OE5450- Term Project

Panel method to find Added Mass and Radiation Damping of Heaving Buoy

Submitted by- Aditya Narayanan Roll No- OE13S013

Problem Statement

Using the frequency-domain boundary integral method with G = 1/r numerically solve the heave radiation problem of a vertical circular cylinder.

- 1. Cylinder diameter, D = 1 m
- 2. Cylinder draft, d = 3 m
- 3. Water depth, h = 10 m
- 4. Water depth, h = 10 m
- 5. Frequency, \$\sigma\$ from 0.1 to 5 [rad/s]

and also compute the heave added-mass and damping with total number of panels N=5000 and 10000.

Problem Statement

Using the frequency-domain boundary integral method with G = 1/r numerically solve the heave radiation problem of a vertical circular cylinder.

- 1. Cylinder diameter, D = 1 m
- 2. Cylinder draft, d = 3 m
- 3. Water depth, h = 10 m
- 4. Water depth, h = 10 m
- 5. Frequency from 0.1 to 5 [rad/s]

and also compute the heave added-mass and damping with total number of panels N=5000 and 10000.

Governing Equations

$$2\pi\varphi(P) + \int_{S_0} \varphi\left(\frac{\partial}{\partial n} \frac{1}{r} dS_0\right) + \int_{F_0} \varphi\left(\frac{\partial}{\partial n} \frac{1}{r} - \frac{1}{r} \frac{\sigma^2}{g}\right) dF_0 + \int_{B} \varphi\left(\frac{\partial}{\partial n} \frac{1}{r}\right) dB$$
$$+ \int_{\Sigma} \varphi\left(\frac{\partial}{\partial n} \frac{1}{r} - \frac{1}{r} ik\right) d\Sigma = \int_{S_0} \frac{1}{r} V_n dS_0$$

$$f_{jk} = -\sigma^2 \mu_{jk} - i\sigma \lambda_{jk}$$

$$f_{jk} = \rho \int_{S_0} \psi_j^r \frac{\partial \psi_k^r}{\partial n} dS_0$$

$$\mu_{jk} = \frac{\operatorname{Real}(f_{jk})}{-\sigma^2} \text{ and } \lambda_{jk} = \frac{\operatorname{Imag}(f_{jk})}{-\sigma}$$

Boundary Conditions

$$abla^2 \psi_j^r = 0, \text{ in } \forall$$

$$abla \psi_j^r \to 0, \text{ as } z \to -\infty$$

Free Surface Condition:

$$-\sigma^2 \psi_j^r + g \frac{\partial \psi_j^r}{\partial z} = 0$$
, on $z = 0$

Sommerfeld Radiation Condition:

$$-i\sigma\psi_j^r + \frac{\sigma}{K}\frac{\partial\psi_j^r}{\partial R} = 0$$
, at $R \to \infty$

n_total	n_body	sigma	mu	damping
20	8	0.628318	136.588	0.0109
500	200	0.628318	255.537	-0.019652
1125	450	0.628318	259.343	0.123192
1475	800	0.628318	261.899	0.121553
3125	1250	0.628318	261.469	-0.315908
3675	1800	0.628318	262.183	-0.313927
4152	1800	0.628318	263.062	-0.019075
10043	5000	0.628318	263.985	0.000283
14075	5000	0.628318	263.359	0.000553
9800	5000	5.026	257.71	-0.008731