

ENVIRONMENTAL DATA ANALYTICS: WEEK 4 – DATA EXPLORATION

Part 1.1

Q&A on Data Exploration

Q&A: Importing datasets

□ Include stringAsFactors = True when importing files

Line 100...

USGS.flow.data <- read.csv("../Data/Raw/USGS_Site02085000_Flow_Raw.csv",stringsAsFactors = TRUE)

Data		
◯ USGS.flow.data	3369	90 obs
<pre>\$ agency_cd</pre>	:	chr
<pre>\$ site_no</pre>	:	int
<pre>\$ datetime</pre>	:	chr
\$ X165986_00060_00001	:	num
\$ X165986_00060_00001	_cd:	chr
\$ X165987_00060_00002	:	num
\$ X165987_00060_00002	_cd:	chr
\$ X84936_00060_00003	:	num
\$ X84936_00060_00003_	cd :	chr
\$ X84937_00065_00001	:	num
\$ X84937_00065_00001_	cd :	chr
\$ X84938_00065_00002	:	num
\$ X84938_00065_00002_	cd :	chr
4		

```
Data
USGS.flow.data
                        33690 obs. o
   $ agency cd
                         : Factor w
   $ site no
                         : int 208
                         : Factor w
   $ datetime
   $ X165986 00060 00001 : num NA
   $ X165986 00060 00001 cd: Factor w
   $ X165987 00060 00002
                          : num NA
   $ X165987 00060 00002 cd: Factor w
   $ X84936 00060 00003 : num 39
   $ X84936 00060 00003 cd : Factor w
   $ X84937 00065 00001 : num NA
   $ X84937_00065_00001_cd : Factor w
   $ X84938_00065_00002 : num NA
   $ X84938 00065 00002 cd : Factor w
```

Part 1.2

Q&A on Visual Data Exploration

Part 2

Review – Data Structures

Coding Challenges!

Tips for the day – Rmd shortcuts

- Naming code chunks...
- Keyboard shortcuts:

Ctrl+Alt+I	Insert Chunk
Ctrl+Shift+R	Insert Section
Ctrl+Alt+X	Extract Function
Ctrl+Alt+V	Extract Variable
Ctrl+Shift+C	Comment/Uncomment Lines
Ctrl+I	Reindent Lines
Ctrl+Shift+/	Reflow Comment
Ctrl+Shift+A	Reformat Code
Ctrl+Alt+Shift+D	Show Diagnostics (Project)
Alt+L	Collapse Fold
Alt+Shift+L	Expand Fold
Alt+0	Collapse All Folds
Alt+Shift+0	Expand All Folds
Alt+Up	Move Lines Up
x Alț+Down excel da	Move Lines Downgiven as
Ctr1+D 1, 1970.	Delete Line f that is tru
Ctr1+V	Yank Line Up to Cursor
Ctr1+K	Yank Line After Cursor
Ctrl+Y	Insert Yanked Text
Alt+-	Insert Assignment Operator
Ctrl+Shift+M	Insert Pipe Operator
Ctrl+Alt+Shift+M	Rename in Scope
Ctrl+Alt+Shift+R	Insert Roxygen Skeleton

Data Structures

- Vector
- Matrix
- Array

List

□ Data Frame

- What they can hold
- How to construct
- Number of dimensions
- How to extract elements

Coding Challenge #1

Find a ten-day forecast of temperatures
 (Fahrenheit) for Durham, North Carolina. Create
 two vectors, one representing the high
 temperature on each of the ten days and one
 representing the low

https://www.wunderground.com/forecast/us/nc/durham

Coding Challenge #2 & 3

Now, create two additional vectors that include the ten-day forecast for the high and low temperatures in Celsius. Use a function to create the two new vectors from your existing ones in Fahrenheit.

$$(^{\circ}F - 32) \times 5/9 = ^{\circ}C$$

 Combine your four vectors into a data frame with informative column names

Coding Challenge #4

Use the common functions `summary` and `sd` to obtain basic data summaries of the ten-day forecast. How would you call these functions differently for the entire data frame vs. a single column?

Coding Challenge #5

Date formats:

```
day as number (0-31)
%d
%m
     month (00-12, can be e.g., 01 or 1)
%y
    2-digit year
                                 ``{r}
%Y 4-digit year
                                # Adjust date formatting for today
                                # Write code for three different date formats
     abbreviated weekday
%a
                                # An example is provided to get you started.
                                # (code must be un-commented)
     unabbreviated weekday today <- sys. Date()
%A
                                format(today, format = "%B")
     abbreviated month
%b
                                #format(today, format =
                                #format(today, format =
     unabbreviated month
%B
                                #format(today, format = "")
```

The "lubridate" package

- More powerful than as.date()
- pmd()... ydm()... mdy()...
- \Box fast_strptime() & parse_dateTime2()
 - parses character dates into date obj
 - Has a "cutoff_2000" feature (to help with Y2K issue)

The "here" package

here() facilitates relative paths in your script
http://jenrichmond.rbind.io/post/where-is-here/

- □ here()
 - points to the project's "root" folder, i.e. the one containing the .Rproj file.
 - Is not affected by setwd()
- here('data', 'raw', 'my_file.csv')
 - Creates a path to `.../data/raw/my_file.csv`