Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims;

 (Original) A direct light imaging compound comprising: a matrix, and an antenna.

wherein the antenna comprises a compound selected from the group consisting of compounds comprising a phthalocyanine chromophore and compounds comprising a naphthalocyanine chromophore, and wherein the antenna is dissolved in the matrix.

 (Original) The compound of claim 1 further comprising: a color former, and an activator.

wherein one of the activator and the color former is soluble in the matrix or matrix precursor at ambient conditions;

wherein the soluble of the activator and the color former is dissolved in the matrix; and

wherein the other of the activator and the color former is substantially uniformly distributed in the matrix.

3. (Original) The compound of claim 1 where in the antenna comprises a compound chosen from the group consisting of (A) silicon 2,3 naphthalocyanine bis(trihexylsilyloxide); (B) derivatives of 2,3 naphthalocyanine; (C) derivatives of silicon phthalocyanine; (D) derivatives of benzophthalocyanines; (E)

$$MPC \xrightarrow{\left(SO_3H\right)_X} \begin{pmatrix} O_2N & & \\ &$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; R^1 , R^2 , W^1 , and W^2 are independently H or optionally substituted alkyl, aryl, or aralkyl; R^3 is an aminoalkyl group; L is a divalent organic linking group; x, y, and t are each independently 0.5 to 2.5; and (x+y+t) is from 3 to 4; (F)

$$MPc = \left(\begin{array}{c} (SO_3H)_x \\ S - \left(\begin{array}{c} N \\ R^1 \end{array} \right) \end{array} \right)_{V}$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; each R^1 independently is H or an optionally substituted alkyl, aryl, or aralkyl; each L^1 independently is a divalent organic linking group; Z is an optionally substituted piperazinyl group; q is 1 or 2; x and y each independently have a value of 0.5 to 3.5; and (x+y) is from 2 to 5; and (G) 800NP.

- 4. (Original) The compound of claim 1 wherein the antenna is tuned to readily absorb laser radiation of a predetermined frequency.
- 5. (Original) The compound of claim 1 wherein the antenna is tuned to readily absorb infrared radiation of a predetermined frequency.

6. (Withdrawn) A method for preparing a direct imaging material, the method comprising:

providing a binder, a dye, a color developer, and an antenna,

wherein the antenna is soluble in the binder and selected from the group consisting of compounds comprising a phthalocyanine chromophore and compounds comprising a naphthalocyanine chromophore;

wherein the dye changes color when reacted with the color developer; and

wherein one of the dye and the color developer is soluble in the binder at ambient conditions:

dissolving the antenna and the binder soluble compound in the binder; and substantially uniformly distributing the other of the dye and the color developer compound in the binder.

- 7. (Withdrawn) The method of claim 6 wherein the antenna is tuned to readily absorb infrared radiation of a predetermined frequency.
- 8. (Withdrawn) The method of claim 6 wherein the antenna is tuned to readily absorb laser radiation of a predetermined frequency.
- 9. (Withdrawn) The method of claim 6 wherein the antenna is selected from the group consisting of (A) silicon 2,3 naphthalocyanine bis(trihexylsilyloxide); (B) derivatives of 2,3 naphthalocyanine; (C) derivatives of silicon phthalocyanine; (D) derivatives of benzophthalocyanines; (E)

$$MPC \xrightarrow{\left(SO_3H\right)_X} \begin{pmatrix} O_2N & & \\ &$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; R^1 , R^2 , W^1 , and W^2 are independently H or optionally substituted alkyl, aryl, or eralkyl; R^3 is an aminoalkyl group; L is a divalent organic linking group; x, y, and t are each independently 0.5 to 2.5; and (x+y+t) is from 3 to 4; (F)

$$MPc \left(SO_3H)_x \\ S \left(\frac{1}{R^1} \right)_q \right)$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; each R^1 independently is H or an optionally substituted alkyl, aryl, or aralkyl; each L^1 independently is a divalent organic linking group; Z is an optionally substituted piperazinyl group; q is 1 or 2; x and y each independently have a value of 0.5 to 3.5; and (x+y) is from 2 to 5; and (G) 800NP.

 (Withdrawn) An image recording medium, the medium comprising: a substrate; and an imaging composition comprising, an antenna and a solvent,

wherein the antenna comprises a compound selected from the group consisting of compounds comprising a phthalocyanine chromophore and compounds comprising a naphthalocyanine chromophore, and wherein the antenna is dissolved in the solvent.

11. (Withdrawn) The image recording medium of claim 10 wherein the imaging composition further comprises:

a dye; and a color initiator;

wherein the dye changes color when mixed with the color initiator;

wherein one of the color initiator and the dye is soluble in the solvent at ambient conditions:

wherein the other of the color initiator and the dye is substantially insoluble in the solvent at ambient conditions;

wherein the substantially insoluble component is substantially uniformly distributed in the solvent; and

wherein the imaging composition is directly or indirectly applied to the substrate.

- 12. (Withdrawn) The medium of claim 11 wherein the antenna readily absorbs infrared radiation of a predetermined frequency.
- 13. (Withdrawn) The medium of claim 11 wherein the antenna readily absorbs laser radiation of a predetermined frequency.
- 14. (Withdrawn) The medium of claim 11 wherein the antenna is selected from the group consisting of (A) silicon 2,3 naphthalocyanine bis(trihexylsilyloxide); (B) derivatives of 2,3 naphthalocyanine; (C) derivatives of silicon phthalocyanine; (D) derivatives of benzophthalocyanines; (E)

$$\begin{array}{c|c}
(SO_3H)_X \\
& \\
O_2N \\
& \\
R^3
\end{array}$$

$$\begin{pmatrix}
NO_2S & W^1 \\
& \\
W^2
\end{pmatrix}_t$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; R^1 , R^2 , W^1 , and W^2 are Independently H or optionally substituted alkyl, aryl, or aralkyl; R^3 is an aminoalkyl group; L is a divalent organic linking group; x, y, and t are each independently 0.5 to 2.5; and (x+y+t) is from 3 to 4; (F)

$$\begin{array}{c|c} \text{MPc} & & \\ \hline & & \\ S & \hline & N & \\ R^1 & & \\ q & & \\ \end{array}$$

where M is a metal or hydrogen; Pc is a phthalocyanine nucleus; each R¹ independently is H or an optionally substituted alkyl, aryl, or aralkyl; each L¹ independently is a divalent organic linking group; Z is an optionally substituted piperazinyl group; q is 1 or 2; x and y each independently have a value of 0.5 to 3.5; and (x+y) is from 2 to 5; and (G) 800NP.

- 15. (Withdrawn) The medium of claim 11 wherein the substrate comprises paper.
- 16. (Withdrawn) The medium of claim 11 wherein the substrate comprises a compact disc or DVD.

- 17. (Original) An imaging means, the means comprising:
 - a means for absorbing energy;
 - a means for forming color;
 - a means for initiating a color change in the color forming means;
 - a means for binding the absorbing means, the color forming means, and the initiating means;
 - wherein the absorbing means is dissolved in the binder;
 - wherein one of the means for forming color and the means for initiating is soluble in the means for binding at ambient conditions;
 - wherein the other of the means for forming color and the means for initiating is substantially insoluble in the means for binding at ambient conditions; and
 - wherein the insoluble component is substantially uniformly distributed in the binder.
- 18. (Original) The means of claim 17 wherein the means for absorbing readily absorbs laser radiation of a predetermined frequency.
- 19. (Original) The means of claim 18 wherein the means for absorbing readily absorbs infrared radiation of a predetermined frequency.