Problem Set 8

D. Zack Garza

November 18, 2019

Contents

1	Reg	ular Problems	1
	1.1	Problem 1	1
		1.1.1 Part a	1
		1.1.2 Part 2	2
		1.1.3 Part 3	3
		1.1.4 Part 4	3
	1.2	Problem 2	5
	1.3	Problem 3	6
	1.4	Problem 4	6
	1.5	Problem 5	7
	1.6	Problem 6	8
		1.6.1 Part 1	8
		1.6.2 Part 2	9
	1.7	Problem 7	1
2	Qua	I Problems 1	2
	2.1	Problem 8	2
		2.1.1 Part 1	2
		2.1.2 Part 2	.3
	2.2	Problem 9	3
		2.2.1 Part 1	3
		2.2.2 Part 2	.3
	2.3	Problem 10	4
		2.3.1 Part 1	4
		2.3.2 Part 2	4
		2.3.3 Part 3	5

1 Regular Problems

1.1 Problem 1

1.1.1 Part a

Define a map

$$\phi_{\text{ev}} : \text{hom}_{\mathbb{Z}}(\mathbb{Z}_m, A) \to A$$

 $(f : \mathbb{Z}_m \to A) \mapsto f(1)$

Then ϕ_{ev} is a \mathbb{Z} -module homomorphism, since

$$\phi_{\text{ev}}(nf+g) = (nf+g)(1)$$
$$= nf(1) + g(2)$$
$$= n\phi_{\text{ev}}(f) + \phi_{\text{ev}}(g)$$

But this forces $f(\overline{0}) = 0_A$ (where $\overline{0} : \mathbb{Z}_m \to A$ is the zero map), we have

$$0 = f(0) = f(m) = mf(1),$$

we must have mf(1) = 0 in A. So

im
$$\phi_{\text{ev}} = \{ a \in A \mid ma = 0 \} \coloneqq A[m].$$

It is also the case that

$$\ker \phi_{\text{ev}} = \{ f \in \text{hom}_{\mathbb{Z}}(\mathbb{Z}_m, A) \mid f(1) = 0 \} = \{ \overline{0} \},$$

which follows from the fact that $\mathbb{Z}_m = \langle 1 \mod m \rangle$ and $A = \langle 1_A \rangle$ as \mathbb{Z} -modules, so if $f(1 \mod m) = 0_A$ then

$$f(n \mod m) = nf(1 \mod m) = 0$$

and so f is necessarily the zero map. So $\ker \phi = \overline{0}$.

We can then apply the first isomorphism theorem,

$$\frac{\hom_{\mathbb{Z}}(\mathbb{Z}_m,A)}{\ker \phi_{\mathrm{ev}}} \cong \mathrm{im} \ \phi_{\mathrm{ev}} \implies \hom_{\mathbb{Z}}(\mathbb{Z}_m,A) \cong A[m].$$

1.1.2 Part 2

Lemma: If $x \mid n$ and $x \mid m$ then $x \mid \gcd(m, n)$

Proof: We have $x \mid km + \ell n$ for any integers k, ℓ . So let $d = \gcd(m, n)$, then there exist integers a, b such that am + bn = d. But we can now just take k = a and $\ell = b$. \square

We claim that $\mathbb{Z}_n[m] \cong \mathbb{Z}_{(m,n)}$, from which the result immediately follows by part 1.

Define a map

$$\phi: \mathbb{Z} \to \mathbb{Z}_n[m]$$
$$1 \mapsto [1] \mod n.$$

The claim is that this is an isomorphism.

Then ϕ is clearly surjective (since $\mathbb{Z} \to \mathbb{Z}_n$ is a quotient map and $\mathbb{Z}_n[m]$ is a subgroup of \mathbb{Z}_n) and if we let $d := \gcd(m, n)$, we have

$$\ker \phi = \{ x \in \mathbb{Z}_n \ni mx = 0 \}$$

$$= \{ x \in \mathbb{Z}_n \ni x \mid m \}$$

$$= \{ x \in \mathbb{Z} \ni x \mid n \text{ and } x \mid m \}$$

$$= \{ x \in \mathbb{Z} \ni x \mid d \} \text{ by the lemma}$$

$$= d\mathbb{Z}.$$

Then by the first isomorphism theorem, we have

$$\frac{\mathbb{Z}}{\ker \phi} \cong \operatorname{im} \phi \implies \frac{\mathbb{Z}}{\gcd(m,n)\mathbb{Z}} \coloneqq \mathbb{Z}_{\gcd(m,n)} \cong \mathbb{Z}_n[m].$$

1.1.3 Part 3

Let $f \in \mathbb{Z}^* = \text{hom}_{\mathbb{Z}}(\mathbb{Z}_m, \mathbb{Z})$, so $f : \mathbb{Z}_m \to \mathbb{Z}$. These are both \mathbb{Z} -modules generated by their identity elements, so such a map is determined by where it send [1] mod m.

