卵日本国特許庁(JP)

⑩特許出願公開

⑫ 公 開 特 許 公 報 (A)

昭61-5295

@Int_Cl_4

識別記号

庁内整理番号

❸公開 昭和61年(1986)1月11日

G 09 G 3/36 H 04 N 5/66

102

7436-5C 7245-5C

審査請求 未請求 発明の数 1 (全8頁)

②特 願 昭59-126164

29出 顧昭59(1984)6月19日

砂発明者 臼 井

実 東京都西多摩郡羽村町栄町3丁目2番1号 カシオ計算機

株式会社羽村技術センター内

网络明者 小林 三朗

東京都西多摩郡羽村町栄町3丁目2番1号 カシオ計算機

株式会社羽村技術センター内

⑪出 閲 人 カシオ計算機株式会社

東京都新宿区西新宿2丁目6番1号

仍代 理 人 弁理士 鈴江 武彦

外2名

田 448 9

1. 発明の名称

腊圆信号発生回路

2. 特許請求の範囲

3. 発明の詳細な説明

[発明の技術分野]·

本発明は被品テレビ受象機における簡調信号発生回路に関する。

[従来技術とその問題点]

近年、携帯用小型テレビ受像機として、表示部 に液晶表示パネルを使用した液晶テレビ受像機が 実用化されている。また、最近では、カラー被品 パネルを使用した被昌カラーテレビが考えられて いる。カラー被昌表示には種々の方法があるが、 第3図に示すように、信号電極にR(赤)、G (録)、B(青)の原色フィルタ1を配列してカ ∞ラー被品パネル2 を構成し、上記3原色の組合わ せによりカラー表示を行なうようにしたものが一 般的である。また、上記第3回において、3 は走 変 電 権 駆 動 回 路 で 、 n 本 の 走 査 信 号 糠 が カ ラ ー 液 **黒パネル2に接続される。さらに、4 はR信号電** 権原動回路、5 はG信号電種駆動回路、6 はB信 最常施設動回路で、各々m本の信号機がカラー被 島パネル2 に接続される。また、7 は彼島電圧発 生回路で、Ve~Ve、つまり、Ve-GND、 $V_1 = (1/a)^2 V_5 \cdot V_2 = (2/a) V_5 \cdot ...$ Vs = (1-2/a) Vs . V4 = (1-1/a) V 5 、 5 を発生し、上記各駆動回路 3 、 4 、 5 、 6 に動作電圧として供給する。なお、上記Bは、

7

バイアス比である。

上記第3回における各信号電極駆動回路4、5、 6 は、第4回に示すように構成される。すなわち、 各個身電極駆動回路4、5、6は、m段の駆動回 路10』~10mからなっている。そして、映像処理 回路(図示せず)から送られてくる4ピットのデ ジタルデータ D 1 ~ D 4 は、まず、初段の駆動回 路 10: 内のレジスタ 11に入力される。このレジス タ 11 は、サンプリングクロック ø s. に 同期 して上 記データD1~D4を読込み、ラッチ回路12に入 カすると共に次段の駆動回路102 に送出する。上 記ラッチ回路12は、レジスタ11に書込まれたデー タをラッチパルス Φ 2 に 岡期 して ラッチ し、イ ンパータ13』~134 を介してオア回路141~144 に入力する。また、このオア回路141~144 には、 外部に設けられている4ピットカウンタ15の出力 Q1~Q4 が入力される。上記カウンタ15は、ラ .ッチパルスゆ & によってリセットされ、クロック パルス中にによってカウントアップ助作する。そ して、上記オア回路141~144の出力は、アンド

回路 16を介してフリップフロップ17のリセット始子Rに入力される。このフリップフロップ1711は、ラッチパルスゆ 2 によってセットされるもので、その出力はマルチプレクサ18には、フレーム切換信号のPが与えられる。と共に上記被品電圧発生回路でいている。そして、シーンの信号に応じて信号電極駆動信号、つまりに関助の時間である。また、2 段目以降の駆動回路 102 ~ 10 m も上記駆動回路 10 2 と同様に構成され、種間信号 Y 2 ~ m を出力する。

