# 普通物理(電磁學)重點筆記

# NCUEE 許彧嘉

# June 17, 2025

# **Contents**

| 物理常數與重要符號 |      |                     |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|-----------|------|---------------------|---|--|--|--|--|--|--|--|--|--|--|--|--|--|
| 易混淆觀念小提醒  |      |                     |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 1         | 基本   | 本公式與定義              |   |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.1  | 電流密度、導體             | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.2  | 電阻                  | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.3  | 歐姆定律                | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.4  | 磁場與帶電粒子運動           | 3 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.5  | 磁場與安培定律             | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.6  | 磁場單位                | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.7  | 通電直線、圓環、螺線管、環形線圈的磁場 | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.8  | 電磁感應(法拉第定律與楞次定律)    | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.9  | 自感與電感 (Inductor )   | 4 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 1.10 | 電容、儲存能量             | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2         | 電路   | : RL、RC、LC、RLC 電路   | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 2.1  | RC 電路               | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 2.2  | RL 電路               | 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 2.3  | LC 與 RLC 電路         | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 3         | 交流   | 電路與阻抗               | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 3.1  | 交流電壓                | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 3.2  | 電容元件                | 6 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 3.3  | 電感元件                | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 3.4  | RLC 並聯              | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|           | 3.5  | 相价關係                | 7 |  |  |  |  |  |  |  |  |  |  |  |  |  |

| 4         | <b>静電学與高斯定律</b> 4.1 庫倫定律 |       |   |  |  |  |  |  |  |  |  |  |  |   |   | - | 7 |  |  |  |  |  |  |  |  |   |   |
|-----------|--------------------------|-------|---|--|--|--|--|--|--|--|--|--|--|---|---|---|---|--|--|--|--|--|--|--|--|---|---|
|           | 4.1                      | 庫倫定律  |   |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  | 7 | 7 |
|           | 4.2                      | 電場與電勢 | 熟 |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  | 7 | 7 |
|           | 4.3                      | 高斯定律  |   |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  | 7 | 7 |
|           |                          | 導體性質  |   |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  |   |   |
|           | 4.5                      | 電容器 . |   |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  | 8 | 3 |
| 5         | 麥克                       | 斯威方程組 | 1 |  |  |  |  |  |  |  |  |  |  |   |   |   |   |  |  |  |  |  |  |  |  | 8 | 3 |
| 常用向量微積分公式 |                          |       |   |  |  |  |  |  |  |  |  |  |  | 8 | 3 |   |   |  |  |  |  |  |  |  |  |   |   |

# 物理常數與重要符號

- $\epsilon_0$ : 真空介電常數  $\epsilon_0 = 8.85 \times 10^{-12} \, \mathrm{F \, m^{-1}}$
- $\mu_0$ : 真空磁導率 ·  $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{NA}^{-2}$
- c: 光速  $c = 3.00 \times 10^8 \text{ m/s}$
- $k_e$ : 庫倫常數 ·  $k_e = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \,\mathrm{N}\,\mathrm{m}^2\,\mathrm{C}^{-2}$
- q:電荷量,單位:C
- *I*:電流,單位:A
- V: 電壓或電勢差,單位: V
- R:電阻,單位:□
- C:電容,單位:F
- L:電感,單位:H
- B:磁場,單位:T
- E:電場・單位: $V m^{-1}$
- A:截面積或向量面積
- Φ<sub>B</sub>:磁通量
- €: 感應電動勢
- n:單位體積帶電粒子數密度/螺線管單位長度圈數(依情境)
- N:總圈數

## 易混淆觀念小提醒

- **感應電動勢**  $\mathcal{E}$  **與端電壓** V :  $\mathcal{E}$  指閉合路徑上的總感應電動勢,端電壓 V 為元件兩端的電壓,兩者在電路分析中含義不同。
- **線圈圈數** n vs. N: n 表示「單位長度」圈數(如螺線管) $\cdot$  N 表示「總圈數」(如電感、環形線圈)。
- 電流方向與電子運動方向相反:計算時以「正電荷流動方向」為正。
- 向量公式注意:  $\vec{F} = q(\vec{v} \times \vec{B})$  為向量叉積 · 方向由右手定則判斷 。

