Improved Speed Estimation of BLDC Motors using Gaussian Processes

Bachelor Student: Mariana Petrova

Supervisors: Ajit Basarur, Jana Mayer

Referee: Uwe D. Hanebeck

Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics and Robotics,
Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

http://isas.iar.kit.edu

Introduction

Find the precise angular position and rotational speed of the rotor in order to achieve more accurate motor control.

Contents

1. Previous Work

- Estimation Model (for angle and speed)
- Gaussian Processes Regression (for magnetic field)
- 2. Motivation
- 3. Improved Kernels
- 4. More Scalable Regression Approaches
 - Linear Regression with Radial Basis Functions
 - Sparse Gaussian Processes using Pseudo-inputs (SPGP)
- 5. An Alternative speed estimation
- 6. Models Summary
- 7. Evaluation
- 8. Conclusion
- 9. Future work

Estimation Model

Gaussian Processes

Goal: Estimate a real-valued function f from a given data with inputs $X = \{\underline{x}_1, \underline{x}_2, ..., \underline{x}_N\}$ and observed outcomes \underline{y}

$$\underline{y} = f(\mathbf{X}) + \epsilon$$
, with $\epsilon \sim N(0, \sigma_n^2)$ and $f: \mathcal{X} \to \mathcal{Y}$

Gaussian Processes

A Gaussian process defines a distribution over functions - p(f)

Define \underline{x}_* for which we would like to estimate $f(x_*)$

So we are trying to get the predictive posterior distribution

$$p(y_*|\underline{x}_*, X, \underline{y}) = N(\mu_*, \sigma_*^2)$$

And we assume that y and y_* together are jointly Gaussian.

$$\boldsymbol{\mu}_* = \underline{k}(\mathbf{X}, \underline{x}_*)^T * (k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I})^{-1} * \underline{y}$$

$$\boldsymbol{\sigma}_*^2 = k(\underline{x}_*, \underline{x}_*) - \underline{k}(\mathbf{X}, \underline{x}_*)^T * (k(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I})^{-1} * \underline{k}(\mathbf{X}, \underline{x}_*) + \sigma_n^2 \mathbf{I}$$

Gaussian Process - Kernels

Kernel: defines the similarity of two values of a function calculated at two different locations in the input space.

Controlled by hyper-parameters, collected in $\underline{\boldsymbol{v}}$

The previously used covariance function $k(\underline{x},\underline{x}_*)$ is :

$$k(\underline{x},\underline{x}_*) = \sigma^2 * \exp\left\{-\frac{1}{2} \left[\frac{(\theta - \theta_*)^2 + (\omega - \omega_*)^2}{2l^2} \right] \right\}$$

where
$$\underline{x} = \begin{pmatrix} \theta \\ \omega \end{pmatrix}$$
, $\underline{x}_* = \begin{pmatrix} \theta_* \\ \omega_* \end{pmatrix}$, $\underline{v} = \{ \sigma^2, l \}$

Previous Regression Model

Different input scales

Data re-scaling

$$\omega_{new} = \frac{\omega - \min(\omega)}{\max(\omega) - \min(\omega)} \cdot 2\pi$$

Not consider the periodic structure

Different kernel function

Poor scaling with training data in $O(N^3)$

Parametric regression approaches

Improved Kernels

Previously: one length scale for both θ and ω .

Now: Achieve better flexibility by multiplying kernels defined on each individual input.

SE-ARD:

$$k(\underline{x},\underline{x}_*) = \sigma^2 * \exp\left\{-\frac{1}{2} \left[\frac{(\theta - \theta_*)^2}{2l_\theta^2} + \frac{(\omega - \omega_*)^2}{2l_\omega^2} \right] \right\}$$

Improved Kernels

Previously: one length scale for both θ and ω .

Now: Achieve better flexibility by multiplying kernels defined on each individual input.

SE-ARD:

$$k(\underline{x},\underline{x}_*) = \sigma^2 * \exp\left\{-\frac{1}{2} \left[\frac{(\theta - \theta_*)^2}{2l_\theta^2} + \frac{(\omega - \omega_*)^2}{2l_\omega^2} \right] \right\}$$

Improved kernels

SE-ARD
$$k(\underline{x}, \underline{x}_*) = \sigma^2 * \exp\left\{-\frac{1}{2} \left[\frac{(\theta - \theta_*)^2}{2l_\theta^2} + \frac{(\omega - \omega_*)^2}{2l_\omega^2}\right]\right\}$$

Improved Kernels

What about the periodicity of the magnetic field with θ ?

