

Use of 2D-Video Disdrometer to Derive Mean Density-Size and Z_e -SR Relations: Four Snow Cases from the Light Precipitation Validation Experiment

Gwo-Jong Huang and V. N. Bringi
Colorado State University, Fort Collins, Colorado

Dmitri Moisseev
University of Helsinki and Finnish Meteorological Institute, Helsinki, Finland

W. A. Petersen and L. Bliven
NASA GSFC/Wallops Flight Facility, Wallops Island, VA

David Hudak
Environment Canada, Downsview, Ontario, CA

Submitted to Atmospheric Research

Submitted: February 2014

Corresponding author address: Gwo-Jong Huang, Colorado State University, Fort Collins, Colorado, CO 80525.
E-mail: gh222106@engr.colostate.edu

1 ABSTRACT

2 The application of the 2D-video disdrometer to measure fall speed and snow size distribution
3 and to derive liquid equivalent snow rate, mean density-size and reflectivity-snow rate power
4 law is described. Inversion of the methodology proposed by Böhm provides the pathway to use
5 measured fall speed, area ratio and '3D' size measurement to estimate the mass of each
6 particle. Four snow cases from the Light Precipitation Validation Experiment are analyzed with
7 supporting data from other instruments such as Precipitation Occurrence Sensor System
8 (POSS), Snow Video Imager (SVI), a network of seven snow gauges and three scanning C-
9 band radars. The radar-based snow accumulations using the 2DVD-derived Z_e -SR relation are
10 in good agreement with a network of seven snow gauges and outperform the accumulations
11 derived from a climatological Z_e -SR relation used by the Finnish Meteorological Institute (FMI).
12 The normalized bias between radar-derived and gauge accumulation is reduced from 96%
13 when using the fixed FMI relation to 28% when using the Z_e -SR relations based on 2DVD data.
14 The normalized standard error is also reduced significantly from 66% to 31%. For two of the
15 days with widely different coefficients of the Z_e -SR power law, the reflectivity structure showed
16 significant differences in spatial variability. Liquid water path estimates from radiometric data
17 also showed significant differences between the two cases. Examination of SVI particle images
18 at the measurement site corroborated these differences in terms of unrimed versus rimed snow
19 particles. The findings reported herein support the application of Böhm's methodology for
20 deriving the mean density-size and Z_e -SR power laws using data from 2D-video disdrometer.

21

22 **1. Introduction**

23 The measurement of liquid equivalent snow rate (*SR*) from radar has long been
24 recognized as a difficult problem in quantitative precipitation estimation (QPE) but one
25 of great importance for weather forecasting, hydrology, detection of aviation hazards
26 and other remote sensing applications (e.g., ground validation for microwave radiometry
27 from space). The validation of QPE by radar is difficult at best given the fact that
28 accurate measurement of winter precipitation by gauges remains challenging due to the
29 sheer variety and variability of physical properties which can change dramatically with,
30 for example, relatively small changes in environmental conditions. Some of the
31 important physical properties that one could list, for example, are (i) ‘3D’-size, (ii)
32 terminal fall speed, (iii) particle size distribution, (iv) density (or, mass), (v) shape, (v)
33 composition and (vi) porosity. Some of these attributes are not independent as
34 evidenced by the large literature that exists in describing density (or, mass)-size and fall
35 speed-size relations for different kinds of winter precipitation (e.g., Pruppacher and Klett
36 2010; Mason 2010). The fall speed is also dependent on shape, composition and
37 porosity. Thus, it follows that fall speed is fundamental to characterization of frozen
38 precipitation followed by a good measure of ‘3D’-size, particle size distribution and
39 porosity. From the radar reflectivity perspective, the ‘3D’-size and associated size
40 distribution and the density (or, mass)-size relation is of fundamental importance. For
41 Rayleigh scattering the reflectivity is directly related to $E[m(D)^2]$ where m is the particle
42 mass and E stand for expectation or integration over the size distribution (Ryzhkov et al.
43 1998); however, the mass is not easily measured on a particle-by-particle basis. On the
44 other hand, the liquid equivalent snow rate (*SR*) is directly related to $E[m(D) V_f(D)]$

45 where V_f is the fall speed. It follows that empirical Z_e -SR power laws can be derived if
46 mass- D and V_f - D power laws are assumed (e.g., Matrosov et al. 2009) and the size
47 distribution is measured (e.g., Sekhon and Srivastava 1970). The simulations of
48 Matrosov et al. (2009) suggest that the overall uncertainty of estimating SR from
49 reflectivity measurements can be as high as a factor of 3 or so. A more direct method is
50 to correlate Z_e from radar with SR measured by snow gauges (e.g., Fujiyoshi et al. 1990
51 and references therein) which can lead to climatological Z_e -SR power law. The advent
52 of optical-based surface disdrometers, however, has led to more accurate methods to
53 characterize the physical properties of snow, leading to m - D , V_f - D and area ratio- D
54 relations that are consistent via hydrodynamic theory (Böhm 1989; Mitchell 1996;
55 Heymsfield and Westbrook 2010). Combined with scattering models (size, shape,
56 dielectric constant), it leads to more consistent Z_e -SR power laws (Huang et al. 2011).

57

58 There are a number of disdrometers (mainly optical) that are available (some
59 commercial and others in the research category) that measure a sub-set of the physical
60 parameters listed above (only instruments that can image the particles are considered
61 here). Hanesch (1999) and Schönhuber et al. (2000) used the 1st generation 2D-video
62 disdrometer (2DVD) which measures fall speed and two orthogonal images from which
63 an apparent volume (also, size distribution based on '3D'-size) as well as an estimate of
64 porosity (via the area ratio to be described later) can be computed. Later, Brandes et al.
65 (2007) used the 2DVD to estimate the coefficient and exponent of a mean density- D_0
66 power law (mainly for fluffy snow aggregates) by comparing 15-min liquid water
67 accumulations with a collocated Geonor gauge (D_0 is the median volume diameter of

the particle size distribution). They also examined the particle size distribution in detail by fitting with a gamma model and deriving correlations between the model parameters (e.g., shape parameter μ and slope parameter Λ). They conclude (in their Section 6, page 648) that, "...The video disdrometer is a powerful observational tool for studying the microphysical properties of winter storms". Further, Brandes et al. (2008) investigated power law relation between terminal fall speed and size and its dependence on temperature. The use of radar and 2DVD for estimating density-size and Z_e -SR power laws is described by Huang et al. (2010; 2011) whereas Zhang et al. (2011) demonstrated the importance of density-size power laws (empirically adjusted by fall speed) in comparing 2DVD-based reflectivity with ground radar. While the 2DVD is commercially available, a similar research instrument HVSD (Hydrometeor Velocity Size Detector; Barthazy et al. 2004) measures the fall speed and projected image in one plane. It has been used by Zawadzki et al. (2010) to investigate the natural variability of snow terminal velocity with size. They concluded that the exponent of the terminal velocity- D power law could be fixed at 0.18, while the coefficient is variable from event-to-event. Szyrmer and Zawadzki (2010) describe a methodology to derive the average relationship between terminal fall velocity and the mass of snowflakes via elaboration of the methodology of Böhm (1989) proposed by earlier Hanesch (1999); the latter used the 1st generation tall 2DVD design. In fact, the development of the HVSD by Barthazy et al. (2004) followed Hanesch and lead to a simpler instrument with two parallel light planes but with much slower line scan frequency camera. The work described herein follows Szyrmer and Zawadzki (2010) but uses the 2nd generation low profile 2DVD

90 (Schöenhuber et al. 2008) to derive the Z_e -SR power law with validation provided by a
91 network of seven snow gauges.

92

93 Another research instrument is the Snow Video Imager (SVI; Newman et al. 2009)
94 which, unlike the line scan camera, uses a CCD (charge-coupled device) full frame
95 camera (60 frames per second) and images are obtained almost simultaneously;
96 however, it does not measure the fall speed. SVI software yields a size estimate of each
97 particle as an equivalent diameter that corresponds to a circular equivalent-area
98 diameter of the irregular shape (with holes filled). Some advantages of the SVI over the
99 2DVD is that it has a large sample volume (twice that of the 2DVD), better pixel
100 resolution (nominally 0.05 mm by 0.1 mm) and its measurements are less sensitive to
101 wind. In this work, the SVI is mainly used to determine the particle size distribution for
102 comparison with the 2DVD, and to examine samples of images to distinguish between
103 unrimed and rimed snow particles. A new commercially available instrument is the Multi-
104 Angle Snowflake Camera (MASC; Garrett et al. 2012) which gives high resolution (10-
105 50 μm) photographs of snow particles from three viewing angles, along with their fall
106 speed. One disadvantage is that the sample volume is small (about 1/10 of the 2DVD).

