Inteligencia artificial, lógicamente

José A. Alonso Jiménez

 $\verb|http://www.cs.us.es/\sim| jalonso|$

Dpto. de Ciencias de la Computación e Inteligencia Artificial

Universidad de Sevilla

Definición de problemas de estados

- Elementos que describen un problema:
 - Estado inicial.
 - Operadores.
 - Estados finales.
- Suposiciones subyacentes:
 - Agente único.
 - Conocimiento completo.

Ejemplo de PES: problema de las jarras

• Enunciado:

• Se tienen dos jarras, una de 4 litros de capacidad y otra de 3.

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathbf{A}}$

- Ninguna de ellas tiene marcas de medición.
- Se tiene una bomba que permite llenar las jarras de agua.
- Averiguar cómo se puede lograr tener exactamente 2 litros de agua en la jarra de 4 litros de capacidad.
- Representación de estados: (x y) con x en $\{0,1,2,3,4\}$ e y en $\{0,1,2,3\}$.
- Número de estados: 20.

Planteamiento del problema de las jarras

- Estado inicial: $(0 \ 0)$.
- Estados finales: (2 y).
- Operadores:
 - Llenar la jarra de 4 litros con la bomba.
 - Llenar la jarra de 3 litros con la bomba.
 - Vaciar la jarra de 4 litros en el suelo.
 - Vaciar la jarra de 3 litros en el suelo.
 - Llenar la jarra de 4 litros con la jarra de 3 litros.
 - Llenar la jarra de 3 litros con la jarra de 4 litros.
 - Vaciar la jarra de 3 litros en la jarra de 4 litros.
 - Vaciar la jarra de 4 litros en la jarra de 3 litros.

Implementación del problema de las jarras

• Representación de estados

```
(defun crea-estado (x y)
  (list x y))

(defun contenido-jarra-4 (estado)
  (first estado))

(defun contenido-jarra-3 (estado)
  (second estado))
```

• Estado inicial

```
(defparameter *estado-inicial*
  (crea-estado 0 0))
```

• Estados finales

```
(defun es-estado-final (estado)
  (= 2 (contenido-jarra-4 estado)))
```

Implementación del problema de las jarras

Operadores

Implementación del problema de las jarras

```
(defun vaciar-jarra-4 (estado)
  (when (> (contenido-jarra-4 estado) 0)
        (crea-estado 0
                     (contenido-jarra-3 estado))))
(defun llenar-jarra-4-con-jarra-3 (estado)
  (let ((x (contenido-jarra-3 estado))
        (y (contenido-jarra-4 estado)))
    (when (and (> x 0))
               (< v 4)
               (> (+ y x) 4))
          (crea-estado 4 (- x (- 4 y))))))
(defun vaciar-jarra-3-en-jarra-4 (estado)
  (let ((x (contenido-jarra-3 estado))
        (y (contenido-jarra-4 estado)))
    (when (and (> x 0))
               (<= (+ y x) 4))
          (crea-estado (+ x y) 0))))
```

Búsqueda de solución

Grafo de búsqueda en profundidad:

Búsqueda de solución

Tabla de búsqueda en profundidad:

Nodo	Actual	Nodo Actual Sucesores	Abiertos
			$((0\ 0))$
Н	$(0\ 0)$	$((4\ 0)\ (0\ 3))$	$((4\ 0)$
2	$(4\ 0)$	$((4\ 3)\ (1\ 3))$	
က			3) (0
4		$((1\ 0))$	0) (0
ಬ	$(1\ 0)$	$((0\ 1))$	1
9		$((4\ 1))$	1) (0
~	$(4\ 1)$	$((2\ 3))$	
8	$(2\ 3)$		

• Estados de la solución:

((0 0) (4 0) 3 Γ 6 IJ $(0\ 1)$ 1) 4 3 ((2 Inteligencia artificial, lógicamente

Procedimiento de búsqueda en profundidad

- 1. Crear las siguientes variables locales
 - 1.1. ABIERTOS (para almacenar los nodos generados aún no analizados) con valor la lista formada por el nodo inicial (es decir, el nodo cuyo estado es el estado inicial y cuyo camino es la lista vacía);
 - 1.2. CERRADOS (para almacenar los nodos analizados) con valor la lista vacía:
 - 1.3. ACTUAL (para almacenar el nodo actual) con valor la lista vacía.
 - 1.4. NUEVOS-SUCESORES (para almacenar la lista de los sucesores del nodo actual) con valor la lista vacía.

Procedimiento de búsqueda en profundidad

- 2. Mientras que ABIERTOS no esté vacía,
 - 2.1 Hacer ACTUAL el primer nodo de ABIERTOS
 - 2.2 Hacer ABIERTOS el resto de ABIERTOS
 - 2.3 Poner el nodo ACTUAL en CERRADOS.
 - 2.4 Si el nodo ACTUAL es un final,
 - 2.4.1 devolver el nodo ACTUAL y terminar.
 - 2.4.2 en caso contrario, hacer
 - 2.4.2.1 NUEVOS-SUCESORES la lista de sucesores del nodo ACTUAL que no están en ABIERTOS ni en CERRADOS y
 - 2.4.2.2 ABIERTOS la lista obtenida añadiendo los NUEVOS-SUCESORES al principio de ABIERTOS.

 $\mathbf{C}_{\mathbf{C}}\mathbf{I}_{\mathsf{A}}$

3. Si ABIERTOS está vacía, devolver NIL.

Implementación de la búsqueda en profundidad

```
(defun busqueda-en-profundidad ()
  (let ((abiertos (list (crea-nodo :estado *estado-inicial*
                                                                     ;1.1
                                    :camino nil)))
        (cerrados nil)
                                                                     ;1.2
                                                                     ;1.3
        (actual nil)
                                                                     ;1.4
        (nuevos-sucesores nil))
    (loop until (null abiertos) do
                                                                     ;2
                                                                     ;2.1
          (setf actual (first abiertos))
          (setf abiertos (rest abiertos))
                                                                     ;2.2
                                                                     ;2.3
          (setf cerrados (cons actual cerrados))
          (cond ((es-estado-final (estado actual))
                                                                     ;2.4
                 (return actual))
                                                                     ;2.4.1
                (t (setf nuevos-sucesores
                                                                     ;2.4.2.1
                          (nuevos-sucesores actual abiertos cerrados))
                   (setf abiertos
                                                                     :2.4.2.2
                          (append nuevos-sucesores abiertos)))))))
```

