KÄHLER DIFFERENTIALS

ARPON RAKSIT

original: January 27, 2016 updated: February 16, 2016

§1 PRELIMINARIES

- 1.1 **Convention** All rings and algebras are commutative and unital.
- **Notation** If X is a topological space, we denote the (po)set of open subsets of X by Op(X).
- **Notation** Let (X, \mathcal{O}_X) and (Y, \mathcal{O}_Y) be ringed spaces. Recall that a map of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ consists of a continuous map $\pi \colon X \to Y$ together with a map $\alpha \colon \pi^{-1}\mathcal{O}_Y \to \mathcal{O}_X$ of sheaves of rings on X (or equivalently $\alpha \colon \mathcal{O}_Y \to \pi_*\mathcal{O}_Y$ on Y). Thus we will denote maps of ringed spaces by pairs (π, α) .
- **Definitions** (*a*) Let Mod denote the category with:
 - objects given by pairs (A, M), where A is a ring and M is an A-module;
 - morphisms $(A, M) \rightarrow (B, N)$ are given by triples (α, ϕ) where α is a map of rings $A \rightarrow B$ and ϕ is a map of A-modules $M \rightarrow N$.
 - (b) Let TopMod denote the category with:
 - objects given by triples (X, \mathcal{O}_X, M) , where (X, \mathcal{O}_X) is a ringed space and M is an \mathcal{O}_X -module;
 - morphisms $(X, \mathcal{O}_X, M) \to (Y, \mathcal{O}_Y, N)$ are given by triples (π, α, ϕ) where (π, α) is a map of ringed spaces $(X, \mathcal{O}_X, M) \to (Y, \mathcal{O}_Y, N)$ and ϕ is a map of \mathcal{O}_X -modules $\pi^*N \to M$ (or equivalently a map of \mathcal{O}_Y -modules $N \to \pi_*M$).

Observe that the full subcategory of TopMod on objects (X, \mathcal{O}_X, M) for which X is a point is canonically equivalent to the category Mod^{op} .

- (*c*) Let Alg denote the arrow category of rings, i.e. the category with:
 - objects given by maps of rings $A \rightarrow B$;
 - morphisms from $A \to B$ to $A' \to B'$ given by commutative squares

$$\begin{array}{ccc}
B & \longrightarrow & B' \\
\uparrow & & \uparrow \\
A & \longrightarrow & A'.
\end{array}$$

- (d) Let TopAlg denote the arrow category of ringed spaces, i.e. the category with:
 - objects given by maps of ringed spaces $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$;
 - morphisms from $(X, \mathcal{O}_X) \to (Y', \mathcal{O}_Y')$ to $(X, \mathcal{O}_{X'}) \to (Y', \mathcal{O}_{Y'})$ given by com-

mutative squares

$$(X, \mathcal{O}_X) \longrightarrow (X', \mathcal{O}_{X'})$$

$$\downarrow \qquad \qquad \downarrow$$

$$(Y, \mathcal{O}_Y) \longrightarrow (Y', \mathcal{O}_{Y'}).$$

Observe that the full subcategory of TopAlg on objects $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ for which X and Y are points is canonically equivalent to the category Alg^{op}.

§ 2 DERIVATIONS AND DIFFERENTIALS

In this section we fix a map of ringed spaces (π, α) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$.

Definition — Let M be an \mathcal{O}_X -module. A Y-derivation on X in M is a map of $\pi^{-1}\mathcal{O}_Y$ -modules $d: \mathcal{O}_X \to M$ satisfying the Leibniz rule,

$$d(fg) = f d(g) + d(f)g$$
 for $f, g \in \mathcal{O}_X(U), U \in \operatorname{Op}(X)$.