107

108 This article is organized as follows. In Section 2 the specific details of estimating the
109 apparent volume and '3D'-apparent diameter, the adjusted particle size distribution and
110 the application of Böhm's (1989) method are described. Section 3 constitutes the main
111 bulk of the article and describes the 2DVD processing and derived products culminating

112 in Z_e -SR power laws for the four snow days, comparison of liquid equivalent snow
113 accumulations derived from radar with a network of 7 snow gauges, and radar-based
114 accumulation maps. A short summary and conclusions are given in Section 4.

115 **2. The basis for snow measurements using the 2D-video disdrometer**

116 *2.1 The apparent volume and diameter*

117 The 2DVD gives two views (front and side views; actually silhouettes) of the particle in
118 two orthogonal planes as shown in the example in Fig. 1. It is obvious that the ‘true’
119 volume of such an irregular particle cannot be calculated and thus we define here the
120 apparent volume (VL_{app}) assuming that the particle is an ellipsoid. The apparent volume
121 is defined as an average of two ellipsoidal volumes:

122
$$VL_{app} = \frac{\pi}{6} D_{app}^3 = \frac{VL_{app1} + VL_{app2}}{2} \dots\dots\dots(1)$$

123 where the apparent diameter is D_{app} and,

124
$$VL_{app1} = \frac{\pi}{6} (H * W_1 * W_2) \dots\dots\dots(2)$$

125 where,

126
$$H = \sqrt{H_1 * H_2} \dots\dots\dots(3a)$$

127

128
$$W_{1,2} = \frac{4 * A_{e1,2}}{\pi * H} \dots\dots\dots(3b)$$

129 The $A_{e1,2}$ are the shadow areas (see Fig. 1) from the two views. The second ellipsoid
130 estimate, VL_{app2} , is defined as:

131
$$VL_{app2} = \frac{\pi}{6} (HH * W_{max1} * W_{max2}) \dots\dots\dots(4)$$

132 where,

133

134 $HH = \sqrt{HH_1 * HH_2} \dots\dots\dots(5a)$

135 $HH_{1,2} = \frac{4*A_{e1,2}}{\pi*W_{max1,2}} \dots\dots\dots(5b)$

136 In (5b) the W_{max} equals the maximum width of the scan line or ‘slice’ (measured from left
137 to right in Fig. 1); the subscripts 1,2 refer to maximum width as determined from each
138 view. The method of calculating VL_{app} and D_{app} here generally follows Hanesch (1999)
139 which is somewhat different from Schönhuber et al. (2000) which was used later by
140 Brandes et al. (2007). Also, the apparent diameter (D_{app}) is different from the ‘size’
141 measured by instruments that give the particle image in only one plane such as aircraft-
142 mounted imaging probes (which give the top view). The ‘size’ is often defined as the
143 maximum distance between two pixels or the diameter of the smallest circle that
144 completely circumscribes the image or the equivalent-area diameter (Hogan et al.
145 2012). The latter also define the mean diameter as the mean of the particle dimensions
146 in two orthogonal directions which they found to be better related to radar reflectivity.
147 Since the true volume of snowflake is not known, the accuracy of our method of
148 calculating VL_{app} cannot be determined. However, from the simulations of Wood et al.
149 (2012) who used ellipsoidal shape models with canting it is can be inferred that the
150 apparent diameter defined here gives a more ‘realistic’ measure of ‘3D’ size made
151 possible by the availability of two orthogonal images from the 2DVD.

152

153 2.2 Snow size distribution (SSD)

154 In a certain time window (typically 60 seconds for 1-minute averaged size distributions),
155 all ‘matched’ snow particles are sorted into M size bins according to the apparent
156 diameter (D_{app}) and the ‘un-adjusted’ size distribution $N_m(D_i)$ is computed as:

157
$$N_m(D_i) = \frac{1}{\Delta t * \Delta D} \sum_{j=1}^{N_i} \frac{1}{A_j * v_j} \quad [mm^{-1} m^{-3}] \dots\dots\dots(6)$$

158 where D_i is the center diameter of the i^{th} size bin (from 1 to M) in mm; ΔD is the bin
159 width in mm; A_j is the measurement area in mm^2 ; v_j is the fall speed in $m s^{-1}$ and Δt is
160 the time window in seconds. The fall speed measurement is fundamental to the 2DVD
161 and relies on the ability to match the particle that falls in the upper light plane (and is
162 imaged by Camera A) to the same particle that falls through the lower light plane and is
163 imaged by Camera B (see Fig. 2). The match criteria used here are adapted from
164 Hanesch (1999) as elaborated by Huang et al. (2010). If the match criteria are not
165 satisfied then that particle is rejected; it follows that the concentration will tend to be
166 under-estimated. To re-adjust the measured $N_m(D_i)$ for this underestimate (assumed to
167 be a constant factor γ) the following procedure is used.

168

169 Assume that snow falls uniformly over the instrument. Then, the theoretical number of
170 snowflakes falling through the virtual measuring area divided by the theoretical number
171 of snowflakes falling in the scan area of each camera (shown in Fig. 2) should be equal
172 to the ratio of these two areas as:

173
$$\frac{\text{theoretical \# of snowflakes in virtual measuring area}}{\text{theoretical \# of snowflakes in scan area of single camera}} = \frac{100}{250} = 0.4 \dots\dots\dots(7)$$

174 Therefore, an adjustment factor γ is derived as:

$$175 \quad \gamma = \frac{0.4 * (\text{# of snowflakes actually counted in scan area of single camera})}{\text{# of matched snowflakes in virtual measuring area}} \quad \dots \dots \dots (8)$$

176 The “re-adjusted” concentration in each size channel ($N(D_i)$) is defined as:

where γ is assumed constant ($\gamma \geq 1$). In essence, the “raw” or unadjusted SSD is simply scaled by the factor γ . The validity of this adjustment will be evaluated by comparison with SSD from the snow video imager (Newman et al. 2009) as well as determining the γ independently by comparison with the SVI as described later in Section 3.1.

182 2.3 Böhm's Method

Böhm (1989) developed a general methodology for the terminal fall speed of solid hydrometeors based on the mass, the mean effective projected area (A_e ; see Fig. 3, also referred to as shadow area) presented to the flow, and the smallest circumscribed area (A ; circle or ellipse depending on the shape of the snow particle). Since the 2DVD can measure the fall speed of each snowflake as well as two orthogonal images (Fig. 1), we are able to compute the mass of each snowflake by inverting the Böhm equations. The assumption is that A_e which is the projected area in a plane normal to the flow, is approximately equal to the area from the side or front views (measured by the 2DVD) for irregular shaped particles. This assumption has been evaluated as being ‘reasonable’ by Szyrmer and Zawadzki (2010) who use the HVSD which gives the side view only. We first compute the Reynolds number (Re) from fall speed (V_f) and viscosity (η) as:

195

$$Re = \frac{2 * \rho_a * V_f}{\eta} \left(\frac{A}{\pi} \right)^{\frac{1}{2}} \dots\dots\dots (10a)$$

196 where the characteristic dimension is the ‘area’ diameter (A being the area of the
 197 smallest circumscribed ellipse or circle that completely encloses the particle image).
 198 The η and air density (ρ_a) are computed from temperature, air pressure and humidity.
 199 Next, we compute the Davies number (X) from Re as:

200

$$X = \left\{ \frac{\left[\left(\frac{Re}{8.5} \right)^{\frac{1}{2}} + 1 \right]^2 - 1}{0.1519} \right\}^2 \dots\dots\dots (10b)$$

201 Finally the mass of the snowflake is computed as:

202

$$m = \frac{\pi * \eta^2 * X}{8 * g * \rho_a} \left(\frac{A_e}{A} \right)^{1/4} \dots\dots\dots (10c)$$

203 where g is the acceleration due to gravity. The ratio (A_e/A) is referred to as the ‘area
 204 ratio’ or A_r which is ≤ 1 . The MKS units are appropriate for the variables in (10). The
 205 relative error in the estimate of mass due to uncertainty in the fixed relation between X
 206 and Re , and in the estimation of A_r has been evaluated by Szyrmer and Zawadzki
 207 (2010) as between 40-50%. The propagation of error from (10a) to (10c) is complicated
 208 and the reader is referred to the aforementioned reference for details.

209

210 The calculation of the minimum circumscribed area (A) is based on the rectangle which
 211 completely encloses the particle (the rectangle width is W_r and height is H ; see Fig. 1).

