

Data Structure and Algorithms [CO2003]

Chapter 2 - Algorithm Complexity

Lecturer: Vuong Ba Thinh

Contact: vbthinh@hcmut.edu.vn

Faculty of Computer Science and Engineering Hochiminh city University of Technology

Contents

- 1. Algorithm Efficiency
- 2. Big-O notation
- 3. Problems and common complexities
- 4. P and NP Problems

Outcomes

- L.O.1.1 Define concept "computational complexity" and its special cases, best, average, and worst.
- L.O.1.2 Analyze algorithms and use Big-O notation to characterize the computational complexity of algorithms composed by using the following control structures: sequence, branching, and iteration (not recursion).
- **L.O.1.3** List, give examples, and compare complexity classes, for examples, constant, linear, etc.
- L.O.1.4 Be aware of the trade-off between space and time in solutions.
- L.O.1.5 Describe strategies in algorithm design and problem solving.

Algorithm Efficiency

- A problem often has many algorithms.
- Comparing two different algorithms ⇒ Computational complexity: measure of the difficulty degree (time and/or space) of an algorithm.
 - How fast an algorithm is?
 - How much memory does it cost?

Algorithm Efficiency

General format

efficiency =
$$f(n)$$

n is the size of a problem (the key number that determines the size of input data)

Linear Loops

The number of times the body of the loop is replicated is 1000.

$$f(n) = n$$

The number of times the body of the loop is replicated is 500.

$$f(n) = n/2$$

Linear Loops

Logarithmic Loops

Multiply loops

```
i = 1
while (i <= n)
// application code
i = i x 2
end while</pre>
```

Divide loops

```
i = n
while (i >= 1)
// application code
i = i / 2
end while
```

The number of times the body of the loop is replicated is

$$f(n) = \log_2 n$$

Logarithmic Loops

Nested Loops

Iterations = Outer loop iterations \times Inner loop iterations

Example

The number of times the body of the loop is replicated is

$$f(n) = n \log_2 n$$

Nested Loops

Quadratic Loops

Example

The number of times the body of the loop is replicated is

$$f(n) = n^2$$

Dependent Quadratic Loops

Example

The number of times the body of the loop is replicated is

$$1+2+\ldots+n = n(n+1)/2$$

Quadratic Loops

Asymptotic Complexity

- Algorithm efficiency is considered with only big problem sizes.
- We are not concerned with an exact measurement of an algorithm's efficiency.
- Terms that do not substantially change the function's magnitude are eliminated.

Example

$$f(n) \stackrel{\cdot}{=} c.n \Rightarrow f(n) = O(n)$$

$$f(n) = n(n+1)/2 = n^2/2 + n/2 \Rightarrow f(n) = O(n^2)$$

- Set the coefficient of the term to one.
- Keep the largest term and discard the others.

Some example of Big-O:

$$\log_2 n$$
, n , $n \log_2 n$, n^2 , ... n^k ... 2^n , $n!$

Standard Measures of Efficiency

Efficiency	Big-O	Iterations	Est. Time		
logarithmic	$O(\log_2 n)$	14	microseconds		
linear	O(n)	10 000	0.1 seconds		
linear log	$O(n \log_2 n)$	140 000	2 seconds		
quadratic	$O(n^2)$	10000^2	15-20 min.		
polynomial	$O(n^k)$	10000^{k}	hours		
exponential	$O(2^n)$	2^{10000}	intractable		
factorial $O(n!)$		10000!	intractable		

Assume instruction speed of 1 microsecond and 10 instructions in loop.

$$n = 10000$$

Standard Measures of Efficiency

Big-O Analysis Examples


```
Algorithm addMatrix(val matrix1<matrix>, val matrix2<matrix>, val size<integer>, ref
 matrix3<matrix>)
Add matrix1 to matrix2 and place results in matrix3
Pre: matrix1 and matrix2 have data
size is number of columns and rows in matrix
Post: matrices added - result in matrix3
r = 1
while r \le size do
    c = 1
    while c \le size do
         matrix3[r, c] = matrix1[r, c] + matrix2[r, c]
         c = c + 1
    end
    r = r + 1
end
return matrix3
End addMatrix
```

Big-O Analysis Examples

Nested linear loop:

$$f(\mathbf{S}) = O(\prod_{i=1}^{D} S_i)$$

$$f(size) = O(size^2)$$

Time Costing Operations

- The most time consuming: data movement to/from memory/storage.
- Operations under consideration:
 - Comparisons
 - Arithmetic operations
 - Assignments

Recurrence Equation

An equation or inequality that describes a function in terms of its value on smaller input.

1		A 6				XX	6 VX		
1	2	3	5	8	13	21	34	55	89
		_		130			_		

$$T(n) = 1 + T(n/2) \Rightarrow T(n) = O(\log_2 n)$$

Binary search

- Best case: when the number of steps is smallest. T(n) = O(1)
- ullet Worst case: when the number of steps is largest. $T(n) = O(\log_2 n)$
- Average case: in between $T(n) = O(\log_2 n)$

Sequential search

	8	5	21	2	1./	13	4	34 7	18	
		0		16	\times	\rightarrow / $ $				

- Best case: T(n) = O(1)
- Worst case: T(n) = O(n)
- Average case: $T(n) = \sum_{i=1}^{n} i.p_i$

 p_i : probability for the target being at a[i]

$$p_i = 1/n \Rightarrow T(n) = (\sum_{i=1}^n i)/n = O(n(n+1)/2n) = O(n)$$

		-		- V	/				
19	8	3	15	28	10	22	4	12	83
		$\sim \Lambda$		K7/			1 /		

Recurrence Equation

$$T(n) = O(n) + 2T(n/2)$$

- Best case: $T(n) = O(n \log_2 n)$
- Worst case: $T(n) = O(n^2)$
- Average case: $T(n) = O(n \log_2 n)$

- P: Polynomial (can be solved in polynomial time on a deterministic machine).
- NP: Nondeterministic Polynomial (can be solved in polynomial time on a nondeterministic machine).

- **Travelling Salesman Problem:**A salesman has a list of cities, each of which he must visit exactly once.
- There are direct roads between each pair of cities on the list.
- Find the route the salesman should follow for the shortest possible round trip that both starts and finishes at any one of the cities.

Travelling Salesman Problem: Deterministic machine: $f(n) = n(n-1)(n-2)\dots 1 = O(n!)$

 \Rightarrow NP problem

NP-complete: NP and every other problem in NP is polynomially reducible to it.

$$P = NP?$$