AFCCC/TN-96/006

By
Capt Anthony J. Warren
Charles R. Coffin

DTIC QUALITY INSPECTED &

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

Air Force Combat Climatology Center 859 Buchanan Street Scott Air Force Base, Illinois 62225-5116

19961008 098

REVIEW AND APPROVAL STATEMENT

AFCCC/TN—96/006, Evaluation of the Homogeneity of Cloud Cover Climatology in Large Scale Regions, March 1996, has been reviewed and is approved for public release. There is no objection to unlimited distribution of this document to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Service (NTIS).

LARRÝ J. WHITE, Maj, USAF

Chief, Systems Division

JAMES S. PERKINS

Scientific and Technical Information

Program Manager

18 March 1996

REPORT DOCUMENTATION PAGE

2. Report Date: March 1996

3. Report Type: Technical Note

4. <u>Title</u>: Evaluation of the Homogeneity of Cloud Cover Climatology in Large Scale Regions

6. Authors: Capt Anthony J. Warren and Charles R. Coffin

7. <u>Performing Organization Name and Address</u>: Air Force Combat Climatology Center, 859 Buchanan St., Scott AFB, Ill., 62225-5116.

8. <u>Performing Organization Report Number</u>: AFCCC/TN—96/003

12. <u>Distribution/Availability Statement:</u> Approved for public release; distribution unlimited.

- 13. Abstract: This technical note documents a study AFCCC completed to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distribution for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH) database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology.
- 14. <u>Subject Terms</u>: REAL TIME NEPHANALYSIS, CONSOLIDATED EVALUATION GROUPINGS, POST MISSION EVALUATION REGIONS, CHI-SQUARE STATISTIC, PHI-COEFFICIENT, CLOUD COVER CLIMATOLOGY

15. Number of Pages: 28

17. Security Classification of Report: Unclassified

18. Security Classification of this Page: Unclassified

19. Security Classification of Abstract: Unclassified

20. Limitation of Abstract: UL

Standard Form 298

PREFACE

This technical note documents a study AFCCC conducted to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). This technical note documents a study AFCCC completed to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distributions for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH) database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology.

CONTENTS

CHAPTER 1.	INTRODUCTION	. 1
1.1	Background	. 1
CHAPTER 2.	STATISTICAL METHODS	. 3
2.1	Comparison of Distributions	. 3
2.2	Cloud Cover Data	. 3
2.3	Interpretation of the Phi-Coefficient	. 3
2.4	Results	. 4
APPENDIX	DEFINITION OF CONSOLIDATED EVALUATION GROUPS (CEGS)	. 15
REFERENCES		. 17

FIGURES

Figure 1.	Comparison of two distributions with a phi-coefficient of 0.05	. 4
Figure 2.	Comparison of two distributions with a phi-coefficient of 0.20	. 4
Figure 3.	Comparison of two distributions with a phi-coefficient of 0.35	. 4
Figure 4.	Comparison of two distributions with a phi-coefficient of 0.50	. 4
Figure 5.	Frequency distribution of phi-coefficients	. 4

TABLES

Table 1.	PME regions which had similar cloud cover climatologies to their corresponding CEGs	4
Table 2.	PME regions which had dissimilar cloud cover climatologies to their corresponding CEGs	6
Table 3.	Possible alternative CEG regions for PME regions listed in Table 2	7
Table 4.	Listing of the phi-coefficients for the comparison, by month, of each PME region with its original CEG	. 8
Table 5.	Listing of the bad months for the CEGs that can be considered reasonable alternatives to the original CEGs (see Table 3)	. 10
Table 6.	Listing of the phi-coefficients for the comparison, by month, of each PME region for the alternative CEGs.	. 13

EVALUATION OF THE HOMOGENEITY OF CLOUD COVER CLIMATOLOGY IN LARGE SCALE REGIONS

Chapter 1

INTRODUCTION

1.1 Background. AFCCC (formerly designated USAFETAC) completed a study to evaluate the homogeneity of cloud cover distributions within 19 regions known as Consolidated Evaluation Groupings (CEGs). The sizes of these CEGs vary widely and are composed of a variable number of smaller regions known as Post Mission Evaluation regions (PMEs). AFCCC computed the monthly cloud-cover frequency distributions for each of the CEGs and PMEs from the Air Force's Real Time Nephanalysis (RTNEPH)

database. In addition, AFCCC conducted a statistical comparison of the PMEs within each CEG to measure the homogeneity of the cloud climatology. The appendix contains a listing of the PMEs within each CEG.

Cloud climatology can vary greatly over very small distances, so caution must be used in concluding that the climatology in a given region is homogeneous. This study is a measure of the similarity of large-scale climatological features.