PER-ARD:

$$k(\underline{x},\underline{x}_*) = \sigma^2 \exp\left\{-\frac{2\sin\left(\frac{|\theta-\theta_*|}{2}\right)}{l_\theta^2}\right\} \exp\left\{-\frac{(\omega-\omega_*)^2}{2l_\omega^2}\right\}$$

Improved Kernels

What about the periodicity of the magnetic field with θ ?

PER-ARD:

$$k(\underline{x},\underline{x}_*) = \sigma^2 \exp\left\{-\frac{2\sin\left(\frac{|\theta-\theta_*|}{2}\right)}{l_\theta^2}\right\} \exp\left\{-\frac{(\omega-\omega_*)^2}{2l_\omega^2}\right\}$$

Improved kernels

PER-ARD
$$k(\underline{x}, \underline{x}_*) = \sigma^2 \exp\left\{-\frac{2 \operatorname{si}\left(\frac{|\theta - \theta_*|}{2}\right)}{l_{\theta}^2}\right\} + \sigma^2 \exp\left\{-\frac{(\omega - \omega_*)^2}{2l_{\omega}^2}\right\}$$

More Scalable Regression Approaches

Non-parametric methods (like Gaussian Processes) scale with the number of training points $(O(N^3))$

⇒ are not very data efficient.

This is a restriction for our model, since great amount of data can be generated by the hardware setup.

⇒ Solution: parametric methods.

Linear Regression with Basis Functions

Consider M basis points $\mathbf{X}_b = (\underline{x}_{b1}, \underline{x}_{b2}, ..., \underline{x}_{bM})$

We define a linear model with a weight vector $\underline{w} \in \mathbb{R}^M$:

$$f_w(\underline{x}) = \underline{\varphi}(\underline{x})^T \underline{w} \Rightarrow f_w(\underline{x}) = \underline{k}(\mathbf{X}_b, \underline{x})^T \underline{w}$$

Use the set of training points $\mathbf{X} = (\underline{x}_1, \underline{x}_2, ..., \underline{x}_M)$ with the corresponding observed outputs \underline{y}

$$\mathbf{\Phi} = \underbrace{\begin{bmatrix} \underline{k}(\mathbf{X}_b, \underline{x}_1)^T \\ \vdots \\ \underline{k}(\mathbf{X}_b, \underline{x}_N)^T \end{bmatrix}}_{NxM \ matrix}$$

$$\underline{y} = f_w(\mathbf{X}) + \epsilon$$
 with $f_w(\mathbf{X}) = \mathbf{\Phi} \underline{w}$

How do we calculate \underline{w} ?

$$\underline{w}_{MAP} = \operatorname{argmax} p\left(\underline{w} \mid \mathbf{X}, \underline{y}\right)$$

$$\propto p\left(\underline{y} \mid \mathbf{X}, \underline{w}\right) \cdot p(\underline{w})$$

$$\propto \operatorname{argmax} \log p\left(\underline{y} \mid \mathbf{X}, \underline{w}\right) \cdot \log p(\underline{w})$$

$$= \operatorname{argmin} \frac{1}{2\sigma^{2}} ||\underline{y} - \mathbf{\Phi}\underline{w}||_{2}^{2} + \frac{1}{2\sigma_{w}^{2}} ||\underline{w}||_{2}^{2}$$

How do we calculate \underline{w} ?

$$\underline{w}_{MAP} = \operatorname{argmax} p\left(\underline{w} \mid \mathbf{X}, \underline{y}\right)$$

$$\propto p\left(\underline{y} \mid \mathbf{X}, \underline{w}\right) \cdot p(\underline{w})$$

$$\propto \operatorname{argmax} \log p\left(\underline{y} \mid \mathbf{X}, \underline{w}\right) \cdot \log p(\underline{w})$$

$$= \operatorname{argmin} \frac{1}{2\sigma^{2}} ||\underline{y} - \mathbf{\Phi}\underline{w}||_{2}^{2} + \frac{1}{2\sigma_{w}^{2}} ||\underline{w}||_{2}^{2}$$

$$\underline{w}_{MAP} = (\mathbf{\Phi}^{\mathrm{T}} \, \mathbf{\Phi} + \lambda \cdot \mathbf{I})^{-1} \mathbf{\Phi}^{\mathrm{T}} \underline{\mathbf{y}}$$

Sparse Gaussian Processes using Pseudo-inputs

The model in Sparse Gaussian Processes using Pseudo-inputs [1] (SPGP) takes $M \ll N$ pseudo-points, where N is the number of real data points.

