Paths of analysis*

Synthia

March 3, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: FGI, FGI with protections

Max. paths returned: 5

Max. iterations: 300

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1000 \$/g

Published:

1. Max. molecular weight - 1000 g/mol

2. Popularity - 10

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

Strategies: none selected

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection

with the rights afforded in the license agreement and for no other purpose.

FGI Coeff: 0

JSON Parameters: $\{\}$

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 138.68

Figure 1: Outline of path 1

2.1.1 N-Sulfonylation

Substrates:

1. Ethanesulfonyl chloride - available at Sigma-Aldrich

2. 3-Bromo-2,4-difluoroaniline - AstaTech

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(Br)c1F

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14718

2.1.2 Suzuki coupling of arylboronic acids with aryl bromides

Substrates:

1. 5-Bromo-7-azaindole - available at Sigma-Aldrich

2. (p-Fluorophenyl)boric acid - available at Sigma-Aldrich

Products:

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

 $\mathbf{Yield}: \mathbf{good}$

Reference: 10.1021/cr00039a007 and 10.1007/3418_2012_32 and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

and 10.1016/j.ejmech.2018.08.092 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 25150

2.1.3 Pd-catalyzed conversion of aryl bromides to Weinreb amides

Substrates:

1. CCS(=O)(=O)Nc1ccc(F)c(Br)c1F

2. Carbon monoxide - available at Sigma-Aldrich

3. n-methoxymethylamine - ChemImpexInternational

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(C(=O)N(C)OC)c1F

 $\textbf{Typical conditions:} \ \mathrm{Pd}(\mathrm{OAc}) \\ 2. \mathrm{Xantphos.CO} \\ (1 \ \mathrm{atm}). \\ \mathrm{Na2CO3.toluene.80C}$

Protections: none
Yield: moderate

Reference: DOI: 10.1021/ol061902t

Retrosynthesis ID: 1688

2.1.4 Iodination of aromatic compounds

Substrates:

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Products:

1. Fc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Yield: good

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

Retrosynthesis ID: 10697

2.1.5 Synthesis of ketones from Weinreb amides

Substrates:

1. CCS(=O)(=O)Nc1ccc(F)c(C(=O)N(C)OC)c1F

2. Fc1ccc(-c2cnc3[nH]cc(I)c3c2)cc1

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F

Typical conditions: 1.RmgBr.THF 2.TFA.DCM

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

2.2 Path 2

Score: 165.66

Figure 2: Outline of path 2

2.2.1 Synthesis of O-substituted N-substituted hydroxamic acids

Substrates:

 $1. \ \, \text{n-methoxymethylamine} \, - \, \quad \textit{ChemImpexInternational}$

2. 7-Azaindole-3-carboxylic acid - Combi-Blocks

Products:

1. CON(C)C(=O)c1c[nH]c2ncccc12

 $\textbf{Typical conditions:} \ \, \textbf{DCC.DMAP} \ \, \textbf{or} \ \, \textbf{CDI.TEA.DCM}$

Protections: none

Yield: good

Reference: Patent: WO2007/67333A2, 2007 & 10.1016/j.bmcl.2008.09.100

2.2.2 Synthesis of anilines from aryl boronic acids

Substrates:

1. 2,4-Difluoro-3-iodophenylboronic acid - AOBChem

Products:

1. 2,4-Difluoro-3-iodoaniline - Enamine

Typical conditions: Cu2O.NH3.H2O.air.rt

Protections: none
Yield: moderate

Reference: DOI: 10.1002/chem.201003711

Retrosynthesis ID: 2265

2.2.3 Chlorination of aromatic compounds

Substrates:

1. CON(C)C(=O)c1c[nH]c2ncccc12

Products:

1. CON(C)C(=O)c1c[nH]c2ncc(Cl)cc12

Typical conditions: Cl2 or other chlorinating agent like NCS

Protections: none
Yield: moderate

Reference: DOI: 10.1007/s11178-005-0256-1

Retrosynthesis ID: 11125

2.2.4 N-Sulfonylation

Substrates:

1. 2,4-Difluoro-3-iodoaniline - Enamine

2. Ethanesulfonyl chloride - available at Sigma-Aldrich

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(I)c1F

Typical conditions: THF.rt

-

 ${\bf Protections:}\ {\rm none}$

 $\mathbf{Yield}: \mathbf{good}$

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and 10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

2.2.5 Suzuki coupling with aryl chlorides

Substrates:

1. (p-Fluorophenyl)boric acid - available at Sigma-Aldrich

 $2.~\mathrm{CON(C)C(=O)c1c[nH]c2ncc(Cl)cc12}$

Products:

1. CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12

Typical conditions: [Pd].catalyst.base.

