1942 LOGIC

5.314 overlap_sboxes

DESCRIPTION	LINKS	LOGIC

Origin Geometry, derived from [338]

Constraint overlap_sboxes(K, DIMS, OBJECTS, SBOXES)

Synonym overlap.

INTEGERS : collection(v-int)
POSITIVES : collection(v-int)

Arguments K : int

DIMS : sint

 $\begin{array}{lll} \text{OBJECTS} & : & \text{collection}(\text{oid-int}, \text{sid-dvar}, \text{x} - \text{VARIABLES}) \\ \text{SBOXES} & : & \text{collection}(\text{sid-int}, \text{t} - \text{INTEGERS}, \text{1} - \text{POSITIVES}) \end{array}$

Restrictions

```
|VARIABLES| \ge 1
|\mathtt{INTEGERS}| \geq 1
|\mathtt{POSITIVES}| \geq 1
required(VARIABLES, v)
|VARIABLES| = K
required(INTEGERS, v)
|INTEGERS| = K
required(POSITIVES, v)
|POSITIVES| = K
{\tt POSITIVES.v}>0
K > 0
\mathtt{DIMS} \geq 0
{\tt DIMS} < {\tt K}
increasing_seq(OBJECTS,[oid])
required(OBJECTS, [oid, sid, x])
{\tt OBJECTS.oid} \geq 1
OBJECTS.oid \leq |OBJECTS|
{\tt OBJECTS.sid} \geq 1
\texttt{OBJECTS.sid} \leq |\texttt{SBOXES}|
|\mathtt{SBOXES}| \geq 1
required(SBOXES,[sid,t,1])
{\tt SBOXES.sid} \geq 1
\mathtt{SBOXES.sid} \leq |\mathtt{SBOXES}|
do_not_overlap(SBOXES)
```

20070622 1943

Holds if, for each pair of objects (O_i, O_j) , i < j, O_i overlaps O_j with respect to a set of dimensions depicted by DIMS. O_i and O_j are objects that take a shape among a set of shapes. Each shape is defined as a finite set of shifted boxes, where each shifted box is described by a box in a K-dimensional space at a given offset (from the origin of the shape) with given sizes. More precisely, a shifted box is an entity defined by its shape id sid, shift offset t, and sizes 1. Then, a shape is defined as the union of shifted boxes sharing the same shape id. An object is an entity defined by its unique object identifier oid, shape id sid and origin x.

An object O_i overlaps an object O_j with respect to a set of dimensions depicted by DIMS if and only if, there exists a shifted box s_i associated with O_i and there exists a shifted box s_j associated with O_j , such that (1) there exists a dimension $d \in DIMS$ where the end of O_i in dimension d is strictly greater than the start of O_j in dimension d, and (2) the end of O_i in dimension d is strictly greater than the start of O_i in dimension d.

```
Example
```

```
2, \{0, 1\},
      oid - 2 sid - 2 x - \langle 3, 2 \rangle
      \mathtt{oid}-3
                              \operatorname{sid} - 3 \quad \operatorname{x} - \langle 2, 4 \rangle
      \operatorname{sid} - 1 t -\langle 0, 0 \rangle
                                                         1 - \langle 4, 5 \rangle
       \operatorname{sid} - 2 \quad \operatorname{t} - \langle 0, 0 \rangle
                                                         1 - \langle 3, 3 \rangle
```

Figure 5.637 shows the objects of the example. Since O_1 overlaps both O_2 and O_3 , and since O_2 overlaps O_3 , the overlap_sboxes constraint holds.

Typical

 $|\mathtt{OBJECTS}| > 1$

Symmetries

- Items of OBJECTS are permutable.
- Items of SBOXES are permutable.
- Items of OBJECTS.x, SBOXES.t and SBOXES.1 are permutable (same permutation used).
- SBOXES.1.v can be increased.

Arg. properties

Suffix-contractible wrt. OBJECTS.

Remark

One of the eight relations of the Region Connection Calculus [338].

See also

common keyword: contains_sboxes, coveredby_sboxes, covers_sboxes, disjoint_sboxes. equal_sboxes. inside_sboxes. meet_sboxes(rcc8), non_overlap_sboxes (geometrical constraint, logic).

Keywords

constraint type: logic.

geometry: geometrical constraint, rcc8.

miscellaneous: obscure.

Purpose

1944 LOGIC

Figure 5.637: (D) the three mutually overlapping objects O_1 , O_2 , O_3 of the **Example** slot respectively assigned shapes S_1 , S_2 , S_3 ; (A), (B), (C) shapes S_1 , S_2 and S_3 are made up from a single shifted box.

Logic

```
\bullet \; \mathtt{origin}(\mathtt{O1},\mathtt{S1},\mathtt{D}) \stackrel{\mathrm{def}}{=} \mathtt{O1}.\mathtt{x}(\mathtt{D}) + \mathtt{S1.t}(\mathtt{D})
• end(01,S1,D) \stackrel{\text{def}}{=} 01.x(D) + S1.t(D) + S1.1(D)
• overlap_sboxes(Dims, 01, S1, 02, S2) \stackrel{\text{def}}{=}
        \forall \mathtt{D} \in \mathtt{Dims}
                    end(01,S1,D) >
                    \operatorname{origin}(O2,S2,D),
                    end(02, S2, D) >
                    \operatorname{origin}(O1, S1, D)
• overlap_objects(Dims, 01, 02) \stackrel{\text{def}}{=}
       \forall \mathtt{S1} \in \mathtt{sboxes}([\mathtt{01.sid}])
          \exists S2 \in sboxes ( [ 02.sid ] )
                                              Dims,
                                              01,
                                              S1,
          overlap_sboxes
                                              02,
 \bullet \  \  \, \mathtt{all\_overlap}(\mathtt{Dims},\mathtt{OIDS}) \stackrel{\mathrm{def}}{=} 
        \forall \texttt{O1} \in \texttt{objects}(\texttt{OIDS})
         \forall \texttt{O2} \in \texttt{objects}(\texttt{OIDS})
               {\tt O1.oid} < \ \Rightarrow
               02.oid
             overlap_objects
• all_overlap(DIMENSIONS, OIDS)
```