2023 山东省队第一轮集训

Day 4

时间: 2023 年 4 月 20 日 08:00 ~ 13:00

题目名称	切割大师	静态顶树	染色序列
题目类型	传统型	传统型	传统型
可执行文件名	grandmaster	toptree	circle
输入文件名	grandmaster.in	toptree.in	circle.in
输出文件名	grandmaster.out	toptree.out	circle.out
每个测试点时限	1.0 秒	3.0 秒	1.0 秒
内存限制	1 GiB	1 GiB	1 GiB
子任务数目	20	25	10
测试点是否等分	是	是	是
预测试点数目	3	6	5

提交源程序文件名

对于 C++ 语言	grandmaster.cpp	toptree.cpp	circle.cpp
-----------	-----------------	-------------	------------

编译选项

对于 C++ 语言	-lm -O2 -std=c++17
-----------	--------------------

注意事项:

- 1. 选手提交的源文件必须存放在建立好的子文件夹中(该文件夹与试题同名)。
- 2. 文件名(包括程序名和输入输出文件名)必须使用英文小写。
- 3. C++ 中函数 main() 的返回值类型必须是 int, 值必须为 0。
- 4. 对于因未遵守以上规则对成绩造成的影响,相关申诉不予受理。
- 5. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 6. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 7. 程序可使用的栈空间大小与该题内存空间限制一致。
- 8. 在终端下可使用命令 <u>ulimit -s unlimited</u> 将栈空间限制放大,但你使用的栈空间大小不应超过题目限制。

切割大师 (grandmaster)

【题目描述】

你面前有n件物品,第i件物品的体积为 V_i ,质量为 m_i 。你可以认为每一件物品的质量都是均匀分布的。

现在,你可以进行若干次切割操作。对于一次切割操作,你可以指定一个物品 i 与 实数 $p(0 \le p \le 1)$,随后将第 i 件物品切割成两件全新的物品。其中一件物品的体积为 $p \cdot V_i$,质量为 $p \cdot m_i$,另一件物品的体积为 $(1-p) \cdot V_i$,质量为 $(1-p) \cdot m_i$ 。

• **为了描述的方便**,我们将你第 k 次操作时,原来的第 i 件物品的删除,将新的体积为 pV_i ,质量为 pm_i 的物品标号为 i,将新的体积为 $(1-p)V_i$,质量为 $(1-p)m_i$ 的物品标号为 n+k。

现在,你能够进行**不超过 2 次**切割操作,在切割完成后,你想要将**所有的物品**分至两个集合 $S, T(S \cap T = \emptyset)$ 。定义这两个集合的差异为:

$$\varepsilon = \frac{|\sum_{i \in S} V_i - \sum_{i \in T} V_i|}{\sum_{i=1}^{n+k} V_i} + \frac{|\sum_{i \in S} m_i - \sum_{i \in T} m_i|}{\sum_{i=1}^{n+k} m_i}$$

你认为两个集合的差异越小,这种分配方式的优越性就越高,对应的切割操作就越优秀,因此你十分好奇,在所有的切割与分配方法中, ε 的值最小是多少,并需要找到一组方案。

【输入格式】

从文件 grandmaster.in 中读入数据。

请注意,本题的每个测试点中包含多组测试数据。

输入的第一行包含一个整数 T,表示数据组数。对于每组数据:

- 输入的第一行包含一个整数 n, 表示物品的数量。
- 接下来一行,包含n个整数 V_1,V_2,\cdots,V_n 。
- 接下来一行,包含 n 个整数 m_1, m_2, \cdots, m_n 。

【输出格式】

输出到文件 grandmaster.out 中。

对于每组数据,输出包含两部分。

- 输出的第一部分描述你的切割方案:
 - 输出的第一行包含一个整数 $k(0 \le k \le 2)$,表示你进行的切割次数。
 - 接下来 k 行,第 j 行包含一个整数 $i(1 \le i < n+j)$ 与实数 $p(0 \le p \le 1)$,表述你的第 j 次切割方案。

• 接下来一部分描述你的划分方案:

输出一行 n+k 个 $\{0,1\}$ 内的整数,第 i 个整数为 0 表示该物品分配至集合 S,否则分配至集合 T。

• 即,对于每组数据,你的输出应包含恰好 k+2 行,且除实数 p 外所有数字均为非负整数。

使得 ε 最小化的方案可能有很多种,你可以输出任意一种。

为了避免潜在的精度误差,设最优解得到的 ε 的值为 $\bar{\varepsilon}$,你得到的值为 ε_0 ,则当 $|\bar{\varepsilon}-\varepsilon_0|<10^{-6}$ 时,你的输出将被判定正确。

