Vaibhav Thakur, MS, MA,

E-mail Id: vaibhavthakur@ucla.edu

EDUCATIONAL QUALIFICATION:

- PhD (continuing student): University of California Los Angeles (Fall 2019-present)
- MS Thesis, Indian Institute of Science, Bangalore (2016-2017)
 Title: Study of Kinematic Planning and Decision Making in Hand Movement
- BS-MS, Indian Institute of Science Education and Research, Pune (2012-2017)
- Jawahar Navodaya Vidyalaya, Pune (2005-2012)

ACADEMIC EMPLOYMENT HISTORY:

•	Teaching Assistant	University of California - Los Angeles	March 2020 – June 2020
•	Staff Research Associate II	University of California – Los Angeles	Nov 2017 – Aug 2019
•	Research Assistant	Indian Institute of Science, Bangalore	May 2016 – Oct 2017

PUBLICATIONS:

- Thakur, V., Basso, M., Ditterich, J., Knowlton, B., Implicit learning of Bayesian priors in perceptual decision-making task. (Scientific Reports August 2021)
- **Thakur, V.**, Murthy, A., Neural representations underlying the planning and execution of kinematic and dynamic movement parameters using electroencephalography. (*Thesis; Manuscript in progress*)

PROFESSIONAL SKILLS:

- Research skills: Psychophysocal experiments, Rodent surgeries, and Computational modeling
- Model system: Humans (healthy and clinical), and Mice
- Neuroimaging: EEG, Confocal Microscopy
- Programming: Python, MATLAB, R, C++, Fortran95, Arduino
- Graphics: PyGame, QT5, Psychtoolbox, MS-Office

WORKSHOPS/SUMMER SCHOOL:

•	Neuromatch Academy Summer Workshop – Deep Learning	Aug 2021
•	Neuromatch Academy Summer Workshop – Computational Neuroscience	July 2020
•	Methods of Information Theory in Computational Neuroscience, OCNS, Seattle	Jun 2018
•	Computational Approaches to Memory and Plasticity (Summer School), NCBS, India.	July 2017
•	1 st Workshop on Brain, Computation, and Learning, Indian Institute of Science, India.	January 2017
•	4 th Cognition Workshop, organized by Indian Institute of Science, India.	June 2016

SCHOLARSHIPS AND ACHIEVEMENTS:

•	CSIR NET 2016 - Junior Research Fellowship (All India Rank 141)	December 2016
•	Department of Science and Technology - INSPIRE fellowship	August 2012 - May 2017
•	Govt. of India - Navodaya Vidyalaya Samiti Education Program	June 2005 – April 2012

CONFERENCES:

I) PRESENTATIONS:

- Thakur, V., Ditterich, J., Basso, M., Knowlton, B., Different influences of explicit and implicit Bayesian priors on perceptual decision-making. Presented at Society for Neuroscience, Chicago, Oct 2019
- ➤ Knowlton, B., Thakur, V., Perugini, A., Shaikh, A., Basso, M., Use of priors in perceptual decision-making in clinical subtypes of Parkinson's disease. Presented Cognitive Neuroscience Society Meeting, San Francesco, March 2019.
- ➤ Knowlton, B., Thakur, V., Perugini, A., Basso, M., Implicit learning of Bayesian priors in perceptual decision-making task. Presented at Society for Neuroscience, San Diego, Nov 2018.
- Thakur, V., Murthy, A., Neural correlates of kinematic planning and execution. Presented at Society for Neuroscience, San Diego, 2018.

II) OTHER POSTERS:

- Schorn, J., Thakur, V., Knowlton, B., Interleaved practice enhances implicit learning of motor sequences. Presented at Psychonomic Society Meeting, New Orleans, Nov 2018.
- Mckee, C., Perugini, A., Thakur, V., Knowlton, B., Iacoboni, M., Basso, M., Shattuck, D., Isolation and characterization of medial temporal lobe-basal ganglia circuit using diffusion magnetic resonance imaging. Presented at Society for Neuroscience, San Diego 2018.

