Страхование и актуарная математика Александр Широков ПМ-1701

Преподаватель:

Радионов Андрей Владимирович

Санкт-Петербург 2020 г., 7 семестр

Список литературы

[1]

Содержание

1	Кон	нспекты лекций	3
	1.1	Микроэкономические основы страхования	3
		1.1.1 01.09.2020	3
		1.1.2 03.09.2020	3
		1.1.3 04.09.2020	5
		1.1.4 08.09.2020	6
	1.2	HT1 Свойства функции полезности	10
	1.3		13
	1.4	Страховой контракт	14
	1.5	23.09.2020	14
2	Mo,	делирование риска	15
	2.1	Распределение индивидуального ущерба. Распределение услог	B -
		ного и безусловного ущерба, их ожидания и дисперсии	15
	2.2	Модель индивидуального риска, функция распределения и	
		характеристики суммарного ущерба. Преимущества и недо-	
		статки модели индивидуального риска. Подходы к оценке	
		модели	17
	2.3	Модель коллективного риска, функция распределения и	
		характеристики суммарного ущерба. Преимущества и недо-	
		статки модели коллективного риска. Подходы к оценке мо-	
		дели	20
	2.4	Производящая функция коллективного риска	21
	2.5	Отличия моделей коллективного и индивидуального риска	21
	2.6	Примеры считающих распределений. Смеси	22
	2.7	Домашнее задание. Моделирование рисков (I)	23
	2.8	Считающие распределения 05.11	26
	2.9	Теория экстремальных значений	27
		2.9.1 Метод анализа распределения максимального ущер-	
		ба за периол	27

2.10	Распределение максимума из случайного числа случайных	
	величин	29
2.11	Метод анализа распределения превышения заданного порога	30

1 Конспекты лекций

1.1 Микроэкономические основы страхования

$1.1.1 \quad 01.09.2020$

Страхование вклада - если у банка возникают проблемы, то нам возвращают деньги банк в некоторой границе. Страхование - выход США из великой депрессии. Застраховать в принципе можно все что угодно.

$1.1.2 \quad 03.09.2020$

В ситуациях неопределенностей человек принимает решение не на основании математического ожидания $E\xi$, а на основании математического ожидания некоторой функции полезности $Eu(\xi)$, где u - некая функция полезности. За w - обозначим капитал, а за a - плата за риск, ξ - потенциальные убытки. Тогда ситуация будет описываться:

$$Eu(w-\xi)$$
 $u(w-a)$

Пусть W=100 и случайая величина убытков принимает следующие значения: 0 с вероятностью 0.9,1 с вероятностью 0.05,20 с вероятностью 0.05. Функция полезности - $u(x)=\ln(x+1)$. Математическое ожидание убытка $E\xi=0.55$. Приходит банк и говорит продать за 60.

 $w-\xi$ - начальное состояние, w-a - возможное состояние, сравнение полезностей

Посчитаем:

$$Eu(w-\xi) = E\ln(100-\xi+1) = \ln(101-0+1)\cdot 0.9 + \ln(100-1+1)\cdot 0.05 + \ln(100-10+1)\cdot 0.05 = 4.60941$$

$$E\ln(100 + 1 - 0.55) = 4.60966$$

Есть $W, u(\xi), \xi, f_{\xi}(x)$:

$$E(u(W - \xi)) = \int_{-\infty}^{\infty} u(W - x) f_{\xi}(x) dx$$

Вместо бесконечностей используются границы интегрирования.

$$\Delta u = \frac{\Delta W}{W}$$
 $du = \frac{dW}{W}$ $u = \ln W$

Определение 1.1.1. Пусть есть набор случайных величин ξ и будем задавать предпочтение подобным образом $\xi \geq \eta$ - предпочтение нестрого отношение, если существуют какие-то пары, которые находятся в бинарном отношении.

Мы будем говорить про свойства отношений:

- 1. Пиолнота: $\xi \geq \eta$ или $\eta \geq \xi$
- 2. Транзитивность: $\xi \geq \eta, \eta \geq \varepsilon \Rightarrow \xi \geq \varepsilon$
- 3. Из первого следует рефлексиновть

Будем говорить, что данное бинарное отношение является отношением *эквивалентности* - рефлексивно, транзитивно, симметрично.

Определение 1.1.2. Будем говорить, что $\xi \geq \eta$ и $\xi \not\sim \eta$ - отношение строго порядка

Определение 1.1.3. $V:\Xi\to R$ - функция V сохраняет упорядочивание, если $\xi\ge\eta$, то:

$$V(\xi) \ge V(\eta)$$

Определение 1.1.4. Пусть есть набор \mathbb{A}_j . $B \in A$ является полным по упорядочиванию, если для любых элементов $a, b \in A$ существует элемент $\exists c \in B$, что либо $a \geq c > b$ либо $a > c \geq b$.

Теорема 1.1. $Ha \Xi \leq V$ существует отношение, сохраняющее отношение, тогда и только тогда, когда в Ξ существует счетно или конечное подмножество плотное по упорядочиванию.

Как построить функцию полезности? Построим отношение порядка на множестве товаров, строим кривые безразличия - классы эквивалентности (все элементы внутри эквивалентны между собой), они не пересекаются.

Построим прямую, единичный вектор (бисскетриса). На что нужно умножить единичный вектор, чтобы попасть в точку пересечения, и высчитываем функцию полезности.

$$V^*(\xi) = Eu(\xi) = \sum u(x_i)p_i = V(x_1)p_1 + V(x_2)p_2$$

$$\xi : x_1 \mapsto p_1, x_2 \mapsto p_2$$

Мы можем выбрать функцию полезности таким образом

$1.1.3 \quad 04.09.2020$

Пусть случайная величина принимает значения $x\mapsto p$ и $y\mapsto 1-p$. Введем обозначение для такой случайной величины:

$$(x,y)_p$$

Наложим некоторые ограничения:

- Тогда индивид индеферентен: $(x,y)_1 \sim x$. Например: пусть ξ равномерно распределен на отрезке [0,1]: $\xi \sim \mathbb{U}[0,1]$.
- $(x,y)_p \sim (y,x)_{1-p}$
- $((x,y)_p,y)_q\sim (x,y)_{pq}$ Пример: $(1,(2,3)_{\frac{1}{2}})_{\frac{1}{2}}$ для игры $1\mapsto \frac{1}{2},2\mapsto \frac{1}{4},3\mapsto \frac{1}{4}$

Ограничения:

- $\{p \in [0,1]: (x,y)_p \ge z\}$ замкнутное множество
- $\{p \in [0,1]: z \geq (x,y)_p\}$ замкнутное множество $\forall x,y,z \in \Xi$
- $x \sim y : (x, z)_p \sim (y, z)_p$
- $\exists w, b : \forall \xi \in \Xi$ выполняется, что $w \geq x \geq b$
- $(b, w)_p \ge (b, w)_q \Leftrightarrow p > q$

Теорема 1.2. Если Ξ и на нём введено отношение предпочтения \geq , то найдётся такая функция V, что

$$V((x,y)_p) = pV(x) + (1-p)V(y)$$

$$Eu(\xi) = (x,y)_p$$

$$V(\xi) = Eu(\xi)$$

$$u(y) : R \to R, V : \Xi \to R$$

Доказательство: Хэливэриан.

