\mathbb{PCT}

(21) International Application Number:

(30) Priority Data:

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number	: WO 98/53062
C12N 15/12, C07K 14/705, C12N 5/10, C07K 16/28, G01N 33/563, 33/50, A61K 31/70, A01K 67/00	A1	(43) International Publication Date:	26 November 1998 (26.11.98)

PCT/CA98/00487

(22) International Filing Date: 22 May 1998 (22.05.98)

US 08/861,747 22 May 1997 (22.05.97) (63) Related by Continuation (CON) or Continuation-in-Part

(CIP) to Earlier Application US 08/861,747 (CIP) Filed on 22 May 1997 (22.05.97)

(71) Applicant (for all designated States except US): ALLELIX BIOPHARMACEUTICALS, INC. [CA/CA]; 6850 Goreway Drive, Mississauga, Ontario L4V 1V7 (CA).

(72) Inventors; and (75) Inventors/Applicants (for US only): MUNROE, Donald, G. [CA/CA]; 27 Wakefield Lane, Waterdown, Ontario LOR 2H3 (CA). VYAS, Tejal, B. [CA/CA]; 275 Riel Drive, Mississauga, Ontario L5B 3K1 (CA). (74) Agents: CHARI, Santosh, K. et al.; Orange & Associates, Toronto Dominion Bank Tower, Toronto-Dominion Centre, Suite 3600, P.O. Box 190, Toronto, Ontario M5K 1H6 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, Fl, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPl patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report. With amended claims.

(54) Title: A HUMAN EDG-6 RECEPTOR HOMOLOGUE

(57) Abstract

An isolated nucleic acid sequence coding for an amino acid sequence for a novel human EDG-6 receptor homologue is provided. Also provided are purified human EDG-6 receptor polypeptides derived from the nucleic acid and methods and transgenic animals therefor.

A HUMAN EDG-6 RECEPTOR HOMOLOGUE

FIELD OF THE INVENTION

The present invention is in the field of molecular biology; more particularly, the present invention describes a nucleic acid sequence and an amino acid sequence for a novel human EDG-6 receptor homologue.

BACKGROUND OF THE INVENTION

10

15

20

25

30

5

The family of edg (endothelial differentiation gene) receptors are commonly grouped with orphan receptors because their endogenous ligands are not known (for example see Hla, T. and Maciag, T. (1990) J. Biol. Chem. 265:9308-13; US patent 5,585,476).

Recently, however, lysophospatidic acid (LPA) has been demonstrated to be the endogenous ligand for the edg-2 receptor (Hecht et al. (1996) J. Cell. Biol. 135: 1071-1083; An et al. (1997) Biochem. Biophys. Res. Comm. 213: 619-622).

The edg family of receptors are seven transmembrane G protein coupled receptors (T7Gs). T7Gs are so named because of their seven hydrophobic domains which span the plasma membrane and form a bundle of antiparallel α helices. These transmembrane segments (TMS) are designated by roman numerals I-VII and account for structural and functional features of the receptor. In most cases, the bundle of helices forms a binding pocket; however, when the binding site must accommodate more bulky molecules, the extracellular N-terminal segment or one or more of the three extracellular loops participate in binding and in subsequent induction of conformational change in intracellular portions of the receptor. The activated receptor, in turn, interacts with an intracellular G-protein complex which mediates further intracellular signaling activities generally the production of second messengers such as cyclic AMP (cAMP), phospholipase C, inositol triphosphate or ion channel proteins.

T7G receptors are expressed and activated during numerous developmental and disease processes. Identification of a novel T7G receptor provides the opportunity to diagnose or intervene in such processes, and the receptor can be used in screening assays to identify physiological or pharmaceutical molecules which trigger, prolong or inhibit its activity.

10

20

25

SUMMARY OF THE INVENTION

The invention provides a unique nucleotide sequence which encodes a novel human EDG-6 receptor homologue (HEDG). Herein, the nucleotide sequence encoding HEDG is designated hedg. Thus, the invention provides an isolated nucleic acid molecule wherein the nucleic acid molecule encodes a polypeptide having an amino acid sequence as shown in SEQ. ID NO:2.

In another embodiment, the invention provides an isolated nucleic acid molecule having a nucleotide sequence as shown in SEQ. ID NO:1.

In yet another embodiment, the invention provides a nucleic acid molecule which is anti-sense to the molecules indicated above.

In a further embodiment, the invention provides for expression vectors, probes and DNA constructs based on the polynucleotides mentioned above.

In another embodiment, the invention provides for a purified polypeptide having the amino acid sequence as shown in SEQ. ID NO:2.

The invention also provides for antibodies specific to the above polypeptide.

In another embodiment, the invention provides for methods of purifying and assaying polypeptides as indicated above.

In a further embodiment, the invention provides for transgenic animals which include the nucleotide sequence of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figures 1A and 1B shows the alignment of the nucleic acid sequence (coding region of SEQ. ID NO: 1) and amino acid sequence (SEQ. ID NO:2) for HEDG.

Figure 2 displays the nucleic acid sequence (SEQ. ID NO:3) of a cDNA encoding HEDG.

30 DETAILED DESCRIPTION OF THE INVENTION

As used herein and designated by the upper case abbreviation, HEDG, refers to an EDG-6 receptor homologue in either naturally occurring or synthetic form and active fragments thereof which have the amino acid sequence of SEO. ID NO:2. In one

embodiment, the polypeptide HEDG is encoded by mRNAs transcribed from the cDNA, as designated by the lower case abbreviation, hedg, of SEQ. ID NO:1.

The novel human EDG-6 receptor homologue, HEDG, was cloned and isolated from a human kidney proximal tubule cDNA library. It shows 52.9% identity to human edg-2 (WO 97/00952).

