What is groupby in Pandas?

groupby() is used to split the data into groups based on some criteria, then apply a function (like aggregation, transformation, or filtering), and finally combine the results.

Syntax:

```
df.groupby(by='column_name')
```

Dataset for Demonstration

```
import pandas as pd

data = {
    'Department': ['Sales', 'Sales', 'HR', 'HR', 'IT', 'IT', 'Sales', 'IT',
    'HR'],
    'Employee': ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
    'Salary': [50000, 52000, 58000, 60000, 65000, 70000, 51000, 69000, 62000],
    'Experience': [2, 3, 5, 6, 7, 8, 3, 7, 5],
    'Rating': [4, 5, 4, 3, 4, 5, 3, 5, 4]
}

df = pd.DataFrame(data)
print(df)
```

Basic groupby with Aggregation (agg)

➤ Group by single column

```
grouped = df.groupby('Department')
grouped['Salary'].mean()
```

▶ Using .agg() with multiple functions

```
grouped.agg({
    'Salary': ['mean', 'sum', 'max', 'min'],
    'Experience': ['mean', 'std'],
    'Rating': 'count'
})
```

+ All Math Functions You Can Use in agg()

Function	Description
mean()	Average
sum()	Sum of values
min() / max()	Minimum / Maximum
std()	Standard deviation
var()	Variance
count()	Non-null count
median()	Median value
nunique()	Count of unique values

groupby Attributes & Methods

I. 32 Total number of groups

len(grouped)

2. No Items in each group

grouped.size()

3. 🖈 Get first/last item of each group

```
grouped.first()
grouped.last()
```

4. • Get a specific group

```
grouped.get_group('HR')
```

5. 📑 Access underlying group mapping

```
grouped.groups
```

6. 📊 Describe each group

```
grouped.describe()
```

7. Sample from each group

```
grouped.sample(1)
```

8. 11 Number of unique values per group

```
grouped.nunique()
```

9. **6** N-th item from each group

```
grouped.nth(1)
```

apply() on groupby

You can apply a custom function to each group:

```
grouped.apply(lambda x: x['Salary'].mean())
```


After a groupby, to flatten the multi-index:

```
grouped.agg('mean').reset_index()
```

replace=True in groupby.nth()

If dropna=False and replace=True, it replaces missing values with the nearest available values. Rarely used. Example:

```
grouped.nth(2, dropna='any')
```

Example Questions & Solutions

QI. Get department-wise average salary and rating.

Q2. Which department has the highest average experience?

```
df.groupby('Department')['Experience'].mean().sort_values(ascending=False)
```

Q3. Count of employees per department

```
df.groupby('Department')['Employee'].count()
```

Q4. Get the second most experienced employee from each department

```
df.groupby('Department').apply(lambda x: x.sort_values('Experience',
    ascending=False).iloc[1])
```

Q5. Describe the 'IT' department employees

```
df.groupby('Department').get_group('IT').describe()
```

Q6. Find departments with total salary > 160000

```
df.groupby('Department')['Salary'].sum().loc[lambda x: x > 160000]
```

Q7. Select all employees with the highest rating in each department

```
df[df.groupby('Department')['Rating'].transform('max') == df['Rating']]
```

§ Summary Table

Method	Use Case
<pre>groupby().mean()</pre>	Compute average values per group
.agg()	Apply multiple aggregations
.get_group()	Access a specific group
.size()	Number of items per group
.first()	First row in each group
.nth(n)	N-th row in each group

Method	Use Case
.apply()	Apply custom function to each group
<pre>.reset_index()</pre>	Flatten MultiIndex after groupby
.sample()	Random sample per group

Pandas Data Merging, Joining, and Concatenating – Complete Notes

♦ Introduction

Pandas provides powerful tools to combine multiple DataFrames using:

- I. concat() Concatenate along a particular axis
- 2. merge() SQL-style joins (inner, left, right, outer)
- 3. join() Convenient method to join on indexes or keys

I. Concatenation using pd.concat()

Theory:

- Used to stack DataFrames vertically (rows) or horizontally (columns).
- No matching keys required.
- Useful when combining datasets with same columns or same indexes.

