

이론, 실습, 시뮬레이션 디지털논리회로

Chapter 13. 논리회로 실험

학습목표 및 목차

- 논리회로를 구성하고 측정할 수 있다.
- 기본 논리게이트, 조합논리회로, 순서논리회로의 동작 특성을 실험을 통해 이해할 수 있다.
- 다양한 논리회로의 동작 특성을 시뮬레이션을 통해 이해할 수 있다.
- 응용 논리회로를 설계할 수 있다.

01. 실험 개요

02. 기본 논리게이트

03. 불 대수와 드모르간의 정리

04. XOR 게이트

05. 가산기와 감산기

06. 디코더와 인코더

07. 멀티플렉서와 디멀티플렉서

08. 코드 변환기

09. 플립플롭

10. 비동기식 카운터

11. 동기식 카운터

12. 레지스터

13. 멀티바이브레이터

1. TTL/CMOS IC의 핀 번호

■ TTL/CMOS IC 명명법

2. 저항값 읽는 법

■ 저항의 단위: Ω(음, Ohm)

$$1,000\Omega = 10^3 = 1K\Omega$$
 $1,000,000\Omega = 10^6 = 1M\Omega$

• 네 번째 띠는 오차범위를 나타낸다. 네 번째 띠의 색이 금색이면 $\pm 5\%(J)$, 은색이면, $\pm 10\%(K)$ 이며, 색이 없으면 $\pm 20\%(M)$ 를 나타낸다.

검정	갈색	빨강	주황	노랑	녹색	청색	보라	회색	흰색
0	1	2	3	4	5	6	7	8	9

(갈색, 검정, 빨강) \rightarrow 102: $10×10^2 = 1000Ω = 1kΩ$

• 저항값이 $1K\Omega$ 이고 오차가 5%라는 의미는 $\pm 1000 \times 0.05 = \pm 50$ 이므로 실제 이 저항을 멀티메타로 측정하면 $950 \sim 1050\Omega$ 사이의 값이 측정된다.

- 저항값 계산 예
 - (예 1) 녹색, 청색, 검정, 금색: $56 \times 10^{0} = 56 \Omega$ (오차 $\pm 5\%$)
 - (예 2) 주황, 주황, 갈색, 금색: $33 \times 10^1 = 330 \Omega$ (오차 $\pm 5\%$)
 - (예 3) 빨강, 보라, 주황, 금색: $27 \times 10^3 = 27 \text{K}\Omega$ (오차 $\pm 5\%$)
 - (예 4) 노랑, 보라, 노랑, 금색: $47 \times 10^4 = 470 \text{K}\Omega$ (오차 $\pm 5\%$)
 - (예 5) 갈색, 검정, 녹색, 은색: $10\times10^5 = 1M\Omega$ (오차 $\pm 10\%$)
- 허용 오차 ± 1 %의 고정밀도 저항은 유효숫자가 3 자리수로 되며 이것을 컬러 코드로 표현하기 위해 5개의 색띠를 사용하고 있다.

(빨강, 주황, 보라, 검정) → 2370: 237×10⁰ = 237Ω

■ 칩 저항, 반고정 저항, 가변저항의 경우에는 저항에 바로 숫자를 표기하며, 저항값 계산은 색 띠로 표시한 경우와 동일하다.

3. 커패시터 용량 읽는 법

- 커패시터의 기능
 - 전기를 저장하거나 방출하는 축전지로서의 기능
 - 직류를 통과하지 않는 성질을 이용하는 기능
- 커패시터의 단위 : [F]
 - [pF] = 10^{-12} , [μ F] = 10^{-6}
- 커패시터의 용량
 - 전해 커패시터, 탄탈 커패시터 : 외부에 표기되어 있음

• 세라믹 커패시터, 마일러 커패시터

20: 20 pF

103: $10 \times 10^3 \text{ pF} = 0.01 \times 10^{-6} \text{ F} = 0.01 \mu \text{ F}$

482: $48 \times 10^{2} \text{ pF} = 0.0048 \times 10^{-6} \text{ F} = 0.0048 \mu \text{ F}$

- 오차의 표시는 J는 5% 이내, K는 10%이내, M은 20%이내이다.
- 예
 - (예 1) $0.24 \rightarrow 0.24 \mu F$
 - (예 2) 33 → 33pF

 - (예 4) $474 \rightarrow 0.47 \mu F$

4. 논리실험 장치

- 논리실험장치(logic lab unit)는 각종 디지털 IC를 사용한 회로의 설계 및 실험을 위하 여 제작된 장비
- 디지털 회로 및 아날로그 회로의 설계와 실험에도 사용 가능
- 디지털 회로의 실험에 필요한 각종 주변장치를 자체에 갖추고 있으며 모든 장치들의 부 착 위치는 능률적인 실험을 할 수 있도록 고안되어 있다.

■ 논리실험장치 패널의 기능 설명

전압계

내부저항 $100 \mathrm{K}\Omega$ 으로 DC $0\sim15 \mathrm{V}$ 범위를 지시한다.

주파수 출력 단자

디지털 회로에 필요한 연속 클록을 제공할 수 있다. 이는 1Hz, 10Hz 구형파가 동시에 출력된다. 가변 주파수 출력은 토글(toggle) 스위치의 위치에 따라 1Hz~999Hz와 1KHz~999KHz의 구형파가 출력된다.

푸쉬 버튼 Logic 스위치

이 스위치는 control logic 입력 등을 제공할 수 있다. 이 스위치를 누르면 상승에지(↗)와 하강에지(↘)의 출력을 나타낸다. IC를 동작시키기 위해 클록을 인가하는 경우에 사용한다.

Data 스위치

5~11개의 토글 스위치들은 모두 "0"과 "1"(즉 L과 H)의 논리 레벨을 출력한다. 이들은 디지털 회로의 데이터 입력이나 제어 입력을 임의로 조작하면서 실험할 수 있게 한다. 이들 논리 레벨을 출력하는 모든 스위치는 접점 debounce 회로를 가지고 있다.

■ 브레드보드(Breadboard)

5. 실험 및 회로 구성 시 주의 사항

■ 전원은 +5V와 접지(GND)를 먼저 연결한다. 그러나 전원 스위치는 off시켜 둔다.

