Cơ sở trực giao – Không gian con trực giao

Nguyễn Hoàng Thạch nhthach@math.ac.vn

- Cơ sở trực giao
- Quá trình trực giao hóa Gram-Schmidt
- Skhông gian con trực giao
- 4 Các không gian con cơ bản của một ma trận
- Bình phương tối thiểu

- Cơ sở trực giao
- 2 Quá trình trực giao hóa Gram-Schmidt
- 3 Không gian con trực giao
- Các không gian con cơ bản của một ma trận
- Bình phương tối thiểu

Cơ sở trực giao

Giå sử V là một không gian Euclid.

Định nghĩa

Một tập hợp S gồm các vector của V được gọi là một hệ trực giao nếu các vector trong S đôi một vuông góc với nhau. Một hệ trực giao S gồm toàn các vector đơn vị được gọi là một hệ trực chuẩn.

Một cơ sở S là một cơ sở trực giao (tương ứng cơ sở trực chuẩn) nếu nó là một hệ trực giao (tương ứng trực chuẩn).

Chú ý: Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ thì S là một hệ trực chuẩn nếu và chỉ nếu

$$\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 0 \text{ if } i \neq j \\ 1 \text{ if } i = j \end{cases}$$

Thí dụ:

- Trong \mathbb{R}^n với tích vô hướng thông thường, cơ sở chính tắc là một cơ sở trực chuẩn.
- Trong \mathbb{R}^3 , $S = \{(\cos \theta, \sin \theta, 0), (-\sin \theta, \cos \theta, 0)\}$ là một hệ trực chuẩn.

Hệ trực giao và độc lập tuyến tính

Định lý

Nếu $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ là một hệ trực giao gồm các vector khác không thì S độc lập tuyến tính.

Chứng minh:

Giả sử $c_1\mathbf{v}_1+c_2\mathbf{v}_2+\cdots+c_k\mathbf{v}_k=\mathbf{0}$ là một ràng buộc tuyến tính của S. Lấy tích vô hướng của cả hai vế với \mathbf{v}_i ta được:

$$c_1\langle \mathbf{v}_1, \mathbf{v}_i \rangle + c_2\langle \mathbf{v}_2, \mathbf{v}_i \rangle + \cdots + \langle \mathbf{v}_n, \mathbf{v}_i \rangle = 0$$
.

Vì S là hệ trực giao nên vế trái bằng $c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = c_i \|\mathbf{v}_i\|^2$, suy ra $c_i \|\mathbf{v}_i\|^2 = 0$. Vì $\mathbf{v}_i \neq \mathbf{0}$ nên $c_i = 0$.

Hệ trực giao và độc lập tuyến tính

Hệ quả

Nếu $\dim(V) = n$ thì mọi hệ trực giao gồm n vector khác không của V là một cơ sở.

Thí dụ:

Trong \mathbb{R}^4 , xét $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\} = \{(2, 3, 2, -3), (1, 0, 0, 1), (-1, 0, 2, 1), (-1, 2, -1, 1)\}.$ Có thể kiểm tra rằng các vector của S đôi một vuông góc với nhau:

$$\mathbf{v}_1\cdot\mathbf{v}_2=\mathbf{v}_1\cdot\mathbf{v}_3=\mathbf{v}_1\cdot\mathbf{v}_4=\mathbf{v}_2\cdot\mathbf{v}_3=\mathbf{v}_2\cdot\mathbf{v}_4=\mathbf{v}_3\cdot\mathbf{v}_4=0\,.$$

Suy ra S là một hệ trực giao, do đó là một cơ sở của \mathbb{R}^4 .

