Proiect DSC530### # This project is to analyze Exoplanets database from exoplanet.eu and answer my question: # Are the ellipses perimeters influenced by the exoplanet detection methods? # Exoplanets are beyond our solar system. # When I started to code this project, there were 4082 exoplanets observations. # I did the dataset search on exoplanet.eu. # exoplanet.eu is an astronomy website founded in Paris with an Extrasolar Planets database which is constantly updated with new findinas. # This database has 129 columns or variables. # This is a database that constantly is being updated with new observations. # I will use the PyvO database as my dataset and will query exoplanets tables. # PyvO lets find and retrieve astronomical data available from archives that support standard IVOA virtual observatory service protocols. # To connect to exoplanet.eu database, I will use an API. # The API was developed by the Virtual Observatory (VO). # I will create an engine for connecting to the database. # After connecting to the database, I will be able to extract the data with SQL instructions. In [2]: # Required Packages, import pyvo import math import pandas as pd import numpy as np import matplotlib.pyplot as plt import thinkstats2 as ts2 import thinkplot as tp import statsmodels.formula.api as smf # I created this package which has functions required in this project import dsc530 as dsc In [3]: # When I use a SQL to access remote data of the Virtual observatory (VO), the result is stored in a proprietary object, TAPResults. # TAPResults is a container holding a table of matching catalog records. It is defined in Data Access (pyvo.dal), an af filiated package for the astropy package. # I will work with pandas dataframe throughout the analysis, so I will have to make some conversions: # 1. Convert initial TAPResults object to astropy table, # 2. Convert astropy table object to numpy array, # 3. Convert the numpy array to Pandas dataframe. # I coded a function called, "ConvertDataframe" in my dsc530 package. # This function converts a pyvo.dal.tap.TAPResults object by a pandas dataframe. # Number of exoplanets observations: sql = ('SELECT COUNT(*) AS total' FROM exoplanet.epn_core') exoplanet_num = dsc.ConvertDataframe(sql)

Exoplanets discovered: 4093

print('Exoplanets discovered: {0}'.format(exoplanet_num.total[0]))

	table_name	column_name	description	unit	ucd	
0	b'exoplanet.epn_core'	b'granule_uid'	Internal table row index Unique ID in data ser	b"	b'meta.id'	b"
1	b'exoplanet.epn_core'	b'granule_gid'	Common to granules of same type (e.g. same map	b"	b'meta.id'	b"
2	b'exoplanet.epn_core'	b'obs_id'	Associates granules derived from the same data	ь"	b'meta.id'	b"
3	b'exoplanet.epn_core'	b'dataproduct_type'	The high-level organization of the data produc	b"	b'meta.code.class'	b'Epn.dataPr
4	b'exoplanet.epn_core'	b'target_name'	Standard IAU name of target (from a list relat	b"	b'meta.id;src'	b'Epn.Targetl
5	b'exoplanet.epn_core'	b'target_class'	Type of target, from enumerated list	b"	b'meta.code.class;src'	b'Epn.Target
6	b'exoplanet.epn_core'	b'time_min'	Acquisition start time (in JD)	b'd'	b'time.start'	b"
7	b'exoplanet.epn_core'	b'time_max'	Acquisition stop time (in JD)	b'd'	b'time.end'	b"
8	b'exoplanet.epn_core'	b'time_sampling_step_min'	Sampling time for measurements of dynamical ph	b's'	b'time.interval;stat.min'	b'Epn.Time.T
9	b'exoplanet.epn_core'	b'time_sampling_step_max'	Sampling time for measurements of dynamical ph	b's'	b'time.interval;stat.max'	b'Epn.Time.T
10	b'exoplanet.epn_core'	b'time_exp_min'	Integration time of the measurement, lower limit.	b's'	b'time.duration;obs.exposure;stat.min'	b'Epn.Time.T
11	b'exoplanet.epn_core'	b'time_exp_max'	Integration time of the measurement, upper limit	b's'	b'time.duration;obs.exposure;stat.max'	b'Epn.Time.T
12	b'exoplanet.epn_core'	b'spectral_range_min'	Spectral range (frequency), lower limit.	b'Hz'	b'em.freq;stat.min'	b'Epn.Spectr
13	b'exoplanet.epn_core'	b'spectral_range_max'	Spectral range (frequency), upper limit	b'Hz'	b'em.freq;stat.max'	b'Epn.Spectr
14	b'exoplanet.epn_core'	b'spectral_sampling_step_min'	spectral sampling step, lower limit.	b'Hz'	b'em.freq.step;stat.min'	b'Epn.Spectr

