TRACCIA 4

Report di Analisi - Estrazione di un Eseguibile da un PCAP

OS:

Strumento utilizzato: Wireshark
File analizzato: nimda.download.pcap

Obiettivo: Identificare ed estrarre un file eseguibile da un file di cattura del traffico di

rete (PCAP).

1. Obiettivo del Laboratorio

L'analisi del traffico di rete è fondamentale per individuare transazioni sospette e attacchi informatici. In questo laboratorio, si è analizzato un file di cattura per identificare ed estrarre un eseguibile scaricato attraverso il protocollo HTTP.

2. Procedura

Parte 1: Analisi del traffico catturato

1. Accesso ai file PCAP

Il file nimda.download.pcap è stato localizzato nella directory: /home/analyst/lab.support.files/pcaps

```
[analyst@secOps ~]$ cd lab.support.files/pcaps
[analyst@secOps pcaps]$ ls 01
ls: cannot access '01': No such file or directory
[analyst@secOps pcaps]$ ls -l
total 4028
-rw-r--r-- 1 analyst analyst 371462 Mar 21 2018 nimda.download.pcap
-rw-r--r-- 1 analyst analyst 3750153 Mar 21 2018 wannacry_download_pcap.pcap
```

2. Apertura del file con Wireshark per l'analisi dei pacchetti

Si analizza il flusso di traffico registrato.

No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	209.165.200.235	209.165.202.133		74 48598 6666 [SYN] Seq=0 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=4051203246 TSecr=0 WS=512
	2 0.000259	209.165.202.133	209.165.200.235	TCP	74 6666 48598 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM=1 TSval=3023496465 TSecr=4051203246 WS=512
	3 0.000297	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=1 Ack=1 Win=29696 Len=0 TSval=4051203246 TSecr=3023496465
	4 0.000565	209.165.200.235	209.165.202.133	HTTP	230 GET /W32.Nimda.Amm.exe HTTP/1.1
	5 0.000588	209.165.202.133	209.165.200.235	TCP	66 6666 48598 [ACK] Seq=1 Ack=165 Win=30208 Len=0 TSval=3023496465 TSecr=4051203246
	6 0.000708	209.165.202.133	209.165.200.235	TCP	324 6666 48598 [PSH, ACK] Seq=1 Ack=165 Win=30208 Len=258 TSval=3023496465 TSecr=4051203246 [TCP segment of a reassembled PDU]
	7 0.000827	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=259 Win=30720 Len=0 TSval=4051203246 TSecr=3023496465
	8 0.004594	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=259 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203246 [TCP segment of a reassembled PDU]
	9 0.004602	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=1707 Win=33280 Len=0 TSval=4051203247 TSecr=3023496466
	10 0.004605	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=1707 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203246 [TCP segment of a reassembled PDU]
	11 0.004610	209.165.200.235	209.165.202.133	TCP	66 48598 → 6666 [ACK] Seq=165 Ack=3155 Win=36352 Len=0 TSval=4051203247 TSecr=3023496466
	12 0.004611	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=3155 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203246 [TCP segment of a reassembled PDU]
	13 0.004612	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=4603 Win=39424 Len=0 TSval=4051203247 TSecr=3023496466
	14 0.004613	209.165.202.133	209.165.200.235	TCP	1514 6666 → 48598 [ACK] Seq=4603 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203246 [TCP segment of a reassembled PDU]
	15 0.004614	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=6051 Win=41984 Len=0 TSval=4051203247 TSecr=3023496466
	16 0.004615	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=6051 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203246 [TCP segment of a reassembled PDU]
	17 0.004617	209.165.200.235	209.165.202.133	TCP	66 48598 → 6666 [ACK] Seq=165 Ack=7499 Win=45056 Len=0 TSval=4051203247 TSecr=3023496466
	18 0.004706	209.165.202.133	209.165.200.235	TCP	1514 6666 → 48598 [ACK] Seq=7499 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203247 [TCP segment of a reassembled PDU]
	19 0.004710	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=8947 Win=48128 Len=0 TSval=4051203247 TSecr=3023496466
	20 0.004711	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=8947 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203247 [TCP segment of a reassembled PDU]
	21 0.004713	209.165.200.235	209.165.202.133	TCP	66 48598 → 6666 [ACK] Seq=165 Ack=10395 Win=50688 Len=0 TSval=4051203247 TSecr=3023496466
	22 0.004713	209.165.202.133	209.165.200.235	TCP	1514 6666 48598 [ACK] Seq=10395 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203247 [TCP segment of a reassembled PDU
	23 0.004715	209.165.200.235	209.165.202.133	TCP	66 48598 → 6666 [ACK] Seq=165 Ack=11843 Win=53760 Len=0 TSval=4051203247 TSeα=3023496466
	24 0.004716	209.165.202.133	209.165.200.235	TCP	1514 6666 → 48598 [ACK] Seq=11843 Ack=165 Win=30208 Len=1448 TSval=3023496466 TSecr=4051203247 [TCP segment of a reassembled PDU
	25 0.004717	209.165.200.235	209.165.202.133	TCP	66 48598 6666 [ACK] Seq=165 Ack=13291 Win=56832 Len=0 TSval=4051203247 TSecr=3023496466

3. Identificazione del traffico sospetto

I primi tre pacchetti del PCAP rappresentano la stretta di mano TCP (SYN, SYN-

ACK, ACK).

