Model fitting like a boss

Luigi Acerbi

Department of Basic Neuroscience, University of Geneva Center for Neural Science, New York University International Brain Lab

September 9, 2019

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- Cheat sheets
- Beyond optimization
 - Bayesian model fitting

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- 4 Cheat sheets
- Beyond optimization
 - Bayesian model fitting

What is a model?

Luigi Acerbi

4 / 35

What is a model?

The best material model of a cat is another, or preferably the same, cat.

Wiener, Philosophy of Science (1945) (with Rosenblueth)

Quantitative stand-in for a theory

Sep 9, 2019

5 / 35

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\boldsymbol{ heta}\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(data|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p\left(\mathsf{data}|\theta\right)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(data|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining $p(\text{data}|\theta)$ is the core of model building

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(\mathsf{data}|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining $p(\text{data}|\theta)$ is the core of model building
 - ► Wait, what?

- Quantitative stand-in for a theory
- A family of probability distributions over possible datasets:

$$p(\mathsf{data}|\theta)$$

- data is a dataset with n data points (e.g., trials)
- ightharpoonup heta is a parameter vector
- Why? Description, prediction, and explanation
- Defining $p(\text{data}|\theta)$ is the core of model building
 - Wait, what?
- How? Think about the data generation process!

Example: Psychometric function

Task: heading direction 'discrimination' task

Example: Psychometric function

Task: heading direction 'discrimination' task

(data from Acerbi*, Dokka*, et al., PLoS Comput Biol, 2018)

Example: Psychometric function

- data: (heading direction, choice) for each trial
- parameters θ : (μ, σ, λ)

- $p(data|\theta)$ is a probability density as you vary data for a fixed θ
- $p(\text{data}|\theta)$ is the *likelihood*, a function of θ for fixed data

ullet For numerical reasons we work with $\log p(\mathrm{data}|oldsymbol{ heta})$

- ullet For numerical reasons we work with $\log p({
 m data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left(\operatorname{data} | \theta \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta)$$

$$= \log \prod_{i=1}^{n} p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

$$= \sum_{i=1}^{n} \log p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

- ullet For numerical reasons we work with $\log p(\mathsf{data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left(\operatorname{data} | \theta \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta)$$

$$= \log \prod_{i=1}^{n} p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

$$= \sum_{i=1}^{n} \log p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \theta \right)$$

• Simplest case: $\log p\left(\mathsf{data}|\boldsymbol{\theta}\right) = \sum_{i=1}^n \log p_i\left(\boldsymbol{r}^{(i)}|\boldsymbol{s}^{(i)},\boldsymbol{\theta}\right)$

- ullet For numerical reasons we work with $\log p({
 m data}|oldsymbol{ heta})$
- Using the rules of probability and logarithms:

$$\log p \left(\operatorname{data} | \boldsymbol{\theta} \right) = \log p(\boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(n)} | \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta})$$

$$= \log \prod_{i=1}^{n} p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta} \right)$$

$$= \sum_{i=1}^{n} \log p_i \left(\boldsymbol{r}^{(i)} | \boldsymbol{r}^{(1)}, \dots, \boldsymbol{r}^{(i-1)}, \boldsymbol{s}^{(1)}, \dots, \boldsymbol{s}^{(n)}, \boldsymbol{\theta} \right)$$

- Simplest case: $\log p\left(\mathsf{data}|\boldsymbol{\theta}\right) = \sum_{i=1}^n \log p_i\left(\boldsymbol{r}^{(i)}|\boldsymbol{s}^{(i)},\boldsymbol{\theta}\right)$
- Model building: Write function with
 - ▶ Input: θ and data
 - Output: $\log p(\text{data}|\theta)$

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- 4 Cheat sheets
- Beyond optimization
 - Bayesian model fitting

Model fitting \sim statistical estimation problem

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

• Find maximum of $p(\text{data}|\theta)$

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

• Find maximum of $p(\text{data}|\theta)$

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

• Find maximum of $p(\text{data}|\theta)$

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|rac{oldsymbol{ heta}}{oldsymbol{ heta}}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|rac{oldsymbol{ heta}}{oldsymbol{ heta}})$$

2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

• For $n \to \infty$ converges to MLE (if $p(\hat{\theta}_{\mathsf{ML}}) \neq 0$)

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

• Find maximum of $p(\text{data}|\theta)$

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

- ullet For $n o\infty$ converges to MLE (if $p(\hat{oldsymbol{ heta}}_{\mathsf{ML}})
 eq 0$)
- Full posterior: informative about parameter uncertainty and trade-offs

