Contents

\mathbf{A}	f Acknowledgements				
\mathbf{A}	bstra	t		V	
Li	st of	Acronyms	xx	ci	
1	Intr	$\mathbf{duction} \dots \dots \dots \dots \dots$		1	
	1.1	The Importance of Domain-Knowledge		4	
	1.2	Difficulties in Inclusion of Domain-Knowledge into Deep Neural Netwo	rks	5	
	1.3	Contributions of this Dissertation		6	
	1.4	Organisation of the Dissertation		7	
2	Lite	ature Review		9	
	2.1	Focus of this Review	1	.0	
	2.2	Transforming the Input Data	1	.1	
		2.2.1 Propositionalisation	1	.1	
		2.2.2 Binary and n -ary Relations	1	.5	
	2.3	Transforming the Loss Function	1	.7	
		2.3.1 Syntactic Loss	1	.7	
		2.3.2 Semantic Loss	1	8	
	2.4	Transforming the Model	2	1	
		2.4.1 Constraints on Parameters	2	1	
		2.4.2 Specialised Structures	2	13	
	2.5	Summary of the Review	2	6	
3	Incl	sion of Domain-Knowledge using Propositionalisation	2	9	
	3.1	Some Logic Programming Concepts	3	1	
	3.2	Relational Data and Relational Features	3	2	
	3.3	Propositionalisation	3	34	
	3.4	A Discrete Space of Relational Features	3	5	
		3.4.1 Bounding the Lattice of Relational Features	3	6	
	3.5	Utility-based Sampling of Relational Features	3	8	
		3.5.1 A Distributional Model of Discrete Search	4	n	

	3.6	Applic	ation to Deep Relational Machines (DRMs)
	3.7	Empir	ical Evaluation
		3.7.1	Aims
		3.7.2	Materials
		3.7.3	Method
		3.7.4	Results
		3.7.5	Limitations of DRMs
	3.8	Summ	ary
4	Sim	plified	Inclusion of Relational Information using Vertex-Enrichment 69
	4.1	Graph	Neural Networks (GNNs)
		4.1.1	General working principle of GNNs
		4.1.2	Note on GNN variants
	4.2	Inclusi	on of n -ary relations into GNNs by Enriching Vertex-Labels 74
		4.2.1	Vertex-Enriched GNNs
	4.3	Empir	ical Evaluation
		4.3.1	Aims
		4.3.2	Materials
		4.3.3	Method
		4.3.4	Results
		4.3.5	Limitations of VEGNNs
	4.4	Summ	ary
5	Con	nplete	Inclusion of Relational Information using Inverse Entailment 89
	5.1	Mode-	Directed Inverse Entailment
		5.1.1	Modes
		5.1.2	Depth-Limited Bottom Clauses
	5.2	BotGN	Ns
		5.2.1	Notations and Assumptions
		5.2.2	Construction of Bottom-Graphs
		5.2.3	Some Properties of Clause-Graphs
		5.2.4	Transformations for Graph Classification by a GNN 108
		5.2.5	Note on Differences to Vertex-Enrichment
	5.3	Empir	ical Evaluation
		5.3.1	Aims
		5.3.2	Materials
		5.3.3	Method
		5.3.4	Results
	5 1	Cuman	195

6	Bot	GNN as a System Component: An Application to Drug Design. 1	127
	6.1	The Problem	127
	6.2	System Design and Implementation	130
		6.2.1 Generating Acceptable Molecules	131
		6.2.2 Obtaining Labels for Acceptable Molecules	132
		6.2.3 Generating Active Molecules	132
	6.3	System Testing	133
		6.3.1 Materials	133
		6.3.2 Method	134
		6.3.3 Results	137
	6.4	Summary	139
7	Con	nclusions and Future Work	141
	7.1	Summary of the Dissertation	141
		7.1.1 The Main Contributions	141
		7.1.2 The Main Findings	142
	7.2	Challenges and Future Work	143
	7.3	Closing Remarks	144
\mathbf{A}	Bac	kground	145
	A.1	Deep Neural Networks	145
	A.2	Inductive Logic Programming (ILP)	153
В	Add	litional Experimental Details	161
	B.1	Details relevant to Chapter 3	161
	B.2	Details relevant to Chapter 5	162
	В.3	Details relevant to Chapter 6	162
Bi	bliog	graphy	165
Li	st of	Publications	187
Bi	ogra	phy of the Candidate	191
Bi	ogra	phy of the Supervisor	193
Bi	ogra	phy of the Co-supervisor	195

