Name:	Roll No:
-------	----------

(COL 202) Discrete Mathematics

13 September, 2023

Minor 1

Duration: 120 minutes (50 points)

Beware: Be clear in your writing. If you use a statement proved in class or in the problem set, then write down the entire statement before using it. You will not get a new sheet, so make sure you are certain when you write something (maybe use a dark pencil). Make a judicious decision of which tool(s) to use to get a clean and short answer that fits in the space. If you cheat, you will surely get an F in this course.

- 1. $(4 \times 3 = 12 \text{ points})$ In this question, each sub-question will have zero or more correct answers. You are to circle each correct answer and leave uncircled each incorrect answer. Each problem is worth 3 points and you get points if and only if you circle all of the correct answers and none of the wrong ones. There are no partial points.
 - (a) Let w, b and n be propositions where w is "I walk to work", g is "I work in Gurgugram", n is "I work at night". The sentence "When I work nights and I work in Gurgugram, I don't walk to work" could be written using propositions and logical connectives as:
 - $(1) \quad (n \wedge g) \Longrightarrow \neg w \qquad (2) \quad (n \vee g) \Longleftrightarrow n \qquad (3) \quad n \Longrightarrow \neg (w \wedge g) \qquad (4) \quad \neg (w \wedge g) \vee n$
 - (b) Identify the tautologies among the following:
 - $\begin{array}{lll} (1) & (a \Longrightarrow b) \Longleftrightarrow (\neg a \Longrightarrow \neg b) & (2) & (a \Longrightarrow b) \Longleftrightarrow (\neg b \Longrightarrow \neg a) \\ (3) & (a \Longrightarrow b) \Longrightarrow a & (4) & (a \land b \land c) \Longleftrightarrow (b \land c \land a) \end{array}$
 - (c) Identify those formulae which are satisfiable.
 - $(1) \quad (a \lor b) \land (a \lor \neg b) \land (\neg a \lor b) \land (\neg a \lor \neg b) \qquad (2) \quad (a \land b) \land (a \land \neg b)$ $(3) \quad (a \Longrightarrow b) \Longrightarrow (\neg b \Longrightarrow \neg a) \qquad (4) \quad (a \land b) \Longrightarrow (a \land \neg b)$
 - (d) For countably infinite sets A and B, $A \cap B$ can be
 - (1) Countably infinite (2) Uncountable (3) Finite (4) Empty
- 2. $(3 \times 4 = 12 \text{ points})$ Answer the following questions with a brief justification.
 - (a) Arrange the following functions in a sequence f_1, f_2, \ldots, f_7 so that $f_i = O(f_{i-1})$. Additionally, if $f_i = \Theta(f_{i+1})$, indicate that: $n \log n$, $(\log \log n)^{\log n}$, $(\log n)^{\log \log n}$, $n \cdot 2^{\sqrt{\log n}}$, $(\log n)^{\log \log n}$, $n^{1 + \frac{1}{\log n}}$, n^2 . Assume that all the logarithms are to the base 2.

$$n^{1+\frac{1}{\log n}} = O((\log n)^{\log \log n}) = O(n \log n) = O(n \cdot 2^{\sqrt{\log n}}) = O(n^2) = O((\log \log n)^{\log n})$$

(b) How many different ways can you choose 18 muffins from a choice of apple, blueberry, chocolate-chip and date muffins, if there are 9 apple, 8 blueberry, 6 chocolate chip, but an unlimited number of date muffins. You can use either inclusion-exclusion or generating functions. For generating functions approach, you can as in Section 16.2.6 in the LLM Book. From inclusion-exclusion, you should get

$$\binom{18+3}{3} - \left(\binom{8+3}{3} + \binom{9+3}{3} + \binom{11+3}{3}\right) + \left(0 + \binom{1+3}{3} + \binom{2+3}{3}\right) - 0$$

- (c) Count the number of integer solutions to $x_1 + x_2 + x_3 + x_4 = 10, x_1 \ge -2, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$. This is the same as the number of non-negative solutions to $y_1 + y_2 + y_3 + y_4 = 12$ which is exactly $\binom{12+3}{3}$
- 3. (6 **points**) How many 6-character passwords can be made using only the characters from the set $\{A, B, C, D, E, F, 1, 2, 3, 4\}$ if
 - (a) The password must contain at least one letter and at least one digit (repeats allowed). $10^6 6^6 4^6$

- (b) The password contains four letters and two digits (in any order and repeats allowed). $\binom{6}{4} \cdot 6^4 \cdot 4^2$
- (c) No character is used more than once. $10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$
- (d) No two letters are adjacent, no two digits are adjacent, and no character is used more than once. Briefly explain your answers for each of the cases. $2 \times (6 \cdot 5 \cdot 4) \times (4 \cdot 3 \cdot 2)$
- 4. (5 **points**) An 8 × 8 chessboard is colored in the usual way, but that's boring, so you decide to fix this. You can take any row, column, or 2 × 2 square, and reverse the colors inside it, switching black to white and white to black. Prove that it's impossible to end up with 63 white squares and 1 black square.

Any of these operations changes the total number of white squares by an even number. In the case of a row or column, it goes from having k white squares to having 8-k white squares, for a change of 8-2k=2(4-k). In the case of a 2×2 squares, we go from k white squares to 4-k white squares, for a change of 4-2k=2(2-k). Since we start with an even number of white squares, the number of white squares always remains even, so it is impossible to end with 63 white squares.

5. (5 **points**) Recall that for $a, b \in \mathbb{R}$, $[a, b] = \{x \in \mathbb{R} \mid a < x < b\}$ and $(a, b) = \{x \in \mathbb{R} \mid a \le x \le b\}$. Find a bijection from [0, 1] to (0, 1).

Sorry about the mistake in notation - the correct notation for open and closed sets is just the opposite of what I have here, that is $[0,1] = (0,1) \cup \{0,1\}$. This question involves a nice trick: First we identify some nice countable subset S in both [0,1],(0,1):

$$[0,1] = \{0,1,1/2,1/3,1/4,\dots\} \cup S$$
$$(0,1) = \{1/2,1/3,1/4,\dots\} \cup S$$

Now notice that $S = [0,1] \setminus \{0,1,1/2,1/3,1/4,...\}$ Now the bijection f just maps all elements xinS to x itself, 0 to 1/2, and x = 1/n to 1/(n+2) (this includes mapping 1 to 1/3).

- 6. (5 **points**) If $A = \{a_0, a_1, \ldots\}$ and $B = \{b_0, b_1, \ldots\}$ are countably infinite sets, Show that their product $A \times B$ is also a countable set by showing how to list the elements of $A \times B$. There at least 3 possible solutions: Proof 1 is as follows: For a fixed $a \in A$, let $B_a = \{(a,b) \in A \times B | b \in B\}$. Since B is countable, each B_a is countable. Note that $\bigcup_{a \in A} B_a$ is the countable union of countable sets, and hence is countable (we have seen this in class/tutorials). Since $A \times B = \bigcup_{a \in A} B_a$, we have that $A \times B$ is countable. For Proofs 2 and 3 here.
- 7. (5 **points**) Find a closed form for $S = \sum_{n=0}^{\infty} \frac{2n}{3^{n+1}}$

Check this Stackexchange Post. Note that we have deducted marks if you have been careless with manipulation by doing arithmetic with infinity (subtract S/3 from S without first proving convergence(where the formal method would have been to define the m-th partial sum and then find its limit). You shouldn't raise a regrade request for this.