<u>The Jacobi Method.</u> For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1,\\j \neq i}}^{n} (-a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots n$$

Example. Apply the Jacobi method to solve

$$5x_1 - 2x_2 + 3x_n = -1$$

$$-3x_1 + 9x_2 + x_n = 2$$

$$2x_1 - x_2 - 7x_n = 3$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

Solution To begin, rewrite the system

$$x_1 = \frac{-1}{5} + \frac{2}{5}x_2 - \frac{3}{5}x_3$$

$$x_2 = \frac{2}{9} + \frac{3}{9}x_1 - \frac{1}{9}x_3$$

$$x_3 = -\frac{3}{7} + \frac{2}{7}x_1 - \frac{1}{7}x_2$$

Choose the initial guess $x_1 = 0, x_2 = 0, x_3 = 0$

The first approximation is

$$x_1^{(1)} = \frac{-1}{5} + \frac{2}{5}(0) - \frac{3}{5}(0) = -0.200$$

$$x_2^{(1)} = \frac{2}{9} + \frac{3}{9}(0) - \frac{1}{9}(0) = 0.222$$

$$x_3^{(1)} = -\frac{3}{7} + \frac{2}{7}(0) - \frac{1}{7}(0) = -0.429$$

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$\begin{array}{l} a_{11}x_1 + a_{12}x_2 + \cdots a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \cdots a_{2n}x_n = b_2 \\ \vdots \\ a_{n1}x_1 + a_{n2}x_2 + \cdots a_{nn}x_n = b_n \end{array}$$

Has a unique solution.

2. The coefficient matrix A has no zeros on its main diagonal, namely, $a_{11}, a_{22}, \dots, a_{nn}$ are nonzeros.

Main idea of Jacobi

To begin, solve the 1st equation for x_1 , the 2nd equation for x_2 and so on to obtain the rewritten equations:

$$x_1 = \frac{1}{a_{11}}(b_1 - a_{12}x_2 - a_{13}x_3 - \dots + a_{1n}x_n)$$

$$x_2 = \frac{1}{a_{22}}(b_2 - a_{21}x_1 - a_{23}x_3 - \dots + a_{2n}x_n)$$

$$\vdots$$

$$x_n = \frac{1}{a_{nn}}(b_n - a_{n1}x_1 - a_{n2}x_2 - \dots + a_{n,n-1}x_{n-1})$$

Then make an initial guess of the solution $\mathbf{x}^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots x_n^{(0)})$. Substitute these values into the right hand side the of the rewritten equations to obtain the *first approximation*, $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots x_n^{(1)})$.

This accomplishes one iteration.

In the same way, the second approximation $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, \dots x_n^{(2)})$ is computed by substituting the first approximation's x-vales into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations $\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, ... x_n^{(k)}\right)^t$, k = 1, 2, 3, ...

Continue iteration, we obtain							
n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_{1}^{(k)}$	0.000	-0.200	0.146	0.192			
$x_{2}^{(k)}$	0.000	0.222	0.203	0.328			
$x_{2}^{(k)}$	0.000	-0.429	-0.517	-0.416			

Numerical Algorithm of Jacobi Method

Input:
$$A = [a_{ij}]$$
, b , $XO = x^{(0)}$, tolerance TOL , maximum number of iterations N .

Step 1 Set $k = 1$

Step 2 while $(k \le N)$ do Steps 3-6

Step 3 For for $i = 1, 2, ... n$

$$x_i = \frac{1}{a_{il}} \left[\sum_{\substack{j=1, \\ j \ne i}}^{n} (-a_{ij} X O_j) + b_i \right],$$

Step 4 If $||x - XO|| < TOL$, then OUTPUT $(x_1, x_2, x_3, ... x_n)$;

STOP.

Step 5 Set $k = k + 1$.

Step 6 For for $i = 1, 2, ... n$

Set $XO_i = x_i$.

Step 7 OUTPUT $(x_1, x_2, x_3, ... x_n)$;

STOP.

Another stopping criterion in Step 4: $\frac{||x^{(k)} - x^{(k-1)}||}{||x^{(k)}||}$

Problem 1: Write a menu driven program in C / C++ code for the above algorithm. Menu should be of your own choice. Use this algorithm as a function and solve m simultaneous equations with n unknowns. Find the conditions for unique and no solution. If solution exists, find whether it is degenerate or not. Try to draw the graph for it.

Problem 2:

(a)
$$3x - y = 8$$
, $x + y = 8$ (Sol: (1, 2))
(b) $6x - 10y = 5$, $2x - 3y = 1$ (Sol: (7/2, -2))
(c) $2x - 8y = 9$, $x - 4y = -6$ (Sol: No solution)