# NL2SQL: NLI Matching Model

Qingning Yao (Chris), Tao Yu, Dragomir Radev

### Introduction

Summarizing SQL patterns from training data, identify which pattern matches the input question and construct SQL with question and pattern.

#### What is a Pattern?

A SQL stripped down to skeleton. For example:

Question: "Find the name of customers who are living in Colorado."

```
SELECT t1.customer_name FROM
customers AS t1 JOIN
customer_addresses AS t2 ON
t1.customer_id = t2.customer_id
JOIN addresses AS t3 ON
t2.address_id = t3.address_id
WHERE t3.state_province_county =
"Colorado"

SELECT {COLUMN}
WHERE {COLUMN} = {VALUE}
```

SQL

**Pattern** 

Pattern (Simplified and Naturalized)

# How many patterns are there?

Out of the 5000+ preprocessed SQLs that we are having right now, there are around **70** to **400** patterns depending on the level of simplification, and these should cover the vast majority of all SQLs in real life.

#### **Model Structure**



### Model A: Question-Pattern Match

Given a question, predict which pattern would be the best fit for this question.

- Using existing Natural Language Inference (NLI) models
- Like paraphrase identification
- Instead of "contradiction" / "entailment" etc., use "match" and "not match"

# Training Model A

We used an NLI model by Zhiguo Wang, Wael Hamza and Radu Florian: Bilateral Multi-Perspective Matching for Natural Language Sentences (BiMPM).

- Generate training data by
  - a. random mismatch of training question-pattern pairs
  - b. slightly tweaking a correct pair (to capture details)
- Changed the evaluation metric
  - a. from "correctly identifying match/mismatch"
  - b. to "correctly identify the pattern out of all patterns"

### Model B: SQL Generation

#### Given:

- Question
- 2. Predicted pattern of the corresponding query of that question
- Database schema

Generate the most likely SQLs that would retrieve the answer to this question.

We can potentially reuse any other models in this project for Model B.

# Model C: Question-SQL Matching

Given a question and a list of SQL candidates, identify which one among them would be the one that could correctly answer the question.

- Potentially another NLI model
- Could be trained just like model A

### **Pros and Cons**

#### Pros:

- Intuitive, analogous to the way humans learn and write SQL
- Simple and straightforward

#### Cons:

Cannot guarantee 100% SQL pattern coverage

# Potential Byproduct: Data Augmentation

- 1. Strip SQLs to skeleton, leaving behind replacements tokens
  - Like (COLUMN NAME) and (VALUE)
- 2. Use the non-keyword stripped from SQL to strip questions
  - Non-keywords: either column names or values
  - With other statistical approaches like word frequency
- 3. (Possibly) Hand pick some reusable high-quality Question-Pattern-SQL-Pattern pairs
- 4. Deduct column types statistically
  - E.g. can column order\_type be GROUP BY'ed over?
- 5. Generate new Question-SQL pairs