STAT7017 Big Data Statistics

Semester 2 2018

Lecture 6: 27 August

Lecturer: Dr Dale Roberts Scribes: Rui Qiu

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

Central Limit Theorem

Recall that Central limit theorems (CLTs) describe how the sum of random variables fluctuates around some quantity (e.g. the mean).

The <u>classic</u> CLT case is to consider a sequence X_1, X_2, \ldots of I.I.D. random variables with $\mathbb{E}[X_i] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, then the (Lindeberg-Levy) CLT says if $S_n := \sum_{k=1}^n X_k$ then

$$\sqrt{n}(S_n - \mu) \stackrel{d}{\to} N(0, \sigma^2).$$

This lecture we will look at some equivalent statements in our random matrix setting. In particular of linear spectral statistics of the form

$$T_n = \frac{1}{p} \sum_{k=1}^p \phi(\lambda_k) = \int \phi(x) dF^{\mathbf{A}_n}(x) := F^{\mathbf{A}_n}(\phi).$$

of some sample matrix \mathbf{A}_n , e.g.

$$\mathbf{A}_n = \begin{cases} \mathbf{S}_n, \text{ sample covariance matrix.} \\ \mathbf{F}_n, \text{ Fisher matrix.} \end{cases}$$

Some examples that we will see later in the course are:

Example 1: The generalized variance is

$$T_n = \frac{1}{p}\log|S_n| = \frac{1}{p}\sum_{k=1}^p\log(\lambda_k).$$

$$\phi(x) = \log(x)$$

Example 2: Later in the course, we shall look at testing equality of sample covariance matrices. To test the hypothesis $H_0: \sum = \mathbf{I}_p$, we shall look at the log-likelihood ratio statistic

$$LRT_1 = tr\mathbf{S}_n - \log|\mathbf{S}_n| - p = \sum_{k=1}^p (\lambda_k - \log(\lambda_k) - 1).$$

6-2 Lecture 6: 27 August

i.e. $\phi(x) = x - \log(x) - 1$.

Example 3: We shall also look at the two-sample test of the hypothesis $H_0: \sum_1 = \sum_2$ that two populations have a common covariance matrix

$$LRT_2 = -\log|\mathbf{I}_p + \alpha_n \mathbf{F}_n| = -\sum_{k=1}^p (1 + \alpha_n \log(\lambda_k))$$

where α_n is same constant.

$$\phi(x) = -\log(1 - \alpha_n x).$$

CLT for Linear Spectral Statistics of S_n

We shall consider simple case

$$\mathbf{S}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i \mathbf{x}_i^*$$

where these are "independent vectors without cross-correlation".

In other words, the data matrix $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n) = (x_{ij})$ of size $p \times n$ has IID entries with $\mathbb{E}[x_{ij}] = 0$, $\mathbb{E}|x_{ij}|^2 = 1$.

$$\mathbf{S}_n = \frac{1}{n} \mathbf{X} \mathbf{X}^*.$$

The LSD of \mathbf{S}_n is the Marchenko-Pastur law F_y where $y = \lim \frac{p}{n}$. This means, $F^{\mathbf{S}_n}(\phi) \to F_y(\phi)$ for any continuous function ϕ .

Making an analogy to the class CLT, we would like to understand how $F^{\mathbf{S}_n}(\phi)$ fluctuates around $F_y(\phi)$ as $n \to \infty (p \to \infty)$.

From RMT, we know that $F^{\mathbf{S}_n}(\phi)$ fluctuates around its mean in such a way that $P[F^{\mathbf{S}_n}(\phi) - \mathbb{E}(F^{\mathbf{S}_n}(\phi))] \sim \text{Normal}$.

We can decompose

$$P[F^{\mathbf{S}_n}(\phi) - F_y(\phi)] = P[F^{\mathbf{S}_n}(\phi) - \mathbb{E}F^{\mathbf{S}_n}(\phi)] + P[\mathbb{E}[F^{\mathbf{S}_n}(\phi)] - F_y(\phi)] = \text{Normal} + \text{Bias}$$

The "bias" term is often a function of $y_n - y = \frac{p}{n} - y$.

 y_n is called the dimension-to-sample ratio and the difference to y can be of any order. For example, if

$$y_n - y \approx p^{-\alpha}, \alpha > 0$$

then the bias term behaves like $p^{-1-\alpha}$ and the value depends on α . If α small then $p^{1-\alpha}$ can blow-up and if α large then $p^{1-\alpha}$ converges to zero or constant, as $p \to \infty$.

