Quantum annealing for music arrangement

Lucas Kirby
Department of Physics, University of Durham

Supervised by
Prof Robert Potvliege & Dr Omer Rathore
23 April 2025

Abstract

Music arrangement is usually a complex and time-consuming process; this paper aims to provide an automatic method by which to arrange music via a quantum computing technique called quantum annealing. By splitting a score into a set of phrases, these phrases can form a quadratic unconstrained binary optimisation (QUBO), a function which the quantum computer aims to minimise by choosing the values of discrete variables. At the end of the optimisation process, the resulting chosen values describe the final arrangement, which can then be interpreted into sheet music. This method is tested on an excerpt of Beethoven's String Quartet No. 10 in E-flat major; in this case, the optimisation process is successful, and selects compatible phrases that produce a suitable arrangement.

Contents

Αľ	bstract	1
1	Introduction	4
2	Quantum annealing	5
3	Music arrangement	8
4	Problem formulation	8
5	Methods5.1 Lagrange parameter analysis5.2 Solver configuration5.3 Quantum hardware5.4 Limitations	9 12 12 13 13
6	Results 6.1 Comparison to classical algorithms 6.2 Scaling	13 13 15
7	Conclusions	15
Re	eferences	17
A	Examples	18
В	Test appendix	18
Sc	cientific summary for a general audience	19
L	ist of figures	
	1 Toy graph	4 7
	A toy example demonstrating the construction of the problem graph. It is trivial to see that the maximal independent set contains two nodes. (a) An example score of three parts, with each phrase coloured. (b) A graph of the score, with the colour of each node corresponding to its phrase, and edges connecting overlapping phrases.	10
	Varying the node constraint Lagrange multiplier to ensure that each node is coloured at most once. Each QUBO was submitted three times for 1000 reads, with the mean and standard error calculated	14
	Varying the edge constraint Lagrange multiplier to ensure that no nodes of the same colour are connected	14

List of tables

Figure 1: This is a toy graph showing blah blah blah

1 Introduction

Music is often seen as a very human endeavour. For centuries, only skilled musicians could compose and perform such sequences of sound that would be considered art **dwave_manufactured_2011**. Some would go one step further and adapt previously composed pieces for practical or artistic reasons, whether that be in terms of instrumentation, medium, or style, to create an *arrangement*. One of the most famous examples of this is *Pictures at an Exhibition*, a piano suite written by Modest Mussorgsky, but more commonly known for its orchestral arrangement by Maurice Ravel. Traditionally, the arrangement of music is a complex process that requires a deep understanding of musical theory, structure, and style. Composers use their creativity and intuition to create a piece that is both musically interesting and emotionally engaging whilst still remaining faithful to the source material—a challenging and often time-consuming process. Perhaps it is unsurprising, then, that there has been interest in automating this process.

One of the earliest examples of this can be seen in the *Musikalisches Würfelspiel* ("musical dice game") system popular in the 18th century. The roll of dice would determine the order of pre-composed musical phrases, allowing for the creation of new music without the need for a composer. This system was engaged by the likes of Bach and Mozart, although fell out of fashion the following century. The introduction of computers in the 20th century allowed for more sophisticated methods of music arrangement. Composers could now transpose and manipulate musical parts digitally, without the need to transcribe parts by hand. Moving into the 21st century, more advanced techniques such as genetic algorithms and neural networks have been used to arrange music, with varying degrees of success. However, these methods are limited by the complexity of the problem and the need for extensive training data.

The field of quantum computing has its foundations as early as the 1980s, with the suggestion that hardware following the laws of quantum mechanics could be faster and more powerful than its classical counterpart. Since then, two types of quantum computers have been developed: gate-based and annealing. Gate-based quantum computers, such as those developed by IBM and Google, use quantum gates to manipulate qubits, the quantum equivalent of classical bits, and perform calculations. Quantum annealers, such as those developed by D-Wave Systems, use quantum fluctuations to find the global minimum of a given function. Each are suited to solving different classes of problems, with gate-based computers being more versatile and annealers being more efficient for certain optimisation problems.

Quantum annealers are particularly well-suited to solving a class of problems known as NP-hard, defined in the field of computational complexity as an optimisation problem where the

time taken to find a solution scales exponentially with the input size. A well-known example of an NP-hard problem is the travelling salesman problem, where the goal is to find the shortest route that visits a set of cities exactly once. This problem is difficult to solve because the number of possible routes grows rapidly with the number of cities. Quantum annealers have been shown to be effective at solving NP-hard problems, and have been used to find solutions to a variety of optimisation problems, such as protein folding, financial portfolios, and traffic flow.

