Operatines ignifest to the Help

https://powcoder.com

Lecture 3b

Add WeChat powcoder

The elephant on campus

What is going to happen with operating systems during the strike?

- O Lectures and Labs wilksengruneing project Exam Help
- O Lectures will be recorded as usual, too those who want to support their hetaster powrooder com industrial action can do so without disadvantage Add WeChat powcoder

Image source: The Guardian

O If you want to help getting the current problems resolved as soon as possible, consider sending your suggestions to the University's Vice-Chancellor:

Professor Adam Tickell: vc@sussex.ac.uk

Previously

On programming with threads

- O Parallel vs concurrent Assignment Project Exam Help
- O Data vs. Task vs. Pipeline parallelism
 https://powcoder.com
- O Thread Safety
- O Limits of parallelisation Add WeChat powcoder
- O Hyperthreading
- O Java thread library

Today

Scheduling

- O Long/mid/short-term scheduling nt Project Exam Help
- O CPU vs I/O-bound processes
- O Scheduling criteria https://powcoder.com
- O Scheduling policies: FCFS, AND We Chat powcoder

Benefits of multithreading

- O Responsiveness
- O Resource sharing (compression) Project Exam Help
- O Economy (creation, context switching, . . .)
- O Scalability (parallel architectures)/powcoder.com

Add WeChat powcoder

Parallelism vs Concurrency

Patterns for parallelisation: pipelines, tasks, data splitting

What type of parallelism is this?

What type of parallelism is this?

What type of parallelism is this?

Scheduling

Determines the execution order of processes

CPU vs I/O-Bound Processes

a) CPU-bound process

b) I/O-bound process

CPU Bursts

What kind of process is this?

- O Scheduler: selects process from Ready queue
- O Dispatcher: performs the context switch
 Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

- O Scheduler: selects process from Ready queue
- O Dispatcher: performs the context switch
 Assignment Project Exam Help

Add WeChat powcoder

- O When is scheduling happenings://powcoder.com
 - O After process creation
 - O After ISR completion
 - O A process blocks (I/O request, synchronisation, . . .)
 - O At end of time slice
 - O After process termination
 - On a yield system call (voluntary release of CPU)

O Non-preemptive

The current process retains a hold over the CPU until returning control

Assignment Project Exam Help

O Preemptive

https://powcoder.com

Scheduler takes control of the CPU even though the current process could continue executing Add WeChat powcoder

- O p is the fraction of time processes spend waiting for I/O
- O n is the number of processes
- O This model assumes independent processes.

Scheduling Criteria

- O CPU utilisation ("Load"): Percentage of time the CPU is busy
- O **Throughput**: Processes per second handled
- O Turnaround time: Time from submission to completion Assignment Project Exam Help
- O Waiting time: Time processes spend in the Ready queue
- O Response time: Time from https://ppwgpdffscomponse (Interactive systems)
- O Meeting deadlines: Operating with image phistogen straints (real-time systems)
- O Predictability: Avoiding erratic behaviour that needs frequent correction
- O **Fairness**: Every process gets a turn.
- O Balance: All system components well-used, not just the CPU.
- O **Policy enforcement**: Some things are more important than others (e.g. make sure critical processes can run when needed)

Which criteria are most important depends on the kind of system used

Scheduling Algorithms

- Batch Systems
 - O First-Come First-Served

- O Real-Time Systems
 - O Earliest Deadline First
- O Rate Monotonic Scheduling
 O Shortest Remaining Time Next

https://powcoder.com

- Interactive Systems
 - O Round Robin
 - O Priority Scheduling
 - O Feedback Scheduling

Add WeChat pawcoder more!

First-Come First-Served (FCFS)

Process	Burst time
P1	24
P2	3
P3	3

+ Simple implementation (FIFO queue) **Assignment Project Exam He**l

Long average waiting times https://powcoder.com

Add WeChat powcoder

				P_1			P ₂		P ₃
0						2	4	27	30
	P ₂	P3			P_1				
0	3	3 (6						30

Shortest Job First (SJF)

Process	Burst time
P1	6
P2	8
P3	7
P4	3

"Shortest CPU burst first"

Assignment Project Exam Help
+ is optimal: minimal average waiting time

https://powcoder.com
How do we know the length of the

next@Ptwerthataprocessder

Requires good predictability!

Prediction by Exponential Averaging

Prediction by Exponential Averaging

- O t_n is the (known) length of the most recent burst
- O T_{n+1} is the prediction of the next burst
- O T₀ is initialised e.g. to average expected burst length
- \circ $\alpha \in [0, 1]$ gives weight to the history, e.g. 1/2

Shortest Remaining Time First (SRT)

Process	Arrival time	Burst time	
P1	0	8	Preemptive version of SJI
P2	1	4Assignm	ent Project Exam Help
P3	2	9 https	s://powcoder.com
P4	3	5 Add	WeChat powcoder

Priority Scheduling

Process	Priority	Burst time	Lowest number is highest priority
P1	3	10	Processes with same
P2	1	1Assignm	ent Project Exam Help
P3	4	2 https	Implementation: s://pow&odier.comp
P4	5	1 Add	WeChat powcoder Starvation possible, i.e. indefinite waiting
P5	2	5	Aging: gradually increase priority

Round Robin

Process	Burst time
P1	24
P2	3
P3	3

FCFS + preemption at end of time slice (time quantum)

Assignment Project Exam Help interrupt https://powcoder.com

Add WeChat powcoder

	P ₁	P_{2}	P ₃	<i>P</i> ₁	P ₁	P ₁	P ₁	P ₁	
0	4	1 7	7 1	0 1	4 1	8 2	2 2	.6 3	30

Time quantum: 4ms

How to choose the time quantum?

Summary

Scheduling

- O Long/mid/short-term scheduling nt Project Exam Help
- O Scheduler and dispatcher
- O CPU vs I/O-bound processes https://powcoder.com
- O Scheduling criteria Add WeChat powcoder
- O Scheduling policies: FCFS, SJF, SRT, RR

Read

- O Tanenbaum & Bos., Modern Operating Systems
 - O Chapter 2.4

Assignment Project Exam Help

- O Silberschatz et al., Operatihttps://epowsouden.com
 - O Chapter 5

Add WeChat powcoder

- O Further reading: Love. Linux Kernel Development:
 - O Chapter 4

Next Lecture

- O Introduction O Deadlocks
- O Operating System Architectures Assignment Project Exam Help
- O Processes O File Systems
- o Threads Programming https://powcederscombutput
- O Process Scheduling (continued) WeCharpswerth end Virtualisation
- O Process Synchronisation