We need more restrictions on $y_n - y$.

We also need to accurately estimate $\mathbb{E}F^{\mathbf{S}_n}(\phi)$. One way is to estimate $\mathbb{E}F^{\mathbf{S}_n}(\phi) \approx F_{y_n}(\phi)$. "finite horizon proxy".

We saw last week that the ST \underline{S} of $\underline{F}_y := (1-y)\delta_0 + yF_y$ satisfies the equation that we found for the Generalized MP $(H = \delta_1)$:

$$Z = -\frac{1}{S} + \frac{y}{1+S}, Z \in \mathbb{C}.$$

Let $\beta = \mathbb{E}|x_{ij}|^4 - 1 - k, h = \sqrt{y}$. (????)

Set k=2 if entries of **X** are real and k=1 if complex values.

If entries are Gaussian, $\beta = 0$.

The following theorem quantifies the fluctuations of

$$P(F^{\mathbf{S}_n}(\phi) - F_{y_n}(\phi)).$$

Theorem 6.1 (Bai & Silverstein; 2004) Assume $p \times n$ data matrix $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n)$ has IID entires $\mathbb{E}x_{ij} = 0, \mathbb{E}|x_{ij}|^2 = 1, \mathbb{E}|x_{ij}|^4 = \beta + 1 + k < \infty$.

Also, $p \to \infty$, $n \to \infty$, $p/n \to y > 0$.

Let f_1, f_2, \ldots, f_k be analytic functions on an open region containing support of F_y .

The random vector $(X_n(f_1), X_n(f_2), \ldots, X_n(f_k))$ where

$$X_n(f) := P(F^{\mathbf{S}_n}(f) - \mathbf{F}_{y_n}(f))$$

converges weakly to a Gaussian vector

$$(X_{f_1},\ldots,X_{f_k})$$

with mean

$$\mathbb{E}X_f = (k-1)I_1(f) - \beta I_2(f)$$

and

$$Cov(X_f, X_g) = kJ_1(f, g) + \beta J_2(f, g).$$

where

$$I_1(f) = -\frac{1}{2\pi i} \oint \frac{y(\underline{S}/(1+\underline{S})^3(z)f(z))}{[1-y(S/(1+S))^2]^2} dz.$$

$$I_2(f) = -\frac{1}{2\pi i} \oint \frac{y(\underline{S}/(1+\underline{S}))^3(z)f(z)}{1 - y(\underline{S}/(1+\underline{S}))} dz.$$

6-4 Lecture 6: 27 August

and

$$J_1(f,g) = -\frac{1}{4\pi^2} \oint \oint \frac{f(z_1)f(z_2)}{(\underline{S}(z_1) - \underline{S}(z_2))^2} \underline{S}'(z_1) \underline{S}'(z_2) dz_1 dz_2.$$

$$J_2(f,g) = -\frac{y}{4\pi^2} \oint f(z_1) \frac{\partial}{\partial z_1} \left(\frac{\underline{S}}{1 + \underline{S}}(z_1) \right) dz_1 \times \oint g(z_2) \frac{\partial}{\partial z_2} \left(\frac{\underline{S}}{1 + \underline{S}}(z_2) \right) dz_2$$

where the integrals are over contours enclosing the support of F_y .

Remarks:

- The asymptotic mean $\mathbb{E}[X_f]$ is non-null and depends on fourth moment.
- This theorem is difficult to use in practice because the limiting parameters are integrals on contours that are not given explicitly.
- This theorem, from 2004, was a big breakthrough as it gave explicit formulas for the limiting mean and covariance.

