RegEx

Format:

- 1. $a \in \Sigma$, "a" is a RegEx over Σ , where L(a) = {a}
- 2. $b \in \Sigma$, "b" is a RegEx over Σ , where L(b) = {b}
- 3. $c \in \Sigma$, "c" is a RegEx over Σ , where $L(c) = \{c\}$
- 4. $\lambda \in \Sigma$, " λ " is a RegEx over Σ , where $L(\lambda) = {\lambda}$
- 5. "\Sigma" is a RegEx, $L(\Sigma) = \Sigma = \{a, b, c\}$ (of length 1, so $\Sigma \circ \Sigma$ has length 2)
- 6. "\Sigma" is a RegEx (line 8), so "(\Sigma)\sigma" is a RegEx over \Sigma, L((\Sigma)\sigma", set of all strings
- 7. "b" and "a" are RegEx (lines 2, 1), so "(b \cup a)" is a RegEx over Σ , L(b \cup a) = L(b) \cup L(a)
- 8. " $(b \cup a)$ " is a RegEx (line 4), so " $((b \cup a))^*$ " is a RegEx over Σ , $L(((b \cup a))^*) = \{b,c\}^*$, set of all strings that do not include an "a"
- 9. "a" and "c" are RegEx (lines 1, 3), so " $(a \circ c)$ " is a RegEx over Σ , $L(a \circ c) = L(a) \circ L(b)$, set of size one
- 10. " $((b \cup a))^*$ " and " $(a \circ c)$ " are RegEx (lines 5, 4), so " $(((b \cup a))^* \circ (a \circ c))$ " is a RegEx over Σ , $L(((b \cup a))^*) \circ L(a \circ c)$, set of strings where any of "b" or "a" come before the last "a", followed by a "c"
- 11. "c" and " λ " are RegEx (line 3, 4), so " $(c \cup \lambda)$ " is a RegEx over Σ , $L(c \cup \lambda) = L(c) \cup L(\lambda)$, set of strings that include at most 1 (or no) "c's"

DFA

To recognize this language, the DFA needs to remember cases to hold $\omega \in \Sigma^*$: List cases (e.g. $\{S_0 = \omega \in \Sigma \star | \omega \text{ does not include an "a's"}\}$; corresponds to state q_0)

Sanity Check 1: If it has a finite number of subsets

List subsets (e.g. S_0, S_{od}, S_{ev})

Sanity Check 2: Every string belongs to exactly one subset

e.g. Every string must include some fixed number of "a's". Zero $(\omega \in S_0)$, odd $(\omega \in S_{od})$, or at least two and even $(\omega \in S_{ev})$. Cannot be in more than one of these sets simultaneously: $S_0 \cap S_{od} = S_0 \cap S_{ev} = S_{od} \cap S_{ev} = \emptyset$

Sanity Check 3: If states are described as above...

e.g. Then, $S_0 \cap L = S_{od} \cap L = \emptyset$, while $S_{ev} \subseteq L$. From this, it follows that q_{ev} is an accepting state, hence, $q_{ev} \in F$

Sanity Check 4: Transitions must be well-defined

e.g. Transitions out of each are as follows:

- Number of "b's" and "c's" don't change the number of "a's" we need:
 - $-\{\omega \cdot b | \omega \in S_0\} \subseteq S_0, \{\omega \cdot c | \omega \in S_0\} \subseteq S_0$
 - (Same idea for sets S_{od}, S_{ev})

Thus, retained in the same state.

- Number of "a's" change when you add an "a":
 - Zero to one: $\{\omega \cdot a | \omega \in S_0\} \subseteq S_{od}$, well-defined transition from $q_0 \to q_{od}$ for "a"
 - One to at least two: $\{\omega \cdot a | \omega \in S_{od}\} \subseteq S_{ev}$, well-defined transition from $q_{od} \to q_{ev}$ for "a"
 - Even number to odd that is at least two: $\{\omega \cdot a | \omega \in S_{ev}\} \subseteq S_{od}$, well-defined transition from $q_{ev} \to q_{od}$ for "a"

All sanity checks passed, we know that S_0 is the same as $\{\omega \in \Sigma^* | \delta^*(q_0, \omega) = q_0\}$ (Same for others), where S_0, \ldots are the sets of strings described at the beginning of this answer. Since $F = \{q_{ev}\}, L = S_{ev}$ is the language of this DFA - as desired.