上記の構成において、映像処理回路から送られてくるデジタルデータ D 1 ~ D 4 は、まず、初段の駆動回路 10』に入力され、サンプリングクロック Φ 8 に周期してレジスタ 11に決込まれる。このレジスタ 11に決込まれたデータ D 1 ~ D 4 は、その後、サンプリングクロック Φ 8 に周期して駆動回路 102 ~ 10 m のレジスタ 11に順次シフトされる。そして、上記データ D 1 ~ D 4 が駆動回路 10 m の

レジスタ11までシフトされると、その後、ラッチ パルス申 & が与えられる。このラッチパルス申 & は、第5回に示すようにサンプリングクロックや в が m 発出力される毎に 1 発出力され、各駆動回 路 101~10mにおいてレジスタ11に保持されてい るデータがラッチ回路 12にラッチされる。また、 周時に上記ラッチパルス Φ Q によりカウンタ 15が リセットされると共に、第5因に示すようにフリュ ップフロップ17がセットされる。このフリップフ ロップ17がセットされることにより、マルチプレ クサ18の出力 Y」 が V s の基準 レベルから V s の レベルに立上がる。この場合、次のフレームにお いては、フリップフロップ17のセット時、マルチ プレクサ18の出力Y」はV2 の基準レベルからV ョレベルに立下がる。しかして、上記カウンタ15 は、ラッチパルスゆんによりリセットされた後、 クロックパルスቀc によりカウント動作を開始す . る。上記クロックパルスφοは、第5回に示すよ うに各ラッチパルス Φ ℓ 間に 1 4 発発生する。そ して、上記カウンタ-15のカウント出カQ1~Q4

は、ラッチ回路 12よりインパータ 13』~134 介し て出力される信号と共に、オア回路14』~144 へ 入力され、その出力がアンド回路16へ入力される。 従って、カウンタ15のカウント動作に伴ってオアー、コーデー 回路14」~144 の出力がオール"1"となった時 にアンド回路16の出力が「1~となり、フリップ フロップ17がリセットされる。上記オア回路141 ~144 の出力がオール"1"となるカウンタ15の カウント値は、ラッチ回路12のラッチデータによ って決定されるもので、それによりフリップフロ ップ17がセットされてからリセットされるまでの 時間が制御される。上配フリップフロップ17がリ セットされると、マルチプレクサ18の出力が基準 レベルに戻る。そして、その後ラッチパルスゆん が与えられることによって上記した動作が繰返さ れる。上記のようにしてラッチ回路12の保持デー タに応じてマルチプレクサ18から信号Yiが出力 され、カラー被晶パネル2における各個号電極が

第6回は表示駆動信号の波形例を示したもので、

(a) は走査電極駆動回路3 から出力される走査 電極駆動信号X;、(b)は信号電極駆動回路10 のマルチプレクサ18から出力される階調信号Yi、 (c) は上記走査電極駆動信号 X I と簡同信号 Y 」の合成波形である。

上記のように従来の信号電極駆動回路10では、 入力データによって決まった出力放形が得られる ので、R、G、Bのフィルタ膜厚が設計値と異な った場合には色相が異なってしまう。すなわち、 上記フィルタはR、G、Bの色別に3回に分けて 形成するため、均一に形成することは極めて難し く、フィルタ膜厚にパラツキを生ずる。フィルタ 膜厚に差があると、電極に問一電圧を印加しても 液晶に加わる実効値に差がでて表示品質が劣化し てしまう.

「毎日の日的し

本発明は上記の点に謳みてなされたもので、R、 G、Bのフィルタ膜厚が設定値と異なって形成さ れた場合でも、所望の色を正しく表示でき、表示 品質を良好に保持することができる賠償信号発生

ロップ22は、4ピットのカウンタ23のQ4 出力に よってリセットされる。このカウンタ23は、ラッ チパルスゆんによってリセットされると共に、オ ア国路24を介して与えられる自己のQ4 出力及び 第2回に示すクロックパルスゆっ2 によりカウン トアップ動作する。また、上記カウンタ23のQ4 出力は、上記したようにフリップフロップ 22のリ セット菓子Rに入力されると共にインパータ 25を 介してカウンタ15のリセット囃子Rに入力される。 このカウンタ15は、第2回に示すクロックパルス **φοιによってカウントアップ的作する。また、** 上記カウンタ23の出力Q;~Qg は/オア回路26m ~26cへ入力される。そして、上記オア回路26a ~ 26 c に は 、 初 期 設 定 デ ー タ A 1 、 A 2 、 A 3 が インパータ27a~26cを介して入力される。上記 初期設定データA1、A2、A3は、フィルタ膜 厚の形成観差に伴う色相の変化を補正するための . 袖正データである。そして、上記オア回路26a~ 26 C の出力は、アンド回路28を介してフリップフ ロップ22のリセット畑子Rに入力される。