【样例1输入】

```
      1
      3

      2
      3

      3
      1
      1
      2

      4
      1
      3
      4

      5
      4
      4
      4
      4

      6
      2
      2
      3
      3

      9
      4
      1
      1

      10
      4
      1
      1
```

【样例1输出】

【样例1解释】

对于第一组测试数据,不需要任何切割操作,各物品的状态如下:

物品 i	V_i	m_i	所属集合
1	1	1	S
2	1	3	S
3	2	4	T

容易计算得到 $\sum_{i \in S} V_i = 2$, $\sum_{i \in S} m_i = 4$, $\sum_{i \in T} V_i = 2$, $\sum_{i \in T} m_i = 4$, $\varepsilon = 0$ 。对于第二组测试数据,不需要任何切割操作,各物品的状态如下:

物品 i	V_i	m_i	所属集合
1	2	1	S
2	2	2	T
3	3	3	T
4	3	4	S

容易计算得到 $\sum_{i \in S} V_i = 5$, $\sum_{i \in S} m_i = 5$, $\sum_{i \in T} V_i = 5$, $\sum_{i \in T} m_i = 5$, $\varepsilon = 0$.

对于第三组测试数据,将物品 1 切割下来 75%,剩余部分得到新的物品 4;各物品的状态如下:

物品i	V_i	m_i	所属集合
1	3	3	S
2	1	1	T
3	1	1	T
4	1	1	T

容易计算得到 $\sum_{i \in S} V_i = 3$, $\sum_{i \in S} m_i = 3$, $\sum_{i \in T} V_i = 3$, $\sum_{i \in T} m_i = 3$, $\varepsilon = 0$.

【样例 2】

见选手目录下 grandmaster/grandmaster2.in 与 grandmaster/grandmaster2.ans。

本组样例满足性质 A。

【样例 3】

见选手目录下 grandmaster/grandmaster3.in 与 grandmaster/grandmaster3.ans。

【子任务】

对于 100% 的数据, $1 \le T \le 20, 1 \le n \le 10^5, 1 \le V_i, m_i \le 10^6$ 。

测试点	$n \leq$	V_i, m_i	特殊性质
$1 \sim 2$	3	≤ 10	无
$3 \sim 4$	10		
$5 \sim 6$	16	$< 10^{6}$	A
$7 \sim 9$	20	≥ 10	
$\overline{10 \sim 12}$	30		В
$\overline{13 \sim 14}$		$V_i = 1, m_i \le 3$	
$\overline{15 \sim 16}$	1.5×10^{3}	$V_i = 1$	无
$\overline{17 \sim 18}$		< 106	
$19 \sim 20$	10^{5}	$\leq 10^6$	

下面是一些补充说明:

- **性质 A:** 保证存在一组最优方案使得 k=0。
- **性质 B**: 保证存在一组最优方案,使得每次切割的参数 p 可以写成 a/b 的形式,且 $1 \le a,b \le 10, (a,b) = 1$ 。

【提示】

3 years ago, # | 🏠

+208

The quality of most problems of GP of Serbia is comparable with GP of Siberia.

→ <u>Repl</u>

静态顶树 (toptree)

【题目描述】

题目还是简单一点好。

给定一棵 N 个点的树 T,其顶点标号为 $1 \sim n$,边集记为 E。第 i 个点有一个权值 a_i 。设 $S \subseteq E$ 为边集 S 的子集,我们定义 f(S) 的值如下:

- 考虑一张新的图 T', T' 的点集与 T 相同, 边集为 S。
- T' 中每个联通块的权值为该联通块所有点权值的最小值。
- f(S) 的值即为 T' 所有联通块权值之和。

现在,你需要计算 $\sum_{S\subseteq E} f(S)$ 。由于这个值很大,因此你只需要输出其对 998 244 353 取模后的值即可。

【输入格式】

从文件 toptree.in 中读入数据。

输入的第一行包含一个整数 n, 描述树的点数。

接下来一行,包含n个整数 a_1,a_2,\cdots,a_n ,描述每个点的权值。

接下来 n-1 行,每行两个整数 u_i, v_i ,描述树的一条边。

【输出格式】

输出到文件 toptree.out 中。

输出一行一个整数,表示答案,取模 998 244 353。

【样例1输入】

```
1 3
2 114 514 1919
3 1 2
4 1 3
```

【样例 1 输出】

1 5322

【样例1解释】

树 T 的边集 E 包含两条边,分别为 $e_1 = (1,2), e_2 = (1,3)$ 。

- $\stackrel{\text{def}}{=} S = \emptyset$ ft, f(S) = 114 + 514 + 1919 = 2547.
- $\stackrel{\text{def}}{=} S = \{e_1\} \text{ fb}, \ f(S) = 114 + 1919 = 2033.$
- $\stackrel{\text{def}}{=} S = \{e_2\} \text{ iff}, \ f(S) = 114 + 514 = 628.$
- $\stackrel{\text{def}}{=} S = \{e_1, e_2\} \text{ fb}, f(S) = 114.$

