# Natural Language Processing

Lecture 3

Naive Bayes' Classifier and Text Classification

9/13/24

COMS W4705
Daniel Bauer

### Text Classification

• Given a representation of some document d, identify which class  $c \in C$  the document belongs to.

"How long does it take a smoker's lungs to clear of the tar after quitting?
Does your chances of getting lung cancer decrease quickly or does it take a considerable amount of time for that to happen?"



From the 20-Newsgroups data set:

http://www.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html

### **Text Classification**

- Applications:
  - Spam detection.
  - Mood / Sentiment detection.
  - Author identification.
  - Identifying political affiliation.
  - Word Sense Disambiguation.

•

### **Text Classification**

- This is a machine learning problem.
  - Can use different ML techniques.
    - **Supervised ML:** Fixed set of classes *C*. Train a classifier from a set of labeled <document,class> pairs.
      - Discriminative vs. Generative models.
    - Unsupervised ML: Unknown set of classes C.
       Topic modeling.
  - How do we represent each document? (feature representation).

## Supervised Learning

• Given: Training data consisting of training examples  $(\mathbf{x_1}, y_1), ..., (\mathbf{x_n}, y_n)$ , where  $\mathbf{x_i}$  is an input example (a d-dimensional vector of attribute values) and  $y_i$  is the label.

|   | label           |                  |     |                   |            |
|---|-----------------|------------------|-----|-------------------|------------|
| 1 | X <sub>11</sub> | X <sub>12</sub>  | ••• | $\mathbf{x}_{1d}$ | <b>y</b> 1 |
|   | •••             | •••              | ••• | •••               | •••        |
| i | X <sub>i1</sub> | X <sub>i</sub> 2 | ••• | Xid               | Уi         |
|   | •••             | •••              | ••• | •••               |            |
| n | $x_{n1}$        | $x_{n2}$         | ••• | X <sub>nd</sub>   | Уn         |

- Goal: learn a hypothesis function h(x) that approximates the true relationship between x and y. This functions should
  - 1) ideally be consistent with the training data.
  - 2) generalize to unseen examples.
- In NLP yi typically form a finite, discrete set.

### Representing Documents

to be, or not to be

- Set-of-words representation.
- Bag-of-words representation (Multi-set).



- Vector-space model: Each word corresponds to one dimension in vector space. Entries are either:
  - Binary (Word appears / does not appear)
  - (Weighted) frequency counts
  - Probabilities.

| be  | 2        |
|-----|----------|
| •   | :        |
| not | <b>1</b> |
| or  | ·<br>  1 |
| •   | :        |
| to  | 2        |
|     |          |

### Probabilities in NLP

- Ambiguity is everywhere in NLP. There is often *uncertainty* about the "correct" interpretation. Which is more likely:
  - Speech recognition: "recognize speech" vs. "wreck a nice beach"
  - Machine translation: "l'avocat general": "the attorney general" vs. "the general avocado"
  - Text classification: is a document that contains the word "rice" more likely to be about politics or about agriculture?
     What if it also includes several occurrences of the word "stir"?
- Probabilities make it possible to combine evidence from multiple sources systematically to (using Bayesian statistics)

## Bayesian Statistics

- Typically, we observe some evidence (for example, words in a document) and the goal is to infer the "correct" interpretation (for example, the topic of a text).
- Probabilities express the degree of belief we have in the possible interpretations.
  - Prior probabilities: Probability of an interpretation prior to seeing any evidence.
  - Conditional (Posterior) probability: Probability of an interpretation after taking evidence into account.

