Charles E. Goodman
Attorney Docket No. BOEI-I-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 1 of 17
Right Lower & Cenham BLLC (206) 381 3300

Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

Charles E. Goodman
Attorney Docket No. BOEL-1-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 2 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

2/17

FIG. 2

FIG. 24 FIG. 2B FIG. 2C	FIG. 2E	FIG. 2F FIG. 2G	
-------------------------	---------	-----------------	--

d Gain	$\theta (W/N_g 20.0 \log_{10}(z))$	(2-1)
θ×	θ×	
ð Phase	$ m 3~(~W/N_p~(180.0/\pi)~tan^{-1}(Im(Z)/Re(Z))$)	(0-0)
θ×	θ x	(1 1)
Where:	Gain = gain of transfer function response in dB Phase = phase of transfer function response in degrees W = frequency dependent weighting Ng = gain normalization Np = phase normalization Z = complex transfer function frequency response x = design variable	
Since:	z = z	·

 $W/Ng = 10.0log_{10}(e)$ б 9 Gain

Then:

 $20.0\log_{10}(|z|)=10.0\log_{10}(e)\ln(z|z^*)$

Gives:

 $\log_{10}(u) = \log_{10}(e) \ln(u)$

4/17

Since:
$$\frac{\partial \ln(u)}{\partial x} = \frac{1.0}{u} \frac{\partial u}{\partial x}$$

Atan⁻¹(u) $\frac{1.0}{1.0+u^2} \frac{\partial u}{\partial x}$
Then: $\frac{\partial Gain}{\partial x} = \frac{W}{1.0+u^2} \frac{\partial u}{\partial x}$
Phase $\frac{W}{10.0109_{10}(e)} = \frac{\partial (Re(Z)^2 + Im(Z)^2)}{\partial x}$
 $\frac{\partial Phase}{\partial x} = \frac{W}{10.0109_{10}(e)} = \frac{\partial (Re(Z)^2 + Im(Z)^2)}{\partial x}$
Since: $\frac{\partial (u/v)}{\partial x} = \frac{1.0}{v^2} \left(v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x} \right)$
Since: $\frac{\partial (u/v)}{\partial x} = \frac{1.0}{v^2} \left(v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x} \right)$
Gives: $\frac{\partial Gain}{\partial x} = \frac{W}{10.0109_{10}(e)} = \frac{\partial (Re(Z)^2 + Im(Z)^2)}{\partial x}$
 $\frac{\partial Gain}{\partial x} = \frac{W}{10.0109_{10}(e)} = \frac{\partial (Re(Z)^2 + Im(Z)^2)}{\partial x} \left(\frac{\partial (Re(Z)^2 + Im(Z)^2)}{\partial x} + \frac{\partial (Re(Z)^2 +$

FIG 2R

5/17

9 Im (Z) 3 Re (Z) θx Im (Z) Im (Z) 3 Re (Z) 9 Im (Z) θx θx Re (Z) Re (Z) ðχ $(Re(Z)^2 + Im(Z)^2)$ $(Re(Z)^2 + Im(Z)^2$ × Ф

similarity,

partial of the gain of the

There is similarity between the

and that of the phase.

examine Equation (2-3):

response

1.0

gz

1.0

To uncover the

9 Im (Z)

dRe(Z)

Re(Z)+Im(z)

1.0

 ∂z

1.0

Gives

 θx

1.0

and (2-3)(2-2)(2-1), from Equations (2-5): and Combining the results Equations (2-4) yield

9 Z 0. 1.0 Re Im $20.0109_{10}(e)$ $(180.0/\pi)$ Ng a N 3 Z II Phase 9 Gain дχ ðχ 9

(2-5)

Ø Nij Where:

specific

ಹ

for

SSM

of the block diagonal

The complex response transfer function is

(2-6)

Equation

given by

in the D matrix the unknown term in Equations Equation (2-7) using Equation (2-6): given by elements Ø (2-5)For and

 ∂d_{ij}

C matrices, x1, the unknown term in given by Equation 1.8 o R (2-5)the and in elements Equations For

N i j

FIG. 2E

Since:
$$\frac{\partial (u/v)}{\partial x} = \frac{1.0}{v^2} \left(v \frac{\partial u}{\partial x} - u \frac{\partial v}{\partial x} \right)$$

Then: $\frac{\partial z_{i,j}}{\partial x^1} = \frac{1.0}{D^1 D^1} \left(D^1 \frac{\partial N_{i,j}}{\partial x^1} - N_{i,j}^1 \frac{\partial D^1}{\partial x^1} \right)$
And thus: $\frac{\partial D^1}{\partial c_{i,1}^1} = \frac{\partial D^1}{\partial c_{i,2}^1} = \frac{\partial D^1}{\partial D_{i,j}^1} = \frac{\partial D^1}{\partial D_{i,j}^1} = \frac{\partial D^1}{\partial D_{i,j}^1}$
Simplified: $\frac{\partial z_{i,j}}{\partial x_1} = \frac{1.0}{D^1} \left(\frac{\partial N_{i,j}}{\partial x^1} \right)$ for $x^1 = c_{i,1}^1, c_{i,2}^1, b_{i,j}^1, b_{2,j}^1$

