0.1 Soluzione

Per rispondere al problema si è scelto di utilizzare il tool JMP per l'analisi del dataset al fine di ridurne il numero di dati. Dopo un'analisi preliminare sui dati, la riduzione effettiva del dataset avviene utilizzando due tecniche: Principal Component Analysis (PCA) e clustering.

0.1.1 Analisi preliminare

L'analisi preliminare prevede, dopo aver importato il file nel tool, di analizzare le feature presenti, al fine di eliminare quelle prive di contenuto informativo. A tale scopo si è proceduto all'analisi delle distribuzioni di tali attributi osservando, in particolare, il coefficiente di variazione (CV) di ognuna. Il coefficiente di variazione è la normalizzazione della varianza con la media. Se il coefficiente di variazione è nullo, il parametro misurato è costante, e quindi si sceglie di non includere quella feature nelle successive analisi.

Figura 1: Distribuzioni delle feature

Figura 2: Distribuzioni delle feature

Figura 3: Distribuzioni delle feature

Figura 4: Distribuzioni delle feature

Figura 5: Distribuzioni delle feature

Come si può osservare dalle distribuzioni mostrate, gli attributi che presentano CV nullo sono: active, anonpages, avglatency ed errors.

Un'ulteriore scrematura delle feature si può effettuare osservando colonne che presentano stessi valori. Ad occhio, le colonne memfree e writeback risultano essere uguali. Per esserne certi, si è utilizzata la funzionalità del tool che permette di applicare delle formule sui dati delle colonne.

Figura 6: Formula confronto colonne

Del risultato prodotto, si è analizzata la distribuzione verificando che questa abbia coefficiente di variazione nullo.

Figura 7: Distribuzioni del risultato del confronto

Il risultato di questa fase è una selezione di 19 feature a partire dalle 24 iniziali.

0.1.2 Principal Component Analysis

A questo punto si è proceduto ad effettuare un'analisi delle componenti principali, allo scopo di ridurre ulteriormente il numero di feature conservando la maggior parte della varianza. Ci si pone come obiettivo di conservare almeno il 95% della varianza totale.

Il risultato può essere osservato in forma grafica tramite uno score plot e loading plot.

Figura 8: Score plot e loading plot generate dal tool

Il tool genera una vista degli autovalori della matrice di correlazione con la relativa percentuale di varianza per ogni componente ottenuta.

Autoval	ori			
Numero	Autovalore	Percentuale	20 40 60 80	Percentuale cumulativa
1	10,3609	51,805		51,80
2	4,1387	20,694		72,49
3	2,4767	12,383		84,88
4	0,7760	3,880]	88,76
5	0,7083	3,542		92,30
6	0,6267	3,134]	95,43
7	0,3471	1,736		97,17
8	0,2661	1,331		98,50
9	0,1615	0,808		99,31
10	0,0913	0,456		99,76
11	0,0179	0,090		99,85
12	0,0116	0,058		99,91
13	0,0080	0,040		99,95
14	0,0061	0,031		99,98
15	0,0014	0,007		99,99
16	0,0009	0,005		99,99
17	0,0006	0,003		100,00
18	0,0000	0,000		100,00
19	0,0000	0,000		100,00

Figura 9: Autovalori della matrice di correlazione

Per rispondere all'obiettivo, si sceglie un numero di componenti principali pari a 6, rappresentativi del 95.437% della varianza totale.

0.1.3 Clustering

A valle della PCA effettuata, si vuole ridurre ulteriormente il dataset, con la differenza di voler diminuire il numero di istanze. A tale scopo si utilizza la tecnica del clustering di tipo gerarchico sulle componenti principali individuate, tramite la quale, scegliendo come metrica la distanza di Ward, si vuole individuare un trade-off tra la necessità di conservare una buona percentuale di varianza e quella di avere un numero accettabile di cluster.

Il risultato della fase di clustering è apprezzabile tramite il dendrogramma, prodotto dal tool.

Figura 10: Dendrogramma

Inoltre il tool produce anche una tabella contenente, per ogni partizione, il relativo valore della distanza di Ward.

▼ Cronolo	ogia di clus	terizzazi	one
Numero			
di cluster	Distanza	Leader	Subordinato
30	4,65279127	113	379
29	4,70158610	996	1048
28	4,82475504	2057	2064
27	4,83888540	113	139
26	4,93013294	794	859
25	4,96878746	2185	2611
24	5,39058432	2186	2188
23	6,09832547	91	225
22	6,95244103	1064	1386
21	7,09509431	91	378
20	7,54600054	1	2
19	7,68446268	794	852
18	8,01290011	2186	2189
17	10,10841658	942	996
16	10,69609807	86	901
15	11,32656202	90	113
14	12,22359787	1114	2057
13	13,61384675	2185	2186
12	14,42223242	1058	1064
11	14,50888944	79	85
10	16,68472836	86	794
9	18,39417541	1058	1114
8	19,27064120	90	91
7	26,87885443	86	90
6	40,10315213	1058	2185
5	44,66565296	86	942
4	47,68943938	86	1058
3	48,86473683	1	79
2	53,88674745	1	86
1	54,46632673	1	2995

Figura 11: Cronologia di clusterizzazione

Al fine di scegliere il numero di cluster si valuta, per ogni partizione, la percentuale di varianza spiegata rispetto a quella ottenuta a valle della PCA. La varianza spiegata, in termini percentuali, è ottenuta tramite la formula:

$$V_{TOT} = V_{PCA} - (V_{PCA} * \frac{D_i}{D_t})$$

dove

- V_{PCA} è la percentuale di varianza spiegata a valle della PCA;
- D_i è la distanza di Ward della i-esima partizione di cluster;

• D_t è la distanza di Ward della partizione con un solo cluster.

Di seguito sono state calcolate alcune percentuali di varianza corrispondenti a partizioni significative, in quanto corrispondono a "salti" significativi di valori di distanza.

Numero di cluster	Varianza spiegata (%)
2	1.014
6	25.167
7	48.339
10	66.201
15	75.589
20	82.215
25	86.730

0.2 Conclusioni

Per avere un buon trade-off tra numero di cluster e varianza spiegata, si è scelto un numero di cluster pari a 15 corrispondente ad una varianza spiegata pari al 75.589%. Tramite una tecnica di campionamento casuale, è possibile costruire un workload sintetico, che si riporta di seguito.

Figura 12: Esempio di workload sintetico

Cluster	-	2	က	4	5	9	7	80	6	10	=	12	13	14	15
'Errors'	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
'avgLatency'	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
'avgElapsed' 'avgLatency'	1530	2040	1530	1020	510	1020	510	1530	1530	1530	2040	1530	1020	1020	2040
'avgThroughput'	294908	344944	365692	319664	351436	338824	337028	346020	317680	314256	324712	327404	314000	315100	365264
'proc-fd'	7196	7984	8024	7620	7316	7284	7276	7320	7204	7208	7232	7252	7208	7208	8028
'NumOfAllocFH'	27884	92116	116216	109392	112956	114892	113344	110196	109024	110996	113756	114416	109872	110308	106788
Page Tables' 'Committed_AS' 'NumOfAllocFH'	23772	28324	29956	24092	23848	23848	23848	23848	23740	23844	23848	23848	23740	23740	29956
'PageTables'	77368	126120	134504	86152	109728	91760	09606	105548	84216	83972	87656	89076	83864	83684	134500

Figura 13: Esempio di workload sintetico