

Für Form und Inhalt der Beiträge zeichnen die jeweiligen Autoren verantwortlich. ACS Organisations GmbH übernimmt keine Gewähr für die Richtigkeit, die Genauigkeit und die Vollständigkeit der Angaben sowie die Beachtung privater Rechte Dritter.

Herausgeber/Publisher

ACS Organisations GmbH

Dienstleistungsunternehmen des

AMA Fachverbandes für Sensorik e.V.

Postfach 2352, D-31506 Wunstorf-Steinhude

Telefon +49 (0)50 33-20 15, Telefax +49 (0)50 33-10 56

Preis/Price: DM 260,00 incl. 15% MwSt. © ACS Organisations GmbH, 1995

UB/TIB Hannover 89 112 468 640

Inhaltsverzeichnis / Index

A 01	Druck I / Pressure I	
A01.1	Drucksensoren mit interferometrischer Abtastung und analoger/digitaler CMOS-Signalaufbereitung auf Silizium A Pressure Sensor with Interferometric Read-Out and Analogue/Digital Signal Processing on Silicon J. Müller, U. Hilleringmann, K. Goser, Universität Dortmund (D)	15
A01.2	Surface-Micromachined Piezoresistive Pressure Sensor T. Lisec, H. Stauch, B. Wagner, Fraunhofer-Institut für Siliziumtechnologie, Berlin (D)	21
A01.3	Resonant Force and Pressure Microsensors S. Büttgenbach, TU Braunschweig; Th. Fabula, B. Schmidt, HJ. Wagner, Institut für Mikro- und Informationstechnik der Hahn-Schickard-Gesellschaft, Villingen-Schwenningen (D)	27
A01.4	Robuster, modularer integrierter Drucksensor Robust, Modular Integrated Pressure Sensor W. Czarnocki, J. P. Schuster, Motorola Inc., Northbrook (USA)	33
A01.5	New Generation of Disposable Blood Pressure Transducers D. Gee, J. Bryzek, Lucas NovaSensor, Fremont (USA)	39
A02	Druck II / Pressure II	
A02.1	Evolution of Smart Transducer Technology J. Bryzek, Lucas NovaSensor, Fremont (USA)	45
A02.2	Verbesserung keramischer Druckmeßzellen durch vertikale Dickschichtstrukturierung Improvement of Ceramic Pressure Sensor Elements with Vertical Thickfilm Structures R. Eisele, VEGA Grieshaber KG, Schiltach (D)	51
A02.3	Miniaturmeßumformer für Absolutdruck Small Size Absolute Pressure Measuring Transmitters W. Ewdokimow, A. W. Beloglazov, E. B. Kotljarewskaja, O. P. Koschewoj, W. Khasikow, State Research Institute for Heat Power Engineering Instrument Making, Moscow (RUS)	57
A02.4	Drucksensor der Lichtleitfaser der optisch gelieferten Leistung von erweitertem Silizium An Optically-Powered Optical Fibre Pressure Sensor of Diffused Silicon W. Yutian, H. Yudong, S. Jinshan, Z. Xiaoqun, Yanshan University, Qinhuangdao (China)	63
A03	Kraft/Dehnung / Force	
A03.1	Static Force Measurement Using PVDF L. Ngalamou, P. Benech, E. Chamberod, Université Joseph Fourier, Grenoble (F)	67
A03.2	Fünfkomponenten Kraftaufnehmer zur Messung der Radkräfte und -Momente in einem Meßanhänger Five Component Force Transducer for the Measurement of Tire-Forces in a Test-Trailer K. Hufnagel, T. Bachmann, S. Ernesti, Technische Hochschule Darmstadt (D)	73
A03.3	Funkabfragbare OFW-Verzögerungsleitung zur Dehnungsmessung Remote Strain Measurements by SAW Sensors T. Sachs, TU München (D)	79
A04	Durchfluß / Flow Measurements	
A04.1	Clamp-On-Durchflußmesser Clamp-On-Flowmeter B. Funck, Universität Rostock (D)	85
A04.2	Hochauflösender Ultraschalldurchflußsensor zur Atemströmungsmessung High-Resolution Ultrasonic Flow Meter for Measuring Human Respiration A. von Jena, V. Mágori, Siemens AG, München (D)	91

A04.3	Eine neue Methode für das Messen von sehr kleinen Flüssigkeitsdurchflüssen A New Approach for Measuring (very) Small Liquid Flows H. J. Boer, Bronkhorst High-Tech BV, Ruurlo (NL)	97
A04.4	Verbesserte Mengendurchflußmessung von Gasen mit Coriolis Meßsystemen Improved Mass Flowrate Measurements of Gases Using Coriolis Mass Flowmeters G. E. Pawlas, T. Pankratz, Micro Motion Inc., Boulder (USA)	103
A04.5	A New Non Contact Fibre Optic Probe for Bubble Shape Detection and Diameter Measurements in Two Phase Flow G. Rossi, O. Massi, Universita di Ancona (I) - Manuskript lag bei Drucklegung nicht vor -	
A05	Strahlung / Radiation	
A05.1	NIR – Sensor zur schnellen Identifizierung von Verpackungskunststoffen NIR – Remote Sensing for Rapid Identification of Post Consumer Plastics T. Kantimm, T. Huth-Fehre, R. Feldhoff, L. Quick, F. Winter, K. Cammann, Institut für Chemo- und Biosensorik e. V., Münster (D); W. van den Broek, D. Wienke, W. Melssen, L. Buydens, Catholic University Nijmegen (NL)	109
A05.2	Atomlagenthermosäule – ein neuartiger Sensor für Laser Atomic-Layer-Thermopile – A New Sensor for Laser J. Betz, ForTech HTS GmbH, Regensburg (D)	113
A05.3	Ein faseroptisches Hydrofon zur Detektion von Ultraschall in Flüssigkeiten A Fibre-Optic Hydrophone for Ultrasonic Pressure Detection in Liquids S. Schräbler, C. Oster, B. Cramer, R. Lerch, Technische Hochschule Darmstadt (D)	119
A05.4	Szintillator-Lichtleitfaser-Meßsystem als Dosimeter in der Röntgendiagnostik Fibre Optic Coupled Scintilator for Dosimetry in Diagnostic Radiology B. Stöber, H. Lenzen, P. E. Peters, Universitätsklinik Münster; U. Stöber, Fachhochschule Jena (D)	125
A06	Anwendungen I / Applications I	
A06.1	Ortsfilter – Geschwindigkeitssensor für industrielle Anwendungen Spatialfilter – Velocity Sensor for Industrial Applications O. Fiedler, A. Richter, Universität Rostock; K. Christofori, Angewandte Sensortechnik GmbH, Rostock (D)	129
A06.2	Kontaktlose Messung von Schallemissionen sowie Analyse und Klassifikation im Frequenzbereich zur Beobachtung des Schleifprozesses Contactless Sensing, Frequency Domain Analysis and Classification of Acoustic Emission for Grinding Monitoring W. Hundt, F. Kuster, F. Rehsteiner, ETH Zürich (CH); S. Branci, Ecole des Mînes d'Alés, Nimes (F)	135
A06.3	Ein preiswertes faseroptisches Gyroskop für robotertechnische Anwendungen A Low-Cost Fibre Optic Gyroscope for Robotic Applications B. Bury, J. C. Hope, University of Salford (UK)	141
A06.4	A Dead Reckoning Navigation System with Fibre Optic Gyro for Free Ranging of Automatic Guided Vehicles T. Vieregge, LITEF GmbH, Freiburg (D)	147
A06.5	Anwendungen von 3-D aktiver Sicht für Qualitätsprüfung und Kontrolle Applications of 3-D Active Vision in Inspection and Quality Control JP. Boillot, JC. Fontaine, JL. Côté, X. Yu, Servo-Robot Inc., Boucherville, Quebec (CAN)	153
A07	Anwendungen II / Applications II	
A07.1	A Hot Film Sensor for Dry Operative Temperature Measurement C. A. Malvicino, C. Canta, M. Cisternino, F. de Cristofaro, M. Palazzetti, F. Rissone, Centro Ricerche Fiat, Orbassano (I)	159
A07.2	An Intelligent 2-Wire Pyrometer Head S. Warnke, V. Schmidt, Raytek GmbH, Berlin (D)	165
A07.3	Dual Wavelength Thermometry Applied to Aluminium Hot Rolling and Steel Galvannealing S. Metcalfe, A. Tune, Land Infrared, Sheffield (UK)	171
A07.4	Ein neues, schnelles präzises und flexibles 3D-Kamerakonzept mittels HF-modulierter, inkohärenter Beleuchtung A New Fast, Precise and Flexible 3D-Camera Concept Using RF-Modulated and Incoherent Illumination R. Schwarte, H. Heinol, Z. Xu, Universität Siegen (D)	177

