10. Automata-based Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Model checking ∃□

- Procedure to compute $Sat(\exists \Box \phi)$
 - − given Sat(♦)
- It again helps to consider expansion laws:
 - $\exists (\phi_1 \cup \phi_2) \equiv \phi_2 \vee (\phi_1 \wedge \exists \bigcirc \exists (\phi_1 \cup \phi_2))$
 - $\Phi \square E \bigcirc E \land \Phi \equiv \Phi \square E -$
- Basic idea: again, backwards search of the LTS
 - $T_0 := Sat(\phi)$
 - $T_i := T_{i-1} \cap \{ s \in Sat(\phi) \mid Post(s) \cap T_{i-1} \neq \emptyset \}$
 - until $T_i = T_{i-1}$
 - Sat($\exists \Box \varphi$) = T_i
- (i.e. keep <u>removing</u> states that are not predecessors of T_{i-1})

Example – ∃□

- Model the check CTL formula: $\phi = \forall \diamond c$
 - convert to ENF: $\forall \diamond c \equiv \neg \exists \Box \neg c$
 - $Sat(\neg c) = S \setminus \{s_0, s_3\} = \{s_1, s_2, s_4, s_5, s_6, s_7\}$
- Backwards search

-
$$T_0 := Sat(\neg c) = \{s_1, s_2, s_4, s_5, s_6, s_7\}$$

-
$$T_1 := T_0 \cap \{s_2, s_4, s_5, s_6\} = \{s_2, s_4, s_5, s_6\}$$

-
$$T_2 := T_1 \cap \{s_2, s_4, s_6\} = \{s_2, s_4, s_6\}$$

$$- T_3 := T_2 \cap \{s_2, s_4, s_6\} = \{s_2, s_4, s_6\}$$

- $T_3 = T_2$
- $Sat(\exists \Box \neg c) = \{s_2, s_4, s_6\}$
- $Sat(\phi) = S \setminus \{s_2, s_4, s_6\} = \{s_0, s_1, s_3, s_5, s_7\}$

• So: $M \models \varphi$

Model checking ∃□

More detailed algorithm:

```
CheckExistsAlways(Sat(φ)):
E := S \setminus Sat(\phi)
T := Sat(\phi)
for all s \in Sat(\phi) do count[s] := |Post(s)| od
while (E \neq \emptyset) do
      let s' \in E
     \mathsf{E} := \mathsf{E} \setminus \{\mathsf{s'}\}\
     for all s \in Pre(s') do
           if s \in T then
                  count[s] := count[s] - 1
                  if (count[s] = 0) then T := T \setminus \{s\}; E := E \cup \{s\} fi
           fi
      od
od
return T
```

Alternative algorithm for ∃□

- An alternative algorithm to model check ∃□φ on LTS M
 - based on strongly connected components
- Strongly connected components (SCCs)
 - SCC = maximal, connected sub-graph
 - non-trivial SCC = SCC with at least one transition
- Model checking ∃□
 - 1. construct a modified LTS M' by
 - removing all states <u>not</u> satisfying φ, i.e. those in S \ Sat(φ)
 - and removing all transitions to/from those states
 - 2. find the non-trivial strongly connected components (SCCs) in M'
 - 3. $Sat(\phi)$ is the set of states that can reach an SCC in M'

Example revisited – ∃□

- Model the check CTL formula: $\phi' = \exists \Box \neg c$
 - convert M to produce M'
 - identify non-trivial SCCs in M': {s₂,s₆}
 - identify states than can reach the SCCs: $Sat(\phi') = \{s_2, s_4, s_6\}$

Complexity

- The time complexity of CTL model checking
 - for LTS M and CTL formula •
- is: $O(|M| \cdot |\varphi|)$
 - i.e. linear in both model and formula size
 - where |M| = number of states + number of transitions in M
 - and $|\phi|$ = number of operators in ϕ
- Worst-case execution:
 - all operators are temporal operators
 - each one performs single traversal of whole model

