

RISC-V Matrix Specification

Version 0.5b, 07/2024: This document is in development.

Table of Contents

Preamble	1
Copyright and license information	2
Contributors	3
1. Introduction	4
2. Implementation-defined Constant Parameters	5
3. Programmer's Model	6
3.1. Matrix Registers	6
3.2. Matrix Type Register, mtype	7
3.3. Matrix Tile Size Registers, mtilem/mtilek/mtilen	9
3.4. Matrix Start Index Register, mstart	9
3.5. Matrix Control and Status Register, mcsr	9
3.6. Matrix Context Status in mstatus and sstatus	10
4. Instructions	11
4.1. Instruction Formats	11
4.2. Configuration-Setting Instructions	12
4.2.1. mtype Encoding	14
4.2.2. ATM/ATK/ATN Encoding	15
4.2.3. Constraints on Setting mtilem/mtilek/mtilen	16
4.3. Load and Store Instructions	17
4.3.1. Load Instructions	17
4.3.2. Store Instructions	19
4.3.3. Whole Matrix Load & Store Instructions	20
4.4. Data Move Instructions	21
4.4.1. Data Move Instructions between Matrix Registers	21
4.4.2. Data Move Instructions between Matrix and Integer	22
4.4.3. Data Move Instructions between Matrix and Float-point	22
4.4.4. Data Broadcast Instructions	23
4.4.5. Matrix Transpose Instructions	24
4.5. Arithmetic and Logic Instructions	25
4.5.1. Matrix Multiplication Instructions	25
4.5.2. Element-Wise Instructions	
4.6. Type-Convert Instructions	28
5. Intrinsic Examples	
5.1. Matrix multiplication	31
5.2. Matrix multiplication with left matrix transposed	
5.3. Matrix transpose without multiplication	
6 Standard Matrix Extensions	33

	6.1. Zma*b*: Matrix Mode Extension	. 33
	6.2. Zmi4: Matrix 4-bit Integer Extension	. 33
	6.3. Zmi8: Matrix 8-bit Integer Extension	. 34
	6.4. Zmi16: Matrix 16-bit Integer Extension	. 35
	6.5. Zmi32: Matrix 32-bit Integer Extension	. 37
	6.6. Zmi64: Matrix 64-bit Integer Extension	. 38
	6.7. Zmf8e4m3: Matrix 8-bit E4M3 Float Point Extension	. 39
	6.8. Zmf8e5m2: Matrix 8-bit E5M2 Float Point Extension	. 40
	6.9. Zmf8e3m4: Matrix 8-bit E3M4 Float Point Extension	. 42
	6.10. Zmf16e5m10: Matrix 16-bit Half-precision Float-point (FP16) Extension	. 43
	6.11. Zmf16e8m7: Matrix 16-bit BFloat (BF16) Extension	. 44
	6.12. Zmf32e8m23: Matrix 32-bit Float-point Extension	. 45
	6.13. Zmf19e8m10: Matrix 19-bit TensorFloat32 (TF32) Extension	. 46
	6.14. Zmf64e11m52: Matrix 64-bit Float-point Extension	. 48
	6.15. Zmv: Matrix for Vector operations	. 49
	6.15.1. Load Instructions	. 50
	6.15.2. Store Instructions	. 50
	6.15.3. Data Move Instructions	. 51
	6.15.4. Intrinsic Example: Matrix multiplication fused with element-wise vector operation	. 52
	6.16. Zmi2c: Im2col Extension	. 53
	6.16.1. CSRs	. 53
	6.16.2. Configuration Instructions	. 55
	6.16.3. Load Unfold Instructions	. 55
	6.16.4. Intrinsic Example: Conv2D	. 55
	6.16.5. Intrinsic Example: Conv3D.	. 57
	6.16.6. Intrinsic Example: MaxPool2D	. 58
	6.16.7. Intrinsic Example: AvgPool2D	. 59
	6.17. Zmc2i: Col2im Extension	. 60
	6.17.1. CSRs	. 60
	6.17.2. Configuration Instructions	. 60
	6.17.3. Store Fold Instructions	. 60
	6.18. Zmsp*: Matrix Sparsity Extension	. 60
	6.18.1. Configuration Instructions	. 61
	6.18.2. Matrix Multiplication Instructions	. 61
7.	Matrix Instruction Listing	. 64

Preamble

This document is in the Development state

Assume everything can change. This draft specification will change before being accepted as standard, so implementations made to this draft specification will likely not conform to the future standard.

Copyright and license information

This specification is licensed under the Creative Commons Attribution 4.0 International License (CC-BY 4.0). The full license text is available at creativecommons.org/licenses/by/4.0/.

Copyright © 2022-2024 Stream Computing Inc.

Contributors

This RISC-V specification has been contributed to directly or indirectly by:

- Chaoqun Wang
- Chen Chen
- Fujie Fan
- Hui Yao
- Jing Qiu
- Kening Zhang
- Kun Hu
- Mingxin Zhao
- Wengan Shao
- Wenmeng Zhang
- Xianmiao Qu
- Xiaoyan Xiang
- Xin Ouyang
- Xin Yang
- Yunhai Shang
- Zhao Jiang
- Zhiqiang Liu
- Zhiwei liu
- Zhiyong Zhang
- Your name here

We will be very grateful to the huge number of other people who will have helped to improve this specification through their comments, reviews, feedback and questions.

Chapter 1. Introduction

This document describes the matrix extension for RISC-V.

Matrix extension implement matrix multiplications by partitioning the input and output matrix into tiles, which are then stored to matrix registers.

Tile size usually refers to the dimensions of these tiles. For the operation C = AB in figure below, the tile size of C is mtilem \times mtilem, the tile size of A is mtilem \times mtilek and the tile size of B is mtilek \times mtilen.

Each matrix multiplication instruction computes its output tile by stepping through the K dimension in tiles, loading the required values from the A and B matrices, and multiplying and accumulating them into the output.

Matrix extension is strongly inspired by the RISC-V Vector "V" extension.

Chapter 2. Implementation-defined Constant Parameters

Each hart supporting a matrix extension defines four parameters:

- 1. The maximum size in bits of a matrix element that any operation can produce or consume, $ELEN \ge 8$, which must be a power of 2.
- 2. The number of bits in a single matrix tile register, MLEN, which must be a power of 2, and must be no greater than 2^{32} .
- 3. The number of bits in a row of a single matrix tile register, RLEN, which must be a power of 2, and must be no greater than 2^{16} .
- 4. The multiple of length for matrix accumulation registers, AMUL, where the number of bits in a row of a single matrix accumulation register is RLEN × AMUL, and the number of bits in a single matrix accumulation register is MLEN × AMUL.

Some constraints on these parameters are defined as following.

- 1. ELEN \leq RLEN \leq MLEN, this supports matrix tile size from 1×1 to $2^{16} \times 2^{16}$.
- 2. For implementations without widening accumulation space, AMUL = 1.
- 3. For implementations with double-widening accumulation space, AMUL = 2.
- 4. For implementations with quadruple-widening accumulation space, AMUL = 4.
- 5. For implementations with octuple-widening accumulation space, AMUL = 8.
- 6. AMUL with any other value is not allowed.

Chapter 3. Programmer's Model

The matrix extension adds 8 unprivileged CSRs and 16 matrix registers to the base scalar RISC-V ISA.

Address **Privilege** Name **Description** 0xC40 **URO** mtype Matrix tile data type register. 0xC41 **URO** mtilem Tile length in m direction. Tile length in n direction. 0xC42 **URO** mtilen Tile length in k direction. 0xC43 **URO** mtilek 0xC44 **URO** mlenb MLEN/8 (matrix tile register length in bytes). 0xC45 **URO** mrlenb RLEN/8 (matrix tile register row length in bytes). **URO** AMUL. 0xC46 mamul 0x040**URW** mstart Start element index. 0x041URW mcsr Matrix control and status register.

Table 1. Matrix CSRs

3.1. Matrix Registers

The matrix extension adds 8 architectural **Tile Registers** (tr0-tr7) for input tile matrices and 8 architectural **Accumulation Registers** (acc0-acc7) for output accumulation matrices.

A **Tile Register** has a fixed MLEN bits of state, where each row has RLEN bits. As a result, there are MLEN/RLEN rows for each tile register in logic.

An **Accumulation Register** has a fixed MLEN × AMUL bits of state, where each row has RLEN × AMUL bits. As a result, there are MLEN/RLEN rows for each accumulation register in logic.

Accumulation Register Structure.

tr0	
tr1	
tr2	
tr3	
tr4	
tr5	
tr6	
tr7	

Tile Register File.

acc0	
acc1	
acc2	
acc3	
acc4	
acc5	
acc6	
acc7	

Accumulation Register File.

An input matrix of matrix multiplication instruction only uses one tile register, and large matrix must be split according to the size of tile defined by MLEN and RLEN.

For widening instructions, each output element is wider than input one. To match the width of input and output, an output matrix may be written back to a wider accumulation register whose length are specified by MLEN x AMUL.

3.2. Matrix Type Register, mtype

The read-only XLEN-wide *matrix type* CSR, mtype, provides the default type used to interpret the contents of the matrix register file, and can only be updated by msettype{i|hi} and field-set instructions. The matrix type determines the organization of elements in each matrix register.

Allowing updates only via type-set or field-set instructions simplifies the maintenance of mtype register state.

The mtype register has an mill field, an msew field, an mba field and several type fields. Bits mtype [XLEN-2:16] should be written with zero, and non-zero values of this field are reserved.

Table 2. mtype register layout

Bits	Name	Description						
XLEN-1	mill	Illegal value if set.						
XLEN-2:16	0	Reserved if non-zero.						
15	mba	Matrix out of bound agnostic.						
14	mfp64	64-bit float point enabling.						
13:12	mfp32[1:0]	32-bit float point enabling.						
11:10	mfp16[1:0]	16-bit float point enabling.						
9:8	mfp8[1:0]	8-bit float point enabling.						
7	mint64	64-bit integer enabling.						
6	mint32	32-bit integer enabling.						
5	mint16	16-bit integer enabling.						
4	mint8	8-bit integer enabling.						
3	mint4	4-bit integer enabling.						
2:0	msew[2:0]	Selected element width (SEW) setting.						

The msew field is used to specify the element width of source operands. It is used to calculate the maximum values of matrix size.

For each type field, a value 0 means the corresponding type is disabled. Write non-zero value to enable matrix multiplication operation of the specified type. 0 will be returned and mill will be set if the type is not supported.

For mint4 field, write 1 to enable 4-bit integer where a 8-bit integer will be treated as a pair of 4-bit integers. 1'b0 will be returned if 4-bit integer is not supported.

For mint8 field, write 1 to enable 8-bit integer.

For mint 16 field, write 1 to enable 16-bit integer.

For mint64 field, write 1 to enable 64-bit integer.

For mfp8 field, write 2'b01 to enable E4M3, 2'b10 to enable E5M2, and 2'b11 to enable E3M4. mfp8[1:0] always returns 2'b00 if FP8 is not supported.

For mfp16 field, write 2'b01 to enable IEEE-754 half-precision float point (E5M10), and write 2'b10 to enable BFloat16 (E8M7). 2'b11 is reserved.

For mfp32 field, write 2'b01 to enable IEEE-754 single-precison float point (E8M23), and write 2'b10 to enable TensorFloat32 (E8M10). 2'b11 is reserved.

For mfp64 field, write 1 to enable 64-bit double-precision float point. To support FP64 format, the implementation should support "D" extension at the same time. 0 will be returned if FP64 is not supported.

The mba field indicates that the out-of-bound elements is undisturbed or agnostic. When mba is marked undisturbed (mba=0), the out-of-bound elements in a matrix register retain the value it previously held. Otherwise, the out-of-bound elements can be overwritten with any values.

3.3. Matrix Tile Size Registers, mtilem/mtilek/mtilen

The XLEN-bit-wide read-only mtilem/mtilek/mtilen CSRs can only be updated by the msettile{m|k|n}{i} instructions. The registers holds 3 unsigned integers specifying the tile shapes for tiled matrix.

3.4. Matrix Start Index Register, mstart

The mstart read-write CSR specifies the index of the first element to be executed by load/store and element-wise arithmetic instructions. The CSR can be written by hardware on a trap, and its value represents the element on which the trap was taken. The value is the sequential number in row order.

Any legal matrix instruction can reset the mstart to zero at the end of excution.

3.5. Matrix Control and Status Register, mcsr

The mcsr register has 2 fields, and other bits with non-zero value are reserved.

 Bits
 Name
 Description

 XLEN-1:3
 0
 Reserved if non-zero.

 2:1
 mmode[1:0]
 The mode of matrix multiplication.

 0
 msat
 Integer arithmetic instruction accrued saturation flag.

Table 3. mcsr register layout

mmode field indicates the mode of matrix multiplication. mmode = 00 means $C = A \times B$, where the source matrices, A and B, are both organized as the original order. mmode = 01 means $C = A \times BT$, where B is transposed. mmode = 10 means $C = AT \times B$, where A is transposed.

An implementation can support any combination of these modes, with extensions Zmab, Zmabt and

Zmatb.

If an unsupported mmode is set, then any attempt to execute a matrix multiplication instruction will raise an illegal instruction exception.

3.6. Matrix Context Status in mstatus and sstatus

A 2-bit matrix context status field should be added to mstatus and shadowed in status. It is defined analogously to the vector context status field, VS.

Chapter 4. Instructions

4.1. Instruction Formats

The instructions in the matrix extension use 64-bit encoding with prefix 0111111 at the lowest 7 bits and a major opcode xxyyy11 at [38:32], where yyy \neq 111.

Instruction formats are listed below.

Configuration instructions, where funct3 field, inst[14:12], is fixed to 000. The imm field supports 32-bit immediate operand.

Configuration Instructions.

Load & store instructions, where funct3 field is fixed to 001, and 1s field indicates the direction of memory access (load or store). For higher 32 bits, eew field indicates the effective element width, ba field indicates if the out-of-bound elements are agnostic, and mt field indicates the type of matrix (00 for output/accumulation matrix, 01 for left matrix and 10 for right matrix).

63						50	49 48	47	46	44	43		39	38		32
		0	.00				mt	ba	ee	W		funct5			xxyyy11	
31	2	6 25	24		20	19		15	14	12	11		7	6		0
	funct6	1s		rs2			rs1		fun	ct3		ms3/md			0111111	

Load/Store Instructions.

Data move instructions, where funct3 field is fixed to 010, di field indicates the moving direction, and rc field indicates the moving dimension (in row, in column or in element). The mks field specifies the source mask register and mkm field indicates the mask mode (to mask rows, columns or elements).

63	59	58 57	56	4	52	51 50	49 48	47	46	44	43		39	38		32
	mks	mkm		00000		rc	mt	ba	ee	w		funct5			xxyyy11	
31		26 25	24	2	20	19		15	14	12	11		7	6		0
	funct6	di		rs2/imm		rs1	/ms1		fun	ct3		rd/md			0111111	

Data Move Instructions.

Matrix multiplication instructions, where funct3 field is fixed to 100, and fp field indicates if the operation is float-point type. typ* field indicates the data type of source or destination elements (000-011 for 8b-64b, 111 for 4b, and 100 to use msew field of mtype CSR). frm field indicates the rounding mode of float-point result, where the encoding is the same as RVF.sps field specifies the source sparsity index register and spm field indicates the sparsing mode (01 for left matrix sparsing, 10 for right matrix sparsing, and 00 without sparsing).

63	59	58 57	56 54	53	51 50	48	47	46	44	43		39	38		32
	sps	spm	typ2	typ1	t	ypd l	ba	frm	ı		funct5			xxyyy11	
31		26 25	24	20	19		15	14	12	11		7	6		0
	funct6	fp	ms2	2	n	ns1		funct	t3		md			0111111	

Matrix Multiplication Instructions.

Element-wise instructions, where funct3 field is fixed to 101, and fp field indicates if the operation is float-point type. The typ* and frm fields are the same as matrix multiplication instructions. The mks and mkm fields are the same as data move instructions.

63	59	58 5	7	56 54	53	51	50	48	47	46	44	43		39	38		32
	mks	mkn	n	typ2	typ1		type	d	ba	f	rm		funct5			xxyyy11	
31		26 2	5	24	20	19			15	14	12	11		7	6		0
	funct6	f	p	ms2			ms	1		fuı	nct3		md			0111111	

Element-wise Immediate Instructions.

Type-convert instructions, where funct3 field is fixed to 111, fd field indicates if the destination is float point, and fs field indicates if the source is float point. Other fields are the same as elementwise instructions.

63	5	9 5	8 57	56	54	53	51	50	48 4	7 4	16	44	43		39	38		32
	mks	r	nkm		enw	typ1		typo	l ba	a	frn	n		funct5			xxyyy11	
31		2	6 25	24	23	20	19		1:	5 1	4	12	11		7	6		0
	funct6		fd	fs	fun	ct4		ms1			func	et3		md			0111111	

Type-convert Instructions.

4.2. Configuration-Setting Instructions

Due to hardware resource constraints, one of the common ways to handle large-sized matrix multiplication is "tiling", where each iteration of the loop processes a subset of elements, and then continues to iterate until all elements are processed. The Matrix extension provides direct, portable support for this approach.

The block processing of matrix multiplication requires three levels of loops to iterate in the direction of the number of rows of the left matrix (m), the number of columns of the left matrix (k, also the number of rows of the right matrix), and the number of columns of the right matrix (n), given by the application.

The shapes of the matrix tiles to be processed, m (application tile length m or ATM), k (ATK), n (ATN),

is used as candidates for mtilem/mtilek/mtilen. Based on microarchitecture implementation and mmode setting, hardware returns a new mtilem/mtilek/mtilen value via a general purpose register (usually smaller), also stored in mtilem/mtilek/mtilen CSR, which is the shape of tile per iteration handled by hardware.

For a simple matrix multiplication example, check out the Section Intrinsic Example, which describes how the code keeps track of the matrices processed by the hardware each iteration.

A set of instructions is provided to allow rapid configuration of the values in mtile* and mtype to match application needs.

The msettype[i] instructions set the mtype CSR based on their arguments, and write the new value of mtype into rd.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype[31:0] setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.
```

The mset* instructions set the specified field of mtype without affecting other fields.

```
# Set msew field.
msetsew rd, imm
                       \# rd = new mtype, msew = imm[2:0].
                       # rd = new mtype, mba = imm[0].
msetba rd, imm
# Set integer type fields.
msetint rd, int4
                       # rd = new mtype, set mint4 = 1 to enable INT4 type.
msetint rd, int8
                       # rd = new mtype, set mint8 = 1 to enable INT8 type.
msetint rd, int16
                       # rd = new mtype, set mint16 = 1 to enable INT16 type.
msetint rd, int32
                       # rd = new mtype, set mint32 = 1 to enable INT32 type.
msetint rd, int64
                       # rd = new mtype, set mint64 = 1 to enable INT64 type.
# Set float point type fields.
msetfp rd, e4m3
                       # rd = new mtype, set mfp8 = 01 to enable FP8 E4M3 type.
msetfp rd, e5m2
                       # rd = new mtype, set mfp8 = 10 to enable FP8 E5M2 type.
msetfp rd, e3m4
                       # rd = new mtype, set mfp8 = 11 to enable FP8 E3M4 type.
                       # rd = new mtype, set mfp16 = 01 to enable FP16 E5M10 type.
msetfp rd, fp16
                       # rd = new mtype, set mfp16 = 10 to enable BF16 E8M7 type.
msetfp rd, bf16
msetfp rd, fp32
                       # rd = new mtype, set mfp32 = 01 to enable FP32 E8M23 type.
msetfp rd, tf32
                       # rd = new mtype, set mfp32 = 10 to enable TF32 E8M10 type.
msetfp rd, fp64
                       # rd = new mtype, set mfp64 = 1 to enable FP64 type.
```

The munset* instructions unset the specified field of mtype without affecting other fields.

