

Welcome to "Live online class"

Solid Dozage forms

- Solid-dosage forms broadly encompass two types of formulation: **Tablets and capsules**
- It has been estimated that solid-dosage forms 90% of all dosage forms
- Most important dosage forms in the treatment and management of disease states
- The widespread use \rightarrow their **convenience** and also the **diversity of tablet** types

Tablets: Advantages

- Tablets are tamperproof dosage formulation
- Unit dose with greatest dose precision and the least content variability
- Greatest ease of swallowing
- Certain **special-release profile products**, such as enteric or delayed-release products
- Lowest Cost and Optimum Portability
- Light and most compact
- Easiest and cheapest to package, store and ship
- Product identification is simplest and cheapest (no additional processing steps)
- Better suited to large-scale production
- Combined properties of chemical, mechanical and microbiologic stability

Tablets: Disadvantages

4

• Manufacture of tablets requires a series of unit operations → Increased level of product loss at each stage in the manufacturing process

- The absorption of tablets is **dependent on physiological factors** → Shows inter-patient variation
- Compression properties of certain drugs are poor (amorphous, flocculent, low-density) →
 Problems in formulation and manufacture as tablets
- Administration of tablets to children, elderly and sick → Problematic
- Drugs with poor wetting, slow dissolution properties, intermediate to large dosages, optimum absorption high in the GIT are difficult to formulate → Drug bioavailability issues
- Bitter-tasting drugs, drugs with an objectionable odor, or drugs that are sensitive to oxygen or atmospheric moisture \rightarrow Require encapsulation or entrapment prior to compression or the tablets may require coating

Tablets: Design and formulation

- 1. Diluents/fillers/bulking agents
- 2. Binders & adhesives (granulators)
- 3. Disintegrants
- 4. Lubricants, Antiadherent & Glidant
- 5. Colors, flavors & sweeteners

Tablets: Diluents/fillers/Bulking agents (1)

6

• <u>Diluents/fillers designed to make up the required bulk of the tablet when the drug dosage Itself is inadequate to produce this bulk</u>

- The dose of some drugs is sufficiently high that no filler is required
- Round tablets for ingestion are usually in a size range of 3/16 to 1/2 inch (120-700mg)

 [Oval tablets are big 800 mg or more]
- Tablet formulations may contain a diluent for secondary reasons: to provide better tablet properties such as
 - improved cohesion,
 - to permit the use of direct compression manufacturing
 - to promote the flow

Tablets: Diluents/fillers/Bulking agents (2) IDEAL PROPERTIES OF DILUENTS

APOMIND

- Nontoxic and acceptable to the regulatory agencies
- Low cost
- They must not be contraindicated by themselves (e.g., sucrose) or because of a component (e.g., sodium) in any segment of the population
- Physiologically inert
- Stable: Physically/Chemically/Microbiologically
- No deleterious effect on the bioavailability of the drug(s) in the product

Tablets: Diluents/fillers/Bulking agents (3)

- Lactose is **most widely** used diluents in tablets
- Lactose is water soluble diluent, used for the immediate release of the drug

Millard's Reaction*(Physical Incompatibility):-- Hydrous lactose + ½ Amine containing drug forms darkening of tablet or browning due to formation of furfuraldehyde

Tablets: Diluents/fillers/Bulking agents (4)

Starch and dextrose

Starch

- Starch may come from corn, wheat, and potato and may give rise to soft tablets
- Moisture content: <u>11-14%</u>
- Star- Rx 1500
 - Free flowing, directly compressible starch
 - Used as diluents, binder, disintegrating agent, self-lubricating, and Glidant (0.25%)
 - Moisture content: 10% (Never use with Magnesium stearate [>0.5%])
- Emdex & Celutab (contains 90-92% dextrose, 3-5% maltose)
 - Hydrolyzed starches which are free flowing and directly compressible
 - Sweet in taste and can be used in replace of Mannitol (Chewable tablets)

Dextrose (Cerelose®):

• Replace the lactose to reduce the tablet to darken

Tablets: Diluents/Fillers/Bulking agents (5)

MANNITOL AND SORBITOL

- Mannitol (Pearlitol[®]):--
 - Most Expensive
 - Used mainly in the chewable tablets: Negative heat of salvation, slow solubility and pleasant feeling in mouth
 - It is non-hygroscopic, hence, used in moisture sensitive vitamin formulation
 - Poor flow (Require high amounts of lubricants)
 - Non reducing sugar (No Millard's reaction).
- Sorbitol:--
 - It is optical isomer of Mannitol but is hygroscopic (above 65% moisture)
 - It has low caloric content and non-carcinogenic.

Tablets: Diluents/fillers/Bulking agents (6)

- SUCROSE
 - DiPac® \rightarrow 97% Sucrose + 3% modified dextrin
 - Sugartab \rightarrow 90-93% sucrose + 7-10% invert sugar
 - NuTab® \rightarrow 95% sucrose + 4% invert sugar with small amount of corn starch & magnesium stearate

Tablets: Diluents/fillers/Bulking agents (7)

Micro Crystalline Cellulose - MCC

- Good flowability
- Direct compressible
- Used as **disintegrating agent**
- Problems of capping and lamination
- Water insoluble, hygroscopic and on storage becomes soft

Avicel 101(Powder - PH 101)

For direct compression and wet granulation method

Avicel 102(Granules – PH 102)

• It have large particles size and better flowability

Avicel 103, 112, 113

Reduced moisture content and ideal for moisture sensitive materials

Tablets: Diluents/fillers/Bulking agents (8)

