

Using the Peregrine cluster

Fokke Dijkstra, Bob Dröge Research and Innovation Support Center for Information Technology

General introduction

- Course aimed at beginners
 - This part assumes knowledge about the Linux command line, file transfers and editing files
- > Topics
 - What is a cluster
 - Cluster storage
 - Module environment
 - Submitting jobs

Research and Innovation Support (RIS)

- > HPC Facilities
 - Peregrine cluster
 - Grid cluster
- > Visualisation
 - Cave
 - Theatre
 - Scientific data
 - Virtual reality
- > Geo Services
- > Research Support in IT

Computer cluster

- A cluster is a collection of computers connected by a network
- A single front-end
- Lots of computers in the background for running tasks
- 1994 first cluster of commodity PCs at NASA
- Peregrine cluster looks quite different
- Most clusters run the Linux operating system

Peregrine falcon

- > Fastest animal on earth
- Stoops down on prey from the air

rijksuniversiteit groningen Peregrine cluster

rijksuniversiteit groningen Why a command line?

- > Easier over the network
- Scripts are easier to run many times
- > Instead of:

> One can use a small program

SSH (Secure SHell)

- > SSH protocol used to connect to the cluster
 - Standard interface for Unix systems
 - Encrypted network traffic
- > Software for Windows called MobaXterm:
 - http://mobaxterm.mobatek.net/
 - Freely available for personal use, already installed on UWP 2
- > Use terminal window under Linux or Mac OS X
- > University P/S/F/G account and password
- > Hostname login node: **peregrine.hpc.rug.nl**
- > Interactive node: pg-interactive.hpc.rug.nl

rijksuniversiteit File transfer clients

> Windows

- MobaXterm has a file transfer interface
 - Included in UWP 2

> Linux

- Command line scp or sftp
- File manager, FileZilla
- Mac OS X (not tested)
 - Command line scp or sftp
 - FileZilla (Open source)

File system	Space (TB)	Quota (GB)	Backup	Shared	Cleanup	Use case
/home	26	20	yes	yes	No	Programs Code Small data sets
/data	206	250	no	yes	No	Large reused data sets
/scratch	231	-	no	yes	Yes, 30 days retention	Temporary data shared between nodes manual clean up
/local	1	-	no	per node	Yes, automatically after job	Temporary data for single node automatic clean up

> What can it do for me?

rijksuniversiteit For whom?

- Account available for University staff & students
 - P, S, or F account is required
 - Undergraduate students through supervisor/teacher
 - Provide contact details and short description of planned use
- > Access through SSH protocol
 - peregrine.hpc.rug.nl (login node)
 - pg-interactive.hpc.rug.nl (interactive node)

rijksuniversiteit What can it be used for?

- > Applications must be able to run under Linux
 - Compile the application yourself
 - Preinstalled applications
 - matlab, R, gromacs, ...
 - Run anywhere languages
 - Java, Python, Perl,
- > No user interaction
 - Input/output through files
- > No graphical interface

rijksuniversiteit groningen General scenarios

- > Long-running calculations
- > Parallel calculations
- > Many calculations

- > If you want to use commercial software a license may be necessary
- > Provided by the university
 - May be installed system wide
 - Problem with Linux versions or number of licenses
- > Provided by yourself
 - Install software in home directory
- > Other cases may be more difficult

- > Where is <insert my favourite software package>?
- > Many applications already available
- > Organized through a "module" system

rijksuniversiteit Module environment

- > Environment set for software when module is loaded
- > Useful commands:
 - module avail [name]
 - module list
 - module add / load <module>
 - module del / remove / rm / unload <module>
 - module save/restore [name]
 - module purge

rijksuniversiteit groningen Module environment (2)

- > Software built using toolchains:
 - goolfc:
 - GNU compilers, OpenMPI, OpenBLAS, Lapack, FFTW, CUDA
 - ictce:
 - > Intel compilers, MKL, Intel MPI
 - Module name contains name of toolchain used to build the software
- Dependencies automatically loaded

Module examples (1)

```
$ module avail
    -----/software/modules/bio ------
  ABySS/1.5.2-goolfc-2.7.11-Python-2.7.9
  BCFtools/1.2-goolfc-2.7.11
  BEDTools/2.22.1-goolfc-2.7.11
  BEDTools/2.23.0-goolfc-2.7.11
                                                (D)
     -----/software/modules/math ------
  CPLEX/12.6.2
  Eigen/3.2.4-goolfc-2.7.11
$ bedtools
-bash: bedtools: command not found
$ module add BEDTools/2.22.1-goolfc-2.7.11
$ bedtools --version
bedtools v2.22.1
```


