

선행연구 조사발표

LSTM과 CNN을 이용한 단기 전력 수요예측

Short-term Load Forecasting Based on LSTM and CNN - 김도현

발표자: 채주형

이 연구배경

단기 전력수요예측은 1시간에서 1주일까지의 미래 전력수요예측을 수행합니다

주된 배경 요인

단기 전력 수요예측의 결과

- → 전력시장의 발전가격 결정
- + 예비력과 송전 용량 및 발전기 운영계획 등에 활용

1 그 외 배경 요인

전력수요가 증가, 신재생 에너지 보급확대, 수요자원의 증가, 급격한 전력 수요변동 및 기상변화로 인하여 전력 수요예측의 중요성 높아짐 #발전가격이란 발전소에서 생산하는 전력(kWh)당 소모되는 비용 #예비력이란 전력 수요를 초과하여 보유하고 있는 발전력

02 데이터구성

본 모델에서 사용한 데이터는 2013~2018년까지의 기온, 습도, 이슬점과 같은 기후데이터와 과거 국내 전력 수요 실측치를 사용하였다

● 기온습도 이슬점데이터 같은 경우 **기상자료개방포털**의 자료사용

기상자료개방포털

● 전력수요는 **전력거래소**에서 제공하는 국내전력 수요실측치를 사용

● 훈련데이터: 2013~ 2017 데이터

● 테스트 데이터 : 2018년도 데이터

03 데이터그룹

단기 전력수요예측은 1시간에서 1주일까지의 미래 전력수요예측을 수행합니다

01 | 그룹 A

- 화~금요일 데이터
- 예측일기준 과거 3일동안의 데이터로 구성

«»

02 | 그룹 B

- 토, 일, 월요일 데이터
- 예측일 기준 과거 <mark>7일동안</mark>의 데이터로 구성

04 모델 설계

모델 설정

본 논문에서 제안하는 모델은 전력 수요패턴 및 기후변화에 따른 수요변동을 반영하기 위해

CNN 과 LSTM모델을 사용하여 병렬적 예측 수행하고 각모델의 가중치를 반영 하여 최종 예측값을 출력하는 모델을 제안

<그림 3-2> 제안 모델 전체 구조

05 모델구조

- 데이터 정규화를 통해 모든 데이터를 0~1 사이의 다으로 변환
- 요일에 따른 합성곱신경망과 LSTM이 병렬적으로 예측을 수행
- 각 모델의 정확도에 따른 가중치를 반영하여
 최종 예측값을 출력
- 본 논문에서 사용한 합성곱 신경망의 경우 3개 의 합성곱 계층과 풀링계층으로 구성

<그림 3-2> 제안 모델 전체 구조

이 의적합방지

1. 정규화(Nomalization)

<그림 3-3> 드롭 아웃 적용 전/후 모델 차이[25]

2.드롭아웃 적용

07 모델 성능 분석

<표 4-5> 요일별 최대 하루 평균 MAPE 결과 비교

요일	하루 평균 최대 MAPE		
	합성곱 신경망	LSTM	제안 모델
월	5.08%	4.76%	3.66%
화	5.19%	3.46%	3.06%
수	4.48%	4.76%	4.34%
목	5.12%	4.51%	3.75%
금	4.66%	2.98%	2.66%
토	2.99%	5.57%	3.28%
일	2.94%	3.51%	3.07%
전체	4.35%	4.22%	3.40%

1. 우수한 예측 성능

제안 모델은 평균 MAPE 오차 1.4%로 우수한 예측 성능 보임이는 기존 단일 모델 대비 더 낮은 오차율

2. 데이터 특성 반영

CNN과 LSTM을 병렬로 사용하여 전력 수요 패턴과 기후 데이터의 특성을 모두 반영할 수 있었음

3. 요일별 특성 고려

요일별로 개별적인 모델을 구성하여 요일별 특성을 효과적으로 반영할 수 있었음

08 모델성능비교

<표 4-6> 모델 성능 비교

연구 모델	특성 및 고려 사항	MAPE(%)
인공신경망[11]	학습 케이스 선별 및 온도 민감도 고려	3월 :1.21 8월 : 2.23 12월 1.69
뉴로-퍼지[13]	요일 특성에 따른 학습케이스 분류 초기화 구조 뱅크 구축	1.48
인공신경망[14]	전력 피크에 따른 가중치 반영	하절기 :1.97 동절기 :1.64
지수평활화[27]	평일 단기전력 수요 예측을 위한 지수평활화 모델 계수 선정	2.09~2.29
지수평활화[28]	다양한 정규화 방법에 따른 예측 정확도 비교	2.02
인공신경망 (제안 모델)	전력 패턴 및 기온 변화 고려	1.4

- 하루 전 수요예측에 관한 다른 논문들의
 모델 예측 성능의 결과
- 하루 수요예측 모델들의 성능과 비교하였을
 때 제안 모델의 예측 정확성이 높음을 확인

9 Summary&limitation

Summary& limitation

- 데이터의 특성에 따라 <mark>데이터 그룹</mark>을 나누어서 요일별로 각각의 모델을 구성함
- 전력 수요 패턴과 기후 데이터의 특성을 각각 반영하는 <mark>병렬 모델 구조</mark>를 제안
- 제안 모델은 기존 단일 모델 대비 <mark>더 낮은 오차율</mark>(평균 MAPE 1.4%)을 보임
- 특수일에 관한 사항은 고려 X
 →특수일에 영향을 받는 날에 대해서는 예측을 수행하지 못함