Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in the application.

Listing of the Claims:

Claim 1 (currently amended): A compound of formula (I):

wherein

M1 is -CH2- or-NR24-;

 M^{2} is $-CR^{22}R^{23}$ or $-NR^{24}$ -; provided that if M^{4} is $-NR^{24}$ -, M^{2} is $-CR^{22}R^{23}$ -;

one of \mathbf{R}^1 and \mathbf{R}^2 is selected from hydrogen₅ or C_{1-6} alkyl or C_{2-6} alkenyl and the other is selected from C_{1-6} alkyl-or C_{2-6} alkenyl;

 \mathbf{R}^3 is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, $C_{1\text{-}6}$ alkyl, $C_{2\text{-}6}$ alkenyl, $C_{2\text{-}6}$ alkynyl, $C_{1\text{-}6}$ alkoxy, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}6}$ alkyl)amino, N.N-($C_{1\text{-}6}$ alkyl)2amino, $C_{1\text{-}6}$ alkyl)2amino, N-($C_{1\text{-}6}$ alkyl)2arbamoyl, N.N-($C_{1\text{-}6}$ alkyl)2carbamoyl, $C_{1\text{-}6}$ alkyl)Sulphamoyl, $C_{1\text{-}6}$ alkyl)2sulphamoyl, $C_{1\text{-}6}$ alkyl)2sulphamoyl; $C_{1\text{-}6}$

v is 0-5;

one of R⁵ and R⁶-is a group of formula (IA):

R4 and R7 are hydrogen;

and the other of R⁶ and R⁶ is are independently selected from hydrogen or methylthio, halo, nitro, eyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C_{1.4}alkyl, C_{2.4}alkenyl, C_{2.4}alkynyl, C_{1.4}alkoxy, C_{1.4}alkanoyl, C_{1.4}alkanoyloxy, N'(C_{1.4}alkyl)amino, N'(C_{1.4}alkyl)amino, C_{1.4}alkanoylamino, N'(C_{1.4}alkyl)carbamoyl, N'N'(C_{1.4}alkyl)carbamoyl, C_{1.4}alkylS(O)_a wherein a is 0 to 2, C_{1.4}alkoxycarbonyl, N'C_{1.4}alkyl)calphamoyl and N'N'(C_{1.4}alkyl)₂sulphamoyl; wherein R⁴ and R⁷ and the other of R⁵ and R⁸ may be ontionally substituted on carbon by one or more R²⁵.

- Z is -O., N(Ra), S(O), or CH(Ra); wherein Ra is hydrogen or C_{1.6}alkyl and b is 0.2;
- R⁸ is hydrogen, C₁₋₄alkyl, earboeyelyl or heteroeyelyl; wherein R⁸-may be optionally substituted on earbon by one or more substituents selected from R²⁶; and wherein if said heteroeyelyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R²².
- R9 is hydrogen or C1 4alkyl;
- R¹⁰ is and R¹¹ are independently selected from cyclohexyl and phenyl hydrogen, C_{1-a}alkyl, earbocyclyl or heterocyclyl; or R¹⁰ and R¹¹ together form C_{2-t}alkylene; wherein R¹⁰ and R¹¹ or R¹⁰ and R¹¹ together may be independently optionally substituted on carbon by one or more substituents selected from R²⁵; and wherein if said heterocyclyl contains an NH moiety, that nitrogen may be optionally substituted by one or more R²⁹;
- R⁴⁰-and-R¹¹ is are independently-selected from hydrogen, C₁₋₄alkyl, carbocyclyl or heterocyclyle or R⁴⁰-and R⁴¹ together form C₂₋₄alkylene; wherein R⁴⁰ and R⁴¹ or R⁴⁰ and R⁴¹ together may be independently-optionally substituted on carbon by one or more substituents selected from R²⁸; and wherein if said heterocyclyl contains an -NH- moiety, that nitrogen may be optionally substituted by one or more R²⁹;

