OTTO-VON-GUERICKE-UNIVERSITÄT MAGDEBURG

Fakultät für Maschinenbau

Modulhandbuch für den

Masterstudiengang

Integrated Design Engineering (IDE)

ab Matrikel 2021-2

Version: 01.04.2022

Inhaltsverzeichnis

1	Kurzbeschreibung des Studienganges	4
2	Geltung des Modulhandbuches	6
3	Moduleinordnung in den Studienablauf	6
4	Pflichtbereich	7
	Angewandte Konstruktionstechnik (AK)	7
	Business Decision Making	
	Business Planning	8
	Einführung in das Integrated Design Engineering (IDE-E)	9
	IDE-Projekt I-III (IDE-P)	10
	Integrated Design Engineering (IDE)	11
	Mensch-Produkt-Interaktion (MPI)	12
	Neue Werkstoffe und Fertigungsverfahren (NWF)	13
	Produktdesign und Entwurf (PDE)	14
5	Wahlpflichtbereich: Ingenieurtechnik	15
	.1 Maschinenbau	15
	CAx-Anwendungen (CAA)	15
	CAx-Management (CAM)	16
	Produktmodellierung und Visualisierung (PMV	17
	Technisches Innovationsmanagement (TIM)	18
	.2 Informatik	19
	Advanced Database Models (ADBM)	19
	Computer Aided Geometric Design (CAGD)	20
	Data Warehouse-Technologien (DWT)	21
	Datenmanagement (DM)	22
	Idea Engineering (IE)	23
	Interaktive Systeme (IS)	24
	Startup-Engineering III (SE-III)	25
	.3 Sport und Technik	26
	Grundlagen der Forschungsmethoden und Statistik (AM1-SPTE)	26
	Sportgerätetechnik I (SGTI)	27
	Sportgerätetechnik II (SGTII)	
	Technologien im Sport (TP)	29
6	Wahlpflichtbereich: Produktdesign und Entwurfshandeln	30
	Grundlagen der visuellen Gestaltung (GVG)	30
	Form, Farbe, Material (FFM)	
	Rechnerunterstützter Designentwurf – CAID (RDC)	32
	Ringvorlesung Industriedesign (RVI)	33
	Sustainable Design (SD)	
7	Wahlpflichtbereich: Wirtschaftswissenschaften	
	Marketing, Vertrieb, Betriebsverfassung, Personalwesen (MVP)	35
	Strategisches Technologiemanagement und Organisationsentwicklung/Coaching (TOC)36
	Unternehmensplanung und Unternehmensführung (UPF)	38

Version 2022-04	MHB M-IDE	Seite 3 von 38

1 Kurzbeschreibung des Studienganges

Name des Studiengangs: Integrated Design Engineering

Art des Studiengangs: Präsenzstudiengang (Vollzeitstudium)

Abschluss: Master of Science (M.Sc.)

Regelstudienzeit: 4 Semester

Profil: "stärker anwendungsorientiert"

Studienbeginn: Wintersemester

Fachliches Profil und Alleinstellungsmerkmale:

Der von vier Fakultäten getragene Masterstudiengang Integrated Design Engineering (IDE) ermöglicht in vier Semestern das Erlernen vieler unterschiedlicher Facetten der Produktentwicklung. Dabei wird theoretisches Fachwissen und praktische Projektarbeit zusammengeführt, um anspruchsvolle, individualisierte und innovative Produkte entwickeln zu können. Im Studiengang IDE werden ingenieurswissenschaftliche Sichtweisen gleichwertig mit den Sichtweisen Design bzw. Wahrnehmung und Ästhetik sowie Nachhaltigkeit, Bedarfsorientierung, Wirtschaftlichkeit (und weiteren Sichtweisen) behandelt. Studierende können sich in den Vertiefungsrichtungen Maschinenbau, Industriedesign, Informatik, Wirtschaftswissenschaften oder Sport und Technik spezialisieren.

Die erlernten Grundlagen werden in drei Projekten angewendet, die jeweils ein Semester dauern. Dabei arbeitet ein Team aus Studierenden verschiedener Fachrichtungen (üblicherweise Maschinenbau, Industriedesign, Computervisualistik, Sport und Technik, Wirtschaftswissenschaften) interdisziplinär an einem Thema zusammen. Dieses Thema wird entweder in Kooperation mit der Industrie oder im Rahmen von Gründungsprojekten an die Universität herangetragen, wobei letzteres bis zum Businessplan mit dem Ziel der Gründung des eigenen Unternehmens bearbeitet wird. Die Studierenden gestalten und durchleben während des Projektes den gesamten Produktentwicklungsprozess von der ersten Idee bis zum Bau von Modellen und Prototypen. In eigenen Entwicklungslaboren mit entsprechenden Kreativ- und CAx-Werkzeugen sowie Werkstätten können die Studierenden selbständig, kreativ und eigenverantwortlich arbeiten.

Die akademische Ausbildung mit dem Abschluss M.Sc. der Otto-von-Guericke-Universität Magdeburg liefert eine hinreichende Voraussetzung für weitere, postgraduale Ausbildungen (z.B. Promotion) im Bereich der Ingenieurwissenschaften und angrenzender Gebiete.

Die Ziele des Studiums sind:

Ziel des Studiums des Masterstudienganges Integrated Design Engineering ist es, gründliche Fachkenntnisse und die Fähigkeit zu erwerben, nach wissenschaftlichen Methoden selbständig zu arbeiten, sich in die vielfältigen Aufgaben der auf Anwendung, Forschung oder Lehre bezogenen Tätigkeitsfelder selbständig einzuarbeiten und die häufig wechselnden Aufgaben zu bewältigen, die im Berufsleben auftreten. Die Fachkenntnisse werden fachübergreifend primär auf den Gebieten der Integrierten Produktentwicklung, des Technischen Designs und der Arbeitswissenschaft erworben, um ganzheitlich gleichwertige Sichten auf das Produkt bezüglich Funktionserfüllung, Formgebung, Handhabung (Ergonomie), Preis-Leistungs-Verhältnis, Herstellbarkeit, Wartbarkeit und Nachhaltigkeit zu erreichen.

Integrated Design Engineering fokussiert die Lehre der Integrierten Produktentwicklung mit gleichberechtigter Einbeziehung aller am Entwicklungsprozess beteiligten Disziplinen. Das Technische Design nimmt dabei eine Schlüsselrolle ein. Dem Menschen kommt im Spannungsfeld zwischen Entwicklung und Anwendung neuer Technologien sowie planerischer und organisatorischer Aspekte und Methoden eine besondere Rolle zu. Integrated Design Engineering ist produktlebenszyklusorientiert, berücksichtigt die Belange einer nachhaltigen und einer wirtschaftlichen Produktentwicklung und stellt auf Basis des humanzentrierten Modells der Integrierten Produktentwicklung den Benutzer und Benutzungsszenarien in den Mittelpunkt aller Aktivitäten.

Ziel des Studiums ist weiterhin der Erwerb technisch-funktionaler und gestalterisch-ergonomischer Qualifikationen, die sowohl technische, organisatorische, künstlerisch-gestalterische als auch analytisch kritische Kompetenzen umfassen und die für die Ausübung konzeptionsbildender und entscheidungstragender Funktionen im Umfeld einer ganzheitlich betriebenen Produktentwicklung erforderlich sind. Dies setzt die Befähigung zu selbständigem und kooperativem sowie zu verantwortlichem und innovativem Handeln voraus, welches im Masterstudium des Integrated Design Engineering durch interdisziplinäre Projekte gefördert wird.

Berufsfelder für Absolventen des Masterstudiums Integrated Design Engineering sind einerseits leitende und selbständige Tätigkeiten in der Produktentwicklung in der Investitionsgüter- und der Konsumgüterindustrie sowie weiterer vergleichbarer Industrien, sowohl in Anwendung und Dienstleistung als auch in der Forschung. Andererseits sind entsprechende Tätigkeiten in Wissenschaft und Bildungswesen möglich.

Kurzcharakteristik:

Integrated Design Engineering ist ein individuell gestaltbarer Masterstudiengang, welcher in einer viersemestrigen Ausbildung unterschiedliche Komponenten der Produktentwicklung verbindet. Dabei wird theoretisches Fachwissen und praktische Projektarbeit zusammengeführt, um anspruchsvolle, individualisierte und innovative Produkte zu entwickeln. Die Studierenden haben die Möglichkeit, sich in den Vertiefungsrichtungen Maschinenbau, Industriedesign, Informatik, Wirtschaftswissenschaften oder Sport und Technik zu spezialisieren. Neben der ingenieurswissenschaftlichen Betrachtung fokussiert der Masterstudiengang u. a. auch den Bereich Produktdesign, d. h. Wahrnehmung und Ästhetik. Eine ebenso wichtige Rolle nehmen die Analysen der Kundenbedürfnisse sowie konkrete Wirtschaftlichkeitsbetrachtungen ein.