Soluciones de los problemas en profundidad

• Problema de las jarras:

```
> clisp
Copyright (c) Bruno Haible, Michael Stoll 1992, 1993
Copyright (c) Bruno Haible, Sam Steingold 1999-2002
> (load "p-jarras-1.lsp")
  (load "b-profundidad.lsp")
  (busqueda-en-profundidad)
#S(NODO : ESTADO (2 3)
        :CAMINO (LLENAR-JARRA-3-CON-JARRA-4
                 LLENAR-JARRA-4
                 VACIAR-JARRA-4-EN-JARRA-3
                 VACIAR-JARRA-3
                 LLENAR-JARRA-3-CON-JARRA-4
                 LLENAR-JARRA-4))
```

Soluciones de los problemas en profundidad

Inteligencia artificial, lógicamente

Problemas de espacio de estados y lógica

- Relación histórica:
 - 1957: Newell, Shaw y Simon: "General Problem Solver".
 - 1956: Newell y Simon: lógico teórico.
- Relación conceptual:
 - Estado inicial: teorema a demostrar.
 - Operadores: reglas de inferencia.
 - Estados finales: axiomas.
- Relación instrumental:
 - Lisp y lambda cálculo.

Resolución SLD: Problema

- Base de conocimiento de animales:
 - Regla 1: Si un animal es ungulado y tiene rayas negras, entonces es una cebra.
 - Regla 2: Si un animal rumia y es mamífero, entonces es ungulado.
 - Regla 3: Si un animal es mamífero y tiene pezuñas, entonces es ungulado.
 - Hecho 1: El animal tiene es mamífero.
 - Hecho 2: El animal tiene pezuñas.
 - Hecho 3: El animal tiene rayas negras.

• Objetivo:

• Demostrar a partir de la base de conocimientos que el animal es una cebra.

Resolución SLD: Representación

• Representación lógica de la base de conocimiento:

• Sesión:

```
> pl
Welcome to SWI-Prolog (Version 5.0.3)
Copyright (c) 1990-2002 University of Amsterdam.
?- [animales].
Yes
?- es_cebra.
Yes
```

Resolución SLD: Arbol de resolución

Resolución con unificación

• Programa lógico suma

• Sesión

```
?- suma(s(0), s(s(0)), X).

X = s(s(s(0)))

Yes

?- suma(X,Y,s(s(0))).

X = 0

Y = s(s(0));

X = s(0);

Y = s(0);

X = s(s(0));

Y = 0;

No
```

Cálculo de respuestas

Base de conocimiento CLIPS

BC animales.clp

```
(deffacts hechos-iniciales
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       (assert (es-ungulado)))
                                                                                                                                                                                                                                                                                                                                                                                              (assert (es-ungulado)))
                                                                                                                                                                (assert (es-mamifero)))
                                                                                                                                                                                                                                                                      (assert (es-mamifero)))
                                                           (tiene-rayas-negras))
                                                                                                                                                                                                         (defrule mamifero-2
                                                                                                                                                                                                                                                                                                                                                                                                                                       (defrule ungulado-2
                                                                                                    (defrule mamifero-1
                                                                                                                                                                                                                                                                                                              (defrule ungulado-1
                                       (tiene-pezugnas)
                                                                                                                                                                                                                                                                                                                                                     (tiene-pezugnas)
                   (tiene-pelos)
                                                                                                                        (tiene-pelos)
                                                                                                                                                                                                                                                                                                                                   (es-mamifero)
                                                                                                                                                                                                                                                                                                                                                                                                                                                           (es-mamifero)
                                                                                                                                                                                                                             (da-leche)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                (rumia)
```

Base de conocimiento CLIPS

```
(assert (es-jirafa)))
             (es-ungulado)
(tiene-cuello-largo)
                                                                                                                                   (tiene-rayas-negras)
                                                                                                                                                                    (assert (es-cebra)))
(defrule jirafa
                                                                                                                  (es-ungulado)
                                                                                                   (defrule cebra
```

de conocimiento CLIPS \mathbf{Base}

Sesión

```
f-4, f-2
                                                                                                    f-1
                                                                                                                                                                                                       cebra: f-5,f-3
                                                                                                                                                                     ungulado-1:
                                                                                                    mamifero-1:
                                                                                                                          (tiene-rayas-negras)
                                                                                                                                                                                2 ungulado-1: f-4,f-2
  (es-ungulado)
(load "animales.clp")
                                                                                                              (tiene-pezugnas)
                                                       activations)
                                                                             (initial-fact)
                                                                                                                                                1 mamifero-1: f-1
                                                                                                                                                          (es-mamifero)
                                                                                        (tiene-pelos)
                                                                                                                                                                                                                  cebra: f-5,f-3
                                                                                                                                                                                                                            (es-cebra)
                                facts)
                                            rules)
                                                                                                    Activation 0
                                                                                                                                                                      ==> Activation 0
                                                                                                                                                                                                        ==> Activation 0
                                                                  (reset)
                                                       (watch
                                  (watch
                                            (watch
                                                                                                                                   (run)
                                                                                                                                                                                                                   ന
                                                                             f-0
                                                                                                              f-2
                                                                                                                        f-3
                                                                                                                                                                                                                             J-6
                                                                                         f-1
          *****
                                                                                                                                                                                           ==> f-5
                                                                                                                                                          ==> f-4
                                                                                                                                     CLIPS>
CLIPS>
                                 CLIPS>
                                                                 CLIPS>
                                            CLIPS>
                                                       CLIPS>
                                                                                                                                                                                 FIRE
                                                                                                                                                FIRE
                                                                                                                           ^||
                                                                                                    \||
                                                                               ^==
```

Base de conocimiento CLIPS

Tabla de seguimiento:

Нес	Hechos	田	$\mathbb{E} \parallel Agenda$	
f0	(initial-fact)	0		
f1	(tiene-pelos)	0	mamifero-1: f1	$\overline{}$
£2	(tiene-pezugnas)	0		
£3	f3 (tiene-rayas-negras)	0		
£4	(es-mamifero)	Н	ungulado-1: f4,f2	2
£2	(es-ungulado)	2	cebra: f5,f3	3
) 9J	(es-cebra)			

CLIPS en Cuadrados mágicos

Problema de cuadrados mágicos

• Enunciado

• Sesión

```
(run)
       Solucion 1:
CLIPS>
              492
                     357
                            816
```

• Programa cuadrado-magico.clp:

```
4
              \widehat{\otimes}
        (numero
              (numero
      33
                            .?z) 15))
              (numero
       (numero
                    ()
      6 3
                     (solucion
                                   (deffunction suma-15
        (numero
              (numero
datos
      1
                    6
              2
                      (numero
(deffacts
        (numero
              (numero
```

ух ?y

+) =)