回路を提供することを目的とする。

[発明の要点]

本発明は、カラー波晶パネルの駆動回路におい て、各色の駆動回路から出力される階調波形に対 して調整用区面を設け、この調整用区面における 時間楣の調整により被晶表示パネルに印加される 実行電圧を任意に調整できるようにしたものであ

[発明の実施例]

以下図面を参照して本発明の一実施例を説明す る。第1回において、20は信号電極駆動回路で、 m 段の収動回路 20:~20m からなっている。これ 5の駆動回路201~20元は、第4回の駆動回路10 1~10mにおいてフリッププロップ17のセット信 母のタイミングが異なるのみで、 その他は第4回 の駆動回路 10: ~ 10m と同様の構成であるので第 4 図と同一符号を付して詳報な説明は省略する。 しかして、上記フリップフロップ17は、信号電板 駆動回路20の外部に設けられるフリップフロップ 22からセット信号が与えられる。このフリップフ

` 次に上記実施例の動作について説明する。本発 明は第2因に示すように、各ラッチパルスゆん国 を17等分し、最初の2区間を除く他の15区間 においてそれぞれクロックパルス中ci を発生さ せている。上記各ラッチパルスゆん間における最 初の2区間は、初期調整用区間であり、カウンタ 23の Q 4 出力により区間設定が行なわれる。従っ て、ガウンタ23のカウント用クロックパルス中の 2 は、この実施例ではクロックパルス中ci の4 倍の周波数に設定しているが、ラッチパルス**¢** ℓ が発生するタイミングでは出力が兼止される。し かして、映量処理回路から送られてくるデジタル データD1~D4 は、まず、初段の駆動回路201 に入力され、サンプリングクロック 0 8 に同期し てレジスタ11に放込まれる。このレジスタ11に鉄 込まれたデータD1~D4 は、その後、サンプリ ングクロック ø в に周期して駆動回路 202 ~ 20 m のレジスタ11に順次シフトされる。そして、上記 データ D 1 ~ D 4 が駆動回路20mのレジスタ11ま でシフトされると、その後、ラッチパルス中Lが

特開昭61-5295 (4)

与えられる。このラッチパルスゆんは、サンプリ ングクロックゆ s が m 発出力される 毎 に 1 発出力 され、各駆動回路201~20mにおいてレジスタ11 に保持されているデータがラッチ回路12にラッチ される。また、周時に上記ラッチパルスゆんによ りカウンタ23がリセットされる。このカウンタ23 がリセットされるとそのQ4 出力が"〇"、イン パータ25の出力が"1"となってカウンタ15がり セットされる。これ以後カウンタ23の内容が「8」 にカウントアップされるまで、カウンタ15はリセ ット状態に保持される。しかして、上記カウンタ 23は、クロックパルスቀc2 によりカウントアッ プ助作を開始し、そのカウント出カQ1~Q3を オア回路26 B ~ 26 D へ出力する。また、このオア 回路28a~26cには、初期設定データA1、A2、 A 3 がインパータ27a~27c により反転されて入 力されている。従って、上記カウンタ23がリセッ .ト後、クロックパルスφc2 によりカウントアッ プし、そのカウント値が初期設定データA1 、A 2 、 A 3 に等しくなると、オア回路 26 a ~ 26 c の

