			Pr/2 (20)	
0	0	Ь	0.5	
11	c	. d	0.3	
. P(x)	0.5	0.5	1	

Here,
$$\alpha = d = P$$

 $b = C = 0.5 - P$

LOR can list all possible coupling below.

$$P_{X_{1},X_{2}}(0,0) = P$$
 $P_{X_{1},X_{2}}(0,0) = P$
 $P_{X_{1},X_{2}}(0,1) = 0.5 - P$
 $P_{X_{1},X_{2}}(1,0) = c = 0.5 - P$
 $P_{X_{1},X_{2}}(1,0) = d = P$

$$V(x_1) = E[x_2] = 0.5$$

$$V(x_1) = V(x_2) = 0.25$$

$$\mathcal{E}_{o} Corr = \frac{1}{\sigma_{x_{1}} \sigma_{x_{2}}} \sum_{x_{1} x_{2}} \overline{D}(x_{1} - 0.5) (\chi_{2} - 0.5) \overline{p}(x_{1}, x_{2})$$

$$= 2 (P - (0.5 - P))$$

$$= 4P - 1$$

We know maximum Correlation is 1. If we set the $P = \frac{1}{2}$ we get the maximum Correlation $corr(r_1, x_2) = 1$. And If we set the $P = \frac{1}{4} = 0.25$ we get the minimum correlation.

P=0.5 for maximized

[P=0.25] for minimized

4(iii)

4(iii) no independent random variables are un correlated.

for all,
Px(11) Px(21) = 0.5x0.5

(x, 12) Px(11) Px(21) = 0.25

Proof

$$P_{x_1}(0) P_{x_2}(0) = 0.25 P_{x_1}(0) P_{x_2}(1) = 0.25$$

 $P_{x_1}(1) P_{x_2}(0) = 0.25 P_{x_1}(1) P_{x_2}(1) = 0.25$

Civ)		λg		7
	O	0	1	Px, (x,)
χι	1	12	0	1/2,
		1/2	0	1 2
Px	3(3)	1	٥	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Since two variables are independent, they are uncorrelated.

Px(0) Px3(0) =
$$\frac{1}{2}$$
 × 1 Px,(0) Px3(1) = $\frac{1}{2}$ × 0 = $\frac{1}{2}$

$$P_{X_1}(1) P_{X_3}(0) = \frac{1}{2} \times \underbrace{1} P_{X_1}(1) P_{X_3}(1) = \frac{1}{2} \times 0$$

$$= \frac{1}{2}$$

so, coupling with 12 implies two variables are independent.