ematical Foundations of Data Science (COMS4055A) Class Test 2

19 May 2022, 14h00–16h00, RSEH

Name: Row: Student Number: ID Nu	Signature:
----------------------------------	------------

For marking purposes only

Question 1	
Question 2	
Total	

Instructions

- Answer all questions in pen. Do not write in pencil.
- This test consists of 3 pages. Ensure that you are not missing any pages.
- This is a closed-book test: you may not consult any written material or notes.
- You are allocated 2 hours to complete this test.
- There are 2 questions and 60 marks available.
- Ensure your cellphone is switched off.
- You may use a calculator during the test.
- Round off to 2 decimal places and simplify your answers fully.

Ouestion 1

Linear Algebra

[30 Marks]

1. Compute the determinant of A where.

[6]5

$$A = \begin{bmatrix} 2 & 0 & 1 & 2 & 7 \\ 2 & -1 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ -2 & 3 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 & 0 \end{bmatrix}$$

2. Let $B \in \mathbb{R}^{2 \times 3}$ with a singular value decomposition of $B = U\tilde{B}V^T$. Let $x \in \mathbb{R}^3$ be a coordinate vector in terms of the canonical basis. Specifically:

$$U = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \tilde{B} = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} \quad V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{18}} & \frac{2}{3} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{18}} & \frac{-2}{3} \\ 0 & \frac{4}{\sqrt{18}} & \frac{-1}{3} \end{bmatrix} \quad x = \begin{bmatrix} 2 \\ -2 \\ -2 \end{bmatrix} \frac{1}{3}$$

APTES)

(a) Determine the matrix B.

[6]

(b) Compute \hat{x} where $\hat{x} = Bx$.

SVD

- [3]
- (c) Project x onto the basis defined by the right singular vectors (V). [4] Call this new vector \tilde{x} .
- (d) Compute $\hat{x} = \tilde{B}\tilde{x}$. Note \hat{x} is a vector in terms of the basis defined by the left singular vectors.
- (e) Project \hat{x} onto the canonical basis **from** the basis defined by the left singular vectors (U). Hint: use your answer from question 2(d) [3]
- 3. Determine the $\frac{1}{2}$ of A where:

[5]

$$A = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Question 2

Vector Calculus

[30 Marks]

1. Compute the derivative f'(x) for f(x) shown below (note log refers to the natural log). [8]

$$f(x) = log(x^4)sin(x^3)$$

2. Compute the third order Taylor polynomial T_3 of f(x) = sin(x) + cos(x) [7] at $x_0 = \frac{\pi}{2}$ (you don't have to foil out all the powers of $x - x_0$).

Remember that the Taylor polynomial of degree n of $f:\mathbb{R}\longrightarrow\mathbb{R}$ at x_0 is defined as

$$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

where $f^{(k)}(x_0)$ is the kth derivative of f at x_0 (which we assume exists) and $\frac{f^{(k)}(x_0)}{k!}$ are the coefficients of the polynomial, according to **Definition 5.3** of the textbook.

3. What will be the dimensionality of the Jacobian for the following functions differentiated with respect to x (x is a column vector, x^T is a row vector and standard matrix multiplication is used):

(a)
$$f(x) = x^2 + y$$
 for $x \in \mathbb{R}$ and $y \in \mathbb{R}$. [1]

(b)
$$f(x) = x^T A x$$
 for $x \in \mathbb{R}^n$ and $A \in \mathbb{R}^{n \times n}$. [2]

(c)
$$F(x) = xx^T$$
 for $x \in \mathbb{R}^n$. [3]

4. Consider the function $f(x) = \sqrt{(x^3 + \cos(x^3))} - (x^3 + \cos(x^3))^2 + \cos(x^3)$. [9] Depict f(x) as a data flow graph. Make sure to define all intermediate variables.

