- 1) Determine graficamente as raízes da função: $f(x) = x^3 x$ (apresente o gráfico e as raízes)
- 2) Determine graficamente as raízes da função: $f(u) = u^6 + u^2 u$ (apresente o gráfico e as raízes)
- 3) Determine pelo método da bisseção as raízes da função: $f(t) = 2^t$ 3t nos intervalos [0,1] e [3,4] com erro de 10^{-1}
- 4) Uma das maneiras de determinarmos um intervalo que contenha uma raiz da função é estudar a troca de sinal na substituição de valores na equação. Por exemplo:

Sendo a função $f(x) = x^3 - 9x + 3$

Se atribuirmos valores para x e substituirmos na equação teremos:

Х	-∞	-100	-10	<mark>-5</mark>	<mark>-3</mark>	-1	0	1	<mark>2</mark>	<mark>3</mark>	4	5
f(x)	-	-	-	1	+	+	+	-	-	+	+	+

A troca de sinal nos intervalos [-5, -3], [0, 1] e [2, 3] indica que entre os extremos de cada um deles existe uma raiz.

Podemos também verificar graficamente estes intervalos.

Determine pelo método da bisseção as raízes dos intervalos [-5, -3], [0, 1] e [2, 3]

- 5) Pelo estudo de sinal determine os intervalos onde a função $f(x) = x^2 + x 6$ possui raiz (ou raízes).
- 6) Determine por Báskara as raízes da função $f(x) = x^2 + x 6$
- 7) Determine pelo método da bisseção as raízes da função $f(x) = x^2 + x 6$
- 8) Pelo estudo de sinal determine os intervalos onde a função $f(x) = x^4 4x^2 4$ possui raiz (ou raízes).
- 9) Determine pelo método da bisseção as raízes da função $f(x) = x^4 4x^2 4$
- 10) Determine por cálculo e graficamente as raízes do polinômio $p(x) = -4 + 8x 5x^{2+}x^{3}$