## Probability Basics

- Begin with a sample space  $\Omega$ 
  - Each  $\omega \in \Omega$  is a possible basic outcome / "possible world" (e.g. the 6 possible rolls of a die).
- A probability distribution assigns a probability to each basic outcome.

$$P(\omega) \leq 1.0 ext{ for every } \omega \in \Omega$$

$$\sum_{\omega \in \Omega} P(\omega) = 1.0$$

E.g: six-sided die

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1.0$$

### **Events**

• An event A is any subset of  $\Omega$  .

$$P(A) = \sum_{\omega \in A} P(\omega)$$

Example:

$$P(\text{die roll} < 4) = P(1) + P(2) + P(3) = 1/6 + 1/6 + 1/6 = 1/2$$

### Random Variables

 A random variable is a function from basic outcomes to some range, e.g. real numbers or booleans.

$$Odd(1) = true$$

 A distribution P induces a probability distribution for any random variable.

$$P(X=x_i) = \sum_{\{\omega: X(\omega)=x_i\}} P(\omega)$$

• E.g P(Odd=true)=P(1)+P(3)+P(5)=1/2



Joint probability:  $P(A \cap B)$  also written as P(A,B)



Joint probability:  $P(A \cap B)$  also written as P(A,B)



Assume 52 deck of cards. Draw a random card.

$$P(\checkmark) = 1/4$$

$$P(Q) = 1/13$$

$$P(\bigvee) = 1/4$$
  $P(Q) = 1/13$   $P(\bigvee,Q) = 1/4 \times 1/13 = 1/52$ 

Conditional probability:  $P(A|B) = \frac{P(A,B)}{P(B)}$ 



Conditional probability:  $P(A|B) = \frac{P(A,B)}{P(B)}$ 



$$P(\mathbf{\vee}, Q) = 1/52$$

$$P(Q) = 1/13$$

$$P(\bigvee |Q) = \frac{1/52}{1/13} = \frac{13}{52} = \frac{1}{4}$$

## Rules for Conditional Probability

- Product rule:  $P(A,B) = P(B) \cdot P(A|B) = P(A) \cdot P(B|A)$
- Chain rule (generalization of product rule):

$$P(A_n, \ldots, A_1) = P(A_n | A_{n-1}, \ldots, A_1) \cdot P(A_{n-1}, \ldots, A_1)$$

Bayes' Rule:

$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

## Independence

• Two events are independent if P(A) = P(A | B)

or equivalently 
$$P(A,B) = P(A) \cdot P(B)$$
 (if  $P(B) > 0$ )

Two events are conditionally independent if:

$$P(B,C|A) = P(B|A)P(C|A)$$

or equivalently

$$P(B|A,C) = P(B|A)$$
 and  $P(C|A,B) = P(C|A)$ 



## Probabilities and Supervised Learning

• Given: Training data consisting of training examples  $data = (x_1, y_1), \dots, (x_n, y_n),$ 

Goal: Learn a mapping h from x to y.

- We would like to learn this mapping using P(y|x).
- Two approaches:
  - Discriminative algorithms learn P(y|x) directly.
  - Generative algorithms use Bayes rule

$$P(y|x) = rac{P(x|y) \cdot P(y)}{P(x)}$$

## Discriminative Algorithms

- Model conditional distribution of the label given the data P(y | x)
- Learns decision boundaries that separate instances of the different classes.
- To predict a new example, check on which side of the decision boundary it falls.
- Examples: linear and log-linear models, support vector machine (SVM), decision trees, random forests, ...

## Generative Algorithms

- Assume the observed data is being "generated" by a "hidden" class label.
- Build a different conditional distribution for each class.
- To predict a new example, check it under each of the models and see which one matches best.
- Estimate P(x|y) and P(y). Then use bases rule

$$P(y|x) = rac{P(x|y) \cdot P(y)}{P(x)}$$

Examples:

Naive Bayes, Hidden Markov Models, Gaussian Mixture Models, PCFGs, ...

## Naive Bayes



$$\mathbf{P}(Label, X_1, \ldots X_d) = \mathbf{P}(Label) \prod_i P(X_i | Label)$$

$$\mathbf{P}(Label|X_1,\ldots X_d) = rac{\mathbf{P}(Label)\prod_i P(X_i|Label)}{\prod_i P(X_i)}$$

$$= lpha[\mathbf{P}(Label)\prod_i P(X_i|Label)]$$

## Naive Bayes Classifier



Note that the normalizer  $\alpha$  does no longer matter for the argmax because  $\alpha$  is independent of the class label.

