WHAT IS CLAIMED IS:

1		1.	A wavelength router for receiving, at an input port, light having a
2	plurality of sp	ectral b	pands and directing subsets of the spectral bands to respective ones of a
3	plurality of ou	itput po	orts, the wavelength router comprising:
4		an opt	tical train disposed between the input port and output ports providing
5	optical paths f	or rout	ing the spectral bands, the optical train including a half-wave plate and a
6	dispersive eler	ment di	sposed to intercept light traveling from the input port, the optical train
7	being configur	red so t	that light encounters the dispersive element and the half-wave plate twice
8	before reachin	ıg any o	of the output ports; and
9	• • • • • • • • • • • • • • • • • • • •	a rout	ing mechanism having at least one dynamically configurable routing
10	element to dire	ect a gi	ven spectral band to different output ports depending on a state of the
11	dynamically c	onfigu	rable routing element.
1		2.	The average at the residence of the state of
2	comprises a fr		The wavelength router recited in claim 1 wherein the optical train see optical train.
2	comprises a m	сс-ѕрас	ce optical train.
1		3.	The wavelength router recited in claim 1 wherein the routing
2	mechanism inc	cludes a	a plurality of retroreflecting elements, each associated with a respective
3	one of the spec	ctral ba	nds.
1		4.	The wavelength router recited in claim 3 wherein at least one of the
2	retroreflecting		its is configured to reflect the given spectral band an even number of
3	times.	CICITICI	is is configured to reflect the given spectral band an even number of
,			
1		5.	The wavelength router recited in claim 4 wherein each of the
2	retroreflecting	elemer	nts is configured to reflect the given spectral band twice.
1		6.	The wavelength router recited in claim 3 wherein each of the
2 -			ats includes a rotational degree of freedom.
-	remoremeeting	OTOTITO!	as morades a rotational degree of freedom.
1		7.	The wavelength router recited in claim 1 wherein a fast axis of the
2	half-wave plate	e is orie	ented substantially at an odd multiple of 22.5° with respect to a
3	polarization ax	is of th	e given spectral band.
1	÷	8.	The wavelength router recited in claim 1 wherein the dispersion
2	element compr		
		_	_

1		9. The wavelength router recited in claim 1 wherein:
2		the optical train further includes a lens;
3		the dispersive element comprises a reflection grating;
4		light coming from the input port is collimated by the lens and dispersed by the
5	reflection gra	ting as a plurality of angularly separated beams corresponding to the spectral
6	bands;	
7 7		the angularly separated beams are focused by the lens on respective
8	dynamically	configurable routing elements comprised by the routing mechanism; and
9	٠.	the half-wave plate is disposed between the reflection grating and the routing
10	mechanism.	
1		
		10. The wavelength routing element recited in claim 9 wherein the half-
15	wave plate is	disposed between the lens and the reflection grating.
4 1		11. The wavelength routing element recited in claim 9 wherein the half-
112 111 111 112	wave plate is	disposed between the lens and the routing mechanism.
	*	12. The wavelength routing element recited in claim 1 wherein:
12	• •	the optical train further includes a first lens and a second lens;
13		the dispersive element comprises a transmissive grating;
		light coming from the input port is collimated by the first lens and dispersed
5	by the transm	ssive grating as a plurality of angularly separated beams corresponding to the
6	spectral bands	
7		the angularly separated beams are focused by the second lens on respective
8	dynamically o	onfigurable routing elements comprised by the routing mechanism; and
9		the half-wave plate is disposed between the transmissive grating and the
10	routing mecha	nism.
1		12 77
1 2	waya mlata ia	13. The wavelength routing element recited in claim 12 wherein the half-
۷	wave plate is	isposed between the transmissive grating and the second lens.
1 - ,		14. The wavelength routing element recited in claim 12 wherein the half-
2	wave plate is	isposed between the second lens and the routing mechanism.
1		15. The wavelength routing element recited in claim 1 wherein:

