

Language: French

Day: **1**

Lundi 18 juillet 2011

Problème 1. Pour tout ensemble $A = \{a_1, a_2, a_3, a_4\}$ de quatre entiers strictement positifs deux à deux distincts, on note s_A la somme $a_1 + a_2 + a_3 + a_4$ et on note n_A le nombre de couples (i, j), avec $1 \le i < j \le 4$, tels que $a_i + a_j$ divise s_A .

Déterminer les ensembles A pour lesquels n_A est maximal.

Problème 2. Soit S un ensemble fini de points du plan, contenant au moins deux points. On suppose que trois points quelconques de S ne sont pas alignés.

On appelle moulin à vent le processus suivant : le processus commence avec une droite ℓ contenant un unique point P de \mathcal{S} ; la droite ℓ tourne, dans le sens des aiguilles d'une montre, autour du point P, appelé pivot, jusqu'à ce qu'elle rencontre pour la première fois un autre point de \mathcal{S} ; ce point, Q, devient le nouveau pivot; la droite continue alors sa rotation dans le sens des aiguilles d'une montre autour de Q, jusqu'à rencontrer un nouveau point de \mathcal{S} ; ce processus continue indéfiniment.

Montrer qu'on peut choisir un point P de S et une droite ℓ contenant P, de façon que le moulin à vent commençant par ℓ utilise chaque point de S comme pivot une infinité de fois.

Problème 3. On désigne par \mathbb{R} l'ensemble des nombres réels. Soit f une fonction de \mathbb{R} dans \mathbb{R} telle que, pour tous réels x, y,

$$f(x+y) \leqslant yf(x) + f(f(x)).$$

Montrer que f(x) = 0 pour tout réel $x \leq 0$.

Language: French

Durée : 4 heures et 30 minutes Chaque problème vaut 7 points

Language: French

Language: French

Day: 2

Mardi 19 juillet 2011

Problème 4. Soit n un entier strictement positif. On dispose d'une balance à deux plateaux et de n poids, de masses respectives $2^0, 2^1, \ldots, 2^{n-1}$.

On doit placer, l'un après l'autre, chacun des n poids sur la balance de telle sorte que le plateau de droite ne soit jamais plus lourd que le plateau de gauche; dans ce but, à chaque étape, on doit choisir un poids qui n'est pas déjà sur la balance et le placer soit sur le plateau de gauche, soit sur le plateau de droite; on continue ainsi jusqu'à ce que tous les poids soient placés. Déterminer le nombre de façons de procéder.

Problème 5. On note \mathbb{Z} l'ensemble des entiers et \mathbb{N}^* l'ensemble des entiers strictement positifs. Soit f une fonction de \mathbb{Z} dans \mathbb{N}^* . On suppose que, quels que soient les entiers m, n, la différence f(m) - f(n) est divisible par f(m - n).

Quels que soient les entiers m, n vérifiant $f(m) \leq f(n)$, montrer que f(n) est divisible par f(m).

Problème 6. Soit ABC un triangle dont les angles sont aigus et soit Γ son cercle circonscrit. Soit ℓ une droite tangente à Γ . Soit ℓ_a , ℓ_b , ℓ_c les droites symétriques de ℓ par rapport respectivement aux droites (BC), (CA), (AB).

Montrer que le cercle circonscrit au triangle déterminé par les droites ℓ_a , ℓ_b , ℓ_c est tangent à Γ .

Durée : 4 heures et 30 minutes Chaque problème vaut 7 points