

Network-aware Service Mesh for across Multi-site K-ONE Playground

NetCS Lab. (Networked Computing Systems Laboratory), GIST Moonjoong Kang, Junshik Shin and JongWon Kim {mjkang, jsshin, jongwon}@nm.gist.ac.kr

OpenNetworkingk

K-ONE Open Playground: K-Cluster-centric Playgrounds Federation

K-Cluster

- Small-sized cluster testbed for SDN/NFV/Cloud
 Flexible, economic logical testbed model which
- Flexible, economic logical testbed model which correspond to Edge-Cloud model, not physical configuration with fixed definition of HW, specification, model
- 2) Characteristics
 - · Software-based monitor & control automation
 - No vender-specific open hardware boxes
 Networking that guarantees high level
 - Networking that guarantees high-level stability/flexibility/bandwidth interconnect
 - One hardware bundle that handle various SDI verification
 Economic Small testbed environment for researchers and
 - Economic Small testbed environment for researchers a developers who hard to obtain such environment

K-ONE Playground

- Single K-Cluster has its limits for Multisite/Domain-related verification
- K-Cluster prototypes are distributed to multiple K-ONE Consortium sites, including GIST, KU, SSU, POSTECH, KAIST, and interconnected over KOREN/KREONET to form K-ONE Playground

Network-aware Service Mesh

Traffic network slice interchange or processing at intermediate node

- Intermediate nodes keep interchanging neighbor node's network status info and monitoring internode network status
- It evaluates how the traffic's QoS is satisfied and select the next-hop network slice for it and send the traffic through it

Security Enforcer

- From Intermediate nodes, Security Enforcer will check the traffic's encryption and ACL filtering
- Plaintext traffics will be encrypted by Security
 Enforcer and re-transmit it, and the recipient's
 Security Enforcer will decrypt it back to plaintext,
 offloading the service's need for encryption

Network-aware Service Mesh Proxy

Encapsulation/Decapsulation

- Encapsulation/Decapsulation to provide separation between Monitor/Control Plane and Data Plane
- During Encapsulating traffic, the metadata used by Network-aware Service Mesh is embedded into the traffic
- Decapsulation detaches the metadata and send it to the proxy's Monitor/Control Plane part and sends the original traffic to function. Therefore no Monitor/Control traffic reaches the function at any form, resulting complete separation of planes

Point of Monitor/Control of traffic

- The policy for inbound/outbound traffic is downloaded from centralized control tower and the proxy processes the traffic by it
- Traffic Monitoring data like request rate, success rate, delay time, response size are collected and sent to the control tower