	table_name	column_name	description	unit	ucd	
15	b'exoplanet.epn_core'	b'spectral_sampling_step_max'	spectral sampling step, upper limit	b'Hz'	b'em.freq.step;stat.max'	b'Epn.Spectr
16	b'exoplanet.epn_core'	b'spectral_resolution_min'	Sectral resolution, lower limit.	b'Hz'	b'spect.resolution;stat.min'	b'Epn.Spectr
17	b'exoplanet.epn_core'	b'spectral_resolution_max'	Sectral resolution, upper limit	b'Hz'	b'spect.resolution;stat.max'	b'Epn.Spectr
18	b'exoplanet.epn_core'	b'c1min'	Right Ascension (ICRS), lower limit.	b'deg'	b'pos.eq.ra;stat.min'	b'Epn.Spatia
19	b'exoplanet.epn_core'	b'c1max'	Right Ascension (ICRS), upper limit	b'deg'	b'pos.eq.ra;stat.max'	b'Epn.Spatia
20	b'exoplanet.epn_core'	b'c2min'	Declination (ICRS), lower limit.	b'deg'	b'pos.eq.dec;stat.min'	b'Epn.Spatia
21	b'exoplanet.epn_core'	b'c2max'	Declination (ICRS), upper limit	b'deg'	b'pos.eq.dec;stat.max'	b'Epn.Spatia
22	b'exoplanet.epn_core'	b'c3min'	Distance from coordiate origin, lower limit.	b'm'	b'phys.distance;stat.min'	b'Epn.Spatia
23	b'exoplanet.epn_core'	b'c3max'	Distance from coordiate origin, upper limit	b'm'	b'phys.distance;stat.max'	b'Epn.Spatia
24	b'exoplanet.epn_core'	b's_region'	ObsCore-like footprint, valid for celestial, s	b"	b'phys.outline;obs.field'	b"
25	b'exoplanet.epn_core'	b'c1_resol_min'	Resolution in the first coordinate, lower limit.	b'deg'	b'pos.resolution;stat.min'	b'Epn.Spatia
26	b'exoplanet.epn_core'	b'c1_resol_max'	Resolution in the first coordinate, upper limit	b'deg'	b'pos.resolution;stat.max'	b'Epn.Spatia
27	b'exoplanet.epn_core'	b'c2_resol_min'	Resolution in the second coordinate, lower limit.	b'deg'	b'pos.resolution;stat.min'	b'Epn.Spatia
28	b'exoplanet.epn_core'	b'c2_resol_max'	Resolution in the second coordinate, upper limit	b'deg'	b'pos.resolution;stat.max'	b'Epn.Spatia
29	b'exoplanet.epn_core'	b'c3_resol_min'	Resolution in the third coordinate, lower limit.	b'm'	b'pos.resolution;stat.min'	b'Epn.Spatia
99	b'exoplanet.epn_core'	b'albedo_error_min'	Geometric albedo error min	b"	b'phys.albedo;stat.error.min'	b"

table_name	column_name	description	unit	ucd	
b'exoplanet.epn_core'	b'albedo_error_max'	Geometric albedo error max	b"	b'phys.albedo;stat.error.max'	b"
b'exoplanet.epn_core'	b'mass_detection_type'	mass detection type 1: detected by radial velo	b"	b'meta.id'	b"
b'exoplanet.epn_core'	b'radius_detection_type'	radius detection type 1: detected by radial ve	b"	b'meta.id'	b"
b'exoplanet.epn_core'	b'mass_sin_i'	mass function of the orbit inclination express	b"'jupiterMass"	b'phys.mass'	b"
b'exoplanet.epn_core'	b'mass_sin_i_error_min'	mass function of the orbit inclination error min	b"'jupiterMass"	b'phys.mass;stat.error.min'	b"
b'exoplanet.epn_core'	b'mass_sin_i_error_max'	mass function of the orbit inclination error max	b"'jupiterMass"	b'phys.mass;stat.error.max'	b"
b'exoplanet.epn_core'	p,k,	Velocity Semiamplitude K	b'm.s-1'	b'spect.dopplerVeloc'	b"
b'exoplanet.epn_core'	b'k_error'	Velocity Semiamplitude K error	b'm.s-1'	b'spect.dopplerVeloc;stat.error'	b"
b'exoplanet.epn_core'	b'alternate_name'	planet alternate name	b"	b'meta.id'	b"
b'exoplanet.epn_core'	b'star_name'	name of host star	b"	b'meta.id'	b"
b'exoplanet.epn_core'	b'star_distance'	distance of the star	b'pc'	b'pos.distance'	b"
b'exoplanet.epn_core'	b'star_distance_error_min'	Distance of the star error min	b'pc'	b'pos.distance;stat.error.min'	b"
b'exoplanet.epn_core'	b'star_distance_error_max'	Distance of the star error max	b'pc'	b'pos.distance;stat.error.max'	b"
b'exoplanet.epn_core'	b'star_spec_type'	spectral type of the star	b"	b'src.spType'	b"
b'exoplanet.epn_core'	b'mag_v'	V magnitude of a host star	b"	b'phot.mag;em.opt.V'	b"
b'exoplanet.epn_core'	b'mag_i'	I magnitude of a host star	b"	b'phot.mag;em.opt.l'	b"
b'exoplanet.epn_core'	b'mag_j'	J magnitude of a host star	b"	b'phot.mag;em.IR.J'	b"
b'exoplanet.epn_core'	b'mag_h'	H magnitude of a host star	b"	b'phot.mag;em.IR.H'	b"
b'exoplanet.epn_core'	b'mag_k'	K magnitude of a host star	b"	b'phot.mag;em.IR.K'	b"
b'exoplanet.epn_core'	b'star_metallicity'	Decimal logarithm of the massive elements (« 	b"	b'phys.abund.Z'	b"
			_core b mag_k of a host star Decimal logarithm of the massive	_core b mag_k of a host star b Decimal logarithm of the massive b"	_core b mag_k of a host star b b b phot.mag;em.lk.k Decimal logarithm of the massive b' b'phys.abund.Z'

	table_name	column_name	description	unit	ucd	
120	b'exoplanet.epn_core'	b'star_mass'	Mass of a host star	b'solMass'	b'phys.mass'	b"
121	b'exoplanet.epn_core'	b'star_radius'	Radius of a host star	b'solRad'	b'phys.size.radius'	b"
122	b'exoplanet.epn_core'	b'star_sp_type'	Spectral type of a host star	b"	b'src.spType'	b"
123	b'exoplanet.epn_core'	b'star_age'	Age of a host star	b'Gyr'	b'time.age'	b"
124	b'exoplanet.epn_core'	b'star_teff'	Effective temperature of a host star	b'K'	b'phys.temperature.effective'	b"
125	b'exoplanet.epn_core'	b'detected_disc'	(direct imaging or IR excess) disc detected	b"	b'meta.info'	b"
126	b'exoplanet.epn_core'	b'ra'	Right ascension of the host star	b'deg'	b'pos.eq.ra'	b"
127	b'exoplanet.epn_core'	b'dec'	Declination of the host star	b'deg'	b'pos.eq.dec'	b"
128	b'exoplanet.epn_core'	b'external_link'	Link to a web page providing more details on t	b"	b'meta.ref.url'	b"