Рассмотрим некоторый функционал $V((x,y)_p)$ и применим к нему некоторое преобразование:

$$f(V((x,y)_p)) = f(V(x) \cdot p + V(y) \cdot (1-p)) = f(V(x)) \cdot p + f(V(y)) \cdot (1-p)$$

и это линейная функция - линейное преобразование.

Пример:
$$u(x) = \ln(x+1)$$
, ξ , $f_{\xi}(y)$, $Eu(\xi) = \int u(x)f_{\xi}(x)dx$
 $u_1(x) = a\ln(x+1) + b$, $a > 0$

$$Eu_{1}(\xi) = \int a \ln(x+1) + bf_{\xi}(x) dx = a \int \ln(x+1) f(x) dx + b \int f(x) dx = a \int u(x) f_{\xi}(x) dx + b \int f(x) dx = a \int u(x) f_{\xi}(x) dx =$$

следовательно функционал является единственным с точностью до линейного преобразования.

1.1.4 08.09.2020

Напоминание:

$$V(\xi) = \sum p_j V(x_j)$$

и при дискретных ξ :

$$V(x_j) = u(x_j)$$

Рассмотрим некоторые свойства, которыми должна обладать функция полезности:

- 1. Функция начинается в нуле из-за монотонного преобразования
- 2. Функция полезности u(x) не убывает (возрастает):

3. Функция u(x) вогнутая.

$$u(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda u(x_1) + (1 - \lambda)u(x_2)$$

Заметим, что если функция полезности вогнутая, то находясь в ситуации неопределенности, индивид будет согласен заплатить, чем иметь состояние неопределенности. Человек хочет иметь детерменированный выигрыш, нежели при ситуации неопределенности это происходит из-за вогнутости функции.

- есть функция вогнута, то говорят RISK AVERSION
- если выпукла, то говорят RISK LOVING
- если функция линейна, то RISK NEUTRAL

Почитать здесь можно.

4.

$$Eu(\xi) \le u(E(\xi))$$

Сравнивает полезность ситуации u(w-a) - нет риска, чуть меньше денег, и есть риск и чуть больше денег - $Eu(w-\xi)$ и если больше, то он соглашается - страхование возможно для некоторого a и человек готов заплатить. С помощью неравенства Йенсена:

$$Eu(w - \xi) \le u(E(w - \xi)) = u(w - E\xi)$$

$$u(w-a) \ge Eu(w-\xi) \Leftrightarrow u(w-E\xi) = u(w-a)$$

и следовательно мы сможем найти $a=E\xi$ из которого будет выполняться свойство.

Пример 1. Возьмем экспоненциальную функцию полезности:

$$u(x) = 1 - e^{-\lambda x}$$

При желании для любой ограниченной функции можно подобрать лотерею так, в котороый можно подбирать математическое ожидание, чтобы человек всегда играл.

В данном случае у нас ограниченная функция и ограниченное математическое ожидание.

Пример 2. Степенная функция полезности:

$$u(x) = x^{\alpha}, \alpha < 1$$

Пример 3. Квадратичная функция полезности:

$$u(x) = bx - cx^2 : b, c > 0, x < \frac{b}{2c}$$

ЗАДАЧА 1. Пусть есть инвестор с капиталом w и он может вложить деньги в 2 неколлериованных $\xi_1 \sim N(\mu_1, \sigma_1^2)$ и $\xi_2 \sim N(\mu_2, \sigma_2^2)$.

 $u(x)=1-e^{-\lambda x}$. ξ_1,ξ_2 - это доходность, которая выражена в процентах. В какой пропорции нужно разделить капитал, чтобы максимизировать нашу полезность.

Решение

Введём доли α и 1 — α . Тогда доход инвестора будет вычисляться по формуле:

$$s = \alpha w(1 + \xi_1) + (1 - \alpha)w(1 + \xi_2)$$

Будем максимизировать математическое ожидание от функции полезности:

$$Eu(s) = E(1 - e^{-\lambda \cdot s}) = 1 - E\left(e^{-\lambda(\alpha w(1+\xi_1)+(1-\alpha)w(1+\xi_2))}\right) \to \max_{\alpha}$$

Раскроем скобки и упростим выражение:

$$1 - E\left(e^{-\lambda(\alpha w(1+\xi_1) + (1-\alpha)w(1+\xi_2))}\right) = 1 - E\left(e^{-\lambda w(\alpha(1+\xi_1) + (1-\alpha)(1+\xi_2))}\right) =$$

$$= 1 - E\left(e^{-\lambda w(\alpha\xi_1 + 1 + \xi_2 - \alpha\xi_2)}\right) = 1 - e^{-\lambda w}E\left(e^{-\lambda w(\alpha\xi_1 + \xi_2(1-\alpha))}\right) \to \max \Rightarrow$$

$$E\left(e^{-\lambda w(\alpha\xi_1 + \xi_2(1-\alpha))}\right) \to \min$$

Так как величины неколлерированы, то:

$$Ee^{-\lambda w\alpha\xi_1} \cdot Ee^{-\lambda w\xi_2(1-\alpha)} \to \min$$

Сделаем замену $\beta = -w\lambda\alpha$ и попытаемся взять следующий интеграл

$$Ee^{-w\lambda\alpha\xi_1} = Ee^{\beta\xi_1} = \int_{-\infty}^{\infty} e^{\beta x_1} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}} dx_1$$

Известно, что производящая функция моментов для нормального распредления есть следующая величина:

$$Ee^{\beta\xi_1} = e^{\mu\beta + \frac{\beta^2\sigma_1^2}{2}}$$

Тогда преобразуем выражение:

$$Ee^{-\lambda w\alpha\xi_1} \cdot Ee^{-\lambda w\xi_2(1-\alpha)} = e^{\left(-\mu_1 w\lambda\alpha + \frac{w^2\lambda^2\alpha^2\sigma_1^2}{2} - \mu_2 w\lambda(1-\alpha) + \frac{w^2\lambda^2(1-\alpha)^2\sigma_2^2}{2}\right)} \to \min_{\alpha}$$
$$-w\lambda\mu_1 + w^2\lambda^2\alpha\sigma_1^2 + w\lambda\mu_2 - w^2\lambda^2(1-\alpha)\sigma_2^2 = 0$$

$$\alpha = \frac{\mu_1 - \mu_2 + w\lambda\sigma_2^2}{w\lambda\sigma_1^2 + w\lambda\sigma_2^2}$$

