

Voice quality similarity based on a simplified version of the Vocal Profile Analysis:

A preliminary approach with Spanish speakers including identical twin pairs

Eugenia San Segundo¹; Jose A. Mompean²

¹ Dept. of Language and Linguistic Science, University of York, UK ² English Department, University of Murcia, Spain

INTRODUCTION

- Voice quality (VQ) = characteristic timbre or quasi-permanent quality resulting from a combination of long-term laryngeal and supralaryngeal features which make a speaker's voice recognizably different from others [1].
- Forensic Speaker Comparison (FSC) = comparison of voice samples belonging to an offender and a suspect in order to assist courts in determining speaker identity [2].
 - Forensic phoneticians have shown an increasing interest in VQ [3].
 - The Vocal Profile Analysis (VPA) protocol [4] is the most common perceptual assessment scheme in forensic phonetic casework [5].
- Auditory-acoustic approaches to FSC are the most popular methods worldwide [5], only followed by human-supervised Automatic Speaker Recognition (ASR) systems. However analyses based on the perceptual skills of trained experts are sensitive to bias and errors [6]. This may call into question their reliability and validity.
 - Intra and inter-rater agreement have seldom been investigated in VQ and FSC.
 - Monozygotic (MZ) twins have proved suitable to test extreme similar-soundingness in ASR systems [7] and could also prove adequate for perceptual analyses.

OBJECTIVES

- Design a simplified VPA (henceforth SVPA) for Standard Peninsular Spanish (SPS).
 - The original VPA protocol is very comprehensive and useful but generally thought to be too complex: its greater scope is at the expense of reliability [8] and easy quantification, especially in FSC [3].
 - This simplification aims to tackle typical problems in VQ perceptual assessment, e.g. voice multidimensionality and the difficulty in isolating dimensions [9].
- 2. Evaluate to which extent two trained phoneticians agree with each other (inter-rater reliability) and with themselves (intra-rater reliability) in VQ perceptual assessment.
- Explore whether SVPA can be considered as a useful tool for forensic phonetics by testing voice quality similarity in a population of identical twins and unrelated speakers.

Simplified VPA (SVPA) protocol for Spanish: scheme and examples

	Major setting group	os Settings						
FEATURAL	Vocal tract	Labial		Spre	eading	N	Roun	ding
ANALYSIS		Mandibul	ar	C	lose	N	Ор	en
		Apical/alv	eolar	Ret	racted	N	Advai	nced
		Dorsal		Back &	Lowered	N	Front &	Raised
		Velopharyngeal		De	Denasal		Nasal	
		Pharynge	al	Cons	stricted	N	Expar	nded
		Laryngeal	height	Lov	wered	N	Rais	sed
	Overall muscular	Vocal trac	t tensio	n	Lax	N	Ten	se
	tension	Laryngeal	tension	1	Lax	N	Ten	se
	Phonation	Voice type	е	Whispe	r/Breathy	N	Creaky	/Harsh
HOLISTIC DESC	RIPTION							
	Settings	Subje	ct 19 (N	1ML)		Subj	ect 21 (P	ML)
Vocal	Labial	Spreading	N x	Rounding	Sprea	ading	N x	Roundii
Tract	Mandibular	Close x	N	Open	Clo	se	N x	Open
	Apical/alveolar	Retracted	N x	Advanced	Retra	icted	N	Advance
	Dorsal	B & L	N x	F & R	В 8	λ L	N	F & R
	Velopharyngeal	Denasal x	N	Nasal	Den	asal	N x	Nasal
		_				_		

FEATUR/		Velopharyngeal	Denasal x	N	Nasal	Denasal	N x	Nasal
ATI		Pharyngeal	Constricted x	N	Expanded	Constricted x	N	Expanded
ш		Laryngeal height	Lowered	N x	Raised	Lowered	N x	Raised
	Muscular	VT tension	Lax	N	Tense x	Lax x	N	Tense
	tension	Laryngeal tension	Lax	N	Tense x	Lax x	N	Tense
	Phonation	Voice type	W/B	N x	C/H	W/B x	N	C/H
	HOLISTIC		Denasal; fast r	ate; hyp	oarticulation	Sibilance/Lisp (a	advance	d tongue
			(close jaw) but	t precis	e consonant	tip), key segme	nts "misı	ma", "pista",
			articulation (te	ense voo	cal tract)	"susto"; laxness	s; glottal	air escape

MATERIALS & METHOD

Participants: 24 non-pathological male speakers of Standard Peninsular Spanish (SPS), aged 20-36 (mean 26.83, SD 6.6). They make up 12 pairs of MZ twins.

