Announcements

□ Homework for tomorrow...

Ch. 29: CQ 3, Probs. 4, 6, & 8 CQ10: a) $\Delta V_C \to \Delta V_C$ b) $C \to C/2$ c) $Q \to Q/2$

29.20: (240/79) μF 29.22: 20 μF in parallel

29.54: Q_1 = 4 μ C, Q_2 = 12 μ C, Q_3 = 16 μ C, ΔV_1 = ΔV_2 = 1V, ΔV_3 = 8V

□ Office hours...

MW 10-11 am TR 9-10 am F 12-1 pm

□ Tutorial Learning Center (TLC) hours:

MTWR 8-6 pm F 8-11 am, 2-5 pm Su 1-5 pm

Chapter 30

Current & Resistance

(Creating a Current)

Review...

■ Energy stored in a capacitor...

$$U_C = \frac{Q^2}{2C} = \frac{1}{2}C(\Delta V_C)^2$$

□ Energy density of a capacitor...

$$u_E = \frac{1}{2}\epsilon_0 E^2$$

□ Electron current...

Drift velocity

$$i_e = n_e A v_d$$
 e^{-} number cross-sectional area

Quiz Question 1

A wire carries a current. If both the wire diameter and the electron drift speed are *doubled*, the electron current increases by a factor of

- **1. 2.**
- **2. 4.**
- 6.
- 4. 8.
- 5. Some other value.

i.e. 30.1: The size of the electron current

What is the electron current in a 2.0 mm diameter copper wire if the electron drift speed is $1.0 \times 10^{-4} \text{ m/s}$?

Given: n_e =8.5 x 10²⁸ m⁻³ for copper.

Discharging a capacitor...

How long does it take to discharge the capacitor?

30.2: Creating a Current

□ Q: What creates a current?

30.2: Creating a Current

- □ Q: What creates a current?
- □ Q: But a conductor in electrostatic equilibrium has an *E*-field of ZERO inside a conductor?

30.2: Creating a Current

- □ Q: What creates a current?
- □ Q: But a conductor in electrostatic equilibrium has an *E*-field of ZERO inside a conductor?
- \square Q: If there is a *non-zero E*-field, then there is a *non-zero F*, so shouldn't my electrons accelerate?
 - instead of move at a constant drift velocity, v_d ?

Establishing an *E*-field in a Wire

Notice:

- conductors are in electrostatic equilibrium.
- Arr E = o inside the wire, *all* excess charge resides on the surface.
- □ *Surface charge density* is uniform.

© 2013 Pearson Education, Inc.

Establishing an *E*-field in a Wire

Notice:

- Within $\Delta t \sim 1$ ns, sea of electrons shift slightly.
- conductors are NOT in electrostatic equilibrium.
- Surface charge density is no longer uniform.
- □ Non-zero E-field inside the wire.
- \Box *E*-field creates a current.

Establishing an *E*-field in a Wire

(b)

Notice:

- □ Surface charges are NOT the moving charges.
- \Box i_e (electron current) is *inside* the wire, NOT on the *surface*.

The nonuniform surface charge density creates an electric field inside the wire.

i.e. 30.2: The surface charge on a current-carrying wire

Consider a typical *E*-field strength of 0.01 V/m. Two 2.0 mm diameter rings are 2.0 mm apart. They are charged to $\pm Q$.

What is Q?

A Model of Conduction

Q: If there is a $non-zero\ E$ -field, then there is a $non-zero\ F$, so shouldn't my electrons accelerate?

• instead of move at a constant drift velocity, v_d ?

A net displacement in the direction opposite to \vec{E} is superimposed on the random thermal motion.

A Model of Conduction

Q: If there is a $non-zero\ E$ -field, then there is a $non-zero\ F$, so shouldn't my electrons accelerate?

• instead of move at a constant drift velocity, v_d ?

A Model of Conduction

Q: If there is a *non-zero E*-field, then there is a *non-zero F*, so shouldn't my electrons accelerate?

• instead of move at a constant drift velocity, v_d ?

$$v_d = \frac{e\tau}{m}E$$

so the electron current is..

$$i_e = \frac{n_e e \tau A}{m} E$$