9) goolfc/2.7.11

Module examples (2)

```
$ module list
Currently Loaded Modules:
  1) GCC/4.8.4
  2) CUDA/6.5.14-GCC-4.8.4
  3) qcccuda/2.7.11
  4) OpenMPI/1.8.4-gcccuda-2.7.11
  5) \text{ gompic}/2.7.11
  6) OpenBLAS/0.2.13-gompic-2.7.11-LAPACK-3.5.0
  7) FFTW/3.3.4-gompic-2.7.11
  8) ScaLAPACK/2.0.2-gompic-2.7.11-OpenBLAS-0.2.13-LAPACK-3.5.0
  9) qoolfc/2.7.11
 10) BEDTools/2.22.1-goolfc-2.7.11
S module del BEDTools
$ module list
Currently Loaded Modules:
  1) GCC/4.8.4
  2) CUDA/6.5.14-GCC-4.8.4
  3) gcccuda/2.7.11
  4) OpenMPI/1.8.4-gcccuda-2.7.11
  5) \text{ gompic}/2.7.11
  6) OpenBLAS/0.2.13-gompic-2.7.11-LAPACK-3.5.0
  7) FFTW/3.3.4-gompic-2.7.11
  8) Scalapack/2.0.2-gompic-2.7.11-OpenBlas-0.2.13-Lapack-3.5.0
```


rijksuniversiteit groningen Module examples (3)

```
$ module purge
$ module list
No modules loaded
```

Installation of new software

- > Into your own home directory:
 - Keep control over the software yourself
 - No special privileges required
 - Cannot be used by other users (unless you grant permission)
- > Into a new module:
 - Can be used by other users
 - Installation requires special privileges
 - Contact us, see "Support" slide

> But I only see a single computer!

- > Front-end node peregrine.hpc.rug.nl
- > Used for access to the cluster
 - Login
 - Data transfers
 - Job submission
 - Editing & Compiling programs
 - (Very) small tests

rijksuniversiteit Interactive node

- > Interactive node: pg-interactive.hpc.rug.nl
- > Used for access to the cluster
 - Testing and porting software
 - Data transfers
 - Job submission
 - Editing & Compiling programs
- > Shared machine, be careful about what you do!

	CPU	Memory	Internal disk	Network	Accelerator
160 Standard nodes	2x Intel Xeon E5 2680v3: 24 cores @ 2.5 GHz	128 GB	1 TB	56 Gbps Infiniband + 10 Gbps ethernet	-
4 GPU nodes	2x Intel Xeon E5 2680v3: 24 cores @ 2.5 GHz	128 GB		CPU core	· ·
2 Xeon Phi nodes	2x Intel Xeon E5 2680v3: 24 cores @ 2.5 GHz	128 GB		Keon Phi	· ·
7 Big memory nodes	4x Intel Xeon E7 4860v2: 48 cores @ 2.6 GHz	1024, 1536 or 2048 GB	1 TB	56 Gbps Infiniband, 10 Gbps ethernet	-
Standard desktop PC	~4 cores	~4-8GB	~1 TB	1 Gbps ethernet	Desktop GPU

Scheduling system

- > Users write job descriptions
- > Scheduler finds matching resource
- Scheduler tries to make optimal use of the resources
- > No resources: wait in a queue
- Priority determined by usage of system in the recent past
- > SLURM: http://slurm.schedmd.com
 - > Scheduler
 - > Resource manager

rijksuniversiteit groningen Scheduler: partitions

	Name	Max walltime	
Standard nodes	nodes (default)	10 days	
Big memory	himem	10 days	
GPU	gpu	3 days	
Xeon Phi	phi	3 days	
Short	short	30 minutes	

> Only half of the cores can be used for running long jobs (> 3 days)

Multiple jobs per node

- Scheduling full nodes to jobs a waste of resources
- > Users can still request a complete node if necessary
- > Jobs run in an isolated and limited set of resources
 - Not possible to use more resources than requested
- Jobs running on the node can still influence each other:
 - Disk space (space and bandwidth)
 - Memory (bandwidth)
 - Can sometimes be problematic

> What is a job script?

