Домашнее задание №2

Бояркин 43501/3

1.1 Принцип суперпозиции и принцип гомогенности

Принцип суперпозиции заключается в том, что реакция системы на несколько одновременно действующих входных воздействия равна сумме реакций на каждое воздействие в отдельности.

Принцип суперпозиции всегда выполняется, если выполняются следующие два условия:

- При суммировании любых двух входных сигналов соответствующие выходные сигналы суммируются.
- При любом увеличении (уменьшении) входного сигнала без изменения его формы выходной сигнал увеличивается (уменьшается) во столько же раз, также не изменяя своей формы.

Принцип гомогенности линейной системы предполагает выполнение условия масштабируемости, то есть при изменении входного сигнала x в k раз выходной сигнал y линейной САУ изменится соответственно в k раз.

1.2 Свойства прямого и обратного преобразования Лапласа

Свойства прямого и обратного преобразований Лапласа:

Свойство	Прямое преобразование	Обратное преобразование
Линейность	$\alpha f(x) \pm \beta g(x) \Longleftrightarrow \alpha F(p) \pm \beta G(p)$	
Интегрируемость	$\int\limits_{0}^{x}f(t)dt\Longleftrightarrow\frac{F(p)}{p}$ Интегрирование оригинала сводится	$\frac{f(x)}{x} \Longleftrightarrow \int\limits_{p}^{\infty} F(p)dp$
Дифференцируемость	к делению изображения на $f^{(n)}(x) \Longleftrightarrow p^n F(p) - p^{n-1} f'(0) - p^{n-2} f''(0) - \dots - f^{n-1}(0)$ Операция дифференцирования оригинала $f(x)$ заменяется операцией умножения изображения	$F^n(p) \Longleftrightarrow (-1)^n x^n f(x)$
Запаздывание	на p . $f(x-\tau) \Longleftrightarrow e^{-p\tau}F(p)$	
Смещение	$e^{p_0x}f(x) \iff F(p-p_0)$	
Умножение	$F(p)G(p) \Longleftrightarrow \int\limits_0^x f(t)g(x-t)dt$ Комбинация $\int\limits_0^x f(t)g(x-t)dt$ называется сверткой функций $f(x)$ и $g(x)$ и обозначается символом $f(x)*g(x)$. Эта операция также встречается очень часто при решении прикладных задач, и преобразование Лапласа позволяет заменить операцию свертки двух оригиналов операцией умножения их изображений.	

1.3 Взаимосвязь пяти форм

Переход от дифференциальных уравнений к передаточной функции осуществляется следующим образом: в первую очередь сводим нелинейные ДУ к линейным по теореме Тейлора. После этого преобразуем его в операторную форму и получим пропорцию, которая и будет являться передаточной функцией:

$$\sum_{i=0}^{n} a_{i} p^{(i)} \triangle Y = \sum_{j=0}^{m} b_{j} p^{(j)} \triangle U \iff \frac{\triangle Y(p)}{\triangle U(p)} = \frac{\sum_{i=0}^{m} b_{j} p^{(j)}}{\sum_{i=0}^{n} a_{i} p^{(i)}} = W(p)$$

 $\sum_{i=0}^{n} a_i p^{(i)} \triangle Y = \sum_{j=0}^{m} b_j p^{(j)} \triangle U \iff \frac{\triangle Y(p)}{\triangle U(p)} = \frac{\sum_{j=0}^{m} b_j p^{(j)}}{\sum_{i=0}^{n} a_i p^{(i)}} = W(p)$ Получение передаточной функции из уравнения объекта управления осуществляется следующим образом: сводим уравнение Коши в операторную форму, после этого получаем однозначным преобразованием передаточную функцию. Стоит отметить что обратное преобразование неоднозначное и многосложное:

$$\begin{cases} X'(t) = AX(t) + BU(t) \\ Y(t) = CX(t) \\ X(0) = x_0 \end{cases} \iff \begin{cases} pX = AX + BU \\ Y = CX \end{cases} \implies Y = C(Ep - A)BU = W(p)U$$