Il problema HC è NP-completo

Dato un grafo non orientato G=(V,E), un ciclo in G che passa una ed una sola volta attraverso ogni nodo di G è un **ciclo hamiltoniano** in G

- $\mathcal{I}_{HC} = \{ \langle G = (V, E) \rangle : G \text{ è un grafo non orientato } \}.$
- $\mathcal{S}_{HC}(G,k) = \{ \langle u_1, u_2, ..., u_n \rangle : \text{ per } i = 1, ..., n, u_i \in V \ \land \ n = \mid V \mid \}.$
- $egin{aligned} ullet &\pi_{HC}(G,k,\mathcal{S}_{HC}(G,k)) = \exists \langle u_1,u_2,...,u_n
 angle \in \mathcal{S}_{HC}(G,k) : (u_1,u_n) \in E \ \land \ orall i,...,n-1[(u_i,u_{i+1}) \in E] \ \land \ orall i,j=1,...,n \ e \ i
 eq j \ [u_i
 eq u_j]. \end{aligned}$

HC è \mathbf{NP} -completo, la dimostrazione è omessa.

Il problema HP è NP-completo

Dati un grafo non orientato G=(V,E) ed una coppia di nodi $s,t\in V$, esiste un **percorso hamiltoniano** da s a t in G, ossia un percorso fra s e t che passa una e una sola volta attraverso ciascun nodo di G?

- $\mathcal{I}_{HC} = \{ \langle G = (V, E), s, t \rangle : G \text{ è un grafo non orientato } \land s \in V \land t \in \}.$
- $\mathcal{S}_{HC}(G,k) = \{ \langle u_1, u_2, ..., u_n \rangle : \text{ per } i = 1, ..., n, u_i \in V \ \land \ n = \mid V \mid \}.$
- $egin{aligned} ullet & \pi_{HC}(G,k,\mathcal{S}_{HC}(G,k)) = \exists \langle u_1,u_2,...,u_n
 angle \in \mathcal{S}_{HC}(G,k) : s = u_1 \ \land \ t = u_n \ \land \ orall i = 1,...,n-1[(u_i,u_{i+1}) \in E] \ \land \ orall i,j = 1,...,n, \ e \ i
 eq j \ [u_i
 eq u_j]. \end{aligned}$

Dimostriamo che $HP\in \mathbf{NP}$ mostrando un certificato che sia verificabile in tempo polinomiale. Un certificato è una sequenza di nodi $S=\langle u_1,u_2,\ldots,u_n\rangle$. Verifichiamo che S è effettivamente un percorso hamiltoniano da s a t, ossia che S soddisfa $\pi_{HC}(G,k,\mathcal{S}_{HC}(G,k))$, in tempo $O(|E||V|+|V|^2)$

ossia, in tempo polinomiale in $|\langle G=(V,E),s,t
angle|$

$HC \Longrightarrow HP$

Dimostriamo che HP è completo per \mathbf{NP} riducendo polinomialmente HC a HP. In effetti, i due problemi HP e HC si assomigliano moltissimo, però la loro somiglianza potrebbe trarre in inganno. Ad una prima occhiata, potremmo pensare di trasformare una istanza $\langle G=(V,E)\rangle$ di HC, nell'istanza $\langle G=(V,E),s,t\rangle$ di HP, in cui s e t sono due qualsiasi nodi in V tali che $(s,t)\in E$ pertanto, potremmo pensare, se c'è un ciclo hamiltoniano in G, esso passa sicuramente sia per s che per t, e, per di più, s e t sono collegati da un arco, ma non funziona!

Il grafo contiene un ciclo hamiltoniano ma non contiene un percorso fra $s \in t$ che passi una e una sola volta per ogni nodo

Dimostriamo che HP è completo per \mathbf{NP} riducendo polinomialmente HC a HP. Trasformiamo una istanza $\langle G=(V,E)\rangle$ di HC nell'istanza $\langle G'=(V',E'),s,t\rangle$ di HP, dove s e t sono due nuovi nodi, ossia, $s,t\notin V$ e $V'=V\cup \{\,s,t\,\}$ ed otteniamo E' scegliendo un nodo $u\in V$, collegando s ad u e collegando t a tutti i nodi che in G sono adiacenti ad u: $E'=E\cup \{\,(s,u)\,\}\cup \{\,(t,x):(u,x)\in E\,\}$

Trasformiamo una istanza $\langle G=(V,E)\rangle$ di HC nell'istanza $\langle G'=(V',E'),s,t\rangle$ di HP, dove s e t sono due nuovi nodi, ossia, $s,t\notin V,V'=V\cup \{\,s,t\,\}, E'=E\cup (s,u)\cup \{\,(t,x):(u,x)\in E\,\}.$

Se G contiene un ciclo hamiltoniano $\langle u_1,u_2,\ldots,u_n\rangle$, scegliamo $u_1=u$ (il nodo al quale è collegato

s),poiché $(u_i,u_{i+1})\in E$ per ogni $i=1,\ldots,n$ e $u_i
eq u_j$ per i
eq j, allora $\langle s,u_1,u_2,\ldots,u_n,t\rangle$ è un percorso hamiltoniano in G'

$HC \Leftarrow HP$

Trasformiamo un'istanza $\langle G=(V,E)\rangle$ di HC nell'istanza $\langle G'=(V',E'),s,t\rangle$ di HP, dove s e t sono due nuovi nodi, ossia, $s,t\notin V,V'=V\cup \{\ s,t\ \}, E'=E\cup \{\ (s,u)\ \}\cup \{\ (t,x):(u,x)\in E\ \}.$

Se G' contiene un **percorso hamiltoniano** $\langle s, u_1, u_2, \ldots, u_n, t \rangle$, poiché $(u_i, u_{i+1}) \in E$ per ogni $i=1,\ldots,n-1$ e $u_i \neq u_j$ per $i \neq j$, e poiché $(u_n,u_1) \in E$ – per costruzione di G', in quanto t è stato collegato a tutti i nodi adiacenti a u_1 in G, allora $\langle u_1,u_2,\ldots,u_n \rangle$ è un ciclo hamiltoniano in G. Infine, costruire $\langle G'=(V',E'),s,t \rangle$ richiede tempo polinomiale in $|\langle G=(V,E) \rangle|$. Questo completa la prova che $HC \leq HP$. E che HP è \mathbf{NP} -completo.