129 rows × 15 columns

+

```
In [5]: # I will work with these variables:
        # 1. mass: planetary mass.
        # 2. period: orbital period around the star.
        # 3. detection type: method used to discover the exoplanet
        # 4. semi major axis: the semi-major axis is half of the longest diameter of an ellipse.
        # 5. semi minor axis: [derived variable] minor semi-axis is a line segment that is at right angles with the semi-major
         axis and has one end at the center.
        # 6. eccentricity: the eccentricity is a measure of how much an ellipse is squashed. This is the shape of the ellipse.
        # 7. star distance: distance to a host star.
        # 8. ellipse: [derived variable] total ellipse perimeter.
        sql = ('SELECT UPPER(target_name) AS exoplanet,'
                       ROUND(mass, 2) AS mass,'
                       TRUNCATE(period) AS period,'
                       detection_type AS detection,'
                       semi_major_axis,'
                       semi_major_axis * SQRT(1 - POWER(eccentricity, 2)) AS semi_minor_axis,'
                       eccentricity,'
                       UPPER(star_name) AS star,'
                      star_distance,
                       star_teff AS star_temp'
               ' FROM exoplanet.epn_core'
               ' WHERE (1 - POWER(eccentricity, 2)) >= 0')
        exoplanets = dsc.ConvertDataframe(sql)
        exoplanets.head()
```

Out[5]:

		exoplanet	mass	period	detection	semi_major_axis	semi_minor_axis	eccentricity	star	star_distance	star_temp
(0 k	b'11 COM B'	NaN	326.0	b'Radial Velocity'	1.29	1.255110	0.231	b'11 COM'	110.599998	4742.0
,	1 k	b'11 UMI B'	NaN	516.0	b'Radial Velocity'	1.54	1.535064	0.080	b'11 UMI'	119.500000	4340.0
2	2 k	b'14 AND B'	NaN	185.0	b'Radial Velocity'	0.83	0.830000	0.000	b'14 AND'	76.400002	4813.0
;	3 k	b'14 HER B'	NaN	1773.0	b'Radial Velocity'	2.77	2.574519	0.369	b'14 HER'	18.100000	5311.0
4	4	b'16 CYG B B'	NaN	799.0	b'Radial Velocity'	1.68	1.217599	0.689	b'16 CYG B'	21.410000	5766.0

detection variable

print('{0} variable'.format(exoplanets.columns[1]))

In [6]: # Variables into the pandas dataframe,

```
In [8]: # Explore some observations of the detection type variable,
          vdetection = exoplanets['detection']
         print(vdetection.head())
              b'Radial Velocity'
         1
                      b'Imaging'
         2
              b'Radial Velocity
              b'Radial Velocity'
         3
             b'Radial Velocity'
         Name: detection, dtype: object
 In [9]: # calculate frequency of exoplanet detection types,
          fq_detection = exoplanets.detection.value_counts().sort_index()
         print(fq_detection)
         b'Astrometry'
                                     107
         b'Imaging'
         b'Microlensing'
                                     100
         b'Other'
                                       5
                                    2967
         b'Primary Transit'
         b'Primary Transit#TTV'
         h'Pulsar
                                      41
         b'Radial Velocity'
                                     861
         b'TTV'
         Name: detection, dtype: int64
In [10]: # Histogram of detection variable,
          fq_detection.plot.bar()
          plt.show()
          # The most used method to find exoplanets is 'Primary Transit'
          # primary transit is when a planet passes in front of its host star.
```



```
In [12]: # Explore some observations of the mass variable,
          vmass = exoplanets['mass']
          print(vmass.head())
          0
               21.0
          1
               14 A
               32.0
          3
               13.0
               20.0
          Name: mass, dtype: float32
In [13]: # Descriptive characteristics about the mass variable expressed in Earth-size,
          # Exoplanet mass expressed in Earth-size,
          exoplanets['mass_earth'] = round(exoplanets.mass * 1300)
          # Mean, Variance, and Standard Deviation,
          mass_mean = exoplanets.mass_earth.mean()
          mass_var = exoplanets.mass_earth.var()
          mass_std = exoplanets.mass_earth.std()
          print('The mass average is {0} Earth-size'.format(round(mass_mean)))
          print('Total of mass differences from the mean: {0}'.format(round(mass_var)))
print('Standard deviation is {0}'.format(round(mass_std)))
          # Standard Deviation is greater magnitude than mean,
          # It can indicate that data are spread out or it has outliers.
          # There is a significant difference between mass exoplanets.
          The mass average is 7061 Earth-size
          Total of mass differences from the mean: 253579520
          Standard deviation is 15924
```

In [14]: # Handle outliers of the mass variable,

I will use data normalization with the Min-Max method, exoplanets['mass_earth_MinMax'] = ((exoplanets['mass_earth'] - exoplanets['mass_earth'].min()) / (exoplanets['mass_earth'].min()) / (exoplanets['mass_earth' h'].max() - exoplanets['mass_earth'].min())) exoplanets.head(10)