Theoretische Grundlagen werden in drei zu absolvierenden Projekten angewendet, die von den Studierenden jeweils mit starkem Praxisbezug entweder in Kooperation mit der Industrie oder im Rahmen von Gründungsprojekten ein Semester bearbeitet werden. Dabei entwickeln Studierende aus den Fachrichtungen Maschinenbau, Industriedesign, Computervisualistik, Sport und Technik und Wirtschaftswissenschaften parallel und interdisziplinär ein Produkt. Die Studierenden durchleben während eines Projektes einen gesamten Produktentwicklungsprozess von der ersten Idee bis zum Modell- oder Prototypenbau.

2 Geltung des Modulhandbuches

Das vorliegende Modulhandbuch gilt für Studierende, deren Studium sich nach der sechsten Satzungsänderung der Studien- und Prüfungsordnung für Masterstudiengang Integrated Design Engineering vom 06. Juni 2013 (amtl. Bekanntmachung der OVGU Nr. 58/2021 richtet.

3 Moduleinordnung in den Studienablauf

Regelstudienplan IDE-Master

		1. Semester		r 2. Semester		3. Semester		4. Semester		Σ
Nr.	Pflichtmodule	Α	С	Α	C	Α	С	Α	С	С
	Einführung IDE (Blockveranstaltung in	S,P								
'	Einführungswoche, Miniprojekt)	3,1								
2	Integrated Design Engineering	V, Ü	5							5
3	Business Planning ¹ /Busines Decision Making ²			¹V, Ü	5	²√, Ü	Χ			5
4	Produktdesign und Entwurf	V, Ü	5							5
5	Angewandte Konstruktionstechnik	V, Ü	5							5
6	Neue Werkstoffe und Fertigungsverfahren					V, Ü	5			5
7	Ergonomische Gestaltung von Arbeitssystemen /	V, Ü	5							5
	Mensch-Produkt-Interaktion	٧, ٥	J							J
	Wahlpflichtmodule (WPM) zur individuellen									
	Schwerpunktprägung									
1	WPM Ingenieurtechnik (Maschinenbau, Informatik,									
	Sport und Technik), min. 15 C			V, Ü	15	V, Ü	15			30
2	WPM Produktdesign, min. 5 C			٧,٥	13	٧,٥	13			50
3	WPM Wirtschaftswissenschaften, min. 5 C									
	Projektbereich									
1	IDE-Projekt I	Р	10							10
2	IDE-Projekt II			Р	10					10
3	IDE-Projekt III					Р	10			10
	Masterarbeit (vorzugsweise im Unternehmen)									
1	Anfertigen der Masterarbeit							Μ	27	27
2	Verteidigen der Masterarbeit							М	3	3
ΣPf	Σ Pflicht- und Wahlpflichtmodule		30		30		30		30	120

Erläuterungen:

A = Art der Veranstaltung,

C = Credit Points,

V = Vorlesung,

 $\ddot{\mathbf{U}} = \ddot{\mathbf{U}}$ bung,

S = Seminar,

P = Projektarbeit,

M = Masterarbeit

In den nachfolgenden Kapiteln sind die Modulbeschreibungen der Pflicht- und Wahlpflichtmodule alphabetisch geordnet aufgeführt.

4 Pflichtbereich

Angewandte Konstruktionstechnik (AK)

Modul:

Angewandte Konstruktionstechnik (AK)

Engl. Titel:

Applied Engineering Design

Ziele des Moduls:

Das Ziel dieses Pflichtfaches ist die Vermittlung vertiefender Kenntnisse zu speziellen konstruktiven Sachverhalten. In den Übungen sowie durch den anzufertigenden Beleg werden die Vorlesungsinhalte angewendet und vertieft. Dies geschieht mit Hilfe konstruktiver Aufgabenstellungen aus der Praxis. Weiterhin werden Kenntnisse zur Arbeit in einem Entwicklerteam vermittelt.

Lernziele & zu erwerbende Kompetenzen:

- Vertiefung und Anwendung der Konstruktionsmethodik
- Ausbau der Fähigkeit des Anwendens des methodischen Entwerfens, der Grundregeln der Gestaltung, der Gestaltungsprinzipien und -richtlinien
- Erwerben von Führungs- und Teamarbeitseigenschaften durch die Bearbeitung von Aufgaben und des Beleges im Team
- Anwenden von Kenntnissen und Erfahrungen aus anderen Fachbereichen wie Werkstofftechnik, Fertigungslehre, Technische Mechanik, Maschinenelemente

Inhalt:

- Methodisches Entwerfen Grundregeln, Gestaltungsprinzipien und -richtlinien
- · Methodisches Ausarbeiten
- Lösungsfelder Verbundbauweise, Mechatronik, Adaptronik
- Baureihen und Baukästen
- Methoden zur qualitätssichernden Produktentwicklung
- Kostenerkennung
- Konstruktive Übungsaufgaben und ein konstruktiver Semesterbeleg

Lehrformen:

Vorlesungen und Übungen mit Skripten und Übungsanleitungen. Bereitstellung von elektronischen Printmedien (PDF) und Nutzungsmöglichkeit des Rechnerpools. Medienformen: Projektor/Beamer und Overhead

Voraussetzung für die Teilnahme:

Keine, ab 1. Mastersemester möglich

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 1 SWS Übungen

Selbständiges Arbeiten 108h: Nachbereitung der Vorlesung, selbständige Übungsarbeit außerhalb der eigentlichen Übungstermine, Anfertigen eines Belegs, Ablegen und Bestehen von Leistungskontrollen

Häufigkeit des Moduls:

WiSe

Leistungsnachweise/Credits:

5 Credit Points, Schriftliche Prüfung (Dauer 120 min).

Notenskala gemäß Prüfungsordnung.

Modulverantwortliche: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dr.-Ing. Ramona Träger, FMB-IMK/LPK

Business Decision Making

Business Planning

Die Modulbeschreibungen der oben genannten Module sind dem Modulhandbuch des Masterstudienganges "Betriebswirtschaftslehre / Business Economics" der Fakultät für Wirtschaftswissenschaft in der gültigen Fassung zu entnehmen, dass im Verwaltungshandbuch der OvGU online unter http://www.verwaltungshandbuch.ovgu.de/Modulhandbücher zur Verfügung steht.

Einführung in das Integrated Design Engineering (IDE-E)

Modulname: Einführung in das Integrated Design Engineering (IDE-E)

Engl. Titel: Introduction to Integrated Design Engineering

Ziele des Moduls:

- Notwendigkeit und Rolle eines integrierten Vorgehens und der Vorverlagerung von Entscheidungen verstehen
- Gegenseitige Beeinflussungen und Widersprüche von Funktionserfüllung, Formgebung, Qualität, Ergonomie, Herstellbarkeit, Nachhaltigkeit, Termintreue und Kostenbegrenzung verstehen
- Fundamentale Rolle des Menschen und die interdisziplinäre Zusammenarbeit verstehen
- Interdisziplinäre Projektarbeit kennenlernen
- Zusammenwirken der IDE-Module verstehen

Inhalt:

- Einführung in das Integrated Design Engineering
- Präsentation der Themengruppen innerhalb der IDE
- Durchführen eines gemeinsamen Miniprojekts

Lehrformen:

Blockveranstaltung eine Woche vor Beginn des Masterstudiengangs IDE in der Einführungswoche. Ring-vorlesungen, gemeinsame Projektarbeit (Miniprojekt). Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Teilnahmevoraussetzungen: BA-Abschluss in Ingenieurwissenschaften, Wirtschaftswissenschaften, Industriedesign oder vergleichbare Abschlüsse gemäß Prüfungsordnung.

