About Project

This project was part of an interdisciplinary learning initiative where I collaborated with fellow students from Pharmaceutical Science for a group project.
I had to conduct self-directed learning to gain context and a comprehensive understanding of the pharmaceutical tablet manufacturing process to perform my specific role of conducting data analysis to investigate issues in the manufacturing process that caused tablets to fail the British Pharmacopeia Uniformity of Weight Test and convey insights and findings using storytelling techniques.

Introduction

Kanban Pharma Ltd. Is involved in the production of three pharmaceutical products which is Mineo, Mideo, and Maxeo tablets, and as a production technician working in Kanban Pharma Ltd. involvement in the production of all three tablets is necessary. Based on the dataset provided, an analysis of trends will be conducted, and insights will be obtained. This is to ensure that the production of Maxeo tablets runs smoothly and that the tablets comply with the requirements as stated in the British Pharmacopeia and United States Pharmacopeia. The Uniformity of Weight Test will be used as a measure to ensure the quality of Maxeo tablets. Ensuring the quality and uniformity of weight of these tablets is crucial to maintain consistency for the safety and effectiveness of the medication when distributed into the market.

The Maxeo tablets are subjected to dry granulation for 8 hours where the raw material which is the active pharmaceutical ingredient is weighed and goes through screening and mixing. Compression granulation is the compaction of the components of a tablet formulation by using a flat punch and these compact masses are called a slug. This process is called slugging, and the slug goes through milling and screening to produce a granular form. Lastly, mixing and compression is done to get the finished pharmaceutical product which is the tablet.

Data Background

The dataset includes information related to the uniformity of weight of Maxeo tablets. This data is collected by randomly sampling 20 tablets at each time interval during the tablet manufacturing process.

Purpose of Analysis

The analysis aims to evaluate the uniformity of weight in Maxeo tablets and identify any factors that may contribute to variations. The goal is to maintain high-quality standards and consistency in tablet production. Manufacturing of the tablets will be stopped if tablets fail the test, and the root cause of the failure will be addressed before the manufacturing process is continued.

Business Understanding

Pharmacopeia Requirements

According to the British Pharmacopeia, if the average mass of Maxeo tablets at a particular sequence is above a certain mass, it has an acceptance criterion. According to the dataset, all the Maxeo tablets have an average mass of over 250mg. Thus, the percentage deviation acceptance criteria is 5.0% according to the *Appendix XII C. BP's Table 2.9.5-1* below. Furthermore, a requirement to pass the Uniformity of Weight Test is if not more than 2 of the individual masses of the tablets deviate by more than 5.0% and none deviate by more than twice the percentage deviation which is 10.0%.

Pharmaceutical Form	Average Mass	Percentage deviation
Tablets (uncoated and film-coated)	80 mg or less	10
	More than 80 mg and less than 250 mg	7.5
	250 mg or more	5

Significance of the Uniformity of Weight Test

The Uniformity of Weight Test is done to assess the quality of the tablets and to ensure consistency. If the weight of the tablet is inconsistent, the mass or amount of active pharmaceutical ingredient inside a tablet might differ from another tablet of the same batch due to weight variation. Thus, the effectiveness and consistency of the tablet cannot be guaranteed. The efficacy of the drugs may differ in each tablet and thus if released into the market may cause patients to consume tablets that has too much or too little active pharmaceutical ingredients which could lead to overdose which is fatal or an underdose. If the weight of the tablets in a batch are not consistent, the manufacturing needs to be stopped and the batch needs to be discarded and the reasons and factors that caused the failure need to be assessed to ensure that it does not occur again during sampling of the next batch.

Factors Affecting Uniformity of Weight

When manufacturing tablets there are many different steps done as shown in the methodology of the tablets below and in these steps, there could be certain factors that could affect the uniformity of the tablets leading to weight variations of the tablets from the same batch.

1. Particle Size / Size distribution

When the size of each granule is different, the tablet powder will have a poorer flow property. The lack of particle size uniformity would lead to poorer uniformity of weight.

2. Poor flow properties

The powder flow property is the fluidity of the powder from hopper to the machine. Poor flow properties would lead to poor quality of tablet as it is a key factor to ensure tablet weight consistency. When the flow property of the powder is passable, hang up at the hopper may occur, causing powder variations in each tablet.

According to our given dataset, our Hausner ratio is 1.34 and our compressibility index is 25%, indicating that our Maxeo tablet powder's flow characteristics is passable as seen in the United States Pharmacopeia (USP) Powder Flow Chart in *Appendix 1.1*

3. Relative Humidity

A higher relative humidity leads to more damp air, increasing the moisture content in the air in the production plants of the Maxeo tablets. Thus, if at a time interval when the relative humidity is higher, it is possible that tablet could have a higher moisture content as it absorbs the moisture from the air, causing the particles to stick together. There is a decreased flowability of the tablet at a higher moisture content point.

This may affect the powder flow properties due to moisture from high relative humidity, which will affect the filling of the die cavity during punching, which may lead to uneven filling resulting in poor uniformity of weight.

4. Active pharmaceutical ingredient sticking to the punch tip face

The adhesive punch face could cause some of the Maxeo tablet powder to stick to it, pulling it away from the tablet. This will cause some powder to be lost leading to the loss in weight in some tablets. Thus, leading to poor uniformity of weight.

5. Human Error

The machine such as the analytical weighing balance may be uncalibrated, thus leading to problems in weighing and amount of powder weighed could be underestimated or overestimated.

6. Temperature

A variation in temperature may cause the powder in tablets, cohesive and adhesive property to be affected. This could negatively impact the flowability and filling of the die cavity, affecting the mass of each tablet which leads to a poorer uniformity of weight.

7. Height of tablet

Varying heights of a Maxeo tablet may lead to varying masses of Maxeo tablets. The height of tablet directly affects the weight of tablet. If the height of a tablet is different from another tablet, its weight of powder will then differ. This will lead to poor uniformity of weight of Maxeo tablets.

Methodology

- 1. Conduct random sampling on the batch by picking 20 tablets from the batch
- 2. Weigh each of the tablets and record the mass at 15 minutes
- 3. Replace the 20 tablets after each 15 minutes intervals with another 20 tablets from the batch
- 4. Calculate the average weight of the 20 tablets after each time interval
- 5. Find the percent deviation of each of the tablets at each time interval using this formula:

$$\frac{|average - mass|}{average} \times 100\%$$

- 6. Determine if each tablet passes or fails the Uniformity of Weight Test using the percent deviation acceptance criteria in the British Pharmacopeia in *Appendix 1.1*
- 7. Determine if each time interval fails and if the batch of Maxeo tablets fail

Stakeholders of Analysis

Head of Production of Kanban Pte Ltd.

