PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-150371

(43)Date of publication of application: 02.06.1999

(51)Int.CI.

H05K 3/46 HO5K 1/02

HO5K 9/00

(21)Application number: 09-318042

(22)Date of filing:

19.11.1997

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(72)Inventor: IWAKI HIDEKI

SHIRAISHI TSUKASA **MITANI TSUTOMU** AMAMI KAZUYOSHI **ONO MASAHIRO** TAGUCHI YUTAKA **BESSHO YOSHIHIRO**

(54) MULTILAYER CIRCUIT BOARD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a multilayer circuit board in which the via hole for signal line is stabilized by substantially matching the characteristic impedance of a transmission line comprising the via hole for signal line and a vertical ground conductor substantially parallel with the via hole with the characteristic impedance of the signal line.

SOLUTION: Signal lines 103 are formed on the opposite sides of a board 106 comprising a prepreg. The signal lines 103 are interconnected through a via hole 101 made through the board 106. A vertical ground conductor 102 comprises a planar vertical conductor of width (w). The planar ground conductors 102 are arranged in parallel at an interval (d) while facing the via hole 101 for signal line. The characteristic impedance of the via hole 101 for signal line is matched with that of the signal line 103 by adjusting the interval (d) between the via hole 101 for signal line and the planar ground conductor 102 and the width (w) of the planar ground conductor 102.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C): 1998,2000 Japanese Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-150371

(43)公開日 平成11年(1999)6月2日

(51) Int.Cl.4		識別記号	FI		•	
H05K	3/46	•	H05K	3/46	N	
					Q	
	1/02		•	1/02	P	
	9/00			9/00	R	
			審查請求	未請求。請求項	· iの数11 OL (全	10 頁)
(21)出願番号 特願平9-3		特願 平9-318042	(71) 出願人	000005821		
				松下電器產業株式会社		
(22) 出願日		平成9年(1997)11月19日		大阪府門真市大字門真1006番地		
			(72)発明者	岩城 秀樹		
					- · · · · · · - ·	下電器
		•		産業株式会社内	,	
			(72)発明者			
		•				下電器
		•	(50) 50 50	産業株式会社内		•
			(72)発明者	三谷力		
						下電器
			/7.4\ /h.m. t	産業株式会社内		
			(74)代理人	弁理士 青山		
				最終質に続く		

(54) 【発明の名称】 多層回路基板

(57)【要約】

【課題】 多層回路基板、特に、基板上の回路配線と信号配線用ビアホールとが接続された高集積多層回路基板に関し、簡単な構造で信号配線用ビアホールと信号配線の特性インピーダンスの整合を図った多層回路基板を提供する。

【解決手段】 信号配線用ビアホールから所定の間隔を隔てて所定の幅の板状接地導体を設けることにより、また信号配線用ビアホールと所定の間隔を隔てて円柱状接地導体を設けることにより、信号配線用ビアホールの特性インピーダンスを任意に制御して、信号配線用ビアホールと信号配線の特性インピーダンスを整合させることが可能となる。

【特許請求の範囲】

【請求項1】 複数の信号配線層を備え、該信号配線層 間を信号配線用ビアホールによって接続した多層回路基 板において、

上記信号配線用ビアホールと略平行に垂直接地導体を設 け、上記信号配線用ビアホールと上記垂直接地導体とに よって構成される伝送線路の特性インピーダンスを、上 記信号配線用ビアホールに接続される信号配線の特性イ ンピーダンスと実質的に一致させたことを特徴とする多 層回路基板。

【請求項2】 上記垂直接地導体が、板状接地導体から なり、

上記伝送線路の特性インピーダンスが、上記信号配線の 特性インピーダンスと実質的に一致するように、上記板 状接地導体と上記信号配線用ビアホールとの間隔、およ び上記板状接地導体の幅、を設定したことを特徴とする 請求項1に記載の多層回路基板。

【請求項3】 上記垂直接地導体が、上記信号配線用ビ アホールの直径と略等しい直径を有する円柱状接地導体 からなり、

上記伝送線路の特性インピーダンスが、上記信号配線の 特性インピーダンスと実質的に一致するように、上記円 柱状接地導体と上記信号配線用ビアホールとの間隔を設 定したことを特徴とする請求項1に記載の多層回路基 板。

【請求項4】 上記信号配線用ビアホールと、上記円柱 状接地導体とが、交互かつ一列に配置されたことを特徴 とする請求項3に記載の多層回路基板。

【請求項5】 上記垂直接地導体が、上記円柱状接地導 体と、上記板状接地導体と、からなり、

上記伝送線路の特性インピーダンスが、上記信号配線の 特性インピーダンスと実質的に一致するように、上記円 柱状接地導体を、上記信号配線用ビアホールと交互かつ 一列に設け、かつ、上記板状接地導体を、上記信号配線 けたことを特徴とする請求項1に記載の多層回路基板。