Пусть $\mu_1 = \mu_2 : \alpha = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$. В какой пропорции нужно разделить, чтобы минимизировать дисперсию.

$$D(w\alpha(1+\xi_1)) + D(w(1-\alpha)(1+\xi_2)) = w^2\alpha^2 D\xi_1 + w^2(1-\alpha)^2 D\xi_2 = w^2\alpha^2 \sigma_1^2 + w^2(1-\alpha)^2 \sigma_2^2$$
$$2\alpha w^2 \sigma_1^2 - 2w^2(1-\alpha)\sigma_2^2 = 0$$
$$\alpha = \frac{\sigma_2^2}{\sigma_1^2 + \sigma_2^2}$$

Решение, максимизирующее полезность соответствует решению, минимизирующую диспесию портфеля. Совпадения есть в случае $\mu_1 = \mu_2$. Интересно посмотреть через призму полезности.

Активы, различные портфели, ожидание и дисперсия. μ, σ - спектр доходности. Почему он определяется выпуклой фигурой.

Стандартное отклонение - выпуклая функция. Если есть возможность выбрать из различных портфелей, то мы можем сформировать любой портфель. Данное множество - плотно , сплошное (говорим про овал).

Такое множество называется ЭФФЕКТИВНОЕ МНОЖЕСТВО. Набор не даёт конкректный портфель, потому что мы не понимаем в чём разница между портфелями. **Критерий выбора** - поиск точки, в которой полезность максимальная - на кривой выбирает тот портфель, который дает максимальная полезность и в этом случае будет достигаться баланс между двумя теориями.

HT: кривые безразличия - те портфели, между которыми клиент индеферентен. В осях μ , σ и если рассмотреть одинаково полезные портфели, то они будут образовывать выпуклую кривую. И тогда решение - это точка касательной множества всех портфелей и совпадать с базовыми теорями кривых безразличия.

1.2 НТ1 Свойства функции полезности

1. Определить, какую максимальную сумму агент с капиталом 100 и функцией полезности $u(x) = 5x - 0.01x^2$ согласится заплатить, чтобы избавиться от потенциального ущерба, принимающего значения 0, 10, 20, 30 с равными вероятностями.

Решение 1. Величина ушерба - случайная величина с данным (известным) распределением, обозначим за ξ .

Величина $E\xi = \sum_{i=1}^4 p_i \xi_i = 15$ - ожидаемая величина ущерба в следующий промежуток времени. u(x) - функция полезности от капитала, а a - величина, которую агент может заплатить, если хочет избавиться от риска.

Необходимо сравнить две величины. Первая - $E(u(w-\xi))$ - ожидаемая полезность при отказе от платы. Вторая - u(w-a) - ожидаемая полезность при выплате суммы a за полный отказ от риска.

Так как u(w)' > 0, а w(w)'' < 0, то есть функция возрастает и вогнута, то по неравенству Йенсена:

$$E(u(w-\xi)) \le u(E(w-\xi)) = u(w-E\xi)$$

Для того, чтобы найти максмальную сумму, которую агент согласится заплатить, необходимо приравнять ожидаемую полезность при отказе и ожидаемую полезность при выплате суммы a и решить полученное равенство относительно a:

$$E(u(w - \xi)) = u(w - a)$$

$$E(u(w - \xi)) = \sum_{i=1}^{4} u(w - \xi_i) p_i = \sum_{i=1}^{4} p_i (5(w - \xi_i) - 0.01 \cdot (w - \xi_i)^2) = 351.5$$

$$u(w - a) = 5(100 - a) - 0.01(100 - a)^2 = 351.5$$

$$a = 15.3784$$

2. Определить, при каком значении капитала агент из предыдущей задачи будет наиболее интересен страховой организации, а при каком - наименее интересен.

Peшение 2. В прошлой задаче мы определились, что максимальную величину агент готов будет заплатить при выполнении равенства:

$$E(u(w - \xi)) = u(w - a)$$

Агент будет наиболее интересен компании, когда $a \to \max$ (когда выплачивается агентом максимальное количество денег) и менее интересен, когда $a \to \min$.

Идея: выразить a через w и найти максимум и минимум функции по w.

Получим квадратное уравнение относительно w:

$$0.01a^2 - a \cdot (0.02w + 5) + 0.3w - 78.5 = 0$$

$$a = -250 + w \mp \sqrt{70350 - 530w + w^2}$$

Осталось выбрать, как ограничивать u, a и w. a, наверное, не может быть меньше нуля, тогда это означает, что страховая компания должна заплатить. Тогда, в одном из решений, решая относительно w, получим, что $a_{min} = a(w_{min}) = a(261.667)$.

Дальше стоит вопрос как ограничивать u и w. Снизу есть ограничение по w: 0, так как капитал не может быть отрицтаельным. Что есть верхняя граница w? Два варианта: точка, в которой функция полезности начинает убывать, либо точка, в которой функция полезности равна нулю.

Тогда ответы, соответственно, $w_{max} = 200$ или $w_{max} = 500$

3.1 Решить первую задачу в случае, если потенциальный ущерб определяется случайной величиной с плотностью распределения $f_{\xi}(x) = a\sqrt{25-x^2}, x \in [0;5]$, а функция полезности есть: $u(x) = \ln x = \log_e x$ или $u(x) = \lg x = \log_{10} x$

Решение 3.

$$E(u(w-\xi)) = u(w-a)$$

$$u(w-a) = \ln(100-a)$$

$$E(u(w-\xi)) = E(\ln(100-\xi)) = \int_{0}^{5} \ln(100-x)a\sqrt{25-x^2}dx$$

Нужно взять интеграл, если нечего будет делать, $a \approx 0.05$

4. Инвестор хочет распределить свой капитал между ценной бумагой, доходность по которой определяется $\xi_1 \sim N(\mu_1, \sigma_1^2)$ с матемматическим ожиданием 5% и стандартным отклонением 2% и безрисковой ценной бумагой с фиксированной доходностью 4%.

