Logic seminar at NUS: Computable models of small theories

Alex Gavruskin (joint work with Bakh Khoussainov)

7th November 2012

Plan

- The fundamental order
- ② Decidable models of small theories
- Omputable models of small theories
- Prospective applications: automatic structures

We consider only countable structures of countable languages. And only *small* theories.

Definition

A first-order theory T is *small* if the set of finite first-order types of T without parameters, S(T), is at most countable.

Let T be a small theory.

Fact

- ① T has a prime model and a saturated model.
- ② If $p \in S(T)$ and $A \models p(\bar{a})$, then the theory $Th(A, \bar{a})$ has a prime model $(A_{\bar{a}}, \bar{c})$. Structures $A_{\bar{a}}$ are isomorphic for different A and \bar{a} . (Since we consider structures up to isomorphism, denote the structure by A_p .)

Definition

Call the structure $A_p \models T$ from Fact 2 *p-prime*, or almost prime if the type is not specified.

We consider only countable structures of countable languages. And only *small* theories.

Definition

A first-order theory T is *small* if the set of finite first-order types of T without parameters, S(T), is at most countable.

Let T be a small theory.

Fact

- ① T has a prime model and a saturated model.
- ② If $p \in S(T)$ and $A \models p(\bar{a})$, then the theory $Th(A, \bar{a})$ has a prime model $(A_{\bar{a}}, \bar{c})$. Structures $A_{\bar{a}}$ are isomorphic for different A and \bar{a} . (Since **we consider structures up to isomorphism**, denote the structure by A_p .)

Definition

Call the structure $A_p \models T$ from Fact 2 *p-prime*, or almost prime if the type is not specified.

We consider only countable structures of countable languages. And only *small* theories.

Definition

A first-order theory T is *small* if the set of finite first-order types of T without parameters, S(T), is at most countable.

Let T be a small theory.

Fact

- T has a prime model and a saturated model.
- ② If $p \in S(T)$ and $A \models p(\bar{a})$, then the theory $Th(A, \bar{a})$ has a prime model $(A_{\bar{a}}, \bar{c})$. Structures $A_{\bar{a}}$ are isomorphic for different A and \bar{a} . (Since we consider structures up to isomorphism, denote the structure by A_p .)

Definition

Call the structure $A_p \models T$ from Fact 2 *p-prime*, or almost prime if the type is not specified.

Note

- The set $\mathcal{AP}_{\mathcal{T}}$ of all almost prime models of a theory \mathcal{T} is preordered under the relation \preceq of elementary embeddability.
- \mathcal{AP}_{τ}/\sim is a poset, where $A\sim B\Leftrightarrow (A\preceq B\ \&\ B\preceq A)$.
- $(\mathcal{AP}_{\tau}/\sim, \preceq)$ has a unique least element—the prime model of T.

Definition

We call the partial order $(\mathcal{AP}_{\tau}/\sim, \preceq)$ the fundamental order of the theory \mathcal{T} .

Note

- The set \mathcal{AP}_{τ} of all almost prime models of a theory T is preordered under the relation \leq of elementary embeddability.
- \mathcal{AP}_{τ}/\sim is a poset, where $A\sim B\Leftrightarrow (A\preceq B\ \&\ B\preceq A)$.
- $(\mathcal{AP}_{\tau}/\sim, \preceq)$ has a unique least element—the prime model of T.

Definition

We call the partial order $(\mathcal{AP}_{\tau}/\sim, \preceq)$ the fundamental order of the theory \mathcal{T} .

Example

- A saturated structure is almost prime iff it is \(\cdot\)0-categorical.
- ② If a theory T is \aleph_1 but not \aleph_0 -categorical then $\mathcal{AP}_T \cong \omega$.
- **3** If a theory T is Ehrenfeucht then \mathcal{AP}_T has a max element.

Proof.

If T is Ehrenfeucht then it has a non-principal powerful* type p. A p-prime structure is a maximal element of $\mathcal{AP}_{\mathcal{T}}$.

^{*}A type p of a theory T is powerful if every model of T realising p realises every type of T as well.

Example

- **1** A saturated structure is almost prime iff it is \aleph_0 -categorical.
- ② If a theory T is \aleph_1 but not \aleph_0 -categorical then $\mathcal{AP}_T \cong \omega$.
- **3** If a theory T is Ehrenfeucht then \mathcal{AP}_{τ} has a max element.

Proof.

If T is Ehrenfeucht then it has a non-principal $powerful^*$ type p. A p-prime structure is a maximal element of $\mathcal{AP}_{\mathcal{T}}$.

^{*}A type p of a theory T is powerful if every model of T realising p realises every type of T as well.

If $A_p \sim A_q$ but $A_p \not\cong A_q$, then there is a structure A such that $A \sim A_p$ but A is not almost prime.

Proof

Form an elementary chain $A_0 \subseteq A_1 \subseteq ...$ where $A_n \cong A_p$ if n is even and $A_n \cong A_q$ if n is odd. Put $A = \bigcup_{n \in \omega} A_n$.

