Expectation-Maximization

Review: definition of machine learning

Function approximation

Problem setting:

Set of instances (examples) $X = \{x^1, ..., x^n\}$

Unknown target function $f: X \rightarrow Y$

Set of function hypothesis $H = \{h \mid h : X \rightarrow Y\}, h \approx f$

Input:

Training examples { (xi, yi) } of unknown target function f

Output:

Hypothesis $h \in H$ that best approximates target function f

Review: performance evaluation

$$Precision = \frac{True\ Positive}{True\ Positive + False\ Positive}$$

$$\mathsf{Recall} = \frac{\mathit{True\ Positive}}{\mathit{True\ Positive} + \mathit{False\ Negative}}$$

Total data set: 100

Positive: 50, Negative: 50

Program predicts

Positive: 100

Precision = 50/(50+50) = 0.5

Recall = 50/50 = 1

Review: Maximum likelihood estimation (MLE)

- Task: rolling coins
- Data: observed set D of $P(x = h) = \theta$ and $P(x = t) = I \theta$

$$P(D|\theta) = \theta(1-\theta)(1-\theta)\theta\theta = \theta^{a_1}(1-\theta)^{a_0}$$

■ Learning (estimating) of θ by MLE

: choose θ that maximizes the probability of observed data

$$\widehat{\theta} = \arg \max_{\theta} P(\mathcal{D} \mid \theta) \qquad \qquad \frac{\partial}{\partial \theta} (a_1 \ln \theta + a_0 \ln(1 - \theta)) = 0$$

$$= \arg \max_{\theta} \ln P(\mathcal{D} \mid \theta) \qquad \qquad a_1 \frac{1}{\theta} + a_0 \frac{-1}{1 - \theta} = 0$$

$$= \arg \max_{\theta} \ln \theta^{\mathbf{a}_1} (1 - \theta)^{\mathbf{a}_0} \qquad \qquad \theta = \frac{a_1}{a_1 + a_0}$$

Binomial Distribution

Bernoulli trial

- two possible outcomes (S and P)
- constant probability Pr(S) = p
 - independent trials

Binomial Distribution

- n Bernoulli trials
- Let X denote the total number of successes in the n trials
 - The probability distribution of X is given as follows

$$P(X = x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}, \text{ for } x = 0, 1, \dots, n.$$

$$\text{n=100, p = 0.5}$$

$$\text{nCx}$$

Who am 1?

Observations $x_1 \dots x_n$

What if we know the source of each observation?

What if we don't know the source?

What if we know the model?

Who am 1?

?HHHHTTHTHT

We need a model with parameter θ

$$\frac{\Lambda}{\theta} = \underset{\theta}{\operatorname{argmax}} P(D|\theta)$$

? H H H H T T H T H T <6, 4>

We need a model with parameter θ

$${\stackrel{\wedge}{\theta}} = \underset{\theta}{\operatorname{argmax}} P(D|\theta)$$

$$P(D|\theta) = \theta^{H}(I-\theta)^{T}$$

$$\theta$$
 = prob. of heads

We need a model for each class θ_A = prob. of heads in coin type A θ_B = prob. of heads in coin type B

Onlin A	Coin D
Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_A = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

Coin A	Coin B
	5 H, 5 T
9 H, 1 T	
8 H, 2 T	
	4 H, 6 T
7 H, 3 T	
24 H, 6 T	9 H, 11 T

$$\hat{\theta}_{A} = \frac{24}{24+6} = 0.80$$

$$\hat{\theta}_{B} = \frac{9}{9+11} = 0.45$$

$$\hat{y} = \hat{f}(\mathbf{x}) = \operatorname*{argmax}_{c=1}^{C} p(y = c | \mathbf{x}, \mathcal{D})$$

Expectation-Maximization (EM) vs. MLE

```
? HTTTHHTHTH? HHHHHHHHHHHHH? HTHHHHHHHHTH? THHHHTHHHTH
```

$$\hat{\theta}_{A} = ?$$

$$\hat{\theta}_{B} = ?$$

?HHHHTTHTHT

Expectation-Maximization (EM) vs. MLE

```
? HTTTHHTH? HHHHHHHHHH? HTHHHHHHHH? HTHTTTHHTT? THHHHHHHHHHH
```

$$\hat{\theta}_{A}$$
= ?

