Spatial Clustering and Autocorrelation

Class #20 | GEOG 215 Introduction to Spatial Data Science

Varun Goel

Today's Class

- Spatial Cluster Analysis
- Spatial Pattern
- Autocorrelation

Tobler's First Law

- Tobler's first law of Geography
 - Everything is related to everything else, but near things are more related than distant things
 - Values at locations near each other tend to be similar, with similarity decreasing with distance
 - Implies that phenomena are not distributed randomly (throughout space)
 - Imagine how the world would appear if everything were randomly distributed!

Geographic Variation

- Variation in some phenomenon across space or from place to place
 - We can observe this in tables, but view it in maps
 - Events (e.g., disease cases)
 - Locations (e.g., hospitals)
 - Values (e.g., average income)

Events

Lyme Disease Cases

Values

% living under poverty

Geographic Variation

- Visual observation is subjective
 - While patterns may be visible, our eyes do not provide an objective test

- We have techniques that assist us in

interpreting spatial patterns

Geographic Variation

- Binary vs continuous
 - We can have various degrees of clustering or dispersion
 - We have techniques that assist us in quantifying degree of clustering

Spatial Cluster Analysis

- Two main approaches
 - Identifying whether events/values are clustered in space
 - Global, does not tell us "where"
 - Identifying clusters of events/values in space (deviations from expected)
 - Local regions having...
 - High/Low values
 - Higher density (unmarked points)

Point Data

- Two general types of point data
 - Unmarked points
 - A point is simply the location of an event
 - Every point is a "1"
 - Marked points
 - A point is the location of an event that has a measurable magnitude
 - The number of events at that particular location or the magnitude of the event at a particular location

Spatial Pattern

- Definition of Pattern (from Merriam-Webster)
 - The <u>regular and repeated</u> way in which something happens or is done
 - A natural or chance configuration
- Spatial Pattern
 - Arrangement of objects in space
 - One of the main concerns for geographers and geographical analysis
 - Understanding the distribution of phenomena throughout a landscape (people, objects, features)... and why this is/isn't important

Events

Basic Concepts

- Clustered

Events are located or distributed near to one another

- Random

 Events are located or distributed such that there is no regular pattern

- Ordered (dispersed)

 Events are located or distributed in a regular or repeating fashion

Basic Concepts

- Clustered

Values are configured or distributed near to one another

- Random

Values are configured or distributed such that there is no regular pattern

- Ordered (dispersed)

 Values are configured or distributed in a regular or repeating fashion

Polleverywhere

- How good are you at perceiving patterns?
- pollev.com/goelvarun553

Figure 4.1 Field arrangements of blue and white cells exhibiting: (A) extreme negative spatial autocorrelation; (B) a dispersed arrangement; (C) spatial independence; (D) spatial clustering; and (E) extreme positive spatial autocorrelation. The values of the *I* statistic are calculated using the equation in Section 4.6 (Source: Goodchild 1986 CATMOG, GeoBooks, Norwich)

Spatial Autocorrelation

- Spatial Autocorrelation
 - The degree of similarity between objects that are located near each other
 - The arrangement or pattern of "values" within the landscape
 - Clustered, Random, Dispersed
 - Can be measured, quantitatively
 - For an entire region (global)
 - In a smaller area within the region (local)

Spatial Autocorrelation

- For areal (polygon), point, or raster data, we measure how variable values are arranged
 - Not simply the locations of the objects, but the attributes associated with them
 - Not recommended for count data unless population generating counts are exactly the same from place to place

http://www.crwr.utexas.edu/gis/gishydro05/Time/daymet_files/ta_a_pa_letter.jpg

http://irjci.blogspot.com/2012/03/how-unequal-is-household-income-in-your.html

http://irjci.blogspot.com/2012/03/how-unequal-is-household-income-in-your.html

Spatial Autocorrelation

- Spatial Autocorrelation
 - The degree of <u>similarity</u> between objects that are located <u>near</u> each other
 - Requires the definition of neighbors to evaluate similarity

Spatial Autocorrelation

- Spatial Autocorrelation
 - Note that this is **self** similarity
 - Only a single variable or set of events!
 - Correlation between variables is something different

Obesity Prevalence

Correlation

- Correlation
 - The relationship between things that happen or change together
 - Other terms used: relationship, association, interaction
 - Using statistical techniques, we can measure and test the relationship between things

Pattern and Process

- A spatial pattern is generally the result of some spatial process
 - Clustering (<u>auto</u>correlation) approaches tell us about the *patterns* we see
 - We map and describe patterns
 - We use statistical models to understand or explain *processes*
 - One example is **bivariate correlation**

Keywords

- Geographic variation
- Spatial cluster analysis
- Unmarked and marked points
- Spatial pattern
- Clustered, random, dispersed
- Spatial autocorrelation
 - Global, local
- Correlation