Job script

- > Job script tells the system what you want to do
 - List of steps / commands to run
- > First line should always point to the right interpreter that will run your script
 - Typically:#!/bin/bash
- > Includes requirements needed to be able to run it
 - Amount of memory
 - Number of cores and/or nodes
 - Amount of time needed to complete the job

Job requirements/options

- Can be put in job script using lines that start with #SBATCH
- > These lines should be at the top of the script, right after the #!/bin/bash line!
- Can also be passed as command-line arguments to sbatch command
 - Not explained in detail here
 - One simple example: sbatch --time=10:00 --ntasks=4 jobscript.sh

Job requirements

- > Requirements specified using various options:
 - Wall clock time
 - #SBATCH --time=days-hh:mm:ss
 - Number of tasks / cores:
 - #SBATCH --ntasks=n
 - Specific number of nodes and tasks per node:
 - #SBATCH --nodes = m
 - #SBATCH --ntasks-per-node=n
- > Specific node types using --partition option:
 - #SBATCH --partition=himem

rijksuniversiteit groningen Memory requirements

- > Memory requirements can be specified using
 - #SBATCH --mem=n
 n is the total amount of memory per node (!) in megabytes
 - #SBATCH --mem-per-cpu=n
 n is the amount of memory per CPU core in megabytes
 - Suffix K or KB, M or MB, G or GB, T or TB for other units
- > Average memory limits:
 - 21.3, 32 or 42.7 GB per core on big memory nodes
 - 5.3 GB per core on all other nodes
- > Default 2000MB memory limit!
- > Exceeding the limit will kill your application/job

Job properties

- Also using #SBATCH lines or on the command line
- > Name of the job
 - #SBATCH --job-name=name
- > Name of the output file of the job
 - #SBATCH --output=filename
 - Default is: slurm-<*jobid*>.out
- > Email notifications
 - #SBATCH --mail-user=user@mail.com
 - #SBATCH --mail-type=event1,event2,...,eventN
 - event can be any of: ALL, BEGIN, END, FAIL, REQUEUE, TIME_LIMIT, TIME_LIMIT_50, TIME_LIMIT_80, TIME_LIMIT_90
 - Mail can be problematic in case of cluster problems

Job script itself

- > Contains Linux commands
 - cd, mkdir, etc.
- > Run some application

> Sample script:

```
#!/bin/bash
#SBATCH --ntasks=2
#SBATCH --time=00:30:00
#SBATCH --job-name=testjob
cd $HOME/bin
./myprog
```

Useful environment variables

- **\$HOME**: your home directory
- **\$USER**: your username
- **\$SCRATCHDIR**: Temporary directory created for your job on /scratch. Removed after your job has finished!
- **\$TMPDIR**: Temporary directory created for your job on /local. Removed after your job has finished!
- **\$SLURM_JOB_ID**: Id of job, useful for creating unique files or directories for a job
- **\$SLURM_JOB_NAME:** Name of the job, as specified in the jobscript

• • •

Submitting jobs

> sbatch jobscript

\$ sbatch testjob.sh
Submitted batch job 2865

- Job will start in the directory from which it was submitted
- Your complete environment will be transferred to the job; this includes all loaded modules.
 - Can be adjusted using:#SBATCH --export=VAR1,VAR2, ... (or: NONE)

rijksuniversiteit groningen Checking job status (1)

> squeue

\$ squeue

	PARTITION	NAME	USER		TIME		NODELIST (REASON)
4983	nodes	testjob	p456789		0:00		(Resources)
4984	nodes	testjob	p456789	PD	0:00	20	(Priority)
4985	nodes	testjob	p456789	PD	0:00	20	(Priority)
4986	nodes	testjob	p456789	PD	0:00	20	(Priority)
4987	nodes	testjob	p456789	PD	0:00	20	(Priority)
4978	nodes	testjob	p456789	R	0:01	20	pg-node[041-060]
4979	nodes	testjob	p456789	R	0:01	20	pg-node[061-080]
4980	nodes	testjob	p456789	R	0:01	20	pg-node[081-100]
4981	nodes	testjob	p456789	R	0:01	20	pg-node[101-120]
4982	nodes	testjob	p456789	R	0:01	20	pg-node[121-140]
4976	nodes	testjob	p456789	R	0:04	20	pg-node[001-020]
4977	nodes	testjob	p456789	R	0:04	20	pg-node[021-040]

Checking job status (2)

```
$ squeue -u p456789
```

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
3018 nodes hpl.128. p456789 R 3:26 128 pg-node[001-120,122-129]

Status:

PD: pending

R: running

CA: cancelled

CG: completing

CD: completed

F: failed

NF: node failure

TO: timeout (reached time limit)

Checking job status (3)

- More information about a particular job:
 - > Still running or just completed:

> scontrol show job <job id>
> Accounting information for completed jobs:

```
> sacct --jobs=<one or more job ids>
```

