Lecture 24

Name: Harsh Sanjay Roniyar

Roll Number: 22B3942

```
A4 Released - Due after EndSem
```

k-means initialization

```
Initialize c_1 to c_k randomly
Loop
{
      y_i <- arg min_k ||x_i - c_k||**2, for all i (Cluster Assignments)
      c_k <- (sum_i 1{y_i = k}*x_i)/(sum_i 1{y_i = k}), for all k
(Calculate Centroids)
}</pre>
```

1{} is the indicator function.

Initialization of cluster centers

- 1. Pick c_1 randomly from X itself
- 2. Pick c_2 from X itself that is furthest from c_1
- 3. Pick c_3 that is furthest from c_1 and c_2 .

4. . . .

Fuzzy c-means

In k-means, X_i and c_j 's are mapped by hard partitioning, that is x_i can belong to only one class. i.e. $w_{ij} \in \{0,1\}$

$$w_{ij} = \mathbb{1}\{d(x_i,c_j)\} = \min_k[d(x_i,c_j)]$$

In fuzzy c-means, x_i 's can belong to every class with some probability, hence soft partitioning, i.e. $w_{ij} \in [0,1]$

$$w_{ij} = rac{1}{\sum_{k=1}^{c} \left[rac{\left\|x_i-c_j
ight\|}{\left\|x_i-c_k
ight\|}
ight]^{rac{2}{m-1}}}$$

 $\lim m \to 1$ will make the weights approach k-means.

Higher the hyperparameter value of m, higher the fuzziness.

In fuzzy c-means, the cluster centers will be a weighted mean.

$$c_j = rac{\sum_i w_{ij} x_i}{\sum_i w_{ij}}$$

Problem

With both k-means and fuzzy c-means, both depend on Euclidean distance from cluster centers. That means, both prefer hyper-spherical clusters (isotropic) of equal radii

Density-based clustering

An example of which is DB-SCAN.

DB-SCAN

3 types of data points, clustered into

- High-density -> cores of arbitrary shapes
- Medium-density -> peripheries
- Low-density -> outlier regions

 ϵ radius (tolerance) and m minimum points

Steps:

- 1. Form a graph with ϵ neighbor hard (tolerance region)
- 2. Identify core points (number of neighbors \geq m)
- 3. Identify periphery/reachable points (non-core points, but at least one core-point neighbor, i.e. within ϵ reach)
- 4. Other points become the outliers

DB-SCAN Algorithm

- For each sample x_i
 - For each other sample x_j
 - Mark j as neighbor of i, if $d_{ij} < \epsilon$
 - Increment number of neighbors n_i of x_i
- For each sample x_i
 - If neighbors $\geq m$ then mark as **core**
 - If neighbors > 0 then mark as **reachable**
 - If neighbors = 0, then mark as **outlier**
- For each sample x_i
 - If core and un-clustered, then mark all connected samples with this cluster

Hierarchical Clustering

- Start with each sample as its singleton cluster
- For each merge iteration
 - For each cluster
 - For each other cluster
 - Compute inter-cluster distance
 - Merge two closest clusters

We get a resulting dendo-gram similar to the following

Now, what is inter-cluster distance? Choices:

- 1. Distance between nearest points from the clusters: Single-Linkage
- 2. Distance between furthest: Complete-Linkage
- 3. Distance between centroids: Average-Linkage

Clustering Metrics

Variation explained Low intra-cluster variation High inter-cluster variation

There are multiple methods for such analyses, e.g.

- Elbow method (Variation explained vs No. of clusters) We observe an elbow at 10% from 100% variation explained, and pertaining to that we get a good number of clusters from the method.
- Silhouette method

How would we measure the variation:

- Avg. distance from centroid
- Avg. distance from all other points
- Fit an isotropic gaussian
 These methods won't work for DB-SCAN
- Silhouette method:

$$\begin{aligned} &\text{Silhouette method} \\ &a(i) = \frac{1}{|C_I|-1} \sum_{j \in C_I, i \neq j} d(i,j) \qquad b(i) = \min_{J \neq I} \frac{1}{|C_J|} \sum_{j \in C_J} d(i,j) \\ &s(i) = \begin{cases} 1-a(i)/b(i), & \text{if } a(i) < b(i) \\ 0, & \text{if } a(i) = b(i) \\ b(i)/a(i)-1, & \text{if } a(i) > b(i) \end{cases} \\ &a'(i) = d(i, \mu_{C_I}) \text{ and } b'(i) = \min_{C_J \neq C_I} d(i, \mu_{C_J}) \quad s'(i) = \frac{b'(i) - a'(i)}{\max\{a'(i), b'(i)\}} \\ &sC' = \max_k \frac{1}{N} \sum_i s'(i). \end{aligned}$$

a(i) is the intra-cluster parameter b(i) is the inter-cluster parameter $S = \max_i s(i)$

• Davies-Bouldin index:

minimize ratio of intra-cluster versus inter-cluster variation

$$\underset{i}{\operatorname{mean}} \ \underset{j}{\operatorname{max}} \ \frac{S_i + S_j}{M_{ij}}$$

 S_i is variation in cluster i and M_{ij} is the variation in cluster i and j combined.