ANNUAL REPORT

2012 - 2013

DOA' DOCCLC ΔDICLOST ΛΟΙΡΟS BOLLY OF HEALTH AND SOCIAL SERVICES
RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK

Annual Report 2012-2013

April 1, 2012, to March 31, 2013

Table of Contents

Nunavik: A Vast Occupied Territory	4
The Region and Its People	
Inuit Health Indicators	
The Nunavik Health and Social Services Network	5
Nunavik Regional Board of Health and Social Services	6
Health Centres	6
Message from the Chairperson and the Executive Director	7
Board of Directors	10
Complaints Procedure to Improve Service Quality	13
Executive Management	14
Department of Planning and Programming	15
Message from the Director	
Ulluriaq	15
Ilusiliriniqmi Pigutjiutini Qimirruniq (Clinical Project)	16
Medical Affairs and Physical Health	
Mental Health, Suicide Prevention, Men's Health and Well-Being	18
Persons Lacking Autonomy, Elders and Rehabilitation	18
Family Violence and Sexual Assault	19
Community Organizations	20
Addictions	
Children-Youth-Families (CYF)	22
Department of Public Health	24
Message from the Director	24
Health Promotion	25
Monitoring the population's state of health	30
Activities under the Québec breast cancer-screening program (PQDCS)	31
Prevention and Protection	32
Department of Inuit Values and Practices	34
Message from the Director	34
Midwifery	34
Traditional Adoption	35
Brighter Futures	35
Wellness Committee	37
Prevention of Elder Abuse	37
Department of Administrative Services	38
Message from the Director	38
Financial Resources	39
The NRBHSS Operating Budget	40
Fixed Assets and Equipment	41

Human Resources	42
Information Systems	43
Department of Regional Human-Resources Development	45
Message from the Acting Director	
Principal Activities in 2012-2013	4.5
Training in Psychosocial Intervention	45
Interpreter Training	11
Inuit Management Training	46
Aboriginal Health Human Resources Initiative (AHHRI)	
Hiring	477
Priorities for 2013-2014.	47
Department of Out-Of-Region Services	48
Message from the Director	
MNQ Relocation Project	40
Insured/Non-Insured Health Benefits (INIHB)	

Nunavik: A Vast Occupied Territory

The Region and Its People

Nunavik, the Inuit region of Québec, is a vast territory that covers more than 500 000 square kilometres. Its geographic zones range from taiga to tundra and its landscapes vary from mountains to boreal forest to innumerable lakes and rivers to open sea.

There are different interpretations of the word *Nunavik*. For some, Nunavik means "the place where we have landed." In Tamusi Qumak's dictionary of Inuktitut, Nunavik means "a vast land occupied by animals."

Today, Nunavik is home to approximately 12 000 inhabitants, 90% of whom are Inuit, living in 14 communities dotting the coasts and rivers: Kuujjuaraapik, Umiujaq, Inukjuak, Puvirnituq, Akulivik, Ivujivik, Salluit, Kangiqsujuaq, Quaqtaq, Kangirsuk, Aupaluk, Tasiujaq, Kuujjuaq and Kangiqsualujjuaq.

Each community has its own municipal infrastructure and modern essential services that are adapted to the North. For example, houses and other buildings have running water, which is delivered daily by truck from local reservoirs.

There are no roads to Nunavik; travel and shipping to and from the region are by airplane and freight ship.

With the exception of Kuujjuaq, these small communities are dispersed along the 2 500 kilometres of shoreline that border Nunavik, some on the east coast of Hudson Bay, others on the coasts of the Hudson Strait and Ungava Bay. Kuujjuaq is located a little farther inland, upstream on the Koksoak River, directly at the tree line, straddling taiga and tundra. With its population of 2 000 inhabitants, it is the largest community of the region, which also makes it the administrative centre of Nunavik.

In spite of the distance that separates them from one another, the warm-hearted Inuit, who were once nomads, like to visit each other. However, since the Nunavik communities are not linked together by roads, the inhabitants must travel by aircraft, boat or snowmobile, depending on the season, to go from one village to the next. No matter how cold it can get, this makes for warm encounters.

As the majority of the Nunavik population is Inuit, Inuktitut is the language most used in the region. On the other hand, due to the federal government's predominant presence in the region's previous administration, the use of English is also widespread, especially in the workplace, and this more than French, although the latter is making considerable progress.

If you would like to know more about the region, visit the site: www.nunavik.ca.

Inuit Health Indicators

The health indicators for Inuit of Nunavik are substantially worse than for the rest of Québec: life expectancy is 16 years lower, infant mortality and hospitalization rates are four times higher and there are high rates of infectious diseases. The causes of the high mortality rate include malignant tumours, cardiovascular diseases, respiratory diseases, tobacco-related complications and alcohol-related accidents. Nunavik's suicide rate is also more than seven times higher than that of the rest of Québec: rates among youth between 15 and 19 years of age are 46 times higher and those among young adults between 20 and 24 years of age are 23 times higher.

As the cost of living is much higher in Nunavik due to transportation-related costs, an estimated 43% of Nunavik households live below the poverty line, compared to 17% for Québec.

Nunavik also suffers from a shortage of housing, with more than 500 families or individuals registered on a waiting list. Although the average number of persons per household is 4.72, it is not rare to see 10 to 12 persons living under the same roof. Moreover, although some dwellings have up to five or six rooms, a large number of them have fewer, which contributes to a higher number of persons per room in Nunavik (0.93) than in all of Québec (0.5).

The Nunavik Health and Social Services Network

The Nunavik health and social services network comprises the Nunavik Regional Board of Health and Social Services, the Inuulitsivik Health Centre (Hudson Bay) and the Ungava Tulattavik Health Centre (Ungava Bay). The basis for the development of health and social services in the Nunavik region was established by the *James Bay and Northern Québec Agreement* of 1975 (*JBNQA*) and its complementary agreements. The organization of health and social services remains under the auspices of the provincial system, but it is adapted to the region's characteristics.

Because of its population size and sociocultural characteristics, Nunavik is a privileged place where the curative and the preventive mix, a place where activities in promotion, prevention and protection are carried out very harmoniously and smoothly, as much in the health sector as in social services.

Nunavik Regional Board of Health and Social Services

For the *ministère de la Santé et des Services sociaux (MSSS*), Nunavik is administrative health region 17. The Nunavik Regional Board of Health and Social Services (NRBHSS) manages a budget of close to 179 million dollars, destined for health and social services for the populations of the 14 communities.

A board of directors of 20 members oversees the NRBHSS and consists of:

- 14 representatives, 1 for each community in Nunavik;
- the executive director of each health centre (Tulattavik and Inuulitsivik, two members);
- a member appointed by the board of directors of each health centre, selected from among the elected representatives of the villages (two members);
- a member appointed by the board of directors of the Kativik Regional Government (KRG);
- · the Executive Director of the NRBHSS.

Besides the functions directly connected with administration, the board of directors is responsible for identifying the priorities with regard to the population's needs in health and social services, priorities that are presented at the public information meeting held annually by the NRBHSS.

The law requires that the boards of directors of the regional board and the institutions consist of a majority of Inuit members.

Health Centres

Service provision is organized locally and by subregion—Hudson Bay and Ungava Bay—and is centred at two multi-role institutions, the Inuulitsivik Health Centre in Puvirnituq and the Ungava Tulattavik Health Centre in Kuujjuaq. These institutions assume the missions of general-and specialized-care hospital centres (15 beds per centre) as well as long-term care facilities.

The Ungava Tulattavik Health Centre works in partnership with the Municipality of Kuujjuaq and the Kativik Municipal Housing Bureau to maintain a 10-bed nursing home. There is also a day centre for the elderly in Kuujjuaq.

Other services provided include child and youth protection, with two departments of Youth Protection, one for each of the Ungava Bay and Hudson Bay coasts. Facilities include one regional 14-place rehabilitation centre in Salluit, two subregional 8-place group homes in Puvirnituq and Kuujjuaq and a CLSC (point of service) in each of the 14 communities.

The CLSC point of service in each community comprises a team of professionals from varying sectors and disciplines offering a range of health and social services to the population. The composition of the team varies from one community to another, based on the size of the community and the functions of the team.

Second-line health services in Nunavik are limited. Recourse to resources outside Nunavik is the norm for practically all specialized medical examinations and treatment. Some are offered by the two health centres, notably by visiting specialists, such as gynecologists, psychiatrists, orthopedic surgeons, etc. If adequate specialized or ultra-specialized services cannot be provided, the client is referred to service providers in the South under the McGill *RUIS* agreement or other agreements.

Patient services in Montréal serve as liaison and support in these cases of transfer, ensuring reception, transportation, lodging and interpretation services, as well as liaison with the northern institutions.

A five-bed, regional, intensive crisis centre, located in Puvirnituq, offers second-line mental-health services.

Message from the Chairperson and the Executive Director

Before beginning, we would first like to present our rationale, our mission, our objectives and our values, which may be stated as follows:

Our rationale:

The Nunavik population's well-being

Our mission:

Plan, organize, apply and evaluate programs to serve our population

Our objective:

Improve our population's state of health

Our values:

Autonomy, respect, participation, appreciation of our human resources and collaboration with our partners

These are the guidelines that direct our daily actions and which take concrete form through the following priorities, established at our last AGM, held in October 2012, for the one-year period from April 1, 2012, to March 31, 2013:

Ensure follow-up to the recommendations formulated by the advisory committees relative to the clinical projects:

- Youths;
- Mental health;
- Addictions.

Further, respect for Inuit values and practices is a key element in developing and providing health and social services in Nunavik.

In recent years, the NRBHSS has diligently worked on the MNQ relocation project. We experienced many delays in the past few months in completing this relocation project but hope to reach a happy conclusion in the coming year.

Offering training to our Inuit staff in the Nunavik health and social services network remains a priority to us. We have pursued our efforts in maintaining our training programs already in place and in implementing new ones. Our goal is to support the Inuit personnel and to ensure that the population has access to services in its own language.

In the last year, the NRBHSS briefly brought to the MSSS' attention the health and social services network's difficulties in remaining competitive with the other regional organizations when it comes to the working conditions offered to personnel hired locally in Nunavik.

Our commitment and devotion to our population entail respect and recognition of Inuit manpower. To consolidate our investments in the various training programs in existence, the NRBHSS would like to set up a working group in the coming months, in collaboration with the Direction des affaires autochtones, to examine the current regional disparities in order to enhance the programs, the objective being to attract and retain that manpower in our network. After that task, we will be able to undertake the necessary discussions with the authorities concerned for approval and setup of the measures retained.

Youth protection, rehabilitation services and several other issues remain at the core of our preoccupations. Our Strategic Regional Plan for 2009-2010 to 2015-2016 includes a series of measures to support these services. To ensure follow-up to the recommendations formulated by the advisory committees relative to the clinical projects, we will identify a new series of measures in the upcoming 2013-2014 Regional Action Plan to support, improve and consolidate services related to youth, mental health and addictions issues.

The NRBHSS is proud to participate in the Parnasimautik consultation process to address Nunavik's needs and priorities if the region is to host industrial development. Parnasimautik was begun in 2010 with the production of *Plan Nunavik* by representatives from most regional organizations. We all recognize that the region has experienced tremendous social, economic and cultural changes that had and still have a major impact on the well-being of the population. The consultation process that t egan in February 2013 should be completed by the end of 2013.

In closing, we would like to point out the extraordinary work performed by our human resources in health and social services and express our heartfelt thanks to all of them who respond daily to the needs of the population. We would also like to thank all of the region's organizations and partners for their support and collaboration.

Elisapi Uitangak Chairperson Minnie Grey Executive Director

Board of Directors

We would like to congratulate the new members elected during the past year, and we look forward to close collaboration toward attaining our common objective of improving the state of health of *Nunavimmiut*.

The board of directors of the Nunavik Regional Board of Health and Social Services (NRBHSS) appointed Minnie Grey as Executive Director of the NRBHSS. At the 88th session of the NRBHSS board of directors from December 4 to 6, 2012, the members unanimously adopted the selection committee's recommendation. The NRBHSS is proud to welcome Minnie Grey as the new Executive Director.

The members of the NRBHSS board of directors wish to thank Gilles Boulet, assistant to the Executive Director, who ensured the interim until Mrs. Grey assumed her duties on January 7, 2013. The members would also like to wish Mrs. Grey success in her new functions.

Composition of the Board of Directors, March 31, 2013

•	Elisapi Uitangak	Chairperson, Puvirnituq Representative				
•	Lucy Carrier Tukkiapik	Vice-Chairperson, Kangirsuk Representative				
•	Minnie Grey	Secretary, N	RBHSS Execu	tive Director		
•	Eva Weetaluktuk	Executive C	ommittee Mem	ber, Inukjuak	Represent	ative
•	Claude Gadbois	Executive Representati	Committee	Member,	UTHC	BOD

DIRECTORS

•	Lucassie Alayco, Sr.	Akulivik Representative
•	Mary Angutinguak	Aupaluk Representative
•	Kitty Annanack	Kangiqsualujjuaq Representative
•	Alasie Amgak	Kangiqsujuaq Representative
•	Jane Beaudoin	Inuulitsivik Health Centre Executive Director
•	Parsa Kitishimik	KRG Representative
•	Willie Kumarluk	Umiujaq Representative
•	Qumaq L. Mangiuk	Ivujivik Representative
•	Moses Munick	Tasiujaq Representative

两石

Tunu Napartuk Kuujjuaq Representative
 Lizzie Niviaxie Kuujjuaraapik Representative
 Charlie Okpik Quaqtaq Representative
 Illashuk Pauyungie Salluit Representative
 Madge Pomerleau Ungava Tulattavik Health Centre Executive Director
 Jusipi Qaqutuq Inuulitsivik BOD Representative

The following policies and by-laws were adopted in fiscal 2012-2013.

On August 30, 2012:

By-Law 12 Regulation respecting the procedure for electing the members of the boards of directors of the institutions on the territory of the Nunavik Regional Board of Health and Social Services

On February 28, 2013:

By-Law 13 Code of Ethics and Professional Conduct for Members of the NRBHSS Board of Directors

Directive Internal Management Directive for Preparing and Presenting Documents for the Board of Directors and Executive Management of the Nunavik Regional Proof of Health and Social Services February 28

Board of Health and Social Services, February 28

Policy Regional User Transportation Policy in the Nunavik Region

The board of directors is currently working on the revision of its by-laws to be approved during the coming year.

These by-laws and policies are available on our web site.

Boards of Directors of the Nunavik Health and Social Services Network

The Nunavik population was called to exercise its right to vote on October 25, 2012, for the election of one representative per village to the boards of directors of the Inuulitsivik and Ungava Tulattavik Health Centres. For their part, the workers of the health centres elected four persons from among their ranks at each institution.

Certain communities did not organize elections; consequently, the regional board's board of directors appointed representatives for those communities during its sessions of December 4, 2012, and December 11, 2012, in order to fill the vacant positions.

As for the regional board's own board of directors, each Nunavik community was asked to appoint a representative.

Board of Directors of the Regional Board

The members of the board attended nine regular sessions as well as the annual general meeting, adopting 56 resolutions. The Executive Committee held 12 meetings.

There were certain changes in the NRBHSS board of directors during the year.

- From April 2012 to January 2013, Gilles Boulet replaced Jeannie May, NRBHSS Executive Director and secretary of the board of directors.
- On January 7, 2013, Minnie Grey assumed her duties as the new NRBHSS Executive Director.

Below are the results of the latest election:

- Qumaq L. Mangiuk was reappointed representative of Ivujivik on December 4, 2012.
- Illashuk Pauyungie was reappointed representative of Salluit on December 4, 2012.
- Claude Gadbois was appointed representative of the Tulattavik Health Centre on February 26, 2013, replacing Lydia Nayome who had been representative since October 5, 2011.
- Alasie Arngak was reappointed representative of Kangiqsujuaq on December 4, 2012.
- Mary Angutinguak was appointed representative of Aupaluk on December 4, 2012, replacing Daisy Angutinguak who had been representative since December 7, 2009.
- Lucy Carrier Tukkiapik was reappointed representative of Kangirsuk on December 4, 2012.
- Tunu Napartuk was appointed representative of Kuujjuaq on December 4, 2012, replacing Bobby Snowball Sr. who had been representative since December 11, 2007.
- Kitty Annanack was appointed representative of Kangiqsualujjuaq on December 5, 2012, replacing Christina Baron who had been representative since January 24, 2006.
- Elisapee Uitangak was reappointed representative of Puvirnituq on December 4, 2012.
- Willie Kumarluk was reappointed representative of Umiujaq on December 4, 2012.
- Moses Munick was appointed representative of Tasiujaq on December 4, 2012, replacing Annie Kauki Munick who had been representative since February 20, 2007.
- Lizzie Niviaxie was reappointed representative of Kuujjuaraapik on December 4, 2012.

- Charlie Okpik was appointed representative of Quaqtaq on December 5, 2012, replacing Louisa Kulula who had been representative since December 7, 2009.
- Parsa Kitishimik was appointed regional councillor by the Kativik Regional Government on December 4, 2012, replacing Kitty Annanack who had held that position since April 20, 2010.
- Jusipi Qaqutuq was appointed representative of the Inuulitsivik Health Centre on February 26, 2013, replacing Josepi Padlayat who had been representative since June 23, 2009.
- Lucassie Alayco Sr. was appointed representative of Akulivik on December 4, 2012, replacing Johnny Qaqutuk who had been representative since April 20, 2010.
- Eva Weetaluktuk was reappointed representative of Inukjuak on December 4, 2012.

The following completed the board:

- Madge Pomerleau, Executive Director, Ungava Tulattavik Health Centre;
- Jane Beaudoin, Executive Director, Inuulitsivik Health Centre;
- Gilles Boulet, Acting Executive Director, NRBHSS, until January 7, 2013, when Minnie Grey assumed her duties as Executive Director.

We regret the loss of one active member of our board, Christina Baron, representative of Kangiqsualujjuaq since 2006, who passed away in December 2012.

Complaints Procedure to Improve Service Quality

The regional board is actively working at establishing the structure enabling the management and promotion of the complaints system in the region. In collaboration with both institutions, we must identify a resource to assist and support *Nunavimmiut*, as needed, who wish to file complaint with an institution of the region, the regional board or the ombudsman, as well as those whose complaint has been forwarded to the institution's council of physicians, dentists and pharmacists in accordance with the provisions of section 58.

For the users on the Ungava coast, the position of service-quality and complaints commissioner is currently vacant at the Ungava Tulattavik Health Centre. For users on the Hudson coast, complaints may be sent to Josi Nappartuk of the Inuulitsivik Health Centre. We invite the population to consult the institutions' web sites for more information.

Executive Management

Emergency Prehospital Services and Emergency Measures

Emergency Prehospital Services

In August 2012, the first-response team of the northern village of Puvirnituq officially went into service. A full training session and two complementary training sessions were organized specifically for the first responders of this village, the goal being to ensure proper implementation and run-in of the service through development of the interveners' skills. Out of concern for a smooth transition, the nurses of the Inuulitsivik Health Centre supported the first responders' actions for a number of months after implementation of the service. The first-response team of the municipality of Puvirnituq is now autonomous.

The training program provided in all the communities continued this year with a total of 5 complete sessions and 17 complementary ones for a total of 10 weeks of training spread out over the year.

Emergency Preparedness

Interrupted Telephone Service on the Hudson Coast

Instances of interrupted telephone service and recurrent congestion resulted in major challenges, particularly in certain points of service on the Hudson coast. Efficient and reliable telephone-communications systems are of capital importance to ensure the public's safety in case of emergency. Efforts have been deployed to draw up an accurate profile of the situation.

Representations were made with the Regional Emergency-Preparedness Agency (REPA Nunavik) and a telephony committee was set up to find levers and solutions, as this issue affects more than just the health network. The telephony committee maintained close contact with the service supplier to ensure rapid intervention when technical problems arise. The committee also made high-level representations with the supplier to deal with problems of congested telephone lines. Guidelines were proposed for the REPA to make that agency aware of the situation. Although the occurrence of telephony problems dropped noticeably on the territory after a visit to all the villages by the supplier's technical team, other upgrades need to be carried out to improve the reliability of the existing telephone lines. Collaborative ties with the telephone-service supplier will be maintained to ensure follow-up to the efforts.

Department of Planning and Programming

Message from the Director

I was proud to join the Planning and Programming team in September 2012. My arrival coincided with the completion of efforts leading to the first recommendations under the clinical projects. This innovative process imposed a change in methods on the planning and organization of services. The orientation, deployment, validation and evaluation of health-care services in Nunavik must now undergo consultation among the client groups, opinion groups and partners of the health network. Thus, it is in that perspective that I intend to carry out the tasks assigned to the Department of Planning and Programming.

Yoan Girard

Ulluriaq

After negotiations with the MSSS, we were obliged to adjust the budget for the Ulluriaq Adolescent Centre, going from a total of \$3.2 million to \$2.1 million annualized without affecting the quality and quantity of the services offered directly to this clientele. In collaboration with the Department of Administrative Services and the MSSS, we began the process of planning the construction of a new building in Inukjuak. We therefore designed a plan for relocating this resource early in 2015. With the delays caused by a new construction, we were required to renew our service agreement with Boscoville 2000 to maintain the availability of the buildings until the move to Inukjuak. Under that agreement, we have included that partner's expertise in training for our future employees in Inukjuak, training that should begin as early as the summer 2014.

RACRS

We reactivated the regional advisory committee on rehabilitation services for youths in difficulty (RACRS), which enabled us to recommend and validate the priorities identified in the mission of this regional service operating under the authority of the Ungava Tulattavik Health Centre.

Human Resources

For a little more than a year, the team responsible for the service program for children, youths and families was incomplete, in spite of the importance of the issues in this portfolio. I therefore launched a process to hire an advisor and an officer. Those positions were filled at the end of 2012.

I would like to take the opportunity to thank all members of the department for their involvement in and commitment to the ongoing improvement of health services in Nunavik.

Ilusiliriniqmi Pigutjiutini Qimirruniq (Clinical Project)

A Meaningful Name for the Clinical-Project Process

During 2012-2013, the advisory committees agreed on a meaningful term in Inuktitut for the clinical-project process: *Ilusiliriniqmi pigutjiutini qimirruniq*. The term designates a procedure of revision of health care and social services in view of improving them.

Formulation and Approval of Recommendations

The winter, spring and summer of 2012 were devoted primarily to the formulation of recommendations by the working committees. In the fall 2012, the advisory committees revised and approved the recommendations submitted to them by the four working committees:

Adoption of the First Series of Recommendations by the NRBHSS BOD

On December 4, the three chairpersons of the advisory committees submitted the recommendations approved by their respective committees to the NRBHSS board of directors for adoption. After revision of those recommendations, the board members unanimously approved all the measures. The adoption of the measures proposed by the advisory committees marks a crucial step successfully completed under the clinical project.

Funding for Recommendations and Planning the Deployment of Measures

Since January 2013, the NRBHSS has been planning the funding and implementation of the measures under the clinical project. Those efforts involve negotiating with the health centres and other partners of the health and social services network how the development funds, made available to the region under an agreement with the Government of Québec concerning the strategic regional planning for 2009-2010 to 2015-2016, will be allocated for regional priorities.

Another Busy Year Ahead

The year 2013-2014 promises to be a busy one for the persons and organizations involved in the clinical project. The NRBHSS and the partners concerned will see to implementing certain measures adopted this year. To make sure those measures are deployed according to the spirit in which they were designed, the advisory committees will be involved in the process of monitoring the implementation of the recommendations. Further, the working committees and the advisory committees will continue their work at formulating recommendations relative to the

MA

priorities identified in 2010 by the steering committee of the Nunavik health and social services network.

Finally, the initial activities under the campaign for information and public consultation will begin in April 2013. That campaign aims at informing the Nunavik population on the changes made to the network's functioning as well as inciting greater involvement among the region's various actors in the process.

Medical Affairs and Physical Health

In accordance with ministerial and regional priorities, the team's mission is to plan, coordinate and ensure access to service programs in physical health, notably in front-line activities such as emergencies and general, specialized and ultraspecialized care (*RUIS*). Several events marked the year 2012-2013 in medical affairs and physical health.

First, the region welcomed four new physicians: two for the Ungava coast and two for the Hudson. We thus ended the year with a total of 25 physicians practising on the territory. Besides those resources, telehealth enabled us to meet varied needs from the front line to the third line (adult and pediatric). The services include general and specialized consultation, case discussion, post-hospitalization follow-up, follow-up after community visits and ongoing training.

Early in 2013, a development plan for the North was submitted to the MSSS. That plan reflects our region's needs and particularities.

Finally, a range of studies over the past few years revealed to the general public and the actors working in the health sector that Nunavik faces an alarming rise in psychiatric disorders. We thus deemed it pertinent to create an opportunity for meeting and discussion by organizing a colloquium on mental health for the interveners involved; a decision was made to hold that event in Nunavik in order to reach the population directly. The title of "New Landmarks in Mental Health" seeks another perspective on the situation, by highlighting discussions on solutions through the creation of an opportunity for meeting where everyone can speak out and be heard. Moreover, the colloquium was an opportunity to bring together all the permanent physicians working in Nunavik. During the weekend of the event, the training activity on mental health initiated by the Regional Department of General Practice (RDGP) reached more than 100 health professionals, including some 20 permanent physicians of Nunavik, 60 network interveners, 12 speakers and more than 20 participants who attended through videoconference and Webcast. The various conferences are also offered by the centre for distance training and teaching of McGill's northern health program.

To cap the activity, an election was held for a new executive committee of the RDGP, thus breathing new life to the team. The committee will contribute to optimal management of the various regional portfolios and appointed Dr. François Prévost head of the RDGP for a new term of two years.

Mental Health, Suicide Prevention, Men's Health and Well-Being

Clinical Projects

- Continuation of work within the advisory committee on mental health
- Continuation and completion of the work within the working committee for the improvement of resources in mental health
- Continuation of the work of the working committee on suicide prevention

Mental Health

• The training activities for the workers of the residential resources in mental health continued. Two training sessions of two days each were offered by the Douglas Hospital at each resource: the crisis centre in Puvirnituq, the reintegration centre in Inukjuak and the supervised apartments in Kuujjuaq. The goal of this ongoing training is to present the basic concepts of mental health and offer the personnel members basic functional tools in order to support them in their work. Further, a psychoeducator was hired by the resource in Kuujjuaq.

Suicide Prevention

- Support was provided for the participation of youths and professionals in the "Dialogue for Life" event, a conference organized annually by the First Nations and Inuit Suicide Prevention Association of Québec and Labrador.
- An ASIST training session was offered in Kuujjuaraapik at the request of the first responders, grieving workshops were held on three occasions and the team of Inuit trainers met twice to become familiar with material in Nunavut Inuktitut and refresh their knowledge.

Persons Lacking Autonomy, Elders and Rehabilitation

Home and Community Care

Persons of all ages lacking autonomy benefitted from 20,178 hours of home- and community-care services. This continues the rising trend in recourse to services observed every year.

Elders

Development of New Elders' Homes in Nunavik

This year concluded the first phase of the project. The consultant hired by the NRBHSS worked closely with committees and elders of four communities to establish the type of home and the

79.78

location that would meet their needs. The plans were designed with an architect and the required construction funds were identified. The consultant collaborated with the *SHQ*, the KMHB, the KRG and Makivik to secure construction funds.

The second phase of the project is the planning stage.

Regional Campaign: World Elder Abuse Awareness Day

This year marked the fourth year of awareness-raising activities. A record number of 12 communities joined the campaign. Radio shows, feasts and games were organized for the elders and other members of their communities.

Regional Campaign to Celebrate International Elders' Day

For the third year, the communities participated in this campaign, and in increasing numbers: five communities took part in celebrations this year.

Projects for Day-Center Activities for Elders

The development of day-centre programs for elders in various communities began. The following villages expressed interest in organizing day centres for their elders: Kangiqsujuaq, Kangiqsualujjuaq, Umiujaq and Kangirsuk. Four project proposals were submitted along with applications for funding.

Family Violence and Sexual Assault

The development of services for victims of violence and sexual assault was at the core of the work and took concrete form through the organization of training for interveners of the regional health and social services network as well as the partners with intervention responsibilities. Several training activities were carried out in relation to deployment of the project for the prevention of sexual assault *Good Touch / Bad Touch*.

This project includes activities for front-line interveners, school personnel and other local actors, as well as community members and children from preschool to primary school. It was initiated in 2011 in Nunavik in close collaboration with the Department of Public Health and thanks to partnerships with the UTHC, the KSB and the KRPF as well as the financial participation of the KRG. During 2012-2013, the project was applied twice in Kuujjuaq, in May 2012 and in February 2013, and once in Quaqtaq in November 2012.

The contribution of the Department of Planning and Programming lay particularly in organizing the following activities:

- Hiring and training of Inuit facilitator-advisors: In the fall 2012, seven Inuit facilitatoradvisors were hired to participate in the development, planning, deployment and evaluation of the Good Touch | Bad Touch project. A five-day training session was provided for them in collaboration with Pauktuutit Inuit Women of Canada. The objective was to create an awareness workshop on the problem of sexual assault based on the Hidden Face tools and to train the participants so that they in turn could provide the training.
- Orientation meetings and training activities for front-line interveners, school personnel and other local actors: Particular attention was paid to strengthening local capacities to respond adequately to reported cases and to offer emotional support services appropriate to the victims and their families. Those activities were preceded by the development or adaptation of tools destined to reinforce capacities of detection and intervention. During 2012-2013, the following activities were carried out:
 - training provided in Kuujjuaq by the Centre d'expertise Marie-Vincent on psychosocial intervention among victims under the age of 12 years (12 participants);
 - o seven orientation meetings (more than 100 participants) enabling clarification of the roles of and the services offered by the interveners as well as reinforcement of mechanisms for collaboration and referral;
 - o three one-day awareness workshops on the problem of sexual assault (roughly 35 participants), aimed at strengthening capacities to screen and intervene;
 - three awareness workshops on the problem of sexual assault combined with a healing workshop, each lasting two days (more than 40 participants), aimed at strengthening capacities to screen and intervene and at encouraging victims to begin or continue their path to healing;
 - two training activities specific to women's shelters, each lasting three days, on intervention among victims of sexual assault: for the Initsiak Women's Shelter in Salluit, May 2012, and the Tunngasuvvik Women's Shelter in Kuujjuaq, September 2012.

Community Organizations

The NRBHSS actively supports the development of community organizations, which exist to respond to the needs they have identified among the most vulnerable members of the community.

MA

This year, the NRBHSS distributed the entire budget under the program to 11 organizations as follows:

Community organization	Location	Mandate	2012-2013 subsidy
Tunngasuvvik Women's Shelter	Kuujjuaq	Subregional	\$628 000.00
Initsiak Women's Shelter	Salluit	Subregional	\$491 076.00
Agapirvik Women's Shelter	Inukjuak	Subregional	\$188 984.00
Qilangnguanaaq Elders' Home	Kangiqsujuaq	Subregional	\$169 986.00
Tussajiapik Elders' Home	Kuujjuaq	Subregional	\$238 984.00
Sailivik Elders' Home	Puvirnituq	Subregional	\$138 984.00
Isuarsivik Treatment Centre	Kuujjuaq	Regional	\$588 984.00
Ungava community residence	Kuujjuaq	Regional	\$338 984.00
Uvattinut community residence	Puvirnituq	Regional	\$88 984.00
Saturviit Women's Association	Inukjuak	Regional	\$38 984.00
Qajaq Network	Kuujjuaq	Regional	\$188 000.00
TOTAL			\$3 099 950.00

In addition to providing funding, the NRBHSS supports the organizations in their daily functioning and has offered training to improve their services. With the support of the KRG and the CESO (Canadian Executive Service Organization), this year the regional board offered training to 11 community organizations of Nunavik.

Addictions

In 2012-2013, the regional addictions committee guided the development of addictions services, supported by working committees that focussed on training and FASD prevention and services. Recommendations were provided for the advisory committee and were then adopted by the NRBHSS board of directors.

The main focus is to place priority on the development of expertise and skills in addictions prevention and intervention and develop community-based resources. Furthermore, the provincial training program for front-line addictions workers was adapted to the reality of Nunavik in collaboration with NI and Institut Universitaire Dollard-Cormier (IUDC).

Addictions training in English is now available to the front-line workers. However, the Inuktitut translation is presently in the revision stage.

Addictions training delivered in Nunavik:

- · first session, Inukjuak, January 28 to February 3, 2013: six participants trained
- · second session, Inukjuak, February 27 to 28, 2013: five participants trained
- third session, Kuujjuaq, March 11 to 12, 2013: four participants trained (no Inuktitut training)
- fourth session, Kuujjuaq, March 18 to 19, 2013: five participants trained (no Inuktitut training)

Nineteen participants completed their training and two repeated the program. Addictions training will not be delivered in Inuktitut until revision of the Inuktitut version is complete. A language committee was created to ensure the terminology of the Inuktitut version is uniform and to create an addictions lexicon.

Children-Youth-Families (CYF)

The CYF team works closely with the institutions and community organizations to ensure that the organization of services for youth aged 0 to 18 years and their families responds to the needs, social realities, culture and values of the target clientele.

Under the clinical-project process, priorities were established among the services to be improved or developed. In the youth and family portfolios, the regional priorities identified were the following:

- reinforcement of a regional program on parental support and development of a network of community resources to support families;
- development of mechanisms to involve the community in the process of youth protection;
- development of a program for alternative-justice measures for young offenders.

Regional Table on Youth Services

In January 2013, the regional table on youth services was reactivated and two meetings have been held since. The table enables the two DYPs and the regional rehabilitation services to establish their areas of collaboration and thus clarify the grey areas in order to ensure proper functioning of their respective services. The CLSC children-youth-families services will eventually be invited to participate at this table. For the moment, much work at structuring and supervision is required between the DYPs and the regional rehabilitation services. We need to keep in mind that the table's goal is to establish a continuum of services and in that way establish clear and accessible service corridors, thus the importance of integrating the CLSCs of both coasts.

Community Involvement in the Process of Youth Protection

When the second-line officer joined the team in February 2013, the committee on community involvement in the process of youth protection was also reactivated. Two meetings have been held to date with all the individuals who were members of this committee in 2011. The mandate and objectives were discussed and a plan of action was designed for the coming year. The second-line officer is responsible for this portfolio and provides close support for the Chairperson. We are involving the MSSS in this issue, notably relative to the specific program for youth protection for aboriginals, in accordance with section 37.5 of the YPA.

2013-2014

The CYF team has designed a working plan for the coming year (2013-2014); that plan is directly related to the clinical project as well as the regional priorities.

The recommendations of the Qiturngavut Committee were submitted to the persons responsible for CYF services at both CLSCs, and discussions were held to assess the needs and the favourable conditions to set up for implementation of a program on neglect. Further discussions will be necessary on the conditions to privilege for the setup of such a program at both CLSCs according to the specific needs of the targeted resources.

Department of Public Health

Message from the Director

The personnel of the Department of Public Health were active in several portfolios in 2012-2013: surveillance, prevention, health protection and health promotion. Some of the year's highlights:

- Publication of the first module of the Nunavik Health Profile, Demographic and Socioeconomic Conditions, which clearly illustrates our mandate of providing regional decision makers—as much in the health and social services sector as in other sectors with the information necessary to decision making relative to improving the state of health of our region's population;
- A major outbreak of tuberculosis in a community on the Ungava coast which widely mobilized our resources and those of our partners in health services and which led us to a serious examination of our actions in this area;
- Start of the implementation of the program to manage immunizing agents, aimed at a
 more efficient management of our vaccines and indicative of an orientation to acquire
 computerized tools to improve our actions relative to protection;
- Deployment of the Healthy Schools approach through multiple interventions in the schools, aimed at creating an environment conducive to the acquisition of healthy lifestyles, such as the Drop the Pop Challenge, Swiss stability balls, Ma cour: un monde de plaisir! [My schoolyard: a world of pleasure], the Breakfast Club program;
- Various training workshops on important health topics such as nutrition and sexual health.

Partnership and collaboration are important concepts for us. We count not only on the collaboration of health and social services but also on the support and leadership of other sectors in our society, such as education, community organizations, regional and municipal leaders, economic sector, among others, which have an influence on the decisions concerning factors that are important to our population's health.

Dr. Françoise Bouchard

FRR

Health Promotion

Health promotion is the process of enabling people to increase control over, and to improve, their health (Ottawa Charter). It is a major component of public-health actions centred on five principal strategies that respectively target: 1) individuals, 2) communities, 3) environments, 4) health centres and 5) policies. Out of concern for carrying out effective actions adapted to the population's needs and particularities, the Department of Public Health (DPH) relies on a review of literature (updated regularly) with revealing data on the main issues in public health.

Thanks to the expertise of its officers in matters of nutrition, physical activity, smoking, diabetes and sexuality, the DPH ensures the planning, realization and follow-up of a multitude of actions aimed at promoting healthy lifestyles. For two years now, the DPH has also devoted part of its efforts to the promotion of psychosocial health and well-being through a permanent resource tasked with collaborating with various actors in the sector on the reduction of violence, addictions and suicide in Nunavik.

Moreover, in accordance with the Healthy Schools approach, coordinated by an officer of the department in close cooperation with the KSB, the DPH supports a range of school-based projects at the local and regional levels. The objective of the Healthy Schools approach is to assist with the acquisition of competencies and the development of behaviours that foster academic success, health and well-being through the creation of supportive school environments and the adoption of healthy school policies. For 2012-2013, the main priorities identified by the commissioners were to improve the eating habits of school-age children by concentrating on demand for and availability of traditional foods and to reduce bullying among students, namely by supervising the recess periods.

The following section briefly lists the principal activities in health promotion headed by the DPH relative to the five strategies mentioned above.

- 1) Acquiring individual aptitudes, i.e., individual and social development through information, health education and honing of skills essential to a healthy life.
- Inuk to Inuk (eighth edition)
 This year, four communities (Kangiqsujuaq, Tasiujaq, Umiujaq and Salluit) were targeted by Inuk to Inuk, a three-component project aiming at preventing diabetes in the population and at counselling diabetic persons. Firstly, a conference in Inuktitut was held for secondary students on the importance of adopting a healthy lifestyle to maintain optimal health. Secondly, a radio show was broadcast to inform the population about protective and risk factors for diabetes. Thirdly, consultations were held with diagnosed diabetic persons at the

CLSC to discuss their health state and habits.

Come, let us enjoy life together!

Considering the increasing difficulty in starting and completing the various steps of Inuk to Inuk with the same partners due to the high staff turnover, the DPH decided to replace it with Come, let us enjoy life together!, a project more adapted to students which focusses on healthy habits. The organization and planning of the promotional tour of the schools will begin next fall, and for 2013-2014, Andréa Brazeau and Julia St-Aubin from Kangiqsualujjuaq will be the spokespersons.

• Drop the Pop Challenge (sixth edition)

In the context of the challenge, 10 schools submitted projects promoting healthy eating and regular physical activity. The distribution of promotional items remains very popular, specifically the sweaters worn by persons of all ages, from kindergarten children to grandmothers.

• (Stay) 'Quit to Win' Challenge (tenth edition)

This six-week yearly challenge organized for smokers aged eight and up was held again this year throughout Nunavik. A total of 204 participants (123 adults and 81 youth) started a smoking-cessation process and 16 of them succeeded. Again this year, various organizations generously sponsored the challenge and numerous local partners (community liaison wellness workers, school principals, nurses, etc.) collaborated in its promotion within the schools and communities.

Nutrition-education activities

The DPH supported various projects promoting healthy eating and developing knowledge and skills on how to select and prepare healthy store-bought and traditional food. Targeting different client segments (youth, adults and elders), nutrition-education and cooking activities were organized in many communities. Information booths were also set up in public places (mainly in schools and food stores) to promote healthy nutrition as a protective factor against various chronic diseases. These activities allowed participants to discover and taste various fruits and vegetables and to learn how to prepare healthy snacks. As well, two regional training sessions (one for each coast) on healthy nutrition and cooking were held in Kangiqsujuaq and Inukjuak in March 2013.

Yoga workshops in school

Yoga workshops were presented at Ulluriaq School in Kangiqsualujjuaq as part of a pilot project. The workshops focussed on stress and depression management. Lesson material and a DVD were developed for the two exercise sequences presented. These activities were made possible by the participation of the Northern Lights Yoga group.

Road-safety promotion tour

The DPH collaborated with regional organizations such as the KRG and the KSB on organizing and launching a regional tour to promote road safety among the Nunavik population, with various activities adapted to the targeted groups. Among those, awareness

activities presented in schools during the winter and spring 2013 were well received, especially the activities using a pedal go-kart to prevent risky driving behaviour.

• School program to prevent sexual abuse (Good Touch / Bad Touch)

During the past year, the *Good Touch / Bad Touch* program was applied with children from kindergarten to primary school at Pitakallak and Jaanimmarik School (Kuujjuaq) and Isummasaqvik School (Quaqtaq). A total of roughly 335 children participated in three workshops (lasting from 30 to 45 minutes each) held in Inuktitut by seven experienced instructors. In view of supporting learning within the family environment, educational tools (sweater, stuffed animal, storybook, colouring book, poster) were given to each participant at the end of the workshops.

• Information sessions on child sexual abuse

Eight information sessions and three community gatherings were organized in Quaqtaq and Kuujjuaq for parents and interveners in view of improving knowledge on protective factors against child sexual abuse. Held in Inuktitut and headed by community leaders, those activities recalled and highlighted the role of all in the creation of healthy and safe communities.

· Communication campaigns on various issues in public health

To raise public awareness on certain major health issues in the region, several communications tools were used or distributed. Depending on the problem, the messages were announced locally, regionally or provincially through various media (mass mailing, displays, posters, radio, newspapers, Internet, telephone, promotional items, etc.).

2) Strengthening community action, i.e., concrete and effective community action in setting priorities, making decisions, planning strategies and implementing them to achieve better health.

• Inuusitta Makitjuumigiaqarnigna conference

A regional three-day conference on crime prevention through social regulation and empowerment was organized in collaboration with the KRG and Makivik Corporation. After a series of workshops on diverse issues and challenges (health, education, employability, justice, social services, etc.), the participants met per community in order to develop a local plan of action. A total of about 100 *Nunavimmiut* took part in the event, notably decision makers of the principal organizations of the region and certain delegates of each of the 14 communities. At the end of the conference, a regional charter was drawn up.

· Support for themed events in public health

Several Nunavik communities received the DPH's support in organizing local activities aimed at highlighting one of the themed events in the health-promotion calendar. Depending on the event and the availability of resources, interested partners received support of an organizational, financial or material nature, which enabled a variety of activities such as walks, public speeches, themed discussions, radio shows, etc.

• Support for local initiatives in community mobilization

Thanks to the generous contribution of Health Canada (notably in the context of the ADI (Aboriginal Diabetes Initiative) and NNC-NEIP (Nutrition North Canada – Nutrition Education Initiatives Program)) and in collaboration with its principal institutional and community partners, the DPH was able to support the application of initiatives aimed at mobilizing the population around local issues and supporting their collective appropriation. For example, the members of several communities participated in physical-activity sessions, community meals, collective kitchens and so forth.

3) Creating supportive environments, i.e., creation of living, working and recreational conditions that are safe, stimulating, satisfying and enjoyable and which are a source of health for people.

