Radio Engineering Exam

Florian Kaltenberger

19.6.2012

- 1. Consider an RX that consists (in this sequence) of the following components: (i) an antenna connector and feedline with an attenuation of 1.5 dB; (ii) a low-noise amplifier with a noise figure of 4 dB and a gain of 10 dB, and a unit gain mixer with a noise figure of 1 dB. What is the noise figure of the RX?
- 2. Consider a system with 0.1-mW transmit power, unit gain for the transmit and receive antennas, operating at 50-MHz carrier frequency with 100-kHz bandwidth. The system operates in a suburban environment. What is the receive SNR at a 100-m distance, assuming free-space propagation? How does the SNR change when changing the carrier frequency to 500MHz and 5 GHz? Why does the 5-GHz system show a significantly lower SNR (assume the RX noise figure is 5 dB and independent of frequency)?
- 3. Consider the following setup of a wireless backhaul implemented using IEEE 802.11n equipment

• Tx power: 35dBm

• Tx antenna gain: 23 dBi

• Rx antenna gain: 12 dBi

• Carrier frequency: 5.4GHz, Bandwidth: 40MHz

• Rx noise figure: 8dB

• Tx antenna height: 15m, Rx antenna height: 5m

- (a) Calculate the breakpoint distance and the free space loss at this distance
- (b) Assuming a minimum requires SNR of 10dB and a fading margin of 10dB, what is the maximum range of the system?

4. Consider the Extended Pedestrian A channel model given by the following power delay profile

Excess tap delay [ns]	Relative power [dB]
0	0.0
30	-1.0
70	-2.0
90	-3.0
110	-8.0
190	-17.2
410	-20.8

Each tap follows a Rayleigh distribution with a classical Doppler spectrum. Assume that the system has a carrier frequency of 5.4GHz and the relative motion between TX and TX is 50km/h

- (a) Calculate the delay spread as well as the coherence time of the channel. Use Figure 1 to read the value of the Bessel function $J_0(2\pi\nu_{\rm max}\Delta t)$.
- (b) Given a system that operates at a bandwidth of 20MHz, is the system narrowband or wideband. What for a system that operates at a bandwidth of 40MHz.
- (c) The system operates on frames of 1ms duration. Is it safe to assume the channel to be constant?
- 5. Consider a mobile communication system with two receive antennas employing RSSI-driven selection diversity. The system is opearting in a Rayleigh fading environment and channels corresponding to the two receive antennas are assumed to be independent. The outage probability of the system P_{out} is defined as the probability that the instantaneous received amplitude r drops below a specified level r_{\min} , $P_{out} = P(r < r_{\min})$.
 - (a) Derive an expression in terms of P_{out} for the fading margin when only one antenna is used
 - (b) Derive an expression in terms of P_{out} for the fading margin when both antennas are used
 - (c) Use the two results above to calculate the diversity gain for an outage probability of 1%

Figure 1: Bessel function of the first kind, zeroth order

- 6. Assume that a system needs a $C/I = 5 \,\mathrm{dB}$ to work at an acceptable quality. Further assume that the path loss decays with a path loss exponent on $\eta = 2.9$ and the system requires a fading margin of 5 dB.
 - (a) Compute the necessary reuse distance and the minimum cluster size
 - (b) Assume that the operator has 36 MHz spectrum and that each channel has a bandwidth of 180kHz. How man channels per cell are there available?
 - (c) Assume an Erlang-B system with a blocking probability of 2 %. What is the offered traffic in Erlang (Use the attached tables)?
 - (d) The city of Vienna has a population density of 4000 people per km². Assuming that every person generates a traffic of 2 milli-Erlang, what is the required cell radius (assume that each cell covers a surface of $A = r^2\pi$).
 - (e) What methods exist to increase the system capacity?
- 7. (a) What are the main problems in sending very high data rates from an MS to a BS that is far away?

