Annex A: Controlled substances

Group	Substance	Ozone-Depleting Potential*	100-Year Global Warming Potential	
Group I				
CFCl ₃	(CFC-11)	1.0	4 750	
CF ₂ Cl ₂	(CFC-12)	1.0	10 900	
C ₂ F ₃ Cl ₃	(CFC-113)	0.8	6 130	
C ₂ F ₄ Cl ₂	(CFC-114)	1.0	10 000	
C ₂ F ₅ Cl	(CFC-115)	0.6	7 370	
Group II				
CF ₂ BrCl	(halon-1211)	3.0		
CF ₃ Br	(halon-1301)	10.0		
C ₂ F ₄ Br ₂	(halon-2402)	6.0		

^{*} These ozone depleting potentials are estimates based on existing knowledge and will be reviewed and revised periodically.

Annex B: Controlled substances

Group	Substance	Ozone-Depleting Potential
Group I		
CF ₃ Cl	(CFC-13)	1.0
C ₂ FCl ₅	(CFC-111)	1.0
C ₂ F ₂ Cl ₄	(CFC-112)	1.0
C ₃ FCl ₇	(CFC-211)	1.0
C ₃ F ₂ Cl ₆	(CFC-212)	1.0
C ₃ F ₃ Cl ₅	(CFC-213)	1.0
C ₃ F ₄ Cl ₄	(CFC-214)	1.0
C ₃ F ₅ Cl ₃	(CFC-215)	1.0
C ₃ F ₆ Cl ₂	(CFC-216)	1.0
C ₃ F ₇ Cl	(CFC-217)	1.0
Group II		
CCI ₄	carbon tetrachloride	1.1
Group III		
C ₂ H ₃ Cl ₃ *	1,1,1-trichloroethane* (methyl chloroform)	0.1

^{*} This formula does not refer to 1,1,2-trichloroethane.

Annex C: Controlled substances

Group	Substance	Number of isomers	Ozone-Depleting Potential*	100-Year Global Warming Potential***
Group I				
CHFCl ₂	(HCFC-21)**	1	0.04	151
CHF ₂ Cl	(HCFC-22)**	1	0.055	1 810
CH ₂ FCI	(HCFC-31)	1	0.02	
C ₂ HFCl ₄	(HCFC-121)	2	0.01-0.04	
C ₂ HF ₂ Cl ₃	(HCFC-122)	3	0.02-0.08	
C ₂ HF ₃ Cl ₂	(HCFC-123)	3	0.02-0.06	77
CHCl ₂ CF ₃	(HCFC-123)**	-	0.02	
C ₂ HF ₄ Cl	(HCFC-124)	2	0.02-0.04	609
CHFCICF ₃	(HCFC-124)**	-	0.022	
C ₂ H ₂ FCl ₃	(HCFC-131)	3	0.007-0.05	
$C_2H_2F_2CI_2$	(HCFC-132)	4	0.008-0.05	
C ₂ H ₂ F ₃ Cl	(HCFC-133)	3	0.02-0.06	
C ₂ H ₃ FCl ₂	(HCFC-141)	3	0.005-0.07	
CH ₃ CFCl ₂	(HCFC-141b)**	-	0.11	725
C ₂ H ₃ F ₂ Cl	(HCFC-142)	3	0.008-0.07	
CH ₃ CF ₂ Cl	(HCFC-142b)**	-	0.065	2 310
C ₂ H ₄ FCl	(HCFC-151)	2	0.003-0.005	
C ₃ HFCl ₆	(HCFC-221)	5	0.015-0.07	
C ₃ HF ₂ Cl ₅	(HCFC-222)	9	0.01-0.09	
C ₃ HF ₃ Cl ₄	(HCFC-223)	12	0.01-0.08	
C ₃ HF ₄ Cl ₃	(HCFC-224)	12	0.01-0.09	
C ₃ HF ₅ Cl ₂	(HCFC-225)	9	0.02-0.07	
CF ₃ CF ₂ CHCl ₂	(HCFC-225ca)**	_	0.025	122
CF ₂ CICF ₂ CHCIF	(HCFC-225cb)**	_	0.033	595
C ₃ HF ₆ Cl	(HCFC-226)	5	0.02-0.10	
C ₃ H ₂ FCl ₅	(HCFC-231)	9	0.05-0.09	
C ₃ H ₂ F ₂ Cl ₄	(HCFC-232)	16	0.008-0.10	
C ₃ H ₂ F ₃ Cl ₃	(HCFC-233)	18	0.007-0.23	
C ₃ H ₂ F ₄ Cl ₂	(HCFC-234)	16	0.01-0.28	
C ₃ H ₂ F ₅ Cl	(HCFC-235)	9	0.03-0.52	
C ₃ H ₃ FCl ₄	(HCFC-241)	12	0.004-0.09	
C ₃ H ₃ F ₂ Cl ₃	(HCFC-242)	18	0.005-0.13	
C ₃ H ₃ F ₃ Cl ₂	(HCFC-243)	18	0.007-0.12	
C ₃ H ₃ F ₄ Cl	(HCFC-244)	12	0.009-0.14	
C ₃ H ₄ FCl ₃	(HCFC-251)	12	0.001-0.01	

Group	Substance	Number of isomers	Ozone-Depleting Potential*	100-Year Global Warming Potential***
$C_3H_4F_2CI_2$	(HCFC-252)	16	0.005-0.04	
C ₃ H ₄ F ₃ Cl	(HCFC-253)	12	0.003-0.03	
C ₃ H ₅ FCl ₂	(HCFC-261)	9	0.002-0.02	
C ₃ H ₅ F ₂ Cl	(HCFC-262)	9	0.002-0.02	
C ₃ H ₆ FCl	(HCFC-271)	5	0.001-0.03	_

