Homework 4

Angela Zhang 10/23/2017

The Rules

Figure 1: Simulation of the expected Seattle earthquake

(1)

This figure utilizes color (Rule 9) well since it depicts the greatest slippage with an intense color (red). Labelling could be improved in this figure (Rule 5). While they show where the hypocenter of the earthquake is, I'm not quite sure where Seattle is or what states (Washington and Oregon perhaps?) are depicted in the figure. This figure could also be improved if distance, latitude, and longitude were added to the map.

(2)

Figure 2: Article from Scientific American

This plot use colors (Rule 9) and labels (Rule 5) well for the most part. The colors indicate the different groups and the artist uses transparencies well to show where points cluster together. The short description at the top is very helpful for understanding what figure is trying to show. It's a bit of a complicated graph to read and the results don't seem quite apparent at first, but the labels are a good aid for understanding the x-axis labels and what the black lines in the graph. The description, as helpful as it is, may bias the reader. It states that schizophrenic patients have a more acidic brain environment, but this pattern is not clear in the chart.

	NAME	ESTIMATED PEOPLE WITH NAME	MALE SHARE	FEMALE SHARE
	Casey	176,544	59	9% 42%
	Riley	154,861	51 49	
	Jessie	136,382	48 52	
	Jackie	132,929	42 58	
,	Avery	121,797	34 66	
;	Jaime	109,870	56 44	
,	Peyton	94,896	43 <mark>57</mark>	
	Kerry	88,964	48 52	
)	Jody	80,401	35 65	
0	Kendall	79,211	37 63	
1	Payton	64,152	33 67	
2	Skyler	53,486	65 35	
3	Frankie	51,288	62 38	
1	Pat	44,782	37 <mark>63</mark>	
5	Quinn	41,921	64 <mark>36</mark>	
6	Harley	41,238	57 <mark>43</mark>	
7	Reese	36,361	36 64	
3	Robbie	32,636	55 <mark>45</mark>	
9	Tommie	29,529	66 34	
0	Justice	27,351	53	47

Figure 3: Chart from FiveThirtyEight

This figure does a good job of utilizing color and labels (Rule 9 and Rule 5 respectively) as it explains the proportion of females and males with unisex names. It it's pleasing to the eye while avoiding chart junk (Rule 3). It also incorporates aspects of Rule 1 by setting the table side by side with the stacked bar plots. Overall, I don't have many criticisms for this figure since it seems to follow many of Tufte's Rules.

Multiple Plots

I plotted these graphs on top of each other so that the x-axes matched together. That way, you can view the trend of both population and GDP as year increases.

Data wrangling with dates and legends

Change of taxon proportions over time