Swiss stability balls in classes

The development of evaluation and promotional tools for using Swiss stability balls in classes were carried out in 2012-2013 in partnership with the health and physical-education academic counsellor at the KSB. Some teachers are now giving students with behavioural or attention problems the option of spending some or all of their class time sitting on a stability ball. During the 2013-2014 academic year, there will be emphasis on incorporating daily physical activity in class, with help from the academic counselling team.

• Ma cour : un monde de plaisir ! [My schoolyard: a world of pleasure]

Considering that bullying can be reduced by better supervision of the school recess periods, an adapted version of the *Ma cour : un monde de plaisir !* kit was presented in a few schools this year according to the needs. Follow-up activities will be held during the 2013-2014 school year. School-based activities aiming to prevent bullying among schoolchildren are integrated into the Positive Behavior Intervention Support program in connection with the Compassionate Schools approach promoted by the KSB.

Healthy nutrition environments in stores, schools and child-care centres

In order to promote healthy eating and support food security among the different population groups in their respective life environments, the DPH realized various interventions in collaboration with private and public institutions. These interventions include improvement of the nutrition environment in stores based on the availability and display of healthy food products in seven communities (expansion planned in 2013-2014), support for the nutrition program in child-care centres, support for the Québec Breakfast Club program in four schools and purchase of cooking equipment for some schools and child-care centres.

4) Reorienting health services, i.e., creation of a health-care system that best serves the social, political, economic and environmental interests relevant to health, offering not only clinical and curative services but also services centred on all of the individual's needs while respecting cultural needs.

79.74

Diabetes screening and case management

As in previous years, the IHC and the UTHC were required to plan, carry out and follow up screening for diabetic retinopathy in Nunavik. In total, 218 of 322 diagnosed diabetic persons were examined. In six communities on the Hudson coast, the nurse assigned to the diabetes program accompanied the optometrist and took advantage of the opportunity to meet and inform the clientele about the possible complications linked to diabetes. In addition, a nutritionist consultant visited diabetic persons to answer their questions, a much appreciated service that should be continued in 2013-2014 on the Hudson coast.

• Training for front-line workers and other stakeholders

In order to reinforce the local capacity to promote health among the population, the DPH collaborated with trained facilitators from different organizations on developing specific training programs and workshops, mainly on sexual health and child sexual abuse. In total, approximately 100 professional and nonprofessional workers from various sectors (health centres, schools, community organizations, etc.) reinforced their education and intervention skills.

· Regional working committees and cross-sector orientation meetings

In order to reinforce concerted efforts in health and well-being, develop a shared vision of health promotion and enable large-scale projects, the DPH coordinated the regional working committee on the prevention of sexual abuse and participated in the working committee on suicide prevention. Further, in view of better promotion of the existing resources in the region, improved cooperation between services and greater collaboration between the interveners serving the same clientele, several discussions and orientation meetings on the respective roles and mandates were organized with local and regional partners (municipalities, health centres, KRG, KSB, KRPF, etc.).

• Distribution of educational material among health professionals

To equip the network professionals in their health-promotion tasks, educational material dealing with various health issues was sent to them on request: posters, pamphlets, videos, electronic presentations, interactive games, etc.

- 5) Building healthy public policy, i.e., support from policy makers in all sectors and all levels in the adoption of health, financial and social policies that foster health, equity and the creation of healthy environments (e.g., legislative, financial and fiscal measures, organizational change).
- Raising awareness of the public and decision makers relative to psychosocial issues
 Through various means (e.g., working committees, workshops, conferences), the DPH contributed to raising the awareness of the public and decision makers relative to certain psychosocial issues in Nunavik (violence, sexual abuse, substance abuse, suicide) by

informing them of risk factors and protective factors in view of having healthy public policies adopted locally and regionally.

Raising awareness of school principals and personnel relative to the Healthy Schools approach

During the KSB's one-week regional training, the Healthy Schools approach and various public-health programs were presented to the school principals and staff members through different activities (information booths, displays, short presentations, interactive sessions, etc.). This initiative seemed successful as, during the year 2012-2013, more than 80% of the schools organized at least one project to help students improve their self-esteem, social skills and healthy habits. These projects received financial support from the DPH and various other regional sources. Furthermore, many excellent local initiatives have been made possible because of local partners who identified the needs in their environment and mobilized the competencies of different stakeholders. It should also be underlined that efforts were made to promote culture in the projects, which helped students develop their cultural identity.

• Coordination of the Nunavik Nutrition and Health Committee (NNHC)

The NNHC is composed of representatives from various organizations (NRBHSS, KRG, UTHC, IHC, ITK, *INSPQ*, Nunavik Research Centre and Trent University) who work in nutrition, environment and health. The committee acts as the authorized review and advisory body for health and nutrition issues in the region. Funded by the AANDC under the Northern Contaminants Program, the NNHC is coordinated by a nutritionist from the NRBHSS and meets three times a year.

· School food policies

The current food policy in effect in the schools stipulates that at least 75% of the food served in schools must be healthy and that junk food may not account for more than 25% of food offerings at the time of the latest funding rounds. To assist with the implementation of the policy, funding has been granted to more than 60% of the schools for healthy snacks. The revision of the brochure on food policy and healthy alternatives is now complete; the brochure will be distributed in September 2013. In addition, 11 schools are now certified pop-free zones with the adoption of an internal policy encouraging the consumption of healthy drinks instead of sugary ones and with the commitment to make water coolers or other drinking-water systems available to the children.

Monitoring the population's state of health

During 2012, activities involving monitoring of the population's state of health were particularly marked by the compilation and analysis of data on reportable diseases (MADO): sexually transmitted and bloodborne infections (STBIs) and tuberculosis.

AR

In the process of drawing up health profiles (children's health and health profile of Nunavik's adult population), the extraction and analysis of historical data (past 20 years) permitted, among other things, documenting the incidence of certain diseases avoidable through vaccination as well as STBIs. In 2012, the first component of the *Nunavik Health Profile*, Demographic and Socioeconomic Conditions, was published.

Moreover, monitoring activities permitted taking stock of the regional situation relative to certain health indicators from the perspective of the project *le Nord pour tous* [The North for all], initially entitled *Plan Nord*. Further, they contributed to the preparation of documents for regional meetings such as the conference on social regulation. Compilation of data on certain health indicators (suicides, hospitalization, demography, births and so forth) in response to needs formulated by certain interveners of the Department of Public Health, the Department of Planning and Programming or other actors of the health network and decision makers is one of the components of the monitoring activities carried out throughout the year. The progressive update of the diabetes database enabled a more precise profile of incident cases diagnosed in the region, principally on the Ungava coast.

In short, the monitoring data compiled and analyzed according to requests from decision makers, interveners and the communities served to guide actions, i.e., specific interventions or decisions appropriate from a perspective of prevention, health promotion and community empowerment.

Activities under the Québec breast cancer-screening program (PQDCS)

The *PQDCS* mammography clinic was held in April 2012 for the women of Salluit, Ivujivik, Akulivik and Puvirnituq.

Occupational Health

Preventive Withdrawal of Pregnant or Breast-Feeding Workers

During the year 2012, 141 applications for preventive withdrawal of pregnant or breast-feeding workers from 91 institutions were processed. Applications for consultation for workers originated mostly from the sectors of education (day-care educators, teachers) and health (nurses) as well as the commercial sector (cashiers).

Occupational-Health Programs in the Mining Sector

Implementation of occupational-health programs in the mining sector continued during 2012. A physician and a nurse from the Department of Public Health carried out preventive activities in this important sector that includes over 1 300 workers from more than five mines.

The mining sector experienced significant growth this year with the installation near Salluit of a new mining company, Nunavik Nickel. The occupational-health team is continuing the preparation of a health program in collaboration with representatives of this company.

Occupational-Health Programs in the Municipal and Police Sectors

The municipal sector in Nunavik continues to be the object of actions aimed at preventing workplace health problems. In 2012, most of the municipal installations (municipal garages, fire stations, arenas, carpentry workshops, sewage-dumping sites and sites for distribution of potable water) were visited by the occupational-health team of the Department of Public Health. In addition, nine police stations, one station of the *Sûreté du Québec* and 12 KMHB carpentry workshops were visited.

Finally, the occupational-health team also responded to many local requests involving the quality of indoor air in Nunavik establishments, prevention of tuberculosis among workers, control of the chemical contamination of drinking water and oil fumes.

Prevention and Protection

Two portfolios were of particular concern to the DPH: tuberculosis and STBIs.

Tuberculosis

During 2012, the DPH, UTHC and IHC were mobilized for the control of active tuberculosis in certain communities. In total, 75 cases of tuberculosis were reported in Nunavik for 2012, 66 of which occurred in Kangiqsualujjuaq, 8 in Salluit and 1 in Kangiqsuajuaq. In comparison, the data for 2010 and 2011 were, respectively, 12 and 27.

Uniquely in Kangiqsualujjuaq, specific actions were carried out: systematic screening of the population aged 15 years and older through pulmonary X-rays and BCG vaccination for newborns and children under the age of two years.

The TB outbreaks follow the tendency observed over the past few years of a rise in cases of active tuberculosis in both Nunavut and Nunavik.

STBIs

In the 12-month period from January 1 to December 31, 2012, the number of declared cases of gonorrhoea and genital chlamydiosis infections reached 259 and 382 respectively, representing increases of 27.0% and 52.2% compared to 2011. Both infections are prevalent in all communities, and women and youths aged 15 to 29 years are the groups most at risk.

A training session on sex education was held with more than 70 interveners from the health, education and social-services sectors of the region.

In response to these two major public-health problems, the public-health team began developing regional plans of action specific to these issues, which have an important impact on the lives of Nunavik residents.

The following are some of the other activities of the infectious-diseases team:

- seasonal vaccination campaign against influenza, which reached more than 4 700 individuals;
- start of implementation of the management program for immunizing agents with the pharmacies of both health centres;
- response to an outbreak of CA-MRSA (community-acquired Methicillin-resistant *Staphylococcus aureus*) in one community.

Department of Inuit Values and Practices

Message from the Director

In fiscal 2012-2013, I was very fortunate to have a great team within our department. We have been working on several different files such as the Indian and Residential Schools file (IRS) Resolution Health-Support Program, Brighter Futures, Building Healthy Communities and, more recently, the position of coordinator for the prevention of elder abuse and the midwifery file. In January, the Department of Inuit Values and Practices (DIVP) held a meeting with the executive directors of the NRBHSS and the two health centres along with the midwives of Inukjuak, Puvirnituq, Salluit and Kuujjuaq, and the head physicians concerning potential implementation of birthing houses in Nunavik. I would like to take this time to thank my departmental team and the management of the NRBHSS for their ongoing support. I would also like to acknowledge the IRS Adjudication Secretariat, Makivik Corporation and Health Canada for their support for the NRBHSS in the IRS issue.

I look forward to continuing our work throughout the new fiscal year. In closing, I would like to thank the NRBHSS board of directors for its support for our department's mandate and goals.

Jennifer Watkins

Midwifery

There are four birthing centres offering services in Nunavik. Three of these are on the Hudson coast, located in Inukjuak, Puvirnituq and Salluit. There is one on the Ungava coast, located in Kuujjuaq.

In fiscal 2012-2013, there were 78 births registered on the Ungava coast and 102 on the Hudson coast.

With the help of the Planning and Programming Department, we made a *PowerPoint* presentation for the *MSSS* on the midwifery program and the services offered in Nunavik to make the ministry aware of our interest in implementing birthing houses in Nunavik. As Chair of the midwifery working group of Nunavik, I will be presenting our current efforts to the working group via conference call in the coming weeks.

In August of 2013, the Ungava Tulattavik Health Centre will start the midwifery program on the Ungava coast. Two students will be selected in fiscal 2013-2014.

Indian and Residential Schools (IRS) Resolution Health-Support Program

The Department of Inuit Values and Practices is in charge of the IRS file; our personnel attended a truth and reconciliation (TRC) event in June 2012 in Saskatoon, Saskatchewan, and we are preparing for the upcoming TRC event in Montreal, Quebec, in April 2013. Between the preparations for the TRC events, the emotional-health support team has been visiting communities to give healing sessions to former students and their families affected by the legacy of residential schools. The DIVP continues to work with Health Canada to support the Emotional Health-Support Program for former students in the 14 communities. The mandate of these support workers is to offer emotional support to former students of residential schools and their families, especially those students who will undergo the independent assessment process (IAP) in the coming months.

Traditional Adoption

The working group on traditional adoption in Quebec, created by the ministers of Justice and Health and Social Services to recommend solutions to the current non-inclusion of traditional adoption practices in provincial laws, rendered its report public on April 16, 2012. An Act to amend the *Civil Code* and other legislative provisions as regards to adoption and parental authority, which included provisions on aboriginal traditional adoption, was tabled June 13, 2012, at the Quebec National Assembly. Unfortunately, with the provincial elections in the fall 2012, the bill died before presentation or ratification. A new bill now has to be resubmitted to the Quebec National Assembly, for sanction anticipated in the fall 2013. Representatives of the NRBHSS and Makivik Corporation are following this closely and will give an update to both organizations on any changes or updates in this file.

Brighter Futures

Brighter Futures is a federally funded program that allows all 14 Nunavik communities to request funding for various types of projects within their communities. All funds are distributed on a per capita basis. This past year all but two communities took the initiative to involve youth in 58 projects.

The following table shows how much money was available to each community at the beginning of fiscal 2012-2013 and how much was actually spent.

Community	Funds Available	Funds Spent
AKULIVIK	\$50,135.00	\$47,760.70
AUPALUK	\$30,439.00	\$15,000.00
INUKJUAK	\$108,328.00	\$109,450.00
IVUJIVIK	\$40,287.00	\$42,160.00
KANGIQSUALUJJUAQ	\$68,936.00	\$47,000.00
KANGIQSUJUAQ	\$52,821.00	\$89,430.50
KANGIRSUK	\$50,135.00	\$28,350.00
KUUJJUAQ	\$123,548.00	\$198,631.82
KUUJJUARAAPIK	\$57,297.00	\$35,382.31
PUVIRNITUQ	\$110,119.00	\$91,580.00
QUAQTAQ	\$38,496.00	\$29,965.73
SALLUIT	\$92,213.00	\$173,612.76
TASIUJAQ	\$33,125.00	\$0.00
UMIUJAQ	\$39,392.00	\$5,000.00
REGIONAL PROJECTS	\$35,000.00	\$52,737.00
TOTAL	\$930,271.00	\$966,060.82

The table shows that some communities actually spent more than was originally allocated to them. This is because after January 15 of each year, all remaining money from each community is put into a regional fund and made available to any community that applies. This is to ensure that all Brighter Futures funding is spent each year.

In order for the projects to be approved they must fall under at least one of the following categories:

- · mental health;
- · healthy babies;
- injury prevention;
- · child development;
- parenting skills.

All project proposals must include a municipal resolution stating that the project has community support. In addition to this, it is very important keep a strong cultural component in the projects that we approve, although there is a wide variety of projects that take place in Nunavik. Our goal is to provide ample opportunities for our youth to explore different activities at the community level through Brighter Futures which they otherwise may not have. We also strive to assist families in creating a healthy living environment throughout the region.

Wellness Committee

The Wellness Committee is an organized group of community members whose purpose is to discover the health and wellness needs of each community and to help find ways of solving problems that may arise in the communities. For that purpose, it:

- serves as link between the health and wellness services and the community;
- identifies what the population of each community feels are the health and wellness needs and problems within that community;
- works jointly with other bodies to find methods of filling these needs and solving these problems;
- participates in carrying out these projects to improve the health and wellness practices within the community;
- provides the population with information concerning public health and wellness in general;
- helps link the community with local or outside organizations that can help tackle problems within the community.

All communities that have not formed a wellness committee have access to information on the composition and mandate of such a committee, which is available through the municipality or the Brighter Futures officer in the NRBHSS Department of Inuit Values and Practices.

Prevention of Elder Abuse

The region applies a ministerial program to combat elder abuse through the development of concerted solutions adapted to the region. The 2010-2015 governmental plan of action against elder abuse was announced by the Minister responsible for seniors in 2010. That plan is meant as a complement to other governmental measures. The regional coordinator works jointly with the Department of Planning and Programming.

Department of Administrative Services

Message from the Director

The Nunavik Regional Board of Health and Social Services is very proud to announce that fiscal 2012-2013 ended with resolution of the accumulated deficit of \$5.5 million. An agreement was concluded between the regional board and the MSSS, which accepted the proposal presented by the former.

The second annual action plan of the 2009-2016 Strategic Regional Plan was authorized by the MSSS. This action plan will bring an additional recurrent budget of \$2 million annualized to \$6.8 million to support the development of health and social services for *Nunavimmiut*, plus a non-recurrent budget of \$2.7 million for specialized facilities and a special budget for the tuberculosis file.

Many projects were managed by the construction committee for the development of facilities in Nunavik. Among them, in collaboration with the MSSS and the institutions, were housing units, the rehabilitation centre for girls aged 12 to 18 years (a project of the Department of Youth Protection, or DYP) and the first draft of the Capital Master Plan. This Capital Master Plan is essential for the region in terms of authorization of any other capital project for development in Nunavik. This committee has been very active, the members having held over 20 meetings without counting the working sessions on specific projects and meetings with the MSSS.

Our achievements during 2012-2013:

- The delivery of 70 housing units to support the hiring of new resources under the 2011-2012 action plan;
- Further to the completion of the functional and technical plan (FTP) for a new office building for the DYP, the contractors were hired in the summer 2012 to start the construction early in the fall 2012;
- The continuation of the needs assessment, in collaboration with the health centres, for a new rehabilitation centre for girls aged 12 to 18 years in Inukjuak with the elaboration of a preliminary plan;
- The presentation of the first draft of the Capital Master Plan to both the BOD Committee and the representative of the MSSS;
- The application of a new procedure required by the MSSS under the management plan for informatics resources;
- The continuation of a major upgrade to the telecommunications network in collaboration with the KRG, the CSPO (Centre de services partagés du Québec), Sogique and the MSSS;

用力.

- The Regional Project Management Bureau held six regional meetings during the year with members of the health centres, both separately and in joint meetings of two to three days, to pursue collaborative efforts;
- Major improvements to the layout of the regional board's office building and warehouse requiring the collaboration of the staff from all departments;
- The Department of Administrative Services (DAS) also welcomed new team members: Claudette Fontaine, accounts-payable clerk, arrived in July 2012; Jimmy Gagné, head of finance, arrived in August 2012; Sherry McLean, administrative technician and executive secretary, arrived in January 2013.

The Director of Administrative Services is proud of and grateful to all his department members for their solid teamwork and is looking forward to a new year of achievement.

Financial Resources

REGIONAL BUDGET (MSSS)

The MSSS authorized expenditures of \$143 million for the region for 2012-2013 excluding fixed-assets funds. For fiscal 2012-2013, the MSSS increased the regional budget by \$6.8 million for the annual action plan within the strategic regional planning. This year, the Inuulitsivik Health Centre ended the year with a slight surplus of \$200 000 and the Ungava Tulattavik Health Centre with a deficit of \$2.6 million. A recovery plan is being prepared to correct the situation.

The regional budget was distributed as follows:

2012-2013 ALLOCATIONS	\$ million
INSTITUTIONS	
Inuulitsivik Health Centre	60.0
Ungava Tulattavik Health Centre	43.6
NRBHSS EARMARKED FUNDS	
Insured/non-insured health benefits	20.5
Other	7.6
COMMUNITY ORGANIZATIONS	
Youth centres	2.4
Other	3.2

Reserved: special projects not realized yet	5.9
TOTAL TRANSFERS	143.2

The NRBHSS Operating Budget

The Department of Administrative Services provides financial expertise to the other departments: Executive Management, Inuit Values and Practices, Planning and Programming, Public Health, Regional Department of Human-Resources Development and Out-of-Region Services. During the year, the finance department managed the following funds:

Operating and Earmarked Funds

The MSSS allocated a budget of \$7.5 million for the NRBHSS' operations. The NRBHSS also received \$1.6 million from other sources, mainly from contribution agreements. In addition to this operating budget, the NRBHSS also received and managed \$20.5 million in earmarked funds for specific activities. These earmarked funds were financed through two different sources, one directly from the MSSS and the other from the regional envelope.

As mentioned in the Director's message, an agreement has been reached with the MSSS to finance the accumulated deficit

Fixed-Assets Fund

The NRBHSS also transferred \$35 million for various fixed-assets projects such as the replacement of equipment, maintenance and renovations to its building, medical equipment and housing.

Federal and ITK Earmarked Funds

An amount of \$7 million was received from the federal government and Inuit Tapiriit Kanatami (ITK). Unlike the provincial earmarked funds, the contribution agreements with these organizations are on a yearly basis. At the end of the year, they recover any balance not spent during the year.

Health Canada	S
Aboriginal Diabetes Initiative	678 190
Brighter Futures	1 153 893
Home and Community Care	2 173 412
Fetal Alcohol Spectrum Disorder	351 762

Total Subsidies	\$6 962 525
Family Violence	45 000
Indian and Northern Affairs	
Nutrition North Canada	502 872
Indian Residential Schools	675 530
Aboriginal Health Human Resources Initiative	115 000
Suicide-Prevention Strategy	99 950
Prenatal Nutrition Program	296 197
Mental Health Crisis Management	870 719

Fixed Assets and Equipment

Housing Project

The NRBHSS managed many local and regional projects for 2012-2013. One of the major projects for the year was the construction of 70 staff-housing units—quadruplexes and semi-detached units—in various communities.

#	Location	# Housing Units
1	Puvirnituq	20
2	Kuujjuaraapik	4
3	Salluit	4
4	Kuujjuaq	28
5	Kuujjuaq, NRBHSS	4
6	Inukjuak, for group home staff, girls 12 to 18 years of age	8
7	Aupaluk (semi-detached)	2
	Total	70

Health Centres: Facilities Projects

In order to respond to regional infrastructure needs, larger-scale projects were developed:

- The Ungava Tulattavik Health Centre saw the enlargement of its garage for ambulances which also provided a new archive area, a new morgue and some needed office spaces.
- The final cost for this project was \$4,500,000; it was completed within budget.

- The design of a new CLSC is being prepared for Aupaluk and the project should enter the FTP stage soon.
- For the Inuulitsivik Health Centre, construction of a new office building for the Department of Youth Protection in Puvirnituq at a cost of \$12,766,000 was suspended for the winter months but will resume in the summer 2013.
- The project for the rehabilitation centre for girls 12 to 18 years of age in Inukjuak will enter the stage of conception of plans in the fall 2013.

To ensure the pursuit and follow-up of these capital projects, the construction committee overlooks all the steps individually in order to comply with ministerial guidelines.

Triennial Conservation and Functional Plan

- The NRBHSS has recently finalized the budget for the new three-year conservation and functional plan for Nunavik, which will cover the period 2013-2016.
- With the cooperation of both health centres in the Nunavik region, we were able to work
 more efficiently and provide them with more information and the budgets necessary to
 accomplish most of the projects.
- For the NRBHSS and the two health centres, many upgrades to existing buildings are in the plans in 2013.
- The three organizations are very involved in the current Strategic Regional Plan, working on the new developments in the region.

Human Resources

NRBHSS	Current year	Previous year
Management personnel, full-time	17	17
Management personnel, part-time	1	1
Employees, full-time	49	49
Employees, part-time	8	2
Total, regional board	75	69
ULLURIAQ ADOLESCENT CENTRE		
Management personnel, full-time	1	2
Management personnel, part-time	16	20
Employees, full-time	13	0
Employees, part-time	13	20
Total, Ulluriaq Adolescent Centre	43	42

The manpower profile saw very little change in 2012-2013, apart from an increase in temporary, part-time personnel, a result of the hiring of some maintenance personnel and the temporary replacement of a Planning and Programming officer who is on deferred leave.

We continued our efforts at hiring Inuit employees, and this year, the percentage of Inuit personnel at the regional board went from 28% to 31%.

The priorities defined for 2012-2013 were partly attained with the update of 30% of the job descriptions and the setup of an employee-assistance program. These activities of clarifying roles and tasks as well as the creation of a workplace health and well-being committee will complete the priorities in this area in 2013-2014.

Further, a series of policies and procedures in human-resources management remains to be adopted and will be included in the future employee guide, which we will be working on between now and the end of March 2014.

Information Systems

Telecommunications

The Nunavik Telecommunications Network (NtN) upgrade (Phase I and Phase II) has been completed throughout the region. The health sector's telecommunications network is managed by the KRG. The implementation of network-optimization equipment (Phase IIa) at each of the 32 sites of the health sector is 98% completed. Said implementation will enhance data transmission and ensure the confidentiality of the information transmitted over the NtN. The start of the next phase (III) of the NtN upgrade is planned for the coming year; this involves a redundancy solution to ensure a more robust telecommunications infrastructure. Phase III will be carried out in collaboration with Sogique, the *CSPO* and the *MSSS*.

Youth Action Plan, DYP

The Youth Protection Information System has been deployed at the Ungava Tulattavik Health Centre; and the Inuulitsivik Health Centre is preparing to complete its deployment shortly. This tool integrates three information systems on the clientele of the Departments of Youth Protection (youth and their parents); the information system manages the clients, the services they receive, the intervention processes in which they are involved, the accommodations resources used and the legal aspects. This information system will give interveners and managers immediate and accurate information on the youth clientele and thus enable better assessment of that clientele. The next step is the implementation of the SIRTF module (Système d'information sur les ressources intermédiaires et de type familiale) [Information system on intermediate and family-type resources].

Information-Resources Management Plan (IRMP)

In September 2012, the MSSS implemented a new framework on the management of the information-resources system and activities (ref. Bulletin 2012-021). The region must formally submit all projects and activities related to information systems; regional and local triennial plans as well as annual plans must be developed and submitted to the MSSS for approval. Six main measures or activities were addressed in the Regional Information-Resources Management Plan: the electronic health record (EHR), telecommunications, youth-protection information system, telehealth, Nunavik eHealth 2013-2016 master plan, and administration and technology optimization. These measures and activities are financed within the regional strategic plan. Several training sessions have been held with the health centres and the MSSS on this new method of project management relative to information resources.

eHealth Plan

The Nunavik Information-Resources Master Plan is still being completed to reflect the changing regional and local realities. The revised plan will now be known as the "Nunavik eHealth Plan 2013-2016." The new plan will include information resources and activities, activities related to telehealth development and the information-resources security framework. The security of personal information is and continues to be a priority of the NRBHSS and the entire Nunavik health network, as is the optimization of the health sector's technological and telephony infrastructures

Regional Project Management Bureau, Information Resources

The Regional Project Management Bureau regularly holds meetings to discuss all the aspects of information resources and activities. These meetings are very useful in aligning the region on the different projects and activities and ensuring that the region's information systems and activities are standardized and optimized.

You are welcome to consult the NRBHSS Web site for current information at www.rrsss17.gouv.qc.ca.

两点

Department of Regional Human-Resources Development

Message from the Acting Director

As Acting Director, I am pleased to join the management team and continue working on issues that have always been important to me, such as attracting, training and retaining personnel. For me, those issues represent the greatest challenges. It is by working closely with our partners and among our departments that we will attain our objective, which is to offer services to our population by Inuit interveners, by providing them better working conditions and training programs. I believe teamwork and joint efforts within our network will also help us succeed in increasing the numbers of Inuit personnel in the services through training and improved working conditions. The problem of retaining personnel from outside the territory is also a challenge that we must face together.

Daniel Michaud

Principal Activities in 2012-2013

Training in Psychosocial Intervention

The project for training Inuit interveners of youth protection offered by Collège Marie-Victorin is in its third year. Twenty-five interveners from both Departments of Youth Protection participate in the program.

Moreover, as planned in 2011-2012, 49 educators and security guards of the territory's rehabilitation services began the training program on specialized education given by Collège Marie-Victorin.

The training that started in September 2012 is provided for the personnel of the Puvirnituq and Kuujjuaq group homes and the Sapummivik Centre in Salluit.

Pursuant to an agreement with the two health centres, the personnel actively participating in the training and who successfully complete the work required by the college will be entitled to a salary raise in order to encourage participation and improve personnel retention.

This project is possible though major financial support from the Kativik Regional Government.

Interpreter Training

Training for interpreters in health and social services has already been offered in the past. The objective was to offer basic training in simultaneous interpretation to ensure all personnel used the same methods.

A second training component was offered in 2012 by Jacques Raymond and Annie Weetaluktuk, this time with the goal of developing standardized medical terminology. The request for training came from the health centres, which noted that the interpreters use different terms to designate the same concept depending on their age and place of residence (Hudson or Ungava). Thus, to remedy the situation, Jacques Raymond provided training in Puvirnituq and Salluit in the winter 2013 and Annie Weetaluktuk provided training in Inukjuak. A total of 39 interpreters participated. A training session is planned for the fall 2013 in Kuujjuaq.

The objective in the short and medium term is to train all the interpreters of the 14 Nunavik communities working in the field of health and social services.

Inuit Management Training

In collaboration with McGill University, the training program "Inuit Management Training" has been offered for some 10 years now. At present, roughly 20 participants are registered in that program, which is reserved exclusively for Inuit.

In 2012, two participants, Aani Tulugak and Charlie Gordon, graduated from the Inuit Management Training and had the honour of being awarded their certificates in Montréal during a ceremony organized by McGill.

In 2013, the training continued (two sessions), and we hope to see some participants graduate by 2014. The NRBHSS continues to support this program and hopes to announce the graduation of other participants.

Aboriginal Health Human Resources Initiative (AHHRI)

In the context of the Aboriginal Health Human Resources Initiative, Donna Davies, training officer, composed a song to inspire Nunavik schoolchildren to complete their secondary studies and pursue postsecondary studies. When visiting the schools, she sings the song with the children in the classrooms to motivate them. Again with the goal of encouraging youth, she entered into a partnership with a youth of the region who will record the song in studio and include lyrics in Inuktitut to reach out to more young persons.

73. R

Hiring

Jointly with the Department of Planning and Programming as well as Executive Management (communications section), the project to support hiring for the three organizations of the network through a promotion campaign with a specialized firm (Imedia) is progressing well. Phase 2 will be complete in the fall 2013. A Web site created specifically for North/South hiring, video clips produced to promote Nunavik and brochures presenting Nunavik and the nature of the work in our network produced for both the region's population and the South are tools that will be available shortly.

Phase 3, which is in development, could lead to a mass promotion campaign on public networks such as the CBC, TNI, APTN and Radio Canada.

Priorities for 2013-2014

Aside from current portfolios, the Department of Regional Human-Resources Development will work closely with the two institutions to optimize the training provided by Collège Marie-Victorin for the personnel of youth protection, rehabilitation and front-line psychosocial services. As training is essential to appropriation of service provision by the Inuit, we will place particular emphasis on this issue by ensuring support for deployment of the clinical project according to the established objectives.

Other important issues will be covered over the coming year, including promotion of careers in health and social services at the Nunavik schools and the cégeps that admit Inuit students in Montréal. In collaboration with the health centres, our department will work at creating a job title for interpreters for recognition in the collective agreements. Finally, with the application of *Draft Bill 21*, which requires all interveners performing reserved acts to be member of a professional association, the regional board intends to work jointly with the order of social workers to find a solution so that the Inuit of Nunavik can work in their communities with full legal protection.

Department of Out-Of-Region Services

Message from the Director

It is with great pleasure that I present to you my annual report for fiscal 2012-2013.

My department's main function is to oversee and manage the regional funds under the Insured/Non-Insured Health Benefits (INIHB) Program.

One of the major changes in relation to the last two fiscal years was my involvement in the Nunavik Youth Houses Association (NYHA) Advisory Committee. This committee was created to determine the needs of youth centres in terms of programming and staff training. The membership included organizations such as the Kativik Regional Government, Makivik Corporation, the Sapuutit Youth Association and others. I had been the Chair of this committee since 2010; however, key decision makers closely related to this file determined that it should be disbanded. We felt that the mandate of the committee no longer responded to today's realities and priorities.

The Regional Committee on Management of Patient Services (RCMPS) had another busy year determining broad regional orientations concerning programs and service organization. This committee holds a meeting every few months and one of the central focusses is on the orientation of the Module du Nord Ouébécois (Northern Québec Module, or MNO). It is with pleasure that I chair this committee and I hope for the continued collaboration of the Ungava Tulattavik Health Centre (UTHC), the Inuulitsivik Health Centre (IHC) and the MNO.

I would like to take this opportunity to thank the NRBHSS board members and my fellow department directors for their continued support.

Larry Watt

MA

MNQ Relocation Project

The present MNQ relocation project in Montreal has been under way since 2006. In 2009, the MSSS approved \$12.5 million to renovate the former Chinese hospital building that was to house the MNQ facilities with 143 beds for patients from Nunavik. Unfortunately, this option was ruled out due to the borough of Villeray representatives' decision not to have the MNQ in their borough.

After lengthy discussions between the MSSS, the NRBHSS and the MNQ, on February 16, 2012, MSSS Acting Executive Director of Investments Sylvain Périgny replied to our letter dated August 2011 addressed to Assistant Deputy Minister Michel Fontaine. In the letter of February 16, 2012, we were authorized to submit our summary FTP (functional and technical plan) by early fiscal 2012-2013.

Under the present ministerial regulations, we are authorized to work on a public call for tenders to lease an existing building or construct a new one. We have plans to present our summary FTP in the month of May 2013. In that summary FTP we will request a surface area of 5,982 square metres.

On January 23, 2013, we received a letter signed by Michel Fontaine with the notice of pertinence attached. The notice of pertinence indicates the services and the number of beds approved as well as some adjustments to the surface area. The MSSS recommended 5,695 square metres.

We had further discussions for additional surface area, mainly for the four larger bedrooms or bachelors for long-term patients.

Late in the fiscal year, the MSSS had all the information in hand to authorize the NRRHSS to proceed with the public call for tenders to lease an existing building or construct a new one. If we receive the MSSS authorization letter in late June 2013, we should be able to launch the call for tenders in August or September 2013. After reviewing the bids, completing the plans and specifications will be the next step, followed by renovations with a view to occupying the premises in early 2015.

The Regional Committee on the Management of Patient Services, comprised of representatives of the NRBHSS, MNQ management, the Inuulitsivik Health Centre and the Ungava Tulattavik Health Centre, continues to guide the MNQ relocation project.

Insured/Non-Insured Health Benefits (INIHB)

The INIHB program offers a limited number of goods and services that are not already provided for beneficiaries of the *JBNQA* by other agencies or through other Quebec programs.

Regional Transportation Policy in the Nunavik Region

A major revision was made to one of the components of the INIHB program: the Regional Transportation Policy in the Nunavik Region.

After many discussions at the RCMPS, the policy was formally approved by the board of directors of the regional board at its February 2013 meeting.

Department Objectives 2013-2014

- Publicize the new Regional User Transportation Policy in Nunavik among the personnel of both institutions and the region's CLSCs.
- Obtain MSSS approval to go ahead with the public call for tenders for a new or renovated facility to accommodate the MNQ facilities in a centralized location in Montreal.
- Adopt a new policy that will set the parameters of the INIHB program and develop procedures that will enable proper financial follow-up with the Department of Administrative Services and the auditors.
- Conduct an information campaign on the rules and eligibility requirements under the INIHB program.
- Discuss a wider array of subjects at the RCMPS.

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

TABLE OF CONTENTS

	Pa
SYNOPSIS REVIEW	1
FINANCIAL STATEMENTS	
INUKTITUT	
ENGLISH	
FRENCH	N

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SYNOPSIS REVIEW MARCH 31, 2013

TABLE OF CONTENTS

	Pag
COMBINED CASH POSITION	1
OPERATING FUND	
FUND BALANCE	2
SOURCES OF REVENUE FOR THE YEAR	2
ASSIGNED FUND	
FUND BALANCE	3
SOURCES OF REVENUE FOR THE YEAR	3

COMBINED CASH POSITION

OPERATING FUND - FUND BALANCE

OPERATING FUND - SOURCES OF REVENUE FOR THE YEAR

ASSIGNED FUND - FUND BALANCE

ASSIGNED FUND - SOURCES OF REVENUE FOR THE YEAR

©Aboriginal Affairs and Northern Development Canada (0.3%)

■Health and Social Services (84.6%)

DC.S.S.T. (0.9%)

®Health Canada (12.8%)

BHealth Centres contributions (0.6%)

BOther (0.8%)

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL STATEMENTS MARCH 31, 2013

TABLE OF CONTENTS

COMBINED BALANCE SHEET	
COMBINED BALANCE SHEET COMBINED STATEMENT OF VARIATION OF NET FINANCIAL ASSETS (NET DEBT)	
COMBINED STATEMENT OF VARIATION OF NET PHYANCIAL ASSETS (NET DEBT) COMBINED STATEMENT OF CHANGES IN FUND BALANCE	
COMBINED STATEMENT OF REVENUE AND EXPENSES	
OPERATING FUND	
BALANCE SHEET	
STATEMENT OF CHANGES IN FUND BALANCE	
STATEMENT OF REVENUE AND EXPENSES	
LONG-TERM ASSETS FUND	
BALANCE SHEET	
STATEMENT OF CHANGES IN FUND BALANCE	
STATEMENT OF REVENUE AND EXPENSES	
ASSIGNED FUND	
BALANCE SHEET	
STATEMENT OF CHANGES IN FUND BALANCE	
NOTES TO SUMMARY FINANCIAL STATEMENTS	

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES COMBINED BALANCE SHEET MARCH 31, 2013

CASH ACCOUNTS RECEIVABLE LIABILITIES BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT) NON-FINANCIAL ASSETS	5 1,633,408 62,169,425 63,802,833 6,923,290 55,826,208 41,918,446 450,000 38,429,365 143,547,309	\$, 3,806,041 37,549,856 41,355,897 5,727,212 33,260,404 23,709,012 488,193
LIABILITIES BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	62,169,425 63,802,833 6,923,290 55,826,208 41,918,446 450,000 38,429,365	37,549,856 41,355,897 5,727,212 33,260,404 23,709,012 488,193
LIABILITIES BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	62,169,425 63,802,833 6,923,290 55,826,208 41,918,446 450,000 38,429,365	37,549,856 41,355,897 5,727,212 33,260,404 23,709,012 488,193
BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE	63,802,833 6,923,290 55,826,208 41,918,446 450,000 38,429,365	5,727,212 33,260,404 23,709,012 488,193
BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	6,923,290 55,826,208 41,918,446 450,000 38,429,365	5,727,212 33,260,404 23,709,012 488,193
BANK LOANS TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	55,826,208 41,918,446 450,000 38,429,365	33,260,404 23,709,012 488,193
TEMPORARY FINANCING ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	55,826,208 41,918,446 450,000 38,429,365	33,260,404 23,709,012 488,193
ACCOUNTS PAYABLE AND ACCRUED CHARGES DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	41,918,446 450,000 38,429,365	23,709,012 488,193
DEFERRED REVENUE BONDS PAYABLE NET FINANCIAL ASSETS (NET DEBT)	450,000 38,429,365	488,193
NET FINANCIAL ASSETS (NET DEBT)	38,429,365	
NET FINANCIAL ASSETS (NET DEBT)		25 175 000
	143,547,309	35,175,902
		98,360,723
NON-FINANCIAL ASSETS	(79,744,476)	(57,004,826
CAPITAL ASSETS	12,972,732	12,398,330
CONSTRUCTION IN PROGRESS	71,491,306	44,429,885
	84,464,038	56,828,215
FUND BALANCE		
FUND BALANCE	4,719,562	(176,611

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES COMBINED STATEMENT OF VARIATION OF NET FINANCIAL ASSETS (NET DEBT) YEAR ENDED MARCH 31, 2013

	2013	2012
	S	S
SURPLUS (DEFICIT) FOR THE YEAR	4,896,173	299,572
Capital Assets Variation		
Acquisition of Capital Assets	(1,136,829)	(2,695,886)
Decrease (Increase) of Construction in Progress	(27,061,421)	21,105,854
Amortization of Capital Assets	562,427	548,804
	(27,635,823)	18,958,772
VARIATION OF THE NET FINANCIAL ASSETS (NET DEBT)	(22,739,650)	19,258,344
BEGINNING BALANCE - NET FINANCIAL ASSETS (NET DEBT)	(57,004,826)	(76,263,170)
ENDING BALANCE - NET FINANCIAL ASSETS (NET DEBT)	(79,744,476)	(57,004,826)

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES COMBINED STATEMENT OF CHANGES IN FUND BALANCE YEAR ENDED MARCH 31, 2013

	2013	2012
	\$	\$
FUND BALANCE - BEGINNING OF YEAR	(176,611)	(476,183)
Excess (Deficiency) of Revenue over Expenses	4,896,173	299,572
FUND BALANCE - END OF YEAR	4,719,562	(176,611)

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES COMBINED STATEMENT OF REVENUE AND EXPENSES YEAR ENDED MARCH 31, 2013

	2013	2012
	S	\$
REVENUE		
Grants and Contributions	70,588,714	60,096,307
Housing Rental	494,850	446,946
Administration Fees	229,820	226,773
Interest Income	24,514	18,382
Inuulitsivik Health Centre	159,824	112,935
Tulattavik Health Centre	159,824	117,436
Other	657,590	747,411
	72,315,136	61,766,190
DEFERRED REVENUE - BEGINNING OF YEAR	488,193	~
DEFERRED REVENUE - END OF YEAR	(450,000)	(488,193)
	38,193	(488,193)
	72,353,329	61,277,997

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES COMBINED STATEMENT OF REVENUE AND EXPENSES (CONT'D) YEAR ENDED MARCH 31, 2013

	2013	2012
	S	\$
EXPENSES		
Salaries and Fringe Benefits	8,749,554	8,605,887
Administration Fees	229,821	226,773
Advertising and Publicity	304,384	327,711
Amortization	562,427	548,804
Annual General Meeting	122,753	94,783
Doubtful Accounts (Recovered)	10,848	(27,167
Equipment Rental	95,831	102,109
Freight Charges	75,425	106,915
Heating and Electricity	339,446	375,382
Honorarium	321,226	288,497
Housing Rental	513,436	571,714
Insurance	28,714	25,316
Installation Premium	656,081	659,344
Interest and Bank Charges	2,656,427	1,156,426
Landleases	39,164	35,952
Local Activities	10,671	19,535
Maintenance and Repairs	57,394	60,397
Medical Supplies	12,114	1,262
Meetings and Seminars	6,563	19,763
Municipal Services	309,247	299,597
Office Expenses	429,349	579,134
Professional Fees	841,698	415,990
Publication and Membership	37,462	50,020
Purchased Services	2,278,898	2,691,003
Regional Projects	35,000	=,071,000
Telecommunication	143,258	228,679
Training and Education	112,877	109,953
Transfers to Organizations	2,108,881	1,868,509
Transfers to Inuulitsivik Health Centre	27,204,701	26,706,389
Transfers to Tulattavik Health Centre	16,432,865	12,323,578
Travel and Accomodation	2,531,361	2,275,371
Vehicle Expenses	48,252	52,582
Other	151,028	178,217
	67,457,156	60,978,425
EXCESS (DEFICIENCY) OF REVENUE OVER EXPENSES	4,896,173	299,572

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES OPERATING FUND - BALANCE SHEET MARCH 31, 2013

