Київський національний університет імені Тараса Шевченка факультет радіофізики, електроніки та комп'ютерних систем

Лабораторна робота №6

Тема: Синтез мікропрограмного (керуючого) автомата у вигляді автомата Мілі

Роботу виконав студент 3 курсу мережевий адміністратор Цибульський Роман Олександрович Мета роботи: Провести структурний синтез керуючого автомата Мілі.

Лабораторне завдання

1. Згідно вашого варіанту, розробіть функціональну схему керуючого автомата, що:

Номер варіанту $6248 = 1\ 1000\ 0110\ 1000,\ 00\ 0110\ 1000$ за умовою

H4	H5	H6	H7	H8	Завдання	
1	0	1	1	0	виконує перетворення масиву A(n) у такий	
					спосіб: до позитивних елементів масиву	
					додасть значення максимального елемента	
					цього масиву	

Мікропроцесорний автомат необхідно реалізувати у вигляді автомата Мілі. Функціональну схему керуючих частин автомата синтезувати на елементах:

h9	h 10	Логічні елементи
0	0	І, АБО, НЕ

В якості пам'яті використайте:

h1	h2	Тип тригера,
0	0	RS

1.1. Побудова змістовної схеми алгоритму

1.2. Змістовна таблиця кодування операційних та умовних вершин

Код	Зміст	Примітка		
Y1	: 1	ініціалізація лічильника кількості		
YI	i = 1	елементів масиву A[n]		
V2	A - 0	ініціалізація значення		
Y2	$A_{max} = 0$	максимального елементу		
Y3	n	завантаження до відповідного регістру		
13	n	кількість елементів масиву А		
VΛ	A[i]	завантаження до відповідного регістру		
Y4	A[I]	значення елемента масиву А		
Y5	$A_{max} = A[i]$	переініціалізація значення		
13	$A_{\text{max}} - A_{[1]}$	максимального елементу на поточний		
Y6	i = i + 1	перехід до дослідження наступного		
10	1-1+1	елемента масиву А		
Y7	j = 1	ініціалізація лічильника кількості		
1 /	J = 1	елементів масиву		
	$A[j]=A[j] + A_{max}$	переініціалізація значення		
Y8		елементу > 0 з додаванням		
		максимального значення		
Y9	j = j + 1	перехід до дослідження наступного		
		елемента масиву		
Y10	A[j] Out	Виведення масиву		
		умовна вершина: так – розмір вхідного		
X1	n > 0	масиву додатній, ні – перевизначення		
		розміру масива		
		умовна вершина: так – дослідження		
X2	i<=n	чергового елемента масиву А, ні – в		
		елементи масиву А досліджені		
		умовна вершина: так – елемент масиву		
X3	$A[i] = \langle A_{max} \rangle$	А меньше або рівний за максимальний,		
713	71[1]— \ 71max	ні – елемент більший за максимальний		
		елемент		
		умовна вершина: так – дослідження		
X4	$j \le n$	чергового елемента масиву, ні – всі		
		елементи масиву досліджені		
X5	A[j] > 0	умовна вершина: так – елемент масиву		
110	, , [] / 0	додатній, ні – елемент від'ємний або 0		

1.3. Закодована ГСА

1.5. Граф-схема переходів

Прямая таблиця переходів-виходів автомата Мілі

Початковий	Стан	Х (умова	Ү (вихідний
стан	переходу	переходу)	сигнал, що
			виробляється
			при переході)
A0	A1	1	Y1,Y2
A1	A2	1	Y3
A2	A1	<u>X1</u>	-
	A5	X1	-
A3	A4	<u>X3</u>	Y5
	A4	X3	-
A4	A5	1	Y6
A5	A3	X2	Y4
	A6	<u>X2</u>	Y7
A6	A7	$X4\overline{X5}$	-
	A7	<i>X</i> 4 <i>X</i> 5	Y8
	A0	$\overline{X4}$	Y10
A7	A6	1	Y9

$$M = 8$$

 $m = [log 2 M[=]log 2 8[= 3]$

Кодування станів автомата

	Q3	0	1	1	0
	Q3 Q2	0	0	1	1
Q1					
0		A0	A1	A2	A4
1		A6	A7	A3	A5

A0 - 000

A1 - 001

A4-010

A2 - 011

A6 - 100

A7 - 101

Структурна таблиця переходів-виходів автомата Мілі.

