Ch 6.3: Dimension Reduction

Lecture 20 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Weds, Oct 27, 2023

Announcements

Last time:

• Exam #2

This lecture:

- PCA / PCR
- PLS

Announcements:

• Homework #6 posted?

Section 1

Last time

Shrinkage

Find β to minimize:

Least Squares:

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Ridge:

$$RSS + \sum_{j=1}^{p} \beta_j^2$$

The Lasso:

$$RSS + \sum_{j=1}^p |\beta_j|$$

Section 2

Dimension Reduction

Weds, Oct 27, 2023

Linear transformation of predictors

Original Predictors:

$$X_1, \cdots, X_p$$

New Predictors:

$$Z_1, \cdots, X_M$$

$$Z_m = \sum_{j=1}^p \varphi_{jm} X_j$$

An example or two

Dr. Munch (MSU-CMSE)

Geometric interpretation

8/31

Dr. Munch (MSU-CMSE) Weds, Oct 27, 2023

Projection onto a line

```
https://www.desmos.com/calculator/cih7wy8oyg
```

Dr. Munch (MSU-CMSE)

Different projections

Histograms of Z values

Or. Munch (MSU-CMSE) Weds, Oct 27, 2023

The goal

- Find good φ 's for some $M \ll p$
- Fit regression model on Z_i's using least squares

$$y_i = \theta_0 + \sum_{m=1}^{M} \theta_m z_{im} + \varepsilon_i$$

Section 3

PCA

Dr. Munch (MSU-CMSE)

An example dataset

Projection onto first PC

$$Z_1 = 0.839 \cdot (\mathtt{pop} - \overline{\mathtt{pop}}) + 0.544 \cdot (\mathtt{ad} - \overline{\mathtt{ad}})$$

Munch (MSU-CMSE) Weds, Oct 27, 2023

What does it mean to have the highest variance

Toy for learning PCA

```
https://www.desmos.com/calculator/qq14tyjz0z
```

Dr. Munch (MSU-CMSE)

Principal component scores

18 / 31

$$z_{i1} = 0.839 \cdot (\text{pop}_i - \overline{\text{pop}}) + 0.544 \cdot (\text{ad}_i - \overline{\text{ad}})$$

r. Munch (MSU-CMSE) Weds, Oct 27, 2023

Another view

The other principal components

Dr. Munch (MSU-CMSE) Weds, Oct 27, 2023

Do PCA with Penguins

Dr. Munch (MSU-CMSE)

Section 4

Principal Components Regression

r. Munch (MSU-CMSE) Weds, Oct 27, 2023

So you've found your PCA coefficients

Now what?

What are we assuming?

Do PCR with hitters data

Dr. Munch (MSU-CMSE)

Doing better

Example with simulated data: n = 50 observations of p = 45 predictors Y is a function of 2 predictors

25 / 31

Dr. Munch (MSU-CMSE) Weds, Oct 27, 2023

Doing better

Example with simulated data: n = 50 observations of p = 45 predictors Y is a function of all predictors

r. Munch (MSU-CMSE) Weds, Oct 27, 2023

Comparison to results on shrinkage

Y is a function of all predictors

Y is a function of 2 predictors

27 / 31

. Munch (MSU-CMSE) Weds, Oct 27, 2023

Picking M

. Munch (MSU-CMSE) Weds, Oct 27, 2023

Properties of PCR

Dr. Munch (MSU-CMSE)

TL;DR

PCA

- Unsupervised dimensionality reduction
- Choose component Z₁ in the direction of most variance using only X_i's information
- Choose Z₂ and beyond by the same method after "getting rid" of info in the directions already explained

PCR

- Do PCA on input data
- Do Linear Regression on chosen number of PCs.
- Warning: Lose interpretability of the coefficients.

Next time

Lec#	Date			Reading	Homeworks
20	Fri	Oct 27	Dimension Reduction	6.3	
21	Mon	Oct 30	More dimension reduction; High dimensions	6.4	
22	Wed	Nov 1	Polynomial & Step Functions	7.1,7.2	
23	Fri	Nov 3	Step Functions	7.2	HW #6 Due
24	Mon	Nov 6	Basis functions, Regression Splines	7.3,7.4	
25	Wed	Nov 8	Decision Trees	8.1	
26	Fri	Nov 10	Random Forests	8.2.1, 8.2.2	
27	Mon	Nov 13	Maximal Margin Classifier	9.1	
28	Wed	Nov 15	SVC	9.2	
29	Fri	Nov 17	SVM	9.3, 9.4	
30	Mon	Nov 20	Single layer NN	10.1	
31	Wed	Nov 22	Overflow/project day?		
	Fri	Nov 24	No class - Thanksgiving		
	Mon	Nov 27	Review		
	Wed	Nov 29	Midterm #3		
32	Fri	Dec 1	Multi Layer NN	10.2	
33	Mon	Dec 4	CNN	10.3	
34	Wed	Dec 6	Unsupervised Learning & Clustering	12.1, 12.4	
35	Fri	Dec 8	Overflow/Project day?		Project due

Dr. Munch (MSU-CMSE) Weds, Oct 27, 2023