RECEIVED 310 820 5270 CENTRAL FAX CENTER

JUL 2 0 2006

AMENDMENTS TO THE CLAIMS

- 1. (Currently Amended) A cryptographic method, including:
 - generating, at a first entity, a first public key M_B , the first entity having a first password P_B -and-the first public key M_B being session specific;
 - receiving, at the first entity, a second public key M_A , the second public key M_A being session specific;
 - generating, at the first entity, a first session key K_B and a first secret S_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being based oncomputed from the second public key M_A , the first public-key M_B to be used at a second entity to derive the first session key, wherein the first session key K_B is independent of the first password P_B ;
 - encrypting, at the first entity, a first random nonce N_B using at least the first password P_B with the first session key K_B or the first secret S_B and the second public key M_A to obtain an a first encrypted random nonceresult;
 - encrypting, at the first entity, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce; transmitting the encrypted random nonce from the first entity to the second entity; receiving a response to the encrypted random nonce; and authenticating through determining whether the response includes a correct modification of the first random nonce N_B.
- (Currently Amended) The method of claim 1 wherein said encrypting the first random nonce N_B includes:
 - generating a-the first secret S_B from at least the-a first password P_B and the first public key M_B ;-and
 - encrypting the first random nonce No using at least the first secret So and the first session key Ko;
 - wherein the first secret SB and the first session key KB are different.

- 3. (Currently Amended) The method of claim 1 wherein <u>authenticating through determining</u> whether the response includes a correct modification and encrypting the first random nonce N_B includes:
 - encrypting the first random nonce N_B using at least the first password P_B and the first session key K_Bchecking whether a received modification of the first random nonce N_B equals a modification of the first random nonce N_B applied by the first entity.
- 4. (Previously Presented) The method of claim 1 wherein said authenticating includes: checking whether a received modification of the first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.
- 5. (Previously Presented) The method of claim 1 wherein generating the first session key K_B includes:

generating a first random number R_B, and

- computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter R_B .
- (Currently Amended) The method of claim 2-1 wherein the first secret S_B is generated using a combining function f_B on at least the a first password P_B and the first public key M_B.
- 7. (Previously Presented) The method of claim 6 wherein the first secret S_B is generated using the combining function f_B on the first password P_B and the second public key M_A and the first public key M_B.
- 8. (Currently Amended) The method of claim 2-1 wherein said generating the first secret S_B includes:

combining the second public key M_A and the first public key M_B with the first password P_B to produce a first result, and hashing the first result with a secure hash.

- 9. (Original) The method of claim 8 wherein the secure hash is a one-way hash function.
- 10. (Original) The method of claim 9 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.
- 11. (Currently Amended) The method of claim 2-1 wherein said generating the first secret S_B includes:
 - combining the first password P_B and at least one of the second public key M_A and the first public key M_B to generate a first combined result, and
 - combining the first combined result and at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate a second combined result.
- (Previously Presented) The method of claim 1 wherein the first random nonce N_B is encrypted using a symmetrical encryption algorithm.
- (Original) The method of claim 12, wherein the symmetrical encryption algorithm is one of the Data Encryption Standard and the block cipher CAST.
- (Currently Amended) The method of claim 2-1 wherein encrypting the first random nonce N_B includes superencrypting the first random nonce N_B.
- 15. (Previously Presented) The method of claim 14, wherein superencrypting the first random nonce N_B includes:
 - encrypting the first random nonce N_B with the first secret S_B to produce the first encrypted result; and
 - encrypting the first encrypted result using the first session key KB.
- 16. (Previously Presented) The method of claim 15 wherein said authenticating includes:

decrypting the response using the first session key K_B to generate a first decrypted result; and

decrypting the first decrypted result using the first secret S_B.

- 17. (Currently Amended) The method of claim 21, wherein the response includes a combination of a second random nonce N_A and a modification of the first random nonce; and wherein the method further includes: extracting the second random nonce N_A from the response;
 - modifying the second random nonce N_A to obtain a modified second random nonce; encrypting the modified second random nonce using the first session key K_B and the first

secret S_B and the second public key M_A -to obtain an encrypted package; and transmitting the encrypted package from the first entity.

