Варіант №31

Означення і позначення: символ ¬ означає операцію доповнення.

|X| - потужність (кількість елементів) множини X.

 $A^2 = AA$ — результат множення матриці A саму на себе, $A^n = A^{n-1}A$.

Нехай A — матриця суміжності графа G = (V, E) (|V| = n); тоді $M^{(n)} = I_n + A + A^2 + ... + A^{n-1}$, де I_n — одинична матриця порядку n (нагадаємо, що будь-яка вершина зв'язана сама із собою маршрутом довжини 0).

Граф $G^* = (V, E^*)$ називають *транзитивним замиканням* графа G = (V, E), якщо $(v, w) \in E^*$ тоді й тільки тоді, коли вершини v і w зв'язані в графі G.

Для графа G^* n×n-матриця A^* будується за таким правилом: (i, j)-й елемент матриці A^* дорівнює 1 тоді й тільки тоді, коли відповідний елемент матриці $M^{(n)}$ не дорівнює 0, а усі інші елементи матриці A^* дорівнюють 0; матрицю A^* називають матрицею досяжності графа G.

Нехай $A^{(1)}$ - булева матриця, елементи якої повністю збігаються з елементами матриці A, але їх розглядають не як числа 0 і 1, а як символи булевого (логічного) алфавіту 0 і 1. Уведемо операцію булевого множення $C \wedge D$ матриць C і D, які складаються з булевих елементів 0 і 1, наступним чином: (i, j)-й елемент матриці $C \wedge D$ дорівнює $f_{ij} = \bigvee_{t=1}^n (c_{it} \wedge d_{tj})$, де c_{it} і d_{tj} — відповідні елементи матриць C і D, а операції V і A — це операції диз'юнкції та кон'юнкції. Позначимо через $A^{(m)}$ матрицю $A^{(1)} \wedge A^{(1)} \wedge ... \wedge A^{(1)}$ (m разів).

Трикутник (C_3) - простий цикл довжиною 3.

Кубічний граф — граф, степені всіх вершин якого дорівнюють 3.

 $\chi(G)$ - хроматичне число графа G.

 $\nu(G) = |E| - |V| + k$ - цикломатичне число графа G, k - число компонент зв'язності графа G.

Граф G називають *критичним*, якщо хроматичне число підграфа G', отриманого в результаті вилучення будь-якої вершини із G, строго менше, ніж хроматичне число графа G.

Критичний граф G, для якого $k = \chi(G)$, називають k-*критичним*.

Максимальним планарним графом називають планарний граф, який при додаванні до нього будьякого ребра перестає бути планарним.

Плоский зв'язний граф, кожну грань якого (включаючи й зовнішню) обмежено трикутником, називають *тріангуляцією*.

N - множина натуральних чисел.

- $\phi(G)$ число вершинної зв'язності графа G (найменше число вершин, видалення яких приводить до незв'язаного або тривіального графу),
- $\psi(G)$ число реберної зв'язності графа G (найменше число ребер, видалення яких приводить до незв'язаного або тривіального графу),
- $\delta(G)$ мінімальна степінь вершин графа G.

Граф G називається k-зв'язным, якщо $\phi(G) = k$.

- 1. Чи існує повний граф G = (V, E), у якого кількість ребер дорівнює 24?
- 2. Визначити, чи існує граф із шістьма вершинами, степені яких дорівнюють: (a) 0, 0, 2, 3, 3, 4; (б) 1, 1, 2, 3, 4, 4; (в) 2, 3, 3, 4, 4. Відповідь обґрунтувати.
- 3. Довести, що зв'язних графів ізоморфізм зберігає діаметр.
- 4. Навести приклад пари неізоморфних графів G_1 і G_2 , у яких для довільного $k \ge 0$ кількість простих циклів довжини k однакова.
- 5. Скільки існує попарно неізоморфних графів, які мають 7 вершин і 18 ребер? Відповідь обгрунтувати.
- 6. Нехай A матриця суміжності графа G із n вершинами. Довести, що i-й діагональний елемент матриці A^2 дорівнює степеню $\delta(v_i)$ i-ї вершини графа G, i = 1, 2, ..., n.
- 7. Чи існує в графі K₅ цикл довжини 9? Відповідь обґрунтувати.
- 8. Побудувати граф із 5 вершинами, в якому 4 вершини мають попарно різні степені, причому ізольованих вершин немає.

