Probability & Random Processes

Irvin Avalos

irvin.l@berkeley.edu

Contents

1	Probability Theory		
	1.1	Introduction	2
	1.2	Discrete Random Variables	2
	1.3	Continuous Random Variables	2
	1.4	Order Statistics	2
	1.5	Transforms and Sums	2
	1.6	Concentration Inequalities and Convergences	2
2	Info	ormation Theory	3
	2.1	Information Measures and Entropy	3
	2.2	Source Coding Theorem	3
	2.3	Huffman Coding	3
	2.4	Channel Models	3
	2.5	Channel Coding Theorem	3
3	Sto	chastic Processes	4
	3.1	Discrete Time Markov Chains	4
	3.2	Poisson Processes	4
	3.3	Continuous Time Markov Chains	4
4	Random Graphs		5
	4.1	Erdos-Reyni Model	5
	4.2	Thresholds and Connectivity	6
5	Statistical Inference		
	5.1	Point Estimation	7

PROBABILITY THEORY

- 1.1 Introduction
- 1.2 DISCRETE RANDOM VARIABLES
- 1.3 Continuous Random Variables
- 1.4 Order Statistics
- 1.5 Transforms and Sums
- 1.6 Concentration Inequalities and Convergences

INFORMATION THEORY

- 2.1 Information Measures and Entropy
- 2.2 Source Coding Theorem
- 2.3 Huffman Coding
- 2.4 CHANNEL MODELS
- 2.5 Channel Coding Theorem

STOCHASTIC PROCESSES

- 3.1 DISCRETE TIME MARKOV CHAINS
- 3.2 Poisson Processes
- 3.3 CONTINUOUS TIME MARKOV CHAINS

RANDOM GRAPHS

4.1 Erdos-Reyni Model

Definition 4.1 (Erdos-Reyni random graph).

Given $n \in \mathbb{Z}^+$ and a probability $p \in [0,1]$, the (E-R) random graph is denoted as $\mathcal{G}(n,p)$.

- The (RG) $\mathcal{G}(n,p)$ is undirected on all n vertices
- Each of the $\binom{n}{2}$ edges is formed independently from each other with probability p
- E-R stated a number of result that are based on "thresholds" of p which are needed to show the structural properties of the graph:
 - 1. p is a function of n, p := p(n)
 - 2. $\frac{1}{n^2}$ is the threshold for the first edges to appear in a (RG)
 - 3. $\frac{1}{n^{3/2}}$ is the threshold for the first trees to emerge
 - 4. $\frac{1}{n}$ is the threshold for the first cycles to appear in the graph
- If $p_n = 1/n$ then the "Giant component" emerges. Let $p_n = (1 \varepsilon)/n$ for $0 < \varepsilon \ll 1$), then each "puddle" represents a region in the graph where all nodes are connected.

Subcritical: $p = \frac{1-\varepsilon}{n}$

Note that p_n is to the left of ε and that the size of the largest puddles are "small", $\to O(\log n)$ w.h.p.

• For $p_n = (1 + \varepsilon)/n$, we go to the right of $\varepsilon \to 1 + \varepsilon$.

Random Graphs 6

Supercritical: $p > \frac{1+\varepsilon}{n}$

Here we have one large "island" where it's size is relatively, O(n) w.h.p.

4.2 Thresholds and Connectivity

When p_n is below $\log_e n \implies$ no connectivity, $P(\text{connectivity}) \longrightarrow 0$. Otherwise, if p_n is above $\log_e n \implies$ ensures connectivity, $P(\text{connectivity}) \longrightarrow 0$.

Disconnected: $p < \frac{\log_e n}{n}$

connected $(p > (1+\varepsilon)\frac{\log n}{n})$

STATISTICAL INFERENCE

5.1 Point Estimation

- **Probability vs Statistics**: There exists two perspectives that surround the field of statistical inference, Bayesian vs Frequentist.
 - 1. From the Bayesian perspective, unknown quantities are treated as RVs with known or assumed distributions and priors.
 - 2. While under the Frequentist's point of view, unknowns are deterministic parameters that need to be estimated.

In essence, a person following the Bayesian perspective starts with a probabilistic model and assumes its distribution and shows through rigorous probabilistic analysis that measurements get smaller.

On the other hand, a Frequentist would make hidden assumptions about parameters present in the model for which we know knowing about.

• Bayesian Inference: