國立成功大學 工程科學系 試題

電子電路 (總分100分)

計算題 5 題(100 分, 共 3 頁) 推導過程須要詳細寫出來,若觀念正確,才能斟酌給分。

1. The CG amplifier circuit shown in Fig.1 have $g_m=2\text{mA/V}$, $r_o=\infty$, and $C_{gs}=1pF$, $C_{gd}=2pF$. Please determine the midband gain $A_M\equiv\frac{v_o}{v_{\text{sig}}}$, and the upper 3-dB frequency f_H in case $R_{\text{sig}}=2k\Omega$, $R_L=10k\Omega$, and $C_L=10pF$, and neglect $r_o.(20\%)$

Fig.1

2. For the circuit in Fig.2, let $\beta = 100$, $C_{\mu} = 2pF$, $C_{\pi} = 6pF$, and neglect $r_{\rm o}$. Calculate the midband gain $A_{M} \equiv \frac{v_{\rm o}}{v_{\rm sig}}$, and the upper 3-dB frequency f_{H} . (20%)

Fig.2

3. The CS amplifier in Fig.3 has $g_m = 2\text{mA/V}$, $C_{gs} = C_{gd} = 1\text{pF}$, $R = 100\text{k}\Omega$, $R_G = 1.2\text{M}\Omega$, $R_L = 12\text{k}\Omega$, and neglect r_0 . Use the method of open-circuit time constants to obtain f_H .(20%)

Fig.3

4. In the Fig.4, let $\beta=100$, $C_{\mu}=2pF$, $C_{\pi}=6pF$, and neglect r_0 . Please calculate the midband gain $A_{\rm M}$ and 3-dB frequency $f_H.(20\%)$

Fig.4

5. Consider the common-emitter amplifier of Fig.5 under the following conditions: $R_{sig} = 5k\Omega$, $R_{I} = 33k\Omega$, $R_{2} = 22k\Omega$, $R_{E} = 3.9k\Omega$, $R_{C} = 4.7k\Omega$, $R_{L} = 6k\Omega$, $V_{CC} = 5V$, $\beta = 100$, and neglect r_{0} .

- (a) Calculate the mid-band voltage gain.
- (b) If $C_{C1} = C_{C2} = C_E = 1\mu F$, determine the lower 3-dB frequency.
- (c) If the BJT is $C_{\pi} = 2.4$ pF, and $C_{\mu} = 1$ pF, determine the upper 3-dB frequency. (Using Miller theorem, $f_H \approx Miller's dominant pole$).