$$\hat{\theta}_{B} = ?$$

?HHHHTTHTHT

→ need to estimate hidden (latent, unobserved) variables and parameters

Expectation-Maximization (EM)

EM is a procedure for learning hidden variables from partially observed data

X: observed variable

Z: hidden variable

 θ : parameters for model

assign arbitrary values for parameters θ

iterate until convergence

E step: estimate the values of hidden variable Z by using θ and X

$$Z = \operatorname{argmax} P(Z \mid X, \theta)$$

M step: obtain more accurate parameters θ using observed variable X and estimated Z

(use MLE for parameters)

$$\theta = \operatorname{argmax} P(D \mid \theta_k)$$

- ? HTTTHHTH
- ? HHHHTHHHHH
- ? HTHHHHHTHH
- ? HTHTTTHHTT
- ? THHHTHHHTH

- $\hat{\theta}_{A} = ?$
- $\hat{\theta}_{B} = ?$

- $X = \{x^1, x^2, x^3, x^4, x^5\}$ is the number of heads observed, where $x^i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$
- For example, $x^1 = 5$, $x^2 = 9$, $x^3 = 8$, $x^4 = 4$, $x^5 = 7$
- $Z = \{z^1, z^2, z^3, z^4, z^5\}$ is the type of coin, where $z^i \in \{A, B\}$,
- θ is the probability of heads

$$\hat{\theta_A} = \frac{\text{\# of heads using coin A}}{\text{total \# of flips using coin A}}$$

Is the first toss from A or B? $z^1 = A$ or B when $x^1 = 5$?

- \rightarrow Is the first toss more likely from the distribution of A or B?
- $\rightarrow P(z^{|} = A | x^{|}) > P(z^{|} = B | x^{|})$?

 $\theta_A = 0.6$, $\theta_B = 0.5$ (when parameters are given initially) calculate the likelihood for $P(z^i = A|d^i)$ by using $P(d^i|\theta_A)$ and $P(d^i|\theta_B)$ \rightarrow whether coin A or B is more likely to generate the given result from tossing

 $\theta_A = 0.6$, $\theta_B = 0.5$ (when parameters are given initially) calculate the likelihood for $P(z^i = A|d^i)$ by using $P(d^i|\theta_A)$ and $P(d^i|\theta_B)$

→whether coin A or B is more likely to generate the given result from tossing

$$P(z^{I} = A \mid d^{I}) \approx \frac{P(d^{I} \mid \theta_{A})}{P(d^{I} \mid \theta_{A}) + P(d^{I} \mid \theta_{B})}$$

$$P(d_{I} \mid \theta_{A}) = {}_{10}C_{5} \quad 0.6^{5} \quad 0.4^{5}$$

$$P(d_{I} \mid \theta_{B}) = {}_{10}C_{5} \quad 0.5^{5} \quad 0.5^{5}$$

$$P(z^{I} = A \mid d_{I}) = 0.45$$

$$P(z^{I} = B \mid d_{I}) = 0.55$$

$$P(d) = nCk \theta^k (1-\theta)^{n-k}$$

k is the number of heads-up
 θ is the probability of heads-up

randomly assigned for the first iteration

$$\theta_A^{(0)} = 0.6, \quad \theta_B^{(0)} = 0.5$$

$$P_A = P(z^1 = A \mid d^1)$$

d	X	Ра	Рв	Z
1	5	0.45	0.55	В
2	9	0.80	0.20	А
3	8	0.73	0.27	А
4	4	0.35	0.65	В
5	7	0.65	0.35	А

x is the number of headsz is the type of coin

E-step: assign the expected values to the hidden variable based on the given model

randomly assigned for the first iteration

$$\theta A^{(0)} = 0.6, \quad \theta B^{(0)} = 0.5$$

	X	Pa	Рв	Z
1	5	0.45	0.55	В
2	9	0.80	0.20	А
3	8	0.73	0.27	А
4	4	0.35	0.65	В
5	7	0.65	0.35	А

x is the number of headsz is the type of coin

E-step: assign the expected values to the hidden variable based on the given model