2	the dispersive element comprises a reflection grating;
3	the optical train further includes a curved reflector disposed to intercept light
4	from the input port, collimate the intercepted light, direct the collimated light toward the
5	reflection grating, intercept light reflected from the reflection grating, focus the light, and
6	direct the focused light on respective dynamically configurable routing elements comprised
7	by the routing mechanism.
1	16. A wavelength router for receiving, at an input port, light having a
2	plurality of spectral bands and directing subsets of the spectral bands to respective ones of a
3	
	plurality of output ports, the wavelength router comprising:
4	an optical train disposed between the input port and output ports providing
5	optical paths for routing the spectral bands, the optical train including a quarter-wave plate
6	having a fast axis oriented substantially at an odd multiple of 45° with respect to a
7	polarization axis of the spectral bands and a dispersive element disposed to intercept light
8	traveling from the input port, the optical train being configured so that light encounters the
9	dispersive element and the quarter-wave plate twice before reaching any of the output ports;
10	and
11	a routing mechanism having a plurality of retroreflecting elements, each such
12	retroreflecting element being configured to reflect a respective one of the spectral bands an
13	odd number of times to direct the respective one of the spectral bands to different output port
4	depending on a state of the retroreflecting element.
1	17. The wavelength routing element recited in claim 16 wherein at least
2	one of the retroreflecting elements is configured to reflect the respective one of the spectral
3	bands three times.
1	18. The wavelength routing element recited in claim 16 wherein:
2	the optical train further includes a lens;
3	the dispersive element comprises a reflection grating;
4	light coming from the input port is collimated by the lens and dispersed by the
5	reflection grating as a plurality of angularly separated beams corresponding to the spectral
6	bands;
7	the angularly separated beams are focused by the lens on the respective

retroreflecting elements; and

9		the quarter-wave plate is disposed between the reflection grating and the		
10	routing mechanism.			
1		19. The wavelength routing element recited in claim 18 wherein the		
2	quarter-wave	plate is disposed between the lens and the routing mechanism.		
1	\$	20. The wavelength routing element recited in claim 16 wherein:		
2		the optical train further includes a first lens and a second lens;		
3.		the dispersive element comprises a transmissive grating;		
4	*.	light coming from the input port is collimated by the first lens and dispersed		
5	by the transm	issive grating as a plurality of angularly separated beams corresponding to the		
6	spectral bands			
<u> 1</u> 7		the angularly separated beams are focused by the second lens on the respective		
3 8	retroreflecting	elements; and		
7		the quarter-wave plate is disposed between the transmissive grating and the		
†0 1	routing mecha	nism.		
	* = = = =	21. The wavelength routing element recited in claim 20 wherein the		
2	quarter-wave	plate is disposed between the second lens and the routing mechanism.		
	·			
	v v	22. The wavelength routing element recited in claim 16 wherein:		
		the dispersive element comprises a reflection grating;		
3		the optical train includes a curved reflector disposed to intercept light from the		
4		limate the intercepted light, direct the collimated light toward the reflection		
5	grating, interc	ept light reflected from the reflection grating, focus the light, and direct the		
6	focused light of	on the respective retroreflecting elements.		
1		23. A wavelength router for receiving, at an input port, light having a		
2	plurality of spe	ectral bands and directing subsets of the spectral bands to respective ones of a		
3		tput ports, the wavelength router comprising:		
4		an optical train disposed between the input port and output ports providing		
5	optical paths for	or routing the spectral bands, the optical train including a quarter-wave plate		
6		re element disposed to intercept light traveling from the input port, the optical		
7		figured so that light encounters the dispersive element and the quarter-wave		
8		ore reaching any of the output ports; and		

9		a routing mechanism having a plurality of retroreflecting elements, each such
10	ng element being configured to reflect a respective one of the spectral bands an	
11	of times greater than two to direct the respective one of the spectral bands to	
12		put ports depending on a state of the retroreflecting element.
1		24. The wavelength routing element recited in claim 23 wherein:
2		the optical train further includes a lens;
.3		the dispersive element comprises a reflection grating;
4		light coming from the input port is collimated by the lens and dispersed by the
5	reflection gra	ating as a plurality of angularly separated beams corresponding to the spectral
6	bands;	
7		the angularly separated beams are focused by the lens on the respective
18	retroreflectin	g elements; and
119		the quarter-wave plate is disposed between the reflection grating and the
OEO	routing mech	
ja H		
	7	25. The wavelength routing element recited in claim 23 wherein:
		the optical train further includes a first lens and a second lens;
щ3		the dispersive element comprises a transmissive grating;
14		light coming from the input port is collimated by the first lens and dispersed
		issive grating as a plurality of angularly separated beams corresponding to the
6	spectral band	s;
7		the angularly separated beams are focused by the second lens on the respective
8	retroreflecting	g elements; and
9		the quarter-wave plate is disposed between the transmissive grating and the
10	routing mech	anism.
1		
1		26. The wavelength routing element recited in claim 23 wherein:
2		the dispersive element comprises a reflection grating;
3		the optical train includes a curved reflector disposed to intercept light from the
4		limate the intercepted light, direct the collimated light toward the reflection
5	grating, interc	ept light reflected from the reflection grating, focus the light, and direct the
6.	focused light	on the respective retroreflecting elements.