A08 Beschleunigung / Acceleration

A08.1	Sehr niedrige Frequenzbeschleunigungsmessungen mit Piezokeramik-Sensoren Very Low Frequency Accelerometer Measurements with Piezoceramic Sensors R. Barrett, Wilcoxon Research Inc., Gaithersburg (USA)	183
A08.2	Low Power Precision Microaccelerometer T. Smith, Y. de Coulon, F. Rudolf, J. Hermann, CSEM, Neuchâtel (CH)	189
A08.3	Ölgedämpfter Dick-Film Accelerometer für Wagen-Dynamik Oil-Damped Thick-Film Accelerometer for Vehicle Dynamics D. Crescini, D. Marioli, A. Taroni, University of Brescia (I)	195
A08.4	Innovations in Acceleration Sensing Using Surface Micro-Machining J. Doscher, Analog Devices Inc., Wilmington (USA)	201
A08.5	Smart Sensors for Acceleration Measurement Using a Two-Chip Approach D. de Bruin, M. Dunbar, IC Sensors Inc., Milpitas (USA)	207
A 09	Position I / Position I	
A09.1	Ein Positionssensor, der die Oberflächenstruktur als Referenz benutzt Position Sensor Using Surface Recognition C. During, Royal Institute of Technology, Stockholm (S)	213
A09.2	Distance Measurement Against Naturally Diffractive Surfaces by Phase-Shift Evaluation Incorporating a New Signal Processing Approach R. Müller, H. Wölfelschneider, Fraunhofer-Institut für Physikalische Meßtechnik, Freiburg (D) - Manuskript lag bei Drucklegung nicht vor -	
A09.3	Ein Millimeter-Wellen Interferometer zur Messung kleiner Verschiebungen unter Verwendung eines FECTED-VCO A Millimeter-Wave Interferometer for Measurements of Small Displacements Using a FECTED-VCO C. Diskus, A. Stelzer, A. L. Springer, K. Lübke, H. W. Thim, Universität Linz (A)	219
A09.4	Langreichweitiger Triangulationssensor Wide Range Triangulation Sensor O. Toedter, A. W. Koch, Universität Saarbrücken (D)	225
A10	Position II / Position II	
A10.1	Trennung des Meßabstandes von den Materialeigenschaften eines Meßobjekts mittels eines Wirbelstromsensors Separation of the Measuring Distance and of the Material Characteristics by Using an Eddy-Current-Sensor Y. Wang, W. Becker, Universität Kassel (D)	231
A10.2	Ein neues, lineares Wegmeßsystem – das verschleißfreie Wirbelstrom-Potentiometer A New Linear Position Sensor – The Noncontact Potentiometer M. Sellen, Micro-Epsilon Meßtechnik GmbH & Co. KG, Ortenburg (D)	237
A10.3	Hochauflösende magnetische Dreh- und Lineargeber High Resolution Magnetic Rotary and Linear Encoders A. Nimmrichter, C. Varelas, VS Sensorik GmbH, Unterschleißheim (D)	243
A10.4	Berührungslose On-Line-Dickenmessung mit zwei kombinierten Sensoren auf einem Meßfleck Noncontact On-Line Thickness Measurement with Two Combined Sensors Using the Same Measuring Spot A. Spang, D. Wüstenberg, Universität Kaiserslautern (D)	249
A10.5	Entwicklungsprozeß eines Schalthebelsensors für KFZ-Anwendungen Development Process of a Gear Lever Sensor for Automotive Applications A. Thomä, I. Franz, Fichtel & Sachs AG, Schweinfurt; A. Rech, Siegert GmbH, Cadolzburg (D)	255

B01	Temperatur / Temperature	
B01.1	Dünne Schichten Multisensor für die Messung der Oberflächentemperatur Thin Film Multisensor for Surface Temperature Measurement M. Hubin, S. Chadli, S.G. Lee, INSA de Rouen, Mont Saint Aignan (F)	261
B01.2	Possibilities and Limitations for an Accuracy Enhancement of Transistor Based PTAT-Temperature Sensors by Modelling Nonlinearities R. Holmer, Universität der Bundeswehr München, Neubiberg (D)	267
B01.3	Oberflächentemperatursensoren zur instationären Wärmestrommessung Surface Temperature Sensors for Instantaneous Heat Flux Measurements A. Wimmer, TU Graz; J. Kamper, TU Wien (A)	273
B01.4	Temperaturschwingungsmeßverfahren in der Wärmeübertragung Temperature Oscillation Measurement Techniques in Heat Transfer W. Czarnetzki, W. Roetzel, M. Wandelt, Universität der Bundeswehr Hamburg (D)	279
B01.5	Approximation der Internationalen Temperaturskala von 1990 (ITS-90) mit Edelmetallthermoelementen Techniques for Approximating the International Temperature Scale of 1990 (ITS-90) by Noble Metal Thermocouples F. Edler, H. Maas, Physikalisch-Technische Bundesanstalt, Berlin (D)	285
B02	Simulation I / Simulation I	
B02.1	Simulation des anisotropen und selektiven Ätzens von Silizium mit dem Prinzip der zellulären Automaten Simulation of Selective and Anisotropic Etching of Silicon Using a Cellular Automata Model O. Than, S. Büttgenbach, TU Braunschweig (D)	291
B02.2	Piezoelektrisches CAD-System Piezoelectric CAD-System R. Lerch, M. Kaltenbacher, H. Landes, F. Lindinger, Universität Linz (A)	297
B02.3	Rechnergestützte Entwicklung magnetischer Sensoren Computer-Aided Development of Magnetic Sensors R. Dietz, E. Zabler, Robert Bosch GmbH, Stuttgart (D)	303
B02.4	Der Einsatz offener CAE-Umgebungen zum interdisziplinären Entwurf mechatronischer Systeme The Use of Open CAE Environments for an Interdisciplinary Design of Mechatronic Systems U. Lefarth, Universität Paderborn (D)	309
B03	Simulation II / Simulation II	
B03.1	Modellversuch flacher Spulen durch Impuls – Wirbelstromverfahren Simulation of Flat Coils Used in Pulsed Eddy-Current Techniques. Optimisation of the Emitted Pulse Duration for Non-Destructive Testing JC. Bour, E. Zubiri, P. Vasseur, A. Billat, Université de Reims (F)	315
B03.2	Advanced Design and Simulation Tools for Intelligent Imaging Systems H. Keller, H. Fischer, M. Böhm, S. Benthien, T. Lulé, S. Ostertag, M. Sommer, Universität Siegen (D)	321
B03.3	New Generation of Smart Industrial Pressure Transmitter for Harsh Environments K. Sidhu, M. Ciminelli, Lucas Control Systems Products, Hampton (USA)	327
B04	Biosensoren / Biosensors	
B04.1	Biosensoren – Konzepte – Technologien – Märkte Biosensors – Concepts – Technologies – Commercialization F. Scheller, Universität Potsdam, Berlin (D)	333
B04.2	Bio-Aktivitäts-Sensorik (BAS) Bio-Activity-Sensors (BAS) T. Hertel, M. Leifheit, S. Rothe, K. Puhlmann, Universität Merseburg (D)	337
B04.3	Entwicklung von integrierten Biosensorarrays implementiert in einem Mikro-Flußsystem Development of Integrated Biosensorarrays Implemented into a Microflowsystem G. Urban, G. Jobst, P. Svasek, TU Wien; Z. Trajanoski, P. Wach, Universität Graz; P. Kotanko, F. Skrabal, Krankenhaus der Barmherzigen Brüder, Graz (A)	343

B04.4	Der faseroptische Oberflächenplasmonen-Resonanz-Sensor, ein vielversprechender Transducer für Chemo- und Biosensoren I The Fibre Optical Surface Plasmon Resonance Sensor, a Promising Transducer for Chemical and Biochemical Sensors A. Katerkamp, P. Bolsmann, U. Kunz, M. Niggemann, M. Pellmann, K. Cammann, Institut für Chemo- und Biosensorik, Münster (D)	349
B04.5	Anwendung der reflektometrischen Interferenzspektroskopie bei Chemo- und Biosensoren Application of Reflectometric Interference Spectroscopy to Chemical and Biochemical Sensing G. Gauglitz, G. Kraus, G. Lang, A. Brecht, J. Piehler, J. Seemann, Universität Tübingen (D)	355
B05	Signalverarbeitung bei Gassensoren / Signal Processing at Gas Sensors	
B05.1	Intelligentes Sensorsystem zur Geruchsstofferkennung Intelligent Sensor System for Measurement of Odour Quality G. Horner, HKR Sensorsysteme GmbH, München (D)	361
B05.2	Comparative Quality Assurance of Essential Oils by Multi-Gas Sensors Array and Gas Chromato- graphy Using Pattern Recognition Techniques: Application to Lavender/Lavendin Differentiation T. Talou, B. Bourrounet, A. Gaset, Ecole Nationale Supérieure de Chimie de Toulouse (F)	367
B05.3	Gas-Detektoren-Array für Chemieunfälle und Brände Gas-Sensor-Array for Chemical Accidents and Fires T. Hunte, G. Matz, T. Albrecht, TU Hamburg-Harburg (D)	369
B05.4	Modell zur Signalverarbeitung bei Gassensoren A Model for Signal Processing to Apply to Gas Sensors M. Horn, HR. Tränkler, Universität der Bundeswehr, Neubiberg (D)	375
B06	Forum Microsystems Technology: Acceleration and Pressure Sensors I	
B06.1	Electronic Pressure Regulators Using Micromachined Silicon Pressure Sensors and Silicon Microvalves M. Dunbar, H. Jerman, IC Sensors, Milpitas (USA)	381
B06.2	Smart Low-Power Microsystems for Automotive Applications J. Siddons, A. Derbyshire, Otter Controls Ltd., Derbyshire (UK) (EU Project: Esprit 3 #9011, SLOPSYS)	387
B06.3	Intelligente Sensor-Systeme Smart Sensor Systems - Kinetic Micro Sensors S. Seliger, Elmos GmbH, Dortmund (D) (EU Project: Esprit 3 #6505, AMIS)	393
B06.4	Accelerometers for Automotive Applications W. Riethmüller, Fraunhofer-Institut für Siliziumtechnologie ISiT, Berlin (D) (EU Project: Esprit 3 #6416, MAXIMA)	399
B07	Forum Microsystems Technology: Acceleration and Pressure Sensors II	
B07.1	Mikrosysteme in der Navigation Microsystems for Navigation M. Hafen, E. Handrich, M. Kemmler, G. Spahlinger, W. Tschanun, LITEF GmbH, Freiburg (D)	403
B07.2	Hochgenaue kinetische Si-Sensoren High Precision Acceleration Sensor in Silicon T. Geßner, M. Wiemer, K. Hiller, TU Chemnitz-Zwickau (D)	409
B07.3	Mikrostrukturierung von Glasscheiben für kinetische Sensoren Microstructuring of Glass Wafers for Kinetic Sensors D. Hülsenberg, A. Harnisch, HJ. Horst, M. May, K. Schmidt, B. Straube, TU Ilmenau (D)	415
B08	Chemische Sensoren I / Chemical Sensors I	
B08.1	CO Oxidierung abhängig von der Voltspannung an CuO/ZnO Heterokontakten und Applikation zu CO Gas-Sensoren Applied Voltage Dependent CO Oxidation at CuO/ZnO Heterocontact and Application to CO Gas Sensor Y. Nakamura, K. Watanabe, N. Motohira, A. Kishimoto, H. Yanagida, Y. Ariga, University of Tokyo (Japan)	421