Il quarto pacchetto rappresenta una richiesta GET HTTP per il download di un file sospetto.

4. Analisi del contenuto della richiesta HTTP
Selezionato il quarto pacchetto, è stata espansa la sezione Hypertext Transfer Protocol (HTTP) per

visualizzare il contenuto della richiesta.

Si è confermato che il download del file avveniva tramite HTTP, utilizzando una richiesta **GET**.

5. Ispezione del traffico binario

È stato utilizzato Follow TCP

No.	Time	Source	Destination	Protoc	ol Length Info	
					Mark Packet (toggle)	q=0 Win=29200 Len=
	2 0.000259	209.165.202.133	209.165.200.235	TCP	Ignore Packet (toggle)	K] Seq=0 Ack=1 Win=
	3 0.000297	209.165.200.235	209.165.202.133	TCP	Set Time Reference (toggle)	q=1 Ack=1 Win=2969
	4 0.000565	209.165.200.235	209.165.202.133	HTTP	③ Time Shift	exe HTTP/1.1
	5 0.000588	209.165.202.133	209.165.200.235	TCP	Racket Comment	q=1 Ack=165 Win=30
	6 0.000708	209.165.202.133	209.165.200.235	TCP	Manually Resolve Address Apply as Filter	K] Seq=1 Ack=165 Wi
	7 0.000827	209.165.200.235	209.165.202.133	TCP	Prepare a Filter	q=165 Ack=259 Win=
	8 0.004594	209.165.202.133	209.165.200.235	TCP	Conversation Filter	q=259 Ack=165 Win=
	9 0.004602	209.165.200.235	209.165.202.133	TCP	Colorize Conversation	q=165 Ack=1707 Win
▶ Fra	me 1: 74 bytes or	n wire (592 bits), 74 bytes	SCTP	•		
▶ Eth	ernet II, Src: ea:0	5:2c:e1:90:3d (ea:05:2c:	Follow TCP Stream 🛑			
		rsion 4, Src: 209.165.200	Follow UDP Stream			
▶ Tra	insmission Contro	l Protocol, Src Port: 4859	Follow FEL Stream			

Stream su Wireshark per ricostruire il traffico.

Il contenuto visualizzato presentava **caratteri binari e stringhe leggibili**, suggerendo la presenza di un file eseguibile.

Parte 2: Estrazione dell'eseguibile

1. Individuazione del file scaricato

Si è identificato che la richiesta GET proveniva da:

209.165.200.235 → 209.165.202.133

2. Esportazione dell'oggetto HTTP

- Selezionato il pacchetto contenente la richiesta GET.
- Navigato su File > Export
 Objects > HTTP in Wireshark.
- L'elenco degli oggetti HTTP conteneva un solo file:
 W32.Nimda.Amm.exe.

Il file è stato salvato nella directory /home/analyst.

3. Identificazione del tipo di file

Con il tool file (da cli) si identifica la tipologia del file estratto; ovvero un file

```
analyst@secOps pcaps]$ 1s -1 /home/analyst
otal 356
drwxr-xr-x 2 analyst analyst
                                            2018 Desktop
                               4096 Mar 22
drwxr-xr-x 3 analyst analyst
                               4096 Mar 22
                                            2018 Downloads
                               4096 Jul 19
drwxr-xr-x 9 analyst analyst
                                           2018 lab.support.files
drwxr-xr-x 2 analyst analyst
                               4096 Mar 21
                                           2018 second_drive
rw-r--r-- 1 analyst analyst 345088 Feb 3 05:13 W32.Nimda.Amm.exe
analyst@secOps pcaps]$ file /home/analyst/W32.Nimda.Amm.exe
home/analyst/W32.Nimda.Amm.exe: PE32+ executable (console) x86-64, for MS Windows'
analyst@secOps pcaps]$ |
```

eseguibile Windows per architetture x86-64.

3. Risultati e Conclusioni

- Il **malware Nimda** è stato identificato all'interno della cattura PCAP.
- Il file è stato estratto con successo utilizzando Wireshark.
- Il file W32.Nimda.Amm.exe è stato confermato come un esequibile Windows.
- L'analisi del flusso TCP ha mostrato **stringhe leggibili**, possibili indicatori delle funzioni del malware.

4. Mitigazione e Contromisure ana

Isolare il file in un ambiente controllato

Spostare il file in una sandbox (es. Cuckoo, Any.Run) per ulteriori analisi.

Eseguire un'analisi statica e dinamica

- Analisi statica con strumenti come strings, PEStudio, die (Detect It Easy).
- Analisi dinamica con strumenti come Process Monitor, Wireshark, e Regshot.

Verificare Indicatori di Compromissione (IoC)

- Controllare hash del file con VirusTotal.
- Identificare eventuali IP/Domini sospetti collegati al file.

Aggiornare firewall e antivirus

- Bloccare eventuali comunicazioni malevole.
- Aggiornare il database delle firme malware.