- 1. Известно, что $\mathbb{E}(Y \mid X) = 2 + 3X$, $\mathbb{V}ar(X) = 9$, $\mathbb{E}(X) = 6$.
 - а) [2 + 3] Найдите $\mathbb{E}(Y)$, $\mathbb{C}ov(X, Y)$.
 - б) [5] В каких пределах могут лежать $Var(Y \mid X)$ и Var(Y)?

Ответы:

- a) $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(Y \mid X)) = 20$, $\mathbb{E}(XY) = \mathbb{E}(\mathbb{E}(XY \mid X)) = 147$, $\mathbb{C}ov(X, Y) = 27$;
- б) \mathbb{V} ar $(Y \mid X) \geq 0$, можно, например, считать, что Y = 2 + 3X + R, где $R \sim \mathcal{N}(0,1)$; \mathbb{V} ar $(Y) \geq 81$.
- 2. Величины U_1, U_2 распределены равномерно на отрезке [0,1] и независимы. Определим последовательность $X_n = n^2 \cdot I[U_1 \le 1/(n+2)] + U_2 \cdot n/(n+2)$.
 - а) [3] Сходится ли (X_n) почти наверное и если да, то к чему?
 - б) [2] Сходится ли (X_n) по вероятности и если да, то к чему?
 - в) [2] Сходится ли (X_n) по распределению и если да, то к чему?
 - г) [3] Сходится ли (X_n) в L^1 и если да, то к чему?

Ответы:

- а) Да, к U_1 , на квадрате в осях (u_1,u_2) можно заметить, что сходимости нет только на множестве меры 0.
- б) Из сходимости почти наверное следует сходимость по вероятности.
- в) Из сходимости по вероятности следует сходимость по распределению.
- г) Сходимости в L^1 нет, так как $\mathbb{E}(X_n) \geq n^2/(n+2) \to \infty$.
- 3. Рассмотрим стандартный винеровский процесс (W_t) .
 - а) [5] Найдите $\mathbb{C}\text{ov}(W_1, W_7 \mid W_3)$ и $\mathbb{E}(W_2^2 W_4^2)$.
 - б) [5] При каком α процесс $Y_t = (3 + \alpha W_t)^2 10t$ будет мартингалом?
- 4. Улитка стартует в точке $S_0=7$. Каждую минуту она равновероятно смещается влево или вправо на единицу.
 - а) [3] При какой константе α процесс $Y_t = \sum_{k=0}^t S_k \alpha S_t^3$ будет мартингалом?

Улитка отдыхает в точках $S_0=0$ и $S_0=20$. Обозначим τ момент времени, когда она впервые достигнет одной из точек отдыха, $\tau=\min\{t\mid S_t\in\{0,20\}\}$.

- б) [4] Слепо применяя теорему Дуба, найдите $\mathbb{E}(S_1 + S_2 + \dots + S_{\tau}).$
- в) [3] Аккуратно проверьте, что теорему Дуба можно было применять.

Уточнение: без доказательства можно пользоваться тем, что $\mathbb{P}(S_{\tau}=20)=7/20.$

- 5. Величины $X_1, X_2, ..., X_5$ независимы и экспоненциально распределены $X_i \sim \text{Expo}(\lambda_i)$. Определим $M = \min\{X_3, X_4, X_5\}$.
 - а) [3] Как распределена величина M?

- б) [3] Найдите вероятность $\mathbb{P}(X_1 < X_2)$.
- в) [4] Найдите функцию распределения величины $L=\ln X_1-\ln X_2$ при $\lambda_1=\lambda_2=1.$

Разбалловка:

- а) 0б для минимума <= t раскладывается в произведение
 1б не указаны пар-ры экспоненциального или указаны не верно
- б) 0б не корректная формула
 - 1б не досчитан интеграл
 - 2б ответ посчитан не правильно (арифметика)
 - 1б посчитано для $\lambda_1=\lambda_2$
- в) 1б не досчитан интеграл
 - 1б ответ посчитан не правильно
 - 2б цепочка вывода правильная, но ошибка в вычислениях
- 6. Величины $X_1, X_2, ..., X_n$ независимы и равномерно распределены на отрезке [0, a], рассмотрим наибольшую величину $H = \max\{X_1, \ldots, X_n\}$ и наименьшую величину $L = \min\{X_1, \ldots, X_n\}$.
 - а) [3] Найдите $\mathbb{E}(L)$ любым способом.

Определим ожидание $h(a) = \mathbb{E}(L \cdot H)$.

- б) [5] Выпишите уравнение, связывающее h(a + u) и h(a), с точностью до o(u).
- в) [2] Укажите начальное условие, которому удовлетворяет функция h(a).

Разбалловка:

- а) 1б посчитано для n=2
 - 1б правильно посчитано распределение/плотность
 - 2б арифметическая ошибка
 - 2б в знаменателе n, а не n+1
- б) 0б формула не верная
 - 1б за уравнение с производной
 - 1б за правильную идею, но в формуле не посчитаны значения
 - 26 за правильную идею, но не правильные вычисления (вероятности или интегралы)
- в) 2б за корректный ответ