Définition de la MSP

La Maîtrise Statistique des Procédés (MSP/Statistical Process Control) est:

- ✓ Un outil permettant de maximiser la qualité d'un produit
- ✓ une méthode préventive qui vise à amener le processus au niveau de qualité requis et à le maintenir grâce à un système de surveillance.
 - > Permet au gestionnaire qualité de piloter précisément ses machines.

L'outil MSP : > Formalise la notion de capabilité

➤ Différencie entre les situations ordinaires (ne nécessitant aucune action) de celles anormales (l'opérateur doit intervenir).

La MSP regroupe deux concepts de base :

- Le suivi et le pilotage par les cartes de contrôle
- La mesure de capabilité.

Chap.2: Maîtrise Statistique des Procédés

Notion de variabilité

Aucun procédés n'est capable de produire continuellement et exactement le même produit!

On distingue deux classes de variabilité :

- La variabilité **propre au procédé** (nommée inhérente et est difficilement modifiable) : elle est due à la variation normale du procédés (usure de la machine, jeux mécanique, vibration, etc.).
- La variabilité <u>externe au procédé</u> qui résulte des causes spéciales ou particulières et qui doit être corrigée (mauvais calibrage, changement d'opérateur, etc.).

Notion de variabilité

La variabilité du processus peut être rattachée à:

Des causes communes / naturelles / aléatoire / non assignable :

- √ difficilement maîtrisables, elles sont toujours présentes à des degrés divers dans différents procédés.
- √ étant toujours présentes (variabilité intrinsèque au procédés), il faudra «vivre avec »!.
- ✓ Suivent généralement une loi de gauss.

Le but de la MSP sera de ne laisser subsister que les dispersions dues aux causes communes.

Des causes spéciales / assignables / accidentelles:

ce sont les causes de dispersion identifiable, souvent irrégulières et instables et par conséquent difficiles à prévoir. L'apparition d'une cause spéciale nécessite une intervention sur le procédé (généralement liée aux 5M).

3

Chap.6 : Maîtrise Statistique des Procédés

Notion de variabilité

Généralement, les variations aléatoires suivent une loi normale (la courbe en cloche)

On s'intéresse alors à deux caractéristiques reflétant les causes communes: la moyenne de l'échantillon (\overline{x}) et sa dispersion (σ)

- 4

Pilotage par les limites naturelles d'un procédé On sort des limites naturelles Cible On sort des tolérances produit défectueux **Tolérance** maxi points consécutifs Limite Limite **Tolérance** du même côté naturelle naturelle mini de la moyenne

Il est plus avantageux de piloter un procédé par ses limites naturelles que par ses limites de tolérances

7

Adel BRIK

inférieure

supérieure

Chap.6: Maîtrise Statistique des Procédés

Carte de contrôle moyenne-étendue connus

Une carte de contrôle est un outils utilisé pour visualiser et suivre le comportement d'un procédé

➤ La limite de contrôle inférieur LCI (ou limite inférieure de contrôle LIC ou Lower Control Limits, LCL):

✓ LCI =
$$\mu$$
 – 3 σ

➤ La limite de contrôle supérieure LCS (ou limite supérieure de contrôle LSC ou Upper Control Limits UCL):

✓ LCS =
$$\mu$$
 + 3 σ

L'intervalle $[\mu - 3\sigma; \mu + 3\sigma]$ contient 99.7 % des données, d'où on a à faire avec 0,3% de pièces non-conformes (voir table de la loi normale centrée réduite)

Carte de contrôle moyenne-étendue inconnus

Nommée carte (X-R) ou carte de Shewhart, elle est considérée la carte la plus utilisée pour visualiser et suivre le comportement d'un procédé

Carte de moyenne

Soit m échantillons mesurés (On prélève m échantillons chacun de taille n)

La ligne centrale de cette carte s'écrit alors:

$$LC_{\bar{x}} = \hat{\mu} = \overline{\overline{X}} = \frac{1}{m} \sum_{i=1}^{m} \overline{X_i}$$

L'écart type estimé est calculé par:

$$\stackrel{\wedge}{\sigma} = \frac{\overline{R}}{d_2}$$
 Avec $\overline{R} = \frac{1}{m} \sum_{i=1}^{m} R_i$; dest donnée par la table des constantes ci-après

9

Chap.6: Maîtrise Statistique des Procédés

Carte de contrôle moyenne-étendue inconnus

Carte de moyenne

La carte des moyenne \overline{X} est constituée d'une ligne centrale (LC) et des limites de contrôle supérieure (LCS) et inférieure (LCI) suivantes:

$$LCS_{\overline{X}} = \stackrel{\wedge}{\mu} + 3 \frac{\stackrel{\wedge}{\sigma}}{\sqrt{n}}$$
, $LCI_{\overline{X}} = \stackrel{\wedge}{\mu} - 3 \frac{\stackrel{\wedge}{\sigma}}{\sqrt{n}}$

