RHCEv8 Online Class 22052021 10:00pm RHCSA-sysadmin

- Managing Logical Volumes-LVM

- Installing and Updating Software Packages

recap normal partition on Linux

order:

create 1.2gb std partition with xfs filesystem and mount it persistently on /mnt/disk1

cat /proc/partitions

fdisk /dev/sdb

p n

е

Partition number: **Enter** First sector: **Enter** Last sector: **Enter**

р

/dev/sdb1 2048 10485759 10483712 5G 5 Extended

n

Adding logical partition 5

First sector: **Enter** Last sector: **+1.2G**

W

udevadm settle # fdisk -l /dev/sdb

mkfs.xfs /dev/sdb5

blkid

/dev/sdb5: UUID="3e096655-f2d3-4615-b957-d23916918c77" TYPE="xfs" PARTUUID="ea64c04a-05"

mkdir /mnt/disk1

echo "/dev/sdb5 /mnt/disk1 xfs defaults 0 0" >>/etc/fstab

or

 $\#\ echo\ "UUID=3e096655-f2d3-4615-b957-d23916918c77\ /mnt/disk1\ xfs\ defaults\ 0\ 0" >>/etc/fstab = 1.0006655-f2d3-4615-b957-d23916918c77 /mnt/disk1\ xfs\ defaults\ 0\ 0" >>/etc/fstab = 1.000665-f2d3-4615-b957-d23916918c77 /mnt/disk1\ xfs\ defaults\ 0\ 0" >>/etc/fstab = 1.000665-f2d3-4615-b957-d23916918c7 /mnt/disk1\ xfs\ defaults\ 0\ 0" >>/etc/fstab = 1.0006665-f2d3-4615-b957-d23916918c7 /mnt/disk1\ xfs\ defaults\ 0\ 0" >>/etc/fstab = 1.0006665-f2d3-4615-b957-d23916918c7 /mnt/disk1\ xfs\ defaults\ 0\ 0\ 0 >>/etc/fstab = 1.0006665-f2d3-4615-b957-d23916918c7 /mnt/disk1\ xfs\ defaults\ 0\$

mount -a # df -hT

/dev/sdb5 xfs 1.2G 41M 1.2G 4%/mnt/disk1

Managing Logical Volumes

Logical Volume Management-LVM

- -Logical volumes and logical volume management make it easier to manage disk space.
- -If a file system that hosts a logical volume needs more space, it can be allocated to its logical volume from the free space in its volume group and the file system can be resized.

LVM Definitions

step1- prepare Physical devices

Physical devices are the storage devices used to save data stored in a logical volume

step2- create Physical volumes (PVs)

must initialize a device as a physical volume before using it in an LVM system

step3- create Volume groups (VGs)

Volume groups are storage pools made up of one or more physical volumes

step4- create Logical volumes (LVs) partition

Logical volumes are created from free physical extents in a volume group and provide the "storage" device used by applications, users, and the operating system.

