Cálculo de Atenuación en Cables de 126 ft (Cable 1) y 80 ft (Cable 2)

Se presentan los cálculos de atenuación teórica y real para dos cables coaxiales de diferentes longitudes (126 ft y 80 ft), considerando distintas frecuencias. Se muestran los datos base, las fórmulas aplicadas, los cálculos paso a paso y finalmente las tablas comparativas.

Cable 1: Longitud 126 ft

Datos base:

- Longitud: 126 ft

- Potencia de entrada: -39.28 dBm

- Fórmula atenuación teórica: A_teo = (A_especificación / 100 ft) x 126 ft

- Fórmula atenuación real: A_real = P_in - P_out

Cálculos:

50 MHz:

Especificación: 3.1 dB/100ftTeórica: 3.1 x 1.26 = 3.91 dB

- P_out: -45 dBm

- Real: -39.28 - (-45) = 5.72 dB

100 MHz:

Especificación: 4.5 dB/100ft
Teórica: 4.5 x 1.26 = 5.67 dB

- P_out: -46.56 dBm

- Real: -39.28 - (-46.56) = 7.28 dB

400 MHz:

Especificación: 10 dB/100ftTeórica: 10 x 1.26 = 12.6 dB

- P_out: -56.61 dBm

- Real: -39.28 - (-56.61) = 17.33 dB

700 MHz:

Especificación: 14.2 dB/100ftTeórica: 14.2 x 1.26 = 17.89 dB

- P_out: -62.6 dBm

- Real: -39.28 - (-62.6) = 23.32 dB

900 MHz:

Especificación: 16.6 dB/100ftTeórica: 16.6 x 1.26 = 20.92 dB

- P_out: -66.60 dBm

- Real: -39.28 - (-66.60) = 27.32 dB

Cable	Frecuencia (MHz)	P_in (dBm)	P_out (dBm)	Atenuación real (dB)	Atenuación teórica (dB)
1	50	-39.28	-45	5.72	3.91
1	100	-39.28	-46.56	7.28	5.67
1	400	-39.28	-56.61	17.33	12.60
1	700	-39.28	-62.6	23.32	17.89
1	900	-39.28	-66.60	27.32	20.92

Cable 2: Longitud 80 ft

Datos base:

- Longitud: 80 ft

- Potencia de entrada: -39.28 dBm

- Fórmula atenuación teórica: A_teo = (A_especificación / 100 ft) × 80 ft

- Fórmula atenuación real: A_real = P_in - P_out

Cálculos:

50 MHz:

Especificación: 3.1 dB/100ftTeórica: 3.1 x 0.8 = 2.48 dB

- P_out: -42.67 dBm

- Real: -39.28 - (-42.67) = 3.39 dB

100 MHz:

Especificación: 4.5 dB/100ft
Teórica: 4.5 x 0.8 = 3.60 dB

- P_out: -43.6 dBm

- Real: -39.28 - (-43.6) = 4.32 dB

400 MHz:

Especificación: 10 dB/100ftTeórica: 10 x 0.8 = 8.00 dB

- P_out: -49.86 dBm

- Real: -39.28 - (-49.86) = 10.58 dB

700 MHz:

Especificación: 14.2 dB/100ft
Teórica: 14.2 x 0.8 = 11.36 dB

- P_out: -53.24 dBm

- Real: -39.28 - (-53.24) = 13.96 dB

900 MHz:

Especificación: 16.6 dB/100ft
Teórica: 16.6 x 0.8 = 13.28 dB

- P_out: -55.46 dBm

- Real: -39.28 - (-55.46) = 16.18 dB

Cable	Frecuencia (MHz)	P_in (dBm)	P_out (dBm)	Atenuación real (dB)	Atenuación teórica (dB)
2	50	-39.28	-42.67	3.39	2.48
2	100	-39.28	-43.6	4.32	3.60
2	400	-39.28	-49.86	10.58	8.00
2	700	-39.28	-53.24	13.96	11.36
2	900	-39.28	-55.46	16.18	13.28