The combination of quantum computing and music is a relatively new field, but one that has shown promise. Quantum computers have been used to write melodies, harmonies, create synthesisers, and even produce variations of original scores, using a mixture of gate-based and annealing methods. However, most of these efforts have been directed at music *composition*, that is, the generation of entirely new sequences and sounds, rather than music *arrangement*, an aspect with very practical use, due to the aforementioned significant skilled human effort this usually takes. Quantum computers have the potential to solve complex problems that are intractable for classical computers, and it is proposed that music arrangement is one such problem.

This paper will focus on a subset of music arrangement known as *reduction*—taking a score written for a large number of parts and reducing it to a smaller number of parts, whilst still retaining the musicality and structure of the original. This is a common task in music production, where a piece written for a full orchestra may need to be arranged for a smaller ensemble, such as a string quartet. This forgoes the need to generate new music, as all notes in the arrangement are taken from the original score, and is more readily available to analyse as an optimisation problem.

In this study, the arrangement of a musical score is formulated as an NP-hard graph theory problem, by splitting the score into phrases with associated connections and weightings. This is then solved via a quantum annealer to produce a valid reduction according to imposed constraints. The final arrangement is visualised and evaluated, with suggestions for future work.

2 Quantum annealing

Annealing, in metallurgical terms, is the process of heating and cooling a material to alter its physical properties . The cooling stage is typically slow, allowing particles to arrange themselves into regular lattice structures, making the material softer and less brittle. In the context of quantum computing, quantum annealing is the process of slowly changing a quantum system from one Hamiltonian to another. Much like its metallurgical counterpart, this computational technique allows the system to settle into a more useful final state.

The typical time evolution of a quantum annealer looks like

$$H(t) = \left(1 - \frac{t}{T}\right)H_0 + \frac{t}{T}H_p, \tag{1}$$

where H_0 is the initial ground state that is allowed to evolve to a second state H_p across time T. If this is done adiabatically (in a closed system), with a sufficiently large T, the system will remain in the ground state of H(t), and therefore end in the ground state of H_p at time T. This is the principle of quantum annealing.

The main use of quantum annealing is to solve combinatorial optimisation problems, which are problems that require the minimisation of a function over a discrete set of variables. If H_p is prepared such that its ground state encodes the solution to the optimisation problem, then as long as H_0 and H_p do not commute, the solution will be given at the end of the annealing process.

In order to encode a problem, H_p Hamiltonians take the form of an Ising spin glass, a random arrangement of magnetic dipole moments that can be in one of two states, typically spin-up (+1) or spin-down (-1). A spin glass with a vector s of N spins takes the form

$$H(s) = -\sum_{i < j} J_{ij} s_i s_j - \sum_{i=1}^{N} h_i s_i$$
 (2)

where J_{ij} are the coupling strengths, and h_i are the field strengths. The quantum equivalent can be expressed as

$$H_p = H(\sigma^z) \tag{3}$$

where we have replaced the spins with Pauli matrices. This is the *Ising model*; the discrete variables are now *qubits*—binary variables like their classical counterparts, but existing in a superposition of the two states until measurement. The corresponding ground state is prepared with the Hamiltonian

$$H_0 = -h_0 \sum_{i=1}^N \sigma_i^x \tag{4}$$

which is an equal superposition of all possible states in the eigenbasis of H_p .

Talk briefly about NP-hard problems....belongs to a class of computationally complex problems called NP (nondeterministic polynomial) [COLLATE AND CHECK NOTES]. A full discussion of computational complexity is beyond the scope of this study, but in brief NP problems are difficult to solve via classical algorithms as the time to solution scales exponentially with problem size. A common example is the travelling salesman problem; a salesman must visit a set of cities exactly onces and return home, whilst minimising the distance travelled. As the number of cities grows, the number of possible routes the salesman could take grows exponentially, with a classical algorithm having to consider many more possible options. It is these sorts of optimisation problems that quantum annealers excel at solving.