	2013	2012
	S	\$
FINANCIAL ASSETS		
CASH	1,532,286	3,680,316
ACCOUNTS RECEIVABLE (note 2 a))	9,739,642	2,464,453
DUE FROM LONG-TERM ASSETS FUND (note 7)	125,458	•
	11,397,386	6,144,769
ACCOUNTS PAYABLE AND ACCRUED CHARGES	5,007,810	
ACCOUNTS PAYABLE AND ACCRUED CHARGES	5,007,810	4,081,736
DUE TO ASSIGNED FUND (note 7)	5,789,799	7,037,975 209,742
DUE TO LONG-TERM ASSETS FUND (note 7) DEFERRED REVENUE (note 4)	450,000	488,193
	11,247,609	11,817,646
NET FINANCIAL ASSETS (NET DEBT)	149,777	(5,672,877
FUND BALANCE		
FUND BALANCE	149,777	(5,672,877

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES OPERATING FUND - STATEMENT OF CHANGES IN FUND BALANCE YEAR ENDED MARCH 31, 2013

	2013 \$	2012 \$
FUND BALANCE - BEGINNING OF YEAR	(5,672,877)	(5,877,900)
Excess (Deficiency) of Revenue over Expenses - Regular Operations	5,822,654	205,023
FUND BALANCE - END OF YEAR	149,777	(5,672,877)

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES OPERATING FUND STATEMENT OF REVENUE AND EXPENSES YEAR ENDED MARCH 31, 2013

	2013	2012
	S	\$
REVENUE		
Health and Social Services	7,843,436	7,218,559
Health and Social Services - Previous year deficit	5,518,511	-
Housing Rental	494,850	446,946
Municipal Affairs	309,247	299,597
Inuit Tapiriit Kanatami		15,000
Kativik Regional Government - Sustainable Employment	3,253	9,428
Administration Fees	229,820	226,773
Interest Income	24,514	18,382
Other	645,770	722,260
	15,069,401	8,956,951
DEFERRED REVENUE - BEGINNING OF YEAR	450,000	-
DEFERRED REVENUE - END OF YEAR (note 4)	(450,000)	(450,000
	-	(450,000
	15,069,401	8,506,951
EXPENSES (Appendix A)		
General Administration	7,170,313	6,274,821
Community Health Advisors	1,339,155	1,279,629
Building Operating Costs	737,279	747,478
	9,246,747	8,301,928
EXCESS (DEFICIENCY) OF REVENUE OVER EXPENSES	5,822,654	205,023

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES LONG-TERM ASSETS FUND - BALANCE SHEET MARCH 31, 2013

	2013	2012
	S	S
FINANCIAL ASSET	rs	
CASH	101,122	125,725
DUE FROM OPERATING FUND (note 7)		209,742
ACCOUNTS RECEIVABLE (note 2 c))	20,259,888	17,006,636
	20,361,010	17,342,103
LIABILITIES		
BANK LOANS (note 5)	6,923,290	5,727,212
ACCOUNTS PAYABLE AND ACCRUED CHARGES	3,520,488	6,800
DUE TO ASSIGNED FUND (note 7)	239	
DUE TO OPERATING FUND (note 7)	125,458	
TEMPORARY FINANCING	55,826,208	33,260,404
BONDS PAYABLE	38,429,365	35,175,902
	104,825,048	74,170,318
NET FINANCIAL ASSETS (NET DEBT)	(84,464,038)	(56,828,215)
NON-FINANCIAL ASS	SETS	
CAPITAL ASSETS (note 3)	12,972,732	12,398,330
CONSTRUCTION IN PROGRESS (note 10)	71,491,306	44,429,885
	84,464,038	56,828,215
FUND BALANCE		
FUND BALANCE	-	-

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES LONG-TERM ASSETS FUND STATEMENT OF CHANGES IN FUND BALANCE YEAR ENDED MARCH 31, 2013

	2013 \$	2012 \$
FUND BALANCE - BEGINNING OF YEAR	-	
Excess (Deficiency) of Revenue over Expenses		_
FUND BALANCE - END OF YEAR	_	

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES LONG-TERM ASSETS FUND STATEMENT OF REVENUE AND EXPENSES YEAR ENDED MARCH 31, 2013

	2013	2012
	S	S
REVENUE		
Health and Social Services - Interest Reimbursement	2,551,182	1,043,308
Health and Social Services - Accounting Reform	(1,692,585)	(4,767,881)
Health and Social Services - Capital Reimbursement	2,255,012	5,316,685
	3,113,609	1,592,112
EXPENSES		
Interest Charges	2,551,182	1,043,308
Amortization	562,427	548,804
	3,113,609	1,592,112
EXCESS (DEFICIENCY) OF REVENUE OVER EXPENSES		

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES ASSIGNED FUND - BALANCE SHEET MARCH 31, 2013

	2013	2012
	S	\$
FINANCIAL ASSETS		
CURRENT ASSETS		
DUE FROM LONG-TERM ASSETS FUND (note 7)	239	
DUE FROM OPERATING FUND (note 7)	5,789,799	7,037,975
ACCOUNTS RECEIVABLE (note 2 b))	32,169,895	18,078,767
	37,959,933	25,116,742
LIABILITIES		
CURRENT LIABILITIES		
ACCOUNTS PAYABLE AND ACCRUED CHARGES	33,390,148	19,620,476
	33,390,148	19,620,476
NET FINANCIAL ASSETS (NET DEBT)	4,569,785	5,496,266
FUND BALANCE		
FUND BALANCE	4,569,785	5,496,266

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES ASSIGNED FUND - STATEMENT OF CHANGES IN FUND BALANCE YEAR ENDED MARCH 31, 2013

	Project	Fund Balance Beginning			Fund Balance End of
	Number	of Year S	Revenue S	Expenses S	Year S
ADMINISTRATION					
Provincial funds					
Housing Construction	701	(77,186)			(77,186)
PACS Teleradiology	702	(49,052)			(49,052)
MEO Technology Orientation	759	29,291	-	-	29,291
Emergency Measures	998	136,243	1,012,727	991,835	157,135
Bandwidth Enhancement Project	8860	244,117			244,117
Other funds					
Pandemic Influenza	8001	(34,151)	-	-	(34,151
Technocentre	8840		217,045	217,045	-
Regional Administrative Services	8891-92	145,428	436,110	174,355	407,183
		394,690	1,665,882	1,383,235	677,337
HUMAN RESOURCES					
Provincial funds					
Training provided to Inuit on Medical					
Terminology	8022	107,289	-	68,472	38,817
Federal funds					
Aboriginal Health Human Resources Initiative	811	438,056	115,000	131,703	421,353
	011	436,030	113,000	131,703	421,333
Other funds					
Staff Training Youth Protection	818	(30,720)	656,838	596,641	29,477
		514,625	771,838	796,816	489,647
INUIT VALUES					
Provincial funds					
Managerial Staff Development	610	4,803	-	5,853	(1,050)
Midwifery Program	901	7,509	3,039	5,444	5,104
Regional Midwifery	8016	79,726		1,752	77,974
Federal funds					
Brighter Futures	699	69.201	1,170,953	1,227,190	12,964
Indian Residential Schools	819	410,591	675,530	570,672	515,449
Other funds					
Aboriginal Healing Foundation	800	(4,509)			(4,509)
ITK - Regional Engagement Coordinator	804	66,164	_	143,896	(77,732)
Certificate in Health and Social	004	00,104		140,070	(11,134)
Services Management	814	(500)	500		-
McGill Social Workers' Project	815	38,073	-		38,073
		671,058	1,850,022	1,954,807	566,273
OUT OF REGION SERVICES					
Provincial funds					
Insured Non-Insured Health Benefits Program	938	-	40,252,013	40,252,013	
Insured/Non-Insured Health Benefits					
Management	939	3,420	335,354	449,083	(110,309)
		3,420	40,587,367	40,701,096	(110,309)
		3,420	40,287,307	40,701,090	(110,305

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES ASSIGNED FUND - STATEMENT OF CHANGES IN FUND BALANCE (CONT'D) YEAR ENDED MARCH 31, 2013

		Fund Balance			Fund Balance
	Project	Beginning			End of
	Number	of Year	Revenue	Expenses	Year
		S	S	S	S
PUBLIC HEALTH					
Provincial funds					
Smoking Action Plan	913	(3,070)	-	-	(3,070
Food Safety Project	915	8,989	-	-	8,989
Breast Cancer Screening Program - Regional	916	(1,178)		-	(1,178
Quebec Smoking Cessation Program	926	30,465	-	2,385	28,080
Kynesiology	931	203,901	-	40,838	163,063
Integrated Perinatal and Early Children	933	111,540	*	100,288	11,252
Oral Hygiene Survey	934		162,560	-	162,560
ITSS and Tuberculosis Prevention	935		150,000	55,214	94,786
Community Organizations Coordinator	936	-	100,000	4,260	95,740
AIDS and STD - Information and Prevention	956	59,573		185,273	(125,700
Hepatitis C	959	11,135	-	-	11,135
Nosocomial Infections	960	1,880	_	_	1,880
STBI Research Project	968	9,224			9,224
	8004	410		410	9,667
Breast-Feeding Campaign	8017	13,410	_	410	13,410
Air Quality for Nunavik Residents			-	-	
PSSP Management Fees	8019	14,000	•		14,000
Federal funds					
Health Consultation	600	(50,000)	-		(50,000
NNHC Functioning	614	12,845	97,618	105,350	5,113
Tobacco Federal Program	631	(33,066)	-	-	(33,066
NNHC Communication	632	182	251.762	182	404.054
FASD	634	315,953	351,762	263,461	404,254
Diabetes	693	94,302	681,305	701,664	73,943
Perinatal Nutritional Program	696	3,295	296,196	235,535	63,956
AHTF Healthy Living in School and Substance		4.410			4.410
Abuse Notice Note Const.	809 820	4,410 15,311	502.872	521,927	(3,744
Nutrition North Canada	821	6,624	302,872	572	6.052
Communication Plan Training in Smoking Prevention	822	0,024	-	-	0,032
Training in Ontoking Prevention					
Other funds					
Occupational Health and Safety	611	22,641	473,524	491,328	4,837
Kino Quebec	612	120,678	51,192	19,862	152,008
Injuries Prevention Research	655	4,915	-	-	4,915
Vaccines B - Sec. 5	660	26,885	-	67,417	(40,532
Arctic Net Project	668	26,109	-	~	26,109
Inuit Health Survey	690	(73,561)		-	(73,561
Dental Health for Primary School	803	11,305	-	-	11,305
Literacy Learning - "How I Quit Smoking"	805	43,010	-	-	43,010
NAHO Health Analyst	807	598	-	598	-
Born Smoke Free and Blue Light Campaigns	816	•	-		-

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES ASSIGNED FUND - STATEMENT OF CHANGES IN FUND BALANCE (CONT'D) YEAR ENDED MARCH 31, 2013

		Fund Balance			Fund Balanc
	Project	Beginning			End of
	Number	of Year	Revenue	Expenses	Year
		S	S	\$	S
PLANNING AND PROGRAMMING					
Provincial funds					
Managers' Training	640	430	-	430	-
Fraining Medical - Legal Kit	790	46,280		-	46,280
Women's Health Program	791	163,930	47,755	133,047	78,638
Installation Premiums and Training	920-921-923	727,259	890,379	943,104	674,534
External Residency in Family Medicine	922	(449,842)	-	135,051	(584,893
Regional Committees against Violence	932	45,186	•	-	45,186
Cancer	962	40,250	-	713	39,537
Young Parents	972		-	-	-
Fraining - Nurse and Social Workers	977	42,936	-	38,401	4,535
Mental Health - Training on Crisis Management	8005	694	-	694	-
Suicide Prevention - Training	8006	191,327	-	37,939	153,388
Violence against Women - Training	8007	213,965	-	2,352	211,613
Community Organization - Training	8008	221,393		30,303	191,090
Mental Health - Support on Clinical Projects	8009	76,598	-	82,758	(6,160
Suicide Prevention - Regional Strategy	8010	511,711		46,575	465,136
Breast Cancer - Diagnosis and Patient Support	8011	3,809		-	3,809
Services to Elders	8012	67,159	-	14,512	52,647
Fraining - Network Employees	8013	30,492		45,908	(15,416
Sexual Harassment Intervention Team	8015	54,759	-	2,214	52,545
Dependencies	8020	134,664	27,491	197,392	(35,237
Fraining on Attention & Hyperactivities	8021	60,721	-	1,571	59,150
Elder Abuse Prevention	8023	17,321	-	45,629	(28,30)
Youth Program - Regional Coordinator	9008	•	-	-	-
Fraining on Crisis Management	9052	37,386	-	33,812	3,574
Mental Health	9053	112,840	-	21,366	91,474
Speech Pathology - Training Daycare	9075	(1,708)	1,708	-	-
Psycho-Social Committee	9077	3,409	-	-	3,409
Speech Pathology - Program Development	9078	951	-	951	-
CLSC - Regional Development Strategy	9079	13,400	-	-	13,400
Development Problems - Regional Committee	9080	19,453	-	1,354	18,099
Intellectual Deficiency - Evaluation Chart	9081	13,704	*	398	13,300
Federal funds					
Home and Community Care	618	43,200	2,173,413	2,112,585	104,028
Disabled Adults Care	694	13,583	-	-	13,583
Family Violence	695	33,616	45,000	69,491	9,125
Community Mental Health	697	301,062	870,719	904,042	267,739
Suicide Prevention Strategy	698	50,578	99,950	111,250	39,278
AHTF Adaptation Plan - Clinical Projects	802	307	-	307	92.724
AHTF Integration Plan - Mental Health	806	83,725	-	-	83,725
Other funds	010				
Best Practices for Elders' Residences	812	4,220	-	-	4,220
Liaison Agent Training Program	813	52,263		-	52,263
Ulluriaq Adolescent Centre	817	(137,918)	2,300,512	2,473,564	(310,970
Suicide Prevention	963	30,951	-	5,276	25,675
Youth Protection Reorganization	9007	-	-	φ	
National Training Program	9076	23,694	-	39	23,655
		2,899,758	6,456,927	7,493,028	1,863,657
		5,496,266			

1. REPORTING ENTITY

Nunavik Regional Board of Health and Social Services is an organization created in pursuance of the James Bay Agreement. As of May 1, 1995, the rights and obligations of the Kativik CRSSS have become the rights and obligations of the Nunavik Regional Board of Health and Social Services.

	2013	2012
a) Operating Fund	S	\$
Health and Social Services - Previous year deficit	5,518,511	-
Health and Social Services - Strategic Regional Plan	1,522,341	-
Health and Social Services - Payroll Banks	513,973	513,973
Health and Social Services - Parental Leave and Insurance Leave	87,996	77,454
Health and Social Services - Various	87,229	117,350
GST/QST Rebates	321,584	983,084
Inuulitsivik Health Centre	302,275	236,328
Tulattavik Health Centre	399,113	183,495
Kativik Regional Government	297,652	-
Secrétariat Général du Secteur de la Santé et des Services Sociaux	242,019	-
Employee Advances	1,257	3,689
Other	542,500	435,040
	9,836,450	2,550,413
Provision for Doubtful Accounts	(96,808)	(85,960
TOTAL	9,739,642	2,464,45
	-,,-	-, -, -, -
b) Assigned Fund		
Health and Social Services - INIHB (note 8)	29,107,047	17,357,302
Health and Social Services - Ulluriaq Adolescence Centre	2,300,000	135,000
Health and Social Services - Strategic Regional Plan	380,000	-
Health and Social Services - Staff Training Youth Protection	-	120,000
GST/QST Rebates	47,664	-
Aboriginal Affairs and Northern Development Canada	19,442	36,362
Health Canada	315,742	334,003
Other	-	96,100
	32,169,895	18,078,767
c) Long-Term Assets Fund	10.073.073	11 045 514
Health and Social Services - Accounting Reform	10,862,072	11,845,518
GST/QST Rebates	1,089,327	E 1/1 111
Advance to Establishments	8,252,631	5,161,118
Other	55,858	-

3. CAPITAL ASSETS

The capital assets are composed of the following:

			2013	2012
	Cost \$	Accumulated Amortization \$	Net Book Value S	Net Book Value \$
Buildings	16,978,834	4,650,220	12,328,614	12,289,724
Computers	2,759,548	2,752,045	7,503	30,375
Furniture and Equipment	884,460	370,110	514,350	11,693
Specialized Equipment	181,538	80,153	101,385	35,268
Vehicles	137,295	116,415	20,880	31,270
	20,941,675	7,968,943	12,972,732	12,398,330

4. DEFERRED REVENUE

	450,000	488,193
Quebec Workman Compensation Board - C.S.S.T.	•	38,193
Health and Social Services - Action Plan	200,000	200,000
Health and Social Services - Strategic Regional Plan	250,000	250,000
The deterred revenue is composed of the following.	S	\$
The deferred revenue is composed of the following:	2013	2012

5. BANK LOANS - LONG-TERM ASSETS FUND

The bank loans are used to cover capital expenses, awaiting the reception of the funds from Financement-Québec. They are composed of eight (8) revolving authorized credit margins with the Canadian Imperial Bank of Commerce, bearing interest at prime rate and maturing at different dates.

6. PREVIOUS YEARS' ANALYSES

The MSSS's final analysis of the 2003-2004, 2004-2005, 2005-2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010, 2010-2011 and 2011-2012 financial reports were not available at the time of issuance of the present financial statements. Any adjustments resulting from these analyses will be reflected in the 2013-2014 financial statements

7. INTERFUND ACCOUNTS

The Regional Board operates one bank account for the Operating Fund and the Assigned Fund; certain transactions can also include the Long-Term Assets Fund. At year-end, interfund transactions are accounted for and presented as "Due to" and "Due from" one fund to the other.

8. INSURED AND NON-INSURED HEALTH BENEFITS

The Nunavik Regional Board of Health and Social Services (NRBHSS) signed a specific agreement with the MSSS in relation to the Insured and Non-Insured Health Benefits (INIHB) on February 15, 2011.

Based on this agreement, the NRBHSS has the direct responsibility for the management of the INIHB and its related funds. For this purpose, the NRBHSS was to elaborate, approve and implement specific policies and procedures for the administration of the program.

Such policies and procedures did not exist during the first 11 months of the 2012-2013 financial year. A new policy on patients transportation was approved on February 28, 2013. This policy will be implemented during the 2013-14 financial year, as per information obtained by management. This policy does not cover all the specific criteria of the INIHB but a considerable amount relates to patients transportation.

Nonetheless, a portion of the funds received by the NRBHSS for the INIHB was reimbursed to the establishments upon presentation of invoices, without any conditions or guidelines.

Due to the absence of the required and implemented policies and procedures as of March 31, 2013, the specific audit mandate related to INIHB could not be conducted on the majority of the activities and funds related to INIHB.

Only the portion of the program related to eyeglasses, dental prosthesis as well as medications, medical supplies and equipment outside the region was subject to a special audit. This portion represents about 3% of the total cost of the INIHB. Following is the outcome of this audit:

- The related policies and procedures of Health Canada are followed and applied. A derived draft policy of the NRBHSS was available but no proof of its approval by the Board;
- All expenses could be traced to patients' names on the beneficiaries list;
- Since 2004-2005 is the first year of application of the INIHB, no historical data was available. It was however clear that eyeglasses and dental prosthesis were claimed only once by the same patient;
- The disbursements related to medications outside the region were not always in line with the list of approved medications of Health Canada. The list of medications of the RAMQ was also used at times;
- It was not evident that generic medications were favoured at all times.

8. INSURED AND NON-INSURED HEALTH BENEFITS (CONTINUED)

In addition, as at the date of issuance of the present financial statements, the MSSS did not confirm the balance of the funds payable to the NRBHSS in relation to the INIHB. This balance is recorded as part of the accounts receivable as follows:

	5
2011-2012	9,009,161
2012-2013	20,097,886
	29,107,047

9. PURCHASING PROCEDURES

The Regional Board does not have approved purchasing policies and procedures and certain purchases were conducted without proper calls for tender.

			71,491,306	44,429,885
	- Puvirnituq	2012 - 2013	3,118,899	-
	Direction of Youth Protection (Building)			
	28 for IHC and 4 for NRBHSS)	2011 - 2012	29,012,557	5,200,358
	Housing Units (70 units : 38 for UTHC,			
	23 for IHC and 4 for NRBHSS)	2009 - 2010	18,219,433	18,089,110
	Housing Units (50 units : 23 for UTHC,			
	23 for IHC and 6 for NRBHSS)	2008 - 2009	21,140,417	21,140,417
	Housing Units (54 units : 25 for UTHC,		S	\$
			2013	2012
0.	CONSTRUCTION IN PROGRESS			

These construction projects are temporarily financed by Financement-Québec.

Upon closing of the construction projects, the capital cost and the long-term debt related to the construction projects, will be recorded in the financial statements of the respective establishments.

11. COMMITMENTS

The Nunavik Regional Board of Health and Social Services has commitments amounted to \$169,000 for a training agreement. The future minimum contractual obligations for the next year is as follow:

	Rental \$	Services \$	Total S
2013-2014	6	169,000	169,000
		169,000	169,000

12. COMPARATIVE FIGURES

Certain comparative figures have been reclassified to conform with the presentation adopted in the current year.

RAPPORT ANNUEL

2012 - 2013

DON' DOCCLC ΔΟΥCROST ΛΟΥΡΟΊΟ MLASPC

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK

Rapport annuel 2012-2013

Du 1^{er} avril 2012 au 31 mars 2013

Table des matières

Nunavik : « un vaste territoire occupé »	4
La région et son peuple	
Indicateurs de santé chez les Inuits	
Le réseau de la santé et des services sociaux du Nunavik	
La Régie régionale de la santé et des services sociaux Nunavik	
Centres de santé	
Mot de la présidente et de la directrice générale	
Conseil d'administration de la régie régionale	10
Régime de plainte pour améliorer la qualité des services	13
Direction générale	14
Services préhospitaliers d'urgence et mesures d'urgence	14
Direction de la planification et de la programmation	15
Mot du directeur	
Ulluriaq	
Ilusiliriniqmi pigutjiutini qimirruniq (projet clinique)	16
Affaires médicales et santé physique	
Santé mentale, prévention du suicide, santé et bien-être des hommes	18
Personnes en perte d'autonomie, aînés et réadaptation	19
Violence familiale et agression sexuelle	
Organismes communautaires	
Dépendances	
Enfance-Jeunesse-Famille (EJF)	22
Direction de santé publique	
Mot de la directrice	
Promotion de la santé	
Surveillance de l'état de santé de la population	
Activités du programme québécois de dépistage du cancer du sein (PQDCS)	
Prévention et protection	34
Direction des valeurs et pratiques inuites	36
Mot de la directrice	
Sages-femmes	
Programme de soutien en santé – résolution des questions des pensionnats indiens	
Adoption traditionnelle	
Grandir ensemble	
Comités de bien-être	
Prévention de mauvais traitements infligés aux personnes âgées	
Direction des services administratifs	
Mot du directeur	
Ressources financières	

Budget de fonctionnement de la RRSSSN	42
Immobilisations et équipements	
Ressources humaines	
Systèmes d'information	
Direction régionale du développement des ressources humaines	
Mot du directeur intérimaire	
Principales activités en 2012-2013	47
Formation en intervention psychosociale	
Formation des interprètes	
Formation destinée aux cadres inuits	48
Initiative sur les ressources humaines en santé autochtone (IRHSA)	48
Recrutement	
Priorités 2013-2014	
Direction des services hors région	
Mot du directeur	
Projet de relocalisation du MNQ	
Services de santé assurés/non assurés (SSANA)	
Politique régionale de transport pour la région du Nunavik	
Objectifs de la direction en 2013-2014	

Nunavik: « un vaste territoire occupé »

La région et son peuple

Nunavik, la région inuite du Québec, est un vaste territoire qui couvre plus de 500 000 kilomètres carrés. Ses zones géographiques comprennent la taïga et la toundra, et ses paysages varient entre montagnes, forêt boréale, innombrables lacs et rivières et haute mer.

Il existe différentes interprétations du mot *Nunavik*. Pour certains, Nunavik signifie « la place où nous avons atterri ». Dans son dictionnaire d'inuktitut, Tamusi Qumak indique que Nunavik signifie « une vaste terre occupée par des animaux ».

Aujourd'hui, le Nunavik compte environ 12 000 habitants, dont 90 % Inuits, vivant dans 14 communautés réparties sur les côtes et le long des rivières : Kuujjuaraapik, Umiujaq, Inukjuak, Puvirnituq, Akulivik, Ivujivik, Salluit, Kangiqsujuaq, Quaqtaq, Kangirsuk, Aupaluk, Tasiujaq, Kuujjuaq et Kangiqsualujjuaq.

Chaque communauté dispose d'infrastructures municipales ainsi que des services essentiels modernes et adaptés au Nord. Par exemple, les logements et autres bâtiments ont l'eau courante ; l'eau provenant de réservoirs locaux est livrée quotidiennement par camion-citerne.

Aucune route ne mène au Nunavik ; le transport de passagers et de cargo se fait par avion et par navire.

À l'exception de Kuujjuaq, ces petites communautés sont dispersées le long des 2 500 kilomètres de côtes qui bordent le Nunavik, certaines sur la côte est de la baie d'Hudson, d'autres sur les côtes du détroit d'Hudson et de la baie d'Ungava. Kuujjuaq se situe un peu plus loin à l'intérieur des terres, en amont de la rivière Koksoak, directement sur la ligne des arbres, à cheval entre la taïga et la toundra. Avec sa population de 2 000 habitants, c'est la plus grande communauté du Nunavik, ce qui en fait aussi le centre administratif de la région.

Malgré la distance qui les sépare, les Inuits, qui sont chaleureux et qui vivaient jadis la vie de nomade, apprécient le contact social. Toutefois, les communautés du Nunavik n'étant pas reliées par des routes, les habitants doivent voyager par avion, par bateau ou en motoneige, selon les saisons, pour se visiter entre eux. Peu importe le temps froid, ces visites font des rencontres chaleureuses.

Comme la population du Nunavik est majoritairement inuite, l'inuktitut est la langue la plus parlée sur le territoire. Par contre, dû à la prépondérance du fédéral dans l'ancienne administration de la région, l'anglais est aussi utilisé couramment, surtout au travail, plus que le français, bien que celui-ci fasse des progrès considérables.

79. 7s.

Pour savoir plus sur la région, visiter le site www.nunavik.ca.

Indicateurs de santé chez les Inuits

Les indicateurs de santé chez les Inuits du Nunavik sont peu encourageants comparés à ceux pour le reste du Québec : l'espérance de vie y est inférieure à 16 ans, les taux de mortalité infantile et d'hospitalisation sont quatre fois plus élevés et le taux de maladies infectieuses est très haut. Parmi les causes du taux de mortalité élevé sont les tumeurs malignes, les maladies cardiovasculaires, les maladies respiratoires, les complications reliées au tabagisme et les accidents reliés à la consommation d'alcool. De plus, le taux du suicide au Nunavik est plus que sept fois plus élevé que celui pour le reste de la province : le taux chez les jeunes âgés de 15 à 19 ans est 46 fois plus élevé, et celui chez les jeunes adultes âgés de 20 à 24 ans est 23 fois plus élevé.

Le coût de la vie étant beaucoup plus élevé au Nunavik dû aux coûts reliés au transport, il est évalué que 43 % des ménages du Nunavik vivent en dessous du seuil de pauvreté, comparativement à 17 % pour le Québec.

Le Nunavik souffre aussi d'un manque de logement, plus de 500 familles ou individus étant sur une liste d'attente. Bien que la moyenne de personnes par habitation soit de 4,72, il n'est pas rare de voir de 10 à 12 personnes habiter un même logis. Par ailleurs, bien que certains logements comportent cinq ou six pièces, un grand nombre d'entre eux sont plus petits, ce qui contribue à un nombre de personnes par pièce plus élevé pour le Nunavik (0,93) que pour la grandeur du Québec (0,5).

Le réseau de la santé et des services sociaux du Nunavik

Le réseau de la santé et des services sociaux du Nunavik comprend la Régie régionale de la santé et des services sociaux Nunavik, le Centre de santé Inuulitsivik (côte d'Hudson) et le Centre de santé Tulattavik de l'Ungava (côte d'Ungava). La Convention de la Baie James et du Nord québécois (CBJNQ) et conventions complémentaires ont établi les balises pour le développement des services de santé et des services sociaux sur le territoire du Nunavik. L'organisation des soins de santé et des services sociaux relève du système provincial, mais elle est adaptée aux réalités de la région.

Avec la taille de sa population et ses caractéristiques socioculturelles, le Nunavik est un lieu privilégié où se mêlent curatif et préventif, un endroit où les activités de promotion, de prévention et de protection peuvent s'exercer de la façon la plus harmonieuse et la plus naturelle, tant au niveau de la santé qu'au niveau des services sociaux.

La Régie régionale de la santé et des services sociaux Nunavik

Pour le ministère de la Santé et des Services sociaux (MSSS), le Nunavik correspond à la région sociosanitaire 17. La Régie régionale de la santé et des services sociaux Nunavik (RRSSSN) gère un budget de près de 179 millions de dollars, destiné aux services de santé et services sociaux pour la population des 14 communautés.

Un conseil d'administration composé de 20 membres chapeaute la RRSSSN :

- 14 personnes représentant respectivement chaque village du Nunavik;
- le directeur général de chacun des centres de santé (Tulattavik et Inuulitsivik) (deux membres);
- un membre nommé par le conseil d'administration de chaque centre de santé à même les représentants élus par les villages (deux membres);
- un membre nommé par le conseil d'administration de l'Administration régionale Kativik (ARK);
- la directrice générale de la RRSSSN.

Outre les fonctions directement reliées à l'administration, le conseil est responsable d'identifier les priorités relativement aux besoins de la population en matière de services de santé et de services sociaux, priorités qui sont soumises à la séance publique d'information que la régie tient annuellement.

La loi prévoit une représentation majoritaire des Inuits sur les conseils d'administration de la régie régionale et des établissements.

Centres de santé

La prestation des services est organisée localement et selon les sous-régions—Hudson et Ungava—et est centrée à deux établissements à vocations multiples, le Centre de santé Inuulitsivik à Puvirnituq et le Centre de santé Tulattavik de l'Ungava à Kuujjuaq. Ces établissements poursuivent les missions de centre hospitalier de soins généraux et spécialisés (15 lits par centre) ainsi que de centre hospitalier de soins de longue durée.

Le Centre de santé Tulattavik de l'Ungava, en partenariat avec la municipalité de Kuujjuaq et l'Office municipal d'habitation Kativik, maintient un foyer de soins infirmiers de 10 places. Un centre de jour pour les personnes âgées existe aussi à Kuujjuaq.

D'autres services comprennent la protection de l'enfance et de la jeunesse, avec deux directions de la protection de la jeunesse, une dans chaque sous-région. Les installations comprennent un centre de réadaptation régional de 14 places à Salluit, deux foyers de groupe sous-régionaux de 8

79.74

places chacun à Puvirnituq et Kuujjuaq et un point de service de CLSC dans chacune des 14 communautés.

Le point de service de CLSC de chaque communauté compte une équipe composée de professionnels provenant de différents domaines et disciplines ; ces équipes offrent une gamme de services de santé et de services sociaux à la population. La composition de l'équipe varie d'une communauté à l'autre, selon la taille de la population et les fonctions de l'équipe.

Les services de santé de deuxième ligne sont limités au Nunavik. Le recours à des ressources à l'extérieur de la région est la norme pour pratiquement tout examen et tout traitement spécialisés. Certains services sont offerts par les deux centres de santé, notamment par des spécialistes itinérants tels les gynécologues, psychiatres, orthopédistes, etc. Si les services spécialisés ou ultraspécialisés ne peuvent être rendus au Nord, le client est orienté aux ressources situées au Sud, selon l'entente avec le RUIS McGill ou autre entente.

Le Service aux patients à Montréal sert de liaison et de soutien dans ces cas de transfert ; il assure la réception, le transport, le logement et les services d'interprétariat ainsi que la liaison avec les établissements au Nord.

Un centre de crise de cinq places à vocation régionale, situé à Puvirnituq, offre des services de deuxième ligne en santé mentale.

Mot de la présidente et de la directrice générale

Avant de commencer, nous présentons notre raison d'être, notre mission, nos objectifs et nos valeurs :

Notre raison d'être :

Le bien-être de toute la population du Nunavik

Notre mission:

Planifier, organiser, appliquer et évaluer des programmes pour servir notre population

Notre objectif:

Améliorer l'état de santé de notre population

Nos valeurs:

Autonomie, respect, participation, valorisation de nos ressources humaines et collaboration avec nos partenaires

Ce sont les éléments qui balisent nos actions au quotidien et qui se concrétisent par les priorités suivantes, établies lors de notre dernière assemblée générale annuelle, tenue en octobre 2012 et couvrant la période d'un an du 1^{cr} avril 2012 au 31 mars 2013 :

Assurer le suivi aux recommandations formulées par les comités consultatifs relativement aux projets cliniques :

- la jeunesse ;
- la santé mentale ;
- la toxicomanie.

De plus, le respect des valeurs et des pratiques inuites est un élément clef dans le développement et la prestation de services de santé et de services sociaux au Nunavik.

Ces dernières années, la RRSSSN travaille avec diligence sur le projet de relocalisation du MNQ. Nous avons subi plusieurs retards ces derniers mois en réalisant ce projet, mais nous espérons une issue favorable dans l'exercice à venir.

La formation destinée au personnel inuit du réseau de la santé et des services sociaux du Nunavik demeure parmi nos priorités. Nous avons poursuivi nos efforts afin de maintenir les programmes de formation existants et d'en implanter des nouveaux. Notre but est de soutenir le personnel inuit et d'assurer que la population a accès aux services dans sa propre langue.

Au courant de l'année, la RRSSSN a brièvement soulevé pour le MSSS les difficultés rencontrées par le réseau de la santé et des services sociaux concernant la concurrence avec les autres organismes régionaux au niveau des conditions de travail offertes au personnel engagé localement au Nunavik.

Notre engagement et notre dévouement envers notre population passent par le respect et la reconnaissance de la main-d'œuvre inuite. Afin de consolider nos investissements dans les différents programmes de formation existants, la RRSSSN, en collaboration avec la Direction des affaires autochtones, aimerait créer un groupe de travail dans les prochains mois pour examiner les disparités régionales actuelles, le but étant de bonifier les programmes avec l'objectif d'attirer et de retenir cette main-d'œuvre dans notre réseau. Après cet exercice, nous serons en mesure d'entreprendre les discussions nécessaires avec les instances concernées pour les fins d'approbation et de mise sur pied des mesures choisies.

La protection de la jeunesse, les services de réadaptation et plusieurs autres dossiers demeurent au cœur de nos préoccupations. Notre Plan régional stratégique 2009-2010 à 2015-2016

comprend une série de mesures appuyant ces services. Afin d'assurer le suivi aux recommandations formulées par les comités consultatifs œuvrant sur les projets cliniques, nous identifierons une nouvelle série de mesures dans le prochain Plan d'action régional 2013-2014 pour soutenir, améliorer et consolider les services des dossiers jeunesse, santé mentale et toxicomanie.

La RRSSSN est fière de participer au processus de consultation Parnasimautik avec l'objectif d'aborder les besoins et les priorités du Nunavik en vue du développement industriel dans la région. Parnasimautik a débuté en 2010 avec la production du *Plan Nunavik* par les représentants de la plupart des organismes régionaux. Nous reconnaissons tous que la région a subi de grandes transformations sociales, économiques et culturelles qui ont eu un grand impact sur le bien-être de la population et qui continuent à l'influencer aujourd'hui. Le processus de consultation qui a commencé en février 2013 devrait s'achever vers la fin 2013.

En terminant, nous aimerions souligner les efforts extraordinaires de nos ressources humaines dans les services de santé et les services sociaux et exprimer nos sincères remerciements à tous et à toutes qui répondent quotidiennement aux besoins de la population. Nous remercions également tous les organismes et partenaires de la région de leur soutien et collaboration.

Elisapi Uitangak Présidente Minnie Grey Directrice générale

Conseil d'administration de la régie régionale

Nous tenons à féliciter les nouveaux membres élus durant l'année, et nous anticipons une étroite collaboration afin d'atteindre notre obiectif commun : améliorer l'état de santé des Nunavimmiuts

Le conseil d'administration de la Régie régionale de la santé et des services sociaux Nunavik (RRSSSN) a nommé Minnie Grey directrice générale de la RRSSSN. Lors de la 88° séance du conseil, tenue du 4 au 6 décembre 2012, les membres ont adopté à l'unanimité la recommandation du comité de sélection. La RRSSSN est fière d'accueillir Minnie Grey à son nouveau poste de directrice générale.

Les membres du conseil d'administration de la RRSSSN remercient Gilles Boulet, assistant à la directrice générale, d'avoir assuré l'intérim jusqu'à l'entrée en poste de Mme Grey le 7 janvier 2013. Les membres souhaitent le succès à Mme Grey dans ses nouvelles fonctions.

Composition du conseil d'administration au 31 mars 2013

•	Elisapi Uitangak	Présidente, représentante de Puvirnituq
•	Lucy Carrier Tukkiapik	Vice-présidente, représentante de Kangirsuk
	Minnie Grey	Secrétaire, directrice générale de la RRSSSN
•	Eva Weetaluktuk	Membre du comité administratif, représentante d'Inukjuak
•	Claude Gadbois	Membre du comité administratif, représentant du CA du Centre de santé Tulattavik de l'Ungava

ADMINISTRATEURS

•	Lucassie Alayco, Sr.	Représentant d'Akulivik	
	Mary Angutinguak	Représentante d'Aupaluk	
	Kitty Annanack	Représentante de Kangiqsualujjuaq	
	Alasie Arngak	Représentante de Kangiqsujuaq	
•	Jane Beaudoin	Directrice générale du Centre de santé Inuulitsivik	
	Parsa Kitishimik	Représentante de l'ARK	
	Willie Kumarluk	Représentant d'Umiujaq	
	Qumaq L. Mangiuk	Représentante d'Ivujivik	
	Moses Munick	Représentant de Tasiujaq	

•	Tunu Napartuk	Représentant de Kuujjuaq
•	Lizzie Niviaxie	Représentante de Kuujjuaraapik
	Charlie Okpik	Représentant de Quaqtaq
•	Illashuk Pauyungie	Représentante de Salluit
•	Madge Pomerleau	Directrice générale du Centre de santé Tulattavik de l'Ungava

Représentant du CA du Centre de santé Inuulitsivik

Les politiques et règlements suivants furent adoptés durant l'exercice 2012-2013.

Le 30 août 2012 :

Jusipi Oagutug

Règlement 12 Règlement concernant la procédure d'élection des membres du conseil d'administration des établissements sur le territoire de la Régie régionale de la santé et des services sociaux Nunavik

Le 28 février 2013 :

Règlement 13 Code d'éthique et de déontologie des membres du conseil d'administration de la RRSSSN

Directive Directive interne de gestion concernant la préparation et la présentation de documents pour le conseil d'administration et la Direction générale de la Régie régionale de la santé et des services sociaux Nunavik,

Politique Politique régionale de transport des usagers pour la région du Nunavik

Le conseil d'administration révise présentement ses règlements pour approbation durant le prochain exercice.

Ces règlements et politiques sont affichés sur notre site Internet.

Conseils d'administration du réseau de la santé et des services sociaux du Nunavik

La population du Nunavik fut invitée à exercer son droit de vote le 25 octobre 2012 pour élire un(e) représentant(e) par village au conseil d'administration du Centre de santé Inuulitsivik et du Centre de santé Tulattavik de l'Ungava. Les employés des centres de santé, pour leur part, ont élu quatre personnes parmi leurs rangs à chaque établissement.

Certaines communautés n'ont pas tenu d'élection ; par conséquent, le conseil d'administration de la régie régionale a nommé des représentants de ces communautés lors de ses séances du 4 décembre 2012 et du 11 décembre 2012 afin de combler les postes vacants.

Quant au conseil d'administration de la régie régionale, chaque communauté du Nunavik a dû nommer un(e) représentant(e).

Conseil d'administration de la RRSSSN

Les membres du conseil ont assisté à neuf séances régulières ainsi qu'à l'assemblée générale annuelle et ont adopté 56 résolutions. Le comité administratif s'est rencontré à 12 reprises.

Le conseil d'administration de la RRSSSN a vu certains changements durant l'année.

- Pour la période d'avril 2012 à janvier 2013, Gilles Boulet a remplacé Jeannie May, directrice générale de la RRSSSN et secrétaire du conseil d'administration.
- Le 7 janvier 2013, Minnie Grey est entrée en fonction comme nouvelle directrice générale de la RRSSSN.

Les résultats de la dernière élection sont les suivants :

- Qumaq L. Mangiuk fut renommée représentante d'Ivujivik le 4 décembre 2012.
- Illashuk Pauyungie fut renommée représentante de Salluit le 4 décembre 2012.
- Claude Gadbois fut nommé représentant du Centre de santé Tulattavik le 26 février 2013, remplaçant Lydia Nayome qui était représentante depuis le 5 octobre 2011.
- Alasie Arngak fut renommée représentante de Kangiqsujuaq le 4 décembre 2012.
- Mary Angutinguak fut nommée représentante d'Aupaluk le 4 décembre 2012, remplaçant Daisy Angutinguak qui était représentante depuis le 7 décembre 2009.
- Lucy Carrier Tukkiapik fut renommée représentante de Kangirsuk le 4 décembre 2012.
- Tunu Napartuk fut nommé représentant de Kuujjuaq le 4 décembre 2012, remplaçant Bobby Snowball Sr. qui était représentant depuis le 11 décembre 2007.
- Kitty Annanack fut nommée représentante de Kangiqsualujjuaq le 5 décembre 2012, remplaçant Christina Baron qui était représentante depuis le 24 janvier 2006.
- Elisapee Uitangak fut renommée représentante de Puvirnituq le 4 décembre 2012.
- Willie Kumarluk fut renommé représentant d'Umiujaq le 4 décembre 2012.
- Moses Munick fut nommé représentant de Tasiujaq le 4 décembre 2012, remplaçant Annie Kauki Munick qui était représentante depuis le 20 février 2007.
- Lizzie Niviaxie fut renommée représentante de Kuujjuaraapik le 4 décembre 2012.
- Charlie Okpik fut nommé représentant de Quaqtaq le 5 décembre 2012, remplaçant Louisa Kulula qui était représentante depuis le 7 décembre 2009.

TA B

- Parsa Kitishimik fut nommée représentante de l'Administration régionale Kativik le 4 décembre 2012, remplaçant Kitty Annanack qui occupait le poste depuis le 20 avril 2010.
- Jusipi Qaqutuq fut nommé représentant du Centre de santé Inuulitsivik le 26 février 2013, remplaçant Josepi Padlayat qui était représentant depuis le 23 juin 2009.
- Lucassie Alayco Sr. fut nommé représentant d'Akulivik le 4 décembre 2012, remplaçant Johnny Qaqutuk qui était représentant depuis le 20 avril 2010.
- Eva Weetaluktuk fut renommée représentante d'Inukjuak le 4 décembre 2012.

Les personnes suivantes font également partie du conseil d'administration :

- Madge Pomerleau, directrice générale, Centre de santé Tulattavik de l'Ungava ;
- Jane Beaudoin, directrice générale, Centre de santé Inuulitsivik;
- Gilles Boulet, directeur général par intérim, RRSSSN, jusqu'au 7 janvier 2013, date où Minnie Grey est entrée en fonction comme directrice générale.

