathbf{C}^{N imes N}$	$\mathbf{R}^{N^2,N^2 imes N^2}$	$\mathbf{C}^{N^2,N^2 imes N^2}$
image	X	X	\vec{x}	X
PSF	h	Δ	D	Q_D
cov. image	C_x	S_x	Λ_x	Q_x
cov. noise	$\sigma_v^2 I$	(σ_v^2)	Λ_v	Q_v
convolution	$\mathbf{x}\otimes\mathbf{h}$	$\mathbf{X}\circledast\Delta$	$D\vec{x}$	$Q_D X$ $\mathcal{F}^{-1} \vec{x}$
DFT	-	$\mathrm{DFT}\{\mathbf{x}\}$	_	$\mathcal{F}^{-1}\vec{x}$
inv. DFT	$DFT^{-1}\{\mathbf{X}\}$	-	$\mathcal{F}X$	_

EM-Algorithm: derivation (i)

- incomplete/complete data-set: $\vec{y} \in \mathbf{R}^N / (\vec{x}^\top, \vec{y}^\top)^\top \in \mathbf{R}^{2N}$
- many-to-one transform: $\vec{y} =: g(\begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}) \forall \vec{y}$
- pdf of \vec{z} is zero-mean normal distr.: $p_z(\vec{z}, \theta = \{D, \Lambda_x, \Lambda_v\}) =$

$$\begin{array}{c}
-\frac{1}{2} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}^{\top} \underbrace{\begin{pmatrix} \Lambda_x & \Lambda_x D^{\top} \\ D\Lambda_x & D\Lambda_x D^{\top} + \Lambda_v \end{pmatrix}}_{=:C} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix}$$

EM-Algorithm: derivation (ii)

- conditional pdf $p(\vec{z}|\vec{y},\theta) = p(\vec{x}|\vec{y},\theta)$ is (conditional) normal distr.:
 - with mean $M_{x|y} = \Lambda_x D^{\top} (D\Lambda_x D^{\top} + \Lambda_v)^{-1} \vec{y}$ and
 - covariance $S_{x|y} = \Lambda_x \Lambda_x D^{\top} (D\Lambda_x D^{\top} + \Lambda_v)^{-1} D\Lambda_x$

derivation of

$$\ln p_z(z;\theta) = -N^2 \ln(2\pi) - \frac{1}{2} \ln |C| - \frac{1}{2} (\vec{x}^\top, \vec{y}^\top) C^{-1} \begin{pmatrix} \vec{x} \\ \vec{y} \end{pmatrix} :$$

$$\begin{vmatrix} \Lambda_x & \Lambda_x D^\top \\ D\Lambda_x & D\Lambda_x D^\top + \Lambda_v \end{vmatrix} = \det(\Lambda_x (D\Lambda_x D^\top + \Lambda_v) - D\Lambda_x \Lambda_x D^\top)$$
$$= \det(\Lambda_x \Lambda_v) = |\Lambda_x| |\Lambda_v|, \text{ because } \Lambda_x \text{ and } \Lambda_v$$
are symmetric and positive definite.

EM-Algorithm: derivation (iii)

- observe that $|\Lambda_v| = (\sigma_v^2)^{N^2}$.
- $|\Lambda_x| = |\mathcal{F}Q_x\mathcal{F}^{-1}| = |Q_x| = \prod S_x(k,l)$

using
$$\mathcal{A} = \begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} \end{pmatrix} =$$

using
$$\mathcal{A} = \begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} \end{pmatrix} = \begin{pmatrix} (\mathcal{A}_{11} - \mathcal{A}_{12}\mathcal{A}_{22}^{-1}\mathcal{A}_{21})^{-1} & \mathcal{A}_{11}^{-1}\mathcal{A}_{12}(\mathcal{A}_{21}\mathcal{A}_{11}^{-1}\mathcal{A}_{12} - \mathcal{A}_{22})^{-1} \\ (\mathcal{A}_{21}\mathcal{A}_{11}^{-1}\mathcal{A}_{12} - \mathcal{A}_{22})^{-1}\mathcal{A}_{21}\mathcal{A}_{11}^{-1} & (\mathcal{A}_{22} - \mathcal{A}_{21}\mathcal{A}_{11}^{-1}\mathcal{A}_{12})^{-1} \end{pmatrix}$$
we get $C^{-1} = \begin{pmatrix} \Lambda_x & \Lambda_x D^\top \\ D\Lambda_x & D\Lambda_x D^\top + \Lambda_v \end{pmatrix}^{-1} = \begin{pmatrix} \Lambda_x & \Lambda_x D^\top \\ D\Lambda_x & D\Lambda_x D^\top + \Lambda_v \end{pmatrix}$

we get
$$C^{-1} = \begin{pmatrix} \Lambda_x & \Lambda_x D^{\top} \\ D\Lambda_x & D\Lambda_x D^{\top} + \Lambda_v \end{pmatrix}^{-1} =$$

