风云三号 E 星 GNOS-II 海面风速产品使用说明文档

(V2.0)

编写: 黄飞雄 夏俊明 翟晓春

校对: 翟晓春______

审核:_____

会签: _____

批准:_____

国家卫星气象中心 2023 年 3 月

文档修订记录

版本号	日期	修订内容	修订人	注 记
V4.0				
V3.0				
V2.0	2023-3	增加更新v2.0算法 后数据说明	黄飞雄	
V1.0	2022-4	建立	黄飞雄 翟晓春	
V0.5				

目 录

1	产品定	义.	•••••••••••••••••••••••••••••••••••••••	1
	1.1	业组	务 算法更新说明	1
2	产品规	格利	□格式	1
	2.1	产。	品规格	1
	2.2	产。	品文件	2
	2.3	产。	品科学数据集	2
3	产品算	法原	更理和处理流程	4
	3.1	算》	去基本原理	4
	3.2	处理	里流程	5
	3.2	.1	输入文件	5
	3.2	.2	输出文件	6
	3.2	.3	处理流程	6
4	产品示	例.		8
5	产品精	度.		9
	5.1	产。	品检验评估方法和数据	9
	5.2	产。	品检验评估结果	9
	5.3	v2.	0 算法对应产品精度检验	10
6	产品使	用证	色明	10
	6.1	产。	品使用说明	10
	6.2	应从	用限制条件	11
	6.3	主	要参考文献	11
7	产品技	大大:	で持	12
	7.1	产。	品技术责任人	12
	7.2	文材	当引用方式和建议引用文献	12

图目录

冬	3-1 GPS 观测量与 ECMWF 风速匹配后结果	5
图	3-2 BDS 观测量与 ECMWF 风速匹配后结果	5
图	4-1 FY-3E GNOS-II 海面风速产品: (a) 1 天结果 (2021 年 7 月 21 日);	
(1	o) 5 天结果(2021 年 7 月 21-25 日)	8
图	5-1 FY-3E GNOS-II 海面风速产品与 ECMWF 再分析场 10 米风速对比结果	
••••		9
图	5-2 FY-3E GNOS-II 海面风速产品与 HY-2B 散射计 10 米风速对比结果 10	0
图	5-3 FY-3E GNOS-II 海面风速产品与 ECMWF 再分析场 10 米风速对比结果	
••••	1	0

表目录

表	1-1 FY-3E GNOS-II 业务算法更新日志	1
表	2-1 GNOS-II 海面风速产品规格列表	1
表	2-2 GNOS-II 海面风速产品数据文件列表	2
表	3-1 GNOS-II 海面风速产品输入文件列表	5
表	3-2 GNOS-II 海面风速产品输出文件列表	6
表	7-1 产品技术责任人列表	12

1 产品定义

风云三号 E 星 GNOS-II 海面风速产品(Sea surface wind speed, SWS)是指利用海面上反射的 GNSS 卫星(包括 GPS、北斗 BDS、伽利略 GAL)信号反演的海面 10 米高度处的海面风速,空间分辨率为 25 km。依据所采用的 GNSS 系统类型,GNOS-II 海面风速产品分为 GPS 海面风速、BDS 海面风速和 GAL 海面风速三类。

FY-3E GNOS-II 的 GNSS 反射通道数量总共为 8 个,采样频率为 1 Hz,即 每秒最多可同时分别跟踪 8 颗 GNSS 卫星的反射信号,反演得到海面 8 个镜面反射点处的海面风速。在 UTC 2022 年 7 月 6 日 3 点 18 分以前,通道 1-4 用于接收 GPS 信号,通道 5-8 用于接收 BDS 信号,无 GAL 风速。从 UTC 2022 年 7 月 6 日 3 点 18 分开始,通道 8 改为接收 GAL 信号,开始生成 GAL 风速。

1.1业务算法更新说明

 时间
 算法版本号
 主要更新内容

 2022-03-31
 v1.0
 业务试运行算法

 2023-02-14
 v2.0
 更新伽利略数据的相关处理算法,优化质量控制算法,增加变量 Sws_cyclone, Sws_cyclone, Quality_flag, Ddm_sp_snr_mean

表 1-1 FY-3E GNOS-II 业务算法更新日志

注: 2022 年 7 月 6 日至 2023 年 2 月 14 日的 GAL 风速数据将在使用 v2.0 算法对历史数据 重处理后发布。

2 产品规格和格式

2.1 产品规格

表 2-1 GNOS-II 海面风速产品规格列表

产品名称	投影方式	覆盖范围	空间分辨率	更新频次	
GNOS-II 海面风速产品	无	全球	25 km	半轨	

2.2 产品文件

表 2-2 GNOS-II 海面风速产品数据文件列表

序号	文件名称	格式	周期	产品描述	关键词
1	FY3E_GNOSR_ORBT_L2_SWS_MLT_N UL_YYYYMMDD_HHMM_COMBVn.HDF	HDF	半轨	海面风速产品	风速

