Solução da Lista 7 - Backpropagation

Disciplina: Inteligência Artificial

Objetivo: Calcular manualmente, passo a passo, uma única iteração do algoritmo Backpropagation para uma rede neural que tenta aprender o comportamento lógico do XOR, com entrada (1, 0) e saída desejada (1).

1. Estrutura da Rede

A rede neural possui a seguinte arquitetura:

• Camada de Entrada: 2 neurônios (x1, x2)

• Camada Oculta: 2 neurônios (h1, h2)

• Camada de Saída: 1 neurônio (y)

A função de ativação utilizada para todas as camadas é a **Sigmóide**. A **Taxa de Aprendizado (learning rate)** é de **0.5**.

Pesos e Bias Iniciais

Conexão	Peso Inicial
w11 (x1 \rightarrow h1)	0.10
w21 (x2 \rightarrow h1)	0.20
w12 (x1 \rightarrow h2)	0.30
w22 (x2 → h2)	0.40

Neurônio Oculto	Bias Inicial
bh1	0.10
bh2	0.20

Conexão	Peso Inicial
v1 (h1 → y)	0.50
v2 (h2 → y)	0.60

Neurônio de Saída	Bias Inicial
by	0.30

Entrada: x1 = 1, x2 = 0 Saída Desejada: y_desejado = 1

2. Propagação Direta (Forward Pass)

Cálculos para a Camada Oculta

A função de ativação Sigmóide é dada por $f(x) = 1 / (1 + e^{(-x)})$.

Neurônio h1:

- Cálculo da entrada líquida para h1: (1 * 0.10) + (0 * 0.20) + 0.10 = 0.2000
- Aplicação da função sigmóide: 1 / (1 + e^(-0.2000)) = 0.5498

Neurônio h2:

- Cálculo da entrada líquida para h2: (1 * 0.30) + (0 * 0.40) + 0.20 = 0.5000
- Aplicação da função sigmóide: 1 / (1 + e^(-0.5000)) = 0.6225

Cálculos para a Camada de Saída

Neurônio y:

- Cálculo da entrada líquida para y: (0.5498 * 0.50) + (0.6225 * 0.60) + 0.30 = 0.9484
- Aplicação da função sigmóide: 1 / (1 + e^(-0.9484)) = 0.7208

3. Cálculo dos Erros (Backpropagation)

A derivada da função Sigmóide é dada por f'(x) = x * (1 - x), onde x é a saída da função Sigmóide.

Erro do Neurônio de Saída (y)

- Cálculo do erro do neurônio de saída: 1 0.7208 = 0.2792
- Derivada da sigmóide para a saída y: 0.7208 * (1 0.7208) = 0.2013
- Cálculo do delta para y: 0.2792 * 0.2013 = 0.0562

Erro dos Neurônios da Camada Oculta (h1, h2)

Neurônio h1:

- Erro propagado para h1: 0.0562 * 0.50 = 0.0281
- Derivada da sigmóide para a saída de h1: 0.5498 * (1 0.5498) = 0.2475
- Cálculo do delta para h1: 0.0281 * 0.2475 = 0.0070

Neurônio h2:

- Erro propagado para h2: 0.0562 * 0.60 = 0.0337
- Derivada da sigmóide para a saída de h2: 0.6225 * (1 0.6225) = 0.2350
- Cálculo do delta para h2: 0.0337 * 0.2350 = 0.0079

4. Ajuste dos Pesos

A fórmula para ajuste dos pesos é: Novo Peso = Peso Atual + (Taxa de Aprendizado * Delta * Entrada). Para o bias, a entrada é considerada 1.

Ajuste dos Pesos da Camada Oculta para a Camada de Saída

• **Novo v1:** 0.50 + (0.5 * 0.0562 * 0.5498) = 0.5154

• **Novo v2:** 0.60 + (0.5 * 0.0562 * 0.6225) = 0.6175

• Novo by: 0.30 + (0.5 * 0.0562 * 1) = 0.3281

Ajuste dos Pesos da Camada de Entrada para a Camada Oculta

• Novo w11: 0.10 + (0.5 * 0.0070 * 1) = 0.1035

• Novo w21: 0.20 + (0.5 * 0.0070 * 0) = 0.2000

• Novo bh1: 0.10 + (0.5 * 0.0070 * 1) = 0.1035

• **Novo w12:** 0.30 + (0.5 * 0.0079 * 1) = 0.3040

• **Novo w22:** 0.40 + (0.5 * 0.0079 * 0) = 0.4000

• Novo bh2: 0.20 + (0.5 * 0.0079 * 1) = 0.2040

Resumo dos Pesos e Bias Ajustados

Conexão	Peso Ajustado
w11 (x1 \rightarrow h1)	0.1035
w21 (x2 → h1)	0.2000
w12 (x1 \rightarrow h2)	0.3040
w22 (x2 → h2)	0.4000

Neurônio Oculto	Bias Ajustado
bh1	0.1035
bh2	0.2040

Conexão	Peso Ajustado
v1 (h1 → y)	0.5154
v2 (h2 → y)	0.6175

Neurônio de Saída	Bias Ajustado
by	0.3281