Note

The structure A can be presented as a union of an elementary chain of isomorphic almost prime structures, but A itself is not almost prime. Call such a structure limit.

Definition

A structure is p-limit (limit) if it is a union of an elementary chain of p-prime (isomorphic almost prime) structures but it itself is not p-prime (almost prime).

If $A_p \sim A_q$ but $A_p \not\cong A_q$, then there is a structure A such that $A \sim A_p$ but A is not almost prime.

Proof.

Form an elementary chain $A_0 \subseteq A_1 \subseteq ...$ where $A_n \cong A_p$ if n is even and $A_n \cong A_q$ if n is odd. Put $A = \bigcup_{n \in \omega} A_n$.

Note

The structure A can be presented as a union of an elementary chain of isomorphic almost prime structures, but A itself is not almost prime. Call such a structure *limit*.

Definition

A structure is p-limit (limit) if it is a union of an elementary chain of p-prime (isomorphic almost prime) structures but it itself is not p-prime (almost prime).

If $A_p \sim A_q$ but $A_p \not\cong A_q$, then there is a structure A such that $A \sim A_p$ but A is not almost prime.

Proof.

Form an elementary chain $A_0 \subseteq A_1 \subseteq ...$ where $A_n \cong A_p$ if n is even and $A_n \cong A_q$ if n is odd. Put $A = \bigcup_{n \in \omega} A_n$.

Note

The structure A can be presented as a union of an elementary chain of isomorphic almost prime structures, but A itself is not almost prime. Call such a structure limit.

Definition

A structure is p-limit (limit) if it is a union of an elementary chain of p-prime (isomorphic almost prime) structures but it itself is not p-prime (almost prime).

A complete small theory T is an AL theory if every countable (unsaturated) model of T is either almost prime or limit.

Question

How far is the class of AL theories from the class of small theories?

Definition

A structure is *weakly limit* if it is the union of an elementary chain of almost prime structures.

Lemma (Sudoplatov 2004)

Every countable model of a small theory is either almost prime or weakly limit.

A complete small theory T is an AL theory if every countable (unsaturated) model of T is either almost prime or limit.

Question

How far is the class of AL theories from the class of small theories?

Definition

A structure is *weakly limit* if it is the union of an elementary chain of almost prime structures.

Lemma (Sudoplatov 2004)

Every countable model of a small theory is either almost prime or weakly limit.

A complete small theory T is an AL theory if every countable (unsaturated) model of T is either almost prime or limit.

Question

How far is the class of AL theories from the class of small theories?

Definition

A structure is *weakly limit* if it is the union of an elementary chain of almost prime structures.

Lemma (Sudoplatov 2004)

Every countable model of a small theory is either almost prime or weakly limit.

Note

- A saturated structure is limit if and only if its theory has a non-principal powerful type, i. e. \mathcal{AP}_{τ} has a maximal element.
- Denote the set of all limit models of a theory T by \mathcal{LS}_{τ} .
- The structure of the spectrum of an AL theory T is determined by a pre-order $\mathcal{AP}_{\mathcal{T}}$ and a function $\lambda_{\mathcal{T}}: \mathcal{AP}_{\mathcal{T}} \to 2^{\mathcal{LS}_{\mathcal{T}}}$ mapping a p-prime structure to the set of all p-limit structures.
- Think of λ_T as of a disjoint union of bipartite graphs. And draw a picture.
- $\mathcal{LS}_T = \bigcup_{M \in \mathcal{AP}_T} \lambda_T(M)$.

Note

- A saturated structure is limit if and only if its theory has a non-principal powerful type, i. e. \mathcal{AP}_{τ} has a maximal element.
- ullet Denote the set of all limit models of a theory T by $\mathcal{LS}_{ au}$.
- The structure of the spectrum of an AL theory T is determined by a pre-order $\mathcal{AP}_{\mathcal{T}}$ and a function $\lambda_{\mathcal{T}}: \mathcal{AP}_{\mathcal{T}} \to 2^{\mathcal{LS}_{\mathcal{T}}}$ mapping a p-prime structure to the set of all p-limit structures.
- Think of λ_{τ} as of a disjoint union of bipartite graphs. And draw a picture.
- $\mathcal{LS}_{T} = \bigcup_{M \in \mathcal{AP}_{T}} \lambda_{T}(M)$.

Call the pair $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ fundamental parameters of T.

Example

- ① \aleph_0 -categorical theories. $\mathcal{AP}_T \cong 1$, $\lambda_T = \varnothing$.
- ② \aleph_1 -categorical theories. $\mathcal{AP}_T \cong \omega, \ \lambda_T = \varnothing$.
- Ehrenfeucht theories.