【請求項6】 上記信号配線用ビアホールと上記円柱状 接地導体との列が、上記板状接地導体の、両側に配置さ れたことを特徴とする請求項5に記載の多層回路基板。

【請求項7】 上記板状接地導体が、上記信号配線用ビ アホールと上記円柱状接地導体との列の、両側に配置さ れたことを特徴とする請求項5に記載の多層回路基板。

上記垂直接地導体が、上記信号配線用ビ アホールを中心とする同心円筒状に形成された円筒状接 地導体からなり、

上記伝送線路の特性インピーダンスが、上記信号配線の 特性インピーダンスと実質的に一致するように、上記信 号配線用ビアホールと上記円筒状接地導体との間隔を設 定したことを特徴とする請求項1に記載の多層回路基 板。

【請求項9】 上記円筒状接地導体に囲まれた基板の誘 電率が、該円筒状接地導体の外部の基板の誘電率より小 さいことを特徴とする請求項8に記載の多層回路基板。

【請求項10】 上記多層回路基板が、複数の上記円筒 状接地導体を備え、隣接する該円筒状接地導体が互いに 電気的に接続されたことを特徴とする請求項8に記載の 多層回路基板。

【請求項11】 複数の上記信号配線用ビアホールが、 隣接した該信号配線用ビアホール間を一辺とし、三辺の 10 長さが略等しい三角形の頂点の位置に夫々配置され、上 記信号配線用ビアホールの周囲に上記円筒状接地導体が 設けられたことを特徴とする請求項8に記載の多層回路 基板。

【発明の詳細な説明】

15 [0001]

> 【発明の属する技術分野】本発明は、多層回路基板に関 し、特に、基板上の信号配線と信号配線用ビアホールと の特性インピーダンスの整合を図った髙集積多層回路基 板に関する。

[0002] 20

【従来の技術】半導体素子の髙密度実装を可能とするた めに、信号配線や電極部等を含む信号配線層を基板の両 面に形成し、これらの信号配線層中の信号配線 (以下、 単に「信号配線」という)間を信号配線用ビアホールで 25 接続した多層回路基板が用いられる。多層回路基板の小 型化、高集積化に伴い、両面に形成された信号配線間に おいて相互干渉、即ちクロストーク等が発生するが、か かるクロストーク等は、信号配線間に接地層または電源 層を設けることにより防止していた。

30 [0003]

【発明が解決しようとする課題】しかし、小型化、髙集 積化した多層回路基板では、特に、高いクロック周波数 を用いたデータ転送において、各信号配線を接続する信 号配線用ビアホール間におけるクロストーク等の発生、 用ビアホールと上記円柱状接地導体との列と略平行に設 35 および信号配線と信号配線用ビアホールとの接続部にお ける信号波の反射による伝送損失が問題となる。これに 対して、特開平5-206678号公報では、信号配線 用ビアホールの周囲に5以上の接地スルーホールまたは 電源スルーホールからなる遮蔽スルーホールを形成する

40 ことにより、信号配線用ビアホールの特性インピーダン スの安定化を図り、接続部における信号波の反射を防止 していた。しかしながら、かかる構造では、上記遮蔽ス ルーホールを5以上形成することが不可欠であるため、

信号配線用ビアホールの高密度形成に限界があり、多層

45 回路基板の小型化、高集積化に対する制限となってい た。そこで、本発明は、簡単な構造で信号配線用ビアホ ールの特性インピーダンスの安定化を図った多層回路基 板を提供することを目的とする。

[0004]

【課題を解決するための手段】そこで、発明者らは鋭意

研究の結果、信号配線用ビアホールから所定の間隔を隔 てて所定の幅の板状接地導体を設けることにより、また は信号配線用ビアホールと所定の間隔を隔てて円柱状接 地導体を設けることにより、信号配線用ビアホール間の クロストーク等を防止するとともに、板状接地導体また は円柱状接地導体と、信号配線用ビアホールとによって 構成される伝送線路の特性インピーダンス(以下、単に 「信号配線用ビアホールの特性インピーダンス」とい う) の制御が可能となることを見出し、本発明を完成し

【0005】即ち、本発明は、複数の信号配線層を備 え、該信号配線層間を信号配線用ビアホールによって接 続した多層回路基板において、上記信号配線用ビアホー ルと略平行に垂直接地導体を設け、上記信号配線用ビア ホールと上記垂直接地導体とによって構成される伝送線 路の特性インピーダンスを、上記信号配線用ビアホール に接続される信号配線の特性インピーダンスと実質的に 一致させたことを特徴とする多層回路基板である。信号 配線用ビアホールの特性インピーダンスは、信号配線用 地導体の位置等により変化させることができる。従っ て、かかる垂直接地導体の形状や位置を変えることよ り、信号配線用ビアホールの特性インピーダンスを所望 の値とし、信号配線用ビアホールと信号配線との接続部 における特性インピーダンスの整合を図ることが可能と なる。