5

10

15

20

25

30

An "oligonucleotide" is a stretch of nucleotide residues which has a sufficient number of bases to be used as an oligomer, amplimer or probe in a polymerase chain reaction (PCR). Oligonucleotides are prepared from genomic or cDNA sequence and are used to amplify, reveal or confirm the presence of a similar DNA or RNA in a particular cell or tissue. Oligonucleotides or oligomers comprise portions of a DNA sequence having at least about 10 nucleotides and as many as about 35 nucleotides, preferably about 25 nucleotides.

"Probes" may be derived from naturally occurring or recombinant single - or double - stranded nucleic acids or be chemically synthesized. They are useful in detecting the presence of identical or similar sequences.

A "portion" or "fragment" of a polynucleotide or nucleic acid comprises all or any part of the nucleotide sequence having fewer nucleotides than about 6 kb, preferably fewer than about 1 kb which can be used as a probe. Such probes may be labeled with reporter molecules using nick translation, Klenow fill-in reaction, PCR or other methods well known in the art. After optimizing reaction conditions to eliminate false positives, nucleic acid probes may be used in Southern, Northern or in situ hybridizations to determine whether DNA or RNA encoding HEDG is present in a cell type, tissue, or organ.

"Reporter" molecules are those radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents which associate with, establish the presence of, and may allow quantification of a particular nucleotide or amino acid sequence.

"Recombinant nucleotide variants" encoding HEDG may be synthesized by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce specific restriction sites or codon usage-specific mutations, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic host system, respectively.

"Chimeric" molecules may be constructed by introducing all or part of the nucleotide sequence of this invention into a vector containing additional nucleic acid sequence which might be expected to change any one (or more than one) of the following

SEQUENCE LISTING

	17	١	CEMEDAT	THEODMARTON
ł	ı	}	GENERAL	INFORMATION:

- (i) APPLICANT: MUNROE, Donald G. VYAS, Tejal B.
- (ii) TITLE OF INVENTION: A HUMAN EDG-6 RECEPTOR HOMOLOG
- (iii) NUMBER OF SEQUENCES: 7
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Nikaido, Marmelstein, Murray & Oram LLP
 - (B) STREET: 655 15th St., NW, Suite 330 G Street Lobby
 - (C) CITY: Washington
 - (D) STATE: DC
 - (E) COUNTRY: USA
 - (F) ZIP: 20005-5701
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk

 - (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: US 08/861,747
 - (B) FILING DATE: 22-MAY-1997
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Jahns, Kristina M.
 - (B) REGISTRATION NUMBER: 41,092
 - (C) REFERENCE/DOCKET NUMBER: P8074-7003
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: (202) 638-5000
 - (B) TELEFAX: (202) 638-4810
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1761 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGCTCCCGCC GCAGTCGCCG GGCCATGGGC CTCGAGCCCG CCCCGAACCC CCGCGAGCCC

GCCTTGTCTG CGGCGTGACT GGAGGCCCAG ATGGTCATCA TGGGCCAGTG CTACTACAAC 120

GAGACCATCG GTTTCTTCTA TAACAACAGT GGCAAAGAGC TCAGCTCCCA CTGGCGGCCC

PCT/CA98/00487 WO 98/53062

AGGATGTGG TCGTGGTGGC ACTGGGGCTG ACCGTCAGCG TGCTGGTGCT GCTGACCAAT	240
TGCTGGTCA TAGCAGCCAT CGCCTCCAAC CGCCGCTTCC ACCAGCCCAT CTACTACCTG	300
TCGGCAATC TGGCCGCGGC TGACCTCTTC GCGGGCGTGG CCTACCTCTT CCTCATGTTC	360
CACACTGGTC CCCGCACAGC CCGACTTTCA CTTGAGGGCT GGTTCCTGCG GCAGGGCTTG	420
TTGGACACAA GCCTCACTGC GTCGGTGGCC ACACTGCTGG CCATCGCCGT GGAACGGCAC	480
CGCAGTGTGA TGGCCGTACA GTTGCACAGC CGCCTGCCCC GTGGCCGCGT GGTCATGCTC	540
ATTGTGGGCG TGTGGGTGGC TGCCCTGGGC CTGGGGCTGT TGCCTGCC	600
TGCCTCTGTG CCCTGGACCG CTGCTCACGC ATGGCACCCC TGCTCAGCCG CTCCTATTTG	660
GCCGTCTGGG CTCTGTCGAG CCTGCTTGTC TTCCTGCTCA TGGTGGCTGT GTACACCCGC	720
ATTTTTTAT ACGTGCGGCG GCGAGTGCAG CGCATGGCAG AGCATGTCAG CTGCCACCCC	780
CGCTACCGAG AGACCACGCT CAGCCTGGTC AAGACTGTTG TCATCATCCT GGGGGCGTTC	840
GTGGTCTGCT GGACACCAGG CCAGGTGGTA CTGCTCCTGG ATGGTTTAGG CTGTGAGTCC	900
TGCAATGTCC TGGCTGTAGA AAAGTACTTC CTACTGTTGG CCGAGGCCAA CTCACTGGTC	960
AATGCTGCTG TGTACTCTTG CCGAGATGCT GAGATGCGCC GCACCTTCCG CCGCCTTCTC	1020
TGCTGCGCGT GCCTCCGCCA GCCCACCCGC GAGTCTGTCC ACTATACATC CTCTGCCCAG	1080
GGAGGTGCCA GCACTCGCAT CATGCTTCCC GAGAACGGCC ACCCACTGAT GGACTCCACC	1140
CTTTAGCTAC CTTGAACTTC AGCGGTACGC GGCAAGCAAC AAATCCACAG CCCCTGATGA	1200
CTTGTGGGTG CTCCTGGCTC AACCCAACCA ACAGGACTGA CTGACCGGCA GGACAAGGTC	1260
TGGCATGGCA CAGCACCACT GCCAGGCCTC CCCAGGCACA CCACTCTGCC CAGGGAATGG	1320
GGGCTTTGGG TCATCTCCCA CTGCCTGGGG GAGTCAGATG GGGTGCAGGA ATCTGGCTCT	1380
TCAGCCATCC CAGGTTTAGG GGGTTTGTAA CAGACATTAT TCTGTTTTCA CTGCGTATCC	1440
TTGGTAAGCC CTGTGGACTG GTTCCTGCTG TGTGATGCTG AGGGTTTTAA GGTGGGGAGA	1500
GATAAGGGCT CTCTCGGGCC ATGCTACCCG GTATGACTGG GTAATGAGGA CAGACTGTGG	1560
ACACCCCATY TACCTGAGTC TGATTCTTTA GCAGCAGAGA CTGAGGGGTG CAGAGTGTGA	1620
GCTGGGAAAG GTTTGTGGCT CCTTGCAGCC TCCAGGGACT GGCCTGTCCC CGATAGAATT	1680
GAAGCAGTCC ACGGGGAGGG GATGATACAA GGAGTAAACC TTTCTTTACA CTCTGAGGTC	1740
TCCAAAACAT TTGTTGTTAT C	176