因此所有 f(S) 之和为 2547 + 2033 + 628 + 114 = 5322。

【样例 2 输入】

【样例 2 输出】

1 2464

【样例 3】

见选手目录下 *toptree/toptree3.in* 与 *toptree/toptree3.ans*。 本组样例满足性质 A。

【样例 4】

见选手目录下 *toptree/toptree4.in* 与 *toptree/toptree4.ans*。 本组样例满足性质 B。

【样例 5】

见选手目录下 *toptree/toptree5.in* 与 *toptree/toptree5.ans*。 本组样例满足性质 C。

【样例 6】

见选手目录下 toptree/toptree6.in 与 toptree/toptree6.ans。

【子任务】

对于 100% 的数据, $2 \le n \le 3 \times 10^5$, $1 \le a_i \le 10^9$ 。保证输入的图是一棵合法的树。

测试点编号	$n \leq$	特殊性质
1	18	
2	100	无
$3 \sim 4$	5 000	
$5 \sim 8$		A
$9 \sim 11$	10^{5}	В
$12 \sim 13$	10	С
$14 \sim 18$		
$19 \sim 22$	2×10^5	无
$23 \sim 25$	3×10^5	

• 性质 A: 保证 $1 \le a_i \le 2$ 。

• 性质 B: 保证 $u_i = i, v_i = i + 1$ 。

• 性质 C: 保证 $u_i = 1, v_i = i + 1$ 。

【提示】

今天题非常简单!!

染色序列 (circle)

【题目描述】

这题本来是个染色序列问题,但是因为 ShanLunJiaJian 老师把染色序列图图了,所以这道题变成了别的题。

有 n 个整数排成一圈,定义一次操作为: 选择其中一个整数 a,将其变为 -a,并使圈上与其相邻的两个整数加上 a。

你希望进行若干次操作,使得最终所有的整数均非负。求出最小的操作次数。

【输入格式】

从文件 circle.in 中读入数据。

每个测试点中包含多组测试数据。

输入的第一行包含一个正整数 T,表示测试数据组数。对于每组测试数据:

输入的第一行包含一个正整数 n。

接下来一行, n 个整数 a_1, a_2, \dots, a_n , 这些整数按顺序排成一圈。

【输出格式】

输出到文件 circle.out 中。

对于每组测试数据,仅一行一个整数。如果能够使所有整数均变为非负的,输出最小的操作次数;如果不能,则输出 -1。

【样例1输入】

```
1 3 2 3 3 3 4 3 5 2 2 -5 6 3 7 0 0 0
```

【样例1输出】

```
1 5 2 -1
```

3 0

【样例1解释】

初始 $2,2,-3 \Longrightarrow -1,-1,3 \Longrightarrow 1,-2,2 \Longrightarrow -1,2,0 \Longrightarrow 1,1,-1 \Longrightarrow 0,0,1$ 达到目标,操作次数为 5,且显然无法更优。

初始 2,2,-5,显然无法达到目标。

初始 0,0,0, 无需操作即已经达到目标。

【样例 2 输入】

```
1 4
2 6
3 1 -1 4 5 -1 4
4 7
5 1 9 1 9 -8 1 0
6 6
7 114 514 -19 -19 8 10
8 8
9 1 -1 1 -1 1 -1 1 -1
```

【样例2输出】

```
1 2 2 4 3 7 4 -1
```

【样例 3】

见选手目录下 *circle/circle3.in* 与 *circle/circle3.ans*。

【样例 4】

见选手目录下 *circle/circle4.in* 与 *circle/circle4.ans*。

【样例 5】

见选手目录下 circle/circle5.in 与 circle/circle5.ans。

【子任务】

对于 100% 的数据, $1 \le T \le 10, 1 \le n \le 10^5, -10^4 \le a_i \le 10^4$ 。

测试点编号	$n \leq$	特殊性质
1	3	10 / a / 10
2	50	$-10 \le a_i \le 10$
$\overline{3 \sim 4}$	2 000	无
5	5 000	
6		$\sum a_i = 1$
7	3×10^{4}	$-10 \le \sum a_i \le 10$
8		无
$9 \sim 10$	10^{5}	

下面是一些补充说明:

• $\sum a_i$ 指单组测试数据中所有 a_i 之和。

【提示】

(这不是在说这道题,那道题已经被换掉了)