The Head of Production of Kanban Pte Ltd will be the main target audience as they are responsible for overseeing tablet manufacturing and ensuring quality standards. This analysis will help them identify issues in their production of tablets and understand where they can improve in their production operations as well as reduce resource loss and profit loss due to discarding of failed batches.

Data Management

Software Used

Excel was used to split data into various datasets for analysis and conducting the British Pharmacopoeia Uniformity of Weight (Mass) Test. Tableau was used for Data Integration, where relationships were used to link various datasets using the Time column as a Common Key.

Data Quality Audit

Time (mi	1)																															
for 8 hour	s 15 m	in 15 mi	1 30	min	30 min	45 min	45 min	60 mir	60 min	75 min	75 min	90 min	90 min	105 min	105 min	120 min	120 min	135 min	135 min	150 min	150 min	165 min	165 min	180 min	180 min	195 min	195 min	210 min	210 min	225 min	225 min	240 min
Sequence	>	1] [1	1	[2]	[2]	[3]	[3]	[4]	[4]	[5]	[5]	[6]	[6]	[7]	[7]	[8]	[8]	[9]	[9]	[10]	[10]	[11]	[11]	[12]	[12]	[13]	[13]	[14]	[14]	[15]	[15]	[16]
	o Veight (m) Veight	(mg) eig	ht (mm) V	/eight (mg)	eight (mm) I	Veight (mg	eight (mm)	Veight (mg) e	ight (mm) Ve	right (mg) e	ight (mm)	/eight (mg) e	right (mm) V	eight (mg) e	right (mm) V	eight (mg)	eight (mm) I	leight (mg)	eight (mm) V	eight (mg) e	eight (mm) V	leight (mg) e	ight (mm) Vei	ight (mg) e	ight (mm) Ve	right (mg) e			eight (mm) Ve	
	1 380.06		409.			389.9824		414.9811		393.7047		389.3965		376.1292		394.5245		414.6333		397.1649		410.5843		388.0716		77.5713		406.7638		381.0243		378.4645
	2 379.85		387.4			393.9843		412.2010		384.9319		392.0890		376.6231		387.5461		384.1933		390.3027		407.0660		380.8660		93.1479		401.2229		399.1057		405.6045
	3 413.59		409.			411.9160		379.8806		400.5401		386.1482		403.6853		411.0057		408.3992		392.3659		411.6954		378.2189		97.7591		407.3248		377.1154		392.6026
	4 398.28		392.			402.9894		413.3273		393.6346		396.3300		375.4680		382.8337		396.3995		412.6735		411.1161		390.6820		82.0933		408.8388		395.7718		383.9043
	5 408.51		388.			414.7938		386,1612		408.2161		400.3085		387.3964		408.4508		414.9019		412.2717		400.7273		407.2423		81.5078		384.5505		401.0583		389.5418
	8 389.76		384.			375.6886		387.3141		376.8187		395.7035		376.3375		400.4808		377.7049		387.1601		413.9104		385.0590		10.4544		392.4518		409.2823		383.2970
	7 389.12		401.0			380.7192		393.4847		379.5392		406.8446		413.6865		387.6400		393.4347		393.1733		411.6103		411.2642		12.1764		378.5044		376.2809		413.6092
	8 381.81		380.			380.4090		401.0175		389.4019		404.2396		389.8691		377.7635		400.2513		400.5190		412.6034		394.3428		11.0793		379.9773		375.2088		384.0392
	9 381.87		386.			388.0531		377.5993		375.4333		382.0291		403.8283		399.9764		411.3958		398.2884		402.5865		396.3836		79.0638		406.8831		413.7041		392.4800
	0 402.50		377.			400.9119		380.4045		398.8158		388.3430		413.3185		391.9084		400.8805		390.7145		388.4737		409.6719		85.3866		381.3829		403.5717		398.1698
	1 403.06		393.5			378.2956		411.3907		393.9272		393.9693		405.3116		405.5696		412.9882		375.5266		407.6583		400.5072		78.0969		397.1646		404.2730		409.5096
	2 379.84		393.			408.0557		398.2526		395.0565		390.4568		393.4077		413.2471		408.4628		388.0701		413.5421		398.3285	4.28 3			394.7958		410.3538		405.9688
	3 379.23		398.			377.6276		395.8217		409.5206		377.3302		396.4267		401.0231		396.4440		388.0947		375.5357		400.1273		85.8838		404.6768		412.5023		411.7660
	4 378.34		396.			396.7287		388.6179		401.7658		407.2105		406.1131		402.5833		380.6247		387.1798		399.5708		407.8518		00.2232		383.4101		390.1253		396.0795
	5 381.53		376.			375.5022		390.3712		391.5394		397.2511		394.4028		390.9432		392.7158		386.3928		413.1298		414.6219		01.1543		398.8698		414.0020		395.8877
	8 398.42		390.9			383.0666		410.7709		409.3016		413.1675		400.5641		394.0594		399.9366		414.9000		387.0215		397.8269		80.6801		393.3717		393.8830		387.9976
	7 379.02		383.			387.0855		412.9001		400.0286		405.4590		376.2733		383.2044		412.5682		410.9511		383.4167		389.2140	4.20 3			407.6054		411.5580		406.8597
	8 405.33		412.0			378.3878		403.4806		400.6414		382.7257		400.6831		411.8770		400.4800		387.2997		397.8723		403.3712		85.7703		384.9859		384.9518		407.8064
	9 412.12		396.			406.6192		400.0285		394.8774		398.9672		383.4447		375.3733		390.8871		406.0516		377.0367		377.0208	4.07 3			408.0584		395.0738		400.1264
	0 402.16		406.9		4.39	380.5361	4.11	400.1251		399.3092	4.31	389.2953	4.20	411.4979	4.44	412.6112	4.45	382.9018	4.13	400.6207	4.32	403.8351	4.38	391.4121	4.22 3	94.7866	4.26	398.8597	4.30	388.9058	4.20	381.9213
Temperature (Celciu				26.0		26.1		26.1		28.1		26.2		26.2		26.3		26.3		26.3		28.4		28.4		26.5		26.5		26.5		26.6
Relative Humidity (9	55	2		59.1		59.0		58.9		58.9		58.8		58.7		58.6		58.5		58.4		58.4		58.3		58.2		58.1		58.0		58.0

Image of Data Quality Audit

Quality Aspect	Analysis	Conclusion
Completeness	When scrolling horizontally to inspect the entire dataset, there are no missing values in any cell.	Acceptable
Consistency	The format of the data provided is unorganized and not ready for usage.	Acceptable
	The headers seem accurate as the values under the column/row represent what the header means. All headers and values are correct with no inconsistency in spelling or unit of measurement. The values are rounded off consistently, according to their respective column.	
Validity	There are no outliers in any Weight and Height columns or Temperature and Relative Humidity rows. All values are logical and realistically possible.	Acceptable
	Not possible for duplicate observations as all values are varied in each sequence column, and they represent different timeframes. The metadata at the top of the sheet provides appropriate context to the dataset.	