2.2 Remark — Note that the Leibniz rule implies

$$d(1) = d(1 \cdot 1) = 1 \cdot d(1) + d(1) \cdot 1 = 2 \cdot d(1) \implies d(1) = 0;$$

and by $\pi^{-1}\mathcal{O}_Y$ -linearity this implies more generally that $d \circ \alpha = 0$. Conversely, if $d \colon \mathcal{O}_X \to M$ is a map of sheaves of abelian groups satisfying the Leibniz rule, then the condition $d \circ \alpha = 0$ clearly implies that d is $\pi^{-1}\mathcal{O}_Y$ -linear.

- **Notation** Denote the set of *Y*-derivations on *X* in *M* by $\operatorname{Der}(X/Y, M)$. If $d: \mathcal{O}_X \to M$ is a *Y*-derivation and $\phi: M \to N$ a map of \mathcal{O}_X -modules, then $\phi \circ d: \mathcal{O}_X \to N$ is a *Y*-derivation on *X* in *N*. Thus the assignment $M \mapsto \operatorname{Der}(X/Y, M)$ defines a functor $\operatorname{Mod}_{\mathcal{O}_X} \to \operatorname{Set}$.
- **Definition** We define the \mathcal{O}_X -module $\Omega_{X/Y}$ of *Kähler differentials on X over Y* to be an object corepresenting the functor $\mathrm{Der}(X/Y,-)$: $\mathrm{Mod}_{\mathcal{O}_X} \to \mathrm{Set}$. That is, $\Omega_{X,Y}$ is defined by the property that there is a *universal Y-derivation d* on X in $\Omega_{Y/X}$, where "universal" means as usual that composition with d gives an isomorphism

$$\operatorname{Hom}_{\operatorname{Mod}_{\mathscr{O}_X}}(\Omega_{X/Y}, M) \simeq \operatorname{Der}(X/Y, M).$$

Of course, this property uniquely characterizes $\Omega_{X/Y}$, but it remains to prove its existence. We do so in [2.7].

Remark — This definition [2.4] takes in as input a map (π, α) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$, i.e. an object of TopAlg, and outputs an \mathcal{O}_X -module $\Omega_{X/Y}$, i.e. an object $(X, \mathcal{O}_X, \Omega_{X/Y}) \in \text{TopMod}$.

Suppose

$$(X, \mathcal{O}_X) \xrightarrow{(\sigma, \gamma)} (X', \mathcal{O}_{X'})$$

$$(\pi, \alpha) \downarrow \qquad \qquad \downarrow (\rho, \beta)$$

$$(Y, \mathcal{O}_Y) \xrightarrow{(\tau, \delta)} (Y', \mathcal{O}_{Y'})$$

is a commutative diagram, i.e. a map in TopAlg. Let M be an \mathcal{O}_X -module. There is a map of sets $\mathrm{Der}(X/Y,M) \to \mathrm{Der}(X'/Y',\sigma_*M)$ defined as follows: given a Y-derivation

2

 $\mathcal{O}_X \to M$, restrict in γ to obtain a map $\sigma^{-1}\mathcal{O}_{X'} \to M$, then pass to the adjoint map $\sigma \colon \mathcal{O}_{X'} \to \sigma_* M$, which one easily checks is a Y'-derivation.

This is clearly natural in M, so we have defined a natural transformation $Der(X/Y, -) \rightarrow Der(X'/Y', \sigma_*(-))$. By definition of Kähler differentials [2.4], this is equivalent to a natural transformation

$$\operatorname{Hom}_{\operatorname{Mod}_{\mathscr{O}_{X}}}(\Omega_{X/Y},-) \to \operatorname{Hom}_{\operatorname{Mod}_{\mathscr{O}_{Y'}}}(\Omega_{X'/Y'},\sigma_{*}(-)) \simeq \operatorname{Hom}_{\operatorname{Mod}_{\mathscr{O}_{X}}}(\sigma^{*}\Omega_{X'/Y'},-),$$

which, by the Yoneda lemma, is equivalent to a map of \mathscr{O}_X -modules $\phi \colon \sigma^*\Omega_{X'/Y'} \to \Omega_{X/Y}$, determining a map $(\sigma, \gamma, \phi) \colon (X, \mathscr{O}_X, \Omega_{X/Y}) \to (X', \mathscr{O}_{X'}, \Omega_{X'/Y'})$ in TopMod. Thus, the assignment of Kähler differentials

$$(\pi, \alpha): (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y) \mapsto (X, \mathcal{O}_X, \Omega_{X/Y})$$

defines a functor Ω : TopAlg \rightarrow TopMod.

