IMAGE Deep Learning

12장. MNIST 부터 CNN 까지

임성국

Contents

- 01. 이미지 개요
- 02. MNIST 실습
- 03. CNN 이란
- 04. CIFAR-10 실습
- 05. VGGNet
- 06. 최신동향분석

Curriculum

Curriculum 01

이미지에 대한 기초 지식을 학습하고, 이미지 처리에 필요한 양자화와 샘플링을 이해

Curriculum 02

간단한 구조인 MNIST 로 이미지 처리 실습

Curriculum 03

Convolution 에 대한 이해를 통해 CNN 을 학습

Curriculum

Curriculum 05

VGGNet 에 대한 이해와 실습

Curriculum 06

IMAGE 처리 동향을 이해한다.

01

이미지개요

WHY 0?

왼쪽 그림이 0 인 이유는 뭘까?

❷ 사물을 본다는 것의 의미

· 영국, Gregory

인지심리학자인 그레고리는 영국에서 선천적 시각장애를 가진 52 환자의 안구기증으로 인한 개인 수술 결과에 대한 보고서를 썼다. 환자는 수술전 자건거도 타고, 개인 작업실에서 물건도 만드는 활발한 활동을 하였지만 수술 후 우울증에 시달리다 3년만에 사망하였다.

❷ 인간과 컴퓨터


```
08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08 49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00 81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65 52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91 22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80 24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50 32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70 67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21 24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72 21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95 78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92 16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57 86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58 19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40 04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66 88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69 04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36 20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16 20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54 01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48
```

♥ 디지털과 아날로그

사진에 아날로그 필름을 사용했었다. 지금은 디지털 방식으로 기록한다. **아날로그와 디지털의 차이는 무엇인가?**

♥ 디지털의 특징

1. 양자화

모든 기록은 정해진 단계를 가진다. 8비트로 저장되는 영상은 2⁸ 개의 단계만을 표현한다.

2. 샘플링

영상으로 저장되는 데이터는 기계가 가지고 있는 저장영역 이상을 표현할 수 없다.

MNIST: 흑백 256 단계 (0.. 255)

Confidential all right reserved

MNIST

28 * 28 크기의 이미지로 구성된 MNIST 를 784 크기의 배열로 놓고 신경망에 넣어서 결과를 확인해보자.

/* elice */

❷ 텐서가 아닌 배열

```
import numpy as np
import time
from keras.datasets import mnist
(x_train, t_train), (x_test, t_test) = mnist.load_data()
t trainlbl, t testlbl = t train, t test
# 28X28 을 784 로 변환
x_{train} = x_{train.reshape}( ) # 28*28 을 784로 변환
x test = x test.reshape( )
```

♥ 수치미분

```
def numerical diff(f, x):
   while not it.finished:
       index = it.multi index
       tmp = float(x[index])
       x[index] = tmp + h
       fxh2 = f() # f(x+h)
       x[index] = tmp - h
       fxh1 = f() # f(x-h)
       nd coef[index] = (fxh2 - fxh1) / (2*h)
       x[index] = tmp
       it.iternext()
    return nd coef
```

MNIST

미분을 사용하는 경우와 역전파를 사용하는 경우의 시간을 경험해보자.

X층

/* elice */

MNIST

Tesnorflow 를 사용한 MNIST 실습

☑ 모델생성

- 28*28 크기의 입력을 납작하게(784) 만든다.
- 입력과 히든레이어를 연결한다. 히든레이어는 128 개의 텐서를 가진다. 이때 활성함수는 ReLu를 사용한다.
- 히든레이어와 출력을 연결한다. 출력은 10개다. 소프트맥스를 사용한다.

```
model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(128, activation='relu'),
   tf.keras.layers.Dense(10, activation='softmax')
])
```

♥ 모델컴파일

- 최적화를 위해 Adam 을 사용한다.
- 크로스엔트로피로 손실함수를 계산한다.
- 정확도로 기준한다.