En posant: $A_2 = \frac{3}{d_2 \sqrt{n}}$

Les valeurs de A2 sont données dans le tableau ci-après

Carte de contrôle moyenne-étendue inconnus

Carte de l'étendue R

La carte R visualise la variabilité dans les étendues est se trace en se basant sur les formulation suivantes:

$$LC_R = \overline{R}$$
 $LCS_R = \overline{R} + 3\frac{\overline{R}}{d_2}d_3$ $LCI_R = \overline{R} - 3\frac{\overline{R}}{d_2}d_3$

En posant: $D_3 = sup\left\{1 - 3\frac{d_3}{d_2}, 0\right\}$ et $D_4 = 1 + 3\frac{d_3}{d_2}$

$$LCS_R = D_4 \overline{R}$$
 , $LCI_R = D_3 \overline{R}$

Les valeurs des différentes constantes sont données dans le tableau ci-après

II

Chap.6 : Maîtrise Statistique des Procédés

Table de constantes en fonction de n

		Chart for Averages					Chart for Standard Deviations				Chart for Ranges					
Observations in Sample, n	Factors for Control Limits			Factors for Center Line		Factors for Control Limits			Factors for Center Line		Factors for Control Limits					
	A	A_2	A_3	c4	1/c4	B_3	B_4	B_5	B_6	d_2	1/d2	d_3	D_1	D_2	D_3	D_4
2	2.121	1.880	2.659	0.7979	1.2533	0	3.267	0	2.606	1.128	0.8865	0.853	0	3.686	0	3.267
3	1.732	1.023	1.954	0.8862	1.1284	0	2.568	0	2.276	1.693	0.5907	0.888	0	4.358	0	2.574
4	1.500	0.729	1.628	0.9213	1.0854	0	2.266	0	2.088	2.059	0.4857	0.880	0	4.698	0	2.282
5	1.342	0.577	1.427	0.9400	1.0638	0	2.089	0	1.964	2.326	0.4299	0.864	0	4.918	0	2.114
6	1.225	0.483	1.287	0.9515	1.0510	0.030	1.970	0.029	1.874	2.534	0.3946		0	5.078	0	2.004
7	1.134	0.419	1.182	0.9594	1.0423	0.118	1.882	0.113	1.806	2.704	0.3698	0.833	0.204	5.204	0.076	1.924
8	1.061	0.373	1.099	0.9650	1.0363	0.185	1.815	0.179	1.751	2.847	0.3512	0.820	0.388	5.306	0.136	1.864
9	1.000	0.337	1.032	0.9693	1.0317	0.239	1.761	0.232	1.707	2.970	0.3367	0.808	0.547	5.393	0.184	1.816
10	0.949	0.308	0.975	0.9727	1.0281	0.284	1.716	0.276	1.669	3.078	0.3249	0.797	0.687	5.469	0.223	1.777
11	0.905	0.285	0.927	0.9754	1.0252	0.321	1.679	0.313	1.637	3.173	0.3152	0.787	0.811	5.535	0.256	1.744
12	0.866	0.266	0.886	0.9776	1.0229	0.354	1.646	0.346	1.610	3.258	0.3069	0.778	0.922	5.594	0.283	1.717
13	0.832	0.249	0.850	0.9794	1.0210	0.382	1.618	0.374	1.585	3.336	0.2998	0.770	1.025	5.647	0.307	1.693
14	0.802	0.235	0.817	0.9810	1.0194	0.406	1.594	0.399	1.563	3.407	0.2935	0.763	1.118	5.696	0.328	1.672
15	0.775	0.223	0.789	0.9823	1.0180	0.428	1.572	0.421	1.544	3.472	0.2880	0.756	1.203	5.741	0.347	1.653
16	0.750	0.212	0.763	0.9835	1.0168	0.448	1.552	0.440	1.526	3.532	0.2831	0.750	1.282	5.782	0.363	1.637
17	0.728	0.203	0.739	0.9845	1.0157	0.466	1.534	0.458	1.511	3.588	0.2787	0.744	1.356	5.820	0.378	1.622
18	0.707	0.194	0.718	0.9854	1.0148	0.482	1.518	0.475	1.496	3.640	0.2747	0.739	1.424	5.856	0.391	1.608
19	0.688	0.187	0.698	0.9862	1.0140	0.497	1.503	0.490	1.483	3.689	0.2711	0.734	1.487	5.891	0.403	1.597
20	0.671	0.180	0.680	0.9869	1.0133	0.510	1.490	0.504	1.470	3.735	0.2677	0.729	1.549	5.921	0.415	1.585
21	0.655	0.173	0.663	0.9876	1.0126	0.523	1.477	0.516	1.459	3.778	0.2647	0.724	1.605	5.951	0.425	1.575
22	0.640	0.167	0.647	0.9882	1.0119	0.534	1.466	0.528	1.448	3.819	0.2618	0.720	1.659	5.979	0.434	1.566
23	0.626	0.162	0.633	0.9887	1.0114	0.545	1.455	0.539	1.438	3.858	0.2592	0.716	1.710	6.006	0.443	1.557
24	0.612	0.157	0.619	0.9892	1.0109	0.555	1.445	0.549	1.429	3.895	0.2567	0.712	1.759	6.031	0.451	1.548
25	0.600	0.153	0.606	0.9896	1.0105	0.565	1.435	0.559	1.420	3.931	0.2544	0.708	1.806	6.056	0.459	1.541
For n > 25.						$A = \frac{3}{\sqrt{n}}$										
$B_3 = 1 - \frac{3}{c_4 \sqrt{2(n-1)}}$ $B_4 = 1 + \frac{3}{c_4 \sqrt{2(n-1)}}$																
					1	$B_5 = c_4 - \frac{1}{\sqrt{1 - c_4}}$	$\frac{3}{2(n-1)}$	$B_6 = c_4$	$+\frac{3}{\sqrt{2(n-1)}}$	1)						

