## Understanding the Free Energy Landscape of Phase Separation in Lipid Bilayers using Molecular Dynamics

Ashlin J. Poruthoor, Alan Grossfield

February 6, 2023

## Simulation details

## **Auxiliary Variables**

For each lipid species, X in the system, we calculated the following,

- 1. Number of *X* clusters in the system under study.
- 2. Fraction of  $X_i$  lipids in X clusters
- 3. Fraction of  $X_i$  lipids in X core lipids.
- 4. Mean Silhouette Coefficient (MSC) of  $X_i$  Clusters, as implemented in scikit-learn.

Silhouette Coefficient is a method used to evaluate the clustering done by any technique, especially if ground truth labels are unknown. Here, for a  $X_i$  lipid in the cluster, mean intra-cluster distance (a) from other  $X_i$  lipids in the cluster is found. Similarly, for a  $X_i$  lipid in the cluster, the mean nearest-cluster distance (b) is also calculated. While the former assesses the 'cohesion' of a given  $X_i$  lipids with other  $X_1$  lipids in a cluster, the latter assesses the 'separation' from the nearest cluster. Thus, Silhouette Coefficient for a  $X_i$  lipid, s, is defined as below,

$$s = \frac{b - a}{max(a, b)} \tag{1}$$

The Mean Silhouette Coefficient of  $X_i$  Clusters is given by the mean s over all non-outlier  $X_i$  lipids. Here, we have omitted the MSC calculations for cases when there are no clusters or just one cluster detected by DBSCAN. MSC is bound between and -1 and 1. A high positive value corresponds to well segregated dense clusters, while a low negative value implies that lipids are assigned to clusters incorrectly.