Out[14]:

	exoplanet	mass	mass_earth	mass_earth_MinMax
0	b'11 OPH B'	21.00	27300.0	0.256410
1	b'1RXS 1609 B'	14.00	18200.0	0.170940
2	b'1RXS J235133.3+312720 B'	32.00	41600.0	0.390720
3	b'2M 0103-55 (AB) B'	13.00	16900.0	0.158730
4	b'2M 0122-24 B'	20.00	26000.0	0.244200
5	b'2M 0219-39 B'	13.90	18070.0	0.169719
6	b'2M 0441+23 B'	7.50	9750.0	0.091575
7	b'2M 1938+46 B'	1.90	2470.0	0.023199
8	b'2M 2140+16 B'	20.00	26000.0	0.244200
9	b'51 PEG B'	0.47	611.0	0.005739

The average mass is 1426 Earth-size

period is the orbital period around the host star.

print('{0} variable'.format(exoplanets.columns[1]))

period_days variable

Out[17]:

	exoplanet	period_days	period_years
0	b'11 COM B'	326.029999	0.89
1	b'11 OPH B'	730000.000000	2000.00
2	b'11 UMI B'	516.219971	1.41
3	b'14 AND B'	185.839996	0.51
4	b'14 HER B'	1773.400024	4.86

```
In [18]: # Descriptive characteristics about the period variable expressed in years,

# Mean, Variance, and Standard Deviation,
per_mean = exoplanets.period_years.mean()
per_var = exoplanets.period_years.var()
per_std = exoplanets.period_years.std()

print('The period average is {0} years'.format(round(per_mean)))
print('Total of mass differences from the mean: {0}'.format(round(per_var)))
print('Standard deviation is {0}'.format(round(per_std)))

# Standard Deviation is greater magnitude than mean,
# It can indicate that data are spread out or it has outliers.
```

```
The period average is 2 years
Total of mass differences from the mean: 1464
Standard deviation is 38
```

There is a significant difference between period exoplanets.

In [19]: # Handle mass outliers,

I will use data normalization with the Min-Max method,
exoplanets['per_years_MinMax'] = ((exoplanets['period_years'] - exoplanets['period_years'].min()) / (exoplanets['period_years'].max() - exoplanets['period_years'].min()))
exoplanets.head(10)

Out[19]:

	exoplanet	period_days	period_years	per_years_MinMax
0	b'11 COM B'	326.029999	0.89	0.000445
1	b'11 OPH B'	730000.000000	2000.00	1.000000
2	b'11 UMI B'	516.219971	1.41	0.000705
3	b'14 AND B'	185.839996	0.51	0.000255
4	b'14 HER B'	1773.400024	4.86	0.002430
5	b'16 CYG B B'	799.500000	2.19	0.001095
6	b'18 DEL B'	993.299988	2.72	0.001360
7	b'1SWASP J1407 B'	3725.000000	10.21	0.005105
8	b'24 BOO B'	30.350599	0.08	0.000040
9	b'24 SEX B'	452.799988	1.24	0.000620

The average period is 1.02 years


```
##ellinse variable##
         # The ellipse variable is a calculated variable.
         # This variable indicates the total ellipse perimeter.
         # I have to calculate the ellipse perimeter with semi_major_axis and semi_minor_axis variables, but
         # the semi_minor_axis variable does not exist in the database. ALthough,
         # the eccentricity variable exists in the database.
        # I can calculate semi_minor_axis using eccentricity and semi_major_axis.
         # Formula to calculate semi_minor_axis:
         # semi_minor_axis [b] = semi_major_axis [a] * SQRT(1 - POWER(eccentricity, 2))
         sql = ('SELECT UPPER(target_name) AS exoplanet,'
                       semi_major_axis,
                       eccentricity,
                       semi_major_axis * SQRT(1 - POWER(eccentricity, 2)) AS semi_minor_axis'
               ' FROM exoplanet.epn_core'
               ' WHERE semi_major_axis IS NOT NULL'
                   AND eccentricity IS NOT NULL')
         exoplanets = dsc.ConvertDataframe(sql)
         exoplanets.head()
```

Out[21]:

_				
	exoplanet	semi_major_axis	eccentricity	semi_minor_axis
0	b'11 COM B'	1.29	0.231	1.255110
1	b'11 UMI B'	1.54	0.080	1.535064
2	b'14 AND B'	0.83	0.000	0.830000
3	b'14 HER B'	2.77	0.369	2.574519
4	b'16 CYG B B'	1.68	0.689	1.217599

In [22]: # Exoplanets percentage to which ellipse perimeter can be calculated,

per_data = round((len(exoplanets) * 100) / exoplanet_num.total[0],2)
print('ellipse perimeter can be calculated only in {0}% of exoplanets.'.format(per_data))

ellipse perimeter can be calculated only in 36.13% of exoplanets.

```
In [23]: # I will calculate the ellipse perimeter using semi_major_axis and semi_minor_axis.
# I will use Ramanujan's formula which is more accurate:

# h = POWER(semi_major_axis - semi_minor_axis, 2) / POWER(semi_major_axis + semi_minor_axis, 2)
# ellipse = math.pi * (semi_major_axis + semi_minor_axis) * (1 + ((3 * h) / (10 + SQRT(4 - (3 * h)))))

# Calculate h,

exoplanets['h'] = pow(exoplanets.semi_major_axis - exoplanets.semi_minor_axis, 2) / pow(exoplanets.semi_major_axis + exoplanets.semi_minor_axis, 2)
exoplanets.head()
```

Out[23]:

	exoplanet	semi_major_axis	eccentricity	semi_minor_axis	h
0	b'11 COM B'	1.29	0.231	1.255110	1.879232e-04
1	b'11 UMI B'	1.54	0.080	1.535064	2.576476e-06
2	b'14 AND B'	0.83	0.000	0.830000	7.156889e-32
3	b'14 HER B'	2.77	0.369	2.574519	1.337796e-03
4	b'16 CYG B B'	1.68	0.689	1.217599	2.546601e-02

