Physics Notes - Mechanics Section

硝基苯

- Chapter 01 Motion
 - 。 运动方程
 - 位矢
 - 运动方程
 - 轨迹方程
 - 。 速度
 - 平均速度
 - (瞬时)速度
 - 凍率
 - 。 加速度
 - 平均加速度
 - (瞬时)加速度
 - 。 圆周运动
 - 角速度
 - 加速度
 - 自然坐标系
 - 匀变速率圆周运动
 - 。 相对运动
 - 伽利略速度变换式
- Chapter 02 Newton's Law
 - Newton's first law (the law of inertia)
 - Newton's second law
 - 牛顿力学的质点动力学方程
 - 条件
 - 自然坐标系
 - Newton's third law
 - 。 力学相对性原理
 - 量纲
 - 。 常见的力
 - 万有引力
 - 重力
 - 弹性力
 - 摩擦力

- 。 惯性力
- Chapter 03 Momentum & Energy
 - 。 动量定理
 - 动量的相对性
 - 质点
 - 质点系
 - 。 动量守恒定律
 - 。 系统内质量移动问题
 - 。功
 - 元功
 - 分量式
 - ■功率
 - 。 势能
 - 保守力
 - 。 动能定理
 - 。 功能原理
 - 。 机械能守恒定律
 - 。质心
 - 质心运动定律
- Chapter 04 Rotation
 - 。 刚体的定轴转动
 - 。力矩
 - 。 转动惯量
 - 平行轴定理
 - 常见连续均匀刚体的转动惯量
 - 。 转动定律
 - 。 力矩的时间积累
 - 角动量
 - 角动量定理
 - 角动量守恒定律
 - 。 力矩的空间积累
 - 力矩做功
 - 转动动能
 - 转动动能定理
 - 。 刚体的平面平行运动
 - 纯滚动 (无滑动滚动)
 - 。 球—棒模型
 - 理想的碰撞

- Chapter 14 Special Theory of Relativity
 - 。经典力学
 - 。 迈克耳孙—莫雷实验
 - 。 狭义相对论的基本原理
 - 。 洛伦兹变换
 - 洛伦兹因子
 - 洛伦兹变换式
 - 洛伦兹速度变换式
 - 逆变换
 - 。 狭义相对论的 同时的相对性
 - 。 洛伦兹收缩
 - 。 时间延缓
 - 。 相对论性动量和能量
 - 质量
 - 动量
 - 力
 - 能量
 - 关系

Chapter 01 Motion

运动方程

位矢

$$ec{r}=xec{i}+yec{j}+zec{k}$$

运动方程

$$ec{r}=ec{r}(t)=x(t)ec{i}+y(t)ec{j}+z(t)ec{k}$$

轨迹方程

运动方程消去参量 t

位移
$$\Delta ec{r} = ec{r}_B - ec{r}_A$$

路程 $\stackrel{\frown}{\Delta s}$

$$\stackrel{\textstyle \frown}{\Delta s}
eq |\Delta ec{r}|
eq \Delta |ec{r}| \ ds = |dec{r}|
eq dr$$

速度

平均速度

$$ar{ec{v}} = rac{\Delta ec{r}}{\Delta t} = ar{v}_x \, ec{i} + ar{v}_y \, ec{j}$$

其中
$$ar{v}_x = \Delta x/\Delta t$$
 $ar{v}_y = \Delta y/\Delta t$

(瞬时) 速度

$$ec{v}=rac{dec{r}}{dt}=v_x\,ec{i}+v_y\,ec{j}$$
 其中 $v_x=dx/dt$ $v_y=dy/dt$ v_x , v_y 是 $ec{v}$ 在 O_x 轴和 O_y 轴上的分量 $ec{v}_x$, $ec{v}_y$ 是 $ec{v}$ 在 O_x 轴和 O_y 轴上的分矢量,即分速度 有 $ec{v}_x=v_xec{i}$, $ec{v}_y=v_yec{j}$