The pseudo-points locations are optimized together with the hyper-parameters in the kernel.

Gaussian Processes	SPGP
$O(N^3)$	$O(MN^2)$

[1] Snelson, E. and Ghahramani, Z. (2006). Sparse Gaussian processes using pseudo-inputs

An Alternative Speed Estimation

First estimation approach

Extended estimated por Kalman filter

estimated position θ and speed ω

Second estimation approach

All models

Evaluation

Tested speed / RPM	RMSE on	GP SE (original data, EKF)	GP SE-ARD (original data, EKF)	Linear regr. SE-ARD (original data, EKF)	SPGP SE-ARD (original data, EKF)
all	heta / deg	3.1406	3.3207	3.1219	2.773
speeds	ω/RPM	51.2665	37.1094	36.2002	36.2694

		GP PER-ARD (original data, EKF)	GP SE-ARD (rescaled data, EKF + median filter)	Linear regr. PER-ARD (original data, EKF)	SPGP SE-ARD (rescaled data, EKF + median filter)
all	all θ / deg	7.6937	3.0862	3.0831	2.7836
speeds	ω/RPM	39.5337	50.8665	52.5253	42.6009

Conclusion

Address the main flaws of previous works.

 An emphasis was put on better utilization of the training data.

Result: Identified several models showing a better state estimation performance than previous works.

Future Work

- 1. Substituting the radial basis functions with trigonometric ones.
- 2. Substitute the Kalman Filter in favour of a machine learning approach that considers previous state or context.
 - i.e. Long Short-Term Memory (LSTM)
- 3. Active learning framework (uncertainty sampling).

Thank you for your attention

Sensor-Actuator-Systems

Appendix

Linear Regression in Detail

$$\frac{\hat{w}}{\hat{w}} = \arg \max_{\underline{w}} \quad p(\underline{w} \mid \mathcal{D})$$

$$= \arg \max_{\underline{w}} \quad \frac{p(\mathcal{D} \mid \underline{w}) \cdot p(\underline{w})}{p(\mathcal{D})}$$

$$= \arg \max_{\underline{w}} \quad p(\mathcal{D} \mid \underline{w}) \cdot p(\underline{w})$$

$$= \arg \max_{\underline{w}} \quad \log p(\underline{y} \mid \mathbf{X}, \underline{w}) + \log p(\underline{w})$$

$$= \arg \min_{\underline{w}} \quad \frac{1}{2} (\underline{y} - \mathbf{\Phi}\underline{w})^T \Sigma_y^{-1} (\underline{y} - \mathbf{\Phi}\underline{w}) + \frac{1}{2} w^T \Sigma_w^{-1} w.$$

$$\hat{w} = \arg \min_{\underline{w}} \quad \frac{1}{2\sigma_y^2} \|\underline{y} - \mathbf{\Phi}\underline{w}\|_2^2 + \frac{1}{2\sigma_w^2} \|\underline{w}\|_2^2.$$

$$\underline{y} \sim \mathcal{N} \left(f_w(\mathbf{X}), \sigma_y^2 \cdot \mathbf{I} \right) \qquad \sigma_y^2 \cdot \mathbf{I} = \Sigma_y$$

$$w \sim \mathcal{N}(0, \sigma_w^2 \cdot \mathbf{I}) \qquad \sigma_w^2 \cdot \mathbf{I} = \Sigma_w.$$

Linear Regression in Detail

 $\frac{1}{\sigma_w^2}$ and $\frac{1}{\sigma_y^2}$ are only weights and are summarized in λ

The solution for the MAP estimate, can be derived analytically in closed form by setting the gradient with respect to \underline{w} to $\underline{0}$.

$$\underline{0} = \nabla_{\underline{w}} \left(\frac{1}{2} \| \underline{y} - \mathbf{\Phi} \underline{w} \|_{2}^{2} + \frac{\lambda}{2} \| \underline{w} \|_{2}^{2} \right)
= \mathbf{\Phi}^{T} \left(\underline{y} - \mathbf{\Phi} \underline{w} \right) + \lambda \cdot \underline{w}
= \mathbf{\Phi}^{T} \underline{y} - \mathbf{\Phi}^{T} \mathbf{\Phi} \underline{w} + \lambda \cdot \underline{w}
= \mathbf{\Phi}^{T} \underline{y} - (\mathbf{\Phi}^{T} \mathbf{\Phi} - \lambda \cdot \mathbf{I}) \underline{w}$$

$$\underline{\hat{w}} = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \cdot \mathbf{I})^{-1} \mathbf{\Phi}^T \underline{y}.$$