So let $f([1] \mod m) = n \in \mathbb{Z}$. Since f is a module homomorphism, we have $f([0] \mod m) = 0$, and in particular we have

$$0 = f([0] \mod m)$$
= $f([m] \mod m)$
= $f([1m] \mod m)$
= $mf([1] \mod m)$,

which forces $f([1]) \in \mathbb{Z}[m] = \{0\}$, so f must be the zero map and $\mathbb{Z}^* = 0$.

Note: $\mathbb{Z}[m] = 0$ because \mathbb{Z} is an integral domain, so mx = 0 forces m = 0 or x = 0.

1.1.4 Part 4

To see that \mathbb{Z}_m is a \mathbb{Z}_{mk} module, we define an action

$$\mathbb{Z}_{mk} \curvearrowright \mathbb{Z}_m$$
$$[x]_{mk} \curvearrowright [y]_m \coloneqq [xy]_m$$

This is a well-defined action:

If $[x_1]_{mk} = [x_2]_{mk}$ are two representatives of the same equivalence class, then

$$[x_1]_{mk} - [x_2]_{mk} = [x_1 - x_2]_{mk} = [0]_{mk} \implies m \mid x_1 - x_2.$$

But then

$$([x_1]_{mk} \curvearrowright [y]_m) - ([x_2]_{mk} \curvearrowright [y]_m) = [x_1y]_m - [x_2y]_m$$
$$= [(x_1 - x_2)y]_m$$
$$= [0]_m,$$

which shows that their resulting actions on \mathbb{Z}_m are equal.

This action yields a module structure:

•
$$r.(x+y) = r.x + r.y$$
:

$$[r]_{mk} \curvearrowright ([x]_m + [y]_m) = [r]_{mk} \curvearrowright [x+y]_m = [r(x+y)]_m = [rx]_m + [ry]_m.$$

•
$$(r+s).x = r.x + s.x$$
:
$$[r]_{mk} + [s]_{mk} \curvearrowright [x]_m = [r+s]_{mk} \curvearrowright [x]_m = [(r+s)x]_m = [rx]_m + [sx]_m.$$

• (rs).x = r.s.x:

$$\begin{split} [r]_{mk} \cdot [s]_{mk} &\curvearrowright [x]_m = [rs]_{mk} \curvearrowright [x]_m \\ &= [(rs)x]_m \\ &= [r]_{mk} \curvearrowright [sx]_m \\ &= [r]_{mk} \curvearrowright ([s]_{mk} \curvearrowright [x]_m). \end{split}$$

• 1.x = x:

$$[1]_{mk} \curvearrowright [x]_m = [1x]_m = [x]_m.$$

 $\mathbb{Z}_m^* := \hom_{\mathbb{Z}_{mk}}(\mathbb{Z}_m, \mathbb{Z}_{mk}) \cong \mathbb{Z}_m$:

Define a map

$$\phi: \hom_{\mathbb{Z}_{mk}}(\mathbb{Z}_m, \mathbb{Z}_{mk}) \to \mathbb{Z}_m$$

$$f \mapsto [f([1]_m)]_m$$

 ϕ is a homomorphism, as

$$\phi(f+g) = [(f+g)([1]_m)]_m = [f([1]_m) + g([1]_m)]_m = [f([1]_m)]_m + [g([1]_m)]_m,$$

$$\phi([r]_{mk} \curvearrowright f) = [[r]_{mk} f([1]_m)]_m = [r]_m \cdot [f([1]_m)]_m = [r]_{mk} \curvearrowright \phi(f).$$

 ϕ is injective, as $[f([1]_m)]_m = [0]_m$, then for any $1 \le \ell \le m$, we have

$$[f([\ell]_m)]_m = [\ell f([1]_m)]_m = \ell [f([1]_m)]_m = \ell [0]_m = [0]_m,$$

so f must be the zero map.