브레드보드에 +5V와 GND를 연결한 상태

- 데이터 스위치 및 LED 표시장치 등의 연결과 조작이 편리하도록 브레드보드에 IC 및 기타 부품을 배치한다.
- IC 및 부품의 배치가 완료되면 점퍼선(jumper wire)을 사용하여 결선하는데, 배선 길이를 가능한 짧게 한다.
- 배선의 색을 효과적으로 사용한다. 예를 들어, (+) 전원은 빨간색, (-) 전원은 청색, 접지(ground)는 검은색 선을 사용한다.
- 회로 결선이 완료되면 전원 스위치를 on한다. 이 때 회로 결선에 문제가 있으면 버저가 울리거나 전류계의 부하전류 지시가 과부하를 지시하므로 전원 스위치를 off하고 다시 점검한다.
- 모든 점검이 완료되었으면 데이터 스위치 및 기타 장치들을 적절히 사용하여 실험을 진 행한다.
- 전원이 연결된 상태에서는 IC나 부품을 브레드보드에 삽입하거나 꺼내지 말아야 한다.

입력 A의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

 A
 F

 0
 1

7404 : GND(7번), +5V(14번)

■ 실험용 보드 배선도

 $m{2}$ 1번 핀에는 입력전압 V_i 를 표와 같이 입력하고 2번 핀에서는 출력전압 V_o 를 멀티메타로 관찰하여 기록하여라.

$V_i[V]$	0	0.6	0.8	1	1.2	1.4	1.6	2	3	5
$V_o[V]$										

【검토1】 실험 결과를 이용하여 논리레벨 Low와 High의 전압범위를 결정하여라.

【검토2】 데이터 시트를 참조하여 실험 결과를 비교 검토하여라.

■ 실험용 보드 배선도

 $oxed{3}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

7408 : GND(7번), +5V(14번)

A	В	F
0	0	
0	1	
1	0	
1	1	

【검토】 2입력 AND 게이트인 7408 IC를 사용하여 3입력 AND 게이트를 구성하여라.

■ 실험용 보드 배선도

lacksquare 입력 $A,\,B$ 의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

7432 : GND(7번), +5V(14번)

A	В	F
0	0	
0	1	
1	0	
1	1	

【검토 ■ 2입력 OR 게이트인 7432 IC를 사용하여 3입력 OR 게이트를 구성하여라.

 $lue{5}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

7400 : GND(7번), +5V(14번)

\boldsymbol{A}	В	F
0	0	
0	1	
1	0	
1	1	

| 검토 | 3입력 NAND 게이트인 7410 IC를 사용하여 2입력 NAND 게이트를 구성하여라.

 $oxedsymbol{6}$ 입력 $A,\ B$ 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

7402 : GND(7번), +5V(14번)

A	В	F
0	0	
0	1	
1	0	
1	1	

【검토】 3입력 NOR 게이트인 7427 IC를 사용하여 2입력 NOR 게이트를 구성하여라.

 $oldsymbol{7}$ 입력 A와 제어단자 \overline{E} 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

74125 : GND(7번), +5V(14번)

$\overline{\overline{E}}$	A	F
0	0	
0	1	
1	0	
1	1	

【검토 3상태 버퍼 IC인 74126의 동작원리를 설명하고 74125와 비교하여라.

입력 A, B, C 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

7400 : GND(7번), +5V(14번)

	-		
\boldsymbol{A}	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

【검토】 2입력 NAND 게이트인 7400 IC를 사용하여 4입력 NAND 게이트를 구성하여라.

■ 실험용 보드 배선도

 $oxed{9}$ 입력 $A,\,B,\,C$ 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

7402 : GND(7번), +5V(14번)

A	В	C	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

【검토】 2입력 NOR 게이트인 7402 IC를 사용하여 4입력 NOR 게이트를 구성하여라.

입력 A, B의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

7400: GND(7번), +5V(14번)

A	В	F	G
0	0		
0	1		
1	0		
1	1		

【검토 】 실험 결과 입력이 A와 B, 출력이 G라면 이 회로는 어떤 게이트처럼 동작하는지
논리식으로 검토하여라.

 $oxed{2}$ 입력 $A,\ B$ 의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

7400: GND(7번), +5V(14번)

\boldsymbol{A}	B	F	G
0	0		
0	1		
1	0		
1	1		-

【검토】 실험 결과 입력이 A와 B, 출력이 G라면 이 회로는 어떤 게이트처럼 동작하는지
논리식으로 검토하여라.

 $oxed{3}$ 입력 A의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

7404: GND(7번), +5V(14번)

A	F	G
0		
1		
0		
1		

- 4
- 입력 A의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.
- 입력 A에 1KHz, 5V인 구형파를 인가하였을 때 F에서의 출력파형을 오실로스코프로 관찰하여 그려 보아라. 1KHz, 5V 구형파는 논리실험장치에 있는 것을 사용할 수도 있다.

【검토 】 7404에서의 전파지연시간을 고려한 경우와 이 시간을 무시한 경우, 출력 파형을 비교하여라.

■ 실험용 보드 배선도

■ 실험용 보드 배선도

1KHz, 5V 구형파를 논리실험장치에 있는 것을 사용한 경우

- 5
- 입력 A의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.
- 입력 A에 1KHz, 5V인 구형파를 인가하였을 때 F에서의 출력파형을 오실로스코프로 관찰하여 그려 보아라. 1KHz, 5V 구형파는 논리실험장치에 있는 것을 사용할 수도 있다.

【검토 】 7404에서의 전파지연시간을 고려한 경우와 이 시간을 무시한 경우, 출력 파형을 비교하여라.

 $oldsymbol{6}$ 입력 A, B의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

A	В	F
0	0	
0	1	
1	0	
1	1	

7404 : GND(7번), +5V(14번) 7408 : GND(7번), +5V(14번)

【검토】 실험 결과 이 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

 $oldsymbol{7}$ 입력 $A,\ B$ 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

A	В	F
0	0	
0	1	
1	0	
1	1	

7404 : GND(7번), +5V(14번) 7432 : GND(7번), +5V(14번)

【검토 ■ 실험 결과 이 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

 $oxed{8}$ 입력 A, B의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

7400 : GND(7번), +5V(14번)

A	В	F	G
0	0		
0	1		
1	0		
1	1		

검토실험 결과를 토대로 입력이 A, B이고 출력이 F인 경우와 출력이 G인 경우 이 회로는 각각어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

■ 실험용 보드 배선도

 $oxed{9}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력F와G의 상태를 기록하여라.

