

What do we mean by disjunction

- P V Q is true if P is true, or if Q is true, or if both are true.
 - In logic, disjunctions typically use the word "or" to mean that either one or both of the propositions can be true
 - Exclusive-or (xor) is used to mean exactly one of the two propositions is true
 - In some contexts, a disjunction might take more than two propositions, in which case the disjunction is true if *at least* one of the propositions is true
- Consider the statement "it is raining or the sprinkler is on", this proposition is true if:
 - It is raining, and the sprinkler is off
 - It is not raining, but the sprinkler is on
 - It is raining, and the sprinkler is on

Story Time (Disjunction vs Conjunction)

- Make sure you use V and ∧ correctly
- A researcher was working on a function with an input x that had to have a magnitude greater than one
 - She wrote her pre-condition as
 - $x < -1 \land 1 < x$
 - She was able to prove her post-condition, but that proof was meaningless
 - Precondition should've been x < -1 V 1 < x
- If you had an input p that has to be between 0 and 1, which of these is correct?
 - 0
 - 0 < p V p < 1

Introduction rules

 Unlike conjunction which requires both propositions to be true, disjunction only requires one proposition to be true, so we have two introduction rules:

Introduction rules in Lean

Lean provides the or.intro_left and or.intro_right rules

```
theorem goodSide : 0 = 0 \ V \ 0 = 1 :=
 or.intro left (0=1) (eq.refl 0)
example : P V false :=
  or.intro left false pfP
example : false V P :=
  or.intro right false pfP
```

An aside on or_intro.left

Right click on or_intro.left and choose "peek definition":

```
def or.intro_left {a : Prop} (b : Prop) (ha : a) : or a b :=
or.inl ha
```

Note that

- or_intro.left has 3 arguments, the first of which is implicit, and the second two of which are explicit.
- The first two arguments are propositions and the third is a proof of the first proposition (which is how the first argument is inferred)
- or_intro.left has a return type of "or a b"

Introduction rules in Lean (revisited)

Lean provides the or.inl and or.inr rules

```
theorem goodSide : 0 = 0 \ V \ 0 = 1 :=
  or.inl (eq.refl 0)
example : P V false :=
  or.inl pfP
example : false V P :=
  or.inr pfP
```

Exercise

 Prove 0 = 1 V 0 = 0 two different ways, once with or.intro_right and once with or.inr

```
example: 0 = 1 V 0 = 0 :=
    or.intro_right (0 = 1) (eq.refl 0)

example: 0 = 1 V 0 = 0 :=
    or.inr (eq.refl 0)
```

Disjunction absorption (or the "zero" of disjunction)

- In multiplication, 0 is the absorption element, because anything times
 0 is 0
- What is the absorption element in disjunction? I.e., what is the element X such that P V X = X for all propositions P?

Disjunction with true

- See disjunction_properties.lean for proof of right absorption
- Exercise: Prove that true or Q is always true as well.

Elimination rule

- The elimination rule for disjunction has some nuance:
 - If P V Q, then if both P \rightarrow R and Q \rightarrow R, then R

```
pfPQ: P V Q, pfPR: P \rightarrow R, pfQR: Q \rightarrow R \rightarrow R \rightarrow R
```

- Example:
 - When it's raining, the grass is wet $(P \rightarrow R)$
 - When the sprinkler's on, the grass is wet $(Q \rightarrow R)$
 - It's raining, or the sprinkler's on (P V Q)
 - Therefore, the grass must be wet (R)
- See Lean for examples

Cases

 We've already seen cases, but now let's examine it more deeply with respect to disjunction:

```
theorem wet''':
    ∀ R S W: Prop,
        (R V S) → (R → W) → (S → W) → W :=
begin
    assume R S W pfRorS r2w s2w,
    cases pfRorS with pfR pfS,
        exact r2w pfR, -- case when it's raining
        exact s2w pfS, -- case when the sprinkler's on
end
```

Disjunction Identity

- In multiplication, 1 is the identity element, because x times 1 is x for any value of x
- In addition, 0 is the identity element, because x plus 0 is x for any value of x
- What is the identity element for disjunction?

Right Identity

See disjunction_properties.lean for proof of right identity

Exercise

Prove that false is also a left identity

Disjunction Syllogism

```
theorem disjunctiveSyllogism :
  \forall (P Q: Prop), P V Q \rightarrow \negQ \rightarrow P :=
begin
  intros P Q pfPOrQ pfNotQ, -- assumptions
  cases pfPOrQ with pfP pfQ, -- now by cases
    assumption, -- case where p is true,
    exact false.elim (pfNotQ pfQ) -- or q true
end
```

De Morgan's Laws

- First law: $\neg(P \lor Q) \longleftrightarrow \neg P \land \neg Q$
 - If it's not true that P or Q is true, then it's true that P is not true and Q is not true
 - If it's not true that it's raining or the sprinkler is on, then it's true that it's not raining and the sprinkler is not on
 - Homework #4
- Second law: $\neg(P \land Q) \leftrightarrow \neg P \lor \neg Q$
 - If it's not true that P and Q is true, then it's true that P is not true or Q is not true
 - If it's not true that it's raining and the sprinkler is on, then it's true that either it's not raining, or the sprinkler is off, or both
 - See Lean for proof

Disjunction Properties

- Reflexive? Is A V A true?
 - No
- Symmetric/Commutative? Does (A ∨ B) → (B ∨ A)?
 - Yes
- Associative? Does (A ∨ B) ∨ C ← A ∨ (B ∨ C)?
 - Yes
- Transitive? Does (A \vee B) \rightarrow (B \vee C) \rightarrow (A \vee C)?
 - No

Distribution rules for conjunction/disjunction

- Distribution over conjunction
 - $A \lor (B \land C) = (A \lor B) \land (A \lor C)$

- Distribution over disjunction
 - $A \land (B \lor C) \longleftrightarrow (A \land B) \lor (A \land C)$

See disjunction_properties.lean