Arbeitsaufwand:

Präsenzzeiten: Während der Blockveranstaltung (Dauer 1 Woche)

Selbständiges Arbeiten: Nachbereiten der Vorlesungen und der Arbeit am Miniprojekt

Häufigkeit des Moduls:

WiSe

Leistungsnachweise/Credits:

Voraussetzung für das Bestehen des Moduls: Erfolgreiche Teilnahme an den Ringvorlesungen und am Miniprojekt, keine explizite Prüfung

Notenskala gemäß Prüfungsordnung

Keine Credit Points, da Bestandteil der Einführungswoche

Modulverantwortliche: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Empfohlene Literatur:

Vorlesungsskripte sowie Schäppi, Radermacher, Kirchgeorg, Andreasen: Handbuch Produktentwick-lung. Hanser-Verlag München 2005. Ehrlenspiel: Integrierte Produktentwicklung. Hanser-Verlag München 2009

IDE-Projekt I-III (IDE-P)

Modul:

IDE-Projekt I-III (IDE-P)

Engl. Titel:

IDE Project I-III

Ziele des Moduls:

- Entwurfsmethodisches Wissen
- Integrativer Entwurfsansatz
- Interdisziplinäre Arbeitsweise

Inhalt:

Projektbearbeitung komplexer Produktentwicklungsthemen (Konsum- und Investitionsgüter) in der Einheit von formgestalterischem, ergonomischem und konstruktivem Produktentwurf nachfolgender methodischer Vorgehensweise:

- Analyse sämtlicher Produktanforderungen (Markt, Schutzrechte, Nutzer, Hersteller)
- · Präzisierte Aufgabenstellung, Designbriefing
- Konzeptentwurf
- · Bewertung und Auswahl
- Grob- und Feinentwurf
- Entwurfsdokumentation
- Entwurfsverteidigung

Lehrformen:

Seminar/Gruppen- und Projektarbeit, Projektbetreuung und-begleitung sowie selbständiges Arbeiten am Industrieprojekt, Vor- und Nachbearbeitung von Vorträgen und Präsentationen

Medienformen: Beamer, Overhead, Modellbau und Visualisierungen

Voraussetzung für die Teilnahme:

Teilnahmevoraussetzungen: BA-Abschluss in Ingenieurwissenschaften, Wirtschaftswissenschaften, Industriedesign oder vergleichbare Abschlüsse gemäß Prüfungsordnung

1.-3. Mastersemester

Voraussetzung für die Vergabe von Leistungspunkten:

Belege/Vortrag, Projektdokumentationen, Designmappe mit Visualisierungen und eventuellem Prototypenbau

Arbeitsaufwand:

Präsenzzeiten: 4 SWS Projektseminar

Selbständiges Arbeiten außerhalbe der Projekttermine: Nachbereitung und Anfertigung von Belegen und Dokumentationen, Visualisierungen, Präsentation der Projektarbeit

Häufigkeit des Angebots:

WiSe und SoSe

Dauer des Moduls:

jeweils 1 Semester

Leistungsnachweise/Credits:

1.Mastersemester: 10 CP 2.Mastersemester: 10 CP 3.Mastersemester: 10 CP

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dipl.-Designer Matthias Trott, FMB-IAF/ID, Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK,

Dr.-Ing. Ramona Träger, FMB-IMK/LPK

Integrated Design Engineering (IDE)

Modul:

Integrated Design Engineering (IDE)

Engl. Titel:

Integrated Design Engineering

Ziele des Moduls:

- Gegenseitige Beeinflussungen von Funktionserfüllung, Formgestaltung, Sicherheit, Qualität, Ergonomie, Herstellbarkeit, Nachhaltigkeit, Geschlechtergerechtigkeit, Termintreue und Kostenbegrenzung verstehen und für Produkte synergetisch nutzen können
- Unterschiedliche aber miteinander vernetzte Sichten auf ein Produkt verstehen und anwenden können
- Kenntnisse in der Prozessbeschreibung und in der Projektarbeit auf interdisziplinäre Projekte anwenden können
- Werkzeuge der IDE (primär Autoren-, Simulations- und Verwaltungssysteme) kennen und anwenden können

Inhalt:

- Vertiefte Einführung in das IDE und die dazugehörende Projektarbeit
- Ganzheitliche Betrachtung der Produkteigenschaften
- Barrierefreie Produkte
- · Gendergerechte Produktentwicklung
- Projekt- und Prozessmanagement
- · Werkzeuge für eine integrierte Bearbeitung und Unterstützung
- Neue Denkansätze in der Produktentwicklung

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel, der zweite Vorlesungsteil wird in englischer Sprache gehalten

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Moduls:

WiSe

Leistungsnachweise/Credits:

Prüfungsvoraussetzung: Teilnahme an Vorlesungen und Übungen (mind. 75%).

Schriftliche Prüfung (Dauer 120 min). Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Empfohlene Literatur:

Vajna: Integrated Design Engineering. Ein interdisziplinäres Modell für die ganzheitliche Produktentwicklung. Springer-Verlag 2014. Vorlesungsskripte und Übungsanleitungen sowie Schäppi, Radermacher, Kirchgeorg, Andreasen: Handbuch Produktentwicklung. Hanser-Verlag München 2005. Ehrlenspiel: Integrierte Produktentwicklung. Hanser-Verlag München 2009. Literatur zu Existenzgründungen sowie Kussmaul, H.: Betriebswirtschaftslehre für Existenzgründer – Grundlagen mit Fallbeispielen und Fragen der Existenzgründungspraxis, Oldenbourg Wissenschaftsverlag 2008

Mensch-Produkt-Interaktion (MPI)

Modul:

Mensch-Produkt-Interaktion (MPI)

Engl. Titel:

Human-Product-Interaction

Ziele des Moduls:

Die Lehrveranstaltung soll das Verständnis für die Funktion des Menschen in Arbeitssystemen entwickeln und zur bewussten Gestaltung menschgerechter Arbeitssysteme motivieren. Es wird ein Überblick über die für die Gestaltung von Arbeitssystemen besonders relevanten Komponenten menschlicher Leistungsfähigkeit vermittelt. Kernziel ist die exemplarische Befähigung zur ergonomischen Bewertung von Arbeitssituationen und zur menschgerechten Gestaltung von Arbeitsmitteln, Arbeitsplätzen und Arbeitsabläufen.

Inhalt:

- Historie, Gegenstand und Definition der Ergonomie
- Das Arbeitssystem, Gestaltungsziele und Bewertung
- Die Charakterisierung des Menschen mit Hilfe der Anthropometrie
- Arbeitsplatzgestaltung Dimensionierung von Handlungsstellen
- Sicherheitsgerechte Arbeitsmittel- und Arbeitsplatzmaße
- Die ergonomische Gestaltung der Handseite von Produkten und Arbeitsmitteln
- Überblick zu empirischen Erhebungsmethoden
- Die ergonomische Gestaltung des Informationsaustauschs: Bedienelemente, Anzeigen, Kompatibilität
- Die Simulation des Menschen für die ergonomische Gestaltung (Somatographie)

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Fristgerechte Einschreibung für das Modul

Arbeitsaufwand:

- Präsenzzeiten: 2 SWS Vorlesung, 1 SWS Übung (vierzehntäglich)
- Selbstständiges Arbeiten 108h: Nachbereitung der Vorlesungen, begleitendes Selbststudium, Vorbereitung der Übungen, Vorbereitung der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 90 min).

Notenskala gemäß Prüfungsordnung

5 Credit Points

Modulverantwortlicher:

 $Dipl.-Ing.\ Ulrich\ Brennecke,\ FMB-IAF/AG$

Neue Werkstoffe und Fertigungsverfahren (NWF)

Modul:

Neue Werkstoffe und Fertigungsverfahren (NWF)

Engl. Titel:

New Materials and Manufacturing Processes

Ziele des Moduls:

Lernziele und zu erwerbende Kompetenzen:

Überblick über neuartige Werkstoffe mit hohem Anwendungspotenzial, Vermittlung von

Kenntnissen zu Herstellung, Eigenschaften, Struktur und möglichen Anwendungen;

Überblick über neue, innovative Fertigungsverfahren zur Produktrealisierung;

Vorstellung und Erläuterung von Verfahren zum Ur- / Umformen, Trennen, Abtragen und Fügen sowie generierender Verfahren, deren Anwendungspotenziale und Kenntnisse der Wirkprinzipien

Inhalt:

1. Neue Werkstoffe:

Grundlagen Werkstofftechnik; Polymerwerkstoffe, Verbundwerkstoffe, Keramiken und Gläser, metallische Werkstoffe: Struktur, Eigenschaften, Anwendungen mit Schwerpunkt auf Polymer- und Verbundwerkstoffen

2. Fertigungsverfahren:

Verfahren zum Gießen und Umformen, zur spanenden Fertigung, ausgewählte Schweißverfahren, Kleben sowie mechan. Fügeverfahren für unterschiedliche Werkstoffe sowie Mischverbindungen

Lehrformen:

Teil "Neue Werkstoffe": Vorlesung (1SWS), Seminar (1SWS)

Teil "Fertigungsverfahren": Vorlesung (2 SWS)

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42 h Lehrveranstaltungen.

Teil Neue Werkstoffe: 1 SWS Vorlesung, 1 SWS Seminar

Teil Neue Fertigungsverfahren: 2 SWS Vorlesung

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schrift-

lichen Prüfung

Häufigkeit des Moduls:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 120 min).