A more explicit version of this theorem can be obtained:

Proposition 6.2 We have

$$I_1(f) = \lim_{r \downarrow 1} I_1(f, r)$$

$$I_2(f) = \frac{1}{2\pi i} \oint_{|\xi|=1} f(|1 + h\xi|^2) \frac{1}{\xi^3} d\xi$$

$$J_1(f, g) = \lim_{r \downarrow 1} J_1(f, g, r)$$

$$J_2(f, g) = -\frac{1}{4\pi^2} \oint_{|\xi_1|=1} \frac{f(|1 + h\xi_1|^2)}{\xi_1^2} d\xi_1 \oint_{|\xi_2|=1} \frac{g(|1 + h\xi_2|^2)}{\xi_2^2} d\xi_2$$

with

$$I_1(f,r) = \frac{1}{2\pi i} \oint_{|\xi|=1} f(|1+h\xi|^2) \left[\frac{\xi}{\xi^2 - r^{-2}} - \frac{1}{\xi} \right] d\xi$$

$$I_2(f,g,r) = -\frac{1}{4\pi^2} \oint_{|\xi_1|=1} \oint_{|\xi_2|=1} \frac{f(|1+h\xi_1|^2)g(|1+h\xi_2|^2)}{(\xi_1 - r\xi_2)^2} d\xi_1 d\xi_2$$

Proof: We are just going to look at the simplest case of $I_2(f)$.

The idea is to perform change of variable $z=1+hr\xi_hr^{-1}\bar{\xi}+h^2$ with r>1 but close to 1, and $|\xi|=1, h=\sqrt{y}$. As ξ runs anticlockwise, z runs on contour c encloses support $[a,b]=[(1\pm h)^2]$.

Since $z = -\frac{1}{S} + \frac{y}{1+S}$, $z \in \mathbb{C}^+$. We have $\underline{S} = -\frac{1}{1+hr\xi}$ and $dz = h(r - r^{-1}\xi^{-2})d\xi$.

Applying this to $I_2(f)$ in theorem:

$$I_2(f) = \lim_{r \downarrow 1} \frac{1}{2\pi i} \oint_{|\xi|=1} f(z) \frac{1}{\xi^3} \frac{r\xi^2 - r^{-1}}{r(r^2\xi^2 - 1)} d\xi = \frac{1}{2\pi i} \oint_{|\xi|=1} f(|1 + h\xi|^2) \frac{1}{\xi^3} d\xi.$$

as

$$|1 + h\xi|^{2} = (1 + h\xi)\overline{(1 + h\xi)}$$

$$= (1 + h\xi)(1 + h\bar{\xi})$$

$$= 1 + h\xi + h\bar{\xi} + h^{2}|\xi|$$

$$= 1 + h\xi + h\bar{\xi} + h^{2}.$$
(6.1)

An example application of CLT

Proposition 6.3 Consider two linear spectral statistics

$$\sum_{i=1}^{p} \log(\lambda_i), \sum_{i=1}^{p} \lambda_i$$

where (λ_i) are eigenvalues of sample covariance S_n . Then, under assumptions of Theorem, the vector

$$\left(\sum_{i=1}^{p} \log(\lambda_{i}) - pF_{y_{n}}(\log x)\right) \stackrel{d}{\to} N(\mu_{1}, \mathbf{Q}_{1})$$

$$\mu_{1} = \left(\frac{k-1}{2} \log(1-y) - \frac{1}{2}\beta y\right)$$

$$\mathbf{Q}_{1} = \left(\frac{-k \log(1-y) + \beta y}{(\beta+k)y} \quad (\beta+k)y\right)$$

$$F_{y_{n}}(x) = 1, F_{y_{n}}(\log x) = \frac{y_{n}-1}{y_{n}} \log(1) - y_{n} - 1.$$

Proof: In the Theorem, take k=2 with

$$f(x) = \log(x), g(x) = x, x > 0.$$

and we are going to consider the vector (X_f, X_q) .

$$\mathbb{E}[X_f] = (k-1)I_1(f) + \beta I_2(f), \mathbb{E}[X_g] = (k-1)I_1(g) + \beta I_2(g)$$

etc. We shall use the proposition to calculate

6-6 Lecture 6: 27 August

$$I_{1}(f,r) = \frac{1}{2\pi i} \oint_{|\xi|=1} f(|1+h\xi|^{2}) \left[\frac{\xi}{\xi^{2} - r^{-2}} - \frac{1}{\xi} \right] d\xi$$

$$= \frac{1}{2\pi i} \oint_{|\xi|=1} \log(|1+h\xi|^{2}) \left[\frac{\xi}{\xi^{2} - r^{-2}} - \frac{1}{\xi} \right] d\xi$$
(6.2)