Interprétation des cartes de contrôle

Graphique	Description	Décision carte des moyennes	Décision carte des étendues					
LISC	Processus sous contrôle Les courbes X et R oscillent de chaque côté de la moyenne. 2/3 des points sont dans le tiers central de la carte.	Production	Production					
LSC	Point hors limites Le dernier point tracé a franchi une limite de contrôle.	Régler le processus de la valeur de l'écart qui sé- pare le point de la valeur cible.	Cas limite supérieure La capabilité court terme se détériore. Il faut trouver l'origine de cette détérioration et intervenir. Il y a une erreur de mesure Cas limite inférieure La capabilité court terme s'améliore Le système de mesure est bloqué					
13	Adel	BRIK						

Chap.6 : Maîtrise Statistique des Procédés

Interprétation des cartes de contrôle (suite)

En cas de réglage : un nouvel échantillon est mesuré et marqué sur la carte. Pour être acceptable, le point doit se situer dans le tiers central de la carte des moyennes

| | 4

Adel BRIK

Application sur les cartes de contrôle

Soit l'usinage d'un support d'axe réalisé sur TCN. Pendant l'usinage, l'opérateur mesure par échantillonnage (5 pièces toutes les heures), la dimension réalisée \$\phi32f8\$, afin d'établir les limites de contrôle de la moyenne et de l'étendue. Le tableau de relevé ci-après présente le prélèvement de 17 échantillons de support d'axe.

1/ Calculer les limites de carte de contrôle de la moyenne et de l'étendue

2 Tracer la carte provisoire de la moyenne et de l'étendue.

15

Chap.2 : Maîtrise Statistique des Procédés

Application sur les cartes de contrôle

Application sur les cartes de contrôle

Interprétation

- \triangleright Les courbes \overline{X} et R oscillent de chaque coté de la moyenne.
- > 2/3 des points sont dans le tiers central de la carte.

Décision: continuer la production

19

Chap.2 : Maîtrise Statistique des Procédés

Etude de capabilité

- ✓ La capabilité permet de mesurer l'aptitude d'un processus à réaliser une caractéristique respectant l'intervalle de tolérance fixé par le cahier des charges.
- ✓ Elle se traduit par le rapport entre la performance demandée et la performance réelle d'un processus
- ✓ Un procédé capable démontre que la qualité de la production respecte l'intervalle de tolérance (IT) donné par le client.
- ✓ Sa dispersion 6 σ doit donc être inférieure à l'intervalle de tolérance (Tolérance Sup. « Ts » Tolérance Inf. Ti).

Si la dispersion de la production est juste limitée aux tolérances, à la moindre dérive on risque de produire des non-conformités.

Etude de capabilité

Indice de capabilité Cp à court terme

Cet indicateur est calculé comme suit:

$$C_p = \frac{IT}{D} = \frac{Ts - Ti}{6\hat{\sigma}_{CT}}$$

Avec: IT=Ts-Ti; D=6 σ : dispersion et $\hat{\sigma}_{CT} = \frac{\overline{R}}{d_2}$

✓ Cp est un comparateur de la performance à court terme (courte période de temps) obtenue sur le processus (D) et la performance attendue (IT)

Un processus est considéré à priori capable si IT est supérieur à D

$$C_p > 1.33$$

21

Chap.2: Maîtrise Statistique des Procédés

Etude de capabilité

Indice de déréglage ou de centrage Cpk (à court-terme)

Utilisé pour déterminer la position du processus, Cpk est calculé par:

$$C_{pk} = min \left[\frac{Ts - \bar{x}}{3\hat{\sigma}_{CT}} et \frac{\bar{x} - Ti}{3\hat{\sigma}_{CT}} \right]$$

