

P -FERRER DIAGRAM, P -LINEAR IDEALS AND ARITHMETICAL RANK

MARCEL MORALES

Université de Grenoble I, Institut Fourier, UMR 5582, B.P.74,
 38402 Saint-Martin D'Hères Cedex,
 and IUFM de Lyon, 5 rue Anselme,
 69317 Lyon Cedex (FRANCE)

Abstract

In this paper we introduce p -Ferrer diagram, note that 1 -Ferrer diagram are the usual Ferrer diagrams or Ferrer board, and corresponds to planar partitions. To any p -Ferrer diagram we associate a p -Ferrer ideal. We prove that p -Ferrer ideal have Castelnuovo Mumford regularity $p+1$. We also study Betti numbers, minimal resolutions of p -Ferrer ideals. Every p -Ferrer ideal is p -joined ideals in a sense defined in a forthcoming paper [M], which extends the notion of linearly joined ideals introduced and developed in the papers [BM2], [BM4], [EGHP] and [M]. We can observe the connection between the results on this paper about the Poincaré series of a p -Ferrer diagram Φ and the rook problem, which consist to put k rooks in a non attacking position on the p -Ferrer diagram Φ .

1 Introduction

We recall that any non trivial ideal $\mathcal{I} \subset S$ has a finite free resolution :

$$0 \rightarrow F_s \xrightarrow{M_s} F_{s-1} \rightarrow \dots \rightarrow F_1 \xrightarrow{M_1} \mathcal{I} \rightarrow 0$$

the number s is called the projective dimension of S/\mathcal{I} and the Betti numbers are defined by $\beta_i(\mathcal{I}) = \beta_{i+1}(S/\mathcal{I}) = \text{rank } F_{i+1}$. By the theorem of Auslander and Buchsbaum we know that $s = \dim S - \text{depth}(S/\mathcal{I})$. We will say that the ideal \mathcal{I} has a pure resolution if $F_i = S^{\beta_i}(-a_i)$ for all $i = 1, \dots, s$. This means that \mathcal{I} is generated by elements in degree a_1 , and for $i \geq 2$ the matrices M_i in the minimal free resolution of \mathcal{I} have homogeneous entries of degree $a_i - a_{i-1}$.

We will say that the ideal \mathcal{I} has a p -linear resolution if its minimal free resolution is linear, i.e. \mathcal{I} has a pure resolution and for $i \geq 2$ the matrices M_i have linear entries.

If \mathcal{I} has a pure resolution, then the Hilbert series of S/\mathcal{I} is given by:

$$H_{S/\mathcal{I}}(t) = \frac{1 - \beta_1 t^{a_1} + \dots + (-1)^s \beta_s t^{a_s}}{(1-t)^n}$$

where $n = \dim S$. Since $a_1 < \dots < a_s$ it follows that if \mathcal{I} has a pure resolution then the Betti numbers are determined by the Hilbert series.

p -Ferrer partitions and diagrams. The 1 -Ferrer partition is a nonzero natural integer λ , a 2 -Ferrer partition is called a partition and is given by a sequence $\lambda_1 \geq \dots \geq \lambda_m > 0$

of natural integers, a 3–Ferrer partition is called planar partition. p –Ferrer partitions are defined inductively $\Phi : \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$, where λ_j is a $p-1$ Ferrer partition for $j = 1, \dots, m$, and the relation \leq is also defined recursively: if $\lambda_i : \lambda_{i,1} \geq \dots \geq \lambda_{i,s}, \lambda_{i+1} : \lambda_{i+1,1} \geq \dots \geq \lambda_{i+1,s'}$ we will say that $\lambda_i \geq \lambda_{i+1}$ if and only if $s \geq s'$ and $\lambda_{i,j} \geq \lambda_{i+1,j}$ for any $j = 1, \dots, s'$. Up to my knowledge there are very few results for p –Ferrer partitions in bigger dimensions.

To any p –Ferrer partition we associate a p –Ferrer diagram which are subsets of \mathbb{N}^p . The 1-Ferrer diagram associated to $\lambda \in \mathbb{N}$ is the subset $\{1, \dots, \lambda\}$. Inductively if $\Phi : \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$, is a p –Ferrer partition, where λ_j is a $p-1$ -Ferrer partition for $j = 1, \dots, m$, we associate to Φ the p –Ferrer diagram $\Phi = \{(\eta, 1), \eta \in \lambda_1\} \cup \dots \cup \{(\eta, m), \eta \in \lambda_m\}$. Ferrer p –diagrams can also be represented by a set of boxes labelled by a p –uple (i_1, \dots, i_p) of non zero natural numbers, they have the property that if $1 \leq i'_1 \leq i_1, \dots, 1 \leq i'_p \leq i_p$, then the box labelled (i'_1, \dots, i'_p) is also in the p –Ferrer diagram. We can see that for two Ferrer diagrams: $\Phi_1 \geq \Phi_2$ if and only if the set of boxes of Φ_1 contains the set of boxes of Φ_2 .

Example 1 The following picture corresponds to the 3–Ferrer diagram given by:

$$\begin{matrix} 4 & 3 & 2 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{matrix}$$

Example 2 The following picture corresponds to the 3–Ferrer diagram given by:

$$\begin{matrix} 5 & 4 & 4 & 3 & 2 \\ 4 & 4 & 3 & 3 & 1 \\ 4 & 4 & 3 & 1 & 0 \\ 2 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 \end{matrix}$$

Definition 1 Given a p -Ferrer diagram (or partition) Φ we can associate a monomial ideal \mathcal{I}_Φ in the following way. Let consider the polynomial ring $K[\underline{x}^{(1)}, \underline{x}^{(2)}, \dots, \underline{x}^{(p)}]$ where $\underline{x}^{(i)}$ stands for the infinitely set of variables $\underline{x}^{(i)} = \{x_1^{(i)}, x_2^{(i)}, \dots\}$, we define inductively the ideal \mathcal{I}_Φ

1. For $q = 2$ let $\Phi : \lambda \in \mathbb{N}^*$, then \mathcal{I}_Φ is the ideal generated by the variables $x_1^{(1)}, x_2^{(1)}, \dots, x_\lambda^{(1)}$.
2. For $q = 2$ let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$ be a 2-Ferrer diagram, then \mathcal{I}_Φ is an ideal in the ring of polynomials $K[x_1, \dots, x_m, y_1, \dots, y_{\lambda_1}]$ generated by the monomials $x_i y_j$ such that $i = 1, \dots, m$ and $j = 1, \dots, \lambda_i$. In this case $x_j^{(1)} = y_j, x_j^{(2)} = x_i$.
3. For $p > 2$ let $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$ be a Ferrer diagram, where λ_j is a $p - 1$ Ferrer diagram. Let $\mathcal{I}_{\lambda_j} \subset K[\Lambda]$ be the ideal associated to λ_j , where $K[\Lambda]$ s a polynomial ring in a finite set of variables then \mathcal{I}_Φ is an ideal in the ring of polynomials $K[x_1^{(p)}, \dots, x_m^{(p)}, \Lambda]$ generated by the monomials $x_i^{(p)} y_j$ such that $i = 1, \dots, m$ and $y_j \in \mathcal{I}_{\lambda_i}$. That is

$$\mathcal{I}_\Phi = \left(\bigcup_{i=1}^m \{x_i^{(p)}\} \times \mathcal{I}_{\lambda_i} \right).$$

We can observe the connection between the results on this paper about the Poincaré series of a p -Ferrer diagram Φ and the rook problem, which consist to put k rooks in a non attacking position on the p -Ferrer diagram Φ . This will be developed in a forthcoming paper.