速度的方向沿该点曲线的切线方向

谏率

$$|v| = |ec{v}| = |dec{r}|/dt = ds/dt$$

加速度

平均加速度

$$ar{ec{a}} = rac{\Delta ec{v}}{\Delta t}$$

(瞬时) 加速度

$$\vec{a} = rac{d\vec{v}}{dt}$$

圆周运动

角速度

$$\omega = rac{d heta}{dt}$$

$$v = \omega r$$

加速度

• 切向单位矢量
$$ec{e}_t = rac{ec{v}}{|ec{v}|}$$

$$oldsymbol{\epsilon}$$
 法向单位矢量 $ec{e}_n=rac{dec{e}_t}{d heta}$ 推导: $|\Deltaec{e}_t|=\Delta heta$ 微分时,方向趋于指向圆心

• 角加速度
$$lpha=rac{d\omega}{dt}=rac{d^2 heta}{dt^2}$$

• 加速度
$$ec{a}=rac{dec{v}}{dt}=rac{dv}{dt}ec{e}_t+vrac{dec{e}_t}{dt}$$

$$ullet$$
 切向加速度 $ec{a}_t = rac{dec{v}}{dt}ec{e}_t = lpha rec{e}_t$

• 法向加速度
$$ec{a}_n = rac{v^2}{r} ec{e}_n = \omega^2 r ec{e}_n$$

自然坐标系

以动点为原点,以切向单位矢量和法向单位矢量建立二维坐标系

匀变速率圆周运动

角加速度为常量,切向加速度的值为常量,法向加速度的值不为常量 可由 匀变速直线运动 相关公式变形得关于 角速度 的公式

相对运动

伽利略速度变换式

$$ec{v}_a = ec{v}_r + ec{u}$$

绝对速度 v_a : 质点相对于基本参考系的速度相对速度 v_r : 质点相对于运动参考系的速度牵连速度 u: 运动系相对于基本系的速度

Chapter 02 Newton's Law

Newton's first law (the law of inertia)

$$ec{F}=0\Rightarrowec{v}$$
 为常矢量

Newton's second law

牛顿力学的质点动力学方程

$$ec{F}=rac{dec{p}}{dt}=rac{d(mec{v})}{dt}$$

当 $v \ll c$ 时,m 为常量

$$ec{F}=mrac{dec{v}}{dt}=mec{a}$$

条件

- 只适用于质点运动,物体平动可看作质点运动
- 瞬时对应, 力是物体产生加速度的原因
- 力的叠加原理

自然坐标系

$$egin{cases} ec{F}_t = mec{a}_t = mrac{dv}{dt}ec{e}_t \ ec{F}_n = mec{a}_n = mrac{v^2}{
ho}ec{e}_n \end{cases}$$

Newton's third law

 $ec{F}=-ec{F}'$

两个物体;同种性质;同生同灭

力学相对性原理

P31

量纲

L: 长度

M: 质量

T: 时间

Q: 其他力学量

 $\dim Q = L^p M^q T^s$

常见的力

万有引力

$$ec{F}=-Grac{m_1m_2}{r^2}ec{e}_r$$

重力

重力 = 万有引力 - 向心力
$$ec{P}=mec{g},\quad g=9.8\,m/s^2$$

弹性力

摩擦力

惯性力

 $ec{F}_i = -mec{a}_0$ 牛顿第二定律 $ec{F} + ec{F}_i = mec{a}_0$

 a_0 : 非惯性系相对惯性系的加速度 a: 物体相对非惯性系的加速度

Chapter 03 Momentum & Energy

动量定理

动量的相对性

动量依赖于惯性系的选取 动量增量相等 动量定理只适用于惯性系

质点

$$ec{I}=\int_{t_1}^{t_2}ec{F}dt=\Deltaec{p}$$

质点系

$$egin{aligned} \int_{t_1}^{t_2} ec{F^{ ext{ex}}} dt &= \Delta ec{p} \ ec{f g} \end{aligned}$$
 或 $ec{F^{ ext{ex}}} = rac{dec{p}}{dt}$