List of Figures

1.1	An example of using present day machine learning systems as assistance for scientific discoveries. The scientist-in-the-loop is a biologist. The biologist conducts experiments in a biological system, obtains experimental observations. The biologist then extracts data that can be used to construct machine learning model(s). Additionally, the machine learning system has access to domain-knowledge that can be obtained from the biologist. The machine learning system then conveys its predictions and explanations to the biologist	2
2.1	Informal descriptions of (a) logical; and (b) numerical constraints	10
2.2	Construction of a deep neural network model M from data (D) using a learner (\mathcal{L}) . We use π to denote the structure (organisation of various layers, their interconnections, etc.) and $\boldsymbol{\theta}$ to denote the parameters (synaptic weights) of the deep neural network. L denotes the loss function (for example, cross-entropy loss in case of classification)	10
2.3	Some implications of using domain-knowledge for commonly-used deep neural network architectures. Here MLP stands for Multilayer Perceptron, CNN stands for Convolutional Neural Network, RNN stands for Recurrenural Network and GNN stands for Graph Neural Network. MLPs, CNNs and RNNs are now commonplace architectures for deep neural networks and detailed descriptions can be found in any standard textbook (for example, [BGC17, ZLLS21]). GNNs are increasingly the DNN model of choice for dealing with graph-based data, and a good description can be found in [Ham20]. In this dissertation, we will be mainly concerned with MLPs and GNNs: the details required are in Appendix A	12
2.4	Introducing background knowledge into deep neural network by transforming data. \mathcal{T} is a transformation block that takes input data D , background knowledge (BK) and outputs transformed data D' that is then used to	
	construct a deep model using a learner (13

2.0	ing the loss function L . \mathcal{T} block takes an input loss L and outputs a new loss function L' by transforming (augmenting or modifying) L based on background knowledge (BK) . The learner \mathcal{L} then constructs a deep model using the original data D and the new loss function L'	17
2.6	Introducing background knowledge into deep neural network by transforming the model (structure and parameter). In (a), the transformation block \mathcal{T} takes a input structure of a model π and outputs a transformed structure π' based on background knowledge (BK) . In (b), the transformation block \mathcal{T} takes a set of parameters $\boldsymbol{\theta}$ of a model and outputs a transformed set of parameters π' based on background knowledge (BK)	21
2.7	Some selected works, in no particular order, showing the principal approach of domain-knowledge inclusion into deep neural networks. DNN* refers to a DNN structure dependent on intended task. We use 'MLP' here to represent any neural network, that conforms to a layered-structure that may or may not be fully-connected. RNN also refers to sequence models constructed using Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells	27
3.1	Michalski's "trains" problem; adapted from [Mic80, MMPS94]	33
3.2	A fragment of the subsumption lattice of relational features for the trains problem	36
3.3	The subsumption lattice of relational features for the trains problem. The space is bounded by $p(X) \leftarrow TRUE$ at the top and by the bottom-clause $(\perp_{B,M}(e))$ at the bottom. The size of the space is bounded by $\mathcal{O}(2^{ \perp_{B,M}(e) })$. The relational features are sampled from this space	37
3.4	Redrawn and adapted from [JRS08]. Identifying the best subset of relational features for constructing a DRM. The X-axis enumerates the different subsets of relational features that can be constructed by an ILP engine (\mathcal{F} denotes the set of all possible relational features that can be constructed by the engine). The Y-axis shows the probability that a data instance drawn randomly using some pre-specified distribution will be correctly classified by the constructed DRM, given the corresponding feature-subset in X-axis. We wish to identify the subset that yields the highest probability, without actually constructing all the features in \mathcal{F}	39
3.5	The subsumption lattice of relational features for the trains problem. Each feature is associated with a utility score (shown in red colour). Our pro-	
	posed utility-based sampling strategy selects features from this space	40

