INF562 — Computational Geometry from Theory to Applications

Steve Oudot

The Wordle of Computational Geometry

The Wordle of Computational Geometry

The Wordle of Computational Geometry

Course Outline

- 1. Fundamentals I Convex hulls, triangulations
- 2. Fundamentals II Delaunay triangulations I
- 3. Fundamentals III Delaunay triangulations II, arrangements
- 4. Geometric aspects of graph theory I Graph embeddings
- 5. Geometric aspects of graph theory II Graph separators
- 6. Curve and surface reconstruction with guarantees, multiscale
- 7. Proximity Problems nearest neighbor(s) in high dimensions
- 8. Geometric Approximation I Travelling Salesman Problem
- 9. Geometric Approximation II Convex geometry, center points

Fundamentals of Computational Geometry

2D convex hull

Voronoi diagram

Delaunay triangulation

and their generalizations

Line arrangements

Voronoi of line segments

Power diagram

Embeddings of geometric planar graphs

© R. Ghrist, A. Muhammad

Application to sensor networks

Schnyder drawing of a triangulation

application to greedy routing

circle packing

scan + reconstruction

© Stanford shape repository

scan + reconstruction

© Stanford shape repository

multiscale scan + reconstruction

© Guibas, Oudot

© Stanford shape repository

multiscale scan + reconstruction

© Guibas, Oudot

© Stanford shape repository

level 1

level 2

level 3

 $|\mathrm{opt}| \le |T| \le (1+\varepsilon)|\mathrm{opt}|$

level 1

level 2

level 3