动量守恒定律

$$ec{F^{
m ex}}=0\Rightarrow \Sigma ec{p}$$
不变

1. 各物体动量相对于同一参考系

2. 分量式。形如 $ec{F_x^{ ext{ex}}}=0\Rightarrow \Sigma ec{p_x}$ 不变

3-4. P62

系统内质量移动问题

当质量在两个物体间转移时,考虑代换

$$rac{dm_1}{dt} = -rac{dm_2}{dt}$$

功

元功

$$dW = \vec{F} \cdot d\vec{r} = F |d\vec{r}| \cos \theta$$
合力对质点做的功,等于各分力做功的代数和

分量式

$$W = \int_A^B ec{F} \cdot dec{r} = \int_A^B (F_x dx + F_y dy + F_z dz)$$

功率

$$P = rac{dW}{dt} = ec{F} \cdot ec{v}$$

势能

与质点位置相关的能量

引力势能
$$E_p = -Grac{m'm}{r}$$

重力势能 $E_p = mgy$
弹性势能 $E_p = rac{1}{2}kx^2$

势能具有相对性无穷远处为引力势能零点

地面为重力势能零点 弹簧平衡位置为弹性势能零点

• 势能属于系统

保守力

•
$$W_c=\oint_l ec{F}\cdot dec{r}=0$$

保守力做功只与质点的初、末位置有关,与路径无关。

•
$$W_c=-\Delta E_p$$
 保守力对质点做的功等于质点势能增量的负值
$$\mathbb{P} \quad F_c=-\frac{dE_p}{dx}$$

动能定理

$$E_k = rac{1}{2} m v^2 \ W = W^{
m ex} + W^{
m in} = \Delta E_k$$

合力,包括一切外力和内力,对质点(系)做的功,等于质点(系)动能的增量

• 功和动能依赖惯性系的选取

功能原理

机械能: 动能和势能的统称

$$W^{
m ex} + W^{
m in}_{
m nc} = \Delta E$$

质点系机械能的增量,等于外力与非保守内力做功之和

- 功是过程量
- 能量是系统状态的函数

机械能守恒定律

条件:外力与非保守内力均不做功

$$W_c^{
m in} = -\Delta E_p = \Delta E_k$$

质心

质心位置
$$ec{r_c} = rac{\Sigma m_i ec{r_i}}{\Sigma m_i} = rac{\int ec{r} \, dm}{\Sigma m_i}$$
等效质点质量 $m_c = \Sigma m_i$

质心运动定律

$$m_c ec{v}_c = \Sigma ec{p}$$

系统内各质点的动量的矢量和等于系统总质量乘以系统质心的速度

$$ec{F^{
m ex}} = m_c rac{dec{v}_c}{dt} = m_c ec{a}_c$$

系统的合外力等于系统总质量乘以系统质心加速度

合外力为零时,等效质点的运动状态不变;质点系的运动状态不一定保持不变。

Chapter 04 Rotation

刚体的定轴转动

 $\omega = d heta/dt$ 方向由右手法则确定

 $lpha = d\omega/dt$

 $a_t = \alpha r$

 $a_n=\omega^2 r$

力矩

 $ec{M}=ec{r} imesec{F}$

 $M = rF\sin\theta = Fd$

力臂 d:参考点到力的作用线的垂直距离

 $ec{r}$: 参考点到力的作用点的位矢

力矩需指明参考点。

一对相互作用力对转轴的合力矩为零。 刚体的合内力矩为零。

转动惯量

$$J = \sum \Delta m_i r_i^2 = \int_V r^2 \, dm_i$$

与刚体的形状,质量分布,**转轴的位置**有关

平行轴定理

$$J = J_c + md^2$$

d: 两平行轴之间的距离

刚体相对通过质心的轴线的转动惯量 J_c 最小。

常见连续均匀刚体的转动惯量

• 细棒 (转动轴通过质心与棒垂直)

