

Soutenance de stage

Thomas Rolland

Master IARF Université Toulouse 3

Statistical methods vs. Neural network

Comparison of methods for learning units using Dictionary Learning and Sparse Coding vs Auto-encoders

Thomas Pellegrini - SAMoVA Adrian Basarab - MINDS

Equipe SAMoVA

Le groupe SAMoVA concentre ses activités de recherche principalement sur les contenus audiovisuels. Affilié au Thème 1: Analyse et synthèse de l'information de l'IRIT.

Leurs travaux sont appliqués sur différents types de contenu pour différents types d'applications telles que:

- Analyse structurée du contenu audiovisuel
- Analyse du contenu oral
- analyse de la voix pathologique
- ..

Contexte

Reconnaissance de forme d'un signal:

- 1. Extraction des paramètres
- 2. Classification des paramètres

Contexte

Reconnaissance de forme d'un signal:

- 1. Extraction des paramètres
- 2. Classification des paramètres

Nos objectifs

Objectif 1

Objectif 2

Objectif 3

Etat de l'art

Réaliser un état de l'art sur les différentes méthodes Statistiques et Deep learning dans l'extraction de paramètres

Resultats de classification

Utiliser les différentes méthodes choisies pour obtenir les résultats de reconnaissance sur les nouveaux paramètres

Comparaison

Comparer les résultats des différentes méthodes, Statistique et Deep learning.

Classification - MNIST

Base de données composée de chiffres écrits à la main, de taille (28x28) avec

- 50 000 images pour l'entraînement
- 10 000 images pour le test

• 10 Classes { 0, 1,2,3, ..., 8, 9 }

Nous allons utiliser comme classifieurs:

- K-means (non supervisé)
- SVM (supervisé)

Partie I

Méthodes Statistiques

- I. Méthodes Statistique
 - a. Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncoder

Sparse Coding

Sparseland

Hypothèse "Sparseland" [1]:

Tout signal est structuré

Tout signal peut-être reconstruit comme une combinaison linéaire parcimonieuse (*Sparse code*) d'éléments structurants (*atomes*) contenus dans un dictionnaire.

Apprentissage et test

Apprentissage

Durant la phase d'apprentissage nous apprenons [2]:

- Le dictionnaire (Dictionary Learning)
 - On fixe les coefficients
 - On cherche le Dictionnaire
 - On fixe le Dictionnaire
 - On cherche les coefficients (Sparse coding)

Test

Durant la phase de test nous calculons uniquement les coefficients parcimonieux donc l'étape de **Sparse Coding**.

Sparse Coding Traditionnel

Original

Coefficients sparse

Résultat de classification sur MNIST:

K-means: 0.13

SVM: 0.90

Dans un cadre non supervisé les résultats de classification ne sont pas bons.

- 1. Méthodes Statistique
 - Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - b. Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncode

Label-Consistent K-SVD

Label-Consistant K-SVD [3]

Atom \ Signal	signal 1	signal 2	signal 3	signal 4	signal 5
k1	0	1	0	1	0
k2	0	1	0	1	0
k3	1	0	1	0	0
k5	1	0	1	0	0
k6	0	0	0	0	1
k7	0	0	0	0	1
k8	0	0	0	0	0

Matrice Q

L'idée est d'apprendre une matrice A tel que:

$$\|Q-A\gamma\|_2^2$$

Avec:

- Q une matrice discriminante
- ullet $A\gamma$ les nouveaux paramètres discriminants

Label-Consistant K-SVD [3]

Original

Résultat de classification sur MNIST:

Reconstruction

K-means: 0.78

Coefficients sparse

Néanmoins, ces méthodes ne fonctionnent pas sur de la parole car un motif n'est pas toujours au même emplacement dans le signal.

- 1. Méthodes Statistique
 - a. Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - b. Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncoder

Convolutional Sparse Coding

Convolutional Sparse Coding

5 Convolutional **Sparse Coding** Ŋ

ldée

Pour un même motif, peu importe son emplacement dans le signal, il faut que les paramètres (représentations) en sortie soient similaires.

Convolutional Sparse Coding[4]

Convolutional Sparse Coding

Ici l'utilisation du Convolutional Sparse Coding permet d'obtenir des cartes d'activation (ici pour un chiffre 7), néanmoins nous observons qu'il y a encore la présence du problème du déplacement du motif dans les cartes d'activation.

Convolutional Sparse Coding

Ici l'utilisation du Convolutional Sparse Coding permet d'obtenir des cartes d'activation (ici pour un chiffre 7), néanmoins nous observons qu'il y a encore la présence du problème du déplacement du motif dans les cartes d'activation.

