## **MA** 111

## **Tutorial 3 Solutions**

D1-T5

**GYANDEV GUPTA** 

February 3, 2021

**IIT BOMBAY** 



#### Outline

| 1. QUESTION I  | QUESTION II3  |
|----------------|---------------|
| QUESTION I1    | QUESTION II4  |
| QUESTION 12    | QUESTION II5  |
| QUESTION 13    | QUESTION II6  |
| QUESTION 14    | QUESTION II7  |
| QUESTION 15    | QUESTION II8  |
| QUESTION 16    | QUESTION II9  |
| 2. QUESTION II | QUESTION II10 |
| QUESTION II1   | QUESTION II11 |







The base of cylinder is also the region's projection z on the xy-plane. The boundary of R is the circle  $(x-1)^2+y^2=1$ . Its polar coordinate equation is  $r=2\cos\theta$ 





$$y^2 = 4 - 4x \Leftrightarrow 4u^2v^2 = 4 - 4u^2 + 4v^2$$
  
 $\Leftrightarrow (u^2 - 1)(v^2 + 1) = 0$   
 $\Leftrightarrow u = \pm 1$ 

Similarly,

$$y^2 = 4 + 4x \Leftrightarrow v = \pm 1$$

so that the preimage of the domain is the square  $[0,1] \times [0,1]$  in the *uv*-plane.

The Jacobian of the transformation is

$$\operatorname{Jac}(G) = \left| \begin{array}{cc} 2u & -2v \\ v & u \end{array} \right| = 4(u^2 + v^2).$$

By the Change of Variables formula, it follows that

$$\iint_{\mathcal{A}} y \, dA = \iint_{[0,1] \times [0,1]} 2uv \cdot 4(u^2 + v^2)$$
$$= 8 \int_{0}^{1} \int_{0}^{1} (u^3 v + uv^3) \, du \, dv = \boxed{2}.$$

























































A parametrization of C is

$$\mathbf{r}(t) = \cos t\mathbf{i} + \sin t\mathbf{j}, \ 0 \le t \le 2\pi.$$

Note that the outward unit normal to the circle at  $\mathbf{r}(t)$  is the radial vector

$$\mathbf{n} = \mathbf{r}(t)$$
. Also,

$$\nabla(x^2 - y^2) = 2x \,\mathbf{i} - 2y \,\mathbf{j}.$$

Thus

$$\oint_C \nabla (x^2 - y^2) \cdot d\mathbf{n} = \int_0^{2\pi} (2\cos t \,\mathbf{i} - 2\sin t \mathbf{j}) \cdot (-\sin t \mathbf{i} + \cos t \mathbf{j}) dt$$
$$= \int_0^{2\pi} (-2\sin 2t) dt = 0.$$





Parameterize C as

$$\mathbf{r}(t) = t \, \mathbf{i} + t^3 \, \mathbf{j}, \ 0 \le t \le 2.$$

Then 
$$\mathbf{r}'(t) = \mathbf{i} + 3t^2 \mathbf{j}$$
. Since  $\nabla(x^2 - y^2) = 2t\mathbf{i} - 2t^3\mathbf{j}$ , we have

$$\int_C \nabla(x^2 - y^2) \cdot d\mathbf{r} = \int_0^2 (2t - 6t^5) dt = 4 - 64 = -60.$$



The required integral can be broken down into individual integral by defining it into separate lines :



The required integral can be broken down into individual integral by defining it into separate lines :  $\int_{C_1} \frac{dx+dy}{|x|+|y|} + \int_{C_2} \frac{dx+dy}{|x|+|y|} + \int_{C_3} \frac{dx+dy}{|x|+|y|} + \int_{C_4} \frac{dx+dy}{|x|+|y|}$ 



The required integral can be broken down into individual integral by defining it into separate lines :  $\int_{C_1} \frac{dx+dy}{|x|+|y|} + \int_{C_2} \frac{dx+dy}{|x|+|y|} + \int_{C_3} \frac{dx+dy}{|x|+|y|} + \int_{C_4} \frac{dx+dy}{|x|+|y|}$  For  $C_1$ : x+y=1 and |x|+|y|=x+y=1  $\int_{C_1} \frac{dx+dy}{|x|+|y|} = \int_1^0 \frac{dx}{1} - \int_1^0 \frac{dx}{1} = 0$ 



