Solution of Homework 5

1. A group of a prime order.

Consider the set of squares modulo p, denoted as $\mathbb{G} = \{a^2 \mod p \mid a \in \mathbb{Z}_p^*\}$, where \mathbb{Z}_p^* is the reduced residue group of p. To show \mathbb{G} is a group, we need to verify the three group criteria:

- · Closure: For any $x, y \in \mathbb{G}$, xy must also be in \mathbb{G} . Let $x = a^2$ and $y = b^2$ for some $a, b \in \mathbb{Z}_p^*$. Then, $(ab)^2 = a^2b^2 \mod p$, which is also a square modulo p, and therefore $xy \in \mathbb{G}$.
- · **Identity:** $1^2 = 1 \mod p$, so the identity element is in \mathbb{G} .
- · **Inverse:** For any $x \in \mathbb{G}$, its inverse x^{-1} must also be in \mathbb{G} . If $x = a^2$, then $a^{-2} = (a^{-1})^2$ is the inverse of x, and a^{-1} is in \mathbb{Z}_p^* because a is.

The order of \mathbb{G} is the number of distinct squares modulo p. Clearly, $x^2 = (-x)^2 \mod p$. Furthermore, $x \neq -x \mod p$. Therefore $|\mathbb{G}| = |\mathbb{Z}_p^*|/2 = q$.

Hence, \mathbb{G} is a group of order q.

2. Quadratic residue group.

 \mathbb{G} is a group of prime order q, then \mathbb{G} is cyclic by COROLLARY~8.55. Furthermore, all elements of \mathbb{G} except the identity are generators of \mathbb{G} .

Here, we provide a brief proof, for a detailed proof, please refer to *COROLLARY* 8.55 in the textbook.

For arbitrary $g \in \mathbb{G}$, consider the generated subgroup $\langle g \rangle$, and let $i \leq q$ be the smallest positive integer for which $g^i = 1$.

$$\langle g \rangle \stackrel{\text{def}}{=} \{ g^0, g^1, \cdots g^{i-1} \}.$$

Because $q = |\mathbb{G}|$ and $g \in \mathbb{G}$, $g^q = 1$. Therefore, $i \mid q$. Since q is prime, i = 1 or i = q. Only the identity has order 1, and so all other elements have order q and generate \mathbb{G} .

3. Exercise 11.7.

There appears to be a typo in the textbook where it states " $m \in \mathbb{Z}_q$ " It should be " $m \in \mathbb{Z}_p$ " instead.

This scheme is not secure. In particular, consider an adversary \mathcal{A} that gives $m_0 = 0$ and m_1 uniformly chosen from \mathbb{Z}_p and then receives the challenge ciphertext $\langle c_1, c_2 \rangle$.

Observe that since $c_2 = h^y + m \mod p$ it is not necessarily the case that $c_2 \in \mathbb{G}$ (since addition is not the group operation). However, when b = 0, it is guaranteed that c_2 is in \mathbb{G} .

The question remains as to the probability that c_2 is also in \mathbb{G} when b=1. As we know, \mathbb{G} includes exactly half of the elements of \mathbb{Z}_p^* . Since m_1 is a random value, it follows that $c_2 \in \mathbb{G}$ with probability only 1/2 when b=1.

Thus, \mathcal{A} 's strategy is to check if $c_2 \in \mathbb{G}$. If so, then \mathcal{A} outputs b' = 0. Otherwise, it outputs b' = 1.

The probability of success is $1/2+1/2\cdot 1/2=3/4$, which is non-negligible. Therefore, the scheme is not CPA-secure.

For a more detailed answer, please refer to the discussion on Adversary for attack on one variant of elgamal.

4. Computing by hand.

- (a) To find the greatest common divisor of 589 and 722, we can use the Euclidean algorithm. Therefore, the greatest common divisor of 589 and 722 is 19.
- (b) The decryption exponent $d = e^{-1} \mod \phi(N) = 31^{-1} \mod 60$. Using the extended Euclidean algorithm to solve 31x + 60y = 1, where x = 31. Therefore the decryption exponent d = 31. The ciphertext $c = m^e \mod N = 4^{31} \mod 77 \leftrightarrow ([4^{31} \mod 11], [4^{31} \mod 7]) = ([4 \mod 11], [4 \mod 7]) \leftrightarrow 4 \mod 77$.

5. Exercise 11.20.

Let $\gamma \stackrel{\text{def}}{=} [2^{-1} \mod N]$. The intuition is that $x^e \cdot \gamma^e = (x\gamma)^e \mod N$; thus, multiplication by γ^e can be used to effect a bitwise right-shift, which can in turn be used to learn all the bits of x one-by-one.

For a more detailed answer, please refer to the solution on this link.

Algorithm 1: GetBits

When $\mathbf{lsb}(x) = 0$ then $[\gamma \cdot x \mod N]$ is indeed just a right-shift of x (since x, viewed as an integer, is divisible by 2). But when $\mathbf{lsb}(x) = 1$, then $[\gamma \cdot x \mod N] = \frac{x+N}{2}$.(Note that N is odd.) We take this into account in Algorithm 1, which is described recursively.

The algorithm relies on the assumed algorithm \mathcal{A} for computing $\mathbf{lsb}(x)$. When called with $\ell = ||N||$ it returns all the bits of $x = [c^{1/e} \mod N]$.

6. Security of signature schemes.

- (a) The modified signature scheme remains secure. If the adversary \mathcal{A} can forge a valid (message, signature) pair (m, σ) for the modified scheme with a probability of $\epsilon(n)$, then another adversary \mathcal{A}' can compromise the security of the original signature scheme with \mathcal{A} . This can be achieved by randomly selecting a prefix pre from $\{0,1\}^2$ and concatenating it with σ , (m, pre||sigma) is a valid (message, signature) pair for the original scheme with a probability of $1/4 \cdot \epsilon(n)$.
- (b) The modified signature scheme remains secure. Because c is a constant, the number of possible permutations is also a constant. If the adversary \mathcal{A} can forge a valid (message, signature) pair (m, σ) for the modified scheme with a probability of $\epsilon(n)$, then another adversary \mathcal{A}' can compromise the security of the original signature scheme with \mathcal{A} . This can be achieved by randomly selecting a permutation π from the set of all possible permutations and applying π to σ , $(m, \pi(\sigma))$ is a valid (message, signature) pair for the original scheme with a probability of $1/c! \cdot \epsilon(n)$.