This concludes that the data is acceptable and can be further used for analysis as no data issues were found.

Data Preparation & Transformation

Data Preparation & Transformation						
Steps	Refer	ence P	icture			
Unpivot (melt) data of tablet observations to	ablet No	Weight (n	ng) Hei		Time (mins)	
enable the dataset to be usable for analysis by	1	380.06 379.85		4.10 4.10		
Tableau. Justification for unpivoting in Appendix	3			4.46		
1.1	4			4.30		
1.1	5	408.51 389.76		4.41 4.21		
The detection this should be defended as the	7			4.20		
The dataset on this sheet contains the tablet and		381.81		4.12		
their information such as height and weight for	9	381.87 402.50		4.12 4.34		
all the timeframes.	11	403.06		4.35		
	12 13	379.84		4.10		
This sheet is the main dataset that will be used	14	379.23 378.34		4.09 4.08		
for analysis.	15	381.53	336	4.12	15	
	16 17	398.42 379.02		4.30 4.09	15 15	
	18	405.33		4.03		
	19	412.12	208	4.45	15	
	20	402.16		4.34 4.42		
	2			4.18		
	Tablet No. V	409.14 Veight (mg)	106 Height (mm)	4.41	30 Average mass at Time	
Next, calculate the average mass of a tablet for	1 2	380.0620	4.10 4.10	15	\$B\$21)	
each sequence. This value is needed for the	3	379.8555 413.5960	4.46		392.2250	
Uniformity of Weight Test.	5	398.2867 408.5136	4.30 4.41			
	6 7	389.7653 389.1294	4.21 4.20	15 15		
To calculate the average mass, an excel formula	8	381.8172 381.8783	4.12 4.12			
was created and the 20 tablets were manually	10 11	402.5077 403.0617	4.34 4.35	15	392.2250	
dragged for each timeframe to calculate the	12	379.8465	4.10	15	392.2250	
	13 14	379.2332 378.3471	4.09 4.08	15	392.2250	
average mass at their respective times. Lastly	15 16	381.5336 398.4243	4.12 4.30			
the value was dragged for all the tablets in that	17 18	379.0219 405.3383	4.09 4.37			
same timeframe.	19 20	412.1208 402.1613	4.45 4.34	15 15		
	1 2	409.1712 387.4077	4.42 4.18	30	393.2537	
	3	409.1406	4.41	30	393.2537	
Thirdly, calculate the percentage deviation of	Tablet No Wei	0 1 01 0		ins) Average m	nass at Time Average - Mass	(Average-Mass)/Average Percent
		380.0620 379.8555	4.10 4.10	15 15	392.2250 12.1630 392.2250 12.3695	0.032002726 0.032563751
the tablet from the average mass during that		413.5960 398.2867	4.46 4.30	15 15	392.2250 -21.3710 392.2250 -6.0617	-0.051671148 -0.015219388
sequence for the batch using the formula:		408.5136 389.7653	4.41 4.21	15 15	392.2250 -16.2886 392.2250 2.4597	-0.039872797 0.006310772
	7	389.1294 381.8172	4.20 4.12	15 15	392.2250 3.0956	0.007955246 0.027258646
average – mass	9	381.8783	4.12	15	392.2250 10.3467	0.027094286
$\frac{1}{average} \times 100\%$	11	402.5077 403.0617	4.34 4.35	15 15	392.2250 -10.2827 392.2250 -10.8367	-0.025546542 -0.026885909
		379.8465 379.2332	4.10 4.09	15 15	392.2250 12.3785 392.2250 12.9918	0.032588217 0.034258129
		378.3471 381.5336	4.08 4.12	15 15	392.2250 13.8779 392.2250 10.6914	0.036680392 0.028022224
Percentage Deviation is required when deciding		398.4243 379.0219	4.30 4.09	15 15	392.2250 -6.1993 392.2250 13.2031	-0.015559493 0.034834715
	18	405.3383 412.1208	4.37 4.45	15 15	392.2250 -13.1133 392.2250 -19.8958	-0.032351446 -0.048276573
if a time sequence fails or passes the Uniformity	20	402.1613 409.1712	4.34	15	392.2250 -9.9363 393.2537 -15.9175	-0.024707201 -0.038901883
of Weight Test.		387.4077	4.18	30	393.2537 -13.5173 393.2537 5.8460	0.015089969
The acceptance criteria from the British	SUM	v]:[)	$\checkmark \checkmark fx$	=IF(ABS(I	H2) <5, "Pass", "Fail	")
Pharmacopeia Uniformity of Weight test were				Н		1
applied to determine if the tablet pass or fail the	1 40	*25	Dorgo			Desc/Feil
uniformity test.		rage 2726	Percei	_	200272587	Pass/Fail
		3751			256375122	
According to Appendix XII C. BP's Table 2.9.5-1,		1148			236373122 167114769	
since the average mass for all sequences are above 250mg, the threshold for deviation will be	5 119				521938845	
no more than 5%. Any tablet that has a						
Percentage Deviation beyond 5% will fail.	6 372	2797			987279738	

Next, the Temperature and Relative Humidity were transformed and melted into a columnar format to be used for analysis.

This dataset can be linked with the main dataset using Time (mins) as the common key.

An Excel function is applied to count how many "Fails" there are for each timeframe. Using this function provides 100% accuracy, free from human error which could happen by manually counting.

