BALLOON

Không mất tính tổng quát, giả sử $c_1 \leq c_2 \leq \ldots \leq c_n$ (nếu không, ta cần sắp xếp dãy c lại).

Khi đó:

- Có c_1 cách để chọn bóng bay loại 1.
- Có $c_2 1$ cách để chọn bóng bay loại 2 (trừ 1 vì trước đó, ta đã chọn 1 quả bóng bay có chỉ số nhỏ hơn hoặc bằng c_2).
- Có $c_3 2$ cách để chọn bóng bay loại 3 (trừ 2 vì trước đó, ta đã chọn 2 quả bóng bay có chỉ số nhỏ hơn hoặc bằng c_3).
- . . .
- Có $c_n (n-1)$ cách để chọn bóng bay loại n (trừ n-1 vì trước đó, ta đã chọn n-1 quả bóng bay có chỉ số nhỏ hơn hoặc bằng c_n).

Do đó, đáp án cần tìm là: $\prod_{i=1}^{n} (c_i - i + 1)$

Khi tính công thức trên, do MOD có thể lên đến 10^{18} , nếu thực hiện phép nhân như bình thường thì kết quả trung gian có thể vượt khỏi phạm vi số nguyên 64-bit. Để khắc phục điều này, ta có thê xử lý số nguyên lớn. hoặc một cách đơn giản hơn là sử dụng thuật toán nhân Ấn Độ với độ phức tạp $O(\log(a+b))$ cho phép nhân hai số a và b.

Các bạn có thể tham khảo thêm về thuật toán nhân Ấn Độ tại bài viết sau: https://cowboycoder.tech/article/phep-nhan-an-do-va-phep-tinh-luy-thua

Độ phức tạp: $O(n(\log n + \log C))$ với n là số loại bóng bay, C là giới hạn của c_i .

Tag: Combinatorics, Sorting