

Machien Learning and Inductive Inference [H02C1a] Xinhai Zou (r0727971)

# Contents

| 1        | Lecture 1: Introduction, Version spaces                                   | 1  |  |
|----------|---------------------------------------------------------------------------|----|--|
|          | 1.1 Some ML examples in practice                                          | 1  |  |
|          | 1.2 Machine Learning                                                      | 1  |  |
|          | 1.3 Machine Learning learning landscape                                   | 1  |  |
|          | 1.4 Some basic concepts and terminology                                   | 2  |  |
|          | 1.5 Input formats (predictive learning)                                   | 3  |  |
|          | 1.6 Output formats, methods (predictive learning)                         | 4  |  |
| <b>2</b> | Lecture 2: Induction of decision tree                                     | 6  |  |
|          | 2.1 Overview of DT                                                        | 6  |  |
|          | 2.2 Learn trees from data                                                 | 7  |  |
|          | 2.3 Choosing the best test                                                | 7  |  |
|          | 2.4 Stop splitting nodes                                                  | 9  |  |
|          | 2.5 A generic algorithm                                                   | 10 |  |
|          | 2.6 Computational complexity                                              | 11 |  |
|          | 2.7 Missing values                                                        | 13 |  |
|          | 2.8 Model trees                                                           | 13 |  |
|          | 2.9 Multi-target trees                                                    | 13 |  |
|          | 2.10 Practical software                                                   | 14 |  |
| 3        | Lecture 3: Learning sets of rules                                         | 15 |  |
|          | 3.1 Linear regression                                                     | 15 |  |
|          | 3.2 Trees vs. linear regression vs. inductive bias                        | 15 |  |
|          | 3.3 Rule learning                                                         | 16 |  |
|          | 3.4 Association rules                                                     | 18 |  |
| 4        | Lecture 4: Instance-based learning, Clustering                            | 20 |  |
|          | 4.1 Instance-based learning                                               | 20 |  |
|          | 4.2 Clustering                                                            | 22 |  |
| 5        | Lecture 5: Evaluating hypotheses                                          | 27 |  |
|          | 5.1 Models and learning algorithms                                        | 27 |  |
|          | 5.2 Statistics                                                            | 27 |  |
| 6        | Lecture 6: Numerical approaches (ANN, SVM), Computational learning theory | 30 |  |
| 7        | Lecture 7: Probabilistic approaches, Ensembles 3                          |    |  |
| 8        | Lecture 8: Reinforcement learning                                         |    |  |
| 9        |                                                                           |    |  |
| _        |                                                                           | 30 |  |

# 1 Lecture 1: Introduction, Version spaces

## 1.1 Some ML examples in practice

- 1. Autonomous cars
- 2. The Robosail project
- 3. The Robot Scientist
- 4. Infra Watch, "Hoolandse brug" the bridge
- 5. Language learning
- 6. Automating manual tasks

## 1.2 Machine Learning

**Definition** of machine learning: it is the study of how to make programs improve their performance on certain tasks from own (experience). In this case:

- "performance" = speed, accuracy
- "experience" = earlier observations

#### Machine Learning vs. other AI

In **machine learning**, the key is **data**, examples of questions and their answer; observations of earlier attempts to solve the problem

In inductive inference, it is reasonsing from specific to general, statistics: sample -> population; from concrete observations -> general theory

## 1.3 Machine Learning learning landscape

- tasks
  - clustering
  - classification
  - regression
  - reinforcement learning
- techniques
  - Convex optimization
  - Matrix factorization
  - Transfer learning
  - Learning theory
  - Greedy search

#### • models

- automata
- neural network
- deep learning
- statistical relational learning
- decision trees
- support vector machines
- nearest neighbors
- rule learners
- bayesian learning
- probabilisite graphical models

#### • applications

- natural language processing
- vision
- speech

#### • related courses

- neural computing
- support vector machine
- uncertainty in AI
- data mining
- genetic algorithms and evolutionary computing

## 1.4 Some basic concepts and terminology

#### • Predictive learning

- Definition: learn a model that can predict a particular property/ attribute/ variable from inputs
- Binary classification: distinguish instances of class C from other instances
- Classification: assign a class C (from a given set of classes) to an instances
- Regression: assign a numerical value to an instance
- multi-label classification: assign a set of labels (from a given set) to an instance
- multivariate regression: assign a vector of numbers to an instances

multi-target prediction: assign a vector of values (numerical, categorical) to an instances

#### • Descriptive learning

 Definition: given a dataset, describe certain patterns in the dataset, or in the population it is drawn from

#### • Typical tasks in ML

- function learning: learn a function X->Y taht fits the given data
- distribution learning: distribution learning
  - \* parametric: the function family of the distribution is known, we only need to estimate its parameters
  - \* non-parametric: no specific function family assumed
  - \* generative: generate new instances by random sampleing from it
  - \* discriminative: conditional probability distribution

#### • Explainable AI (XAI)

- Definition: means that the decisions of an AI system can be explained
- Two different levels:
  - \* We understand the (learned) model
  - \* We understand the individual decision

