Сьогодні 31.01.2024

Уроκ **№37**

Обчислення об`ємних відношень газів за хімічними рівняннями

Повідомлення мети уроку

Ви зможете:

- поглибити знання про рівняння хімічних реакцій та коефіцієнти в них;
- обчислювати об'ємні відношення газів за хімічними рівняннями;

-розв'язувати розрахункові задачі на обчислення об'ємних відношень газів за хімічними рівняннями.

Актуалізація опорних знань

Порівняйте фізичні властивості алканів, алкенів і алкінів.

Назвіть загальні хімічні властивості вуглеводнів.

Які реакції (приєднання, заміщення) характерні для алканів? Чому?

Які реакції (приєднання, заміщення) характерні для алкенів? Чому?

Мотивація навчальної діяльності

Серед хімічних реакцій багато таких, що відбуваються між газоподібними речовинами або супроводжуються утворенням газоподібних продуктів реакції. Як можна визначити об`єм газоподібної речовини з допомогою хімічного рівняння?

Вивчення нового матеріалу

Молярний об'єм газів за однакових умов однаковий це дає змогу характеризувати об'ємні відношення газоподібних речовин у хімічних реакціях.

Коефіцієнти в рівняннях реакцій збігаються з кількістю речовини у рівнянні реакції $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Це дає змогу характеризувати об'ємні відношення газоподібних речовин у хімічних реакціях.

Аналіз закону Авогадро

За законом Авогадро об'єми різних газів виражаємо формулою: $V_1 = v_1 \cdot V_m$ $V_2 = v_2 \cdot V_m$

Особливості будови газуватих речовин

Відстані між молекулами набагато більші за розміри самих молекул.

У хімічних реакціях з участю газуватих реагентів і (або) продуктів об'єм реакційної суміші на відміну від її маси може змінюватися.

Зміна об'єму кожного газу підлягає певним закономірностям.

Розгляд прикладу

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Згідно з хімічним рівнянням, одна молекула метану, сполучаючись із двома молекулами кисню, утворює молекулу вуглекислого газу і дві молекули кисню.

На підставі закону Авогадро можна стверджувати, що певний об'єм метану має реагувати з удвічі більшим об'ємом кисню (наприклад, 1 л CH_4 – із 2 л O_2). Відповідно співвідношення об'ємів цих газів має бути таким:

 $V(CH_4): V(O_2): V(CO_2): V(H_2O) = 1:2:1:2.$

Закон об'ємних відношень газів

При постійних температурі і тиску об'єми газів, які вступають у реакцію, відносяться між собою і до об'ємів газоподібних продуктів реакції, як невеликі цілі числа.

Жозе Луї Гей – Люсак 1808 р.

 $V(CH_4) : V(O_2) = n(CH_4) : n(O_2)$

Об'єми газів

Об'єми газів відносяться один до одного як їхні кількості.

Проаналізуймо з огляду на відношення об'ємів газів у хімічних реакціях процес горіння етену:

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$$

Очевидними є співвідношення між об'ємами газуватих реагентів і продуктів реакції: $V(C_2H_4)$: $V(O_2)$: $V(CO_2)$: $V(H_2O) = 1:3:2:2$

Об'єми газів співвідносяться як числа, що дорівнюють коефіцієнтам у рівнянні реакцій.

Молярний об'єм

T = 273 K або t = 0°C; P = 101,3 кПа або P = 1 атм. = 760 мм рт. ст.

Об'єм 1 моль речовини називають молярним об'ємом (V_m). Для газів за нормальних умов він дорівнює 22,4 л/моль.

Відповідно до закону Авогадро, 1 моль будьякого газу займає однаковий об'єм, що за нормальних умов дорівнює 22,4 л/моль.

Приклад обчислень об'ємних відношень за хімічними рівняннями

Приклад 1. Обчислити об'єм кисню, необхідний для горіння етину об'ємом 500 л, та об'єм утвореного вуглекислого газу. Об'єми газів виміряні за однакових умов.

Розв'язання

Складемо рівняння реакції:

$$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$$
.

Розглянемо об'ємні відношення газів етину C_2H_2 та кисню O_2 , про які йдеться в умові задачі.

$$2C_2H_2 + 5O_2 \rightarrow 4CO_2 + 2H_2O$$
.

2V:5V

або 1V: 2,5V

Як бачимо, об'єм кисню, який прореагував, у 2,5 раза більший за об'єм етину. Це дає змогу легко знайти відповідь на поставлене в умові задачі запитання:

$$V(O_2) = 2.5 \cdot 500 \text{ л} = 1250 \text{ л}.$$

Приклад обчислень об'ємних відношень за хімічними рівняннями

Приклад 2. Унаслідок спалювання певної порції суміші карбон(II) оксиду та кисню об'єм суміші зменшився на 8 мл. Визначити, який об'єм карбон(II) оксиду прореагував, якщо об'єми газів виміряно за однакових умов.

Розв'язання

Складемо рівняння реакції та розглянемо об'ємні відношення газів. $2CO + O_2 = 2CO_2$ 2V : 1V : 2V

Вони вказують, що в реакцію вступає три об'єми газоподібних реагентів (2 об'єми СО й 1 об'єм O_2), натомість утворюються два об'єми газоподібного продукту реакції CO_2 . Тобто внаслідок реакції відбувається зменшення об'єму: 3V - 2V = 1V. Згідно з умовою задачі зменшення об'єму дорівнює 8 мл. Таким чином, за умовою цієї задачі 1V = 8 мл. Тепер можемо відповісти на поставлене в умові задачі запитання: $V(CO) = 2 \cdot V = 2 \cdot 8$ мл = 16 мл.