2.3 产品科学数据集

表 2-3 GNOS-II 海面风速产品科学数据集

分组名称		5	科学数据集名	科学数据集英文描述	科学数据集中文描述
		SDS1	Sws_num	Sea surface wind speed product number	海面风速数据产品编 号
		SDS2	Sws_track_id	Sea surface wind speed product's track number	海面风速数据产品的 连续轨迹编号
		SDS3	Sws_utc_time	Sea surface wind speed product measurement time - UTC	海面风速产品对应的 UTC 时间
		SDS4	Sws_lat	Sea surface wind speed product's latitude on the earth surface	海面风速产品对应的 地面纬度
GPS	WindSpee dProduct	SDS5	Sws_lon	Sea surface wind speed product's longitude on the earth surface	海面风速产品对应的 地面经度
或 BDS 或 GAL		SDS6	Sws	Retrieved wind speed at 10 m height over sea surface	海面风速
		SDS7	Sws_cyclone	Retrieved cyclone wind speed at 10 m height over sea surface	气旋海面风速
		SDS8	Cross_track_resoluti	Sea surface wind speed product's Cross track resolution	海面风速产品的交轨 向分辨率
		SDS9	Along_track_resolut ion	Sea surface wind speed product's along track resolution	海面风速产品的沿轨 向分辨率
		SDS10	Sws_quality_flag	Sea surface wind speed product's quality flag	海面风速数据产品质量码
		SDS11	Sws_cyclone_qualit y_flag	Cyclone sea surface wind speed product's quality flag	气旋海面风速数据产 品质量码
		SDS12	Fresnel_coeff_squar	The average square of the left	左旋圆极化反射信号

			e_mean	hand circularly polarized Fresnel electromagnetic	海面菲涅尔反射系数 的平方的均值
				reflection coefficient for a smooth ocean surface at	
				Sws_lat and Sws_lon.	
		SDS13	Mean_square_slope	The average MSS of the cell centered on Sws_lat and	平均海面均方倾斜
				Sws_lon.	
		SDS14	Obs_use_flag	Flag to identify which observables are used to retrieval wind speed	观测量使用标识符
		SDS15	Rfl_channel_id	Reflection channel id	反射通道号
		SDS16	Rx_lat	Receiver's mean sub-satellite point latitude	低轨卫星星下点的纬 度
		SDS17	Rx_lon	Receiver's mean sub-satellite point longitude	低轨卫星星下点的经 度
		SDS18	Rx_alt	Receiver's mean altitude	低轨卫星的高度
		SDS19	Gnss_prn_code	GNSS satellite's PRN code	GNSS 卫星 PRN 码
			Gnss_sv_num	GNSS satellite's space vehicle number	GNSS 卫星 SV 码
		SDS21	Gnss_block_flag	GNSS satellite's block flag	GNSS 卫星批次标识符
	RxTx	SDS22	Incidence_angle	GNSS signal's mean incidence angle on the sea surface	GNSS 信号的平均入射 角
		SDS23	Sp_vel_mean	Specular point's mean velocity on the sea surface	镜面反射点在海面上 的运动速度
		SDS24	Azimuth_angle	Mean specular point's azimuth angle in LEO satellite's orbit frame	海面风速测量点在 LEO 卫星轨道坐标系 内的平均方位角
		SDS25	Rx_Antenna_gain	Mean Rx antenna gain at the location of wind speed measurement	海面风速测量点对应 的接收机天线平均增 益
		SDS26	Total_corr_gain	Mean Total Corrected Gain at the location of wind speed measurement	海面风速测量点对应 的全修正增益值
			Ddm_obs_num	Number of DDM utilized for wind speed retrieval	DDM 观测量平均数
	DawMass	SDS28	Ddm_obs_utilized_f lag	Flag of DDM utilized utilized for wind speed retrieval	DDM 观测量使用标识符
	RawMeas urements	SDS29	Ddm_sample_index	Sample index in L1 data product of DDM utilized for wind speed retrieval	DDM 观测量采集序号
		SDS30	Ddm_nbrcs_mean	Mean DDM normalized bistatic radar cross section	DDM 波形归一化散射 系数均值

			observables	
	SDS31	Ddm_les_mean	Mean DDM leading edge slope observables	DDM 波形 LES 均值
	SDS32 Ddm_dles_mean		Mean DDM second derivative leading edge slope observables	DDM 波形 DLES 均值
	SDS33	Ddm_normalized_sn r_mean	– Mean DDM normalized SNR	
	SDS34	Ddm_peak_snr_mea	Mean DDM peak SNR	DDM 波形峰值信噪比 均值
	SDS35	Ddm_sp_snr_mean	Mean DDM specular SNR	DDM 波形镜面反射点 信噪比均值

