FÍSICA 2 (FÍSICA) – CÁTEDRA DIEGO ARBÓ

PRIMER CUATRIMESTRE DE 2025

Guía 7: Propagación de la luz

Principio de Fermat

- 1. Considere un rayo que parte del punto A = (0,1,0), se refleja en un espejo plano situado en el plano xz, y finalmente pasa por el punto B = (4,3,0). Emplee el principio de Fermat para responder las siguientes preguntas. Interprete físicamente los resultados.
 - a) ¿En qué punto sobre el plano del espejo se produce la reflexión?
 - b) ¿Cuánto valen los ángulos de incidencia y reflexión?
 - c) Un rayo directo entre A y B recorre un menor camino óptico que el hallado en los items a y b, ¿es esto contradictorio?
- 2. A partir del principio de Fermat, deduzca la ley de Ibn Sahl-Snell para la refracción de la luz entre dos medios con índices de refracción n_1 y n_2 , separados por una superficie plana.
- 3. Considere un espejo elíptico con focos A y B. En A hay una fuente puntual. Uno de los rayos emitidos por la fuente impacta en el punto C y se refleja hacia el otro foco B.
 - a) Muestre que el camino óptico del rayo mencionado es estacionario en la elipse.
 - b) Considere ahora que se reemplaza la elipse por un espejo plano o uno esférico, tangentes a la elipse en el punto C. Determine cualitativamente si el camino óptico del rayo que impacta en C es máximo, mínimo o estacionario cuando se refleja en cada uno de los espejos.

Reflexión y refracción

- 4. a) Un rayo de luz llega a una interfaz aire-líquido con una inclinación respecto a la normal de 55°. El rayo refractado se transmite formando un ángulo igual a 40°. ¿Cuál es el índice de refracción del líquido?
 - b) Un haz de luz incide desde aire sobre una lámina de vidrio de índice de refracción desconocido y espesor d. Al otro lado del vidrio hay agua ($n_{\rm agua} = 1.333$). El ángulo de incidencia en la interfaz aire-vidrio es 30°. Calcule el ángulo que el rayo refractado forma con la normal a la superficie en el agua.
 - c) Un rayo de luz se propaga en un medio cuyo índice de refracción es $n_1 = 2$. Dicho rayo incide sobre otro medio de índice de refracción $n_2 = 1.5$, formando un ángulo de 30° respecto a la normal a la superficie de separación. Calcule el ángulo que forma el rayo transmitido con la normal a la superficie. ¿Con qué inclinación mínima debería incidir el rayo para que no haya transmisión?

- 5. Considere un rayo que incide sobre una lámina de caras paralelas de espesor d inmersa en un medio único.
 - a) Demuestre que el rayo incidente no se desvía al atravesarla (es decir, que el rayo emergente B tiene la misma inclinación que el rayo incidente A).
 - b) Calcule el desplazamiento lateral Δ en términos del espesor y el índice de refracción de la lámina.
 - c) Demuestre que el rayo que se refleja en la primera cara y el que emerge luego de reflejarse en la segunda son paralelos.
 - d) Si el medio exterior es único, ¿existe algún ángulo de incidencia tal que produzca reflexión total en la segunda cara?

6. Un rayo incide con ángulo ϕ sobre la superficie horizontal de un cubo de material transparente, de índice n, inmerso en aire.

- a) ¿Para qué valores de ϕ hay reflexión total en la cara vertical?
- b) Si $\phi = 60^{\circ}$, ¿cuál es el máximo n para que no haya reflexión total en la cara vertical? ¿Se puede reflejar totalmente en la cara superior?
- 7. Los índices de refracción de cierta clase de vidrio para las longitudes de onda correspondientes al rojo ($\lambda_{\rm rojo} \sim 665$ nm) y violeta ($\lambda_{\rm azul} \sim 470$ nm) valen 1.51 y 1.53, respectivamente.
 - a) Halle los ángulos límite de reflexión total para rayos de luz que incidan en la superficie de separación vidrio-aire, para esas longitudes de onda.
 - b) ¿Qué ocurre si un rayo de luz blanca incide formando un ángulo de 41° sobre dicha superficie? **Sugerencia:** Extrapole el índice de refracción para longitudes de onda visibles a partir de la información para las longitudes extremas del mismo, y determine el comportamiento en función de la longitud de onda.

Prismas

- 8. a) Calcule analíticamente el ángulo de desviación mínima del prisma. Justifique por qué este valor es único. Haga un gráfico cualitativo de la desviación como función del ángulo de incidencia.
 - b) Calcule la desviación mínima para prismas delgados, en función de los datos constructivos.
 - c) Si el prisma es delgado y el ángulo de incidencia es pequeño, calcule la desviación.
- 9. a) En un vidrio óptico común se propaga un haz de luz blanca, ¿qué componente viaja más rápido: la roja o la violeta?
 - b) ¿Para cuál de ambos colores será mayor la desviación en un prisma? ¿Qué puede decir del ángulo de desviación mínima? Justifique sus respuestas.
- 10. Dado un prisma de vidrio crown¹ de ángulo $\alpha=4^\circ$ calcular, para las líneas de absorción de Fraunhofer \mathbf{F} ($\lambda_{\rm F}=486.134~{\rm nm}$), \mathbf{D} ($\lambda_{\rm D}=589.293~{\rm nm}$) y \mathbf{C} ($\lambda_{\rm C}=656.281~{\rm nm}$), las desviaciones de rayos que inciden casi perpendicularmente. Los respectivos índices de refracción son: $n_{\rm F}=1.513$; $n_{\rm D}=1.508~{\rm y}$ $n_{\rm C}=1.504$.

¹El vidrio crown se caracteriza por tener muy baja dispersión cromática.