

FCC Test Report

FCC ID : 2AF4TWAPS232N

Equipment : RFID IOT Access Point

Model No. : WAPS-232N_AS

Brand Name : Synin

Applicant: Synin Corporation

Address : 2F., No.14, Ln.123, Sec.6, Minquan E. Rd.,

Neihu Dist., Taipei City 11490, Taiwan (R.O.C)

Standard : 47 CFR FCC Part 15.247

Received Date : Oct. 13, 2015

Tested Date : Nov. 26 ~ Dec. 02, 2015

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

ilac MRA

Report No.: FR562201-01-3 Report Version: Rev. 01 Page: 1 of 34

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	6
1.3	Test Setup Chart	
1.4	The Equipment List	7
1.5	Test Standards	8
1.6	Measurement Uncertainty	8
2	TEST CONFIGURATION	9
2.1	Testing Condition	g
2.2	The Worst Test Modes and Channel Details	g
3	TRANSMITTER TEST RESULTS	10
3.1	Conducted Emissions	10
3.2	6dB and Occupied Bandwidth	15
3.3	RF Output Power	
3.4	Power Spectral Density	20
3.5	Unwanted Emissions into Restricted Frequency Bands	22
3.6	Emissions in Non-Restricted Frequency Bands	
4	TEST LABORATORY INFORMATION	34

Release Record

Report No.	Version	Description	Issued Date
FR562201-01-3	Rev. 01	Initial issue	Dec. 15, 2015

Report No.: FR562201-01-3 Page: 3 of 34

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	Conducted Emissions	[dBuV]: 0.433MHz 33.92 (Margin -13.28dB) - AV	Pass
15.247(d)	Radiated Emissions	[dBuV/m at 3m]: 665.35MHz	Pass
15.209	INdulated Liffissions	44.55 (Margin -1.45dB) - PK	rass
15.247(b)(3)	Maximum Output Power	Max Power [dBm]: 27.56	Pass
15.247(a)(2)	6dB Bandwidth	Meet the requirement of limit	Pass
15.247(e)	Power Spectral Density	Meet the requirement of limit	Pass
15.203	Antenna Requirement	Meet the requirement of limit	Pass

Report No.: FR562201-01-3 Page: 4 of 34

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

	RF General Information								
Frequency Ch. Freq. Channel Transmit Data Spread Spacil						Channel spacing (kHz)			
902 ~ 928	923.3 ~ 927.5	91 ~ 98 [8]	1	1172 ~ 21875	12 ~ 7	500			

Note 1: RF output power specifies that Maximum Conducted (Average) Output Power.

Note 2: The device uses CSS modulation.

1.1.2 Antenna Details

 nt. lo.	Brand	Model	Туре	Gain (dBi)	Connector	Remark
1	TSKY Co., Ltd.	A8-A003-00108	Dipole	-0.4	N -Type Male	

1.1.3 Power Supply Type of Equipment under Test (EUT)

Power Supply Type	55Vdc from POE
-------------------	----------------

1.1.4 Accessories

	Accessories					
No.	Equipment	Description				
1	POE	Brand: Microsemi Model: PD-9001GR/AC Power Rating: I/P: 100-240Vac, 50-60Hz, 0.67A O/P: 55Vdc, 0.6A				

1.1.5 Channel List

Frequency	band (MHz)	902 ~928		
Channel Frequency(MHz)		Channel	Frequency(MHz)	
91	923.3	95	925.7	
92	923.9	96	926.3	
93	924.5	97	926.9	
94	925.1	98	927.5	

Report No.: FR562201-01-3 Page: 5 of 34

1.1.6 Test Tool and Duty Cycle

Test Tool	Putty, Ver. 0.60.0.0		
Duty Cycle and Duty Factor	Duty cycle (%)	Duty factor (dB)	
Duty Cycle and Duty Factor	100%	0	

1.1.7 Power Setting

Modulation Mode Test Frequency (MHz)		Power Set
CSS	923.3	15
	927.5	15

1.2 Local Support Equipment List

	Support Equipment List						
No.	No. Equipment Brand Model FCC ID Signal cable / Length (m)						
1	Notebook	DELL	Latitude E6430	DoC	RJ45, 10m non-shielded.		