Nous regrettons Christina Baron, représentante de Kangiqsualujjuaq depuis 2006 et membre actif de notre conseil ; Christina est décédée en décembre 2012.

Régime de plainte pour améliorer la qualité des services

La régie régionale œuvre activement à la mise sur pied de la structure permettant la gestion et la promotion du régime de plainte dans la région. En collaboration avec les deux établissements, nous devons identifier une ressource qui aidera et soutiendra les *Nunavimmiuts*, au besoin, qui veulent porter plainte concernant un établissement de la région, la régie régionale ou le protecteur du citoyen, ainsi que ceux dont la plainte aurait été acheminée au conseil des médecins, des dentistes et des pharmaciens de l'établissement selon les dispositions de l'article 58.

Pour les usagers de la côte de l'Ungava, le poste de commissaire aux plaintes et à la qualité des services est présentement vacant au Centre de santé Tulattavik de l'Ungava. Pour les usagers de la côte de l'Hudson, les plaintes sont acheminées à Josi Nappartuk du Centre de santé Inuulitsivik. Nous invitons la population à consulter le site Internet des établissements pour de plus amples informations.

Direction générale

Services préhospitaliers d'urgence et mesures d'urgence

Services préhospitaliers d'urgence

En août 2012, l'équipe de premiers répondants du village nordique de Puvirnituq est entrée officiellement en service. Une formation complète et deux formations complémentaires ont été données spécifiquement pour les premiers répondants de ce village, le but étant d'assurer une bonne implantation et un rodage du service par le développement des compétences des intervenants. Pour assurer une transition en douceur, les infirmiers et infirmières du Centre de santé Inuulitsivik ont soutenu les interventions des premiers répondants pendant quelques mois suivant l'implantation du service. L'équipe de premiers répondants de la municipalité de Puvirnituq est maintenant autonome.

Le programme de formation étendu à toutes les communautés a été maintenu cette année avec un total de 5 formations complètes et de 17 formations complémentaires pour un total de 10 semaines de formation réparties tout au long de l'année.

Sécurité civile

Pannes de téléphone sur la côte de l'Hudson

Des épisodes de pannes de téléphone et de congestion récurrente ont causé des défis importants particulièrement dans certains points de service du côté de l'Hudson. Des moyens de communications téléphoniques efficaces et robustes sont essentiels et nécessaires afin d'assurer la sécurité des citoyens en cas d'urgence. Des efforts ont été déployés pour dresser un état de situation le plus juste possible.

Des représentations ont été faites à l'Organisation régionale de sécurité civile (ORSC Nunavik) et un comité téléphonie a été mis sur pied pour trouver des leviers et des solutions car ce dossier ne touche pas seulement le réseau de la santé. Le comité téléphonie a maintenu un contact étroit avec le fournisseur de service pour s'assurer d'une rapidité d'intervention pour les problèmes techniques. Le comité a aussi fait des représentations à haut niveau auprès du fournisseur pour adresser les problèmes de congestion des lignes téléphoniques. Des orientations ont été proposées à l'OSCQ pour la sensibiliser à la situation. Bien que les problèmes de téléphonie aient diminué sensiblement sur le territoire, suite à une tournée de tous les villages par l'équipe technique du fournisseur, d'autres travaux de mise à jour devront être effectués pour améliorer la fiabilité et la robustesse du lien téléphonique existant. Les liens étroits avec le fournisseur de service téléphonique seront maintenus pour assurer un suivi des travaux.

两刀

Direction de la planification et de la programmation

Mot du directeur

C'est avec fierté que j'ai joint l'équipe de la planification et programmation en septembre 2012. Mon arrivée coïncide avec une série d'aboutissements de travaux conduisant à l'avènement des premières recommandations des projets cliniques. Ce processus novateur impose un changement de façon de faire dans la planification et l'organisation des services. L'orientation, le déploiement, la validation et l'évaluation des services de soins de santé au Nunavik doivent maintenant faire l'objet de consultation, auprès de ses clientèles, de groupes d'opinions et des partenaires du réseau de la santé. C'est donc dans cette optique que je m'efforce d'effectuer les tâches qui incombent à la Direction de la planification et de la programmation.

Yoan Girard

Ulluriaq

Nous avons dû procéder après négociations avec le MSSS à un réaménagement budgétaire du Centre pour adolescents Ulluriaq, passant d'un budget total de 3,2 millions à 2,1 millions annualisé sans en affecter la qualité et la quantité des services directement offerts à cette clientèle. En collaboration avec la Direction des services administratifs et le MSSS, nous avons lancé le processus de planification de la construction d'un nouvel édifice à Inukjuak. À ce propos, nous avons donc élaboré un plan de relocalisation de cette ressource dès le début 2015. Avec les délais imposés par une nouvelle construction, nous avons dû renouveler notre entente de service avec Boscoville 2000 afin de sécuriser la disponibilité des édifices jusqu'au déménagement vers Inukjuak. À l'intérieur de cette entente, nous avons prévu obtenir l'expertise de ce partenaire dans la formation de nos futurs employés d'Inukjuak, formation qui devra débuter à l'été 2014.

CCRSR

Nous avons relancé le comité consultatif régional sur les services de réadaptation pour les jeunes en difficulté (CCRSR). Cette table de concertation nous a permis de recommander et de valider les priorités dévolues à la mission de ce service régional exploité par le Centre de santé Tulattavik de l'Ungava.

Ressources humaines

Depuis un peu plus d'un an, l'équipe du programme-service enfance-jeunesse-famille était incomplète et ce malgré l'importance des enjeux reliés à celui-ci. J'ai donc commencé un

processus de recrutement d'une conseillère et d'une agente. Ces postes sont comblés depuis la fin de l'année 2012.

J'aimerais profiter de l'occasion qui m'est offerte pour remercier l'ensemble des employés de la direction pour leur participation et leur engagement dans l'amélioration constante des services de santé au Nunavik.

Ilusiliriniqmi pigutjiutini qimirruniq (projet clinique)

Un nom significatif pour le processus du projet clinique

Au cours de l'année 2012-2013, les comités consultatifs se sont entendus sur une dénomination significative en inuktitut pour identifier le processus du projet clinique : *Ilusiliriniqmi pigutjiutini qimirruniq*. Cette formule désigne une démarche de révision des soins de santé et des services sociaux en vue de les améliorer.

Rédaction et approbation de recommandations

L'hiver, le printemps et l'été 2012 ont été consacrés principalement à la rédaction de recommandations par les comités de travail. À l'automne 2012, les comités consultatifs ont révisé et approuvé les recommandations que leur ont soumises quatre comités de travail :

Adoption de la première série de recommandations par le CA de la RRSSSN

Le 4 décembre, les trois présidents des comités consultatifs ont soumis pour adoption aux membres du CA de la RRSSSN les recommandations approuvées par leurs comités respectifs. Après la révision de ces recommandations, les membres du CA ont unanimement approuvé l'ensemble de ces mesures. L'adoption des mesures proposées par les comités consultatifs marque une étape cruciale franchie avec succès par le processus du projet clinique.

Financement des recommandations et planification du déploiement des mesures

Depuis janvier 2013, la RRSSSN planifie le financement et l'implantation des mesures émanant du projet clinique. Cet exercice se fait en négociant, avec les centres de santé et les autres partenaires du réseau de la santé et des services sociaux, comment l'argent de développement, rendu disponible pour la région grâce à l'entente survenue avec le gouvernement du Québec concernant la Planification régionale stratégique 2009-2010 à 2015-2016, sera alloué aux priorités régionales.

Une autre année occupée en vue

L'année 2013-2014 s'annonce très chargée pour les personnes et organisations engagées dans le processus du projet clinique. La RRSSSN et les partenaires concernés veilleront à implanter certaines mesures adoptées dès cette année. Pour s'assurer que ces mesures soient déployées selon l'esprit dans lequel elles ont été élaborées, les comités consultatifs seront engagés dans un processus de monitorage de l'implantation des recommandations. De plus, les comités de travail et les comités consultatifs poursuivront leur travail d'élaboration de recommandations quant aux priorités identifiées en 2010 lors du Comité d'orientation du réseau de la santé et des services sociaux du Nunavik.

Finalement, les premières activités de la campagne d'information et de consultation publique débuteront dès avril 2013. Cette campagne vise à informer la population du Nunavik quant aux changements apportés à la manière dont fonctionne le réseau ainsi qu'à susciter une plus grande participation des différents acteurs de la région dans le processus.

Affaires médicales et santé physique

Suivant les priorités ministérielles et régionales, l'équipe a pour mission la planification, la coordination et l'accessibilité aux programmes-services en santé physique, notamment dans les activités de première ligne telles les urgences et les soins généraux, spécialisés et ultraspécialisés (RUIS). Tout au cours de l'année 2012-2013, plusieurs événements ont marqué les affaires médicales et la santé physique.

Tout d'abord, la région a accueilli quatre nouveaux médecins : deux pour l'Ungava et deux pour l'Hudson. Ceci nous a amené à terminer l'année avec un total de 25 médecins pratiquant sur le territoire. En plus des médecins pratiquant sur le territoire, la télésanté a permis de combler des besoins variés de la première à la troisième ligne (adulte et pédiatrique). Il s'agit de consultation générale, de consultation spécialisée, de discussion de cas, de suivi post-hospitalisation, de suivi post-visite aux communautés et de formation continue.

Puis, au début de l'année 2013, un plan de développement nordique fut déposé au MSSS. Il reflète les besoins et les particularités de notre région.

Finalement, une panoplie d'études des dernières années ont dévoilé au grand public ainsi qu'aux acteurs œuvrant dans le système de santé que le Nunavik faisait face à une augmentation alarmante de problèmes de santé mentale. Il nous est donc apparu pertinent de créer un moment de rencontre et d'échange en organisant un colloque sur la santé mentale pour les intervenants gravitant autour de ce sujet et cela au Nunavik afin d'aller rejoindre plus directement la population. Le titre « Nouveaux repères en santé mentale » cherche à donner un autre regard sur la situation, en accentuant les discussions sur les solutions en favorisant la création d'un lieu de rencontre où tous peuvent être entendus et écoutés. De plus cette rencontre fût également une occasion de réunir l'ensemble des médecins permanents travaillant au Nunavik. L'activité de

formation en santé mentale initiée par la Direction régionale de médecine générale (DRMG) a rejoint durant cette fin de semaine plus d'une centaine de professionnels de la santé soit 20 médecins permanents travaillant au Nunavik, 60 travailleurs du réseau, 12 conférenciers et plus de 20 participants en visioconférence et en diffusion sur le Web. Les différentes conférences sont également offertes par le centre de formation et d'enseignement à distance du programme de santé du Nord de McGill.

Pour clore l'activité, l'élection d'un nouveau comité administratif au DRMG a eu lieu afin d'apporter un nouveau souffle à l'équipe. Le comité contribuera à la gestion optimale des différents dossiers régionaux. Le comité a nommé Dr. François Prévost comme chef du DRMG pour un nouveau mandat de deux ans.

Santé mentale, prévention du suicide, santé et bien-être des hommes

Projets cliniques

- Poursuite des travaux au sein du comité consultatif en santé mentale
- Poursuite et finalisation des travaux au sein du comité de travail pour l'amélioration des ressources en santé mentale
- Poursuite des travaux du comité de travail en prévention du suicide

Santé mentale

Les activités de formation pour les travailleurs des ressources résidentielles en santé mentale se sont poursuivies. Deux sessions de formation de deux jours ont été offertes par l'Hôpital Douglas dans chacun des milieux de travail, soit le centre de crise à Puvirnituq, le centre de réintégration à Inukjuak et les appartements supervisés à Kuujjuaq. Cette formation continue a pour but de présenter les concepts de base de la santé mentale et d'offrir aux membres du personnel des outils fonctionnels de base afin de mieux les soutenir dans leur travail. De plus, une psychoéducatrice a été embauchée par la ressource de Kuujjuaq.

Prévention du suicide

- Un soutien a été fourni pour la participation des jeunes et des professionnels à l'événement « Dialogue pour la vie », une conférence organisée annuellement par l'Association prévention suicide Premières Nations et Inuits du Québec et du Labrador.
- Une formation ASIST a été offerte à Kuujjuaraapik à la demande des premiers répondants, des ateliers de deuil ont été réalisés à trois reprises et l'équipe de formateurs inuits s'est rencontrée à deux reprises pour s'approprier le matériel en inuktitut du Nunavut et rafraîchir leurs connaissances.

Personnes en perte d'autonomie, aînés et réadaptation

Soins à domicile et en milieu communautaire

Les personnes de tout âge en perte d'autonomie ont bénéficié d'un total de 20 178 heures de services à domicile et en milieu communautaire. Ce chiffre suit la tendance à la hausse au niveau du recours aux services observée chaque année.

Aînés

Développement de nouvelles résidences pour aînés au Nunavik

Cette année, la première phase du projet s'est achevée. Le consultant embauché par la RRSSSN a travaillé étroitement avec les comités et les aînés de quatre communautés afin de déterminer le modèle de résidence et la localisation qui répondront à leurs besoins. Les plans furent élaborés à l'aide d'un architecte et le budget de construction requis fut identifié. Le consultant a collaboré avec la SHQ, l'OMHK, l'ARK et Makivik afin d'obtenir les fonds pour la construction.

La deuxième phase du projet est à l'étape de planification.

Campagne régionale : Journée mondiale de sensibilisation à la maltraitance des personnes âgées

Cette année marque la quatrième année d'activités de sensibilisation. Douze communautés—un record—ont participé à la campagne. Des émissions de radio, des festins et des jeux furent organisés pour les aînés et autres membres des communautés.

Campagne régionale pour fêter la Journée internationale des aînés

Pour la troisième année, les communautés ont participé à cette campagne, et ce, en plus grand nombre : cinq communautés ont fêté l'événement.

Projets d'activités de centre de jour pour aînés

Le développement de programmes de centre de jour pour aînés dans diverses communautés a commencé. Quatre villages—Kangiqsujuaq, Kangiqsualujjuaq, Umiujaq et Kangirsuk—ont exprimé de l'intérêt à établir un centre de jour pour aînés. Quatre propositions pour de tels projets furent soumises, accompagnées de demandes de financement.

Violence familiale et agression sexuelle

Le développement de services aux victimes de violence et d'agression sexuelle a été au cœur des travaux et s'est concrétisé par la mise en place de formations pour les intervenants du réseau régional de la santé et des services sociaux ainsi que des partenaires ayant une responsabilité dans l'intervention. Plusieurs activités de formation ont été réalisées en lien avec le déploiement du projet de prévention des agressions sexuelles Bon toucher / mauvais toucher.

Ce projet comprend des activités pour les intervenants de première ligne, le personnel scolaire et les autres acteurs locaux, pour les membres de la communauté et pour les enfants des niveaux préscolaire et primaire. Il a été initié en 2011 au Nunavik en collaboration étroite avec la Direction de la santé publique et grâce au partenariat avec le CSTU, la CSK et le CRPK et à la participation financière de l'ARK. Au cours de l'année 2012-2013, le projet a été mis en œuvre deux fois à Kuujjuag, en mai 2012 et en février 2013, de même qu'à Quagtag en novembre 2012.

La contribution de la Direction de la planification et de la programmation se situe particulièrement dans l'organisation des activités suivantes :

- Le recrutement et la formation des animatrices-conseillères inuites : À l'automne 2012, sept animatrices-conseillères inuites ont été recrutées afin de participer au développement, à la planification, au déploiement et à l'évaluation du projet Bon toucher / mauvais toucher. Une formation d'une durée de cinq jours leur a été donnée en collaboration avec l'Association des femmes inuites Pauktuutit du Canada. L'objectif était de créer un atelier de sensibilisation à la problématique des abus sexuels basé sur les outils Hidden Face et de former les participantes afin qu'elles puissent livrer la formation par la suite.
- Les rencontres d'orientation et les activités de formation pour les intervenants de première ligne, le personnel scolaire et les autres acteurs locaux : Une attention particulière a été accordée au renforcement des capacités locales pour répondre adéquatement aux dévoilements et pour offrir des services de soutien émotionnel appropriés aux victimes et à leurs familles. Ces activités ont été précédées du développement et/ou de l'adaptation d'outils destinés à renforcer les habiletés de détection et d'intervention. Au cours de la période 2012-2013, les activités suivantes ont été réalisées :
 - o une formation donnée à Kuujjuag par le Centre d'expertise Marie-Vincent sur l'intervention psychosociale auprès des victimes âgées de moins de 12 ans (12 participants);
 - o sept rencontres d'orientation (plus de 100 participants) permettant de clarifier les rôles et les services offerts par les intervenants et de renforcer les mécanismes de collaboration et de référence :

FR. P.

- trois ateliers de sensibilisation à la problématique des abus sexuels, chacun d'une durée d'une journée (environ 35 participants), destinés à renforcer les habiletés de dépistage et d'intervention;
- o trois ateliers de sensibilisation à la problématique des abus sexuels combinés à un atelier de guérison, chacun d'une durée de deux jours (plus de 40 participants), destinés à renforcer les habiletés de dépistage et d'intervention et à encourager les victimes à commencer ou à poursuivre leur cheminement vers la guérison;
- deux activités de formation spécifiques aux maisons d'hébergement, chacune d'une durée de trois jours, sur l'intervention auprès des victimes d'agression sexuelle : pour la maison d'hébergement Initsiak, Salluit, en mai 2012 et pour la maison d'hébergement Tunngasuvvik, Kuujjuaq, en septembre 2012.

Organismes communautaires

La RRSSSN appuie activement le développement des organismes communautaires dont le mandat est de répondre aux besoins qu'ils ont identifiés parmi les membres les plus vulnérables de la communauté.

Cette année, la RRSSSN a distribué la totalité du budget du programme à 11 organismes comme suite:

Organisme communautaire	Communauté	Mandat	Subvention 2012- 2013
Refuge pour femmes Tunngasuvvik	Kuujjuaq	Sous-régional	628 000,00 \$
Refuge pour femmes Initsiak	Salluit	Sous-régional	491 076,00 \$
Refuge pour femmes Agapirvik	Inukjuak	Sous-régional	188 984,00 \$
Résidence pour aînés Qilangnguanaaq	Kangiqsujuaq	Sous-régional	169 986,00 \$
Résidence pour aînés Tussajiapik	Kuujjuaq	Sous-régional	238 984,00 \$
Résidence pour aînés Sailivik	Puvirnituq	Sous-régional	138 984,00 \$
Centre de traitement Isuarsivik	Kuujjuaq	Régional	588 984,00 \$
Hébergement communautaire de l'Ungava	Kuujjuaq	Régional	338 984,00 \$
Hébergement communautaire Uvattinut de l'Hudson	Puvimituq	Régional	88 984,00 \$
Association des femmes Saturviit	Inukjuak	Régional	38 984,00 \$
Réseau Qajaq	Kuujjuaq	Régional	188 000,00 \$
TOTAL			3 099 950,00 \$

En plus d'octroyer des fonds, la RRSSSN appuie les organismes au niveau de leur fonctionnement quotidien et offre de la formation afin de renforcer leurs services. Avec le soutien de l'ARK et du SACO (Service d'assistance canadienne aux organismes), cette année la régie régionale a offert de la formation à 11 organismes communautaires du Nunavik.

Dépendances

En 2012-2013, le comité régional sur les dépendances a orienté le développement de services dans le domaine des dépendances avec le soutien de certains comités de travail ; l'emphase était sur la formation et sur la prévention de l'ETCAF (ensemble des troubles causés par l'alcoolisation fœtale). Des recommandations ont été formulées pour le comité consultatif et ensuite adoptées par le conseil d'administration de la RRSSSN.

Le but principal est de mettre la priorité sur le développement de l'expertise et des capacités dans la prévention des dépendances et dans l'intervention ainsi que sur le développement de ressources communautaires. De plus, le programme provincial de formation en dépendances destiné aux travailleurs de première ligne fut adapté à la réalité du Nunavik en collaboration avec NI et IUDC.

La formation en dépendances en anglais est maintenant disponible aux travailleurs de première ligne. Cependant, la traduction en inuktitut est présentement en phase de révision.

Formations en dépendances données au Nunavik :

- première séance, Inukjuak, 28 janvier au 3 février 2013 : six participants formés
- deuxième séance, Inukjuak, 27 au 28 février 2013 : cinq participants formés
- troisième séance, Kuujjuaq, 11 au 12 mars 2013 : quatre participants formés (aucune formation en inuktitut)
- quatrième séance, Kuujjuaq, 18 au 19 mars 2013 : cinq participants formés (aucune formation en inuktitut)

Dix-neuf participants ont terminé leur formation et deux l'ont suivie une deuxième fois. La formation en dépendances sera donnée en inuktitut une fois la révision terminée. Un comité linguistique a été mis sur pied avec les mandats d'assurer que la terminologie de la version en inuktitut est uniforme et de créer un lexique sur les dépendances.

Enfance-Jeunesse-Famille (EJF)

L'équipe EJF travaille en étroite collaboration avec les établissements et organismes communautaires afin de s'assurer que l'organisation des services pour les jeunes âgés de 0 à 18

两水

ans et leur famille répond aux besoins, aux réalités sociales, à la culture et aux valeurs de la clientèle ciblée.

Dans le processus du projet clinique, une priorisation des services à améliorer ou à développer a été établie. Au niveau des dossiers jeunesse et famille, les priorités régionales identifiées étaient les suivantes :

- renforcement d'un programme régional de soutien parental et développement d'un réseau de ressources communautaires pour soutenir les familles;
- développement des mécanismes de participation de la communauté dans le processus de protection de la jeunesse;
- développement d'un programme de mesures alternatives de justice pour les jeunes contrevenants.

Table régionale des services jeunesse

En janvier 2013, la table régionale des services jeunesse a été réactivée et deux rencontres ont eu lieu depuis. La table permet aux deux DPJ et au Service régional de réadaptation d'établir leurs zones de collaboration et ainsi clarifier les zones grises afin d'assurer le bon fonctionnement de leurs services respectifs. Les services enfance-jeunesse-famille des CLSC seront par la suite invités à siéger à cette table. Pour le moment, beaucoup de travail de structuration et d'encadrement est à faire entre les DPJ et le Service régional de réadaptation. Il faut néanmoins garder en tête que le but de la table est d'établir un continuum de services et ainsi avoir des trajectoires de services claires et accessibles, de là l'importance d'intégrer le CLSC des deux côtes

Participation de la communauté au processus de la protection de la jeunesse

Dès l'entrée en fonction de l'agente de deuxième ligne en février 2013, le comité sur la participation de la communauté au processus de la protection de la jeunesse a également été réactivé. Il y a eu deux rencontres jusqu'à maintenant avec l'ensemble des membres qui siégeaient à ce comité en 2011. Le mandat et les objectifs ont été discutés et un plan d'action a été élaboré pour l'année à venir. L'agente de deuxième ligne est responsable de ce dossier et soutien étroitement la présidente. Nous sollicitons le MSSS dans ce dossier, notamment en ce qui concerne le régime particulier de protection de la jeunesse pour les autochtones, selon l'article 37.5 de la *LPJ*.

2013-2014

L'équipe EJF a élaboré un plan de travail pour l'année à venir (2013-2014) et celui-ci est en lien direct avec le projet clinique ainsi que l'ensemble des priorités régionales.

Les recommandations du comité Qiturngavut ont été présentées aux responsables des services EJF des deux CLSC et des discussions ont eu lieu afin d'évaluer les besoins et les conditions favorables à mettre en place pour l'implantation d'un programme en négligence. Des discussions complémentaires sont nécessaires sur les conditions à privilégier afin de mettre en place un programme de négligence dans les deux CLSC et selon les besoins spécifiques des milieux visés.

Direction de santé publique

Mot de la directrice

Le personnel de la Direction de santé publique a été actif sur plusieurs fronts en 2012-2013 : surveillance, prévention, protection et promotion de la santé. Voici quelques faits saillants :

- La publication du premier volet du Portrait de santé Nunavik, Conditions démographiques et socio-économiques, qui illustre bien notre mandat de fournir aux décideurs régionaux tant du secteur de la santé et des services sociaux que des autres secteurs les informations nécessaires à la prise de décisions en vue d'améliorer l'état de santé de la population de la région;
- Une éclosion importante de tuberculose dans une communauté de la côte de l'Ungava qui a mobilisé de façon importante nos ressources et celles de nos partenaires dans les services de santé et qui nous conduit à une réflexion importante sur nos actions dans ce dossier;
- Le début de l'implantation du programme de gestion des produits immunisants visant une gestion plus efficace de nos vaccins et qui signale une orientation de se doter d'outils informatisés pour améliorer nos interventions en protection;
- Le déploiement de l'approche Écoles en santé à travers multiples interventions en milieu scolaire visant à créer un environnement facilitant l'acquisition de saines habitudes de vie telles : le défi « Drop the Pop », Swiss stability balls [ballons d'entraînement], Ma cour : un monde de plaisir!, le Club des petits déjeuners ;
- La tenue de différents ateliers de formation sur des sujets importants de santé comme la nutrition et la santé sexuelle.

Une constante importante pour nous : partenariat et collaboration. Nous comptons non seulement sur la collaboration des services de santé et des services sociaux mais aussi sur le soutien et leadership des autres secteurs de notre société tels l'éducation, les organismes communautaires, les leaders régionaux et municipaux, le secteur économique, entre autres, qui possèdent des leviers décisionnels sur des facteurs importants pour la santé de notre population.

Dre Françoise Bouchard

Promotion de la santé

La promotion de la santé est un processus qui confère aux populations les moyens d'assurer un plus grand contrôle sur leur propre santé et d'améliorer celle-ci (Charte d'Ottawa). Il s'agit d'une composante majeure des interventions réalisées en santé publique, lesquelles s'articulent autour de cinq principales stratégies ayant respectivement pour cibles : 1) les individus, 2) les communautés, 3) les environnements, 4) les centres de santé et 5) les politiques. Dans un souci de mettre en œuvre des interventions efficaces et adaptées aux besoins et particularités de la population, la Direction de santé publique du Nunavik (DSPN) s'appuie sur une revue de littérature (mise à jour régulièrement) des données probantes relatives aux principaux enjeux de santé publique.

Grâce à l'expertise de ses agentes en matière de nutrition, d'activité physique, de tabagisme, de diabète et de sexualité, la DSPN assure la planification, la réalisation et le suivi d'une multitude d'actions visant à promouvoir les saines habitudes de vie. Depuis maintenant deux ans, la DSPN consacre également une partie de ses efforts à la promotion de la santé psychosociale et du bienêtre par l'entremise d'une ressource permanente ayant pour mandat de collaborer avec les différents acteurs du milieu à la réduction de la violence, des dépendances et du suicide au Nunavik.

De plus, dans le cadre de l'approche Écoles en santé, coordonnée par une agente de l'équipe en étroite collaboration avec la CSK, la DSPN soutient une panoplie de projets scolaires à l'échelle locale et régionale. L'objectif de cette approche est de faciliter l'acquisition de compétences ainsi que le développement de comportements favorables à la réussite scolaire, à la santé et au bien-être par la création de milieux scolaires favorables et par l'adoption de politiques scolaires saines. Pour 2012-2013, les priorités principales identifiées par les commissaires sont d'améliorer les habitudes alimentaires des enfants d'âge scolaire en mettant l'emphase sur la demande pour et la disponibilité d'aliments traditionnels et de réduire l'intimidation chez les jeunes, notamment en assurant la supervision lors des périodes de récréation.

La section qui suit présente sommairement les principales activités en promotion de la santé orchestrées par la DSPN relativement aux cinq stratégies ci-haut mentionnées.

- 1) L'acquisition d'aptitudes individuelles, soit le développement individuel et social grâce à l'information, à l'éducation pour la santé et au perfectionnement des aptitudes indispensables à la vie.
- Inuk to Inuk (muitième année) Cette année, quatre communautés—Kangiqsujuaq, Tasiujaq, Umiujaq et Salluit—furent ciblées par Imuk to Imuk, un projet de trois volets visant la prévention du diabète chez la population et des conseils pour les personnes diabétiques. Premièrement, une conférence en

TR M

inuktitut fut organisée pour les étudiants du secondaire concernant l'importance de l'adoption d'un mode de vie sain afin de maintenir une santé optimale. Deuxièmement, une émission de radio fut diffusée afin d'informer la population sur les facteurs de protection et sur les facteurs de risque reliés au diabète. Troisièmement, des consultations furent réalisées au CLSC avec les personnes diabétiques afin de discuter de leur état de santé et de leurs habitudes.

Viens on va jouer à vivre!

Étant donné les difficultés croissantes au niveau du démarrage et de la réalisation des différentes étapes du projet *Imuk to Imuk* avec les mêmes partenaires à cause du roulement très élevé du personnel, la DSPN a décidé de le remplacer avec *Viens on va jouer à vivre!*, un projet mieux adapté aux jeunes et qui met l'emphase sur les habitudes saines. L'organisation et la planification de la tournée promotionnelle aux écoles commenceront à l'automne 2013; pour 2013-14, Andréa Brazeau et Julia St-Aubin de Kangiqsualujjuaq serviront de porte-paroles.

• Défi « Drop the Pop » (sixième année)

Dans le cadre du défi, 10 écoles ont présenté des projets promouvant l'alimentation saine et la pratique régulière d'activité physique. La distribution d'objets promotionnels demeure très populaire, surtout des chandails pour tout âge : autant des enfants de la maternelle que leurs grand-mères.

• Défi J'arrête j'y gagne (dixième année)

Ce défi de six semaines tenu annuellement pour les fumeurs âgés de huit ans et plus a encore une fois été organisé partout au Nunavik. Un total de 204 participants (123 adultes et 81 jeunes) ont commencé un processus de cessation du tabagisme; 16 l'ont réussi. Cette année encore, différents organismes ont généreusement commandité le défi et bon nombre de partenaires locaux (travailleurs de bien-être communautaire, directeurs d'école, infirmières, etc.) ont contribué à sa promotion dans les écoles et dans les communautés.

Activités d'éducation sur la nutrition

La DSPN a appuyé différents projets promouvant l'alimentation saine et améliorant les connaissances et les habiletés concernant le choix et la préparation de mets achetés au magasin et de mets traditionnels. Ciblant différentes clientèles (jeunes, adultes et aînés), des activités d'éducation et de nutrition ont été organisées dans plusieurs communautés. Des kiosques d'information ont également été installés dans des endroits publics (principalement les écoles et les épiceries) afin de promouvoir la bonne nutrition comme facteur de protection contre diverses maladies chroniques. Ces activités ont permis aux participants de découvrir et de déguster une variété de fruits et de légumes et d'apprendre à confectionner des collations santé. De plus, deux formations régionales (une pour chaque côte) portant sur la bonne nutrition et la cuisine ont été données à Kangiqsujuaq et à Inukjuak en mars 2013.

• Ateliers de yoga à l'école

Des ateliers de yoga furent réalisés à l'école Ulluriaq de Kangiqsualujjuaq dans le cadre d'un projet pilote. Ces ateliers étaient centrés sur la gestion du stress et de la dépression. Du matériel pédagogique et un DVD furent élaborés pour les deux séquences d'exercices présentées. La tenue des activités était possible grâce à la participation du groupe Northern Lights Yoga.

• Tournée promotionnelle sur la sécurité routière

La DSPN a collaboré avec certaines instances régionales telles l'ARK et la CSK pour organiser et lancer une tournée régionale promouvant la sécurité routière parmi la population du Nunavik, avec différentes activités adaptées aux groupes cibles. Parmi celles-ci, des activités de sensibilisation, organisées dans les écoles à l'hiver et au printemps 2013, ont été bien accueillies, surtout celles avec un go-kart à pédales visant la prévention de la conduite à risque.

• Programme scolaire de prévention des abus sexuels (Bon toucher / Mauvais toucher)

Au cours de la dernière année, le programme *Bon toucher / Mauvais toucher* a été enseigné aux élèves de la maternelle et du primaire des écoles Pitakallak, Jaanimmarik (Kuujjuaq) et Isummasaqvik (Quaqtaq). Au total, environ 335 enfants ont participé aux trois ateliers (d'une durée de 30 à 45 minutes chacun) dispensés en inuktitut par sept formatrices expérimentées. En vue du renforcement des enseignements par le milieu familial, des outils éducatifs (chandail, ourson, livre d'histoire, cahier à colorier, affiche) ont été remis à chaque participant au terme des ateliers.

Sessions d'information sur l'abus sexuel envers les enfants

Huit sessions d'information et trois rassemblements communautaires ont été organisés à Quaqtaq et Kuujjuaq à l'intention des parents et des intervenants en vue de renforcer les connaissances sur les facteurs de protection contre l'abus sexuel envers les enfants. Animés en inuktitut par des leaders communautaires, ces activités ont contribué à rappeler et valoriser le rôle de chacun dans la création de communautés saines et sécuritaires.

Campagnes de communication sur divers enjeux de santé publique

Afin de sensibiliser la population à certains enjeux de santé majeurs dans la région, de nombreux outils de communication ont été utilisés ou distribués. Selon la problématique, les messages ont été diffusés à l'échelle locale, régionale ou nationale par le biais de médias variés (publipostage, présentoir, affichage, radio, journal, Internet, téléphone, articles promotionnels, etc.).

2) Le renforcement de l'action communautaire, soit la participation effective et concrète de la communauté à la fixation des priorités, à la prise des décisions, à l'élaboration et à la mise en œuvre des stratégies de planification en vue d'atteindre une meilleure santé.

两刀

• Conférence Inuusitta Makitjuumigiagarnigna

Une conférence régionale de trois jours sur la prévention du crime par la régulation sociale et l'emprise a été organisée en collaboration avec l'ARK et la Société Makivik. Suite à la présentation d'une série d'ateliers sur divers enjeux et défis (santé, éducation, employabilité, justice, services sociaux, etc.), les participants se sont réunis par communauté afin d'élaborer un plan d'action local. Au total, une centaine de *Nunavimmiuts* ont pris part à l'événement, notamment les décideurs des principales organisations de la région et quelques délégués de chacune des 14 communautés. Au terme de la conférence, une charte régionale a été rédigée.

Soutien aux événements thématiques en santé publique

Plusieurs communautés du Nunavik ont reçu le soutien de la DSPN dans l'organisation d'activités locales visant à souligner l'un ou l'autre des événements thématiques figurant au *Calendrier de promotion de la santé*. Selon l'événement et la disponibilité des ressources, les partenaires intéressés ont reçu du soutien d'ordre organisationnel, financier ou matériel, ce qui a donné lieu à une variété d'activités telles que des marches, allocutions publiques, discussions thématiques, émissions de radio, etc.

• Soutien aux initiatives locales de mobilisation communautaire

Grâce à la généreuse contribution de Santé Canada (notamment dans le cadre de l'IDA (Initiative sur le diabète chez les Autochtones) et NNC-PIEN (Nutrition Nord Canada – Programme d'initiatives d'éducation en nutrition)) et en collaboration avec ses principaux partenaires institutionnels et communautaires, la DSPN a pu soutenir la mise en œuvre d'initiatives visant à mobiliser la population autour d'enieux locaux et à soutenir leur prise en charge collective. À titre d'exemples, les membres de plusieurs communautés ont pris part à des sessions d'activité physique, des repas communautaires, des cuisines collectives, etc.

3) La création d'environnements favorables, soit la création de conditions de vie, de travail et de loisir à la fois sûres, stimulantes, gratifiantes et agréables qui sont une source de santé pour la population.

• Swiss stability balls [ballons d'entraînement] dans les classes

Des outils d'évaluation et promotionnels reliés à l'utilisation de ballons d'entraînement dans les classes ont été élaborés en 2012-2013 en partenariat avec le conseiller en éducation physique et en santé de la CSK. Certains professeurs offrent maintenant aux élèves présentant des troubles du comportement ou de l'attention l'option de passer une partie ou la totalité de la période de classe assis sur un ballon d'entraînement. Durant l'année scolaire 2013-2014, une certaine emphase sera mise sur l'intégration d'activité physique quotidienne à la classe, et ce à l'aide de l'équipe de conseillers pédagogiques.

• Ma cour : un monde de plaisir !

Étant donné qu'il est possible de contrôler l'intimidation par une meilleure supervision des périodes de récréation, une version adaptée de la trousse *Ma cour : un monde de plaisir !* fut présentée à certaines écoles cette année selon les besoins. Des activités de suivi seront

réalisées durant l'année scolaire 2013-2014. Des activités basées à l'école visant la prévention de l'intimidation chez les élèves sont intégrées au programme Positive Behaviour Intervention Support [Soutien à l'intervention pour des comportements positifs] en lien avec l'approche Compassionate Schools [Écoles compatissantes] promue par la CSK.

- Des milieux nutritionnels sains aux magasins, aux écoles et aux garderies
 - Afin de promouvoir la bonne alimentation et de favoriser la sécurité alimentaire parmi les différents groupes de la population dans leurs milieux de vie respectifs, la DSPN a réalisé différentes interventions en collaboration avec des établissements privés et publics. Ces interventions comprennent : l'amélioration de l'environnement nutritionnel dans les magasins au niveau de la disponibilité et de l'étalage d'aliments santé dans sept communautés (cette initiative sera répandue en 2013-2014); le soutien au programme de nutrition dans les garderies ; le soutien au programme des petits déjeuners du Québec dans quatre écoles ; et l'achat d'équipements de cuisine pour certaines écoles et garderies.
- 4) La réorientation des services de santé, soit la création d'un système de soins servant au mieux les intérêts sociaux, politiques, économiques et environnementaux de la santé, c'est-à-dire offrant non seulement des services cliniques et curatifs mais des services centrés sur la totalité des besoins de l'individu dans le respect des besoins culturels.
- Dépistage du diabète et gestion des cas

Comme par le passé, le CSI et le CSTU avaient la responsabilité de planifier, réaliser et suivre le dépistage de la rétinopathie diabétique au Nunavik. En total, 218 des 322 personnes diabétiques ont subi un examen. Dans six communautés de l'Hudson, l'infirmière attitrée au programme diabète a accompagné l'optométriste et a profité de l'occasion de rencontrer et d'informer la clientèle concernant les complications potentielles reliées au diabète. De plus, un nutritionniste-consultante a visité des personnes diabétiques pour répondre à leurs questions, ce qui fut très apprécié et ce qui devrait être repris en 2013-2014 sur la côte d'Hudson.

- Formation destinée aux travailleurs de première ligne et autres intéressés
 - Afin de renforcer la capacité locale de promouvoir la santé auprès de la population, la DSPN a collaboré avec des animateurs formés provenant de différents organismes au développement de formations et d'ateliers spécifiques, principalement sur les thèmes de la santé sexuelle et de l'abus sexuel d'enfants. Au total, une centaine de travailleurs professionnels et non professionnels de divers secteurs (santé, éducation, communauté, etc.) ont participé et ainsi renforcé leurs habiletés éducationnelles et d'intervention.
- Comités de travail régionaux et rencontres d'orientation intersectorielles

Dans l'optique de renforcer la concertation en matière de santé et de bien-être, de développer une vision commune de la promotion de la santé et de rendre possible la mise sur pied de projets d'envergure, la DSPN a coordonné le comité régional de travail en prévention des abus sexuels et participé au comité de travail en prévention du suicide. Aussi, en vue d'une

MA

meilleure promotion des ressources existantes dans la région, d'un meilleur arrimage entre les services et d'une plus grande collaboration entre les intervenants desservant des clientèles communes, plusieurs échanges et rencontres d'orientation sur les rôles et mandats respectifs ont été organisés avec les partenaires locaux et régionaux (municipalités, centres de santé, ARK, CSK, CPRK, etc.).

- Distribution de matériel éducatif aux professionnels de la santé
 Afin d'outiller les professionnels du réseau dans leur pratique en promotion de la santé, du matériel éducatif portant sur divers enjeux de santé leur a été envoyé sur demande : affiches, dépliants, vidéos, présentation électronique, jeu interactif, etc.
- 5) L'élaboration de politiques publiques saines, soit le soutien des responsables politiques de tous les secteurs et à tous les niveaux à adopter des politiques de santé, financières et sociales qui favorisent davantage la santé, l'équité et la création d'environnements sains (ex : mesures législatives, financières et fiscales, changements organisationnels, etc.).
- Sensibilisation de la population et des décideurs aux enjeux psychosociaux
 Par l'entremise de diverses tribunes (ex : comité de travail, ateliers, conférence), la Direction de santé publique a contribué à sensibiliser la population et les décideurs à certains enjeux psychosociaux au Nunavik (violence, abus sexuel, toxicomanie, suicide) en les informant sur les facteurs de risque et de protection dans l'optique que des politiques publiques saines soient adoptées au niveau local et régional.
- Sensibilisation des directeurs et du personnel scolaires à l'approche Écoles en santé
 Lors d'une formation régionale d'une semaine organisée par la CSK, l'approche Écoles en
 santé et divers programmes de santé publique furent présentés aux directeurs et membres du
 personnel des écoles par le biais d'une variété d'activités (kiosques d'information,
 présentoirs, présentations sommaires, sessions interactives, etc.). Cette initiative semble avoir
 porté fruit, car, durant l'année 2012-2013, plus de 80 % des écoles ont réalisé au moins un
 projet visant à aider les élèves à améliorer leur estime de soi, leurs habiletés sociales et leurs
 habitudes saines. Ces projets ont reçu un soutien financier de la DSPN et de d'autres sources
 régionales. De plus, plusieurs initiatives locales et intéressantes ont été possibles grâce à des
 partenaires locaux qui ont identifié les besoins dans leurs milieux et mobilisé différents
 intéressés. À noter que des efforts furent investis afin de promouvoir la culture dans les
 projets, ce qui a aidé les élèves à développer leur identité culturelle.
- Coordination du comité sur la nutrition et la santé du Nunavik (CNSN)
 Le CNSN est composé de représentants de divers organismes (RRSSSN, ARK, CSTU, CSI, ITK, INSPQ, Centre de recherche du Nunavik et l'Université Trent) concernés par la nutrition, l'environnement et la santé. Le comité sert d'instance officielle de revue et de consultation pour les questions de santé et de nutrition dans la région. Financé par l'AADNC dans le cadre du Programme de lutte contre les contaminants dans le Nord, le CNSN est coordonné par une nutritionniste de la RRSSSN et se rencontre trois fois par année.

Politiques alimentaires dans les écoles

Au moment du dernier financement, la politique en vigueur dans les écoles en matière d'alimentation stipule qu'au moins 75 % de la nourriture servie dans les écoles doit être de la nourriture santé et que la proportion de malbouffe ne peut dépasser 25 %. Afin de faciliter l'application de cette politique, un financement a été octroyé à plus de 60 % des écoles pour l'achat de collations santé. La révision de la brochure sur la politique alimentaire et sur les alternatives santé est achevée ; la brochure sera distribuée en septembre 2013. En outre, 11 écoles sont maintenant certifiées comme des « zones breuvages santé », ayant adopté une politique interne qui encourage la consommation de breuvages santé au lieu des breuvages sucrés et s'étant engagées à rendre disponible pour les élèves des rafraîchisseurs d'eau ou autres systèmes de distribution d'eau potable.

Surveillance de l'état de santé de la population

Au cours de l'année 2012, les activités de surveillance de l'état de santé de la population ont été largement marquées par la collecte et l'analyse de données sur les Maladies à déclarations obligatoires (MADO), soit les infections transmises sexuellement ou par le sang (ITSS) et la tuberculose.