- (b) In what frequency range can cellphones be found. Describe the limiting factors for both bounds.
- (c) Give a physical interpretation of the log-normal distribution (is it realistic?).
- (d) What is WSS-US, when is it (not) fulfilled, what are the implications?
- (e) What are the four different system functions that describe a WSS-US channel, what is their relationship?
- (f) What is the criterium for a channel to be identifiable by means of channel sounding.
- (g) Channel modeling can be classified in several methods. Describe each of them briefly.
- (h) Consider a 802.11n MIMO system. You want to test the influence of different antennas on the link performance. What kind of channel model would you use and why.
- (i) Explain the principle of diversity and cite some diversity techniques.
- (j) Explain the difference between mutual coupling and correlation in MIMO channels.

Erlang B Traffic Table

Maximum Offered Load Versus B and N

B is in %												
N/B	0.01	0.05	0.1	0.5	1.0	2	5	10	15	20	30	40
1	.0001	.0005	.0010	.0050	.0101	.0204	.0526	.1111	.1765	.2500	.4286	.6667
2	.0142	.0321	.0458	.1054	.1526	.2235	.3813	.5954	.7962	1.000	1.449	2.000
3	.0868	.1517	.1938	.3490	.4555	.6022	.8994	1.271	1.603	1.930	2.633	3.480
4	.2347	.3624	.4393	.7012	.8694	1.092	1.525	2.045	2.501	2.945	3.891	5.021
5	.4520	.6486	.4393 .7621	1.132	1.361	1.657	2.219	2.881	3.454	4.010	5.189	6.596
3	.4320	.0460	.7021	1.132	1.301	1.057	2.219	2.001	3.434	4.010	3.169	0.390
6	.7282	.9957	1.146	1.622	1.909	2.276	2.960	3.758	4.445	5.109	6.514	8.191
7	1.054	1.392	1.579	2.158	2.501	2.935	3.738	4.666	5.461	6.230	7.856	9.800
8	1.422	1.830	2.051	2.730	3.128	3.627	4.543	5.597	6.498	7.369	9.213	11.42
9	1.826	2.302	2.558	3.333	3.783	4.345	5.370	6.546	7.551	8.522	10.58	13.05
10	2.260	2.803	3.092	3.961	4.461	5.084	6.216	7.511	8.616	9.685	11.95	14.68
11	2.722	3.329	3.651	4.610	5.160	5.842	7.076	8.487	9.691	10.86	13.33	16.31
12	3.207	3.878	4.231	5.279	5.876	6.615	7.950	9.474	10.78	12.04	14.72	17.95
13	3.713	4.447	4.831	5.964	6.607	7.402	8.835	10.47	11.87	13.22	16.11	19.60
14	4.239	5.032	5.446	6.663	7.352	8.200	9.730	11.47	12.97	14.41	17.50	21.24
		5.634										
15	4.781	5.034	6.077	7.376	8.108	9.010	10.63	12.48	14.07	15.61	18.90	22.89
