Decimos que *R* es un **orden parcial** si *R* cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R$.
- 2. Antisimétrica: $\forall a, b \in A. ((a, b) \in R \land (b, a) \in R) \rightarrow a = b.$
- 3. Transitiva: $\forall a, b, c \in A. ((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R.$

Definición:

Un orden parcial sobre A lo denotaremos como (A, \leq) .

Definición:

Sea A un conjunto y (A, \leq) un orden parcial.

Decimos que un orden parcial (A, \leq) es un orden total si \leq cumple ser:

1. Conexo: $\forall a, b \in A.(a, b) \in R \lor (b, a) \in R$.

Definiciones:

- Un alfabeto Σ es un conjunto finito de elementos.
- Un elemento $a \in \Sigma$ lo llamaremos una letra o símbolo.
- Una palabra w sobre Σ es una secuencia finita de letras de Σ .
- El largo |w| de una palabra w sobre Σ es el número de letras.
- Denotaremos ϵ como la palabra vacía de largo 0.
- Denotaremos por Σ^* como el conjunto de todas las palabras sobre Σ .
- Dado dos palabras $u, v \in \Sigma^*$:

```
u \cdot v \equiv u concatenado con v
```

 $u \cdot v$ corresponde a la secuencia u seguido de la secuencia v.

- Sea Σ un alfabeto. Se definen las siguientes relaciones entre palabras en Σ^* :
 - $\circ \quad \pmb{u} \leq_{\pmb{p}} \pmb{v} \quad \text{ si, y solo si, } \quad \exists w \in \Sigma^*. \, u \cdot w = v.$
 - $\circ \quad \pmb{u} \leq_{\pmb{s}} \pmb{v} \quad \text{ si, y solo si, } \quad \exists \pmb{w} \in \Sigma^*. \, \pmb{w} \cdot \pmb{u} = \pmb{v}.$
 - $\circ \quad \pmb{u} \leq_{\pmb{i}} \pmb{v} \quad \text{ si, y solo si, } \quad \exists w_1, w_2 \in \Sigma^*. \, w_1 \cdot u \cdot w_2 = v.$

Sea (A, \leq) un orden parcial y $S \subseteq A$ distinto de \emptyset .

- $c \in A$ es una cota superior de S ssi $\forall y \in S. y \leq c$, es decir, es mayor o igual a todos los elementos de S.
- $\hat{x} \in S$ es un maximal ssi $\forall y \in S$. $\hat{x} \leq y \rightarrow \hat{x} = y$, es decir, ningún elemento es mayor que el.
- $x^{\uparrow} \in S$ es un máximo ssi $\forall y \in S. \ y \leq x^{\uparrow}$, es decir, es mayor o igual a cualquier elemento de S.
- $c \in A$ es una cota inferior de S ssi $\forall y \in S. c \leq y$, es decir, es menor o igual a todos los elementos de S.
- $\breve{x} \in S$ es un minimal ssi $\forall y \in S. \ y \leq \breve{x} \to \breve{x} = y$, es decir, ningún elemento es menor que el.
- $x^{\downarrow} \in S$ es un mínimo ssi $\forall y \in S. x^{\downarrow} \leq y$, es decir, es menor o igual a cualquier elemento de S.

Decimos que $c^* \in A$ es un **ínfimo** de S si:

- 1. c^* es una cota inferior de S.
- 2. Para toda cota inferior c de S se cumple que $c \leq c^*$.
- 3. Es decir, es la mayor de las cotas inferiores.

Decimos que $c^* \in A$ es un supremo de S si:

- 1. c^* es una cota superior de S.
- 2. Para toda cota inferior c de S se cumple que $c^* \leq c$.
- 3. Es decir, es la menor de las cotas superiores.

Sea A un conjunto y $R \subseteq A \times A$ una relación.

Una relación $R^r \subseteq A \times A$ es la clausura refleja de R si:

- 1. $R \subseteq R^r$.
- 2. R^r es refleja.
- 3. Para toda otra relación refleja R' con $R \subseteq R'$ se cumple $R^r \subseteq R'$.
- $\rightarrow R^r$ es la menor relación refleja que contiene a R.

Una relación $R^t \subseteq A \times A$ es la clausura transitiva de R si:

- 1. $R \subseteq R^t$.
- 2. R^t es transitiva.
- 3. Para toda otra relación transitiva R' con $R \subseteq R'$ se cumple $R^t \subseteq R'$.
- $\rightarrow R^r$ es la menor relación transitiva que contiene a R.