3.6	Known Hider Distribution: (Left) Entropy of the hider distribution vs. Entropy of the seeker distribution, (Right) Entropy of the hider distribution vs. Expected number of misses by the seeker.	51
3.7	Unknown hider distribution, with more than 1 hider: (Left) $p=0.1$, (Right) $p=0.25$. That is, the proportion of boxes in the H 's partition of the step-approximation is known to be 10% and 25% of n . The number of balls is varied from 1% of n to 25% of n (X-axis). The expected number of misses is on the Y-axis	52
3.8	Diagrammatic Representation of a Deep Relational Machine (DRM). The examples shown at the bottom are the predicates in data and background knowledge. The selection of relational features includes the feature construction and sampling steps.	52
3.9	Diagrammatic Representation of Constructing a DRM using relational features and propositionalisation. The inputs to an MLP represent a Boolean-valued feature vector obtained by propositionalisation of the relational features f_1, \ldots, f_d . The parameters of the MLP are denoted as: $\mathbf{W}^{(\ell)}$, where ℓ denotes the layer index. In implementations, any $\mathbf{W}^{(\ell)}$ may contain an additional set of parameters called "bias weights" for which the inputs are always 1. The output of the MLP is an a class-label obtained from the class-probability vector of length k , where k is the number of classes	53
3.10	A summary of the NCI-50 datasets (Total number of instances is approx. 220,000). Each instance in a dataset represents a chemical compound in atom-bond representation, along with its associated anti-cancer activity (positive or negative). Positive activity means the compound results in 50% growth inhibition of the tumor cells and negative activity means otherwise	54
3.11	Levels of organisation of the background knowledge. Level 0 corresponds to the standard atom and bond information for the molecular compounds; Level 1 refers to the existence of various functional groups and ring structures; Level 2 knowledge is inferred further from Level 0 and 1	55
3.12	Hierarchy of various functional groups in the background knowledge	56
3 13	Hierarchy of various ring structures in the background knowledge	57

3.14	domain-knowledge through propositionalisation of relational features con-	
	structed using simple random sampling strategy by an ILP engine. The	
	average number of relational features across the datasets is roughly 3800.	
	Here X-axis represents the datasets (total 73 NCI datasets), and Y-axis	
	shows the gain in predictive performance with respect to the baseline.	
	Baselines ("1") are the models without domain-knowledge. The corre-	
	sponding quantitative comparison is shown in Figure 3.15	61
3.15	Comparison of predictive performance of DRM (Random Sampling) with	
	and without domain-knowledge. The average number of relational fea-	
	tures across the datasets is roughly 3800. The tabulations are the number	
	of datasets on which DRM has higher, lower or equal predictive accuracy	
	(obtained on a holdout set) than DRM without domain-knowledge. Sta-	
	tistical significance is computed by the Wilcoxon signed-rank test	61
3.16	Qualitative comparison of predictive performance of DRMs (Hide-and-	
	Seek: "HS" vs Random: "Rand") with different number of relational fea-	
	tures: $\{50, 100, 250, 500, 1000, 2500, 3800\}$; The number 3800 is to match	
	the average number of features sampled using simple random sampling.	
	Here X-axis represents the datasets (total 73 NCI datasets), and Y-axis	
	shows the gain in predictive performance with respect to the baseline.	
	Baseline here is the normalised performance of DRM-Rand: the "1" line.	
	The corresponding quantitative comparison is shown in Figure 3.17	62
3.17	Comparison of predictive performance of DRM constructed with relational	
	features sampled using hide-and-seek sampling strategy against DRM con-	
	structed using relational features sampled using simple random sampling.	
	The last row contains 3800 features to match the average number of fea-	
	tures sampled using simple random sampling. The tabulations are the	
	number of datasets on which DRM(Hide-and-Seek) has higher, lower or	
	equal predictive accuracy (obtained on a holdout set) than DRM(Rand).	es.
9.10	Statistical significance is computed by the Wilcoxon signed-rank test	63
3.18		
	and BCP+MLP [FZG14]. The DRM used here is the one constructed	
	using 3800 relational features sampled using hide-and-seek sampling. The	
	tabulations are the number of datasets on which DRM has higher, lower or equal predictive accuracy (obtained on a holdout set) than its counterparts.	
	Statistical significance is computed by the Wilcoxon signed-rank test	63
2 10	Degradation of DRM performance when expressivity of features is de-	Üe
J.13	creased from an unrestricted class to the class of relational features ob-	
	tained using simple features as discussed in [MS98]	65

