CIS6930 – BlockChain HW -2: Exploring Bitcoin Transactions

Subham Agrawal | UFID - 79497379

Github: https://github.com/subhambgh/blockchain spark

Dataset: Original dataset from https://senseable2015-6.mit.edu/bitcoin/

Technology Stack

Apache Spark v2.3.2 in Scala v2.11.12 Hadoop v3.0 Java v8 on AWS Educate Instance using EMR, S3 Modules

System Configuration

Master Node

EMR Instance Type	vCPU	ECU	Memory (GiB)**	Instance Storage (GB)**	Instance Count
m5.xlarge	4	16	16 GiB	96 GB	1

Worker Nodes

EMR Instance Type	vCPU	ECU	Memory (GiB)**	Instance Storage (GB)**	Instance Count
m5.xlarge	4	16	16 GiB	96 GB	7

Task Node (spot instance)

EMR Instance Type	vCPU	ECU	Memory (GiB)**	Instance Storage (GB)**	Instance Count
m5.xlarge	4	16	16 GiB	96 GB	1

^{**} data specified above corresponds to available resources before spark and Hadoop installations

Main Classes

- 1. blockchain spark/src/main/scala/com/blockchain/app/Part1 1.scala Used for Part1. Q1 Q4
- 2. <u>blockchain_spark/src/main/scala/com/blockchain/app/Part1_2.scala</u> Used for Part1. Q5 Q8
- 3. <u>blockchain_spark/src/main/java/com/blockchain</u>/app/**PreProcessinginHDFS.java** Used to preprocess txin.dat and txout.dat
- 4. <u>blockchain_spark/src/main/scala/com/blockchain</u>/app/**PreProcForPart2.scala** Draws Graph and calculates the connected component analysis
- 5. <u>blockchain spark/src/main/scala/com/blockchain/app/Part2.scala</u> Used for Part2

Compiled Using: sbt assembly

Run Time (approx): 15min (Part1) + 45min (Pre-Processing) + 12min (Part2)

Note:

- 1. Can also be verified on a small dataset using the test configurations (files locations can be specified in resources/config-Local.properties file)
- 2. Also, note that all the logic for part1 and part2 are specified as comments in the main classes above.
- 3. Pre-processing was done on a single instance.

^{*} HDFS was used with default replication factor i.e., 3

Idea behind Part II (the most interesting one)

Let say, we have the following data

txin.dat

addID	txID
Α	tx1
В	tx1
В	tx2
С	tx2
D	tx2

txout.dat

Step1: Joint Control

- 1. Firstly, draw a vertex for each address ID in addresses.dat.
- 2. Add an edge between address if they belong to the same transaction and store the tx information.

Step2: Serial Control

- 1. Find all the single o/p transactions
- 2. Now, for a single o/p transaction with txID say tx1, find the edge with same transaction ID as tx1 in the above graph.
- 3. Connect the o/p address with one of the vertices belonging to that edge as shown below

A tx1
tx1
Z
B
tx2 tx2
C
D

Fig 1. Joint Control

Fig 2. Serial Control

Step 3: Calculate the connected component analysis on the formed graph using BFS/DFS

All the connected component will belong to a single user.

Part 1: Transactions analysis

1. What is the number of transactions and addresses in the dataset?

Number of transactions: 298325122 and address: 370269747

2. What is the Bitcoin address that is holding the greatest amount of bitcoins? How much is that exactly? Note that the address here must be a valid Bitcoin address string. To answer this, you need to calculate the balance of each address. The balance here is the total amount of bitcoins in the UTXOs of an address.

Address ID: 211452559, 3D2oetdNuZUqQHPJmcMDDHYoqkyNVsFk9r has greatest amount of

bitcoin: 16983763426833

3. What is the average balance per address?

avg balance/address: 4551543.822266252

4. What is the average number of input and output transactions per address? What is the average number of transactions per address (including both inputs and outputs)? An output transaction of an address is the transaction that is originated from that address. Likewise, an input transaction of an address is the transaction that sends bitcoins to that address.