S en mágicos Suadrados

-cuadrado

busca

(defrule

```
?i))
                                                                                             (g)
                                                                                                                 Sh?
                                                                                            .
ص
                                                   S
S
                                         <u>ر</u>
                                                                                          k:(suma-15 ?a ?d ?g)k:(suma-15 ?c '
?hk~?ek~?ak~?ik~?bk~?ck~?fk~?dk~?g
                                                                                                                ე
გე
                                                  ?f&~?e&~?a&~?i&~?b&~?c&:(suma-15
                                                                                                                                     е
Э
                                                                                                                                              ?i)))
                                         ر
م
                    ?1)
                                                                                                                ?h)&:(suma-15
                                                                                ?g&~?e&~?a&~?i&~?b&~?c&~?f&~?d
                                                                                                                                      у
С
                                                                                                                                                                                                                                                       =
:-
=
                                        ?c&~?e&~?a&~?i&~?b&:(suma-15
                                                                                                                                               ?h
                    .
ص
                                                                                                                                     S
C
                                                            ?d&~?e&~?a&~?i&~?b&~?c&~?f
                                                                                                                                                                                        ξį
                                                                                                                                                                                                                                                       \overrightarrow{1}
                                                                                                                                                                                                                                                                                     crlf)
                                                                                                                                                                                                                                                                           crlf)
                                                                                                                                                                                                                                                                 crlf)
                                                                                                                                              ე
გე
                                                                                                                                     g;
                    ر
م
                                                                                                                                                                                                                                                      ?n
                                                                       &:(suma-15 ?d ?e ?f))
                                                                                                                                     ج
2
                                                                                                                                               ξż
                                                                                                                                                                                                                                           1)))
                   ?i&~?e&~?a&:(suma-15
                                                                                                                                                                                                                                                      +
                                                                                                                                                                               ?
a
                                                                                                                                                                                        уg
                                                                                                                                                                                                 ?g
?n)
                                                                                                                                                                                                                                                                ^{\circ}
                                                                                                                                                                                                                                                                           ¿f
                                                                                                                                      (escribe-solucion
                                                                                                                .
Э
                                                                                                                                                                                                                                             ?n
                                                                                                                                                                                                                                                                 <u>م</u>خ
                                                                                                                                                                                                                                                                           о
Э
                                                                                                                                                                                                                                                      =
                                                                                                                                                                               (escribe-solucion
                                                                                                                                                                     escribe-solucion
                              ?b&~?e&~?a&~?i)
                                                                                                                                                                                                              (solucion
                                                                                                                Sp
Sp
                                                                                                                                                                                                                                  (solucion)
                                                                                                                                                                                                                                                      "Solucion
                                                                                                                                                                                                                                            (solucion (+
                                                                                                                                                                                                                                                                 ر
م
                                                                                                                                                                                                                                                                                    ე
გე
                                                                                                                                                                                                                                                                           Sd.
                                                                                                                 &:(suma-15
                                                                                                                                                                                                                                                                                                crlf))
         (ag_je)
                                                                                                                                                                                                                                                                 =
                                                                                                                                                                                                               \
V
                                                                                                                                                                                                                                                       4
                                                                                                                                                                                                                                  ¿Ę
                                                                                                                                                                                                                                                                 ب
Se)
                                                                                                                                                                                                              Solucion
                                                                                                                                                                                                                                                      printout
                                                                                                                                                                                                                                                                printout
                                                                                                                                                                                                                                                                           printout
                                                                                                                                                                                                                                                                                     printout
                                                                                                                                                                                                                                                                                               (printout
                                                                                                                                                                                                                                   (retract
                                                                                                                                                                                                                                             (assert
                                                                                                                                     (assert
                                                                                                       (numero
  numero
           numero
                      (numero
                                (numero
                                          numero
                                                    numero
                                                               (numero
                                                                                   (numero
                                                                                                                                                                     (defrule
                                                                                                                                                                               \
V
                                                                                                                                                                               ?£
```

OTTER Razonamiento con

• Base de conocimiento

- Base de reglas:
- el animal tiene pelos es mamífero. \mathbf{S} R1:
- da leche es mamífero. el animal \mathbf{S} R2: *
- es un mamífero y tiene pezuñas Si el animal es ungulado R3:
- Si el animal es un mamífero y rumia es ungulado. R4: *
- Si el animal es un ungulado y tiene cuello largo es una jirafa. R5: *
- es un ungulado y tiene rayas negras es una cebra. Si el animal * R6:
- Base de hechos:
- * H1: El animal tiene pelos.
- * H2: El animal tiene pezuñas.
- animal tiene rayas negras. Ξ H3:
- Consecuencia
- * El animal es una cebra.

Inteligencia artificial, lógicamente

Razonamiento con OTTER

• Solución con OTTER

• Representación en OTTER (animales.in)

```
es_ungulado.
                                  es_jirafa
                                             es_cebra
                       ^
           es_mamifero.
                      (tiene_pezuñas | rumia)
                                  ^ ^
                                  tiene_cuello_largo
                                             tiene_rayas_negras
          da_leche ->
formula_list(sos)
                       ജ
                                 ജ
                                            ജ
           tiene_pelos
                      es_mamifero
                                es_ungulado
                                            es_ungulado
```

tiene_rayas_negras ജ tiene_pezuñas ജ tiene_pelos

```
-es_cebra.
end_of_list.
```

set(binary_res).

Razonamiento con OTTER

• Solución con OTTER

```
es_jirafa
                                                                                                           es_cebra.
                                                                   es_ungulado
                                                                                | es_ungulado
                                                                                             -tiene_cuello_largo
                                                                                                           -tiene_rayas_negras
                                                                    -tiene_pezuñas |
                                                                                                                                                                                                                         set(unit_deletion)
                                       es_mamifero
                                                                                                                                                                                                                                                   end of input processing
                                                   -da_leche | es_mamifero
                                                                                 -rumia
               to:
                                                                                                                                                                                                          set(factor)
             sos clausifies
                                                                                                                                                     tiene_rayas_negras
<animales.in
                                        -tiene_pelos |
                                                                                                                                        tiene_pezuñas
                                                                   -es_mamifero
                                                                                 -es_mamifero
                                                                                                            -es_ungulado
                                                                                              -es_ungulado
                                                                                                                         tiene_pelos.
                                                                                                                                                                   -es_cebra
                                                                                                                                                                                             set(binary_res)
                                                                                                                                                                                                                         dependent:
                                                                                                                                                                                                           dependent:
                                                                                                                                                                               end_of_list.
                         list(sos).
              <u>^</u>
 otter
                                                                                                                                                                   10
                                                                 \mathfrak{C}
                                                                                             Ω
                                                                                                           9
                                                                                                                                      \infty
```