Початковий	K(am)	Стан	K(as)	Х (умова	Ү (вихідний	Ф3
стан		переходу		переходу)	сигнал, що	
					виробляється	
					при переході)	
A0	000	A1	001	1	Y1,Y2	S 3
A1	001	A2	011	1	Y3	S2
A2	011	A1	001	$\overline{X1}$	-	R2
		A5	110	X1	-	S1R3
A3	111	A4	010	X 3	Y5	R1R3
		A4	010	X3	-	R1R3
A4	010	A5	110	1	Y6	S 1
A5	110	A3	111	X2	Y4	S 3
		A6	100	$\overline{X2}$	Y7	R2
A6	100	A7	101	$X4\overline{X5}$	-	S3
		A7	101	X4X5	Y8	S 3
		A0	000	$\overline{X4}$	Y10	R1
A7	101	A6	100	1	Y9	R3

$$S1 = a2X1 + a4$$

$$S2 = a1$$

$$S3 = a0 + a5 X2 + a6X4X5 + a6X4\overline{X5}$$

$$R1 = a3 + a6 \overline{X4}$$

$$R2 = a2\overline{X1} + a5\overline{X2}$$

$$R3 = a7 + a3 + a2X1$$

$$Y1 = a0$$

$$Y2 = a0$$

$$Y3 = a1$$

$$Y4 = a5X2$$

$$Y5 = a3\overline{X3}$$

$$Y6 = a4$$

$$Y7 = a5 \ \overline{X2}$$

$$Y8 = a6X4X5$$

$$Y9 = a7$$

$$Y10 = a6\overline{X4}$$

2. Промоделюйте отриману функціональну схему керуючого автомата у Proteus. Переконайтесь у правильності її роботи.

Частина функціональної схема автомата Мілі, що складається з комірок пам'яті (JK тригери) та дешифратор (74LS138).

Частини функціональної схема автомата Мілі, що складається з комбінаційних схем визначення функцій переходів (схема ліворуч) та функцій виходів (схема праворуч).

3. Виведіть відповідні графіки для вхідних та вихідних сигналів, що будуть в повній мірі описувати роботу розробленого Вами автомату.

Контрольні питання:

1. Дайте визначення цифрового автомату.

пристрій, що характеризується набором внутрішніх станів в яке він потрапить під дією команд закладеної в нього програми.

- 2. З яких етапів складається структурний синтез цифрового автомата Мілі?
 - Побудова змістовної схеми алгоритму.
 - Побудова блок-схеми закодованого мікроалгоритму.
 - Побудова граф-схеми переходів автомата Мілі.
 - Побудова таблиць переходів автомата Мілі.
 - Кодування станів автомата.
 - Побудова структурної таблиці переходів-виходів автомата Мілі.
 - Визначення системи рівнянь переходів.
 - Визначення системи рівнянь виходів.
 - Побудова функціональної схеми автомата.
- 3. В чому полягає евристичний алгоритм визначення

внутрішніх станів автомата?

Цей алгоритм мінімізує сумарне число перемикань елементів пам'яті на усіх переходах автомата і використовується для кодування станів автомата при синтезі на базі T, RS, JK -тригерів.

4. Чим відрізняється керуючий автомат від операційного автомата?

Керуючий автомат (Control Automaton) - це автомат, який керує діями іншого автомата або системи. Операційний автомат (Operational Automaton) - це автомат, який виконує певні операції в залежності від вхідних даних.

5. ЈК-тригер ϵ автоматом Мілі? Автомат Мура

Висновок: в даній лабораторній роботі провела структурний синтез автомата Мілі, а також зібрала його схему в Proteus і перевірила коректність її роботи.