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr. Michael Scheffler, FMB-IWF (Neue Werkstoffe);

Prof. Jüttner, FMB-IWF (Fertigungsverfahren)

Empfohlene Literatur:

Literatur zu Werkstoffen und Fertigungsverfahren wird in den Lehrveranstaltungen bekanntgegeben

Produktdesign und Entwurf (PDE)

Modul:

Produktdesign und Entwurf (PDE)

Engl. Titel:

Product Design and Drafting

Ziele des Moduls:

Die Lehrveranstaltung soll das Verständnis für die Rolle des Produktdesigns in Integrierten Produktentwicklungsprozessen fördern und zum integrativen Vorgehen motivieren. Der Mensch als Nutzer und Besitzer von Produkten ist dabei der Maßstab. Sich daraus ableitende ästheitisch-ergonomische Anforderungen werden besonders beleuchtet und in ihrer Relation zu anderen Anforderungsaspekten betrachtet. Kernziel ist die exemplarische Befähigung zum designorientierten und integrativen Entwurf von Produkten.

- Sensibilisierung für formalästhetische Qualitäten und Schulung gestalterischer Fähigkeiten zum plastischen Gestalten von komplexen Formgestaltungsproblemen.
- Erkennen von formalen Qualitäten wie Formbildung, Formqualität, Formausdruck im Zusammenhang mit Gebrauchsanforderungen und deren Formproblemen wie Gebrauchsform, Gebrauchserkennung und ergonomischer Dimensionierung der Formgebung
- Erkennen von gestalterischen Zusammenhängen formalästhetischer, ergonomischer und technischer Anforderungen.

Inhalt:

- Der Mensch als Nutzer und Besitzer von produktgebrauchsorientierten Designstrategien und Entwurfsmethoden
- Humanzentrierte Gestaltungsanforderungen und Gebrauchsprozesse (Ästhetik / Wahrnehmung und Ergonomie)
- Methodische Vorgehensweisen und analoge und digitale Entwurfswerkzeuge
- Integratives Vorgehensmodell und Schnittstellengestaltung zu Entwurfsdisziplinen
- Vertiefende Übungen zum plastischen Gestalten von funktionalen Objekten (Skizzieren und Modellieren) durch das Verknüpfen formalästhetischer, ergonomischer und technischer Gestaltanforderungen
- Eigenes Herstellen von Modellen zur Überprüfung der wahrnehmungsgerechten Qualität der Formgebung

Lehrformen:

Vorlesung und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel, Demonstrationsobjekte

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Moduls:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 120 min)

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

5 Wahlpflichtbereich: Ingenieurtechnik

5.1 Maschinenbau

CAx-Anwendungen (CAA)

Modul:

CAx-Anwendungen (CAA)

Engl. Titel:

CAx Applications

Ziele des Moduls:

Lernziele & erworbene Kompetenzen:

- Verschiedene CAx-Anwendungen und ihre Zusammenhänge kennenlernen
- Einfache Simulationsverfahren kennenlernen und beherrschen
- Sinn und Zweck von Visualisierungssystemen verstehen
- Verständnis bei der Mechatronisierung von Produkten entwickeln
- Zusammenwirken von mechanischen und mit ihnen gekoppelten Systemen, elektronischen Systemen und den Systemen der Informationstechnik verstehen

Inhalt:

- Änderung der Vorlesungsinhalte
- Computer-Aided Planning (CAP)
- Computer-Aided Manufacturing (CAM)
- Simulation und Berechnung
- Einführung in die Mechatronik
- Virtuelle Realität

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Schriftliche Prüfung.

Notenskala gemäß Prüfungsordnung.

Klausur 120 min und 90 min 3D-CAD (Summe K 210)

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiana Beyer, FMB-IMK/LPK Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Empfohlene Literatur:

Vorlesungsskripte und Übungsanleitungen sowie Vajna, Weber, Bley, Zeman: CAx für Ingenieure, Springer 2008

CAx-Management (CAM)

Modul:

CAx-Management (CAM)

Engl. Titel:

CAx Management

Ziele des Moduls:

- Wecken des Verständnisses für die Notwendigkeiten des CAx-Managements
- Kennenlernen und Anwenden von relevanten Vorgehensweisen zu Einführung und Ablösung (Migration) eines CAx-Systems
- Kennenlernen und Anwenden von Methoden zum Bestimmen der Wirtschaftlichkeit von CAx-Systemen und Anwendungen
- Beherrschen der Grundelemente des Managements von CAx-Systemen
- Kennenlernen von Kostenmethoden zur Vorhersage von Produktkosten in den einzelnen Phasen des Produktlebenszyklus

Inhalt:

Methoden und Vorgehensweisen zu

- Einführung und Migration der CAx-Technologie
- Wirtschaftlichkeit von CAx-Systemen (u.a. Kosten, Nutzen, Investitionsverfahren der Betriebswirtschaftslehre)
- Bewertung der Nutzen neuer Technologien in der Produktentwicklung mit dem BAPM-Verfahren
- Product Lifecycle Costing
- Effizientes Systemmanagement

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung,

Notenskala gemäß Prüfungsordnung.

Klausur 120 min und 90 min 3D-CAD (Summe K 210)

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Empfohlene Literatur:

Vorlesungsskripte und Übungsanleitungen sowie Vajna, Weber, Bley, Zeman: CAx für Ingenieure, Springer 2018

Produktmodellierung und Visualisierung (PMV

Modul:

Produktmodellierung und Visualisierung (PMV)

Engl. Titel:

Product Modelling and Visualisation

Ziele des Moduls:

- Notwendigkeit und Rolle eines konsistenten Produktmodells für den Produktlebenszyklus verstehen
- Verschiedene Strategien und Möglichkeiten der Produktmodellierung und der Visualisierung an Systemen unterschiedlicher Modellierungsphilosophie kennenlernen
- Relevante Funktionen der Produktmodellierung
- Relevante Funktionen der Optimierung von Bauteilen kennenlernen
- Nutzung der Konstruktionsdaten in einem Visualisierungssystem (VR) beherrschen

Inhalt:

- Integriertes Modell mit unterschiedlichen Partialmodellen für Produktmodellierung und Visualisierung
- Grundlagen der Parametrik und der Feature-Technologie (Standard- und erweiterte Features)
- Grundlagen der Makro-Programmierung in CAx-Systemen
- Modellierungsstrategien und -techniken
- Visualisierungsstrategien und -techniken
- Festigkeitsanalysen in CAx-Systemen
- Bauteiloptimierung

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

nachweisbare Kenntnisse im CAx-System Siemens PLM NX oder Solid Edge

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Schriftliche Prüfung.

Notenskala gemäß Prüfungsordnung.

Klausur 120 min und 90 min 3D-CAD (Summe K 210)

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Empfohlene Literatur: Vorlesungsskripte und Übungsanleitungen sowie Vajna, Weber, Bley, Zeman: CAx für Ingenieure, Springer 2008

Technisches Innovationsmanagement (TIM)

Modul:

Technisches Innovationsmanagement (TIM)

Engl. Titel:

Technical Innovation Management

Ziele des Moduls:

Das Modul befähigt die Teilnehmer zur Planung und Steuerung von Innovationsprozessen in industriellen Organisationen. Über den Fähigkeitserwerb kann der Teilnehmer mittels Analyse, Datenaufbereitung und Daten-verdichtung strategierelevante Entscheidungen zu Produkt- Technologie- und Prozessinnovationen initiieren und begleiten.

Inhalt:

- Grundlagen und Begriffe zur Entstehung von Inventionen und Innovationen
- Verfahren zur Rückkopplung von Marktanforderungen an die unternehmerische Leistung
- Methoden und Verfahren zur Beschreibung und Klassifizierung von Innovationen sowie der Analyse und Zielausrichtung von Innovationsprozessen (strategische Analysen, Ableitung von Handlungsalternativen und deren Bewertung mit Hilfe von Szenariotechniken)
- Typologien der Vernetzung, Strukturierung und der Aufbau- wie Ablauforganisation zur Beherrschung von Innovationsprozessen für Produkte, Prozesse und Technologien
- Verfahren und Methoden zur Bewertung des Erfolges und des Risikos von Innovationen

Lehrformen:

Vorlesungen und Übungen

Voraussetzung für die Teilnahme:

Empfohlen: Grundlagen der Arbeitswissenschaft und Fabrikplanung

Arbeitsaufwand:

Präsenzzeiten: 2 SWS Vorlesungen, 1 SWS Übungen

Selbständiges Arbeiten: Selbststudium, Prüfungsvorbereitung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 90 min).