Model fitting \sim statistical estimation problem

1. Maximum likelihood estimation (MLE)

• Find maximum of $p(\text{data}|\theta)$

$$\hat{\theta}_{\mathsf{ML}} = \arg\max_{oldsymbol{ heta}} p(\mathsf{data}|oldsymbol{ heta}) = \arg\max_{oldsymbol{ heta}} \log p(\mathsf{data}|oldsymbol{ heta})$$

2. Bayesian posterior

$$p(\boldsymbol{\theta}|\mathsf{data}) = \frac{p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})}{p(\mathsf{data})} \propto p(\mathsf{data}|\boldsymbol{\theta})p(\boldsymbol{\theta})$$

- ullet For $n o\infty$ converges to MLE (if $p(\hat{oldsymbol{ heta}}_{\mathsf{ML}})
 eq 0$)
- Full posterior: informative about parameter uncertainty and trade-offs
- Maximum-a-posteriori (MAP): $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta | \text{data})$

Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

■ Model fitting ~ optimization problem

Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

■ Model fitting ~ optimization problem

Bayesian posterior

• How do we represent/approximate an arbitrary posterior distribution?

Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

Model fitting ~ optimization problem

Bayesian posterior

- How do we represent/approximate an arbitrary posterior distribution?
 - 1 Use a known (easier) distribution (variational inference)

Maximum likelihood estimation (MLE), Maximum-a-posteriori (MAP)

Model fitting ~ optimization problem

Bayesian posterior

- How do we represent/approximate an arbitrary posterior distribution?
 - ① Use a known (easier) distribution (variational inference)
 - ② Use a bunch of discrete samples (Markov-Chain Monte Carlo)

Model fitting via optimization

ullet Find single $oldsymbol{ heta}$ that best describes the data

Model fitting via optimization

- ullet Find single $oldsymbol{ heta}$ that best describes the data
- ullet (For this section we switch notation from eta to x)

Model fitting via optimization

- ullet Find single $oldsymbol{ heta}$ that best describes the data
- ullet (For this section we switch notation from heta to x)
- Given $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$

Model fitting via optimization

- ullet Find single $oldsymbol{ heta}$ that best describes the data
- (For this section we switch notation from θ to x)
- Given $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$
- ullet By convention, we *minimize* $f(x) \equiv - ilde{f}(x)$

Model fitting via optimization

- ullet Find single $oldsymbol{ heta}$ that best describes the data
- (For this section we switch notation from θ to x)
- Given $\tilde{f}(x) \equiv \begin{cases} \log p(\text{data}|x) & \text{maximum likelihood} \\ \log p(\text{data}|x) + \log p(x) & \text{maximum-a-posteriori} \end{cases}$
- By convention, we minimize $f(x) \equiv -\tilde{f}(x)$
- \Longrightarrow Find $x_{opt} \approx \arg \min_{x} f(x)$ as fast as possible

Model fitting via optimization

- ullet Find single $oldsymbol{ heta}$ that best describes the data
- (For this section we switch notation from θ to x)
- Given $\tilde{f}(x) \equiv \left\{ \begin{array}{ll} \log p(\mathsf{data}|x) & \mathsf{maximum\ likelihood} \\ \log p(\mathsf{data}|x) + \log p(x) & \mathsf{maximum-a-posteriori} \end{array} \right.$
- By convention, we minimize $f(x) \equiv -\tilde{f}(x)$
- \Longrightarrow Find $x_{opt} \approx \arg \min_{x} f(x)$ as fast as possible
- General case: f(x) is a black box
 - Sometimes we can compute the gradient

Source: Wikimedia Commons

Source: Wikimedia Commons

neval	x_1	<i>x</i> ₂	f(x)
1	-0.500	2.500	508.500
2	-0.525	2.500	497.110
3	-0.500	2.625	566.313
4	-0.525	2.375	443.063
5	-0.537	2.250	386.953
6	-0.563	2.250	376.320
7	-0.594	2.125	316.702
8	-0.606	1.875	229.824
9	-0.647	1.563	133.598
10	-0.703	1.438	91.847
11	-0.786	1.031	20.292
12	-0.839	0.469	8.918
13	-0.962	-0.359	168.785
14	-0.978	-0.063	107.796
15	-0.895	0.344	24.553
16	-0.730	1.156	41.905
17	-0.854	0.547	6.760
18	-0.907	-0.016	73.917
19	-0.816	0.770	4.366
20	-0.831	0.848	5.818
21	-0.793	1.070	22.655
22	-0.839	0.678	3.448
23	-0.824	0.600	3.955
24	-0.846	0.508	7.766
25	-0.824	0.704	3.391
26	-0.839	0.782	4.004
27	-0.828	0.645	3.497
28	-0.835	0.737	3.523
29	?	?	?

