

Tel: +31 621686428 Email: P.Yang-4@student.tudelft.nl

Webpage: https://pengzhi1998.github.io/ Github: https://github.com/pengzhi1998

EDUCATION

Delft University of Technology (TUD)

M. Sc. of Computer Science in Artificial Intelligence Technology

Delft, Netherlands Sept. 2022 – Present

sept. 2022 Tresent

University of Electronic Science and Technology of China (UESTC)

B. Eng. of Computer Science, Yingcai Honors College (Elite School - Top 2% Student), GPA: 3.9/4.0 (Ranking 7.11%)

Chengdu, China Sept. 2016 – Jun. 2020

University of California, Santa Barbara (UCSB)

Exchange Program in Computer Science, GPA: 4.0/4.0

Santa Barbara, US

Mar. - Jun. 2019

GRE: Verbal 156/ Quantity 170/ AW 4.0

TOEFL: Reading 29/ Listening 26/ Speaking 25/ Writing 25/ Total 105

PUBLICATIONS

- 1. [ISRR'22] Pengzhi Yang*, Haowen Liu*, Monika Roznere, Alberto Quattrini Li, Monocular Camera and Single-Beam Sonar-Based Underwater Collision-Free Navigation with Domain Randomization. *The International Symposium on Robotics Research (ISRR)*, 2022.
- 2. Pengzhi Yang, Yuhan Liu, Shumon Koga, Arash Asgharivaskasi, Nikolay Atanasov, Learning Continuous Control Policies for Information-Theoretic Active Perception. Submitted to *IEEE International Conference on Robotics and Automation (ICRA)*, 2023.
- **3. Pengzhi Yang**, Shumon Koga, Arash Asgharivaskasi, Nikolay Atanasov, Policy Learning for Active Target Tracking over Continuous SE(3) Trajectories. Submitted to *Learning for Dynamics and Control (L4DC)*, 2023.
- **4. Pengzhi Yang**, Jiahao Liu, Hongchun Yang, Shaoyi Wu, Baohua Teng. Magnetic Field Energy of Two Parallel Current-carrying Straight Wires [J]. *Physics Bulletin*. 2019, 38(7): 9-13.

RESEARCH EXPERIENCE

Dartmouth Reality and Robotics Lab, Dartmouth College

Jun. 2019 - Feb. 2022

Hanover, US and Remote

Research Assistant, Advisor: Prof. Alberto Quattrini Li

- Underwater Robot Navigation
 - Perception equipped with only a low-cost monocular camera and a single beam sonar. Tested on existing depth estimation methods and adopted the Depth Prediction Transformers (DPT) as the backbone network for feature extraction.
 - Proposed a novel 3-D end-to-end DRL (Proximal Policy Optimization, (PPO)) underwater navigation controller: integrating predicted depth images, single-beam sonar's readings, and a GPS for an Autonomous Underwater Vehicle (AUV) to navigate to goal positions while avoiding nearby obstacles with continuous actions.
 - Employed Unity Simulation for realistic underwater scenes to train the neural networks. Combined **Domain Randomization** by randomizing the scenes' visibilities to improve the model's robustness and better transfer the navigation model from the simulation to various real underwater worlds.
 - Extensive ablation studies and comparisons demonstrated the proposed navigation system's high efficiency. Field experiments in a swimming pool demonstrated the model's transferability.
 - Paper accepted by ISRR 2022, see Publications 1.

Existential Robotics Laboratory, University of California, San Diego (UCSD)

Feb. 2022 - Present

Research Assistant, Advisor: Prof. Nikolay Atanasov, Dr. Shumon Koga

Remote

- Active Exploration and Mapping
 - To map the landmarks with uncertainty in a limited time horizon, we proposed a continuous control policy using PPO for active perception with information-theoretic cost by employing a differentiable field of view and an attention-based policy architecture. Leveraged Kalman Filter to maintain the mean and covariance for the landmarks to formulate the task into a **Markov Decision Process** (MDP) problem.
 - Applied the trained model in a Unity simulated environment update the landmarks' position estimates using a pinhole camera model with the simulated semantic segmentation and depth cameras.
 - Performed thorough experiments to illustrated the proposed method's superiority in landmark localization over an open-loop optimization technique and a policy with a different network architecture. Also achieved prioritized landmark localization and joint exploration-landmark localization.
 - Extended the work by employing model-based reinforcement learning in order to track various numbers of moving targets over continuous *SE(3)* trajectories.
 - Papers have been submitted to ICRA 2023 and L4DC 2023, see Publications 2, 3.