B08.2	Dickschicht-CO ₂ -Sensor basierend auf Leitfähigkeitsänderungen eines speziellen Metalloxidgemisches A Thick Film Conductive-Type CO ₂ Sensor Based on Metal Oxides A. Haeusler, JU. Meyer, Fraunhofer-Institut für Biomedizinische Technik, St. Ingbert (D)	427
B08.3	Verbesserte Messung von CO im MAK-Bereich bei variierender Feuchte durch Zwei-Punkt-Sampling des Relaxationsverhaltens eines SnO_/Pd-Sensors Improved Accuracy of CO Measurements Near the MAK Level (30 ppm) in Surroundings of Varying Humidity by an SnO_/Pd Sensor with Two-Point Sampling of the Relaxation Behaviour M. Vornehm, J. Kelleter, D. Kohl, Universität Gießen (D)	433
B08.4	The Use of Selected Materials to Provide Sensors with Good Sensitivity to Pollutant Gases in the Environment P. Moseley, P. McGeehin, Capteur Sensors & Analysers Ltd., Abingdon; D. E. Williams, University College London (UK)	439
B08.5	Development of CO ₂ Sensor Using Lanthanum Doped Tin-Dioxide Semiconductor Gas Sensor M. Hanada, H. Koda, K. Onaga, FIS Inc., Osaka; T. Onouchi, Matsushita Seiko Co. Ltd., Kanagawa (Japan)	445
B09	Chemische Sensoren II / Chemical Sensors II	
B09.1	Integrierte Membran-/Sensor-Mikrosysteme zur Erhöhung der Selektivität von Dünnschicht-Halbleitergassensoren Integrated Membrane/Sensor Microsystems for Thin Film Semiconductor Gassensor Selectivity Enhancement S. Nehlsen, O. Görbig, F. Kraus, J. Müller, TU Hamburg-Harburg (D)	451
B09.2	Micro- and Macroscopic Design Rules for Thin-Film SnO ₂ Gas Sensors A. Krauß, W. Göpel, U. Weimar, Universität Tübingen; K. Steiner, E. Wagner, U. Hoefer, Fraunhofer-Institut für Physikalische Meßtechnik, Freiburg (D)	457
B09.3	Ultramikroelektroden zur Bestimmung von Schwermetallen und organischen Schadstoffen in Wasser Ultramicroelectrodes for High Sensitive Detection of Trace Metals and Organic Pollutants in Water R. Hintsche, M. Paeschke, A. Uhlig, Fraunhofer-Institut für Siliziumtechnologie, Berlin (D)	461
B09.4	Ein Massenspektrometer als Mikrosystem A Micro Mass Spectrometer A. Feustel, V. Relling, J. Müller, J. Schröder, TU Hamburg-Harburg (D)	465
B09.5	Neue Materialien für Hochtemperatur-Gassensoren New Materials for High-Temperature Gas Sensors M. Fleischer, H. Meixner, Siemens München; K. Bernhardt, Siemens Matsushita Components, München (D)	471
B10	Chemische Sensoren III / Chemical Sensors III	
B10.1	CO ₂ Sensor with Improved Stability J. Gordon Whitney, M. V. Wadsworth, G. H. Westphal, Texas Instruments Inc., Versailles (USA)	477
B10.2	Anisentrope Schallausbreitung als Meßeffekt für Gassensoren Anisentropic Sound Propagation for Gas Sensors F. Wächter, L. Zipser, FH für Technik und Wirtschaft, Dresden (D)	483
B10.3	Design und Realisierung eines direkt beheizten Sensorelements für den Einsatz in der Gasdetektion Design and Realisation of a Directly Heated Sensor Device for Gas Detection D. Mutschall, E. Obermeier, TU Berlin (D)	489
B10.4	Integriert-optisches Vierfachinterferometer zur Konzentrations- bzw. Brechzahlbestimmung von Flüssigkeiten Integrated Optical Quadruple Interferometer to Destinate the Concentration or the Refractive Index of Liquids N. Haase, W. Pufe, T. Schubert, R. Gottfried-Gottfried, Fraunhofer-Institut für Mikroelektronische Schaltungen und Systeme, Dresden (D)	493
B10.5	Staubsensor nach dem Streulichtprinzip mit elektronischer Verschmutzungskompensation Dust Sensor Based on the Light-Scattering Principle with Electronic Compensation of Interferences Due to Pollution R. Chabicovsky, G. Krenn, TU Wien (A)	499
C01	Signalverarbeitung / Signal Processing	
C01.1	Ein Ultraschall-Sensorsystem zur Lokalisation, Vermessung und Identifikation kleiner Werkstücke An Ultrasonic Sensor System for Location Gauging and Recognition of Small Workpieces M. Vossiek, V. Mágori, Siemens AG. München: H. Ermert Universität Bochum (D)	505

