Attorney Docket No.: CIS0195US

WHAT IS CLAIMED IS:

1	1. A method comprising:
2	comparing first security level information and second security level
3	information, wherein
4	said first security level information is stored in a security label of a
5	packet received at a network node, and
6	said second security level information is stored at said network node;
7	and
8	indicating processing to be performed on said packet based on said comparing
1	2. The method of claim 1, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a second security level.
1	3. The method of claim 2, wherein
2	said first security level and said second security level implement one of a
3	multi-level security paradigm and a multi-lateral security paradigm.
1	4. The method of claim 2, wherein
2	said security label is one of an enumerated security label and a bitmap security
3	label.
1	5. The method of claim 2, wherein
2	said second security level is a security level of a port of said network node.
1	6. The method of claim 5, further comprising:
2	setting said security level of said port.
1	7. The method of claim 6, wherein said setting said security level of said
2	port comprises:
3	storing said second security level in a security label information field of an
4	access control list entry.

1	8. The method of claim 6, wherein said setting said security level of said
2	port comprises:
3	storing said second security level in a label range information field of a
4	forwarding table entry.
1	9. The method of claim 2, wherein said processing comprises:
2	dropping said packet, if said comparing indicates that said first security level i
3	less than said second security level.
1	10. The method of claim 2, wherein
2	said processing comprises at least one of dropping said packet, redirecting said
3	packet and rewriting said security label.
1	11. The method of claim 1, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a plurality of security levels.
1	The method of claim 11, wherein
2	said security levels are a range of security levels.
1	The method of claim 12, wherein said processing comprises:
2	dropping said packet, if said comparing indicates that said first security level i
3	not within said range of security levels.
1	14. The method of claim 1, further comprising:
2	storing said second security level information at said network node.
1	15. The method of claim 14, wherein said storing comprises:
2	storing said second security level in a security label information field of an
3	access control list entry.

1	16.	The method of claim 14, wherein said storing comprises:
2	storii	ng said second security level in a label range information field of a
3		forwarding table entry.
1	17.	The method of claim 14, wherein said storing comprises:
2	com	nunicating said second security level from a first network node by
3		registering said second security level in a context.
1	18.	The method of claim 17, wherein said registering comprises:
2	upda	ting said second security level information by logically OR'ing third
3		security level information with said second security level information.
1	19.	The method of claim 17, wherein
2	said	context is a generic attribute registration protocol information propagation
3		context, and
4	said	registering said second security level is accomplished by said first
5		network node issuing a join request.
1	20.	The method of claim 14, wherein said storing comprises:
2	storii	ng said second security level in a label range information field of
3		forwarding table.
1	21.	The method of claim 14, wherein said storing comprises:
2	storii	ng said second security level in a port of said network node.
1	22.	The method of claim 21, wherein
2	said j	port is an egress port.
1	23.	The method of claim 2, further comprising:
2	deter	mining said first security level.
1	24.	The method of claim 23, wherein said determining comprises:
2	deter	mining if an ingress port is marked as an access port; and

3	setting a security level of said ingress port to said first security level, if said
4	ingress port is marked as an access port.
1	25. The method of claim 24, further comprising:
2	setting said first security level information to said security level of said ingres
3	port.
1	26. The method of claim 23, further comprising:
2	authenticating a user having said first security level, wherein
3	said determining is performed only if said user is authenticated.
1	27. The method of claim 2, further comprising:
2	performing said processing on said packet based on said comparing.
1	28. The method of claim 27, wherein said performing said processing
2	comprises:
3	forwarding said packet, if said indicating indicates that said packet is allowed
4	to be forwarded; and
	·
5	dropping said packet, otherwise.
1	29. The method of claim 27, wherein said performing said processing
2	comprises:
3	forwarding said packet to a firewall, if said indicating indicates that said
4	packet should be forwarded to said firewall.
1	30. The method of claim 2, further comprising:
2	stripping network security information from said packet; and
3	adding subnetwork security information to said packet.
	·
1	31. The method of claim 30, wherein
2	said network security information comprises said first security level
3	information.

