Data Mining & Machine Learning

CS37300 Purdue University

Sep 15, 2023

Today's topics

- Generative probabilistic classification
 - Naïve Bayes classifier

Generative Models

Generative Models

- Model x given y: this approach is called generative model
 - Model the class-conditional probabilities: P(x|y)
 - And the class-prior probability: P(y)

Generative Models

- Model x given y: this approach is called generative model
 - Model the class-conditional probabilities: P(x|y)
 - And the class-prior probability: P(y)
- Once we estimate P(x|y) and P(y) from data
- Use Bayes rule to solve for P(y|x) for predictions on test points x

- Classify test points x with label argmax_y P(y|x)
- called the maximum a posteriori assignment (MAP)

Bayes rule for probabilistic classifier

$$P(y \mid \underline{x}) = \frac{P(\underline{x}, y)}{P(\underline{x})} = \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x})}$$

$$= \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x} \mid y = 1)P(y = 1) + P(\underline{x} \mid y = -1)P(y = -1)}$$

$$\propto P(x \mid y)P(y)$$

Bayes rule for probabilistic classifier

$$P(y \mid \underline{x}) = \frac{P(\underline{x}, y)}{P(\underline{x})} = \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x})}$$
Bayes rule

$$= \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x} \mid y = 1)P(y = 1) + P(\underline{x} \mid y = -1)P(y = -1)}$$

$$\propto P(\underline{x} \mid y)P(y)$$

Bayes rule for probabilistic classifier

$$P(y \mid \underline{x}) = \frac{P(\underline{x}, y)}{P(\underline{x})} = \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x})}$$

Bayes rule

$$= \frac{P(\underline{x} \mid y)P(y)}{P(\underline{x} \mid y = 1)P(y = 1) + P(\underline{x} \mid y = -1)P(y = -1)}$$

$$\propto P(\underline{x} \mid y)P(y)$$

Denominator is not important for Classification

$$\underset{y}{\operatorname{argmax}} \frac{P(x|y)P(y)}{P(x)} = \underset{y}{\operatorname{argmax}} P(x|y)P(y)$$

- Simple generative model
- Based on the assumption that attributes in the feature vector are conditionally independent given the label

• For feature vector
$$\underline{x} = [x_1, \dots, x_d]^{\top}$$

$$P(\underline{x}|y) = \prod_{j=1}^d P(x_j|y)$$

$$P(y \mid \underline{x}) \propto P(\underline{x} \mid y) P(y)$$

$$\propto \left(\prod_{j=1}^{d} P(x_j \mid y)\right) P(y)$$

- Simple generative model
- Based on the assumption that attributes in the feature vector are conditionally independent given the label

• For feature vector
$$\underline{x}=[x_1,\dots,x_d]^{\top}$$

$$P(\underline{x}|y)=\prod_{j=1}^d P(x_j|y)$$

$$P(y \mid \underline{x}) \propto P(\underline{x} \mid y)P(y)$$

Bayes rule

$$\propto \left(\prod_{j=1}^{d} P(x_j \mid y)\right) P(y)$$

- Simple generative model
- Based on the assumption that attributes in the feature vector are conditionally independent given the label
- For feature vector $\underline{x} = [x_1, ..., x_d]^{\mathsf{T}}$

$$P(\underline{x}|y) = \prod_{j=1}^{d} P(x_j|y)$$

$$P(y \mid \underline{x}) \propto P(\underline{x} \mid y)P(y)$$

Bayes rule

$$\left| \propto \left(\prod_{j=1}^{d} P(x_j \mid y) \right) P(y) \right|$$

Naïve assumption

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

$$\begin{split} P(BC|A,I,S,CR) &= \frac{P(A,I,S,CR|BC)P(BC)}{P(A,I,S,CR)} \\ &= \frac{P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC)}{P(A,I,S,CR)} \\ &\propto P(A|BC)P(I|BC)P(S|BC)P(CR|BC)P(BC) \end{split}$$

parameters = conditionals + prior

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Conditionals: P(A|BC)

P(I|BC)

P(S|BC)

P(CR|BC)

Prior: P(BC)

- If the attributes are discrete, model $P(x_i|y)$ as a Multinomial distribution
 - Each attribute x_i can have values in {1,...,k}
 - For each possible y value and each attribute x_i we have k parameters:

$$P(x_j = a \mid y = b)$$

P(y=1) is also a parameter

- If the attributes are discrete, model $P(x_i|y)$ as a Multinomial distribution
 - Each attribute x_i can have values in $\{1,...,k\}$
 - For each possible y value and each attribute x_i we have k parameters:

$$P(x_j = a \mid y = b)$$

- P(y=1) is also a parameter
- Question: If y is binary, how many parameters are there?

