

MATH 100: Differential Calculus

Supplemental Learning

You can reach out to me at any time at rajveersodhi03@gmail.com, or leave me some feedback here (not for official use, this is just something I made to help me become a better SL Leader). Please note that you are free to walk in and out of my SL sessions at any time you please; you do not necessarily have to stay for the entirety of the sessions.

Exam Jam: Midterm Motivation – get ready for midterms and win a tablet!

Rajveer Sodhi (He/Him/His)

1 Section

Thursday, October 5th- 2:00 pm - 7:00 pm

Exam Jam is here to help you get ready for midterms! From test writing tips, Chat GPT trivia, and yoga, to drop-in tutoring and Learning Strategist sessions, Exam Jam has something for everyone!! Join 3 or more activities and be entered to win an Amazon Fire tablet! To see the full schedule and more event details, register now!

When: Thursday, October 5th from 2:00 pm - 7:00 pm

Where: The Student Learning Hub (LIB 237) & Hangar Fitness Centre (Studio 1). View the **Exam Jam Schedule** for specific event locations

How: Visit the Exam Jam check-in table (in the Student Learning Hub) to pick up your event passport. Get your passport stamped at 3 event activities and you can

enter to win!

Questions? Contact learning.hub@ubc.ca

Thanks all!

Quiz 2!

Limits

Friday, September 22nd

Continuity and Limits at Infinity

Intermediate Value Theorem

Vertical Asymptotes

Tangent Lines

Introduction to Derivatives

Power and Product Rules 1. Find the following limits. If the limit does not exist, use ∞ or $-\infty$ when appropriate.

(a)
$$\lim_{x \to 2^{-}} \frac{x-4}{x^2+x-6}$$

(b)
$$\lim_{x \to 4} \frac{3x - 2}{x^2 - 8x + 16}$$

2. Find all vertical and horizontal asymptotes of the function.

$$g(x) = \frac{2x^2 + x - 1}{x^2 + 4x + 3}$$

3. Using only algebraic techniques, calculate

$$\lim_{x \to -\infty} \frac{3x^5 - 2x^4 + x^2 - 2x + 1}{2x^2 - x + 4}$$

4. Consider the piecewise function f(x) in the graph below

At what values of x is the function not continuous?

Explain your answer.

5. Where is the function $g(x) = \frac{\sqrt{3-x} + \sin(x)}{x+2}$ continuous?

6. Using the **limit definition** of a derivative, calculate f'(2) for $f(x) = 2 - x^2$

Pick the largest set below on which the function $f(x) = \frac{-\sin(x)}{\sqrt{2^{-x}}}$ is continuous.

 $A. \mathbb{R}$

C. $(-\infty,0) \iff x < 0$

E. f(x) is not continuous anywhere.

B. $(0, \infty) \iff x > 0$

D. $(-\infty,0) \cup (0,\infty) \iff x \neq 0$

True or False. The function
$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$$
 is continuous at $x = 0$.

Note: $\lim (x \rightarrow 0) \sin(x)/x = 1$

Proof:

https://www.khanacademy.org/math/ap-calculus-ab/ab-limits-new/ab-1-8/v/sinx-over-x-as-x-approaches-0

Consider the function f(x) below and its tangent line at x = 2.

What is the value of f'(2)?

O

Show that the equation $-\frac{8}{\pi^2}x^2 + \sin(x) = -6$ has at least one positive solution x = c > 0. Cite all relevant theorems.

Calculate the slope of the secant line to the function $f(x) = x^2 + 2x$ through the points (1,3) and (-3,3).

10. You and your friend are honing your archery skills. It's your turn to get up and shoot the bow and arrow. The arrow travels in a straight line for ten seconds. Your friend calculates the distance function of the arrow after t seconds and determines it is given by,

$$d(t) = 260t + 20t^2$$
 metres per second, $0 \le t \le 10$

- (a) Calculate the average velocity of the arrow between t=3 and t=7 seconds.
- (b) Calculate the instantaneous velocity of the arrow at t = 3 seconds. You must use a limit to do this. No shortcuts allowed.

Additional Exercises: CLP (as per profs)

- §1.5 Limits at Infinity. 3 26 odd.
- §1.6 Continuity. 3, 4, 5, 7, 8, 11, 13, 15, 17, 18, 21, 28 (tricky)
- **§2.2 Definition of a Derivative.** 5, 6, 7, 9, 10, 11, 12, 16, 24, 25.
- §2.3 Interpretations of the Derivative. 1, 3, 5.
- §2.4 Arithmetic of Derivatives. 1 3, 5 11, 13, 16

Any Questions????