Large solution space with many local minima

The mapping of a logical problem to an Ising model is called *embedding*. Problems are formulated in an analogous way to a spin glass via a QUBO (quadratic unconstrained binary optimisation). A QUBO takes the form of a function f(x) to be minimised, and is represented by

$$f(x) = \sum_{i \le j} Q_{i,j} x_i x_j + \sum_i Q_{i,i} x_i$$
 (5)

where x is a vector of binary variables (taking the values 0 or 1), and Q is an $N \times N$ upperdiagonal matrix of real weights. The off-diagonal $Q_{i,j}$ terms are known as quadratic coefficients, and diagonal $Q_{i,i}$ terms as linear coefficients. As its name suggests, a QUBO can only include terms up to the second power, restricting coupling to pairwise interactions. This form can easily for transformed to an Ising model using

$$s_i = 2x_i - 1. (6)$$

!!!minor embedding, introduces a computational "overhead" qubit biases implemented via electromagnetic fields often the connectivity of each qubit is not sufficient to describe the problem, introduction of chains strong interactions between chain qubits to ensure they all have the same value (chain strength) if chain strength not large enough then chains can break, can be solved by different methods e.g. majority vote done by CPU not QPU

Once a QUBO has been expressed, it can be sent to a quantum processing unit (QPU) to be solved. The graph architecture of these units allows the mapping of problem QUBOs

to physical qubits, with linear terms (x_i) as qubit nodes and quadratic terms (x_ix_j) as couplers between them. An embedded system can then be prepared in its initial ground state, and allowed to evolve adiabatically to its final state to obtain the solution.

However, the topology of these graphs often doesn't allow an exact one-to-one mapping; it may be the case that the problem requires a qubit to have more couplers than physically allowed by the QPU. The solution to this is the introduction of chains—a chain of physical qubits can act like a single logical variable, enabling the necessary mapping. The chain strength determines how strongly the chain is coupled, enforcing all qubits within the chain to have the same value. Chain strength is an important parameter that can affect the quality of solutions: if it is too weak, a final state may include chain breaks that return an infeasible solution; if it is too strong, it can overpower the other terms in the QUBO.

The qubits and their couplers define what can be seen as an energy landscape. Different combinations of qubit spins will have different energies, with the lowest energy state being the solution to the problem. A solver (or "sampler") attempts to characterise the shape of the energy landscape using a random range of input, and returns a number of samples with the lowest energy states. Note that the "true" ground state cannot be guaranteed; it could be part of the returned sample set, or may not even be found at all. It is the parameters of the annealing process that can reduce local minima and increase the likelihood of finding the ground state.

The full embedding process is often handled entirely by the QPU, done "on the fly" each time a problem is submitted. Fixed embeddings can be specified, but these require a priori knowledge of the specific QPU architecture.

Quantum annealing has already been applied to a widge array of optimisation problems, ranging from financial portfolios **phillipson_portfolio_2021**, protein folding **perdomo-ortiz_protein_2012**, and traffic flow **inoue_traffic_2021**. This study explores a creative novel application of this technique, music arrangement.

Put a bit about NP-hard problems here.

!!!Spectral gaps — gaps between energy levels as they evolve in time Care about the minimum energy gaps Smaller energy gaps need longer time evolution due to uncertainty principle $\Delta E \Delta t$. There are 2^N energy levels for N qubits! Ideally want a sparse matrix Large matrices can almost be considered random, will return gaussian distribution (see literature for random matrices?)

!!!Nick Chansellor paper, why quantum annealing?

Figure 2: A graph of 144 qubits in a D-Wave QPU, using their Pegasus topology. Qubits are represented by nodes, and couplers by edges.

3 Music arrangement

Music arrangement refers to the art of rewriting a musical score in a new setting, style, or structure, whilst still maintaining the essence of the original. A classical example of this is Mussorgsky's *Pictures at an Exhibition*, which is well known for its orchestral arrangement by Ravel but was originally a piano solo. A more contemporary example would be ???'s rendition of *The Star-Spangled Banner* at the ??? Super Bowl, which caused much controversy due to its laid-back style during a time of conflict in Cuba? The rearrangement of a piece can have a great effect on how the listener interprets it, and doing this effectively is still a pertinent issue many musicians face.

Traditionally, it's a time-consuming blah blah. However, in this study we aim to formulate music arrangement as an optimisation problem, which can be solved like any other via quantum annealing. It has been shown that music arrangement can be reduced to an NP-hard problem **moses_computational_2016**, by considering the special case of music *reduction*. Reduction is a form of arrangement whereby the number of instrument parts only gets smaller, and we define here subject to the following constraints:

- 1. *Uncreative* All music in the arrangement must come from the original
- 2. *Monophonic* Each part in the arrangement can only contain music from a single part in the original at any time

Holistically, reduction aims to fit as much original music into the parts of the arrangement, whilst still being playable. Notably, these constraints forgo the need to compose new music, a very subjective endeavour that is not handled well by optimisation.

4 Problem formulation

Previous approaches to the automatic arrangement of music have relied on classical methods such as neural networks or recursive classical algorithms in order to produce arrangements that are musically sound. However, these methods are limited by the complexity of the problem and the need for extensive training data. In this study, a new approach to the automatic arrangement of music is proposed by applying quantum annealing.

