Office européen des brevets

EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 20.06.2001 Bulletin 2001/25

(21) Application number: 00127688.0

(22) Date of filing: 18.12.2000

(51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50

(11)

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE TR

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)

(72) Inventors:

Nakagawa, Satochi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Mizoguchi, Hiroshi, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP) Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd. Machida-shi, Tokyo 194-8533 (JP)

Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Ochiai, Keiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Yokoi, Haruhiko, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)

 Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)

 Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)

(74) Representative: VOSSIUS & PARTNER Siebertstrasse 4
81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

Description

5

20

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polynucleotide encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 ton/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 ton/year of L-lysine which is a valuable additive for livestock feeds and the like, and several hundred ton/year or more of other amino acids, such as L-arginine, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of Llysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is deregulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtained on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of Corynebacterium glutamicum ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (Mol. Gen. Genet., 252: 255-265 (1996)). Calculating on the basis of the usual gene density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. However, only about 100 genes mainly concerning amino acid biosynthesis genes are known in Corynebacterium glutamicum, and the nucleotide sequences of most genes have not been clarified hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as *Escherichia coli, Mycobacterium tuberculosis*, yeast, and the like, have been determined (*Science, 277*: 1453-62 (1997); *Nature, 393*: 537-544 (1998); *Nature, 387*: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known genes have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been developed. The techniques contribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*,

Mycobacterium bovis used in BCG vaccines, and the like (Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

BRIEF DESCRIPTION OF THE DRAWING

15

20

25

30

35

40

45

50

55

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the present invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999. No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are incorporated hereinto by reference.

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a result, found that the complete genome sequence of *Corynebacterium glutamicum* can be determined by applying the whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- (1) A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:

(a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,

(b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,

(c) detecting any hybridization, and

(d) analyzing the result of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (2) The method according to (1), wherein the coryneform bacterium is a microorganism belonging to the genus 5 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucelotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

10

15

20

25

30

35

40

45

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
- culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a 50 nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
 - (16) A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at least one amino acid is deleted, replaced, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following: 20
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

- (ii) at least temporarily storing said information;
- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information:
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator.
- (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence infor-
 - (ii) a data storing device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
 - (iv) an output device that shows a function obtained by the comparator.
 - (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
 - (31) The system according to any one of (23), (25), (27) and (29), wherein a coryneform bacterium is a microor-

5

10

15

20

25

30

35

40

45

50

EP 1 108 790 A2 ganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (32) The method according to any one of (24), (26), (28) and (30), wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium. (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes. (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28). (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30). (37) The recording medium or storage device according to (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW. (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue. (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue. (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue. (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue. (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue. (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum. (45) A DNA encoding the polypeptide of any one of (38) to (44). (46) A recombinant DNA comprising the DNA of (45). (47) A transformant comprising the recombinant DNA of (46). (48) A transformant comprising in its chromosome the DNA of (45). (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium. (50) The transformant according to (49), which is derived from Corynebacterium glutamicum. (51) A method for producing L-lysine, comprising:

culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform

5

10

15

20

25

30

35

40

45

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
- (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (63) A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulate at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.

- (64) The method according to (63), wherein the compound is L-lysine.
- (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

10

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.

As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.

- (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- [0018] The present invention will be described below in more detail, based on the determination of the full nucleotide 35 sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebac-40 terium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like.
 - [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis
- ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like. 55

(1) Preparation of genome DNA of coryneform bacteria

5

20

25

30

35

45

50

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

10 [0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2

times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA. **[0032]** The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of the buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chloroform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in *Molecular Cloning, A laboratory Manual,* Second Edition (1989) (hereinafter referred to as "*Molecular Cloning,* 2nd ed."). In particular, the following method can be exemplified to prepare a genome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 hours.

[0041] The resulting ligation product is precipitated with ethanol and dissolved in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 μ l of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life Technologies) for *Escherichia coli*. The electroporation method can be carried out under the conditions as described in the manufacturer's instructions.

[0043] The transformed *Escherichia coli* is spread on a suitable selection medium containing agar. for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(3) Production of cosmid library

5

10

15

20

25

35

40

45

50

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3AI or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/I Nacl, 20 mmol/I Tris hydrochloride, 5 mmol/I EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tube. After confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction rich in DNA fragments of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with Sau3AI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions.

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in *Molecular Cloning*, 2nd ed. and then used in transforming *Escherichia coli*. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into *Escherichia coli* XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

[0051] The transformant can be obtained as colonies formed on the plate medium.

[0052] The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according to the whole genome shotgun method (*Science*, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

[0057] The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each well of a 96-well reaction plate (manufactured by PE Biosystems) to which 0.025 ml per well of a PCR reaction solution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragments.

[0059] The excessive primers and nucleotides are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-stranded DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plate to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 μ l of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction primer (MI3REV) (*DNA Research*, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 μ l of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye Terminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for use in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The University of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactured by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same manner as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clones are sequenced at both ends of the inserted fragment to detect a nucleotide sequence in the contig derived from the shotgun sequencing obtained in (5) which is coincident with the sequence. Thus, the chain linkage between respective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furthermore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be used.

[0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the

following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone wherein

only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

10

20

25

30

35

40

45

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is determined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of *Corynebacterium glutamicum* ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence represented by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention" is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are positioned at the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequence selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

50 [0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The expression modulating fragment (hereinafter referred to as "EMF") is used herein to define a series of polynucleotide fragments which modulate the expression of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated operatably" is used herein to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an operator, an

enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like. In coryneform bacteria, an EMF is usually present in an intergenic segment (a fragment positioned between two genes; about 10 to 200 nucleotides in length). Accordingly, an EMF is frequently present in an intergenic segment of 10 nucleotides or longer. It is also possible to determine or discover the presence of an EMF by using known EMF sequences as a target sequence or a target structural motif (or a target motif) using an appropriate software or comparator, such as FASTA (*Proc. Natl. Acad. Sci. USA, 85*: 2444-48 (1988)), BLAST (*J. Mol. Biol., 215*: 403-410 (1990)) or the like. Also, it can be identified and evaluated using a known EMF-capturing vector (for example, pKK232-8; manufactured by Amersham Pharmacia Biotech).

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 or Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucleotide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein. Nucleic Acid and Enzyme, 42*: 3001-07 (1997)), Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the like, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucleotide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS: 3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (*Meth. Enzym., 164*: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from *Corynebacterium glutamicum* ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryneform bacteria can be identified by determining the full nucleotide sequence of the genome derived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

10

15

20

35

40

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucleotide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a sense primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 or an oligonucleotide comprising a sequence complementary to the oligonucleotide.

[0117] Also, analogues of these oligonucleotides (hereinafter also referred to as "analogous oligonucleotides") are also provided by the present invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiester

20

40

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (Cell Engineering, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

5

10

15

20

25

35

40

45

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutations worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can be obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutagenesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a number of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of above item 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtained by selecting a mutant wherein the utilization frequency of this pathway is lowered.

5. Clarification or determination of useful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of useful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene *pyc* of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which proline at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of *Corynebacterium glutamicum* free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene *zwf* of the B-6 strain. [0138] Furthermore, the lysine-productivity of *Corynebacterium glutamicum* was improved by replacing the base at the 932-position of aspartokinase gene *lysC* of the *Corynebacterium glutamicum* ATCC 13032 genome with cytosine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild type strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim. P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain obtained by the random mutation and selecting is generally inferior in properties (for example, showing poor growth, delayed consumption of saccharides, and poor resistance to stresses such as temperature and oxygen) to a wild type strain, which brings about troubles such as failing to establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

10

15

30

turn, elevating the production cost in practice: In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream.

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (*Appl. Microbiol. Biotechnol., 32*: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain *Corynebacterium glutamicum* ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or superior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a corporation bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bacteria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invention obtained in the above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid support to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

10

20

25

35

40

45

which at least one of a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (Nat. Genet., 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (Nat. Genet., 21: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Then, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

(2) Use of polynucleotide array 30

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expression profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profile of the gene can be analyzed:

(i) producing a polynucleotide array by the method of the above (1);

(ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions;

(iii) detecting the hybridization; and

(iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (Science, 280: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in Science, 278: 680-686 (1997); Proc. Natl. Acad. Sci. USA, 96: 12833-38 (1999); Science, 284: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) derived from coryneform bacteria in the method of the hybridization, a mutation point of a useful mutant, which is useful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can be identified and the gene

40

expression amount and the expression profile thereof can be analyzed.

[0167] The nucleic acid molecule (DNA, RNA) derived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the like. mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol., 16*: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol., 181*: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (*Nat. Bioctechnol., 14*: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescence dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

25 [0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaGene manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

30 [0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

40 (b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

45 [0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria used in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording media, such as a floppy disk, a hard disk, a magnetic tape, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; electric recording media, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like. of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

- 9. System based on a computer using the recording medium of the present invention which is readable by a computer
- [0185] The term "system based on a computer" as used herein refers a system composed of hardware device(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording me-20 dium of the present invention which is readable by a computer.
 - [0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.
 - [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software device (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.
 - [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.
 - [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary in a manner known to one of ordinary skill in the art.
 - [0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotide array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genome have been expressed and the expression ratio thereof, can be determined.
 - [0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural 45 motif data, or the like, and a memory accessing device(s) for accessing the same.
 - [0192] Namely, the system based on a computer according to the present invention comprises the following:
 - (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

10

15

25

30

40

50

[0193] This system is usable in the methods in items 2 to 5 as described above for searching and analyzing the ORF and EMF domains, target sequence, target structural motif, etc. of a coryneform bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as used herein includes both of orthologs and paralogs.

- 10. Production of polypeptide using ORF derived from coryneform bacteria
- [0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

20 [0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so long as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-described host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination

[0202] Examples of the expression vectors include a vector plasmid which is replicable in *Corynebacterium glutamicum*, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (*Mol. Gen. Genet., 196*: 175-178 (1984)), and the like; a vector plasmid which is replicable in *Escherichia coli*, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (*Agric. Biol. Chem., 48*: 669 (1984)), pLSA1 (*Agric. Biol. Chem., 53*: 277 (1989)), pGEL1 (*Proc. Natl. Acad. Sci. USA, 82*: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from *Escherichia coli* JM109/pTrS32 (FERM BP-5408)), pGHA2

(prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamined Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, by Novagen), and the like.

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as trp promoter (P_{trp}), lac promoter, P_{L} promoter, P_{R} promoter, P_{R} promoter, P_{R} promoter, P_{R} promoter, P_{R} promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{+rp} \times 2$), tac promoter, tac promoter tet promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation codon is adjusted to an appropriate distance (for example, 6 to 18 nucleotides).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

5

30

35

40

50

mized, in a known manner, depending on the host cells and environmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia, the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium, the genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue, Escherichia coli XL2-Blue, Escherichia coli DH1, Escherichia coli MC1000. Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109, Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49, Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869, Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum, or Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbi-

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the methods described in Gene, 17: 107 (1982) and Molecular & General Genetics, 168: 111 (1979) and the like, can be used.

[0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the like.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF al promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Kluyveromyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (Methods. Enzymol., 194: 182 (1990)), a spheroplast method (Proc. Natl. Acad. Sci. USA, 75: 1929 (1978)), a lithium acetate method (J. Bacteriol., 153: 163 (1983)), a method described in Proc. Natl. Acad. Sci. USA, 75: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Patent Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metallothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human

CMV can be used together with the promoter. [0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (Cytotechnology, 3: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (Proc. Natl. Acad. Sci. USA, 84, 7413 (1987)), the method described in Virology, 52: 456 (1973),

[0218] When insect cells are used as the host cells, the polypeptide can be expressed, for example, by the method described in Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992), Bio/Technology, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

10

15

20

25

30

40

45

to obtain a recombinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypeptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392, pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

- [0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.
 - [0222] Examples of the insect cells include Spodoptera frugiperda oocytes Sf9 and Sf21 (Bacurovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)), Trichoplusia ni oocyte High 5 (manufactured by Invitrogen) and the like.
- [0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.
 - [0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.
 - [0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.
 - [0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.
- 20 [0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the Agrobacterium method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.
- 25 [0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.
- [0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.
 - [0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.
 - [0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.
 - [0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.
 - [0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.
 - [0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbohydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).
- [0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, casein hydrolysate, soybean meal and soybean meal hydrolysate, various fermented cells and hydrolysates thereof, and the like.
- [0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
 - [0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is preferably maintained at 3.0 to 9.0 during the culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.
 - [0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.
 - [0239] When a microorganism transformed with a recombinant vector containing an inducible promoter is cultured,

an inducer can be added to the medium, if necessary.

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8,* 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Skoog (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

[0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptide of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion protein expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition to direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membrane outer envelope. The method can be selected by changing the host cell employed or the structure of the polypeptide produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expressing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

50 [0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recovering the polypeptide from the animal individual or plant individual.

[0258] Examples of the method for producing the polypeptide of the present invention using the animal individual include a method for producing the polypeptide of the present invention in an animal developed by inserting a gene according to methods known to those of ordinary skill in the art (*American Journal of Clinical Nutrition, 63*: 639S (1996), *American Journal of Clinical Nutrition, 63*: 627S (1996), *Bio/Technology, 9*: 830 (1991)).

10

[0259] In the animal individual, the polypeptide can be produced by breeding a transgenic nonhuman animal to which the DNA encoding the polypeptide of the present invention has been inserted to produce and accumulate the polypeptide in the animal, and recovering the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the like of the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples include an α -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which the DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and another method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λ PL(con), λ PL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like.

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspended in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sieve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secreted out of cells, the polypeptide or its derivative can be collected in the culture supernatant. Namely, the culture supernatant is obtained by treating the culture medium in a treatment similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

10

15

20

30

35

40

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide" means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res., 10*: 6487 (1982), *Proc. Natl. Acad. Sci. USA, 79*: 6409 (1982), *Gene, 34*: 315 (1985), *Nuc. Acids. Res., 13*: 4431 (1985), *Proc. Natl. Acad. Sci. USA, 82*: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

15

20

25

30

40

50

55

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptide which has not been mutated, it is preferred that the mutant polypeptide has a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the polypeptide which has not been mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the present invention can be produced by a chemical synthesis method, such as Fmoc (fluorenylmethyloxycarbonyl) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypeptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynucleotide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genome of *Corynebacterium glutamicum*, the polypucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from the venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody titer against the antigen used for the immunization, and the serum is isolated and purified to obtain a polyclonal antibody.

10

15

20

30

35

40

45

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

25

30

- (a) Preparation of antibody-producing cell
- 10 [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polypeptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody titer, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - **[0297]** The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells
 - [0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lines include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-AgI4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and the like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmol/l glutamine, 5×10^{-5} mol/l 2-mercaptoethanol, 10 µg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 µg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10^7 or more of the cells are used for the fusion.
 - (c) Production of hybridoma
- [0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter. pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5: 1 to 10: 1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.
 - [0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) per 10⁸ antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is further added thereto several times at 1 to 2 minute intervals.
 - **[0301]** After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.
 - [0302] The suspension is poured into a 96 well culture plate at 100 μ l/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.
- [0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

 [0304] A specific example of the enzyme immunoassay is described below.
 - [0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody obtained in (d) described below as a first antibody, and is further allowed to react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present invention is selected as a hybridoma capable of producing a monoclonal antibody of the present

invention.

5

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

(d) Preparation of monoclonal antibody

[0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10⁶ to 20×10⁶ cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.

[0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.

[0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.

[0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.

20 [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.

[0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),

Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).

[0313] The antibody of the present invention can be used as it is or after being labeled with a label.

[0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom. (*J. Histochem. Cytochem.* 18: 315 (1970): Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.

[0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bacteria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by the above assay, or a polypeptide array or proteome analysis described below.

[0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.

12. Production and use of polypeptide array

(1) Production of polypeptide array

[0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.

[0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.

[0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.

[0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackwell Scientific Publications, Chapter 10 (1986); *Meth.*

Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.

[0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

40

45

(2) Use of polypeptide array

10

15

35

45

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptide or compound, or a secondary label which specifically binds to the complex or to a component of the complex after unbound material has been removed; and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered include a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptide comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide comprising an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

[0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptide can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a polypeptide is separated by twodimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.

[0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining two

electrophoretic procedures having different principles. For example, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotide sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometimes derived from a modified protein. However, the modified protein can be efficiently identified using the recording medium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide sequence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the genome of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention is not limited thereto.

35 Example 1

40

45

10

20

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined based on the whole genome shotgun method (*Science*, *269*: 496-512 (1995)). In this method, a genome library was prepared and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintained at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subjected to iso-

propanol precipitation. The thus formed genome DNA precipitate was washed with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

15

20

25

30

35

40

50

55

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were bluntended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Smal/*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. coli* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-well titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

(3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of *Corynebacterium glutamicum* ATCC 13032 was partially digested with *Sau*3Al (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionated into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the <code>BamHI</code> site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into <code>Escherichia coli XL-1-BlueMR</code> strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The <code>Escherichia coli</code> was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in each well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

- (4) Determination of nucleotide sequence
- (4-1) Preparation of template

45 [0347] The full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the inserted fragment.

[0350] The excessive primers and nucleotides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a template.

[0352] The double-stranded DNA plasmid as the template was obtained by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a $2 \times YT$ medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

10 [0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

15

20

25

30

35

40

50

[0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (*DNA Research*, *5*: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

[0361] All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig derived from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage between respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of *Corynebacterium glutamicum* ATCC 13032 (*Mol. Gen. Genet., 252*: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.
[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone or a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clone or cosmid clone covering the gap part was available, primers complementary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a template or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained. ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Frame Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by these ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions were confirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO:

1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the genome.

5

10

35

40

45

50

ſ			7					Т		\neg	T	T			T						T	T			
5		Function			eta chain	n (recF		C.F.						or			4	ne protein		rotein, LysR		esis protein			
10	1				DNA polymerase III beta chain	DNA replication protein (recF	protein)	hypothetical protein	DNA topoisomerase (ATP-hydrolyzing)					NAGC/XYLR repressor			ONA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor	
15	Matched	Matched length (a.a.)			390	392		174	704					422			854	112	329	268		265	155	117	
20	Similarity	(%)	99.8		81.8	9 62		58.1	88.9					50.7			88.1	9.69	63.5	62.3		57.4	64.5	70.1	
	Loop in	(%)	99.8		50.5	53.3		35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8	
25		ine ine		dnaA		natie rec	ומווס ו כבו	or yreG	ulosis					ulosis			ulosis	sulosis	/eiH	molutealus		tus ccdA	-	culosis	
30 T		Homologous gene	Brownbacterium flavium dnaA		Menn stranger am emerge draw	ycobacterium sincign	Mycobacterium salegnasis tori	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com1	Mycobacterium tuberculosis H37Rv Rv1846c	
35	\vdash		Ìà	â	+-				i									21							
40		db Match	603000	gsp. Kabaza		Sp.UP3B_MYCSIM	Sp.RECF_MYCSM	Sp.YREG_STRCO	pir:S44198					sp:YV11_MYCTU			sp.GYRA_MYCTU	pir.E70698	SP. YEIH ECOLI			gp:AF156103_2	pir.A49232	pir.F70664	
		ORF (bp)	1	15/2	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369	
45		Initial Terminal (nt)			159/	3473	4766	5299	7486	8795	8798	1001	9474	10107	11263	11523	14398	14746	15209	17207	17670	17860	18736	20073	
50				-	1920	2292	3585	4766	5354	7830	9466	9562	9914	11177	11523	11768	11831	14405	16243	16314	17251	18729		19705	
		SEQ.	(a.a)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522	
55	⊢		a l	T	6	4	2	ď	;	80	1	T_			13	4	15	16	1.7	18	19	20	21	22	
	L							<u> </u>			<u> </u>														

			1	- 1		_										_				
5		Function	orane protein	nic acid reductase	scursor	nily protein		ride detoxication	JA helicase		lucosidase		mily or integral	nsport ATP.	rter, periplasmic	ransport protein	P-binding protein	nit NF-180	ans isomerase A	ane protein
10		Func	hypothetical membrane protein	2,5-diketo-D-gluconic acid reductase	5'-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide detoxication enzyme	ATP-dependent DNA helicace		glucan 1,4-alpha-glucosidase	lipoprotein	ABC 3 transport family or integral membrane protein	iron(III) dicitrate transport ATP-biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport protein	ribose transport ATP-binding protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
15		Matched length (a.a.)	321	26	196	270	51	139	217	1	449	311	266	222	283	312	1	347	169	226
20		Similarity (%)	50.8	88.5	56.1	56.7	72.6	79.9	80.9		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
25	inued)	ene		ATCC	us nutA	ans	tum ORF1	tris	ns recG		siae	thiae	es SF370	П	иѕвв	sC	A's		нз7RV	ЭP
	Table 1 (continued)	Homologous gene	Mycobacterium leprae MLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae ewlA	Streptococcus pyogenes SF370 mtsC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon marinus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yqgP
35				Э'n			Ö	хъ					₩.E		투루	ES		Pe		$\overline{}$
40		db Match	gp:MLCB1788_6	pir: 40838	sp:5NTD_VIBPA	gp:AE001909_7	prf.2513302C	prf.2413353A	sp.RECG_THIFE		sp:AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp:FECE_ECOLI	pir:A72417	prf.1207243B	sp:RBSA_BACSU	pir 151116	sp.CYPA_MYCTU	sp.YQGP_BACSU
		ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	687
45		Termina! (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50		Initial (nt)	20073	21253	21597	22164	23779	24295	26297	26338	28099	29117	29965	29995	30697	31677	32699	34280	34339	34982
		SEQ NO (a.a)	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55		SEQ NO.	23	24	25	26	27	28	29	30	31	32	33	34	35	1	Ť	38	i	40

	Function	anterobactin transport system ase protein		Se	actin utilization protein	netical membrane protein	Athreonine protein kinase	Athreonine protein kinase	Illin-binding protein	V snorulation protein E		shoprotein phosphatase	hetical protein	thetical protein				The state of the s	ol 2-monooxygenase	inate-semialdehyde drogenase (NAD(P)+)	thetical protein	thetical membrane protein	
		ferric perme		ATPa	vulnib	hypot	serine	serine	penic	ctano	2600	soud	hypot	hypo		-		+	phen	succ	· hypo	hypo	
	Matched length (a.a.)	332		253	260	95	648	486	492	275	20	469	155	526					117	490	242	262	
	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	66.7	9 30	0.00	70.8	66.5	38.8					63.3	78.2	57.0	64.1	
	Identity 8	40.4		51.8	26.2	40.0	40.6	31.7	33.5		31.2	44.1	38.7	23.6					29.9	46.7	27.3	29.0	
(2)		(0			viuB	sis	Bus	pksC	Au	į į	Ę.	osis	osis	osis					ATCC	Qq		j i g	
lane I (continu	Homologous gene	scherichia coli K12 fepC		/ibrio cholerae viuC	/ibrio vulnificus MO6-24	Aycobacterium tuberculo	Avcobacterium leprae of	Streptomyces coelicolor	transformicae aricanic ph	Silepioniyees girseus pe	Bacillus subtilis 168 spo	Mycobacterium tuberculo H37Rv ppp	Mycobacterium tuberculi H37Rv Rv0019c	Mycobacterium tubercul H37Rv Rv0020c				-	Trichosporon cutaneum 46490	Escherichia coli K12 ga	Bacillus subtilis yrkH	Methanococcus jannas MJ0441	
			\dagger		T		\top	اب													SS		
	db Match	sp:FEPG_ECOL		ap.VCU52150	SP. VI IB VIBVI	sp:YO11_MYC	OVM GIANO	SP FRING MILE	The second secon	gp:AF 2415/5_	sp:SP5E_BAC	pir:H70699	pir.A70700	pir:B70700		_			sp.PH2M_TRIG				
	ORF (bp)	978	900	777	200	270	000	1407		1422	1143	1353	462	864	147	720	219	471	954	1470	1467	789	
	Terminal (nt)	38198	74526	38078	00200	40189	0.00	405/6	46010	43926	45347	46669	48024	48505	49455	49897	50754	50966	54008	51626	55546	55629	
	Initial (nt)	37221	27242	26200	30202	40458		42513	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	\perp		-
	SEQ.	(a.a.) 3541	2,0	3542	242	3545		3546	354/	3548	3549	3550	3551	3552	3553	3554	3555	3556	3557	3558	1550	3560	
			Ť	丁		-i		46	4/	48	49	- 20	51	52	53	54	55	56	57	58	20	60	-
	lable I (colliniaca)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (hp) (bp) (aa)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) aprilement (a.a.)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (a.a.) (nt) (nt) (bp) (bp)	SEQ Initial (a.a.) Terminal (bp) db Match (a.a.) Homologous gene (a.a.) Identity (w) (w) (w) (w) (w) (w) (w) (w) (w) Matched (w) (w) (w) (w) (w) (w) 3541 37221 38198 978 sp.FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 Vibrio cholerae viuC 51.8 81.8 253	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (nt) (nt) (bp) db Match Homologous gene (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (a.a.) (nt) (nt) (nt) (bp) (bp)	SEQ Initial (a.a.) Terminal (bp) (nt) db Match Homologous gene (bc) (mt) Identity (mt) (mt) Matched (mt) (mt) Matched (mt) (mt) Matched (mt) (mt) Matched (mt) (mt) (mt) Matched (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) Matched (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) (mt) Matched (mt) (mt) (mt) (mt) (mt) (mt) (mt) (mt)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (nt) (nt) (nt) (bp) (bp) (bp) (cc)	SEQ (a.a.) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ NO. Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) 3541 37221 38198 978 sp.FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3543 38202 38978 777 gp.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3544 38978 40189 270 sp.VUB_VIBVU Mycobacterium tuberculosis 40.0 72.6 95 3546 40458 40189 270 sp.YO11_MYCTU Mycobacterium tuberculosis 40.0 72.6 95 3546 42513 1407 gp.AF204711_1 Streptomyces coelicolor pksC 31.7 59.1 486 3548 45347 43926 1422 gp.AF241575_1 Streptomyces griseus pbpA 33.5 66.7 402	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match (pp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)<	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched NO. (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) 3541 37221 38198 978 sp:FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 37242 36247 996 App.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 25.3 3543 38978 822 sp.VIUB_VIBVU Vibrio cholerae viuC 51.8 81.8 25.7 260 3546 38978 822 sp.VIUB_VIBVU Vibrio cholerae viuC 51.8 81.8 55.7 260 3546 40189 270 sp.VO11_MYCTU H37Rv Rv0011c A0.0 72.6 95 3546 42513 1407 gp.YO11_MYCTU Mycobacterium leprae pknB 40.6 68.7 46 3548 45347 43926 1422 gp.AF241575_1 Streptomyces coe	SEO Initial (nt) Terminal (bp) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (aa) NO. (nt) (nt) (nt) (bp) Ab Match Homologous gene (%) (%) (aa) 3541 37221 38198 978 sp.FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3543 38202 38978 777 gp.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3543 38978 777 gp.VCU52150_9 Vibrio cholerae viuC 51.8 81.8 253 3544 38978 822 sp.VIUB_VIBVU Vibrio vulnificus Mo6-24 viuB 26.2 52.7 260 3549 40458 40189 270 sp.VOII_MYCTU Mycobacterium leprae pknB 40.6 68.7 648 3549 42513 1407 gp.AF241575_1 Streptomyces griseus pbpA 31.7 65.6 37.5 3549 46489 45347 1143 sp.SP6E_BACS	SEO (nt) (nt) (nt) Terminal (nt) ORF (nt) db Match Homologous gene (nt) Identity (nt) Similarity (nt) Matched (nt) NO. (nt) (nt) (nt) (nt) (nt) (nt)	SEO Initial Terminal (NF) db Match Homologous gene Identity (%) Smilarity (%) Matched (%) NO. (nl) <	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (aa) NO (nl) (nl) (nl) (nl) (nl) (nl) (nl) (pp) Matched Homologous gene (%) (%) (%) (%) (aa) 3541 37221 38198 978 sp:FEPG_ECOLI Escherichia coli K12 fepG 40.4 70.5 332 3542 38202 38978 777 gp.VCUB2150_g Vibrino cholerae viuC 51.8 81.8 253 3546 38978 3979 822 sp.VUB_VIBVU Vibrino cholerae viuC 51.8 81.8 253 3546 40458 40189 277 gp.VCUB_VIBVU Vibrino cholerae viuC 51.8 81.8 55.7 260 3546 40458 40189 277 gp.VUB_VIBVU Mycobacterium tuberculosis 40.0 72.6 95 3546 45347 43926 1432 gp.VLUB_VIBVU Mycobacterium tuberculosis	SEO (In) (In) (In) (In) (In) (In) (In) (In)	SEO (Initial) Initial (In) (In) (ip) (ip) (ip) (in) (ip) (ip) (ip) (ip) (ip) (ip) (ip) (ip	SEO Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (aa) 37221 38198 978 sp.FEPG_ECOLI Escheitchia coli K12 fepG 40.4 70.5 332 3542 37242 38247 996 978 sp.FEPG_ECOLI Escheitchia coli K12 fepG 40.4 70.5 332 3543 38799 872 sp.VIUB_VIB_O VIBIO VIB	SEC Initial Terminal ORF Gtb Match Homologous gene Identity Similarity Inguith Initial Initial	SEO Initial Terminal ORF db Match Homologous gene Identity (%) (%)	India Termina ORF Ab Match Homologous gene Identity Similarity India Termina ORF Ab Match Homologous gene Identity Similarity India Termina ORF Ab Match Homologous gene Identity Similarity India Identity Identit

				·	r		,	, .	_		·	, —								-, -		
5 10		Function	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein			magnesium and coball transport protein		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+)/citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
15		Matched tength (a.a.)	74	179	29		310			390		400	241	340				497	563		229	293
20		Similarity (%)	74.3	70.4	83.9		50.7			59.5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
		Identity (%)	40 5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
25 30 35	Table 1 (continued)	Homologous gene	Bacillus subtilis yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium pnuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB	The state of the s	Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
40		db Match	sp:YRKF_BACSU	sp:YC61_SYNY3	pir:G70988		gp:LMFL4768_11			pir.F70952		gp AF179611_12	sp:PNUC_SALTY	sp:PHOL_MYCTU				sp:CITM_BACSU	sp:DPIB_ECOLI		sp.DPIA_ECOLI	gp:AF134895_1
		ORF (bp)	291	591	174	855	840	711	1653	1119	447	1269	069	1122	132	384	765	1467	1653	570	654	912
45		Terminal (nt)	56386	56680	57651	58941	59930	60662	62321	62390	63594	65458	65508	67972	68301	68251	69824	68720	72158	71474	72814	72817
50		Initial (nt)	56676	57270	57478	58087	59091	59952	69909	63508	64040	64190	66197	66851	68170	68634	09069	70186	70506	72043	72161	73728
		SEQ NO (a a.)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
55		SEQ NO (DNA)	61	62	63	64	65	99	29	99	69	20	71	72	73	74 3	75	76 3	77 3	78 3		80

EP 1 108 790 A2

									_								_				
5		Function	hypothetical protein	biotin synthase	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	creatinine deaminase		Constitution information	regulator)	triacylglycerol lipase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural protein	urease beta subunit	urease alpha subunit
15		Matched length (a.a.)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570
20		Similarity (%)	76.4	7.66	79 1	63.5		75.0	0.99	59.0	8.66			50.2	59.0	56.1		94.7	100 0	100.0	100.0
		Identity (%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
25	ontinued)	s gene	color A3(2)	lutamicum	erculosis	revisiae		rum Nigg	oniae	niae varS				erevisiae hst2	acnes	acnes		glutamicum	glutamicum	glutamicum 3	glutamicum
30	Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2.03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae var S	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acnes		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
35 40		db Match	gp:SCM2_3	Sp.BIOB_CORGL	pir.H70542	sp:YKI4_YEAST		PIR:F81737	GSP: Y35814					sp:HST2_YEAST	prf 2316378A	prf 2316378A		gp:AB029154_1	gp.AB029154_2	gp:CGL251883_2	gp CGL251883_3
		ORF (bp)	429 gp	1002 sp	237 pir	339 sp	117	141 P	273 G		_	306	615	924 51	972 p	900	888	513 g	300	486 9	1710 g
45		Terminal (74272	75491	75742	76035	76469	80613	81002	82120	83691	85098	85663	87241	87561	88545	90445	90461	91473	91988	93701
50		Initial (nt)	73844	74490	75506	75697	76353	80753	01374	03550	84935	85403	86277	86318	88532	89444	89558	90973	91174	91503	91992
		SEO	3581	3582	3583	3584	1585	3586	26.07	2000	3589	3590	3591	3592	3593	3594	3595	3596	3597	3598	3599
55		SEO	91 91	82	83	84	a.S.	98	2	200	00	06	91	92	93	94	95	96	97	98	66

					·																			
5		Function	urease accessory protein	ase accessory protein	urease accessory protein	urease accessory protein	epoxide hydrolase		valanimycin resistant protein			heat shock protein (hendo-family)	AMP nucleosidase	De Britania.	Manual organization of the state of the stat	ממונים בלוווים בל וויוים מחומוויו	proline dehydrogenase/P5C		aryl-alcohol dehydrogenase	oump protein (transport)	indole-3-acetyl Ace hydrology	o-acety: Ash Hydrolase	holical mombrans meeting	Thomselves memorale protein
			areg	urease	urea	urea	ebo		vala		_	heat	AMP		aret		prolir		aryl-alcot	DAM	logo		10074	
15		Matched length (a.a.)	157	226	205	283	279		347			668	481		196		1297		338	513	352		106	3
20		Similarity (%)	100.0	100.0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	41.0		29.6		25.8		30.2	36.5	23.0		35.9	
25	_		_				echA	 	닏	-	\vdash		-	\dagger	60	-		-	-		-	+	+	+
30 35	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum ATCC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter ec		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
40		db Match	gp:CGL251883_4	gp:CGL251883_5	gp.CGL251883_6	gp:CGL251883_7	prf.2318326B		gp:AF148322_1			sp:HTPG_ECOLI	SP: AMN_ECOLI		pir:E72483		sp:PUTA_SALTY		SP. AAD_PHACH	SP:YDAH_ECOLI	orf:2422424A		SP. YIDH_ECOLI	
		ORF (hp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	999	3456	114	945	1614	1332	669	366	315
45		Terminal (nt)	94199	94879	95513	96365	96368	98189	97319	100493	98808	101612	104909	105173	105841	106630	110890	111274	112318	114083	115478 1	114564 (115943	116263
50		Initial (nt)	93729	94202	94899	95517	97144	97521	98470	99819	101582	103435	103494	105751	106392	107289	107435	111161	111374	112470	114147	115262	115578	115949
		SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3609	3610	3611	3612	3613	3614	3615	3616		3618	3619	3620	3621
55		SEQ NO. (DNA)	100	101	102	·	104	105		107	108	÷	110	=	112	113		115	$\overline{}$	-+	118	119 3	120 3	121

EP 1 108 790 A2

5	Function		transcriptional repressor	methylglyoxalase	hypothetical protein	mannitot dehydrogenase	D-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoatebeta-alanine ligase	3-methyl-2-oxobutanoate hydroxymethyltransferase		DNA-3-methyladenine glycosylase		esterase		carbonate dehydratase	xylose operon repressor protein	macrolide efflux protein		
15	Matched length (a.a.)		258	126	162	497	435		260	451		279	27.1		188		270		201	357	418		
20	Similarity (%)		59 7	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		67.6		69.3		53.2	49.3	61.2		
	Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3		30.9	24.1	21.1		
25 Table 1 (continued)	ous gene		ımefaciens	rurT	uberculosis	uorescens mtlD	noniae dalT		K12 gatR	biginosus xylB		n glutamicum nC	າ glutamicum nB		ana mag		iding bacterium		thermophila	N23 xyIR	lis mef214	-	
Table 1	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yurT	Mycobacterium tuberculosis H37Rv Rv1276c	Pseudomonas fluorescens milO	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebacterium glutamicum ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
<i>40</i>	db Match		sp.ACCR_AGRTU	pir.C70019	sp:YC76_MYCTU	prf:2309180A	prf 2321326A		sp.GATR_ECOLI	sp:XYLB_STRRU		gp:CGPAN_2	gp:CGPAN_1		SP:3MG_ARATH		gp:AB029896_1		sp.CAH_METTE	sp XYLR_BACSU	gp:LLLPK214_12		
	ORF (bp)	2052	780 sp	390 pir	510 sp	1509 pri	1335 pr	189	837 sp	1419 sp	822	837 gp	813 gp	951	630 sp	654	924 gp	627	558 sp		1272 gp	804	444
45	Terminal (nt)	116548	118810	120410	120413	120951	122507	124030	124966	126350	127992	126353	127192	128099	129489	130798	130815	132424	132981	132971	134207	135518	136122
50	Initial (nt)	118599	119589	120021	120922	122459	123841	123842	124130	124932	127171	127189	128004	129049	130118	130145	131738	131798	132424	134113	135478	136321	136565
	SEQ NO.	3622	3623	3624	3625	3626	3627	3628	3629	3630	3631	3632	3633	3634	3635	3636	3637	3638	3639	3640	3641	3642	3843
<i>55</i>	SEQ NO (DNA)	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143

			_	_				-,				_														
5							protein				ve protein	protein				protein			40			ific for	lycosylase			enzyme
10		Function				cellulose synthase	hypothelical membrane protein				chloramphenicol sensilive protein	hypothetical membrane protein			transport protein	hypothetical membrane protein			ATP-dependent helicase		nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladenine glycosylase	threonine efflux protein	hypothetical protein	doxorubicin biosynthesis enzyme
15		Matched length (a.a.)				420	593				303	198			361	248			829		188	219	166	217	55	284
20		Similarity (%)				51.2	51.8				60.7	59.1			62.3	70.2			64.3		0.99	2.09	65.1	61.3	727	52 1
•		Identity (%)	ļ Ļ			24.3	25 1				34.7	30.3			32.4	34.7			33.8		40.4	34.7	39.8	34.1	50 9	31.0
25	Table 1 (continued)	us gene				mefaciens celA	erevisiae				ruginosa rarD	12 yadS			12 abrB	12 yfcA			12 hrpB		nosarum bv. L1JI nodL	373#1 alkB	12 tag	12 rhtC	aA	cetius dnrV
30	Table 1 (Homologous gene				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Pseudomonas aeruginosa rarD	Escherichia coli K12 yadS			Escherichia coli K12 abrB	Escherichia coli K12 yfcA			Escherichia coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherichia coli o373#1 alkB	Escherichia coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
35		db Match					Sp:HKR1_YEAST				SP.RARD_PSEAE F	ECOLI			Sp. ABRB_ECOLI E	ECOLI			SP.HRPB_ECOLI E		Sp:NODL_RHILV V			Sp.RHTC_ECOLI E	วรก	
40						pir 139714					sp.RAR	sp.YADS			sp:ABRI	sp:YFCA_					sp:NOD	sp ALKE	sp:3MG	sp.RHT0	sp:YAA	prf.2510326B
		ORF (bp)	1941	1539	636	1451	1731	621	1065	756	879	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
45		Terminal (nt)	138744	140329	139226	141789	143526	143075	144639	145480	145518	147238	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
50		Initial (nt)	136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	158869	159162
		SEQ NO (a a)	3644	3645	3646	3647	3648	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
55		SEQ NO. (DNA)	144	145	145	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162			165	i	167

EP 1 108 790 A2

	Function	methyltransferase				ribonuclease			neprilysin-like metallopeptidase 1		transcriptional regulator, GntR family or fatty acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism protein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		oxidoreductase	
	Matched length (a.a.)	104				118			722	:	238	332	296	498	268	586	290	335	287	457		354	
	Similarity (%)	56.7				76.3			57.2		65.6	63.0	2.08	86.1	58.2	8.69	51.0	72.2	72.1	61.5		65.5	
	Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		31.1	
Table 1 (continued)	Homolagous gene	Schizosaccharomyces pombe SPAC1250.04c				Neisseria meningitidis MC58 NMB0662			Mus musculus nt1		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2) SC8F11.03c	Streptomyces coelicolor msdA	Bacillus subtilis iolB	Bacillus subtilis iotD	Rhizobium melilati mocC	Bacillus subtilis idh or iolG	Bacillus subtilis iolH	Streptomyces glaucescens tcmA	-	Bacillus subtilis yvaA	
	db Match	gp:SPAC1250_3				gp.AE002420_13			gp:AF176569_1		sp.FARR_ECOLI	pir:T14544	gp:SC8F11_3	prt.2204281A	sp:IOLB_BACSU	sp.IOLD_BACSU	SP. MOCC RHIME	Sp. MI2D BACSU	SP.IOLH BACSU	sp:TCMA_STRGA		sp:YVAA_BACSU	
	ORF (bp)	342	930	657	933	405	639	741	2067	963	759	1017	921	1512	888	1728	954	1011	870	1374	621	1023	456
	Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	169991	170916	172444	173355	175275	176272	177318	178203	179658	178461	180711	181297
	Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	168595	168975	1	170933	172468	173548	175319	176308	177334	1	179081	179689	180842
	SEQ NO	3668	3669	3670	3671	3672	3673	3674	3675	3676	3677	3678	3679	3680	3681	3682	3683	3684	3685	3686	3687	3688	3689
-	SEQ	168	169	170	171	172	173	174	175	176	177	178		180	181	182	183	184	185	186	187	188	189

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

5		Function		probable electron transfer protein	amino acid carrier protein		mclybdopterin biosynthesis protein moeB (sulfurylase)	molybdopterin synthase, large subunit	molybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminolransferase			
15		ed												mol				<u> </u>		
		Matched length (a a)		7.8	475		368	150	158	154	37.7	727	256	96	365	121	330			
20		Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	70.5	0.89	8.07	8.09	76.9	65.8			
•	•	Identity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
25 30	Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv3571	llis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp PCC 7942 moaCB	Arthrobacter nicotinovorans moaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicotinovorans modA	Mycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malK	Streptomyces coelicolor A3(2) ORF3	mobilis hisC			
	Tabl	Homo		Mycobacterium H37Rv Rv3571	Bacillus subtilis atsT		Synechococ moeB	Arthrobacter moaE	Synechococo moaCB	Arthrobacter moaC	Arthrobacter moeA	Arthrobacter modB	Arthrobacter modA	Mycobacterium H37Rv moaD2	Thermococcu	Streptomyce: ORF3	Zymomonas mobilis hisC	y		
<i>35</i>		db Match		PIR: A70606	sp.ALST_BACSU		gp:SYPCCMOEB_1	prf 2403296D	sp:MOCB_SYNP7	prf.2403296C	gp:ANY10817_2	prf.2403296F	prf.2403296E	pir:D70816	prf 2518354A	sp.YPT3_STRCO	sp:HIS8_ZYMMO			
		ORF (bp)	582	297	1476	606	1083	456	471	468	1185	723	804	321	912	420 s	1023 8	906	294	120
45		Terminal (nt)	221131	222207	222210	225244	225242	226312	226760	227218	227703	228891	229711	230928	230931	231848	232260	234818	234910	235409
50		Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229613	230514	230608	231842	232267	233282	233913	235203	235290
		SEQ NO.	3731	3732	3733	3734	3735	3736	3737	3738	3739	3740	3741	3742	3743	3744	3745	3746	3747	3748
55		SEQ NO.	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	_

5		Function	0.	Jenase	se	ransporter		corransporter		ein	protein			sport protein	queuine (RNA-ribosyltransferase	mbrane protein				syntnetase				
10		μŦ	transcription factor	alcohol dehydrogenase	putrescine oxidase	magnesium ion transporter	-	Na/dicarboxylate corransporter	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane transport protein	queuine tRNA-r	hypothetical membrane protein		1	AEC transporter	glutamyl-tKNA syntnetase	9	transposase		
15	Matched	matched length (a.a.)	252	335	451	444		267	317	160	144			766	400	203			975	316		360	_	
20		Similarity (%)	57.1	0.99	38.1	68.5		59.6	69.1	73.8	70.1		-	45.7	0.89	62.1			49.6	63.3		55.0		
		Identity (%)	29 4	340	215	30.9		33.2	46.1	48.8	45.1			20.7	41.3	28.1			24	34.8		34.2		
25 G	table i (collinaca)	ns gene	×yR	rmophilus	ond su	eri mgtE			ıberculosis	ıberculosis	aponicum			uberculosis nmpL2	ilis	pdP			aucescens strM	JIX		yringae tnpA		
30 30 F	n) i aigei	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv tyrA	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
<i>35</i> <i>40</i>		db Match	gp:BAU81286_1	ST	sp PUO MICRU	prf:2305239A		prf 2320140A	pir:C70800	pir:B70800	gp.RHBNFXP_1		-	sp:YV34_MYCTU	SP.TGT_ZYMMO	sp:YPDP_BACSU			pir. S65588	sp:SYE_BACSU		gp.PSESTBCBAD_1		
		ORF (bp)	762 91	 	801	10	174	1530 p	1020 p	522 p	417 g	201	351	2403 s	1263 s		1080	648	1437	879	066	1110	303	138
45		Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	256204
50		Initial (nt)	236212	236326	372750	238176	239772	239986	1	242910	243494	244015	244466	244902	247310		249428	250369	250503	-	253819	255438	255794	256067
			3749	3750	2764	3752	3753	3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	
55		SEQ NO.	(DRA)	250	1,00	252	253	254	255	256	257	258	259	260	261	262	263	264	265	266	267	268	269	270

EP 1 108 790 A2

5	Function	aminase		DNA polymerase III holoenzyme tau sutunit		otein	protein	nthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chain	hypothelical membrane protein	e alpha chain			extracytoplasmic function alternative sigma factor	lase			sive regulatory	branched-chain amino acid Iransport
10		aspartate transaminase		DNA polymera: subunit	1	hypothetical protein	recombination protein	cotyric acid synthase	UDP-N-acetyln synthetase	DNA polymera	hypothelical m	aspartate kinase alpha chain			extracytoplasm sigma factor	vegetative catalase			leucine-responsive regulatory protein	branched-chair
15	Matched length (a.a.)	432		642		101	214	248	444	346	270	421			189	492			143	203
20	Similarity (%)	100.0		53.1		74.3	72.4	61.7	9.09	55.2	100.0	93.8			63.5	76.4			72.0	68.0
	Identity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
Table 1 (comlinued)	ons gene	actofermentum		philus dnaX		aaK	ecR	bilis cobQ	bilis murC	uberculosis	ı glutamicum flavum) ATCC	n glutamicum			megmatis sigE	atA			ioniae Irp	IA1 azlC
Table 0s	Homologous gene	Brevibacterium lactofermentum aspC		Thermus thermophilus dnaX		Bacillus subtilis yaaK	Bacillus subtilis recR	Heliobacillus mobilis cobQ	Heliobacillus mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutarnicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			Mycobacterium smegmatis sigE	Bacillus subtilis katA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1
35 40	db Match	sp.W69554		p:AF025391_1		P.YAAK_BACSU	SP. RECR_BACSU	prf.2503462B	prf.2503462C	pir:H70794	p:YLEU_CORGL	p:AKAB_CORGL			prf.2312309A	p.CATV_BACSU			P.LRP_KLEPN	p:AZLC_BACSU
	ORF (bp)	1296 gsp	630.	2325 gp./	717	309 sp:\	654 sp:F	750 prf.	1269 prf.	1080 pir.t	867 sp.)	1263 sp:/	1053	1434	579 ptf.2	1506 sp.(342	291	462 sp:L	753 sp./
45	Terminal O	257894 12	258529 6	260875 23	258596 7	261295 3	262055 6	262546 7	263298 12	264599 10	268258 8	270633 12	269524 10	273194 14	273542 5	275871 1:	276232 3	275957 2	276302 4	277581 7
50	Initial (nt)	256599	257900	258551	259312	260987	261402	263295	264566	265678	269124	269371	270576	271761	274120	274366	275891	276247	276763	276829
	SEQ NO.	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	3784	37.85	3786	3787	3788	3789
55	SEQ NO.	271	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	287	288	289

5	Function			metaltoregulatory protein	arsenic oxyanion-translocation pump membrane subunit	arsenate reductase				Na+/H+ antiporter or mulliple resistance and pH regulation related protein D	Na+/H+ antiporter	Na+/H+ antiporter or multiple resistance and pH regulation related protein A				transcriptional activator	two-component system sensor histidine kinase	alkaline phosphatase		phosphoesterase	hypothetical protein
15	Matched length (a a)		,	06	341	119				503	119	824				223	521	180		307	149
20	Similarity (%)			689	84.2	689				70.4	70.6	64.3				70.4	999	0.09		54.7	71.8
	Identity (%)			34.4	52.2	31.1				32.4	37.0	34.1				38.6	26.7	28.3		26.1	37.6
25 Table 1 (Continued)	ous gene			. As4 arsR	o. As4 arsB	xylosus arsC				F4 mrpD	aureus mnhC	Р4 mгрA				phus CH34	uberculosis	is MG1363 apl		kuE	,de
30 Table 1	Homologous gene			Sinorhizobium sp.	Sinorhizobium sp. As4 arsB	Staphylococcus xylosus arsC				Bacillus firmus OF4 mrpD	Staphylococcus aureus mnhC	Bacillus firmus OF4 mrpA		A CONTRACTOR OF THE CONTRACTOR		Alcaligenes eutrophus CH34 czcR	Mycobacterium tuberculosis mtrB	Lactococcus lactis MG1363 apl		Bacillus subtilis ykuE	Bacillus subtilis yqeY
<i>35</i> <i>40</i>	db Match			gp:AF178758_1	gp.AF178758_2	sp. ARSC_STAXY				gp:AF097740_4	prf.2504285D	gp:AF097740_1	-			sp.czcR_ALCEU	prf:2214304B	SP. APL_LACLA		pir:B69865	sp.YQEY_BACSU
	ORF (bp)	324	315	345 gp.	1080 gp.	387 sp	318	270	453	1530 gp:	381 prf.	2886 gp:	1485	603	864	:ds 999	1467 prf.	603 sp	561	915 pir.	453 sp.
.· 45	Terminal (nt)	277904	277987	278388	279893	280279	280349	280670	280949	281404	282937	283317	287857 1	287059	287966	289131	289777	292417	291273	292597	293991
50	Initial (nt)	277581	278301	278732	278814	279893	280666	280939	281401	282933	283317	286202	286373	287661	288829	289796	291243	291815	291833	293511	293539
	SEQ NO (a a.)	3790	3791	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3803	3804	3805	3806	3807	3808	3809
<i>55</i>	SEQ NO.	290	291	292	293	294	295	296	297	298	299	300	301	302	303	304	305	306	307	308	309