Optimizer does not see the landscape!

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')
- Expensive function evaluation

- Optimizer does not see the landscape!
- Multiple local minima or saddle points ('non-convex')
- Expensive function evaluation
- Noisy function evaluation
- Sough landscape (numerical approximations, etc.)

Optimization algorithms

Gradient-based methods

- Stochastic gradient descent (e.g., ADAM)
- Quasi-Newton methods (e.g., BFGS aka fminunc/fmincon)

Gradient-free methods

- Nelder-Mead (fminsearch)
- Pattern/direct search (patternsearch)
- Simulated annealing
- Genetic algorithms
- CMA-ES
- Bayesian optimization
- Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, NeurIPS 2017)

Optimization algorithms

Gradient-based methods

- Stochastic gradient descent (e.g., ADAM)
- Quasi-Newton methods (e.g., BFGS aka fminunc/fmincon)

Gradient-free methods

- Nelder-Mead (fminsearch)
- Pattern/direct search (patternsearch)
- Simulated annealing
- Genetic algorithms
- CMA-ES
- Bayesian optimization
- Bayesian Adaptive Direct Search (BADS; Acerbi & Ma, NeurIPS 2017)

Demos: https://github.com/lacerbi/optimviz

Local vs. global optimization

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- 4 Cheat sheets
- Beyond optimization
 - Bayesian model fitting

Start with a prior over functions (Gaussian process)

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$ Find $ilde{x}$ that maximizes acquisition function (exploration/exploitation)

- Start with a prior over functions (Gaussian process)
- ② Find \tilde{x} that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)

- Start with a prior over functions (Gaussian process)
- 2 Find \tilde{x} that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$ Find $ilde{x}$ that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)
- goto 2

- Start with a prior over functions (Gaussian process)
- $oldsymbol{\circ}$ Find $ilde{x}$ that maximizes acquisition function (exploration/exploitation)
- **3** Evaluate f(x)
- Compute posterior over functions (Gaussian process)
- goto 2

J. Mockus, Journal of Global Optimization (1994)

• Good for expensive ($\gtrsim 1$ min), noisy functions up to $D \approx 10$

- Good for expensive ($\gtrsim 1$ min), noisy functions up to $D \approx 10$
- Scales badly with n, computation time $\sim O(n^3)$

- Good for expensive ($\gtrsim 1$ min), noisy functions up to $D \approx 10$
- Scales badly with n, computation time $\sim O(n^3)$
- Performance depends on quality of global approximation

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

Algorithm

■ Take as input f, x0, LB, UB, PLB, PUB

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
 - ▶ POLL STEP: Evaluate up to 2D points around x, update x

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
 - POLL STEP: Evaluate up to 2D points around x, update x
 - ► (TRAIN STEP: Train GP on neighborhood of x)

Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
 - POLL STEP: Evaluate up to 2D points around x, update x
 - ightharpoonup (TRAIN STEP: Train GP on neighborhood of x)
 - \triangleright SEARCH STEP: Perform multiple iterations of BO in neighborhood of x

 Combines Mesh-Adaptive Direct Search (MADS) with Bayesian Optimization (BO)

Algorithm

- Take as input f, x0, LB, UB, PLB, PUB
- 2 Evaluate f on an initial design and $x \leftarrow \arg \min_i f(x_i)$
- Until convergence or MaxFunEvals do
 - POLL STEP: Evaluate up to 2D points around x, update x
 - ► (TRAIN STEP: Train GP on neighborhood of x)
 - \triangleright SEARCH STEP: Perform multiple iterations of BO in neighborhood of x

Acerbi & Ma, NeurIPS (2017)