- Also known as Emcompress[®], Ditab[®], and Fujicalin[®]
- DCP (Dibasic calcium phosphate), calcium sulfate and TCP contain water of crystallization → low affinity for atmospheric moisture → Hence, used for water sensitive drugs → It shows hardening effect
- DCP is virtually insoluble in water and hence used in conjunction with disintegrating agent
- It also shows fragmentation tendency
- Calcium based diluents can cause interaction with tetracycline's API because it from insoluble complex and salts, which reduces absorption and bioavailability
- Black particles on friction

Tablets: Binders & Adhesives (Granulators) (1)

- They *imparts cohesive properties* to powdered material to form granules for tableting.
- APOMIND

- Binders more active as a solution form than solid form
- More the binder used, harder is the tablet formed
- Natural Gums
 - Acacia & Tragacanth (10-25%) -- They are of natural origin so variable in composition easily attacked by microorganism → Use equipment with temperature >37°C
- Gelatin (10-20%):-- Natural protein (Easier to prepare solution than natural gums)
- Starch paste (5-20%):--
 - Prepared by dispersing starch into water when heated
 - The paste must be translucent rather than clear
 - On heating starch hydrolyzed to <u>dextrin & glucose</u> → While clear paste indicates complete conversion to glucose

Tablets: Binders & Adhesives (Granulators) (2)

- 15
- APOMIND

- Liquid glucose (50-74%)
 - For wet granulation
 - Produces hard and brittle tablets
- Modified Natural polymers
 - Alginates and cellulose derive: -- Methyl cellulose, Hydroxy propyl methyl cellulose (HPC), Hydroxy propyl cellulose (HPC) [for both alcoholic & aqueous solution]
 - For direct compression & their aqueous solution is adhesive
 - *Ethyl Cellulose*: It is used only with solution alcoholic & it can retard the disintegration & dissolution of drugs
- Polyvinyl pyrrolidone (PVP) (2-10%) Grades K30 or K90
 - Synthetic polymer
 - Adhesive in either aqueous or alcoholic solution

Tablets: Disintegrant (1)

- It counteracts the cohesive action due to applied compression forces and binders
- Although most of the tablets contains disinter grants, certain exceptions are:--
 - Buccal Tablets
 - <u>Sustained Release tablets</u>
 - Lozenges
 - <u>Implants</u>
 - <u>Chewable Tablets</u>
- Disintegration agents may act by either 4 mechanism:--
 - Swell and atlast burst
 - By chemical reaction producing effervescence
 - Enzymatic action
 - By wetting action

Tablets: Disintegrant (2)

1. Swell and atlast burst:--

Eg:--

- Starch USP(5-20%):-- Most commonly used
- Modified starch(1-8%) :-- Primogel® and Explotab® are low substituted carboxy methyl starches
- Clays \rightarrow Bentonite or Veegum (10%): give off white appearance.
- Cross linked sodium CMC(1-5%):--Ac-di-sol® , Crosscarmelose®
- Cross linked polyvinyl pyrrolidone: -- These are called **super disintegrants**. E.g. Sodium starch gluconate (SSG), croscarmellose sodium (CCS), crospovidone.
- Ion exchange resins: Iodion 414® or palacrillin $K+ \rightarrow it$ is a cation exchange resin.
- Starch swells in all 3 dimensions whereas cellulose swells in 2 dimensions only

Tablets: LUBRICANTS

- They are intended to reduce the friction during tablet ejection between walls of the tablet and walls of the die cavity in which tablet was formed
- Lubricants based *upon fatty acids* are insoluble in water & *hence can retard the* disintegration & dissolution time
- Water soluble lubricants: PEG 6000, [Macrogol 6000 or Carbowax], Magnesium Lauryl Sulfate, Fumaric acid enhances dissolution of hydrophobic granules
- Talc (5%):-- Both Glidant + lubricant activity (Contains Iron, so carefully used if any formula contains drug which breakdown is catalysed by Fe²⁺)

Tablety: ANTIADHERANTS & GUDANTS

19

Antiadherent

- They are used to reduce the sticking & adhesion of any of tablet granulation/powder to the punches of die wall
- Eg: -- Starch and its derivatives, Talc, Mg-stearate, and colloidal Silica

Glidant (Flow promoters):--

- They are intended to promote flow of the tablet granules from hoper & reducing the friction between the particles
- E.g. colloidal silicon dioxide [Aerosil, Cab-O-Sil, Syloid]; Calcium & Magnesium

 Stearates → 0.25 1%, Corn Starch (5-10%)

Tablets: COLORS

Purpose ----

- Disguising of color drugs;
- Product identification;
- Production of more elegant product.

Two forms of color are used in tablets: -- FD&C dyes and D&C dyes (applied as an solution in

granulation process or as lakes)

Lakes

• They are dyes that has been absorbed on hydrous oxide and usually employed as dry powders for coloring. They contain 10-30% of pure dye & maximum upto 50%

21

- Used mostly in chewable tablets or that are intended to use in mouth
- Water soluble flavor have less stability
- Flavored oils added to tablets granulations in solvent -- dispersed on dyes and other absorbents or emulsified in aqueous granulating agent
- Maximum amount of oils added upto <u>0.5-0.75%</u>

Tablets: SWEETENERS

- 22
- APOMIND

- Only used in chewable tablets and mouth dissolving tablets
- Mannitol is 72% sweet as sucrose but expensive
- Saccharin (Artificial Sugar):— 500 times sweeter than sucrose but it is <u>carcinogenic</u> in nature and <u>bitter taste after use</u>
- Aspartame (dipeptide aspartic acid + Phenylalanine):— 200 times sweeter but saccharin but this aspartame lack stability in the presence of moisture and it is hygroscopic

Failure is success in progress. Albert Einstein

auotefanci