Definición:

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Decimos que *R* es una **relación de equivalencia** si *R* cumple ser:

- 1. **Refleja**: $\forall a \in A. (a, a) \in R$.
- 2. Simétrica: $\forall a, b \in A. (a, b) \in R \rightarrow (b, a) \in R$.
- 3. Transitiva: $\forall a, b, c \in A. ((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$.

Definición:

Sea A un conjunto y $S \subseteq 2^A$ (un conjunto de subconjuntos de A).

Decimos que S es una partición de A si:

1. Todos los elementos de S son distintos de vacío.

$$\forall X \in \mathcal{S}, X \neq \emptyset$$

2. La unión de todos los elementos de S es igual a A.

$$\bigcup \mathcal{S} = A$$

3. Todos los elementos de \mathcal{S} son disjuntos de a pares.

$$\forall X, Y \in \mathcal{S}. X \neq Y \rightarrow X \cap Y = \emptyset$$

Definición:

Sea A un conjunto y $\sim \subseteq A \times A$ es una relación de equivalencia.

Sea $x \in A$. Se define la clase de equivalencia de x según \sim como:

$$[x]_{\sim} = \{ y \in A \mid x \sim y \}$$

 $[x]_{\sim}$ son todos los elementos de A que son "equivalentes" a x.

Propiedades:

- 1. $\forall x \in A. \ x \in [x]_{\sim}$.
- 2. $x \sim y$ si, y solo si, $[x]_{\sim} = [y]_{\sim}$.
- 3. Si $x \not\sim y$, entonces $[x]_{\sim} \cap [y]_{\sim} = \emptyset$.

El **conjunto cociente** A/\sim de A con respecto a \sim se define:

$$A/\sim = \{ [x]_{\sim} \mid x \in A \}$$

El conjunto cociente A/\sim es una partición de A.

Definición:

Sea A y B conjuntos no vacíos

Una relación $f \subseteq A \times B$ es una **función** si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

- 1. $\forall a \in A. \exists b \in B. (a, b) \in f.$
- 2. $\forall a \in A$. $\forall b_1, b_2 \in B$. $((a, b_1) \in f \land (a, b_2) \in f) \rightarrow b_1 = b_2$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \to B$, para decir que f es una función de A a B.
- f(a) = b, para decir que $(a, b) \in f$.
 - o "b es la **imagen** de a en f"
 - o "a es una **preimagen** de b en f"

Una relación $f \subseteq A \times B$ es una **función parcial** si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

$$\forall a \in A. \ \forall b_1, b_2 \in B. \ \left((a, b_1) \in f \land (a, b_2) \in f \right) \rightarrow b_1 = b_2$$

Si $f \subseteq A \times B$ es una función parcial, entonces escribiremos:

- $f: A \rightarrow B$, para decir que f es una función parcial de A a B.
- f(a) = b, para decir que $(a, b) \in f$.

Se define el **dominio** e **imagen** de $f: A \rightarrow B$ como:

- $dom(f) = \pi_1(f) = \{a \in A \mid \exists b \in B. \ (a,b) \in f\}$
- $img(f) = \pi_2(f) = \{b \in B \mid \exists a \in A. \ (a,b) \in f\}$

Sea $f: A \rightarrow B$, entonces f es una función ssi dom(f) = A.

Definiciones:

Sea A y B conjuntos no vacíos.

Una función $f: A \rightarrow B$ se dice:

1. Inyectiva si no existen dos elementos en *A* con la misma imagen.

$$\forall a_1, a_2 \in A. f(a_1) = f(a_1) \rightarrow a_1 = a_2$$

2. **Sobreyectiva** si todo elemento en *B* tiene una preimagen.

$$\forall b \in B. \exists a \in A. f(a) = b$$

3. Biyectiva si es inyectiva y sobreyectiva a la vez.

Notación:

- Inyectiva \equiv 1-a-1.
- Sobreyectiva ≡ función sobre o onto.
- Biyectiva \equiv epiyectiva.

Principio del Palomar.

"Si N palomas se distribuyen en M palomares y tengo mas palomas que palomares (N > M), entonces al menos habrá un palomar con mas de una paloma"

Si $f: A \to B$ y. |B| < |A|, entonces f NO puede ser inyectiva, esto es:

$$\exists a_1, a_2 \in A. \ a_1 \neq a_2 \land f(a_1) = f(a_2)$$

Definición:

Sea A y B dos conjuntos, serán **equinumerosos** entre sí si existe una biyección $f: A \to B$. Si A es **equinumeroso** con B lo anotaremos como |A| = |B|.