	1		27.	A method for directing a light beam having a plurality of spectral		
	2	bands received at an input port, the method comprising:				
	3		collimating the light beam;			
	4		dispers	sing the collimated light beam into a plurality of angularly separated		
	5	beams corresp	onding	to the spectral bands;		
	6		propag	gating the angularly separated beams through a half-wave plate;		
	7		focusii	ng the angularly separated beams; and		
	8	•	routing	g the angularly separated beams to respective ones of a plurality of		
	9	output ports.				
	1		28.	The method recited in claim 27 wherein routing the angularly		
٠,	2	separated bear	ns to re	spective ones of the plurality of output ports comprises retroreflecting		
Last Had	3 .	the angularly s	separate	ed beams by reflecting each such angularly separated beam an even		
M Man	4	number of tim	es.			
There that the roll than that that	1		29.	The method recited in claim 28 wherein routing the angularly		
	2	senarated hear		spective ones of the plurality of output ports further comprises again		
		7		arly separated beams through the half-wave plate.		
firm #	,	propagating th	c angui	arry separated beams through the nan-wave plate.		
Thin that then Be than that	1		30.	The method recited in claim 27 wherein a fast axis of the half-wave		
A PA	2	plate is oriented substantially at an odd multiple of 22.5° with respect to a polarization axis of				
	3	the angularly separated beams.				
	1		21			
	1	10.	31.	A method for directing a light beam having a plurality of spectral		
	2	bands received		nput port, the method comprising:		
	3	* · · · · · ·		ating the light beam;		
	4		-	sing the collimated light beam into a plurality of angularly separated		
	5	beams corresp		to the spectral bands;		
	6 , · 			ating the angularly separated beams through a quarter-wave plate		
	7			ented substantially at an odd multiple of 45° with respect to a		
	8	polarization ax		e angularly separated beams;		
	9			ng the angularly separated beams; and		
	0			flecting the angularly separated beams by reflecting each such angularly		
1	1	separated bean	n an odd	d number of times.		

	32.	The method recited in claim 31 wherein routing the angularly
separated bear	ms to re	spective ones of the plurality of output ports further comprises again
propagating th	ne angul	arly separated beams through the quarter-wave plate.
	33.	A method for directing a light beam having a plurality of spectral
bands received	d at an i	nput port, the method comprising:
	collim	ating the light beam;
	dispers	sing the collimated light beam into a plurality of angularly separated
beams corresp	onding	to the spectral bands;
	propag	ating the angularly separated beams through a quarter-wave plate;
3	focusii	ng the angularly separated beams; and
	retrore	flecting the angularly separated beams by reflecting each such angularly
separated bear	n an od	d number of times greater than two.
	34.	The method recited in claim 33 wherein the number of times is three.
<u>.</u>	35.	The method recited in claim 33 wherein routing the angularly
separated bear	ns to re	spective ones of the plurality of output ports further comprises again
propagating th	e angul	arly separated beams through the quarter-wave plate.
	36.	A wavelength router for receiving, at an input port, a beam having a
plurality of sp	ectral ba	ands and directing subsets of the spectral bands to respective ones of a
plurality of ou	tput poi	ts, the wavelength router comprising:
	means	for collimating the beam;
	means	for dispersing the collimated beam into a plurality of angularly
separated bear	ns corre	sponding to the spectral bands;
*	means	for 90° rotation of polarization components of the angularly separated
beams; and		
	means	for routing the angularly separated beams to the output ports.
	37.	The wavelength routing element recited in claim 36 wherein the means
for 90° rotation	n of pol	arization components has a fast axis oriented substantially at an odd

multiple of 22.5° with respect to a polarization axis of the angularly separated beams.

38. A wavelength routing element for receiving, at an input port, a beam
having a plurality of spectral bands and directing subsets of the spectral bands to respective
ones of a plurality of output ports, the wavelength router comprising:
means for collimating the beam;
means for dispersing the collimated beam into a plurality of angularly
separated beams corresponding to the spectral bands;
means for 45° rotation of polarization components of the angularly separated
beams, wherein such means for 45° rotation has a fast axis oriented substantially at an odd
multiple of 45° with respect to a polarization axis of the angularly separated beams; and
means for routing the angularly separated beams to the output ports, such
means for routing including means for retroreflecting the angularly separated beams by
reflecting each such angularly reflected beam an odd number of times.

39. The wavelength routing element recited in claim 38 wherein the number of times is three.