EVALUATION OF THE HOMOGENEITY OF CLOUD COVER CLIMATOLOGY IN LARGE SCALE REGIONS

Chapter 2

STATISTICAL METHODS

2.1 Comparison of Distributions. Testing the hypothesis, "Are two distributions statistically similiar?" is not straightforward since the term similiar is not precisely defined. The usual test hypothesis for comparing two distributions is, "Are two distributions statistically the same?" The chi-square test is used to evaluate this hypothesis. For each data category, the expected number E_i of observations, assuming the test hypothesis is true, is compared against the observed number of observations, O_i . The chi-square statistic, χ^2 is then calculated using (Fleiss, 1973):

$$\chi^2 = \sum_{i=1}^N \frac{(E_i - O_i)^2}{E_i}$$

where N is the total number of categories. This value is then compared against a critical value. If χ^2 exceeds this critical value, the test hypothesis is rejected.

There are several problems with the chi-square test. Primarily, it is very sensitive to sample size. Large sample sizes generally result in the test hypothesis being rejected; smaller samples result in the hypothesis being accepted. In addition, the test hypothesis is often too restrictive. Very often, the user is interested in knowing if two distributions are similar, not necessarily statistically identical. To overcome these two deficiencies, the phi-coefficient can be used. This coefficient is defined as (Fleiss, 1973):

$$\phi = \sqrt{\frac{\chi^2}{N}}$$

Values of the phi-coefficient close to zero indicate two distributions are nearly identical. Values around one indicate little similarity.

2.2 Cloud Cover Data. The cloud cover frequency distributions used in this study were initially divided into 21 classes. Class number 1 represented a cloud cover of zero percent. Class number 2 represented one to five percent, number 3 represented six to ten percent, and so on up to class number 21 which represented 100 percent cloud cover. The relative frequency of several classes was very small (in many cases less than one percent). It is inadvisable to

compute the chi-square statistic when classes have a low count. To overcome this we combined the original 21 classes into six larger classes:

- Class 1 (Old Class 1)
- Class 2 (Old Classes 2, 3, 4, 5, 6)
- Class 3 (Old Classes 7, 8, 9, 10, 11)
- Class 4 (Old Classes 12, 13, 14, 15)
- Class 5 (Old Classes 16, 17, 18, 19, 20)
- Class 6 (Old Class 21)

Chi-square and phi-coefficient values were computed for the cloud-cover frequency distribution of each PME and the corresponding CEG it was located within. A large amount of data was processed, as the monthly sample corresponding size within each PME was on the order of 10⁶.

2.3 Interpretation of the Phi-Coefficient. The phi-coefficient is a relative measure of the similarity of two distributions. As a guide to interpreting its significance, we have provided a comparison of four distribution sets for different values of the phi-coefficient: 0.05 (Figure 1), 0.20 (Figure 2), 0.35 (Figure 3), and 0.50 (Figure 4).

As a further guide to interpreting the phi-coefficient, Figure 5 depicts a plot of the relative frequency distribution and the cumulative frequency distribution of values of phi computed in this study. Based on the plots in Figures 1 through 5, we selected a value of phi of 0.35 as the discriminant between similar and non-similar distributions. About three-quarters of the distributions in this study were therefore classified as similar. In evaluating whether the cloud-cover climatology of a given PME was similar to that of the large CEG we used the following criterion: If the value of phi is less than 0.35 for 8 out of the 12 months, the climatologies are similar, otherwise the climatologies are classified as dissimilar.

2.4 Results. Table 1 lists those PME regions whose cloud-cover climatologies are similar to its corresponding CEG (see the appendix for a definition of each CEG). Table 2 lists those PME regions whose cloud-cover climatologies are dissimilar to its

Figure 1. Comparison of two distributions with a phi-coefficient of 0.05.

Figure 3. Comparison of two distributions with a phi-coefficient of 0.35.

Distribution of Phi Coefficient

Figure 5. Frequency distribution of phi-coefficients.

Figure 2. Comparison of two distributions with a phi-coefficient of 0.20.

Figure 4. Comparison of two distributions with a phi-coefficient of 0.50.

corresponding CEG. We conducted further analysis on these PME regions, comparing them against the remaining 18 CEGs to determine if this PME might better belong in one of these other regions. (We made no consideration for the proximity of the PME region to the CEG). Table 4 lists those CEGs in which at least three additional months had a phi-coefficient lower than 0.35. In some cases, no acceptable substitutes were found. Finally, Table 5 is listing of the phi-coefficients computed, by month, for the comparison of each PME region with its originally assigned CEG.

