Pseudotelepatia Quântica (TODO)

Luigi Soares (luigi.domenico@dcc.ufmg.br) Roberto Rosmaninho (TODO)

Quadrado Mágico

► Jogo cooperativo não-local

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- Um árbitro: Charlie

- ▶ Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- ► Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início

- ▶ Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- ► Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início
- A cada rodada:

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início
- ► A cada rodada:
 - 1 Charlie sorteia uma linha 0, 1 ou 2 de uma matriz 3×3 e atribui à Alice

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- Um árbitro: Charlie
- Alice e Bob não podem se comunicar após o início
- A cada rodada:
 - 1 Charlie sorteia uma linha 0, 1 ou 2 de uma matriz 3×3 e atribui à Alice
 - 2 Alice preenche as três células com +1 ou -1, de forma que o produto seja +1

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início
- A cada rodada:
 - ① Charlie sorteia uma linha 0, 1 ou 2 de uma matriz 3×3 e atribui à Alice
 - 2 Alice preenche as três células com +1 ou -1, de forma que o produto seja +1
 - 3 Charlie sorteia uma coluna 0, 1 ou 2 da matriz e atribui ao Bob

- Jogo cooperativo não-local
- ▶ Dois jogadores: Alice e Bob
- ► Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início
- A cada rodada:
 - ① Charlie sorteia uma linha 0, 1 ou 2 de uma matriz 3×3 e atribui à Alice
 - 2 Alice preenche as três células com +1 ou -1, de forma que o produto seja +1
 - 3 Charlie sorteia uma coluna 0, 1 ou 2 da matriz e atribui ao Bob
 - $oxed{4}$ Bob preenche as três células com +1 ou -1, de forma que o produto seja -1

- Jogo cooperativo não-local
- ► Dois jogadores: Alice e Bob
- Um árbitro: Charlie
- ► Alice e Bob não podem se comunicar após o início
- A cada rodada:
 - 1 Charlie sorteia uma linha 0, 1 ou 2 de uma matriz 3×3 e atribui à Alice
 - 2 Alice preenche as três células com +1 ou -1, de forma que o produto seja +1
 - 3 Charlie sorteia uma coluna 0, 1 ou 2 da matriz e atribui ao Bob
 - $oldsymbol{4}$ Bob preenche as três células com +1 ou -1, de forma que o produto seja -1
 - 6 Alice e Bob vencem se respeitaram e concordaram no valor da interseção

Exemplo 1 (Vitória)

Alice
$$\leftarrow 0$$

+1	-1	-1

$$\prod = +1$$

$\mathsf{Bob} \leftarrow 1$

$$\prod = -1$$

Exemplo 2 (Derrota, Interseção)

$$\prod = +1$$

$\mathsf{Bob} \leftarrow 1$

$$\prod = -1$$

Exemplo 3 (Derrota, Produto)

▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas

Α	١	i	c	e
, ,	ı	ı	·	·

-1	
-1	
-1	

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas

Δ	ı	ı	$\boldsymbol{\Gamma}$	6
, ,	ı	ı	·	·

-1	- 1	+ 1
-1	- 1	+ 1
-1	– 1	+ 1

-1	
-1	
-1	

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas

Δ	ı	ı		_
$\overline{}$	ı	ı	·	C

-1	- 1	+ 1
-1	- 1	+ 1
-1	- 1	+ 1

-1	- 1	
-1	-1	
-1	-1	

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas

Δ	ı	ı	$\boldsymbol{\Gamma}$	6
, ,	ı	ı	·	·

-1	- 1	+ 1
-1	- 1	+ 1
-1	- 1	+ 1

-1	- 1	- 1
-1	-1	+1
-1	-1	+1

- ▶ Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- ▶ Uma estratégia determinística consiste em preparar matrizes pré-definidas
- ▶ É impossível vencer com 100% de chance toda rodada

- Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- Uma estratégia determinística consiste em preparar matrizes pré-definidas
- ▶ É impossível vencer com 100% de chance toda rodada

$$m_{0,0} m_{0,1} m_{0,2} = +1$$
 $m_{1,0} m_{1,1} m_{1,2} = +1$
 $m_{2,0} m_{2,1} m_{2,2} = +1$
 $m_{0,0} m_{1,0} m_{2,0} = -1$
 $m_{0,1} m_{1,1} m_{2,1} = -1$
 $m_{0,2} m_{1,2} m_{2,2} = -1$
 $+1 \neq -1$