Syntax:

```
pd.concat(objs, axis=0, join='outer', ignore_index=False)
```

Parameter	Description	
objs	List/tuple of DataFrames	
axis	0 = row-wise (default), 1 = column-wise	
join	inner or outer join on axes	

Parameter	Description	
<pre>ignore_index</pre>	If True, reindex the result	

Example 1: Vertical Concatenation (row-wise)

```
import pandas as pd

df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})

df2 = pd.DataFrame({'ID': [3, 4], 'Name': ['Charlie', 'David']})

pd.concat([df1, df2], ignore_index=True)
```

Output:

ID	Name
I	Alice
2	Bob
3	Charlie
4	David

Example 2: Horizontal Concatenation (column-wise)

```
df3 = pd.DataFrame({'Marks': [85, 90]})
pd.concat([df1, df3], axis=1)
```

✓ Output:

ID	Name	Marks
I	Alice	85
2	Bob	90

Example 3: Inner Join with concat

```
df4 = pd.DataFrame({'ID': [1, 2], 'Age': [23, 25]}, index=[0, 1])
df5 = pd.DataFrame({'Gender': ['F', 'M']}, index=[1, 2])
pd.concat([df4, df5], axis=1, join='inner')
```

✓ Output includes only the common index:

ID	Age	Gender
I	25	M

◆ 2. Merging using pd.merge()

Theory:

- Used to combine two DataFrames based on common columns or keys.
- SQL-style join operations: inner, left, right, outer.
- Default join type is inner.

Syntax:

```
pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None)
```

Parameter	Description
left, right	DataFrames to merge
how	Type of join: 'left', 'right', 'outer', 'inner'
on	Column name(s) to join on

Types of Joins Explained with Illustration

Let's define:

```
left = pd.DataFrame({
    'ID': [1, 2, 3],
    'Name': ['Alice', 'Bob', 'Charlie']
})

right = pd.DataFrame({
    'ID': [2, 3, 4],
    'Score': [90, 85, 88]
})
```

➤ Inner Join (only common IDs)

```
pd.merge(left, right, on='ID', how='inner')
```

ID	Name	Score
2	Bob	90
3	Charlie	85

➤ Left Join (all from left, fill missing from right)

```
pd.merge(left, right, on='ID', how='left')
```

ID	Name	Score
I	Alice	NaN
2	Bob	90
3	Charlie	85

➤ Right Join (all from right, fill missing from left)

```
pd.merge(left, right, on='ID', how='right')
```

ID	Name	Score
2	Bob	90
3	Charlie	85
4	NaN	88

➤ Outer Join (all from both, fill NaNs)

```
pd.merge(left, right, on='ID', how='outer')
```

ID	Name	Score
I	Alice	NaN
2	Bob	90
3	Charlie	85
4	NaN	88

Merging on different column names

```
df1 = pd.DataFrame({'emp_id': [1, 2], 'name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'id': [1, 2], 'dept': ['HR', 'IT']})
pd.merge(df1, df2, left_on='emp_id', right_on='id')
```

♦ 3. join() Method

Theory:

- A shortcut for merging on index.
- Useful when one of the DataFrames has an index you want to join on.

Syntax:

```
df1.join(df2, how='left')
```

Example

```
df1 = pd.DataFrame({'Name': ['Alice', 'Bob']}, index=[1, 2])
df2 = pd.DataFrame({'Score': [85, 90]}, index=[1, 2])
df1.join(df2)
```

Output:

	Name	Score
I	Alice	85
2	Bob	90

Summary Table

Operation	Function	Joins on	Default Join	Best for
Concatenation	pd.concat()	Axis/index	Outer	Stacking DataFrames
Merge	pd.merge()	Columns/key	Inner	SQL-style complex joins
Join	df.join()	Index	Left	Simple joins on index