212 We first assume that, (i) A is the maximum ellipse that can be fitted inside the rectangle
 213 and compute the area ratio A_e/A which should be ≤ 1 . If this ratio is greater than 1, we
 214 assume that, (ii) A is the minimum circle that can contain the rectangle. The minimum
 215 circumscribed area estimated from (i) usually tends to underestimate A whereas from
 216 (ii) tends to overestimate A . The apparent volume (VL_{app}) and apparent diameter (D_{app})
 217 were defined earlier, thus the density (ρ) is obtained as the ratio of mass (m) to VL_{app} for
 218 each particle. Since our measurements are restricted to frozen ice precipitation, the
 219 density is also restricted to $\min[m/VL_{app} \quad 0.917]$ in cgs units. The mean density is
 220 calculated for each size bin and a power law fit of the form $\rho=aD_{app}^\beta$ is obtained for the
 221 precipitation event. Here D_{app} is in mm and ρ is in $g\text{ cm}^{-3}$. The mass- D_{app} power law then
 222 is $m=a(\pi/6)D_{app}^{\beta+3}$.

223
 224 For an area sampling measurement device such as the 2DVD, the liquid equivalent
 225 snow rate (SR_m) can be computed directly as:

$$226 SR_m = \frac{3600}{\Delta t} \sum_{i=1}^N \sum_{j=1}^M \frac{VL_j}{A_j}; \quad [mm\text{ hr}^{-1}] \dots \dots \dots (11),$$

227 where N is the number of size bins, M is the number of snowflakes in the i^{th} size bin in
 228 Δt (typically 60 seconds), VL_j is the liquid equivalent volume of j^{th} snowflake in mm^3 (this
 229 is the product ρVL_{app} where ρ as a function of D_{app} is given by the power law fit) and A_j
 230 is the measurement area for the j^{th} snowflake in unit of mm^2 . The adjusted snow rate is
 231 $SR = \gamma * SR_m$ where the γ -factor was defined in Section 2.2.

232 We use the T-matrix (Waterman 1971; Barber and Yeh 1975) method to compute the
233 radar cross-section of each particle and the equivalent reflectivity assuming:

234 • Refractive index: computed by the Maxwell-Garnet (1904) mixing formula
235 with temperature from environmental data. The particle is assumed to be a
236 mixture of ice inclusions within an air matrix with effective density ρ as a
237 function of D_{app} as given by the 2DVD-derived power law fit

238 • Orientation: the zenith angle is Gaussian with zero mean and 45° standard
239 deviation; the azimuthal angle is uniformly distributed in $[0 \pi]$

240 • Particle Size Distribution: as in Section 2.2 which defines $N(D)=\gamma^*N_m(D)$

241 • Particle shape: oblate spheroid with volume = VL_{app} and axis ratio = 0.8

242

243 **3. Experimental Data from LPVEx**

244 The Light Precipitation Validation Experiment (LPVEx) was held in the Fall of 2010 in
245 the area surrounding Helsinki, Finland as a collaborative project between the Finnish
246 Meteorological Institute (FMI), University of Helsinki and the NASA Ground Validation
247 program (Petersen et al. 2011). While the experiment had multiple objectives and
248 extensive suite of instruments, the focus herein is on snow measurements made at the
249 Järvenpää site with the 2D-video disdrometer; this site also had the Precipitation
250 Occurrence Sensor System (POSS; Sheppard and Joe 2008), the Snow Video Imager
251 (SVI; Newman et al. 2009) and an OTT-PLUVIO2 gauge with Tretyakov and Alter
252 shields (Ianza et al. 2006; Rasmussen et al. 2012). Three C-band polarimetric radars
253 located at Kumpula, Vantaa and Kerava (Koskinen et al., 2011) provided for excellent

254 coverage over the Järvenpää site as well as over the network of six FMI snow gauges.
255 Fig. 4 shows the location of the 3 radars, the Järvenpää site and the gauge network.
256 Briefly, the three radars are nearly identical with 1° beams and using simultaneous H-V
257 polarization on transmit and simultaneous reception of the H and V polarized back-
258 scattered signal components via two receivers. The minimum detectable Z_e is about -10
259 dBZ at range of 50 km. The reflectivity data from each radar covering matched areas of
260 precipitation were used to construct the CDF of Z_e enabling accurate cross-calibration of
261 the radars (Hirsikko et al, 2013). All the radars are Vaisala dual-polarization weather
262 radars, a detailed description of Vantaa radar operations is presented by Saltikoff and
263 Nevvonen, (2011).

264

265 Table 1 lists the four snow days where there was significant precipitation in Helsinki and
266 surrounding areas. The snow events on these days were also favorable for 2DVD and
267 other snow measuring instruments as the wind speeds were < 4 m s⁻¹ at the Järvenpää
268 site. As seen in Table 1, the 30 Dec 2010 case could be sub-divided into two snow
269 events based on the synoptic conditions. Similarly, the first event on 12 Jan 2011 (0800-
270 1230 UTC) could be separated from the second event that covered the period 2230-
271 2359 UTC which further continued the next day (13 Jan) until 0500. The liquid
272 equivalent snow accumulations (SA) from the OTT-PLUVIO gauge ranged from 1.5 to
273 4.2 mm.

274 3.1 Example of 2DVD processed data from 30 Dec 2010

275 As mentioned earlier, one of the fundamental measurements provided by the 2DVD is
276 the fall speed, an example of which is provided in Fig. 5 from the first event on 30 Dec
277 2010. The instrumental error in measuring terminal fall speeds is < 4% (for fall speeds
278 <10 m s⁻¹; Schönhuber et al. 2008). Such high accuracy is due in part to the plane
279 distance calibration which is performed frequently and accounts for slight deviations in
280 the plane distance depending on the location within the virtual measurement area (see
281 Fig. 2); further the line scan frequency is quite high close to 55 kHz. Zawadzki et al.
282 (2010) evaluated the fall speed measurement error for the HVSD which, to the best of
283 our knowledge, does not account for plane distance deviations within the measurement
284 area plus the line scan frequency is much lower, closer to 10 kHz. They estimated that
285 the instrumental uncertainty for the HVSD is around 12% for fall speeds below 2 m s⁻¹.
286 While a similar analysis has not been done for the 2DVD, the contribution of
287 instrumental error to the fall speed is expected to be much smaller than the natural
288 variability which is depicted by the $\pm 1\sigma$ bars in Fig. 5. It is also evident that the
289 commonly used power law fit for V_f versus D , while analytically convenient, does not fit
290 the data as well as an exponential fit of the form $V_f = c[1 - d * \exp(-\kappa D_{app})]$.

291

292 The snow size distribution (SSD) for the same event is shown in Fig. 6a where the
293 distribution from 2DVD is compared with that derived from the Snow Video Imager
294 (SVI). The γ -factor was estimated as 2.21 (Section 2b and eq. 8). Fig. 6b shows similar
295 plot for 6 Jan. 2011 event. The agreement in the SSD is quite good given that the two
296 instruments are based on distinctly different measurement principles and sample
297 volumes.

298 As a further check on the estimation of γ using (8), the unadjusted SSD from the 2DVD
299 has been forced to match the SVI in each size bin and the resulting mean γ_{SVI} is
300 computed as:

301

$$\gamma_{SVI} = \frac{1}{N} \sum_{i=1}^N \frac{N_{SVI}(D_i)}{N_m(D_i)} \dots\dots\dots(12)$$

302 where N is the number of size bins, $N_{SVI}(D_i)$ is the SVI-measured concentration for the
303 i^{th} bin, and the corresponding 2DVD-measured $N_m(D_i)$ is obtained as in (6). For the case
304 shown in Fig. 3.3 the γ_{SVI} was found to be 2.46 which is in close agreement with $\gamma =$
305 2.21. For the other snow events listed in Table 1 the γ comparisons are given in Table 4.
306 As noted in the introduction the SVI gives a measure of the equal-area circular diameter
307 which is not the same as D_{app} from the 2DVD. We ignore the different estimates of D
308 from the two instruments is so far as validation of the single camera-2DVD based γ -
309 factor estimation is concerned. A more elaborate discussion of SVI estimation of
310 different measures of D and related characterization of uncertainties in estimation of Z_e
311 and SR are given in Wood et al. (2013).

312

313 The area ratio (A_r) discussed in Section 2c plays an important role in inverting Böhm's
314 methodology to derive mass from the fall speed. Schmitt and Heymsfield (2010)
315 comment that, "...area-dimensional and mass-dimensional relationships are rarely
316 developed from the same dataset". Fig. 7 shows the frequency of occurrence plot (in log
317 scale) of A_r vs. D_{app} for the same 30 Dec 2010 snow event. Also shown are the bin
318 averaged mean and $\pm 1\sigma$ standard deviation bars along with the power law fit

319 $A_r = 0.71 D_{app}^{-0.08}$. The variability in A_r is quite large but in general agreement with
320 Zwadzki et al. (2010) who used data from the HVSD but allowed $A_r > 1$. The mean fit in
321 Fig. 7 is in good agreement with that given in Zwadzki et al; they obtain $A_r=0.75D^{-0.17}$
322 (but their ‘ D ’ is the maximum dimension from the side-view image). A somewhat
323 different power law fit was obtained by Schmitt and Heymsfield (2010), who used cloud
324 imaging probe on aircraft penetrations of ice clouds aloft (this is not surprising since our
325 results are at the surface in heavier snowfall). Schmitt and Heymsfield obtained an
326 exponent of -0.25 for the ARM data set (Heymsfield et al. 2004), but their coefficient
327 was lower by a factor of 2.