- Alice e Bob não podem se comunicar durante o jogo, mas podem antes
- Uma estratégia determinística consiste em preparar matrizes pré-definidas
- ▶ É impossível vencer com 100% de chance toda rodada
- A melhor estratégia determinística vence com probabilidade 8/9

▶ Alice e Bob jogam uma moeda para decidir o valor de cada célula

- Alice e Bob jogam uma moeda para decidir o valor de cada célula
- lsto é equivalente a cada um deles sortear uma dentre todas as possíveis matrizes

- Alice e Bob jogam uma moeda para decidir o valor de cada célula
- lsto é equivalente a cada um deles sortear uma dentre todas as possíveis matrizes
- A combinação das duas matrizes sorteadas é uma estratégia determinística

- Alice e Bob jogam uma moeda para decidir o valor de cada célula
- lsto é equivalente a cada um deles sortear uma dentre todas as possíveis matrizes
- A combinação das duas matrizes sorteadas é uma estratégia determinística
- Ou seja, qualquer estratégia probabilística é limitada pela melhor estratégia determinística. Logo, a chance de sucesso clássico é no máximo ⁸/₉

► E se Alice e Bob puderem carregar qubits?

- ► E se Alice e Bob puderem carregar qubits?
- Existe uma estratégia quântica que os permite vencer qualquer rodada

- ► E se Alice e Bob puderem carregar qubits?
- Existe uma estratégia quântica que os permite vencer qualquer rodada
- ► Alice e Bob compartilham qubits emaranhados

$$|\psi
angle = rac{1}{2} \left(|00
angle_A \otimes |00
angle_B + |01
angle_A \otimes |01
angle_B + |10
angle_A \otimes |10
angle_B + |11
angle_A \otimes |11
angle_B
ight)$$

- ► E se Alice e Bob puderem carregar qubits?
- Existe uma estratégia quântica que os permite vencer qualquer rodada
- ► Alice e Bob compartilham qubits emaranhados

$$|\psi
angle = rac{1}{2} \left(|00
angle_A \otimes |00
angle_B + |01
angle_A \otimes |01
angle_B + |10
angle_A \otimes |10
angle_B + |11
angle_A \otimes |11
angle_B
ight)$$

► Ao receber uma linha/coluna, eles medem seus qubits

- E se Alice e Bob puderem carregar qubits?
- Existe uma estratégia quântica que os permite vencer qualquer rodada
- ► Alice e Bob compartilham qubits emaranhados

$$|\psi
angle = rac{1}{2} \left(|00
angle_A \otimes |00
angle_B + |01
angle_A \otimes |01
angle_B + |10
angle_A \otimes |10
angle_B + |11
angle_A \otimes |11
angle_B
ight)$$

- ► Ao receber uma linha/coluna, eles medem seus qubits
- O resultado de cada medição é o valor de cada célula

$+I\otimes Z$	$+Z\otimes I$	$+Z\otimes Z$
+X ⊗ I	$+I\otimes X$	$+X\otimes X$
$-X\otimes Z$	$-Z\otimes X$	$+Y\otimes Y$

$+I\otimes Z$	$+Z\otimes I$	$+Z\otimes Z$	+ /
+X ⊗ <i>I</i>	$+I\otimes X$	$+X\otimes X$	+ /
$-X\otimes Z$	$-Z\otimes X$	$+Y\otimes Y$	+1
-1	-1	-1	' '