	1									_			-							···	, .	
5		Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid-CoA ligase	transcriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15		Matched length (a a)	782	7.1		50	149	440		534	127	251	254	394	153	272			207	*	240	211
20		Similarity (%)	77.1	63.4		96.0	89.9	689		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
		Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25	tinued)	ene	e pon 1	lor A3(2)		lor A3(2)	culosis	shiA			lor A3(2)		Su	atg6	arum nodN	culosis					gr	culosis
	Table 1 (continued)	Homologous gene	Mycobacterium leprae pon1	Streptomyces coelicolor A3(2) whiB		Streptomyces coelicolor A3(2) SCH17.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis lcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3677c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
35		_	2	w s			≥ I				တတ		Z		>	≥I			>			ΣI
40		db Match	prf 2209359A	pir: S20912		gp:SCH17_10	pir:G70790	sp:SHIA_ECOLI		sp:LCFA_BACSU	gp:SCJ4_28	sp:FABG_BACSU	sp.FLUG_EMENI	prf.2512386A	SP. NODN_RHILV	pir:F70790			prf:2323349A		sp:UVEN_MICLU	pir.870790
		ORF (bp)	2385	339	192	153	459	1353	609	1536	525	933	942	1194	471	843	1173	705	681	192	780	558
45		Terminal (nt)	294004	297402	297622	297783	298250	298332	300695	299726	301512	303099	304074	305263	305758	306700	305195	307504	306782	307727	308734	309302
50		Initial (nt)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	306367	306800	307462	307918	307955	308745
		SEQ NO.	3810	3811	3812	3813	3814	3815	3816	3817	3818	3819	3820	3821	3822	3823	3824	3825	3826	3827	3828	3829
55		SEQ NO (DNA)	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

EP 1 108 790 A2

ſ		Т		\top			T	T	T							\top				
5	uc				ine protein	phatase		ion protein		ane protein						A helicase				
10	Function	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical protein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
15	Matched length (a.a.)	192	396	280	156	287	349	319	!	262	201	59				764	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8	-			66.1	88.1		81.6	
	Identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5				33.8	68.7		61.7	_
25 (panu	ine	aB ee	losis	:12 cEH	ulosis		ulosis			ulosis	ulosis	ulosis					nis SI55		ulosis	
8 Table 1 (continued)	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tuberculosis 137Rv Rv3671c	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherichia coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter globiformis SI55 csp		Mycobacterium tuberculosis H37Rv Rv3646c topA	
35		Ü	ΣΞ	ŭ	ΣÏ	ΣZ	ΣÏ	ü		ΣÏ	ΣI	ΣI					∢ ö		≥I	
40	db Match	Sp. YEAB_ECOLI	pir.H70789	prf:2411250A	pir.F70789	pir:S72914	pir:E70788	pir.C44020		pir.C70788	pir: 870788	pir.A70788		_		sp:YPRA_BACSU	sp:CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	549	996	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
45	Terminal (nt)	310038	311325	311899	312909	313625	316002	317132	316350	317893	318465	318689	319013	318545	319335	319336	322207	321992	325897	326614
50	Initial (nt)	309370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318696	318958	318991	321690	322007	322216	322910	325904
	SEO	3830	3831	3832	3833	3834	3835	3836	3837	3838	3839	3840	3841	3842	3843	3844	3845	3846	3847	3848
55	SEQ NO.		1	332	:	334	335	336	337	i	339	340	341	342	343	344	345	346	347	348

		,			,						-										
5	Function	adenylate cyclase	DNA polymerase III subunit tau/gamma		hypothetical protein	hypothetical protein	ribosomal large subunit pseudouridine synthase C	beta-glucosidase/xylosidase	beta-glucosidase	NAD/mycothiol-dependent formaldehyde dehydrogenase		metallo-beta-lactamase superfamily	3-oxoacyl-(acyl-carrier-protein) reductase	valanimycin resistant protein	dTDP-glucose 4,6-dehydratase	hypothetical protein	dolichol phosphate mannose synthase		nucleotide sugar synthetase	UDP-sugar hydrofase	
15	Matched length (a.a.)	263	423		144	172	314	558	101	362		160	251	415	320	. 108	230		260	586	
20	Similarity (%)	62.4	52.7		59.0	63.4	65.0	60.2	61.4	86.5		47.5	55.8	56.4	66.3	88.9	66.5		57.3	54.4	
·	Identity (%)	32.7	25.3		32.6	39.0	43.6	34.8	38.6	9.99		32.5	25.9	26.3	33.8	59.3	33.9		25.8	26.1	
25 (pajuriju Uliuned	депе	a B17R20	~		cum uu033	ırans	rluc	i D1 bgxA	salB	ano ica		polis orf5	fabG	ciens vImF	В	culosis	aschii JAL-		yeſJ	um ushA	
os Table 1 (continued)	Homologous gene	Stigmatella aurantiaca B17R20 cyaB	Bacillus subtilis dnaX		Ureaplasma urealyticum uu033	Deinococcus radiodurans DR0202	Escherichia coli K12 rluC	Erwinia chrysantherni D1 bgxA	Azospirillum irakense salB	Amycolatopsis methano ica		Rhodococcus erythropolis orf5	Escherichia coli K12 fabG	Streptomyces viridifaciens vlmF	Actinoplanes sp. acbB	Mycobacterium tuberculosis H37Rv Rv3632	Methanococcus jannaschii JAL- 1 MJ1222		Escherichia coli K12 yefJ	Salmonella typhimurium ushA	
40	db Match	sp.CYAB_STIAU	sp.DP3X_BACSU		gp. AE002103_3	gp:AE001882_8 C		Sp. BGLX_ERWCH E	gp:AF090429_2 A	Sp.FADH_AMYME A		sp:YTH5_RHOSN R	sp:FABG_ECOLI E	-	prf:2512357B A	pir.A70562 H	sp.YC22_METJA N		sp:YEFJ_ECOLI E	SP:USHA_SALTY S	
45	ORF (bp)	1041	1257	162	444	561	882	1644	1989	1104	621	537	699	1230	933	375	759	1029	1035	2082	162
	Terminal (nt)	326695	329539	329909	330376	331533	332433	334562	334953	336112	335185	336748	337449	338768	339725	340195	340569	342375	343451	345717	345814
50	Initial (nt)	327735	328283	329748	329933	330973	331552	332919	332965	335009	335805	336212	336781	337539	338793	340569	341327	341347	342417	343636	345975
	SEQ NO (a a)	3849	3850	3851	3852	3853	3854	3855	3856	3857	3858	3859	3860	3861	3862	3863	3864	3865	3866	3867	3868
55	SEQ NO (DNA)	349	350	351	352	353	354	355	356	357	358	359	360	361	362	363	364	365	366	367	368

	Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphate thymidylyltransferase	dTDP-4-keto-L-rhamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane prolein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		capsular polysaccharide biosynthesis	ORF 3	Ippopolysaccharide biosynthesis / aminofransferase
A detection	Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	102		613	90	394
	Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		683	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3
	Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	20.7	28.5	39.2		33.0	41.0	37.1
	Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans rmiC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A.19c	Sphingomonas capsulata		Streptomyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsonii ptk	Acinetobacter johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
	db Match		sp.ADH_MYCTU	sp:RFBA_SALAN	qp:D78182 5	SP. RMLB STRMU	SP NOX THETH	prf:2510361A		sp:Y17M_MYCTU	gp:SC5F2A_19	prf.2502226A	-	gp.SCF43_2	gsp W56155	prf.2404346B	prf.2404346A		sp:CAPD_STAAU	PRF:2109288X	prf.2423410L
	ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	1092	1095	1434	603	984	1812	942	1155
	Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	367701	369801
	Initial (nt)	346460	348019	348952	350310	351443	351948	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	-		368642	<u>i </u>
	SEQ NO. (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3886	3007	388
	SEQ NO. (DNA)	369	370	37.1	37.2	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388

		,			,															
5	Function	pilin glycosylation protein	capsular polysaccharide biosynthesis	lipopolysaccharide biosynthesis / export protein	UDP-N-acetylglucosamine 1- carboxyvinyltransferase	UDP-N- acetylenolpyruvoylglucosamine reductase	sugar transferase	transposase		Iransposase (insertion sequence (S31831)		hypothetical protein	acetyltransferase	hypothetical protein B	UDP-alucose 6-dehydrogenase			alycosyl transferase	acelvitransferase	
15	Matched length	+	380	504	427	273	356	53 t		7.0		404	354	65 h	388	1		243 0	T	
20	Similarity (%)	75.0	69.2	69.8	64.6	68.5	57.3	79.3		94.3		57.4	60.2	53.0	89.7			65.0	62.0	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	33.0	
25 (continued)	Homologous gene	ngitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	oacae murA	murB	ORF39x2	n glutamicum		n glutamicum		luberculosis	Pseudomonas aeruginosa PAO1 psbC	n glutamicum	pgn			wbnA	0157 wbh!!	-
7able 1	Homolog	Neisseria meningitidis pglB	Staphylococcus	Xanthomonas c	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas a psbC	Corynebacterium glutamicum	Escherichia coli ugd			Escherichia coli wbnA	Escherichia coli 0157 wbhl l	
40	db Match	gp:AF014804_1	sp.CAPM_STAAU	pir.S67859	Sp MURA_ENTCL	sp:MURB_BACSU	gp:VCLPSS_9	prf 2211295A		pir.S43613		pir.G70539	gsp:W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	gp:AB000676_13	
	ORF (bp)	612	1161	1491	1314	1005	1035	150	135	327	276	1170	993	231	1161	273	1209	822	645	195
45	Terminal (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	367200	387463
50	Initial (nt)	369794	370613	371929	373500			377683	378093	378185	378562	379837	380842	381265	381948	383768	385190	386195	386556	387657
	SEQ NO (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	9066	3907
55	SEQ NO (DNA)	389	390	351	392	393	394	395	396	397	398	399	400	401	402	403	404	405	406	407

EP 1 108 790 A2

		nase						ubunit B										ion		
5	Function	dehydroge	hosphate		ulator	unit	ogenase	ogenase s						u.	in			transcript		
10	Hu	dihydrolipoamide dehydrogenase	UTPglucose-1-phosphate uridylyltransferase	regulatory protein	transcriptional regulator	cytochrome b subunit	succinate dehydrogenase flavoprotein	succinate dehydrogenase subunit B						hypothetical protein	hypothetical protein			tetracenomycin C transcription repressor		transporter
15	Matched length (a.a.)	469	295	153	477	230	809	258						259	431			197		499
20	Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
	Identity (%)	93.6	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
tinued)	ene	amicum	stris	nosa PAO1	culosis	lor A3(2)		ns sdhB						lor	yjiN			scens		T#2717
S Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 orfX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10 12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
35		Ω.∢	×		ΣÏ	<u> </u>	m _	4						ώ ώ						
40	db Match	gp:CGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp.BMSDHCAB						gp:SCC78_5	sp:YJIN_ECOL			sp:TCMR_STRGA		gp:AF164961_8
	ORF (bp)	1407	921	498	1422	771	1875	837	336	261	630	96	339	975	1251	420	303	678	204	1647
45	Terminal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50	Initial (nt)	387692	389248	390233	392208	392705	393639	395426	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401150
	SEQ NO (a a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3926
55	SEQ NO.	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

5		Function	Iransporter	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase B		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothelical protein	hypothetical protein			
15		Matched length (a.a.)	508 tra	286 10	208 de			280 hy	92 hy		748 ca		626 glı	348 he	330 AE	254 AE	266 hy	258 hy	1		
20		Similarity (%)	74.6	72.7	74.0		_	53.6	85.9		75.3		56.1	83.6	90.3	85.0	56.4	61.6	:		
		Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
25	Table 1 (continued)	us gene	liae T#2717	sp. P-1 purU	30C			ium GIR 10	berculosis		prae ctpB		erevisiae ita1	diphtheriae	diphtheriae	diphtheriae	licolor C75A	licolor C75A			
30	Table 1 (Homologous gene	Streptornyces fradiae T#2717 urdJ	Corynebacterium sp.	Bacillus subtilis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C sta1	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptornyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A, 17c			
<i>35</i> <i>40</i>		db Match	p AF164961_8	P.PURU_CORSP	p DEOC_BACSU			rf.2413441K	ir A70907		Sp.CTPB_MYCLE		SAMYH_YEAST	p:AF109162_1	p:AF109162_2	p:AF109162_3	p.SCC75A_17	p:SCC75A_17			
		ORF (bp)	1632 g	912 s	s 999	150	897	867 р	300 p	900	2265 s	450	1863 sp	1077	1068 91	813 91	957 91	837 91	810	813	501
45		Terminal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	407711	410027	412545	413633	414710	415526	416599	417439	417545	418441	—i
50		Initial (nt)	402799	405419	405480	406310	406417	406550	407708	408546	409975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
		SEQ NO (a a)	3927	3928	3929	3930	3931	3932	3933	3934	3935	3936	3937	3938	3939	3940	3941	3942	3943		3945
55		EQ VO NA)	127	128	129	130	131	132	133	134	35	36	37	138	39	40	14	42	43	44	45

5	Function		UDP-N-acetylpyruvoylglucosamine reductase				long-chain-fatty-acidCoA ligase	Iransferase	phosphoglycerate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	cytochrome P450	exopolyphosphatase	hypothetical membrane protein	pyrroline-5-carboxylate reductase	membrane glycoprotein	hypothetical protein	
15	Matched	-+	356				558	416	246	417	231		921	269	306	302	269	394	55	
20	Similarity	(%)	58.4				68.1	58.7	84.2	74.8	6.06		2.09	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity	(%)	30.1				35.5	33.9	7.07	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
30 February 1005	ons dene	,	RDD012 murB				cfA	elicolor	elicolor A3(2)	ovis senX3	ovis BCG		elicolor A3(2)	uberculosis	eruginosa ppx	uberculosis	glutamicum oC	rus 1 ORF71	eprae	
30 dec	Homologous gene		Escherichia coli RDD012 murB				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacterium glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
<i>35</i>	db Match		gp:ECOMURBA_1				sp.LCFA_BACSU	gp.SC2G5_6	sp.PMGY_STRCO	prf 2404434A	prf.2404434B		gp:SCE25_30	sp:YV21_MYCTU	prf.2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp D88733_1	pir S72921	
70	ORF	(dq)	1101 gp E	651	735	174	1704 sp.L	1254 gp.S	744 sp.P	1239 prf 2	696 prf.2	879	2586 gp:S	903 sp:Y	927 prf.2	813 sp:Y	810 sp.F	1122 gp.C	198 pir S	219
45	Ta.	(m)	420885	421516	420309 7	422031 1	422090 1	425131 1	425920	427172 1	427867 6	429439	429438 2	432126	433988	434822	435695	433865 1	436137	436103
50	Initial	(tr)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434010	434886	434986	435940	436321
	SEQ		3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3956	3957	3958	3959	3960	3961	3962	3963
55	SEO	(D) (V)	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460	461	462	463

EP 1 108 790 A2

5	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase		cat operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	uroporphyrin-III C-methyltransferase	
15	Matched length	29			296	74		455	308		321	417	309	282		363		578		347	486	
20	Similarity (%)	100 0			77.4	66.2	-	74.3	75.3		57.6	72.2	67.9	98.6		9.89		55.2		59.9	71.6	
	Identity (%)	89.7			510	40.5		44.4	50.7		27.1	35.5	28.2	98.2		34.7		25.1		25.1	46.5	
25 (Continued)	Homologous gene	oelicolor			leprae 3. serB	tuberculosis		leprae hemA	leprae hem3b		alcoaceticus	K12 shiA	ssa qa4	n glutamicum		K12 potG		cens sfuB		Brachyspira hyodysenteriae bitA	leprae cysG	
30 L elder	Homolog	Streptomyces coelicolor SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catM	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebacterium glutamicum ASO19 aroE		Escherichia coli K12 potG		Serratia marcescens sfuB		Brachyspira hyc	Mycobacterium leprae cysG	
40	db Match	gp:SCE68_25		ikajing in mamananananananananan ayada in ing ing ing ing ing ing ing ing ing	pir.S72914	sp:YV35_MYCTU		Sp:HEM1_MYCLE	pir:S72887		sp.CATM_ACICA	sp:SHIA_ECOLI	sp.3SHD_NEUCR	gp:AF124518_2		sp:POTG_ECOLI		sp:SFUB_SERMA		gp.SHU75349_1	pir:S72909	
	ORF (bp)	66	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45	Terminal (nt)	436561	436764	437850	436980	438424	438037	439904	440814	441591	441601	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50	Initial (nt)	436463	436573	437233	438044	438179	438294	438516	439909	441220	442482	442758	444185	446538	447670	449179	449714	450826	450849	451895	452661	454450
	SEQ NO	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55	SEQ NO	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	482	483	484

						e B															
10		Function	delta-aminolevulinic acid dehydratase			cation-transporting P-type ATPase		uroporphyrinogen decarboxylase	protoporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	hypothetical protein	cytochrome c-type biogenesis protein	hypothetical membrane protein	cytochrome c biogenesis protein		transcriptional regulator	Zn/Co transport repressor		hypothetical membrane protein	1,4-dihydroxy-2-naphthoate octaprenyltransferase
			delta-aminolo dehydratase			cation		uropor	protop	glutam aminor	phospl	hypoth	cytochr protein	hypoth	cytoch		transci	Zn/Co		hypoth	1,4-dih octapr
15	Matched	length (a.a.)	337			858	-	364	464	425	161	208	245	533	338		144	06		82	301
20	Cimilarity	(%)	83.1		-	56.5		76.7	59.9	83.5	62.7	71.2	85.3	76.0	77.8		69.4	72.2	-	78.1	61.5
	74:44	(%)	60.8			27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
25	(Papelle	ene	lor A3(2)			ctpB		lor A3(2)		hemL	pmB	sisoina	culosis	culosis	culosis		culosis	is zntR		ulosis	nenA
30 F G	loo) - capi	Homologous gene	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae ctpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Mycobacterium leprae heml.	Escherichia coli K12 gpmB	Mycobacterium tuberculosis H37Rv Rv0526	Mycobacterium tuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv Rv0531	Escherichia coli K12 menA
35		_				MYCLE						2 1	Z	Z 1.			Z	U)		Z T	
40		db Match	sp.HEM2_STRCO			sp.CTPB_MY(sp.DCUP_STRCO	sp. PPOX_BACSU	sp:GSA_MYCLE	sp.PMG2_ECOLI	pir.A70545	pir:B70545	pir:C70545	pir:D70545		pir:G70790	prf:2420312A		pir.F70545	sp MENA_ECOLI
	0.0	(pb)	1017	582	510	2544	843	1074	1344	1311	909	621	792	1623	1011	801	471	357	300	333	894
45	-	lerminal (nt)	455983	456597	457150	459900	458583	461093	462455	463867	464472	465102	465909	467571	468658	470170	470654	470657	471121	471847	471915
50		(nt)	454967	456016	456641	457357	459425	460020	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEO	NO.	3985	3986	3987	3988	3989	3990	3991	3992	3993	3994	3995	3996	3997	3998	3999	4000	4001	4002	4003
55	SEQ	NO (DNA)	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503

			7															_		
5	Function	olycosyl transferse	malonyl-CoA-decarboxylase	hypothetical membrane protein	ketoglularate semialdehyde dehydrogenase	5-dehydro-4-deoxyglucarate dehydratase	als operon regulatory protein	hypothetical protein		2. Suppose A & discontinuous	2-Pyrone-4, o-dicar boxylic acid			low-affinity inorganic phosphate	anabone		naphthoate synthase	peptidase E	Oferin-4a-carbinolamina dab destata	muconate cycloisomerase
15	Matched length	238	421	139	520	303	293	94		267				410			293	1	77	
20	Similarity (%)	62.6	51.5	65.5	76.0	75.6	66.2	64.9		547				83.2			70.3	82.7	68.8	76.7
	Identity (%)	32.4	25.4	35.3	50.4	48.5	36.9	33.0		28.1		1		0.09			48.5	67.9	37.7	54.0
25 Garilli	gene	wcgB	18	yqjF	e e	а КОВОН	alsR	rculosis		LB126 fldB				rculosis			3	rans	phhB	culosis
30 Table 1 (Continued)	Homologous gene	Bacteroides fragilis wcgB	Rhizobium trifolii matB	Escherichia coli K12 yajF	Pseudomonas pulida	Pseudomonas putida KDGDH	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv0543c		Sphingomonas sp L				Mycobacterium tuberculosis H37Rv pitA			Bacillus subtilis menB	Deinococcus radiodurans DR1070	Aquifex aeolicus VF5 phhB	Mycobacterium tuberculosis H37Rv Rv0553 menC
<i>35</i> <i>40</i>	db Match	gp:AF125164_6	prf.242327CB	sp:YQJF_ECOLI	pir:S27612		sp.ALSR_BACSU_[pir:B70547		gp:SSP277295_9				pir.D70547			sp: MENB_BACSU_B	9p:AE001957_12 D	pir C70304 A	pir.D70548 H
	ORF (bp)	864	1323	411	1560	940	879	315	444	750	417	378	261	1275	222	306	957	603	309	1014
45	Terminal (nt)	473811	473814	474997	475489	477048	478092	478989	480597	479452	480208	480624	481131	481394	483366	483637	484106	485986	485077	487014
50	Initial (nt)	472948	475136	475407	477048		478970	479303	480154	480201	480624	481001	481391	482668	483587	483942	485062	485384	485385	486001
	SEQ NO.	4004	4005	4006	4007	4008	4009	4010	4011	4012	4013	4014	4015	4016	4017	4018	4019	4020	4021	4022
55	SEQ NO. (DMA)	504	505	909	507	508	509	510	511	512	513	514	515	516	517	518	519	520	521	522

EP 1 108 790 A2

5	Function	2-oxoglutarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylatesynthase	hypothelical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
15	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
20	Similarity (%)	54.0	64.9	54.2	89.9	2'99		7.97	67.1	100.0	100.0	100 0	100.0	50.2	82.4
	Identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100 0	23.1	60.5
25 (juned)	ane.		ulosis	ulosis	/cA	biE		ulosis	hilus	micum	micum	micum	micum)r	ulosis
S Table 1 (continued)	Homologous gene	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tuberculosis H37Rv pimB	Escherichía coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0561c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rptK	Corynebacterium glutamicum ATCC 13032 rplA	Streptomyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
40	db Match	sp.MEND_BACSU	pir:G70548	pir:H70548	sp:CYCA_ECOL!	sp:UBIE_ECOLI		pir:D70549	sp:HEP2_BACST	gp:AF130462_2	gp:AF130462_3	gp:AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp.GABT_MYCTU
	ORF (bp)	1629	441	1239	1359	069	699	1272	1050	333	954	435	708	1512	1344
45	Terminal (nt)	488656	489100	490447	491938	492655	493583	492645	495110	497142	498327	499032	493869	499925	502920
50	Initial (nt)	487028	488660	489209	490580	491966	492915	493916	494061	496810	497374	498598	499162	501436	501577
	SEQ NO	4023	4024	4025	4026	4027	4028	4029	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO (DNA)	523	524	525	526	527	528	529	530	531	532	533	534	535	536

Table 1 (continued)	(bp) db Match Homologous gene Identity Similarity Matched (%) (%) length Function (aa)	1359 sp.GABD_ECOLI Escherichia coli K12 gabD 40.8 71.8 461 succinate-semialdehyde dehydrogenase (NAD(P)+)	468 GP.ABCARRA_2 Azospirillum brasilense carR 32.0 38.0 150	1191 sp. TYRP_ECOLI Escherichia coli K12 0341#7 25.5 49.9 447	1950 sp.CTPG_MYCTU Mycobacterium tuberculosis 33.2 64.4 615 cation-transporting ATPase G	1413 sp P49_STRUI Streptomyces lividans P49 40.2 .66.2 468 hypothetical protein or	603	513 sp.RL10_STRGR Streptomyces griseus N2-3-11 52.9 84.7 170 50S ribosomal protein L10	384 sp RL7_MYCTU Mycobacterium tuberculosis 72.3 89.2 130 50S ribosomal protein L7/L12		972 pir A70962 Mycobacterium tuberculosis 25.8 , 55.5 283 hypothetical membrane protein	3495 sp.RPOB_MYCTU Mycobacterium tuberculosis 75.4 90.4 1180 DNA-directed RNA polymerase beta	3999 sp.RPOC_MYCTU Mycobacterium tuberculosis 72.9 88.7 1332 DNA-directed RNA polymerase beta	582 GP: AF121004_1 Mycobacterium tuberculosis 39.0 52.0 169 hypothetical protein		780 gp:SCJ9A_15 Streptomyces coelicolor A3(2) 39.2 63.8 232 DNA-binding protein	798 sp.YT08_MYCTU Mycobacterium tuberculosis 29.3 57.7 215 hypothetical acceptance
	db Match	sp.GABD_ECOLI	GP_ABCARRA_2	sp.TYRP_ECOLI	sp.CTPG_MYCTU	sp P49_STRLI		sp.RL10_STRGR	sp RL7_MYCTU			sp:RPOB_MYCTU	sp:RPOC_MYCTU	iP:AF121004_1		p:SCJ9A_15	P:YT08_MYCTU
	Terminal ORI (bp	504283 135	503272 468	505569 119	507647 1950	509081 1413	509696 603	510510 513	510974 384	510989 138	512507 972	516407 3495	520492 3999	518696 582	520850 180	521644 780	521679 798
	SEQ Initial NO (nt)	4037 502925	4038 503739	4039 504379	4040 505698	4041 507669	4042 509094	4043 509998	4044 510591	4045 511126	4046 511536	4047 512913	4048 516494	4049 519277	4050 520671	4051 520865	4052 522476
-	SEQ 6 NO.	537 4	538 4	539 4	540 4	541 4	542 4	543 40	544 40	545 4(546 40	547 40	548 46	549 40	550 40	551 40	552 40

	Function	30S ribosomal protein S12	30S ribosomal protein S7	elongation factor G			lipoprotein		- :	ferric enterobactin transport ATP- binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA:acetate coenzyme A transferase	30S ribosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
	Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	92	
	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	9.08	79.3	0.66	9.68		90.1	90.6		92.9	98.9	
	Identity (%)	80.9	81.8	71.7	Ì		26.0			56.2	45.6	48.1	56.6	84.2	66.5		71.2	74.0		80.7	87.0	
Table 1 (continued)	l lomologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus Iuteus fusA			Chlamydia trachomatis			Escherichia coli K12 fepC	Escherichia coli K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium thermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rplW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv Rv0705 rpsS	
	db Match	sp:RS12_MYCIT	sp.RS7_MYCSM	sp.EFG_MICLU			GSP: Y37841			sp:FEPC_ECOLI	SD:FEPG ECOLI	Sp. FEPD_ECOLI	gp:CTACTAGEN_1	sp:RS10_PLARO	sp:RL3_MYCBO		Sp.RL4_MYCBO	sp.RL23_MYCBO	-	sp:RL2_MYCLE	sp:RS19_MYCTU	
	ORF (bp)	366	465	2115	2160	144	228	153	729	792	1035		516	303	654	687	654	303	327	840	276	285
	Terminal (nt)	523059	523533	526010	523911	526013	526894	527607	528768	528779	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
	Initial (nt)	522694	523069	523896	526070	526156	527121	527759	528040	529570	530626	531782	532008	533099	533437	534087	534090		535072	535076	535935	536183
	SEQ NO (a.a.)	4053	4054	4055	4056	4057	4058	4059	4060	4061	4062	4063	4064	4065	4066	4067	4068	4069	4070	4071	4072	4073
	SEQ NO.	553	554	555	556	557	558	559	560	561	562	563	564	565	566	567	568	569	570	571	572	573

					_	_																		
5		no	n L22	53	n L 16	1 20	217				1114	1.24		57		acid reductase	O cicho o	e dinucleotide	e H or alpha			oinding protein	,	
10		Function	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein 1 29	30S ribosomal protein C17				50S ribosomal protein L14	50S ribosomal protein L24		ous ilbosomai protein L5	0 11:11:00	z, 5-diketo-U-gluconic acid reductase	formate dehydrogenses chair D	molybdopterin-guanine dinucleotide	formate dehydrogenase H or alpha	cnain		ABC transporter ATP-binding protein		
15		Matched length (a a)	109	239	137	67	82				122	105	103	T	, oac	\top	298		756	\top		624 A		
20		Similarity (%)	91.7	91.2	88.3	88 1	89.0			-	95.1	91.4	00.3	25.0	74.2	7.1.	59.7	68.1	53.4			52.6		
		Identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	76.2	73.6	2	523	2	28.9	37.2	24.3			26.9		
25	ned)	9	losis	CG rpsC	CG rpIP	CG rpmC	CG rpsQ				osis	osis					GHD	A3(2)		-		SIS		
30 35	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv0714 rplN	Mycobacterium tuberculosis H37Rv Rv0715 rplX	Micrococcus luteus rolF		Corynebacterium sp.		Wolinella succinogenes fdhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdfF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
40		db Match	sp.RL22_MYCTU		sp.RL16_MYCBO	sp.RL29_MYCBO	sp.RS17_MYCBO				sp:RL14_MYCTU N	SP:RL24_MYCTU N	Sp.RL5_MICLU N		SP.2DKG_CORSP_C	+	SP. FDHD WOLSU W		Sp.FDHF_ECOLI			sp:YC81_MYCTU H		
		ORF (bp)	360	744	414	228	276	294	318	969	366	312	573	1032	807	492	915	336	2133	756	804	1662	1146	1074
45		Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	548187	548990	550699	551854
50		Initial (nt)	536217		-			538267	538698	539413	539741	540112	540426	541048	542896	543412	544329	544670	546889	547329	548990	550651	551844	552927
		SEQ NO.	4074	4075	4076	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4091	4092	4093	4094	4095
55		SEQ NO.	574	575	576	2/1	578	579	280	581	582	583	584	585	586	587	588	589	290	591	592	593	-+	595

5		Function	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal protein L6	50S ribosomal protein L18	30S ribosomal protein S5	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulatory system	aldehyde dehydrogenase or betaine aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoenolpyruvate synthetase	phosphoenolpyruvate synthetase	cytochrome P450
15	<u> </u>	Matched length (a a)	405	150	132	179	110	171	55	143		128		125	487			409	107	257	50	629	378	422
20		Similarity (%)	50.4	66.7	7.76	87.7	90.9	88.3	76.4	87.4		68.8		52.0	71.5			71.6	56.4	70.8	560	45.0	66.7	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	67.8	54.6	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	38.6	34.8
25 (pencipuo) 1 enginas 1	Oliminaca)	eueb sn	gidus AF1398	odurans	SI	SI	s rpIR	ıs rpsE	(12 rpmJ	Olda St		elicolor msdA		ilense carR	odochrous rf5			p. redA2	sulatus fdxE	utida cymB	x K1 APE0029	sus Vc1 DSM	sus Vc1 DSM	thropolis thcB
30 94 F	ומחבו	Homologous gene	Archaeoglobus fulgidus AF1398	Deinococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. redA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Rhodccoccus erythropolis thcB
35			A		2	2			1_											2				
40		db Match	pir. E69424	gp:AE001931_13	pir: S29885	nir S29886	Sp. RL 18 MICLU	Sp.RS5 MICLU	SP. RL30 ECOLI	Sp.RL15_MICLU		prf.2204281A		GP.ABCARRA_2	prf.2516398E			prf.2411257B	prf.231324BB	gp:PPU24215	PIR: H72754	pir.JC4176	pir:JC4176	prf 2104333G
		ORF (bp)	1182		396	+		633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1290
45		Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	565680	566799
50		Initial (nt)	554129	554919	555331	666740	25,000	556734	557373	557565	557588	558517	458969	559805	560634	561368	562632	562633	562963	563736	563871	565471	566759	568088
		SEO			400R	2 6	4039	1014	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
55		SEQ NO.	(DNV)	597	804		860	200	503	603	604		908	607	809	609	610	611	612	613	614	615	616	617

					<u> </u>	-,								_,_	-,-							
5		Function	transcriptional repressor	adenvlate kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane-fatty-acyl-phospholipid synthase	hypothetical membrane protein
15		Matched length (a a)	256	184		253		72	122	134	132	311	7	122	T	786			485	505	423	100
20		Similarity (%)	0.99	81.0		74.7		96.0	91.0	93.3	93.9	77.8		77.1	61.1	51.2			53.8	50.9	999	59.0
		Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
<i>30 35</i>	Table 1 (continued)	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HB8 rps13	Streptomyces coelicolor A3(2) SC6G4.06. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rpIQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv0283	Arabidopsis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
40		db Malch	prf.2512309A	Sp.KAD_MICLU		SP. AMPM_BACSU		pir.F69644	prf.2505353B	sp.RS11_STRCO	prf:2211287F	sp:RPOA_BACSU		sp.RL17_ECOLI	sp.TRUA_ECOLI	pir.G70695			pir.A70836	sp:DIM_ARATH	sp.CFA_ECOL!	gp:SCL2_30
		ORF (bp)	804	543	612	792	828	216	366	402	603	1014	156	489	867	2397	456	303	1257	1545	1353	426
45		Terminal (nt)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576398	577923	580429	580436	580919	582562	584228	585520	586248
50		Initial (nt)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	581406	582684	58,4268	585823
		SEQ NO (a a.)	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	4129	4130	4131	4132	4133	4134	4135	4136	4137
55		SEQ NO.	618	619	620	621	622	623	624	625	929	627	628	629	630	631	632	533	534	335	336	37 /

EP 1 108 790 A2

5		uoi	proteinase	ane protein		ane protein					gen target ESAT-	ein L13	ein S9	ne mutase							
10		Function	high-alkaline serine proteinase	hynothetical membrane protein	ily poured car in care	hypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein	phosphoglucosamine mutase		hypothetical protein			hypothelical protein	alanine racemase	hypothetical protein
15		Matched length (a.a.)	273	516		1260				103	80	145	181	450		318			259	368	154
20		Similarity (%)	58.0	50.6	0.00	38.4				6.69	81.3	82.1	72 4	76.4		45.6			72.2	68.5	78.6
		Identity (%)	31.3	2.50	24.0	65.0				31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
25 1	onunded)	e dene	5	color A3(2)		erculosis				erculosis	erculosis	icolor A3(2)	icolor A3(2)	ıreus		PCC6803			orae	berculosis alr	berculosis
30	lable 1 (confinited)	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2)	SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4. 12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 str1753			Mycobacterium leprae B229_F1_20	Mycobacterium tuberculosis H37Rv RV3423C alr	Mycobacterium tuberculosis H37Rv Rv3422c
35			Ť	Ť	5 X	ΣÏ				ΣÏ	\ ∑			က ခ		S S			≥ @		
40		db Match	O V V I V	sp. cc.10_do.	pir:T10930	pir.E70977				pir.C70977	prf.2111376A	sp.RL13_STRCO	sp:RS9_STRCO	prf.2320260A		pir.S75138			pir:S73000	sp:ALR_MYCTU	sp:Y097_MYCTU
		ORF (bp)	0.00	800	1371	3567	822	663	006	324	288	441	546	1341	303	1509	573	234	855	1083	495
45		Terminal (nt)	0000	280388	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50		Initial (nl)	5	28(12)	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	596194	599350	599699	 	176009	602080
		SEQ	(a a)	4138	4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55			_	638	639	640	641	 			645	- :	647	648	649	650	651	652	653	654	655

5	Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyttransferase	O-sialoglycoprotein endopeptidase	hypothetical protein		
15	Matched length (a.a.)	550	411	207	132	319	571		
20	Identity Similarity Hength (%) (%)	66.2	77.6	75.4	59.9	75.2	59.4		
	Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4		
Table 1 (continued)	Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE At gcp	Mycobacterium tuberculosis H37Rv Rv3433c		
<i>35</i>	db Match	sp:YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	sp.RIMI_ECOLI	sp.GCP_PASHA	sp.Y115_MYCTU	-	
·	ORF (bp)	1599	1239	675	507	1032	1722	429	453
45	Terminal (nt)	604409	605708	606392	606898	607936	609679	610175	609816
50	Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610768
	SEQ NO. (a.a.)	4156	4157	4158	4159	4160	4161	4162	4163
55	SEQ NO. (DNA)	656	657	658	629	660	661	662	663

Function	hypothetical membrane protein	proline iminopeptidase	hypothetical protein	ribosomal-protein-alanine N- acetyltransferase	O-sialoglycoprotein endopeptidase	hypothetical protein			heat shock protein groES	heat shock protein groEL	hypothetical protein	hypothetical protein	regulatory protein	RNA polymerase sigma factor		hypothetical protein	IMP dehydrogenase	hypothetical protein
Matched length (a.a.)	550	411	207	132	319	571			100	537	76	138	94	174		116	504	146
Identity Similarity (%)	66.2	77.6	75.4	59.9	75.2	59.4			94.0	85.1	56.0	45.0	88.3	81.6		69.8	93.9	53.0
Identity (%)	28.9	51.3	52.2	30.3	46.1	38.4			76.0	63.3	50.0	34.0	64.9	55.2		41.4	80.8	39.0
Homologous gene	Escherichia coli K12 yidE	Propionibacterium shermanii pip	Mycobacterium tuberculosis H37Rv Rv3421c	Escherichia coli K12 riml	Pasteurella haemolytica SEROTYPE At gcp	Mycobacterium tuberculosis H37Rv Rv3433c			Mycobacterium tuberculosis H37Rv RV3418C mopB	Mycobacterium leprae B229_C3_248 groE1	Mycobacterium tuberculosis	GP:MSGTCWPA_3 Mycobacterium tuberculosis	Mycobacterium smegmatis whiB3	Mycobacterium tuberculosis H37Rv Rv3414c sigD		Mycobacterium leprae B1620_F3_131	Corynebacterium ammoniagenes ATCC 6872 guaB	Pyrococcus horikoshii PH0308
db Match	sp:YIDE_ECOLI	gp:PSJ00161_1	sp:Y098_MYCTU	sp:RIMI_ECOLI	sp.GCP_PASHA	sp.Y115_MYCTU	-		sp.CH10_MYCTU	sp.CH61_MYCLE	GP:MSGTCWPA_1	GP:MSGTCWPA_3	gp:AF073300_1	sp.Y09F_MYCTU		sp [.] Y09H_MYCLE	gp:AB003154_1	PIR:F71456
ORF (bp)	1599	1239	675	507	1032	1722	429	453	297	1614	255	1158	297	564	1026	378	1518	627
Terminal (nt)	604409	605708	606392	606898	607936	609679	610175	609816	610644	612272	610946	611109	612418	613719	614747	614803	616853	615605
Initial (nt)	602811	604470	605718	606392	606905	607958	609747	610268	610348	610659	611200	612266	612714	613156	613722	615180	615336	616231
SEQ NO. (a.a.)	4156	4157	4158	4159	4160	4161	4162	4163	4164	4165	4166	4167	4168	4169	4170	4171	4172	4173
SEQ NO. (DNA)	656	657	658	629	099	661	99	693	664	999	999	299	999	699	670	671	672	673

											· · · · · · · · · · · · · · · · · · ·			\neg					$\overline{}$	\neg
5	Function	se	brane protein	tase positive					brane protein	ystem sensor	gulator or einase response				ein	ein		ein	nbrane protein	
10	Fun	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
15	Matched length	381	274	262	517				513	411	218				201	563		275	288	
20	Similarity (%)	86.1	67.5	58.4	92.8				39.6	48.7	65.1				64.2	64.1		62.9	58.3	
	Identity (%)	6.07	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
25 (penujju	gene	CC 6872	2 ybiF		JA P				color A3(2)	color A3(2)	3 deg∪				erculosis	erculosis		icolor A3(2)	durans ·	
os Table 1 (continued)	Homologous gene	Corynebacterium	Escherchia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guaA				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8 20c	Deinococcus radiodurans DR0809	
40	db Match	gp:AB003154_2			SP.GUAA_CORAM				gp.SCD63_22	2	sp.DEGU_BACSU				pir B70975	pir.A70975		gp:SC5B8_20	gp:AE001935_7	
	ORF (hn)		921	T -	1569	663	441	189	1176	1140	069	324	489	963	825	1590	099	861	861	390
45	Terminal	618094	618093	619994	621572	620264	622157	622457	622460	624939	625674	626000	626070	626577	628551	630140	630151	631809	631824	632690
50	Initial	616973	619013	619086	620004	620926	621717	622269	623635	623800	624985	625677	626558	627539	627727	628551	630810	630949	632684	633079
	SEO		4175	4176	4177	4178	4179	4180	4181	4102	4183	4184	4185	4186	4187	4188	4189	4190	4191	4192
55	SEQ NO.	(DNA) 674	675	979	677	678	679	980	681	682	683	684	685	989	687	688	689	069	691	692

				Γ												Γ	Γ	Γ		<u> </u>		
10			Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphate (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	hypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
15			Matched length (a.a.)	95	524	288	722	367	188	145	462	497	205	897	223		206		346	268	1101	159
20			Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
			Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
25	(pandi	man)	ene	ш	ATCC	ATCC	or A3(2)	crtE		OS60 blc	,	АТСС	s1K	or A3(2)	Q		9		o abc	9	aE	or A3(2)
30	Table 1 (continued)	ומחוב ו (בחווו	Homologous gene	Mycobacterium mar num	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii blc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
35					ലഗ	യാ	SS			0	6	B 6	S	လ	В		I		ш J	Iσ	-	လ လ
40			db Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF139916_11	gp:AF139916_14	sp.BLC_CITFR	gp.AF139916_1	gp.AF139916_5	gp AF155804_7	gp SCE25_30	prf.2420410P		prf.2320284D		sp ABC_ECOLI	sp:HLPA_HAEIN	prf.2517386A	gp.SCE126_11
			ORF (bp)	396	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1080	897	3012	447
45	•		Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	644778	645176	647593	648315	648440	650187	649114	650392	654612	655122
50			Initial (nt)	633474	635175	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
			SEQ NO. (a a)	4193	4194	4195	4196	4197	4198	4199	1200	4201	4202	4203	4204	4205	4206	4207	4208	4209	4210	4211
55			SEQ NO (DNA)	693	694	695	969	269	969	669	700	701	702	703	704	705	907	707	708	709	710	711
		•				-																

EP 1 108 790 A2

Table 1 (continued)	Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprotein precursor	rRNA methylase	methylenetetrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		homoserine O-acetyltransferase	O-acetylhomoserine sulfhydrylase	carbon starvation protein		hypothetical protein	
	Matched length (a a)	468	203		264		245	157	357	151	278	80	489		379	429	069		20	
	Similarity (%)	56.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	-
	Identity (%)	26.1		503	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
	Homologous gene	Streptomyces coelicolor A3(2) SCE9 01		Mycobacterium tuberculosis H37Rv Rv2788 srrR	Streptomyces coelicolor A3(2) SCG8A 05c		Archaeoglobus fulgidus AF1676	Streptomyces coelicolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c foID	Mycobacterium leprae MLCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 ustA	-	Escherichia coli K12 yjiX	
	db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir:C69459	gp:SC5H1_34	gp:CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp.SC66T3_18		gp:AF052652_1	pri.2317335A	Sp.CSTA_ECOLI		sp:YJ'X_ECOLI	
	ORF (bp)	1413		699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	201	609
	Terminal (nt)	656534		657215	657205	658142	658928	659424	660538	660650	662017	662374	662382	664126	665183	666460	670465	669445	670672	671045
	Initial (nt)	655122	655834	656547	658002	658005	658155	658933	659543	661120	661166	662120	663761	665088	<u> </u>	667770		670053	670472	671653
	SEQ NO (a a)	4212	4213	4214	4215	4216	4217	4218	4219	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
	SEQ	712	713	714	715	716	717	718	719	720	721	722	723	724	725	726	721	728	729	730

						_														
5		Function	hypothetical protein	carboxy phosphoenolpyruvate mutase	citrate synthase		hynothetical protein	יון אינויים אי	L-malate dehydrogenase	egulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chloramphenical resistance protein	catabolite repression control protein	hypothetical protein	
15	Matched	rengin (aa)	317	281	380		53		338	226		284	269	339	330	356 ir	395	1		
20	Similarity	(%)	86.4	76.2	81.3		623		67.5	62.8	-	54.2	85.1	86.4	88.2	82.3	9.69	58.1	85.8	
	Identity	(%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.1	32.2	30.4	56.2	
25 6	nemnen)	0 0	rculosis	scopicus	smegmatis		yneC		vidus V24S	ophilus T-6		NA 395	htheriae	ntheriae	ntheriae	Atheriae	elae cmlv	nosa crc	ae Rd	
30 + 9Hg.L	Homologous dead	n no h	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium sme ATCC 607 gltA		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viuB	Corynebacterium diphtheriae irp 1D	Corynebacterium diphtheriae irp 1C	Corynebacterium diphtheriae irp18	Corynebacterium diphtheriae	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H11240	
40	db Match		pir.C73539	prf. 1902224A	sp:CISY_MYCSM		SP.YNEC_ECOLI		sp:MDH_METFE	prf.2514353L		sp:VIUB_VIBCH	gp.AF176902_3	gp:AF176902_2	gp:AF176902_1	gp:CDU02617_1	prf.2202262A S	prf.222220B	Sp:YICS_HAEIN	
	ORF	a a	954	912	1149	930	192	672	1041	720	702	897	807	1059	966	1050	1272	912	657	195
45	Terminal	(mr)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	688335
50	Initial		671700	672665	673608	673639	674990	675175	676122	676937	677748	681027	681846	682904	683866	684925	685109	586435	687351	688141
	SEO		4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4246	4247	4248
55	SEQ NO.	(DNA)	731	732	733	734	735	736	737	738	739	740	741	742	743	1	- i	746	747	748

	Function		ferrichrome ABC transporter	henin permease	Termin permense	Il yptopidanyi-tivity symmetric	hypothetical protein		precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyltransferase	bacterial regulatory protein, lacl family	N-acyl-L-amino acid amidohydrolase or peplidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
	Matched length (aa)		244	246	240	155	278		301	417	323			209	77	385	561	468	1140	263	127
	Similarity (%)		73.8		0.60	/9.8	72.3		57.5	7.0.7	52.6			72.3	66.2	80.5	538	65.0	100.0	60.1	6.99
	Identity (%)		45.1		38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
(apple of colors)	Homologous gene		Corynebacterium diphtheriae	hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia coli K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum BER manB	Hatobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicalor A3(2)
	db Match		AR: AE100162 3	gp.Ar ioaioz_s	pir.S54438	sp:SYW_ECOLI	sp:YHJD_ECOU		sp.DACD_SALTY	pir.F73842	gp:SC6G10_8			Sp.UPP LACLA	gp SC1A2_11	pir H70841	SP. MANB MYCPI		prf.2415454A	sp.YD24_MYCTU	gp:SCF11_30
	ORF (bp)	975	700	ng /	1017	1035	1083	903	1137	1227	858	195	351	673	384	1182	1725	1407	3420	870	486
	Terminal (nt)	GRR916	2,000	116699	907069	692916	694110	695074	695077	696769	698065	699266	698922	500013	700381	703262	700384	704811	708630	709708	710278
	Initial (nt)	Sagao	060600	969069	691722	691882	693028	694172	696213	697995	698922	699072					702108		705211	708839	709793
	SEQ	0000	6474	4250	4251	4252	4253	4254	4255	4256	4257	4258	4259	2 9	4261	4262	4263	4264	4265	4266	4767
	SEO	7.40	57	750	751	752	753	754	755	756	757	758	759	2 - 6	761	762	763	764	765	766	767

Table 1 (continued)

ſ		Т																	
	Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	detergent sensitivity rescuer or carboxyl transferase	detergent sensitivity rescuer or carboxyl transferase
	Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
	Similarity (%)	69.0	59.3	49.5	74.5	47.0	, 78.9		72.6			100.0	79.8	76.7	63.4	66.2	69.8	100.0	100.0
	identity (%)	44.6	24.6	24 0	42.5	39.0	546		408			100.0	61.1	51.1	35.1	31.8	33.3	8 66	9.66
(Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis IS59 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gllA		Mycobacterium tuberculosis H37Rv Rv1129c	-		Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308- C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
	db Match	pir:B69760	sp:TRXB_BACSU	sp:PRPO_SALTY	prf. 1902224A	PIR:E72779	sp:CISY_MYCSM		pir B70539			sp.THTR_CORGL	gp:CJ11168X1_62	gp:MLCB4_16	pir.G70539	sp:YCEF_ECOLI	prf.2323363CF	gp:AB018531_2	pir.JC4991
	ORF (bp)	1086	924	1494	888	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	728696
	Initial (nt)	711605	711724	712738	714258	714757	715102	716650	718009	718105	718658	721449	721777	723338	723412	726452	726715	728352	730324
	SEQ NO.	4268	4269	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
	SEQ NO. DNA)	768	692	770	177	772	773	774	775	776	777	877	6/1	780	781	782	783	784	785

5		Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothelical membrane protein	5-phosphoribosyl-5-amino-4- imidasol carboxylase	K+-uptake protein	***		5'-phosphoribosyl-5-amino-4- imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetate monooxygenase	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical membrane protein		hypothetical protein	hypothetical protein
15		th ()																
		Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142
20		Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	902	73.0	52.5	64.8	68.8		66.3	76.8
		Identity (%)	28.7	23.0	0.69	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9
<i>25</i>	ontinued)	a gene	2 birA	erculosis	CC 6872	2 kup			CC 6872	fiosum	color A3(2)	ızii ATCC	idus	n IAM 1030	na MSB8		3 ywjB	color A3(2)
30 :	lable 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammoniagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebacterium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzil ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtilis 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A 21
40		db Match	sp.BIRA_ECOLI	pir.G70979	sp:PURK_CORAM	sp:KUP_ECOLI			sp.PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp:DHG2_BACME	pir.A72258		sp:YWJB_BACSU	gp:SCJ9A_21
		ORF (bp)	864	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	295	420
45		Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	740228	741765	742195	741818	742828
50		Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409
		SEQ NO.	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4296	4297	14298	4299	1300	4301
55		SEQ NO (DNA)	786	787	788	789	790	791	792	793	794	795	796	797	798	799	800	801

