

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Исследование динамических систем с дискретным временем»

Студент 315 группы М. М. Савинов

Научный руководитель Д. А. Алимов

Содержание

1	Постановка задачи	3
2	Исследование системы	3
	2.1 Поиск неподвижных точек	3
	2.2 Построение бифуркационной диаграммы	4
	2.3 Циклы длинны 2 и 3	7
	2.4 Построение зависимости показателя Ляпунова от параметра $a.$	9
3	Библиография	11

1 Постановка задачи

Задана динамическая система для модели динамики популяции натурального планктона «ротифера»:

$$N_{t+1} = N_t \exp\left(\frac{b}{N_t} - \frac{c}{N_t^2} - a\right).$$

Необходимо произвести исследование системы:

- Найти неподвижные точки и исследовать их на устойчивость;
- Найти циклы длинны 2 и 3;
- Построить бифуркационную диаграмму;
- Построить зависимость показателя Ляпунова от значения параметра (a > 0).

Вариант 9 предполагает следующие значения параметров:

$$a > 0, \ b = 3.528, \ c = -0.799.$$

2 Исследование системы

2.1 Поиск неподвижных точек.

Будем обозначим f(N)

$$f(N) = N \exp\left(\frac{b}{N} - \frac{c}{N^2} - a\right). \tag{1}$$

Найдем такие N^* , такие что $N^* = f(N^*)$. Это равносильно решению уравнения:

$$N = N \exp\left(\frac{b}{N} - \frac{c}{N^2} - a\right) \Leftrightarrow N_1^* = 0 \text{ и } \frac{b}{N} - \frac{c}{N^2} - a = 0. \tag{2}$$

Умножая на $-N^2$ получаем, что $aN^2-bN+c=0$. Запишем дискриминант $D=b^2-4ac$, из начальных условий понятно, что $D(a)>b^2>0$.

Итого получаем, что при заданных параметрах, уравнение всегда имеет 3 корня:

$$N_1^* = 0, \ N_{2,3}^* = \frac{b \pm \sqrt{b^2 - 4ac}}{2a},$$

используя значения параметров системы, получаем, что корень $N_3^* = \frac{b - \sqrt{b^2 - 4ac}}{2a}$ отрицательный при любых значениях a, его далее рассматривать не будем.

Исследуем на устойчивость неподвижные точки N_1, N_2 , для этого сначала запишем теорему.

Теорема 1 Пусть $N^* = f(N^*)$ и f обратима в некоторой окрестности N^* . Тогда N^* асимптотически устойчива, если $|f'(N^*)| < 1$, и неустойчива, если $|f'(N^*)| > 1$.

Доказательство можно найти например в [1].

Используем эту теорему, для начала найдем производную:

$$f'(N) = \exp\left(\frac{b}{N} - \frac{c}{N^2} - a\right) + \left(\frac{2c}{N^2} - \frac{b}{N}\right) \exp\left(\frac{b}{N} - \frac{c}{N^2} - a\right). \tag{3}$$

- Исследуем выражение (1) для $N_1 = 0$. Так как c < 0, то $\lim_{N\to 0} f'(N) = -\infty$, поэтому эта точка не будет устойчивой по теореме 1.
- Исследуем выражение (1) для N_2 . Воспользуемся (1) и (3) получим, что N_2 асимптотически устойчиво когда выполнено условие $|1 + \frac{2c}{N^2} \frac{b}{N}| < 1$. Решая его при помощи численных средств(matlab), получаем что N_2 устойчиво при $a \in (0, 1.83)$, и не устойчиво при $a \in (1.83, +\inf)$.

Рис. 1: Устойчивость неподвижной точки N_2 .

2.2 Построение бифуркационной диаграммы.

Введем необходимые определения. Рассмотрим дискретную динамическую систему определяемую отображением f:

$$N \to f(N) = f(N, a), \quad N \in U \subset X, \quad a \in \mathbb{R}, \ f : U \to U,$$

где $X \subset \mathbb{R}^n$.

Определение 1. Множество всевозможных состояний N_t называется пространством состояний (или фазовым пространством) исходной системы.

Определение 2.Множество точек N_t , $t = 0, 1, \dots$ называется траекторией (или орбитой) исходной системы, порожденной отображением f.

Определение 3. Динамическая система $N \to f(N)$ называется топологически эквивалентной в области $U \subset X$ динамической системе $M \to g(M)$ в области $V \subset X$, если существует гомеоморфизм $h: X \to X, \ h(U) = V$, отображающий орбиты первой системы в U на орбиты второй системы в V, сохраняя ориентацию во времени.

