ACCELERATED FAILURE TIME MODEL

Dr. Aric LaBarr
Institute for Advanced Analytics
MSA Class of 2014

MODEL STRUCTURE

- The accelerated failure time (AFT) model is a regression that relates covariates (independent variables) to the event time T.
- The AFT model is a parametric model depends on knowledge of the underlying distribution of the data.

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

 We can transform this model into a linear regression model by taking the natural log of both sides of the equation:

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

The equation now becomes:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

 We can transform this model into a linear regression model by taking the natural log of both sides of the equation:

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

The equation now becomes:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Ensures positive predictions of T

 We can transform this model into a linear regression model by taking the natural log of both sides of the equation:

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

The equation now becomes:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Covariates used to predict *T*

 We can transform this model into a linear regression model by taking the natural log of both sides of the equation:

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

The equation now becomes:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Variance of the disturbances

 We can transform this model into a linear regression model by taking the natural log of both sides of the equation:

$$T_i = e^{\beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i}$$

The equation now becomes:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Errors in the model

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Errors in the model

- The errors in the AFT model can follow many different distributions.
- Assumptions:
 - Constant Mean
 - Constant Variance (σ)
 - Independence across observations

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Covariates used to predict *T*

- If there is no censoring in the data, traditional OLS could estimate the parameters.
- If there is censoring, maximum likelihood estimation could estimate the parameters.

AFT Model Parameter Interpretation

- If a parameter estimate is positive, increases in that variable increase the expected survival time.
- If a parameter estimate is negative, increases in that variable decrease expected survival times.
- $100 \times (e^{\beta} 1)$ is the % increase in the expected survival time for each one-unit increase in the variable.

Recidivism Parameter Interpretation

Variable	β Estimate	$100(e^{eta}-1)$
Financial Aid	0.3319	39.36%
Age at Release	0.0333	3.39%
Marital Status	0.5609	75.22%
Prior Convictions	-0.0743	-7.16%

ERROR DISTRIBUTIONS

Alternative Distributions

 The distribution of the error term determines the distribution of *T*.

Distribution of e	Distribution of T	
Extreme Value (1 parameter)	Exponential	
Extreme Value (2 parameters)	Weibull	
Normal	Log-Normal	
Logistic	Log-Logistic	
Log-Gamma	Gamma	

Survival Function:

$$S(t) = e^{-\frac{t}{\lambda}}$$

Hazard Function:

$$h(t) = \frac{1}{\lambda}$$

Accelerated Failure Time Model:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Proportional Hazards Model:

$$\log h(t) = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \dots + \tilde{\beta}_k x_k$$

Accelerated Failure Time Model:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Proportional Hazards Model:

$$(\tilde{\beta}_j = -\beta_j)$$

$$\log h(t) = \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \dots + \tilde{\beta}_k x_k$$

- There are restrictions of the exponential model.
- In the exponential model $\sigma = 1$.
- To evaluate if the data follows an exponential distribution, we can test if $\sigma = 1$:
 - Lagrange Multiplier Statistic
 - Null Hypothesis: $\sigma = 1$

Survival Function:

$$S(t) = e^{-\left(\frac{t}{\lambda}\right)^{\delta}}$$

Hazard Function:

$$h(t) = \frac{\delta}{\lambda} \left(\frac{t}{\lambda}\right)^{\delta - 1}$$

Survival Function:

$$S(t) = e^{-\left(\frac{t}{\lambda}\right)^{\delta}}$$

Hazard Function:

$$h(t) = \frac{\delta}{\lambda} \left(\frac{t}{\lambda}\right)^{\delta - 1}$$

$$\delta = \frac{1}{\sigma}$$

Accelerated Failure Time Model:

$$\log T_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \sigma e_i$$

Proportional Hazards Model:

$$\log h(t) = \alpha \log t + \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \dots + \tilde{\beta}_k x_k$$

Accelerated Failure Time Model:

$$\log T_{i} = \beta_{0} + \beta_{1} x_{i,1} + \dots + \beta_{k} x_{i,k} + \sigma e_{i}$$

• Proportional Hazards Model:
$$\alpha = \frac{1}{\sigma} - 1$$
 $\tilde{\beta}_j = \frac{-\beta_j}{\sigma}$

$$\log h(t) = \alpha \log t + \tilde{\beta}_0 + \tilde{\beta}_1 x_1 + \dots + \tilde{\beta}_k x_k$$