328 The final result from Böhm’s methodology is the ability to derive a mean density- D_{app}
329 power law and Fig. 8 shows the same for the 30 Dec 2010 event. While there is large
330 variability in density for a given D_{app} (especially evident for small particles $D_{app} < 1$ mm
331 which might be related to difficulty in matching such particles from the two camera
332 images resulting in erroneous fall speed determination); nevertheless, there is an
333 inverse relation between density and D_{app} and the power law fit is $\rho=0.15 D_{app}^{-0.86}$ for
334 this event (Table 1 gives the coefficient and exponent for the other events). Plots of ρ
335 versus D_{app} from Table 1 using the coefficient (α) and exponent (β) found herein for the
336 four snow days are close to the mean climatological relation found by Brandes et al.
337 (2007; $\alpha=0.178$, $\beta=-0.922$) as well as Holroyd (1971; $\alpha=0.17$, $\beta=-1$) and Fabry and
338 Szyrmer (1999; $\alpha=0.15$, $\beta=-1$) with the caveat that ‘ D ’ in each of the quoted references
339 are not calculated in the same manner (see, also, Table 2 from Brandes et al. 2007).
340 The exponent of the mass- D_{app} power law is given by $3+\beta$; from Table 1, the latter
341 exponent varies between 2.04 to 2.21 generally within the range obtained by Schmitt

342 and Heymsfield (2010) based on fractal simulations of large aggregates (range between
343 2.1–2.2), and close to the experimentally obtained exponent of 2.2 for the ARM dataset
344 (Heymsfield et al. 2004).

345

346 The liquid equivalent snow rate (*SR*) for the 30 Dec 2010 is calculated as given in (11)
347 using the mean ρ - D_{app} power law fit from Table 1 for the two snow events that occurred
348 on that day. The *SR* is adjusted by the γ factor. Fig. 9 shows the liquid equivalent snow
349 accumulation from the 2DVD compared with the collocated OTT-PLUVIO2 gauge at the
350 Järvenpää site. The maximum *SR* during the two snow periods occur at around 1230
351 and 2200 UTC. The agreement between 2DVD and gauge is very good for this event
352 (accumulations are based on 1-min *SR* from 2DVD). From Table 1, the accumulations
353 between the 2DVD and gauge for the other days are also in good agreement. It is
354 difficult to estimate the accuracy of the 2DVD-derived snow rate but assuming the ρ -
355 D_{app} is ‘exact’ and valid for the entire event, the dominant systematic error would be in
356 the γ -adjustment parameter of the SSD. Otherwise, systematic error would primarily
357 arise due to incorrect estimate of α and secondarily β .

358 3.2 Reflectivity and Z_e -*SR* power law

359 The reflectivity (Z_e) at C-band (frequency 5.5 GHz) is computed from 2DVD-measured
360 1-min averaged $N(D_{app})$ and the mean ρ - D_{app} power law fit (for the entire event), based
361 on the assumptions listed towards the end of Section 2.3. It is well established that for
362 Rayleigh scattering and using the Maxwell-Garnet mixing formula (ice inclusions inside
363 an air matrix) that Z_e can be expressed as:

364

$$Z_e = \left(\frac{1}{\rho_{ice}}\right)^2 \frac{|K_{ice}|^2}{|K_w|^2} \int_{D_{min}}^{D_{max}} \rho_{snow}^2 D^6 N(D) dD \dots\dots\dots(12)$$

365 where $|K_{ice,w}|^2$ are the dielectric factors of solid ice and water. Since the mass of the
 366 particle is $m=\rho V L_{app}$, it follows that Z_e can be simply computed (suppressing constants)
 367 as the sum(m^2) over all the particles. Thus, the reflectivity is very sensitive to the $m-D_{app}$
 368 relation (or, equivalently the $\rho-D_{app}$) as shown by a number of previous studies (e.g.,
 369 Ryzhkov et al. 1998; Matrosov 2009). Errors can arise from uncertainty in the γ -factor
 370 which scales the $N(D)$ or uncertainty in the coefficient α and less so in the exponent β .
 371 Note that the T-matrix scattering code is used to compute Z_e at C-band frequency.

372 Fig. 10 shows time series comparison of Z_e from 2DVD, POSS [at Järvenpää site for (a)
 373 30 Dec 2010 event and (b) 6 Jan. 2011] and the scanning Kumpula C-band radar
 374 reflectivity data extracted over the same site (areal average over $1^\circ \times 1$ km). The 2DVD
 375 and POSS reflectivities are 1-min averaged whereas the Kumpula radar data were
 376 available every 5 min. The 2DVD data are somewhat more ‘noisy’ as compared to
 377 POSS due mainly to sampling error (the POSS has a very large sample volume by
 378 several orders of magnitude relative to the 2DVD). The sampling error in the 2DVD
 379 measure of Z_e was evaluated by Huang et al. (2011) by using two 2DVD units located
 380 side-by-side at a site in Huntsville, AL. They estimated the sampling error for reflectivity
 381 (in dBZ units) as 1.36 dB (time window for SSD integration was 1-min). They also
 382 estimated the normalized sampling error for SR as 8.5%. The temporal correlation
 383 between the three measures of Z_e is visually quite good.

385 By re-sampling the 2DVD and POSS reflectivities to the Kumpula radar samples, the
386 scatter plot of 30 December 2010 case shown in Fig. 11 is obtained. The bias between
387 POSS and 2DVD Z_e is 0.11 dB, the standard deviation is 2.9 dB, and the correlation
388 coefficient is 0.92. The corresponding values between Kumpula radar and 2DVD are,
389 respectively, 0.18 dB (slight radar overestimate), 4.68 dB and 0.8. The latter standard
390 deviation values would be even lower if the 2DVD sampling error of 1.3 dB were
391 accounted for.

The 2DVD processing described thus far gives the time series of Z_e and SR every minute (i.e., 1-min time integration) for each of the long duration (> 4 h) events listed in Table 1. In order to realize a ‘stable’ Z_e -SR relation the sequential intensity filtering technique (SIFT) described by Lee and Zawadzki (2005) is used along with weighted total least-squares to estimate the coefficient and exponent of the Z_e -SR power law. The basic time window (W) selected is 1 h; the SSDs are ordered by increasing Z_e in this window; and a moving average of $M=5$ consecutively ordered SSDs is done to filter the DSDs. The same procedure is performed for the next hour of the event and so on until the entire snow duration is covered. From the filtered DSDs, the Z_e is re-computed using the appropriate ρ - D_{app} power law. To re-compute SR, eq. (11) can no longer be used, rather it is computed as:

$$403 \quad SR = \frac{\pi}{6} \int \rho(D_{app}) D_{app}^3 V_f N(D_{app}) dD_{app} \dots\dots\dots(13)$$

404 where $\rho = aD_{app}^\beta$ is the mean fit, and $V_f = c - d^* \exp(-\kappa D_{app})$ is the mean fit to the
 405 measured fall speeds (see example in Fig. 5).

406 Fig. 12 shows the scatter plot of Z_e versus SR and the power law fit for (a) the entire 30
407 Dec 2010 case (i.e., inclusive of both events listed in Table 3) and (b) 6 Jan. 2011 case.
408 Table 3 shows the Z_e - SR power law fits for the other three snow days. For reference the
409 FMI climatological relation is $Z_e=100 SR^2$ (Saltikoff et al., 2010) It is fairly evident that for
410 a given Z_e , the SR from the FMI relation will exceed that predicted from Table 3 power
411 law fits. For completeness Table 4 shows the γ -adjustment values, and the parameters
412 $[c\ d\ \kappa]$ of the V_f - D_{app} fit.

