P2 de Álgebra Linear I – 2003.1 Data: 12 de maio de 2003.

Questão	Valor	Nota	Revis.
1	3.0		
2a	0.5		
2b	0.5		
2c	1.0		
3d	0.5		
3a	0.5		
3b	0.5		
3c	1.0		
4a	0.5		
4b	0.5		
4c	0.5		
4d	0.5		
4e	0.5		
4f	0.5		
Total	10.5		

Marque no quadro as respostas da primeira questão. Não é necessário justificar esta questão.

ATENÇÃ0: resposta errada vale ponto negativo!, a questão pode ter nota negativa!

1) Decida se cada afirmação a seguir é verdadeira ou falsa e marque **com caneta** sua resposta no quadro abaixo. **Atenção:** responda **todos** os itens, use "N= não sei" caso você não saiba a resposta. Cada resposta certa vale 0.3, cada resposta errada vale -0.2, cada resposta N vale 0. Respostas confusas e ou rasuradas valerão -0.2.

Itens	V	\mathbf{F}	N
1.a			
1.b			
1.c			
1.d			
1.e			
1.f			
1.g			
1.h			
1.i			
1.j			

- **1.a)** Existe uma transformação linear $T \colon \mathbb{R}^2 \to \mathbb{R}^2$ que transforma a parábola $y = x^2$ na reta y = x.
- **1.b)** Existe uma transformação linear $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ que transforma a reta y=x na parábola $y=x^2$.
- **1.c)** Se v_1 e v_2 são vetores não nulos de \mathbb{R}^3 então $\{v_1, v_2, v_1 \times v_2\}$ é uma base de \mathbb{R}^3 .
- **1.d)** Se $\{v_1, v_2\}$ é uma base do plano ax + by + cz = 0 então $\{v_1, v_2, v_3\}$, $v_3 = (a, b, c)$, é uma base de \mathbb{R}^3 .
- **1.e)** Seja T uma transformação linear, $T: \mathbb{R}^3 \to \mathbb{R}^3$, que leva o plano x+y+z=0 na reta (t,-t,t), então $\{T(\mathbf{i}),T(\mathbf{j}),T(\mathbf{k})\}$ é uma base de \mathbb{R}^3 .
- **1.f)** Seja T uma transformação linear, $T: \mathbb{R}^3 \to \mathbb{R}^3$, tal que o determinante de T é não nulo, então $\{T(\mathbf{i}), T(\mathbf{j}), T(\mathbf{k})\}$ é uma base de \mathbb{R}^3 .
- **1.g)** Existe um espelhamento E de \mathbb{R}^3 que transforma o vetor (2,1,2) no vetor (1,2,-2).
 - 1.h) Considere vetores $v,\ y$ e w de \mathbb{R}^3 linearmente dependentes. Então

existem números reais σ e λ tais que $v = \sigma y + \lambda w$.

1.i) Dada uma base $\beta = \{u, v, w\}$ de \mathbb{R}^3 considere a nova base

$$\gamma = \{u + v + w, u - v, u - w\}$$

de \mathbb{R}^3 e o vetor h cujas coordenadas na base β são (1,1,1). Então as coodenadas de h na base γ são (1/3,1/3,1/3).

1.j) Considere os vetores v_1 e v_2 na figura e o vetor $v = \lambda v_1 + \lambda v_2$, onde $\lambda_1 > 0 > \lambda_2$. Então o vetor v está na região (ilimitada) R hachurada abaixo, onde r_1 e r_2 são as retas que passam pela origem e têm vetores diretores v_1 e v_2 , respetivamente.

Figura 1: Questão 1.j

2)

- a) Escreva o vetor v = (1, 2) como combinação linear dos vetores $v_1 = (1, 1)$, $v_2 = (-2, 0)$ e $v_3 = (1, 0)$.
- b) Determine os subconjuntos de $\{v_1, v_2, v_3\}$ que são base de \mathbb{R}^2 .
- c) Encontre uma base $\beta = \{u_1, u_2, u_3\}$ tal que o vetor (1, 2, 3) tenha coordenadas (1, 1, 1) na base β . Mostre que o conjunto β encontrado é de fato uma base.

d) Considere o conjunto $\mathbb X$ de vetores v=(a,b,c) cujas coordenadas são solução do sistema

$$x + y = 1, \quad z = 0,$$

isto é, a+b=1 e c=0. Encontre vetores v_1 e v_2 tais que o conjunto gerado por v_1 e v_2 contenha o conjunto \mathbb{X} .

3) Considere o vetor u=(1,1,1) e a transformação linear $T\colon \mathbb{R}^3\to \mathbb{R}^3$ definida por

$$T(v) = v \times u - v,$$

- a) Determine a matriz de T.
- b) Determine a fórmula de T.
- c) Estude se T é inversível e em caso afirmativo, determine a matriz inversa de T.
 - 4) Considere o plano π : x y z = 0 e o vetor v = (1, 0, 0).
- (a) Determine $P_{\pi,\mathbf{i}}((1,0,0))$, $P_{\pi,\mathbf{i}}((0,1,0))$ e $P_{\pi,\mathbf{i}}((0,0,1))$, isto é, as imagens dos vetores \mathbf{i} , \mathbf{j} e \mathbf{k} pela projeção no plano π : x-y-z=0 na direção do vetor $\mathbf{i}=(1,0,0)$.
- (b) Determine a matriz de $P_{\pi,i}$.

Considere a matriz

$$P_{\rho,w} = \begin{pmatrix} 1/2 & -1/2 & -1/2 \\ -1/2 & 1/2 & -1/2 \\ 0 & 0 & 1 \end{pmatrix},$$

que representa a projeção no plano ρ : x+y+z=0 na direção do vetor w=(1,1,0).

(c) Encontre, se possível, um vetor v tal que $|P_{\rho,w}(v)| > |v|$, caso seja impossível justifique por quê não existe dito vetor.

- (d) Determine a matriz da transformação linear $T = P_{\rho,w} \circ P_{\pi,i}$.
- (e) Verifique que

$$T(1,1,0) = T(1,0,0) = (0,0,0) \quad \mathrm{e} \quad T(0,1,-1) = (0,1,-1).$$

Para isto v. não necessita calcular explicitamente a matriz de T.

(f) Interprete geometricamente a transformação linear T.