PRÁCTICA EN EL AULA DE INFORMÁTICA 2 de mayo de 2016

Sea una empresa dedicada a la fabricación de 3 productos. Los inputs necesarios en el proceso de producción son, por unidad fabricada, los siguientes:

PRODUCTO	MATERIA PRIMA	MANO DE OBRA
1	4	3
2	2	2
3	1	2

La materia prima se adquiere a un proveedor que es capaz de suministrar hasta 245 unidades físicas a un precio de 10 u.m./u.f.. La plantilla de la empresa supone 315 horas de trabajo efectivo a un coste de 5 u.m./hora. Por razones de demanda la fabricación del primer producto debe ser como mínimo de 20 unidades. Los beneficios brutos unitarios son 20 u.m./u.f., 30 u.m./u.f., y 10 u.m./u.f., respectivamente.

El modelo de programación lineal que permita determinar cuál es la producción que maximiza el beneficio bruto mensual es el siguiente.

MAX Z=
$$20X_1+30X_2+10X_3$$

Sujeto a:
 $4X_1+2X_2+1X_3\leq 245$
 $3X_1+2X_2+2X_3\leq 315$
 $1X_1\geq 20$
 $X_1, X_2, X_3\geq 0$

- 1. Con la información anterior, vuelve a plantear y resuelve el modelo de modo que el objetivo sea el cumplimiento, en la medida de lo posible, de las siguientes metas:
 - I. Alcanzar un beneficio bruto total de 2500 u.m.
 - II. Evitar que sobre materia prima mensualmente.
 - III. No subutilizar la capacidad productiva contratada.
 - IV. Servir el pedido mensual de 20 unidades de producto 1.
 - V. Si fuera necesario realizar horas extras, que estas no superen las 10 horas.

Interpreta los resultados obtenidos.

2. Resuelve el modelo de programación lineal del inicio del enunciado considerando que las variables de decisión toman valores enteros. Utiliza el PROC LP de SAS/OR. Interpreta la solución. Describe las iteraciones realizadas por el algoritmo Branch and Bound.

```
SOLUCIÓN:
   1.
                                        Mín Z=(1/2500)d_1+(1/245)d_2+(1/315)d_3+(1/20)d_4+(1/10)d_5
                                        Sujeto a:
                                        20X_1+30X_2+10X_3+d_1-d_1^+=2500
                                        4X_1+2X_2+1X_3+d_2=245
                                        3X_1+2X_2+2X_3+d_3-d_3^+=315
                                        X_3+d_4-d_4=20
                                        d_3^+ + d_5^- - d_5^+ = 10
                                        X_1, X_2, X_3 \ge 0
                                        d_{i}, d_{i}^{+} \ge 0 y d_{i} \times d_{i}^{+} = 0, \forall i = 1, ..., 5
*METAS;
data pr.pr3 METAS;
input row $13. x1 x2 x3 d1me d1ma d2me d3me d3ma d4me d4ma d5me d5ma type $ rhs;
      datalines;
Objetivo
                      0
                             0 4.00E-04 0 4.08E-03 3.17E-03 0
                                                                             5E-02 0 0 1E-01 MIN .
                    30
                                                       0
                                                                  0
Beneficio
               20
                            10 1
                                         -1 0
                                                                                     0 0 0
                                                                                                 EQ 2500
Materia Prima 4
                            1 0
                                          0 1
                                                                  0
                                                                             0
                                                                                    0 0 0
                                                                                                 EQ 245
                             2 0
Mano de Obra 3
                                           0 0
                                                                 -1
                                                                                    0 0 0
                                                                                                 EQ 315
                                                                  0
                             0 0
                                           0 0
                                                                                   -1 0 0
                                                                                                 ΕQ
                             0 0
                                           0 0
                                                                                0 1 -1
                                                                                                       10
```

20

```
Pedido
Horas Extras 0 0
run;
proc print data=pr.pr3 METAS;
run;
proc lp data=pr.pr3 METAS;
run;
```

0bs	_row_	x1	х2	хЗ	d1me	d1ma	d2me	d3me	d3ma	d4me	d4ma	d5me	d5ma	_type_	_rhs_
1	Objetivo	0	0	0	0.0004	0	0.00408	0.00317	0	0.05	0	0	0.1	MIN	
2	Beneficio	20	30	10	1.0000	- 1	0.00000	0.00000	0	0.00	0	0	0.0	EQ	2500
3	Materia_Prima	4	2	1	0.0000	0	1.00000	0.00000	0	0.00	0	0	0.0	EQ	245
4	Mano_de_Obra	3	2	2	0.0000	0	0.00000	1.00000	- 1	0.00	0	0	0.0	EQ	315
5	Pedido	1	0	0	0.0000	0	0.00000	0.00000	0	1.00	- 1	0	0.0	EQ	20
6	Horas Extras	0	0	0	0.0000	0	0.00000	0.00000	1	0.00	0	1	-1.0	EQ	10

The LP Procedure

Problem Summary

Objective Function Rhs Variable	Min Objetivo _rhs_
Type Variable	type
Problem Density (%)	33.33
Variables	Number
Non-negative	12
Total	12
Constraints	Number
EQ	5
Objective	1
Total	6

Solution Summary

Terminated Successfully

Objective Value	0.03
Phase 1 Iterations	2
Phase 2 Iterations	4
Phase 3 Iterations	0
Integer Iterations	0
Integer Solutions	0
Initial Basic Feasible Variables	7
Time Used (seconds)	0
Number of Inversions	3
Epsilon	1E-8
Infinity	1.797693E308
Maximum Phase 1 Iterations	100
Maximum Phase 2 Iterations	100
Maximum Phase 3 Iterations	99999999
Maximum Integer Iterations	100
Time Limit (seconds)	120