It has been shown that the arrangement of music can be formulated as a combinatorial optimisation problem: given a set of musical phrases, each phrase can be assigned a binary variable and formulated into a Boolean satisfiability (SAT) problem, with variables assigned to clauses according to their compatibility. A valid solution would be an assignment of values such that the Boolean expression is satisfied, corresponding to the phrases included in the final arrangement. Phrases are chosen as the smallest unit of music instead of notes to best preserve important melodic lines and harmonies, which may sound dissonant or confusing if split up.

This paper focuses on the reduction of polyphonic (multi-part) music to a single monophonic part, where only one note can be played at a time. A reduction of this form would be relevant for arranging a string quartet for solo violin, for example, whilst still retaining all the important elements from across the instrument parts. This problem can be solved using a reduction of the SAT problem known as the maximum independent set (MIS) problem. Consider a set of musical phrases, each represented by a node x_i in a graph G, with nodes connected by an edge if the phrases overlap. The aim is to find the largest subset of nodes such that no nodes within the subset are connected by an edge—the phrases corresponding to these nodes form the final

arrangement. A formulation of this sort ensures that the reduction remains strictly monophonic, as no two chosen phrases play at the same time.

Denote $x_{v,i}$ to be a binary variable such that

$$x_{v,i} = \begin{cases} 1 & \text{if vertex } v \text{ is colour } i \\ 0 & \text{otherwise} \end{cases}$$
 (7)

Proper vertex colouring constraints

$$f(x) = A \sum_{v \in V} \left(1 - \sum_{i=1}^{n} x_{v,i} \right)^{2} + A \sum_{(u,v) \in E} \sum_{i=1}^{n} x_{u,i} x_{v,i}$$
 (8)

where we take $x_i = 1$ as the inclusion of that node in the solution set. The first term (penalty term) implements the independence constraint by increasing the energy by A for each edge included, whilst the second term (objective term) is the quantity we are trying the minimise, the (negative) total number of nodes. A and B are known as Lagrange parameters, and can be chosen to balance the two terms accordingly. In this case, the condition A > B must be satisfied, such that any penalty introduced by a node will outweigh its energy reduction.

Final QUBO formulation:

$$f(x) = A \sum_{v \in V} \left(s_v - \sum_{i=1}^n x_{v,i} \right)^2 + B \sum_{(u,v) \in E} \sum_{i=1}^n x_{u,i} x_{v,i}$$
(9)

$$-C\sum_{v\in V}\sum_{i=1}^{n}W_{v}x_{v,i} - D\sum_{(u,v)\in E}W_{uv}\sum_{i=1}^{n}\sum_{j=1}^{n}x_{u,i}x_{v,j} - E\sum_{v\in V}\sum_{i=1}^{n}\theta(S_{v} - S_{\text{th},i})x_{v,i}$$
(10)

 $N_p * (n + 1)$ logical variables in the BQM Figures 3 and 3b and Equation (10)

5 Methods

D-Wave Systems operates the first and only quantum annealer for commercial access, introduced in 2011. All problems in this paper are run on the D-Wave Advantage quantum system, which uses their Pegasus architecture, with each qubit connected to 15 others (see Fig.). Interaction with the D-Wave QPUs is handled through their Leap quantum cloud service, which is used to submit problems to solvers. D-Wave provides an open-source software development package (SDK) of Python tools which allows users to translate problems into binary optimisation and create QUBOs for the QPU to solve.

Music can be represented by many digital formats, each with their own benefits—this study primarily uses MusicXML . This format focuses on the representation of standard sheet music, describing musical notes, rests, and other symbols, as well as the structure of the music, such as the arrangement of notes into measures (bars), parts, and scores. It is widely supported by music notation software, allowing translation of music to graphic (PNG, PDF) and audio (MIDI) formats. The Python module music21 provides extensive resources for manipulating, translating, and creating MusicXML files, allowing scores to be broken down and reconstructed as fit.

The reduction process begins by interpreting a MusicXML file of the original score. Embedded metadata within the score allows it to be broken down into its constituent parts, measures,

Figure 3: A toy example demonstrating the construction of the problem graph. It is trivial to see that the maximal independent set contains two nodes. (a) An example score of three parts, with each phrase coloured. (b) A graph of the score, with the colour of each node corresponding to its phrase, and edges connecting overlapping phrases.

and notes, as well as containing information about the instrumentation and structure. Each note is represented by a vector of features, such as pitch and duration, as well as its position within the wider piece, which can be measured as an offset (the number of beats from the start of the score).

