8 Appendix

8.1 Proof of Theorem 1

(1) The membership problem for deterministic FAS is decidable in polynomial time. I.e., for any string s, and a deterministic FAS \mathcal{A} , we can decide whether $s \in \mathcal{L}(\mathcal{A})$ in polynomial time.

Proof. An FAS recognizes a string by treating symbols in a string individually. A symbol y in a string s is recognized if and only if the current state p is reached such that $y \in p$. Let p_y denote the state (a set of nodes) p including symbol y. The next symbol of y is read if and only if y has been recognized at the state p_y . Let H denote the state-transition diagram of an FAS \mathcal{A} . Let $In(\&_i) = \{l | \exists l \in \Sigma : (l \in H. \succ (||i_j) \lor (\exists \&_k \in H. \succ (||i_j) \land l \in In(\&_k))), k \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma}\}$ $(i \in \mathbb{D}_{\Sigma})$. The number of nodes in H is $\lceil \log_2 |\Sigma| \rceil + 2 |\Sigma| + 2$ (including q_0 and q_f) at most. Assume that the current read symbol is y and the current state is q:

- 1. $|q| \ge 1$, $\exists v \in q : y \in H$. $\succ (v) \ (v \in \{||_{ij}\}_{i \in \mathbb{D}_{\Sigma}, j \in \mathbb{P}_{\Sigma}} \cup \Sigma)$. A state (set) q includes $\lceil \log_2 |\Sigma| \rceil + 2|\Sigma|$ nodes at most. For deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node v. Then, the state $p_y = q \setminus \{v\} \cup \{y\}$ can be reached, y is recognized. Thus, for the current state q, it takes $\mathcal{O}(|\Sigma|)$ time to recognize y.
- 2. $|q| \geq 1$, $\exists \&_i \in q : y \in In(\&_i)$. For deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node $\&_i$ in state (set) q, and it also takes $\mathcal{O}(|\Sigma|)$ time to decide whether $y \in In(\&_i)$. Then, the state q transits to the state $q' = q \setminus \{\&_i\} \cup \{||_{ij}|||_{ij} \in H. \succ (\&_i), j \in \mathbb{P}_{\Sigma}\}$. Then, there is a node $||_{ij}$ in q' that is checked whether $y \in H. \succ (||_{ij})$. Case (1) will be considered. then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to recognize y.
- 3. $|q| \ge 1$, $\exists \&_i^+ \in q : y \in In(\&_i)$ The state $\&_i^+$ will transit to the state $\&_i$, case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time to recognize y.
- 4. $q=q_0$. If $y\in H$. $\succ (q_0)$, then, for deterministic FAS, it takes $\mathcal{O}(|\Sigma|)$ time to search the node y. Otherwise, a node $\&_i$ $(i\in \mathbb{D}_\Sigma)$ is searched and is decided whether $y\in In(\&_i)$. Then, it takes $\mathcal{O}(|\Sigma|^2)$ time for q transiting to the state $\&_i$. Case (2) is satisfied. Then, for the current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time at most to recognize y.

Thus, for deterministic FAS, and any read symbol y and a current state q, it takes $\mathcal{O}(|\Sigma|^2)$ time at most to recognize y. Let |s| denote the length of a string s, then for an FAS, it takes $\mathcal{O}(|s||\Sigma|^2)$ time to recognize s. Therefore, the membership problem for a deterministic FAS is decidable in polynomial time (uniform)⁹.

(2) The deterministic FAS recognizes the language defined by SOREFs.

Proof. According to the definition of an FAS, an FAS is defined to recognize the language defined by a SOREF. For the ith subexpression of the form $r_i = r_{i_1} \& r_{i_2} \& \cdots \& r_{i_k}$ $(i,k \in \mathbb{N},k \geq 2)$, there are start marker $\&_i$ and end marker $\&_i^+$ in an FAS for recognizing the strings derived by r_i . For each subexpression r_{i_j} $(1 \leq j \leq k)$ in r_i , there is a concurrent marker $||_{ij}$ in an FAS for recognizing the symbols or strings derived by r_{i_j} .