BADS algorithm

BADS algorithm

BADS algorithm

BADS algorithm

Algorithm 1 Bayesian Adaptive Direct Search

```
Input: objective function f, starting point x_0, hard bounds LB, UB, (optional: plausible bounds PLB,
     PUB, barrier function c, additional options)
 1: Initialization: \Delta_0^{\text{mesh}} \leftarrow 2^{-10}, \Delta_0^{\text{pol}} \leftarrow 1, k \leftarrow 0, evaluate f on initial design
                                                                                                                      ⊳ Section 3.1
 2: repeat
 3:
          (update GP approximation at any step; refit hyperparameters if necessary)
                                                                                                                      ▶ Section 3.2
          for 1 \dots n_{\text{search}} do
                                                                                                 ▷ SEARCH stage, Section 3.3
 4:
 5:
                                                                                         ▷ local Bayesian optimization step
                x_{\text{search}} \leftarrow \text{SEARCHORACLE}
 6:
                Evaluate f on x_{\text{search}}, if improvement is sufficient then break
 7:
          if SEARCH is NOT successful then
                                                                                         ▷ optional POLL stage, Section 3.3
 8:
               compute poll set P_k
 9:
               evaluate opportunistically f on P_k sorted by acquisition function
          if iteration k is successful then
10:
11:
                update incumbent x_{k+1}
               if POLL was successful then \Delta_{\scriptscriptstyle L}^{\rm mesh} \leftarrow 2\Delta_{\scriptscriptstyle L}^{\rm mesh}, \Delta_{\scriptscriptstyle L}^{\rm poll} \leftarrow 2\Delta_{\scriptscriptstyle L}^{\rm poll}
12:
13:
          else
               \Delta_h^{\text{mesh}} \leftarrow \frac{1}{2} \Delta_h^{\text{mesh}}, \Delta_h^{\text{poll}} \leftarrow \frac{1}{2} \Delta_h^{\text{poll}}
14:
15:
          k \leftarrow k + 1
16: until fevals > MaxFunEvals or \Delta_k^{\text{poll}} < 10^{-6} or stalling
                                                                                                               17: return x_{\text{end}} = \arg \min_k f(x_k) (or x_{\text{end}} = \arg \min_k q_{\beta}(x_k) for noisy objectives, Section 3.4)
```

BADS properties

- Good for moderately costly ($\gtrsim 0.1 \text{ s}$) or noisy functions
- Scales okay with *n* (uses only local neighborhood)
- Local approximation deals with nonstationarity
- Explicit support for noise
- Outperforms other algorithms (Acerbi & Ma, 2017)

BADS summary

- POLL stage: Similar to patternsearch
- SEARCH stage: Local Bayesian optimization
- ullet Initial POLL/SEARCH scale \sim plausible box
- BADS supports:
 - Unbounded variables (deprecated)
 - Bounded variables
 - Non-bound constraints
 - Fixed variables
 - Periodic variables
- BADS treats stochastic target functions differently
 - ▶ Ensure that the noise SD is $\lesssim 1$

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- Cheat sheets
- Beyond optimization
 - Bayesian model fitting

Rule zero

Rule zero

Understand your problem \Longrightarrow often a gray box

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

• Dimensionality: low ($D\lesssim 10$) or high ($D\gg 20$)

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D\lesssim 10$) or high ($D\gg 20$)
- Bounds: Think of *hard* and *plausible* bounds

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D\lesssim 10$) or high ($D\gg 20$)
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D \lesssim 10$) or high ($D \gg 20$)
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Target function:

Convexity: convex or non-convex

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D\lesssim 10$) or high ($D\gg 20$)
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Target function:

- Convexity: convex or non-convex
- Smoothness: smooth or rough

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D\lesssim 10$) or high ($D\gg 20$)
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Target function:

- Convexity: convex or non-convex
- Smoothness: smooth or rough

• Deterministic or stochastic

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low $(D \lesssim 10)$ or high $(D \gg 20)$
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Target function:

- Convexity: convex or non-convex
- Smoothness: smooth or rough

- Deterministic or stochastic
 - ▶ If stochastic \Longrightarrow minimize $\mathbb{E}[f(x)]$

Rule zero

Understand your problem \Longrightarrow often a gray box

Input variables:

- Dimensionality: low ($D \lesssim 10$) or high ($D \gg 20$)
- Bounds: Think of hard and plausible bounds
- Parameterization: Not all parameterizations are created equal

Target function:

- Convexity: convex or non-convex
- Smoothness: smooth or rough

- Deterministic or stochastic
 - ▶ If stochastic \implies minimize $\mathbb{E}[f(x)]$
- Computational cost: cheap (\ll 0.01 s), moderate (0.01-1 s), or expensive (\gg 1 s)

Fundamental theorem

Fundamental theorem

'No Free Lunch' theorem \Longrightarrow no single best optimizer for all problems

Fundamental theorem

Fundamental theorem

'No Free Lunch' theorem \implies no single best optimizer for all problems (But not all methods are created equal!)

Is your problem smooth?

