DIGITAL IMAGE PROCESSING

COURSE INFO

COURSE INFO

LECTURER

รศ.ดร.อรฉัตร จิตต์โสภักตร์

Assoc. Prof. Dr. Orachat Chitsobhuk

Email: orachat.ch@kmitl.ac.th

Tel: (02) 02 329 8341-2 / Room: ECC-915

DIPLab: ECC-509

COURSE INFO

TEXTBOOK REFERENCE

[1] "Digital Image Processing", Rafael C. Gonzalez and Richard E. Woods, New Jersey: Prentice-Hall.

[2] "Python Image Processing Cookbook", Sandipan Dey, Packt Publishing.

COURSE INFO

GRADING POLICY

กิจกรรมการวัดผล	%
เข้าเรียน	5%
กิจกรรมในชั้นเรียนทฤษฎี (กลุ่มละ 2 คน)	10%
Lab	25%
ให้ นศ แบ่งกลุ่มย่อย (กลุ่มละ 2 คน)	
กิจกรรมเขียนโปรแกรม (Python)	
โครงงานที่มอบหมาย	30%
สอบปลายภาค	30%

Introduction

"One picture is worth more than ten thousand words"

Anonymous

An image is worth more than thousand words

Q1: ตามองครั้งแรกเห็นอะไรในภาพบ้าง

Q2: อะไรคือวัตถุที่สนใจ และ event ที่เกิดขึ้น

Q3: อะไรคือความหมายที่ซ่อนอยู่ในภาพ

Q: เราจะทำอย่างไร ที่จะทำให้
Computer สามารถ สร้าง ภาพ และ
รับรู้ภาพ ได้ใกล้เคียงกับ Human
Meaning

A: โจทย์นี้ นำมาซึ่งงานวิจัยด้าน

Image Processing

Computer Vision

Al / Machine Learning / Deep Learning

What is DIP?

□ The continuum from image processing to computer vision can be broken up into low-, mid- and highlevel processes

Low Level Process	Mid Level Process] ¦	High Level Process
Input: Image	Input: Image	1	Input: Attributes Output:
 Output: Image	Output: Attributes		Understanding, Synthesis
Examples: Noise	Examples: Object	i	Examples: Scene understanding,
removal, image	segmentation,	I	Data Synthesis,
sharpening	recognition		Autonomous operation
] '	
preprocessing	Feature extraction	I	Human Interpretation

Human Interpretation

Pattern Recognition

COURSE TOPICS

Image Preprocessing

- Representation / structure / data format
 - Binary / Gray scale / Color
 - Pixel Structure and Quality
- Quality Enhancement
 - Noise filtering
 - Sharpening
 - Quality Reconstruction

Image understanding

- Object Segmentation
- Classification

Image Synthesis

Natural to Art style image

APPLICATIONS

Generative Adversarial Networks, or GANs

ACTIVITY / LAB / ASSIGNMENT

GROUP MEMBER

- จับกลุ่มเอง สมาชิก 2 คน
- ตั้งชื่อกลุ่ม (ไม่เป็นตัวเลข ส่วนของชื่อหรือชื่อเล่นสมาชิก)

Image Processing

Eyes for the world

ANYTHING THAT CAN BE CAPTURED, IT CAN BE PROCESSED