

Description

Image

Caption

Isoprene is used for seals, tubing, vibration mounts, grips

The material

Isoprene (or Polyisoprene) is synthetic natural rubber, and is processed in the same way as natural rubber. It has low hysteresis and high tear resistance, making it bouncy and tough.

Compositional summary

(CH2-C(CH3)-CH-CH2)n

General properties

Density	58.1	-	58.7	lb/ft^3
Price	* 1.53	-	1.57	USD/lb
Date first used	1960			

Mechanical properties

moonamou proportios				
Young's modulus	2.03e-4	-	5.8e-4	10^6 psi
Shear modulus	5.8e-5	-	8.7e-5	10^6 psi
Bulk modulus	0.21	-	0.225	10^6 psi
Poisson's ratio	0.499	-	0.5	
Yield strength (elastic limit)	2.9	-	3.63	ksi
Tensile strength	2.9	-	3.63	ksi
Compressive strength	3.34	-	3.63	ksi
Elongation	500	-	550	% strain
Fatigue strength at 10^7 cycles	* 0.5	-	1.02	ksi
Fracture toughness	0.0637	-	0.091	ksi.in^0.5
Mechanical loss coefficient (tan delta)	* 0.82	-	2	

Thermal properties

Glass temperature	-118	-	-109	°F
Maximum service temperature	206	-	242	°F
Minimum service temperature	-63.7	-	-45.7	°F
Thermal conductor or insulator?	Good ins	sulat	or	
Thermal conductivity	0.0462	-	0.0809	BTU.ft/h.ft^2.F
Specific heat capacity	0.43	-	0.597	BTU/lb.°F
Thermal expansion coefficient	83.3	-	250	μstrain/°F

Electrical properties

Electrical conductor or insulator?	Good i	nsulate	or	
Electrical resistivity	1e15	-	1e16	µohm.cm
Dielectric constant (relative permittivity)	* 2.5	-	3	
Dissipation factor (dielectric loss tangent)	2e-4	-	0.002	
Dielectric strength (dielectric breakdown)	406	-	584	V/mil

Optical properties

Transparency	Translucent
Refractive index	1.51 - 1.53

Processability

Castability	4	-	5
Moldability	4	-	5
Machinability	3	-	4
Weldability	1		

Durability: water and aqueous solutions

Water (fresh)	Excellent
Water (salt)	Excellent
Soils, acidic (peat)	Excellent
Soils, alkaline (clay)	Excellent
Wine	Excellent

Durability: acids

•	
Acetic acid (10%)	Acceptable
Acetic acid (glacial)	Limited use
Citric acid (10%)	Acceptable
Hydrochloric acid (10%)	Acceptable
Hydrochloric acid (36%)	Limited use
Hydrofluoric acid (40%)	Limited use
Nitric acid (10%)	Acceptable
Nitric acid (70%)	Unacceptable

Polyisoprene rubber (IIR)

Phosphoric acid (10%)	Acceptable
Phosphoric acid (85%)	Acceptable
Sulfuric acid (10%)	Acceptable
Sulfuric acid (70%)	Unacceptable

Durability: alkalis

Sodium hydroxide (10%)	Excellent
Sodium hydroxide (60%)	Acceptable

Durability: fuels, oils and solvents

Amyl acetate	Unacceptable
Benzene	Unacceptable
Carbon tetrachloride	Unacceptable
Chloroform	Unacceptable
Crude oil	Unacceptable
Diesel oil	Unacceptable
Lubricating oil	Unacceptable
Paraffin oil (kerosene)	Unacceptable
Petrol (gasoline)	Unacceptable
Silicone fluids	Excellent
Turpentine	Unacceptable
Vegetable oils (general)	Unacceptable
White spirit	Unacceptable

Durability: alcohols, aldehydes, ketones

Acetaldehyde	Limited use
Acetone	Excellent
Ethyl alcohol (ethanol)	Excellent
Ethylene glycol	Excellent
Formaldehyde (40%)	Excellent
Glycerol	Excellent
Methyl alcohol (methanol)	Excellent

Durability: halogens and gases

Chlorine gas (dry)	Unacceptable
Fluorine (gas)	Unacceptable
O2 (oxygen gas)	Unacceptable
Sulfur dioxide (gas)	Unacceptable

Durability: built environments

Industrial atmosphere	Excellent
-----------------------	-----------

Polyisoprene rubber (IIR)

Rural atmosphere	Excellent
Marine atmosphere	Excellent
UV radiation (sunlight)	Poor

Durability: flammability

Durability: thermal environments

Tolerance to cryogenic temperatures	Unacceptable
Tolerance up to 150 C (302 F)	Acceptable
Tolerance up to 250 C (482 F)	Unacceptable
Tolerance up to 450 C (842 F)	Unacceptable
Tolerance up to 850 C (1562 F)	Unacceptable
Tolerance above 850 C (1562 F)	Unacceptable

Primary material production: energy, CO2 and water

Embodied energy, primary production	* 1.07e4	-	1.19e4	kcal/lb
CO2 footprint, primary production	* 5.11	-	5.65	lb/lb
Water usage	* 16.7	-	18.3	gal(US)/lb

Material processing: energy

Polymer molding energy	* 1.65e3	-	1.82e3	kcal/lb
Grinding energy (per unit wt removed)	* 686	-	757	kcal/lb

Material processing: CO2 footprint

Polymer molding CO2	* 1.22	-	1.34	lb/lb
Grinding CO2 (per unit wt removed)	* 0.474	-	0.524	lb/lb

Material recycling: energy, CO2 and recycle fraction

D 1	**
Recycle	×
Recycle fraction in current supply	0.1 %
Downcycle	✓
Combust for energy recovery	✓
Heat of combustion (net)	* 4.6e3 - 4.84e3 kcal/lb
Combustion CO2	* 3.15 - 3.31 lb/lb
Landfill	✓
Biodegrade	×
Toxicity rating	Non-toxic
A renewable resource?	×

Environmental notes

Isoprenes are thermosets, and thus cannot be recycled. Their disposal creates an environmental

Polyisoprene rubber (IIR)

Supporting information

Design guidelines

Isoprene has low hysteresis and high tear resistance, making it bouncy and tough.

Typical uses

Car tires and inner tubes, seals, belts, anti-vibration mounts, electrical insulation, tubing, rubber lining pipes and pumps, shoes.

Links

Reference			
ProcessUniverse			
Producers			