Федеральное государственное автономное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Радиотехнические цепи и сигналы. Работа 18. Пассивные электрические цепи.

> Филиппенко Павел Сергеевич студент группы Б01-001 2 курс ФРКТ

> > г. Долгопрудный 2021 г.

Задание 1.

Соберем на макетной плате схему интегрирующей цепи с параметрами $R=100~{\rm Om},~C=1{,}05~{\rm mk\Phi},$ тогда постоянная времени для этой цепи $\tau=RC=105~{\rm mkc}.$ Экспериментально определим верхнюю граничную

частоту ν_0 , подбирая ν_0 таким образом, чтобы амплитуда выходного сигнала составила 70% от амплитуды входного сигнала. $U_{\text{вых}}=0.7U_{\text{вх}}$. Теоретическое значение $\nu_{0\text{теор}}=\frac{1}{2\pi CR}=1.516\ \text{к}\Gamma$ ц. Экспериментальное

значение $\nu_{0 \text{экс}} = 1{,}51 \text{ к}\Gamma$ ц.

Снимем зависимость коэффициента передачи $K(\nu) = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ от частоты $\nu = 2^n \nu_0$ в пределах $n \in [-2, 4]$. Построим график $K(\nu)$, а так же граф Боде $-20 \lg K$ от $n = \log_2(\nu/\nu_0)$.

n	ν , к Γ ц	$K(\nu)$	$20 \lg K$
-2	0,377	0,96	-0,35
-1	0,755	0,9	-0,92
0	1,51	0,73	-2,73
1	3,02	0,55	-5,19
2	6	0,32	-9,90
3	12	0,16	-15,92
4	24,1	0,088	-21,11

Таблица 1:

По осцилограмме прямоугольных сигналов оценим постоянную времени τ , измерив время нарастания фронта импульса от нуля до уровня $1-1/e\approx 0.63$. Экспериментально получено $\tau=111$ мкс. Тогда

$$u_0 = \frac{1}{2\pi\tau} \approx 1434 \, \Gamma$$
ц.

Соберем на макетной плате схему дифференцирующей цепи. Экспериментально определим нижнюю граничную частоту ν_0 . Теоретиче-

ское значение $\nu_{0\text{теор}}=\frac{1}{2\pi CR}=1{,}516$ к Γ ц. Экспериментальное значение $\nu_{0\text{экс}}=1{,}9$ к Γ ц.

Снимем зависимость коэффициента передачи $K(\nu) = \frac{U_{\text{вых}}}{U_{\text{вх}}}$ от частоты $\nu = 2^n \nu_0$ в пределах $n \in [-4, 2]$. Построим график $K(\nu)$, а так же граф Боде $-20 \lg K$ от $n = \log_2(\nu/\nu_0)$.

Интегрирующая схема

Рис. 1:

n	u, Гц	$K(\nu)$	$20 \lg K$
-4	118,7	0,07	-23,10
-3	237,5	0,11	-19,17
-2	475	0,246	-12,18
-1	950	0,43	-7,33
0	1900	0,69	-3,22
1	3800	0,87	-1,21
2	7600	0,95	-0,45

Таблица 2:

Изучим графики частотной и фазовой характеристик интегрирую-

Дифференцирующая схема

Рис. 2:

щей цепи в МісгоСар. Верхняя частота $f_0 = 9{,}99 \approx 10$ к Γ ц. Изучим переходную характеристику. Расчитаем постоянную времени $\tau =$

 $(R||R_L)\cdot C=16$ мкс, значение, найденное по графику au=16,5 мкс. Убедимся в том, что при наличии сопротивления R_L передаточная

функция цепи принимает вид

$$H(p) = \frac{K_0}{1 + p\tau}, \ K_0 = \frac{R_L}{R + R_L}, \ \tau = (R||R_L) \cdot C$$

Изучим частотную и фазовую характеристики дифференцирующей цепи. Нижняя частота $f_0 \approx 10$ к Γ ц. Изучим переходную характеристику. По графику оценим постоянную времени $\tau \approx 16,9$ мкс. Убедимся,