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr. oec. Julia Arlinghaus, FMB-IAF/PSA

Weitere Lehrende:

Empfohlene Literatur:

Vgl. Angaben in der Einführungsvorlesung

5.2 Informatik

Advanced Database Models (ADBM)

Modul:

Advanced Database Models (ADBM)

Engl. Titel:

Advanced Database Models

Ziele des Moduls:

- Verständnis von Grundlagen von Datenbankmodellen und deren historischer Entwicklung
- Befähigung zum Einsatz von DBMS basierend auf erweiterten Datenbankmodellen
- Befähigung zum Entwurf und zur Entwicklung einer Datenbank mit Hilfe erweiterter Datenbankmodelle

Inhalt:

- Datenmodelle für objektorientierte, objektrelationale, semistrukturierte Daten
- Entwicklungsgeschichte von Daten(-bank) modellen
- Anwendung verschiedener Datenbankmodelle: Entwurf und Implementierung von Datenbanken
- Grundlagen von Anfragesprachen für verschiedene Datenmodelle
- Erweiterte Anfragesprachen: SQL-Erweiterungen, OQL, XQuery und XPath
- Anfragebearbeitung in nicht-relationalen DBMS

Lehrformen:

Vorlesungen sowie Frontalübungen und praktische Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 138h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen, Lösen von Übungsaufgaben, Vorbereitung der schriftlichen Prüfung

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Mündliche Prüfung.

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dr. E. Schallehn, FIN-ITI

Empfohlene Literatur:

http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/edm/index.html

Computer Aided Geometric Design (CAGD)

Modul:

Computer Aided Geometric Design (CAGD)

Engl. Titel:

Computer Aided Geometric Design

Ziele des Moduls:

Lernziele & erworbene Kompetenzen:

- Erlernen der wichtigsten Techniken zur Kurven- und Flächenmodellierung
- Verstehen der dahinterstehenden theoretischen Prinzipien
- Anwendung der Ansätze auf weitere Probleme in der Informatik (Dateninterpolation, Datenapproximation, Datenextrapolation, numerische Verfahren)

Inhalt:

- Differentialgeometrie von Kurven und Flächen
- Bezier-Kurven
- Bezier-Spline Kurven
- B-Spline-Kurven
- Rationale Kurven
- Polarformen
- · Tensorprodukt Bezier- und B-Spline Flächen
- Bezierflächen über Dreiecken
- · Surface interrogation and fairing
- · Subdivision curves and surfaces

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Video, Tafel

Voraussetzung für die Teilnahme:

Vorlesung Grundlagen der Computergraphik

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 3 SWS Vorlesungen, 1 SWS Übungen.

Selbständiges Arbeiten 138h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen, Lösen der Übungsaufgaben, Vorbereiten der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Prüfungsvorleistung: erfolgreiches Bearbeiten der Übungsaufgaben

Mündliche Prüfung 30 min.

Schein: Bestehen der mündlichen Prüfung

Modulverantwortlicher: Prof. Dr.-Ing. habil H. Theisel, FIN-ISG

Empfohlene Literatur:

- G. Farin. Curves and Surfaces for Computer Aided Geometric Design. Morgan Kaufmann, 2002. Fourth edition.
- G. Farin and D. Hansford. The Essentials of CAGD. AK Peters, 2000.
- J. Hoschek and D. Lasser. Grundlagen der Geometrischen Datenverarbeitung. B.G. Teubner, Stuttgart, 1989. (English translation: Fundamentals of Computer Aided Geometric Design, AK Peters.)
- G. Farin. NURB Curves and Surfaces. AK Peters, Wellesley, 1995.

Data Warehouse-Technologien (DWT)

Modul:

Data Warehouse-Technologien (DWT)

Engl. Titel:

Data Warehouse Technologies

Ziele des Moduls:

- Verständnis des Data Warehouse-Ansatzes
- Verständnis von Datenbanktechnologien im Umfeld von Data Warehouses
- Befähigung zum Einsatz von DW-spezifischer DBMS-Funktionalität
- Befähigung zum Entwurf und zur Entwicklung einer Data Warehouse-Anwendung

Inhalt:

- Der Data Warehouse-Ansatz, Abgrenzung
- Architektur
- OLAP und das Multidimensionale Datenmodell
- Umsetzung in Datenbanken
- Unterstützung von Extraktion, Transformation, Laden
- Anfrageverarbeitung und -optimierung
- Index- und Speicherungsstrukturen

Lehrformen:

Vorlesung und Übung (Frontalübungen, praktische Übungen im Labor, selbstständige Arbeit mit Lösen von Übungsaufgaben, Literaturstudium). Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Studierende der Informatik: Besuch der Vorlesung Datenbanken 1 oder Datenmanagement Für Studierende anderen Fakultäten: selbständiges Erarbeiten der Kenntnisse der o. a. Module.

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 138h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Schriftliche Prüfung.

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr. Gunter Saake, FIN-ITI

Empfohlene Literatur:

Siehe http://wwwiti.cs.uni-magdeburg.de/iti_db/lehre/dw/index.html

Datenmanagement (DM)

Modul:

Datenmanagement (DM)

Engl. Titel:

Data Management

Ziele des Moduls:

Dass Modul soll ein praxisorientiertes Verständnis von Datenbanksystemen und deren grundlegenden Konzepte vermitteln. Den Teilnehmern soll die Vorgehensweise zum Entwurf einer relationalen Datenbank vermittelt wer-den. Weiterhin sollen sie durch die Vermittlung von Kenntnissen der Datenbanksprache SQL und deren Anwendung zur Entwicklung von Datenbankanwendungen befähigt werden.

Inhalt:

- Was sind Datenbanken grundlegende Konzepte
- Relationale Datenbanken
- Anfragesprache SQL
- Datenbankentwurf im ER-Modell
- Abbildung auf das Relationenmodell
- Normalisierung
- Vertiefung SQL
- Anwendungsprogrammierung
- · Datenbanken im Internet
- Arbeitsweise von DBMS

Lehrformen:

Vorlesungen und Übungen (incl. praktischer SQL-Übungen) mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Die Veranstaltung ist für Studierende konzipiert, die keine grundständige Informatikausbildung an der FIN gehört haben. Beispiele und Darstellung der Grundlagen sind auf diese Studierende ausgerichtet.

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 138h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Prüfungsvorleistung: Übungsschein

Schriftliche Prüfung (Dauer 120 min).

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dr. Eike Schallehn, FIN-ITI

Empfohlene Literatur:

Literatur: Auf der Vorlesungsseite und den Folien zu finden

Idea Engineering (IE)

Modul:

Idea Engineering (IE)

Engl. Titel:

Idea Engineering

Ziele des Moduls:

- Aufgabengerechte Entwicklung von Ideenfindungstechniken
- Meilensteinorientierte Projektarbeit im Team
- Planung und Moderation von Workshops
- Fähigkeit, kreativ zu denken und Ideen zu produzieren
- Führung und Strukturierung von Diskussionen
- Präsentation und Berichterstattung eigener Arbeitsergebnisse unter Verwendung digitaler Medienformen

Inhalt:

- Innovationsprozess
- Grundlagen von Ideenfindungstechniken
- Perspektivwechsel
- Bewertung von Ideen
- Selektion und Ausbau von Ideen
- Klassische Kreativitätstechniken
- Werbeideenproduktion

Lehrformen:

Vorlesung; Übung; Projekt

Medienformen:

Blog

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

150 Stunden (56 h Präsenzzeit + 94 h selbständiges Arbeiten)

Häufigkeit des Angebots:

SoSe, teilnehmerbegrenzt

Leistungsnachweise/Credits:

Prüfungsvorleistung Benotet: Hausarbeit

Unbenotet: Bestehen der Hausarbeit

5 Credit Points

Modulverantwortlicher: Professur für Simulation Dozent: Prof. Dr.-Ing. habil. G. Horton, FIN-ISG

Empfohlene Literatur:

www.sim.ovgu.de

Interaktive Systeme (IS)

Modul:

Interaktive Systeme (IS)

Engl. Titel:

Interactive Systems

Ziele des Moduls:

- Lernziele & erworbene Kompetenzen:
- Grundlegendes Verständnis der Mensch-Computer-Interaktion
- Anwendung von Kenntnissen über die menschliche Wahrnehmung bei der Gestaltung und Bewertung von Benutzungsschnittstellen
- Aufgaben- und benutzerabhängige Auswahl von Interaktionstechniken
- Fähigkeit zur selbständigen Konzeption, Durchführung und Interpretation von Benutzerstudien
- Beherrschung des Usability Engineerings unter Einhaltung von Rahmenbedingungen und Ressourcenbeschränkungen (systematisches Erzeugen gut benutzbarer Systeme)

Inhalt:

- Technische Grundlagen der Mensch-Computer-Interaktion (Fenster-, Menü- und Dialogsysteme)
- Interaktionstechniken und Interaktionsaufgaben
- Kognitive Grundlagen der Mensch-Computer-Interaktion
- Analyse von Aufgaben und Benutzern
- · Prototypentwicklung und Evaluierung
- Spezifikation von Benutzungsschnittstellen

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 2 SWS Übungen.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen, Lösung von Übungsaufgaben, Projektentwicklung, Vorbereiten der schriftlichen Prüfung

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 120 min).