Exemplo 4

① Alice recebe a linha 0 e mede seu segundo qubit com Z. Suponha que ela tenha observado +1. Ela atribui +1 à primeira celula e o estado inicial $|\psi\rangle$ colapsa para

$$|\psi_{\mathcal{A}1}
angle = rac{1}{\sqrt{2}}(|0000
angle + |1010
angle)$$

① Alice recebe a linha 0 e mede seu segundo qubit com Z. Suponha que ela tenha observado +1. Ela atribui +1 à primeira celula e o estado inicial $|\psi\rangle$ colapsa para

$$|\psi_{\mathcal{A}1}
angle = rac{1}{\sqrt{2}}(|0000
angle + |1010
angle)$$

2 Em seguida, Alice mede seu primeiro qubit com Z. Suponha que ela tenha observado -1. Ela atribui -1 à segunda célula e o estado colapsa para

$$|\psi_{A2}
angle=|1010
angle$$

① Alice recebe a linha 0 e mede seu segundo qubit com Z. Suponha que ela tenha observado +1. Ela atribui +1 à primeira celula e o estado inicial $|\psi\rangle$ colapsa para

$$|\psi_{\mathcal{A}1}
angle = rac{1}{\sqrt{2}}(|0000
angle + |1010
angle)$$

2 Em seguida, Alice mede seu primeiro qubit com Z. Suponha que ela tenha observado -1. Ela atribui -1 à segunda célula e o estado colapsa para

$$|\psi_{A2}\rangle = |1010\rangle$$

3 Para a terceira célula, ela mede seus dois qubits com $Z \otimes Z$. O único resultado possível é -1 e o estado não se altera: $|\psi_{A3}\rangle = |\psi_{A2}\rangle$.

① Suponha que Bob tenha recebido a coluna 1. Para a primeira célula, ele mede seu primeiro qubit com Z. Ele observa -1 (igual Alice) com probabilidade 1, e

$$|\psi_{B1}\rangle = |\psi_{A3}\rangle = |1010\rangle$$

ullet Suponha que Bob tenha recebido a coluna 1. Para a primeira célula, ele mede seu primeiro qubit com Z. Ele observa -1 (igual Alice) com probabilidade 1, e

$$|\psi_{B1}\rangle = |\psi_{A3}\rangle = |1010\rangle$$

2 Em seguida, Bob mede seu segundo qubit com X. Suponha que ele observe +1. Então, o estado colapsa para

$$|\psi_{B2}
angle=rac{1}{\sqrt{2}}(|1010
angle+|1011
angle)$$

① Suponha que Bob tenha recebido a coluna 1. Para a primeira célula, ele mede seu primeiro qubit com Z. Ele observa -1 (igual Alice) com probabilidade 1, e

$$|\psi_{B1}\rangle = |\psi_{A3}\rangle = |1010\rangle$$

2 Em seguida, Bob mede seu segundo qubit com X. Suponha que ele observe +1. Então, o estado colapsa para

$$|\psi_{\mathcal{B}2}
angle = rac{1}{\sqrt{2}}(|1010
angle + |1011
angle)$$

3 Para a terceira célula, ele mede ambos os qubits com $-Z \otimes X$. O único resultado possível é +1, o que satisfaz a restrição sobre o produto da coluna.

Seja $M_{i,j}$ o observável na célula (i,j) da estratégia quântica, segue que, para toda linha i, $\prod_j \operatorname{Out}(M_{i,j}) = +1$, e, para toda coluna j, $\prod_i \operatorname{Out}(M_{i,j}) = -1$.

Seja $M_{i,j}$ o observável na célula (i,j) da estratégia quântica, segue que, para toda linha i, $\prod_j \operatorname{Out}(M_{i,j}) = +1$, e, para toda coluna j, $\prod_i \operatorname{Out}(M_{i,j}) = -1$.

Note que, em qualquer linha e coluna, os três observáveis comutam entre si

Seja $M_{i,j}$ o observável na célula (i,j) da estratégia quântica, segue que, para toda linha i, $\prod_j \operatorname{Out}(M_{i,j}) = +1$, e, para toda coluna j, $\prod_i \operatorname{Out}(M_{i,j}) = -1$.

- Note que, em qualquer linha e coluna, os três observáveis comutam entre si
- Ou seja, é possível encontrar uma base de autovetores em comum, que diagonaliza os três. Para toda linha i (equiv. coluna j),

$$M_{i,0}M_{i,1}M_{i,2} = (P_i\Lambda_{i,0}P^{-1})(P_i\Lambda_{i,1}P^{-1})(P_i\Lambda_{i,2}P_i^{-1})$$

$$= P_i(\Lambda_{i,0}\Lambda_{i,1}\Lambda_{i,2})P_i^{-1}$$

$$= P_i\Lambda_iP_i^{-1}$$

Seja $M_{i,j}$ o observável na célula (i,j) da estratégia quântica, segue que, para toda linha i, $\prod_j \operatorname{Out}(M_{i,j}) = +1$, e, para toda coluna j, $\prod_i \operatorname{Out}(M_{i,j}) = -1$.

