Lebesgue Differentiation Theorem

Gaurish Korpal* Roll No. 1411040

November 9, 2017

1 Motivation

The fundamental theorem of calculus, which equates a Riemann integrable function and the derivative of its (indefinite) integral, states that:

Theorem (Fundamental Theorem of Calculus). Suppose f is integrable on [a,b] and F be defined as

$$F(x) = \int_{a}^{x} f(y)dy$$

for all $x \in [a,b]$. Then for I = (x, x + h) we get

$$F'(x) = \lim_{\substack{|I| \to 0 \\ x \in I}} \frac{1}{|I|} \int_{I} f(y) dy = f(x)$$

whenever f is continuous at $x \in (a,b)$, where |I| is the length of the interval.

Lebesgue differentiation theorem is an analogue, and a generalization, of the fundamental theorem of calculus in higher dimensions. It is also possible to show a converse – that every differentiable function is equal to the integral of its derivative, but this requires a Henstock–Kurzweil integral in order to be able to integrate an arbitrary derivative [3, pp. 114].

2 Tools

2.1 Approximations of the Identity

Let ϕ be an integrable function on \mathbb{R}^n such that $\int \phi = 1$. Then for t > 1 define

$$\phi_t(x) = t^{-n}\phi(t^{-1}x)$$

As $t \to 0$, ϕ_t converges in $\mathcal{S}(\mathbb{R}^n)^*$ to δ , the Dirac measure at origin², since if $g \in \mathcal{S}(\mathbb{R}^n)$ (by dominated convergence theorem):

$$\lim_{t \to 0} \phi_t(g) = \lim_{t \to 0} \int_{\mathbb{R}^n} t^{-n} \phi(t^{-1}x) g(x) dx = \lim_{t \to 0} \int_{\mathbb{R}^n} \phi(x) g(tx) dx = g(o) = \delta(g)$$

Since $\delta * g = g$ for $g \in \mathcal{S}(\mathbb{R}^n)$, we have the pointwise limit

$$\lim_{t \to 0} \phi_t * g(x) = g(x)$$

Because of this we say that $\{\phi_t : t > 0\}$ is an approximation of the identity.

^{*4&}lt;sup>th</sup> year Integrated M. Sc. student at NISER, Bhubaneswar (Jatni), India

¹It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral.

²For $f \in \mathcal{S}(\mathbb{R}^n)$, $\delta(f) = f(0)$

Theorem. Let $\{\phi_t : t > 0\}$ be an approximation of the identity. Then

$$\lim_{t \to 0} \|\phi_t * f - f\|_p = 0$$

if $f \in L^p$, $1 \le p < \infty$, and uniformly (i.e. when $p = \infty$) if $f \in C_0(\mathbb{R}^n)$ (the space of continuous functions vanishing at infinity).

As a consequence of this theorem, we know that there exists a sequence $\{t_k\}$, depending on f, such that $t_k \to 0$ and

$$\lim_{t \to 0} \phi_t * f = f \quad \text{a.e.}$$

Hence, if $\lim_{t\to 0} \phi_t * f$ exists then it must be equal f(x) almost everywhere [2, pp. 25].

2.2 Weak-Type Inequalities and Almost Everywhere Convergence

If f is a measurable function on (X, \mathcal{M}, μ) , we define its distribution function $\lambda_f : (0, \infty) \to [0, \infty]$ by

$$\lambda_f(\alpha) = \mu(\{x : |f(x)| > \alpha\})$$

Further, for $1 \leq q < \infty$ we define

$$[f]_q = \left(\sup_{\alpha > 0} \alpha^q \lambda_f(\alpha)\right)^{1/q}$$

Then, the set of all f such that $[f]_q < \infty$ is called the weak L^q space, denoted by L_w^q . It's easy to observe that $L^q \subset L_w^q$ and $[f]_q \leq ||f||_q$ (a restatement of Chebyshev's inequality). Note that the containment is strict, since the function f(x) = 1/x on $(0, \infty)$ is in L_w^1 but not in L^1 .