- If the attributes are discrete, model $P(x_i|y)$ as a Multinomial distribution
 - Each attribute x_i can have values in {1,...,k}
 - For each possible y value and each attribute x_i we have k parameters:

$$P(x_j = a \mid y = b)$$

- P(y=1) is also a parameter
- Question: If y is binary, how many parameters are there?
- 2dk + 1 (or 2d(k-1)+1 if we're clever)

- If the attributes are discrete, model $P(x_i|y)$ as a Multinomial distribution
 - Each attribute x_j can have values in {1,...,k}
 - For each possible y value and each attribute x_i we have k parameters:

$$P(x_j = a \mid y = b)$$

- P(y=1) is also a parameter
- Question: If y is binary, how many parameters are there?
- 2dk + 1 (or 2d(k-1)+1 if we're clever)
- If the attributes are real-valued, typically model $P(x_i|y)$ as Normal distribution

Learning the Naïve Bayes Classifier

- Suppose we have a dataset of *n* samples $D = \{(\underline{x}_1, y_1), (\underline{x}_2, y_2), \dots, (\underline{x}_n, y_n)\}$
- Estimate P(x|y)P(y) using maximum likelihood estimation:

$$P(x|y; \hat{\theta})P(y; \hat{\theta})$$
 where

$$\hat{\theta} = \operatorname*{argmax}_{\theta} L(D; \theta)$$

$$L(D; \theta) = \prod_{i=1}^{n} \left(\left(\prod_{j=1}^{d} P(x_{ij}|y_i; \theta) \right) P(y_i; \theta) \right)$$

Naïve Bayes Maximum Likelihood Estimator

• We want to maximize this, jointly over the set of all parameters, to find $\hat{\theta}$

$$L(D;\theta) = \left(P(Y=1)^{\sum_{i=1}^{n} y_i} P(Y=0)^{n-\sum_{i=1}^{n} y_i}\right) \prod_{j=1}^{d} \left(\prod_{i:y_i=0} P(X_j = x_{ij}|Y=0)\right) \left(\prod_{i:y_i=1} P(X_j = x_{ij}|Y=1)\right)$$

Solution:

$$\hat{P}(y=1) = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Estimate of P(Y=1)

$$\hat{P}(x_j=a|y=b) = \frac{1}{n_b} \sum_{i:y_i=b} \mathbb{I}[x_{ij}=a] \qquad \text{Estimate of P(X_j=a \mid Y=b)}$$

Estimate of
$$P(X_j = a | Y = b)$$

$$n_b = |\{i : y_i = b\}|$$

Computing conditionals from training examples

		X	
	Low	Medium	High
Yes	10	13	17
No	2	13	0

$$P(X = Low | Y = Yes) = \frac{10}{(10+13+17)}$$

P(Y = No) =
$$\frac{(2+13)}{(2+13+10+13+17)}$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

P(A I BC)

BC	A	θ
	<= 30	2/9
yes	3140	$\mid 4/9 \mid$
	> 40	$\mid 3/9 \mid$
	<= 30	3/5
no	3140	$\mid 0/5 \mid$
	> 40	2/5

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

P(A I BC)

BC	A	θ
	<= 30	2/9
yes	3140	$\mid 4/9 \mid$
	> 40	3/9
	<= 30	3/5
no	3140	$\mid 0/5 \mid$
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

P(A I BC)

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

$\overline{\mathrm{BC}}$	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 Estimate prior P(BC) and conditional probability distributions P(A | BC), P(I | BC), P(S | BC), P(CR | BC) independently with maximum likelihood estimation

P(BC)

BC	θ
yes	9/14
no	5/14

P(A I BC)

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CRIBC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

 What is the probability that a new person will buy a computer?

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

3140	high	no	excellent	?
>40	medium	no	excellent	no
3140	high	yes	fair	yes
3140	medium	no	excellent	yes
<=30	medium	yes	excellent	yes
>40	medium	yes	fair	yes
<=30	low	yes	fair	yes
<=30	medium	no	fair	no
3140	low	yes	excellent	yes
>40	low	yes	excellent	no
>40	low	yes	fair	yes
>40	medium	no	fair	yes
3140	high	no	fair	yes
<=30	high	no	excellent	no
<=30	high	no	fair	no
age	income	student	credit_rating	buys_computer

 What is the probability that a new person will buy a computer?

$$\begin{split} P(BC = yes | A = 31..40, I = high, S = no, CR = exc) \\ &\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes) \\ &P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes) \end{split}$$

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$P(BC = yes | A = 31..40, I = high, S = no, CR = exc)$$

$$\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes)$$

$$P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes)$$

P(BC)

BC	θ
yes	9/14
no	5/14

P(A I BC)

BC	A	θ
	<= 30	2/9
yes	3140	$\mid 4/9 \mid$
	> 40	3/9
	<=30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CR I BC)

BC	CR	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$P(BC = yes | A = 31..40, I = high, S = no, CR = exc)$$

$$\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes)$$

$$P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes)$$

P(BC)

BC	θ
yes	9/14
no	5/14

P(AIBC)

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	0/5
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

S	θ
yes	6/9
no	3/9
yes	1/5
no	4/5
	yes no yes

P(CR I BC)

BC	$\overline{\mathrm{CR}}$	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no
3140	high	no	excellent	?