5		Function	trehalose/maltose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		Matched length (a.a.)	271	306		417		332		1783			240	720	701					2033	869	873
20		Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23.1
25	ontinued)	gene .	alis malG	alis malF		alis malE		ıli msiK		lurans R1			erculosis	199 jhp0462	2 uvrD					color	VRC-1 11130	2 hepA
30	Table 1 (continued)	Homologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus litoralis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pytori J99 jhp0462	Escherichia coli K12 uvrD					Streptomyces caelicolar SCH5.13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
35 40		db Match	rf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir B75633			pir.E70978	pir.C71929	p:UVRD_ECOLI .E					pir.T36671	pir.T08313	p HEPA_ECOLI
		ORF (bp)	834 p	1032 p	468	1272 p	423	d 966	369	4800 p	372	3699	633 pi	2433 pi	1563 sı	357	393	396	825	6207 pi	4596 pi	2886 51
45		Terminal (nt)	743067	743900	745046	745622	748442	747031	748814	748386	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		Initial (nl)	743900	744931	745513	746893	748020	748026	748446	753685	757063	757395	758262	760796	762468	762497	762730	762977	768191	769443	774142	777035
		SEQ NO (a.a.)	4303	4304	4305	4306	4307	4308	4309	4310	4311	4312	4313	4314	4315	4316	4317	4318	4319	4320	4321	4322
55		SEQ NO DNA)	803	804	805	908	807	808	809	810	811	812	813	814	815	816	817	818	819	820	821	822

				~···································					· -r			-	1	- 1				
	Function	hypothetical protein	dTDP-Rha:a-D-GlcNAc- diphosphoryl polyprenol, a-3-L- rhamnosyl transferase	mannose-1-phosphale guanylyltransferase	regulatory protein	hypothetical protein	hypothetical protein	phosphomannomutase	hypothetical protein	mannose-6-phosphate isomerase			pheromone-responsive protein		S-adenosyl-L-homocysteine hydrolase			thymidylate kinase
	Matched length (a.a.)	527	289	353	94	139	136	460	327	420			180		476			209
	Similarity (%)	71.4	6.77	6.99	81.9	74.8	71.3	66.3	563	66.2			57.8		83.0	-		26.0
	identity (%)	45.5	56.4	29 B	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
Table 1 (continued)	Homologous gene	Mycohacterium tuberculosis H37Rv Rv3267	Mycobacterium smegmatis mc2155 wbbL	Saccharomyces cerevisiae YDL055C MPG1	Mycobacterium smegmatis whmD	Mycobacterium tuberculosis H37Rv Rv3259	Streptomyces coelicolor A3(2) SCE34.11c	Salmonella montevideo M40 manB	Mycobacterium tuberculosis H37Rv Rv3256c	Escherichia coli K12 manA			Enterococcus faecalis plasmid pCF10 prgC		Trichomonas vaginalis WAA38			Archaeoglobus fulgidus VC-16 AF0061
	db Match	pir:D70978	gp.AF187550_1	sp:MPG1_YEAST	gp AF164439_1	pir.B70847	gp SCE34_11	SP MANB_SALMO	pir:B70594	sp:MANA_ECOLI			prf.1804279K		Sp. SAHH_TRIVA		-	sp.KTHY_ARCFU
	ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
	Terminal (nt)	777158	779910	781171 .	781875	782162	783101	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
	Initial (nt)	778711	779014	780128	781468	782617	782712	783184	784635	785643	786896	787624	787733	788196	788672	789426	789721	790096
	SEQ NO.	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	SEQ NO.	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

EP 1 108 790 A2

preprotein translocase SecA subunit 30S ribosomal protein or chloroplast 5-enolpyruvylshikimate 3-phosphate 5-enolpyruvylshikimate 3-phosphate two-component system response two-component system sensor histidine kinase RNA polymerase sigma factor 5 Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 lipoprotein precursor regulator synthase synthase Matched length 15 (a.a.) 224 213 845 484 595 203 180 170 322 380 188 461 23 Identity | Similarity 906 78.9 65.6 72.8 100.0 966 99.0 63.9 78.8 87.2 % 42.4 61 82 20 73.7 53.1 100.0 38.0 ဖ Ŋ 99.1 64.6 47.1 99.0 38.3 61.2 8 29 34 7 25 (Corynebacterium glutamicum) Fable 1 (continued) Corynebacterium glutamicum ASO19 aroA Corynebacterium glutamicum Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv3246c mtrA Mycobacterium tuberculosis Mycobacterium tuberculosis Spinacia oleracea CV rps22 Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv Rv3228 Mycobacterium tuberculosis Mycobacterium tuberculosis Mycobacterium tuberculosis sigH Homologous gene H37Rv Rv3245c mtiB Brevibacterium flavum H37Rv Rv3244c lpqB H37Rv Rv3242c H37Rv Rv3231c H37Rv Rv3226c 30 H37Rv Rv0336 MJ-233 secA 35 GP-AF114233_1 sp.RR30_SPIOL gp:AF114233_1 db Match prf.2214304A prf:2214304B prf 2515333D gsp:R74093 pir.F70592 pir. D 70592 pir.G70506 pir.F70590 pir D70590 pir.A70591 40 1497 1704 2535 1413 1110 ORF (bp) 678 588 663 684 156 672 504 480 123 618 987 [erminal 794711 45 790738 795301 795292 796110 800200 802565 805025 791409 793008 799691 801190 798784 800208 803131 803128 Ē 791512 795447 790732 791421 793008 794714 795448 799020 804240 796250 802649 804408 801194 802687 799697 802602 (II) 50 4340 4342 4343 4344 4345 4348 SEO 4346 4349 4355 4353 4354 9 4341 4347 4350 4351 4352 (DNA) 845 844 846 848 855 843 9 841 847 851 852 853 854 850 55

																				
5		Function		ni	in	ependent RNA		iin	ni	NA helicase		ONA helicase		el	ein			ein		
10		Fun	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical protein	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent DNA helicase		potassium channel	hypothetical protein	DNA helicase II		hypothetical protein		
15		Matched length (a.a.)	84	129	415	458		291	249	1155		1126		302	230	099		280		
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	58.8		49.3		
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8		
25 1	(nan)	ne	losis	losis	losis	CG43		ulosis	ulosis	ulosis		ulosis		schii JAL-	ulosis	vrD		ulosis		
<i>30</i>	lable I (confinited)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3219 whiB1	Mycobacterium tuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138 1	Mycobacterium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis 1137Rv Rv3196		
35		db Match				sp.DEAD_KLEPN								sp:Y13B_METJA		ECOLI				
40			pir.D70596	pir.870596	pir.E70595	+		pir.H70594	pir:F70594	9 pir.G70951		9 pir.G70951	2		pir.E70951	4 sp.UVRD		pir.B70951		
		ORF (bp)	258	420	1200	1272	225	. 846	759	3048	780	3219	1332	1005	714	2034	591	816	603	
45		Terminal (nt)	805535	806737	806740	807946	809510	810394	811163	814217	811386	817422	814210	818523	819236	821287	822669	821290	823391	
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	815541	817519	818523	819254	822079	822105	822789	
		SEQ NO.	4356	4357	4358	4359	4360	4361	4362	4363	4364	4365	4366	4367	4368	4369	4370	4371	4372	-
55		SEQ NO.	856	857	858	859	860	861	862	863	864	965	866	867	868	969	870	871	872	

monophosphatase

74.9

51.8

Streptomyces alboniger pur3

780 prf.2207273H

890

				T	$\overline{}$	_				T-		$\overline{}$	T	_				
5		Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hypothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor		
15		Matched length (a.a.)	474	350			1023	463	301	81	201		408		208	363		
20		Similarity (%)	76.4	74.9			73.5	57.7	0.68	53.0	736	-	44.4		51.4	51.5		
		Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0		
25	Table 1 (continued)	Homologous gene	tuberculosis	tuberculosis			tuberculosis c	diodurans	sis laticifer er1	Aeropyrum pernix K1 APE0247	168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b mitochondrion plasmid	n glutamicum flavum) ATCC		
<i>30</i>	Table 1	Homolo	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er1	Aeropyrum perr	Bacillus subtilis 168 yaaE		Lysobacter enzy 29487		Neurospora intermedia La 1b mitochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1		
40		db Match	pir.A70951	pir:H70950			pir G70950	gp:AE001938_5	sp:ER1_HEVBR	PIR:F72782	sp:YAAE_BACSU	-	pir.TRYX84		pir S03722	sp:CSP1_CORGL		
		ORF (bp)	1446	1050	675	525	2955	1359	951	345	900	363	1062	501	585	1581	429	510
45		Terminal (nt)	822680	825239	825242	825996	829570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139
50		fnitial (nt)	824125	824190	825916	826517	826616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630
		SEQ NO (a.a.)	4373	4374	4375	4376	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388
55		SEQ NO (DNA)	873	874	875	876	877	878	879	880	881	882	883	884	885	986	887	888

	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	cell division protein	small protein B (SSRA-binding protein)	hypothetical protein				vibriobactin utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	ferrichrome ABC transporter (ATP-binding protein)
	Matched length (a.a.)	243	359	226	72	301	145	116				272	319	191	325	313	312	250
	Similarity (%)	59.3	986	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	8.08	76.0	82.0
	(%)	33.7	0.89	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prfB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp.SMPB_ECOLI	sp:YEAO_ECOL!				sp:VIUB_VIBCH	prf.2510361A	gp MLCB1243_5	sp:FATB_VIBAN	pir B69763	pir.C69763	pir.D69763
	ORF (bp)	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
-	Terminal (nt)	842306	844360	845181	844842	846097	846628	846982	846269	848026	847718	848499	849326	850412	852364	853616	854724	855476
	initial (nt)	843124	843257	844495	845105	845198	846137	846632	046805	847727	848122	849323	850243	850999	851351	852618	853783	854724
	SEQ NO.	4392	4393	4394	4395	4396	4397	4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	1408
	SEQ NO (DNA)	892	893	894	895	896	897	898	668	006	106	905	903	904	905	906	907	806

5

			į					
5		Function	hypothetical protein	hypothetical protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein
15		Matched length (a.a.)	48	84	442		613	764
20		Identity Similarity Matched (%) (%) (a.a.)	72.0	66.0	64.9		62.3	65.2
		Identity (%)	0.99	61.0	33.5		30.7	36.1
25	ntinued)	gene	m Nigg	iae	Rat)		evisiae D25	rculosis
<i>30</i> <i>35</i>	Table 1 (continued)	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis
40		db Match	PIR F81737	GSP: Y35814	1209 pir.S66270		1 sp:RA25_YEAST	2199 pir.F70815
		ORF (bp)	147	273	1209	638	1671	2199
45		Terminal (nt)	860078	860473	862752	862753	863396	865119
50		Initial (nt)	860224	860745	861544	863391	865066	867317
		SEQ NO.	4409	4410	4411	4412	4413	4414
55	Ì	SEQ.	606	910		112	113	314

d Function	hypothetical protein	hypothetical protein	kynurenine aminolransferase/glutamine transaminase K		DNA repair helicase	hypothetical protein	hypothetical protein		resuscitation-promoting factor	cold shock protein	hypothelical protein	glutamine cyclotransferase			permease		rRNA(adenosine-2'-0-)- methyltransferase	
Matched length (a.a.)	48	84	442		613	764	57		198	19	159	273			477		319	
Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	8.78			79.3		51.7	
Identity (%)	66.0	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoriae	Rattus norvegicus (Rat)		Saccharomyces cerevisiae S288C YIL143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus factis cspB	Mycobacterium leprae MLCB57 27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus tsnR	
db Match	PIR F81737	GSP Y35814	pir:S66270		sp:RA25_YEAST	pir.F70815	pir G70815		prf.2420502A	prf:2320271A	gp:MLCB57_11	gp:AE001874_1			gp:SC6C5_9		SP.TSNR_STRAZ	
ORF (bp)	147	273	1209	639	1671	2199	219	843	265	381	525	774	669	138	1473	912	828	876
Terminal (nt)	860078	860473	862752	862753	863396	865119	867571	868630	867803	869318	869379	869918	870721	871660	873210	872016	874040	874069
Initial (nt)	860224	860745	861544	863391	865066	867317	867353	867788	868399	868938	869903	870691	871419	871523	871738	872927	873213	874944
SEQ NO.	4409	4410	4411	4412	4413	4414	4415	4416	4417	4418	4419	4420	4421	4422	4423	4424	4425	4426
SEQ NO.	606	910	911	912	913	914	915	916	917	918	919	920	921	922		924	925	926

	_					T		\neg			_				Т	· · · ·	$\overline{}$	Т			
5		Function	al protein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	al protein	sodium/proline symporter		hypothetical protein	synthase			homoserine O-acetyltransferase			xin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
			hypothetical protein	sphosphos	acetyl-coe carboxy tr	hypothetical protein	sodium/pr		hypothetic	fatty-acid synthase			homoserii			glutaredoxin	dihydrofo	thymidyta	ammoniu	ATP depe	formamidop glycosidase
15		Matched length (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
20		Similarity (%)	55.1	52 9	69.5	908	58 1		77.4	83.4			59.7			72.6	62.0	88.9	56.4	68.1	51.0
		Identity (%)	32.6	21.9	36.0	51.5	26.4		49.0	63.1		_	29.0			43.6	38.0	64.8	32.2	47.4	29.2
30 F office 1000	Olluliaca)	is gene	serculosis	ATCC 21783	12 accD	licolaı A3(2)	rescens		berculosis	v			metX			odurans	vium folA	12 thyA	12 cysQ	licolor A3(2)	longatus
30 + 6	ו מחוב ו	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacillus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammon:agenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium folA	Escherichia coli K12 thyA	Escherichia coli K12 cysQ	Streptomyces coelicolor A3(2) SC7C7.16c	Synechococcus elongatus naegeli mutM
35				co.		တ်တ	Δ.		≥I_	O es									1	ĺ	
40		db Match	sp:YZ11_MYCTU	pir:S71439	sp:AccD_EcoLI	gp:SCI8_8	pir.JC2382		pir.A70657	pir:S55505			prf.2317335B			gp:AE002044_8	prf:2408256A	Sp.TYSY_ECOL	sp.CYSQ_ECOLI	gp:SC7C7_16	sp:FPG_SYNEN
		ORF (bp)	933	1128	1473	339	1653	816	840	8907	489	186	1047	426	267	237	456	798	756	4560	768
45		Terminal (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895596	896719	897689	897727	897979	898434	899253	904602	905382
50		Initial (nt)	875883	877112	881114	881647	881995	883726	885388	885672	894703	895408	896642	897144	897423	897963	898434	899231	900008	900043	904615
		SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4436	4437	4438	4439	4440	4441	4442	4443	4444	4445
55		SEQ NO.	927	928	926	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

5		Function	hypothelical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peptidase	hypothetical protein		5-phosphoribosylglycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole-4-carboxamide formyltransferase	citrate lyase (subunit)
15		Matched length (a.a.)	128	196	403		253	195		78	763	885	217		236	434		189	525	217
20		Similarity (%)	86.7	71.9	0.79		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
		Identity (%)	55.5	38.8	33.8		52.4	24.6		29.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
25	Table 1 (continued)	Homologous gene	tuberculosis	tis MG1363 apl	oelicolor A3(2)		JM101 pgi	tuberculosis		tuberculosis	nermophilus	oelicolor A3(2)	168 yvrO		tuberculosis	tuberculosis		n purN	n purH	n glutamicum E
<i>30</i>	Table 1	Homolog	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus lactis MG1363 apl	Streptomyces coelicolor A3(2) SC128 (16c		Escherichia coli JM101 pgi	Mycobacterium tuberculosis H37Rv Rv0336		Mycobacterium tuberculosis H37Rv Rv0948c	Bacillus stearothermophilus NCA 1503 pcrA	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterium ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
40		db Match	pir.F70816	sp.APL_LACLA	pir.T36776		pir NUEC	pir.G70506		sp:YT26_MYCTU	sp:PCRA_BACST	gp:SCE25_30	prf:2420410P		pir D70716	sp:YT19_MYCTU		gp.AB003159_2	gp:AB003159_3	gp:CGL133719_3
	* .	ORF (bp)	408	909	1173	717	1620	1176	381	309	2289	2223	999	507	711	1425	228	627	1560	819
45		Terminal (nt)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919956	921526	922412
50		Initial (nt)	905389	906391	907731	908612	909378	910696	910843	911163	911226	915699	916364	916874	917680	917928	918054	919330	919967	921594
		SEQ NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	1463
55		SEO NO (DNA)	946	947	948	949	950	951	952	953	954	955	926	957	958	959	960	961	962	696

SEG	SEQ	Initial	Terminal	ORF	dh Match	Homologous gene	Identify	Similarity	Matched	Function
(DNA)	(e e	(T)	(m)	(dq)			(%)	(70)	(a.a.)	
964	4464	923061	922396	999	gp:CGL133719_2	Corynebacterium glutamicum ATCC 13032 amtR	100.0	100.0	222	repressor of the high-affinity (methyl) ammonium uptake system
965	4465	923464	923138	327	gp:CGL133719_1	Corynebacterium glutamicum ATCC 13032 yjcC	100.0	100.0	109	hypothelical protein
996	4466	923661	923981	321						
967	4467	924407	924159	249	sp:RR18_CYAPA	Cyanophora paradoxa rps18	52.2	76.1	29	30S ribosomal protein S18
968	4468		924425	303	Sp. RS14_ECOLI	Escherichia coli K12 rpsN	540	80.0	100	30S ribosomal protein S14
696	4469	924895	924734	162	sp.RL33_ECOLI	Escherichia coli K12 rpmG	55.1	83.7	49	50S ribosomal protein L33
970	4470	925134	924901	234	pir.R5EC28	Escherichia coli K12 rpmB	52.0	81.8	77	50S ribosomal protein L28
971	4471	926935	925325	1611	pir. B70033	Bacillus subtilis 168 yvdB	34.4	71.1	529	transporter (sulfate transporter)
972	4472		926931	312	prf:2420312A	Staphylococcus aureus zntR	37.5	77.5	80	Zn/Co transport repressor
973	4473		927737	264	Sp. RL31_HAEDU	Haemophilus ducreyi rpmE	37.2	65.4	78	50S ribosomal protein L31
974	4474	927752	927922	171	gp:SC51A_14	Streptomyces coelicolor A3(2) SCF51A.14	0.09	78.2	55	50S ribosomal protein L32
975	4475	927785	927339	447						
976	4476	928117	928812	969	sp:COPR_PSESM	Pseudomonas syringae copR	48.0	73.6	227	copper-inducible two-component regulator
977	4477	928884	930248	1365	sp.BAES_ECOLI	Escherichia coli K12 baeS	24.4	60.1	484	two-component system sensor
978	4478	930410	931648	1239	pir.S45229	Escherichia coli K12 htrA	33.3	59.9	406	proteinase DO precursor
979	4479		932290	585	sp.CNX1_ARATH	Arabidopsis thaliana CV cnx1	27.7	54.3	188	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)
980	4480	932290	932487	198			,			
981	4481	932974	932570	405	sp.MSCL_MYCTU	Mycobacterium tuberculosis H37Rv Rv0985c mscL	50.4	77.1	131	large-conductance mechanosensitive channel
982	4482	933710	933060	651	pir.A70601	Mycobacterium tuberculosis H37Rv Rv0990	28.6	0.09	210	hypothetical protein
983	4483	934302	933733	570	pir.JC4389	Homo sapiens MTHFS	25.1	59.7	191	5-formyltetrahydrofolate cyclo-ligase

5	Function	UTP-glucose-1-phosphate uridylyltransferase	molybdoplerin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane protein	cyclomaltodextrinase	hypothetical membrane protein	hypothetical protein	methionyl-IRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15	Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741	210	363		94
20	Similarity (%)	689	62.6	549	54.8	62.4		9.09	9.65	53.6	75.2	78.3	66.7	49.0	53.3	59.0		59.6
	Identity (%)	42.2	31.8	29 0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		330
25 08 Table 1 (continued)	Homologous gene	Xanthornonas campestris	Arthrobacter nicotinovorans moeA	Escherichia coli К12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculosis H37Rv Rv0093c	Bacillus sphaericus E-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Della H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
40	db Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOL!	pir:G70601	sp:CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp:CDAS_BACSH	pir:E70602	sp.Y19J_MYCTU	SP.SYM_METTH	prf. 1306383A	pir:869206	sp:YXAG_BACSU		gp:AF029727_1
	ORF (bp)	897	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
45	Terminal (nt)	935319	936607	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950839	950828	951834	953043	954266
50	Initial (nt)	934423	935351	936615	937382	938427	939217	939686	940041	940759	943940	944009	946840	948791	951460	952991	953573	953973
	SEQ NO (a.a)	4484	4485	4486	4487	4488	4489	4490	4491	4492	4493	4494	4495	4496	4497	4498	4499	4500
55	SEO NO.	984	985	986	987	988	686	066	991	992	993	994	995	966	266	966	666	1000

5		u				0000	מסמ	ethyltransferase				ator	protein	-			ransferase	losphate kinase					
10		Function	transposase	transposase subunit		Control of the state of the sta	U-lactate denyarogenase	site-specific DNA-methyltransferase		transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		Matched length (a.a.)	139	112	Ť	+	292	231		94	139	91	205		263	362	265	315		478	242	159	108
20		Similarity (%)	9.79	88.4	3		75.6	62.8		59.6	9.79	84.6	66.8		7.07	63.5	65.3	67.0		82.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2	13.5		46.4	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
<i>25</i>	lingen)	eue		A 22 4	¥du.			e OK8		_		ulosis	is cadD		culosis	culosis	sgA .	culosis		rythraea	pdxK	culosis	ilor A3(2)
30	lania i communed	Homologous gene	Escherichia coli K12		Brevibacterium linens unpa		Escherichia coli did	Klebsiella pneumoniae OK8 kpnIM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculosis H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SCF1.02
35			l u		_					-											ECOLI		
40		db Match	Pir.TOEC13	און. ו שבירוס	gp:AF052055		prf.2014253AE	sp:MTK1_KLEPN		ap AF029727	pir TQECI3	sp:YJ94_MYCTU	prf.2514367A		pir.C70603	pir:D70603	Sp.KSGA_ECOLI	pir.F70603		pir:S47441	SP PDXK_EC	sp.YX05_MYCTU	gp:SCF1_2
		ORF (bp)	+	\neg		864	1713	840	219	294		357	621	1		1071	879	933	642	1833	792	480	321
45		Terminal (nt)	024763	954753	955354	956774	955686	957844	959185	960374	960861	961653	962249	961321	963639	964934	965852	966784	965950	099896	969458	969461	970349
50		Initial (nt)	150170	954277	954941	955911	957398	958683	959403	960081	960385	961297	961629	961662		963864	964974	965852	966591		968667	1	970029
		SEQ	÷	4501	4502	4503	4504	4505	4506	4507	4508	4509	4510	4511	4512	4513	4514		4516		4518		4520
55				1001	1002	1003	1004	1005	1006	1007	1008	1009	1010	1011	1012	1013	1014	1015	1016	1017	1018	1019	1020

Fig. 1 F																				
SEC Initial Terminal ORF db Match Homologous gene (%) (%			Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone		hypothetical protein	lypothetical protein		opplied chain colonies and ability	imide-urea transport protein
Secondary Seco	15		Matched length (a.a.)	107	261	276	337				440						1		T	
SEQ Initial Terminal ORF db Match Homologous gene NO (nt) (nt) (hp) (hp) db Match Homologous gene 4521 970418 971823 960 9p.SCr1_15 Streptomyces coeticolor A3(2) 2524 973139 974185 971823 960 9p.SCr1_15 Streptomyces coeticolor A3(2) 4522 973046 971823 960 9p.SCr1_15 Streptomyces coeticolor A3(2) 4525 97305 97304 654 4526 974186 974962 777	20			69.2	88.1	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
SEQ Initial Terminal ORF db Match Ilomologous gene NO (nt) (nt) (hp) db Match Ilomologous gene 1452 970418 971823 960 971823 973304 971823 973304 971823 971825 971824 971825 971825 971826 971825 971826 971826 971827 971826 971827 971826 971826 971827 971826 9718			Identity (%)	35.5	64.8	27.2	35.6				27.7	44.0	42.6	38.2		29.8	24.9		39.2	42.8
SEQ Initial Terminal ORF db Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	25	nued)	ne Te	r A3(2)	r A3(2)	1	losis				nicum	A3(2)	A3(2)	2g		MA1953	osis			snyd
SEO		Table 1 (conti	Homologous ge	itreptomyces coelicolo	itreptomyces coelicolo	acillus subtilis 168 yxe	fycobacterium tubercu 137Rv echA9				orynebacterium glutan Srevibacterium flavum) 7965 csp 1	reptomyces coelicolor CF56.06	reptomyces coelicolor CE87,17c	aemophilus influenzae 0508 menG		eisseria meningitidis N	/cobacterium tubercule 37Rv Rv1128c		cherichia coli K12 prfC	thylophilus methylotro
SEQ Initial Terminal ORI (nt) (bp (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			db Match	p:SCF1_2	p:SCJ1_15	p:YXEH_BACSU						p:SCF56_6	p:SCE87_17	D:MENG_HAEIN			r.A70539		159305	f.2405311A
SEQ Initial Termine NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)			ORF (bp)	321	096	792	1017	654	777	1212	1386	579	2373					936		
A 529 A 530 B 528 A 530 B 528	45		Terminal (nt)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981490	982287	982294	984650	985845	984864	988007
0.3 - 0.0 - 10.0	50						973139	973957	974186	976176	976349	978378	980740	980993	981622	982674	983100	984910	986510	986739
$[\alpha, \beta] = [\alpha, \beta] = [\alpha, \beta] = [\alpha, \beta]$		<u>;</u>				-				4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
	55		SEQ NO (DNA)	1021	1022	1023	1024	1025	1026	1027	1028	1029	1030	1031	1032	1033				

5		Function	amide-urea transport protein	amide-urea transport protein	high-affinity branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding prolein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	glyceraldehyde-3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphate pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufi protein precursor	nodulation ATP-binding protein I
15		Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	316	452		206	310
20		Similarity (%)	61.0	68.0	70 0	69.1	902	540	72.8	61.0	63.2	65.0	546	62.5	79.1	71.9		61.7	64.8
		Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
25	Table 1 (continued)	us gene	hylotrophus	lhylotrophus	ruginosa PAO	ruginosa PAO	.12 pth	FO 0895	eofulvus gap	itidis	(12 pth	uberculosis	nurium D21	TCC 10987	prs	gcaD		K12 suff	33 nodl
30	Table 1 (Hamologous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomonas aeruginosa PAO braF	Pseudomonas aeruginosa PAO braG	Escherichia coli K12	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitidis	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis p	Bacillus subtilis gcaD		Escherichia coli K12	Rhizobium sp. N33 nodl
35		_	ΣĒ	2 €	T^-			-	1										
40		db Match	prf:2406311B	prf.2406311C	SP.BRAF_PSEAE	sp:BRAG_PSEAE	SD:PTH ECOLI	Sp.2NPD WILMR	sp.G3P_ZYMMO	GSP:Y75094	SD PTH ECOL	pir:B70622	sp:LGUL_SALTY	prf.2516401BW	sp.KPRS_BACCL	pir. S66080		SP.SUFI ECOLI	
		ORF (bp)	882	1077	726	669	612	1023	1065	369	531	909	429	624	975	1455	1227	1533	1-1
45		Terminal (nl)	988904	989980	990705	991414	991417	993080	994613	994106	994845	995527	996830	996833	997466	998455	1000016	1002864	
50		Initial (nt)	988023	988904	989980	990716	ACOCOO	90000	993549	994474	995375	996126	996402	997456	998440	606666	1001242	<u> </u>	
		SEQ NO.	4538	4539	4540	4541	C626	45.43	4544	4545	4546	4547	4548	4549	4550	4551	4557		
55			1038	1039	1040	1041	1042	2001	1043	1045	10.46	1047	1048	1049	1050	1051	1052	1053	1054

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

						,				
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
	4555	1003953	1004793	831	pir JN0850	Streptomyces lividans ORF2	30.2	63.2	272	hypothetical membrane protein
	4556	1004829	1006085	1257	sp:UHPB_ECOU	Escherichia coli K12 uhpB	24.6	48.4	459	two-component system sensor histidine kinase
1957	4557	1006089	1006697	609	prf.2107255A	Streptomyces peucetius dnrN	36.6	67.3	202	two component transcriptional regulator (luxR family)
1058	4558	1006937	1006734	204						
1059	4559	1006998	1008152	1155	gp:SCF15_7	Streptomyces coelicolor A3(2) SCF15.07	31.5	64.5	349	hypothetical membrane protein
1060	4560	1008522	1010061	1440	pir:S65587	Streptomyces glaucescens strV	28.6	57.0	535	ABC transporter
1061	4561	1008686	1008534	153						
1062	4562	1010057	1011790	1734	pir:T14180	Mycobacterium smegmatis exiT	44.0	74.0	573	ABC transporter
1063	4563	1013761	1011797	1965	sp.GGT_ECOL!	Fscherichia coli K12 ggt	32.4	58.6	999	gamma-glutamyltranspeptidase precursor
1064	4564	1014016	1014264	249						
1065	4565	1014861	1014343	519						
1066	4566	1014925	1015116	192						
1067	4567	1015652	1016560	606						
1068	4568	1015692	1015450	243	GPU.AF164956_23	Corynebacterium glutamicum TnpNC	64.0	72.0	37	transposase protein fragment
1069	4569	1015852	1015145	708	gp.AF121000_8	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	93.6	100.0	236	transposase (IS1628 TnpB)
1070	4570	1016557	1017018	462						
1071	4571	1017870	1017274	597						
1072	4572	1018082	1018393	312						
1073	4573	1018416	1019066	651	sp:TETC_ECOLI	Escherichia coli tetR	23.0	59.6	183	transcriptional regulator (TetR- family)
1074	45i74	1019090	1022716	3627	sp MFD_ECOLI	Escherichia coli mfd	36.2	65.1	1217	transcription/repair-coupling protein
1075	4575	1020613	1019390	1224						
ĺ										

5	Function	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP- binding protein, ABC-type transport protein	ABC transporter	hypothetical membrane protein		hypothetical protein			IpqU protein	enolase (2-phosphoglycerate dehydratase)(2-phospho-D- glycerate hydro-lyase)	hypothetical protein	hypothetical protein	hypothelical protein	guanosine pentaphosphatase or exopolyphosphatase		threonine dehydratase	
15	Matched length (a.a.)	92	632	574	368		183	1		241	422	41	191	153	329		314	
20	Similarity (%)	0.69	62.7	81.9	100.0		57.4			689	86.0	58.0	55.0	8.77	55.0		64.7	
	Identity (%)	48.0	31.3	50.2	100.0		33.4			46.5	64.5	0.89	31.9	59.5	25.2		30.3	
25 Outjuned)	s gene)eae	dlB	serculosis	glutamicum		PN			berculosis qU	01	K1 APE2459	berculosis	berculosis	γda		lcB	
So Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 IpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gppΛ		Escherichia coli tdcB	
<i>35</i>	db Match	GSP: Y75301	sp:MDLB_ECOLI [6]	sp:YC73_MYCTU	sp.YLI3_CORGL		sp.YABN_BACSU	,		pir:A70623	sp:ENO_BACSU	PIR:872477	pir.C70623	pir.D70623	sp.GPPA_ECOLI		sp.THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	1275	144	540	546	963	984	930	195
45	Terminal (nt)	1021078	1022699	1024666	1026505	1032181	1032780	1032760	1033269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
50	Initial (nt)	1021305	1024666	1026396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	1036316	1036900	1037448	1037481	1039650	1039783
	SEQ	4576	4577	4578	4579	4580	4581	4582	4583	4584	4585	4586	4587	4588	4589	4590	4591	4592
55	SEO	1076	1077	1078	1079	1080	1081	1082	1083	1084	1085	1086	1087	1088	1089	1090	1091	1092

							· · · · ·			,			,									
5		ion			or of L-rhamnose				lion factor		uc		neptulosonate-7-		or undecaprenyl netase					/ transferase	synthase	
10		Function		hypothetical protein	transcription activator of L-rhamnose operon	hypothetical protein		hypothetical protein	transcription elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7-phosphate synthase		hypothetical protein or undecaprenyl pyrophosphale synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
15		Matched length (a.a.)		56	242	282		140	143	140	300		367		97	28			308	434	969	
20		Similarity (%)		74.1	55.8	80.1		57.1	60.1	72.1	56.3		5.99.5		97.3	100.0			6.62	100.0	70.1	
		Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
25	ontinued)	gene s		na MSB8	œ	erculosis		color A3(2)	٨	erculosis	nensis ImbE		utamicum		utamicum	utamicum 'um)			A	ım MJ-233	s pabS	
<i>30</i>	Table 1 (continued)	Homologous gene		Thermologa maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55.39	Escherichía coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebacterium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavum)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
40		db Match		pir.B72287	SP RHAR_ECOLI	pir:F70893		gp:SCF55_39	sp.GREA_ECOLI	pir.G70894	pir:S44952		sp.AROG_CORGL		Sp.YARF_CORGL C	SP:YARF_CORGL (sp.COAA_ECOLI E	gsp:R97745 B	sp:PABS_STRGR S	
		ORF (bp)	330	189	993	816 p	387	450 g	522 s	483 F	873 p	318	1098 s	633	675 s	174 S	519	318	936	1302 g	1860 s	723
45		Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043774	1044477	1046030	1046390	1047707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
50		Initial (nt)	1039996	1040494	1040925	1042027	1043236	1043747	1044295	1044959	1045158	1046073	.046610	1047452	1047827	1048356	1048525	1049385	1050362	1050624	1052021	1053880
		SEQ NO.	4593	4594	4595	4596	4597	4598	4599	4600	4601	4602	4603	1604	4605	4606	4607	4608	4609	4610		4612
55		SEQ NO. DNA)	1093	1094	1095	9601	1097	8601	660	100	101	1102	103	104	105	106	107	108	60	110	Ξ	112

5		Function			phosphinothricin resistance prolin	hypothetical protein		hypothetical protein	lactam utilization protein	handhetical membrane orotein	ואלאסוויפוויפון			Transcriptional regulator	TOSTITUTE BUTTE BUTTE OF THE PROPERTY OF THE P	lumarate hydratase processor	oxydoreductase			reductase	dibenzothiophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)			
15	Matched	length (a.a.)			165	300	Τ	225	276	204	20			204	0.5	450	159			184	443	372	391	:		
20	_	Similarity (%)			58.8	59.0		£7.8		32.2	81.2			63.2		79.4	65 4			810	67.7	51.3	61.6	· 		
		Identity (%)			30.3	30.3	2.5	27.0	2 6	30.0	40.6			26.0		52.0	32.7			55.4	39.1	25.8	28.9			
25 (pe		ē			2					اع						() fumH	olis			or A3(2)	S8 soxA	SB soxC	IGTS8 soxC			
© Sappoint (Continued)		Homologous gene			Alcolingues faecalis of CR	And it is	Escherichia con yogn	-	Escherichia coli yogu	Emericella nidulans lamb	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicolor A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGT			
35	<u> </u> -		+-	-		T	ECOLI		\neg								_				000	HOSO	OSOH			
40		db Match			7 700	gp. Ac. ac.	sp:YBGK_EC		sp.YBGJ_ECOLI	SP.LAMB_EMENI	Sp.YCSH_BACSU			Sp.YDHC_BACSU		SP.FUMH_RAT	gp. AF048979_			gp:SCAH10_16	sp:SOXA_RHOSO					
	-	ORF (bp)	180	200		237	879	1056	699	756	591	672	603	681	1278	1419	489	261	447	564	1488			-+		9
45		Terminal (nt)	1055300	77/001	1054640	1056319	1056322	1058628	1057200	1057843	1058624	1059889	1059962	1060792	1062146	1062211	1064424	1064478	1064754	1065304	1067570				1068913	1069119
50		Initial (nt)		_	 }-	1055783	1057200	1057573	1057868	1058598	1059214	1059218	1059360	1060112	1060869	1063629	1063936	1064738	1065200						1069692	1069808
	,	SEQ		4613	4614	4615	4616	4617	4618	4619			4622		4624	4625		4627	4628					-	4633	4634
55			<u> </u>	13	1114	1115	1116	1117	1118	1119	1120	1121	1122	1123	1124	1125	1126	1127	1128	1129	1130	1331		7611	1133	1134

5		c	iphatic					protein	small subunit	large subunit		to be useful				line	PS1 protein			otein	sierase	
10		Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alveerol metabolism	hypothetical protein	hypothetical protoin	The contract of the contract o	transmembrane efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	penicillin tolerance	polypeptides predicted to be useful antigens for vaccines and diagnostics	500000000000000000000000000000000000000		no manage	sodium-dependent proline	major secreted protein PS1 protein precursor		or r-binding protein	Virulence-associated protein	hypothetical protein	
15		Matched length (a a)	397	325	211	227		82	62	466	311	131		338	1	552	412	36.4	\top	301		
20		Similarity (%)	73.1	75.7	56.4	66.1		78.1	67.7	55.6	78.8	47.0		63.0		61.4	0.09	88.6	2 0	58.8	6.69	
		Identity (%)	45.3	44.3	27.5	31.3		36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2	
30 Table 1 (Continued)	(politica)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 glpX	Mycobacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia coli K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM	-	Rattus norvegicus (Rat) SLC6A7	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Bacillus subtilis vvaF	Dichelobacter nodostis intA	Pseudomonas aeruginosa arqF	Bacillus subtilis 168 ykkB	
35			Escheri	Escheri	Mycobacterium H37Rv Rv1100	Bacillus		Streptomy SCH24.37	Escheric xseB	Escheric xseA	Escheric	Neisseria		Escheric		Rattus no	Corynebact (Brevibacter 17965 csp1	Bacillus s	Dichelob	Pseudom	Bacillus s	
40		db Match	gp:ECO237695_3	sp:GLPX_ECOLI	pir:B70897	pir:H70062		gp:SCH24_37	sp.EX7S_ECOLI	sp:EX7L_ECOLI	sp:LYTB_ECOLI	GSP:Y75421		SP. PERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	SP.YYAF BACSU	Sp. VAPI BACNO	SP.OTCA_PSEAE	sp.YKKB_BACSU	
		(bp)	1176	963	570	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501	
45		Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1080972	1082951	1085462	1086087	1086917	1087044	
50		(nt)		1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079146	1080540	1080965	1082708	1084183	1084380	1085791	1086096	1087544	
		SEQ NO.		4636	4637	1638	4639	4640	4641	4642	4643	4644	4645	4646	4647	4648	4649	4650	4651	4652	4653	
55	100	SEQ NO.	1135	1136	1137	1138	1139	1140	1141	1142	1143		1145	1146	1147	1148	1149	1150	1151	1152	1153	

5	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyitransterase			Iransposase (Insertion sequence IS31831)	transposase	transposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolacione decarboxiyase			frenolicin gene cluster protein involved in frenolicin biosynthetic
15	Matched length (a.a.)	198	396	1153	259			97	125	48				264	108			146
20	Similarity (%)	9:09	73.0	52.2	47.1			93.8	94.4	95.8				66.3	63.9			66.4
	Identity (%)	33.8	42.2	23.0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
25 (Conlinued)	us gene)H4	ficolor	12 yegE	i nodC			glutamicum	glutamicum actofermentum)	glutamicum actofermentum)				ıtida M10 norA	coaceticus			seofulvus frnS
30 100	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869				Pseudomonas putida M10 norA	Acinefobacter calcoaceticus dc4c			Streptomyces roseoiulvus frnS
<i>35</i>	db Match	gp:AF013289_1 N	sp:YIS1_STRCO	Sp.YEGE_ECOLI E	RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA			gp:AF058302_19
	ORF (bp)		1206 51	3042 5	765 s	219	333	291 p	375 p	144 p	141	366	498	843 s	321 \$	663	195	654
45	Terminal (nt)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099115
50 ·	Initial	1088293	1089740	1090175	1093929	1094693	1095052	1095677	1096093	1096331	1096471	1097111	1097229		1098609	1099088		1099768
	SEO	(a a) 4654	4655	4656	4657	4658	4659	4660	4661	4662	4663	4664	4665		4667	4668		
55	SEO	(DNA) 1154	1155	1156	1157	1158	1159	1160	1161	1162	1163	1164	1165	1166	1167	1168	1169	1170

								_			·	-, -							
5		Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomutase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional requiator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
15		Matched length (a.a.)	563						655	329	160	262	248	593	136	121	134	367	436
20		Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	9.66
		Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
25 .	ontinued)	s gene	PCC 7942						erculosis	roides ATCC	nanolica pgm	erculosis	scopicus	e tirC	erculosis	MG1655	yxaD	moniae	utamicum ofermentum)
30	. Table 1 (continued)	Homologous gene	Synechococcus spaceC					. —————————————————————————————————————	Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacler sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF1293 BcpA	Streptomyces fradiae ttrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus subtilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
35			S e	-	-	-	-	;	ΣÏ	α-	Ā	ΣÏ	SS	ŭ	ΣÏ	m g	Ba	E E	\$ <u>@</u> ₹
40		db Match	gp:SPU59234_3						sp.YT15_MYCTU	sp:BCHI_RHOSH	gp:AMU73808_1	pir:A70577	gp:STMBCPA_1	sp:TLRC_STRFR	sp:Y06C_MYCTU	sp:PHNA_ECOLI	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
		ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
45		Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	11111425	1112230	1112484	1114319	1115793
50	į	Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107381	1107560	1108201	1108993	1109792	1111820	1111889	1112957	1113102	11114486
		SEQ NO. (a.a.)	4671	4672	4673	4674	4675	4676	4677	4678	4679	4680	4681	4682	4683	4684	4685	4686	4687
<i>55</i>		SEQ NO. (DNA)	1171	1172	1173	1174	1175	1176	1177	1178	1179	1180 4	11811	1182 4	1183 4	1184 4	1185 4	1186 4	1187 4

	Function	cysteine desulphurase	nicotinate-nucleotide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-protein ligase A	alkylphosphonale uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monooxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ anliporter ChaA	hypothetical protein	hypothetical membrane profein
	Matched length (a.a.)	376	283	361	235	192	214	108	216	148	420	395	191	532	250		339	236	221
	Similarity (%)	73.4	6.89	77.6	6.09	54.7	66.4	74.1	60 7	8.09	64.3	68.6	9 69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.8	40.8	36.7	24.8	25.6		33.3	28.4	27.6
Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptornyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 whole	Fscherichia coli K12 lpIA	Escherichia coli K12 phnB	Pseudomonas putida pcaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichia coli chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis vwaF
	db Match	qp:RFAJ3152_2			-7	gp.AE001961_5	gp:SC3A7_8	sp.YBDF_ECOLI	20:0001740 1	SD PHNB ECOLI	SD PCAK PSEPU		nir A69859				Sp.CHAA ECOLI		LISONAE BACSII
	ORF (bp)	1074	837	1182	642	009	900	342	780		$+\dot{-}$		ady	+	-i	1	+-	1	702
	Terminal (nl)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	0.0000	1123461	1123534		4422000				4		1131401
	Initial (nt)	1116905	1117744	1118932	1119727	1120205	1121432	1121809		1122606		1126020			1128350	1129102			
	SEQ	(a.a.)				4692	4693	4694		4695			<u>-</u> -		4/00				-
	SEQ	(DNA)	1 80	2 3	1191	1192	1193	1194		1195	1107	1198		1199	1200	12021	1202	1204	

ferredoxin [4Fe-4S]

103

91.3

78.6

Streptomyces griseus fer

5	Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	946	164			318	282					271	111	340	147	221	614	506	315
20	Similarity (%)	58.7	81.7			72.0	49 0					51.3	72.1	62.4	71.4	62.9	76.7	54.9	61.9
	Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7
. 25	Homologous gene	ophilus unrA	tuberculosis			yedi.	selicalor A3(2)					nei		ууаD	uberculosis	uberculosis	K12 typA	uberculosis	uberculosis
30 Lappe Lap	Homolog	Thermus thermophilus unrA	Mycobacterium tuberculosis H37Rv tpx			Escherichia coli yedl.	Streptomyces coelicalor A3(2)					Penaeus vannamei	Escherichia coli	Baciltus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170
40	db Match	SP UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp:SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir.F70559	pir.F70555	sp:TYPA_ECOLI	pir.F70874	pir.B70875
	ORF (bp)	2340	495	216	1776	954	006	366	297	261	387	834	345	1200	537	714	1911	1506	870
45	Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140901	1142472	1142479	1143026	1146028	1147602	1148461
50	Initial (nt)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1140021	1140861	1141245	1141273	1143015	1143739	1144118	1146097	1147592
	SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723
55	SEQ NO (DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1216	1217	1218	1219	1220	1221	1222	1223

					6-						accines	ω.	ase	- G			or	
	Function	aspartate aminotransferase			tetrahydrodipicolinate succinylase of succinylase of succinylation of piperidine-2,6-dicarboxylate		hypothetical protein	dihydropteroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, usefut in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyttransferase	glucose-1-phosphate adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24), heat shock and oxidative stress	
	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
	Similarity (%)	52.9			100.0		100.0	69.0	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
lable 1 (confineda)	Homologous gene	Bacillus sp. strain YM-2 aat			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutamicum ATCC 13032 orf2	Streptomyces coelicolor A3(2) dnpS	Mycobacterium leprae u1756l	Mycobacterium tuberculosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora griseorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 gigA	Streptomyces coelicalor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
	db Match	sp. AAT_BACSP			gp:CGAJ4934_1		pir.S60064	gp:SCP8_4	gp.MLU15180_14	pir.G70609	gsp:W32443	sp:MYRA_MICGR	SP. SCRB PEDPE	sp.GLGA_ECOLI	sp.GLGC_STRCO	sp:MDMC_STRMY	sp.RPOE_ECOLI	
	ORF (bp)	1101	621	1185	891	663	768	831	729	306	165	864	1494	1227	1215	639	639	492
	Terminal (nl)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1160728	1160738	1162379	1164916	1164974	1166384	1167067
	Initial (nt)	1149279	1150408	1151186	1153263	1156537	1156902	1157694	1158524	1159267	1159635	1159865	1162231	1163605	1163702	1165612	1165746	1166576
	SEQ NO.		4727		4729	4730	4731	4732	4733		4735	4736	4737	4738	4739	4740	4741	4742
	SEQ NO.	_	1227			1230		1232	1233		1235	1236	1237	1238	1239	1240	1241	1242

EP 1 108 790 A2

5	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglularate dehydrogenase	ABC transporter or muttidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	shikimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of tetracenomycin C resistance	
15	Matched length (aa)	112 hy	257 A	154 hy	434 hy	140 hy			1257 2	AE 1288 res 2)	240 hy	255 sh	501 pa				409 tet	444 m	
20	Similarity (%)	73.2	72.0	838	0.77	87.1			99.8	60.4	72.1	61.2	64.7				61.4	64.2	
	identity (%)	45.5	43.6	60.4	49.8	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
25 (ponujuo	s gene	erculosis	d	erculosis	erculosis	erculosis			lutamicum	Chinese	erculosis	щ	Αc				nsposon	cescens tcmA	
S Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterium tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tcmA	
35		ΣI		ΣI	ΣI	ΣÏ			Ūά		ΣÏ								
40	db Match	pir:C70508	Sp.MRP_ECOLI	pir:870509	pir.C70509	pir.A70952			prf.2306367A	sp:MDR2_CRIGR	pir:H70953	sp:AROE_ECOLI	sp.PNBA_BACSU				sp:TCR1_ECOLI	sp.TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1611	651	876	525	1215	1347	705
45	Terminal (nt)	1167577	1167587	1168747	1169321	1171187	1171871	1171869	1172501	1176308	1180121	1180872	1183603	1184257	1185155	1185218	187039	1188389	1190526
50	Initial (nt)	1167110	1168711	1169325	1170610	1170672	1171206	1172462	11762711	1180048	1180837	1181675	1181993	1183607	1184280	1185742	1185825	1167043	1189822
	SEQ NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	4758	4759	4760
<i>55</i>	SEQ NO. (DNA)	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

5	Function	5- methyltetrahydropteroyltriglutamate- -homocysteine S-methyltransferase	-	thiophene biotransformation protein						ABC transporter	ABC transporter	cytochrome bd-type menaquinol oxidase subunit II	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP	,	profine-specific permease
15	Matched fength (a a)	774		444						526	551	333	512	402		86		433
20	Similarity (%)	72.2		79.5				,		63.5	58.4	93.0	99.0	55.0		65.6		85.0
	Identity (%)	45.2		55.2						28.7	29.4	92.0	9.66	26.4		36.9		51.3
25 (Continued)	ous gene	eus metE		des strain KGB1						K12 MG1655	K12 MG1655	n glutamicum lactofermentum)	n glutamicum actofermentum)	K12 MG1655		mutT	,	murium proY
Table 0s	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH	-	Proteus vulgaris mutT		Salmonella typhimurium proY
40	db Match	pir.S57636		gsp: Y29930						sp.CYDC_ECOLI	sp:CYDD_ECOLI	gp:AB035086_2	gp:AB035086_1	sp.YEJH_ECOLI		sp:MUTT_PROVU		SP.PROY_SALTY
	ORF (bp)	2235 pir	456	1398 gs	324	945	792	1647	192	1554 sp	1533 sp	db 666	1539 gp	2265 sp	342	393 sp	765	1404 sp
45	Terminal (nt)	1188388	1191542	1193807	1194190	1195109	1195125	1197620	1197815	1197990	1199543	1201090	1202094	1203916	1206657	1206831	1208138	1208212
50	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316	1207223	1207374	1209615
	SEQ NO		4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774	4775	4776	4777
55	SEQ NO.	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

esterase or lipase

220

64.6

37.3

Petroleum-degrading bacterium HD-1 hde

gp:AB029896_1

1292 | 4792 | 1227863 | 1228636 |

378 786

1229095

1293 4793 1228718

5	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tetR family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothelical protein	transcriptional regulator		hypothetical protein	phosphoesterase	hypothetical protein		
15	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915		
20	Similarity (%)	74.3	47.4	47.7	72.0	59.4		58.4	55.4		56.2	67.3	59.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7		
25 Zable 1 (continued)	ns gene	oniae CG43 lependent RNA	epra e	вуа рсрВ	. B13 clcE	coaceticus		iberculosis	erevisiae		licolor A3(2)	berculosis	berculosis		
Table 1	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptornyces coelicolor A3(2) orf2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278		
<i>35</i>	db Match	sp.DEAD_KLEPN	рт.2323363ВТ		SPICICE PSESB	Sp.CATA_ACICA		pir:A70672	sp.SNF2_YEAST		gp:SCO007731_6	pir.E70755	sp:Y084_MYCTU		
	ORF (bp)	2196 sp	687 рі	1590 sp	1068 sr	885 sp	471	540 pii	3102 sp	1065	858 gp	1173 pir	2628 sp	306	318
45	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1216904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340
50	Initial (nt)	1209934	1213115	1213269	1214871	1215952	1217374	1217982	1219895	1222905	1222986	1223887	1225066	1227587	1227657
	SEQ NO (a a.)	4778	4779		4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791
55	SEQ NO. (DNA)	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291