# 1 基本公式與定義

1.1 電流密度、導體

$$J = \frac{I}{A}$$
$$I = nqv_d A$$

 $(n: 單位體積內帶電粒子數量, <math>v_d: 漂移速度)$ 

1.2 電阻

$$R = \rho \frac{l}{A}$$
$$V = IR$$

1.3 歐姆定律

$$I = \frac{V}{R}$$

1.4 磁場與帶電粒子運動

$$\vec{F} = q(\vec{v} \times \vec{B})$$
 
$$r = \frac{mv}{qB}$$

圓周運動週期:

$$T = \frac{2\pi m}{qB}$$

迴旋運動軌跡 pitch (螺旋線移動):

$$\mathrm{Pitch} = v_{\parallel} T = v_{\parallel} \cdot \frac{2\pi m}{qB}$$

3

1.5 磁場與安培定律

$$\oint \vec{B} \cdot d\vec{\ell} = \mu_0 I_{\rm enc}$$

1.6 磁場單位

$$1~T = 1~\frac{N}{A \cdot m}$$

- 1.7 通電直線、圓環、螺線管、環形線圈的磁場
  - 直線電流:

$$B = \frac{\mu_0 I}{2\pi r}$$

• 圓形電流迴路中心:

$$B = \frac{\mu_0 I}{2R}$$

• 長螺線管:

$$B = \mu_0 nI$$

n: 單位長度圈數

• 環形 ( Toroid ):

$$B = \frac{\mu_0 NI}{2\pi r}$$

N: 線圈總圈數

1.8 電磁感應(法拉第定律與楞次定律)

$$\mathcal{E} = -\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$
 
$$U = -N\frac{\mathrm{d}\Phi_B}{\mathrm{d}t}$$
 
$$\Phi_B = \int \vec{B} \cdot \mathrm{d}\vec{A}$$

楞次定律:感應電流方向總是反抗磁通量變化。

1.9 自感與電感 (Inductor)

$$L = \frac{N\Phi_B}{I}$$
 
$$L = \frac{\mu_0 N^2 A}{l}$$
 
$$\mathcal{E}_L = -L \frac{\mathrm{d}I}{\mathrm{d}t}$$
 
$$U_B = \frac{1}{2} L I^2$$

# 1.10 電容、儲存能量

$$Q = CV$$
$$U_C = \frac{1}{2}CV^2$$

# 2 電路: RL、RC、LC、RLC 電路

#### 2.1 RC 電路



充電時:

$$q(t) = CV \left(1 - e^{-t/RC}\right)$$
$$i(t) = \frac{V}{R}e^{-t/RC}$$

放電時:

$$q(t) = Q_0 e^{-t/RC}$$
$$i(t) = -\frac{Q_0}{RC} e^{-t/RC}$$

電容儲存能量:

$$U_C = \frac{1}{2}CV^2$$

## 2.2 RL 電路



通電時:

$$i(t) = \frac{V}{R} \left( 1 - e^{-t/\tau} \right), \quad \tau = \frac{L}{R}$$

斷電時:

$$i(t) = I_0 e^{-t/\tau}$$

電感儲存能量:

$$U_L = \frac{1}{2}LI^2$$

#### 2.3 LC 與 RLC 電路

$$LC: Q = Q_0 \cos(\omega t + \phi), \omega = \frac{1}{\sqrt{LC}}$$

$$RLC: Q = Q_0 e^{-\gamma t} \cos(\omega' t + \phi)$$

$$\gamma = \frac{R}{2L}$$

$$\omega' = \sqrt{\frac{1}{LC} - \left(\frac{R}{2L}\right)^2}$$

RLC 分類:

