Содержание 1

Алгебраическая геометрия и теория чисел

Содержание

1.	Hop	мированные поля	2
	1.1	Нормированное поле. Неархимедовы нормы.	2
	1.2	Эквивалентные нормы	7
	1.3	Пополнение метрических пространств	2
	1.4	Пополнение нормированного поля	E

1. Нормированные поля

1.1 Нормированное поле. Неархимедовы нормы.

Здесь и вдальнейшем будем полагать F полем, хотя многие вещи работают и для кольца (а для области целостности существует единственное продолжение на поле частных).

Definition 1. Нормой (нормированием, абсолютным значением) на поле F называют отображение $\|\cdot\|$: $F \to \mathbb{R}_{>0}$, удовлетворяющее следующим свойствам:

- 1. $||x|| = 0 \Leftrightarrow x = 0$.
- 2. $\forall x, y \in F \|xy\| = \|x\| \|y\|$.
- 3. $\exists C > 0 : \forall x, y \in F$:

$$||x + y|| \leq \max(x, y)$$

Пара $(F, \|\cdot\|)$ называется нормированным полем.

Remark 1. Тем, кто уже до этого видел определение нормы, это определение может показаться странным, так как обычно вместо третьего свойства требуют неравенство треугольника:

$$\forall x, y \in F \|x + y\| \le \|x\| + \|y\|$$

Ясно, что третье свойство следует из неравенства треугольника с C=2. Ниже мы покажем и обратную импликацию.

Ясно, что любая норма задаёт метрику $d(x,y) = \|x-y\|$, а любая метрика индуцирует топологию стандартным образом.

Example 1. Если $F \leq \mathbb{C}$, то подходит $|\cdot|$ (модуль комплексного числа). Если $F \leq \mathbb{R}$ или $F \leq \mathbb{Q}$, то подходит $|\cdot|$.

Example 2. На любом поле можно ввести тривиальную норму (иногда соответствующую ей метрику называют метрикой лентяя):

$$||x|| = \begin{cases} 0, x = 0 \\ 1, x \neq 0 \end{cases}$$

Theorem 1. Если в определении 1 постоянная С равна 2, то норма удовлетворяет неравенству треугольника.

Доказательство. Сначала отметим, что если $n, m \in \mathbb{N}, \ n \leq 2^m$, то выполняется оценка:

$$||x_1 + x_2 + \ldots + x_n|| \le C^m \cdot ||\max_{1 \le k \le n} ||x_k||$$

Тогда мы можем провести оценки следующим образом:

$$\|x+y\|^{n} = \|(x+y)^{n}\| = \|\sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}\| \le 2(n+1) \max_{0 \le k \le n} \|\binom{n}{k} x^{k} y^{n-k}\| \le 2(n+1) \max_{0 \le k \le n} \left(2\binom{n}{k} \|x\|^{k} \|y\|^{n-k}\right) \le 4(n+1)(\|x\| + \|y\|)^{n}$$

Преобразуем это неравенство

$$\left(\frac{\|x+y\|}{\|x\|+\|y\|}\right)^n \leq 4(n+1) \leftrightarrow \frac{\|x+y\|}{\|x\|+\|y\|} \leq 4^{\frac{1}{n}} \cdot (n+1)^{\frac{1}{n}}$$

В пределе при $n \to \infty$ получаем:

$$\frac{\|x+y\|}{\|x\|+\|y\|} \le 1 \Leftrightarrow \|x+y\| \le \|x\| + \|y\|$$

 $Remark\ 2$. Пример $F=\mathbb{C}$ с нормой $\|\cdot\|=|\cdot|^{\alpha}$, $\alpha>1$ показывает, что константу C=2 нельзя улучшить.

Remark 3. Тем самым, мы показали, что норму можно понимать, как функтор из категории $\mathcal{F}ield$ в категорию Metr.

Corollary 1. Норма непрерывна.

Definition 2. Нормы, с постойнной C = 1 в определении 1 называют неархимедовыми. Нормы, не являющиеся неархимедовыми, называют архимедовыми.

Example 3. Тривиальная норма на любом поле *F* является неархимедовой.