【0006】また、本発明は、上記垂直接地導体が、板 状接地導体からなり、上記伝送線路の特性インピーダン スが、上記信号配線の特性インピーダンスと実質的に一 致するように、上記板状接地導体と上記信号配線用ビア ホールとの間隔、および上記板状接地導体の幅、を設定 したことを特徴とする多層回路基板でもある。上述のよ うに、信号配線用ビアホールの特性インピーダンスは、 信号配線用ビアホールと対向して設けられた垂直接地導 体の位置等により変化させることができるが、かかる垂 直接地導体を所定の幅の板状接地導体とすることによ り、信号配線用ビアホールの特性インピーダンスの制御 が容易となる。即ち、信号配線用ビアホールと板状接地 導体との距離、および板状接地導体の幅を適当に定める ことにより、信号配線用ビアホールの特性インピーダン スを所望の値に制御することができ、信号配線用ビアホ ールと信号配線の特性インピーダンスの整合を、容易に 図ることが可能となる。

【0007】また、本発明は、上記垂直接地導体が、上 記信号配線用ビアホールの直径と略等しい直径を有する 円柱状接地導体からなり、上記伝送線路の特性インピー ダンスが、上記信号配線の特性インピーダンスと実質的 に一致するように、上記円柱状接地導体と上記信号配線 用ビアホールとの間隔を設定したことを特徴とする多層 回路基板でもある。信号配線用ビアホールの特性インピ

ーダンスは、多層回路基板の配線が比較的疎であり、信 号配線用ビアホールに対して他の信号配線用ビアホール の電磁波の影響が少ない場合には、信号配線用ビアホー ルの直径と略等しい直径を有する円柱状接地導体を信号 配線用ビアホールから所定の間隔で形成することによっ ても制御することが可能となる。

【0008】上記信号配線用ビアホールと、上記円柱状 接地導体とは、交互かつ一列に配置されたことが好まし い。かかる構造を採ることにより、隣接する信号配線用 10 ビアホールの間に必ず円柱状接地導体が形成されるた め、信号配線用ビアホール間のクロストークを有効に防 止することが可能となる。また、隣接する信号配線用ビ アホールの間に形成された円柱状接地導体により、双方 の信号配線用ビアホールの特性インピーダンスを制御す 15 るため、円柱状接地導体の数を減少させ、信号配線用ビ アホールの高密度形成が可能となる。

【0009】また、本発明は、上記垂直接地導体が、上 記円柱状接地導体と、上記板状接地導体と、からなり、 上記伝送線路の特性インピーダンスが、上記信号配線の ビアホールと対向して、所定の間隔で設けられた垂直接 20 特性インピーダンスと実質的に一致するように、上記円 柱状接地導体を、上記信号配線用ビアホールと交互かつ 一列に設け、かつ、上記板状接地導体を、上記信号配線 用ビアホールと上記円柱状接地導体との列と略平行に設 けたことを特徴とする多層回路基板でむある。かかる構 25 造では、主に、板状接地導体と信号配線用ビアホールと の距離、板状接地導体の幅により信号配線用ビアホール の特性インピーダンスが制御されるため、信号配線用ビ アホールと円柱状接地導体との間隔を小さくでき、信号 配線用ビアホールの高密度形成が可能となる。

> 【0010】上記信号配線用ビアホールと上記円柱状接 地導体との列は、上記板状接地導体の、両側に配置され ても良い。一の板状接地導体により、その両側に形成さ れた信号配線用ビアホールの特性インピーダンスを制御 することができ、更に、信号配線用ビアホールの高密度 35 形成が可能となる。

> 【0011】上記板状接地導体は、上記信号配線用ビア ホールと上記円柱状接地導体との列の、両側に配置され ても良い。かかる構造を採ることにより、信号配線用ビ アホールと円柱状接地導体との間隔をより小さくでき、 40 信号配線用ビアホールの髙密度形成が可能となる。

【0012】また、本発明は、上記垂直接地導体が、上 記信号配線用ビアホールを中心とする同心円筒状に形成 された円筒状接地導体からなり、上記伝送線路の特性イ ンピーダンスが、上記信号配線の特性インピーダンスと 45 実質的に一致するように、上記信号配線用ビアホールと 上記円筒状接地導体との間隔を設定したことを特徴とす る多層回路基板でもある。かかる構造を採ることによ り、信号配線用ビアホールを、他の信号配線用ビアホー ルから完全に遮断することができるとともに、円筒状接 . 50 地導体と信号配線用ビアホールとの距離を適当に選択す

ることにより、信号配線用ビアホールの特性インピーダ ンスを制御し、信号配線との接続部における特性インピ ーダンスの整合を図ることが可能となるからである。

【0013】上記円筒状接地導体に囲まれた基板の誘電 率は、該円筒状接地導体の外部の基板の誘電率より小さ いことが好ましい。かかる構造を採ることにより、円筒 状接地導体と信号配線用ビアホールとの距離を小さくす ることが可能となり、信号配線用ビアホールの髙密度形 成が可能となるからである。