Ehrenfeucht

$$k = 3 \ \mathcal{AP}_{\tau} = \{0 < 1\}, \ \mathcal{LS}_{\tau} = \{a\}, \ \lambda_{\tau}(0) = \emptyset, \ \lambda_{\tau}(1) = \{a\}, \ \lambda_{\tau}(0) = \emptyset, \ \lambda_{\tau}(1) = \{a\}, \$$

$$k \ge 3 \ \mathcal{AP}_T = \{0 < 1 \le ... \le k - 2 \le 1\}, \ \mathcal{LS}_T = \{a\},\ \lambda_T(0) = \emptyset \ \lambda_-(1) = \{a\} = \lambda_-(k-2) = \{a\}$$

Morley-Lachlan

$$k = 6$$
 $\mathcal{AP}_{\tau} = \{0 < 1 < 2\}, \ \mathcal{LS}_{\tau} = \{a, b, c\},\ (0) = \{0, 1\}, \ (2) = \{a, b, c\},\ (3) = \{a, b, c\},\ (4) = \{$

Call the pair $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ fundamental parameters of T.

Example

- **1** \aleph_0 -categorical theories. $\mathcal{AP}_T \cong 1$, $\lambda_T = \varnothing$.
- ② \aleph_1 -categorical theories. $\mathcal{AP}_T \cong \omega$, $\lambda_T = \varnothing$.
- Ehrenfeucht theories.

Ehrenfeucht:

$$k = 3 \ \mathcal{AP}_{\tau} = \{0 < 1\}, \ \mathcal{LS}_{\tau} = \{a\}, \ \lambda_{\tau}(0) = \emptyset, \ \lambda_{\tau}(1) = \{a\};$$

$$k \geq 3$$
 $\mathcal{AP}_{\tau} = \{0 < 1 \leq ... \leq k - 2 \leq 1\}, \ \mathcal{LS}_{\tau} = \{a\}, \ \lambda_{\tau}(0) = \varnothing, \ \lambda_{\tau}(1) = ... = \lambda_{\tau}(k - 2) = \{a\}.$

Morley-Lachlan:

$$k = 6$$
 $\mathcal{AP}_{\tau} = \{0 < 1 < 2\}, \ \mathcal{LS}_{\tau} = \{a, b, c\},\ \lambda_{\tau}(0) = \lambda_{\tau}(1) = \emptyset, \ \lambda_{\tau}(2) = \{a, b, c\}.$

If T is an AL theory then \mathcal{AP}_{τ} and λ_{τ} satisfy the following:

- **1** $\mathcal{AP}_{\mathcal{T}}$ has a unique least element A_0
- $\lambda_{\tau}(A_0) = \emptyset$
- **3** If $\mathcal{AP}_{\mathcal{T}}$ has a maximal element $Z_0 \neq A_0$ then $\lambda_{\mathcal{T}}(Z_0) \neq \emptyset$
- If $X_0 \not\sim X_1$ are elements from \mathcal{AP}_{τ} then $\lambda_{\tau}(X_0) \cap \lambda_{\tau}(X_1) = \varnothing$
- **⑤** If $X_0 \sim \ldots \sim X_{k+1}$ is a maximal set of \sim -equivalent elements from \mathcal{AP}_{τ} then there is an element M such that $M \in \bigcap_{0 \leq i \leq k+1} \lambda_{\tau}(X_j)$, particularly, $\lambda_{\tau}(X_j) \neq \emptyset$ □

Proposition

A theory is Ehrenfeucht if and only if 1–5 and:

- 6 both AP_T and λ_T are finite
- \bigcirc \mathcal{AP}_{T} has a maximal element $Z_0 \neq A_0$

If T is an AL theory then \mathcal{AP}_{τ} and λ_{τ} satisfy the following:

- **1** $\mathcal{AP}_{\mathcal{T}}$ has a unique least element A_0
- **3** If \mathcal{AP}_T has a maximal element $Z_0 \neq A_0$ then $\lambda_T(Z_0) \neq \emptyset$
- If $X_0 \not\sim X_1$ are elements from $\mathcal{AP}_{\mathcal{T}}$ then $\lambda_{\mathcal{T}}(X_0) \cap \lambda_{\mathcal{T}}(X_1) = \varnothing$
- If $X_0 \sim \ldots \sim X_{k+1}$ is a maximal set of \sim -equivalent elements from \mathcal{AP}_{τ} then there is an element M such that $M \in \bigcap_{t \in \mathcal{A}_{\tau}} \lambda_{\tau}(X_t)$ particularly $\lambda_{\tau}(X_t) \neq \emptyset$

$$M \in \bigcap_{0 \le j \le k+1} \lambda_T(X_j)$$
, particularly, $\lambda_T(X_j) \ne \emptyset$

Proposition

A theory is Ehrenfeucht if and only if 1–5 and:

- **o** both \mathcal{AP}_{T} and λ_{T} are finite
- **1** \mathcal{AP}_{T} has a maximal element $Z_{0} \neq A_{0}$

Let \mathcal{AP} be a partial order, \mathcal{LS} be a set, and $\lambda: \mathcal{AP} \to 2^{\mathcal{LS}}$. What properties, in addition to 1–5, must be satisfied in order to guarantee the existence of an AL theory T such that $\varphi: \mathcal{AP} \cong \mathcal{AP}_{\mathcal{T}}, \ \psi: \mathcal{LS} \cong \mathcal{LS}_{\mathcal{T}}, \ \text{and}$ $\lambda_{\mathcal{T}}\varphi(X) = \{\psi(M) \mid M \in \lambda(X)\}$ for every $X \in \mathcal{AP}$.