2.6 **Remark** — Note that when restricted to the full subcategory $Alg^{op} \hookrightarrow TopAlg [1.4(d)]$, the Kähler differentials functor Ω defined in [2.5] takes values in the full subcategory $Mod^{op} \hookrightarrow TopMod [1.4(b)]$. I.e. Ω restricts to a functor $Alg \rightarrow Mod$, given by the assignment $(A \rightarrow B) \mapsto (B, \Omega_{B/A})$.

In general, when we restrict to Alg, i.e. when X and Y are points, we replace X and Y in our terminology and notation with B and A. E.g. we have A-derivations on B in B-modules M, the set of such derivations is denoted Der(B/A, M), and as above, the B-module of $K\ddot{a}hler$ differentials of B over A is denoted $\Omega_{B/A}$.

2.7 Construction — We now construct the object $\Omega_{X/Y}$ defined in [2.4], proving its existence. We start by doing this for the case that X and Y are points. Our notation is as discussed in [2.6]: we consider a ring map $\alpha: A \to B$ and construct $\Omega_{B/A}$. This is straightforward: we define $\Omega_{B/A}$ to be the B-module generated by symbols $\{df\}_{f \in B}$, subject only to the required relations:

$$d(f+g)=df+dg, \qquad d(fg)=f(dg)+(df)g, \qquad d\alpha(c)=0,$$

for f, $g \in B$ and $c \in A$. Then the universal A-derivation $d : B \to \Omega_{B/A}$ is given simply by $f \mapsto df$.

We now return to the general case. Applying the previous construction locally, we obtain a pre- \mathcal{O}_X -module $\Omega_{X/Y}^{\mathrm{pre}}$ by assigning to $U \in \mathrm{Op}(X)$ the Kähler differentials of $\mathcal{O}_X(U)$ over $\pi^{-1}\mathcal{O}_Y(U)$; i.e. we define

$$\Omega^{\mathrm{pre}}_{X/Y}(U) := \Omega_{\mathcal{O}_X(U)/\pi^{-1}\mathcal{O}_Y(U)} \in \mathrm{Mod}_{\mathcal{O}_X(U)}.$$

Finally, we define $\Omega_{X/Y} \in \operatorname{Mod}_{\mathscr{O}_X}$ to be the sheafification of $\Omega_{X/Y}^{\operatorname{pre}}$.

§3 SQUARE-ZERO EXTENSIONS

- **Construction** Let (X, \mathcal{O}_X) be a ringed space and M an \mathcal{O}_X -module. We construct an \mathcal{O}_X -algebra $A \oplus M$, called the *square-zero extension of* \mathcal{O}_X *by* M. As the notation suggests, the underlying \mathcal{O}_X -module is the direct sum $\mathcal{O}_X \oplus M$. And as the name suggests, the ring structure is defined by requiring:
 - that M (or rather its image in the canonical inclusion $M \to \mathcal{O}_X \oplus M$) be a square-zero ideal in $\mathcal{O}_X \oplus M$;

• that the canonical inclusion $\iota_{X,M} \colon \mathcal{O}_X \to \mathcal{O}_X \oplus M$ be a ring map (so that we indeed get an \mathcal{O}_X -algebra).