> Add --long option for even more information

> Use --format option if you want specific information for your job, e.g. for memory usage:

```
sacct --jobs=2781 --format=JobID,
```

jobname, MaxRSS

> Same information for running jobs:

```
> sstat --jobs=<job id(s)>
```


Checking job status: web app

- > http://app.webhosting.rug.nl
- > Monitor cluster status and usage
- Monitor job status, progress and information
- > Intended for smartphones, but also works on desktop
- > Also available as MyUniversity widget

Research and In	.rug.nl/peregrine/#job	s ☆ (c
Support	novation / Tele	Last update: 9 seco
Running	Walting	Username
ξ Filter jobs by ID or name		
[3019] hpl.128.job		•
[3020] hpl.128.job		•
[3021] hpl.128.job		
Submitted: Thu Mar 26 17:29:10 2015 Nodes: 3072 State: queued		•
[3022] hpl.128.job		•
[3023] hpl.128.job		•
[3036] hpl.64.ictce.job		6

Checking the results

- Unless specified otherwise, output file is written to same directory as from which the job was submitted
- > slurm-<jobid>.out
- > Created when job starts running
- > While job is running, new output gets appended
- If the job has state CD or has disappeared from squeue, it has finished

Oops, I did not want to run that!

> scancel

\$ sbatch testjob.sh
Submitted batch job 2870


```
$ squeue -u peter

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)

2870 nodes testjob peter R 0:03 1 pg-node021
```

\$ scancel 2870

> Cancel multiple jobs at once:

\$ scancel --state=PENDING --user=bob --partition=short

rijksuniversiteit A real example

> A job script that runs R code:

```
#!/bin/bash
#SBATCH --job-name=R job
#SBATCH --time=00:01:00
#SBATCH --ntasks=1
\#SBATCH --mem=1000
#SBATCH --partition=short
pwd
module load R/3.1.2-goolfc-2.7.11-default
module list
Rscript myscript.r
```

rijksuniversiteit groningen Another real example

> A job script that runs Matlab code:

```
#!/bin/bash
#SBATCH --job-name=matlab job
#SBATCH --time=00:02:00
#SBATCH --ntasks=1
\#SBATCH --mem=1000
#SBATCH --partition=short
module load MATLAB/2014b-GCC-4.8.4
module list
matlab -nodisplay -r mycode
      Code in file mycode.m
```

- > Support through CIT central service desk
 - Phone: 3232
 - E-mail: citservicedesk@rug.nl
- > Online documentation and account request form:
 - https://redmine.hpc.rug.nl
- > Comments and questions are always welcome

> I want to know more!

Useful documents

- > Introduction to Linux by Machteld Garrels: http://tldp.org/LDP/intro-linux/html/index.html
- Bash shell guide by Machteld Garrels:
 http://tldp.org/LDP/Bash-Beginners-Guide/html/index.html
- > Linux guide: http://www.tuxfiles.org
- > Linux command line: http://linuxcommand.org/
- > Documentation and more details about SLURM: http://slurm.schedmd.com
- > Manual pages for all SLURM commands: http://slurm.schedmd.com/man_index.html

Peregrine team

Fokke Dijkstra, Niels Idsinga, Ger Strikwerda, Robin Teeninga, Bob Dröge, Laurent Jensma, Henk-Jan Zilverberg, Wim Nap

- > Hostname: peregrine.hpc.rug.nl
- > Username & password have been handed out

Checking partition details

> sinfo

```
TIMELIMIT
PARTITION AVAIL
                           NODES STATE NODELIST
nodes*
                               2 down* pg-node[006,141]
            up 10-00:00:0
nodes*
            up 10-00:00:0
                               2 drain pg-node[068,111]
            up 10-00:00:0
nodes*
                                  resv pg-node[005,007-015,018-021,023-035]
                               27
nodes*
            up 10-00:00:0
                               28
                                  alloc pg-node[104-110,142-162]
nodes*
            up 10-00:00:0
                                   idle pg-node[016-017,022,036-067,069-099,112-140]
                               95
short
               30:00
                                   mix pg-node[100-103]
            up
short
                                   idle pg-node[003-004]
                30:00
            up
                                   comp pg-gpu[01-04]
            up 3-00:00:00
gpu
phi
            up 3-00:00:00
                                   idle pq-phi[01-02]
himem
            up 10-00:00:0
                                   idle pg-memory[01-07]
```


rijksuniversiteit GUI for showing all cluster details

- > sview on the login node
- > See slides about running applications with a GUI