Due to the large numbers of bad matches in CEG 1, we broke this region up into two CEGs: 1a and 20. CEG 1a excluded the two arctic regions (1111 Antarctica and 1121 Arctic Ocean) which were

transferred to CEG 20. The monthly values of phi for these two regions are listed in Table 6. The PME regions in CEG 1a now all showed similar climatologies. The new arctic CEG however indicated a poor fit. Because the climatologies of the two regions are 6 months out of phase, we also compared

results for a 6-month shift of region 1111. The comparison was still poor. There is some uncertainty if this indicates a real difference in climatology, or is an artifact of the RTNEPH, which has been shown to have difficulty discriminating between ice-cover and cloud-cover (Lowther et al., 1991).

Table 1. PME regions that had similar cloud cover climatologies to their corresponding CEGs.

CEG 1	PMEs 1111
2	117-124-125-126-127-512-514
3	111-112-113-114-116-211
4	152-212
.5	118-141-143-145-154
6	115-151-221-222
7	323-324
8	144-146-147-415-417
9	312-313-321-931-932-933-934-935
10	723-732-741-913-914
11	721
12	915
13	413-414-1011
14	731-742-923
15	513
16	1012
17	133-134-1222-1243-1311-1312-1324-1334-1433-1434
18	135-422-1211-1223-1235-1241-1242-1313-1322-1323-1332-1333-1432
19	622-1212-1213-1214-1231-1232-1233-1321-1331-1421-142

Table 2. PME regions that had dissimilar cloud cover climatologies with their corresponding CEG.

CEG 1	PMEs 121-122-123-214-511-1121
2	1221
3	none
4	213
5	119
6	none
7	142-325
8	153-416
9	311-314-315-322-936
10	743
11	612-621-624-711-712-722
12	911-912-921-937
13	411-412
14	731-742-923
15	513
16	1013
17	131-132
18	none
19	421-623-1234-1411

Table 3. Possible alternative CEG regions for PME regions listed in Table 2.

CEG 1	PME 121 122 123 214	No of bed months 10 11 11 7	Alternates [Number of bad months in ()] 12(2), 5(7), 11(7), 14(7), 16(7) 7(6), 11(7), 12(7), 5(8) 12(6), 16(7), 19(7), 5(8), 7(8), 11(8), 14(8) 12(1), 19(2), 18(3), 11(4)
	511 1121	7 9	19(0), 12(2) 19(4), 14(5), 16(6)
2	1221	10	13(0), 17(0), 18(2), 11(4), 3(5)
4	213	6	no satisfactory alternate
5	119	6	10(0), 14(2), 16(2), 6(3)
<u>.7</u>	142 325	8	5(3) 18(2), 8(4), 12(4), 11(5), 13(5), 17(5), 2(6), 19(6)
8	153 416	7 6	5(4) 5(4)
9	311 314 315 322 936	9 7 5 6 7	no satisfactory alternate no satisfactory alternate no satisfactory alternate 16(3) 7(4)
10	743	7	14(2), 5(4)
11	612 621 624 711 712 732	9 11 6 5	17(6) 6(10) 18(8) 13(3), 17(3) 2(1), 8(3), 12(3), 18(4) no satisfactory alternate
12	911 912 921 937	6 6 5 7	no satisfactory alternate 11(2), 18(3) 6(0), 10(1), 14(1) 5(2), 14(4)
13	411 412	7 5	no satisfactory alternate no satisfactory alternate
14	611 922	5 5	5(3) 10(3)
16	1013	12	4(1), 8(2), 3(3), 11(3), 18(3), 2(6), 6(6)
17	131 132	6 8	12(3), 18(4), 19(4) 11(2), 12(4), 18(4), 19(4)
19	421 623 1234 1411 1412	6 5 6 6 5	no satisfactory alternate 14(0), 16(3) 16(0), 14(1), 5(3), 10(3) no satisfactory alternate no satisfactory alternate

Table 4. Listing of the phi-coefficients for the comparison, by month, of each PME region with its original CEG.