DFA NFA Equivalence

Format:

- 1. 1st state introduced: initally, $\hat{Q} = \emptyset$, $\hat{R} = \{\hat{q_0}\}$, so $\hat{q_0}$ is $Cl\lambda(q_0) = \{q_0\}$. Our current DFA: (Drawing of DFA w/ start state) We pick $\hat{q_0}$ since it's the only state in \hat{R} so far:
 - (a) Transitions out for $\omega = a$ for \hat{q}_0 $\bigcup_{r \in S_0} \bigcup_{s \in \delta(r,a)} Cl\lambda(s) = \bigcup_{r \in \{q_0\}} \bigcup_{s \in \delta(r,a)} Cl\lambda(s)$ $= \bigcup_{s \in \delta(q_0,a)} Cl\lambda(s)$ $= \bigcup_{s \in \{q_0\}} Cl\lambda(s)$ $= Cl\lambda(q_0)$ $= \{q_0\} = S_0$

Same as S_0 , corresponding to state \hat{q}_0 . Thus, $\hat{\delta}(\hat{q}_0, a) = \hat{q}_0$

- (b) Transitions out for $\omega = b$ for \hat{q}_0 (Same outcome as $\omega = a$)
- (c) Transitions out for $\omega = c$ for $\hat{q_0}$ $\bigcup_{r \in S_0} \bigcup_{s \in \delta(r,c)} Cl\lambda(s) = \bigcup_{r \in \{q_0\}} \bigcup_{s \in \delta(r,c)} Cl\lambda(s)$ $= \bigcup_{s \in \delta(q_0,c)} Cl\lambda(s)$ $= \bigcup_{s \in \{q_0,q_1\}} Cl\lambda(s)$ $= Cl\lambda(q_0) \cup Cl\lambda(q_1)$ $= \{q_0\} \cup \{q_1\} = \{q_0,q_1\}$

This set does not correspond to any states in $\hat{Q} \cup \hat{R}$, so it will be a new set $S_1 = \{q_0, q_1\}$ corresponding to the state \hat{q}_1 .

Now, $\hat{Q} = \{\hat{q_0}\}, \hat{R} = \{\hat{q_1}\}$. Our DFA: (draw DFA w/ state $\hat{q_0} \rightarrow \hat{q_1}$)

- 2. Since only $\hat{R} = \{\hat{q}_1\}$, set state to \hat{q}_1
 - (a) Transitions out for $\omega = a$ for $\hat{q}_1 \to \text{same process}$, set $S_2 = \{q_0, q_2\}$
 - (b) Transitions out for $\omega = b$ for $\hat{q}_1 \to \text{corresponds}$ to state \hat{q}_0 (b transition back to \hat{q}_0)
 - (c) Transitions out for $\omega = c$ for $\hat{q}_1 \to \text{corresponds}$ to state \hat{q}_1 (c transition remain in \hat{q}_1)

Now, $\hat{Q} = \{\hat{q}_0, \hat{q}_1\}, \hat{R} = \{\hat{q}_2\}$. Our DFA: (draw DFA w/ state \hat{q}_2)

- 3. Repeat until no more new states found
- Since $\hat{R} = \emptyset$, we have to find set \hat{F} of accepting states:
 - $-S_0 = \{q_0\}$ corresponds to $\hat{q_0}$, and $S_0 \cap F = \{q_0\} \cap \{q_2\} = \emptyset$
 - $-S_1 = \{q_0, q_1\}$ corresponds to \hat{q}_1 , and $S_0 \cap F = \{q_0, q_1\} \cap \{q_2\} = \emptyset$
 - $-S_2 = \{q_0, q_2\}$ corresponds to $\hat{q_2}$, and $S_0 \cap F = \{q_0, q_2\} \cap \{q_2\} = \{\hat{q_2}\} \neq \emptyset, \hat{q_2} \in \hat{F}$
 - $-S_3 = \{q_0, q_1, q_2\}$ corresponds to \hat{q}_3 , and $S_0 \cap F = \{q_0, q_1, q_2\} \cap \{q_2\} = \{\hat{q}_2\} \neq \emptyset, \hat{q}_3 \in \hat{F}$

Thus, $\hat{F} = \{\hat{q}_2, \hat{q}_3\}$. Final DFA:

Non-regular languages

Claim:

Proof by Contradiction.

- Suppose that L is a regular language. It follows by the pumping lemma that there exists a positive int p, that for every string $s \in \Sigma^*$ such that $s \in L$ and $|s| \ge p$, there exists string $x, y, z \in \Sigma^*$ such that s = xyz and the following properties are satisfied:
 - 1. $xy^iz \in L$ for every int i such that $i \ge 0$. 2. y > 0 (so $y \ne \lambda$). 3. $|xy| \le p$
- Let $s=a^k$, where $k=2^p$. Then $s\in L$, since $|s|=k=2^p=2^l$ for int l=p, and $|s|=2^p\geq p$. It follows that there exists strings $x,y,z\in \Sigma^*$ such that s=xyz and properties 1, 2, 3 are all satisfied.
 - Property 3: |xy| = h for some int h such that $0 \le h \le p$. Since $s = xyz = a^{(2^p)}$, xy is the prefix, a^h , of len h and $z = a^{(2^p h)}$ is the suffix, $a^{(2^p h)}$, of s with len $2^p h$
 - Property 2: |y| > 0, so that |y| = l for some int l such that $1 \le l|y| \le |xy| = h$. Furthermore, y is the suffix, a^l , of xy with len l and $x = a^{h-l}$ is the prefix, a^{h-l} , of xy with len |xy| |y| = h l

In summary, $x = a^{a-l}, y = a^l, z = a^{(2^p - h)}$

- Property 1: Let i = 1. Then, it follows by above that string $xy^iz = xy^2z$ is also in the language l.