 ϕ is surjective, since if $[\ell]_m \in \mathbb{Z}_m$, we can define

$$f_{\ell}: \mathbb{Z}_m \to \mathbb{Z}_{mk}$$

 $[1]_m \mapsto [\ell]_{mk}$

which makes sense and is well-defined because $\mathbb{Z}_m \hookrightarrow \mathbb{Z}_{mk}$, and the map is defined on the generator. So we have the desired bijection. \square

1.2 Problem 2

We have the map

$$\pi: \mathbb{Z} \to \mathbb{Z}_2$$
$$x \mapsto [x]_2$$

which is a surjection and thus an epimorphism in the category \mathbb{Z} -Mod, and if we apply the functor $\hom_{\mathbb{Z}}(\mathbb{Z}_2, \cdot)$ to π we obtain an induced map

$$\overline{\pi}: \hom_{\mathbb{Z}}(\mathbb{Z}_2, \mathbb{Z}) \to \hom_{\mathbb{Z}}(\mathbb{Z}_2, \mathbb{Z}_2)$$

$$f \mapsto \pi \circ f.$$

The claim is that $\overline{\pi}$ is not a surjection, and thus not an epimorphism (in the same category).

To see that this is the case, we can simply note that $\hom_{\mathbb{Z}}(\mathbb{Z}_2,\mathbb{Z})=0$ by part 3 of Problem 1, whereas $\hom_{\mathbb{Z}}(\mathbb{Z}_2,\mathbb{Z}_2)\neq 0$.

For example, one can define $\mathrm{id}_{\mathbb{Z}_2}:\mathbb{Z}_2\to\mathbb{Z}_2,\ [x]_2\to[x]_2,$ which is a nontrivial module homomorphisms.

So any such f appearing must be the zero map, and thus $\overline{\pi}$ is also the zero map. \square

1.3 Problem 3

Let $f: R \to R$ be an endomorphism of R in the category of rings. We can then check that for any $r \in R$, we have $f(r) = f(r1_R) = rf(1_R)$, which says that f is given by right-multiplication by some fixed element $x_f := f(1_R)$, i.e.

$$f:R\to R$$

$$r\mapsto r\cdot x_f$$

and so we can attempt to define

$$\phi_1 : \text{hom}_R(R, R) \to R$$

$$f \mapsto x_f := f(1_R)$$

We can check that

$$(g \circ f(r)) = g(f(r)) = g(r \cdot x_f) = r \cdot x_f \cdot x_q,$$

which shows that in fact

$$\phi(g \circ f) = x_f \cdot x_q,$$

which reverses the multiplication. So the correct codomain is R^{op} , and we amend the definition:

$$\phi_2 : \hom_R(R, R) \to R^{op}$$

$$f \mapsto x_f := f(1_R)$$

By construction, ϕ_s is a ring homomorphism. If R is commutative, then $x_f \cdot x_g = x_g \cdot x_f$, which makes ϕ_1 a ring homomorphism as well. It remains to check that it is an isomorphism/

 ϕ_1 is in injective: We can check that $\ker \phi_1 = 0$ as a ring. To that end, suppose $\phi_1(f) = x_f = 0$. Then $f(r) = r \cdot 0 = 0$, so f can only be the zero map.

 ϕ_1 is surjective: Let $x \in R$ be arbitrary, then we can define $f: R \to R$ by $f(1_R) = x$, so $f(r) = r \cdot x$. This is an endomorphism of R, and thus an element of $\text{hom}_R(R, R)$.

By the first isomorphism theorem for rings, we thus have $hom_R(R,R) \cong R$.

1.4 Problem 4

We have maps

$$\theta_A: A \to (A^{\vee})^{\vee}$$

 $a \mapsto (\operatorname{ev}_a: f \mapsto f(a))$

$$\theta_B: B \to (B^{\vee})^{\vee}$$

 $b \mapsto (\operatorname{ev}_b: g \mapsto g(b))$

$$f: A \to B$$

 $a \mapsto f(a)$

$$f^{\vee}: B^{\vee} \to A^{\vee}$$
$$g \mapsto g \circ f$$

$$f^{\vee\vee}:A^{\vee\vee}\to B^{\vee\vee}$$

$$h\mapsto h\circ f^{\vee}$$

We can now check that $f^{\vee\vee} \circ \theta_A = \theta_B \circ f$ as maps from A to $B^{\vee\vee}$. Letting $a \in A$, and $h \in B^{\vee\vee}$ (so $h: B^{\vee} \to R$), we will show that both maps act on h in the same way.

