Attention, Learn to Solve Routing Problems

Wouter Kool, Herke van Hoof, Max Welling ICLR 2019

Conference

Travelling Salesman Problem

Solutions

- Exact Solution: Linear Programming using Branch and Bound
- Heuristics: trade off optimality for computational

Exact SolutionBranch and Bound

Meta HeuristicsGenetic Algorithm

딥러닝 접근 케이스

- Hopfield-Network
- [Supervised Learning] Pointer Network
- [Reinforcement Learning] Bello, Actor-Critic to train the PN
- [Graph Neural Network] Nowak et al. Graph Neural Network
- [Attention] Attention, Learn to Solve Routing Problems

Hopfield Network, Hopfield & Tank (1985)

- Energy Based
- it either decreases or stays the same upon network units being updated

Hopfield Network

Pointer Network, Vinyals et al. (2015)

Ground Truth: tour length is 3.518

(e) Ptr-Net, m=50, n=50

(f) Ptr-Net, m=5-20, n=20

Using Reinforcement Learning, Bello et al. (2017)

Algorithm 1 Actor-critic training

```
1: procedure TRAIN(training set S, number of training steps T, batch size B)
            Initialize pointer network params \theta
            Initialize critic network params \theta_v
            for t = 1 to T do
                  s_i \sim \text{SAMPLEINPUT}(S) \text{ for } i \in \{1, \dots, B\}
                 \pi_i \sim \text{SAMPLESOLUTION}(p_{\theta}(.|s_i)) \text{ for } i \in \{1, \dots, B\}
                 b_i \leftarrow b_{\theta_v}(s_i) \text{ for } i \in \{1, \dots, B\}
                 g_{\theta} \leftarrow \frac{1}{B} \sum_{i=1}^{B} (L(\pi_i|s_i) - b_i) \nabla_{\theta} \log p_{\theta}(\pi_i|s_i)
                 \mathcal{L}_v \leftarrow \frac{1}{B} \sum_{i=1}^{B} \|b_i - L(\pi_i)\|_2^2
                  \theta \leftarrow \text{ADAM}(\theta, g_{\theta})
10:
                  \theta_v \leftarrow \text{ADAM}(\theta_v, \nabla_{\theta_v} \mathcal{L}_v)
12:
            end for
13:
            return \theta
14: end procedure
```


Graph Convolution, Joshi et al. (2019)

Figure 1: Overview of our approach. Taking a 2D graph as input, the graph ConvNet model outputs an edge adjacency matrix denoting the probabilities of edges occurring on the TSP tour. This is converted to a valid tour using beam search. All components are highly parallelized and solutions are produced in a one-shot, non-autoregressive manner.

 Hopfield	Pointer	Reinforcement	Graph
Network	Network	Learning	Convolution

문제 정의

- A problem instance s is a graph with n nodes, where $i \in \{1, \dots, n\}$
- For TSP, x_i is the coordinate of node i and the graph is fully connected
- A solution (tour) $\pi = (\pi_1, \dots, \pi_n)$ as a permutation of the nodes,

$$\pi_t \in \{1, \cdots, n\}, \pi_t \neq \pi_{t'} \ , \forall \ t \neq t'$$

• A stochastic policy $p(\boldsymbol{\pi}|s)$

$$p_{ heta}(oldsymbol{\pi}|s) = \prod_{t=1}^{n} p_{ heta}(\pi_t|s, oldsymbol{\pi}_{1:t-1})$$
 Chain Rule

Encoder

- Linear project the input $h_i^{(0)} = W^X x_i + b^X$
- $d_x = 2$, $d_h = 128$, $num\ heads = 8$
- Attention Layer.