- Note que, em qualquer linha e coluna, os três observáveis comutam entre si
- Ou seja, é possível encontrar uma base de autovetores em comum, que diagonaliza os três. Para toda linha i (equiv. coluna j),

$$M_{i,0}M_{i,1}M_{i,2} = (P_i\Lambda_{i,0}P^{-1})(P_i\Lambda_{i,1}P^{-1})(P_i\Lambda_{i,2}P_i^{-1})$$

$$= P_i(\Lambda_{i,0}\Lambda_{i,1}\Lambda_{i,2})P_i^{-1}$$

$$= P_i\Lambda_iP_i^{-1}$$

 \triangleright Cada entrada de Λ_i é o produto dos autovalores p/ mesmo autovetor

ightharpoonup Os autovalores são sempre +1 e -1

- ightharpoonup Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço

- ightharpoonup Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço
- O que isso significa é que a primeira medição de qualquer linha/coluna resulta em um autovalor λ e colapsa para uma combinação de dois autovetores $|\lambda\rangle_0$ e $|\lambda\rangle_1$

- lacktriangle Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço
- O que isso significa é que a primeira medição de qualquer linha/coluna resulta em um autovalor λ e colapsa para uma combinação de dois autovetores $|\lambda\rangle_0$ e $|\lambda\rangle_1$
- A segunda medição, então, colapsa para $|\lambda\rangle_0$ ou $|\lambda\rangle_1$, e fixa o estado

- ightharpoonup Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço
- O que isso significa é que a primeira medição de qualquer linha/coluna resulta em um autovalor λ e colapsa para uma combinação de dois autovetores $|\lambda\rangle_0$ e $|\lambda\rangle_1$
- A segunda medição, então, colapsa para $|\lambda\rangle_0$ ou $|\lambda\rangle_1$, e fixa o estado
- lacktriangle Logo, as medições irão resultar nos autovalores correspondentes a $|\lambda
 angle_0$ ou $|\lambda
 angle_1$

- ightharpoonup Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço
- O que isso significa é que a primeira medição de qualquer linha/coluna resulta em um autovalor λ e colapsa para uma combinação de dois autovetores $|\lambda\rangle_0$ e $|\lambda\rangle_1$
- A segunda medição, então, colapsa para $|\lambda\rangle_0$ ou $|\lambda\rangle_1$, e fixa o estado
- lacktriangle Logo, as medições irão resultar nos autovalores correspondentes a $|\lambda
 angle_0$ ou $|\lambda
 angle_1$
- O produto das três medições é uma das entradas de Λ_i

- lacktriangle Os autovalores são sempre +1 e -1
- ► Tem sempre dois autovetores em comum para cada autoespaço
- $lackbox{ O que isso significa é que a primeira medição de qualquer linha/coluna resulta em um autovalor <math>\lambda$ e colapsa para uma combinação de dois autovetores $|\lambda\rangle_0$ e $|\lambda\rangle_1$
- A segunda medição, então, colapsa para $|\lambda\rangle_0$ ou $|\lambda\rangle_1$, e fixa o estado
- lacktriangle Logo, as medições irão resultar nos autovalores correspondentes a $|\lambda
 angle_0$ ou $|\lambda
 angle_1$
- O produto das três medições é uma das entradas de Λ_i
- Mas, para toda linha i, temos $P_i \Lambda_i P_i^{-1} = I$. Logo, $\Lambda_i = I$ e o produto das três medições é +1 sempre. Para toda coluna j, $P_j \Lambda_j P_i^{-1} = -I$ e $\Lambda_j = -I$

 \triangleright Para a primeira linha, os autovetores em comum são $|00\rangle$, $|01\rangle$, $|10\rangle$ e $|11\rangle$