Problem

The same for properties 1–7 and Ehrenfeucht theories.

Approaches

- Sudoplatov, Complete theories with finitely many countable models II, Algebra and Logic, 45, 3, 180–200, 2006.
- Recent papers at http://sites.google.com/site/gavruskin/publications/

Let \mathcal{AP} be a partial order, \mathcal{LS} be a set, and $\lambda: \mathcal{AP} \to 2^{\mathcal{LS}}$. What properties, in addition to 1–5, must be satisfied in order to guarantee the existence of an AL theory T such that $\varphi: \mathcal{AP} \cong \mathcal{AP}_{\mathcal{T}}, \ \psi: \mathcal{LS} \cong \mathcal{LS}_{\mathcal{T}}, \ \text{and}$ $\lambda_{\mathcal{T}}\varphi(X) = \{\psi(M) \mid M \in \lambda(X)\}$ for every $X \in \mathcal{AP}$.

Problem

The same for properties 1–7 and Ehrenfeucht theories.

Approaches

- Sudoplatov, Complete theories with finitely many countable models II, Algebra and Logic, 45, 3, 180–200, 2006.
- @ Recent papers at http://sites.google.com/site/gavruskin/publications/

Let \mathcal{AP} be a partial order, \mathcal{LS} be a set, and $\lambda: \mathcal{AP} \to 2^{\mathcal{LS}}$. What properties, in addition to 1–5, must be satisfied in order to guarantee the existence of an AL theory T such that $\varphi: \mathcal{AP} \cong \mathcal{AP}_{\mathcal{T}}, \ \psi: \mathcal{LS} \cong \mathcal{LS}_{\mathcal{T}}, \ \text{and}$ $\lambda_{\mathcal{T}}\varphi(X) = \{\psi(M) \mid M \in \lambda(X)\}$ for every $X \in \mathcal{AP}$.

Problem

The same for properties 1–7 and Ehrenfeucht theories.

Approaches:

- Sudoplatov, Complete theories with finitely many countable models II, Algebra and Logic, 45, 3, 180–200, 2006.
- Recent papers at http://sites.google.com/site/gavruskin/publications/

Let \mathcal{AP} be a partial order, \mathcal{LS} be a set, and $\lambda: \mathcal{AP} \to 2^{\mathcal{LS}}$. What properties, in addition to 1–5, must be satisfied in order to guarantee the existence of an AL theory T such that $\varphi: \mathcal{AP} \cong \mathcal{AP}_{\mathcal{T}}, \ \psi: \mathcal{LS} \cong \mathcal{LS}_{\mathcal{T}}, \ \text{and}$ $\lambda_{\mathcal{T}}\varphi(X) = \{\psi(M) \mid M \in \lambda(X)\}$ for any $X \in \mathcal{AP}$.

Proposition

If $(\mathcal{AP}_T, \preceq)$ contains a sub-order of the type of $\omega + 1$, T can not be an AL theory.

Proof

Take the structures corresponding to the ω , say, $A_0 \subseteq A_1 \subseteq \ldots$, take a union of the chain, say, A. It is neither almost prime nor limit. Since A is not universal, it can not be saturated.

Let \mathcal{AP} be a partial order, \mathcal{LS} be a set, and $\lambda: \mathcal{AP} \to 2^{\mathcal{LS}}$. What properties, in addition to 1–5, must be satisfied in order to guarantee the existence of an AL theory T such that $\varphi: \mathcal{AP} \cong \mathcal{AP}_T$, $\psi: \mathcal{LS} \cong \mathcal{LS}_T$, and $\lambda_T \varphi(X) = \{\psi(M) \mid M \in \lambda(X)\}$ for any $X \in \mathcal{AP}$.

Proposition

If $(\mathcal{AP}_T, \preceq)$ contains a sub-order of the type of $\omega + 1$, T can not be an AL theory.

Proof.

Take the structures corresponding to the ω , say, $A_0 \subseteq A_1 \subseteq \ldots$, take a union of the chain, say, A. It is neither almost prime nor limit. Since A is not universal, it can not be saturated.

Theorem (G, Khoussainov 2012)

Let $\mathcal L$ be a finite lattice. Then there exists an AL theory T such that the fundamental order of T is $\mathcal L$, that is, $(\mathcal A\mathcal P_{\mathsf T}/\sim,\preceq)\cong\mathcal L$.

This is the first part of the theorem. See Part 2 of the talk for the second part of the theorem and for the idea of proof.