the block numerator through (2-16): of (2-9)the non-zero partials as Equations given and denominator are From Equation (2-6)

$$\frac{\sigma_{11}}{\partial c_{11}} = b_{1j}^{1} s + (b_{2j}^{1} - b_{1j}^{1} a_{22}^{1})$$

$$\frac{\partial N_{1j}^{1}}{\partial c_{1j}^{1}} = b_{2j}^{1} s + (b_{1j}^{1} a_{21}^{1})$$
(2-10)

$$(2-11)$$

$$\frac{\partial N_{ij}^{\perp}}{\partial b_{ij}^{\perp}} = c_{i1}^{1} + (c_{i2}^{1} + c_{i1}^{1} - c_{i1}^{1})$$

$$\frac{\partial N_{ij}^{\perp}}{\partial b_{2j}^{\perp}} = c_{i2}^{1} + (c_{i1}^{1})$$

$$\frac{3b_{1j}}{3b_{2j}} = c_{11}^{1} + (c_{12}^{1} + c_{11}^{1} + c_{11}^{1})$$

$$\frac{3b_{2j}}{3b_{2j}} = c_{12}^{1} + (c_{11}^{1})$$

$$\frac{3b_{2j}}{3a_{21}} = c_{12}^{1} + (c_{11}^{1})$$

$$\frac{3b_{1j}^{1}}{3a_{22}^{1}} = c_{11}^{1} + c_{1j}^{1}$$

$$\frac{3b_{1}^{1}}{3a_{21}^{1}} = -c_{11}^{1} + c_{1j}^{1}$$

$$\frac{3b_{1}^{1}}{3a_{21}^{1}} = -c_{1}^{2}$$

Charles E. Goodman
Attorney Docket No. BOEI-1-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 9 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

9/17

Charles E. Goodman
Attorney Docket No. BOEI-1-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 10 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

10/17

$$\frac{\partial \text{Phase}_{i,j}}{\partial \text{D}_{2,1}} = \frac{\text{W} (180.0/\pi)}{\text{Npij}} \quad \text{Im} \left(\frac{\text{c}_{i,2}^{1} \text{s+c}_{i,1}^{1}}{\text{D}_{1}^{1} \text{s}_{1}^{2}} \right) \quad (2-24)$$

$$\frac{\partial \text{Gain}_{i,j}}{\partial \text{c}_{i,1}^{1}} = \frac{\text{W} (180.0/\pi)}{\text{Ngij}} \quad \text{Im} \left(\frac{\text{b}_{1,1}^{1} \text{s+b}_{2,1}^{1} - \text{b}_{1,1}^{1} \text{a}_{2}^{2}}{\text{b}_{1,1}^{1} \text{a}_{2}^{2}} \right) \quad (2-25)$$

$$\frac{\partial \text{Gain}_{i,j}}{\partial \text{c}_{i,1}^{1}} = \frac{\text{W} (180.0/\pi)}{\text{Ngij}} \quad \text{Im} \left(\frac{\text{b}_{2,1}^{1} \text{s+b}_{1,1}^{1} \text{a}_{2}^{1}}{\text{b}_{1,1}^{1} \text{a}_{2}^{1}} \right) \quad (2-27)$$

$$\frac{\partial \text{Gain}_{i,j}}{\partial \text{c}_{i,2}^{1}} = \frac{\text{W} (180.0/\pi)}{\text{Ngij}} \quad \text{Im} \left(\frac{\text{b}_{2,1}^{1} \text{s+b}_{1,1}^{1} \text{a}_{2}^{1}}{\text{b}_{1,1}^{1} \text{a}_{2}^{1}} \right) \quad (2-28)$$

$$\frac{\partial \text{Gain}_{i,j}}{\partial \text{chase}_{i,j}} = \frac{\text{W} (180.0/\pi)}{\text{Ngij}} \quad \text{Im} \left(\frac{1.0}{2 \text{i}_{1,1}^{1}} \right) \quad \text{Im} \left(\frac{2.3}{2 \text{i}_{1,1}^{1}} \right) \quad \text{Im} \left(\frac{2.3}{2 \text{i}_{1,1}^{1}} \right) \quad \text{Im} \left(\frac{2.3}{2 \text{i}_{1,1}^{1}} \right) \quad \text{Im} \left(\frac{2.30}{2 \text{i}_{1,1}^{1}} \right)$$

Charles E. Goodman
Attorney Docket No. BOEI-I-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 11 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

11/17

FIG. 3

FIG. 34	FIG. 3B	FIG. 3C	FIG. 3D
---------	---------	---------	---------

12/17

given by Equation (3-1):

1. S

PZM

the

οĘ

 N_1

 \Box

TFG

 \mathbf{z}

II

 $\|$

N

complex response

The

given by ٦. ي The unknown term in Equations (2-4) and (2-5) Equations (3-2) by using Equation

a₀

Ø

ಹ

 $^{\circ}$

 D

Ø

Ø

à

s₂

II

Z

Where:

$$\frac{1.0}{2} \frac{\partial Z}{\partial x} = \frac{1.0}{D N} \left(D \frac{\partial N}{\partial x} - N \frac{\partial D}{\partial x} \right)$$

gain transfer function Equation the when the given by ٦. اي (3-2)Equation variable, results of design the The ٦. د