In addition, for strings recognition, an FAS recognizes a string by treating symbols in a string individually. A symbol y in a string $s \in \mathcal{L}(r)$ (r is a SOREF) is recognized if and only if the current state (set) p is reached such that $y \in p$. A SOREF r is a deterministic expression, every symbol in s can be uniquely matched in r, and for every symbol l in r, there must exist a state (set) in an FAS including l. According to the transition function of an FAS, for the deterministic FAS \mathcal{A} , every symbol in s can be recognized in a state in \mathcal{A} . Therefore, $s \in \mathcal{L}(\mathcal{A})$. Then, $\mathcal{L}(r) \subseteq \mathcal{L}(\mathcal{A})$. The deterministic FAS recognizes the language defined by SOREFs.

8.2 Proof of Theorem 2

Proof. For any given finite sample S and a group $g = [e_1, e_2, \cdots, e_k]$ $(k \ge 2)$ in $P_{\&}$, the alphabet symbols in e_i $(1 \le i \le k)$ occur in S. Thus, there exists a set $S_{\&}$ of shuffled strings extractable from S such that $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supseteq S_{\&}$.

Assume that there exists a SOREF r' such that $\mathcal{L}(r(e_1)\&\cdots\&r(e_k))\supset\mathcal{L}(r')\supseteq S_\&$. To ensure that r' can capture $S_\&$, let $r'=r(e_1')\&\cdots\&r(e_{k'}')$ $(k'\ge 2)$, let group $g'=[e_1',\cdots,e_{k'}']$. Then, $k'\le k$.

If k' < k, then the group g does not have the minimum number of the set of symbols. However, according to lines 5, $9{\sim}10$, 7 and 13 in Algorithm 3, the group g with minimum size can be ensured. Then, k' < k does not hold.

Therefore, k' = k, then $\mathcal{L}(r(e_1)\&\cdots\&r(e_k)) \supset \mathcal{L}(r(e_1')\&\cdots\&r(e_k')) \supseteq S_\&$. This indicates that there exists e_i in group g that does not include as many symbols as possible. However, according to lines $2{\sim}3$ in Algorithm 3, a node (symbol) v with maximum degree is identified, the successors of the node v form a set that can be put in a group, i.e., e_i in group g can include maximum number of symbols. There is a contradiction to the assumption. The conclusion in Theorem 2 holds.

8.3 Proof of Theorem 3

(1) The learnt FAS ${\mathcal A}$ from a sample S is a deterministic FAS.

Proof. Let H denote the state-transition diagram of an FAS \mathcal{A} . By using the SOA built for S (a parameter in $\mathcal{A}.\Phi$) and different marks $(\&_i,\&_i^+,||_{ij},i\in\mathbb{D}_\Sigma,\in\mathbb{P}_\Sigma)$ for recognizing the shuffled strings extractable from S, every node in H is labelled by distinct symbol. And each symbol y in a string, y is recognized if and only if a state (set) p including symbol (node) y is reached, and only one node in current state is modified if y does not been consumed. Thus, each symbol y in a string can be unambiguously recognized. The FAS \mathcal{A} is a deterministic FAS.

 $^{^9}Note$ that, for non-uniform version of the membership problem for a deterministic FAS, only the string to be tested is considered as input. This indicates that $|\Sigma|$ is a constant. In this case, the membership problem for a deterministic FAS is decidable in linear time.

(2) There does not exist an FAS \mathcal{A}' , which is learnt from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$. The FAS \mathcal{A} is a precise representation of S.

Proof. Assume that there exists an FAS \mathcal{A}' learnt from S such that $\mathcal{L}(\mathcal{A}) \supset \mathcal{L}(\mathcal{A}') \supseteq S$.

