Read Only Memory Architecture

Dr. Shubhajit Roy Chowdhury,

Centre for VLSI and Embedded Systems Technology, IIIT Hyderabad, India

Email: src.vlsi@iiit.ac.in

Read-Only Memory Cells

MOS OR ROM

MOS NOR ROM

MOS NOR ROM Layout

MOS NAND ROM

All word lines high by default with exception of selected row

MOS NAND ROM Layout

NAND ROM Layout

Equivalent Transient Model for MOS NOR ROM

Model for NOR ROM

- Word line parasitics
 - Wire capacitance and gate capacitance
 - Wire resistance (polysilicon)
- Bit line parasitics
 - Resistance not dominant (metal)
 - Drain and Gate-Drain capacitance

Equivalent Transient Model for MOS NAND ROM

Model for NAND ROM

- Word line parasitics
 - Similar to NOR ROM
- Bit line parasitics
 - Resistance of cascaded transistors dominates
 - Drain/Source and complete gate capacitance

Decreasing Word Line Delay

Precharged MOS NOR ROM

PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

Non-Volatile Memories The Floating-gate transistor (FAMOS)

Device cross-section

Schematic symbol

Floating-Gate Transistor Programming

Removing programming voltage leaves charge trapped

Programming results in higher V_{T} .

Avalanche injection

A "Programmable-Threshold" Transistor

FLOTOX EEPROM

FLOTOX transistor

Fowler-Nordheim I-V characteristic

EEPROM Cell

Absolute threshold control is hard
Unprogrammed transistor might be depletion

⇒ 2 transistor cell

NAND Flash Memory

Courtesy Toshiba

NAND Flash Memory

Characteristics of State-of-the-art NVM

Table 12-1 Comparison between nonvolatile memories ([Itoh01]). $V_{DD} = 3.3$ or 5 V; $V_{PP} = 12$ or 12.5 V.

	Cell— Nr. of Transistors	Cell Area (ratio wrt EPROM)	Mechanism		External Power Supply		Program/
			Erase	Write	Write	Read	Erase Cycles
MASK ROM	1 T (NAND)	0.35–5	_	_	_	V_{DD}	0
EPROM	1 T	1	UV Exposure	Hot electrons	V_{PP}	V_{DD}	~100
EEPROM	2 T	3–5	FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$
Flash Memory	1 T	1–2	FN Tunneling	Hot electrons	V_{PP}	V_{DD}	10 ⁴ -10 ⁵
			FN Tunneling	FN Tunneling	V_{PP} (int)	V_{DD}	$10^4 - 10^5$

Building Logic with ROMs

- Use ROM as lookup table containing truth table
 - n inputs, k outputs requires 2ⁿ words x k bits
 - Changing function is easy reprogram ROM
- Finite State Machine
 - n inputs, k outputs, s bits of state
 - Build with 2^{n+s} x (k+s) bit ROM and (k+s) bit register

THANK YOU