16	5.339	6.250	6.722	8.100	8.875	9.828	11.54	13.50	15.18	16.81	20.30	24.54
17	5.911	6.878	7.378	8.834	9.652	10.66	12.46	14.52	16.29	18.01	21.70	26.19
18	6.496	7.519	8.046	9.578	10.44	11.49	13.39	15.55	17.41	19.22	23.10	27.84
19	7.093	8.170	8.724	10.33	11.23	12.33	14.32	16.58	18.53	20.42	24.51	29.50
20	7.701	8.831	9.412	11.09	12.03	13.18	15.25	17.61	19.65	21.64	25.92	31.15
20	7.701	0.031	7.112	11.07	12.03	13.10	13.23	17.01	17.05	21.01	23.72	31.13
21	8.319	9.501	10.11	11.86	12.84	14.04	16.19	18.65	20.77	22.85	27.33	32.81
22	8.946	10.18	10.81	12.64	13.65	14.90	17.13	19.69	21.90	24.06	28.74	34.46
23	9.583	10.87	11.52	13.42	14.47	15.76	18.08	20.74	23.03	25.28	30.15	36.12
24	10.23	11.56	12.24	14.20	15.30	16.63	19.03	21.78	24.16	26.50	31.56	37.78
25	10.88	12.26	12.97	15.00	16.13	17.51	19.99	22.83	25.30	27.72	32.97	39.44
26	11.54	12.97	13.70	15.80	16.96	18.38	20.94	23.89	26.43	28.94	34.39	41.10
27	12.21	13.69	14.44	16.60	17.80	19.27	21.90	24.94	27.57	30.16	35.80	42.76
28	12.88	14.41	15.18	17.41	18.64	20.15	22.87	26.00	28.71	31.39	37.21	44.41
29	13.56	15.13	15.93	18.22	19.49	21.04	23.83	27.05	29.85	32.61	38.63	46.07
30	14.25	15.86	16.68	19.03	20.34	21.93	24.80	28.11	31.00	33.84	40.05	47.74
31	14.94	16.60	17.44	19.85	21.19	22.83	25.77	29.17	32.14	35.07	41.46	49.40
32	15.63	17.34	18.21	20.68	22.05	23.73	26.75	30.24	33.28	36.30	42.88	51.06
33	16.34	18.09	18.97	21.51	22.91	24.63	27.72	31.30	34.43	37.52	44.30	52.72
34	17.04	18.84	19.74	22.34	23.77	25.53	28.70	32.37	35.58	38.75	45.72	54.38
35	17.75	19.59	20.52	23.17	24.64	26.44	29.68	33.43	36.72	39.99	47.14	56.04
36	18.47	20.35	21.30	24.01	25.51	27.34	30.66	34.50	37.87	41.22	48.56	57.70
37	19.19	21.11	22.08	24.85	26.38	28.25	31.64	35.57	39.02	42.45	49.98	59.37
38	19.91	21.87	22.86	25.69	27.25	29.17	32.62	36.64	40.17	43.68	51.40	61.03
39	20.64	22.64	23.65	26.53	28.13	30.08	33.61	37.72	41.32	44.91	52.82	62.69
40	21.37	23.41	24.44	27.38	29.01	31.00	34.60	38.79	42.48	46.15	54.24	64.35
10	21.37					31.00						
41	22.11	24.19	25.24	28.23	29.89	31.92	35.58	39.86	43.63	47.38	55.66	66.02
42	22.85	24.97	26.04	29.09	30.77	32.84	36.57	40.94	44.78	48.62	57.08	67.68
43	23.59	25.75	26.84	29.94	31.66	33.76	37.57	42.01	45.94	49.85	58.50	69.34