Protections: none

Yield: good

Reference: 10.1002/anie.201108608 and 10.1002/anie.200801465 and 10.1055/s-0033-1338293 and 10.1039/c1cc10708a and 10.1055/s-0030-1260169 and 10.1016/j.tet.2005.05.071 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 26284

2.2.6 Synthesis of ketones from Weinreb amides

Substrates:

- 1. CCS(=O)(=O)Nc1ccc(F)c(I)c1F
- 2. CON(C)C(=O)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12

Products:

$1. \ \ CCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$

 $\textbf{Typical conditions:} \ 1.RmgBr.THF \ 2.TFA.DCM$

Protections: none

Yield: good

Reference: 10.1021/jm051185t and 10.1021/ol101021v (supporting info)

Retrosynthesis ID: 5060

2.3 Path 3

Score: 187.60

Figure 3: Outline of path 3

2.3.1 N-Sulfonylation

Substrates:

- 1. Ethanesulfonyl chloride available at Sigma-Aldrich
- 2. 2,4-Difluoro-3-methoxyaniline 1g pack available at Sigma-Aldrich

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(OC)c1F

Typical conditions: THF.rt

Protections: none

Yield: good

Reference: 10.1055/s-0029-1217565 and 10.1002/(SICI)1099-0690(199806)1998:6<945::AID-EJOC945>3.0.CO;2-3 and <math>10.1055/s-2001-14567 and 10.1016/j.bmc.2014.07.022

Retrosynthesis ID: 14718

2.3.2 Suzuki coupling of arylboronic acids with aryl bromides

Substrates:

- 1. (1H-Pyrrolo[2,3-b]pyridin-5-yl)boronic acid Combi-Blocks
- 2. 4-Bromofluorobenzene available at Sigma-Aldrich

Products:

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Typical conditions: Pd catalyst.base.solvent

Protections: none

Yield: good

Reference: 10.1021/cr00039a007 and 10.1007/3418_2012_32 and 10.1021/cr0505268 and 10.1016/j.jfluchem.2016.01.018 and 10.1039/C3CS60197H

and 10.1016/j.ejmech.2018.08.092 and 10.1038/s41929-020-00564-z (metal-free coupling)

Retrosynthesis ID: 25150

2.3.3 Demethylation of Phenols

Substrates:

1. CCS(=O)(=O)Nc1ccc(F)c(OC)c1F

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(O)c1F

Typical conditions: BBr3.CH2Cl2

Protections: none
Yield: moderate

Reference: DOI: 10.1021/ja00105a021 and 10.1021/jm00176a011 and 10.1021/jm970277i and 10.1021/ja0106164 and Patent: US2010/16298, 2010, A1, page 185

2.3.4 Bromination of aromatic compounds

Substrates:

1. Fc1ccc(-c2cnc3[nH]ccc3c2)cc1

Products:

1. Fc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1

Typical conditions: Br2.Fe

Protections: none

 $\mathbf{Yield}: \mathbf{good}$

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.3.5 Synthesis of aryl triflates

Substrates:

1. TFMSA - available at Sigma-Aldrich

2. CCS(=O)(=O)Nc1ccc(F)c(O)c1F

Products:

1. CCS(=O)(=O)Nc1ccc(F)c(OS(=O)(=O)C(F)(F)F)c1F

Typical conditions: Tf2O. pyridine, dmap or other base

Protections: none
Yield: moderate

Reference: 10.1021/jacs.9b05224 (Supplementary, page S39) and

10.1021/jo971377z and 10.1021/jo035309q (suppelementary, page S6)

Retrosynthesis ID: 11335

2.3.6 Synthesis of arylstannanes

Substrates:

- 1. Fc1ccc(-c2cnc3[nH]cc(Br)c3c2)cc1
- 2. Tributylchlorotin available at Sigma-Aldrich

Products:

 $1. \ \ CCCC[Sn](CCCC)(CCCC)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12$

Typical conditions: 1.nBuLi.2.ClSiR3

Protections: none

Yield: good

Reference: 10.1016/j.dyepig.2012.11.014

2.3.7 Stille Carbonylative Cross-Coupling

Substrates:

 $1. \ \mathrm{CCS}(=\mathrm{O})(=\mathrm{O})\mathrm{Nc}1\mathrm{ccc}(\mathrm{F})\mathrm{c}(\mathrm{OS}(=\mathrm{O})(=\mathrm{O})\mathrm{C}(\mathrm{F})(\mathrm{F})\mathrm{F})\mathrm{c}1\mathrm{F}$

2. Carbon monoxide - available at Sigma-Aldrich

 $3. \ \ CCCC[Sn](CCCC)(CCCC)c1c[nH]c2ncc(-c3ccc(F)cc3)cc12$

Products:

 $1. \ \ CCS(=O)(=O)Nc1ccc(F)c(C(=O)c2c[nH]c3ncc(-c4ccc(F)cc4)cc23)c1F$

Typical conditions: Pd(0) complex

Protections: none
Yield: moderate

Reference: DOI: 10.1002/anie.198605081