3 产品算法原理和处理流程

3.1 算法基本原理

在风生海浪的作用下,海面风场会使海面变得粗糙,GNSS卫星信号照射到粗糙海面上,发生漫反射。经粗糙海面漫反射后到达接收机的 GNSS卫星反射信号,由于传播路径不同,具有不同的时延和多普勒频率,经过与本地伪随机码相关后生成时延-多普勒相关功率波形(Delay-Doppler Map, DDM)。DDM 波形的峰值及波形形状与海面风速密切相关,海面风速越大 DDM 波形峰值越小,前后沿越平缓;反之,峰值越大,前后沿越陡峭。因此,可以利用 DDM 波形反演海面风场。

FY-3E GNOS-II 海面风速产品的反演算法采用了目前国际上相对较成熟的多参量海面风速的协同反演算法,首先从 DDM 中提取与风速有关的观测量,与参考风速匹配训练得到 GMF 地球物理模型函数,再将不同观测量反演的风速组合起来,形成多参量海面风速的协同反演。

将观测量与 ECMWF 模式风速匹配结果如图 3-1, 3-2。图中黑色线条即为用于反演的 GMF 经验函数。

图 3-1 GPS 观测量与 ECMWF 风速匹配后结果

图 3-2 BDS 观测量与 ECMWF 风速匹配后结果

3.2 处理流程

3.2.1 输入文件

表 3-1 GNOS-II 海面风速产品输入文件列表

序号	名称	文件格式	周期	数据来源	描述
1	镜面反射点沿轨向空间分辨率查找表	txt	静态	预置	/
2	镜面反射点交轨向空间分辨率查找表	txt	静态	预置	/
3	DDMA 海面风速 GMF 查找表	txt	静态	预置	/
4	LES 海面风速 GMF 查找表	txt	静态	预置	/
5	DDMA 海面风速偏差修正查找表	txt	静态	预置	/
6	LES 海面风速偏差修正查找表	txt	静态	预置	/

序号	名称	文件格式	周期	数据来源	描述
7	MV 权重系数文件	txt	静态	预置	/
8	ECMWF 预报场 10 米风速数据	txt	3 小时	外部推送	/

3.2.2 输出文件

表 3-2 GNOS-II 海面风速产品输出文件列表

序号	产品名称	产品格式	周期	产品去向	产品描述
1	GNOS-II 海面风速产品	HDF	半轨	输出	/

3.2.3 处理流程

GNOS-II 海面风速产品的处理流程如下:

- 1) 从L1数据中读取DDMA、LES观测量
- 2)利用空间分辨率查找表对数据做时间平滑,输出平滑后的 DDMA 和 LES 观测量
 - 3) 利用 GMF 查找表和偏差修正查找表计算单参量风速反演结果
- 4)利用 MV 权重系数查找表计算多参量风速反演结果,并做质量评估,计 算质量标识符
 - 5)输出 L2 海面风速产品

图 3-3 GNOS-II 海面风速产品处理流程图

4 产品示例

FY3E GNOS II Sea Surface Wind Speed Product (GPS & BDS)

FY3E GNOS II Sea Surface Wind Speed Product (GPS & BDS)

图 4-1 FY-3E GNOS-II 海面风速产品: (a) 1 天结果 (2021 年 7 月 21 日); (b) 5 天结果 (2021 年 7 月 21-25 日)

5 产品精度

5.1 产品检验评估方法和数据

产品精度评估使用 2021.7.10 至 2021.12.31 六个月的数据,风速评估范围 0-25 m/s,产品评估使用的数据为 ECMWF ERA5 再分析场 10 米风速与 HY-2B 散射计 10 米风速。精度评估时对数据的质量控制方法如下:

- 剔除 HDF 变量 Sws_quality_flag 中 bit0 不为 0 的数据
- 剔除 2021.11.23 至 2021.12.1 的 GPS PRN 22 卫星的数据(该 GPS 卫星 该时段工作不正常)

5.2 产品检验评估结果

将 GNOS-II L2 风速产品与 ECMWF ERA5 再分析场 10 米风速对比, 匹配方法为时间线性插值、空间线性插值。验证结果如图 5-1。其中 GPS 数据的偏差和均方根误差分别为 0.16 m/s 和 1.66 m/s; BDS 数据的偏差和均方根误差分别为 0.04m/s 和 1.44 m/s。综合风速偏差 0.10 m/s,均方根误差 1.55 m/s。

图 5-1 FY-3E GNOS-II 海面风速产品与 ECMWF 再分析场 10 米风速对比结果

将 GNOS-II L2 风速产品与 HY-2B 散射计 10 米风速对比, 匹配方法为时间 阈值 1 小时、空间阈值 25 km。验证结果如图 5-2。其中 GPS 数据的偏差和均方 根误差分别为 0.06 m/s 和 1.61 m/s; BDS 数据的偏差和均方根误差分别为-0.09m/s

