CMPS 130

Spring 2016

Homework Assignment 3 Solutions

Problems are from Martin 4th edition.

Chapter 2 (p.77): 1abcdefgh, 2abcde, 3abc, 4, 6, 7, 10abc

1. Problem 2.1a-h

In each part below, draw an FA accepting the indicated language over $\{a, b\}$.

- a. The language of all strings containing exactly two a's.
- b. The language of all strings containing at least two *a*'s.
- c. The language of all strings that do not end with ab.
- d. The language of all strings that begin or end with aa or bb.
- e. The language of all strings not containing the substring aa.
- f. The language of all strings in which the number of *a*'s is even.
- g. The language of all strings in which both the number of a's and the number of b's are even.
- h. The language of all strings containing no more than one occurrence of the string *aa*. (Note the string *aaa* contains two occurrences of *aa*.)

Solution:

a.

b.

c.

d.

e.

f.

g.

h.

2. Problem 2.2a-e

For each of the RAs pictured in Fig. 2.43, give a simple verbal description of the language it accepts.

Solution:

- a. $L=\{$ all strings that contain aaba $\}$
- b. $L=\{$ all strings that end with aaba $\}$
- c. L={ all strings that begin with aaba }
- d. $L=\{\lambda\} \cup \{$ all strings that begin with a and end with b $\}$
 - = $\{$ all strings that do not begin with b and do not end with a $\}$
- e. $L=\{$ concatenations of zero or more instances of the strings ab and ba $\}$ = $\{ab, ba\}^*$

3. Problem 2.3abc

- a. Draw a transition diagram for an FA that accepts the string *abaa* and no other strings.
- b. For a string $x \in \{a, b\}^*$ with |x| = n, how many states are required for an FA accepting x and no other strings? For each of these states, describe the strings that cause the FA to be in that state.
- c. For a string $x \in \{a, b\}^*$ with |x| = n, how many states are required for an FA accepting the language of all strings in $\{a, b\}^*$ that begin with x? For each of these states, describe the strings that cause the FA to be in that state.

Solution:

a.

- b. Given $x \in \{a, b\}^*$ with |x| = n, an FA accepting the language $\{x\}$ must contain n + 2 states. One state is a trap for any string that does not begin with a prefix of x. The remaining n + 1 states correspond to the n + 1 prefixes of x (including x itself.) The one accepting state corresponds to the string x.
- c. Given $x \in \{a, b\}^*$ with |x| = n, an FA accepting the language $\{xy \mid y \in \{a, b\}^*\}$ must contain n + 2 states. One state is a trap for any string that does not begin with a prefix of x (and therefor does not begin with x). One state (the accepting state) corresponds to all strings beginning with x. The remaining n states correspond to the n prefixes of x, other than x itself.

4. Problem 2.4

Example 2.7 describes an FA accepting L_3 , the set of strings in $\{0,1\}^*$ that are binary representations of integers divisible by 3. Draw a transition diagram for an FA accepting L_5 .

Solution:

5. Problem 2.6

Suppose $M = (Q, \Sigma, q_0, A, \delta)$ is an FA, q is an element of Q, and $\delta(q, \sigma) = q$ for every $\sigma \in \Sigma$. Show using structural induction that for every $x \in \Sigma^*$, $\delta^*(q, x) = q$.

Proof: Suppose that for some particular $q \in Q$, we have $\delta(q, \sigma) = q$ for all $\sigma \in \Sigma$.

- I. $\delta^*(q, \lambda) = q$ by the recursive definition of δ^* .
- II. Let $x \in \Sigma^*$ and assume $\delta^*(q, x) = q$. We must show that $\delta^*(q, x\sigma) = q$ for any $\sigma \in \Sigma$. Choose an arbitrary $\sigma \in \Sigma$, then

$$\delta^*(q, x\sigma) = \delta(\delta^*(q, x), \sigma)$$
 by the recursive definition of δ^* by the induction hypothesis by our assumption on q

The result now follows for all $x \in \Sigma^*$ by structural induction.

6. Problem 2.7

Let $M = (Q, \Sigma, q_0, A, \delta)$ be an FA. Let $M_1 = (Q, \Sigma, q_0, R, \delta)$, where R is the set of states p in Q for which $\delta^*(p, z) \in A$ for some string z. What is the relationship between the language accepted by M_1 and the language accepted by M? Prove your answer.

Solution:

Let L be the language accepted by M, and let L_1 be that accepted by M_1 . Then L_1 consists of all prefixes of strings in L. In other words $L_1 = \{ x \in \Sigma^* \mid \exists z \colon xz \in L \}$.

Proof: We must show that x is accepted by M_1 if and only if $xz \in L$ for some $z \in \Sigma^*$. We have

$$x$$
 is accepted by $M_1 \Leftrightarrow \delta^*(q_0, x) \in R$ by the definition of acceptance $\Leftrightarrow \exists z \colon \delta^*(\delta^*(q_0, x), z) \in A$ by the definition of R by a Theorem proved in class $\Leftrightarrow \exists z \colon xz \in L$

7. Problem 2.10abc

Let M_1 and M_2 be the RAs pictured in Figure 2.44, accepting languages L_1 and L_2 respectively.

Draw RAs accepting the following languages.

- a. $L_1 \cup L_2$
- b. $L_1 \cap L_2$ c. $L_1 L_2$

Solution:

We draw one transition diagram and give the accepting states separately. Outgoing edges from unreachable edges are not drawn, and are left out of the accepting sets.

- a. Accepting states for $L_1 \cup L_2$: { AZ, BZ, CZ, CY }
- b. Accepting states for $L_1 \cap L_2$: { CZ }
- c. Accepting states for $L_1 L_2$: { CY } (leaving out CX since it is unreachable)