# Discrete Time Bit Waveforms

# Bit Sequences to Bit Waveforms

### **Continuous time**



## Discrete time

## Bit Rate, Sampling Frequency, SPB

 The bit time measures the length of time it takes to send one bit.

bit time = SPB · T<sub>s</sub>

$$= \frac{SPB}{F_s}$$

• The bit rate measures the number of bits we can send in a given unit of time.

bit rate = 
$$\frac{1}{\text{bit time}}$$
  
=  $\frac{1}{\text{SPB} \cdot \text{T}_{\text{s}}} = \frac{\text{F}_{\text{s}}}{\text{SPB}}$ 

- We generally want:
  - the bit rate to be large
  - the bit time to be small



# **Example Bit Rate Calculation**

#### **Sample rate**

$$F_s = 1 MHz = 1 MegaHertz$$
  
= 1,000,000 samples / second  
=  $10^6$  samples / second

## If we use 4 samples per bit (SPB = 4), then

$$T_s = (F_s)^{-1} = 10^{-6}$$
 second  
=  $1\mu s = 1$  microsecond

The bit time = 
$$SPB \cdot T_s = 4\mu S$$

The bit rate 
$$= \frac{F_s}{SPB}$$
$$= \frac{1,000,000}{4} Hz = 250 kHz$$

