Министерство науки и высшего образования Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)"

(МГТУ им. Н.Э. Баумана)

Факультет "Фундаментальные науки" Кафедра "Высшая математика"

ОТЧЁТ по учебной практике за 1 семестр 2020—2021 гг.

Руководитель практики,		Кравченко О.В
ст. преп. кафедры ФН1	$(no\partial nuc_{\mathcal{b}})$	правченко О.Б
студент группы ФН1–11		Васильев Е.Р.
	$(no\partial nuc b)$	

Москва, 2020 г.

Содержание

1	Цели и задачи практики	3
	1.1 Цели	3
	1.2 Задачи	3
	1.3 Индивидуальное задание	3
2	Отчёт	4
3	Индивидуальное задание	5
	3.1 Пределы и непрерывность	5
\mathbf{C}_{1}	писок литературы	10

1 Цели и задачи практики

1.1 Цели

— развитие компетенций, способствующих успешному освоению материала бакалавриата и необходимых в будущей профессиональной деятельности.

1.2 Задачи

- 1. Знакомство с программными средствами, необходимыми в будущей профессиональной деятельности.
- 2. Развитие умения поиска необходимой информации в специальной литературе и других источниках.
- 3. Развитие навыков составления отчётов и презентации результатов.

1.3 Индивидуальное задание

- 1. Изучить способы отображения математической информации в системе вёртски L^AT_FX.
- 2. Изучить возможности системы контроля версий Git.
- 3. Научиться верстать математические тексты, содержащие формулы и графики в системе IATEX. Для этого, выполнить установку свободно распространяемого дистрибутива TeXLive и оболочки TeXStudio.
- 4. Оформить в системе IATEX типовые расчёты по курсе математического анализа согласно своему варианту.
- 5. Создать аккаунт на онлайн ресурсе GitHub и загрузить исходные tex-файлы и результат компиляции в формате pdf.

2 Отчёт

Актуальность темы продиктована необходимостью владеть системой вёрстки I^AT_EXи средой вёрстки TeXStudio для отображения текста, формул и графиков. Полученные в ходе практики навыки могут быть применены при написании курсовых проектов и дипломной работы, а также в дальнейшей профессиональной деятельности.

Ситема вёрстки IATEX содержит большое количество инструментов (пакетов), упрощающих отображение информации в различных сферах инженерной и научной деятельности.

3 Индивидуальное задание

3.1 Пределы и непрерывность.

Задача № 1.

Условие:

Дана последовательность $a_n=\frac{4n-1}{2n+1}$ и число c=2. Доказать, что $\lim_{x\to\infty}a_n=c$, а именно для кажого $\varepsilon>0$ найти наименьшее натуральное число $N=N(\varepsilon)$ такое, что $|a_n-c|<\varepsilon$. Заполнить таблицу:

ε	0, 1	0,01	0,001
$N(\varepsilon)$			

Решение:

$$a_n = \frac{4n-1}{2n+1}$$
; $c = 2$.

Найдём предел a_n :

$$\lim_{x \to \infty} a_n = 2 = c.$$

Рассмотрим $|a_n - c| < \varepsilon$:

$$\begin{split} \left| \frac{4n-1}{2n+1} - 2 \right| &< \varepsilon, \\ \left| \frac{4n-1-4n-2}{2n+1} \right| &< \varepsilon, \\ \frac{3}{2n+1} &< \varepsilon, \\ n &> \frac{3-\varepsilon}{2\varepsilon}. \end{split}$$

При $\varepsilon = 0, 1$ получим:

$$n > \frac{3-0,1}{2*0,1} \Leftrightarrow n > 14,5.$$

При $\varepsilon = 0,01$ получим:

$$n > \frac{3 - 0.01}{2 * 0.01} \Leftrightarrow n > 149.5.$$

При $\varepsilon = 0,001$ получим:

$$n > \frac{3 - 0,001}{2 * 0.001} \Leftrightarrow n > 1499, 5.$$

Заполним таблицу:

ε	0, 1	0,01	0,001
$N(\varepsilon)$	15	150	1500

Задача № 2.