Definition 3. Ясно, что любое $x \in \mathbb{Q}$ представимо в виде $x = p^n \cdot \frac{a}{b}$, где $a, b \in \mathbb{Z}$, $a \not \models p$, $a \not \models$

Definition 4. (Самое важное)

Пусть р — простое число. Тогда норму

$$||x||_p = \begin{cases} 0, x = 0 \\ p^{-v(p)}, x \neq 0 \end{cases}$$

на поле 🔘 называют р-адической нормой.

Remark 4. Ясно, что подоходит $r^{-v_p(x)}$, где r>1, но p брать удобно, так как для $x\in\mathbb{Q}^*$ справедлива формула произведения

$$1 = \prod_{p} |x| \cdot ||x||_{p}$$

Lemma 1. Если норма неархимедова, то для $x,y: ||x|| \neq ||y||$ выполняется $||x+y|| = \max ||x||, ||y||$.

Corollary 2. Рассмотрим $(F, \|\cdot\|)$, где норма $\|\cdot\|$ неархимедова. Тогда, если $b \in B_r(a)$, то $B_r(a) = B_r(b)$.

Corollary 3. (Забавное)

Если на поле F введена неархимедова норма F, то $\forall x,y,z \in F$ по крайней мере два числа из $\|x-y\|$, $\|x-z\|$, $\|y-z\|$ равны.

Иными словами, в метрическом пространстве (F,d) $(d(x,y) = \|x-y\|)$ все треугольники равнобедренные.

1.2 Эквивалентные нормы.

Пока не знаю, буду ли рассказывать.

1.3 Пополнение метрических пространств

Definition 5. Пусть (X, d_X) — метрическое пространство, $\mathcal{F}(X)$ — множество всех ограниченных функций из X в \mathbb{R} . Тогда введём расстояние d_∞ между функциями $f, g \in \mathcal{F}(X)$:

$$d_{\infty}(f,g) \stackrel{\text{def}}{=} \sup\{|f(x) - g(x)|, x \in X\}$$

Заметим, что определение корректно, так как функции ограничены.

Lemma 2. $(\mathcal{F}(X), d_{\infty})$ — метрическое пространство.

Доказательство. Проверим три аксиомы метрики:

- 1. Пусть f=g. Тогда |f(x)-g(x)|=0 для всякого $x\in X$, так что $d_{\infty}(f,g)=0$. Если же наоборот $d_{\infty}(f,g)=0$, то $0\leq |f(x)-g(x)|\leq \sup=0$, а значит f(x)=g(x) для всех $x\in X$, что и означает $f\equiv g$.
- 2. Так как |f(x) g(x)| = |g(x) f(x)|, то и $d_{\infty}(f, g) = d_{\infty}(g, f)$.
- 3. Рассмотрим три ограниченные функции $f, g, h \in \mathcal{F}(X)$, и покажем, что

$$d_{\infty}(f,g) + d_{\infty}(g,h) \geq d_{\infty}(f,h)$$

Мы знаем, что:

$$\forall x \in X : |f(x) - g(x)| + |g(x) - h(x)| \ge |f(x) - h(x)|$$

в силу неравенства треугольника для стандартной метрики на \mathbb{R} . Для всякого $\varepsilon > 0$ мы можем взять x_0 такой, что $|f(x_0) - h(x_0)| \ge \sup\{|f(x) - h(x)|, x \in X\} - \varepsilon$. Получаем, что

$$d_{\infty}(f,h) - \varepsilon = \sup\{|f(x) - h(x)|, x \in X\} - \varepsilon \le |f(x_0) - h(x_0)| \le$$

$$\leq |f(x_0) - g(x_0)| + |g(x_0) - h(x_0)| \leq d_{\infty}(f, g) + d_{\infty}(g, h)$$

а раз это верно для любого $\varepsilon > 0$, то искомое неравенство доказано.

Lemma 3. $\mathcal{F}(X)$ — полно.