5		Function	short-chain fatty acids transporter	regulatory protein			fumarate (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(II)- translocating P-type ATPase	GTP pyrophosphokinase (ATP:GTP 3-pyrophosphotransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine denydrogenase		richo comono estado de la comono de la comon	nitrate reductase garriffa criam	nitrate reductase della challi	nitrate reductase beta chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
15	Matched	length (aa)	122 sl	166 re			228 fr	81 C	509	137	601			24		\top	\top	\neg		137	83	1271	461
20	<u> </u>	Similarity (%)	69.7	56.6			57.9	66.7	902	58.4	49.3			98.0			9.69	63.4	83.4	48.0	55.0	73.8	67.9
	_	identity (%)	37.7	24.7			25.0	33.3	38.0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	32.8
30 Pentintos, Leiker	Donilla Co	ıs gene	licolor	emi recS			12 MG1655 fnr	aciens merP	12 MG1655	ď	Jans tap			glutamicum			arl	arJ	arH	x K1 APE1291	x K1 APE1289	arG	<12 narK
30	lable 1	Homologous gene	Streptomyces coelicolor SC1C2.14c.atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1	Bacillus subtilis narG	Escherichia coli K12 narK
<i>35</i>		db Match	Sp. ATOE_ECOLI	SP. PECS_ERWCH E			Sp.FNR_ECOLI E	SP.MERP_SHEPU	sp ATZN_ECOLI	sp:RELA_VIBSS	gsp:R80504			GSP_P61449				sp:NARJ_BACSU	SP:NARH BACSU	93		ACSU	Sp:NARK_ECOL!
40		ORF (bp)	537 sp.A	486 sp.F	222	519	750 sp.F	234 sp.N	1875 sp./	630 sp:f	1581 gsp		120	108 GS	1260	069	777 sp.	732 sp.	1593 sp.	+	-	+=	+
45		Terminal OF (nt)	1229180 53	1230480 48	1230831 27	1230914 5		1232836 2	1234881 18	1235612 6	1236545 15	+	+	1243728 1	1243942 17	1244843 6	1245720 7	1246508 7	┼	+-	+-	\top	\top
50		fuitiat (nt)	1229716	1229995				1232603	1233007	1234983	1238125	1242156		1243621	1245201	1245532	1246496	1247239	1248791	1249851	4813 1251545	1252537	
		SEQ NO.	+-	4796		+		4800	4801	4802	4803			4806	4807	4808	4809	4810	4811	4812			4815
5 5		SEQ NO.		1296				1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1315	1312	2 2 2	1315

5		Function	losynthesis cnx1 enum cofactor syme cnx1)	ne protease		nbrane protein	nbrane protein	molybdopterin guanine dinucleotide synthase	moʻybdoptein biosynthesis protein	molybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acidCoA ligase	200				sase factor 1	en oxidase		iin	osphate alpha-N. yltransferase
10		Ē	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease		hypothetical membrane protein	hypothetical membrane protein	molybdopterin gu	mo.ybdoptein bio	molybdopterin biosynthsisi pr Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty	Rho factor				peptide chain release factor 1	protoporphyrinogen oxidase	,6,	hypothelical protein	undecaprenyl-phosphate alpha-N-acetylglucosaminyllransferase
15		Matched length (a.a.)	157	738		334	472	178	366	354	572	753				363	280		215	322
20		Similarity (%)	65.0	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		86.0	58.4
		Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
25	Table 1 (continued)	Homologous gene	ana CV cnx1	ens strain IFO-		uberculosis	uberculosis	ltida mobA	ibercutosis moeA	ina cnx2	ovorans	is rho				12 RF-1	12		berculosis	12 rfe
30	Table 1	Homologo	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv1842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherichia coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherich∙a coli K12 rfe
<i>35</i> 40		db Match	sp:CNX1_ARATH	sp:PRTS_SERMA		sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp:PPU242952_2	sp:MOEA_ECOL!	sp.CNX2_ARATH	SP:ALKK_PSEOL	Sp.RHO_MICLU N				sp:RF1_ECOLI E	Sp.HEMK_ECOLI E	-	sp.YD01_MYCTU N	sp:RFE_ECOL! E
		ORF (bp)	489 sp.	1866 sp.:	684	1008 sp:	1401 sp.	561 gp:	1209 sp./	1131 sp.(1725 sp: A	2286 sp:F	603	969	1023	1074 sp:F	837 sp:t-	774	648 sp:Y	1146 sp.R
45		Terminal (1254634 4	1254737	1257750 6	1256851	1257865	1259429 5	1259993 1;	1261688 1	1262886 17	1267427 22	1266267 6	1265611 6	1265427 10	1268503 10	1269343 8	1268267 7	1270043 6	1271192 11
50		Initial (nt)	1254146	1256602	1257067	1257858	1259265	1259989	1261201	1262818	1264610	1265142	1265665	1266306	1266449	-+	1268507	1269040	1269396	1270047
		SEQ NO. (a a.)	4616	4817	4618	4619	4620	4621	4622	4823	4624	4825	4826	4827	4828			4831	4832	4B33
55	ļ	SEO NO. (DNA)	1316	1317	1318	1319	1320	1321	1322			1325	1326	1327			-	1331	1332	1333

5				protein 6)	synthase lipid- synthase C	nthase chain	synthase delta	nthase alpha	synthase	nthase beta	synthase			ng protein			
10	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+-transporting ATP synthase binding protein. ATP synthase chane	H+-transporting ATP synthase chain b	H+-transporting ATP sychain	H+-transporting ATP synthase alpha chain	H+-transporting ATP sy gamma chain	H+-Iransporting ATP synthase beta chain	H+-transporting ATP sy epsilon chain	hypothetical protein	hypothetical protein	pulative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
15	Matched length (a.a.)		80	245	7.1	151	274	516	320	483	122	132	230	95	134	101	301
20	Similarity (%)		0.66	56.7	85.9	6.99	67.2	88.4	9:92	100.0	73.0	67.4	85.7	99.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	99.8	41.0	38.6	70.0	45.0	35.8	54.5	37.9
55 Garage Page 1 (Continued)	ns gene		glutamicum	.12 atpB	dans atpL	dans atpF	dans atpD	dans atpA	dans atpG	glutamicum	dans atpE	uberculosis	berculosis	elicolor A3(2)	qic	uberculosis	uberculosis
7able 1 (Homologous gene	-	Corynebacterium glutamicum atpl	Escherichia coli K12	Streptomyces lividans atpL	Streptomyces lividans	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
35	db Match		GPU:AB046112_1	Sp. ATP6_ECOLI	STRLI	SP.ATPF_STRLI	Sp.ATPD_STRLI	SP.ATPA_STRLI	sp.ATPG_STRLI	sp.ATPB_CORGL	SP.ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp.YQJC_BACSU		sp:YD24_MYCTU
40	ORF (bp)	486	249 GPL	810 sp.A	T	564 sp.A	813 sp:A	1674 sp.A	975 sp:A	1449 sp.A	372 sp.A	471 sp >	(.ds 069	285 GP	453 sp:\	312 sp.)	921 sp:)
45	Terminal O (ht)	1271698 4	1272119 2	1273149 8		1274122 5	1274943 8	1276648 10	1277682 9	1279136	1279522	1280240 4	1280959 6	1281251	1281262	1282105	1283114 (
50	Initial (nt)	1271213	1271871	1272340		1273559	1274131	1274975	1276708	1277688	1279151	1279770	1280270	1280967	1281714		1282194
	SEQ NO (a a.)	4834	4835	4836		4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
<i>55</i>	SEQ NO.	1334	1335	1336	1337	1338	1339	1340	1341	1342	1343	1344	1345	1346	1347	1348	1349

					,	·												
5	Function	FMtNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha	supplied Various denydrogenases	nitronomic conference	mingeriase coldcior symesis protein	hypothetical protein
15	Matched length (a.a.)	366	240	228	311	710	467		211	260	367		244	335		375	3	397
20	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	70.0	,	64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29 5
25 6	(n) e	۵	U	В	∢	SiS	E			Sis	sis					(0	·	asmid
30 tolder	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacterium tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 fepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meliloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
40	db Match	gp ECO237695_3	sp:SSUC_ECOL!	sp.SSUB_ECOLI	sp.SSUA_ECOLI	sp.GLGB_ECOLI	sp AMY3_DICTH		sp.FEPC_ECOLI	pir.C70860	pir H70859		sp FIXA_RHIME	SP.FIXB_RHIME		Sp.NIFS_AZOVI		sp Y4ME_RHISN P
	ORF (bp)	1143	768	729	957	2193	1494	348	879	804	1056	612	786	951	615	1128	312	1146
45	Terminal (nt)	1284466	1285284	1286030	1286999	1287281	1289514	1291373	1292577	1294025	1295206	1294436	1296220	1297203	1297093	1298339	1298342	1299000
50	Initial (nt)	1283324	1284517		1286043	1289473	1291007	1291026	1291699	1293222	1294151	1295047	1295435	1296253	1296479	1297212	1298653	1300145
	SEQ NO.	4850	4851		4853	4854	4855	4856	4857	4858	4859	4860	4861	4862	4863	4864	4865	4966
55	SEO NO (DNA)	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

5		Function	transcriptional regulator	acetyltransferase			of the second se	thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase NAD+1		hypothetical protein	glutamyl-IRNA(GIn) amidotransferase subunit C	glutamyl-IRNA(Gln) amidotransferase subunit A	vibriobactin utilization protein / iron- chelator utilization protein	hypothetical membrane protein	pyrophosphate-fructose 6- phosphate 1-phosphotransrefase
15	Matched	length (a a)	59	181				361		332	200		677		220	97	484	263	96	358
20		Similarity (%)	76.3	55.3	,			6.08		0.99	65.8		70.6		70.9	64.0	83.0	54.0	79.2	77.9
		Identity (%)	47.5	34.8				618		33.7	30.2		42.8		40.0	53.0	74.0	28.1	46.9	54.8
30 Political State	(DORILLIACO)	eueg sr	R234 plasmid	12 MG1655				berculosis		berculosis	ucescens tcmA		arinus dnlJ	horouloeie	indicals:	elicolor A3(2)	uberculosis	iuB	elicolor A3(2)	rethanolica pfp
30 +	anic i	Hamologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Streptonryces glaucescens tcmA		Rhodothermus marinus dnlJ	4	Mycobacterium tubercurosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv qatA	Vibrio vulnificus viuB	Streptomyces coelicolor A3(2)	Amycolatopsis methanolica pfp
35		db Match	Sp.Y4MF_RHISN p	ECOLI							sp:TCMA_STRGA		sp.DNLJ_RHOMR_F			sp.GATC_STRCO	SP.GATA_MYCTU	Sp.VIUB_VIBVU	E6 24	ME
40		용	sp:Y4M	sp:YHBS_				pir.C70858		pir:B70857					pir.H70856	sp:GA		OIV ds	ap SCE6 24	
		ORF (bp)	225	504	942	1149	396	1095	654	066	1461	735		-	663	297	1491	849	306	
45		Terminal (nt)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	4207462	1310369		1310435	1311616	1313115	1314118		
50		Initial (nt)	1300369	1300552	1301929	1303123	1303299	1303829	1304536	1304932			1308330		1311097	1311320	1311625	1313270		
		SEQ NO.		4868	4869			4872	1873	4874			4877		4878	4879	4880	4881		
55		SEQ		1368	1369		1371	1372	1373	1374	1375	i	1376		1378	1379	1380	1381	1282	1383

5	Function		glucose-resistance amylase	ripose transport ATP-binding protein	high affinity ribose transport protein	periplasmic ribose-binding protein	high affinity ribose transport protein	protein	iron-siderophore binding lipoprotein	nt bile acid transporter	RNA-dependent amidotransferase B	putative F420-dependent NADH	protein	protein	membrane protein		dihydroxy-acid dehydratase	orotein
15			glucose-resi	ripose trans	high affinity	periplasmic	high affinity	hypothetical protein	iron-sideropl	Na-dependent bile	RNA-depend	putative F42	hypothetical protein	hypothetical protein	hypothetical membrane		dihydroxy-ac	hypothetical protein
	Matched length	(3)	328	499	329	305	139	200	354	268	485	172	317	234	325		613	105
20	Similarity (%)		31.4	76.2	76.9	77.7	68.4	58.0	60.2	61.9	71.8	61.1	6.99	62.4	52.6		99.4	68.6
	Identity (%)		31.4	44.7	45.6	45.9	41.7	31.0	31.4	35.8	43.1	32.6	39.8	39.3	27.4		99.2	33.3
25 (Danuiuned	gene		ccpA	rbsA	MG1655	MG1655	MG1655	evisiae	olor	Rat) NTCI	eus WHU 29	aschii	yqjG	rculosis	rculosis		tamicum	culosis
56 September 25 Table 1 (continued)	Homologous gene	!	Bacillus megaterium ccpA	Escherichia coli K12 rbsA	Escherichia coli K12 MG1655 rbsC	Escherichia coli K12 MG1655 rbsB	Escherichia coli K12 MG1655 rbsD	Saccharomyces cerevisiae YIR042c	Streptomyces coelicolor SCF34 13c	Rattus norvegicus (Rat) NTCI	Staphylococcus aureus WHU	Methanococcus jannaschii MJ1501 f4re	Escherichia coli K12 yqjG	Mycobacterium tuberculosis H37Rv Rv2972c	Mycobacterium tuberculosis H37Rv Rv3005c		Corynebacterium glutamicum ATCC 13032 ilvD	Mycobacterium tuberculosis H37Rv Rv3004
40	<u></u>		sp.CCPA_BACME	sp.RBSA_ECOU	sp:RBSC_ECOLI	sp.RBSB_ECOLI	sp.RBSD_ECOLI	sp:YIW2_YEAST	gp.SCF34_13	sp.NTCI_RAT	gsp W61467	Sp.F4RE_METJA N	sp.YQJG_ECOL! E	pir.A70672 h	PIT:H70855		gp:AJ012293_1 C	pir.G70855 H
	ORF (bp)	630	1107	1572	972	942	369	929	1014	1005	1479	672	1077	774	1056	237	1839	564
45	Terminal (nt)	1315325	1317444	1319005	1319976	1320942	1321320	1322111	1323406	1324537	1326256	1327049	1329891	1331875	1333008	1333188	1333442	1335412
50	Initial (nt)	1315954	1316338	1317434	1319005	1320001	1320952	1321476	1322393	1323533	1324778	,	1330967	1331102	1331953	1333424	1335280	1335975
	SEQ NC.	4884	4885	4886	4887	4888	4889	4890	4891	4892	4893	4894	4895	4896	4897	4898	4899	4900
55	SEQ NO (DNA)	1384	1385	1386	1387	1388	1389	1390	1391	1392	1393	1394	1395	1396	1397	1398	1399	1400

EP 1 108 790 A2

									$\overline{}$	\neg	\neg			_	_	7		i i	- 1	- 1	:	- 1
5	Function		hypothetical membrane protein	hypothetical protein	A TO kinding potein	nitrate transport ATT-binding potent	mallose/maltodexitin itanspoir ATF- binding protein	nitrate transporter protein			actinorhodin polyketide dimerase	cobalt-zinc-cadimium resistance protein			hypothetical protein		U-3-pnospnogrycerare dehydrogenase	hypothetical serine-rich protein			hypothetical protein	
15	bed 4									i	一			T		- 1		105 hypot			620 hypol	
	Matched	(a.a.)	62	99	- 3	J6/	87	324		-	142	304	-		642	1	530					_
20	Sir	(%)	100.0	55.0		80.8	78.2	56.8			73.2	72.7			53.7		100.0	52.0			63.1	
	Identity	(%)	100.0	45.0		50.9	46.0	28.1			39.4	39.1			22.9		99.8	29 0			32.9	
30 F	(panilling)	ons gene	glutamicum	aricus		sp. nrtD	rogenes ogenes) malK	rain PCC 7120			selicolor	iha czcD			jannaschii		flavum serA	myces pombe			Rhodobacter capsulatus strain SB1003	
30 T	- apple	Hamologous gene	Corynebacterium ATCC 13032 yilV	Sulfolobus solfataricus		Synechococcus sp. nrlD	Enterobacter aerogenes (Aerobacter aerogenes) malK	Anabaena sp. strain PCC 7120 nrtA			Streptomyces coelicolor	Ralstonia eutropha czcD			Methanococcus jannaschii		Brevibacterium flavum serA	Schizosaccharomyces pombe SPAC11G7.01			Rhodobacter ca SB1003	
<i>35</i> <i>40</i>		db Match	sp:YILV_CORGL	GP:SSU18930_26 3		SP NRTD_SYNP7	SP MALK_ENTAE	SP NRTA_ANASP			sp DIM6_STRCO	sp.CZCD_ALCEU			sp:Y686_METJA		gsp:Y22646	SP:YEN1_SCHPO			pır T03476	
	700	(dq)	1473 sp	231 6	909	498 s	267 5	882 8	447	369	486 s	954 s	153	069	1815 s	1743	1590 g	327	198	1062		402
45		(nt)	1336095	1338379	1342677	1341960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	1351727	1353451	1354540		1356853
50		(nt)	1337567	1338609	1342072	1342457	1342727	1343675	1344019	1344440			1345487	1346331	1346458	1348334	1350855	1352053	1352585	1355601		1356452
	SFO	(a.a)	<u> </u>	4902	4933	4924	4935	4906	7064				4911	4912	4913	4914	4915	4916	4917	4918		4920
55	OH.	NO (S	1401	1402	1403	1404	1405	1406	1407	1408	1409	1410	1411	1412	1413	1414	1415	1416	1417	1418	1419	1420

ſ		-	: e 2						_		7				Γ-	_	Ι			
5	Uo		te catabolism ylase [includes diene-1,7-dioal nerase); 5- -hex-3-ene-1,7	3- -9 3-0-	ase	etase	itor													protein
10	Function		homoprolocatechiuate catabolism bifunctional isomerase/decarboxylase [includes: 2-hydroxyhepta-2, 4-diene-1,7-dioate isomerase(thtdd isomerase); 5- carboxymethyl-2-oxn-hex-3-ene-1,7- dioate decarboxylase(opet	methyltransferase or 3- demethylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiam'n biosynthesis protein
15	Matched length (a.a.)		228	192	371	485	29													599
20	Similarity (%)		59.2	25.7	70.4	69.7	0.08		-											81.0
25	Identity (%)		33.3	23.4	38.0	37.3	77.0						-							65.1
continued)	us gene		hpcE	12	JpC	ΙX	licolor A3(2)											-	-	A or thiC
	Hcmologous gene		Escherichia coli C hpcE	Escherichia coli K12	Bacillus sublifis dhbC	Bacillus subtilis gltX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
35							S													7
40	db Match		sp:HPCE_ECOLI	sp:UBIG_ECOLI	sp.DHBC_BACSU		gp.SCJ33_10													sp:THIC_BACSU
	ORF (bp)	654	804	618	1128	1488	213	516	522	342	621	303	180	330	213	183	318	1152	324	1761
45	Terminal (nt)	1358210	1359062	1359669	1360168	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50	Initial (nt)	1357557	4922 1358255	1359052	1361295	1361361	1363138	1363657	1364253		1364960	1365180	1365396	1365808	1367293	1368070	1368078	1368400	1369551	1371637
	SEQ NO (a.a)	1921		4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	493β	4939
55	SEQ NO. (DNA)	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1436	1437	1438	1439

							 -	,												
	Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5-bis(diphosphate) 3'- pyrophosphatase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mutT protein ((7,8-dihydro-8-oxoguanine-triphosphatase)(8-oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		797			299	256		178	257	473	195		294		331	374
	Similarty (%)			74.0		74.0			52.8	64.8		1.09	60.7	87.5	89.2		71.4		72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
Table 1 (continued)	Homologous gene			Chlamydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanococcus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 iclR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 ddIA
	db Malch			GSP:Y37857		sp.PHS1_RAT			sp.YRKH_BACSU	sp:Y441_METJA		sp:SPOT_ECOL!	sp ICLR_ECOLI		sp:LEUD_SALTY		gp:MLCB637_35		sp.GPDA_BACSU	1080 sp.DDLA_ECOLI
	ORF (bp)	348	531	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
	Terminal (nt)	1371979	1373131	1373929	1375491	1373350	1375805	1375933	1376149	1377666	1378466	1379566	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
	Initial' (nt)	1372326	1372601	1373798	1374556	1375776	1375987	1376088	1377555	1378415	1378942	1379003	1380259	1380440	1381902	1382819	1383798	1383930	1384130	1385153
	SEO NO.	4940	4941	4942	4943	4944	4945	4946	4947	4948	4949	4950	4951	4952	4953	4954	4955	4956	4957	495В
	SEQ NO (DNA)	1440	1441	1442	1443	1444	1445	1446	1447	1448	1449	1450	1451	1452	1453	1454	1455	1456	1457	1458
	L			٠	<u> </u>			A			_									

5	Function		thiamin-phosphate kinase	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
15	Matched length (a.a.)		335	245	568	693	108	29	167	155		99	252	220	234		322		223
20	Similarity (%)		57.6	59.6	56.3	0.09	48.0	67.2	63.5	78.7		74.0	78.6	75.0	59.0		60.3		52.5
	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		67.0	56.4	32.7	27.4		28.6		26.9
25 onlinued)	s gene		2 thit		lium (SGC3)	2 recG	dis	reudenreichii	2 yhhF	2 MG1655		ea e	ophilus	faciens	MG1655		n MTH465		VinT
% % Experience & Continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasına genitalium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningitidis	Propionibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia coli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
40	db Match		Sp:THIL_ECOLI	sp UNG MOUSE		sp:RECG_ECOLI E	GSP:Y75303	sp:BCCP_PROFR s	sp:YHHF_ECOLI E	sp.KDTB_ECOLI k		GSP: Y75358 N	sp:GLNQ_BACST B	sp:NOCM_AGRT5 n	Sp.GLNH_ECOLI 9		Pir.H69160		sp:VINT_BPL54 B
	ORF (bp)	978	993	762	1581	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
45	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
50	Initial (nt)	1387270	1387332	1388312	1389208	1390796	1391951	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	1400926	1400940
	SEQ NO. (a.a.)	4959	4960	4961	4962	4963	4964	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974	4976	4976
55	SEQ NO.	1459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472	1473	1474		1476

8 4968 1394854 13959;	1394854 1395933	13959	33	1080				-		
9 4969 1394894 1395097 204 GSP:Y75358	1395097 204 (1395097 204 (GSP Y75	3358	Neisseria gonorrhoeae	67.0	74.0	65	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics
0 4970 1395549 1394800 750 sp.GLNQ_BACST	750	750	750	sp:GLNQ	BACST	Bacillus stearothermophilus gInQ	56.4	78.6	252	ABC transporter or glutamine ABC transporter, ATP-binding protein
4971 1396410 1395568 843 sp.NOCM				sp:NOCM	AGRT5	sp:NOCM_AGRT5 Agrobacterium tumefaciens nocM	32.7	75.0	220	nopaline transport protein
2 4972 1397421 1396561 861 sp.GLNH_ECOL	1396561 861	1396561 861		Sp.GLNH_	COLI	Escherichia coli K12 MG1655 glnH	27.4	59.0	234	glutamine-binding protein precursor
3 4973 1397662 1398468 807	1398468	1398468	807			The second secon				
4974 1399534 1398557 978 pir.H69160	1398557 978	1398557 978		pir: H69160		Methanobacterium thermoautotrophicum MTH465	28.6	60.3	322	hypothetical membrane protein
4975 1400926 1401333 408	-	-	408		!					
6 4976 1400940 1400185 756 sp.VINT_BPL54	756 8	756 8	61	sp:VINT_B	PL54	Bacteriophage L54a vinT	26.9	52.5	223	phage integrase

	_			$\neg \Gamma$			\neg			\neg		$\neg \Gamma$	_	1		- 1	į.		- (1		1		}
5		Function						insertion element (IS3 related)		hypothetical protein										DNA polymerase I	cephamycin export protein	DNA-bInding protein	morphine-6-dehydrogenase	
15		Matched length (a.a.)						26 ii		37										968	456	283	284	
20		Similarity (%)						96.2		97.0										80.8	67.8	65.4	76.1	
		Identity (%)						88.5		89.0										56.3	33.8	41.3	46.5	
25	intinued)	auab						utamicum		utamicum										erculosis	mdurans	color A3(2)	da morA	
30	Table 1 (continued)	Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum		i i								Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A.15c	Pseudomonas putida morA	
35 40		db Match						pir:S60890		PIR:S60890										sp:DPO1_MYCTU	sp.CMCT_NOCLA	gp:SCJ9A_15	sp:MORA_PSEPU	
		ORF (bp)	744	432	207	864	219	192 р	855	111 P	369	315	321	375	948	306	564	222	291	2715 s	1422 \$	606	873 s	159
45		Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	1407167	1407559	1408703	1409428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50		Initial (nt)	1401333	1402272	1402874	1403128	1403997	1404885	1406174	1407109	1407535	1407873	1409023	1409802	14110111	1411424	1412000	1412351	1412916	1413745	1417883	1417962	1418876	1498 4998 1420036
		SEQ NO. (a.a.)	4977	4978	4979	4980	4981		1983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
55		SEQ NO. (DNA)	1477	1478	1479	1480	1481	1482	1483	1484	1485	1486	1487	1488	1489	1490	1491	1492	1493	1494	1495	1496	1497	1498

Table 1 (continued)

				_	_																	
	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypotase (purine nucleosidase)	aniseptic resistance protein	ribose kınase	criptic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	hypothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hydrolase
	Matched length (a.a.)	163	451		195					310	517	293	337		671	152	121	279		839	150	214
	Similarity (%)	58.3	71.4		93.9					81.0	53.8	9.79	65.6		83.3	59.2	80.2	77.1		47.2	0.89	58.4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32.7	30.4
(Homologous gene	Streptornyces coelicolor SCH5.13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13869 yacE					Crithidia fasciculata iunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 yttH	Escherichia coli K12 ytfG		Bacillus subtilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escherichia coli K12 ycbL
	db Match	sp YAFE_ECOLI	Sp.RS1_ECOLI		sp:YACE_BRELA					sp.!UNH_CRIFA	SP. QACA STAAU	SP RBSK ECOLI			sp.UVRB_STRPN	sp:Y531_METJA	Sp:YTFH_ECOLI	i		9 pir H70040	gp.SC9H11_26	sp:YCBL_ECOL!
	ORF (bp)	654	1458	1476	009	1098	582	246	957	936	1449	921	1038	798	2097	441	381	846	684	2349	912	009
	Terminal (nt)	1420071	1422556	1421096	1425878	1427354	1427376	1427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	1436869	1438201	1440026	1438212	1440675	1441793
	Initial (nt)	1420724	1421099	1422571	1425279	1426257	1427957	1428049	5006 1428290	1429159	1430642	1431579	•	1432750	1434105	1436335	1437249	1437356	1439343	1440560	1441586	1442392
	SEQ NO (a.a.)	+	5000	5001		5003	5004	5005	5006	5007	5008	5009	5010	5011	5012	5013	5014	5015		5017	5018	5019
	SEQ NO.	-	1500			1503	1504	1505	1506		1508	1509	1510	1511	1512	1513	1514	1515	1516	1517	1518	1519

								,	_					· · · · · ·			_	_		
5		Function	excinuclease ABC subunit A	hypothetical protein 1246 (uvrA region)	hypothetical protein 1246 (uvrA region)			translation initiation factor IF-3	50S ribosomal protein L35	50S ribosomal protein L20			sn-glycerol-3-phosphate transport system permease protein	sn-glycerol-3-phosphate transport system protein	sn-glycerol-3-phosphate transport system permease proein	sn-glycerol-3-phosphate transport ATP-binding protein	hypothetical protein	glycerophosphoryl diester phosphodiesterase	tRNA(guanosine-2'-0-)- methlytransferase	phenylalanyl-tRNA synthetase alpha chain
15		Matched length (a.a.)	952	100	142		-	179	09	117			292	270	436	393	74	244	153	
20		Similarity (%)	9.08	57.0	47.0			78.2	76.7	92.7			71.6	70.4	97.6	71.3	56.0	50.0	71.2	
		Identity (%)	56.2	40.0	31.0			52.5	41.7	75.0			33.2	33.3	26.6	44.0	47.0	26.2	34.0	
25 30	Table 1 (continued)	Homologous gene	Escherichia coli K12 uvrA	Micrococcus luteus	Micrococcus luteus			Rhodobacter sphaeroides infC	Mycoplasma fermentans	Pseudomonas syringae pv. syringae			Escherichia coli K12 MG1655 ugpA	Escherichia coli K12 MG1655 upgE	Escherichia coli K12 MG1655 ugpB	Escherichia coli K12 MG1655 ugpC	Aeropyrum pernix K1 APE0042	Bacillus subtilis glpQ	Escherichia coli K12 MG1655 trmH	Bacillus subtilis 168 syfA
40		db Match	sp:UVRA_ECOLI	PIR JQ0406	PIR:JQ0406			Sp.IF3_RHOSH	SP.RL35_MYCFE	sp:RL20_PSESY			sp:UGPA_ECOLI	sp.UGPE_ECOLI	sp.UGPB_ECOLI	sp:UGPC_ECULI	PIR:E72756	sp.GLPQ_BACSU	SP.TRMH_ECOLI	sp:SYFA_BACSU
		ORF (bp)	2847	306	450	717	2124	267	192	.381	822	267	903	834	1314	1224	249	717	594	1020
45		Terminat (nt)	1445333	1443810	1444944	1446874	1445323	1448358	1448581	1449025	1449119	1450692	1451820	1452653	1454071	1455338	1454102	1455350	1456948	1458066
50		Initial (nt)	1442487	1444115	1445393	1446158	1447446	1447792	1448390	1448645	1449940	1450126	1450918	1451820	1452758	1454115	1454350	1456056	1456355	1457047
		SEO NO. (a.a.)	5020	5021	5022	5023	5024	5025	5026	5027	5028	5029	5030	5031	5032	5033	5034	5035	5036	5037
<i>55</i>		SEQ NO. (DNA)	1520	1521	.522	1523	1524	1525	1526	1527	1528	1529	1530	1531	.532	533	534	535	536	537

5	
10	
15	
20	
25	
30	
35	
40	
45	•
50	

	Function	phenylalanyl-tRNA synthetase beta chain		esterase	macrolide 3-0-acyltransferase		N-acety/glutamate-5-semialdehyde dehydrogenase	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyase				hypothetical protein	tyrosyl-tRNA synthase (tyrosine	hypothetical protein		hypothetical protein
	Matched length (a.a.)	343		363	423	*	347	388	391	401		478				50	417	149		42
	Similarity (%)	71.7		55.1	56.3		1.66	7.66	99.2	99.5		90.0				72.0	79.6	64.4		75.0
	Identity (%)	42.6		26.5	30.0		98.3	98.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1655 syfB		Streptomyces scabies estA	Streptomyces mycarofaciens mdmB		Corynebaclerium glutamicum ASO19 argC	Corynebacterium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebacterium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH		Andreas de la companya del la companya de la compan		Escherichia coli K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum Nigg TC0129
	db Match	sp:SYFB_ECOLI		sp.ESTA_STRSC	sp:MDMB_STRMY		gp.AF005242_1	sp:ARGJ_CORGL	sp:ARGD_CORGL	sp:ASSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp:SYY1_BACSU	sp:Y531_METJA		PIR-F81737
	ORF (bp)	2484	771	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
	Terminal (nt)	1460616	1458196	1462128	1453516	1463934	1465123	1466373	1468548	1471413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	14/7929	1478503	1483335
i	Initial (nt)	1458133	1458966	5040 1461157	5041 1462134	1463533	1464083	1465210	1467376	1470211	1471362	1471477	1472977	1474119	1475683	1476343	1476550	1478393	1478892	1483475
	SEO NO (a a)	5038	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
	SEQ NO (JNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

10		Function	hypothetical prolein	translation initiation factor IF-2	hypothetical protein		hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	hypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	chromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothetical protein		thiosulfate sulfurtransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
15	Matched	length (a.a.)	84	182	311		260	225	574	394	313	549	157	300	551	258	251		270	172	229
20		Similarity (%)	0.99	0.79	60.1		9.69	31.6	63.4	73.1	68.1	76.7	71.3	71.7	59.7	73.6	64.5		67.0	65.7	72.5
		Identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
25 To	(non)	e.						losis	25	losis	sisol	yi G		SixerD	- DE	ıs parA					
30 to de la constitución de la c	lable i (colum	Homologous gene	Chlamydia pneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgD		Bacillus subtilis yqxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Mycobacterium tuberculosis H37Rv Rv1697	Mycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis vokG	Stanbulococcus aureus xerD	Streptomyces fradiae thC	Caulobacter crescentus parA	Bacillus subtilis ypuG		Datisca plomerata tst	Dacillus subtilis voul	Bacillus subtilis rluB
<i>35</i>		db Match	GSP Y35814 C		ID BACSU	 	SD.YQXC BACSU	1	SP RECN ECOLI		pir.A70503	ECOLI		Sp. rung Bacad	gp Arresssag	gp CCU87804_4	SPAN BACSU	200	AE400456 1	100 AG 111 GX	sp.RLUB_BACSU
	}	ORF (bp)	273	-+-	<u>. </u>		<u> </u>		1779	1191	963	1662			912 1530	783	765		-	8 3	756
45		Terminal (nt)	1483724	700001	1400051	1487193	1488056	1489018	1490881	1492134	1493109	1495174		1495861	1496772		1500605	CEDONC!			1504238
50		Initial (nt)	1102006	1403990	1484073	1400042	1487738	1488146	1489103		1492147				1495861		-			_	1503483
	i	SEO			2028	8000 0000			5063		5065				5068						5074
55		SEQ	(DNA)	1557	1558	1559	000	1562	1563	1564	1565	1566	3	1567	1568	1570			1572	1573	1574

						-																
5		Function		250	protein		rase	ler	er		-	nypothetical membrane protein	riter			otein	2-hydroxy-6-oxohepta-2,4-dienoate		preprotein translocase SecA subunit	tuon protein otein	otein	
15			order of chapter	CTD hinding	or r binding protein		methyltransferase	ABC transporter	ABC transporter		1	nypothetical m	Na+/H+ antiporter			hypothetical protein	2-hydroxy-6-ox	nydrolase	preprotein tran	hypothetical protein	hypothetical protein	
		Matched length	220	435	2		232	499	602		257	/67	499			130	210	300	133	234	133	-
20		Similarity (%)	73.6	74.0		i -	67.2	1 09	56 3		73.2	13.2	61.5			57.7	63.8	61.7	93.2	74.4	63.2	
		Identity (%)	38.6	42.8			36.2	29.7	31.2		39.7	3	25.7			36.9	25.2	35.2	75.8	41.9	30.8	-
25	ontinued)	gene		J			erculosis	iatum M82B	iatum M82B		vaiF	79.5	C 9372			0249#9	lus AF0675		matis garA	culosis	culosis	
30 35	Table 1 (continued)	Homologous gene	Bacillus subtilis cmk	Bacillus subtilis yphC			Mycobacterium tuberculosis Rv3342	Corynebaclerium striatum M828 tetA	Corynebacterium striatum M82B te1B		Escherichia coli K12 vaiF		Bacillus subtilis ATCC 9372 nhaG			Escherichia coli K12 o249#9 ychJ	Archaeoglobus fulgidus AF0675	Bacillus subtilis secA	Mycobacterium smegmatis garA	Mycobacterium tuberculosis H37Rv Rv1828	Mycobacterium tuberculosis H37Rv Rv1828	
40		db Match	sp.KCY_BACSU	sp.YPHC_BACSU		-	sp:YX42_MYCTU	prf.2513302B	prf 2513302A		Sp.YGIE ECOLI		gp:A8029555_1			sp:YCHJ_ECOLI	pir C69334	SP.SECA_BACSU	gp:AF173844_2	sp:Y0DF_MYCTU	SP YODE_MYCTU	
		ORF (bp)	069	1557	999	498	813	1554	1767	825	789	189	1548	186	420	375	1164	2289	429	756	633	
45		Terminal (nt)	1504945	1506573	1506662	1507405	1507917	1510366	1512132	1510843	1512977	1514693	1512980	1514974	1515815	1515408	1515799	1519458	1520029	1520945	1521589	
50		Initial (nt)	1504256	1505017	1507327	1507902	1508729	1508813	1510366	1511667	1512189	1514505	1514527	1515159	1515396	1515782	1516962	1517170	1519601	1520190	1520957	
	_	SEQ NO (a.a.)	5076	5077	5078	5079	5080	5081	5082	5083	5084	5085	5086	5087	5088	5089	5090	5091	5092	5093	5094	
55		SEQ NO (DNA)	1576	1577	1578	1579	1580	1581	1582	1583	1584	1585	1586	1587	1588	1589	1590		1592	1593	1594	

٢				1			T	T			١.	⊆	, Se		1		1	i	1	- 1		<u>'ڍ</u> '			1
10		Function	hypothetical protein				hemolysin	homolysin		DEAD hox RNA helicase		ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		ATP-binding protein	Toggradus Toggradus	hypothetical membrane protein	transcriptional regulator	phosphonales transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding	protein		
15	Matched	length (a.a)	178 h	-			340		20	1,70	#/2	245	492	121		200	233	232	277	281	268	0.00	067		
20	<u> </u>	Similarity (%)	84.3				0.09	0.60	60.0		0.60	66.1	99.2	67.8			68.1	76.3	63.9	63.4	62.3	3	0.27	-	
		Identity (%)	71.4				0	33.9	31.4		41.2	34.3	0.66	39.7			39.6	43.1	26.7	29.9	27.2		44 B	-	_
25 (Del			cutosis								is herA	rculosis	E	rculosis			lpou	rculosis	yfhH	2 phnE	2 phnE		2 phnC		
30 Spenifings/ t older	lane I	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1828					Bacillus subtilis yhdP	Bacillus subtilis yhdT		Thermus thermophilus her A	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis	H37Rv Rv1847		Rhizobium sp. N33 nodl	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phnE	Escherichia coli K12 phnE		Escherichia coli K12 phnC		
<i>35</i>		db Match	SP YODE MYCTU H				-i	Sp.YHDP_BACSU B	Sp.YHDT_BACSU_B		gp:TTHERAGEN_1 T	_			pir G70664		sp.NODI_RHIS3 F	pir.E70501	SD YFHH ECOLI		FCOIL		sp PHINC_ECOLI		
		ORF (bp)	573 sp.	510	1449	909		1062 sp	1380 sp	219	1344 gp		1476		462 pi	675	741 Sp	741 pi	873 51	2 8		-	804 s	210	1050
45		Terminal C (nt)	1522343	1522432	1523052 1	1525973	1524568	1525473	1526534	1528186	1527987	1530220	_		1532394	1532996	1533781	1534521	1534529	1535382	1000001	1220561	1537030	1538968	1537870
50	,	Initial 7	+	1522941	-		1525497		1527913	1527968	1529330	1529485		1531816	1531933	1532322				1535401		1537030	1537833	1538759	1538919
		SEQ	5095				-		5101	5102	5.103	5104		5105	5106	5107			_	5110		5112	5113	1 5114	5 5115
<i>55</i>			(DNA)		1597	1598	1599	1600	1601	1602	1503	1604	5	1605	1606	1607	1608	1609		1610	0	1612	1613	1614	1615

5	Function		phosphomethylpyrimidine kinase	hydoxyethylthiazole Kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- phthalate/phthalate permease	purine phosphoribosyltransferase	hypothetical protein	arscnic oxyanion-translocation pump membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyttransferase		secretory lipase
15	Matched length (a.a.)	34	262 ph	249 hy	451 cy.	468 ph	156 pu	206 hy	361 ar		222 hy	469 su	97 hy					110 hy	217 do sy	527 ap		392 se
20	Similarity M		70.2	77.5	55.0	6.99	59.0	68.5	54.6		83.8	83.6	50.0					87.3	71.0	55.6		55.6
	Identily S (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7
25 Table 1 (continued)	is gene		urium thiD	iurium LT2	berculosis	cia Pc701	T-62 gpt	12 yebN	As4 arsB		licolor A3(2)	R9 ORFA	R9 ORFG					berculosis	yces pombe	12·Int	-	lip1
30 Table 1 (0)	Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv ufaA1	Burkholderia cepacia Pc701 mopB	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp.		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp.	Pseudomonas sp. R9 ORFG					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12·Int		Candida albicans lip1
35			Sa	Satru	₹.E	<u> </u>	£	i	ig		S	e Ps	7					ΣÏ	S db	Es		Ö
40	db Match		sp:THID_SALTY	Sp.THIM_SALTY	pir:H70830	prf 2223339B	prf 2120352B	SP. YEBN_ECOLI	gp AF178758_2		gp:SCI7_33	gp:PSTRTETC1	GP.PSTRTETC1					pir. A70945	prf.2317468A	sp.LNT_FCOLI		gp:AF188894_1
	ORF (bp)	702	1584	804	1314	1386	474	669	966	483	693	1455	426	615	207	189	750	396	810	1635	741	1224
45	Terminal (nt)	1538963	1539820	1542119	1546289	1546307	1547967	1549349	1550398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859	1559497	1560437
50	fnitial (nt)	1539664	1541403	1542922	1544976	1547692	1548440	1548651	1549403	1550469	1551545	5126 1552518	1553722	1554684	1554861	1555079	1555835	1556376	1557823	1559493	1560237	1561660 1560437
	SEQ NO.	5116	5117	5118	5119	5120	5121	5122	5123	5124	5125	5126	5127	5128	5129	5130	5131	5132	5133	5134	5135	5136
55	SEQ NO. (DNA)	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636

hypothetical protein

61

80.3

54.1

Mycobacterium tuberculosis H37Rv Rv2111c

pir:B70512

192 249

1575136

1651

hypothetical protein

467

77.3

53.1

Mycobacterium tuberculosis H37Rv Rv2097c

sp:YY37_MYCTU

1425

1573491 1575205 1574945

5149 5150 5151

1574957 1574915

1650 1649

hypothetical protein hypothetical protein

159 516

50.0

42.0

Aeropyrum pernix K1 APE2014 Mycohacterium tuberculosis H37Rv Rv2112c

480 PIR:H72504

5153 1577327 1577806

1542 pir.C70512

1575406

1576947

5152

1652

74.2

48.6

5	Function	precorrin 2 methyltransferase	precortin-6Y C5, 15- mathyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		ATP-dependent RNA helicase	sec-independent protein translocase protein	hypothetical protein	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	291 р	411 P			244 0	382 c		1030 4	268 s	85 1	317	324 1
20	Similarity (%)	26.7	60.8			75.4	61.3		55.7	62.7	69.4	61.2	64.8
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	44.7	31.9	32.4
25 (pa		sis	s			sis	-		ø.			sis	
56 05 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudomonas denitrificans SC510 cobl.			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 latC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25
40	db Match	pir.C70764	sp.COBL_PSEDE			sp:YY12_MYCTU	gp:AF014460_1		sp:MTR4_YEAST	sp.TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	sp:YY36_MYCLE
	ORF (bp)	774	1278	366	246	738	1137	639	2787	1002	315	981	972
45	Terminal (nt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	1567117	1569932	1571068	1571506	1572492
50	Initial (nt)	1561780	1563802	1563872	1564237	5141 1565302	1566438	1566468	1569903	1570933	1571382	1572486	1573463
	SEQ NO (a.a)	5137	5138	5139	5140	5141	5142	5143	5144	5145	5146	5147	5148
55	SEQ NO (DNA)	1637	1638	1639	1640	1641	1642	1643	1644	1645	1646	1647	1648

cysteinyl-tRNA synthetase

387

64.3

35.9

Escherichia coli K12 cysS

arsenate reductase

123

75.6

47.2

Mycobacterium tuberculosis H37Rv arsC

pir:G70964

639

1595668

1595030

5168

1668

							;								,
5	na	(chaperone-like	le	lase		protein	protein	lyase	transferase	nutase	olate oltransferase		reductase	protein	100 100 100 100 100 100 100 100 100 100
10	Function	AAA family ATPase (chaperone-like function)	protein-beta-aspartate methyltransferase	aspartyl aminopeptidase	hypothetical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphoribosyltransferase	beta-phosphoglucomutase	5-methyltetrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase
15	Matched length (a a)	545 A	281 n	436 a	269 h	× 69	385 q	526 a	281 A	195 b	1254 5		366	388	129 a
20	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	8.66	97.5	63.1	62.4		49.5	63.9	64.3
	identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99.8	96.8	30.8	31.6		22.4	33 0	32.6
25 T	B	arc	<u> </u>		Sis	86	rA23	um 1,233	E,	38			аһрЕ	4)	asmid
30 Significant of the state of	Homologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pimT	Homo sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 aspA	Corynebacterium głutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 melH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Staphylococcus aureus plasmid pl258 arsC
40	db Match	prf 2422382Q	pir:S72844	gp:AF005050_1	pir:B70513	sp:VAPI_BACNO	prf:2513299A	sp:ASPA_CORGL (gp:AF050166_1	pir.H72277	sp:METH_ECOLI		sp:AHPF_XANCH	sp.ACR3_YEAST	sp ARSC_STAAU
	ORF (bp)	1581	834	1323	834	264	1209	1578	843	663	3663	570	1026	1176	420
<i>45</i>	Terminal (nt)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1585603	1586812	1587573	1591912	1591941	1594512	1594951
50	Initial (nt)	1578531	1579400	1580771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	1591343	1592966	1593337	1594532
	SEQ NO.	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5164	5165	5166	5167
55	SEQ NO.	1654	1655	1656	1657	1658	1659	1660	1661	1562	1663	1664	1665	1666	1667

5	Function	bacitracin resistance protein	oxidoreductase	lipoprotein	dihydroorolate dehydrogenase			transposase		bio operon ORF I (biotin biosynthetic enzyme)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/tansport system kinase	methylmalonyl-CoA mutase alpha subunit
15	Matched length (a.a.)	255 b	326 0		334 d			360		152	198		297		535		56	339	741
20	Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		67.1		56.4	72.3	87.5
	Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
<i>25</i> (panu		cA	iens	itosis				e tnpA		ohB			um M82B		tum M82B		s pac	rgK	onensis
os Table 1 (continued)	Homologaus gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppt.	Agrocybe aegerita ura1			Pseudomonas syringae InpA		Escherichia coli K12 ybhB	Neisseria meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
<i>35</i>	db Match	Sp.BACA_ECOLI		pir.F70577	SP.PYRD_AGRAE			gp.PSESTBCBAD_1		sp:YBHB_ECOLI	GSP:Y74829		prf.2513302A		prf.2513302B		pir.JU0052		sp:MUTB_STRCM
	ORF (bp)		948	666 .	1113	351	807	1110	486	531	729	603	1797	249	1587	351	609	1089	2211
45	Terminal	1597745	1599614	1600677	1601804	1601931	1603466	1604629	1604830	1505281	1606689	1608248	1605861	1609335	1607661	1609842	1610844	1611150	1612234
50	initial (nt)	1598623	1598667	1599679	1600692	1602281	1602660	1603520	1605315		1605961	1607645	1607657	1609087		1610192	_!		1614444
	SEQ.	(a.a) 5171	5172	5173	5174	5175	5176	5177	5178	5179	5180	5181	5182	5183		5105			5188
<i>55</i>		(DNA)		1673	1674	1675	1676	1677	1678	1679	1680	1681	1682	1683	1684	1685	1686	1687	1688

						\neg			1	$\neg \top$	\top	Т	γ			T	$\overline{}$	_	
5			ase beta	protein		protein	protein												
10		Function	methylmalonyl-CoA mutase beta subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothetical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
15	404044	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235	22.1	98		446
20		Similarity (%)	68.2	70.1	-	87.0	78.7	72.8		65.7	56.5		85.9	81.6	51.9	62.0	80.2		1.98
•		Identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
25	nen)	υ υ	ensis	osis		osis	osis	A3(2)		enreichii I			losis	losis	chii	r A3(2)	chii		MC58
·	lable I (confined)	Homologous gene	Streptomyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77 24		Propionibacterium freudenreichii subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus jannaschii MJ1575 guaA	Streptomyces coelicolor A3(2) SCD82 04c	Methanococcus jannaschii MJ1558	-	Neisseria meningitidis MC58 NMB1652
<i>35</i>		db Match	sp.MUTA_STRCM	sp:YS13_MYCTU	-	sp:YS39_MYCTU	pır B70711	gp SCC77_24		sp HEMZ_PROFR	sp.P54_ENTFC		pir F70873	pir.E70873	pir F64496	gp:SCD82_4	pir.E64494		gp:AE002515_9
		ORF (bp)	1848	723	597	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
45		Terminal (nt)	1614451	1617300	1617994	1618321	1619672	1620167	1621838	1621841	1623027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	1633324
50		Initial (nt)	1616298	1616578	1617398	1619616	1620106	1621009	1621056		1624826	1625925		1629298	1629913	1631329	1631660	1631745	1631933
		SEQ	5189	5190	5191	5192	5193	5194	5195	5196	5197		5199	5200	5201	5202	5203	5204	
55		SEO	1689	1690	1691	1692	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	1704	1705

Table 1 (continued)