Theorem (G, Khoussainov 2012)

Let $\mathcal L$ be a finite lattice. Then there exists an AL theory T such that the fundamental order of T is $\mathcal L$, that is, $(\mathcal A\mathcal P_{\mathsf T}/\sim,\preceq)\cong\mathcal L$.

This is the first part of the theorem. See Part 2 of the talk for the second part of the theorem and for the idea of proof.

Part 2

Decidable models of AL theories

Henkin construction provides us with a decidable model of a decidable consistent theory.

How does this model look like?

Open problem (1973)

Is the prime model of a decidable strongly small theory decidable?

Theorem (Millar 1983—year of my birth)

- ① Every countable model of a decidable \aleph_0 -categorical theory is decidable.
- ② Harrington, Khissamiev: Every countable model of a decidable \aleph_1 -categorical theory is decidable.
- Prime models of decidable Ehrenfeucht theories are decidable. Morley, Lachlan, and Peretyatkin: This is the best possible result.

Henkin construction provides us with a decidable model of a decidable consistent theory.

How does this model look like?

Open problem (1973)

Is the prime model of a decidable strongly small theory decidable?

Theorem (Millar 1983—year of my birth)

- ① Every countable model of a decidable \aleph_0 -categorical theory is decidable.
- ② Harrington, Khissamiev: Every countable model of a decidable \aleph_1 -categorical theory is decidable.
- Prime models of decidable Ehrenfeucht theories are decidable. Morley, Lachlan, and Peretyatkin: This is the best possible result.

Henkin construction provides us with a decidable model of a decidable consistent theory.

How does this model look like?

Open problem (1973)

Is the prime model of a decidable strongly small theory decidable?

Theorem (Millar 1983—year of my birth)

- Every countable model of a decidable \aleph_0 -categorical theory is decidable.
- ② Harrington, Khissamiev: Every countable model of a decidable \aleph_1 -categorical theory is decidable.
- Prime models of decidable Ehrenfeucht theories are decidable. Morley, Lachlan, and Peretyatkin: This is the best possible result.

Henkin construction provides us with a decidable model of a decidable consistent theory.

How does this model look like?

Open problem (1973)

Is the prime model of a decidable strongly small theory decidable?

Theorem (Millar 1983—year of my birth)

- Every countable model of a decidable \aleph_0 -categorical theory is decidable.
- **②** Harrington, Khissamiev: Every countable model of a decidable \aleph_1 -categorical theory is decidable.
- Prime models of decidable Ehrenfeucht theories are decidable. Morley, Lachlan, and Peretyatkin: This is the best possible result.

Theorem (Goncharov, Millar 1973-1986)

The class of small theories is a really bad one.

Theorem (Millar 1978)

There exists a decidable small theory T whose types are all decidable but T does not have a decidable saturated model.

Theorem (G, Khoussainov 2012)

There exists a decidable small theory T in finite language whose types are all decidable but T does not have a decidable saturated model.

Corollary

There exists a prime structure of finite language such that it has an X-computable presentation if and only if X is not computable.

Theorem (Goncharov, Millar 1973-1986)

The class of small theories is a really bad one.

Theorem (Millar 1978)

There exists a decidable small theory T whose types are all decidable but T does not have a decidable saturated model.

Theorem (G, Khoussainov 2012)

There exists a decidable small theory T in finite language whose types are all decidable but T does not have a decidable saturated model.

Corollary

There exists a prime structure of finite language such that it has an X-computable presentation if and only if X is not computable

Theorem (Goncharov, Millar 1973-1986)

The class of small theories is a really bad one.

Theorem (Millar 1978)

There exists a decidable small theory T whose types are all decidable but T does not have a decidable saturated model.

Theorem (G, Khoussainov 2012)

There exists a decidable small theory T in finite language whose types are all decidable but T does not have a decidable saturated model.

Corollary

There exists a prime structure of finite language such that it has an X-computable presentation if and only if X is not computable

Theorem (Goncharov, Millar 1973-1986)

The class of small theories is a really bad one.

Theorem (Millar 1978)

There exists a decidable small theory T whose types are all decidable but T does not have a decidable saturated model.

Theorem (G, Khoussainov 2012)

There exists a decidable small theory T in finite language whose types are all decidable but T does not have a decidable saturated model.

Corollary

There exists a prime structure of finite language such that it has an X-computable presentation if and only if X is not computable.

Theorem (G 2011)

If an AL theory T is decidable then T has a decidable prime model.

Idea of proof.

Omit decidably as many types as possible. The main tool for that is the next theorem. \Box

Theorem (Millar 1983)

Let T be a decidable theory, S a Σ_2^0 -set of decidable (complete) types of T. Then, uniformly in T and a Σ_2^0 -index for S, there is a decidable model of T omitting all the non-principal types in S.

Theorem (G 2011)

If an AL theory T is decidable then T has a decidable prime model.

Idea of proof.

Omit decidably as many types as possible. The main tool for that is the next theorem.

