Resumen Final Analisis III

Javier Vera

April 2, 2024

1 Limites Multivariable

Teorema 1.1 (Limites multivariable)

Sea $f: \mathbb{R}^n \to \mathbb{R}^m$ $f_i: \mathbb{R}^n$ funciones coordenadas $y: x = (x_1, \dots, x_n)$ $y: a = (a_1, a_n)$ $y: l = (l_1, \dots, l_m)$ sucede que:

$$\lim_{x \to a} f_i(x) = l_i \iff \lim_{x \to a} f(x) = l$$

Proof. (\Rightarrow) dado $\epsilon>0$ $\exists \tilde{\epsilon}$ tal que $\frac{\epsilon}{\sqrt{m}}=\tilde{\epsilon}$ sabemos por hipótesis que para cada $i=1\ldots m$

$$\exists \delta_i > 0 \quad \text{tal que} \quad ||x - a|| < \delta_i \Rightarrow |f_i(x) - l_i| < \tilde{\epsilon}$$

Pero entonces sea $\delta = \min{\{\delta_i\}}$ vale que

$$||x-a|| \le \delta \Rightarrow ||f(x)-l|| = \sqrt{\sum_{i=1}^{m} |f_i(x)-l_i|^2} < \sqrt{m.\tilde{\epsilon}^2} = \sqrt{m}.\tilde{\epsilon} = \epsilon$$

Mostrando lo que queríamos

 (\Leftarrow) Dado $\epsilon > 0$ existe

$$\delta > 0$$
 tal que $||x - a|| < \delta \Rightarrow ||f(x) - l|| < \epsilon$

Pero

$$|f_i(x) - l_i| < ||f(x) - l||$$

Por lo tanto $|f_i(x) - l_i| < \epsilon > 0$

2 TL es lipschitz

Teorema 2.1 (TL es lipschitz)

Sea $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ transformación lineal entonces L es lipschitz y por lo tanto contínua

Proof. Sea $x \in \mathbb{R}^n$ con $x = (\sum_{i=1}^n x_i e_i)$, con e_i vectores canónicos

$$||Lx|| = ||L(\sum x_i e_i)|| = ||\sum x_i L(e_i)|| = \sum ||x_i Le_i|| = \sum ||x_i||||Le_i|| \le n||x|| \sum ||Le_i|| = k||x||$$

Con esto probamos continuidad en $a \in \mathbb{R}^n$. Sea $\epsilon > 0$ entonces tomamos $\delta = \frac{\epsilon}{k}$ y tenemos

$$||Lx - La|| = ||L(x - a)|| < k||x - a|| < \epsilon$$

3 Continuidad de composición

Teorema 3.1 (Continuidad de composición)

Sean $f: \mathbb{R}^n \to \mathbb{R}^m$ y $g: \mathbb{R}^m \longrightarrow \mathbb{R}^{\bar{p}}$ continuas en a y f(a) respectivamente entonces $g \circ f$ es contínua en a

Proof. Podemos suponer Dm(f) y Dm(g) abiertos y f(a) punto de acumulación del dm(g). Sabemos que g es contínua en b = f(a) entonces dado $\epsilon > 0$ $\exists \delta_1 > 0$ tal que

$$||y - f(a)|| < \delta_1 \Longrightarrow ||g(f(x)) - g(f(a))|| \le \epsilon$$

Como f es contínua en a. Dado $\epsilon = \delta_1 \quad \exists \delta > 0$ tal que

$$||x-a|| < \delta \Longrightarrow ||f(x)-f(a)|| = ||y-f(a)|| < \delta_1$$

Pero entonces $||g(f(x)) - g(f(a))|| < \epsilon$. Mostrando que $g \circ f$ es contínua en a

4 Derivadas Cruzadas

Teorema 4.1 (Derivadaz Cruzadas)

Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ una función contínua y diferenciable tal que existen f_x , f_y , f_{xy} , f_{yx} entonces $f_{xy} = f_{yx}$

Proof. Defination $G_1(u) = f(u, y + k) - f(u, y)$ y $G_2(v) = f(x + h, v) - f(x, v)$ y notemos que

$$G_1(x+h) - G_1(x) = G_2(y+k) - G_2(y)$$

Ahora como G_1 es contínua (por que f es contínua) aplicamos TVM en [x, x + h] y tenemos que

$$G_1(x+h) - G_1(x) = hG'_1(x_1) = h[f_x(x_1, y+k) - f_x(x_1, y)]$$
 $x_1 \in [x, x+h]$

