UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA

MATEMÁTICAS AVANZADAS

SERIE DE EJERCICIOS

FUNCIONES ANALÍTICAS

- 1. Comprobar que las partes real e imaginaria de la función f(z) = z + 2 satisfacen las ecuaciones de Cauchy-Riemann en \mathbb{R}^2 .
- **2.** Demostrar que la función $f(z) = (1+2i)\bar{z} (1-2i)$ en ningún punto es analítica.
- **3.** Dada la función f(z) = sen(z)
 - **a)** Escribirla en la forma f(z) = u(x, y) + iv(x, y).
 - **b)** Demostrar, a partir del inciso anterior, que f es analítica en todo \mathbb{C} .
 - **c)** Comprobar, a partir de los incisos anteriores, que $f'(z) = \cos(z)$.
- **4.** Determinar en dónde la función $f(z) = -2(x^2 + y^2 xy) i(x^2 y^2 + 4xy + 1)$ es analítica; donde lo sea, obtener su derivada y escribir esta última en términos de z.
- **5.** Obtener una función analítica f(z) tal que Re[f'(z)] = 2(x y) y f(i) = i.
- **6.** Determinar los puntos singulares de la función

$$f(z) = \frac{e^z}{z(z^2 + 4)}$$

es decir, los puntos donde no es analítica.

7. Calcular, mediante la regla de L'Hôpital, el siguiente límite

$$\lim_{z \to 0} \frac{z - sen(z)}{z^3}$$

8. Dada la función f(z) = (1 + 2i)z, comprobar que las curvas

$$Re[f(z)] = 1$$
 e $Im[f(z)] = -2$

son ortogonales, es decir, que se intersecan en ángulo recto. Dibujar ambas curvas.

9. Dada la función $f(z) = (2 - i)z^2 - 2i$, comprobar que las familias de curvas

$$Re[f(z)] = \alpha$$
 e $Im[f(z)] = \beta$

donde $\alpha, \beta \in \mathbb{R}$, son ortogonales, es decir, que se intersecan en ángulo recto.

10. Comprobar que el ángulo entre las rectas

$$x = a$$
 y $y = b$

en el plano z, donde $a,b \in \mathbb{R}$, se preserva tanto en magnitud como en sentido bajo la transformación f(z) = (1-2i)z - (2-i).

11. Comprobar que el ángulo entre las curvas

$$y = x$$
 y $y = 2 - x$

en el plano z, se preserva tanto en magnitud como en sentido bajo la transformación $f(z) = -z^2 - (1+i)$. Dibujar los dos pares de curvas en sus respectivos planos.

12. Determinar la armónica conjugada de la función

$$u(x,y) = ax + by + c$$

donde $a,b,c\in\mathbb{R}$, es decir, otra función v(x,y) tal que f(x,y)=u(x,y)+iv(x,y) es analítica en \mathbb{C} .

13. Determinar si existe la armónica conjugada de la función

$$u(x, y) = x^2 - xy - y^2 - 2x + y$$

es decir, determinar si existe otra función v(x,y) tal que f(x,y) = u(x,y) + iv(x,y) sea analítica en \mathbb{C} . En caso afirmativo, obtenerla.

14. Determinar el valor de la constante $C \in \mathbb{R}$ de tal manera que exista la armónica conjugada de la función

$$u(x,y) = -x^2 - xy + 2Cy^2 - 2x - y$$

es decir, el valor de $C \in \mathbb{R}$ para el cual existe v(x,y) tal que f(x,y) = u(x,y) + iv(x,y) es analítica en \mathbb{C} . Para dicho valor, obtener la armónica conjugada.

15. Obtener la función f(z) entera tal que $Im[f(z)] = x^2 - y^2 + 2x - y$ y f(1) = 1 + 3i.