- 18. (Previously Presented) The method of claim 17 wherein said encrypting the modified second random nonce includes:
 - generating a string of random bits IB;
 - encrypting a combination of the string of random bits I_B and the modified second random nonce using the first secret S_B to generate a first result; and encrypting the first result using the first session key K_B .
- 19. (Previously Presented) The method of claim 17 wherein the encrypted package is transmitted for authentication of the first entity in opening a two-way communication channel.
- 20. (Currently Amended) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:

generating, at the first computer system, a first public key M_B, the first computer system having a first password P_B and the first public key M_B being session specific; receiving, at the first computer system, a second public key M_A, the second public key M_A being session specific;

- generating, at the first computer system, a first session key K_B and a first secret S_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being based encomputed from the second public key M_A , the first public key M_B to be used at a second computer system to derive the first session key, wherein the first session key K_B is independent of the first password P_B ;
- encrypting, at the first computer system, a first random nonce N_B using at least the first password P_B -with the first session key K_B or the first secret S_B and the second public key M_A -to obtain an a first encrypted random nonceresult:
- encrypting, at the first computer system, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce:
- transmitting the encrypted random nonce from the first computer system to the second computer system; and
- authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce N_B.
- 21. (Currently Amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a computer cryptographic method through a network, the method comprising:
 - generating at the first computer system a first public key M_B, the first computer system having a first password P_B, and the first public key M_B being session specific; generating at the second computer system a second public key M_A, the second computer system having the first password P_B, and the second public key M_A being session

receiving at the first computer system the second public key MA;

specific:

generating at the first computer system a session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being based oncomputed from the second public key M_A ; generating at the first computer system a first random nonce N_B ;

- encrypting at the first computer system the first random nonce N_B using at least the first password P_B with the first session key K_B or the first secret S_B and the second public key M_A to obtain an a first encrypted random nonceresult;
- encrypting at the first computer system the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;
- transmitting the encrypted random nonce and the first public key M_B from the first computer system to the second computer system to establish the session key at the second computer system;
- receiving at the first computer system from the second computer system a response to the encrypted random nonce; and
- authenticating the second computer system at the first computer system through determining whether the response includes a correct modification of the first random nonce N_B .
- 22. (Currently Amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and
 - a storage device coupled to the processor, the storage device to store a user password corresponding to the user identification, and wherein the processor is to perform a method, including:
 - receiving a second public key M_A through the network interface, the second public key M_A being session specific:
 - generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being based on computed from the second public key M_A ;
 - generating a first public key M_B, the first public key M_B being session specific and the first public key M_B to be used at a further computer system coupled to the network to derive the first session key;

generating a first random nonce NB;

- encrypting the first random nonce N_B using with the session key K_B or the first secret S_B at least the user password obtain a first encrypted result;
- encrypting the first encrypted result with the other one of the session key K_B or the first secret S_B and the second public key M_A -to obtain an encrypted random nonce;
- transmitting the encrypted random nonce and the first public key M_B through the network interface;
- authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce.
- 23. (Previously Presented) The computer system of claim 22 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted with the encrypted random nonce for session key exchange.
- 24. (Currently Amended) A cryptographic method, comprising: receiving at a first entity a second public key M_A and an encrypted second random number, the first entity having a first password P_B;
 - generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being based encomputed from the second public key M_A , wherein the first session key K_B is independent of the first password P_B ;
 - decrypting, using at least the <u>a</u> first password P_B and the first session key K_B , to retrieve a second random number N_A from the encrypted second random number;
 - modifying the second random number NA to obtain a modified second random number;
 - encrypting the modified second random number using at least the first password P_B

 and with the first session key K_B or the first secret S_B to obtain a first encrypted result:
 - encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package; and transmitting the encrypted random package from the first entity.