Tọa độ trong cơ sở trực chuẩn

Định lý

Nếu $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở trực chuẩn của V thì tọa độ của một vector \mathbf{u} trong cơ sở B là

$$[\mathbf{u}]_B = [\langle \mathbf{u}, \mathbf{v}_1 \rangle \langle \mathbf{u}, \mathbf{v}_2 \rangle \dots \langle \mathbf{u}, \mathbf{v}_n \rangle]^T.$$

Chứng minh:

Giả sử
$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_n$$
. Khi đó $\langle \mathbf{u}, \mathbf{v}_i \rangle = c_i \langle \mathbf{v}_i, \mathbf{v}_i \rangle = c_i$.

Thí dụ: Trong \mathbb{R}^3 , cho cơ sở trực chuẩn

$$B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(3/5, 4/5, 0), (-4/5, 3/5, 0), (0, 0, 1)\} \text{ và } \mathbf{u} = \underline{(5, -5, 2)}.$$

Ta có
$$\mathbf{u} \cdot \mathbf{v}_1 = -1$$
, $\mathbf{u} \cdot \mathbf{v}_2 = -7$, $\mathbf{u} \cdot \mathbf{v}_3 = 2$. Từ đó $[\mathbf{u}]_B = [-1 \ 7 \ 2]^T$.

- Cơ sở trực giao
- Quá trình trực giao hóa Gram-Schmidt
- Không gian con trực giao
- Các không gian con cơ bản của một ma trậr
- Bình phương tối thiểu

Cho $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ là một cơ sở của không gian Euclid V. Quá trình trực giao hóa Gram-Schmidt biến B thành $B' = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n\}$ như sau:

$$\begin{array}{rcl} \mathbf{w}_{1} & = & \mathbf{v}_{1} \\ \mathbf{w}_{2} & = & \mathbf{v}_{2} - \frac{\langle \mathbf{v}_{2}, \mathbf{w}_{1} \rangle}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} \\ \\ \mathbf{w}_{3} & = & \mathbf{v}_{3} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{1} \rangle}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\langle \mathbf{v}_{3}, \mathbf{w}_{2} \rangle}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} \\ \\ \dots \\ \\ \mathbf{w}_{n} & = & \mathbf{v}_{n} - \frac{\langle \mathbf{v}_{n}, \mathbf{w}_{1} \rangle}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\langle \mathbf{v}_{n}, \mathbf{w}_{2} \rangle}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} - \dots - \frac{\langle \mathbf{v}_{n}, \mathbf{w}_{n-1} \rangle}{\|\mathbf{w}_{n-1}\|^{2}} \mathbf{w}_{n-1} \end{array}$$

Định lý

- Tập hợp B' là một cơ sở trực giao của V.
- ② Tập hợp $B'' = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$, ở đó $\mathbf{u}_i = \frac{\mathbf{w}_i}{\|\mathbf{w}_i\|}$, là một cơ sở trực chuẩn của V.
- $lack V\'oi \ moi \ k=1,\ldots,n, \ span \{\mathbf v_1,\ldots,\mathbf v_k\} = span \{\mathbf w_1,\ldots,\mathbf w_k\} = span \{\mathbf u_1,\ldots,\mathbf u_k\}.$

Hình: Larson et al., p. 314

Thí dụ:

• Trong \mathbb{R}^3 , xét cơ sở $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} = \{(1, 1, 0), (1, 2, 0), (0, 1, 2)\}.$

$$\begin{split} & \textbf{w}_1 &= \textbf{v}_1 = (1,1,0) \\ & \textbf{w}_2 &= \textbf{v}_2 - \frac{\textbf{v}_2 \cdot \textbf{w}_1}{\|\textbf{w}_1\|^2} \textbf{w}_1 = \left(-\frac{1}{2},\frac{1}{2},0\right) \\ & \textbf{w}_3 &= \textbf{v}_3 - \frac{\textbf{v}_3 \cdot \textbf{w}_1}{\|\textbf{w}_1\|^2} \textbf{w}_1 - \frac{\textbf{v}_3 \cdot \textbf{w}_2}{\|\textbf{w}_2\|^2} \textbf{w}_2 = (0,0,2) \end{split}$$

Tập hợp $B'=\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\}$ là một cơ sở trực giao của \mathbb{R}^3 . Chuẩn hóa B' ta được một cơ sở trực chuẩn $B''=\left\{\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right),\left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right),(0,0,1)\right\}$.