## 1.5 Input formats (predictive learning)

- Set
  - training set: a set of examples, instance descriptions that include the target property (a.k.a. labeled instances)
  - prediction set: a set of instance descriptions that do not include the target property ('unlabeled' instances)
  - prediction task: predict the label of the unlabeled instances

#### • Outcome of learning process

- transductive learning: the predictions themselves
- inductive learning: a function that can predict the label of any unlabeled instance

#### • Explainable AI

- interpretable: can be interpred
- black-box: non-interpretable

#### • Learning

- Supervised learning: from labeled
- Unsupervised learning: from unlabeled
- Semi-supervised learning: from a few labeled and many unlabeled
- Format of input data
  - input is often assumed to be a set of instances that are all described using the same variables (features, attributes)
  - i.i.d.: independent and identically distributed
    - \* tabular data (NN)
    - \* sequences
    - \* trees
    - \* graph
    - \* raw data: learning meaningful feaures from raw data
    - \* knowledge: inductive logic programming

## 1.6 Output formats, methods (predictive learning)

The **output** of a learning system is a model.

- output
  - parametrized functions
  - ocnjunctive concepts: a conjuntive concept is expressed as a set of conditions, all of which must be true
  - rule sets (if...then...else...)
  - decision trees
  - neural networks
  - probabilisite graphical models
- · search methods
  - discrete spaces methods: hill-climbing, best-first
  - continuous spaces methods: gradient descent
- typically
  - model structure not fixed in advanced discrete
  - fixed model structure, tune numerical parameters continuous
- hypothesis space
  - definition: all possible instances
  - for robot example:  $\{B,R,M,?\} \times \{S,T,?\} \times \{L,W,?\} \times \{1,2,?\}$

## • Verson space

- using candidate elimination
- pros
  - $\ast$  can be used for discrete hypothesis spaces
  - $\ast\,$  search for all solutions, rather than just one, in an efficient manner
  - \* importance of generality ordering
- cons
  - \* not robust to noise
  - \* only conjunctive concepts

## 2 Lecture 2: Induction of decision tree

#### 2.1 Overview of DT

- A decision tree represents a decision procedure where
  - you start with one question
  - the answer will determine the next question
  - and repeat, untill you reach a decision
- We will usually call the questions "tests" and the decision a "prediction"
- attribute
  - input attribute  $X = \{X_1, X_2 ..., X_n\}$
  - target attribute Y
  - the tree represents a function f: X -> Y
- Example: Playing Tennis Tree
  - Outlook:  $X_1 = \{Sunny, Overcast, Rainy\}$
  - Humidity:  $X_2 = \{High, Normal\}$
  - Wind:  $X_3 = \{Strong, Weak\}$
  - Tennis:  $Y = \{Yes, No\}$
  - The tree represents a function Outlook x Humidity x Wind -> Tennis
- Boolean tree
- Continuous input attributes
  - We cannot make a different child node for each possible value!
  - Solution: use comparative test -> a finite number of possible outcomes
- Type of trees
  - target attribute Y is nomial -> classification tree
  - target attribute Y is numerical -> regression tree
- Advantages of Tree (Why tree?)
  - Learning and using tree is **efficient**
  - Tend to have good predictive accuracy
  - Tree is **interpretable**

#### 2.2 Learn trees from data

- Two tasks for DT
  - Task 1: find the smallest tree T such that  $\forall (x,f(x))\in D$ : T(x)=f(x) (meaning that only fullfill current data set)
  - Task 2: find the tree T such that for x drawn from population D, T(x) is (on average) maximally similar to f(x) (T:model tree from data set D, f(x):true function in population D)
    - \* loss function: l:  $Y_1 \times Y_2 \rightarrow R$  (where  $Y_1$  is predicted value,  $Y_2$  is actual value)
    - \* risk R of T, the expectation of loss function, is  $E_{x\sim D}[l(T(x), f(x))]$ , which is needed to be minimal.
- the basic principle
  - The approach is known as "Top-down induction of decision trees (TDIDT)", or "recursive partitioning"
    - \* 1. start with the full data set D
    - \* 2. find a test such that examples in D with the same outcome for the test tend to have the same value of Y
    - \* 3. split D into subsets, one for each outcome of that test
    - \* 4. repeat this procedure on each subset that is not yet sufficiently "pure" (meaning, not all elements have the same Y)
    - \* 5. keep repeating until no further splits possible
- rule representation of tree
  - trees can be written as if-then-else rules
  - rules can be simplified
- Two main questions?
  - How to choose which test should be the first? (guess: attribute with minimal entropy?)
  - When to stop splitting nodes? (guess: till pure? or threshold for probability?)

