ВОПРОСЫ К ЭКЗАМЕНУ, 1 СЕМЕСТР

1. ФУНКЦИЯ ОДНОЙ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ

1. Понятие функции.

Пусть X, Y — некоторые непустые числовые множества.

Если каждому числу $x \in X$ единственным образом поставлено в соответствие число $y \in Y$, то говорят, что на множестве X определена (задана) функция и пишут y = f(x)

2. Числовые функции. График функции. Способы задания функции.

Множество X - область определения функции;

x — независимая переменная (аргумент) функции;

y, соответствующее данному значению x, - значение функции в точке x.

множество у – множество значений функции.

Геометрически функция y = f(x) изображается своим графиком.

График функции — это множество точек $\{M(x, f(x), x \in X)\}$ в прямоугольной системе координат Оху.

Способы задания функций:

- Табличный способ
- Графический способ
- Аналитический способ
- Словесный способ(НЕ уверен)

3. Основные характеристики функции.

1. Функция y = f(x), определенная на множестве X, называется **четной**, если $\forall x \in X$ выполнены условия: $\neg x \in X$ и $f(\neg x) = f(x)$

Функция y = f(x), определенная на множестве X, называется **нечетной**, если $\forall x \in X$ выполнены условия: $\neg x \in X$ и $f(\neg x) = \neg f(x)$

График четной функции симметричен относительно оси ординат, график нечетной функции симметричен относительно начала координат.

2. Пусть функция y = f(x) определена на множестве X и $X_1 \varepsilon X$.

Если $\forall x_1$, $x_2 \in X_1$ из неравенства $x_1 < x_2$ следует неравенство $\mathbf{f}(x_1) < f(x_2)$, то функция называется возрастающей на множестве X_1 .

Если $\forall x_1$, $x_2 \in X_1$ $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$, то функция называется **неубывающей** на множестве X_1 .

Если $\forall x_1$, $x_2 \in X_1$ $x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$, то функция называется **убывающей** на множестве X_1 .

Если $\forall x$ 1, x2 $\in X_1$ $x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2)$, то функция называется **невозрастающей** на множестве X_1 .

Возрастающие, невозрастающие, убывающие, неубывающие функции на множестве X_1 называются монотонными на этом множестве, Возрастающие, и убывающие, функции на множестве X_1 называются строго монотонными на этом множестве.

3. Функция y = f(x), определенная на множестве X, называется **ограниченной** на этом множестве, если существует такое число M > 0, что $\forall x \in X$ выполнено неравенство $|f(x)| \leq M$

4. Функция y = f(x), определенная на множестве X, называется **периодической** на этом множестве, если существует такое число T > 0, такое, что $\forall x \in X$ выполнены условия:

$$(x + T) \subseteq X \cup f(x + T) = f(x)$$

4. Обратная функция.

Пусть задана функция y = f(x), определенная на множестве X и принимающая значения во множестве Y. Пусть каждому значению $y \in Y$ соответствует единственное значение $x \in X$. В этом случае говорят, что функция y = f(x) устанавливает взаимнооднозначное соответствие между элементами X и Y.

Поставим каждому $y \in Y$ то число $x \in X$, для которого y = f(x), тем самым будет определена функция $x = f^{-1}(y)$, которая называется **обратной к функции** y = f(x).

Любая строго монотонная функция имеет обратную. При этом, если функция возрастает (убывает), то обратная также возрастает (убывает).

5. <u>Сложная функция.</u>

Пусть аргумент t функции y = f(t) является не независимой переменной, а функцией некоторой переменной x: $t = \varphi(x)$. Тогда говорят, что переменная y является **сложной функцией** переменной x и пишут $y = f(\varphi(x))$.

6. Основные элементарные функции и их графики.

Показательная функция:

$$y = a^x$$
, $a > 0$, $a \ne 0$

Степенная функция:

$$y = x^a$$
, $a \in R$

Логарифмическая функция:

$$y = \log_a x, \ a > 0, \ a \neq 0$$

Тригонометрические функции:

$$y = \cos x$$
, $y = \sin x$, $y = \operatorname{tg} x$, $y = \operatorname{ctg} x$

Обратные тригонометрические функции:

 $y = \arccos x$, $y = \arcsin x$, $y = \arctan x$, $y = \arctan x$

7. Предел числовой последовательности.

Числовая последовательность – это функция, определенная на множестве натуральных чисел:

$$f(n): n \in \mathbb{N}$$
 $\{x_n\} = x_1, x_2, x_3, x_4, ..., x_n, ...$

Число A называется **пределом числовой последовательности** $\{x_n\}$, если $\forall \varepsilon > 0$ $\exists N \in \mathbb{N}$, такой, что $\forall n > N$ выполнено неравенство $|x_n - A| < \varepsilon$

$$\lim_{n\to\infty} x_n = A$$

Если последовательность имеет предел, то говорят, что она **сходится**, а если не имеет предела, то **расходится**.

8. Предельный переход в неравенствах.

Теорема 1.

Пусть $\lim x_n = a$, $\lim y_n = b$ и $x_n \le y_n$, начиная с некоторого n. Тогда $a \le b$.