Theorem (Millar 1983)

Let T be a decidable theory, S a Σ_2^0 -set of decidable (complete) types of T. Then, uniformly in T and a Σ_2^0 -index for S, there is a decidable model of T omitting all the non-principal types in S.

Goncharov-Millar 1973-1986 Theorem does not hold in the world of AL theories:

Corollary 1

If T is a decidable AL theory all whose types are decidable, then every homogeneous model of T is decidable. Particularly, the saturated model is decidable.

Corollary 2

If an AL theory T has a decidable saturated model then all homogeneous models of T are decidable.

Goncharov-Millar 1973-1986 Theorem does not hold in the world of AL theories:

Corollary 1

If T is a decidable AL theory all whose types are decidable, then every homogeneous model of T is decidable. Particularly, the saturated model is decidable.

Corollary 2

If an AL theory T has a decidable saturated model then all homogeneous models of T are decidable.

Goncharov-Millar 1973-1986 Theorem does not hold in the world of AL theories:

Corollary 1

If T is a decidable AL theory all whose types are decidable, then every homogeneous model of T is decidable. Particularly, the saturated model is decidable.

Corollary 2

If an AL theory T has a decidable saturated model then all homogeneous models of T are decidable.

Let T be an AL theory with fundamental parameters $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$. One can naturally define the sub-parameters $(\mathcal{AP}_{\mathcal{T}}^{\mathcal{D}}, \lambda_{\mathcal{T}}^{\mathcal{D}})$ corresponding to decidable models of T. Call these sub-parameters spectra of decidable models of the theory T.

Question (Spectral problem in the class of decidable presentations)

Let K be a class of theories with fixed fundamental parameters $(\mathcal{AP}_{\tau}, \lambda_{\tau})$. Describe the spectra of decidable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ can be realised as a spectrum of decidable models $(\mathcal{AP}_{\tau}^{\mathcal{D}}, \lambda_{\tau}^{\mathcal{D}})$?

Example

If K is a class of \aleph -categorical theories then the spectral problem is trivial due to Harrington and Khissamiev. Spectra of decidable models of a theory T from K is either empty or coincide with T's spectral parameters.

Let T be an AL theory with fundamental parameters $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$. One can naturally define the sub-parameters $(\mathcal{AP}_{\mathcal{T}}^{\mathcal{D}}, \lambda_{\mathcal{T}}^{\mathcal{D}})$ corresponding to decidable models of T. Call these sub-parameters spectra of decidable models of the theory T.

Question (Spectral problem in the class of decidable presentations)

Let K be a class of theories with fixed fundamental parameters $(\mathcal{AP}_{\tau}, \lambda_{\tau})$. Describe the spectra of decidable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ can be realised as a spectrum of decidable models $(\mathcal{AP}_{\tau}^{\mathcal{D}}, \lambda_{\tau}^{\mathcal{D}})$?

Example

If K is a class of \aleph -categorical theories then the spectral problem is trivial due to Harrington and Khissamiev. Spectra of decidable models of a theory T from K is either empty or coincide with T's spectral parameters.

Let T be an AL theory with fundamental parameters $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$. One can naturally define the sub-parameters $(\mathcal{AP}_{\mathcal{T}}^{\mathcal{D}}, \lambda_{\mathcal{T}}^{\mathcal{D}})$ corresponding to decidable models of T. Call these sub-parameters spectra of decidable models of the theory T.

Question (Spectral problem in the class of decidable presentations)

Let K be a class of theories with fixed fundamental parameters $(\mathcal{AP}_{\tau}, \lambda_{\tau})$. Describe the spectra of decidable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ can be realised as a spectrum of decidable models $(\mathcal{AP}_{\tau}^{\mathcal{D}}, \lambda_{\tau}^{\mathcal{D}})$?

Example

If K is a class of \aleph -categorical theories then the spectral problem is trivial due to Harrington and Khissamiev. Spectra of decidable models of a theory T from K is either empty or coincide with T's spectral parameters.

Corollary 3

If T is an AL theory then $\mathcal{AP}^{\mathcal{D}}_{\tau}$ is downward closed in \mathcal{AP}_{τ} .

Corollary 4

If A is a decidable p-limit structure then every p-prime structure is decidable.

Problem

Let A and B be p-limit structures such that B is decidable. Is A decidable?

Corollary 3

If T is an AL theory then $\mathcal{AP}^{\mathcal{D}}_{\tau}$ is downward closed in \mathcal{AP}_{τ} .

Corollary 4

If A is a decidable p-limit structure then every p-prime structure is decidable.

Problem

Let A and B be p-limit structures such that B is decidable. Is A decidable?

Corollary 3

If T is an AL theory then $\mathcal{AP}^{\mathcal{D}}_{\tau}$ is downward closed in \mathcal{AP}_{τ} .

Corollary 4

If A is a decidable p-limit structure then every p-prime structure is decidable.

Problem

Let A and B be p-limit structures such that B is decidable. Is A decidable?