#### 2.3 Choosing the best test

- We focus on classification tree (Y is nominal)
- Information theory
  - a good test is a test that carries much information about the class
  - "entropy" or "missing information": how many bits needed, on average, to convey a piece of information, if an optimal encoding is used

- bits <- Question!! Do not understand the bit, how is it related to
- But whatever, the cleverest bit has been provided as below, which is called "entropy"

$$*~e = -\sum_{i=1}^k p_i \log_2 p_i$$

- The number e reflects the minimal number of bits that you will need, on average, to encode one value. It is the inherent information content, or **entropy**.
- for classification we use class entropy
  - The class entropy of a set S of objects( $\mathbf{x}, \mathbf{y}$ ), where y can be any of k classes  $c_i$ , is defined as

\* 
$$CE(S) = -\sum_{i=1}^k p_i \log_2 p_i$$
 with  $p_i = \frac{(|(x,y) \in S|y = c_i|)}{|S|}$   
\* it measures how much uncertainty there is about the class of a

- particular instance
- high entropy = "many possbilities, all equally likely" not good for splitting
- low entropy = "few possibilities, safer to conclude" better for splitting nodes
- entropy measures uncertainty
- information gain (IG)
  - will have the same effect of attribute entropy
  - the information gain of a question = the expected reduction of entropy by obtaining the answer to the question
  - in the case of classification trees: expected reduction of class entropy:

\* 
$$IG(S,t) = CE(S) - \mathbb{E}(CE(S_i)) = CE(S) - \sum_{i=1}^{o} \frac{|S_i|}{|S|} CE(S_i)$$

\* with t a test, o the number of possible outcomes of attribute/test t, and  $S_i$  the subset of S for which the i'th outcome was obtained.

However, if we focus on regression tree (Y is numerical), can we still use class entropy or information gain?

- Now we assume Y is numerical
- Now we use variance reduction instead of entropy or information gain
  - the variacne of Y in a set S of instances (x,y) is

$$- Var(S) = \frac{\sum_{(x,y) \in S} (y - \hat{y})^2}{|S| - 1} \text{ with } \hat{y} = \frac{\sum_{(x,y) \in S} y}{|S|}$$

- and the variance reduction will be (which is similar to information gain (IG))

$$- VR(S,t) = Var(S) - \sum_{i=1}^{o} \frac{|S_i|}{|S|} Var(S_i)$$

## 2.4 Stop splitting nodes

- In principle, keep splittign untill all instances in a subset have the same Y value
  - However, this is useful for task 1, but less useful for task 2 (may cause overfitting problem!)
  - Please remember this is not population, this is just a sampling sample.

#### overfitting

- overfitting improves the consistency of the tree with the given data set D, but may decrease accuracy for instances outside D (whole population  $\mathcal{D}$ )
- How to avoid overfitting?
  - "cautious splitting": do not split a node unless you are certain that the split is meaningful
  - "post-pruning": do not bother about overfitting while splitting nodes, but once the (large) tree has been built, prune away branches that turned out not to contribute much
- "Cautious splitting"
  - How do we know when not to split a node any further?
    - \* a simple approach: try to guess when accuracy on unseen data is going down ("the turning point")
  - But how can guess this turning point, if the data is unseen?
    - \* Solution: we can use "validation data" to evaluate
    - \* this "validation data" is not for growing tree, only for estimating accuracy on "unseen" data

#### • "Post-pruning"

- What if the accuracy will increase again? afraid to end the growth too early
  - \* Solution: we can compute the whole data set, then find its highest point

#### - Princeple

- \* grow the tree to its full size, then cut away branches that did not contribute to getting better predictions
- \* How to decide which branch does not contribute
  - · check for each node in the tree, starting at the bottom: "what would be the accuracy if I cut the tree here?" if that accuracy is not lower, cut the tree, otherwise, do not cut.

- Pros and Cons
  - post-pruning requires more effort to build a large tree, while it gives more accurate tree
  - catious splitting is more efficient, while the accuracy is not as good as post-pruning

#### 2.5 A generic algorithm

- TDIDT = "Top-down induction of decision trees", also referred to as "recursive partitioning"
- most decision tree learners follow the same basic approach, but differ in the details
  - we will have a look at the commonalities and differences

```
function TDIDT(E: set of examples) returns tree;

T' = \text{grow\_tree}(E);

T = \text{prune\_tree}(T');

return T;

function grow\_tree(E: set of examples) returns tree;

T = \text{generate\_tests}(E);

t = \text{best\_test}(T, E); (call t's outcomes v_1...v_k)

P = \{E_1, E_2, ..., E_k\} with E_i = \{x \in E \mid t(x) = v_i\} (P = \text{partition induced on } E \text{ by } t)

if stop_criterion(E, P)

then return leaf(info(E))

else

for all E_i in P: T_i := \text{grow\_tree}(E_i);

return node(t, \{(v_1, T_i), (v_2, T_2), ... (v_k, T_k)\});
```

Figure 1: Algorithm for "Top-down in duction of decision trees"

- The blue functions are where implementations differ
  - prune tree: how to prune the tree afterward
  - generate\_tests: which tests to consider
  - best test: which test to select (use heuristics: entropy or variance)
  - stop criterion: when to stop (cautious splitting or post-pruning)
  - info: what information to store in the leaf
- generate\_tests
  - for numerical attributes: oblique trees can be used for determining c(threshold), while it will be more difficult even though it has higher accuracy. Thus, in practice, non-oblique trees are much more common.