- One of the most popular models due to simplicity.
- Equals the exponential model when $\delta = 1$.
- Weibull model (and its special case the exponential model) is the only model that is both an AFT model and a proportional hazards model.
- Survival function is easy to manipulate.

$$S(t) = e^{-\left(\frac{t}{\lambda}\right)^{\delta}} = \exp\left\{-\left(te^{-\beta x_i}\right)^{\delta}\right\}$$

```
proc lifereg data=Survival.Recid outest=Beta;
     model Week*arrest(0) = fin age prio / dist=weibull;
run;
data null;
     set Beta;
     call symput('b Int', Intercept);
     call symput('sigma', SCALE );
     call symput('b fin', fin);
     call symput('b age', age);
     call symput('b prio', prio);
run;
data Recid2:
     set Survival.Recid:
     if fin = 1 then delete:
     Survival = \exp(-(\text{week*exp}(-(\&b \text{ Int } + \&b \text{ fin*fin } +
                     &b age*age + &b prio*prio))) ** (1/&sigma));
     Old t = (-\log(Survival)) **(&sigma) *exp(&b Int +
                     &b fin*fin + &b age*age + &b prio*prio);
     New t = (-\log(Survival)) **(&sigma) *exp(&b Int +
                     &b fin + &b age*age + &b prio*prio);
     Difference = New t - Old t;
run;
proc means data=Recid2 mean median min max;
     var Difference:
run;
```

Gamma Model

- PROC LIFEREG estimates the Gamma model with the DIST=GAMMA option.
- There are two types of gamma distributions the standardized and generalized gamma.
- The generalized gamma distribution takes a wide variety of shapes including the following distributions as special cases.
 - Exponential
 - Weibull
 - Log-Normal
 - Standardized Gamma

GOODNESS-OF-FIT TESTS

- Since these models are nested within the generalized gamma, we can use the likelihood ratio test.
- Likelihood Ratio Test:

$$LRT = -2(\log L_{Nested} - \log L_{Full})$$

 Here are the log-likelihood values for the models we can compare:

Implied Distribution
Exponential
Weibull
Log-Normal
Standard Gamma
Generalized Gamma

 Here are the likelihood ratio test values for the comparisons to the generalized gamma:

LRT	P-value	Comparison
12.90	0.0016	Exponential vs. Generalized Gamma
0.00	1.00	Weibull vs. Generalized Gamma
6.62	0.0101	Log-Normal vs. Generalized Gamma
0.16	0.6892	Stand. Gamma vs. Generalized Gamma

```
data GOF;
     Exp = -325.83;
     Weib = -319.38;
     LNorm = -322.69;
     SGam = -319.46;
     GGam = -319.38;
     LRT1 = -2*(Exp - GGam);
     LRT2 = -2*(Weib - GGam);
     LRT3 = -2* (LNorm - GGam);
     LRT4 = -2*(SGam - GGam);
     P Value1 = 1 - \text{probchi}(LRT1, 2);
     P Value2 = 1 - \text{probchi}(LRT2, 1);
     P Value3 = 1 - probchi(LRT3,1);
     P Value4 = 1 - \text{probchi}(LRT4, 1);
run;
proc print data=GOF;
     var LRT1-LRT4 P Value1-P Value4;
run;
```

Graphically Evaluating Model Fit

- We can also use graphical diagnostics to evaluate the fit of the data to distributional assumptions.
 - Exponential: t is linearly related to $-\log S(t)$
 - Weibull: $\log t$ is linearly related to $\log(-\log S(t))$
- SAS provides these plots.

Graphically Evaluating Model Fit

- Patterns exist in the log-logistic and log-Normal distributions as well.
 - Log-logistic: $\log t$ is linearly related to $\log \left(\frac{S(t)}{1 S(t)} \right)$
 - Log-Normal: $\log t$ is linearly related to $\Phi^{-1}(1 S(t))$
- SAS does not give these plots through options.
- We have to create them ourselves.

Graphically Evaluating Model Fit

```
proc lifetest data=Survival.RECID method=life
              plots=(s,ls,lls) outsurv=Pred Surv
              width=1;
     time week*arrest(0);
run;
data Pred Surv;
     set Pred Surv;
     s = survival:
     logit = log((1-s)/s);
     lnorm = probit(1-s);
     lweek = log(week);
run;
proc sqplot data=Pred Surv;
     series y=logit x=lweek;
run;
proc sqplot data=Pred Surv;
     series y=lnorm x=lweek;
run;
```