```
munsetint rd, int4  # rd = new mtype, set mint4 = 0 to disable INT4 type.
munsetint rd, int8  # rd = new mtype, set mint8 = 0 to disable INT8 type.
munsetint rd, int16  # rd = new mtype, set mint16 = 0 to disable INT16 type.
```

```
munsetint rd, int32  # rd = new mtype, set mint32 = 0 to disable INT32 type.
munsetint rd, int64  # rd = new mtype, set mint64 = 0 to disable INT64 type.

munsetfp rd, fp8  # rd = new mtype, set mfp8 = 00 to disable FP8 type.
munsetfp rd, fp16  # rd = new mtype, set mfp16 = 00 to disable FP16 type.
munsetfp rd, fp32  # rd = new mtype, set mfp32 = 00 to disable FP32 type.
munsetfp rd, fp64  # rd = new mtype, set mfp64 = 0 to disable FP64 type.
```

The field to be set or unset is specified by mtf (inst[42:39]) and the value is specified by imm[25:15].

mtf field 0000 msew 0001 mint4 0010 mint8 0011 mint16 0100 mint32 0101 mint64 0110 mfp8 0111 mfp16 1000 mfp32 1001 mfp64 1010 mba

Table 4. Field to be set or unset

The $msettile\{m|k|n\}[i]$ instructions set the mtilem/mtilek/mtilen CSRs based on their arguments, and write the new value into rd.

```
msettilemi rd, imm  # rd = new mtilem, imm = ATM
msettilem rd, rs1  # rd = new mtilem, rs1 = ATM
msettileki rd, imm  # rd = new mtilek, imm = ATN
msettilek rd, rs1  # rd = new mtilek, rs1 = ATN
msettileni rd, imm  # rd = new mtilen, imm = ATK
msettilen rd, rs1  # rd = new mtilen, rs1 = ATK
```

4.2.1. mtype Encoding

Table 5. mtype register layout

Bits	Name	Description						
XLEN-1	mill	Illegal value if set.						
XLEN-2:16	0	Reserved if non-zero.						
15	mba	Matrix out of bound agnostic.						
14	mfp64	64-bit float point enabling.						
13:12	mfp32[1:0]	32-bit float point enabling.						
11:10	mfp16[1:0]	16-bit float point enabling.						
9:8	mfp8[1:0]	8-bit float point enabling.						
7	mint64	64-bit integer enabling.						
6	mint32	32-bit integer enabling.						
5	mint16	16-bit integer enabling.						
4	mint8	8-bit integer enabling.						
3	mint4	4-bit integer enabling.						
2:0	msew[2:0]	Selected element width (SEW) setting.						

The new mtype value is encoded in the immediate fields of msettypei, and in the rs1 register for msettype. Each field can be set or unset with msetsew, msetba, msetfp, msetint, munsetfp and munsetint instructions independently.

The fields encoded by instruction directly have higher priority than the same fileds in mtype CSR.

4.2.2. ATM/ATK/ATN Encoding

There are three values, TMMAX, TKMAX and TNMAX, represent the maximum shapes of the matrix tiles that could be stored in matrix registers, and can be operated on with a single matrix instruction given the current SEW settings.

The values of TMMAX, TKMAX and TNMAX are related to MLEN, RLEN and the configuration of mmode.

For A \times B mode (mmode=00),

- TMMAX = MLEN / RLEN
- TKMAX = min(MLEN / RLEN, RLEN / SEW)
- TNMAX = RLEN / SEW

For A \times BT mode (mmode=01),

- TMMAX = MLEN / RLEN
- TKMAX = RLEN / SEW
- TNMAX = MLEN / RLEN

For AT \times B mode (mmode=10),

- TMMAX = min(MLEN / RLEN, RLEN / SEW)
- TKMAX = MLEN / RLEN
- TNMAX = RLEN / SEW

For examples, with MLEN=256, RLEN=64 and mmode=00, TMMAX, TKMAX and TNMAX values are shown below.

```
SEW=8, TMMAX=4, TKMAX=4, TNMAX=8 # 4x4x8 8-bit matmul
SEW=16, TMMAX=4, TKMAX=4, TNMAX=4 # 4x4x4 16-bit matmul
SEW=32, TMMAX=4, TKMAX=2, TNMAX=2 # 4x2x2 32-bit matmul
```

The new tile shape settings are based on ATM / ATK / ATN values, which for $msettile\{m|k|n\}$ is encoded in the rs1 and rd fields.

rd	rs1	ATM/ATK/ATN value	Effect on mtilem/mtilek/mtilen
-	!x0	Value in x[rs1]	Normal tiling
!x0	x0	~0	Set mtilem/mtilek/mtilen to TMMAX/TKMAX/TNMAX
x0	x0	Value in mtilem/mtilek/mtilen	Keep existing mtilem/mtilek/mtilen if less than TMMAX/TKMAX/TNMAX

For the $msettile\{m|k|n\}i$ instructions, the ATM / ATK / ATN is encoded as a 10-bit unsigned immediate in the rs1.

4.2.3. Constraints on Setting mtilem/mtilek/mtilen

The $msettile\{m|k|n\}[i]$ instructions first set TMMAX/TKMAX/TNMAX according to the mtype CSR, then set mtilem/mtilek/mtilen obeying the following constraints (using mtilem & ATM & TMMAX as an example, and the same with mtilek & ATK & TKMAX and mtilen & ATN & TNMAX):

```
    mtilem = ATM if ATM <= TMMAX</li>
    ceil(ATM / 2) <= mtilem <= TMMAX if ATM < (2 * TMMAX)</li>
    mtilem = TMMAX if ATM >= (2 * TMMAX)
```

4. Deterministic on any given implementation for same input ATM and TMMAX values

5. These specific properties follow from the prior rules:

```
a. mtilem = 0 if ATM = 0
b. mtilem > 0 if ATM > 0
c. mtilem <= TMMAX</li>
d. mtilem <= ATM</li>
```

e. a value read from mtilem when used as the ATM argument to msettile{m|k|n}{i} results in the same value in mtilem, provided the resultant TMMAX equals the value of TMMAX at the time that mtilem was read.

Continue to use MLEN=256, RLEN=64 and mmode=00 as a example. When SEW=16, TMMAX=4, TKMAX=4, TNMAX=8.

If A is a 7 x 8 matrix and B is a 8 x 14 matrix, we could get mtilem/mtilek/mtilen values as show below, in the last loop of tiling.

4.3. Load and Store Instructions

4.3.1. Load Instructions

Load a matrix tile from memory.

```
# md destination, rs1 base address, rs2 row byte stride
# For left matrix, A
```

```
# tile size = mtilem * mtilek
mlae8.m md, (rs1), rs2
                                # 8-bit left tile load
mlae16.m md, (rs1), rs2
                                # 16-bit left tile load
mlae32.m md, (rs1), rs2
                                # 32-bit left tile load
mlae64.m md, (rs1), rs2
                                # 64-bit left tile load
# For right matrix, B
# tile size = mtilek * mtilen
mlbe8.m md, (rs1), rs2
                                # 8-bit right tile load
mlbe16.m md, (rs1), rs2
                                # 16-bit right tile load
mlbe32.m md, (rs1), rs2
                                # 32-bit right tile load
mlbe64.m md, (rs1), rs2
                                # 64-bit right tile load
# For output matrix, C
# tile size = mtilem * mtilen
mlce8.m md, (rs1), rs2
                                # 8-bit output tile load
mlce16.m md, (rs1), rs2
                                # 16-bit output tile load
mlce32.m md, (rs1), rs2
                                # 32-bit output tile load
mlce64.m md, (rs1), rs2
                                # 64-bit output tile load
```

Load a matrix tile from memory, where the matrix on memory is transposed.

```
# md destination, rs1 base address, rs2 row byte stride
# For left matrix, A
# tile size = mtilek * mtilem
mlate8.m md, (rs1), rs2
                                # 8-bit left tile load
mlate16.m md, (rs1), rs2
                                # 16-bit left tile load
mlate32.m md, (rs1), rs2
                                # 32-bit left tile load
mlate64.m md, (rs1), rs2
                                # 64-bit left tile load
# For right matrix, B
# tile size = mtilen * mtilek
mlbte8.m md, (rs1), rs2
                                # 8-bit right tile load
mlbte16.m md, (rs1), rs2
                                # 16-bit right tile load
mlbte32.m md, (rs1), rs2
                                # 32-bit right tile load
mlbte64.m md, (rs1), rs2
                                # 64-bit right tile load
# For output matrix, C
# tile size = mtilen * mtilem
mlcte8.m md, (rs1), rs2
                                # 8-bit output tile load
mlcte16.m md, (rs1), rs2
                                # 16-bit output tile load
mlcte32.m md, (rs1), rs2
                                # 32-bit output tile load
mlcte64.m md, (rs1), rs2
                                # 64-bit output tile load
```

4.3.2. Store Instructions

Store a matrix tile to memory.

```
# ms3 store data, rs1 base address, rs2 row byte stride
# For left matrix, A
# tile size = mtilem * mtilek
msae8.m ms3, (rs1), rs2
                               # 8-bit left tile store
msae16.m ms3, (rs1), rs2
                               # 16-bit left tile store
msae32.m ms3, (rs1), rs2
                              # 32-bit left tile store
msae64.m ms3, (rs1), rs2
                           # 64-bit left tile store
# For right matrix, B
# tile size = mtilek * mtilen
msbe8.m ms3, (rs1), rs2
                               # 8-bit right tile store
msbe16.m ms3, (rs1), rs2
                               # 16-bit right tile store
msbe32.m ms3, (rs1), rs2
                               # 32-bit right tile store
                               # 64-bit right tile store
msbe64.m ms3, (rs1), rs2
# For output matrix, C
# tile size = mtilem * mtilen
msce8.m ms3, (rs1), rs2
                               # 8-bit output tile store
msce16.m ms3, (rs1), rs2
                               # 16-bit output tile store
msce32.m ms3, (rs1), rs2
                               # 32-bit output tile store
msce64.m ms3, (rs1), rs2
                               # 64-bit output tile store
```

Save a matrix tile to memory, where the matrix on memory is transposed.

```
# ms3 store data, rs1 base address, rs2 row byte stride
# For left matrix, A
# tile size = mtilek * mtilem
msate8.m ms3, (rs1), rs2
                               # 8-bit left tile store
msate16.m ms3, (rs1), rs2
                               # 16-bit left tile store
msate32.m ms3, (rs1), rs2
                              # 32-bit left tile store
msate64.m ms3, (rs1), rs2
                               # 64-bit left tile store
# For right matrix, B
# tile size = mtilen * mtilek
msbte8.m ms3, (rs1), rs2
                               # 8-bit right tile store
                               # 16-bit right tile store
msbte16.m ms3, (rs1), rs2
msbte32.m ms3, (rs1), rs2
                               # 32-bit right tile store
msbte64.m ms3, (rs1), rs2
                               # 64-bit right tile store
# For output matrix, C
# tile size = mtilen * mtilem
```

```
mscte8.m ms3, (rs1), rs2 # 8-bit output tile store
mscte16.m ms3, (rs1), rs2 # 16-bit output tile store
mscte32.m ms3, (rs1), rs2 # 32-bit output tile store
mscte64.m ms3, (rs1), rs2 # 64-bit output tile store
```

4.3.3. Whole Matrix Load & Store Instructions

Load a whole matrix from memory without considering the tile size.

```
mlre8.m md, (rs1), rs2 # 8-bit whole matrix load
mlre16.m md, (rs1), rs2 # 16-bit whole matrix load
mlre32.m md, (rs1), rs2 # 32-bit whole matrix load
mlre64.m md, (rs1), rs2 # 64-bit whole matrix load
```

Load a whole matrix from memory without considering the tile size, where the matrix on memory is transposed.

```
mlrte8.m md, (rs1), rs2 # 8-bit whole matrix load
mlrte16.m md, (rs1), rs2 # 16-bit whole matrix load
mlrte32.m md, (rs1), rs2 # 32-bit whole matrix load
mlrte64.m md, (rs1), rs2 # 64-bit whole matrix load
```

Store a whole matrix to memory without considering the tile size.

```
msre8.m ms3, (rs1), rs2 # 8-bit whole matrix store
msre16.m ms3, (rs1), rs2 # 16-bit whole matrix store
msre32.m ms3, (rs1), rs2 # 32-bit whole matrix store
msre64.m ms3, (rs1), rs2 # 64-bit whole matrix store
```

Store a whole matrix to memory without considering the tile size, where the matrix on memory is transposed.

```
msrte8.m ms3, (rs1), rs2 # 8-bit whole matrix store
msrte16.m ms3, (rs1), rs2 # 16-bit whole matrix store
msrte32.m ms3, (rs1), rs2 # 32-bit whole matrix store
msrte64.m ms3, (rs1), rs2 # 64-bit whole matrix store
```


Whole matrix load and store instructions are usually used for context saving and restoring.

4.4. Data Move Instructions

4.4.1. Data Move Instructions between Matrix Registers

Data move instructions between matrix registers are used to move elements between two tile registers, two accumulation registers, or one tile register and one accumulation register.

```
# md = ms1, md and ms1 are both tile registers.
mmve8.t.t md, ms1
mmve16.t.t md, ms1
mmve32.t.t md, ms1
mmve64.t.t md, ms1
# md = ms1, md and ms1 are both accumulation registers.
mmve8.a.a md, ms1
mmve16.a.a md, ms1
mmve32.a.a md, ms1
mmve64.a.a md, ms1
# md[i, rs2 * (RLEN / EEW) + j] = ms1[i, j]
# md is an accumulation register and ms1 is a tile register.
mmve8.a.t md, ms1, rs2
mmve16.a.t md, ms1, rs2
mmve32.a.t md, ms1, rs2
mmve64.a.t md, ms1, rs2
\# md[i, j] = ms1[i, rs2 * (RLEN / EEW) + j]
# md is a tile register and ms1 is an accumulation register.
mmve8.t.a md, ms1, rs2
mmve16.t.a md, ms1, rs2
mmve32.t.a md, ms1, rs2
mmve64.t.a md, ms1, rs2
# md[i, imm * (RLEN / EEW) + j] = ms1[i, j]
# md is an accumulation register and ms1 is a tile register.
mmvie8.a.t md, ms1, imm
mmvie16.a.t md, ms1, imm
mmvie32.a.t md, ms1, imm
mmvie64.a.t md, ms1, imm
# md[i, j] = ms1[i, imm * (RLEN / EEW) + j]
# md is a tile register and ms1 is an accumulation register.
mmvie8.t.a md, ms1, imm
mmvie16.t.a md, ms1, imm
mmvie32.t.a md, ms1, imm
mmvie64.t.a md, ms1, imm
```

4.4.2. Data Move Instructions between Matrix and Integer

Data move instructions between matrix and integer are used to move single element between integer registers and tile registers. Such instructions can change a part of matrix and often used for debug.

```
\# x[rd] = ms1[i, j], i = rs2[15:0], j = rs2[XLEN-1:16]
# rd is an integer register and ms1 is a tile register.
mmve8.x.t rd, ms1, rs2
mmve16.x.t rd, ms1, rs2
mmve32.x.t rd, ms1, rs2
mmve64.x.t rd, ms1, rs2
\# md[i, j] = x[rs1], i = rs2[15:0], j = rs2[XLEN-1:16]
# md is a tile register and rs1 is an integer register.
mmve8.t.x md, rs1, rs2
mmve16.t.x md, rs1, rs2
mmve32.t.x md, rs1, rs2
mmve64.t.x md, rs1, rs2
\# x[rd] = ms1[i, j], i = rs2[15:0], j = rs2[XLEN-1:16]
# rd is an integer register and ms1 is an accumulation register.
mmve8.x.a rd, ms1, rs2
mmve16.x.a rd, ms1, rs2
mmve32.x.a rd, ms1, rs2
mmve64.x.a rd, ms1, rs2
\# md[i, j] = x[rs1], i = rs2[15:0], j = rs2[XLEN-1:16]
# md is an accumulation register and rs1 is an integer register.
mmve8.a.x md, rs1, rs2
mmve16.a.x md, rs1, rs2
mmve32.a.x md, rs1, rs2
mmve64.a.x md, rs1, rs2
```

The mmve*.x.t/a instruction copies a signle SEW-wide element of the matrix register to an integer register, where the element coordinates are specified by rs2. If SEW > XLEN, the least-significat XLEN bits are transferred. If SEW < XLEN, the valued is sign-extended to XLEN bits.

The mmve*.t/a.x instruction copies an integer register to an element of the destination matrix register, where the element coordinates are specified by rs2. If SEW < XLEN, the least-significant bits are moved and the upper (XLEN-SEW) bits are ignored. If SEW > XLEN, the valud is signextended to SEW bits. The other elements of the tile register are treated as out-of-bound elements, using the setting of ba.

4.4.3. Data Move Instructions between Matrix and Float-point

Float point data move instructions are similar with integer.

```
\# f[rd] = ms1[i, j], i = rs2[15:0], j = rs2[XLEN-1:16]
# rd is a float-point register and ms1 is a tile register.
mfmve8.f.t rd, ms1, rs2
mfmve16.f.t rd, ms1, rs2
mfmve32.f.t rd, ms1, rs2
mfmve64.f.t rd, ms1, rs2
\# md[i, j] = f[rs1], i = rs2[15:0], j = rs2[XLEN-1:16]
# md is a tile register and rs1 is a float-point register.
mfmve8.t.f md, rs1, rs2
mfmve16.t.f md, rs1, rs2
mfmve32.t.f md, rs1, rs2
mfmve64.t.f md, rs1, rs2
\# f[rd] = ms1[i, j], i = rs2[15:0], j = rs2[XLEN-1:16]
# rd is a float-point register and ms1 is an accumulation register.
mfmve8.f.a rd, ms1, rs2
mfmve16.f.a rd, ms1, rs2
mfmve32.f.a rd, ms1, rs2
mfmve64.f.a rd, ms1, rs2
\# md[i, j] = f[rs1], i = rs2[15:0], j = rs2[XLEN-1:16]
# md is an accumulation register and rs1 is a float-point register.
mfmve8.a.f md, rs1, rs2
mfmve16.a.f md, rs1, rs2
mfmve32.a.f md, rs1, rs2
mfmve64.a.f md, rs1, rs2
```

4.4.4. Data Broadcast Instructions

The first row/column and the first element of a matrix register can be broadcasted to fill the whole matrix.