#### • best test

- for classification trees: information gain (IG) = reduction to entropy  $CE(S) = -\sum_{i=1}^k p_i \log_2 p_i$ 
  - \* in some cases: "Gini impurity" instead of entropy:  $Gini(S) = 1 \sum_{i=1}^k p_i^2$
- for regression trees: reduction of variance  $\sigma$ , or reduction of standard deviation  $\sqrt{\sigma}$ 
  - \* in some cases: normalization is impelmented by "Split information" (SI):  $SI(S,t) = -\sum_{i=1}^n \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$
  - \* and the Gain Ratio (GR) will be:  $GR(S,t) = \frac{IG(S,t)}{SI(S,t)}$
- for numerical inputs, how to determine c?
  - \* Solution: typically, all values are tried, and the c that yields the best heuristic value (IG, GR, Gini, ...) is selected (best of them)

#### • info

- for classification trees: usually, the most frequent class
- for regression trees: usually, the mean of all target values in that leaf
  - \* possible: median

#### • stop\_criterion

- 1. cautious splitting, post-pruning
- 2. threshold
  - \* classification: all instances have the same class, pure
  - \* regression: variance
- too few examples to continue splitting
  - \* only allow tests that yield subtrees with at least two examples each
- · impurity measures
  - good impurity measures are strictly concave <- Question: do not understand!!

#### 2.6 Computational complexity

- Given a data set D consisting of N instances (x,y), where x has m components (attribtues), how do N and m influence the computational effort required to learn a tree?
- "Splitting one node" for each node, we need to "find the best test"
  - for each possible test, evaluate its quality

- \* partition the dataset according to this test
- \* compute quality based on this partition
- for the test with highest quality
  - \* partition data according to that test
- Efficiently computing test quality for continous attribtues
  - first **sort** all tuples according to A (attribute), small to large
  - then gradually move the threshold, and simply update the tables
  - thus, testing all thresholds is only slightly more work than testing one!
- Computing the quality of one test
  - for nominal attributes: 1 scan, gradually building the table; compute IG once, at the end
  - for continous attributes: 1 scan, gradually updating the table; compute IG for each intermediate table
  - hence, computing the best test for a node is linear in the number of instances in that node O(n), with n the number of instances
  - Complexity:
    - \* compute quality of one test is O(n)
    - \* compute quality of all tests is O(nm), with m the number of attributes
- Splitting multiple nodes
  - the total at one level of the tree is always n, so the overal amount of work depends on the layer of the trees
    - \* if the splits are balanced, the height of tree is O(log(N)), and the overall compelxity of tree growth is  $O(mN\log_2(N))$
    - \* if the splits however are unbalanced, the height of tree is O(N), and the complexity is  $O(mN^2)$
- For impurity measures
  - "pure" = "zero variance/entropy"
- Why decision tree for Big Data?
  - QUICK! and FAST! efficient!
  - high accuracy
  - interpretable can be also a reason

## 2.7 Missing values

- when computing quality of a test: just ignore instances where this value is missing
- when splitting on an attribute:
  - guess its most likely value
  - partially assign the example to multiple branch, with its probability

#### 2.8 Model trees

Model trees are **regression tree** in which each leaf does not contain a constant, but a linear model.

- RETIS (M5)
- Mauve

## 2.9 Multi-target trees

- Classification and regression trees are very popular for predicting one target variable
- But the principle of variance reduction is easily generalized to predicting vectors!
- This allow us to predict multiple variables at the same time, using one tree. (vector)
- Multi-label classification
  - How? For example for  $Y = \{a,b,c,d,e\}$
  - Option 1: "binary relevance"
    - \* learn (y/n) decision tree for each label
    - \* TreeA predicts a(y/n), TreeB predicts b(y/n)
  - Option 2: "label powersets"
    - \* consider each set as separate label, for 5 original labels a,b,c,d,e, we get 32 combined labels: -,a,b,c,d,e,ab,ac, ..., abc, ...
    - \* Learn a tree that predicts the combined label
  - Option 3: "Vector encoding"
    - \* encode each set as 0/1 vector, e.g.  $\{a,b,d\} = [1,1,0,1,0]$
    - \* use a learner that can learn models that predict vectors
  - Option 3: "Vector encoding" is better! Requires almost no changes in the algorithm.

- \* for example a leaf contains  $\{[1,1,0,1,0],[1,1,0,0,0],[1,1,0,1,1]\} \rightarrow [1,1,0,0.67,0.33]$
- \* predict all labels by threshold (e.g. 0.5): [1,1,0,0.67,0.33] -> {a,b,d}
- Hierarchical multilabel classification (HMC)
  - for protein
  - similar just add a constrant "a label can only occur in an instance's label set if all its ancestors also occur"
    - \* 250 functions = 250 trees is not fast and interpretable!
    - \* 250 functions = 1 tree is fast and interpretable!
    - \* learn 1 tree that predicts 250-dimensional class vector
  - Decision tree can be converted to rules set