413 3.3 Radar-derived snow accumulations

414 There were three C-band polarimetric radars operating during LPVEx, being located at
415 (see Fig. 4) Kumpula (KUM), Kerava (KER) and Vantaa (VAN). The technical
416 specifications can be found in (Hirsikko et al, 2013; Saltikoff and Nevvonen, 2011).
417 When radar reflectivity is used along with a Z_e - SR relation to generate, e.g., daily (liquid
418 equivalent) snow accumulation maps, clutter and beam-blockage at low elevation
419 angles can cause loss of signal (in the case of clutter, due to clutter filtering) which
420 manifests as artifacts in the snow accumulation maps. To avoid this problem, Z_e data
421 from the three radars have been composited, using maximum reflectivity factor from any
422 of the three radars, to generate the snow accumulation map for 30 Dec 2010 as shown
423 in Fig. 13. The peak accumulation is around 12 mm within the city of Helsinki. The solid
424 black dots are the locations of six FMI snow gauges (Vaisala VRG101 with Tretyakov
425 wind shield; Lanza et al. 2006) and the OTT-PLUVIO at Järvenpää site. The numbers
426 adjacent to the gauge locations are the measured accumulations in mm. The radar
427 composite, of course, depicts quite clearly the spatial variability without any artifacts due
428 to clutter or beam blockages; moreover the radar-based accumulations are in good

429 agreement with the gauges. Fig. 14 shows the accumulation map using the
430 climatological FMI Z_e -SR relation and it is readily apparent that, while the spatial
431 variability is generally preserved, the magnitudes of the accumulations are
432 overestimated relative to the gauges. In particular, the peak accumulations are now
433 around 16 mm within the city.

434

435 To further detail the radar and gauge comparisons, hourly accumulations are compared
436 in Fig. 15 from one gauge location (solid dot in Fig. 13 with 7.8 mm; this is the Porvoo
437 Harabacka location). Whilst it is clear that the FMI climatological relation overestimates
438 the hourly accumulations soon after the snow begins, the radar-based hourly
439 accumulation agrees well with the gauge (and not just the event totals).

440

441 Fig. 16 (panel **a**) shows the scatter plot of daily gauge accumulations versus radar-
442 based accumulations (extracted from the radar composites over the six gauge locations
443 and the gauge at the Järvenpää site) for the 4 days using the Z_e -SR power laws from
444 Table 3 while panel **b** shows the same except for using the fixed FMI climatological Z_e -
445 SR relation. The significant feature is the dramatic reduction in bias resulting from using
446 the Z_e -SR obtained from 2DVD data as listed in Table 3 as compared with the fixed FMI
447 relation. The normalized bias and normalized standard error values are, respectively,
448 28% and 30.8% when Table 3 is used versus 96.6% and 66.1% for the fixed FMI
449 relation. Note that positive bias implies radar overestimates the gauge values. The
450 slope of a straight line trend passing through the origin is 1.2 for panel **a** versus 1.85 for

451 panel **b**. It is reasonable to infer that the FMI gauges could have underestimated the
452 snow amounts due to wind and type of shielding (i.e., collection efficiency < 1). Recall
453 that the FMI gauges are Vaisala VRG101 with Tretyakov wind shields whose collection
454 efficiency is not known as a function of wind speed. The collection efficiency (or,
455 undercatch) is a complicated function of not only gauge/shield type and wind speed, but
456 also the type of snow particle (dry vs. wet or unrimed vs. rimed) and particle size
457 distribution (Thériault et al. 2012). Thus, there is considerable scatter of the collection
458 efficiency for a given wind speed along with a systematic decrease with increasing wind
459 speed. The latter can be estimated from Rasmussen et al. (2012; their Fig. 11) as mean
460 collection efficiency dropping to 0.75 at wind speed of 4 ms^{-1} . If this is taken into
461 account the bias between radar and FMI gauges seen in Fig. 16a would be further
462 reduced.

463 *3.4 Spatial reflectivity structure for 30 Dec 2010 and 06 January 2011 cases*

464 So far, the reflectivity structure nor the environmental/synoptic conditions have been
465 described for the different snow days, as the main emphasis was on the 2DVD data, its
466 processing and product evaluation. However, it is useful to consider the reflectivity
467 structure for the 30 Dec 2010 case (which had the most daily accumulation) and the 06
468 Jan 2011 case which had the least (Table 2 or Fig. 16), accompanied by very different
469 coefficients/exponents of the Z_e -SR power laws (respectively, 210/1.63 versus
470 130/1.44).

472 On 30 Dec 2010 large scale snowfall areas from ESE (the first snowfall from 0800-1300
473 UTC; see Fig. 10a) and from WNW (second snowfall from 1500-2400 UTC) merged
474 above southern Finland. These snowfall areas were associated with two low pressure
475 systems, one centered in Eastern Europe and the main one forming NW of
476 Scandinavia. At around 1900 UTC the two precipitation systems have merged.
477 ADMIRARI (Battaglia et al., 2010) LWP (liquid water path) observations reached a
478 maximum of 400 g m^{-2} at 1500 UTC. During the observations ADMIRARI was located in
479 the backyard of Vaisala which is around 10 km north from Kumpula radar, as shown in
480 Fig. 4. This is the time when the warm moist area from NW had arrived to the Helsinki
481 region. During the snowfall the LWP values were ranging between $100-150 \text{ g m}^{-2}$. It
482 should be noted that these are the slant LWP observations with elevation angle of 30° .
483 At the time of peak snowfall for the first event (1100-1200 UTC; see Fig. 10a) SVI
484 images were viewed and it was observed that the main precipitation types were pristine
485 dendritic type crystals with large aggregates composed of dendrites ($\sim 8 \text{ mm}$) with little
486 evidence of riming (Newman, personal communication). Fig. 17 shows sample SVI
487 images at 1120 UTC near the time of maximum Z_e (see Fig. 10a).

488

489 On 06 Jan 2011 south westerly upper level flow from Scandinavia brought warm and
490 moist air that resulted in a light to moderate snowfall lasting from 0100 to 0800 UTC.
491 During this period (0500-0700 UTC) the ADMIRARI showed a large amount of
492 supercooled water with LWP values exceeding 500 g m^{-2} . Examination of SVI images
493 between 0600-0630 showed definite indications of rimed dendrites and columnar
494 crystals followed by rimed to heavily rimed particles (perhaps graupel). Further in time,

495 large aggregates (~5-7 mm) appear to be rimed. Also, many smaller rimed
496 snowflakes/crystals (Newman, personal communication). Fig. 18 shows examples of
497 SVI images of rimed aggregates at 0620 UTC.

498

499 Fig. 19 shows the rather dramatically different reflectivity structures (at low elevation
500 angle 0.5°) between the 30 Dec 2010 event (at 1000 UTC) and the 06 January 2011
501 event (at 0610 UTC). The spatial variability is much more pronounced in the 06 January
502 case (more cellular) as compared to the more conventional spatial variability occurring
503 on 30 Dec. The cellular feature implies weak imbedded convection is likely with more
504 prevalent particle riming as alluded to earlier. This is supported by analysis by Lim et al.
505 (2013) who were able to associate higher spatial variability with enhanced riming of
506 particles. The vertical structures are also different as depicted in the RHI scans in Fig.
507 20 taken along the radial to the Järvenpää site Again, the 30 Dec event is much more
508 uniform in the vertical as compared with the 06 Jan event, the latter showing more
509 evidence of cellular structure in the vertical implying imbedded convection and
510 enhanced riming.

511

512 Finally, in Fig. 21, the snow accumulation map for 06 Jan event is shown using the
513 2DVD-derived Z_e -SR power law, which can be compared with Fig. 13. The snow
514 accumulations for this event (see, also Table 1) are much smaller compared with 30
515 Dec case additionally showing much more spatial variability. Note these are not daily

516 totals but restricted to the period 0000-0900 UTC since the 2DVD stopped working at
517 0824 UTC on this day thereby missing another major snowfall event later on this day.

518 **4. Summary and Conclusions**

519 The estimation of the mean density-size and Z_e -SR power laws using 2D-video
520 disdrometer measured fall speed, apparent diameter and snow size distribution (SSD)
521 along with Böhm's (1989) methodology is described in some detail. A method for
522 adjusting the concentration based on single camera data to account for loss of particles
523 that do not satisfy the matching criteria (when 2 cameras are used) is shown to be
524 reasonable when compared with Snow Video Imager (SVI)-based concentrations.
525 Snow events which occurred on four days of the Light Precipitation Validation
526 Experiment (LPVEx) were chosen based on light wind speeds ($< 4 \text{ ms}^{-1}$) at the
527 measurement site with liquid equivalent snow accumulations ranging from 1.5 mm to 4
528 mm. While there is large variability of fall speed, area ratio and derived density which is
529 attributed to natural variability of snow type, shape and porosity, the mean density- D_{app}
530 (or, mass- D_{app}) and Z_e -SR power laws do vary from event-to-event. The reflectivity
531 derived from the 2DVD data is shown to be in good agreement with collocated POSS
532 and with scanning C-band radar, while the liquid equivalent snow accumulation is
533 shown to be in good agreement with collocated OTT-PLUVIO gauge at the
534 measurement site. The radar-based snow accumulations using the 2DVD-derived Z_e -
535 SR relations for the four days are in good agreement with a network of six FMI snow
536 gauges (and the OTT-PLUVIO gauge) and outperform the accumulations derived from a
537 climatological Z_e -SR relation used by the Finnish Meteorological Institute (FMI). The
538 normalized bias between radar-derived and gauge accumulation is reduced from 96%

539 (overestimate by the FMI climatological relation) to 28% when using the Z_e -SR based
540 on 2DVD data. The normalized standard error is also reduced significantly from 66% to
541 31%. While the FMI gauges were equipped with Tretyakov wind shields,
542 undercatchment due to wind cannot be ignored and could account for underestimation
543 of snow accumulations by 20-30% for wind speeds in the range $3\text{-}4 \text{ ms}^{-1}$; this would
544 reduce the bias between radar and gauge accumulations even further.