44	24.33	26.53	27.64	30.80	32.54	34.68	38.56	43.09	47.09	51.09	59.92	71.01
45	25.08	27.32	28.45	31.66	33.43	35.61	39.55	44.17	48.25	52.32	61.35	72.67
46	25.83	28.11	29.26	32.52	34.32	36.53	40.55	45.24	49.40	53.56	62.77	74.33
47	26.59	28.90	30.07	33.38	35.22	37.46	41.54	46.32	50.56	54.80	64.19	76.00
48	27.34	29.70	30.88	34.25	36.11	38.39	42.54	47.40	51.71	56.03	65.61	77.66
49	28.10	30.49	31.69	35.11	37.00	39.32	43.53	48.48	52.87	57.27	67.04	79.32
50	28.87	31.29	32.51	35.98	37.90	40.26	44.53	49.56	54.03	58.51	68.46	80.99
51	29.63	32.09	33.33	36.85	38.80	41.19	45.53	50.64	55.19	59.75	69.88	82.65
52	30.40	32.90	34.15	37.72	39.70	42.12	46.53	51.73	56.35	60.99	71.31	84.32
53	31.17	33.70	34.98	38.60	40.60	43.06	47.53	52.81	57.50	62.22	72.73	85.98
54	31.94	34.51	35.80	39.47	41.51	44.00	48.54	53.89	58.66	63.46	74.15	87.65
55	32.72	35.32	36.63	40.35	42.41	44.94	49.54	54.98	59.82	64.70	75.58	89.31
56	33.49	36.13	37.46	41.23	43.32	45.88	50.54	56.06	60.98	65.94	77.00	90.97
57	34.27	36.95	38.29	42.11	44.22	46.82	51.55	57.14	62.14	67.18	78.43	92.64
58	35.05	37.76	39.12	42.99	45.13	47.76	52.55	58.23	63.31	68.42	79.85	94.30
59	35.84	38.58	39.96	43.87	46.04	48.70	53.56	59.32	64.47	69.66	81.27	95.97
60	36.62	39.40	40.80	44.76	46.95	49.64	54.57	60.40	65.63	70.90	82.70	97.63
61	37.41	40.22	41.63	45.64	47.86	50.59	55.57	61.49	66.79	72.14	84.12	99.30
62	38.20	41.05	42.47	46.53	48.77	51.53	56.58	62.58	67.95	73.38	85.55	101.0
63	38.99	41.87	43.31	47.42	49.69	52.48	57.59	63.66	69.11	74.63	86.97	102.6
64	39.78	42.70	44.16	48.31	50.60	53.43	58.60	64.75	70.28	75.87	88.40	104.3
65	40.58	43.52	45.00	49.20	51.52	54.38	59.61	65.84	71.44	77.11	89.82	106.0
66	41.38	44.35	45.85	50.09	52.44	55.33	60.62	66.93	72.60	78.35	91.25	107.6
67	42.17	45.18	46.69	50.98	53.35	56.28	61.63	68.02	73.77	79.59	92.67	109.3
68	42.97	46.02	47.54	51.87	54.27	57.23	62.64	69.11	74.93	80.83	94.10	111.0
69	43.77	46.85	48.39	52.77	55.19	58.18	63.65	70.20	76.09	82.08	95.52	112.6
70	44.58	47.68	49.24	53.66	56.11	59.13	64.67	71.29	77.26	83.32	96.95	114.3
71	45.38	48.52	50.09	54.56	57.03	60.08	65.68	72.38	78.42	84.56	98.37	116.0
72	46.19	49.36	50.94	55.46	57.96	61.04	66.69	73.47	79.59	85.80	99.80	117.6
73	47.00	50.20	51.80	56.35	58.88	61.99	67.71	74.56	80.75	87.05	101.2	119.3
74	47.81	51.04	52.65	57.25	59.80	62.95	68.72	75.65	81.92	88.29	102.7	120.9
75	48.62	51.88	53.51	58.15	60.73	63.90	69.74	76.74	83.08	89.53	104.1	122.6
76	49.43	52.72	54.37	59.05	61.65	64.86	70.75	77.83	84.25	90.78	105.5	124.3
77	50.24	53.56	55.23	59.96	62.58	65.81	71.77	78.93	85.41	92.02	106.9	125.9
78	51.05	54.41	56.09	60.86	63.51	66.77	72.79	80.02	86.58	93.26	108.4	127.6
79	51.87	55.25	56.95	61.76	64.43	67.73	73.80	81.11	87.74	94.51	109.8	129.3
80	52.69	56.10	57.81	62.67	65.36	68.69	74.82	82.20	88.91	95.75	111.2	130.9
81	53.51	56.95	58.67	63.57	66.29	69.65	75.84	83.30	90.08	96.99	112.6	132.6
82	54.33	57.80	59.54	64.48	67.22	70.61	76.86	84.39	91.24	98.24	114.1	134.3
83	55.15	58.65	60.40	65.39	68.15	71.57	77.87	85.48	92.41	99.48	115.5	135.9
84	55.97	59.50	61.27	66.29	69.08	72.53	78.89	86.58	93.58	100.7	116.9	137.6
85	56.79	60.35	62.14	67.20	70.02	73.49	79.91	87.67	94.74	102.0	118.3	139.3
86	57.62	61.21	63.00	68.11	70.95	74.45	80.93	88.77	95.91	103.2	119.8	140.9
87	58.44	62.06	63.87	69.02	71.88	75.42	81.95	89.86	97.08	104.5	121.2	142.6
88	59.27	62.92	64.74	69.93	72.82	76.38	82.97	90.96	98.25	105.7	122.6	144.3
89	60.10	63.77	65.61	70.84	73.75	77.34	83.99	92.05	99.41	107.0	124.0	145.9
90	60.92	64.63	66.48	71.76	74.68	78.31	85.01	93.15	100.6	108.2	125.5	147.6