2 p -Ferrer' ideals

Lemma 1 Let S be a polynomial ring, $\Gamma_2, \dots, \Gamma_r$ be non empty disjoint sets of variables, set \mathcal{A}_i the ideal generated by $\Gamma_{i+1}, \dots, \Gamma_r$. Let $\mathcal{B}_2 \subset \dots \subset \mathcal{B}_r$ be a sequence of ideals (not necessarily distinct), generated by the sets $B_2 \subset \dots \subset B_r$. We assume that no variable of $\Gamma_2 \cup \dots \cup \Gamma_r$ appears in B_2, \dots, B_r , then

$$\mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2) \cap \dots \cap (\mathcal{B}_r) = \left(\bigcup_2^r \Gamma_i \times B_i \right)$$

where for two subsets $A, B \subset S$, we have set $A \times B = \{a b \mid a \in A, b \in B\}$.

Proof Let remark that if Γ is a set of variables and $P \subset S$ is a set of polynomials such that no variable of Γ appears in the elements of P then $(\Gamma) \cap (P) = (\Gamma \times P)$. Moreover if Γ_1, Γ_2 are disjoint sets of variables and $P \subset S$ is a set of polynomials such that no variable of Γ_1, Γ_2 appears in the elements of P then $(\Gamma_1, \Gamma_2) \cap (\Gamma_1, P) = (\Gamma_1, \Gamma_2 \times P)$.

We prove by induction on the number k the following statement:

$$\mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2) \cap \dots \cap (\mathcal{A}_k, \mathcal{B}_k) = (\mathcal{A}_k, \bigcup_2^k \Gamma_i \times B_i).$$

If $k = 2$, it is clear that $\Gamma_2 \times B_2 \subset \mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2)$, now let $f \in \mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2)$, we can write $f = f_1 + f_2$, where $f_1 \in (\mathcal{A}_2)$, $f_2 \in (\Gamma_2)$ and no variable of \mathcal{A}_2 appears in f_2 , it follows that $f_2 \in (\Gamma_2) \cap (B_2) = (\Gamma_2 \times B_2)$.

Suppose that

$$\mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2) \cap \dots \cap (\mathcal{A}_k, \mathcal{B}_k) = (\mathcal{A}_k, \bigcup_2^k \Gamma_i \times B_i),$$

we will prove that

$$\mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2) \cap \dots \cap (\mathcal{A}_{k+1}, \mathcal{B}_{k+1}) = (\mathcal{A}_{k+1}, \bigcup_2^{k+1} \Gamma_i \times B_i).$$

Since $\Gamma_i \subset \mathcal{A}_j$, for $j < i$, and $B_i \subset B_j$ for $i \leq j$, we have $\bigcup_2^{k+1} \Gamma_i \times B_i \subset (\mathcal{A}_j, \mathcal{B}_j)$ for $1 \leq j \leq k$, so we have the inclusion " \supset ".

By induction hypothesis we have that

$$\mathcal{A}_1 \cap (\mathcal{A}_2, \mathcal{B}_2) \cap \dots \cap (\mathcal{A}_{k+1}, \mathcal{B}_{k+1}) = (\mathcal{A}_k, \bigcup_2^k \Gamma_i \times B_i) \cap (\mathcal{A}_{k+1}, \mathcal{B}_{k+1}).$$

Now let $f \in (\mathcal{A}_k, \bigcup_2^k \Gamma_i \times B_i) \cap (\mathcal{A}_{k+1}, \mathcal{B}_{k+1})$. we can write $f = f_1 + f_2 + f_3$, where $f_3 \in (\bigcup_2^k \Gamma_i \times B_i) \subset \mathcal{B}_{k+1}$, $f_1 \in \mathcal{A}_{k+1}$, and $f_2 \in (\Gamma_{k+1})$, and no variable of $\Gamma_{k+1} \cup \dots \cup \Gamma_r$ appears in f_2 , this would imply that $f_2 \in (\Gamma_{k+1}) \cap \mathcal{B}_{k+1} = (\Gamma_{k+1} \times B_{k+1})$.

Definition 2 Let $\lambda_{m+1} = 0, \delta_0 = 0, \delta_1$ be the highest integer such that $\lambda_1 = \dots = \lambda_{\delta_1}$, and by induction we define δ_{i+1} as the highest integer such that $\lambda_{\delta_i+1} = \dots = \lambda_{\delta_{i+1}}$, and set l such that $\delta_{l-1} = m$. For $i = 0, \dots, l-2$ let

$$\Delta_{l-i} = \{x_{\delta_i+1}^{(p)}, \dots, x_{\delta_{i+1}}^{(p)}\}, \mathcal{P}_{l-i} = \mathcal{I}_{\lambda_{\delta_{i+1}}}.$$

So we have: $\Phi = \{(\eta, 1), \eta \in \lambda_1\} \cup \dots \cup \{(\eta, m), \eta \in \lambda_m\}$ and

$$\mathcal{I}_\Phi = \left(\bigcup_{i=2}^l \Delta_i \times P_i \right) = \left(\bigcup_{i=1}^m \{x_i^{(p)}\} \times \mathcal{I}_{\lambda_i} \right).$$

where for all i , P_i is a set of generators of \mathcal{P}_i .

The following Proposition is an immediate consequence of the above lemma :

Proposition 1 1. *We have the following decomposition (probably redundant):*

$$\mathcal{I}_\Phi = (x_1^{(p)}, \dots, x_m^{(p)}) \cap (x_1^{(p)}, \dots, x_{m-1}^{(p)}, \mathcal{I}_{\lambda_m}) \dots \cap (x_1^{(p)}, \dots, x_{i-1}^{(p)}, \mathcal{I}_{\lambda_i}) \cap \dots (\mathcal{I}_{\lambda_m}),$$

2. Let $\mathcal{D}_i = (\bigcup_{j=i+1}^l \Delta_j)$, and $\mathcal{Q}_i = (\mathcal{D}_i, \mathcal{P}_i)$. Then

$$\mathcal{I}_\Phi = \mathcal{Q}_1 \cap \mathcal{Q}_2 \cap \dots \cap \mathcal{Q}_l.$$

3. *The minimal primary decomposition of \mathcal{I}_Φ is obtained inductively. Let $\mathcal{I}_{\lambda_{\delta_i}} = \mathcal{Q}_1^{(i)} \cap \dots \cap \mathcal{Q}_{r_i}^{(i)}$ be a minimal prime decomposition, where by induction hypothesis $\mathcal{Q}_j^{(i)}$ is a linear ideal, then the minimal prime decomposition of \mathcal{I}_Φ is obtained from this decomposition by putting out unnecessary components.*

Example 3 let $\mathcal{P}_2 = (c, d) \cap (e)$, $\mathcal{P}_3 = (c, d) \cap (c, e) \cap (e, f)$ and

$$\mathcal{I}_\Phi = (a, b) \cap (a, \mathcal{P}_2) \cap \mathcal{P}_3$$

then

$$\mathcal{I}_\Phi = (a, b) \cap (a, e) \cap (c, d) \cap (c, e) \cap (e, f)$$

is its minimal prime decomposition.