7432 : GND(7번), +5V(14번)

A	В	F	G
0	0		
0	1		
1	0		
1	1		

김토실험 결과를 토대로 입력이 A, B이고 출력이 F인 경우와 출력이 G인 경우 이 회로는 각각어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

 $oxed{10}$ 입력 $A,\ B$ 의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

A	В	F	G
0	0		
0	1		
1	0		
1	1		

7400 : GND(7번), +5V(14번) 7402 : GND(7번), +5V(14번) 7404 : GND(7번), +5V(14번)

검토 실험 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

■ 실험용 보드 배선도

입력 A, B의 상태를 표와 같이 변화시키면서 출력 F와 G의 상태를 기록하여라.

A	В	F	G
0	0		
0	1		
1	0		
1	1		

7400 : GND(7번), +5V(14번) 7402 : GND(7번), +5V(14번) 7404 : GND(7번), +5V(14번)

【검토 ■ 실험 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

 $oxed{1}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

A	В	F
0	0	
0	1	
1	0	
1	1	

7404 : GND(7번), +5V(14번) 7408 : GND(7번), +5V(14번) 7432 : GND(7번), +5V(14번)

【검토 ■ 실험 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

 $oxed{2}$ 입력 A,B의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

71	D	1
0	0	
0	1	
1	0	
1	1	

 \boldsymbol{R}

 \boldsymbol{F}

7400 : GND(7번), +5V(14번)

【검토1 ■ 실험 회로가 어떤 게이트처럼 동작하는지 논리식으로 검토하여라.

검토2실험 회로에서 NAND 게이트를 모두 NOR 게이트로 변경하면 어떤 게이트처럼동작하는지 검토하여라.

 $oxed{3}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

7486 : GND(7번), +5V(14번)

A	В	F
0	0	
0	1	
1	0	
1	1	

건도2 강의실의 전등을 켜기 위한 스위치가 앞문과 뒷문에 각각 한 개씩 있다. 전등을 켜기 위해서는 한 개의 스위치만 on되어야 하고, 두 개의 스위치가 모두 on 또는 off 되었을 경우에는 개져야 한다. 전등이 on되었을 때의 출력을 High, off되었을 때 출력을 Low라고 할 때, 이 조건을 만족시키는 논리회로를 설계하여라.

 $oldsymbol{4}$ 입력A,B,C의 상태를 표와 같이 변화시키면서 출력F의 상태를 기록하여라.

7486: GND(7번), +5V(14번)

A	В	С	F
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

[5] 입력 A, B의 상태를 표와 같이 변화시키면서 출력 F_1, F_2, F_3 의 상태를 기록하여라.

A	В	F_1	F_2	F_3
0	0			
0	1			
1	0			
1	1			

7404 : GND(7번), +5V(14번) 7408 : GND(7번), +5V(14번) 7486 : GND(7번), +5V(14번)

【검토 ■ 실험 결과를 토대로 이 회로의 동작을 설명하여라.

입력 데이터 $A(A_3 \sim A_0)$ 와 $B(B_3 \sim B_0)$ 를 표와 같이 변화시키면서 출력 A>B, A=B, A<B의 상태를 기록하여라.

$A_3 A_2 A_1 A_0$	B_3 B_2 B_1 B_0	A>B $A=B$ A
0 1 1 0	1 0 0 0	
1 0 1 0	1 0 0 1	
0 0 1 1	0 1 0 0	
0 1 0 1	0 1 0 1	
0 1 1 1	1 1 0 0	

■ 실험용 보드 배선도

입력 A, B, C, D, E의 상태를 표와 같이 변화시키면서 출력 P의 상태를 기록하여라.

- 【검토1 실험 결과를 토대로 회로의 동작을 설명하여라.
- 【검토2】 실험 회로는 짝수 패리티 발생기이다. 홀수 패리티 발생기가 되도록 회로를 수정하여라.

입력 A, B의 상태를 표와 같이 변화시키면서 출력 S, C의 상태를 기록하여라.

A	В	S	C
0	0		
0	1		
1	0		
1	1		

7408 : GND(7번), +5V(14번) 7486 : GND(7번), +5V(14번)

【검토】실험 결과를 토대로 이 회로가 반가산기로 동작함을 논리식으로 검토하여라.

 $oxed{2}$ 입력A,B의 상태를 표와 같이 변화시키면서 출력D,K의 상태를 기록하여라.

A	В	D	K
0	0		
0	1		
1	0		
1	1		

7404 : GND(7번), +5V(14번) 7408 : GND(7번), +5V(14번) 7486 : GND(7번), +5V(14번)

【검토】실험 결과를 토대로 이 회로가 반감산기로 동작함을 논리식으로 검토하여라.

입력 A_n, B_n, C_{n-1} 의 상태를 표와 같이 변화시키면서 출력 S_n, C_n 의 상태를 기록하여라.

A_n	B_n	C_{n-1}	S_n	C_n
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

7408 : GND(7번), +5V(14번) 7432 : GND(7번), +5V(14번) 7486 : GND(7번), +5V(14번)

【검토 ■ 실험 결과를 토대로 이 회로가 전가산기로 동작함을 논리식으로 검토하여라.

입력 A_n, B_n, K_{n-1} 의 상태를 표와 같이 변화시키면서 출력 D_n, K_n 의 상태를 기록하여라.

A_n	B_n	K_{n-1}	D_n	K_n
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

7404: GND(7번), +5V(14번) 7408: GND(7번), +5V(14번) 7432: GND(7번), +5V(14번) 7486: GND(7번), +5V(14번)

검토 ■ 실험 결과를 토대로 이 회로가 전감산기로 동작함을 논리식으로 검토하여라.

5

입력 $C_0, A_4 \sim A_1, B_4 \sim B_1$ 의 상태를 표와 같이 변화시키면서 출력 상태를 기록하여라.

