EQUAÇÕES DIFERENCIAIS

Resultados da Aprendizagem

Equações diferenciais

A.Conhecimento

1. Indique as variáveis independentes, as variáveis dependentes, a ordem e o grau de cada equação diferencial:

a.
$$\frac{d^2y}{dx^2} = x^2 - 3y$$

a.
$$\frac{d^2y}{dx^2} = x^2 - 3y$$
 b. $\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 = 0$ c. $\frac{d^2x}{dy^2} + \left(\frac{dx}{dy}\right)^2 = 6$

$$c. \frac{d^2x}{dy^2} + \left(\frac{dx}{dy}\right)^2 = 6$$

2. Mostre que a função dada é solução da equação diferencial indicada.

a.
$$y(x) = \sin(x) - 1 + ce^{-\sin(x)}$$
 $(c \in \Re)$, $\frac{dy}{dx} + y\cos(x) = \frac{\sin(2x)}{2}$

b.
$$y(x) = c_1 e^{5x} + c_2 e^{-5x} \ (c \in \Re), \quad \frac{d^2 y}{dx^2} - 25y = 0$$

3. Determine para cada família de funções, a função que satisfaz as condições indicadas:

a.
$$y(x) = c_1 e^x + c_2 e^{-2x}, c_1, c_2 \in \Re, y(0) = 1 \land y'(0) = 2$$

b.
$$y(x) = c_1 cost + c_2 sint, c_1, c_2 \in \Re, y(0) = 1 \land y'(0) = 1$$

4. Determine a solução geral de cada equação diferencial de variáveis separáveis y' = N(x)M(y)

a.
$$(1+y)-(1-x)y'=0$$

$$b. \frac{1}{x} - \frac{y'}{y} = 0$$

Determine a solução geral de cada uma das equações diferenciais lineares de 1^{a} ordem y'+P(x)y=Q(x)

a.
$$y' + ytgx = \sec x$$

b.
$$y'senx + y cos x = sen^2 x$$

B.Compreensão

1. Justifique que a equação diferencial:

a.
$$e^{x+1}dy + (e^{x+1}y - 1)dx = 0$$
 é linear de 1^a ordem.

b.
$$\frac{dx}{dy}\sqrt{y} - \sqrt{x} = y\sqrt{x}$$
 é de variáveis separáveis.

Determine o integral particular/solução particular que passa pelos respetivos pontos: (x, y) = (0,2) e (x, y) = (9,4).

- 2. Considere a equação diferencial y'-yx = g(x), com g(x) uma função real de variável real.
 - a. Dê exemplo de uma função g(x) para a qual a equação seja de variáveis separáveis. Resolva a equação exemplificada.
 - b. Dê exemplo de uma função g(x) para a qual a equação seja linear de 1ª ordem. Resolva a

equação exemplificada.

c. Imponha condições iniciais para determinar soluções particulares em cada um dos casos anteriores.

C.Aplicação

Resolva as seguintes equações diferenciais:

$$a. \quad xln(x)y'+y=2ln(x)$$

$$\mathbf{b.} \ \frac{dx}{dy} + e^x y = e^x y^2$$

c.
$$2xy + 6x + (x^2 - 4)y' = 0$$
 d. $y' - 2xe^{-y} = 0$

d.
$$y' - 2xe^{-y} = 0$$

e.
$$1 - \frac{y'}{y^2 + 1} = 0$$

f.
$$y' + \left(\frac{1}{x} - 1\right)y = \frac{e^{2x}}{x}$$

D.Análise

De entre as equações seguintes identifique as que são equações diferenciais e distinga as equações diferenciais de variáveis separáveis e as lineares de 1ª ordem, justificando convenientemente a sua resposta.

a.
$$y'-e^{-y}(x-x^4)=0$$

b.
$$\frac{dy}{dt} + ycost = 0$$

c.
$$y^2 x + x = 0$$

d.
$$y'' + y \cos t = 0$$

e.
$$(y')^2 + yt^2 = t$$

f.
$$\frac{1}{x}y' + y = 1$$

E.Sintese

1. Sejam y_1, y_2 duas soluções distintas da equação diferencial y'+p(x)y=q(x) onde $p \in q$ são funções contínuas num intervalo aberto $D \subset \Re$.

a. Mostre que $y = y_1 + c(y_2 - y_1), c \in \Re$ é solução geral da equação.

b. Qual a relação que deve ser satisfeita pelas constantes α, β , para que $\alpha y_1 + \beta y_2$ seja também solução da equação dada

2.Uma Equação Diferencial y' = G(x, y) diz-se Homogénea se G(tx, ty) = G(x, y) (função homogénea de grau 0).

a. Prove que a equação diferencial $(y^2 - xy) + x^2y' = 0$ é Homogénea.

b. Fazendo a mudança de variável y = vx resolva a equação diferencial de variáveis separáveis obtida.

c. Determine a solução geral da equação diferencial dada.

3.Uma equação da forma $y'+P(x)y=Q(x)y^n$ para $n \neq 0, n \neq 1$ é uma equação diferencial de Bernoulli.

a. Prove que a equação diferencial $y' + \frac{2}{x}y = x^6y^3$ é de Bernoulli.

b. Fazendo a mudança de variável $z = y^{1-n}$ resolva a equação diferencial linear de 1^a ordem obtida.

c. Determine a solução geral da equação diferencial dada.

F.Avaliação

- 1. Determine a família de funções que satisfazem em cada ponto (x, y) a condição: "A soma da derivada com o dobro da ordenada é igual ao quadrado da abcissa". Obtenha o elemento da família de curvas que passa pelo ponto de coordenadas (0,1).
- 2. Seja f uma função definida para todo o $x \in \Re$, cujas derivadas de qualquer ordem existem e são contínuas em \Re . Suponha que f'(x) = 3f(x) e que f(2) = 1. Nestas condições, determine $f^{(20)}(2)$.