1.3 Test Setup Chart

Report No.: FR562201-01-3 Page: 6 of 34

1.4 The Equipment List

Test Item	Conducted Emission	Conducted Emission						
Test Site	Test Site Conduction room 1 / (CO01-WS)							
Instrument Manufacturer Model No. Serial No. Calibration Date Calibration								
EMC Receiver	R&S	ESCS 30	100169	Oct. 21, 2015	Oct. 20, 2016			
LISN	SCHWARZBECK	Schwarzbeck 8127	8127-667	Nov. 13, 2015	Nov. 12, 2016			
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Dec. 31, 2014	Dec. 30, 2015			
Measurement Software AUDIX e3 6.120210k NA N								
Note: Calibration Interval of instruments listed above is one year.								

Test Item	Radiated Emission							
Test Site	966 chamber1 / (03Cl	966 chamber1 / (03CH01-WS)						
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration Date Calibration						
Spectrum Analyzer	R&S	FSV40	101498	Dec. 09, 2014	Dec. 08, 2015			
Receiver	R&S	ESR3	101658	Nov. 04, 2015	Nov. 03, 2016			
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Aug. 20, 2015	Aug. 19, 2016			
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Dec. 11, 2014	Dec. 10, 2015			
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Nov. 04, 2015	Nov. 03, 2016			
Loop Antenna	R&S	HFH2-Z2	11900	Nov. 16, 2015	Nov. 15, 2016			
Preamplifier	Burgeon	BPA-530	SN:100219	Sep. 10, 2015	Sep. 09, 2016			
Preamplifier	Agilent	83017A	MY39501308	Oct. 02, 2015	Oct. 01, 2016			
Preamplifier	EMC	EMC184045B	980192	Sep. 01, 2015	Aug. 31, 2016			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 15, 2014	Dec. 14, 2015			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 15, 2014	Dec. 14, 2015			
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 15, 2014	Dec. 14, 2015			
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Dec. 15, 2014	Dec. 14, 2015			
LF cable 10M	Woken	CFD400NL-LW	CFD400NL-002	Dec. 15, 2014	Dec. 14, 2015			
Measurement Software	AUDIX	e3	6.120210g	NA	NA			
Note: Calibration Inter	val of instruments liste	d above is one year.						

Test Item	RF Conducted						
Test Site	(TH01-WS)						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV40	101063	Feb. 03, 2015	Feb. 02, 2016		
Power Meter	Anritsu	ML2495A	1241002	Sep. 21, 2015	Sep. 20, 2016		
Power Sensor	Anritsu	MA2411B	1207366	Sep. 21, 2015	Sep. 20, 2016		
Signal Generator	R&S	SMB100A	175727	Oct. 05, 2015	Oct. 04, 2016		
Measurement Software	Sporton	Sporton_1	1.3.30	NA	NA		
Note: Calibration Inte	rval of instruments liste	d above is one year.		•			

Report No.: FR562201-01-3 Page: 7 of 34

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards and KDB documents.

47 CFR FCC Part 15.247 ANSI C63.10-2013 FCC KDB 558074 D01 DTS Meas Guidance v03r03

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±34.134 Hz				
Conducted power	±0.808 dB				
Power density	±0.463 dB				
Conducted emission	±2.670 dB				
AC conducted emission	±2.90 dB				
Radiated emission ≤ 1GHz	±3.72 dB				
Radiated emission > 1GHz	±5.65 dB				

Report No.: FR562201-01-3 Page: 8 of 34

2 Test Configuration

2.1 Testing Condition

Test Item	Test Site	Ambient Condition	Tested By
AC Conduction	CO01-WS	22°C / 49%	Peter Lin
Radiated Emissions	03CH01-WS	21-23°C / 61-65%	Aska Huang Warren Lee
RF Conducted	TH01-WS	22°C / 64%	Alex Huang

