Predicting Maize Pollen Expression Specificity

Group 3

Motivation: pollen specificity is important for predicting pollen fitness

Central Dogma of Molecular Biology

Our proposed modeling

Information about a gene (e.g. kmer, amino acid composition, subcellular localization etc.)

Binary true or false. True if a gene is pollen specific protein expression false otherwise

Our Data

Input:

12725 data points (rows) 2626 dimension (columns)

Response Variable: 11,443 Non-Pollen Specific 1282 Pollen Specific

Gene ID	Kmer ACT	CTDC G1	 PseDNC Xc1 AC	Pollen Specific
Gene 1	0.0434	0.2234	 0.0672	0
Gene 2	0.0783	0.6673	 0.0932	0
Gene 12725	0.0033	0.0021	0.4402	1

PCA Analysis: Dimensionality Reduction in Gene Features

PCA Factor Map Shows No Clear Clusters:

- The PCA plot does not show distinct separation between pollen-specific and non-pollen-specific genes.
- This suggests that PCA alone may not be enough for classification, and additional features or nonlinear techniques may be needed.

Variance Explained is Low (~11.7% for PC1):

- The first two PC's only explains ~17% of the variance, which is not enough for strong classification.
- This indicates that other methods like feature selection (LASSO) or nonlinear models (Random Forest, XGBoost) may work better.

Understanding Gene Clusters Using t-SNE

- What This Plot Shows:
 Each dot represents a gene, colored by pollen-specific (cyan) or non-pollen-specific (red) status.
- Key Observations:
 Genes form clusters, suggesting underlying feature patterns.
- Overlap exists between pollen-specific and non-pollen-specific genes, meaning classification is not straightforward.

Why t-SNE?

- Captures **nonlinear structures** in genomic data.
- Helps visualize complex relationships that PCA might miss.

Implications for Machine Learning:

- No clear separation → More advanced models (Lasso, Random Forest, XGBoost) needed.
- Feature engineering may help improve classification.

Logistic Regression + L1 Regularization

Logistic Regression: Models probability of a class $y \in \{0, 1\}$ as: $P(y = 1 | \mathbf{x}) = \sigma(\mathbf{w}^T \mathbf{x} + b)$

Where
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Loss function (negative Log-Likelihood):

$$\mathcal{L}(\mathbf{w},b) = -\sum_{i=1}^{n} \left[y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i) \right]$$

Add L1 regularization to achieve sparsity:

$$\mathcal{L}_{\mathsf{reg}}(\mathbf{w},b) = \mathcal{L}(\mathbf{w},b) + \lambda \sum_{j=1}^d |w_j|$$

What is auROC?

auROC = a metric for indicating how well a model separate two classes

How much approx. information gain in the model (auROC)?

50% = none

60% = small

70% = moderate

80% = strong

90% = very strong

100% = perfect model

Model results

Figure 1: Train/test auROC for 3 fold cross validation

Train AUROC (Blue) is consistently high (~0.8+)

- This suggests the model **performs well on training data**.
- The model is capturing patterns in the gene features that help distinguish pollen-specific genes.

Validation AUROC (Brown/Gold) is slightly lower (~0.75)

- This means the model is still performing reasonably well on unseen validation data.
- Since the validation AUROC is **not too far below the train AUROC**, the model has **moderate generalization ability**.

Key Note:

• The AUROC scores for all three folds are fairly similar.

The model achieves AUROC \approx 0.75 in validation, meaning it is better than random (0.5) but still has room for improvement.

A small train-validation gap suggests the model is not heavily overfitting, which is a positive sign.

- X-Axis (False Positive Rate FPR): Measures how often the model incorrectly classifies non-pollen-specific genes as pollen-specific.
- Y-Axis (True Positive Rate TPR): Measures how often the model correctly classifies pollen-specific genes.
- The diagonal dashed line (y = x) represents random guessing (AUROC = 0.5). A model performing at this level has no predictive power.

Key Observations

AUROC = 0.7437 (~ 0.74): This means the model is better than random (0.5) but not perfect (1.0).

A value of **0.74** suggests that when randomly selecting a pollen-specific and non-pollen-specific gene, the model correctly ranks them \sim 74% of the time.

The **ROC curve rises above the diagonal**, indicating that the model has predictive ability.

The steep initial increase means the model captures a significant number of **true positives** at lower false positive rates.

The curve flattens towards the top right, meaning additional correct classifications come at the cost of more false positives.

Figure 2: Held out test set auROC

Model results

Sensitivity and Specificity for all three cross-validation (CV) folds.

- Sensitivity (Red): Measures the proportion of correctly identified pollen-specific genes.
- Specificity (Green): Measures the proportion of correctly identified non-pollen-specific genes.
- Results show that specificity is consistently high across all CV folds, while sensitivity is lower, suggesting that the model identifies non-pollen-specific genes more accurately than pollen-specific genes.

Model Results

Confusion Matrix

- True Positives (TP = 301): Correctly predicted pollen-specific genes.
- False Positives (FP = 1339):
 Non-pollen-specific genes incorrectly classified as pollen-specific.
- False Negatives (FN = 84):
 Pollen-specific genes incorrectly classified as non-pollen-specific.
- True Negatives (TN = 2094): Correctly predicted non-pollen-specific genes.

	Actual positive	Actual negative
Predicted positive	301 (TP)	1339 (FP)
Predicted Negative	84 (FN)	2094 (TN)

Model Results

Figure 5: Feature weights

336 weighted feature after L1

Conclusion

Expression specificity is difficult to predict from genome sequence

- PCA helps reduce dimensionality but does not show clear separation between classes.
- PC1 and PC2 explain only ~17% of the variance, indicating that more features or alternative methods are needed.
- LASSO regression selected 336 important features, improving interpretability and reducing overfitting.
- Final AUROC (~74.37%) indicates the model performs better than random but has room for improvement.
- Further refinement would be needed to improve model accuracy. Feature engineering? Class imbalance –
 maybe too many starting dimension

Thank you! Data: https://mfs.maizegdb.org/featurebase