• So there is an equilibrium $k = \bar{k}$ that is

dynamically stuble

• What does this mean economically?

• At $k = \bar{k}$, we have $\dot{k} = 0$, or in words:

o Therefore, in the long run, capital must grow at the same rate as labor

• Recall that we defined $\phi(k) = Q/L$. So, at $k = \bar{k}$, we have also that

$$Q = L\phi(\bar{k})$$

o Therefore, in the long run, output must also grow at the same rate as labor

5 Quantitative analysis

Example 2. Suppose the production function in the Solow growth model is $f(K, L) = K^{3/4}L^{1/4}$.

a. Show that f is homogeneous: f(aK, aL) = af(K, L).

b. Find $\phi(k)$.

c. Write the differential equation (S). Solve the equation for k. Hint. It is a Bernoulli equation!

d. What does *k* converge to as $t \to \infty$?

a.
$$f(ak_1al) = (ak)^{3/4}(al)^{1/4} = a^{3/4}k^{3/4}a^{1/4}l^{1/4} = ak^{3/4}l^{1/4}$$

$$= af(k,l) \checkmark$$
b. $d(k) = \frac{k^{3/4}l^{1/4}}{l} = (\frac{k}{l})^{3/4} = k^{3/4}$
c. $k = sd(k) - \lambda k \Rightarrow k = sk^{3/4} - \lambda k \Rightarrow k + \lambda k = sk^{3/4}$

Bernoulli: $k = \lambda T = s = \frac{3}{4}k$

$$let z = k^{\frac{1}{4}} \Rightarrow \frac{dz}{dt} + \frac{1}{4}\lambda z = \frac{1}{4}s \leftarrow \frac{1}{5}t \text{ order linear order}$$

$$\Rightarrow z(t) = Ae^{-\frac{1}{4}\lambda t} + \frac{s}{\lambda}$$

$$\Rightarrow k(t) = z(t)^{4} = (Ae^{-\frac{1}{4}\lambda t} + \frac{s}{\lambda})^{4}$$
d. as $t \to \infty$, $k(t) \to (\frac{s}{\lambda})^{4}$