## 2.10 Practical software

- Weka
- PythonL scikit-learn
- others: R, SAS, SPSS

## 3 Lecture 3: Learning sets of rules

#### 3.1 Linear regression

Decision tree vs. linear regression

- "Linear model":  $Y = a + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$ 
  - usually fit such that sum of squared vertical deviations from line is minimal
  - what can we learn from such linear model?
    - \* for predicting Y, given Xi
    - \* for understanding how well Y can be predicted from Xi
    - \* for understanding what the effect of each Xi is on Y
    - \* for visualizing the connection between Xi and Y
    - \* the linear correlation r tells us how well the points fit a line  $-1 \leq r \leq 1$
    - \* the coefficient of determination  $R^2$  tells us to what extent Y is determined by the  $X_i, 0 \le R^2 \le 1$
  - careful with interpretation of coefficients
    - \* coefficients are not scale-free
    - \* "multicollinearity": correlations among  $X_i$
- important assumptions
  - effect of each variable on target is constant (does not depend on other variables)
  - effect of different variables are cumulative (add up)
- complex terms
  - "overall" coefficient of  $X_2$  is  $(b_2 + b_{12}X_1)$  effect of  $X_2$  on Y depends on  $X_1$
- nominal variables
  - for nominal  $X_i$  with k values, introduce k-1 "0/1" variables, called "indicator" or "dummy" variables <- Question: do not understand the dummy!!!

## 3.2 Trees vs. linear regression vs. inductive bias

- Each learning approach has a "bias": implicit assumptions it makes.
- Removing all bias?
  - bias-free learning is imporssible!

- no single best method for learning!
- for VS, the bias is "it assumes conjunctive concepts". -> without bias, no generalization.
- all of learning models have their own bias = implicit assumptions about what properties the true model has
- Choices to make
  - Modelling your problem as a prediction tasks:
    - \* What is input, what is output (target attribute)?
    - \* Regression, classification, probability prediction?
  - Choosing a learning approach
    - \* Efficiency of learning/prediction phase
    - \* Bias (which more fits the problem)
    - \* interpretability of returned models (interpretation)

## 3.3 Rule learning

Learning sets of classification rules: rule sets:

- 1. "if...then..."
- 2. "if...then...else..."
- Example: rule sets define a leap years
  - If year is multiple of 400 then leap
  - else if year is a multiple of 100 then not leap
  - else if year is multiple of 4 then leap
  - else not leap
- A decision tree can be turned into a set of rules!
  - By learning decision tree to learn rule sets
- principle
  - 1. High accuracy: when it makes a prediction, it should be correct
  - 2. Reasonable coverage: it needs not make a prediction for each instance, but the more, the better
- Coule be top-down or bottom-up
  - Top-down:
    - \* Start with maximally generally rule
    - \* add literals one by one

- \* gradually maximize accuracy without sacrificing coverage
- Bottom-up:
  - \* Start with maximally specific rule
  - \* remove literals one by one
  - \* gradually maximize coverage without sacrificing accuracy

```
function LearnRuleSet(Target, Attrs, Examples, Threshold):

LearnedRules := ∅

Rule := LearnOneRule(Target, Attrs, Examples)

while performance(Rule,Examples) > Threshold, do

LearnedRules := LearnedRules ∪ {Rule}

Examples := Examples \ {examples classified correctly by Rule}

Rule := LearnOneRule(Target, Attrs, Examples)

sort LearnedRules according to performance

return LearnedRules
```

Figure 2: Algorithm for "General algorithm for rule learning"

```
function LearnOneRule(Target, Attrs, Examples):

NewRule := "IF true THEN pos"

NewRuleNeg := Neg

while NewRuleNeg not empty, do

// add a new literal to the rule

Candidates := generate candidate literals

BestLit := argmax<sub>L∈Candidates</sub> performance(Specialise(NewRule,L))

NewRule := Specialise(NewRule, BestLit)

NewRuleNeg := {x∈Neg | x covered by NewRule}

return NewRule

function Specialise(Rule, Lit):

let Rule = "IF conditions THEN pos"

return "IF conditions and Lit THEN pos"
```

Figure 3: Algorithm for "General algorithm for learning one rule"

- Top-down: start with an empty rule
- Heuristics for rule learners
  - High accuracy (most important), it is not robust to noise

- reasonably high coverage
- if-then-else rules vs. decision lists
  - if-then-else rules
    - \* if year is a multiple of 400 then leap
    - \* else if year is a multiple of 100 then not leap
    - \* else if year is multiple of 4 then leap
    - \* else not leap
  - decision lists
    - \* if year is a multiple of 400 then leap
    - \* if year is multiple of 4 but not of 100 then leap
  - if-then-else rule is more interpretable
  - decision list is more compact
  - unordered rules vs. ordered rules <- Question: do not understand!!!
- example-driven top-down rule induction
  - works like regular top-down approach, except:
    - \* pick a not-yet-covered example
    - \* consider as hypothesis space, all the rules that cover this example
    - \* search within this hypothesis spaces (much smaller)
  - **pros:** more efficient
  - cons: less robust to noise
- other examples: RIPPER, Weka (software)