1.0
$$\frac{\partial z}{\partial x}$$
 1.0 when $x = \text{TFG}$ z

$$(3-5)$$

a 0 1

or

Q II

×

when

$$\begin{array}{ccc} \cdot 0 & \partial Z & 1.0 \\ \hline -0 & \partial X & -0.1 \end{array}$$

Gives

when
$$x = a_1^1$$

$$\frac{1.0}{2} \frac{\partial Z}{\partial x} = -\frac{1.0}{D^1}$$

hen
$$x = a_0$$

The results of Equation (3-2) when the a numerator block coefficient is the design variable, x, is given by the Equation (3-4):
$$\frac{1.0}{2} \frac{\partial z}{\partial x} = \frac{1.0}{N} \left(\frac{\partial N}{\partial x} \right) = \frac{1.0}{N^1} \frac{\partial N^1}{\partial x}$$
 when $x = b_1^1$ or b_0^1

$$\partial x / N^{1} \partial x$$

when
$$x = b_1$$

Ŋ

 θx

ЭΖ

0

Gives

$$\frac{\partial Z}{\partial x} = \frac{1.0}{N1}$$

1.0

when
$$x = b_0 1$$

The results of Equation (3-2) when the a denominator block coefficient is the design variable,
$$x$$
, is given by the Equation (3-5):

$$= -\frac{1.0}{51} \frac{\partial D}{\partial z}$$

θЪ

1.0

 ∂Z

1.0

٦. د

$$= -\frac{1.0 \, \vartheta D^{1}}{D^{1} \, \vartheta x}$$

$$= -\frac{1.0}{D1} s$$

$$= -\frac{1}{D} \frac{1}{1} \qquad W$$

Charles E. Goodman
Attorney Docket No. BOEI-I-I184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY Filed: June 24, 2003 -- Serial No. 10/606,067 Sheet 14 of 17 Black Lowe & Graham, PLLC -- (206) 381-3300 "REPLACEMENT SHEET"

14/17

To summarize from Equations (2-4), (2-5), (3-3), (3-4) as Equations (3-6) through (3-15) and (3-5)

and (3-5) as Equations (3-6) throu
$$\frac{\partial \text{Gain}}{\partial \text{TFG}} = \frac{\text{W 20.0 log}_{10}(\text{e})}{\text{Ng}} = \frac{1.0}{\text{TFG}}$$

0.0

TFG

$$\frac{\partial \text{Gain}}{\partial \text{b}_1^1} = \frac{\text{W 20.0 log}_{10}(\text{e})}{\text{Ng}} \text{Re} \left(\frac{\text{s}}{\text{N}^1} \right)$$

$$\frac{\partial \text{Phase}}{\partial \text{b}_1^1} = \frac{\text{W} (180.0/\pi)}{\text{Np}}$$

$$\frac{\partial \mathbf{b}_1}{\partial \mathbf{b}_1} = \frac{\mathbf{v}}{\mathbf{N}_{\mathbf{p}}}$$

$$\frac{\partial \text{Gain}}{\partial \text{b}_0^1} = \frac{\text{W 20.0 log}_{10}(\text{e})}{\text{Ng}}$$

 $^{\rm d}_{\rm N}$

 ∂a_0^{\perp}

⋈

 θ Phase

dGain

 ∂a_0^{1}

II

15/17

RESPONSE FITTING

d Phase

$$= \frac{W (180.0/\pi)}{N_{\rm p}} \quad \text{Im} \left(\frac{1.0}{N^{1}} \right)$$

$$= \frac{W 20.0 \log_{10}(e)}{N_{\rm g}} \quad \text{Re} \left(\frac{-s}{D^{1}} \right)$$

$$= \frac{W (180.0/\pi)}{N_{\rm p}} \quad \text{Im} \left(\frac{-s}{D^{1}} \right)$$

$$= \frac{W 20.0 \log_{10}(e)}{N_{\rm p}} \quad \text{Re} \left(\frac{-1.0}{D^{1}} \right)$$

$$= \frac{W 20.0 \log_{10}(e)}{N_{\rm g}} \quad \text{Re} \left(\frac{-1.0}{D^{1}} \right)$$

d Phase

 ∂a_1^{-1}

d Gain

 ∂a_1^{J}

Charles E. Goodman
Attorney Docket No. BOEI-1-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606.067
Sheet 16 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

16/17

400²

Charles E. Goodman
Attorney Docket No. BOEI-1-1184
METHODS AND SYSTEMS FOR ANALYZING FLUTTER TEST
DATA USING NON-LINEAR TRANSFER FUNCTION FREQUENCY
RESPONSE FITTING
Filed: June 24, 2003 -- Serial No. 10/606,067
Sheet 17 of 17
Black Lowe & Graham, PLLC -- (206) 381-3300
"REPLACEMENT SHEET"

17/17

FIG. 5