OTTER Razonamiento con

```
es_mamifero.
                                                                                                                                                                es_mamifero
                                                                                                                                                                                                                                                                           \( \int \)
                                                                                                                                                                                                                                                                                                                                           [binary, 6.1, 12.1, unit_del, 9, 10]
                                                                                                        ren clause #5: (wt=2) 1 [] -tiene_pelos | es_mamif
KEPT (pick-wt=1): 11 [binary,1.1,7.1] es_mamifero
                                                                                                                                                                                                                                                                           [binary, 3.1, 11.1, unit_del
                                                                                                                                                                                                                    [binary, 3.1, 11.1, unit_del,8]
                                                                                                                                                                                                                                                                                                                      -tiene_rayas_negras
                                                               [] tiene_rayas_negras
                                                                                                                                                                                                -tiene_pezuñas
                                                                                                                                                               [binary, 1.1,7.1]
                                                                                                                                                                                                            es_ungulado
                                          tiene_pezuñas
                                                                                                                                                                                                                                                                                                           -es_ungulado
                                                                                                                                                                                     -es_mamifero
                     tiene_pelos
                                                                                     -es_cebra
                                                                                                                                                                                                                                                                                                                                 es_cebra
                                                                                                                                                                                                                                                                                     es_ungulado
                                                                                                                                                                                                                                 es_ungulado.
 10
                                         search
                                                                                                                                                                                                                                                                           12
                                                                                                                                                                1
                                                                                                                                                                                      ന
                                                                                                                                                                                                                                                                                                            9
                    <u>~</u>
                                          \infty
                                                               တ
                                         (wt=1)
                                                                                                                                                                                                                     12
                                                                                                                                                                                                                                                                                                                                           13
                                                                                    (wt=1)
                                                                                                                                                                                                                                                                           (wt=1)
                    (wt=1)
                                                               (wt=1)
                                                                                                                                                               (wt=1)
                                                                                                                                                                                     (wt=3)
                                                                                                                                                                                                                                                                                                           (wt=3)
of
                                                                                                                                                                                                                     (pick-wt=1):
                                                                                                                                                                                                                                                                                                                                           ** KEPT (pick-wt=0):
                                                                                                                              2 +
                                                                                                                                                                                                                                           4.
                                                                                                                                                                                                                                                     ო
start
                                                                                                                                                                                     : 2#
                                                                                                                                                                                                                                                                          given clause #8:
                    #1:
                                                                                                         given clause #5:
                                                                                                                                                                clause #6:
                                                                                                                                                                                                                                                                                                           clause #9:
                                         #2:
                                                               #3:
                                                                                     clause #4:
                                                                                                                                 samsqns
                                                                                                                                                                                                                                                       subsumes
                                                                                                                                           subsumes
                                                                                                                                                                                                                                            subsumes
                                                                clause
                    clause
                                                                                                                                                                                     clause
                                          clause
                                                                                                                                           back
                                                                                                                                                                                                                                                      back
                                                                                                                                back
                                                                                                                                                                                                                                            back
                                                                                                                                                                                                                     ** KEPT
                                                                                                                                                               given
                   given
                                                                                    given
                                                                                                                                                                                                                                                                                                          given
                                                              given
                                          given
                                                                                                                                                                                     given
                                                                                                                                                                                                                                           12
```

Razonamiento con OTTER

 \sim J. S proof of Level ς. <u>ը</u> Ծ proof Length of

es_mamifero -tiene_pelos

PROOF

- es_ungulado. -tiene_pezuñas -es_mamifero
- es_cebra -tiene_rayas_negras -es_ungulado 0 8 4
 - tiene_pelos.
- tiene_pezuñas.
- tiene_rayas_negras
 - -es_cebra 10
- es_mamifero 1. [binary, 1.1, 7
- es_ungulado. 11 12 13
 - \$F [binary, 3.1, 11.1, unit_del, 8] es [binary, 6.1, 12.1, unit_del, 9, 10]
- proof of end

conocimiento Representación del

- Los caballos son más rápidos que los perros. Algunos galgos son más rápidos que los conejos. Lucero es un caballo y Orejón es un conejo. Por tanto, Lucero • Demostrar la validez del siguiente argumento: es más rápido que Orejón.
- Nuevos problemas en la decisión de la validez de una argumentación:
- Representación del conocimiento
- Explicitación del conocimiento implícito
- Lenguaje del problema:

```
dne
                                                          rápido
                         caballo
                                  conejo
                                                  perro
                                         galgo
Significado:
                                                           más
                                                  un
                          un
                                  un
                                          un
                 Orejón
         Lucero
                          e
S
                                  e
S
                                          e
S
                                                   es
B
                                                           e
S
                          ×
                                          ×
                                                  ×
                                                         MAS_RAPIDO(x,y)
                        CABALLO(x)
Símbolos:
                                CONEJO(x)
                                         GALGO(x)
                                                 PERRO(x)
                 Orejon
          Lucero
```

 \triangleright

conocimiento

-> MAS_RAPIDO(x,y)) (all y (CONEJO(y) \rightarrow MAS_RAPIDO(x,y)))) conejos que los perros. -CABALLO(x)| -PERRO(y)|MAS_RAPIDO(x,y) galgos son más rápidos que los (GALGO(x) & Orejón son más rápidos y (CABALLO(x) & PERRO(y)dne -MAS_RAPIDO(Lucero,Orejon) es más rápido Representación del caballo conejo. • Entrada ej-3a1.in formula_list(sos). CABALLO(Lucero) set(binary_res) GALGO(\$c1) caballos % Orejón es un es un CONEJO(Orejon) end_of_list. % Lucero no list(sos). % Algunos % Lucero exists x • Salida % Los all x \sim

-CONEJO(y)|MAS_RAPIDO(\$c1,y)

 \mathfrak{C}

CABALLO(Lucero).

CONEJO(Orejon).

Ω

-MAS_RAPIDO(Lucero,Orejon)

of_list.