Theorem (G, Khoussainov 2012)

Let \mathcal{L} be a finite lattice and \mathcal{L}' be its sublattice. Suppose \mathcal{L}' is downward closed in \mathcal{L} . Then there exists an AL theory T such that:

- **1** The fundamental order of T is \mathcal{L} , that is, $(\mathcal{AP}_{\tau}/\sim, \preceq) \cong \mathcal{L}$
- ② The spectra of decibel models of T is \mathcal{L}' , that is, $\mathcal{AP}^{\mathcal{D}}_{\tau} \cong \mathcal{L}'$.

Idea of proof.

Take a theory T_0 having a non-principal type p. Take the lattice \mathcal{L} . For elements $a <_{\mathcal{L}} b$, say that if b "makes" p realised, so does a. For elements $c = lub_{\mathcal{L}}\{a,b\}$, say that if both a and b "make" p realised, then so does c. Satisfy these conditions in the freest possible way. Use amalgamation construction of course.

Since \mathcal{L}' is downward closed, there is an element a such that $\mathcal{L}' = \{x \mid x \leq_{\mathcal{L}} a\}$. Make the type corresponding to a decidable and leave undecidable as many types as possible.

Theorem (G, Khoussainov 2012)

Let \mathcal{L} be a finite lattice and \mathcal{L}' be its sublattice. Suppose \mathcal{L}' is downward closed in \mathcal{L} . Then there exists an AL theory T such that:

- **1** The fundamental order of T is \mathcal{L} , that is, $(\mathcal{AP}_{\tau}/\sim, \preceq) \cong \mathcal{L}$
- ② The spectra of decibel models of T is \mathcal{L}' , that is, $\mathcal{AP}^{\mathcal{D}}_{\tau} \cong \mathcal{L}'$.

Idea of proof

Take a theory T_0 having a non-principal type p. Take the lattice \mathcal{L} . For elements $a <_{\mathcal{L}} b$, say that if b "makes" p realised, so does a. For elements $c = lub_{\mathcal{L}}\{a,b\}$, say that if both a and b "make" p realised, then so does c. Satisfy these conditions in the freest possible way. Use amalgamation construction of course.

Since \mathcal{L}' is downward closed, there is an element a such that $\mathcal{L}' = \{x \mid x \leq_{\mathcal{L}} a\}$. Make the type corresponding to a decidable and leave undecidable as many types as possible.

Theorem (G, Khoussainov 2012)

Let \mathcal{L} be a finite lattice and \mathcal{L}' be its sublattice. Suppose \mathcal{L}' is downward closed in \mathcal{L} . Then there exists an AL theory T such that:

- **1** The fundamental order of T is \mathcal{L} , that is, $(\mathcal{AP}_{\tau}/\sim, \preceq) \cong \mathcal{L}$
- ② The spectra of decibel models of T is \mathcal{L}' , that is, $\mathcal{AP}^{\mathcal{D}}_{\tau} \cong \mathcal{L}'$.

Idea of proof.

Take a theory T_0 having a non-principal type p. Take the lattice \mathcal{L} . For elements $a<_{\mathcal{L}}b$, say that if b "makes" p realised, so does a. For elements $c=lub_{\mathcal{L}}\{a,b\}$, say that if both a and b "make" p realised, then so does c. Satisfy these conditions in the freest possible way. Use amalgamation construction of course.

Since \mathcal{L}' is downward closed, there is an element a such that $\mathcal{L}' = \{x \mid x \leq_{\mathcal{L}} a\}$. Make the type corresponding to a decidable and leave undecidable as many types as possible.

Part 3

Spectra of computable models of AL theories

Question (Spectral problem in the class of computable presentations)

Let K be a class of theories with fixed spectral parameters $(\mathcal{AP}_{\tau}, \lambda_{\tau})$. Describe the spectra of computable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\tau}, \lambda_{\tau})$ can be realised as a spectrum of computable models?

- ① \aleph_1 -categorical theories. The problem is quite complicated. An upper bound for the complexity of spectra is $\Sigma_3^0(\varnothing^\omega)$ (Nies). All known spectra are finite of co-finite (Many people from the US and Russia).
- ② Ehrenfeucht theories. There are very many examples of the spectra. For instance, the spectra are not necessarily downward closed:

Theorem (G 2010)

There exists an Ehrenfeucht theory T and structures $A, B \in \mathcal{AP}_{\tau}$ such that $B \leq A$, A is computable, B is not computable. Moreover, these structures can be chosen to be \sim -equivalent.

Question (Spectral problem in the class of computable presentations)

Let \mathcal{K} be a class of theories with fixed spectral parameters $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$. Describe the spectra of computable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$ can be realised as a spectrum of computable models?

- ② Ehrenfeucht theories. There are very many examples of the spectra. For instance, the spectra are not necessarily downward closed:

Theorem (G 2010)

There exists an Ehrenfeucht theory T and structures $A, B \in \mathcal{AP}_T$ such that $B \leq A$, A is computable, B is not computable. Moreover, these structures can be chosen to be \sim -equivalent.