Ahora podemos consideramos $H_1(v) = f_x(x_1, v)$ contínua por que f_x contínua. Por TVM en [y, y + k] tenemos

$$f_x(x_1, y + k) - f_x(x_1, y) = H_1(y + k) - H_1(y) = kH_1(y_1) = kf_{xy}(x_1, y_1)$$

Entonces

$$G_1(x+h) - G_1(x) = h[f_x(x_1, y+k) - f_x(x_1, y)] = hkf_{xy}(x_1, y_1)$$

ambos Análogamente con G2

$$G_2(y+k) - G_2(y) = kG_2'(y_2) = k[f_y(x+h,y_2) - f_y(x,y_2)]$$
 $y_2 \in [y,y+k]$

Definimos $H_x(u) = f_y(u, y_2)$ usamos TVM en [x, x + h] y terminamos llegando a

$$G_2(y+k) - G_2(y) = hk f_{yx}(x_2, y_2)$$

Finalmente

$$hkf_{xy}(x_1, y_1) = hkf_{yx}(x_2, y_2)$$

Por lo tanto

$$f_{xy}(x_1, y_1) = f_{yx}(x_2, y_2)$$
 $x_1, x_2 \in [x, x+h]$ $y_1, y_2 \in [y, y+k]$

Ahora si hacemos tender h, k a cero $f_{xy}(x_1, x_2) = f_{xy}(x, y)$ por contínuidad de f_{xy} lo mismo con f_{yx} Entonces

$$f_{xy}(x,y) = f_{yx}(x,y)$$

y esto lo podríamos haber hecho para cualquier x, y en el dominio de f

Es facil generalizarlo a $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ Simplemente vamos haciendo la misma demo fijando todas las coordenadas salvo dos. Y tambien podemos reaplicar la misma demo usando alguna primera derivada como primera funcion para probar lo mismo con derivadas terceras

5 Unicidad Diferencial

Teorema 5.1 (Unicidad Diferencial)*Proof.* Sean L_1 y L_2 dos diferenciales posibles para f diferenciable, entonces:

$$f(a+h) - f(a) - L_1(h) = Z_1(h)||h|| \quad \lim_{h \to 0} Z_1(h) = 0$$

$$f(a+h) - f(a) - L_2(h) = Z_2(h)||h|| \lim_{h \to 0} Z_2(h) = 0$$

loremSent Luego restando ambas

$$L_1(h) - L_2(h) = (Z_2(h) - Z_1(h))||h||$$

Pero $h = tu \operatorname{con} ||u|| = 1$

$$\begin{split} L_1(tu) - L_2(tu) &= (Z_2(tu) - Z_1(tu))||tu|| \\ t(L_1(u) - L_2(u)) &= (Z_2(tu) - Z_1(tu))t||u|| \\ (L_1(u) - L_2(u)) &= (Z_2(tu) - Z_1(tu))||u|| \\ L_1(u) - L_2(u) &= \lim_{t \to 0} (L_1(u) - L_2(u)) = \lim_{t \to 0} (Z_2(tu) - Z_1(tu))||u|| = 0 \end{split}$$

Finalmente $L_1(u) = L_2(u) \quad \forall u \in \mathbb{R}^n \quad \text{tal que} ||u|| = 1$

Por lo tanto usando linealidad de L_1, L_2

$$L_1(h) = L_2(h) \quad \forall h \in \mathbb{R}^n$$

6 Teorema 6

Teorema 6.1

Si $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ es una transformación lineal \iff f es diferenciable $\forall a \in \mathbb{R}^n$ y $d_a f = f$

Proof. La vuelta es por definición. Hagamos la ida

Propongo L = f como diferencial de f.

$$\frac{f(a+h) - f(a) - f(h)}{||h||} = \frac{f(a) + f(h) - f(a) - f(h)}{||h||} = 0$$

Entonces

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - f(h)}{||h||} = 0$$

Por lo tanto f es diferenciable y por unicidad del diferencial $d_a f = f$

7 Teorema 7

Teorema 7.1

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ diferenciable en a entonces

$$\exists \frac{\partial f}{\partial x_j}(a) = \left(\frac{\partial f_1}{\partial x_j}(a), \ldots, \frac{\partial f_m}{\partial x_j}(a)\right) \quad \text{y además} \quad [d_a f]_{ij} = \frac{\partial f_i}{\partial x_j}(a)$$