Доказательство. Пусть f_n — фундаментальная последовательность функций. Тогда $\forall x_0 \in X : \{f_n(x_0)\}$ — также фундаментальная последовательность, так как $|f_n(x_0) - f_m(x_0)| \le \sup\{|f_n(x) - f_m(x)|, x \in X\}$. Следовательно,

$$\forall x_0 \in X : \exists \lim_{n \to \infty} f_n(x_0)$$

и сходимость по всем точкам равномерна, так как не зависит от выбора точки x_0 . Иными словами,

$$\exists f(x): \forall \varepsilon > 0: \exists N: \forall n > N: d_{\infty}(f_n, f) < \varepsilon$$

где $f(x_0)$ определяется как предел $\lim_{n\to\infty} f_n(x_0)$. Так что f(x) — функция, являющаяся пределом искомой последовательности функций.

Definition 6. Пусть (X, d_X) — метрическое пространство, $\mathcal{F}(X)$ — множество ограниченных функций из X в \mathbb{R} . Построим изометрическое вложение $k: X \to \mathcal{F}(X)$ следующим образом:

1. Если X — ограничено, то определим $k(x) = d_x$, где

$$\forall y \in X : d_x(y) \stackrel{\text{def}}{=} d_X(x, y)$$

 Φ ункция $d_{\rm r}$ ограничена, так как X ограничено. Заметим также, что

$$d_{\infty}(d_x,d_y) = \sup_{\mathbf{z}} |d_x(\mathbf{z}) - d_y(\mathbf{z})| = \sup_{\mathbf{z}} (d_X(x,\mathbf{z}) - d_X(\mathbf{z},y)) \le d_X(x,y)$$

однако равенство достигается при z=y, так что $d_{\infty}(d_x,d_y)=d_X(x,y)$, а значит вложение изометрическое.

2. Пусть X, возможно, не ограничено. Тогда определим $k(x) = d_x - d_{x_0}$ для некоторой фиксированной точки $x_0 \in X$, где

$$\forall y \in X : (k(x))(y) \stackrel{\text{def}}{=} d_{x}(y) - d_{x_{0}}(y) = d_{X}(x, y) - d_{X}(y, x_{0})$$

что есть ограниченная функция, так как $\forall y \in X : d_X(x,y) - d_X(y,x_0) \le d_X(x,x_0)$. Заметим, что это аналогичным образом будет изометрическим вложением:

$$d_{\infty}(d_x - d_{x_0}, d_y - d_{x_0}) = \sup_{\mathbf{z}} |d_x(\mathbf{z}) - d_{x_0}(\mathbf{z}) - d_y(\mathbf{z}) + d_{x_0}(\mathbf{z})| =$$

$$= \sup_{\mathbf{z}} (d_X(\mathbf{z}, \mathbf{z}) - d_X(\mathbf{z}, \mathbf{y})) \le d_X(\mathbf{x}, \mathbf{y})$$

где равенство достигается при z = y.

Любое метрическое пространство (X,d_X) имеет пополнение $(\overline{X},d_{\overline{X}})$, то есть такое метрическое пространство \overline{X} , что выполнено:

- 1. $X \subseteq \overline{X}$
- 2. X всюдю плотно в \overline{X}
- 3. $d_{\overline{X}}|_{X}=d_{X}$, то есть вложение из X в \overline{X} является изометрическим
- 4. $(\overline{X}, d_{\overline{X}})$ полно.

Доказательство. Возьмём изометрическое вложение Куратовского $k:X \to \mathcal{F}(X)$, и возьмём его замыкание в топологическом пространстве $\mathcal{F}(X)$ с топологией, индуцированной метрикой d_{∞} — назовём это замыкание \overline{X} . Заметим, что

- 1. $X \subseteq \overline{X}$ естественным образом
- 2. X всюду плотно в \overline{X} , так как любое множество всюду плотно в своём замыкании
- 3. Вложение X в \overline{X} изометрическое, так как оно изометрическое и во всё пространство $\mathcal{F}(x)$
- 4. \overline{X} полно как замкнутое подмножество полного пространства.

Remark 5. Пополнение метрического пространства единственно с точностью до изометрии.

Remark 6. Выражение $X \subseteq \overline{X}$ тоже подразумевается с точностью до изометрии.

1.4 Пополнение нормированного поля.

Теперь мы умеем пополнять метрические пространства, но нам никто не гарантирует, что при пополнении поля по норме получится поле.

П