

SimPowerSystems Hands-on Workshop: Modeling and Simulation of Electrical Power Systems with SimPowerSystems™

Carlos Osorio
Principal Application Engineer
MathWorks - Natick, MA

Outline

- Measurements
- State initialization
- Transformers
- Star vs. delta connections
- Floating vs. neutral connections
- Reference frame transformations

Build a simple three-phase circuit

Build a simple three-phase circuit

>> threephase_rlc

Multimeter measurements

Impedance measurement

>> threephase_rlc_z

State initialization

Independent states

Settings

powergui

Initial States Setting

Complete the simple three-phase circuit

>> threephase_rlc_motor

Complete the simple three-phase circuit

Recommended variable-step solver

Complete the simple three-phase circuit

Recommended variable-step solver

Automatically opens a model that includes the **powergui** block and sets the solver to the recommended settings

>> power_new

Transformers

Phase shifting

>> transformer_phaseshifting

Transformers

Zig-zag transformers

- Zig-zag transformers are used to facilitate phase shifts between 0° and 30°
- Zig-zag transformers use three windings to achieve the desired phase shift

Transformers

Saturation and hysteresis

>> transformer saturation

Star vs. delta connections

Star

$$V_{line} = \sqrt{3} V_{phase}$$

 $I_{line} = I_{phase}$

$$V_{peak} = \sqrt{2} V_{rms}$$

Delta

$$V_{line} = V_{phase}$$
$$I_{line} = \sqrt{3} I_{phase}$$

Star vs. delta connections

>> star_delta

Floating vs. neutral connections

 In a three-phase system, a floating star-connected load containing inductors will result in dependent states because of the following equation.

$$I_a + I_b + I_c = 0$$

If the supply is star-connected and a neutral or ground connection is made between source and load, then there is no longer a dependent state.

$$I_a + I_b + I_c = I_n$$

>> floating_neutral

Reference frame transformations

Park and Clarke transforms

Clarke

(stationary reference frame)

(rotating reference frame)

$$V_{d} = \frac{2}{3}V_{a}\sin(\omega t) + \frac{2}{3}V_{b}\sin(\omega t - \frac{2}{3}\pi) + \frac{2}{3}V_{c}\sin(\omega t + \frac{2}{3}\pi)$$

$$V_{q} = \frac{2}{3}V_{a}\cos(\omega t) + \frac{2}{3}V_{b}\cos(\omega t - \frac{2}{3}\pi) + \frac{2}{3}V_{c}\cos(\omega t + \frac{2}{3}\pi)$$

$$V_{0} = \frac{1}{3}V_{a} + \frac{1}{3}V_{b} + \frac{1}{3}V_{c}$$

>> park_clarke