```
# Broadcast the first row of a tile register to fill the whole matrix.
mbcar.m md, ms1
mbcbr.m md, ms1

# Broadcast the first row of an accumulation register to fill the whole matrix.
mbccr.m md, ms1

# Broadcast the first column of a tile register to fill the whole matrix.
mbcace8.m md, ms1
mbcace8.m md, ms1
mbcace32.m md, ms1
mbcace64.m md, ms1
mbcace64.m md, ms1
```

```
mbcbce8.m md, ms1
mbcbce16.m md, ms1
mbcbce32.m md, ms1
mbcbce64.m md, ms1
# Broadcast the first column of an accumulation register to fill the whole matrix.
mbccce8.m md, ms1
mbccce16.m md, ms1
mbccce32.m md, ms1
mbccce64.m md, ms1
# Broadcast the first element of a tile register to fill the whole matrix.
mbcaee8.m md, ms1
mbcaee16.m md, ms1
mbcaee32.m md, ms1
mbcaee64.m md, ms1
mbcbee8.m md, ms1
mbcbee16.m md, ms1
mbcbee32.m md, ms1
mbcbee64.m md, ms1
# Broadcast the first element of an accumulation register to fill the whole matrix.
mbccee8.m md, ms1
mbccee16.m md, ms1
mbccee32.m md, ms1
mbccee64.m md, ms1
```

4.4.5. Matrix Transpose Instructions

Transpose instruction can only be used for square matrix. For matrix A, the sizes of two dimensions are both min(mtilem, mtilek). Matrix B and C are similar.

```
# Transpose square matrix of tile register.
mtae8.m md, ms1
mtae16.m md, ms1
mtae32.m md, ms1
mtae64.m md, ms1
mtbe8.m md, ms1
mtbe16.m md, ms1
mtbe32.m md, ms1
mtbe64.m md, ms1
mtbe64.m md, ms1
mtbe66.m md, ms1
# Transpose square matrix of accumulation register.
mtce8.m md, ms1
mtce16.m md, ms1
```

```
mtce32.m md, ms1
mtce64.m md, ms1
```

4.5. Arithmetic and Logic Instructions

4.5.1. Matrix Multiplication Instructions

Matrix Multiplication operations take two matrix tiles from matrix **tile registers** specified by ms1 and ms2 respectively, and the output matrix tile is a matrix **accumulation register** specified by md.

```
# Uniqued integer matrix multiplication and add, md = md + ms1 * ms2.
                                   # unsigned int64, output no-widen
mmau.[dw].mm
               md, ms1, ms2
mmau.[w].mm
               md, ms1, ms2
                                   # unsigned int32, output no-widen
mmau.[h].mm
               md, ms1, ms2
                                   # unsigned int16, output no-widen
               md, ms1, ms2
                                   # unsigned int8, output quad-widen
mqmau.[b].mm
                                   # unsigned int4, output oct-widen
momau.[hb].mm
               md, ms1, ms2
msmau.[dw].mm md, ms1, ms2
                                   # unsigned int64, output no-widen and saturated
msmau.[w].mm
               md, ms1, ms2
                                   # unsigned int32, output no-widen and saturated
msmau.[h].mm
               md, ms1, ms2
                                   # unsigned int16, output no-widen and saturated
msqmau.[b].mm md, ms1, ms2
                                   # unsigned int8, output quad-widen and saturated
msomau.[hb].mm md, ms1, ms2
                                   # unsigned int4, output oct-widen and saturated
# Signed integer matrix multiplication and add, md = md + ms1 * ms2.
mma.[dw].mm
                                   # signed int64, output no-widen
               md, ms1, ms2
mma.[w].mm
               md, ms1, ms2
                                   # signed int32, output no-widen
                                   # signed int16, output no-widen
mma.[h].mm
               md, ms1, ms2
mqma.[b].mm
               md, ms1, ms2
                                   # signed int8, output quad-widen
               md, ms1, ms2
                                   # signed int4, output oct-widen
moma.[hb].mm
                                   # signed int64, output no-widen and saturated
msma.[dw].mm
               md, ms1, ms2
msma.[w].mm
                                   # signed int32, output no-widen and saturated
               md, ms1, ms2
               md, ms1, ms2
msma.[h].mm
                                   # signed int16, output no-widen and saturated
               md, ms1, ms2
                                   # signed int8, output quad-widen and saturated
msqma.[b].mm
msoma.[hb].mm
               md, ms1, ms2
                                   # signed int4, output oct-widen and saturated
# Float point matrix multiplication and add, md = md + ms1 * ms2.
mfma.[d].mm
               md, ms1, ms2
                                   # 64-bit float point
mfma.[f].mm
               md, ms1, ms2
                                   # 32-bit float point
mfma.[hf].mm
               md, ms1, ms2
                                   # 16-bit float point
mfwma.[f].mm
               md, ms1, ms2
                                   # 32-bit float point, output double-widen
mfwma.[hf].mm md, ms1, ms2
                                   # 16-bit float point, output double-widen
                                   # 8-bit float point, output double-widen
mfwma.[cf].mm
               md, ms1, ms2
                                   # 8-bit float point, output quad-widen
mfqma.[cf].mm
              md, ms1, ms2
```

A subset of these instructions is supported according to the implemented standard extensions (Zmi4, Zmi8, etc.).

The field frm from fcsr indicates the rounding mode of float-point matrix instructions. The encoding is shown below.

frm	Mnemonic	Meaning
000	RNE	Round to Nearest, ties to Even
001	RTZ	Round towards Zero
010	RDN	Round Down (towards -∞)
011	RUP	Round Up (towards +∞)
100	RMM	Round to Nearest, ties to Max Magnitude
101		Invalid
110		Invalid
111		Invalid

4.5.2. Element-Wise Instructions

Matrix element-wise add/sub/multiply instructions. The input and output matrices are both accumulation registers and always with size mtilem x mtilen. The element-wise calculation of tile registers can be implemented by combining data move instructions (such as mmve*.a.t and mmve*.t.a).

```
# Unsigned integer matrix element-wise add.
\# md[i,j] = ms1[i,j] + ms2[i,j]
maddu.[hb|b|h|w|dw].mm
                        md, ms1, ms2
msaddu.[hb|b|h|w|dw].mm md, ms1, ms2 # output saturated
mwaddu.[hb|b|h|w].mm
                        md, ms1, ms2 # output double widen
# Signed integer matrix element-wise add.
\# md[i,j] = ms1[i,j] + ms2[i,j]
madd.[hb|b|h|w|dw].mm
                        md, ms1, ms2
msadd.[hb|b|h|w|dw].mm
                        md, ms1, ms2 # output saturated
mwadd.[hb|b|h|w].mm
                        md, ms1, ms2 # output double widen
# Unsigned integer matrix element-wise subtract.
\# md[i,j] = ms1[i,j] - ms2[i,j]
msubu.[hb|b|h|w|dw].mm
                        md, ms1, ms2
mssubu.[hb|b|h|w|dw].mm md, ms1, ms2 # output saturated
mwsubu.[hb|b|h|w].mm
                        md, ms1, ms2 # output double widen
# Signed integer matrix element-wise subtract.
```

```
\# md[i,j] = ms1[i,j] - ms2[i,j]
msub.[hb|b|h|w|dw].mm
                        md, ms1, ms2
mssub.[hb|b|h|w|dw].mm
                        md, ms1, ms2 # output saturated
mwsub.[hb|b|h|w].mm
                        md, ms1, ms2 # output double widen
# Integer matrix element-wise minimum.
# md[i,j] = min{ms1[i,j], ms2[i,j]}
mminu.[hb|b|h|w|dw].mm md, ms1, ms2
mmin.[hb|b|h|w|dw].mm
                        md, ms1, ms2
# Integer matrix element-wise maximum.
# md[i,j] = max{ms1[i,j], ms2[i,j]}
mmaxu.[hb|b|h|w|dw].mm md, ms1, ms2
mmax.[hb|b|h|w|dw].mm
                        md, ms1, ms2
# Integer matrix bit-wise logic.
mand.[hb|b|h|w|dw].mm
                        md, ms1, ms2
mor.[hb|b|h|w|dw].mm
                        md, ms1, ms2
mxor.[hb|b|h|w|dw].mm
                        md, ms1, ms2
# Integer matrix element-wise shift.
msll.[hb|b|h|w|dw].mm
                        md, ms1, ms2
msrl.[hb|b|h|w|dw].mm
                        md, ms1, ms2
                        md, ms1, ms2
msra.[hb|b|h|w|dw].mm
# Integer matrix element-wise multiply.
\# md[i,j] = ms1[i,j] * ms2[i,j]
mmul.[hb|b|h|w|dw].mm
                        md, ms1, ms2 # signed, returning low bits of product
mmulh.[hb|b|h|w|dw].mm md, ms1, ms2 # signed, returning high bits of product
mmulhu.[hb|b|h|w|dw].mm md, ms1, ms2 # unsigned, returning high bits of product
mmulhsu.[hb|b|h|w|dw].mm md, ms1, ms2 # signed-unsigned, returning high bits of
product
# Saturated integer matrix element-wise multiply.
msmul.[hb|b|h|w|dw].mm
                        md, ms1, ms2 # signed
msmulu.[hb|b|h|w|dw].mm md, ms1, ms2 # unsigned
msmulsu.[hb|b|h|w|dw].mm md, ms1, ms2 # signed-unsigned
# Widening integer matrix element-wise multiply.
mwmul.[hb|b|h|w].mm
                        md, ms1, ms2 # signed
mwmulu.[hb|b|h|w].mm
                        md, ms1, ms2 # unsigned
mwmulsu.[hb|b|h|w].mm
                        md, ms1, ms2 # signed-unsigned
# Float matrix element-wise add.
\# md[i,j] = ms1[i,j] + ms2[i,j]
mfadd.[cf|hf|f|d].mm
                        md, ms1, ms2
mfwadd.[cf|hf|f].mm
                        md, ms1, ms2 # output double widen
# Float matrix element-wise subtract.
```

```
\# md[i,j] = ms1[i,j] - ms2[i,j]
mfsub.[cf|hf|f|d].mm
                        md, ms1, ms2
mfwsub.[cf|hf|f].mm
                        md, ms1, ms2 # output double widen
# Float matrix element-wise minimum.
# md[i,j] = min{ms1[i,j], ms2[i,j]}
mfmin.[cf|hf|f|d].mm md, ms1, ms2
# Float matrix element-wise maximum.
# md[i,j] = max{ms1[i,j], ms2[i,j]}
mfmax.[cf|hf|f|d].mm md, ms1, ms2
# Float matrix element-wise multiply.
\# md[i,j] = ms1[i,j] * ms2[i,j]
mfmul.[cf|hf|f|d].mm md, ms1, ms2
mfwmul.[cf|hf|f].mm
                        md, ms1, ms2 # output double widen
# Float matrix element-wise divide.
# md[i,j] = ms1[i,j] / ms2[i,j]
mfdiv.[cf|hf|f|d].mm
                        md, ms1, ms2
# Float matrix element-wise square root.
\# md[i,j] = ms1[i,j] \land (1/2)
mfsqrt.[cf|hf|f|d].m
                         md, ms1
```


There is no matrix-scalar and matrix-vector version for element-wise instructions. Such operations can be replaced by a broadcast instruction and a matrix-matrix element-wise instruction.

4.6. Type-Convert Instructions

The input and output matrices of type-convert instructions are both accumulation registers and always with size mtilem x mtilen. The type convert of tile registers can be implemented by combining data move instructions (such as mmve*.a.t and mmve*.t.a).

```
# Convert float to float
               md, ms1
mfcvt.bf.hf.m
                               # fp16 to bf16
mfcvt.hf.bf.m
              md, ms1
                               # bf16 to fp16
mfwcvt.fw.f.m
               md, ms1
                               # single-width float to double-width float
mfwcvt.hf.cf.m md, ms1
                               # fp8 to fp16
                               # fp16 to fp32
mfwcvt.f.hf.m md, ms1
                               # fp32 to fp64
mfwcvt.d.f.m
               md, ms1
                               # double-width float to single-width float
mfncvt.f.fw.m
               md, ms1
mfncvt.cf.hf.m md, ms1
                               # fp16 to fp8
```

```
mfncvt.hf.f.m
               md, ms1
                                # fp32 to fp16
mfncvt.f.d.m
                md, ms1
                                # fp64 to fp32
# Convert integer to float
mfcvtu.f.x.m
                md, ms1
                                # uint to float
mfcvtu.hf.h.m
                md, ms1
                                # uint16 to fp16
                md, ms1
                                # uint32 to fp32
mfcvtu.f.w.m
mfcvtu.d.dw.m
                md, ms1
                                # uint64 to fp64
mfcvt.f.x.m
                md, ms1
                                # int to float
mfcvt.hf.h.m
                md, ms1
                                # int16 to fp16
                md, ms1
                                # int32 to fp32
mfcvt.f.w.m
mfcvt.d.dw.m
                md, ms1
                                # int64 to fp64
mfwcvtu.fw.x.m md, ms1
                                # single-width uint to double-width float
mfwcvtu.fa.x.m md, ms1
                                # single-width uint to quad-width float
mfwcvtu.fo.x.m md, ms1
                                # single-width uint to oct-width float
mfwcvtu.hf.hb.m md, ms1
                                # uint4 to fp16
mfwcvtu.f.hb.m md, ms1
                                # uint4 to fp32
mfwcvtu.hf.b.m md, ms1
                                # uint8 to fp16
mfwcvtu.f.b.m
                md, ms1
                                # uint8 to fp32
mfwcvtu.f.h.m
                md, ms1
                                # uint16 to fp32
mfwcvtu.d.w.m
                md, ms1
                                # uint32 to fp64
                md, ms1
mfwcvt.fw.x.m
                                # single-width int to double-width float
mfwcvt.fq.x.m
                md, ms1
                                # single-width int to quad-width float
mfwcvt.fo.x.m
                md, ms1
                                # single-width int to oct-width float
mfwcvt.hf.hb.m md, ms1
                                # int4 to fp16
mfwcvt.f.hb.m
                md, ms1
                                # int4 to fp32
                md, ms1
mfwcvt.hf.b.m
                                # int8 to fp16
                md, ms1
mfwcvt.f.b.m
                                # int8 to fp32
mfwcvt.f.h.m
                md, ms1
                                # int16 to fp32
mfwcvt.d.w.m
                md, ms1
                                # int32 to fp64
                                # double-width uint to float
mfncvtu.f.xw.m md, ms1
mfncvtu.hf.w.m md, ms1
                                # uint32 to fp16
mfncvtu.f.dw.m md, ms1
                                # uint64 to fp32
mfncvt.f.xw.m
                md, ms1
                                # double-width int to float
mfncvt.hf.w.m
                md, ms1
                                # int32 to fp16
mfncvt.f.dw.m
                md, ms1
                                # int64 to fp32
# Convert float to integer
mfcvtu.x.f.m
                md, ms1
                                # float to uint
mfcvtu.h.hf.m
                md, ms1
                                # fp16 to uint16
mfcvtu.w.f.m
                md, ms1
                                # fp32 to uint32
mfcvtu.dw.d.m
                md, ms1
                                # fp64 to uint64
mfcvt.x.f.m
                md, ms1
                                # float to int
```

```
mfcvt.h.hf.m
                md, ms1
                                # fp16 to int16
mfcvt.w.f.m
                md, ms1
                                # fp32 to int32
mfcvt.dw.d.m
                md, ms1
                                # fp64 to int64
mfwcvtu.xw.f.m md, ms1
                                # single-width float to double-width uint
mfwcvtu.w.hf.m
               md, ms1
                                # fp16 to uint32
mfwcvtu.dw.f.m md, ms1
                                # fp32 to uint64
mfwcvt.xw.f.m
                md, ms1
                                # single-width float to double-width int
mfwcvt.w.hf.m
                md, ms1
                                # fp16 to int32
mfwcvt.dw.f.m
                                # fp32 to int64
                md, ms1
mfncvtu.x.fw.m md, ms1
                                # double-width float to single-width uint
                                # quad-width float to single-width uint
mfncvtu.x.fq.m md, ms1
                                # oct-width float to single-width uint
mfncvtu.x.fo.m md, ms1
mfncvtu.hb.hf.m md, ms1
                                # fp16 to uint4
mfncvtu.hb.f.m md, ms1
                                # fp32 to uint4
mfncvtu.b.hf.m md, ms1
                                # fp16 to uint8
mfncvtu.b.f.m
                md, ms1
                                # fp32 to uint8
mfncvtu.h.f.m
                md, ms1
                                # fp32 to uint16
mfncvtu.w.d.m
                md, ms1
                                # fp64 to uint32
mfncvt.x.fw.m
                md, ms1
                                # double-width float to single-width int
                                # quad-width float to single-width int
mfncvt.x.fq.m
                md, ms1
mfncvt.x.fo.m
                md, ms1
                                # oct-width float to single-width int
mfncvt.hb.hf.m md, ms1
                                # fp16 to int4
mfncvt.hb.f.m
                md, ms1
                                # fp32 to int4
mfncvt.b.hf.m
                md, ms1
                                # fp16 to int8
mfncvt.b.f.m
                                # fp32 to int8
                md, ms1
                                # fp32 to int16
mfncvt.h.f.m
                md, ms1
mfncvt.w.d.m
                md, ms1
                                # fp64 to int32
```

Chapter 5. Intrinsic Examples

5.1. Matrix multiplication

```
void matmul_float16(c, a, b, m, k, n) {
   msettype(e16);
                                              // use 16bit input matrix element
   for (i = 0; i < m; i += mtilem) {
                                              // loop at dim m with tiling
       mtilem = msettilem(m-i);
       for (j = 0; j < n; j += mtilen) { // loop at dim n with tiling
           mtilen = msettilen(n-j);
           out = mwsub_mm(out, out)
                                             // clear output reg
           for (s = 0; s < k; s += mtilek) { // loop at dim k with tiling
               mtilek = msettilek(k-s);
               tr1 = mlae16_m(&a[i][s], k*2); // load left matrix a
               tr2 = mlbe16_m(&b[s][j], n*2); // load right matrix b
                                            // tiled matrix multiply,
               out = mfwma_mm(tr1, tr2);
                                              // double widen output
           }
                                             // convert widen result
           out = mfncvt_f_fw_m(out);
           msce16_m(out, &c[i][j], n*2);  // store to matrix c
       }
   }
}
```

5.2. Matrix multiplication with left matrix transposed

```
void matmul_a_tr_float16(c, a, b, m, k, n) {
   msettype(e16);
                                              // use 16bit input matrix element
   for (i = 0; i < m; i += mtilem) {
                                              // loop at dim m with tiling
       mtilem = msettilem(m-i);
       for (j = 0; j < n; j += mtilen) {
                                              // loop at dim n with tiling
           mtilen = msettilen(n-j);
           out = mwsub_mm(out, out)
                                            // clear output reg
           for (s = 0; s < k; s += mtilek) { // loop at dim k with tiling
               mtilek = msettilek(k-s);
               tr1 = mlate16_m(&a[s][i], m*2); // load transposed left matrix a
               tr2 = mlbe16_m(&a[s][j], n*2); // load right matrix b
               out = mfwma_mm(tr1, tr2);  // tiled matrix multiply,
                                              // double widen output
```

```
out = mfncvt_f_fw_m(out);  // convert widen result
    msce16_m(out, &c[i][j], n*2);  // store to matrix c
}
}
```

5.3. Matrix transpose without multiplication

Chapter 6. Standard Matrix Extensions

6.1. Zma*b*: Matrix Mode Extension

The Zmab extension allows to use $C = A \times B$ mode for matrix multiplication, where the setting of mcsr.mmode = 00 is legal.

The Zmabt extension allows to use $C = A \times BT$ mode for matrix multiplication, where the setting of mcsr.mmode = 01 is legal.

The Zmatb extension allows to use $C = AT \times B$ mode for matrix multiplication, where the setting of mcsr.mmode = 10 is legal.

6.2. Zmi4: Matrix 4-bit Integer Extension

The Zmi4 extension allows to use 4-bit integer as the data type of input matrix elements.

The Zmi4 extension adds a bit mtype[3] in mtype register.

Bits Name **Description** XLEN-1 mill Illegal value if set. XLEN-2:16 0 Reserved if non-zero. 15 Matrix out of bound agnostic. mba 14 mfp64 64-bit float point enabling. 13:12 mfp32[1:0] 32-bit float point enabling. 11:10 mfp16[1:0] 16-bit float point enabling. 9:8 mfp8[1:0] 8-bit float point enabling. 7 mint64 64-bit integer enabling. mint32 6 32-bit integer enabling. 5 mint16 16-bit integer enabling. 4 mint8 8-bit integer enabling. 3 mint4 4-bit integer enabling. 2:0 Selected element width (SEW) setting. msew[2:0]

Table 6. mtype register layout

For mint4 field, write 1 to enable 4-bit integer where a 8-bit integer will be treated as a pair of 4-bit integers (the size of a row must be even). 0 will be returned and mtype.mill will be set if 4-bit

integer is not supported.

The mint4 field can be set with other fields by msettype[i] or set independently by msetint or munsetint.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetint rd, int4  # rd = new mtype, set mint4 = 1 to enable INT4 type.
munsetint rd, int4  # rd = new mtype, set mint4 = 0 to disable INT4 type.
```

As int4 must be in pair, the e8 load/store and data move instructions are reused for int4 data.

