Deep Learning

Vijaya Saradhi

IIT Guwahati

Tue, 08th Sept 2020

Data & Learning Methods

Data

- Linearly separable data
- Linearly non-separable data
- Noise in the data
- Erroneous data

Learning Methods

- Linearly separable data built with guarantees example of perceptron
- Linearly non-separable data multi-layer perceptron

Linearly separable data - example

Linearly non-separable data - example

Noisy data - example

Neural Networks

Definition

A neural network is

- massively parallel
- parallel
- distributed processor
- with simple processing units neurons
- Propensity to store experiential knowledge
- Apply it when required

An Example Network

Neural Networks

Resembles the Human Brain

Knowledge is acquired by the network from its environment through a learning process

Neural Networks

Resembles the Human Brain

Inter-neuron connections strengths (weights) are used to store the acquired information

Models Of A Neuron

Constituent Elements

- An information processing unit
- Fundamental to the operation of a complex neural network

Constituent Elements

Connecting links Or Synapses or connections

Adder function for summing input signals weighted by the synaptic strengths

Activation function for limiting the output of a neuron

Range Output range [0, 1] or [-1, 1]

- Connecting links carrying weights
- ullet Adder function Σ
- Activation function $\phi(.)$

- Neuron having m inputs x_1, x_2, \dots, x_m
- Adder function

$$u_k = \left(\sum_{j=1}^m w_{kj} x_j\right)$$

- Add Bias $v_k = (u_k + b_k)$
- Add Bias

$$v_k = \left(\sum_{j=1}^m w_{kj} x_j\right) + b_k$$

Activation function

$$\phi\left(\left(\sum_{j=1}^{m}w_{kj}x_{j}\right)+b_{k}\right)$$

14 / 47

Neuron Model - One input example

Hypothesis Function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Vijaya Saradhi (IIT Guwahati) CS590 Tue, 08th Sept 2020

Neuron Model - One input example

- Neuron having m = 1 input x
- Adder function

$$u_k = \left(\sum_{j=1}^m w_{k1} x\right) = w_{k1} \times x$$

- Add Bias $v_k = (u_k + b_k)$
- Add Bias $v_k = (w_{k1} \times x) + b_k$
- Activation function $\phi(w_{k1} \times x + b_k)$
- Equivalent of saying: $\phi (\theta_1 x + \theta_0)$

Neuron Model with two inputs

- Neuron having m = 2 inputs x_1, x_2
- Adder function $u_k = (w_{k1}x_1 + w_{k2}x_2)$
- Add Bias $v_k = (u_k + b_k)$
- Add Bias $v_k = (w_{k1}x_1 + w_{k2}x_2) + b_k$
- Activation function $\phi((w_{k1}x_1 + w_{k2}x_2) + b_k)$

Influence of bias value

- $b_k = 0$
- Add Bias $v_k = (w_{k1}x_1 + w_{k2}x_2) + 0$
- $b_k = +ve$
- Add Bias $v_k = (w_{k1}x_1 + w_{k2}x_2) + b_k$
- $b_k = -ve$
- Add Bias $v_k = (w_{k1}x_1 + w_{k2}x_2) b_k$
- $(w_{k1}x_1 + w_{k2}x_2)$ vary along y-axis explaining the intercept and bias

Bias Impact

Hypothesis Function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

$$\theta_0 = 0$$
$$\theta_1 = 0.5$$

$$\begin{array}{ccc}
0 & & \theta_0 = \\
0.5 & & \theta_1 =
\end{array}$$

Neuron Including Bias

Modified Equations

$$v_k = \sum_{j=0}^{m} w_{kj} x_j$$
$$w_{k0} = b_k$$
$$x_0 = +1$$

Modified Equations

$$v_{k} = \sum_{j=1}^{m} w_{kj} x_{j} + w_{k0} x_{0}$$
$$v_{k} = \sum_{j=1}^{m} w_{kj} x_{j} + b_{k}$$

Modified Neuron Model

Types of activation functions

Types

- Threshold function
- Sigmoid function
- Signum function

Threshold activation function

Threshold function

$$\phi(v) = \begin{cases} 1 & \text{if } v \ge 0 \\ 0 & \text{if } v < 0 \end{cases}$$

kth Neuron Output

$$y_k = \begin{cases} 1 & \text{if } v_k \ge 0 \\ 0 & \text{if } v_k < 0 \end{cases}$$

Threshold Activation Function

Sigmoid function

Sigmoid function

$$\phi(v) = \frac{1}{1 + \exp(-a \times v)}$$

Sigmoid function

Slope parameter effect

Supervised learning

Signum functions

Slope parameter effect

- Threshold and sigmoid function output ranges between [0, 1]
- ullet To modified the limit as [-1, +1] modify the activation function as signum function

Signum function

$$\phi(v) = \begin{cases} +1 & \text{if } v > 0 \\ 0 & \text{if } v = 0 \\ -1 & \text{if } v < 0 \end{cases}$$