Data: Spontaneous speech samples (ca. 130 sec) of researcher-speaker conversations [10]. Procedure: Blind VQ perceptual assessment of each speech sample (random order) carried out by two trained phoneticians. Two independent evaluations per rater (one week lapse). **Analysis method:**

- 1. Perceptual analysis: Simplified Vocal Profile Analysis (SVPA)
- Definition of neutral setting based on phonological descriptions of SPS [11].
- Main characteristics of the simplification:
 - ✓ Reduction from 36 to 22 features
 - ✓ No use of scalar degrees; use instead of a binary (neutral/non-neutral) system
 - ✓ Use of only two possible settings for most deviations from neutrality
 - ✓ Possibility of including holistic descriptions

2. Statistical analyses

- For inter and intra rater analyses we used *Percent Agreement* (rough estimate of reliability) and three chance-corrected measures, suitable for two raters and nominal variables: Cohen's Kappa and its variants Scott's Pi and Krippendorf's Alpha.
- For analysis of VQ similarity we used *Similarity Matching Coefficients* (SMC), a common distance measure for categorical data where the number of matches for each variable is divided by the number of variables. SMC range from 0 (very different) to 1 (very similar).

RESULTS

Intra-rater agreement

Similarity Matching Coefficients

SMC

Setting	Percent Agreement		Cohen's Kappa		Krippendorff's Alpha		N disagreements (speaker)	
	R1	R2	R1	R2	R1	R2	R1	R2
Labial	95.83	100	0.91	1.00	0.91	1.00	1 ₍₁₈₎	0
Mandibular	95.83	91.67	0.93	0.80	0.93	0.80	1 ₍₇₎	2 _(2,16)
Apical	100	100	1.00	1.00	1.00	1.00	0	0
Dorsal	91.67	100	0.81	1.00	0.81	1.00	2 _(10,11)	0
Velopharyngeal	83.33	91.67	0.74	0.87	0.74	0.88	4 _(3,7,10,14)	2 _(3,22)
Pharyngeal	91.67	95.83	0.87	0.93	0.88	0.94	2 _(2,4)	1 ₍₄₎
Larynx height	87.50	87.50	0.81	0.81	0.81	0.81	3 _(8,11,18)	3 _(3,15,22)
VT tension	87.50	95.83	0.81	0.93	0.82	0.94	3 _(4,18,22)	1 ₍₂₄₎
Larynx tension	91.67	87.50	0.84	0.71	0.84	0.72	2 _(12,11)	3 _(8,12,19)
Voice type	83.33	87.50	0.70	0.78	0.71	0.78	4 _(3,4,12,18)	3 _(10,12,18)

Inter-rater agreement

Setting	Percent Agreement	Cohen's Kappa	Krippendorff's Alpha	N disagreements
Labial	75.00	0.55	0.55	6
Mandibular	50.00	0.06	0.04	12
Apical	54.17	0.11	0.09	11
Dorsal	91.67	0.78	0.79	2
Velopharyngeal	70.83	0.55	0.56	7
Pharyngeal	37.50	0.11	0.02	15
Larynx height	66.67	0.50	0.50	8
VT tension	41.67	0.13	0.13	14
Larynx tension	66.67	0.30	0.30	8
Voice type	66.67	0.42	0.43	8

