United International University

Final Term Examination; Year 2020; Trimester: Summer Course: PHY 105/2105: Title: Physics: Sec: A-E Full Marks: 25; Time: 1 Hour 30 Minutes

Any examinee found adopting unfair means will be expelled from the trimester / program as per UIU disciplinary rules.

Questions no 1, 2, 3 and 4 are mandatory to answer. Answer any one from question no 5 and 6.

- (a) If two charges produce dipole moment, show the direction of it. Can it be possible to design 2.5 CO₁ an equation for which the both electric dipole moment and electric potential energy are present? How can you draw an electric potential graph varying in between -7V to +5V? (b) Why the dielectric materials are very poor conductor of electric current?
 - 1.5 CO₁ 1 CO₁
 - (c) Is there any major difference between emf and terminal voltage? If any, write down it.
- (a) A neutral water molecule (H₂O) in its vapor state has a permanent dipole moment with dipole CO₃ charge $q=|\pm 18e|$. The dipole distance of H₂O molecule is 1.12 pm. (i) If the molecule is placed in an electric field of 12.5×10^4 N/C, what maximum torque can the field exert on it? (Such a field can easily be set up in the laboratory) (ii) How much work must an external agent do to rotate this molecule by 180° in this field, starting from its initial position, for which $\theta = 70^{\circ}$? (b) A sodium (mass $23m_p$, charge +11e) and an alpha particle (mass $4m_p$, charge +2e) approach CO₃
 - one another with the same initial speed v from an initially large distance r = 5.2 fm. When these two particles will get closed to one another before turning around, what will be their initial speed? [Given, $k=8.99 \times 10^9 \text{ Nm}^2\text{C}^{-2}$, $m_p=1.67 \times 10^{-27} \text{ kg}$, and $e=1.6 \times 10^{-19} \text{ Coulomb}$]
- (a) In the following figure, V = 9.0 V, $C_1 = C_2 = 20 \mu\text{F}$, $C_3 = C_4 = 10 \mu\text{F}$, and $C_5 = 5 \mu\text{F}$. What is the (i) equivalent capacitance C_{eq} ? (ii) equivalent charge q_{eq} ? and (iii) charge q_1 on capacitor 1?

- (b) A circular parallel plate capacitor has diameter 20 cm. Capacitance between parallel plate CO₃ capacitor is 300 µF and the voltage difference between two plate is 6V. Calculate (i) the distance between two parallel plate of a capacitor, (ii) the charge, and (iii) the energy stored. [Given, ϵ_0 $=8.85 \times 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$
- (a) A 55.0 Ω resistor of a 12-gauge copper wire in a home has a cross-sectional area of 2.21×10^{-6} CO₃ m² is connected to the terminals of a battery whose emf is 14.0 V and whose internal resistance is $0.5~\Omega$. The conduction electron density in copper is 8.49×10^{28} electrons/m³. Calculate (i) the current in the circuit, (ii) the terminal voltage of the battery, V_{ab}, (iii) the power dissipated in the resistor R and in the battery's internal resistance r, and (iv) the drift speed v_d of the electrons. [Given, e= 1.6x10⁻¹⁹ Coulomb]
 - (b) Find the current and the voltage across each resistor of the circuit below. Given, $R_1=R_3=R_4=6k\Omega$ 2.5 CO₃ and V=4.5V.

- 5. (a) Establish a relation between torque $\vec{\tau}$, electric dipole moment \vec{p} , and electric field \vec{E} . 2.5 CO2
 - (b) Find out the electric potential V due to an electric dipole. 2.5 CO2
- **6.** (a) Find out the capacitance for parallel plate capacitor. 2.5 CO2
 - (b) Suppose the voltage varies sinusoidally with time as $V = V_0 sin2\pi ft$. Find out the average 2.5 CO2 electric power \bar{P} in a typical home.

CO1: Define different physical quantities with examples. **CO2:** Find out/Derive/Show/Discuss the various equations of Electric Potential, Capacitor and Capacitance, and Current, Resistance and EMF, etc. **CO3:** Evaluate different numerical problems based on the basic characteristics of Electric Potential, Capacitance, Combination of capacitors, Combination of resistors, Energy stored and power dissipation in a circuit, etc.