$$\hat{h}_i = \mathrm{BN}^l \left(h_i^{(l-1)} + \mathrm{MHA}_i^l \left(h_1^{(l-1)}, \cdots, h_n^{(l-1)} \right) \right)$$

$$h_i^{(l)} = \mathrm{BN}^l (\hat{h}_i + \mathrm{FF}^l (\hat{h}_i))$$

Decoder

Context Query, Key, Value $\mathbf{q}_{(c)}$, \mathbf{k}_i , $\mathbf{v}_i = W^Q \mathbf{h}_{(c)}$, $W^K \mathbf{h}_i$, $W^V \mathbf{h}_i$

$$\mathbf{h}_{c}^{(N)} = \begin{cases} \left[\overline{h}^{(N)}, h_{\pi_{t-1}}^{(N)}, h_{\pi_{1}}^{(N)} \right], & t > 1\\ \left[\overline{h}^{(N)}, v^{l}, v^{f} \right], & t = 1 \end{cases}$$

Graph

Learned input symbol

이전 방문

Compatibility

Graph embedding

Node embedding

Concatenation

Context node embedding

Output probability

Attention query

Message

Identity / reference

Decoder

Figure 4: Illustration of weighted message passing using a dot-attention mechanism. Only computation of messages received by node 1 are shown for clarity. Best viewed in color.

$$u_{(c)j} = \begin{cases} C \cdot \tanh\left(\frac{q_{(c)}^T k_j}{\sqrt{d_k}}\right), & \text{if } j \neq \pi_{t'}, \forall t' < t \\ -\infty, & \text{otherwise} \end{cases} \text{ for clip } C \in [-10, 10]$$

Final Probability :
$$p_i = p_{\theta}(\pi_{t=i}|s, \pi_{1:t-1}) = \frac{e^{u(c)j}}{\sum_j e^{u(c)j}}$$

RL and Baselines for RL

$$\nabla \mathcal{L}(\theta|s) = E_{p_{\theta}(\pi|s)} \left[\left(L(\pi) - \boldsymbol{b}(\boldsymbol{s}) \right) \nabla \log p_{\theta}(\pi|s) \right]$$

Variance를 줄이기 위해서 사용

3 가지 선택지

- **1. Exponential moving average** b(s) = M with decay β . $M = L(\pi)$ in the first iteration and gets updated as $M \leftarrow \beta M + (1 \beta)L(\pi)$
- **2. Value function** (Critic) $\hat{v}(s, w)$
- 3. Rollout. b(s) 를 현재 모델로부터 Greedy 하게 solution 선택

Code 1 - Decoding

```
191
          def decode(self, probs, mask):
192
              if self.decode type == "greedy":
                  \_, idxs = probs.max(1)
193
                  assert not mask.gather(1, idxs.unsqueeze(-1)).data.any(), \
194
195
                      "Decode greedy: infeasible action has maximum probability"
              elif self.decode_type == "sampling":
196
197
                  idxs = probs.multinomial(1).squeeze(1)
                  # Check if sampling went OK, can go wrong due to bug on GPU
198
                  while mask.gather(1, idxs.unsqueeze(-1)).data.any():
199
                      print(' [!] resampling due to race condition')
200
                      idxs = probs.multinomial().squeeze(1)
201
              else:
202
                  assert False, "Unknown decode type"
203
204
              return idxs
205
```

