EE3-25: Deep Learning

Krystian Mikolajczyk & Carlo Ciliberto

Department of Electrical and Electronic Engineering
Imperial College London

Course Information

- Dr Krystian Mikolajczyk
 - ▶ Room 1015
 - Office hour: Friday 17:00pm-18:00pm
 - ► Email: k.mikolajczyk@imperial.ac.uk
- Dr Carlo Ciliberto
 - ▶ Room 1005
 - Office hour: Friday 17:00pm-18:00pm
 - Email: c.ciliberto@imperial.ac.uk
- GTAs
 - Axel Barroso Laguna
 - Adrian Lopez Rodriguez
 - ► Office hour: Tuesday 17:00pm-18:00pm

Goal

- To introduce fundamental principles, theory and approaches for learning with deep neural networks.
- To offer practical course on implementing and experimenting with deep learning.
- Part of a course on machine learning and related topics:
 - ► EE3-10 (Autumn): Maths for Signals and Systems
 - ► EE3-23 (Autumn): Machine Learning
 - ► EE3-25 (Spring): Deep Learning
 - ► EE3-08 (Spring): Advance Signal Processing
 - ► EE4-68 (Autumn): Pattern Recognition
 - EE4-62 (Spring): Selected Topics in Computer Vision
 - EE4 (Spring): Final Year Project

Goal

• Learn to apply different types of networks in various DL tasks

Course Information

- Lectures: Friday 3-5pm (403)
 - Lecture notes available on the lecture day (at latest)
 - Book: Deep Learning, Ian Goodfellow, Yoshua Bengio & Aaron Courville, 2016. MIT Press, http://www.deeplearningbook.org
 - https://towardsdatascience.com
- Weekly practical exercises
 - Self studying on your PC
 - Colab online python environment with Keras and TensorFlow backend
 - ► Lab sessions (Lab 305, Tuesday 17:00, 28/01, 4/02)
- Coursework (100%)
 - Work: online exercises from DL github, experiments and reports
 - Assessment: 2 page interim report 20%, Deadline: 13 Feb 2020 (23:59), via Blackboard
 - Assessment: 4 page final report 80%, Deadline: 19 March 2020 (23:59), via Blackboard

Lectures by Dr Krystian Mikolajczyk

- Part 1: Introduction to deep learning
- Part 2: Convolutional Neural Networks (CNN)
- Part 3: Network Training
- Part 4: CNN architectures
- Part 5: Recurrent Neural Networks

Lectures by Dr Carlo Ciliberto

- Part 6: Representation Learning and Autoencoders
- Part 7: GANs & friends
- Part 8: Metalearning
- Part 9: Reinforcement Learning I
- Part 10: Reinforcement Learning II

https://github.com/MatchLab-Imperial/deep-learning-course

- Week 2-3
 - Introduction to Python and some frameworks (NumPy, Pandas, etc..)
 - Introduction to Keras
- Week 4-6
 - Fundamentals of deep learning: handling different type of data (text, image, audio, etc), feedforward of artificial neural networks, introduction to last generation of CNN architectures (VGG, Inception, ResNet, UNets etc...)
- Week 7-10
 - Advanced deep learning: LSTM sequence modelling, Generative Adversarial Networks, Neural style transfer (CycleGan, Pix2Pix), Reinforcement Learning.

- Environment: Colaboratory *1,2
 - Repository: https://github.com/MatchLab-Imperial/deep-learning-course
 - Jupyter notebook environment which requires not setup and supported from most major browsers, e.g, Chrome and Firefox.
 - Code is run in virtual machines with free GPU.
 - Files are stored securely in your own Google Drive account.
 - Supports developing Python applications using popular deep learning libraries, e.g, Keras, Tensorflow, Pytorch.

^{*1} https://colab.research.google.com/notebooks/welcome.ipynb

^{*2} https://medium.com/deep-learning-turkey/google-colab-free-gpu-tutorial-e113627b9f5d

- Format: Jupyter *3
 - Notebooks are documents produced by the Jupyter Notebook Apps, e.g., Colaboratory, containing both python code and rich text elements (paragraph, equations, figures, links, etc...)

```
In [0]: N=5
    start_val = 0# pick an element for the code to plot the following N**2 values
    fig, axes = plt.subplots(N,N)
    for row in range(N):
        for col in range(N):
        idx = start_val+row+N*col

        im = np.concatenate((np.clip(X_test_noise[idx], 0, 1), np.clip(pred[idx], 0, 1)), 1)
        axes[row,col].imshow(im)
        y_target = int(y_train[idx])
        axes[row,col].set_xticks([])
        axes[row,col].set_yticks([])
```


^{*3} https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

- Deep Learning Framework: Keras *4
 - modular, minimalist framework, especially good for beginners
 - along with Colab environment allows to set a neural network and start prototyping in no time.

