

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS NON-LINÉAIRES

Méthode de Newton

3^{ème} année

Principe de la méthode de Newton

Soit f une fonction de classe $C^1([a,b])$, telle que $f' \neq 0$ sur [a,b], et admet une unique racine $x^* \in]a,b[:f(x^*)=0$.

Pour trouver une valeur approchée de x^* , la méthode de Newton, sous certaines conditions sur f, consiste à générer une suite récurrente $(x_n)_{n>0}$ convergente vers x^* .

Basée sur une approximation de f par son développement de Taylor à l'ordre 1 au voisinage de x_n , $n \ge 0$, x_{n+1} est déterminé par le point d'intersection de T_{x_n} , la tangente à C_f , la courbe représentative de f, au point $(x_n, f(x_n))$ et l'axe des abscisses:

$$\{(x_{n+1}, y_{n+1})\} = T_{x_n} \cap \{y = 0\},\$$

avec

$$T_{x_n}: y = f(x_n) + (x - x_n)f'(x_n), x \in \mathbb{R}.$$

Principe de la méthode de Newton

La relation de récurrence de la méthode de Newton est donnée par :

$$\begin{cases} x_0 \in [a, b] & , \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} & . \end{cases}$$

Cette relation de récurrence peut être exprimée comme suit:

$$\begin{cases} x_0 \in [a, b] , \\ x_{n+1} = g(x_n) , \end{cases}$$

avec $g(x)=x-\frac{f(x)}{f'(x)}$ et $f'(x)\neq 0,\ \forall x\in [a,b].$ La racine x^* de f correspond à l'unique point fixe de g ($g(x^*)=x^*$). En effet,

$$g(x) = x \Leftrightarrow x - \frac{f(x)}{f'(x)} = x \Leftrightarrow f(x) = 0.$$

Illustration graphique: Méthode de Newton

On considère l'exemple d'une fonction f continue et strictement décroissante sur [a,b] et ayant une unique racine $x^* \in]a,b[$ comme illustré ci-dessous:

Illustration graphique : Méthode de Newton

On commence par un choix de $x_0 = a$. On obtient $\{(x_1, y_1)\} = T_{x_0} \cap \{y = 0\}$.

Illustration graphique : Méthode de Newton

$$\{(x_2, y_2)\} = T_{x_1} \cap \{y = 0\}.$$

Illustration graphique : Méthode de Newton

$$\{(x_3, y_3)\} = T_{x_2} \cap \{y = 0\}.$$

Remarque

Si la suite récurrente (x_n) est convergente, alors $\lim_{n\to+\infty} x_n = x^*$.

En effet, si (x_n) converge vers l, alors l est un point fixe de la fonction g (g(l) = l). Par conséquent, f(l) = 0. Par unicité de la solution, $l = x^*$.

Questions:

- **1** La suite récurrente (x_n) est-elle toujours convergente ?
- ② Est-ce que le choix de x_0 intervient dans la convergence de la méthode de Newton?

Théorème de convergence global de la méthode de Newton

Soit f une fonction de classe $C^2([a,b],\mathbb{R})$, avec $[a,b]\subset\mathbb{R}$, vérifiant :

- ① $f(a) \times f(b) < 0$: existence d'une racine.
- ② $f'(x) \neq 0$, pour tout $x \in [a,b]: f$ est strictement monotone i.e. unicité de la racine x^*
- $f''(x) \neq 0$, pour tout $x \in [a, b]$: f est concave ou convexe.

Alors la suite $(x_n)_{n>0}$ définie par :

$$\begin{cases} x_0 \in [a, b] &, \text{ tel que } f(x_0) \times f''(x_0) > 0 \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = g(x_n) \end{cases}$$

est convergente vers l'unique racine x^* de f.

Choix de x_0

La question qui se pose : "Pourquoi ce choix de x_0 ?" Pour répondre à cette question, on rappelle l'étude de la monotonie des suites récurrentes:

On considère une suite récurrente $(u_n)_{n>0}$ définie par :

$$\begin{cases} u_0 \in I \\ u_{n+1} = h(u_n) \end{cases}$$

avec h une application de $I \subset \mathbb{R}$ dans \mathbb{R} et I un intervalle stable par h (c'est à dire $h(I) \subset I$).

Si h est strictement croissante sur I alors la suite $(u_n)_{n\geq 0}$ est monotone.