Dans le processus de rédaction des portraits de santé (santé des enfants et portrait de santé de la population adulte du Nunavik), l'extraction et l'analyse des données historiques (20 dernières années) a permis, entre autres, de documenter l'incidence de certaines maladies évitables par la vaccination (MEV) et des ITSS. En 2012 a eu lieu la publication du premier volet du Portrait santé Nunavik, Conditions démographiques et socio-économiques.

Les activités de surveillance ont par ailleurs permis de faire l'état de la situation régionale en regard de certains indicateurs de santé dans la perspective du projet « le Nord pour tous » initialement dénommé « Plan Nord ». Elles ont par ailleurs contribué à la préparation de documents pour des rencontres régionales comme par exemple la conférence sur la régulation sociale. L'alimentation en données portant sur certains indicateurs de santé (ex. suicides, hospitalisations, démographie, naissances etc.) en réponse aux besoins formulés par certains intervenants de la Direction de santé publique, de la Direction de la planification et de la programmation ou d'autres acteurs du réseau de santé et de décideurs est l'une des composantes des activités de surveillance menées tout au long de l'année. La mise à jour progressive de la base de données sur le diabète a permis d'avoir un portrait plus précis des cas incidents diagnostiqués dans la région, principalement sur la côte de l'Ungava.

En résumé, les données de surveillance collectées et analysées selon les requêtes des décideurs, des intervenants et des communautés ont servi de guide pour l'action, soit d'interventions

spécifiques ou de décisions appropriées dans une perspective de prévention ou promotion de la santé et d'emprise communautaire.

Activités du programme québécois de dépistage du cancer du sein (PQDCS)

La clinique de mammographie du PQDCS a été offerte en avril 2012 aux femmes de Salluit, Ivujivik, Akulivik et Puvirnituq.

Santé au travail

Retrait préventif de la travailleuse enceinte ou qui allaite

Durant l'année 2012, 141 demandes de retrait préventif de la travailleuse enceinte ou qui allaite provenant de 91 établissements furent traitées. Les demandes de consultation ont été reçues principalement des secteurs de l'éducation (éducatrices des garderies, professeures), de la santé (infirmières) et du commerce (caissières).

Programmes de santé au travail du secteur minier

L'implantation de programmes de santé au travail dans le secteur minier s'est poursuivie en 2012. Un médecin et une infirmière de la DSPN ont réalisé des activités de prévention dans ce secteur important, qui compte plus de 1 300 travailleurs dans cinq mines.

Le secteur minier a vu une croissance significative cette année avec la venue d'une nouvelle compagnie près de Salluit, Nunavik Nickel. L'équipe de santé au travail de la DSPN poursuit l'élaboration d'un programme de santé en collaborant étroitement avec des représentants de cette cempagnie.

Programmes de santé au travail dans les secteurs municipal et policier

Le secteur municipal du Nunavik est toujours l'objet d'interventions visant à prévenir des problèmes de santé au travail. En 2012, l'équipe de santé au travail a visité la plupart des installations des municipalités (garages municipaux, postes d'incendie, arénas, ateliers de menuiserie, sites de déversement d'eaux usées et sites de distribution d'eau potable). L'équipe a également visité neuf postes de police, un poste de la Sûreté du Québec et 12 ateliers de menuiserie de l'OMHK.

Enfin, l'équipe de santé au travail a aussi répondu à plusieurs demandes locales concernant la qualité de l'air intérieur dans certains établissements du

Nunavik, la prévention de la tuberculose parmi les travailleurs, la prévention de la contamination chimique de l'eau potable et les vapeurs de mazout.

Prévention et protection

Deux dossiers ont particulièrement préoccupé la santé publique : la tuberculose et les ITSS.

La tuberculose

Au cours de l'année 2012, la Direction de santé publique et les C.S. Tulattavik de l'Ungava et Inuulitsivik ont été activement mobilisés dans le contrôle de la tuberculose active dans certaines communautés. Au total, 75 cas de tuberculose ont été rapportés au Nunavik pour l'année 2012 dont 66 dans le village de Kangiqsualujjuaq, 8 dans le village de Salluit et 1 dans le village de Kangiqsujuaq. En comparaison, les données pour les années 2010 et 2011 étaient respectivement de 12 et 27.

Dans la communauté de Kangiqsualujjuaq seulement, des interventions spécifiques ont été implantées telles que : un dépistage systématique de la population par radiographie pulmonaire visant à joindre toutes les personnes de 15 ans et plus et la vaccination par le BCG des nouveaunés et jeunes enfants de moins de deux ans.

Ces éclosions se situent dans la tendance observée au cours des dernières années d'une recrudescence de cas de la tuberculose active tant au Nunavut qu'au Nunavik.

ITSS

Dans la période d'un an du 1^{er} janvier au 31 décembre 2012, le nombre de cas déclarés d'infection à la gonorrhée et à la chlamydiose génitale était de 259 et 382 respectivement, ce qui signale, respectivement, une hausse de 27,0 % et de 52,2 % comparé aux données de 2011. Les deux infections sont courantes dans toutes les communautés, avec les femmes et les jeunes personnes âgées de 15 à 29 ans étant les groupes les plus à risque.

Une session de formation sur l'éducation sexuelle a été tenue regroupant plus de 70 intervenants de la santé, de l'éducation et des services sociaux de la région.

En réponse à ces deux importants problèmes de santé publique, l'équipe de santé publique a commencé le développement de plans d'action régionaux spécifiques pour ces problématiques qui ont un impact important sur la vie des résidents de Nunavik.

79. n.

Parmi les autres activités de l'équipe en maladies infectieuses :

- la campagne saisonnière de vaccination contre l'influenza qui a rejoint plus de 4 700 personnes;
- le début de l'implantation du programme de gestion des produits immunisants auprès des pharmacies des deux centres de santé;
- la réponse à une éclosion de SARM-AC (Staphylocoque aureus résistant à la Méthicilline acquis en communauté) dans une communauté.

Direction des valeurs et pratiques inuites

Mot de la directrice

Dans l'année financière 2012-2013, j'ai été privilégiée de travailler avec une équipe solide dans notre direction. Nos efforts cette année ont couvert différents dossiers tels le Programme de soutien en santé – résolution des questions des pensionnats indiens, Grandir ensemble, Pour des collectivités en bonne santé et, plus récemment, le poste de coordonnatrice pour la prévention de mauvais traitements infligés aux personnes âgées et le dossier des sages-femmes. En janvier, la Direction des valeurs et pratiques inuites (DVPI) a tenu une rencontre avec la directrice générale de la RRSSSN et des deux centres de santé ainsi que les sages-femmes d'Inukjuak, de Puvirnituq, de Salluit et de Kuujjuaq, et les médecins en chef concernant l'implantation éventuelle de centres de naissance au Nunavik. J'aimerais profiter de cette occasion pour remercier mon équipe et la Direction générale de la RRSSSN de leur soutien continu. J'aimerais également remercier le Secrétariat de règlement des contestations, la société Makivik et Santé Canada de leur soutien à la RRSSSN dans le dossier des pensionnats indiens.

J'anticipe poursuivre nos efforts dans le prochain exercice. Enfin, je voudrais remercier le conseil d'administration de la RRSSSN de son soutien au mandat et aux objectifs de notre direction.

Jennifer Watkins

Sages-femmes

Le Nunavik compte quatre centres de naissance : trois sur la côte d'Hudson à Inukjuak, à Puvirnituq et à Salluit et la quatrième sur la côte d'Ungava à Kuujjuaq.

Dans l'exercice 2012-2013, l'Ungava a enregistré 78 naissances, l'Hudson, 102.

Avec l'aide de la Direction de la planification et de la programmation, nous avons fait une présentation *PowerPoint* pour le MSSS concernant le programme des sages-femmes et les services offerts au Nunavik afin de partager avec le ministère notre désir d'implanter des maisons de naissance au Nunavik. En tant que présidente du groupe de travail des sages-femmes du Nunavik, je présenterai nos efforts actuels au groupe de travail lors d'une téléconférence dans les semaines à venir.

Au mois d'août 2013, le Centre de santé 'Tulattavik de l'Ungava lancera le programme des sagesfemmes sur la côte d'Ungava. Deux étudiantes seront sélectionnées durant l'exercice 2013-2014.

Programme de soutien en santé - résolution des questions des pensionnats indiens

La Direction des valeurs et pratiques inuites est responsable du dossier des pensionnats indiens. Des membres de notre personnel ont assisté à un événement de la Commission de témoignage et de réconciliation (CTR) au mois de juin à Saskatoon, Saskatchewan, et nous sommes en train de nous préparer pour le prochain événement CTR à Montréal en avril 2013. À part ces préparations pour la CTR, l'équipe de soutien affectif a visité certaines communautés afin de tenir des séances de guérison avec les anciens élèves et leur famille affectés par l'histoire des pensionnats indiens. La DVPI poursuit sa collaboration avec Santé Canada afin d'appuyer le Programme de soutien affectif pour les anciens élèves dans les 14 communautés. Le mandat des travailleurs de ce programme est d'offrir un soutien affectif aux anciens élèves de pensionnats et à leur famille, et surtout à ceux qui entreprendront le Processus d'évaluation indépendant (PEI) dans les mois à venir.

Adoption traditionnelle

Le groupe de travail québécois sur l'adoption traditionnelle, mise sur pied par le ministère de la Justice et le ministère de la Santé et des Services sociaux afin de recommander des solutions à la non inclusion actuelle de pratiques d'adoption traditionnelle dans les lois provinciales, a rendu public son rapport le 16 avril 2012. Un projet de loi pour modifier le *Code civil* et autres dispositions législatives relativement à l'adoption et à l'autorité parentale, et lequel comprenait des dispositions sur l'adoption traditionnelle chez les Autochtones, fut déposé à l'Assemblée nationale le 13 juin 2012. Malheureusement, avec la tenue des élections provinciales à l'automne 2012, le projet de loi n'a été présenté ni ratifié. Un nouveau projet doit maintenant être déposé à l'Assemblée nationale pour approbation possible à l'automne 2013. Des représentants de la RRSSSN et de la Société Makivik suivent ce dossier de proche et assureront une mise à jour pour les deux organismes concernant tout changement ou développement.

Grandir ensemble

Grandir ensemble est un programme fédéral qui permet aux communautés du Nunavik de demander un financement pour différentes sortes de projets. Les fonds sont octroyés selon le nombre d'habitants de la communauté qui fait la demande. Cette année, toutes les communautés sauf deux ont soumis un total de 58 projets.

Le tableau suivant fait état du montant disponible à chaque communauté au début de l'exercice 2012-2013 ainsi que du montant dépensé.

Communauté	Montant disponible	Montant dépensé
AKULIVIK	50 135 \$	47 760,70 \$
AUPALUK	30 439 \$	15 000,00 \$
INUKJUAK	108 328 \$	109 450,00 \$
IVUJIVIK	40 287 \$	42 160,00 \$
KANGIQSUALUJJUAQ	68 936 \$	47 000,00 \$
KANGIQSUJUAQ	52 821 \$	89 430,50 \$
KANGIRSUK	50 135 \$	28 350,00 \$
KUUJJUAQ	123 548 \$	198 631,82 \$
KUUJJUARAAPIK	57 297 \$	35 382,31 \$
PUVIRNITUQ	110 119 \$	91 580,00 \$
QUAQTAQ	38 496 \$	29 965,73 \$
SALLUIT	92 213 \$	173 612,76 \$
TASIUJAQ	33 125 \$	0,00 \$
UMIUJAQ	39 392 \$	5 000,00 \$
REGIONAL PROJECTS	35 000 \$	52 737,00 \$
TOTAL	930 271 \$	966 060,82 \$

Comme on voit dans le tableau, certaines communautés ont dépensé un montant supérieur à ce qui leur a été octroyé au début. Ceci s'explique par le fait qu'après le 15 janvier de chaque année, toute somme non dépensée dans le programme est transférée à un fonds régional pour distribution aux communautés qui font la demande. Le but est d'assurer que tout financement du programme est dépensé chaque année.

Afin d'être approuvé, chaque projet doit porter sur au moins un des thèmes suivants :

- · santé mentale ;
- bébés en santé;
- prévention des traumatismes ;
- développement des enfants ;
- · habiletés parentales.

FAN

Tout projet soumis doit être accompagné d'une résolution de la municipalité indiquant que le projet a le soutien de la communauté. De plus, nous essayons de maintenir une composante culturelle dans les projets approuvés, quoique les projets réalisés au Nunavik varient grandement au niveau des thèmes abordés. Notre but est d'offrir aux jeunes suffisamment d'occasions d'explorer différentes activités au niveau communautaire dans le cadre du programme Grandir ensemble, des occasions qu'ils n'auraient pas autrement. Nous tentons également d'aider les familles à créer un milieu de vie sain à travers le territoire.

Comités de bien-être

Les comités de bien-être sont composés de membres de chaque communauté et sont mandatés d'identifier les besoins en termes de santé et de bien-être et les problèmes de leur communauté respective ainsi que de trouver des solutions à ces problèmes. À cet effet, chaque comité :

- sert de liaison entre les services de santé et de bien-être et la communauté ;
- identifie les besoins en termes de santé et de bien-être ainsi que les problèmes de la communauté;
- collabore avec d'autres organismes afin de trouver des moyens de répondre aux besoins et de résoudre les problèmes;
- participe aux projets visant à améliorer les pratiques de santé et de bien-être dans la communauté;
- informe la population concernant la santé et le bien-être en général ;
- aide à établir des collaborations entre la communauté et des organismes locaux ou de l'extérieur susceptibles de résoudre les problèmes de la communauté.

Les communautés qui n'ont toujours pas créé un comité de bien-être peuvent trouver les informations sur la composition et le mandat d'un tel comité avec l'aide de la municipalité ou de l'agente responsable du programme Grandir ensemble de la DVPI.

Prévention de mauvais traitements infligés aux personnes âgées

La région gère un programme ministériel contre les mauvais traitements infligés aux personnes âgées, lequel comprend l'élaboration de solutions collectives adaptées aux réalités de la région. En 2010, le plan d'action gouvernemental 2010-2015 contre les mauvais traitements infligés aux personnes âgées fut annoncé par le ministre responsable des Aînés. Ce plan se veut complémentaire aux autres mesures gouvernementales. La coordonnatrice régionale travaille en collaboration avec la Direction de la planification et de la programmation.

Direction des services administratifs

Mot du directeur

La Régie régionale de la santé et des services sociaux Nunavik est fière d'annoncer que l'exercice financier 2012-2013 s'est terminé avec la résolution du déficit accumulé de 5.5 M \$. Une entente fut conclue entre la régie régionale et le MSSS, qui a accepté la proposition soumise par le premier.

Le MSSS a autorisé le deuxième plan d'action annuel du Plan régional stratégique 2009-2016. Ce plan d'action amènera un budget récurrent supplémentaire de 2 M \$ annualisé à 6,8 M \$ pour soutenir le développement de services de santé et de services sociaux destinés aux Nunavimmiuts, en plus d'un budget non récurrent de 2.7 M \$ pour des installations spécialisées et d'un budget spécial pour le dossier de la tuberculose.

Le comité de construction pour le développement d'installations au Nunavik a géré plusieurs projets. Parmi ceux-ci, en collaboration avec le MSSS et les établissements, mentionnons les unités de logement, le centre de réadaptation pour filles âgées de 12 à 18 ans (un projet de la Direction de la protection de la jeunesse, ou DPJ) et la première ébauche du Plan directeur des immobilisations. Ce plan directeur est essentiel pour la région en ce qui concerne l'autorisation de tout autre projet d'immobilisation ciblant le développement au Nunavik. Ce comité a été très actif, s'étant réuni plus de 20 fois sans compter les sessions de travail sur des projets spécifiques et les rencontres avec le MSSS.

Nos réalisations en 2012-2013 :

- La livraison de 70 unités de logement, qui vient appuyer le recrutement de nouvelles ressources selon le plan d'action 2011-2012;
- L'embauche d'entrepreneurs en l'été 2012 pour commencer la construction d'un nouvel immeuble de bureaux pour la DPJ au début de l'automne 2012, suite à l'achèvement du plan fonctionnel et technique (PFT);
- La poursuite de l'évaluation des besoins, en collaboration avec les centres de santé, pour un nouveau centre de réadaptation pour filles âgées de 12 à 18 ans à Inukjuak, avec l'élaboration d'un plan préliminaire;
- La présentation de la première ébauche du Plan directeur d'immobilisations au comité administratif et au représentant du MSSS;
- L'application d'une nouvelle procédure exigée par le MSSS selon le plan de gestion des ressources informatiques;
- · La poursuite d'une mise à jour importante au réseau des télécommunications en collaboration avec l'ARK, le CSPO (Centre de services partagés du Ouébec), Sogique et le MSSS;

79, 71

- Six rencontres régionales de deux à trois jours du Bureau régional de gestion de projets avec les membres des centres de santé, séparément et conjointement, afin de poursuivre les efforts coopératifs;
- Des réaménagements importants au bâtiment et à l'entrepôt de la RRSSSN, ce qui a requis la collaboration du personnel de toutes les directions;
- L'embauche de nouveaux membres de l'équipe de la Direction des services administratifs (DSA): Claudette Fontaine, commis aux comptes créditeurs, est arrivée en juillet 2012; Jimmy Gagné, chef des finances, est arrivé en août 2012; Sherry McLean, technicienne administrative et secrétaire de direction, est arrivée en janvier 2013.

Le directeur des services administratifs est fier des membres de sa direction, leur remercie de leurs efforts en équipe et anticipe une nouvelle année de réalisations.

Ressources financières

BUDGET RÉGIONAL (MSSS)

Le MSSS a autorisé des dépenses de 143 M \$ pour la région pour 2012-2013, excluant les fonds d'immobilisations. Pour l'exercice 2012-2013, le MSSS a majoré le budget régional de 6,8 M \$ pour le plan d'action annuel de la planification régionale stratégique. Cette année, le Centre de santé Inuulitsivik a clos la période avec un surplus de 200 000 \$; pour sa part, le Centre de santé Tulattavik de l'Ungava a terminé l'exercice avec un déficit de 2,6 M \$. Un plan de redressement est à l'étape d'élaboration afin de régler cette situation.

Le budget régional fut distribué comme suite :

ALLOCATIONS 2012-2013	Millions S
ÉTABLISSEMENTS	
Centre de santé Inuulitsivik	60,0
Centre de santé Tulattavik de l'Ungava	43,6
FONDS ASSIGNÉS, RRSSSN	
Services de santé assurés/non assurés	20,5
Autres	7,6
ORGANISMES COMMUNAUTAIRES	
Centres jeunesse	2,4
Autres	3,2

En réserve : projets spéciaux non réalisés encore	5,9
TOTAL DES TRANSFERTS	143,2

Budget de fonctionnement de la RRSSSN

La Direction des services administratifs prête une expertise en matières financières aux autres directions de la RRSSSN: Direction générale, Direction des valeurs et pratiques inuites, Direction de la planification et de la programmation, Direction de la santé publique, Direction régionale du développement des ressources humaines et Direction des services hors région. Durant l'année, le service des finances a géré les fonds suivants:

Fonds de fonctionnement et fonds assignés

Le MSSS a alloué un budget de 7,5 M \$ pour le fonctionnement de la RRSSSN. La régie régionale a également reçu une somme de 1,6 M \$ de d'autres sources, principalement des ententes de contribution. En plus de ce budget de fonctionnement, la RRSSSN a reçu et géré un montant de 20,5 M \$ en fonds assignés pour des activités spécifiques. Ces fonds assignés proviennent de deux sources : le MSSS (direct) et l'enveloppe régionale.

Tel que mentionné dans le mot du directeur, une entente fut conclue avec le MSSS pour financer le déficit accumulé.

Fonds d'immobilisations

La RRSSSN a également transféré 35 M \$ pour divers projets d'immobilisations tels le remplacement d'équipements, l'entretien et les rénovations de son édifice, l'achat des équipements médicaux et le logement.

Fonds assignés fédéraux et de ITK

Le gouvernement fédéral et Inuit Tapiriit Kanatami (ITK) ont fourni un total de 7 M \$. Contrairement au cas des fonds assignés provinciaux, les ententes de contribution avec le fédéral et ITK sont sur une base annuelle. À la fin de la période, ils récupèrent tout solde non dépensé durant l'année.

Santé Canada	S
Initiative de diabète autochtone	678 190
Grandir ensemble	1 153 893
Soins à domicile et en milieu communautaire	2 173 412

79,71

Total des subventions	6 962 525 \$
Violence familiale	45 000
Affaires indiennes et du Nord	
Nutrition Nord Canada	502 872
Dossier pensionnats	675 530
Initiative sur les ressources humaines en santé autochtone	115 000
Stratégie de prévention du suicide	99 950
Programme de nutrition prénatal	296 197
Gestion de crise en santé mentale	870 719
Trouble du spectre de l'alcoolisation fœtale	351 762

Immobilisations et équipements

Projet de logement

La RRSSSN a géré plusieurs projets locaux et régionaux en 2012-2013. L'un des plus importants fut la construction de 70 unités de logement pour le personnel—des quadruplex et des semi-détachées—dans certaines communautés.

#	Communauté	# d'unités de logement
1	Puvimituq	20
2	Kuujjuaraapik	4
3	Salluit	4
4	Kuujjuaq	28
5	Kuujjuaq, RRSSSN	4
6	Inukjuak (personnel du foyer de groupe pour filles âgées de 12 à 18 ans)	8
7	Aupaluk (semi-détachée)	2
	Total	70

Centres de santé : projets d'installations

Afin de répondre aux besoins en infrastructures régionales, des projets à grande échelle ont été élaborés :

- Le Centre de santé Tulattavik de l'Ungava a agrandi son garage pour ambulances et réaménagé un nouvel espace pour les archives, une nouvelle morgue ainsi que de nouveaux espaces pour des bureaux.
- Le coût final de ce projet était de 4 500 000 \$; il a été achevé dans les limites du budget fixé.
- Le plan pour un nouveau CLSC à Aupaluk est à l'étape de conception et le plan fonctionnel et technique de ce projet sera bientôt élaboré.
- Quant au Centre de santé Inuulitsivik, la construction d'un nouvel édifice pour la Direction de la protection de la jeunesse à Puvirnituq, au montant de 12 766 000 \$, a été suspendue pour l'hiver mais devrait reprendre à l'été 2013.
- Les plan et devis pour le projet du centre de réadaptation pour filles âgées de 12 à 18 ans à Inukjuak seront élaborés en l'automne 2013.

Afin d'assurer la poursuite et le suivi de ces projets d'immobilisation, le comité de construction supervise toutes les étapes et en assure la conformité aux orientations ministérielles.

Plan triennal de conservation et de fonctionnalité

- La RRSSSN a récemment finalisé le budget pour le nouveau plan triennal de conservation et de fonctionnalité pour le Nunavik, lequel couvrira la période 2013-2016.
- La collaboration des deux centres de santé du territoire nous a permis de travailler de façon plus efficace et de leur fournir davantage d'information ainsi que les budgets nécessaires pour réaliser la plupart de leurs projets.
- Pour la RRSSSN et les deux établissements, plusieurs rénovations aux bâtiments actuels sont planifiées dans un avenir proche.
- Ces trois organismes collaborent étroitement sur les nouveaux développements dans la région selon le Plan régional stratégique actuel.

Ressources humaines

RRSSSN	Année courante	Année précédente
Personnel d'encadrement, temps plein	17	17
Personnel d'encadrement, temps partiel	1	1
Employés, temps plein	49	49
Employés, temps partiel	8	2
Total, régie régionale	75	69
CENTRE POUR ADOLESCENTS ULLURIAQ		
Personnel d'encadrement, temps plein	1	2

MA

Personnel d'encadrement, temps partiel	16	20
Employés, temps plein	13	0
Employés, temps partiel	13	20
Total, Centre pour adolescents Ulluriaq	43	42

Le portrait de la main-d'œuvre a subi peu de changement en 2012-2013, à part une augmentation chez le personnel temporaire à temps partiel, le résultat de l'embauche de personnel d'entretien et du remplacement temporaire d'une agente de planification qui est en congé différé.

Nous avons poursuivi nos efforts pour embaucher des employés inuits; cette année, la proportion de personnel inuit à la régie régionale a monté de 28 % à 31 %.

Les priorités identifiées pour 2012-2013 furent partiellement réglées avec la mise à jour de 30 % des descriptions de tâches et l'implantation d'un programme d'assistance aux employés. Ces activités de clarification des rôles et des responsabilités ainsi que la création d'un comité de santé et de bien-être au travail achèveront les priorités dans ce domaine en 2013-2014.

De plus, une série de politiques et de procédures en matière de gestion des ressources humaines est à adopter et sera incluse dans le futur guide des employés, sur lequel nous travaillerons d'ici la fin mars 2014.

Systèmes d'information

Télécommunications

La mise à niveau (Phases I et II) du réseau des télécommunications du Nunavik (NtN) est terminée à travers la région. Le réseau des télécommunications du secteur de la santé est géré par l'ARK. La mise en œuvre des équipements d'optimisation du réseau (Phase II) à chacun des 32 sites du secteur de la santé est terminée à 98 %. Cette mise en œuvre améliorera la vitesse de transmission des données et assurera la confidentialité des informations transmises sur le NtN. Le début de la prochaine phase (III) de la mise à niveau du NtN est planifié pour l'an prochain ; il s'agit d'une solution de redondance afin d'assurer une infrastructure de télécommunication plus robuste. La Phase III sera réalisée en collaboration avec Sogique, le CSPQ et le MSSS.

Plan d'intervention jeunesse, DPJ

Le système d'information de la protection de la jeunesse est maintenant déployé au Centre de santé Tulattavik de l'Ungava; le Centre de santé Inuulitsivik achèvera son déploiement sous peu. Cet outil intègre trois systèmes d'information sur la clientèle des Directions de la protection de la jeunesse (les jeunes et leurs parents); le système d'information gère les clients, les services

qu'ils reçoivent, les processus d'intervention les concernant, les ressources résidentielles utilisées ainsi que les aspects légaux. Ce système d'information fournit aux intervenants et aux instances des informations précises sur demande concernant la clientèle de la jeunesse et ainsi permet une meilleure évaluation de cette clientèle. La prochaine étape est l'implantation du module SIRTF (Système d'information sur les ressources intermédiaires et de type familiale).

Plan de gestion des ressources informationnelles (PGRI)

En septembre 2012, le MSSS a adopté un nouveau cadre de gestion du système des ressources informationnelles et des activités connexes (cf. *Bulletin 2012-021*). La région doit présenter formellement tout projet et toute activité reliée aux systèmes d'information; les plans triennaux régionaux et locaux ainsi que les plans annuels doivent être élaborés et présentés au MSSS pour approbation. Six mesures ou activités principales sont abordées dans le Plan régional de gestion des ressources informationnelles : le dossier de santé informatisé (DSI), les télécommunications, le système d'information de la protection de la jeunesse, la télésanté, le Plan directeur en télésanté du Nunavik 2013-2016 et l'optimisation administrative et technologique. Ces mesures et activités sont financées à même le plan régional stratégique. Plusieurs sessions de formation ont été tenues en collaboration avec les centres de santé et le MSSS concernant cette nouvelle méthode de gestion de projets relativement aux ressources informationnelles.

Plan télésanté

Le Plan directeur des ressources informationnelles du Nunavik est toujours en élaboration afin de refléter les réalités régionales et locales en évolution. Le plan révisé sera connu sous le titre « Plan télésanté du Nunavik 2013-2016 ». Ce nouveau plan comprendra les ressources et activités informationnelles, les activités reliées au développement de la télésanté ainsi que le cadre de sécurité des ressources informationnelles. La sécurité des renseignements personnels est et continue d'être une priorité de la RRSSSN et de tout le réseau de la santé du Nunavik, tout comme l'optimisation des infrastructures technologiques et téléphoniques du secteur de la santé.

Bureau régional de gestion de projets, ressources informationnelles

Le Bureau régional de gestion de projets se rencontre régulièrement afin de discuter de tous les aspects des ressources et activités informationnelles. Ces rencontres s'avèrent très utiles au niveau du consensus régional sur les différents projets et activités ainsi que pour assurer que les systèmes et activités informationnels de la région sont uniformes et optimisés.

Nous vous invitons à consulter le site Web de la RRSSSN pour des informations actuelles au www.rrsss17.gouv.qc.ca.

Direction régionale du développement des ressources humaines

Mot du directeur intérimaire

En tant que directeur par intérim, je suis heureux de me joindre à l'équipe de direction et de pouvoir continuer à travailler sur des enjeux qui m'ont toujours interpellé tels l'attrait, la formation et la rétention du personnel. Ce sont les enjeux aujourd'hui qui amènent les plus grands défis. C'est en travaillant étroitement avec nos partenaires et entre nos directions que nous arriverons à notre objectif, soit offrir des services à notre population par des Inuits, en leur offrant de meilleures conditions de travail et des programmes de formation. Je crois que c'est en travaillant en équipe et avec notre réseau que nous réussirons également à augmenter le personnel inuit dans les services par de la formation et de meilleurs conditions de travail. Le problème de rétention du personnel de l'extérieur du Nunavik est également un défi que nous devons essayer de relever ensemble.

Daniel Michaud

Principales activités en 2012-2013

Formation en intervention psychosociale

Le projet de formation des intervenants inuits de la protection de la jeunesse offert par le Collège Marie-Victorin en est à sa troisième année. Vingt-cinq intervenants des deux directions de la protection de la jeunesse participent au programme.

De plus, tel que planifié en 2011-2012, 49 éducateurs et agents de sécurité des services de la réadaptation du territoire ont commencé le programme de formation en éducation spécialisée donné par le Collège Marie-Victorin.

La formation qui a débuté en septembre 2012 est donnée au personnel des foyers de groupe de Puvirnituq et de Kuujjuaq et du centre d'accueil Sapummivik de Salluit.

Suite à une entente avec les deux centres de santé, le personnel qui participe activement à la formation et qui réussit les travaux exigés par le collège se voit octroyé un avantage salarial afin d'encourager la participation et d'assurer une meilleure rétention du personnel.

Ce projet est réalisable grâce au soutien financier important de l'Administration régionale Kativik.

Formation des interprètes

Une formation pour les interprètes travaillant dans le domaine de la santé et des services sociaux avait déjà été offerte par le passé. L'objectif était d'offrir une formation de base en interprétation simultanée afin que tout le personnel ait la même méthode de traduction.

Un deuxième volet de formation a été offert en 2012 par Jacques Raymond et Annie Weetaluktuk dans le but, cette fois-ci, de développer une terminologie médicale commune. La demande de formation avait été formulée par les centres de santé qui ont remarqué que les interprètes utilisaient des termes différents pour désigner la même chose selon leur âge et leur lieu de résidence (Hudson versus Ungava). Ainsi, pour remédier à cette situation, M. Raymond a donné une formation à Puvirnituq et à Salluit à l'hiver 2013 et Mme Weetaluktuk a donné une formation à Inukjuak. Au total 39 interprètes ont suivi la formation. Une session de formation est prévue à l'automne 2013 à Kuujjuaq.

L'objectif à court et à moyen terme serait de former tous les interprètes des 14 communautés du Nunavik travaillant dans le domaine de la santé et des services sociaux.

Formation destinée aux cadres inuits

En collaboration avec l'université McGill, la formation « *Imuit Management Training* » est en cours depuis une dizaine d'années. À ce jour, une vingtaine de participants sont inscrits à cette formation réservée exclusivement aux Inuits.

En 2012, deux participants, Aani Tulugak et Charlie Gordon, ont gradué du programme d'*Imuit Management Training* et ont eu l'honneur de se faire décerner leur certificat à Montréal lors d'une cérémonie organisée par McGill.

En 2013 la formation se poursuit en raison de deux cours et nous espérons voir quelques participants graduer d'ici 2014. La RRSSSN soutient toujours ce programme et nous espérons annoncer la graduation d'autres participants.

Initiative sur les ressources humaines en santé autochtone (IRHSA)

Dans le cadre de l'Initiative sur les ressources humaines en santé autochtone, Donna Davies, agente de formation, a composé une chanson professionnelle qui inspire les jeunes des écoles du Nunavik à compléter leur secondaire et poursuivre des études collégiales. Dans la tournée des

為四

écoles, elle chante la chanson avec les jeunes dans les classes pour les motiver. Toujours dans le but d'encourager la jeunesse, elle a initié un partenariat avec un jeune de la région pour qu'il enregistre la chanson en studio et y incorpore des paroles en inuktitut pour joindre plus de jeunes.

Recrutement

En partenariat avec la Direction de la planification et de la programmation ainsi que la Direction générale (service des communications), le projet de soutien au recrutement pour les trois organisations du réseau par une campagne de promotion avec une firme spécialisée (Imedia) va bon train. La phase 2 sera terminée à l'automne 2013. Un site Web créé spécifiquement pour le recrutement Nord/Sud, des vidéoclips produits afin de promouvoir le Nunavik dans les multimédias et des brochures présentant le Nunavik et le travail dans notre réseau produites autant pour la population du Nunavik que pour le Sud seront des outils disponibles sous peu.

La phase 3, qui est en développement, pourrait nous amener à réaliser une campagne de promotion de masse dans les réseaux publics tels la CBC, TNI, APTN et Radio Canada.

Priorités 2013-2014

En dehors des dossiers en cours, la Direction régionale du développement des ressources humaines travaillera étroitement avec les deux établissements afin d'optimiser la formation donnée par le Collège Marie-Victorin au personnel de la protection de la jeunesse, de la réadaptation et des services psychosociaux de première ligne. La formation étant essentielle à la prise en charge de la distribution des services par la population inuite, nous mettrons une emphase particulière sur ce point en nous assurant de soutenir le déploiement du projet clinique selon les objectifs établis.

D'autres dossiers d'importance seront en cours dans la prochaine année, dont la promotion des carrières en santé et services sociaux dans les écoles du Nunavik et dans les CEGEP qui reçoivent les jeunes Inuits à Montréal. En collaboration avec les centres de santé, notre direction travaillera sur la création d'un titre d'emploi d'interprète qui sera reconnu dans les conventions collectives. Finalement, avec l'application du *Projet de loi 21*, qui oblige tous les intervenants qui doivent procéder à des actes réservées à être membre d'un ordre professionnel, la régie régionale devra travailler de concert avec l'Ordre des travailleurs sociaux pour trouver une solution afin que les Inuits du Nunavik puissent intervenir dans leur communauté tout en étant protégés par la loi.

Direction des services hors région

Mot du directeur

Il me fait plaisir de présenter mon rapport annuel pour l'année financière 2012-2013.

Le mandat principal de ma direction est de surveiller et de gérer le fonds régional du programme des services de santé assurés/non assurés (SSANA).

L'un des changements majeurs par rapport aux deux derniers exercices fut ma participation au comité consultatif de l'Association des maisons des jeunes du Nunavik. Ce comité fut créé avec la responsabilité d'identifier les besoins des centres jeunesse en termes de programmation et de formation au personnel. Parmi la représentation au comité, mentionnons l'Administration régionale Kativik, la Société Makivik, l'Association des jeunes Sapuutit et autres. J'étais président du comité depuis 2010 ; cependant, les décideurs clés dans ce dossier ont conclu qu'il serait mieux de le dissoudre, la raison étant que le mandat du comité ne répond plus aux réalités et aux priorités actuelles.

Le Comité régional de gestion des services aux patients (CRGSP) a encore été très occupé cette année avec la définition d'orientations régionales générales concernant les programmes et l'organisation des services. Ce comité se rencontre à des intervalles de quelques mois ; un de ses sujets de grande importance est l'orientation du Module du Nord Québécois (MNQ). Je suis fier de présider ce comité et j'espère profiter de la collaboration continue du Centre de santé Tulattavik de l'Ungava (CSTU), du Centre de santé Inuulitsivik (CSI) et du MNQ.

J'aimerais profiter de l'occasion pour remercier les membres du conseil d'administration de la RRSSSN ainsi que mes collègues les directeurs de leur soutien continu.

Larry Watt

Projet de relocalisation du MNQ

Le projet actuel de relocalisation du MNQ à Montréal est en cours depuis 2006. En 2009, le MSSS a approuvé une somme de 12,5 millions de dollars pour rénover l'ancien hôpital chinois afin d'y installer le MNQ, avec 143 lits pour les patients venant du Nunavik. Malheureusement, nous étions obligés de rayer cette option suite à une décision des représentants de l'arrondissement de Villeray de ne pas permettre l'installation du MNQ dans cet arrondissement.

Suite à maintes discussions entre le MSSS, la RRSSSN et le MNQ, le directeur intérimaire des investissements au MSSS, Sylvain Périgny, a répondu le 16 février 2012 à notre lettre du mois d'août 2011 adressée à Michel Fontaine, sous-ministre adjoint. La lettre du 16 février 2012 nous a autorisés à déposer notre PFT (plan fonctionnel et technique) sommaire au début de l'exercice 2012-2013.

Selon les règlements ministériels en vigueur, nous sommes autorisés à lancer un appel d'offres public pour louer un bâtiment existant ou pour construire un bâtiment neuf. Nous avons l'intention de présenter notre PFT sommaire au mois de mai 2013. Dans ce PFT, nous demanderons une superficie de 5 982 mètres carrés.

Le 23 janvier 2013, nous avons reçu une lettre de Michel Fontaine avec l'avis de pertinence. Cet avis indique les services et le nombre de lits approuvé ainsi que certains ajustements à la superficie. Le MSSS recommande 5 695 mètres carrés.

Nous avons tenu d'autres discussions pour une plus grande superficie, principalement pour les quatre chambres plus grandes ou des garçonnières pour les patients à long terme.

Vers la fin de l'exercice, le MSSS avait toute l'information en main afin d'autoriser la RRSSSN à procéder avec l'appel d'offres public pour louer un bâtiment existant ou construire un nouveau bâtiment. Si nous recevons la lettre d'autorisation du MSSS vers la fin juin 2013, nous devrions être capables de lancer l'appel d'offres en août ou en septembre 2013. Après l'étude des soumissions, la prochaine étape sera d'achever les plans et devis, suivi des rénovations afin de prendre possession des installations tôt en 2015.

Le Comité régional de gestion des services aux patients, composé de représentants de la RRSSSN, de l'administration du MNQ, du Centre de santé Inuulitsivik et du Centre de santé Tulattavik de l'Ungava, continue à orienter le projet de relocalisation du MNQ.

Services de santé assurés/non assurés (SSANA)

Le programme SSANA offre un nombre limité de biens et de services qui ne sont pas fournis aux bénéficiaires de la *CBJNQ* par d'autres agences ou par d'autres régimes québécois.

Politique régionale de transport pour la région du Nunavik

La Politique régionale de transport pour la région du Nunavik, une composante du programme SSANA, a subi une révision majeure.

Suite à plusieurs discussions au CRGSP, la politique fut approuvée formellement par le conseil d'administration de la régie régionale lors de sa séance de février 2013.

Objectifs de la direction en 2013-2014

- Diffuser la nouvelle Politique régionale de transport des usagers du Nunavik au personnel des deux établissements et des CLSC du territoire.
- Obtenir l'approbation du MSSS de procéder avec l'appel d'offres public pour un bâtiment rénové ou neuf pour y installer le MNQ et ainsi avoir un emplacement centralisé à Montréal.
- Adopter une nouvelle politique établissant les paramètres du programme SSANA et définir les procédures permettant un suivi financier adéquat avec la Direction des services administratifs et les vérificateurs.
- Réaliser une campagne d'information sur les règles et les critères d'admissibilité du programme SSANA.
- Permettre la discussion d'un plus large éventail de sujets au CRGSP.