C_0	$A_4 A_3 A_2 A_1$	$B_4B_3B_2B_1$	C_4	$\sum_4 \sum_3 \sum_2 \sum_1$
0	0 0 0 0	0 0 1 1		
0	0 0 1 1	1 0 0 0		
0	1 0 0 0	1 0 1 0		
0	1 0 1 0	1 1 1 1		
0	1 1 1 1	0 0 0 1		
1	0 0 0 1	0 1 0 1		
1	0 1 0 1	0 1 1 1		
1	0 1 1 1	1 0 1 1		
1	1 0 1 1	1 1 1 0		
1	1 1 1 0	0 0 0 1		

검토 □ 실험 결과가 올바른지 검토하여라.

 $oldsymbol{6}$ 두 입력 데이터 $A_4 \sim A_1, B_4 \sim B_1$ 를 표와 같이 변화시키면서 출력 상태를 기록하여라.

SUB	$A_4A_3A_2A_1$	$B_4B_3B_2B_1$	C_4	Σ_4 Σ_3 Σ_2 Σ_1
0	1 1 1 1	0 0 0 1		
0	1 1 1 0	0 0 1 0		
0	1 1 0 1	0 1 0 1		
0	1 0 1 1	0 1 1 0		
0	1 0 1 0	0 1 1 1		
1	1 0 1 0	0 1 0 1		
1	1 0 1 1	0 1 1 0		
1	1 1 0 0	0 1 1 1		
1	1 1 1 0	0 1 1 0		
1	1 1 1 1	1 1 1 1		

【검토】 실험 결과를 토대로 SUB=0일 때와 SUB=1일 때, 회로는 어떻게 동작하는지 검토하여라.

입력 B, A의 상태를 표와 같이 변화시키면서 출력 $Y_3 \sim Y_0$ 의 상태를 기록하여라.

7404 : GND(7번), +5V(14번) 7408 : GND(7번), +5V(14번)

В	\boldsymbol{A}	Y_3	Y_2	Y_1	Y_0
0	0				
0	1				
1	0				
1	1				

- 실험 회로에서 active-high로 동작하는 인에이블(enable) 단자를 추가하려는 경우 변경된 회로를 설계하여라.
- □ 걸 토 2 실제로 회로 구성에 사용되는 디코더는 active-low에서 동작하는 형태가 많다. 그 이유는 무엇인가?

 $oxed{2}$ 입력 $D_3 \sim D_0$ 의 상태를 표와 같이 변화시키면서 출력 B,A의 상태를 기록하여라.

7432 : GND(7번), +5V(14번)

D_3	D_2	D_1	D_0	В	A
0	0	0	1		
0	0	1	0		
0	1	0	0		
1	0	0	0		

실험 결과를 보면 어느 한 순간에 입력 중 오직 한 입력만이 1이어야 정상적으로 동작할 수 있다는 제약이 있다. 예를 들어, 입력 D_1 과 D_2 가 동시에 1이 되면 출력은 BA=11이 되어 마치 입력 $D_3=1$ 인 것처럼 동작한다. 또 다른 문제점은 모든 입력이 0인 경우와 $D_0=1$ 인 경우 모두 출력 BA=00이 되어 서로 구별이 안 된다는 점이다. 이와 같은 문제점을 해결하기 위한 4×2 인코더를 설계하여라.

입력 $D,\,C,\,B,\,A$ 의 상태를 표와 같이 변화시키면서 출력 상태를 기록하여라.

【검토 】 데이터 시트를 참조하여 BCD 코드가 아닌 데이터가 입력되는 경우 출력은 어떻게 되는지 검토하여라.

- 4
- 디코더/드라이버인 7447 IC와 7-세그먼트를 이용하여 임의의 10진수를 표시하는 회로
- 7-세그먼트는 공통 에노드형인 FND 507을 사용하고, COM 단자에 연결한 330Ω 저항은 보호용이다.
- 회로를 구성하고 입력 D, C, B, A의 상태를 표와 같이 변화시키면서 출력 상태를 기록하여라.

10진수	D	C	В	A	\overline{a}	\bar{b}	\overline{c}	\overline{d}	\overline{e}	\overline{f}	$\frac{-}{g}$	표시
0	0	0	0	0								
1	0	0	0	1								
2	0	0	1	0								
3	0	0	1	1								
4	0	1	0	0								
5	0	1	0	1								
6	0	1	1	0								
7	0	1	1	1								
8	1	0	0	0								
9	1	0	0	1								
10	1	0	1	0								
11	1	0	1	1								
12	1	1	0	0								
13	1	1	0	1								
14	1	1	1	0								
15	1	1	1	1								

【검토】 7447 대신에 7448 IC를 사용한다면 회로를 어떻게 수정해야 하는지 설명하여라.

 $oxed{5}$ 입력 C,B,A의 상태를 표와 같이 변화시키면서 출력 $Y_7 \sim Y_0$ 의 상태를 기록하여라.

\boldsymbol{C}	В	A	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	0	0								
0	0	1								
0	1	0								
0	1	1								
1	0	0								
1	0	1								
1	1	0								
1	1	1								

입력 $EI, D_7 \sim D_0$ 의 상태를 표와 같이 변화시키면서 출력 상태를 기록하여라.

EI	D_7	D_6	D_5	D_4	D_3	D_2	D_1	D_0	A_2	A_1	A_0	GS	EO
1	×	×	×	×	×	×	×	×					
0	1	1	1	1	1	1	1	1					
0	0	×	×	×	×	×	×	×					
0	1	0	×	×	×	×	×	×					
0	1	1	0	×	×	×	×	×					
0	1	1	1	0	×	×	×	×					
0	1	1	1	1	0	×	×	×					
0	1	1	1	1	1	0	×	×					
0	1	1	1	1	1	1	0	×					
0	1	1	1	1	1	1	1	0					

입력 E, S_1 , S_0 , $I_3 \sim I_0$ 의 상태를 표와 같이 변화시키면서 출력 F의 상태를 기록하여라.

E	S_1	S_0	I_3	I_2	I_1	I_0	F
1	×	×	×	×	×	×	
0	0	0	0	×	×	×	
0	0	0	1	×	×	×	
0	0	1	×	0	×	×	
0	0	1	×	1	×	×	
0	1	0	×	×	0	×	
0	1	0	×	×	1	×	
0	1	1	×	×	×	0	
0	1	1	×	×	×	1	

입력 E, S_1, S_0 의 상태를 표와 같이 변화시키면서 출력 $D_3 \sim D_0$ 의 상태를 기록하여라.

