Weekly Report 04/04/2015

Jingyu Deng

This Week

- Improved our model to adapt to the case when n_estimators is really small.
- Implemented a new model combining random forest with sym.
- Tested random forest model, SVM model, combination model, and Wang's model on data sets.

Improvement

- When n_estimator is 1, our algorithm doesn't execute normalization on weight vector. Otherwise the only weight is 1.0 forever and the only tree has no possibility to be replaced.
- When n_estimators is larger than 1, the threshold is a function about n_estimators:
 - threshold = 1.0 / n_trees * (0.3 / (n_trees * 2 3) + 0.4
- Thus in the case of small n_estimators, trees are still have chance to be replaced.

Comparison with former version

 Here are some plots of now model and former model. The chunk_size is 1000 and k is 0.8

current

former

Combination model

- As professor Shasha suggested, I added Lefteris' SVM into the model. So when inserting with new estimator, there is 1/4 possibility to insert with a SVM instead of a decision tree. The prediction are made by decision and SVM together. Our program considers results from both estimators.
- I tried to maintain a model with decision trees only and a model with SVM only at the same time. In 1/4 of the time we used SVM model. But maintaining a model with SVM costs really long time. So I choose the method above.

Some experimental results

I picked some results with parameter k=0.8 and chunk_size=1000. In this data set, it is more difficult to predict and Wang's algorithm won't be influenced by the chunk_size. From these results, we know that a combination model is much better than others.

$$n=6$$
 $n=8$ $n=10$

Execution Time

 I recorded execution time during the tests. Following table shows consumed time for the tests in the previous slide.

	n=6	n=8	n=10
decision tree	670s	909s	1094s
wang	596s	827s	976s
combination	1635s	2290s	2952s

 From this table, we know that combination model is slower than other two. And this gap will be larger when n increases.

Pure SVM Model

 I tried a model containing SVM only before but it took a really long time even when compare it with combination model. Here is the performance of SVM only model when k=0.8, n=8, chunk_size=1000

	Time(estimated)
SVM	3987s
Wang	917s
Combin ation	2365s

 As Lefteris mentioned, grid search procedure takes a lot of time when inserting a svm. As n_estimators increases, it will take much much more time to finish.