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒⇒ BFGS

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-D and cheap \Longrightarrow BFGS with finite differences

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly \Longrightarrow BADS

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly \Longrightarrow BADS

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!
 - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$ (e.g., ADAM)

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!
 - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$ (e.g., ADAM)
 - ▶ If high-D and cheap \Longrightarrow CMA-ES

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-D and cheap \Longrightarrow BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!
 - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$ (e.g., ADAM)
 - ▶ If high-D and cheap \Longrightarrow CMA-ES
 - ▶ If low-D and (moderately) costly \Longrightarrow BADS

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!
 - ▶ If gradient is available and high- $D \Longrightarrow \mathsf{SGD}$ (e.g., ADAM)
 - ▶ If high-D and cheap \Longrightarrow CMA-ES
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem high-D, costly, and you do not have the gradient?

Fundamental theorem

- Is your problem smooth?
 - ▶ If you have the gradient ⇒ BFGS
 - ▶ If low-*D* and cheap ⇒ BFGS with finite differences
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem rough or noisy?
 - First, try and make it smooth and deterministic!
 - ▶ If gradient is available and high- $D \Longrightarrow SGD$ (e.g., ADAM)
 - ▶ If high-D and cheap \Longrightarrow CMA-ES
 - ▶ If low-D and (moderately) costly ⇒ BADS
- Is your problem high-D, costly, and you do not have the gradient?
 - Give up and pray

The golden rule

The golden rule

No optimizer can guarantee to find the global optimum

The golden rule

No optimizer can guarantee to find the global optimum

 $\Longrightarrow {\sf Always} \ {\sf perform} \ {\sf multiple} \ {\sf distinct} \ {\sf optimization} \ {\sf runs} \ ({\sf `restarts'})$

The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

• How to choose starting points?

The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
 - Draw from prior distribution

The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box

The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method

The golden rule

No optimizer can guarantee to find the global optimum

⇒ Always perform multiple distinct optimization runs ('restarts')

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method
 - Use space-filling designs (quasi-random sequences)

Luigi Acerbi

The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method
 - Use space-filling designs (quasi-random sequences)

Space-filling

The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method
 - Use space-filling designs (quasi-random sequences)
- How many restarts?
 - As many as you need

Space-filling

The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method
 - Use space-filling designs (quasi-random sequences)

- How many restarts?
 - As many as you need
 - ▶ Informally, check that 'most' points converge to the same solution

The golden rule

No optimizer can guarantee to find the global optimum

- How to choose starting points?
 - Draw from prior distribution
 - Draw from a 'plausible' box
 - Sieve method
 - Use space-filling designs (quasi-random sequences)

- How many restarts?
 - As many as you need
 - Informally, check that 'most' points converge to the same solution
 - ▶ Bootstrap approach (Acerbi, Dokka et al., PLoS Comp Biol 2018)

- Introduction
 - Of models and likelihoods
- 2 Model fitting
 - A statistical estimation problem
 - Model fitting via optimization
 - Optimization algorithms
- 3 Bayesian Adaptive Direct Search (BADS)
 - Bayesian Optimization
 - BADS
- 4 Cheat sheets
- Beyond optimization
 - Bayesian model fitting

Bayesian posteriors

Luigi Acerbi

Bayesian posteriors

n = 1353 trials

Bayesian posteriors

n = 90 trials

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ► Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

- Check for parameter uncertainty, trade-offs, identifiability
 - Deeper understanding of your model
 - ▶ Robustness of claims (Acerbi, Ma, Vijayakumar, NeurIPS 2014)
- Less overfitting
- Use posterior samples to compute model comparison metrics
 - DIC, WAIC, LOO-CV
- Fully taking into account uncertainty is just better

How do I get Bayesian posteriors?

- MCMC (slice sampling, NUTS)
- Variational inference

Alternative to MCMC (for low-D, moderately costly problems)

Acerbi, NeurIPS 2018

Acerbi, NeurIPS 2018

Applied example

RESEARCH ARTICLE

Bayesian comparison of explicit and implicit causal inference strategies in multisensory heading perception

Luigi Acerbi 💿 🖾, Kalpana Dokka 💀, Dora E. Angelaki, Wei Ji Ma

Published: July 27, 2018 • https://doi.org/10.1371/journal.pcbi.1006110

Final slide

- Contact me at luigi.acerbi@gmail.com
- Optimization demos: github.com/lacerbi/optimviz
- BADS available at github.com/lacerbi/bads
- VBMC available at github.com/lacerbi/vbmc
- Tutorial: github.com/lacerbi/workshop-nyu-2019

Final slide

- Contact me at luigi.acerbi@gmail.com
- Optimization demos: github.com/lacerbi/optimviz
- BADS available at github.com/lacerbi/bads
- VBMC available at github.com/lacerbi/vbmc
- Tutorial: github.com/lacerbi/workshop-nyu-2019

Thanks!

(Time for questions?)