545

546 For two of the days with widely different coefficients of the Z_e -SR power law, the
547 reflectivity structure showed significant differences in spatial variability (both horizontal
548 and vertical). Liquid water path estimates from radiometric data also showed significant
549 differences between the two cases. Examination of SVI particle images at the
550 measurement site corroborated these differences in terms of unrimed versus rimed
551 snow particles.

552

553 In summary, the findings reported herein support the application of Böhm's (1989)
554 methodology for deriving the mean density-size and Z_e -SR power laws using data from
555 2D-video disdrometer. Evaluation of radar-based snow accumulation against a network
556 of snow gauges independently supports the latter conclusion notwithstanding the limited
557 number of events available for analysis.

558

559 *Acknowledgements.* Two of the authors VNB and GJH acknowledge support from
560 NASA grants NNX10AJ11G and NNX11AK32G. DM acknowledges support from
561 Academy of Finland grant 263333. WAP and LB acknowledge support from NASA GPM
562 Flight Project and Dr. Ramesh Kakar, Program Manager for PMM. The authors also
563 acknowledge Dr. Andrew Newman of NCAR for assistance in visual classification of SVI
564 snow images for two of the events. The SVI and POSS were installed by Peter
565 Rodriguez of Environment Canada.

566

567 **References**

568

569 Barber, P. and Yeh, C., 1975: Scattering of Electromagnetic Waves by Arbitrarily
570 Shaped Dielectric Bodies., *Appl. Optics*, **14**, pp. 2684-2872.

571

572 Barthazy, E., Göke, S., Schefold, R. and Högl, D., 2004: An optical array instrument for
573 shape and fall velocity measurements of hydrometeors., *J. Atmos. Oceanic Technol.*,
574 **21**, pp. 1400-1416.

575

576 Battaglia, A., Saavedra, P., Rose, T. and Simmer, C., 2010: Characterization of
577 Precipitating Clouds by Ground-Based Measurements with the Triple-Frequency
578 Polarized Microwave Radiometer ADMIRARI., *J. Appl. Meteor. Climatol.*, **49**, pp. 394–
579 414.

580

581 Böhm, H.P., 1989: A general equation for the terminal fall speed of solid hydrometeors.,
582 *J. Atmos. Sci.*, **46**, pp. 2419-2427.

583

584 Brandes, E. A., Ikeda, K., Zhang, G., Schönhuber, M. and Rasmussen, R. M., 2007: A
585 statistical and physical description of hydrometeor distributions in Colorado snowstorms
586 using a video disdrometer., *J. Appl. Meteor. Climatol.*, **46**, pp. 634-650.

587

588 Brandes, E. A., Ikeda, K. and Thompson, G., 2008: Aggregate terminal
589 velocity/temperature relations, *J. Appl. Meteor. Climatol.*, **47**, pp. 2729–2736.

590

591 Fabry, F., and Szyrmer, W., 1999: Modeling of the melting layer. Part II:
592 *Electromagnetic. J. Atmos. Sci.*, **56**, pp. 3593–3600.

593

594 Fujiyoshi, Y., Endoh, T., Yamada, T., Tsuboki, K., Tachibana, Y. and Wakahama, G.,
595 1990: Determination of a Z-R relationship for snowfall using a radar and high sensitivity
596 snow gauges, *J. Appl. Meteor.*, **29**, pp. 147–152.

597

598 Garrett, T. J., Fallgatter, C., Shkurko, K. and Howlett, D., 2012: Fallspeed measurement
599 and high-resolution multi-angle photography of hydrometeors in freefall., *Atmos. Meas.
600 Tech. Discuss.*, **5**, pp. 4827–4850.

601

602 Hanesch, M., 1999: Fall Velocity and Shape of Snowflake., Ph. D dissertation, Swiss
603 Federal Institute of Technology., [Available online at
604 <http://www.distrometer.at/newReferences.html>]

605

606 Heymsfield, A. J., Bansemer, A., Schmitt, C., Twohy, C. and Poellot, M. R., 2004:
607 Effective Ice Particle Densities Derived from Aircraft Data. *J. Atmos. Sci.*, **61**, pp. 982–
608 1003.

609

610 Heymsfield, A. J. and Westbrook, C. D., 2010: Advances in the Estimation of Ice
611 Particle Fall Speeds Using Laboratory and Field Measurements., *J. Atmos. Sci.*, **67**, pp.
612 2469–2482.

613

614 Hirsikko, A., O'Connor, E., Komppula, M., Korhonen, K., Pfuller, A., Giannakaki, E.,
615 Wood, C. R., Bauer-Pfundstein, M., Poikonen, A., Karppinen, T., Lonka, H., Kurri, H.,
616 Heinonen, J., Moisseev, D., Asmi, E., Aaltonen, V., Nordbo, A., Rodriguez, E.,
617 Lihavainen, H., Laaksonen, A., Lehtinen, K., Laurila, T., Petaja, T., Kulmala, M. and
618 Viisanen, Y., 2013: Observing Wind, Aerosol Particles, Cloud and Precipitation:
619 Finland's New Ground-based Remote-sensing Network. *Atmospheric Measurement
Techniques Discussions*, **6**, pp. 7251-7313.

621

622 Hogan, R. J., Tian, L., Brown, P. R. A., Westbrook, C. D., Heymsfield, A. J. and J.
623 Eastment, J. D., 2012: Radar Scattering from Ice Aggregates Using the Horizontally
624 Aligned Oblate Spheroid Approximation. *J. Appl. Meteor. Climatol.*, **51**, pp. 655–671.

625

626 Holroyd, E. W., III, 1971: The meso- and microscale structure of Great Lakes
627 snowstorm bands: A synthesis of ground measurements, radar data, and satellite
628 observations. Ph.D. dissertation, *University at Albany, State University of New York*,
629 p148.

630

631 Huang, G., Bringi, V. N., Cifelli, R., Hudak, D. and Petersen, W. A., 2010: A
632 Methodology to Derive Radar Reflectivity–Liquid Equivalent Snow Rate Relations Using
633 C-Band Radar and a 2D Video Disdrometer., *J. Atmos. Oceanic Technol.*, **27**, pp. 637-
634 651.

635

636 Huang, G., Bringi, V. N., Petersen, W. A., Carey, L., Schultz, C. J. and Gatlin, P. N.,
637 2011: Case Studies of Winter Precipitation Events Using 2D-Video Disdrometers and C-
638 Band Radar., *35rd Conf. on Radar Meteorology*, Pittsburgh, PA., Amer. Meteorol. Soc.,
639 September 26-30., P13.203. [Available online at
640 <https://ams.confex.com/ams/35Radar/webprogram/Paper191883.html>]

641
642 Koskinen, J., Poutiainen, J., Schultz, D., Joffre, S., Koistinen, J., Saltikoff, E., Gregow,
643 E., Turtiainen, H., Dabberdt, W., Pohjola, H., Ruotsalainen, R., Kuitunen, T., Järvi, L.,
644 Vesala, T., Karppinen, A., Moisseev, D., Göke, S., Pylkkö, P., Hyvärinen, O., Kotro, J.,
645 Damski, J., Nurmi, P., Kukkonen, J., Viisanen, Y. and Kulmala, M., 2011: The Helsinki
646 Testbed: A mesoscale measurement, research and service platform. *Bull. Amer.*
647 *Meteor. Soc.*, **93 (3)**, pp. 325-342.

648
649 Kruger, A. and Krajewski, W. F., 2002: Two-dimensional video disdrometer: A
650 description, *J. Atmos. Oceanic Technol.*, **19**, pp. 602-617.

651
652 Lanza, L., M. Leroy, C. Alexandropoulos, L. Stagi and W. Wauben, 2006: WMO
653 laboratory intercomparison of rainfall intensity gauges. Instruments and Observing
654 Methods Report No. 84, WMO/TD-No. 1304, WMO Geneva.

