Homework 7

p131 D.1 and D.2, p143 C.1, C.3, C.4, and C.8 $\,$

1. **p131 D.1** Let G be a finite group, and let H and K be subgroups of G. Prove the following:

Suppose $H \subseteq K$ (therefore H is a subgroup of K). Then (G : H) = (G : K)(K : H). Solution.

2. **p131 D.2** Let G be a finite group, and let H and K be subgroups of G. Prove the following:

The order of $H \cap K$ is a common divisor of the order of H and the order of K. Solution.

3. **p143** C.1 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ and $g: H \to K$ are homomorphisms, then their composite $g \circ f: G \to K$ is a homomorphism.

Solution.

4. p143 C.3 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ is a homomorphism and K is any subgroup of G, then $f(K) = \{f(x) : x \in K\}$ is a subgroup of H.

Solution.

5. p143 C.4 Let G, H, and K be groups. Prove the following:

If $f: G \to H$ is a homomorphism and J is any subgroup of H, then

$$f^{-1}(J) = \{ x \in G : f(x) \in J \}$$

is a subgroup of G. Furthermore, ker $f \subseteq f^{-1}(J)$.

Solution.

6. p143 C.8 Let G, H, and K be groups. Prove the following:

The function $f: G \to G$ defined by $f(x) = x^2$ is a homomorphism iff G is abelian.

Solution.