The element-wise and type-convert instructions with suffix .hb are added for int4 format.

Four octuple-widen instructions are added to support int4 matrix multiplication. So the output type is always 32-bit integer.

```
momau.[hb].mm md, ms1, ms2  # unsigned int4, output oct-widen msomau.[hb].mm md, ms1, ms2  # unsigned int4, output oct-widen and saturated moma.[hb].mm md, ms1, ms2  # signed int4, output oct-widen msoma.[hb].mm md, ms1, ms2  # signed int4, output oct-widen and saturated
```

6.3. Zmi8: Matrix 8-bit Integer Extension

The Zmi8 extension allows to use 8-bit integer as the data type of input matrix elements.

The Zmi8 extension adds a bit mtype[4] in mtype register.

Table 7. mtype register layout

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.

Bits	Name	Description
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mint8 field, write 1 to enable 8-bit integer. 0 will be returned and mtype.mill will be set if 8-bit integer is not supported.

The mint8 field can be set with other fields by msettype[i] or set independently by msetint or munsetint.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetint rd, int8  # rd = new mtype, set mint8 = 1 to enable INT8 type.
munsetint rd, int8  # rd = new mtype, set mint8 = 0 to disable INT8 type.
```

The e8 load/store and data move instructions are used for int8 data.

The element-wise and type-convert instructions with .b suffix are added for int8 format.

Four quadruple-widen instructions are added to support int8 matrix multiplication. So the output type is always 32-bit integer.

```
mqmau.[b].mm md, ms1, ms2  # unsigned int8, output quad-widen msqmau.[b].mm md, ms1, ms2  # unsigned int8, output quad-widen and saturated mqma.[b].mm md, ms1, ms2  # signed int8, output quad-widen msqma.[b].mm md, ms1, ms2  # signed int8, output quad-widen and saturated
```

6.4. Zmi16: Matrix 16-bit Integer Extension

The Zmi16 extension allows to use 16-bit integer as the data type of input matrix elements.

The Zmi16 extension adds a bit mtype[5] in mtype register.

Table 8. mtype register layout

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mint16 field, write 1 to enable 16-bit integer. 0 will be returned and mtype.mill will be set if 16-bit integer is not supported.

The mint16 field can be set with other fields by msettype[i] or set independently by msetint or munsetint.

The e16 load/store and data move instructions are used for int16 data.

The element-wise and type-convert instructions with .h suffix are added for int16 format.

Four no-widen instructions are added to support int16 matrix multiplication. So the output type is always 16-bit integer.

```
mmau.[h].mm md, ms1, ms2  # unsigned int16, output no-widen
msmau.[h].mm md, ms1, ms2  # unsigned int16, output no-widen and saturated

mma.[h].mm md, ms1, ms2  # signed int16, output no-widen
```

```
msma.[h].mm md, ms1, ms2  # signed int16, output no-widen and saturated
```

6.5. Zmi32: Matrix 32-bit Integer Extension

The Zmi32 extension allows to use 32-bit integer as the data type of input matrix elements.

The Zmi32 extension adds a bit mtype[6] in mtype register.

Table 9. mtype register layout

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mint32 field, write 1 to enable 32-bit integer. 0 will be returned and mtype.mill will be set if 32-bit integer is not supported.

The mint32 field can be set with other fields by msettype[i] or set independently by msetint or munsetint.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetint rd, int32  # rd = new mtype, set mint32 = 1 to enable INT32 type.
munsetint rd, int32  # rd = new mtype, set mint32 = 0 to disable INT32 type.
```

The e32 load/store and data move instructions are used for int32 data.

The element-wise and type-convert instructions with .w suffix are added for int32 format.

Four no-widen instructions are added to support int32 matrix multiplication. So the output type is always 32-bit integer.

```
# unsigned int32, output no-widen
mmau.[w].mm md, ms1, ms2
msmau.[w].mm md, ms1, ms2
                               # unsigned int32, output no-widen and saturated
mma.[w].mm
            md, ms1, ms2
                               # signed int32, output no-widen
msma.[w].mm md, ms1, ms2
                               # signed int32, output no-widen and saturated
```

Table 10. mtype register layout

6.6. Zmi64: Matrix 64-bit Integer Extension

The Zmi64 extension allows to use 64-bit integer as the data type of input matrix elements.

The Zmi64 extension adds a bit mtype[7] in mtype register.

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mint64 field, write 1 to enable 64-bit integer. 0 will be returned and mtype.mill will be set if 64-bit integer is not supported.

The mint64 field can be set with other fields by msettype[i] or set independently by msetint or

munsetint.

6

mint32

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetint rd, int64  # rd = new mtype, set mint64 = 1 to enable INT64 type.
munsetint rd, int64  # rd = new mtype, set mint64 = 0 to disable INT64 type.
```

The e64 load/store and data move instructions are used for int64 data.

The element-wise and type-convert instructions with .dw suffix are added for int64 format.

Four no-widen instructions are added to support int64 matrix multiplication. So the output type is always 64-bit integer.

```
mmau.[dw].mm md, ms1, ms2  # unsigned int64, output no-widen msmau.[dw].mm md, ms1, ms2  # unsigned int64, output no-widen and saturated mma.[dw].mm md, ms1, ms2  # signed int64, output no-widen msma.[dw].mm md, ms1, ms2  # signed int64, output no-widen and saturated
```

6.7. Zmf8e4m3: Matrix 8-bit E4M3 Float Point Extension

The Zmf8e4m3 extension allows to use 8-bit float point format with 4-bit exponent and 3-bit mantissa as the data type of input matrix elements.

The Zmf8e4m3 extension uses a 2-bit mfp8 field, mtype[9:8], in mtype register.

Bits Name **Description** XLEN-1 mill Illegal value if set. XLEN-2:16 0 Reserved if non-zero. 15 mba Matrix out of bound agnostic. 14 mfp64 64-bit float point enabling. 13:12 mfp32[1:0] 32-bit float point enabling. 11:10 mfp16[1:0] 16-bit float point enabling. 9:8 8-bit float point enabling. mfp8[1:0] 7 mint64 64-bit integer enabling.

32-bit integer enabling.

Table 11. mtype register layout

Bits	Name	Description
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mfp8 field, write 01 to enable 8-bit E4M3 float point. 0 will be returned and mtype.mill will be set if E4M3 is not supported.

The mfp8 field can be set with other fields by msettype[i] or set independently by msetfp or munsetfp.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, fp8  # rd = new mtype, set mfp8 = 01 to enable E4M3 type.
msetfp rd, e4m3  # rd = new mtype, set mfp8 = 01 to enable E4M3 type.
munsetfp rd, fp8  # rd = new mtype, set mfp8 = 00 to disable FP8 type.
```

The e8 load/store and data move instructions are used for E4M3 data.

The element-wise and type-convert instructions with .cf suffix are added for E4M3 format.

A double-widen instruction and a quadruple-widen instruction are added to support E4M3 matrix multiplication. So the output type is 16-bit or 32-bit float point.

```
mfwma.[cf].mm md, ms1, ms2  # 8-bit float point, output double-widen mfqma.[cf].mm md, ms1, ms2  # 8-bit float point, output quad-widen
```

6.8. Zmf8e5m2: Matrix 8-bit E5M2 Float Point Extension

The Zmf8e5m2 extension allows to use 8-bit float point format with 5-bit exponent and 2-bit mantissa as the data type of input matrix elements.

The Zmf8e5m2 extension uses a 2-bit mfp8 field, mtype[9:8], in mtype register.

Table 12. mtype register layout

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.

Bits	Name	Description
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mfp8 field, write 10 to enable 8-bit E5M2 float point. 0 will be returned and mtype.mill will be set if E5M2 is not supported.

The mfp8 field can be set with other fields by msettype[i] or set independently by msetfp or munsetfp.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, e5m2  # rd = new mtype, set mfp8 = 10 to enable E5M2 type.
munsetfp rd, fp8  # rd = new mtype, set mfp8 = 00 to disable FP8 type.
```

The e8 load/store and data move instructions are used for E5M2 data.

The element-wise and type-convert instructions with .cf suffix are added for E5M2 format.

A double-widen instruction and a quadruple-widen instruction are added to support E5M2 matrix multiplication. So the output type is 16-bit or 32-bit float point.

```
mfwma.[cf].mm md, ms1, ms2  # 8-bit float point, output double-widen mfqma.[cf].mm md, ms1, ms2  # 8-bit float point, output quad-widen
```

6.9. Zmf8e3m4: Matrix 8-bit E3M4 Float Point Extension

The Zmf8e3m4 extension allows to use 8-bit float point format with 3-bit exponent and 4-bit mantissa as the data type of input matrix elements.

The Zmf8e3m4 extension uses a 2-bit mfp8 field, mtype[9:8], in mtype register.

Table 13. mtype register layout

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

For mfp8 field, write 11 to enable 8-bit E3M4 float point. 0 will be returned and mtype.mill will be set if E3M4 is not supported.

The mfp8 field can be set with other fields by msettype[i] or set independently by msetfp or munsetfp.

```
msettypei rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, e3m4  # rd = new mtype, set mfp8 = 11 to enable E3M4 type.
munsetfp rd, fp8  # rd = new mtype, set mfp8 = 00 to disable FP8 type.
```

The e8 load/store and data move instructions are used for E3M4 data.

The element-wise and type-convert instructions with .cf suffix are added for E3M4 format.

A double-widen instruction and a quadruple-widen instruction are added to support E3M4 matrix multiplication. So the output type is 16-bit or 32-bit float point.

```
mfwma.[cf].mm md, ms1, ms2  # 8-bit float point, output double-widen mfqma.[cf].mm md, ms1, ms2  # 8-bit float point, output quad-widen
```

6.10. Zmf16e5m10: Matrix 16-bit Half-precision Float-point (FP16) Extension

The Zmf16e5m10 extension allows to use FP16 format with 5-bit exponent and 10-bit mantissa as the data type of input matrix elements.

The Zmf16e5m10 extension uses a 2-bit mfp16 field, mtype[11:10], in mtype register.

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.
2:0	msew[2:0]	Selected element width (SEW) setting.

Table 14. mtype register layout

For mfp16 field, write 01 to enable 16-bit E5M10 float point (FP16). 0 will be returned and mtype.mill will be set if FP16 is not supported.

The mfp16 field can be set with other fields by msettype[hi] or set independently by msetfp or munsetfp.

```
msettypehi rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, fp16  # rd = new mtype, set mfp16 = 01 to enable FP16 type.
munsetfp rd, fp16  # rd = new mtype, set mfp16 = 00 to disable FP16 type.
```

The e16 load/store and data move instructions are used for FP16 data.

The element-wise and type-convert instructions with .hf suffix are added for FP16 format.

A no-widen instruction and a double-widen instruction are added to support FP16 matrix multiplication. So the output type is 16-bit or 32-bit float point.

```
mfma.[hf].mm md, ms1, ms2  # 16-bit float point, output no-widen mfwma.[hf].mm md, ms1, ms2  # 16-bit float point, output double-widen
```

6.11. Zmf16e8m7: Matrix 16-bit BFloat (BF16) Extension

The Zmf16e8m7 extension allows to use BF16 format with 8-bit exponent and 7-bit mantissa as the data type of input matrix elements.

The Zmf16e8m7 extension uses a 2-bit mfp16 field, mtype[11:10], in mtype register.

Bits	Name	Description
XLEN-1	mill	Illegal value if set.
XLEN-2:16	0	Reserved if non-zero.
15	mba	Matrix out of bound agnostic.
14	mfp64	64-bit float point enabling.
13:12	mfp32[1:0]	32-bit float point enabling.
11:10	mfp16[1:0]	16-bit float point enabling.
9:8	mfp8[1:0]	8-bit float point enabling.
7	mint64	64-bit integer enabling.
6	mint32	32-bit integer enabling.
5	mint16	16-bit integer enabling.
4	mint8	8-bit integer enabling.
3	mint4	4-bit integer enabling.

Table 15. mtype register layout

Bits	Name	Description
2:0	msew[2:0]	Selected element width (SEW) setting.

For mfp16 field, write 10 to enable 16-bit E8M7 float point (BF16). 0 will be returned and mtype.mill will be set if BF16 is not supported.

The mfp16 field can be set with other fields by msettype[hi] or set independently by msetfp or munsetfp.

```
msettypehi rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, bf16  # rd = new mtype, set mfp16 = 10 to enable BF16 type.
munsetfp rd, fp16  # rd = new mtype, set mfp16 = 00 to disable BF16 type.
```

The e16 load/store and data move instructions are used for BF16 data.

The element-wise and type-convert instructions with .hf suffix are reused for BF16 format.

A no-widen instruction and a double-widen instruction are added to support BF16 matrix multiplication. So the output type is 16-bit or 32-bit float point.

```
mfma.[hf].mm md, ms1, ms2  # 16-bit float point, output no-widen mfwma.[hf].mm md, ms1, ms2  # 16-bit float point, output double-widen
```

6.12. Zmf32e8m23: Matrix 32-bit Float-point Extension

The Zmf32e8m23 extension allows to use standard FP32 format with 8-bit exponent and 23-bit mantissa as the data type of input matrix elements.

The Zmf32e8m23 extension uses a 2-bit mfp32 field, mtype[13:12], in mtype register.

Bits Name **Description** XLEN-1 mill Illegal value if set. 0 Reserved if non-zero. XLEN-2:16 15 mba Matrix out of bound agnostic. 14 mfp64 64-bit float point enabling. 32-bit float point enabling. 13:12 mfp32[1:0]

Table 16. mtype register layout

Bits	Name	Description				
11:10	mfp16[1:0]	16-bit float point enabling.				
9:8	mfp8[1:0]	8-bit float point enabling.				
7	mint64	64-bit integer enabling.				
6	mint32	32-bit integer enabling.				
5	mint16	16-bit integer enabling.				
4	mint8	8-bit integer enabling.				
3	mint4	4-bit integer enabling.				
2:0	msew[2:0]	Selected element width (SEW) setting.				

For mfp32 field, write 01 to enable 32-bit E8M23 float point (FP32). 0 will be returned and mtype.mill will be set if FP32 is not supported.

The mfp32 field can be set with other fields by msettype[hi] or set independently by msetfp or munsetfp.

```
msettypehi rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, fp32  # rd = new mtype, set mfp32 = 01 to enable FP32 type.
munsetfp rd, fp32  # rd = new mtype, set mfp32 = 00 to disable FP32 type.
```

The e32 load/store and data move instructions are used for FP32 data.

The element-wise and type-convert instructions with .f suffix are added for FP32 format.

A no-widen instruction added to support FP32 matrix multiplication. So the output type is 32-bit float point.

```
mfma.[f].mm md, ms1, ms2 # 32-bit float point, output no-widen
```

6.13. Zmf19e8m10: Matrix 19-bit TensorFloat32 (TF32) Extension

The Zmf19e8m10 extension allows to use TF32 format with 8-bit exponent and 10-bit mantissa as the data type of input matrix elements.

The Zmf19e8m10 extension uses a 2-bit mfp32 field, mtype[13:12], in mtype register.

Table 17. mtype register layout

Bits	Name	Description				
XLEN-1	mill	Illegal value if set.				
XLEN-2:16	0	Reserved if non-zero.				
15	mba	Matrix out of bound agnostic.				
14	mfp64	64-bit float point enabling.				
13:12	mfp32[1:0]	32-bit float point enabling.				
11:10	mfp16[1:0]	16-bit float point enabling.				
9:8	mfp8[1:0]	8-bit float point enabling.				
7	mint64	64-bit integer enabling.				
6	mint32	32-bit integer enabling.				
5	mint16	16-bit integer enabling.				
4	mint8	8-bit integer enabling.				
3	mint4	4-bit integer enabling.				
2:0	msew[2:0]	Selected element width (SEW) setting.				

For mfp32 field, write 10 to enable 19-bit E8M10 float point (TF32). 0 will be returned and mtype.mill will be set if TF32 is not supported.

The mfp32 field can be set with other fields by msettype[hi] or set independently by msetfp or munsetfp.

```
msettypehi rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, tf32  # rd = new mtype, set mfp32 = 10 to enable TF32 type.
munsetfp rd, fp32  # rd = new mtype, set mfp32 = 00 to disable FP32 type.
```

TF32 implementions are designed to achieve better performance on matrix multiplications and convolutions by rounding input Float32 data to have 10 bits of mantissa, and accumulating results with FP32 precision, maintaining FP32 dynamic range.

So when Zmtf32 is used, Float32 is still used as the input and output data type for matrix multiplication.

The e32 load/store and data move instructions are used for TF32 data.

The element-wise and type-convert instructions are not supported for TF32 format.

A no-widen instruction is added to support TF32 matrix multiplication. So the output type is always 32-bit float point (FP32).

