EE263 Autumn 2014–15 Sanjay Lall

Lecture 7 Regularized least-squares and Gauss-Newton method

- multi-objective least-squares
- regularized least-squares
- nonlinear least-squares
- Gauss-Newton method

Multi-objective least-squares

in many problems we have two (or more) objectives

- we want $J_1 = ||Ax y||^2$ small
- and also $J_2 = ||Fx g||^2$ small

 $(x \in \mathbf{R}^n \text{ is the variable})$

- usually the objectives are competing
- we can make one smaller, at the expense of making the other larger

common example: F=I, g=0; we want $\|Ax-y\|$ small, with small x

Plot of achievable objective pairs

plot (J_2, J_1) for every x:

note that $x \in \mathbf{R}^n$, but this plot is in \mathbf{R}^2 ; point labeled $x^{(1)}$ is really $\left(J_2(x^{(1)}),J_1(x^{(1)})\right)$

- shaded area shows (J_2, J_1) achieved by some $x \in \mathbf{R}^n$
- clear area shows (J_2,J_1) not achieved by any $x \in \mathbf{R}^n$
- boundary of region is called *optimal trade-off curve*
- corresponding x are called *Pareto optimal* (for the two objectives $||Ax y||^2$, $||Fx g||^2$)

three example choices of x: $x^{(1)}$, $x^{(2)}$, $x^{(3)}$

- $x^{(3)}$ is worse than $x^{(2)}$ on both counts $(J_2 \text{ and } J_1)$
- $x^{(1)}$ is better than $x^{(2)}$ in J_2 , but worse in J_1

Weighted-sum objective

ullet to find Pareto optimal points, i.e., x's on optimal trade-off curve, we minimize weighted-sum objective

$$J_1 + \mu J_2 = ||Ax - y||^2 + \mu ||Fx - g||^2$$

- ullet parameter $\mu \geq 0$ gives relative weight between J_1 and J_2
- points where weighted sum is constant, $J_1 + \mu J_2 = \alpha$, correspond to line with slope $-\mu$ on (J_2, J_1) plot

- $\bullet \ x^{(2)}$ minimizes weighted-sum objective for μ shown
- ullet by varying μ from 0 to $+\infty$, can sweep out entire optimal tradeoff curve

Minimizing weighted-sum objective

can express weighted-sum objective as ordinary least-squares objective:

$$||Ax - y||^2 + \mu ||Fx - g||^2 = \left\| \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix} x - \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix} \right\|^2$$
$$= \left\| \tilde{A}x - \tilde{y} \right\|^2$$

where

$$\tilde{A} = \begin{bmatrix} A \\ \sqrt{\mu}F \end{bmatrix}, \qquad \tilde{y} = \begin{bmatrix} y \\ \sqrt{\mu}g \end{bmatrix}$$

hence solution is (assuming $ilde{A}$ full rank)

$$x = \left(\tilde{A}^T \tilde{A}\right)^{-1} \tilde{A}^T \tilde{y}$$
$$= \left(A^T A + \mu F^T F\right)^{-1} \left(A^T y + \mu F^T g\right)$$

Example

- unit mass at rest subject to forces x_i for $i-1 < t \le i$, $i=1,\ldots,10$
- $y \in \mathbf{R}$ is position at t = 10; $y = a^T x$ where $a \in \mathbf{R}^{10}$
- $J_1 = (y-1)^2$ (final position error squared)
- $J_2 = ||x||^2$ (sum of squares of forces)

weighted-sum objective: $(a^Tx - 1)^2 + \mu ||x||^2$

optimal x:

$$x = \left(aa^T + \mu I\right)^{-1} a$$

optimal trade-off curve:

- ullet upper left corner of optimal trade-off curve corresponds to x=0
- ullet bottom right corresponds to input that yields y=1, i.e., $J_1=0$

