Part 2

Quantum spin liquid in the ground states of low dimensional quantum spin systems

Haldano gap for S=1 AF chains.
and the VBS state

Quantum Heisenberg AF $[\hat{H}, \hat{S}^{(a)}] \neq 0 \rightarrow \text{quantum fluctuation"}$ two spins $\hat{H} = \hat{S}_{x} \cdot \hat{S}_{y} \rightarrow \text{the g.s. is a spin-singlet } \text{in the g.s.}$ $\Rightarrow \text{No order!}$ $d \geq 2$ the g.s. develops long-rande Néel order.

"quantum fluctuation" is smaller
"quantum fluctuation" is larger

d=1 ho long-range Néel order in thog.s.

Haldane conjecture and related results? d=1 (almost throughout the present part)

§ Haldane conjecture

Heisenberg AF chain $H=\sum_{x=1}^{L}\hat{S}_{x}\cdot\hat{S}_{x+1}$ ($\hat{S}_{x+1}=\hat{S}_{1}$) $(S=\frac{1}{2},1,\frac{2}{2},\cdots)$ (Leven)

[Marshll-Lreb-Mattis theorem

The g.s. is unique for finite L.)

[1931]

Common beliefs based on the Bethe ansatz solution

i) the g.s. is uinque (also for L100) s NO LRO or SSB

ii) no energy gap above the g.s. energy \equiv Elst $-Ear = O(\frac{L}{L})$ iii) the g.s. correlation funct. decays

iby a power law as

(Das, Sz. Sy Das) = (-1) x-5 (x-4)

Haldan 1983

. non-linear o-model with a topdogreal term . sem-classical quantization of solitons

S=2, 3, ... half-odd-integer spins

 $\begin{array}{c} \text{(i)} \\ \text{(ii)} \\ \end{array}$

S=1,2,3, ... integer spins

i) the gis, is unique (also for LT00) , NO LBOSSB

ii) = a nonvanishing energy gap above the g.s energy

Haldane garres ==

III) the g.s. correlation function decays exponentially

 $\langle \overline{Q}_{as}, \widehat{S}_{x} \cdot \widehat{S}_{y} \overline{Q}_{as} \rangle \widehat{a} (-1)^{x-y} \exp \left[-\frac{|x-y|}{z}\right]$

disordered disordered (massive) behavior at T=0

strong "quantum fluctuation".

a at least in mid 80's

Surprising points of the conjecture

- · a drastic difference between the systems with half-odd-integer S and integer S.
- · it is natural that a one-dim. system with a continuous symmetry has low-energy excitations.

I see the next section.

Ren

11') => 11') was finally proved by Hastings and Koma 2006

the beginning of modern applications of the Lieb-Robinson bound STheorem which rules out "unique g.s. + gap"

twist operator Up = exp[i = 2TCX S(B)]

Q < L

I = Do Das

twist. $2 \qquad 10 = \frac{2\pi}{0}$

 $\langle \Psi, \widehat{H} \Psi \rangle - E_{GS} = 0.0((ab)^2) = 0(\frac{1}{\varrho})$

always gapless ?!

One can prove $\langle \overline{\mathbb{Q}}_{GS}, \overline{\mathbb{Q}} \rangle = 0$ only for $S = \frac{1}{2}, \frac{3}{2}, \dots$

Theorem (Lieb-Schultz-Mattis 1961, Affleck-Lieb 1986)

For $S=\frac{1}{2},\frac{3}{2},\dots$ "Unique g.s. + gap" is impossible.

No information for S=1,2,...

generalization

(Yamanaka - Oshikawa - Affleck. 1997)

& Semi-classical approach classical (Ising) a quinatum" $\hat{H} = \sum_{\alpha=1}^{L} \hat{S}_{\alpha}^{(3)} \hat{S}_{\alpha+1}^{(3)} + \sum_{\alpha=1}^{L} \{\hat{S}_{\alpha}^{\dagger} \hat{S}_{\alpha+1}^{-1} + \hat{S}_{\alpha}^{-1} \hat{S}_{\alpha+1}^{\dagger} \}$ treat as "perturbation" He G.S. of Ac TITITI Stspair creation of
kinks

TITITI

Ackinks hop by
TUTITI

TUTITI

TWice the lattice
Spacing 717-717-1 also pair annihilation. Note of there are two kinds of kinks different kinds of kinks never pair annihilate TUTTUT 117711717 noway!!