7404 : GND(7번), +5V(14번) 7410 : GND(7번), +5V(14번)

E	S_1	S_0	D_3	D_2	D_1	D_0
1	×	×				
0	0	0				
0	0	1				
0	1	0				
0	1	1				

입력 $\overline{E}, S_1, S_0, D_3 \sim D_0$ 의 상태를 표와 같이 변화시키면서 출력 Y의 상태를 기록하여라.

\overline{E}	S_1	S_0	D_3	D_2	D_1	D_0	Y
1	×	×	×	×	×	×	
0	0	0	×	×	×	0	
0	0	0	×	×	×	1	
0	0	1	×	×	0	×	
0	0	1	×	×	1	×	
0	1	0	×	0	×	×	
0	1	0	×	1	×	×	
0	1	1	0	×	×	×	
0	1	1	1	×	×	×	

입력 C, B, A, I의 상태를 표와 같이 변화시키면서 출력 $Y_7 \sim Y_0$ 의 상태를 기록하여라.

\boldsymbol{C}	В	A	I	Y_7	Y_6	Y_5	Y_4	Y_3	Y_2	Y_1	Y_0
0	0	0	0								
0	0	1	0								
0	1	0	0								
0	1	1	0								
1	0	0	0								
1	0	1	0								
1	1	0	0								
1	1	1	0								

07 실험 6: 멀티플렉서와 디멀티플렉서

 $oxed{5}$ 입력 A,B,C_{in} 의 상태를 표와 같이 변화시키면서 출력 S,C_{out} 의 상태를 기록하여라.

A	В	C_{in}	S	C_{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

검토 74153 IC를 이용하여 XOR 게이트를 구성하여라.

입력 $B_4 \sim B_0$ 의 상태를 표와 같이 변화시키면서 출력 $G_4 \sim G_0$ 의 상태를 기록하여라.

7486 : GND(7번), +5V(14번)

B_4	B_3	B_2	B_1	B_0	G_4	G_3	G_2	G_1	G_0
0	1	0	1	1					
1	0	1	0	1					
1	1	0	1	0					
1	1	1	1	1					

【<mark>검토</mark> 】 실험 결과를 토대로 어떤 회로인지 동작을 설명하여라.

입력 $G_4 \sim G_0$ 의 상태를 표와 같이 G_4 변화시키면서 출력 $B_4 \sim B_0$ 의 상태를 기록하여라.

7486 : GND(7번), +5V(14번)

G_4	G_3	G_2	G_1	G_0	B_4	B_3	B_2	B_1	B_0
0	1	0	1	1					
1	0	1	0	1					
1	1	0	1	0					
1	1	1	1	1					

▋검토▋ 실험 결과를 토대로 어떤 회로인지 동작을 설명하여라.

입력 A, B, C, D의 상태를 표와 같이 변화시키면서 출력 W, X, Y, Z의 상태를 기록하여라.

7400 : GND(7번), +5V(14번) 7404 : GND(7번), +5V(14번)

7410: GND(7번), +5V(14번)

A	В	С	D	W	X	Y	Z
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

【검토 』 실험 결과를 토대로 어떤 회로인지 동작을 설명하여라.

입력 A, B, C, D의 상태를 표와 같이 변화시키면서 출력 W, X, Y, Z의 상태를 기록하여라.

7404 : GND(7번), +5V(14번)

7408 : GND(7번), +5V(14번)

7432 : GND(7번), +5V(14번)

A	В	С	D	W	X	Y	Z
0	0	0	0				
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				

【검토 BCD 코드를 9의 보수로 변환하는 회로를 설계하여라.

입력 S와 R의 상태를 표와 같이 변화시키면서 출력 Q, \overline{Q} 의 상태를 기록하여라.

S	R	Q	\overline{Q}
1	0		
0	0		
0	1		
0	0		
1	1		

7402 : GND(7번), +5V(14번)

 $oldsymbol{2}$ 입력 $ar{S}$ 와 $ar{R}$ 의 상태를 표와 같이 변화시키면서 출력 $Q, ar{Q}$ 의 상태를 기록하여라.

\bar{S}	\overline{R}	Q	\bar{Q}
1	0		
1	1		
0	1		
1	1		
0	0		

7400 : GND(7번), +5V(14번)

입력 E,S,R의 상태를 표와 같이 변화시키면서 출력 Q,\overline{Q} 의 상태를 기록하여라.

7402 :	GND(7번),	+5V(14번)
7408:	GND(7번),	+5V(14번)

Е	S	R	Q	$\overline{\mathcal{Q}}$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

 $oldsymbol{4}$ 입력 $E,\,S,\,R$ 의 상태를 표와 같이 변화시키면서 출력 $Q,\,\overline{Q}$ 의 상태를 기록하여라.

E	S	R	Q	$\overline{\mathcal{Q}}$
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

7400 : GND(7번), +5V(14번)

 $oldsymbol{5}$ 입력 E,D의 상태를 표와 같이 변화시키면서 출력 Q,\overline{Q} 의 상태를 기록하여라.

E	D	Q	\overline{Q}
0	0		
0	1		
1	0		
1	1		
0	0		
0	1		
1	0		
1	1		

7400 : GND(7번), +5V(14번) 7404 : GND(7번), +5V(14번)

【검토】 NOR 래치로 이루어진 *D* 플립플롭을 구성하고 특성을 확인하여라.

 $oldsymbol{6}$ 입력 E,D의 상태를 표와 같이 변화시키면서 출력 Q,\overline{Q} 의 상태를 기록하여라.

E	D	Q	\overline{Q}
0	0		
0	1		
1	0		
1	1		

7475 : GND(12번), +5V(5번)

검토 *E* 단자의 역할을 설명하여라.

7

입력 E, J, K의 상태를 표와 같이 변화시키면서 출력 Q, \overline{Q} 의 상태를 기록하여라.

7402 : GND(7번), +5V(14번) 7411 : GND(7번), +5V(14번)

러토 NAND 래치로 이루어진 JK 플립플롭을 구성하고 특성을 확인하여라.