♥ 학습진행

• 만들어진 모델에 학습용 데이터와 정답을 넣고, 10 에포크(전체 데이터를 10번 반복)진행

```
model.fit(x_train, y_train, epochs=10)
```


❷ 아날로그 신호처리

선형 시불변 시스템 (Linear Time Invariant System, LTI System)

선형, 시간의 영향을 받지 않는 시스템

Dirac Delta

❷ 임펄스응답

/* elice */

f(t) 와 g(t) 의 convolution

$$f(t) * g(t)$$

두 함수가 겹치는 부분의 적분값

/* elice */

Convolution, Filter

f(t): (화이트노이즈가 포함된) 음성신호

g(t): 잡음 제거 필터

f(t) * g(t) : 노이즈가 제거된 음성신호

⊘ Convolution 의미

$$f(t) * g(t)$$

또는 g(t) 안에 있는 f(t)

Lena

이미지처리에 많이 사용되는 사진

RED

GREEN

BLUE

/* elice */

● 이미지와 Convolution

I(0,0)	I(1,0)	I(2,0)	I(3,0)	I(4,0)	I(5,0)	I(6,0)								
I(0,1)	I(1,1)	I(2,1)	I(3,1)	I(4,1)	I(5,1)	I(6,1)						O(0,0)		
I(0,2)	I(1,2)	I(2,2)	I(3,2)	I(4,2)	I(5,2)	I(6,2)		H(0,0)	H(1,0)	H(2,0)				
I(0,3)	I(1,3)	I(2,3)	I(3,3)	I(4,3)	I(5,3)	I(6,3)	×	H(0,1)	H(1,1)	H(2,1)	=			
I(0,4)	I(1,4)	I(2,4)	I(3,4)	I(4,4)	I(5,4)	I(6,4)		H(0,2)	H(1,2)	H(2,2)				
I(0,5)	I(1,5)	I(2,5)	I(3,5)	I(4,5)	I(5,5)	I(6,5)		F	ilte	er				
I(0,6)	I(1,6)	I(2,6)	I(3,6)	I(4,6)	I(5,6)	I(6,6)								

Input image

Output image

/* elice */

♥ 가우시안 필터

❷ 미분 필터

1	0	-1
1	0	-1
1	0	-1

임계 값: 20

임계 값:50

(a) 입력 영상

(b) 행/열 검출 마스크 (c) 수평/수직 에지 영상

(d) 에지 합성

(e) 임계 값 이용 강조

❷ 2차 미분 필터, 라플라스

0 -1 0 -1 -1

0 -1 0

❷ 명암변화와 미분값

♥ 합성곱의 정의

1 _{×1}	1 _{×0}	1 _{×1}	0	0
O _{×0}	1 _{×1}	1,0	1	0
0 _{×1}	0,0	1 _{×1}	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature 합성곱 연산은 두 함수 f, g 가운데 하나의 함수를 반전(reverse), 전이(shift)시킨 다음, 다른 하나의 함수와 곱한 결과를 적분하는 것을 의미

- 위키

Filter

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Visualization of a curve detector filter

/* elice */

Original Image

Original Image 1 * filter(Convolution)

0	0	0	0	0	0	30
0	0	0	0	50	50	50
0	0	0	20	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0
0	0	0	50	50	0	0

Pixel representation of the receptive field

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Pixel representation of filter

Multiplication and Summation = (50*30)+(50*30)+(50*30)+(20*30)+(50*30)=6600 (A large number!)

Original Image 1 * filter(Convolution)

40	0	40	0	0	0	0
40	20	0	0	0	0	0
0	50	0	0	0	0	0
0	0	50	0	0	0	0
25	25	0	50	Λ	0	Λ

0	0	0	0	0	30	0
0	0	0	0	30	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	30	0	0	0
0	0	0	0	0	0	0

Visualization of the filter on the image

Pixel representation of receptive field

Pixel representation of filter

Multiplication and Summation = 0

✔ AlexNet 에서 나온 1, 2차 Filter

Oconvolution 의미: 'F 안에 G 있다'

Edge 성분검출 -> 위치값확인

층이 올라갈수록 특징들은 결합되고, 이미지 크기는 줄어듬 /* elice */ 03-2

Convolution Layer

♥ 기본구조

분류

Fully Connected Layer

○ CNN 이 Fully Connected Layer 와 다른점

기존의 모양에서 많은 변화가 생긴다. 개별 입력값이 아닌 영상이 입력이 되고, 가중치 대신 Convolution Filter (Kernel), 일반 곱셈 대신 합성곱을 사용.

