

Modül 5: Sayı Sistemleri

Introduction to Networks v7.0 (ITN)

Modül Hedefleri

Modül Başlığı: Sayı Sistemleri

Modül Hedefi: Ondalık, ikili ve hexadecimal sistemler arasındaki sayıları hesaplayın.

Konu Başlığı	Konu Hedefi
İkili Sayı Sistemi	Ondalık ve ikili sistemler arasındaki sayıları hesaplayın.
Heksadecimal Sayı Sistemi	Ondalık ve heksadecimal sistemler arasındaki sayıları hesaplayın.

5.1 İkili Sayı Sistemi

İkili Sayı Sistemi İkili ve IPv4 Adresleri

- İkili numaralandırma sistemi 1'ler ve 0'lardan oluşur, bit olarak adlandırılır
- Ondalık sayı sistemi 0 ile 9 arasında sayılardan oluşur
- Ana bilgisayarlar, sunucular ve ağ donanımları birbirini tanımlamak için ikili adresleme kullanırlar.
- Her adres, sekizli adı verilen dört bölüme bölünmüş 32 bitlik bir dizeden oluşur.
- Her sekizli, bir nokta ile ayrılmış 8 bit (veya 1 bayt) içerir.
- Kişiler tarafından kullanım kolaylığı için, bu noktalı gösterim noktalı ondalığa dönüştürülür.

Video – İkili ve Ondalık Numaralandırma Sistemleri Arasında Dönüşüm

Bu video aşağıdakileri kapsayacaktır:

- Konumsal gösterim incelemesi
- 10'un katları incelemesi.
- Ondalık taban 10 numaralandırma incelemesi
- İkili baz 2 numaralandırma incelemesi
- İkili bir P adresini ondalık numaralandırmaya dönüştürme

İkili Sayı Sistemi İkili Konumsal Gösterim

- Konumsal gösterim, bir basamağın sayı dizisinde bulunduğu "konuma" bağlı olarak farklı değerleri temsil etmesidir.
- Ondalık konumsal gösterim sistemi aşağıdaki tablolarda gösterildiği gibi çalışır.

Radix	10	10	10	10
Sayıdaki Konum	3	2	1	0
Hesap	(10^3)	(10 ²)	(10 ¹)	(100)
Konum Değeri	1000	100	10	1

		Binler	Yüzler	Onlar	Birler
Konumsal De	ğer	1000	100	10	1
Ondalık Sayı	(1234)	1	2	3	4
Hesap		1 x 1000	2 x 100	3 x 10	4 x 1
ekleyin		1000	+ 200	+ 30	+ 4
Sonuç			1,234		

İkili Sayı Sistemi İkili Konumsal Gösterim (devamı)

İkili konumsal gösterim sistemi aşağıdaki tablolarda gösterildiği gibi çalışır.

Radix	2	2	2	2	2	2	2	2
Sayıdaki Konum	7	6	5	4	3	2	1	0
Hesap	(27)	(26)	(25)	(24)	(23)	(22)	(2 ¹)	(20)
Konum Değeri	128	64	32	16	8	4	2	1

Konumsal Değer	128	64	32	16	8	4	2	1
Ondalık Sayı (1234)	1	1	0	0	0	0	0	0
Hesap	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
ekleyin	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
Sonuç	192							

İkili Sayı Sistemi İkiliyi Sayıları Ondalık Sayılara Dönüştür

11000000.10101000.00001011.00001010 ondalık sayıya dönüştür.

Konumsal Değer	128	64	32	16	8	4	2	1
İkili Sayı (11000000)	1	1	0	0	0	0	0	0
Hesap	1x128	1x64	0x32	0x16	0x8	0x4	0x2	0x1
Ekleyin	128	+ 64	+ 0	+ 0	+ 0	+ 0	+ 0	+ 0
İkili Sayı (10101000)	1	0	1	0	1	0	0	0
Hesap	1x128	0x64	1x32	0x16	1x8	0x4	0x2	0x1
Ekleyin	128	+ 0	+ 32	+ 0	+ 8	+ 0	+ 0	+ 0
İkili Sayı (00001011)	0	0	0	0	1	0	1	1
Hesap	0x128	0x64	0x32	0x16	1x8	0x4	1x2	1x1
Ekleyin	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 1
İkili Sayı (00001010)	0	0	0	0	1	0	1	0
Hesap	0x128	0x64	0x32	0x16	1x8	0x4	1x2	0x1
Ekleyin	0	+ 0	+ 0	+ 0	+ 8	+ 0	+ 2	+ 0

İkili Sayı Sistemi Ondalık - İkili Dönüştürme

İkili konumsal değer tablosu, noktalı ondalık IPv4 adresini ikili sisteme çevirmek için faydalıdır.

- 128 pozisyonunda başlayın (en önemli bit). Sekizlinin ondalık sayısı (n) 128'e eşit mi ya da büyük mü?
- Hayır ise, 128 konumsal değere 0 kaydedin ve 64 konumsal değere geçin.
- Evet ise, 128 konumsal değere 1 kaydedin, ondalık sayıdan 128'i çıkarın ve 64 konumsal değere geçin.
- Bu adımları 1 konumsal degree kadar yineleyin.