Subsequently, an Excel formula is used to count the number of times a tablet has doubled the Percentage Deviation ($5\% \times 2 = 10\%$) threshold as Overall Fails. If a sequence in the batch has more than 2 individual fails or if there is at least 1 overall fail, that sequence will fail the Uniformity of Weight Test.

This dataset keeps track of the sequences' overview statistics, to highlight what needs to be taken note of and brought up during analysis.

Time (mins)	Temperature (Celcius)	Relative Humidity (%)
15	26	59.2
30	26	59.1
45	26.1	59
60	26.1	58.9
75	26.1	58.9
90	26.2	58.8
105	26.2	58.7
120	26.3	58.6
135	26.3	58.5
150	26.3	58.4

A dataset to store metadata in a columnar format to be usable in Tableau was created

⊿ A	В			E			
1 Granulation:	Compressibility Index (%):	Hausner ratio:	Granules size range (μm):	Duration of tabletting (hour):	In-process control:	Name of product:	Company:
2 Dry granulation	25	1.34	600 to 1180	8	every 15 minutes	Maxeo tablets	Kanban Pharma Ltd.

Before:

																															Time (min)
240 min	225 min	225 min	210 min	210 min	195 min	195 min	180 min	180 min	165 min	165 min	150 min	150 min	135 min	135 min	120 min	120 min	105 min	105 min	nim 08	nim 08	75 min	75 min	60 min	nim 0a	45 min	45 min	30 min	30 min	15 min	15 min	for 8 hours
[16]	erj (16)	[15]	[14]	[14]	[13]	[13]	[12]	[12]	[11]	[11]	[10]	[10]	[8]	[6]	[8]	[8]	[7]	[7]	[8]	[8]	[6]	[6]	[4]	[4]	[3]	[3]	[2]	[2]	[9]	[9]	Sequence->
(gm) trigieli (mg)	eight (mm	(pm) trigieV	eight (mm)	(pm) trigio	V (mm) Irigin	eight (mg) e	eight (mm) V	leight (mg)	V (mm) Idgi	e (pm) trigie	wight (mm) V	eight (mg	ight (mm) V	e (gm) trigiel	V (mm) trigi	(eight (mg) e	eight (mm) i	eight (mg)	V (mm) #figis	(pm) trigio	V (mm) htgis	wight (mg)	eight (mm) I	leight (mg)	(mm) triggie	(pm) trigie	eight (mm) V	(eight (mg)	right (mm) t	(gm) triggiel	Tablet No V
378.4645		381.0243		406,7838	4.07	377.5713	4.19	388.0716	4.43	410.5843	4.29	397.1649	4.47	414,6333	4.28	394,5245	4.08	376.1292	4.20	389,3965	4.25	393.7047	84.48	414.9811	4.21	389,9824	4.42	409.1712	4.10	380.0820	
405.6045	4.31	399,1057	4.33	401.2229	4.24	393.1479	4.11	380,8660	4.39	407,0880	4.21	390,3027	4.15	384,1933	4.18	387.5461	4.08	376,6231	4.23	392,0890	4.15	384,9319	4.45	412.2010	4.25	393.9843	4.18	387.4077	4.10	379,8555	2
392,6026	4.07	377.1154	4.40	407.3246	4.29	397,7591	4.08	378.2189	44.4	411,6964	4.23	392,3659	19.8	408.3992	4.43	411,0057	4.36	403.6853	4.17	386.1482	4.32	400.5401	4.10	379,8806	44.4	411,9160	4.41	409,1406	4.46	413,5950	8
383,9043	4.27	395,7718	4.41	408.8358	4.12	382.0933	4.22	390,6820	44.44	411,1101	4.45	412.6738	4.28	396,3995	4.13	382.8337	4.05	375,4580	4.28	396,3300	4.25	393.6346	4.40	413.3273	4.35	402.9894	4.23	392,1215	4.30	398.2867	à.
389.5418		401.0583		384.5505		381.5078		407.2423		400.7273		412.2717		414.9019		408.4508		387.3984		400.3085		408.2161		386.1612		414,7938		388,1150		408.5135	
283.2970		409.2823		392.4518		410.4544	4.15	385.0590	4.47	413.9104	4.18	387.1601	4.08	377.7049	4.32	400.4808		376.3375	4.27	395,7035		376.8187		387.3141	4.05	375.6886		384.1481		389.7653	
413.6092		376.2809		378.5044		412.1784		411.2842		411.6103		393.1733		393.4347		387.6400		413.6865		406.8446		379.5392		393.4847		380.7192		401.0874		389.1294	
384.0392		375.2088		379,9773		411.0793		394.3428		412.6034		400,5190		400.2513		377,7635		389,8691		404.2398		389,4019		401.0179		380.4090		380.1215		381.8172	
392.4800		413,7041		406,8631		379,0636		396,3836		402,5885		396,2884		411.3956		399.9764		403.8283		382.0291		375,4333		377,5993		388.0531		386,4587		381.8783	
398.1698		403.5717		381.3829		385,3855		409.6719		388.4737		390.7148		400.8805		391,9084		413,3185		388.3430		398.8158		380.4045		400.9119		377,1291		402.5077	
5805.604 5		404.2730		397,1646		378,0959		400.5072		407.6683		375.5266		412.9882		405.5595		405.3116		393,9693		393.9272		411.3907		378.2955		393,9089		403.0517	
8 405.9688		410.3538		394,7958		390.8667		396,3285		413.5421		386.0701		408.4628		413.2471		393.4077		390.4568		395.0565		396.2526		408.0557		393.4044		379.8465	
411.7660		412.5023		404.6768		385.8838		400.1273		375.5357		388.0947		396,4440		401.0231		396.4267		377.3302		409.5206		395.8217		377.6276		398.8981		379,2332	
398,0796		390.1253		383.4101		400.2232		407.8518		399.5708		387.1798		380.6247		402.5833		406.1131		407.2105		401.7858		388.6179		398,7287		396.8436		378.3471	
395.8877		414.0020		398.8698		401.1543		414,6219		413.1298		386,3928		392.7156		390.9432		394.4026		397.2511		391,5394		390.3712		375.5022		376,2043		381,5336	
387,9976		393.8830		393.3717		380,6801		397,8269		387.0216		414,9000		399,9386		394,0594		400.0841		413.1676		409.3016		410,7709		383,0686		390.9921		398.4243	
405.8597		411.5550		407.0054		381.9887		389.2140		383.4167		410.9511		412.5582		383.2044		376.2733		405.4590		400.0285		412.9001		387.0855		383,7551		379.0219	
407.8064		384.9518		384.9859		385,7703		403.3712		397.8723		387.2997		400.4800		411.8770		400.6831		382,7257		400.0414		403.4800		378.3678		412.8171		405.3383	
400.1284		395.0738		408.0584		399.6402		377.0208		377.0387		408.0516		390.8871		375.3733		383.4447		398.9672		394.8774		400.0285		408.6192		396.3816		412.1208	
381.9213		388.9058	4.30	398.8597	4.28	384.7888	4.22	391,4121	4.38	403.8351		400.6207	4.13	382.9018	4.45	412.6112	44.4	411.4979	4.20	389.2963	4.31	399,3092	4.32	400.1251	4.11	380.5381		408.9874	4.34	402.1813	
28.8		28.5		26.6		28.5		28.4		28.4		28.3		28.3		28.3		26.2		28.2		28.1		26.1		28.1		28.0			Temperature (Celcius)

