5.2. NEPREKINUTE FIX I LIMESI

Pr.) Posloji li $\lim_{x \to a} f(x)$? Wijedi li $\lim_{x \to a} f(x) = f(a)$? $\lim_{x \to a} (f(x)) \neq \lim_{x \to a} (f(x))$ $\lim_{x \to a} (f(x)) = \lim_{x \to a} (f(x))$ $\lim_{x \to a} (f(x)) = \lim_{x \to a} (f(x))$ $\lim_{x \to a} (f(x)) = \lim_{x \to a} (f(x))$

crtanje (ke x > a)

disanja olake

s papina"

fra je neprekimuta ua!

(ت

5.3. LIMES 1 ASIMPNOTE

BESKONAČNI

LIMESI (Lt 00)

$$\lim_{x \to 3^{+}} \frac{2x}{x-3} = \frac{c}{0^{+}} = +\infty$$

$$\frac{2x}{\sqrt{-3}} = \frac{6}{\sqrt{-3}} = -\infty$$

$$\frac{2x}{(-3)} = \frac{6}{0} = -\infty$$

$$\frac{2x}{(-3)} = \frac{6}{0} = -\infty$$

$$\lim_{X \to 3} \frac{2x}{x-3} = \frac{6}{0} = -\infty$$

 $\lim_{X \to 3^{-}} \frac{2x}{(x-3)^2} = \frac{6}{(o^-)^2} = \frac{6}{o^+}$

 $\lim_{x \to -3^{+}} \frac{2x}{x+3} = \frac{66}{0+} = \pm \infty$

 P_{c} f(x) =

里) f(x) = arc tx

$$\frac{x}{-3} = \frac{6}{0} = -00$$

$$\frac{2x}{x-3} = \frac{c}{o^+} = +\infty$$

5 4.2. LIMESI U BESKONAČNOST (x + ± 00)

 $\lim_{x \to +\infty} \frac{1}{x} = \frac{1}{+\infty} = 0^+$

1 = 0 + 1 = 0

 $\lim_{x\to+\infty} \operatorname{arctg}(x) = \operatorname{arctg}(+\infty) = \frac{T}{2}$

 $\lim_{x\to\infty} \arctan(x) = \arctan(x) (-\infty) = \frac{-1}{2}$

$$\lim_{x \to 1} \frac{1}{x^2 + 1} = \frac{1}{+\infty} = 0$$

$$\lim_{x \to 1} \operatorname{arctg}\left(\frac{x+1}{2}\right) = \operatorname{arctg}\left(-\infty\right)$$

$$\lim_{x\to\infty} \arctan\left(\frac{x+1}{2}\right) = \arctan\left(-\alpha\right)$$

Zad. | Izratuny'k:

$$\lim_{n\to\infty} \arctan\left(\frac{x+1}{2}\right) = \arctan\left(-\infty\right)$$

$$\lim_{-\infty} \operatorname{arcty}\left(\frac{x+1}{2}\right) = \operatorname{arcty}\left(-\infty\right)$$

$$\lim_{\infty} \operatorname{arctg}\left(\frac{x+1}{2}\right) = \operatorname{arctg}\left(-\infty\right)$$

b)
$$\lim_{x \to -\infty} \arctan\left(\frac{x+1}{2}\right) = \arctan\left(-\infty\right) = \frac{-\pi}{2}$$

$$\begin{array}{ll}
x^{2+1} & +\infty \\
m & \operatorname{arcty}\left(\frac{x+1}{2}\right) = \operatorname{arcty}\left(-\infty\right)^{\frac{1}{2}}
\end{array}$$

$$e^{x} = e^{+\infty} = +\infty$$

$$e^{x} = e^{-\infty} = \frac{1}{e^{+\infty}} = \frac{1}{\infty} = 0$$

$$\lim_{x \to -\infty} e^{x} = e^{-\infty} = \frac{1}{e^{+\infty}} = \frac{1}{\infty} = 0$$

5.3.3. ASIMPTOTE

DET Also se toita T reportido giba po trafu lije l' taleo da barrem jèdra od rejenih koordinala teži prrema ± 20 te prilom njena udaljenost od rukej pravca teži & nuli, tada taj pravac zovemo ASIMPROTA I To?