$$S=1$$
 $\frac{ds}{ds}$ $\frac{ds}{ds}$

· Only one kind of kinks, pairly created and annihilated.

essential difference from the S= = case

this construction generates special states like

+0-+--0+0-+0-0+

tond - alternate with arbitrary number of 0's in between them. e) (hidden AF order)

H: restricted Hibert space generated by these basis states

Theorem (Tasaki 86 unpublished)

The Heisenburg AF on H has a unique g.s. with a gap and exponentially decaying correlation function

(AKLT model and the VBS picture)

SAKLT model for S=1

S=1 (AF) chain with

Still AF, and SU(2) invariant

Theorem (Affleck-Kennedy-Lieb-Tasaki 1987)

· The g.s. is unique (for finite and infinite L)

· = a nonvanishing energy gap (uniform in L)

•
$$(\overline{\mathbb{Q}_{GS}}, \widehat{\mathbb{S}_{x}} \cdot \widehat{\mathbb{S}_{y}} \overline{\mathbb{Q}_{GS}}) = (-1)^{|x-y|} 4 \cdot 3^{-|x-y|}$$

$$(|x-y| \ge 2)$$

strong support to the Haldane conjecture

a stabilty theorem (difficult but important)

Theorem (Yarotsky 2006)

Vi any short ranged translation invaniant interaction

the g.s. isunique, = a gap, exp. decay.

SVBS (valence-bond-solid) state exact g.s. of the AKLT model

 $\hat{S}_{z} \cdot \hat{S}_{z+1} + \frac{1}{3} (\hat{S}_{z} \cdot \hat{S}_{z+1})^{2} = 2 \hat{P}_{z} (\hat{S}_{x} + \hat{S}_{z+1}) - \frac{2}{3}$

the o.v. of (Sx+Sx+1)2 -> S'(S'+1) with S'=0, 1, 2.

Pz: the proj. onto the space with S=2

HAKLT is essentially the same as

 $\widehat{H}_{AKLJ}' = \sum_{x=1}^{L} \widehat{P}_{z}(\widehat{S}_{x} + \widehat{S}_{x+1})$

We shall construct DUBS S.T. P. (Îx+Î+1) DUBS = 0 for tx.

Then it is a g.s. of Alaker (and FAKET)

construction of the VBS state

total spin 1.

> projection op, onto the supspace with Stot=1.

· duplicated chain with sites (a,L), (a,R) a=1,-,L

$$\chi-1$$
 χ

put S=2's.
on each site

singlet pair = valence-bond

a state for 2L spin = s.

 $\overline{P}_{VBS} := \left(\underbrace{\sum_{x} \widehat{S}_{x}} \right) \overline{P}_{PRe-VBS} \qquad valence-bond solid state$ a state for the S=1 chain. $\overline{P}_{2}(\widehat{S}_{x}+\widehat{S}_{x+1}) \overline{P}_{VBS} = \widehat{P}_{2}(\widehat{S}_{x}+\widehat{S}_{x+1}) \left(\underbrace{\bigotimes_{x} \widehat{S}_{x}} \right) \overline{P}_{PRe-VBS}$

= (\$\int_{\infty} \mathre{S}_{\infty}) \hat{\hat{\hat{\gamma}}_{\infty} (\hat{\hat{\hat{\gamma}}_{\infty} \mathre{\hat{\hat{\gamma}}_{\infty} \mathre{\hat{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty}} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre{\hat{\gamma}}_{\infty} \mathre

singlet!

Pubs is an exact g.s. of HAKLT

the theorem is proved based on the exact g.s. and the special properties of the model

gap: all simples proof Knabe &&

(general theory Fannes, Nachtergaele, Werner

92)

Sproof of the eistence of a ggp (Knake, 1988)

When Eqs = 0, gap > E
$$\iff$$
 $\hat{H}^2 > E\hat{H}$

When Eqs = 0, gap > E \iff $\hat{H}^2 > E\hat{H}$

Show this

Write $\hat{P}_x = \hat{P}_2(\hat{S}_z + \hat{S}_{x+1})$

Note $\hat{P}_x \hat{P}_y \geq 0$ unless $|x-y| = 1$
 $\hat{H} = \sum_{z=1}^{L} \hat{P}_x$ (pbc)

 $f_{1x} = \sum_{z=1}^{L} \hat{P}_z$ (pbc)