Доказательство.

Допустим, что a > b.

Зададим $\varepsilon = \frac{a-b}{2}$.

Тогда при $n > N(\varepsilon)$ имеем $|x_n - a| < \varepsilon$, т.е.

$$x_n > a - \varepsilon = a - \frac{a-b}{2} = \frac{a+b}{2}; y_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{a+b}{2};$$

т.е. $x_n > y_n$ что противоречит условию.

Теорема 2.

Пусть $\lim x_n = \lim y_n = a$ и, начиная с некоторого п $x_n \le y_n \le z_n$. Тогда $\lim z_n = a$.

Теорема 3. (Вейерштрасс)

Всякая монотонная ограниченная числовая последовательность имеет предел.

Контрпримеры:

 $x_n = n$ — монотонная, но не ограниченная

 $x_n = (-1)^n$ — ограниченная, но не монотонная

9. <u>Предел монотонной ограниченной последовательности. Число е.</u> <u>Натуральные логарифмы.</u>

1) Если последовательность является возрастающей и ограниченной сверху, то:

$$\lim_{x\to\infty} x_n = \sup x_n$$

Аналогично для убывающей и ограниченной снизу последовательности:

$$\lim_{x\to\infty} x_n = \inf x_n$$

2) Рассмотрим последовательность $x_n = (1 + \frac{1}{n})^n$

Последовательность возрастающая и ограниченная.

По теореме Вейерштрасса она имеет предел.

$$\lim_{n \to \infty} (1 + \frac{1}{n})^n = 2,718281828459045... = e$$

3) Натуральный логарифм - это функция y=ln x, обратная к экспоненте $x=e^y$, и являющаяся логарифмом по основанию числа e: $\ln x = \log_e x$

10. Предел функции в точке

Определение предела (по Коши). Число A называется пределом функции f(x) в точке a (при $x \to a$), если для любого $\varepsilon > 0$ найдется $\delta > 0$ такое, что для любого значения аргумента x из проколотой δ - окрестности точки a выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\forall \varepsilon > 0 \ \exists \delta > 0 : \ 0 < x - a < \delta \implies |f(x) - A| < \varepsilon$$

11. Односторонние пределы

Функция может иметь различные предельные точки слева и справа в некоторой точке.

Число A называется пределом функции f(x) в точке a справа (слева), если для любого ε > 0 найдется δ > 0 такое, что для любого значения аргумента $x \in (a; a + \delta)$ (соответственно $x \in (a - \delta; a)$) выполняется неравенство $|f(x) - A| < \varepsilon$.

$$\frac{\lim}{x \to a+0} f(x) = A$$
 или $f(a+0) = A$

$$\frac{\lim}{x \to a - 0} f(x) = A \text{ или } f(a - 0) = A$$

Теорема. Если у функции f(x) существуют в точке a предел слева и предел справа, причем f(a + 0) = f(a - 0) = A, то в данной точке существует предел этой функции, равный A.

12. Предел функции при $x \to \infty$

Пусть функция f(x) задана на множестве X и $\forall N \exists x \in X : x > N$

Число A называется пределом функции f(x) при $x \to +\infty$, если $\forall \varepsilon > 0 \exists N$, такое, что для любого x > N выполнено неравенство $|f(x) - A| < \varepsilon$.

$$\frac{\lim}{x \to +\infty} f(x) = A$$

Аналогично определяется $\frac{lim}{x \to -\infty} f(x) = A$ (Число A называют пределом функции f (x) при $x \to -\infty$, если для любого положительного числа ϵ найдется такое отрицательное число C, что при всех x, удовлетворяющих неравенству x < C ,будет выполняться неравенство| f (x) – A | < ϵ .)

Если
$$\frac{\lim}{x \to -\infty} f(x) = \frac{\lim}{x \to +\infty} f(x) = A$$
 ,то пишут $\frac{\lim}{x \to \infty} f(x) = A$

13. Бесконечно большая функция

Функция f(x) называется бесконечно большой в точке a (при $x \to a$), если

$$\frac{\lim}{x \to a} f(x) = \infty$$
 иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < |x - a| < \delta \Longrightarrow |f(x)| > A$$

14. Бесконечно малая функция

Функция f(x) называется бесконечно малой в точке a (при $x \to a$), если

$$\frac{\lim}{x \to a} f(x) = 0$$
 иначе,

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < |x - a| < \delta \Longrightarrow |f(x)| < \varepsilon$$

Основные свойства бесконечно малых функций:

Теорема1. Сумма и разность двух бесконечно малых в точке a функций есть функция бесконечно малая в точке a.

Теорема 2. Произведение бесконечно малой в точке a функции на ограниченную в окрестности точки a функцию есть функция бесконечно малая в точке a.

Следствие 1. Произведение конечного числа ограниченных функций, из которых хотя бы одна — б. м. в точке a, есть функция бесконечно малая в точке a.

Следствие 2. Частное от деления бесконечно малой в точке а функции на функцию, имеющую отличный от нуля предел в точке а есть функция бесконечно малая в точке a.