CEC	PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC
	122 123 214 511 1111	0.60 0.47 0.32 0.24 0.16	0.61 0.69 0.65 0.47 0.39 0.28 0.37	0.76 0.84 0.45 0.54 0.35	0.71 0.79 0.57 0.52 0.39	0.63 0.55 0.36 0.36 0.30	0.56 0.55 0.31 0.37 0.27	0.57 0.57 0.45 0.47 0.35	0.54 0.47 0.45 0.39 0.28	0.34 0.22 0.23 0.12 0.38	0.44 0.47 0.29 0.24 0.21	0.56 0.58 0.30 0.24 0.23	0.57 0.59 0.39 0.26 0.20
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	124 125 126 127 512 514	0.31 0.26 0.41 0.40 0.14 0.20	0.16 0.25 0.19 0.47 0.30 0.14 0.13 0.52	0.11 0.30 0.29 0.08 0.14 0.11	0.12 0.19 0.26 0.09 0.16 0.11	0.12 0.10 0.18 0.07 0.17	0.12 0.13 0.16 0.08 0.16 0.19	0.10 0.10 0.29 0.15 0.19 0.20	0.09 0.11 0.23 0.11 0.21 0.29	0.09 0.13 0.08 0.17 0.13 0.26	0.10 0.17 0.17 0.35 0.11 0.13	0.23 0.30 0.36 0.29 0.14 0.14	0.29 0.31 0.42 0.32 0.12 0.23
3 3 3 3 3	112 113 114 116	0.14 0.12 0.21 0.15	0.16 0.10 0.08 0.15 0.13 0.22	0.11 0.07 0.10 0.30	0.14 0.08 0.12 0.14	0.22 0.16 0.21 0.10	0.06 0.09 0.09 0.15	0.17 0.13 0.15 0.14	0.17 0.16 0.20 0.22	0.19 0.15 0.12 0.14	0.28 0.20 0.14 0.13	0.12 0.10 0.13 0.19	0.15 0.10 0.19 0.16
4 4	212	0.07	0.25 0.08 0.28	0.07	0.05	0.05	0.02	0.05	0.07	0.04	0.08	0.08	0.07
5 5 5 5 5	119 141 143 145	0.42 0.16 0.27 0.32	0.24 0.29 0.14 0.20 0.26 0.30	0.28 0.18 0.23 0.19	0.10 0.09 0.19 0.07	0.25 0.12 0.22 0.12	0.51 0.14 0.34 0.24	0.55 0.09 0.26 0.38	0.56 0.09 0.29 0.39	0.48 0.09 0.33 0.24	0.14 0.15 0.17 0.10	0.17 0.14 0.23 0.17	0.40 0.16 0.33 0.34
6 6 6	151 221	0.19	0.31 0.19 0.13 0.23	0.24	0.15	0.20	0.35 0.34	0.23	0.18	0.09	0.14	0.16	0.09
7 7 7 7	323 324	0.14	0.35 0.09 0.19 0.43	0.12	0.18	0.23	0.15	0.08	0.05 0.28	0.13	0.27	0.26	0.17
8 8 8 8 8 8	146 147 153 415 416	0.24 0.11 0.57 0.47 0.35	0.09 0.23 0.15 0.62 0.40 0.36 0.33	0.21 0.15 0.61 0.31 0.38	0.23 0.11 0.50 0.16 0.45	0.21 0.10 0.37 0.10 0.39	0.19 0.08 0.21 0.11 0.25	0.14 0.23 0.27 0.08 0.19	0.25 0.06 0.15 0.15 0.26	0.26 0.13 0.31 0.19 0.25	0.23 0.11 0.43 0.30 0.36	0.32 0.08 0.41 0.38 0.32	0.31 0.19 0.29 0.52 0.26
999999999	312 313 314 315 321 322 931 932 933	0.29 0.15 0.33 0.08 0.15 0.61 0.21 0.24 0.13	0.59 0.22 0.14 0.37 0.09 0.21 0.71 0.25 0.25 0.02	0.21 0.12 0.39 0.06 0.33 0.72 0.26 0.16 0.04	0.15 0.05 0.24 0.35 0.06 0.34 0.16 0.17 0.20	0.04 0.21 0.09 0.25 0.15 0.09 0.11 0.21 0.15	0.47 0.19 0.37 0.55 0.07 0.25 0.05 0.25 0.35	0.65 0.12 0.36 0.68 0.34 0.33 0.07 0.33 0.66	0.58 0.19 0.41 0.65 0.14 0.41 0.07 0.29 0.63	0.58 0.31 0.51 0.53 0.33 0.42 0.28 0.21 0.40	0.05 0.37 0.19 0.32 0.37 0.12 0.13 0.34 0.20	0.30 0.26 0.18 0.14 0.19 0.26 0.39 0.30 0.07	0.34 0.14 0.39 0.03 0.21 0.69 0.23 0.18 0.09

Table 4 (continued).