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 351 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
- Met Val Ile Met Gly Gln Cys Tyr Tyr Asn Glu Thr Ile Gly Phe Phe 1 5 10 15
- Tyr Asn Asn Ser Gly Lys Glu Leu Ser Ser His Trp Arg Pro Lys Asp 20 25 30
- Val Val Val Ala Leu Gly Leu Thr Val Ser Val Leu Val Leu Leu 35 40 45
- Thr Asn Leu Leu Val Ile Ala Ala Ile Ala Ser Asn Arg Arg Phe His 50 55 60
- Gln Pro Ile Tyr Tyr Leu Leu Gly Asn Leu Ala Ala Ala Asp Leu Phe 65 70 80
- Ala Gly Val Ala Tyr Leu Phe Leu Met Phe His Thr Gly Pro Arg Thr
- Ala Arg Leu Ser Leu Glu Gly Trp Phe Leu Arg Gln Gly Leu Leu Asp 100 105 110
- Thr Ser Leu Thr Ala Ser Val Ala Thr Leu Leu Ala Ile Ala Val Glu 115 120 125
- Arg His Arg Ser Val Met Ala Val Gln Leu His Ser Arg Leu Pro Arg 130 135 140
- Gly Arg Val Val Met Leu Ile Val Gly Val Trp Val Ala Ala Leu Gly 145 150 160
- Leu Gly Leu Leu Pro Ala His Ser Trp His Cys Leu Cys Ala Leu Asp
- Arg Cys Ser Arg Met Ala Pro Leu Leu Ser Arg Ser Tyr Leu Ala Val
- Trp Ala Leu Ser Ser Leu Leu Val Phe Leu Leu Met Val Ala Val Tyr 195 200 205
- Thr Arg Ile Phe Leu Tyr Val Arg Arg Arg Val Gln Arg Met Ala Glu 210 215 220
- His Val Ser Cys His Pro Arg Tyr Arg Glu Thr Thr Leu Ser Leu Val 225 230 235 240
- Lys Thr Val Val Ile Ile Leu Gly Ala Phe Val Val Cys Trp Thr Pro
- Gly Gln Val Val Leu Leu Leu Asp Gly Leu Gly Cys Glu Ser Cys Asn 260 265 270
- Val Leu Ala Val Glu Lys Tyr Phe Leu Leu Leu Ala Glu Ala Asn Ser 275 280 285
- Leu Val Asn Ala Ala Val Tyr Ser Cys Arg Asp Ala Glu Met Arg Arg 290 295 300
- Thr Phe Arg Arg Leu Leu Cys Cys Ala Cys Leu Arg Gln Pro Thr Arg 305 310 315 320

Glu Ser Val His Tyr Thr Ser Ser Ala Gln Gly Gly Ala Ser Thr Arg 330 Ile Met Leu Pro Glu Asn Gly His Pro Leu Met Asp Ser Thr Leu 345

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1889 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

