Leitner - Basic Category Theory - Problem solutions Adam Barber **0.10**:

Let S be a set. The indiscrete topological space I(S) is the space whose set of points is S and whose only open subsets are \emptyset and S. To find a universal property satisfied by the space I(S) proceed as follows. With this topology any map from a topological space to S is continuous.

Parroting the wording of the question, let us rephrase this in universal parlance. Define a function $i: S \to I(S)$, by $i(s) = s, s \in S$. Then I(S) has the following property.

For all topological spaces X and all functions $f: X \to S$ there exists a unique continuous map $\overline{f}: X \to I(S)$. What it says is all maps into an indiscrete space are continuous. It also says that given S, the universal property determines I(S) and i, up to isomorphism.

0.11

The universal property that is satisfied by the pair $(ker(\theta), \iota)$ is depicted in the diagram below.

The statement of the universal property is as follows. For any $f: F \to G$ such that $\theta \circ f = \epsilon \circ f$ there is a unique $\overline{f}: F \to ker(\theta)$ such that the diagram above commutes. That is $f = \iota \circ \overline{f}$

0.13:

(a)

Choose $\phi(\sum_{i=1}^n a_i x^i) = \sum_{i=1}^n a_i r^i$. Then ϕ with $\phi(x) = r$ is a homomorphism that satisfies additive and multiplicative properties. To prove uniqueness assume there is another homomorphism ψ , with $\psi(x) = r$. Then $\psi(\sum_{i=1}^n a_i x^i) = \sum_{i=1}^n a_i \psi(x) = \sum_{i=1}^n a_i r^i$ by properties of a homomorphism. So $\psi = \phi$.

 $\iota \colon \mathbb{Z}[x] \to A \text{ maps } \sum_{i=1}^n p_i x^i \text{ to } \sum_{i=1}^n p_i a^i, \text{ using } \iota(x) = a, \text{ the multiplicative property of a homomorphism to get } \iota(x^i) = \iota(x)^i, \text{ and the additive property to get } \iota(p_i)\iota(x)^i = p_i\iota(x)^i \text{ remembering } p_i \text{ is in } \mathbb{Z}.$

Going in the direction $A \to \mathbb{Z}[x]$ we know as provided in (b) that, taking $R = \mathbb{Z}[x]$, and $\phi = \iota'$, there exists a unique ring homomorphism such that $\iota'(a) = x$. So ι' maps $\sum_{i=1}^n p_i a^i$ to $\sum_{i=1}^n p_i x^i$ and $\iota' \circ \iota = 1_{\mathbb{Z}[x]}$. Also using definitions of ι and ι' easily yields $\iota \circ \iota' = 1_A$.