CEG 9 9	PME 935 936	JAN 0.31 0.13	0.28	0.15	0.24	0.17	JUN 0.26 0.48	0.40	0.46	0.42	OCT 0.19 0.37	0.23	0.28
10 10 10 10 10	732 741 743 913	0.08 0.51 0.42 0.21	0.06 0.50 0.40 0.19	0.06 0.43 0.28 0.04	0.12 0.19 0.12 0.17	0.15 0.13 0.25 0.30	0.06 0.26 0.51 0.32	0.14 0.30 0.55 0.29	0.12 0.31 0.74 0.29	0.07 0.19 0.53 0.32	0.10 0.06 0.07 0.29 0.12 0.14	0.04 0.23 0.12 0.09	0.06 0.50 0.42 0.13
11 11 11 11 11 11	621 624 711 712 713 721	0.80 0.72 0.16 0.43 0.26 0.18	0.82 0.74 0.10 0.41 0.26 0.18	0.82 0.78 0.04 0.37 0.22 0.20	0.89 0.72 0.28 0.16 0.23 0.22	0.61 0.48 0.43 0.21 0.12 0.38	0.43 0.35 0.55 0.39 0.16 0.27	0.42 0.36 0.60 0.43 0.26 0.26	0.35 0.35 0.65 0.38 0.26 0.13	0.41 0.28 0.40 0.08 0.09 0.26	0.23 0.53 0.40 0.37 0.07 0.13 0.22 0.07	0.69 0.55 0.18 0.08 0.07 0.17	0.67 0.68 0.17 0.32 0.07 0.13
12 12 12 12 12	912 915 921	0.57 0.13 0.33	0.56 0.04 0.17	0.34 0.14 0.15	0.21 0.16 0.21	0.10 0.26 0.29	0.38 0.33 0.44	0.42 0.38 0.57	0.27 0.33 0.58	0.16 0.22 0.93	0.20 0.33 0.29 0.45 0.37	0.50 0.11 0.19	0.61 0.12 0.26
13 13 13 13 13	412 413 414	0.40 0.14 0.31	0.40 0.10 0.31	0.54 0.10 0.26	0.52 0.07 0.14	0.21 0.16 0.10	0.21 0.09 0.18	0.24 0.12 0.21	0.26 0.19 0.27	0.11 0.13 0.39	0.25 0.13 0.27 0.12 0.08	0.15 0.23 0.07	0.37 0.16 0.27
14 14 14 14 14	731 742 922	0.37 0.19 0.22	0.33 0.22 0.27	0.36 0.12 0.23	0.29 0.14 0.10	0.29 0.49 0.44	0.16 0.58 0.63	0.09 0.56 0.66	0.08 0.46 0.54	0.08 0.20 0.39	0.18 0.14 0.21 0.07 0.13	0.19 0.10 0.17	0.22 0.13 0.21
15	513	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
16 16	1012 1013	0.03 0.47	0.03 0.46	0.03 0.53	0.03	0.04 0.72	0.04 0.78	0.04 0.82	0.05 0.98	0.06 1.13	0.05 0.93	0.03 0.65	0.03 0.52
17 17 17 17 17 17 17	132 133 134 1222 1243 1311 1312 1324 1334 1433	0.37 0.16 0.31 0.19 0.04 0.29 0.25 0.18 0.06 0.08	0.52 0.17 0.30 0.08 0.04 0.09 0.24 0.17 0.04 0.05	0.41 0.14 0.13 0.14 0.05 0.10 0.27 0.13 0.14 0.03	0.26 0.22 0.13 0.11 0.07 0.15 0.19 0.13 0.05 0.02	.0.54 0.13 0.28 0.13 0.04 0.17 0.13 0.21 0.06 0.04	0.57 0.14 0.28 0.19 0.05 0.16 0.08 0.28 0.07 0.13	0.72 0.21 0.29 0.21 0.05 0.12 0.11 0.39 0.08 0.11	0.41 0.22 0.24 0.17 0.07 0.16 0.13 0.32 0.09 0.15	0.14 0.27 0.12 0.05 0.04 0.23 0.18 0.15 0.20 0.19	0.16 0.30 0.10 0.17 0.05 0.14 0.29 0.12 0.05 0.17	0.10 0.27 0.24 0.22 0.05 0.18 0.20 0.19 0.04 0.14	0.18 0.33 0.16 0.04 0.19 0.22 0.27 0.24 0.07
18 18 18 18 18 18 18	422 1211 1223 1235 1241 1242 1313 1322 1323 1431	0.25 0.31 0.16 0.11 0.23 0.12 0.27 0.12 0.07	0.30 0.28 0.11 0.06 0.19 0.12 0.24 0.13 0.06	0.30 0.20 0.10 0.03 0.16 0.18 0.16 0.17	0.25 0.17 0.11 0.04 0.06 0.25 0.22 0.22 0.26	0.23 0.22 0.10 0.14 0.11 0.22 0.16 0.31 0.22 0.07	0.24 0.26 0.19 0.20 0.17 0.21 0.41 0.22 0.09	0.14 0.26 0.19 0.23 0.21 0.34 0.50 0.11 0.25	0.14 0.20 0.12 0.22 0.20 0.24 0.40 0.53 0.20	0.09 0.12 0.03 0.11 0.21 0.22 0.22 0.12 0.16	0.15 0.08 0.02 0.12 0.24 0.09 0.18 0.19 0.19	0.12 0.08 0.06 0.12 0.14 0.13 0.21 0.16 0.12	0.14 0.13 0.22 0.11 0.09 0.23 0.12 0.16 0.12 0.05 0.15

Table 4 (continued).