The FAS \mathcal{A} recognizes the language defined by a SOREF r. Consider the case that $\mathcal{L}(\mathcal{A}) = \mathcal{L}(r)$. Let $S_{\&}$ denote the shuffled strings extracted from the sample S. Suppose $S_{\&}$ can be captured by the disjoint sets of symbols: e_1, e_2, \cdots, e_k $(k \geq 2)$ (resp, $e'_1, e'_2, \cdots, e'_{k'}$ $(k' \geq 2)$), where all symbols in each set occurs in FAS \mathcal{A} (resp. FAS \mathcal{A}'). Let $S = S_{\&}$. Then, $\mathcal{L}(\mathcal{A}) = \mathcal{L}(r(e_1)\&r(e_2)\&\cdots\&r(e_k)) \supseteq S_{\&}$, and $\mathcal{L}(\mathcal{A}') = \mathcal{L}(r(e'_1)\&r(e'_2)\&\cdots\&r(e'_k)) \supseteq S_{\&}$. According to Theorem 2, the disjoint sets of symbols: e_1, e_2, \cdots, e_k precisely capture S, there is a contradiction for $\mathcal{L}(\mathcal{A}) = \mathcal{L}(r(e_1)\&r(e_2)\&\cdots\&r(e_k)) \supseteq \mathcal{L}(\mathcal{A}') = \mathcal{L}(r(e'_1)\&r(e'_2)\&\cdots\&r(e'_{k'})) \supseteq S$. Therefore, there is a contradiction to the assumption. The FAS \mathcal{A} is a precise representation of S.

8.4 Proof of Theorem 4

(1) r is a SOREF.

Proof. Algorithm *InfSOREF* mainly transforms the learnt FAS $\mathcal{L}(A)$ to r by using algorithm Soa2Sore. According to the definition of an FAS, every node labelled symbol occurs once in an FAS, and the algorithm Soa2Sore can transform the FAS $\mathcal{L}(A)$ to a SORE r_s if we respect marks (&_i, &_i⁺ and $||_{ij}$, $i \in \mathbb{D}_{\Sigma}$, $j \in \mathbb{P}_{\Sigma}$) as alphabet symbols. In Algorithm FAS2SOREF, r_s is transformed to the SOREF r, where every alphabet symbol in r occurs once. Then, r is a SOREF.

(2) There does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq S$.

Proof. Assume that there exists a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A})$. The FAS \mathcal{A} can be considered as an SOA. According to Theorem 27 presented in (Freydenberger and Kötzing 2015), a SORE r_s is transformed from the SOA \mathcal{A} by using algorithm Soa2Sore, there does not exist a SORE r'_s such that $\mathcal{L}(r_s) \supset \mathcal{L}(r'_s) \supseteq \mathcal{A}$. According to algorithm 6, r_s and r'_s can be rewritten to SOREFs r and r'(no loss of precision), respectively. For an FAS A, there does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{A}$. There is a contradiction to the initial assumption. Therefore, there does not exist a SOREF r' such that $\mathcal{L}(r) \supset \mathcal{L}(r') \supseteq \mathcal{L}(\mathcal{A})$. Note that, $\mathcal{L}(r) \supseteq \mathcal{L}(\mathcal{A}) \supseteq S$ holds by Theorem 3. And Corollary 17 (Freydenberger and Kötzing 2015) implies that, a precise SOREF r (for any given finite sample) satisfies that $\mathcal{L}(r) \supseteq \mathcal{L}(\mathcal{A})$. This ensures that, for any given finite sample S, r is a precise representation of S.

8.5 Proof of Theorem 5

Proof. According to Theorem 1, an FAS can recognize the language defined by SOREFs. This implies that, for any given SOREF r, an equivalent FAS $\mathcal A$ can be constructed from the SOREF r. There must exist a finite sample S obtained by traversing the FAS $\mathcal A$ such that $\mathcal A=$

LearnFAS(S) $(\mathcal{L}(\mathcal{A}) \supseteq S)$. The FAS \mathcal{A} is transformed to a SOREF r' by using algorithm FAS2SOREF. According to Theorem 4, algorithm InfSOREF returns a precise representation of S. Thus, $\mathcal{L}(r') = \mathcal{L}(\mathcal{A}) = \mathcal{L}(r)$. Therefore, for any given SOREF r, there exists a finite sample S such that r = InfSOREF(S).