Rješenja zadataka međuispita iz Fizike 2 utorak, 29. 11. 2016.

Teorijska pitanja

- **1.1** Ako dva fizička njihala imaju jednaku reduciranu duljinu, to znači da (zaokružite točnu tvrdnju):
 - (1 bod)
 - a) imaju jednak moment tromosti u odnosu na njihove osi njihanja.
 - b) imaju jednak moment tromosti u odnosu na osi koje prolaze njihovim središtima masa, a paralelne su s osima njihanja.
 - c) imaju središta mase na jednakoj udaljenosti od osi njihanja.
 - d) imaju jednaku masu.
 - e) ništa od gore navedenog.

(Točan odgovor je e).)

- **1.2** Q-faktor ili faktor kvalitete (dobrote) je veličina koja pokazuje (zaokružite točnu tvrdnju):
 - (1 bod)
 - a) brzinu prijenosa snage titranja s jednog titrajnog sustava na drugi;
 - b) relativnu udaljenost frekvencije sustava od rezonantne frekvencije;
 - c) prijelaz iz kritičnog u aperiodičko titranje;
 - d) brzinu gubitka energije pri prigušenom titranju.

(Točan odgovor je d).)

- **1.3** Neka je ω_0 prirodna frekvencija (neprigušenog) titranja oscilatora, a δ neka opisuje prigušenje (uobičajena definicija). Pojava rezonancije pri prisilnom titranju je moguća ako: (zaokružite točnu tvrdnju):
 - (1 bod)
 - a) $0 \le \delta < \omega_0/\sqrt{2}$
 - b) $0 \le \delta < \omega_0$
 - c) $0 \le \delta < \sqrt{2\omega_0}$
 - d) $0 \le \delta < 2\omega_0$
 - e) $0 \le \delta$

(Točan odgovor je a).)

1.4 Neka $y_1[x,t]$ opisuje transverzalni val na užetu za $x \le 0$, a $y_2[x,t]$ neka opisuje transverzalni val na užetu za $x \ge 0$. Napetost užeta je svuda jednaka, dok je brzina širenja vala pri x < 0 različita od brzine pri x > 0. Koja dva od navedenih uvjeta su ispunjena u x = 0: (zaokružite dvije točne tvrdnje):

(2 boda)

a)
$$y_1[0,t] = y_2[0,t]$$

b)
$$y_1[0,t] = -y_2[0,t]$$

c)
$$\frac{\partial}{\partial x} y_1[x,t]|_{x=0} = \frac{\partial}{\partial x} y_2[x,t]|_{x=0}$$

d)
$$\frac{\partial}{\partial x}y_1[x,t]|_{x=0} = -\frac{\partial}{\partial x}y_2[x,t]|_{x=0}$$

e)
$$(y_1[0,t])^2 = (y_2[0,t])^2$$

(Točni odgovori su a), e) i c).)

- **1.5** Stojni val kao rezultat superpozicije progresivnih valova $y_1(t,x)$ i $y_2(t,x)$ (zaokružite točnu tvrdnju):
 - (1 bod)
 - a) nije rješenje valne jednadžbe jer on ne predstavlja progresivni val;
 - b) je rješenje valne jednadžbe samo ako se valovi y_1 i y_2 gibaju u istim smjerovima;
 - c) je rješenje valne jednadžbe čija su rješenja i progresivni valovi y_1 i y_2 ;
 - d) nije rješenje valne jednadžbe jer valovi imaju iste amplitude ali različite valne duljine.

(Točan odgovor je c).)

1.6 Na osnovi činjenice da je snaga vala razmjerna kvadratu amplitude titranja, kad se zvuk širi u svim smjerovima u prostoru (3D) očekujemo da amplituda titranja (zaokružite točnu tvrdnju):

(1 bod)

- a) ne ovisi o udaljenosti \boldsymbol{r} od izvora.
- b) eksponencijalno opada s udaljenošću.
- c) opada kao $1/\sqrt{r}$
- d) opada kao 1/r
- e) opada kao $1/r^2$

(Točan odgovor je d).)