Proof. f es diferenciable en a entonces

$$f(a+h) - f(a) = (d_a f) \cdot (h) + ||h||z(h)$$
 con $\lim_{h \to 0} z(h) = 0$

Como vale para cualquier $h\to 0$ tomemos $h=te_j$ con e_j vector canónico. Ahora cuando $t\to 0$ tenemos que $h\to 0$

$$f(a+te_j) - f(a) = (d_a f).(te_j) + ||te_j||z(te_j)$$

$$\frac{f(a+te_j) - f(a)}{t} = (d_a f).(e_j) + \frac{|t|}{t}||e_j||z(te_j)$$

$$\frac{f(a+te_j) - f(a)}{t} = (d_a f).(e_j) + \frac{|t|}{t}z(te_j)$$

Usando limite de $t \rightarrow 0$ de ambos lados llegamos a

$$\left(\frac{\partial f_1}{\partial x_j}(a), \dots, \frac{\partial f_m}{\partial x_j}(a)\right) = \frac{\partial f}{\partial x_j}(a) = (d_a f).(e_j)$$

Observación

$$\frac{|t|}{t}Z(te_j)$$

es una función partida que dependiendo de si t es positiva o negativa puede ser $Z(te_j)$ o $-Z(te_j)$ pero para el límite no me importa por que ambas tienden a 0

Entonces existe dicha derivada. Además $(d_a f).(e_i)$ es la j-esima columna de $d_a f$ por lo tanto

$$d_a f = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

8 Teorema 8

Teorema 8.1 (Derivadas parciales contínuas y diferenciabilidad)

Si f tiene todas sus derivadas parciales contínuas en un abierto entonces es diferenciable en dicho abierto

Proof. Probemosló primero para $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$. Propongo

$$d_a f = (f_x(a_1, a_2), f_y(a_1, a_2))$$

$$f(a+h)-f(a)=f(a_1+h_1,a_2+h_2)-f(a_1+h_1,a_2)+f(a_1+h_1,a_2)-f(a_1,a_2)$$

$$f(a+h)-f(a)-(d_af).(h_1,h_2)^T=f(a_1+h_1,a_2+h_2)-f(a_1+h_1,a_2)+f(a_1+h_1,a_2)-f(a_1,a_2)-(d_af).h^T$$
 (Por Teorema Valor Medio)
$$=f_y(a_1+h_1,\tilde{a_2}).h_2+f_x(\tilde{a_1},a_2).h_1-(d_af).h^T \qquad (\tilde{a_1}\in[a_1,a_1+h_1]\wedge\tilde{a_2}\in[a_2,a_2+h_2])$$

$$=f_y(a_1+h_1,\tilde{a_2}).h_2+f_x(\tilde{a_1},a_2).h_1-f_x(a_1,a_2).h_1-f_y(a_1,a_2)h_2$$

$$=[f_y(a_1+h_1,\tilde{a_2})-f_y(a_1,a_2)]h_2+[f_x(\tilde{a_1},a_2)-f_x(a_1,a_2)].h_1$$

(1)

Por lo tanto

$$\left| \frac{f(a+h) - f(a) - (d_a f)(h)}{||h||} \right| = \left| \frac{[f_y(a_1 + h_1, \tilde{a_2}) - f_y(a_1, a_2)]h_2 + [f_x(\tilde{a_1}, a_2) - f_x(a_1, a_2)].h_1}{||h||} \right|$$

$$\leq \left| [f_y(a_1 + h_1, \tilde{a_2}) - f_y(a_1, a_2)] + [f_x(\tilde{a_1}, a_2) - f_x(a_1, a_2)] \right|$$
(2)

Pero

$$\lim_{h \to 0} [f_y(a_1 + h_1, \tilde{a_2}) - f_y(a_1, a_2)] + [f_x(\tilde{a_1}, a_2) - f_x(a_1, a_2)] = 0$$

$$h \to 0 \Rightarrow a_1 + h_1 \to a_1 \land a_2 + h_1 \to a_2$$

Porque que ambas funciones (derivadas) son contínuas, por lo tanto

$$\lim_{h \to 0} f_y(a_1 + h_1, \tilde{a_2}) = f_y(a_1, a_2) \quad \lim_{h \to 0} f_x(\tilde{a_1}, a_2) = f_x(a_1, a_2)$$

Por lo tanto el limite de diferenciabilidad es 0, mostrando que f es diferenciable Para llevarlo a $\mathbb{R}^n \longrightarrow \mathbb{R}$ es la misma idea pero intercalando n términos en vez de solamente dos Para generalizar a $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ con $f = (f_1, \ldots, f_m)$ simplemente usamos que una funcion de este tipo es diferenciable si es diferenciable si f_1, \ldots, f_m son cada una diferenciable y estas son funciones como en el caso anterior por lo tanto son diferenciables

9 Teorema 9

Teorema 9.1 (Teorema 9)