## Training the Naive Bayes' Classifier

- Goal: Use the training data to estimate **P**(Label) and **P**(X<sub>i</sub>|Label) from training data.
- Estimate the prior and posterior probabilities using Maximum Likelihood Estimates (MLE):

$$P(y) = rac{Count(y)}{\sum_{y' \in Y} Count(y')} \ P(x_i|y) = rac{Count(x_i,y)}{\sum_{x'} Count(x',y)}$$

 I.e. we just count how often each token in the document appears together with each class label.

## Why the Independence Assumption Matters

- Without the independence assumption we would have to estimate  $\mathbf{P}(X_1, \dots X_d | Label)$
- There would be many combinations of x<sub>1</sub>,..., x<sub>d</sub> that are never seen (sparse data).
- The independence assumption allows us to estimate each  $\mathbf{P}(X_1|label)$  independently.

Is this a safe assumption for documents?
Are the words really independent of each other?

## Naive Bayes for Text Classification



- For text classification, the input is not normally a document vector with d dimensions (where d is vocabulary size)
- Instead of using a bag-of-words input vector, w<sub>1</sub> ... w<sub>m</sub> are the input words in the test document (i.e. w<sub>1</sub> is the first word in the doc, w<sub>m</sub> is the last word in the doc).

## Training the Naive Bayes' Classifier

- Ways to improve this model?
- Some issues to consider...
  - What if there are words that do not appear in the training set? What if it appears only once?
  - What if the plural of a word never appears in the training set?
  - How are extremely common words (e.g., "the", "a") handled?

### What is a Word?

- e.g., are "Cat", "cat" and "cats" the same word?
- "September" and "Sept"?
- "zero" and "oh"?
- Is "\_" a word? "."? "\*"? "("?
- How many words are there in "don't" ? "Gonna" ? "I.B.M."?
- In Japanese and Chinese text -- how do we identify a word?

• ...

### **Text Normalization**

- Every NLP task requires some text normalization.
  - Segmenting / tokenizing words in running text.
  - Normalizing word forms (lemmatization or stemming, possibly replacing named-entities).
  - Sentence splitting.

## Linguistic Terminology

- Sentence: Unit of written language.
- Utterance: Unit of spoken language.
- Word Form: the inflected form as it actually appears in the corpus. "produced"
- Word Stem: The part of the word that never changes between morphological variations. "produc"
- Lemma: an abstract base form, shared by word forms, having the same stem, part of speech, and word sense – stands for the class of words with stem.
   "produce"
- Type: number of distinct words in a corpus (vocabulary size).
- Token: Total number of word occurrences.

### Tokenization

 Tokenization: The process of segmenting text (a sequence of characters) into a sequence of tokens (words).

"Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing."

```
mr. o'neill thinks that the boys stories about Chile's capital are n't amusing.
```

- Simple (but weak) approach: Separate off punctuation. Then split on whitespaces.
- Typical implementations use regular expressions (finite state automata).

### Tokenization Issues

- Dealing with punctuation (some may be part of a word)
   "Ph.D.", "O'Reilly", "pick-me-up"
- Which tokens to include (punctuation might be useful for parsing, but not for text classification)?
- Language dependent: Some languages don't separate words with whitespaces.

de: "Lebensversicherungsgesellschaftsangestellter"

zh: 日文章鱼怎么说? - Japanese Octopus how say?

日文章鱼怎么说? - Day article fish how say?

Chinese example from Sproat (1996)

### Lemmatization

Converting Lemmas into their base form.

"Mr. O'Neill thinks that the boys' stories about Chile's capital aren't amusing."

```
mr. o'neill think that the boy story about chile's capital are n't amusing.
```

```
PER PER think that the boy story about LOC 's capital are n't amusing.
```