⊘ Fully Connected Layer <-> Convolution Layer

Pooling Layer (Sub Sampling)

✔ Flatten, 평탄화

♥ 전결합 계층

일반적으로 평탄화를 마친 후 2개의 전결합 계층을 사용한다.

Softmax 함수

마지막 계층에 Softmax 활성함수 사용

a+b+c+d+e+f = 1, a,b,c,d,e,f >=0

♥ CNN 기본구조의 이해

Convolution Layer 는 특징을 찾아내고, Pooling Layer 는 처리할 맵(이미지) 크기를 줄여준다. 이를 N 번 반복한다. 반복할 때마다 줄어든 영역에서의 특징을 찾게 되고, 영역의 크기는 작아졌기 때문에 빠른 학습이 가능해진다.

Receptive Field

03 - 3

Convolution Layer 의 수식이해

☑ 전결합 계층의 수학적 표현

$$y_0 = a(\mathbf{w}_0^T \mathbf{x} + b_0)$$
$$y_1 = a(\mathbf{w}_1^T \mathbf{x} + b_1)$$

$$W = [w_0, w_1, ..., w_{M-1}]^T$$

 $\mathbf{b} = [b_0, b_1, ..., b_{M-1}]^T$

$$y_{M-1} = a(\mathbf{w}_{M-1}^T \mathbf{x} + b_{M-1})$$

$$y = a(Wx + b)$$

◎ 합성곱 계층의 수학적 표현

Padding

3 x 3 Filter 를 쓰면 상, 하, 좌, 우 모두 1줄씩 처리를 못하게 된다. 원본에서 가로, 세로 2줄씩 작아지는 결과

Padding

원본 이미지의 상하좌우에 한 줄씩 추가하여 0으로 채워 넣는 것을 0-Padding 이라 한다.

Stride

커널(Convolution Filter)을 이동시키는 거리를 Stride 라 하고, Stride 가 2 이상이면 출력의 크기가 줄어든다.

Sub Sampling

Pooling 과 거의 같은 의미로 사용, Pooling 은 최대값 혹은 평균값을 사용하는 반면 Sub-Sampling 은 일정거리에 있는 값 만을 사용

CIFAR-10 으로 CNN 실습

Confidential all right reserved

05

VGGNet 실습

Confidential all right reserved

Deep Learning 이미지 처리 역사와 동향분석

LeNet-5

/* elice */

CNN 의 조상격인 LeNet 은 다양한 버전이 있으며 그중 최종 버전은 LeNet-5 이다. LeNet 은 CNN 을 처음으로 시도한 얀 르쿤(Yann LeCunn)이 1998년 개발한 CNN 알고리즘의 이름이다.

VGG-16

2014년 ILSVRC 에서 92.7% 의 정확도(전년 대비 4.3%p 향상)를 보인 VGG-16

GoogleNet (Inception)

2014년 ILSVRC 에서 93.3% 의 정확도로 1위

Inception module

(a) Inception module, naïve version

다양한 크기의 합성곱 계층을 한번에 계산

(b) Inception module with dimension reductions

연산량을 줄이기 위한 구조

✓ Inception module – 추가 분류기 사용

역전파 기울기소실방지를 위한 추가 분류기 사용

ResNet

Skip-Connection 과 많은 레이어 사용이 특징

ILSVRC

Credit

/* elice */

코스 매니저 임승연

콘텐츠 제작자 임승연

강사 오혜연 교수님

감수자 김수인

디자인 박주연

Contact

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