İkili Sayı Sistemi Ondalık - İkili Dönüşüm Örneği

Ondalık 168'i ikili sisteme dönüştürme

168 > 128 mi?
Evet, 128 pozisyonda 1 girin ve 128 çıkarın (168-128=40) 40 > 64 mü?
Hayır, 64 pozisyonda 0 girin ve devam edin 40 > 32 mi?
Evet, 32 pozisyonda 1 girin ve 32 çıkarın (40-32=8) 8 > 16 mı?
Hayır, 16 pozisyonda 0 girin ve devam edin 8 > 8 mi?
Equal. 8 pozisyonda 1 girin ve 8 çıkarın (8-8=0)
Değer kalmadı. Kalan ikili pozisyonlara 0 girin

128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

Ondalık 168 ikili sistemde10101000 olarak yazılır

İkili Sayı Sistemi IPv4 Adresleri

 Yönlendiriciler ve bilgisayarlar yalnızca ikili sistemi anlarken, insanlar ondalık sayılarla çalışır. Bu iki numaralandırma sistemini ve ağda nasıl kullanıldıklarını tam olarak anlamak önemlidir.

5.2 Hexadecimal Sayı Sistemi

Hexadecimal Sayı Sistemi Hexadecimal ve IPv6 Adresleri

- IPv6 adreslerini anlamak için hexadecimal'ı ondalık sayıya veya ondalık sayıyı hexadecimal'a dönüştürebilmelisin.
- Hexadecimal, 0'dan 9'a ve A'dan F'ye doğru olan sayıları kullanan bir baz onaltı numaralandırma sistemidir.
- Bir değeri tek bir hexadecimal basamak olarak ifade etmek, dört ikili bit olarak ifade etmekten daha kolaydır.
- Hexadecimal IPv6 adreslerini ve MAC adreslerini temsil etmek için kullanılır.

Decimal	
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Hexadecimal
0
1
2
3
4
5
6
7
8
9
А
В
С
D
E
F

Hexadecimal Sayı Sistemi Hexadecimal ve IPv6 Adresleri (devamı)

- IPv6 adresleri 128 bit uzunluğundadır. Her 4 bit tek bir hexadecimal basamak la temsil edilir. Bu da IPv6 adresini toplam 32 hexadecimal değer yapar.
- Şekil, her X'in dört hexadecimal değeri temsil ettiği bir IPv6 adresi yazma yöntemi gösterir.
- Her dört hexadecimal karakter grubu hextet olarak adlandırılır.

Hexadecimal Sayı Sistemi
Video – Hexadecimal ve Ondalık Numaralandırma
Sistemleri Arasında Dönüştürme

Bu video aşağıdakileri kapsayacaktır:

- Hexadecimal Sistemin Özellikleri
- Hexadecimal'dan Ondalık'a dönüştürme
- Ondalıktan Hexadecimal'a dönüştürme

Hexadecimal Sayı Sistemi Ondalık - Hexadecimal Dönüşümler

Ondalık sayıları hexadecimal değerlere dönüştürmek için aşağıdaki adımları izleyin: Ondalık sayıyı 8 bitli ikili dizeleri dönüştürün.

- Divide the binary strings in groups of four starting from the rightmost position.
- Convert each four binary numbers into their equivalent hexadecimal digit.

Örneğin, 168'i üç adımlı işlemi kullanarak hex dönüştürme

- 168 ikili sistemde 10101000 olarak gösterilir
- 10101000 dört ikili basamak iki grupta 1010 ve 1000 olarak gösterilir
- 1010 hex A ve 1000 hex 8, bu yüzden 168 hexadecimal A8 olarak gösterilir.

•

Hexadecimal Sayı Sistemi Hexadecimal - Ondalık Dönüşümler

Hexadecimal sayıları ondalık değerlere dönüştürmek için aşağıdaki adımları izleyin: Hexadecimal sayıyı 4-bit ikili dizeleri dönüştürün.

- En sağ konumdan başlayarak 8 bitlik ikili gruplandırma oluşturun.
- Her 8 bit ikili gruplandırmayı eşdeğer ondalık basamaklarına dönüştürün.

Örneğin, Üç adımlı işlemi kullanarak ondalık alana dönüştürülen D2 sayısı:

- D2 4-bit ikili dizeleri 1101 ve 0010 olarak gösterilir.
- 1101 ve 0010 8 bitlik bir gruplamada 11010010 olarak gösterilir.
- İkili sistemde 11010010 ondalık sistemde 210'a eşdeğerdir, bu nedenle D2, 210 olarak gösterilir.

5.3 Modül Uygulaması ve Sınav

Modül Uygulaması ve Sınav

Bu modülde ne öğrendim?

- İkili, 0 ve 1 sayılarından oluşan ve bit adı verilen bir "taban iki" numaralandırma sistemidir.
- Ondalık, 0'dan 9'a kadar olan sayılardan oluşan bir "taban on" numaralandırma sistemidir.
- İkili, ana bilgisayarların, sunucuların ve ağ ekipmanlarının birbirini tanımlamak için kullandığı numaralandırma sistemidir.
- Hexadecimal, 0'dan 9'a kadar olan sayılar ve A'dan F'ye kadar olan harflerden oluşan ''taban on altı" numaralandırma sistemidir.
- Hexadecimal IPv6 adreslerini ve MAC adreslerini temsil etmek için kullanılır.
- IPv6 adresleri 128 bit uzunluğundadır ve her 4 bit, toplam 32 hexadecimal basamak için bir hexadecimal basamakla temsil edilir.
- Hexadecimal'ı ondalık'a dönüştürmek için önce hexadecimal'ı ikiliye dönüştürmeniz, sonra ikiliyi ondalıka dönüştürmeniz gerekir.
- Ondalık sayıyı hexadecimal'a dönüştürmek için önce ondalık sayıyı ikiliye sonra da ikiliyi hexadecimal'a dönüştürmeniz gerekir.