TTACGAATTA ATACGA	ATCAC TATAGGGAGA	CCAAGCTTGG	TACCGAGCTC	GGATCCACTA	60
GTAACGGCCG CCAGT	STGGG GAATTCCGCT	CCCGCCGCAG	TCGCCGGGCC	ATGGGCCTCG	120
AGCCCGCCCC GAACCC	CCCGC GAGCCCGCCI	TGTCTGCGGC	GTGACTGGAG	GCCCAGATGG	180
TCATCATGGG CCAGTO	GCTAC TACAACGAGA	CCATCGGTTT	CTTCTATAAC	AACAGTGGCA	240
AAGAGCTCAG CTCCC	ACTGG CGGCCCAAGG	ATGTGGTCGT	GGTGGCACTG	GGGCTGACCG	300
TCAGCGTGCT GGTGC	TGCTG ACCAATCTG	TGGTCATAGC	AGCCATCGCC	TCCAACCGCC	360
GCTTCCACCA GCCCA	TCTAC TACCTGCTC	G GCAATCTGGC	CGCGGCTGAC	CTCTTCGCGG	420
GCGTGGCCTA CCTCT	TCCTC ATGTTCCAC	A CTGGTCCCCG	CACAGCCCGA	CTTTCACTTG	480
AGGGCTGGTT CCTGC	GGCAG GGCTTGCTG	g acacaagcct	CACTGCGTCG	GTGGCCACAC	540
TGCTGGCCAT CGCCG	TGGAA CGGCACCGC	A GTGTGATGGC	CGTACAGTTG	CACAGCCGCC	600
TECCCCETEG CCGCG	TGGTC ATGCTCATT	G TGGGCGTGTG	GGTGGCTGCC	CTGGGCCTGG	660
GGCTGTTGCC TGCCC	ACTCC TGGCACTGC	C TCTGTGCCCT	GGACCGCTGC	TCACGCATGG	720
CACCCCTGCT CAGCC	GCTCC TATTTGGCC	G TCTGGGCTCT	GTCGAGCCTG	CTTGTCTTCC	780
TGCTCATGGT GGCTG	STGTAC ACCCGCATI	T TTTTATACGT	GCGGCGGCGF	GTGCAGCGCA	840
TGGCAGAGCA TGTCA	AGCTGC CACCCCGG	T ACCGAGAGAC	CACGCTCAG	CTGGTCAAGA	900
CTGTTGTCAT CATC	CTGGGG GCGTTCGT	G TCTGCTGGA	CACCAGGCCAG	G GTGGTACTGC	960
TCCTGGATGG TTTA	GGCTGT GAGTCCTG	A ATGTCCTGG	C TGTAGAAAA	3 TACTTCCTAC	1020
TGTTGGCCGA GGCC	AACTCA CTGGTCAA	rg ctgctgtgt	A CTCTTGCCG	a gatgctgaga	1080
TGCGCCGCAC CTTC	CGCCGC CTTCTCTG	CT GCGCGTGCC	T CCGCCAGCC	C ACCCGCGAGT	1140
CTGTCCACTA TACA					1200
ACGGCCACCC ACTG					1260
AGCAACAAAT CCAC					1320

gactgactga	CCGGCAGGAC	AAGGTCTGGC	ATGGCACAGC	ACCACTGCCA	GGCCTCCCCA	1380
GGCACACCAC	TCTGCCCAGG	GAATGGGGGC	TTTGGGTCAT	CTCCCACTGC	CTGGGGGAGT	1440
CAGATGGGGT	GCAGGAATCT	GGCTCTTCAG	CCATCCCAGG	TTTAGGGGGT	TTGTAACAGA	1500
CATTATTCTG	TTTTCACTGC	GTATCCTTGG	TAAGCCCTGT	GGACTGGTTC	CTGCTGTGTG	1560
ATGCTGAGGG	TTTTAAGGTG	GGGAGAGATA	AGGGCTCTCT	CGGGCCATGC	TACCCGGTAT	1620
gactgggtaa	TGAGGACAGA	CTGTGGACAC	CCCATYTACC	TGAGTCTGAT	TCTTTAGCAG	1680
CAGAGACTGA	GGGGTGCAGA	GTGTGAGCTG	GGAAAGGTTT	GTGGCTCCTT	GCAGCCTCCA	1740
GGGACTGGCC	TGTCCCCGAT	AGAATTGAAG	CAGTCCACGG	GGAGGGGATG	ATACAAGGAG	1800
TAAACCTTTC	TTTACACTCT	GAGGTCTCCA	AAACATTTGT	TGTTATCAAA	АААААААА	1860
АААААААА	ааааааааа	AGCGGCCGC				1889

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 26 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GGTGGTACTG CTCCTGGATG GTTTAG

26

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 24 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

CGGAGGCACG CGCAGCAGAG AAGA

24

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA

(xi)	SEQUENCE	DESCRIPTION:	SEO	TD	NO: 6:

TAGAGAACCC ACTGCTTAC

19

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

CCCAGAATAG AATGACACC

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

- 1. An isolated nucleic acid molecule wherein said nucleic acid molecule encodes a polypeptide having an amino acid sequence as shown in SEQ. ID NO:2.
- 2. The isolated nucleic acid molecule of claim 1 wherein said nucleic acid is DNA.
- 3. The isolated nucleic acid of claim 2 wherein said nucleic acid is selected from the group consisting of:
 - a) the nucleotide sequence as shown in SEQ. ID NO:1;
- b) nucleotide sequences that hybridize to SEQ. ID NO:1or to its complementary strand;
 - c) nucleotide sequences that differ from SEQ. ID NO:1 and from the nucleotide sequences of (b) in codon sequence due the degeneracy of the genetic code.
- 4. The isolated nucleic acid of claim 2 wherein said nucleic acid includes the nucleotide sequence as shown in SEQ. ID NO:1.
 - 5. The isolated nucleic acid of claim 1 wherein said nucleic acid is RNA.
 - 6. An isolated nucleic acid which is anti-sense to a nucleic acid as claimed in claim 1.
 - 7. An isolated nucleic acid which is anti-sense to a nucleic acid as claimed in claim 3.
 - 8. An isolated nucleic acid which is anti-sense to a nucleic acid as claimed in claim 4
- 20 9. The isolated nucleic acid of claim 1 which is an RNA anti-sense sequence.
 - 10. A DNA construct comprising the following operably linked elements:
 - a) a transcriptional promoter;
 - b) a DNA sequence including the nucleotide sequence as shown in SEQ. ID NO:1; and,
- 25 c) a transcriptional terminator.

5

10

- 11. The DNA construct of claim 10 wherein said DNA sequence encodes the polypeptide of SEQ. ID NO:2.
- 12. A recombinant expression vector suitable for transformation of a host cell comprising a nucleic acid as claimed in claim 1 and a regulatory sequence operatively linked to said nucleic acid.
- 13. A recombinant expression vector suitable for transformation of a host cell comprising a DNA molecule having a nucleotide sequence as shown in SEQ. ID NO:1 and a regulatory sequence operatively linked to said DNA molecule.

