Quantum clouds

http://tph.tuwien.ac.at/~svozil/publ/2019-Svozil-Chile-pres.pdf https://arxiv.org/abs/1808.00813

Karl Svozil

ITP/Vienna University of Technology, Austria svozil@tuwien.ac.at

WOE2019, Santiago, Chile, March 7-8, 2019

"Soft" obstacles associated with quantum progress

- Who listens to whom? "Pecking order," "attention economy,"
 Matthew effect in science (funding) [aka compound interest]"
 (DOI: 10.1126/science.159.3810.56 & 10.1073/pnas.1719557115)
- ▶ Reconstruction of (physical) meaning from detector clicks (eg controversy about "a posteriori quantum teleportation" [aka Kimble versus Zeilinger] DOI: 10.1038/29678 & 10.1038/29674) yield ambiguous or even unsustainable claims ("science marketing")
- Counterfactuals (Specker DOI 10.1111/j.1746-8361.1960.tb00422.x arXiv:1103.4537): Do "unperformed experiments have no results"? (Peres, DOI 10.1119/1.11393), "how can you measure a proof a [Kochen-Specker] contradiction?" (Clifton, IQSA meeting, personal communication, Prague 1995)
- ▶ Mind projection fallacy (Freud 1912, Jaynes 1989)

Methods & ways of exploring value (in)definiteness

- cloud structure of intertwined contexts/cliques/maximal operators/Boolean subalgebras is quantum,
- predictions about what happens within the cloud, and, in particular, at its endpoints Alice & Bob are classical

How is |**Bob**⟩ given |**Alice**⟩? True? False? Whatever? None?

True (1) implies whatever (quantum 50:50)

True (1) implies false (0)

True (1) implies true (1)

True (1) implies value indefinite (Abbott, Calude, KS 2015)

Strategies to obtain value indefiniteness/partiality

The scheme of the construction & proof of partiality of value assignments is as follows:

- (i) Find a logic (collection of intertwined contexts of observables) exhibiting a true-implies-false property on the two atoms **a** and **b**.
- (ii) Find another logic exhibiting a true-implies-true property on the same two atoms \mathbf{a} and \mathbf{b} .
- (iii) Then join (paste) these logics into a larger logic, which, given a, neither allows b to be true nor false. Consequently b must be value indefinite.

Extensions of value indefiniteness/partiality

Partiality/value indefiniteness can be extended to any vector **b** non-collinear and non-orthogonal to **a**: Alastair A. Abbott and Cristian S. Calude and KS, "A variant of the Kochen-Specker theorem localising value indefiniteness", Journal of Mathematical Physics, **56**(10), 102201(1-17),2015; https://doi.org/10.1063/1.4931658

For a (in some respects weaker) statement relative to global truth assignments, see Itamar Pitowsky's "Infinite and finite Gleason's theorems and the logic of indeterminacy", Journal of Mathematical Physics **39**(1),218-228, 1998; https://doi.org/10.1063/1.532334

History of contextual sets & elational properties realizable by two-point quantum clouds

if a is true classical value assignments	anectodal, historic	reference to utility
	quantum realisation	or relational properties
imply b is independent (arbitrary)	firefly logic L12	
imply b is independent (arbitrary)	eg, Cohen, 1989[pp. 21, 22]	
imply b false (TIFS)	Specker bug logic	Stairs, 1983 [p. 588-589],
	KS, 1965 [Fig. 1, p. 182]	Cabello et al, 1995 2018
imply b true (TITS)	extended Specker bug	KS, 1967 [Γ ₁ , p. 68],
	logic	Clifton, 1993 [Sects. II,III, Fig. 1],
		Belinfante, 73 [Fig. C.I. p. 67],
		Pitowsky, 1982 [p. 394],
		Hardy, 1992, 1993, 1997,
		Cabello et al, 1995 2018
iff b true (nonseparability)	combo of intertwined	KS, 1967 [Γ ₃ , p. 70]
	Specker bugs	
imply value indefiniteness of b	depending on types	Pitowsky, 1998,
	of value assignments	Abbott et al, 2012 2015

Epistemology/ontology of clouds of intertwined contexts/cliques/maximal observables/Boolean subalgebras

Logic/cloud does not determine the probability

As long as there is a separating set of two-valued states (Kochen-Specker, Theorem 0, DOI: 10.1512/iumj.1968.17.17004) there quasi-classical analogies: partition logics/Wright's generalized urn models/automaton logics; with classical probabilities (convex combinations of 2-valued states): KS arXiv:1810.10423.

Quantum realization in terms of the faithful orthogonal representation (Lovász, Saks and Schrijver DOI 10.1016/0024-3795(89)90475-8) and the Theta-body (Grötschel,Lovász and Schrijver DOI: 10.1016/0095-8956(86)90087-0)

Anecdotal examples of "exotic" probability measures satisfying Kolmogorovian classical probabilitie on local contexts

- Wright's (1978) dispersionless measure on the pentagon (or cyclic arrangements of odd contexts ≥ 3
- ► Godsil and J. Zaks (1988) Coloring the sphere (arXiv:1201.0486) stimulates Meyer's "Nullification" of the Kochen-Specker theorem (DOI: 10.1103/PhysRevLett.83.3751): use unit vectors with rational coefficients: dense but discontinuous (Havlicek, Krenn, Summhammer and KS, DOI: 10.1088/0305-4470/34/14/312)

Thank you for your attention!