Sea f diferenciable, entonces existen las derivadas direccionales en cualquier dirección. Además $\frac{\partial f}{\partial u}=(d_a f)(u)$

Proof. Como f diferenciable

$$f(a+h) - f(a) = ||h||Z(h) + (d_a f)(h) \implies \frac{f(a+h) - f(a)}{t} = \frac{||h||Z(h) + (d_a f)(h)}{t}$$
$$\frac{f(a+tu) - f(a)}{t} = \frac{|t|Z(u) + t(d_a f)(u)}{t} = \frac{|t|Z(u)}{t} + (d_a f)(u)$$

Finalmente

$$\frac{\partial f}{\partial u} = \lim_{t \to 0} \frac{f(a+tu) - f(a)}{t} = \lim_{t \to 0} \frac{|t|Z(u)}{t} + (d_a f)(u) = (d_a f)(u)$$

Observación hay que dividir en dos casos el límite de Z(u) arriba dimos un ejemplo

Por lo tanto existe dicha derivada direccional, en cualquier dirección u y además tenemos una definición para ella

10 Gradiente es la dirección de máximo crecimiento

Teorema 10.1

 $Si\ f: \mathbb{R}^n \longrightarrow \mathbb{R}$ es diferenciable y $\nabla f_{(a)} \neq 0$ entonces

$$u = \frac{\nabla f_{(a)}}{||\nabla f_{(a)}||}$$

es la dirección de mayor variación de f y $||\nabla f_{(a)}||$ es el valór de máxima variación

Proof. Sea $u \in \mathbb{R}^n$ vector normal. entonces

$$\left|\frac{\partial f}{\partial u}(a)\right| = \left|\nabla f_{(a)}.u\right| \le \left|\left|\nabla f_{(a)}\right|\right|.\left|\left|u\right|\right| = \left|\left|\nabla f_{(a)}\right|\right|$$

(Observación la desigualdad vale por Cauchy Schwarz) Por lo tanto $\nabla f_{(a)}$ es la máxima variación posible. Además la desigualdad se transforma en una igualdad cuando

$$u = \frac{\nabla f_{(a)}}{||\nabla f_{(a)}||}$$

que es por lo tanto el máximo valor que puede tomar u mostrando que u es la dirección de máxima variación (Observación 2) Acá ya partimos con la idea de que la derivada direccional expresa la variación en dicha dirección

11 Valor medio multivariable

Teorema 11.1 (Valor medio multivariable)

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ diferenciable en un abierto de A. Sea $a,b \in A$ tal que el segmento que los une esta contenido en A entonces \exists c tal que en el segmento que une a y b

$$f(b) - f(a) = \nabla f_c \cdot (b - a)$$

Proof. Primero parametrizamos dicho segmento S(t) = t(b-a) + a $0 \le t \le 1$ observar

$$S(0) = a \land S(1) = b \land S(t) \subseteq A \quad 0 \le t \le 1$$

Ahora sea g(t) = f(S(t)) = f(t(b-a) + a) con $g : [0,1] \to \mathbb{R}$ Veamos que g es derivable usando que f es diferenciable

$$\frac{g(x+h) - g(x)}{h} = \frac{f((x+h)(b-a) + a) - f(x(b-a) + a)}{h}$$

$$= \frac{f((x(b-a) + a) + h(b-a)) - f(x(b-a) + a)}{h}$$

$$= \frac{d_{S(x)}f(h(b-a))}{h} + \frac{||h(b-a)||}{h}Z(h(b-a))$$

$$= \frac{h}{h}.d_{S(x)}f(b-a) + \frac{||h(b-a)||}{h}Z(h(b-a))$$
(3)

Usando limite de ambos lados

$$\frac{g(x+h) - g(x)}{h} = d_{S(x)}f(b-a)$$

Y esto vale para cualquier $x \in [0,1]$. Por lo tanto la derivada de g(x) existe, g(x) es derivable en $0 \le x \le 1$ Entonces por Teorema Valor Medio en $\mathbb R$

$$g(1) - g(0) = g'(t_0)(1-0) \iff f(b) - f(a) = d_{S(t_0)}(b-a)(1-0) = \nabla_c f(b-a) \mod c = s(t_0)$$

12 Regla de la Cadena

Es una demo facil, pero larga de escribir. Pagina 84 Riveros

13 Polinomio de Taylor multivariable

Expresión larga pero entendible para el pol de taylor, despues vale lo mismo que en R

14 Puntos críticos y derivada

Teorema 14.1

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ diferencianble. Si a es un máximo (mínimo) local de f entonces $\nabla f_a = 0$