Recall

$$|1 + h\xi|^2 = (1 + h\xi)(1 + h\bar{\xi}) = (1 + h\xi)(1 + h\frac{1}{\xi})$$
$$|\xi| = 1 \implies \bar{\xi} = e^{-i\theta} = \frac{1}{\xi}.$$

continued (6.2)

$$= \frac{1}{2\pi i} \oint_{|\xi|=1} \left[\log(1+h\xi) + \log(1+h/\xi) \right] \left[\frac{\xi}{\xi^2 - r^{-2}} - \frac{1}{\xi} \right] d\xi$$

$$= \frac{1}{2\pi i} \left[\oint_{|\xi|=1} \log(1+h\xi) \frac{\xi}{\xi^2 - r^{-2}} d\xi - \oint_{|\xi|=1} \log(1+h\xi) \frac{1}{\xi} d\xi + \oint_{|\xi|=1} \log(1+h\xi^{-1}) \frac{\xi}{\xi^2 - r^{-2}} d\xi - \oint_{|\xi|=1} \log(1+h\xi^{-1}) \frac{1}{\xi} d\xi \right]$$
(6.3)

For the first integral, the poles are $\pm \frac{1}{r}$.

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \log(1+h\xi) \frac{\xi}{\xi^2 - r^{-2}} d\xi = \frac{\log(1+h\xi)\xi}{\xi - r^{-1}} \bigg|_{\xi = -r^{-1}} + \frac{\log(1+h\xi)\xi}{\xi + r^{-1}} \bigg|_{\xi = r^{-1}}$$

$$= \frac{1}{2} \log\left(1 - \frac{h^2}{r^2}\right). \tag{6.4}$$

For the second integral, singularity at $\xi = 0$.

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \log(1+h\xi) \frac{1}{\xi} d\xi = \log(1+h\xi) \bigg|_{\xi=0} = 0.$$

For third integral, we perform a change of variable $z = \frac{1}{\xi}$, so $d\xi = -z^{-2}dz$.

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \log(1+h\xi^{-1}) \frac{\xi}{\xi^2 - r^{-2}} d\xi = -\frac{1}{2\pi i} \oint_{|z|=1} \log(1+hz) \frac{z^{-1}}{z^{-2} - r^{-2}} \frac{-1}{z^2} dz$$

$$= \frac{1}{2\pi i} \oint_{|z|=1} \frac{\log(1+hz)r^2}{z(z+r)(z-r)} dz$$

$$= \frac{\log(1+hz)r^2}{(z+r)(z-r)} \Big|_{z=0}$$

$$= 0$$
(6.5)

Fourth integral: $z = \xi^{-1}, d\xi = -z^{-2}dz$.

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \log(1+h\xi^{-1}) \frac{1}{\xi} d\xi = -\frac{1}{2\pi i} \oint_{|z|=1} \log(1+hz) \frac{-z}{z^2} dz$$

$$= \log(1+hz) \Big|_{z=0} = 0$$
(6.6)

Collecting all terms gives $I_1(f,r) = \frac{1}{2}\log(1-h^2/r^2)$.

$$I_1(g,r) = \frac{1}{2\pi i} \oint_{|\xi|=1} g(1|1+h\xi|^2) \cdot \left[\frac{\xi}{\xi^2 - r^{-2}} - \frac{1}{\xi} \right] d\xi = \frac{1}{2\pi i} \oint_{|\xi|=1} |1+h\xi|^2 \left[\frac{\xi}{\xi^2 - r^{-2}} - \frac{1}{\xi} \right] d\xi$$

and

$$|1 + h\xi|^2 = (1 + h\xi)(1 + h\bar{\xi}) = 1 + h\xi^{-1} + h\xi + h^2 = \frac{\xi + h + h\xi^2 + h^2\xi}{\xi}$$

so (continued)

$$=\frac{1}{2\pi i}\oint_{|\xi|=1}\frac{\xi+h+h\xi^2+h^2\xi}{\xi}\times\frac{\xi}{\xi^2-r^{-2}}d\xi-\frac{1}{2\pi i}\oint_{|\xi|=1}\frac{\xi+h+h\xi^2+h^2\xi}{\xi}\frac{1}{\xi}d\xi.$$

The first integral

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \frac{\xi + h + h\xi^2 + h^2 \xi}{(\xi - r)(\xi + r)} d\xi = \frac{\xi + h + h\xi^2 + h^2 \xi}{\xi - r} \bigg|_{\xi = -r^{-1}} + \frac{\xi + h + h\xi^2 + h^2 \xi}{\xi + r} \bigg|_{\xi = r^{-1}}$$

$$= 1 + h^2$$
(6.7)

and second integral (2nd order pole at $\xi = 0$.)