Representación del conocimiento

```
given clause #1: (wt=2) 2 [] GALGO(\$c1).
given clause #2: (wt=2) 4 [] CABALLO(Lucero).
given clause #3: (wt=2) 5 [] CONEJO(Orejon).
given clause #4: (wt=3) 6 [] -MAS_RAPIDO(Lucero, Orejon).
given clause #5: (wt=5) 3 [] -CONEJO(y) | MAS_RAPIDO($c1,y).
** KEPT (pick-wt=3): 7 [binary, 3.1, 5.1] MAS_RAPIDO($c1,Orejon).
given clause #6: (wt=3) 7 [binary,3.1,5.1] MAS_RAPIDO($c1,Orejon).
given clause #7: (wt=7) 1 [] -CABALLO(x) | -PERRO(y) | MAS_RAPIDO(x,y).
** KEPT (pick-wt=5): 8 [binary,1.1,4.1] -PERRO(x) | MAS_RAPIDO(Lucero,x).
** KEPT (pick-wt=2): 9 [binary, 1.3, 6.1, unit_del, 4] -PERRO(Orejon).
given clause #8: (wt=2) 9 [binary, 1.3, 6.1, unit_del, 4] -PERRO(Orejon).
given clause #9: (wt=5) 8 [binary, 1.1, 4.1] -PERRO(x) \mid MAS_RAPIDO(Lucero, x).
Search stopped because sos empty.
```

Representación del conocimiento

• Búsqueda de modelos con MACE

mace -n2 -p -m1 <ej-3a1.in

• Modelo encontrado

seconds: at 0.03 #1 ============== Model

Lucero:

\$c1: 0 0 Orejon:

PERR0 CABALLO

0

0 GALGO

CONEJO

0

Η

Щ ſΤ

ഥ

 \vdash

H H

MAS_RAPIDO

0

end_of_model

• Entrada ej-3a2.in

include('ej-03a1.in').

% Los galgos son perros all x (GALGO(x) -> PERRO(x)). formula_list(sos). end_of_list.

set(binary_res)

• Salida

empty. S0S Search stopped because

Representación del conocimiento

• Búsqueda de modelos con MACE

mace -n2 -p -m1 <ej-3a2.in

• Modelo encontrado

\$c1:0 \vdash Orejon: Lucero: 1

GALGO PERRO CABALLO

CONEJO

Щ 0 ഥ 0

ഥ

MAS_RAPIDO

0

• Entrada ej-3a3. in

include('ej-03a2.in').

formula_list(sos).

N, e y es más rápido que % Si x es más rápido que y % entonces x es más rápido

% entonces x es más rápido que z. all x y z (MAS_RAPIDO(x,y) & MAS_RAPIDO(y,z) \rightarrow MAS_RAPIDO(x,z)).

end_of_list.

set(binary_res)

conocimiento del Representación

• Prueba

```
MAS_RAPIDO(Lucero,Orejon)
-PERRO(y)|MAS_RAPIDO(x,y)
                                                                                                                                                                                                                              | MAS_RAPIDO(Lucero,x)
                                                                                                                                                                                                   MAS_RAPIDO(Lucero, $c1)
-MAS_RAPIDO($c1, x)
                                                                                                                                                             MAS_RAPIDO($c1,Orejon)
                                                                                                                                                                                       | MAS_RAPIDO(Lucero,x)
                                                                             -MAS_RAPIDO(Lucero,Orejon)
                                                                                                                                               PERRO($c1)
                                                                                                                                                                         -PERRO(x)
                                                                                                                     -MAS_RAPIDO(y,z)
                                                                                                                                   MAS_RAPIDO(x,z).
                                                                                           -GALGO(x)|PERRO(x)
                                       MAS_RAPIDO($c1
                                                                                                       -MAS_RAPIDO(x,y)
                                                                CONEJO(Orejon).
                                                                                                                                                                                                                                           [binary,19.1,10.1]
[binary,36.1,6.1]
                                                    CABALLO (Lucero)
                                                                                                                                                                                                    [binary,11.1,9.1]
[binary,8.1,16.1]
                                                                                                                                               [binary, 7.1, 2.1]
                                                                                                                                                            [binary, 3.1, 5.1]
                                                                                                                                                                         [binary, 1.1, 4.1]
-CABALLO(x)
            GALGO($c1).
                         -CONEJO(y)
                                                                                                                                                            10
                                                                                                                                                                                                    16
                                                                                                                                                                                                                                            36
                                                                                                                                                                                                                                                        37
 7 2 8
                                                     4 4 9 7 8
                                                                                                                                                9
                                                                                                                                                                         11
```

• Estadísticas

18	43	28	ned 12	0
given	generated	kept	forward subsumed	back subsumed
clauses	clauses	clauses	clauses	clauses

Demostración automática de teoremas

- Problema elemental de grupos
- Teorema: $Sea\ G\ un\ grupo\ y\ e\ su\ elemento\ neutro.\ Si,$ para todo x de G, $x^2 = e$, entonces G es conmutativo.
- Formalización
- Axiomas de grupo:

$$egin{align*} (orall x) [e.x = x] \ (orall x) [x.e = x] \ (orall x) [x.x^{-1} = e] \ (orall x) [x^{-1}.x = e] \ (orall x) (orall y) (orall z) [(x.y).z = x.(y.z)] \ Hind tesis \end{aligned}$$

Hipótesis *

$$(\forall x)[x.x=e]$$

Conclusión *

$$[\forall x)(\forall y)[x.y=y.x]$$

Demostración automática de teoremas

• Entrada grupos-1a.in

```
Reflexividad
                               7 2
                                          8 4 5
                              Ax.
                                    Ax.
                                                 Ax.
                                           Ax.
                                                       Ax.
                        ××××××
                                                       (z)
                                                        *
                                                        ·
*
                                                        ×
                                                                                       .
ਕ
op(400, xfy, op(300, yf, ^
                  list(usable).
                                                                                x * x = e.

a * b != b *
                                                             end_of_list.
                                                                                            end_of_list.
                                                       N
*
                                                 .
0
                                            .
U
×
*
                                                                         list(sos).
                               e * × = ×.
                                     × * e = ×
                                                       (x * y)
                                                 ,
*
*
                         .
⋈
                                          K
```

set(para_into). set(para_from)

J.A. Alonso

Demostración automática de teoremas

• Uso de OTTER

otter <grupos-1a.in

• Prueba

- e*x=x.
- x*e=x.
- (x*y)*z=x*y*z9
 - x*x=e.
- a*b!=b*a. ∞
- x*y*y=x. 7.1.2,3.1.1.2] 7.1.2,2.1.1.1] [para_from,7. [para_from,7. 19 20
- (x*x)*y=y
 - (x*y)*y=x[para_into,19.1.1,6.1.2] 31
 - x*x*y=y. [para_into,20.1.1,6.1.1] 167
 - [para_from, 20.1.1,6.1.1] 170
- (x*y)*x=y. 1.1] x=y*y*x., 31.1.1] (x*y [para_into,167.1.1.2 496
 - x*y=y*x. [para_into,496.1.1.1,170.1.2] [binary,755.1,8.1] \$F. 755
 - 756
- Estadísticas

	$\mathbf{Seg}.$	0.26
	atrás	45
_	Sub.	4
	adel.	1994
_	Sub .	49
	Reten.	747
3	Gener.	5741
	Analiz.	7.5

J.A. Alonso

teoremas Demostración automática de

Modo autónomo

• Entrada ej-7d.in

œ

II

× *

Ax.

$$x * x^{\circ} = e.$$
 (x * y) * z = x * (y * z). %

28459

Ax. Ax. Ax.

$$a * b != b * a$$
.