- R¹²:is hydrogen, C_{1-i}alkyl, earbocyclyl or heterocyclyl; wherein R¹² may be optionally substituted on earbon by one or more substituents selected from R³⁰; and wherein if said heterocyclyl contains an NH moiety, that nitrogen may be optionally substituted by one or more R³¹;
- $$\begin{split} &R^{13} \text{ is hydrogen, halo, nitro, eyano, hydroxy, amino, earbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, $C_{1-16}alkyl, $C_{2-16}alkenyl, $C_{2-16}alkynyl, $C_{1-16}alkoxy, $C_{1-16}alkoxy, $C_{1-16}alkoxy, $C_{1-16}alkyl)_{2}$ amino, $N,N,N,C_{1-16}alkyl)_{2}$ amino, $N,N,N,C_{1-16}alkyl)_{2}$ aminon, $C_{1-16}alkyl)_{2}$ aminon, $C_{1-16}alkyl)_{2}$ aminon, $C_{1-16}alkyl)_{2}$ aminon, $C_{1-16}alkyl)_{2}$ aminon, $C_{1-16}alkyl)_{2}$ arbamoyl, $C_{1-16}alkyl)_{3}$ allow $C_{1-16}alkyl)_{3}$ and $C_{1-16}alkyl)_{3}$ allow $C_{1-16}alkyl)_{3}$ allow $C_{1-16}alkyl)_{3}$ allow $C_{1-16}alkyl)_{3}$ allow $C_{1-16}alkyl)_{3}$ arbaecyclyl, $C_{1-16}alkyl, $C_{1-16}a$$

heteroeyelyl $(C_{\perp \downarrow 0}$ alkylene)_k \mathbb{R}^{33} $(C_{\perp \downarrow 0}$ alkylene)_h \div wherein \mathbb{R}^{43} may be optionally substituted on earbon by one or more substituents selected from \mathbb{R}^{16} ; and wherein if said heteroeyelyl contains an NH group, that nitrogen may be optionally substituted by a group selected from \mathbb{R}^{37} : or \mathbb{R}^{13} is a group of formula (IB):

wherein:

X is $-N(R^{38}) - N(R^{38})C(O) - O$, and $-S(O)_a$; wherein a is 0 - 2 and R^{38} is hydrogen or $C_{\vdash a}$ alkyl; R^{14} is hydrogen or $C_{\vdash a}$ alkyl;

R15 is hydrogen;

and R¹⁶ is are independently selected from hydrogen, halo, nitro, eyano, hydroxy, amino, earbamoyl, mercapto, sulphamoyl, C₁₋₆alkyl, C₂₋₆alkenyl, C₂₋₆alkynyl, C₁₋₆alkoxy, C₁₋₆alkanoyl, C₁₋₆alkanoyloxy, N (C₁₋₆alkyl)amino, N.N (C₁₋₆alkyl)₂amino.

 C_{L_6} alkanoylamino, N (C_{L_6} alkyl)carbamoyl, N, N (C_{L_6} alkyl) $_2$ carbamoyl, C_{L_6} alkyl $_3$ (O) $_a$ wherein a is 0 to 2, C_{L_6} alkoxycarbonyl, N (C_{L_6} alkyl)sulphamoyl,

N,N (C_{L-6}alkyl)₂sulphamoyl, carbocyclyl or heterocyclic group; wherein R⁴⁵ and R⁴⁴ may be independently optionally substituted on carbon by one or more substituents selected from R⁴⁴; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R⁴²;

R¹⁷ is cthyl, selected from hydrogen, halo, nitro, eyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₀alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₀alkoxy, C₁₋₁₀alkanoyl, C₁₋₁₀alkoxy, C₁₋₁₀alkyl); amino, C₁₋₁₀alkanoylamino, N'(C₁₋₁₀alkyl); arbamoyl, C₁₋₁₀alkyl); arbamoylamino, N'N'(C₁₋₁₀alkyl); arbamoylamino, arbocyclyl, carbocyclylC₁₋₁₀alkyl, heterocyclic group, heterocyclylC₁₋₁₀alkyl, carbocyclyl (C₁₋₁₀alkylene), R⁴³ (C₁₋₁₀alkylene), or heterocyclyl (C₁₋₁₀alkylene), R⁴⁴ (C₁₋₁₀alkylene), wherein R¹⁷ is may be optionally substituted on each carbon of the ethyl group by one substituent or more substituents selected from R⁴⁷, wherein R⁴⁷ is hydroxy; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R⁴⁸; or R⁴⁷ is a group of formula (IC):

wherein:

R¹⁸ is selected from hydrogen or C₁₋₄alkyl;

R¹⁹ is selected from hydrogen, halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, €₁₋₆alkyl, €₂₋₆alkenyl, €₂₋₆alkynyl, €₁₋₆alkoxy, €₁₋₆alkanoyl, €₁₋₆alkanoyloxy, N-(€₁₋₆alkyl)amino, N-N-(€₁₋₆alkyl)amino, €₁₋₆alkanoylamino, N-(€₁₋₆alkyl)amino, N-(€₁₋₆alkyl)amino,