Какую часть своего капитала инвестору стоит вложить в первую ценную бумагу, если его функция полезности есть $u(x)=1-e^{-ax}$

Решение 4. Введём доли α и 1 — α . Тогда доход инвестора вычислим по формуле:

$$s = w\alpha(1 + \xi_1) + 1.04 \cdot w(1 - \alpha)$$

Будем максимизировать математическое ожидание от функции полезности:

$$Eu(s) = E(1 - e^{-\lambda \cdot s}) = 1 - E\left(e^{-\lambda(w\alpha(1+\xi_1)+1.04 \cdot w(1-\alpha))}\right) \to \max_{\alpha}$$

Раскроем скобки и упростим выражение:

$$1 - e^{-\lambda w \cdot 1.04} \cdot Ee^{-\lambda w \cdot \alpha(\xi_1 - 0.04)} \to \max_{\alpha}$$

$$Ee^{-\lambda w \cdot \alpha(\xi_1 - 0.04)} \to \min_{\alpha}$$

Сделаем замену $\beta = -w\lambda\alpha$ и попытаемся взять следующий интеграл

$$Ee^{-w\lambda\alpha\xi_1} = Ee^{\beta\xi_1} = \int_{-\infty}^{\infty} e^{\beta x_1} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_1 - \mu_1)^2}{2\sigma_1^2}} dx_1$$

Известно, что производящая функция моментов для нормального

распредления есть следующая величина:

$$Ee^{\beta\xi_1} = e^{\mu\beta + \frac{\beta^2\sigma_1^2}{2}}$$

$$Ee^{-\lambda w\alpha\xi_1} = e^{-\mu_1 w\lambda\alpha + \frac{w^2\lambda^2\alpha^2\sigma_1^2}{2}}$$

$$-\mu_1 w\lambda + w^2\alpha\lambda^2\sigma_1^2 = 0$$

$$\alpha = \frac{\mu_1}{w\lambda\sigma_1^2} = \frac{5}{w \cdot a \cdot 4}$$

5. Решить предыдущую задачу, если инвестор распределяет капитал между двумя ценными бумагами, доходности которых распределены нормально с математическими ожиданиями μ_1, μ_2 , стандартными отклонениями σ_1, σ_2 и коэффициентов корреляции ρ .

$$cov(\xi, \eta) = \sqrt{D\xi \cdot D\eta} \cdot \rho(\xi, \eta)$$

$$E(\xi\eta) - E\xi\eta = \sqrt{D\xi \cdot D\eta} \cdot \rho(\xi, \eta)$$

$$E(\xi\eta) = \sqrt{D\xi \cdot D\eta} \cdot \rho(\xi, \eta) + E\xi\eta$$

$$D\xi = E\xi^2 - (E\xi)^2$$

$$E(\xi\eta) = \sqrt{(E\xi^2 - (E\xi)^2) \cdot (E\eta^2 - (E\eta)^2)} \cdot \rho(\xi, \eta) + E\xi\eta \to \min_{\alpha}$$

Нам известно всё, кроме $E\xi^2$

1.3

Хотим понять, кто менее склонен к риску. Давайте предлагать игру с маленькими выигрышами, игра характеризуется маленькой дисперсией. Кто готов заплатить в этой игре больше, то тем меньше человек склонен к риску.

Давайте разложим правую и левую часть в ряды Тейлора в окрестности капитала $x_0=w$

Не умоляя общности положим $E\xi=0$. Чем коэффициент больше тем будет больше Risk Aversion. Данный коэффициент называется Эрроу-Пратт. Первая производная отрицательная, а вторая положительная.

Если коэффициент Эророу-Прата возрастает, то чем больше капитал, тем больше мы готовы к риску. Такую экспоненциальную функцию называют Constant Avertion, Relative COnst Aversion

Каро-утилити. А

CARA

Аксиоматика задних чисел

1.4 Страховой контракт

Есть w, ξ и a:

$$Eu(w-\xi) \leqslant u(w-a)$$

Страхователь - я, страховщик - они. Что странивает для себя страховщик. $u(w_1)$ - начальное состояние, а альтернатива $Eu(w_1 + a - \xi)$

$$u(w_1) \leqslant Eu(w_1 + a - \xi)$$

Задача: компания будет платить только половину убытка.

Страхование эксцедента

$1.5 \quad 23.09.2020$

Капитал - w, риск - ξ , страховая премия - a, величина, которую вы получите при ущербе - $I(\xi)$:

$$Eu(w-\xi)$$
 $E(u(w-a-(\xi-I(\xi))))$

Если убыток большой, то остальную сумму заплатит страховая компания

Теорема Фон-Неймана-Моргенштерна

Люди в среднем выбираби чаще 2 чем 1 и 4 чем 3, но это противоречит предпосылке поведения теории, потому что если 2 и 4 лучше 1 и 3 (люди выбирают), то тогда они должны быть лучше, а вероятности однаковы.

2 Моделирование риска

Основные понятия:

2.1 Распределение индивидуального ущерба. Распределение условного и безусловного ущерба, их ожидания и дисперсии

Под распределением ущерба понимают вероятностное распределение, увязывающее частоту возникновения и размер ущерба. Это наиболее простая модель, позволяющая количественно исследовать неопределенность величины ущерба в контексте управления рисками.

Начнём с ситуации, когда во внимание принимается та информация, которая касается уже возникшего ущерба. Данная модель не учитывает: данные по объектам, по которым ущерб не возникал, неполнота сведений о возникновении ущерба.

Итого: ущерб - случайная величина. Если известна величина максимально возможного ущерба M, то распределение сосредоточено на отезке [0; M].

Нас интересует статистика по тем объектам, по которым имел место ущерб, так и по тем носителям риска, по которым **его не было**.

Определение 2.1.1. Доля объектов в портфеле, которых не было, можно рассматривать как вероятность отсутствия ущерба по одному наугад выбранному риску.

Поэтому будем использовать иную случайную величину X в качестве более адекватной модели ущерба. Она будет с ненулевой вероятностью принимать 0, отражающее **отсутствие ущерба**.

Пусть Y - случайная величина размера ущерба. Введём дополнительную индикаторную величину \mathbb{I} :

$$\begin{cases} 1 - \text{ущерб возник} \\ 0 - \text{нет} \end{cases}$$

С помощью данной случайной величины моделируется неопределенность, связанная с возникновением ущерба - неопределенность числа неблагоприятных событий.

$$F_Y(x) = F_{\xi|\xi>0}(x) = P(\xi < x|\xi>0) = \frac{F_X(x) - P(X=0)}{P(X>0)} = \frac{F_X(x) - p}{1 - p} \quad x > 0$$

где $F_X(x)$ - распределени ущерба, реализовался он или нет.