#### 3.4 Association rules

Table 1: Differences with Classification and association rules

| Classification rules                        | Association rules                           |
|---------------------------------------------|---------------------------------------------|
| One target class                            | Any combinatino of items can be the target  |
| Good rules have near 100% accuracy ("con-   | Rules need not have near 100% confidence    |
| fidence" here)                              | to be interesting                           |
| Find a minimal set of rules (just enough to | Find a maximal set of rules (all rules that |
| classify)                                   | hold)                                       |

#### • Overview

- Similar to classification rules, but for descriptive learning instead of predicitve learning
- is to look for the patterns in data

- classification rules are a small subset of association rules?
- General format: if  $a_1, a_2, ..., a_n$  then  $a_{n+1}, a_{n+2}, ..., a_{n+m}$
- Rule "If <this> then <that>" is charaterized by
  - Support: % of all clients that buy <this>
  - Confidence: % of buyers of <this> that also buy <that>
- Running a classification rule learner clearly will not work well for association rule, since classification rule is only a small subset of association rule
  - Solution: APRIORI algorithm

# 4 Lecture 4: Instance-based learning, Clustering

## 4.1 Instance-based learning

Basic key idea: just store all training examples

- When seeing a new instance:
  - Find the most similar cases in the database
  - make a prediction based on those instance
- Architypical method: k-nearest-neighbors (k-NN)
  - use most frequent class/ mean target among the **k** nearest neighbors as your prediction
  - k is chosen by the user (hyperparameter)
- Similarity
  - how close to others, often Euclidean distance for numerical inputs
- Voronoi diagrams
  - indicate area where prediction is influenced by same set of examples
  - for 1-NN: cell borders are right in the middle between any two data points
  - This is called a Voronoi diagram kNN
- Decision surface
  - Decision surface separate regions with different predictions
- Voronoi diagram for k > 1
  - To construct diagram for k-NN with k > 1
    - \* Start from diagram for k-1
    - \* for each cell:
      - · temporarily forget about k-1 nearest neighbors
      - · split cell according to k'th nearest neighbors
    - \* Merge adjacent cells with same k nearest neighbors
- pros vs. cons
  - pros
    - \* "Learning" is very fast just storing the data
    - \* all detials of the data are kept
  - cons

- \* can be slow at prediction time
- \* difficulties in high-dimensional spaces
- \* relies on having a good similarity measure (Euclidean distance numerical)
- \* not robust to noise
- for k-NN, large K -> more robust to overfitting? but it is more robust to noise
- difficulties with high-dimensional space curse of dimensionality data are distribtued very sparsely in high-D
- Improvement: Different scales
  - When dimensions have very different scales, Euclidean distance may not work well
    - st Solution: normalization normalize all dimensions to comparable scale
    - \* Give irrelevant dimensions a smalelr weight in the Euclidean distance, so they have less influence
    - \* using a closed formula:  $w_i = 1 \frac{1}{n} \sum_{k=1}^{c} \sum_{j=1}^{n_k} |\bar{x}_{ki} x_{kji}|$
    - \* with c=# clusters,  $n_k=\#$  elements in cluster k,  $x_{ki}=$  mean  $x_i$  in cluster k,  $x_{kji}=x_i$  for jth element in cluster k
- Improvenment: distance-werights k-NN
  - Why 3-NN, but why not 4-NN
    - \* Solution: no cut-off at k, but have weights gradually decrease with distance
    - \* careful: influence must decrease fast with distance, otherwise faraway cases will dominate the voting (otherwise noise)
- Improvement: locally weighted regression
  - for better fitting
    - \* Solution: fit a simple local model
    - \* a linear regression can be okay
- Prototypes
  - A prototype is a representattive for a group of instances
  - can be an average for elements in a cluster
  - note: need to define similarity between instance & prototype
- Efficient prediction
  - Solution: indexing the data helps

- Lazy learners vs. eager learners
  - k-NN is called lazy learner
    - \* do not build a model during training, merely store data
    - \* start doing the hard work when asked a question
  - eager learners
    - \* generalize before knowing the question
    - \* try to build a global model that will owrk under all circumstances
  - lazy learners can use simpler local models sometime very accurate
    - \* compare: locally weighted linear regression (k-NN) vs. global linear regression
    - \* compare: learn one rule that covers the query instance vs. learn a global rule set

## 4.2 Clustering

- Overview
  - Find structure/pattern in the data, in the form of groups of instances that are highly similar to each other
  - It is unsupervised machine learning (no labeled samples)
- Find groups (clusters) of instances so that
  - instances in the same group are similar
  - instances in the difference group are different
- Definition of clustering
  - flat clustering
    - \* returns a partition of the data
  - hierarchical clustering
    - \* returns a hierarchy of clusters
- Other definition of clustering
  - extensional clustering
    - \* clusters are defined without any description language
  - conceptual clustering
    - \* clusters are defiend using a conceptual description language
- FLat, extensional clustering

Input: dataset D ⊂ X, number of clusters k
Output: partition of D into k clusters
Algorithm:
Choose k random seeds (points in X)
Repeat until no changes:
Assign each instance to the cluster of its closest seed
Redefine seeds as cluster means
Return the k clusters