For notational convenience, write $\phi \curvearrowright h := h \circ \phi$. We then have

$$(f^{\vee\vee} \circ \theta_A)(a) \curvearrowright h := f^{\vee\vee}(\theta_A(a)) \curvearrowright h$$
$$:= f^{\vee\vee}(\operatorname{ev}_a) \curvearrowright h$$
$$= (\operatorname{ev}_a \circ f^{\vee}) \curvearrowright h$$
$$:= h \circ (\operatorname{ev}_a \circ f)$$
$$:= h(f(a))$$
$$= \operatorname{ev}_{f(a)} \curvearrowright h$$
$$:= \theta_B(f(a)) \curvearrowright h$$
$$:= (\theta_B \circ f)(a) \curvearrowright h,$$

which shows that these actions agree, and thus the diagram commutes.

1.5 Problem 5

Let E be a free module over R an integral domain. Then E has a basis $\{\mathbf{e}_i\} \subseteq F$, so if $x \neq 0 \in E$, we have

$$x = \sum_{i} r_i \mathbf{e}_i$$

where each $r_i \in R$. Moreover, since $x \neq 0$, at least one $r_i \neq 0$, so let r_j denote one of the nonzero coefficients.

Now suppose x is a torsion element, so mx = 0 for some $m \neq 0 \in E$. We can then write

$$mx = m\sum_{i} r_i \mathbf{e}_i = \sum_{i} mr_i \mathbf{e}_i = 0$$

But by linear independence, this forces $mr_i = 0$ for all i. In particular, $mr_j = 0$ where $r_j \neq 0$. But this exhibits either m or r_j as a zero divisor, and since the only zero divisor in an integral domain is zero, we must have m = 0 or $r_j = 0$, a contradiction.

So x can not be a torsion element. But since $x \in E$ was arbitrary, E must be torsion-free.

For an example of a torsion-free module over an integral domain that is *not* free, consider \mathbb{Q} as a \mathbb{Z} -module. Then \mathbb{Q} is clearly torsion-free, since it is an integral domain and the same argument as above applies.

But \mathbb{Q} is not free as \mathbb{Z} -module. Supposing that $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2, \cdots\} \subset \mathbb{Q}$ was a \mathbb{Z} -basis, consider $\mathbf{b}_1 = \frac{p_1}{q_1}$ and $\mathbf{b}_2 = \frac{p_2}{q_2}$. Then $\mathbf{b}_1, \mathbf{b}_2$ can not be linearly independent over \mathbb{Z} , which follows from the fact that

$$q_1p_2\mathbf{b}_1 + q_2p_1\mathbf{b}_2 = p_2p_1 - p_1p_2 = 0,$$

while $q_1p_2, q_2p_1 \neq 0 \in \mathbb{Z}$. \square

1.6 Problem 6

If A is a cyclic module over a commutative ring R, so we have A = Ra for some $a \in A$. By Hungerford's definition, the submodule A has order $r \iff$ the element a has order $r \iff$ the order ideal $\mathcal{O}_a := \{x \in R \mid xa = 0\} = (r)$.

In particular, ra = 0.

1.6.1 Part 1

Since (r,s) = (1), we can find $t_1, t_2 \in R$ such that

$$t_1r + t_2s = 1 \implies t_1ra + t_2sa = 1a$$

 $\implies t_1(ra) + t_2sa = a$
 $\implies t_2sa = a$ since $ra = 0$
 $\implies s(t_2a) = a$ since R is commutative,

which implies that $a \in sA$ and thus $A \subseteq sA$. However, we always have $sA \subseteq A$ for modules, so this shows that A = sA.