Определение 4. Появление топологически неэквивалентных фазовых портретов при изменении вектора параметров рассматриваемой динамической системы называется бифуркацией.

Определение 5. Бифуркационной диаграммой динамической системы называется разбиение пространства параметров, индуцированное отношением топологической эквивалентности вместе с фазовым портретами для каждого элемента разбиения

Построим бифуркационную диаграмму для системы (1). Введем оси координат, такие что на оси абсцисс отмечается значение параметра a, а на оси ординат предельное значение N_t при $t \to +\infty$. Выберем стартовое значение параметра $a_0 = 0.1$. Будем увеличивать его с шагом $\delta a = 0.001$. При каждом фиксированном a выберем произвольную начальную точку N_0 , например, $N_0 = 1$, и проитерируем систему (1) k = 500 раз и отметим полученные точки.

Рис. 2: Бифуркационная диаграмма для системы (1) при $a \in [0.1, 2, 6]$.

Рис. 3: Бифуркационная диаграмма для системы (1) при $a \in [0.1, 2, 8]$.

Видно, что начиная с a=1.83 (момент когда N_2 теряет устойчивость), происходит бифуркация удвоения цикла. При a=2, можно заметить цикл длинны 2. При a=2.76 видно цикл длинны 3.

2.3 Циклы длинны 2 и 3.

Выясним, существуют ли в системе циклы длинны 2 и 3. Напомним, что циклом длинны k, называется такой набор точек, x_1, x_2, \ldots, x_k , что $f(x_1) = x_2, f(x_2) = x_3, \ldots, f(x_k) = x_1$.

Найдем цикл длинны 2, при параметре a=2.

Рис. 4: Устойчивый цикл длинны 2.

Численно находятся $n_1 = 1.3781, n_2 = 3.6745.$

Найдем цикл длинны 3, при параметре a = 2.76.

Рис. 5: Устойчивый цикл длинны 3.

Численно находятся $n_1 = 0.6457$, $n_2 = 65.5231$, $n_3 = 4.3776$.

Определение 6. Упорядочиванием множества натуральных чисел по Шарковскому назовем упорядочивание натуральных числел по следующему порядку:

$$3 \succ 5 \succ 7 \cdots \succ$$

$$\succ 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \cdots \succ$$

$$\succ 2^{2} \cdot 3 \succ 2^{2} \cdot 5 \succ 2^{2} \cdot 7 \cdots \succ$$

$$\succ 2^{3} \cdot 3 \succ 2^{3} \cdot 5 \succ 2^{3} \cdot 7 \cdots \succ$$

$$\cdots$$

$$\succ 2^{3} \succ 2^{2} \succ 2^{1} \succ 1.$$

Теорема 2 (Шарковский). Пусть $f: \mathbb{R} \to \mathbb{R}$ — непрерывное отображение, и пусть f имеет цикл длинны k. Тогда имеет цикл длинны m для всех таких m, что $k \succ m$ в смысле порядка по Шарковскому.

Доказательство можно найти, например, в [1]. Так как система имееет цикл длинны 3, то по теореме 2 система имеет циклы любой длинны.

2.4 Построение зависимости показателя Ляпунова от параметра a.

Определение 7. Пусть $f: \mathbb{R} \to \mathbb{R}$ — гладкое отображение. Показателем Ляпунова траектории $N_1, N_2, \cdots, N_k, \cdots$ называется величина данного предела, если он существует:

$$h(N_1) = \lim_{k \to \infty} \frac{\ln|f'(N_1)| + \ln|f'(N_2)| + \dots + \ln|f'(N_k)|}{k}$$

Показатель Ляпунова испоьзуется как « мера близости» орбит: если он отрицателен, то близкие орбиты притягиваются, а если положителен, то они наоборот отталкиваются. На рисунке 6 приведен показатель Ляпунова зависимости от a, при $a \in [0,5], N_1 = 1, k = 500$. На рисунке 7 приведен показатель Ляпунова зависимости от a, при $a \in [0,5], N_1 = 0.04, k = 500$.

Рис. 6: Показатель Ляпунова в зависимости от a, при $a \in [0, 5], N_1 = 1, k = 500.$

Рис. 7: Показатель Ляпунова в зависимости от a, при $a \in [0, 5], N_1 = 0.03, k = 500.$

3 Библиография

Список литературы

[1] Братусь А.С., Новожилов А.С., Платонов А.П. Динамические системы и модели биологии.