 What is the probability that a new person will buy a computer?

$$P(BC = yes | A = 31..40, I = high, S = no, CR = exc)$$

$$\propto P(A = 31..40 | BC = yes) P(I = high | BC = yes)$$

$$P(S = no | BC = yes) P(CR = exc | BC = yes) P(BC = yes)$$

$$\propto \frac{4}{9} \cdot \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{9}{14}$$

$$P(BC)$$

P	ΊΑ	I	BC
	(\land)	ı	$\mathbf{D}\mathbf{C}_{i}$

BC	A	θ
	<= 30	2/9
yes	3140	4/9
	> 40	3/9
	<= 30	3/5
no	3140	$\mid 0/5 \mid$
	> 40	2/5

P(IIBC)

BC	I	θ
	high	2/9
yes	med	4/9
	low	3/9
	high	2/5
no	med	2/5
	low	1/5

P(SIBC)

BC	S	θ
yes	yes	6/9
	no	3/9
no	yes	1/5
	no	4/5

P(CRIBC)

BC

yes

no

BC	$\overline{\mathrm{CR}}$	θ
yes	exc	3/9
	fair	6/9
no	exc	4/5
	fair	1/5

9/14

- Zero counts are a problem
- If an attribute value does not occur in training example, we assign zero probability to that value

- Zero counts are a problem
- If an attribute value does not occur in training example, we assign zero probability to that value
- How does that affect the value P(x|y)P(y) ?
 - It equals 0 !!! (for both y values)
- Adjust for zero counts by "smoothing" probability estimates
- It also helps compensate for having small data set size

		×			
		Low	Medium	High	
,	Yes	10	13	17	
	No	2	13	0	

		X			
		Low	Medium	High	
	Yes	10	13	17	
Y	No	2	13	0	

$$P(X = High | Y = No) =$$

		X			
		Low	Medium	High	
	Yes	10	13	17	
Y	No	2	13	0	

$$P(X = High | Y = No) = \frac{0}{(2+13+0)}$$

		X			
		Low	Medium	High	
Y	Yes	10	13	17	
	No	2	13	0	

P(X = High | Y = No) =
$$\frac{0}{(2+13+0)+3}$$

		X			
		Low	Medium	High	
Y	Yes	10	13	17	
	No	2	13	0	

$$P(X = High \mid Y = No) = \frac{0}{(2+13+0)+3}$$
Adds uniform prior

		X			
		Low	Medium	High	
Y	Yes	10	13	17	
	No	2	13	0	

$$P(X = High | Y = No) =$$

$$\frac{0}{(2+13+0)+3}$$

Laplace correction

Numerator: **add 1**Denominator: **add k**,
where k=number of
possible values of X

Adds uniform prior

- If the attributes are real-valued, typically model $P(x_i|y)$ as a **Normal** distribution
 - Each attribute x_i is conditionally Normal
 - For each possible y value and each attribute x_j we have 2 parameters: $\mu_{(j,y)},\,\sigma_{(j,y)}$
 - $P(x_j \mid y = b)$ is density for $N(\mu_{(j,b)}, \sigma^2_{(j,b)})$
 - Recall: $P(x_j|y=b)=\frac{1}{\sigma_{(j,b)}\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x_j-\mu_{(j,b)}}{\sigma_{(j,b)}}\right)^2}$

• As before, denote by p the parameter for P(y=1)

Naïve Bayes Maximum Likelihood Estimator

• We want to maximize this, jointly over the set of all parameters, to find $\hat{\theta}$

$$L(D;\theta) = \left(p^{\sum_{i=1}^{n} y_i} (1-p)^{n-\sum_{i=1}^{n} y_i}\right) \prod_{j=1}^{d} \prod_{b=0}^{1} \left(\prod_{i:y_i=b} \frac{1}{\sigma_{(j,b)}\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x_{ij}-\mu_{(j,b)}}{\sigma_{(j,b)}}\right)^2}\right)$$

Solution:

$$\hat{p} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

Estimate of P(Y=1)

$$\hat{\mu}_{(j,b)} = \frac{1}{n_b} \sum_{i:y_i=b} x_{ij} ,$$

Estimate of $P(X_i | Y = b)$

$$\hat{\sigma}_{(j,b)}^2 = \frac{1}{n_b} \sum_{i:u_i=b} (x_{ij} - \hat{\mu}_{(j,b)})^2$$

$$n_b = |\{i : y_i = b\}|$$

- Simplifying (naive) assumption: attributes are conditionally independent given the class
- Strengths:
 - Easy to implement
 - Often performs well even when assumption is violated
- Weaknesses:
 - Dependencies among variables aren't being modeled