Attorney Docket No.: CIS0195US

1	32. The method of claim 30, wherein
2	said subnetwork security information comprises said first security level
3	information.
1	33. A computer system comprising:
2	a processor;
3	computer readable medium coupled to said processor; and
4	computer code, encoded in said computer readable medium, configured to
5	cause said processor to:
6	compare first security level information and second security level
7	information, wherein
8	said first security level information is stored in a security label
9	of a packet received at a network node, and
10	said second security level information is stored at said network
l 1	node; and
12	indicate processing to be performed on said packet based on said
13	comparing.
1	34. The computer system of claim 33, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a second security level.
1	35. The computer system of claim 34, wherein said computer code is
2	further configured to cause said processor to:
3	set said security level of a port, wherein
4	said second security level is a security level of said port of said
5	network node.

1	36. The computer system of claim 35, wherein said computer code
2	configured to cause said processor to set said security level of said port is further
3	configured to cause said processor to:
4	store said second security level in a security label information field of an
5	access control list entry.
1	37. The computer system of claim 35, wherein said computer code
2	configured to cause said processor to set said security level of said port is further
3	configured to cause said processor to:
4	store said second security level in a label range information field of a
5	forwarding table entry.
_	
1	38. The computer system of claim 33, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a plurality of security levels.
1	39. The computer system of claim 33, wherein said computer code is
2	further configured to cause said processor to:
3	store said second security level information at said network node.
1	40. The computer system of claim 39, wherein said computer code
2	configured to cause said processor to store is further configured to cause said
3	processor to:
4	store said second security level in a security label information field of an
	•
5	access control list entry.
1	41. The computer system of claim 39, wherein said computer code
2	configured to cause said processor to store is further configured to cause said
3	processor to:
4	store said second security level in a label range information field of a
5	forwarding table entry.

1	42.	The computer system of claim 39, wherein said computer code
2	configured to c	ause said processor to store is further configured to cause said
3	processor to:	
4	commu	nicate said second security level from a first network node by virtue of
5	1	being configure to cause said processor to register said second security
6	;	level in a context.
1	43.	The computer system of claim 42, wherein said computer code
2	configured to c	ause said processor to register is further configured to cause said
3	processor to:	
4	update s	said second security level information by virtue of being configure to
5		cause said processor to logically OR third security level information
6		with said second security level information.
1	44.	The computer system of claim 43, wherein
2	said cor	ntext is a generic attribute registration protocol information propagation
3	•	context, and
4	said cor	mputer code configured to cause said processor to register said second
5	:	security level is configured to cause said processor to cause said first
6	1	network node to issue a join request.
1	45.	The computer system of claim 34, wherein said computer code is
2	further configur	red to cause said processor to:
3	determi	ne said first security level.
1	46.	The computer system of claim 45, wherein said computer code is
2	further configur	red to cause said processor to:
3	authenti	icate a user having said first security level, wherein
4		said computer code configured to cause said processor to determine
5		said first security level causes said processor to determine said
6		first security level only if said user is authenticated.

I	47. The computer system of claim 45, wherein said computer code		
2	configured to cause said processor to determine said first security level is further		
3	configured to cause said processor to:		
4	determine if an ingress port is marked as an access port; and		
5	set a security level of said ingress port to said first security level, if said ingress		
6	port is marked as an access port.		
1	48. The computer system of claim 47, wherein said computer code is		
2	further configured to cause said processor to:		
3	set said first security level information to said security level of said ingress		
4	port.		
1	49. The computer system of claim 34, wherein said computer code is		
2	further configured to cause said processor to:		
3	perform said processing on said packet based on a result generated by said		
4	computer code configured to cause said processor to compare.		
1	50. The computer system of claim 49, wherein said computer code		
2	configured to cause said processor to perform said processing on said packet is further		
3	configured to cause said processor to:		
4	forward said packet, if said computer code configured to cause said processor		
5	to indicate indicates that said packet is allowed to be forwarded; and		
6	drop said packet, otherwise.		
1	51. The computer system of claim 34, wherein said computer code is		
2	further configured to cause said processor to:		
3	strip network security information from said packet; and		
4	add subnetwork security information to said packet.		