Thum

 $\sum_{z=1}^{L} (\hat{P}_x)^2 = n \sum_{z=1}^{L} \hat{P}_z + (n-1) \sum_{z=1}^{L} \hat{P}_z \hat{P}_z + (n-2) \sum_{z=1}^{L} \hat{P}_z \hat{P}_z$
 $+ \cdots + \sum_{z=1}^{L} \hat{P}_x \hat{P}_z$
 $\leq n \sum_{z=1}^{L} \hat{P}_z + (n-1) \sum_{z=1}^{L} \hat{P}_x \hat{P}_z$
 $= \sum_{z=1}^{L} \hat{P}_z + (n-1) \hat{P}_z \hat{P}_z$
 $= \sum_{z=1}^{L} \hat{P}_z + (n-1) \hat{P}_z \hat{P}_z$

Use $(\hat{P}_n)^2 \geq E_n \hat{P}_n$ (En: the gap of \hat{P}_n)

SEIP

 $\hat{H}^{2} > -\frac{1}{n-1}\hat{H} + \frac{1}{n-1} \epsilon_{n} \sum_{x=1}^{n} \hat{h}_{x}$ $= \frac{n}{n-1} (\epsilon_{n} - \frac{1}{n}) \hat{H}$

So \widehat{H} has a nonvanshing gap (indep of L) if $\operatorname{En} - \frac{1}{n} > 0$ for some n

theck numerically

J.Stat. Phys. 52, 627-638 VBS-1 ** (1988)

Extend the method to prove the existence of a

nonvanishing gap of the Majumdar-Ghosh model

S=1/2 periodic chain with Leven

HMG = SI (\$z. \$x+1 + \frac{1}{2} \hat{S}_{x}. \hat{S}_{x+2} \frac{1}{2}

See Section 5 of AKLT 88

SVBS state in the standard basis - hidden AF order

TUBS is a sum of many basis states

0 - 0 + 0 0 - + ...

+ and - alternate with arbitrary numbers of 0's in between them!

Satisfies the constraint (N(O) the number of I's.

"quantum spin liquid" with hidden AF order

· one gets exactly the same expansion whatever "quantization axis" is taken.

standard AF order -> appears in a specific direction

hidden AF order -> appears in any directions!

 $(rem, S(T)) = 4^{+} S(EU) = 4^{-}$ $S(TL) = \frac{1}{362}(TL + LT) = \sqrt{2}4^{0}$

the complicated coefficient/can be expressed using matrix products.

Fannes, Nachtergaele, Werner 89,92 Klümper, Schadschneider, Zittarz 91

 $\overline{P}_{VBS} = \sum_{i} \overline{T}_{r} [A_{0i} A_{02} - A_{0n}] \underline{\Psi}^{\mathcal{D}} - \underline{\otimes}$ $\overline{V}_{roconstrainits} A_{+} = \begin{pmatrix} 0 & 0 \\ -\sqrt{2} & 0 \end{pmatrix}, A_{-} = \begin{pmatrix} 0 & \sqrt{2} \\ 0 & 0 \end{pmatrix}, A_{o} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$

Finitely correlate states
[Matrix product states (MPS)

Very general but still very special!

VB5-2 Confirm € (starting From the def. of VBS)

Find a similar expression for the S== state

§ NBS states open chains - edge states

AKCT model on periodic chain, infinit chain

-> the g.s. is unique.

on open chain

There are four ground states

Sem-inite chain with extra 1

the edge spin is not completely localized

$$\langle \overline{\Psi}'_{VBS}, \widehat{S}^{(3)}_{x}, \overline{\Psi}'_{VBS} \rangle = -2(-3)^{-x}$$

$$\sum_{x=1}^{\infty} \langle \rangle = \frac{1}{2}$$

 $\Delta_{c} = \left(-\frac{L}{2} + 1, -\frac{L}{2} + 2, \dots, \frac{L}{2}\right)$

1-0-0-

the four g.s. converges to a single inf. vo! gr. st. as L Too

recall that	finite. L	L7∞
Heisenberg AF d=2	unique g.s.	infinitely many 9.5.
AKCT open chain	four g.s.	Unique 95

& VBS picture

Can we form VB states for other S?

S=2 0: four S=2's

S= 3 = (...) three S=2's

translation on. is broken,

We can construct translation invariant VBS only for integer S.