Условие: Вычислить пределы функций

a	$ \lim_{x \to 1} \frac{x^3 + 5x^2 + 3x - 9}{x^3 + 4x^2 - 4x - 1} $
б	$\lim_{x \to \infty} \frac{2x\sqrt{x} + \sqrt{1 + 9x^3} + x}{3x\sqrt{x + 10}}$
В	$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2+x} - \sqrt{2x}}$
Г	$\lim_{x \to 1} \left(\frac{2x - 1}{x}\right)^{\frac{1}{\sqrt[3]{x} - 1}}$
Д	$\lim_{x \to 0} (\arccos 4x)^{\lg \sin^2 x}$
е	$\lim_{x \to 1} \frac{3^{5x-3} - 3^{2x^2}}{\operatorname{tg}(\pi x)}$

Решение:

a)

$$\lim_{x \to 1} \frac{x^3 + 5x^2 + 3x - 9}{x^3 + 4x^2 - 4x - 1}.$$

Получаем неопределённость:

$$\left[\frac{0}{0}\right].$$

Разложим на множители:

$$\lim_{x \to 1} \frac{(x+3)^2(x-1)}{(x^2+5x+1)(x-1)}.$$

Сокращаем одинаковые множители:

$$\lim_{x \to 1} \frac{(x+3)^2}{(x^2+5x+1)} = \frac{16}{7}.$$

б)

$$\lim_{x\to\infty}\frac{2x\sqrt{x}+\sqrt{1+9x^3}+x}{3x\sqrt{x+10}}.$$

Получаем неопределённость:

$$\left[\frac{0}{0}\right]$$
.

Делим на $x^{\frac{3}{2}}$ числитель и знаменатель:

$$\lim_{x \to \infty} \frac{2 + \sqrt{\frac{1}{x} + 9} + \frac{1}{\sqrt{x}}}{3\sqrt{1 + \frac{10}{x}}} = \frac{5}{3}.$$

 $B \Big)$

$$\lim_{x \to 2} \frac{\sqrt[3]{4x} - 2}{\sqrt{2+x} - \sqrt{2x}}.$$

Получаем неопределённость:

$$\left[\frac{0}{0}\right]$$

Домножим начальное выражение на сопряженные множители:

$$\lim_{x \to 2} \frac{(4x-8)(\sqrt{2+x}+\sqrt{2x})}{(2-x)(\sqrt[3]{(4x)^2}+2\sqrt[3]{4x}+4)}.$$

Сократим множители и вынесем коэффициент за предел:

$$-4\lim_{x\to 2}\frac{(\sqrt{2+x}+\sqrt{2x})}{(\sqrt[3]{(4x)^2}+2\sqrt[3]{4x}+4)}=-\frac{4}{3}.$$

$$\lim_{x \to 1} \left(\frac{2x-1}{x}\right)^{\frac{1}{\sqrt[3]{x}-1}}.$$

Подставляя значение, получим:

$$[1^{\infty}]$$

Используя секретную формулу №197, получим:

$$\exp \lim_{x \to 1} (\frac{2x-1}{x} - 1)(\frac{1}{\sqrt[3]{x} - 1}).$$

Считаем чему равна степень:

$$\lim_{x \to 1} \left(\frac{2x - 1}{x} - 1 \right) \left(\frac{1}{\sqrt[3]{x} - 1} \right),$$

$$\lim_{x \to 1} \left(\frac{x-1}{x} \right) \left(\frac{1}{\sqrt[3]{x} - 1} \right).$$

Умножаем на сопряженное выражение к $\sqrt[3]{x} - 1$:

$$\lim_{x \to 1} \frac{\sqrt[3]{x^2} + \sqrt[3]{x} + 1}{x} = 3.$$

Значит предел начального выражения равен:

$$e^3$$
.