$$J = \frac{1}{12}ml^2$$

○ 细棒 (转动轴通过棒的一端与棒垂直)

$$J=rac{1}{3}ml^2$$
 平行轴定理

• 圆筒 (转动轴沿几何轴)

$$J = rac{1}{2}m(R_1^2 + R_2^2)$$

 R_1 : 内径, R_2 : 外径

。 圆柱
$$(R_1$$
 = 0) $J=rac{1}{2}mR^2$

$$J=mR^2$$

• 球体 (转动轴沿任一直径)

$$J = \frac{2}{5}mR^2$$

。 薄球壳

$$J = \frac{2}{3}mR^2$$

转动定律

$$ec{M}=Jec{lpha}$$

瞬时对应

力矩的时间积累

角动量

• 质点

$$ec{L}=ec{r} imesec{p}$$

 $L = rmv \sin \theta$

须指明参考点

。 若质点做圆周运动,以圆心为参考点 $L=rmv=mr^2\omega$

• 刚体 $ec{L}=Jec{\omega}$ 须指明参考转轴

角动量定理

$$ec{M}=rac{dec{L}}{dt}$$

 $ec{M}$: 对参考点的合力矩 / 对参考转轴的合外力矩

角动量守恒定律

条件:对参考点的合力矩为零/对参考转轴的合外力矩为零

有心力
 力总指向某一定点(力心)
 有心力对力心的力矩为零
 有心力作用下,质点对力心角动量守恒

力矩的空间积累

力矩做功

$$dW = Md\theta$$

 $P = M\omega$

转动动能

$$E_k=rac{1}{2}J\omega^2$$

转动动能定理

合外力矩对定轴转动的刚体所做的功等于刚体转动动能的增量

刚体的平面平行运动

- 质心的运动
- 绕通过质心的轴的转动

惯性力通过质心, 力矩为零。

动能等于 质心的平动动能 与 刚体绕质心的转动动能 之和

$$E_k=rac{1}{2}mv_c^2+rac{1}{2}J_c\omega^2$$

势能视为质心的势能

$$E_p = mgh_c$$

纯滚动 (无滑动滚动)

$$v_t = v_c + \omega r = 2 v_c$$

球—棒模型

一长度为 l,质量为 M 的棒,转轴位于顶端,初始时竖直静止悬挂。一质量为 m,初速度 v_0 得小球在转轴下方距离为 a 处击中棒,讨论转轴的受力方向。

以棒、球为系统,合外力矩为零,角动量守恒

以棒、球、地球为系统, 机械能守恒

以水平向右为正方向, 水平方向上有动量定理

得

$$F\Delta t = rac{3a-2l}{6a}Ml\omega$$

故

$$a>2/3 imes l$$
 时, $F>0$,即 F 向右 $a=2/3 imes l$ 时, $F=0$,即转轴不受力 $a<2/3 imes l$ 时, $F<0$,即 F 向左

理想的碰撞

$$egin{cases} rac{1}{2}mv_1^2 + rac{1}{2}J\omega_1^2 = rac{1}{2}mv_2^2 + rac{1}{2}J\omega_2^2 \ rmv_1 + J\omega_1 = rmv_2 + J\omega_2 \end{cases}$$