But under magnetic field one may have ags.

for S= = Spechan

here $S_{Tot}^{(3)} = \frac{L}{2}$

YOA filling factor is $\nu=\frac{1}{2}+\frac{3}{2}=2$ integeli

(Sk1)

(Haldane phose)
the SHaldane conj. For S=1 Heisenberg AF chain A = SI, Sx. Sx+1 observed mentally numerical results 1. = a gap = 0.41 above the unique gs. . Correlation in gis. derays exponentially AKLT is at the "center" BUT NO PROOF of the Haldane phase, and the Heisenberg AF happens To belong to that phase ? §. The model with anisotropy S=1 chain (pbc) $\hat{H} = \sum_{\alpha = 1}^{2} \left\{ \hat{S}_{\alpha} \cdot \hat{S}_{\alpha+1} + D(\hat{S}_{\alpha}^{(3)})^{2} \right\}$ anisotropy D20 notethat

 $\hat{H}_0 = \sum_{x=1}^{L} D(\hat{S}_x^{(3)})^2$ is trivial

G.S. Po = & 40 000000 E0=0

1st excited 000+000

Enst = Eo + D

if D>>1

1. The gis, is unique and is close to Do

· = a gap = P

· The g.s. correlation decays exponentially

all rigorous and trivial (cluster expansion)

Is the Haldane gap smoothly connected to this trivial gap?

numerical results

Haldane 1 large-D phase phase A disordered, Zgap

& Peculiar features of the Haldane phase

Hidden AF order

The gis. of flanisa Pas = Fica Po

Co>o for to (Marshell-Lieb-Metlis)

(different from the VBS state)

BUT in the Haldane phase. most states (with considerable weight) look like

the long-range hidden AF order still gresents

$$t-t-t+-t-t$$

den Nijs-Rommelse strig order parameter 19

Ostring: = - $\lim_{|x-y| \to 0} \lim_{|x-y| \to 0} (\widehat{P}_{as}, \widehat{S}_{\alpha}^{(a)} \exp[i\pi \widehat{\Sigma}_{i}^{(a)} \widehat{S}_{\alpha}^{(a)}] \widehat{S}_{y}^{(a)} \widehat{P}_{cs})$

 $\propto = 1, 2, 3$

for the VBS state $O(\alpha) = \frac{4}{9}$ d=1,2,3. heuristic arguments to Alaniso

thumenical res. for Haniso

Haldhe phase O(1) = O(2) >0, O(3) true >0 O(3) large -D phase O(1) = O(3) = 0 O(3) = 0

The hidden AF order (measured by the string order par.) characterizes the Haldane phase.

Near four-fold degeneracy and the edgestates

· AKLT model on sa periodic chain -> unique g.s. + agap

Heisenberg AF (numerical)

Rennedy 1990

Rennedy triplet

Chain

hidden AF order => near four-fold degeneracy

1) Horsch-von der Liden Theorem

$$\hat{S}_{string}^{(\alpha)} := \sum_{\chi=1}^{L} \hat{S}_{\chi}^{(\alpha)} \exp[i\pi \sum_{y=1}^{\chi-1} \hat{S}_{y}^{(\alpha)}]$$

if Ostring #0

Then (\$\overline{\Pas}\$, (\hat{\Otherwise})^2 \overline{\Pas}\$ > \$\geq a.L^2\$

Thus Ostron Pas 11 Ostring Pasl is a low-lying state -lyin) $\alpha = 1, 2, 3$ -they are orthogonal

2) O,+,- configuration

config. with complete hidden AF order

00-+

edges states 9

Thus. "Haldane phase" is a distinct phase Haldone De 21 large-D hidden AF order no order unique GS with a gap noar-ofour-fold degeneracy in open chain in open chain (edge states) quite exotic! observed mentally!

& Non-local unitary transformation and hidden $\mathbb{Z}_z \times \mathbb{Z}_z$ symmetry breaking Open chain (Kennedy-Tasaki 92)

$$\hat{H} = \sum_{x=1}^{L-1} \hat{S}_x \cdot \hat{S}_{x+1} + D \sum_{x=1}^{L} (\hat{S}_x^{(3)})^2$$

basis state $\underline{\Psi}^{\sigma} = \underline{\otimes} \, \Psi_{\infty}^{\sigma_{z}}$ with $\sigma = (\sigma_{x})_{x=1,\dots,l}$ $\sigma = (\sigma_{x})_{x=1,\dots,l}$