1	32. A computer program product comprising.
2	a first set of instructions, executable on a computer system, configured to
3	compare first security level information and second security level
4	information, wherein
5	said first security level information is stored in a security label of a
6	packet received at a network node, and
7	said second security level information is stored at said network node;
8	and
9	a second set of instructions, executable on said computer system, configured to
10	indicate processing to be performed on said packet based on said
11	comparing; and
12	computer readable media, wherein said computer program product is encoded
13	in said computer readable media.
1	53. The computer program product of claim 52, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a second security level.
1	54. The computer program product of claim 53, further comprising:
2	a third set of instructions, executable on said computer system, configured to
3	set said security level of a port, wherein
4	said second security level is a security level of said port of said
5	network node.
1	55. The computer program product of claim 54, wherein said third set of
1	
2	instructions comprises:
3	a first subset of instructions, executable on said computer system, configured
4	to store said second security level in a security label information field
5	of an access control list entry.

1	56.	The computer program product of claim 54, wherein said third set of	
2	instructions comprises:		
3	a first	subset of instructions, executable on said computer system, configured	
4		to store said second security level in a label range information field of a	
5		forwarding table entry.	
1	57.	The computer program product of claim 52, wherein	
2	said fi	irst security level information represents a first security level, and	
3	said se	econd security level information represents a plurality of security levels.	
1	58.	The computer program product of claim 52, further comprising:	
2	a third	set of instructions, executable on said computer system, configured to	
3		store said second security level information at said network node.	
1	59.	The computer program product of claim 58, wherein said third set of	
2	instructions c	omprises:	
3	a first	subset of instructions, executable on said computer system, configured	
4		to store said second security level in a security label information field	
5		of an access control list entry.	
1	60.	The computer program product of claim 58, wherein said third set of	
2	instructions c	omprises:	
3	a first	subset of instructions, executable on said computer system, configured	
4		to store said second security level in a label range information field of a	
5		forwarding table entry.	
1	61.	The computer program product of claim 58, wherein said third set of	
2	instructions c	omprises:	
3	a first	subset of instructions, executable on said computer system, configured	
4		to communicate said second security level from a first network node	
5		comprises a first sub-subset of instructions, executable on said	

6	computer system, configured to cause said processor to register said
7	second security level in a context.
1	62. The computer program product of claim 61, wherein said first sub-
2	subset of instructions comprises:
3	a first sub-sub-subset of instructions, executable on said computer system,
4	configured to update said second security level information comprises
5	a first sub-sub-subset of instructions, executable on said computer
6	system configure to cause said processor to logically OR third security
7	level information with said second security level information.
1	63. The computer program product of claim 62, wherein
2	said context is a generic attribute registration protocol information propagation
3	context, and
4	said first sub-subset of instructions is further configured to cause said first
5	network node to issue a join request.
1	64. The computer program product of claim 53, further comprising:
2	a third set of instructions, executable on said computer system, configured to
3	determine said first security level.
1	65. The computer program product of claim 64, further comprising:
2	a fourth set of instructions, executable on said computer system, configured to
3	authenticate a user having said first security level, wherein
4	said third set of instructions is further configured to cause said
5	processor to determine said first security level only if said user
5 6	processor to determine said first security level only if said user is authenticated.
6	is authenticated.
6 1	is authenticated. 66. The computer program product of claim 64, wherein said third set of

5	a second subset of instructions, executable on said computer system,
6	configured to set a security level of said ingress port to said first
7	security level, if said ingress port is marked as an access port.
1	67. The computer program product of claim 66, further comprising:
2	a fifth set of instructions, executable on said computer system, configured to
3	set said first security level information to said security level of said
4	ingress port.
1	68. The computer program product of claim 53, further comprising:
2	a third set of instructions, executable on said computer system, configured to
3	perform said processing on said packet based on a result generated by
4	said first set of instructions.
1	69. The computer program product of claim 68, wherein said third set of
2	instructions comprises:
3	a first subset of instructions, executable on said computer system, configured
4	to forward said packet, if said second set of instructions indicates that
5	said packet is allowed to be forwarded; and
6	a second subset of instructions, executable on said computer system,
7	configured to drop said packet, otherwise.
1	70. The computer program product of claim 53, further comprising:
2	a third set of instructions, executable on said computer system, configured to
3	strip network security information from said packet; and
4	a fourth set of instructions, executable on said computer system, configured to
5	add subnetwork security information to said packet.
1	71. An apparatus comprising:
2	means for comparing first security level information and second security level
3	information, wherein
4	said first security level information is stored in a security label of a
5	packet received at a network node, and

