Statistics for Machine Learning and Big Data

An Introduction

Part 3: regression

Jeff Abrahamson

7 April 2015

Regression

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

We call x the **explanatory** or **predictor** variable.

We call *y* the **response** variable.

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

Problem: We have a set of points $\{(x_i, y_i)\}$. Given a new x value, we'd like to predict \hat{y} .

Linear model: We'll assume there exists a linear relationship $y = \beta_0 + \beta_1 x$ that offers a good approximation to the data.

What's left over.

data = fit + residual

What's left over.

$$y_i = \hat{y}_i + e_i$$

What's left over.

What's left over.

What's left over.

Goal: small residuals.

$$\sum \mid e_i \mid$$

What's left over.

Goal: small residuals.

$$\sum e_i^2$$

Categorical regression

High leverage points fall far from the regression line.

Influential points make their leverage known.

Don't ignore outliers.

Population correlation.

$$\rho_{X,Y} = \mathbf{Corr}(X,Y) = \frac{\mathbf{Cov}(X,Y)}{\sigma_X \sigma_Y} = \frac{\mathbf{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

Sample correlation.

$$r_{x,y} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_x} \right) \left(\frac{y_i - \overline{y}}{s_y} \right)$$

Coefficient of determination

$$r^2 = \frac{\mathbf{Var} e_i}{\mathbf{Var} y_i}$$

Anscombe's Quartet

Anscombe's Quartet

http://en.wikipedia.org/wiki/File:

Correlation does not imply causation

https://xkcd.com/552/

Correlation does not imply causation

Tufte:

"Empirically observed covariation is a necessary but not sufficient condition for causality."

http://en.wikipedia.org/wiki/Correlation_does_not_imply_
causation

Correlation does not imply causation

Tufte:

"Correlation is not causation but it sure is a hint."

http://en.wikipedia.org/wiki/Correlation_does_not_imply_
causation

Code lab: linear regression

For each data set:

Tasks:

- Visualise the data
- Compute mean, variance, standard deviation, correlation
- Compute linear regression and visualise
- Compute residuals and visualise
- · Discuss what the data tells you

Linear regression and inference

Remember about inference?

- Standard error
- p values

Multiple regression

One response \hat{y} but many predictors x_1, \ldots, x_n .

$$\hat{\mathbf{y}} = \beta_0 + \beta_1 \mathbf{x}_1 + \dots + \beta_n \mathbf{x}_n$$

Logistic regression

Also: logit regression, logit model

Dependent variable (y) is binary.

Logistic regression

Logistic regression

Note that f(-x) = 1 - f(x).

And it satisfies this differential equation:

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x)=f(x)\cdot(1-f(x))$$

Integrating,

$$f(x) = \frac{e^x}{e^x + 1} = \frac{1}{1 + e^{-x}}$$

Fitting polynomials

- Under/over-fitting
- Test is not validation

Questions?

purple.com/talk-feedback

Break