To see that $A[s] = \{x \in A \mid sx = 0\} = 0$, let $x \in A[s]$; we will show x = 0. Since $x \in A = Ra$, we have $x = r_1a$, and in particular

$$ra = 0 \implies rx = rr_1a = r_1(ra) = 0.$$

So we now have rx = 0 and sx = 0, and we can write

$$x = (t_1r + t_2s)x$$

$$= t_1(rx) + t_2(sx)$$

$$= t_10 + t_20$$

$$= 0.$$

So x = 0 and thus A[s] = 0. \square

1.6.2 Part 2

Suppose r = sk. Toward an application of the first isomorphism theorem, define a map

$$\phi: R \to sA = sRa$$
$$x \mapsto sxa.$$

ϕ is well-defined:

This follows from that fact that $a \in A \implies xA \in A$ for any $x \in R$, so the codomain is in fact sA.

ϕ is an R-module homomorphism:

We have

$$t \in R \implies \phi(tx) = s(tx)a = t(sxa) = t\phi(x)$$
$$x, y \in R \implies \phi(x+y) = s(x+y)a = sxa + sya + \phi(x) + \phi(y)$$

 $\ker \phi = (k)$:

Suppose $x \in \ker \phi$ so $sxa = 0_A$; we'd like to show $x \in (k)$.

By definition $sx \in \mathcal{O}_a$, and by assumption $\mathcal{O}_a = (r)$, so $sx = t_1r$ for some $t_1 \in R$.

$$sxa = 0_A$$
 $\implies sx = t_1r$
 $\implies sx = t_1(sk)$
 $\implies sx = s(t_1k)$
 $\implies sx = s(t_1k)$
 $\implies sx = s(t_1k)$
 $\implies sx = t_1k$
 $since r = sk$ by assumption
 $since elements in R and A commute
 $since R$ is a domain, so $sm = sn, s \neq 0 \implies m = n$,$

which exhibits $x = t_1 k \implies x \in (k)$ as desired.

ϕ is surjective:

Since A = Ra, we have sA = sRA and thus $x \in sA \implies x = sra$ for some $r \in R$; but then $\phi(r) = sra = x$.

We thus have

$$R/\ker \phi \cong \operatorname{im} \phi \implies R/(k) \cong sA.$$

Similarly, define a map

$$\psi: R \to A[s]$$
$$x \mapsto kxa$$

ψ is well-defined:

It suffices to check that im $\psi \subseteq A[s]$ (since we will show surjectivity shortly), i.e. that s annihilates anything in the image. This follows from

$$s(kxa) = (sk)xa = rxa = x(ra) = 0,$$

since ra = 0 by assumption.

ψ is an R-module homomorphism:

We can check

$$\psi(tr_1 + r_2) = k(tr_1 + r_2)s = tkr_1s + kr_2s = t\psi(r_1) + \psi(r_2)$$

which follows because elements of R commute with those from A under multiplication.

$$\ker \psi = (s)$$
:

Suppose $x \in \ker \psi$, so kxa = 0. Then $kx \in \mathcal{O}_a = (r)$, so $kx = rt_1$. Then

$$kxa = 0_A$$
 $\implies kx = rt_1$ since $kx \in \mathcal{O}_a$
 $\implies kx = (sk)t_1$ since $r = sk$
 $\implies kx = k(st_1)$ since R is commutative
 $\implies x = st_1$ since R is a domain,

and so $x \in (s)$ as desired.

ψ is surjective:

Letting $y \in A[s]$ be arbitrary. We have

$$y \in A[s] \implies x = t_1 a, \quad sx = 0$$

 $\implies s(t_1 a) = 0$
 $\implies st_1 \in \mathcal{O}_a \implies \exists x \in R \ni st_1 = xr = x(sk)$
 $\implies st_1 = sxk$
 $\implies t_1 = xk \qquad \text{since } R \text{ is a domain}$
 $\implies y = t_1 a = (xk)a = kxa,$

so $\psi(x) = y$.

We can then apply the first isomorphism theorem

$$R/\ker\psi\cong \mathrm{im}\ \psi\implies R/(s)\cong A[s].$$

1.7 Problem 7

Lemma: If M is a cyclic module over a PID, then M has exactly 1 invariant factor.

Lemma: Let A be a cyclic module, so A = Ra. If the order of A is r, so $\mathcal{O}_a = (r)$, then $A \cong R/(r)$.

This means that we can write A = R/(a) and B = R/(b), and a, b are the invariant factors of A, B respectively, and $M := A \oplus B \cong R/(ab)$.

