HOME CHAPTERS LOGIN

19. Map Projections

Latitude and longitude coordinates specify positions in a more-or-less spherical grid called the **graticule**. Plane coordinates like the eastings and northings in the Universal Transverse Mercator (UTM) and State Plane Coordinates (SPC) systems denote positions in flattened grids. This is why georeferenced plane coordinates are referred to as *projected*, and geographic coordinates are called **unprojected**. The mathematical equations used to transform latitude and longitude coordinates to plane coordinates are called **map projections**. Inverse projection formulae transform plane coordinates to geographic. The simplest kind of projection, illustrated in Figure 2.20.1, below, transforms the graticule into a rectangular grid in which all grid lines are straight, intersect at right angles, and are equally spaced. More complex projections yield grids in which the lengths, shapes, and spacing of the grid lines vary.

Figure 2.20.1 Map projections are mathematical transformations between geographic coordinates and plane coordinates.

If you are a GIS practitioner, you have probably faced the need to superimpose unprojected latitude and longitude data onto projected data, and vice versa. For instance, you might have needed to merge geographic coordinates measured with a GPS receiver with digital data published by the USGS that are encoded as UTM coordinates. Modern GIS software provides sophisticated tools for projecting and unprojecting data. To use such tools most effectively, you need to understand the projection characteristics of the data sets you intend to merge. We'll examine map projections in some detail elsewhere in this chapter. Here, let's simply review the characteristics that are included in the "Spatial Reference Information" section of the metadata documents that (ideally!) accompany the data sets you might wish to incorporate in your GIS. These include:

• Projection Name Most common in the GIS realm is the Transverse Mercator, which serves as the basis of the global UTM plane coordinate system, the U.K. and proposed U.S. National Grids, and many zones in the U.S. State Plane Coordinate system (SPC). Other SPC zones are based upon the Lambert Conic Conformal projection, which like many projections is named for its inventor as well as its projection category (conic) and the geometric properties it preserves (conformal). Much map data, particularly in the form of printed paper maps, are based upon "legacy" projections (like the Polyconic in the U.S.) that are no longer widely used. A much greater variety of projection types tend to be used in small scale thematic mapping than in large scale reference mapping.

The Nature of Geographic Information

Search
Search

Chapters

- ► Chapter 1: Data and Information
- ▼ Chapter 2: Scales and

Transformations

- 1. Overview
- 2. Scale
- 3. Scale as Scope
- 4. Map and Photo Scale
- 5. Graphic Map Scales
- 6. Map Scale and Accuracy
- 7. Scale as a Verb
- 8. Geospatial Measurement Scales
- 9. Coordinate
 Systems
- 10. Geographic Coordinate System
- 11. Geographic Coordinate Formats
- 12. Horizontal Datums
- 13. Geoids
- 14. Ellipsoids
- 15. Control Points and Datum Shifts
- 16. Coordinate Transformations
- 17. Plane Coordinate Transformations

- **Central Meridian** Although no land masses are shown, let's assume that the graticule and projected grid shown above are centered on the intersection of the equator (0 latitude) and prime meridian (0° longitude). Most map projection formulae include a parameter that allows you to center the projected map upon any longitude.
- Latitude of Projection Origin Under certain conditions, most map
 projection formulae allows you to specify different aspects of the grid.
 Instead of the equatorial aspect illustrated above, you might specify a
 polar aspect or oblique aspect by varying the latitude of projection origin
 such that one of the poles, or any latitude between the pole and the
 equator, is centered in the projected map. As you might imagine, the
 appearance of the grid changes a lot when viewed at different aspects.
- Scale Factor at Central Meridian This is the ratio of map scale along the
 central meridian and the scale at a standard meridian, where scale
 distortion is zero. The scale factor at the central meridian is .9996 in each
 of the 60 UTM coordinate system zones since each contains two
 standard lines 180 kilometers west and east of the central meridian.
 Scale distortion increases with distance from standard lines in all
 projected coordinate systems.
- Standard Lines Some projections, including the Lambert Conic Conformal, include parameters by which you can specify one or two standard lines along which there is no scale distortion caused by the act of transforming the spherical grid into a flat grid. By the same reasoning that two standard lines are placed in each UTM zone to minimize distortion throughout the zone to a maximum of one part in 1000, two standard parallels are placed in each SPC zone that is based on a Lambert projection such that scale distortion is no worse than one part in 10,000 anywhere in the zone.

This textbook is used as a resource in Penn State's Online Geospatial Education online degree and certificate programs. If this topic is interesting to you and you want to learn more about online GIS and GEOINT education at Penn State, check out

our Geospatial Education Program Office.

< 18. Datum Transformations</p>

up

20. UTM Coordinate System >

- 18. Datum
 Transformations
- 19. Map
 Projections
- 20. UTM Coordinate System
- 21. The UTM Grid and Transverse Mercator Projection
- 22. UTM Zone Characteristics
- 23. National Grids
- 24. State Plane Coordinate
 System
- 25. The SPC Grid and Map Projections
- 26. SPC Zone Characteristics
- 27. Map Projections
- 28. Geometric Properties Preserved and Distorted
- 29. Classifying Projection Methods
- 30. Summary
- 31.
 Bibliography
- Chapter 3: Census Data and Thematic Maps
- ► Chapter 4: TIGER, Topology and Geocoding
- Chapter 5: Land Surveying and GPS
- ► Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

• login

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

Navigation

- Home
- News
- About
- Contact Us
- People
- Resources
- Services
- Login

EMS

- College of Earth and Mineral Sciences
- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education Programs
- Renewable Energy and Sustainability Policy Program Office

iMPS in

 BA in Energy and Sustainability Policy Program Office Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Cooperative
 Penn State
 World Campus
- Web Learning
 @ Penn State

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802

Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023