These conditions lead to the following formula for multiplication:

$$(f,m)(g,n) = (fg,fn+gm)$$
 for $(f,m),(g,n) \in (\mathcal{O}_X \oplus M)(U),\ U \in \operatorname{Op}(X),$ noting that $(\mathcal{O}_X \oplus M)(U) \simeq \mathcal{O}_X(U) \oplus M(U).$

3.2 **Remark** — This construction [3.1] takes in as input a triple $(X, \mathcal{O}_X, M) \in \text{TopMod}$ and outputs an \mathcal{O}_X -algebra $\iota_{X,M} \colon \mathcal{O}_X \to \mathcal{O}_X \oplus M$, which we may interpret as an object $(\text{id}_X, \iota_{X,M}) \colon (X, \mathcal{O}_X \oplus M) \to (X, \mathcal{O}_X)$ in TopAlg.

Moreover, if (π, α, ϕ) is a map $(X, \mathcal{O}_X, M) \to (Y, \mathcal{O}_Y, N)$ in TopMod, then the diagram

$$(X, \mathcal{O}_X \oplus M) \xrightarrow{(\pi, \alpha \oplus \phi)} (Y, \mathcal{O}_Y \oplus N)$$

$$\downarrow^{(\mathrm{id}_X, \iota_{X,M})} \qquad \downarrow^{(\mathrm{id}_Y, \iota_{Y,N})}$$

$$(X, \mathcal{O}_X) \xrightarrow{(\pi, \alpha)} (Y, \mathcal{O}_Y)$$

is a map $(id_X, \iota_{X,M}) \rightarrow (id_Y, \iota_{Y,N})$ in TopAlg. Thus the square-zero extension construction

$$(X, \mathcal{O}_X, M) \mapsto (\mathrm{id}_X, \iota_{X,M}) \colon (X, \mathcal{O}_X \oplus M) \to (X, \mathcal{O}_X)$$

defines a functor \oplus : TopMod \rightarrow TopAlg.

- 3.3 **Remark** Note that when restricted to the full subcategory $\operatorname{Mod}^{\operatorname{op}} \hookrightarrow \operatorname{TopMod}$ [1.4 (*b*)], the square-zero extension functor \oplus defined in [3.2] takes values in the full subcategory $\operatorname{Alg}^{\operatorname{op}} \hookrightarrow \operatorname{TopAlg} [1.4 (d)]$. I.e. \oplus restricts to a functor $\operatorname{Mod} \to \operatorname{Alg}$, given by the assignment $(A, M) \mapsto (A \to A \oplus M)$.
- 3.4 **Lemma** Let (Z, \mathcal{O}_Z) be a ringed space and M an \mathcal{O}_Z -module. Let (π, α) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a map of ringed spaces. Then the following data are equivalent:
 - a map from $(id_Z, \iota_{Z,M})$: $(Z, \mathcal{O}_Z \oplus M) \to (Z, \mathcal{O}_Z)$ to (π, α) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ in TopAlg;
 - a map of ringed spaces (ρ, β) : $(Z, \mathcal{O}_Z) \to (X, \mathcal{O}_X)$ together with a *Y*-derivation on *X* in ρ_*M .

Moreover, the bijection between the sets of these data is functorial in $(Z, \mathcal{O}_Z, M) \in \text{Mod}^{\text{op}}$ and $(\pi, \alpha) \in \text{TopAlg}$.

Proof — This boils down to the following fact, which is straightforwardly verified. Let $\gamma: \mathcal{O}_X \to \rho_* \mathcal{O}_Z \oplus \rho_* M$ be a map of sheaves of sets. Write $\gamma = (\beta, d)$ for maps $\beta: \mathcal{O}_X \to \rho_* \mathcal{O}_Z$ and $d: \mathcal{O}_X \to \rho_* M$. Then the following are equivalent:

• γ is a map of sheaves of rings whose restriction $\gamma \circ \alpha \colon \pi^{-1}\mathcal{O}_Y \to \rho_*\mathcal{O}_Z \oplus \rho_*M$ factors through $\rho_*\mathcal{O}_Z$.

- β is a map of sheaves of rings and d is a Y-derivation.
- 3.5 **Proposition** There is an adjunction

$$\oplus$$
: TopMod \rightleftharpoons TopAlg : Ω ,

where the left adjoint \oplus denotes the square-zero extension functor [3.2], and the right adjoint Ω denotes the Kähler differentials functor [2.5].