- ightharpoonup Para a primeira linha, os autovetores em comum são $|00\rangle$, $|01\rangle$, $|10\rangle$ e $|11\rangle$
- ightharpoonup Para a primeira célula $I\otimes Z$, temos $|00\rangle$ e $|10\rangle$ no autoespaço do +1

- Para a primeira linha, os autovetores em comum são $|00\rangle$, $|01\rangle$, $|10\rangle$ e $|11\rangle$
- ▶ Para a primeira célula $I \otimes Z$, temos $|00\rangle$ e $|10\rangle$ no autoespaço do +1
- ▶ Ao observar +1, o estado colapsa para uma combinação dos dois, vide Exemplo 4:

$$rac{1}{2}(\ket{0000}+\ket{0101}+\ket{1010}+\ket{1111})\mapstorac{1}{\sqrt{2}}(\ket{0000}+\ket{1010})$$

- ▶ Para a primeira linha, os autovetores em comum são $|00\rangle$, $|01\rangle$, $|10\rangle$ e $|11\rangle$
- Para a primeira célula $I \otimes Z$, temos $|00\rangle$ e $|10\rangle$ no autoespaço do +1
- ▶ Ao observar +1, o estado colapsa para uma combinação dos dois, vide Exemplo 4:

$$\frac{1}{2}(\ket{0000}+\ket{0101}+\ket{1010}+\ket{1111})) \mapsto \frac{1}{\sqrt{2}}(\ket{0000}+\ket{1010})$$

lacktriangle Para a segunda célula $Z\otimes I$, o autovalor de |00
angle é +1 e o de |10
angle é -1

- ▶ Para a primeira linha, os autovetores em comum são $|00\rangle$, $|01\rangle$, $|10\rangle$ e $|11\rangle$
- ▶ Para a primeira célula $I \otimes Z$, temos $|00\rangle$ e $|10\rangle$ no autoespaço do +1
- ▶ Ao observar +1, o estado colapsa para uma combinação dos dois, vide Exemplo 4:

$$\frac{1}{2}(|0000\rangle+|0101\rangle+|1010\rangle+|1111\rangle)\mapsto\frac{1}{\sqrt{2}}(|0000\rangle+|1010\rangle)$$

- lacktriangle Para a segunda célula $Z\otimes I$, o autovalor de |00
 angle é +1 e o de |10
 angle é -1
- Ao observar -1, o estado colapsa para o autovetor $|10\rangle$, vide Exemplo 4:

$$rac{1}{\sqrt{2}}(\ket{0000}+\ket{1010})\mapsto\ket{1010}$$

Para qualquer linha i atribuída a Alice e coluna j atribuída ao Bob, o valor assinalado por ambos à célula (i,j) é sempre o mesmo.

▶ Independente da linha atribuída a Alice, o estado final dos qubits dela é sempre um dos autovetores em comum para aquela linha

- ► Independente da linha atribuída a Alice, o estado final dos qubits dela é sempre um dos autovetores em comum para aquela linha
- Se Alice repetir qualquer medição, o resultado é o mesmo que o anterior

- ► Independente da linha atribuída a Alice, o estado final dos qubits dela é sempre um dos autovetores em comum para aquela linha
- Se Alice repetir qualquer medição, o resultado é o mesmo que o anterior
- Mas, este estado é uma combinação de um dos autoespaços de Bob na interseção

- ► Independente da linha atribuída a Alice, o estado final dos qubits dela é sempre um dos autovetores em comum para aquela linha
- Se Alice repetir qualquer medição, o resultado é o mesmo que o anterior
- Mas, este estado é uma combinação de um dos autoespaços de Bob na interseção
- Além disso, o estado inicial é simétrico e, a cada medição, a simetria se mantém

- Independente da linha atribuída a Alice, o estado final dos qubits dela é sempre um dos autovetores em comum para aquela linha
- ► Se Alice repetir qualquer medição, o resultado é o mesmo que o anterior
- Mas, este estado é uma combinação de um dos autoespaços de Bob na interseção
- Além disso, o estado inicial é simétrico e, a cada medição, a simetria se mantém
- Logo, se Bob mede os qubits dele com os mesmos observáveis que Alice, ele observa o mesmo resultado

