Examen final

4 janvier 2016

[durée : 3 heures]

!\ Documents autorisés : Une feuille A4 recto-verso écrite à la main.

Exercice 1 (Question de cours et applications)

a) Démontrer la proposition du cours :

Soient une bijection $\phi: A \xrightarrow{\sim} B$ et une application $f: A \to C$, alors l'image de l'ensemble de niveau $\mathcal{L}_k(f)$ par ϕ est $\mathcal{L}_k(f \circ \phi^{-1})$.

Pour la suite de l'exercice on se place dans \mathbb{R}^2 muni de sa base canonique.

- b) Donner l'expression analytique d'une transformation affine ϕ qui envoie le cercle d'équation $\{x^2 + (y-1)^2 = 2\}$ sur l'ellipse d'équation $\{2x^2 + y^2 = 1\}$.
- c) Existe-t-il une application définie sur \mathbb{R}^2 qui envoie l'ensemble d'équation $\{2x^2 + 2xy + y^2 + x - 3y = 0\}$ sur l'ensemble d'équation $\{9x^2 + 12xy + 4y^2 + 1 = 0\}$?

Exercice 2 (Géométrie dans \mathbb{R}^3)

On se place dans l'espace affine euclidien \mathbb{R}^3 . On considère le plan \mathcal{P} d'équation $\{2x+y=1\}$ et la droite \mathcal{D} d'équations $\{z = -1, x = y\}$.

- a) Donner l'expression analytique de la projection p sur le plan \mathcal{P} suivant la direction \mathcal{D} .
- b) Donner l'expression analytique de la symétrie s par rapport à \mathcal{P} suivant la direction \mathcal{D} .
- c) Donner l'expression analytique de la projection orthogonale π sur le plan \mathcal{P} .
- d) Calculer la distance de A = (1, 0, 1) au plan \mathcal{P} .
- e) Donner l'expression analytique de la symétrie orthogonale σ par rapport à \mathcal{P} .
- f) Soit C le cône standard d'équation $\{x^2+y^2-z^2=0\}$. Quelle est la nature de l'intersection $\mathcal{P} \cap \mathcal{C}$? Dessiner cette intersection.

Exercice 3 (Construction d'une ellipse)

Soient deux droites orthogonales \mathcal{D}_1 et \mathcal{D}_2 qui se coupent en un point O, et deux cercles \mathcal{C}_1 et \mathcal{C}_2 de centre O et de rayons respectifs r et R avec 0 < r < R.

Pour tout point Q sur \mathcal{C}_2 , soit $P = \mathcal{C}_1 \cap [O, Q]$. Soient \mathcal{D}'_1 et \mathcal{D}'_2 les deux droites parallèles à \mathcal{D}_1 et \mathcal{D}_2 et passant par P et Q respectivement.

On considère le point d'intersection de ces deux droites $M = \mathcal{D}'_1 \cap \mathcal{D}'_2$.

Exercice 4 (Géométrie dans le plan complexe)

Cet exercice est relié à la construction d'une approximation de la «spirale d'or» représentée sur la figure.

On se place dans le plan euclidien identifié avec \mathbb{C} . Soient A, B et D trois points d'affixes respectivement 0,1 et i. On considère le carré ABCD. On note $\gamma = \frac{1+\sqrt{5}}{2}$ le «nombre d'or». Il peut être utile de savoir que $\gamma = 1 + \frac{1}{\gamma}$.

- a) Soient A' = C et $B' \in [BC]$ tel que $\gamma ||A'B'|| = 1$. On considère le carré A'B'C'D' construit à l'extérieur du carré ABCD. Montrer qu'il existe une unique transformation affine S qui envoie ABCD sur A'B'C'D' en respectant les sommets (S(A) = A', S(B) = B', ...).
- b) Soient z l'affixe d'un point M et S(z) l'affixe de son image S(M). Exprimer S(z) en fonction de z et γ .
- c) Quelle est la nature de S? Quelle est la nature de γS ?
- d) Déterminer l'ensemble des points fixes de S.
- e) Soit D'' = S(D'). Montrer que ADD'D'' est un rectangle. Puis montrer que pour tout $n \in \mathbb{N}$, $S^n(ABCD) \subset ADD'D''$.
- f) Montrer que $S^3(D) = B$. Existe-t-il un autre $n \in \mathbb{N}$ pour lequel on a la même relation $S^n(D) = B$?