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Test Frequency (MHz)	Modulation / SF	Test Configuration
Conducted Emissions	923.3 / 927.5	CSS / 12	
Radiated Emissions ≤1GHz	923.3 / 927.5	CSS / 12	
Radiated Emissions >1GHz Maximum Output Power 6dB bandwidth Power spectral density	923.3 / 927.5	CSS / 12	

Report No.: FR562201-01-3 Page: 9 of 34

3 Transmitter Test Results

3.1 Conducted Emissions

3.1.1 Limit of Conducted Emissions

Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5	56	46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.1.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- 2. The device is connected to line impedance stabilization network (LISN) and other accessories are connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V / 60Hz.

3.1.3 Test Setup

Note: 1. Support units were connected to second LISN.

Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

Report No.: FR562201-01-3 Page: 10 of 34

Test Result of Conducted Emissions 3.1.4

Report No.: FR562201-01-3 Page: 11 of 34

Report No.: FR562201-01-3 Page: 12 of 34

Report No.: FR562201-01-3 Page: 13 of 34

Report No.: FR562201-01-3 Page: 14 of 34

3.2 6dB and Occupied Bandwidth

3.2.1 Limit of 6dB Bandwidth

The minimum 6dB bandwidth shall be at least 500 kHz.

3.2.2 Test Procedures

6dB Bandwidth

- 1. Set resolution bandwidth (RBW) = 100 kHz, Video bandwidth = 300 kHz.
- 2. Detector = Peak, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower) that are attenuated by 6dB relative to the maximum level measured in the fundamental emission.

Occupied Bandwidth

- 1. Set resolution bandwidth (RBW) = 10 kHz, Video bandwidth = 30 kHz.
- Detector = Sample, Trace mode = max hold.
- 3 Sweep = auto couple, Allow the trace to stabilize.
- 4. Use the OBW measurement function of spectrum analyzer to measure the occupied bandwidth.

3.2.3 Test Setup

Report No.: FR562201-01-3 Page: 15 of 34

3.2.4 Test Result of 6dB and Occupied Bandwidth

Modulation / SF	NI	Freq. (MHz)	6dB Bandwidth (MHz)				
Wodulation / SF	N _{TX}	rieq. (Minz)	Chain 0	Chain 1	Chain 2	Chain 3	Limit (kHz)
CSS / 12	1	923.3	0.629				500
CSS / 12	1	927.5	0.629				500

Report No.: FR562201-01-3 Page: 16 of 34

Modulation / SF	N	Freq.		99% Occupied E	Bandwidth (MHz)	
Wodulation / SF	INTX	(MHz)	Chain 0	Chain 1	Chain 2	Chain 3
CSS / 12	1	923.3	0.497			
CSS / 12	1	927.5	0.497			

Report No.: FR562201-01-3 Page: 17 of 34

3.3 RF Output Power

3.3.1 Limit of RF Output Power

Cond	uct	ed po	ower shall not exceed 1Watt.				
\boxtimes A	Ante	enna	gain <= 6dBi, no any corresponding reduction is in output power limit.				
	Antenna gain > 6dBi						
C	con	ducte	ting antennas of directional gain greater than 6 dBi are used, the ed output power from the intentional radiator shall be reduced by the amount in dB that the eal gain of the antenna exceeds 6 dBi				
3.3.2		Test	Procedures				
	Max	kimun	n Peak Conducted Output Power				
[Spe	ctrum analyzer				
		1.	Set RBW = 1MHz, VBW = 3MHz, Detector = Peak.				
		2.	Sweep time = auto, Trace mode = max hold, Allow trace to fully stabilize.				
		3.	Use the spectrum analyzer channel power measurement function with the band limits set equal to the DTS bandwidth edges.				
[Pow	ver meter				
		1.	A broadband Peak RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.				
	Max	kimun	n Conducted Output Power				
	\boxtimes	Pow	ver meter				
		1.	A broadband Average RF power meter is used for output power measurement. The video bandwidth of power meter is greater than DTS bandwidth of EUT. If duty cycle of test signal is not 100 %, trigger and gating function of power meter will be enabled to capture transmission burst for measuring output power.				
3.3.3		Test	Setup				