Para a segunda linha, o estado de Alice colapsa para $(1/2)(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$, $(1/2)(|00\rangle - |01\rangle + |10\rangle - |11\rangle)$, $(1/2)(|00\rangle - |01\rangle - |10\rangle + |11\rangle)$ ou $(1/2)(|00\rangle + |01\rangle - |10\rangle - |11\rangle)$

- Para a segunda linha, o estado de Alice colapsa para $(1/2)(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$, $(1/2)(|00\rangle |01\rangle + |10\rangle |11\rangle)$, $(1/2)(|00\rangle |01\rangle |10\rangle + |11\rangle)$ ou $(1/2)(|00\rangle + |01\rangle |10\rangle |11\rangle)$
- Suponha que tenha sido $(1/2)(|00\rangle |01\rangle |10\rangle + |11\rangle)$

- Para a segunda linha, o estado de Alice colapsa para $(1/2)(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$, $(1/2)(|00\rangle |01\rangle + |10\rangle |11\rangle)$, $(1/2)(|00\rangle |01\rangle |10\rangle + |11\rangle)$ ou $(1/2)(|00\rangle + |01\rangle |10\rangle |11\rangle)$
- ightharpoonup Suponha que tenha sido $(1/2)(|00\rangle-|01\rangle-|10\rangle+|11\rangle)$
- ▶ Então, Alice recebeu -1, -1 e +1

- Para a segunda linha, o estado de Alice colapsa para $(1/2)(|00\rangle + |01\rangle + |10\rangle + |11\rangle), (1/2)(|00\rangle - |01\rangle + |10\rangle - |11\rangle),$ $(1/2)(|00\rangle - |01\rangle - |10\rangle + |11\rangle)$ ou $(1/2)(|00\rangle + |01\rangle - |10\rangle - |11\rangle)$
- Suponha que tenha sido $(1/2)(|00\rangle |01\rangle |10\rangle + |11\rangle)$
- ightharpoonup Então. Alice recebeu -1. -1 e +1
- Após a primeira medição, o estado colapsa para

$$\begin{split} &\frac{1}{2\sqrt{2}}\Big(\left(\left|00\right\rangle - \left|10\right\rangle\right)\left|00\right\rangle + \left(\left|01\right\rangle - \left|11\right\rangle\right)\left|01\right\rangle + \left(\left|10\right\rangle - \left|00\right\rangle\right)\left|10\right\rangle + \left(\left|11\right\rangle - \left|01\right\rangle\right)\left|11\right\rangle\Big) \\ &\equiv \frac{1}{2\sqrt{2}}\Big(\left|00\right\rangle\left(\left|00\right\rangle - \left|10\right\rangle\right) + \left|01\right\rangle\left(\left|01\right\rangle - \left|11\right\rangle\right) + \left|10\right\rangle\left(\left|10\right\rangle - \left|00\right\rangle\right) + \left|11\right\rangle\left(\left|11\right\rangle - \left|01\right\rangle\right)\Big) \end{split}$$

Após a segunda medição, o estado colapsa (e fixa) para

$$\begin{split} &\frac{1}{4}\Big((|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|00\rangle-(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|01\rangle-\\ &(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|10\rangle+(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|11\rangle\Big)\\ &\equiv\frac{1}{4}\Big(\,|00\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,-|01\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)-\\ &|10\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,+|11\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\Big) \end{split}$$

Após a segunda medição, o estado colapsa (e fixa) para

$$\begin{split} &\frac{1}{4}\Big((|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|00\rangle-(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|01\rangle-\\ &(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|10\rangle+(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,|11\rangle\Big)\\ &\equiv\frac{1}{4}\Big(\,|00\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,-|01\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)-\\ &|10\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\,+|11\rangle\,(|00\rangle-|01\rangle-|10\rangle+|11\rangle)\Big) \end{split}$$

► Logo, para qualquer coluna que Bob receba, ao fazer uma medição igual a que Alice fez na interseção, ele obterá a mesma resposta que Alice

Caracterizando Jogos Mágicos

Modificando o Formato

▶ O que será que acontece se mudarmos o formato do jogo?

Modificando o Formato

- ▶ O que será que acontece se mudarmos o formato do jogo?
- ▶ E se, ao invés de um quadrado, fosse um pentagrama?

