Big Data Project:Twitter Sentiment Analysis

Laiba Shah

Part Time Data Science Bootcamp

Objectives

- **BIG DATA COLLECTION:** Collect all tweets related to *Elon Musk* using Twitter API
- **DATA PROCESSING:** Import tweets by mounting s3 bucket and cleaning data
- **SENTIMENT ANALYSIS:** Perform sentiment analysis using TextBlob, an NLP library
- **PREDICTION:** Predict sentiment using Machine learning techniques
- **VISUALIZATION:** Query data using Athena and visualize it using Quicksight

Machine Learning Analysis

- Feature transformation (tokenizer, stopword removal, count vectorizer, TF-IDF vectorization, label encoder)
- Logistic regression classification model fit and MulticlassClassificationEvaluator
- Modeling a pipeline reusable for predicting future tweet sentiment by putting all transformers and estimator

With only feature transformation:

Logistic Regression Accuracy Score: 0.9952

Train, Test Split: 70/30:

Logistic Regression Accuracy Score: 0.9392

CrossValidator Accuracy Score: 0.9516 (LR after

hyperparameter tuning)

Naive Bayes Accuracy Score: 0.9109


```
reinstated
                         jealous
            breaking day
                         mattwallace
       kids
            employees says
crybaby
   billion
                              fired
                              making
                   elonmusk
                               single
   find tesla
             like back
                         donald
  platform
         hear know
                     media mcjesse
         think
              peterson
                 sexual
```

Word Cloud

# ▽	word	▽	word_count
1	elon		252499
2	thread		5583
3	make		4325
4	clear		3004
5	personal		5100
6	kanye		2276
7	freedom		2564
8	disgusting		427

--USING FILTERED ARRAY COLUMN FROM PREDICTIONS DATASET TO CREATE A LIST OF WORDS AND THEIR COUNT TO USE FOR WORDCLOUD

CREATE TABLE words AS(

SELECT word, COUNT(word) AS word_count

FROM em_predictions,unnest(filtered) AS t(word) --unnest the array and save each word as a row

GROUP BY word); --group and save total count per word for cloud

Logistic Regression: Predictions v. Actuals

--DETERMINING WHAT PORTION OF THE PREDICTIONS WERE ACCURATE V. INACCURATE BY SENTIMENT CATEGORY

CREATE TABLE QC_sent AS(

SELECT sentiment_category, QC, COUNT(*) AS accuracy_count FROM(

SELECT sentiment_category, label,prediction,

CASE --case then to label each row as an accurate or inaccurate prediction

WHEN label-prediction = 0 THEN 'Accurate'

ELSE 'Inaccurate'

END AS QC

FROM em_predictions)

GROUP BY sentiment_category, QC

ORDER BY sentiment_category);

SELECT sentiment, new_date, date(new_date) as date, hour(new_date) AS hour, COUNT(*) AS no_tweets FROM(SELECT created_at, sentiment, date_parse(created_at, '%a %b %d %H:%i:%S +0000 %Y') AS new_date --use date_parse to convert string to datetime FROM rawdatatable WHERE created at not like 'Tue Nov 22 07:38:43 +0000 2022"' AND created at LIKE '% Nov %') --clean date column and remove all unnecessary garbage values GROUP BY sentiment, new_date, HOUR(new_date)); Number of Tweets by Hour and Date Number of Tweets by Hour and Sentiment Date Sentiment 12K 20K Nov 21, 2022 negative Nov 22, 2022 neutral positive No. of Tweets

--CLEANING THE CREATED_AT STRING AND CONVERTING TO DATETIME ATTRIBUTE TO THEN GROUPING THE DATA BY SENTIMENT CATEGORY, DATE AND HOUR

CREATE TABLE datetime sent as(

Number of Tweets: Date and Sentiment

Hour

18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Hours

ReciteSocial

MonkeyWithTheM

Metacryptobuyer

LazarusHarshaw

neutral


```
--TOP 5 HANDLES CONTRIBUTING TO EACH TWEET SENTIMENT AND THEIR FOLLOWER COUNTS

CREATE TABLE topShandles as(
WITH rws AS()
select sentiment, handle, MAX(follower_count) follower_count, COUNT(*) tweets,
row_number () over (PARTITION BY sentiment ORDER BY COUNT(*) DESC) rn

FROM rawdatatable

GROUP BY sentiment, handle)

SELECT * FROM rws

WHERE rn <= 5

ORDER BY sentiment, rn); --use nested selected statement, row number and partition to rank handles within each category by tweet count
```

# 🗸	sentiment	∇	handle
1			omgwtfbbqdurian
2	negative		VeraldShine
3	negative		MonkeyWithTheM
4	negative		LindseyBoylan
5	negative		itsrohitchouhan
6	negative		MarkoSilberhand
7	neutral		MonkeyWithTheM
8	neutral		ReciteSocial
9	neutral		itsrohitchouhan
10	neutral		LazarusHarshaw
11	neutral		Metacryptobuyer
12	positive		PixelmanCA
13	positive		SoNotNikki
14	positive		MadallaSamson
15	positive		coolsausageroll
16	positive		esp_data

--TOP 10 HANDLES BY FOLLOWER COUNT WITHIN EACH SENTIMENT CATEGORY

CREATE TABLE top10handles AS(

SELECT sentiment, handle, follower_count, RANKING

FROM(SELECT sentiment, handle, follower_count, RANK() OVER (PARTITION BY sentiment ORDER BY sentiment, follower_count desc) RANKING

FROM rawdatatable)

WHERE RANKING <=10

ORDER BY sentiment, RANKING DESC); --use nested select statement, rank and partition to rank handles within each category by follower count

Top 10 Handles by Follower Count

# ~	sentiment	7	handle	▽	follower_count
1			omgwtfbbqdurian		55
2	negative		nytimes		54676071
3	negative		nytimes		54677264
4	negative		nytimes		54677506
5	negative		nytimes		54677542
6	negative		nytimes		54685581
7	neutral		Reuters		25645839
8	neutral		Reuters		25646289
9	neutral		Reuters		25647092
10	neutral		CNN		60582381
11	neutral		CNN		60587470
12	positive		Reuters		25643509
13	positive		Reuters		25643906
14	positive		Reuters		25646699
15	positive		nytimes		54685683
16	positive		CNN		60584683

Challenges

- Computing time
- Cleaning data and garbage values
- Conjoining tables
- Limited knowledge

Thank you.