VERTIKALNE ASIMPTOTE

[DEF] Note a & Die) Tada pravae X=a zoverno V. A. tije f ato it: $\lim_{x \to a^+} f(x) = \pm a0$ ili $\lim_{x \to a^-} f(x) = \pm a0$ $\lim_{x \to a^+} f(x) = \pm a0$

Fr. f(x) = ln x $3t = \langle 0,100 \rangle$ Rim $ln x = -\infty$ x = 0

ALGORITAM ZA TRAŽENJE V.A.:

- 1) Odreaite De
- 2) Parimati lijeve i desne limese u rubonima domene
- (3) Odredite V.A.

$$Zad$$
 $f(x) = \frac{x}{x^2 g}$

 $\lim_{X \to 3} \frac{X}{X^2 - 9} = \frac{3}{0} = -\infty$

 $\lim_{X \to -3^+} \frac{x}{x^2 \cdot g} = \frac{-3}{0^-} = +20$

 $\lim_{x \to -3} \frac{x}{x^2 - 9} = \frac{-3}{0^+} = -00$

$$\lim_{X \to 3^{+}} \frac{X}{x^{2}-9} = \lim_{x \to 3^{+}} \frac{X}{(x-3)(x+3)} = \frac{3}{0^{+}} = +\infty$$

"Prema -3 1 my era plusa"

2) HORIZONTALNE ASIMPTOTE

DEF Provac y=1 20vemo DESNA (LIJEVA) toR. ASIMPT. fig f. also virgidi lian f(x) = L (line (f(x)) = L) Pr.) Odredite H.A. Rije F(x) = arctg(2-x)

Pr.) Odredike H.A. Rije
$$f(x) = arctg(2-x)$$

 $lim(arctg(2-x)) = arctg(-\infty) = -\frac{\pi r}{2}$
 $lim(arctg(2-x)) = arctg(100) = \frac{\pi}{2}$
 $x \rightarrow -\infty$

ZAd.) Odnedide VA; HA Rije $f(x) = \frac{2x^2 + x - 1}{x^2 + x - 2}$ Df = R/ 1-2,13

$$\lim_{x \to -2^{+}} \frac{2x^{2} + x - 1}{x^{2} + x - 2} = \lim_{x \to -2^{+}} \frac{2x^{2} + x - 1}{x^{2} + x -$$

 $\lim_{x \to -2^{+}} \frac{5}{0} = \infty$ $\lim_{x \to 1^+} \frac{2x^2 + x - 1}{(x+2)(x-1)} = \frac{2}{3 \cdot 0^+} = +\infty$ $\lim_{x \to -2^{-}} \frac{2x^{2} + x - 1}{x^{2} + x - 2} = \frac{3}{0^{+}} = 100$ lim 2x+x-1 = 2 = -00 x+1 (x+2)(x-1) = 3.0-

3.) H.A.

$$\lim_{X \to 1} \frac{2x^2 + x - 1}{|x|^2} \frac{2}{1} = 2$$

$$\lim_{X \to +\infty} \frac{2x^2 + x - 1}{|x|^2 + x - 2} \frac{2}{|x|^2} \frac{2}{1} = 2$$

$$\lim_{X \to -\infty} \frac{2x^2 + x - 1}{|x|^2 + x - 2} \frac{2}{|x|^2} \frac{2}{1} = 2$$

The Pravac
$$y = kx+l$$
 zoverno DESNA (LIJEVA) K.A. alo vijed $lim (f(x) - kx-l) = 0$ ($lim (f(x) - k-l) = 0$)

$$\begin{bmatrix}
\ell = \lim_{x \to +\infty} (f(x) - kx) \\
x \to +\infty
\end{bmatrix}$$

$$\begin{aligned}
k = ? & \lim_{x \to +\infty} \frac{f(x) - kx - \ell}{x} = \frac{0}{+\infty} = 0 \\
& \lim_{x \to +\infty} \left(\frac{f(x)}{x} - k - \frac{\ell}{x} \right) = 0
\end{aligned}$$

TRAZENJE K.A.

D
$$k=\lim_{1/2} \frac{f(x)}{x+200} \times$$

2. $l_{1/2}=\lim_{x\to 200} (f(x)-k_{1/2} \times)$

The su posebne k.A.
$$+ H.A.$$
 su posebne k.A. $+ H.A.$ su posebne k.A. $+ Lopima je = 0.$

Also su limeri $+ Lopima$ bennesi $+ Lopima$ $+ Lopi$

 $k = \lim_{x \to \infty} \frac{f(x)}{x}$

$$y = k_2 \times + k_2 \otimes K \cdot A$$

ZAD: | Odnedite over assimption tipe: (a) $f(x) = arctif(\frac{x^2}{xH})$

a) $VA = R \setminus \{-1\}$

b) $f(x) = e^{kx} - x$

ATD: Odredite one asimptote (i) a: (a)
$$f(x) = arctg(\frac{x}{xH})$$

b) $f(x) = e^{x} - x$
 $f(x) = arctg(\frac{x}{xH})$
 $f(x) = arctg(\frac{x}{xH})$

lim arcty
$$\left(\frac{x^{i}}{x+i}\right)$$
 = arcty $\frac{1}{0^{+}}$ = arcty $(+\infty)$ = $\frac{\pi}{2}$ also $2a$ V.A. dodijens tomative brigieve, tomative brigieve, the arcty $\left(\frac{x^{i}}{x+i}\right)$ = arcty $\frac{1}{0}$ = arcty $(-\infty)$ = $-\frac{\pi}{2}$ tomative animptoke.

