Unifikation (Robinson, [Rob65])

Unifikationsalgorithmus: unify(C) =

```
if C == \emptyset then [] else let \{\theta_l = \theta_r\} \cup C' = C in if \theta_l == \theta_r then unify(C') else if \theta_l == Y and Y \notin FV(\theta_r) then unify([Y \diamond \theta_r] C') \circ [Y \diamond \theta_r] else if \theta_r == Y and Y \notin FV(\theta_l) then unify([Y \diamond \theta_l] C') \circ [Y \diamond \theta_l] else if \theta_l == f(\theta_1^1, \ldots, \theta_l^n) and \theta_r == f(\theta_1^1, \ldots, \theta_r^n) then unify(C' \cup \{\theta_l^1 = \theta_r^1, \ldots, \theta_l^n = \theta_r^n\}) else fail
```

 $Y \in FV(\theta)$ occur check, verhindert zyklische Substitutionen

Korrektheitstheorem

unify(C) terminiert und gibt mgu für C zurück, falls C unifizierbar, ansonsten fail.

Beweis: Siehe [Pie02]