Выразим функцию распределения ущерба:

$$F_X(x) = P(X < x) = P(X < x | X = 0) \cdot P(X = 0) + P(X < x | X > 0) \cdot P(X > 0) =$$

$$= p + F_{\xi | \xi > 0}(x) \cdot (1 - p) = p + F_Y(x) \cdot (1 - p)$$

где
$$p = \lim_{x \to 0+} F_X(x)$$

Можно записать, как $X = I \cdot Y$

Так же можно найти плотность при x > 0:

$$f_X(x) = (1 - p) \cdot f_Y(x)$$

$$p + (1 - p) \int_{0}^{\infty} f_{Y}(x) dx = 1$$

Вычислим распредление случайной величины $\xi = I \cdot Y$:

$$\mathbb{E}\xi = \mathbb{E}Y \cdot P(I=1) = (1-p) \cdot \mathbb{E}Y = (1-p)\mu$$

$$\mathbb{E}\xi^2 = (1-p)EY^2 = (1-p)(DY + (EY)^2) = (1-p)(\sigma^2 + \mu^2)$$

$$\mathbb{D}\xi = (1-p)DY + (1-p)(EY)^2 - (1-p)^2(EY)^2) = (1-p)\mathbb{D}(Y) + (1-p)p(\mathbb{E}(Y))^2 =$$

$$= EIDY + DI(EY)^2 = (1-p)\sigma^2 + p(1-p)\mu^2$$

Найдем через условные математические ожидания:

$$E\xi = E(IY) = E(E(Y|I)) = E(\mu I) = (1-p)\mu$$

$$D\xi = D(IY) = E(D(Y|I)) + D(E(Y|I)) = E(\sigma^2 I) + D(\mu I) = (1-p)\sigma^2 + p(1-p)\mu^2$$

2.2 Модель индивидуального риска, функция распределения и характеристики суммарного ущерба. Преимущества и недостатки модели индивидуального риска. Подходы к оценке модели.

Совокупный ущерб - сумма случайных величин индивидуальных ущербов:

$$S_{\rm ind} = \sum_{j=1}^{n} \xi_j$$

где n - объём портфеля. Часть слагаемых соответствующих тем рискам, по которым не было ущерба, равна нулю.

Распределение сумм случайных величин может осуществляться с помощью:

- свёртки
- производящие функции моментов

Пусть ξ,η - непрерывные случайные величины, тогда по формуле свёртки:

$$f_{\eta+\xi} = \int_{-\infty}^{\infty} f_{\eta}(x) f_{\xi}(z-t) dt$$

Теперь найдем функцию распределения суммы двух непрерывных случайных величин:

$$F_{\eta+\xi}(s) = P(\eta + \xi \leqslant s) = P(\eta + \xi \leqslant s)$$

Для двух дискретных неотрицательных случайных величин мы можем воспользоваться формулой полной вероятности и записать в виде:

$$F_{\eta+\xi}(s) = \sum_{\text{no BCEM } y \leqslant s} P(\eta+\xi \leqslant s|\eta=y) \cdot P(\eta=y) = \sum_{\text{no BCEM } y \leqslant s} P(\xi \leqslant s-y|\eta=y) \cdot P(\eta=y)$$

Если ξ и η независимы, то сумма можем быть переписана:

$$F_{\xi+\eta}(s) = \sum_{\text{fig beem } y \leqslant s} F_{\eta}(s-y) f_Y(y)$$

$$f_{\xi+\eta}(s) = \sum_{\text{for BCEM } y \leqslant s} f_{\eta}(s-y) f_Y(y)$$

Для непрерывных неотрицательных случайных величин формулы имеют вид:

$$F_{\xi+\eta}(s) = \int_{0}^{s} P(\xi \leqslant s - y | \eta = y) f_{\eta}(y) dy$$
$$F_{\xi+\eta}(s) = \int_{0}^{s} F_{\xi}(s - y) f_{\eta}(y) dy$$
$$f_{\xi+\eta}(s) = \int_{0}^{s} f_{\xi}(s - y) f_{\eta}(y) dy$$

Обозначение свертки для двух функций распределения $F_{\xi}(x)$ и $F_{\eta}(x)$ - $F_{\xi}*F_{\eta}.$

Для определения распределения суммы более чем двух случайных величин можем использовать итерации процесса свёркти. Для $S=\xi_1+\ldots+\xi_n$, где ξ_i - независимые случайные величины, F_i обозначает функцию распределения случайной величины ξ_i , а $F^{(k)}$ - функция распределения $\xi_1+\ldots+\xi_k$, мы получим:

$$F^{(2)} = F_2 * F^{(1)} = F_2 * F_1$$

$$F^{(3)} = F_3 * F^{(2)}$$

$$F^{(4)} = F_4 * F^{(3)}$$

$$f^{(2)} = \int_0^x f_1(x - y) f_2(y) dy$$

$$f_{\xi_1 + \xi_2 + \xi_3} = f^{(3)}(x) = \int_0^x f^{(2)}(x - y) f_3(y) dy$$

Достоинством свёртки является получение точного распределения. Недостаток - больший объём вычислений.

Воспользуемся производящими функциями моментов, которая для случайной величины ξ определяется соотношением:

$$\psi_{\xi}(t) = \mathbb{E}e^{t\xi}$$

$$\psi_{\xi_1 + \xi_2} = E\left(e^{t(\xi_1 + \xi_2)}\right) = E\left(e^{t\xi_1}e^{t\xi_2}\right)$$

В случае независимости:

$$\psi_{\xi_1 + \xi_2} = E\left(e^{t(\xi_1 + \xi_2)}\right) = E\left(e^{t\xi_1}e^{t\xi_2}\right) = E(e^{t\xi_1}) \cdot E(e^{t\xi_2}) = \psi_{\xi_1} \cdot \psi_{\xi_2}$$
$$\psi_{\xi_1 + \xi_2} = \psi_{\xi_1} \cdot \psi_{\xi_2}$$

Это свойство распространяется на сумму любого детерменировнного числа независимых случайных величин:

$$\psi_{S_{\text{ind}}}(t) = \prod_{k=1}^{n} \psi_{\xi_k}(t)$$

Ограничением данного подхода является то, что производящие функции моментов определеные не для всех типов распределений. Если одинаково распределеные, то модель индивидуального риск будет относиться к тому же классу, что и распределение каждого индивидуального ущерба. Если $n \to \infty$, то можно воспользовться асиметотическими свойствами.

Посчитаем математическое ожидание и дисперсию:

$$E(S_{ind}) = \sum_{j=1}^{n} E(\xi_j)$$

$$D(S_{ind}) = \sum_{j=1}^{n} D(\xi_j) + 2 \sum_{j=1}^{n-1} \sum_{k=j+1}^{n} \text{Cov}(\xi_j, \xi_k)$$

Для независимых случайных величин:

$$E(S_{ind}) = n(1-p)\mu$$

$$D(S_{ind}) = n(1-p)\sigma^2 + np(1-p)\mu^2$$

Для неоднорожных портфелей (то есть для портфелей, имеющих различное распределение случайных величин):

$$E(\xi_j) = (1 - p_j)\mu_j \quad D(\xi_j) = (1 - p_j) \cdot \sigma_j^2 + p_j(1 - p_j)\mu_j^2; \quad j = 1, \dots, n$$

$$E(S_{ind}) = \sum_{j=1}^n (1 - p_j)\mu_j$$

$$D_{S_{ind}} = \sum_{j=1}^n (1 - p_j)\sigma_j^2 + \sum_{j=1}^n p_j(1 - p_j)\mu_j^2$$

для независимых случайных величин.