Question (Spectral problem in the class of computable presentations)

Let \mathcal{K} be a class of theories with fixed spectral parameters $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$. Describe the spectra of computable models of these theories. In other words, what sub-parameters of the $(\mathcal{AP}_{\mathcal{T}}, \lambda_{\mathcal{T}})$ can be realised as a spectrum of computable models?

- Ehrenfeucht theories. There are very many examples of the spectra. For instance, the spectra are not necessarily downward closed:

Theorem (G 2010)

There exists an Ehrenfeucht theory T and structures $A, B \in \mathcal{AP}_T$ such that $B \leq A$, A is computable, B is not computable. Moreover, these structures can be chosen to be \sim -equivalent. The spectra are not necessarily intervals:

Theorem (G 2010)

There exists an Ehrenfeucht theory T and non \sim -equivalent structures $A, B, C \in \mathcal{AP}_T$ such that $A \leq B \leq C$, A and C are computable, B is not computable.

The situation in the class of computable presentations is completely different from the one in the class of decidable presentation:

Theorem (Khoussainov, Nies, Shore 1997)

There exists an Ehrenfeucht theory T having exactly 3 countable models such that the only computable model is saturated.

Spectra are not necessarily finite or cofinite:

Theorem (G 2011)

There exists an AL theory T that has infinite coinfinite suborder of \mathcal{AP}_{τ} corresponding to computable models.

The spectra are not necessarily intervals:

Theorem (G 2010)

There exists an Ehrenfeucht theory T and non \sim -equivalent structures $A, B, C \in \mathcal{AP}_T$ such that $A \leq B \leq C$, A and C are computable, B is not computable.

The situation in the class of computable presentations is completely different from the one in the class of decidable presentation:

Theorem (Khoussainov, Nies, Shore 1997)

There exists an Ehrenfeucht theory T having exactly 3 countable models such that the only computable model is saturated.

Spectra are not necessarily finite or cofinite:

Theorem (G 2011)

There exists an AL theory T that has infinite coinfinite suborder of \mathcal{AP}_{τ} corresponding to computable models.

Part 4

Spectra of automatic models of AL theories

A structure A of a finite predicate language is *automatic* if its domain and relations are recognisable by (finite string) automata.

Theorem (Hodgson 1976)

Automatic models are decidable.

Question (Spectral problem in the class of automatic presentations

Let $\mathcal K$ be a class of theories with fixed spectral parameters $(\mathcal A\mathcal P_\tau,\lambda_\tau)$. Describe the spectra of automatic models of these theories. In other words, what sub-parameters of the $(\mathcal A\mathcal P_\tau,\lambda_\tau)$ can be realised as a spectrum of automatic models?

Theorem (Semukhin, Stephan 2010)

- ① There is an \aleph_1 -categorical theory the only automatic model of which is prime.
- 2 There is a small theory with automatic saturated model and non-automatic prime model.

A structure A of a finite predicate language is *automatic* if its domain and relations are recognisable by (finite string) automata.

Theorem (Hodgson 1976)

Automatic models are decidable.

Question (Spectral problem in the class of automatic presentations)

Let $\mathcal K$ be a class of theories with fixed spectral parameters $(\mathcal A\mathcal P_\tau,\lambda_\tau)$. Describe the spectra of automatic models of these theories. In other words, what sub-parameters of the $(\mathcal A\mathcal P_\tau,\lambda_\tau)$ can be realised as a spectrum of automatic models?

Theorem (Semukhin, Stephan 2010)

- There is an ℵ₁-categorical theory the only automatic model of which is prime.
- 2 There is a small theory with automatic saturated model and non-automatic prime model.

Theorem (G, Gavruskina 2011)

If an Ehrenfeucht theory T has infinite $dcl(\emptyset)$ and exactly 3 models, one of which is automatic, then all the models of T are automatic.

Proof

Follows from the following two theorems.

Theorem (Gavruskina 2010)

Let T be a variant of Ehrenfeucht's or Peretyatkin's example having an automatic model. Then all the models of T are automatic.

Theorem (Tanović 2007)

If an Ehrenfeucht theory T has infinite $dcl(\emptyset)$ and exactly 3 models, then T interprets a variant of Ehrenfeucht's or Peretyatkin's example.

Theorem (G, Gavruskina 2011)

If an Ehrenfeucht theory T has infinite $dcl(\emptyset)$ and exactly 3 models, one of which is automatic, then all the models of T are automatic.

Proof.

Follows from the following two theorems.

Theorem (Gavruskina 2010)

Let T be a variant of Ehrenfeucht's or Peretyatkin's example having an automatic model. Then all the models of T are automatic.

Theorem (Tanović 2007)

If an Ehrenfeucht theory T has infinite $dcl(\emptyset)$ and exactly 3 models, then T interprets a variant of Ehrenfeucht's or Peretyatkin's example.

e-mail: a.gavruskin@auckland.ac.nz

Thank you for your attention!

these slides:

http://sites.google.com/site/gavruskin/talks/2012NUS.pdf