3.20	tures using the hide-and-seek sampling. The values tabulated are the number of relational features drawn from the large space features to obtain the number of features in the first column.	66
4.1	A diagrammatic representation of graph classification using a GNN. Graphs are of tuples of the form $(V, E, \sigma, \psi, \epsilon)$, where V is a set of vertices; E is a set of edges; σ is some neighbourhood function; ψ is a vertex-labelling; and ϵ is an edge-labelling. Often σ is left out, and derived from the edges in E	73
4.2	Components involved in implementing the workflow in section 4.1 for VEGNN models. The input is the vectorised representation of a vertex-enriched graph, denoted here as $VE\text{-}Graph(g)$ for an graph data-instance g . The blocks 'Conv' and 'Pool' refer to the graph-convolution and graph-pooling operations, respectively. The 'Readout' operation constructs a graph representation by accumulating information from all the vertex in the graph obtained after the pooling operation. The final graph representation is obtained in the READOUT block by an element-wise sum (shown as \oplus) of the individual graph-representations obtained after each AGGREGATE-COMBINE block. MLP stands for Multilayer Perceptron.	82
4.3	Qualitative comparison of predictive performance of VEGNNs against Baseline (that is, GNN variants without access to domain-relations). Performance refers to estimates of predictive accuracy (obtained on a holdout set), and all performances are normalised against that of baseline performance (taken as 1). No significance should be attached to the line joining the data points: this is only for visual clarity	84
4.4	Quantitative comparison of predictive performance of $VEGNN$ s against GNN s. Here GNN refers to the graph-based neural network without domain-knowledge, and $VEGNN$ refers to the network vertex-enriched with the generic domain-knowledge described in section 3.7.2. The tabulations are the number of datasets on which $VEGNN$ has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is	
	assessed by the Wilcoxon signed-rank test	- 85

4.5	Quantitative comparison of predictive performance of VEGNNs against DRMs. Here $VEGNN$ denotes the vertex-enriched GNN with \mathcal{R} , and DRM denotes the Deep Relational Machine constructed using propositionalisation of relational features. The relational features for a DRM are sampled using the hide-and-seek sampling strategy proposed in Chapter 3. The set of the hide-and-seek features is denoted by \mathcal{R}' . The comparative performance of VEGNNs against DRMs starts worsening after $ \mathcal{R}' = 500$, which are not shown here. The tabulations are the number of datasets on which $VEGNN$ has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the Wilcoxon signed-rank test	86
4.6	Quantitative comparison of predictive performance of $VEGNNs$ against that of MLPs constructed using BCP features [FZG14]. The tabulations are the number of datasets on which $VEGNN$ has higher, lower or equal predictive accuracy on a holdout-set. Statistical significance is assessed by the Wilcoxon signed-rank test	86
4.7	Figure showing (a) a molecule with 2 fused benzene rings, (b) its corresponding molecular graph with vertices enriched with domain-relations	87
4.8	Figure highlighting a limitation of the vertex-enrichment technique for a molecular graph	87
5.1	For the gparent example: (a) depth-limited bottom-clause $\perp_{B,M,2}(e)$; and (b) the corresponding clause-graph where the vertex-labels (λ, μ) s and (τ, γ) s are as provided in the preceding tables. The "dashed" square-box and the "dashed" arrow are shown to indicate the vertex specifying the head of the clause. The subscripts used in the labels correspond to the S.No. in the tables, for example, (λ_3, μ_3) refers to the third-row in the first table in this example; and, similarly, (τ_4, γ_4) refers to the fourth row in the second table	99
5.2	Construction and use of bottom-graphs for use by GNNs in this chapter. We note that constituting the transformation of bottom-graphs are for the GNN implementations used in this chapter	113
5.3	Dataset summary. Each bottom-graph can be represented using (G, \cdot) , where $G = (X, Y, E)$, where X represents the vertices corresponding to the relations, Y represents the vertices corresponding to ground terms in the bottom-clause constructed by MDIE, and E represents the edges between X and Y . The last 3 columns are the average number of X, Y and E in each bottom-graph in a dataset	117