Twin pair	SMC	speakers	SMC
1-AGF		1-AGF	
24-SGF	0.8	2-AGP	0.3
2-AGP		3-AMG	
8-CGP	0.7	4-APJ	0.4
3-AMG		5-ARJ	
13-EMG	0.8	6-ASM	0.2
4-APJ		7-CAS	
22-RPJ	0.4	8-CGP	0.4
5-ARJ		9-CSD	
17-JRJ	0.5	10-DCT	0.3
6-ASM		11-DSA	
23-RSM	0.7	12-DSD	0.4
7-CAS		13-EMG	
20-PAS	0.6	14-ISA	0.2
9-CSD		15-JCT	
12-DSD	0.8	16-JHB	0.3
10-DCT		17-JRJ	
15-JCT	0.5	18-MHB	0.2
11-DSA		19-MML	
14-ISA	0.6	20-PAS	0.5
16-JHB		21-PML	
18-MHB	1	22-RPJ	0.3
19-MML		23-RSM	
21-PML	0.3	24-SGF	0.5

Setting frequency of occurrence

DISCUSSION

- Intra-rater agreement: almost perfect (κ values between 0.81–1) regardless of rater.
- Inter-rater agreement: high overall but setting-dependent: slight agreement (mandibular, apical, pharyngeal and vocal tract tension); fair (laryngeal tension); moderate (voice type, larynx height, labial and velopharyngeal); and substantial (dorsal). Note: Kappa is a conservative measure; better results with weighted Kappa. Previous voice studies show that reliability is usually not better than moderate.
- **SMC:** higher values in twin pairs (mean=0.64) than in unrelated speakers (mean=0.35), indicating more similarity among the former. **Twin pairs:** values tend to be pairdependant: JHB & MHB very similar (1) while MML & PML very different (0.3). Unrelated speakers: no "vocal twins" as described in [4] and distinguished on average by more than 7 settings. Matches are based of sharing accent features/coincidence on neutral.

CONCLUSION

- We have proposed a simplified VPA (SVPA) protocol adapted to SPS, which has proved reliable from the point of view of inter-rater agreement and intra-rater consistency.
- SVPA is useful for FSC: it yields high SMC for very similar-sounding speakers (MZ twins) and low SMC for unrelated speakers. Percentages of setting distribution can be used to estimate reference population statistics to account for typicality.
- Other applications of our SVPA include L2 phonology, dialectal and sociolinguistic studies.

References

[1] Laver, J. (1980). The phonetic description of voice quality. Cambridge: CUP.

[2] Foulkes, P., & French, P. (2012). Forensic speaker comparison: a linguistic-acoustic perspective. In L. Solan & P. Tiersma (eds.) The Oxford Handbook of Language and Law (pp. 418–421). Oxford: OUP.

[3] San Segundo, E., French, P., Foulkes, P., Hughes, V. & Harrison, P. (2016). Developing the vocal profile analysis scheme for forensic voice comparison, BAAP (British Association of Academic Phoneticians) Colloquium, Lancaster University, 30 March – 1 April 2016.

[4] Beck, J. (2005). Perceptual analysis of voice quality: the place of Vocal Profile Analysis. In W.J. Hardcastle & J. Mackenzie Beck (Eds.) A Figure of Speech: a Festschrift for John Laver (pp. 285–322). London/Mahwah, NJJ: Laurence Erlbaum Associates.

[5] Gold, E. & French, P. (2011). International practices in forensic speaker comparison. Int. Journal Speech Language & Law 18, 293–307. [6] Kent, R. D. (1997). Hearing and Believing: Some Limits to the Auditory-Perceptual Assessment of Speech and Voice Disorders. American Journal of Speech-Language Pathology 5, 7–23.

[7] Künzel, H. (2010). Automatic speaker recognition of identical twins. Int. Journal of Speech, Language and the Law 17, 251-277.

[8] Webb, A. L., et al. (2004). The reliability of three perceptual evaluation scales for dysphonia. Eur Arch Otorhinolaryngol 261, 429–434. [9] Kreiman, J., Gerrat, B.R. & Ito, M. (2007). When and why listeners disagree in voice quality assessment tasks. JASA 122, 2354–2364.

[10] San Segundo, E. (2014). Forensic speaker comparison of Spanish twins and non-twin siblings: A phonetic-acoustic analysis of formant trajectories in vocalic sequences, glottal source parameters and cepstral characteristics, PhD. Diss., CSIC & UIMP.

[11] Gil, J. (2005). Implicaciones fonológicas de la base de articulación. In Filología y Lingüística. Estudios ofrecidos a Antonio Quilis. Vol 1. (pp. 219–252). Madrid: CSIC, UNED, Universidad de Valladolid.