Part A: Shape Functions for Linear Tetrahedral Finite Elements

Problem 1

Start with the continuous definition of the potential energy for a linearly elastic object given by:

$$E = \frac{1}{2} \int_{\Omega} \epsilon \colon C \colon \epsilon d\Omega$$

For linear elasticity we can rewrite this using the

$$C = \frac{Y}{(1+\mu)\cdot(1-2\mu)} \begin{pmatrix} 1-\mu & \mu & \mu & 0 & 0 & 0 \\ \mu & 1-\mu & \mu & 0 & 0 & 0 \\ \mu & \mu & 1-\mu & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}(1-2\mu) & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\mu) & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}(1-2\mu) \end{pmatrix}$$

$$\epsilon = \begin{pmatrix} \epsilon_{xx} & \epsilon_{yy} & \epsilon_{zz} & \epsilon_{yz} & \epsilon_{xy} & \epsilon_{xx} \end{pmatrix}^T$$
 and $\epsilon_{ij} = \frac{1}{2} \begin{pmatrix} \frac{\partial \mathbf{u}_i}{\partial \mathbf{x}_j} + \frac{\partial \mathbf{u}_j}{\partial \mathbf{x}_i} \end{pmatrix}$

Here $\mathbf{u} \in \mathbb{R}^3$ is the displacement at a point \mathbf{x} in space. Y is the stiffness of the material (Young's modulus) and μ is the poisson's ratio which determines how incompressible a material is. Start by rewriting E using the matrix C and the vector definition of ϵ .

$$E = \frac{1}{2} \int_{\Omega} \epsilon^t C \epsilon d\Omega$$

Problem 2

Next you will discretize E using linear finite element shape functions on a tetrahedron. The shape functions for a linear, tetrahedral element are the barycentric coordinates of each tetrahedron the formula here Let's use barycentric coordinates to represent the displacement of all points inside a tetrahedron: $\mathbf{u}(\mathbf{x}) = \mathbf{u}_1 \lambda_1 + \mathbf{u}_2 \lambda_2 + \mathbf{u}_3 \lambda_3 + \mathbf{u}_4 \lambda_4$, where \mathbf{u}_i is the displacement of the i^{th} vertex and λ_i is the i^{th} barycentric coordinate. You should be able to build a discrete version of ϵ using this formula. Try to express your formula in the form $B\mathbf{u}$, where B is a matrix and \mathbf{u} is the 12×1 vector of stacked nodal displacements: $(u1_x \quad u1_y \quad u1_z \quad \cdots \quad u4_x \quad u4_y \quad u4_z)^T$

Part B: Implement Linear Shape Functions

- 1. Open 'SRC_DIRECTORY/A4/include/ShapeFunctionTetLinearA4.h'.
- 2. The function *double phi(double x) { ... } returns the value of the linear shape function λ_{VERTEX} , evaluated at **x**. Implement this function.
- 3. The function *std::array<DataType,3> dphi(double x) { ... } returns the gradient linear shape function $\nabla \lambda_{VERTEX}$, evaluated at **x**. Implement this function.
- 4. The function *Eigen::Matrix<DataType, 3,3> F(double x, const State &state) returns the 3×3 deformation gradient for a tetrahedral element where $F_{ij} = \frac{\partial \mathbf{u}_i}{\partial \mathbf{X}_i}$. Use **dphi** to implement this method.

Part C: Implement Quadrature and Simulate

- 1. Open 'SRC_DIRECTORY/A4/include/QuadratureLinearElasticity.h'
- 2. Complete the **getEnergy** function to return the value of E from Part A.

- 3. Compute the stiffness matrix and the forces from E. The forces are the negative gradient of E wrt to the degrees of freedom, \mathbf{u} and the stiffness matrix is the hessian matrix, i.e $K_{ij} = -\frac{\partial^2 E}{\partial \mathbf{u}_i \partial \mathbf{u}_j}$. Derive these terms and complete the **getGradient** and **getHessian** functions.
- 4. Run the assignment code which will compute the stress on a test object and plot the result.