Aprendizado On Policy x Off Policy

Estrutura Básica de Algoritmos de RL

Coleta de Dados

Treinamento

Uma Possibilidade

política comportamental (<u>b</u>ehavioral) política objetivo (<u>t</u>arget)

Coleta de Dados

Treinamento

On Policy: $\pi_h = \pi_t$ coleta de

antigos (experience replay)

- de outros agentes (e.g. de um agente que pode atuar no mundo real sem risco de acidentes)

Nomenclatura

Resumo

Coleta de dados

- Política π_h (behavioral/comportamental), que pode

 - Igual à política target num outro instante: $\pi_b = \pi'_t$ Algum outro agente *qualquer* com uma política π_b off policy $\neq \pi_{+}$

(geralmente exige-se que π_h seja conhecido)

2. Treinamento

• Política π_{t} (<u>t</u>arget/objetivo)

Exemplo: Policy Gradient

$$\theta \leftarrow \theta + \alpha \cdot \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) = E_{\theta} \left[Q^{\pi_{\theta}}(s, a) \cdot \nabla_{\theta} \log \pi_{\theta}(a|s) : s, a \right]$$

- A esperança depende da distribuição dos dados (que depende de π_b)
- Logo, o gradiente calculado é específico para π_b

Recap: Equações de Bellman

$$q_{\pi}(S_t, A_t) = E_{\pi}[R_{t+1} + \gamma \cdot q_{\pi}(S_{t+1}, A_{t+1}) : S_t = s, A_t = a]$$

equação de esperança de Bellman

(usada para estimar o q-valor de uma política)

$$q_{*}(S_{t}, A_{t}) = E\left[R_{t+1} + \gamma \cdot \max_{a} q_{*}(S_{t+1}, a) : S_{t} = s, A_{t} = a\right]$$

equação de otimalidade de Bellman

(usada para estimar o q-valor da política *ótima*)

Exemplo: SARSA

equação de esperança

$$q_{\pi}(S_t, A_t) = E_{\pi} \big[R_{t+1} + \gamma \cdot q_{\pi}(S_{t+1}, A_{t+1}) : S_t = s, A_t = a \big]$$

Exemplo: Q-Learning

equação de otimalidade

Exemplo: Q-Learning

Exemplo: Q-Learning com ε -greedy

 π_{t} é uma estimativa de π_{\star}

$$\pi_{\mathrm{b}} = \pi_{\mathrm{t}}$$

estimativa do valor de π_{\star}

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right].$$

Exemplo: Q-Learning com ε -greedy e replay

 $\pi_{\rm t}$ é uma estimativa de π_{\star} $\pi_{\rm b}$ = alguma versão de $\pi_{\rm t}$ (não necessariamente a atual)

estimativa do valor de π_{\star}

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right].$$