RDD and diff-in-diff

Silje Synnøve Lyder Hermansen

08-12-2020

Regression discontinuity design (RDD)

Regression discontinuity design (RDD)

Basic assumption

RDD assumes a running variable (x) with a cut point (c) beyond which treatment is assigned (D).

$$D_i = \begin{cases} 1 & \text{if} \quad x_i \geqslant c \\ 0 & \text{if} \quad x_i < c \end{cases} \tag{1}$$

Distinction

It has a flavor of logit or propensity scores, but there are some differences:

- logit: x (not y) is not latent and we know the cutpoint: Both are observed and included as a predictors.
- ► matching: we have no control/treatment group. However, we assume that units on either side of the treatment are increasingly similar as their x is similar.
- ⇒ Supposes clear rules with little administrative discretion.

Examples

Administrative data are perfect: You have some rule that kicks in at a specific threshold for otherwise almost identical observations.

- school test scores on school admission, restrictions on class size
- legal drinking age on alcohol related deaths
- election of candidates in close races

Two ways of understanding RDD

- Individuals close to the threshold are interchangeable
- \rightarrow in a small window, you have a treatment and a control group.
 - ➤ x is a bottleneck: the relationship between D and Y is confounded by x, but all other confounders only influence Y through x.
- \rightarrow conditioning on x is sufficient to isolate the causal effect.

Two ways of understanding RDD

X is a confounder ...so we only control for X

Two designs

We distinguish between two designs depending on how probable the treatment is:

- **sharp** RD: assignment is *deterministic*
- fuzzy RD: assignment is probabilistic

A visual representation

Estimate the model

Estimate the model

Sharp RDD

The basic model

We assume the relationship between x and y is linear and the treatment is deterministic

$$y_i = \alpha + \rho \times D_i + \gamma \times x_1 + e_i \tag{2}$$

 \Rightarrow The treatment is reported by ρ

What is the treatment effect of legal drinking age (D) on deaths (y)?

```
##Load the data from my website: file df ch4.rda
download.file(
  "https://siljehermansen.github.io/teaching/stv4020b/df_ch4.1
              "df ch4.rda")
load("df ch4.rda")
#Outcome: y
df$all
#Running variable x
df$age <- df$agecell - 21 #Center at cut point
#Recoding into a treatment variable D
df$over21 <- ifelse(df$agecell >= 21 , 1, 0)
```

What is the treatment effect of legal drinking age (D) on deaths (y)?

What is the treatment effect of legal drinking age (D) on deaths (y)?

What is the treatment effect of legal drinking age (D) on deaths (y)?

Is that all?

This is true on two conditions

- 1. **no omitted variable bias**: x must capture all influence on D.
- 2. **the continuity assumption**: x must have a continuous effect on y

The continuity assumption

The continuity assumption

Sometimes we may pick up a smooth non-linear change by dummy coding

... that's not a regression discontinuity.

Ensuring linear effect

We can obtain a linear effect in two ways:

- ightharpoonup recode the $x \to parametric approach$
- \blacktriangleright consider a sufficiently small window \rightarrow non-parametric approach

Recode the x

We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{3}$$

Recode the x: polynomials

We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{4}$$

```
df$age2 <- df$age^2
mod2 \leftarrow lm(all \sim over21 + age + age2,
             df)
```

 \Rightarrow Here, x has a symmetrical effect on both sides of the treatment.

Treatment effect of legal drinking

Recode the x: interaction

We can assume x has different effects on each side of the treatment

$$y_i = \alpha + \rho D_i + \gamma x_i + \delta x_i D_i \tag{5}$$

 \Rightarrow we center the x on the cutpoint $(x_i - c) \rightarrow \rho$ still reports the change at the cutpoint.

In R:

Treatment effect of legal drinking

Extrapolation

We do this to estimate the effect at the cutpoint (ρ)

but we can also extrapolate y beyond the cutpoint with x: $\rho + \delta(x - c)$

Bandwidth

- recoding the x is a parametric approach.
- subsetting the data to tweak the window around the cutpoint is a non-parametric approach.

Bandwidth: the idea

If the span of x around c is sufficiently small, there is no problem with non-linearity

There's a tradeoff between linearity and statistical power (we need sufficient N).

Bandwidth: how do we choose it?

We try out different bandwidths

► We can do it by hand

⇒ When you narrow down, do you get a weaker or stronger effect?

Bandwidth: how do we choose it?

We try out different bandwidths

- We can do it by hand
- ...or we can make an algorithm do it:
 - run a local weighted regression line
 - bandwidth is estimated accordingly
- \Rightarrow the point is to show robustness, not p-hack!

Omited variable bias

We want to make certain that

- D has an effect on y :
- \rightarrow is there really a cutpoint? Try out placebos!
 - treatment was indeed assigned at the cutpoint:
- \rightarrow is there unnatural clustering around one side?
 - treatment has impact on outcome but not other pre-treatment covariates
- \rightarrow check for balance/is there a similar "bump" for covariates? (bad news)

Fuzzy RD

Often the D increases the probability of a treatment, but we don't know!

⇒ This is a Instrumental Variable approach (more on Thursday)

The exam school example

What's the effect of being around other good students on my 7th grade test scores?

Plan A:

- $\mathbf{y} = \alpha + \beta_1 \bar{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}$
- \triangleright \bar{x} : classmates' test scores in 4th grade (pre-treatment)
- x: my test scores in 4th grade

The exam school example

What's the effect of being around other good students on my 7th grade test scores?

Plan A:

- $\mathbf{v} = \alpha + \beta_1 \bar{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}$
- $\triangleright \bar{x}$: classmates' test scores in 4th grade (pre-treatment)
- x: my test scores in 4th grade
- ⇒ This is not a random assignment!