In [24]: # Calculate ellipse parameter, exoplanets['ellipse'] = round(math.pi * (exoplanets.semi major axis + exoplanets.semi minor axis) * (1 + ((3 * exoplane ts.h) / (10 + np.sqrt(4 - (3 * exoplanets.h))))), 2) # ellipse perimeter is in AU = 92,96 million miles. # An astronomical unit (AU) is the average distance between the Earth and the Sun. # The length of Earth's trajectory around the sun is 584 million miles, that is, # its ellipse perimeter is 6.28 AUs. exoplanets.head()

Out[24]:

	exoplanet	semi_major_axis	eccentricity	semi_minor_axis	h	ellipse
0	b'11 COM B'	1.29	0.231	1.255110	1.879232e-04	8.00
1	b'11 UMI B'	1.54	0.080	1.535064	2.576476e-06	9.66
2	b'14 AND B'	0.83	0.000	0.830000	7.156889e-32	5.22
3	b'14 HER B'	2.77	0.369	2.574519	1.337796e-03	16.80
4	b'16 CYG B B'	1.68	0.689	1.217599	2.546601e-02	9.16

In [25]: # Descriptive characteristics about the ellipse variable expressed in AUs, # Mean, Variance, and Standard Deviation, ellipse mean = exoplanets.ellipse.mean() ellipse_var = exoplanets.ellipse.var() ellipse_std = exoplanets.ellipse.std() print('The ellipse average is {0} AUs'.format(round(ellipse_mean, 2))) print('Total of mass differences from the mean: {0}'.format(round(ellipse_var))) print('Standard deviation is {0} AUs'.format(round(ellipse_std, 2)))

Standard Deviation is greater magnitude than mean, # It can indicate that data are spread out or it has outliers. # There is a significant difference between mass exoplanets.

The ellipse average is 8.26 AUs Total of mass differences from the mean: 1137 Standard deviation is 33.72 AUs

In [26]: # Handle outliers of ellipse variable,

I will use data normalization with the Min-Max method, exoplanets['ellipse_MinMax'] = ((exoplanets['ellipse'] - exoplanets['ellipse'].min()) / (exoplanets['ellipse'].max() exoplanets['ellipse'].min())) exoplanets.head(10)

Out[26]:

	exoplanet	semi_major_axis	eccentricity	semi_minor_axis	h	ellipse	ellipse_MinMax
0	b'11 COM B'	1.290	0.231	1.255110	1.879232e-04	8.00	0.011064
1	b'11 UMI B'	1.540	0.080	1.535064	2.576476e-06	9.66	0.013369
2	b'14 AND B'	0.830	0.000	0.830000	7.156889e-32	5.22	0.007205
3	b'14 HER B'	2.770	0.369	2.574519	1.337796e-03	16.80	0.023280
4	b'16 CYG B B'	1.680	0.689	1.217599	2.546601e-02	9.16	0.012674
5	b'18 DEL B'	2.600	0.080	2.591667	2.576476e-06	16.31	0.022600
6	b'24 BOO B'	0.190	0.042	0.189832	1.948246e-07	1.19	0.001610
7	b'24 SEX B'	1.333	0.090	1.327590	4.134078e-06	8.36	0.011564
8	b'24 SEX C'	2.080	0.290	1.990615	4.821753e-04	12.79	0.017714
9	b'2M 2140+16 B'	3.530	0.260	3.408598	3.061295e-04	21.80	0.030221

The average ellipse is 5.68 AUs

There are 2914 stars with known distances

exoplanets.head()

Out[28]:

	star	exoplanet	dist_pc	dist_ly
0	b'11 COM'	b'11 COM B'	110.599998	360.56
1	b'11 OPH'	b'11 OPH B'	145.000000	472.70
2	b'11 UMI'	b'11 UMI B'	119.500000	389.57
3	b'14 AND'	b'14 AND B'	76.400002	249.06
4	b'14 HER'	b'14 HER B'	18.100000	59.01

The farthest star is b'XTE J1751-305' to 35860.0 light years

```
In [30]: # Exoplanets that belong to that distant star,
                    exoplanets.loc[exoplanets.star == faraway['star'][0]].exoplanet
Out[30]: 2865
                                    b'XTE J1751-305 B'
                   Name: exoplanet, dtype: object
In [31]: # The closest star discovered to date,
                    closeStart = exoplanets.loc[exoplanets.dist_ly == exoplanets['dist_ly'].min()]
                    closeStart = closeStart.reset_index(drop = True)
                    closeStart = closeStart.loc[:, ['star', 'dist ly']]
                    print('The closest star is {0} to {1} light years'.format(closeStart['star'][0], closeStart['dist_ly'][0]))
                    The closest star is b'PROXIMA CENTAURI' to 4.22 light years
In [32]: # Exoplanets that belong to that close star,
                    exoplanets.loc[exoplanets.star == closeStart['star'][0]].exoplanet
Out[32]: 2659
                                    b'PROXIMA CENTAURI B'
                    2660
                                    b'PROXIMA CENTAURI C'
                    Name: exoplanet, dtype: object
In [33]: # Descriptive characteristics about the distance variable,
                    dist_mean = exoplanets.dist_ly.mean()
                    dist_var = exoplanets.dist_ly.var()
dist_std = exoplanets.dist_ly.std()
                    print('The average distance is {0} light years'.format(round(dist_mean)))
                    print('Total of distances differences from the mean: {0}'.format(round(dist_var)))
                    print('Standard deviation is {0}'.format(round(dist_std)))
                    # Standard Deviation is greater magnitude than mean,
                    # It can indicate that data are spread out or it has outliers.
                    # There is a significant difference between farthest stars and closest stars.
                    The average distance is 2043 light years
                    Total of distances differences from the mean: 10690559
                    Standard deviation is 3270
In [34]: # Handle outliers of distance variable,
                    # I will use data normalization with the Min-Max method,
                    exoplanets['dist_ly_MinMax'] = ((exoplanets['dist_ly'] - exoplanets['dist_ly'].min()) \ / \ (exoplanets['dist_ly'].max() - exoplanets['dist_ly'].min()) \ / \ (exoplanets['dist_ly'].min()) \ / \ (exoplan
                    exoplanets['dist_ly'].min()))
                    exoplanets.head(10)
```