step5- format, mount and use lvm's

Logical Volume Management Components

```
Implement LVM on Linux
step1- prepare Physical devices
# fdisk /dev/sdc
р
n
е
Enter
Enter
Enter
/dev/sdc1
             2048 10485759 10483712 5G 5 Extended
Adding logical partition 5
Enter
+2G
/dev/sdc1
             2048 10485759 10483712 5G 5 Extended
/dev/sdc5
             4096 4198399 4194304 2G 83 Linux
Partition number (1,5, default 5): Enter
/dev/sdc1
             2048 10485759 10483712 5G 5 Extended
/dev/sdc5
             4096 4198399 4194304 2G 8e Linux LVM
# udevadm settle
step2- create Physical volumes (PVs)
# fdisk -l /dev/sdc
# pvcreate /dev/sdc5
# pvs
/dev/sdc5 lvm2 --- 2.00g 2.00g
# pvdisplay /dev/sdc5
step3- create Volume groups (VGs)
# vgcreate <vgname> <existing pvname>
# vgcreate vg1 /dev/sdc5
# vgs
vg1 1 0 0 wz--n- <2.00g <2.00g
# pvs
/dev/sdc5 vg1 lvm2 a-- <2.00g <2.00g
# vgdisplay vg1
step4- create Logical volumes (LVs) partition
# lvcreate -n <lvname> -L +size{K,M,G,T,P} <vgname>
# lvcreate -n lv1 -L +600M vg1
-n name
-L size
-l pe number of block
# lvs
lv1 vg1 -wi-a---- 600.00m
# lvdisplay /dev/vg1/lv1
step5- format, mount and use lvm's
# mkfs.xfs /dev/vg1/lv1
# mkfs.xfs /dev/mapper/vg1-lv1
# blkid
/dev/mapper/vg1-lv1: UUID="9a8d09b8-6dad-4f66-944a-b7a3f7da5625" TYPE="xfs"
# mkdir /mnt/lv1
# echo "/dev/mapper/vg1-lv1 /mnt/lv1 xfs defaults 0 0" >>/etc/fstab
# echo "/dev/vg1/lv1 /mnt/lv1 xfs defaults 0 0" >>/etc/fstab
# echo "UUID=9a8d09b8-6dad-4f66-944a-b7a3f7da5625 /mnt/lv1 xfs defaults 0 0" >>/etc/fstab
# mount -a
# df -hT
/dev/mapper/vg1-lv1 xfs
                          595M 35M 561M 6%/mnt/lv1
```

```
Physical Extents-PE to create LV
what is Physical Extents-PE
Each physical volume is divided in to small chunks of data, known as physical extents-pe
create 740mb lv partition based-on pe
# vgs
vg1 1 1 0 wz--n- <2.00g 1.41g
# vgdisplay vg1
PE Size
              4.00 MiB
                                 pe default block size
# bc
740/4
185
                                 number of pe
# lvcreate -n lv2 -l 185 vg1
# lvs
lv1 vg1 -wi-ao---- 600.00m
lv2 vg1 -wi-a---- 740.00m
# mkfs.ext4 /dev/mapper/vg1-lv2
# mkdir /mnt/lv2
# blkid
/dev/mapper/vg1-lv2: UUID="d6490a55-4c1d-4c09-9247-a5d0065f1328" TYPE="ext4"
# echo "/dev/mapper/vg1-lv2 /mnt/lv2 ext4 defaults 0 0" >>/etc/fstab
# mount -a
# df -hT
/dev/mapper/vg1-lv2 ext4
                          713M 1.5M 660M 1%/mnt/lv2
create Iv partition with vg left over size
# lvcreate -l 100%FREE vg1
                                          if don't put ly name machine will select random name
or
# lvcreate -n lv3 -l 100%FREE vg1
# pvs
/dev/sdc5 vg1 lvm2 a-- <2.00g 0
# vgs
vg1 1 3 0 wz--n- <2.00g 0
# lvs
lv1 vg1 -wi-ao---- 600.00m
lv2 vg1 -wi-ao---- 740.00m
Ivol0 vg1 -wi-a---- 704.00m
LVExtend
extend lv1 to 1.3gb
                                 1.3-600=731.2Mb
extend lv2 to 2.1gb
                                 2.1-740=1410.4Mb
step1- check vg for free space
# vgs
vg1 1 3 0 wz--n- <2.00g 0
# fdisk /dev/sdc
/dev/sdc1
             2048 10485759 10483712 5G 5 Extended
/dev/sdc5
             4096 4198399 4194304 2G 8e Linux LVM
Adding logical partition 6
Enter
Enter
/dev/sdc1
              2048 10485759 10483712 5G 5 Extended
/dev/sdc5
              4096 4198399 4194304
                                          2G 8e Linux LVM
/dev/sdc6
            4200448 10485759 6285312 3G 83 Linux
Partition number (1,5,6, default 6): 6
Hex code (type L to list all codes): 8e
/dev/sdc1
              2048 10485759 10483712
                                          5G 5 Extended
/dev/sdc5
                                          2G 8e Linux LVM
              4096 4198399 4194304
/dev/sdc6
            4200448 10485759 6285312 3G 8e Linux LVM
```