Dans ce cas:

- si $u_0 < u_1$ alors $(u_n)_{n>0}$ est croissante.
- si $u_0 > u_1$ alors $(u_n)_{n>0}$ est décroissante.

Choix de x_0

Dans le cas de la méthode de Newton, la fonction g définissant la suite récurrente $(x_n)_{n\geq 0}$, est définie sur [a,b] par:

$$\forall x \in [a, b], g(x) = x - \frac{f(x)}{f'(x)} \text{ et } g'(x) = \frac{f(x)f''(x)}{f'(x)^2}.$$

La fonction g est croissante si et seulement si le produit $f \times f''$ est strictement positif. En fixant x_0 dans $[a, x^*]$ ou dans $[x^*, b]$ qui sont deux intervalles stables par f et en comparant x_0 et x_1 la suite $(x_n)_{n\geq 0}$ sera, selon l'intervalle considéré, ou bien décroissante et minorée par x^* , ou bien croissante est majorée par x^* . Ceci implique que (x_n) est convergente.

Choix de x_0

Choix de x_0

Le choix de x_0 est important pour assurer la convergence de la méthode de Newton, ci-dessous nous représentons un contre exemple avec un x_0 non adéquat.

La méthode de Newton n'est pas convergente car x_1 n'appartient pas à l'intervalle [a,b]. Donc la condition sur x_0 est fondamentale pour assurer la convergence de la suite récurrente (x_n) .

Test d'arrêt

Supposons que la suite (x_n) est convergente vers x^* . Comment trouver une valeur approchée de x^* à une tolérance ε ?

Pour un $\varepsilon>0$ donné, on peut arrêter le procédé lorsque la condition suivante est vérifiée:

$$|f(x_n)| < \varepsilon.$$

Remarque

On peut imposer un nombre maximal N_{max} d'itérations pour arrêter le procédé.

Algorithme de la méthode de Newton

Soit f une fonction vérifiant les hypothèse du TVI sur [a,b] avec $f'(x) \neq 0$, pour tout $x \in]a,b[$.

- Initialiser $x_0 \in [a, b]$, la précision ϵ et le nombre d'itérations maximal N_{max} .
- n=0
- tant que $\Big(|f(x_n)| \ge \epsilon \ \& \ n < N_{max}\Big)$ faire

 - n = n + 1
- fin
- $x^* \approx x_{n+1}$ à ϵ près.

Exercice

On se propose de résoudre numériquement l'équation (E): f(x)=0 dans [0,1], où la fonctions f est donnée par :

$$f(x) = x^3 + x - 1, \ \forall x \in [0, 1].$$

- **①** Montrer que l'équation (E) admet une solution unique $x^* \in [0,1]$.
- ② Application de la méthode de dichotomie : estimer le nombre d'itérations nécessaire n_{ε} pour déterminer x^* avec une précision de $\varepsilon = 10^{-3}$.
- 3 Application de la méthode de Newton : Vérifier les hypothèses de la méthode de Newton pour la détermination de x^* et déterminer x_0 , une valeur initiale assurant la convergence de cette méthode. Déterminer x^* avec une précision de $\varepsilon=10^{-3}$.

Correction

- \bullet f est continue sur [0,1].
 - f(0).f(1) < 0: existence d'au moins une solution de (E) via le TVI.
 - $f'(x) = 3x^2 + 1 > 0$ sur [0,1], f est strictement croissante : unicité de la solution de (E).
- $n_{\varepsilon} > \log_2(10^3) = 9.9658 \Rightarrow n_{\varepsilon} = 10$
- **3** ► f est de classe $C^2([0,1])$.
 - ▶ f satisfait le TVI.
 - f'(x) > 0 sur]0,1[.
 - f''(x) = 6x > 0 sur [0, 1[.
 - $ightharpoonup x_0$ donné,
 - $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$
 - Pour $x_0 = 1$, f(1).f''(1) = 6 > 0: ce choix de $x_0 = 1$ satisfait le théorème de convergence de la méthode de Newton. Nous l'adoptons pour les calculs ci-dessous:

$x_1 = 0.75$	$\mathbf{x}_2 = 0.6860$	$\mathbf{x}_3 = 0.6823$
$\mathbf{f}(\mathbf{x}_1) = 0.171$	$f(\mathbf{x}_2) = 0.009$	$f(\mathbf{x}_3) = -6.663.10^{-5}$

 $\overline{\text{Donc } x_3 = 0.6823}$ est une approximation de x^* avec une précision inférieure à 10^{-3} .