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. B. Preim, FIN-ISG **Weiter Lehrender:** Prof. Dr. Christian Hansen, FIN-ISG

Empfohlene Literatur:

B. Preim (1999). Entwicklung interaktiver Systeme

Startup-Engineering III (SE-III)

Modul:

Startup-Engineering III (SE-III)

Engl. Titel:

Startup-Engineering III

Sprache:

Englisch

Ziele des Moduls:

Die Teilnehmer haben gelernt, ...

- Wie man ein Startup nach dem "Lean"-Prinzip betreibt
- Wie man ein wettbewerbsfähiges Geschäftsmodell entwickelt und validiert
- Wie man Investorpräsentationen vorbereitet und hält
- Wie man Produktspezifikationen erstellt
- Wie Arbeit im Gründerteam funktioniert

Inhalt:

- Lean Startup Methode
- Marktanalyse
- MVP Minimum Viable Product
- Problem/Solution fit
- Product/Market fit
- BMC Business Model Canvas
- Einsatz von IT zur Erreichung der Lernergebnisse

Lehrformen:

Vorlesung; Seminar; Projekt

Voraussetzung für die Teilnahme:

keine

Empfohlene Voraussetzung:

Startup-Engineering I + II

Arbeitsaufwand:

180 Stunden (56 h Präsenzzeit + 124 h Projektarbeit)

Häufigkeit des Angebots:

SoSe, teilnehmerbegrenzt

Leistungsnachweise/Credits:

6 CP/ Notenskala gemäß Prüfungsordnung

Studien-/ Prüfungsleistungen:

Prüfungsvorleistung Benotet: Hausarbeit

Medienformen:

Blog, Präsentationen, MOOC

Modulverantwortlicher:

Lehrstuhl für Simulation

Prof. Dr.-Ing. habil. Graham Horton

Literatur: siehe www.sim.ovgu.de

5.3 Sport und Technik

Grundlagen der Forschungsmethoden und Statistik (AM1-SPTE)

Modul:

Grundlagen der Forschungsmethoden und Statistik (AM1-SPTE)

Engl. Titel:

Research Methods

Ziele des Moduls:

Die Studierenden erwerben spezifische forschungsmethodische Kenntnisse und können diese bei der Konzeption, Durchführung und Auswertung von grundlagen- und anwendungsorientierten Forschungsprojekten anwenden. Sie erlernen verschiedene Verfahren der Datenerhebung und können sie im sportwissenschaftlichen Kontext anwenden. Die Studierenden sind in der Lage, empirisch erhobene Daten mit Hilfe komplexer statistischer Verfahren auszuwerten.

Inhalt:

- Konzipieren von Forschungsprojekten
- Forschungsmethoden in der Sportwissenschaft (Test, Befragung, Beobachtung, Deskription, Experiment, Modellierung)
- Varianzanalytische und multivariate Methoden der Datenauswertung
- Qualitative Auswerteverfahren
- Projektbezogene Anwendung von Forschungsmethoden

Lehrformen:

Je eine Vorlesung und ein Seminar mit entsprechenden Skripten.

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

184 Stunden, 4 SWS: 2 SWS Vorlesung im Sommersemester, 2 SWS Seminar im Wintersemester

Häufigkeit des Angebots:

SoSe / WiSe

Leistungsnachweise/Credits:

1 Leistungsnachweis

5 Credit Points

Modulverantwortliche: Prof. Dr. J. Edelmann-Nusser, FHW-ISPW

Sportgerätetechnik I (SGTI)

Modul:

Sportgerätetechnik I (SGTI)

Engl. Titel:

Sports Equipment Technics I

Ziele des Moduls:

Ziel dieses Moduls ist es die Studierenden zu befähigen, ihr grundlegendes sportwissenschaftliches und ingenieurwissenschaftliches Wissen auf praktische Problemstellungen der Sportgerätetechnik anzuwenden. Hierfür werden zunächst Kenntnisse in den folgenden Gebieten erworben: Normen von Sportgeräten und Sportausrüstung, physikalische Grundlagen der Wechselwirkung von Sportler und Sportgerät / Sportausrüstung, Evaluierung von Sport- und Trainingsgeräten. In den Übungen sind kleinere praxisorientierte Problemstellungen von den Studierenden zu bearbeiten.

Insbesondere sollen die Studenten dabei Kompetenzen in den Bereichen Schutzrechtsrecherche, Normung, Kennzeichnung und Prüfzeichen sowie Test und Evaluation von Sportgeräten und Sportausrüstung erwerben.

Inhalt:

Grundlagen der Sportgerätetechnik

- Normen und Normung, Kennzeichen und Prüfzeichen
- Schutzrechte
- Funktionalität und Ergonomie
- Evaluation von Sportgeräten und Sportausrüstung
- Aufbau und Funktion ausgewählter Sportgeräte/Sportausrüstungen

Physikalische Gesetzmäßigkeiten bei Sportgeräten / Sportausrüstungen

- Mechanische Gesetzmäßigkeiten (Dynamik, Schwingungen, Hydromechanik, Aerodynamik, elastische und viskoelastische Eigenschaften, Reibung)
- Anwendungen auf Sportgeräte / Sportausrüstungen

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen.

Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Keine

Arbeitsaufwand:

Präsenszeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen, 1 SWS Übungen, 1 SWS Seminar.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Prüfungsvoraussetzung: Teilnahme an Vorlesungen und Übungen (mind. 75%).

Schriftliche Prüfung (Dauer 120 min). Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr. J. Edelmann-Nusser, FHW-ISPW

Sportgerätetechnik II (SGTII)

Modul:

Sportgerätetechnik II (SGTII)

Engl. Titel:

Sports Equipment Technics II

Ziele des Moduls:

Die Evaluationsphase ist im Rahmen der Produktentwicklung von entscheidender Bedeutung: Hier wird die Güte des Produkts anhand objektiver und subjektiver Eigenschaften nachgewiesen, es wird überprüft, ob ein Produkt die Erwartungen, die es erfüllen soll, tatsächlich erfüllt. Diese ist gerade bei Produkten, mit denen der Nutzer direkt interagiert (z. B. Sportgeräte, Haushaltsgeräte) besonders wichtig. Ziel ist es somit, die Studierenden zu befähigen, Produkte im Hinblick auf produkttypische, produktund sicherheitsrelevante Eigenschaften zu testen und zu bewerten. Hierzu müssen die Studierenden nicht nur lernen, sowohl entsprechende objektive als auch subjektive Tests durchzuführen, sondern sie müssen auch die Kompetenzen erwerben, entsprechende Tests, Prüfverfahren, Prüf- oder Messstände zu entwickeln und zu validieren.

Inhalt:

- Grundlagen zur Testdurchführung, Gütekriterien
- Ausgewählte Messmethoden
- Fragebogenentwicklung
- Usability-Tests und empirische Evaluation

Lehrformen:

Vorlesungen und Seminare mit entsprechenden Skripten und Übungsanleitungen.

Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 2 SWS Vorlesungen, 1 SWS Seminar.

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vor- und Nachbereiten der Projektarbeit im Seminar, Vorbereiten einer Hausarbeit oder eines Vortrags im Seminar

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Prüfungsvoraussetzung: Leistungsnachweis.

5 Credit Points

Modulverantwortlicher: Prof. Dr. Jürgen Edelmann-Nusser, FHW - ISPW

apl. Prof. Dr. phil. habil. Kerstin Witte, FHW - ISPW

Empfohlene Literatur:

Bortz, J. & Döring, N. (2006). Forschungsmethoden und Evaluation. Heidelberg: Springer Medizin Verlag.

Ross, S. M. (2006). Statistik für Ingenieure und Naturwissenschaftler. München: Spektrum Akademischer Verlag.

Technologien im Sport (TP)

Modul:

Technologien im Sport (TP)

Engl. Titel:

Technologies in Sport

Ziele des Moduls:

Erwerbung von Kompetenzen in der Entwicklung und Optimierung von Sportgeräten, Sportausrüstungen sowie von Messmethoden und leistungsdiagnostischer Methoden im Sport unter Berücksichtigung des aktuellen Wissensstandes der Sportinformatik.