W

```
# udevadm settle
# pvcreate /dev/sdc6
/dev/sdc5 vg1 lvm2 a-- <2.00g 0
             lvm2 --- <3.00g <3.00g
/dev/sdc6
VGExtend
# vgextend <existing vg> <new pv>
# vgextend vg1 /dev/sdc6
# vgs
vg1 2 3 0 wz--n- 4.99g <3.00g
# pvs
/dev/sdc5 vg1 lvm2 a-- <2.00g 0
/dev/sdc6 vg1 lvm2 a-- <3.00g <3.00g
LVExtend
-size
# bc
1.3*1024
1331.2
                ->total extend size
1331.2-600
731.2
                ->append size
2.1*1024
2150.4
2150.4-740
1410.4
-pe block
1.3*1024
                ->total extend size
1331.2
1331.2/4
332
                ->total extend pe blocks
600/4
                ->existing pe block
150
332-150
                ->append pe block
182
2.1*1024
                ->total extend size
2150.4
2150.4/4
537
                ->total extend pe blocks
740/4
185
                ->existing pe block
537-185
352
                ->append pe block
-size
# lvextend -L 1331.2M /dev/vg1/lv1
                                                  ->extend with total size
# lvextend - L + 731.2M / dev/vg1/lv1
                                                  ->extend with append size
-pe block
# lvextend -l 537 /dev/vg1/lv2
                                                  ->extend with total pe block
                                                  -> extend with append pe block
# lvextend -l +352 /dev/vg1/lv2
# lvs
lv1 vg1-wi-ao---- 1.30g
lv2 vg1 -wi-ao---- <2.10g
# df -hT
/dev/mapper/vg1-lv1 xfs
                           595M 35M 561M 6%/mnt/lv1
/dev/mapper/vg1-lv2 ext4 713M 1.5M 660M 1% /mnt/lv2
update kernel
-xfs
# xfs_growfs /dev/mapper/vg1-lv1
-ext2,3,4
# resize2fs /dev/mapper/vg1-lv2
```

```
# df -hT
/dev/mapper/vg1-lv1 xfs
                          1.3G 40M 1.3G 3%/mnt/lv1
DeleteLV
step1-take backup
step2-detach it from Linux
step3-delete lv
# umount /mnt/lv1
# umount /mnt/lv2
# vim /etc/fstab
remove lym records
:wa!
# lvremove /dev/vg1/lv1
Do you really want to remove active logical volume vg1/lv1? [y/n]: yes
# lvremove /dev/vg1/lv2
Do you really want to remove active logical volume vg1/lv2? [y/n]: yes
# lvremove /dev/vg1/lvol0
Do you really want to remove active logical volume vg1/lvol0? [y/n]: yes
VGReduce
# vgs
vg1 2 1 0 wz--n- 4.99g 4.30g
# pvs
/dev/sdc5 vg1 lvm2 a-- <2.00g <1.31g
/dev/sdc6 vg1 lvm2 a-- <3.00g <3.00g
# vgreduce vg1 /dev/sdc5
# vgs
vg1 1 1 0 wz--n- 4.99g 4.30g
# pvs
/dev/sdc5
             lvm2 a-- <2.00g <1.31g
/dev/sdc6 vg1 lvm2 a-- <3.00g <3.00g
DeleteVG
# vgremove vg1
# vgs
# pvs
/dev/sdc5
              lvm2 a-- <2.00g <1.31g
/dev/sdc6
             lvm2 a-- <3.00g <3.00g
DeletePV
# pvremove /dev/sdc5 /dev/sdc6
# pvs
Create VG with custom pe-size
pe default size is 4mb but it can be 8, 16 and 32mb too
# pvcreate /dev/sdc5
# pvs
/dev/sdc5
           lvm2 a-- 1.98g 1.98g
# vgcreate -s 16M vg1/dev/sdc5
# pvs
/dev/sdc5 vg1 lvm2 a-- 1.98g 1.98g
```

vgdisplay vg1 PE Size

16.00 MiB

Installing and Updating Software Packages what is package?

MS-Win application/software == Linux Packages

package architect

https://pkgs.org/

```
firefox-78.10.0-1.el8_3.x86_64.rpm
```

firefox package name 78.10.0 version 1.el8_3 release x86_64 Arch

64bit(x86_64) 64bit Linux 32bit(i686) 32bit Linux noarch 32/64 bit

arch

hostnamectl # uname -m

cat /etc/redhat-release

rpm Extension
*.rmp rhel based
*.deb Debian based
*.sh, *.bin scripts
*.tar source code

how to install package on Linux?

1-rpm 2-yum

1-Red Hat Package Management-rpm

1-1-chceck 1-2-install

1-1-chceck

rpm query -q all -a -р package config file -C doc files -d -| list -i info -f from file status -S dependencies -R

NOTE: don't use options without 'q'

ex:

find out ssh package

rpm -qa

rpm -qa --last

#rpm-qa | wc-l

615

rpm -qa ssh

rpm -qa *ssh

rpm -qa ssh*

rpm -qa *ssh*

rpm -qa | grep "ssh"

openssh-server-8.0p1-4.el8_1.x86_64

rpm -qi openssh-server-8.0p1-4.el8_1.x86_64

rpm -qc openssh-server-8.0p1-4.el8_1.x86_64 # rpm -qd openssh-server-8.0p1-4.el8_1.x86_64