CEC	S PME	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC
19 19 19 19 19 19 19	421 622 623 1212 1213 1214 1231 1232	0.15 0.62 0.26 0.14 0.05 0.45	0.21 0.58 0.28 0.23 0.15 0.10 0.63 0.10	0.18 0.54 0.24 0.09 0.05 0.07 0.41 0.03	0.13 0.32 0.37 0.11 0.06 0.05 0.31 0.10	0.32 0.08 0.45 0.15 0.05 0.17 0.18 0.13	0.52 0.19 0.17 0.33 0.06 0.20 0.12 0.29	0.46 0.13 0.19 0.44 0.04 0.28 0.10	0.53 0.13 0.30 0.45 0.09 0.27 0.06 0.43	0.44 0.10 0.38 0.26 0.10 0.16 0.15 0.53	0.47 0.19 0.41 0.25 0.05 0.18 0.09 0.32	0.42 0.22 0.40 0.19 0.06 0.12 0.26 0.23	0.13 0.45 0.22 0.20 0.15 0.09 0.44 0.10
19 19 19 19 19	1234 1321 1331 1411 1412 1421	0.38 0.15 0.20	0.26 0.12 0.16 0.30 0.54 0.26	0.17 0.07 0.07 0.15 0.49 0.20	0.18 0.08 0.09 0.17 0.38 0.14	0.36 0.09 0.26 0.48 0.18 0.20	0.37 0.04 0.38 0.70 0.27 0.09	0.40 0.04 0.37 0.62 0.16 0.16	0.38 0.05 0.33 0.76 0.24 0.12	0.61 0.11 0.53 0.57 0.20 0.13	0.29 0.10 0.19 0.47 0.39 0.17	0.30 0.15 0.13 0.32 0.42 0.13	0.33 0.07 0.12 0.06 0.29 0.06

Table 5. Listing of the bad months for the CEGs that can be considered reasonable alternatives to the original CEGs (see Table 3).

OLD CEG	PME	CEG					BAD I					
1	121	12	2	MAR	APR							
1	121	5	7	MAY	JUN	JUL	AUG	SEP	OCT	NOV		
1	121											
ī	121	14	7	FEB	MAY	JUN	JUL	AUG	SEP	OCT		
1	121	16	7	MAY	JUN	JUL	AUG	SEP	OCT	NOV		
1	.122	7 11	6	FEB	MAY	JUL	AUG	OCT	NOV			
1	122	11	7	JAN	FEB	MAR	APR	MAY	NOV	DEC		
1	122	12	7	JAN	FEB	MAR	APR	MAY	NOV	DEC		
1	122	5	8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	
1	123	12	6	FEB	MAR	APR	MAY	NOV	DEC			
1	123	16 19	7	FEB	MAR	JUN	JUL	AUG	SEP	OCT		
1	123	19	7	JAN	FEB	MAR	APR	SEP	NOV	DEC		
1	123	5	8	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT NOV	
1	123	7	8	JAN	FEB	MAY	JUN	JUL	AUG	OCT	NOA	
1	123	11	8	NAU	FEB	MAR	APR	MAY	-OCT	-NOV	DEC .	
1	123	14	8	JAN	FEB	MAR	APR	MAY	AUG	SEP	DEC	
	214	12	1	APR								
1		19	2	SEP	OCT							
1	214	18	3	FEB	APR	DEC						
1	214	11	4	FEB	MAR	APR	DEC					
1	511	19	0									
1	511	12	2	MAR	APR							
1	1121	19	4	MAR	APR	MAY	NOV					
1	1121 1121	14	5	JAN	FEB	MAR	APR	MAY				
1	1121	16	6	JAN	MAR	APR	AUG	SEP	OCT			
2	1221	13	0									
2	1221 1221 1221	17	0									
2	1221	18	2	AUG	SEP							
2	1221	11	4	JUN	JUL	AUG	SEP					
2	1221	3	5	MAY	JUN	JUL	AUG	SEP				
5	119											
5	119	14		AUG								
5	119	16	2									
5	119	6	3	JUN	SEP	NOV						
7	142	5	3	AUG	NOV	DEC						

 Table 5 (continued).

