COSE312: Compilers

Lecture 21 — Data-Flow Analysis (3)

Hakjoo Oh 2017 Spring

Constant Folding

Decide that the value of an expression is a constant and use it instead.

Constant Propagation Analysis

For each program point, determine whether a variable has a constant value whenever execution reaches that point.

3 / 21

How It Works (1)

How It Works (2)

How It Works (3)

Constant Analysis

The goal is to compute

 $\begin{array}{ll} \text{in} & : & Block \rightarrow (\mathit{Var} \rightarrow \mathbb{C}) \\ \text{out} & : & Block \rightarrow (\mathit{Var} \rightarrow \mathbb{C}) \end{array}$

where \mathbb{C} is a partially ordered set:

with the order:

$$\forall c_1, c_2 \in \mathbb{C}. \ c_1 \sqsubseteq c_2 \ \text{iff} \ c_1 = \bot \ \lor \ c_2 = \top \ \lor \ c_1 = c_2$$

Functions in $Var o \mathbb{C}$ are also partially ordered:

$$\forall d_1, d_2 \in (\mathit{Var} \to \mathbb{C}). \ d_1 \sqsubseteq d_2 \ \mathsf{iff} \ \forall x \in \mathit{Var}. \ d_1(x) \sqsubseteq d_2(x)$$

Join (Least Upper Bound)

The join between domain elements:

$$c_1 \sqcup c_2 = \left\{ egin{array}{ll} c_2 & c_1 = ot \ c_1 & c_2 = ot \ c_1 & c_1 = c_2 \ ot &
ho. ext{w.} \end{array}
ight.$$

$$d_1 \sqcup d_2 = \lambda x \in \mathit{Var}.\ d_1(x) \sqcup d_2(x)$$

Transfer Function

The transfer function

$$f_B:(\mathit{Var} o \mathbb{C}) o (\mathit{Var} o \mathbb{C})$$

models the program execution in terms of the abstract values: e.g.,

• Transfer function for z = 3:

$$\lambda d. [z \mapsto 3]d$$

• Transfer function for x > 0:

$$\lambda d. d$$

• Transfer function for y = z + 4:

$$\lambda d. \; \left\{ egin{array}{ll} oxed{\perp} & d(z) = oxed{\perp} \ oxed{\top} & d(z) = oxed{\top} \ d(z) + 4 & ext{o.w.} \end{array}
ight.$$

Transfer Function

A simple set of commands:

$$c \rightarrow x := e \mid x > n \mid e \rightarrow n \mid x \mid e_1 + e_2 \mid e_1 - e_2$$

The transfer function:

$$egin{array}{lcl} f_{x:=e}(d) &=& [x \mapsto \llbracket \ e \
rbracket](d)]d \ f_{x>n}(d) &=& d \ & \llbracket \ n \
rbracket](d) &=& n \ & \llbracket \ x \
rbracket](d) &=& d(x) \ & \llbracket \ e_1 + e_2 \
rbracket](d) &=& \llbracket \ e_1 \
rbracket](d) + \llbracket \ e_2 \
rbracket](d) \ & \llbracket \ e_1 - e_2 \
rbracket](d) &=& \llbracket \ e_1 \
rbracket](d) - \llbracket \ e_2 \
rbracket](d) \end{array}$$

Data-Flow Equations

Equation:

$$\mathsf{in}(B) = igsqcup_{P \hookrightarrow B} \mathsf{out}(P)$$
 $\mathsf{out}(B) = f_B(\mathsf{in}(B))$

Fixed point computation:

```
For all i, \operatorname{in}(B_i) = \operatorname{out}(B_i) = \lambda x. \bot while (changes to any in and out occur) {
    For all i, update
    \operatorname{in}(B_i) = \bigsqcup_{P \hookrightarrow B} \operatorname{out}(P)
    \operatorname{out}(B_i) = f_{B_i}(\operatorname{in}(B_i))
}
```

Extension to Interval Analysis

Node	Result
1	$x \mapsto \bot$
	$y\mapsto ot$
2	$x\mapsto [0,0]$
	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$
	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$
-1	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$
	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,10]$
"	$y\mapsto [0,+\infty]$

Applications of Interval Analysis

Static buffer-overflow detection: e.g.,

```
\dots a[x] \dots where a.size = [10, 20] and x = [5, 15].
```

- ► E.g., Sparrow¹, Facebook Infer², etc use interval analysis to detect buffer overruns
- More precise constant analysis:

```
if (...) {
  x = 1; y = 2;
} else {
  x = 2; y = 1
}
z = x + y;
```

Many others

¹http://www.fasoo.com/

²http://fbinfer.com

Interval Analysis

The goal is to compute

$$egin{array}{ll} ext{in} &: Block
ightarrow (Var
ightarrow \mathbb{I}) \ ext{out} &: Block
ightarrow (Var
ightarrow \mathbb{I}) \end{array}$$

where I is a partially ordered set:

$$\mathbb{I} = \{\bot\} \cup \{[l,u] \mid l,u \in \mathbb{Z} \cup \{-\infty,+\infty\} \ \land \ l \le u\}$$

with the order:

$$\forall c_1, c_2 \in \mathbb{C}. \ c_1 \sqsubseteq c_2 \ \text{iff} \ c_1 = \bot \lor c_2 = \top \lor c_1 = c_2$$

Join (Least Upper Bound)