Рис. 3:

что при $R_s \neq 0$ передаточная функция принимает вид

$$H(p) = \frac{K_0 p \tau}{1 + p \tau}, \ K_0 = \frac{R}{R + R_s}, \tau = (R + R_s) \cdot C$$

Рис. 4:

Задание 2.

$$f_0=rac{1}{2\pi RC}=10$$
 к Γ ц

По графикам ФЧХ измерим значения фазовых сдвигов ФВЧ, ПФ и ФНЧ на частотах $0, f_0, \infty$.

	ФВЧ	ПФ	ФНЧ0
0	180	90	0
f_0	90	0	-90
∞	0	-90	-180

Заметим, что двухсторонняя полоса пропускания $\Pi\Phi$ $\Delta f=36-3$ к Γ ц=33 к Γ ц $\approx 3f_0$.

Открыв графики переходных характеристик, оценим время спада $au^{(-)}$

первого выброса переходной характеристики $\Phi B Y$ до уровня e^{-1} и время $\tau^{(+)}$ нарастания фронта переходной характеристики $\Phi H Y$ до уровня $1-e^{-1}$.

$$au^{(-)} = 4.3 \; \text{mkc} \; \; au^{(+)} = 53.0 \; \text{mkc}$$

$$\tau^{(+)} = 12,24$$

Задание 3.

Наибольший диапазон перестройки фазы реализуется на частоте $f_0=25$ к Γ ц. При этом, границы этого диапазона $[-150,73^o,-28,73^o]$.

Изучим частотную и фазовую характеристики двойного Т-образного моста. Ширина полосы реженции $\Delta f = 41, 18 - 2,38 \approx 39$ кГц $\approx 4F_0$.

Подключим ко входу источник прямоугольного импульса и проанализируем переходную характеристику. Оценим время спада $\tau^{(-)}=4,2$ мкс и нарастание $\tau^{(+)}=67-12=55$ мкс. Теоретические значения

$$\tau^{(\pm)} = \frac{1}{2\pi f_0 \mu_+}, \ \mu_{\pm} = 2 \pm \sqrt{3}$$

Оценим частоты f_0 и добротность $Q = \frac{f_0}{\Delta f}$ нулей передачи.

R, кОм	f_0 ,	Δf , Гц	Q
4,9	9,94	100	99
5,0	10,00	1	10000
5,1	10,05	98	103

Групповые задержки

$$R=4,9$$
 кГц, $f=10,05$ кГц | $au_g=3$ мс, $au=\frac{Q}{\pi f}=R=5,1$ кГц, $f=9,95$ кГц | $au_g=3$ мс, $au=\frac{Q}{\pi f}=1$

Задание 4.

Параметры компонентов.

$$L=220$$
 мк Γ н $R=91$ Ом $C=1,2$ н Φ

На макетной плате соберём схему полосового фильтра с указанными параметрами. Подключив генератор синусоидального сигнала, измерим резонансную частоту f_0 , коэффициент передачи K_0 и ширину Δf пика по уровню $0.7U_0$. Оценим добротность $Q = \frac{f_0}{\Delta f}$.

$$f_0 = 36,4$$
 к Γ ц $K(f_0) = 1,1$ $\Delta f = 40,4 - 32,6 = 7,7$ к Γ ц $Q \approx 4,72$

Из тех же компонент соберём схемы фильтров верхних (Φ ВЧ) и нижних (Φ НЧ) частот.

1. Для ФНЧ
$$\frac{K(f_0)}{K(0)} \approx 3{,}27$$

2. Для ФВЧ
$$\frac{K(f_0)}{K(\infty)} \approx 3{,}19$$

Подключив генератор прямоугольных импульсов, изучим переходные характеристики ФВЧ, ПФ, и ФНЧ. Прикинув по осциллограммам период колебаний и время их затухания до уровня $\frac{1}{e}=0,37$, дадим оценку резонансной частоты f_0 и добротности Q.