Practice Problems

QI. Combine student details and their marks into one DataFrame.

```
students = pd.DataFrame({'ID': [1,2,3], 'Name': ['A', 'B', 'C']})
marks = pd.DataFrame({'ID': [2,3,4], 'Maths': [85, 90, 80]})
```

```
pd.merge(students, marks, on='ID', how='outer')
```

Q2. Concatenate monthly sales data into one big DataFrame.

```
jan = pd.DataFrame({'Day': [1,2], 'Sales': [100, 200]})
feb = pd.DataFrame({'Day': [1,2], 'Sales': [150, 180]})
pd.concat([jan, feb], keys=['Jan', 'Feb'])
```

Q3. Join department names with employee data using indexes.

```
emp = pd.DataFrame({'Name': ['Alice', 'Bob']}, index=[101, 102])
dept = pd.DataFrame({'Dept': ['HR', 'IT']}, index=[101, 102])
emp.join(dept)
```

Attributes/Parameters of concat(),
merge(), and join() in Pandas

- ♦ I. pd.concat() Attributes Explained
- Syntax:

```
pd.concat(objs, axis=0, join='outer', ignore_index=False, keys=None,
names=None, verify_integrity=False, sort=False)
```

Parameters:

Parameter	Description
objs	List or tuple of DataFrames or Series to concatenate
axis	o for row-wise (default), of for column-wise
join	How to handle indexes: 'outer' (default), 'inner' (intersection)
ignore_index	If True, index will be reset in the result
keys	Used to create hierarchical index (MultiIndex) for identifying original pieces
names	Names for the levels in the new hierarchical index
verify_integrity	If True, checks for duplicates and raises error
sort	If True, sorts the result columns/rows (helps with mixed indexes)

Example with keys and MultiIndex:

```
df1 = pd.DataFrame({'A': [1, 2]})
df2 = pd.DataFrame({'A': [3, 4]})

pd.concat([df1, df2], keys=['Group1', 'Group2'])
```

Output:

	A
Groupi	
O	I
I	2
Group2	
0	3
I	4

◆ 2. pd.merge() - Attributes Explained

Parameters:

Parameter	Description
left, right	DataFrames to merge
how	Type of join: 'left', 'right', 'outer', 'inner' (default: inner)
on	Column(s) to join on (must exist in both DataFrames)
left_on / right_on	Column(s) from left/right DataFrame to use as join key
<pre>left_index / right_index</pre>	Use index as join key (boolean)
sort	Sort the result DataFrame by join key
suffixes	Tuple for overlapping column names in left/right
indicator	Adds a column _merge indicating source of each row
validate	Used to check for valid merge conditions (like one-to-one, many-to-one, etc.)

Example: Using indicator and suffixes

```
left = pd.DataFrame({'ID': [1, 2], 'Name': ['A', 'B']})
right = pd.DataFrame({'ID': [2, 3], 'Name': ['X', 'Y']})

pd.merge(left, right, on='ID', how='outer', suffixes=('_left', '_right'),
indicator=True)
```

✓ Output:

ID	Name_left	Name_right	_merge
I	A	NaN	left_only
2	В	X	both
3	NaN	Y	right_only

validate usage:

Ensures your join condition matches expectations.

```
pd.merge(left, right, on='ID', validate='one_to_one') # Error if duplicates
exist
```

3. df.join() – Attributes Explained

Syntax:

```
df1.join(df2, on=None, how='left', lsuffix='', rsuffix='', sort=False)
```

Parameters:

Parameter	Description
on	Column name from left DataFrame to join on (used if joining on column, not index)
how	Type of join: 'left' (default), 'right', 'outer', 'inner'
lsuffix, rsuffix	Suffixes to apply to overlapping column names
sort	Sort the result DataFrame by join key

Example with index-based join

```
df1 = pd.DataFrame({'Name': ['Alice', 'Bob']}, index=[1, 2])
df2 = pd.DataFrame({'Score': [90, 85]}, index=[1, 2])
df1.join(df2)
```

Output:

	Name	Score
I	Alice	90
2	Bob	85

Example with on (column join)

```
df1 = pd.DataFrame({'ID': [1, 2], 'Name': ['Alice', 'Bob']})
df2 = pd.DataFrame({'ID': [1, 2], 'Score': [90, 95]})

df1.set_index('ID').join(df2.set_index('ID'))
```

I. What is a MultiIndex?

A MultiIndex allows multiple levels of indexing (hierarchical indexing) on Series or DataFrames. This is useful for working with complex, multi-dimensional data.