```
mfma.[f].mm md, ms1, ms2 # 19-bit float point, output no-widen
```


There is no double-widen version for TF32 matrix multiplication (a double-widen version for standard FP32 is supported by Zmf64e11m52 extension).

6.14. Zmf64e11m52: Matrix 64-bit Float-point Extension

The Zmf64e11m52 extension allows to use standard FP64 format with 11-bit exponent and 52-bit mantissa as the data type of input matrix elements.

The Zmf64e11m52 extension uses a 1-bit mfp64 field, mtype[14], in mtype register.

Bits Description Name XLEN-1 mill Illegal value if set. 0 Reserved if non-zero. XLEN-2:16 15 Matrix out of bound agnostic. mba 14 mfp64 64-bit float point enabling. 32-bit float point enabling. 13:12 mfp32[1:0] 11:10 mfp16[1:0] 16-bit float point enabling. 9:8 mfp8[1:0] 8-bit float point enabling. 7 mint64 64-bit integer enabling. mint32 6 32-bit integer enabling. 5 mint16 16-bit integer enabling. 4 8-bit integer enabling. mint8 3 mint4 4-bit integer enabling. 2:0 msew[2:0] Selected element width (SEW) setting.

Table 18. mtype register layout

For mfp64 field, write 1 to enable 64-bit E11M52 float point (FP64). 0 will be returned and mtype.mill will be set if FP64 is not supported.

The mfp64 field can be set with other fields by msettype[hi] or set independently by msetfp or munsetfp.

```
msettypehi rd, imm  # rd = new mtype, imm = new mtype setting.
msettype rd, rs1  # rd = new mtype, rs1 = new mtype value.

msetfp rd, fp64  # rd = new mtype, set mfp64 = 1 to enable FP64 type.
munsetfp rd, fp64  # rd = new mtype, set mfp64 = 0 to disable FP64 type.
```

The e64 load/store and data move instructions are used for FP64 data.

The element-wise and type-convert instructions with .d suffix are added for FP64 format.

A no-widen instruction is added to support FP64 matrix multiplication. And a double-widen instruction is added to support FP32 widening matrix multiplication. The output type is always 64-bit float point (FP64).

```
mfma.[d].mm md, ms1, ms2 # 64-bit float point, output no-widen mfwma.[f].mm md, ms1, ms2 # 32-bit float point, output double-widen
```

6.15. Zmv: Matrix for Vector operations

The Zmv extension is defined to provide matrix support with the RISC-V Vector "V" extension.

The Zmv extension allows to load matrix tile slices into vector registers, and move data between slices of a matrix register and vector registers.

The data layout examples of registers and memory in Zmv are shown below.

6.15.1. Load Instructions

```
# vd destination, rs1 base address, rs2 row byte stride
# lmul / (eew/sew) rows or columns
# for left matrix, a
mlae8.v
          vd, (rs1), rs2 # 8-bit tile slices load to vregs
mlae16.v vd, (rs1), rs2 # 16-bit tile slices load to vregs
mlae32.v vd, (rs1), rs2 # 32-bit tile slices load to vregs
mlae64.v vd, (rs1), rs2 # 64-bit tile slices load to vregs
# for right matrix, b
          vd, (rs1), rs2 # 8-bit tile slices load to vregs
mlbe8.v
mlbe16.v vd, (rs1), rs2 # 16-bit tile slices load to vregs
mlbe32.v vd, (rs1), rs2 # 32-bit tile slices load to vregs
mlbe64.v vd, (rs1), rs2 # 64-bit tile slices load to vregs
# for output matrix, c
mlce8.v
          vd, (rs1), rs2 # 8-bit tile slices load to vregs
mlce16.v vd, (rs1), rs2 # 16-bit tile slices load to vregs
mlce32.v vd, (rs1), rs2 # 32-bit tile slices load to vregs
mlce64.v vd, (rs1), rs2 # 64-bit tile slices load to vregs
```

6.15.2. Store Instructions

```
# vs3 store data, rs1 base address, rs2 row byte stride
# lmul / (eew/sew) rows or columns
# for left matrix, a
        vs3, (rs1), rs2 # 8-bit tile slices store from vregs
msae8.v
msae16.v vs3, (rs1), rs2 # 16-bit tile slices store from vregs
msae32.v vs3, (rs1), rs2 # 32-bit tile slices store from vregs
msae64.v vs3, (rs1), rs2 # 64-bit tile slices store from vregs
# for right matrix, b
msbe8.v vs3, (rs1), rs2 # 8-bit tile slices store from vregs
msbe16.v vs3, (rs1), rs2 # 16-bit tile slices store from vregs
msbe32.v vs3, (rs1), rs2 # 32-bit tile slices store from vregs
msbe64.v vs3, (rs1), rs2 # 64-bit tile slices store from vregs
# for output matrix, c
msce8.v vs3, (rs1), rs2 # 8-bit tile slices store from vregs
msce16.v vs3, (rs1), rs2 # 16-bit tile slices store from vregs
msce32.v vs3, (rs1), rs2 # 32-bit tile slices store from vregs
msce64.v vs3, (rs1), rs2 # 64-bit tile slices store from vregs
```

6.15.3. Data Move Instructions

For data moving between vector and matrix, the vsew of vector must equal to msew of matrix.

The number of elements moved is min(VLEN/SEW * VLMUL, matrix_size).

- For matrix A, matrix_size = mtilem * mtilek.
- For matrix B, matrix_size = mtilek * mtilen.
- For matrix C, matrix size = mtilem * mtilen.

```
# Data move between matrix register rows and vector registers.
# vd[(i - rs2) * mtilek + j] = md[i, j], i = rs2 .. rs2 + mtilem - 1
mmvare8.v.m
            vd, ms1, rs2
mmvare16.v.m vd, ms1, rs2
mmvare32.v.m vd, ms1, rs2
mmvare64.v.m vd, ms1, rs2
\# vd[(i - rs2) * mtilen + j] = md[i, j], i = rs2 .. rs2 + mtilek - 1
mmvbre8.v.m
            vd, ms1, rs2
mmvbre16.v.m vd, ms1, rs2
mmvbre32.v.m vd, ms1, rs2
mmvbre64.v.m vd, ms1, rs2
# vd[(i - rs2) * mtilen + j] = md[i, j], i = rs2 .. rs2 + mtilem - 1
mmvcre8.v.m
             vd, ms1, rs2
mmvcre16.v.m vd, ms1, rs2
mmvcre32.v.m vd, ms1, rs2
mmvcre64.v.m vd, ms1, rs2
# md[i, j] = vd[(i - rs2) * mtilek + j], i = rs2 .. rs2 + mtilem - 1
mmvare8.m.v
             md, vs1, rs2
mmvare16.m.v md, vs1, rs2
mmvare32.m.v md, vs1, rs2
mmvare64.m.v md, vs1, rs2
# md[i, j] = vd[(i - rs2) * mtilen + j], i = rs2 .. rs2 + mtilek - 1
mmvbre8.m.v
             md, vs1, rs2
mmvbre16.m.v md, vs1, rs2
mmvbre32.m.v md, vs1, rs2
mmvbre64.m.v md, vs1, rs2
\# md[i, j] = vd[(i - rs2) * mtilen + j], i = rs2 .. rs2 + mtilem - 1
mmvcre8.m.v
             md, vs1, rs2
mmvcre16.m.v md, vs1, rs2
mmvcre32.m.v md, vs1, rs2
mmvcre64.m.v md, vs1, rs2
```

```
# Data move between matrix register columns and vector registers.
\# vd[(j - rs2) * mtilem + i] = md[i, j], j = rs2 .. rs2 + mtilek - 1
mmvace8.v.m vd, ms1, rs2
mmvace16.v.m vd, ms1, rs2
mmvace32.v.m vd, ms1, rs2
mmvace64.v.m vd, ms1, rs2
\# vd[(j - rs2) * mtilek + i] = md[i, j], j = rs2 .. rs2 + mtilen - 1
mmvbce8.v.m vd, ms1, rs2
mmvbce16.v.m vd, ms1, rs2
mmvbce32.v.m vd, ms1, rs2
mmvbce64.v.m vd, ms1, rs2
\# vd[(j - rs2) * mtilem + i] = md[i, j], j = rs2 .. rs2 + mtilen - 1
mmvcce8.v.m vd, ms1, rs2
mmvcce16.v.m vd, ms1, rs2
mmvcce32.v.m vd, ms1, rs2
mmvcce64.v.m vd, ms1, rs2
\# md[i, j] = vd[(j - rs2) * mtilem + i], j = rs2 .. rs2 + mtilek - 1
mmvace8.m.v md, vs1, rs2
mmvace16.m.v md, vs1, rs2
mmvace32.m.v md, vs1, rs2
mmvace64.m.v md, vs1, rs2
\# md[i, j] = vd[(j - rs2) * mtilek + i], j = rs2 .. rs2 + mtilen - 1
mmvbce8.m.v md, vs1, rs2
mmvbce16.m.v md, vs1, rs2
mmvbce32.m.v md, vs1, rs2
mmvbce64.m.v md, vs1, rs2
\# md[i, j] = vd[(j - rs2) * mtilem + i], j = rs2 .. rs2 + mtilen - 1
mmvcce8.m.v md, vs1, rs2
mmvcce16.m.v md, vs1, rs2
mmvcce32.m.v md, vs1, rs2
mmvcce64.m.v md, vs1, rs2
```

6.15.4. Intrinsic Example: Matrix multiplication fused with element-wise vector operation

```
tile n = msettilen(n-j);
           out = mwsub_mm(out, out) // clear acc reg
           for (s = 0; s < k; s += tile_k) { // loop at dim k with tiling
               tile_k = msettilek(k-s);
               tr1 = mlae16_m(&a[i][s]);
                                            // load left matrix a
                                             // load right matrix b
               tr2 = mlbe16_m(&b[s][j]);
               out = mfwma_mm(tr1, tr2);  // tiled matrix multiply,
                                             // double widen output
           }
           out = mfncvt_f_fw_m(out, m2);  // convert widen result to single
           for (s = 0; s < tile_m; s += rows) {
               // max rows could move into 8 vregs
               rows = min(tile_m - s, 8*vlenb/rlenb);
               vsetvl(tile n*rows, e16, m8);
               v1 = mmvcr v m(out, s); // move out rows to vreq
               v1 = vfmax_vf(0.f, v1); // vfmax.vf for relu
               msce16_v(v1, &c[i+s][j], n); // store output tile slices
           }
       }
   }
}
```

6.16. Zmi2c: Im2col Extension

Im2col stands for Image to Column, and is an implementation technique of computing Convolution operation (in Machine Learning) using GEMM operations.

The Zmi2c extension allows to perform im2col operation on-the-fly, by a set of new load instructions.

The **Load Unfold** instructions allows to load and extract sliding local blocks from memory into the matrix tile registers.

6.16.1. CSRs

The matrix extension adds 7 unprivileged CSRs (moutsh, minsh, mpad, mstdi, minsk, moutsk, mpadval) to the base scalar RISC-V ISA.

Table 19. New matrix CSRs

Address	Privilege	Name	Description		
0xC47	URO	moutsh	Fold/unfold output shape.		
0xC48	URO	minsh	Fold/unfold input shape.		
0xC49	URO	mpad	Fold/unfold padding parameters.		
0xC4A	URO	mstdi	Fold/unfold sliding strides and dilations.		
0xC4B	URO	minsk	Fold/unfold sliding kernel position of input.		
0xC4C	URO	moutsk	Fold/unfold sliding kernel position of output.		
0xC4D	URO	mpadval	Fold/unfold padding value, default to zero.		

Table 20. minsh moutsh register layout

Bits	Name	Description			
XLEN:32	0	Reserved			
31:16	shape[1]	shape of dim 1, height			
15:0	shape[0]	shape of dim 0, width			

Table 21. mpad register layout

Bits	Name	Description			
XLEN:32	0	Reserved			
31:24	mpad_top	Padding added to up side of input			
23:16	mpad_bottom	Padding added to bottom side of input			
15:8	mpad_left	Padding added to left side of input			
7:0	mpad_right	Padding added to left side of input			

Table 22. mstdi register layout

Bits	Name	Description				
XLEN:32	0	Reserved				
31:24	mdil_h	Height spacing of the kernel elements				
23:16	mdil_w	Weight spacing of the kernel elements				
15:8	mstr_h	Height stride of the convolution				
7:0	mstr_w	Weight stride of the convolution				

Table 23. minsk moutsk register layout

Bits	Name	Description			
XLEN:32	0	Reserved			
31:16	msk[1]	Sliding kernel position of dim 1, height			
15:0	msk[0]	Sliding kernel position of dim 0, width			

6.16.2. Configuration Instructions

```
msetoutsh rd, rs1, rs2 # set output shape(rs1), strides and dilations(rs2)
msetinsh rd, rs1, rs2 # set input shape(rs1) and padding(rs2)
msetsk rd, rs1, rs2 # set fold/unfold sliding positions, insk(rs1), outsk(rs2)
msetpadval rd, rs1 # set fold/unfold padding value
```

6.16.3. Load Unfold Instructions

The **Load Unfold** instructions allows to load and extract sliding local blocks from memory into the matrix tile registers. Similar to PyTorch, for the case of two input spatial dimensions this operation is sometimes called im2col.

```
# md destination, rs1 base address, rs2 row byte stride
# for left matrix, a
mlufae8.m
            md, (rs1), rs2
mlufae16.m
           md, (rs1), rs2
mlufae32.m
           md, (rs1), rs2
mlufae64.m
            md, (rs1), rs2
# for left matrix, b
mlufbe8.m
            md, (rs1), rs2
mlufbe16.m md, (rs1), rs2
mlufbe32.m
           md, (rs1), rs2
mlufbe64.m
            md, (rs1), rs2
# for left matrix, c
mlufce8.m md, (rs1), rs2
mlufce16.m md, (rs1), rs2
mlufce32.m
           md, (rs1), rs2
mlufce64.m
            md, (rs1), rs2
```

6.16.4. Intrinsic Example: Conv2D

```
void conv2d_float16(c, a, b, outh, outw, outc, inh, inw, inc,
    kh, kw, pt, pb, pl, pr, sw, dh, dw) {
```

```
m = outh * outw;
   k = kh * kw * inc;
   n = outc:
   msettype(e16); // use 16bit input matrix element
   // set in/out shape, sliding strides and dilations, and padding
   msetoutsh(outh << 16 | outw, dh << 24 | dw << 16 | sh << 8 | sw);
   msetinsh(inh << 16 | inw, pt << 24 | pb << 16 | pl << 8 | pr);
   for (i = 0; i < m; i += tile_m) {
                                                   // loop at dim m with tiling
       tile_m = msettilem(m-i);
       outh_pos = i / outw;
       outw_pos = i - outh_pos * outw;
                                                  // loop at dim n with tiling
       for (j = 0; j < n; j += tile_n) {
           tile n = msettilen(n-j);
           out = mwsub mm(out, out)
                                                  // clear output reg
           for (skh = 0; skh < kh; skh++) { // loop for kernel height
               inh_pos = outh_pos * sh - pt + skh * dh;
               for (skw = 0; skw < kw; skw++) {
                                                  // loop for kernel width
                   inw_pos = outw_pos * sw - pl + skw * dw;
                   // set sliding position
                   msetsk(inh_pos << 16 | inw_pos, skw * dw << 16 | outw_pos)</pre>
                   // loop for kernel channels
                   for (skc = 0; skc < inc; skc += tile k) {
                       tile_k = msettilek(inc-skc);
                       tr1 = mlufae16_m(&a[inh_pos][inw_pos][skc]);
                                                   // load and unfold input blocks
                       tr2 = mlbe16_m(&b[s][j]);
                                                  // load right matrix b
                       out = mfwma_mm(tr1, tr2);
                                                  // tiled matrix multiply,
                                                   // double widen output
                   }
               }
           }
           out = mfncvt_f_fw_m(out, m2);  // convert widen result
           msce16_m(out, &c[i][j], n*2);
                                                  // store to matrix c
       }
   }
}
```

6.16.5. Intrinsic Example: Conv3D

```
void conv3d_float16(c, a, b, outh, outw, outc, ind, inh, inw, inc,
        kd, kh, kw, pt, pb, pl, pr, sw, dh, dw) {
    m = outh * outw;
    k = kd * kh * kw * inc;
    n = outc;
    msettype(e16); // use 16bit input matrix element
    // set in/out shape, sliding strides and dilations, and padding
    msetoutsh(outh << 16 | outw, dh << 24 | dw << 16 | sh << 8 | sw);
    msetinsh(inh << 16 | inw, pt << 24 | pb << 16 | pl << 8 | pr);
    for (i = 0; i < m; i += tile_m) {
                                                     // loop at dim m with tiling
        tile m = msettilem(m-i);
        outh pos = i / outw;
        outw_pos = i - outh_pos * outw;
        for (j = 0; j < n; j += tile_n) {
                                                    // loop at dim n with tiling
            tile_n = msettilen(n-j);
            out = mwsub mm(out, out)
                                                     // clear output req
            for (skd = 0; skd < kd; skd++) { // loop for kernel *depth* for (skh = 0; skh < kh; skh++) { // loop for kernel height
                    inh_pos = outh_pos * sh - pt + skh * dh;
                    for (skw = 0; skw < kw; skw++) {
                                                        // loop for kernel width
                        inw_pos = outw_pos * sw - pl + skw * dw;
                        msetsk(inh_pos << 16 | inw_pos, skw * dw << 16 | outw_pos)</pre>
                                                         // set sliding position
                        for (skc = 0; skc < inc; skc += tile_k) {
                            tile_k = msettilek(inc-skc);
                            tr1 = mlufae16 m(&a[skd][inh pos][inw pos][skc]);
                                                         // load and unfold blocks
                            tr2 = mlbe16_m(&b[s][j]); // load right matrix b
                            out = mfwma mm(tr1, tr2); // tiled matrix multiply,
                                                         // double widen output
                        }
                    }
                }
            }
            out = mfncvt_f_fw_m(out, m2); // convert widen result
            msce16_m(out, &c[i][j], n*2); // store to matrix c
```

```
}
}
}
```

6.16.6. Intrinsic Example: MaxPool2D

```
void maxpool2d_float16(out, in, outh, outw, outc, inh, inw, inc,
       kh, kw, pt, pb, pl, pr, sw, dh, dw) {
   m = outh * outw;
   n = outc;
   msettype(e16); // use 16bit input matrix element
   // set in/out shape, sliding strides and dilations, and padding
   msetoutsh(outh << 16 | outw, dh << 24 | dw << 16 | sh << 8 | sw);
   msetinsh(inh << 16 | inw, pt << 24 | pb << 16 | pl << 8 | pr);
   for (i = 0; i < m; i += tile_m) { // loop at dim m with tiling
       tile_m = msettilem(m-i);
       outh_pos = i / outw;
       outw_pos = i - outh_pos * outw;
       for (j = 0; j < n; j += tile_n) { // loop at dim n with tiling
           tile_n = msettilen(n-j);
           for (skh = 0; skh < kh; skh++) { // loop for kernel height</pre>
               inh_pos = outh_pos * sh - pt + skh * dh;
               for (skw = 0; skw < kw; skw++) {</pre>
                                                   // loop for kernel width
                  inw_pos = outw_pos * sw - pl + skw * dw;
                  msetsk(inh_pos << 16 | inw_pos, skw * dw << 16 | outw_pos)</pre>
                                                    // set sliding position
                  // load and unfold matrix blocks
                  m_in = mlufce16_m(&in[inh_pos][inw_pos][j]);
                  m_out = mfmax_mm(m_out, m_in);
           }
           msce16_m(tr_out, &out[i][j], n*2); // store to matrix c
       }
   }
}
```

6.16.7. Intrinsic Example: AvgPool2D