^{*4} https://pypi.org/project/Keras/

Communication/Interaction

- BlackBoard Q&A forum
- Open Office hour, Lecturers and GTAs (humans)
- Emails risk of getting missed, otherwise will be copied to Q&A forum anyway

Deep Learning

Deep Learning

- Al, Machine Intelligence
 - Intelligent agents with perception and actions to achieve goals
- Machine Learning
 - ► Ability to learn: Data → Hypothesis
- Deep Learning
 - Ability to learn data representation (features) and predictors

ML Summary

Goal

Learning with generalisation

Machine Learning Revision

- Components of Learning
- ML Tasks
- Types of learning
- Types of data
- Learning setup
- Error/Loss Measures

- Perceptron
- Neural Networks
- Gradient descent
- Backpropagation
- Learning curves
- Regularization

Components of learning

- Theory
 - ML problem formulation
 - · Errors, loss and bounds
- Predictors and Learners
 - Linear and non linear
 - SVM
 - Neural Networks
- Learning frameworks
 - Supervised
 - Reinforcement learning

Error Measures/Loss Functions

- How to quantify $h \approx f$?
- Usually pointwise error: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$

$$\ell(h(\mathbf{x}), f(\mathbf{x}))$$

Defined by the user for the ML task!

• Examples:

squared error
$$L2$$
 $\ell(\hat{y},y) = (\hat{y}-y)^2$ (regression) binary error $\ell(\hat{y},y) = \mathbb{I}\,(\hat{y} \neq y)$ (classification) cross-entropy error $\ell(\hat{y},y) = \log\left(1+e^{-y_i\mathbf{w}^{\top}\mathbf{x}_i}\right)$ (see logistic regression)

- Training error: $\widehat{R}_n(h) = \frac{1}{n} \sum_{i=1}^n \ell(h(\mathbf{x}_i), y_i)$
- Test error: $R(h) = \mathbb{E}\left[\ell(h(\mathbf{x}), y)\right]$

Neural Network: Perceptron

Binary class perceptron

branches

of axon

toward cell body

dendrites

biologically inspired model of a single neuron

Linear vs. Non-linear activation function $\theta(s)$

if
$$\theta(s) = s$$
 then $h(x) = \mathbf{w}_{L}^{\top} W_{L-1} W_{L-2} \dots W_1 \mathbf{x} = \mathbf{w}_{*}^{\top} \mathbf{x}$

Neural Network Forward Pass (inference)

- Input $\mathbf{x} = (4, -8, 4)$
- Non linear activation ReLU $\theta(s) = s_+ = \max\{0, s\}.$

$$\bullet \ f = \max(0, \sum_i w_i x_i)$$

•
$$f_a = \max(0, 1 + 0.25 \cdot 4 + 0.75 \cdot (-8) + 0.75 \cdot 4) = 0$$

•
$$f_b = \max(0, 1 + 0.5 \cdot 4 + 0.125 \cdot (-8) + 0.25 \cdot 4) = 3$$

•
$$f_c = h(x) = max(0, 0.5 + 0.5 \cdot 0 + 0.125 \cdot 3) = 0.875$$

• Ground truth
$$y = 2$$

• Error
$$\widehat{R}_n(\mathbf{w}_t) = (y - h(\mathbf{x}))^2 = (2 - 0.875)^2 \approx 1.27$$

Learning Setup with $\mathbf{x} \sim P$ and $P(y|\mathbf{x})$

- Input: $\mathbf{x} \in \mathcal{X}$
- Output: $y \in \mathcal{Y}$
- Data: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n) \sim P$ (P is the joint distribution of (\mathbf{x}, y))

Learning

- Hypothesis class: $\mathcal{H} \subset \{h(\mathbf{w}) : \mathcal{X} \to \mathcal{Y}, w \in \mathbb{R}\}$
- Loss function: $\ell: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}^+$
- Find $\mathbf{w}^* \in \mathbb{R}^{\|\mathbf{w}\|}$ such that $g \approx P(y|\mathbf{x})$