Proposition 2 Let $\mathcal{I} \subset R$ be a p -Ferrer ideal then $\text{reg}(\mathcal{I}) = p = \text{reg}(R/\mathcal{I}) + 1$.

Proof For any two ideals $\mathcal{J}_1, \mathcal{J}_2 \subset S$ we have the following exact sequence:

$$0 \rightarrow S/\mathcal{J}_1 \cap \mathcal{J}_2 \rightarrow S/\mathcal{J}_1 \oplus S/\mathcal{J}_2 \rightarrow S/(\mathcal{J}_1 + \mathcal{J}_2) \rightarrow 0$$

From [B-S, p. 289]

$$\text{reg}(S/\mathcal{J}_1 \cap \mathcal{J}_2) \leq \max\{\text{reg}(S/\mathcal{J}_1 \oplus S/\mathcal{J}_2), \text{reg}(S/(\mathcal{J}_1 + \mathcal{J}_2)) + 1\}$$

in our case we take $\mathcal{J}_1 = \bigcap_{i=1}^k \mathcal{Q}_i$, $\mathcal{J}_2 = \mathcal{Q}_{k+1}$, so that $\text{reg}(S/(\bigcap_{i=1}^k \mathcal{Q}_i + \mathcal{Q}_{k+1})) = \text{reg}(S/(\mathcal{D}_k + \mathcal{P}_{k+1})) = \text{reg}(S'/(P_{k+1})) = p - 1$, where $S = S'[\mathcal{D}_k]$. It then follows that $\text{reg}(S/(\bigcap_{i=1}^l \mathcal{Q}_i)) \leq p$, on the other hand $(\bigcap_{i=1}^l \mathcal{Q}_i)$ is generated by elements of degree p , this implies $\text{reg}(S/(\bigcap_{i=1}^l \mathcal{Q}_i)) = p$.

We will show that in fact $\text{projdim}(S/\mathcal{I}_\lambda)$ is the number of diagonals in a p -Ferrer diagram.

Definition 3 Let $\Phi : \lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_m$ be a p -Ferrer diagram. We will say that the monomial in the p -Ferrer ideal (or diagram) $x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$ is in the $\alpha_p + \alpha_{p-1} + \dots + \alpha_1 - p+1$ diagonal. Let $s_\Phi(k)$ be the number of elements in the k -diagonal of Φ , we will say that the k -diagonal of Φ is full if $s_\Phi(k) = \binom{k-1+p-1}{p-1}$, which is the number of elements in the k -diagonal of \mathbb{N}^p , let remark that by the definition of p -Ferrer diagram if the k -diagonal of Φ is full then the j -diagonal of Φ is full for all $j = 1, \dots, k$.

Lemma 2 1. We have the formula

$$s_\Phi(k) = \sum_{i=1}^m s_{\lambda_i}(k - (i-1)),$$

2. Let $df(\Phi)$ be the number of full diagonals of Φ , then

$$df(\Phi) = \min\{df(\lambda_i) + i - 1 \mid i = 1, \dots, m\}$$

3. Let $\delta(\Phi)$ be the number of diagonals of Φ , then

$$\delta(\Phi) = \max\{\delta(\lambda_i) + i - 1 \mid i = 1, \dots, m\},$$

and $\delta(\Phi) = \max_{i=2}^l \{\delta(\mathcal{P}_i) + \dim \mathcal{D}_{i-1} - 1\}$.

Proof The first item counts the number of elements in the k -diagonal of Φ by counting all the i -slice pieces. The second item means that the k -diagonal of Φ is full if and only if the $k - (i-1)$ -diagonal of the i -slice piece is full, and finally the third item means there is an element in the k -diagonal of Φ if and only if there is at least one element in the $k - (i-1)$ -diagonal of the i -slide piece of Φ , for some i .

Remark that $\delta(\Phi) = \max_{i=2}^l \{\delta(\mathcal{P}_i) + \dim \mathcal{D}_{i-1} - 1\}$, since $\max_{i=1}^{\delta_1} \{\delta(\lambda_i) + i - 1\} = \delta(\lambda_1) + \delta_1 - 1 = \delta(\mathcal{P}_l) + \dim \mathcal{D}_{l-1} - 1$, $\max_{i=\delta_1+1}^{\delta_2} \{\delta(\lambda_i) + i - 1\} = \delta(\lambda_{\delta_1+1}) + \delta_1 + \delta_2 - 1 = \delta(\mathcal{P}_{l-1}) + \dim \mathcal{D}_{l-2} - 1$, and so on.

Theorem 1 Let consider a p -Ferrer diagram Φ and its associated ideal \mathcal{I}_Φ in a polynomial ring S . Let $n = \dim S, c = \text{ht } \mathcal{I}_\Phi, d = n - c$. For $i = 1, \dots, d - \text{depth } S/\mathcal{I}$, let s_{d-i} be the numbers of elements in the $c+i$ diagonal of Φ . Then :

1. c the height of \mathcal{I}_Φ is equal to the number of full diagonals.

2. For $j \geq 1$ we have

$$\beta_j(S/\mathcal{I}_\Phi) = \binom{c+p-1}{j+p-1} \binom{j+p-2}{p-1} + \sum_{i=0}^{d-1} s_i \binom{n-i-1}{j-1}$$

3. $\text{projdim } (S/\mathcal{I}_\Phi) = \delta(\Phi)$.

Proof

1. We prove the statement by induction on p , if $p = 1$ and $\Phi = \lambda \in \mathbb{N}$, then $\mathcal{I}_\Phi = (x_1, \dots, x_\lambda)$ is an ideal of height λ and $df(\lambda) = \lambda$. Now let $p \geq 2$, since

$$\mathcal{I}_\Phi = (x_1^{(p)}, \dots, x_m^{(p)}) \cap (x_1^{(p)}, \dots, x_{m-1}^{(p)}, \mathcal{I}_{\lambda_m}) \dots \cap (x_1^{(p)}, \dots, x_{i-1}^{(p)}, \mathcal{I}_{\lambda_i}) \cap \dots (\mathcal{I}_{\lambda_m}),$$

we have that

$$\text{ht}\mathcal{I}_\Phi = \min\{\text{ht}\mathcal{I}_{\lambda_i} + i - 1\},$$

by induction hypothesis $\text{ht}\mathcal{I}_{\lambda_i} = df(\lambda_i)$ so

$$\text{ht}\mathcal{I}_\Phi = \min\{df(\lambda_i) + i - 1\} = df(\Phi).$$

2. The proof is by induction on the number of generators $\mu(\mathcal{I}_\Phi)$ of the ideal \mathcal{I}_Φ . The statement is clear if $\mu(\mathcal{I}_\Phi) = 1$.