La relación $|\cdot| = |\cdot|$ es una relación de equivalencia, esto es:

- 1. Refleja.
- 2. Simétrica.
- 3. Transitiva.

Para un conjunto A, denotaremos por |A| su clase de equivalencia según la relación $|\cdot| = |\cdot|$.

A es numerable si tiene la misma cardinalidad que un subconjunto de \mathbb{N} .

$$\exists S \subseteq \mathbb{N}. |A| = |S|$$

A es **numerable** si, y solo si, existe una secuencia (finita o infinita) en A:

$$a_0, a_1, a_2, a_3, \dots$$

- 1. $a_i \neq a_j$ para todo $i \neq j$.
- 2. Para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una lista.

Teorema:

 \mathbb{Q} y $\mathbb{N} \times \mathbb{N}$ son conjuntos numerables, \mathbb{R} no lo es.

Teorema de Cantor:

NO existe una biyección entre A y el conjunto potencia 2^A .

Definición:

Un problema de decisión está compuesto por:

- 1. Un conjunto de inputs (llamados instancias).
 - a. Números, grafos, palabras, funciones, etc.
- 2. Una pregunta sobre los inputs que se responde con SI o NO.

Sea *I* un conjunto de inputs (instancias).

Un problema de decisión es una función:

$$P: I \to \{0,1\}$$

Ejemplo:

Sea $PRIMO: \mathbb{N} \to \{0,1\}$ tal que para todo $n \in \mathbb{N}$:

PRIMO(n) = 1 si, y sólo si, n es un número primo.

 Una solución Program es una solución para el problema de decisión P si para todo input X ∈ I se cumple:

$$P(X) = 1$$
 si, y sólo si, al ejecutar Program con X retorna 1

Simplificación

Todo input lo podemos representar con palabras de ceros y unos.

Definición:

Un problema de decisión P es una función: $P:\{0,1\}^* \to \{0,1\}$. Se define \mathcal{P} como el conjunto de todos los problemas de decisión:

$$\mathcal{P} = \{ P : \{0,1\}^* \to \{0,1\} \}$$

Teorema:

Los conjuntos $\mathcal P$ y $2^{\{0,1\}^*}$ son equinumerosos. NO es numerable.

Definición:

Se define el conjunto $\mathcal{O}(g)$ de todas las funciones $f \colon \mathbb{N} \to \mathbb{R}$ tal que **existe** $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$ tal que **para todo** $n \geq n_0$:

$$f(n) \le c \cdot g(n)$$

En notación lógica:

$$\mathcal{O}(g) = \{ f : \mathbb{N} \to \mathbb{R} \mid \exists c \in \mathbb{R}. \exists n_0 \in \mathbb{N}. \forall n \ge n_0. f(n) \le c \cdot g(n) \}$$

Si $f \in \mathcal{O}(g)$, entonces f crece mas lento o igual que g.

Notación:

• $f \operatorname{es} \mathcal{O}(g)$

("f es O-grande de g")

 $\mathcal{O}(n!)$

• f es de orden g

• $f = \mathcal{O}(g)$

(solo es notación)

Teorema:

1. Sea $f(x) = a_k x^k + \dots + a_1 x + a_0$ un polinomio sobre \mathbb{N} , entonces:

$$f \in \mathcal{O}(x^k)$$

2. $x^{k+1} \notin \mathcal{O}(x^k)$ para todo $k \in \mathbb{N}$.

3. Para todo a, b > 1, se tiene que $\log_a(n) \in \mathcal{O}(\log_b(n))$.

4. Para todo a < b, se tiene que $a^n \in \mathcal{O}(b^n)$ y $b^n \notin \mathcal{O}(a^n)$.

5. Para todo $a \in \mathbb{N}$, se tiene que $a^n \in \mathcal{O}(n!)$ y $n! \notin \mathcal{O}(a^n)$.

6. $n! \in \mathcal{O}(2^{n \cdot \log n})$.

