MATH 4410 Nate Stott A02386053

Quiz #7; Due 11:59 pm, 3/20/2024

What Would Euclid Not Do?

Measuring Problem. Suppose we have two irregularly-shaped and non-graduated jugs A and B with positive integer capacities a and b units, respectively. Suppose also that $a \le b$. We must use these jugs to precisely measure N units of water, where $0 \le N \le b$; the desired quantity of water will be in jug B.

The goal is to prove the following theorem.

Willis-Jackson Theorem: We can precisely measure N units of water with two jugs of capacities a and b, where $0 \le N \le b$ and N is a multiple of d, where $d = \gcd(a, b)$.

The proof of the theorem will be facilitated by the following algorithm.

Willis-Jackson Algorithm. Algorithm for Precisely Measuring Water with A and B.

Step One. Fill A;

Step Two. Pour the contents of A into B and if B ever becomes full, empty it and continue pouring A into B.

Note: An iteration of the Willis-Jackson algorithm is completed at the moment when A becomes empty after being non-empty.

1. Please prove the following lemma:

Lemma 1. If L is an integer linear combination of a and b, then the coefficient on a can be chosen so that it is positive.

Start proof

$$L = ax + by$$

$$L = ax + by + ab - ab$$

$$L = ax + ab + by - ab$$

$$L = a(x + b) + b(y - a)$$

Same logic would follow if we added 2ab - 2ab

$$L = a(x+2b) + b(y-2a)$$

$$L = a(x+3b) + b(y-3a)$$
...
$$L = a(x+kb) + b(y-ka)$$

As set up the coefficient on a will be positive if k is large enough

End proof

While implementing the Willis-Jackson Algorithm, there are *iterations* and *states*. An iteration, as noted above, is complete when (after being filled) A is emptied (B may not be empty at the end of an iteration). A *state* is, informally, any condition the jugs A and B can be observed to be in while the Willis-Jackson algorithm is being executed. A state is concisely denoted as an ordered pair (x, y), where x is the amount of water in A and y is the amount of water in B at the moment the jugs are observed.

Below are states we may observe with arrows between them indicating what state can be had from another. Note that under the Willis-Jackson algorithm, not all the states are encountered; for example, the transitions at lines 3 and 5 never occur because the Willis-Jackson algorithm has us empty A into B (not into thin air), and we never fill a partially-filled A.

$(0,0) \rightarrow (a,0)$	Fill A
$(0,0) \rightarrow (0,b)$	Fill B
$(\mathfrak{j}_1,\mathfrak{j}_2)\to(0,\mathfrak{j}_2)$	A is emptied
$(\mathfrak{j}_1,\mathfrak{j}_2)\to(\mathfrak{j}_1,0)$	B is emptied
$(\mathfrak{j}_1,\mathfrak{j}_2)\to(\mathfrak{a},\mathfrak{j}_2)$	A is filled with water already present
$(\mathfrak{j}_1,\mathfrak{j}_2)\to(\mathfrak{j}_1,\mathfrak{b})$	B is filled with water already present
$(j_1, j_2) \to (0, j_1 + j_2)$	(if $j_1 + j_2 \le b$) A is poured into B
$(j_1, j_2) \to (j_1 - (b - j_2), b)$	(if $b \leq j_1 + j_2)$ pour what you can into B from A
$(j_1, j_2) \to (j_1 + j_2, 0)$	(if $j_1 + j_2 \le a$) pour B into A
$(\mathfrak{j}_1,\mathfrak{j}_2)\to(\mathfrak{a},\mathfrak{j}_2-(\mathfrak{a}-\mathfrak{j}_1))$	(if $\alpha \leq j_1 + j_2)$ pour what you can into A from B

2. Use the Principle of Mathematical induction to prove the following lemma. (You do not need to prove the corollary – it follows from the lemma.)

Lemma 2. Let d be a positive integer, a and b the capacities of jugs A and B, and j_1 and j_2 are amounts of water found in jugs A and B at some state. If $d \mid a$ and $d \mid b$, then $d \mid j_1$ and $d \mid j_2$.

Corollary. $d \mid X$, where X is any amount that results from a sequence of the states and transitions described above; in particular, $d \mid X$, where X is any amount of water in jug B obtained from the Willis-Jackson Algorithm.

Start proof

Let w, x, y, z be integers The definition of divisibility

$$j_1 = wd$$

$$j_2 = xd$$

$$a = yd$$

 $j_1 + j_2 = wd + xd = (w + x)d$ Because I know that w and x are integers I know that the coefficient on d is an integer. This makes d a divisor of $j_1 + j_2$

b = zd

$$j_1 - (b - j_2) = wd - (zd - xd) = wd - zd + xd = (w - z + x)d$$
 Same logic as above

 $\mathbf{j_2} - (\mathbf{a} - \mathbf{j_1}) = \mathbf{xd} - (\mathbf{yd} - \mathbf{wd}) = \mathbf{xd} - \mathbf{yd} + \mathbf{wd} = (\mathbf{x} - \mathbf{y} + \mathbf{w})\mathbf{d} \text{ Same logic as above}$

End proof

3. Please prove the following lemma, and explain how the Willis-Jackson Theorem follows.

Lemma 3. Suppose $d = \gcd(a,b)$ and that $d \mid N$. If N = ak + by, where k is a positive integer, y an integer, and $0 \le N \le b$, then jug B will contain N units of water after k iterations of the Willis-Jackson Algorithm.

Start proof

- i. Because $0 \le N \le b$ that means N has the same bounds as j_2 .
- ii. Because $d \mid N$ that means N = ak + by will always have a solution where k is a positive integer, y an integer (see question 1).
- iii. Because $d \mid j_2$ (see question 2) and $d \mid N$ that means j_2 and N are bound by the same set and are further restricted by numbers in that set that are also divisible by d. The math notation is something like $N, j_2 \in \{d \mid n : 0 \ge n \ge b => n \in \mathbb{Z}\}$.
- iiii. Because N, and j_2 are in the same set and by the definition of the algorithm we stop when j_2 and N are equal this means that we guarantee that after k iterations j_2 and N will be the same.
- iiii. Because of i., ii., iii., and iiii. it follows that jug B will contain N units of water after k iterations of the Willis-Jackson Algorithm.

End proof