• Prueba

$$5,5 [] x*e=x.$$

11 []
$$(x*y)*z=x*y*z$$

• Estadísticas

Seg.	0.18
. atrás	8
Sub.	
adel.	87
Sub.	8
Reten.	20
Gener.	06
Analiz.	12

[[]binary,38.1,2

Problema de las jarras

• Enunciado:

- Se tienen dos jarras, una de 4 litros de capacidad y otra de 3.
- Ninguna de ellas tiene marcas de medición.
- Se tiene una bomba que permite llenar las jarras de agua.
- Averiguar cómo se puede lograr tener exactamente 2 litros de agua en la jarra de 4 litros de capacidad.
- Entrada jarras.in

```
set(prolog_style_variables).
set(input_sequent).
set(output_sequent).
make_evaluable(_+_, $SUM(_,_)).
make_evaluable(_-_, $DIFF(_,_)).
make_evaluable(_<=_, $LE(_,_)).
make_evaluable(_>_, $GT(_,_)).
set(hyper_res).
```

jarras lasde Problema

list(usable)

```
(3-X)
                                       6
                                                                        inicial
                         e(0,Y+X)
            e(X,4)
e(X,0)
     e(0,Y)
                                       e(X+Y
                                e(X
                                                                        Estado
       \uparrow \uparrow
                  \hat{}
                                      \omega
                                4
                                       II
V
                                                                       % %
                                             X+Y
                          X+Y
                                X+Y
                                       X+Y
                                                    end_of_list
                                                                       -> e(0,0).
                                                                 list(sos)
                                             e(X,Y),
e(X,Y)
      e(X,Y)
                         e(X,Y)
                                e(X,Y)
                                       e(X,Y)
             e(X,Y)
                  e(X,Y)
```

Prueba

end_of_list

final

Estado

· ^

e(X,2)

```
e(1,0).
                                                                                       e(3,2).
                                                        e(3,1)
                e(X+Y,0)
                                                                                        <u>^</u>
                                                                        \hat{\ }
                       e(3,Y-
                                                                               e(1,4)
                                                                                      ,eval,demod]
                                                       [hyper, 11,8, eval, demod]
[hyper, 13,2] -> e(0,1)
                                                                    ,eval,demod]
                                                e(0,4)
       -> e(X, 4).
                        ^
e(0,Y)
                                                                                               .1,10.1]
               X+Y<=3
                                                                                <u>^</u>
                        e(X,Y), X+Y>3
                                                 ^
                               e(0,0).
                                                                                hyper, 18,3]
                                                                       hyper, 16,7
                                               [hyper, 9, 3]
                                                                                               [binary,22
                                       e(X,2)
      e(X,Y)
               e(X,Y)
                                                                                        hyper,
7 3 5
                      \infty
                               0
                                       10
                                                      13
                                                               16
                                                                       18
                                                                               20
                                                                                       22
                                               11
                                                                                              23
```

Planificación: Problema del mono

Representación:

vale(pos_mono(X),pos_platano(Y),pos_silla(Z),Plan) significa que en el estado obtenido aplicando el Plan (inverso) al estado inicial se verifica que la posición del mono es X, la del plátano es Y y la de la silla es Z

• Entrada mono.in

```
vale(pos_mono(X),pos_platano(Pp),pos_silla(Ps),Plan)
                                                                                                                                                                                                                                                                                                                    vale(pos_mono(X),pos_platano(Pp),pos_silla(X),Plan)
                                                                                                                                                                                                                    vale(pos_mono(Y),pos_platano(Pp),pos_silla(Y),
    [empujar(X,Y)|Plan]).
set(prolog_style_variables)
                                                                                                                                           posicion(X), posicion(Y),
                                           set(output_sequent)
                         set(input_sequent)
                                                                                                                     list(usable).
                                                                                                                                                                                                                                                                                             posicion(Y),
                                                                      set(ur_res)
```

Planificación: Problema del mono

```
-> vale(pos_mono(a),pos_platano(b),pos_silla(c),[]).
vale(pos_mono(P),pos_platano(P),pos_silla(P),Plan)
                                                                                                                                                                                                                                                         coge_platano(Plan) -> resp(inversa(Plan,[]))
                                                                                                                                                                                                                                                                                                                                                                                                                                 = inversa(L1, [X|L2]).
                                      coge_platano([subir|Plan]).
                                                                                                                                                                                                                                                                                                                                             $ans(Plan)
                                                                                                                                                                                                                                                                                                                                                                                                                                -> inversa([X|L1],L2)
                                                                                                                                                                                                                                                                                                                                                                                                            list(demodulators)
                                                                                                                                                                                                                                                                                                                                                                                                                                                    inversa([],L)
                                                                                                                           posicion(a).
                                                                                                                                                                    posicion(c).
                                                                                                                                               posicion(b)
                                                                                                                                                                                                                                                                                                                         list(passive).
resp(Plan) ->
                                                                                                                                                                                                                                                                                                                                                                end_of_list.
                                                            end_of_list.
                                                                                                                                                                                                                                                                              end_of_list.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           end_of_list.
                                                                                                       list(sos).
```