Code 2 – Forward (PointerNet)

```
def forward(self, decoder_input, embedded_inputs, hidden, context, eval_tours=None):
148
              outputs = []
160
              selections = []
161
              steps = range(embedded inputs.size(0))
162
                                                                                                            • log_p : 강화학습용
              for i in steps:
 169
                                                                                                            • Probs : 다음 선택지를 위해서
                  hidden, log_p, probs, mask = self.recurrence(decoder_input, hidden, mask, idxs, i, context)
 170
                                                                                                            • mask: 이전에 선택한 것 제외
                  # select the next inputs for the decoder [batch size x hidden dim]
 171
                  idxs = self.decode(
 172
 173
                      probs,
 174
                      mask
                  ) if eval_tours is None else eval_tours[:, i]
 175
 176
                  idxs = idxs.detach() # Otherwise pytorch complains it want's a reward, todo implement this more properly?
 177
 178
                  # Gather input embedding of selected
 179
                                                                                                                          Attention model의 경우
                  decoder_input = torch.gather(
 180
                                                                                                                          추가적인 embedder!
                      embedded_inputs,
 181
 182
                                                                                                                         self.embedder = GraphAttentionEncoder(
                      idxs.contiguous().view(1, batch size, 1).expand(1, batch size, *embedded inputs.size()[2:])
 183
                                                                                                                             n_heads=<mark>n_heads</mark>,
 184
                  ).squeeze(0)
                                                                                                                             embed dim=embedding dim,
 185
                                                                                                                             n layers=self.n encode layers,
                  # use outs to point to next object
 186
                                                                                                                             normalization=normalization
 187
                  outputs.append(log_p)
                  selections.append(idxs)
 188
              return (torch.stack(outputs, 1), torch.stack(selections, 1)), hidden
 189
```

Code 3 – Batch Train

```
def train_batch(
128
             model,
129
             optimizer,
             baseline, <
130
                                   강화학습 안정성을 위한 Baseline
131
             epoch,
             batch_id,
132
133
             step,
134
             batch,
             tb_logger,
135
136
             opts
137
         x, bl_val = baseline.unwrap_batch(batch)
138
139
         x = move to(x, opts.device)
         bl_val = move_to(bl_val, opts.device) if bl_val is not None else None
140
141
         # Evaluate model, get costs and log probabilities
142
         cost, log_likelihood = model(x)
143
144
         # Evaluate baseline, get baseline loss if any (only for critic)
145
         bl_val, bl_loss = baseline.eval(x, cost) if bl_val is None else (bl_val, 0)
146
147
          # Calculate loss
148
         reinforce loss = ((cost - bl val) * log likelihood).mean()
149
         loss = reinforce_loss + bl_loss
150
151
         # Perform backward pass and optimization step
152
         optimizer.zero grad()
153
         loss.backward()
154
         # Clip gradient norms and get (clipped) gradient norms for logging
155
          grad norms = clip grad norms(optimizer.param groups, opts.max grad norm)
156
         optimizer.step()
157
```

REINFORCE with Rollout Baseline

Algorithm 1 REINFORCE with Rollout Baseline

```
1: Input: number of epochs E, steps per epoch T, batch size B,
                  significance \alpha
2: Init \theta, \theta^{BL} \leftarrow \theta
 3: for epoch = 1, ..., E do
                                   for step = 1, \ldots, T do
                                                    s_i \leftarrow \text{RandomInstance}() \ \forall i \in \{1, \dots, B\}
                                               \boldsymbol{\pi}_i \leftarrow \text{SampleRollout}(s_i, p_{\boldsymbol{\theta}}) \ \forall i \in \{1, \dots, B\}
                                                   \boldsymbol{\pi}_{i}^{\mathrm{BL}} \leftarrow \mathrm{GreedyRollout}(s_{i}, p_{\boldsymbol{\theta}^{\mathrm{BL}}}) \ \forall i \in \{1, \dots, B\} \longleftarrow
                                                                                                                                                                                                                                                                                                                                                                                            Stochastic Policy \pi^{BL} 로부터 Greedy
                                                    \nabla \mathcal{L} \leftarrow \sum_{i=1}^{B} \left( L(\boldsymbol{\pi}_i) - L(\boldsymbol{\pi}_i^{\text{BL}}) \right) \nabla_{\boldsymbol{\theta}} \log p_{\boldsymbol{\theta}}(\boldsymbol{\pi}_i)
                                                    \boldsymbol{\theta} \leftarrow \text{Adam}(\boldsymbol{\theta}, \nabla \mathcal{L})
10:
                                         end for
                                         if OneSidedPairedTTest(p_{\theta}, p_{\theta^{\text{BL}}}) < \alpha then \buildrel \buildr
                                                           \boldsymbol{\theta}^{\mathrm{BL}} \leftarrow \boldsymbol{\theta}
13:
                                         end if
14: end for
```

at the end of every epoch, replace the parameters θ^{BL} of the baseline policy only **if the improvement is significant** according to a **paired t-test** (α = 5%), **on 10000 separate (evaluation) instances.**