6	said second security level information is stored at said network node;
7	and
8	means for indicating processing to be performed on said packet based on said
9	comparing.
1	72. The apparatus of claim 71, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a second security level.
1	73. The apparatus of claim 72, further comprising:
2	means for setting said security level of a port, wherein
3	said second security level is a security level of said port of said
4	network node.
1	74. The apparatus of claim 73, wherein said means for setting said security
2	level of said port comprises:
3	means for storing said second security level in a security label information
4	field of an access control list entry.
1	75. The apparatus of claim 73, wherein said means for setting said security
2	level of said port comprises:
3	means for storing said second security level in a label range information field
4	of a forwarding table entry.
1	76. The apparatus of claim 71, wherein
2	said first security level information represents a first security level, and
3	said second security level information represents a plurality of security levels.
1	77. The apparatus of claim 71, further comprising:
2	means for storing said second security level information at said network node.

1	78.	The apparatus of claim 77, wherein said means for storing comprises:
2	means	for storing said second security level in a security label information
3		field of an access control list entry.
1	79.	The apparatus of claim 77, wherein said means for storing comprises:
2	means	for storing said second security level in a label range information field
3		of a forwarding table entry.
1	80.	The apparatus of claim 77, wherein said means for storing comprises:
2	means	for communicating said second security level from a first network node
3		comprising means for registering said second security level in a
4		context.
1	81.	The apparatus of claim 80, wherein said means for registering
2	comprises:	
3	means	for updating said second security level information comprising means
4		for logically OR'ing third security level information with said second
5		security level information.
1	82.	The apparatus of claim 81, wherein
2	said co	ntext is a generic attribute registration protocol information propagation
3		context, and
4	said me	eans for registering said second security level comprises means for
5		causing said first network node to issue a join request.
1	83.	The apparatus of claim 72, further comprising:
2	means	for determining said first security level.
1	84.	The apparatus of claim 83, further comprising:
2	means	for authenticating a user having said first security level, wherein
3		said means for determining is performed only if said user is
4		authenticated.

1		85.	The apparatus of claim 83, wherein said means for determining
2	compr	ises:	
3		means	for determining if an ingress port is marked as an access port; and
4		means	for setting a security level of said ingress port to said first security level
5			if said ingress port is marked as an access port.
1		86.	The apparatus of claim 85, further comprising:
2		means	for setting said first security level information to said security level of
3			said ingress port.
1		87.	The apparatus of claim 72, further comprising:
2		means	for performing said processing on said packet, wherein said means for
3			performing said processing uses a result generated by said means for
4			comparing.
1		88.	The apparatus of claim 87, wherein said performing said means for
2	proces	sing co	mprises:
3		means	for forwarding said packet, if said means for indicating indicates that
4			said packet is allowed to be forwarded; and
5		means	for dropping said packet, otherwise.
1		89.	The apparatus of claim 72, further comprising:
2		means	for stripping network security information from said packet; and
3		means	for adding subnetwork security information to said packet.
1		90.	A network device comprising:
2		a netw	ork interface, wherein
3			said network interface is configured to receive a packet, and
4			said network device is configured to store first security level
5			information and to process said packet using said first security
6			level information.

1	91.	The network device of claim 90, wherein
2	said r	network interface comprises a port, and
3	said	port is configured to store said first security level information.
1	92.	The network device of claim 91, wherein
2	said p	port is an egress port.
1	93.	The network device of claim 91, wherein
2	said n	network device is further configured to set a security level of said port.
1	94.	The network device of claim 90, wherein
2	said n	network device is further configured to
3		compare said first security level information and second security level
4		information, wherein
5		said second security level information is stored in a security
6		label of a packet received at said network device; and
7		indicate processing to be performed on said packet based on said
8		comparing.
1	95.	The network device of claim 94, wherein
2	said s	second security level information represents a second security level, and
3	said f	irst security level information represents a first security level.
1	96.	The network device of claim 95, wherein
2	said n	network device is further configured to process said packet based on said
3		comparing.
1	97.	The network device of claim 95, wherein
2	said n	network device is further configured to strip network security information
3		from said packet and add subnetwork security information to said
4		packet.