To construct the problem graph, each individual part needs to be split into a sequence of musical phrases. The approach taken here is the local boundary detection model (LBDM) due to its easy implementation and good performance. The boundaries segmenting a part into phrases are identified using the degree of change between successive notes; larger differences between notes would show an increased likelihood of a boundary, exploiting the fact that the starts and ends of phrases are usually characterised by larger pitch or time intervals. Boundary strengths are calculated over two parameters, pitch and inter-onset interval (IOI), which is the difference between the starts of two notes. This is chosen over note duration as it is often more noticeable to the listener. The strength at note i with parameter x_i is given by

$$S_i = x_i \times (r_{i-1,i} + r_{i,i+1}) \tag{11}$$

where $r_{i,i+1}$ is the degree of change of a parameter between notes i and i+1, given by

$$r_{i,i+1} = \frac{|x_i - x_{i+1}|}{x_i + x_{i+1}}. (12)$$

In this way, a note with a high boundary strength would signal the start of a new musical phrase. Each parameter's strength is normalised to the range [0,1] according to the set of all strengths S via

$$S_i' = \frac{S_i - \min(S)}{\max(S) - \min(S)}.$$
(13)

Finally, to find the total boundary strength, the strengths of each parameter are summed with a weighting, using weights derived by trial-and-error (0.3 for pitch and 0.6 for IOI). If a note's total boundary strength surpasses a specified threshold, it is considered a boundary. Boundaries are always taken at the beginning and end of a score.

Once a list of boundaries is identified, the phrases are extracted by taking all the elements between subsequent boundaries. Each phrase is labelled according to the part it belongs to and its index within that part, allowing the phrases to be easily referenced and reconstructed into a new score once the optimisation is complete. To arrange the phrases into a graph, each phrase is checked against every other phrase for an overlap in time. Phrases are then represented by nodes, with edges connecting phrases that overlap.

The weight of each node is taken here to be the entropy of the phrase. Entropy can be seen as how much information a variable contains; in this context, a phrase with a higher entropy would indicate a higher level of complexity, increasing the likelihood of it being more "musical". Maximisation of phrase entropy would then result in the creation richer arrangements. For a discrete random variable X with a probability distribution P(X), the Shannon entropy is defined as

$$H(X) := -\sum_{i} P(x_i) \log_2 P(x_i)$$
 (14)

where each x_i is a possible value of X and $\sum_i P(x_i) = 1$. In this context, the random variable is a musical note, considering its possible values both in terms of pitch and rhythm.

Pitch entropy is calculated by considering the distribution of pitches in a phrase. The probabilities of each pitch x_i can be found by

$$P(x_i) = \frac{n_i}{N} \tag{15}$$

where n_i is the number of times pitch x_i appears in the phrase and N is the total number of notes in the phrase. A phrase with a greater variety of pitches (and thus greater entropy) will likely be more "interesting" in the final arrangement. Rhythm entropy is calculated in a similar way, but considering the duration of the note instead. This is also calculated using Eq. 15, but instead considering x_i as possible duration values. The total entropy of a phrase is then the sum of the pitch and rhythm entropies.

5.1 Lagrange parameter analysis

To ensure that the low energy solutions of our QUBO formulation do indeed fulfil the constraints necessary for a valid arrangement as outline before, the Lagrange parameters must be tuned. It is possible for this to be done *a priori* [CITE], however, this study will focus on an empirical approach.

The formulation given by Equation (5) contains two penalty terms, labelled with parameters A and B. The first penalises nodes being coloured more than once, which would introduce phrases being duplicated across parts in the final arrangement; this is referred to as the node constraint. The second penalises adjacent nodes of the same colour, preventing phrases that overlap being played by the same part; this is referred to as the edge constraint. The three objective terms are labelled with parameters C, D, and E, which lower the energy. In a worst-case scenario, a node included in the solution would lower the energy maximally whilst breaking a constraint. To ensure that this results in an overall increase in energy, and is therefore less likely, a quick algebraic analysis reveals that

$$A + B > C \max(W) + D \max(W) + E \tag{16}$$

where $\max(W)$ denotes the largest entry of the weight matrix. To allow a similar analysis across problems with different weights, we set C=D=1 and introduce new parameters X_m that scale with the maximum weight, such that $X=X_m\max(W)$, giving us the inequality

$$A_m + B_m > 2 + E_m. (17)$$

5.2 Solver configuration

The configuration of solver used was also tuned: two parameters, chain strength and anneal time per sample.

Fit quadratic curve to chain strength plot to find minimum value of energy.