CTL model checking: Wrapping up

- CTL model checking
 - global model checking algorithm
 - recursive computation of Sat(φ)
 - based on parse tree of φ
- Conversion to existential normal form (ENF)
 - $-\exists \bigcirc$, $\exists U$, $\exists \Box$ only
 - i.e. reduces to looking for <u>existence</u> of paths
- Graph-based algorithms on LTS
 - backwards graph traversal or SCCs

9. Automata-based Model Checking

Computer-Aided Verification

Dave Parker

University of Birmingham 2017/18

Branching-time vs. linear-time

- So far:
 - model checking for branching-time properties (CTL)
 - e.g. $\varphi = (\forall \Box \exists \diamondsuit a) \land (\exists \Box b)$
- Now: linear-time properties, e.g. as specified in LTL
 - e.g. $\Diamond \Box c \land \Box (d \rightarrow \bigcirc \neg c)$
- Next lectures: automata-based properties
 - connections between automata and logic
 - first: finite automata and safety properties

Overview

- Recap
 - linear-time properties
 - safety properties
- Nondeterministic finite automata (NFAs)
 - regular languages
 - regular expressions
- Regular safety properties
 - LTS-NFA products
 - model checking
- See [BK08] Sections 4–4.2

Reminder: Notation

- A (finite or infinite) word over a finite alphabet Σ is
 - a finite sequence $\mathbf{w} = \mathbf{A_0} \mathbf{A_1} ... \mathbf{A_n}$ where $\mathbf{A_i} \in \Sigma$ for all $0 \le i < n$
 - an infinite sequence $\sigma = A_0 A_1 \dots$ where $A_i \in \Sigma$ for all $i \ge 0$
- A prefix w of word $\sigma = A_0 A_1 ...$ is
 - a finite word $B_0B_1...B_n$ with $B_i=A_i$ for all $0 \le i \le n$
- A suffix σ' of word $\sigma = A_0A_1...$ is
 - an infinite word B_0B_1 ... with $B_i=A_{i+j}$ for some j≥0 and all $0 \le i \le n$
- Σ^* denotes the set of finite words over Σ
- Σ^{ω} denotes the set of infinite words over Σ

Recap - Linear-time properties

Paths: sequences of connected states

$$- e.g. \pi = s_0 s_2 s_2 s_1 s_1 s_1 ...$$

- Traces: infinite words over 2^{AP}
 - trace(π) = {a} {b} {b} {a,b} {a,b} {a,b}...
 - Traces(M) = traces of all paths

- Linear-time properties
 - set of allowable traces $P \subseteq (2^{AP})^{\omega}$
 - e.g. \Box (a→ \diamondsuit b) "a is always eventually followed by b"
 - $-M \models P \Leftrightarrow Traces(M) \subseteq P \Leftrightarrow trace(\pi) \in P \text{ for all paths } \pi \text{ of } M$
- Classes of (linear-time) property:
 - invariant, safety property, liveness property...
 - independent of any particular model...

Recap - Safety properties

Informally:

- "nothing bad happens", e.g. "a failure does not occur"
- defined in terms of the "bad" events, which happen in finite time

More precisely

- P_{safe} is a safety property if any (infinite) word where P_{safe} does <u>not</u> hold has a bad prefix
- a bad prefix is a finite prefix σ' containing the bad event, such that no infinite path beginning with σ' satisfies P_{safe}
- the bad prefixes <u>define</u> the safety property

Formally:

 $-P_{safe} = (2^{AP})^{\omega} \setminus \{ w.\sigma' \in (2^{AP})^* \mid \text{ for some bad prefix } w, \text{ suffix } \sigma' \}$

Example safety properties

- Example safety properties:
 - over AP = {red₁,green₁,red₂,green₂}
- "the traffic lights never both show green simultaneously":
 - what are the bad prefixes?
 - any finite word ending in {green₁,green₂}
- "green₁ is always preceded (immediately) by red₁"
 - what are the bad prefixes?
 - any finite word where green₁ appears
 and red₁ did not appear immediately before it