```
void avgpool2d_float16(out, in, outh, outw, outc, inh, inw, inc,
        kh, kw, pt, pb, pl, pr, sw, dh, dw) {
    m = outh * outw;
    n = outc;
    msettype(e16); // use 16bit input matrix element
    // set in/out shape, sliding strides and dilations, and padding
    msetoutsh(outh << 16 | outw, dh << 24 | dw << 16 | sh << 8 | sw);
    msetinsh(inh << 16 | inw, pt << 24 | pb << 16 | pl << 8 | pr);
    // set divider
    m_div = mfmv_s_f(m_div, kh*kw)
    m div = mbcce m (m div)
    for (i = 0; i < m; i += tile m) { // loop at dim m with tiling
        tile_m = msettilem(m-i);
        outh_pos = i / outw;
        outw_pos = i - outh_pos * outw;
        for (j = 0; j < n; j += tile_n) { // loop at dim n with tiling
            tile_n = msettilen(n-j);
            m_out = mwsub_mm(m_out, m_out)
for (skh = 0; skh < kh; skh++) {</pre>
                                                    // clear output req
                                                    // loop for kernel height
                inh_pos = outh_pos * sh - pt + skh * dh;
                for (skw = 0; skw < kw; skw++) {
                                                    // loop for kernel width
                    inw_pos = outw_pos * sw - pl + skw * dw;
                    msetsk(inh_pos << 16 | inw_pos, skw * dw << 16 | outw_pos)</pre>
                                                     // set sliding position
                    // load and unfold matrix blocks
                    m in = mlufce16 m(&in[inh pos][inw pos][i]);
                    m_out = mfadd_mm(m_out, m_in);
                }
            }
            m out = mfdiv mm(m out, m div);
            msce16_m(m_out, &out[i][j], n*2);  // store to matrix c
        }
   }
}
```

6.17. Zmc2i: Col2im Extension

The Zmc2i extension allows to perform Column to Image operation on-the-fly, by a set of new store instructions.

6.17.1. CSRs

The Zmc2i extension reuses 7 unprivileged CSRs (moutsh, minsh, mpad, mstdi, minsk, moutsk, mpadval) of Zmi2c.

6.17.2. Configuration Instructions

The Zmc2i extension reuses all configuration instructions of Zmi2c.

6.17.3. Store Fold Instructions

The **Store Fold** instructions allows to store and combine an array of sliding local blocks from the matrix tile regstiers into memory. Similar to PyTorch, for the case of two output spatial dimensions this operation is sometimes called collim.

```
# ms3 destination, rs1 base address, rs2 row byte stride
# for left matrix, a
msfdae8.m
           ms3, (rs1), rs2
msfdae16.m ms3, (rs1), rs2
msfdae32.m
           ms3, (rs1), rs2
msfdae64.m
           ms3, (rs1), rs2
# for left matrix, b
           ms3, (rs1), rs2
msfdbe8.m
msfdbe16.m ms3, (rs1), rs2
msfdbe32.m ms3, (rs1), rs2
           ms3, (rs1), rs2
msfdbe64.m
# for left matrix, c
msfdce8.m ms3, (rs1), rs2
msfdce16.m ms3, (rs1), rs2
msfdce32.m
           ms3, (rs1), rs2
msfdce64.m
            ms3, (rs1), rs2
```

6.18. Zmsp*: Matrix Sparsity Extension

The Zmspa extension allows to perform 2:4 sparsing for left matrix.

The Zmspb extension allows to perform 2:4 sparsing for right matrix.

The Zmsp* extension adds one unprivileged CSR, two configuration instructions, and two groups of matrix multiplication instructions, both for left matrix and right matrix.

Table 24. Sparsity CSRs

Address	Privilege	Name	Description			
0xC4F	URO	mdsp	The direction of sparsity (0 for row and 1 for column).			

6.18.1. Configuration Instructions

The Zmsp* extension adds two configuration instruction to configure the source index register and sparsity direction.

```
# Set sparsity direction.

msetdspi rd, imm # rd = new mdsp, imm = direction

msetdsp rd, rs1 # rd = new mdsp, rs1 = direction
```

An implementation may support one of sparsity directions or both two directions. The msetdsp[i] always returns the supported direction.

6.18.2. Matrix Multiplication Instructions

The Zmspa extension adds a group of matrix multiplication instructions for left matrix sparsity.

```
# Uniqued integer sparsing matrix multiplication and add, md = md + ms1 * ms2.
mmau.spa.[dw].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mmau.spa.[w].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mmau.spa.[h].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mqmau.spa.[b].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
momau.spa.[hb].mm
                  md, ms1, ms2
                                    # left matrix is sparsing
msmau.spa.[dw].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msmau.spa.[w].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msmau.spa.[h].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msqmau.spa.[b].mm md, ms1, ms2
                                    # left matrix is sparsing
msomau.spa.[hb].mm md, ms1, ms2
                                    # left matrix is sparsing
# Signed integer sparsing matrix multiplication and add, md = md + ms1 * ms2.
mma.spa.[dw].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mma.spa.[w].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mma.spa.[h].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mqma.spa.[b].mm
                                    # left matrix is sparsing
                   md, ms1, ms2
moma.spa.[hb].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msma.spa.[dw].mm
                                    # left matrix is sparsing
                   md, ms1, ms2
msma.spa.[w].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
```

```
msma.spa.[h].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msqma.spa.[b].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
msoma.spa.[hb].mm
                  md, ms1, ms2
                                    # left matrix is sparsing
# Float point sparsing matrix multiplication and add, md = md + ms1 * ms2.
mfma.spa.[d].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mfma.spa.[f].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mfma.spa.[hf].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mfwma.spa.[f].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mfwma.spa.[hf].mm
                  md, ms1, ms2
                                    # left matrix is sparsing
mfwma.spa.[cf].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
mfqma.spa.[cf].mm
                   md, ms1, ms2
                                    # left matrix is sparsing
```

The Zmspb extension adds a group of matrix multiplication instructions for right matrix sparsity.

```
# Uniqued integer sparsing matrix multiplication and add, md = md + ms1 * ms2.
mmau.spb.[dw].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mmau.spb.[w].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
                   md, ms1, ms2
                                    # right matrix is sparsing
mmau.spb.[h].mm
                   md, ms1, ms2
mqmau.spb.[b].mm
                                    # right matrix is sparsing
                   md, ms1, ms2
momau.spb.[hb].mm
                                    # right matrix is sparsing
msmau.spb.[dw].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msmau.spb.[w].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msmau.spb.[h].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msqmau.spb.[b].mm md, ms1, ms2
                                    # right matrix is sparsing
msomau.spb.[hb].mm md, ms1, ms2
                                    # right matrix is sparsing
# Signed integer sparsing matrix multiplication and add, md = md + ms1 * ms2.
mma.spb.[dw].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mma.spb.[w].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mma.spb.[h].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mgma.spb.[b].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
moma.spb.[hb].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msma.spb.[dw].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msma.spb.[w].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
                   md, ms1, ms2
                                    # right matrix is sparsing
msma.spb.[h].mm
msqma.spb.[b].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
msoma.spb.[hb].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
# Float point sparsing matrix multiplication and add, md = md + ms1 * ms2.
mfma.spb.[d].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mfma.spb.[f].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mfma.spb.[hf].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
mfwma.spb.[f].mm
                   md, ms1, ms2
                                    # right matrix is sparsing
```