GNN models. 'Conv' and 'Pool' refer to to pooling operations, respectively. The 'R representation of a graph by accumulating tex in the graph obtained after the pool representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU (shown as \oplus) of the individual graph representation is obtained in the READOU	eadout' operation constructs the ng information from all the vering operation. The final graph- JT block by an element-wise sum resentations obtained after each
Baseline (that is, GNN variants without formance refers to estimates of predictive set), and all performances are normalised mance (taken as 1). No significance shout the data points: this is only for visual classical contents.	accuracy (obtained on a holdout against that of baseline perford be attached to the line joining
5.6 Comparison of predictive performance of tabulations are the number of datasets lower or equal predictive accuracy (obtain Statistical significance is computed by th	on which $BotGNN$ has higher, ed on a holdout set) than GNN .
5.7 Comparison of predictive performance of The tabulations are the number of datase lower or equal predictive accuracy (obt VEGNN. Statistical significance is contant test.	s on which $BotGNN$ has higher, ained on a holdout set) than a
DRMs. DRM denotes the Deep Relational feature DRM are sampled using the hide-and-sin Chapter 3. The comparative performs starts worsening after 1000 features, whi ulations are the number of datasets on wor equal predictive accuracy on a holdon assessed by the Wilcoxon signed-rank test	onal Machine constructed using s. The relational features for a seek sampling strategy proposed ance of BotGNNs against DRMs ch are not shown here. The tabhich BotGNN has higher, lower at-set. Statistical significance is
5.9 Comparison of predictive performance of structed using BCP-based relational feature number of datasets on which a BotGNN dictive accuracy (obtained on a holdout structure).	tures. The tabulations are the has higher, lower or equal pre-

5.10	Characterisation of vector-representation used for model-construction by BotGNNs, DRMs and BCP+MLP. Minimum/maximum values of the range are only shown to 3 meaningful digits (the actual values are not relevant here). The graph-representations (also, called graph-embeddings) for BotGNNs are constructed internally by the GNN. By "sparse" we mean that there are many 0-values, and by "very sparse", we mean the values are mostly 0	124
5.11	Comparison of predictive performance of BotGNNs with an ILP learner (Aleph system): (a) Without hyperparameter tuning in Aleph; (b) With hyperparameter tuning. In (a), the tabulations are the number of datasets on which $BotGNN$ has higher, lower or equal predictive accuracy (obtained on a holdout set) than the ILP learner. In (b), each entry is the average of the accuracy obtained across 10-fold validation splits (as in [SKB03])	125
6.1	Early-stage drug-design (adapted from [WBS+15])	128
6.2	An ideal conditional generator for instances of a random-variable denoting data (X) given a value for a random-variable denoting labels (Y) and domain-knowledge (B) . Here, $Z \sim D$ denotes a random variable Z is distributed according to the distribution D . If the distributions shown are known, then a value for X is obtainable through the use of Bayes rule, either exactly or through some form approximate inference	128
6.3	Training a conditional generator for generating "active" molecules. For the present, we assume the generator (G1) and discriminator (D) have already been trained (the G1 and D modules generate acceptable molecules and their labels respectively: the \hat{D} 's are approximations to the corresponding true distribution). The Transducer converts the output of G1 into a form suitable for the discriminator. Actual implementations used in the chapter will be described below.	130
6.4	Training a generator for acceptable molecules. Training data consists of molecules, represented as SMILES strings, drawn from a database Δ . The VAE is a model constructed using the training data and generates molecules represented by SMILES strings. B_G denotes domain-knowledge consisting of constraints on acceptable molecules. The filter acts as a rejection-sampler: only molecules consistent with B_G pass through	131
6.5	Architecture of the VAE in Figure 6.4. m_1, m_2, n, k denote the number of blocks. The decoder along with the μ and σ constitute the generator that	120
	generates molecules in SMILES representation	132