14. The recombinant expression vector of claim 13 wherein the DNA molecule is operatively linked to the regulatory sequence to allow expression of an RNA molecule which is anti-sense to a nucleotide sequence as shown in SEQ. ID NO:1.

- 15. A transformed cell including a recombinant expression vector as claimed in claim 12.
- 5 16. A transformed cell including a recombinant expression vector as claimed in claim 13.
 - 17. A method for preparing an isolated protein having an amino acid sequence as shown in SEQ. ID NO:2 said method comprising culturing a transformed cell including a recombinant expression vector as claimed in claim 13 in a suitable medium until the protein is formed and isolating said protein.
- 10 18. The polypeptide expressed by the expression vector of claim13.

15

- 19. pharmaceutical composition comprising the antisense molecule of claim 3 and a pharmaceutically acceptable carrier.
- 20. A probe comprising an oligonucleotide of the nucleic acid as shown in SEQ. ID NO:1 capable of specifically hybridizing with a gene which encodes a protein having an amino acid sequence as shown in SEQ. ID NO:2 or allelic and species variants thereof.
- 21. An isolated polypeptide having the amino acid sequence as shown in SEQ. ID NO:2.
- 22. A purified polyclonal antibody specific for the amino acid sequence as shown in SEQ. ID NO:2.
- The purified polyclonal antibody of claim 22 wherein said antibody is specific for an
 extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID
 NO:2.
 - 24. The purified polyclonal antibody of claim 22 wherein the antibody is labeled.
 - 25. A monoclonal antibody specific for the amino acid sequence as shown in SEQ. ID NO:2.
- 25 26. The monoclonal antibody of claim 25 wherein said antibody is specific for an extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID NO:2.
 - 27. The monoclonal antibody of claim 25 wherein the antibody is labeled.
 - 28. The method for determining the presence of a protein having an amino acid sequence as shown in SEQ. ID NO:2 in a biological sample, the method comprising the steps of:
 - a) incubating the sample with a monoclonal antibody or purified polyclonal antibody which specifically binds to an epitope of said protein under conditions sufficient for the formation of an immune complex; and,

- b) determining the presence of said immune complex.
- 29. The method of claim 28 wherein the monoclonal or purified polyclonal antibody is labeled.
- 30. A method of purifying a protein having the amino acid sequence as shown in SEQ. ID
- NO:2, the method including an immunoaffinity chromatography process wherein a monoclonal antibody or a purified polyclonal antibody specific to an epitope of said protein is immobilized on the chromatography resin.
 - 31. A method of screening a molecule which ligates to the protein having the amino acid sequence as shown in SEQ. ID NO:2 comprising a signal transduction assay.
- 10 32. The method of claim 31, wherein the protein is a G protein coupled receptor, the method comprising the following steps:
 - a) co-transfecting into a suitable cell of a plasmid including a reporter gene and an expression plasmid coding for said protein;
 - b) expressing said protein;
- c) treating said cell with serum starvation to reduce mitogenic activity;
 - d) applying said molecule which ligates to said protein in a serum free medium; and,
 - e) measuring the activity of the reporter.
 - 33. A transgenic animal expressing a first transgene coding for a protein having an amino acid sequence as shown in SEQ. ID NO:2.
- 20 34. The transgenic animal of claim 33 wherein said first transgene comprises a polynucleotide having a nucleotide sequence as shown in SEQ. ID NO:1.
 - 35. A transgenic animal as claimed in claim 33 further including a second transgene coding for an inducible promoter for said first transgene.
- 36. A transgenic animal as claimed in claim 33 further including a second transgene
 coding for a tissue specific regulatory element for regulating the expression of said first transgene.

AMENDED CLAIMS

[received by the International Bureau on 6 November 1998 (06.11.98); original claims 1-36 replaced by amended claims 1-22 (3 pages)].

- An isolated nucleic acid molecule wherein the molecule is selected from the group consisting of:
 - a) a molecule having a nucleic acid sequence as shown in SEQ. ID. NO: 1; and
 - b) hybridizing nucleic acid molecules that hybridize to a molecule having a nucleic acid sequence as shown in SEQ. ID NO:1 or to complementary strands thereof, said hybridizing nucleic acid molecules having at least 40% homology with a molecule having a nucleic acid sequence as shown in SEQ. ID NO:1.
 - 2. The molecule of claim 1 wherein said hybridizing nucleic acid molecule hybridizes to SEO. ID NO:1 under stringent conditions.
 - 3. The molecule of claim 1 wherein said hybridizing nucleic acid molecule has at least 85% homology with a molecule having a nucleic acid sequence as shown in SEQ. ID NO:1.
- 4. The molecule of claim 1 wherein said hybridizing nucleic acid molecule has at least 20 90% homology with a molecule having a nucleic acid sequence as shown in SEQ. ID NO:1.
 - 5. The molecule of claim 1 wherein said hybridizing nucleic acid molecule has at least 95% sequence identity with a molecule having a nucleic acid sequence as shown in SEQ. ID NO:1.

25

10

15

- 6. A DNA construct comprising the following operably linked elements:
 - a) a transcriptional promoter;
 - b) a DNA sequence including the nucleotide sequence as claimed in claim 2; and,
 - c) a transcriptional terminator.

30

7. A recombinant expression vector suitable for transformation of a host cell comprising a nucleic acid as claimed in claim 2 and a regulatory sequence operatively linked to said nucleic acid.

