Testowanie hipotez

Ekonometria WNE UW

Zadanie 1. Korzystając z danych CPS09, oszacowano modele (ze stałą) objaśniające logarytm płacy godzinowej (log(hwage)):

	(1)	(2)	(3)
	$\log(hwage)$	$\log(hwage)$	$reszty_1^2$
female	-0.259	-0.256	-0.100
	(0.00524)	(0.00516)	(0.0131)
nonwhite	-0.0808	-0.0780	0.0109
	(0.00665)	(0.00654)	(0.0166)
education	0.108	0.0344	0.0117
	(0.000944)	(0.00504)	(0.00236)
age	0.00950	0.0665	0.00344
	(0.000225)	(0.00145)	(0.000563)
$education^2$		0.00262	
		(0.000182)	
age^2		-0.000667	
		(0.0000167)	
\overline{N}	50742	50742	50742
R^2	0.258	0.283	0.002

W () podano zwykłe błędy standardowe.

- (i) Przetestuj istotność parametrów w modelu (1). Załóż poziom istotności równy 0.05. Sformułuj odpowiednią hipotezę, oblicz statystykę testową. Podaj liczbę stopni swobody rozkładu statystyki testowej.
- (ii) Podaj przedziały ufności dla modelu (1), zakładając że $\alpha=0.01$. Czy wnioski dotyczące istotności oszacowań z podpunktu (i) zmieniły się?
- (iii) Przetestuj łączną istotność modelu (1). Zapisz odpowiednie hipotezy. Podaj liczbę stopni swobody rozkładu statystyki testowej.
- (iv) W modelu (2) dodano dwie zmienne podniesione do kwadratu. Czy te dodane zmienne są łącznie istotne statystycznie? Zapisz hipotezę w formie macierzowej; podaj liczbę stopni swobody statystyki testowej.
- (v) Sprawdź, czy w modelu (1) jest heteroskedastyczność. Zastosuj test Breusha-Pagana, korzystając z oszacowań W kolumnie (3) (zmienna zależna to kwadrat reszt z modelu (1)). Co należałoby zrobić, gdyby hipoteza zerowa testu BP została odrzucona?
- (vi) Przypuśćmy że chcesz sprawdzić, czy β_{female} jest równa $\beta_{education}$ i jednocześnie $\beta_{age}=0$. Zapisz odpowiednie warunki w korzystając z zapisu macierzowego.

Zadanie 2. Korzystając z danych o firmach oszacowano parametry funkcji produkcji Cobba-Douglasa (ze stałą):

	(1)	(2)
	$\log(y)$	$reszty^2$
$\log(l)$	0.374	-0.0602
$\log(k)$	0.544	-0.201
$\log(l)^2$		0.0481
$\log(k)^2$		0.0411
$\log(l) \times \log(k)$		-0.0697
\overline{N}	11784	11784
R^2	0.684	0.036

- (i) W kolumnie (2) podano oszacowania modelu w którym zmienną objaśnianą jest kwadrat reszt z modelu (1). Korzystając z tych wyników, sprawdź czy w modelu (1) jest obecna heteroskedastyczność. Jaki test zastosujesz?
- (ii) Poniżej podano dwie macierze wariancji-kowariancji dla modelu (1). Wykorzystaj odpowiednią macierz wariancji-kowariancji do przetestowania istności zmiennych objaśniających. Załóż $\alpha=0.05$.
 - zwykła macierz wariancji-kowariancji $\hat{oldsymbol{eta}}$

$$\mathbb{V}\begin{bmatrix} \beta_l \\ \beta_k \\ \beta_0 \end{bmatrix} = \begin{bmatrix} 0.00003406 \\ -0.00001583 & 0.00003141 \\ -0.00003085 & -0.00018852 & 0.00178235 \end{bmatrix}$$

– Macierz wariancji-kowariancji $\hat{\boldsymbol{\beta}}$ White'a

$$\mathbb{V}\begin{bmatrix} \beta_l \\ \beta_k \\ \beta_0 \end{bmatrix} = \begin{bmatrix} 0.00005949 \\ -0.00003347 & 0.00005191 \\ -0.00002433 & -0.00025899 & 0.00229377 \end{bmatrix}$$

(iii) Na podstawie modelu (1) i właściwej macierzy wariancji kowariancji, zweryfikuj hipotezę o stałych korzyściach skali. Zapisz tę hipotezę w formie macierzowej.

$t(0.95, \infty)$	1.64
$t(0.975,\infty)$	1.96
$t(0.99,\infty)$	2.32
$t(0.995, \infty)$	2.57

Tabela 2: Wybrane wartości rozkładu ${\cal F}$

$F(0.95, 4, \infty)$	2.37
$F(0.95, 5, \infty)$	2.21
$F(0.975,4,\infty)$	2.78
$F(0.975, 5, \infty)$	2.57