Suppose that $\mu(\mathcal{I}_\Phi) > 1$. Let π be a generator of \mathcal{I}_Φ being in the last diagonal of Φ , so we can write $\pi = x_i^{(p)}g$ for some i , where $g \in \mathcal{I}_{\lambda_i}$ is in the last diagonal of λ_i . By definition of a p -Ferrer tableau, the ideal generated by all the generators of \mathcal{I}_Φ except $x_i^{(p)}g$ is a p -Ferrer ideal and we denoted it by $\mathcal{I}_{\Phi'}$.

In the example 1 we can perform several steps :

$$\begin{array}{cccc} 4 & 3 & 2 & 2 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{array} \longrightarrow \begin{array}{cccc} 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \end{array} \longrightarrow \begin{array}{cccc} 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array} \longrightarrow \begin{array}{cccc} 4 & 3 & 2 & 1 \\ 3 & 2 & 1 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}$$

Φ Φ' Φ'' Φ'''

let denote $\alpha_p := i$, so that

$$x_i^{(p)}g = x_{\alpha_p}^{(p)}x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$$

For any k and $1 \leq \beta < \alpha_k$ we have that $x_{\alpha_p}^{(p)}x_{\alpha_{p-1}}^{(p-1)} \dots x_{\beta}^{(k)} \dots x_{\alpha_1}^{(1)} \in \mathcal{I}_{\Phi'}$, so we have that

$$(\{x_1^{(p)}, \dots, x_{\alpha_p-1}^{(p)}\}, \dots, \{x_1^{(1)}, \dots, x_{\alpha_1-1}^{(1)}\}) \subset \mathcal{I}_{\Phi'} : x_{\alpha_p}^{(p)} \dots x_{\alpha_1}^{(1)}.$$

On the other hand let $\Pi \in \mathcal{I}_{\Phi'} : x_{\alpha_p}^{(p)} \dots x_{\alpha_1}^{(1)}$ a monomial, we can suppose that no variable in $(\{x_1^{(p)}, \dots, x_{\alpha_p-1}^{(p)}\}, \dots, \{x_1^{(1)}, \dots, x_{\alpha_1-1}^{(1)}\})$ appears in Π , so $\Pi x_{\alpha_p}^{(p)} \dots x_{\alpha_1}^{(1)} \in \mathcal{I}_{\Phi'}$ implies that there is a generator of $\mathcal{I}_{\Phi'}$ of the type $x_{\beta_p}^{(p)} \dots x_{\beta_1}^{(1)}$ such that $\beta_i \geq \alpha_i$ for all $i = 1, \dots, p$, this is in contradiction with the fact that $x_{\alpha_p}^{(p)}x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$ is in the last diagonal of Φ and doesn't belongs to $\mathcal{I}_{\Phi'}$. In conclusion we have that

$$\mathcal{I}_{\Phi'} : x_{\alpha_p}^{(p)} \dots x_{\alpha_1}^{(1)} = (\{x_1^{(p)}, \dots, x_{\alpha_p-1}^{(p)}\}, \dots, \{x_1^{(1)}, \dots, x_{\alpha_1-1}^{(1)}\})$$

is a linear ideal generated by $\alpha_p + \dots + \alpha_1 - (p)$ variables. Let remark that since $x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$ is in the last diagonal the number of diagonals $\delta(\Phi)$ in Φ is $\alpha_p + \dots + \alpha_1 - p + 1$.

We have the following exact sequence :

$$0 \rightarrow S/(\mathcal{I}_{\Phi'} : (x_i^{(p)} g))(-p) \xrightarrow{\times x_i^{(p)} g} S/(\mathcal{I}_{\Phi'}) \rightarrow S/(\mathcal{I}_{\Phi}) \rightarrow 0,$$

by applying the mapping cone construction we have that

$$\beta_j(S/\mathcal{I}_{\Phi}) = \beta_j(S/\mathcal{I}_{\Phi'}) + \binom{\delta(\Phi) - 1}{j-1}, \quad \forall j = 1, \dots, \text{projdim}(S/\mathcal{I}_{\Phi}).$$

By induction hypothesis the number of diagonals in Φ' coincides with $\text{projdim}(S/\mathcal{I}_{\Phi'})$. The number of diagonals in Φ' is either equal to the number of diagonals in Φ minus one, or equal to the number of diagonals in Φ . In both cases we have that $s_i(\Phi) = s_i(\Phi')$ for $i = d-1, \dots, n - (\delta(\Phi) - 1)$, $s_{n-(\delta(\Phi))}(\Phi') = s_{n-(\delta(\Phi))}(\Phi) - 1$, and $s_i(\Phi) = s_i(\Phi') = 0$ for $i < n - (\delta(\Phi))$.

Let $c' = \text{ht}\mathcal{I}_{\Phi'}$, It then follows that

$$\beta_j(S/\mathcal{I}_{\Phi'}) = \binom{c' + p - 1}{j + p - 1} \binom{j + p - 2}{p - 1} + \sum_{i=0}^{d-1} s_i(\Phi') \binom{n - i - 1}{j - 1}, \quad \forall j = 1, \dots, \text{projdim}(S/\mathcal{I}_{\Phi'}).$$

By induction hypothesis $\text{projdim}(S/\mathcal{I}_{\Phi'}) = \delta(\Phi')$. We have to consider two cases:

(a) $\delta(\Phi) = c$, this case can arrive only if the c diagonal of Φ is full, so

$$\begin{aligned} c' = c - 1, \quad s_{n-c}(\Phi') &= \binom{c - 1 + p - 1}{p - 1} - 1, \quad \delta(\Phi) = \delta(\Phi') = c \\ \forall 1 \leq j \leq c, \quad \beta_j(S/\mathcal{I}_{\Phi}) &= \beta_j(c-1, p) + \left(\binom{c - 1 + p - 1}{p - 1} - 1 \right) \binom{c - 1}{j - 1} + \binom{c - 1}{j - 1}. \\ \forall 1 \leq j \leq c, \quad \beta_j(S/\mathcal{I}_{\Phi}) &= \beta_j(c-1, p) + \binom{c - 1 + p - 1}{p - 1} \binom{c - 1}{j - 1} = \beta_j(c, p). \end{aligned}$$

Let remark that by induction hypothesis $\beta_j(S/\mathcal{I}_{\Phi'}) = 0$ for $j > c$, this implies that $\text{projdim}(S/\mathcal{I}_{\Phi}) = c = \delta(\Phi)$.

(b) $\delta(\Phi) > c$, in this case $c' = c$

$$\beta_j(S/\mathcal{I}_{\Phi}) = \binom{c + p - 1}{j + p - 1} \binom{j + p - 2}{p - 1} + \sum_{i=0}^{d-1} s_i(\Phi) \binom{n - i - 1}{j - 1}$$

and $\text{projdim}(S/\mathcal{I}_{\Phi}) = \text{projdim}(S/\mathcal{I}_{\Phi'})$ equals the number of diagonals in Φ .

In particular it follows that if the number of diagonals in Φ' is equal to the number of diagonals in Φ minus one, $\text{projdim}(S/\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_{\Phi'}) + 1$ is the number of diagonals in Φ . If the number of diagonals in Φ' is equal to the number of diagonals in Φ , then $\text{projdim}(S/\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_{\Phi'})$ equals the number of diagonals in Φ .

Proposition 3 $\text{ara}(\mathcal{I}_\Phi) = \text{cd}(\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_\Phi)$.

Proof Recall that a monomial in the p -Ferrer ideal (or tableau) $x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$ is in the $\alpha_p + \alpha_{p-1} + \dots + \alpha_1 - p + 1$ diagonal. Let \mathcal{K}_j the set of all monomials in the Ferrer tableau lying in the j diagonal and let $F_j = \sum_{M \in \mathcal{K}_j} M$, we will prove that for any $M \in \mathcal{K}_j$, we have $M^2 \in (F_1, \dots, F_j)$. If $j = 2$, let $M = x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$, with $\alpha_p + \alpha_{p-1} + \dots + \alpha_1 - p + 1 = 2$, then

$$MF_2 = M^2 + \sum(x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)})M'$$

One monomial $M' \in \mathcal{K}_2$, $M' \neq M$ can be written

$$x_{\beta_p}^{(p)} x_{\beta_{p-1}}^{(p-1)} \dots x_{\beta_1}^{(1)}$$

with $\beta_p + \beta_{p-1} + \dots + \beta_1 - p + 1 = 2$, this implies that $\beta_i = 1$ for all i except one value i_0 , for which $\beta_{i_0} = 2$ and also $\alpha_j = 1$ for all j except one value j_0 , for which $\alpha_{j_0} = 2$. Since $M' \neq M$ we must have $x_1^{(P)} x_1^{(p-1)} \dots x_1^{(1)}$ divides MM' .

Now let $j \geq 3$, let $M = x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)}$, with $\alpha_p + \alpha_{p-1} + \dots + \alpha_1 - p + 1 = j$, then

$$MF_2 = M^2 + \sum(x_{\alpha_p}^{(p)} x_{\alpha_{p-1}}^{(p-1)} \dots x_{\alpha_1}^{(1)})M'$$

One monomial $M' \in \mathcal{K}_j$, $M' \neq M$ can be written

$$x_{\beta_p}^{(p)} x_{\beta_{p-1}}^{(p-1)} \dots x_{\beta_1}^{(1)}$$

with $\beta_p + \beta_{p-1} + \dots + \beta_1 - p + 1 = j$, let i_0 such that $\beta_{i_0} \neq \alpha_{i_0}$ if $\beta_{i_0} < \alpha_{i_0}$ then $\frac{M}{x_{\alpha_{i_0}}^{(i_0)}} x_{\beta_{i_0}}^{(i_0)} \in K_i$ for some $i < j$, and if $\beta_{i_0} > \alpha_{i_0}$ then $\frac{M'}{x_{\beta_{i_0}}^{(i_0)}} x_{\alpha_{i_0}}^{(i_0)} \in K_i$ for some $i < j$, in both cases

$MM' \in (K_i)$ for some $i < j$. As a consequence $\text{ara}(\mathcal{I}_\Phi) \leq \text{projdim}(S/\mathcal{I}_\Phi)$, but \mathcal{I}_Φ is a monomial ideal, so by a Theorem of Lyubeznik $\text{cd}(\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_\Phi)$, and $\text{cd}(\mathcal{I}_\Phi) \leq \text{ara}(\mathcal{I}_\Phi)$, so we have the equality $\text{ara}(\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_\Phi)$. Let remark that the equality $\text{cd}(\mathcal{I}_\Phi) = \text{projdim}(S/\mathcal{I}_\Phi)$ can be recovered by direct computations in the case of p -Ferrer ideals.

The reader should consider the relation between our theorem and the following result from [EG]:

Proposition 4 If $R := S/\mathcal{I}$ is a homogeneous ring with p -linear resolution over an infinite field, and $x_i \in R_1$ are elements such that x_{i+1} is a non zero divisor on $(R/(x_1, \dots, x_i))/H_{\mathbf{m}}^0(R/(x_1, \dots, x_i))$, where \mathbf{m} is the unique homogeneous maximal ideal of S , then

1. $s_i(R) = \text{length}(H_{\mathbf{m}}^0(R/(x_1, \dots, x_i)_{p-1}))$, for $i = 0, \dots, \dim R - 1$.
2. If R is of codimension c , and $n := \dim S$, the Betti numbers of R are given by:

$$\text{for } j = 1, \dots, n - \text{depth}(R) \quad \beta_j(R) = \beta_j(c, p) + \sum_{i=0}^{d-1} s_i \binom{n-i-1}{j-1},$$

where $\beta_j(c, p) = \binom{c+p-1}{j+p-1} \binom{j+p-2}{p-1}$ are the betti numbers of a Cohen-Macaulay ring having p -linear resolution, of codimension c .

We have the following corollary:

Corollary 1 If $R := S/\mathcal{I}$ is a homogeneous ring with p -linear resolution over an infinite field, of codimension c , and $n := \dim S$, then

$$\beta_j(c, p) \leq \beta_j(R) \leq \beta_j(n - \text{depth}(R), p).$$

Proof As a consequence of the above proposition we have that $s_i \leq \binom{n-(i+1)+p-1}{p-1}$ so that

$$\beta_j(c, p) \leq \beta_j(R) \leq \beta_j(c, p) + \sum_{i=0}^{d-1} \binom{n-(i+1)+p-1}{p-1} \binom{n-i-1}{j-1}$$

By direct computations we have that $\beta_j(c, p) + \binom{n-d+p-1}{p-1} \binom{n-d}{j\ell-1} = \beta_j(c+1, p)$, which implies

$$\beta_j(c, p) \leq \beta_j(R) \leq \beta_j(c+1, p) + \sum_{i=0}^{d-2} \binom{n-(i+1)+p-1}{p-1} \binom{n-i-1}{j-1},$$

by repeating the above computations we got the corollary.

3 Hilbert series of ideals with p -linear resolution.

Let $\mathcal{I} \subset S$ be an ideal with p -linear resolution, it follows from [EG], that the Hilbert series of S/\mathcal{I} is given by

$$H_{S/\mathcal{I}}(t) = \frac{\sum_{i=0}^{p-1} \binom{c+i-1}{i} t^i - t^p \left(\sum_{i=1}^d s_{d-i} (1-t)^{i-1} \right)}{(1-t)^d}$$

where $d = n - c$. In the case where the ring S/\mathcal{I} is Cohen-Macaulay, we have :

$$H_{S/\mathcal{I}}(t) = \frac{\sum_{i=0}^{p-1} \binom{c+i-1}{i} t^i}{(1-t)^d}$$

Definition 4 For any non zero natural numbers c, p , we set

$$h(c, p)(t) := \sum_{i=0}^{p-1} \binom{c+i-1}{i} t^i.$$

Remark that the h -vector of the polynomial $h(c, p)(t)$ is log concave, since for $i = 0, \dots, p-3$, we have that

$$\binom{c+i-1}{i} \binom{c+i+1}{i+2} \leq (\binom{c+i}{i+1})^2.$$

Lemma 3 For any non zero natural numbers c, p , we have the relation

$$1 - h(c, p)(1-t)t^c = h(p, c)(t)(1-t)^p,$$

in particular $h(c, p)(t) (1-t)^c = 1 - h(p, c)(1-t) t^p$, $h(c, p)(t) (1-t)^c \equiv 1 \pmod{t^p}$.

