

Cold Boot Attack

Autor: Mateusz Lewczak

EDUKACJA PRZEDE WSZYSTKIM

Agenda

- Ogólny zarys ataku typu Cold Boot.
- 2. Jak działa pamięć RAM na przykładzie DDR4.
- 3. Mechanizm Full-disk encryption na przykładzie BitLockera.
- 4. ATAK!!11!
- 5. Analiza uzyskanego zrzutu pamięci.
- 6. Jak się bronić?
- 7. Czy są inne fizyczne ataki na które trzeba uważać?

01

BIG PICTURE

Przebieg ataku

NASZA MISJA

- Uzyskujemy dostęp do komputera ofiary.
- 2. Otwieramy obudowę.
- 3. Zamrażamy pamięć RAM.
- 4. Wyłączamy komputer.
- 5. Wykonujemy zrzut pamięci.

Dlaczego gaz zamraza?

"[...] Podczas iniekcji następuje obniżenie ciśnienia co prowadzi do przejścia cieczy w fazę gazową. Jednak analogicznie jak w przypadku wrzącej wody, aby ten proces mógł nastąpić potrzebne jest dostarczenie do substancji odpowiedniej ilości energii. Cała ta transformacja następuje gwałtownie, więc układ nie zdąży pobrać tej energii z otoczenia i musi wykorzystać swoją energię wewnętrzną, która jest związana z temperaturą substancji. Dlatego też gaz wydostający się z puszki jest zimny." ~ dr Miłosz Panfil

DLACZEGO JEST TO W OGÓLE MOZLIWE?

PAMIEC RAM

CZAS I TEMPERATURA

MEM	Sekundy bez zasilania [s]	Procent błedów w temperaturze operacyjnej [%]	Procent błedów w temperaturze -50°C [%]
SDRAM 128Mb	60	41	(no errors)
	300	50	0.000095
DDR 512Mb	360	50	(no errors)
	600	50	0.000036
DDR 256Mb	120	41	0.00105
	360	42	0.00144
DDR2 512Mb	40	50	0.025
	80	50	0.18

02 BitLocker

Prawda o kluczach

BitLocker Keys

Prawda o kluczach

Wczesny etap rozruchu

BitLocker recovery

Enter the recovery key for this drive

Use the number keys or function keys F1-F10 (use F10 for 0).

Recovery key ID (to identify your key): 3D181897-89C4-46A2-8148-1D225418BEEA

Here's how to find your key:

- Sign in on another device and go to: Http://custom.url.contoso.com
- For more information go to: aka.ms/recoverykeyfaq

Wczesny etap rozruchu cd.

Wczesny etap rozruchu cd.

"No, BitLocker doesn't encrypt and decrypt the entire drive when reading and writing data. The encrypted sectors in the BitLocker-protected drive are decrypted only as they're requested from system read operations. Blocks that are written to the drive are encrypted before the system writes them to the physical disk." ~ Microsoft

Co poza BitLockerem?

- 1. Linux Unified Key Setup (LUKS)?
- 2. Wrażliwy jest każdy mechanizm, który trzyma klucze w pamięci!

Potrzebny sprzet

- 1. 2x Sprężone powietrze w puszce.
- 2. Pendrive USB.
- 3. Narzędzia potrzebne do otwarcia obudowy komputera.
 - 1. iFixit Pro Tech Toolkit.
- 4. Gaśnica.
- 5. Opaska antystatyczna.
- 6. Nitrylowe rękawiczki.

Przygotowanie pendrive'a cz. 1

1. Pobranie i rozpakowanie memimage64

```
wget https://github.com/baselsayeh/coldboot-tools/releases/download/2/bios_memimage64.zip
unzip bios_memimage64.zip
cd bios_memimage64
```

2. Wgranie Master Boot Record na urządzenie

```
sudo dd if=grldr.mbr of=/dev/sdb conv=notrunc
```


Przygotowanie pendrive'a cz. 2

Utworzenie dwóch partycji

```
sudo fdisk /dev/sdb
> n
> [ENTER]
> [ENTER]
> +1G
> n
> [ENTER]
> [ENTER]
> [ENTER]
> [ENTER]
> [ENTER]
> [ENTER]
```


Przygotowanie pendrive'a cz. 3

1. Sformatowanie pierwszej partycji

```
sudo mkfs.fat /dev/sdb1
```

2. Zamontowanie partycji

```
sudo mount /dev/sdb1 /media/usb
```

3. Skopiowanie zawartości folderu bios_memimage64

```
sudo cp * /media/usb/
```

4. Odmontowanie partycji

BEZPIECZEŃSTWO PRZEDE WSZYSTKIM

05 COLD BOOT TIME!

Mały disclaimer

- 1. BIOS vs UEFI.
- 2. Pamiętaj o kopii dysku.
- 3. GWARANCJA!!!