【0014】上記多層回路基板は、複数の上記円筒状接 地導体を備え、隣接する該円筒状接地導体が互いに電気 的に接続されたものであっても良い。接地電位の安定化 が可能となるとともに、円筒状接地導体に囲まれた信号 配線用ビアホールの高密度配置が可能となるからであ

【0015】複数の上記信号配線用ビアホールが、隣接 した該信号配線用ビアホール間を一辺とし、三辺の長さ が略等しい三角形の頂点の位置に夫々配置され、上記信 号配線用ビアホールの周囲に上記円筒状接地導体が設け られたものであっても良い。かかる配置により、信号配 線用ビアホールを最密に配置することが可能となるから である。

[0016]

【発明の実施の形態】実施の形態 1. 本発明の実施の形 態1にかかる多層回路基板について、図1を参照して説 明する。図1(a)は、多層回路基板の上面図であり、 図1 (b) は、I-I'における断面図である。図1にお いて、106はエポキシ樹脂を含浸させたプリプレグか らなる基板であり、その両面に信号配線103が形成さ れている。信号配線103は、基板106を貫通して設 けられた信号配線用ビアホール101により互いに接続 されている。102は垂直接地導体であり、本実施の形 態では、幅wの板状垂直導体からなる。かかる板状接地 導体102は、信号配線用ピアホール101と対向し て、間隔dを隔てて平行に設けられている。また、信号 配線用ビアホール101に最も近い位置から、幅方向に 対称となるように形成されている。本実施の形態1で は、信号配線用ビアホール101と板状接地導体102 との間隔d、および板状接地導体102の幅wを調整す ることにより、信号配線用ビアホール101の特性イン ピーダンスを、信号配線103の特性インピーダンスに 整合されている。

【0017】次に、実施の形態1にかかる多層配線基板 の製造工程を説明する。まず、エポキシ樹脂を含浸させ たプリプレグ基板106にドリル、レーザまたはパンチ ング等により穴加工を行い、信号配線用ビアホールと板 状接地導体を形成する位置に穴部を形成し、この穴部に 導電性ペーストを充填して信号配線用ビアホール101 および板状接地導体102を形成する。次に、プレプリ

空熱プレスにより加熱、加圧する。これにより、プリプ レグ中のエポキシ樹脂および穴部に充填した導電性ペー スト中のエポキシ樹脂が硬化し、プレプリグと銅箔との 接着および銅箔と充填した導電性ペーストとの電気的接 05 続を同時に行う。更に、プレプリグの両面の銅箔を、一 般的なエッチング法でパターニングすることにより、信 号配線用ビアホール101と電気的に接続された信号配 線103が両面に形成された多層回路基板が得られる。 尚、上記製造方法により形成した両面配線基板をコアと 10 して、導電性ペーストを所定の穴部に充填したプリプレ グをその両面に配置し、更にその外側に銅箔を所定の位 置にあわせてスタックして再度熱プレスした後、銅箔を エッチングして信号配線を形成することにより、更に多 層化した多層回路基板を得ることができる。

【0018】本実施の形態1では、信号配線用ビアホー ルの直径は200μm、プレプリグ基板106の比誘電 率および比透磁率は、夫々3.5と1.0である。従っ て、信号配線用ビアホール101と垂直接地導体102 との距離を140μmとし、垂直接地導体102の幅w を400μm以上とすることにより、信号配線用ビアホ ール101の特性インピーダンスをほぼ50Ωとするこ とが可能となる。

【0019】図2は、図1に示す実施の形態1にかかる の構造において、信号配線用ビアホール101と垂直接 25 地導体102との距離 dが140μmで一定の場合の、 垂直接地導体102の幅wと信号配線用ビアホール10 1の直径 r との比と、信号配線用ビアホール 101の特 性インピーダンスとの関係を示す。図2から明らかなよ うに、垂直接地導体102の幅wが、信号配線用ビアホ 30 ール101の直径 r の2倍以上であれば、信号配線用ビ アホール101の特性インピーダンスを、1.220か ら一定値Zuに近づく値とすることができ、特性インピ ーダンスを安定化させることができる。従って、信号配 線103の特性インピーダンスがZonの場合には、w/ rを2以上とすることにより、信号配線103の特性イ ンピーダンスと信号配線用ビアホール101の特性イン ピーダンスとを、接続部において整合させ、接続部にお ける信号波の反射を低減させることが可能となる。

【0020】図2では、信号配線用ビアホール101と 垂直接地導体102との距離dが140μmで一定の場 合の特性インピーダンスの変化について示したが、距離 dを変化させた場合は、図10のようになる。図10 は、図1に示す実施の形態1にかかる構造において、垂 直接地導体102の幅wが800μmで一定の場合の、 45 垂直接地導体と信号配線用ビアホール101との距離 d と信号配線用ビアホール101の直径 r との比 d / r と、信号配線用ビアホール101の特性インピーダンス との関係を示す。図10から明らかなように、信号配線 用ビアホール101の直径を一定とした時、垂直接地導 . グ基板106の両面に、両面を粗化した銅箔を重ね、真 50 体と信号配線用ビアホール101との距離 d が大きくな