N,N-(C₁₋₆alkyl)₂carbamoyl, C₁₋₆alkylS(O)_a wherein a is 0 to 2, C₁₋₆alkoxycarbonyl. N (C) calkyl)sulphamovl, N.N (C) calkyl) sulphamovl, carbocyclyl or heterocyclic group: where R 49 may be independently optionally substituted on carbon by one or more substituents selected from R54; and wherein if said heterocyclyl contains an NH group, that nitrogen may be optionally substituted by a group selected from R52; R²⁰ is selected from halo, nitro, evano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C. 10alkyl, C. 10alkenyl, C. 10alkynyl, C. 10alkoxy, C__oalkoxycarbonyl, C__oalkanoyl, C__oalkanoyloxy, N-(C__oalkyl)amino, N.N.(C__igalkyl):amino, N.N.N.(C__igalkyl):ammonio, C__igalkanoylamino, N (C) palkyl)carbamovl, N.N (C) palkyl)carbamovl, C) palkylS(O), wherein a is 0 to 2. N-(C__oalkyl)sulphamoyl, N.N (C__oalkyl)sulphamoyl, N-(C__oalkyl)sulphamoylamino, N.N-(C1_toalkyl):sulphamoylamino, C1_toalkoxycarbonylamino, carbocyclyl, earboevelvIC__oalkvl, heteroevelic group, heteroevelvIC__oalkvl, carbocyclyl (C) malkylene), R53 (C) malkylene), or heterocyclyl-(C__oalkylene),-R54-(C__oalkylene),-; wherein R20 may be independently optionally substituted on earbon by one or more R57; and wherein if said heteroevelyl contains an NH- group, that nitrogen may be optionally substituted by a group selected from R58; p is 1-3; wherein the values of R⁴⁵ may be the same or different; a is 0-1: r is 0-3; wherein the values of R⁴⁶ may be the same or different; m is 0-2: wherein the values of R¹² may be the same or different: n is 1-2: wherein the values of R8 may be the same or different: z is 0-3: wherein the values of R¹⁹ may be the same or different; R21 is selected from hydrogen or C1_6alkyl; R²² and R²³ are independently selected from hydrogen, hydroxy, amino, mercapto, C₁₋₆alkyl, C1.6alkyv, N-(C1.6alkyl)amino, N.N-(C1.6alkyl)amino, C1.6alkylS(O)a wherein a is 0 to 2;

R²⁴ is selected from hydrogen, hydroxy, C₁₋₆alkyl, C₁₋₄alkoxy and C₁₋₆alkanoyloxy;
R²⁵ is selected from halo, nitro, cyano, hydroxy, amino, carboxy, carbamoyl, mercapto, sulphamoyl, C₁₋₄alkyl, C₂₋₄alkenyl, C₂₋₄alkynyl, C₁₋₄alkoxy, C₁₋₄alkanovl. C₁₋₃alkanovloxv.

N-(C_{1-4} alkyl)amino, N-N-(C_{1-4} alkyl)2amino, C_{1-4} alkanoylamino, N-(C_{1-4} alkyl)carbamoyl, N-N-(C_{1-4} alkyl)2carbamoyl, C_{1-4} alkylS(O)_a wherein a is 0 to 2, C_{1-4} alkoycarbonyl, N-(C_{1-4} alkyl)3ulphamoyl and N-N-(C_{1-4} alkyl)2sulphamoyl; wherein R^{25} , may be independently optionally substituted on carbon by one or more R^{67} ;

