

UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE

Wydział Matematyki, Fizyki i Informatyki

Kierunek: informatyka

Jan Bylina

nr albumu: 303827

Projekt oraz implementacja systemu gromadzenia rozproszonych danych z wykorzystaniem technologii LoRa

Design and implementation of the distributed data collection system using LoRa technology

Praca licencjacka napisana w Katedrze Oprogramowania Systemów Informatycznych Instytutu Informatyki UMCS pod kierunkiem dr hab. Przemysława Stpiczyńskiego

Lublin 2023

Spis treści

W	stęp			5
1	Roz	zdział -	— tutorial	7
	1.1	Sekcja	a A	7
	1.2	Sekcja	аВ	8
2	$\mathbf{W}\mathbf{y}$	korzys	tane narzędzia, technologie i protokoły	9
	2.1	Urząd	lzenia	9
		2.1.1	ESP32	9
		2.1.2	Rasberry Pi Pico	10
		2.1.3	STM32	10
	2.2	Język	i programowania i technologie	10
		2.2.1	C++ for Arduio	10
		2.2.2	C for STM32	10
		2.2.3	MicroPython for Rasberry Pi Pico	10
		2.2.4	Python for MQTT	10
	2.3	Proto	koły komunikacyjne	10
		2.3.1	MQTT	11
		2.3.2	LoRa	11
		2.3.3	HTTP	11
	2.4	Bazy	danych i pozostałe technologie	11
		2.4.1	InfluxDB 2	11
		2.4.2	Docker	11
		2.4.3	PlatformIO	11
3	Istr	iejące	rozwiązania	13
	3.1	LoRa	WAN	13
		3.1.1	The Things Network?	13
		3.1.2	ChirpStack?	13
		3.1.3	Loriot ?	13

	3.2 Artykuły	
4	Założenie i Implementacja	15
5	Wdrożenie i testy	17
6	Wnioski i perspektywy rozwoju	19
\mathbf{Sp}	ois listingów	21
\mathbf{Sp}	pis tabel	23
\mathbf{Sp}	pis rysunków	25
Bi	ibliografia	25

Wstęp

Tu treść wstępu WSTĘP WSTEP ——

6 SPIS TREŚCI

Rozdział — tutorial

1.1 Sekcja A

W tabeli 1.1 widzimy przykład tabeli z nagłówkiem i odnośnikiem. Tabele two-rzymy z nagłówkiem na górze oraz opcją [t]. Natomiast na rysunku 1.1 — widzimy przykład rysunku z nagłówkiem i odnośnikiem. Rysunki tworzymy z nagłówkiem pod spodem oraz opcją [b]. Rysunki powinny być w formacie PDF; jeśli to niemożliwe, to PNG (w wysokiej rozdzielczości); a ostatecznie JPG (jak tu). Jeśli chcemy sterować rozmiarem, to zwykle najwygodniej użyć width=... Ponadto możemy odwoływać się do bibliografii

Jeśli chodzi o wzory, możemy złożyć je na kilka sposobów, w zależności od potrzeb — w tekście: $e = \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^n$, wyniesiony do osbnej linii (warto zwrócić uwagę, że ten i kolejny są złożone nieco inaczej niż pierwszy):

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n,$$

a także wyniesiony z numerem:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n. \tag{1.1}$$

Do tego oostatniego możemy się odwołać: (1.1). No i oczywiście listingi — listing 1.1 pokazuje, jak zrobić to w miarę poprawnie...

sekcja 232323

Rysunek 1.1: Przykładowy rysunek

8 Rozdział — tutorial

Tabela 1.1: Przykładowa tabela

slkdjfslj	sdkskd	s;lkdsdk
slkjd	skljdsldj	skljdsjdsldj
$\operatorname{sljkdslkjd}$	woieupowiepoweiwiewp	weoiw eppowie wpo

1.2 Sekcja B

```
tab[0:n] = dem[nRows][nCols]; //?
pragma acc data copy(tab [0:n], slope [0:n])
```

Listing 1.1: Jakieś dwie linijki w C++ (z OpenACC)

Wykorzystane narzędzia, technologie i protokoły

2.1 Urządzenia

2.1.1 ESP32

ESP32 to jednoukładowy mikrokontroler, zaprojektowny i produkwany przez firmę Espressif Systems. Jego najważniejsze cechy to:

- energooszczędny procesor RISC o częstotliwości do 240 MHz
- $\bullet~520~\mathrm{kB}$ pamięci SRAM
- WiFi 802.11 b/g/n
- Bluetooth
- liczne interfejsy cyfrowe i analogowe, w tym:
 - 2x UART
 - 2x I2C
 - 2x SPI
 - -2x I2S
 - -2x CAN
 - -2x ADC
 - -2x DAC
 - -2x PWM
 - 2x LED PWM

- 2x Hall sensor
- 2x SDIO
- 2x Ethernet MAC
- -2x USB 2.0

[1]

• . . .

Powstało wiele wersji tego układu, rózniące się m.in. szybkością procesora, ilością pamięci flash, ilością pinów, ilością interfejsów cyfrowych i analogowych, a także możliwością pracy w trybie bezprzewodowym (WiFi) lub przewodowym (Ethernet)[2].

2.1.2 Rasberry Pi Pico

2.1.3 STM32

- 2.2 Języki programowania i technologie
- 2.2.1 C++ for Arduio

2.2.2 C for STM32

2.2.3 MicroPython for Rasberry Pi Pico

- 2.2.4 Python for MQTT
- 2.3 Protokoły komunikacyjne

2.3.1 MQTT

2.3.2 LoRa

2.3.3 HTTP

- 2.4 Bazy danych i pozostałe technologie
- 2.4.1 InfluxDB 2

2.4.2 Docker

2.4.3 PlatformIO

Istniejące rozwiązania

3.1 LoRaWAN

3.1.1 The Things Network?

3.1.2 ChirpStack?

3.1.3 Loriot ?

3.2 Artykuły

3.3 Wpisy w sieci i blogach

Założenie i Implementacja

Wdrożenie i testy

<u>18</u> Wdrożenie i testy

Wnioski i perspektywy rozwoju

Spis listingów

1.1	Jakieś dwie linijl	$ki \le C++$ (zΟ	penACC`) .															8
-----	--------------------	----------------	----	---------	-----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

22 SPIS LISTINGÓW

Spis tabel

1.1	Przykładowa	tabela															•	8	8
	·																		

24 SPIS TABEL

Spis rysunków

1.1	Przykładowy	rysunek																														7
-----	-------------	---------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---

26 SPIS RYSUNKÓW

Bibliography

- [1] Espressif Systems. ESP32 Datasheet. 2023. URL: https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf (visited on 04/16/2023).
- [2] Espressif Systems. ESP32 SoCs. 2023. URL: https://www.espressif.com/en/products/socs (visited on 04/16/2023).