6.6	Discriminator based on BotGNN. "Logical" molecules refers to a logic-	
	based representation of molecules. Bottom-graphs are a graph-based repre-	
	sentation of most-specific ("bottom") clauses constructed for the molecules	
	by an ILP implementation based on mode-directed inverse entailment	132
6.7	Summary of system performance. $B_D = B_1$ denotes that the discriminator	
	has access to both propositional and relational domain-knowledge; $B_D =$	
	B_0 denotes that the discriminator has access to propositional domain-	
	knowledge only. Random denotes a random draw of molecules from the	
	unconditional molecule generator G1. M denotes the set of molecules	
	drawn (from the conditional generator, or from the unconditional gener-	
	ator for Random). The results are compared against the performance of	
	a methodology purely based on Deep Reinforcement Learning [KBBR21].	
	M^\prime denotes the set of acceptable molecules generated in the sample of M	
	molecules (acceptable molecules satisfy molecular constraints defined on	
	molecular properties). Act denotes the proportion of M' that are pre-	
	dicted active (the proxy model predicts an pIC50 \geq 6.0); Sim denotes the	
	proportion of M' that are similar to active target inhibitors (Tanimoto	
	similarity to active JAK2 inhibitors > 0.75). The numbers in parentheses	
	denote the standard deviation in the corresponding estimate	138
6.8	A chemical assessment of possible new JAK2 inhibitors. The molecules	
	are from the sample of molecules from the conditional generator, that are	
	predicted to have high JAK2 activity, and are significantly dissimilar to	
	known inhibitors. The assessment is done by a computational chemist † .	
	The assessment uses structural features and functional groups identified	
	for the JAK2 site in the literature [KBBR21, DS13, DYCFY14]	140
A.1	Construction of a DNN model from data (Based on Figure 2.2; reproduced	
	here for readability and completeness)	146
A.2	Representing MLP with layers as boxes. No importance to be given to the	
	width of the boxes. The $depth$ of the MLP is L . \mathbf{h} denotes a vector of	
	hidden layer activations (also called hidden representation) and $\hat{\mathbf{y}}$ denotes	
	the outputs. Superscript (ℓ) represents the layer index. The arrows show	
	propagation of information (activations) from one layer to another. $\mathbf{W}^{(\ell)}$	
	denotes the parameters (a matrix of synaptic weights) at layer $\ell.$	147
A.3	Michalski's trains problem; adapted from [Mic80, MMPS94]	153
A.4	Bounded search space in Progol	158
A.5	A fragment of the hypothesis space in Aleph for the grandparent example,	
	bounded by the most general hypothesis (at the top) and the most specific	
	hypothesis (at the bottom)	159

List of Acronyms

Adam Adaptive Moment Estimation (an optimisation algorithm)

AI Artificial Intelligence

Aleph A Learning Engine for Proposing Hypotheses (an ILP system)

BotGNN Bottom-Graph Neural Network

BK Background Knowledge

CNN Convolutional Neural Network

CONV Convolution (used for a block or a layer)

DL Deep Learning

DNN Deep Neural Network

DRM Deep Relational Machine

GNN Graph Neural Network

ILP Inductive Logic Programming

MDIE Mode-Directed Inverse Entailment

ML Machine Learning

MLP Multilayer Perceptron

NCI National Cancer Institute

NN Neural Network

POOL Pooling (used for a block or a layer)

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SMILES Simplified Molecular-Input Line-Entry System

VAE Variational Autoencoder

VEGNN Vertex-Enriched Graph Neural Network

XAI Explainable Artificial Intelligence

