Equipo 1

Facultad de Matemáticas UV

27 de octubre de 2014

Particiones

Definition

Sea [a, b] intervalo. Una partición de [a, b] es un conjunto de puntos $x_0, x_1, ..., x_n$ tales que

$$a = x_0 \le x_1 \le \cdots \le x_n = b$$

Sean

$$\Delta x_i = x_i - x_{i-1} (i = 1, \dots, n)$$

[1]

Integral de Riemann

Definition (2)

Sea f es una función real acotada definida en [a,b]. Para cada partición P de [a,b] definimos

$$\begin{array}{rcl} M_i &=& \sup f(x) & (x_{i-1} \leq x \leq x_i), \\ m_i &=& \inf f(x) & (x_{i-1} \leq x \leq x_i), \\ U(P,f) &=& \sum_{i=1}^n M_i \Delta x_i, \\ L(P,f) &=& \sum_{i=1}^n m_i \Delta x_i \end{array}$$

y finalmente

$$\overline{\int}_{a}^{b} f \, dx = \inf U(P, f) \tag{1}$$

$$\int_{-a}^{b} f \, dx = \sup L(P, f) \tag{2}$$

Las partes izquierdas de estas ecuaciones son llamadas *integral superior* e *integral inferior* de f sobre [a,b] respectivamente.

Integral de Riemann

Definition (3)

Si las integrales *superior* e *inferior* son iguales entonces decimos que f es *riemann-integrable* en [a,b] y diremos que $f \in \mathcal{R}$ donde \mathcal{R} denota el conjunto de funciones *riemann-integrables* y denotaremos el valor de (1) y (2) como

$$\int_{a}^{b} f(x) \, dx \tag{3}$$

A lo cual llamaremos integral de riemman de f(x).

Sea α una función monótona creciente definida en [a, b] (y por tanto, acotada). Para cada partición P escribimos

$$\Delta \alpha_i = \alpha(x_i) - \alpha(x_{i-1})$$
 $\Delta \alpha_i \ge 0$

Para cualquier función acotada en [a, b] definimos

$$\begin{array}{rcl} U(P,f,\alpha) & = & \sum_{i=1}^n M_i \Delta \alpha_i, \\ L(P,f,\alpha) & = & \sum_{i=1}^n m_i \Delta \alpha_i, \end{array}$$

Done M_i y m_i son lo mismo que en la definición (2) y finalmente

$$\overline{\int}_{a}^{b} f \, d\alpha = \inf U(P, f, \alpha), \tag{4}$$

$$\int_{-a}^{b} f \, d\alpha = \sup L(P, f, \alpha), \tag{5}$$

Definition (4)

Si los términos de (4) y (5) son iguales, denotaremos su valor común como

$$\int_{a}^{b} f \, d\alpha \tag{6}$$

Ó

$$\int_{a}^{b} f(x) \, d\alpha(x). \tag{7}$$

Que es la integral de rieman-stieltjes de f respecto de α sobre [a,b]. Si (6) existe, es decir (5) y (6) son iguales, decimos que f es integrable respecto a α y escribimos $f \in \mathcal{R}(\alpha)$.

Definition (5)

Decimos que la partición P^* es un refinamiento de P si $P^* \supset P$. Dadas dos particiones P_1 y P_2 decimos que P^* es su refinamiento común si $P^* = P_1 \cup P_2$

Theorem (1)

Si P^* es un refinamiento de P, entonces

$$L(P, f, \alpha) \le L(P^*, f, \alpha) \tag{8}$$

V

$$U(P^*, f, \alpha) \le U(P, f, \alpha) \tag{9}$$

Teoremas

Theorem (2)

$$\underline{\int_{a}^{b} f \, d\alpha} \leq \overline{\int_{a}^{b} f \, d\alpha}$$

Theorem (3)

 $f \in \mathcal{R}(lpha)$ sobre [a,b] si y sólo si para cada $\epsilon > 0$ existe una partición P tal que

$$U(P, f, \alpha) - L(P, f, \alpha) < \epsilon \tag{10}$$

Teoremas

Theorem (4)

- Si se cumple (10) Para alguna P y alguna ϵ , entonces (10) se cumple para cada refinamiento de P.
- ② Si (10) se cumple para $P = x_0, ..., x_n$ y si s_i y t_i son puntos arbitrarios en $[x_{i-1}, x_i]$, entonces

$$\sum_{i=1}^{n} |f(s_i) - f(t_i)| \Delta \alpha_i < \epsilon$$

Theorem (5)

Si f es continua en [a, b] entonces $f \in \mathcal{R}(\alpha)$ sobre [a, b].

Teoremas

Theorem (6)

Si f es monótona en [a,b], y α es continua en [a,b], entonces $f\in\mathcal{R}(\alpha)$

Theorem (7)

Supóngase que f es acotada y tiene un número finito de discontinuidades en [a,b], y suponga que α es continua en cada punto en que f es discontinua. Entonces $f \in \mathcal{R}(\alpha)$

Theorem (8)

Suponga que $f \in \mathcal{R}(\alpha)$ en [a,b], $m \le f \le M$, ϕ es continua en [m,M] y $h(x) = \phi(f(x))$ en [a,b]. Entonces $h \in \mathcal{R}(\alpha)$ en [a,b]

Propiedades de la integral I

① Si $f_1, f_2 \in \mathcal{R}(\alpha)$ en [a, b] entonces

$$f_1+f_2\in\mathcal{R}(\alpha),$$

 $cf \in \mathcal{R}(\alpha)$ para cualquier constante c, y

$$\int_{a}^{b} (f_1 + f_2) d\alpha = \int_{a}^{b} f_1 d\alpha + \int_{a}^{b} f_2 d\alpha,
\int_{a}^{b} cf d\alpha = c \int_{a}^{b} f d\alpha.$$

② Si $f_1(x) \le f_2(x)$ en [a, b] entonces

$$\int_a^b f_1 \, d\alpha \le \int_a^b f_2 \, d\alpha$$

Propiedades de la integral II

③ Si $f \in \mathcal{R}(\alpha)$ en [a, b] y a < c < b, entonces $f \in \mathcal{R}(\alpha)$ en [a, c] y en [c, b] y

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$$

• Si $f \in \mathcal{R}(\alpha)$ y $|f(x)| \leq M$ en [a, b] entonces

$$|\int_a^b f \, d\alpha| \le M[\alpha(b) - \alpha(a)]$$

Propiedades de la integral III

3 Si $f \in \mathcal{R}(\alpha_1)$ y $f \in \mathcal{R}(\alpha_2)$, entonces $f \in \mathcal{R}(\alpha_1 + \alpha_2)$ y

$$\int_a^b f d(\alpha_1 + \alpha_2) = \int_a^b f d\alpha_1 + \int_a^b f d\alpha_2;$$

si $f \in \mathcal{R}(\alpha)$ y c es una constante positiva, entonces $f \in \mathcal{R}(c\alpha)$ y

$$\int_a^b f d(c\alpha) = c \int_a^b f d\alpha.$$