The ICP Method

1. ICP method for clay

Unit skin friction $\,f_{{\scriptscriptstyle S}i}\,$ is calculated as

$$f_{si} = 0.8 \, \sigma'_{rc} \tan \delta_f$$

 $\sigma'_{rc} = K_c \, p'_o$

where

 $\sigma_{rc}'={
m \ radial\ effective\ stress\ after\ equalization}$

 $\delta_f = \text{interface friction angle from ring shear test}$

$$K_c = \left[2.2 + 0.016 \ OCR - 0.87 \ \Delta I_{vy}\right] OCR^{0.42} \left[max\left(\frac{h}{R^*}, 8\right)\right]^{-0.2}$$

 $p'_o =$ effective overburden pressure

OCR = yield stress ratio or apparent over-consolidation ratio

 $\Delta I_{vv} = \log S_t$

 $S_t = \text{ sensitivity of clay}$

h = distance above pile tip

 $R^* = (R_0^2 - R_i^2)^{0.5}$

 $R_o = \text{outer radius of pile}$

 $R_i = \text{inner radius of pile}$

Unplugged end bearing $\,q_b=q_c\,$ on the area of pile annulus. $\,q_c$ is CPT cone resistance at pile tip.

2. ICP method for sand

unit skin friction f_{si} is

compression: $f_{si} = (\sigma'_{rc} + \Delta \sigma'_{rd}) \tan \delta_{cv}$

tension: $f_{si} = a (0.8 \sigma'_{rc} + \Delta \sigma'_{rd}) \tan \delta_{cv}$

$$\sigma_{rc}' = 0.029 \ q_c \ \left(\frac{p_o'}{p_a}\right)^{0.13} \left[max\left(\frac{h}{R^*}\right), 8\right]^{-0.38}$$

$$\Delta\sigma'_{rd} = 2G\frac{\Delta r}{R_o}$$

where

 $\sigma_{rc}'={
m \ radial \ effective \ stress \ after \ equalization}$

 $\Delta\sigma'_{rd}=\,$ increase in radial stress due to loading

 $\delta_{cv}=\,$ constant volume interface friction angle

a = 0.9 for open-end pile

 $q_c = \text{cone resistance}$

 $p_o' =$ effective overburden pressure

 $p_a = atmospheric pressure$

h = distance above pile tip

 $R^* = (R_o^2 - R_i^2)^{0.5}$

 $R_o =$ outer radius of pile

 $R_i = \text{inner radius of pile}$

G = shear modulus

 $\Delta r = \text{interface dilation}$

Unplugged end bearing q_b is

$$q_b = A_r \, \overline{q_c}$$

$$A_r = 1 - \left(\frac{D_i}{D_o}\right)^2$$

where

 $A_r = area ratio$

 $\overline{q_c}=\,$ cone resistance averaged over ± 1.5 D about pile tip

 $D_i = \text{inner diameter of pile}$

 $D_o =$ outer diameter of pile