J.A. Alonso

Planificación: Problema del mono

```
vale(pos_mono(a),pos_platano(b),pos_silla(c),[]).
ye_platano(Plan) -> resp(inversa(Plan,[])).
                 vale(pos_mono(X),pos_platano(Pp),pos_silla(Ps),Plan)
                                                                                          vale(pos_mono(X),pos_platano(Pp),pos_silla(X),Plan)
-> vale(pos_mono(Y),pos_platano(Pp),pos_silla(Y),
                               vale(pos_mono(P),pos_platano(P),pos_silla(P),Plan)
-> coge_platano([subir|Plan]).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -> coge_platano([subir,empujar(c,b),andar(a,c)]).
[hyper,33,8,demod,10,10,10]
                                                                                                                                                                                                                                                                                                                                                         -> vale(pos_mono(b),pos_platano(b),pos_silla(b),
        [empujar(c,b),andar(a,c)]).
                                                                                                                                                                                                                                                                                                 inversa([X|L1],L2)=inversa(L1,[X|L2]).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                $ans([andar(a,c),empujar(c,b),subir]).
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -> resp([andar(a,c),empujar(c,b),subir])
[binary,40.1,9.1]
                                                                                                                            [empujar(X,Y)|Plan])
posicion(X), posicion(Y),
                                                                                                                                                                                                                                                                                  $ans(Plan)
                                                                                                                                                                                                                                                                                                                     inversa([],L)=L.
                                                                                                                                                                                                                                                              coge_platano(Plan)
                                                                                                                                                                                                        posicion(b).
                                                                                                                                                                                                                           posicion(c)
                                                                                                                                                                                     posicion(a)
                                                                                                                                                                                                                                                                                resp(Plan) ->
                                                                                                                                                                                                                                                                                                                                     [hyper,7,1,4,6]
                                                                        posicion(Y),
                                                                                                                                                                                                                                                                                                                                                                                              [hyper, 12, 2, 5]
                                                                                                                                                                                                                                                                                                                                                                                                                                                      [hyper, 16,3]
                                                                                                                                                                                                                                                                                                                       ^
                                                                                                                                                                                                                                                                                                   10
                                                                                                                                                                                                                                                                                                                                    12
                                                                                                                                                                                                                                                                                                                                                                                               16
                                                                                                                                                                                                                                                                                                                                                                                                                                                      33
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           40
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               41
                                                                         \sim
                                                                                                                                                   ന
                                                                                                                                                                                        4 5
                                                                                                                                                                                                                                         ⊳ ∞
                                                                                                                                                                                                                                                                               0
```

Problema de Robbins

Axiomas de Huntington (1933):

$$\bullet \ (A) \ (x+y) + z = x + (y+z)$$

• (C)
$$x + y = y + x$$

$$\bullet \ (H) \ n(n(x)+y)+n(n(x)+n(y))=x$$

Axioma de Robbins (1933):

$$\bullet \ (\mathbf{R}) \ \mathbf{n}(\mathbf{n}(\mathbf{n}(\mathbf{y}) + \mathbf{x}) + \mathbf{n}(\mathbf{x} + \mathbf{y})) = \mathbf{x}$$

• Teorema:
$$(A)+(C)+(H) \Longrightarrow (R)$$

• Problema de Robbins:
$$(A)+(C)+(R) \Longrightarrow (H)$$

• Lemas (Winkler, 1990):

$$\bullet \ (\mathbf{A}) + (\mathbf{C}) + (\mathbf{R}) + (\exists \mathbf{c})(\exists \mathbf{d})[\mathbf{c} + \mathbf{d} = \mathbf{c}] \Longrightarrow (\mathbf{H})$$

$$\bullet \ (\mathbf{A}) + (\mathbf{C}) + (\mathbf{R}) + (\exists \mathbf{c})(\exists \mathbf{d})[\mathbf{n}(\mathbf{c} + \mathbf{d}) = \mathbf{n}(\mathbf{c})] \Longrightarrow (\mathbf{H})$$

• Teorema (McCune, 1996):

$$\bullet \ (A) + (C) + (R) \Longrightarrow (\exists c) (\exists d) [c + d = c]$$

• Entrada a EQP

$$n(n(n(y)+x)+n(x+y))=x.$$

 $x+y \mid = x.$
 $n(x+y) \mid = n(x).$

Problema de Robbins

```
2
      -(n(x+y)=n(x)).
3
      Π
                  n(n(x)+y)+n(x+y)=y.
                 n(n(n(x+y)+n(x)+y)+y)=n(x+y).
5
      [3,3]
6
      [3,3]
                  n(n(n(x)+y)+x+y)+y)=n(n(x)+y).
                  n(n(n(x)+y)+x+2y)+n(n(x)+y))=y.
24
      [6.3]
      [24,3]
                  n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+z)+n(y+z))=z.
47
                  n(n(n(x)+y)+n(n(x)+y)+x+2y)+y)=n(n(x)+y).
      [24.3]
48
                  n(n(n(x)+y)+n(n(x)+y)+x+3y)+n(n(x)+y))=y.
     [48,3]
146
    [47.3]
                  n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)=n(y+z).
250
                  n(n(n(n(n(x)+y)+x+2y)+n(n(x)+y)+n(y+z)+z)+z+u)+n(n(y+z)+u))=u.
996
      [250,3]
                  n(n(n(x)+x)+3x)+x)=n(n(x)+x).
16379 [5,996,3]
                 n(n(n(n(x)+x)+3x)+x+y)+n(n(n(x)+x)+y))=y.
16387 [16379,3]
                 n(n(n(x)+x)+4x)+n(n(x)+x))=x.
16388 [16379,3]
16393 [16388,3]
                 n(n(n(x)+x)+n(n(x)+x)+4x)+x)=n(n(x)+x).
16426 [16393,3]
                  n(n(n(n(x)+x)+n(n(x)+x)+4x)+x+y)+n(n(n(x)+x)+y))=y.
17547 [146,16387] n(n(n(n(x)+x)+n(n(x)+x)+4x)+n(n(n(x)+x)+3x)+x)+x)
                  =n(n(n(x)+x)+n(n(x)+x)+4x).
17666 [24,16426,17547] n(n(x)+x)+n(n(x)+x)+4x)=n(n(n(x)+x)+3x).
n(c+d) = n(c), c = n(n(x)+x)+3x, d = n(n(x)+x)+x
```

• Grafo

- Representación camino.pl
 - Parámetros

• Ejemplos

```
enlace(1,2). enlace(2,3). enlace(3,4). enlace(3,5). camino(1,2). camino(1,3). camino(1,4). camino(1,5). camino(2,3). camino(2,4). camino(2,5). camino(3,4). camino(3,5).
```