Then, a sublinear map³ T is weak-type (p,q), $1 \le p \le \infty$ and $1 \le q < \infty$, if $T: L^p(X,\mu) \to L^q_w(Y,\nu)$ and there exist c > 0 such that $[Tf]_q \le c \|f\|_p$ for all $f \in L^p$ [4, pp. 198]. If $q = \infty$, then an operator is of weak-type (p,∞) if there exists a constant c such that $\|Tf\|_{\infty} \le c \|f\|_p$ [1, pp. 34].

Theorem. Let $\{T_t\}$ be a family of linear operators on $L^p(X,\mu)$ and define

$$T^*f(x) = \sup_{t} |T_t f(x)|$$

If T^* is weak (p,q) then the set

$$\{f \in L^p(X,\mu) : \lim_{t \to t_0} T_t f(x) = f(x) \quad a.e.\}$$

is closed in $L^p(X,\mu)$.

 T^* is called the maximal operator associated with the family $\{T_t\}$.

Since for $f \in \mathcal{S}(\mathbb{R}^n)$ approximations of the identity converge pointwise to f (subsection 2.1), we can apply this theorem to show pointwise convergence almost everywhere for $f \in L^p$, $1 \le p < \infty$, or for $f \in C_0$, if we can show that the maximal operator $\sup_{t>0} |\phi_t * f(x)|$ is weakly bounded [2, pp. 28].

2.3 Hardy-Littlewood Maximal Function

The maximal function that we will discuss, arose first in the one-dimensional situation treated by Hardy and Littlewood. It seems that they were led to the study of this function by toying with the question of how a batsman's score in cricket may best be distributed to maximize his satisfaction [3, pp. 100].

Let $B_r(x) = B(x,r)$ be the Euclidean ball of radius r, centered at $x \in \mathbb{R}^n$. Let $\phi = \frac{1}{|B_1(0)|}\chi_{B_1(0)}$, be the characteristic function of the unit ball, normalized so that $\int \phi = 1$, and then we set $\phi_r(x) = r^{-n}\phi(r^{-1}x)$. If f is measurable function, we define the Hardy-Littlewood maximal function by

$$Mf(x) = \sup_{r>0} |f| * \phi_r(x) = \sup_{r>0} \frac{1}{|B_r(x)|} \int_{B_r(x)} |f(y)| dy$$

 $^{^3}T$ be a map from some some vector space \mathcal{D} of measurable functions on (X, \mathcal{M}, μ) to space of all measurable functions on (Y, \mathcal{N}, ν) . Then T is called sublinear if $|T(f+g)| \leq |Tf| + |Tg|$ and |T(cf)| = c|Tf| for all $f, g \in \mathcal{D}$ and c > 0.

Theorem. If f is measurable, then M f is measurable⁴.

Indeed, the set $E_{\alpha} = \{x \in \mathbb{R}^n : Mf(x) > \alpha\}$ is open, because if $\bar{x} \in E_{\alpha}$, there exists a ball B such that $\bar{x} \in B$ and

 $\frac{1}{|B|} \int_{B} |f(y)| dy > \alpha$

The Hardy-Littlewood maximal function is a tool which can be used to study the identity operator. The identity operator is interesting since by using the Hardy-Littlewood maximal function we will prove the Lebesgue differentiation theorem – the identity operator is a pointwise limit of averages on balls [1, pp. 41].

2.4 Vitali Covering Argument

The Vitali covering argument is commonly used in measure theory of Euclidean spaces. This argument is frequently used when we are, for instance, considering the n-dimensional Lebesgue measure, μ , of a set $E \subset \mathbb{R}^n$, which we know is contained in the union of a certain collection of balls $\{B_j : j \in J\}$, each of which has a measure we can more easily compute, or has a special property one would like to exploit. Hence, if we compute the measure of this union, we will have an upper bound on the measure of E.

