ME3475: IC Engine Lab Experiment 2

ME21BTECH11001
Abhishek Ghosh

Aim:

Performance Study of Common Rail Direct Injection (CRDI) engine.

Procedure:

- 1. Start the engine.
- 2. Set the dynamometer load to 1 N, 12 N, and 24 N for additional experiments.
- 3. After adjusting the dynamometer load to the desired level, manipulate the fuel consumption rate by using the knob to regulate the throttle valve.
- 4. Ensure the RPM of the engine remains constant at 2000 RPM for each load by adjusting the throttle valve.
- 5. Measure the fuel consumption rate from 20-cc tube using a stopwatch.
- 6. Organize the collected data into a table and compute Fuel consumption rate, Brake power, specific fuel consumption, brake thermal efficiency, and volumetric efficiency.

Formulas used:

1. Brake Power (BP):

$$BP = \frac{2 \times \pi \times N \times T}{60 \times 1000} \text{kW}$$

where $T = Torque = Load \times (Armlength)$, N = Rotational speed (rpm).

2. Fuel Consumption(FC):

$$FC = \frac{x}{t}(mL/s) = x \times 3600 \times \frac{\text{Specific gravity of petrol}}{1000 \times t}(\text{Kg/hr})$$

3. Specific Fuel Consumption(SFC):

$$SFC = \frac{FC}{BP}$$

4. Brake Thermal Efficiency (η_{BP}) :

$$\eta_{BP} = \frac{BP}{FC \times CV}$$

where CV = Calorific Value of the fuel.

5. Volumetric Efficiency (η_{vol}) :

$$\eta_{vol} = \frac{\text{Air Flow} \times 100}{N/2 \times V_s \times \rho_{\text{air}} \times 60}$$

Tabulation:

S No.	Load	Air Flow Rate	Speed (N)	Time for	FC	BP	SFC (Kg/ KW	η_{BP}	η_{Vol}
	(Nm)	(kg/hr)		rise of	(Kg/hr)	(KW)	hr)		
				fuel (s)					
1	1	42.18	2000	121	0.488	0.21	2.33	3.432%	63.133%
2	12	43.8	2000	95	0.621	2.512	0.2474	32.336%	65.56%
3	24	46.44	2000	51	1.158	5.024	0.231	34.719%	69.51%

Calculation:

Given Data

- Load Torque (T) = 12 Nm
- $\bullet \quad N(RPM) = 2000$
- Calorific Value of Fuel (CV) = 45000 KJ/kg
- Specific Gravity of Fuel = 0.82
- Bore = 83 mm = 0.083 m
- Stroke = 84 mm = 0.084 m
- *Air Density* = $1.225 kg/m^3$

Brake Power (BP) Calculation

$$BP = \frac{2\pi NT}{60 \times 1000} = \frac{2\pi \times 2000 \times 12}{60 \times 1000}$$
$$= 2.512 \ kW$$

Fuel Consumption Rate (FC)

$$FC = \frac{20 \times 3600 \times \text{Specific Gravity of Fuel}}{t \times 1000} = \frac{20 \times 3600 \times 0.82}{95 \times 1000}$$
$$= 0.621 \, kg/hr$$

Specific Fuel Consumption (SFC)

$$SFC = \frac{FC}{BP} = \frac{0.621}{2.512}$$

= 0.2474 kg/kW hr

Volume Displaced (V_s) Calculation

$$Vs = \frac{\pi \times d^2 \times LX2}{4} = \frac{3.14 \times (0.083)^2 \times 0.084X2}{4}$$
$$= 0.000909 \, m3$$

Brake Thermal Efficiency (η_{BP})

$$\eta_{BP} = \frac{BP \times 3600}{FC \times CV} \times 100 = \frac{2.512 \times 3600}{0.621 \times 45000} \times 100$$
$$= 32.336\%$$

Volumetric Efficiency (η_{vol})

$$\eta_{\text{vol}} = \frac{\text{Air Flow Rate} \times 100}{V_{\text{s}} \times N/2 \times \text{Air Density} \times 60} = \frac{43.8 \times 100}{0.000909 \times 2000/2 \times 1.225 \times 60} = 65.56\%$$

Graph:

Conclusion:

- 1. The data analysis shows that the fuel consumption rate increases as the load increases. This is due to the higher fuel requirement to maintain the desired RPM at greater loads.
- 2. Based on the calculations and graphical analysis, it is evident that both thermal efficiency and volumetric efficiency improve as the load increases.