Probability

Keith A. Lewis

August 25, 2019

Abstract

This note collects salient facts about probability theory.

Contents

Probability Model	2
Sample Space	2
Probability Measure	2
Expected Value	2
Algebras of Sets	3
Partition	3
Measurable	3
Random Variable	4
Examples	4
Discrete	4
Uniform	4
Normal	5
Expected Value	5
Moments	5
Cumulants	5
Characteristic Function	6
Fourier Transform	6
Bell Polynomials	6
Joint Distribution	7
Copulas	7
Normal	7
Poisson	7
Infinitely Divisible	7
Conditional Expectation	7
Normal	8
Poisson	8
Infinitely Divisible	8

Stochastic Processes .														8	3
Brownian Motion														8	3
L'evy Processes .														8	3
Remarks														8	3

Probability is an extension of logic. Instead of propositions being either true or false a degree of belief can be specified for events occurring. All probabilities are conditional on models of available information and different people may have different degrees of belief.

Probability Model

A probability model specifies a sample space and a probability measure.

Sample Space

A sample space is just a set of what can possibly happen: heads or tails as the outcome of a coin toss, the integers from 1 to 6 as the outcomes of rolling a single die, the set of all sequences of not more than 280 characters as a model of possible Twitter tweets.

An *event* is a subset of a sample space.

People seem to be surprised probabilities are modeled using sets. Sets have no structure, they are just a bag of things (*elements*).

Probability Measure

A probability measure assigns a number between 0 and 1 to events. If Ω is a sample space and P is a probability measure then the measure of the union of sets is the sum of the measure of each set minus the measure of the intersection: $P(E \cup F) = P(E) + P(F) - P(E \cap F)$ for events E and F. This is the mathematical way to say measures do not double count.

A probability measure must also satisfy $P(\emptyset) = 0$ and $P(\Omega) = 1$.

Exercise. If Q is a measure with $Q(\emptyset) = a$ and $Q(\Omega) = b$, show (Q - a)/(b - a) is a probability measure.

Expected Value

Let $1_A(\omega) = 1$ if $\omega \in A$ and 0 = 0 if $\omega \notin A$. If $X = \sum a_i 1_{A_i}$ where $a_i \in \mathbf{R}$ and A_i are events, Define the *expected value* of X by $EX = \sum_i a_i P(A_i)$.

Exercise. Show that if $\sum_i a_i 1_{A_i} = 0$ then $\sum_i a_i P(A_i) = 0$.

Hint: Replace the A_i by disjoint B_j so $b_j = 0$ for all j.

This shows expected value is well-defined.

Exercise. Show
$$P(\cup_i A_i) = \sum_i P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \sum_{i < j < k} P(A_i \cap A_j \cap A_k) \cdots$$

Hint: Use
$$(1_A - 1_{A_1}) \cdots (1_A - 1_{A_n}) = 0$$
, where $A = \bigcup_{k=1}^n A_k$.

Algebras of Sets

An algebra of sets on Ω is a collection of subsets (events), \mathcal{A} , that is closed under complement and union. This lets us talk about and event not happening and whether event A or B occurred.

We also assume the empty set belongs to \mathcal{A} . By De Morgan's Laws an algebra is also closed under intersection and Ω belongs to \mathcal{A} . The *power set* of Ω , $2^{\Omega} = \{E \subseteq \Omega\}$, clearly satisfies these conditions.

An *atom* of an algebra is a member, A, of the algebra such that if $B \subseteq A$ and B is in the algebra, then either B = A or B is the empty set.

Partition

A partition of a set is a collection of pairwise disjoint subsets who's union is equal to the set.

Exercise. If an algebra on Ω is finite its atoms form a partition of Ω .

Hint: Show $A_{\omega} = \cap \{B \in \mathcal{A} : \omega \in B\}, \omega \in \Omega$, is an atom

This shows there is a one-to-one correspondence between finite partitions and finite algebras of sets. A partition is the mathematical way of specifying partial information. Knowing the outcome, $\omega \in \Omega$, corresponds to complete knowledge. Knowing which atom the outcome belongs to corresponds to partial knowledge. For example, the partition $\{\{1,3,5\},\{2,4,6\}\}$ corresponds to knowing whether the roll of a die is odd or even.

The coarsest partition $\{\Omega\}$ corresponds to no knowledge while the finest partition $\{\{\omega\}:\omega\in\Omega\}$ corresponds to complete knowledge.