- The join operator merges multiple data flows: e.g.,
 - $\blacktriangleright \ [1,3] \sqcup [2,4] = [1,4]$
 - ullet $[1,3] \sqcup [7,9] = [1,9]$
- Definition:

$$egin{array}{lll} oxed{oxed{oxed{oxed} egin{array}{lll} oxed{oxed} i \sqcup I &=& i \ [l_1,u_1] \sqcup [l_2,u_2] &=& [\min(l_1,l_2),\max(l_1,l_2)] \end{array}}$$

Transfer Function

$$c \rightarrow x := e \mid x > n \mid e \rightarrow n \mid x \mid e_1 + e_2 \mid e_1 - e_2$$

The transfer function:

$$egin{array}{lll} f_{x:=e}(d) &=& [x\mapsto \llbracket \ e\
rbracket](d)]d \ f_{x>n}(d) &=& [x\mapsto d(x)\sqcap [n+1,+\infty]]d \ \llbracket \ n\
rbracket](d) &=& [n,n] \ \llbracket \ x\
rbracket](d) &=& d(x) \ \llbracket \ e_1+e_2\
rbracket](d) &=& \llbracket \ e_1\
rbracket](d)\hat{+}\llbracket \ e_2\
rbracket](d) \ \llbracket \ e_1-e_2\
rbracket](d) &=& \llbracket \ e_1\
rbracket](d)\hat{-}\llbracket \ e_2\
rbracket](d) \end{array}$$

Data-Flow Equations

Equation:

$$\mathsf{in}(B) = igsqcup_{P \hookrightarrow B} \mathsf{out}(P)$$
 $\mathsf{out}(B) = f_B(\mathsf{in}(B))$

Fixed point computation:

```
For all i, \operatorname{in}(B_i) = \operatorname{out}(B_i) = \lambda x. \bot while (changes to any in and out occur) {
    For all i, update
    \operatorname{in}(B_i) = \bigsqcup_{P \hookrightarrow B} \operatorname{out}(P)
    \operatorname{out}(B_i) = f_{B_i}(\operatorname{in}(B_i))
}
```

Fixed Point Computation Does Not Terminate

The conventional fixed point computation requires an infinite number of iterations to converge:

Node	initial	1	2	3	10	11	k	∞
1	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto \bot$
	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y\mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$
2	$x \mapsto \bot$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$	$x \mapsto [0,0]$
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$	$y \mapsto [0,0]$
3			$x \mapsto [0,1]$		$x \mapsto [0, 9]$			
'	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
4	$x \mapsto \bot$	$x \mapsto [1,1]$	$x \mapsto [1, 2]$	$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$
5	$x \mapsto \bot$			$x \mapsto [1,3]$	$x \mapsto [1, 10]$			
	$y \mapsto \bot$	$y \mapsto [1, 1]$	$y \mapsto [1, 2]$	$y \mapsto [1, 3]$	$y \mapsto [1, 10]$	$y \mapsto [1, 11]$	$y \mapsto [1, k]$	$y \mapsto [1, +\infty]$
6			$x \mapsto \bot$	$x \mapsto \bot$	$x \mapsto [10, 10]$			
	$y \mapsto \bot$	$y \mapsto [0,0]$	$y \mapsto [0,1]$	$y \mapsto [0, 2]$	$y \mapsto [0, 9]$	$y \mapsto [0, 10]$	$y \mapsto [0, k-1]$	$y \mapsto [0, +\infty]$

To ensure termination and precision, two staged fixed point computation is required:

- increasing widening sequence
- decreasing narrowing sequence

1. Fixed Point Computation with Widening

Node	initial	1	2	3
1	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
1	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$	$y \mapsto \bot$
2	$x\mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y \mapsto \bot$	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x \mapsto \bot$	$x\mapsto [0,0]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
	$y \mapsto \bot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x \mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto \bot$	$x\mapsto [1,1]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto ot$	$y\mapsto [1,1]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x \mapsto \bot$	$x \mapsto \bot$	$x\mapsto [10,+\infty]$	$x\mapsto [10,+\infty]$
	$y\mapsto ot$	$y\mapsto [0,0]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

2. Fixed Point Computation with Narrowing

Node	initial	1	2
1	$x \mapsto \bot$	$x\mapsto \bot$	$x\mapsto \bot$
	$y\mapsto ot$	$y\mapsto ot$	$y\mapsto ot$
2	$x\mapsto [0,0]$	$x\mapsto [0,0]$	$x\mapsto [0,0]$
	$y\mapsto [0,0]$	$y\mapsto [0,0]$	$y\mapsto [0,0]$
3	$x\mapsto [0,9]$	$x\mapsto [0,9]$	$x\mapsto [0,9]$
	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
4	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$
5	$x\mapsto [1,10]$	$x\mapsto [1,10]$	$x\mapsto [1,10]$
	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$	$y\mapsto [1,+\infty]$
6	$x\mapsto [10,+\infty]$	$x\mapsto [10,10]$	$x\mapsto [10,10]$
	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$	$y\mapsto [0,+\infty]$

Summary

- Data-flow analyses we covered:
 - Reaching definitions analysis
 - Liveness analysis
 - Available expressions analysis
 - ► Constant propagation analysis
 - Interval analysis
- Static program analysis refers to a general method for automatic and sound approximation of sw run-time behaviors before the execution
 - "before": statically, without running sw
 - "automatic": sw analyzes sw
 - "sound": all possibilities into account
 - "approximation": cannot be exact
 - "general": for any source language and property
 - **★** C, C++, C#, F#, Java, JavaScript, ML, Scala, JVM, x86, etc
 - * "buffer-overrun?", "memory leak?", "type errors?", " $\mathbf{x}=\mathbf{y}$ at line 2?", "memory use $\leq 2K$?", etc
- Foundational theory: Google "Abstract Interpretation"