

Improvement of an SSA simulator and feasibility analysis of space missions

Inés Arauzo Andrés Ángel Porras Hermoso

TABLE OF CONTENTS

01 OVERVIEW

Introduction to the problem

02

CODE REFACTORIZATION

Code structure and improvements

03 PHOTOMETRY

Light reflexion measures

04 ANALYSIS

Results of the project

05 CONCLUSIONS

Summary and future work

OVERVIEW

INTRODUCTION

- Continuous growth of space debris has become a Hazard.
- Role of Space Situational Awareness
 - Space based SSA vs Earth based SSA.
 - Role of SSA simulators.

CODE

Refactor the code following a modular philosophy.

PHOTOMETRY

Get measurements of light emitted by RSO's.

RANGES OF OBSERVATION

Determine visibility windows and ranges of observation

ESTIMATOR PRECISSION

Define UKF precission

02 CODE PACTORIZATION

INITIAL CODE

MAIN PROBLEMS

Difficult to comprehend

- Spaghetti-code philosophy
- Impossible to introduce new features
- Repeated parameters

IMPROVEMENTS

- New structure
- Creation of configuration fileSim_Config.m
 - First approach to an observers constellation (BTH and ATH)
 - Implementation of a photometry module
 - UKF Analysis

PHOTOMETRY

PHOTOMETRY

OBJECTIVE

HYPOTHESIS

DEPENDANCES

- Obtain simulation-based photometric data
- Phong light reflexion model
- RSO has flat faces
- RSO is modeledas a satellite
- RSO shape and materials
- Distance observer-RSO d
- Relative position RSO-Sun-Observer

- Apparent Magnitude m
- Typical cubesat sensor m = 4

ANALYSIS & RESULTS

VISIBILITY SPHERE RADIUS

Dependance between apparent magnitude and d

RSO orbit parameters

<i>a</i> [km]	e [-]	i [0]
6878	0	0,6

VISIBILITY SPHERE RADIUS

Dependance between apparent magnitude and RSO size

RSO orbit parameters

<i>a</i> [km]	e [-]	i [0]
6878	0	0,6

OBSERVATION WINDOWS

 $\theta = r_{RSO}, r_{Sun}$, projected on the equatorial plane

Dependance between apparent magnitude m with and the relative positions Sun-Observer.

RSO orbit parameters

	Start	End
Date	1 Jan 2023	16 June 2023

VISIBILITY TIMES

Dependance between visibility time and distance

- RSO is a 1.2 m satellite
- 5 observers

Average visibility times [s]

Max	Min
678,7	289,4

RMSE error for d = 50 km and t = 200 s with 1 observer.

XY error for d = 50 km and t = 800 s with 1 observer.

RMSE error for d = 50 km and t = 800 s with 1 observer.

RMSE error for d = 50 km and t = 200 s with 2 observers.

RMSE error for d = 50 km and t = 200 s with 1 observer.

CONCLUSIONS

CONCLUSIONS

- Code refactored for improved structure and modularity
- User-friendly script for simulation execution developed
- Photometry module calculates apparent magnitude, providing insights for future work
- Initial observation constellation prototype developed, requiring further refinement
- Sensitivity analysis identifies the number of observers as a critical variable for future improvements

FUTURE WORK

- The implementation of various types of constellations, so that the RSO
- is always within the visibility sphere of at least two satellites
- The expansion of functionalities within the photometry module to allow for diverse modeling of the RSO, for example, using light curves.
- The incorporation of RSO modeling into the estimator. This involves modifying the estimator so that magnitude becomes the input, rather than the position vector.
- The execution of extensive analyses to obtain a diverse population, facilitating more nuanced
- and quantitative results.

