Réseaux Locaux, Ethernet

Exercice 1.: Adressage

Une entreprise dispose d'un réseau Ethernet. Un nouvel employé dans l'entreprise est doté d'un ordinateur ayant une carte Ethernet d'adresse universelle 3E 98 4A 51 49 76 (en hexadécimal). A quel niveau cette adresse est-elle gérée ? Est-il nécessaire de vérifier qu'aucun autre ordinateur ne dispose de la même adresse dans le réseau local ? Est il possible de la modifier ?

Exercice 2. : Dimensionnement d'un réseau local

Sur un câble coaxial en cuivre utilisé en Ethernet 10base5, la vitesse de propagation du signal électrique est de 2.10⁸m/s. Quelle est la longueur maximum d'un segment pour que le réseau local puisse fonctionner correctement sachant que la taille minimale d'une trame est de 64 octets ?

Ethernet 3 : Analyse de trames

Rappels: Structure d'une trame **Ethernet**

Destination (6) Source(6) Type(2) Données(n)
--

Type (0800 IP, 0806 ARP, 00c0 PPP)

Rappels: Structure d'un paquet **ARP**:

Type	Protocole	T.	T.	OP	Adr. Mac	Adr. IP	Adr. Mac	Adr. IP
mat.		mat	prot	(2)	émetteur.	émétteur	destinataire.	Destinataire
(2)	(2)	(1)	(1)	53555	(6)	(4)	(6)	(4)

OP (0001 requête, 0002 réponse)

Soient les suites hexadécimales ci dessous correspondant à la capture de deux trames de réseaux local Ethernet par un logiciel sniffer. Les octets de préambules ne sont pas représentés.

Trame nº1:

FF FF FF FF FF FF 08 00 20 02 45 9E 08 06 00 01 08 00 06 04 00 01 08 00 20 02 45 9E 81 68 FE 06 00 00 00 00 00 00 81 68 FE 05 Trame n°2:

08 00 20 02 45 9E 08 00 20 07 0B 94 08 06 00 01 08 00 06 04 00 02 08 00 20 07 0B 94 81 68 FE 05 08 00 20 02 45 9E 81 68 FE 06

En vous aidant du manuel de cours et/ou de l'Internet, veuillez :

- 1. Préciser les valeurs et les significations des différents champs des trames échangées.
- 2. Que représente la valeur « FF FF FF FF FF FF FF »? Quand a-t-on besoin de l'utiliser ?
- 3. A quoi sert le protocole ARP (Adress Resolution Protocol) ? Donner un sens à ces échanges de trames.

Exercice 4. Simulation de l'algorithme CSMA/CD

Soit un réseau local Ethernet en bus comportant 4 stations : A,B,C et D utilisant la méthode d'accès au support CSMA/CD.

A l'instant t=0, la station A commence à transmettre une trame dont le temps d'émission dure 6 slots. A t=5, les stations B, C et D décident chacune de transmettre une trame de durée de 6 slots.

L'algorithme de reprise après collision est les suivant :

```
Procédure Reprise_après_collision (attempts : integer ; maxBackOff : integer) ; (attempts : compteur de tentatives de transmission) (maxBackOff : borne supérieure de l'intervalle de tirage)

CONST

slotTime = 51,2~s ;
backOffLimit = 10 ;

VAR

r, Delay : integer /*Nombre de slots d'attente avant de retransmettre*/

Begin

{
if attempts = 1 then maxBackOff :=2 ;
else {if attempts <= backOffLimit}

then maxBackOff := maxBackOff*2;
else maxBackOff := 210;}
r :=delay := int(random*maxBackOff);
wait (delay*slotTime);
}

End:
```

Int() est une fonction qui rend la partie entière par défaut d'un réel.

Random() est une fonction qui tire de manière aléatoire un nombre réel dans [0;1[

On considère que la fonction random rend respectivement les valeurs données par le tableau suivant :

Stations	Α	В	С	D	
1er tirage	2/3	1/4	1/2	3/4	
2ème tirage	1/4	3/5	1/4	1/4	
3ème tirage	2/5	1/3	1/2	1/8	

1°/ Dessiner un diagramme des temps gradués en slots décrivant le déroulement des différentes transmissions de trame.

On adoptera la représentation suivante :

A A A X B B X

Un slot occupé par la transmission correcte d'une trame de la station A est notée A

CD

- Un slot occupé par une collision est noté X, avec les noms des stations impliquées mentionnés au dessus du slot.
- Un slot non occupé reste vide
- 2°/ Calculer sur la période allant de t=0 à la fin de la transmission de la dernière trame, le taux d'utilisation du canal pour la transmission effective des trames
- 3°/ Calculer le délai moyen d'accès au support. Est-il borné?