SEQ SEQ Initial Farmfrail ORD Household (%s) Initial (%s) Make the density Function Make the density Function Function (BMO) (m) (m) <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>										_											
SEC Initial Terminal ORF db Match Humologous gene Identity (%) Smillarity (%) NO (III) (IIII) (III) (IIII) (IIIII) (IIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIII) (IIIIIIII) (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	transposase (IS1628)	transposase protein fragment	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
SEC Initial Terminal ORF db Match Humologous gene Identity NO (nt) (nt) (nt) (pp) db Match Humologous gene (%) 5206 163258B 1622109 480 GSP-Y3883B Neisseria gonorrhoeae 59.0 5207 163356 1636241 2676 SPATA1_SYNY3 Silf614 pma 1 426 5208 1634663 1633781 783 ASP GCSP-Y3883B Neisseria gonorrhoeae 59.0 5209 1634663 1633781 783 ASP GCSP-Y3883B Neisseria gonorrhoeae 59.0 5210 1634663 1633781 783 ASP GCSP-Y3883B Neisseria gonorrhoeae 59.0 5211 1634663 163781 783 ASP GCSP-Y3883B Neisseria gonorrhoeae 59.0 5212 163918 163 SPATA1_SYNY3 Silf614 pma 1 42.6 5214 163968 1640185 37.5 Archororeacterian pmag Processor 43.0 5215 163966 16	Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149
SEC NO. (nt) Initial (nt) Terminal (nt) ORF (nt) db Match (nt) Hunrologous gene 5206 1632588 1632682 480 GSP-Y38838 Neisseria gonorrhoeae ORF24 5207 1633566 1632682 486 GSP-Y38838 Neisseria gonorrhoeae ORF24 5208 163366 1633624 266 GSP-Y38838 Neisseria gonorrhoeae ORF24 5209 1634563 1633781 783 Sp.ATA1_SYNY3 Sirrechocystis sp. PCC6803 5210 1636763 1633744 489 gp:SC3D11_2 Sc3D11 102c 5211 1636783 1638472 1362 Sc3D11_2 Sc3D11 102c 5211 1639781 162 SC3D11_2 Sc3D11 102c 5212 1639656 1639817 162 Sc3D11 102c 5213 1639656 1641001 456 pr7.2408488H Streptomyces coelicolor A3(2) 5216 164056 375 pr7.2408488H Streptomyces coelicolor A3(2) 5216 164056 1641046 1629 sp.YJJK_ECOLI </td <td></td> <td>0.09</td> <td>0.69</td> <td>73.2</td> <td></td> <td>58.3</td> <td></td> <td></td> <td></td> <td></td> <td>73.8</td> <td>60.4</td> <td>64.4</td> <td></td> <td>72.4</td> <td>100.0</td> <td>72.0</td> <td>43.0</td> <td></td> <td>70.1</td> <td>85.2</td>		0.09	0.69	73.2		58.3					73.8	60.4	64.4		72.4	100.0	72.0	43.0		70.1	85.2
SEQ Initial Terminal ORF db Match NOO. (nt) (nt) (nt) (pp) db Match 5206 1632588 1632109 480 GSP:Y38838 5207 1633137 1632682 456 GSP:Y38838 5208 1633566 1636241 2676 sp:ATA1_SYNY3 5208 1633566 1636241 2676 sp:ATA1_SYNY3 5209 1633566 1636244 489 gp:SC3D11_2 5210 1636732 1636244 489 gp:SC3D11_2 5211 1639085 1639520 156 5212 1639781 163 375 5213 1639656 1639817 162 5214 1639656 1641001 456 pr.75104948BH 5216 1640546 1641001 456 pr.7510494BH 5216 1642641 1641046 1629 sp:YJJK_ECOLI 5218 1644218 1642743 1476 5220 </td <td>identity (%)</td> <td>54.0</td> <td>59.0</td> <td>42.6</td> <td></td> <td>35.8</td> <td></td> <td></td> <td></td> <td></td> <td>43.0</td> <td>34.4</td> <td>32.8</td> <td></td> <td>51.9</td> <td>9.66</td> <td>64.0</td> <td>32.0</td> <td></td> <td>32.7</td> <td>63.8</td>	identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0		32.7	63.8
SEQ Initial Terminal ORF (a.a.) (nt) (bp) (ba) (a.a.) (nt) (nt) (bp) (5207 1632588 1632109 480 5207 1633137 1632682 456 5208 1633566 1636241 2676 5210 1636732 1636244 489 5211 1637081 1638442 1362 5213 163956 1639817 162 5214 1639656 1639817 162 5215 163978: 1640155 375 5215 163978: 1640155 375 5216 1640546 1641001 456 5217 1642674 1641046 1629 5217 164561 1646063 243 5222 1645861 1646063 243 5223 1646549 1647133 585 5224 1647634 1647212 423	Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonoirhoeae	Synechocystis sp. PCC6803 sll1614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Corynephage 304L int	Escherichia coli K12 yıjK		Micromonospora viridifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1087	Mycobacterium leprae MLCL536.24c nifU7
SEQ Initial Terminal NO. (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	db Match	GSP:Y38838	GSP:Y38838	sp.ATA1_SYNY3		gp:SC3D11_2					prf:2408488H	prf.2510491A	sp:YJJK_ECOLI		Sp:NANH_MICVI	gp:AF121000_8	GPU:AF164956_23	GP:NT1TNIS_5		pir B75015	pir.S72754
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	456	1629	1476	1182	708	243	261	585	423	447
SEQ NO. (a.a.) 52007 5200 5200 5210 5211 5211 5211 5211 5211	Terminal (nt)	1632109	1632682		1633781	1636244	1638442	1638776	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1646063	1645601	1647133	1647212	1647651
	Initial (nt)	<u> </u>	1633137	<u>'</u>			1637081	1639132		1639656	,	!					1645821		1646549	1647634	
SEQ NO.) 1707 1706 1709 1710 1711 1711 1711 1716 1717 1718 1717 1719 1720 1720 1721 1722		5206	5207		5209		5211	5212	5213	5214	5215	5216	5217	5218	5219	5220	5221	5222	5223	5224	\$225
	SEQ NO.	1706		1708	1709		1711	1712	1713	1714	1715	1716	1717	1718	1719	1720	1721	1722	1723	1724	1725

transaldolase

358

85.2

62.0

Mycobacterium leprae MLCL536.39 tal

1080 SP. TAL_MYCLE

1741 | 5241 | 1666673 | 1667752

5	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding protein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		helicase	quinone oxidoreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	transketolase
15	Matched length (a.a.)	52	411	252	377	493	217	518	317	566	291		418	323	295	675
20	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	67.8	77.3	74.8	746		51.0	70.9	8.99	100.0
· ,	Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	100.0
Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22 04c	Mycobacterium fuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22 08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PH0450	Escherichia coli K12 qor	Nitrobacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt
40	db Match	PIR:C72506	pir.S72761	gp:SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir F70871	pir:S72783	pir.S72778	pir:C70871		pir.C71156	sp:aoR_ECOLI	gp:NWCOXABC_3	gp:AB023377_1
	ORF (bp)	162	1263	756	1176	1443	693	1629	1020	804	666	357	1629	975	696	2100
45	Terminal (nt)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1656700	1657515	1658675	1659140	1661136	1662552	1662630	1666502
50	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	5232 1654043	1655681	1656712	1657677	1659496	1659508	1661578	1663598	1664403
	SEQ NO.	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240
55	SEQ NO.	1726	1727	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740

				_									- 1			1			
10		Function	glucose-6-phosphate dehydrogenase	oxppcycle protein (glucose 6- phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sarcosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane protein	phosphoglycerate kinase	glyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothetical protein	hypothetical protein	excinuclease ABC subunit C
15		Matched length (a.a.)	484	318	258 (128	200	205				259	128	405	333	324	309	281	701
20		Similarity (%)	100.0	7.17	58.1	57.8	46.6	100.0				9.66	51.0	98.5	7.66	87.4	82.5	76.2	61.5
		Identity (%)	8.99	40.6	28.7	35.2	246	100.0				99.2	37.0	98.0	99 1	63.9	56.3	52.0	34.4
25	linued)	ene	E	culosis A	visiae		poolie	Itamicum				rtamicum 3 tpiA	evisiae	utamicum 9 pgk	utamicum 9 gap	erculosis	erculosis	erculosis	occ6803
30	Table 1 (continued)	1-omologous gene	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae	Szego MS 129	Bacillus sp. 192123	Corynebacterium glutamicum ATCC 13032 soxA				Corynebacterlum glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glutamicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium fuherculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechocyslis sp. PCC6803 uvrC
40		db Match	0Sp:W27612		sp. SOL3 YEAST	1	2	gp:CGL007732_5				sp.TPIS_CORGL	SP YCQ3_YEAST	sp:PGK_CORGL	sp.G3P_CORGL	pir:D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL
		ORF (bp)	1 0		705	-		1401	174	687	981	777	408	1215	1002	981	1023	927	2088
45		Terminal	1669401	1670375	1671099		1671273	1673123	1677384	1678070	1680128	1680332	1681670	1681190	1682624	1684117	1685110	1686152	1687103
50		Initial	1887050	1669419	1670395		1671677	1671723	1677211				1681263	1682404	1683625	1685097	1686132	1687078	1689190
		SEO	(a.a.)		5.745	<u>.</u>	5246	5247 5248	5249		5251		5253	5254			5257	5258	5259
55				1744	17.46		1745	1747	1749	1750	1751	1752	1753	1754	1755	1756	1757	1758	1759

				<u> </u>		ſ		Γ_		<u> </u>	T		T	Γ	Т	Г	$\overline{}$	Т			T I
5					mazine	y rib operon	protein	y rib operon	and 3, 4- 4-phosphate nthesis)	ha chain	ninase	epimerase	1/NOP2	transferase	se		synthelase	labolism			
10			Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin biosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4-dihydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphate 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosomal protein n	S-adenosylmethionine synthelase	ONA/pantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
15			Matched length (a.a.)	150	154	72	217.	106	404	211	365	234	448	308	150	725	407	409	81	186	103
20	-		Similarity (%)	68.7	72.1	0,89	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	6 08	87.7	74.7	90.3
			Identity (%)	32.7	43.5	59.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	41.6	44.7	22.9	99.3	58.0	70.4	39.8	80.6
25		(par		Sis					sis ribA	78 ribE		e		a fmt			1-233	sis	sis	e guk1	Sis
30		Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escherichia coli K12	Bacillus subtilis	Bacillus subtilis	Bacillus sublilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia coli K12 ribD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fmt	Bacillus subtilis 168 def	Escherichia coli priA	Brevibacterium flavum MJ-233	Mycobacterium tuberculosis H37Rv RV1391 dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 miHF
35					Esc	Вас	Вас	Вас	Myo	Acti plet	Esc	Sac S28	Esc	Pse	Вас	Esc	Bre	Myc H37	Myc H37	Sac	Myc H37
40			db Match	sp:YR35_MYCTU	sp:RISB_ECOLI	GSP.Y83273	GSP Y83272	GSP:Y83273	gp:AF001929_1	sp:RISA_ACTPL	sp.RIBD_ECOLI	sp:RPE_YEAST	sp:SUN_ECOLI	sp.FMT_PSEAE	sp:DEF_BACSU	sp:PRIA_ECOLI	gsp:R80060	sp:DFP_MYCTU	sp:YD90_MYCTU	picKIBYGU	pir:B70899
			ORF (bp)	579	477	228	714	336	1266	633	984	657	1332	945	507	2064	1221	1260	291	627	318
45			Terminal (nt)	1689201	1689869	1690921	1691421	1691347	1690360	1691639	1692275	1693262	1693967	1695499	1696466	1697084	1699177	1700508	1702032	1702411	1702991
50			Initiat (nt)	1689779	1690345	1690654	1690708	1691012	1691625	1692271	1693258	1693918		1696443	1696972	1699147	1700397	1701767	1702322	1703037	1703308
			SEQ NO (a a)	5260	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	5277
5 5			SEQ NO. (DNA)	1760	1761	1762	1763	1764	.1765	1766	1767	1768	1769	1770	1771	1772	1773	1774	1775	1776	1777

												T-						
5		Function	sphate	phate synthase	carbamoyl-phosphate synthase small chain		aspartate carbamoylransferase	phosphoribosyl transferase of pyrimidine operon regulatory protein	ibitor			M. Hilization substance profein B	N utilization is reported by (regulation of rRNA biosynthesis by transcriptional antitermination)	or P	ptidase	ate synthase	se	type IV prepilin-like protein specific leader peptidase
10		J.	orotidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phos small chain	dinydroorotase	aspartate carba	phosphoribosyl transferase of pyrimidine operon regulatory p	cell division inhibitor			us aciterities M	(regulation of retranscriptional	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilir leader peptida
15		Matched length (a.a.)	276	1122	381	402	311	176	297				137	187	217	361	166	142
20		Similarity (%)	73.6	77.5	70.1	67.7	7.9.7	80.1	73.4			-	69.3	98.4	100.0	7.66	100.0	54.9
		Identify (%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7		_		33.6	97.9	99.5	98.6	100.0	35.2
25	Jullingen)	gene	erculosis	89	iginosa	s DSM 405	ıginosa	s DSM 405	erculosis				sB	tofermentum	glutamicum	glutamicum	glutamicum	phila tapD
·	lable (commueu)	Hamalogous gene	Mycobacterium tuberculosis H378v uraA	Escherichia coli carB	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyrR	Mycobacterium tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13869 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroB	Corynebacterium glutamicum AS019 aroK	Aeromonas hydrophila tapD
40		db Match	SP DCOP_MYCTU	-	SEAE	sp.PYRC_BACCL	SP. PYRB_PSEAE	Sp.PYRR_BACCL	Sp.Y00R_MYCTU				sp:NUSB_BACSU	Sp:EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp AF124600_2	Sp:LEP3_AERHY
		ORF (bp)	834 8	10	1179	1341	936	576	1164	477	462	210	681	561	1089	1095	492	411
45		Terminal (nt)	1703517	+		1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716132	1716780	1717938	1719107	1720971
50		Initial (nt)	1704350	1707697	1708884	1710357	1711348	1711927	1712596	1713830	1711299	1714741	1716062	1716692	1717868	1719032	1719598	1721381
		SEO	(8 8)			5281	5282	5283	5284	5285	5286	5287	5288	5289	5290	5291	5292	5293
55			DNA)			1781	1782	1783	1784	1785	1786	1787	1788	1789	1790	1791	1792	1793

	_				- 1									$\neg \tau$					
5		noı	protein, arsR			orter, protein	rt ATP-binding	ogenase			lase			netase		ucosidase	tein		lator
10		Function	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome transport ATP-binding protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyl-tRNA synthetase	hypothelical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
15	1	Matched length (a.a.)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
20		Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
		identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
25	IIII nen)	gene	olor A3(2)	htheriae)rsay	fhuC	rculosis	rculosis	rculosis	dans ATCC	rculosis		ae aspS	rculosis	cerevisiae sta1	ш	-	:olor A3(2)
	lable i (commueu)	Homologous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacillus subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacilius ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv Rv2575	Saccharomyces cerev S288C YIR019C sta1	Bacillus subtilis yhyE		Streptomyces coelicolor A3(2) SCE68.13
40		db Match	gp:SC1A2_22	gp.AF109162_2		pir.A75169	sp.FHUC_BACSU E	pir.D70660	pir.E70660	pir.F70660	sp:SYA_THIFE	sp:Y0A9_MYCTU		Sp.SYD_MYCLE	sp:Y08Q_MYCTU	SP. AMYH_YEAST	sp:YHGE_BACSU I		gp:SCE68_13
		ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	1857	648	594
45		Terminal (nt)	1721423	1722853	1722202	1723826	1724578	1724612	1725459	1726625	1727385	1730166	1731599	1732988	1735946	1736004	1738713	1740572	1741906
50		Initia) (nt)	1721725	1721780	1722807	1722870	1723826	1725439	1726625	1727170	1730048	1731542	1732822	1734811	1735056	1738679	1740559	1741219	1741313
		SEQ NO (a a)		5295	5296	5297	5298	5299	5300	5301	5302	5303	5304	5305	5306	5307	5308	5309	5310
55		SEQ NO.	1794	1795	1796	1797	1798	1799	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

5		Function		uctase		NADH-dependent FMN reductase	dehydratase		alpha-glycerolphosphate oxidase	histidyl-IRNA synthetase	e	in		hypothetical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeptide transport system	hypothetical protein	protein-export membrane protein	
		p e		oxidoreductase			L-serine				hydrolase	cyclophilin						dipeptid			
15		Matched length (a.a.)		371	-	116	462		598	421	211	175		128		760	185	49	558	332	
20		Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6.66	100.0	98.8	6.09	57.2	
		Identity (%)		72.8		37.1	46.8	 	28.4	43.2	40.3	35.4		98.4		6.66	99.5	98.0	30 7	25.9	
25	ontinued)	s gene		color A3(2)		nginosa PAO1	2 sdaA		eliflavus glpO	reus	ıni 99c	somallus		jutamicum		glutamicum	glutamicum	glutamicum	erculosis	2 secF	
30	Table 1 (continued)	Homologous gene		Streptomyces coeticolor A3(2) SCE15.13c		Pseudomonas aeruginosa PAO1 slfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 hisS	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium glutamicum ATCC 13032 orf4		Corynebacterium of ATCC 13032 rel	Corynebacterium of ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium luberculosis H37Rv Rv2585c	Escherichia coli K12 secF	
35 40		db Match		gp.SCE15_13		sp.SLFA_PSEAE	sp:SDHL_ECOLI		prf:2423362A	sp.SYH_STAAU	gp:CJ11168X3_12 7	prf:2313309A		gp:AF038651_4		gp:AF038651_3	gp.AF038651_2	gp:AF038651_1	sp Y0BG_MYCTU	sp SECF_ECOLI	
		ORF (bp)	714	1113	126	495	1347	861	1686	1287	629	507	237	555	342	2280	555	150	1743	1209	630
45		Terminal (nt)	1742606	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757589	1760336
50		initial (nt)	1741893	1742701	1743843	1744025	1744884	1746728	1747918	1749276	1749963	1750427	1750964	1751497	1752186	1754894	1755479	1755/48	1757228	1758797	1759707
		SEQ NO (a a.)	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	5321	5322	5323	5324	5325	532E	5327	5328	\$329
		SEQ NO (DNA)		1812	1813	1814	1815	1816	1817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1829

5	Function	protein-export membrane protein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypothetical protein	hypothetical protein	hexosyltransferase or Nacetylglucosaminylacetylglucosaminylacetylglucositol biosynthetic	acyltransferase	CDP-diacylglycerol-glycerol-3-	histidine triad (HIT) family profein	theory (PNA system)	a shimietase	nypothetical protein	110.	
15	Matched length	1	106 hyp	331 holl	210 holl	180 cros	250 hyp	283 acyl	111 hypo	170 hypo	hexosy acetylg phosph	295 acylt	78 CDP	194 histic	647 three	+	1		
	Similarity Na (%)	52.0	0.99	81.9	74.3	63.3	78.4	68.6	61.3	61.2	493 4	67.8 29	-	4	6	a	- -	+	
20	Identity Sir	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5 6	38.2 6	21.7 4	46.4 6	48.2 78.	54.6 78	42.0 68	34.3 61	,		
25 Q		SsecD		ø	٩٨٦	S	F246	m	A3(2)	Siss							<u>'</u>		
30 Table 1 (continued)	Homologaus gene	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia coli K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streptomyces coelicalor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces cerevisiae S288C spt14	Streptomyces coelicolor A3(2) SCL2.16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
<i>35</i>	db Match	prf.2313285A	SD:YOBD_MYCLE	sp:RUVB_ECOLI	SP.RUVA_MYCLE	sp:RUVC_ECOLI		sp:TESB_ECOLI	gp:SC10A5_9	pir:H70570	sp.GPl3_YEAST	gp:SCL2_16	pir.C70571	pir:D70571	sp.SYT2_BACSU B	sp:YWBN_BACSU B			
	ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	657	099		1206	564	546	735
45	Terminal (nt)	1758803	1761005	1761419	1762517	1763177	1763990	1765015	1756442	1766487	1766948	1768034	1769022	1769681	1770327	1772658	1774444	1773893	1774457
50	Initiaf (nt)	1760734	1761367		1/63134	1763839		1765860	1765969	1766948	1768030	1768996	1769678	1770340		1773863	1773881	1774438	1775191
	SEQ NC (a.a.)	5330		-		5334		5336	5337	5338	5339	5340	5341				5345		5347
<i>55</i>	SEQ NO (DNA)	1830	1831	1832	1853	1834	1835	1836	1837	1838	1839	1840	1841		 -		1845	1846	1847

EP 1 108 790 A2

			-		\neg		\neg	1	\neg	\top				\neg	7		7			$\neg op$	-:	$\neg \top$		$\neg \neg \top$		
5	Rejound	בחוכיוסוו						puromycin N-acetyltransferase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
15	Matched	(aa)					-+	190											202					129		
20	Similarity							64.2											28.7			-		66.7		
	Identity	(%)						36.3										_	28.7					27.1		
25 (participal)		s gene						atus pac											afuC					is dfp	-	
30 Table 1 (Continued)	200	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC					Zymomonas mobilis dfp		
<i>35</i>		db Match						sp.PUAC_STRLP											Sp. AFLIC_ACTPL					gp:AF088896_20		
	-	F @	8	4	20	5	60	_	98	0.1	66	80	13	23	83	189	12	59	597 sp	666	59	107	20	91 gp	864	420
	—	(gq)	37	18	17	4 61	8	i –	0 1086	1 1101	9		Ŧ	<u>e</u>	4	-	3	4	i -	 	-	-	4	5		
45		lerminar (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782790	1784381	1783382	1782894	1785732	1786907	1789562	1789768	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50		(nt)	1777269		1779508	1780168	1780905	1781585	1781705	1783281	1784080	1785473	1786844	1788829	1789080	1789580	1789746	1790889	5364 1791842	1792428	1793654	1793714	1795202	1795591	1796186	1797350
	SFO	NO.	5348		5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363	5364	5365	5366	5367	5368	5369	5370	5971
55	-	0 8 0 8 0 0				1851	1852	1853	1854	1855	1856		1858	1859	1860	1861	1862	1863	1864	1865	1866	1867	1868	1869	1870	1871
															-											

EP 1 108 790 A2

	ſ		;								_		ļ				γ-	Γ_	Γ_	T	_	Т	Г		Τ-	$\overline{\Box}$
5		د																			olvase			ohatase		
10		Function																			transposon TN21 resolvase		The same of the sa	protein-tyrosine phosphatase		
15		Matched length (a a)																			186			164		
20	į	Similarity (%)																			78.0			51.8		
		Identity (%)																			51.1			29.3		
25	tinued)	gene																						visrae 1		
30	Table 1 (continued)	Homologous gene							:												Escherichia coli tnpR			Saccharomyces cerevisiae S288C YIR026C yvh1		***************************************
35																										
40		db Match							-												sp:TNP2_ECOL	-		sp.PVH1_YEAST		
	-	ORF (bp)	120	/35	225	894	156	474	753	423	289	429	465	237	681	960	480	681	285	375	612	1005	375	477	726	423
45		Terminal (nt)	1797850	1798023	1799406	1800366	1800449	1801307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806686	1807396	1808113	1808421	1808832	1810372	1811545	1811938	1812691	1313606	1812460
50		Initial (nt)	1797969	1798757	1799182	1799473	1800604	1800834	1801344	1802577	1802733	1803465	1804134	1804629	1804919	1805727	1806917	1807433	1808137	1808458	1809761	1810541	1811564	1812215	1812881	1812882
		SEQ NO.	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
55		SEQ NO.	1072	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1888	1889	1890	1891	1892	1893	1894	1895

Table 1 (continued)

		1				, —			_								,					
Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease	And the second s	primase
Matched length (a.a.)	216									545					166	298	101			622		381
Simitarity (%)	65.7									55.2					75.0	92.6	84.2			50.6		64.3
Identity (%)	34.3									22.6					63.0	87.9	72.3		-	24.0		31.8
Homologous gene	Streptonyces coelicolor A3(2) whiH									Thermotoga maritima MSB9 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
db Match	gp:SCA32WHIH_6									pir.C72285					PIR:S60891	pir:S60890	pir.S60889			sp:RECJ_ERWCH		pır.T13302
ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
Terminal (nt)	1814517	1815651	1816128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
Initial (nt)	1813780	1814863	1815673	1816451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	1836675
SEQ NO. (a.a.)	5396	5397	5398	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
SEQ NO. DNA)	968	897	868	899	900	901	902	903	904	905	906	907	908	909	910	911	912	913	914	915	916	917

									_																	
5		Vo							557									ith SH3								steinase ATP-
10		Function				halicaca	100000000000000000000000000000000000000		phage N15 protein gp57									actin binding protein with SH3	domains					ATP/GTP binding protein		ATP-dependent Clp proteinase ATP-binding subunit
15		Σ-	(a.a)			620	2		109									422	1					347 A		630 A
20		Similarity (%)				44.7		2.0	04.2									49.8						6.76		61.0
		Identity (%)	.			22.1		36.7	20.7									28.7					32.6	0.67		30.2
25	ned)	au au				e ATCC		5.7										nbe		1	1	+-			-	
30	Table 1 (continued)	Homologous gene				Mycoplasma pneumoniae ATCC 29342 vh95	2001	Bacteriophage N15 gene57	,									Schizosaccharomyces pombe SPAPJ760 026					Streptomyces coelicolor	7.14		Escherichia coli K12 clpA
35			+	<u> </u> -			-	Bac	-	-		-	-		-	-		Schiz	: : -	-			Strept	200		Esche
40		db Match	6			sp:Y018_MYCPN		pir.T13144										gp:SPAPJ760_2					gp:SC5C7_14			sp:CLPA_ECOLI
45	-	ORF (bp)	7 3789	 	534	1839	375	336		618	537	528	798	186	372	438	576	1221	852	1395	594	180	1257	1854		1965
.•		Terminal (nt)	1842137	1842681	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	10000	1800/2/
50		Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	1847938	1848509	1848988	1849781	1850035	1850415	1851049	1851220	1851473	1852479	1854261	1855058	1855532	1856885	1950767	
	<u> </u>	SEQ NO.	5418	5419	5420	5421	5422	5423		5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436 1	5437 1	5438 1	5439 1	5440	
5 <i>5</i>		NO (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1926	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1938	1939	1940	
																								·		

EP 1 108 790 A2

5	Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15	Matched length (a a)					693					224	208					363	358			504	
20	Similarity (%)					45.9					47.8	61.5					99.7	99.7	<u> </u>		45.8	
	Identity (%)					21.4					25.9	31.7					99.2	99.7			24.6	
25 (juned)	Jene					us SA20					olor A3(2)	31 gp52					utamicum	utamicum			color A3(2)	
& Table 1 (continued)	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebacterium glutamicum ATCC 13032 cgllR	an of the second		Streptomyces coelicolor A3(2) SC1A2 16c	
40	db Match					SP.PCRA_STAAU					gp:SCH17_7	prf:2514444Y					prf.2403350A	pir.A55225			gp:SC1A2_16	
	ORF (bp)	474	156	324	312	2355 s	558	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	186
45	Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	1867874	1868587	1868671.	1968027	1871101	1871380	1879400	1880485	1882470	1884220	1887047	1887590
50	Initial (nt)	1860752	1861320	1861842	1862088	1862945	1865265	1865842	1866328	!		1867886						1879412	1883990	1884936		1887405
	SEO NO.		5442	5443	5444	5445	5446	5447				5451			2433			5457	5458	 -		5461
55	SEQ	1941	1942	1943	1944	1945	1946	1947	1948	1949	1950	1951		7081	500	1055	1955	1957	1958	1959	1960	1961

									-,-					- , -			_,			_							
5			UC.	e-related							TP-binding							thus protoin	ins protein								
10			Function	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding							olichear mitotic agnerature protoin	מבחקם בחיים וויים מה מה מיים מה מיים מה מיים מה מיים מה מיים מיים								
15			Matched length (a.a.)	06	163		537				724							1004									
20			Similarity (%)	70.0	56.4		47.9	-			52.5							49.1									
			Identity (%)	46.7	33.1		20.7				25.3							20.1									
25	:	tinued)	euef	rans	ohi-gle		22-16																				
30		Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coli clpB							Homo sapiens numA									
35 40			db Match	gp:AE001973_4	pir.T13226		gp:AF188935_16	-			sp.CLPB_ECOLI							oir.S23647					The state of the s				
			ORF (bp)	351 9	864 pi	330	1680 gr	1206	1293	2493	1785 sp	621	1113	846	981	879	198	2766 pir	900	1251	969	714	1008	1659	1488	399	1509
45			Terminal (nt)	1887688	1888231	1889859	1890028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725 1
50			Initial (nl)	1888038	1889094	1889530	1891707	1893037	1894680	1897231	1899158	1899853	1900916	1901911	1901975	1902883	1903028		1906572	1907914	1908660	1909498	1910508	1912300	1913820	1914371	1916233
			SEQ NO (a a)	5462	5463	5464	5465	5466	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478		5480	5481	5482 1	5483 1	5484 1	5485 1
5 5			SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1969	1970		1972	1973	1974	1975	1976	1977	1978		1980	1981	1982	1983		1985

5	Function										omucin			hylase					ein			ein			
10	T.										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length (a.a.)										1408			61					114			328			
20	Similarity (%)								٠		49.2			65.6					58.8			54.6			
	Identity (%)										23.2			42.6	-				38.6			27.1			
55 52 Table 1 (continued)	eueß sr										lica			:oR1					oerculosis			ınaschii			
S Table 1 (d	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
<i>35</i>	db Match										pir.T03099			sp:MTE1_ECOLI					pir.H70638			sp.Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	306	357	4464 pir	579	945	171 sp.	375	1821	201	468	381 pir	507	837	942 sp.	624	210	534
45	Terminal (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547 4	1926259	1927245	1928381	1928908	1929059 1	1930990	1931421	1931935	1932373	1933522	1934971	1936849 6	1937411 2	1937486
50	initial (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	1926837	1928189	1928211	1928534	1930879	1931190	1931888	1932315	1932879	1934358	1935912	1936226	1937202	1938019
	SEQ NO (a.a.)	5486	5487	5488	5489	5490	5491	5492	5493	5494	5495	5496	5497	5498	5499	2500	5501	5502	5503	5504	5205	5506	5507	5508	5509
55	SEQ NO (DNA)	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

	1						7	1	T		- 1	1		-				-							
5	Function										100000000000000000000000000000000000000	surface protein			major secreted protein PS1 protein			, ,,,	UNA topoisomerase III				major secreted protein PS1 protein precursor		
15	2 -	(a.a)									708	100			270			503	- 180				344		
20	Similarity (%)								-		44.1				54.4			50.0	6.00				54.7		
	Identity (%)										23.0				30.7			23 B	2				29.7		
30 elder	ous gene										calis esp				glutamicum avum) ATCC			89					Jutamicum vum) ATCC		
30 en	Homologous gene										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp I		
<i>35</i>	db Match								-		pri:2509434A				sp.CSP1_CORGL (sp. TOP3_ECOLI					sp.CSP1_CORGL (E		
	ORF (bp)	11911	534	588	444	753	303	216	309	885	828 prt.	297	381	429	1581 sp.(2430	867	2277 sp. 1	2085	891	432	744	1887 sp.C	291	
45	Terminal (nt)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609 4	1947070 1	1949021 2	1951619 8	1952546 23	1956203 20	1958450 8	1959765 4	1960371 7	1961114 18	1963139 2	
50	Initial (nt)	1938945	1939064	1940257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	1948650	1951450	1952485	1954822	1958287	1959340	1960196	1961114 1	1963000 1	1963429 1	
	SEQ NO. (a.a.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522	5523	5524	5525		5527 1	5528 1	5529 1	5530 1	5531 1	5532 1	
5 5	SEQ NO (DNA)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020		2022	2023	-			2027	2028	2029	2030	2031	2032	

								T								lein												
5		ion														A-binding pro												
10		Function				thermonuclease										single stranded DNA-binding protein								serine protease				
15		Matched length (a.a.)				227	ı									225								249			-	
20		Similarity (%)				57.7										59.1								52.6	-			
		Identity (%)				30.4										24.9								25.7				
25	munen)	gone				us nuc																		AgSP24D			-	
<i>30</i>	lane i (commueu)	Homologous gane				Staphylococcus aureus nuc										Shewanella sp. ssb								Anopheles gambiae AgSP24D				
35		db Match				sp.NUC_STAAU										prf.2313347B								sp.S24D_ANOGA				
40						N.ds										prf 23				!				sp.S2				
		ORF (bp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	588	333	558	570	912	693	366	747	180
45		Terminal (nt)	1963514	1964727	1965911	1966984	1967289	1968167	1969715	1970203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1981657	1982028	1982817	1981912
50		Initial (nt)	1964743	1965902	1966267	1966301	1967435	1967604	1968264	1969745	1970254	1971672	1973147	1973809	1974267	1975171	1975916	1976522	1977043	1977742	1978389	1978660	1979239	1979974	1980965	1981663	1982071	1982091
		SEO NO (a a.)	5533	5534		5536	5537	5538	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549	5550	5551	5552	5553	5554	5555	5556	5557	5550
<i>55</i>		SEQ NO. (DNA)	2033	2034	2035	2036	2037	2038	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050	2051	2052	2053	2054	2055	2056	2057	2050

5		tion									(p:	(p:		SOF	S3 related)						ain PS1 protein	
10		Function			-					integrase	transposase (divided)	transposase (divided)		transposition repressor	insertion element (IS3 related)	transposase					major secreted protein PS1 protein	ıntegrase
15		Matched length								406	124	117		31	43	270					153	223 "
20 ⁻		Similarity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	70.9		80.7	74.4	31.1					25.0	28.7
25	(juned)	ene								L5 int	rmentum	rmentum		mentum	micum	ır A3(2)					nicum) ATCC	5 int
30	Table 1 (continued)	Homologous gene		7777000						Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum ort1	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35				-		<u> </u>					<u>в</u> О	മ ഗ		ВÖ	Cor ort1	ळ ळ	-	-	-	-	1	
40 -		db Match	-							SP VINT BPML5	gsp:R23011	gsp:R23011		gsp:R21601	pir:S60889	gp:SCJ11_12					sp:CSP1_CORGL	SP.VINT_BPML5
		ORF (bp)	363	273	264	234	342	273	303	1149	330	417	207	114	135	828	354	891	432	744	1584	687
45		Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985364	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1994608
50		Initial (nt)	1983186	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1988303	1988383	1988483	1988664	1989605	1990667	1990764	1991620	1992538	1994121	1995294
	· ·	SEO NO (a a)	5559		5561	5562	5563	5564	5565	5566	5567		5569	5570	5571	5572	5573		5225	5576	5577	5578
55		SEQ NO (CNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074	2075	2076	2077	2078

5		Function	sodium-dependent transporter	hypothetical protein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphate synthase	RNA methyltransferase		hypothetical protein	deoxyuridine 5-triphosphate nucleotidohydrolase	hypothetical protein	
15	Matched	length (a.a.)		92 h			233 ni	384 p	126 п		232	201	37.1	618	472		268	140	150	
20		Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	528	78.5	52.3		62.7	82.1	70.7	
		Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	_
25 (Certain	Julium Co.	s gene	26695	Ą			erculosis D	erculosis	donii msrA		perculosis	oerculosis	enzae Rd	CL190 dxs	ima MSB8		berculosis	licolor A3(2)	berculosis	
30 Tohlo 1 (Continued)	lanic 1 (c	Homologous gene	Helicobacter pylori 26695 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium tuberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9 09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
<i>35</i>		db Match	pir.F64546	sp.YXAA_BACSU			pir.C70968	pir.E70968	ap. AF 128264 2		pir.H70968	pir.C70528	SP. RND HAEIN	gp:AB026631_1	pir.E72298		pir:C70530	sp.DUT_STRCO	pir.E70530	
		ORF (bp)	306 pi	432 51	345	336	969	1254 p	408	1		624	1263 8	- a	1236	282	\div	447	549	207
45		Terminal (nt)	1995783	1996537	1997112	1997503	1998240	1999542	1999949	1999707	2000521	2002112	2003334	2003402	2005452	2006979	2006777	2007738	2008798	2008876
<i>50</i>		Initial (n1)	1996088	1996106	1996769	1997168	1997545	1998289	1000542	200001	2001216		!			วกกคลดล			2008250	2009082
		SEQ		5580		5582		5584			5587						5593	5594	5595	5596
55		SEQ SEQ NO NO	2079	2080	2081	2082	2083	2084	3000	5007	2087	2088	2089	0000	2091	000	2093	2094	2095	2096

EP 1 108 790 A2

			_					, 	T	т —				,				
5	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
15	Matched length (a.a.)	100	198	248	500	422		578	127	9/	523	144	228	77	329		305	661
<i>2</i> 0	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	. '66		0.67	50.7
	Identity (%)	58.0	38.4	54.4	0.80	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
20 20 20 20 20 20 20 20 20 20 20 20 20 2	s gene	erculosis	12 suhB	serculosis igK	Jutamicum	Q		erculasis	erculosis	erculosis	icolor A3(2)	lutamicum 1	lutamicum	ofaciens	lutamicum ibacterium alE		erculosis	revisiae
Table 1 (0	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dtxR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
35	45	21				BACSU B			ZI	≥I	SS						ΣI	
40	db Match	pir.F70530	sp. SUHB_ECOLI	sp PPGK_MYCTU	prf.2204286A	sp YRKO_B		sp.Y065_MYCTU	pir H70531	pir G70531	gp.SCH5_8	prf.2204286C	pir 140339	GP AF010134_1	sp GALE_BRELA		pir.E70532	sp:MTR4_YEAST
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
45	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
50	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293		2022546	2022959	2025270	2025423	2026494
	SEQ NO. (a a)	5597	5598	6533	5600	5601	5602	5603	5604	5605	9099	5607	5608	5609	5610	5611	5612	5613
55	SEQ NO. (DNA)	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

galactitol utilization operon repressor hydrogen peroxide-inducible genes activator PTS system, fructose-specific IIBC phosphofructokinase (fructose 1phosphoenolpyruvate-protein glycerol-3-phosphate regulon 5 1-phosphofructokinase or 6diaminopimelate epimerase ATP/GTP-binding protein ATP-dependent helicase Function SOS regulatory protein phosphocarrier protein phosphofructokinase phosphotransferase phosphate kinase) regulatory protein uracil permease 10 component repressor 15 Matched length 1298 419 245 (a a) 145 222 320 407 269 299 592 345 549 262 8 Similarity 90°C 71.6 67.8 71.6 65.6 76.2 86.2 64.0 62.6 ഗ 8 55 55. 69 70 64. 20 Identity 39.1 54.4 33.5 35.8 49.2 61.4 46.9 33.9 27.2 34.3 33.0 43.0 37.0 (%) 26. Bacillus stearothermophilus XL-65-6 ptsH Streptomyces clavuligerus nrdR Bacillus stearothermophilus ptsl 25 Streptomyces coelicolor A3(2) SCE22.14c Rhodobacter capsulatus fruK Table 1 (continued) Streptomyces fradiae orf11* Haemophilus influenzae Rd KW20 HI0750 dapF Escherichia coli K12 gatR Homologous gene Escherichia coli K12 glpR Bacillus caldolyticus pyrP Escherichia coli K12 fruA Escherichia coli oxyR Escherichia coli hrpA Bacillus subtilis dinR 30 35 sp.K1PF_RHOCA SP.PYRP BACCL sp:LEXA_BACSU SP OXYR_ECOLI SP.HRPA_ECOLI SP. GATR ECOLI Sp:GLPR_ECOLI sp:PTHP_BACST SP.DAPF_HAEIN gp:SCAJ4870_3 sp:PTFB_ECOLI œ sp:PT1_BACST gp:AF145049 db Match gp:SCE22_14 40 3906 1704 1836 1089 450 969 990 1287 1458 831 420 777 785 ORF (bp) 981 792 960 267 582 537 2051106 2038591 2039618 2042519 2045571 2046714 2047320 2048650 2051842 2051845 2046028 Terminal 2030277 2035383 2035431 2035990 2037507 2039550 2043508 2030157 45 (a) 2052675 2042519 2043736 2041728 2029177 2031365 2031478 2035880 2036409 2036812 2037815 2041321 2045762 2047295 2048606 2050107 2050321 2051306 2038591 (nt) 50 5616 5628 5632 5618 5629 5630 5615 5617 5619 5620 5623 5625 (a.a.) 5614 5621 5622 5624 5626 5627 5631 SEQ NO (DNA) 2116 2117 2118 2119 2120 2122 2123 2125 2126 2127 2128 2129 2130 2131 2132 2114 2115 2124 2121 55

5
10
15
20 ⁻
25
30
35
40 -
45
50

					_													
	Function	tRNA delta-2. isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	pulrescine transport ATP-binding protein	hypothetical membrane protein
	Matched length (a a)	300		445			190	494	242	7.1	225	273	142	29		197	223	228
	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
•	Identity (%)	40.0		48.5			29.0	68.4	9.66	0.99	100.0	99.3	34.5	40.3		33.0	33.2	24.6
Table 1 (continued)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glufarnicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
	db Match	sp MIAA_ECOLI		prr:B70506			pir.C70506	sp.Y195_MYCLE	sp.GLUA_CORGL	GSP:Y75358	sp:GLUC_CORGL	sp:GLUD_CORGL	sp:RECX_MYCLE	pir.A70878		sp:BIOY_BACSH	COLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO.	5633	5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644	5645	5646	5647	5648	5649
	SEQ NO (DNA)	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147		2149

	Function	hypothetical protein	hypothetical protein (35kD protein)		regulator (DNA-binding prolein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
	Matched length (a.a.)	228	269		83	165	160	117	30		358	845	216	645	250			742	89	319
	Similarity (%)	78.5	89.6		78.3	68.5	72.5	52.1	20.0		59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
	Identity (%)	41.7	72 5	16.3	54.2	41.8	38.8	24.8	0.09		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
able (continued)	Homologous gene	Mucobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli terC	Bacillus subtilis 168 spolliE	Streptomyces coelicolor A3(2) SC4G6.14	Corynet:acterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactolermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	1 oichmania maior
	db Match	De0476	pir. Bou I / o	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	prf:2421334D	pir:T10688	gp AF071810_1	-	prf 2119295D `	SP3E_BACSU	gp:SC4G6_14	sp.YOR4_CORGL	sp:YDAP_BRELA			prf.2217311A	pir.F69700	2.4.7E 102EEA
	ORF (bp)	6	089	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	┿~
	Terminal (nt)	0000	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878	2071799	2073294	2076392	2077122	2080387	2082813		1	2085436	
	Initial (nt)		2068703	2069383	2069936	2070512	2071121	2071315	2071624	2072066				2079275	2081136	2082115			2085702	
	SEQ	(a a)	2650	5651	5652	5653	5654	5655	5656	5657	5658	5659	2660	5661	2995	5663			5666	
				2151	2152	2153	2154	2155	2156	2157	2158	2159	2160	2161	2162	2163	2164	2165	2166	3

5		Function	bifunctional protein (riboflavin kinase and FAD synthetase)	IRNA pseudouridine synthase B	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f	hypothetical protein	ribocomo hindina fostas A	translation initiation factor IE.2	hypothetical protein	n-utilization substance protein (transcriptional	termination/antitermination factor)	hypothetical protein	Deptide-binding protain	Debtidetransport system nermoase	oligopeptide permease	peptidetransport system ABC- transporter ATP-binding protein
15		Matched length	329	303	47	237	273	433	308	108	1103	83	352		165	534	337	292	552
20	-	Similarity (%)	79.0	61.7	73.0	62.5	68.9	78.8	708	70.4	62 9	663	710		65.5	609	69 4	69.2	813
		Identity (%)	56.2	32.7	65.0	42.2	46.9	51.0	36.7	32.4	37.7	44.6	42.3		34.6	25.3	37.7	38.4	57.6
25	ntinued)	gene	C 6872 ribF	IruB		olor A3(2)	culosis	culosis	culosis	bíA	a DW4 infB	lor A3(2)	usA		cutosis	ppE	Bdd	Ç	ulosis
<i>30</i>	Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC	Bacillus subtilis 168 truB	Corynebacterium armoniagenes	Streptornyces coelicolor A3(2) SC5A7.23	Mycobacterium tuberculosis H37Rv Rv2795c	Mycobacterium tuberculosis H37Rv Rv2836c dinF	Mycobacterium tuberculosis	Bacillus subtilis 168 rbfA	Stigmatella aurantiaca DW4 infB	Streptornyces coelicolor A3(2) SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Escherichia coli K12 dppB	Bacillus subtilis spo0KC	Mycobacterium tuberculosis H37Rv Rv3663c dppD
40	-	db Match	sp:RIBF_CORAM	sp.TRUB_BACSU	PIR:PC4007	gp:SC5A7_23	pir:B70885	pir.G70693	pir.H70693	sp.RBFA_BACSU	sp.IF2_STIAU	gp:SC5H4_29	sp:NUSA_BACSU		pir:E70588	BACSU	sp:DPPB_ECOLI	prf: 1709239C	pir:H70788
		ORF (bp)	1023	891	228	651	804	1305	966	447	3012	336	966	1254	534	1602	924	666	1731
45		Terminal (nt)	2086919	2088853	2087954	2089218	2089861	2090751	2092051	2093055	2093712	2096844	2097380	2099815	2098412	2101841	2102946	2103973	2105703
50		Initial (nt)		2087973	2088181	2089868	2090664	2092055	2093046	2093501	2096723	2097179	2098375	2098562				2102975	2103973
		SEQ NO.		2669	5670	5671	5672	5673	5674	5675	5676	5677	5678	5679	5680			5683	5684
55	(SEQ NO. (DNA)	2168	2169	2170	2171	2172	2173	2174	2175	2176	2177	2178	2179	2180	2181		2183	2184

5	4	Function	prolyl-fRNA synthetase	hypothetical protein	magnesium-chelatase subunil	magnesium-chelatase subunit	uroporphyrinogen III methyttransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase				methionine aminopeptidase	penicillin binding protein	response regulator (two-component	system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
15	Matched	length (a.a.)	578	243	37	342	237	488	151	338	466				252	630	3	216	424	360
20	;	Similarity (%)	84.6	65.0	60.7	9 69	73.8	68.7	62.3	65.7	9.97				9.27	0.0.7	20.0	72.2	56.8	58.1
		Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					27.2	21.3	44.0	29.5	24.4
25	Offillitied	s gene	erculosis roS	icolor A3(2)	sphaeroides ATCC	is bchi	freudenreichii	gens NCIB	licolor A3(2)	berculosis	icia AC1100					(12 map	wellgerus pcbK	diphtheriae	diphtheriae	iodurans
30	lable i (commuted)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter spha	Heliobacillus mobilis bchl	Propionibacterium freudenreichii	Clostridium perfringens NCIB	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100	5				Escherichia coli K12 map	Streptomyces clavuligerus pcbH	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae	Deinococcus radiodurans DRA0279
35	-		ΣÏ	20.00	-	+-	: a 3			21	+					寸	0,			+
40		db Match	sp.SYP_MYCTU	gp:SCC30_5	sp BCHD_RHOSH	A CRUSAROA A	pri.2303402707	sp:YPLC_CLOPE	gp:SC5H1_10	pir:A70590	SP.GSHR_BURCE					SP. AMPM_ECOLI	prf 2224268A	prf.2518330B	prf.2518330A	gp AE001863_70
		ORF (bp)	1764	735	759		750	1422	006	1014	1395	042	474	357	729	789	1866	630	1149	957
45		Terminal (nt)	2105801	2108386	2108389		2109155				2118310	2117016	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
50		Initial (nt)	2107564	2107652	2109147		2110255	2111238	2113616	2115761			21:18607		2119628	2121147	2123161	2123848		
		SEQ		5686	5687		5688	5890	5691	5692	5603	550	2034			5698				
5 <i>5</i>			(UNA) 2185					2100	2191	2192	2,02	CE17	2194	2196	2197	2198	2199	2200	2201	2202

!		T		ج ا	T							otein	gu		9	:				
5	noi			(gcpE proleir		ane protein	used as namydia	-5-phosphate				P-binding pro	ase 1 activati	ane protein	yłyltransferas	factor				ein S2
10	Function	ABC transporter		hypothetical protein (gcpE protein)		hypothetical membrane protein	polypeptides can be used as vaccines against Chlamydia trachomatis	1-deoxy-D-xylulose-5-phosphale reductoisomerase				ABC transporter ATP-binding protein	pyruvate formate-lyase 1 activating enzyme	hypothetical membrane protein	phosphatidate cytidylyllransferase	ribosome recycling factor	uridylate kinase		elongation factor Ts	30S ribosomal protein S2
15	Matched length (a a)	225		359		405	147	312				245	356	94	294	185	109		280	254
20	Similarity (%)	71.1		73.8		73.6	43.0	42.0				75.1	78.0	74.5	56.5	84.3	43.1		76.8	83.5
	Identity (%)	37.3		44.3		43.0	36.0	22.8				37.1	0.88	41.5	33.3	47.0	28.4		49.6	54.7
25 (panu	eu eu	0		pE		losis		J.				ASB8	losis	ılosis	osa		osa ругН		r A3(2)	
& Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yvrO		Escherichia coli K12 gcpE		Mycobacterium tuberculosis H37Rv Rv2869c	Chlamydia trachomatis	Escherichia coli K12 dxr				Thermotoga maritima MSB8 TM0793	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv3760	Pseudomonas aeruginosa ATCC 15692 cdsA	Bacillus subtilis 168 frr	Pseudomonas aeruginosa pyrH		Streptomyces coelicolor A3(2) SC2E1.42 tsf	Bacillus subtilis rpsB
35		Bac		Esc		Αğ. E3	ర్	<u> </u>				₽ ≥		My H3		Ba	Ps			Ва
40	db Match	prf 2420410P		sp.GCPE_ECOLI		pir:G70886	GSP:Y37145	Sp.DXR_ECOLI				pir:B72334	sp:YS80_MYCTU	pir A70801	sp.CDSA_PSEAE	sp.RRF_BACSU	prf:2510355C		sp:EFTS_STRCO	pir:A69699
	ORF (bp)	.069	162	1134	612	1212	645	1176	441	480	1578	855	1098	258	855	555	729	861	825	816
45	Terminal (n1)	2126753	2126926	2127350	2129461	2128669	2130950	2129903	2131762	2131247	2131825	2133406	2134454	2136141	2136235	2137286	2137936	2139854	2139003	2140071
50	Initial (nt)	2126064	2127087	2128483	2128850	2129880	2130306	2131078	2131322	2131726	2133402	2134260	2135551	2135884	2137089	2137840	2138664	2138994	2139827	2140886
	SEQ NO.	5703	5704	5705	5706	5707	5708	5709	5710	5711	5712	5713	5714	57.15	57.16	5717	5718	5719	5720	5721
55	SEQ NO (DMA)		2204		2226	2207	2208	2209	2210	2211	2212	2213	2214	2215	2216	2217	2218	2219	2220	2221

5	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein
15	Matched length (a.a.)	120 hypo	297 site-	395 hypo	504 Mg(119 hyp	101 hyp
20	Identity Similarity Matched (%) (%) (aa)	58.0	68.7	8.99	75.8	72.3	0.96
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3
55 onlinued)		erculosis	G.S	erculosis	erculosis	erculosis	erculosis
8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis
35		i i	<u>q</u>				
40	db Match	504 sp.YS91_MYCTU	924 prf.2417318A	82 sp:YX27_MYCTU	1521 sp:YX28_MYCTU	sp:YX29_MYCTU	303 SNYTO1 MYCT
	ORF (bp)		+	=	+	366	203
45	Terminal (nt)	2222 5722 2141257 2141760	2141763	2142885	2144066	2145576	7000 7000 7000
50	Initial (nt)	2141257	5723 2142686	5724 2144066	5725 2145586	2145941	2146566
	SEO NO (a a)	5722		5724		5726	5777
55	SEQ NO.	2222	2223	2224	2225	2226	7000