Nondeterministic finite automata

- A nondeterministic finite automaton (NFA) is:
 - a tuple $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$
- where:
 - Q is a finite set of states
 - ∑ is an alphabet
 - $-\delta: Q \times \Sigma \rightarrow 2^Q$ is a transition function
 - $Q_0 \subseteq Q$ is a set of initial states
 - $F \subseteq Q$ is a set of "accept" states

Example

- $Q = \{q_0, q_1, q_2\}, Q_0 = \{q_0\}, F = \{q_2\}$
- $\Sigma = \{A,B\}, \delta(q_0,A) = \{q_0\}, \delta(q_0,B) = \{q_0,q_1\}, \dots$

Runs of an NFA

- For an NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)...$
- There is an A transition from q to q' (written q -A→ q')
 - if $q' \in \delta(q, A)$
- A run of \mathcal{A} on a finite word $w = A_0A_1...A_{n-1}$ is:
 - a sequence of automata states $q_0q_1...q_n$ such that:
 - $q_0 \in Q_0$ and $q_i -A_i \rightarrow q_{i+1}$ for all $0 \le i < n$
- Example
 - a word: BBA
 - a run: $q_0q_0q_1q_2$

Language of an NFA

- An accepting run is a run ending in an accept state
 - i.e. a run $q_0q_1...q_n$ with $q_n \in F$
- Word w is accepted by A iff:
 - there exists an accepting run of A on w
- Example
 - BBA (accepted)
 - BAA (not accepted)
- The language of \mathcal{A} , denoted $\mathcal{L}(\mathcal{A})$ is:
 - the set of all words accepted by \mathcal{A}
- Automata \mathcal{A} and \mathcal{A}' are equivalent if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

language: "penultimate symbol is B"

Regular expressions

- Regular expressions E over a finite alphabet Σ
 - are given by the following grammar:
 - E ::= \emptyset ϵ A E + E E.E E*
 - where $A \in \Sigma$
- Language $\mathcal{L}(E) \subseteq \Sigma^*$ of a regular expression:
 - $\begin{array}{lll} \ \mathcal{L}(\varnothing) = \varnothing & \text{(empty language)} \\ \ \mathcal{L}(E) = \{ \ \epsilon \ \} & \text{(empty word)} \\ \ \mathcal{L}(A) = \{ \ A \ \} & \text{(symbol)} \\ \ \mathcal{L}(E_1 + E_2) = \mathcal{L}(E_1) \cup \mathcal{L}(E_2) & \text{(union)} \\ \ \mathcal{L}(E_1.E_2) = \{ \ w_1.w_2 \ | \ w_1 \in \mathcal{L}(E_1) \ \text{and} \ w_2 \in \mathcal{L}(E_2) \ \} & \text{(concatenation)} \\ \ \mathcal{L}(E^*) = \{ \ w^i \ | \ w \in \mathcal{L}(E) \ \text{and} \ i \in \mathbb{N} \ \} & \text{(finite repetition)} \end{array}$

Regular languages

- A set of finite words $\mathcal{L} \subseteq \Sigma^*$ is a regular language...
 - iff $\mathcal{L} = \mathcal{L}(E)$ for some regular expression E
 - iff $\mathcal{L} = \mathcal{L}(\mathcal{A})$ for some finite automaton \mathcal{A}

Operations on NFAs

- Intersection of two NFAs
 - build (synchronised) product automaton
 - cross product of $\mathcal{A}_1 \otimes \mathcal{A}_2$ accepts $\mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$
- Language emptiness of an NFA
 - reduces to reachability
 - $L(A) \neq \emptyset$ iff can reach a state in F from an initial state in Q_0
- Other important operations
 - construction of an NFA from a regular expression, inductively
 - determinisation (convert to deterministic finite automaton (DFA))
 - complementation of an NFA (via conversion to a DFA)