

Summary of I-V Relationships		
Region	NMOS	PMOS
Nonsaturation	v _{DS} <v<sub>DS(sat)</v<sub>	v _{SD} <v<sub>SD(sat)</v<sub>
	$i_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$	$i_D = K_p [2(v_{SG} + V_{TP})v_{SD} - v_{SD}^2]$
Saturation	v _{DS} >v _{DS} (sat)	v _{SD} >v _{SD} (sat)
	$i_D = K_n [v_{GS} - V_{TN}]^2$	$i_D = K_p [v_{SG} + V_{TP}]^2$
Transition Pt.	$v_{DS}(sat) = v_{GS} - V_{TN}$	$v_{SD}(sat) = v_{SG} + V_{TP}$
Enhancement Mode	V _{TN} > 0V	$V_{TP} < 0V$
Depletion Mode	$V_{TN} < 0V$	$V_{TP} > 0V$
Neamen Microelectronics, 4e Chapter 3-17 McGraw-Hill		

Problem-Solving Technique: NMOSFET DC Analysis

- 1. Assume the transistor is in saturation.
 - a. $V_{GS} > V_{TN}$, $I_{D} > 0$, & $V_{DS} \ge V_{DS}(sat)$
- 2. Analyze circuit using saturation I-V relations.
- 3. Evaluate resulting bias condition of transistor.
 - a. If $V_{GS} < V_{TN}$, transistor is likely in cutoff
 - b. If $V_{DS} < V_{DS}(sat)$, transistor is likely in nonsaturation region
- 4. If initial assumption is proven incorrect, make new assumption and repeat Steps 2 and 3.

Neamen Microelectronics, 4e Chapter 3-25 McGraw-Hill