• 欠阻尼: $\omega' > 0$ 

• 臨界阻尼: $\omega'=0$ 

• 過阻尼: $\omega' < 0$ 

#### 串聯與並聯電阻示意





並聯:

$$\frac{1}{R_{\rm eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$$

# 3 交流電路與阻抗

#### 3.1 交流電壓

$$V(t) = V_{\rm max} \sin(\omega t)$$

## 3.2 電容元件

$$\begin{split} V_C &= V_{\text{max}} \sin(\omega t) \\ q_C &= C V_{\text{max}} \sin(\omega t) \\ i_C &= \frac{\mathrm{d}q}{\mathrm{d}t} = \omega C V_{\text{max}} \cos(\omega t) \\ X_C &= \frac{1}{\omega C} \\ I_{\text{max}} &= \frac{V_{\text{max}}}{X_C} \end{split}$$

#### 3.3 電感元件

$$V_L = L rac{\mathrm{d}i}{\mathrm{d}t}$$
  $X_L = \omega L$   $I_{\mathrm{max}} = rac{V_{\mathrm{max}}}{X_L}$ 

#### 3.4 RLC 並聯

$$V_{\rm max}^2 = (I_{\rm max}R)^2 + (I_{\rm max}X_L - I_{\rm max}X_C)^2$$
 
$$X = \sqrt{X_L^2 + X_C^2}$$

#### 3.5 相位關係

•  $X_L > X_C$ : 電流落後電壓(感性)

•  $X_L = X_C$ : 電流與電壓同相 (共振)

•  $X_L < X_C$ : 電流超前電壓(容性)

# 4 靜電學與高斯定律

#### 4.1 庫倫定律

$$F = k_e \frac{|q_1 q_2|}{r^2}, \quad k_e = \frac{1}{4\pi\epsilon_0} = 8.99 \times 10^9 \text{ Nm}^2 \text{C}^{-2}$$

## 4.2 電場與電勢

$$E = \frac{F}{q} = k_e \frac{|q|}{r^2}$$
 
$$V = k_e \frac{q}{r}$$
 
$$\vec{E} = -\nabla V$$
 
$$\Delta V = -\int_A^B \vec{E} \cdot d\vec{\ell}$$

## 4.3 高斯定律

$$\oint \vec{E} \cdot \mathrm{d}\vec{A} = \frac{q_{\mathrm{enc}}}{\epsilon_0}$$

7

#### 4.4 導體性質

- 導體內部無電場
- 導體表面電場垂直
- 導體表面為等位面

#### 4.5 電容器

$$Q = CV, \quad C = \epsilon_0 \frac{A}{d}$$

$$U = \frac{1}{2}CV^2$$

 $U = \frac{1}{2}C'$  並聯電容:

 $C_{\rm eq} = C_1 + C_2 + \cdots$ 

串聯電容:  $\frac{1}{C_{\rm eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \cdots$ 

# 5 麥克斯威方程組

(1) 高斯定律  $\nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ 

(2) 無磁單極  $\nabla \cdot \vec{B} = 0$ 

(3) 法拉第電磁感應  $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ 

(4) 安培-馬克士威定律  $\nabla imes ec{B} = \mu_0 ec{J} + \mu_0 \epsilon_0 rac{\partial ec{E}}{\partial t}$ 

# 常用向量微積分公式

• 散度定理 ( Gauss's Theorem ):

$$\int_{V} (\nabla \cdot \vec{A}) \ \mathrm{d}V = \oint_{\partial V} \vec{A} \cdot \mathrm{d}\vec{A}$$

• 斯托克斯定理 ( Stokes' Theorem ):

$$\int_S (\nabla \times \vec{A}) \cdot \mathrm{d}\vec{A} = \oint_{\partial S} \vec{A} \cdot \mathrm{d}\vec{\ell}$$