2.3 Модель коллективного риска, функция распределения и характеристики суммарного ущерба. Преимущества и недостатки модели коллективного риска. Подходы к оценке модели.

В отличие от модели индивидуального риска, где неопределенность, связанная с размером ущерба, отражалась в специфическом виде их распределений (со скачком в нуле), в модели коллективного риска неопределенность, связанная с числом случаев возникновения ущерба, отделяется от неопределенности, вызванной размером ущерба. При этом совокупный ущерб моделируется как сумма случайного числа случайных величин:

$$S_{coll} = \sum_{k}^{N} Y_{k}$$

где N - случайная величина числа случае возникновения неблагоприятных событий, Y_k - случайная величина числа размера ущерба (усеченное распределение $Y_k > 0$).

Таким образом, в модели коллективного риска четко выделяются два типа неопределенностей, связанных с количеством случаев возникновения ущерба и размером ущерба. Для этой модели обычно применяют не закон больших чисел и другие асимптотические результаты (хотя это тоже возможно), а методы анализа случайных процессов. Фактически Scoll можно интерпретировать как значение случайного процесса в случайный момент времени.

Усложнение применяемого математического аппарата является очевидным недостатком указанной модели. К преимуществам следует отнести возможность разделения анализа числа неблагоприятных событий и размера ущерба, что служит реализации задач риск-менеджера в свете специфических ограничений информационного обеспечения.

Событие $\{S_{coll} < s\}$ - объединение непересекающихся событий:

$$\bigcup_{n=0}^{\infty} \{ \sum_{k=1}^{n} Y_k < s, N = n \}$$

Поэтому:

$$P(S_{coll} < s) = \sum_{i=1}^{n} P(\sum_{k=1}^{n} Y_k < s, N = n) = \sum_{i=1}^{n} P(\sum_{k=1}^{n} Y_k < s | N = n) \cdot P(N = n)$$
$$F_{S_{coll}}(s) = \sum_{i=1}^{n} P(N = n) F_{Y_k}^{*n}(s)$$

где $F_{Y_k}^{*n}(s)$ - n-кратная свертка случайной величны Y_k при этом $F^{*1}(s)=F(s)$ и $F^{*0}(s)=1, x\geqslant 1.$

Для упрощения расчетов предполагают, что случайные числа одинаково распределенные, независимые, ковариации равны нулю между любыми случайными величинами. Ограничивает применить - упрощает математические методы.

Посчитаем математическое ожидание и дисперсию:

$$E(S_{coll}) = E(\sum_{k=1}^{n} Y_k) = E(E(\sum_{k=1}^{n} Y_k | N)) = \sum_{n} \left(\sum_{k=1}^{n} Y_k\right) \cdot P(N = n) =$$

$$= \sum_{n} nE(Y_k) P(N = n) = E(Y_k) \cdot E(N)$$

$$D(S_{coll}) = (E(Y_k))^2 D(N) + D(Y_k) E(N)$$

2.4 Производящая функция коллективного риска

Производящая функция коллективного риска:

$$\psi_{S_{coll}}(t) = E(e^{tS_{coll}}) = E(E(e^{tS_{coll}}|N)) = E((\psi_{Y_k}(t))^N) = E(\exp(N\ln\psi_{Y_k}(t))) =$$

$$= \psi_N(\ln(\psi_{Y_k}(t))) = G_N(\psi_{T_k}(t))$$

2.5 Отличия моделей коллективного и индивидуального риска

Хотя предпосылки обоих подходов несколько отличаются, на интуитивном уровне различия сводятся к специфике учета в модели рисков, по которым ущерб не возник: в модели индивидуального риска они «отвечают» за скачок функции распределения, а в модели коллективного риска их игнорирование «оплачивается» рандомизацией числа неблагоприятных событий. Это делает весьма вероятным близкое соответствие результатов моделирования совокупного ущерба обоими способами.

2.6 Примеры считающих распределений. Смеси

$$\xi = p \cdot \eta + (1 - p)(\eta_1 + \eta_2)$$

$$F_{\xi}(x) = p(\xi < x) = P(\eta < x) \cdot p + P(\eta_1 + \eta_2 < x)(1 - p) = F_{\eta}p + F_{\eta_1 + \eta_2} \cdot (1 - p)$$

2.7 Домашнее задание. Моделирование рисков (I)

- 3. Ущерб реализуется с вероятностью 0.2, при этом в случае реализации величина ущерба определяется случайной величиной с функцией распределения $F_{\xi}(x) = \sqrt{\frac{x}{4}}, x \in [0;4]$. Вероятность более чем однократной реализации ущерба считается принебрежимо малой. Найти:
 - безусловную функцию распределения ущерба.

Решение: Ущерб реализуется с вероятностью $0.2 \Rightarrow P(\xi > 0) = 0.2$. Отсутствие ущерба: p = 0.8. Если точно известно, что ущерб был, то его функция распределения:

$$F_Y(x) = F_{\xi|\xi>0}(x) = P(\xi < x|\xi>0) = \frac{F_X(x) - P(X=0)}{P(X>0)} = \frac{F_X(x) - p}{1-p} \quad x>0$$

где $F_X(x)$ - распределение ущерба, реализовался он или нет. Тогда безусловная функция распределения ущерба:

$$F_X(x) = F_{\xi|\xi>0} \cdot (1-p) + p = \sqrt{\frac{x}{4}} \cdot 0.2 + 0.8, x \in [0; 4]$$

• математическое ожидание ущерба.

Решение: найдем плотности и по формуле математического ожидания высчитаем его

$$f_X(x) = (1 - p)f_Y(x)$$

$$p + (1 - p) \int_0^\infty f_Y(x) dx = 1$$

$$f_X(x) = \frac{\partial f_X(x)}{\partial x} = \frac{0.05}{\sqrt{x}}$$

$$f_Y(x) = \frac{f_X(x)}{1 - p} = \frac{1}{4\sqrt{x}}$$

$$E(X) = \int_0^4 x \cdot f_X(x) dx = \int_0^4 0.05\sqrt{x} = 0.26$$

• дисперсию ущерба

$$D(X) = \int_{0}^{4} (x - E(X))^{2} f_{X}(x) dx = 0.512$$

математическое ожидание ущерба если известно, что он точно реализовался:

$$E(X) = (1 - p)EY \Rightarrow E(Y) = \frac{E(X)}{1 - p} = \frac{0.26}{0.2} = 1.33$$

• VaR_{95%} ущерба:

$$F_X(x_\alpha) = \alpha \Rightarrow \sqrt{\frac{x}{4}} \cdot 0.2 + 0.8 = 0.95$$
$$x_\alpha = 2.25$$