NEMA V.A.

La lim
$$\frac{f(x)}{x} = \lim_{x \to +\infty} \frac{arcts(\frac{x^{2}}{x + 1})}{x} = \frac{arcts(+\infty)}{+\infty} = \frac{\frac{t}{2}}{-\infty} = 0$$

La to ge H.A.

$$\ell_{1} = \lim_{x \to +\infty} \left(f(x) - \xi x \right) = \lim_{x \to +\infty} \operatorname{arctg}\left(\frac{x^{2}}{x+1}\right) = \frac{\pi}{2} \qquad \boxed{Y = \frac{\pi}{2} \text{ DHA}}$$

$$\ell_{2} = 0$$

$$\ell_{1} = \lim_{x \to -\infty} \left(f(x) - \xi x \right) = \lim_{x \to -\infty} \operatorname{arctg}\left(\frac{x^{2}}{x+1}\right) = -\frac{\pi}{2} \qquad \boxed{Y = -\frac{\pi}{2} \text{ LHA}}$$

$$x \to -\infty$$

$$\frac{VA}{\Delta t} = \frac{VA}{\Delta t} = \frac{V$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{to} = +\infty$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{to} - 0 = e^{-to} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{+\infty} - 0 = e^{+\infty} = +\infty$$

$$\lim_{x \to 0} (e^{x} - x) = e^{+\infty} - 0 = e^{-\infty} = 0$$

$$\lim_{x \to 0} (e^{x} - x) = e^{+\infty} - 0 = e^{-\infty} = 0$$

 $=\frac{1}{100}-1=-1$

DZ y=-XH L.KA

$$\lim_{x \to 0} (e^{x} - x) = e^{t \infty} - 0 = e^{t \infty} = + \infty$$

$$\lim_{x \to 0} (e^{1/x} - x) = e^{t \infty} - 0 = e^{-\infty} = 0$$

$$\lim_{x \to 0} (e^{1/x} - x) = e^{t \infty} - 0 = e^{-\infty} = 0$$

$$\lim_{x \to 0} (e^{1/x} - x) = e^{t \infty} - 0 = e^{-\infty} = 0$$

$$\lim_{x \to 0} (e^{1/x} - x) = e^{t \infty} - 0 = e^{-\infty} = 0$$

$$\begin{array}{l}
\text{loy} \\
\text{o} = e^{-\lambda} \\
\text{o} = e^{-\lambda}
\end{array}$$

(= lim (+(x)+x) = lim (e'/2-x+x) = e+0 = e° = 1

1 4= -x+1 D.K.A

5.3. RACUNANJE LIMESA

ITM a ER ili a = ±00, lim (f(x)) lim g(x) ER

1) $\lim_{x\to a} (f(x) \pm g(x)) = \lim_{x\to a} (f(x) \pm \lim_{x\to a} (g(x))$

2) lim $(f(x) - g(y)) = \lim_{x \to a} (f(x) - \lim_{x \to a} (g(x))$

3) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\text{Com}(f(x))}{\text{cim}(g(x))}$

4) $\lim_{x \to a} (f(x)) = (\lim_{x \to a} (f(x)))^{x \to a}$

Pravila 20 bestonaine limese

-> Zbrajanje 00+00 = 00 0+c = 00 c eR

$$\omega + c = \omega \quad c \in \mathbb{R}$$

$$(\infty - \infty) = \text{neodiffiction oblit}$$

- dýchenje 00

atoje lim $f(x) = \lim_{x \to a} (g(x)) = 0$ i lim $\frac{f(x)}{g(x)} = C \in \mathbb{R}^+$

Fije f i g za eknivalentne neizanjerno male velidire ako je c=1,

Fije f i g za etenivalentre neizonjerno male velidire ato je
$$\frac{f(x)}{g(x)} = 1$$
 i prisemo $f(x) \sim g(x)$, $x \to a$.

Nap $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{\ln(x)}{g(x)}$

 $\lim_{x \to a} f(x) - g(x) = \lim_{x \to a} x = 0$