Here is your lexicon:

walks :=	$\lambda x.walk'x:$	et
loves :=	$\lambda x \lambda y.love' xy ::$	e(et)
reads :=	$\lambda x \lambda y.read'xy:$	e(et)
John :=	$\lambda p.pj'::$	ett
Mary :=	$\lambda p.p m' ::$	ett
woman :=	$\lambda x.woman'x:$	et
book :=	$\lambda x.book'x ::$	et
blue :=	$\lambda p \lambda x.blue' x \wedge p x ::$	et(et)
is:=	$\lambda p \lambda x. p(\lambda x. x = x) x ::$	et(et)(et)
no:=	$\lambda p\lambda q.\neg(\exists x.px\wedge qx)::$	et(ett)
a :=	$\lambda p \lambda q. \exists x. px \wedge qx ::$	et(ett)
every :=	$\lambda p \lambda q. \forall x. px \rightarrow qx ::$	et(ett)
ACC :=	$\lambda k \lambda q \lambda y. k(\lambda x. q x y) ::$	et(ett)(e(et)et)
NOM :=	$\lambda p.p::$	ett(ett)

Q 1. (20%)

The lexicon above is one of the possible models of copula and adjectival semantics. It also models two case markers the *nominative* and the *accusative*. Make sure that the lexicon can deliver what it aims to deliver. Indicate any errors you find. Do not think taht there *must* be errors. The lexicon may just be fine. Those like the following structures should be interpretable correctly.

- (1) a. ((NOM John) (reads (ACC (every (blue book))))).
 - b. ((NOM Every woman) (reads (ACC (every (blue book))))).

Q 2.

You are required to propose a new lexicon, so that an expression like:

(2) John killed Mary with a knife.

receives the meaning,

(3) $\lambda e.killing'e \wedge agent'ej' \wedge patient'es' \wedge \exists x.knife'x \wedge instr'ex$

Notice that (3) is not a type t interpretation, it is rather vt, where v is the type of eventualities. Therefore, (3) denotes a set of event(ualitie)s.

You need to model two alternative approaches:

- (a) (40%) the predicates agent' and patient' are contributed by the verb kill;
- (b) (40%) they come from case marking.

in either case the predicate *instr*^J will be contributed by with.