C01.2	Erweiterte Fuzzy-Systeme mit Datenanalysetechniken und neuronalen Netzen Enhanced Fuzzy Systems Using Data Analysis Techniques and Neural Networks C. von Altrock, Inform GmbH, Aachen (D)	511
C01.3	Bildgeführte Flammenregelung Vision-Guided Flame Control H. Burkhardt, L. Oest, W. Tao, TU Hamburg-Harburg (D)	515
C01.4	Genauigkeitsgrenzen der Geschwindigkeitsmessung über Grund mit Mikrowellen-Doppler aus theoretischer und praktischer Sicht / Error Limits of Speed Measurement Using On-Board Doppler Radar Systems from a Theoretical and Practical Viewpoint R. Schubert, M. Joppich, V. Mágori, Siemens AG, München (D)	521
C01.5	WALSH-Transformation: Merkmalsauswahl für die Fuzzy-Pattern-Klassifikation WALSH-Transform: Feature Extraction for Fuzzy Pattern Classification N. Bitterlich, R. Totzauer, TU Chemnitz-Zwickau (D)	527
C02	Identifikation / Identification	
C02.1	Remote Controlled Fully Integrable Surface Acoustic Wave Sensor J. Enderlein, E. Chilla, HJ. Fröhlich, J. Schönberg, Paul-Drude-Institut, Berlin (D)	533
C02.2	Funkabfragesystem für OFW-Sensoren mit kohärenter Demodulation Versatile System for Remote SAW Sensor Applications F. Schmidt, O. Sczesny, L. Reindl, V. Mágori, Siemens AG, München (D)	539
C02.3	Verkehrserkennung mit magnetoresistiven Sensoren Traffic Detection with Magnetoresistive Sensors P. Schintag, A. Petersen, M. Muth, Philips GmbH, Hamburg (D)	545
C02.4	Miniaturisierter Baustein für Telemetrie und Identifikation Miniaturized Device for Telemetry and Identification P. Peitsch, Micro-Sensys GmbH, Erfurt (D)	551
C03	Bussysteme / Bus Systems	
0004	Serielles Sensor-/Aktorbusinterface auf Zweidrahtbasis	557
C03.1	Serial Sensor Actuator Interface of Two-Wire Base H. Beikirch, Hochschule Wismar (D)	
C03.1		563
C03.2	H. Beikirch, Hochschule Wismar (D) ICs with an Integrated Communication Protocol	563 569
C03.2	H. Beikirch, Hochschule Wismar (D) ICs with an Integrated Communication Protocol R. Frank, Motorola Semiconductor Products, Phoenix (USA); C. Cordonnier, Motorola Europe, Geneva (CH) HART® – An Open Protocol for Distributed Sensor Applications	
C03.2	H. Beikirch, Hochschule Wismar (D) ICs with an Integrated Communication Protocol R. Frank, Motorola Semiconductor Products, Phoenix (USA); C. Cordonnier, Motorola Europe, Geneva (CH) HART® – An Open Protocol for Distributed Sensor Applications J. Warrior, Rosemount Inc., Eden Prairie (USA)	
C03.2 C03.3	H. Beikirch, Hochschule Wismar (D) ICs with an Integrated Communication Protocol R. Frank, Motorola Semiconductor Products, Phoenix (USA); C. Cordonnier, Motorola Europe, Geneva (CH) HART® – An Open Protocol for Distributed Sensor Applications J. Warrior, Rosemount Inc., Eden Prairie (USA) Forum Microsystems Technology: Microsystems Applications I Solid Polymer Electrolyte Based Amperometric Carbon Monoxide Sensors N. F. de Rooij, P. van der Wal, M. Koudelka-Hep, Université de Neuchâtel (CH)	569
C03.2 C03.3 C04 C04.2	H. Beikirch, Hochschule Wismar (D) ICs with an Integrated Communication Protocol R. Frank, Motorola Semiconductor Products, Phoenix (USA); C. Cordonnier, Motorola Europe, Geneva (CH) HART® – An Open Protocol for Distributed Sensor Applications J. Warrior, Rosemount Inc., Eden Prairie (USA) Forum Microsystems Technology: Microsystems Applications I Solid Polymer Electrolyte Based Amperometric Carbon Monoxide Sensors N. F. de Rooij, P. van der Wal, M. Koudelka-Hep, Université de Neuchâtel (CH) (EU Project: Esprit 3 #6374,M³.GAS) Monolithisch-integrierte Sensorsysteme hergestellt in CMOS-Technologie Monolithically Integrated Sensor Systems Fabricated in CMOS-Technology	569 575

C05	Forum Microsystems Technology: Microsystems Applications II	
C05.1	A Smart Microsensor for the Real Time Computation of Motion Parameters G. Creanza, Tecnopolis, Valenzano (I) (EU Project: Esprit 3 #8867, VISTA)	599
C05.2	Miniaturisiertes Laser-Doppler-Velocimeter für die Weg- und Geschwindigkeitsmessung an festen Oberflächen Miniaturized Laser-Doppler-Velocimeter for Speed Measurements of Solid State Surfaces W. Stork, J. Drescher, A. Kühnle, T. Matthä, K. Müller-Glaser, Universität Karlsruhe; A. Wagner, Visionet GmbH, Karlsruhe (D)	601
C05.3	Ein vollständiges Mikrosystem am Beispiel eines monolithischen Tintendruckkopfes auf der Basis von Bubble-Jet-Technologie I A Monolithic Ink Jet Print Head on the Basis of Bubble Jet Technology as an Example for a Comprehensive Microsystem B. Bayat, Siemens AG, München (D)	607
C05.4	Low-Cost Thermopile Infrared Sensor-Modules for Non-Contact Temperature Measurement J. Schieferdecker, M. Schulze, R. Quad, A. Beudt, Heimann Optoelectronics GmbH, Wiesbaden (D)	613
C 06	Forum Microsystems Technology: Fabrication Technology	
C06.1	Fabrication Technology for Membranes A. Turner, J. Newman, S. White; Cranfield University (UK) (EU Projects: BIOMED BMH1-CT92-0015, MAT1-CT 94-00)	619
C06.2	Fabrikationstechnologien für dünne und dicke SnO ₂ Filmsensoren Fabrication Technologies for Thin and Thick Film SnO ₂ Sensors C. Pijolat, R. Lalauze, Ecole Nationale Supérieure des Mines de Saint-Etienne (F); J. Roggen, G. Huyberechts, IMEC, Leuven (B) (EU Project: Brite-Euram #0193, DEMOST)	625
C06.3	Meßtechnische Anforderungen bei der Herstellung von Silizium-Mikrospiegeln Measurement Requirements for the Fabrication of Silicon Micromirrors HU. Löwe, CMS Mikrosysteme GmbH, Chemnitz; W. Dötzel, T. Geßner, Ch. Kaufmann, J. Markert, Universität Chemnitz-Zwickau (D)	631
C06.4	Optische Meßmethoden für integrierte Sensoren Optical Measuring Methods for Integrated Sensors V. Großer, Fraunhofer-Gesellschaft (IZM) Berlin (D)	637
C07	Forum Microsystems Technology: Design and Simulation	
C07.1	Wissensbasiertes Entwurfssystem für Mikrosysteme Integrated Knowledge Based Engineering Tool for Microsystems A. Lahrmann, TU Berlin (D) (EU Project: Esprit 3 #6874, MASS)	643
C07.2	Design und Technologie Methodik für ASIS Design and Technology Method for Application Specific Integrated Systems J. Bausells, Centro Nacional de Microelectronica, Bellaterra (E) (EU Project: Esprit 3 #8756, DEMAC)	649
C07.3	Aspekte der Simulation und Modellierung magnetischer Sensorelemente mit Hilfe von Entwurfsumgebung Aspects of Simulation and Modelling of Magnetic Sensorelements with the Help of Designsoftware U. Hamm, PROFI Engineering Systems GmbH, Darmstadt (D)	655
C08	Materialien / Materials	
C08.1	Einsatz piezoelektrischer Composite-Materialien für den Aufbau leistungsfähiger Ultraschallsensoren Application of Piezoelectric Composite Materials for the Design of High-Performance Ultrasonic Sensors W. Gebhardt, M. Schneider, Fraunhofer-Institut für zerstörungsfreie Prüfverfahren, Saarbrücken (D)	661
C08.2	Großsignalmessungen zur Charakterisierung und Optimierung von piezoelektrischen Hoch- und Niedervoltaktoren Large Signal Measurements for the Characterization of Piezoelectric High- and Low-Voltage Actuators D. J. Jendritza, P. Stephan, P. Scheer, Universität Saarbrücken (D)	667
C08.3	Ferrite Polymer Composites (FPC): Eine neue Materialklasse für induktive Sensoren Ferrite Polymer Composites (FPC): A New Material Class for Inductive Sensors M. Esguerra, Siemens Matsushita Components, München (D) - Manuskript lag bei Drucklegung nicht vor -	