8. A transformed cell including a recombinant expression vector as claimed in claim 7.

- 9. A method for preparing an isolated amino acid sequence as claimed in claim 2, said method comprising culturing a transformed cell as claimed in claim 8 in a suitable medium until the protein is formed and isolating said protein.
- 10. The polypeptide expressed by the recombinant expression vector of claim 7.
- 11. A probe comprising an oligonucleotide of the nucleic acid as claimed in claim 2

 capable of specifically hybridizing with a gene which encodes a protein having an amino acid sequence as shown in SEQ. ID. NO: 2 or allelic and species variants thereof.
 - 12. A purified polyclonal antibody specific for the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof.
 - 13. The purified polyclonal antibody of claim 12 wherein the antibody is specific for an extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof.
- 20 14. The purified polyclonal antibody of claim 12 wherein the antibody is labeled.
 - 15. A monoclonal antibody specific for the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof.
- 25 16. The monoclonal antibody of claim 15 wherein said antibody is specific for an extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic varients thereof.
 - 17. The monoclonal antibody of claim 15 wherein the antibody is labeled.

8. A transformed cell including a recombinant expression vector as claimed in claim 7.

- 9. A method for preparing an isolated amino acid sequence as claimed in claim 2, said method comprising culturing a transformed cell as claimed in claim 8 in a suitable medium until the protein is formed and isolating said protein.
- 10. The polypeptide expressed by the recombinant expression vector of claim 7.
- 11. A probe comprising an oligonucleotide of the nucleic acid as claimed in claim 2

 capable of specifically hybridizing with a gene which encodes a protein having an amino acid sequence as shown in SEQ. ID. NO: 2 or allelic and species variants thereof.
 - 12. A purified polyclonal antibody specific for the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof.
- 13. The purified polyclonal antibody of claim 12 wherein the antibody is specific for an extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID.
 NO: 2 or allelic variants thereof.
- 20 14. The purified polyclonal antibody of claim 12 wherein the antibody is labeled.
 - 15. A monoclonal antibody specific for the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof.
- 25 16. The monoclonal antibody of claim 15 wherein said antibody is specific for an extracellular epitope of the protein having the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic varients thereof.
 - 17. The monoclonal antibody of claim 15 wherein the antibody is labeled.

18. The method for determining the presence of a protein having an amino acid sequence as shown in SEQ. ID. NO: 2 or allelic variants thereof in a biological sample, the method comprising the steps of:

- a) incubating the sample with amonoclonal antibody or purified polyclonal antibody which specifically binds to an epitope of said protein under conditions sufficient for the formation of an immune complex; and,
 - b) determining the presence of said immune complex.
- 19. The method of claim 18 wherein the monoclonal or purified polyclonal antibody is labeled.
 - 20. A method of purifying a protein having the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic varients thereof, the method including an immunoaffinity chromatography process wherein a monoclonal antibody or a purified polyclonal antibody specific to an epitope of said protein is immobilized on the chromatography resin.
 - 21. A method of screening a molecule which ligates to the protein having the amino acid sequence as shown in SEQ. ID. NO: 2 or allelic varients or fragments thereof comprising a signal transduction assay.

20

- 22. The method of claim 21, wherein the protein is a G protein coupled receptor, the method comprising the following steps:
- a) co-transfecting into a suitable cell of a plasmid including a reporter gene and an expression plasmid coding for said protein;
- 25 b) expressing said protein;
 - c) treating said cell with serum starvation to reduce mitogenic activity;
 - d) applying said molecule which ligates to said protein in a serum free medium; and
 - e) measuring the activity of the reporter.

Figure 1

hedg-6 cDNA and predicted amino acid sequence. The cloning sites and poly(A) tail have been excluded from this figure.

ave	occii	CALI	uuc		. 0111		2 44	<u> </u>	<u></u>														
igu	re	<u>la</u>																					
EQ.	ID N	0:1																					
		CGC:	rcc	CGC	CGC	AGT	CGC	CGG	GCC	ATG	GGC	CTC	GAG	CCC	CGC	CCC	AAE	CCC	CCG	CGA	GC	CC	
		GCG	AGG	GCG	GCG	TCA	.GCG	GCC	CGG	TAC	CCG	GAG	СТС	GGG	GCG	GGG	CTT	GGG	GGC	GCT	'CG	GG	
	1				+			-+-			+	-			-+-			+				-+	60
må		ם 1																					
Figu SEO.	ID N																						
	•											М	v	I	М	G	Q	С	Y	Y	N		
		GCC	TTG	TC:	rgco	GCC	TG.	ACTO	GGAG	GCC	CCAC	SATO	GT	CAT	CAT	GGG	CCA	GTG	CTA	CT/	ACA	AC	
		CGG	אמ	'AG	ACGO	CCGC	CACI	rgac	ССТО	CCGC	GGT	стас	CA	GTA	GTA	ccc	GGT	CAC	:GAI	'GA'	rgi	TG	
	61																						12
	01				•							-											
		_	_	ī	G	F	F	v	N	N	c	_	v	E	т		s	и	TAT	Þ	I	,	
		-	T	_	-	_	-	_	•	•													
											CAG												
											GTC												,
	121				-+-			+				+			+-							+	1
												•						_	_	_		_	
			D		-						L									_		N	
											GCI												
		TT	CCT	'AC	ACCA	AGCA	CCA	CCC	STG	CCC	CCGF	CTC	GC	AGT	CGC	ACG.	ACC	ACG	ACG	AC I	ľGG	TTA	
	181				+-							-+			+				+			+	2
																						•	
		L	L	V	I	A	A	I	A	s	N	R	R	F	Н	Ç	. F	I	: }		Y	L	
		CT	GCT	rgg'	TCA	TAG	CAG	CCA'	TCG	CCT	CCA	ACC	GCC	GCT	TCC	ACC	:AGC	CCA	ATC:	[AC	TAC	CTG	
		GA	CGF	ACC.	AGT	ATC	GTC	GGT	AGC	GGA	GGT	TGG	CGG	CGA	AGG	TGG	TCG	GGI	AG	ATG.	ATO	GAC	
	241				+				+			-+-			1			. -	-+			+	:
							-	_	_	_	_		_				, ,	i. 1		L	M	F	
		L	G	N	L	A	Α	A	, D	L	, F	P	. (, \	, ,	A :	Y]	اسا		ח	1.7	£	