• Trong \mathbb{R}^3 , xét $\mathbf{v}_1=(0,1,0)$, $\mathbf{v}_2=(1,1,1)$. Trực giao hóa $\{\mathbf{v}_1,\mathbf{v}_2\}$ ta được $\mathbf{w}_1=(0,1,0)$, $\mathbf{w}_2=(1,0,1)$. Chuẩn hóa hai vector này ta thu được một cơ sở trực chuẩn của $span\{\mathbf{v}_1,\mathbf{v}_2\}$: $\Big\{(0,1,0),\Big(\frac{\sqrt{2}}{2},0,\frac{\sqrt{2}}{2}\Big)\Big\}$.

 $\mathbf{Ch\acute{u}}$ \acute{y} : Việc chuẩn hóa có thể được thực hiện ngay trong từng bước của quá trình trực giao hóa như sau

$$\begin{array}{lll} \mathbf{u}_1 & = & \frac{\mathbf{w}_1}{\|\mathbf{w}_1\|} \text{ v\'oi } \mathbf{w}_1 = \mathbf{v}_1 \\ \\ \mathbf{u}_2 & = & \frac{\mathbf{w}_2}{\|\mathbf{w}_2\|} \text{ v\'oi } \mathbf{w}_2 = \mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{u}_1 \rangle \mathbf{u}_1 \\ \\ \mathbf{u}_3 & = & \frac{\mathbf{w}_3}{\|\mathbf{w}_3\|} \text{ v\'oi } \mathbf{w}_3 = \mathbf{v}_3 - \langle \mathbf{v}_3, \mathbf{u}_1 \rangle \mathbf{u}_1 - \langle \mathbf{v}_3, \mathbf{u}_2 \rangle \mathbf{u}_2 \\ \\ \cdots \\ \\ \mathbf{u}_n & = & \frac{\mathbf{w}_n}{\|\mathbf{w}_n\|} \text{ v\'oi } \mathbf{w}_n = \mathbf{v}_n - \langle \mathbf{v}_n, \mathbf{u}_1 \rangle \mathbf{u}_1 - \cdots - \langle \mathbf{v}_n, \mathbf{u}_{n-1} \rangle \mathbf{u}_{n-1} \end{array}$$

Thí dụ:

Tìm một cơ sở trực chuẩn của không gian nghiệm của hệ:

$$\begin{cases} x+y +7t = 0\\ 2x+y+2z+6t = 0 \end{cases}$$

- Nghiệm tổng quát của hệ là (-2s+r,2s-8r,s,r) với $s,r\in\mathbb{R}$, từ đó một cơ sở của không gian nghiệm của hệ là $B=\{\mathbf{v_1},\mathbf{v_2}\}=\{(-2,2,1,0),(1,-8,0,1)\}.$
- Trực chuẩn hóa cơ sở B:

$$\begin{array}{rcl} \mathbf{u}_1 & = & \frac{\mathbf{v}_1}{\|\mathbf{v}_1\|} = \left(-\frac{2}{3}, \frac{2}{3}, \frac{1}{3}, 0\right) \\ \mathbf{w}_2 & = & \mathbf{v}_2 - \langle \mathbf{v}_2, \mathbf{u}_1 \rangle \mathbf{u}_1 = (-3, -4, 2, 1) \\ \mathbf{u}_2 & = & \frac{\mathbf{v}_2}{\|\mathbf{v}_2\|} = \left(-\frac{3}{\sqrt{30}}, -\frac{4}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{1}{\sqrt{30}}\right) \end{array}$$

Vậy $B'=\{\mathbf{u}_1,\mathbf{u}_2\}$ là một cơ sở trực chuẩn của không gian nghiệm của hệ đã cho.