るにつれ、信号配線用ビアホール101の特性インピー ダンスは大きくなる。特に、垂直接地導体102の幅w が 800μ m一定で、信号配線用ビアホールの直径 d が 200μmの場合、信号配線用ビアホール101と垂直 接地導体102との距離は、100μmから160μm 05 スとの整合を図ることとなる。 の範囲に設定することが好ましい。

【0021】以上の説明から明らかなように、本実施の 形態にかかる多層回路基板では、板状接地導体102を 信号配線用ビアホール101と平行に、かつ所定の距離 を隔てて設けることにより、信号配線用ビアホール10 1の特性インピーダンスを変化させることが可能とな る。従って、上記所定の距離および板状接地導体102 の幅を適宜選択することにより、信号配線用ビアホール 101と信号配線103の接続部において、信号配線用 ピアホール101の特性インピーダンスを、信号配線1 03の特性インピーダンスに整合させることが可能とな り、接続部における信号波の反射を低減させることが可 能となる。また、w/rを2以上とすることにより、信 号配線用ビアホール101の特性インピーダンスを安定 化することができるため、接続部において、信号配線1 03の特性インピーダンスと整合させ、信号波の反射を 低減させることが容易となる。特に、通常用いられる信 号配線用ビアホール101の直径が200 μmの多層回 路基板では、板状接地導体102が、信号配線用ビアホ ール101と板状接地導体102との距離140μmの 3倍以上の幅を有することにより、信号配線103と整 合のとれた信号配線用ビアホール101を高密度に配置 することが可能となる。また、板状接地導体102は、 信号配線用ビアホール101と同様の製造工程で形成す ることができるため、かかる板状接地導体102を設け ることによる製造コストの上昇は発生しない。尚、信号 配線用ビアホール101の特性インピーダンスと信号配 線103の特性インピーダンスとは、その比が1となる ように整合させることが好ましい。図11に、特性イン ピーダンスの比と、入射波を1とした時の反射波の振幅 との関係を示す。図11から明らかなように、かかる比 を0.8~1.2の範囲にすることにより、反射波の振 幅を、入射波の振幅の1/10以下とすることが可能と なる。

【0022】実施の形態2. 本発明の実施の形態2にか かる多層回路基板について、図3を参照しながら説明す る。図3 (a) は、多層回路基板の上面図であり、図3 (b) は、III-III'における断面図である。図中、図 1と同一符号は、同一または相当部分を示し、104 は、基板106に垂直方向に、信号配線用ビアホール1 01に平行となるように設けられた円筒状接地導体であ る。かかる構造においては、信号配線用ビアホール10 1、円柱状接地導体104の直径、基板106の比誘電 率、比透磁率は、通常、固定されており、信号配線用ビ アホール101と円柱状接地導体104との間の距離の

みが変更可能である。このため、信号配線用ビアホール 101と円柱状接地導体104との距離を変化させるこ とにより、信号配線用ビアホール101の特性インピー ダンスを変化させ、信号配線103の特性インピーダン

【0023】本実施の形態では、信号配線用ビアホール 101の直径および円柱状接地導体104の直径は、い ずれも200μmであり、基板106の比誘電率と比透 磁率は、夫々3.5と1.0である。この結果、信号配 10 線用ビアホール101と円柱状接地導体104との距離 を65μmとすることにより、信号配線ビアホール10 1の特性インピーダンスを50Ωとすることができる。 また、同じ条件で、信号配線用ビアホール101と円柱 状接地導体104との距離のみを大きくし、150μ 15 m、300 μ m とすることにより、信号配線ピアホール 101の特性インピーダンスを 75Ω、100Ωと変化 させることができる。

【0024】以上の説明から明らかなように、本実施の 形態にかかる多層回路基板では、主に、信号配線用ビア 20 ホール101の直径、基板106の誘電率および透磁率 により決定される信号配線用ビアホール101の特性イ ンピーダンスを、信号配線用ビアホール101と同程度 の直径を有する円柱状接地導体104を信号配線用ビア ホール101と平行に、かつ所定の距離を隔てて設ける 25 ことにより変化させることが可能となる。従って、上記 所定の距離を適宜選択することにより、信号配線用ビア ホール101と信号配線103の接続部において、信号 配線用ビアホール101の特性インピーダンスを、信号 配線103の特性インピーダンスに整合させることが可 30 能となる。この結果、信号配線用ビアホール101と信 号配線103の接続部における信号波の反射を低減させ ることが可能となる。また、円柱状接地導体104は、 信号配線用ビアホール101と同様の製造工程で形成す ることができるため、かかる円柱状接地導体102を設 35 けることによる製造コストの上昇は発生しない。尚、信 号配線用ビアホール101の特性インピーダンスは、信 号配線用ビアホール101と信号配線103との特性イ ンピーダンスの比が0.8から1.2となるようにする ことが好ましい。