_										·,								
	Function	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	thiamine biosynthetic enzyme thiS (thiG1) protein	thiamine biosynthetic enzyme thiG protein	molybdopterin biosynthesis protein
	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		111	225	376	62	251	437
	Similarity (%)	58.0	68.7	8.99	75.8	72.3	D.96	69.5		61.1	59 1		88.3	6.09	64.1	742	6 9/	56.8
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	37.1	48.2	30.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sipY	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	Escherichia coli K12 thiS	Escherichia coli K12 thiG	Emericella nidulans cnxF
	db Match	sp:YS91_MYCTU	prf.2417318A	sp:YX27_MYCTU	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp.RNH2_HAEIN		prf.2514288H	prf.2510361A		sp.RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	sp:THIS_ECOLI	sp:THIG_ECOL!	prf.2417383A
	ORF (bp)	504	924	1182	1521	366	303	627	792	786	936	213	339	663	1080	195	780	1134
	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	2152329	2153113	2154191
	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231	2148046	2148231	2149571		2150335	2151039	2152135	5737 2152334	2153058
	SEQ NO (a a)	5722	5723	5724	5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	5736	5737	5738
	SEQ NO (DNA)	2222	2223	2224	2225	2226	2227	2228	2229	2230	2231	2232	2233	2234	2235	2236	2237	2238

5		c	ory protein	egradation	cator	translocator	conate						protein		1.516				ticle protein				
10		Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
15		Matched length (a.a.)	776	334	456	65	350				273	210	172	69	83	196	256	318	559				505
20 ⁻		Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	57.6	72.1	66.7	79.5	61.7	69.1	63.8	782				66.1
		Identity (%)	56.6	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
<i>25</i>	lable 1 (continued)	ıs gene	is TOHAMA I	8 degA	pneumoniae	chloroplast	ida pcaB				12 trmD	icolor A3(2)	orae A	199 jhp0839	8 rpsP		lactiae cylB	shii OT3 mtrA	8 ffh			-	2 ftsY
30	lable 1 (c	Hemologous gene	Bordetella pertussis TOHAMA tex	Bacillus subtilis 168 degA	Chlamydophila pn CWLC29 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus harikashii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 flsY
35 40 ⁻		db Match	sp TEX_BORPE	pir.A36940	pir.H72105	prf.2108268A	sp:PCAB_PSEPU				sp.TRMD_ECOLI	gp:SCF81_27	SP. RIMM_MYCLE	pir.B71881	pir.C47154		prf.2512328G		sp.SR54_BACSU				sp.FTSY_ECOLI
		ORF (bp)	2274 s	975 p	1428 p	219 p	1251 s	66	393	069	819 S	648 g	513 s	348 р	495 p	576 p	867 p	876 p	1641 s	633	417	699	1530 s
45	:	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
50		Initial (nt)	2156733	2157721	2159181	2159237	2160537	2160670	2161503	2162196	2163014	2163098	2164260	2164390	2165309	2165523	2166990	2167865	2169584	2170425	2171715	2172209	2175288
		SEQ NO.	5739	5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750	5751	5752	5753	5754	5755	5756	5757	5758	\$759
55		SEQ NO (DNA)	2239	2240	2241	2242	2243	2244	2245	2246	2247	2248	2249	2250	2251	2252	2253	2254	2255	2256	2257	2258	2259

| | _ | \neg | | | |

 |

 | Т | Т | _ | Т | - | 1 | |
 | 1 | | \neg | | \neg |
|----------------------------|--|--|--|--|--
--
--
--
--|---
---|--|---|--|--|---|--
--|--|--|---|--|
| | | | idase or
ecursor | | on protein |

 |

 | | protein | | | tein | NA
NA | |
 | | | | | |
| Function | | | glucan 1,4-alpha-glucos
glucoamylase S1/S2 pre | | chromosome segregatic | acylphosphatase

 |

 | transcriptional regulator | hypothetical membrane | | | cation efflux system pro | formamidopyrimidine-Di
glycosylase | ribonuclease III | hypothetical protein
 | hypothetical protein | transport protein | ABC transporter | hypothetical protein | |
| Matched
length
(a a) | | | 1144 | | 1206 | 92

 |

 | 305 | 257 | | | 188 | 285 | 221 | 176
 | 238 | 559 | 541 | 388 | |
| Simitarity
(%) | | | 46.2 | | 72.6 | 73.9

 |

 | 0.09 | 73.5 | | | 9.9/ | 66.7 | 76.5 | 62.5
 | 76.9 | 55.6 | 58.8 | 62.6 | |
| Identity
(%) | | | 22.4 | | 48.3 | 51.1

 |

 | 23.9 | 39.3 | and the second s | | 46.8 | 36.1 | 40.3 | 35.8 | 50.0
 | 28.3 | 26.6 | 35.3 | |
| s gene | | | erevisiae
ta 1 | | oerculosis
mc | oerculosis
S

 |

 | 12 yfeR | orae | | | osus gep | 12 mutM or | 8 rncS | oerculosis
 | oerculosis | icillus | 12 cydC | licolor A3(2) | |
| Homologo | | | ccharomyces co
88C YIR019C s | | robacterium tul
7Rv Rv2922c s | cobacterium tu

 |

 | cherichia coli K | rcobacterium le ₁
.CL581.28c | | | chelobacter nod | cherichia coli K
J | cillus subtilis 16 | cobacterium tu
17Rv Rv2926c
 | oobacterium tu | eptomyces vert | cherichia coli K | eptomyces coe
39C7.02 | |
| | i | | Sa
S2 | _ | ₩
±3 |

 |

 | Ë | ΣΣ | | | ۵ | Es
fp: | Ba | ΣÏ
 | - | क | Es | SC | _ |
| db Match | | 5 | sp:AMYH_YEAST | | sp:Y06B_MYCTU | sp.ACYP_MYCTU

 |

 | SP.YFER_ECOLI | pir:S72748 | | | gp:DNINTREG 3 | sp:FPG_ECOLI | pir.B69693 | sp:Y06F_MYCTU
 | sp:Y06G_MYCTU | prf.2104260G | sp.CYDC_ECOLI | gp:SC9C7_2 | |
| ORF
(bp) | 159 | 702 | 3393 | 963 | 3465 | 282

 | 1854

 | 858 | 831 | 183 | 447 | 615 | 858 | 741 | 534
 | 789 | 1644 | 1530 | 1122 | 441 |
| Terminal (nt) | 2175888 | 2177103 | 2176110 | 2181880 | 2179628 | 2183110

 | 2183405

 | 2185351 | 2187129 | 2187342 | 2187233 | 2187692 | 2188313 | 2189166 | 2189906
 | 2190540 | 2193165 | 2194694 | 2198004 | 2198007 |
| In tial
(nt) | 2176046 | 2176402 | 2179502 | 2180918 | 2183092 | 2183391

 | 2185258

 | 2186208 | 2186299 | 2187160 | 2187679 | 2188306 | 2189170 | 2189906 | 2190439
 | 2191328 | 2191522 | 2193165 | 2196883 | 2198447 |
| SEQ
NO
(a.a.) | 5760 | 5761 | 5762 | 5763 | 5764 | 5765

 | 5766

 | 5767 | 5768 | 5769 | 5770 | 5771 | 5772 | 5773 | 5774
 | 5775 | 5776 | 5777 | 5778 | 6278 |
| SEQ
NO
(DNA) | | <u></u> | 2262 | 2263 | 2264 | 2265

 | 2266

 | 2267 | 2268 | | | | 2272 | 2273 | 2274
 | 2275 | - | | 2278 | 2279 |
| | SEQ In tial Terminal ORF db Match Homologous gene (%) (%) (9) (aa) | SEQ In tial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%) 5760 2176046 2175888 159 | SEQ
NO
(n1) In tial
(n1) Terminal
(n1) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(%) 5760 2176046 2175888 159 3 5761 2176402 2177103 702 | SEQ
NO
(nt) In tial
(nt) Terminal
(nt) ORF
(pp) db Match Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(as) 5760 2176046 2175888 159 .3 . | SEQ
NO
(a.a.) In tial
(nt) Terminal
(nt) ORF
(bp) db Match Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(aa) 5760 2176046 2175888 159 . | SEQ (nt) In tial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarty (%) Matched (%) 5760 2176046 2175888 159 (%) <td>SEQ
NO In tial
(nt) Terminal
(nt) ORF
(pp) db Match Homologous gene Identity
(%) Similarty
(%) Matched
(%) 5760 2175046 2175888 159 - <t< td=""><td>SEQ
(n1) In tial
(n1) Terminal
(n1) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 5760 2176046 2175888 159 -</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity (%) Similarty (%) Matched (%) A 3 2 176 0 4 2 175 8 4 2 175 10 2 2 176 0 4 2 175 8 1 2 2 176 10 2 2 176 2 2 176 2 2 176 2 2 176 10 2 2 176 2 176 2</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity Similarity Matched (aa) S760 2176046 217588B 159 </td><td>SEQ In tial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarty (%) Matched (%) 5760 2176046 2175888 159 ————————————————————————————————————</td><td>SEQ In Iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%) Patched (%)</td><td>SEQ
NO In Ital
(nt) Terminal
(nt) ORF
(nt) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Matched
(%) Identity
(%) Matched
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Ident</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b)</td><td>SEQ In iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b)</td><td>SEQ In IIal Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) NO 217604 217588 159 -</td><td>SEG In Ital Terminal ORF db Match Homologous gene Identity Similarty Matched NO (nt) (nt) (ht) (bp) db Match Homologous gene (%)</td><td> National Terminal ORF Ab Match Homologous gene Identity Similarty Iengih (%) </td><td>SEQ
NO
(n1) In Ital
(n1) Terminal
(n1) ORF
(n1) db Match
(n1) Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(%) Matched
(</td><td> National Charles Cha</td></t<></td> | SEQ
NO In tial
(nt) Terminal
(nt) ORF
(pp) db Match Homologous gene Identity
(%) Similarty
(%) Matched
(%) 5760 2175046 2175888 159 - <t< td=""><td>SEQ
(n1) In tial
(n1) Terminal
(n1) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 5760 2176046 2175888 159 -</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity (%) Similarty (%) Matched (%) A 3 2 176 0 4 2 175 8 4 2 175 10 2 2 176 0 4 2 175 8 1 2 2 176 10 2 2 176 2 2 176 2 2 176 2 2 176 10 2 2 176 2 176 2</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity Similarity Matched (aa) S760 2176046 217588B 159 </td><td>SEQ In tial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarty (%) Matched (%) 5760 2176046 2175888 159 ————————————————————————————————————</td><td>SEQ In Iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%) Patched (%)</td><td>SEQ
NO In Ital
(nt) Terminal
(nt) ORF
(nt) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Matched
(%) Identity
(%) Matched
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Ident</td><td>SEQ In tial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b)</td><td>SEQ In iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b)</td><td>SEQ In IIal Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) NO 217604 217588 159 -</td><td>SEG In Ital Terminal ORF db Match Homologous gene Identity Similarty Matched NO (nt) (nt) (ht) (bp) db Match Homologous gene (%)</td><td> National Terminal ORF Ab Match Homologous gene Identity Similarty Iengih (%) </td><td>SEQ
NO
(n1) In Ital
(n1) Terminal
(n1) ORF
(n1) db Match
(n1) Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(%) Matched
(</td><td> National Charles Cha</td></t<> | SEQ
(n1) In tial
(n1) Terminal
(n1) ORF
(bp) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) 5760 2176046 2175888 159 - | SEQ In tial Terminal ORF db Match Homologous gene Identity (%) Similarty (%) Matched (%) A 3 2 176 0 4 2 175 8 4 2 175 10 2 2 176 0 4 2 175 8 1 2 2 176 10 2 2 176 2 2 176 2 2 176 2 2 176 10 2 2 176 2 176 2 | SEQ In tial Terminal ORF db Match Homologous gene Identity Similarity Matched (aa) S760 2176046 217588B 159 | SEQ In tial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarty (%) Matched (%) 5760 2176046 2175888 159 ———————————————————————————————————— | SEQ In Iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%) Patched (%) | SEQ
NO In Ital
(nt) Terminal
(nt) ORF
(nt) db Match Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Matched
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Similarity
(%) Homologous gene Identity
(%) Matched
(%) Identity
(%) Matched
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Matched
(%) Identity
(%) Ident | SEQ In tial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b) | SEQ In iial Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) (%b) (%b) Matched (%a) (%b) (%b) Matched (%a) (%b) (%b) | SEQ In IIal Terminal ORF db Match Homologous gene Identity Similarty Matched (%a) NO 217604 217588 159 - | SEG In Ital Terminal ORF db Match Homologous gene Identity Similarty Matched NO (nt) (nt) (ht) (bp) db Match Homologous gene (%) | National Terminal ORF Ab Match Homologous gene Identity Similarty Iengih (%) | SEQ
NO
(n1) In Ital
(n1) Terminal
(n1) ORF
(n1) db Match
(n1) Homologous gene
(%) Identity
(%) Similarty
(%) Matched
(%) Matched
(| National Charles Cha |

5					ein			ylase / se		rceryl	phate synthase	e protein	yclohydrolase		· ·	no-5- amide	erase	ance protein sport protein
10		Function	hypothetical protein	peptidase	sucrose transport protein			mallodextrin phosphorylase glycogen phosphorylase	hypothelical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphale phosphalase	phosphoribosyformimino-5- aminoimidazole carboxamide ribotide isomerase	glulamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
15		Matched length (a a)	405	353	133			814	295	264	169	228	68	258	241	245	210	402
20	-	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
		Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	528	97.3	94.0	95.9	86.7	25.6
25	(pai	_	88	႘	-			alP		DA 485		sis	S ATCC	cum	cum	cum	mno	cmlR
30	Table 1 (continued)	Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485 Igt	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynèbacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 FisH	Streptomyces lividans 66 cmIR
35			Thermot TM0896	Cam 4343	Arabi			Therr	Bacil	Stap!	Emer	Myco H37F	Rhod 1702	Cory AS01	Conyr AS01	Coryr AS01	Coryr AS01	Strep
40	-	db Malch	pir A72322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A	sp.YFIE_BACSU	sp:LGT_STAAU	sp:TRPG_EMEN	pir:H70556	sp:HIS3_RHOSH	sp.HIS6_CORG	prf:2419176B	gp:AF051846_1	gp:AF060558_1	sp:CMLR_STRLI
		ORF (bp)	1284	1263	336	135	276	2550	900	948	801	657	354	774	825	738	633	1266
45		Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
50		Initial (nt)	2198475	2199808	2201408	2201584	2201869	2204541	2205493	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
		SEQ NO (a.a.)	5780	5781	5782	5783	5784	5785	5736	5787	5788	5789	5790	5791	5792	5793	5794	5795
55		SEQ NO (DNA)	2280	2281	2282	2283	2284	2285	2286	2287	2288	2289	2290	2291	2292	2293	2294	2295

5			ate			_			osphatase		zyme			nase	n repressor	-binding C				
10	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothelical protein
15	Matched length (a.a.)		198	362	439	342			211	204	722	258	268	343	329	246	332	103	182	113
20	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	6.09	64.4	68.3	71.1	68.0	9'29	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	20.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
25 (pənu	9c		r A3(2)	r A3(2)	atis	pombe			AcP-1	dRP1	ius treX	losis	ır A3(2)	dhA	alR	Or.		Ω	ر ر	Ŧ
os Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfotobus acidocaldarius treX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fluC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 ytfH
35			Strep	Strep		Schi			Leis	Esch tetR	Sulf	Myc H37	Stre SC2	Sinc		7	Vibr	Bac	Вас	Πi
40	db Match		sp:HIS7_STRCO	sp:HISB_STRCO	sp:HISX_MYCSM	gp:SPBC215_13			prf.2321269A	pir.RPECR1	prf:2307203B	pir.E70572	gp:SC2G5_27	prf.2503399A	Sp. GALR_ECOLI	sp:FHUC_BACSU	prf 2423441E		pir:G70046	SP.YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2508	801	774	101	966	798	1038	348	594	441
45	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225035	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
50	Initial (1r)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779			2230937			2232456
	SEO NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5805	5806	5807	5808	5809		5811	5812	5813	5814
55	SEQ NO.	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

5		Function	DNA polymerase III epsilon chain		maltooligosyl trehalose synthase	hypothetical protein					alkanal monooxygenase alpha chain	hypothetical protein		maltooligosytrehatose trehatohydrotase	hypothetical protein	threonine dehydratase			Corynebacterium glutamicum AS019	DNA polymerase III	chloramphenicol sensitive protein	histidine-binding protein precursor	hypothetical membrane protein
15		Matched length (a.a.)	355		814	322					375	120		568	214	436			415	1183	279 6	149	198 h
20 ⁻		Similarity (%)	50.1		68.6	52.8					54.4	79.2		72.4	72.4	99.3			49.6	80.5	73.8	55.7	64.7
		Identity (%)	23.4		42.0	27.6					20.5	58.3		46.3	36.5	99.3			22.7	53.3	37.6	21.5	22.7
25	lable 1 (continued)	Homologous gene	oelicolor A3(2)		Q36 treY	diodurans					ıminescens xA	oelicolor A3(2)		Q36 treZ	168	n glutamicum A			seus metE	elicolor A3(2)	K12 rarD	ejuni DZ72 hisJ	ulgidus AF2388
35	lable	Homolo	Streptomyces coelicolor A3(2) SCI8.12		Arthrobacter sp. Q36 treY	Deinocccous radiodurans DR 1631					Photorhabdus fuminescens ATCC 29999 luxA	Streptomyces coelicolor A3(2) SC7H2.35		Arthrobacter sp.	Bacillus subtilis 168	Corynebacterium glutamicum ATCC 13032 ilvA			Catharanthus roseus metE	Streptomyces coelicolor A3(2) dnaE	Escherichia coli K12 rarD	Campylobacter jejuni DZ72 hisJ	Archaeoglobus fulgidus AF2388
40		db Match	gp:SCI8_12		pir.S65769	gp:AE002006_4					sp.LXA1_PHOLU	gp:SC7H2_5		pir.S65770	sp:YVYE_BACSU	sp:THD1_CORGL			pir: S57636	prf 2508371A	sp. RARD_ECOLI	sp:HISJ_CAMJE	pir:D69548
	ĺ	ORF (bp)	1143	909	2433	1023	399	198	189	1056	1044	378	231	1785	651	1308	202	156	1203	3582	840		918
45		Terminal (nt)	2234070	2234763	2237284	2238353	2238694	2239845	2240058	2239508	2241724	2241738	2242129	2244819	2242393	2244864	2246892	2246295	2247006	2248358	2252856	2253659	2254642
50		Initial (nt)	2232928	2234158	2234852	2237331	2239092	2240042	2240246	2240563	2240681	2242115 2241738	2242359	2243035	2243043	2246171	2246386	2246450	2248208	2251939	2252017	2253192	2253725
	F	SEQ NO (a a.)	5815	5816	5817	5818	5819	5820	5821	5822	5823	5824	5825	5826	5827	5828	5829	5830	5831	5832			5835
55		SEQ NO (DNA)	2315	2316	2317	2318	2319	2320	2321	2322	2323	2324	2325	2326	2327	2328	2329	2330	2331	2332	2333	2334	2335

5	Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein	1,100	hypothetical protein	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-tRNA synthetase		
15	Matched length (a.a.)	280	445	314		326	154		550		158	321	371	286	334		212	1066		
20	Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		97.6	62.0	60.7	61.5	73.1		67 0	65.4		
	Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		36.7	31.2	31.8	31.5	44.3		42.0	38.5		
25 (penuli	ene	daD	nosa lysA	s CH34		Onl	cens NCIB		icus oleB		polis orf17		JinP	/biF	tor A3(2)		lor A3(2)	visiae 1		
S Table 1 (continued)	Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus oleB		Rhodococcus erythropolis orf17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolor A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
<i>35</i>	db Match	sp.GS39_BACSU	sp:DCDA_PSEAE	sp:CYSM_ALCEU		sp:RLUD_ECOLI	sp:LSPA_PSEFL		pir:S67863		prf.2422382P	sp:ASPG_BACLI	Sp.DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	sp:SYIC_YEAST		
	ORF (bp)	876	1287	951	579	930	534	1002	1650	303	900	975	1401	858	1002	132	627	3162	216	1095
45	Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298	2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
50	Initial (nt)	2255558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996	2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
	SEQ NO	5836	5837	5838	5839	5840	5841	5842	5843	5844	5845	5846	5847	5848	5849	5850	5851	5852	5853	5854
55	SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344	2345	2346	2347	2348	2349	2350	2351	2352	2353	2354

																
5		ie protein	protein (putative YAK 1					rotein or cell	tealanine	nine-N- beptide) aprenol N- ophosphoryl- Iqlucosamine		ylalanine-D-			moyl-	/tatanyl-D- melate-D-
10	Function	hypothetical membrane protein	hypothetical protein (pprotein)	hypothetical protein	hypothetical protein	hypothetical protein	cell division protein	cell division initiation protein or cell division protein	UDP-N-acetylmuramatealanine ligase	UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine pyrophosphoryl-undecaprenol N-acetylglucosamine	cell division protein	UDP-N-acetylmuramoylalanine-D- glutamate lioase			phospho-n-acetylmuramoyl- pentapeptide	UDP-N-acetylmuramoylalanyl-D-glutamyl-2,6-diaminopimelate-D-alanyl-D-alanyl ligase
15	Matched length (a.a.)	82	152	221	246	117	442	222	486	372	490	110			365	494 9
20 ⁻	Similarity (%)	73.2	99.3	96.6	100.0	51.0	98.6	100.0	8.66	99.5	93.6	99.1			63.8	64.2
	Identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	9.66	99.4	98.9	99.4	99.1			38.6	35.0
52 Table 1 (continued)	Homologous gene	tuberculosis	Brevibacterium lactofermentum orf6	n glutamicum	actofermentum	74(21)n	actofermentum	n glutamicum	n glutamicum	actofermentum IrG	actofermentum N	actofermentum rD			412 mraY	12 murF
35 Table 1	olomoH	Mycobaclerium tuberculosis H37Rv Rv2146c	Brevibacterium orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum fts2	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13969 murG	Brevibacterium lactofermentum ATCC 13369 ftsW	Brevibacterium lactofermentum ATCC 13969 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
40	db Match	pir:F70578	gp.BLFTSZ_6	sp YFZ1_CORGL	prf:2420425C	GP_AB028868_1	sp:FTSZ_BRELA	gsp:W70502	gp.AB015023_1	gp:BLA242646_3	gp:BLA242646_2	9p:BLA242646_1			sp.MRAY_ECOLI	sp.MURF_ECOL1
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
45	Terminal (n1)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
50	Initial (nt)	2276637		2276078	2276859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO (a a)	5855		5857		5859	5860	5861	5862	5863	5864	5865	5866	5867	5868	5869
55	SEQ NO.	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2358	2369

	Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5, 10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
	Matched fength (a.a)	491	57	650		323	143	137		190	303	329	484		125	684		411
	Similarity (%)	9'29	100.0	58.8		79.3	88.8	69.3		65.3	9.07	62.0	9.69		68.8	62.4		58.4
	Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4	-	36.3	42.6	30.1	35.7		43.2	34.2		30.7
lable 1 (continued)	Homologous gene	Bacilius subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium feprae MLCB268, 11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268-17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
	db Match	sp:MURE_BACSU	GSP:Y33117	pir:S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRLI	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
	ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148	651	1236
	Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
	Initial (nt)	2291073	2291197	2293164	2294117	2295127	2295804	2296898	2297653		2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
	SEQ		1785	5872			5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	
		(UNA)	2371	2372	+		2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

				7													
5		Function	nbrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	ein	ibrane protein	major secreted protein PS1 protein precursor			ibrane protein		Se	rsor (invasion- n)	rsor (invasion-	ome c reductase unit	ubiquinol-cylochrome c reductase iron-sulfur subunit (Rieske (eFe-2S) iron-sulfur protein cyoB	ome c reductase
10		Fu	hypothetical membrane protein	3-deoxy-D-arabino-h phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted pr precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion-associated-protein)	protein P60 precursor (invasion-associated-protein)	ubiquinol-cytochrome cytochrome b subunit	ubiquinol-cylochrome c reductase iron-sulfur subunit (Rieske [eFe-25 iron-sulfur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
		Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
20		Similarity (%)	62.0	87.9	7.77	64.5	57.1			100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
25		Identity (%)	30.4	6.99	58.4	35.1	282			100.0	100.0	50.1	26.4	33 0	34.3	37.9	58.6
	Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB260,21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Manual Control of the	A description of the second se	Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
40 -		db Match	pir G70936	gp:AF260581_2	gp:MLCB268_20 N	pir.G70936	sp.CSP1_CORGL (gp:AF096280_3 C	gp:AF096280_2 C	gp:SC6G10_5 S	sp:P60_LISIV L	sp.P60_LISGR LI	рт.2503462К	gp:AF107888_1 S	Sp.Y005_MYCTU H
		ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
45		Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
50		Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
		SEQ NO (a.a.)	5887	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	5900	5901
55	-	SEQ NO.	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

																			$\overline{}$
5	u	subunit III		ne protein	subunit II	asparagine insensitivity		ne protein		le erase	nate) synthase		de reductase	o acid	a		tyltransferase		
10	Function	cytochrome c oxidase		hypothetical membrane protein	cytochrome c oxidase	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
15	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
20	Similarity (%)	7.07		71.0	53.9	8.66	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	0.79	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
30 Selfanti	us gene	utcanus		berculosis	aeroides ctaC	glutamicum	glutamicum	prae	sulatus cobP	nitrificans	nitrificans cobV		vuligerus car	SAT1	itida ATCC	ra erythraea	oulensis pdhB		ana
30 E	Homologous gene	Syncchococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 ItsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF 1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
<i>35</i> <i>40</i>	db Match	SP.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	PSEDE	sp COBV_PSEDE		prf 2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf.2110282A	gp:AF047034_2		gp:AB020975_1
40	ORF (bp)	615 sp:C	153	429 sp: Y	1		342 gp:/	768 gp:N	522 pir.	1089 sp:(921 sp.(237	714 prf.	1137 sp:1	1500 gp.F	393 prf.	2025 gp:,	1365	753 gp.
45					921 107	435 1920		 	 -	†	-		 —		 			_	
	Termina (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	334535	2334481	2335028	2335915	5 2338734	2338748	9 234 293	1 2339440	2 2342164
50	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974		2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
		5502	5903	5904	5905		2907	8065	5909		5911	5912	5913	5914	5915	5916	5917	5918	5919
<i>55</i>	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

																					
5		Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	(ransposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation inhibitor)			4-hydroxyphenylacetate permease	transmembrane transport protein	transmembrane transport protein		
15		Matched length (a.a.)	285 li	257 h	559 h	401		157 h		145 п	128 h		220 al	111			433 4-	158 tra	118 tra		
20	-	Similarity (%)	70.9	767	67.8	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
		Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
25	ontinued)	gene	cus GRA BD	erculosis	? yidE	utamicum		olor A3(2)			a MSB8			a MSB8			_	olor A3(2)	olor A3(2)		
30	Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coeticolor A3(2) SC5F7.04c			Thermologa maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3, 10c	Streptomyces coelicolor A3(2) SCGD3 10c		
35								ळ ळ			£ £			<u> </u>			Es	SC	S S		
40		db Match	sp.UPA_PELCA	SP YOOU_MYCTU	sp YIDE_ECOLI	gp.AF189147_1		gp:SC5F7_34			pir.B72308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	gp.SCGD3_10		
		ORF (bp)	1044	780	1617	1203	300	471	213	975	399	900	849	393	243	261	1323	561	444	195	405
45		Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
50		Initial (nt)	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
		SEO NO (a a)	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929	5930	5931	5932	5933	5934	5935	5936	5937	5938
55		SEO NO. (DNA)	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

	Function		heme oxygenase	glutamate-ammonia-ligase adenylyltransferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphalase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (IS402)
	Matched length (a.a.)	1	214 h	608	441 9	392	601	54	374	358		382		249	378	204	156	281	129
	Simitarity (%)		78.0	67.0	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
	Identify (%)		67.9	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
Table 1 (conlinued)	Homalogous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoga maritima MSB8 gInA	Streptomyces coelicolor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
	db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp.GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp.SCC75A_11	Sp.GAL1 HUMAN	gp. AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	Sp. GPH_ECOLI	sp:PTPA_STRCO	sp.Y01G_MYCTU	sp:YI21_BURCE
	ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
	Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
	Initial (nt)	2358695	2359416	2362748	2364155	2364352	7365587	2367652	2367791	_	2370423	2372557	2372561	2373289	2374462	2374544	2375214	2375767	5956 2377390
	SEO NO. (a.a.)	5939	5940	5941	5942	5943	5944	5945	5946			5949	5950		5952	5953	-	5955	5956
	SEO NO. (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

	Function		transcriptional regulator		hypothetical protein		pyruvate dehydrogenase component		ABC transporter or glutamine transport ATP-binding protein		ribose transport system permease protein	hypothelical protein	calcium binding protein		lipase or hydrolase	acyl carier protein	N-acetylglucosamine-6-phosphate deacetylase	hypothetical protein	
	Matched length (a a)		135 tra		134 hy		910 py		261 Al		283 rit	286 hy	125 6		352 lip	75 a	253 d	289 h	
	Similarity (%)		57.8		77.6		78.9		62.8		58.7	62.9	55.2		55.7	0.08	75.5	65.7	
-	Identity (%)		30.4		55.2		55.9		33.7		25.4	26.2	41.6		29.6	42.7	43.9	33.6	
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) SC8F4.22c		Mycobacterium tuberculosis H37Rv Rv2239c		Streptomyces seoulensis pdhA		Escherichia coli K12 glnO		Bacillus subtilis 168 rbsC	Rickettsia prowazekii Madrid E RP367	Dictyostelium discoideum AX2 cbpA		Streptomyces coelicolor A3(2) SC6G4.24	Myxococcus xanthus ATCC 25232 acpP	Escherichia coli K12 nagD	Deinococcus radiodurans DR1192	
	db Match		gp:SC8F4_22		Sp:Y01K_MYCTU		gp: AF047034_4		sp:GLNQ_ECOLI		sp:RBSC_BACSU	pir.H71693	sp.CBPA_DICDI		gp:SC6G4_24	sp.ACP_MYXXA	sp:NAGD_ECOL!	gp:AEC01968_4	
	ORF (bp)	243	378	198	429	345	2712	1476	789	963	888	939	810	372	1014	291	825	1032	471
	Terminal (nt)	2377484	2378276	2378489	2378884	2379770	2382744	2380765	2382827	2385426	2383622	2384509	2386580	2385913	2386614	2387957	2388821	2389869	2390434
	Initial (nt)	2377726	2377899	2378292	2379312	2379426	2380033	2382240	2383615	2384464	,	2385447	2385771	2386284	2387627	2387667	2387997	2388838	2390904
	SEQ	1~		5959	<u> </u>	5061		5963	5964	5065	5966	5967	5968	5969	5970	5971	5972	5973	5974
	SEQ		+	2459		2461				2465	2466	2467	2468	2469	2470	2471	2472	2473	2474

4																					
5	Function	hypothetical protein						alkaline phosphatase D precursor		hypothetical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine D-fructose-6-phosphate amidolransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
15	Matched length (a.a.)	271						530		594	68		633	98			969			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
able 1 (continued)	is gene	icolor A3(2)	,					в рһоD		icolor A3(2)	oerculosis		negmatis	eofaciens BMK			negmatis			regmatis dgt	idis NMA0251
30 Iable 1 (c	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glinS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
<i>40</i>	db Match	gp:SC4A7_8						SP PBD BACSU		gp:SCI51_1/	pir.G70661			gp:XXU39467_1 S			gp:AF058788_1				gp:NMA1Z2491_23 h
	ORF (bp)	825 (492	177	546	465	342	1560	714	1836	240	675	1899	462 (243	989	1869 9	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
	SEQ NO.	5975	5976	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	5987	5988	5989		5991	5992	5993	5994
55	SEQ NO.	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

Neisserial polypeptides predicted to be useful antigens for vaccines and

diagnostics

85

50.0

45.0

Neisseria meningitidis

264 GSP Y75650

phosphate starvation inducible protein

344

84.6

61.1

Mycobacterium tuberculosis H37Rv Rv2368c phoH

sp:PHOL_MYCTU

1050

2420900

6009 2421949

hypothetical protein

248

75.4

44.0

Streptomyces coelicalor A3(2) SCC77 19c.

gp:SCC77_19

723

2421975

2510

10			Function	hypothelical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	
15			Matched length (a.a.)	692	138		508	89	132	529	224	233	245	296	432	157	
20	-		Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	
			Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	
25		(panı	91	losis	5			osis		osis	A3(2)	26 upps	osis	iae era	osis	Sis	
<i>30</i> <i>35</i>		Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	
40	-		db Match	pir.B70662	gp AE003565_26		pir.S58522	pir.E70585	sp FUR_ECOLI	pir.A70539	gp:AF162938_1	sp:UPPS_MICLU	pir.A70586	gp:AF072811_1	sp.Y1DE_MYCTU	sp.YN67_MYCTU	
			ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	_
45			Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	
50			Initiat (nt)	2406993	2410264	2410861	2412338	2412580	2412992	2413568	2416089	2417099	6004 2417947	2418883	2420309	2420900	
		-	SEQ NO	5995	5996	5897	5998	5999	0009	6001	6002	6009		6005	9009	6007	_
55		:	SEQ NO. (DNA)	2495	2496	2497	2498	2499	2500	2501	2502	2503	2504	2505	2506	2507	

								se		e o	ed to	seful					a.	
5	-	۔ ا	ressor)	oxidase	Subunit			CoA liga	erase	Resistar	s predict vaccines	i to be us					trehalos	
10	Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypothetical protein
15	Matched length (a.a.)	380	334	320	134			611	738	604	68	107			069	453	594	449
20	Similarity (%)	77.4	79.6	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
	Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
25 (par	a.	J2		lus	ae			A3(2)	ā	smid					dcb (rae	losis	losis
S Table 1 (continued)	Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10 04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningilidis			Salmonella typhimurium dcp	Anisopteromalus calandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
<u>r</u> g	Hol	Streptony	Streptomy	Bacillus st hemN	Saccharomyces or YNR044W AGA1			Streptomy SC6G10 (Escherich	Lactobaci	Neisseria	Neisseria			Salmonel	Anisopter	Mycobacterium H37Rv Rv0126	Mycobacterium H37Rv Rv0127
	lch	83	Ϋ́		EAST			4-	SCOLI	52_1	27	67			SALTY	23_1		
40	db Match	prf:2421342B	prf.2421342A	prf.2318256A	sp.AGA1_YEAST			gp:SC6G10_4	SP. MALQ ECOLI	gp:AB005752_	GSP:Y74827	GSP:Y74829			sp.DCP_S	gp:AF064523	pir:G70983	pir.H70983
	ORF (bp)	1146	1023	066	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
45	Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	4	2440994
50	Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296		2433868	2434207	2434619	2434776	2436838	2436871		2439906
	SEO NO (a a)	6012	6013	6014	6015	6016	6017		60.19		6021	6022	6023	6024	6025	6026		6028
55	SEQ NO.	2512	2513	2514	2515	2516	2517	2518	25.19	2520	2521	2522	2523	2524	2525	2526	2527	2528

						-		,										•							
5		Function	isopentenyl-diphosphate Detta-	Isomerase						oeta C-3 iyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine	Ke)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein	heme-binding protein A precursor	(nemin-binding lipoprotein)	Oligopeptide ABC transporter (permease)	dipeptide transport system	oligopeptide transport ATP-binding	
15		ס	-	SO	1	-	-	\dashv	1 2	amii	brar	uptake)	alka		malc	glyco	trans		hypo	heme	(nem	oligo (perr	dipep	oligop	protein
,3		Matched length	189							325	426		343		324	483	203		467	546		315	271	372	
20	į	Similarity (%)	57.7							100 0	100 0		49.0		60.5	55.1	65.0	1	97.6	55.5		73.3	74.5	66.4	
		Identity (%)	31.8				İ			99.4	8.66		21.6		25.9	1.72	25.6	2 5	6.22	27.5	+	40.0	43.2	37.4	
25	ned)	Ð	dtii ipi1						icum	1	cum				4		+	Nic.	5						
<i>30</i>	lable I (continued)	Homologous gene	Chlamydomonas reinhardtii ipl1						Corynebacterium glutamicum	FCC 13032 aecD	Corynebacterium glutamicum ATCC :3032 brnQ	Vihio baryayi tuzA	and right luxy	dy chiral him and the state of	Escherichia celi 1412 alen	Cheriobia coli K12 gico	Escribina con N 12 yarm	Salmonella tynbimizium yaik		Haemophilus influenzae Rd H10853 hbpA		Bacilius subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD	
35	-			-	+		-	-	Ť -	.		T	+		1_		T	\top			İΤ			Esc	
40		db Match	pir. T07979		 				ap CORCSI VS		sp:BRNQ_CORGL	SP.LUXA VIBHA		C CLL SE772 2	sp.GLCD ECOL	SD:YDFH ECOL		SP.YGIK SALTY		sp:HBPA_HAEIN	ADDO OAD	משקם שו ועיאי	sp:DPPC_ECOLI	рґ 2306258МR	
	-	ORF (bp)	585	222	438	1755	099	519	975		1278	978	522	927	2844	711	282	1347	423	1509	966	3	828	1437	
45		Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709		2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336		2461167	2462599	
50		Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	6035 2444735		2445716	2447021	2450844	2451785	2454637	2454725	<u> </u>	2457066	2457759	2457863 2	2459371 2		2460340 2	2461163 2	
	SEO		6058	6030	6031	6032	6033	6034	6035	+	9609	6037 2	6038	6039 2	6040 2	6041 2	6042 2	6043 2	6044 2	6045 2	6046 2		0041	6048 24	
55	SFO	(DNA)	2529	2530	2531	2532	2533	2534	2535		2536	2537 (2538	2539	2540 E	2541 6	2542 6	2543 6	2544 6	2545 6	2546 6			2548 6	

								-						Т	7					\neg
	nc				ane protein		ransporter or porter family	protein C		is protein x		sporter				t protein	carboxylate t protein	nding precursor		
	Function	sypothetical protein	hypothetical protein	ibose kinase	nypothetical membra		sodium-dependent ti odium Bile acid sym	apospory-associated		thiamine biosynthes	hypothetical protein	glycine betaine trans				large integral C4-did membrane transpor	small integral C4-di membrane transpor	C4-dicarboxylate-bi periplasmic protein	extensin I	GTP-binding protein
10.10.4		106	157	300	466		284	295		133	197	601				448	118	227	46	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2	-	100.0	65.5	71.7				71.9	73.7	29.0	73.0	83.6
	identity (%)	35.0	29.3	410	39.9		31.3	28.5		100.0	42.6	39.8				346	33.9	28.2	,63.0	58.7
nen)	a)	2€1580	768		A3(2)			ŧ		nicum	99 6	nicum				s dctM	detQ	IS B 10	Ę	Ą
lable 1 (collin	Homologous gen	eropyrum pernix K1 AF	nuifex aeolicus VF5 aq	hizobium etli rbsK	treptomyces coeticolor CM2.16c		lomo sapiens	:hlamydomonas reinha	And the second s	Corynebacterium glutan	Aycobacteriophage D2	Corynebacterium glutar VTCC 13032 betP				Rhodobacter capsulatu	Klebsiella pneumoniae	Rhodobacter capsulatu	ycopersicon esculenti (tomato)	Bacillus subtilis 168 lepA
		A	Ä	02	0.00		T	-		 		1,1					†		1	1 7
	db Match	PIR-G72536	nir.D70367	ort 2514301A	gp:SCM2_16		sp:NTCI_HUM	qp. AF 195243		sp:THIX_COR	sp:VG66 BPA	sp:BETP_CO				prf:2320266C	gp:AF186091	sp.DCTP_RH	PRF:1806416	sp.LEPA_BACSU
	ORF (bp)	507		_	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
	Terminal (nt)	24646	C+C10+2	2402002	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898		2481734	2484087	2482548
	Initial (nt)	0700070	2402043	2403130	2464344									2477644			2481692	2482480	2483845	2567 6067 2484392
	SEO	(a a.)	5049	0000	6052	6053	6054	_												6067
	SEQ NO.	(DNA)	2549	7550	2552	2663	2554	25.65	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567
	Japa I (Common)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (hp) (bp) (aa)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp) (ab) Aeropyrum pernix K1 APE1580 35.0 44.0 106 hypothetical p	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (n) (nt) (nt) (nt) (%) (%) (%) (%) (aa) (aa) 2461543 507 PIR:G72536 Aeropyrum pernix K1 APE1580 35.0 44.0 106 hypothetical proprietical pro	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)<	SEQ Initial No. Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)<	SEQ Initial (nt) Terminal (nt) (bp) db Match (bp) Homologous gene (%) Identity (%) Similarily (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (ht) (bp) Ab Matched (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) (ht) </td <td>SEQ Initial (nt) Terminal (nt) (bp) db Match (bp) Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td> <td>SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%</td> <td>SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)</td> <td>SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (cb) (vb) (vb) Matched (cb) Matched (cb)</td> <td>SEQ NO. Initial (II) Terminal (III) ORF (III) db Match (III) Homologous gene (IV) Identity (IV) Similarity (IV) Matched (IV) Match</td> <td>SEQ NO. Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched</td> <td>SEQ (nI) Initial (nI) Terminal (nII) ORF (nII) db Match (nII) Homologous gene (nS) Identity (nS) Similarity (nB) Matched (nB) Matc</td> <td>SEQ NO. Intitial (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%s) Identity (%s) Similarity (%s) Matched (%s) Matched</td> <td>SEQ (NJ) Initial (NI) Terminal (NI) ORF (PD) db Match Homologous gene (%) Libenity (%) Inentity (%) Marched (%) Marched (%)</td> <td> SEC Initial Terminal ORF Gb Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td> Fig. 2006 Trilial Terminal ORF Ab Match Homologous gene Trilial Terminal ORF Trilial Terminal ORF Trilial Terminal ORF Trilial Terminal ORF Trilial ORF Ab Match Trilial ORF Trilial ORF</td>	SEQ Initial (nt) Terminal (nt) (bp) db Match (bp) Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	SEQ NO. Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (cb) (vb) (vb) Matched (cb) Matched (cb)	SEQ NO. Initial (II) Terminal (III) ORF (III) db Match (III) Homologous gene (IV) Identity (IV) Similarity (IV) Matched (IV) Match	SEQ NO. Initial (III) Terminal (III) ORF (III) db Match (III) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEQ (nI) Initial (nI) Terminal (nII) ORF (nII) db Match (nII) Homologous gene (nS) Identity (nS) Similarity (nB) Matched (nB) Matc	SEQ NO. Intitial (nt) Terminal (nt) ORF (nt) db Match (nt) Homologous gene (%s) Identity (%s) Similarity (%s) Matched (%s) Matched	SEQ (NJ) Initial (NI) Terminal (NI) ORF (PD) db Match Homologous gene (%) Libenity (%) Inentity (%) Marched (%) Marched (%)	SEC Initial Terminal ORF Gb Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Fig. 2006 Trilial Terminal ORF Ab Match Homologous gene Trilial Terminal ORF Trilial Terminal ORF Trilial Terminal ORF Trilial Terminal ORF Trilial ORF Ab Match Trilial ORF
5		Function	hypothetical protein	30S ribosornal protein S20	threonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for DNA binding and uptake		hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein	
-----------	--------------------	-------------------	--	----------------------------	---------------------------	--	---	---	--	---------	---	---	---	--	---------	---	--	---------	--------------------------------------	
15	Matched	length (a.a.)	185	85	210	129	313	. 527	195		273	235	117	197		432	304		487	
20	-	Similarity (%)	2.69	72.9	67.1	80.6	74.1	49.7	63.6		66.3	66.4	86.3	85.3		8.99	100.0		78.2	
		Identity (%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.5	68.0		99.1	99.3		58.9	
<i>25</i>	(nan)	ne	losis	T.	၁	r A3(2)	losis	nEC	пЕА		A3(2)	osis	osis	A3(2)		iicum	iicum		A3(2)	
	ומסוב (הסוגווותפת)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptornyces coelicolor A3(2) SCC123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptcmyces coelicolor A3(2) obg	
35 40		db Match	pir:H70683	sp:RS20_ECOLI	sp.RHTC_ECOLI	gp:SC607_25	pir.H70684	sp.CME3_BACSU	sp.CME1_BACSU		gp:SCC123_7	pir.F70685	pir:G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1	
	-	(g d)	609	261	699	405	975	1539	582	822	822	709	471	678	1023	1296	912	711	1503	
45		(nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2490290	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009	
50		(nt)	2484661		2486469	2486881	2487884	2489450	2490154	2490911	2491111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511	
	SEQ		9909		6070	6071	6072	6073	6074	6075	9209	2209	8209	6009	6080	6081	6082	6083	6084	
55	SEQ	(DNA)	2568	2569	2570	2571	2572	2573	2574	2575	2576	2577	2578	2579	2580	2581	2582	2583	2584	

5				acid reductase			127	121						sednence			ite kinase				
10		Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L2	ribonuclease E				hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15	11-1-1-0	Matched length (a a)	422	276			81	101	986				195	436	117	143	134		92	112	118
20		Simitarity (%)	77.3	81.9			92.6	82.2	56.6		-		826	100.0	6.97	67.8	9.68		67.4	64.3	68.6
		Identity (%)	39.1	61.2			80.3	56.4	30.1				61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
25 (D	(manual)	gene	pbuX	ATCC			IS IFO13189	ıs IFO13189	rne				color A3(2)	utamicum	color A3(2)	color A3(2)	egmatis ndk		durans R1	erculosis	erculosis
30 Sectional	ומחוב ו (כמ	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne				Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
<i>35</i>		db Match	SO PBUX BACSU B				sp. RL27_STRGR	prf.2304263A	Sp. RNE ECOLI		-		gp:SCF76_8	pir:S43613	gp:SCF76_8	gp:SCF76_9	gp:AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
		ORF (bp)	1887 5		621	396	264 s	303	2268	1	573	747	609	1308	378	450	408	350	342	465	423
45		Terminal (nt)	2501669	2501735	2503355	2504265	2503984	2504300	2504831	2507663	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50		Initial (nt)	2400703		2502735	! —	<u>. </u>	2504602	8007030	2507030	2507138	2508094	2508922	2510830	2511046	2511427	2512356			2513618	2514114
		SEQ	- 1	9809	6087	·—		0609	100					9609	2609	8609	6609			6102	2603 6103
5 5				2586				2590	1000	1607	2563	2504	2595	2596	2597	2598	2599	2600	2601	2602	2603

																				
5 .	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical profein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxynenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA 3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
15	Matched length (a a)	451				915	521	508	170	319	207	208	357	338	444	286	430	366	210	251
- 20	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
25 Jiuned)	gene	oler A3(2)				oalS	ррА	InaK	ATCC	TCC 33923	lor A3(2)	:	Ą	ATCC	ズ	e mdcF		or A3(2)	2065 pcaJ	5 pcal
os Table 1 (continued)	i lomologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp 206	Streptomyces sp. 2065 pcal
<i>35</i>	db Match	prf.2410252B				sp.SYV_BACSU	pir.A38447	sp.DNAK_BACSU	gp:ECU89166_1	sp.MOH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	gp:KPU95087_7	prf.2303274A	gp:SCF55_28	gp:AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	975	1128	975	1425	930	1278	1086	633	750
45	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
50	Initial (nt)	2515487	2515662	2516243	2517089	2518336		2520209	2522251	2523248		2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ NO.	6104	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
55	SEQ NO (DNA)	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

5		Function	protocatechuate catabolic protein	e		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	egulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		is-muconate	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	otein	sisomerase		oisomerase		loxygenase		toluate 1,2 dioxygenase subunit
10		Ū.	protocatechuate	beta-ketothiolase		3-oxoadipate enol-lactone hyd and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hyd and 4-carboxymuconolactone decarboxylase		3-carboxy-cis, cis-muconate cycloisomerase	protocatechuat subunit	protocatechual subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase	-	catechol 1,2-dioxygenase		toluate 1,2 dio
15		Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
20		Similarity (%)	82.5	71.9		76.6	43.0	9.68		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
		Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
25 (1)	nunaen)	gene	IS 1CP pcaR	MAR		us poal.	olor A3(2)	us pcal.		us pcaB	us pcaG	us pcaH	erculosis	erculosis		us 1CP catB		ochrous catA		da plasmid
30	lable 1 (continued)	Homologous gene	Rhodococcus opacus 1CP	Paterior autropha hktB	also and also also also also also also also also	Rhodococcus opacus pcal	Streptomyces coelicolor A3(2)	Rhodococcus opacus pcal.		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
35 40		db Match	3 SACRAGA SACRE		pr. 24 1303D	prf.2408324E	gp.SCM1_10			prf.2408324D	prf.2408324C	prf.2408324B	pir.G70506	prf.2515333B		SP:CATB_RHOOP		prf.2503218A		gp.AF134348_1
		ORF (bp)	-			912 753 p	2061 g	366 р	679	10	612	-;	1164	291	771	1119	909	855	141	1470
45		Terminal (nt)		+	1	2534257	2538256	2538248	05.400.00	2538616	2539709	2540335	2541187	2542512	2543813	1	2544867	2544022	2544928	2546784
50		Initial		2533391	2534201	2535168 2535430	2536196	·		2539553			2542350	2542802	2543043				2545068	2640 6140 2545315
				6123		6125	6127			6129			6133	6134	6135				6139	6140
55		SEO NO.	(DNA)	2623	2624	2625	7637	2628		2629	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

Table 1 (continued)