2. MultiIndex in Series

Creating a MultiIndex Series

```
import pandas as pd

index = pd.MultiIndex.from_tuples(
       [('A', 2020), ('A', 2021), ('B', 2020), ('B', 2021)],
       names=['Company', 'Year']
)
data = pd.Series([100, 120, 90, 110], index=index)
print(data)
```

Accessing Elements

```
data['A']
data.loc[('A', 2020)]
```

📕 3. MultiIndex in DataFrame

Creating a MultiIndex DataFrame

Accessing Columns and Rows

```
# Access all English scores
df['English']

# Access Bob's Test2 scores in Math
df.loc['Bob', ('Math', 'Test2')]
```

🔁 4. Stacking & Unstacking

• stack() - $Columns \rightarrow Index$

```
stacked = df.stack() # Stack last level by default
print(stacked)
```

unstack() – Index → Columns

```
unstacked = stacked.unstack()
```

Specifying Level

```
df.stack(level=0) # Stack first column level
```

5. Working with MultiIndexed DataFrames

Accessing by Level Name

```
df.loc[:, ('Math', slice(None))] # All Math tests
df.loc[:, pd.IndexSlice['Math', :]]
```

Swapping and Sorting Index Levels

```
# Swap levels
df.columns = df.columns.swaplevel()

# Sort index
df = df.sort_index(axis=1)
```

Setting and Resetting Index

```
df_reset = df.reset_index()
df_new = df_reset.set_index(['Subject', 'Test'])
```

6. Transpose with MultiIndex

```
df_T = df.T # Transpose rows \( \phi \) columns
print(df_T.index.names) # ['Subject', 'Test']
```

Useful when comparing student-wise vs test-wise results.

🕶 7. Long vs Wide Format

♦ Wide Format

Each variable gets a column. (Default DataFrame style)

Long Format with melt()

```
df_long = df_reset.melt(id_vars='index', var_name=['Subject', 'Test'],
value_name='Score')
```

Or if from a non-multiindex DF:

```
df_long = pd.melt(df, id_vars=['Student'], var_name='Subject_Test',
value_name='Score')
```

8. Pivot & Pivot Table

pivot()

Rearranges data without aggregation.

```
df = pd.DataFrame({
    'Name': ['Alice', 'Bob', 'Alice', 'Bob'],
    'Subject': ['Math', 'Math', 'English', 'English'],
    'Score': [90, 85, 95, 80]
})
df.pivot(index='Name', columns='Subject', values='Score')
```

pivot_table()

Supports aggregation like mean, sum, etc.

```
df.pivot_table(index='Name', columns='Subject', values='Score',
aggfunc='mean')
```

Use margins=True to show totals.

9. Other Tips You Should Know

xs() – Cross Section (slicing one level)

```
data.xs(key='A', level='Company') # Get all years for A
df.xs('Math', axis=1, level=0) # Get all Math tests
```

• groupby() with MultiIndex

```
df_reset.groupby(['Subject', 'Test'])['Score'].mean()
```

Rename Levels

```
df.columns.names = ['Subject', 'Test']
df.index.names = ['Student']
```

Summary Table

Feature	Method/Function	Use Case
MultiIndex	pd.MultiIndex.from_*	Create hierarchical index
Stack	.stack(level=)	Collapse column → index
Unstack	.unstack(level=)	Expand index → column
Cross Section	.xs()	Slice using level value
Long Format	pd.melt()	Normalize data into long form
Wide Format	pivot()	Spread data across columns
Aggregated Pivot	pivot_table()	Same as pivot + aggregation
Index tools	<pre>swaplevel, sort_index, reset_index</pre>	Manipulate multi-index