#### Overview

- ➤ Instruction Codes
- Computer Registers
- Computer Instructions
- Timing and Control
- ➤ Instruction Cycle
- **➤ Memory Reference Instructions**
- Input-Output and Interrupt
- Complete Computer Description

## Memory Reference Instructions

| Symbol | Operation Decoder | Symbolic Description                                                        |
|--------|-------------------|-----------------------------------------------------------------------------|
| AND    | $D_{o}$           | $AC \leftarrow AC \land M[AR]$                                              |
| ADD    | $D_1$             | $AC \leftarrow AC + M[AR], E \leftarrow C_{out}$                            |
| LDA    | $D_2$             | AC ← M[AR]                                                                  |
| STA    | $D_3^-$           | M[AR] ← AC                                                                  |
| BUN    | $D_4^{J}$         | PC ← AR                                                                     |
| BSA    | $D_{5}^{T}$       | $M[AR] \leftarrow PC, PC \leftarrow AR + 1$                                 |
| ISZ    | $D_6$             | $M[AR] \leftarrow M[AR] + 1$ , if $M[AR] + 1 = 0$ then $PC \leftarrow PC+1$ |

- The effective address of the instruction is in AR and was placed there during timing signal  $T_2$  when I = 0, or during timing signal  $T_3$  when I = 1
- Memory cycle is assumed to be short enough to complete in a CPU cycle
- The execution of MR instruction starts with T<sub>4</sub>

AND to AC

 $D_0T_4$ : DR  $\leftarrow$  M[AR]

Read operand  $D_0T_5$ : AC  $\leftarrow$  AC  $\wedge$  DR, SC  $\leftarrow$  0 **AND** with AC

ADD to AC

 $D_1T_4$ : DR  $\leftarrow$  M[AR]

 $D_1T_5$ : AC  $\leftarrow$  AC + DR, E  $\leftarrow$  C<sub>out</sub>, SC  $\leftarrow$  0

Read operand

Add to AC and store carry in E

# Memory Reference Instructions

LDA: Load to AC

 $D_2T_4$ : DR  $\leftarrow$  M[AR]

 $D_2T_5$ : AC  $\leftarrow$  DR, SC  $\leftarrow$  0

**STA: Store AC** 

 $D_3T_4$ : M[AR]  $\leftarrow$  AC, SC  $\leftarrow$  0

**BUN: Branch Unconditionally** 

 $D_4T_4$ : PC  $\leftarrow$  AR, SC  $\leftarrow$  0

**BSA: Branch and Save Return Address** 

 $M[AR] \leftarrow PC, PC \leftarrow AR + 1$ 



## Memory Reference Instructions

#### **BSA**:

 $D_5T_4$ : M[AR]  $\leftarrow$  PC, AR  $\leftarrow$  AR + 1

 $D_5T_5$ : PC  $\leftarrow$  AR, SC  $\leftarrow$  0

ISZ: Increment and Skip-if-Zero

 $D_6T_4$ : DR  $\leftarrow$  M[AR]

 $D_6T_5$ : DR  $\leftarrow$  DR + 1

 $D_6T_4$ : M[AR]  $\leftarrow$  DR, if (DR = 0) then (PC  $\leftarrow$  PC + 1), SC  $\leftarrow$  0

#### Flow Chart - Memory Reference Instructions

