Laboratorio #5

Actividad Complementaria

Laboratorio Práctico: Entendiendo los Modelos OSI y TCP/IP

Objetivo:

El objetivo de este laboratorio es familiarizarse con los modelos de referencia OSI y TCP/IP, sus capas y cómo se aplican en las redes modernas. Los estudiantes identificarán funciones clave en cada capa y las correlacionarán con dispositivos de red y protocolos.

Materiales necesarios:

- Un switch o enrutador básico.
- Computadoras con acceso a la red local.
- Acceso a Internet (opcional para simulaciones).
- Software de captura de paquetes (Wireshark) instalado en las máquinas.
 Herramientas de línea de comandos como ping, tracert o traceroute, ipconfig o ifconfig.

Parte 1: Modelo OSI y su Aplicación en Redes

- Investigación teórica:
 - Realiza una breve investigación sobre las 7 capas del Modelo OSI y completa la siguiente tabla, describiendo la función principal de cada capa y ejemplos de dispositivos y protocolos utilizados en ellas.

Capa	Nombre de la Capa	Función Principal	Protocolos / Dispositivos	
7	Capa de Aplicación	Interacción directa con el usuario. Proporciona servicios de red a aplicaciones.	HTTP, FTP, SMTP, DNS	
6	Capa de Presentación	Traduce, cifra y comprime los datos.	SSL/TLS, JPEG, MPEG	
5	Capa de Sesión	Establece, mantiene y finaliza sesiones de comunicación.	NetBIOS, PPTP	
4	Capa de Transporte	Entrega confiable o no confiable de datos. Control de flujo y errores.	TCP, UDP	
3	Capa de Red	Encaminamiento y direccionamiento lógico.	IP, ICMP, ARP, RIP, OSPF	
2	Capa de Enlace de Datos	Entrega de tramas entre dispositivos en la misma red local.	Ethernet, PPP, Switches, MAC	
1	Capa Física		Cables, tarjetas de red, hubs, señales eléctricas	

Parte 2: Protocolo TCP/IP y Captura de Paquetes

Simulación y captura de tráfico:

- Abre Wireshark en tu computadora y selecciona la interfaz de red activa.
- Inicia una captura de paquetes mientras realizas las siguientes tareas en otra terminal o consola:
 - Ejecuta el comando ping hacia un servidor o una dirección IP (ejemplo: ping google.com o ping 8.8.8.8).
 - Ejecuta el comando tracert (Windows) o trace route (Linux/Mac) para la misma dirección IP o dominio.
- Análisis del tráfico capturado:
 - Detén la captura de Wireshark y analiza los paquetes capturados.
 - Identifica los paquetes ICMP correspondientes a los comandos ping y tracert.
 - Localiza los paquetes de la capa de transporte (TCP o UDP) y determina qué puerto y protocolo están usando.
 - Describe qué capas del modelo OSI están presentes en los paquetes capturados y qué información puedes ver de cada una de ellas.
 - Completa la siguiente tabla con el análisis de algunos de los paquetes capturados.

No. de Paquete	Protocolo	Capa OSI	Fuente	Destino	Puerto	Descripción
1	ICMP	Capa 3 (Red)	192.168.1.2	8.8.8.8	N/A	Solicitud ping enviada desde PC local a Google DNS
2	ICMP	Capa 3 (Red)	8.8.8.8	192.168.1.2	N/A	Respuesta ping desde Google DNS
3	ТСР	Capa 4 (Transporte)	192.168.1.2	142.250.64.78	443 (HTTPS)	Conexión HTTPS iniciada al visitar un sitio web
4	UDP	Capa 4 (Transporte)	192.168.1.2	8.8.8.8	53 (DNS)	Consulta DNS para traducir google.com

Parte 3: Comparación entre OSI y TCP/IP

1. Investigación teórica:

• Investiga el modelo TCP/IP y compáralo con el modelo OSI. Completa la siguiente tabla mostrando las capas equivalentes en ambos modelos y algunos ejemplos de protocolos o servicios en cada una.

Capa OSI	Capa TCP/IP	Protocolos / Servicios Ejemplares	
Aplicación	Aplicación	HTTP, FTP, SMTP, DNS	
Presentación	Aplicación	SSL, TLS, codificación MIME	
Sesión	Aplicación	NetBIOS, RPC	
Transporte	Transporte	TCP, UDP	
Red	Internet	IP, ICMP, ARP	
Enlace de Datos + Física	Acceso a la Red	Ethernet, Wi-Fi, cables, hardware físico	

2. Análisis práctico:

 Analiza los paquetes capturados en la Parte 2 e indica cómo las capas del modelo TCP/IP se corresponden con las capas del modelo OSI

R% relación con los paquetes capturados

• Los paquetes ICMP pertenecen a la capa de Internet en TCP/IP y a la capa de red en OSI.

- Los paquetes TCP y UDP corresponden a la capa de transporte en ambos modelos.
- La dirección MAC observada en Wireshark es parte de la capa de acceso a red (TCP/IP) o capa 2 en OSI.
- La capa física no se ve en Wireshark directamente, ya que es el nivel eléctrico o de señal.

Parte 4: Evaluación de Conocimientos

1. Preguntas de repaso:

• ¿Qué capa del modelo OSI se encarga de la entrega confiable de datos?

Respuesta: La capa 4 (Transporte), mediante protocolos como TCP.

• ¿Qué dispositivos de red operan en la capa 2 del modelo OSI?

Respuesta: Los switches y tarjetas de red (NIC) operan principalmente en la capa

• ¿Cómo puedes identificar la capa de transporte (capa 4) al analizar un paquete capturado en Wireshark?

Respuesta: Observando si el paquete usa **TCP** o **UDP**, y revisando los **números de puerto** (como 80, 443, 53, etc.).

¿Cuáles son las diferencias clave entre los modelos OSI y TCP/IP?

Respuesta:

- El modelo OSI tiene **7 capas**, mientras que el TCP/IP tiene **4 capas** principales.
- OSI es más teórico y detallado; TCP/IP está basado en protocolos reales usados en Internet.
- En TCP/IP, las capas de aplicación, presentación y sesión están combinadas en una sola capa.