

COMP7/8118 M50

Data Mining

Hierarchical Clustering

Xiaofei Zhang

THE UNIVERSITY OF MEMPHIS.

Hierarchical Clustering Methods

- The partition of data is not done at a single step.
- There are two varieties of hierarchical clustering algorithms
 - Agglomerative successively fusions of the data into groups
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive separate the data successively into finer groups
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a point (or there are k clusters)

Strengths of Hierarchical Clustering

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendrogram at the proper level

- They may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

Dendrogram

• Hierarchic grouping can be represented by two-dimensional diagram known as a **dendrogram**.

Distance of Clusters

- Single Linkage
 - Complete Linkage
 - Group Average Linkage
 - Centroid Linkage
 - Median Linkage

Single Linkage

- Also, known as the nearest neighbor technique
- Distance between groups is defined as that of the closest pair of data, where only pairs consisting of one record from each group are considered

Distance of Clusters

- Single Linkage
- Complete Linkage
 - Group Average Linkage
 - Centroid Linkage
 - Median Linkage

Complete Linkage

 The distance between two clusters is given by the distance between their most distant members

Distance of Clusters

- Single Linkage
- Complete Linkage
- Group Average Linkage
 - Centroid Linkage
 - Median Linkage

Group Average Clustering

• The distance between two clusters is defined as the average of the distances between all pairs of records (one from each cluster).

•
$$d_{AB} = 1/6 (d_{13} + d_{14} + d_{15} + d_{23} + d_{24} + d_{25})$$

Distance of Clusters: Comparison

Distance of Clusters

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

Centroid Linkage

- The distance between two clusters is defined as the distance between the mean vectors of the two clusters.
- $d_{AB} = d_{ab}$
- where a is the mean vector of the cluster A and b is the mean vector of the cluster B.

Distance of Clusters

- Single Linkage
- Complete Linkage
- Group Average Linkage
- Centroid Linkage
- Median Linkage

Median Clustering

- Disadvantage of the Centroid Clustering: When a large cluster is merged with a small one, the centroid of the combined cluster would be closer to the large one, ie. the characteristic properties of the small one are lost
- After we have combined two groups, the mid-point of the original two cluster centers is used as the center of the newly combined group

Clustering Methods

- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach

Divisive Methods

- In a divisive algorithm, we start with the assumption that all the data is part of one cluster.
- We then use a distance criterion to divide the cluster in two, and then subdivide the clusters until a stopping criterion is achieved.
 - Polythetic > divide the data based on the values by all attributes

1 2 3 4 5 6 7
1 0
$$D(2, A) = 10$$

2 10 0 $D(3, A) = 7$
3 7 7 0 $D(4, A) = 30$
5 29 25 22 7 0 $D(5, A) = 29$
6 38 34 31 10 11 0 $D(5, A) = 29$
7 42 36 36 13 17 9 0 $D(6, A) = 38$
 $A = \{1\}$ $D(7, A) = 42$

1 2 3 4 5 6 7
1
$$\begin{pmatrix} 0 \\ 10 \\ 0 \\ 7 \\ 7 \\ 0 \\ 4 \\ 30 \\ 23 \\ 21 \\ 0 \\ 5 \\ 29 \\ 25 \\ 22 \\ 7 \\ 0 \\ 6 \\ 38 \\ 34 \\ 31 \\ 10 \\ 11 \\ 0 \\ 42 \\ 36 \\ 36 \\ 13 \\ 17 \\ 9 \\ 0 \end{pmatrix} D(2, A) = 10 D(2, B) = 25.0$$

$$D(3, A) = 7 D(3, B) = 23.4$$

$$D(4, A) = 30 D(4, B) = 14.8$$

$$D(5, A) = 29 D(5, B) = 16.4$$

$$D(5, A) = 38 D(6, B) = 19.0$$

$$A = \{1 \}$$

$$D(7, A) = 42 D(7, B) = 22.2$$

1 2 3 4 5 6 7
1 0
$$D(2, A) = 10$$
 $D(2, B) = 25.0$ $\Delta_2 = 15.0$
2 10 0 $D(3, A) = 7$ $D(3, B) = 23.4$ $D(3, B) = 23.4$ $D(3, B) = 23.4$ $D(4, B) = 14.8$ $D(4, A) = 30$ $D(4, B) = 14.8$ $D(5, A) = 29$ $D(5, B) = 16.4$ $D(5, A) = 29$ $D(5, B) = 16.4$ $D(5, A) = 29$ $D(5, B) = 19.0$ $D(6, B) = 19.0$ $D(7, A) = 42$ $D(7, B) = 22.2$ $D(7, B) = 22.2$

1 2 3 4 5 6 7
1 0 0
2 10 0 7 7 0
4 30 23 21 0
5 29 25 22 7 0
6 38 34 31 10 11 0
7 42 36 36 13 17 9 0
$$D(2, A) = 10$$
 $D(2, B) = 25.0$ $\Delta_2 = 15.0$ $\Delta_2 = 15.0$ $D(3, A) = 7$ $D(3, B) = 23.4$ $\Delta_3 = 16.4$ $\Delta_4 = -15.2$ $D(4, A) = 30$ $D(4, B) = 14.8$ $\Delta_4 = -15.2$ $D(5, A) = 29$ $D(5, B) = 16.4$ $\Delta_5 = -12.6$ $D(5, A) = 38$ $D(6, B) = 19.0$ $D(6, A) = 38$ $D(6, B) = 19.0$ $D(7, A) = 42$ $D(7, B) = 22.2$ $D(7, B) = 22.2$