Out[34]:

	star	exoplanet	dist_pc	dist_ly	dist_ly_MinMax
0	b'11 COM'	b'11 COM B'	110.599998	360.56	0.009938
1	b'11 OPH'	b'11 OPH B'	145.000000	472.70	0.013066
2	b'11 UMI'	b'11 UMI B'	119.500000	389.57	0.010747
3	b'14 AND'	b'14 AND B'	76.400002	249.06	0.006828
4	b'14 HER'	b'14 HER B'	18.100000	59.01	0.001528
5	b'16 CYG B'	b'16 CYG B B'	21.410000	69.80	0.001829
6	b'18 DEL'	b'18 DEL B'	73.099998	238.31	0.006529
7	b'1RXS 1609'	b'1RXS 1609 B'	145.000000	472.70	0.013066
8	b'1SWASP J1407'	b'1SWASP J1407 B'	133.000000	433.58	0.011975
9	b'24 BOO'	b'24 BOO B'	100.000000	326.00	0.008974

The average distance is 1194 light years

Out[38]:

	exoplanet	detection	mass	dist_ly	detection_cat
0	b'11 COM B'	b'Radial Velocity'	NaN	361.0	7
1	b'11 OPH B'	b'Imaging'	21.0	473.0	1
2	b'11 UMI B'	b'Radial Velocity'	NaN	390.0	7
3	b'14 AND B'	b'Radial Velocity'	NaN	249.0	7
4	b'14 HER B'	b'Radial Velocity'	NaN	59.0	7

In [39]: # Filter exoplanets discovered with the Primary Transit method, transit = exoplanets[exoplanets.detection_cat == 4] print('{0} exoplanets discovered with the Primary Transit method.'.format(len(transit))) transit.head()

2967 exoplanets discovered with the Primary Transit method.

Out[39]:

	exoplanet	detection	mass	dist_ly	detection_cat
9	b'1SWASP J1407 B'	b'Primary Transit'	NaN	434.0	4
30	b'38 VIR B'	b'Primary Transit'	NaN	NaN	4
39	b'55 CNC E'	b'Primary Transit'	0.0	40.0	4
54	b'AD 3116 B'	b'Primary Transit'	54.0	608.0	4
65	b'BD+20 594 B'	b'Primary Transit'	0.0	496.0	4

```
In [40]: # Histogram of mass variable in the Primary Transit method,
hist_mass = ts2.Hist(transit.mass, label = 'Transit')
print(hist_mass[0])
tp.Hist(hist_mass)
tp.Config(xlabel = 'mass (jupMass)', ylabel = 'Count Exoplanets')
369
```



```
In [41]: # Normalize the distribution.
# I will divide by the total count of mass:

count_mass = hist_mass.Total()
pmf_mass = hist_mass.Copy()
for x, freq in hist_mass.Items():
    pmf_mass[x] = freq / count_mass
```

```
In [42]: # Example,
# What is the probability of discovering an exoplanet with the Primary Transit method whose mass is 1 Jupiter?
print('Probability {0}% of discovering an exoplanet with 1 Jupiter mass with the Primary Transit method.'.format(round ((pmf_mass[1] * 100), 2)))
```

Probability 30.45% of discovering an exoplanet with 1 Jupiter mass with the Primary Transit method.

In [44]: # PFM of star distance in the Primary Transit method,
 pmf_dist_ly = ts2.Pmf(transit.dist_ly, label = 'Transit')

In [45]: # Histogram of star distance in the Primary Transit method,
 tp.Hist(pmf_dist_ly)
 tp.Config(xlabel = 'Start Distance (Light Years)', ylabel = 'PMF')

In [46]: # PMF Histogram of star distance in the Primary Transit method,
 tp.Pmf(pmf_dist_ly)
 tp.Config(xlabel = 'Start Distance (Light Years)', ylabel = 'PMF')

In [49]: cdf_dist = ts2.Cdf(transit.dist_ly, label = 'Transit')
 tp.Cdf(cdf_dist)
 tp.Config(xlabel = 'Star Distance (Light Years)', ylabel = 'CDF', loc = 'upper left')

In [50]: # Get the probability that corresponds to star distances.
For example, What is the probability that start distances are less 5,000 light years in the Primary Transit method?

print('{0}% of star distances are less than or equal to 5000 light years in the Primary Transit method.'.format(round((cdf_dist.Prob(5000) * 100), 2)))

97.71% of star distances are less than or equal to 5000 light years in the Primary Transit method.