- Chain strength analysis and explanation
- Anneal time analysis

Increase anneal time prevents excitation to higher energy states due to smaller spectral gaps. In the following results we set $E_m=1$ as bias towards part types is preferred but not essential. The values of A_m and B_m can then be found by performing parametric variation and measuring the number of broken constraints (duplicates and overlaps) in the lowest energy solutions. Parameter values should be just large enough to fulfil constraints, whilst not being too large as to overwhelm the other terms in the QUBO equation [CITE].

- Lagrange parameter variations
- 2D surface plot?
- Compare to analytic derivation (reference for double value?)

5.3 Quantum hardware

Once the graph is formed, the weighted MIS QUBO can be constructed via Equation (5), the Lagrange parameters chosen, and sent to the D-Wave QPU to be solved. The lowest energy solutions returned are sets of nodes that are not connected by edges, whilst maximising their total weighting. The qubits are then matched back to their corresponding phrases, which are reconstructed into a new score, the final reduction.

Many companies provide both personal and commercial access to gate-based quantum computers, however, few develop the hardware necessary for quantum annealing. D-Wave Systems was the first to realise a true quantum annealer **dwave_manufactured_2011**, and have since developed and released their technology to the wider scientific community. All problems in this study were submitted to D-Wave's Advantage System 4.1 solver, which boasts a topology of over qubits each with a degree of.

5.4 Limitations

QPU chip graph size -¿ affects length of scores/granularity of phrases/number of arrangement instruments !!!is possible to partition graphs to reduce problem sizes (include citation) but is future work

Maximum problem time limit -¿ affects maximum time per anneal which could affect quality of results

Removing chords and voices from scores -; loss of information

6 Results

The method was tested on an excerpt of (Haydn), taken from a MusicXML file in the public domain. This piece is ?? bars long and consists of four monophonic parts. It was chosen for...

Fig. ?? shows the extraction of phrases from the Violin I part by the LBDM.

• Phrase extraction graph

•

The resulting graph constructed from these phrases consists of ?? vertices and ?? edges. The QUBO formulation according to Eq. ?? was then calculated from this graph, to be submitted to the quantum annealer.

The annealer used in this study was the D-Wave Advantage 4.1 blah blah, which has connectivity of blah blah allows creation and submission of problems via a Python SDK (software development kit).

A returned sampleset of solutions might look something like Fig. [HISTOGRAM]. In most cases it's the lowest energy solutions (leftmost bins) that we care about.

How sparse is the problem graph? $(nodes + edges)/nodes^2$

6.1 Comparison to classical algorithms

Having tuned the Lagrange parameters and sampler configuration to give the lowest energy possible, we can compare the returned solutions to classical optimisation algorithms solving the same problem. D-Wave provides a selection of classical samplers that can return solutions to QUBO problems, two of which are used in this study. The steepest descent method blah

Figure 4: Varying the node constraint Lagrange multiplier to ensure that each node is coloured at most once. Each QUBO was submitted three times for 1000 reads, with the mean and standard error calculated.

Figure 5: Varying the edge constraint Lagrange multiplier to ensure that no nodes of the same colour are connected.

blah. Simulated annealing, on the other hand, works very similarly to quantum annealing, but instead uses a "temperature" value to escape local minima. This method gives a more direct comparison.

Show energy against reads Show total entropy against reads

• Compare to classical for different problem sizes

6.2 Scaling

Scale two ways:

- 1. Score length
- 2. Number of instruments

Compare lowest energy found for

Phrases identified using the LBDM are shown in Fig. , alongside their calculated entropies according to Eq. 14 and their overlaps, represented by edges. A threshold value of 0.4 was used, resulting in a total of 33 identified phrases, with 70 total overlaps. The calculated boundary strengths for the Violin 1 part can be seen in Fig. 11, with the identified boundaries summarised in Tab. . Many of the nodes form cliques of three or four vertices, that is, each node of the subset is connected to every other node. This can be expected, as often musical phrases across instruments will occur simultaneously, especially in small ensemble music such as this. Notably, there are also two disjoint cliques, subsets that are independent from the main graph. These can be seen as distinct musical ideas that are separated by rests from the other phrases (for example, the first two measures of the piece). A non-negligible number of phrases are calculated to have zero entropy—these are phrases identified as only having one note, and thus no variety in pitch or rhythm $(P(x_i)=1)$.