Proof. Como f diferenciable existen sus derivadas parciales, supongamos que a es un máximo entonces $\exists B(a, \delta)$ tal que $f(a) \ge f(x) \quad \forall x \in B(a, \delta)$

Ademas dado $a + t.e_i$ tenemos que $\delta > ||a + te_i - a|| = ||t.e_i|| = |t|$

Por lo tanto dado un t suficientemente pequeño $a + t.e_i \in B(a, \delta)$ entonces

$$f(a+t.e_j) \le f(a) \quad \forall t \le t_0 \iff f(a+t.e_j) - f(a) \le 0 \quad \forall t \le t_0$$

$$\lim_{t \to 0^+} \frac{f(a+t.e_j) - f(a)}{t} \le 0$$

$$\lim_{t \to 0^-} \frac{f(a+t.e_j) - f(a)}{t} \ge 0$$

Por que el numerador es negativo (a partir de un t_0) por lo que vimos , pero el denominador puede ser positivo o negativo dependiendo de si t es negativo tendiendo a 0 o positivo tendiendo a 0

Finalmente

$$\frac{\partial f}{\partial x_i}(a) = \lim_{t \to 0} \frac{f(a+t.e_j) - f(a)}{t} = 0 \quad \forall j = 1, \dots, n$$

Entonces $\nabla f_a = 0$

15 Matriz Hessiana

Teorema 15.1 (Matriz Hessiana, máximos y mínimos)

Pagina 110 apunte riveros

16 Multiplicadores de Lagrange

Teorema 16.1 (Multiplicadores de Lagrange)

Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ differenciable $y g_i: \mathbb{R}^n \longrightarrow \mathbb{R}$ con i = 1, ... m de clase C^1 tal que

$$S = \{ p \in \mathbb{R}^n \text{ con } g_i(p) = 0 \quad \forall i = 1, \dots, m \}$$

Y además $\nabla g_1(p), \ldots, \nabla g_m(p)$ son li $\forall P \in S$

Si f tiene un extremo absoluto en $p_0 \in S$ entonces p_0 es punto crítico de la función

$$F(x_1,\ldots,x_n,\lambda_1,\ldots,\lambda_2)=f(x_1,\ldots,x_n)+\lambda_1g_1(x_1,\ldots,x_n)+\cdots+\lambda_mg_m(x_1,\ldots,x_n)$$

Es decir $\exists \lambda_1^0, \dots, \lambda_m^0$ tal que $\nabla F(p_0, \lambda_1^0, \dots, \lambda_m^0) = 0$

Proof. Lo probaremos para $g : \mathbb{R}^n \longrightarrow \mathbb{R}$ $g \text{ es } C^1 \text{ con } S = \{p : g(p) = 0\}$

Sea $p_0 \in S$ máximo absoluto de $f|_S$ supongamos que $\nabla g_i \neq 0 \quad \forall p \in S$ por comodidad, la demo es similar sin asumir esto

Sea $\delta(t) \subseteq S$ con $\delta: (-\epsilon, \epsilon) \to \mathbb{R}^n$ tal que $\delta(0) = p_0$ además $g(\delta(t)) = 0 \quad \forall t \in (-\epsilon, \epsilon)$ por lo tanto

$$\nabla g_{\delta(0)}.\delta'(0) = \nabla g_{p_0}.\delta'(0) = 0$$

Entonces ∇g_{p_0} es perpendicular a $\delta(0)$ que es un vector con dirección tangente a S en p_0 Por otro lado llamamos $h(t) = f(\delta)(t)$ y resulta que

$$h(0) = f(\delta(0)) = f(p_0) \ge h(t) \quad \forall \epsilon < t < \epsilon$$

justamente por que p_0 es un máximo de $f|_{S}$. Esto nos dice que 0 es un máximo de h Entonces

$$\nabla f_{\delta(t)}.\delta'(t) = h'(t) \iff \nabla f_{\delta(0)}.\delta'(0) = h'(0) \iff \nabla f_{p_0}.\delta'(0) = 0$$

Esto último por que 0 es un máximo de h por lo tanto h'(0) = 0

Pero entonces ∇f_{p_0} es perpendicular a $\delta(0)$ por lo tanto paralelo a ∇g_{p_0}

$$\nabla f_{p_0} = \lambda_0 \nabla g_{p_0}$$

Si hubiesemos tenido $g:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ habríamos hecho lo mismo para cada g_i llegando a $\nabla f_{p_0}=\lambda_i\nabla g_{ip_0}$

17 Teorema función implícita

Página 129

18 Definición de integral

Página 140

19 Teorema 21

Página 176