The data initially was in wide table format to facilitate readability.

After:

However, the format was changed into a tall table as this format is better for data analysis because it enables filtering, sorting, and aggregation, allowing for enhanced analysis.

Α	В	С	D	E	F	G	Н	1
Tablet No	Weight (mg)	Height (mm)	Time (mins)	Average mass at Time	Average - Mass	(Average-Mass)/Average	Percentage Deviation	Pass/Fail
1	380.0620	4.10	15	392.2250	12.1630	0.031010311	3.101031138	Pass
2	379.8555	4.10	15	392.2250	12.3695	0.031536795	3.153679487	Pass
3	413.5960	4.46	15	392.2250	-21.3710	-0.054486529	-5.448652919	Fail
4	398.2867	4.30	15	392.2250	-6.0617	-0.015454598	-1.545459798	Pass
5	408.5136	4.41	15	392.2250	-16.2886	-0.041528661	-4.152866128	Pass
6	389.7653	4.21	15	392.2250	2.4597	0.006271196	0.627119606	Pass
7	389.1294	4.20	15	392.2250	3.0956	0.007892459	0.789245928	Pass
8	381.8172	4.12	15	392.2250	10.4078	0.026535329	2.653532913	Pass
9	381.8783	4.12	15	392.2250	10.3467	0.026379551	2.637955121	Pass
10	402.5077	4.34	15	392.2250	-10.2827	-0.026216278	-2.621627758	Pass
11	403.0617	4.35	15	392.2250	-10.8367	-0.027628732	-2.76287321	Pass
12	379.8465	4.10	15	392.2250	12.3785	0.031559741	3.155974089	Pass
13	379.2332	4.09	15	392.2250	12.9918	0.033123384	3.312338412	Pass
14	378.3471	4.08	15	392.2250	13.8779	0.035382546	3.538254648	Pass
15	381.5336	4.12	15	392.2250	10.6914	0.027258383	2.725838347	Pass
16	398.4243	4.30	15	392.2250	-6.1993	-0.015805417	-1.5805417	Pass
17	379.0219	4.09	15	392.2250	13.2031	0.033662105	3.366210549	Pass
18	405.3383	4.37	15	392.2250	-13.1133	-0.033433053	-3.34330533	Pass
19	412.1208	4.45	15	392.2250	-19.8958	-0.050725423	-5.072542287	Fail
20	402.1613	4.34	15	392.2250	-9.9363	-0.025333111	-2.533311108	Pass
1	409.1712	4.42	30	393.2537	-15.9175	-0.040476494	-4.047649447	Pass
2	387.4077	4.18	30	393.2537	5.8460	0.014865646	1.486564639	Pass
3	409.1406	4.41	30	393.2537	-15.8869	-0.040398682	-4.03986821	Pass
4	392.1215	4.23	30	393.2537	1.1322	0.002878981	0.28789814	Pass
5	388.1150	4.19	30	393.2537	5.1387	0.013067062	1.306706178	Pass
6	384.1481	4.15	30	393.2537	9.1056	0.023154444	2.31544438	Pass
7	401.0874	4.33	30	393.2537	-7.8337	-0.019920297	-1.992029725	Pass
8	380.1215	4.10	30	393.2537	13.1322	0.033393636	3.339363622	Pass
9	386.4587	4.17	30	393.2537	6.7950	0.017278847	1.727884701	Pass
10	377.1291	4.07	30	393.2537	16.1246	0.041002974	4.100297398	Pass
11	393.9089	4.25	30	393.2537	-0.6552	-0.001666176	-0.166617644	Pass
12	393.4044	4.24	30	393.2537	-0.1507	-0.000383289	-0.038328949	Pass
13	398.8981	4.30	30	393.2537	-5.6444	-0.014353153	-1.435315276	Pass

Data Integration

The finalised dataset was loaded into Tableau.

Configurations to link datasets

Linked environment and Uniformity Test to height&weight dataset using Time as a Common Key. Cardinality: Many-to-One because height&weight dataset has repeated Time values; A record in environment or Uniformity Test dataset is related to many rows in height&weight table.

Relationships

The datasets were connected using Relationships in Tableau as it is more flexible than Joins since Relationships are dynamic, hence preserving the granularity of the different datasets while allowing them to be integrated and used together. This allows for easier management of data as errors can be rectified easily without needing to manually update each row when there are changes or corrections made to the underlying data, making it more versatile to work with than traditional joins.

Data Storytelling

Insights from Exploratory Data Analysis

Big Idea: Maxeo Tablet batch quality check

Who's the Audience? What's at stake?

List primary group or individuals

If narrow down to one, who?

What do they care about?

What are the risks?

What's the urgency?

Head of Production for Maxeo Tablets

Whether the tablet batch passes British Pharmacopeia Uniformity of Weight standards, to know if the tablets are of acceptable quality.

Improved Maxeo Tablet batch quality, adherence to Pharmacopeia What are the benefits? standards, reduced expenses from regulatory penalties and operational costs from remaking tablet batches.

Kanban Pharma Ltd

Non-compliance with pharmacopeia standards may result in product recalls, regulatory penalties and tarnish Company's Reputation.

Urgent action needed to avoid manufacturing issues, ensure consistent Maxeo tablet quality, regulatory compliance, and customer safety.

Action needed from audience

Promptly take actions to address the problems found in manufacturing process.

What's the Big Idea

In one sentence

Find out factors that cause Maxeo Tablets to fail Pharmacopeia standards so that they can be promptly addressed by stakeholders, to avoid loss of money from remaking batches so that Kanban Pharma Ltd doesn't face regulatory penalties and product recalls which could also tarnish their reputation.

