

Course Schedule

Semester	Fall 2020	

1. Course information:

Course Code	FGEE001612		Course name	Linear Algebra	
Credits	3	Туре	Compulsory course	Cohort	?
Department	?	Instructor	Lukun Zheng		g

2. Course expected learning outcomes

- 1. Solve systems of linear equations with elementary row operations and master the solvability discrimination criteria
- 2. Understand major types of matrices and their properties, master matrix operations skills.
- 3. Develop matrix methods to solve real-life problems.
- 4. Compute determinants, inverses, eigenvalues and eigenvectors of n × n matrices.
- 5. Conduct linear transformations and analyze the relationship among a set of vectors in \mathbb{R}^n .
- 6. Understand the concepts of quadratic forms and its related properties.

3. Teaching Calendar:

Course	Teaching Contents	Requirement	Teachi	ng time	Extra-
Calendar		of students	Lecture	Practice	curricular
					Practice
11/23/2020	1.1 Linear Systems	Sections:	130	15	HW 1
	of Equations.	1.1-1.2	minutes	minutes	
	1.2 Gaussian				
	Elimination(GE)				
	Basics;				

between Southwest Jiaotong University and Oklahoma State University, U.S.A.

11/25/2020	1.3 General Procedure of GE.	Section 1.3	130 minutes	15 minutes	
11/26/2020	1.4 Applications.	Section 1.4	130 minutes	15 minutes	HW2
11/30/2020	2.1 Matrix Addition and Scalar Multiplication;	Section 2.1	130 minutes	15 minutes	HW 3
12/02/2020	2.2 Matrix Multiplication.	Sections: 2.2	130 minutes	15 minutes	
12/03/2020	2.3 Applications of Matrix Arithmetic.	Section 2.3	130	15 minutes	HW 4
12/07/2020	2.4 Special Matrices and Transposes.	Sections: 2.3-2.4	130 minutes	15 minutes	HW 5
12/09/2020	2.5 Matrix Inverses;	Sections 2.5	130 minutes	15 minutes	
12/10/2020	2.6 Determinants;	Section 2.6.	130 minutes	15 minutes	Exercise 1
12/14/2020	Exam 1; 3.1 Basic Concepts.	Section: 3.1.	130 minutes	15 minutes	HW 6
12/16/2020	Exam 1 Review; 3.2 Subspaces.	Section 3.2.	130 minutes	15 minutes	

between Southwest Jiaotong University and Oklahoma State University, U.S.A.

12/17/2020	3.3 Linear Combinations.	Section 3.3.	130 minutes	15 minutes	HW7
12/21/2020	3.4 Subspaces associated with Matrices and Operators;	Section 3.4.	130 minutes	15 minutes	HW8
12/23/2020	3.5 Bases and Dimension.	Section 3.5.	130 minutes	15 minutes	
12/24/2020	3.6 Linear Systems revisited.3.7 Change of Basis and Linear Operators.	Sections 3.6- 3.7.	130 minutes	15 minutes	Exercise 2
12/28/2020	Exam 2 5.1 Basic Concepts.	Section 5.1.	130 minutes	15 minutes	HW9
12/30/2020	Exam 2 Review; 5.2 Similarity and Diagonalization.	Section 5.2.	130 minutes	15 minutes	
12/31/2020	5.3 Quadratic forms and their matrix representations.	Section 5.3.	130 minutes	15 minutes	HW10
01/04/2021	5.4 Orthogonal Canonical Reduction.	Section 5.4.	130 minutes	15 minutes	
01/06/2020	5.5 Applications.	Sections: 5.5	130 minutes	15 minutes	Exercise 3
01/07/2020	Final Exam Preparation.		130 minutes	15 minutes	No HW

between Southwest Jiaotong University and Oklahoma State University, U.S.A.

To be	Final exam		
announced			

2. Course expected learning outcomes

Learning Objectives

- 1. Be able to solve systems of linear equations
- 2. Be able to prove fundamental theorems about matrices, n-dimensional space, linear transformations, vector spaces, and inner product spaces
- 3. Be able to apply matrix methods to solve certain practical problems
- 4. Be able to analyze linear transformations and sets of vectors in \mathbb{R}^n .
- 5. Understand the concepts of one-to-one, onto, spanning, and linear independence.
- 6. Be able to compute determinants, inverses, eigenvalues and eigenvectors of n × n matrices.
- 7. Understand the concepts of quadratic forms and its related properties.

Learning Outcomes

At the end of this course, students should be able to:

- 1. Solve systems of linear equations with elementary row operations and master the solvability discrimination criteria.
- 2. Understand major types of matrices and their properties, master matrix operations skills.
- 3. Develop matrix methods to solve real-life problems.
- 4. Compute determinants, inverses, eigenvalues and eigenvectors of n × n matrices.
- 5. Conduct linear transformations and analyze the relationship among a set of vectors in \mathbb{R}^n .
- 6. Understand the concepts of quadratic forms and its related properties.

4. Textbooks and reference books:

Applied Linear Algebra and Matrix Analysis-2018-2nd Edition-By Thomas S. Shores, Springer.

5. Evaluation Forms and Scoring Standards:

Final exam: 20 %, Others: 80 %. Others are consisted of the following parts:

Evaluation Forms	Evaluation Content	Its Percentage of Others
Homework	10 homework assignments	20%
Quiz	17 Quizzes	20%
Exams 1	Exam 1	20%
Exam 2	Exam 2	20%

6. Tips for student success:

Problems in the exams are similar to problems in the homework assignments and examples during the class.

7. Academic integrity:

"Students who commit any act of academic dishonesty may receive from the instructor a failing grade in that portion of the coursework in which the act is detected or a failing grade in the course without possibility of withdrawal." Although students may help each other on homework assignments, individual work is required on quizzes and exams.

8. Other course details:

Please refer to Syllabus.