

University of Tehran, ECE Wireless Communication, spring 2020

Due Date: -----, 1398Homework #2

Multi-path, Fading, Time-Varying Channel

- 1. Assume a Rayleigh fading channel with the average RX signal power $2\sigma^2 = -80$ dBm.
 - a. What is the outage probability if the required power for a good reception is $P_0 = -100 \ dBm$? How much we should increase the transmit power if we would like to decrease the outage probability by a factor of 10?
 - b. Repeat a) for $P_0 = -90 \ dBm$.
- 2. Assume an application that requires a power outage probability of 0.01 and the received power threshold is $P_{thr} = -80 \, dBm$. For Rayleigh fading, what value of the average signal power is required at the receiver?
- 3. Consider the following frequency transfer functions of a fading channel:

$$H_1(f,t) = \alpha_1(t)e^{j\theta_1(t)}$$

$$H_2(f,t) = \alpha_1(t)e^{j\theta_1(t)} + \alpha_2(t)e^{-j(2\pi f \tau_1 + \theta_2(t))}$$

- a. Derive the channels impulse response $h_1(\tau, t)$, $h_2(\tau, t)$.
- b. If x(t) is the transmitted signal, express the received signal r(t) in terms of x(t).
- c. Find the "mean delay" and "delay spread" for each case.
- d. Determine in which condition each of the above channels are flat fading? Explain.
- 4. A mobile receiver is moving at a speed of \mathbf{v} and is receiving signals arriving along two reflected paths which make angles $\boldsymbol{\theta}_1$ and $\boldsymbol{\theta}_2$ with the direction of motion. The transmitted signal is a sinusoid at frequency f.
 - a) Is the above information enough for estimating the coherence time (T_C) and the coherence bandwidth (W_C) ? If so, express them in terms of the given parameters. If not, specify what additional information would be needed.
 - b) Consider an environment in which there are reflectors and scatterers in all directions from the receiver and an environment in which they are clustered within a small angular range. Using part (a), explain how the channel would differ in these two environments.
- 5. In an environment with rich scattering the rays are arriving to the receiver antenna from all directions with positive delays. The average power gain of rays arriving with delay τ (in msec) is $Ke^{-\tau/10}$

- a) Find the "mean delay" and "rms delay spread" of this channel.
- b) If two sinusoids with frequencies f_c and $f_c + \Delta f$. What is the minimum value of Δf for which the channel response to the first sinusoid is approximately independent of the channel response to the second one?
- c) Will this channel exhibit flat fading or frequency-selective fading for a typical voice channel with a 3 KHz bandwidth? How about for a cellular channel with a 30 KHz bandwidth?

6. Use MATLAB for the following questions:

In a multipath wireless channel, rays are arriving in clusters. Assume that there are 10 clusters that are coming from random angles with uniform distribution in $[0-2\pi]$. Each cluster can be modeled as Rayleigh fading channel with a random delay τ which is distributed uniformly in [1-10] µsec. The average power gain of each cluster ($2\sigma^2$) is determined by its delay τ as: $2\sigma^2=10^{-3}~\tau^{-4}$ (when τ is in µsec).

The mobile user is moving at a speed of 20 m/sec. The carrier frequency is $f_C = 3GHz$ and we assume that we have a **narrowband** system.

- a) Simulate 100,000 of such channels. For each realization of the channel find the overall channel gain, h, and compute the $|h|^2$ and find its average over all realizations to come up with an estimation of $E[|h|^2]$. Then, plot its CDF. What kind of distribution do you expect?
- b) For one realization of the channel find the frequency response of the channel H(f) in frequency range [0-1 MHz]. What do you observe?
- c) For one realization of the channel, compute the continuation of channel model for one second. Find the overall channel power gain, $|h|^2$, during this period for intervals of 100 μ seconds. Estimate the expected value of $|h|^2$ and plot its CDF. Explain the result.

Note: Assume that during 1 second continuation of the channel, clusters are not changing much and only their phase change according to Doppler effect (gain amplitudes and delays are not changing.)