【0025】実施の形態3. 本発明の実施の形態3にか かる多層回路基板について、図4を参照しながら説明す る。図4は、多層回路基板の上面図であり、図中、図1 と同一符号は、同一または相当箇所を示し、また、10 5は接地用配線を示す。本実施の形態では、上記実施の 45 形態2に示した信号配線用ビアホール101および円柱 状接地導体104が、所定の間隔を隔てて、交互に、か つ一直線上に設けられている。即ち、信号配線用ビアホ· ール101と円柱状接地導体104とを所定の間隔で配 置することにより、信号配線用ビアホール101の特性。 50 インピーダンスを変化させ、信号配線103の特性イン

ピーダンスと整合されることが可能となる。また、円柱 状接地導体102は、隣接する信号配線用ビアホール1 01同士の間に必ず配置されているため、隣接する信号 配線用ビアホール101間のクロストークを防止するこ とが可能となる。

【0026】以上の説明から明らかなように、本実施の 形態にかかる多層回路基板では、信号配線103の特性 インピーダンスと整合のとれた信号配線用ビアホール1 01を、高密度に配置することが可能となる。また、信 号配線用ビアホール101の特性インピーダンスを変化 させるための円柱状接地導体104を、隣接する信号配 線用ビアホール101が共有することにより、円柱状接 地導体104の数を減らすことができ、信号配線用ビアホール101の高密度化が可能となる。

【0027】実施の形態4.本発明の実施の形態4にか かる多層回路基板について、図5を参照しながら説明す る。図5は、多層回路基板の上面図であり、図中、図1 と同一符号は、同一または相当箇所を示す。本実施の形 態にかかる多層回路基板では、上記実施の形態4に示す ように、信号配線用ビアホール101と円柱状接地導体 104が、所定の間隔を隔てて、交互に、一直線上に設 けられ、更に、信号配線用ビアホール101と円柱状接 地導体104の夫々に対向するように、所定の間隔を隔 てて板状接地導体102が設けられている。かかる多層 回路基板では、信号配線用ビアホール101と円柱状接 地導体104との距離、および信号配線用ビアホール1 01と板状接地導体102との距離の双方を変化させる ことにより、信号配線用ビアホール101の特性インピ ーダンスを変化させることができるが、かかる配置にお いては、信号配線用ビアホール101と板状接地導体1 02との距離が、信号配線用ビアホール101の特性イ ンピーダンスの変化に大きく影響し、信号配線用ビアホ ール101と円柱状接地導体104との距離の影響は小 さくなる。従って、信号配線用ビアホール101と板状 接地導体102との距離のみを適当に選択することによ り、信号配線用ビアホール101の特性インピーダンス を信号配線の特性インピーダンスと整合させることが可 能となる。即ち、本実施の形態においては、信号配線用 ピアホール101と板状接地導体102との距離を適当 に選択することにより、信号配線用ビアホール101の 特性インピーダンスを所望の値にすることができ、信号 配線用ビアホール101と円柱状接地導体104との距 雕は、任意に定めることが可能となる。一方、隣接する 信号配線用ビアホール101の間に円柱状接地導体10 4が設けられているため、信号配線用ビアホール101 間の距離を短くした場合であっても、信号配線用ビアホ ール101間のクロストークの発生を防止することがで きる。従って、かかる構成においては、信号配線用ビア ホール101の特性インピーダンスの整合を図りなが ら、信号配線用ビアホール101間の距離を短くするこ

とが可能となり、信号配線用ビアホール101の高密度 形成が可能となる。

【0028】以上の説明から明らかなように、本実施の 形態にかかる多層回路基板では、信号配線103の特性 05 インピーダンスと整合のとれた信号配線用ビアホール1 01を高密度に配置することが可能となる。また、隣接 する信号配線用ビアホール101が、円柱状接地導体1 04を共有することにより、円柱状接地導体104の数 を減らすことが可能となる。

【0029】実施の形態5. 本発明の実施の形態5にか かる多層回路基板について、図6を参照しながら説明す る。図6は、多層回路基板の上面図であり、図中、図1 と同一符号は、同一または相当箇所を示す、上記実施の 形態4では、板状接地導体102の片側にのみ信号配線 15 用ビアホール101と円柱状接地導体104の列を設け ていたが、本実施の形態にかかる多層回路基板では、図 6に示すように、板状接地導体102の両側に信号配線 用ビアホール101と円柱状接地導体104の列を設け ている。本実施の形態では、上記実施の形態4と同様 20 に、信号配線用ビアホール101と板状接地導体102 との距離のみを適当に選択することにより、信号配線用 ビアホール101の特性インピーダンスを信号配線の特 性インピーダンスと整合させることが可能となるため、 信号配線用ビアホール101の特性インピーダンスの整 25 合を図りながら、信号配線用ビアホール101間の距離 を短くすることが可能となる。また、板状接地導体10 2を、その両側に設けた信号配線用ビアホール101が

