ME 51500/I5800 HW Assignment 8 P. Ganatos

- 1) Prussing & Conway, 5.1
 - a) For a given space triangle, determine the expressions for the terminal velocity vectors V_{1m} and V_{2m} on the minimum energy orbit between P_1 and P_2 in terms of the unit vectors u_c , u_1 , and u_2 .
 - b) Interpret the directions of these velocity vectors geometrically in terms of the unit vector directions.

2) Prussing & Conway, 5.2

Consider the earth and Jupiter to be in coplanar circular orbits of radii 1 au and 5.2 au, respectively.

- a) Considering the transfer angle $\Delta\theta$ as a variable, determine the range of values of a_m for all the possible earth-Jupiter transfer ellipses.
- b) For $\Delta\theta = 150^{\circ}$ and a = 5 au, calculate the values of a_m (in au), t_m , t_f , t_f^{\dagger} and t_p (in years).
- c) Calculate V_1 and V_1^{\dagger} (in EMOS) for the two transfer ellipses of (b).
- d) Calculate the magnitudes of V_1 and V_1^{\sharp} .
- e) Calculate p and \tilde{p} (in au) along with e and \tilde{e} .

Note: 1 au is the mean distance between the earth and the sun, 1.495978×10^8 km. 1 EMOS = 1 Earth Mean Orbital Speed = mean speed of earth in its orbit about the sun, 29.78 km/s.

3) Prussing & Conway, 5.7

For the case $r_1 = r_2 \equiv r_0$ and arbitrary transfer angle $\Delta\theta$,

- a) Construct the locus of the focus.
- b) For a value of a equal to r_0 determine the values of e and \tilde{e} and the corresponding values of p and \tilde{p} .

4) Derive equation (8.26) in the class notes for t_p , the transfer time on a parabolic orbit between points P_1 and P_2 . Start with equation (8.15) for an elliptic orbit, proceed to the limit as $a \to \infty$. Be sure to account for the two cases $\Delta \theta \le \pi$ and $\Delta \theta > \pi$.

Hint: Define $\varepsilon = 1/a$ and take the limit as $\varepsilon \to 0$. If your knowledge of Taylor series expansions is rusty, the solution of this problem is provided under Course Documents.