Figure 4: Algorithm for "Algorithm for flat, extensional clustering: K-means"

- task: given a set of unlabeled data, find groups of highly similar instances
- some constraints may additionally be given
- procedure: reassign points, recompute seeds, reassign points ..., when no points are re-assigned to another cluster, stop.
- Hierarchical, extensional clustering
  - top-down ("divisive") methods
    - \* start with 1 cluster (whole data set)
    - \* divide it into subsets
    - \* subdivide subsets further
  - bottom-up ("agglomerative") methods
    - \* start with singleton clusters
    - \* join closest clusters together
    - \* repeat until 1 cluster

#### • Bottom-up methods

- How does it generalize to distance between clusters? based on examples
  - \* Single linkage: distance between clusters = distance between each closest point in their cluster
  - \* Complete linkage: distance between clusters = distance between each furthest poin in their clusters
  - \* Average linkage: distance between clusters = distance between average of clusters

## • Conceptual clustering

 Cluster + find a conceptual description of each cluster (in some given description language L)

- Clearly, the clusters are not defined using distance alone! Context is improtant!
- Examples: Cobweb
  - Predictability: given cluster, how well can you predict attribute values
  - Predictiveness: given attribute values, how well can you predict cluster
  - Cobweb is to maximize a combination of both
- Decision tree learning, viewed as clustering
  - A decision tree defines a conceptual, hierarchical clustering of the data
    - \* each node = subset of the data
    - \* conceptual description of these data = conjunction of test outcomes from root to node
- Clustering trees
  - for regression (original), heuristic minimize average variance of Y within subsets
    - \*  $Var(S) = \sum_{(x,y) \in S} \frac{(y-\bar{y})^2}{|S|-1|}$
    - \* with  $\bar{y} = \sum_{(x,y) \in S} \frac{y}{|S|}$
  - for clustering (unsupervised clustering tree), given some distance metric d that indicates dissimilarity, we can minimize the average variance of X wihtin subsets
    - \*  $Var(S) = \sum_{x \in S} \frac{d(x,\bar{x})^2}{|S|-1}$
    - \* with  $\bar{x} = \sum_{x \in S} \frac{x}{|S|}$
- Predictive clustering
  - overview: it looks like from value -> cluster and from cluster -> value
  - Predictive clustering builds a model consisting of
    - \* a set of clusters
    - \* a function c assigning instances to clusters
    - \* a function p assigning a target value to the instance, given the cluster
  - the overall predictive function is then f(x) = p(c(x), x)
  - the accuracy of f will depend on that of c and p.
    - \* an accurate c requires good predictiveness (from value to cluster)
    - \* an accurate p requires good Predictability (from cluster to value)



Figure 5: Algorithm for "Scheme of Predictive Cluster"

- Similarity measures
  - Similarity is often represented using a distance metric
    - \* small distance = high similarity, e.g., euclidean distance, manhattan distance, hamming distance, ...
    - \*  $d_{Eucl}(x,x') = \sqrt{\sum_i (x_i x_i')^2}$
    - \*  $d_{Manh}(x, x') = \sum_i |x_i x'_i|$
  - Not all similarity measures can be expressed in that way!
    - \* Distance metric fulfills symmetry and triangle inequality
    - \* Some similarity measures cannot be mapped to such a distance measures
- Learning the similarity measure
  - Clustering relies strongly on defining an appropriate similarity measure
  - However, this may be very difficult sometime
    - \* Solution: semi-supervised clustering
    - \* Computer learns the similarity from examples of pairs of instances that should be in the same/ in different clusters, "must-link" and "cannot-link" constraints
    - \* then start the unlabeled data, (semi-supervised clustering: a few labeled data, many unlabeled data)
- Learning preferred clusterings
  - Different clustering algorithms have different biases
    - \* k-means: spherical clusters
    - \* density-based: can return concave clusters
    - \* some methods can even return disconnected cluster
- example of interactive clustering: the COBRAS method

- $-\,$  using an intermediate level of super-instances
  - \* clustering = set of clusters
  - \* cluster = set of super-instances
  - \* super-instance = set of clusters
- Evaluating clusterings
  - How can we assess whether a clustering is good or bad?
  - explicit objective: minimize intra-cluster variance
  - internal criteria: inherent to the clustering
  - external criteria: compare to a reference clustering
    - \* rand (random) index
    - \* adjusted rand (random) index (ARI)

# 5 Lecture 5: Evaluating hypotheses

## 5.1 Models and learning algorithms

- Different levels of evaluation
  - evaluation of learned models
    - \* given the model, how well can we expect it to perform
  - evaluation of learning algorithm
    - $\ast$  given an algorithm, how well can we expect the models it learns to perform
- Evaluation of classifiers
  - probability of making a correct prediction: accuracy
  - time needed to make the prediction
  - cost incurred by wrong predictions