In [51]: # Average star distance in the Primary Transit method,
 print('The median is {0} light years in the Primary Transit method.'.format(round(cdf_dist.Value(0.5))))

The median is 2034.0 light years in the Primary Transit method.

```
In [52]: # visualize two distributions,
# 1. Primary Transit detection method
# 2. Other detection methods

transit_cdf = ts2.Cdf(transit.mass, label = 'Transit')
othermethods_cdf = ts2.Cdf(other_methods.mass, label = 'Other Methods')

tp.PrePlot(2)
tp.Cdfs([transit_cdf, othermethods_cdf])
tp.Config(xlabel = 'mass (jupMass)', ylabel = 'CDF')

# Large exoplanets are more likely to find them with the Primary Transit detection method.
```


In [53]: # For example,
 # Exoplanets with 20 jupiter-mass have a high probability of beging found with the Primary Transit detection method.

print('{0}% probability of finding exoplanets with 20 jupiter-mass in the Primary Transit detection method.'.format(round(transit_cdf.Prob(20), 2) * 100))
print('{0}% probability of finding exoplanets with 20 jupiter-mass in other methods.'.format(round(othermethods_cdf.Prob(20), 2) * 100))

98.0% probability of finding exoplanets with 20 jupiter-mass in the Primary Transit detection method. 74.0% probability of finding exoplanets with 20 jupiter-mass in other methods.

```
In [56]: #Create and fit the ellipse model.
         # Estimate ellipse parameters: mean, variance, and standard deviation,
         # Trimming outliers: p is the fraction of values to trim off each end.
         vellipse = exoplanets.ellipse.dropna()
         ellipse_mean, ellipse_var = ts2.TrimmedMeanVar(vellipse, p = 0.04)
         print('Ellipse average {0} AUs'.format(round(ellipse_mean, 2)))
         print('Ellipse variance: {0}'.format(round(ellipse_var, 2)))
         ellipse_std = np.sqrt(ellipse_var)
         print('Standard deviation is {0} AUs'.format(round(ellipse_std, 2)))
         Ellipse average 4.75 AUs
         Ellipse variance: 43.23
         Standard deviation is 6.58 AUs
In [57]: # Plot the ellipse model,
         # Up to 40 AUs,
         ellipse_xs, ellipse_ps = ts2.RenderNormalCdf(ellipse_mean, ellipse_std, low = 0, high = 40)
         tp.Plot(ellipse_xs, ellipse_ps, label = 'ellipse model', color = 'red')
         # plot the data
         cdf = ts2.Cdf(vellipse, label = 'ellipse data')
         tp.PrePlot(1)
         tp.Cdf(cdf)
         tp.Config(title = 'Exoplanets Ellipse',
                    xlabel = 'Ellipse (AUs)',
                    ylabel = 'CDF')
         # This is the CDF and the model.
         # It seems that the ellipse model doesn't fit the data well.
         # I will take the segment between 0 and 40AUs
```



```
In [60]: # Normal probability plot for exoplanets ellipses,

# Estimate ellipse parameters: mean, variance, and standard deviation,
# Trimming outliers: p is the fraction of values to trim off each end.

vellipse = exoplanets.ellipse.dropna()
ellipse_mean, ellipse_var = ts2.TrimmedMeanVar(vellipse, p = 0.04)
ellipse_std = np.sqrt(ellipse_var)
print('Standard deviation is {0} AUs'.format(round(ellipse_std, 2)))
```

Standard deviation is 6.58 AUs


```
# The ellipse variable is a calculated variable.
# This variable indicates the total ellipse perimeter.
# period is the orbital period around the host star.
# I will filter some period outliers of more than 100 years.
sql = ('SELECT UPPER(target_name) AS exoplanet,'
              period AS period days,
              ROUND(period/365, 2) AS period_years,'
               semi_major_axis,
              eccentricity,
               semi_major_axis * SQRT(1 - POWER(eccentricity, 2)) AS semi_minor_axis'
        FROM exoplanet.epn_core'
        WHERE semi_major_axis IS NOT NULL'
          AND eccentricity IS NOT NULL'
          AND period IS NOT NULL'
          AND ROUND(period/365, 2) <= 100')
exoplanets = dsc.ConvertDataframe(sql)
exoplanets['h'] = pow(exoplanets.semi_major_axis - exoplanets.semi_minor_axis, 2) / pow(exoplanets.semi_major_axis + ex
oplanets.semi_minor_axis, 2)
exoplanets['ellipse'] = round(math.pi * (exoplanets.semi_major_axis + exoplanets.semi_minor_axis) * (1 + ((3 * exoplane
ts.h) / (10 + np.sqrt(4 - (3 * exoplanets.h))))), 2)
print(len(exoplanets))
exoplanets.head()
```

1466

Out[63]:

	exoplanet	period_days	period_years	semi_major_axis	eccentricity	semi_minor_axis	h	ellipse
0	b'11 COM B'	326.029999	0.89	1.29	0.231	1.255110	1.879232e-04	8.00
1	b'11 UMI B'	516.219971	1.41	1.54	0.080	1.535064	2.576476e-06	9.66
2	b'14 AND B'	185.839996	0.51	0.83	0.000	0.830000	7.156889e-32	5.22
3	b'14 HER B'	1773.400024	4.86	2.77	0.369	2.574519	1.337796e-03	16.80
4	b'16 CYG B B'	799.500000	2.19	1.68	0.689	1.217599	2.546601e-02	9.16

```
In [64]: # I will select period and ellipse variables,
    vperiod, vellipse = exoplanets.period_years, exoplanets.ellipse
```


The covariance between period and ellipse is 50.39

The correlation between period and ellipse is 0.8

The Spearman correlation between period and ellipse is 0.42

My hypothesis is that there are differences in the ellipses of exoplanets that are discovered by the Primary Transit method and other methods.