REFERENCES

- in Phong Light Pofloction Model "Technical Popart LILICS 00 01/L Solt Lake City, LIT: University
- Ashikmin, M., and P. Shirley. 2000. "An Anisotropic Phong Light Reflection Model." Technical Report UUCS-00-014. Salt Lake City, UT: University
 of Utah.
- 2. C. G. Bassa, O. R. Hainaut, and D. Galadí-Enríquez. 2022. "Analytical Simulations of the Effect of Satellite Constellations on Optical and Near-Infrared Observations." Astronomy & Astrophysics 657 (A75): 19. https://doi.org/10.1051/0004-6361/202142101.
- 3. Centinello, F. J. 2008. "Six Degree of Freedom Estimation with Light Curve Data." Technical Report. Kihei, HI: Air Force Research Laboratory.
- 4. Chessab Mahdi, Mohammed. 2016. "Study the Space Debris Impact in the Early Stages of the Nano-Satellite Design." Artificial Satellites. https://doi.org/10.1515/arsa-2016-0014.
- 5. Clormann, & Klimburg-Witjes, M. 2022. "Troubled Orbits and Earthly Concerns: Space Debris as a Boundary Infrastructure." Science, Technology, & Human Values. https://doi.org/10.1177/01622439211023554.
- 6. G.Marchand, Belinda, and J.Kobel Christopher. 2008. "A Comparison of Satellite Constellations for Continuous Global Coverage." Edited by The Aerospace Corporation. Galveston.
- 7. Jah, M., and R. Madler. 2007. "Satellite Characterization: Angles and Light Curve Data Fusion for Spacecraft State and Parameter Estimation." In Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference. Vol. 49. Wailea, Maui, HI.
- 8. Julier, S. J., and J. K. Uhlmann. 2004. "Unscented Filtering and Nonlinear Estimation." Proceedings of the IEEE 92 (3): 401–22. https://doi.org/10.1109/JPROC.2003.823141.
- 9. Kandepu, R., L. Imsland, and B. A. Foss. 2008. "Constrained State Estimation Using the Unscented Kalman Filter." In 2008 16th Mediterranean Conference on Control and Automation, 1453–58. IEEE.
- 10. Lang, Thomas J., and William S. Adams. 1998. "A Comparison of Satellite Constellations for Continuous Global Coverage." Edited by Jozef C. van der Ha. Dordrecht: Springer Netherlands.
- 11. LaViola, J. J. 2003. "A Comparison of Unscented and Extended Kalman Filtering for Estimating Quaternion Motion." In Proceedings of the 2003 American Control Conference, 2003., 3:2435–2440 vol.3. https://doi.org/10.1109/ACC.2003.1243440.
- 12. Linares, Richard, Moriba K. Jah, John L. Crassidis, Fred A. Leve, and Tom Kelecy. 2014. "Astrometric and Photometric Data Fusion for Inactive Space Object Mass and Area Estimation." Acta Astronautica 99: 1–15. https://doi.org/10.1016/j.actaastro.2013.10.018.
- 13. Schildknecht, T. 2007. "Optical Surveys for Space Debris." Astron. Astrophys. Rev. 14 (1): 41–111.

QUESTIONS?

APPENDIX

+

A1. SIMULATOR

 Newton Equation propagated with RK4

$$egin{cases} \dot{x} \ \dot{y} \ \dot{z} \ \ddot{x} \ \ddot{y} \ \end{cases} = egin{cases} \dot{m{r}} \ -rac{\mu}{r^3}m{r} + a_p \ \end{cases}.$$

$$X_{n+1} = X_n + \frac{\Delta t}{6} (k_1 + 2k_2 + 2k_3 + k_4),$$

$$t_{n+1} = t_n + \Delta t, \quad , with n = 0, 1, 2, 3...,$$

$$k_1 = f(t_n, X_n),$$

$$k_2 = f\left(t_n + \frac{\Delta t}{2}, X_n + \Delta t \frac{k_1}{2}\right),$$

$$k_3 = f\left(t_n + \frac{\Delta t}{2}, X_n + \Delta t \frac{k_2}{2}\right),$$

$$k_4 = f(t_n + \Delta t, y_n + \Delta t k_3).$$

A2. UKF FORMULATION

$$\mathbf{x}_{k+1} = f(\mathbf{x}_k, \mathbf{v}_k)$$

 $\mathbf{y}_{k+1} = h(\mathbf{x}_{k+1}, u_k)$

Assuming a known (or accurately estimated) covariance matrix of the state variables (Pk) the sigma points are:

$$\chi_k^0 = x_k$$

$$\chi_k^i = \mathbf{x}_k + \left(\sqrt{(n+\lambda)\mathbf{P}_k}\right)_i$$

$$\chi_k^i = x_k + \left(\sqrt{(n+\lambda)\mathbf{P}_k}\right)_{i-1}$$

And the weights associated to these points

$$W^{0,m}=\frac{\lambda}{\lambda+n}$$

$$W^{0,c}=\frac{\lambda}{\lambda+n}+1-\alpha^2+\beta \qquad ,$$

$$W^{i,m}=W^{i,c}=\frac{\lambda}{2(\lambda+n)}\quad i=1...2n$$

Then, the predicted state and covariance matrix are:

$$\chi_{k}^{o} = x_{k}
\chi_{k}^{i} = x_{k} + \left(\sqrt{(n+\lambda)\mathbf{P}_{k}}\right)_{i}
\chi_{k}^{i} = x_{k} + \left(\sqrt{(n+\lambda)\mathbf{P}_{k}}\right)_{i-n}$$

$$\mathbf{P}_{k+1}^{-} = \sum_{i=0}^{2n} W_{i}^{c} \left(\chi_{k+1}^{-,i} - \mathbf{x}_{k+1}^{-}\right) \left(\chi_{k+1}^{-,i} - \mathbf{x}_{k+1}^{-}\right)^{T} + \mathbf{Q}$$