Center for Robotics, UESTC

Nov. 2019 - Jun. 2020

Undergraduate Research Assistant, Advisor: Prof. Shuzhi Ge

Chengdu, China

- Robot Indoor Localization
 - Modified ACS files to create VizDoom Mazes with required behaviors: discretized agent's actions and built APIs for interaction.
 - Reproduced *Active Neural Localizer* with A3C algorithm in the created mazes based on Bayesian Filter. Adjusted the Perception Model using distance information in the simulated 3D environments and facilitated the system's **practical applications**.

School of Physics, UESTC

Undergraduate Research Assistant, Advisor: Prof. Baohua Teng

Mar. 2018 – Jan. 2019 Chengdu, China

- Research on Energy of Magnetic Field of an Ideal Physical Model
 - Calculated the energy density distribution of magnetic field in two parallel long current-carrying straight wires based on the principle of vector synthesis of magnetic induction intensity.
 - Simulated the magnetic field distribution and total magnetic energy curves under different current directions and different wire distances, gave a reasonable and intuitive theoretical description of the problem.
 - Paper accepted by Physics Bulletin, see Publications 4.

INTERNSHIP

Robotics X, Tencent Dec. 2020 – Aug. 2021

Machine Learning Intern, Advisor: Dr. Cheng Zhou

Shenzhen, China

- End-to-End Control for Quadruped Robot with Learning-based Methods
 - > Trained a deep reinforcement learning (PPO) model with reference motions to control a quadruped robot, Max, to walk in Pybullet.
 - Applied Domain Randomization by randomizing dynamic parameters (i.e. friction, robot's mass) during training. Successfully transferred the model to **Gazebo and real-world environments**.
 - Introduced domain adaptation: predicted dynamic parameters using sequences of *Max*'s *state*, *action* data in Pybullet. Fed the predicted parameters for the PPO network and computed more adaptable control policies for *Max*'s locomotion. Obtained a **5.09%** higher average reward in various environments in Gazebo compared with Robust DRL controller.
 - > Deployed the code in **Tencent TLeague Framework** (a high-performance distributed RL framework) with **Kubernetes**, and almost **five times** accelerated the training speed. During testing, realized a faster real-time control with C++ implementations (Eigen).

Stars Lab, Beihang University

Mar. 2022 - Jul. 2022

Software Developer, Advisor: Prof. Liang Han

Remote

- Development of a 3D Simulator for Large-Scale Heterogeneous Swarm Robots
 - > Developed highly efficient functions for swarm robots' in-pair interactions such as collision avoidance.
 - Improved the efficiency using Pytorch broadcast technique for the 3D simulator packaged by PyTorch TorchScript and ran it on GPU. It was shown to perform much better than Octree tricks.

SELECTED PROJECTS

Robot Dynamics & Control, TUD

Oct. - Nov. 2022

Applied a PD controller to control a quadrotor to follow different paths. Implemented torque and position-controlled robot and achieved the singularity-robust control and task-priority control with a robot arm. Controlled vehicle lateral displacement motion using PID controller.

• Compiler for Simplified C++, UCSB

Apr. – Jun. 2019

- Course project of Translation of Programming Languages (CS160). Implemented a simplified compiler using C++, including Scanner, Parser, Abstract Syntax Tree, Type Checking, and Code Generation.
- Passed all tests successfully with zero errors and generated valid X86 assembly codes. Received an A+.

Development of an Eight-Stage Pipelined MIPS Processor, UESTC

Apr. - Jun. 2018

- Built a 32-bit CPU based on gate-level circuits; embedded a deep pipeline into its ALU module; ran FFT on this simulated processor.
- Won 1st place in the Efficiency Competition amongst all teams.

SKILLS SUMMARY

Programming:

Python, C/C++/C#, Matlab, XML, Shell, Verilog, and SQL.

Softwares:

Pytorch, Tensorflow, Keras, Eigen. Kubernetes, Docker, Git, Jupyter Notebook. ROS, Gazebo, Unity, Pybullet, UWSim, QGroundControl, VizDoom, SolidWorks. Mathcad, Vivado, Multisim. Adobe Softwares.

Interests:

Travelling, Photography (https://500px.com/y_marcus), Swimming, Biking, Scuba Diving (Got Open Water Certificate), Reading, and Movies.

HONORS & AWARDS

Shiqiang Enterprise Scholarship (top 1%)

Oct. 2018

Excellent Student Scholarship in UESTC for three times (top 5%)

Sept. 2017, 2018, 2019

Excellence (top 10%) in the College Students Innovation and Entrepreneurship Competition (2018) of UESTC Second prize in the English Speech Contest in UESTC

Jan. 2019 Jun. 2018

Outstanding Volunteer as the team leader of a voluntary teaching organization in China rural counties

Oct. 2017

Excellence Award for Business Competition at Manulife short-term program

Feb. 2018