Laplace Transforms

Fourier Transform Pair

$$\tilde{F}(\omega) = \int_{-\infty}^{\infty} f(t) e^{-j\omega t} dt$$

$$f(t) = \frac{1}{2\pi} \int_{\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$$

The problem with Fourier transforms is that they cannot handle initial conditions due to the infinite bounds on the integral. To handle initial conditions, consider the Laplace transform

$$Z[f(t)] = \tilde{f}(s) = \int_{0}^{\infty} f(t)e^{-st}dt$$

MAXIV RF

Laplace Transform Table

Inverse Laplace Transform

s is a complex number!

Since s is a complex number, the inverse transform is hard to compute directly and using the transform tables in reverse to find the inverse transform is the usual technique.

Initial and Final value Theorems

Initial value theorem

Final value theorem

Circuit Elements

Uncharged capacitor

$$L(t) = C \frac{dv}{dt}$$

$$L(t) = C \frac{dv}{dt} \qquad \tilde{Z}(s) = s C \tilde{v}(s) - C v(0)$$

Uncharged inductor

$$v(t) = L \frac{di}{dt}$$

Low Pass Filter

Frequency Response

$$\frac{V_0}{V_i} = \frac{1}{1+j} = \frac{1-j}{2}$$

$$\angle \left(\frac{V_0}{V_i}\right) = -45^{\circ}$$