Action: The Head of Production needs to know issues with tablet production, so that it can be fixed before producing the next batch of Maxeo tablets.

Linear Storyboard

3 failed tablet timeframes 1 of them failed overall fail at 435mins!

We need to find out why there are so many individual fails and what caused that concerning overall fail at 435mins!

Tablets have a sub-par passable CI of 25%

Unable to find out if Lower Relative Humidity and higher Temperature lead to consistent tablets as the range in data is small

The temperature range for tablets is minimal;

Tablet failures happen randomly for each temperature range because the weight is too

Tablets' granule size is beyond optimal range which will lead to company profit loss through the discarding of consistent failed tablets.

Small Deviations in tablet mass may be causing the failures as timeframes with 2-3

mass for batch.

failures deviate further from the average

Tablet Weight is not significantly affected by

Ideal height range of a Maxeo Tablet = 4.09 passed within this height range.

Direct relationship between height and the weight of a Maxeo tablet, as height increases, the weight also increases

The average mass of tablets fluctuates by +/- 4mg throughout the batch

Ideal weight range = 378 to 410 as no

Tablets that fail within each humidity range are usually with outlier weights.

Weight of tablet not affected by Temperature.

Conclusion of factor that cause fails:

Recommendations:

- Milling powder for finer granules within optimal size range.
- Research and further testing to find
- optimal temperature and humidity range that leads to minimal failures. - Add glidants to enhance powder flow for
- more consistent tablets.

Narrative Framework

Freytag's Pyramid Narrative Framework is applied to create a storyboard to express the insights to the stakeholders in a linear fashion that resembles a story flow to be engaging and make the insights memorable.

Overview of How the Insights were Structured according to the Narrative Framework

The main highlight of this Framework is the Hook which is the introduction that gets the Head of Production interested in wanting to find out more about story. Following the Hook is the Rising Action which is the build-up to Climax which is the most interesting and crucial peak moment of story. Finally, the Falling Action build follows to the resolution, which is concludes the story.

How the Freytag's Pyramid will be applied to the Data Storyboard

Overview of batch performance Maxeo Tablets Compressibility Index (%): Hausner ratio: Duration of tabletting (hour): (Introduction) To begin, what determines a pass or fail Context Overview of batch performance for British Pharmacopeia Uniformity of Weight Test was briefly explained as context to recap to the Head of Production and to showcases knowledge in this area. 8-hour dry granulation process, the Maxe tablet batch fails and production must be reconducted again. But we need to identify the root cause failure before retrying again! The issue found in the analysis was included to let the Head of Production know it is necessary to explore why Investigate the production batch to identify what caused failures in a because this batch failed the BP Uniformity of Weight Test, and the purpose is to let Production Head know what they can benefit from this investigation. The pie chart is used to show the proportion of timeframes that passed and failed to get an overview understanding of how well the batch performed for BP Test throughout the 8-hour duration.

Failure statistics in visual form (Hook):

A dual axis was used to effectively show number of individuals fails and overall fails for each timeframe. Colour-coding differentiates individual fails and overall fails intuitively using visual aid. The colour orange was chosen to differentiate the more severe overall failure from an individual fail which was blue in colour.

Reference lines were added at y=2 to let Production Head visually compare with the threshold that leads to an overall fail.

Annotations were added to inform the reader of the insights directly, as it is challenging to read the x-axis due to the multiple columns.

How weight and height of tablet are related:

There is a direct linear correlation between the weight and height of a tablet and by plotting a scatterplot how weight increases as height increases can be observed.

A diagonal reference line was added to clearly show that the weight and height relationship is linear. Color-coded observations (dots) to uncover insight of the height and weight of all passed and failed tablets to visualize the trend.

A reference band was added to highlight the ideal table height range which facilitates readers to capture the insight where no tablets failed and included the range of table height values which is easier to read.

As for the legend the same colours were used to represent individual pass and fail to establish conventional understanding across all graphs in story.

How temperature affects tablet weight:

This chart compares how the tablet weight varies across different temperatures.

To facilitate insights, there are 2 identical graphs. The top graph is coloured by individual pass or fail, while the bottom graph is coloured by Timeframe pass or fail, which is when 3 tablets failed. The tablet temperature variation is minimal of 1.2 degrees, and tablet weight shows no correlation with temperature.

How humidity affects tablet weight:

This dashboard allows the Head of Production to analyse how the tablet weight varies across different humidity. It allows the target audience (Production Head) to filter the observations in the scatterplot using the bars in the bar chart. The bar chart is composed of tablets that passed and tablets that failed, to let the readers compare the count of tablets within each humidity bin and visualize the composition of how many pass-fails there are in each humidity bin.

If the Production Head wants to investigate deeper, they can click either the blue or orange bar of a timeframe to find out the weight of those tablets to compare their weight with other tablets which can be seen in the graph of how Humidity affects Tablet quality.

The insight to take away from this dashboard is that tablets that failed are often outliers and this is shown by duplicating the dashboard in the next slide and fixing the configurations, so the Head of production does not have to click and investigate to find this insight out themselves. Failed tablets are with outlier weights, thus the minimum range threshold to when tablets will start to fail should be identified... building up to the next slide.

How percentage deviation varies across weight:

This scatterplot shows a clear trend that tablets only start failing when the weight falls beyond the ideal range of 378 to 410mg.

This claim can be made because there is a clean cut between the range's thresholds, and no individual fails fall within the range.

The pattern was found to determine what causes a tablet to fail. However, need to find out what causes a tablet's weight to deviate beyond this ideal range.

Interpreting how Humidity and Temperature affects weight:

This scatter plot shows a decreasing trend when Relative Humidity of tablet (RH) decreases and, Temperature of tablet increases.

It further supports that there is no clear pattern between consistent tablet size and RH and Temperature. However, this cannot be confirmed as the data range is too small to jump to any conclusions.

This recap page lets the Production Head recall what has been covered so far and where the analysis is heading before the climax where the true driver is revealed.

External research was included to further draw connections between how the Compressibility Index (CI), also known as Carr's Index, could be related to tablet weight. Then, the CI for this batch was compared to a table to identify and determine that the powder used in this tablet batch had a sub-par passable flowability.