655
656 Lee, G. and Zawadzki, I., 2005: variability of Drop Size Distributions: Noise and Noise
657 Filtering in Disdrometric data., *J. Appl. Meteor.*, **44**, pp. 634–652.

658

659 Lim, S., Moisseev, D., Chandrasekar, V. and Lee, D.-R., 2013: Classification and
660 Quantification of Snow Based on Spatial Variability of Radar Reflectivity. *J. Meteo. Soc.*
661 *Japan.*, **91**, pp. 763-774.

662

663 Mason, B. J., 2010: The Physics of Clouds., *Oxford University Press*.

664

665 Matrosov, S. Y., Campbell,C., Kingsmill, D. and Sukovich, E., 2009: Assessing Snowfall
666 Rates from X-Band Radar Reflectivity Measurements. *J. Atmos. Oceanic Technol.*, **26**,
667 pp. 2324–2339.

668

669 Maxwell-Garnet, J.C., 1904: Colors in Metal Glasses and in Metallic Films., *Phil. Trans.*
670 *Roy. Soc.*, **A203**, pp. 385-420.

671

672 Mitchell, D. L., 1996: Use of Mass- and Area-dimensional Power Laws for Determining
673 Precipitation Particle Terminal Velocities, *J. Atmos. Sci.*, **53**, pp. 1710–1723.

674

675 Newman, A. J., Kucera, P. A. and Bliven, L. F., 2009: Presenting the Snowflake Video
676 Imager (SVI), *J. Atmos. Ocean. Technol.*, **26**, pp. 167–179, 2009.

677

678 Petersen, W. A., L'Ecuyer, T. and Moisseev, D., 2011: The NASA CloudSat/GPM Light
679 Precipitation Validation Experiment (LPVEx), *The Earth Observer*, **23**, Issue 4.

680

681 Pruppacher, H. R. and Klett, J. D., 2010: Microphysics of Clouds and Precipitation.
682 (Second revised and expanded edition), Series: *Atmospheric and Oceanographic*
683 *Sciences Library*, **18**, Springer.

684 Rasmussen R. and 14 co-authors, 2012: How Well are We Measuring Snow, *Bull.*
685 *Amer. Met. Soc.*, **93**, pp 811-829.

686 Ryzhkov, A. V., Zrnić, D. S. and Gordon, B. A., 1998: Polarimetric Method for Ice Water
687 Content Determination. *J. Appl. Meteor.*, **37**, pp. 125–134.

688

689 Saltikoff, E., Huuskonen, A., Hohti, H., Koistinen, J. and Järvinen, H., 2010: Quality
690 Assurance in the FMI Doppler Weather Radar Network., *Boreal Environ. Res.*, **15**, pp.
691 579–594

692

693 Saltikoff, E., and Nevvonen, L. 2011: First Experiences of the Operational Use of A
694 Dual-polarisation Weather Radar in Finland., *Meteor. Zeitschrift*, **20**, pp. 323-333.

695

696 Schmitt, C. G. and Heymsfield, A. J. 2010: The Dimensional Characteristics of Ice
697 Crystal Aggregates from Fractal Geometry., *J. Atmos. Sci.*, **67**, pp. 1605-1616.

698

699 Schönhuber, M., Urban, H. E., Randeu, W. L. and Poiares Baptista, J. P. V., 2000:
700 Empirical Relationships between Shape, Water Content and Fall Velocity of

701 Snowflakes, *ESA SP-444 Proceedings*, Millennium Conference on Antennas &
702 Propagation, April 9-14, 2000, Davos, Switzerland.

703

704 Schönhuber, M., Lammer, G. and Randeu, W. L., 2008: The 2D-video-distrometer,
705 Chapter 1 in *Precipitation: Advances in Measurement, Estimation and Prediction*.
706 Michaelides, Silas. (Ed.), Springer, ISBN: 978-3-540-77654-3.

707

708 Sekhon R. S., and Srivastava, R. C., 1970: Snow size spectra and radar reflectivity. *J.*
709 *Atmos. Sci.*, **27**, pp. 299–307.

710

711 Sheppard, B. E. and Joe, P. I., 2008: Performance of the Precipitation Occurrence
712 Sensor System as a Precipitation Gauge., *J. Atmos. Oceanic Technol.*, **25**, pp. 196-212.

713

714 Szyrmer, W. and Zawadzki, I., 2010: Snow Studies. Part II: Average Relationship
715 between Mass of Snowflakes and Their Terminal Fall Velocity. *J. Atmos. Sci.*, **67**, pp.
716 3319–3335.

717

718 Thériault, J. M., Rasmussen, R., Ikeda, K. and Landolt, S., 2012: Dependence of snow
719 gauge collection efficiency on snowflake characteristics, *J. Appl. Meteor. Climatol.*, **51**,
720 pp. 745-762.

721

722 Waterman, P. C., 1971: Symmetry, Unitarity, and Geometry in Electromagnetic
723 Scattering., *Phys. Rev.*, **D 3**, pp. 825-839.

724

725 Wood, N. B., L'Ecuyer, T. S., Bliven, F. L. and Stephens, G. L., 2013: Characterization
726 of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar
727 reflectivity. *Atmos. Meas. Tech.*, **6**, pp. 3635-3648.

728

729 Zawadzki, I., Jung, E. and Lee, G., 2010: Snow Studies. Part I: A Study of Natural
730 Variability of Snow Terminal Velocity., *J. Atmos. Sci.*, **67**, pp. 1591-1604.

731

732 Zhang, G., Luchs, S., Ryzhkov, A., Xue, M., Ryzhkova, L. and Cao, Q., 2011: Winter
733 Precipitation Microphysics Characterized by Polarimetric Radar and Video Disdrometer
734 Observations in Central Oklahoma. *J. Appl. Meteor. Climatol.*, **50**, pp. 1558–1570.

735

736

737

738

739

740 **List of Figures**

741 Fig 1: Front- and side-view images of a snow flake from the 2DVD. The maximum ‘size’
742 is approximately 16 mm in the side view (Camera B); from Huang et al. (2010).

743

744 Fig. 2: Illustrating the measurement principle of the 2D-Video disdrometer (from Kruger
745 and Krajewski 2002; Schönhuber et al. 2008). Note that the virtual measuring area is
746 different (100 cm^2) relative to the single camera measuring area (250 cm^2).

747

748 Fig. 3: An example to show the shadow area (A_e) and the smallest circumscribed area
749 area (A); from Böhm (1989).

750

751 FIG. 4: The map shows the location of 3 C-Band radars (KUM, VAN and KER), the
752 Järvenpää site and other 6 FMI gauges used in this paper. Note that the OTT-PLUVIO
753 gauge and 2DVD are sited at Jävenpää.

754

755 FIG. 5: Example of 2DVD-derived fall speeds versus apparent diameter for snow event
756 from 30 Dec 2010 dominated by snow aggregates. For each size bin the mean and $\pm 1\sigma$
757 standard deviation of the fall speed are shown. The exponential fit to the mean values of
758 the form $V_f = 1.12 - 1.31 \cdot \exp(-1.42 D_{app})$ where D_{app} is in mm and V_f in m s^{-1} is also
759 shown.

760

761 Fig. 6: Particle (snow) size distributions from the 2DVD and from the snow video imager
762 (SVI) for **(a)** 30 Dec 2010 first snow event with γ equal to 2.21 **(b)** 6 Jan. 2011 event
763 with γ equal to 2.55.

764

765 Fig. 7: Frequency of occurrence (in color log scale) of A_r vs. D_{app} for 30 Dec 2010 snow
766 event; also shown are the bin averaged mean and $\pm 1\sigma$ standard deviation bars along
767 with the power law $A_r - D_{app}$ fit.

768

769 Fig. 8: Density versus D_{app} (mean and $\pm 1\sigma$) along with mean $\rho - D_{app}$ power law fit for the
770 30 Dec 2010 event.

771

772 Fig. 9: Liquid equivalent snow accumulation for 30 Dec 2010 comparing 2DVD-derived
773 accumulations against collocated OTT-PLUVIO2 gauge.

774

775 Fig. 10: Time series comparison of reflectivity from 2DVD, POSS and scanning
776 Kumpula radar for **(a)** 30 Dec 2010 event and **(b)** 6 Jan. 2011.

777

778 Fig. 11: Scatter plot of 2DVD or POSS reflectivity (Y-axis) versus Kumpula radar
779 reflectivity (X-axis) extracted over Järvenpää site for 30 Dec 2010 event.

780

781 Fig. 12: Z_e versus SR scatterplot using SIFT method for (a) 30 Dec 2010 case and (b) 6
782 Jan. 2011. The power law fit using weighted total least squares is also shown.