OLD CEG	PME	CEG							HS WI				
7 7	325 325	18	4	FEB FEB	MAR								
7 7	325 325	12 11		JAN FEB				ATIC					
7	325	13		JAN									
7	325	17		JAN									
7	325	2	6	JAN	FEB	MAR	APR	JUN	AUG				
7	325	19	6	FEB	MAY	JUN	JUL	AUG	OCT				
8	-153	5	4	JUN	JUL	AUG	SEP						
8	416	5	4	JUN	JUL	AUG	SEP						
9	322	16	3	JUN	JUL	SEP							
9	936	7	4	JUN	JUL	AUG	SEP						
10	743			JUN									
10	743	5	4	JAN	FEB	AUG	OCT						
11	612	17	6	JAN	FEB	MAR	APR	NOV	DEC				
11	621	6	10	JAN	FEB	MAR	APR	JUN	JUL	AUG	SEP	NOV	DEC
11	624	18	8	JAN	FEB	MAR	APR	MAY	OCT	NOV	DEC		
11	711	13	3	JAN	FEB	DEC							
11	711	17	3	JAN	FEB	DEC							
11	712	2	1	JAN									
11	712	8		JAN	FEB	MAR							
11	712	12		MAY									
11	712	18	4	JAN	FEB	MAR	DEC						
12	912	11	2	JUN	TIIT								
12	912	18		JUN									
12	921	6	0										
12	921	10		APR									
12	921	14	1	SEP									
12	937	5	2	JAN	APR								
12	937	14		JAN			DEC						
14	611	5	3	JUL	AUG	SEP							
14	922	10	3	MAY	JUN	JUL							

Table 5 (continued).

OLD CEG		CEG							HS WI LISTE	
16	1013		1	DEC						
16			_	MAR	DEC					
	1013	3	_	JAN		MAR				
	1013		-	JUL						
16			-	FEB						
	1013			JAN			APR	SEP	DEC	
	1013			MAY						
10	1013	U	٠		0011					
17	131	12	3	JAN	NOV	DEC				
	131		-	MAR			DEC			
	131			JAN						
1/	131	10	-	0.111		••••				
17	132	11	2	APR	OCT					
	132		4	JAN	OCT	NOV	DEC			
	132			APR						
	132			SEP						
Τ,	132		•			-				
19	623	14	0							
	623		3	JUL	AUG	SEP				
	323		-							
19	1234	16	0							
19	1234	14	1	SEP						
19			3	MAY	JUN	JUL				
19	1234		3	JAN	FEB	DEC				

Table 6. Listing of the phi-coefficients for the comparison, by month, of each PME region for the alternative CEGs.

CEG PME JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 1a 121 0.21 0.22 0.22 0.23 0.21 0.17 0.12 0.16 0.17 0.17 0.13 0.19 1a 122 0.32 0.25 0.20 0.15 0.24 0.19 0.14 0.17 0.18 0.19 0.26 0.25 1a 123 0.21 0.21 0.27 0.23 0.19 0.24 0.16 0.13 0.12 0.23 0.29 0.26 1a 214 0.36 0.31 0.33 0.27 0.23 0.15 0.09 0.09 0.14 0.16 0.26 0.23 1a 511 0.11 0.12 0.10 0.11 0.10 0.08 0.08 0.09 0.08 0.08 0.09 0.12 20 1111 0.07 0.11 0.15 0.18 0.17 0.13 0.16 0.12 0.23 0.11 0.11 0.08 20 1121 0.64 0.70 0.67 0.88 0.81 0.58 0.64 0.63 0.58 0.93 0.91 0.65

Appendix

DEFINITION OF CONSOLIDATED EVALUATION GROUPS (CEGs)