The QUBO was calculated using Eq. 10, with Lagrange parameters A=11.5 and B=1. The value of A was chosen to be twice the maximum node weight (phrase entropy) such that the penalty of choosing a node that introduces an edge into the solution would likely outweigh any possible benefit of its weighting. After submission of the QUBO to the D-Wave QPU, a sample set of solutions was returned, which can be seen in Fig. . Many solutions had degenerate energies—the lowest energy was -26.821803 with a degeneracy of 34 and zero chain breaks. These solutions used slightly different combinations of phrases to make the maximal independent set; this degeneracy is likely due to the high number of cliques, which only allows one node of the subset to be picked, and phrases with zero entropy, which do not change the final energy when interchanged. One of the lowest energy solutions can be seen in Fig. , with the nodes selected by the QPU highlighted. In this solution, none of the nodes are connected by edges, providing a valid monophonic arrangement. The musical score of this solution is shown in Fig. .

!!!comparing time to solution For QA only looking at annealing time, not QPU access time (which includes sampling, readout, programming time) as this is a limitation of the technology rather than the method

7 Conclusions

!!!what is the main limiting factor? Computers aren't big enough yet, but how big would they need to be? Look into new Zephyr topology

!!!future work reverse annealing change in anneal schedule, pause/quench graph partitioning a priori lagrange parameters (Nelder-Mead) unbalanced penalisation vs slack penalisation (would reduce number of variables)

In the case of Beethoven's String Quartet No. 10, this method can be said to be successful in reducing the score to a single monophonic part. A sufficient number of phrases are identified to allow the key melodic lines to be picked out from each part, and the weighted MIS formulation results in a final arrangement that is not musically uninteresting. Here, only one solution was picked arbitrarily; if desired, each of the degenerate lowest energy solutions could be examined individually to isolate the one that is considered most "musical", safe in the knowledge that all of them are valid.

One advantage this method has over classical algorithms is that no training data is needed. Genetic and deep learning approaches require refinement of their models on large datasets, "teaching" what a valid arrangement looks like, which takes considerable time and resources. By using a QPU, these "rules" can effectively be encoded using constraints, such as the penalty term introduced into the QUBO; as long as these constraints are fulfilled, the QPU will always provide a feasible solution, without any knowledge of previous arrangements.

Another benefit is the solve time: for the problem graph shown in Fig. , the D-Wave QPU access time (the time taken to embed and solve the problem) is approximately 150 ms for 1000 reads. Compared to classical methods using a similar number of phrases, the quantum process is faster by at least one order of magnitude . For classical computers, the time taken to solve NP-hard problems increases exponentially with the problem size, so this speed advantage will only improve as the scores become more complex.

Future work would include testing this process on a wide range of pieces from different musical styles. Scores from different time periods (Baroque vs. Romantic, for example) have wildly different structures, and so the effectiveness of the LBDM could vary in identifying suitable musical phrases. The treatment of melodic lines between different ensembles, whether that be a string quartet or symphony orchestra, also varies, and the isolation of important melodic lines may become more difficult.

To that regard, the effect of LBDM parameters (pitch/IOI weighting, threshold) on phrase identification could be studied. Ideally, musical phrases should be fairly short and similar in length, to give the MIS algorithm the best chance in selecting the most interesting sections of the score. This would prevent important notes being hidden in long phrases with low entropy. Other boundary detection methods could also be tested, with their resulting identified phrases compared qualitatively.

Currently, no regard is taken to the exact instrumentation of the final arrangement. Different instruments have varying ranges of pitches that can physically be played; here, phrases have been chosen from across all the instrument parts (as seen in Fig.), however, this does not mean that the final arrangement can be played by all the instruments as some notes may be unfeasible. Care needs to be taken to check the ambitus (pitch range) of chosen phrases and ensure that it falls within the desired instrument's range; if not, phrases can be transposed by octaves up or down without altering the melodies significantly.

The MIS formulation works well for reducing a score into a single polyphonic part, as the inclusion of a phrase within the final arrangement lends naturally to the binary variables used. However, a more useful application would be the ability to reduce a score to any fewer number of parts, whether that be multiple monophonic instruments (e.g. string quartet) or a polyphonic instrument (e.g. piano). To achieve this, the QUBO would need to be altered to allow some edges into the final subset. One suitable formulation would be a graph colouring problem: colouring the vertices of a graph G with a set of n colours such that no edge connects two

vertices of the same colour. In this context, the number of colours would be the number of desired parts—after solving, each disjoint set of colours would become a monophonic part, the combination of which becomes the final reduction (in this way, the MIS problem can be seen as a colouring problem where n=1).