_							-								_			· · · · · ·	
	Function	toluate 1,2 dioxygenase subunit	toluate 1,2 dioxygenase subunit	1,2-dihydroxycyclohexa-3,5-diene carboxylate dehydrogenase	regulator of LuxR family with ATP- binding site	transmembrane transport protein or 4-hydroxybenzoate transporter	benzoate membrane transport protein	ATP-dependent Clp protease proteolytic subunit 2	ATP-dependent Clp protease proteolytic subunit 1	hypothetical protein	trigger factor (prolyl isomerase) (chaperone protein)	hypothetical protein	penicillin-binding prolein	hypothetical protein		transposase		hypothetical protein	transposase
	Matched length (aa)	161	342	277	979	435	388	197	198	42	417	160	336	115		142		35	75
	Similarity (%)	83.2	81.0	61.4	48.6	.64.4	66.2	88.3	85.9	71.4	66.4	63.1	50.9	58.3		73.2		82.9	78.7
	Identity (%)	60.3	51.5	30.7	23.3	31.3	29.9	69.5	62.1	42.9	32.1	32.5	25.3	27.8		54.2		57.1	50.7
lable (Communed)	Homologous gene	Pseudomonas putida plasmid pDK1 >ylY	Pseudomonas putida plasmid pDK1 xylZ	Pseudomonas putida plasmid pDK1 yylL	Rhodococcus erythropolis thcG	Acinetobacter calcoaceticus pcaK	Acinetobacter calcoaceticus benE	Streptcmyces coelicolor M145 clpP2	Streptcmyces coelicolor M145 clpP1	Sulfolopus islandicus ORF154	Bacillus subtilis 168 tig	Streptomyces coelicolor A3(2) SCD25.17	Nocardia lactamdurans LC411 pbp	Mus musculus Moa1		Corynebacterium striatum ORF1	-	Corynebacterium striatum ORF1	Corynebacterium striatum ORF1
	db Match	gp:AF134348_2	gp:AF134348_3	gp.AF134348_4	gp.REU95170_1	sp:PCAK_ACICA	sp:BENE_ACICA	gp.AF071885_2	gp. AF071885_1	gp. SIS243537_4	sp.TIG_BACSU	gp:SCD25_17	sp.PBP4_NOCLA	prf.2301342A		prf.2513302C		prf.2513302C	prf.2513302C
	ORF (bp)	492	1536	828	2685	1380	1242	624	603	150	1347	495	975	456	249	438	150	126	264
	Terminal (nt)	2547318	2548868	2549695	2552455	2553942	2555267	2555317	2555978	2556748	2556760	2559103	2560131	2560586	2561363	2561483	2562242	2561990	2562078
	Initial (nt)	2546827	2547333	2548868	2549771	2552563	2554026	2555940	2556580	2556599		2558609	2559157	2560131	2561115	2561920	2562093	2562115	2562341
	SEQ NO.		6142	6143	6144	6145	6145	6147	6148	6149		6151	6152	6153	6154	6155	6156	6157	6158
	SEO		2642	2643	2644	2645	2646	2647	2648	2649	2650	2651	2652	2653	2654	2655	2656	2657	2658

ABC transporter ATP-binding protein galactose-6-phosphate isomerase nickel transport system permease protein mullidrug resistance transporter dipeptide transport system phytoene dehydrogenase Function phytoene desaturase hypothetical protein hypothetical protein hypothetical protein phytoene synthase aminopeptidase N permease protein Matched length (a.a) Similarity 80.9 70.5 71.4 58.1 58.1 58.6 71.6 81.7 47.7 62.0 Identity (%) 40.0 26.2 47.5 25.1 S 31.2 31.4 25 8 41.3 38.8 33.2 Bacillus acidopullulyticus ORF2 Staphylococcus aureus NCTC 8325-4 lacB Myxococcus xanthus DK1050 Streptomyces griseus JA3933 crtB Table 1 (continued) Mycobacterium tuberculosis Streptomyces lividans pepN Borrelia burgdorferi BB0852 Brevibacterium linens ATCC 9175 crtl Listeria monocytogenes IItB Homologous gene Synechococcus elongatus Escherichia coli K12 nikB Bacillus firmus OF4 dppC H37Rv Rv2466c carA2 Sp:YAMY_BACAD SP:LACB_STAAU Sp:CRTB_STRGR gp.SYOATPBP_2 sp:CRTJ_MYXXA SP:AMPN_STRLI sp.DPPC_BACFI gp:LMAJ9627_3 gp.AF139915_3 db Match pir.A70866 pir. B70206 pir S47696 ORF (bp) Terminal (nt) 6169 2572677 6170 2572977 6479 2582417 SEO (a.a) o N (DNA)

EP 1 108 790 A2

alkaline phosphatase

536

52.6

28.0

Bacillus subtilis phoB

2602879 | 1419 | pir.C69676

2601461

6197

2697

ABC transporter ATP-binding protein ABC transporter ATP-binding protein transcriptional regulator, TetR family polypeptides predicted to be useful antigens for vaccines and acetylornithine aminotransferase hypothetical membrane protein hypothetical membrane protein 5 acetoacetyl CoA reductase chromate transport protein Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein 10 diagnostics globin 15 length Matched (a a) 218 235 240 172 238 126 396 96 563 700 411 482 127 55 94 Similarity (%) 0.09 9.6/ 47.0 77.0 60.4 61.4 62.2 63.5 47.9 0.09 55.0 79.4 65.1 68. 56. 20 Identity 37.8 36.4 52.8 31.4 28.C 38.0 27.3 36.2 25.1 28.1 26.7 31.1 . 8 49.1 53 31 25 Aeropyrum pernix K1 APE1182 Streptomyces coelicolor A3(2) SC6D10.19c Chromatium vinosum D phbB Corynetiacterium glutamicum Streptornyces coelicolor actil (continued) Mycobacterium tuberculosis H37Rv Rv0364 Pseudomonas putida GM73 ttg2A Mycobacterium tuberculosis H37Rv Rv2474c Mycobacterium leprae o659 Mycobacterium tuberculosis H37Rv Rv1128c Mycobacterium tuberculosis Pseudomonas aeruginosa Plasmid pUM505 chrA Homologous gene Escherichia coli K12 yijK Mycobacterium leprae MLCB1610.14c Neisser a meningitidis ATĆC 13032 argD 137Rv Rv2478c 30 35 sp:ARGD_CORGL Sp.CHRA_PSEAE sp:YA26_MYCTU Sp.PHBB_CHRVI 2103 Sp:Y05L_MYCLE gp:MLCB1610_9 gp.AF106002_1 Sp.YJJK_ECOLI gp:SC6D10_19 db Match GSP:Y74375 pir:B72589 pir.A40046 pir.A70539 pir.A70867 pir.E70867 40 1128 1668 1314 615 1584 465 162 393 747 708 738 792 627 ORF (bp) 1941 441 621 2590302 2598662 2595822 2596048 2597869 2593965 2593968 2595188 2588725 2591574 2592794 2584504 2585926 2587763 2588722 2591137 2594597 45 Terminal <u>f</u> 2598483 2600764 2595808 2595983 2597715 2587976 2590697 2592365 2592402 2592838 2594594 2595061 2584613 2586180 2589565 2589432 2582564 Initial (a) 50 6192 6195 6196 6193 6194 6186 6189 6190 6191 6182 6183 6184 6185 6187 6188 6180 (a a) 6181 SEO S 2692 2693 2694 2691 2695 2696 (DIM) 2680 2683 2684 2685 2686 2687 2688 2690 2682 9 55

			$\overline{}$	T	\neg		7	-										_		
5	Function	esterace					(70			ılator		degradation					o achimenito	0.00	aio fordi vante ro	protein, tetR
10	Fu	ferric enterochelin esterase	lipaprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation	egulator protein	organical atendari	מסוומנם ופחוונים פפע	hypothetical protein	DVI a2 inamidase/nicotinamidase	hypothetical protein	bacterioferritin comincators protein	bacterial regulatory protein, tetR family
15	Matched length	454	398				436			131	358	97		335		291	185		141	
20	Similarity (%)	50.9	719				8.66			63.4	69.3	72.2		609		45.0	74.6	80.0	73.8	61.4
	Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
<i>25</i>	ne ne	0	lasis				nicum			KP1001	AGUE-	4		2		nial	A DL	sis		A3(2)
so (Table 1 (continued)	Hamologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c lppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE- DAWLEY KIDNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SC111.01c
35		S	ΣÏ				4°C	-			Ra	Ba				Zea	Myc	Myc H37	Esc	Stre
40	db Match	prf.2409378A					gp.SCU53587			gp:AF085235_1	sp.GLSK_RAT	pir.A36940		sp:UXAC_ECOL!		prf:1814452C	prf:2324444A	pir.E70870	sp.BCP_ECOLI	gp:SCI11_1
45	ORF (bp)	1188	1209	645	150	246	1308	207	639	453	1629	477	555	1554	501	1197	558	273	465	636
45	Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50	Initial (nt)	2620728		2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
	SEQ NO. (a.a)	6216	6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231	6232	6233	6234
55	SEQ NO (DNA)	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731		2733	2734

_											<u>-</u>				\neg	_			$\neg \neg$	٦
5	Function	phosphopantethiene protein	transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		aryisuitatase
15	P -	一	Lian	lince	hyp	-		hyp							+	-				\neg
	Matched Jength	(a.a)	145	473	113		3029	404	230	112	113	202	236				428	175		250
20	Similarity		75.9	856	54.0		83.6	55.2	6.09	67.9	0.69	7.97	81.4	-			58.2	97.2		74.4
	Identity	2	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
25 (perior)			: 6871 ppt1	amicum	C6803			olor A3(2)	culosis	culosis	a)	rculosis	jinosa				rculosis	utamicum G1 tnpB	-	ae als
00 Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. PCC6803		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SCBA6.09c	Corynebacterium glulamicum 22243 R-plasmid pAG1 inpB		Mycobacterium leprae als
35		_			S		Ов	တိတ	2 -			i								
40	A Match		gp:BAY15081_1	gp AF237667_1	pir.S76537		pir:S2047	gp:SC4A7_14	pir.D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp.Y03Q_MYCTU	SP:RNPH_PSEAE		-		sp:Y029_MYCTU	gp:AF121000_8		Sp:Y03O_MYCLE
	ORF	(dq)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	099	765
45	Terminal	(nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	1
50	Initial	(ut)	2635151	2636589	2636845	! -		2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	
	SEQ	(a a.)	6235	6236	6237	-		6240	6241	6242	6243	6244	6245	6246	6247			6250	6251	
55		ONG)	2735	2736	2737			2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	27.52

5		Function	D.glutamate racemase		Brent determinated and desired	family	hypothetical membrane protein		endo-type 6-aminohexanoate
15		Matched length (a.a.)	284			147	225		204
20		Identity Similarity Matched (%) (%) (a.a.)	99.3			70.8	69.3		6 00
		Identity (%)	99.3			44.2	38.2		
	Table 1 (confinued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murt			Streptomyces coelicolor A3(2) SCE22.22	sp Y03M_MYCTU Mycobacterium tuberculosis H37Rv Rv1337		
<i>35</i>		db Match	pri.2516259A			gp:SCE22_22	sp Y03M_MYCTU		
	-	ORF (bp)	852	838	020	492	747	891	
45		Terminal ORF (ht)	2658606		101007	2660147	2660671	2662455	201707
50		Initiat (nt)	2753 6253 2659457		0524 7028480	2755 6255 2660638	2755 6256 2661417	2257 8257 2661565 2662455	2001007
		SEO	6253	7.00	0.254	6255	6256	6257	020
55		SEO SEO NO NO	(DNA)		2/24	2755	2755	7757	1017

initiat Terminal ORF (nt) (hp)		ORF (bp)		db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
6253 2659457 2658606 852	1	852	1 ~:	prf.2516259A	Corynebacterium glutamicum ATCC 13869 murl	99.3	99.3	284	D.glutamate racemase
6254 2659496 2660131 636	 _	636							
2660638 2660147 492	2660147 492			gp:SCE22_22	Streptomyces coelicolor A3(2) SCE22.22	44.2	70:8	147	bacterial regulatory protein, marR family
6256 2661417 2660671 747	747	i	-	sp YO3M_MYCTU	Mycobacterium tuberculosis H37Rv Rv1337	38.2	69.3	225	hypothetical membrane protein
6257 2661565 2662455 891	2662455	891							
6258 2662376 2661417 960	2661417 960			pir.A47039	Flavobacterium sp. nylC	30.2	58.3	321	endo-type 6-aminohexanoate oligomer hydrolase
6259 2662867 2662331 537	2662331 537			sp:Y03H_MYCTU	Mycobacterium tuberculosis H37Rv Rv1332	35.0	58.5	200	hypothetical protein
6260 2663182 2662883 300	2662883 300	 		sp:Y03G_MYCTU	Mycobacterium tuberculosis H37Rv Rv1331	57.1	77.1	105	hypothetical protein
6261 2663437 2664060 624	2664060	624	:						
6262 2664060 2665397 1338	2665397	1338		sp:Y03F_MYCTU	Mycobacterium tuberculosis H37Rv Rv1330c	61.2	80.8	428	hypothetical protein
6263 2665687 2565992 306	2665992	306							
6264 2666115 2667854 1740	2667854	1740		prf.1816252A	Escherichia coli dinG	25.2	53.3	647	ATP-dependent helicase
6265 2668760 2667870 891	2667870	891		sp:Y0A8_MYCTU	Mycobacterium tuberculosis H37Rv Rv2560	29.7	60.1	.313	hypothetical membrane protein
6266 2669561 2668839 723	2668839	723		pir:T34684	Streptortyces coelicolor A3(2) SC1B5.06c	39.0	52.0	222	hypothetical protein
6267 2670573 2669557 1017	2669557	1017		sp.SERB_ECOLI	Escherichia coli K12 serB	38.7	61.0	310	phosphoserine phosphatase
6268 2671126 2672721 1596	2672721	1596							
6269 2672805 2671063 1743	2671063	1743		pir:D45335	Mycobacterium tuberculosis H37Rv Rv3043c	46.8	74.4	575	cytochrome c oxidase chain I
6270 2672950 2673255 306	2673255	306							

SEQ Initial Terminal ORF NO NO (n1) (n1) (bp) 2771 6271 2674339 2673338 1002 g 2772 6272 2674804 2675289 486 s 2773 6273 2675491 2676240 750 g 2774 6274 2676902 2676243 660 p 2775 6275 2676940 2677377 438 s; 2776 6276 2677193 2676918 276 p 2777 6277 2679598 2677478 2121 g 2778 6278 2680470 2680784 315 2 2779 6279 2681363 2681223 141 S 2780 6280 2681546 2681364 33 498 2781 6282 2683119 2683616 498 2 2782 6283125 2682379 747 p	db Match					
6271 2674339 2673338 1002 6272 2674804 2675289 486 6273 2675491 2676240 750 6274 2676902 2676243 660 6275 2676940 2677377 438 6276 2677193 2676918 276 6276 2677193 2676918 276 6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2681363 268123 141 6280 2681546 268136 831 6280 2681546 2681464 93 6282 2683119 2682376 498 6283 2683125 2682379 747		Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
6272 2674804 2675289 486 6273 2675491 2676240 750 6274 2676902 2676243 660 6275 2676940 2677377 438 6276 2677193 2676918 276 6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2680470 2680784 315 6280 2681546 2681376 831 6280 2681546 2681464 93 6282 2683119 2683316 498 6283 2683125 2682379 747	gp:AF112536_1	Corynebacterium glutamicum ATCC 13032 nrdF	7.66	7.86	334	ribonucleotide reductase beta-chain
6273 2675491 2676240 750 6274 2676902 2676243 660 6275 2676940 2677377 438 6276 2677193 2676918 276 6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2680470 2680784 315 6279 2681363 2681237 141 6280 2681546 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	sp.FTNA_ECOLI	Escherichia coli K12 ftnA	31.5	64.2	159	ferritin
6274 2676902 2676243 660 6275 2676940 2677377 438 6276 2677193 2676918 276 6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2680470 2680784 315 6279 2681363 268144 93 6280 268156 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	gp:SCA32WHIH_4	Streptomyces coelicolor A3(2) whiH	32.8	60.2	256	sporulation transcription factor
6275 2676940 2677377 438 6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2680470 2680784 315 6279 2681363 2681223 141 6280 2681546 2682376 831 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	pir:140339	Corynebacterium glutamicum ATCC 13869 dtxR	27.6	60.4	225	iron dependent repressor or diptheria toxin repressor
6276 2677193 2676918 276 6277 2679598 2677478 2121 6278 2680470 2680784 315 6279 2681363 2681223 141 6280 2681546 2682376 831 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	sp:TIR2_YEAST	Saccharomyces cerevisiae YPH148 YOR010C TIR2	24.2	62.1	124	cold shock protein TIR2 precursor
6277 2679598 2677478 2121 6278 2680470 2680784 315 6279 2681363 2681223 141 6280 2681546 2682376 831 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	pir:C69281	Archaeoglobus fulgidus AF0251	20.0	86.0	50	hypothetical membrane protein
6278 2680470 2681363 2681363 141 6279 2681363 2681376 831 6280 2681546 2681464 93 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	gp:AF112535_3	Corynebacterium glutamicum ATCC 13032 nrdE	6.66	100.0	707	ribonucleotide reductase alpha- chain
6279 2681363 2681223 141 6280 2681546 2682376 831 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747						
6280 2681546 2682376 831 6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	SP.RL36_RICPR	Rickettsia prowazekii	58.0	79.0	41	50S ribosomal protein L36
6281 2681556 2681464 93 6282 2683119 2683616 498 6283 2683125 2682379 747	sp.NADE_BACSU	Bacillus subtilis 168 nadE	55.6	78.1	279	NH3-dependent NAD(+) synthetase
6282 2683125 2682379 747						
6283 2683125 2682379 747						
	pir:S76790	Synechacystis sp. PCC6803 slr1563	30.7	56.4	257	hypothelical protein
2784 6284 2683418 2683131 288 pi	pir.G70922	Mycobacterium tuberculosis H37Rv Rv3129	41.7	68,8	96	hypothetical protein
2785 5285 2684646 2683627 1020 sp	sp:ADH2_BACST	Bacillus stearothermophilus DSM 2334 adh	26.1	52.8	337	alcohol dehydrogenase
2785 6286 2684919 2686289 1371 sp	sp:MMGE_BACSU	Bacillus subtilis 168 mmgE	27.0	56.0	459	Bacillus subtilis mmg (for mother cell metabolic genes)
2787 6287 2686315 2687148 834 pi	pir.T05174	Arabidopsis thaliana T6K22 50	33.8	66.2	284	hypothetical protein
2788 6288 2688240 2687449 792		-			 :	
2789 6289 2690050 2688389 1662 sp	sp.PGMU_ECOLI	Escherichia coli K12 pgm	61.7	9.08	556	phosphoglucomutase

5	,	tion	rane protein		rane protein		ein PS1 protein					(9	mate symport					-binding protein			hydrogenase	
10		Function	hypothetical membrane protein	The state of the s	insperimental membrane protein	fransposase (IS1676)	major secreted protein PS1 protein					transposase (1S1676)	proton/sodium-glutamate symport	orotein	ABC transporter	-		hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase	
15		Matched length (a a)	84	122	25.4	496	355					2000	438	\top	873 /		218		42 h		196	-
20		Similarity (%)	64.3	21.5	70.1	48.6	49.6				0	40.0	66.2		0 69		79.8		75.0		54.1	
		Identity (%)	41.7	25.4	512	24.2	24.8				2.50	0 47	30.8		33.0		45.4		71.0		28.1	1
25	ntinued)	gene	rculosis	99 jhp1146	CS	polis	tamicum im) ATCC				oilo	Single			lor A3(2)		S	oniae	Nigg		Tu 1892	
	rable 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 vosi	Rhodocaccus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodocate and proceeding		Bacillus subtilis 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129	,	Streptomyces collinus Tu 1892 ansG	
35	-	.,	≥I	. I	†-	ا			-		à		†		15 S	-		유 상 상	52		Str	
40		db Match	pir.F70650	pir.D71843	Sp.YCSI_BACSU	gp: AF126281	sp CSP1_CORG				qp. AF 126281		sp.GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L	
		ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768	1338	693	2541	891	708	273	141	678	672	
45		Terminal (nt)	2690437	2690760	2691564	2693053	2694918	2695279	2695718	2695320	2697212	2697383	2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308	
50	\perp	(nt)	2690150	2690437	2690773	2691689	2693299	2694926	2695554	2695766	2695812	2698150	2699531	2700920	2702466	2702466	2703194	2704314	2704835	2709878	2710637	
	SFO		6290	6291	6292	6293	6294	6295	6296	6297	6298	6299	6300	6301	6302	6303	6304	6305	9029	9307	6308	 .
55	SEO	(DNA)	2790	2791	2792	2793	2794	2795	2796	2797	2798	2799	2800	2801	2802	2803	2804	2805	2806	2807	2808	

															_		_			\neg		
5		Function	methyltransferase	hypothetical protein	hypothetical protein		UDP-IN-acetyigiucosariinis carboxyvinyltransferase	hypothetical protein	transcriptional regulator		cysteine synthase	O-acetylserine synthase	hypothetical protein	succinyl-CoA synthetase alpha	hypothetical protein	Cob evolhetase heta chain	saccing constraints	formalisin sens E product		A demiración Aco	succinyl-CoA coenzyme A transferase	transcriptional regulator
15	Matched	length (a.a.)	205	84	42		417	190	281		305	172	83	291	7.5	200	400	24.0	213		501	321
20		Similarity (%)	51.2	0.99	75.0		75.3	84.2	0.69		94.6	7.67	65.1	79.4	43.0		/3.0		87.7		77.8	68.5
		identity (%)	25.9	61.0	71.0		44.8	66.3	45.9		57.1	61.1	36.1	52.9	2,00		39.8		38.5		47.9	38.6
25	omilinea)	s gene	erculosis	oniae	um Nigg		oaceticus	oerculosis	licolor A3(2)		18 cysK	andii cysE2	odurans R1	Jine Mile Ph I	4 4 4 7 1 4 0 6 0	NI APE 1003	88 sucC		eofulvus finE		eri cal1 cal1	ilense ATCC
30	lable 1 (confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0089	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Acinetobacter calcoaceticus NCIB 8250 murA	Mycobacterium tuberculosis H37Rv Rv1314c	Streptomyces coelicolor A3(2) SC2G5.15c		Bacillus subtilis 168 cysK	Azotobacter vinelandii cysE2	Deinoceccus radiodurans R1	Coxiella burnetii Nine Mile Ph I	SucD	Aeropyrum pernix N.I. Arte 1003	Bacillus subtilis 168		Streptomyces roseofulvus finE		Clostridium kluyveri cat1 cat1	Azospirilium brasilense ATCC 29145 rtrC
<i>35</i>		db Match	M UTCYM_980Y.qs	GSP: Y35814 C	PIR-F81737		Sp.MURA_ACICA	sp:Y02Y_MYCTU	gp:SC2G5_15		SPICYSK BACSU	+	9	<u> </u>	_		sp:SUCC_BACSU		gp.AF058302_5		Sp.CAT1_CLOKL	sp.NIR3_AZOBR
		ORF (bp)	525 sı	273 G	141	195	1254 s	570 s	843 g	907			1		. 1	225	1194	360	735	819	1539	1143
45		Terminal (nt)	2712374	2713453	2713842	2717993	2718436	2720319	2720385	2007060	230020	1097717	0775676	0110212	2/244/8	2725843	2725384	2726786	2727399	2728207	2729378	2732518
50		Initial (nt)	2711850	2713181	+	2718187		2719750	2721227				2724057		2725359	2725619	2726577	2727145		2729025		2731376
		SEQ				6312		6314	6315		6316	6317	6318	-	6320	6321	6322		-	6325		6327
<i>55</i>		SEQ NO.				2812		2814	2815		2816	2817	2818	61 87	2820	2821	2822	2823	2824	2825	2826	2827

		_										,				
5	UC		system	ansport	sport system	sport system	otein S-3					o acid			minoimidazole	transferase
10	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5-phosphoribosyl-5-aminoimidazole synthetase	amidophosphoribosyl transferase
15	Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347	482 a
20	Similarity (%)		81.7	82.8	82.2	78.5	26.0	0.09		55.2	74.2	56.0	79.0	81.0	94.2	89.0
	Identity (%)		46.5	58.8	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0	70.3
25 (panul	ene		ulosis -2	iosa pstB	ulosis	ulosis	ulosis	or A3(2)		Dir	ulosis	CAT2	6872	losis	6872	6872
os Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84.18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM	Corynebacterium ammoniagenes ATCC 6872 purF
35		<u> </u> 	₹ E	Ps.	₹. E.B.	H W	H &	SC St			My H3	Sal	<u>S</u> # 8	H3.	Coryn ammc purM	Cory amm purF
40	db Match		pir.E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir.H70583	gp:SCD84_18		sp:BMRU_BACSU	pir.E70809	gp:AF193846_1	gp.AB003158_6	pir.B70809	gp:AB003158_5	gp.AB003158_4
_	ORF (bp)	807	732	897	921	1014	1125	876	783	1095	687	942	1101	213	1074	1482
45	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881	2746083
50	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954	2747564
	SEQ NO. (a.a.)	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341	6342
55	SEQ NO (DNA)	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841	2842

1	т						\top		· · · · · · · · · · · · · · · · · · ·	Т	\top		\top			\neg
5	u			ne protein		synthetase		synthetase			Se	9.			nsporter	lidase
10	Function	hypothelical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- formytglycinamidine synthetase	hypothetical protein		gluthatione peroxidase	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeplidyl aminopeplidase
15	Matched length (a.a.)	124	315	217	42	763		223	79		158	965		211	414	697
20	Similarity (%)	75.8	94.0	87.1	71.0	89 5		93.3	93.7		77.9	51.5		68.7	81.6	70.6
	Identity (%)	57.3	75.9	67.7	64.0	9.77		80.3	81.0		46.2	28.0		37.4	49.0	41.8
<i>25</i>		sis	172	272		372		372	972			MP636		osis	LT2	4 dapb1
os Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfotobus solfataricus	Corynetacterium ammoniagenes ATCC 6872 purL		Corynetacterium ammoniagenes ATCC 6872 purQ	Corynebacterium animoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35		ΣÏ	2 2 2		-							Ϋ́		≥ I		<u>a</u>
40	db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP SSU18930_21 4	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir:C70709	sp.DCTA_SALTY	prf.2408266A
	ORF (bp)	375	1017	741	.186	2286	720	699	243	522	477	2748	276	687	1338	2118
45	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402		2753237	2753298	2753804	·	2756851	2757815	2759200	2761649
	SEQ.	6343	6344	6345	6346	6347	6348		6350	6351	6352	6353	6354	6355	6356	6357
55	SEQ	(DNA) 2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2855	2857

				,													
5		Function		5-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthelase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
15		Matched length (a.a.)		294	477	395	425	136	Т	243	469	423	224 (335	231	249 1	382 1
20		Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4	9'.29	98.8	9.66	70.5	72.7	69.5	53.9
		Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8	30.1	95.7	7.86	31.3	42.0	37.4	30.9
25	ned)	e e		872	872	TCC	372	296a		orf3	, lactis	icum MJ233	icum MJ233	asmid	∢	Α.	ation a
30	Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynetacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis	Corynebacterium glutanicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermologa maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
35			-	Oec	Oma	S 4	0 40 0			≥				ہے ت	F	S	¥
40		db Match		gp:AB003161_3	gp.AB003161_2	sp:AAT_SULSO	gp:AB003167_1	Sp.YHIT_MYCLE		pir:S62195	sp:DTPT_LACLA	sp.BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf:2222216A	sp:TIPA_STRLI	prf.2419350A
		ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
45		Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
50		initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2769095	2770511	2770714	2771989	2774098	2774814	2775689	2776879
		SEQ NO. (a.a.)	6358	6359	6350	6361	6362	6363	6364	6365	9369	9367	6368	6369	6370	6371	6372
55	[SEQ NO (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869		2871	2872

5		Function	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional regulator, Lysk family	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initiation factor sigma	trehalose-6-phosphate synthase		trehalose-phosphatase	glucose-resistance amylase regulator	high-affinity zinc uplake system protein
15	Matched	length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487		245	344	353
20		Similarity (%)	758	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	66 7		57.6	60.2	46.7
		identity (%)	46.3	33.3	30.4	456		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8		27.4	24.7	22.4
30 Septiment of the Polymer Continued of the P	lable (columnae)	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodoceccus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv329Bc IpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tps1		Escherichia coli K12 otsB	Bacillus megaterium ccpA	Haemophilus influenzae Rd Hi0119 znuA
<i>35</i>		db Match	gp:ECOPOXB8GEs	pri:2212334B ps	SD YCDC ECOLI ES			gp: AF096929_2 ks	SP. ALSR BACSU B	12	pir: C69862 B		pir.A45264 cv	N Pir.B70798	pir.S41307 S	Sp. TPS1_SCHPO		SPOTSB ECOLI	BACME	
		ORF (bp)	1737	1482 p	531 8	0	2142	6 096	.705 s	813 р	813 p	459	399	1503	327	1455	513	-		942
45		Terminal (nt)	2776768	2780446	9780969	2782315	2782340	2784656	2785651	2788594	2788587	2789477	2790550	2792448	2792857	2794327	2794812	2795637	2795676	2797806
50		Initial (nt)	2778504	2778965	27R0439	2780996	2784481	2785615	2786355	2787782	2789399	2789935	2790152	2790946	2792531		2794300			2796865
	1	SEQ NO.		6374	57.5		6377		6379		6381		6383	6384	6385		6387	 -		9350
55		SEQ NO.	2873	2874	2696	2876	2877	2878	2879	2880	2881	2882	2883	2884	2885	2886	2887	0 0	2889	2890

Today	Toronia		\perp	l d			ti to o ti	Similarity	Matched	
(nt) (nt) (bp) db Match	(nt) (nt) (bp) db Match	(bp) db Match	db Match	db Match		lamologous gene	(%)	Similarity (%)	length (a a)	Function
6391 2797820 2798509 690 gp.AF121672_2 mreA	2797820 2798509 690 gp:AF121672_2	2798509 690 gp:AF121672_2	gp:AF121672_2		Staphylo mreA	Staphylococcus aureus 8325-4 mreA	31.4	63.2	223	ABC transporter
6392 2798837 2799391 555 pir E70507 Mycobacterium H37Rv Rv2060	2798837 2799391 555 pir.E70507	1 555 pir.E70507	pir.E70507		Mycobac H37Rv R	Mycobacterium tuberculosis H37Rv Rv2060	60.0	87.4	135	hypothelical membrane protein
6393 2799535 2801034 1500 pir: A69426 Archaeo	2799535 2801034 1500 pir A69426	2801034 1500 pir.A69426	pir: A69426	pir: A69426	Archaeo	Archaeoglobus fulgidus	23.4	52 5	303	transposase (ISA0963-5)
6394 2801113 2801313 201	2801113 2801313	2801313	201							
6395 2803246 2801558 1689 gp:AF096929_2 KstD1	2803246 2801558 1689 gp:AF096929_2	2801558 1689 gp:AF096929_2	gp:AF096929_2	gp:AF096929_2	Rhodoc kstD1	Rhodococcus erythropolis SQ1 kstD1	32.1	62 0	561	3-ketosteroid dehydrogenase
6396 2803996 2803250 747	2803996 2803250	2803250	747							
6397 2804691 2804074 618 pir.B72359 Thermot	2804691 2804074 618 pir.B72359	2804074 618 pir.B72359	pir:872359		Thermot bplA	Thermotoga maritima MSB8 bplA	34.3	56.4	204	lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase
6398 2805110 2804676 435 sp:MI2D_BACSU Bacillus s	2805110 2804676 435 sp:MI2D_BACSU	2804676 435 sp:MI2D_BACSU	sp:MI2D_BACSU		Bacillus	Bacillus subtilis 168 idh or iolG	35.2	69.5	128	dehydrogenase or myo-inositol 2- dehydrogenase
6399 2805967 2805113 855 sp. SHIA_ECOLI Escheric	2805967 2805113 855 sp.SHIA_ECOLI	2805113 855 sp. SHIA_ECOLI	sp.SHIA_ECOLI		Escheric	Escherichia coli K12 shiA	30.5	67.5	292	shikimate transport protein
6400 2806441 2806016 426 sp.SHIA_ECOL! Escheric	2806441 2806016 426 sp.SHIA_ECOL!	2806016 426 sp:SHIA_ECOL!	sp.SHIA_ECOL!		Escheric	Escherichia coli K12 shiA	43.1	80.8	130	shikimate transport protein
6401 2807252 2806599 654 gp.SC5A7_19 SC5A7 19c	2807252 2806599 654 gp.SC5A7_19	2806599 654 gp:SC5A7_19	gp:SC5A7_19		Strepton SC5A7	Streptomyces coelicolor A3(2) SC5A7.19c	32.6	55.7	212	transcriptional regulator
6402 2808364 2807426 939 sp. PT56_YEAST Sacchar	2808364 2807426 939 sp.PT56_YEAST	939 sp:PT56_YEAST	sp:PT56_YEAST		Sacchar YOR201	Saccharomyces cerevisiae YOR201C PET56	22.8	47.3	334	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase
6403 2809778 2808399 1380 sp:SYC_ECOLI Escheric	2809778 2808399 1380 sp.SYC_ECCLI	1380 sp:SYC_ECOLI	sp:SYC_ECOLI	sp:SYC_ECOLI	Escheric	Escherichia coli K12 cysS	42.2	688	464	cysteinyl-IRNA synthetase
6404 2811806 2809824 1983 prf.2511335C Lactocoo	2811806 2809824 1983 prf 2511335C	2809824 1983 prf.2511335C	prf.2511335C	prf.2511335C	Lactocod	Lactoçoccus lactis sacB	47.0	77.0	668	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)
6405 2813258 2811960 1299 gp. AF205034_4 Clostridium acel	2813258 2811960 1299 gp.AF205034_4	2811960 1299 gp.AF205034_4	gp.AF205034_4	gp.AF205034_4	Clostridio ATCC 82	Clostridium acetobutylicum ATCC 824 scrB	35.3	56.9	473	sucrose 6-phosphate hydrolase or sucrase
6406 2814037 2813279 759 sp.NAGB_ECOLI Escheric	2814037 2813279 759 sp.NAGB_ECOLI	759 sp:NAGB_ECOLI	sp:NAGB_ECOLI		Escheric	Escherichia coli K12 nagB	38.3	69.4	248	glucosamine-6-phosphate isomerase
6407 2815232 2814081 1152 sp.NAGA_VIBFU Vibrio fo	2815232 2814081 1152 sp.NAGA_VIBFU	1152 sp.NAGA_VIBFU	sp:NAGA_VIBFU	sp:NAGA_VIBFU	Vibrio fu	Vibrio furnissii SR1514 manD	30.2	603	368	N-acetylglucosamine-6-phosphate deacetylase

	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein		hypothetical protein	hypothetical protein	transcription factor
	Matched length (a a)	298	321	220		439	222	260	342	314	258	193	142		152	235	157
	Identity Similarity (%)	62.1	57.6	686		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		85.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
Table 1 (continued)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10 20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp.DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		sp:NANH_MICV!	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp.OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOLI	prf.2309303A		pir:C70607	sp:Y18T_MYCTU	pir.H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	SEQ NO (a a)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO. (DNA)	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

			,	.							,			<u>. </u>						
5		response	sensor		4						cosylase			ogenase						
10	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	A/G-specific adenine glycosylase			L-2.3-butanediol dehydrogenase				hypothetical protein	virulence factor	virulence factor
15	Matched length	223	341		463	345	231	471		210	283			258				97	66	72
20	Similarity (%)	70.0	7.79		74.3	73.3	53.3	85.1		66.2	7.07			9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4			99.2				48.5	97.0	54.0
25 (penuiluoz) 1 elder	us gene	berculosis ntrA	12 baeS		12 radA	В уасК	berculosis	ida NCIMB (4000		einhardtii ca 1	bioticus IMRU			ccharolyticum				berculosis	uginosa	uginosa ·
Table 1	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yack	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca t	Streptomyces antibioticus IMRU 3720 mutY			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
35		ΣÏ	 			 	ΣÏ	g 99		ਹ	37.5			B				ΣÏ	٥٥	<u>a</u> 0
40	db Match	prf:2214304A	sp:BAES_ECOLI		sp. RADA_ECOLI	sp.YACK_BACSU	pir.D70804	gp:PPU96338_1		pir:T08204	gp:AF121797_1			gp:AB009078_1				pir.E70552	GSP:Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	687	1452	147	621	879	1155	306	774	324	741	312	291	420	213
45	Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956	2839521	2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
50	Initial (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737	2838576	2838643	2839562	2841063	2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEQ NO	6424	6425	6426	6427	6428	6429	6430	6431	6432	6433	6434	6435	6436	6437	6438	6439	6440	6441	6442
55	SEQ	_ <u></u>	2925	2926	2927	2928	2929	2930	2931	2932	2933	2934	2935	2936	2937		2939	2940	2941	2942

dihydroneopterin aldolase dihydropteroate synthase

118 268

69.5 75.0

51.5 38.1

Mycobacterium leprae folp Bacillus subtilis 168 folB

pyrophosphokinase

SP. FOLB_BACSU gp:AB028656_1

390 837

2865346

2865731

									$\neg \tau$	$\overline{}$				T				
5	Function		CIpC adenosine triphosphatase / ATP-binding proteinase	nosphate	ctor	oxygenase					stance protein	otein	thetase	pantoatebeta-alanine ligase			hypothetical membrane protein	2-amino-4-hydroxy-6- hydroxymethyldihydropleridine
10	LL.	virulence factor	CIpC adenosine triphos ATP-binding proteinase	inosine monophosphate deliydrogenase	transcription factor	phenol 2-monooxygenase					lincomycin resistance protein	hypothetical protein	lysyl-tRNA synthetase	pantoatebeta			hypothetical m	2-amino-4-hydroxy-6- hydroxymethyldihydro
15	Matched length (a.a.)	55	832	469	316	680					481	240	511	268			138	158
20	Simifarity (%)	75.0	86 2	702	62 7	6 09					100.0	55.8	71.2	52.6			9.69	0.69
	Identity (%)	74.0	58.5	37.1	24.7	33.5					100.0	26.7	41.7	29.9			29.0	42.4
25 D					s nitR	тсс					mn	sis	us lysS	mno				suar
S Table 1 (continued)	Homologous gene	Pseudomonas aeruginosa ORF25110	Bacillus subtilis 168 mecB	Bacillus cereus ts-4 impdh	Rhodoceccus rhodochrous nitR	Trichosporon cutaneum ATCC 46490					Corynebacterium glutamicum ImrB	Mycobacterium tuberculosis H37Rv Rv3517	Bacillus stearothermophilus lysS	Corynebacterium glutamicum ATCC 13032 panC			Mycobacterium leprae MLCB2548.04c	Methylobacterium extorquens AM1 folk
35		Pseudomor ORF25110	Bacillu	Bacillu	Rhodo	Trichos 46490					Coryn	Mycob H37R	Bacill	Coryn			Mycot	Methylob AM1 folk
40	db Match	GSP:Y29193	sp:MECB_BACSU	gp:AB035643_1	pir.JC6117	sp.PH2M_TRICU					gp:AF237667_1	pir.G70807	gp:AB012100_1	gp:CGPAN_2			gp:MLCB2549_4	SP:HPPK_METEX
	ORF (bp)	321	2775	1431	1011	1785	1716	1941	1722	162	1443	951	1578	798	693	798	465	477
45	Terminal (nt)	2846506	2844166	2848659	2849779	2851815	2853732	2855709	2857516	2859205	2857613	2859195	2860505	2862132	2862929	2863624	2864384	2864867
50	Initial (nt)	2846186	2846940	2847229	2848769	2850031	2852017	2853769	2855795	2859044	2859055	2860145	2862082		2863621	2864421		2865343
	SEQ NO.	6443	6444	6445	6446	6447	6448	6449	6450	6451	6452	6453	6454	6455	6456	6457		6459
55	SEQ NO.	2943	2944	2945	2946	2947	29.48	2949	2950	2951	2952	2953	2954	2955	2956	2957	2958	2959

5
10
15
20
25
30
35
40
45
50

			,		,	,	,	,											
	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine deaminase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothelical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
	Matched length (a a)	188		782	165	310	459	159		507	132	144	173	202	89		411	97	135
	Similarity (%)	86.2		0.69	83.0	66.8	51.4	73.6		80.7	86.4	63.2	60.1	72.3	59.6		9 69	73.2	59.3
	identity (%)	9.09		26.0	51.5	41.0	27.2	49.7		99.0	38.6	36.8	36.4	44.6	30.3		38.0	46.4	26.7
lable 1 (continued)	Hamologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bgiP		Nocardioides sp. KP7 phdD	Streptomyces coelicolar A3(2) SCH69,09c	Burkholderia pseudomallei ORF E
	db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp:DAC_ACTSP	sp.IPYR_ECOLI		pir:H70886	sp:Y081_MYCTU	sp:Y0B2_MYCTU	sp:Y0B3_MYCTU	sp.Y0B4_MYCTU	sp.PTBA_BACSU		gp:AB017795_2	g_scH69_9	prf.2516298U
	ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	493	609	249	264	1233	288	444
	Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
	(nitial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926	2873611	2875443	2875832	2876280	2876777	2877385	2877703	2877858	2879710	2879965	2880544
	SEQ NO (a.a.)	6462	6463	6464	6465	6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476	5477	6478	6479
į.	SEQ NO.	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	2977	2978	2979

5	Function	pentide synthase	and the state of t	phenylacetaldehyde dehydrogenase		hypothelical protein	hypothetical protein	hypothetical protein	heat shock protein or chaperon or groEL protein						hypothetical protein	Typotherap process			peptidase			Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase
15	Matched	\top	1	807	007	241	54	31	548						1236	06.21			447			797
20	Similarity (%)	E 4 6	0.10	7 00	03.7	79.7	63.0	80.0	100.0						2,2,2	42.3			68.0			68.3
	Identity (%)		78.4	0	35.0	57.3	62.0	74.0	99.5	-						21.7			37.1			35.6
25 (Continued)	eueb s		osporus cpsb		12 padA	uni Cj0604	perculosis	berculosis	vum MJ-233							JC5B			iberculosis			aureus mnhA
Table 1 (c	euag suogolomoH		Streptomyces roseosporus cpsb		Escherichia coli K12 padA	Campylobacter jejuni Cj0604	Mycobacterium tuberculosis	Mycobacterium tuberculosis	Brevibacterium flavum MJ-233							Homo sapiens MUC5B			Mycobacterium tuberculosis H37Rv Rv2522c			Staphylococcus aureus mnhA
35 40	db Match		prf 2413335A S			gp;CJ11168X2_25 C		GP MSGTCWPA 1 N								prf:2309326A		1	pir:G70870			prf.2504285B
	ORF	(dg)	3885 pri	1461	1563 pri	918 9P	162 GI	177 G	1	180	1209	963	1986	2454	2799	3591 p	2775	612	1371 p	579	909	3057 p
45	Tō.	(b)	2884882	2881844	2884935	2886916	2890346	2890553		2890751	2890930	2892138	2893100	2895072	2897528	2900330	2903964	2906639	2908885	2909788	2909231	2913228
50	Initial	(r)	2880998	2883304	┼	2887833	2890185			2890930	2892138	2893100	2895085	2897525	2900326	2903920	2906738	2907250	2907515	2909210	2909830	
	SEQ	(a a)	6480	6481	6482	6483	6484		6486	6487	6488	6489		6491	6492	6493	6494	6495		6497	6498	
55	SEO	(DNA)	2980	_	2982	2983	2984	2006	2986	2987	2988	2989	2990	2991	2992	2993	2994	2995	2996	2997	2998	2999

	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/I+ antiporter or multiple resistance and pH regulation related protein G	al protein	al protein		polypeptide deformylase	al protein	acetyltransferase (GNAT) family or N terminal acetylating enzyme			exodeoxyribonuclease III or exonuclease	
	7	Na+/H+ an resistance protein C o	Na+/H+ an resistance protein D	Na+/H+ an resistance protein E	K+ efflux sy resistance protein F	Na+/H+ an resistance protein G	hypothetical protein	hypothetical protein		polypeptide	hypothetical protein	acetyltrans N terminal			exodeoxyribo	
	Matched length (a.a.)	104	523	161	7.7	121	178	334		184	71	339			31	2,1
	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2	_		6.65	0 00
	Identity (%)	44.2	35.2	26.7	32.5	256	24.7	27.0		37.5	47.9	31.3			30.8	27.0
(populuos) i gigni	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobaclerium tuberculosis H37Rv Rv0428c		-	Salmonella typhimurium LT2 xthA	
	db Match	gp AF097740_3	gp.AF097740_4	gp AF097740_5	prf.2416476G	prf.2504285H	pir:D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir:D70631	pir:B70631	-		gp:AF108767_1	4500
İ	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	45.00
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920250	2922108	7073617
	Initial (nt)	.2913235	6501 2913749	2915462	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	811000
	SEQ NO.	6500	6501	6502	6503	6504	6505	9059	6507	6208	6209	6510	6511	6512	6513	6517
	SEQ NO.	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013	2017

. 10		Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		sporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothelical membrane protein	glutamine-binding protein precursor	serine/threonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyllransferase	
15				membrar bicycłom	sodium d	phenazin		ABC transporter	ABC tran	mutator r	hypothet	glutamin	serine/th		ferredoxin reductase	acetyltra				phospho formyltra	
15		Matched length (a.a.)		393	382	289		255	308	168	423	270	805		457	156				379	
20		Similarity (%)		67.2	68.9	56.4		8.09	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
		Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
25	lable I (confined)	Homologous gene		oli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudonionas aureofaciens 30-84 phzC		Streptomyces coelicalor A3(2) SCE8.16c	iformis ATCC	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis H37Rv Rv0412c	othermophilus	Mycobacterium tuberculosis H37Rv Rv0410c pknG			oli K12 elaA				is 168 pur -	
35 35	lable	Homole		Escherichia coli K12 bcr	Vibrio cholera	Pseudonionas 84 phzC		Streptomyces SCE8.16c	Bacillus licheniformis ATCC 9945A borA	Mycobacterium H37Rv Rv0413	Mycobacterium t H37Rv Rv0412c	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tubercu H37Rv Rv0410c pknG		Bos faurus	Escherichia coli K12 elaA				Bacillus subtilis 168 pur	
40		db Match		sp:BCR_ECOLI	gp.VCAJ10968_1	sp.PHZC_PSEAR		gp:SCE8_16	sp.BCRA_BACI.I	pir.C70629	pir:B70629	sp:GLNH_BACST	pir:H70628		sp.ADRO_BOVIN	sp:ELAA_ECOLI				sp.PURT_BACSU	
		ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
45		Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2931336	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
50		Initial (nt)	2924191		2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
		SEQ NO		6516	6517	6518	6519	6520	6521	6522	6523	6524	6525	9259	6527	6528	6259	6530	6531	6532	6533
55		SEQ NO (DNA)			3017	3018	3019	3029	3021	3022	3023	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

г											₁				 ;				\neg
5		elated)	elated)	system sensor			netase			e protein	aldolase			transferase				The state of the s	
10	Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothelical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
15	Matched length (a.a.)	295	66	349	218		427	204		359	344	304	182	174	250	294			
20	Similarity (%)	6.06	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1		-	
25	Identity (%)	77.6	67.4	22.4	31.7		89 7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
os Table 1 (continued)	Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum AS019 ATCC 13059 ORF3	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT	,		
35		Coryne orf2	Coryne orf1	Strepto opc-520	Bacillus		Coryne	Mycoba H37Rv		Coryne AS019	Coryne AS019	Coryne AS019	Mycob H37Rv	Pyroco	Mycob H37Rv				
40	db Match	pir. S60890	pır S60889	gp:AB016841_1	sp DEGU_BACBR		gp:AB003160_1	pir:G70575		sp:YFDA_CORGL	pir:S09283	gp:CGFDA_1	pir:G70833	gp:AF058713_1	pir.B70834	sp:THTM_HUMAN			
	ORF (bp)	894	267	1140	618	.225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
45	Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
50 .	Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2954141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
	SEQ NO.	6534	6535	6536	6537	6538	6239	6540	6541	6542	6543	6544	6545	6546	65.47	6548	6549	6550	6551
55	SEQ NO.	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

																		
5	Function		virulence factor	virulence factor	virulence factor	sodium/glutamate symport carrier protein	cadmium resistance protein	cation efflux system protein (zinc/cadmium)	monooxygenase or oxidoreductase or steroid monooxygenase	alkanal monooxygenase alpha chain		cystathionine gamma-fyase	bacterial regulatory protein, lact family	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	hypothetical protein	hypothetical protein	oxidoreductase
15	Matched	(a.a)	59	200	132	489	108	283	476	399		375	184	68	56	361	204	386
20	Š	(%)	82.0	55.0	63.0	54.8	71.3	63.3	45.4	47.4		62.4	67.9	65.2	87.5	56.2	64.7	9.09
	Identity	(%)	76.0	38.0	62.0	24.7	37.0	23.7	22.5	21.1		36.5	40.2	49.4	73.2	30.5	33.8	31.9
30	(columned)	Homologous gene	eruginosa	eruginosa	aeruginosa	р. РСС6803	aureus cadC	ssi Orsay	odochrous	Kryptophanaron alfredi symbiont luxA		K12 metB	oelicalor A3(2)	oelicalor A3(2)	oelicolor A3(2)	tuberculosis s	tuberculosis	tuberculosis
30 G	- Paole	Ноторо	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF23228	Pseudomonas a ORF25110	Synechocystis sp. PCC6803 slr0625	Staphylococcus aureus cadC	Pyrococcus abyssi Orsay PAB0462	Rhodococcus rhodochrous	Kryptophanaron luxA		Escherichia coli K12 metB	Streptomyces coelicolor A3(2) SC1A2.11	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Mycobacterium tuberculosis H37Rv Rv0837c	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0385
40		db Match	GSP Y29188	GSP-Y29182	GSP:Y29193	pir.S76683	Sp. CADF STAAU	pir.H75109	gp:AB010439_1	sp:LUXA_KRYAS		sp:METB_ECOLI	gp:SC1A2_11	gp:SCE20_34	gp:SCE20_34	pir.E70812	pir:D70812	pir:D70834
	ORF	(pp)	177	762 (396	1347	387	858	1170	1041	762	1146	567	240	183	1125	732	1179
45	Terminal	(a)	2964434	2965837	2965583	2966458	2968789	2969808	2971003	2972057	2971338	2972060	2973230	2974200	2974382	2975591	2976360	2977774
50	leifin	(nt)	2964258	2965076	2965188	2967804	2968403		2969834	2971017	2972099	2973205		2973961	2974200	2974467	2975629	2976596
	SEQ	(a.a)	6552	6553	6554	6555	6556	6557	6558	6559	6560	6561	6562	6563	6564	6565	6566	/999
55	SEQ	NO.	3052	3053	3054	3055	3056	3057	3058	3059	3060	3061	3062	3063	3064	3065	3066	3067