Variable Summary

							Reduced
Col	Variable	Name	Status	Type	Price	Activity	Cost
1	x1		BASIC	NON-NEG	0	20	0
2	x2		BASIC	NON-NEG	0	37.5	0
3	x3		BASIC	NON-NEG	0	90	0
4	d1me		BASIC	NON-NEG	0.0004	75	0
5	d1ma			NON-NEG	0	0	0.0004
6	d2me			NON-NEG	0.00408	0	0.01208
7	d3me			NON-NEG	0.00317	0	0.00117
8	d3ma			NON-NEG	0	0	0.002
9	d4me			NON-NEG	0.05	0	0.032
10	d4ma			NON-NEG	0	0	0.018
11	d5me		BASIC	NON-NEG	0	10	0
12	d5ma			NON - NEG	0.1	0	0.1

Constraint Summary

Row	Constraint Name	Туре	S/S Col	Rhs	Activity	Dual Activity
	Objetive	OD IEOTVE		0	0.00	
1	Objetivo	OBJECTVE	•	0	0.03	•
2	Beneficio	EQ		2500	2500	0.0004
3	Materia_Prima	EQ		245	245	-0.008
4	Mano_de_Obra	EQ		315	315	0.002
5	Pedido	EQ		20	20	0.018
6	Horas Extras	EQ		10	10	0

2.

```
data pr.pr3;
input row $13. x1 x2 X3 _type_ $ _rhs_;
     datalines;
Beneficio
                           10 MAX
Materia Prima 4
                               LE
                                       245
Mano de Obra
                    2
                               LE
                                       315
Pedido
              1
                               GE
                                        2.0
            10000 10000 10000 UPPERBD
limsup
              1
                          3
                               INTEGER
enteras
```

run;

proc print data=pr.pr3; run;

/*To help monitor the growth of the branch-and-bound tree, the LP procedure reports on the status of each problem that is solved. The report, displayed in the Integer Iteration Log, can be used to reconstruct the branch-and-bound tree. Each row in the report describes the results of the attempted solution of the linear program at a node in the tree. In the following discussion, a problem on a given line in the log is called the current problem. The following columns are displayed in the report: Iter identifies the number of the branch-and-bound iteration. Problem identifies how the current problem fits in the branch-and-bound tree. Condition reports the result of the attempted solution of the current problem. Values for Condition are:

ACTIVE: The current problem was solved successfully.

INFEASIBLE: The current problem is infeasible.

FATHOMED: The current problem cannot lead to an improved integer solution and therefore it is dropped.

SINGULAR: A singular basis was encountered in attempting to solve the current problem. Solution of this relaxed problem is suspended and will be attempted later if necessary.

SUBOPTIMAL: The current problem has an integer feasible solution. Objective reports the objective value of the current problem. Branched names the variable that is branched in subtrees defined by the descendants of this problem. Value gives the current value of the variable named in the column labeled Branched. Sinfeas gives the sum of the integer infeasibilities in the optimal solution to the current problem Active reports the total number of nodes currently active in the branch-and-bound tree Proximity reports the gap between the best integer solution and the current lower (upper for maximizations) bound of all active nodes. */

proc lp data=pr.pr3; run;

0bs	_row_	x1	x2	ХЗ	_type_	_rhs_
1	Beneficio	20	30	10	MAX	
2	Materia_Prima	4	2	1	LE	245
3	Mano_de_Obra	3	2	2	LE	315
4	Pedido	1	0	0	GE	20
5	limsup	10000	10000	10000	UPPERBD	
6	enteras	1	2	3	INTEGER	

The LP Procedure

Problem Summary

Objective Function Rhs Variable Type Variable Problem Density (%)	Max Beneficio _rhs_ _type_ 55.56
Variables	Number
Integer Slack Surplus	3 2 1
Total	6
Constraints	Number
LE GE Objective	2 1 1

Total

The LP Procedure

Integer Iteration Log

			Integer	Titeration Lo	og			
Iter	Problem	Condition	Objective	Branched	Value	Sinfeas	Active	Proximity
1	0	ACTIVE	2875	x2	82.5	0.5	1	
2	1	SUBOPTIMAL					0	
			The L	P Procedure				
			Solut	ion Summary				
			Integer C	Optimal Solut:	ion			
		Objective '	Value			2870		
	Phase 1 Iterations					1		
	Phase 2 Iterations					2		
		Phase 3 It			1			
		Integer It				2		
		Integer So		e Variables		1 5		
		Time Used		e variables		0		
		Number of				3		
		Epsilon				1E-8		
		Infinity			1.797	7693E308		
			ase 1 Itera			100		
			ase 2 Itera			100		
			ase 3 Itera teger Itera		٤	99999999		
		Time Limit	-	ICIONS		120		
			The L	P Procedure				
			Vari	able Summary				
							Reduc	ed

Col Variable Name Status Type Price Activity Cost

	1 x1	BASIC	INTEGER	20	20	0
	2 x2		INTEGER	30	82	10
;	3 X3	BASIC	INTEGER	10	1	0
	4 Materia_Prima		SLACK	0	0	-10
	5 Mano_de_Obra	BASIC	SLACK	0	89	0
	6 Pedido		SURPLUS	0	0	-20

The LP Procedure

Constraint Summary

Row	Constraint Name	Туре	S/S Col	Rhs	Activity	Dual Activity
1	Beneficio	OBJECTVE		0	2870	
2	Materia_Prima	LE	4	245	245	10
3	Mano_de_Obra	LE	5	315	226	0
4	Pedido	GE	6	20	20	-20