C08.4	Die chemische Empfindlichkeit von Ultra-Dünnoxidfilmen, hergestellt mit der Atomschichtepitaxie Chemical Sensitivity of Atomic Layer Epitaxy Grown Ultrathin Oxide Films Y. Tarantov, P. Bobrov, V. Drozd, St. Petersburg University (GUS); J. Aarik, Tartu University (EST)	673
C08.5	Use of Rayleigh Waves in Non-Piezoelectric Media Generated with P(VF2-VF3) Film, to Pressure Variation Detection M. Dali-Ali, P. Benech, J. Perrier, Université Joseph Fourier, Grenoble (F)	679
C09	Montage und Gehäusung / Assembly and Packaging	
C09.1	Packaging Technology for Low-Cost Media Isolated Pressure Sensors K. Ryan, J. Bryzek, Lucas NovaSensor, Fremont (USA)	685
C09.2	Neue Vergußmassen und Schutzlacke für die Sensorik New Casting Compounds and Conformal Coatings for Sensor Technology A. Kahnert, Lackwerke Peters GmbH, Kempen (D)	691
C09.3	Hochautomatisierte Montage von Sensoren im 4-Sekunden-Takt Highly Automated Assembly of Sensors in a 4-Second Tact Time U. Renz, Roth-Technik GmbH, Gaggenau (D)	697
C09.4	Glasdurchführungen für Sensoren Glass to Metal Seals for Sensor Applications H. Wolf, Electrovac GmbH, Klosterneuburg (A)	703
C10	Aktuatoren / Actuators	
C10.1	The Effect of Ceramic Microstructure on the Properties and Durability of Multilayer Actuators B. Andersen, E. Ringgard, Ferroperm A/S, Kvistgard (DK)	709
C10.2	A New Micromachined Disc Type Motor D. Taghezout, ETA SA., Grenchen (CH)	715
C10.3	Strömungsuntersuchungen von Mikropumpen Flow Investigations of Micropumps H. Dütsch, A. Melling, M. Weclas, Universität Erlangen (D)	721
C10.4	Eine bidirektional arbeitende Mikropumpe aus Silizium A Bidirectional Silicon Micropump R. Zengerle, S. Kluge, M. Richter, A. Richter, Fraunhofer-Institut für Festkörpertechnologie, München (D)	727
C10.5	Leckagediagnosepumpe – eine intelligente Kombination von einfachen Komponenten führt zu einem sensitiven Meßinstrument für Leckage in Tanksystemen Leak Detection Pump – An Intelligent Combination of Simple Components Leads to a Sensitive Measurement of Leakages in Tanksystems M. Constien, Siemens AG, Regensburg (D)	733
D	Marketing	
D01.1	Intelligent Sensors and the Trend towards MicroSystems: A Comparison of European Industrial Structures and Markets U. Brasche, O. Pfirrmann, VDI/VDE-IT Teltow (D); H. Rave, CME, Veenendaal (NL)	739
D01.2	Modernisation through Sensors, Actuators and Microsystems: Public Programmes and Industrial Innovation in Germany O. Pfirrmann, P. Sonntag, R. Eschenbach, VDI/VDE-IT Teltow (D)	743
P1	Physikalische Sensoren / Physical Sensors	
P1.01	Massendurchfluss-Sensor für luftgeförderte Granulate Mass Flow Sensor for Granules in Air Conveyors M. Senning, Helbing Technik, Wil (CH)	749
P1.02	Durchflußsensor für kleinste Flüssigkeitsmengen basierend auf einer Druckmessung Flowsensor for Small Liquid Flow Rates Based on a Pressure Measurement G. Schnell, Technische Hochschule Darmstadt (D)	753