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

TABLE OF CONTENTS

SYNOPSIS REVIEW	
FINANCIAL STATEMENTS	
INUKTITUT	
ENGLISH	
FRENCH	

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SYNOPSIS REVIEW MARCH 31, 2013

TABLE OF CONTENTS

	Pa
COMBINED CASH POSITION	
OPERATING FUND	
FUND BALANCE	
SOURCES OF REVENUE FOR THE YEAR	
ASSIGNED FUND	
FUND BALANCE	
SOURCES OF REVENUE FOR THE YEAR	

COMBINED CASH POSITION

OPERATING FUND - FUND BALANCE

OPERATING FUND - SOURCES OF REVENUE FOR THE YEAR

ASSIGNED FUND - FUND BALANCE

ASSIGNED FUND - SOURCES OF REVENUE FOR THE YEAR

□Aboriginal Affairs and Northern Development Canada (0.3%)

■Health and Social Services (84.6%)

□C.S.S.T. (0.9%)

■ Health Canada (12.8%)

■Health Centres contributions (0.6%)

mOther (0.8%)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK SOMMAIRE ÉTATS FINANCIERS 31 MARS 2013

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK SOMMAIRE ÉTATS FINANCIERS 31 MARS 2013

TABLE DES MATIÈRES

BILAN COMBINÉ	
ÉTAT COMBINÉ DE LA VARIATION DES ACTIFS FINANCIERS NETS (DETTE NETTE)	
ÉTAT COMBINÉ DES SOLDES DE FONDS	***************************************
ÉTAT COMBINÉ DES RÉSULTATS	****************
FONDS D'EXPLOITATION	
BILAN	
ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS	
ÉTAT DES RÉSULTATS	
FONDS D'IMMOBILISATIONS	
BILAN	
ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS	P01400000000000000000000000000000000000
ÉTAT DES RÉSULTATS	
FONDS AFFECTÉS	
BILAN	
ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS	
NOTES COMPLÉMENTAIRES	

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK BILAN COMBINÉ 31 MARS 2013

	2013	2012
	S	\$
ACTIF FINANCIER		
ENCAISSE	1 633 408	3 806 041
DÉBITEURS	62 169 425	37 549 856
	63 802 833	41 355 897
PASSIF		
EMPRUNTS BANCAIRES	6 923 290	5 727 212
FINANCEMENT TEMPORAIRE	41 918 446	33 260 404
CRÉDITEURS ET FRAIS COURUS	42 945 753	23 709 012
REVENUS REPORTÉS	450 000	488 193
OBLIGATIONS À PAYER	38 429 365	35 175 902
	143 547 309	98 360 723
ACTIFS FINANCIERS NETS (DETTE NETTE)	(79 744 476)	(57 004 826)
ACTIF NON-FINANCIER		
IMMOBILISATIONS	12 972 732	12 398 330
TRAVAUX EN COURS	71 491 306	44 429 885
	84 464 038	56 828 215
SOLDE DE FONDS		
SOLDE DE FONDS	4 719 562	(176 611)
APPROUVÉ AU NOM DU CONSEIL,		
Membre		
Membre		

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK ÉTAT COMBINÉ DE LA VARIATION DES ACTIFS FINANCIERS NETS (DETTE NETTE) EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	S
EXCÉDENT (INSUFFISANCE) DES PRODUITS SUR LES CHARGES	4 896 173	299 572
Variations dues aux immobilisations		
Achats d'immobilisations	(1 136 829)	(2 695 886)
Diminution (augmentation) des travaux en cours	(27 061 421)	21 105 854
Amortissement - Redressement (note 12)	562 427	548 804
AUGMENTATION (DIMINUTION) DES ACTIFS FINANCIERS NETS	(27 635 823)	18 958 772
(DETTE NETTE)	(22 739 650)	19 258 344
ACTIFS FINANCIERS NETS (DETTE NETTE) AU DÉBUT	(57 004 826)	(76 263 170)
ACTIFS FINANCIERS NETS (DETTE NETTE) À LA FIN	(79 744 476)	(57 004 826)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK ÉTAT COMBINÉ DES SOLDES DE FONDS EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	\$
SOLDE DE FONDS AU DÉBUT DE L'EXERCICE	(176 611)	(476 183)
Excédent (insuffisance) des produits sur les charges	4 896 173	299 572
SOLDE DE FONDS À LA FIN DE L'EXERCICE	4 719 562	(176 611)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK ÉTAT COMBINÉ DES RÉSULTATS EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	\$
PRODUITS		
Subventions et contributions	70 588 714	60 096 307
Location de résidences	494 850	446 946
Charges administratives	229 820	226 773
Intérêt	24 514	18 382
Centre de santé Inuulitsivik	159 824	112 935
Centre de santé Tulattavik	159 824	117 436
Autres revenus	657 590	747 411
	72 315 136	61 766 190
REVENU REPORTÉ AU DÉBUT DE L'EXERCICE	488 193	-
REVENU REPORTÉ À LA FIN DE L'EXERCICE	(450 000)	(488 193)
	38 193	(488 193)
	72 353 329	61 277 997

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK ÉTAT COMBINÉ DES RÉSULTATS (SUITE) EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2013 20	2012
	S	\$	
CHARGES			
Salaires et avantage sociaux	8 749 554	8 605 887	
Charges administratives	229 821	226 773	
Publicité et promotion	304 384	327 711	
Amortissement	562 427	548 804	
Assemblée générale annuelle	122 753	94 783	
Mauvaises créances (récupération)	10 848	(27 167	
Location d'équipements	95 831	102 109	
Frais de transport	75 425	106 915	
Chauffage et électricité	339 446	375 382	
Honoraires	321 226	288 497	
Location de résidences	513 436	571 714	
Assurance	28 714	25 316	
Primes d'installation	656 081	659 344	
Intérêts et frais bancaires	2 656 427	1 156 426	
Location de terrains	39 164	35 952	
Activités locales	10 671	19 535	
Entretien et réparations	57 394	60 397	
Fournitures médicales	12 114	1 262	
Congrès et séminaires	6 563	19 763	
Services municipaux	309 247	299 597	
Dépenses de bureau	429 349	579 134	
Honoraires professionnels	841 698	415 990	
Publications et abonnements	37 462	50 020	
Contrats	2 278 898	2 691 003	
Projets régionaux	35 000	-	
Communications	143 258	228 679	
Formation et éducation	112 877	109 953	
Transfert aux organismes	2 108 881	1 868 509	
Transfert au Centre de Santé Inuulitsivik	27 204 701	26 706 389	
Transfert au Centre de Santé Tulattavik	16 432 865	12 323 578	
Frais de voyagement et d'hébergement	2 531 361	2 275 371	
Véhicules	48 252	52 582	
Autres	151 028	178 217	
	67 457 156	60 978 425	
EXCÉDENT (INSUFFISANCE) DES PRODUITS SUR LES CHARGES	4 896 173	299 572	

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'EXPLOITATION - BILAN 31 MARS 2013

	2013	2012
	S	\$
ACTIF		
ENCAISSE	1 532 286	3 680 316
DÉBITEURS (note 2 a))	9 739 642	2 464 453
MONTANT À RECEVOIR DU FONDS D'IMMOBILISATIONS (note 7)	125 458	
	11 397 386	6 144 769
PASSIF		
CRÉDITEURS ET DETTES COURUES	5 007 810	4 081 736
MONTANT DÛ AUX FONDS D'IMMOBILISATIONS (note 7)		209 742
MONTANT DÛ AUX FONDS AFFECTÉS (note 7)	5 789 799	7 037 975
REVENU REPORTÉ (note 4)	450 000	488 193
	11 247 609	11 817 646
ACTIFS FINANCIERS NETS (DETTE NETTE)	149 777	(5 672 877)
SOLDE DE FONDS		
SOLDE DE FONDS	149 777	(5 672 877)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'EXPOITATION ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	S
SOLDE DE FONDS AU DÉBUT DE L'EXERCICE REDRESSÉS	(5 672 877)	(5 877 900)
Excédent (insuffisance) des produits sur les charges - Opérations régulières	5 822 654	205 023
SOLDE DE FONDS À LA FIN DE L'EXERCICE	149 777	(5 672 877)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'EXPLOITATION ÉTAT DES RÉSULTATS EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	\$
PRODUITS		
Ministère de la Santé et des Services Sociaux	7 843 436	7 218 559
Ministère de la Santé et des Services Sociaux - Déficit des années antérieures	5 518 511	
Location de résidences	494 850	446 946
Affaires municipales	309 247	299 597
Inuit Tapiriit Kanatami		15 000
Administration Régionale Kativik - Emploi durable	3 253	9 428
Charges administratives	229 820	226 773
Intérêts	24 514	18 382
Autres revenus	645 770	722 266
	15 069 401	8 956 951
REVENU REPORTÉ AU DÉBUT DE L'EXERCICE	450 000	
REVENU REPORTÉ À LA FIN DE L'EXERCICE (note 4)	(450 000)	(450 000
		(450 000
	15 069 401	8 506 951
CHARGES (annexe A)		
Administration générale	7 170 313	6 274 822
Conseillers en santé communautaire	1 339 155	1 279 628
Charges d'opération du bâtiment	737 279	747 478
	9 246 747	8 301 928
EXCÉDENT (INSUFFISANCE) DES PRODUITS SUR LES CHARGES	5 822 654	205 023

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'IMMOBILISATIONS - BILAN 31 MARS 2013

ACTIF FINANCIER ENCAISSE MONTANT À RECEVOIR DU FONDS D'EXPLOITATION (note 7) DÉBITEURS (note 2 c))	101 122 20 259 888 20 361 010	
ENCAISSE MONTANT À RECEVOIR DU FONDS D'EXPLOITATION (note 7)	20 259 888	209 742 17 006 636
MONTANT À RECEVOIR DU FONDS D'EXPLOITATION (note 7)	20 259 888	209 742 17 006 636
		17 006 636
DÉBITEURS (note 2 c))		17 006 636 17 342 103
	20 361 010	17 342 103
PASSIF		
EMPRUNTS BANCAIRES (note 5)	6 923 290	5 727 212
CRÉDITEURS ET FRAIS COURUS	3 520 488	6 800
MONTANT DÛ AUX FONDS AFFECTÉS (note 7)	239	
MONTANT DÛ AUX FONDS D'EXPLOITATION (note 7)	125 458	
FINANCEMENT TEMPORAIRE	55 826 208	33 260 404
OBLIGATIONS À PAYER	38 429 365	35 175 902
	104 825 048	74 170 318
ACTIFS FINANCIERS NETS (DETTE NETTE)	(84 464 038)	(56 828 215
ACTIF NON-FINANCIER		
IMMOBILISATIONS (note 3)	12 972 732	12 398 330
TRAVAUX EN COURS (note 10)	71 491 306	44 429 885
	84 464 038	56 828 215
SOLDE DE FONDS		
SOLDE DE FONDS		

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'IMMOBILISATIONS ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS EXERCICE TERMINÉ LE 31 MARS 2013

	2013	2012
	S	\$
SOLDE DE FONDS AU DÉBUT DE L'EXERCICE REDRESSÉS	-	
Excédent (insuffisance) des produits sur les charges	-	-
SOLDE DE FONDS À LA FIN DE L'EXERCICE	-	-

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS D'IMMOBILISATIONS ÉTAT DES RÉSULTATS 31 MARS 2013

	2013 S	2012 \$
PRODUITS		
Ministère de la Santé et des Services Sociaux - Remboursement d'intérêts	2 551 182	1 043 308
Ministère de la Santé et des Services Sociaux - Réforme comptable	(1 692 585)	(4 767 881
Ministère de la Santé et des Services Sociaux - Remboursement de capital	2 255 012	5 316 685
	3 113 609	1 592 112
CHARGES		
Intérêts	2 551 182	1 043 308
Amortissement	562 427	548 804
	3 113 609	1 592 112
EXCÉDENT (INSUFFISANCE) DES PRODUITS SUR LES CHARGES		

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS AFFECTÉS - BILAN 31 MARS 2013

	2013 S	2013	2013	2012
		\$		
ACTIF FINANCIER				
MONTANT À RECEVOIR DU FONDS D'IMMOBILISATIONS (note 7)	239			
MONTANT À RECEVOIR DU FONDS D'EXPLOITATION (note 7)	5 789 799	7 037 975		
DÉBITEURS (note 2 b))	32 169 895	18 078 767		
	37 959 933	25 116 742		
PASSIF				
CRÉDITEURS ET FRAIS COURUS	33 390 148	19 620 476		
	33 390 148	19 620 476		
ACTIFS FINANCIERS NETS (DETTE NETTE)	4 569 785	5 496 266		
SOLDE DE FONDS				
SOLDE DE FONDS	4 569 785	5 496 266		

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS AFFECTÉS - ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS EXERCICE TERMINÉ LE 31 MARS 2013

	Numéro	Solde de fonds au début de	D	<i>C</i> 1	à la fin de
	de projet	l'exercice S	Revenus S	Charges \$	l'exercice S
ADMINISTRATION					
Fonds provinciaux					
Construction de résidences	701	(77 186)	-	-	(77 186)
PACS Téléradiologie	702	(49 052)			(49 052)
MEO Orientation technologique	759	29 291	-	•	29 291
Mesures d'urgence	998	136 243	1 012 727	991 835	157 135
Projet d'amélioration de la bande passante	8860	244 117	-	-	244 117
Autres Fonds					
Plan régional lutte pandémie d'influenza	8001	(34 151)	-	-	(34 151)
Technocentre	8840	-	217 045	217 045	-
Services d'administration régionale	8891-92	145 428	436 110	174 355	407 183
		394 690	1 665 882	1 383 235	677 337
RESSOURCES HUMAINES					
Fonds provinciaux					
Formation des Inuits sur la terminologie médical	8022	107 289	-	68 472	38 817
Fonds fédéraux					
Initiative ressources humaine en santé autochtone	811	438 056	115 000	131 703	421 353
Autres Fonds					
Formation des employés, protection de la jeunesse	818	(30 720)	656 838	596 641	29 477
		514 625	771 838	796 816	489 647
VALEURS INUIT					
Fonds provinciaux					
Développement du personnel cadre	610	4 803	-	5 853	(1 050)
Programme des sages-femmes	901	7 509	3 039	5 444	5 104
Programme régional des sages-femmes	8016	79 726		1 752	77 974
Fonds fédéraux					
Grandir ensemble	699	69 201	1 170 953	1 227 190	12 964
Pensionnat Indien	819	410 591	675 530	570 672	515 449
Autres fonds					
Fondation de guérison	800	(4 509)			(4 509)
ITK - Coordonateur régional	804	66 164	-	143 896	(77 732)
Certificat en santé et administration de services sociaux	814	(500)	500	-	-
Travailleurs sociaux du projet McGill	815	38 073	60	*	38 073
		671 058	1 850 022	1 954 807	566 273
SERVICES À L'EXTÉRIEUR DE LA RÉGION					
Fonds provinciaux					
Programme des services assurés non-assurés	938	-	40 252 013	40 252 013	-
Gestion des services assurés/non-assurés	939	3 420	335 354	449 083	(110 309)

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS AFFECTÉS - ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS (SUITE) EXERCICE TERMINÉ LE 31 MARS 2013

	Numéro de projet	Solde de fonds au début de l'exercice	Revenus	Charges	Solde de fonds à la fin de l'exercice
		S	S	S	S
SANTÉ PUBLIQUE					
Fonds provinciaux					
Plan d'action de lutte au tabagisme	913	(3 070)		-	(3 070)
Programme de sécurité des aliments	915	8 989		-	8 989
Dépistage du cancer du sein - Volet régional	916	(1 178)	-	-	(1 178)
Campagne publicitaire anti-tabac	926	30 465	-	2 385	28 080
Kynésiologie	931	203 901	-	40 838	163 063
Service globaux en périnatalité	933	111 540	-	100 288	11 252
Sondage sur l'hygiène orale	934	-	162 560	-	162 560
Prévention de la Tuberculose et ITSS (#935)	935		150 000	55 214	94 786
Coordonnateur des organismes communautaires	936	-	100 000	4 260	95 740
Sida et MTS - Information et prévention	956	59 573	-	185 273	(125 700)
Hépatite C	959	11 135	-	-	11 135
Infections nosocomiales	960	1 880		-	1 880
Projet de recherche STBI	968	9 224	-	-	9 224
Promotion de l'allaitement	8004	410	-	410	-
Qualité de l'air pour les résidents du Nunavik	8017	13 410	-	-	13 410
PSSP Frais de gestion	8019	14 000	-	•	14 000
Fonds fédéraux					
Consultation santé	600	(50 000)	-	-	(50 000)
NNHC Fonctionnement	614	12 845	97 618	105 350	5 113
Programme de tabagisme fédéral	631	(33 066)	-	-	(33 066)
NNHC Communication	632	182	-	182	-
FASD	634	315 953	351 762	263 461	404 254
Diabète	693	94 302	681 305	701 664	73 943
Programme de nutrition périnatale	696	3 295	296 196	235 535	63 956
AHTF - École en santé	809	4 410	-	-	4 410
Nutrition du Nord	820	15 311	502 872	521 927	(3 744)
Programme de communication	821	6 624	•	572	6 052
Formation en Prévention du Tabagism	822	•	•	-	-
Autres fonds					
Santé et sécurité au travail	611	22 641	473 524	491 328	4 837
Kino-Québec	612	120 678	51 192	19 862	152 008
Recherche sur la prévention des blessures	655	4 9 1 5		-	4 915
Vaccins B - Sec. 5	660	26 885		67 417	(40 532)
Projet réseau Arctique	668	26 109	-	-	26 109
Enquête sur la santé des lauits	690	(73 561)	-	-	(73 561)
Santé dentaire pour école primaire	803	11 305	-	-	11 305
Alphabétisation - "Comment j'ai cessé de fumer"	805	43 010	-	-	43 010
NAHO Analyste en santé	807	598	-	598	-
Campagne pour naître sans fumée	816	-	-	•	•
		1 012 715	2 867 029	2 796 564	1 083 180

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK FONDS AFFECTÉS - ÉTAT DE L'ÉVOLUTION DU SOLDE DE FONDS (SUITE) EXERCICE TERMINÉ LE 31 MARS 2013

	Solde de fonds			Solde de fond		
	Numéro	Numéro	au début de			à la fin de
	de projet	l'exercice	Revenus	Charges	l'exercice	
		S	S	S	S	
PLANIFICATION ET PROGRAMMATION						
Fonds provinciaux						
Cadres - Adaptation de la main d'œuvre	640	430	-	430	-	
Formation trousse médico-légale	790	46 280	-	-	46 280	
Programme de santé des femmes	791	163 930	47 755	133 047	78 638	
Primes d'installation et formation	920-921-923	727 259	890 379	943 104	674 534	
Stage de résidence en médecine familiale	922	(449 842)	-	135 051	(584 893	
Comités régionaux contre la Violence	932	45 186	~	-	45 186	
Cancer	962	40 250	~	713	39 537	
Jeunes parents	972		-	-	-	
Formation - Infirmières, travailleurs sociaux	977	42 936	-	38 401	4 533	
Santé mentale - Formation gestion de crises	8005	694	-	694	-	
Prévention du suicide - Formation	8006	191 327	-	37 939	153 388	
Violence contre la femme - Formation	8007	213 965	-	2 352	211 613	
Organisation communautaire - Formation	8008	221 393	~	30 303	191 090	
Santé mentale - Support pour projets cliniques	8009	76 598	-	82 758	(6 160	
Prévention du suicide - Stratégie régionale	8010	511 711	-	46 575	465 136	
Cancer du sein - Diagnostique et support au patient	8011	3 809	-	-	3 809	
Services aux aînés	8012	67 159	-	14 512	52 64	
Formation - Adaptation de la main d'œuvre	8013	30 492		45 908	(15 416	
Équipe d'intervention sur les agressions sexuelles	8015	54 759		2 2 1 4	52 545	
Dépendances	8020	134 664	27 491	197 392	(35 23)	
Formation - Attention & Hyperactivités	8021	60 721	-	1 571	59 150	
Prévention de la maltraitance des personnes âgées	8023	17 321	-	45 629	(28 30)	
Programme jeunesse - Coordonnateur régional	9008	-		-	-	
Formation sur la gestion des crises	9052	37 386	-	33 812	3 574	
Santé mentale communautaire	9053	112 840	-	21 366	91 474	
Troubles de la parole - Formation Centres						
de la Petite Enfance	9075	(1708)	1 708	-		
Comité psychosocial	9077	3 409	-	-	3 409	
Troubles de la parole - Développement du programme	9078	951		951	-	
CLSC - Développement régional stratégique	9079	13 400		-	13 400	
Troubles de développement - Comité régional	9080	19 453	-	1 354	18 099	
Déficience intellectuelle - Tableau d'évaluation	9081	13 704		398	13 306	
Fonds fédéraux		40.000				
Soins à domicile	618	43 200	2 173 413	2 112 585	104 028	
Soins aux adultes invalides	694	13 583		-	13 583	
Violence familiale	695	33 616	45 000	69 491	9 125	
Santé mentale communautaire	697	301 062	870 719	904 042	267 739	
Stratégie pour la prévention du suicide	698	50 578	99 950	111 250	39 278	
AHTF plan d'adaptation - Projets cliniques	802	307		307	-	
AHTF plan d'intégration - Santé mentale	806	83 725		-	83 725	
Autres fonds						
Meilleures pratiques pour les résidences des aînés	812	4 220		•	4 220	
Programme de formation - Agent de liaison	813	52 263		•	52 263	
Centre d'adolescents Ulluriaq	817	(137 918)	2 300 512	2 473 564	(310 970	
Prévention du suicide	963	30 951		5 276	25 675	
Réorganisation protection de la jeunesse	9007		·	۰		
Programme national de formation	9076	23 694	-	39	23 655	
		2 899 758	6 456 927	7 493 028	1 863 657	

1. ENTITÉ COMPTABLE

La Régie régionale de la Santé et des Services Sociaux Nunavik est un organisme créé dans le cadre de la convention de la Baie James. En date du 1er mai 1995, les droits et obligations du C.R.S.S.S. - Kativik ont été transférés à la Régie régionale de la Santé et des Services Sociaux Nunavik.

DÉBITEURS		
	2013	2012
a) Fonds d'exploitation	S	S
Ministère de la Santé et des Services Sociaux		
- Déficit des années antérieures	5 518 511	-
Ministère de la Santé et des Services Sociaux		
- Plan régional stratégique	1 522 341	-
Ministère de la Santé et des Services Sociaux		
- Banques salariales	513 973	513 973
Ministère de la Santé et des Services Sociaux		
- Congé parentaux et assurances	87 996	77 454
Ministère de la Santé et des Services Sociaux - Divers	87 229	117 350
Récupération de TPS/TVQ	321 584	983 084
Centre de Santé Inuulitsivik	302 275	236 328
Centre de Santé Tulattavik	399 113	183 495
Administration régionale Kativik	297 652	-
Sécrétariat Général du Secteur de la Santé et des Services Sociaux	242 019	-
Avances aux employés	1 257	3 689
Autres	542 500	435 040
	9 836 450	2 550 413
Provision pour mauvaises créances	(96 808)	(85 960
	9 739 642	2 464 453
b) Fonds affectés		
Ministère de la Santé et des Services Sociaux - SANA (note 8)	29 107 047	17 357 302
Ministère de la Santé et des Services Sociaux		
- Centre d'adolescence Ulluriaq	2 300 000	135 000
Ministère de la Santé et des Services Sociaux		
- Plan régional stratégique	380 000	-
Ministère de la Santé et des Services Sociaux		
- Formation du personnel pour la Protection de la jeunesse	۰	120 000
Récupération de TPS/TVQ	47 664	40.
Affaires Indiennes et du Nord Canada	19 442	36 362
Santé Canada	315 742	334 003
Autres	œ ·	96 100
	32 169 895	18 078 767
c) Fonds d'immobilisations		
Ministère de la Santé et des Services Sociaux	10.070.053	
- Réforme comptable 1er avril 2008	10 862 072	11 845 518
Récupération de TPS/TVQ	1 089 327	
Avances de fonds aux établissements publics	8 252 631	5 161 118
Autres	55 858	
	20 259 888	17 006 636
Dana 19		

3. IMMOBILISATIONS

Les immobilisations sont composés comme suit:

,			2013	2012
	Coûts	Amortissement Cumulé	Coût non amorti	Coût non amorti Retraités (note 12)
	\$	\$	S	\$ 12 289 724 30 375
Bâtiment	16 978 834	4 650 220	12 328 614 7 503	
Équipement informatique	2 759 548	8 2 752 045		
Machinerie, mobilier et équipement	884 460	370 110	514 350	11 693
Matériel spécial	181 538	80 153	101 385	35 268
Véhicules	137 295	116 415	20 880	31 270
	20 941 675	7 968 943	12 972 732	12 398 330

4. REVENU REPORTÉ

Le revenu reporté est composé comme suit:

	450 000	488 193
C.S.S.T.	*	38 193
Ministère de la Santé et des Services Sociaux - Plan d'Action	200 000	200 000
Ministère de la Santé et des Services Sociaux - SRP	250 000	250 000
	S	\$
	2013	2012

5. EMPRUNTS BANCAIRES - FONDS D'IMMOBILISATIONS

Les emprunts bancaires sont utilisés pour financer temporairement les achats d'actifs à long terme jusqu'à l'encaissement des fonds de la Corporation d'hébergement du Québec. Ils consistent en huit (8) marges de crédit auprès de la Banque Canadienne Impériale de Commerce, portent intérêt au taux préférentiel de la Banque et viennent à échéance à différentes dates.

6. ANALYSE DES ANNÉES ANTÉRIEURES

Les analyses finales des rapports financiers 2003-2004, 2004-2005, 2005-2006, 2006-2007, 2007-2008, 2008-2009, 2009-2010, 2010-2011 et 2011-2012 par le MSSS n'étaient pas disponibles au moment de la sortie des présents états financiers. Tout ajustement résultant de ces analyses sera reflété dans les états financiers de l'année 2013-2014.

7. COMPTES INTERFONDS

La Régie Régionale de la Santé et des Services Sociaux du Nunavik utilise un seul compte de banque pour les fonds d'opération et les fonds assignés. Certains tansactions peuvent aussi inclure les fonds d'immobilisations. À la fin de l'exercice, les transactions interfonds sont comptabilisées et présentées comme "montant dû" et "montant à recevoir" d'un fonds à l'autre.

8. SERVICES ASSURÉS ET NON-ASSURÉS

La Régie Régionale de la Santé et des Services Sociaux du Nunavik (RRSSSN) a signé une entente spécifique avec le MSSS reliée aux services assurés/non-assurés (SANA) le 15 février 2011.

Selon cette entente, la RRSSSN détient la responsabilité directe de la gestion des SANA et de ses fonds. Pour ce faire, la RRSSSN devait élaborer, approuver et appliquer des politiques et procédures spécifiques pour l'administration du programme.

De telles politiques et procédures n'existaient pas lors des 11 premiers mois de l'exercice financier 2012-2013. Une nouvelle politique concernant le transport des patients a été approuvée le 28 février 2013. selon l'information transmise par la direction, cette politique sera mise en place lors de l'exercice financier 2013-2014. Elle ne couvre pas tous les critères spécifiques des SANA, mais comporte un nombre important de points relatifs au transport des patients.

De plus, une portion des fonds reçus par la RRSSSN pour les SANA a été transféré aux établissements sur présentation de factures, sans aucune condition ou ligne de conduite.

Étant donné l'absence des politiques et procédures requises au 31 mars 2013, le mandat de vérification spécifique aux SANA n'a pu être conduit sur la majorité des activités et fonds reliés aux SANA.

Seulement la portion du programme reliée aux lunettes, prothèses dentaires ainsi qu'aux médicaments, fournitures médicales et équipements à l'extérieur de la région a fait l'objet d'une vérification spéciale. Cette portion représente environ 3 % des coûts totaux des SANA. La liste qui suit présente ce qui ressort de cette vérification:

- Les politiques et procédures à ce sujet de Santé Canada sont suivies et appliquées. Un projet de politique dérivé était disponible sans qu'il n'y ait aucune preuve de son approbation par le Conseil;
- Toutes les dépenses ont pu être retracées aux noms des patients et à la liste des bénéficiaires;
- Comme l'année 2004-2005 est la première de l'application des SANA, aucune donnée historique n'était disponible. Cependant, il était clair que les lunettes et prothèses dentaires n'étaient réclamées qu'une seule fois par le même patient;
- La dépense reliée aux médicaments à l'extérieur de la région n'était pas toujours alignée avec la liste des médicaments approuvés par Santé Canada. La liste des médicaments de la RAMQ était parfois utilisée;
- Il n'était pas évident que les médicaments génériques étaient en tout temps favorisés.

8. SERVICES ASSURÉS NON-ASSURÉS (SUITE)

De plus, le ministère de la Santé et des Services Sociaux n'a pas confirmé le solde à payer à la RRSSSN en lien avec les SANA. Ce solde inclus dans les comptes à recevoir se détaille comme suit:

	5
2011-2012	9 009 161
2012-2013	20 097 886
	29 107 047

9. PROCÉDURES D'APPROVISIONNEMENT

La Régie régionale n'a pas de politiques ou de procédures d'approvisionnement approuvées et certains achats ont été effectués sans appel d'offres et la plupart des services achetés ne sont pas accompagnés de contrats valides.

		71 491 306	44 429 885
- Puvirnituq	2012 - 2013	3 118 899	-
Direction de la Protection de la Jeunesse (Bâtir	ment)		
UTHC, 28 pour IHC et 4 pour la RRSSSN)	2011 - 2012	29 012 557	5 200 358
Unités de logement (70 unités : 38 pour			
UTHC, 23 pour IHC et 4 pour la RRSSSN)	2009 - 2010	18 219 433	18 089 110
Unités de logement (50 unités : 23 pour	2000 2007	21 140 417	21 140 417
Unités de logement (54 unités : 25 pour UTHC, 23 pour IHC et 6 pour la RRSSSN)	2008 - 2009	21 140 417	21 140 417
		S	S
		2013	2012
TRAVAUX EN COURS			

Ces projets de constructions sont financés temporairement par Financement-Québec.

Lors de la finalisation des projets de construction, les coûts en capitaux et les dettes à long-terme qui leur sont reliés seront enregistrés and les états financiers des établissements respectifs.

11. ENGAGEMENTS

La Régie Régionale s'est engagée pour un total de 169 000\$ pour une entente de formation. L'obligation minimale selon l'entente pour la prochaine année est détaillée comme suit:

	Location	Services	Total
	S	S	S
2013-2014	•	169 000	169 000
		169 000	169 000

12. MONTANTS COMPARATIFS

Certains montants comparatifs ont été reclassés dans le but de refléter les changements apportés dans la présentation de l'année courante.

C.P. / P.O. BOX 900 KUUJJUAQ (QUÉBEC) J0M 1C0 D'bcD0°L°/ Tel: 819 964-2222 76°Dd° / Fax: 819 964-2888 www.rsss17.gouv.gc.ca 414JCF14DUP. 341UAN

2012 - 2013

DOAN DOCCLC DOYCLOST AJCHOSO MLANCE

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES

RÉGIE RÉGIONALE DE LA SANTÉ ET DES SERVICES SOCIAUX NUNAVIK

∇~ = 1, 2012-Γ° L° + 31, 2013-J°

۵۵۸۰ - "مه ۱۶۲۷۶ مو۲۶۵۷ مهد" - ۵۸۵۸ مهد	4
معه ۵م د ۱۹۶۶ مهم	4
buckung Partaucke	5
DeA' Γ Δ D'C L σ' Γ' Δ D C L σ' Γ D A J' λ A' C A D' L L b N i' D'	5
Dell' Deccto Delcarit Decarite Alita	6
j°σqjc	6
186456 PLYLLUD DEDYCHBC	
PUF.	10
ρ_{e}^{α}	13
>500545 ADC 40C 40C MOL	
DALa Denoide d'oda ic D'nare AJEto DALa Denoi 100 blas	
ላ⊳ሬ፡ አ ፈላ?ሰ፡	15
(יססים / מפלשלי / כתבים אשיים אשרים אשיים אשרים אשיים אושרים אושיים אשיים אשיים אשיים אשיים אשיים אשיים אושרים	17
J674cU55c DeP5c2ec	17
P° → ~ 4%	17
Δ2/c26' ΛJ 1 λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ	18
1° σ θ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	
$\Delta \ell L D^c$ bashfrandsbishly $\Delta L L L L L L L L L L L L L L L L L L $	
'b20°° 174 ~ 4° 6° σ° 6° 2	20
$\Delta \Delta \Delta^{c} \Delta^{c} \Gamma \sigma^{c} P J^{c} \Delta^{c} \Gamma^{c} L L^{c}, \Delta \Delta^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Omega^{c} \Delta^{c} \Omega^{c} \Omega^{$	21
$\Delta c\dot{\Gamma} \Pi J^{c} \Lambda_{2} b D \Pi \sigma^{56} \Lambda^{c} L_{2} \Delta^{c} \Lambda^{5} \sigma_{2}^{c} C D \sigma^{56}$	
20c° σ ΠΓΡ4Δς	23
₽Δ~Γ⊅ὖς	24
۸٩٠-٥٨١٩٠-۵٥١	
ΔοΔε βοδωριστάριο Λολαίλου	
ϽΡͿ Ϥʹ Π <mark>ϯ</mark> ϯϷʹ Ͻϛϛʹϛϧϲʹ	28
'baΔ° (۲4° σ) (σ° σ) Δσ 6	
ΔοΔε βοδωριστορος βοδοριτριίς ρρογοίος	37
Vedies Verdicose Ant DVAL Tyles 12 edipart Jets 2017	106
***************************************	38
₹\$°\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	39
DODE VELYAUSLE VOLAGESCO VOLAGESCO	41
Db14c4βbc β.ββ4c2βbc	41
Δ5σ65 10 56	
∇ [∞] ∇ _c U1455,2,8,6c	42

79. n

7° 6° 1° 1°	42
620°Cγ4625cre, 10 PU.β6	44
Δ	45
4ρc (roc no 1 ΛJ 1 λ δ δ	46
DP14°Π₹₽¢ ⊃₹°Π₹₽Π%U	
Pady 50 100 100 100 100 100 100 100 100 100	47
DON' DOCCL' ADYCROST DDCROSTD NJSTODS ADCSTOSIJS	つらしゃし
	48
٧ۥ٩υ،٢٠٠ ح ١٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠٠	
Λα ² (ΠΕ π. Λ ⁶	
240 LV, 110 Φ Φ P C 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	52
שפרכנים של אפלי חבתה של אלים אל כתה ווי אפל ליאלי	55
> 26.10 14.50 \ ΔΦδρφ = Φ. Ο Σ΄ Ο ΣΡΑΚ. Υδ. Γ.	55
2012-2013-F / \ata\columber 10\columber 10	55
ΔΥΙΔΙΔουνσο-Δρεπιασο ρΓΙΔΣΥίσο Δεοσασος Λραρίλοι	55
Ͻἡὲς Δεοσθος Λλαρίλοδι	56
Δρ°σο διλιιλρσίζο Λλαρίλη ζού	56
בפינה לינלב ב בשיר תפיר אפליחלים חינלפי ארסף הי	
Λ _Φ ι ^C ηĊ ^C σ ^C	
/ን°፦<	
DOND LCCOC VICTOR VICTOR	
2674℃U596 0.P95.7℃	
L°271 1° 018 1° 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	
Δ'L6bnc° Δ'Δ'L16bn66672 Δ Δ Τ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ	

ح ۱۹۵۶ مهم

عمر کم کک من عمر $dV^{L}\dot{D}^{h}$ $d^{h}f^{h}$ 500,000 $P^{L}f^{U}^{c}$ P^{U}^{c} $P^{U}\dot{C}\dot{a}^{h}$ $D^{L}\dot{C}\dot{a}^{h}$ $D^{L}\dot{C}\dot{a}^{h}$ $D^{L}\dot{C}\dot{A}^{h}$ $D^{L}\dot{C}\dot{A}^{h}$ $D^{L}\dot{C}\dot{A}^{h}$ $D^{L}\dot{C}\dot{A}^{h}$ $D^{L}\dot{C}\dot{A}^{h}$ $D^{L}\dot{C}\dot{C}^{h}$ $D^{L}\dot{C}^{h}$ $D^{L}\dot{C}^{h}$ D

 P^{-} D^{-} D^{-

 $\Delta C_{1}CV40^{-1}C_{1}C$ $\Delta C_{1}CCO_{1}$ $\Delta C_{1}CCO_{1}$ $\Delta C_{1}COO_{1}$ $\Delta C_{1}COO_{1}C$

 $4^540^64^6$, $40c^46^66^6010^6$ $10c^66^6$ $10c^66^6$

 $\Delta \Delta \Delta \Delta^* \Delta C^* \rightarrow L L^*$, $\Delta \Delta^* D \Delta^* C^* \rightarrow L^* U \Delta^*$, $\Delta \Delta^* D \Delta^* C \Delta^* C \Delta^*$, $\Delta \Delta^* D \Delta^* C \Delta^* C \Delta^*$, $\Delta \Delta^* D \Delta^* C \Delta^* C \Delta^*$, $\Delta \Delta^* D \Delta^*$, $\Delta^* D \Delta^$

两刀

60719 - 25170 Day je borras a for os for of the second of

buckuunc epyrouche

 $\triangle \triangle A^{L}\Gamma \triangle ^{S}\Gamma ^{S}\Delta \Pi ^{C}S = APD + A^{S}\Gamma ^{L}\Delta \Phi ^{S}\Gamma ^{L}\Delta ^{C}$, $\Gamma ^{C}\Delta D + C^{C}\Delta ^{C}\Delta \Pi ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}\Delta ^{C}S = A^{C}\Gamma ^{C}\Delta ^{$

Deal Datenoil Decnoils Nichly Valledinica

 $\Delta \Delta A^{L}\Gamma \Delta \Delta C^{S}\Gamma^{b} \Delta \Delta C^{C}\Gamma \Delta A^{C}\Gamma \Delta A^{C}\Gamma \Delta C^{C}\Gamma \Delta C^{C}\Gamma$

 $\Delta a \Gamma 4^{\circ} \sigma^{\circ} U = \Delta a \Delta^{\circ} \Delta \sigma^{\circ} U = \Delta^{\circ} A \Delta^{\circ} \Delta a \Delta^{\circ} \Delta^{\circ} U = \Delta^{\circ} A^{\circ} U = \Delta^{\circ}$

DON'T DOCCLOS DOLCASILO DOCUDALO VILLA

שפאיר ששלכתסיף ששכתסירש אשילאי החולכי שלחסי:

- 'de ב לכנישם שפעור שפכבם לאבורשם לאבור אשר לאבירושה להראים להיא להיש לכנישם שפעור שפרבם לאבירושה לאבירושה להיא
- bL²'Lλ' Δ'σσλλ'σ (Τος (Σος (Δος Δός ΥΛ'Γ), L'è)
- ١٠٩٩٥٥٨٢ ١٦ ١٩١٤ ١٩١٤ ١٩ مربي، تحجر ١٩٩٩٥ محجر ١٩٩٩٥٩ محجر (٢٠٩٩ ١٩١٩ ١٩٩٩ محجر ١٩٩٩٥ محجر ١٩٩٩ م
- PLDIN ב'-6'CDYLY 6NA DOC-L' 68LOLC 6NL786" ב":
- $\Delta \Delta^{1}\Gamma$ $\Delta \Delta^{2}\Gamma^{1}$ $\Delta \Delta^{2}\Gamma^{2}$ $\Delta \Delta^{3}\Gamma^{2}$ $\Delta \Delta^{3}\Gamma^{2}$ $\Delta^{3}\Gamma^{2}$ $\Delta^{3}\Gamma^{3}$ $\Delta^{4}\Gamma^{5}$ $\Delta^{5}\Gamma^{5}$ $\Delta^{5}\Gamma^{5}$ $\Delta^{5}\Gamma^{5}$

۸۶۲۱ عودداد ۱۳۹۹ فروند فروند فروند فروند معرور المروند معرور المروند معرور المروند معرور المروند المرو

100000

 $3e^{C}(A^{b})$ 4^{c} 4^{c} A^{c} A^{c} A^{b} A^{c} A^{c

4ሪዮ Λ_0 ን Λ_0 ን Λ_0 Λ

 $4\sigma^{5}\dot{\Lambda}^{5}$ $CLD4^{5}Da^{5}$ $a4^{5}CD4^{5}\dot{\Lambda}^{5}$ $A^{5}\sigma DT^{5}Da$ $d^{5}A^{6}D^{5}Da^{5}$ $a4^{5}Da^{5}$ $a4^{5}Da^$

 $\Delta = \frac{1}{2} \int_{-\infty}^{\infty} d^{2} \nabla A \nabla b^{2} d^{2}$, $\Delta c^{2} \int_{-\infty}^{\infty} d^{2} \nabla b^{2} \partial^{2} \partial^{$

 $Λ^{\circ}$ $= AJ^{\circ} + AJ^{\circ} +$

 $C^c = L_{\sigma^c} \wedge C_{\sigma^c} \wedge C_{\sigma^c}$

18/43/6 PIFFUDS DEPDYCHOLC

 $\Delta \sigma_{VLD} = \frac{1}{2} \nabla_{VLD} \nabla_{VLD}$

በራን LD በነር ለጋር ነው። ነው የትላና ነው የተለነው ነው የተለነው ነው የተለነው ነው። ለጋው ነው። የተለነው ነው

 $^{\circ}$ $^{\circ}$

$\Delta^{L}\Gamma_{\sigma}^{\dagger}PJ^{L}\Gamma_{\sigma}^{\dagger}$, $\Delta^{L}\Gamma_{\sigma}^{\dagger}PJ^{L}\Gamma_{\sigma}^{\dagger}PJ^{L}\Gamma_{\sigma}^{\dagger}$, $\Delta^{L}\Gamma_{\sigma}^{\dagger}PJ^{L}\Gamma_{\sigma}$

᠘ᠴᡟᡄᠽᠣᡲᠮ᠈᠘᠈᠙ᠳᡥᡩ᠈ᡶ᠈ᡓᠬᢃᢖ᠅᠘ᡩᡲᡃᡈᠬᡤ᠅᠘᠒᠘᠀ᡥᡳᢗ ᠄᠑ᢆᡶ᠘᠈᠙᠘ᢣ᠈ᡏ᠐ᡢ᠆ᢗ᠘᠂ᠳᠻ᠘ᠰ᠘ᡯ᠘᠘᠘᠘᠘᠘

- · DA690;
- Δ/LD Δ2/c2>Dobl:
- · DALLDAC.

رد. $\Delta \Delta \Delta^c$ $\Delta^c = c^5 2 \Pi^b \Gamma^c$ $\Lambda^5 6 \Gamma^b \Gamma^c = \Delta^c \Gamma^b \Gamma^b \Gamma^b \Gamma^c = \Lambda^c \Gamma^b \Gamma^c \Gamma^b \Gamma^c = \Lambda^c \Gamma^c =$

 4^{6} 4^{6} 8^{6} 10^{6} $10^{$

 $\Delta c^* \sigma 4 \Pi^c r \sigma^* \Delta D D^* \alpha \sigma^* \Lambda \alpha r^c D \sigma^* \Delta \alpha \Lambda^c \Gamma \Delta D r \alpha \sigma^c \Gamma D \Lambda^c r \Lambda^c r \sigma^* \Gamma^* \Delta D r \alpha \sigma^c \Gamma D r \Lambda^c r$

 $4^5\dot{3}ic^5)\Gamma$, $aeA^1\Gamma$ $Aarche^5\Gamma^5$ $Aarche^5$ $Aarche^5$ Aa

 $3\sigma^2 L\sigma^2 = 3\sigma^2 L\sigma^2 = 3\sigma^2$

Δ-1Λ DΔ°C°66

Γσ di blilla

60120

DAJA'CASJC - 24'CALA'DO 4'SJLA'DI. 62'A'6NP'SCS 25'FEALTLY "NO" ADIDENCIES DE VILOC DOLOGO ATVE DE ATVENTE POLLEC.

DON'T DOYCROSTO DECROSTO NISTADO BOLLIGO DOSATEDES TO طال المادر الماد الما عومار عادمه ال عدم العامرة العادم المادكم الما שלינחללי דם dyL, PUTY, דערף ספירני

ΛαλιΠίλλοθορισι γραν 7, 2013-Γι. bΠLi Γσ dir berradite Aarlicibirolog.

bnlic Pardosc Lct 31,2013-F

- DΔ°C°L°6, Δσ5Λ
 4°L√5°b°6
 1 >Λ°σ5°
 PLD°Π°L
- 4°L4556 2°L6°L / 6°C°Z' PLL250°L · 24 PDFD C55PAN6
- · [o d ? 4'ch. sell Asteroit Ascrolls
- VICTURE PLYLLAGE
- ΔĆ ع^c Σ^b, Δ¢ שלחיכטים יסדים / סבילם Piloinil
- اغ ان ا کاکھ کے درمان کے درمان کے درمان 1° o 1 1° Los PLLOSA

 Δ° Δ°

PULYC

- 367 429 18-45 49-60 P-CD'N°L
- 4°JU°°J4° JULICAN SEDAD
- · daàs. PA Polica ofto Predict
- · 1586. 1cr Polistas bresiden

 >>Δ°, λ° 	DOCKALL PLYLLY			
• <5 'PN'21"	600 paccic beloce Piloin			
٠ طعد, ع۵۲	SAUCO POLOSON			
· ALD FOLDS	JOUNG POLOSON			
· jer Lo	CLDAD. brro.U.rr			
۰ که مز ۶)	9c4dc brrJeUer			
 σΛΦ'τ, ετ 	9<444VA 6+10,U.			
• 5- P'A"	SAUCDO PULDON			
 Φςςγος < Φ4ος 	5° 20° P°LD50°L			
• L'3 > L'4	DecCVD, PTTTVPF			
• 655d2. jo	JA-VD. Lr TJ.U.F			

Pdd Len Λ'diλ' - 4)e' ΠCPePt PePterop' 4'fJblo 2012-2013.
40'jr 30. 2012:

ለንላሌ 28, 2013:

Leli saccio 10'in ADCCDJO" DE Leli saco saco

 $\rho_{\nu}^{\prime} = \rho_{\nu}^{\prime} = \rho_{\nu$

ذ الم ۱۵۶۸ مناغهٔ درائے المرحه، معدد معدد معدد معدد المال ۱۹۵۹ معدد المال المال معدد المال الم

DON'T Darrott Docrots Nethor bullby

ραΛ'Γρ' Λ4°αρΠΓ' 42~46/6 σ24°σΓ' ρ'όλα 25, 2012-Γ. ספרירם שברירם לכדיר P'LD' חספרירם החבדירם החבדירם בבירה ב عدد در مه عدم من معمد الأحد معدد أو معمد معدد المعدد معدد المعدد CLocher Pilsons 100 dordallion.

Date Derr offor ADMNETEDYSTDE: UTESPEDS, Dan'T $\Delta \rightarrow \ell = \ell \wedge N^c$ bole of order of the solution of the soluti 2012-Γ 4'Lュ በተላሊ 11, 2012-Γ, 60Lት% የጋልና የ፡ሀጋናበርህናቦና

DON'T DOYCAND bolly De. Doc Darri Dan'T Nodaraborledas Polosupados.