#### 5.2 Statistics

- accuracy
  - accuracy = probability of correct prediction on a randomly drawn instances
  - error = 1- accuracy
  - estimating accuracy = estimating a probability over a population
  - estimating probability from sample proportion: well-studied problem in inferential Statistics
  - for probability  $\pi$ , sample proportion p has  $\mathbb{E}(p)=\pi$  and  $Var(p)=\frac{\pi(1-\pi)}{n}$
  - Hence:
    - \* point estimate:  $\hat{\pi} = p$
    - \* 1- $\alpha$  confidence interval:  $[p-z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}},p+z_{\alpha/2}\sqrt{\frac{p(1-p)}{n}}]$  with  $z_{\alpha/2}$  such that  $P(Z>z_{\alpha/2})=\alpha/2$  if  $Z\sim N(0,1)$

Table 2: Alpha for Confidence interval

| α              | 0.1  | 0.05 | 0.01 |
|----------------|------|------|------|
| $z_{\alpha/2}$ | 1.64 | 1.96 | 2.56 |

- train set and cross-validation
- option 1: train/test split

- -use 2/3 of available data for training set T, set aside 1/3 for test set S
- while if T is smaller -> less accurate f, smaller S -> less accurate estimate of accuracy of f

#### • option 2: cross-validation

- learn f from the full data set S
- however to get an estimate of acc(f), we parition the set into n subsets  $S_i$
- learn  $f_i$ , i=1...n from  $\frac{S}{S_i}$ , compute  $ACC(f, S_i)$
- estiamte acc(f) as average of all  $acc(f, S_i)$
- name
  - \* for a specific n, this is called n-fold cross-validation
  - \* when n = |S|, this is called leave-one-out cross-validation
- Is cross-validation entirely unbiased No
- More option: nested/internal cross-validation

## • comparing two models

- given two models, which one has higher accuracy
- two cases
  - \* compare 2 models on different test sets
  - \* compare 2 models on same test sets
- different sets
  - \* Checked by confidence interval:  $(a_1-a_2)\pm z_{\alpha/2}\sqrt{\frac{a_1(1-a_1)}{n_1}+\frac{a_2(1-a_2)}{n_2}}$
  - \* if CI for  $a_1-a_2$  is entirely to the right of 0, meaning that  $a_1-a_2 \ge 0$ , meaning that  $acc(f_1) \ge acc(f_2)$
  - \* if CI for  $a_1-a_2$  is entirely to the left of 0, meaning that  $a_1-a_2 \le 0$ , meaning that  $acc(f_1) \le acc(f_2)$
  - \* if CI contains 0, it means that there is no difference between  $f_1$  and  $f_2$

#### - same sets

- \* Compare models on the same data set is more informative
- \* uses more detailed information from test
- \* use McNemarś test in this case
- \* key idea: how often was  $f_1$  right and  $f_2$  wrong on the same example vs. how often was  $f_1$  wrong and  $f_2$  right on the same example
  - · if  $B \approx C \approx (B + C)/2$ , then accept  $acc(f_1) = acc(f_2)$

- · otherwises, if B deviates too much from (B+C)/2, then reject  $acc(f_1) = acc(f_2)$
- \* McNemarś test is more informative but can only use it when individual predictions of both models on the same test set are available

Table 3: Table for McNemarś test

|             | $f_1$ right | $  f_1 $ wrong |
|-------------|-------------|----------------|
| $f_2$ right | A           | В              |
| $f_2$ wrong | С           | D              |

- Evaluation based on accuracy is not always appropriate
- cons
  - no obvious reference point
    - \* sample imbalance
  - unstable when class distribution may change
  - assumes symmetric misclassification costs
- alternatives
  - correlation
  - ROC analysis
- correlation
  - correlation tends to be more informative for unbalanced classifiers
  - $-\phi = \frac{AD-BD}{\sqrt{T_+ \cdot T_{T_- \cdot T_{pos} \cdot T_{neg}}}}$  with 1: perfect prediction, 0: no correlation (totally random), -1: predicting the exact opposite (1 and -1 both indicate strong relation, more focus on absolute number)

Table 4: Real class vs. predicted class

|       | +              | -  | Total     |
|-------|----------------|----|-----------|
| pos   | A              | В  | $T_{pos}$ |
| neg   | C              | D  | $T_{neg}$ |
| Total | T <sub>+</sub> | T_ | T         |

- ullet expected misclassification cost
  - sometimes one type of mistake is worse than the other, accuracy ignores this (assumes all errors are euqally bad -> which are not correct usually)

#### - Solution

- \* accuracy: probability that some instance is classified correctly
- \* TP: "true positive rate": probability of a positive to be classified correctly
- \* TN: "true negative rate": probability of a negative to be classified correctly
- \* FP: "false positive rate": FP = 1 TN.
- \* FN: "false negative rate": FN = 1 TP.
- consider "misclassification costs"
  - \*  $C_{FP}$ : cost of a false positive (cost of classifying a as pos)
  - \*  $C_{FN}$ : cost of a false negative (cost of classifying a + as neg)
- 6 Lecture 6: Numerical approaches (ANN, SVM), Computational learning theory
- 7 Lecture 7: Probabilistic approaches, Ensembles
- 8 Lecture 8: Reinforcement learning
- 9 Lecture 9-10: Inductive logic programming