15. <u>Связь между функцией, ее пределом и бесконечно малой</u> функцией

Теорема (о связи между функцией, пределом и бесконечно малой функцией)

1)Если
$$\frac{\lim}{x \to a} f(x) = A$$
, то $f(x) = A + a(x) - 6$.м. в точке a

2)Если
$$f(x) = A + a(x)$$
, где $a(x) - 6$.м. в точке a и A – число, то $\frac{\lim}{x \to a} f(x) = A$

1) Согласно определению предела

$$\forall \varepsilon > 0 \ \exists \delta > 0, \ 0 < x - a < \delta \Longrightarrow |f(x) - A| < \varepsilon.$$

Это означает, что функция

 $\alpha(x) = f(x) - A$ — бесконечно малая в точке a.

Представим f(x) в виде $f(x) = A + f(x - A) = A + \alpha(x)$.

16. Основные теоремы о пределах.

<u>Теорема.</u> Пусть функции f(x) и g(x) определены в проколотой окрестности точки a и, пусть

$$\frac{\lim}{x \to a} f(x) = A, \ \frac{\lim}{x \to a} g(x) = B$$
 . Тогда:

$$\frac{\lim}{x \to a} [f(x) \pm g(x)] = A \pm B ;$$

$$\frac{\lim}{x \to a} f(x) \cdot g(x) = A \cdot B \; ;$$

Если $B \neq 0$, то в некоторой проколотой окрестности точки a определена функция f(x) g(x) и

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = \frac{A}{B} .$$

1) Согласно теореме о связи функции, предела и б. м.

$$f(x) = A + \alpha(x), g(x) = B + \beta(x),$$

где $\alpha(x)$ и $\beta(x)$ — б. м. в точке a.

Поэтому $f(x) \pm g(x) = (A \pm B) + (\alpha(x) \pm \beta(x)) = (A \pm B) + \gamma(x)$ где $\gamma(x) = \alpha(x) \pm \beta(x)$ - б. м. в точке a .

Следовательно,

$$\frac{\lim}{x \to a} f(x) \pm g(x) = A \pm B$$

Следствие 1.

$$\frac{\lim}{x \to a} c \cdot f(x) = c \cdot A$$

где c = const

Следствие 2. Пусть $P_n(x)$ и $Q_m(x)$ – многочлены степени n и m. Если $Q_m(a) \neq 0$, то

$$\frac{\lim_{x \to a} \frac{P_n(x)}{Q_m(x)}}{Q_m(x)} = \frac{P_n(a)}{Q_m(a)}$$

<u>Замечание.</u> Алгебраические свойства предела допускают обобщение на функции, являющиеся б. м. или б. б. в точке a, например

$$[\infty \cdot \infty] = \infty$$
, $[c \cdot \infty] = \infty$, $[\frac{c}{0}] = \infty$, $[\frac{c}{\infty}] = 0$, $[\frac{\infty}{0}] = \infty$, $[\frac{0}{\infty}] = 0$

17. Признаки существования пределов

Теорема (о пределе промежуточной функции):

Если в проколотой окрестности точки а выполняются неравенства

$$f(x) \le g(x) \le h(x)$$

и существуют пределы функций f(x) и h(x) в точке a, причем

$$\frac{\lim}{x \to a} f(x) = \frac{\lim}{x \to a} h(x) = A$$

то существует

$$\frac{\lim}{x \to a} g(x) = A$$

Теорема (о пределе монотонной функции):

Если функция f(x) монотонна и ограничена на полупрямой $x \ge a$, то существует

$$\frac{\lim}{x \to +\infty} f(x) = A$$

Замечание. Аналогичная теорема имеет место для правого и левого предела функции в точке a: если функция f(x) монотонна и ограничена в правой (левой) полуокрестности точки a, то существует

$$\frac{\lim}{x \to a+0} f(x)$$
 или $\frac{\lim}{x \to a-0} f(x)$

Следствие. Монотонная ограниченная последовательность сходится.

18. Первый замечательный предел

$$\frac{\lim}{x \to 0} \frac{\sin x}{x} = 1; \qquad \frac{\lim}{x \to 0} \frac{\operatorname{tg} x}{x} = 1; \frac{\lim}{x \to 0} \frac{\operatorname{arcsin} x}{x} = 1; \frac{\lim}{x \to 0} \frac{\operatorname{arctg} x}{x} = 1;$$

19. Второй замечательный предел

$$\frac{\lim}{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \frac{\lim}{x \to +\infty} \left(1 + x\right)^{\frac{1}{x}} = e$$

(этот предел является неопределенностью типа $[1^{\infty}]$)

20. Сравнение бесконечно малых функций

Пусть f(x) и g(x) — б.м. в точке a.