RESEARCH EXPERIENCE:

- Understanding of neural microcircuit of decision-making using optogenetic and electrophysiology:
 - Advisor: Prof. Michele Basso, Professor, University of California, Los Angeles.

Oct 2018-Present

- > Training mice to perform perceptual decision-making task.
- > Automated training procedure with own python based software.
- > We will use optogenetic technique to excite/inhibit neurons in SC and observe if it has an effect on decision-making process.
- Use of priors in perceptual decision-making task in clinical subtypes of Parkinson's disease:

Advisor: <u>Prof. Barbara Knowlton and Prof. Michele Basso</u>, Professor, University of California, Los Angeles.

Apr 2017 – Present

- > Previous literature shows that Parkinson's patients are impaired at learning perceptual biases.
- > In this experiment, we collected the data from two sub-type of Parkinson's patients with different brain regions impaired. Based on their performance we can deduce the possible brain regions involved in this learning impairment.
- Strategies for implicit learning of motor sequences and transfer of learning:

Advisor: <u>Prof. Barbara Knowlton</u>, Professor, University of California, Los Angeles.

Jan 2017 – May 2019

- ➤ In this study, we are trying to compare the benefits of interleaved versus blocked practice in motor learning task.
- My part was to help in designing the experiment paradigm based on previously known sequential reaction time task and implement the task.

• Implicit learning of Bayesian priors using perceptual decision-making task:

Advisor: <u>Prof. Barbara Knowlton and Prof. Michele Basso</u>, Professor, University of California, Los Angeles.

Nov 2017 – March 2021

- Through this study we tried to understand if the perceptual biases can be learned implicitly and what is the mechanism behind it.
- > For this we designed the experiment paradigm based on glass-pattern stimulus and collected data from healthy human subjects.
- > Furthermore we used drift diffusion model to understand the mechanism of this learning.

Study of kinematic planning and initiation of hand movement using electroencephalography:

Advisor: Prof. Aditya Murthy, Professor, CNS, Indian Institute Science (IISc). May 2016 - Oct 2017

- > Studied the neural representations underlying the planning and execution of movement parameters such as kinematics and dynamics in humans.
- > Successfully initiated EEG study in the lab for the first time and the corresponding analysis pipeline is self-developed with the help of previous literature.
- > The results support the idea that kinematic information is dominant in premotor cortex during planning and feedforward movement and moves to parietal cortex during online control.

Modeling and simulation of purinergic signaling in astrocytes:

Advisor: Dr. Suhita Nadkarni, Assistant Professor, Biology Dept., IISER Pune

Jan 2016 – Apr 2016

- > The purine nucleosides modulate cell (neuron and astrocyte) activity by an increase in calcium level via P2Y receptors.
- > Similar signaling mechanisms are implicated in memory, learning, and feeding behaviors.
- ➤ I tried to model and understand how this type of receptors modulate the synaptic transmission in neurons by changes in calcium concentration.

The role of Formin2 in the retrograde flow of filopodia and lamellipodia:

Advisor: Dr. Aurnab Ghose, Assistant Professor, Biology Dept., IISER Pune

Aug 2015 – Nov 2015

- Retrograde flow is the net rearward flow of actin network in the cell. This process is essential for cell development and movement.
- I tried to find out how Formin knockout modulates the retrograde flow in lamellipodia and filopodia using confocal microscopy.

Quantification and state space modeling of learning of kinematics and dynamics in motor learning Task: Advisor: Prof. Aditya Murthy, Professor, Indian Institute Science. May 2015 – Jul 2015 and Dec 2015

- We recorded the hand movements and EMG of human subjects during task.
- Tried to identify which movement parameter is learnt in perturbed environments.
- In both kinematic and dynamic perturbation, the maximum deviation from the planned movement seems to be the learned parameter.

The role of DEP domain on Formin's cellular localization in neurons:

Advisor: <u>Dr. Aurnab Ghose</u>, Associate Professor, Biology Dept., IISER Pune Jan 2015 - Apr 2015

- DEP domain is known for gene regulation, cytoskeleton regulation, and calcium regulation.
- Formin is known for the polymerization of actin monomers and also contains the DEP domain.
- I tried to find the role of DEP in the localization of the fmn2 protein.