- R²⁶, R²³, R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ are independently selected from halo, nitro, cyano, hydroxy, amino, carbamoyl, mercapto, sulphamoyl, hydroxyaminocarbonyl, C₁₋₁₆alkyl, C₂₋₁₀alkenyl, C₂₋₁₀alkynyl, C₁₋₁₆alkoxy, C₁₋₁₆alkanoyl, C₁₋₁₆alkanoyloxy, C₁₋₁₆alkoxycarbonyl, N-(C₁₋₁₆alkyl)amino, N.N-(C₁₋₁₀alkyl)2amino, N.N-(C₁₋₁₀alkyl)3mmonio, C₁₋₁₆alkyl)amino, N.-(C₁₋₁₆alkyl)carbamoyl, N.N-(C₁₋₁₆alkyl)2carbamoyl, C₁₋₁₆alkylS(O)a wherein a is 0 to 2, N-(C₁₋₁₀alkyl)sulphamoyl, N.N-(C₁₋₁₆alkyl)2sulphamoyl, N-(C₁₋₁₆alkyl)sulphamoylamino, C₁₋₁₆alkyl)sulphamoylamino, carbocyclyl, carbocyclylC₁₋₁₆alkyl, heterocyclic group, heterocyclylC₁₋₁₆alkyl, carbocyclyl-(C₁₋₁₆alkylene)_E-R⁵⁹-(C₁₋₁₆alkylene)_E-or heterocyclyl-(C₁₋₁₆alkylene)_E-R⁶⁰-(C₁₋₁₆alkylene)_E-s⁵⁹-(C₁₋₁₆alkylene)_E-s⁷⁶-R³⁰, R³⁶, R⁴¹, R⁴⁷, R⁵¹ and R⁵⁷ may be independently optionally substituted on carbon by one or more R⁶³; and wherein if said heterocyclyl contains an -NH- group, that nitrogen may be optionally substituted by a group selected from R⁶⁴;
- R^{27} , R^{29} , R^{31} , R^{37} , R^{42} , R^{48} , R^{52} , R^{58} and R^{64} are independently selected from $C_{1\text{-}6}$ alkyl, $C_{1\text{-}6}$ alkanoyl, $C_{1\text{-}6}$ alkylsulphamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)sulphamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)sulphamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2sulphamoyl, $C_{1\text{-}6}$ alkoxycarbonyl, carbamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2carbamoyl, $N\text{-}(C_{1\text{-}6}$ alkyl)2carbamoyl, benzyl, phenethyl, benzoyl, phenylsulphonyl and phenyl;
- R³², R³³, R⁴³, R⁴⁴, R⁵³, R⁵⁴, R⁵⁹ and R⁶⁰are independently selected from -O-, -NR⁶⁵-, -S(O)_λ-, -NR⁶⁵C(O)NR⁶⁶-, -NR⁶⁵C(S)NR⁶⁶-, -OC(O)N=C-, -NR⁶⁵C(O)- or -C(O)NR⁶⁵-; wherein R⁶⁵ and R⁶⁶ are independently selected from hydrogen or C₁₋₆alkyl, and x is 0-2;
- R⁶³ and R⁶⁷ re independently selected from halo, hydroxy, cyano, carbamoyl, ureido, amino, nitro, carbamoyl, mercapto, sulphamoyl, trifluoromethyl, trifluoromethoxy, methyl, ethyl, methoxy, ethoxy, vinyl, allyl, ethynyl, methoxycarbonyl, formyl, acetyl, formamido, acetylamino, acetoxy, methylamino, dimethylamino, N-methylcarbamoyl,

 N_i -dimethylcarbamoyl, methylthio, methylsulphinyl, mesyl, N-methylsulphamoyl and N_i -dimethylsulphamoyl; and

e, f, g and h are independently selected from 0-2;

or a pharmaceutically acceptable salt or an in vivo hydrolysable ester or amide a prodrug-thereof.

Claims 2-3 (cancelled).

Claim 4 (currently amended): A compound of formula (I) according to claim 1 wherein R²² and R²³ are independently selected from hydrogen and hydroxy; or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug-thereof.

Claim 5 (cancelled).

Claim 6 (currently amended): A compound of formula (I) according to claim 1 wherein one of R^1 and R^2 is are C_{1-4} alkyl; or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof.

Claim 7 (currently amended): A compound of formula (I) according to claim 1 wherein v is 0; or a pharmaceutically acceptable salt or an in vivo hydrolysable ester or amide a prodrug-thereof.

Claims 8-11 (cancelled).