Функция f(x) называется бесконечно малой более высокого порядка (имеет более высокий порядок малости), чем g(x) при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = 0$$

Обозначение f = o(g) при $x \rightarrow a$ (о – малое от g)

Функции f(x) и g(x) называются бесконечно малыми одного порядка (имеют одинаковый порядок малости) при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = A \neq 0$$

Обозначение f = O(g) при $x \to a$ (O – большое от g)

21. Эквивалентные бесконечно малые и основные теоремы о них

Функции f(x) и g(x) называются эквивалентными бесконечно малыми при $x \to a$, если

$$\frac{\lim}{x \to a} \frac{f(x)}{g(x)} = 1$$

Обозначение $f \sim g$ при $x \rightarrow a$

Теорема 1. Предел отношения двух бесконечно малых функций не изменится, если каждую или одну из них заменить эквивалентной ей бесконечно малой.

Теорема 2. Разность двух эквивалентных бесконечно малых функций есть бесконечно малая более высокого порядка, чем каждая из них.

Теорема 3. Сумма конечного числа бесконечно малых функций разных порядков эквивалентна слагаемому низшего порядка.

22. Применение эквивалентных бесконечно малых

Пример.

T.K.
$$sin3x \Leftrightarrow 3x$$
, to $\lim_{x\to 0} \frac{sin3x}{7x} = \lim_{x\to 0} \frac{3x}{7x} = \frac{3}{7}$

Пример.

$$\lim_{x\to 0} \frac{tg2x}{sin3x}$$
, так как $tg2x \Leftrightarrow 2x$, $sin3x \Leftrightarrow 3x$ при $x\to 0$, то $\lim_{x\to 0} \frac{tg2x}{sin3x} = \lim_{x\to 0} \frac{2x}{3x} = \frac{2}{3}$

Пример.

$$\lim_{x \to 0} \frac{3x + 7x^2}{\sin 2x} = \lim_{x \to 0} \frac{3x}{\sin 2x} = \lim_{x \to 0} \frac{3x}{2x} = \frac{3}{2}, \text{ поскольку } 3x + 7x^2 \Leftrightarrow 3x \text{ и } \sin 2x \Leftrightarrow 2x$$

23. Непрерывность функции в точке, в интервале и на отрезке

Опр1

Функция f(x) называется непрерывной в точке a, если

$$\frac{\lim}{x \to a} f(x) = f(a)$$

- 1) Функция f(x) определена в точке a и в некоторой окрестности точки a;
- 2)Функция f(x) имеет предел при $x \to a$;
- 3) Предел функции в точке a равен значению функции в точке a.

Опр2

Функция f(x) называется непрерывной в точке a, если она определена в точке a и ее окрестности и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции

$$\frac{\lim}{\Delta x \to 0} \Delta y = 0$$

Функция f(x) называется непрерывной в интервале (a; b), если она непрерывна в каждой точке этого интервала.

Функция f(x) называется непрерывной на отрезке [a; b], если она непрерывна в интервале (a; b), в точке a непрерывна справа, а в точке b непрерывна слева.

24. Точки разрыва функции и их классификация

Предельная точка области определения функции, в которой функция не является непрерывной называется *точкой разрыва функции*.

Классификация точек разрыва функции:

Устранимый разрыв.

Точка a называется точкой устранимого разрыва функции f(x), если существует

$$\frac{\lim}{x \to a} f(x) = b$$
, _но в точке $x = a$ функция $f(x)$ либо не определена, либо $f(a) \neq b$

Если положить f(a) = b разрыв будет устранен, т.е. функция станет непрерывной в точке а

Разрыв 1-го рода

Точка a называется точкой разрыва 1-го рода функции f(x), если существуют

$$\frac{\lim}{x \to a+0} f(x) = b$$
 и $\frac{\lim}{x \to a-0} f(x) = c$ но они не равны.

Величину |b - c| называют скачком функции в точке разрыва 1-го рода.

Разрыв 2-го рода

Точка a называется точкой разрыва 2-го рода функции f(x), если в этой точке не существует по крайней мере один из односторонних пределов

25. <u>Основные теоремы о непрерывных функциях. Непрерывность</u> <u>элементарных функций</u>

Теорема 1

Если функции f(x) и g(x) непрерывны в точке a, то функции $f(x) \pm g(x)$, $f(x) \cdot g(x)$, f(x) / g(x) (при условии $g(a) \neq 0$) также непрерывны в точке a.

Теорема 2. (о непрерывности сложной функции)

Пусть функция t = g(x) непрерывна в точке a, g(a) = b а функция y = f(t) непрерывна в точке b. Тогда сложная функция y = f(g(x)) непрерывна в точке a.

Теорема 3. (о непрерывности обратной функции)

Пусть функция y = f(x) определена, строго монотонна и непрерывна на X = [a; b]. Тогда множеством ее значений является Y = [f(a); f(b)]; на [f(a); f(b)] существует обратная функция $x = f^{-1}(y)$; обратная функция также строго монотонна; обратная функция непрерывна на Y = [f(a); f(b)].

Теорема 4.

Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

26. Свойства функций, непрерывных на отрезке

Теорема (Вейерштрасса).

Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значения.

Следствие.

Если функция непрерывна на отрезке, то она ограничена на этом отрезке.

Теорема (Больцано-Коши).

Если функция y = f(x) непрерывна на отрезке [a; b] и принимает на его концах неравные значения f(a) = A и f(b) = B, то на этом отрезке она принимает все промежуточные значения между A и B.

