I!**I** T@ c

1	$A \to B$ hypothesis				
2	$\neg A \to C$ hypothesis				
3	$A \vee \neg A$ Law of Excluded Midd	le			
4	$A \qquad \text{assumption (want } B \vee \mathbb{C})$		A	assumption (want $B \vee C$)	
5	$B \longrightarrow -\text{elim (lines 1 and 4)} 5$		B	\rightarrow -elim (lines 1 and 4)	
6	$B \vee C \forall$ -intro (line 5) 6		$B \vee C$	∨-intro (line 5)	
7	$7 A \to (B \lor C) \to -intro (lines 4-6)$				
8	$\neg A$ assumption (want $B \lor \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $		$\neg A$	assumption (want $B \vee C$)	
9	$C \longrightarrow -\text{elim (lines 2 and 9)}9$		C	\rightarrow -elim (lines 2 and 9)	
10	$B \lor C \forall$ -intro (line 9) 10		$B \vee C$	∨-intro (line 9)	
11	11 $\neg A \rightarrow (B \lor C)$ \rightarrow -intro (lines 8–10)				
12 $B \lor C$ Proof by cases (lines 3, 7, and 12)					

1