Since R is a PID, there is unique factorization, so we can write

$$r = \prod_{i=1}^{n} p_i^{k_i}$$

$$s = \prod_{i=1}^{n} p_i^{\ell_i}$$

$$\Longrightarrow rs = \prod_{i=1}^{n} p_i^{k_i + \ell_i},$$

where we allow some $k_i, \ell_i = 0$ so that we can take the product over the same set of primes.

However, means that the elementary divisors of M are given by $\{p_i^{k_i+\ell_i} \mid 1 \leq i \leq n\}$.

The first invariant factor d_1 of M is obtained from the elementary divisors by collecting all of the prime powers that divide both r and s, then taking the highest power of each prime occurring.

However, yields exactly $d_1 = \gcd(r, s)$.

Since $rs = \gcd(r, s) \cdot \operatorname{lcm}(r, s)$, the second invariant factor is obtained by performing the same process on $\frac{rs}{\gcd(r,s)} = \operatorname{lcm}(r,s)$.

But we can note here that there is at least

2 Qual Problems

2.1 Problem 8

2.1.1 Part 1

The claim is that every element in $M := R^n/\text{im } A$ is torsion \iff the matrix rank of A is exactly $n \iff$ the Smith normal form of A has exactly n nonzero invariant factors.

To see that this is the case, we can apply the structure theorem for finitely-generated modules over a PID. This gives us

$$M \cong F \oplus \bigcap R/(r_i)$$

where F is free of finite rank, $R/(r_i)$ is cyclic torsion, and $r_i \mid r_{i+1} \mid \cdots$ are the invariant factors of M.

We thus have

$$M \cong \mathbb{R}^n / \mathrm{im} \ A \cong F \oplus \bigoplus \mathbb{R} / (r_i),$$

which will be pure torsion if and only if F = 0.

But if we compute the smith normal for of A, we obtain

$$SNF(A) = \begin{bmatrix} d_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & d_2 & \cdot & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \cdots & 0 \\ 0 & 0 & \cdots & d_n & \cdots & 0 \end{bmatrix}$$

where $d_1 \mid d_2 \mid \cdots \mid d_n$, and thus

im
$$A \cong \text{im } SNF(A) \cong d_1R \oplus d_2R \oplus \cdots \oplus d_nR$$

$$\implies M = R^n / \text{im } A \cong \frac{R^n}{d_1 R \oplus d_2 R \oplus \cdots d_n R}$$

$$\cong R/(d_1) \oplus R/(d_2) \cdots \oplus R/(d_n)$$

where $R/(d_i)$ is a cyclic torsion module precisely when $d_i \neq 0$. If instead some $d_i = 0$, we then have $R/(d_i) \cong R$, which is a free R-module, yielding non-torsion elements in M.

But $det(A) = det(SNF(A)) = \prod_{i=1}^{n} d_i$, and so if $d_i = 0$ for some i iff det(A) = 0 iff rank A < n.

2.1.2 Part 2

Identifying

$$R \times F = F[x] \oplus F \cong F[x] \oplus \frac{F[x]}{(f)}$$

where f is any degree 1 polynomial in F[x], by the structure theorem we can pick a matrix $A \in M_2(F[x])$ with invariant factors $d_1 = 0, d_2 = f$. Then by the same argument given in part 1, we would have

$$(F[x])^2/\text{im } A \cong \frac{F[x]}{(d_1)} \oplus \frac{F[x]}{(d_2)} = F[x] \oplus \frac{F[x]}{(f)}$$

So we can choose n = 2, and say f(x) = x + 1, and then just pick a matrix that is already in Smith normal form:

$$A = \left[\begin{array}{cc} x+1 & 0 \\ 0 & 0 \end{array} \right].$$

2.2 Problem 9

2.2.1 Part 1

Let M be a finitely generated module over R a PID.

Then

$$M \cong F \oplus \bigoplus_{i=1}^{n} R/(d_i)$$

where F is free of finite rank and $R/(d_i)$ are cyclic torsion modules (the *invariant factors*) satisfying $d_1 \mid d_2 \mid \cdots \mid d_n$.

Equivalently,

$$M \cong F \oplus \bigoplus_{i=1}^n R/(p_i^{s_i})$$

where F is free of finite rank, $p^i \in R$ are (not necessarily distinct) prime elements (the *elementary divisors*), and $s_i \in \mathbb{Z}^{\geq 1}$.

