Large-Scale and Multi-Structured Databases Column Databases Introduction

Prof. Pietro Ducange

OLTP vs OLAP

 OLTP - Online Transaction Processing: software architectures oriented towards handling ACID transactions.

 OLAP - Online Analytics Processing: software architectures oriented towards interactive and fast analysis of data. Typical of Business Intelligence Software.

OLTP vs OLAP

- High volume of data
- Slow queries
- Denormalized data
- Fewer tables
- "How many people bought X?"

Image extracted from: https://diffzi.com/oltp-vs-olap/

High volume of transactions

Fast processing

Normalized data

"Who bought X?"

Many tables

Row Data Organization

Since the beginning of *digital files*, the data of each record were physically organized in *rows*.

OLTP processing is mainly oriented towards handling **one record** at a time processing.

When the *first relational databases* were designed, the world was mainly experiencing the OLTP era.

The *record-oriented* workflow handled by the first relational databases and *the row-oriented* physical structure of early digital files provided *good performance*.

CRUD and Queries

In the *record-based processing era* (up to the end of the 80s of the last century), CRUD operations (Create, Read, Update, Delete) were the most time-critical ones.

Reporting programs were typically iterated through entire tables and were run in a **background** batch mode. The **time response** to the queries was **not** a critical **issue**.

When *Business Intelligence* software started to spread, *OLAP* processing assumed *a big relevance*, thus the *time response* to queries became a *critical issue* to appropriately handle.

Data Warehouse

Data warehouses: relational databases tasked with supporting *analytic* and *decision* support applications (80's-90's era).

Star Schemas in Data Warehouse

Università di Pisa

Image extracted from: "Guy Harrison, Next Generation Databases, Apress, 2015"

DIPARTIMENTO DI INGEGNERIA DELL'INFORMAZIONE

It is a *relational solution* where central *large fact* tables are associated with *numerous smaller dimension* tables.

Aggregate *queries* could execute *quickly*.

Star Schemes do **not** represent a fully **normalized** relational model of data (redundancies are often accepted, information sometimes depend partly on the primary key).

Star Schemas: Main Drawbacks

- Data processing in data warehouses remained severely
 CPU and IO intensive.
- The data volumes grew up along with and user demands for interactive response times.
- In general, around mid 90s of the last century, the discontent with traditional data warehousing performance increased.

The Columnar Storage

When processing data for making *analytics*, in most of cases, we are not interested in retrieving *all the information* of each single records.

Indeed, we are interested, for example, in retrieving the values of **one attribute** of a **set of records** (for making trend graphs, or calculating statistics).

When dealing with *row-based* storage of records, we have to *access* to *all the records* of the considered set for retrieving just the values of one attribute.

If all the values of an attribute are **grouped** together on the **disk** (or in the block of a disk), the task of retrieving the values of one attribute will be **faster** than a row-based storage of records.

Rows vs Columns

Row Storage

Last Name	First Name	E-mail	Phone #	Street Address

Columnar Storage

Last Name	First Name	E-mail	Phone #	Street Address

Row-oriented storage

ID	Name	DOB	Salary	Sales	Expenses
10.01	Dick	21/12/1960	67,000	78980	3244
1002	Jane	12/12/1955	55,000	67840	2333
1003	Robert	17/02/1980	22,000	67890	6436
1004	Dan	15/03/1975	65,200	98770	2345
1005	Steven	11/11/1981	76,000	43240	3214

Tabular data

Image extracted from: "Guy Harrison, Next Generation Databases, Apress, 2015"

Columnar storage

Block					
1	Dick	Jane	Robert	Dan	Steven
2	21/12/1960	12/12/1955	17/02/1980	15/03/1975	11/11/1981
3	07,000	55,000	22,000	05,200	70,000
4	78980	67840	67890	98770	43240
5	3244	2333	6436	2345	3214

An Example

Università di Pisa

Image extracted from: "Guy Harrison, Next Generation Databases, Apress, 2015"

If data are stored by *rows*, in order to retrieve the sum of salaries we must scan *five* blocks.

In the case of *column* store, a *single block access* is enough.

In general, queries that work across *multiple rows* are significantly accelerated in a columnar database.

Columnar Compression

Data compression algorithms basically *remove redundancy* within data values.

The higher the redundancy, the higher the compression ratios.

To find redundancy, data compressions algorithms usually try to **work** on **localized** subsets of the data.

If data are stored in a column databases, very *high compression ratio* can be achieved with very *low computational overheads*.

As an example, often in a columnar database data are stored in a **sorted order**. In this case, very high compression ratios can be achieved simply by representing each column value as a "**delta**" from the preceding column value.

Single Row Operations Penalty

Image extracted from: "Guy Harrison, Next Generation Databases, Apress, 2015"

Column databases perform *poorly* during *single-row modifications*.

The *overhead* needed for *reading* rows, can be *partly reduced* by caching and multicolumn projections (storing multiple columns together on disk).

In general, handling a row means accessing to more than once blocks of the disk.

Delta Store

Problem: The basic column storage architecture is **unable** to cope with **constant** stream of **row-level modifications**.

These modifications are needed whenever *data warehouse* have to provide real-time "*up-to-the-minute*" information .

Solution: Delta store is an area of the database, resident in **in-memory uncompressed** and optimized for high-frequency data modifications.

Data in the delta store is *periodically merged* with the main *columnar*-oriented store (often data are *highly compressed*).

Queries may need to **access both** the delta store and the column store in order to return complete and accurate results.

Delta Store: Architecture

Projections

Problem:

Complex queries often need to read *combinations* of column data.

Solution:

Some column databases adopts *projections*.

Projections: combinations of columns that are *frequently* accessed together.

Columns of specific projections are stored together on the disk.

In the following slide, we show an example of database architecture based on projections.

Region	Customer	Product	Sales
A	G	С	789
В	С	С	743
D	F	D	675
С	С	A	23
A	R	В	654

Logical Table

Table appears to user in relational normal form

Hybrid Columnar Compression (Oracle Solution)

	8K Block	8K Block	8K Block	8K Block	
	Region	Customer	Product	Sales	
Row 1	А	G	С	789	
	В	С	С	743	
Row 3	D	F	D	675	
	С	С	A	23	
Row 5	A	R	В	654	

- Rows of data are contained within compression units of about 1 MB
- Columns stored together within smaller 8K blocks

Suggested Readings

Chapter 6 of the book "Guy Harrison, Next Generation Databases, Apress, 2015".

