Quantum Trajectories

Jorrit Hortensius & Bas van 't Hooft

April 29, 2016

Overview

- ► Introduction
- ► Bloch sphere
- ► Time evolution

Overview

- Introduction
- Bloch sphere
- ► Time evolution
- Method
- Results
- Summary

► Goal: Simulate random transitions (quantum jumps) in quantum systems

- ► Goal: Simulate random transitions (quantum jumps) in quantum systems
- $\qquad \qquad \mathbf{Qubit} \ |\psi\rangle = \alpha |\mathbf{0}\rangle + \beta |\mathbf{1}\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$

- ► Goal: Simulate random transitions (quantum jumps) in quantum systems
- Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
- ▶ Problem: Wave functions are 'deterministic'

- Goal: Simulate random transitions (quantum jumps) in quantum systems
- Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
- Problem: Wave functions are 'deterministic'
- ► Solution 1: Density matrix

- ► Goal: Simulate random transitions (quantum jumps) in quantum systems
- Qubit $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$
- Problem: Wave functions are 'deterministic'
- Solution 1: Density matrix
- Solution 2: Average over many realisations
 - → Quantum Trajectories

Bloch sphere

 $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = e^{i\delta}(\cos(\theta/2)|0\rangle + e^{i\phi}\sin(\theta/2)|1\rangle)$

Time evolution

 \blacktriangleright Energy difference between two states: $\hat{\mathcal{H}}=0|0\rangle\langle 0|+\omega|1\rangle\langle 1|$

Time evolution

- ▶ Energy difference between two states: $\hat{\mathcal{H}} = 0|0\rangle\langle 0| + \omega|1\rangle\langle 1|$
- ▶ Time evolution wavefunction $|\psi(t)\rangle = e^{-i\hat{\mathcal{H}}t/\hbar}|\psi(0)\rangle$

Time evolution

- ▶ Energy difference between two states: $\hat{\mathcal{H}} = 0|0\rangle\langle 0| + \omega|1\rangle\langle 1|$
- ▶ Time evolution wavefunction $|\psi(t)\rangle = e^{-i\hat{\mathcal{H}}t/\hbar}|\psi(0)\rangle$
- Rotation around z-axis
- Energy
- Dipole

Method: Lindblad equation

► Time evolution density matrix (von Neumann equation)

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\hat{\mathcal{H}}, \rho] \tag{1}$$

Method: Lindblad equation

► Time evolution density matrix (von Neumann equation)

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\hat{\mathcal{H}}, \rho] \tag{1}$$

Add jump operators (Lindblad equation)

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\hat{\mathcal{H}}, \rho] - \frac{1}{2} \sum_{k} (C_{k}^{\dagger} C_{k} \rho + \rho C_{k}^{\dagger} C_{k} - 2C_{k} \rho C_{k}^{\dagger}) \quad (2)$$

Method: Lindblad equation

Time evolution density matrix (von Neumann equation)

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\hat{\mathcal{H}}, \rho] \tag{1}$$

Add jump operators (Lindblad equation)

$$\frac{\partial \rho}{\partial t} = -\frac{i}{\hbar} [\hat{\mathcal{H}}, \rho] - \frac{1}{2} \sum_{k} (C_{k}^{\dagger} C_{k} \rho + \rho C_{k}^{\dagger} C_{k} - 2C_{k} \rho C_{k}^{\dagger}) \quad (2)$$

ightharpoonup Most general non-unitary evolution of the ho that is trace-preserving and completely positive for any initial condition

Method: Quantum Trajectories

- ▶ Time evolution according to effective Hamiltonian $\hat{\mathcal{H}}_{eff} = \hat{\mathcal{H}}_0 \frac{i\hbar}{2} \sum_k C_k^{\dagger} C_k$
- ▶ Jumps C_k with certain probability dp_k

Method: Quantum Trajectories

- ▶ Time evolution according to effective Hamiltonian $\hat{\mathcal{H}}_{eff} = \hat{\mathcal{H}}_0 \frac{i\hbar}{2} \sum_k C_k^\dagger C_k$
- ▶ Jumps C_k with certain probability dp_k

Algorithm 2 Quantum Trajectory Method

- 1: **for** i = 1 to $N_{timesteps}$ **do**
- 2: Calculate $dp_k=dt\langle\psi|C_k^\dagger C_k|\psi
 angle$ and $dp=\sum_k dp_k$
- 3: Accept jump with probability *dp*
- 4: **if** jump **then**
- 5: Choose k with probability dp_k/dp
- 6: $|\psi(i+1)\rangle = C_k |\psi(i)\rangle \sqrt{dt/dp_k}$
- 7: **else**
- 8: Time evolution according to $\hat{\mathcal{H}}_{eff}$, normalize state
- 9: end if
- 10: end for

Results 1: Relaxation

Results 2: Boltzmann relaxation

Figure: Low Temperature, Right: High Temperature

Time (s)

Time (s)

Results 3: Dephasing

Results 4: Elastic collision

Results 5: Three level system

Figure: Number of transitions from P to S state in time

Summary

- ► The quantum trajectory method is an alternative approach to determine the time evolution of open quantum systems
- ▶ We have looked into relaxation, dephasing and other processes