1.7 Ako se nabijeni pločasti kondenzator prazni preko žaruljice - omskog otpora, tada se (zaokružite točnu tvrdnju:)

(1 bod)

- a) ne može inducirati magnetsko polje jer nema promjene magnetskog toka;
- b) ne može inducirati magnetsko polje jer Gausova ploha obuhvaća samo dio silnica električnog polja;
- c) može inducirati magnetsko polje jer se mijenja električno polje u vremenu;
- d) ne može odrediti da li je inducirano magnetsko polje jer nije dan smjer struje pražnjenja.

(Točan odgovor je c).)

1.8 Imamo zatvorenu kružnu petlju od žice i ravni vodič koji leži u ravnini u kojoj leži i petlja. Do inducirane struje u petlji dolazi (zaokružite točnu tvrdnju:)

(1 bod)

- a) kada vodič prolazi kroz središte petlje i struja raste od nule do neke vrijednosti;
- b) kada vodič prolazi kroz središte petlje i smjer struje se stalno mijenja (izmjenična struja);
- c) kada vodič prolazi obodom petlje, struja je stalna, a petlja se skliže duž vodiča;
- d) kada vodič prolazi obodom petlje, a smjer struje se stalno mijenja (izmjenična struja).

(Točan odgovor je d).)

1.9 Kroz dva paralelna vodiča koji su razmaknuti za *d* teku struje istih iznosa ali suprotnih smjerova. Tada je (zaokružite dvije točne tvrdnje):

(2 boda)

- a) magnetsko polje **B** uvijek jednako nuli u svakoj točki prostora po Ampereovom zakonu;
- b) integral magnetskog polja **B** jednak nuli duž bilo koje petlje koja obuhvaća te dvije struje;
- c) integral magnetskog polja ${\bf B}$ jednak nuli duž svake koje petlje koja obuhvaća samo jednu struju;
- d) magnetsko polje jednako nuli na udaljenosti *d*/2 od prve i od druge struje;
- e) magnetsko polje ${\bf B}$ maksimalnog iznosa na pravcu koji je udaljen za d/2 od prve i druge struje.

(Točni odgovori su b) i e).)

Zadaci

1. Masa od 0.2 kg je ovješena o oprugu konstante elastičnosti 10 Nm⁻¹. Masa je uronjena u viskoznu tekućinu koja daje silu trenja *–bv*. Frekvencija prigušenih titraja je 0.977ω₀. Masa se otkloni za 25 cm iz ravnotežnog položaja i otpusti da se giba. Koliko je masa udaljena od ravnotežnog položaja nakon tri perioda prigušenih titraja? **(5 bodova)**

Rješenje:

$$\omega = \sqrt{\omega_0^2 - \delta^2} = 0.977\omega_0 \tag{1}$$

$$\delta = 0.213\omega_0 \tag{2}$$

$$\omega_0 = \sqrt{\frac{k}{m}} \tag{3}$$

$$\delta = 1.506 \,\mathrm{s}^{-1} \tag{4}$$

$$T = \frac{2\pi}{\omega} \tag{5}$$

$$T = \frac{2\pi}{0.977} \sqrt{\frac{0.2}{10}} = 0.909 \,\mathrm{s}^{-1} \tag{6}$$

Položaj i brzina:

$$x(t) = A_0 e^{-\delta t} \cos(\omega t + \phi) \tag{7}$$

$$v(t) = -A_0 \delta e^{-\delta t} \cos(\omega t + \phi) - A_0 \omega e^{-\delta t} \sin(\omega t + \phi)$$
(8)

Početni uvjeti:

$$x(0) \equiv x_0 = A_0 \cos(\phi) \tag{9}$$

$$v(0) = 0 = -A_0 \delta \cos(\phi) - A_0 \omega \sin(\phi) \tag{10}$$

$$\tan(\phi) = -\frac{\delta}{\omega} \tag{11}$$

$$\phi = -12.3^{\circ} \tag{12}$$

Položaj u zadanom vremenu:

$$x(3T) = A_0 e^{-\delta 3T} \cos(6\pi + \phi) = A_0 \cos(\phi) e^{-\delta \frac{6\pi}{\omega}} = x_0 e^{-\delta \frac{6\pi}{\omega}}$$
(13)

$$x(3T) = (25 \,\mathrm{cm})e^{-6\pi \frac{0.213}{0.977}} = 0.410 \,\mathrm{cm}$$
 (14)

