

Network Fundamentals for Cloud

BITS Pilani
Pilani Campus

Nishit Narang WILPD-CSIS

CC ZG503: Network Fundamentals for Cloud Lecture No. 1

Introductions

Faculty Introduction – Dr Nishit Narang

Head and Associate Professor, Computer Science and Information Systems, Off Campus BITS Pilani (*joined Dec 2020*)

Academic Background:

B.Tech and PhD from IIT Delhi in Computer Science and Engineering

Expertise:

Computer & Communication Networks and Information Security

Past Experience:

- Before BITS Pilani, worked for 23 years in the IT industry
- Projects in terrestrial, satellite, and mobile communication networks, Industrial and Consumer IoT solutions involving industrial automation, smart city solutions, and consumer wearables
- Over the years and across projects, focused extensively on Information Security and Cybersecurity.

Books Authored:

Co-author of four books in the communications domain, which are published by McGraw Hill and sold internationally

Course Introduction: Objectives

No	Description
CO1	Understanding design and architectural choices for a data center network.
CO2	Understand enabling technologies, protocols, tools and services used for implementation of cloud networks.
CO3	Understanding cloud network performance and security challenges and methods to address them.

Network Performance and Security

Virtual Cloud Networks

Data Center Networks
(Physical Network)

Enabling Technology
Overview

- Network Topologies
- TCP/IP Reference Model
- Addressing Concepts
- Routing and Switching Functions
- VPNs and VLANs
- Reliability in Data Transfer
- Congestion Control, Flow Control and Traffic Engineering

Network Performance and Security

Virtual Cloud Networks

Data Center Networks (*Physical Network*)

Enabling Technology Overview

- Software Defined Networking
- Network Function
 Virtualization

Network Performance and Security

Virtual Cloud Networks

Data Center Networks (*Physical Network*)

Enabling Technology
Overview

- DCN Traffic Patterns and Challenges
- DCN Architecture and Network Topologies
- Routing Protocols for DCNs
- Multi-DC Networks
- SDN in the Data Center

Network Performance and Security

Virtual Cloud Networks

Data Center Networks (Physical Network)

Enabling Technology
Overview

- Virtual Private Cloud
- SR-IOV, vSwitch, OVS
- Cloud DNS, Cloud NAT, Cloud VPNs
- API Gateways, ALBs, CDN
- Container Networking

Network Performance and Security

Virtual Cloud Networks

Data Center Networks
(Physical Network)

Enabling Technology
Overview

- Cloud Network Security
- Hypervisor Risks
- Network Segmentation
- Firewalls, Access Security Brokers, IPS
- Traffic Monitoring & Visualization
- Network Performance & Optimization

Text & Reference Books

Text Book(s)

- T1 Kurose James F and Keith W. Ross: Computer Networking: A Top-Down Approach, Pearson India, 6th Edition, 2013
- T2 Lei Zhang, Le Chen. Cloud Data Center Network Architectures and Technologies, CRC Press 2021
- Dinesh G. Dutt. Cloud Native Data Center Networking: Architecture, Protocols and Tools, O'Reilly 2020
- Paul Goransson, Chuck Black. Software Defined Networks: A Comprehensive Approach, MK (Elsevier) 2014
- Ken Gray, Thomas D. Nadeau. Network Function Virtualization, MK(Elsevier) 2016
- R3 Ronald L. Krutz, Russell Dean Vines. Cloud Security: A Comprehensive Guide to Secure Cloud Computing, John Wiley & Sons, 2010

Supporting Material

Other Reading Material O1 Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network by Arjun Singh and Others O2 A Scalable, Commodity Data Center Network Architecture by Mohammad AlFares, Alexander Loukissas and Amin Vahdat O3 B4: Experience with a Globally-Deployed Software Defined WAN by Sushant Jain and Others O4 Cloud Service Provider (AWS, Azure, GCP) Public Domain Technical Documentation

Proposed Evaluation Scheme

No	Name	Туре	Duration	Weight
EC-1	Quiz-l	Online	-	5%
EC-1	Quiz-II	Online	-	5%
EC-1	Assignment-I	Online	-	10%
EC-1	Assignment-II	Online	-	10%
EC-2	Mid-Semester Test	Closed Book	2 hours	30%
EC-3	Comprehensive Exam	Open Book	3 hours	40%

Fundamentals of Networking: Part 1

Slides Source: Computer Networking: A Top-Down Approach, 8th edition, Jim Kurose, Keith Ross, Pearson, 2020

All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

The Internet: a "nuts and bolts" view

Billions of connected computing *devices*:

- hosts = end systems
- running network apps at Internet's "edge"

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

 collection of devices, routers, links: managed by an organization

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
- prothersonrected where
 - control sending, receiving of messages
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - RFC: Request for Comments
 - IETF: Internet Engineering Task
 Force

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

What's a protocol?

A human protocol and a computer network protocol:

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Packet-switching: store-and-forward

- packet transmission delay: takes L/R seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

One-hop numerical example:

- *L* = 10 Kbits
- *R* = 100 Mbps
- one-hop transmission delay= 0.1 msec

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

wired, wireless communication links

A closer look at Internet structure

Network edge:

- hosts: clients and servers
- servers often in data centers

Access networks, physical media:

 wired, wireless communication links

Network core:

- interconnected routers
- network of networks

Access networks and physical media

Q: How to connect end systems to edge router?

- residential access nets
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450 Mbps

Access networks: data center networks

 high-bandwidth links (10s to 100s Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Introduction: 1-25