Transaktionale Informationssysteme SoSe19

April 10, 2019

Contents

1 1. Vorlesung 2

1 1. Vorlesung

Foliensatz 1

Orga

- Vorlesung Di, 14:15-15:45, H11
- Übung Mo, 13-14
- Prüfung mündlich 16.06. und 22.10.

Motivation

Bei vielen, kurzen Transaktionen (Änderungen) darf die Datenbasis nicht zerstört werden

- Rollback
- Administration der Aktionen auf der Datenbasis
- $\bullet \Rightarrow Datenkonsistenz$

Konsistenz Bewahrung der Korrektheit Daten im Fehlerfall

Generizität Abstraktion von Szenarien

Paralleler Zugriff Beispiel 1.1 (Folie 12)

Naive Parallelverarbeitung sorgt zum Konflikt

Optimistischer Ansatz Laufen lassen, bis ein Fehler Auftritt

Pessimistische Ansatz Zugriff blockieren

Fehlerhafte Ausführung Beispiel 1.2 (Folie 13)

Prozess wird durch Fehler unterbrochen

Rollback Sollten nicht alle Aktionen ausführbar sein, nicht ausführen (Komplett oder gar nicht)

Verteiltes Datensystem Beispiel 1.3 (Folie 14)

Verschiedene Datenbestände nicht korrekt synchronisiert (zB Client- und Serverwarenkorb), Datensysteme sind verschieden und unahängig voneinander (heterogen und autonom)

Transaktionale Eigenschaften

- Synchronisierung von Client und Serverinformationen
- Verifikation des Abschlusses einer Transaktion

Beispiel 1.4 (Folie 19)

Gesamte Aktion muss erfolgreich sein: Schlägt eine Transaktion im Block fehl, wirf eine Fehlermeldung (zB Prüfungsanmeldung und Bestätigung)

Workflow Management

Spezifikation von Workflows

• Wer bekommt welche Rolle

Workflow

- Geschäftsprozess (zB Beschaffung, Reiseplanung)
- Langlebig

Aktivität Teile eines Workflows, die von verschiedenen Akteuren augeführt werden

Architekturen

Einfache Server Struktur (Folie 27) Data Server: Datendatendarstellung

- Gekapselt in Objekten (Request, Reply)
- Ungekapselt als Tupel

Föderierte Systeme

• Alte Systeme müssen mit neuen Systemen kooperieren

Transaktionsmanagement

ACID (Folie 30)

- Atomarität: Ganz oder gar nicht
- Consistenz: Konsistenzerhaltung, waren die Daten Konsistent vor der Transaktion, sind sie es auch danach
- Isolation: Transaktionen beeinflussen sich nicht gegenseitig
- Dauerhaftigkeit: Wenn Transaktion erfolgreich, so ist sie in der Datenbank vorhanden

Anforderungen and Transaktionsmanagement (Folie 31)

- Concurrency Control
- !nachgucken!

Aufbau (Folie 32

- \bullet Transaktionsmanagement sorgt für Synch der Zugriffe
- Datenbank-Cache: Lesen und Bearbeiten der Daten im DB-Cache. Schreiben geschieht später
- DB Seiten (Folie 37)