和 1.36 m/s。综合风速偏差-0.01 m/s,均方根误差 1.49 m/s。

图 5-2 FY-3E GNOS-II 海面风速产品与 HY-2B 散射计 10 米风速对比结果

5.3 v2.0 算法对应产品精度检验

v2.0 算法中增加了 GAL 风速的反演, 其反演方法与 GPS/BDS 基本相同。使用 2022 年 7 月 7 日至 2022 年 8 月 31 日数据, 将 GNOS-II 海面风速与 ECMWF ERA5 再分析数据对比, 验证结果如图 5-3。其中 GPS 数据的偏差和均方根误差分别为-0.03 m/s 和 1.52 m/s; BDS 数据的偏差和均方根误差分别为 0.05m/s 和 1.42m/s; GAL 数据的偏差和均方根误差分别为-0.12m/s 和 1.45m/s;

图 5-3 FY-3E GNOS-II 海面风速产品与 ECMWF 再分析场 10 米风速对比结果

6 产品使用说明

6.1 产品使用说明

GNOS-II 海面风速产品,每半轨(约 50 分钟)输出一个数据产品文件,文件格式为 HDF5,每个产品中分别有 GPS 数据集、BDS 数据集和 GAL 数据集。在每个数据集的 WindSpeedProduct 分组下有两个风速产品,分别为 Sws 海面风速与 Sws_cyclone 气旋海面风速,其中 Sws 海面风速为默认的海面风速,在全球中低风速(0-25 m/s)范围内精度较高,适用于全球数值天气预报等应用; Sws_cyclone 气旋海面风速为针对气旋区域开发的风速产品,在气旋等高风速区域精度较高。本文档中所有内容均针对的是 Sws 海面风速产品,Sws_cyclone 气旋海面风速产品目前正在开发中,目前在 HDF 文件中为填充值。

HDF 文件中含有变量 "Sws_quality_flag" 海面风速数据产品质量码,其中bit0 表示整体的风速质量,0 表示质量好。用户一般选择bit0 为 0 (即整体质量码为偶数)的数据即可,也可根据需要自行选择。

质量码每个 bit 的详细介绍如下:

Bit0 = Overall wind quality, 0 for good quality (combination of bit 1, 2, 4, 6, 7, 8, 9, 10).

Bit1 = The retrieved wind speed is negative.

Bit2 = The retrieved wind speed is too high.

Bit3 = The total corrected gain is less than the threshold.

Bit4 = The GNSS transmitter EIRP is less well known.

Bit5 = Model forecast wind is not used.

Bit6 = The retrieved wind speed is filled value.

Bit7 = The number of DDMs in the smoothing is less than 3.

Bit8 = The number of observable used for retrieval is less than 2.

Bit9 = The difference between the NBRCS wind and LES wind is larger than the threshold.

Bit10 = DDM SNR is smaller than the threshold."

6.2 应用限制条件

无。

6.3 主要参考文献

Yang, G., Bai, W., Wang, J., Hu, X., Zhang, P., Sun, Y., ... & Liu, C. (2022). FY3E GNOS II GNSS Reflectometry: Mission Review and First Results. *Remote Sensing*, 14(4), 988.

Huang, F., Xia, J., Yin, C., Zhai, X., Xu, N., Yang, G., ... & Liu, Y. (2022). Assessment of FY-3E GNOS-II GNSS-R global wind product. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing*, 15, 7899-7912.

Huang, F., Xia, J., Yin, C., Zhai, X., Yang, G., Bai, W., ... & Zhang, P. (2023). Spaceborne GNSS Reflectometry With Galileo Signals on FY-3E/GNOS-II: Measurements, Calibration, and Wind Speed Retrieval. *IEEE Geoscience and Remote Sensing Letters*, 20, 1-5.

7 产品技术支持

7.1 产品技术责任人

序号	姓名	单位	联系电话	电子邮箱	角色
1	翟晓春	国家卫星气象中心	010-	zhaixc@cma@gov.cn	产品联系人
			68400907		
2	黄飞雄	中国科学院国家空	010-	huangfeixiong@nssc.ac.	技术负责人
		间科学中心	62557975	cn	
3	夏俊明	中国科学院国家空	010-	xiajunming@nssc.ac.cn	技术负责人
		间科学中心	62557975		
4	郑鑫				工程负责人

表 7-1 产品技术责任人列表

7.2 文档引用方式和建议引用文献

翟晓春,黄飞雄,夏俊明,2023. 风云三号(03 批)气象卫星地面应用系统工程 E 星 GNOS-II 海面风速产品使用说明文档. 国家卫星气象中心.