From this, we can see once again that all edges in the weak order graph must be black. Indeed, we can argue just as in Subsection 4.1.2 that for i < n, if α_i is a non-compact imaginary root, it must be of type I. And since the cross action of s_{α_n} is to interchange c_{n-1} with c_{n+2} , and c_n with c_{n+1} , s_{α_n} reverses one of the two above strings of four consecutive signs in the event that α_n is non-compact imaginary for Q_{γ} . Thus $s_{\alpha_n} \times Q_{\gamma} \neq Q_{\gamma}$, and so all non-compact imaginary roots are of type I.

5.2.3 Example

With this combinatorial description of the orbit structure and the weak ordering in hand, consider the example n = 3. There are 10 orbits. See Figure B.12 of Appendix B for the weak order graph.

As usual, the closed orbits are parametrized by the clans consisting only of signs. To obtain an S-fixed representative of each, we simply take $w \in S_{2n}$ to be the permutation which assigns $\{1, \ldots, n\}$, in ascending order, to the coordinates of the + signs, and $\{n+1, \ldots, 2n\}$, also in ascending order, to the coordinates of the - signs. The skew-symmetry of the clandictates that this gives a signed element of S_{2n} , which corresponds to flag $\langle e_{w(1)}, \ldots, e_{w(2n)} \rangle \in X$. We then take the signed permutation in W which corresponds to this signed element of S_{2n} . This signed permutation is the one which assigns, for $i = 1, \ldots, n, i \mapsto \pm i$, depending on whether the sign in position i is a + or a -.

Since our formulas for classes of closed orbits are a bit complicated, we give a couple of examples. For the orbit (+, +, +, -, -, -), take w = id. Since g(w) = 0,

$$[Q_{(+,+,+,-,-,-)}] = \begin{vmatrix} c_2 & c_3 \\ c_0 & c_1 \end{vmatrix}.$$