This page builds up to the climax where the granule size is analyzed and found to be the main cause for inconsistent weight in tablets which resulted in the fails.

investigated against caus Compressibility Index (%): Hausner ratio: Duration of tabletting (ho.. Height: Directly related to weight of the tablet. Temperature and Relative Humidity may lead to consistent tablets, but we lack enough data to conclusively support this although this trend logically So what can we conclude so far based on data Flow character Taller tablet = Heavier tablet index (%) ratio Lower Relative Humidity and Higher Temperature could lead to more consistent tablets with smaller 1.00-1.11 Excellent ≤ 10 1.12-1.18 weight deviation, resulting in tablets less likelier to fa Good 11-15 Fair 16-20 1.19-1.25 Possible / Passable 21-25 1.26-1.34 What else? 1.35-1.45 Based on research, the powder flowability of a tablet 26-31 Poor could affect the consistency of the tablet 1.46-1.59 32-37 Very poor Comparing the Compressability Index of the batch wit Very, very poor the powder flow benchmark, the batch has sub-par

passable flow characteristics. But could granule size be

the reason for the deviation of the tables

Possible main reason of inconsistent weight tablets and why it must be addressed (CLIMAX):

This dataset shows that the granule size range is 0.6mm to 1.18mm, which falls outside the optimal granule size range of 0.2mm to 0.5mm for Maxeo tablets during granulation. Therefore, the large granule size(outside of optimal range) could be the most significant factor causing the inconsistent weight for Maxeo tablets in our batch.

To prevent repeated failures of the BP Uniformity of weight test, the powder should go through milling to achieve finer granules. This is crucial to help Kanban Pte Ltd avoid losing money due to the discarded batches of failed Maxeo tablets.

How tablet mass fluctuates across timeframes (falling action):

This bar chart shows how the average mass for each timeframe varies from the average mass for the batch to assess the fluctuation of the tablet mass overall. To compare the variation with average, besides adding a trend line, a reference band was used to colour a range of +/- 4mg from the average.

To facilitate the insight of showing how these fluctuations may potentially influence the tablets, the bars were color-coded based on how many individual fails there are. The 0-1 fails were grouped as grey to avoid using many colours to make the graph overly bright.

This graph helps support the recommendations of how the failures could be linked to the flowability of powder by showing the average masses are inconsistent which could be caused by poor flow.

Could the granule size have caused the inconsistent tablet weight?

According to the details about the production | Granules size range (μm): (that came with the dataset), the granule size range is 0.6 to 1.18 mm...

Granules in the Maxeo tablet batch, exceeding the optimal size range of 0.2 to 0.5 mm, appear to be a significant factor causing inconsistent tablets that fail the BP test. No strong underlying pattern of failure is identified in other factors within the dataset.

600 to 1180

Hence, the **the powder has to go through milling to make the granules finer** for our tablets to stop failing the BP Test! Or else, we **will keep losing money from the discarded batches of the tablets** because they keep failing the BP Test.

Resolution:

The analysis was concluded by providing a conclusion and recommendations.

A table chart was included for readers (Production Head) to explore and get an overview of tablets for each timeframe.

Call to action:

The recommendations are sequenced from most important at the top, to least important as the last. This slide is needed to remind the reader to take action to resolve the issues found from the analysis.

The chart is added to convince the Production Head to act on the proposed recommendations so that the issues which is shown in the chart (tablets failing) in production can be resolved.

A stacked bar chart was created of absolute percentage deviation against weight (bin) to clearly show that tablets never failed individually if the weight is between the proposed weight range, proving to the Production Head that the recommendation proposed is supported by a clean pattern so they will be more convinced to take action.

Conclusion and Recommendations

According to the data obtained from the visualizations, three different factors play a part in affecting the uniformity of weight of the tablets. Powder flowability, relative humidity, and granule size, with granule size being the main factor that affects the uniformity of weight of the Maxeo tablets.

Granules in the pharmaceutical industry are mainly generated as an intermediary with a size range of 200 μ m to 500 μ m. The granule size according to the dataset, they are in the range of 600 μ m to 1180 μ m which exceeds the ideal granule size range. Large granule size in tablet manufacturing can lead to several issues. Firstly, it may cause blend inhomogeneity, where differences in densities and compositions between large and small granules result in weight discrepancies among individual pills. Secondly, segregation during tablet compression and storage can occur, causing uneven distribution of drug content and resulting in tablets with varying weights. Additionally, large granules often exhibit poor flow qualities compared to smaller particles, leading to uneven tablet die filling and inconsistent tablet weights. Moreover, variations in compression forces may be needed for larger

granules, further contributing to weight discrepancies in the final tablets. Therefore, larger granule size such as the one in the dataset is not recommended for tablet manufacturing.

To reduce the large granule size of $600\mu m$ to $1180\mu m$ milling can be conducted. Milling is the process of reducing bigger particles into smaller ones. Granules get reduced in size during milling, which makes the granule size finer and more consistent. This enhances the granule flow characteristics and helps achieve greater uniformed content in the tablet formulation.

The powder flow of the Maxeo tablets led to the inconsistency in the weight of the tablets. Hausner ratio and Compressibility Index is used to indicate the tendency of the powder to be compressed and settled which shows the significance of interparticle interactions between the powder. The Haunser ratio stated for the batch of Maxeo tablets is 1.34% and the Compressibility Index is 25%. According to *Appendix 1.1*, the Maxeo tablets powder flow is passable. When the powder flow is passable, it shows the presence of larger interparticle interactions, meaning that there is a greater difference between the bulk and tapped density of the Maxeo tablet powder.

The idea behind these techniques is that cohesive powder, which forms many bridges when particles are loosely packed, does so because of cohesive connections that are formed at the points of contact between the particles. These cohesive bonds are destroyed when the powder bed is tapped. Because less cohesive powders do not develop the bridging cohesive bonds, the powder bed collapses to a smaller volume and a greater density. In contrast, less cohesive powders do not undergo as much change in bulk density. As a result, smaller bulk density and tapped density variations brought on by tapping are suggestive of a well-flowing powder because they avoid the formation of cohesive bonds or significant bulk density changes. Thus, the Maxeo tablet powder flow is passable, it does not suggest a well-flowing powder hence, leading to the inconsistent uniformity of weight.