 306	2																P	CT/C	CA98/0
			-+-			+				+			-+-			+			+
н	T	G	P	R	T	A	R	L	s	L	E	G	W	F	L	R	Q	G	L
CAC	CAC	TGG	TCC	CCG	CAC	AGC	CCG	ACT	TTC	ACT	TGA	GGG	CTG	GTT	CCT	GCG	GCA	GGG	CTTG
GT	GTG.	ACC.	AGG	GGC	GTG	TCG	GGC	TGA	AAG	TGA	ACT	ccc	GAC	CAA	GGA	CGC	CGT	CCC	GAAC
			-+-			+				+			-+-			+			+
		m					_	••					_	_	_		_		
																	Е		
																			GCAC
																			CGTG
			•							T									+
R	s	V	М	A	v	Q	L	Н	s	R	L	P	R	G	R	v	v	М	L
CG	CAG	TGT	GAT	GGC	CGT	ACA	GTI	'GC#	CAG	CCG	CCI	GCC	ccc	TGG	cce	CGI	'GGT	'CAT	GCTC
																			CGAG
			-+-							-+			-+-			+			+
I	V	G	V	W	٧	A	A	L	G	L	G	L	L	P	A	H	S	W	H
AT	TGT	'GGG	CGI	GTG	GGI	GGC	CTGC	CCC	rgg(GCC.	ľGG(GC1	rg T T	rgc(CTG	CCCI	ACTO	CTC	GCAC
																			CGTG
			+-				٠			-+			+-				+		+
С	1.	C	Δ	τ.	D	R	۲	s	R	м	Δ	Þ	т.	τ.	ç	מ	c	v	L
																			ATTTG
																			TAAAC
																			+
													·				•		
																			1
A	v	W	A	L	s	· s	L	L	V	F	. L	L	М	v	A	v	Y	т	R
GC	CCG'	гст	GGG	CTC	TGT	CGA	GCC	TGC	TTG	TCT	TCC	TGC	TCA	TGG	TGG	CTG	TGT	ACA	CCCGC
							_												GGGCG
																			+

3/7

WO 98	/53062 PCT/CA98/00
1441 1500	
1501 1560	GATAAGGGCTCTCTCGGGCCATGCTACCCGGTATGACTGGGTAATGAGGACAGACTGTGG CTATTCCCGAGAGAGCCCGGTACGATGGGCCCATACTGACCCATTACTCCTGTCTGACACC
1561 1620	ACACCCCATYTACCTGAGTCTGATTCTTTAGCAGCAGAGACTGAGGGGTGCAGAGTGTGA TGTGGGGTARATGGACTCAGACTAAGAAATCGTCGTCTCTGACTCCCCACGTCTCACACT
1621 1680	GCTGGGAAAGGTTTGTGGCTCCTTGCAGCCTCCAGGGACTGGCCTGTCCCCGATAGAATT CGACCCTTTCCAAACACCGAGGAACGTCGGAGGTCCCTGACCGGACAGGGGCTATCTTAA
1681 1740	GAAGCAGTCCACGGGGAGGGATGATACAAGGAGTAAACCTTTCTTT
1741	TCCAAAACATTTGTTGTTATC AGGTTTTGTAAACAACAATAG

Figure 2

Nucleotide sequence of human edg-6 cDNA insert. Sequence includes the EcoRI (position 81) and NotI (position 1882) cloning sites and the 34 bp poly(A) tail

. ID N	10:3	
1	TTACGAATTAATACGATCACTATAGGGAGACCAAGCTTGGTACCGAGCTCGGATCCACTA	
61	GTAACGGCCGCCAGTGTGGGGAATTCCGCTCCCGCCGCAGTCGCCGGGCCATGGGCCTCG	
121	AGCCCGCCCGAACCCCGCGAGCCCGCCTTGTCTGCGGGCGTGACTGGAGGCCCAGATGG	
181	TCATCATGGGCCAGTGCTACTACAACGAGACCATCGGTTTCTTCTATAACAACAGTGGCA	
241	AAGAGCTCAGCTCCCACTGGCGGCCCAAGGATGTGGTCGTGGTGGCACTGGGGCTGACCG	
301	TCAGCGTGCTGGTGCTGACCAATCTGCTGGTCATAGCAGCCATCGCCTCCAACCGCC	
361	GCTTCCACCAGCCCATCTACTACCTGCTCGGCAATCTGGCCGCGGCTGACCTCTTCGCGG	
421	GCGTGGCCTACCTCTCCTCATGTTCCACACTGGTCCCCGCACAGCCCGACTTTCACTTG	
481	AGGGCTGGTTCCTGCGGCAGGGCTTGCTGGACACAAGCCTCACTGCGTCGGTGGCCACAC	
541	TGCTGGCCATCGCCGTGGAACGGCACCGCAGTGTGATGGCCGTACAGTTGCACAGCCGCC	
601	TGCCCCGTGGCCGCGTGGTCATGCTCATTGTGGGCGTGGGTGG	
661	GGCTGTTGCCTGCCCACTCCTGGCACTGCCTCTGTGCCCTGGACCGCTGCTCACGCATGG	
721	CACCCCTGCTCAGCCGCTCCTATTTGGCCGTCTGGGCTCTGTCGAGCCTGCTTGTCTTCC	
781	TGCTCATGGTGGCTGTGTACACCCGCATTTTTTATACGTGCGGCGGCGAGTGCAGCGCA	
841	TGGCAGAGCATGTCAGCTGCCACCCCCGCTACCGAGAGACCACGCTCAGCCTGGTCAAGA	
901	CTGTTGTCATCATCCTGGGGGCGTTCGTGGTCTGCTGGACACCAGGCCAGGTGGTACTGC	
961	TCCTGGATGGTTTAGGCTGTGAGTCCTGCAATGTCCTGGCTGTAGAAAAGTACTTCCTAC	
1021	TGTTGGCCGAGGCCAACTCACTGGTCAATGCTGCTGTACTCTTGCCGAGATGCTGAGA	
1021	#CCCCCCD.DCC##CCCCCC##C#CCCCCCCCCCCCCCC	