Відповідь: прореагувало 16 мл карбон(II) оксиду.

Приклад обчислень об'ємних відношень за хімічними рівняннями

Приклад 3. Який об'єм амоніаку утворився, якщо початкова суміш азоту та водню мала об'єм 90 л, а після закінчення реакції залишилося 10 л азоту? Об'єми газів виміряно за однакових умов.

Розв'язання

Складемо рівняння реакції та розглянемо об'ємні відношення газів.

$$N_2 + 3H_2 = 2NH_3$$
 1V: 3V: 2V

Усього в реакцію вступає 4 об'єми реагентів. За даними, поданими в умові задачі, обчислимо, скільки це становить літрів. Віднімемо від загального об'єму початкової суміші азоту та водню об'єм азоту, що залишився після закінчення реакції:

Отже, 4V = 80 л. Тоді 1V = 80 л : 4 = 20 л.

За кількісними відношеннями газів у рівнянні реакції обчислюємо об'єм амоніаку: $V(NH_3) = 2V = 2 \cdot 20$ л = 40 л.

Відповідь: утворилося 40 л амоніаку.

Сьогодні

Алгоритм розв'язування найпростіших задач

- 1.3а допомогою відповідних позначень запишемо умову завдання.
- 2. Запишемо рівняння реакції, розставимо коефіцієнти.
- 3. Над формулами речовин запишемо дані про об'єми газоподібних речовин, відомі з умови завдання, а під формулами об'єми речовин, рівні стехіометричним коефіцієнтам.
- 4. Обчислимо об'єм речовини, який потрібно знайти. Для цього складемо пропорцію.
 - 5. Записуємо відповідь.

Перевір себе

Назвіть молярний об'єм будь-якого газу за нормальних умов.

На що в рівнянні реакції вказують коефіцієнти перед формулами газоподібних реагентів і продуктів реакції?

Сформулюйте закон об'ємних відношень газів.

Не виконуючи математичних обчислень, зробіть висновок щодо кількості молекул, які містяться у 22,4 л хлору та 44,8 л гідроген хлориду за нормальних умов.

У зоні грозового розряду температура сягає понад 2000°C. За таких умов азот і кисень, що перебувають у складі повітря, взаємодіють між собою з утворенням нітроген(II) оксиду. Напишіть рівняння цієї реакції та обчисліть об'єми азоту й кисню, необхідні для утворення 60 л продукту реакції, якщо об'єми газів виміряно за однакових YMOB.

Дано:

V(NO) = 60 л

 $|O_2+N_2\rightarrow 2NO|$

1V:1V:2V

Знайти : $V(H_2)$ - ? $V(O_2)$ - ? $V(O_2)$ - ? Відповідь: $V(O_2)$ = $V(N_2)$ = $V(N_2)$ = 30 л.

На згорання суміші об'ємом 40 л, що складалася з метану й вуглекислого газу, витратили 60 л кисню. Обчисліть вміст вуглекислого газу в початковій суміші, якщо об'єми газів виміряно за однакових умов.

Дано:

 $V(CH_4,CO_2)=40$ л

 $CH_4+2O_2 \rightarrow CO_2 +2H_2O$

1 V: 2V

 $V(CH_4) = V(O_2) : 2 = 60 \text{ л} : 2 = 30 \text{ л}$

V(CO2)-?

 $V(O_2) = 60 л$

 $V(CO_2) = V(CH_4, CO_2) - V(CH_4) = 40 \text{ л} - 30 \text{ л} = 10 \text{ л}.$

Відповідь: 10 л.

Скориставшись поданими в параграфі умовами задач як зразком, складіть умову задачі, розв'язання якої потребує встановлення об'ємних відношень газів.

Відповідь: Чи вистачить 200 л повітря для повного спалювання 50 л пропану?

На згорання суміші метану з етеном об'ємом 60 л витратили кисень об'ємом 140 л. Обчисліть об'єми метану та етену в суміші, якщо об'єми газів виміряно за однакових умов.

Дано:

 $V(суміш CH_4, C_2H_4) = 60 л$

 $V(O_2) = 60 л$

 $V(CO_2) = ?$

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

1V:2V

(60-х) л 3(60-х)

 $C_2H_4 \rightarrow 3O_2 \rightarrow 2CO_2 + 2H_2O$

1V:3V

2x+3(60-x) = 140 X=40

2x+180-3x=140 $V(CH_a) = 40 л$

3x-2x=180-140 $V(CO_2) = 60-x = 60-40 = 20 \pi$

Відповідь: 40 л метану та 20 л етену

Нітроген(II) оксид, що утворюється під час грози (див. завдання 118), легко доокиснюється до нітроген(IV) оксиду, а той з водою утворює нітратну та нітритну кислоти (пригадайте, що він є оксидом двох кислот). Так виникає загроза появи кислотних дощів. Відтворіть рівняння перелічених реакцій, розгляньте окисно-відновні процеси в них. Обчисліть об'єм кисню, необхідний для доокиснення нітроген(II) оксиду об'ємом 200 л, якщо всі виміри зроблено за однакових умов.

Узагальнення знань

1. Сформулюйте закон об'ємних співвідношень.

2. Поясніть справедливість закону об'ємних співвідношень, ґрунтуючись на законі Авогадро.

3. Який внесок Гей-Люссака у розвиток органічної хімії?

4. Що таке молярний об`єм?

BCIM pptx

Домашнє завдання

1. У яких об'ємних відношеннях та об'ємах (н. у.) необхідно взяти кисень та метан для повного окиснення метану масою 64 г?