Table of Contents

INITIAL	NITIALIZATION			
CALCU	LATIONS		2	
for linear			2	
for power	er		2	
	or exponential			
for Loga				
FORMA	TTED TEXT/FIG	URE DISPLAYS	3	
COMMA	AND WINDOW O	UTPUT	5	
ACADE		STATEMENT		
functi	on [SSE_fina]	l, SST] = M3_Regression_001_30		
응응응응응	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	\$		
% ENGR	132			
% Prog	ram Descripti	ion		
% The	program finds	s a model for estimating price of enzyme according		
to				
% thei %	r Km value ar	nd output the estimate price.		
% Func	tion Call			
% func	function [price] = price_estimate(Km)			
ે				
% Inpu	t Arguments			
% Km:	the Michaelis	s Constant of the enzyme		
% Outp	ut Arguments			
% pric	e_estimated:	the estimate price for the enzyme		
% Assi	gnment Inform	nation		
	signment:			
% Te	am Mmeber:	Luming Lin, lin971@purdue.edu		
%		Surya Manikhandan, smanikha@purdue.edu		
%		Julius Mesa, jmesa@purdue.edu		
%		Alex Norkus, anorkus@purdue.edu		
% Te	am ID:	001-30		
% Ac	Academic Integrity:			
%	[] We worked with one or more peers but our collaboration			
ଚ	maintained academic integrity.			
%	Peers we work	ked with: Name, login@purdue [repeat for each]		
응응응응응	888888888888	£\$		

INITIALIZATION

```
clc;clearvars;
data = readmatrix('Data_NovelEnzymes_priceCatalog');
price_measured = data(:,2);
Km_measured = data(:,1);
```

CALCULATIONS

```
SST = sum((price_measured - mean(price_measured)).^2);
```

for linear

```
coel = polyfit(Km_measured,price_measured,1);
slope_m1 = coel(1);
b1 = coel(2);
predict1 = polyval(coel,Km_measured);
SSE1 = sum((price_measured - predict1).^2);
r2_1 = 1-(SSE1/SST);
```

for power

```
coe2 = polyfit(log10(Km_measured),log10(price_measured),1);
m2 = coe2(1);
b2 = 10 ^ coe2(2);
predict2 = b2 .* (Km_measured) .^ m2;
SSE2 = sum((price_measured - predict2).^2);
r2_2 = 1-(SSE2/SST);
```

for exponential

```
coe3 = polyfit(Km_measured,log10(price_measured),1);
m3 = coe3(1);
b3 = 10 ^ coe3(2);
predict3 = b3 .* 10 .^ (Km_measured .* m3);
SSE3 = sum((price_measured - predict3).^2);
r2_3 = 1-(SSE3/SST);
```

for Logarithmic

```
coe4 = polyfit(log(Km_measured),price_measured,1);
m4 = coe4(1);
b4 = coe4(2);
predict4 = m4 .* log10(Km_measured) + b4;
SSE4 = sum((price_measured - predict4).^2);
```

FORMATTED TEXT/FIGURE DISPLAYS

```
SSE value = [SSE1,SSE2,SSE3,SSE4];
SSE_final = min(SSE_value);
choose = find(SSE_value == SSE_final);
if choose == 1
r2 = r2 1;
plot(Km_measured, price_measured, 'k.');
hold on;
plot(Km_measured, predict1, 'r-');
title({ 'The Ezyme USD Price Per Pound of each'; 'Michaelis Constant
from 157-350'})
xlabel('Michaelis Constant (uM)');
ylabel('Price (USD($)/lb)')
grid on;
elseif choose == 2
r2 = r2 \ 2i
plot(Km_measured, price_measured, 'k.')
hold on;
plot(Km_measured, predict2,'r-');
title({ 'The Ezyme USD Price Per Pound of each'; 'Michaelis Constant
 from 157-350'})
xlabel('Michaelis Constant (uM)');
ylabel('Price (USD($)/lb)')
legend('Novel Enzymes Price Catalog per Michaelis
Constant', 'Linearized Model', 'location', 'best')
grid on
elseif choose == 3
    r2 = r2 \ 3;
plot(Km_measured, price_measured, 'k.')
plot(Km_measured, predict3,'r-');
title({ 'The Ezyme USD Price Per Pound of each'; 'Michaelis Constant
from 157-350'})
xlabel('Michaelis Constant (uM)');
ylabel('Price (USD($)/lb)')
grid on
elseif choose == 4
    r2 = r2_4;
plot(Km_measured, price_measured, 'k.')
hold on;
plot(Km_measured, predict4,'r-');
```

```
title({'The Ezyme USD Price Per Pound of each';'Michaelis Constant
  from 157-350'})
xlabel('Michaelis Constant (uM)');
ylabel('Price (USD($)/lb)')
grid on
sgtitle('Data on Various Scaled Plots')
end

ans =
  3.5496e+04
```


COMMAND WINDOW OUTPUT

ACADEMIC INTEGRITY STATEMENT

We have not used source code obtained from any other unauthorized source, either modified or unmodified. Neither have we provided access to my code to another. The function we are submitting is our own original work.

Published with MATLAB® R2019a