1 2 3 4 5 6 7
1 0
$$D(2, A) = 8.5$$

2 10 0 $D(4, A) = 25.5$
3 7 7 0 $D(5, A) = 25.5$
5 29 25 22 7 0 $D(6, A) = 34.5$
6 38 34 31 10 11 0 $D(6, A) = 34.5$
A = {1, 3 }
B = {2, 4, 5, 6, 7}

1 2 3 4 5 6 7

1
$$\begin{pmatrix} 0 \\ 10 \\ 0 \\ 7 \\ 7 \\ 0 \\ 4 \\ 30 \\ 23 \\ 21 \\ 0 \\ 5 \\ 29 \\ 25 \\ 22 \\ 7 \\ 0 \\ 6 \\ 38 \\ 34 \\ 31 \\ 10 \\ 11 \\ 0 \\ 7 \\ 42 \\ 36 \\ 36 \\ 13 \\ 17 \\ 9 \\ 0 \end{pmatrix} D(2, A) = 8.5 D(2, B) = 29.5$$

$$D(4, A) = 25.5 D(4, B) = 13.2$$

$$D(5, A) = 25.5 D(5, B) = 15.0$$

$$D(6, A) = 34.5 D(6, B) = 16.0$$

$$D(6, A) = 34.5 D(6, B) = 16.0$$

$$D(7, A) = 39.0 D(7, B) = 18.75$$

$$A = \{1, 3\}$$

1 2 3 4 5 6 7
1 0
$$D(2, A) = 8.5$$
 $D(2, B) = 29.5$ $\Delta_2 = 21.0$
2 10 0 $D(4, A) = 25.5$ $D(4, B) = 13.2$ $\Delta_4 = -12.3$
3 7 7 0 $D(5, A) = 25.5$ $D(5, B) = 15.0$ $\Delta_5 = -10.5$
5 29 25 22 7 0 $D(6, A) = 34.5$ $D(6, B) = 16.0$ $\Delta_6 = -18.5$
6 38 34 31 10 11 0 $D(7, A) = 39.0$ $D(7, B) = 18.75$ $\Delta_7 = -20.25$

 $A = \{1, 3, 2\}$

 $B = \{ \times 4, 5, 6, 7 \}$

1 2 3 4 5 6 7
1 0
$$D(2, A) = 8.5$$
 $D(2, B) = 29.5$ $\Delta_2 = 21.0$
2 10 0 $D(4, A) = 25.5$ $D(4, B) = 13.2$ $\Delta_4 = -12.3$
3 7 7 0 $D(5, A) = 25.5$ $D(5, B) = 15.0$ $D(5, B) = 15.0$ $D(5, B) = 16.0$ $D(5, B) =$

4, 5, 6, 7}

1 2 3 4 5 6 7

1
$$\begin{pmatrix} 0 \\ 10 & 0 \\ 7 & 7 & 0 \\ 4 & 30 & 23 & 21 & 0 \\ 5 & 29 & 25 & 22 & 7 & 0 \\ 6 & 38 & 34 & 31 & 10 & 11 & 0 \\ 42 & 36 & 36 & 13 & 17 & 9 & 0 \end{pmatrix} D(4, A) = 24.7 D(4, B) = 10.0

D(5, A) = 25.3 D(5, B) = 11.7

D(6, A) = 34.3 D(6, B) = 10.0

D(7, A) = 38.0 D(7, B) = 13.0

$$D(7, A) = 38.0 D(7, B) = 13.0$$

$$D(7, A) = 38.0 D(7, B) = 13.0$$$$

1 2 3 4 5 6 7

1
$$\begin{pmatrix} 0 \\ 10 & 0 \\ 7 & 7 & 0 \\ 4 & 30 & 23 & 21 & 0 \\ 5 & 29 & 25 & 22 & 7 & 0 \\ 6 & 38 & 34 & 31 & 10 & 11 & 0 \\ 7 & 42 & 36 & 36 & 13 & 17 & 9 & 0 \\ \hline B = \{4, 5, 6, 7\}$$

$$D(4, A) = 24.7 \quad D(4, B) = 10.0 \quad \Delta_4 = -14.7$$

$$D(5, A) = 25.3 \quad D(5, B) = 11.7 \quad \Delta_5 = -13.6$$

$$D(6, A) = 34.3 \quad D(6, B) = 10.0 \quad \Delta_6 = -24.3$$

$$D(7, A) = 38.0 \quad D(7, B) = 13.0 \quad \Delta_7 = -25.0$$
All differences are negative. The process would continue on each subgroup separately.

Hierarchical Clustering: Time and Space requirements

- O(N²) space since it uses the proximity matrix.
 - N is the number of points.
- O(N³) time in many cases
 - There are N steps and at each step the size, N², proximity matrix must be updated and searched
 - Complexity can be reduced to O(N² log(N)) time for some approaches

Hierarchical Clustering: Problems and Limitations

Computational complexity in time and space

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
 - Sensitivity to noise and outliers
 - Difficulty handling different sized clusters and convex shapes
 - Breaking large clusters