${\bf Vorlesung\ Rechnerorganisation\ Wintersemester\ 2020/21}$

- Übungsblatt 4 -

Tutoriumsnummer

Name, Vorname: Slavov, Velislav

Matrikelnummer: 2385786

Matrikelnummer: 2385786

Studiengang: Informatik BsC

Name des Tutors: Jonas Heinle

= /25 Punkte

A1 1. Zeilen = 32 => es gibt 32/8 = 4 Sätze

Taggröße = 20 Bit

Adressgröße = 32 Bit

Da vir 45åtze haben => nir brauchen 2 Bits.

Block auswahl = 32-20-z=10 B;t => jedes Block ist 2º Byte groß = 8.2^{10} Bit

Cache größe = $32(20 + 8.2^{10})$ Bit = $4(20 + 8.2^{10})$ Byte = 80 + 32768 = 32848 Byte

-=

2. Satzindex = 3 Bit => es gibt 8 Sätze Adressgröße = 32 Bit Kapaz;tät = 256 Byte

Satzgröße = 256/8 = 32 Byte

Größe einer Cachezeile = 32/Assoziativität Byte

Satzausnahl = 32-26-6=0 => wir haben ein Vollassoziativer Cache.

F

4.

A2 Kapazität = 64 Byte

Zeilen = 4

Adressbreite = 32 Bit

Blockgröße = 64/4 = 16 Byte

=>Blockausnahl = 4 Bit

1.

DM: Sätze = 4 => Satzausnahl = 2 B:t

Adresse: Tag 0

A2: Sätze = 4/2 = 2 = 2 Satzausnahl = 1 Bit

Adresse: Tag | =

AV: Sätze = 0 => Satzausnahl = OBit

Adresse: Tag

2.	Adresse	AV	A2	DM	Adresse (Gin)
	0x25	-	_	-	0010 0101
	0x3A	_			0011 1010
	0x12	_			0001 0010
	0x74	-	_	_	0111 0100
	0x36	X	_	_	0011 0110
	0x08	_	_	_	0000 1000
	0x09	X	X	X	0000 1001
	0x16	X	_	Χ	0001 0110
	0x28	1	X	X	0010 1000
	0x52	_			0101 0010
	0x22	X	X	×	0010 0010
	0x11	X	X		0001 0001

	DM		A2	AV
3	840	1 5	912	72
2	0	L	X30	1
1	0 10	0 5	0	\$ 5
0	0		1	20

=

				_
AU		wahr	falsch	
<u> </u>	Bei einem direktabgebildeten Cache ist es nicht notwendig, eine]-
	Block-Ersetzungsstrategie festzulegen.			
	Die Verwendung des Rückschreibverfahrens (write back policy) ver-			1-
	hindert das Auftreten von Konsistenzproblemen bei Mehrprozes-	K		١.
	sorsystemen.			
	Bei einem satzassoziativen Cache können mehrere Cachezeilen gül-			1-
	tig sein und denselben Tag, aber dennoch unterschiedliche Daten		مار	
	enthalten. Bei einem vollassoziativen Cache kann das nicht passie-			ŀ
	ren.			١.
	Je höher die Assoziativität eines Cache, desto weniger Komparato-			1
	ren werden zu seiner Realisierung benötigt. Allerdings steigt damit		$ \chi $	-
	auch die Auftrittswahrscheinlichkeit für Conflict Misses.		\	

A3 Blockgröße = 16 Byte

1. Es werden 333 Lade - und 333 Speicher befehle also insgesamt 666

Ein Wort = 32 Bit = 4 Byte => jeder Speicherblock enthällt 4 Worte

Es treten nur Compulsory Misses (beim Laden) => 333/4 ~ 84 Cache Misses

D.h. Estreten 666-84=582 Cache Hits auf

F

2. Hit-Rate = $\frac{582}{666}$ = 0,87

 $t_{ht} = 2 Taktzyklen$ $t_{miss} = 12 Taktzyklen$

 $t_{augriff} = 0,87.2 + 0,13.18 = 1,74+1,56 = 3,30$ = 4 taxtzyklen

3. Es müssen 333 Worte geladen werden Bei einer Blockgröße von 4 Worte sind 333/4 = 84 Cachezeilen gebraucht