			7.			
1.	POLAR REC	CIONS		8.	ASIAN EAS	Γ COASTAL REGION
٠.	I ODAN NO			٠.	,	
	121	Kara Sea and Coast	1		144	South Central Asia
	122	Laptev Sea and Coast	1 1		146	East China
	123	Chukchi Sea and Coast	1 1		147	Southeast China
	214	Svalbard	1 1		153	North Korea
	511	Greenland and Arctic Ocean			415	Japan
	1111		1		416	South Korea
	1121	Arctic Ocean			417	Taiwan
2.	SUBARCTIC REGION			9.	ARID REGIO	N
					744	
	117	Western Siberia			311	Israel and Adjacent State
	124	Central Siberia	1 1		312	Iraq
	125	Eastern Siberia	1 1		313	Arabian Peninsula
	126	Kamchatka and Kuril Islands	1 1		314	Iran
	127	Soviet Amur and Vladivostok	1 1		315	Egypt
	512	Canada	1 1		321	Pakistan
	514	Mainland Alaska	1 1		322	Afghanistan
	1221	Bering Sea and Aleutians	1 1		931	W Sahara & Mauritania
		bot this your and throat talls			932	Morocco & Algeria
7	RUSSIAN REC	TON.	1 1		933	Libya
3.	KO991MM KE		1		934	Mali & Niger
	111	Paranta Can Canat	1 1		935	Chad & Sudan
	111	Barents Sea Coast			936	Horn of Africa
	112	Western Russia			430	HOTTI OF ATTICA
	113	Northwest Russia		••		THE COURSE CONTINUES.
	114	Moscow Rectangle		10.	SOUTHERN	HEMISPHERE CONTINENTAL
	116	Gorkiy - Sverdlovsk				Security Street
	211	Scandinavia - Baltic Sea	1		723	Southeast Brazil
					732	Bolivia & Paraguay
4.	NORTHERN EL	JROPEAN REGION			741	Northern Argentina
					743	Uruguay
	152	Northern Eastern Europe			913	Southeast Africa
	212	NW Europe - North Sea			914	Madagascar
	213	Iceland	1 1			-
			1 1	11.	TROPICAL	MERICANA
5.	MORTHERN CH	IINA PEGION				
٠.	MONTHEAN OF	THE REGION			612	Central America
	118	Kazakhstan	1 1		621	Cuba
			1 1		624	Antilles & Bahamas
	119	South Soviet Asia	1		711	Columbia & Northern Ecuad
	141	Northwest China				
	143	North Central China			712	Venezuela & Guianas
	154	North East China			713	S Ecuador & S Colombia
	154	Mongolia			721	Northern Brazil
					722	Amazon Brazil
6.	MEDITERRANE	EAN REGION		12.	AFRICAN	TROPICS
	115	Southwest Russia		12.	Milden	TROTTES
					911	Humid West Africa
	151	Southern Eastern Europe				S Congo, S Gabon, S Za re
	221	Greece and Turkey			912	
	222	W Mediterranean	1 1	l	915	Humid Central Africa
			1 1		921	Tanzania & S Kenya
7.	INDIAN REGION				937	N Uganda & N Kenya
	142	Tibet	1 1	13.	ASIAN TR	OPICS.
	323	Northern India, Bangladesh	1			
	324	Southern India	1		411	Southeast Asia
	325	Sri Lanka			412	Philippines
	363	V. 1 BM 1150	1		413	N Indonesia & Malaysia
					414	\$ Indonesia
			1			
			1		1011	Papua New Guinea

14.	VARIED WEST COASTAL			
	611 731 742 922 923	Mexico Peru & N Chile S Argentina & S Chile Angola & Namibia Union of South Africa		
15.	UNITED STATES			
	513	Contiguous United States		
16.	AUSTRALIAN REGION			
	1012 1013	Australia New Zealand		
17.	HIGH LATITUDE SEAS			
	1222 1324 1312 1311 133 132 131 134 1243 1334 1433	Gulf of Alaska Iceberg Atlantic Rockall Atlantic Norwegian & Greenland Seas North Cape Area Barents Sea Sea of Okhotsk Komandorksy - Bering Sea W Drake Passage Pacific South Georgia Atlantic Macquarie - Antipodes So		
18.	MID-LATITUDE SEAS			
	1223 1323 1322 1313 135 422 1211 1242 1235 1333 1332 1432 1431 1241	Midway - California Pacific Bermuda Atlantic Sargasso Atlantic Gibraltar Approaches Sea of Japan East China & Yellow Seas Volcano Is., NW Pacific Kermadec - Chatham Pacific Easter Island Pacific SW Atlantic Tristan de Cunha Atlantic SW Indian Ocean Amsterdam Indian Ocean		

19. TROPICAL SEAS Former Trust Pacific Hawaii - Kingman Pacific 1212 1213 1214 Clipperton Pacific 622 623 Caribbean Sea Gulf of Mexico 1321 Cape Verde Atlantic Arabia Sea 1412 1411 Bay of Bengal 421 1231 South China Sea Solomons - Samoa Pacific Jarvis - Cook Pacific 1232 1233 French Polynesia 1234 S Galapagos Pacific 1331 Ascension Atlantic 1422 Seychelles - Mauritius 1421 Cocos Indian Ocean

REFERENCES

Fleiss, J. L., Statistical Methods for Rates and Proportions, Wiley, 1973.

Lowther, R. P., M. T. Surmeier, R. W. Hartman, C. R. Coffin, and A. J. Warren, *RTNEPH Total Cloud Cover Validation Study*, USAFETAC/PR—91/020, USAF Environmental Technical Applications Center, Scott AFB, Ill., 1991.