2.2.2 Part 2

Since \mathbb{Z}^4 is a finitely generated module over the PID \mathbb{Z} , the structure theorem applies, and we can write $M \cong \mathbb{Z}^k \oplus \bigoplus \mathbb{Z}/(r_i)$ for some $k \leq 4$ and some collection r_i of invariant factors.

If we write $M \cong \mathbb{Z}^4/N$ where N is the submodule generated by the prescribed relations, then we can construct a homomorphism of \mathbb{Z} -modules $L: \mathbb{Z}^4 \to N$ which is given by the matrix

$$A_L = \left(\begin{array}{rrrr} 3 & 12 & 3 & 6 \\ 0 & 6 & 0 & 0 \\ -3 & 6 & -3 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

Then im $A_L \cong N$, and we can compute the Smith normal form,

$$SNF(A_L) = \begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

which shows that the invariant factors are 3, 6, 6, 0. We can thus write im $A_L \cong 3\mathbb{Z} \oplus 6\mathbb{Z} \oplus 6\mathbb{Z}$, and so

$$M \cong \frac{\mathbb{Z}^4}{3\mathbb{Z} \oplus 6\mathbb{Z} \oplus 6\mathbb{Z}} \cong \mathbb{Z} \oplus \mathbb{Z}/(3) \oplus \mathbb{Z}/(6) \oplus \mathbb{Z}/(6).$$

2.3 Problem 10

2.3.1 Part 1

An element $x \in M$ is torsion iff there exists some nonzero $r \in R$ such that rm = 0, or equivalently $\operatorname{Ann}(x) \neq 0$.

2.3.2 Part 2

Let $R = \mathbb{C}[x]$, $M = \mathbb{C}^2$, and

$$A = \left[\begin{array}{cc} 1 & 2 \\ 2 & 1 \end{array} \right] \in M_2(\mathbb{C}).$$

Then \mathbb{C}^2 is a module over $\mathbb{C}[x]$ with action given by

$$p(x) \curvearrowright \mathbf{v} := p(A)\mathbf{v}$$

Then M is cyclic as an R-module and generated by the basis vector $[1,0]^2 \in \mathbb{C}^2$, since

$$(tA+s)\begin{bmatrix} 1\\0 \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

$$\implies \begin{bmatrix} t & 2t\\2t & t \end{bmatrix} \begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} s\\0 \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

$$\implies \begin{bmatrix} t+s\\2t \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

$$\implies \begin{bmatrix} 1&1\\2&0 \end{bmatrix} \begin{bmatrix} t\\s \end{bmatrix} = \begin{bmatrix} x\\y \end{bmatrix}$$

which is a linear system of equations represented by an invertible matrix, which always has a solution. So every $\mathbf{v} \in \mathbb{C}^2$ is the image of some polynomial in A.

It is then easy to see that \mathbb{C}^2 is torsion as a module over $\mathbb{C}[x]$, since by Cayley-Hamilton we have $\mathrm{Ann}(A) = (\mathrm{minpoly}(A)) = (x^2 - 2x - 3)$, and so letting $p(x) = x^2 - 2x - 3$, we find that

$$\forall \mathbf{v} \in \mathbb{C}^2 \quad p(A) \curvearrowright \mathbf{v} = 0 \curvearrowright \mathbf{v} = 0.$$

2.3.3 Part 3

Suppose R is a domain, M an R-module, and let

$$T(M) = \{ m \in M \ni rm = 0 \text{ for some } r \neq 0 \in R \}.$$

Then T(R) is a submodule iff for all $r \in R$ and all $m, n \in T(M)$ we have $rm + n \in T(M)$.

So pick annihilators $a_m, a_n \neq 0 \in R$ where $a_m m = 0$ and $a_n n = 0$.

Since $a_m \neq 0$ and $a_n \neq 0$, the product $a_m a_n \neq 0$ because R is a domain.

Since $0 \in T(M)$, we can suppose $rm + n \neq 0$ (otherwise this is in T(M) trivially). Then

$$a_m a_n (rm + n) = a_m a_n rm + a_m a_n n$$

$$= ra_n (a_m m) + a_m (a_n n)$$

$$= ra_n 0 + a_m 0$$

$$= 0.$$

where the commutativity of r, a_n, a_m follows from the fact that these are all elements of R, which is a domain, and in particular is commutative. \square