```
mfwma.spb.[hf].mm md, ms1, ms2 # right matrix is sparsing
mfwma.spb.[cf].mm md, ms1, ms2 # right matrix is sparsing
mfqma.spb.[cf].mm md, ms1, ms2 # right matrix is sparsing
```

Chapter 7. Matrix Instruction Listing

Table 25. Configuration Instructions

		63 43			42 39	38 32
_		imm[31:11]		funct4	opcode
Format	31 26	25 20	19 15	14 12	11 7	6 0
 	funct6	imm[10:5]	rs1	funct3	rd	suffix
		000		ı	0000	xxyyy11
msettype	000000	000000	rs1	000	rd	0111111
		mtypei[31:1]	1]	!	0000	xxyyy11
msettypei	000001	mtypei[1	0:0]	000	rd	0111111
,		000			0000	xxyyy11
msetsew	000011	setval		000	rd	0111111
		000	mtf	xxyyy11		
msetint	000011	1		rd	0111111	
		000	mtf	xxyyy11		
munsetint -	000011	0	rd	0111111		
10		mtf	xxyyy11			
msetfp	000011	rd	0111111			
		000	mtf	xxyyy11		
munsetfp	000011	0 000			rd	0111111
4		000		1010	xxyyy11	
msetba	000011	setval		000	rd	0111111
		000			0000	xxyyy11
msettilem	000100	000000	rs1	000	rd	0111111
		mtypei[31:1	1]		0000	xxyyy11
msettilemi	000101	mtypei[1	rd	0111111		
44*1		000			0000	xxyyy11
msettilen	001000	000000	rs1	000	rd	0111111

		mtypei[31:1	0000	xxyyy11		
msettileni	001001	mtypei[1	0:0]	000	rd	0111111
1		000			0000	ххууу11
msettilen	001100	000000	rs1	000	rd	0111111
		mtypei[31:1	1]		0000	xxyyy11
msettileni	001101	mtypei[1	0:0]	rd	0111111	
1		000	0000	ххууу11		
msetoutsh	010000	000000	rs1	000	rd	0111111
. 1		000	0000	ххууу11		
msetinsh	010100	000000	rs1	000	rd	0111111
. 1		000	0000	ххууу11		
msetsk	011000	000000	rs1	000	rd	0111111
. 1 1	000				0000	xxyyy11
msetpadval	011100	000000	rs1	000	rd	0111111

Table 26. Load/Store Instructions

	63 4	4	49 48	47	46 44	43 39	38 32
E .	resv		mt	ba	eew	funct5	opcode
Format	31 26	25	24 20	19 15	14 12	11 7	60
	funct6	ls	rs2	rs1	funct3	ms3/md	suffix
14	0.00	0	01	ba	eew	00000	xxyyy11
mlae*.m	00000	0	rs2	rs1	001	md	0111111
11 \$	0.000		10	ba	eew	00000	ххууу11
mlbe*.m	00000	0	rs2	rs1	001	md	0111111
1 \\	0.000		00	ba	eew	00000	ххууу11
mlce*.m	00000	0	rs2	rs1	001	md	0111111
14	0.00	0	11	ba	eew	00000	ххууу11
mlre*.m	00000	0	rs2	rs1	001	md	0111111
1-4-*	0.00	0	01	ba	eew	00000	ххууу11
mlate*.m	00001	0	rs2	rs1	001	md	0111111

	0.00	0	10	ba	eew	00000	xxyyy11
mlbte*.m	00001	0	rs2	rs1	001	md	0111111
	0.00	0.000		ba	eew	00000	xxyyy11
mlcte*.m	00001	0	rs2	rs1	001	md	0111111
	0.00	0	11	ba	eew	00000	xxyyy11
mlrte*.m	00001	0	rs2	rs1	001	md	0111111
	0.00	0	01	ba	eew	00000	xxyyy11
msae*.m	00000	1	rs2	rs1	001	ms3	0111111
	0.00	0	10	ba	eew	00000	xxyyy11
msbe*.m	00000	1	rs2	rs1	001	ms3	0111111
	0.00	0	00	ba	eew	00000	xxyyy11
msce*.m	00000	1	rs2	rs1	001	ms3	0111111
_	0.00	0.000		ba	eew	00000	xxyyy11
msre*.m	00000	1	rs2	rs1	001	ms3	0111111
	0.00	0.000		ba	eew	00000	xxyyy11
msate*.m	00001	1	rs2	rs1	001	ms3	0111111
1	0.000		10	ba	eew	00000	xxyyy11
msbte*.m	00001	1	rs2	rs1	001	ms3	0111111
, ale	0.00	0.000		ba	eew	00000	xxyyy11
mscte*.m	00001	1	rs2	rs1	001	ms3	0111111
, 4-	0.00	0	11	ba	eew	00000	xxyyy11
msrte*.m	00001	1	rs2	rs1	001	ms3	0111111
1 4	0.00	0	01	ba	eew	00001	xxyyy11
mlae*.v	00000	0	rs2	rs1	001	md	0111111
on 11 ¥	0.00	0	10	ba	eew	00001	xxyyy11
mlbe*.v	00000	0	rs2	rs1	001	md	0111111
1 o - *	0.00	0	00	ba	eew	00001	xxyyy11
mlce*.v	00000	0	rs2	rs1	001	md	0111111

a le	0.000		01	ba	eew	00001	xxyyy11
msae*.v	00000	1	rs2	rs1	001	ms3	0111111
1 1	0.000		10	ba	eew	00001	xxyyy11
msbe*.v	00000	1	rs2	rs1	001	ms3	0111111
****	0.000		00	ba	eew	00001	xxyyy11
msce*.v	00000	1	rs2	rs1	001	ms3	0111111
mlufae*.m	0.000		01	ba	eew	00010	xxyyy11
miurae*.m	00000	0	rs2	rs1	001	md	0111111
malvefla o * ma	0.000		10	ba	eew	00010	xxyyy11
mlufbe*.m	00000	0	rs2	rs1	001	md	0111111
mlufce*.m	0.000		00	ba	eew	00010	xxyyy11
miurce*.m	00000	0	rs2	rs1	001	md	0111111
msfdae*.m	0.000		01	ba	eew	00010	xxyyy11
	00000	1	rs2	rs1	001	ms3	0111111
msfdbe*.m	0.000		10	ba	eew	00010	xxyyy11
	00000	1	rs2	rs1	001	ms3	0111111
msfdce*.m	0.00	0.000		ba	eew	00010	xxyyy11
	00000	1	rs2	rs1	001	ms3	0111111

Table 27. Data Move Instructions

Format	63 59	58 57	56 52	51 50	49 48	47	46 44	43 39	38 32
	mks	mkm	resv	rc	mt	ba	eew	funct5	opcode
	31 26	25	24 20	19 15			14 12	11 7	6 0
	funct6	di	rs2	rs1/ms1			funct3	rd/md	suffix
mmve*.t.t	mks	mkm	00000	00	00	ba	eew	00000	xxyyy11
	000000	0	00000	ms1		010	md	0111111	
mmve*.a.a	mks	mkm	00000	00	00	ba	eew	00001	xxyyy11
	000000	0	00000	ms1			010	md	0111111

mmve*.a.t	mks	mkm	00000	00	00	ba	eew	00010	xxyyy11
	000000	0	rs2		ms1		010	md	0111111
mmve*.t.a	mks	mkm	00000	00	00	ba	eew	00010	xxyyy11
	000000	1	rs2		ms1		010	md	0111111
mmvie*.a.t	mks	mkm	00000	00	00	ba	eew	00011	xxyyy11
	000000	0	imm	ms1		010	md	0111111	
	mks	mkm	00000	00	00	ba	eew	00011	xxyyy11
mmvie*.t.a	000000	1	imm		ms1		010	md	0111111
ati.	mks	mkm	00000	00	00	ba	eew	00000	xxyyy11
mmve*.x.t	000001	0	rs2		ms1		010	rd	0111111
ati	mks	mkm	00000	00	00	ba	eew	00000	xxyyy11
mmve*.t.x	000001	1	rs2		rs1		010	md	0111111
J.	mks	mkm	00000	00	00	ba	eew	00001	xxyyy11
mmve*.x.a	000001	0	rs2	ms1		010	rd	0111111	
J.	mks	mkm	00000	00	00	ba	eew	00001	xxyyy11
mmve*.a.x	000001	1	rs2	rs1		010	md	0111111	
C	mks	mkm	00000	00	00	ba	eew	00010	xxyyy11
mfmve*.x.t	000001	0	rs2	ms1		010	rd	0111111	
C	mks	mkm	00000	00	00	ba	eew	00010	xxyyy11
mfmve*.t.x	000001	1	rs2		rs1		010	md	0111111
\$	mks	mkm	00000	00	00	ba	eew	00011	xxyyy11
mfmve*.x.a	000001	0	rs2	ms1		010	rd	0111111	
C 4	mks	mkm	00000	00	00	ba	eew	00011	xxyyy11
mfmve*.a.x	000001	1	rs2		rs1		010	md	0111111
1	mks	mkm	00000	01	01	ba	eew	00000	xxyyy11
mbcar.m	000010	0	00000		ms1		010	md	0111111
mbcbr.m	mks	mkm	00000	01	10	ba	eew	00000	xxyyy11
IIIOCOL.III	000010	0	00000		ms1		010	md	0111111

	mks	mkm	00000	01	00	ba	9911	00000	xxyyy11
mbccr.m				01		Da	eew		
	000010	0	00000		ms1	I	010	md	0111111
mbcace*.m	mks	mkm	00000	10	01	ba	eew	00000	xxyyy11
	000010	0	00000	ms1		010	md	0111111	
mbcbce*.m	mks	mkm	00000	10	10	ba	eew	00000	xxyyy11
	000010	0	00000	ms1		010	md	0111111	
mbccce*.m	mks	mkm	00000	10	00	ba	eew	00000	xxyyy11
mocce*.m	000010	0	00000	ms1		010	md	0111111	
mbcaee*.m	mks	mkm	00000	00	01	ba	eew	00000	xxyyy11
	000010	0	00000		ms1		010	md	0111111
and a de a a * and	mks	mkm	00000	00	10	ba	eew	00000	xxyyy11
mbcbee*.m	000010	0	00000		ms1		010	md	0111111
1 *	mks	mkm	00000	00	00	ba	eew	00000	xxyyy11
mbccee*.m	000010	0	00000	ms1		010	md	0111111	
	mks	mkm	00000	00	01	ba	eew	00000	xxyyy11
mtae*.m	000011	0	00000	ms1		010	md	0111111	
41 \\	mks	mkm	00000	00	10	ba	eew	00000	xxyyy11
mtbe*.m	000011	0	00000	ms1		010	md	0111111	
*	mks	mkm	00000	00	00	ba	eew	00000	xxyyy11
mtce*.m	000011	0	00000	ms1		010	md	0111111	
4	mks	mkm	00000	01	01	ba	eew	00000	xxyyy11
mmvare*.v.m	000100	0	rs2	ms1		010	vd	0111111	
mmvbre*.v.m	mks	mkm	00000	01	10	ba	eew	00000	xxyyy11
	000100	0	rs2		ms1		010	vd	0111111
	mks	mkm	00000	01	00	ba	eew	00000	xxyyy11
mmvcre*.v.m	000100	0	rs2		ms1		010	vd	0111111
de de	mks	mkm	00000	01	01	ba	eew	00000	xxyyy11
mmvare*.m.v	000100	1	rs2		vs1		010	md	0111111

1 4	mks	mkm	00000	01	10	ba	eew	00000	xxyyy11
mmvbre*.m.v	000100	1	rs2		vs1		010	md	0111111
¥	mks	mkm	00000	01	00	ba	eew	00000	xxyyy11
mmvcre*.m.v	000100	1	rs2		vs1		010	md	0111111
	mks	mkm	00000	10	01	ba	eew	00000	xxyyy11
mmvace*.v.m	000100	0	rs2		ms1		010	vd	0111111
	mks	mkm	00000	10	10	ba	eew	00000	xxyyy11
mmvbce*.v.m	000100	0	rs2		ms1		010	vd	0111111
	mks	mkm	00000	10	00	ba	eew	00000	xxyyy11
mmvcce*.v.m	000100	0	rs2		ms1		010	vd	0111111
***************************************	mks	mkm	00000	10	01	ba	eew	00000	xxyyy11
mmvace*.m.v	000100	1	rs2		vs1		010	md	0111111
1	mks	mkm	00000	10	10	ba	eew	00000	xxyyy11
mmvbce*.m.v	000100	1	rs2		vs1		010	md	0111111
**************************************	mks	mkm	00000	10	00	ba	eew	00000	xxyyy11
mmvcce*.m.v	000100	1	rs2		vs1		010	md	0111111

Table 28. Matrix Multiplication Instructions

	63 59	58 57	56 54	53 51	50 48	47	46 44	43 39	38 32
E	sps	spm	typ2	typ1	typd	ba	frm	funct5	opcode
Format	31 26	25	24	20	19 1	.5	14 12	11 7	6 0
	funct6	fp	m	s2	ms	1	funct3	md	suffix
	00000	00	100	100	000	ba	000	00000	xxyyy11
mmau.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	001	001	001	ba	000	00000	xxyyy11
mmau.h.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	010	010	010	ba	000	00000	xxyyy11
mmau.w.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	011	011	011	ba	000	00000	xxyyy11
mmau.dw.mm	000000	0	m	s2	ms	1	100	md	0111111

	00000	00	100	100	000	ba	000	10000	xxyyy11
msmau.mm	000000	00							
				s2	ms		100	md	0111111
msmau.h.mm	00000	00	001	001	001	ba	000	10000	xxyyy11
	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	010	010	010	ba	000	10000	xxyyy11
msmau.w.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	011	011	011	ba	000	10000	xxyyy11
msmau.dw.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	010	ba	000	00000	ххууу11
mqmau.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	000	000	010	ba	000	00000	ххууу11
mqmau.b.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	011	ba	000	00000	ххууу11
momau.mm	000000	0	m	s2	ms	1	100	md	0111111
1.1	00000	00	111	111	011	ba	000	00000	xxyyy11
momau.hb.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	010	ba	000	10000	xxyyy11
msqmau.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	000	000	010	ba	000	10000	xxyyy11
msqmau.b.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	011	ba	000	10000	xxyyy11
msomau.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	111	111	011	ba	000	10000	xxyyy11
msomau.hb.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	000	ba	000	00001	xxyyy11
mma.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	001	001	001	ba	000	00001	xxyyy11
mma.h.mm	000000	0	m	s2	ms	1	100	md	0111111

	00000	00	010	010	010	1	000	00001	1.1
mma.w.mm	00000	00	010	010	010	ba	000	00001	ххууу11
	000000	0	m	s2	ms	1	100	md	0111111
mma.dw.mm	00000	00	011	011	011	ba	000	00001	xxyyy11
IIIIIa.uw.iiiiii	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	000	ba	000	10001	ххууу11
msma.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	001	001	001	ba	000	10001	xxyyy11
msma.h.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	010	010	010	ba	000	10001	xxyyy11
msma.w.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	011	011	011	ba	000	10001	ххууу11
msma.dw.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	010	ba	000	00001	ххууу11
mqma.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	000	000	010	ba	000	00001	xxyyy11
mqma.b.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	011	ba	000	00001	ххууу11
moma.mm	000000	0	m	s2	ms	1	100	md	0111111
1.1	00000	00	111	111	011	ba	000	00001	xxyyy11
moma.hb.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	010	ba	000	10001	ххууу11
msqma.mm	000000	0	m	s2	ms	1	100	md	0111111
1	00000	00	000	000	010	ba	000	10001	xxyyy11
msqma.b.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	100	100	011	ba	000	10001	ххууу11
msoma.mm	000000	0	m	s2	ms	1	100	md	0111111
	00000	00	111	111	011	ba	000	10001	ххууу11
msoma.hb.mm	000000	0	m	s2	ms	1	100	md	0111111

6	00000	00	100	100	000	ba	frm	00000	xxyyy11
mfma.mm	000000	1	m	s2	ms	1	100	md	0111111
C 1 C	00000	00	001	001	001	ba	frm	00000	xxyyy11
mfma.hf.mm	000000	1	m	s2	ms	1	100	md	0111111
C C	00000	00	010	010	010	ba	frm	00000	xxyyy11
mfma.f.mm	000000	1	m	s2	ms	1	100	md	0111111
	00000	00	011	011	011	ba	frm	00000	xxyyy11
mfma.d.mm	000000	1	m	s2	ms	1	100	md	0111111
	00000	00	100	100	001	ba	frm	00000	xxyyy11
mfwma.mm	000000	1	m	s2	ms	1	100	md	0111111
C C	00000	00	000	000	001	ba	frm	00000	xxyyy11
mfwma.cf.mm	000000	1	m	s2	ms	1	100	md	0111111
	00000	00	001	001	010	ba	frm	00000	xxyyy11
mfwma.hf.mm	000000	1	m	s2	ms	1	100	md	0111111
C	00000	00	010	010	011	ba	frm	00000	xxyyy11
mfwma.f.mm	000000	1	m	s2	ms	1	100	md	0111111
C	00000	00	100	100	010	ba	frm	00000	xxyyy11
mfqma.mm	000000	1	m	s2	ms	1	100	md	0111111
meforms of man-	00000	00	000	000	010	ba	frm	00000	xxyyy11
mfqma.cf.mm	000000	1	m	s2	ms	1	100	md	0111111

Table 29. Sparsing Matrix Multiplication Instructions

	63 59	58 57	56 54	53 51	50 48	47	46 44	43 39	38 32
E4	sps	spm	typ2	typ1	typd	ba	frm	funct5	opcode
Format	31 26	25	24	20	19 1	.5	14 12	11 7	6 0
	funct6	fp	m	s2	ms	1	funct3	md	suffix
	sps	01	100	100	000	ba	000	00000	xxyyy11
mmau.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
mmau.spa.h.m	sps	01	001	001	001	ba	000	00000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111

	sps	01	010	010	010	ba	000	00000	xxyyy11
mmau.spa.w.m m	000000	0	m	s2	ms	 1	100	md	0111111
mmou one dw	sps	01	011	011	011	ba	000	00000	xxyyy11
mmau.spa.dw. mm	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	000	ba	000	10000	xxyyy11
msmau.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
msmau.spa.h.m	sps	01	001	001	001	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msmau.spa.w.m	sps	01	010	010	010	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msmau.spa.dw.	sps	01	011	011	011	ba	000	10000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	010	ba	000	00000	xxyyy11
mqmau.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
mqmau.spa.b.m	sps	01	000	000	010	ba	000	00000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	011	ba	000	00000	xxyyy11
momau.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
momau.spa.hb.	sps	01	111	111	011	ba	000	00000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
msqmau.spa.m	sps	01	100	100	010	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msqmau.spa.b.	sps	01	000	000	010	ba	000	10000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
msomau.spa.m	sps	01	100	100	011	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msomau.spa.hb.	sps	01	111	111	011	ba	000	10000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111

	sps	01	100	100	000	ba	000	00001	xxyyy11
mma.spa.mm	000000	0		s2	ms		100	md	0111111
		01	001	001	001	ba	000	00001	
mma.spa.h.mm	sps								xxyyy11
	000000	0		s2	ms	1	100	md	0111111
mma.spa.w.mm	sps	01	010	010	010	ba	000	00001	ххууу11
spa.w.iiiii	000000	0	m	s2	ms	1	100	md	0111111
mma.spa.dw.m	sps	01	011	011	011	ba	000	00001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	000	ba	000	10001	xxyyy11
msma.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
1	sps	01	001	001	001	ba	000	10001	xxyyy11
msma.spa.h.mm	000000	0	m	s2	ms	1	100	md	0111111
msma.spa.w.m	sps	01	010	010	010	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msma.spa.dw.m	sps	01	011	011	011	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	010	ba	000	00001	xxyyy11
mqma.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
mqma.spa.b.m	sps	01	000	000	010	ba	000	00001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	011	ba	000	00001	xxyyy11
moma.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
moma.spa.hb.m	sps	01	111	111	011	ba	000	00001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	01	100	100	010	ba	000	10001	xxyyy11
msqma.spa.mm	000000	0	m	s2	ms	1	100	md	0111111
msqma.spa.b.m	sps	01	000	000	010	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111

sps	01	100	100	011	ba	000	10001	xxyyy11
000000	0	m	s2	ms	1	100	md	0111111
sps	01	111	111	011	ba	000	10001	xxyyy11
000000	0	m	s2	ms	1	100	md	0111111
sps	01	100	100	000	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	001	001	001	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	010	010	010	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	011	011	011	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	100	100	001	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	000	000	001	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	001	001	010	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	00	010	010	011	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	100	100	010	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	01	000	000	010	ba	frm	00000	xxyyy11
000000	1	m	s2	ms	1	100	md	0111111
sps	10	100	100	000	ba	000	00000	xxyyy11
000000	0	m	s2	ms	1	100	md	0111111
sps	10	001	001	001	ba	000	00000	xxyyy11
000000	0	m	s2	ms	1	100	md	0111111
