CSE-3103: Microprocessor and Microcontroller

Dept. of Computer Science and Engineering University of Dhaka

Prof. Sazzad M.S. Imran, PhD
Dept. of Electrical and Electronic Engineering
sazzadmsi.webnode.com

Intel 8086 microprocessor → GND ← HMOS technology. 2-16 & 39 29,000 transistors housed in 40-pin DIP package. ▶ RD CLK — INTEL 2 pin diagrams → GND • MIN mode, RESET -READY -MAX mode. differ: pin 24 to pin 31. INTA ← ALE ← MIN mode (uniprocessor) \rightarrow NMI ----INTR pin 33 high CLK **—**→ 19 CPU issues control signals. INTEL GND ◆ RESET — MAX mode (multiprocessor) \rightarrow ▶ LOCK READY pin 33 low TEST -→ S̄₂ bus controller IC (8288) generates control signals.

 $QS_1 \leftarrow QS_0 \leftarrow$

 $(AD_0 - AD_{15})$ = multiplexed lower 16 address lines. $(AD_{16}/S_3 - AD_{19}/S_6)$ = multiplexed upper 4 address lines.

- $(AD_o-AD_{15}) \rightarrow$ carry address during T_1 , carry data during T_2 , T_3 , T_4 .
- $(AD_{16}-AD_{19}) \Rightarrow$ carry address during T_1 , carry status signals during T_2 , T_3 , T_4 .
- $AD_0-AD_{19} \rightarrow$ address lines for accessing memory. can address $2^{20} = 1$ MB memory.
- $AD_0-AD_{15} \rightarrow$ address lines for accessing I/O's. can access $2^{16} = 64$ kB of I/O's.

pin 40 \rightarrow +5 V DC supply at V_{CC} , pin 1 and 20 \rightarrow ground at V_{SS} .

pin 19 →
clock signal.
5 MHz, 8 MHz or 10 MHz for different versions.

 AD_{16}/S_3 — AD_{19}/S_6 \rightarrow time multiplexed signals.

 $AD_{19}-AD_{16} \rightarrow$ address lines during T_1 for memory operation. remain low during I/O operations. carry status signals during T_2-T_4 .

 S_4 and $S_3 \rightarrow$ identify segment register for 20-bit physical address generation.

 $S_5 \rightarrow$ interrupt enable status. $S_6 \rightarrow$ remains low during T_2 to T_4 .

pin 34 →

BHE/S₇ signal,

Bus High Enable signal during T₁,

remains low.

chip select signal on AD_{15} - AD_{8} .

status signal S_7 during T_2 to T_4 remains high.

 \overline{BHE} and $A_o \rightarrow$

determine references to memory.

BHE	$\mathbf{A_0}$	Word/byte access			
О	0	Both banks active, 16-bit word transfer on $\mathrm{AD}_{15}\mathrm{-AD}_{0}$			
О	1	Only high bank active, upper byte from/to odd address on $\mathrm{AD}_{15}\mathrm{-AD}_{8}$			
1	0	Only low bank active, lower byte from/to even address on AD ₇ –AD ₀			
1	1	No bank active			

_					
Vss (GND)	1	-5-	40	Vcc (+5	V)
AD14	2 2		39 🗷	AD15	
AD13	☑ 3		38	A16/S3	
AD12	Ø 4		37	A17/S4	
AD11	2 5		36	A18/S5	
AD10	 6		35	A19/S6	
AD9	2 7		34	BHE/S7	
AD8	☑ 8		33	MN/MX	MIN
AD7	2 9		32	RD	MODE
AD6	1 0	8086	31	RQ/GT0	HOLD
AD5	1 1	0000	30	RQ/GT1	HLDA
AD4	1 2		29	LOCK	WR

Vss (GND)

pin 31 \rightarrow

HOLD = hold signal to processor (MIN mode), external devices request to access address/data buses.

pin 30 **→**

HLDA = hold acknowledgement (MIN mode), acknowledges HOLD signal.

pins 24 and 25 \rightarrow

QS₁ and QS₀ = queue status signals (MAX mode) provide status of instruction queue.

QS_0	QS ₁	Status
0	0	No operation
0	1	First byte of opcode from the queue
1	0	Empty the queue
1	1	Subsequent byte from the queue

Vcc (+5V)

pin 26 – pin 28 →

 $\overline{S_2}$, $\overline{S_1}$, $\overline{S_0}$ = output status signals (MAX mode). indicates type of operation carried out by processor. active during T_4 of previous cycle and T_1 and T_2 of current cycle.

passive state during T₃ of current bus cycle.

S2	$\overline{S_1}$	<u>So</u>	CPU Cycle
О	О	0	Interrupt acknowledge
О	0	1	Read I/O Port
О	1	0	Write I/O Port
О	1	1	HALT
1	0	0	Code access
1	0	1	Read memory
1	1	0	Write memory
1	1	1	Passive

pin 29 →

LOCK signal (MAX mode),
activated by LOCK prefix instruction,
remains active until completion of next instruction.

LOCK = low → all interrupts get masked,
HOLD request is not granted.

pin 30 and 31 \rightarrow $\overline{RQ}/\overline{GT_0}$ = request/grant signals (MAX mode), other processors request CPU to release system bus. when signal is received, CPU sends acknowledgment.

