Preprocesamiento de datos para la industria en visión computarizada

Antes que nada, descarguemos los datos

- Las instrucciones para descargar los datos se encuentran en el repositorio de GitHub de la clase.
- Training data:
 - \$ wget https://dl.dropboxusercontent.com/s/w8e5mninhu6qtvo/train_ships.json
- Test data:
 - \$ wget https://dl.dropboxusercontent.com/s/w8e5mninhu6qtvo/train_ships.json

Kassandra La Riva

ARISTA

¿Qué es el preprocesamiento de datos?

 En el contexto de Machine Learning y Deep Neural Networks, Ilamamos preprocesamiento a toda manipulación de los datos que ocurre antes de que estos sean usados para el entrenamiento de los modelos.

Ayudamos al modelo a entender el problema mediante nuestro conocimiento del problema y nuestra intuición

Tres tipos principales de preprocesamiento

- 1. Limpieza de los datos
- 2. Extracción de features
- 3. Incremento de la cantidad de datos

Limpieza de datos

• Encontrar datos con features incompletos

Reducir el ruido

10000

8000

6000

- Seleccionar features importantes
- Dar forma a los datos

	Variables			
Respondent	Α	В	С	D
1	1	2	3	4
2	1	2	3	4
3	4	3	2	1
4	4	3	2	1
5	1	2		1
6		2	2	1
7	1	2	2	
8	1		2	1

80

Extracción de features

 Extraer métricas de los datos para incluirlas en el entrenamiento

Incremento de la cantidad

de datos

De-texturized

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate

- Llamado en inglés: Data augmentation
- Se realizan modificaciones a los datos y estas modificaciones se agregan a los datos de entrenamiento.
- A diferencia de los otros dos tipos de preprocesamiento, estos transformaciones no se aplican también a los datos de prueba.

Beneficios del preprocesamiento de datos

Beneficios durante el entrenamiento

- El preprocesamiento puede hacer más rápido el entrenamiento cuando se reduce la complejidad de los datos mediante preprocesamiento.
- El entrenamiento puede hacerse más rápido ya que mediante el preprocesamiento le estamos incluyendo nuestro conocimiento sobre las cualidades de los datos que importan.
- Data augmentation nos ayuda a generalizar el conocimiento del modelo entrenado.

Beneficios durante el entrenamiento

Beneficios durante el despliegue de los modelos

 Cuando hacemos que un modelo sea menos complejo gracias a que hicimos un buen preprocesamiento de los datos, este modelo ocupa menos espacio en disco y cuando se utiliza el modelo para inferencia, el número de operaciones (tiempo de procesamiento) es mucho menor.

Ejemplos de preprocesamiento de datos para visión computarizada

Jupyter Notebook

https://github.com/camiloaz/udea-preprocessing/blob/master/preprocessing.ipynb

Actividad en grupos

CONCURSO DE PREPROCESAMIENTPO

https://github.com/camiloaz/udea-preprocessing