- ▶ O que será que acontece se mudarmos o formato do jogo?
- E se, ao invés de um quadrado, fosse um pentagrama?
- ▶ Note que a representação foi em formato de grafo

- O que será que acontece se mudarmos o formato do jogo?
- E se, ao invés de um quadrado, fosse um pentagrama?
- ► Note que a representação foi em formato de grafo
- Podemos redesenhar o quadrado mágico como um grafo também

- ▶ O que será que acontece se mudarmos o formato do jogo?
- ► E se, ao invés de um quadrado, fosse um pentagrama?
- ▶ Note que a representação foi em formato de grafo
- Podemos redesenhar o quadrado mágico como um grafo também

- O que será que acontece se mudarmos o formato do jogo?
- E se, ao invés de um quadrado, fosse um pentagrama?
- Note que a representação foi em formato de grafo
- Podemos redesenhar o quadrado mágico como um grafo também
- Será que existe alguma caracterização deste tipo de jogo?

Um arranjo $A=(V,E,\ell)$ é um hipergrafo conexo tal que cada vértice do conjunto V está exatamente em duas hiperarestas do conjunto E (conexo significa que o hipergrafo não pode ser dividido em dois sub-hipergrafos disjuntos). O arranjo também inclui uma rotulação $\ell \colon E \mapsto \{+1,-1\}$.

Um arranjo $A=(V,E,\ell)$ é um hipergrafo conexo tal que cada vértice do conjunto V está exatamente em duas hiperarestas do conjunto E (conexo significa que o hipergrafo não pode ser dividido em dois sub-hipergrafos disjuntos). O arranjo também inclui uma rotulação $\ell\colon E\mapsto \{+1,-1\}$.

O quadrado mágico e o pentagrama são exemplos de arranjos

Um arranjo $A=(V,E,\ell)$ é um hipergrafo conexo tal que cada vértice do conjunto V está exatamente em duas hiperarestas do conjunto E (conexo significa que o hipergrafo não pode ser dividido em dois sub-hipergrafos disjuntos). O arranjo também inclui uma rotulação $\ell\colon E\mapsto \{+1,-1\}$.

- O quadrado mágico e o pentagrama são exemplos de arranjos
- Cada linha que passa por 3 vértices do quadrado é uma hiperaresta

Um arranjo $A=(V,E,\ell)$ é um hipergrafo conexo tal que cada vértice do conjunto V está exatamente em duas hiperarestas do conjunto E (conexo significa que o hipergrafo não pode ser dividido em dois sub-hipergrafos disjuntos). O arranjo também inclui uma rotulação $\ell\colon E\mapsto \{+1,-1\}$.

- O quadrado mágico e o pentagrama são exemplos de arranjos
- Cada linha que passa por 3 vértices do quadrado é uma hiperaresta
- ► Cada linha que passa por 4 vértices do pentragrama é uma hiperaresta

Definição 2 (Realização Clássica)

Uma realização clássica de um arranjo $A = (V, E, \ell)$ é uma rotulação dos vértices $c \colon V \mapsto \{+1, -1\}$ tal que, para cada $e \in E$, $\prod_{v \in e} c(v) = \ell(e)$.

Definição 2 (Realização Clássica)

Uma realização clássica de um arranjo $A=(V,E,\ell)$ é uma rotulação dos vértices $c\colon V\mapsto \{+1,-1\}$ tal que, para cada $e\in E$, $\prod_{v\in e}c(v)=\ell(e)$.

 \blacktriangleright Por exemplo, considere uma versão 2×2 do quadrado mágico, com

$$\ell(e_t) = \ell(e_r) = +1$$
 e $\ell(e_b) = \ell(e_l) = -1$

Definição 2 (Realização Clássica)

Uma realização clássica de um arranjo $A=(V,E,\ell)$ é uma rotulação dos vértices $c\colon V\mapsto \{+1,-1\}$ tal que, para cada $e\in E$, $\prod_{v\in e}c(v)=\ell(e)$.