Sesión

```
?- [foil.camino].
?- foil(camino/2).
Uncovered positives: [(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)]
Adding a clause ...
Specializing current clause: camino(A,B).
Covered negatives: [(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),
                    (4.4), (4.5), (5.1), (5.2), (5.3), (5.4), (5.5)
Covered positives: [(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)]
Ganancia: -2.630 Cláusula: camino(A,B):-enlace(C,A)
Ganancia: 5.503 Cláusula: camino(A,B):-enlace(A,C)
         2.897 Cláusula: camino(A,B):-enlace(C,B)
Ganancia:
Ganancia: -1.578 Cláusula: camino(A,B):-enlace(B,C)
Ganancia: 0.000 Cláusula: camino(A,B):-enlace(A,A)
Ganancia: 0.000 Cláusula: camino(A,B):-enlace(B,A)
          5.896 Cláusula: camino(A,B):-enlace(A,B)
Ganancia:
Ganancia:
           0.000 Cláusula: camino(A,B):-enlace(B,B)
```

```
Clause found: camino(A,B) := enlace(A,B).
Uncovered positives: [(1,3),(1,4),(1,5),(2,4),(2,5)]
Adding a clause ...
Specializing current clause: camino(A,B).
Covered negatives: [(1.1),(2.1),(2.2),(3.1),(3.2),(3.3),(4.1),(4.2),(4.3),
                    (4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5)
Covered positives: [(1,3),(1,4),(1,5),(2,4),(2,5)]
Ganancia: -2.034 Cláusula: camino(A,B):-enlace(C,A)
Ganancia: 2.925 Cláusula: camino(A,B):-enlace(A,C)
Ganancia: 1.962 Cláusula: camino(A,B):-enlace(C,B)
Ganancia: -1.017 Cláusula: camino(A,B):-enlace(B,C)
Ganancia: 0.000 Cláusula: camino(A,B):-enlace(A,A)
Ganancia: 0.000 Cláusula: camino(A,B):-enlace(B,A)
          0.000 Cláusula: camino(A,B):-enlace(A,B)
Ganancia:
          0.000 Cláusula: camino(A,B):-enlace(B,B)
Ganancia:
```

```
Specializing current clause: camino(A,B) :- enlace(A,C).
Covered negatives: [(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)]
Covered positives: [(1,3),(1,4),(1,5),(2,4),(2,5)]
Ganancia: 7.427 Cláusula: camino(A,B):-enlace(A,C),camino(C,B)
Ganancia: -1.673 Cláusula: camino(A,B):-enlace(A,C),enlace(D,A)
Ganancia: -2.573 Cláusula: camino(A,B):-enlace(A,C),enlace(A,D)
Ganancia: 2.427 Cláusula: camino(A,B):-enlace(A,C),enlace(D,B)
Ganancia: -1.215 Cláusula: camino(A,B):-enlace(A,C),enlace(B,D)
Ganancia: 3.539 Cláusula: camino(A,B):-enlace(A,C),enlace(C,D)
Ganancia: 4.456 Cláusula: camino(A,B):-enlace(A,C),enlace(C,B)
Clause found: camino(A,B) :- enlace(A,C), camino(C,B).
Found definition:
camino(A,B) := enlace(A,C), camino(C,B).
camino(A,B) := enlace(A,B).
```

Ejemplo	Acción	Autor	Tema	Longitud	Sitio
e1	saltar	conocido	nuevo	largo	casa
e2	leer	desconocido	nuevo	corto	trabajo
e 3	saltar	desconocido	viejo	largo	trabajo
e4	saltar	conocido	viejo	largo	casa
e5	leer	conocido	nuevo	corto	casa
e6	saltar	conocido	viejo	largo	trabajo
e7	saltar	desconocido	viejo	corto	trabajo
e8	leer	desconocido	nuevo	corto	trabajo
e 9	saltar	conocido	viejo	largo	casa
e10	saltar	conocido	nuevo	largo	trabajo
e11	saltar	desconocido	viejo	corto	casa
e12	saltar	conocido	nuevo	largo	trabajo
e13	leer	conocido	viejo	corto	casa
e14	leer	conocido	nuevo	corto	trabajo
e15	leer	conocido	nuevo	corto	casa
e16	leer	conocido	viejo	corto	trabajo
e17	leer	conocido	nuevo	corto	casa
e18	leer	desconocido	nuevo	corto	trabajo

Conocimiento base

```
autor(e1,conocido).autor(e2,desconocido).... autor(e18,desconocido).tema(e1,nuevo).tema(e2,nuevo).... tema(e18, nuevo).longitud(e1,largo).longitud(e2,corto).... longitud(e18,corto).sitio(e1,casa).sitio(e2,trabajo).... sitio(e18, trabajo).
```

• Ejemplos positivos

```
accion(e1,saltar). accion(e2,leer). ... accion(e18,leer).
```

• Restricciones

```
:- hypothesis(Cabeza, Cuerpo,_),
    accion(A,C),
    Cuerpo,
    Cabeza = accion(A,B),
    B \= C.
```

• Sesión

```
> progol softbot
CProgol Version 4.4
...
[Testing for contradictions]
[No contradictions found]
[Generalising accion(e1,saltar).]
[Most specific clause is]
accion(A,saltar) :-
   autor(A,conocido), tema(A,nuevo), longitud(A,largo), sitio(A,casa).
```

```
[Learning accion/2 from positive examples]
[C:-39932,18,10000,0 accion(A,saltar).]
[C:-39936,18,10000,0 \ accion(A,saltar) :- autor(A,conocido).]
[C:-39936,18,10000,0 accion(A,saltar) :- tema(A,nuevo).]
[C:34,28,13,0 accion(A,saltar) :- longitud(A,largo).]
[C:13,12,7,0 accion(A,saltar) :- longitud(A,largo), sitio(A,casa).]
[C:-39936,18,10000,0 accion(A,saltar) :- sitio(A,casa).]
[C:-39940,18,10000,0 \text{ accion}(A,\text{saltar}):- \text{autor}(A,\text{conocido}), \text{tema}(A,\text{nuevo}).]
[C:31,24,11,0 accion(A,saltar) :- autor(A,conocido), longitud(A,largo).]
[C:7,12,7,0 accion(A,saltar) :- autor(A,conocido), longitud(A,largo), sitio(A,casa).]
[C:-39940,18,10000,0 \ accion(A,saltar):- autor(A,conocido), sitio(A,casa).]
[C:25,12,5,0 accion(A,saltar) :- tema(A,nuevo), longitud(A,largo).]
[C:-39940,18,10000,0 \ accion(A,saltar) :- tema(A,nuevo), sitio(A,casa).]
[C:19,12,5,0 accion(A,saltar): - autor(A,conocido), tema(A,nuevo), longitud(A,largo).]
[C:-39944,18,10000,0 accion(A,saltar) :- autor(A,conocido), tema(A,nuevo), sitio(A,casa)
[14 explored search nodes]
f=34,p=28,n=13,h=0
[Result of search is]
accion(A,saltar) :- longitud(A,largo).
```

```
[2 redundant clauses retracted]
accion(A,saltar) :- longitud(A,largo).
accion(A,leer) :- tema(A,nuevo), longitud(A,corto).
accion(A,saltar) :- autor(A,desconocido), tema(A,viejo).
accion(A,leer) :- autor(A,conocido), longitud(A,corto).
[Total number of clauses = 4]

[Time taken 0.090s]
```

- 1	

.61