Onde elettromagnetiche

github.com/asdrubalini

May 11, 2021

1 Onda elettromagnetica

Come suggerisce il nome, un'onda elettro-magnetica è una combinazione di un'onda elettrica ed un'onda magnetica che si propaga all'interno dello spazio e che è in grado di trasportare energia da un punto di partenza ad un punto di arrivo.

2 Definizione del campo elettrico

Il campo elettrico si rappresenta con la lettera E e viene definito come:

$$\bar{E}^{+}(x,t) = E_M^{+} \cdot e^{j\omega(t - \frac{x}{u})} \tag{1}$$

Con k si indica la costante di fase che è definita con seguente rapporto

$$k = \frac{\omega}{u} \tag{2}$$

quindi

$$\bar{E}^{+}(x,t) = E_M^{+} \cdot e^{j(\omega t - kx)} \tag{3}$$

3 Definizione del campo magnetico

Il campo magnetico si rappresenta con la lettera H e viene definito come:

$$\bar{H}^{+}(x,t) = \frac{\bar{E}^{+}(x,t)}{Z}$$
 (4)

dove Zè l'impedenza caratteristica misurata in ohm $[\Omega]$

4 Velocità di onde elettromagnetiche

La velocità di un'onda elettromagnetica è costante e si può calcolare con

$$u = \frac{1}{\sqrt{\varepsilon \mu}} \ [m/s] \tag{5}$$

dove μ è la permeabilità magnetica e ε è la permittività elettrica. Nel vuoto, la formula diventa

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 299792458 \ [m/s] \tag{6}$$

La permeabilità magnetica si può esprimere come il prodotto

$$\mu = \mu_0 \mu_r \tag{7}$$

dove μ_0 è la permeabilità magnetica del vuoto e μ_r è la permeabilità magnetica relativa del materiale.

Allo stesso modo, la permittività elettrica si può esprimere come il prodotto

$$\varepsilon = \varepsilon_0 \varepsilon_r \tag{8}$$

dove ε_0 è la permittività elettrica del vuoto e ε_r è la permittività elettrica relativa del materiale.

5 Impedenza caratteristica

L'impedenza caratteristica del vuoto è costante e si può calcolare con

$$Z_0 = \sqrt{\frac{\mu_0}{\varepsilon_0}} = c_0 \mu_0 \approx 377 \ [\Omega] \tag{9}$$

In generale, l'impedenza caratteristica di un mezzo diverso dal vuoto si calcola con

$$Z = \sqrt{\frac{\mu}{\varepsilon}} = c\mu = Z_0 \frac{u}{c} \ [\Omega]$$
 (10)

$$Z = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}} \ [\Omega] \tag{11}$$

6 Lunghezza d'onda, frequenza e altre caratteristiche di un'onda

Con la lettera greca lambda si rappresenta la lunghezza d'onda che si misura in metri.

$$\lambda = uT = \frac{u}{f} \ [m] \tag{12}$$

$$\lambda = \frac{\omega}{kf} \tag{13}$$

Da cui ricaviamo che la costante di fase (k) si può calcolare, sapendo la lunghezza d'onda, con:

$$k = \frac{2\pi}{\lambda} \tag{14}$$

7 Riflessione di un'onda

7.1 Coefficiente di riflessione

Quando un'onda elettro-magnetica passa da un dielettrico ad un altro, una parte dell'onda procede per la sua strada trapassando il dielettrico, mentre un'altra parte viene riflessa indietro con un angolo variabile.

Il coefficiente di riflessione, misurato con la lettera K, indica la percentuale dell'onda che viene riflessa, in relazione a quella che invece trapassa il dielettrico.

Se con E_1^+ indichiamo l'onda originale prima di trapassare il dielettrico e con E_1^- indichiamo l'onda riflessa, è possibile calcolare il coefficiente di riflessione con:

$$K = \frac{E_1^-(x,t)}{E_1^+(x,t)} \tag{15}$$

Nel caso in cui K=1, possiamo dire che l'onda viene riflessa completamente. Inversamente, se K=0, l'onda non viene riflessa neanche in minima parte.

7.2 Indice di rifrazione

Con rifrazione si intende la parte di onda elettro-magnetica che non viene riflessa ma riesce ad incidere il materiale passando dall'altra parte. L'angolo dell'onda rifratta rispetto alla normale varia in base alle caratteristiche dei due materiali. Ogni materiale ha un indice di rifrazione caratteristico indicato con la lettera n e definito come:

$$n = \frac{c}{u} \tag{16}$$

dove c è la velocità della luce e u è la velocità di propagazione nel materiale. L'indice di rifrazione è un valore n=1 per il vuoto ed n<1 per tutti gli altri materiali. L'indice di rifrazione, inoltre, non ha unità di misura.

7.3 Angolo di riflessione

La legge di Snell definisce il seguente rapporto tra angolo di incidenza, rifrazione e indici di rifrazione dei mezzi:

$$\frac{\sin(\phi_i)}{\sin(\phi_R)} = \frac{n_2}{n_1} \tag{17}$$

Se indichiamo con ϕ_i l'angolo con cui l'onda indice la superficie di separazione, con ϕ_r l'angolo con cui l'onda viene riflessa e con ϕ_R l'angolo con cui l'onda viene rifratta, le seguenti uguaglianze sono verificate:

$$\phi_i = \phi_r \tag{18}$$

$$\phi_R = \arcsin(\frac{n_1 \sin(\phi_i)}{n_2}) \tag{19}$$

7.4 Angolo limite

Aumentando l'angolo di incidenza, aumenta conseguentemente anche l'angolo dell'onda rifratta. L'angolo di incidenza che consente all'onda rifratta di raggiungere i 90 gradi si definisce angolo limite. Applicando la legge di Snell, è possibile calcolare l'angolo limite con:

$$\phi_L = \arcsin(\frac{n_2}{n_1}) \tag{20}$$

una volta raggiunto l'angolo limite, avremo un caso di riflessione totale, ovvero l'onda non viene rifratta ma soltanto riflessa. Si tratta dello stesso principio utilizzato dalla fibra ottica per trasmettere la luce a grandi distanze.

8 Densità di potenza

Il campo elettromagnetico, essendo composto da una part di campo elettrico (E) ed una parte di campo magnetico (H), ha associata una potenza S che rappresenta l'energia che nell'unità di tempo attraversa una sueprficie.

$$S = \frac{1}{2}E_M H_M \tag{21}$$

Dove $H_M = \frac{E_M}{\zeta}$, quindi:

$$S = \frac{1}{2} \frac{E_M^2}{\zeta} \ [\frac{W}{m^2}] \tag{22}$$