Avg i/p transactions per address: 2.170451681541241

& Avg o/p transactions/address: 1.627057559741709

& Avg number of transactions/address = 3.79750924128 (approx. to max value)

Here again, avg number of transactions/address is calculated as avg i/p+ avg o/p which may include some common transactions for the same address.

5. What is the transaction that has the greatest number of inputs? How many inputs exactly? Show the hash of that transaction. If there are multiple transactions that have the same greatest number of inputs, show all of them.

txID	blockID	n_ip	n_op	hash
78373103	367899	20000	1	f2e197a6d8d088b13afd0f99d4027da36a9413b9f3d7730ba5278132ebc950a7
78371005	367897	20000	1	8dabbf51f78c1e7286866af1de403118c5ddbe57ca93b54859245916d2bf1063
78377474	367906	20000	1	dd6067e71c04cb62f8e5aa52ecc99b01ffcd551a52727d046a2fabb14eb39b4d
78376719	367904	20000	1	740ac533882221099e7202bbdafbb99ec589c6e74fd2fe7ca1274b46ea4f0a96
78357607	367877	20000	1	52539a56b1eb890504b775171923430f0355eb836a57134ba598170a2f8980c1
78382093	367911	20000	1	5f4d2593c859833db2e2d25c672a46e98f7f8564b991af9642a8b37e88af62bc
78361636	367885	20000	1	30b3b19b4d14fae79b5d55516e93f7399e7eccd87403b8dc048ea4f49130595a
78364751	367891	20000	1	c9fe64681c9a12795586a3ae7c5e94b585032f67847c7f9c42e1b979a1e2959b
78361909	367886	20000	1	cf1032c2213e6faea04f1813aa6890e7f588bb378cb98e7425aec83c11d4457c

6. What is the average transaction value? Transaction value is the sum of all outputs' value.

average transaction value: 1530115769.389244664416830440448123

7. How many coin base transactions are there in the dataset?

Number of coinbase transactions: 508241

8. What is the average number of transactions per block?

Average number of transactions per block: 586.9757103421347

Part 2: Address de-anonymization

Joint control: assume that all input addresses of a transaction are controlled by the same user. **Serial control**: assume that the output address of a transaction with only a single output is controlled by the same user owning the input addresses.

1. How many users are there in the dataset?

numUsers: 155543894

Answer questions 2, 3, and 4 in part 1 by replacing "address" with "user". Note that each user
is identified by the addresses that are owned by him/her. Thus, in answering question 2 (i.e.,
the user who is holding the greatest amount of bitcoins), you need to list all the user's
addresses.

2. User <mark>0</mark> has greatest amount of bitcoin= 332101450015043 This includes address ID's

userID	addID	hash
0	370269736	13yN7pQrBJThkgJj5cgAphLKZcFGLa342h
0	370269735	1MSwjGZKrHEb8yScerFc7N7e1h9KSLJ62d
0	370269734	1DJfm6uyNaWB5bG3gCmisVbhKMUQV6ggWz
0	370269733	1G6q6gRqxNmvt3Cx3e9aLzZMNpMFgXS3ac
0	370269732	14PsNdbiGexSz9Hq49wu375ZgfBKRqgANr
0	370269731	1PRCc74e4pnjg8nxZBTVJRY6XARxxRVCW3
0	370269730	1CK1TebtrGNKmzwxdUuQQ5cVrhvZCwgmGs
0	370269729	14DMNye38YDt9JjU2BsLMuEddJvkPRA5fT
0	370269728	1JJBwz7KVHHumKNesotXQNyxAPbwV9wTKc
0	370269727	1Hxo3NenGJc4cQweCJLK44n6Zi7DVUZHU9

Total: 137487089 addresses

3. avg balance/user: 1.0833194001679288E7

4. Avg i/p transactions/user: 3.4236879912495954

& Avg o/p transactions/user: 1.9144925868964036

& Avg number of transactions/user = 5.33818049 (approx. to max value)

Here again, avg number of transactions/user is calculated as avg i/p+ avg o/p which may include some common transactions for the same user.

3. Give the hash of the transaction sending the greatest number of bitcoins to the user who is holding the greatest balance.

1867248	29a3efd3ef04f9153d47a990bd7b048a4b2d213daaa5fb8ed670fb85f13bdbcf	55000000000000