Proof Let \mathcal{I} be a square free monomial ideal having a p -linear resolution, such that S/\mathcal{I} is a Cohen-Macaulay ring of codimension c , let $\mathcal{J} := \mathcal{I}^*$ be the Alexander dual of \mathcal{I} , it then follows that S/\mathcal{J} is a Cohen-Macaulay ring of codimension p which has a c -linear resolution.

$$H_{S/\mathcal{I}}(t) = \frac{h(c, p)(t)}{(1-t)^{n-c}} = \frac{1 - B_{S/\mathcal{I}}(t)}{(1-t)^n}$$

$$H_{S/\mathcal{J}}(t) = \frac{h(p, c)(t)}{(1-t)^{n-p}} = \frac{1 - B_{S/\mathcal{J}}(t)}{(1-t)^n}$$

and by Alexander duality on the Hilbert series we have that : $1 - B_{S/\mathcal{I}}(t) = B_{S/\mathcal{J}}(1-t)$ but $h(c, p)(t)(1-t)^c = 1 - B_{S/\mathcal{I}}(t)$ and $h(p, c)(t)(1-t)^p = 1 - B_{S/\mathcal{J}}(t)$, so $B_{S/\mathcal{J}}(1-t) = 1 - h(p, c)(1-t)t^p$, so our claim follows from these identities.

Corollary 2 Let $\mathcal{I} \subset S$ be any homogeneous ideal, $c = \text{ht}(\mathcal{I})$, $d = n - c$ and p the smallest degree of a set of generators. Then we can write $H_{S/\mathcal{I}}(t)$ as follows

$$H_{S/\mathcal{I}}(t) = \frac{h(c, p)(t) - t^p \left(\sum_{i=1}^{\delta(\mathcal{I})} s_{\delta(\mathcal{I})-i} (1-t)^{i-1} \right)}{(1-t)^d},$$

where the numbers $s_0, \dots, s_{\delta(\mathcal{I})-1}$ are uniquely determined.

1. Let \mathcal{J} be a square free monomial ideal such that S/\mathcal{J} is a Cohen-Macaulay ring of codimension p , let $\mathcal{I} := \mathcal{J}^*$ be the Alexander dual of \mathcal{J} , it then follows that S/\mathcal{I} has a p -linear resolution. Let $c = \text{codim}(S/\mathcal{I})$. Then

$$H_{S/\mathcal{I}}(t) = \frac{h(c, p)(t) - t^p \left(\sum_{i=1}^d s_{d-i} (1-t)^{i-1} \right)}{(1-t)^{n-c}},$$

$$H_{S/\mathcal{J}}(t) = \frac{h(p, c)(t) + t^c \left(\sum_{i=1}^d s_{d-i} t^{i-1} \right)}{(1-t)^{n-p}}$$

2. Let \mathcal{I} be any square free monomial ideal $c = \text{codim}(S/\mathcal{I})$, p the smallest degree of a set of generators of \mathcal{I} . Let $\mathcal{J} := \mathcal{I}^*$ be the Alexander dual of \mathcal{I} , then $p = \text{codim}(S/\mathcal{J})$, c is the smallest degree of a set of generators of \mathcal{J} and

$$H_{S/\mathcal{I}}(t) = \frac{h(c, p)(t) - t^p \left(\sum_{i=1}^{\delta(\mathcal{I})} s_{\delta(\mathcal{I})-i} (1-t)^{i-1} \right)}{(1-t)^{n-c}},$$

$$H_{S/\mathcal{J}}(t) = \frac{h(p, c)(t) + t^c \left(\sum_{i=1}^{\delta(\mathcal{I})} s_{\delta(\mathcal{I})-i} t^{i-1} \right)}{(1-t)^{n-p}}.$$

Proof Since $1, t, \dots, t^p, t^p(1-t), \dots, t^p(1-t)^k, \dots$, are linearly independent the numbers s_i are uniquely defined.

$$H_{S/\mathcal{I}}(t) = \frac{h_{S/\mathcal{I}}(t)}{(1-t)^{n-c}} = \frac{1 - B_{S/\mathcal{I}}(t)}{(1-t)^n}$$

$$H_{S/\mathcal{J}}(t) = \frac{h_{S/\mathcal{J}}(t)}{(1-t)^{n-p}} = \frac{1 - B_{S/\mathcal{J}}(t)}{(1-t)^n}$$

by Alexander duality on the Hilbert series we have that :

$$B_{S/\mathcal{J}}(t) = 1 - B_{S/\mathcal{I}}(1-t) = (h(c, p)(1-t) - (1-t)^p \left(\sum_{i=1}^{\delta(\mathcal{I})} s_{\delta(\mathcal{I})-i} t^{i-1} \right)) t^c,$$

but $h(c, p)(1-t)t^c = 1 - h(p, c)(t) (1-t)^p$, so

$$1 - B_{S/\mathcal{J}}(t) = (h(p, c)(t) + t^c \left(\sum_{i=1}^{\delta(\mathcal{I})} s_{\delta(\mathcal{I})-i} t^{i-1} \right)) (1-t)^p.$$

This proves the claim.

Theorem 2

1. For any M -vector $\mathbf{h} = (1, h_1, \dots)$ there exists Φ a p -Ferrer tableau such that h_i counts the number of elements in the i -diagonal of Φ .
2. the h -vector of any p -regular ideal is the h -vector of a p -Ferrer ideal.
3. For any M -vector $\mathbf{h} = (1, h_1, \dots)$ we can explicitly construct a p -Ferrer tableau Φ such that $\mathbf{h} = (1, h_1, \dots)$ is the h -vector of \mathcal{I}_Φ^* .

Proof

1. Let $\mathbf{h} = (1, h_1, \dots)$ be the h -vector of S/\mathcal{J} , by Macaulay, [S] 2.2 theorem h is obtained as the M -vector of a multicomplex Γ , where h_i counts the monomials of degree i in Γ . We establish a correspondence between multicomplex Γ and p -Ferrer ideals:

Suppose that Γ is a multicomplex in the variables x_1, \dots, x_n , to any monomial $x_1^{\alpha_1} \dots x_n^{\alpha_n} \in \Gamma$ we associated the vector $(\alpha_1 + 1, \dots, \alpha_n + 1) \in (\mathbb{N}^*)^n$, let Φ be the image of Γ . By definition Γ is a multicomplex if and only if for any $u \in \Gamma$, and if v divides u then $v \in \Gamma$, this property is equivalent to the property:

For any $(\alpha_1 + 1, \dots, \alpha_n + 1) \in \Phi$ and $(\beta_1 + 1, \dots, \beta_n + 1) \in (\mathbb{N}^*)^n$ such that $\beta_i \leq \alpha_i$ for all i then $(\beta_1 + 1, \dots, \beta_n + 1) \in \Phi$. That is Φ is a p -Ferrer tableau, such that h_i counts the number of elements in the i -diagonal of Φ .