EM-Algorithm: derivation (iv)

$$C^{-1} = \begin{pmatrix} (I - D^{\top}(D\Lambda_x D^{\top} + \Lambda_v)^{-1}D\Lambda_x)^{-1}\Lambda_x^{-1} & -D^{\top}\Lambda_v^{-1} \\ -\Lambda_v^{-1}D & \Lambda_v^{-1} \end{pmatrix}.$$

With
$$\vec{u}^{\top} \mathcal{A} \vec{v} = \vec{u}^* \mathcal{F} Q_A \mathcal{F}^{-1} \vec{v} = (\mathcal{F}^* \vec{u})^* Q_A \mathcal{F}^{-1} \vec{v}$$

$$= (\frac{1}{N^2} \mathcal{F}^{-1} \vec{u})^* Q_A \mathcal{F}^{-1} \vec{v} = \frac{1}{N^2} U^* Q_A V \text{ we obtain}$$

$$\ln p_z(z;\theta) = -N^2 \ln(2\pi) - \frac{N^2}{2} \ln(\sigma_v^2) - \frac{1}{2} \sum_{kl} \ln S_{kl} - \frac{1}{2N^2} Y^* Q_v^{-1} Y$$

$$+ \frac{1}{N^2} \text{Re}\{Y^* Q_D Q_v^{-1} X\} - \frac{1}{2} \sum_{kl} Q_x (Q_D Q_D^* Q_v^{-1} + Q_x^{-1})$$

$$- \frac{1}{2N^2} X^* (Q_D Q_D^* Q_v^{-1} + Q_x^{-1}) X$$

EM-Algorithm: derivation (v)

Replacing the remaining diagonal matrices with DFT-arrays yields:

$$\ln p_z(z;\theta) = -N^2 \ln(2\pi) - \frac{N^2}{2} \ln(\sigma_v^2) - \frac{1}{2} \sum_{kl} \ln S_{kl} - \frac{1}{2N^2} \mathbf{Y}^* \mathbf{Y} (\sigma_v^2)^{-1}$$

$$+ \frac{1}{N^2} \text{Re} \{ \mathbf{Y}^* \Delta (\sigma_v^2)^{-1} \mathbf{X} \} - \frac{1}{2} S_x (\Delta \Delta^* (\sigma_v^2)^{-1} + S_x^{-1})$$

$$- \frac{1}{2N^2} \mathbf{X}^* (\Delta \Delta^* (\sigma_v^2)^{-1} + S_x^{-1}) \mathbf{X}$$

The last steps are:

- substitute \mathbf{X} and $\mathbf{X}^* \circledast \ldots \circledast \mathbf{X}$ with their expected values. $\Rightarrow U(\theta, \theta_k)$
- determine argmax by setting derivative $\frac{\delta U(\theta, \theta_k)}{s \alpha}$ to zero.

EM-Algorithm: implementation

The resulting iteration step:

•
$$S_x^{(p+1)}(k,l) = S_{x|y}^{(p)}(k,l) + \frac{1}{N^2} |M_{x|y}(k,l)|^2$$

•
$$\Delta^{(p+1)}(k,l) = \frac{1}{N^2} \frac{Y(k,l)M_{x|y}^*(k,l)}{S_{x|y}^{(p)}(k,l) + \frac{1}{N^2} |M_{x|y}(k,l)|^2}$$

•
$$\sigma_v^2 = \frac{1}{N^2} \sum_{kl} \left\{ |\Delta^{(p+1)}(k,l)|^2 \left(S_{x|y}^{(p)}(k,l) + \frac{1}{N^2} |M_{x|y}(k,l)|^2 \right) + \frac{1}{N^2} \left(|Y(k,l)|^2 - 2\text{Re} \left[Y^*(k,l) \Delta^{(p+1)}(k,l) M_{x|y}(k,l) \right] \right) \right\}$$

results: deblur picture

conditional mean after 10. iteration

result: comparison

Jan Wedekind

address:Scheffelstr. 65, D-76135 Karlsruhe email:jan.wedekind@stud.uni-karlsruhe.de www:http://www.uni-karlsruhe.de/~unoh pgp: EE FA AF 15 D8 ED 11 4A 5A 76 35 5F 2D 20 C4 E8