Data Structures and Algorithm Analysis—Note 1

Feng-Hao Liu

In this note, we summarize some concepts in our lectures.

1 Asymptotic Notation

Definition 1.1 (Big O) Let f(n), g(n) be two non-negative functions. We say that f(n) is O(g(n)) if, there exists constants c, n_0 such that for all $n \ge n_0$, $f(n) \le c \cdot g(n)$. This is typically denoted as f(n) = O(g(n)).

Example. 3n = O(n), $2n^2 + 3n - 6 = O(n^2)$.

Definition 1.2 (Big Ω) Let f(n), g(n) be two non-negative functions. We say that f(n) is $\Omega(g(n))$ if, there exists constants c, n_0 such that for all $n \ge n_0$, $f(n) \ge c \cdot g(n)$. This is typically denoted as $f(n) = \Omega(g(n))$.

Example. $0.5n = \Omega(n), 2n^2 + 3n - 6 = \Omega(n^2).$

Definition 1.3 (Big Θ) Let f(n), g(n) be two non-negative functions. We say that f(n) is $\Theta(g(n))$ if, f(n) is both O(g(n)) and $\Omega(g(n))$.

Example. $n = \Theta(n)$, $2n^2 + 3n - 6 = \Theta(n^2)$.

Definition 1.4 (Little o) Let f(n), g(n) be two non-negative functions. We say that f(n) is o(g(n)) if, for every constant c > 0, there exists an integer N_c such that $f(n) \le c \cdot g(n)$ for all $n \ge N_c$.

Example. $n = o(n^2)$, $\log n = o(n)$.

Definition 1.5 (Little ω) Let f(n), g(n) be two non-negative functions. We say that f(n) is $\omega(g(n))$ if, for every constant c > 0, there exists an integer N_c such that $f(n) \geq c \cdot g(n)$ for all $n \geq N_c$.

Example. $n = \omega(\log^n), n^2 = \omega(n).$

Theorem 1.6 Let f(n), g(n) be two non-negative functions. f(n) = o(g(n)) implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Similarly $f(n) = \omega(g(n))$ implies that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.