$$v_2=rac{(mr^2-J)v_1+2J\omega_1r}{mr^2+J}$$

$$\omega_2=rac{(J-mr^2)\omega_1r+2mr^2v_1}{mr^2+J}rac{1}{r}$$

Chapter 14 Special Theory of Relativity

- $1 u = 1.66 \times 10^{-27} kg$
- $1 MeV = 1.602 \times 10^{-13} J$

经典力学

空间是永恒不变,绝对静止的空间的度量是绝对的,与参考系无关

时间是永恒地,均匀地流逝的时间的度量是绝对的,与参考系无关

不同惯性系中 质点速度不同 加速度相同 经典力学的规律有相同的形式

迈克耳孙—莫雷实验

$$\Delta = c \Delta t pprox l rac{v^2}{c^2} \ \Delta N = rac{2\Delta}{\lambda}$$

 ΔN : 干涉条纹移动的条数

 Δ : 光程差 λ : 光的波长

l: 半透半反镜到平面镜的距离 v: 地球相对于以太的速度

狭义相对论的基本原理

- 是因斯坦相对性原理
 物理定律在所有的惯性系中具有相同的表达形式 所有惯性系对运动的描述都是等效的
- 光速不变原理
 真空中的光速是常量,与光源或观测者的运动无关
 光速不依赖于惯性系的选择

洛伦兹变换

设两惯性系 S, S' S' 沿 xx' 轴以速度 \vec{v} 相对于 S 运动 两系原点重合时为计时起点

设有一个事件发生在点 P从 S 系观测 其坐标是 x,y,z**时刻**是 tP 点速度为 $\vec{u}(u_x,\,u_y,\,u_z)$

洛伦兹因子

$$\gamma = rac{1}{\sqrt{1-(v/c)^2}} = rac{1}{\sqrt{1-eta^2}}$$
 $v\colon S'$ 相对于 S 的速度

$$egin{aligned} v \ll c \,,\; eta
ightarrow 0^+ \,,\; \gamma
ightarrow 1^+ \ v
ightarrow c^- \,,\; eta
ightarrow 1^- \,,\; \gamma
ightarrow + \infty \end{aligned}$$

洛伦兹变换式

$$x' = \gamma(x - vt)$$

 $y' = y$
 $z' = z$
 $t' = \gamma(t - \frac{v}{c^2}x)$

洛伦兹速度变换式

$$u_x' = \frac{u_x - v}{1 - \frac{v}{c^2} u_x}$$

$$u_y' = rac{1}{\gamma} rac{u_y}{1 - rac{v}{c^2} u_x}$$

$$u_z' = rac{1}{\gamma} rac{u_z}{1 - rac{v}{c^2} u_x}$$

逆变换

 $^{\prime}$ 异或 v 变号

$$x = \gamma(x' + vt')$$

$$t=\gamma(t'+rac{v}{c^2}x')$$

其余同理

狭义相对论的 同时的相对性

$$\Delta t = \gamma (\Delta t' + rac{v}{c^2} \Delta x')$$

v: S' 相对于 S 的速度

 S^\prime 系中**不同地点**同时发生的两个事件在 S 系中不是同时的

S' 系中**同一地点**同时发生的两个事件在 S 系中也是同时的

有因果关系的两个事件, 时序关系不会颠倒

洛伦兹收缩

物体沿运动方向的长度收缩

$$l=rac{l_0}{\gamma}=l_0\sqrt{1-eta^2}$$

 l_0 : 固有长度。物体相对于观测者静止时测得的长度

时间延缓

$$\Delta t = \gamma \Delta t_0 = rac{\Delta t_0}{\sqrt{1-eta^2}}$$

 Δt_0 : 固有时。相对惯性系静止的观测者测得**该系同一地点**发生的两个事件的时间间隔

相对论性动量和能量

质量

 $m = \gamma m_0$

m: 相对论性质量

*m*₀:静质量

动量

$$ec{p}=mec{v}=\gamma m_0ec{v}$$

力

$$ec{F}=rac{dec{p}}{dt}$$

 $ec{F}$ 和 $ec{v}$ 同向时有 $F=\gamma^3 m_0 a$

能量

质点的总能量 $E=mc^2$ (质能关系式) 质点的静能量 $E_0=m_0c^2$

$$\Delta E = (\Delta m)c^2$$

动能
$$E_k = E - E_0 = (\gamma - 1) m_0 c^2$$

关系

$$E^2 = E_0^2 + (pc)^2$$

对光子 (静质量为零) 有其动量计算式

$$p = \frac{E}{c} = \frac{h\nu}{c} = \frac{h}{\lambda}$$