共有するため、信号配線103の特性インピーダンスと

整合のとれた信号配線用ビアホール101を、更に高密

30 度に配置することが可能となる。 【0030】実施の形態6. 本発明の実施の形態6にか かる多層回路基板について、図6を参照しながら説明す る。図6 (a) は、多層回路基板の上面図、図6 (b) は、VII-VII'における断面図であり、図中、図1と同 35 一符号は、同一または相当箇所を示す。本実施の形態で は、図7 (a) に示すように、実施の形態3にかかる信 号配線用ビアホール101と円柱状接地導体104との 列の両側に、板状接地導体102が所定の間隔を隔て て、夫々平行に配置されている。かかる構造では、基板 40 106表面で、信号配線103と板状接地導体102が 交差する場合が発生するので、図7(b)に示すよう に、板状接地導体102は基板内部に内蔵される。この ような構造は、図7(b)に示すように、基板106を 多層化して、まず内部の2層に板状接地導体102およ 45 び信号配線用ビアホール101を作製した後に、両面に 更に基板を積層し、信号配線用ビアホール101および 信号配線103を形成して作製する。尚、板状接地導体 102は、信号配線103と交差しない範囲で、表面に 露出させてもかまわない。また、他の実施の形態に対し、 50 ても、板状接地導体102を基板106内部に内蔵する

構造を適用することが可能である。

【0031】本実施の形態においては、上記実施の形態 4と同様に、信号配線用ビアホール101と板状接地導 体102との距離のみを適当に選択することにより、信 号配線用ビアホール101の特性インピーダンスを信号 配線の特性インピーダンスと整合させることができるた め、信号配線用ビアホール101の特性インピーダンス を所望の値にしつつ、信号配線用ビアホール101と円 柱状接地導体104との距離を、任意に定めることが可 能となる。一方、隣接する信号配線用ビアホール101 の間に円柱状接地導体104が設けられているため、信 号配線用ビアホール101間の距離を短くした場合であ っても、信号配線用ビアホール101間のクロストーク の発生を防止することができる。従って、信号配線用ビ アホール101の特性インピーダンスの整合を図りなが ら、信号配線用ビアホール101間の距離を短くするこ とが可能となり、信号配線用ビアホール101の高密度 形成が可能となる。

【0032】実施の形態7. 本発明の実施の形態7にか かる多層回路基板について、図8を参照しながら説明す 20 る。図8 (a) は、多層回路基板の上面図、図8 (b) は、VIII-VIII'における断面図であり、図中、図1と 同一符号は、同一または相当箇所を示す。本実施の形態 では、図8 (a) に示すように、垂直接地導体が、信号 配線用ビアホール101を中心として信号配線用ビアホ ール101の周囲を取り囲むように、円筒状接地導体1 07として形成されている。かかる円筒状接地導体10 7は、上記実施の形態1と同様の製造方法を用いて、基 板106に円筒状の穴部を形成し、かかる穴部に導電性 ペーストを充填することにより形成することができる。 また、本実施の形態では、基板106表面において、円 筒状接地導体107と信号配線103交差するため、円 筒状接地導体107および接地用配線105は、埋め込 み構造とすることが好ましい。かかる埋め込み構造は、 上記実施の形態6と同様に、基板106を多層構造とす ることにより形成することができる。本実施の形態で は、垂直接地導体が、信号配線用ビアホール101を中 心として円筒状に周囲を囲む円筒状接地導体107を形 成しているため、信号配線用ビアホール101は、他の 配線等から完全に遮蔽されることとなる。しかも、円筒 状接地導体107は、基板106の内部の、比較的任意 な位置に形成することができるため、回路設計の自由度 も妨げられない。また、円筒状接地導体107の直径を 適当に選択することにより、信号配線用ビアホール10 1の特性インピーダンスを所望の値にすることができ、 信号配線用ビアホール101と信号配線103の接続部 分における特性インピーダンスの整合を図ることが可能 となる。更に、信号配線用ビアホール101を包み、円 筒状接地導体107に囲まれた誘電体108は、基板1 06を構成する誘電体であるが、特に、かかる部分のみ

基板106を構成する誘電体の誘電率よりも小さな誘電 率をもつ誘電体とすることにより、円筒状接地導体10 7の直径を小さくすることができ、更に髙密度に信号配 線用ビアホール101および円筒状接地導体107を配 置することが可能となる。また、円筒状接地導体107 に囲まれた信号配線用ビアホール101を、基板106 に複数形成する場合には、図8(b)に示す接地用配線 105により隣接する円筒状接地導体107間を接続す ることにより、接地電位の安定化が可能となるととも 10 に、円筒状接地導体107に囲まれた信号配線用ビアホ ール101の高密度形成が可能となる。更に、複数の円 筒状接地導体107に囲まれた信号配線用ビアホール1 01を、基板106に形成する場合は、図9に示すよう に、各頂点の位置に信号配線用ビアホール101を配置 15 した正三角形を最小単位として、これを複数個連続して 配置することにより、最密に信号配線用ビアホール10 1を配置することが可能となる。

