trampolino • IT

Trampolino elastico (trampolino)

Limite di tempo: 1.0 secondi Limite di memoria: 256 MiB

Dopo il successo dello spettacolo con le piroette, Giorgio si è assicurato una brillante carriera nel mondo della coreografia. Per il prossimo spettacolo Giorgio sta pensando a qualcosa di decisamente più audace e dinamico: una lunghissima fila di trampolini elastici, ognuno a un metro di distanza dal precedente. Al termine della fila di trampolini è posto un tappetone elastico.

Ogni trampolino elastico è dotato di una elasticità E, che rappresenta il numero massimo di metri di lunghezza che è possibile compiere con un salto su quel trampolino. Ad esempio, se E=1, l'acrobata dopo un balzo può trovarsi solo al trampolino successivo, mentre se il trampolino corrente ha E=3 l'atleta può dosare la forza del salto e trovarsi in uno dei 3 trampolini successivi al corrente.

Data la sequenza dei trampolini e delle loro elasticità, aiuta Giorgio a determinare quale è il minimo numero di salti che è necessario che compiano gli acrobati per terminare sul tappetone, sapendo che il primo balzo avviene obbligatoriamente sul primo trampolino.

Implementazione

Tra gli allegati a questo task troverai un template (trampolino.c, trampolino.cpp, trampolino.pas) con un esempio di implementazione da completare.

Se sceglierai di utilizzare il template, dovrai implementare la seguente funzione:

C/C++	<pre>int salta(int N, int E[]);</pre>
Pascal	<pre>function salta(N: longint; var E: array of longint): longint;</pre>

In cui:

- L'intero N rappresenta il numero di trampolini presenti in scena.
- L'array E, indicizzato da 0 a N-1, contiene l'elasticità dei trampolini.
- La funzione dovrà restituire il minimo numero di salti necessari per finire sul tappetone, che verrà stampato sul file di output.

Dati di input

Il file input.txt è composto da due righe. La prima riga contiene l'unico intero N. La seconda riga contiene gli N interi E_i separati da uno spazio.

Dati di output

Il file output.txt è composto da un'unica riga contenente un unico intero, la risposta a questo problema.

trampolino Pagina 1 di 2

Bologna, 23 febbraio 2014

trampolino • IT

Assunzioni

- $1 \le N \le 100000$.
- $1 \le E_i \le 100\,000$ per ogni $i = 0 \dots N 1$.
- Non è possibile saltare all'indietro.
- È obbligatorio che il primo salto avvenga sul primo trampolino.

Assegnazione del punteggio

Il tuo programma verrà testato su diversi test case raggruppati in subtask. Per ottenere il punteggio relativo ad un subtask, è necessario risolvere correttamente tutti i test relativi ad esso.

- Subtask 1 [10 punti]: Casi d'esempio.
- Subtask 2 [20 punti]: $N \le 100$.
- Subtask 3 [40 punti]: $N \leq 1000$.
- Subtask 4 [30 punti]: Nessuna limitazione specifica.

Esempi di input/output

input.txt	output.txt
4	2
2 3 1 1	

input.txt	output.txt
5	1
5 2 3 4 5	

input.txt	output.txt
8	4
4 2 3 1 1 2 1 2	

Spiegazione

Nel **primo caso di esempio** conviene dosare il salto sul primo trampolino in modo da arrivare al secondo trampolino e da qui arrivare al tappetone. Saltare dal primo trampolino al terzo sarebbe costato 3 salti invece di 2.

Nel secondo caso di esempio gli atleti saltano dal primo trampolino direttamente sul tappetone.

Il **terzo caso di esempio** corrisponde alla figura. Il colore del centro dei trampolini ha intensità proporzionale all'elasticità.

trampolino Pagina 2 di 2