 математическое ожидание ущерба, если точно известно, что оно больше двух:

$$E(X|X > 2) = \frac{1}{\int_{2}^{4} f_X(x)dx} \cdot \int_{2}^{4} x f_X(x)dx = 2.94$$

- 4. Величина ущерба определяется случайной величиной с функцией распределения равной 0, если $x \leq 0$ и $1 (10(x+1)^4)^{-1}$. Найти:
 - вероятность отсутствия ущерба:

$$p = 1 - (10(0+1)^4)^{-1} = 0.9$$

• функция распределения ущерба, если известно, что он реализовался:

$$F_{\xi|\xi>0} = \frac{F_X(x) - p}{1 - p} = -9 - \frac{1}{(x+1)^4}$$

• математическое ожидание ущерба, если известно, что ущерб реализовался:

$$E(X) = \int_{0}^{\infty} x \cdot f_X(x) = -\frac{1}{30}$$

$$E(Y) = \frac{E(X)}{1-p} = -\frac{1}{30} \cdot 10 = -\frac{1}{3}$$

• дисперсия ущерба:

$$D(X) = \int_{0}^{\infty} (x - E(X))^{2} f_{X}(x) dx = -0.03$$

- 6. Компания подвержена двум рискам, первый из которых реализуется с вероятностью 0.2, а второй 0.1, при этом первый риск в случае реализации приводит к ущербу, определяемому экспоненциальной случайной величиной с параметром 1, а второй с параметром 2. Найти:
 - функцию распределения суммарного ущерба компании:

$$F_{\xi}(x) = \frac{p_1}{p_1 + p_2} \cdot (1 - e^{-x}) + \frac{p_2}{p_1 + p_2} (1 - e^{-2x})$$

• математическое ожидание ущерба:

$$f_{\xi}(x) = \frac{p_1}{p_1 + p_2} \cdot e^{-x} + 2e^{-2x} \frac{p_2}{p_1 + p_2}$$

$$E(\xi) = \int_{0}^{\infty} x \cdot f_{\xi}(x) dx = 0.833333$$

• дисперсию ущерба:

$$D(\xi) = \int_{0}^{\infty} (x - E(\xi))^{2} f_{\xi}(x) dx = 0.805556$$

- 8. Пусть количество реализовавшихся ущербов может принимать значения 0,1,2 с вероятностями 0.7,~0.2,~0.1,~ при этом величина каждого ущерба определяется случайной величиной с распределением $\xi \sim N(10,1).$
 - Найти вероятность того, что итоговый суммарного ущерба окажется меньше 11. Воспользуемся свойством, что есть $\xi \sim N_{\mu_1,\sigma_1^2}$

и $\eta \sim N_{\mu_2,\sigma_2^2}$ независимы, то $\xi + \eta \sim N_{\mu_1+\mu_2,\sigma_1^2+\sigma_2^2}$

$$F_S = P(S < s) = \sum_{n=0}^{2} P(N = n) F_{Y_k}^{*n}(s) =$$

$$= P(N = 0) \cdot F^{*0}(s) + P(N = 1) \cdot F^{*1}(s) + P(N = 2) \cdot F^{*2}(s) =$$

$$= 0.7 * 1 + 0.2 \cdot \Phi_{\mathcal{E}}(11) + 0.1 \cdot F^{*2}(2)$$

найти математическое ожидание, дисперсию и 99 процентный квантиль

$$E(S_{coll}) = E(\sum_{k=1}^{n} Y_k) = E(E(\sum_{k=1}^{n} Y_k | N)) = \sum_{n} \left(\sum_{k=1}^{n} Y_k\right) \cdot P(N = n) =$$

$$= \sum_{n} nE(Y_k)P(N = n) = E(Y_k) \cdot E(N) = 0.4 \cdot 10 = 4$$

$$D(S_{coll}) = (E(Y_k))^2 D(N) + D(Y_k)E(N) = 100 \cdot 0.44 + 1 \cdot 0.4 = 45.04$$

- 10. Пусть количество реализовавшихся ущербов описывается Пуассоновской случайной величной с параметром 3, а размер ущерба детерменирован и равен 1000.
 - Опишите закон распредлеения суммарного ущерба:

$$F_X(x) = \begin{cases} 0, x \le 0 \\ 1000 \cdot e^{-\lambda} \cdot \sum_{j=0}^k \frac{\lambda^j}{j!}, k < x \le k+1, k = 0, 1, 2 \end{cases}$$

2.8 Считающие распределения 05.11

Можно рассматривать случайные величины, параметры которых - тоже случайные величины. Например $\xi \sim N(\mu, \sigma^2)$, где $\sigma\{1, 10\} \mapsto \{0.9, 0.1\}$.

Например, отрицательное биномиальное распределение может быть получено из пуассоновского рандомизацией параметра λ . Надо бы разобрать несколько канонических распределений. А будем обсуждать задачи одномерного моделирования.

2.9 Теория экстремальных значений

Одна из важных задач процессов управления рисками - контроль ситуаций, связанных с экстремально большими ущербами. С точки зрения количественного риск-менеджмента речь идет прежде всего об анализе пра- вого хвоста распределений ущерба, как раз и описывающего вероятности серьезных потерь. Такие меры риска, как рисковый капитал и условный рисковый капитал, концентрируются именно на данных особенностях случайных величин.

Мы обсуждали непараметрический и параметрический (подгонка теоретического расределения). Минусом непараметрического оценивания является большая чувствительность к выборочным данным. Изменение одного числа в верхней части выборки может привести к сереьезным изменениям оценки исследуемого параметра.

Параметрическое оценивание - на параметры модели влияют все элементы выборки - старшие квантили могут недооцениваться - характерно для распределения с тяжёлыми хвостами. Проблему быстрого убвыания хвоста нормального распределения - используем стбюдента и смеси нормального распределения.

Другая проблема - риски, характеризующиеся малой частотой реализации, но большими убытками. Дамба, наводнение.

Первый метод: - максимальный ушерб в течение периода фиксированной длины на основе выборки максимальных ущербов.

Второй метод: анализ ущербов, превышающих некоторый заранее выбранный поолог, на основе выборки из прошлых ущербов, превысивших порог.

2.9.1 Метод анализа распределения максимального ущерба за период

Пусть наблюдаемые данные X_i представляют выборку из ущербов за день, то максимальный дневной ущерб за неделю будет описываться случайной величиной $Y = \max\{X_1, \dots, X_7\}$.