2. Let $\mathcal{I} \subset S$ be any graded ideal with p -linear resolution, let $Gin(\mathcal{I})$ be the generic initial, by a theorem of Bayer and Stillman, $Gin(\mathcal{I})$ has a p -linear resolution, on the other hand they have the same Hilbert series, and from the remark in the introduction they have the same betti numbers. $Gin(\mathcal{I})$ is a monomial ideal, we can take the polarisation $P(Gin(\mathcal{I}))$, this is a square free monomial having p -linear resolution and the same betti numbers as $Gin(\mathcal{I})$, the Alexander dual $P(Gin(\mathcal{I}))^*$ is Cohen-Macaulay of codimension p , so there exists a Ferrer tableau Φ such that the h -vector of $S/P(Gin(\mathcal{I}))^*$ is the generating function of the diagonals of Φ , moreover the h -vector of $S/P(Gin(\mathcal{I}))^*$ coincides with the h -vector of $S/(\mathcal{I}_\Phi)^*$. By the above proposition the h -vector of $S/P(Gin(\mathcal{I}))^*$ determines uniquely the h -vector of $S/P(Gin(\mathcal{I}))$, and the last one coincides with the h -vector of S/\mathcal{I}_Φ .
3. Let recall from [S] how to associate to a M -vector $\mathbf{h} = (1, h_1, \dots, h_l)$ a multicomplex $\Gamma_\mathbf{h}$. For all $i \geq 0$ list all monomials in h_1 variables in reverse lexicographic order, let $\Gamma_{\mathbf{h},i}$ be set of first h_i monomials in this order, and $\Gamma_\mathbf{h} = \bigcup_{i=0}^{l-1} \Gamma_{\mathbf{h},i}$, in the first item we have associated to a multicomplex a p -Ferrer tableau Φ such that h_i is the number of elements in the i -diagonal of Φ . By the second item the h -vector of $S/(\mathcal{I}_\Phi)^*$ is exactly \mathbf{h} .

Example 4 We consider the h -vector, $(1, 4, 3, 4, 1)$, following [S], this h -vector corresponds to the multicomplex

$$1; x_1, \dots, x_4; x_1^2, x_1 x_2, x_2^2; x_1^3, x_1^2 x_2, x_1 x_2^2, x_3^2; x_1^4,$$

and to the following p -Ferrer ideal \mathcal{I}_Φ generated by:

$$s_1 t_1 u_1 v_1,$$

$$\begin{aligned}
& s_2 t_1 u_1 v_1, s_1 t_2 u_1 v_1, s_1 t_1 u_2 v_1, s_1 t_1 u_1 v_2, \\
& s_3 t_1 u_1 v_1, s_2 t_2 u_1 v_1, s_1 t_3 u_1 v_1, \\
& s_4 t_1 u_1 v_1, s_3 t_2 u_1 v_1, s_2 t_3 u_1 v_1, s_1 t_4 u_1 v_1, \\
& s_5 t_1 u_1 v_1,
\end{aligned}$$

\mathcal{I}_Φ has the following prime decomposition:

$$\begin{aligned}
& (v_1, v_2) \cap (u_1, v_1) \cap (s_1, v_1) \cap (t_1, v_1) \cap (u_1, u_2) \cap (s_1, u_1) \cap (t_1, u_1) \cap \\
& \cap (t_1, t_2, t_3, t_4) \cap (t_1, t_2 t_3, s_1) \cap (t_1, t_2, s_1, s_2) \cap (s_1, s_2, s_3, s_4, s_5)
\end{aligned}$$

and \mathcal{I}_Φ^* is generated by

$$\begin{aligned}
& v_1 v_2, u_1 v_1, s_1 v_1, t_1 v_1, u_1 u_2, s_1 u_1, t_1 u_1, \\
& t_1 t_2 t_3 t_4, t_1 t_2 t_3 s_1, t_1 t_2 s_1 s_2, s_1 s_2 s_3 s_4 s_5
\end{aligned}$$

and the h -vector of $S/(\mathcal{I}_\Phi)^*$ is $(1, 4, 3, 4, 1)$.

4 Examples

Let $S = K[x_1, \dots, x_n]$ be a polynomial ring. Let $\alpha \in \mathbb{N}^n$, for any element $P \in S$ we set $\tilde{P}(x) = P(x_1^\alpha, \dots, x_n^\alpha)$, more generally for any matrix with entries in S we set \tilde{M} be matrix obtained by changing the entry $P_{i,j}$ of M to $\tilde{P}_{i,j}$.

Lemma 4 Suppose that

$$F^\bullet : 0 \rightarrow F_s \xrightarrow{M_s} F_{s-1} \rightarrow \dots \rightarrow F_1 \xrightarrow{M_1} F_0 \rightarrow 0$$

is a minimal free resolution of a graded S -module M , then

$$\tilde{F}^\bullet : 0 \rightarrow \tilde{F}_s \xrightarrow{\tilde{M}_s} \tilde{F}_{s-1} \rightarrow \dots \rightarrow \tilde{F}_1 \xrightarrow{\tilde{M}_1} \tilde{F}_0 \rightarrow 0$$

is a minimal free resolution of a graded S -module \tilde{M} . If F^\bullet is a pure free resolution, that is $F_i = S^{\beta_i}(-a_i)$ for all $i = 0, \dots, s$, then \tilde{F}^\bullet is also pure and $\tilde{F}_i = S^{\beta_i}(-a_i \alpha)$ for all $i = 0, \dots, s$.

Corollary 3 1. Let $\Phi(p, c)$ be the p -Ferrer diagram Cohen-Macaulay of codimension c . Let $\tilde{\Phi}(p, c)$ be the Ferrer p -Ferrer diagram obtained from $\Phi(p, c)$ by dividing any length unit into α parts, then the Alexander dual $\mathcal{I}_{\Phi(p, c)}^*$ has a pure resolution of type $(0, c\alpha, \dots, (c+p-1)\alpha)$.

2. Let consider any sequence $0 < a_1 < a_2$, suppose that $\beta_0 - \beta_1 t^{a_1} + \beta_2 t^{a_2}$ is the Betti polynomial of a Cohen-Macaulay module of codimension 2, then we must have:

$$a_1 = c\alpha, a_2 = (c+1)\alpha, \beta_1 = \frac{a_2}{a_2 - a_1}\beta_0, \beta_2 = \frac{a_1}{a_2 - a_1}\beta_0.$$

if $a_2 - a_1$ is a factor of a_2, a_1 then we can write

$$a_1 = c\alpha, a_2 = (c+1)\alpha, \beta_1 = (c+1)\beta_0, \beta_2 = c\beta_0,$$

with c a natural number. In particular a module obtaining by taking β_0 copies of $\mathcal{I}_{\Phi(2,c)}^*$, has a pure resolution of type $(0, c\alpha, (c+1)\alpha)$.

Example 5 Let $S = K[a, b, c]$, consider the free resolution of the algebra $S/(ab, ac, cd)$:

$$0 \longrightarrow S^2 \xrightarrow{\begin{pmatrix} a & 0 \\ -d & b \\ 0 & -c \end{pmatrix}} S^3 \xrightarrow{(cd \quad ac \quad ab)} S \longrightarrow 0$$

then we have a pure free resolution

$$0 \longrightarrow S^{2\beta_0} \xrightarrow{M_1} S^{3\beta_0} \xrightarrow{M_0} S^{\beta_0} \longrightarrow 0,$$

where

$$M_1 = \begin{pmatrix} a^\alpha & 0 \\ -d^\alpha & b^\alpha \\ 0 & -c^\alpha \\ & \ddots & \ddots & \ddots \\ & & a & 0 \\ & & -d^\alpha & b^\alpha \\ & & 0 & -c^\alpha \end{pmatrix}, M_0 = \begin{pmatrix} c^\alpha d^\alpha & a^\alpha c^\alpha & a^\alpha b^\alpha \\ & \ddots & \ddots & \ddots \\ & & cd & a^\alpha c^\alpha & a^\alpha b^\alpha \end{pmatrix},$$

with the obvious notation.