DON'T ADYCAMP BOLFSPE

TOUGHT PULLS BULGER SHOWS ACTION OF PERSONS OF THE PROPERTY OF 4'SJCL'TOND' bNLo'Labl, 56.00 DPCPNo 40JNN'TON. >'Do'Y' פטרגיינ פטרפיף וף ככד אל אבר דול שעילטיי

DON'T DOYCROSTO DOCROSTO NJCZADO BOLZOSTO 11'7) Do 666 (CCD+17' 1'9) Dago.

- ∇ΛΕ 2012-910 3 > ΦΦΛ 2013-16, λρ > Ε ΔαθΓΙΕΡΗ λσ Tr. Den't Derent Decrote Astrolog blilaglog שחולשים ליבחינסי.
- לבלת 7, 2013-"שור של בפתיר Δשל בתת Δברת Δב בת סף ש NJCZNOLOC BLZCLnosJcDZS.

DAY ACA A CLITIC ASA CDYVAC BATCL ASA LOLI

- '∀L' L°ΓD' P'L)'ΠĊλ ΥΝΑ ΔΣΡΑΙΙ ΠΤΙΛΑ 4. 2012-Γ.
- dis 6574 P P-LJMC26049 DOLC JECADO 10040 LOC ADAZ 26. 2013-F Dasiche and attle PLDSUDEDTE DISAL 5. 2011-Foc.
- 4ετ ά⁵⁵ι⁵⁶ Ρ¹ι Σ⁵Πζαβρξ⁵⁶ Β⁵Γ⁵ΖΖΔΙ⁵ Π΄⁷Λα 4, 2012-Γ.
- Δαδίζο Π΄ ΔυΠουματο Ρυβοπροργιο Πάλλο 7, 2009-Γσί.
- 37 PDPD PLD9ncabordes 680925 Arna 4. 2012-1.

- PΠ ἀσὰς Ρς μος Πζανραςς βς Γς Ασονανίας Αντίας Αντί
- Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
 Δ
- JΔ= 'dĹ= P'L)'nċλρΓ4°=)"
 ρΓΦ+) ' Π'Λλ 4, 2012-Γ.
- כל המסיל ףינטיחלת שוחליב של לילס איש היל חלי את 4, 2012-ר.
- $\dot{\zeta}$ $\dot{\zeta}$
- Δοδίτιο δο δρίθος
 Θυροποίλ
 Δοδίτιο δο δρίθος
 Θυροποίλ
 Θυροποί

DAD PULYO DCD4:

- L'>> > T45 >, 6L7 L2) = (CAD' 1 JASLa";

 $6^{1}\sqrt{4}$ 6^{1

D'OCJNCROD' DO'C SLDY SU NJ'TDNO' NDYDFTAROSJ'

 $\Delta \Delta^{1}\dot{\Gamma}$ $\Delta \Delta^{2}\dot{\Gamma}$ $\Delta \Delta^{2}\dot{\Gamma}$ $\Delta^{2}\dot{\Gamma}$ $\Delta^{2}\dot{\Gamma}$ $\Delta^{2}\dot{\Gamma}$ $\Delta^{2}\dot{\Gamma}$ $\Delta^{3}\dot{\Gamma}$ $\Delta^{4}\dot{\Gamma}$ $\Delta^{5}\dot{\Gamma}$ $\Delta^{5}\dot{\Gamma}$

 $40^{\circ}\Pi_{a}^{\circ}$ $0^{\circ}U^{\circ}U^{\circ}$ $0^{\circ}\Omega_{a}^{\circ}$ $0^{\circ}\Omega_{a}^{\circ}$ $0^{\circ}\Omega_{a}^{\circ}$ $0^{\circ}U^{\circ}U^{\circ}$ $0^{\circ}\Omega_{a}^{\circ}$ $0^{\circ}\Omega_{a}^{\circ}$ 0

2520545 DECTOCRASL

 ΔLa^{5} ΔLa^{5}

DALa Denorde d'odar je D'nale AJetoc

 40^{1} ir 2012^{-3} In $_{-3}$ i, $_{-7}$ ir $_{-7}$ ir

 $\Delta c^* \sigma 4 \Pi^c r \sigma^b$ C'L $\sigma 4^c \dot{\gamma} J \Gamma b \dot{r}^c b^c C c^b \dot{\gamma}^b$ $\Delta a c^* \sigma C^c \Gamma^c \Delta c^* \sigma \dot{\sigma}^c$ $\Lambda \dot{r} \dot{\kappa}^c C D L^r d c^c \dot{\gamma}^c$ $\delta c^* \sigma \sigma \dot{\sigma}^c$ $\delta c^* \sigma$

DALa') bc'(4) DL CA'b'o"

סילבסחי מיילחירי בדביעי כדסגילמר.

ωα-c-iσ βΔια'ττ'δ'σς 40Δ°αβιΓ4'δ'σσ Λςτλλ°ισς βΠτ'δ'ς Ceρτ'Γτ' β'δερηθα <math>βης Cηρσησος βητ'δς Ceρτ'Γτ' β'δερηθα <math>βης Cηρσησος βητ'δς Ceρτ'Γτ' β'δερηθα <math>βητ'βς Ce βητ'βς Cer για β'δερησα <math>βητ'βς Cer για β'δερησα <math>βητ β Γτ'βς Γτ'βς

ΛΡΥΡΓΓΑς ΠΥΙΠΟΎς ΡέβΕΡΩς Ας Ας ΑΠΡΩΘΕΘΕ Ας Ας ΑΠΡΥΓΕΥΑΝ Ας ΕΘΕ ΕΕΘΕ Ας Ας ΑΝΤΟΡΙΕ ΑΝΤΟΡΙΑΝ Ας ΑΝΤΟΡΙΑΝ Ας ΑΝΤΟΡΙΑΝ Ας ΑΝΤΟΡΙΑΝ Ας ΑΝΤΟΡΙΑΝ ΑΝΤΟΡΙΚ PDYLAzilipcCapqc.

(50050' Naraliserospo AJGA6

J674cU45De DePLetole

40° 24

D' JRAS

 Δ are Δ are Δ Δ are Δ Δ are Δ a

בשבבוב סמיחלמים אוילדפירי אליפושיחי פחרגירי

Nat Denos

 $\Lambda \Lambda^{c} \Lambda^{c} h^{c} h^{c} = \Delta \Lambda^{c} h^{c} h^{c$

Darcheile Victore BLise

υγρος)ρίβιτα) Λαταίορου Δοτολοίι Λυίτρησι (ρΓίτρο)

2012-2013 $4^5 \dot{\beta}^{\circ} \dot{\beta}^{\circ}$, $4^5 \dot{P} \dot{P}^{\circ} \dot{D}^{\circ}$ $b \cap L h^{\circ} \dot{P}^{\circ}$ $\dot{a}^{\circ} \dot{L} \dot{b}^{\circ} \Delta \Delta D c D c^{\circ}$ $U \dot{b} D \sigma^{\circ} \dot{b} \dot{b} \sigma^{\circ}$ $\Delta \Delta \dot{b} \dot{D}^{\circ} \dot{D}^{\circ}$ $\Delta \Delta \dot{c} c c \sigma^{\circ} \dot{P}^{\circ}$ $\Delta \Delta \dot{c} c c \sigma^{\circ} \dot{P}^{\circ}$ $\Delta \Delta \dot{c} c c \sigma^{\circ} \dot{P}^{\circ}$ $\Delta \dot{c} \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{C} \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{C} \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ} \dot{P}^{\circ}$ $\Delta \dot{P} \dot{P} \dot{P} \dot{P}^{\circ} \dot$

PPPF, $PV_{\ell} = PV_{\ell} = PV_{$

 $\Delta \sigma_{VL} = \Delta \sigma_{VL}$

 $\dot{\Omega}^{\prime\prime}$ $\dot{\Omega}$

145 YOLL 1914 -- 14 1915 1945

2013-2014 $4^{\circ}iJ^{\circ}l\sigma^{\circ}$ $\Lambda_{\bullet}\lambda^{\circ}i^{\circ}l-L_{\bullet}\lambda^{\circ}l\lambda^{\circ}i^{\circ}l$ $\Delta_{\bullet}\lambda^{\circ}i^{\circ}l$ $\Delta_{\bullet}\lambda^{\circ}i^{$

ULC, 6 b 7 b 7 l 6 l 6 b 7 l 6 b 6 b 7 l 6 b 6 b 7 l 6 b 7 l 6 b 7 l 6 b 7 b 7 l 7 bb 7 l 7 bb $^$

Daterello Victore, ELLSE

- $\nabla A \Gamma D_c$ $\rho \nabla D_{\rho} \rho \Gamma A \Gamma A \rho \rho \rho \Gamma \Psi C_{\rho} \Gamma \Psi C_{\rho} \Gamma \Psi C_{\rho} \Gamma_{\rho} \Phi_{c}$ $\rho \Lambda C_{\rho} \Gamma_{\rho} \Phi_{c}$ $\rho \Lambda C_{\rho} \Gamma_{\rho} \Phi_{c}$
- $\rho_1 L = Q_1 \Pi U_1 L + U_2 L + U_3 L + U_4 L + U_5 L + U_6 L + U_$

DYLD' bodsorrandbool

• $\Delta c^* \sigma 4 \Omega' c' \dot{\sigma}^c$ $\Lambda c \dot{\sigma}^c \Omega \sigma^b = b \dot{\sigma}^c \dot{\sigma}^c \Omega^c \dot{\sigma}^c \dot{\sigma}^c$ $\Lambda c \dot{\sigma}^c \Omega \sigma^b = b \dot{\sigma}^c \dot{$

DI TO 15 UCL NC YOSE

• DA^6Q^C $AJ^a = DAC^c = DALCQ^5 JCLC^C$ $A^b = DCC^b = DCC^c = DAC^c = DCCC^C =$

• TRISA - $\frac{1}{2}$ - $\frac{1}{$

ΔοΔ' Δ' Γσ'PJ' a Pr' LLY', Δο) "9' Δλ' Πασ' >

destitter secriter pric

٥٩٥ م∆

שנה שבטיקי שביני אליבשחילה שבאיד

اعده دامه د مد ۱۹ د مد ۱۹ د مد المدامة

 $\Delta \Delta \Delta^{1} \Gamma D \sigma^{1}$ $\Delta \Delta^{1} \Gamma D \sigma^{1} \Gamma D$

 $C^{1}U\sigma = 4^{1}\dot{S}J\Gamma = CLDJD\Gamma C^{1}C^{0}U = 4^{1}\dot{S}J^{1}D\sigma^{0}U = D^{1}\dot{S}^{0}C^{1}CDD^{1}C\sigma^{0}C^{0}U$ $\Lambda\sigma 4^{1}\sigma^{1}b^{1}D\Gamma\sigma^{0}C^{0}\sigma^{0}$ $12 = \alpha\dot{S}^{0} = \Delta \Delta \Delta^{0}b\dot{S}^{0}C^{0}CUD^{0}U$ $12 = \alpha\dot{S}^{0} = \Delta \Delta^{0}D^{0}U$

 $\Delta \Delta^{1} \Gamma D \sigma^{1} U^{0} U^{0$

 4^5 $\frac{1}{3}$ $\frac{1}{3}$

VOLARCAS PEDG DEDG ABCARCAST

Dains Aspona dela Dirigascoas

('סס 'ם (Λα / 4 L' / כת σ 'ם > Λ J' λ Λ L d N Ja Δ b + ' L J Δ % " J 4 'b 'C) ":

 $P^{c} \rightarrow \Delta^{c}$ $C^{c} \leftarrow \Delta^{c} \leftarrow \Delta^{c} \rightarrow \Delta^{c$

- DP'L'SOLO **ILPL ALL TO AUTOPONCE ALL TO AUTOPOLY AUTOPOL
 - 2012-2013- JUL- J, DAY VEAL 9; 9; 9; 41 4) UP- D4;
 - ο $d^c + d\Gamma$ $\Delta c^* \sigma d\sigma^{\S}$ $\Delta c \sigma^* d \Pi^c + \Pi^c \omega J$ Centre d'expertise Marie-Vincent $\Delta c L \Gamma J^c$ $\delta \omega \Delta^c + \Pi c^* \sigma^c$ $\Delta C \sigma^c d \Gamma^c \sigma^c d \Gamma^c \sigma^c$ $\Delta C \sigma^c d \Gamma^c \sigma^c d \Gamma^c \sigma^c d \Gamma^c \sigma^c$
 - o $CLD4_0 LO2_0 DL4_0 LO2_0 LO2_0 DL4_0 LO2_0 DL4_0 LO2_0 DL4_0 LO2_0 DL4_0 LO2_0 DL4_0 LO2_0 LO2_0 LO2_0 DL4_0 LO2_0 L$
 - 0 $P^- \Delta a^2 L^2$ $ACP t^2 L^2$ $B \cap L = 4P t^2$ $A \cap B^- C \cap$

DOC & ULDADO

בפאיר בארכתסירי בבתסירם אניאאי ל>יציארז פרנישי אליכלסיף סי DOC" OF NEDACY, DOCOPLE ADCIPATIONS POSILIBORS عام (DYLto Abt CD عم مل مل عد عد حد .

C'LO VIÈNE DOLCAOITO DOCAOITO NIÈNE PUDDELLE aracocho:

occrL ULb4c	ے مح⊸ل	U->DFDU	2012-2013 Paphibinajna
7% 24% 40 00 16 18 19% C	9c 40 ep	VA.5V.	\$628 000.00
Dachde deac brye	ح کα ک	۵۵-۱۳۰ مرد کرد ۱۳۵۸ مرد کرد	\$491 076.00
d>nsnb dsoc spinbl	Δ D 6 4 Q 2P	VA.5V	\$188 984.00
'Pc%%Jdè% ΔΔ)'9° dσ ^ና ና%l	P&L244028	۷۹٬۶۷ محدد ۲۵۰	\$169 986.00
ጋ ⁵ ት4Λ ⁶ ΔΦ) ⁵ 9° 4σ ⁵ 5 ⁶ L	9c402P	VAC-Fec	\$238 984.00
ነራል ⁶	>6°00°6	DaceLoc NJCFN	\$138 984.00
∇ \wedge d \wedge	904029	۵۵۸۵	\$588 984.00
D°66 40°0°	964029	۵۵۸۵	\$338 984.00
Decue 1000	>850 Je	۵۵۸6	\$88 984.00
/ጋ ^ና ለ፦	ΔΣ ⁶ ₹ Q ⁶	۵۵۷۰	\$38 984.00
5P P	9c402P	۵۵۸۵	\$188 000.00
PUc\U _r			\$3 099 950.00

 $\dot{P}_{\alpha}D_{\beta}^{\beta}D_{\alpha}^{\beta}D_$ 4>1516 - 101 AJGADASCE. 4>1540-51JG BAAG DOCCTG BELGLOC 4) nn rc D + 11-2 22 22 20 20 11.

DALLDAG

2012-2013- Γ , Daccie Dalphadulas bullur construction of the partial partial

 $\Delta \sim LD \cap \Delta^b \cup L \Delta^c \qquad \Delta \sim C^b = \Delta^c \qquad b^c = \Delta^c \qquad \Delta \sim D^c \qquad \Delta \sim D^c \cup D^c = \Delta^c \qquad b \in D^c \leq \Delta^c = \Delta^c \cup D^c \leq \Delta^c = \Delta^c \cup D^c \leq \Delta^c = \Delta$

- $\ref{eq:constraints} \ref{eq:constraints} \re$
- ϽϧͿϲϷͿͶϧͰ ΔϲͼϭϤϭϷʹ, ΔϫϧϞϤΓ, ΛϧϤռ 27 28, 2013: Ϲͼϲͳͼ
 ΔϲͼϭϤϲϷϞͼ
- $CLDJN^{\circ}U$ $\Delta c^{\circ}\sigma d\sigma D^{\circ}$, $d^{\circ}dd\Gamma$, $L^{\circ}P$ 18 19, 2013: $C^{\circ}\sigma T^{\circ}$ $\Delta c^{\circ}\sigma dc D d^{\circ}$ $(\Delta a^{\circ}N)^{\circ}$ $\Delta c\sigma dN^{\circ}d\sigma d\sigma D^{\circ}$

۸۵۰۰-۵۸۴۹۲-کدأدے

 $\Lambda 45^{\circ}\sigma^{\circ}$ $\Lambda 0.00^{\circ}\sigma^{\circ}$ $\Lambda 0.00^{\circ}\sigma^$

- \dot{q}_{b} \dot{q}_{c} \dot{q}_{c

عمددلو ۱۹۷۶ ۱۹۷۹ مرد ۱۹۷۸ مرد ۱۹۷۹ مرد الرام

 $\lambda_{\Delta} = \lambda_{\Delta} = \lambda_{\Delta$

 0° Let 0° 0°

2013-2014

 9 9

DODE SODA STRAFFER ASLC NORTASASL

JETASTC SALUSPEAC

 $\Delta \Delta \Delta^c$ % $\Delta \Delta^m$ $\Gamma \ell^d$ ' $\sigma = \epsilon \Delta^b \ell^c$ $\Lambda \Delta^c \ell^d$ ' $\Lambda^c \ell^$

- t° - c° - b° - $b^$
- δους Γ΄ ο Δα σε το Luberculosis >ς σα διοι μου δα σε τα τρό σο δους τα δεί σε τα δ
- P_{α} $P_$
- $4^c b^i r^n C \Delta^c \wedge b^n C^i \wedge C^i + b^n C^i \wedge C^i + b^n C^i \wedge C^i \wedge$

 Λ_{α} Λ_{α

1° - DYDENLA 35° 74' 35°

RR

"همک(دعو المهدر المهرورة)

 $6 \Delta^{\infty} \Gamma d^{5} \sigma 1^{5} \Omega^{5} \Delta \sigma^{5} \Lambda a^{2} d^{5} \sigma^{5} \Lambda^{4} a^{2} c^{5} J \Pi b^{5} d^{5} \sigma^{5}$ $6 L \sigma^{5} S^{2} c^{5} \Pi^{5} C^{7} C^{7} C^{7} \Omega^{5} C^{5} \Lambda^{5} C^{5} C^{5} \Omega^{5} C^{7} C^{7} \Omega^{5} C^{5} \Omega^{5} C^{5} \Omega^{5} C^{5} \Omega^{5} C^{5} \Omega^{5} \Omega^{5} C^{5} \Omega^{5} \Omega^$

 $\Delta b < 3^{\circ} + 3^{\circ}$

- Δ_{a} L^c Δ_{a} L^c ($CLD4^{5}$) $ID^{5}U^{c}$)

 C'LO 4'\$JI, CT^{c} Δ_{a} L^c ($B^{5}\Gamma^{5}V^{2}A^{5}$, CVD^{5}), DTD^{5} , $A^{5}L^{2}$ Δ_{a} L^c Δ_{a}

两为

- 4"∀ησ-4"(α")Γ'U-Jησ+ 9"-)ΔJησ+ 4"Λ(?ηδ+σ*
 ΔΔ΄ βΔΔ"ΓΥ4"σε πλ δι Λα Α'4βηβο βΕΡΥΕ" Δα Ε-Ε Ε Ε-δινσ+ ΠΓΡνσ+

 β')ηΓ-J 6ηλ Δα Ε-Ε 6 β Ε δι 6 ηλ Δε σνο στο δινο διθρισ διθρισ διβρισ διβρι
- Δε^{*}σ4Λ^{*}σ Λαλ4^{*}(Ολ^{*} λ^{*}5^{*}r'LJΠ^{*}5 Δ^{*}γ'j^{*}σθ^{*} ΛοβΛσ^{*}Γ^{*} (ΛΟλ^{*} 4^{*})Δσ^{*}/ΛΟ^{*}Γ)^{*} 4^{*})Δσ^{*})
 4^{*}51Γ ^{*}5^{*}δ^{*}Γ^{*})Γ, ΛΟλ^{*} 4^{*})Δσ^{*}/ΛΟ^{*}Γ)^{*} 4^{*})Δσ^{*}-Γ Λαλ4^{*}σ^{*} 4)^{*}(Οραβλ^{*} Λας^{*}σ Δε^{*}σ4Λα^{*}υ)σς >^{*}βσ^{*}δ^{*}δ^{*})ως Πβ^{*}γ) Λ(δ^{*}ε^{*} [†]σ^{*}Lα^{*}Γο Δε^{*}σ4Λ^{*}σ ([†]δ[†]δγ) Δρ^{*}Lδγ^{*}Λ^{*} Δε^{*}σ4Λ^{*}Γο (††δγ) Βηεἰς^{*}γι^{*} Δε^{*}σ4Λ^{*}Γο (††δγ) Δο^{*}Π[†]σ^{*}δγ)
 40^{*}σ4Λ^{*} 335-υ Δγ^{*}Γ) Δε βε Δλ^{*}ς Εη Lσαβλ^{*}β^{*}βηγρ^{*}ς (††Λ^{*}β^{*}βηγρ^{*}ς (††Λ^{*}β^{*}β) Δο^{*}Π[†]γ)ος

- $348L601^{\dagger}J0\sigma^{\bullet}$ $34540J066^{\dagger}$ $342J064\sigma^{\bullet}$ $3461^{\dagger}J0\sigma^{\bullet}$ $346L601^{\dagger}J0\sigma^{\bullet}$ $346L601^{\dagger}J0\sigma^{\bullet}$
- 2) $\underline{\text{ac-}}\Gamma$ $\underline{\text{Ac-}}^{\text{to}}$ $\underline{\text{Ac-}^{\text{to}}}$ $\underline{\text{Ac-}$

 Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc°) Δc° (Δc°) Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) Δc°) Δc° (Δc°) $\Delta c^$

- Δα-ι Λινινικ Δα-ο (Δο-ν-λινη Δυ-ν-λινη Δυ-ν-λινη

- Δc°σ4Λ'L 4÷ J4Λλ'L: νc′νν ∀Λνα΄)c
 Δc°σ4Λ'Γ 4÷ J4c)4°LC 6Lλ'6°σ4λ°6°Cc)4°CC Λ4¬° 4ΥΓσ⁶
 ἡε΄΄6'6 λα 4'6'Cσ⁶ρ' Δθ΄ ε Π(Σργα)c Δε' Δνερίνες
 ΔΓλ[∞] JΠ°C Σργα δρία Δσ⁶σ4Λ' Ε 4 σ⁶ J4Λ⁶ε: νε΄ να 4Λα 5)c⁶
 Λαν 47 Π΄ γ΄ Δα Σργα δρία Δο΄ β⁶ Jεγα δρία δο βρα δρία δρία δο βρα δρία δρία δο βρα δρία δρία δο βρα δρ

 6 DDC- 6 L 6 L 6 L 6 L 6 C 6 DPPPAPHODE ALTO 6 DDC- 6 DC- 6 LA 6 DPPDC ALTO 6 DDC- 6 DC- 6 DPPC- 6 DDC- 6 DPC- 6

- σΑΛ΄σΛ΄σ, Δε'σΛΛ΄σ να'ΥΛσ΄ αν'ΥΛσ΄ αν'ΥΛσ΄ σα «ΥΛΟ΄ Ι΄ βαΔ΄ ΓΥΛΟ΄ Ισ΄ σο δα δ΄ ΓΥΛΟ΄ Γσ΄ σο δα δ΄ ΓΥΛΟ΄ Γσ΄ σο δα δ΄ ΓΑΛ΄ Γσο δα δ΄ Γδο δ΄ Γσο δα δ΄ Γρο δο δ΄ Γσο δα δ΄ Γσο

 $\Delta^{c} r^{i} \sigma^{j} e^{-b} \ell^{j} e^{-b} = \Delta^{\infty} r^{j} r^{j} e^{-b} = \Delta^{c} \ell^{j} e^{-b} e^{b} e^{-b} e^{-b} e^{-b} e^{-b} e^{-b} e^{-b} e^{-b} e^{-b} e^{-b}$

- Δαςςίσ Λανα(Cracin bollic Δίτος -Λανα(Λίσος νονας νονας
- 5) $aDciad^*L'$ $ba\Delta^*L'd^*cJ'$ LcJ' $d^*P'CDc^*L'$, $\Delta \dot{L}^{\circ}$, $LcLcD^{\circ}La^{\circ}$ $\Delta \dot{L}^{\circ}$ $\Delta \dot{L}^$

- Δ="σ4λ" שלל"ול שר ב" σ4λδ" > Λαν" Π שר " σ δ Λιλν σ δ Γ Γ Γ γ σ δ Λιλν σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ Γ γ σ δ Γ "β_Δ" Γ' 19 " Δ = " σ 4 Λ & " Π / σ ' J' Λ α / 9 (D σ » Γ ~ Δ » L / σ « VOLG STANGE TO SELECT TO APPEAL OF PAULICE PURP 2676-2001-2041408 2402076 / Dairing Dairing Dairing Colomits Δ="-40" ליבי שינלינלירים ב"-44" > Λανιηνισο 40 / 100 $\Lambda \sigma \Phi^{\dagger} \sigma^{\dagger} b^{\dagger} A \Gamma^{\dagger}$ ()PYLN'\PDN σ^{\dagger} (d'\PN'\PN'\PN', a\P\\^\alpha^\al COSDECTEDANDILEC, original DobbedasDILEC, DeDARJeanerde Natorio, مامه (عدد العدم المعدم المرد المعرب المرد المعرب المرد العدم المرد 2012-2013-F 80%-0 4F/054L-5 AC-64A5 4DC-7CD4-LC 4CD745-47/N Δέβηγελιατιρίσης Λέατημος βοδωριτοίος σταΓητίσο $\Lambda D T^{6} G^{6} G^{6}$. CL⁶44 $\Lambda \Delta T^{6} C D T^{6} G^{6}$ $\dot{P} \Delta D T^{6} G^{6} G^{6}$ $\dot{T} \Delta D T^{6} G^{6}$ βροσ∞ργος Λίανος Αγωρώρου ραςς Ερεωρίας Λίανος. ζερας... Natabulias assistanopile affile bajlasses $40c^{2}ha^{3}\ln^{2}ha^{3}\ln^{2}ha^{2$ معه ۱۵۵ مرص ۱۹۲۸ مع اله مع اله ۱۹۲۸ مع ۱۹۲۹ مع ۱۹۲۹ مع ۱۹۲۸ مع Nattichto, Clias Abtitabtito Daiotifus Daiotifus Papailos פשסידנשים אליכשסירים.
- $\mathbf{a} \mathbf{a} \mathbf{A}^t \mathbf{f} \mathbf{\sigma} \mathbf{c}^t \mathbf{f} \mathbf{d} \mathbf{f}^t \mathbf{f}^t \mathbf{f} \mathbf{f}^t \mathbf{f}^$

ADA' BDA" PLAGONI BDAC SLILSIC BLOCK'S'

2012 4) Ω^{c} Δ_{c} Δ_{c

 6 6

Vadias Vardicosa Ant DVAJelus gealpalens delege Popular

PQDCS- $d^{\circ} \triangle^{\circ} \triangle A d^{\circ} \Gamma \Pi J^{\circ} d^{\circ} = d^{\circ} + L^{\circ} \Gamma b = d^{\circ} L^{\circ} L^{\circ} + L^{\circ} L^{\circ}$

Aar'Ar babarry ocas"

1'aσ' 1'ntσ' (Λ15'5-"σ') P)""LTσ' 1LL'nttσ'3"+" 60081""11"
Λα1" Γ)n't+"

2012 $4^5\dot{1}^5\dot{1}_6$, 141 $5^2\dot{1}^5\dot{1}^5\dot{1}^5$ 141 141 145

Naton - bod altreacte Nator Dysode Nators

Λολενι-1000-110, νογοιρος ρεγιο >÷1, νογοιρος

 $\Lambda D \dot{\ell}^{\dagger} L^{\bullet}\dot{l}^{\circ}$ 'bbhllta', λ° and and another than $\Lambda L^{\circ} L^{\bullet}$ 'bhologo bloom and another than $\Lambda L^{\circ} L^{\bullet}$ 'bhologo bloom and another than $\Lambda L^{\circ} L^{\bullet}$ 'bhologo bloom and the second bloom and the second bloom and the second and the second bloom and the

 $L^{2}\Delta\sigma^{4}$ $\Lambda_{\alpha}/4^{\alpha}CP_{\alpha}$ $\Delta^{2}L_{\alpha}^{$

Tuberculosis > () 20 56

 λ^{c} = λ^{c} $\lambda^$

100dc 2000000 jealcubbic

DAY VOLA DED LLAD OF LOUCE VOLA VOLA COED DE CALENDE Narchac:

- 1)= חכל הלשיע ליש אל היאלה שאקף לי שנר לבשירים אבר אירף השירים אבר אירף שירישי CLICC 1° 5 1 À S S b L C A S I ° 5.
- DOC" [-NEADOCTO 1" OTTO D'SS'DDJ" O "F" CA-MRSA (community-acquired Dacil Narde Peders.

DODG VITURALE VOLAGEL > VOLAGENET

JETACLE SALLS DEPLACE

7109 Jacpan

$\Delta^{\varsigma}\sigma \ell^{\varsigma} \ell^{\prime}\sigma^{\varsigma_{b}}$

ሳነጎታ $^{\circ}$ ነ ላነጎታ $^{\circ}$ ለታና ለታና ለታና የ የነርና 102-ህበና ታና ለታና ነለታና ርላን የተፈናር

 ζ° and ζ° ζ°

 Λ_{α} Λ_{α

 40^{6} Jr 2013^{-} Γ, 0^{8} UC 0^{-6} C 0^{6} 0^{6} C 0^{6} C0

ΔΦΦc UJ454D,P.cc

 $Δ^{V}\Gamma$ Λαλάδη $Λ^{C}$ Λυτηρονδη $Λ^{C}$ $Λ^{C}$

rsachiberda 110 Ltde Aardlehe

 ℓ° δ° δ°

TO THE

 Δ_{Δ} UN CC DAGENC DELACCTO. Δ UN CCO BAGE DELCCO B

Da (d'\Dn'r+% %'r' Pab4' 4)Δ°aDn(D°σL%iC aa-°σ 4)σ Λ(4\n) 4\frac{1}{3}\rangle \rangle \rangle

موده	PaP4° 4)Δ°aA÷°	Pad4 405CA+c	
المحمه	\$50,135	\$47,760.70	
م< ک _و	\$30,439	\$15,000.00	
Δ	\$108,328	\$109,450.00	
4λ4ςΔ	\$40,287	\$42,160.00	
Pol.547-640.	\$68,936	\$47,000.00	
Polsh1400	\$52,821	\$89,430.50	
Palisher	\$50,135	\$28,350.00	
9.400	\$123,548	\$198,631.82	
9,444\	\$57,297	\$35,382.31	
>Λ'σ) [%]	\$110,119	\$91,580.00	
.94.C.	\$38,496	\$29,965.73	
5 ° 3 Δ°	\$92,213	\$173,612.76	
C407#	\$33,125	\$0.00	
DFD54	\$39,392	\$5,000.00	
νση _{4ε} φ _ε Φσ⊂⊂ΓΦ4 _ε ρήφη	\$35,000	\$52,737.00	
PUらい.	\$930,271	\$966,060.82	

(d'\) (d'\)

DODG VITTABLE VOTAGENES VOTAGEN

- · Δ/L56679556:
- 620 CLAZALUCDO LC VA-C:
- · 45862 9 170 UC+6:
- · 1450' 17'(-40%L:
- · 5P)58 CD 2° a & Dr4÷5.

'δωΔ[∞]Γ۲4'σς ~σ'] 60°Lic

 $\label{eq:control_of_control_of_control} $$ ba^{^n} C d^n = 0.$$ $$ $$ ba^{^n} C d^n = 0.$$ $$ ba^{^$

- ۸)(Δ) عادر ک عدد ک
- $\Delta = \frac{1}{2} \frac{1}{2$

- Δα-^LΓρσ⁶)\'Π'ΑΡΔη⁶ αρ-LΔη⁶ (4σ⁶ ΔΔ'-ασ'σ⁶
 ⁶ Δ⁶ (14974)⁶ αρσ Δ Δ⁶ άβ⁶:
- ۸٥٬۵۲۲ مودر ۱۵۲۸ مودر ۱۵۲۸ مود خور کورون کورون کورون کورون کورون نی در نوع کورون کورون

 Δ = α =

$\Delta_{\mathcal{D}})^{q_c}$ $\Lambda_{\mathcal{D}}^{c}(\mathcal{D}_{\sigma})^{r_c}\sigma^{s}$ $\mathcal{D}^{s}(\mathcal{D}_{\sigma})^{r_c}\sigma^{s}$

 $\Delta = -c^{1}$ $\Delta = 0^{1}$ $\Delta =$

Decrochost NJSTA6

ንሌሀላታሁኔና ኃላ**ረ**ህላቃሁልቦ

 a_{Δ} b_{Δ} c_{Δ} b_{Δ} $b_{$

2012-2013-۲ ۵۹۹ ۸۶ و د د ۵٬۲۵۷

FAR

- P[∞]JLΓγρνσ⁶ '6ργν'σ⁶ 6ννγρσ⁶Γ⁶, Δ6νηΓ⁶νΓ⁶ CL⁶Γ⁶ δ⁶σσδ⁶,
 σΛα⁶νσα⁶υντ⁶ PPPσ² α⁶ 12-Γ⁶ 18-Δ⁶ Δδ⁶ηνδ⁶νΓ⁶ α⁶Γ⁶ ναγρυγ⁶Ω Δ
 Δα⁶νσΓ U⁶σα ναγρσ⁶ν⁶υς Κ⁶σοργα⁶υρηΛσ⁶Γ⁶ δ⁶νυρσγρη⁶ α⁶α⁶
- $\Delta C \Gamma \Delta^{-1} \Gamma \Omega^{-1} \Gamma \Omega^$
- 64790 \ 600 \
- $\Delta C = \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{2} \sum_{k=0}^$
- $\Delta \sigma^{\prime} \Gamma \Delta \sigma^{\prime} \Gamma \sigma^{\prime}$
- Φρος / σε προς Γ Λυς λαι Γ Σουλος Παρος Δούσο Λαιδοπός Γους Θουλος Θυν, Φρολος Θουλος Θουλος Απολος Θουλος Θουλος Απολος Θουλος Απολος Θουλος Απολος Θουλος Απολος Απολος

 Φ^{c} Φ^{c

PaDy of NAD bccapso

_accle) 57 (dVL) 566(10)

عدد أح احد كأد الأد كاد كاركار كاد الماركار الدك الماركار الدكاري

2012-2013 4 JCD4 C	\$ 1-4
ULD4Qc	
۵ ف⊂۲۸۰ ۱۰ و ۱۸۰	60.0
Dole Je (V) 10-4VP	43.6
ωαΛ° Δ ω ν σ ν ο ν ο ν ο ν ο ν ο ν ο ν ο ν ο ν ο	0.775
Λζ,ΕΑ <u></u> Ος Σ,Γ,Ρου,Θως υσης Τος Σηγος Σηγος Τος Σηγος Σηγος Τος Σηγος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Σηγος Τος Σηγος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Σηγος Τος Σηγος Τος Σηγος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος Τος Σηγος	20.5
44.0 Lc	7.6
σσε, α ULD4Qc	
DV086 D. 7.91006	2.4
140hc	3.2
۱۵۱۵ کومون کوموره ۲۵ کوموره کوره	5.9
רטילטי קיזכסל _נ	143.2

عمد عمدداد کعدمی کعدمی کادوری کادوری کادوری کادوری

שבילה י פבשלים שאימרוער בירשב הרשלר ל

 5^{5} 5^{5

两市

USERTE DELIGION D'SERCENTES, APPISANTS ÁSSECTES DEL ASSE AVET DISSECTES DEL ASSECTE DE LA SECTE DEL SECTE DE LA SECTE DEL SECTE DE LA SECTE DE LA SECTE DE LA SECTE DE LA SECTE DEL SECTE DE LA SECTE DEL SECTE DE LA SECTE DEL SECTE DE LA SECTE DE LA SECTION DEL SECTION D

חירולי לב שליטחירי

 $\Delta \Delta \Lambda^{\circ}$ $\Delta \Delta C = L^{\circ}$ $\Delta \Delta C = L^{\circ}$ $\Delta \Delta C = L^{\circ}$ $\Delta C = L^{$

לבטישים באל כאל פסרבאם שבער איני פיסער משימורלבירים משינסרים לאנדער פיטיבסר אליני פיסער משינסרים לאנדער פיטיבסר

Darenos bal		\$	
DOC)90 ACC166365 402C7206666		678	190
1366160619c	1	153	893
40971400 Dacoo blos	2	173	412
DC2(1 L b C l U) L d D (D C p c b D D J U D C (D D j e)		351	762
DYLSPCYDS JE OLDO DALOSYYLDO ADECTOSO		870	719
acsist on itandibiosper nataios		296	197
Drledin-rucheric gribyrbuchin		99	950
בפר) ללים בלרת פיר אפליחלים לללפל ארלף חילף חיל		115	000
$\Delta c^* \sigma d_{\Lambda} d^{\varsigma} \Pi C D^{\varsigma} b^{\varsigma} C J \Delta \dot{\sigma}^{\varsigma} d \sigma^{\varsigma} \Gamma_{\Lambda} C \Gamma_{\Delta}^{\varsigma}$		675	530
σις ζασθ ρσιος DPDCOθlo		502	872
Decre belogbedo			
۵د أح ۱۱۹۶ ۱۹۶۰ ۱۹۶۰ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸ ۱۹۶۸		45	000
PUc\U, ∇P4¿\\PD]Ųc ĻσD4c	\$6	962	525

VAULTY VOINTLY

D° 25 050

 $\Delta \Delta^{1}\Gamma$ $\Delta \Delta^{2}\Gamma \Delta^{3}\delta^{3}$ $\delta L\Gamma \delta^{3}\delta L \delta^{3}$ $\delta \Gamma \delta^{3}$ $\delta \Delta^{3}L \delta \delta^{3}$ $\delta \Delta^{3}L \delta^{3}$ $\delta \Delta^{3}L \delta^{3}L \delta^{3}$ $\delta \Delta^{3}L \delta^{3}L$

#	مخ ۵ ح م ا	# \$ 50 0°
1	> \(\sigma \)^6	20
2	9.442V,	4
3	\`->\\`	4
4	9.540	28
5	d=4050, Dant Daten76dc	4
6	$\Delta a^{5} + \Delta^{5}$, $\Delta \dot{a} + C \Delta^{5}$ $\Delta a^{5} + \Delta^{5} + \Delta^{5}$ $\Delta a^{5} + \Delta^{5} + \Delta^$	8
7	$\Phi \subset P_{\ell}$ $(\nabla_{\mathcal{C}} L_{\mathcal{C}} U \mathcal{C} \varphi_{\ell})$	2
	PUcSUr	70

- $D^0 U^0 \Gamma$ $D^0 C^0 V^0$ $V^0 C^0$ V^0 $V^$
- CL'YL ALYG'CD + 4P' > Dr L D'(%) \$4,500,000-%) L D'D'; Ab L'(DY PL D') D' L D' D'; Ab L'(DY D')
- Δώς της διαστης, σιως τους τους διαστορούς τους τους διαστηρούς τους τους διαστηρούς τους διαστηρούς τους διαστηρούς τους συρούς διαστηρούς τους διαστηρούς τους συρούς συρούς συρούς τους συρούς συ

۱۱۵۱ ۱۰۶۸ مردر ۱۱۵۶۸ محرار ۱۱۵۶۸ مرد ۱۱۵۶۸ مردر ۱۱۵۹۸ مردر ۱۱۵۹۸

- $\Delta \Delta^{1}\Gamma$ $\Delta \Delta^{2}$ Δ^{3} Δ^{4} Δ^{5} Δ^{5}
- Δ645ΠΓς/Γ° (L°Γ° 4°σ4Ű ΔαΑΓ, Λ3°αταβς)
 ΛαταβηΓςταβςασήλασβς(Σ)ς ΛΠ3°ασήλασβγης ΣΡΥΕΙΠίλος ΦΕΙΒΡΑΘΕΑ
 Λαταβρητορίας Π1Γαβραβς(Σ)
 Λαταβρητορίας
 Λα
- $\Delta \alpha \Lambda^{L}\Gamma \Delta \Delta C \alpha \Lambda^{b} d\sigma C L \Gamma^{b} \sigma \Delta \Delta^{b} \sigma$, $\Delta \Gamma C \sigma \Delta^{b} \Delta^{c} \sigma$, $\Delta \Gamma C \sigma \Delta^{c} \sigma \Delta^{c} \sigma$
- Λ° L/ Δ° Γ D7 Δ° C° 844 Λ° 446 Γ D666 L° 676 L° 676 L° 676 L° 766 L° 76 L° 766 L° 766 L° 76 L° 76 L° 76 L° 76 L° 76 L° 76 L° 76

Aarche LA

בפעיר ע שוריעי	455JF 7C7CÞ	4531 P35-41
Nading Price Price Description	17	17
Λανιής βιλς, δεύς Δοδαδίσ-Λανιές	1	1
۸ع۲٬ أ، ۵ عدل ۲۵ ۱۲ مرالخ	49	49
$\Lambda \alpha \lambda^{c} \dot{\Omega}^{c}$, $\Omega^{c} \dot{\Delta}^{c} \Delta \gamma^{c} \lambda^{c} U \sigma^{c} \Lambda \alpha \lambda^{c} U \dot{\sigma}^{c}$	8	2
βρίζη, σσες ραγενον	75	69
0° ⊐ ~ 4° Δ • Δ ° Ο 2 ° Ο 2 ° Ο 4		
۸مراد الهدر کو عدد الام کار اله کار اله کار اله کار	1	2
Λαλιής blàs, δε غن Δοδαδισ-Λαλιές	16	20
۸ع۲، ن، ۵ عدز۲۵۱۲۰-۸عدرد	13	0
Λ ه $\Lambda^{c}\dot{\Lambda}^{c}$, $\Lambda^{c}\dot{\Lambda}^{c}$ $\Lambda^{c}\dot{\Lambda}^{c}$ $\Lambda^{c}\dot{\Lambda}^{c}$	13	20
60°20°, 0° שת סיל בבל של ליש Δδ°02δ°	43	42

 Λ_{α} Λ_{α

 6 6

שלילרלי לייףליל בעל בער לייףליל בעלי בעלי

24PL%NrJnc

DΛ'624° '62Δ±α4'σ2° <5276'6'σ4, DΛ'9° 5>6760σ6°

 $\Delta CDAU^{c}$ ΔC

 $6 \Delta C \sim C C^{\circ} = C^{\circ} = C C^{\circ} = C^{\circ$

שליחלסחבתסישי-אבלחשי בנדלי67חשי ליסלנוח

(1) Λα 2012-Γ. dV' [Δ 2/c ασ'] Δ 2 c ασ'] >) "b("Ad" 4) c "N' c P4" blrbbJnor 6 (Cd or 401/Lnng/Jn 2012-021). De Vil 4)UPblde Latar Lot 196 LC Not 4 CDJL tales Not of DJL tales 24'nronero 14tho: paccini paccini Attaciipolto SINDLAPITED ASPLED TO ASPICE TO DE CONTRACTOR ASPORTATION ASPROPRIATE Lobbana dvir Darenois Doenoisa Dibcinilas Airiconlidiars. שליחלסחבתסישישיה ברואיללחם ליסלנשחשי יליסלנשחשי ילתנסאחשישי JYDLJND4°Ldob d'YPd'YLb', bacba' AJ'YLorrnj' d'odybaby, Dan'I 'baCD5NJ' Δ>٢-aσ'J' 2013-2016-J' ('¬٢LDN'La', 4'L> 4De'٢σ'Je'bl/σ' Λ>~ρ·γυιτοίο 11/ρ σ, γρομή (ΓΓιο), (ΓΓιο φραγία 9/1 Parcy 1) 3/3/01/2~~004/01/C 1/90468/41/4 1/2/0 CL) C σ°10/6/6/3/3/C CL) Natha V. The Volde Destable Destable

PULLA DELEVERITE CLACAL

saccio Naddicodo beribioso d'enen, sindonenois-naine

 $\Delta = -10^{\circ}$ $\Delta = -10^{\circ}$

Darchicolde Narincros 180400 Accessio Narasao

C-4- 17

2412-2013-F A274°CD 24"J4)A6"

ברבשלינלסי- בתרשר סי הרושליים בר הששישי אלת שישישי בה של אלת שישישי

دا م ۱۵۱۵ م ۱۵۱ م ۱۵۱۵ م ۱۵۱ م ۱۵۱۵ م ۱۵۱ م ۱۵۱۵ م ۱۵۱ م ۱۵۱۵ م ۱۵۱۵ م ۱۵۱۵ م ۱۵۱۵ م ۱۵۱۵ م ۱۵۱۵ م ۱۵۱ م ۱۵۱۵ م ۱۵۱ م ۱۵ م

שלי Δ=" σ σ σ σ δ λ λ ρ δ δ σ δ L

 i^* ανδηρος i^* i^* ανδηρική i^* αν i^* ανδική i^* ανδική

Dog Prilabeil Varbiluctes

2012- Γ , Γ' ?" $\Delta \subset \sigma'$ \$\Gamma\delta\de

2013-Γ, $\Delta c^* \sigma 4 \sigma^6 d^c \Lambda^5 \Lambda^6 V \sigma^6 \delta^6 V L^6 V L^6 (L^5 2 \Lambda^5 L^6 \Lambda^6 \Lambda^6 \Delta^6 V^6 \Lambda^6 \Lambda^6 V L^6 V L^6$

שם ישייטילול שי אשלכת שיר אשליחלי שחשלעה ארחזחיי

Nationicises

75°- < 0°+ 0 0°4 2013-2014-F

 $Λαλ4^{\varsigma}(P\mathring{\Gamma}^{\varsigma})Δ^{\varsigma}$ $4λ4\mathring{J}^{\varsigma})σ^{\varsigma}$, $σασσ\tilde{L}\dot{σ}σ^{\varsigma}L4^{\varsigma}$ $Λαλ^{\varsigma}Ωσλσ^{\varsigma}L4^{\varsigma}L4σ^{\varsigma}$ $Λα^{\varsigma}G^{\varsigma}Γ^{\varsigma}$ $Λαλ4^{\varsigma}ΛΓ$ $Λαλ^{\varsigma}\mathring{\Gamma}^{\varsigma}$ $Λαλ4^{\varsigma}ΛΓ$ $Λαλ^{\varsigma}\mathring{\Gamma}^{\varsigma}$ $Λαλ4^{\varsigma}ΛΓ$ $Λαλ^{\varsigma}\mathring{\Gamma}^{\varsigma}$ $Λαλ4^{\varsigma}ΛΓ$ $Λαλ^{\varsigma}\mathring{\Gamma}^{\varsigma}$ $Λαλ^{\varsigma}\mathring{\Gamma}^{$

DOADS PCCOS NJSTOSJS NJSTAG

J674CUSDC DePoscedo

 $PAJY'>^{b}U = \Delta^{c}YJ^{b} = A^{c}VJ^{b} = \Delta^{c}YJ^{b} = \Delta^{c}YJ^{c}U^{c}YPAP'$ $PADY=APV = \Delta^{c}YJ^{b}U^{c}U^{c}$

 $\Lambda J^{c} \Lambda L \sigma^{c} \Lambda \sigma^{d} \sigma^{b} \Delta^{b} J d C^{c} J^{c} \qquad ^{p} \Gamma^{c} 2 \sigma^{c} \Gamma^{b} \quad d D C^{c} L^{d} D \Lambda^{b} D^{c} \Delta^{c} L^{d} D \Lambda^{c} D$

 $\dot{\rho}_{\alpha}$ δ γ $\dot{\rho$

 $\Lambda\Lambda^5b^5\sigma^5\sigma$ $\alpha d^5\dot{\Gamma}JL^5b$ $\Delta \Delta^1\Gamma$ $\Delta \Delta^2\Gamma \Delta^5\Gamma^5$ $\Delta \Delta^2\Gamma \Delta^5\Gamma^5$ $\Delta^3\Gamma^5\Delta^5$ $\Delta^3\Gamma^5\Delta^5$ $\Delta^3\Gamma^5\Delta^5$ $\Delta^3\Gamma^5\Delta^5$

2PL 45

רי של הלאר לי הלארליל לבתא של אבל לינף הינ

 5^{6} 6^{6

 $\frac{1}{2}$ $\frac{1}$

 $\dot{\theta}$ Φ > θ > θ \ θ \

 \dot{q}° $\sigma q \Delta c q^{\circ} L L + \sigma^{\circ} Q \Delta c C L + \sigma^{\circ} L^{\circ} \Delta J C L + \sigma^{\circ} L^{\circ} L^{$

Δ^{L} Δ^{L

 $\Delta^L L^2 D D C^2 \Delta^C / \Delta^L L^2 D D C^2 D C^2 \Delta^C C \Delta^$

Darrier Aspisonersile Terpe Dayo, Daspar

 $\Delta A^{(c)}$ $\Delta A^$

 $\Delta \Gamma \wedge \Delta \Gamma = \Delta \Gamma \wedge \Delta \Gamma$

∧J°۲۸Þ° ⊃ዓ፟Ⴑዔዮ° 2013-2014

- $\Delta^{C}\Gamma^{b}$ Levit Δ^{b} Are interest and the second second section of the second second
- $aDcLa^c$) $ADLbDC^cd^b$ $LcU^iac^bUdc^c$ Pa^bda $AA^bP^aaL^bUC$ $\Delta^cL^bDDc^c/\Delta^cL^bDC^bb^bC^aC$ $\Delta^adcabc^bd^c$ $AC^cdD^bC^ac$.

