M204 : Metric Spaces (Even Semester 2020-21), Practice problems

1. Let X denote the set of all sequences of real numbers. For $X = \{x_n\}_{n=1}^{\infty}$ and $Y = \{y_n\}_{n=1}^{\infty}$, define

$$d(X,Y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \left[\frac{|x_n - y_n|}{1 + |x_n - y_n|} \right].$$

Prove or disrpove : (X, d) is a metric space.

2. If d is a metric on a set X then so are d_1, d_2 , where

$$d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}, \qquad d_2(x,y) = \min\{1,d(x,y)\}.$$

- 3. Let $X = \mathbb{N}$ and define $d(m, n) = \left| \frac{1}{m} \frac{1}{n} \right|$ for all $m, n \in \mathbb{N}$. Prove or disprove : (X, d) is a metric space.
- 4. Let $X = \mathbb{R}$ and define $d(x,y) = |\tan^{-1}(x) \tan^{-1}(y)|$ for all $x,y \in X$. Prove or disprove : (X,d) is a metric space.

Let (X, d) is a metric space. The metric d is said to be bounded if d(X) is a bounded subset of (X, d). Similarly, d is said to be unbounded if d(X) is not a bounded subset of (X, d).

- 5. Show that every infinite set X admits an unbounded metric d on it.
- 6. Show that every metric d of a metric space (X, d) is equivalent to a bounded metric on X.
- 7. Let (X, d) be a metric space. Consider a function $f: \mathbb{R} \to \mathbb{R}$. If $(X, f \circ d)$ is metric space, then what are the conditions that f requires to satisfy?
- 8. Let A be a closed subset of a metric space (X, d). Show that for all $a \in A$, there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in A such that $x_n \stackrel{d}{\to} a$ as $n \to \infty$.

Let A be a subset of a metric space (X, d). The boundary of A, denoted by ∂A , is the set of all points of $x \in X$ such that x is neither an interior point of A nor an exterior point of A. Equivalently, $x \in \partial A$ if and only if for all $\epsilon > 0$, $S_{\epsilon}(x) \cap A \neq \emptyset$ and $S_{\epsilon}(x) \cap (X \setminus A) \neq \emptyset$.

- 9. Show that $\partial A = \partial (X \setminus A)$.
- 10. Prove or disprove : $\partial \mathbb{Q} = \mathbb{R}$, $\partial \mathbb{N} = \mathbb{N}$, $\partial \mathbb{Z} = \mathbb{Z}$.
- 11. Show that in a discrete metric space X, $\partial A = \emptyset$ for all $A \subseteq X$. Is the converse true?
- 12. If A is a open subset of a metric space (X, d), then prove or disprove : $\overline{(X \setminus \partial A)} = X$.
- 13. Let A be an open subset of \mathbb{R} equipped with the Euclidean metric. Show that for each $x, y \in \mathbb{R}$, there exists $a, b \in A$ such that x = a b.

Let A be a subset of a metric space (X, d). An element $a \in A$ is an *isolated point* if there exists r > 0 such that $S_r(a) \cap A = \{a\}$.

14. A point x of a metric space (X,d) is an isolated point of X if and only if $\{x\}$ is open in X.

Let (X, d) be a metric space. A subset A is said to be dense in X if and only if $\overline{A} = X$.

- 15. Suppose (X, d) is a metric space without any isolated point and Y is a dense subset of X. Show that for any open subset U of X, $U \cap X$ is infinite and hence Y has no isolated point.
 - A metric space (X, d) is said to be *separable* if X has at least one countable dense subset.
- 16. Let (X, d) be a metric space and $Y \subset X$ such that (Y, d) is separable and $\overline{Y} = X$. Show that (X, d) is separable.
- 17. Show that (ℓ^p, d_p) is separable for all $1 \leq p \leq \infty$.
- 18. Prove or disprove $(\ell^{\infty}, d_{\infty})$ is not separable.