The required integral can be broken down into individual integral by defining it into separate lines :  $\int_{C_1} \frac{dx+dy}{|x|+|y|} + \int_{C_2} \frac{dx+dy}{|x|+|y|} + \int_{C_3} \frac{dx+dy}{|x|+|y|} + \int_{C_4} \frac{dx+dy}{|x|+|y|}$  For  $C_1$ : x+y=1 and |x|+|y|=x+y=1  $\int_{C_1} \frac{dx+dy}{|x|+|y|} = \int_1^0 \frac{dx}{1} - \int_1^0 \frac{dx}{1} = 0$  For  $C_2$ : -x+y=1 and |x|+|y|=-x+y=1  $\int_{C_2} \frac{dx+dy}{|x|+|y|} = \int_0^{-1} \frac{dx}{1} + \int_0^{-1} \frac{dx}{1} = -2$ 



The required integral can be broken down into individual integral by defining it into separate lines :  $\int_{C_1} \frac{dx + dy}{|x| + |y|} + \int_{C_2} \frac{dx + dy}{|x| + |y|} + \int_{C_3} \frac{dx + dy}{|x| + |y|} + \int_{C_4} \frac{dx + dy}{|x| + |y|}$  For  $C_1$ : x + y = 1 and |x| + |y| = x + y = 1  $\int_{C_1} \frac{dx + dy}{|x| + |y|} = \int_1^0 \frac{dx}{1} - \int_1^0 \frac{dx}{1} = 0$  For  $C_2$ : -x + y = 1 and |x| + |y| = -x + y = 1  $\int_{C_2} \frac{dx + dy}{|x| + |y|} = \int_0^{-1} \frac{dx}{1} + \int_0^{-1} \frac{dx}{1} = -2$  For  $C_3$ : x + y = -1 and |x| + |y| = -x - y = 1  $\int_{C_1} \frac{dx + dy}{|x| + |y|} = \int_{-1}^0 \frac{dx}{1} - \int_{-1}^0 \frac{dx}{1} = 0$ 



The required integral can be broken down into individual integral by defining it into separate lines:  $\int_{C_1} \frac{dx+dy}{|x|+|y|} + \int_{C_2} \frac{dx+dy}{|x|+|y|} + \int_{C_3} \frac{dx+dy}{|x|+|y|} + \int_{C_4} \frac{dx+dy}{|x|+|y|}$ For  $C_1$ : x+v=1 and |x| + |v| = x + v = 1 $\int_{C_1} \frac{dx + dy}{|x| + |y|} = \int_1^0 \frac{dx}{1} - \int_1^0 \frac{dx}{1} = 0$ For  $C_2$ : -x+y=1 and |x| + |y| = -x + y = 1 $\int_{C_2} \frac{dx + dy}{|x| + |y|} = \int_0^{-1} \frac{dx}{1} + \int_0^{-1} \frac{dx}{1} = -2$ For  $C_3$ : x+y=-1 and |x| + |y| = -x - y = 1 $\int_{C_1} \frac{dx + dy}{|x| + |y|} = \int_{-1}^{0} \frac{dx}{1} - \int_{-1}^{0} \frac{dx}{1} = 0$ For  $C_4$ : x-v=1 and |x| + |v| = x - v = 1 $\int_{C_{1}} \frac{dx+dy}{|x|+|y|} = \int_{0}^{1} \frac{dx}{1} + \int_{0}^{1} \frac{dx}{1} = 2$ 



## QUESTION II11 (Contd.)

Hence 
$$\int_C \frac{dx + dy}{|x| + |y|} = 0 - 2 + 0 + 2 = 0$$





Work W = 
$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (xy\mathbf{i} + x^6y^2\mathbf{j}) \cdot (\mathbf{i}dx + \mathbf{j}dy)$$
  
=  $\int_0^1 ax^{b+1}dx + \int_0^1 (a^2x^{2b+6})(abx^{b-1})dx$   
=  $\frac{a}{b+2} + \frac{a^3b}{3b+6}$   
=  $\frac{a}{b+2} \left(1 + \frac{a^2b}{3}\right) = a\left(\frac{3+a^2b}{3(b+2)}\right)$ .

This will be independent of b iff  $\frac{dW}{db} = 0$  iff  $0 = \frac{(b+2)a^2 - (3+a^2b)}{(b+2)^2}$  iff  $a = \sqrt{\frac{3}{2}}$  (as a > 0).



# That's All Folks!