Report No.: FR562201-01-3 Page: 18 of 34

Power Sensor

Power Meter

Report Version: Rev. 01

EUT

3.3.4 Test Result of Maximum Output Power

Modulation / SF	N _{TX}	Freq. (MHz)	Output Power (mW)	Output Power (dBm)	Limit (dBm)
CSS / 12	1	923.3	570.164	27.56	30
CSS / 12	1	927.5	538.270	27.31	30

Report No.: FR562201-01-3 Page: 19 of 34

3.4 Power Spectral Density

3.4.1 Limit of Power Spectral Density

Power spectral density shall not be greater than 8 dBm in any 3 kHz band.

3.4.2 Test Procedures

- Maximum peak conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 3kHz, VBW = 10kHz.
 - Detector = Peak, Sweep time = auto couple.
 - 3. Trace mode = max hold, allow trace to fully stabilize.
 - 4. Use the peak marker function to determine the maximum amplitude level.
- Maximum (average) conducted output power was used to demonstrate compliance to the fundamental output power limit.
 - Set the RBW = 100kHz, VBW = 300 kHz.
 - 2. Detector = RMS, Sweep time = auto couple.
 - 3. Set the sweep time to: ≥ 10 x (number of measurement points in sweep) x (maximum data rate per stream).
 - 4. Perform the measurement over a single sweep.
 - 5. Use the peak marker function to determine the maximum amplitude level.

3.4.3 Test Setup

Report No.: FR562201-01-3 Page: 20 of 34

3.4.4 Test Result of Power Spectral Density

Modulation / SF	N _{TX}	Freq. (MHz)	Total Power Spectral Density (dBm/3kHz)	Limit (dBm/3kHz)
CSS / 12	1	923.3	6.58	8.00
CSS / 12	1	927.5	6.34	8.00

Report No.: FR562201-01-3 Page: 21 of 34

3.5 Unwanted Emissions into Restricted Frequency Bands

3.5.1 Limit of Unwanted Emissions into Restricted Frequency Bands

Restricted Band Emissions Limit							
Frequency Range (MHz)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300				
0.490~1.705	24000/F(kHz)	33.8 - 23	30				
1.705~30.0	30	29	30				
30~88	100	40	3				
88~216	150	43.5	3				
216~960	200	46	3				
Above 960	500	54	3				

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

3.5.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

Report No.: FR562201-01-3 Page: 22 of 34

3.5.3 Test Setup

Report No.: FR562201-01-3 Page: 23 of 34

3.5.4 Transmitter Radiated Unwanted Emissions (Below 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-01-3 Page: 24 of 34

Modulation / SF	CSS / 12	Test Freq. (MHz)			923.3			
Polarization	Vertical							
90 Level (dB	uV/m)							
00								
80								
70								
60								
						FCC CLAS	S-B	
50								
40				5	_			
30	2 3				6			
	ĭ	Ī						
20								
10								
0								
030 100.	200. 30		0. 600. ncy (MHz)	700.	800.	900.	1000	
ı	Freq. Emission	n Limit Margin	SA	Factor	Remark	ANT	Turn	
	level	_	reading			High	Table	
	MHz dBuV/m	dBuV/m dB	dBuV	dB		cm	deg	
1 -	31.94 28.33	40.00 -11.67	46.04	-17.71	Peak			
		43.50 -15.35		-16.77	Peak			
		46.00 -19.51		-17.52	Peak			
	398.60 26.88 665.35 36.71	46.00 -19.12 46.00 -9.29	40.41 45.27	-13.53 -8.56	Peak Peak			
					MOOK			