Example 6 The algebra $S/(ab, ae, cd, ce, ef)$ has Betti-polynomial $1 - 5t^2 + 5t^3 - t^5$ but has not pure resolution.

Example 7 Magic squares Let S be a polynomial ring of dimension $n!$, It follows from $[S]$ that the toric ring of $n \times n$ magic squares is a quotient $R_{\Phi_n} = S/\mathcal{I}_{\Phi_n}$, its h -polynomial is as follows:

$$h_{R_{\Phi_n}}(t) = 1 + h_1 t + \dots + h_l t^l,$$

where $h_1 = n! - (n-1)^2 - 1$, $d = (n-1)(n-2)$. If $n=3$ we have $h_1 = 1$, $d = 2$, and there is no relation of degree two between two permutation matrices, but we have a degree three relation. Set

$$M_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

$$M_4 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_5 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad M_6 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

We can see that $M_1 + M_2 + M_3 = M_4 + M_5 + M_6$, so this relation gives a degree three generator in \mathcal{I}_{Φ_3} , and in fact \mathcal{I}_{Φ_3} is generated by this relation. By using the cubic generators of \mathcal{I}_{Φ_3} we get cubic generators of \mathcal{I}_{Φ_n} for $n \geq 4$, but we have also quadratic generators, for example :

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

So for $n \geq 4$, the smallest degree of a generator of the toric ideal \mathcal{I}_{Φ_n} is of degree 2. and unfortunately our proposition can give only information about h_1 .

Example 8 The Hilbert series of the following p -Ferrer tableaux are respectively:

$$\frac{1+3t+6t^2}{(1-t)^6}, \quad \frac{1+2t+3t^2-5t^3}{(1-t)^7}, \quad \frac{1+3t+6t^2-t^3}{(1-t)^6}.$$

$$\text{Let remark that } \frac{1+2t+3t^2-6t^3}{(1-t)^7} = \frac{1+3t+6t^2}{(1-t)^6}.$$

Example 9 The Hilbert series of the following p -Ferrer tableaux are respectively:

$$H(t) = \frac{1+t+t^2-t^3(2+2(1-t))}{(1-t)^6}, \quad H(t) = \frac{1+t+t^2-t^3(2+3(1-t)+(1-t)^2)}{(1-t)^6}$$

References

- [BM1] Barile M., Morales M., *On certain algebras of reduction number one*, J. Algebra **206** (1998), 113 – 128.
- [BM2] Barile M., Morales M., *On the equations defining minimal varieties*, Comm. Alg., **28** (2000), 1223 – 1239.
- [BM3] Barile M., Morales M., *On Stanley-Reisner Rings of Reduction Number One*, Ann. Sc.Nor. Sup. Pisa, Serie IV. Vol. **XXIX** Fasc. 3. (2000), 605 – 610.
- [BM4] Barile M., Morales M., *On unions of scrolls along linear spaces*, Rend. Sem. Mat. Univ. Padova, **111** (2004), 161 – 178.
- [B] Bertini, E. *Introduzione alla geometria proiettiva degli iperspazi con appendice sulle curve algebriche e loro singolarità*. Pisa: E. Spoerri. (1907).
- [BMT] Barile, Margherita; Morales, Marcel; Thoma, Apostolos *On simplicial toric varieties which are set-theoretic complete intersections*. J. Algebra **226**, No.2, 880-892 (2000).
- [B-S] Brodmann M.P. and R.Y. Sharp, *Local cohomology*, Cambridge studies in Advanced Math. **60**, (1998).
- [CEP] De Concini, Corrado; Eisenbud, David; Procesi, Claudio *Hodge algebras*. Astérisque **91**, 87 p. (1982).
- [DP] Del Pezzo, P. *Sulle superficie di ordine n immerse nello spazio di $n+1$ dimensioni*. Nap. rend. **XXIV**. 212-216. (1885).
- [EG] Eisenbud, David; Goto, Shiro *Linear free resolutions and minimal multiplicity*. J. Algebra **88**, 89-133 (1984).
- [EGHP] Eisenbud D., Green M., Hulek K., Popescu S., *Restricting linear syzygies: algebra and geometry*, Compos. Math. **141** (2005), no. 6, 1460–1478.
- [Fr] Fröberg R, *On Stanley – Reisner rings*, Banach Center Publ. **26**, Part 2 (1990), 57 – 70.

[GMS1] Gimenez, P.; Morales, M.; Simis, A. *The analytic spread of the ideal of a monomial curve in projective 3-space*. Eyssette, Frédéric et al., Computational algebraic geometry. Papers from a conference, held in Nice, France, April 21-25, 1992. Boston: Birkhäuser. Prog. Math. 109, 77-90 (1993).

[GMS2] Gimenez Ph., Morales M., Simis A., *The analytical spread of the ideal of codimension 2 monomial varieties*, Result. Math. Vol **35** (1999), 250 - 259.

[H] Ha Minh Lam, *Algèbre de Rees et fibre spéciale* PhD Thesis work, Université J-Fourier, Grenoble, France (2006).

[HM] Ha Minh Lam, Morales M., *Fiber cone of codimension 2 lattice ideals* To appear Comm. Alg.

[HHZ] Herzog, Jürgen; Hibi, Takayuki; Zheng, Xinxian *Monomial ideals whose powers have a linear resolution*. Math. Scand. **95**, No.1, 23-32 (2004).

[M] Morales, Marcel *Equations des variétés monomiales en codimension deux. (Equations of monomial varieties in codimension two)*. J. Algebra **175**, No.3, 1082-1095 (1995).

[M] Morales, Marcel *Simplicial ideals, 2-linear ideals and arithmetical rank*. Preprint (2007). math.AC/0702668, in preparation.

[M] Morales, Marcel *p -joined ideals and arithmetical rank*, in preparation.

[RV1] Robbiano, Lorenzo; Valla, Giuseppe *On set-theoretic complete intersections in the projective space*. Rend. Semin. Mat. Fis. Milano **53**, 333-346 (1983).

[RV2] Robbiano, Lorenzo; Valla, Giuseppe *Some curves in P^3 are set-theoretic complete intersections*. Algebraic geometry - open problems, Proc. Conf., Ravello/Italy 1982, Lect. Notes Math. **997**, 391-399 (1983).

[S-V] Schmitt, Th.; Vogel, W., *Note on Set-Theoretic Intersections of Subvarieties of Projective space*, Math. Ann. **245** (1979), 247 - 253.

[S] Stanley, Richard P. *Combinatorics and commutative algebra*. 2nd ed. Progress in Mathematics **41**. Basel: Birkhäuser. 180pp. (2005)

[X] Xambo, S. *On projective varieties of minimal degree*. Collect. Math. **32**, 149 (1981).