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \frac{\xi + h + h\xi^2 + h^2\xi}{\xi^2} d\xi = \frac{\partial}{\partial \xi} (\xi + h + h\xi^2 + h\xi) \bigg|_{\xi=0}$$

$$= 1 + h^2$$
(6.8)

Hence $I_1(g,r) = 0$.

$$I_{2}(f) = \frac{1}{2\pi i} \oint_{|\xi|=1} \log(|1+h\xi|^{2}) \frac{1}{\xi^{3}} d\xi$$

$$= \frac{1}{2\pi i} \left[\oint_{|\xi|=1} \frac{\log(1+h\xi)}{\xi^{3}} d\xi + \oint_{|\xi|=1} \frac{\log(1+h\xi^{-1})}{\xi^{3}} d\xi \right].$$
(6.9)

6-8 Lecture 6: 27 August

First integral (3rd order pole):

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \frac{\log(1+h\xi)}{\xi^3} d\xi = \frac{1}{2} \frac{\partial^2}{\partial \xi^2} \log(1+h\xi) \bigg|_{\xi=0} = -\frac{1}{2} h^2.$$

Second integral: $z = \xi^{-1}, d\xi = -z^{-2}dz$.

$$\frac{1}{2\pi i} \oint_{|\xi|=1} \frac{\log(1+h\xi^{-1})}{\xi^3} d\xi = -\frac{1}{2\pi i} \oint_{|z|=1} \frac{\log(1+hz)}{z^{-3}} \frac{-1}{z^2} dz = \log(1+hz) \bigg|_{z=0} = 0.$$

Now for the covariance terms:

$$J_{1}(f,g,r) = -\frac{1}{4\pi^{2}} \oint_{|\xi_{1}|=1} \oint_{|\xi_{2}|=1} \frac{\log(|1+h\xi_{1}|^{2})|1+h\xi_{2}|^{2}}{(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} d\xi_{2}$$

$$= \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{\log(|1+h\xi_{1}|^{2})}{(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} \cdot \frac{1}{2\pi i} \oint_{|\xi_{2}|=1} |1+h\xi_{2}|^{2} d\xi_{2}.$$
(6.10)

First integral,

$$\frac{1}{2\pi i} \oint_{|\xi_1|=1} \frac{\log(|1+h\xi_1|^2)}{(\xi_1 - r\xi_2)^2} d\xi_1 = \frac{1}{2\pi i} \left[\oint_{|\xi_1|=1} \frac{\log(1+h\xi)}{(\xi_1 - r\xi_2)^2} d\xi_1 + \oint_{|\xi_1|=1} \frac{\log(1+h\xi^{-1})}{(\xi_1 - r\xi_2)^2} d\xi_1 \right] = \frac{1}{2\pi i} [A+B].$$

Notice for A, for $|\xi_2| = 1$ fixed, $|r\xi_2| > 1$ so $r\xi_2$ not a pole.

$$A = 0, z = \frac{1}{\xi_1}, d\xi_1 = -z^{-2}dz.$$

$$B = \frac{1}{2\pi i} \oint_{|\xi_1|=1} \frac{\log(1+h\xi_1^{-1})}{(\xi_1 - r\xi_2)^2} d\xi_1$$

$$= -\frac{1}{2\pi i} \oint_{|z|=1} \frac{\log(1+hz)}{(z^{-1} - r\xi_2)^2} \frac{-1}{z^2} dz$$

$$= \frac{1}{2\pi i} \frac{1}{(r\xi_2)^2} \oint_{|z|=1} \frac{\log(1+hz)}{(z - \frac{1}{r\xi_2})^2} dz \quad \text{2nd order at } z = \frac{1}{r\xi_2}$$

$$= \frac{1}{(r\xi_2)^2} \frac{\partial}{\partial z} (\log(1+hz)) \Big|_{z=\frac{1}{r\xi_2}}$$

$$= \frac{h}{r\xi_2(r\xi_2 + h)}$$
(6.11)