- 1. Méthodes Statistique
 - a. Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - b. Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncoder

Multi-Layer Convolutional Sparse Coding

Multi-Layer Convolutional Sparse Coding

Multi-Layer Convolutional Sparse Coding [1]

Multi-Layer Convolutional Sparse Coding [1]

Résultat de classification sur MNIST:

K-means: 0.11

SVM: 0.94

Conclusion Méthodes **Statistiques**

- Statique -> Dynamique
- Non supervisé -> Supervisé
- Score: 0.90 -> 0.94 (SVM)

Partie II

Deep Learning

- Méthodes Statistique
 - Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncoder

AutoEncodeur

AutoEncodeur traditionnel

- 1. Méthodes Statistique
 - Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding
- 2. Deep Learning
 - a. AutoEncoder
 - b. Sparse AutoEncoder
 - c. Label-Consistent (Sparse) AutoEncoder

Sparse AutoEncodeur

Sparse AutoEncodeur [5]

Sparse AutoEncodeur [5]

Résultat de classification sur MNIST:

• K-means: 0.19

• SVM: 0.96

- 1. Méthodes Statistique
 - a. Sparse Coding
 - b. Label-Consistent K-SVD
 - c. Convolutional Sparse Coding
 - d. Multi-Layer Convolutional Sparse Coding

2. Deep Learning

- a. AutoEncoder
- b. Sparse AutoEncoder
- c. Label-Consistent (Sparse)
 AutoEncoder

Label-Consistent (Sparse) AutoEncodeur

Label-Consistant (Sparse) AutoEncodeur

Label-Consistant (Sparse) AutoEncodeur

Label-Consistant AE

Label-Consistant (Sparse) AutoEncodeur

Résultat de classification sur MNIST:

K-means: 0.98

SVM: 0.983

Label-Consistant Sparse AE

Conclusion

Récapitulatif	K-means	SVM
Sparse Coding	0.13	0.90
Label Consistant-KSVD	0.78	0.91
Multi Layer-Convolutional Sparse Coding	0.11	0.94
Sparse AutoEncoder	0.19	0.96
Label Consistant-(Sparse) AutoEncoder	0.98	0.98

Perspectives

- Sujet qui va être repris par une ou plusieurs personnes
- Étendre le ML-CSC avec un terme
 Label-Consistant
- Continuer d'exploiter les capacités du Label Consistant (Sparse) AE

Perspectives

- Découverte du monde de la recherche depuis l'intérieur
- Rencontrespersonnelles/professionnelles
- Conforte mon projet professionnel
 - Thèse à Lisbonne sur la parole pathologique chez l'enfant

Bilan

Merci de votre attention

Bibliographie

[1] V. Papyan, Y. Romano, J. Sulam, and M. Elad. Theoretical foundations of deep learning via sparse representations: A multilayer sparse model and its connection to convolutional neural networks. 2018

[2] Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary learning for sparse coding. 2009 [3] Z. Jiang, Z. Lin, and L. S. Davis. Label consistent k-svd: Learning a discriminative dictionary for recognition.2013.

[4] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding.2013

[5] Alireza Makhzani and Brendan J. Frey. k-sparse autoencoders, 2013.

Questions?

Formulation

Reconstruction

Mathématiquement parlant on définit:

$$x_i = D\gamma_i$$

Avec

- x le signal d'entrée
- D le dictionnaire
- y le Sparse code

Optimisation

Nous allons donc chercher à optimiser la fonction suivante:

$$\min_{\gamma_i} rac{1}{2} \underbrace{\|x_i - D\,\gamma_i\|_2^2}_{Squared\ error} + \lambda \underbrace{\|\gamma_i\|_0}_{Sparsity\ term}$$

Nombre d'atomes

Evolution of the cost as a function of the number of atoms

Décodeur en fonction du nombre de filtres

Learning phase

```
Algorithm 1 Learning phase

Require: X the input signal

D_0 initilized randomly, \gamma is a zeros matrix

while D and \gamma not converged do

Fix D

Find \gamma /* Sparse Coding step */ (1)

Fix \gamma

Find D /*Dictionally Learning */ (2)

end while
```

ML-CSC reconstruction

Dictionnaire Convolutif

Audio

Sparseland

Hypothèse "Sparland":

Tout signal est structuré

Tout signal peut-être reconstruit comme une combinaison linéaire parcimonieuse (*Sparse code*) d'éléments structurants (*atomes*) contenus dans un dictionnaire.

Convolutional Sparse Coding