rpm -ql openssh-server-8.0p1-4.el8 1.x86 64

rpm -qs openssh-server-8.0p1-4.el8_1.x86_64

rpm -qR openssh-server-8.0p1-4.el8_1.x86_64

```
check package's script
-after Install
#rpm -q --scripts openssh-server-8.0p1-4.el8_1.x86_64
-before Install
# rpm -qp --scripts zsh-5.5.1-6.el8 1.2.x86 64.rpm
package from file
find out useradd package
# which useradd
/usr/sbin/useradd rpm -qf /usr/sbin/useradd
shadow-utils-4.6-8.el8.x86 64
1-2-install
# rpm -i
                 install
        -e
                 erase/remove
                 verbosity
        -\/
        -U
                 update
        --force forceful install
ex:
install zsh package on Linux
-online
find it out
https://centos.pkgs.org/
# wget http://mirror.centos.org/centos/8/BaseOS/x86_64/os/Packages/zsh-5.5.1-6.el8_1.2.x86_64.rpm
zsh-5.5.1-6.el8 1.2.x86 64.rpm
# rpm -qip zsh-5.5.1-6.el8_1.2.x86_64.rpm
# rpm -qcp zsh-5.5.1-6.el8_1.2.x86_64.rpm
# rpm -qdp zsh-5.5.1-6.el8 1.2.x86 64.rpm
# rpm -qlp zsh-5.5.1-6.el8_1.2.x86_64.rpm
install
# rpm -iv zsh-5.5.1-6.el8_1.2.x86_64.rpm
remove
# rpm -qa | grep "zsh"
zsh-5.5.1-6.el8_1.2.x86_64
# rpm -ev zsh-5.5.1-6.el8 1.2.x86 64
offline
-attach iso image to virtual/physical host
# cat /proc/partitions
# mkdir /media/cdrom
temporary
# mount /dev/sr0 /media/cdrom/
persistent
# echo "/dev/sr0 /media/cdrom iso9660 defaults 0 0" >>/etc/fstab
# mount -a
# ls /media/cdrom
AppStream BaseOS EFI images isolinux LICENSE media.repo TRANS.TBL
# Is /media/cdrom/AppStream/Packages/ | wc -l
5685
# ls /media/cdrom/BaseOS/Packages/ | wc -l
1695
CentOS8 has 2repository:
-AppStream
-BaseOS
# cp /media/cdrom/AppStream/Packages/zsh-html-5.5.1-6.el8 1.2.noarch.rpm /tmp/
# ls /tmp
# rpm -gp --scripts /tmp/zsh-html-5.5.1-6.el8 1.2.noarch.rpm
# rpm -qip /tmp/zsh-html-5.5.1-6.el8_1.2.noarch.rpm
# cp /media/cdrom/AppStream/Packages/httpd-2.4.37-30.module_el8.3.0+561+97fdbbcc.x86_64.rpm /tmp/
# rpm -qp --scripts /tmp/httpd-2.4.37-30.module_el8.3.0+561+97fdbbcc.x86_64.rpm
# rpm -qi /tmp/httpd-2.4.37-30.module_el8.3.0+561+97fdbbcc.x86_64.rpm
```

2-YellowDog Updater Manager-yum

released on rhel5 to exactly solve dependency problem.

yum has 2types on host:

1-yum server, provide yum repository

2-yum client, who will connect to yum server through http://ftp://nfs://file://

how yum client connects to yum server step1-need link

http://content.example.com/rhel8.0/x86 64/dvd/BaseOS http://content.example.com/rhel8.0/x86 64/dvd/AppStream

ftp:// nfs://

step2-config yum file on client

vim /etc/yum.repos.d/rhel.repo

[<name>] ->yum id name=<name> ->yum name

baseurl=http:// ->link access to yum server gpgcheck=0 ->Gnu Privacy Guard 0/1 enabled=1 ->enable/disable repository 0/1

:wq!

yum repolist

what about host, who doesn't have access to lan/network

need to config local yum repository on single host

steps

1-load iso image

2-config local yum repository

1-load iso image

cat /proc/partitions

mkdir /media/cdrom

temporary

mount /dev/sr0 /media/cdrom/

persistent

echo "/dev/sr0 /media/cdrom iso9660 defaults 0 0" >>/etc/fstab

mount -a

ls /media/cdrom

AppStream BaseOS EFI images isolinux LICENSE media.repo TRANS.TBL

vim /etc/yum.repos.d/rhel.repo

[App]

name=AppStream

baseurl=file:///media/cdrom/AppStream/

gpgcheck=0 enabled=1

[Base]

name=BaseOS

baseurl=file:///media/cdrom/BaseOS/

gpgcheck=0

enabled=1

:wq!

yum repolist

yum list installed

yum list | wc -l

yum search apache

httpd.x86_64 : Apache HTTP Server

yum list http*

yum install httpd.x86_64 -y

yum remove httpd.x86_64

yum update httpd.x86_64

yum history

yum list openssh # yum update openssh -y

Install 3rd party online repository

1-install epel

https://dl.fedoraproject.org/pub/epel/

wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

rpm -qip epel-release-latest-8.noarch.rpm # rpm -iv epel-release-latest-8.noarch.rpm or

yum install epel* -y

How to install package from specific repository?

yum list ansible
yum --enablerepo=epel install ansible
yum --enablerepo=<repo id> install ansible