Следствие.

Если функция y = f(x)непрерывна на отрезке [a; b] и принимает на его концах значения разных знаков, то внутри отрезка [a; b] найдется хотя бы одна точка c, в которой f(c) = 0.

Функция y = f(x) непрерывна на [a; b], a < 0, b > 0; M — наибольшее значение функции f(x) на [a; b]; m — наименьшее значение функции f(x) на [a; b].

27. <u>Определение производной. Ее механический и геометрический смысл. Уравнение касательной и нормали к кривой</u>

Если существует $f'(x) = \frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$,то он называется производной функции y = f(x) в точке x.

Физический смысл

Пусть x — время, а y = f(x) — координаты точки, движущейся по оси ОҮ, в момент времени x.

Соотношение
$$\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x)-f(x)}{\Delta x}$$

представляет собой среднюю скорость точки на промежутке от момента времени x до момента времени $x + \Delta x$, а величина

$$\vartheta(x) = f'(x) = \frac{\lim}{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

является мгновенной скоростью в момент времени x.

В случае произвольной функции y = f(x) производная f'(x) характеризует скорость изменения переменной y (функции) относительно изменения аргумента x.

Геометрический смысл:

Геометрический смысл производной заключается в том, что численно производная функции в данной точке равна тангенсу угла, образованного касательной, проведенной через эту точку к данной кривой, и положительным направлением оси Ох:

$$f'(x_0) = tg \alpha$$
 или $f'(x_0) = k$

где k - угловой коэффициент касательной

Уравнение касательной к кривой

Уравнение касательной к графику функции y = f(x) в точке $A(x_0, f(x_0))$ имеет вид:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Уравнение нормали к кривой

Уравнение касательной графику функции y = f(x) в точке $A(x_0, f(x_0))$ имеет вид:

$$y - f(x_0) = -\frac{1}{f'(x_0)} \cdot (x - x_0)$$

28. Связь между непрерывностью и дифференцируемостью функции

Функция y = f(x), имеющая производную в точке, называется дифференцируемой в этой точке.

Функция y = f(x), имеющая производную в каждой точке интервала (a; b), называется дифференцируемой в этом интервале.

Теорема

Если функция дифференцируема в некоторой точке, то она непрерывна в ней.

Обратная теорема не верна!

29. Производная суммы, разности, произведения и частного функций

<u>Теорема</u>. Если функции u(x) и v(x) дифференцируемы в точке x, то функции $u(x) \pm v(x)$, $u(x) \cdot v(x)$, u(x) / v(x) (где $v(x) \neq 0$) также дифференцируемы в точке x, причем:

$$[u(x) \pm v(x)]' = u'(x) \pm v'(x)$$

$$[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$$

$$\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}$$

30. Производная сложной и обратной функций

Сложной:

Рассмотрим сложную функцию y = f(t), где $t = \varphi(x)$, то есть $y = f(\varphi(x))$.

Теорема. Пусть функция $t = \varphi(x)$ дифференцируема в точке x_0 , $\varphi(x_0) = t_0$, функция y = f(t) дифференцируема в точке t_0 . Тогда сложная функция $y = f(\varphi(x))$ дифференцируема в точке x_0 и выполнено равенство:

$$[f(\varphi(x_0))]' = f'(t_0) \cdot \varphi'(x_0) = f_{\varphi'} \cdot \varphi_{x'}$$

Обратной:

Теорема. Пусть функция y=f(x) определена, строго монотонна и непрерывна в окрестности точки x_0 , дифференцируема в точке x_0 и $f'(x_0) \neq 0$. Пусть $f(x_0) = y_0$. Тогда в некоторой окрестности точки y_0 существует обратная функция $x=f^{-1}(y)$, эта функция дифференцируема в точке y_0 и

$$f^{-1}'(y_0) = \frac{1}{f'(x_0)}$$

31. Производные основных элементарных функций

1.
$$c' = 0$$
, $c = \text{const}$

$$2. \left(x^n\right)' = nx^{n-1}$$

3.
$$\left(a^{x}\right)' = a^{x} \cdot \ln a$$

$$4. \left(e^{x}\right)' = e^{x}$$

$$5. \left(\log_a x\right)' = \frac{1}{x \ln a}$$

$$6. \left(\ln x \right)' = \frac{1}{x}$$

7.
$$(\sin x)' = \cos x$$

8.
$$(\cos x) = -\sin x$$

$$9. \left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$$

10.
$$(tgx)' = \frac{1}{\cos^2 x}$$

11.
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

12.
$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$

13.
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$

14.
$$(\arctan x)' = \frac{1}{1+x^2}$$

15.
$$(\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$$

$$16. \left(\sinh x \right)' = \cosh x$$

17.
$$(\cosh x)' = \sinh x$$

18.
$$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$$

19.
$$(\operatorname{th} x)' = -\frac{1}{\operatorname{sh}^2 x}$$

32. Гиперболические функции и их производные

$$sh\ x=rac{e^x-e^{-x}}{2}$$
 - Гиперболический синус $ch\ x=rac{e^x+e^{-x}}{2}$ - Гиперболический синус $th\ x=rac{shx}{chx}=rac{e^x-e^{-x}}{e^x+e^{-x}}$ - Гиперболический тангенс $cth\ x=rac{chx}{shx}=rac{e^x+e^{-x}}{e^x-e^{-x}}$ - Гиперболический котангенс

