MCT615 - Nonlinear Dynamical Systems

Lecture Schedule	See the time table	Semester	Fall 2018		
Credit Hours	Three	Pre-requisite	Calculus, Differential Equations		
Instructor	Dr. Sajid Iqbal	Contact	sajid.iqbal@uet.edu.pk		
Office	Faculty Room Department of Mechatronics & Control Engineering	Office Hours	11:00 am to 03:00 pm or by appointment		
Teaching Assistant	None	Lab Schedule	N/A		
Course Description	This course makes students acquire a systematic understanding of nonlinear phenomena in dynamical systems. It will also enhance students' research, inquiry and analytical thinking abilities. Many nonlinear ODEs do not have explicit solutions. Chaos theory shifts the focus from finding explicit solutions to discovering geometric properties of solutions. This course concentrates on simple models of dynamical systems, and their relevance to natural phenomena. Many open challenges in science and engineering involve dynamical systems that exhibit chaotic dynamics. The aperiodic nature of their dynamics makes them difficult to control, design, analyze, and predict.				
CLOs	Descrip	tion		PLOs, Level	Domain & Level
CLO1	Find and classify fixed points, 2-cycles, and bifurcations of maps and sets of ODEs.			PLO1, High	Cognitive, Two
CLO2	Evaluate the fractal, embedding, and topological dimensions of objects.			PLO2, Medium	Cognitive, Two
CLO3	Develop an understanding of geometric interpretation of dynamical systems and use nonlinear time-series analysis to determine the nature of the solutions of dynamical systems.			PLO3, Medium	Cognitive, Three
CLO4	Draft a review paper			PLO10, High	Cognitive, Six
Textbooks	 Paul S. Addison, Fractals and Chaos: An illustrated course. IOP. 1997 D. P. Feldman, Chaos and Fractals An Elementary Introduction 2012 Strogatz, S., Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering. 2nd Edition. Westview Press, 2014. OPTIONAL James Gleick, Chaos Making a New Science. 1987 				
Grading Policy	Quizzes:Term paper:Midterm:Final:	10% (CLO1, 30% (CLO4) 25% (CLO1, 35% (CLO1,		3)	

Lecture Plan

Weeks	Lecture Plan	Ref.
1	Introduction to Nonlinear Dynamics and Chaos: Deterministic Chaos, Fractals, History of Dynamics, Examples.	Ch.1 (CLO 1)
2	Basic Concepts of Chaos Theory and Bifurcation Theory: Sensitive Dependence on Initial Conditions, The Butterfly Effect, Fixed points, Bifurcation, Stability, and the Feigenbaum constant.	Ch. 2 (CLO 1)
2	Fractals and Fractal dimension: The Similarity Dimension, Statistical Self-similarity, Koch curve, Sierpinski gasket and carpet, Examples.	Ch. 2 (CLO 2)
2	One-Dimensional maps: Population growth and the Verhulst model, The logistic map, Graphical method.	Ch. 5 (CLO 2)
	MIDTERM	
2	Lorenz Model and Strange Attractors: Chaos in the Weather, Lorenz Equations and Lorenz Attractor, Examples.	Ch. 6 (CLO 2)
2	Quantification of Chaos: Visual Inspection, Frequency Spectra, Lyapunov Exponents, Correlation Dimension.	Ch. 7 (CLO 3)
2	Attractor reconstruction: Time-delay Embedding, Takens' embedding theorem, The Choice of Time-delay and Embedding Dimension, False Nearest Neighbor Algorithm, Autocorrelation Function, Estimation of Correlation Dimension and Largest Lyapunov Exponent.	Ch. 7 (CLO 3)
1	Design and implementation of chaos control systems, Introduction, Techniques for Chaos Control	Ch 3 (CLO3)
1	Writing of the term paper	(CLO 4)
	Final Term	

Contents

Chapter 1: Introduction 1 (Ch 1: Strogatz)

- 1.1 Introduction 1
- 1.2 A matter of fractals 1
- 1.3 Deterministic Chaos 5

Chapter 2: Flows on the Line 15 (Strogatz)

- 2.0 Introduction 15
- 2.1 A Geometric Way of Thinking 16
- 2.2 Fixed Points and Stability 18

Chapter 2: Regular Fractals and Self-similarity 8

- 2.1 Introduction 8
- 2.2 The Cantor Set 8
- 2.3 Non-fractal dimensions 10
- 2.4 The Similarity dimension 14
- 2.5 The Koch curve 16
- 2.9 The Sierpinski gasket 23

Chapter 5: Iterative feedback processes and chaos

- 5.1 Introduction 87
- 5.2 Population growth and the Verhulst model 87
- 5.3 The logistic map 88
- 5.4 The effect of variation in the control parameter 89
- 5.6 Graphical iteration of the logistic map 93

Chapter 6: Chaotic oscillations 117

- 6.1 Introduction 117
- 6.3 Chaos in the weather: the Lorenz model 125
- 6.5 Phase-space and attractor form 135

Chapter 7: Characterizing chaos 155

- 7.1 Introduction 155
- 7.2 Preliminary characterization: visual inspection 155
- 7.3 Preliminary characterization: frequency spectra 156
- 7.4 Characterizing chaos: Lyapunov exponents 159
- 7.5 Characterizing chaos: dimension estimates 163

Chapter 7: Characterizing Chaos 155

- 7.6 Attractor reconstruction 170
 - 7.6.1 Method 1-- visual inspection of reconstructed attractors 172
 - 7.6.2 Method 2-- dominant period relationship 172
 - 7.6.3 Method 3-- the autocorrelation function 172
- 7.7 The embedding dimension for attractor reconstruction 176
- 7.8 The effect of noise 177
- 7.9 Regions of behavior on the attractor and characterization limitations 179

Chapter 3: Design and Implementation of Chaos Control Systems 45

- 3.1 Introduction
- 3.2 Techniques for Chaos Control