P1.03	Lasertriangulationssensoren in der automatisierten Qualitätsüberwachung – Möglichkeiten und Grenzen Application of Laser-Triangulation-Sensors in the Automatical Quality Control O. Schwab, H. Lorscheider, Fachhochschule München (D); ZY. Fang, Tsing-Hua Universität, Beijing (China)	757
P1.04	Doppler Global Velocimetry Methods and Applications C. Caspersen, Dantec Measurement Technology A/S, Skovlunde (DK)	761
P1.05	Selbstkalibrierende Thermoelemente für industrielle Anwendungen Selfcalibrating Thermocouples for Industrial Applications H. Lehmann, F. Bernhard, TU Ilmenau (D)	763
P1.06	Tieftemperatur-RIE für die Mikrostrukturierung von organischen und anorganischen dünnen Schichten für Sensoranwendungen Low Temperature RIE for Microfabrication of Organic and Inorganic Thin Films for Sensor Applications R. Pechmann, W. Morgenroth, W. Brodkorb, J. M. Köhler, Institut für Physikalische Hochtechnologie, Jena (D)	767
P1.07	Erreichbare Meßgenauigkeiten mit piezoresistiven Sensoren Attainable Accuracy of Piezoresistive Sensors K. Sager, G. Gerlach, A. Nakladal, A. Schroth, TU Dresden (D)	771
P1.08	Piezoelektrische Quarz-Resonatoren für einen optischen Spannungssensor Piezoelectric Quartz Resonators for an Optical Voltage Sensor P. Bauerschmidt, Siemens AG, Erlangen (D); R. Lerch, Universität Linz (A)	775
P1.09	Strukturierung von Oberflächen durch Excimerlaser-Mikrobearbeitung Microstructuring of Surfaces by Excimer Laser Machining K. Zimmer, F. Bigl, Institut für Oberflächenmodifizierung e.V., Leipzig (D)	779
P1.10	Die Raster-Thermospannungssonde – Eine Methode zur zerstörungsfreien Bestimmung von Konzentrationsverteilungen in Halbleitern und Metallen Scanning Thermo-Probe Technique as a Non-Destructive Measuring Method for the Determination of Concentration Distributions in Semiconductors and Metals P. Reinshaus, H. Süßmann, A. Schuck, T. Dietrich, Martin-Luther-Universität, Halle (D)	783
P1.11	Low Power Sensing Systems J. P. Bardyn, Centre Suisse d'Electronique et de Microtechnique S.A., Neuchâtel (CH)	787
P1.12	Neigungsmeßmodul Declination Measuring Modul I. Nikolov, D. Ditschev, TU Gabrovo (BG)	791
P1.13	Bestimmung von Werkstückparametern mit Hilfe vektoriell angeordneter Basissensoren Determination of Workpiece Parameters with Vectorial Placed Base Sensors U. Schönherr, J. Zeller, Universität Erlangen (D)	795
P1.14	Viskositäts-Dichte-Sensor auf der Basis der Quarzmikrowaage Viscosity-Density-Sensor Based on Quartzmicrobalance A. Knezevic, W. Rumpler, HD. Liess, Universität der Bundeswehr München (D)	799
P1.15	Rohrnahtorientierungsgerät RONOG/4 – Die Automatisierung der Orientierung von Rohrschweißnähten vor kritischen Bearbeitungsschritten RONOG/4 – A Device for the Automatic Detection of Tube Seams Prior to Critical Steps in Manufacturing R. Russ, Fraunhofer-Gesellschaft Stuttgart (D) Er ganzung zum Vortrag siehe am Ende des Bandes	803
P2	Chemische und biologische Sensoren / Chemical and Biological Sensors	
P2.01	Die Mikroplasmazelle – Ein neuer Gasdetektor für einen integrierten Gaschromatographen A Micro-Plasma-Cell – A New Gas Detector for an Integrated Gas Chromatograph V. Relling, T. Wilkening, J. Müller, TU Hamburg-Harburg (D)	805
P2.02	Nachweis von Pestizidrückständen in Tabak mit nicht markierten Pestiziden mittels Antikörper-Biosensoren The Detection of Pesticide Residues in Tobacco by Label-Free Antibody-Based Biosensors V. Wagner, G. Bindler, F. Gadani, Philip Morris Europe S.A., Neuchâtel (CH)	809
P2.03	Detektion von organischen Lösungsmitteln mit supramolekularen Sensoren – Verbesserung der Selektivität mittels Mustererkennung und spezieller Wirt-Geometrien Detection of Organic Solvents with Supramolecular Sensors – Enhancement of Selectivity with the Aid of Pattern Recognition and Extended Host Geometries F. Dickert, M. Keppler, H. Reif, M. Reif, S. Thierer, Universität Wien (A); W. Bulst, G. Fischerauer, U. Knauer, Siemens AG, München (D)	813
P2.04	Untersuchungen zu Mehr-Parameter-Sensoren in elektrolytischen Lösungen nach Impedanz- Spektroskopischer Methode Investigations to Multi-Parameter Sensors in Electrolytic Solutions by Impedance Spectroscopic Methods T. Knutz, Universität Kiel (D)	817

P2.05	Design von dreidimensionalen Interdigitalelektroden für die Flüssigkeitsanalyse auf Basis einer Kapazitäts- und Leitwertsmessung Design of Three-Dimensional Interdigitated Electrodes for Liquid Analysis by Measuring Capacitance and Conductance	821
	T. Hofmann, K. Schröder, J. Zacheja, J. Binder, Universität Bremen (D)	
P2.06	Aufbau eines Hydrochinon- und Phenolsensors auf der Basis einer amperometrischen Sauerstoffelektrode und Azotobacter Species / Construction of a Hydroquinone and Phenol Sensor Basing on an Amperometric Oxygen Electrode and Azotobacter Species M. Reiss, J. Metzger, W. Hartmeier, RWTH Aachen (D)	825
P2.07	Querempfindlichkeiten elektrochemischer Gassensoren – Methoden zur Verringerung und Eliminierung Cross-Sensitivities of Electrochemical Gas Sensors – Methods of Reduction and Elimination S. Vaihinger, W. Bytyn, Endress + Hauser Gastec GmbH, Gerlingen (D)	829
P2.08	ZrO ₂ -Rauchgassonde zur Verbrennungskontrolle in Hausfeuerungen ZrO ₂ -Flue Gas Sensor for Combustion Control in Domestic Burner Systems A. Vogel, G. Baier, Asea Brown Boveri AG, Heidelberg; A. Gärtner, D. Wagner, Landesumweltamt NRW, Essen (D)	833
P2.09	Verbesserung der Reproduzierbarkeit des Signals von SNO ₂ Gassensoren durch Kalibrierung Improvement of Reproducibility of SNO ₂ Gas Sensors Response by Calibration B. Hivert, D. Hauden, C.N.R.S. Besancon; P. Mielle, G. Mauvais, I.N.R.A., Dijon; J. Henrioud, E.N.S.M.M., Besancon (F)	837
P2.10	Indium Oxide Coated Surface Acoustic Wave Sensor For Ozone Monitoring W. Wlodarski, P. A. Banda, Royal Melbourne Institute of Technology, Melbourne (AUS) - Manuskript lag bei Drucklegung nicht vor -	
P2.11	Alkylguanidine als Basis für Nitratsensoren Alkylguanidines as a Base for Nitrate Ion Sensors R. Hayessen, V. Mirsky, K. Heckmann, Universität Regensburg (D)	841
P2.12	Fortschritte der chemischen Sensorik mit ZrO ₂ - Festelektrolyten durch thermodynamisch fundierte rechentechnische Signalauswerteverfahren Progress in Chemical Sensorics with ZrO ₂ Solid Electrolytes by Thermodynamical Founded Computer Supported Methods of Signal Analysis H. Möbius, Ernst-Moritz-Arndt-Universität, Greifswald; W. Klingner, Zirox GmbH, Greifswald; E. Hartmann, Go-Meßtechnik, Greifswald (D)	845
P2.13	Biosensoren für Glucose – Anwendung in vivo Biosensors for Glucose – Application in Vivo P. Abel, T. von Woedtke, E. J. Freyse, A. Schwock, K. Schröder, K. Aßmus, U. Fischer, Institut für Diabetes der Universität Greifswald (D)	941
P2.14	Development of CO and Methane Sensor in a Single Element with Low Power Consumption K. Tanaka, T. Matsumoto, M. Ito, FIS Inc., Osaka (Japan)	849
P2.15	Pulsoxymeter zur Bestimmung der Hämoglobin-Derivate Measurement of Hemoglobin Derivates by Means of Enhanced Pulse Oxymetry K. Zürl, B. Manzke, F. Zobel, J. Schwider, N. Lutter, K. Engelhardt, Universität Erlangen (D)	853
P2.16	Work-Out of a Fibre Optic Fluorsensor for Determination of Oxygen in Seawater JF. Gouin, F. Baros, J. C. André, CNRS, Nancy; D. Birot, IFREMER Centre de Brest, Plouzane (F)	857
P2.17	Intelligente Silizium-Taupunktsensoren als kostengünstiges Beispiel für siliziumintegrierte Sensorik in CMOS-LSI-Technologien A. Steinke, D. Hofmann, B. March, CiS Erfurt; D. Heinze, TU Ilmenau; H. Hansch, IL Metronic Sensortechnik GmbH, Ilmenau (D)	861
P2.18	Einfluß der Luftfeuchte auf das NIR-Transmissionsspektrum von HCS®-Lichtwellenleitern Influence of Humidity on the Near-Infrared Transmittance of Optical HCS®-Fibres R. Eberl, J. Wilke, Fachhochschule Anhalt, Köthen (D)	865
P2.19	The Physiocontrol-Microsystem: Development and Characterization of Cellular Biosensors E. Wagner, G. Sulz, Fraunhofer-Institut für Physikalische Meßtechnik, Freiburg; B. Wolf, W. Baumann, M. Brischwein, R. Ehret, Universität Freiburg; P. Seidel, PTS Freiburg; W. Oelßner, Forschungsinstitut 'Kurt Schwabe', Meinsberg; U. Sieben, ITT Industries Corp. Freiburg (D)	869
Р3	Signalverarbeitung und Simulation / Signal Processing and Simulation	
23.01	General Error Function of Synthetic-Heterodyne Signal Processing of Interferometric Fibre Optic Sensors A. B. Lobo Ribeiro, Inesc Centro de Optoelectrónica, Porto; J. L. Santos, Universität Porto (P); R. F. Caleya, Universität Politécnica Madrid (E)	873