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \left\{ R(\mathbf{w}) = \mathbb{E} \left[\ell(h(\mathbf{wx}), y) \right] \right\}$$

Gradient descent

- ullet General method for non-linear optimization: $oldsymbol{w}_{t+1} = oldsymbol{w}_t + \eta oldsymbol{v}$
- ullet Direction $oldsymbol{v}$: starting from $oldsymbol{w}_t$, step along the steepest slope
 - $\mathbf{v} = -\frac{\nabla \hat{R}_n(\mathbf{w}_t)}{\|\nabla \hat{R}_n(\mathbf{w}_t)\|}$ is a unit vector.
- Step size η : how quickly find the minimum
 - η is a scalar.

Heuristic: step size should increase with the slope $\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta \mathbf{w}$

$$\Delta \mathbf{w} = -\eta \nabla \widehat{R}_n(\mathbf{w}_t)$$
 (with η redefined)

Neural Network Backpropagation (training)

Backpropagation

- Intialize all weights $w_{ij}^{(I)}$ at random
- for t = 1, 2, ... do
 - Pick a data point (x_k, y_k)
 - Forward: Compute all $x_j^{(l)}$
 - Backward: Compute all $\delta_j^{(l)}$
 - **Update:** $w_{ij}^{(I)} \leftarrow w_{ij}^{(I)} \eta_t x_i^{(I-1)} \delta_j^{(I)}$
 - ★ single point (SGD), minibatch, batch
- Return final weights $w_{ij}^{(I)}$

Learning from noisy data

Overfitting

- Fitting to noise instead of the underlying target function/distribution.
- Occurs when $\widehat{R}_n(h) \downarrow R(h) \uparrow$, moving away from the target function.

Remember *n* matters too!

Noise types: stochastic ($N \sim \mathcal{N}(0, \sigma^2)$), deterministic (complexity) $\begin{array}{ccc} & & & & & \\ & & & \text{deterministic noise} & \uparrow & & & \\ & & & & \text{stochastic noise} & \uparrow & & & \\ & & & & \text{number of data points} & \uparrow & & & \\ & & & & & \text{overfitting} & \uparrow & \\ & & & & & \text{overfitting} & \downarrow & \\ \end{array}$

Regularisation

Regularised Loss (Augmented Error)

$$\mathcal{L}_n(h) = \widehat{R}(h) + \lambda \underbrace{\Omega(h)}_{overfit\ penalty}$$

- ullet $\Omega(h)$ regulariser with parameter λ
 - $\|\mathbf{w}\|_{2}^{2}$: L2
 - $\|\mathbf{w}\|_1$: L1
 - $\|\mathbf{w}\|_1 + \|\mathbf{w}\|_2^2$: elastic net
 - w^TΓ^TΓw: Tikhonov

Occam's razor: Simpler is usually better

Regularize towards smoother, simpler functions. Why?

Because noise is not smooth!

Regularized Loss Minimization

Regularized Loss Minimization (RLM)

- Hypothesis class $\mathcal{H} = \bigcup_i (\mathcal{H}_i, \lambda_i)$, with $i \in \mathbb{N}$ e.g. $\lambda_i \in \{0.0001, 0.001, \ldots\}$
- Augmented error:

$$\mathcal{L}_{\overline{k}}(\mathbf{w},\lambda) = \widehat{R}_{\overline{k}}(\mathbf{w}) + \lambda \Omega(\mathbf{w}) \qquad \text{e.g. } \Omega(\mathbf{w}) \in \{\|\mathbf{w}\|_2^2, \|\mathbf{w}\|_1, \|\mathbf{w}\|_2^2 + \|\mathbf{w}\|_1, \ldots\}$$

- RLM solution:
 - for all i, train on $\mathcal{D}_{\overline{k}}$: $g(\mathbf{w}_{\lambda_i}) = \operatorname{argmin}_{\mathbf{w}} \mathcal{L}_{\overline{k}}(\mathbf{w}, \lambda_i)$
 - from all i, select on $\mathcal{D}_{\mathbf{k}}$: $g(\mathbf{w}_{\lambda^*}) = \operatorname{argmin}_{\lambda_i} \check{R}_{\mathbf{k}}(g(\mathbf{w}_{\lambda_i}))$

Summary

- Organization of DL course
- Exercises and coursework
- Revision of fundamentals of Machine Learning