	А	В
1		5H5T
2	9H1T	
3	8H2T	
4		4H6T
5	7H3T	

$$\Theta A^{(1)} = 24 / (24+6) = 0.8$$

 $\Theta B^{(1)} = 9 / (9+11) = 0.45$

$$\theta_{A}^{(1)} = 0.8, \quad \theta_{B}^{(1)} = 0.45$$

	X	А	В	Z
1	5	0.1	0.9	В
2	9			
3	8			
4	4			
5	7			

$$P(d_1 \mid \theta_A^{(1)}) = 10C_5 \quad 0.8^5 \quad 0.2^5 = 0.026$$

$$P(d_1 \mid \theta_{B^{(1)}}) = 10C_5 \quad 0.45^5 \quad 0.55^5 = 0.234$$

$$P(z^{I} = A \mid d_{I}) = \frac{P(d_{I} \mid \theta_{A}^{(I)})}{P(d_{I} \mid \theta_{A}^{(I)}) + P(d_{I} \mid \theta_{B}^{(I)})} = 0.1$$

E-step: assign the expected values to the hidden variable

$$\theta_{A}^{(1)} = 0.8, \quad \theta_{B}^{(1)} = 0.45$$

	X	А	В	Z
1	5	0.1	0.9	В
2	9	0.98	0.02	Α
3	8			
4	4			
5	7			

$$P(d2 \mid \theta A^{(1)}) = 10C9 \quad 0.8^{9} \quad 0.2^{1} = 0.268$$

$$P(d2 \mid \theta B^{(1)}) = 10C9 \quad 0.45^{9} \quad 0.55^{1} = 0.004$$

$$P(z^{1} = A \mid d2) = \frac{P(d2 \mid \theta A^{(1)})}{P(d2 \mid \theta A^{(1)}) + P(d2 \mid \theta B^{(1)})} = 0.98$$

$$P(di \mid \theta A^{(1)}) = 10C_5 \quad 0.8^5 \quad 0.2^5 = 0.026$$

$$P(di \mid \theta B^{(1)}) = 10C_5 \quad 0.45^5 \quad 0.55^5 = 0.234$$

$$P(z^1 = A \mid di) = \frac{P(di \mid \theta A^{(1)})}{P(di \mid \theta A^{(1)}) + P(di \mid \theta B^{(1)})} = 0.1$$

E-step: assign the expected values to the hidden variable

$$\Theta_{A}^{(1)} = 0.8, \quad \Theta_{B}^{(1)} = 0.45$$

	X	А	В	Z
1	5	0.1	0.9	В
2	9	0.98	0.02	А
3	8			А
4	4			А
5	7			А

	А	В
1		5H5T
2	9H1T	
3	8H2T	
4	4H6T	
5	7H3T	

$$P(di \mid \theta A^{(1)}) = 10C_5 \quad 0.8^5 \quad 0.2^5 = 0.026$$

 $P(di \mid \theta B^{(1)}) = 10C_5 \quad 0.45^5 \quad 0.55^5 = 0.234$

$$P(z^{I} = A \mid d_{I}) = \frac{P(d_{I} \mid \theta_{A}^{(I)})}{P(d_{I} \mid \theta_{A}^{(I)}) + P(d_{I} \mid \theta_{B}^{(I)})} = 0.1$$

$$\Theta_{A}^{(2)} = 28 / (28+12) = 0.7$$

 $\Theta_{B}^{(2)} = 5 / (5+5) = 0.5$

E-step: assign the expected values to the hidden variable

Expectation-Maximization (EM)

EM is a procedure for learning hidden variables from partially observed data

X: observed variable

Z: hidden variable

 θ : parameters for model

assign arbitrary values for parameters θ

iterate until convergence

E step: estimate the values of hidden variable Z by using θ and X

$$Z = \operatorname{argmax} P(Z \mid X, \theta)$$

M step: obtain more accurate parameters θ using observed variable X and estimated Z

(use MLE for parameters)

$$\theta = \operatorname{argmax} P(D \mid \theta_k)$$

Types of assignments

- hard clustering
 - clusters do not overlap
 - element either belongs to a specific cluster or not
- soft clustering
 - clusters may overlap
 - the degree of association between clusters and instances