Основные соотношения:

$$ch^{2}x - sh^{2}x = 1;$$
 $sh2x = 2sh \ x * ch \ x;$ $ch2x = ch^{2}x + sh^{2}x;$ $sh(x + y) = sh \ x * ch \ y + ch \ x + sh \ ;$

Производные гиперболических функций:

$$(\sinh x)' = \frac{e^x + e^{-x}}{2} = \cosh x; \qquad (\cosh x)' = \frac{e^x - e^{-x}}{2} = \sinh x;$$
$$(\sinh x)' = \left(\frac{\sinh x}{\cosh x}\right)' = \frac{\cosh^2 x - \sinh^2 x}{\cosh^2 x} = \frac{1}{\cosh^2 x};$$
$$(\coth x)' = \frac{\sinh^2 x - \cosh^2 x}{\sinh^2 x} = -\frac{1}{\sinh^2 x}.$$

33. <u>Дифференцирование неявных и параметрически заданных</u> функций

Неявных:

Если функция задана неявно уравнением F(x, y) = 0, то для нахождения производной y' по аргументу x достаточно продифференцировать это уравнение по x, рассматривая при этом y как функцию x, затем полученное уравнение разрешить относительно y'.

Параметрически заданных:

$$y = f(x), \quad \left\{ \begin{array}{l} x = x(t) \\ y = y(t) \end{array} \right.$$
, где t – параметр.

Если функции x(t) и y(t) дифференцируемы, функция x = x(t) имеет обратную, то

$$t'_{x} = \frac{1}{x_{t'}}$$

Функцию y = f(x) можно рассматривать как сложную функцию

$$y = f(x) = f(t(x))$$

Получим
$$y_x^{'} = \frac{y_t^{'}}{x_t^{'}}$$

34. Логарифмическое дифференцирование

$$y' = y \cdot (\ln y)'$$

35. Производные высших порядков

Производная n -го порядка функции y = f(x) определяется как производная от производной (n-1) - го порядка.

$$f^{(n)}(x) = [f^{(n-1)}(x)]'$$

36. Дифференциал функции

Дифференциалом функции y = f(x) в точке x называется линейная функция аргумента Δx :

$$dy = f'(x) \cdot \Delta x$$

37. Геометрический смысл дифференциала функции

Дифференциал dy равен тому изменению функции y = f(x) при изменении аргумента на Δx , которое имела бы функция, если бы на отрезке $[x, x + \Delta x]$ она была линейной с угловым коэффициентом, равным f(x).

38. Основные теоремы о дифференциалах

Основные теоремы о дифференциалах соответствуют теоремам о производных:

$$d(u \pm v) = du \pm dv$$

$$d(u \cdot v) = v \cdot du + u \cdot dv$$

$$d(\frac{u}{v}) = \frac{du \cdot v - u \cdot dv}{v^2} \quad (v \neq 0)$$

Дифференциал сложной функции $y = f(x) = f(\varphi(x))$ равен:

$$dy = f_{\varphi}' \cdot d\varphi$$

39. Дифференциалы высших порядков

Дифференциал n-го порядка функции y = f(x) определяется как дифференциал от дифференциала (n-1) - го порядка.

$$d^{(n)}y = d(d^{(n-1)}y)$$

40. Теорема Ролля.

Пусть выполнены условия.

- функция y = f(x) определена и непрерывна на сегменте [a; b];
- y = f(x) дифференцируема в интервале (a; b).
- f(a) = f(b);

Тогда найдется хотя бы одна точка $c \in (a; b)$, у которой f(c) = 0.

41. <u>Теорема Коши.</u>

Пусть выполнены условия:

- функция f(x) и g(x) определены и непрерывны на сегменте [a; b];
- f(x) и g(x) дифференцируемы в интервале (a; b);
- $g'(x) \neq 0$ в интервале (a; b).

Тогда найдется точка $c \in (a; b)$, такая, что

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$

42. Теорема Лагранжа

Пусть выполнены условия:

- функция y = f(x) определена и непрерывна на сегменте [a; b];
- y = f(x) дифференцируема в интервале [a; b].

Тогда найдется точка $c \in (a; b)$, такая, что

$$f(b) - f(a) = f'(c)(b - a)$$

2. ПРИМЕНЕНИЕ ДИФФЕРЕНЦИАЛЬНОГО ИСЧИСЛЕНИЯ К ИССЛЕДОВАНИЮ ФУНКЦИЙ

43. Правило Лопиталя.