입력 CP, \overline{PR} , \overline{CLR} , J, K의 상태를 표와 같이 변화시키면서 출력 Q의 상태를 기록하여라.

7476: GND(13번), +5V(5번)

CP	\overline{PR}	\overline{CLR}	J	K	Q
\downarrow	0	1	0	0	
\downarrow	0	1	0	1	
\downarrow	1	0	1	0	
\downarrow	1	1	0	0	
\downarrow	1	1	0	1	
\downarrow	1	1	1	0	
\downarrow	1	1	1	1	
\downarrow	1	1	1	1	
\downarrow	1	1	1	1	
\downarrow	0	1	0	0	

lacktriangle 비동기 입력인 \overline{PR} 과 \overline{CLR} 단자의 역할을 설명하여라.

7476 : GND(13번), +5V(5번)

d d d d d 이 회로가 T 플립플롭으로 동작하는지 검토하여라.

 $oxed{10}$ 클록펄스(CP)를 인가하였을 때, 출력 Q의 상태를 기록하고 출력 파형을 타이밍 도에 그려보아라. 클록펄스를 인가하기 전에 \overline{CLR} 은 접지 후 +5 \bigvee 에 접속한다.

7476: GND(13번), +5V(5번)

러도 이 회로가 *T* 플립플롭으로 동작하는지 검토하여라.

- \overline{CLR} 을 Low로 하여 모든 플립플롭의 출력을 0으로 초기화한 후, High로 한다.
- 클록펄 $\triangle(CP)$ 를 순차적으로 인가하면서 출력 D, C, B, A의 상태를 표에 기록하여라.

7476 : GND(13번), +5V(5번)

CP	D	C	В	A	CP	D	\boldsymbol{C}	В	A
1					10				
2					11				
3					12				
4					13				
5					14				
6					15				
7					16				
8					17				
9					18				

【검토1】실험회로는 클록펄스(*CP*)의 하강에지에서 동작한다. 상승에지에서 동작하는 4비트 비동기식 상향 카운터를 설계하여라.

【검토2】 실험회로를 수정하여 0부터 12까지만 카운트하고 정지하는 회로를 설계하여라.

클록펄스(CP)를 순차적으로 인가하면서 출력 B,A의 상태를 표에 기록하여라.

CP	В	A
1		
2		
3		
4		
5		
6		

7400 : GND(7번), +5V(14번) 7476 : GND(13번), +5V(5번)

【검토】 측정한 결과를 타이밍도로 그리고, 그 결과가 ○부터 2까지 카운트하는 3진 상향 카운터임을 검토하여라.

클록펄 $\triangle(CP)$ 를 순차적으로 인가하면서 출력 D, C, B, A의 상태를 표에 기록하여라.

7476 : GND(13번), +5V(5번)

CP	D	C	В	A	CP	D	C	В	A
1					7				
2					8				
3					9				
4					10				
5					11				
6					12				

<mark>【검토】</mark> 0부터 12까지 계수하는 비동기식 13진 카운터를 설계하기 위해 실험회로를 수정하여라.

5

클록펄스(CP)를 순차적으로 인가하면서 출력 Q_D, Q_C, Q_B, Q_A 의 상태를 표에 기록하여라.

CP	Q_D	Q_C	Q_B	Q_A
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				

클록펄스(CP)를 순차적으로 인가하면서 출력 $Q_D,\,Q_C,\,Q_B,\,Q_A$ 의 상태를 표에 기록하여라.

CP	Q_D	Q_C	Q_B	Q_A
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

검토 7493 IC를 이용하여 0부터 9까지 계수하는 10진 카운터를 설계하여라. 단, 논리게이트는 사용하지 않고 리셋입력 $(R_{0(1)},R_{0(2)})$ 만을 이용한다.

7

클록펄스(CP)를 순차적으로 인가하면서 출력 Q_D, Q_C, Q_B, Q_A 의 상태를 표에 기록하여라.

CP	Q_D	Q_C	Q_B	Q_A
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				

 $egin{aligned} \mathbf{8} \\ \mathbf{0} \\ \mathbf{0} \end{aligned}$ 클록펄스(CP)를 순차적으로 인가하면서 출력 $Q_D,\,Q_C,\,Q_B,\,Q_A$ 의 상태를 표에 기록하여라.

CP	Q_D	Q_C	Q_B	Q_A
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				

- 1
- \overline{CLR} 을 Low로 하여 모든 플립플롭의 출력을 0으로 초기화한 후, High로 한다.
- 클록펄 $\triangle(CP)$ 를 순차적으로 인가하면서 출력 D, C, B, A의 상태를 표에 기록하여라.

7408 : GND(7번), +5V(14번) 7476 : GND(13번), +5V(5번)

CP	D	С	В	A	CP	D	C	В	A
1					10				
2					11				
3					12				
4					13				
5					14				
6					15				
7					16				
8					17				
9					18				

- 2
- \overline{PR} 을 Low로 하여 모든 플립플롭의 출력을 1로 초기화한 후, High로 한다.
- 클록펄스(CP)를 순차적으로 인가하면서 출력 D, C, B, A의 상태를 표에 기록하여라.

CP	D	С	В	A	CP	D	C	В	A
1					10				
2					11				
3					12				
4					13				
5					14				
6					15				
7					16				
8					17				
9					18				

- 3
- \overline{CLR} 을 Low로 하여 모든 플립플롭의 출력을 0으로 초기화한 후, High로 한다.
- 클록펄 $\triangle(CP)$ 를 순차적으로 인가하면서 출력 C, B, A 의 상태를 표에 기록하여라.

CP	С	В	A	10진수
1				
2				
3				
4				
5				
6				
7				

【검토】이 카운터는 몇 진 카운터인지 검토하여라.

 $oxed{4}$ 클록펄스(CP)를 순차적으로 인가하면서 출력 $Q_D,\,Q_C,\,Q_B,\,Q_{A_{,}}\,RCO$ 의 상태를 표에 기록하여라.