出力がオール"1"となり、アンド回路28より "1"信号が出力されフリップフロップ 22がセッ トされる。この結果、フリップフロップ22からは、 初期設定データA1、A2、A3の内容「OOO」 ~「111」に応じて第2図(e)~(g)に示 すような出力信号波形が得られる。今、初開設定 データA1、A2、A3を「101」に設定した ものとすれば、その設定データはインバータ278 ~27cにより「010」のデータに反転され、オ ア回路 26 a ~ 26 C を介してアンド回路 28 に入力さ れる。従って、上記カウンタ24が、リセット後ク ロックパルスφο 2 をカウントし、「5」までカ ウントアップすると、その出力 Qı ~ Qı が「1 **01」となり、初期設定データA1 、A2 、A3** とのオア出力、つまり、オア回路26a~26cの出 カがオール"1"となる。このためアンド回路28 の出力が"1"となり、フリップフロップ22をセ ットする。このためフリップフロップ 22の出力が "1"となってフリップフロップ17をセットし、 その出力がマルチプレクサ18へ送られる。これに

よりマルチプレクサ 18から贈講信号 Y i が出力さ れて表示パネルの信号電板が表示駆動される。そ して、その後、カウンタ23が8までカウントアッ プすると、出力信号 Q 4 が "1"になり、フリッ プフロップ22をリセットする。上記のようにカウ ンタ23がラッチパルスゆんによりリセットされて からQ4出力信号が出力されるまでの間が初期調 整用区間であり、この初期調整用区域においてフ リップフロップ 22が リセットされてからセットさ れるまでの期間t1及びその後フリップフロップ 22がカウンタ23のQ4 出力によりリセットされる までの期間 t 2 が初期設定データ A 1 、 A 2 、 A 3 にり設定される。しかして、上記したようにカ ウンタ23からQ4 信号が出力されると、インパー タ25の出力が"0"となり、カウンタ15のリセッ ト状態が解除される。このためカウンタ15は、そ の後、クロックパルス中の1 によりカウント動作 を開始する。上記クロックバルスφ c は、第2図 に示すようにリセット解除後、次の各ラッチパル スφℓが出力されるまでに15発発生する。そし

て、上記カウンタ15のカウント出力Q;~Q4 は、 ラッチ回路 12よりインパータ 13』~134 を介して 出力される信号と共に、オア回路14』~144 へ入 力され、その出力がアンド回路16へ入力される。 従って、カウンタ15のカウント動作に伴ってオア 回路141~144の出力がオール・"1"となった時 にアンド回路16の出力が"1"となり、フリップ フロップ 17がリセットされる。上記オア回路 14:1 ~144 の出力がオール"1"となるカウンタ15の カウント値は、ラッチ回路 12のラッチデータによ って決定されるもので、それによりフリップフロ ップ17がセットされてからリセットされるまでの 時間が割削される。例えばラッチ回路12に「8」 のデータがラッチされた場合は、第2図に示すよ うにカウンタ15がクロックパルスゆc を 8 個カウ ントした時にアンド回路16の出力が"1"となり、 フリップフロップ 17がリセットされる。このフリ ップフロップ17がリセットされることによりマル チアレクサ18の出力が基準レベルに戻る。このよ うにしてフリップフロップ17は、ラッチ回路12の

特問昭 61-5295(5)

上記のように初期設定データA1、A2、A3により階間借男Y1を各階間において複数段階例えば上記実施例では8段階に調整することができるので、フィルタ膜厚が設計値と異なった場合でも初期設定データA1、A2、A3を調整することによって色相を正しく設定することができる。

前段に設けたが、階間波形の後段に設けてもよい。 [発明の効果] 以上詳記したように本発明によれば、カラー液 品パネルの駆動回路において、各色の駆動回路か

なお、上記実施例では調整用区間を階調被形の

4. 剱面の無単な説明

第1 図及び第2 図は本発明の一実施例を示すもので、第1 図は回路構成図、第2 図は動作を説明するためのタイミングチャート、第3 図は従来の液晶表示装置の構成を示すプロック図、第4 図は第3 図における信号電極駆動回路の構成を示す図、第5 図は第4 図における信号電極駆動回路の動作

を説明するためのタイミングチャート、第6図は 住来における表示駆動信号の放形図である。

11 ··· レジスタ、 12 ··· ラッチ回路、 15 ··· カウンタ、 17 ··· フリップフロップ、 18 ··· マルチプレクサ、 20 ··· - 信号電極駆動回路、 24 ··· カウンタ。

出願人代理人 弁理士 鈴江武彦

第 2 因

第 6 図