Sigmoid function

tanh function output is in the range [-1, 1]

Neural Networks as Directed Graphs

Directed Graphs

- Consists of links and nodes
- A node has associated signal x_i
- A directed link orignates at node j and terminates at node k
- links are of two types
 - Synaptic links
 - Activation links

Neural Networks as Directed Graphs

Rules

Rule 1 A signal flows along a link only in one direction (arrow decides the flow)

Synaptic links Node signal x_j is multiplied by weight w_{kj} to produce node signal y_k

Activation links This links behavior is governed by activation function $\phi(.)$

$$x_{j} \bigcirc \underbrace{\qquad \qquad \qquad }_{\text{(a)}} \circ y_{k} = w_{kj}x_{j}$$

$$x_{j} \bigcirc \underbrace{\qquad \qquad }_{\text{(b)}} \circ y_{k} = \varphi(x_{j})$$

Neural Networks as Directed Graphs

Rules

Rule 2 A node signal equal to the sum of all signals entering the node

Rule 3 Signal at node is transmitted to each out going link with the same signal

Neuron Example as Directed Graphs

Neuron Model

Neuron Model - Directed Graph

- Rule 1 synaptic link: $x_0 \times w_{k0}$
- Rule 1 synaptic link: Second link: $x_1 \times w_{k_1}$
- Rule 1 synaptic link: m^{th} link: $x_m \times w_{km}$
- Rule 2: Node v_k : $x_0 \times w_{k0} + x_1 \times w_{k1} + \cdots + x_m \times w_{km}$
- Rule 1: activation link between node v_k and y_k
- Rule 1: activation link:

$$y_k = \phi\left(\sum_{j=1}^m w_{kj} x_j\right)$$

Neural Network Architectures

Types

- Single-layer feedforward networks
- Multi-layer feedforward networks
- Recurrent networks

FIGURE 15 Feedforward network with a single layer of neurons.

- Input layer
- Output layer
- Each node is a neuron model
- The arrow emerging out of single node is the output of the neuron model (y_k)

FIGURE 15 Feedforward networl with a single layer of neurons.

FIGURE 15 Feedforward network with a single layer of neurons.

- Let the inputs be: x_1, x_2, \dots, x_m
- Let the weights on the first neuron be:

$$W_{11}, W_{12}, W_{13}, \cdots, W_{1m}$$

 Let the weights on the second neuron be:

$$W_{21}, W_{22}, W_{23}, \cdots, W_{2m}$$

Output of the first neuron will

be:
$$y_1 = \phi \left(\sum_{j=0}^m w_{1j} x_j \right)$$

Output of the second neuron

will be:
$$y_2 = \phi \left(\sum_{j=0}^m w_{2j} x_j \right)$$

FIGURE 15 Feedforward network with a single layer of neurons.

- Network is feed forward as the inputs and weigths are passing along the direction of the arrows of the network in one direction
- One example of the environment is presented to this network
- Known quantities:
 - One input example (one spam email and its assocaited features) that is

$$X_{i1}, X_{i2}, \cdots, X_{im}$$

Input examples class label: d_i

FIGURE 15 Feedforward network with a single layer of neurons.

- What is to be learned?
 - Weights for first neuron: $w_{11}, w_{12}, w_{13}, \cdots, w_{1m}$
 - Weights for second neuron: $w_{21}, w_{22}, w_{23}, \cdots, w_{2m}$
 - Weights for the last neuron: $W_{11}, W_{12}, W_{13}, \cdots, W_{1m}$

Multi layer feedforward networks

Multi layer feedforward networks

- Input layer, number of hidden layers and output layer
- Architecture is referred as: $m h_1 h_2 q$
- m input features; h₁ hidden units in the first layer
- h₂ hidden units in the second layers and q-output nodes
- First layers is the input layer; last layer is the output layer

Multi layer feedforward networks

 Computation at the first node of the output layer:

$$\bullet \ y_{21} = \phi \left(\sum_{j=0}^4 \frac{y_{1j} w_{2j}}{y_{1j} w_{2j}} \right)$$

- Output depends on the chosen activation function
- Input to the output layers is the 1st hidden layer
- Let its outputs are denoted as *y*₁₁, *y*₁₂, *y*₁₃, *y*₁₄
- The inputs in the 1st hidden layer are multiplied with the weights on the synaptic links going out of the first hidden

Recurrent networks

- Recurrent with no hidden layer
- Contains at least one feedback loop
- First neuron output is fed to rest of the three neurons
- Second neuron output is fed to rest of the other three neurons

Recurrent networks

with one hidden layer

Modern Architectures

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4006–1000.

Knowledge Representation

Four main points

- Rule 1 Similar inputs from similar classes should produce similar representations inside the network
- Rule 2 Inputs to be categorized as separate classes should be given widely different representation in the network
- Rule 3 Importance to specific features is given through involving large number of neurons
- Rule 4 Prior information is achieved through design of neural network.