P3.02	Parametrische Identifizierung des Sensoren, der dem Pt-100 resistiven Temperaturkonverter entspricht Parameter Identification of Sensor Corresponding to Resistance Temperature Detector Pt-100 N. Damean, TU lasi (RO)	0//
P3.03	Verfahren zur Verbesserung des Signal-Rausch-Abstandes akustischer Sensoren Method for Improving Signal-Noise Ratio of Ultrasonic Sensors H. Enge, W. Manthey, Technische Universität Chemnitz-Zwickau (D)	881
P3.04	FOSSIL – Ein intelligenter faseroptischer Streulichtsensor mit integrierter Laserlichtquelle FOSSIL – An Intelligent Fiber Optic Stray Light Sensor System with Integrated Laser Source H. Rothe, A. Kasper, Universität der Bundeswehr Hamburg (D)	885
P3.05	Kompensation von linearen und nichtlinearen Sensorverzerrungen durch digitale Nachbearbeitung Compensation of Linear and Nonlinear Sensor Distortions by Digital Post Processing W. Frank, Universität der Bundeswehr München (D)	889
P3.06	Anwendung der Mehrkanalpyrometrie zur Bestimmung dynamischer Temperaturverteilungen im Glasvolumen und zur Temperaturmessung beim Aluminiumstrangpressen Application of Multi-Wavelength Pyrometry for Measurement of the Dynamic Temperature Distribution in Glass and for Temperature Measurement in Aluminium Extruders Ch. Schiewe, Ultrakust infra sensor GmbH, Magdeburg (D)	893
P3.07	Process Measurement Based on Local Integral Sampling M. van der Laan, University of Groningen (NL); W. A. Halang, Fern-Universität Hagen (D)	897
P3.08	Modelling of Opto-Electronic Microsystems for System Simulation S. Wünsche, P. Schwarz, P. Schneider, Fraunhofer-Institut für Integrierte Schaltungen (IIS), Dresden (D)	901
P3.09	Online Datenerfassung und Auswertung mit Sensorsystemen für mechanische Größen On-Line Data Acquisition and Analysis with Sensor Systems for Mechanical Quantities M. Wagner, Hottinger Baldwin Messtechnik GmbH, Darmstadt (D)	905
P3.10	ISIbus - Eine wirksame neue physikalische Schichte für Fieldbus ISIbus - A Powerful New Physical Layer for Fieldbus H. Landet, Fieldbus International AS, Oslo; B. Raad, Sintef, Oslo (N)	909
P3.11	Micromachined Liquid Flow Meter Based on the Kinetic Pressure HJ. Schmidt, M. Gebhard, D. Bauer, M. Wieseler, W. Benecke, Universität Bremen (D)	913
P3.12	Lernfähiges Multisensorsystem zur Zustandsanalyse mit Trenderkennung Learning Multi-Sensor-System and Trend Recognition for State Analysis M. Winterstein, B. Adler, Buna GmbH, Merseburg; G. Brückner, PH Erfurt (D)	917
P3.13	Schnelle 3D-Strukturestimation aus Bildfolgen einer CCD-Kamera Fast 3-D Structure Estimation Using Image Sequences of a CCD Camera R. Otterbach, S. Ostertag, Universität-GH-Siegen (D)	921
P3.14	Im Werkzeug integrierter Acoustic Emission Sensor zur In-Prozess-Messung beim Zerspanen im MHz-Bereich In-Tool Acoustic Emission Sensor as Cutting Monitor in the MHz-Range A. Kirchheim, C. Cavalloni, Kistler Instrumente AG, Winterthur; C. Scheer, W. Hundt, ETH Zürich (CH)	925
P3.15	Wirbelstromprüfung an Stahlbeton mit Bildverarbeitung Eddy Current Testing of Reinforced Concret by Image Processing W. Ricken, WJ. Becker, G. Mehlhorn, Universität Kassel (D)	929
P3.16	Numerical Modelling of Electro-Thermo-Mechanical Actuators H. Schwarzenbach, N. Spiniello, Numerical Modelling GmbH, Thalwil; M. Roos, E. Anderheggen, ETH Swiss Federal Institute of Technology; R. Naef, TWI Technikum Winterthur (CH)	933
P3.17	Bestimmung von Verbrennungsgasen durch eine Sensoranordnung unter Zuhilfenahme von einem DDC Algorithmus Detection of Exhaust Emissions by an Array of Sensors in Combination with the DDC Algorithm P. van Geloven, Heraeus Electro-Nite, Houthalen (B)	937