Now,

$$\begin{split} J_1(f,g,r) &= \frac{1}{2\pi i} \oint_{|\xi_1|=1} \frac{\log(|1+h\xi_1|^2)}{(\xi_1 - r\xi_2)^2} d\xi_1 \cdot \frac{1}{2\pi i} \oint_{|\xi_2|=1} |1+h\xi_2|^2 d\xi_2 \\ &= \frac{h}{2\pi i r^2} \oint_{|\xi_2|=1} \frac{(1+h\xi_2)(1+h\bar{\xi}_2)}{\xi_2(\xi_2 + h r^{-1})} d\xi_2 \\ &= \frac{h}{2\pi i r^2} \oint_{|\xi_2|=1} \frac{\xi_2 + h\xi_2^2 + h + h^2 \xi_2}{\xi_2^2 (\xi_2 + h r^{-1})} d\xi_2 \\ &= \frac{h}{2\pi i r^2} \left[\oint_{|\xi_2|=1} \frac{1+h^2}{\xi_2(\xi_2 + h r^{-1})} d\xi_2 + \oint_{|\xi_2|=1} \frac{h}{(\xi_2 + h r^{-1})} d\xi_2 + \oint_{|\xi_2|=1} \frac{h}{\xi_2^2 (\xi_2 + h r^{-1})} d\xi_2 \right] \\ &= \frac{h}{2\pi i r^2} \left[(0+2\pi i h + 0) \right] \\ &= \frac{h^2}{r^2}. \\ J_1(f,f,r) &= \frac{1}{2\pi i} \oint_{|\xi_2|=1} f(|1+h\xi_2|^2) \cdot \frac{1}{2\pi i} \oint_{|\xi_1|=1} \frac{f(|1+h\xi_2|^2)}{(\xi_1 - r\xi_2)^2} d\xi_1 d\xi_2 \\ &= \frac{1}{2\pi i} \oint_{|\xi_2|=1} f(|1+h\xi_2|^2) \frac{h}{r\xi_2(r\xi_2 + h)} d\xi_2 \\ &= \frac{h}{2\pi i r^2} \oint_{|\xi_2|=1} \frac{\log(1+h\xi_2)}{\xi_2\left(\frac{h}{r} + \xi_2\right)} d\xi_2 + \frac{h}{2\pi i r^2} \oint_{|\xi_2|=1} \frac{\log(1+h\xi_2^{-1})}{\xi_2\left(\frac{h}{r} + \xi_2\right)} d\xi_2 \\ &= A + B. \\ A &= \frac{h}{r^2} \left[\frac{\log(1+h\xi_2)}{\frac{h}{r} + \xi_2} \right]_{\xi_2=0} + \frac{\log(1+h\xi_2)}{\xi_2} \bigg|_{\xi_2=-\frac{h}{r}} \right] \\ &= -\frac{1}{r^2} \log\left(1 - \frac{h^2}{r}\right). \\ B &= \frac{-h}{2\pi i r^2} \oint_{|z|=1} \frac{\log(1+hz)}{z^{-1}(\frac{h}{r} + z^{-1})} \frac{-1}{z^2} dz \\ &= \frac{1}{2\pi i r} \oint_{|z|=1} \frac{\log(1+hz)}{z^{-1}(\frac{h}{r} + z^{-1})} dz = 0 \text{ not a pole since } |r/h| > 1 \end{split}$$

Hence, $J_1(f, f, r) = -\frac{1}{r} \log(1 - \frac{h^2}{r})$.