	1200
ACGGCCACCCACTGATGGACTCCACCCTTTAGCTACCTTGAACTTCAGCGGTACGCGGCA	
AGCAACAAATCCACAGCCCCTGATGACTTGTGGGTGCTCCTGGCTCAACCCAACCAA	1260 1320
GACTGACTGACCGGCAGGACAAGGTCTGGCATGGCACAGCACCACTGCCAGGCCTCCCCA	1380
GGCACACCACTCTGCCCAGGGAATGGGGGCTTTGGGTCATCTCCCACTGCCTGGGGGAGT	1440
CAGATGGGGTGCAGGAATCTGGCTCTTCAGCCATCCCAGGTTTAGGGGGGTTTGTAACAGA	1500
CATTATTCTGTTTTCACTGCGTATCCTTGGTAAGCCCTGTGGACTGGTTCCTGCTGTGTG	1560
ATGCTGAGGGTTTTAAGGTGGGGAGAGATAAGGGCTCTCTCGGGCCATGCTACCCGGTAT	1620
GACTGGGTAATGAGGACAGACTGTGGACACCCCATYTACCTGAGTCTGATTCTTTAGCAG	1680
CAGAGACTGAGGGGTGCAGAGTGTGAGCTGGGAAAGGTTTGTGGCTCCTTGCAGCCTCCA	1740
GGGACTGGCCTGTCCCCGATAGAATTGAAGCAGTCCACGGGGAGGGGATGATACAAGGAG	1800
TAAACCTTTCTTTACACTCTGAGGTCTCCAAAACATTTGTTGTTATCAAAAAAAA	1860
AAAAAAAAAAAAAAAAAGCGGCCGC	

INTERNATIONAL SEARCH REPORT

interr. nal Application No PCT/CA 98/00487

A. CLASSIFICATION OF SUBJECT MATTER IPC 6 C12N15/12 C07K CO7K14/705 C12N5/10 C07K16/28 G01N33/563 G01N33/50 A61K31/70 A01K67/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) CO7K C12N GO1N A61K A01K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages WO 96 30406 A (CAO LIANG ; HUMAN GENOME 1-4,6-8, χ 10-27,31 SCIENCES INC (US); LI YI (US); NI JIAN (US) 3 October 1996 see the whole document 28-30 Y 28-30 WO 97 00952 A (INCYTE PHARMA INC) Y 9 January 1997 see the whole document HECHT J H ET AL: "VENTRICULAR ZONE GENE-1 1 - 36A (VZG-1) ENCODES A LYSOPHOSPHATIDIC ACID RECEPTOR EXPRESSED IN NEUROGENIC REGIONS OF THE DEVELOPING CEREBRALCORTEX" THE JOURNAL OF CELL BIOLOGY, vol. 135, no. 4, November 1996, pages 1071-1083, XP002046888 cited in the application see the whole document Patent family members are listed in annex. Further documents are listed in the continuation of box C. * Special categories of cited documents : "T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "E" earlier document but published on or after the international filling date document which may throw doubts on priority claim(s) or which is cited to establish the publicationdate of another citation or other special reason (as specialed) "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such docu-ments, such combination being obvious to a person skilled in the art. document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of mailing of the International search report Date of the actual completion of theinternational search 27/10/1998 15 October 1998 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijawlik Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Holtorf, S Fax: (+31-70) 340-3016

INTERNATIONAL SEARCH REPORT

Inter: nal Application No
PCT/CA 98/00487

		PCT/CA 98/00487
C.(Continu	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	AN S ET AL: "MOLECULAR CLONING OF THE HUMAN EDG2 PROTEIN AND ITS IDENTIFICATION AS A FUNCTIONAL CELLULAR RECEPTOR FOR LYSOPHOSPHATIDIC ACID" BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 231, no. 3, 24 February 1997, pages 619-622, XP002046899 cited in the application see the whole document	1-36
P,X	LAMERDIN, J.E., ET AL.: "untitled" EMBL SEQUENCE DATA LIBRARY,1 July 1997, XP002080863 heidelberg, germany accession no. 000543	21
E	EP 0 855 443 A (SMITHKLINE BEECHAM CORP) 29 July 1998 see the whole document	1-29,31

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter: nal Application No
PCT/CA 98/00487

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
WO 9630406	A	03-10-1996	AU EP	2236895 A 0817800 A	16-10-1996 14-01-1998
WO 9700952	Α	09-01-1997	AU CA EP	6388696 A 2224799 A 0840787 A	22-01-1997 09-01-1997 13-05-1998
EP 0855443	Α	29-07-1998	JP	10210993 A	11-08-1998