Baselines for RL

• **Assumption** The difficulty of an instance can (on average) be estimated by the performance of an algorithm applied to it

Experiments

결론:

- 1. 높은 성능
- 2. Solution output 시간이 오래 안 걸림
- Training data로부터 100 epoch 학습
 10000 개의 테스트 데이터
- 매스텝마다, greedy 하게 가장 확률이 높은 point 선택

Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

	Method	Obj.	$\begin{array}{c} n=20 \\ \text{Gap} \end{array}$	Time	Obj.	$\begin{array}{c} n=50 \\ \text{Gap} \end{array}$	Time	Obj.	$\begin{array}{c} n=100 \\ \text{Gap} \end{array}$	Time	
	Concorde LKH3 Gurobi Gurobi (1s)	3.84 3.84 3.84 3.84	0.00% 0.00% 0.00% 0.00%	(1m) (18s) (7s) (8s)	5.70 5.70 5.70 5.70	0.00% 0.00% 0.00% 0.00%	(2m) (5m) (2m) (2m)	7.76 7.76 7.76	0.00% 0.00% 0.00%	(3m) (21m) (17m)	Optimal
TSP	Nearest Insertion Random Insertion Farthest Insertion Nearest Neighbor Vinyals et al. (gr.) Bello et al. (gr.) Dai et al. Nowak et al. EAN (greedy) AM (greedy)	4.33 4.00 3.93 4.50 3.88 3.89 3.89 3.86 3.85	$12.91\% \\ 4.36\% \\ 2.36\% \\ 17.23\% \\ 1.15\% \\ 1.42\% \\ 1.42\% \\ 2.46\% \\ 0.66\% \\ 0.34\%$	(1s) (0s) (1s) (0s) (2m) (0s)	6.78 6.13 6.01 7.00 7.66 5.95 5.99 5.92 5.80	19.03% 7.65% 5.53% 22.94% 34.48% 4.46% 5.16% - 3.98% 1.76%	(2s) (1s) (2s) (0s) (5m) (2s)	9.46 8.52 8.35 9.68 8.30 8.31 8.42 8.12	21.82% 9.69% 7.59% 24.73% - 6.90% 7.03% - 8.41% 4.53%	(6s) (3s) (7s) (0s) (8m) (6s)	Greedy
_	OR Tools Chr.f. + 2OPT Bello et al. (s.) EAN (gr. + 2OPT) EAN (sampling) EAN (s. + 2OPT) AM (sampling)	3.85 3.85 3.84 3.84 3.84 3.84	0.37% 0.37% 0.42% 0.11% 0.09% 0.08 %	(4m) (5m) (6m) (5m)	5.80 5.79 5.75 5.85 5.77 5.75 5.73	$\begin{array}{c} 1.83\% \\ 1.65\% \\ 0.95\% \\ 2.77\% \\ 1.28\% \\ 1.00\% \\ \textbf{0.52}\% \end{array}$	(26m) (17m) (32m) (24m)	7.99 8.00 8.17 8.75 8.12 7.94	2.90% - 3.03% 5.21% 12.70% 4.64% 2.26 %	(3h) (56m) (5h) (1h)	Solution을 1280 개 Sampling

Generalization

Another Permutation Problem

Conclusion

This model can be applied to any permutation based combinatorial optimization problem
(순열 조합 문제를 순차적으로 풀 수 있다.)

$$(\pi_1,\cdots,\pi_n)$$

• Combinatorial Problem using Neural network for searching solution in a better way (강화학습의 장점 → Sequential 문제 해결)

Generalization doesn't work well.