lacktriangle Por exemplo, considere uma versão 2 imes 2 do quadrado mágico, com

$$\ell(e_t) = \ell(e_r) = +1$$
 e $\ell(e_b) = \ell(e_l) = -1$

Uma realização clássica válida é

$$c(v_{00}) = c(v_{01}) = c(v_{11}) = +1$$
 e $c(v_{10}) = -1$

Uma realização quântica de um arranjo $A = (V, E, \ell)$ é uma rotulação de vértices $c \colon V \mapsto \mathsf{GL}(\mathcal{H})$, que mapeia cada vértice para um observável M, tal que

 $ightharpoonup M = M^*$ e $M^2 = I$, ou equivalentemente, M possui autovalores +1 e -1

- $ightharpoonup M=M^*$ e $M^2=I$, ou equivalentemente, M possui autovalores +1 e -1
- Observáveis assinalados aos vértices de uma hiperaresta comutam entre si

- $ightharpoonup M = M^*$ e $M^2 = I$, ou equivalentemente, M possui autovalores +1 e -1
- Observáveis assinalados aos vértices de uma hiperaresta comutam entre si
- Para cada hiperaresta $e \in E$, $\prod_{v \in e} c(v) = \ell(e)I$

- $ightharpoonup M = M^*$ e $M^2 = I$, ou equivalentemente, M possui autovalores +1 e -1
- Observáveis assinalados aos vértices de uma hiperaresta comutam entre si
- ▶ Para cada hiperaresta $e \in E$, $\prod_{v \in e} c(v) = \ell(e)I$
- lacktriangle Uma realização clássica é simplesmente uma realização quântica com $\mathcal{H}=\mathbb{R}$

- $ightharpoonup M = M^*$ e $M^2 = I$, ou equivalentemente, M possui autovalores +1 e -1
- Observáveis assinalados aos vértices de uma hiperaresta comutam entre si
- ▶ Para cada hiperaresta $e \in E$, $\prod_{v \in e} c(v) = \ell(e)I$
- lacktriangle Uma realização clássica é simplesmente uma realização quântica com $\mathcal{H}=\mathbb{R}$
- A solução que vimos para o jogo do quadrado mágico é uma realização quântica

- $ightharpoonup M=M^*$ e $M^2=I$, ou equivalentemente, M possui autovalores +1 e -1
- Observáveis assinalados aos vértices de uma hiperaresta comutam entre si
- ▶ Para cada hiperaresta $e \in E$, $\prod_{v \in e} c(v) = \ell(e)I$
- lacktriangle Uma realização clássica é simplesmente uma realização quântica com $\mathcal{H}=\mathbb{R}$
- A solução que vimos para o jogo do quadrado mágico é uma realização quântica
- ► Se existe uma realização quântica em que todos os observáveis comutam, então existe uma realização clássica

Definição 3 (Paridade)

A paridade $p(\ell)$ de uma rotulação ℓ de um arranjo $A=(V,E,\ell)$ é

$$p(\ell) = \prod_{e \in E} \ell(E).$$

ightharpoonup A paridade é -1 se o número de rótulos -1 é ímpar ou -1 caso contrário

Definição 3 (Paridade)

A paridade $p(\ell)$ de uma rotulação ℓ de um arranjo $A=(V,E,\ell)$ é

$$p(\ell) = \prod_{e \in E} \ell(E).$$

- ightharpoonup A paridade é -1 se o número de rótulos -1 é ímpar ou -1 caso contrário
- A realização de um arranjo $A=(V,E,\ell)$ depende apenas de $p(\ell)$. Isto é, para um outro arranjo $A'=(V,E,\ell')$, se $p(\ell)=p(\ell')$, é possível construir uma realização para A' a partir da realização de A

Definição 3 (Paridade)

A paridade $p(\ell)$ de uma rotulação ℓ de um arranjo $A=(V,E,\ell)$ é

$$p(\ell) = \prod_{e \in E} \ell(E).$$

- ightharpoonup A paridade é -1 se o número de rótulos -1 é ímpar ou -1 caso contrário
- A realização de um arranjo $A=(V,E,\ell)$ depende apenas de $p(\ell)$. Isto é, para um outro arranjo $A'=(V,E,\ell')$, se $p(\ell)=p(\ell')$, é possível construir uma realização para A' a partir da realização de A
- lacktriangle Um arranjo $A=(V,E,\ell)$ é realizável classicamente se, e somente se, $p(\ell)=+1$