Etude de capabilité

Indice de déréglage ou de centrage Cpk

Chap.2 : Maîtrise Statistique des Procédés

Etude de capabilité

Indice de déréglage ou de centrage Cpk

- ☐ Deux cas de décentrage peuvent se présenter:
 - ✓ Déréglage du coté supérieur à la moyenne, le processus reste capable tant que $(Ts-\bar{x})$ est supérieur à la distance 3σ
 - ✓ Déréglage du coté inférieur à la moyenne, le processus reste capable tant que $(\bar{x}$ -Ti) est plus grande que la distance 3σ

Un standard industriel qui indique que le processus est capable de produire des articles conformes dans 99,99% des cas,

processus est bien centré entre les limites de spécification

Etude de capabilité

Capabilité à long terme Pp

- ☐ Se basant sur un ensemble d'échantillons effectués sur une longue période, on cherche à déterminer la performance à long terme du processus nommée performance du procédé (Pp) (ou sa capabilité à long terme)
- ☐ Pp est alors calculé par:

$$P_{p} = \frac{Ts - Ti}{6\hat{\sigma}_{LT}} \qquad \qquad \hat{\sigma}_{LT} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}}$$

25

Chap.2: Maîtrise Statistique des Procédés

Etude de capabilité

Décentrage à long terme Ppk

☐ Ppk est alors calculé par:

$$P_{pk} = min \left[\frac{Ts - \bar{x}}{3\hat{\sigma}_{LT}} et \frac{\bar{x} - Ti}{3\hat{\sigma}_{LT}} \right]$$

Le processus est supposé capable à long terme si Pp et Ppk sont supérieurs à 1,33

Le processus est supposé centré si Pp=Ppk

Etude de capabilité

- ➤ La chute entre Pp et Ppk (ou Cp et Cpk) traduit un déréglage (un décentrage)
- La chute entre Cp et Pp traduit l'instabilité du processus

Exemple:

Cp pourrait être **élevé** (par exemple **Cp = 1.5**), ce qui signifie que, dans des conditions stables, le processus est capable de produire de manière très conforme.

Cependant, si le processus est souvent interrompu par des ajustements fréquents ou des pannes, la performance globale du processus pourrait être plus faible.

Dans ce cas, **Pp pourrait être inférieur**, car il inclut ces perturbations externes.

27

Chap.2: Maîtrise Statistique des Procédés

Etude de capabilité

Capabilité basée sur la fonction de perte de Taguchi: C_{nm}

Utilisée lorsque l'on veut que le produit soit non seulement dans les limites de tolérance, mais aussi proche de la valeur idéale (cible)

Permet d'assurer une meilleure performance du produit à long terme.

formulé par :

$$C_{pm} = \frac{(LSS - LSI)}{6\sqrt{\hat{\sigma}_{CT}^2 + (\bar{x} - T)^2}}$$
 Avec T est la valeur cible (Target).

Si on cherche la performance du procédé à long terme alors:

$$P_{pm} = \frac{\left(LSS - LSI\right)}{6\sqrt{\hat{\sigma}_{LT}^2 + \left(\overline{x} - T\right)^2}}$$

Etude de capabilité

Synthèse

		Vraie capabilité	Vraie capabilité		
	Capabilité intrinsèque	« Centrage »	« Perte »		
	Tolérance/6σ	$\operatorname{Min}(\frac{TS - \overline{X}}{3\sigma}, \frac{\overline{X} - TI}{3\sigma})$	$\frac{Tolérance}{6\sqrt{\sigma^2 + (\overline{X} - cible)^2}}$		
Court terme Capabilité (1/4 d'heure)	Cp	Cpk	Срт		
Long terme Performance (1 semaine)	Pp	Ppk	Ppm		

29

Chap.2: Maîtrise Statistique des Procédés

Etude de capabilité: exemple A l'issue d'une production, on prélève aléatoirement des pièces dans le lot fabriqué en un mois. Soit l'histogramme ci-dessous relatif à une cote de 50±0.05:

Calcul et interprétation de la performance du processus:

$$Pp = 0.1 / 6 \times 0.009 = 1.85$$

$$Ppk = (50.05-50.009) / (3 \times 0.009) = 1.52$$

$$Ppm = IT / 6\sqrt{\sigma^2 + (\overline{X} - Cible)^2} = 0.1 / 6\sqrt{0.009^2 + (50.009 - 50)^2} = 1.31$$

Le processus est jugé capable car Pp et Ppk > 1,33 mais la chute entre Pp et Ppk traduit un déréglage (un décentrage)

Cependant le Ppm nous indique un problème de capabilité LT, il nous informe qu'il y a un écart entre la moyenne et la cible: il y a un déréglage à corriger