- Cơ sở trực giao
- 2 Quá trình trực giao hóa Gram-Schmidt
- Không gian con trực giao
- 4 Các không gian con cơ bản của một ma trận
- Bình phương tối thiểu

Không gian con trực giao

Xét không gian Euclid V với dim(V) = n.

Định nghĩa

Giả sử S là một không gian con của V và $\mathbf{v} \in V$. Ta nói rằng \mathbf{v} vuông góc (hay trực giao) với S, và viết $\mathbf{v} \perp S$, nếu \mathbf{v} vuông góc với mọi vector $\mathbf{w} \in S$.

Nhận xét: $\mathbf{v} \perp S$ nếu và chỉ nếu \mathbf{v} vuông góc với mọi vector trong một cơ sở (hoặc hệ sinh) của S.

Định nghĩa

Hai không gian con S_1, S_2 của V được gọi là vuông góc (hay trực giao) với nhau, ký hiệu là $S_1 \bot S_2$, nếu với mọi $\mathbf{u} \in S_1$ và với mọi $\mathbf{v} \in S_2$, \mathbf{u} và \mathbf{v} vuông góc với nhau.

Nhận xét: Nếu $S_1 \perp S_2$ thì $S_1 \cap S_2 = \{\mathbf{0}\}$.

Thí dụ: Trong \mathbb{R}^3 , xét $S_1 = span\{(1,0,0),(1,1,0)\}$, $\mathbf{u} = (-1,1,1)$, $S_2 = span\{\mathbf{u}\}$. Ta có $\mathbf{u} \perp S_1$ và $S_1 \perp S_2$.

Phần bù trực giao

Định nghĩa

Phần bù trực giao của một không gian con S, ký hiệu S^{\perp} , được định nghĩa bởi

$$S^{\perp} = \{\mathbf{u} \mid \mathbf{u} \perp S\} = \{\mathbf{u} \mid \mathbf{u} \text{ vuông góc với mọi } \mathbf{v} \in S\}$$
 .

Định lý

Nếu S là một không gian con của V thì S^{\perp} là một không gian con của V.

Nhận xét: $V^{\perp} = \{0\}, \{0\}^{\perp} = V.$

Tìm phần bù trực giao của một không gian con

Thí dụ: Trong \mathbb{R}^4 , tìm phần bù trực giao của $S = span\{\mathbf{v}_1, \mathbf{v}_2\} = span\{(1, 2, 1, 0), (0, 0, 0, 1)\}.$

Ta có $\mathbf{u} \in S^{\perp}$ nếu và chỉ nếu $\mathbf{u} \cdot \mathbf{v}_1 = \mathbf{u} \cdot \mathbf{v}_2 = 0$, tức là $A^T \mathbf{u} = \mathbf{0}$, với

$$A = [\mathbf{v}_1 \ \mathbf{v}_2] = \left(egin{array}{ccc} 1 & 0 \ 2 & 0 \ 1 & 0 \ 0 & 1 \end{array}
ight) \,.$$

Giải hệ phương trình tuyến tính, ta thu được $S^{\perp}=span\{\mathbf{u}_1,\mathbf{u}_2\}$ với $\mathbf{u}_1=(-2,1,0,0),\ \mathbf{u}_2=(-1,0,1,0).$

Nhận xét: Các vector $\mathbf{v}_1, \mathbf{v}_2, \mathbf{u}_1, \mathbf{u}_2$ tạo thành một cơ sở của \mathbb{R}^4 , do đó mọi vector của \mathbb{R}^4 biểu diễn được một cách duy nhất dưới dạng tổng của một vector của S và một vector của S^{\perp} !

Tổng trực tiếp

Định nghĩa

Giả sử S_1, S_2 là hai không gian con của V. Nếu mọi vector $\mathbf{v} \in V$ có thể viết được một cách duy nhất dưới dạng $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$ với $\mathbf{v}_1 \in S_1$, $\mathbf{v}_2 \in S_2$ thì ta nói rằng V là tổng trực tiếp của S_1 và S_2 và viết là $V = S_1 \oplus S_2$.