Adding a glidant improves powder flowability through several mechanisms. Firstly, it reduces interparticle friction by acting as a lubricant and creating a slippery layer on the particle surfaces. This promotes easier sliding between particles. Secondly, glidants enhance particle size distribution, ensuring a more uniform distribution and smoother flow. Thirdly, they optimize powder density by reducing void spaces, increasing bulk density, and minimizing resistance during particle movement. Lastly, glidants prevent caking and clumping by creating a barrier between particles, hindering their tendency to stick together. Examples of suitable glidants for experimentation include corn starch or talc at a 5% concentration.

When the relative humidity of the tablet was at 56.9%, 57.3% and 57.9%, the tablets failed the Uniformity of Weight Test. This indicates that the relative humidity affects the consistency in weight of tablets and when the production is done, the relative humidity should be kept from ranges 56.6% to 56.8% or 57% to 57.2% or 57.4% to 57.8% or 58.0% and above to ensure that the tablets are uniform so that the quality is higher. At the ranges of 56.6% to 56.8%, 60 tablets passed which is 9.38% of the overall tablets. From range 57.0% to 57.2%, 60 tablets also passed which is a 9.38% of the overall tablets. From the range 57.4% to 57.8%, 100 tablets passed the Uniformity of Weight Test which is 15.6% of tablets pass. However, most tablets that passed is within the range of 58.0% and 59.2% and it is 43.8% of the total tablets. The weight of the tablets tends to be more consistent at lower humidity ranges. Unfortunately, according to the dataset the humidity ranges from 56.6% to 59.2% which is very minute, therefore there is insufficient evidence to prove the claim made.

Wet granulation is a common method of producing tablets in the pharmaceutical manufacturing industry. To get the small particles in a mixture to clump together into granules with the right size

and flow characteristics, water or an organic solvent can be poured or sprayed on it. While wet granulation is a method that can also use for the production of Maxeo tablets, Dry granulation is sufficient if the recommendations made are put into place to ensure better flowability and uniformity of tablets.

To summarise, the Maxeo tablets had inconsistent weight which is seen in the failure of the Uniformity of Weight test. The major factor that caused the Maxeo tablets to fail is the granule size of the powder, which can be refined by the process of milling. Another factor that could affect the results is the powder flowability which can be improved with the addition of glidants. Thus, the manufacturing process of Maxeo tablets must be halted until the recommendations are put in place during production to ensure that the Maxeo tablets are of high quality before they can be released into the market for patient use.

Ensuring the recommendations are put into place will ensure no profit loss as the tablets would pass the Uniformity of weight tests and not have to be discarded, benefitting kanban Pte Ltd as a company from not wasting resources.

<u>Appendix</u>

Compressibility Index (%)	Flow Character	Hausner Ratio
≤10	Excellent	1.00-1.11
11-15	Good	1.12-1.18
16-20	Fair	1.19-1.25
21-25	Passable	1.26-1.34
26-31	Poor	1.35-1.45
32-37	Very poor	1.46-1.59
>38	Very, very poor	>1.60

Appendix 1.1, USP42-NF37: (1174) POWDER FLOW

Why Transform/Re-shape Data?

ID	Training	2014	2015	2016	2017	2018
Α1	Team	27	25	31	42	20
Α1	Safety	10	4	8	12	5
A1	Soft	43	55	62	31	47
A1	Tech	20	50	43	28	33
A2	Team	31	27	40	33	35
A2	Safety	8	9	2	3	7
A2	Soft	28	53	31	40	33
A2	Tech	72	46	56	62	84

Human - concise (better for readability)

Sometimes, data need to be re-shape to facilitate :

data analysis
human readability

SCHOOL OF INFORMATICS & IT

Database – column by column (better for data analysis)

Year	ID	Training	Hours
2014	A1	Team	27
2015	A1	Team	25
2015	A1	Team	31
2017	A1	Team	42
2018	A1	Team	20
2014	A1	Safety	10
2015	A1	Safety	4
2015	A1	Safety	8
2017	A1	Safety	12
2018	A1	Safety	5
2014	A1	Soft	43
2015	A1	Soft	55
2016	A1	Soft	62
2017	A1	Soft	31
2018	A1	Soft	47
2014	A1	Tech	20
2015	A1	Tech	50
2016	A1	Tech	43
2017	A1	Tech	28
2018	A1	Tech	33
2014	A2	Team	31
2015	A2	Team	27

Appendix 1.2, Justification for unpivoting, screenshot from Brightspace lecture notes

References

Alei. (2022, August 10). Wet granulation VS Dry granulation. AIPAK.

https://www.icapsulepack.com/the-wet-granulation-vs-the-dry-

granulation/#:~:text=Wet%20granulation%20is%20considered%20best,while%20dry%20granulation%20makes%20tablets

Bulk density - US pharmacopeia (USP). USP.ORG. (n.d.).

https://www.usp.org/sites/default/files/usp/document/harmonization/genchapter/20230428HSm99375.pdf

Hausner ratio. Hausner Ratio - an overview | ScienceDirect Topics. (n.d.).

https://www.sciencedirect.com/topics/nursing-and-health-professions/hausner-ratio

How Relationships Differ from Joins. (n.d.). Tableau. https://help.tableau.com/current/online/en-us/datasource relationships learnmorepage.htm

Jakubowska, E. (2021, November 11). Blend Segregation in Tablets Manufacturing and Its Effect on Drug Content Uniformity—A Review. National Library of Medicine.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8620778/

Kotamarthy, L., Metta, N., & Ramachandran, R. (2020). Understanding the effect of granulation and milling process parameters on the quality attributes of milled granules. Processes, 8(6), 683. https://doi.org/10.3390/pr8060683

Li, J., & Wu, Y. (2014, February 25). Lubricants in pharmaceutical solid dosage forms. MDPI.

https://www.mdpi.com/2075-

 $\underline{4442/2/1/21\#:^\sim: text=To\%20 improve\%20 the\%20 flowability\%20 of, the\%20 inter\%20 particle\%20 adhese ion\%20 force$

Pharmaguideline. (n.d.-a). Effect of humidity level on tablet stability.

 $\frac{\text{https://www.pharmaguideline.com/2018/09/effect-of-humidity-level-on-tablet-stability.html\#:}^{\text{html}\#:}^{\text{$

Shanmugam, S. (2015). Granulation techniques and technologies: Recent progresses. BioImpacts: Bl. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401168/

Swiss, A. (n.d.). What is granulation? | Acino.

https://acino.swiss/our-business/contract-manufacturing/case-studies/what-is-granulation#:~:text=Wet%20granulation%20is%20a%20widely,size%20with%20required%20flow%20properties