Dm-writecache: a New Type Low Latency
Writecache Based on NVDIMM

Huaisheng Ye | 叶怀胜

2019.10.19

Agenda

- 1. NVDIMM
- 2. Device Mapper
- 3. The structure of dm-writecache
- 4. Performance comparison with dm-cache
- 5. Customized solution Ceph OSD bluestore
- 6. Patchset from Lenovo
- 7. Q&A

• NVDIMM

- NVDIMM-N
- NVDIMM-F
- AEP (Intel 3D XPoint)

Device Mapper

- dm-linear
- dm-multipath
- dm-mirror
- dm-snapshot
- dm-cache

v3.9

dm-writecache

v4.18

•••••

How dm-writecache works

o dm-writecache structure

Cache lines

Direct mapped Cache fill: (a simple example of CPU cache lines)

- modern x84_64 has 64 bytes in each cache line, one 4K Page is divided into 64 lines

Consistent Line

o dm-writecache vs others

dm-writecache specialty:

- Dedicated to Persistent memory and fast SSD
- dm-cache, B-cache, Flushcache: no DAX, no byte addressable capability for NVDIMM.

dm-writecache benefits:

- No warm-up time for Writes
- Sorting blocks partially when writeback
- Compared with PMDK: totally transparent, no modification of Apps

• Parameters of dm-writecache

No	Parameter Name	Explanation	Default
1	Cache type	Type of cache device - p or s	р
2	Original device	The underlying device that will be cached	(/dev/sd*)
3	Cache device	The cache device	(/dev/pmem*)
4	Block size	4096 is recommended and the maximum block size is the page size	4096
5	Number of optional	The number of optional parameters	0
6	Start sector	Offset from the start of cache device in 512-byte sectors	0
7	High watermark	Start writeback when the number of used blocks reach this watermark	50
8	Low watermark	Stop writeback when the number of used blocks drops below this watermark	45
9	Writeback jobs	Limit the number of blocks that are in flight during writeback. Setting this value reduces writeback throughput, but it may improve latency of read requests	Unlimited
10	Auto commit blocks	When the application writes this amount of blocks without issuing the FLUSH request, the blocks are automatically committed	Pmem: 64 SSD: 65536
11	Auto commit time	Autocommit time in milliseconds. The data is automatically committed if this time passes and no FLUSH request is received	1000
12	FUA	Applicable only to persistent memory - use the FUA flag when writing data from persistent memory back to the underlying device	On

HW Platform for testing

Thinksystem SR630

CPU Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz * 2

MEM 16G * 8

NVDIMM Intel Optane DCPMM 128G * 4

HDD 300GB 15K 12Gbps SAS 2.5" HDD (JBOD)

Performance comparison with dm-cache

```
dm-writecache: (fsdax mode)

# lvcreate -n hdd_wc -L 4G vg /dev/sda1

# lvcreate -n cache_wc -L 1G vg /dev/pmem0

# lvchange -a n vg/cache_wc

# lvconvert --type writecache --cachevol cache_wc vg/hdd_wc

dm-cache: (sector mode)

# lvcreate -n hdd_s -L 4G vg /dev/sda1

# lvcreate -n hdd_s -L 1G vg /dev/sda1

# lvcreate -n cache_s -L 1G vg /dev/pmem0.2s

# lvconvert --type cache --cachevol cache_s vg/hdd_s --chunksize=32 --cachemode writeback

Eg.

# fio -filename=/dev/vg/hdd_wc -direct=1 -iodepth=20 -rw=randwrite -ioengine=libaio -bs=4k -loops=1

-size=2g -group reporting -name=mytest1 --write iops log=fio-randwrite-wc --log avg msec=1000
```

4k randwrite (Full View)

• 4k write

4k randread

■ dm-writecache ■ dm-cache ■ hdd

• 4k read

■ dm-writecache ■ dm-cache ■ hdd

How does Lenovo play over NVDIMM long term

Customized Ceph OSD

- NVDIMM serves as pmem writecache for HDD device
- Performance boost for random write
- No code change in Ceph
- POC is ready

Prepare Logical volume for Ceph OSD

```
dm-writecache:
# lvcreate -n osd0.wal
                            -L 4G
                                     vg-ceph /dev/pmem1.1s
# lvcreate -n osd0.db
                            -L 4G
                                     vg-ceph /dev/pmem1.1s
# lvcreate -n osd0
                            -L 40G
                                     vg-ceph /dev/sdb1
# lvcreate -n osd0.cache-wc -L 10G
                                     vg-ceph /dev/pmem1
# lvchange -a n vg-ceph/osd0.cache-wc
# lvconvert --type writecache --cachevol osd0.cache-wc vg-ceph/osd0
# ceph-deploy osd create --data vg-ceph/osd0 --block-db vg-ceph/osd0.db --block-wal vg-ceph/osd0.wal --bluestore
target01
dm-cache:
# lvcreate -n osd1.wal
                            -L 4G
                                     vg-ceph /dev/pmem1.1s
# lvcreate -n osd1.db
                            -L 4G
                                     vg-ceph /dev/pmem1.1s
# lvcreate -n osd1
                            -L 40G
                                     vg-ceph /dev/sdb1
                                     vg-ceph /dev/pmem1.1s
# lvcreate -n osd1.cache-s
                            -L 10G
# lvconvert --type cache
                            --cachevol osd1.cache-s vg-ceph/osd1 --chunksize=32 --cachemode writeback
# ceph-deploy osd create --data vg-ceph/osd1 --block-db vg-ceph/osd1.db --block-wal vg-ceph/osd1.wal --bluestore
target01
# fio -filename=/dev/rbd0 -direct=1 -iodepth=20 -rw=randwrite -ioengine=libaio -bs=4k -loops=1 -size=20g
-group reporting -name=mytest1 --write iops log=fio-randwrite-s-ceph-01 --log avg msec=1000
```

4k randwrite for Ceph rbd

Patchset from Lenovo OS team

- 1. Lenovo has contributed 26 patches to kernel community
- 2. Most of them belong to NVDIMM and Device mapper subsystem
- Continues to submit features to community
- 4. Latest patchset is performance optimization, saves 50+% time on writeback_all

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=5229b4896e8f32bda4bfe29ff91e594ae7aa8a75 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f8011d334426cee77276a1038b627b5cb0470258 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=09f2d6563055b8ff0948cefb8911a4de0d559963 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6d1959138c8bdaf69f1116c86c77e6733db6ab34

Patchset for writeback_all

struct writeback_list wbl;

struct writecache

• Reference

https://www.kernel.org/doc/html/latest/admin-guide/device-mapper/writecache.html

https://ceph.com/resources/

https://pmem.io/documents/NVDIMM_DriverWritersGuide-July-2016.pdf

https://docs.pmem.io/ndctl-users-guide

https://docs.pmem.io/ipmctl-user-guide

https://github.com/pmem/ndctl

WeChat

Any suggestion and comment is welcome!

THANK YOU