Group	Substance	Number of isomers	Ozone-Depleting Potential*
Group II			
CHFBr ₂		1	1.00
CHF ₂ Br	(HBFC-22B1)	1	0.74
CH ₂ FBr		1	0.73
C ₂ HFBr ₄		2	0.3-0.8
C ₂ HF ₂ Br ₃		3	0.5–1.8
C ₂ HF ₃ Br ₂		3	0.4–1.6
C ₂ HF ₄ Br		2	0.7–1.2
C ₂ H ₂ FBr ₃		3	0.1–1.1
$C_2H_2F_2Br_2$		4	0.2–1.5
C ₂ H ₂ F ₃ Br		3	0.7–1.6
C ₂ H ₃ FBr ₂		3	0.1–1.7
C ₂ H ₃ F ₂ Br		3	0.2–1.1
C ₂ H ₄ FBr		2	0.07-0.1
C ₃ HFBr ₆		5	0.3–1.5
C ₃ HF ₂ Br ₅		9	0.2–1.9
C ₃ HF ₃ Br ₄		12	0.3–1.8
C ₃ HF ₄ Br ₃		12	0.5–2.2
C ₃ HF ₅ Br ₂		9	0.9–2.0
C ₃ HF ₆ Br		5	0.7–3.3
C ₃ H ₂ FBr ₅		9	0.1–1.9
$C_3H_2F_2Br_4$		16	0.2–2.1
$C_3H_2F_3Br_3$		18	0.2–5.6
$C_3H_2F_4Br_2$		16	0.3–7.5
C ₃ H ₂ F ₅ Br		8	0.9–1.4
C ₃ H ₃ FBr ₄		12	0.08–1.9
$C_3H_3F_2Br_3$		18	0.1–3.1
C ₃ H ₃ F ₃ Br ₂		18	0.1–2.5
C ₃ H ₃ F ₄ Br		12	0.3-4.4
C ₃ H ₄ FBr ₃		12	0.03-0.3
C ₃ H ₄ F ₂ Br ₂		16	0.1–1.0

Group	Substance	Number of isomers	Ozone-Depleting Potential*	
C ₃ H ₄ F ₃ Br		12	0.07-0.8	
C ₃ H ₅ FBr ₂		9	0.04-0.4	
C ₃ H ₅ F ₂ Br		9	0.07-0.8	
C ₃ H ₆ FBr		5	0.02-0.7	
Group III				
CH ₂ BrCl	bromochloromethane	1	0.12	

^{*} Where a range of ODPs is indicated, the highest value in that range shall be used for the purposes of the Protocol. The ODPs listed as a single value have been determined from calculations based on laboratory measurements. Those listed as a range are based on estimates and are less certain. The range pertains to an isomeric group. The upper value is the estimate of the ODP of the isomer with the highest ODP, and the lower value is the estimate of the ODP of the isomer with the lowest ODP.

** Identifies the most commercially viable substances with ODP values listed against them to be used for the purposes of

Annex D:* A list of products** containing controlled substances specified in Annex A

No.	Products	Customs code number
1	Automobile and truck air conditioning units (whether incorporated in vehicles or not)	
2	Domestic and commercial refrigeration and air conditioning/heat pump equipment***	
	e.g. Refrigerators	
	Freezers	
	Dehumidifiers	
	Water coolers	
	Ice machines	
	Air conditioning and heat pump units	
3	Aerosol products, except medical aerosols	
4	Portable fire extinguisher	
5	Insulation boards, panels and pipe covers	
6	Pre-polymers	

^{*} This Annex was adopted by the Third Meeting of the Parties in Nairobi, 21 June 1991 as required by paragraph 3 of Article 4 of the Protocol.

Annex E: Controlled substances

Group	Substance	Ozone-Depleting Potential
Group I		
CH ₃ Br	methyl bromide	0.6

^{***} For substances for which no GWP is indicated, the default value 0 applies until a GWP value is included by means of the procedure foreseen in paragraph 9 (a) (ii) of Article 2.

^{**} Though not when transported in consignments of personal or household effects or in similar non-commercial situations normally exempted from customs attention.

^{***} When containing controlled substances in Annex A as a refrigerant and/or in insulating material of the product.

Annex F: Controlled substances

Group	Substance	100-Year Global Warming Potential
Group I		
CHF ₂ CHF ₂	HFC-134	1 100
CH ₂ FCF ₃	HFC-134a	1 430
CH ₂ FCHF ₂	HFC-143	353
CHF ₂ CH ₂ CF ₃	HFC-245fa	1 030
CF ₃ CH ₂ CF ₂ CH ₃	HFC-365mfc	794
CF ₃ CHFCF ₃	HFC-227ea	3 220
CH ₂ FCF ₂ CF ₃	HFC-236cb	1 340
CHF ₂ CHFCF ₃	HFC-236ea	1 370
CF ₃ CH ₂ CF ₃	HFC-236fa	9 810
CH ₂ FCF ₂ CHF ₂	HFC-245ca	693
CF ₃ CHFCHFCF ₂ CF ₃	HFC-43-10mee	1 640
CH ₂ F ₂	HFC-32	675
CHF ₂ CF ₃	HFC-125	3 500
CH ₃ CF ₃	HFC-143a	4 470
CH ₃ F	HFC-41	92
CH ₂ FCH ₂ F	HFC-152	53
CH ₃ CHF ₂	HFC-152a	124
Group II		
CHF ₃	HFC-23	14 800