																				
5		Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase	
15		Matched length (a.a.)	275		289	108	507	135	397	212	618	338	195			1311			334	
20		Similarity (%)	67.3		55.4	44.0	90.3	70.4	1.08	66.5	8.66	79.0	0 09			48.4		-	81.7	
25		Identity (%)	32.0		28.0	38.0	9.69	47.4	29.3	38.7	8.66	42.6	27.2			18.9			50.0	
30 35	Table 1 (continued)	Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirilum brasilense carR	Rhodococcus erythropolis theA	Streptomyces albus G hspR	Mycobacterium tuberculcsis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh	
40		db Match	ри. В69109		gp:SC4A7_3	GP:ABCARRA_2		gp.SAU43295_2		sp:GRPE_STRCO	gsp R94587	gp.SCF6_8	sp.PFS_HELPY			sp:CUT3_SCHPO		_	sp ADH2_BACST	
		ORF (bp)	798	243	1134	.330	1518	438	1185	636	1854	1332	633	1200	885	3333	636	1485	1035	
45		Terminal (nt)	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747	
50		Initial (nt)	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781	
		SEQ NO. (a a.)	6568	6959	6570	6571	6572	6573	6574	6575	6576	6577	6578	6259	6580	6581	6582	6583	6584	
55		SEQ NO. (DNA)	3068	3069	3070	3071	3072	3073	3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084	

					1	7	\neg		$\overline{}$			- 1	$ \neg$		- 1		i	- 1	- 1	1	- 1	- 1	1
5		Function				diotora o and	prane protein	u.		sulfate adenylyltransferase, subunit	ansferase small	phosphoadenosine phosphosulfate reductase	reductase	xin-NADP		tor			uptake protein tivity	nie	xygenase		
10		Fun					hypothetical membrane protein	hypothetical protein		sulfate adenylyltra 1	sulfate adenylyltransferase small chain	phosphoadenosir reductase	ferredoxinnitrate reductase	ferredoxin/ferredoxin-NADP	reductase	huntingtin interactor			alkylphosphonate uptake protein and C-P lyase activity	hypothetical protein	ammonia monooxygenase		
15	Matched	length (a.a.)					301	252		414	308	212	502	-	487	144			142	90	161		
20		Similarity (%)					70.1	53.2	`	78.3	70.1	64.2	65.5		61.4	59.7			59.9	66.3	76.4		_
		identity (%)					43.5	32.5		47.3	46.1	39.2	34.5		30.8	32.6			26.8	50.0	39.1		
25 Q	- -							A3(2)		20	Os		PCC 7942		ae				nB	r A3(2)	SMZ ID	-	
30 0 Table 1 (continued)	dole 1 (column	Homalogous gene					Bacillus subtilis ytnM	Streptomyces coelicolor A3(2) SC7A8 *0c		Escherichia coli K12 cysN	Escherichia coli K12 cysD	Bacillus subtilis cysH	Symechococcus so PC	ynechococcus op 1	Saccharomyces cerevisiae FL200 arh1	Homo sapiens hypE			Escherichia coli K12 phnB	Streptomyces coelicolor A3(2) SCE68.10	Pseudomonas putida DSMZ ID 88-260 amoA		
35			<u> </u> 				æ	<u> </u>			1	+	\top			1			<u> </u>	000			
40		db Match					pir:F69997	gp.SC7AB_10		sp:CYSN_ECOLI	sp:CYSD_ECOLI	sp:CYH1_BACSU			sp:ADRO_YEAST	prf:2420294J			sp.PHNB_ECOL!	gp:SCE68_10	gp:PPAMOA_1		
		ORF (bp)	216	207	189	261	927	723	915	1299	912	693	-	Spal	1371	1083	237	.534	414	366	522	321	486
45		Terminal (nt)	2997366	2997481	2997876	2997963	2998528	2999478	3002426	3000241	3001542	3002453	007000	3003480	3006915	3008376	3008453	3009303	1	3009607	3009710	3010979	3010441
50		Initial (nt)	2997151	2997687	2997688	2998223	2999454	3000200	3001517	3001539				3005162	3005545	3007294	3008689	3008770	3009162	3009242	3010231	3010659	3010926
		SEQ NO (a.a)	6585	6586	6587	6588	6589	0659	6591	6592				6595	9559	6597	6558	6588		6601	6602	6603	
55		SEQ NO DNA)	3085	3086	3087	3088	3080	3090	3001	3092	3093	3094		3095	3096	3097	3098	3099	3100	3101	3102	3103	3104

			_						4														
5								tein homolog			وه					insport ATP.			ıctase	g nucleoside	protein	lycosylase	
10		Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP- binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
15		Matched length (a a)	89		337	199	211	416		\	466				114	373		179	231	317	276	179	406
20		Similarity (%)	58.0		57.9	648	73.0	8.79			48.5				46.0	50.1		9'.29	71.4	59.3	59.4	78.8	63.8
		Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28 4	31.2	50.3	33.5
25	Table 1 (continued)	ıs gene	s ORFZ3		hus H16	enzae hmcB	enzae hmcB	eG			12 msgB					12 malK		Plasmid sbiM	/ frp	a iunH	icolor A3(2)	2 tag	hus H16 fhp
30	Table 1 (c	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
35		tch	<u> </u>				9	ED.															
40		db Match	SP YTZ3_AGRVI		sp:YG87_ALCEU	gp:HIU68399_3	gp:HIU68399_	pir: A69778			sp.DAPE_ECOL				GPU DCA297422_1	sp:MALK_ECOLI		gp:AF036485_6	sp.FRP_VIBHA	Sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	sp.HMPA_ALCEU
		ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
45		Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
50		Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379		3027299
		SEQ NO (a.a.)	9099	9099	2099	6099	6099	6610	6611	6612	6613	6614	6615	6616	6617	6618	6619	6620	6621	6622	6623	6624	6625
<i>55</i>		SEQ NO.	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

_					1	-			1		T			Т	Т		1		$\neg \tau$	
	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	asparlate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
	Similarity (%)		63.8		69.3		59.9		78.8	6.08		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7	!	100.0	33.6		40.5	43.6		30.6		28.5
(Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11.10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptor vyces coelicolor A3(2) SCC75A 16c	-	Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp. ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf.2422381B	sp.DCD_ECOL!		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317		237	771	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155		3030723	3032647		3034181	3034287	3036756	3037411	3037675		3040681	3041932
	SEQ NO.	6626	6627	6528	6299	6530	6631	6632	6633	6634	6635	9639	6637	6638	6639	6640	6641	6642	6643	6644
	SEO NO.			3128		3130		3132		3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

5		Function				1416 hypothetical protein		
15		Identity Similarity Matched (%) (%)	3			1416		
20		Similarity (%)				49.4		
25		Identity (%)				29.6		
	table I (collinaed)	Homologous gene				Mycobauterium leprae		
40		db Match				7 6647 3042660 3045788 3129 gp.MLCB1883_7		
		ORF (bp)	444	201		3129	621	
45		Terminal 'ORF (nt) (bp)	15 6645 3041994 3042437	6646 3042503 3042703		3045788	6648 3043642 3043022	
50		Initial (nt)	3041994	3042503		3042660	3043642	0000
	0 1 0	NO NO (a a)	6645	6646		6647	6648	
	1	3 ~ 3	2	5	Γ		ဆ	

	T	\top	1	T				-					-				,.	
Function			hypothetical protein			hypothetical membrane protein	acyltransferase or macrolide 3.0-	acyllransferase	hypothetical membrane protein	11	hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase	C4-dicarboxylate transporter	hybothetical protein	hypothetical protein	mebrane transport protein	
Matched length	(aa)		1416			363	408		529		369	251	601	332	241		768	
Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
Homologous gene			Mycobauterium leprae MLCB1883,13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.041;		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobaclerium tuberculosis H37Rv Rv0206c mmpL3	
db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir JC4001	-	gp:MLCB1883_3		pir:G70961	pir F70961	sp.PPCK_NEOFR	pir:E75125	sp:YGGH_ECOLI	pir:E70959	pir:C70839	
ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699	1137	771	1830	1011	765	705	2316	1422
Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
SEQ NO (a a)	6645	6646	6647	6648	6649	6850	6651	6652	6653	6654	6655	9599	6657	6658	6699	0999	6661	2999
SEQ NO (DNA)	3145	3145	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160		3162

5		Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor	-	() ()	antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
15		Matched length (a.a.)	364	108	523	1747	592	319		657			331	667	295	168	656		170
20		Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4		99.5			62.5	61.2	51.5	75.0	74.7		56.5
		Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6			36.3	37.5	27.1	51.2	55.6		28.2
25 S			si	.s <u>.</u>	3(2)	ervA	(0)	sis		oum ATCC			SIS	sis	SI	sis	osis		00
30 E	lable I (confined)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces coelicolor A3(2)	Strantomyces exthraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1			Mycobacterium tuberculosis ERDMANN RV0129C fbaC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus lichenitormis ATCC: 9945A bcrC
40		db Match	pir.A70839	pir. H70633	gp:AF113605_1		Sp.EKY 1 SACEN	pir.F70887		sp:CSP1_CORGL			sp:A85C_MYCTU	pir.A70888	sp.NOEC_AZOCA	pir:C70888	pir:D70888		sp:BCRC_BACLI
		ORF (bp)	1083	363	1548	-	4830		498	1971	1401	219	1023	2058	966	504	1968	1494	+ -
45		Terminal (nt)	3060733	3061095	3061380		3062951	3070214	3071147	3071650	3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	
50		Initial (nt)	3059651	3060733	3062927		3067780	3069930	3071644		3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	
		SEO	(a a.)					6667			6671	6672	6673	6674	6675			92.89	
55		1	(DNA)			200	3166	3167	3169	3170	3171	3172	3173	3174	3175	3176	3177	2,70	3179

5		Function			dimethylaniline monooxygenase (iv-		UDP-galactopyranose mutase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryi-tRNA synthetase	Iranscriptional regulator, GntR family or fatty acyl-responsive regulator	hypothelical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicolinamidase or pyrazinamidase	
15		Matched length (a a)			377		377	659	499	279	261	419	235	356	113		218		460	
20		Similarity (%)			50 4		72.9	47.8	78.8	70.3	72.0	97.6	61.7	61.2	79.7		62.8		50.9	
		identity (%)			24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.7	32.6	46.0		37.2		27.4	
25	ontinued)	s gene					2 glf	erculosis	nginosa	erculosis	erculosis	erculosis	12 farR	oerculosis	oerculosis		thanolica pgm		negmatis pzaA	
30	Table 1 (continued)	Homologous gene			Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycoletopsis methanolica pgm		Mycobacterium smegmatis pzaA	
35					S		ű	Σ̈́Ξ	 	ΣÏ	ΣÏ	ΣÏ		ΣĬ	ΣÏ				Σ	
40		db Match			sp:FMO1_PIG		sp GLF_ECOLI	pir.G70520	sp:GLPK_PSEAE	pii. A70521	pir D70521	gsp:W26465	sp:FARR_ECOU	pir.H70652	pir:A70653		gp:AMU73808_1		prf.2501285A	
		ORF (bp)	777	510	1302	612	1203	2049	1527	834	876	1266	714	1113	342	66	699	630	1143	729
45		Terminal (nt)	3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	3097904	3099454	3100698	3101426
50		Indial (nt)	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	3095574	3096311	3097423	3097878	3098572	3098825	3099556	3100698
		SEO NO.	0899	6681	6682	6683	6684	6685	9899	2899	6688	6899	0699	6691	6692	6693	6694	6695	9699	16697
55		SEQ NO.		3181	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3166	3197

10
15
20
25
30
35
40
45
50
55

	 -									-	-1								
Function	Iranscriptional regulator				hypothelical protein	glucan 1,4-alpha-glucosidase		glycerophosphoryl diester phosphodiesterase	gluconale permease			pyruvale kinase	L-lactate dehydrogenase	hypothetical protein	hydrolase or haloacid dehalogenase-like hydrolase	efflux protein	transcription activator or transcriptional regulator GntR family	phosphoesterase	shikimate transport protein
Matched length (a.a.)	380	-			107	432		259	456			491	314	526	224	188	221	255	422
Similarity (%)	57.1				81.3	55.3		54.1	71.9			47.7	99.7	64.8	58.5	9'.29	57.0	68.6	74.4
Identity (%)	31.6				43.9	28.7		29.0	37.3			25.5	99.7	33.5	32.1	39.9	27.6	47.8	37.9
Homologous gene	Streptoniyces coelicolor A3(2) SC6G4.33				Streptomyces lavendulae ORF372	Saccharomyces cerevisiae S288C YIR019C sta1		Bacillus subtilis glpQ	Bacillus subtilis gntP			Corynebacterium glutamicum AS019 pyk	Brevibacterium flavum lctA	Mycobacterium tuberculosis H37Rv Rv1069c	Streptomyces coelicolor A3(2) SC1C2.30	Brevibacterium linens ORF1 tmpA	Escherichia coli K12 MG1655 glcC	Mycobacterium tuberculosis H37Rv Rv2795c	Escherichia coli K12 shiA
db Match	gp:SC6G4_33				pir:B26872	sp:AMYH_YEAST		sp:GLPQ_BACSU	sp.GNTP_BACSU			sp:KPYK_CORGL	gsp:Y25997	•	gp:SC1C2_30	gp:AF030288_1	sp:GLCC_ECOLI	pir.B70885	sp.SHIA_ECOLI
ORF (bp)	1035	120	552	870	327	1314	918	819	1389	642	159	1617	942	1776	636	543	693	786	1299
Terminal (nt)	3102768	3101744	3102079	3103763	3104252	3105719	3106053	3106951	3109519	3108823	3110003	3110464	3112449	3115394	3116042	3116621	3117332	3118121	3119582
Initial (nt)	3101734	3101863	3102630	3102894	3103926	3104406	3106970	3107769	3108131	3109464	3109845	3112080	3113390	3113619	3115407	3116079	3116640	3117336	3118284
SEQ NO.	8699	6699	6700	6701	6702	6703	6704	6705	9029	6707	6708	6079	6710	6711	6712	6713	6714	6715	6716
SEQ NO.	3198	3199	3200	3201	3202	3203	3204	3205	3206	3207	3208	3209	3210	3211	3212	3213	3214	3215	3216

				Т		Т	7	T	T	T	7			$\overline{}$	T		_					
5		Function	enase or FMN-		protein			rerse -dependent)		mino acid		sulfoxide	ise (Fe/Mn)	lator	e transporter					torotein	ator	tem response
10		Func	L-lactate dehydrogenase or dependent dehydrogenase		immunity repressor protein			phosphatase or reverse (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
15		Matched tength (a.a.)	376		55			569		122		210	164	292	384				216	447	137	212 t
20		Similarity (%)	6.89		80.0			51.3		63.1		69 1	92.7	65 8	49.0				648	59.3	65.0	75.5
		Identity (%)	40.4		45.5			29 5		36 9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
25	(pan	a	₹		DRF1								-		cum				sis	s lan		riae
<i>30</i>	Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenornabditis elegans Y51811A.1		Arabidcpsis thaliana ill1		Escherichia coli B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gitC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus lanJ	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
40		db Match	prf.2219306A		sp:RPC_BPPH1			gp CELY51B11A_1		Sp:ILL1_ARATH		sp.PMSR_ECOL	pir.140858	sp.GLTC_BACSU	gp.AF121000_10		to distance of the same of the		pir.G70654	prf 2508244AB	sp.YXAD_BACSU E	prf 2518330B
		ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	909	924	1134	1611	111	1521	633	1491	456	636
45		Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
50		In:tial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124885	3125298	3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	:-	SEQ NO.	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6229	6730	6731	6732	6733	<u> </u>	6735	6736
55	Ĺ	SEQ NO (DNA)	3217	3218	3219	3220	3221	3222	3223	3224	3225	3226	3227	3228	3229	3230	3231	3232	3233	_	3235	3236

5		Function		sensor and system sensor	histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein		hypothetical protein	RNA pseudoundylate synthase	hypothetical protein	hypothelical protein	Hint notation and R	pacterial regulatory process, granity or glc operon transcriptional activator	hypothetical protein	hypothetical protein
15	Matched	length (a.a.)			408	48	277	265	192	87	296		314	334	84	42	-	109	488	267
20		Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	9 69		73.9	51.2	0 99	75.0		26.0	48.2	78.7
		Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2		38.5	28.4	61.0	71.0		30.3	26.0	48.3
25 G	linea)				theriae	or A3(2)	or A3(2)		ulosis	MG1655	culosis		MG1655	ne ybc5	ае	Nigg Nigg		MG1655	olor	rculosis
30 o decretations	mana i aidei	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69 20c	Bacillus subtilis spolli	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655	Mycobacterium tuberculosis	37Rv Rv2005c	Escherichia coil K12 MG1655 yhbW	Chlorobium vibrioforme ybc5	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor	Mycobacterium tuberculosis H37Rv Rv2744c
35	-				Cory	8.00	150 55	+-			1			1	 	0 -			000	
40	-	db Match			prf.2518330A	gp:SCH69_22	gp:SCH69_20	sp. SP3J BACSU	pir:C70948	SO:TAG1 ECOLI		sp.YW12_MYCIU	sp:YHBW_ECOLI	sn YBC5 CHLVI	GSP: Y35			sp GLCC_ECOLI	6 gp.SC4G6_31	
		ORF (bp)	639	588	1311	150	822	1302	639	261		.903	987	966	27	14	207	 	1 4	
45		Terminal (nt)	3137558	3138471	3136593	3138481	3138634	2140052	3140885	3141709		3142454	3143496	2145676	3146841		3151369		3153828	_
50		Initial (nt)	3136020	3137884	3137903	3138630	3139455		3141523			3143356	3144482		314400		3151575		3152413	
		SEQ NO.	6727			6740	6741		6743		0/4/0	6745	6746	\rightarrow	6748		6750		6262	
<i>55</i>		SEQ	2027	3237	3239	3240	3241	35	3242	2 3	3244	3245	3246	!	324/	3249	2050	3251	3252	3253

5		Function						methyltransferase		nodulin 21-related protein				transposon tn501 resolvase		lerredoxin precursor	fransposase	transposase protein fragment	UppinC	glyceraldehyde-3-phosphate	denydrogenase (pseudogene)	copper/potassium-transporting	ATPase B or cation transporting ATPase (E1-E2 family)	
15		Matched	(94)					217 n	244	_			+	90	63	Ť		46 tr		38	180		7.7 AT	
20		Similarity (%)						58.1	55.2	33.50			0.00	87.8	0.8.4	85.5	84.0	0.06		84.2	59.4	12.6	4.5	
		Identity (%)						32.3	26.1	7.7			C 87	7.0.4	90.3	47.3	81.0	84.0		63.2	32.2	0.74	 	
25	tinued)	еле						or A3(2)					osa TNP5		thraea fer	or A3(2)	micum	micum			PCC6803	AE0152	200	
30	Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35 11c	soybean NO21				Pseudomonas aeruginosa TNPS		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp16/3	Corynebacterium glutamicum		Pyrococcus woesel gap	Synechocystis sp. PCC s10788	Archaeoglobus fuloidus AE0152		
<i>35</i>		db Match						gp:SCD35_11	sp. NO21_SOYBN				Sp.TNP5 PSEAE		SP. FER_SACER	gp SCD31_14	GPU AF164956_8	GPU.AF164956_23		sp.G3P_PYRWO P	S S77018 S	pir. H69268		
	_	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	099	2217		171
45		Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	10000	315626/
50		Initial (nt)	3154817	3156697	3157373	3157471	3157787		3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	6768 3162694	3162710	3162852	3162983	3163733	3166005		3100437
	-	SEQ NO (a.a.)	6754	6755	6756	6757	6758		929	6761	6762	6763	6764	6765	9929	1929	6768		6770	6771	6772	6773	, ,,,,,	
5 5	1 0	NO NO (DHA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265		3267	3268	3269	3270	3271	3272	3273		32/4

5	Function		two-component system sensor		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol.disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Հn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase	
15	Matched length (a.a.)		301		233		630	101	322	!	78			909	72		73	7.0	
20	Similarity (%)		71.4		72.1		47.9	63.4	60.9		66.7			98.5	54.0		73.0	77.0	
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0	
<i>25</i> (p en ui	ene		aeS				ae pv.	icum tlpA			CC6803			MG1655	APE2572		tamicum	tamicum	
Se Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus musculus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 atzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673	
35 40	db Match		SP.BAES_ECOLI		sp:PHOP_BACSU		sp COPA_PSESM	sp TLPA_BRAJA	sp.GOR_MOUSE		sp.ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU AF164956_8	
	ORF (bp)	192	197	328	756 sp.1	672	479	363 sp	918 sp.	471		315	207	1875 sp	390 PII	309	216 GF	258 GF	
45	Terminal O (h)	3167169	3166450 1	3168566 B	3167646	3169340	3170892	3171616	3171619	2173465	3173857	3174380	3174784	 	3175254	3177482	3177089	3177308	7
50	Initial (nt)	3166978	3167646	3167739	3168401	3168669		3171254	3172536	2172005		3174066	3174990		3175643	3177174		3177565	
	SEQ NO	6775	9//9	6777	6778	6770		6781	6782		6784	6785	16786	6787	6788			3291 6791	-
55	SEO NO	3275	3276	3277	3278	3270	3280	3281	3282	6	3284	3285	3286	3287	3288	3289	3290	3291	

5		
10		
15		
20		
25		
30		
35		
40		
45		
50		

_			· · ·							- 1		$\neg \tau$	\neg	1								1	
Function		transposase (IS1628)	thioredoxin		transmembrane transport protein or 4-hydroxybenzoate transporter		hypothetical protein	replicative DNA helicase		50S ribosomal protein L9	single-strand DNA binding protein	30S ribosomal protein S6		hypothetical protein		penicilin-binding protein	hypothetical protein	bacterial regulatory protein, marR family	hypothetical protein		hypothetical protein	hypothetical protein	ABC transporter ATP-binding protein
Matched	(a.a)	53	100	:	421		208	461	! !	154	229	92		480		647	107	137	296		7.1	298	433
Similarity	(%)	96.2	74.0		60.1		62.5	73.1		71.4	51.5	78.3		683		60.1	72.0	65.0	61.8		70.4	63.8	64.0
identity	(%)	92.5	39.0		27.1		35.1	37.7	**	42.2	30.6	28.3		41.5		29.1	41.1	35.1	29.7		32.4	30.2	31.2
(and supplement	nomonogons gene	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	Escherichia coli K12 tni2		Pseudomonas putida pcaK		Escherichia coli K12 yqil	Escherichia coli K12 chaB		Escherichia coli K12 RL9	Escherichia coli K12 ssb	Escherichia coli K12 RS6		Mycobacterium smegmatis mc(2)155		Bacillus subtilis ponA	Mycobacterium tuberculosis H37Rv Rv0049	Mycobacterium tuberculosis H37Rv Rv0042c	Mycobacterium tuberculosis H37Rv Rv2319c yofF	-	Bacillus subtilis yhgC	Escherichia coli K12 yceA	Escherichia coli K12 ybjZ
17 11 11	db Match	gp:AF121000_8	sp.THI2_ECOLI		sp:PCAK_PSEPU		sp:YQJI_ECOLI	sp. DNAB_ECOLI		sp:RL9_ECOLI	sp. SSB_ECOLI	sp.RS6_ECOLI		gp:AF187306_1		sp:PBPA_BACSU	sp:YOHC_MYCTU	pir.B70912	sp:Y0FF_MYCTU		sp:YHGC_BACSU	sp.YCEA_ECOLI	sp:YBJZ_ECOLI
ORF	(pb)	159	447	264	1344	159	576	1530	516	450	675	285	189	1458	882	2160	357	471	942	495	321	936	1263
Terminal	(nt)	3177525	3178112	3178872	3180392	3180945	3180551	3181337	3183984	3183478	3183987	3184701	3185348	3185536	3188793	3187042	3189296	3190347	3191319	3191848	3191922	3192266	3193252
lutial	(nt)	3177683	3178558	3178609	3179049	3181104	3181126	3182866	3183469	3183927	3184661	3184985	3185536	3186993	3187912	3189201	3189652	3189877	3190378	3191354	3192242	3193201	3194514
SEQ	(a a)	6792	6793	6794	6795	96.29	6797	6798	6679	6800	6801	6802	6803	6804	6805	6806	6807	6808	6089	6810	6811	6812	6813
SEQ	(PNA)	3292	3293	3294	3295	3296	3297	3298	3299	3300	3301	3302	3303	3304	3305	3306		3308	3309	3310	3311	3312	3313

5	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase [NAD] (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	teicoplanin resistance protein
15	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	159
20	Similarity (%)	80.1	42.0	90.0			649	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	159.0
	Identity (%)	48.9	18.0	77.8	,		37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	27.0
72 (Continued)	ns gene	12 MG1655	uni Cj0606	berculosis			12 dps	12 mulM or	12 rtcB			mT	ðuinea pig) qor		berculosis eA	melassecola glutamicum)	¥	ium vanZ	ium vanZ
Table 1	Hamologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium van Z	Enterococcus faecium vanZ
35			ũ	ΣÏ												-			
40	db Match	sp:YBJZ_ECOLI	pir:E81408	pir.F70912			sp.DPS_ECOLI	sp.FPG_ECOU	sp.RTCB_ECOLI			sp:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp:AF234535_	Sp.GNTK_BACSU	sp:VANZ_ENTFC	sp:VANZ_ENTFC
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	111	1176	1176	1482	591	525
45	Terminal (n1)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	3211246	3211904
50	Initial (n1)	3195203	3197186	3197412	3199187	3200686	3201754	3201900	3202952	3204067	3204156	3205204	3206232	3206646	3206849	3208279	3211186	3211836	3212428
	SEQ NO.	6814	6815	6816	6817	6818	6819	6820	6821	6822	6823	6824	6825	6826	6827	6828	6859	6830	6831
55	SEO NO.	3314	3315	3316	3317	3318	3319	3320	3321	3322	3323	3324	3325	3326	3327	3328	3329	3330	3331

			1			7	$\overline{}$	- 1	7-		-T-				$\overline{}$				
5		Function	ctase	D-amino acid dehydrogenase small subunit				dictaca			thetase	mbrade protein	ated protein	מכם אומופווו	ein	bifunctional protein (homoprotocalechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate	genlisate 1,2-dioxygenase or 1-hydroxy-2-naphthoate dioxygenase	ory protein, laci egradation	transmembrane transport protein or 4-hydroxybenzoate transporter
10			mercury(II) reductase	D-amino acid de subunit				NADIP)H nitroreductase			leucyl-tRNA synthetase	hypothetical membrane protein	Virillence-associated protein		hypothetical protein	bifunctional protein (homoprotocalechuate catabo bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-di isomerase and 5-carboxymeth oxo-hex-3-ene-1,7dioate	gentisate 1,2-dioxygenase or 1-hydroxy-2-naphthoale dioxygen	bacterial regulatory protein, laci family or pectin degradation repressor protein	transmembrane transport prote 4-hydroxybenzoale transporter
15		Matched length	448	444				194			943	104	86	3	247	298	339	229	454
20		Similarity (%)	65.6	54.5				55.2			68.1	40 4	81.4		53.8	50.3	64.3	60.7	8.09
		Identity (%)	29.9	27.3				25.8			47.7	40.4	55.8		31.6	28.5	34.2	25.3	27.5
25	(panu	ne	merA	фA				Xor					vapl			й	es xinE	themi	¥
30	Table 1 (conlinued)	Homologaus gene	Staphylococcus aureus merA	Escherichia coli K12 dadA				Thermus thermophilus nox			Bacillus subtilis syt	Escherichia coli K12	Dichelobacter nodosus vapl		Streptomyces coelicolar SCC54, 19	Escherichia coli K12 hpcE	Pseudomonas alcaligenes xInE	Pectobacterium chrysanthemi kdgR	Pseudomonas putida pcaK
35			T					Ther			Baci	Esch	Dich		Streg	Esch	Psen		
40		db Match	sp: MERA_STAAU	sp DADA_ECOLI				Sp:NOX_THETH			sp:SYL_BACSU	sp YBAN_ECOLI	sp:VAPI_BACNO		gp:SCC54_19	sp:HPCE_ECOL!	gp:AF173167_1	sp:KDGR_ERWCH	sp.PCAK_PSEPU
		ORF (bp)	1344	1230	1503	330	321	609	924	1452	2856	429	357	774	723	837	1125	780	1356
45		Terminal (nt)	3213931	3213934	3215257	3216886	3217457	3218601	3219700	3222495	3219778	3223150	3223089	3225374	3223992	3224718	3225563	3226910	3229079
50		Initial (nt)	3212588	3215163	3216759	3217215	3217777	3217993	3218777	3221044	3222633	3222722	3223445	3224601	3224714	3225554	3226687	3227689	3227724
		SEQ NO.	6832	6833	6834	6835	6836	6837	6838	6839	6840	6841	6842	6843	6844	6845	6846	6847	6848
55		SEO NO. (DNA)	3332	3333	3334	3335	3336	3337	3338	3339	3340	3341	3342	3343	3344	3345	3346	3347	3348

10		Function	salicylate hydroxylase	proton/glutamate symporter or	excitatory amino acid transporter2	tryptophan-specific permease	anthranilate synthase component l		anthranilate synthase component II	anthranilate phosphoribosyltransferase	indole-3-glycerol phosphate synthase (IGPS) and N-(5'-phosphoribosyl) anthranilate isomerase(PRAI)		tryptophan synthase beta chain	tryptophan synthase alpha chain	<u>a</u>	PTS system, IIA component of unknown pentitol phosphotransferase enzyme II, A component	ABC transporter ATP-binding protein	ABC transporter
15		Matched length (a.a.)	476	702	ine	170	515		208	348	474		417	283	521	152	305	547
20		Similarity (%)	49.4		54.4	99.4	8.66		100.0	99.4	98.3		97.9	96.5	86.8	71.7	63.6	57.2
		Identity (%)	28.2		25.4	99.4	99.2		99.0	99.4	97.3		97.6	95.4	9.99	30.3	32.5	25.2
25	ontinueu)	s gene	da			lutamicum	tofermentum		totermentum	glutamicum	ctofermentum		ctofermentum	ctofermentum	elicolor A3(2)	(12 ptxA	utzeri	elicolor A3(2)
30	able 1 (confinded)	Homologous gene	Deamonas putida	2000	Homo sapiens eat2	Corynebacterium glutamicum AS019 ORF1	Brevibacterium lactofermentum trpE		Brevibacterium lactofermentum troG	Corynebacterium glutamicum	Brevibacterium lactofermentum		Brevibacterium lactofermentum trpB	Brevibacterium lactofermentum trpA	Streptomyces coelicolor A3(2) SCJ21, 17c	Escherichia coli K12 ptxA	Pseudomonas stutzeri	Streptomyces coelicotor A3(2) SCH10.12
35			la			04	 			CORGL				1				
40		db Match	4 4 0 4 0 4 4 4	pri 1700 131.A	sp:EAT2_HUMAN	pir.JC2326	SP_TRPE_BRELA		TRPG_BRELA	sp TRPD	sp TRPC		SP.TRPB_BRELA	SP_TRPA_BRELA	gp.SCJ21_17	sp.PTXA_ECOLI	SONOSF PSEST	
		ORF (ba)		1326	1251	510	1554	171	624	1044		969	1251	840	1539	810	906	
45		Terminal	1	3230444	3231054	3233105	3234956	222250	3235579	3236645	1	3236518		3240171	3240313	3241879	0375800	
50		Initial		3229119	3232304	3232596	3233403	0070000	323420			3237213		3239332	3241851		1 .	3243759
		SEO NO.	(a.a.)	6849	6850	6851	6852	0000	6854	COCK		6857		6889	6860			6863
5 5		SEO NO.	(DNA)	3349	3350	3351	3352		3353	3366	3356	 1757	3358	3359	3360	3361		3362

5		lion	nplex iron-suffur	ADH-dependent	ane protein		protein, arsR nycin A	ADH-dependent						uctase (acetoin		Je.		rotein, tetR	худепаѕе
10		Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent	hypothetical protein					acetoin(diacetyl) reductase (acetoin	hypothetical protein	di-/tripeptide transpoter	-	bacterial regulatory protein, tetR	hydroxyquinol 1,2-dioxygenase
15		Matched length (a.a.)	305	336	328	262	102	347	226					238	58	469		188 b	246 h
20		Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5	71.6		50.5	62.2
		Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5	34.5		26.1	31.7
25	(panu	one.	ξ.	rockii	el-l	r A3(2)	r Plasmid	rockii	siae					U	osis	o lactis		α	cus
30	Table 1 (continued)	Homologous gene	Chlorob:um limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c	Lactococcus lactis subsp. lactis		Escherichia colì K12 acrR	Acinetobacter calcoaceticus catA
35						ळ ळ	रु रु			 		<u> </u> _				Lact(Esc	Acine
40		db Match	SP.UCRI_CHLLT	sp.NADO_THEBR	Sp.YFEH_ECOLI	gp:SC111_36	pir.A29606	sp:NADO_THEBR	SP YMYO YEAST					Sp:BUDC_KLETE	sp:YY34_MYCTU	SP.DTPT_LACLA		SP:ACRR_ECOLI	sp.CATA_ACICA
		ORF (bp)	450	1110	972	774	348	1092	648	153	192	168	321	753	180	1359	171	555	903
45		Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739	3253824	3255719	3255744	3256471
50		Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	6870 3250758	3251618	3251934	3252300	3252636	3252728	3253560	3255182	3255549	3256298	3257373
	i	SEQ NO (a.a.)	6864		9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	9289	6877	6878	6839	6880
55		SEQ NO (DNA)	3364	3365	3366	3367	3368	3369	3370	3371	3372	3373	3374	3375	3376	3377	3378	3379	3360

5	Function	maleylacetate reductase	sugar transporter or D-xylose-proton symporter (D-xylose transporter)	bacterial transcriptional regulator or acetate operon repressor	oxidoreductase	diagnostic fragment protein sequence	myo-inositol 2-dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosyntnesis protein	phosphoesterase				stomatin		DEAD box RNA helicase family	hypothetical membrane protein		phosphomethylpyrimidine kinase	mercuric ion-binding protein or heavy-metal-associated domain containing protein	ectoine/proline uptake protein
15	Matched length (a.a.)	351	513	280	357	270	332	343	1242				206		1660	141		125	29	297
20	Similarity (%)	75.5	58.3	60.7	55.7	58.2	59.6	62.4	62.7				57.3		80.2	61.0		76.8	70.1	62.3
	Identity (%)	43.0	31.4	25.7	27.2	25.9	26.5	34.1	33.3				28.6		58.4	34.8		50.4	46.3	29.9
25 (panuj)u	gene	51	xylE	rium icIR	ydgJ	in 4450	oti idhA	us strl	В				elegans unc1		is BCG	ae u2266k			>	lutamicum
క Table 1 (continued)	Homologous gene	Pseudomonas sp. P51	Escherichia coli K12 xylE	Salmonella typhimurium iclR	Escherichia coli K12 ydgJ	Listeria innocua strain 4450	Sinorhizobium meliloti idhA	Streptomyces griseus strl	Bacillus subtilis yvnB				Caenorhabditis elec		Mycobacterium bovis BCG RvD1-Rv2024c	Mycobacterium leprae u2266k		Bacillus subtilis thiD	Bacillus subtilis yvgY	Corynebacterium glutamicum proP
<i>35</i> <i>40</i>	db Match	sp.TCBF_PSESQ_1	ECOLI	sp.ICLR_SALTY	SD: YDGJ ECOLI		Sp. MI2D BACSU	sp:STRI_STRGR	pir:C70044				sp.UNC1_CAEEL		gp.MBO18605_3	prt:2323363AAM		sp. THIID_BACSU	pir.F70041	pif.2501295A
,	ORF (bp)	1089 sp	1 5	861 sp	1077 sp	879 gs	1005 sp	1 6	4032 pi	645	618	1086	744 sp	696	4929 98		360	800 st	243 pi	837 pi
45	Terminal (3257403 1	1	3261989	3263221	 	3265146	 	3271093	32679:3	3268618	3272477	3274488	3275602	3276671	3281666	3283101	3282347	3283383	3283473
50	Initial (nt)	3258491	⊥	3261129	3262145		3264142		3267062	3268557	3269235	3271392	3275231	3276570	3281599	3282172	3282742	3282946	3283141	3284309
	SEQ.	6881	6882	6883	6884		6886	6887	6888		0689	6891	6892	6893		6895	6896	6897	6898	6689
55	SEQ NO.	3381	3382	3333	3384	3335	3336	3337	3388	3389	3390	3391	3392	3393	3394	3395	3396	3397	3398	3399

																			
5	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreduciase			phosphom othylovyrimiding Lings	ייייקלייייין אוויייקלייייין אוויייקלייייין	mercuric ion-binding protein or heavy-metal-associated domain		branched-chain amino acid transport	Tipot sui il acid il ansbott	Pypotitietical protein	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or	thioredoxin reductase
15	Matched length (a.a.)	279	324			249		29	55		T	T	j		858	1201 h		189	308 tr
20	Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	56.2	518	69.2		543	60.1		6.09	82.5
	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	436		25.8	35.7		30.2	60.4
25 (penu	ane	83	pombe	<u> </u>							JE .		osis		osis	osis		sa algU	us trxB
Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azID	Bacillus subtilis aziD	Escherichia coli K12 vagE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus taB
<i>35</i> 40	db Match	sp:FECB_ECOLI	Sp:MRF1_SCHPO			sp:THID_BACSU		pir.F70041	SP.AZLD_BACSU	sp:AZLC_BACSU	sp:Yage_Ecoll	sp.CCA_ECOLI	pir:E70600		pir.F70600	pir.G70600		SP.RPSH_PSEAE	Sp.TRXB_STRCL_S
	ORF (bp)	957	1122	384	219	798	345	201	345	711	267	1320	996	273	2511	3249	723	603	951
45	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
50	Initial (nt)	3285355					3288265		3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	6917 3300371
	SEQ NO (a.a)	0069					6905		6907	8069	6069	6910	6911	6912	6913		6915	6916	6917
55	SEO NO.	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410		3412	3413		3415		3417

											$\neg \tau$			\neg	\neg	\neg					
5		Function	this cho Cho Attorne	וסו פמסאות בווב, ואיין אף	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpna-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
15	Matched	length (a.a.)	_	err err	196 a			212 h	367 h	272 p	153 9	313 h	123	47 5			136	616	85	344	149
20		Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	0 59	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
30 (Panciluos) Laure	(papuling)	ıs gene		einhardtii thi2	VIB			berculosis	tida ygi2	berculosis	12 gidB	berculosis	Adı	vium rpmH			glutamicum	glutamicum A	glutamicum lavum) ATCC	glutamicum	ı glutamic'um
30 die 20	i anic i	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glulamicum asd	Corynebacterium glutamicum ASO19 aroD
35		db Match		Sp. THI2_CHLRE C	D				SP. YGIZ_PSEPU		Sp. GIDB ECOLI		SP. RNPA BACSU				gp:AF116184_1	CORGL	sp:YLEU_CORGL	sp.DHAS_CORGL	gp AF124518_1
40				Sp.TH				pir:D70851	2 sp. YG				_			-	8 gp:AF	8 sp.LEU1	5 sp:YL		
		ORF (bp)	1185	372	1242	777	1041	618	115	83	699	+	399	+-	794	2 222	4	1848	25	1032	447
45		Terminal (nt)	3300119	3301729	3302996	3301989	3304475	3302999	3303636	3304835	3305864	3306682	3307871	3308412	3309321	3308822	:	266154	268814	271691	446521
50		Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	2306532	3307632	3308369		3309028	3309043	147980	268001	269068	270660	446075
		SEO NO (a.a.)	i	6169		6921			6924		8008	6927	800B	6929	08.69	6931	6932	6933	6934	6935	6936
55		SEO NO.				3421	-	3423	1424	3425	3426	3427	3,428	3429	3430	3431	3432	3433	3434	3435	3436

		-			Τ-		1								
5	Lo		se secY subuit	nase rhoxylase)	e or biotin-		ein or peptidyl-	porter	ne protein		bermease		late	Ę,	Se
10	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase	acyl-CoA carboxylase or biotin-binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate	proline transport system	arginyl-tRNA synthetase
15	Matched length	396	440	738	591	437	118	595	426	501	463	316	369	524 p	550 a
20	Similarity (%)	100.0	100 0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0	100 0
30 elder	us gene	glutamicum	glutamicum avum) MJ233	glutamicum	glutamicum 3C	glutamicum .	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	lutamicum	lutamicum	lutamicum 19 argS
730 GE	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 RbbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
35	45											OA	OK		
40	db Match	sp:EFTU_CORGL	sp SECY_CORGL	sp:IDH_CORGL	prf:2223173A	sp CISY_CORGL	sp.FKBP_CORGL	sp BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir:S52753	prf.2106301A	gp.CGPUTP_	sp.SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
45	Terminal (nt)	527563	570771	677831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
50	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	6950 1238274
	SEO NO (a a)	6937	6938	6939	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950
55	SEQ NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

ſ			$\neg \uparrow$						_	3Se		œ I			
5	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	ydrogenase	ase	unit	protein	gulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	kinase	ornithine carbamoyltransferase	sor
10	Ĭ.	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decar	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy a subunit	acetohydroxy a subunit	acetohydroxy a	3-isopropylmala	PTS system, phosphoenol sugar phosphotransferase (mannose and glucose trai	acelylglutamate kinase	ornithine carba	arginine repressor
15	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
20	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
25 (panijungd) (25)	ns gene	glutamicum 159 lysA	glutamicum 159 hom	glutamicum 159 thrB	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum 3	glutamicum	glutamicum B	glutamicum F	glutamicum
7able 1 (Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
35	db Match	sp.DCDA_CORGL	SP.DHOM_CORGL	sp.KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp.LYSG_CORGL	sp:/LVB_CORGL	pir. B48648	pir:C48648	sp.LEU3_CORGL	prf.2014259A	sp.ARGB_CORGL	sp:OTCA_CORGL	gp:AF041436_1
40	ORF (bp)	1335 sp.	1335 sp:1	927 sp.	627 gsp	708 sp.	870 sp.	1878 sp.	516 pir.	1014 pir.	1020 sp.	2049 prf	882 sp	957 sp.	513 gp
45	Terminal (1241263	1243841 1	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
50	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	1423217	1466491	1468565	1469528
	SEQ NO.	1569	6952	6953	6954	6955	9569	6957	6958	6969	0969	6961	6962	6963	6964
55	SEO		3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464

5	c	w	a.	oxylase	otein, high	rane protein	e carboxylase	(5- -3-phosphate	ase	polymerase	otein		ynthase	eductase	nase (acceptor)
10	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinale reductase	L-malale dehydrogenase (acceptor)
15	Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
20	Similarity (%)	100 0	100.0	100.0	100.0	100.0	100.0	100 0	100.0	100.0	100.0	100 0	100 0	100.0	100 0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100 0
25 (panuituned)	s gene	glutamicum	lutarnicum	lutarnicum	lutamicum	lutamicum	lutamicum	lutamicum	lutamicum ?	jlutamicum	Jutamicum	jlutamicum	jlutamicum ctofermentum)	glutamicum ctofermentum) 3	glutamicum
So Table 1 (continued)	{-lomologous gene	Corynebacterium g ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynehacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgllIR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynehacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mgo
<i>35</i>	db Match	gp.CGL238250_1	gp:AF086704_1	gp.CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	gp:AF124600_1	pir:855225	prf.2204286D	sp.GLUB_CORGL	sp.RECA_CORGL	sp.DAPA_BRELA	sp.DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401 g	261 g	1086 g	1356 g	231 g	2757 p	1230 [1896	993 6	885	1128	903	744	1500
45	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
50	Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEO NO.	9969	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	6976	7.69	6978
55	SEQ NO.	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

Function	uridilylyltransferase, uridilylyl- removing enzyme	nitrogen regulatory protein P-II	ammonium transporter	glutamate dehydrogenase (NADP+)	pyruvate kinase	glucokinase	glutamine synthetase	threonine synthase	ectoine/proline/glycine betaine carrier	malate synthase	isocitrate lyase	glutamate 5-kinase	cystathionine gamma-synthase	ribonucleotide reductase	glutaredoxin
Matched length (a.a.)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologous gene	Corynebacterium glutamicum ATCC 13032 glnD	Corynebacterium glutamicum ATCC 13032 glnB	Corynebacterium glutamicum ATCC 13032 amtP	Corynebacterium glutamicum ATCC 17965 gdhA	Corynebacterium glutamicum AS019 pyk	Corynebacterium glutamicum ATCC 13032 glk	Corynebacterium glutamicum ATCC 13032 glnA	Corynebacterium glutamicum thrC	Corynebacterium glutamicum ATCC 13032 ectP	Corynebacterium glutamicum ATCC 13032 aceB	Corynebacterium glutamicum ATCC 13032 aceA	Corynebacterium glutamicum ATCC 17965 proB	Corynebacterium glutamicum ASO19 metB	Corynebacterium glutamicum ATCC 13032 nrdl	Corynebacterium glutamicum ATCC 13032 nrdH
db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir:S32227	sp:KPYK_CORGL	gp:AF096280_1	prf:2322244A	sp:THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
SEQ NO (a a.)	6269	6980	6981	6982	6983	6984	6985	6986	6987	6988	6869	0669	6991	6992	6993
SEQ NO. (DNA)	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493
												:	<u>:</u>		

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

Function	meso-diaminopimelate D. deliydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenale dehydratase	ectoine/proline uptake protein
Matched length (a.a.)	320	45	397	329	459	852	315	504
identity Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologaus gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B por A	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
db Match	sp:DDH_CORGL	gp:CGL238703_1	sp:ACKA_CORGL	prf.2516394A	prf.2309322A	sp:CLPB_CORGL	prf.1210266A	prf:2501295A
ORF (bp)	096	135	1191	987	1377	2556	945	1512
Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2953606	3098578	3272563
Initial (nt)	6994 2787715	2888078	2936505	2937494	2961342	2966161	3099522	7001 3274074
SEQ NO.	6994	9669	9669	6997	8669	6669	7000	7007
SEQ NO (DNA)	3494	3495	3496	3497	3498	3499	3500	3501

Example 2

10

15

20

25

30

40

45

50

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gene nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N'-nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and lysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points were observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation. Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters,* 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 µg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, hom and pyc, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with BamHI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method, pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144:* 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride. 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito et al. PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the hom gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the pyc gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the hom or pyc gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated hom gene and pyc gene, respectively.

10

20

25

35

40

45

(3) Lysine production test of HD-1 and No. 58pyc strains

[0384] The HD-1 strain (strain obtained by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate heptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

20

25

30

35

40

50

55

45 Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from the B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311lle, in *lysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

- (2) Construction of plasmid for gene replacement having mutated gene
- [0389] The plasmid for gene replacement, pChom59, having the mutated hom gene and the plasmid for gene replacement, pCpyc458, having the mutated pyc gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated lysC and zwf were produced as described below.
 - [0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.
 - [0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 µg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 µg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.
 - (3) Introduction of mutation, Thr311IIe, in IysC into one point mutant HD-1
- [0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.
 - (4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2
 - [0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.
 - (5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3
- [0395] The mutation, Ala213Thr, in *zwf* was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

20

25

30

45

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated *zwf* gene in addition to the mutated *hom* gene, *lysC* gene and *pyc* gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 I jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

40

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/Vh, the APZ-4 strain showing a high productivity of 3.0 g/Vh is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
32	86	3.0
40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

25 [0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229.

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453.

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

20

35

40

as the respective primer set.

5

10

15

20

25

30

35

40

45

50

55

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buffer attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a reverse transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QIAquick Gel Extraction Kit (manufactured by QIAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/ μl , manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 µl of 0.1 mol/l DTT, 1.5 µl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/ I dTTP), 1.5 μI of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μI of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 μl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 μl.

(3) Hybridization

[0433] UltraHyb (110 μ I) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ I) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

Table 5

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5	
207	5248	3240	1.62	

Table 5 (continued)

iable 5 (serialized)			
SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

35

40

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of *Escherichia coli* adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (*Proc. Natl. Acad. Sci. ISA, 85*: 2444-2448 (1988)). A case where E-value was le⁻¹⁰ or less was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

5

10

20

25

30

35

40

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

50 (1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of *Corynebacterium glutamicum* ATCC 13032 (wild type strain), *Corynebacterium glutamicum* FERM BP-7134 (lysine-producing strain) and *Corynebacterium glutamicum* (FERM BP-158, lysine-highly producing strain) were carried out in a 5 ljar fermenter according to the method in Example 2(3). The results are shown in Table 6.

Table 6

Strain	L-Lysine yield (g/l)	
ATCC 13032	0	
FERM BP-7134	45	
FERM BP-158	60	

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCI buffer (10 mmol/l Tris-HCI, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged $(5,000 \times g, 15 \text{ minutes}, 4^{\circ}\text{C})$ to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

step 1: 1 hour under a gradient mode of 0 to 500V;

step 2: 1 hour under a gradient mode of 500 to 1,000 V;

step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and

step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

5

10

20

25

30

35

40

45

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

- (3) Detection of protein spot
- 5 [0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis*, 9: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.
- [0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.
 - (4) In-gel digestion of detected protein spot
 - [0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate : acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.
 - (5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)
- [0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.
 - [0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.
 - [0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.
 - [0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.
 - [0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.
 - (6) Identification of protein spot
 - **[0465]** From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of *Corynebacterium glutamicum* ATCC 13032 as constructed in Example 1 to identify the protein.
 - [0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.
 - (a) Search and identification of gene encoding high-expression protein
- [0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

 [0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

25

35

45

a protein having the amino acid sequence represented by SEQ ID NO:5255; Spot-4 corresponded to fructose bisphosphate aldolase which was a protein having the amino acid sequence represented by SEQ ID NO:6543; and Spot-5 corresponded to triose phosphate isomerase which was a protein having the amino acid sequence represented by SEQ ID NO:5252.

[0469]. These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).

[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.

[0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

[0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

[0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.

[0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

[0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

[0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

[0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

50 Claims

55

5

10

15

20

30

35

1. A method for at least one of the following:

- (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
- (B) measuring an expression amount of a gene derived from a coryneform bacterium,
- (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
- (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
- (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

20

25

30

35

45

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides,
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus
 Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
 - 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- 7. A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- 40 8. A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A method for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recovering the polypeptide from the medium.

5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- **16.** A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- **18.** The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 25 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

30

35

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.

24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:

- (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
- (ii) at least temporarily storing said information;
- (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - **26.** A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information:
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 40 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polypeptide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information:

238

5

10

15

20

25

30

35

45

50

- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- 30. A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
 - (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacteri um melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum. Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
 - 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - 40. The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

239

BNSDOCID: <EP___1108790A2_I_>

10

5

15

25

35

30

40

50

45

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- 42. A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
 - 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
 - 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.

10

20

30

35

40

55

- 47. A transformant comprising the recombinant DNA of claim 46.
- 48. A transformant comprising in its chromosome the DNA of claim 45.
- 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
- 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 51. A method for producing L-lysine, comprising:

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- **52.** A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- **56.** The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- **57.** The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 **60.** A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 40 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof; recovering the compound from the culture.

 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

241

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 66. The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

242

5

10

20

25

30

35

40

45

50

243

FIG. 4