ILIVEII

Jak faktycznie wyglada zrzut pamieci?

Co mozemy z niego wyciagnac?

- 1. Full Volume Encryption Key.
- 2. Hashe zalogowanych użytkowników.
- 3. Otwarte pliki.

Memory Forensic

- Pule pamięci systemu Windows:
 - 1. None,
 - 2. Cngb,
 - 3. FVEc.
- 2. Właściwości kluczy AES.

Memory Forensic

- 1. Czego szukamy?
- 2. Jak to znajdziemy?

07 JAK SIE BRONIC?

Srodki prewencji

- Nie zostawiaj laptopa bez opieki.
- 2. Wyłącz tryb uśpienia, korzystać z hibernacji.
- 3. Korzystaj z UEFI (domyślny Memory Scrambling).

Mona Lisa po scramblingu

image captured at image captured at $+30\,^{\circ}\mathrm{C}$

Scrambled (b) Scrambled -30 °C

Direct Memory Access Attack

- 1. PCI Express,
- 2. Thunderbolt 3.

SPI Sniffing

- Zależy od implementacji FDE.
- 2. Głównie dotyczy BitLockera.
- 3. Co na to Microsoft?

INSPIRACJA

Komputer jest wyposażony w klasyczny BIOS, a nie UEFI. UEFi domyślnie w swoim standardzie wspiera funkcję, która na wczesnym etapie rozruchu wypełnia pamięć RAM losowymi danymi, aby utrudnić przeprowadzenie takiego ataku. Nie wyklucza to jednak scenariusza, w którym atakujący mógłby przenieść zamrożoną pamięć do innego komputera, który takiego zabezpieczenia nie ma.

W testowanym przypadku szyfrowanie dysku zostało ustawione z użyciem LUKSZ, wykorzystując hasło. Co jest znacznie bezpieczniejszym rozwiązaniem niż obecnie zaimplementowana konfiguracja z automatycznym odblokowywaniem dysku. Pomimo najbezpieczniejszych ustawień w testowym urządzeniu, udało się pozyskać klucz Master Key z pamieci RAM urządzenia.

WARUNKI NIEZBĘDNE DO WYKORZYSTANIA PODATNOŚCI

Fizyczny dostęp do maszyny docelowej. Komputer musi być odblokowany (po odszyfrowaniu, ale na ekranie logowania) lub mieć opcje automatycznego deszyfrowania dysku.

SZCZEGÓŁY TECHNICZNE (PROOF OF CONCEPT)

W celu przyspieszenia ataku założono znajomość Master Key wykorzystywanego do deszyfrowania dysku. Można go uzyskać za pomoca poniższej komendy w terminalu:

cryptsetup luksDump --dump-master-key /dev/sda4

```
MARNINGI

MARNINGI

MARNINGI

MARNINGI

The header dump with volume key is sensitive information that allows access to encrypted partition without a passphrase. This dump should be stored encrypted in a safe place.

Are you sure? (Type 'yes' in capital letters): YES LUKK has places for /dev/sdda*

Cipher name: "A comparation of the co
```


KOD PROMOCYJNY

DZIEKI!

Pytania?

Email: mateusz.lewczak@securitum.pl

GH: LeftarCode

Bibliografia

- 1. DLACZEGO ROZPRĘŻANIE GAZU PROWADZI DO OBNIŻENIA TEMPERATURY?
 - https://zapytajfizyka.fuw.edu.pl/pytania/dlaczego-rozprezanie-gazu-prowadzi-do-obnizenia-temperatury/
- 2. Lest We Remember: Cold Boot Attacks on Encryption Keys https://www.usenix.org/legacy/event/sec08/tech/full_papers/halderman/halderman.pdf
- 3. Lest we forget: Cold-boot attacks on scrambled DDR3 memory https://www.johannes-bauer.com/personal/publications/2016-03-Bauer-DFRWS-EU.pdf
- 4. Recovering BitLocker Keys on Windows 8.1 and 10 https://tribalchicken.net/recovering-bitlocker-keys-on-windows-8-1-and-10/
- 5. Plugin do Volatility
 https://github.com/elceef/bitlocker/blob/master/bitlocker.py
- 6. Radare2 https://github.com/radareorg/radare2
- 7. Dislocker https://github.com/Aorimn/dislocker