【0033】以上の説明から明らかなように、本実施の形態7にかかる多層回路基板においては、円筒状接地導20 体107に囲まれた信号配線用ビアホール101を用いることにより、信号配線103の特性インピーダンスと整合のとれた信号配線用ビアホール101を高密度に配置した多層回路基板を得ることが可能となる。また、完全に周囲から遮蔽された信号配線用ビアホール101を多層回路基板内の任意の位置に形成することも可能となる。尚、実施の形態1~7では、多層回路基板としてプレプリグからなる樹脂基板を用いる場合について説明したが、セラミック基板についても同様の効果を得ることが可能である。また、板状接地導体102、円柱状接地地下の電源用接地導体を用いても同様の効果を得ることが可能となる。

[0034]

【発明の効果】以上の説明から明らかなように、本発明にかかる多層回路基板では、板状接地導体または円柱状接地導体を信号配線用ビアホールと平行に、かつ所定の距離を隔てて設けることにより、信号配線用ビアホールの特性インピーダンスを変化させることが可能となる。従って、上記所定の距離および板状接地導体の幅を適宜 選択することにより、信号配線用ビアホールと信号配線の接続部において、信号配線用ビアホールの特性インピーダンスを、信号配線の特性インピーダンスに整合させることが可能となり、接続部における信号波の反射を低減させることが可能となる。

45 【0035】また、信号配線用ビアホールと円柱状接地 導体とを所定の間隔で、交互に配置することにより、信 号配線用ビアホールの特性インピーダンスを変化させ、 信号配線の特性インピーダンスと整合されることが可能 となるとともに、円柱状接地導体は、隣接する信号配線 用ビアホール同士の間に必ず配置されているため、隣接 する信号配線用ビアホール間のクロストークを防止する ことも可能となる。

【0036】また、板状接地導体の片側、または両側 に、信号配線用ビアホールと円柱状接地導体とを所定の 間隔で、交互に一列に配置することにより、信号配線用 05 の上面図である。 ピアホールと円柱状接地導体との間隔を小さくしても所 定の特性インピーダンスを得ることができ、信号配線用 ビアホールの高密度化が可能となる。また、所定の間隔 で、交互に一列に配置した信号配線用ビアホールと円柱 状接地導体との両側に、板状接地導体を設けることによ 10 っても、同様の効果を得ることが可能となる。

【0037】また、信号配線用ビアホールを囲む円筒状 に接地導体を設けることにより、信号配線用ビアホール を周囲から完全に遮断することができるとともに、特性 インピーダンスを変化させることができ、より狭い面積 15 線用ビアホールを有する多層回路基板の上面図である。 で接地導体の形成が可能となり、特性インピーダンスの 整合がとれた信号配線用ビアホールを高密度に設けるこ とが可能となる。

. 【図面の簡単な説明】

【図1】 (a) 本発明の実施の形態1にかかる多層 20 回路基板の上面図である。

(b) I-I'における断面図である。

【図2】 本発明の実施の形態1にかかる多層回路基板 の信号配線用ビアホールの特性インピーダンスの変化を 示した図である。

(a) 【図3】 本発明の実施の形態2にかかる多層 回路基板の上面図である。

(b) II-II'における断面図である。

【図4】 本発明の実施の形態3にかかる多層回路基板 の上面図である。

【図5】 本発明の実施の形態4にかかる多層回路基板

【図6】 本発明の実施の形態5にかかる多層回路基板 の上面図である。

【図7】 (a) 本発明の実施の形態6にかかる多層 回路基板の上面図である。

(b) VII-VII'における断面図である。

本発明の実施の形態7にかかる多層 [図8] (a) 回路基板の上面図である。

(b) VIII-VIII'における断面図である。

【図9】 本発明の実施の形態7にかかる複数の信号配

【図10】 垂直接地導体と信号配線用ビアホールとの 間の距離dと信号配線ビアホールの直径rとの比d/r と、信号配線用ビアホールの特性インピーダンスとの関 係である。

【図11】 特性インピーダンスの比と、入射波を1と したときの反射波の振幅との関係である。

【符号の説明】

101 信号配線用ビアホール、102 板状接地道 体、103 信号配線、104 円柱状接地導体、10 25 5 接地用配線、106 基板、107 円筒状接地導

体、108 誘電体。

【図1】

【図2】

[図8]

【図7】

【図10】

【図11】

フロントページの続き

(72)発明者 天見 和由

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72) 発明者 小野 正浩

大阪府門真市大字門真1006番地 松下電器 産業株式会社内 45 (72) 発明者 田口 豊

大阪府門真市大字門真1006番地 松下電器 産業株式会社内

(72)発明者 別所 芳宏

大阪府門真市大字門真1006番地 松下電器・

産業株式会社内