Vactorate Purtolli.

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SUMMARY FINANCIAL REPORT MARCH 31, 2013

TABLE OF CONTENTS

SYNOPSIS REVIEW	
FINANCIAL STATEMENTS	
INUKTITUT	
ENGLISH	
FRENCH	

NUNAVIK REGIONAL BOARD OF HEALTH AND SOCIAL SERVICES SYNOPSIS REVIEW MARCH 31, 2013

TABLE OF CONTENTS

	Pa
COMBINED CASH POSITION	
OPERATING FUND	
FUND BALANCE	***************************************
SOURCES OF REVENUE FOR THE YEAR	
ASSIGNED FUND	
FUND BALANCE	
SOURCES OF REVENUE FOR THE YEAR	

COMBINED CASH POSITION

OPERATING FUND - FUND BALANCE

OPERATING FUND - SOURCES OF REVENUE FOR THE YEAR

ASSIGNED FUND - FUND BALANCE

ASSIGNED FUND - SOURCES OF REVENUE FOR THE YEAR

□Aboriginal Affairs and Northern Development Canada (0.3%)

■Health and Social Services (84.6%)

□C.S.S.T. (0.9%)

⊞Health Canada (12.8%)

BHealth Centres contributions (0.6%)

■Other (0.8%)

 ρα >> - κ. Ι΄
 Δ -> / - κ. σ°Γ
 Λ Ι΄ > δ° ως
 Θ Ν Ι > δ° Γ

 Ε΄
 λ 31, 2013
 λ 2013
 λ 31, 2013

A acope

	L
PUPPF4c PUTUPLc	
₽ሀቃቃቦፋሪ ሳላሪታርኒዲቃሴር የሀገሀቃሴሪ ሲኖ [™] ሮዕላናገገሀቃሴሪ (ሳሴ [™] (ሳሴ [™] (ሳሴ [™] (ሳሴ [™] (ሰሴ [™] (ሰև [™] (ሰև)) (ሰև [™]	AND COMMENS AND A STREET AND A
ት∝⊳ኑ⊌ሰ፡ ት∝⊳ኑነጋ∂ሰ፡ ት∝⊳ኑ⊌ሰ፡ Δ∿Րነናበ፡۲Jሰ፡ Ε~ԵՆԵՐ ԵՈՒՆԵՐ ԵՈՒՆԵՐ ԵՈՒՆԵՐ ΕΠՒՆԵՐ ΕΠՒՆԵՐ ΕΠՒՆԵՐ ΕΠՒ	
PU_e_olcC de_Collingle	OPER DY SEPT SEPT SO DE SEPT SO DE SERVES DE S
ት ወን አብሀር	***************************************
ዮ⊾ፆኑህበ ^ւ Lሒ ^ና ԵՈ°σ∿Ⴑ	1
PU, e, L.C 4, CCD, L7U, L.c	
6 P P P P C J P C	***************************************
የሀ ₋ ዲያ 4٩ዹ,ጋL ፞፞ዾ፞፞፞፞፟ዾዾኯ, <mark>የ</mark> ‹ሀኣባЏ‹ ۷ኦ,٩ሀ ⁻ ሪ	1
PU. a. CDLFIU.	
ף של הרשלור של בר 10 לר 10 לה של הרא של הרא של הרא להר של הרא של הרא להרא של הרא להרא של הרא להרא להרא להרא לה	***************************************

ΔαΛ° Δασος Ι΄ Δασος Ι΄ Λασος Ι΄ Λασος Ι΄ Λασος Ι΄ Λασος Ι΄ Λασος Ι΄ Νασος Ι΄ Να

	2013	2012
	S	\$
VÞPqŲc		
Δ °r°5 Ω ° $^{\prime}$ J Ω $^{\circ}$ C $^{\prime}$	1,633,408	3,806,041
ጋ ራ የ <mark>የ</mark> የሳር Δበሒላትር	62,169,425	37,549,856
	63,802,833	41,355,897
۹۶-۹ ^c ۲ ^c		
6€D749VrLc dcCJdc	6,923,290	5,727,21
607,P2U505Uc	55,826,208	33,260,40
4P- "4" 4P- "4C " 1 / L + " -	41,918,446	23,709,013
P.UCDLT4c bob, AU.	450,000	488,19
ነጋበና	38,429,365	35,175,90
	143,547,309	98,360,723
b∩°σ%l PαργάηιLἰς (b∩°σ%l 4Pεςής)	(79,744,476)	(57,004,826
ት⊾ፆኑፆ%%Րጋ ^c ∧ፆჼ	-q Ų c	
<u></u> የፌፆኑሤሰሩ	12,972,732	12,398,330
100. P414c	71,491,306	44,429,885
	84,464,038	56,828,215
∳ ^ፚ ዾኯ _ዸ ፞፞፞፞ <mark></mark> ፟ኯ፞ፘ ፟፟፟ዾፚኯኯፙ ፞	-%6	
P~15440 PU-2-1	4,719,562	(176,611
PU&*C5&, V7c5/j.		
. 60%%		

	2013	2012
	S	\$
42%°C)°C°C°C°C°C°C°C°C°C°C°C°C°C°C°C°C°C°C	4,896,173	299,572
VD,9UrF 4c 44c5CeDoLc		
Λρ ₆ ϤͶ _Γ ΓΨ _C Ç5Ų _C	(1,136,829)	(2,695,886)
PP_{1} 1145 P_{0} 10 (P_{0} -L45 P_{0} 10) PP_{0} 1	(27,061,421)	21,105,854
Λρφηυ, ΓΨ. 4 φ. 5. (αφ. β. C.)	562,427	548,804
	(27,635,823)	18,958,772
ሳ፡ ት ስ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ ነ	(22,739,650)	19,258,344
ላ፣፟ትj‹ ለቦላናኇኈしኇ - ላናትሶኈኈቦኇኈቦና ቮፈጶኦኄተስና ለጶኄተስና	(57,004,826)	(76,263,170)
Δ/σσουσ ΕΠΙΠου - «Υρύονρσου Ρωργαής Λοναής ΕΠοσους («Ρσους ΕΠοσους)	(79,744,476)	(57,004,826)

<u>ΔαΛ</u>, <u>Δαςς Γ</u> <u>Δ</u> <u>Δης το L. Αλίγος το PUT μου <u>Φυνρης 4ης Ευρ</u> <u>Ανίγος Put Put </u> <u>Φυνρης Ανίκος Ανίκος Ευγ</u> <u>Ανίγος το Put μου </u></u>

	2013	2012
	S	\$
P∝ፆኑህሰ° - ላናጎjና ለቦላናታኄሁታ	(176,611)	(476,183)
ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ ֈ	4,896,173	299,572
Paρί δητοδι - Δίτι Δλεσδισ	4,719,562	(176,611)

	2013	2012
	S	\$
የ ^ወ ያት ብሀር		
Pabled) 051714's	70,588,714	60,096,307
∇ _c ¬ e _c 4 _c C) ≤ U _c	494,850	446,946
Dechaeve, Je dec	229,820	226,773
¿b); «L4c	24,514	18,382
۵ څ د د د د د د د د د د د د د د د د د د	159,824	112,935
Jς.(Vr T.	159,824	117,436
41.2Lc	657,590	747,411
	72,315,136	61,766,190
Ρ፞∝▷ጘ ^ᢏ ϼ ^ͼ ⋂ር▷ґᡶᡶ ^ᢏ - ጳኁኝϳ ^ᢏ ∧Րጳኁσ∿Ⴑσ	488,193	
أمه ۱۵ م ۱۵۰۰ م ۱۹۰۹ م ۱۹۰۹ م ۱۹۰۹ م ۱۹۰۹ م	(450,000)	(488,193)
	38,193	(488,193)
	72,353,329	61,277,997

Δαδή Δαργήδο Επικοροί Επι

	2013	2012
	S	\$
ያስትረንታሀ _ና		
Papishi Age - Uni	8,749,554	8,605,887
10c'rocho'l' 1PC	229,821	226,773
)\DL\D\C\To% 4'c_%J\n\To\s	304,384	327,711
10 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	562,427	548,804
۵٬۶۶۲۲۲ ۱۳۹۲ ۱۳۹۲ ۱۳۹۲ ۱۳۹۲ ۱۳۹۲ ۱۳۹۲ ۱۳۹۲ ۱	122,753	94,783
1PC(140J00L)(10,848	(27,16)
VP,9Ue, 4cCJ5Uc	95,831	102,109
iParcCDUc	75,425	106,915
16'to'1' 180100'12 4'ch'Lnb belbdo	339,446	375,382
PU&%U\$OUC4Uc	321,226	288,497
۵٬۵۵۵ مرر ۱۵۲۵ مرر ۱۵۲۵ مرب	513,436	571,714
$\Lambda \sigma^{\varsigma} \supset \sigma^{\flat} d^{\varsigma} \langle \gamma \rangle^{\varsigma} \langle \Lambda \rangle \sigma^{\varsigma} J^{\varsigma} \Delta^{\iota} L^{\varsigma} b \rangle \Pi^{\flat}$	28,714	25,316
DCD 569 0 5 1 C Paps 40 C	656,081	659,344
1997-10 16-chc 60200000000000000000000000000000000000	2,656,427	1,156,426
مدر ۱۲۹۹۶۵۰	39,164	35,952
סס ^{בר} ב קפנאטנאזטנ	10,671	19,535
4,9L4F4,24Uc 7570L15.7	57,394	60,397
1,9LLF4,24Uc Paldf.7	12,114	1,262
PUT9. PUT0455.7	6,563	19,763
ספבין אונגגנ	309,247	299,597
שנירטי עסישעי א	429,349	579,134
۱۹ می د سیم ۱۸ مرم ۱۸ مارم ۱۸ مرم ۱۸ مرم ۱۸ مرم	841,698	415,990
1)4L-D'o" 1'co1lb7n's	37,462	50,020
V TY C L TO A PLIPULTUC	2,278,898	2,691,003
ספרברטו גלבסף 145	35,000	-
JAPT.PcCDUTU.	143,258	228,679
ΛΓδίζη(٢٥% Δε ⁶ σ4σί)	112,877	109,953
ULD40c ocUCD4c	2,108,881	1,868,509
مر ۱۲۵۷ کې در بري ر	27,204,701	26,706,389
۵، ۱۲۵۷ ک در ۱۳ ار	16,432,865	12,323,578
שביוטנ גפנלטנים	2,531,361	2,275,371
∆%°5500°	48,252	52,582
1 t o L c	151,028	178,217
	67,457,156	60,978,425
₽₽₽₹₽₽₽₹₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	4,896,173	299,572

$Δωλ^{6}$ $Δωτελε⁵Γ Λ<math>J^{6}$ λ $σ^{6}$ ω $δΛιλ^{6}$ Γ $δΛιλ^{6}$ Γ

	2013	2012
	S	\$
V D, q U, c		
Paβ>3Δ° σ ^c	1,532,286	3,680,316
Jo6744 ΔΠαδ÷ (4°c7L4% 2 4))	9,739,642	2,464,453
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	125,458	-
	11,397,386	6,144,769
4P~5°4°		
4P-C4C 4P-C4C JYL+C-	5,007,810	4,081,736
غاد-٥ شنزلاه م ۲ نان (۵ در ۱۲ الم ۲ ا	5,789,799	7,037,975
ላዕታ'ጋ୮ ለ⊳cσላኒ'bʔ∩ሷሊላታ' ሶ⊾ዖታህ∩ኌ' (ላ'፫፻៤√% 7)	-	209,742
でcUCD\F4c 6 でDY.AU.c (4c 5\F4)	450,000	488,193
	11,247,609	11,817,646
ԵՈ°Ժ°Ს Բํ๔ፆ৮ՙᲥՈ ^ւ Լሒՙ (ԵՈ°Ժ°Ს «ՔԸ ^Հ Կ ^Հ)	149,777	(5,672,877)
Pa⊅ን⁵dŰ bN°σ∿U		
የ፞ ፌ ፆኑ⁄ፅሰ ^ና	149,777	(5,672,877)

$\Delta \Delta \Delta^b$ $\Delta \Delta C C L^c$ $\Delta \Delta C C L^c$ $\Delta \Delta^c C L^c$ $\Delta^c C L^c$ Δ^c $\Delta^c C L^c$ Δ^c Δ^c

	2013	2012
	S	\$
Pad4-44j - 1145-66	(5,672,877)	(5,877,900)
60027746U0464 (PUDUJUC) 60029U0C -		
∇_{σ} L2U $_{\sigma}$ $_{\sigma}$ $_{\sigma}$	5,822,654	205,023
٩م٥٤٤١٥١ - ١٩٤٩١١ مرحم الم	149,777	(5,672,877)

Δαλο Δαλο

	2013	2012
	S	\$
፟፟፞፞፞፞፞፞ዾዾኯ _፟ ዻኯ፞፞፞፞		
\$DDD88P149ocros Docros -ND11EUJC ADCJUBC	7,843,436	7,218,559
Δ2/c20% Δ2c2012 - 4550UC 4Pc55C	5,518,511	-
۵٬ عور ۱٬ ۱۲۵ مور ۱۲۵ م	494,850	446,946
DOCCFUJC VJCPDVP	309,247	299,597
ΔοΔ ^c CΛά ^c baCΓ		15,000
פטעף שסכיבן, פגרגר - עסגרגף,טגאט,	3,253	9,428
4Dccherof Jc 4Pc	229,820	226,773
\$PJ%PT4c	24,514	18,382
17°FC Pab40	645,770	722,266
	15,069,401	8,956,951
Pabic ocuents - 454jc Veale	450,000	-
أمه ١٠ ه ١٥٥٠ ١٠ ١٠ م ١٩٠٤ ١٠ ١٥ م ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠ ١٠	(450,000)	(450,000)
	_	(450,000)
	15,069,401	8,506,951
¢_β+٬۵۲٬20, (γ-ι450, 4)		
4Dectocajó	7,170,313	6,274,821
Dac o badon 140chic	1,339,155	1,279,629
Δ' ⊃ς κσ' Ι΄ 4 Ρς' ΣΔ ΙΛ΄ ΄	737,279	747,478
	9,246,747	8,301,928
ֈ ^Ⴥ ჿჁ。Ე¬ᲥᲮႮᲑႡ୮イჅ <i>(.</i> ႼჅႱჿႮႨŲ。)	5,822,654	205,023

Δαδ' Δασσίι Δανστασί Λυίλσιας 6012% Γς 10°46 Το 10°46 Το

	2013	2012
	S	\$
VÞ,٩Ųc		
ÅΦβλΟΔ°σ°	101,122	125,725
Δ °r°sn°tJn σ ° Λ 50r4 $\dot{\sigma}$ ° (4° $\dot{\sigma}$ tL $\dot{\tau}$ ° 7)	-	209,742
Ͻ ϭ ϛϧϯϥͼ Δυʹϭ;ͼ (4ͼͼʹͰΓ ₄ , 5 C))	20,259,888	17,006,636
	20,361,010	17,342,103
4P~S°4°		
ף ב ס גישל מינ (מיב צו ל שי 5)	6,923,290	5,727,212
4P-646 4P-64C9J7L463	3,520,488	6,800
)\$\c-0°7L4&c	239	
∆°Ր°ናበ° ነገበታ ለኑ	125,458	•
፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟	55,826,208	33,260,404
יחי אף-תאבי ביחה של שישיף יחיים אשישים יחיים אשישים שיחיים של	38,429,365	35,175,902
	104,825,048	74,170,318
ԵՈ°Ժ%Ს Բ℄ՋԻՙᲧՈ¹Lሲՙ (ԵՈ°Ժ%Ს ∢ዮԺ٬Կՙ)	(84,464,038)	(56,828,215
₽ሀ₅ዲያ Է⊄ዕት _. ዋሀ _Γ ΓΨ _C		
۱۵۰۹ مار (۱۹۰۵ ع)	12,972,732	12,398,330
رەج. 1444، (٩٠٥ (١٥٠ ع.)	71,491,30%	44,429,885
	84,464,038	56,828,215
ት⊾የት√ብЏ ^ℴ ዋሀ _° ዋ _ይ ቦ		
<u></u> የፌፆኑህሰሩ		-

Δαδο Δαςς Ι΄ Δαγς Λας Γ ΛΙ΄ λας Δ΄ Θημορικός Α΄ς Ιουναιας Α΄ς Ι

	2013 S	2012
		\$
ዸ፞ ዹፆ፞፞፞፞፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟		
ֈ ^ݲ ዕት,ጋ¬ሳ5ሀስ\୮۲ ₄ (,የ _ያ ,ሆሀሀվ _ር)	-	
<u></u> የፍንንብነና - 4ነሩj، Δረድራን		

Δαλ΄ Δαςς Ι΄ Δαίς Ανίδους Δία Ανίδι Ανίδι Ανίδι Ανίδους Δία Ανίδι Αν

	2013	2012
	S	S
የ ወ ኦ ዓ ሰ ና		
101040104 1010104 - crasa 4-20110000	2,551,182	1,043,308
Dateno Decnos - Pappening atthorne	(1,692,585)	(4,767,881
בΔ۵°6۲4σσσσ Δοσσσ - βεργβηιτής δυισολυδις	2,255,012	5,316,685
	3,113,609	1,592,112
∳ ፌ ፆ <mark>ሃ ን ን ሶ</mark> ሳ		
.b3.0L40Lc	2,551,182	1,043,308
ADIGNILAC DPPCC GADIN	562,427	548,804
	3,113,609	1,592,112
ֈ ምዕት,ጋ¬45Uዕ\ፐና。 (_{የየ} LዕሀባЏ _ና)	-	

$\Delta \Delta A^{b}$ $\Delta \Delta C C C^{\dagger} \Gamma$ $\Delta \Delta C^{\dagger} C^{\dagger} \Delta C^{\dagger} C^{\dagger} \Gamma$ $\Delta C^{\dagger} C^{\dagger$

	2013	2012
	5	\$
VÞ,٩Ųc		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	239	
۵۶۲٬۶۸٬۲۶۸۵٬ ۸۶۵۲۹۴٬ (۹٬۵۲۲۹، ۱)	5,789,799	7,037,975
Jσ°? γοι Δηνα÷ς (4, σ, γ,	32,169,895	18,078,767
	37,959,933	25,116,742
۹۶-۹٬۶۰		
4P-646 4P-646916645	33,390,148	19,620,476
	33,390,148	19,620,476
6በ°σ°ι	4,569,785	5,496,266
ት <u>«</u>		
የ _ፍ ፆኔህስና 60°ታንሀ	4,569,785	5,496,266

בב לי בבר ביני בבר אוי ליסיבי החבר אוי היים החבר ליבים ליבי

	ANAGAG.	PLDIS BUTTE	Assun	995556	Padda boroll
	*******	5	8	3	3
4Decrocashe					
שעישי הכרוזה ליישיני שווים					
A sel'e"	701	(77,186)			(77,186
C'SDAJA" (CASAJED	702	(49,052)			(49,052
A sildeen Just De of Alith	759	29,291			29,291
PALe Death	998	136,243	1,012,727	991,835	157,135
Pressure, VCU. LLASU.	8860	244,117			244,117
AME PARSONCOUNCE					
be the"	8001	(34,151)			(34,151)
A soldeens	8840		217,045	217,045	
parelny apriversh	8891-92	145,428	436,110	174,355	407,183
		394,690	1,665,882	1,383,235	677,337
As/C)caAb					
gange Petrice brokenhinne					
DOD DIPPLO, J. adiplo Je, 1940,				00.400	
V-, 4UCDUVL	8022	107,289	•	68,472	38,817
PCLJARAC BEDERICATIONS					
PICTURAL PLANTE ASTERDA PLANTING	811	438,056	115,000	131,703	421,353
dere passancesine					
אבירור הבניטאס יחישל אירוליי	818	(30 230)	656,838	596,641	20.499
ALTE AIV WAY VALUE VILL	0.10	(30,720)			29,477
		514,625	771,838	796,816	489,647
DODG VITURADILE					
and perince proparium					
Aprilary, VLD, 17 parti	610	4,803		5,853	(1,050)
D.04.U.4.PU.	901	7,509	3,039	5,444	5,104
sacelny D'ernri	8016	79,726		1,752	77,974
שלינישל באישיחריותיים					
17015145101515 351010	699	69,201	1,170,953	1,227,190	12,964
De ofat nobecell 1 5	819	410,591	675,530	570,672	515,449
ature proportionite					
פפר איניין ברישור איניים איניים	800	(4,509)			(4,509)
ALAS CAL BECT - DECELOS AND DEA	804	66,164		143,896	(77,732)
Atheria Ascaril Astensils	814	(500)	500		
LP4" De GAN HALL DOENTPOTT ANTAINT		38,073			38,073
		671,058	1,850,022	1,954,807	566,273
DEADS PECE AJSPJAS					
ANAC PGENEC BEBRIPULATURE					
A'L'60NE A'L'60N'6'YO' > A > t < no 'NJ'					
VC. CAUDA. VOY. CDO. L.	938		40,252,013	40,252,013	
A'L'GONE A'L'GONG'N') - A STERE'NJ	2.50		40,036,013	Tr. a. / 4, 171 .	
VC. CAUDA PTLADALL	939	3,420	335,354	449,083	(110,309)
		3,420	40,587,367	40,701,096	(110,309)
		3,420	40,267,307	40,707,020	(110,300)

ውልላ ውልናተር Δ ታየሩሲውና Δ ነናትምን ከበነትዮና የልቅነር ንኝሁራን ነናት - ከ4ንበትናንት ከስጐተጥና ላጐር የረርን ነርት Δ ነና Δ

	An/4'Chic	ሰዱ ቅዱ			ቅፈፆታΔና ቴበጉታሢ ማናĴና
			à N. A.C	יחיבר ביל ביל	
	もしくしん	Ara La	Papsac S	S S	Dico to
Dacto, popully acre,					
and persec properly					
DCPD Halable Ner47A	913	(3,070)		-	(3,070
opo 1 (a no Uco) Naca (Dt	915	8,989	-	_	8,989
4 LL 4 4 16 L 16 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	916	(1,178)	*	-	(1,178
4V: C - D	926	30,465	-	2,385	28,080
Sporno" sprno"	931	203,901	-	40,838	163,063
Nettinish Adsist of PPDP osos	933	111,540	-	100,288	11,250
6027 6 PJN10 6174010 (934)	934	-	162,560	-	162,560
1. (1. Loca) (2. 3) (935)	935	-	150,000	55,214	94,786
eac' [Na/4 NDto 4(D' rd nri (936)	936	-	100,000	4,260	95,740
Ish pediod a diodinable	956	59,573	-	185,273	(125,700
U.A. 20"	959	11,135	-	-	11,135
bolse at	960	1,880	-	-	1,880
PD5154. 4. 245 426, 40. UT.	968	9,224	-		9,224
1 LLULOLD 1 CODIU	8004	410	-	410	-
1/15 19 19 19 19 19 19 19 19 19 19 19 19 19	8017	13,410			13,410
שבירישה שפירי	8019	14,000		-	14,000
24.41.4.6 L7.9.4.44 & B.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P.P					
שלכתלי ישטורסיתירי	600	(50,000)			(50,000
- P (40° Δ= 040 (1))	614	12,845	97,618	105,350	5,113
o(L)b'do)(Peno"	631	(33,066)	-	-	(33,060
PANT DAPLADOTES	632	182		182	(33,343
V42.7640, VL4 7/C6-9.	634	315,953	351,762	263,461	404,25
10'd' AC'5'b 34'6"	693	94,302	681,305	701,654	73,943
ን የ _{ር ላ} ነስ	696	3,295	296,196	235,535	63,956
pabbild Asteroli Acodno nardol					
DARLO'SNOJ'a)o's	809	4,410			4,410
ball (15to o'P'racash	820	15,311	502,872	521,927	(3,744
ימושלים ליברנגמי	821	6,624	-	572	6.053
יורי שיישרו איז	822	-			
וארי לבסגיניתכטומי					
1 of Ucto" 1 (a) 1 (Uco)	611	22,641	473,524	491,328	4,837
e dV'	612	120,678	51,192	19,862	152,006
ישטבנחילפיני ישפאלאה	655	4,915	31,172	12,802	4.915
SO A >) or (of Color Ac of) of	660	26,885		67,417	(40,532
PPD'CDT A=/4'CD4'	668	26,109		07,417	26,109
205544 " "C15644"	690	(73,561)	_		(73,561
Pullentooil > Poil De of)	803	11,305			11.305
Terdalison than ambountie	805	43,010			43,010
oa bibild Asteroil abit int be (ell	807	598		598	43.000
Jacion Merschirllo 412 Distill	607	374		374	
DOLC' o' No/470	816				_
		1,012,715	2 867 020	2.704.644	1 093 190
		1,012,713	2,867,029	2,796,564	1,083,180
DA" a 2' No" Nor JN- P'os					
ואייני פכרירוכ קייסאיףיטירוטיוני					
שבי אלה ארשייאישותירים	640	430		430	
THEFT AND SON	790	46,280		450	46,280
To Astrabberra Aatti	791	163,930			
Jesjá Arbiniciáis	920-921-923		47,755 890,379	133,047 943,104	78,638 674,534
26 40 504	922				
	100	(449.842)		135,051	(584,893

ΦαΛ* Δασσεία Δασσεία Λυαντικά Επικαντικά Επικαντικά

	Padsac borase				Paphas borant
	ALPOCHE OSS		4		443
	buctuar	AP4'e^Le	Pα. Φ > Δ °	ያ ያ	Dice the
۵۵۷, ۳5, υ۹. γσι ηυ-β, ۵ ((((((())					
אייפי פגדירינ					
בפרבותו עשף ער חלי חרי חרי ולי	932	45,186		_	45,18
4"PCDJ" 2"1")"	962	40,250	-	713	39,53
יכ פחייכף יכי גואם	972	-			
4-446,UDLD,24. PP4,UDA.	977	42.936	-	38,401	4,53
Allero" PLATO 14.P.C. DPLUDED	8005	694		694	
Δ' [σ4' Nr' U ~ L σ'	8006	191,327		37,939	153.38
10 Nob (D) 60 Co 10	8007	213,965		2,352	211,61
בשב"ס חוףל אוף יאוילהים	8008	221,393		30,303	191,09
Trees - 17: Lip. 4. adip. Chille,	8009	76,598		82,758	(6,16)
A'Tod'nr'Uco" paccinj ('arlin'	8010	511,711		46,575	465,13
שנורו לישלבי לאיראטוחיר שהאינטוחירי	8011	3,809			3,80
Δ.Δ.).ρ.σ. V. 457Ų.	8012	67,159		14,512	52,64
Arpishere" - Aprine	8013	30,492		45,908	(15,410
A'rj'od C'ASCPORÈNAÑ	8015	54,759		2,214	52,54
PAnte 306'0"	8020	134,664	27,491	197,392	(35,23
100 100 100 100 100 100 100 100 100 100	LAT 2017	1.74,0004	41,421	121,320	(33,63
DA'L'Les a North'or	8021	60,721		1,571	59.150
7°06'190'40 PCCA	8023	17.321		45,629	(28,30)
ALDERO" escelly 4(Drdnrr	9008	17,341		4.5,02.5	
ישנילחילה פימלה יאלה אלה אלה אלה אלה אלה אלה אלה אלה אלה	9052	37.386		33,812	3,57
Artis Asribiranibira	9053	112,840		21,366	91,47
DIGGOSOITE VAITA OF ALDISOITES	9075		1,708		
۵/۱۰۵ کارد ۱۰۵ کارد اید اید اید اید اید اید اید اید اید ای	9077	(1,708)	1,700		3,40
D'62D'50'7' A2/JO'5-D'5"	9078	951		951	
4-0404501 Ne/47015 ('aCD/LJOTO	20176	231		931	
saccio	0070	12 400			12 60
APICE OPENING ASSET	9079	13,400		1.264	13,40
ALLI VARCE POLICE		19,453	•	1,354	18,09
Brill Nosce Writish	9081	13,704		398	13,30
PC F 3, P. 9 5 10 10 10 10 10 10 10 10 10 10 10 10 10					
dese secies AlitAni	618	43,200	2,173,413	2,112,585	104,02
Dolla's' AJ'a' P'rldenji	694	13,583	•		13,58
VELUN VEPDUE,	695	33,616	45,000	69,491	9,12
sacif All'd' bad Wild'ecres	697	301,062	870,719	904,042	267,73
V. Led, U.C. OFTE, J. C. FLTUC	698	50,578	99,950	111,250	39,27
MITT DEPOTO (ETLIN 4 64ANI	E.				
Na/4014	802	307		307	
ANTH PYPATON CAPLIA APLY	P				
Darent De"	806	83,725	-		83,72
פררי לבסגישיחכשולי					
1947-194 A 715 A PCAA	812	4,220			4,220
VLD. LULLAND 4. AULTO P. (C-4.) -, V=14.) -					
	813	52.263			52,26
0 224" DAL') 6115DA'L	817	(137,918)	2,300,512	2,473,564	(310,97)
	963	30,951	-	5,276	25,675
DALIDA SYSDIANUC AG CRACOGNU	9007	22 - 04	-	-	22.44
VLD-7U-49-	9076	23,694	•	39	23,655
		2,899,758	6,456,927	7,493,028	1,863,65
		5.496.266	54,199,065	55,125,546	4,569,789

ם α^{1} ב לכת לי α^{2} ב שכת לים ליבלא חנירי של בראיר של בלא היינ של בראיר של בלא היינ ליף 31, 2013

1. ישבליס של ארחירוחי

 $ωωλ^ιΓ$ $Δωταλ^ι$ $Δωταλ^ιων Λωλ4ιλνων Λιιρη Λυτορονί Αντονον Δυτονον Δυτονον Δυτονον Δυτονον Δυτονον Δυτονον Δυτονον Δυτονον Δωταλίων Λυτονον Δυτονον Δωταλίων Λυτονον Δυτονον Λυτονον Δυτονον Δυτονον Δυτονον Δυτονον Λυτονον Δυτονον Δυτ$

40 SCNC4.5 0 N/S AO 4.5		
4PcsCDr4cs PaD4s Anades	2013	2012
4) Δ°Γ'ς Π' ረገበ' Pabber	S	S
Δ2/cno Δ2cno - 1500 4Pcs	5,518,511	-
Darenos Decros - secela 1) NUSSO se	1,522,341	
Darenos Daenos - Papostenino	513,973	513,973
Δ = r = 6 P) (L(r L = r) . Pb) .		
Δ'L'600 0c 'P6')c	87,996	77,454
Dareno Decno - 4626000	87,229	117,350
C+45UPc 466c=445Uc	321,584	983,084
Diectyle deady	302,275	236,328
کد ^ر (۸، ۴، ۱۹۵۸،	399,113	183,495
PUV, DOCCT, PGTOPC	297,652	40
PCF, QD VOLLE VOLLE VOLLE VOLLE	242,019	40
Volcul Abe CDPVIU.	1,257	3,689
44.0Lc	542,500	435,040
	9,836,450	2,550,413
42-14767676	(96,808)	(85,960)
	9,739,642	2,464,453
<) Pab4°)9665°		
Dareno Daceno INIHB (4-c/L+ 8)	20 107 0 17	12 252 202
	29,107,047	17,357,302
Δετεπο Δετποία ρετεί Λαι 45 (۱) ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	2,300,000	135,000
Darenos Dachos Volly VLDIALIA	380,000	-
ASICKO ABEKOS VELLI VIANNOS NUCSOS		****
(°720° 466, 61450°	47.004	120,000
DEC) 9 AJ 5 PO 6 PO	47,664	26.262
ba(cll bedonted back a process brokenicos	19,442 315,742	36,362
44,0Lc	313,/42	334,003 96,100
	32,169,895	18.078.767
	34,107,073	10,070,707
C) 499-3L, Vp.9U.85U.		
Astens Asens - Paltering Articosts	10,862,072	11,845,518
C,45U°c 466,C145Uc	1,089,327	
۷۳،۹۵٬۷٦، ۱۵۲۹۱۵۶۵۵۶،	8,252,631 55,858	5,161,118
	20,259,888	17,006,636
1/15/40	anger of the same	*140000000

3. ADIGNILAC

Λροσυιτής ΔΙσορυρισι σιεροργετο:

	4P*C 4P		2013 Pads United 4Pins	2012 Pady Van Sec. 4PSC ACCA CO.
	\$	\$	S	\$
200° 200°	16,978,834	4,650,220	12,328,614	12,289,724
ShaCD4c	2,759,548	2,752,045	7,503	30,375
ADCOUNT NOUTH	884,460	370,110	514,350	11,693
1 soldeer DUC Voyu	181,538	80,153	101,385	35,268
Δ°Γ'50Ω°	137,295	116,415	20,880	31,270
	20,941,675	7,968,943	12,972,732	12,398,330

4. D'OCDYLY PODYWA'S

Papy die sencorle Aleste:

	450,000	488,193
Ant Voyeur db-cochlustic PUserbetc	-	38,193
Darenos Darnosa - (serlans	200,000	200,000
Astero Aseros sacel Natassisses	250,000	250,000
	S	\$
	2013	2012

5. לפטלילמיד פיכטפי - שלפיטד לפטלישצחי

6. 4'9J& 46J')& 4)n/2J' 6674'CDJNYC

ם α^{L} ביל בעלי α^{L} בילר α^{L} בילר של ביש ארכילו α^{L} בילר של ביש ארכילו α^{L} בילר של ביש ארכילו α^{L} של בילר של ביש ארכילו של בילר של ביש ארכילו של בילר של ביל

7. Paphodashnic Paphodosco

 Δ^{c} ር Δ^{c} ር

8. Δ'L'6DΠ+C Δ'L'6DΠ'66°T) Λ Λ'C-6HÔC

UT() Len A(66204% PLC (666 11 or 1% en 2012-2013 Pabber a 2. aco Lelson d'odaedis de la los Antonomies de la los A

UTL34'N3J, Paph'Cabpylly $\Delta = \Lambda^{L} \Delta = \Lambda^{L}$

 $L = L^{c}C^{b}L P + V^{b}C P + V^{c}L P +$

- פיסף, שרואים הישפים שר איני דריאני הישפים ער שלועי דריאני

-2004-2005-Γ ተን"ራረΓ ላጎሳፓ ΔιΕθρηራ" ΔιΕθρηθόδηρε Λς"ራህስ" 4ጋነርρΓላδυλλυλος ኤΔΔ3Ρηρτισδη Λርθδδηρ. Ρυνος Βρομαίρο Δυρης Ρυνοδυλάς Αυτοκογίο Αςρυλίο Αςρυνίο Συνογισδηρτισδη συνογίο Αςρυνίο Αυτοκογίο Αντιστών Αυτοκογίο Αυ

-60762418872 1-04700 APPBOLIC ADICOBIO acioloic.

8. $\nabla_{\Gamma}\Gamma_{\rho} \nabla_{\Gamma}\Gamma_{\rho} \nabla_{\Gamma}\Gamma_{\rho} \nabla_{\rho}\Gamma_{\rho} \nabla_{\rho}\Gamma$

 \dot{c}^{\dagger} ዕላ \dot{e}_{Δ} የኑሩሊነስና ላ"ሬ(የተሀበጭና ለፈተላናርየራናበ ጋኖ, Δ ጋተራሊወየና Δ ውራሊወየና Δ ነ"ነንርናልጐሁ \dot{e}_{Δ} የነበነበጭኖት የነፃነተር ነንም ውልላ \dot{e}_{Δ} የነር የህበጭኖት የነፃነተር ነንም ውልላ \dot{e}_{Δ} የነር የህበጭኖት የነፃነተር ነንም ለተቀመመው ለተመመመው ለተመመመው

	S
2011-2012	9,009,161
2012-2013	20,097,886
	29,107,047

9. 0DA9147ic

		71,491,306	44,429,885
>δες τος τος (Δεσίας) >δες τος τος τος τος τος τος τος τος τος το	2012 - 2013	3,118,899	-
	2011 - 2012	29,012,557	5,200,358
$\Delta^{c} \Delta^{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2009 - 2010	18,219,433	18,089,110
$\Delta^c \to \Delta^c$ $\lambda_a \not> 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 $	2008 - 2009	21,140,417	21,140,417
120% Ne19CD086 P414%		2013 S	2012 \$

(144 12014 62016, UCDCD20) ANT 62016, ULT

 $\lambda_{\alpha} + \alpha^{\alpha} + \alpha^{\alpha$

שם 1

11. A & 45 & 5 D AC

ΦΦΦΛ¹Γ Δαταλ² ΔΦταλ² ΦΡ÷σΦδ³σδ³τLξ² 4δδ⁴, ***-σδ ΛΓΔ⁵ΛΩ²ζσδ³ ΛΦζΦΡΩ² ΛΓΔ² ΛΓΔ²

	4°CJ45FŰ \$	V7c57Ųc	600°€
2013-2014		169,000	169,000
	-	169,000	169,000

12. 4 የት ሶቴ የቦታ የቦታ ጋየተበናተነሰና

בפרי פינליששר שילוד שלחלשי ברילחי לייףרפינסרגלי נינש פילוד שלחלשי ברילחי.