For
$$\sigma$$
, define $\sigma = (\tilde{\sigma}_x)_{x=1,...,L}$ by $\sigma = (-1)_{y=1}^{2-1} \sigma_y$

O' OO + O + + O - + 0 + 0 ferro order O' OO + O + + O - -O + + 0 ferro forder

Define unitary op. U by

$$\widehat{U}\underline{\Psi}^{0}=(-1)^{N(0)}\underline{\Psi}^{0}$$

N(0): the number of odd x with 0x=0

Oshikawa's form
$$\hat{U} = \prod exp[i\pi S_x^{33}\hat{S}_y^{(1)}]$$

Then
$$\hat{H}' = \hat{U} \hat{H} \hat{U}^{\dagger}$$

$$= \sum_{\chi=1}^{L-1} (-\hat{S}_{\chi}^{(1)} \hat{S}_{\chi+1}^{(1)} + \hat{S}_{\chi}^{(2)} \hat{U}^{\dagger} \hat{S}_{\chi+1}^{(3)}) \hat{S}_{\chi+1}^{(2)} - \hat{S}_{\chi}^{(3)} \hat{S}_{\chi+1}^{(3)})$$

$$+ \sum_{\chi=1}^{L} (\hat{S}_{\chi}^{(3)})^2$$

$$+ \sum_{\chi=1}^{L} (\hat{S}_{\chi}^{(3)})^2$$

· mainly Ferromagnetic (especially in the 1st and the 3rd directions)

· has a discrete symmetry invariant under the TC-rotation around the 1, 2, or 3 axis.

Zz×Zz symmetry

not independent.

the order parameters of the ZzxZz symmetry breaking

Oferro =
$$\lim_{|x-y| \to \infty} (\overline{P}_{as}, \widehat{S}_z^{(a)} \widehat{S}_g^{(a)} \overline{P}_{as})$$
 ($\alpha=1,3$)

then it holds that

Oferro =
$$O_{string}^{(\alpha)}$$
 ($\alpha = 1, 3$)

 $\alpha = 0$
 $\alpha = 1, 3$
 $\alpha = 0$
 $\alpha = 1, 3$

96

The picture of hidden Zzx Zz symmetry breaking

H: ferromagnetic Hamiltonian with discrete

Zz x Zz symmetry

· large-D phase D>Pc no symmetry breaking unique 9.s. + a gop

· Haldane phase OSD < De

Zzx Zz symmetry is fully broken

- · SSB of a discrete symmetry >> gap.
- · ferromagnetic order -> hidden A Forder

(Fland H'have exactly the 4 Sour low-lying energy excitations in a finite

in a finite chain

all the exotic properties of the Haldane phase can be understood as a consequence of the

Zzx Zz symmetry breaking. -> starting point of other rigorous and non-rigor

(Some related issues)

& Stability of the Haldone phase

Does the ZxX Zz picture explain everything?

· edge states of the S=2 VBS

3x3= 9 fold degeneracy.

· String order for the general VBS (Oshikawa 92)

Ostring
$$\{ > 0 \text{ for } S=1,3,5,... \}$$

= 0 for $S=2,4,6,...$

Is it possible to connect the Haldane and the large D phases smoothly?

Is there Ax such that

• \widehat{H}_{λ} of Ham on the open chain, depends smoothly on $\lambda \in [0,1]$ has a suitable symmetry (e.g. inv. under $\widehat{\widehat{J}}_{x} \rightarrow -\widehat{J}_{x}$

 $\hat{H}_0 = \sum_{x=1}^{L} D(\hat{S}_x^{(3)})^2, \hat{H}_1 = \hat{H}_{AKLT}$

· Hx has a unique g.s. + a gap for tx ECO,1].

Yes for S=2,4,6, ...

edge singlet

No For S=1,3,5,--

edge

ti to la

atleasts= = remains (-o four-fold near degeneracy)

Gu, Wen Pollmann, Turner, Berg, Oshikawa

Haldone phase is a

& VBS in two-dimensions

5=3 model on the hexagonal lattice

. g.s. is unique

· correlation decay exponentially

no proof of gap

hidden order ?? Ans ideas

& Hamiltonian Vs. states

(ground) states are more important than the Ham.

VBS, Laughlin, BCS

MPS New PENP?

BUT Philosophically
microscopic
physics) low energy
effective
thouries
these exciting steps.

effective g.s. or eq. states
thoories with intensting

practically we miss many important problems (Haldane gapin S=1 Heisenh AF)