Regularized least-squares

when F = I, g = 0 the objectives are

$$J_1 = ||Ax - y||^2, J_2 = ||x||^2$$

minimizer of weighted-sum objective,

$$x = \left(A^T A + \mu I\right)^{-1} A^T y,$$

is called *regularized* least-squares (approximate) solution of $Ax \approx y$

- also called *Tychonov regularization*
- for $\mu > 0$, works for any A (no restrictions on shape, rank . . .)

estimation/inversion application:

- Ax y is sensor residual
- prior information: x small
- or, model only accurate for x small
- ullet regularized solution trades off sensor fit, size of x

Nonlinear least-squares

nonlinear least-squares (NLLS) problem: find $x \in \mathbb{R}^n$ that minimizes

$$||r(x)||^2 = \sum_{i=1}^m r_i(x)^2,$$

where $r: \mathbf{R}^n \to \mathbf{R}^m$

- r(x) is a vector of 'residuals'
- reduces to (linear) least-squares if r(x) = Ax y

Position estimation from ranges

estimate position $x \in \mathbb{R}^2$ from approximate distances to beacons at locations $b_1, \ldots, b_m \in \mathbb{R}^2$ without linearizing

- we measure $\rho_i = ||x b_i|| + v_i$ (v_i is range error, unknown but assumed small)
- NLLS estimate: choose \hat{x} to minimize

$$\sum_{i=1}^{m} r_i(x)^2 = \sum_{i=1}^{m} (\rho_i - ||x - b_i||)^2$$

Gauss-Newton method for NLLS

NLLS: find
$$x \in \mathbf{R}^n$$
 that minimizes $||r(x)||^2 = \sum_{i=1}^m r_i(x)^2$, where $r: \mathbf{R}^n \to \mathbf{R}^m$

- in general, very hard to solve exactly
- many good heuristics to compute locally optimal solution

Gauss-Newton method:

```
given starting guess for x repeat linearize r near current guess new guess is linear LS solution, using linearized r until convergence
```

Gauss-Newton method (more detail):

• linearize r near current iterate $x^{(k)}$:

$$r(x) \approx r(x^{(k)}) + Dr(x^{(k)})(x - x^{(k)})$$

where Dr is the Jacobian: $(Dr)_{ij} = \partial r_i/\partial x_j$

write linearized approximation as

$$r(x^{(k)}) + Dr(x^{(k)})(x - x^{(k)}) = A^{(k)}x - b^{(k)}$$
$$A^{(k)} = Dr(x^{(k)}), \qquad b^{(k)} = Dr(x^{(k)})x^{(k)} - r(x^{(k)})$$

ullet at kth iteration, we approximate NLLS problem by linear LS problem:

$$||r(x)||^2 \approx ||A^{(k)}x - b^{(k)}||^2$$

• next iterate solves this linearized LS problem:

$$x^{(k+1)} = \left(A^{(k)T}A^{(k)}\right)^{-1}A^{(k)T}b^{(k)}$$

• repeat until convergence (which *isn't* guaranteed)

Gauss-Newton example

- 10 beacons
- + true position (-3.6, 3.2); \diamondsuit initial guess (1.2, -1.2)
- ullet range estimates accurate to ± 0.5

NLLS objective $||r(x)||^2$ versus x:

- for a linear LS problem, objective would be nice quadratic 'bowl'
- ullet bumps in objective due to strong nonlinearity of r

objective of Gauss-Newton iterates:

- \bullet $x^{(k)}$ converges to (in this case, global) minimum of $\|r(x)\|^2$
- convergence takes only five or so steps

- final estimate is $\hat{x} = (-3.3, 3.3)$
- estimation error is $||\hat{x} x|| = 0.31$ (substantially smaller than range accuracy!)

convergence of Gauss-Newton iterates:

useful varation on Gauss-Newton: add regularization term

$$||A^{(k)}x - b^{(k)}||^2 + \mu ||x - x^{(k)}||^2$$

so that next iterate is not too far from previous one (hence, linearized model still pretty accurate)