74161 : GND(8번), +5V(16번)

CP	\overline{LOAD}	D	C	В	A	Q_D	Q_C	Q_B	Q_A	RCO	10진수
1	0	1	0	1	0						
2	1	1	0	1	0						
3	1	1	0	1	0						
4	1	1	0	1	0						
5	1	1	0	1	0						
6	1	1	0	1	0						
7	1	1	0	1	0						
8	1	1	0	1	0						
9	0	1	1	0	1						
10	1	1	1	0	1						
11	1	1	1	0	1						
12	1	1	1	0	1						

- 5
- \overline{CLR} 을 Low로 하여 카운터의 출력을 0으로 초기화한 후, 다시 High로 한다.
- 클록펄스(CP)를 순차적으로 인가하면서 출력 Q_D, Q_C, Q_B, Q_A 의 상태를 표에 기록하여라.

7408 : GND(7번), +5V(14번) 7410 : GND(7번), +5V(14번) 74161 : GND(8번), +5V(16번)

CP	Q_D	Q_C	Q_B	Q_A	10진수	CP	Q_D	Q_C	Q_B	Q_A	10진수
1						8					
2						9					
3						10					
4						11					
5						12					
6						13					
7						14					

【검토】 74161 IC를 이용하여 0부터 9까지 계수하는 동기식 10진 카운터를 설계하기 위하여 실험회로를 수정하여라.

 $oxed{6}$ 클록펄스(CP)를 순차적으로 인가하면서 출력 $Q_D,\,Q_C,\,Q_B,\,Q_A$ 의 상태를 표에 기록하여라.

7404 : GND(7번), +5V(14번) 74161 : GND(8번), +5V(16번)

CP	Q_D	Q_C	Q_B	Q_A	CP	Q_D	Q_C	Q_B	Q_A
1					8				
2					9				
3					10				
4					11				
5					12				
6					13				
7					14				

| 검토1 | *RCO*의 역할에 대해 검토하여라.

【검토2】 4부터 15까지 계수하는 12진 동기식 카운터를 설계하기 위해 실험회로를 수정하여라.

- 7
- INIT를 Low로 하여 카운터의 출력을 $0001 (= Q_D Q_C Q_B Q_A)$ 로 한다.
- INIT를 High로 하고 클록펄스(CP)를 순차적으로 인가하면서 출력 Q_D , Q_C , Q_R , Q_A 의 상태를 표에 기록하여라.

CP	Q_D	Q_C	Q_B	Q_A	CP	Q_D	Q_C	Q_B	Q_A
1					8				
2					9				
3					10				
4					11				
5					12				
6					13				
7					14				

검토 3부터 12까지 계수하는 동기식 10진 카운터를 설계하기 위해 실험회로를 수정하여라.

- 8
- INIT를 Low로 하여 링 카운터의 상태가 1000(=ABCD)임을 확인한다.
- INIT를 High로 하여 링 카운터를 동작시킨다.
- 단일펄스를 인가하면서 출력상태를 기록하여라.

7474: GND(7번), +5V(14번)

CP	A	В	С	D	CP	A	В	С	D
1					6				
2					7				
3					8				
4					9				
5					10				

- 9
- \overline{PR} 을 Low로 하여 모든 플립플롭의 상태가 1111(=ABCD)이 되도록 한다.
- \overline{PR} 을 High로 하여 존슨 카운터를 동작시킨다.
- 단일펄스를 인가하면서 출력상태를 기록하여라.

7474 : GND(7번), +5V(14번)

CP	A	В	С	D	CP	A	В	С	D
1					6				
2					7				
3					8				
4					9				
5					10				

【검토 ▮ *JK* 플립플롭을 이용하여 존슨 카운터를 설계하여라.

- 1
- \overline{CLR} 을 Low로 하여 모든 플립플롭의 출력을 0으로 초기화한 후, High로 한다.
- 데이터(I)를 입력하고 클록펄스(CP)를 순차적으로 인가하면서 출력 A, B, C, D의 상태를 표에 기록하여라.

7474 : GND(7번), +5V(14번)

CP	I	A	В	C	D
1	1				
2	1				
3	1				
4	1				
5	0				
6	0				
7	0				
8	0				
9	1				

【검토】JK 플립플롭인 7476 IC와 NOT 게이트인 7404 IC를 사용하여 실험 회로와 같은 시프트 레지스터를 설계하여라.

- 2
- A를 Low로 하고 CLR을 Low에서 High로 한다(모든 출력을 Clear).
- A를 High로 하면, 입력에 High가 인가된다.
- 단일펄스를 1개 인가하면, 첫 번째 출력이 나온다. 그 후 7개의 단일펄스를 인가하여 8개의 출력상태를 기록하라(클록펄스의 수 $1\sim8$).
- A를 Low로 하면 입력에 Low가 가해진다.
- 단일펄스를 8번 인가하여 8개의 출력상태를 기록하라(클록펄스의 수 9~16).

CP	Q_H	Q_G	Q_F	Q_E	Q_D	Q_C	Q_B	Q_A
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								

검토 74164 IC 2개를 사용하여 16비트 직렬입력-병렬출력 시프트 레지스터를 설계하여라.

- 3
- \overline{CLR} 을 Low로 하여 레지스터의 출력을 0으로 초기화한 후, High로 한다.
- 제어모드 (S_1S_0) , 시프트 방향(R, L), 병렬입력(A, B, C, D)를 변경하고 클록펄스(CP)를 순차적으로 인가하면서 출력 $Q_A \sim Q_D$ 의 상태를 표에 기록하여라.