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-01-3 Page: 25 of 34

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-01-3 Page: 26 of 34

Modulation / SF	CSS / 12			Test Freq. (MHz)			927.5	
Polarization	Vertical							
90 Level (d	BuV/m)							
80								
80								
70								
60								
							FCC CLAS	SS-B
50								_
40					5			
	2					6		
30	Í	3 	4					
20								
10								
10								
0 30 10	0. 200.	300.		00. 600 ency (MHz)	0. 700.	800.	900.	1000
	Freq. Emis	tion limit			Factor	Remark	ANT	Turn
		/el	r mangin	reading		itelliai k	High	Table
		//m dBuV	/m dB	dBuV	dB		cm	deg
1	31.94 28	.55 40.00	-11.45	46.26	-17.71	Peak		
2		.57 43.50		45.34		Peak		
3			-18.81	44.50	-17.31	Peak		
4		.18 46.00		39.71		Peak		
5			-8.70			Peak		
6	773.02 32	.26 46.00	1 -13.74	39.14	-6.88	Peak		

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Note 3: All spurious emissions below 30MHz are more than 20 dB below the limit.

Report No.: FR562201-01-3 Page: 27 of 34

3.5.5 Transmitter Radiated Unwanted Emissions (Above 1GHz)

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-01-3 Page: 28 of 34

Modulation / SF	CSS / 12			-	Test Freq. (MHz)			923.3		
Polarization	Vertical									
90	Level	(dBuV/m)								
80	J								FCC CLA	SS-B
70	0									
							8			
60	"		2	4	6			FCC	CLASS-B (AVG)
50	0		1	3	5		1			
40	J									
30	0									
2/										
20	J									
10	0									
,	0									
•	1000	2000.	3000.	4000.	5000.	6000. ency (MHz)	7000.	8000.	9000.	10000
		Enoa I	mission	l imit			Factor	Remark	ANT	Turn
		Freq. (level	LIMIT	margin	reading		Kemark	High	
		MHz	dBuV/m	dBuV/m	dB	dBuV	dB		cm	deg
1		2769.90		54.00		49.65	-1.65	Average		
2		2769.90		74.00		53.65	-1.65	Peak	175	
3		3693.20		54.00		49.13	0.52	Average		
4 5		3693.20 4616.50			-18.93 -8.19	54.55	0.52 4.16	Peak	155	
6		4616.50		74.00		41.65 48.23	4.16	Average Peak	140 140	151
7		7386.40				41.34	9.62	Average		220
,		7300.40	50.50	54.00	-5.04	41.54	5.02	Average	1/3	220

9.62

Peak

175

220

Note 1: Emission Level (dBuV/m) = SA Reading (dBuV/m) + Factor* (dB)

7386.40 61.06 74.00 -12.94 51.44

*Factor includes antenna factor , cable loss and amplifier gain Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-01-3 Page: 29 of 34

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-01-3 Page: 30 of 34

*Factor includes antenna factor, cable loss and amplifier gain

Note 2: Margin (dB) = Emission level (dBuV/m) – Limit (dBuV/m).

Report No.: FR562201-01-3 Page: 31 of 34

3.6 Emissions in Non-Restricted Frequency Bands

3.6.1 Emissions in Non-Restricted Frequency Bands Limit

Peak power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.6.3 Test Procedures

Reference level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Use the peak marker function to determine the maximum PSD level

Emission level measurement

- 1. Set RBW=100kHz, VBW = 300kHz, Detector = Peak, Sweep time = Auto
- 2. Trace = max hold, Allow Trace to fully stabilize
- 3. Scan Frequency range is up to 10GHz
- 4. Use the peak marker function to determine the maximum amplitude level

3.6.4 Test Setup

Report No.: FR562201-01-3 Page: 32 of 34

3.6.5 Unwanted Emissions into Non-Restricted Frequency Bands

Report No.: FR562201-01-3 Page: 33 of 34

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan,

R.O.C.

Kwei Shan

Tel: 886-3-271-8666 No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan

Hsien 333, Taiwan, R.O.C.

Kwei Shan Site II

Tel: 886-3-271-8640

No. 14-1, Lane 19, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FR562201-01-3 Page: 34 of 34