Пусть выполнены условия:

- функция f(x) и g(x) определены и дифференцируемы в некоторой проколотой окрестности точки a;
- $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0;$
- $g'(x) \neq 0$ в указанной проколотой окрестности точки a;
- существует $\lim_{x \to a} \frac{f'(x)}{g'(x)}$

Тогда существует $\lim_{x\to a} \frac{f(x)}{g(x)}$ и выполнено:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

ВЫВОД НУЖЕН ФОРМУЛЫ?

44. Возрастание и убывание функции и ее производная.

1) Возрастание и убывание функции

Пусть X – промежуток, т.е. интервал, отрезок, полупрямая или прямая.

<u>Теорема</u>. Для того, чтобы дифференцируемая на промежутке X функция f(x) не убывала (не возрастала) на X, необходимо и достаточно, чтобы $\forall x \in X$ было выполнено $f'(x) \ge 0$ $(f'(x) \le 0)$.

<u>Достаточность.</u> Пусть $f'(x) \ge 0$ $\forall x \in X$. Докажем, что f(x) не убывает на промежутке X.

Рассмотрим две произвольные точки $x_1, x_2 \in X, x_1 \le x_2$.

По формуле Лагранжа:

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$$

Так как
$$f'(c) > 0$$
 и $x_2 - x_1 > 0$, то $f(x_2) - f(x_1) \ge 0$

Следовательно, $f(x_2) \ge f(x_1)$ при $x \ge x 1$, это означает, что функция f(x) не убывает на промежутке X

<u>Необходимость</u>. Пусть f(x) не убывает на X., т.е. f(x2) ≥ f(x1) при x2 > x1, x1, x2 ∈ X.

Докажем, что $f'(x) \ge 0 \ \forall x \in X$. Допустим противное, т.е. что $\exists c \in X, f'(c) < 0$.

Тогда f(x) убывает в точке c, то есть существует такая окрестность точки c, в которой f(x) < f(c) при x > c и f(x) > f(c) при x < c.

Первое из этих неравенств противоречит условию неубывания функции, следовательно, наше предположение неверно и $f'(x) \ge 0 \ \forall x \in X$.

<u>Замечание.</u> Для возрастания функции f x на промежутке X достаточно, но необходимо выполнение неравенства $f'(x) > 0 \ \forall x \in X$.

<u>Утверждение 1</u>. Из возрастания функции в данной точке не следует возрастание функции в какой-нибудь окрестности этой точки.

<u>Утверждение 2</u>. Функция f(x) возрастает на некотором интервале тогда и только тогда, когда она возрастает в каждой точке этого интервала.

2) Если существует $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$,то он называется производной функции y = f(x) в точке x.

45. Максимум и минимум функции и ее производная.

<u>Определение.</u> Говорят, что в точке c функция f(x) имеет локальный максимум (минимум), если существует такая окрестность точки c, в которой f(x) < f(c) (соответственно, f(x) > f(c)) при c x ≠ c.

<u>Теорема (Необходимое условие существования экстремума)</u>. Если функция f(x) дифференцируема в точке c и имеет в этой точке локальный экстремум, то f'(c) = 0.

Замечание 1. Условие f'c = 0 – необходимое, но не достаточное условие локального экстремума функции fx в точке c. Например, функция fx = x 3 не имеет экстремума в точке x = 0, но при этом f'0 = 0.

<u>Замечание 2.</u> Условие f'c = 0 – необходимое условие экстремума только дифференцируемой функции fx в точке c.

<u>Точки возможного экстремума</u> функции f(x): точки c, в которых f'(c) = 0; точки c, в которых f'(c) не существует, но сама функция f(x) непрерывна в точке c.

<u>Теорема</u> (первое достаточное условие экстремума). Пусть c - точка возможного экстремума функции f(x) и пусть f(x) является дифференцируемой в некоторой проколотой окрестности точки c. Тогда если в указанной окрестности:

$$\begin{cases} f'(x) > 0 \ (<0) \text{ при } x < c \\ f'(x) < 0 \ (>0) \text{ при } x > c \end{cases}$$

то в точке c функция f(x) имеет локальный максимум (минимум);

если f'(x) одного знака при x < c и при x > c, то в точке c экстремума нет.

<u>Теорема (второе достаточное условие экстремума).</u> Пусть f(x) дважды дифференцируема в точке c и пусть f'(c) = 0, $f''(c) \neq 0$. Тогда если f''(c) < 0 (> 0), то в точке c функция имеет локальный максимум (минимум).

46. Наибольшее и наименьшее значения функции на отрезке.

Если функция у = f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке наименьшего и наибольшего значений. Это может произойти либо в точках экстремума, либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции, непрерывной на отрезке [a, b], нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f(x) на отрезке [a, b]. Для этого следует найти все её критические точки, лежащие на [a, b].

Критической точкой называется точка, в которой функция определена, а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f(a) и f(b)). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a, b].

47. Выпуклость графика функции. Точки перегиба.

1) Пусть функция f(x) определена и дифференцируема на интервале (a; b). Тогда в каждой точке M(x, f(x)) интервала существует касательная к графику функции, причем эта касательная не параллельна оси ординат.

<u>Определение</u>. Говорят, что график функции y = f(x) направлен на интервале (a; b) выпуклостью вверх (вниз), если в пределах интервала (a; b) график лежит не выше (не ниже) любой своей касательной.