Measurable

A function $X: \Omega \to \mathbf{R}$ is \mathcal{A} -measureable if the sets $X^{-1}((-\infty, x]) = \{\omega \in \Omega : X(\omega) \le x\}$ belong to \mathcal{A} for $x \in \mathbf{R}$.

Exercise: If \mathcal{A} is finite, show that a function is measurable if and only if it is constant on atoms of \mathcal{A} .

In this case $X: \mathcal{A} \to \mathbf{R}$ is indeed a function on the atoms.

Random Variable

A random variable is a variable, a symbol that can be used in place of a number, with additional information: the probability of the values it can take on. The cumulative distribution function is $F(x) = F^X(x) = P(X \le x)$. It tells you everything there is to know about X. For example, $P(a < X \le b) = F(b) - F(a)$.

Exercise. Show
$$P(a \le X \le b) = \lim_{x \uparrow a} F(b) - F(x)$$
.

Hint:
$$[a, b] = \bigcap_n (a - 1/n, b]$$
.

In general, $P(X \in A) = E1_A = \int 1_A(x) dF(x)$ for sufficiently nice $A \subset \mathbf{R}$.

Since
$$(-\infty, x] \subseteq (-\infty, x']$$
 if $x \le x'$, F is non-decreasing: $F(x) \le F(x')$. $\lim_{x \to -\infty} F(x) = 0 \lim_{x \to \infty} F(x) = 1$. F is right continuous with left limits.

Examples

Discrete

A discrete random variable is defined by $x_i \in \mathbf{R}$ and $p_i > 0$ with $\sum p_i = 1$. The probability the random variable takes on value x_i is p_i .

Bernoulli

A Bernoulli random variable has P(X = 1) = p, P(X = 0) = 1 - p.

Binomial

A Binomial random variable ... $P(X = k) = \binom{n}{k}/2^n$.

Uniform

The random variable, U, that is uniformly distributed on the unit interval, [0,1], has cdf F(x) = x if $0 \le x \le 1$, = 0 if x < 0, and = 1 if x > 1.

Normal

Two random variables, X and Y, have the same law if they have the same cdf.

Exercise. If X has cdf F, then X and $F^{-1}(U)$ have the same law.

Exercise. If X has cdf F, then F(X) is uniformly distributed on the unit interval.

This shows a uniformly distributed random variable has sufficient randomness to generate any random variable. There are no random, random variables.

The mathematician's definition of a random variable is that it is a measurable function $X: \Omega \to \mathbf{R}$. Its cumulative distribution function is $F(x) = P(X \le x) = P(\{\omega \in \Omega \mid X(\omega) \le x\})$. Given a cdf F we can define $X: \mathbf{R} \to \mathbf{R}$ to be the identity function and let P be the probability measure defined by F: $P(A) = \int 1_A(x) dF(x)$.

Expected Value

The expected value of a random variable is defined by the $EX = \int_{-\infty}^{\infty} x \, dF(x)$. The expected value of any function of a random variable is $Ef(X) = \int_{-\infty}^{\infty} f(x) \, dF(x)$.

Moments

The moments of a random variable, X, are $m_n = E[X^n]$, $n = 0, 1, 2, \ldots$ They don't necessarily exist for all n, except for n = 0. They also cannot be an arbitrary sequence of values.

Suppose all moments of X exist, then for any complex numbers, (c_i) , $0 \le E|\sum_i c_i X^i|^2 = E\sum_{j,k} c_j \bar{c_k} X^{j+k} = \sum_{j,k} c_j \bar{c_k} m_{j+k}$. This says the Hankel matrix, $M = [m_{j+k}]_{j,k}$, is positive definite. The converse is also true: if the Hankel matrix is positive definite there exists a random variable with the corresponding moments. This is not a trivial result and the random variable might not be unique.

Spectral measure ...

Cumulants

The *cumulant* of a random variable, X, is $\kappa(s) = \kappa^X(s) = \log E \exp(sX)$. The *cumulants*, κ_n , are defined by $\kappa(s) = \sum_{n>0} \kappa_n s^n / n!$.

It is easy to see $\kappa_1 = EX$ and $\kappa_2 = \text{Var } X$. The third and fourth cumulants are related to skew and kurtosis. We will see the exact relationship below.

