

#867 #DesenvolveDados Seg • Qua • Sex

Estatística I

Conteúdo

Testes de Hipóteses

Testes de Hipóteses

Introdução e notação

Chamamos de hipótese estatística qualquer afirmação que se faça sobre um parâmetro populacional desconhecido. A idéia básica é que a partir de uma amostra da população iremos estabelecer uma regra de decisão segundo a qual rejeitaremos ou aceitaremos a hipótese proposta. Esta regra de decisão é chamada de teste.

Normalmente existe uma hipótese que é mais importante para o pesquisador que será denotada por H_0 e chamada hipótese nula. Qualquer outra hipótese diferente de H_0 será chamada de hipótese alternativa e denotada por H_1 .

Veremos mais adiante que intervalos de confiança e testes de hipóteses estão intimamente relacionados.

Motivação para intervalo de confiança

Exemplo 1

Um gerente de produção está estudando a possibilidade de comprar uma nova máquina de estampar partes metálicas. Seja μ_0 o número médio de partes estampadas por hora pela máquina velha e μ a média da máquina nova. O gerente não quer comprar a máquina nova a menos que ela seja mais produtiva que a máquina velha. Vamos encontrar as hipóteses.

O gerente deve usar a hipótese nula $\mu=\mu_0$ e a hipótese alternativa $\mu \ > \ \mu_0$. Ou seja,

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0$$

Assim, o gerente deve optar por comprar a máquina nova somente se a hipótese nula for rejeitada.

Regra de decisão: A regra de decisão nos permite distinguir entre as duas hipóteses. Esta é definida a partir do estimador de máxima verossimilhança do parâmetro e está sempre baseada na hipótese H_1 .

Região de Rejeição: A região de rejeição ou região crítica (R_C) é o conjunto de valores assumidos pela estatística de teste para os quais a hipótese nula é rejeitada. Seu complementar é a região de aceitação (R_A) .

8/23/22, 12:33 PM Class Let's Code

Neste exemplo, tomamos o estimador \overline{X} para o parâmetro de interesse μ para determinarmos a regra de decisão, que é definida por:

rejeitamos H_0 se $\overline{X}>X_C$, no qual X_C é o valor crítico para a média amostral. Se a média amostral for maior que o valor crítico X_C , temos evidência para assumir que a média da população é maior que μ_0 . Assim, temos evidência para assumir que a nova máquina apresenta uma média de produção maior que a máquina velha.

A região $R_C=\overline{X}>X_C$ que nos leva a rejeição da hipótese H_0 é a região de rejeição (ou região crítica).

Para cada tipo de hipótese determinamos uma região de rejeição apropriada, sempre conforme a hipótese H_1 . Por exemplo, para testarmos as hipóteses

$$H_0: \mu = \mu_0$$

$$H_1: \mu \neq \mu_0$$

tomamos como região crítica $R_C=\overline{X}>X_{C_2}\setminus)ou\setminus(\overline{X}< X_{C_1}$. Os valores X_{C_1} e X_{C_2} são os valores críticos para o teste.

8/23/22, 12:33 PM Class Let's Code

Tipos de Decisão

Ao tomar uma decisão a favor ou contra uma hipótese existem dois tipos de erros que podemos cometer. Podemos rejeitar a hipótese nula quando de fato ela é verdadeira (erro tipo I) ou podemos falhar em rejeitar H_0 quando de fato ela é falsa (erro tipo II). Frequentemente denotamos as probabilidades destes dois tipos de erro como α e β respectivamente.

Existe um balanço entre esses dois tipos de erros, no sentido de que ao tentar-se minimizar α , aumenta-se β . Isto é, não é possível minimizar estas duas probabilidades simultaneamente e na prática é costume fixar um valor (pequeno) para α . Na Tabela a seguir estão descritos as decisões que podemos tomar e os tipos de erro associados.

Tabela:

Tipos de decisão e tipos de erro associados a testes de hipóteses.

Decisão

Verdade

 H_0 verdadeira Decisão correta

(probabilidade $1 - \alpha$) (probabilidade α)

 H_0 falsa Erro Tipo II

> (probabilidade $1 - \beta$) (probabilidade β)

Teste de Hipóteses Simples

Uma amostra aleatória X_1, \ldots, X_n foi tomada de um dentre duas possíveis distribuições e queremos decidir de qual delas vem a amostra. Neste caso o espaço paramétrico Θ contém apenas dois pontos, digamos θ_0 e θ_1 e queremos testar

$$H_0: heta = heta_0 \quad imes \quad H_1: heta = heta_1.$$

As probabilidades dos dois tipo de erro são dadas por

$$\alpha = P(rejeitarH_0|\theta = \theta_0)$$

$$eta = P(aceitar H_0 | heta = heta_1)$$

e gostariamos de poder construir um teste para o qual estas probabilidades fossem as menores possíveis. Na prática é impossível encontrar um teste que minimize α e β simultaneamente mas pode-se construir testes que minimizam combinações lineares destas probabilidades.

Tópico anterior

Próximo Tópico >