Inhalt:

- Methodisches Vorgehen in der Entwicklung von Sportgeräten und Sportausrüstungen
- Anwendung neuer Werkstoffe in der Sportgeräteentwicklung
- Aktueller Stand und Entwicklung im Bereich Mess- und Analysemethoden und zugehöriger Software

Lehrformen:

Vorlesungen und Seminare mit entsprechenden Skripten.

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 56 h (2 SWS Vorlesungen, 2 SWS Seminar), selbständiges Arbeiten: 94 h Nachbereiten der Vorlesung, Vorbereiten einer Hausarbeit oder eines Vortrages im Seminar

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

benoteter Leistungsnachweis

5 Credit Points

Modulverantwortlicher: Prof. Dr. J. Edelmann-Nusser, apl. Prof. Dr. phil. habil. K. Witte, FHW-ISPW

6 Wahlpflichtbereich: Produktdesign und Entwurfshandeln

Grundlagen der visuellen Gestaltung (GVG)

Modul:

Grundlagen der visuellen Gestaltung (GVG)

Engl. Titel:

Basics of Visual Design

Ziele und Inhalt des Moduls:

Formalästhetischer Grundkurs im Bereich der Flächengestaltung:

- Entwicklung und Förderung einer individuellen künstlerischen Bildsprache
- Schaffung einer bild-ästhetischen Kompetenz auf der Fläche
- Schaffung elementar-ästhetischer Grundlagen für alle Bereiche der visuellen Gestaltung
- Untersuchung allgemeiner Gestaltungsprinzipien und Aktivierung der Vorstellungskraft
- Entwickeln gestalterischer Kreativität unabhängig von technischen, technologischen und materialen Möglichkeiten

Lehrformen:

Vorlesungen und Übungen mit Skripten, Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

Abschluss: Bachelor

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Selbstständiges Arbeiten: Nachbereitung der Übung, selbstständige Übungsarbeit außerhalb der eigentlichen Übungstermine, benoteter Leistungsnachweis

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dipl.-Designer Matthias Trott, FMB-IAF/ID

Form, Farbe, Material (FFM)

Modul:

Form, Farbe, Material (FFM)

Engl. Titel:

Form, Colour, Material

Ziele des Moduls:

Lernziele und zu erwerbende Kompetenzen:

- Sensibilisierung für formalästhetische Qualitäten und Schulung gestalterischer Fähigkeiten zum plastischen Gestalten von komplexen Gestaltungsproblemen in der Einheit von Form, Farbe und Material
- Erkennen von gestalterischen Wirkungszusammenhängen formalästhetischer, ergonomischer und technischer Anforderungen.

Inhalt:

- Vertiefende Übungen zum plastischen Gestalten in der Einheit von Form, Farbe und Material von funktionalen Objekten (Skizzieren und Modellieren) durch das Verknüpfen formalästhetischer, ergonomischer und technischer Gestaltanforderungen
- Eigenes Herstellen von Modellen zur Überprüfung der wahrnehmungsgerechten Qualität der Objekte

Lehrformen:

Übungen. Medienformen: Gegenständliche Modelle und Visualisierungen

Voraussetzung für die Teilnahme:

Pflichtveranstaltung Produktdesign und Entwurf

Arbeitsaufwand:

Präsenzzeiten: 21h Lehrveranstaltungen: 2 SWS Übungen.

Selbständiges Arbeiten 69h: Modellbau

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Prüfung: Erfolgreiche Bewertung der Übungsaufgaben.

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dipl.-Designer Matthias Trott, FMB-IAF/ID

Rechnerunterstützter Designentwurf – CAID (RDC)

Modul:

Rechnerunterstützter Designentwurf - CAID (RDC)

Engl. Titel:

Computer Aided Design

Ziele des Moduls:

- Lernziele und zu erwerbende Kompetenzen:
- Kenntnisse und Fertigkeiten zum rechnerunterstützten Designentwurf. Anwendungsorientiertes Lernen an Beispielen aus dem Produktdesign
- Kennenlernen von industriedesigntypischen Entwurfsmethoden und -werkzeugen
- Beherrschung der Schnittstellenprobleme zwischen CAID-, CAD- und ergonomischen Programmsystemen

Inhalt:

Vertiefende Übungen zum rechnerunterstützten Entwerfen und komplexen Visualisieren von Produkten

Lehrformen:

Übungen mit entsprechenden Anleitungen. Medienformen: Gegenständliche Modelle und CAID-Modelle

Voraussetzung für die Teilnahme:

Pflichtveranstaltung Produktdesign und Entwurf

Arbeitsaufwand:

Präsenzzeiten: 21h Lehrveranstaltungen: 2 SWS Übungen. Selbständiges Arbeiten 69h: Modellbau und Visualisieren

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Prüfung: Erfolgreiche Bewertung der Übungsaufgaben.

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dipl.-Designer Matthias Trott, FMB-IAF/ID

Ringvorlesung Industriedesign (RVI)

Modul:

Ringvorlesung Industriedesign (RVI)

Engl. Titel:

Lecture Series Industrial Design

Ziele des Moduls:

Fähigkeit zur Einordnung der Arbeitsweisen, Methoden, Prozesse und Werkzeuge im Produkt- u. Interactiondesign und im Zusammenspiel der interdisziplinären Produktentwicklung

Inhalt:

- Entwurfswerkzeuge, Arbeitsweisen u. Prozessschritte im Produktdesign
- Darstellungstechniken im Produktdesign
- Überblick über Methoden und Prozesse der interdisziplinären Produktentwicklung im Spannungsfeld von Design und Engineering an ausgewählten Beispielen
- Überblick zum Design von Investitionsgütern
- Überblick zum Interaction-Design und der Mensch-Maschine-Kommunikation

Dauer des Moduls:

1 Semester

Häufigkeit des Angebots:

einmal jährlich im Sommersemester

Lehrformen:

Vorlesungen unter Verwendung von Bildsammlungen, Grafiken, Simulationen, Overhead Projektionen, Tafel

Empfohlene Vorlesung für die Teilnahme:

Produktdesign und Entwurf

Arbeitsaufwand:

Präsenzzeiten: 20 h Lehrveranstaltungen: 2 SWS Vorlesungen,

Selbständiges Arbeiten: 10 h Eigenstudium

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 60 Minuten), 5 Credit Points

Modulverantwortlicher:

Prof. Hagen Kluge

Lehrende: Lehrende und Dozenten des Institutes Industrial-Design der Fachhochschule Magdeburg-Stendal

Ort der Vorlesung:

Hochschule Magdeburg-Stendal

Empfohlene Literatur:

Gerhard Heufler, Produktdesign...von der Idee zur Serienreife, Veritas Verlag / ISBN 3-85329-552-5

Sustainable Design (SD)

Modul:

Sustainable Design (SD)

Engl. Titel:

Sustainable Design

Ziele des Moduls:

Die Lehrveranstaltung soll das Verständnis für nachhaltiges Gestalten technischer Produkte in Integrierten Produktentwicklungsprozessen fördern. Hierfür werden geeignete ästhetische Gestaltungsmittel analysiert und auf ihre Anwendung hin untersucht. Kernziel ist die exemplarische Befähigung, mit ästhetischen Gestaltungsmitteln (Form, Farbe und Material) und geeigneten Gebrauchsstrategien, einen nachweisbaren Beitrag zur Nachhaltigkeit von Produkten zu erzielen.

Inhalt:

- · Nachhaltigkeit in der Produktentwicklung und die speziellen Möglichkeiten des Industriedesigns
- Analyse von Potenzialen zur Förderung von Nachhaltigkeit in Bezug auf ästhetische Gestaltungsmittel wie Form, Farbe und Material (Objektästhetik)
- Analyse von Potenzialen zur F\u00f6rderung von Nachhaltigkeit in Bezug auf Gebrauchsprozesse durch den Menschen als Nutzer und Besitzer von Produkten (Handlungs\u00e4ssthetik).
- Gegenständliche Untersuchungen zu Wirkungsweisen (Wahrnehmung und Gebrauch) der eingesetzten objekt- und handlungsästhetischen Mitteln

Lehrformen:

Vorlesung und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel, Demonstrationsobjekte

Voraussetzung für die Teilnahme:

Pflichtveranstaltung Produktdesign und Entwurf

Arbeitsaufwand:

Selbstständiges Arbeit: Dokumentation, Visualisierung, Modellbau

Präsenzzeiten: 32h Lehrveranstaltungen: 1 SWS Vorlesung, 1 SWS Übung.

Selbständiges Arbeiten 58h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen

Häufigkeit des Angebots:

SoSe

Leistungsnachweise/Credits:

Prüfungsleistung: Erfolgreiche Bewertung der Übungsaufgaben.