Nhận xét:

- Nếu $V = S_1 \oplus S_2$ thì $S_1 \cap S_2 = \{\mathbf{0}\}.$
- Nếu $V = S_1 \oplus S_2$ thì hợp của một cơ sở của S_1 và một cơ sở của S_2 là một cơ sở của V.

Thí dụ:

- $\mathbb{R}^3 = span\{(1,0,1),(1,1,0)\} \oplus span\{(-1,1,1)\}.$
- $\mathbb{R}^4 = span\{(1,2,1,0),(0,0,0,1)\} \oplus span\{(-2,1,0,0),(-1,0,1,0)\}.$

Phép chiếu vuông góc lên một không gian con

Định lý

Nếu S là một không gian con của V thì:

- **3** $(S^{\perp})^{\perp} = S$.

Định nghĩa

Cho S là một không gian con của V và $\mathbf{v} \in V$. Giả sử $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2$, với $\mathbf{v}_1 \in S, \mathbf{v}_2 \in S^\perp$, là biểu diễn duy nhất của \mathbf{v} dưới dạng tổng của một vector của S và một vector của S^\perp . Ta nói rằng \mathbf{v}_1 là hình chiếu vuông góc của \mathbf{v} lên không gian con S và ký hiệu $\pi_S(\mathbf{v}) = \mathbf{v}_1$.

Tìm hình chiếu vuông góc lên một không gian con

Định lý

Nếu $\{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k\}$ là một cơ sở trực chuẩn của không gian con S thì với mọi $\mathbf{v}\in V$, hình chiếu vuông góc của \mathbf{v} lên S được cho bởi công thức

$$\pi_{S}(\mathbf{v}) = \langle \mathbf{v}, \mathbf{u}_{1} \rangle \mathbf{u}_{1} + \langle \mathbf{v}, \mathbf{u}_{2} \rangle \mathbf{u}_{2} + \dots + \langle \mathbf{v}, \mathbf{u}_{k} \rangle \mathbf{u}_{k}$$
.

Thí dụ: Trong \mathbb{R}^3 , xét $S = span\{\mathbf{w}_1, \mathbf{w}_2\} = span\{(0, 3, 1), (2, 0, 0)\}$ và $\mathbf{v} = (1, 1, 3)$. Tìm $\pi_S(\mathbf{v})$.

Áp dụng Gram-Schmidt, ta tìm được một cơ sở trực chuẩn của S từ hệ sinh $\{\mathbf{w}_1, \mathbf{w}_2\}$:

$$\{\textbf{u}_1,\textbf{u}_2\} = \left\{\frac{1}{\sqrt{10}}\textbf{u}_1,\frac{1}{2}\textbf{u}_2\right\}\,.$$

Từ đó

$$\pi_{\mathcal{S}}(\mathbf{v}) = (\mathbf{v} \cdot \mathbf{u}_1)\mathbf{u}_1 + (\mathbf{v} \cdot \mathbf{u}_2)\mathbf{u}_2 = (1, \frac{9}{5}, \frac{3}{5}).$$

"Khoảng cách" đến một không gian con

Định lý

Cho S là một không gian con của V và $\mathbf{v} \in V$. Khi đó, với mọi $\mathbf{u} \in S$:

$$\|\mathbf{v} - \mathbf{u}\| \ge \|\mathbf{v} - \pi_{\mathcal{S}}(\mathbf{v})\|$$
.

Chú ý: Đại lượng $\|\mathbf{v} - \pi_{\mathcal{S}}(\mathbf{v})\|$ có thể được coi là *khoảng cách* từ vector \mathbf{v} đến không gian con \mathcal{S} .

