Memoria II : características e interface procesador - memoria

Diagrama de bloques de una RAM 4K x 8

Pines y señales típicas de chips de memoria

Ejemplo 1

256K-byte memory organization

Ejemplo 2

Controlador de RAM dinámica (DRAM)

Chip controlador DRAM que controla una memoria dinámica de 16 Mbyte (la memoria es construida con dispositivos DRAM de 256 K x 1 bit) No se utiliza entrelazado

Interleaving

Memoria cache y principal

Interleaving: Diseño H/W

- Los bits de la parte baja de la dirección seleccionan el bloque que se ha de activar
- Se pide un bloque de 128 bits y se reciben 4 palabras consecutivas de 32 bits cada una

Menos significativo Dos tipos de organización de módulos de memoria

(b) Palabras consecutivas en el mismo módulo

Ejercicio:

Se dispone de circuitos RAM de 256x8 y ROM de 1kx8 bits.

Una computadora necesita 2k bytes de RAM, 4K bytes de ROM y 4 unidades de interfaz cada una con 4 registros. La E/S se hace mediante la técnica de Memory Mapped. Los dos bits más significativos del bus de direcciones se codifican como sigue: 00 para la RAM, 01 para la ROM y 10 para los registros de interfaz.

- A) Dibujar el mapa de direcciones para el sistema.
- B) Dar el rango de direcciones de hexadecimal para la RAM, la ROM y las interfaces.
- C) Dibujar la expansión de memoria.

A) El mapa de direcciones será:

A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0	
0	0	0	0	0	0	х	х	Х	X	X	x	x	х	RAM1
0	0	0	0	0	1	Х	х	X	X	X	x	x	х	RAM2
0	0	0	0	1	0	х	х	х	х	х	x	х	х	RAM3
0	0	0	0	1	1	Х	х	Х	Х	X	X	X	х	RAM4
0	0	0	1	0	0	x	x	x	x	x	x	Х	х	RAM5
0	0	0	1	0	1	x	х	х	х	х	x	х	х	RAM6
0	0	0	1	1	0	х	х	х	х	х	x	х	х	RAM7
0	0	0	1	1	1	х	Х	х	х	Х	X	х	х	RAM8
0	1	0	0	х	х	х	х	х	х	X	x	x	х	ROM1
0	1	0	1	х	X	х	х	х	X	X	x	x	х	ROM2
0	1	1	0	X	X	X	х	X	X	X	x	x	х	ROM3
0	1	1	1	х	X	х	х	х	X	X	x	x	х	ROM4
1	0	0	0	0	0	0	0	0	0	0	0	x	х	INTF1
1	0	0	0	0	0	0	0	0	0	0	1	X	х	INTF2
1	0	0	0	0	0	0	0	0	0	1	0	x	х	INTF3
1	0	0	0	0	0	0	0	0	0	1	1	Х	Х	INTF4

Si la línea A11 de la RAM no se conecta \rightarrow cada palabra tiene 2 direcciones Si las líneas A11...A4 de las interfaces no se conectan \rightarrow cada registro tiene 256 direcciones El bus de direcciones necesita 14 líneas \rightarrow se pueden direccionar 16 k bytes

B) El rango de direcciones en hexadecimal es:

 0000H ---- 07FFH
 RAM

 0800H ---- 0FFFH
 libres 2k

 1000H ---- 1FFFH
 ROM

 2000H ---- 200FH
 Registros

 2010H ---- 2FFFH
 libres 4080 bytes

 3000H ---- 3FFFH
 libres 2K