- 9. Довести, що множину ребер зв'язного графа, який має 2k вершин $(k \ge 1)$ із непарними степенями, можна розбити на k ланцюгів.
- 10. Для довільного k (k>2) побудувати граф, діаметр якого дорівнює k, а будь-яке його кістякове дерево має діаметр 2k.
- 11. Нехай A матриця суміжності графа G. Довести, що сума всіх діагональних елементів $a_{ii}^{(3)}$ матриці A^3 у шість разів перевищує кількість трикутників у графі G.
- 12. Описати всі дерева, які ϵ самодоповненими графами.
- 13. Довести, що доповнення жодного кубічного графа не ϵ кубічним графом.
- 14. Довести, що кількість вершин степеня 1 у дереві з $n (n \ge 2)$ вершинами, серед яких немає вершин степеня 2, не менше n/2 + 1.
- 15. У футбольному турнірі беруть участь 19 команд. Довести, що в будь-який момент знайдеться команда, яка зіграла парну кількість матчів.
- 16. Побудувати граф, центр якого складається із трьох вершин і не збігається із множиною всіх вершин.
- 17. Чому дорівнює радіує повного двочасткового графа $K_{n,m}$? Відповідь обгрунтувати.
- 18. Довести, що будь-яке дерево ϵ двочастковим графом.
- 19. Скільком граням може належати вершина степеня к плоского графа? Відповідь обгрунтувати.
- 20. Нехай граф G = (V, E) має k компонент зв'язності, v(G) = |E| |V| + k його цикломатичне число. Довести, що граф G є лісом тоді й тільки тоді, коли v(G) = 0.
- 21. Довести, якщо у зв'язному планарному $K_{n,m}$ графі межа кожної грані є циклом довжини r ($r \ge 3$), то (r 2)m = (n 2)r.
- 22. Довести, що не існує розташованого на площині планарного графа з 5 гранями, який має властивість, що довільні дві його грані мають спільне ребро.
- 23. 3'ясувати, яку найменшу кількість ребер необхідно видалити з графа K_6 щоб отримати планарний граф.
- 24. Чи можна до плоского графа С₄ додати нові ребра так, щоб отриманий граф залишився плоским? Якщо можна, то які ребра і скільки? (зобразити граф із доданими ребрами).
- 25. Довести, що серед всіх плоских графів з п вершинами найбільшу кількість граней має тріангуляція.
- 26. Довести, що в будь-якому планарному графі з n вершинами $(n \ge 4)$ ε принаймні чотири вершини, степені яких не більше 5.
- 27. Довести: якщо граф не планарний, то він повинен містити більше 4 вершин, степінь яких більше 3, або більше 5 вершин, степінь яких більше 2.
- 28. Яку найбільшу кількість граней може мати плоский граф із 5 вершинами? Відповідь обгрунтувати. Побудувати цей граф.
- 29. Вершина графа, вилучення якої збільшує кількість компонент зв'язності, називається точкою зчленування графа. Яку найбільшу та найменшу кількість точок зчленування може мати зв'язний граф із п вершинами? Відповідь обґрунтувати.
- 30. Чи вірне твердження: об'єднання двох дерев G_1 =(V, E_1) і G_2 =(V, E_2), де $E_1 \cap E_2 = \emptyset$, є двозв'язним? Відповідь обґрунтувати.
- 31. Довести, що $\phi(G) \leq \psi(G) \leq \delta(G)$, де $\phi(G)$ число вершинної зв'язності графа G, $\psi(G)$ число реберної зв'язності графа G, $\delta(G)$ мінімальна степінь вершин графа G.
- 32. Визначити, які з повних графів $K_n \in \text{ейлеровими}.$
- 33. Довести, що граф G, який має дві несуміжні вершини степеня 3, а всі інші вершини степеня не більше 2, не має гамільтонового циклу.
- 34. Довести, що для довільного зв'язного графа існує циклічний маршрут, який починається з будь-якої вершини та містить усі ребра графа, причому кожне з них двічі.
- 35. Навести приклади: а) ейлерового графа, який не ϵ гамільтоновим; б) гамільтонового графа, який не ϵ ейлеровим.
- 36. Довести, що будь-який повний граф ϵ критичним.
- 37. Знайти всі 2-критичні графи. Відповідь обгрунтувати.
- 38. Визначити хроматичне число простого циклу довжиною 2k, k ∈ N. Відповідь обгрунтувати.

- 39. Навести приклади графів G_1 і G_2 , які мають різні хроматичні числа й у яких кількість простих циклів довжиною k однакова для всіх $k \ge 0$.
- 40. Чому дорівнює хроматичне число повного графа K_n , з якого вилучене одне ребро? Відповідь обгрунтувати.
- 41. Показати: для розфарбування карти, яка ϵ перетином кіл на площині, достатньо двох кольорів.
- 42. Довести, що для довільного планарного графа G виконується нерівність $\chi(G) \le 5$.