EM: coin example for soft assignment

randomly assigned for the first iteration

$$\theta A^{(0)} = 0.6, \quad \theta B^{(0)} = 0.5$$

	X	Pa	Рв	Z
1	5	0.45	0.55	
2	9	0.80	0.20	
3	8	0.73	0.27	
4	4	0.35	0.65	
5	7	0.65	0.35	

	^	ГА	LR	
1	5	0.45	0.55	
2	9	0.80	0.20	
3	8	0.73	0.27	
4	4	0.35	0.65	
5	7	0.65	0.35	

x is the number of heads z is the type of coin

E-step: assign the expected values to the hidden variable based on the given model

Z		А	В
В	1		5H5T
А	2	9H1T	
А	3	8H2T	
В	4		4H6T
А	5	7H3T	

		А	В	
	1	2.2H 2.2T	2.8H 2.8H	5H5T
•	2	7.2H 0.8T	1.8H 0.2T	9H1T
•	3	5.9H 1.5T	2.1H 0.5T	8H2T
	4	1.4H 2.1H	2.6H 3.9T	4H6T
	5	4.5H 1.9T	2.5H 1.1T	7H3T

$$\Theta_A^{(1)} = 21.3 / (21.3 + 8.6) = 0.71$$

$$\Theta_B^{(1)} = 11.7 / (11.7 + 8.4) = 0.58$$

Unsupervised learning

Discovering clusters

$$z_i^* = \operatorname{argmax}_k p(z_i = k|\mathbf{x}_i, \mathcal{D})$$
 Latent variable

Unsupervised learning

Clustering

- Clustering is a problem of identifying clusters of data points in a multidimensional space
- Considering a cluster as comprising a group of data points whose inter-point
 distances are small compared with the distance to the points outside of the cluster
- Optimal assignment to the latent cluster

Clustering in biomedical data

	sample I	sample2	sample3	sample4
Bacteria A				
Bacteria B				
Bacteria C				

Arumugam, M. et al. Nature, (2011)

K-means clustering

- When given a set of data $\{x^1, x^2, x^3, \ldots, x^N\}$, which is N examples of a
- D-dimensional variable x, partition the data set into K clusters
- \rightarrow Finding assignment of examples to clusters $\{r_{nk}\}$ and a set of vectors $\{\mu_k\}$, such that the sum of the squares of the distances of each data point to its closest vector μ_k is minimum
 - μκ: prototype associated with the kth cluster, which represent the center of the cluster
 - r_{nk} = I if a data point x^n is assigned to cluster k r_{nj} = 0 for j ≠ **k**

objective function

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$(r_{nk}) = \left(egin{array}{ccc} 1 & 0 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{array}
ight)$$

$$\sum_{k} r_{nk} = 1$$

Review: Expectation-Maximization (EM)

EM is a procedure for learning hidden variables from partially observed data

X: observed variable

Z: hidden variable

 θ : parameters for model

assign arbitrary values for parameters θ

iterate until convergence

E step: estimate the values of hidden variable Z by using θ and X

$$Z = \operatorname{argmax} P(Z \mid X, \theta)$$

M step: obtain more accurate parameters θ using observed variable X and estimated Z calculate MLE of parameters

$$\theta = \operatorname{argmax} P(D \mid \theta_k)$$

K-means clustering

- K-means clustering uses EM approach
 - choose an initial values for μk
 - repeat two steps
 - E-step: assign each example to the nearest prototype by minimizing J;
 - → determine r_{nk}

$$r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

- M-step: update the prototypes with the data points assigned;
 - \rightarrow determine μk with the new $r_n k$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

$$2\sum_{n=1}^N r_{nk}(\mathbf{x}_n - \boldsymbol{\mu}_k) = 0$$
 For each k, set the derivative of J to 0 with respect to μ_k

$$oldsymbol{\mu}_k = rac{\sum_n r_{nk} \mathbf{x}_n}{\sum_n r_{nk}}$$

- (a) example of 500 data points drawn from 3 Gaussian models
- (b) plotting only x values
- (c) the color represent the value of the responsibility $\gamma(z_{nk})$ associated with data point x^n