# HW7 Solution, CS330 Discrete Structures, Spring 2015

Instructor: Professor Edward M. Reingold TA: Taeho Jung

April 28, 2015

## 1 FSM for a combination lock



Figure 1: Finite State Machine for the Combination Lock

 $s_0$  is the starting state, and  $s_3$  is the final state where the lock is opened. The triple (10,R,1) means 10 right once, (8,L,2) means 8 left twice and (37,R,1) means 37 right once. 'else' means any operation except the above three.

### 2 FSM for bit strings having even number of '1's



Figure 2: Finite State Machine to recognize the bit strings having an even number of 1s

### 3 Regular sets

- a) It belongs to the set.  $1011 = 10^{1}1^{2}$
- b) It belongs to the set.  $1011 = 0^0(10)^1(11)^1$
- c) It belongs to the set.  $1011 = 1(01)^1 1^1$ .
- d) It belongs to the set.  $1011 = 1^{1}01(1)$ .
- e) It belongs to the set.  $1011 = (10)^1(11)^1$ .
- f) It does not belong to the set.
- g) It belongs to the set.  $1011 = (10)^0 1011$ .
- h) It belongs to the set.  $(1)(01)1^1$ .

### 4 Proof using pumping lemma.

We prove this by contradiction. Firstly, assume that the set  $\{1^{n^2}|n=0,1,2,\cdots\}$  is regular, i.e., the string  $1^{n^2}$  is recognized by  $FSM(S,I,f,s_0,F)$ .

Let  $x = 1^{n_0^2}$  for some  $n_0 \ge \sqrt{|S|}$ , then according to the pumping lemma in Exercise 22 (or lecture note on April 20), we can re-write the x as x = wvu with a non-empty v such that  $wv^ku$  is in the set of FSM for all k.

Since  $x = 1^{n_0^2}$ , x only has '1's in it. Therefore,  $w = 1^a$ ,  $v = 1^b$ ,  $u = 1^c$  where a, c are non-negative integers and b is a positive integer (since v should be non-empty). Then,  $x = wv^k u = 1^a (1^b)^k (1^c) = 1^{a+c+bk}$ . Since  $x = 1^{a+c+bk}$  is in the set of FSM, it should be in the format  $1^{n^2}$ , which implies that a + c + bk should be a perfect square for all k, which is a contradiction since a perfect square has a quadratic growth while a + c + bk has a linear growth.

Therefore, our assumption that the set is regular is wrong, which means the set is not regular.

### 5 Extra-credit problems

1.(a)

Base Case: easily verified, thus omitted.

**Assumption:** 

Assume 
$$\varphi^{2i}(a) = H_{2i}a, \varphi^{2i+1}(a) = H_{2i+1}\bar{c}.$$

Step:

$$\varphi^{2i+2}(a) = \varphi^{2i}(a)\varphi^{2}(a) = H_{2i}aH_{2}a = H_{2i+2}a$$

$$\varphi^{2i+3}(a) = \varphi^{2i}(a)\varphi^{3}(a) = H_{2i}\bar{a}H_{3}\bar{c} = H_{2i+3}\bar{c}$$

In conclusion,  $\varphi^{2i}(a) = H_{2i}a, \varphi^{2i+1}(a) = H_{2i+1}\bar{c}$  for  $i \ge 1$ .

1.(b)

When N is even:

$$\lim_{N \to \infty} \varphi^N(a) = \lim_{N \to \infty} H_N a = \lim_{N \to \infty} H_N = H$$

When N is odd:

$$\lim_{N \to \infty} \varphi^N(a) = \lim_{N \to \infty} H_N \bar{c} = \lim_{N \to \infty} H_N = H$$

2.

The proof follows by the induction below.

$$H_{2N+1} = (aCbAcB)^{\frac{2^{2N+1}-2}{6}}a, \text{ for } N \ge 0$$
  
 $H_{2N} = (aCbAcB)^{\frac{2^{2N}-4}{6}}aCb, \text{ for } N \ge 1$ 

3.

$$\varphi(\sigma(a)) = \varphi(b) = c\bar{b} = \sigma^{-1}(a\bar{c}) = \sigma^{-1}(\varphi(a))$$
$$\varphi(\sigma^{-1}(a)) = \varphi(c) = b\bar{a} = \sigma(a\bar{c}) = \sigma(\varphi(a))$$

Similarly, it can be shown that the equations hold for every letter in  $\Sigma$ . Then, because of the linearity of the functions, the equations hold for all strings in  $\Sigma$ .

4.(a)

Base case: easily verified, thus omitted.

**Assumption**:

$$\varphi(H_{2i})a = H_{2i+1}, \varphi(H_{2i+1})b = H_{2i+2}$$

Step:

$$\varphi(H_{2i+2})a = \varphi(H_{2i+1}\bar{c}\sigma(H_{2i+1}))a$$

$$= \varphi(H_{2i+1})ba\varphi(\sigma(H_{2i+1}))a$$

$$= \varphi(H_{2i+1})ba\sigma^{-1}(\varphi(H_{2i+1})b)$$

$$= H_{2i+2}a\sigma^{-1}(H_{2i+2})$$

$$= H_{2i+1}$$

Similarly,

$$\varphi(H_{2i+3})a = \varphi(H_{2i+2}a\sigma^{-1}(H_{2i+2}))b 
= \varphi(H_{2i+2})a\bar{c}\varphi(\sigma^{-1}(H_{2i+2}))b 
= \varphi(H_{2i+2})a\bar{c}\sigma(\varphi(H_{2i+2})a) 
= H_{2i+3}\bar{c}\sigma(H_{2i+3}) 
= H_{2i+4}$$

In conclusion, the following is true for all i > 0.

$$\varphi(H_{2i})a = H_{2i+1}, \varphi(H_{2i+1})b = H_{2i+2}$$

#### 4.(b)

 $\varphi(H_{2i})$  is a prefix of length  $2^{2i+1}-2$  of  $H_{2i+1}$ , therefore,  $H_{2i}$  is mapped to a longer prefix of H. Also,  $\varphi(H_{2i+1})$  is a prefix of length  $2^{2N}-4$  of  $H_{2i+2}$ , and  $H_{2i+1}$  is also mapped to a longer prefix of H. Both combined, we have the conclusion that  $\varphi(H)$  has to be equal to H.

**5.** 

| Table 1: Verification for 10 state transitions |              |             |             |
|------------------------------------------------|--------------|-------------|-------------|
| Current state $x$                              | $\varphi(x)$ | State for 0 | State for 1 |
| $\overline{a}$                                 | $a\bar{c}$   | a           | $\bar{c}$   |
| b                                              | $c\bar{b}$   | c           | $ar{b}$     |
| c                                              | $b\bar{a}$   | b           | $\bar{a}$   |
| $ar{b}$                                        | cb           | c           | b           |
| $ar{c}$                                        | ba           | b           | a           |