A2. UKF FORMULATION

This first prediction step keeps estimating the estate variables until there is a new experimental (or simulated) measurement available, starting the correction step. When this happens, the expected state is calculated as follows

$$Y_{k+1}^{-,i} = h(\chi_{k+1}^{-,i})$$
$$y_{k+1}^{-} = \sum_{i=0}^{2n} W_i^m h(\chi_{k+1}^{-,i}).$$

Having the expected measurement, the corrected state can be calculated as:

$$\begin{split} \mathbf{P}_{yy} &= \sum_{i=0}^{2n} W_i^c \left(Y_{k+1}^{-,i} - \boldsymbol{y}_{k+1}^{-} \right) \left(Y_{k+1}^{-,i} - \boldsymbol{y}_{k+1}^{-} \right)^\mathrm{T} + \mathbf{R} \\ \mathbf{P}_{xy} &= \sum_{i=0}^{2n} W_i^c \left(\chi_k^i - \boldsymbol{x}_{k+1}^{-} \right) \left(Y_{k+1}^{-,i} - \boldsymbol{y}_{k+1}^{-} \right)^\mathrm{T} \\ K &= \mathbf{P}_{xy} \mathbf{P}_{yy}^{-1} \\ x_{k+1} &= x_{k+1}^- + K(y_{k+1} - y_{k+1}^-) \\ \mathbf{P}_{k+1} &= \mathbf{P}_{k+1}^- - K \mathbf{P}_{yy} K^\mathrm{T}. \\ \lambda &= \alpha^2 (n + \kappa) - n, \\ \text{with } \alpha \approx 10^{-3}, \kappa \approx 0, \ \beta = 2 \end{split}$$

A3. M.APP. CALCULATION

Vector from the observer to the RSO

$$d = r_{RSO} - r_{obs}$$

Decompose the BDRF (Phong reflexión model

$$\rho_{tot}(i) = \rho_{spec}(i) + \rho_{diff}(i) \quad i = 1...n_c,$$

where:

$$\rho_{\text{spec}}(i) = C_{\text{spec}} \frac{(\mathbf{u_{obs}^{I} \cdot u_{spec}^{I}})}{(\mathbf{u_{sun}^{I} \cdot u_{n}^{I}})},$$

$$\rho_{diff}(i) = \frac{C_{diff}}{\pi}.$$

The fraction of (visible) light reaching the RSO is:

$$F_{\text{sun}}(i) = \Phi_{\text{sun,vis}} \rho_{\text{total}}(i) (\mathbf{u}_n^I(i) \cdot \mathbf{u}_{\text{sun}}^I),$$

Only a fraction of the light reflected by the RSO is visible to the observer:

$$F_{\text{obs}}(i) = \frac{F_{\text{sun}}(i)\mathcal{A}(i)(\mathbf{u}_n^I(i) \cdot \mathbf{u}_{\text{obs}}^I)}{\|\mathbf{d}^I\|^2}.$$

Finally, the apparent magnitude is given by:

$$m_{\rm app} = -26.7 - 2.5 \log_{10} \left| \sum_{i=1}^{N_F} \frac{F_{\rm obs}(i)}{\Phi_{\rm sun, vis}} \right|.$$

Z error for d = 50 km and t = 200 s with 1 observer.

Velocity XY error for d = 50 km and t = 200 s with 1 observer.

Velocity Z error for d = 50 km and t = 200 s with 1 observer.

Z error for d = 50 km and t = 800 s with 1 observer.

Velocity XY error for d = 50 km and t = 800 s with 1 observer.

Velocity Z error for d = 50 km and t = 800 s with 1 observer.

Z error for d = 50 km and t = 200 s with 2 observer.

200

Velocity XY error for d = 50 km and t = 200 s with 2 observer.

Velocity Z error for d = 50 km and t = 200 s with 2 observer.