CP	S_1	S_0	R	L	A	В	С	D	Q_A	Q_B	Q_C	Q_D
1	0	0	×	×	1	0	0	1				
2	1	0	×	0	1	0	0	1				
3	1	0	×	0	1	0	0	1				
4	1	0	×	0	1	0	0	1				
5	1	0	×	0	1	0	0	1				
6	1	0	×	0	1	0	0	1				
7	1	0	×	1	1	0	0	1				
8	1	0	×	1	1	0	0	1				
9	1	0	×	1	1	0	0	1				
10	1	0	×	1	1	0	0	1				
11	1	0	×	1	1	0	0	1				
12	0	1	×	0	1	0	0	1				
13	0	1	×	0	1	0	0	1				
14	0	1	×	0	1	0	0	1				
15	0	1	×	0	1	0	0	1				
16	0	1	×	0	1	0	0	1				
17	0	1	×	1	1	0	0	1				
18	0	1	×	1	1	0	0	1				
19	0	1	×	1	1	0	0	1				
20	0	1	×	1	1	0	0	1				
21	0	1	×	1	1	0	0	1				
22	1	1	×	×	1	0	0	1				
23	1	1	×	×	1	0	1	0				
24	0	0	×	×	1	0	1	0				
25	1	0	×	0	1	0	1	0				
26	1	0	×	1	1	0	1	0				
27	0	1	0	×	1	0	1	0				
28	0	1	1	×	1	0	1	0				
29	1	1	×	×	1	0	1	0				

- 4
- \overline{PR} 을 Low로 하여 모든 플립플롭의 출력을 1로 초기화한 후, High로 한다.
- 클록펄 $\triangle(CP)$ 를 순차적으로 인가하면서 출력 A, B, C, D의 상태를 표에 기록하여라.

7474 : GND(7번), +5V(14번) 7486 : GND(7번), +5V(14번)

CP	A	В	C	D	CP	A	В	C	D
1					9				
2					10				
3					11				
4					12				
5					13				
6					14				
7					15				
8					16				

【검토】 실험 회로에서 XOR 게이트의 입력을 A와 D로 변경하였을 경우 난수의 발생은어떻게 되는지 검토하여라.

- 5
- SH/\overline{LD} 를 Low로 하고 클록펄스를 인가하면, 링 카운터의 상태가 1000 으로 초기화된다.
- SH/\overline{LD} 를 High로 하여 링 카운터를 동작시킨다
- 단일펄스를 인가하면서 출력상태를 기록하여라.

CP	Q_A	Q_B	Q_C	Q_D	CP	Q_A	Q_B	Q_C	Q_D
1					6				
2					7				
3					8				
4					9				
5					10				

- 【검토1】링 카운터를 8비트로 확장하기 위해 두 번째 74195를 어떻게 연결해야 하는지 검토하여라.
- 【검토2】 실험 회로를 응용하여 존슨 카운터를 구성하여라.
- 【검토3】 74195의 9번 핀은 *SH/LD* 로 표시된다. 이 핀이 High와 Low일 때, 어떤 동작이 일어나는지 검토하여라.

- 1
- A와 B점에서의 파형을 오실로스코프로 관찰하여 그려 보아라.
- A점에서의 파형은 오실로스코프의 Ch-A, B점에서의 파형은 Ch-B로 관찰한다.
- 관찰한 파형의 주기와 듀티 사이클을 산출하여라.

7404 : GND(7번), +5V(14번)

측정점	주기(T)	듀티 사이클(%)
A점에서의 파형		
B점에서의 파형		

【검토】 실험을 통하여 얻은 주파수는 이론식과 어느 정도의 오차가 있는지 검토하여라.

■ 실험용 보드 배선도

- 2
- 회로에서 가변저항 500Ω 을 0V에서부터 서서히 변화시켜 출력레벨이 High에서 Low로 바뀌었을 때의 입력전압(UTL: Upper Trigger Level)을 측정하여라.
- 다시 입력전압을 서서히 감소시켜 출력전압이 Low에서 High로 바뀌었을 때의 입력전압(LTL: Lower Trigger Level)을 측정하여라.

구분	측정치[V]
(V_{T+}, UTL)	
(V_{T-}, LTL)	

【검토1】 가변저항 대신에 7414의 1번 핀에 정현파 $4V_{P-P}$, 1KHz를 인가한 경우 출력파형을 간략하게 스케치하고, 그 결과를 검토하여라.

【검토2】 데이터 시트를 참조하여 74LS14와 74HC14의 UTL과 LTL을 비교 검토하여라.

■ 실험용 보드 배선도

- 3
- 출력 V_o 에서의 파형을 오실로스코프로 관찰하여 그려보아라.
- 관찰한 파형의 듀티 사이클과 주기를 측정하여 산출하여라.

<mark>【검토</mark> 주파수와 듀티 사이클의 실험값과 이론값의 오차에 대해 검토하여라.

■ 실험용 보드 배선도

- 펄스 발생기를 단일펄스 $(50\mu s)$ 로 고정시켜 인가한 후, 출력 Q에서의 펄스 폭 t_w 를 오실로스코프로 측정하여라.
- 오실로스코프의 수평 스위프(sweep) 속도를 조정하여 펄스가 수평눈금과 일치시킨 후, 펄스 발생기를 10kHz로 전환하여라. 이 경우의 출력 Q의 파형을 그려보아라.
- 커패시터 C를 10μ F로 바꾸고 단일펄스로 전환하여 펄스 폭을 측정하여라.

【검토】실험을 통하여 얻은 펄스 폭이 이론값과 어느 정도의 오차가 있는지 검토하여라.

■ 실험용 보드 배선도

- 펄스 발생기를 단일펄스 $(50\mu s)$ 로 고정시켜 인가한 후, 출력 Q에서의 펄스 폭 t_w 를 오실로스코프로 측정하여라.
- 오실로스코프의 수평 스위프(sweep) 속도를 조정하여 펄스가 수평눈금과 일치시킨 후, 펄스 발생기를 10kHz로 전환하여라. 이 경우의 출력 Q의 파형을 그려보아라.
- ullet 펄스 발생기의 주파수를 감소시켜 출력 Q가 Low 가 될 때의 주파수를 구하여라.

검토 일험을 통하여 얻은 펄스 폭이 이론값과 어느 정도의 오차가 있는지 검토하여라.

- 6
- 펄스 발생기를 단일펄스 $(50\mu s)$ 로 고정시켜 인가한 후, 출력(타이머 555의 3번 핀)에서의 펄스 폭 t_w 를 오실로스코프로 측정하여라.
- 오실로스코프로 C양단의 출력과 R_L 양단의 파형을 관찰하여 그려보아라.
- R_A = $10{
 m M}\Omega,~C$ = $10{
 m \mu}$ F일 때, LED가 점등되는 시간을 이용하여 출력에서의 펄스폭 t_w 를 측정하여라.

7404 : GND(7번), +5V(14번)

검토 일험을 통하여 얻은 펄스 폭이 이론값과 어느 정도의 오차가 있는지 검토하여라.

감사합니다 ☺