$$\lim_{x \to 0} (\arccos 4x)^{\lg \sin^2 x}.$$

Подставляя значение, получим:

$$\left[\left(\frac{\pi}{2} \right)^{-\infty} \right] = 0.$$

e)
$$\lim_{x \to 1} \frac{3^{5x-3} - 3^{2x^2}}{\operatorname{tg}(\pi x)}.$$

Получаем неопределённость:

$$\lim_{x \to 1} \frac{\left[\frac{0}{0}\right]}{\tan \frac{3^{2x^2}(3^{5x-3-2x^2}-1)}{\tan (\pi x)}}.$$

Выполним замену переменных $t = x - 1; t \to 0$:

$$\lim_{t \to 0} \frac{3^{2(t+1)^2} (3^{t-2t^2} - 1)}{\operatorname{tg}(\pi t + \pi)}.$$

По формуле приведения для тангенса получим:

$$tg(\pi t + \pi) = tg(\pi t).$$

Заменим это выражение на эквивалетное при $t \to 0$:

$$tg(\pi t) \sim \pi t$$
.

Подставим в знаменатель это выражение:

$$\lim_{t \to 0} \frac{3^{2(t+1)^2} (3^{t-2t^2} - 1)}{\pi t}.$$

Заменим $3^{t-2t^2}-1$ на эквивалентное при $t\to 0$:

$$3^{t-2t^2} - 1 = t(1-2t)\ln 3.$$

Подставим в числитель это выражение:

$$\lim_{t \to 0} \frac{3^{2(t+1)^2} t (1-2t) \ln 3}{\pi t}.$$

Сократим:

$$\lim_{t \to 0} \frac{3^{2(t+1)^2} (1-2t) \ln 3}{\pi} = \frac{9 \ln 3}{\pi}.$$

Ответ:а)
$$\frac{16}{7}$$
; б) $\frac{5}{3}$; в) $-\frac{4}{3}$; г) e^3 ; д)0; е) $\frac{9 \ln 3}{\pi}$.

Условие: а) Показать, что данные функции f(x) и g(x) являются бесконечно малыми или бесконечно большими при указанном стремлении аргумента. б) Для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию) вида $C(x-x_0)^{\alpha}$ при $x \to x_0$ или Cx^{α} при $x \to \infty$, указать их порядки малости (роста). в) Сравнить функции f(x) и g(x) при указанном стремлении. $f(x) = \sqrt[3]{1-\sqrt[3]{x}}; \ g(x) = 4(x-1)^2.$

Решение:

a)

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \sqrt[3]{1 - \sqrt[3]{x}} = 0.$$

Получается f(x) БМ.

$$\lim_{x \to 1} g(x) = \lim_{x \to 1} 4(x-1)^2 = 0.$$

Получается g(x) БМ.

б) Нужно привести к виду:

$$f(x) = C(x-1)^{p},$$

$$g(x) = C(x-1)^{p},$$

$$x \to 1$$

$$f(x) = \sqrt[3]{1 - \sqrt[3]{x}}.$$

Выполним замену переменных $t = x - 1; t \to 0$:

$$f(x) = \sqrt[3]{1 - \sqrt[3]{t+1}} \sim -\sqrt[3]{\frac{1}{3}t}.$$

Получим:

$$f(x) = \sqrt[3]{\frac{1}{3}}(x-1)^{\frac{1}{3}}.$$

f(x) - БМ $\frac{1}{3}$ порядка Для g(x):

$$g(x) = 4(x-1)^2.$$

g(x) - БМ 2 порядка.

$$\lim_{x \to 1} \frac{g(x)}{f(x)} = 0.$$

Получается f(x) = o(g(x)).

Список литературы

- [1] Львовский С.М. Набор и вёрстка в системе IATEX, 2003 с.
- [2] Котельников И.А. IATEX 2е по-русски, 2004.