The exam school example

Let's use the re-shuffeling due to exam schools.

Plan B:

- \triangleright $y = \alpha + \beta_1 D + \beta_2 R + e$
- D: my assignment to a school
- R: my admittance exam results
- ⇒ This is a even less random assignment!

The exam school example

Let's use the re-shuffeling due to exam schools.

Plan B:

- $V = \alpha + \beta_1 D + \beta_2 R + e$
- D: my assignment to a school
- R: my admittance exam results
- ⇒ This is a even less random assignment!

The exam school example

Yes, let's use the re-shuffeling due to exam schools.

Plan C:

$$\bar{x} = \alpha + \beta_1 D + \beta_2 R + e$$

- \rightarrow predicted treatment assignment (\tilde{x}) as a function of my admittance scores (R) and the resulting admittance (or not) (D).
 - $\mathbf{v} = \alpha + \gamma \tilde{\mathbf{x}} + \beta \mathbf{R} + \mathbf{e}$
- → insert the part of classmate abilities due to my school admittance and control away my admittance scores (R)
- \Rightarrow The treatment effect of classmates is expressed by $\gamma!$

In brief

x has a unique effect on D. I'm interested in the effect of \bar{x} on y, but x is completely endogenous:

$$\mathbf{v} = \alpha + \phi \bar{\mathbf{x}} + \beta_2 \mathbf{x} + \mathbf{e}$$

I use treatment as an instrument. We do this in two steps

- step 1: $\bar{x} = \alpha_1 + \phi D + \beta_1 x + e_1$
- $> step 2: y = \alpha_2 + \gamma \tilde{x} + \beta_2 x + e_2$

 $\Rightarrow \gamma$ is the causal effect of D in a fuzzy design.

Differences-in-differences

Differences-in-differences

Definition: Comparing two differences

Definition: Differences-in-differences

Treatment and control groups may differ in many ways (they are not randomly assigned)

- Pre-treatment: They move in parallel
- Post-treatment: They diverge
- ⇒ Treatment effect is that difference
- ⇒ Assumes they would have otherwise continued in parallel

What differences?

Diff-in-diff is based on two comparisons

- the difference pre- and post treatement within each unit
- the difference between the treatment and control groups
- \Rightarrow based on panel data (units are observed several times).

Example: States' monetary policy and number of banks

Take the differences between number of banks in two districts in Missisippi

- Pre-treatment: District 6 had 135 banks, while district 8 had 165.
- Treatment: District 6 provided money to banks, while district 8 did not.
- Post-treatment: After a year district 6 had 121 banks, while district 8 had 132
- ⇒ What was the treatment effect?

How to do it?

Interaction effects

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

- P represents post-treatment effect: differences within units
- T represents the treatment group: differences between units
- \triangleright β_3 is the causal effect

Data

Data requirements

- ightharpoonup Requires panel data ightharpoonup which means correcting the standard errors.
- Common panel types: state-year/administrative unit-time period; people over time . . .
- ⇒ we want to know the trend before and after the break

Another example: drinking age and death

Another example: drinking age and death

Does the legal drinking age has an effect on death rates among the young?

- y is number of deaths per 100 000
- P is post-treatment dummy
- T is dummies for states.
- trend is year dummies

```
##Load the data from my website: file df_ch5.rda
download.file(
  "https://siljehermansen.github.io/teaching/stv4020b/df_ch5.1
  "df ch5.rda")
```

Another example: step $1 \rightarrow$ calculate differences

The authors have two tricks:

- Hardcode the interaction effect (dummy before/after treatment)
- ► They remove the intercept to retain all dummies

```
#Load the data
load("df ch5.rda")
##with intercept
mod <- lm(mrate ~ legal +
              state +
              year fct,
            df)
##without intercept; with all dummies
mod <- lm(mrate ~ 0 +
              legal +
              state +
 year_fct,
Silje Synnøve Lyder Hermansen
                              RDD and diff-in-diff
```

Another example: step $2 \rightarrow$ calculate errors

Calculate robust standard errors:

```
library(clubSandwich)
## Warning: package 'clubSandwich' was built under R version 4
```

```
Registered S3 method overwritten by 'clubSandwich':
##
    method
              from
## bread.mlm sandwich
```

```
vcov <- vcovCR(mod, cluster = df[["state"]],</pre>
                type = "CR2")
robust <- coef_test(mod, vcov = vcov)$SE
```

Another example: step $3 \rightarrow$ interpretation

Display the results and interpret:

Another example: step $3 \rightarrow$ interpretation

Table 1: Death rates among young as a function of legal drinking age

	Dependent variable:
	mrate
Legal drinking age (causal effect)	10.804**
,	(4.479)
Observations	714
R^2	0.986
Adjusted R ²	0.985
Residual Std. Error	17.339 (df = 649)
F Statistic	726.005*** (df = 65; 649)
Note:	*p<0.1; **p<0.05; ***p<0.01

 \Rightarrow What did we find?

The parallel trends assumption

Main assumption

Units can be different, but – absent treatment – they must follow the same trend (hence the panel data).

ightharpoonup The regression assumes a counterfactual ightharpoonup remember the extrapolation.

Main assumption: The way around

When we have several treated and control units they can follow .

- individual trend lines...
- that are modeled as deviations from one unique trend

Main assumption: The way around

When we have several treated and control units they can follow .

- individual trend lines...
- that are modelled as deviations from one unique trend
- ⇒ We do that with an interaction effect!

```
mod <- lm(mrate ~ 0 +
            legal +
             state *
            year_fct,
          df)
```

Last fix

If our units are in fact several units (say, populations in states)

- we can use weights
- ⇒ There's a trade-off: treatment is at the unit level, statistical power at the subunit level.