, ams math

Лабораторная работа 3.6.1

Спектральный анализ электрических сигналов

Татаурова Юлия Романовна

30 сентября 2024 г.

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки.

Оборудование: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределенности

Рис. 1: Периодическая последовательность импульсов и её спектр

Найдем спектр периодической последовательности прямоугольных импульсов длительности τ и периодом следования импульсов $T > \tau$:

$$c_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} e^{-in\omega_0 t} dt = \frac{\tau}{T} \cdot \frac{\sin(\pi n \tau/T)}{n\omega_0 \tau/2} = \frac{\sin(\pi n \tau/T)}{\pi n}$$
(1)

Тогда представленные ниже фотографии лекго объяснить. При увеличении частоты повторения синус растет, а с ним и амплитуда гармоник. При этом кол-во гармоник в полуширине уменьшается т.к частота повторения растет. Если же увеличивать длительность импульса, то амплитуда гармоник растет, а ширина $\Delta\omega$ уменьшается.

Рис. 2: Изменения спектров при разных параметрах сигнала

n	1	3	8	9	12	15
ν_n , к Γ ц	1	3	9	10	12	15
$ a_n $, усл.ед	282.6	274	196.9	179.8	145.6	84.83
$ a_n/a_1 $ эксп	1	0.97	0.7	0.64	0.51	0.3
$ a_n/a_1 $ Teop	1	0.97	0.7	0.64	0.51	0.3

Таблица 1: Сравнение амплитуд и частот гармоник

Из формулы (1) видно, что полуширина $\Delta \nu$ главного максимума определяется условием $\sin(\omega \tau/2) = 0$ или $\Delta \nu \cdot \tau = 1$. Соотношение $\Delta \nu \cdot \tau \approx 1$ имеет универсальный характер и остается справедливым по порядку величины для произвольного сигнала f(t).

Теперь зафиксируем период повторения T прямоугольного сигнала (T=1 мс; $\nu_{\text{повт}}=1$ к Γ ц) и будем измерять полную ширину спектра $\Delta\nu$ от центра спектра до гармоники с нулевой амплитудой, изменяя длительность импульса.

τ , MKC	20	40	60	80	100	120	140	160	180	200
$\Delta \nu$, к Γ ц	46	25	17	12	10	8	7	5	5	5

Таблица 2: Зависимость ширины спектра от длительности импульса

Теперь зафиксируем длительность прямоугольного сигнала $\tau=50$ мкс и будем менять период повторения T, измеряя $\delta\nu$ - расстояния между соседними гармониками.

Т, мс	0.6	1	1.4	1.8	2.2	2.6	3	3.4	3.8	4.2	4.6	5
$\delta \nu$, к Γ ц	1.668	1.000	0.723	0.55	0.457	0.383	0.334	0.295	0.264	0.238	0.217	0.200

Таблица 3: Зависимость ширины спектра от длительности импульса

Из графиков ниже видно, что соотношение неопределенностей выполняется.

(a) График зависимости $\Delta \nu (1/ au)$

(b) График зависимости $\delta \nu (1/T)$