Если предпологать X_i независимыми одинаково распределенными случайными величинами, то функция распределения Yи X_i :

$$F_Y(x) = F_{\max_i X_i}(x) = P\{\max_i \{X_i\} \leqslant x\} = (F_{X_i}(x))^n$$

Теорема 2.1. Теорема Фишера-Типпета

Вывод теории экстремальных значений: если удается подобрать такие последовательности b_n, a_n , что $\left(F_{X_i}\left(\frac{x-b_n}{a_n}\right)\right)^n$ - невырождено при $n \to \infty$ (не стремится к 0 или 1), то для независимых одинаково распределенных случайных величин выполняется соотношение:

$$\left(F_{X_i}\left(\frac{x-b_n}{a_n}\right)\right)^n \to H_{\beta}(x)$$

где $H_{\beta}(x)$ - обобщенное распределение экстремальных значений (GENERALIZED EXTREME VALUE DISTRIBUTION, GEV DISTRIBUTION).

Функция обобщённого распределения экстремальных значений выглядит следующим образом:

$$H_{\beta}(x) = \begin{cases} e^{-(1+\beta x)^{-\frac{1}{\beta}}}, \beta \neq 0 \\ e^{-e^{-x}}, \beta = 0 \end{cases}$$

где $1 + \beta x < 0$. Без нормировки будет стремиться либо к 0 либо к 1.

Если вместо рассмотрения выборки разбить её на равные периоды длительности n, выбрть из каждого максимальный ущерб и составить новую выборку из выбранных значений, то новая выборка будет хорошо описываться обобщенным распределением экстремальных значений.

GEV зависит от параметра β . При $\beta>0$ - распределение Фреше, $\xi<0$ - распределение Вейбулла, $\xi=0$ - распределение Гумбеля.

Пример: пусть случайные величины $X \sim Exp(1), F_{\xi}(x) = 1 - e^{-x}, x > 0$. В качестве последовательностей нормирующих констант возьмем $b_n = -\ln n, a_n = 1$. $Y = \max(X_1, \dots, X_n)$:

$$F_{\xi}^{n}(x) = P\left(\frac{Y - b_n}{a_n} < x\right) = P(Y < a_n x + b_n) =$$

$$= P(X < x - \ln n)^n = (1 - e^{-x + \ln n})^n = \left(1 - \frac{e^{-x}}{n}\right)^n \to e^{-e^{-x}}$$

Если теорема Фишера-Типпета верна для F(x), то F(x) принадлежит к максимальной области притяжения $G_{\xi}(x)$ - MDA - maximum domain of attraction. Наиболее тяжёлые хвосты характерны для распределения Фреше ($\beta > 0$): обратное гамма-распределение, t-распределение, логгамма распределение, распределение Бёрра, распределение Парето,

Коши.

$$\lim_{x \to \infty} \frac{L(ax)}{L(x)} = 1, a > 0$$

Если $F(x) \in MDA(G_{\xi}), \beta > 0$, то $1 - F(x) = x^{-\frac{1}{\beta}}L(x)$, где L(x) - некоторая медленно меняющаяся функция. $\frac{1}{\beta}$ - звостовой индекс распределения.

Распределение Гумбеля $\beta=0$: нормальные распределения, логнормальные, гамма, хи-квадрат, гиперболические - имеют конечные моменты всех порядков.

Распределения из MDA Вейбулла $\beta < 0$ - наименьший интерес с точки зрения анализа рисков. GEV-непрерывное по β .

Недостатки максимального ущерба: потеря большого числа наблюдений выборки, предположение независимости и одинаковой расределенности, что часто не выполняется. Важность: анализ дамбы. Зная максимальный за год - можно за 100 лет - произведение функции распределений в 100 степени.

2.10 Распределение максимума из случайного числа случайных величин

Предложенный выше метод подразумевает анализ максимума из фиксирован- ного числа случайных величин, однако в некоторых приложениях интерес пред- ставляет анализ максимума из случайного числа случайных величин. Использова- ние предельной теоремы здесь не представляется корректным. Для изучения распределения подобной случайной величины удобно использовать производящую функцию вероятснотей, $\varphi_X(z) = E(z^X)$. $Y_N = \max(X_1, \ldots, X_N)$, где N определяет число реализовавшихся ущербов. В этом случае в предположении о независимости N и X_i :

$$F_{Y_N}(x) = P(Y_N < x) = \sum_{i=0}^{\infty} P(Y_N < x | N = i) P(N = i) =$$

$$= \sum_{i=0}^{\infty} P(\max(X_1, \dots, X_i) < x) P(N = i) =$$

$$= \sum_{i=0}^{\infty} P(X < x)^i P(N = i) = \varphi_N(F_X(x))$$

2.11 Метод анализа распределения превышения заданного порога

Метод придлагает выбрать некоторый достаточно большой порог и будем исследовать распределение лишь ущербов, превышающих.

Пусть d - фискированный порог, Y = X - d, при условии $X \geqslant d$. Случайная величина определяет на сколько ущерб превысил данный уровень d.

Функция распределения Y:

$$F_Y(x) = P(X - d < x | X \ge d) = \frac{P(d \le X < d + x)}{P(X \ge d)} = \frac{F_X(d + x) - F_X(x)}{1 - F_X(x)}$$

где
$$0 \leqslant x \leqslant x_F = \sup\{t : F(t) < 1\}$$

Математическое ожидание У - функция среднего превышения:

$$e(d) = E(Y) = E(X - d|X \geqslant d)$$

$$1 - F_X(x) = (1 - F_X(d))(1 - F_Y(x - d))$$

и оценка квантилей распределения X сводится к задаче оценки величины $F_X(d)$ и анализу функции распределения Y.

Теорема 2.2. Теорема Balkema, Pickands, de Haan. Связь превышения порога с проблемой максимума:

Если (и только если) X принадлежит к максимальной обласит притяжения одного из обобщенных распределений экстремальных значений с параметром β , то можно найти такую функцию: k(d):

$$\lim_{d \to x_F} \sup_{0 \le x \le x_F -} |F_Y(x) - W_{\beta, k(d)}(x)| = 0$$

где W - Обобщенное распределение Парето (generalized Pareto Distribution, GPD). Чья функция распределения:

$$W_{\beta,\alpha} = \begin{cases} 1 - \left(1 + \frac{\beta x}{\alpha}\right)^{-\frac{1}{\beta}}, \beta \neq 0\\ 1 - e^{-\frac{x}{\alpha}}, \beta = 0 \end{cases}$$

- ullet $\beta > 0$ преобразование распределения Парето
- $\beta < 0$ бета распределение

• $\beta=0$ - экспоненциальное распределение.

GEV непрерывны по β .

$$GEV = 1 + \ln GPT$$

Если X экспоненциально, то и Y.

$$E(X) = \frac{\alpha}{1 - \beta}$$

$$CVaR_{\alpha}(X) = \frac{Var_{\alpha}(X)}{1-\beta} + \frac{\delta}{1-\beta}$$

Метод порога - предпочтительнее - использует больше информации, не игнорировать большие ущербы, произошедшие на протяжении небольшого отрезка времени. Минусы: независимость и одинаково распределенность.

Экспоненциальное притягивается к Гумбелю.