Tabela de identidades, derivadas e integrais

Prof. Thiago de Paula Oliveira 1

1 Produtos notáveis

1.
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$

2.
$$a^2 - b^2 = (a+b)(a-b)$$

3.
$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3$$

4.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

5.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

2 Bases dos logaritmos

$$1. \log a = \log_{10} a$$

2.
$$\ln a = \log_e a$$
, em que $e \approx 2,72$

3 Arcos notáveis

	30°	45°	60°
senx	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$
$\cos x$	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2
tgx	$\sqrt{3}/3$	1	$\sqrt{3}$

4 Expoentes inteiros

1.
$$a^m a^n = a^{m+n}$$

2.
$$\frac{a^m}{a^n} = a^{m-n} \text{ para } a \neq 0$$

5 Expoentes fracionários

1.
$$\sqrt[m]{a}\sqrt[m]{b} = \sqrt[m]{ab}$$

6 Logaritmos

3. $\sqrt[m]{a^n} = a^{\frac{n}{m}}$

1.
$$\log_m a + \log_m b = \log_m (ab)$$

2. $\frac{\sqrt[m]{a}}{\sqrt[n]{b}} = \sqrt[m]{\frac{a}{b}}$, para $b \neq 0$

2.
$$\log_m a - \log_m b = \log_m \left(\frac{a}{b}\right)$$

$$3. \log_m a^n = n \log_m a$$

$$4. \log_m a = \frac{\log_n a}{\log_n m}$$

7 Identidades fundamentais

1.
$$\sin^2 x + \cos^2 x = 1$$

2.
$$tgx = \frac{sen x}{cos x}$$

3.
$$\cot gx = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$$

$$4. \sec x = \frac{1}{\cos x}$$

5.
$$\csc x = \frac{1}{\sin x}$$

6.
$$\operatorname{sen}(a \pm b) = \operatorname{sen} a \cos b \pm \operatorname{sen} b \cos a$$

7.
$$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$$

8.
$$|x| = \begin{cases} x, & \text{para } x \ge 0 \\ -x, & \text{para } x < 0 \end{cases}$$

9.
$$\ln |x| = \begin{cases} \ln x, & \text{para } x > 0 \\ \ln -x, & \text{para } x < 0 \end{cases}$$

¹Departamento de Ciências Exatas - ESALQ/USP. E-mail: thiago.paula.oliveira@usp.br

Tabela 1: Tabela de derivadas e integrais			
Derivadas	Integrais		
Se $f(x) = x$, então $f'(x) = 1$	$\int 1 dx = 1 \int dx = \int dx = x + c$		
Se $f(x) = ax$, então $f'(x) = a$	$\int a dx = a \int dx = ax + c$		
Se $f(x) = x^n$, então $f'(x) = nx^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + c, \text{ para } n \neq -1$		
Se $f(x) = \ln x $, então $f'(x) = \frac{1}{x}$	$\int \frac{1}{x} dx = \ln x + c$		
Se $f(x) = \log_a x $, então $f'(x) = \frac{1}{x \ln a}$	$\int \frac{1}{x \ln a} dx = \log_a x + c$		
Se $f(x) = a^x$, então $f'(x) = a^x \ln a$	$\int a^x dx = \frac{a^x}{\ln a} + c$		
Se $f(x) = e^x$, então $f'(x) = e^x$	$\int e^x dx = e^x + c$		
Se $f(x) = \operatorname{sen} x$, então $f'(x) = \cos x$	$\int \cos x dx = \sin x + c$		
Se $f(x) = \cos x$, então $f'(x) = -\sin x$	$\int \operatorname{sen} x dx = -\cos x + c$		
Se $f(x) = \operatorname{tg} x$, então $f'(x) = \sec^2 x$	$\int \sec^2 x dx = \operatorname{tg} x + c$		
Se $f(x) = \cot g x$, então $f'(x) = \csc^2 x$	$\int \csc^2 x dx = -\cot x + c$		
Se $f(x) = \sec x$, então $f'(x) = \operatorname{tg} x \sec x$	$\int \sec x \operatorname{tg} x dx = \sec x + c$		
Se $f(x) = \csc x$, então $f'(x) = -\cot x \csc x$	$\int \cot g x \csc x dx = -\csc x + c$		
Se $f(x) = \operatorname{arctg} \frac{x}{a}$, então $f'(x) = \frac{1}{a^2 + x^2}$	$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \arctan \frac{x}{a} + c$		
Se $f(x) = \arcsin \frac{x}{a}$, então $f'(x) = \frac{1}{\sqrt{a^2 - x^2}}$	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \arcsin \frac{x}{a} + c$		
Se $f(x) = \arccos \frac{x}{a}$, então $f'(x) = -\frac{1}{\sqrt{a^2 - x^2}}$	$\int -\frac{1}{\sqrt{a^2 - x^2}} dx = \arccos \frac{x}{a} + c$		
Se $f(x) = \ln(x + \sqrt{x^2 \pm a^2})$, então $f'(x) = \frac{1}{\sqrt{a^2 \pm x^2}}$	$\int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln\left x + \sqrt{x^2 \pm a^2} \right + c$		
Se $f(x) = \left[\frac{1}{2}\ln\left \frac{x+a}{x-a}\right \right]$, então $f'(x) = \frac{1}{a^2 - x^2}$	$\int \frac{1}{a^2 - x^2} dx = \frac{1}{2a} \ln \left \frac{x+a}{x-a} \right + c$		