The null hypothesis (H_0) is that there is not difference between Primary Transit method and other methods; # that is, that ellipses perimeter for both groups have the same distribution.

```
In [71]: # I will select exoplanets discovered with the Primary Transit method and others methods.
         sql = ('SELECT UPPER(target name) AS exoplanet,'
                        detection_type AS detection,'
                        semi_major_axis,'
                        eccentricity,'
                        semi_major_axis * SQRT(1 - POWER(eccentricity, 2)) AS semi_minor_axis,'
                        period AS period_days,
                        ROUND(period/365, 2) AS period_years'
                ' FROM exoplanet.epn_core'
                ' WHERE semi_major_axis IS NOT NULL'
                   AND eccentricity IS NOT NULL'
                    AND detection_type IS NOT NULL'
                    AND ROUND(period/365, 2) <= 100')
         exoplanets = dsc.ConvertDataframe(sql)
         # Calculate ellipse variable,
         exoplanets['h'] = pow(exoplanets.semi_major_axis - exoplanets.semi_minor_axis, 2) / pow(exoplanets.semi_major_axis + ex
         oplanets.semi_minor_axis, 2)
         exoplanets.head()
         exoplanets['ellipse'] = round(math.pi * (exoplanets.semi_major_axis + exoplanets.semi_minor_axis) * (1 + ((3 * exoplane
         ts.h) / (10 + np.sqrt(4 - (3 * exoplanets.h))))), 2)
         # Convert detection categorical variable to codes,
         exoplanets['detection_cat'] = exoplanets.detection
         exoplanets.detection_cat = pd.Categorical(exoplanets.detection_cat)
         exoplanets['detection_cat'] = exoplanets.detection_cat.cat.codes
         # Filter exoplanets discovered with the Primary Transit method and other methods,
         transit = exoplanets[exoplanets.detection cat == 4]
         other_methods = exoplanets[exoplanets.detection_cat != 4]
```

Out[72]:

	exoplanet	detection	semi_major_axis	eccentricity	semi_minor_axis	period_days	period_years	h	ellipse	detection_cat
14	b'38 VIR B'	b'Primary Transit'	1.820000	0.030	1.819181	825.900024	2 26	5.067059e- 08	11.43	4
23	b'55 CNC E'	b'Primary Transit'	0.015439	0.028	0.015433	0.736548	0.00	3.844614e- 08	0.10	4
43	b'BD+20 594 B'	b'Primary Transit'	0.241000	0.000	0.241000	41.685501	0 11	5.305501e- 32	1.51	4
57	b'COROT- 1 B'	b'Primary Transit'	0.025400	0.000	0.025400	1.508960	0.00	1.679174e- 31	0.16	4
58	b'COROT- 10 B'	b'Primary Transit'	0.105500	0.530	0.089464	13.240600	0.04	6.765466e- 03	0.61	4

Out[73]:

	exoplanet	detection	semi_major_axis	eccentricity	semi_minor_axis	period_days	period_years	h	ellipse	detection_cat
0	b'11 COM B'	b'Radial Velocity'	1.29	0.231	1.255110	326.029999	0.89	1.879232e- 04	8.00	7
1	b'11 UMI B'	b'Radial Velocity'	1.54	0.080	1.535064	516.219971	11.41	2.576476e- 06	9.66	7
2	b'14 AND B'	b'Radial Velocity'	0.83	0.000	0.830000	185.839996	10.51	7.156889e- 32	5.22	7
3	b'14 HER B'	b'Radial Velocity'	2.77	0.369	2.574519	1773.400024	4.86	1.337796e- 03	16.80	7
4	b'16 CYG B B'	b'Radial Velocity'	1.68	0.689	1.217599	799.500000	2.19	2.546601e- 02	9.16	7

```
In [74]: # Permutation test,

#data = transit.ellipse.values, other_methods.ellipse.values
data = other_methods.ellipse.values, transit.ellipse.values
ht = ts2.DiffMeansPermute(data)

print('p-value is {0}'.format(ht.PValue()))

# A small p-value indicates that the observations are inconsistent with the Null hypothesis.
# So we reject the null hypothesis (there is not difference).
# Therefore, there is a significant difference in the ellipse perimeters
# when exoplanets are discovered by the Primary Transit method and other methods.
```

p-value is 0.0

Out[77]: OLS Regression Results

Dep. Variable:	ellipse	R-squared:	0.904
Model:	OLS	Adj. R-squared:	0.904
Method:	Least Squares	F-statistic:	5763.
Date:	Sat, 16 Nov 2019	Prob (F-statistic):	3.04e-314
Time:	15:34:40	Log-Likelihood:	-685.25
No. Observations:	616	AIC:	1375.
Df Residuals:	614	BIC:	1383.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.5015	0.030	16.613	0.000	0.442	0.561
period_years	3.4247	0.045	75.914	0.000	3.336	3.513

Omnibus:	240.285	Durbin-Watson:	1.498
Prob(Omnibus):	0.000	Jarque-Bera (JB):	39897.376
Skew:	0.536	Prob(JB):	0.00
Kurtosis:	42.412	Cond. No.	1.56

Warnings

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [78]: # Intercep and Slope,
  inter = results.params['Intercept']
  slope = results.params['period_years']
  inter, slope
```

Out[78]: (0.5015045154559239, 3.4246696391721168)

```
In [79]: # The p-value of the slope estimate,
     slope_pvalue = results.pvalues['period_years']
     slope_pvalue
```

Out[79]: 3.0393332957e-314

```
In [80]: # The coefficient of determination,
    results.rsquared
# The coefficient of determination explains in a 90% the variability between period and ellipse.
```

Out[80]: 0.9037145023364705

Out[81]: 0.0

In [82]: # Difference in periods between transit method and other methods,
 diff_period = transit.period_years.mean() - other_methods.period_years.mean()
 diff_period

With other detection methods, different to Primary Transit method,
we can find exoplanets with greater orbital periods.

Out[82]: -2.8593877005347643