	T, MKC	τ , MKC	f_0 , к Γ ц	Q
ФНЧ	2,4	2,8	366	7,1
ПФ	3,3	2,6	392	4.9
ФВЧ	2,8	2,8	366	6,1

$$\tau_g = \frac{Q}{\pi f_0} \Rightarrow Q = \tau_g \pi f_0 = \frac{\rho}{r}$$

где $\rho = \sqrt{\frac{L}{C}}$. Отсюда по формулам находим расчетное значение добротности и торетическое значение грпповой задержки.

Изучим графики распределения мощностей в резонансной LRC-цепи. Проверим выполнение закона суммирования мощностей на частоте резонанса и на границах полосы пропускания.

R, Om	10	20	40	100
τ , MC	0,65	0,3	0,15	0,06
$ au_{ m reop}$, MC	0,64	0,32	0,16	0,06
Q	200	100	50	20

$$f_0 = 250 \; \mathrm{K}\Gamma$$
ц $P_L = 175,\!545 \; \mathrm{MBT}$ $P_R = 20,\!796 \; \mathrm{MBT}$ $P_C = -177,\!606 \; \mathrm{MBT}$ $\sum P_i = 18,\!69 \; \mathrm{MBT}$

Границы полосы пропусканя $f_1 = 242$ к Γ ц, $f_2 = 259$ к Γ ц.

$$f_1 = 242 \; \mathrm{k}\Gamma$$
ц $P_L = 85,06 \; \mathrm{MBT}$ $P_C = -87,83 \; \mathrm{MBT}$ $P_R = 9,36 \; \mathrm{MBT}$ $\sum P_i = 6,59 \; \mathrm{MBT}$

$$f_2 = 259 \; \mathrm{к}\Gamma$$
ц $P_L = 88{,}71 \; \mathrm{м}\mathrm{B}\mathrm{T}$ $P_C = -89{,}54 \; \mathrm{м}\mathrm{B}\mathrm{T}$ $P_R = 8{,}75 \; \mathrm{м}\mathrm{B}\mathrm{T}$ $\sum P_i = 7{,}92 \; \mathrm{m}\mathrm{B}\mathrm{T}$

Задание 5. 1

Запишем параметры схемы: $f_0 = 100$ к Γ ц, $\varrho = 570 \Rightarrow \alpha = 0.057$, $\beta = 0.056, Q = 8.85.$

Сопративление контура на резонансной частоте $R \approx 5$ кOм, полоса пропускания $\Delta f \approx 11{,}15$ к Γ ц.

Изучим зависимость частоты параллельного резонанса от R. Прове-

рим формулу $f=f_0\sqrt{1-\beta^2}$, где $\beta=\frac{R}{\rho}$. Фазовый сдвиг на частоте 2 к Γ ц составляет $\frac{\pi}{4}$ при сопративлении R=11,5 Ом.

R, Om	0,00	50,0	100,00	150,00
$f_{ m skcn}$, к Γ ц	99,98	99,6	98,42	96,42
$f_{ m reop}$, к Γ ц	100,00	99,0	98,40	96,60

Задание 6.

Измерим частоты f_p , f_0 последовательного и параллельного резонансов по точкам пересечения нуля фазовой характеристикой. Получаем $f_0=100,5$ к Γ ц, $f_p=140$ к Γ ц. Измерим полюсы Δf_0 и Δf_p , в которых фазовая характеристика изменяется в диапазоне ± 45 в окрестностях резонансов. Получаем $\Delta f_p=106,47-95,7=10,77$ к Γ ц, $\Delta f_0=145,29-134,7=10,59$ к Γ ц. Расчитаем добротности $Q_p=\frac{f_p}{\Delta f_p}=13,22,$

$$Q_p = \frac{f_0}{\Delta f_0} = 9{,}33$$
. Заметим, что $\frac{Q_p}{Q_0} \approx 1{,}41 \approx \sqrt{2}$.