SPGP

Evaluation of the Regression Models

GP, SE-ARD

	$\omega_{test}/\mathrm{RPM}$	$\mathrm{RMSE}(B^x)$	$\mathrm{RMSE}(B^y)$	
	all speeds	24.0851	29.4115	
	100	31.3455	29.5093	
	-100	31.9589	34.0501	
	200	31.2527	12.6483	
antate at	-200	37.043	36.1389	
original data	500	16.1633	20.4691	
data	-500	19.1951	21.2171	
	1000	30.3442	26.471	
	-1000	18.9244	18.5268	
	1500	25.6991	32.4093	
	-1500	12.8694	13.2978	
	all speeds	22.738	23.3306	
	100	30.7039	31.7805	
	-100	27.3712	31.1648	
	200	31.0714	13.5354	
rescaled	-200	33.5892	33.3805	
	500	16.9664	20.8776	
data	-500	28.4761	20.529	
	1000	22.9061	21.9617	
	-1000	19.0699	19.0411	
	1500	15.5473	19.9976	
	-1500	13.1341	12.9673	

Evaluation of the Regression Models

Linear regression, SE-ARD

	Tested speed $\omega_{test}/\mathrm{RPM}$	$\mathrm{RMSE}(B^x)$	$RMSE(B^y)$
	all speeds	20.3572	20.3436
	100	26.6053	27.7138
	-100	26.6358	27.5146
	200	27.3728	11.4616
	-200	-200 32.7014	
original data	500	14.573	16.4511
data	-500	18.789	19.0015
	1000	20.4266	19.2807
	-1000	17.2019	19.9658
	1500	13.2834	15.0703
	-1500	11.8905	12.3322
	all speeds	20.4093	21.537
	100	24.9558	23.6075
	-100	24.4855	23.8256
	200	26.1694	10.7595
rescaled	-200	31.4702	30.2521
100	500	13.2536	16.3365
data	-500	16.2811	17.3904
	1000	21.1124	22.4258
	-1000	16.6563	21.2493
	1500	14.8652	16.6138
	-1500	14.7033	16.3391

Evaluation

Tested speed / RPM	RMSE on	GP SE	GP SE-ARD	Linear regression SE-ARD	SPGP SE-ARD
all	heta / deg	3.1406	3.3207	3.1219	2.773
speeds	ω / RPM	51.2665	37.1094	36.2002	36.2694
100	heta / deg	3.4722	3.5463	3.4869	3.3208
	ω / RPM	26.084 ≈ 26%	21.28 ≈ 21%	20.389 ≈ 20%	19.127 ≈ 19%
200	heta / deg	3.012	3.1956	3.1138	2.9006
	ω / RPM	28.989 ≈ 14%	11.735 ≈ 6%	21.365 ≈ 11%	19.759 ≈ 10%
500	heta / deg	2.5728	2.477	2.5006	2.1953
	ω / RPM	39.667 ≈ 8%	19.841 ≈ 4%	22.598 ≈ 5%	21.052 ≈ 4%
1000	heta / deg	3.0904	2.7623	2.8582	2.306
	ω / RPM	62.543 ≈ 6%	33.978 ≈ 3%	36.839 ≈ 4%	35.273 ≈ 4%

Data Re-scaling

Gaussian processes regression is prone to numerical problems as we have to inverse ill-conditioned covariance matrix.

The two inputs (angle, speed) are on vastly different scales.

⇒ bring the two input spaces in the same scale

$$\omega_{new} = \frac{\omega - \min(\omega)}{\max(\omega) - \min(\omega)} \cdot 2\pi$$

Additionally, zero mean output:

$$B^x = B^x - \text{mean}(B^x)$$

$$B^y = B^y - \text{mean}(B^y)$$

Von Mises Distribution

$$p(\theta|\theta_0, m) = \frac{1}{2\pi I_0(m)} \exp\{m\cos(\theta - \theta_0)\}$$

for large m, the distribution becomes approximately Gaussian.

Christopher M. Bishop - Pattern Recognition and Machine Learning