Proof — Combine [3.4] with the definition of Kähler differentials [2.4].

3.6 **Corollary** — By restricting the adjunction supplied by [3.5] to the full subcategories $\text{Mod}^{\text{op}} \hookrightarrow \text{TopMod}$ and $\text{Alg}^{\text{op}} \hookrightarrow \text{TopMod}$ [2.6, 3.3], we obtain an adjunction

$$\Omega$$
: Alg \rightleftharpoons Mod : \oplus ,

where now (after taking opposite categories) Kähler differentials Ω is left adjoint to square-zero extension \oplus .

§ 4 PROPERTIES OF DIFFERENTIALS

4.1 **Lemma** — Let (π, α) : $(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a map of ringed spaces. Let $x \in X$. Then the stalk of the Kähler differentials sheaf $\Omega_{X/Y}$ at x is given by the Kähler differentials module of the ring map of stalks $\alpha_x : \mathcal{O}_{Y,\pi(x)} \to \mathcal{O}_{X,x}$. That is, there is a canonical isomorphism of $\mathcal{O}_{X,x}$ -modules $(\Omega_{X/Y})_x \simeq \Omega_{\mathcal{O}_{X,x}}/\mathcal{O}_{Y,\pi(x)}$.

Proof — Recall from [2.7] that $\Omega_{X/Y}$ is the sheafification of the presheaf $\Omega_{X/Y}^{pre}$ defined by the assignment

$$\operatorname{Op}(X) \ni U \mapsto \Omega_{\mathcal{O}_X(U)/\pi^{-1}\mathcal{O}_Y(U)} \in \operatorname{Mod}_{\mathcal{O}_X(U)}.$$

Since sheafification preserves stalks, it follows that

$$(\Omega_{X/Y})_x \simeq (\Omega_{X/Y}^{\mathrm{pre}})_x \simeq \operatornamewithlimits{colim}_{U\ni x} \Omega_{X/Y}^{\mathrm{pre}}(U) \simeq \operatornamewithlimits{colim}_{U\ni x} \Omega_{\mathscr{O}_X(U)/\pi^{-1}\mathscr{O}_Y(U)}.$$

As this is a filtered colimit (taken over the poset of $U \in \operatorname{Op}(X)$ containg x), it also computes the colimit inside the category Mod; more precisely, we have isomorphisms

$$(\mathcal{O}_{X,x}, (\Omega_{X/Y})_x) \simeq \underset{U \ni x}{\operatorname{colim}} (\mathcal{O}_X(U), \Omega_{\mathcal{O}_X(U)/\pi^{-1}\mathcal{O}_Y(U)})$$
$$\simeq \underset{U \ni x}{\operatorname{colim}} \Omega(\alpha_U \colon \pi^{-1}\mathcal{O}_Y(U) \to \mathcal{O}_X(U))$$

in Mod. By [3.6], Ω : Alg \rightarrow Mod is a left adjoint and hence preserves colimits, so we obtain an isomorphism (still in Mod)

$$(\mathscr{O}_{X,x},(\Omega_{X/Y})_x)\simeq\Omega\left(\operatorname*{colim}_{U\ni x}\alpha_U\right)\simeq\Omega(\alpha_x),$$

which is the desired isomorphism of $\mathcal{O}_{X,x}$ -modules $(\Omega_{X/Y})_x \simeq \Omega_{\mathcal{O}_{X,x}/\mathcal{O}_{Y,\pi(x)}}$.

Lemma — Let k be a field and A a k-algebra. Suppose A is a local ring with maximal ideal \mathfrak{m} and residue field k, i.e. such that the map $k \to A/\mathfrak{m}$ is an isomorphism. Then there is an isomorphism of k-vector spaces $\Omega_{A/k} \otimes_A k \simeq \mathfrak{m}/\mathfrak{m}^2$.