- 25. (Currently Amended) The method of claim 24, wherein said decrypting includes; decrypting the encrypted second random number using the first session key K_B to generate a the first decrypted result; and decrypting the first decrypted result using at least the first password P_B and the second public key M_A.
- 26. (Previously Presented) The method of claim 24 wherein said generating the first session key K_B includes: generating a first random number R_B, and computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B, modulo a parameter β_B.
- 27. (Previously Presented) The method of claim 24 wherein said decrypting further includes: generating at the first entity a first public key M_B; and generating a first secret S_B using a combining function f_B on at least the first password P_B and the first public key M_B.
- 28. (Previously Presented) The method of claim 27 wherein said decrypting includes decrypting the encrypted second random number using at least the first secret S_B and the first session key K_B.
- 29. (Previously Presented) The method of claim 27 wherein said generating the first secret S_B includes:
 combining the first public key M_B with the first password P_B to produce a first result, and hashing the first result with a secure hash.
- (Original) The method of claim 29 wherein the secure hash is a one-way hash function.
- 31. (Original) The method of claim 30 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.

- 32. (Previously Presented) The method of claim 27 wherein said generating the first secret S_B includes:
 - combining the first password P_B and the first public key M_B to generate a first combined result, and
 - combining the first combined result and at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate the first secret S_B .
- 33. (Previously Presented) The method of claim 24, wherein said encrypting the modified second random number includes superencrypting the modified second random number.
- 34. (Previously Presented) The method of claim 24, further including: generating a first random number N_B; and wherein said encrypting the modified second random number includes: encrypting a combination of the first random number N_B and the modified second random number.
- 35. (Previously Presented) The method of claim 34 which further includes: receiving at the first entity a response to the encrypted random package; decrypting the response to obtain a combination of a string of random bits and a modified first random nonce; and retrieving the modified first random nonce from the combination of the string of random bits and the modified first random nonce; determining whether the modified first random nonce was correctly modified from the first random number N_B.
- 36. (Previously Presented) The method of claim 35 wherein said determining whether the modified first random nonce was correctly modified includes: checking whether the modified first random nonce equals a modification of the first random nonce as applied to the first random nonce by the first entity.
- 37. (Previously Presented) The method of claim 35 wherein said determining whether the

modified first random nonce was correctly modified includes:

- checking whether the modified first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.
- 38. (Currently Amended) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:
 - receiving at the first computer system a second public key M_A and an encrypted second random number;
 - generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from based on the second public key M_A ;
 - decrypting, using at least a first password P_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;
 - modifying the second random number NA to obtain a modified second random number;
 - encrypting the modified second random number using with at least the first session key K_B
 or the first secret S_B password P_B to obtain a first encrypted result;
 - encrypting the first encrypted result with the other one of and the first session key K_B or the first secret S_B to obtain an encrypted random package;
 - transmitting the encrypted random package from the first computer system for authentication.
- 39. (Currently Amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a cryptographic method through a network, the method including:
 - receiving, from the second computer system and at the first computer system, a second public key M_A and an encrypted second random number;
 - generating a first session key K_B and a first secret S_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from based on the second public key M_A ;

decrypting, using at least a first password P_B-and the first session key K_B, to retrieve a second random number N_A from the encrypted second random number;

modifying the second random number N_A to obtain a modified second random number; encrypting the modified second random number using at least with the first session key

K_B or the first secret S_B the first password P_B to obtain a first encrypted result;

- encrypting the first encrypted result with the other one of and the first session key K_B or the first secret S_B to obtain an encrypted random package;
- transmitting the encrypted random package from the first computer system to the second computer system.
- 40. (Currently Amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and a storage device coupled to the processor, the storage device to store a user password

associated with the user identification, and wherein the processor is to perform a method, including

generating a first public key MB;

- receiving a second public key M_A and an encrypted second random number through the network interface;
- generating a first session key K_B and a first secret S_B, the session key K_B being different from the first secret S_B, both the session key K_B and the first secret S_B being computed from based on the second public key M_A;
- decrypting, using at least a first password P_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;
- modifying the second random number N_{A} to obtain a modified second random number;

- encrypting the modified second random number with the first session key K_B or the first secret SB using at least the first password PB to obtain a first encrypted result:
- encrypting the first encrypted result with the other one of and the first session key K_B or the first secret S_B, to obtain an encrypted random package; transmitting the encrypted random package through the network interface.
- 41. (Previously Presented) The computer system of claim 40 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted for session key exchange before the encrypted second random number is received.