Hình: Larson et al., p. 325

- Cơ sở trực giao
- 2 Quá trình trực giao hóa Gram-Schmidt
- Không gian con trực giao
- 4 Các không gian con cơ bản của một ma trận
- Bình phương tối thiểu

Các không gian con cơ bản của một ma trận

Cho A là một ma trận $m \times n$.

Định nghĩa

Các không gian con cơ bản của ma trận A là các không gian sau:

- Không gian nghiệm N(A) của A;
- Không gian cột R(A) của A;
- **1 Solution** Signature **1 Solution So**
- Không gian cột $R(A^T)$ của A^T .

Nhận xét: Các không gian N(A), $R(A^T)$ là các không gian con của \mathbb{R}^n ; các không gian R(A), $N(A^T)$ là các không gian con của \mathbb{R}^m .

Thí dụ:
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- $R(A) = span\{(1,0,0,0),(0,1,0,0)\};$
- $R(A^T) = span\{(1,2,0),(0,0,1)\};$
- $N(A) = span\{(-2,1,0)\};$
- $N(A^T) = span\{(0,0,1,0),(0,0,0,1)\}.$

Các không gian con cơ bản của một ma trận

Định lý

- Các không gian R(A) và $N(A^T)$ là các không gian con trực giao của \mathbb{R}^m .
- ② Các không gian N(A) và $R(A^T)$ là các không gian con trực giao của \mathbb{R}^n .
- $N(A) \oplus R(A^T) = \mathbb{R}^n.$

Nhận xét: Một cách phát biểu khác của định lý trên là R(A) và $N(A^T)$ là phần bù trực giao của nhau trong \mathbb{R}^m ; N(A) và $R(A^T)$ là phần bù trực giao của nhau trong \mathbb{R}^n .

- Cơ sở trực giao
- 2 Quá trình trực giao hóa Gram-Schmidt
- 3 Không gian con trực giao
- 4 Các không gian con cơ bản của một ma trậr
- Bình phương tối thiểu

Bài toán bình phương tối thiểu

Bài toán: Có n quan sát, với dữ liệu đầu vào là x_i và số đo đầu ra tương ứng là y_i . Ta muốn xấp xỉ mối liên hệ giữa đầu vào và đầu ra bởi một đa thức $p(x) = c_1 + c_2 x + c_3 x^2 + \cdots + c_d x^{d-1}$. Với những hệ số c_j như thế nào thì xấp xỉ là "tốt"?

Ta đánh giá chất lượng của xấp xỉ thông qua vector sai số:

$$\mathbf{e}_{p} = [y_{1} - p(x_{1}), \dots, y_{n} - p(x_{n})]^{T}$$

Sai số càng "nhỏ" thì xấp xỉ càng "tốt". Như vậy, ta cần giải bài toán

$$\min_{c_1,\ldots,c_d}\|\mathbf{e}_p\|\,.$$

Bài toán bình phương tối thiểu

$$\text{Dặt } A = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{d-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{d-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{d-1} \end{pmatrix}, \ \mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_n \end{bmatrix}^T \text{ và}$$

 $\mathbf{u} = \begin{bmatrix} c_1 & c_2 & \dots & c_d \end{bmatrix}^T$. Ta có:

$$\mathbf{e}_p = \mathbf{y} - A\mathbf{u}$$
.

Bài toán trở thành:

$$\min_{\mathbf{u} \in \mathbb{R}^d} \|\mathbf{y} - A\mathbf{u}\|$$
.

Vì y cố định và $A\mathbf{u} \in R(A)$ nên $\|\mathbf{y} - A\mathbf{u}\|$ nhỏ nhất khi $A\mathbf{u}$ là hình chiếu vuông góc của y lên R(A). Điều này tương đương với:

$$\mathbf{y} - A\mathbf{u} \in R(A)^{\perp} = N(A^{T})$$

$$\iff A^{T}(\mathbf{y} - A\mathbf{u}) = \mathbf{0}$$

$$\iff (A^{T}A)\mathbf{u} = A^{T}\mathbf{y}$$