2. Na slici ispod, uteg visi na niti linearne gustoće mase 2·10⁻³ kgm⁻¹ koja ide preko koloture zanemarive mase. Na početku niti djeluje oscilator konstantne frekvencije, a duljina niti između oscilatora i koloture je 2 m. Kad masa utega iznosi ili 16 kg ili 25 kg, uspostave se stojni valovi na niti između oscilatora i koloture. Ako je masa utega između ovih vrijednosti, nema stojnih valova. Kolika je frekvencija oscilatora?

(5 bodova)

Rješenje:

$$\sqrt{\frac{m_2 g}{\mu}} = \frac{2 L}{n} f$$

$$\sqrt{\frac{m_1 g}{\mu}} = \frac{2 L}{n+1} f$$

$$\sqrt{\frac{m_2}{m_1}} = \frac{n+1}{n}$$

$$\sqrt{\frac{25}{16}} = \frac{n+1}{n}$$

$$\frac{5}{4} = \frac{n+1}{n}$$

$$n = 4$$

$$f = \frac{1}{2L} \sqrt{\frac{m_2 g}{\mu}} n$$

$$f = \frac{1}{4} \sqrt{\frac{25 9.81}{2 10^{-3}}} \cdot 4 \text{ Hz} = 350 \text{ Hz}$$

3. Šišmiš leti prema zidu i odašilje zvuk frekvencije 1,70 kHz. Taj šišmiš čuje svoj zvuk i uz to čuje zvuk reflektiran od zida. Ako je brzina zvuka 344 m/s, kojom brzinom treba letjeti šišmiš kako bi čuo udar frekvencije 10 Hz?

(5 bodova)

Rješenje:

Ako uzmemo da je pozitivan smjer od prijamnika prema izvoru, v_{i1} =- $v_{\tilde{s}}$ ($v_{\tilde{s}}$ je brzina šišmiša), v_{p1} = 0. f_{i1} =1700 Hz, f_{p2} - f_{i1} = Δf = 10 Hz . Zid "čuje" f_{p1} , od izvora f_{i1} .

Iz
$$f_p = f_i(v+v_p)/(v+v_i)$$
 imamo $f_{p1} = f_{i1}(v)/(v-v_{\bar{s}})$.

Zid postaje izvor reflektiranog zvuka, $f_{i2}=f_{p1}$ (iste frekvencije koju čuje), a $v_{i2}=0$ i $v_{p2}=+v_{\xi}$.

Šišmiš čuje
$$f_{p2} = f_{i2}(v+v_{\S})/(v) = f_{i1}(v+v_{\S})/(v-v_{\S}).$$

 $\Delta f = f_{i1}(2v_{\S})/(v-v_{\S}).$

Iz tog slijedi
$$v_{\xi} = (v \Delta f)/(2f_{i1} + \Delta f) = 1,01 \text{ m/s}$$

4. Jako dugački jednoliki linijski naboj gustoće 4,80 μ C/m leži duž *x*-osi. Drugi dugački jednoliki linijski naboj gustoće -2,40 μ C/m paralelan je sa *x*-osi na y = 0,4 m. Koliki je vektor električnog polja (iznos i smjer) u sljedećim točkama na *y*-osi: a) y = 0,2 m?, b) y = 0,6 m? **(5 bodova)**

Rješenje:

Treba zbrojiti vektore električnog polja beskonačnih linijskih naboja $E=\lambda/(2\pi\epsilon_0 r)$.

- a) U točki a E_1 i E_2 su usmjereni u +y smjeru $E=E_1+E_2=6,47 \times 10^5$ N/C, u +y smjeru. $r_1=r_2=0,2$ m.
- b) U točki b E_1 je u +y smjeru, a E_2 u -y smjeru, r_1 = 0,6 m, r_2 = 0,2 m. $E = E_2 E_1 = 7,2 \times 10^4$ N/C, u -y smjeru.