783

784 Fig. 13: Snow accumulation map for 30 Dec 2010 (entire day) using Z_e -SR power law in
785 Table 3. Reflectivity data from three radars have been composited. The solid black dots
786 are locations of 6 FMI snow gauges and the numbers adjacent are the snow gauge
787 measurements of liquid equivalent snow accumulation in mm.

788

789 Fig. 14: As in Fig. 13 except the FMI climatological $Z_e=100*SR^2$ is used.

790

791 Fig. 15: Comparison of hourly accumulations at the Porvoo Harabacka site using FMI
792 gauge.

793

794 Fig. 16: Scatter plots of daily gauge accumulations from the seven FMI snow gauges
795 versus radar-based daily accumulations using (top panel **a**) daily Z_e -SR relations from
796 Table 3 and (bottom panel **b**) using fixed FMI climatological Z_e -SR relation. Data from
797 the 4 snow days are color-coded.

798

799 Fig. 17: Example of SVI images of large aggregates at 1120 UTC on 30 Dec 2010 at
800 Järvenpää site (also close to time of peak reflectivity, see Fig. 10a).

801

802 Fig. 18: Example of SVI images of large rimed aggregates at 0620 UTC on 06 Jan 2011
803 at Järvenpää site.

804

805 Fig. 19: Spatial variability of reflectivity (left panel) for 30 Dec 2010 and, (right panel) for
806 06 Jan cases.

807

808 Fig. 20: RHI scan data from Kumpula radar along the radial to the Järvenpää site (top
809 panel) 30 Dec 2010 at 1053 UTC, and (bottom panel) 06 Jan 2011 at 0603 UTC.

810

811 Fig. 21: As in Fig. 13 except for 06 Jan 2011 event (0000-0900 UTC only) using 2DVD-
812 derived Z_e -SR relation.

813

Fig. 1: Front- and side-view images of a snowflake from the 2DVD. The maximum 'size' is approximately 16 mm in the side view (Camera B); from Huang et al. (2010).

Fig. 2: Illustrating the measurement principle of the 2D-Video disdrometer (from Kruger and Krajewski 2002; Schönhuber et al. 2008). Note that the virtual measuring area is different (100 cm^2) relative to the single camera measuring area (250 cm^2).

Fig. 3: An example to show the shadow area (A_e) and the smallest circumscribed area area (A); from Böhm (1989).

Fig. 4: The map shows the location of 3 C-Band radars (KUM, VAN and KER), the Järvenpää site and other 6 FMI gauges used in this paper. Note that the OTT-PLUVIO gauge and 2DVD are sited at Jävenpää.

Fig. 5: Example of 2DVD-derived fall speeds versus apparent diameter for snow event from 30 Dec 2010 dominated by snow aggregates (00:00-15:00 UTC). For each size bin the mean and $\pm 1\sigma$ standard deviation of the fall speed are shown. The exponential fit to the mean values of the form $V_f = 1.12 - 1.31 \exp(-1.42 D_{app})$ where D_{app} is in mm and V_f in $m s^{-1}$ is also shown.

820

821

Fig. 6: Particle (snow) size distributions from the 2DVD and from the snow video imager (SVI) for (a) 30 Dec 2010 first snow event with γ equal to 2.21 (b) 6 Jan. 2011 event with γ equal to 2.55.

822

Fig. 7: Frequency of occurrence (in log scale) of A_r vs. D_{app} for 30 Dec 2010 snow event; also shown are the bin averaged mean and $\pm 1\sigma$ standard deviation bars along with the power law $A_r - D_{app}$ fit.

Fig. 8: Density versus D_{app} (mean and $\pm 1\sigma$) along with mean ρ - D_{app} power law fit for the 30 Dec 2010 event.

Fig. 9: Liquid equivalent snow accumulation for 30 Dec 2010 comparing 2DVD-derived accumulations against collocated OTT-PLUVIO2 gauge.

826

827

Fig. 10: Time series comparison of reflectivity from 2DVD, POSS and scanning Kumpula radar for (a) 30 Dec 2010 event and (b) 6 Jan. 2011.

828

Fig. 11: Scatter plot of 2DVD or POSS reflectivity (Y-axis) versus Kumpula radar reflectivity (X-axis) extracted over Järvenpää site for 30 Dec 2010 event.

Fig. 12: Z_e versus SR scatterplot using SIFT method for (a) 30 Dec 2010 case and (b) 6 Jan. 2011. The power law fit using weighted total least squares is also shown.

Fig. 13: Snow accumulation map for 30 Dec 2010 (entire day) using Z_e -SR power law in Table 3. Reflectivity data from three radars have been composited. The solid black dots are locations of 6 FMI snow gauges and the numbers adjacent are the snow gauge measurements of liquid equivalent snow accumulation in mm.

FIG. 14: As in Fig. 13 except the FMI climatological $Z_e=100*SR^2$ is used.

Fig. 15: Comparison of hourly accumulations at the Porvoo Harabacka site using FMI gauge.

Fig. 16: Scatter plots of daily gauge accumulations from the seven FMI snow gauges versus radar-based daily accumulations using (top panel **a**) daily Z_e -SR relations from Table 3 and (bottom panel **b**) using fixed FMI climatological Z_e -SR relation. Data from the 4 snow days are color-coded.

Fig. 17: Example of SVI images of large aggregates at 1120 UTC on 30 Dec 2010 at Järvenpää site (also close to time of peak reflectivity, see Fig. 10a).

Fig. 18: Example of SVI images of large rimed aggregates at 0620 UTC on 06 Jan 2011 at Järvenpää site.

Fig. 19: Spatial variability of reflectivity (left panel) for 30 Dec 2010 and, (right panel) for 06 Jan cases.

838

Fig. 20: RHI scan data from Kumpula radar along the radial to the Järvenpää site (top panel) 30 Dec 2010 at 1053 UTC, and (bottom panel) 06 Jan 2011 at 0603 UTC.

839

Fig. 21: As in Fig. 13 except for 06 Jan 2011 event (0000-0900 UTC only) using 2DVD-derived Z_e-SR relation.

LIST of Tables

841 Table 1: The four snow days from LPVEx.

842

843 Table 2: Coefficient α and exponent (β) of ρ - D_{app} power law fit (density in g cm⁻³ and
844 D_{app} in mm)

845

846 Table 3: The $Z_e = a^*SR^b$ power law for the four days. Note Z_e in mm⁶ m⁻³ and SR in mm
847 h⁻¹.

848

849 Table 4: The γ -adjustment factor and the V_f - D_{app} fit parameters [c d κ].

850

851

852 Table 1: The four snow days from LPVEx

Event	Time (UTC)	Temperature C	2DVD accum (mm)	OTT-PLUVIO2 accum (mm)
30 Dec 2010	a.0800-1300 b.1500-2359	a. -9 b. -8	3.84	4.24
06 Jan 2011	0230-0830	-7	1.53	1.53
12 Jan 2011	a.0800-1230 b.2230-2359	a. -3 b. -3	3.36	2.05
13 Jan 2011	0000-0500	-4	2.77	2.73

853

Table 2: Coefficient α and exponent (β) of ρ - D_{app} power law fit (density in g cm⁻³ and D_{app} in mm)

Event	Time (UTC)	α	β
30 Dec 2010	a.0800-1300	a. 0.15	-0.86
	b.1500-2359	b. 0.15	-0.96
06 Jan 2011	0230-0830 [†]	0.17	-0.79
12 Jan 2011	a.0800-1230	a. 0.23	-0.88
	b.2230-2359	b. 0.19	-0.8
13 Jan 2011	0000-0500	0.19	-0.8

† the 2DVD stopped working at 0824 on this day

Table 3: The $Z_e = a^*SR^b$ power law for the four days. Note Z_e in $\text{mm}^6 \text{ m}^{-3}$ and SR in mm h^{-1} .

	a	b
30 Dec. 2010	210.72	1.63
06 Jan. 2011	130.72	1.44
12 Jan. 2011	209.20	1.67
13 Jan. 2011	134.86	1.81

855 † The power laws are derived for application to all events occurring during the
856 day.
857

Table 4: The γ -adjustment factor and the V_f - D_{app} fit parameters [c d κ].

Event	Time (UTC)	γ	γ_{SVI}	c	d	κ
30 Dec 2010	a.0800-1300	a. 2.21	a. 2.46	1.20	1.54	1.16
	b.1500-2359	b. 1.94	b. 2.57			
06 Jan 2011	0230-0830	2.55	2.92	1.37	1.37	1.25
12 Jan 2011	a.0800-1230	a. 3.53	a. 3.6	1.37	1.85	1.78
	b.2230-2359	b. 2.23	b. 2.18			
13 Jan 2011	0000-0500	2.23	4.24	1.34	1.34	0.95

† The V_f - D_{app} fits are derived for application to all events occurring during the day (note: D_{app} in mm and V_f in $m s^{-1}$).