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK

7 Wahlpflichtbereich: Wirtschaftswissenschaften

Marketing, Vertrieb, Betriebsverfassung, Personalwesen (MVP)

Modul:

Marketing, Vertrieb, Betriebsverfassung, Personalwesen (MVP)

Engl. Titel:

Marketing, Distribution, Labour Management Regulation, Human Resource Management

Ziele des Moduls:

Die Studierenden

- erlangen grundlegende Kenntnisse der Funktion von Marketing und Vertrieb in Unternehmen und der Analyse von Märkten,
- lernen die Instrumente des Marketings und des Vertriebes kennen,
- entwickeln Fähigkeiten zu der Erstellung eines Marketingplans und eines Vertriebsplans sowie zur Lösung von Problemstellungen in Marketing und Vertrieb unter Anwendung geeigneter Methoden.
- erlangen grundlegende Kenntnisse über Inhalte und Auswirkungen einer Betriebsverfassung und ihrer gesetzlichen Grundlagen,
- lernen die Instrumente der Personalwirtschaft, der Personalplanung und der Personalführung kennen.
- entwickeln Fähigkeiten zur Personalführung.

Inhalt:

- · Marketing- und Vertriebskonzepte
- Marktstrukturen und Käuferverhalten
- Marketing- und Vertriebsplanung, Marktforschung, Marketing- und Vertriebsorganisationen
- Grundlagen & Auswirkungen der Betriebsverfassung / des Betriebsverfassungsgesetzes
- Personalwirtschaftliche Grundlagen
- Personalplanung (Akquise und Auswahl von Mitarbeitern)
- Ermittlungs- und Entscheidungsmodelle
- Personalführung: Grundlagen, Verhaltenslenkung, Verhaltensbeurteilung, Verhaltensabgeltung

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 4 SWS Vorlesungen.

Selbständiges Arbeiten 62h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Häufigkeit des Angebots:

WiSe

Leistungsnachweise/Credits:

Prüfungsvoraussetzung: Teilnahme an Vorlesungen und Übungen (mind. 75%).

Schriftliche Prüfung (Dauer 120 min). Notenskala gemäß Prüfungsordnung.

5 Credit Points

Modulverantwortlicher: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK

Strategisches Technologiemanagement und Organisationsentwicklung/Coaching (TOC)

Modul:

Strategisches Technologiemanagement und Organisationsentwicklung/Coaching (TOC)

Engl. Titel:

Strategic Technology management and organizational development/Coaching (TOC)

Ziele des Moduls:

- Aufzeigen, wie Technologiemanagement im Unternehmenskontext erfolgreich eingesetzt werden kann
 - o Prozess- und wertorientierte Technologieanalyen Potentialanalysen
 - o Beispielhafte Anwendung von Capability Maturity Model Integration (CMMI)
 - o Innovationsmanagement
- Organisationsentwicklung
 - o Wechselwirkungen zwischen Menschen, Organisation und Technologie
 - o Veränderungsprozesse ganzheitlich und agil begleiten
 - o Führen in Zeiten von Selbstorganisation, Agilität und Ambidextrie
- Coachingverständnis in der Industrie
 - o Coaching im Change Prozess einsetzen
 - o Coaching-Prozess-Gesprächsverlauf kennenlernen
 - o Lösungsfelder im Change Prozess mit Coaching aufzeigen

Inhalt:

Das Seminar ist praxisorientiert ausgelegt. Neben der Vermittlung von strategischen Grundlagen die sich am Technologie- und Innovationsmanagement orientieren werden darauf aufbauend Veränderungen in der Organisationsentwicklung und neue Führungs-Formen aufgezeigt. Der sich daraus ergebene Change Prozess wird anhand unterschiedlicher Szenarien aufgezeigt und durch Coaching für die Ausprägung neuer Lösungsfelder unterstützt. Dem Teilnehmerkreis werden anhand methodischer Grundlagen verschiedene Praxisbeispiele and Anwendungsmöglichkeiten dargestellt und diese gemeinsam diskutiert.

Lehrformen:

Lehrveranstaltung - Medienformen: Display, Beamer, Teamarbeit in den Übungen

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42 h Lehrveranstaltungen, 2 SWS Vorlesungen, 2 SWS Übungen, beide als Blockveranstaltungen

Selbständiges Arbeiten 108 h: Nachbereiten der Vorlesungen, 1 thematische Hausaufgabe – Vortrag, Vorbereiten der Übungen und der schriftlichen Prüfung

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 90 min). Notenskala gemäß Prüfungsordnung.

5 Credit Points

Häufigkeit des Angebots:

WiSe

Dauer des Moduls:

1 Semester

Modulverantwortlicher:

Prof. h.c. Dr.-Ing. Carsten Burchardt, Siemens Digital Industries Software GmbH

Empfohlene Literatur:

- Küter, Julia, Kirchhoff, Sabin: Plädoyer zur Durchführung von Potential-Analysen vor dem Start von Digitalisierungsprojekten, In: Digitalisierung und Kommunikation, Hrsg. Marcus Stumpf, Springer Fachmedien Wiesbaden 2019, ISBN: 978-3-658-26112-2
- Steinhoff, Peter, Siedl, Werner, Pfannenstiel, Mario. A: Agilität in Unternehmen, Springer Gabler Verlag 2021, ISBN 978-3-658-31000-4

- Slogar, A.: Die agile Organisation, Carl-Hanser Verlag 2018
- Baumann-Habersack, Frank H.: Mit neuer Autorität in der Führung Die Führungshaltung für das 21. Jahrhundert, Springer Gabler Verlag 2017, ISBN 978-3-658-16497-3
- Migge, Björn: Handbuch Coaching und Beratung Wirkungsvolle Modelle, kommentierte Falldarstellungen, Übungen, Beltz Verlag 2021, Weinheim, ISBN 978-3407366641

Unternehmensplanung und Unternehmensführung (UPF)

Modul:

Unternehmensplanung und Unternehmensführung und (UPF)

Engl. Titel:

Business Planning and Management

Ziele des Moduls:

- Kenntnisse über die Bedingungen, Ziele, Maßnahmen und Effekte der strategischen Unternehmensführung und -planung und Umsetzung anhand von Fallbeispielen erwerben
- Grundlagen der Analyse des strategischen Umfeldes, der Strategiegenerierung und -auswahl sowie zur Unternehmensführung anwenden und beherrschen
- Bestehende Geschäftsmodelle weiterentwickeln oder neue Geschäftsmodelle aufbauen können
- Optimales Vorgehen bei der Umsetzung von Industrie 4.0-Projekten beschreiben können
- Gesamtplanung einer Geschäftsidee von der Ideenfindung, der Informationsbeschaffung bis hin zur Erstellung eines detaillierten Businessplans beherrschen
- Reifegrad von Prozessen für Prozessoptimierungen ermitteln können

Inhalt:

- Grundlagen der Unternehmensführung und -planung, strategisches Management
- Unternehmensvision und -mission, Unternehmensziele, Unternehmensphilosophie
- Unternehmenspolitik, Unternehmensleitbild
- Unternehmensverfassung/Corporate Governance
- · Unternehmenskultur, Corporate Identity
- Analyse des strategischen Umfeldes (u.a. PESTEL-Analyse, SWOT-Analyse, Balanced Scorecard, Environmental Scanning, Delphi-Methode, Cross-Impact-Analyse, Szenario-Technik, Gap-Analyse, Erfahrungskurve, Portfolio-Methoden)
- Industrie 4.0-Geschäftsmodelle
- Vorgehensmodell zur Durchführung von Industrie 4.0-Projekten
- · Erstellen eines Businessplans
- Strategische Planung und Kontrolle
- Reifegradermittlung von Prozessen mit ISO 8000-63 (Indikatorerstellung und dessen Bewertung) und ISO 8000-64 (Anwendung der Test Process Improvement-Methode)

Lehrformen:

Vorlesungen und Übungen mit entsprechenden Skripten und Übungsanleitungen. Medienformen: Beamer, Overhead, Tafel

Voraussetzung für die Teilnahme:

keine

Arbeitsaufwand:

Präsenzzeiten: 42h Lehrveranstaltungen: 2 SWS Vorlesungen + 2 SWS Übungen

Selbständiges Arbeiten 108h: Nachbereiten der Vorlesungen, Vorbereiten der Übungen und der schriftlichen Prüfung

Leistungsnachweise/Credits:

Schriftliche Prüfung (Dauer 120 min).

Notenskala gemäß Prüfungsordnung.

5 Credit Points

Häufigkeit des Angebots:

SoSe

Modulverantwortlicher: Prof. Dr.-Ing. Christiane Beyer, FMB-IMK/LPK Weitere Lehrende: Dr.-Ing. Dipl.-Math. Michael Schabacker, FMB-IMK/LPK