Claim 12 (currently amended): A compound of formula (I) according to claim 1 selected from: (+/-)-trans-1,1-dioxo-3-ethyl-3-butyl-5-phenyl-7-methylthio-8-(N-(R)-\alpha-\{R}\)-(2-(S)-3-(R)-4-(R)-5-(R)-2,3,4,5,6-pentahydroxyhexyl)carbamoyl]benzyl} carbamoylmethoxy)-2,3,4,5-tetrahydro-1,4-benzothiazepine;

(**/-) trans 1,1 dioxo 3 ethyl 3 butyl 5 phenyl 7 methylthio 8 (N ({R}) α [N (2 (S) 3 (R) 4 (R) 5 (R) 2,3,4,5,6 pentahydroxyhexyl)earbamoyl]benzyl] earbamoylmethoxy) 2,3,4,5 tetrahydro 1,4 benzothiazepine;

- 1,1 dioxo 3 ethyl 3 butyl 4 hydroxy 5 phenyl 7 (N {α {N (2 (8) 3 (R) 4 (R) 5 (R) 2,3.4.5.6-pentahydroxyhexyl)carbamoyl] 2 fluorobenzyl} carbamoylmethylthio) 2,3,4,5-tetrahydrobenzothicpine; or
- 1,1 dioxo 3 butyl 3 ethyl 4 hydroxy 5 phenyl 7 (N {1 [N* (2 (S) 3 (R) 4 (R) 5 (R) 2,3,4,5,6 pentahydroxyhexyl)carbamoyl] 1 (cyclohexyl)methyl}earbamoylmethylthio) 2,3,4,5-tetrahydrobenzothicpine:
- or a pharmaceutically acceptable salt or an in vivo hydrolysable ester or amide a prodrug thereof.

Claim 13 (currently amended and withdrawn): A process for preparing a compound of formula (I) or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a-prodrug thereof, as claimed in claim 1, which process (wherein variable groups are, unless otherwise specified, as defined in claim 1) comprises of:

Process 1): for compounds of formula (I) wherein Z is O, NR*-or S-; reacting a compound of formula (IIa)-or (IIb):

with a compound of formula (III):

$$R^{12}R^{11}R^{9}R^{8}$$

$$R^{13}M^{10}O$$
(III)

wherein L is a displaceable group;

Process 2): reacting an acid of formula (IVa)-or (IVb):

or an activated derivative thereof; with an amine of formula (V):

Process 3): for compounds of formula (I) wherein R¹³ is a group of formula (IB); reacting an acid of formula (VIa):

(VIa)

or (VIb):

(VIb)

with an amine of formula (VI):

$$R^{17} = \begin{bmatrix} R & 16 \\ R & T \end{bmatrix}_r \begin{bmatrix} R & 15 \\ R & T \end{bmatrix}_{\stackrel{\scriptstyle P}{R}} NH$$

(VI); or

Process 4): for compounds of formula (I) wherein R¹³ is a group of formula (IB) and R¹⁷ is a group of formula (IC); reacting an acid of formula (VIIIa):

$$\underbrace{\frac{R^{10}}{O}}_{Q} \underbrace{\frac{R^{15}}{R^{14}}}_{R^{14}} \underbrace{\frac{R^{12}}{R^{11}}}_{R^{10}} \underbrace{\frac{R^{10}}{O}}_{Q} \underbrace{\frac{R^{10}}{N^{12}}}_{R^{10}} \underbrace{\frac{R^{10}}{N^{12}}}_{R^$$

(VIIIa)

or (VIIIb)

$$\frac{\text{HO} \bigcap_{Q} \prod_{r} \prod_{q} \prod_{q} \prod_{r} \prod_{l} \prod_{q} \prod_{l} \prod_{l} \prod_{q} \prod_{l} \prod_{l} \prod_{q} \prod_{l} \prod_{l} \prod_{q} \prod_{l} \prod_$$

(VIIIb)

or an activated derivative thereof; with an amine of formula (IX):

Process 4) 5) for compounds of formula (I) wherein one of R⁵ and R⁶ is methylthio are independently selected from C₁₊₆ alkylthio optionally substituted on carbon by one or more R²⁵, reacting a compound of formula (Xa) or (Xb):

wherein L is a displaceable group; with a thiol of formula (XI):

(XI)

wherein R^m is <u>methylthio</u>€₁₋₆alkylthio optionally-substituted on earbon by one or more R²⁶ and optionally:

- i) converting a compound of the formula (I) into another compound of the formula (I);
- ii) removing any protecting groups;
- iii) forming a pharmaceutically acceptable salt or a prodrug.

Claims 14 to 17 (cancelled).

Claim 18 (currently amended): A pharmaceutical composition which comprises a compound of formula (I), or a pharmaceutically acceptable salt or an *in vivo* hydrolysable ester or amide a prodrug thereof, as claimed in claim 1 or elaim 11, in association with a pharmaceutically-acceptable diluent or carrier.

Claims 19 to 25 (cancelled).