Notación	Nombre
$\mathcal{O}(1)$	Constante
$\mathcal{O}(\log n)$	Logarítmico
$\mathcal{O}(n)$	Lineal
$\mathcal{O}(n\log n)$	$n \log n$
$\mathcal{O}(n^2)$	Cuadrático
$\mathcal{O}(n^3)$	Cúbico
$\mathcal{O}(n^m)$	Polinomial
$\mathcal{O}(k^n)$	Exponencial

Factorial

Teorema:

- Si $f_1 \in \mathcal{O}(g_1)$ y $f_2 \in \mathcal{O}(g_2)$, entonces $f_1 + f_2 \in \mathcal{O}(\max\{g_1, g_2\})$.
- Si $f_1 \in \mathcal{O}(g_1)$ y $f_2 \in \mathcal{O}(g_2)$, entonces $f_1 \cdot f_2 \in \mathcal{O}(g_1 \cdot g_2)$.

Definición:

Se define el conjunto $\Omega(g)$ de todas las funciones $f\colon \mathbb{N} \to \mathbb{R}$ tal que **existe** $c \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que **para todo** $n \geq n_0$:

$$f(n) \ge c \cdot g(n)$$

En notación lógica:

$$\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R} \mid \exists c \in \mathbb{R}. \, \exists n_0 \in \mathbb{N}. \, \forall n \ge n_0. \, f(n) \ge c \cdot g(n) \, \}$$

Si $f \in \Omega(g)$, entonces f crece mas rápido o igual que g.

Se define el conjunto $\Theta(g)$ de todas las funciones $f: \mathbb{N} \to \mathbb{R}$ tal que **existen** $c_1, c_2 \in \mathbb{R}$ y $n_0 \in \mathbb{N}$, tal que **para todo** $n \geq n_0$:

$$c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$$

En notación lógica:

$$\Theta(g) = \{ f: \mathbb{N} \to \mathbb{R} \mid \exists c_1, c_2 \in \mathbb{R}. \exists n_0 \in \mathbb{N}. \forall n \ge n_0. \ c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \}$$

$$f \in \Theta(g)$$
 si, y solo si, $f \in \Omega(g)$ y $f \in \mathcal{O}(g)$

Teorema:

- 1. Sea $f(n) = a_k n^k + \dots + a_1 n + a_0$ un polinomio sobre \mathbb{N} , entonces: $f \in \Theta(n^k)$
- 2. $n^{k+1} \notin \Theta(n^k)$ para todo $k \in \mathbb{N}$.
- 3. Para todo a, b > 1, se tiene que $\log_a(n) \in \Theta(\log_b(n))$.
- 4. Si $f_1 \in \Theta(g)$ y $f_2 \in \Theta(g)$, entonces $f_1 + f_2 \in \Theta(g)$.
- 5. Si $f_1 \in \Theta(g_1)$ y $f_2 \in \Theta(g_2)$, entonces $f_1 \cdot f_2 \in \Theta(g_1 \cdot g_2)$.

Definición:

Un **algoritmo** es una secuencia finita de instrucciones precisas para realizar una computación o resolver un problema.

Para un **algoritmo** *A* sobre un conjunto de inputs *I* se define la función:

$$tiempo_A: I \rightarrow \mathbb{N}$$

Tal que para todo input $i \in I$:

$$tiempo_A(i) = número de pasos realizados por A con input i$$

Un algoritmo A es el "más eficiente" si para todo algoritmo B que calcula lo mismo que A se tiene que $tiempo_A(i) \le tiempo_B(i)$ para todo $i \in I$.

Para un conjunto de inputs I se define su función tamaño:

$$|\cdot|:I\to\mathbb{N}$$

Tal que para todo input $i \in I$:

|i| = Es el tamaño de i según su "representación".

En general, |i| será un valor que "representa" el tamaño de i y que nos será útil en nuestro análisis/modelación.

En general:

La definición más absoluta y general del tamaño |i|:

|i| = número de bits de una codificación "razonable" de i

Siempre vamos a depender de la codificación del input.

Definición:

Para un algoritmo A y su conjunto de *inputs* i se definen funciones:

$$peor \cdot caso_A \colon \mathbb{N} \to \mathbb{N} \quad \text{y} \quad mejor \cdot caso_A \colon \mathbb{N} \to \mathbb{N}$$

• Función de complejidad en el **peor caso** de *A*:

$$peor \cdot caso_A(n) = \max_{i \in I} \{tiempo_A(i) \mid |i| = n \}$$

• Función de complejidad en el mejor caso de A:

$$mejor \cdot caso_A(n) = \min_{i \in I} \{tiempo_A(i) \mid |i| = n \}$$