1	98.	The network device of claim 95, wherein
2	said fi	rst security level is a security level of a port of said network device.
1	99.	The network device of claim 94, wherein
2	said se	econd security level information represents a second security level, and
3		rst security level information represents a plurality of security levels.
1	100	The network device of claim 99, wherein
2	said so	ecurity levels are a range of security levels.
1	101.	The network device of claim 95, wherein
2	said n	etwork device is further configured to store said first security level
3		information at said network device.
1	102.	The network device of claim 101, wherein
2	said n	etwork device is further configured to communicate said first security
3		level from a second network device by registering said first security
4		level in a context.
1	103.	The network device of claim 102, wherein
2	said co	ontext is a generic attribute registration protocol information propagation
3		context, and
4	said re	egistering said first security level is accomplished by said second
5		network device issuing a join request.
1	104.	A network device comprising:
2	an acc	ess control list, wherein
3		said access control list comprises an access control list entry,
4		said access control list entry comprises a label information field, and
5		said label information field is configured to store a security label.
1	105.	The network device of claim 104, wherein
2	said se	ccurity label implements a multi-level security paradigm.

I	106. The network device of claim 104, wherein
2	said security label implements a multi-lateral security paradigm.
1	107. The network device of claim 104, wherein said access control list entry
2	further comprises:
3	a flow label field, wherein
4	said flow label field allows said access control list entry to be identified
5	as a security labeled access control list entry.
1	108. The network device of claim 107, wherein said access control list entry
2	further comprises:
3	a plurality of flow specification fields, wherein
4	said flow specification fields comprise information identifying
5	processing to be performed on at least one flow.
1	109. The network device of claim 104, wherein
2	said security label is configured to be compared to a security label of a packet.
1	110. The network device of claim 109, wherein said access control list entry
2	further comprises:
3	a flow specification field, wherein
4	said flow specification field comprise information identifying
5	processing to be performed on said packet.
1	111. The network device of claim 110, wherein said access control list entry
2	further comprises:
3	a flow label field, wherein
4	said flow label field allows said access control list entry to be identified
5	as a security labeled access control list entry.
1	112. A network device comprising:
2	a forwarding table, wherein

3	said forwarding table comprises a plurality of forwarding table entries,		
4	and		
5	at least one forwarding table entry of said forwarding table entries		
6	comprises a label range field.		
1	113. The network device of claim 112, wherein said at least one forwarding		
2	table entry further comprises:		
3	a port identifier field, wherein		
4	a port identifier stored in said port identifier field identifies a port.		
1	114. The network device of claim 113, wherein		
2	a security label stored in said label range field is associated with said port.		
1	115. The network device of claim 113, wherein said at least one forwarding		
2	table entry further comprises:		
3	a media access control (MAC) address field; and		
4	a virtual local area network (VLAN) identifier field, wherein		
5	a combination of said MAC address field and said VLAN identifier		
6	field are associated with said port identifier field and said label		
7	range field.		
1	116. The network device of claim 113, wherein		
2	said media access control (MAC) address field is configured to store a MAC		
3	address,		
4	said VLAN identifier field is configured to store a VLAN identifier,		
5	said VLAN identifier identifies a VLAN, and		
6	a combination of said MAC address and said VLAN identifier identify said		
7	port and said security label.		
1	117. The network device of claim 114, wherein said at least one forwarding		
2	table entry further comprises:		
3	a media access control (MAC) address field configured to store a MAC		
4	address, wherein		

5	said MAC address is associated with a security label stored in said
6	label range field.
1	118. The network device of claim 112, wherein said at least one forwarding
2	table entry further comprises:
3	a virtual local area network (VLAN) identifier field, wherein
4	a VLAN identifier stored in said VLAN identifier field identifies a
5	VLAN, and
6	said VLAN is associated with a security label stored in said label range
7	field