Although it can be argued that music cannot be objectively "scored", nonetheless, the quality of the produced arrangements needs to be judged in some way. One suggestion is that the "goodness" of music can only be measured via a Turing-like test, where human subjects are presented with a selection of both human- and computer-generated scores, and asked to categorise them . To this extent, a good measure of the arrangements produced by this method would be to compare them against popular arrangements of the same score composed by human professionals, via a series of blind trials. If the participants fail to identify the computer compositions from the human ones more often than random chance, then it can be said that the generated arrangements are of sufficiently good quality.

To conclude, this paper has shown the automatic reduction of music via quantum annealing. By formulating a score into a function to be minimised, the annealing process can identify parts of the original to become the final arrangement. An automatic process of this sort would be useful to a wide calibre of musicians, removing the time and skill barrier to produce such arrangements, whilst still retaining a sufficient level of quality, keeping music accessible to all. Just as science and business do already, it can be hoped that the arts take advantage of promising new technologies as well.

References

- **dwave manufactured 2011** M. W. Johnson et al. "Quantum annealing with manufactured spins". en. In: *Nature* 473.7346 (May 2011). Publisher: Nature Publishing Group, pp. 194–198. ISSN: 1476-4687. DOI: 10.1038/nature10012. (Visited on 01/06/2025).
- **phillipson portfolio 2021** Frank Phillipson and Harshil Singh Bhatia. "Portfolio Optimisation Using the D-Wave Quantum Annealer". en. In: *Computational Science ICCS 2021*. Ed. by Maciej Paszynski et al. Cham: Springer International Publishing, 2021, pp. 45–59. ISBN: 978-3-030-77980-1. DOI: 10.1007/978-3-030-77980-1.
- **perdomo-ortiz protein 2012** Alejandro Perdomo-Ortiz et al. "Finding low-energy conformations of lattice protein models by quantum annealing". en. In: *Scientific Reports* 2.1 (Aug. 2012). Publisher: Nature Publishing Group, p. 571. ISSN: 2045-2322. DOI: 10.1038/srep00571. (Visited on 01/12/2025).
- inoue traffic 2021 Daisuke Inoue et al. "Traffic signal optimization on a square lattice with quantum annealing". en. In: *Scientific Reports* 11.1 (Feb. 2021). Publisher: Nature Publishing Group, p. 3303. ISSN: 2045-2322. DOI: 10.1038/s41598-021-82740-0. (Visited on 01/12/2025).
- moses computational 2016 William S. Moses and Erik D. Demaine. "Computational Complexity of Arranging Music". In: *arXiv* (July 2016). arXiv:1607.04220. DOI: 10.48550/arXiv.1607.04220. (Visited on 11/09/2024).

A Examples

B Test appendix

Start with an undirected graph G = (V, E) and a set of n colours, which represent the parts for which we are arranging, with each being an independent set. Denote $x_{v,i}$ to be a binary variable such that

$$x_{v,i} = \begin{cases} 1 & \text{if vertex } v \text{ is colour } i \\ 0 & \text{otherwise} \end{cases},$$

which requires nV variables. The energy is

$$H = H_A + H_B + H_C + H_D.$$

Each vertex is coloured exactly once:

$$H_A = A \sum_{v \in V} \left(1 - \sum_{i=1}^n x_{v,i} \right)^2$$

Vertices of the same colour are not connected by an edge:

$$H_B = B \sum_{(u,v) \in E} \sum_{i=1}^{n} x_{u,i} x_{v,i}$$

Maximise the weighting of selected vertices:

$$H_C = -C\sum_{v \in V} \sum_{i=1}^n W_v x_{v,i}$$

Maximise the weighting of included edges:

$$H_D = -D \sum_{(u,v)\in E} W_{uv} \sum_{i=1}^n \sum_{j=1}^n x_{u,i} x_{v,j}$$

It can be seen that for n=1 this reduces to the MIS problem. For a score with p parts, it will be impossible to colour the graph exactly with n < p; the parameter A should be small enough to allow for some vertices to remain uncoloured. The lowest energy solutions will return coloured independent subsets of G that each represents a monophonic part of the final arrangement.

Scientific summary for a general audience

The arrangement of music by hand is usually a difficult and time-consuming process, requiring a deep understanding of musical theory and structure. This study aims to automate this process via quantum computing, a technique that relies on the use of qubits, which can exist in a superposition of states. A music score can be split up into a sequence of phrases by looking at how much adjacent notes differ from each other, and turned into a graph representation with nodes and edges, where each node is a phrase, and edges between nodes mean they overlap. This graph can then be sent to a quantum computer in order to select nodes according to a set of rules that determine the properties of the arrangement. Once the nodes have been selected, the corresponding phrases can be reconstructed to create the final score. Here, an excerpt of Beethoven's String Quartet No. 10 is reduced to a single part, suitable for a solo instrument.