If c is a constant then $\kappa^{cX}(s) = \kappa^X(cs)$ so $\kappa^{cX}_n = c^n \kappa^X_n$. If X and Y are independent then $\kappa^{X+Y}(s) = \kappa^X(s) + \kappa^Y(s)$ so $\kappa^{X+Y}_n = \kappa^X_n + \kappa^Y_n \$$

Characteristic Function

The characteristic function of a random variable, X, is $\xi(t) = \kappa(it)$.

Fourier Transform

The Fourier transform is $\psi(t) = \xi(-t) = \kappa(-it)$. These can be used to prove the central limit theorem: if X_j are independent, identically distributed random variables with mean zero and variance one, then $(X_1 + \cdots + X_n)/sqrtn$ converges to a standard normal random variable.

Examples

If X is normal then $E \exp(X) = \exp(EX + \operatorname{Var}(X)/2)$ so $\kappa_1 = EX$, $\kappa_2 = \operatorname{Var}(X)$, and $\kappa_n = 0$ for n > 2.

If X is Poisson with parameter λ then

$$Ee^{sX} = \sum_{k=0}^{\infty} e^{sk} e^{-\lambda} \lambda^k / k!$$
$$= \sum_{k=0}^{\infty} (e^s \lambda)^k e^{-\lambda} / k!$$
$$= \exp(\lambda (e^s - 1))$$

so $\kappa(s) = \lambda(e^s - 1)$ and $\kappa_n = \lambda$ for all n.

Bell Polynomials

The relationship between moments and cumulants is given by Bell polynomials.

In particular $m_1 = \kappa_1$ and $m_2 = \kappa_1^2 + \kappa_2$ so κ_1 is the mean and κ_2 is the variance. If the mean is 0 and the variance is 1, then κ_3 is the skew and κ is the excess kurtosis.

Joint Distribution

Two random variables, X and Y, are defined by their joint distribution, $F(x,y) = F^{X,Y}(x,y) = P(X \le x, Y \le y)$. For example (X,Y) is in the square $(a,b] \times (c,d]$ with probability $P(a < X \le b, c < Y \le d) = P(X \le b, Y \le d) - P(X \le a) - P(Y \le c) + P(X \le a, Y \le c)$.

Copulas

A copula is the joint distribution of random variables uniformly distributed on the unit interval. Let U and V be two uniformly distributed random variables.

If V = U then their joint distribution is $C(u, v) = P(U \le u, V \le v) = P(U \le u, U \le v) = P(U \le \min\{u, v\}) = \min\{u, v\} = M(u, v)$.

If V = 1 - U then their joint distribution is $C(u, v) = P(U \le u, V \le v) = P(U \le u, 1 - U \le v) = P(1 - v \le U \le u) = \max\{u - (1 - v), 0\} = \max\{u + v - 1, 0\} = W(u, v)$

For every copula, $W \leq C \leq M$.

Let X and Y be random variables with cdfs F and G respectively, and joint distribution H. Define the cumulant, $C = C^{X,Y}$, to be the joint distribution of F(X) and G(Y).

Normal

Poisson

Infinitely Divisible

A random variable, X, is *infinitely divisible* if for any positive integer, n, there exist independent, identically distributed random variables X_1, \ldots, X_n such that $X_1 + \cdots + X_n$ has the same law as X.

Characteristic function ...

Conditional Expectation

The conditional expectation of an event B given an event A is $P(B|A) = P(B \cap A)/P(A)$. In some sense, this reduces the sample space to A. In particular, P(A|A) = 1. Since $P(A|B) = P(A \cap B)/P(B)$ we have P(A|B) = P(B|A)P(A)/P(B). This is the simplest form of Bayes Theorem. It shows how to update your degree of belief based on new information. Every probability is conditional on given information.

Define $E[X|A] = E[X1_A]/P(A)$ for any random variable X. If $X = 1_B$ then this coincides with the definition of conditional expectation above.

If we write this as $E[X|A]P(A) = E[X1_A]$ then defining $E[X|\mathcal{A}]$ by $E[X|\mathcal{A}]P|_{\mathcal{A}} = (XP)_{\mathcal{A}}$ agrees on atoms of \mathcal{A} .

moments, Hamburger moment problem.

cumulants, Bell polynomials

Normal

Poisson

Infinitely Divisible

Stochastic Processes

A stochastic process is . . .

Brownian Motion

reflection

L'evy Processes

Remarks

Cheval de Mere

Pascal

Bernoulli(s)

Kolmogorov

Willy Feller