

Home Gameboard Physics Fields Electric Fields Essential Pre-Uni Physics H3.2

Essential Pre-Uni Physics H3.2

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

For electrons moving at a speed greater than 10% of the speed of light, you should only claim that your answer is approximate (unless you have used relativistic equations). If you reckon that the electron is travelling at a speed greater than 80% of the speed of light, you should decline to give your answer unless using relativity

Convert $3.0\times 10^{-11}\,J$ into electron volts.

Home Gameboard

Physics

Fields Electric Fields

Essential Pre-Uni Physics H3.5

Essential Pre-Uni Physics H3.5

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

For electrons moving at a speed greater than 10% of the speed of light, you should only claim that your answer is approximate (unless you have used relativistic equations). If you reckon that the electron is travelling at a speed greater than 80% of the speed of light, you should decline to give your answer unless using relativity

How fast is an alpha particle going if it is accelerated by a $1.5\,\mathrm{MV}$ potential? Assume that the alpha particle has twice the charge and four times the mass of a proton.

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Fields Electric Fields

Energy and Fields - Accelerator 23.1

Energy and Fields - Accelerator 23.1

Quantities:

m mass (kg)

p momentum (kg m s⁻¹)

u initial speed (m s⁻¹)

v final speed (m $m s^{-1}$)

F force (N)

 λ wavelength (m)

h Planck's constant (J s)

q charge (C)

K kinetic energy (J)

V accelerating voltage (V)

E electric field (N ${
m C}^{-1}$)

L length of accelerating region (m)

Equations:

$$p=mv$$
 $\Delta K=K_{\mathsf{final}}-K_{\mathsf{initial}}=rac{1}{2}mv^2-rac{1}{2}mu^2$ $\Delta K=qV$

$$\lambda = rac{h}{n} \qquad F = qE \qquad \Delta K = FL \qquad 1\,\mathrm{eV} = 1.6 imes 10^{-19}\,\mathrm{J}$$

Use the equations above to derive expressions for:

Part A Momentum

the momentum p in terms of V, m and q if u = 0.

The following symbols may be useful: v, m, p, q

${\bf Part \, B} \quad {\bf Speed \, if \, } u=0$

the speed v in terms of V, m and Q if u=0.

The following symbols may be useful: Q, $\,$ V, $\,$ m, $\,$ v

Part C Speed if $u \neq 0$

the speed v if $u \neq 0$.

The following symbols may be useful: Q, V, m, u, v

Part D Additional kinetic energy

the additional kinetic energy ΔK in terms of E, L and q.

The following symbols may be useful: Delta K, E, L, q

Part E Electric field

the electric field E in terms of V and L.

The following symbols may be useful: E, L, V

Part F Momentum

the momentum p in terms of E, L, m and q if u=0.

The following symbols may be useful: E, L, m, p, q

Part G Wavelength

the wavelength λ in terms of V, m and q when u=0.

The following symbols may be useful: V, lambda, m, q

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Home</u> <u>Gameboard</u> Physics Fields Electric Fields Energy and Fields - Accelerator 23.2

Energy and Fields - Accelerator 23.2

Calculate the voltage needed to accelerate a proton to $3.5 \times 10^6 \ \mathrm{m \ s^{-1}}$ from rest.

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

Home Gameboard

Physics

Fields Electric Fields

Essential Pre-Uni Physics H3.6

Essential Pre-Uni Physics H3.6

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

For electrons moving at a speed greater than 10% of the speed of light, you should only claim that your answer is approximate (unless you have used relativistic equations). If you reckon that the electron is travelling at a speed greater than 80% of the speed of light, you should decline to give your answer unless using relativity

To trigger a particular nuclear reaction, a deuterium nucleus (same charge as the proton, but twice the mass) needs to have a kinetic energy of 4.0×10^{-13} J. What accelerating voltage is needed?

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Fields

Combined Fields Vectors and Fields - Mass Spectrometer 30.2

Vectors and Fields - Mass Spectrometer 30.2

Calculate the speed electrons emerge from a $95\,\mathrm{V}$ accelerator. Assume that the electrons start from rest.

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Fields

Combined Fields Vectors and Fields - Mass Spectrometer 30.3

Vectors and Fields - Mass Spectrometer 30.3

Calculate the radius of curvature of a $2.5 \times 10^6 \, \mathrm{m \, s^{-1}}$ electron in a $1.5 \, \mathrm{mT}$ magnetic field.

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Combined Fields Vectors and Fields - Mass Spectrometer 30.6

Vectors and Fields - Mass Spectrometer 30.6

Fields

Calculate the specific charge q/m of a particle travelling at $2.0 imes 10^6 \, {
m m \, s^{-1}}$ in a magnetic field if the path radius $r=11.9\,\mathrm{mm}$ and the flux density $B=0.175\,\mathrm{T}.$

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Fields

Combined Fields Vectors and Fields - Mass Spectrometer 30.7

Vectors and Fields - Mass Spectrometer 30.7

Calculate the voltage $V_{\rm s}$ needed in a velocity selector to pass $1.6 imes 10^6 \, {
m m \, s^{-1}}$ electrons in a $2.2 \, {
m T}$ magnetic field if the velocity selector plate gap $d=6.5\,\mathrm{cm}$.

Gameboard:

STEM SMART Physics 42 - School of Fields - Accelerators

<u>Gameboard</u>

Physics

Fields Combined Fields

Vectors and Fields - Mass Spectrometer 30.11

Vectors and Fields - Mass Spectrometer 30.11

A singly charged ion is accelerated by a $650\,\mathrm{kV}$ potential before passing into a region with a $1.25\,\mathrm{T}$ magnetic field. It curves with a radius of $0.322\,\mathrm{m}$. Calculate its mass.