Theorem. Suppose $\mathcal{B} = \{B_1, B_2, \dots B_N\}$ is a finite collection of open balls in \mathbb{R}^n . Then there exists a disjoint sub-collection $B_{i_1}, B_{i_2}, \dots, B_{i_k}$ of \mathcal{B} that satisfies

$$\mu\left(\bigcup_{\ell=1}^{N} B_{\ell}\right) \le 3^{n} \sum_{j=1}^{k} \mu(B_{i_{j}})$$

Loosely speaking, we may always find a disjoint sub-collection of balls that covers a fraction of the region covered by the original collection of balls [3, pp. 102].

3 Differentiation Theorem

As we shall observe, one has that $Mf(x) \ge |f(x)|$ for a.e. x; using the Vitalli covering argument (subsection 2.4) we can prove that Mf is not much larger than |f| [3, pp. 103].

Theorem. If f is measurable and $\alpha > 0$, then there exists a constant C, which depends on n but is independent of α and f, such that

$$\mu\left(\left\{x \in \mathbb{R}^n : Mf(x) > \alpha\right\}\right) \le \frac{C}{\alpha} \int_{\mathbb{R}^n} |f(x)| dx$$

This theorem asserts that the Hardy-Littlewood maximal operator is of weak-type (1,1). It is easy to see that it is sub-linear and of weak type (∞,∞) since from the definition of Mf we get that $||Mf||_{\infty} \leq ||f||_{\infty}$. Thus by the Marcinkiewicz interpolation theorem, we can conclude it is of strong-type⁵ (p,p), where $p=(1-t)^{-1}$ for some 0 < t < 1.

Now $Mf(x) = \sup_{r>0} |f| * \phi_r(x)$ being weak (1,1) implies that $\sup_{r>0} |f * \phi_r(x)|$ is weak (1,1). If we replace $T_t f(x)$ by $f * \phi_r(x)$ in subsection 2.2 and let $f \in L^1_{loc}$ (space of locally integrable functions⁶) we get the desired differentiation theorem [2, pp. 36]:

Theorem (Lebesgue Differentiation Theorem). If $f \in L^1_{loc}(\mathbb{R}^n)$ then

$$\lim_{r\to 0^+}\frac{1}{|B_r(x)|}\int_{B_r(x)}f(y)dy=f(x)\quad a.e.$$

⁴A function between two measurable spaces such that the preimage of any measurable set is measurable.

⁵We say that a sublinear map T is $strong-type\ (p,q),\ 1 \le p,q \le \infty,$ if $T:L^p\to L^q$ and there exists a constant c such that $\|Tf\|_q \le c \|f\|_p$ for all $f\in L^p$.

 $^{^{6}}f \in L^{1}_{loc}$ if $f: \mathbb{R}^{n} \to \mathbb{C}$ is a measurable function with respect to the lebesgue measure, and $\int_{K} |f(x)| dx < \infty$ for any bounded measurable set $K \subset \mathbb{R}^{n}$.

References

- [1] Brown, Russell. *Topics in analysis: Harmonic analysis*, lecture notes, MA773-Spring 2001-University of Kentucky, http://www.ms.uky.edu/~rbrown/courses/ma773/notes.pdf
- [2] Duoandikoetxea, Javier. Fourier Analysis (Graduate Studies in Mathematics, Volume 29). Providence: American Mathematical Society, 2001. doi:10.1090/gsm/029.
- [3] Stein, Elias M. and Shakarchi, Rami. Real Analysis: Measure Theory, Integration, and Hilbert Spaces (Princeton Lectures in Analysis). Princeton: Princeton University Press, 2005.
- [4] Folland, Gerald. Real Analysis: Modern Techniques and Their Applications (Pure and Applied Mathematics). New York: John Wiley & Sons, 1999.