	\$\frac{1}{2}000000\$ \$\frac{1}{2}\text{sps}\$ \$\frac{1}{2}0000000\$ \$\frac{1}{2}\text{sps}\$	000000 0 sps 01 000000 0 sps 01 000000 1 sps 10 000000 0 sps 10	1 0000000 0 m sps 01 111 0000000 0 m sps 01 100 000000 1 m sps 01 010 000000 1 m sps 01 011 000000 1 m sps 01 100 000000 1 m sps 01 000 000000 1 m sps 01 001 000000 1 m sps 01 001 000000 1 m sps 01 100 000000 1 m sps 01 000 000000 1 m sps 01 000 0000000 1 m sps 01 000 0000000 1 m </td <td>1 0000000 0 ms2 sps 01 111 111 0000000 0 ms2 sps 01 100 100 0000000 1 ms2 100 100 sps 01 010 010 000000 1 ms2 100 100 sps 01 011 011 101 000000 1 ms2 100 100 100 000000 1 ms2 100 <</td> <td>2000000 0 ms2 ms sps 01 111 111 011 o000000 0 ms2 ms sps 01 100 100 000 o00000 1 ms2 ms sps 01 010 010 010 o00000 1 ms2 ms sps 01 011 011 011 o00000 1 ms2 ms sps 01 100 100 001 o00000 1 ms2 ms sps 01 100 100 001 o00000 1 ms2 ms sps 01 001 010 010 o00000 1 ms2 ms sps 01 001 010 010 o000000 1 ms2 ms sps 01 000 000 010 <t< td=""><td>1 0000000 0 ms2 ms1 sps 01 111 111 011 ba o000000 0 ms2 ms1 ms1 sps 01 100 100 000 ba o000000 1 ms2 ms1 ms1 sps 01 010 010 010 ba o000000 1 ms2 ms1 ms1 sps 01 011 011 011 ba o000000 1 ms2 ms1 ms1 sps 01 100 100 001 ba o000000 1 ms2 ms1 ms1 sps 01 000 000 001 ba o000000 1 ms2 ms1 sps 01 001 010 011 ba o000000 1 ms2 ms1 sps 01 100 100 010 ba o000000 1 ms2 ms1</td><td> Sps</td><td> None</td></t<></td>	1 0000000 0 ms2 sps 01 111 111 0000000 0 ms2 sps 01 100 100 0000000 1 ms2 100 100 sps 01 010 010 000000 1 ms2 100 100 sps 01 011 011 101 000000 1 ms2 100 100 100 000000 1 ms2 100 <	2000000 0 ms2 ms sps 01 111 111 011 o000000 0 ms2 ms sps 01 100 100 000 o00000 1 ms2 ms sps 01 010 010 010 o00000 1 ms2 ms sps 01 011 011 011 o00000 1 ms2 ms sps 01 100 100 001 o00000 1 ms2 ms sps 01 100 100 001 o00000 1 ms2 ms sps 01 001 010 010 o00000 1 ms2 ms sps 01 001 010 010 o000000 1 ms2 ms sps 01 000 000 010 <t< td=""><td>1 0000000 0 ms2 ms1 sps 01 111 111 011 ba o000000 0 ms2 ms1 ms1 sps 01 100 100 000 ba o000000 1 ms2 ms1 ms1 sps 01 010 010 010 ba o000000 1 ms2 ms1 ms1 sps 01 011 011 011 ba o000000 1 ms2 ms1 ms1 sps 01 100 100 001 ba o000000 1 ms2 ms1 ms1 sps 01 000 000 001 ba o000000 1 ms2 ms1 sps 01 001 010 011 ba o000000 1 ms2 ms1 sps 01 100 100 010 ba o000000 1 ms2 ms1</td><td> Sps</td><td> None</td></t<>	1 0000000 0 ms2 ms1 sps 01 111 111 011 ba o000000 0 ms2 ms1 ms1 sps 01 100 100 000 ba o000000 1 ms2 ms1 ms1 sps 01 010 010 010 ba o000000 1 ms2 ms1 ms1 sps 01 011 011 011 ba o000000 1 ms2 ms1 ms1 sps 01 100 100 001 ba o000000 1 ms2 ms1 ms1 sps 01 000 000 001 ba o000000 1 ms2 ms1 sps 01 001 010 011 ba o000000 1 ms2 ms1 sps 01 100 100 010 ba o000000 1 ms2 ms1	Sps	None

mmou cab w m	sps	10	010	010	010	ba	000	00000	xxyyy11
mmau.spb.w.m m	000000	0	m	s2	ms	 1	100	md	0111111
mmau.spb.dw.	sps	10	011	011	011	ba	000	00000	xxyyy11
mm	000000	0	m	s2	ms	 1	100	md	0111111
	sps	10	100	100	000	ba	000	10000	xxyyy11
msmau.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
msmau.spb.h.m	sps	10	001	001	001	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msmau.spb.w.m	sps	10	010	010	010	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msmau.spb.dw.	sps	10	011	011	011	ba	000	10000	ххууу11
mm	000000	0	m	s2	ms	1	100	md	0111111
_	sps	10	100	100	010	ba	000	00000	xxyyy11
mqmau.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
mqmau.spb.b.m	sps	10	000	000	010	ba	000	00000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
1	sps	10	100	100	011	ba	000	00000	xxyyy11
momau.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
momau.spb.hb.	sps	10	111	111	011	ba	000	00000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
msqmau.spb.m	sps	10	100	100	010	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msqmau.spb.b.	sps	10	000	000	010	ba	000	10000	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
msomau.spb.m	sps	10	100	100	011	ba	000	10000	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msomau.spb.hb.	sps	10	111	111	011	ba	000	10000	ххууу11
mm	000000	0	m	s2	ms	1	100	md	0111111

	sps	10	100	100	000	ba	000	00001	xxyyy11
mma.spb.mm	000000	0		s2	ms		100	md	0111111
		10	001	001	001	ba	000	00001	
mma.spb.h.mm	sps								xxyyy11
	000000	0		s2	ms	1	100	md	0111111
mma.spb.w.mm	sps	10	010	010	010	ba	000	00001	xxyyy11
iiiiia.spo.w.iiiii	000000	0	m	s2	ms	1	100	md	0111111
mma.spb.dw.m	sps	10	011	011	011	ba	000	00001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
,	sps	10	100	100	000	ba	000	10001	ххууу11
msma.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
msma.spb.h.m	sps	10	001	001	001	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msma.spb.w.m	sps	10	010	010	010	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
msma.spb.dw.m	sps	10	011	011	011	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111
	sps	10	100	100	010	ba	000	00001	xxyyy11
mqma.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
mqma.spb.b.m	sps	10	000	000	010	ba	000	00001	ххууу11
m	000000	0	m	s2	ms	1	100	md	0111111
1	sps	10	100	100	011	ba	000	00001	ххууу11
moma.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
moma.spb.hb.m	sps	10	111	111	011	ba	000	00001	ххууу11
m	000000	0	m	s2	ms	1	100	md	0111111
1	sps	10	100	100	010	ba	000	10001	xxyyy11
msqma.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
msqma.spb.b.m	sps	10	000	000	010	ba	000	10001	xxyyy11
m	000000	0	m	s2	ms	1	100	md	0111111

	sps	10	100	100	011	ba	000	10001	xxyyy11
msoma.spb.mm	000000	0	m	s2	ms	1	100	md	0111111
msoma.spb.hb.	sps	10	111	111	011	ba	000	10001	xxyyy11
mm	000000	0	m	s2	ms	1	100	md	0111111
	sps	10	100	100	000	ba	frm	00000	xxyyy11
mfma.spb.mm	000000	1	m	s2	ms	1	100	md	0111111
mfma.spb.hf.m	sps	10	001	001	001	ba	frm	00000	xxyyy11
m	000000	1	m	s2	ms	1	100	md	0111111
C 1.C	sps	10	010	010	010	ba	frm	00000	xxyyy11
mfma.spb.f.mm	000000	1	m	s2	ms	1	100	md	0111111
C 1 1	sps	10	011	011	011	ba	frm	00000	xxyyy11
mfma.spb.d.mm	000000	1	m	s2	ms	1	100	md	0111111
C 1	sps	10	100	100	001	ba	frm	00000	xxyyy11
mfwma.spb.mm	000000	1	m	s2	ms	1	100	md	0111111
mfwma.spb.cf.	sps	10	000	000	001	ba	frm	00000	xxyyy11
mm	000000	1	m	s2	ms	1	100	md	0111111
mfwma.spb.hf.	sps	10	001	001	010	ba	frm	00000	xxyyy11
mm	000000	1	m	s2	ms	1	100	md	0111111
mfwma.spb.f.m	sps	00	010	010	011	ba	frm	00000	xxyyy11
m	000000	1	m	s2	ms	1	100	md	0111111
mfama anh man	sps	10	100	100	010	ba	frm	00000	xxyyy11
mfqma.spb.mm	000000	1	m	s2	ms	1	100	md	0111111
mfqma.spb.cf.m	sps	10	000	000	010	ba	frm	00000	xxyyy11
m	000000	1	m	s2	ms	1	100	md	0111111

Table 30. Element-wise Arithmetic & Logic Instructions

	63 59	58 57	56 54	53 51	50 48	47	46 44	43 39	38 32
T	mks	mkm	typ2 typ1		typd	ba	frm	funct5	opcode
Format	31 26	25	24 20		19 1	.5	14 12	11 7	60
	funct6	fp	m	s2	ms	1	funct3	md	suffix

	mks	mkm	eew	eew	eew	ba	000	00000	xxyyy11
maddu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	10000	xxyyy11
msaddu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	+1	ba	000	00000	xxyyy11
mwaddu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	00001	xxyyy11
madd.*.mm	000000	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	10001	xxyyy11
msadd.*.mm	000000	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	+1	ba	000	00001	xxyyy11
mwadd.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1 1	mks	mkm	eew	eew	eew	ba	000	00010	xxyyy11
msubu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1 1	mks	mkm	eew	eew	eew	ba	000	10010	xxyyy11
mssubu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1 4	mks	mkm	eew	eew	+1	ba	000	00010	xxyyy11
mwsubu.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1 4	mks	mkm	eew	eew	eew	ba	000	00011	xxyyy11
msub.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1 4	mks	mkm	eew	eew	eew	ba	000	10011	xxyyy11
mssub.*.mm	000000	0	m	s2	ms	1	101	md	0111111
1. *	mks	mkm	eew	eew	+1	ba	000	00011	xxyyy11
mwsub.*.mm	000000	0	m	s2	ms	1	101	md	0111111
mminy *	mks	mkm	eew	eew	eew	ba	000	00000	xxyyy11
mminu.*.mm	000001	0	m	s2	ms	1	101	md	0111111
mmin.*.mm	mks	mkm	eew	eew	eew	ba	000	00001	xxyyy11
IIIIIIIII. * .IIIIII	000001	0	m	s2	ms	1	101	md	0111111

	_	_				_			
mmaxu.*.mm	mks	mkm	eew	eew	eew	ba	000	00010	xxyyy11
IIIIIaxa. IIIII	000001	0	m	s2	ms	1	101	md	0111111
mmay * mm	mks	mkm	eew	eew	eew	ba	000	00011	xxyyy11
mmax.*.mm	000001	0	m	s2	ms1		101	md	0111111
1 \\	mks	mkm	eew	eew	eew	ba	000	00000	xxyyy11
mand.*.mm	000010	0	m	s2	ms	1	101	md	0111111
m o # * m m	mks	mkm	eew	eew	eew	ba	000	00001	xxyyy11
mor.*.mm	000010	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	00010	xxyyy11
mxor.*.mm	000010	0	m	s2	ms	1	101	md	0111111
11 *	mks	mkm	eew	eew	eew	ba	000	00000	xxyyy11
msll.*.mm	000011	0	m	s2	ms	1	101	md	0111111
1 \	mks	mkm	eew	eew	eew	ba	000	00001	xxyyy11
msrl.*.mm	000011	0	m	s2	ms	1	101	md	0111111
4	mks	mkm	eew	eew	eew	ba	000	00010	xxyyy11
msra.*.mm	000011	0	m	s2	ms	1	101	md	0111111
1 *	mks	mkm	eew	eew	eew	ba	000	00000	xxyyy11
mmul.*.mm	000100	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	00001	xxyyy11
mmulh.*.mm	000100	0	m	s2	ms	1	101	md	0111111
11 4	mks	mkm	eew	eew	eew	ba	000	00010	xxyyy11
mmulhu.*.mm	000100	0	m	s2	ms	1	101	md	0111111
11 4	mks	mkm	eew	eew	eew	ba	000	00011	xxyyy11
mmulhsu.*.mm	000100	0	m	s2	ms	1	101	md	0111111
1 4	mks	mkm	eew	eew	eew	ba	000	10000	xxyyy11
msmulu.*.mm	000100	0	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	000	10001	xxyyy11
msmul.*.mm	000100	0	m	s2	ms	1	101	md	0111111

	,	,				,	000	10011	
msmulsu.*.mm	mks	mkm	eew	eew	eew	ba	000	10011	xxyyy11
msmarsamm	000100	0	m	s2	ms	1	101	md	0111111
mwmulu.*.mm	mks	mkm	eew	eew	+1	ba	000	00000	xxyyy11
iliwiliulu.*.lilili	000100	0	m	ms2 ms1		1	101	md	0111111
1 \$	mks	mkm	eew	eew	+1	ba	000	00001	xxyyy11
mwmul.*.mm	000100	0	m	s2	ms	1	101	md	0111111
*	mks	mkm	eew	eew	+1	ba	000	00011	xxyyy11
mwmulsu.*.mm	000100	0	m	s2	ms	1	101	md	0111111
mfadd.*.mm	mks	mkm	eew	eew	eew	ba	frm	00000	xxyyy11
mraggmm	000000	1	m	s2	ms	1	101	md	0111111
C 11 +	mks	mkm	eew	eew	+1	ba	frm	00000	xxyyy11
mfwadd.*.mm	000000	1	m	s2	ms	1	101	md	0111111
C 1 4	mks	mkm	eew	eew	eew	ba	frm	00001	xxyyy11
mfsub.*.mm	000000	1	m	s2	ms	ms1		md	0111111
C	mks	mkm	eew	eew	+1	ba	frm	00001	xxyyy11
mfwsub.*.mm	000000	1	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	frm	00000	xxyyy11
mfmin.*.mm	000001	1	m	s2	ms	1	101	md	0111111
¢	mks	mkm	eew	eew	eew	ba	frm	00010	xxyyy11
mfmax.*.mm	000001	1	m	s2	ms	1	101	md	0111111
C 14	mks	mkm	eew	eew	eew	ba	frm	00000	xxyyy11
mfmul.*.mm	000100	1	m	s2	ms	1	101	md	0111111
C 14	mks	mkm	eew	eew	+1	ba	frm	00000	xxyyy11
mfwmul.*.mm	000100	1	m	s2	ms	1	101	md	0111111
C1' 4	mks	mkm	eew	eew	eew	ba	frm	00000	xxyyy11
mfdiv.*.mm	000101	1	m	s2	ms	1	101	md	0111111
	mks	mkm	eew	eew	eew	ba	frm	00000	xxyyy11
mfsqrt.*.mm	000110	1	000	000	ms	1	101	md	0111111

Table 31. Type Convert Instructions

	63 59	58 57	56 54	53 51	50 48	47	46 44	43 39	38 32
.	mks	mkm	enw	typ1	typd	ba	frm	funct5	opcode
Format	31 26	25	24	23 20	19 1	.5	14 12	11 7	60
	funct6	fp	fs	f4	ms1		funct3	md	suffix
C . 1.C1.C	mks	mkm	000	001	001	ba	frm	00000	xxyyy11
mfcvt.bf.hf.m	000000	1	1	0000	ms	1	111	md	0111111
meforet helpf me	mks	mkm	000	001	001	ba	frm	00001	xxyyy11
mfcvt.hf.bf.m	000000	1	1	0000	ms	1	111	md	0111111
mfwcvt.fw.f.m	mks	mkm	001	100	001	ba	frm	00000	xxyyy11
IIIIWCVL.IW.I.III	000000	1	1	0000	ms	1	111	md	0111111
mfwcvt.hf.cf.m	mks	mkm	001	000	001	ba	frm	00000	xxyyy11
miwcvt.ni.ci.m	000000	1	1	0000	ms	1	111	md	0111111
mefore over file for	mks	mkm	001	001	010	ba	frm	00000	xxyyy11
mfwcvt.f.hf.m	000000	1	1	0000	ms	1	111	md	0111111
	mks	mkm	001	010	011	ba	frm	00000	xxyyy11
mfwcvt.d.f.m	000000	1	1	0000	ms	1	111	md	0111111
C C C	mks	mkm	111	100	111	ba	frm	00000	xxyyy11
mfncvt.f.fw.m	000000	1	1	0000	ms	1	111	md	0111111
	mks	mkm	111	001	000	ba	frm	00000	xxyyy11
mfncvt.cf.hf.m	000000	1	1	0000	ms	1	111	md	0111111
me for easy the first ma	mks	mkm	111	010	001	ba	frm	00000	xxyyy11
mfncvt.hf.f.m	000000	1	1	0000	ms	1	111	md	0111111
	mks	mkm	111	011	010	ba	frm	00000	xxyyy11
mfncvt.f.d.m	000000	1	1	0000	ms	1	111	md	0111111
an faveter f	mks	mkm	000	100	000	ba	frm	00000	xxyyy11
mfcvtu.f.x.m	000000	1	0	0000	ms	1	111	md	0111111
mfcvtu.hf.h.m	mks	mkm	000	001	001	ba	frm	00000	xxyyy11
micviu.m.n.m	000000	1	0	0000	ms	1	111	md	0111111

mfcvtu.f.w.m	mks	mkm	000	010	010	ba	frm	00000	xxyyy11
inicviu.i.w.iii	000000	1	0	0000	ms	1	111	md	0111111
C . 1 1	mks	mkm	000	011	011	ba	frm	00000	xxyyy11
mfcvtu.d.dw.m	000000	1	0	0000	ms	1	111	md	0111111
C C	mks	mkm	000	100	000	ba	frm	00001	xxyyy11
mfcvt.f.x.m	000000	1	0	0000	ms	1	111	md	0111111
C . 1 C1	mks	mkm	000	001	001	ba	frm	00001	xxyyy11
mfcvt.hf.h.m	000000	1	0	0000	ms	1	111	md	0111111
mfcvt.f.w.m	mks	mkm	000	010	010	ba	frm	00001	xxyyy11
micvt.i.w.m	000000	1	0	0000	ms	1	111	md	0111111
C 4 1 1	mks	mkm	000	011	011	ba	frm	00001	xxyyy11
mfcvt.d.dw.m	000000	1	0	0000	ms	1	111	md	0111111
mfwcvtu.fw.x.	mks	mkm	001	100	001	ba	frm	00000	xxyyy11
m	000000	1	0	0000	ms1		111	md	0111111
C C	mks	mkm	010	100	010	ba	frm	00000	xxyyy11
mfwcvtu.fq.x.m	000000	1	0	0000	ms	1	111	md	0111111
C C	mks	mkm	011	100	011	ba	frm	00000	xxyyy11
mfwcvtu.fo.x.m	000000	1	0	0000	ms	1	111	md	0111111
mfwcvtu.hf.hb.	mks	mkm	010	111	001	ba	frm	00000	xxyyy11
m	000000	1	0	0000	ms	1	111	md	0111111
6	mks	mkm	011	111	010	ba	frm	00000	xxyyy11
mfwcvtu.f.hb.m	000000	1	0	0000	ms	1	111	md	0111111
6 4 1 61	mks	mkm	001	000	001	ba	frm	00000	xxyyy11
mfwcvtu.hf.b.m	000000	1	0	0000	ms	1	111	md	0111111
C	mks	mkm	010	000	010	ba	frm	00000	xxyyy11
mfwcvtu.f.b.m			ms	1	111	md	0111111		
	mks	mkm	001	001	010	ba	frm	00000	xxyyy11
mfwcvtu.f.h.m	000000	1	0	0000	ms	1	111	md	0111111

	mks	mkm	001	010	011	ba	frm	00000	11
mfwcvtu.d.w.m									xxyyy11
	000000	1	0	0000	ms		111	md	0111111
mfwcvt.fw.x.m	mks	mkm	001	100	001	ba	frm	00001	xxyyy11
III WEVELI W.X.III	000000	1	0	0000	ms]	1	111	md	0111111
mfwayt fa y m	mks	mkm	010	100	010	ba	frm	00001	xxyyy11
mfwcvt.fq.x.m	000000	1	0	0000	ms	1	111	md	0111111
mfwcvt.fo.x.m	mks	mkm	011	100	011	ba	frm	00001	xxyyy11
IIIWCVLIO.X.III	000000	1	0	0000	ms]	1	111	md	0111111
mfwcvt.hf.hb.m	mks	mkm	010	111	001	ba	frm	00001	xxyyy11
IIIIWCVL.III.IID.III	000000	1	0	0000	ms	1	111	md	0111111
enfragret f.h.h. en	mks	mkm	011	111	010	ba	frm	00001	xxyyy11
mfwcvt.f.hb.m	000000	1	0	0000	ms	1	111	md	0111111
	mks	mkm	001	000	001	ba	frm	00001	xxyyy11
mfwcvt.hf.b.m	000000	1	0	0000	ms1		111	md	0111111
	mks	mkm	010	000	010	ba	frm	00001	xxyyy11
mfwcvt.f.b.m	000000	1	0	0000	ms1	1	111	md	0111111
	mks	mkm	001	001	010	ba	frm	00001	xxyyy11
mfwcvt.f.h.m	000000	1	0	0000	ms1	1	111	md	0111111
C 4 1	mks	mkm	001	010	011	ba	frm	00001	xxyyy11
mfwcvt.d.w.m	000000	1	0	0000	ms]	1	111	md	0111111
C 4 C	mks	mkm	111	100	111	ba	frm	00000	xxyyy11
mfncvtu.f.xw.m	000000	1	0	0000	ms1	1	111	md	0111111
	mks	mkm	111	010	001	ba	frm	00000	xxyyy11
mfncvtu.hf.w.m	000000	1	0	0000	ms	1	111	md	0111111
	mks	mkm	111	011	010	ba	frm	00000	xxyyy11
mfncvtu.f.dw.m	000000	1	0	0000	ms1	1	111	md	0111111
C	mks	mkm	111	100	111	ba	frm	00001	xxyyy11
mfncvt.f.xw.m	000000	1	0	0000	ms1	1	111	md	0111111

	mks	mkm	111	010	001	ba	frm	00001	xxyyy11
mfncvt.hf.w.m	000000	1	0	0000	ms		111	md	0111111
	mks	mkm	111	011	010	ba	frm	00001	xxyyy11
mfncvt.f.dw.m	000000	1	0	0000	ms1		111	md	0111111
	mks	mkm	000	100	000	ba	frm	00000	xxyyy11
mfcvtu.x.f.m	000000	0	1	0000	ms		1111	md	0111111
mfcvtu.h.hf.m	mks	mkm	000	001	001	ba	frm	00000	xxyyy11
	000000	0	1	0000	ms	1	111	md	0111111
mfcvtu.w.f.m	mks	mkm	000	010	010	ba	frm	00000	xxyyy11
IIIICVLU.W.I.III	000000	0	1	0000	ms	1	111	md	0111111
	mks	mkm	000	011	011	ba	frm	00000	xxyyy11
mfcvtu.dw.d.m	000000	0	1	0000	ms	1	111	md	0111111
2 2	mks	mkm	000	100	000	ba	frm	00001	xxyyy11
mfcvt.x.f.m	000000	0	1	0000	ms	1	111	md	0111111
6 41.16	mks	mkm	000	001	001	ba	frm	00001	xxyyy11
mfcvt.h.hf.m	000000	0	1	0000	ms	1	111	md	0111111
C	mks	mkm	000	010	010	ba	frm	00001	xxyyy11
mfcvt.w.f.m	000000	0	1	0000	ms	1	111	md	0111111
6 . 1 . 1	mks	mkm	000	011	011	ba	frm	00001	xxyyy11
mfcvt.dw.d.m	000000	0	1	0000	ms	1	111	md	0111111
mfwcvtu.xw.f.	mks	mkm	001	100	001	ba	frm	00000	xxyyy11
m	000000	0	1	0000	ms	1	111	md	0111111
mfwcvtu.w.hf.	mks	mkm	001	001	010	ba	frm	00000	xxyyy11
m	000000	0	1	0000	ms	1	111	md	0111111
mfwcvtu.dw.f.	mks	mkm	001	010	011	ba	frm	00000	xxyyy11
m	m 000000 0		1	0000	ms	1	111	md	0111111
	mks	mkm	001	100	001	ba	frm	00001	xxyyy11
mfwcvt.xw.f.m	000000	0	1	0000	ms	1	111	md	0111111

	-		004	004	0.4.0			00004	
mfwcvt.w.hf.m	mks	mkm	001	001	010	ba	frm	00001	xxyyy11
222 // 0 / // // // // // // // // // // //	000000	0	1	0000	ms	1	111	md	0111111
mfwcvt.dw.f.m	mks	mkm	001	010	011	ba	frm	00001	xxyyy11
III WCVL.UW.1.III	000000	0	1	0000	ms	1	111	md	0111111
and for country, we first an	mks	mkm	111	100	111	ba	frm	00000	xxyyy11
mfncvtu.x.fw.m	000000	0	1	0000	ms	1	111	md	0111111
m for earthy as for one	mks	mkm	110	100	110	ba	frm	00000	xxyyy11
mfncvtu.x.fq.m	000000	0	1	0000	ms	1	111	md	0111111
m for earthy as for one	mks	mkm	101	100	101	ba	frm	00000	xxyyy11
mfncvtu.x.fo.m	000000	0	1	0000	ms	1	111	md	0111111
mfncvtu.hb.hf.	mks	mkm	110	001	111	ba	frm	00000	xxyyy11
m	000000	0	1	0000	ms	1	111	md	0111111
	mks	mkm	101	010	111	ba	frm	00000	xxyyy11
mfncvtu.hb.f.m	000000	0	1	0000	ms1		111	md	0111111
	mks	mkm	111	001	000	ba	frm	00000	xxyyy11
mfncvtu.b.hf.m	000000	0	1	0000	ms	1	111	md	0111111
f 1. f	mks	mkm	110	010	000	ba	frm	00000	xxyyy11
mfncvtu.b.f.m	000000	0	1	0000	ms	1	111	md	0111111
f.,	mks	mkm	111	010	001	ba	frm	00000	xxyyy11
mfncvtu.h.f.m	000000	0	1	0000	ms	1	111	md	0111111
mefre avetus vos dum	mks	mkm	111	011	010	ba	frm	00000	xxyyy11
mfncvtu.w.d.m	000000	0	1	0000	ms	1	111	md	0111111
mafin court on C	mks	mkm	111	100	111	ba	frm	00001	xxyyy11
mfncvt.x.fw.m	000000	0	1	0000	ms	1	111	md	0111111
	mks	mkm	110	100	110	ba	frm	00001	xxyyy11
mfncvt.x.fq.m	000000	0	1	0000	000 ms1		111	md	0111111
mofmant - C	mks	mkm	101	100	101	ba	frm	00001	xxyyy11
mfncvt.x.fo.m	000000	0	1	0000	ms	1	111	md	0111111

and any the left an	mks	mkm	110	001	111	ba	frm	00001	xxyyy11
mfncvt.hb.hf.m	000000	0	1	0000	ms	1	111	md	0111111
me for easy table for me	mks	mkm	101	010	111	ba	frm	00001	xxyyy11
mfncvt.hb.f.m	000000	0	1	0000	ms	1	111	md	0111111
	mks	mkm	111	001	000	ba	frm	00001	xxyyy11
mfncvt.b.hf.m	000000	0	1	0000	ms1		111	md	0111111
C 1 C	mks	mkm	110	010	000	ba	frm	00001	xxyyy11
mfncvt.b.f.m	000000	0	1	0000	ms	1	111	md	0111111
6 .1.6	mks	mkm	111	010	001	ba	frm	00001	xxyyy11
mfncvt.h.f.m	000000	0	1	0000	ms	1	111	md	0111111
C 1	mks	mkm	111	011	010	ba	frm	00001	xxyyy11
mfncvt.w.d.m	000000	0	1	0000	ms	1	111	md	0111111