Claudio Sartori

Elaboration from the example given in Sebastian Raschka, 2015

https://github.com/rasbt/python-machine-learning-book

Machine Learning - Lab

Working with Unlabeled Data – Clustering Analysis

Use **DBSCAN**

Overview

In this example we will use an artificial data set

- 1. load the data
- 2. check the shape and plot the content
- 3. observe the plot and decide which are the most interesting columns, to use in the plots of the clusters
 - make a 2d plot of the two most promising columns
 - exclude from the dataset the columns which seem to be only noise</br>
- 4. initialize and fit_predict an estimator for DBSCAN , using the default parameters, then print the results </br>
 - print the estimator to check the parameter values
 - the labels are the unique values of the predicted values
 - print if there is noise
 - if there is noise the first cluster label will be -1
 - print the number of clusters (noise excluded)
 - the other clusters are labeled starting from 0
 - for each cluster (noise excluded) compute the **centroid**
 - plot the data with the centroids and the colors representing clusters
 - use the plot clusters function provided
- 5. find the best parameters using ParameterGrid
 - prepare a dictionary with the parameters lists
 - generate the list of the parameter combinations with ParameterGrid
 - for each combination of parameters
 - initialize the DBSCAN estimator
 - fit predict
 - extract the labels and the number of clusters excluding the noise
 - compute the silhouette score and the number of unclustered objects (noise)
 - filter and print the parameters and the results
 - print if the silhouette score is above a threshold and the percentage of unclustered is below a threshold
- 6. observe visually the most promising combination of parameters

- fit and predict the estimator
- plot the clusters
- compute the silouette scores for the individual samples using the function silhouette_samples
- plot the silhouette scores for each sample using the function plot_silhouette

```
In [ ]: from IPython.display import Image
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import pandas as pd
        from sklearn.cluster import DBSCAN
        from sklearn.metrics import silhouette_score, silhouette_samples
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.model_selection import ParameterGrid
        from sklearn.preprocessing import MinMaxScaler
        %matplotlib inline
        rnd_state = 42 # This variable will be used in all the procedure calls allowing a I
                        # in this way the running can be perfectly reproduced
                        # just change this value for a different experiment
        # the .py files with the functions provided must be in the same directory of the ..
        from plot_clusters import plot_clusters
                                                   # python script provided separately
In [ ]: # help(plot_clusters)
        # help(plot_silhouette)
In [ ]:
```

1. Load the data

```
In []: # data_file = 'ex1_4dim_data.csv'
    # data_file = 'ex1_4dim_mod_data.csv'
    # data_file = 'ex1_data.csv'
    data_file = 'ex1_4dim_data.csv'
    delimiter = ','
In []: # cov_mat = np.cov(X, rowvar = False) # occorre la trasposta
    # import seaborn as sns
    # sns.heatmap(cov_mat, cmap="YLGnBu", annot=True)
```

2. Inspect

```
In [ ]:
Out[ ]: (1500, 4)

In [ ]:
Out[ ]: <seaborn.axisgrid.PairGrid at 0x1f9919c04c0>
```



```
In [ ]: X = X[:,[0,2]]
focus = [0,1]
# focus = [0,2]
```

3. Observing the pairplots

In this simple example you can easily see which are the two most interesting columns.

All the plots will focus on those columns

4. Initialize, fit_predict and plot the clusters

```
In []:
    DBSCAN()

In []:
    There is noise
    There is/are 0 cluster(s)
In []:
```


5. Find the best parameters using ParameterGrid

In []:

Arrange DBSCAN results in a dataframe, for easier presentation and filtering

In []:

In []: sil_thr = 0 # visualize results only for combinations with silhouette above the the unc_thr = 10 # visualize results only for combinations with unclustered% below the

Out[]:		eps	min_samples	n_clusters	silhouette	unclust%
	131	0.24	6.0	2.0	0.291228	2.800000
	140	0.25	6.0	2.0	0.291267	2.733333
	149	0.26	6.0	2.0	0.289177	2.266667
	150	0.26	7.0	2.0	0.261636	3.066667
	158	0.27	6.0	2.0	0.289177	2.266667
	•••					
	244	0.39	9.0	2.0	0.288878	1.000000
	246	0.40	2.0	2.0	0.327134	0.266667
	247	0.40	3.0	2.0	0.327134	0.266667
	248	0.40	4.0	2.0	0.327443	0.333333
	249	0.40	9.0	2.0	0.288878	1.000000

62 rows × 5 columns

6. Observe

- Observe visually the most promising combination of parameters.
- Plot the clusters with the centers
- Plot the silhouette indexs for all the clustered samples

```
In [ ]:
        There are 24 clusters
In [ ]:
        The cluster labels are [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1
        9 20 21 22 23]
In [ ]:
        array([[-6.97417201, 0.64263635],
Out[ ]:
               [-5.6901368 , 0.51840531],
               [-3.66759545, 0.57000177],
               [-7.81821402, 0.61023013],
               [-2.34880835, 0.49459378],
               [ 4.56923456, 0.44549656],
               [ 5.7123243 , 0.7267118 ],
               [ 2.57406902, 0.78610145],
               [-1.26612109, 0.56139268],
               [-2.98343408, 0.90987031],
               [ 3.43364259, 0.50821984],
               [-4.41823681, 0.56166179],
               [ 6.633802 , 0.87812558],
               [-8.41879611, 0.54583064],
               [ 0.6088741 , 0.46699471],
               [ 5.98235741, 0.22087922],
               [ 6.16510539, 0.72873768],
               [ 5.26210782, 0.89027269],
               [-4.79510344, 0.46500772],
               [-1.43949617, 0.15547103],
               [ 5.32206087, 0.23615664],
               [ 2.55382203, 0.33192892],
               [-0.8339198, 0.33004399],
               [ 6.50099844, 0.25441864]])
```


In []: # from plot_silhouette import plot_silhouette # python script provided separately
 from plot_silhouette_w_mean import plot_silhouette # python script provided separately
 plot_silhouette(silhouette,y_db)

A quick look to the width of data ranges

```
In []:
Out[]: array([22.84721703, 0.99878403])
```