<u>Теорема.</u> Если функция y = f(x) дважды дифференцируема на интервале a; b и если для любого x ∈ (a; b) f''(x) ≤ 0 (≥ 0), то график функции y = f(x) направлен на интервале (a; b) выпуклостью вверх (вниз).

- 2) <u>Определение</u>. Точка M(c, f(c)) графика функции y = f(x) называется точкой перегиба графика, если:
- 1)В точке M существует касательная к графику;
- 2)Существует такая окрестность точки c, в которой слева и справа от точки c имеет различные направления выпуклости.

<u>Теорема.</u> (необходимое условие перегиба). Если функция y = f(x) имеет в точке c непрерывную вторую производную и график этой функции имеет в точке M(c, f(c)) перегиб, то f''(c) = 0.

<u>Теорема.</u> (первое достаточное условие перегиба). Пусть точка M(c, f(c)) является точкой возможного перегиба графика функции y = f(x) и пусть f(x) дважды дифференцируема в некоторой проколотой окрестности точки c. Тогда если в указанной окрестности слева и справа от точки c f''(x) имеет разные знаки, то в точке M(c, f(c)) график функции y = f(x) имеет перегиб.

48. Асимптоты графика функции.

<u>Определение.</u> Прямая x = a называется вертикальной асимптотой графика функции y = f(x), если хотя бы один из односторонних пределов

$$\lim_{x\to a-0} f(x)$$
 или $\lim_{x\to a+0} f(x)$

равен $+\infty$ или $-\infty$

<u>Определение.</u> Прямая y = kx + b называется наклонной асимптотой графика функции y = f(x) при $x \to +\infty$, если f(x) представима в виде

$$f(x) = kx + b + a(x)$$

где $\alpha(x)$ – бесконечно малая при $x \to +\infty$.

Аналогично определяется наклонная асимптота при $x \to -\infty$.

<u>Теорема.</u> Для того, чтобы прямая y = kx + b была наклонной асимптотой графика функции y = f(x) при $x \to +\infty$, необходимо и достаточно, чтобы существовали два предела:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \operatorname{II} \lim_{x \to +\infty} (f(x) - kx) = b$$

■ Необходимость.

Пусть прямая y = kx + b является наклонной асимптотой графика функции y = f(x) при $x \to +\infty$, то есть

$$f(x) = kx + b + a(x)$$

где α x – бесконечно малая при $x \to +\infty$.

Тогда

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{kx + b + a(x)}{x}$$

$$= \lim_{x \to +\infty} \left[k + \frac{b}{x} + \frac{a(x)}{x} \right] = k$$

$$\lim_{x \to +\infty} (f(x) - kx) = \lim_{x \to +\infty} (b + a(x)) = b$$

■ Достаточность.

Пусть существуют пределы

$$\lim_{x \to +\infty} \frac{f(x)}{x} = k \text{ u } \lim_{x \to +\infty} (f(x) - kx) = b$$

Положим a(x) = f(x) - kx - b. Тогда

$$\lim_{x \to +\infty} a(x) = \lim_{x \to +\infty} (f(x) - kx - b) = 0$$

Таким образом, $f(x) = kx + b + \alpha(x)$, где $\alpha(x)$ – бесконечно малая при $x \to +\infty$.

<u>Замечание.</u> Если k = 0 , то асимптота является горизонтальной. (ОЧЕНЬ СЛОЖНОЕ ЗАМЕЧАНИЕ!!!!!!!!!) xD

49. Общая схема исследования функции и построения ее графика.

- А) Исследуем функцию без использования производных:
 - 1) Находим область определения;
- 2) Исследуем свойства графика функции (точки пересечения с осями координат, четность или нечетность, периодичность, оси симметрии, промежутки знакопостоянства):
 - 3) Исследуем точки разрыва и находим асимптоты графика функции;
 - 4) Строим эскиз графика;
- Б) Исследуем функцию с помощью производных:
 - 5) Находим промежутки монотонности и точки локального экстремума;
 - 6) Строим график.

50. Формула Тейлора.

Пусть функция f(x), заданная на отрезке [a,b], имеет в каждой внутренней точке этого отрезка (n+1)-ю производную.

$$P_{n}(x) = f(x_{0}) + \frac{f'(x_{0})}{1!} \bullet (x - x_{0}) + \frac{f''(x_{0})}{2!} \bullet (x - x_{0})^{2} + \dots$$
$$\dots + \frac{f^{(n)}(x_{0})}{n!} \bullet (x - x_{0})^{n} + R_{n}(x)$$

 $R_{n}(x)$ - <u>остаточный член формулы Тейлора</u>

Остаточный член в форме Лагранжа:

$$R_{n}(x) = \frac{f^{(n+1)}(c)}{(n+1)!} \bullet (x-x_{0})^{n+1}$$
 , где $x_{0} < c < x$

Остаточный член в форме Пеано:

$$R_{n}(x) = o((x - x_{0})^{n}), \text{ при } x \to x_{0}$$