$$J_1(g,g,r) = \frac{1}{2\pi i} \oint_{|\xi_2|=1} |1 + h\xi_2|^2 \cdot \frac{1}{2\pi i} \oint_{|\xi_1|=1} \frac{|1 + h\xi|^2}{(\xi_1 - r\xi_2)^2} d\xi_1 d\xi_2.$$

and

6-10 Lecture 6: 27 August

$$\frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{|1+h\xi_{1}|^{2}}{(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} = \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{\xi_{1}+h\xi_{1}^{2}+h+h^{2}\xi_{1}}{\xi_{1}(\xi_{1}-r\xi_{2})} d\xi_{1}$$

$$= \frac{1}{2\pi i} \left[\oint_{|\xi_{1}|=1} \frac{1+h^{2}}{(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} + \oint_{|\xi_{1}|=1} \frac{h\xi_{1}}{(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} + \oint_{|\xi_{1}|=1} \frac{h}{\xi_{1}(\xi_{1}-r\xi_{2})^{2}} d\xi_{1} \right]$$

$$= \frac{1}{2\pi i} \left[0 + 0 + \frac{2\pi i h}{r^{2}\xi_{2}^{2}} \right]$$

$$= \frac{h}{r^{2}\xi_{2}^{2}}.$$
(6.13)

since
$$2\pi i \frac{h}{(\xi_1 - r\xi_2)^2} \bigg|_{\xi_1 = 0} = \frac{2\pi i h}{r^2 \xi_2^2}.$$

Therefore,

$$J_{1}(g,g,r) = \frac{h}{2\pi i r^{2}} \oint_{|\xi_{2}|=1} \frac{\xi_{2} + h\xi_{2} + h + h^{2}\xi_{2}}{\xi_{2}^{2}} d\xi_{2}$$

$$= \frac{h}{2\pi i r^{2}} \left[\oint_{|\xi_{2}|=1} \frac{1 + h^{2}}{\xi_{2}^{2}} d\xi_{2} + \oint_{|\xi_{2}|=1} \frac{h}{\xi_{2}} d\xi_{2} + \oint_{|\xi_{2}|=1} \frac{h}{\xi_{2}^{3}} d\xi_{2} \right]$$

$$= \frac{h^{2}}{r^{2}}.$$
(6.14)

Now we have to calculate all the J_2 terms:

$$J_2(f,g), J_2(f,f), J_2(g,g).$$

$$J_2(F,G) = -\frac{1}{4\pi^2} \oint_{|\xi_1|=1} \frac{F(|1+h\xi_1|^2)}{\xi_1^2} d\xi_1 \oint_{|\xi_2|=1} \frac{G(|1+h\xi_2|^2)}{\xi_2^2} d\xi_2$$

First notice that

$$\frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{\log(1+h\xi_{1}|^{2})}{\xi_{1}^{2}} d\xi_{1} = \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{\log(1+h\xi_{1}) + \log(1+h\xi_{1}^{-1})}{\xi_{1}^{2}} d\xi_{1}$$

$$= \frac{1}{2\pi i} \left[2\pi i \left[\frac{\partial}{\partial \xi_{1}} \log(1+h\xi_{1}) \right] \Big|_{\xi_{1}=0} - \oint_{|z|=1} \frac{\log(1+hz) - 1}{z^{-2}} dz \right]$$

$$= h - 0$$

$$= h$$
(6.15)

And we have

$$\frac{1}{2\pi i} \oint_{|\xi_{2}|=1} \frac{g(|1+h\xi_{2}|^{2})}{\xi_{2}^{2}} d\xi_{2} = \frac{1}{2\pi i} \oint_{|\xi_{2}|=1} \frac{\xi_{2} + h\xi_{2}^{2} + h + h^{2}\xi_{2}}{\xi_{2}^{3}} d\xi_{2} = h$$

$$J_{2}(f,g) = \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{f(|1+h\xi_{2}|^{2})}{\xi_{1}^{2}} d\xi_{1} \cdot \frac{1}{2\pi i} \oint_{|\xi_{2}|=1} \frac{g(|1+h\xi_{2}|^{2})}{\xi_{2}^{2}} d\xi_{2} = h^{2}$$

$$J_{2}(f,f) = \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{f(|1+h\xi_{2}|^{2})}{\xi_{1}^{2}} d\xi_{1} \cdot \oint_{|\xi_{2}|=1} \frac{f(|1+h\xi_{2}|^{2})}{\xi_{2}^{2}} d\xi_{2} = h^{2}$$

$$J_{2}(g,g,) = \frac{1}{2\pi i} \oint_{|\xi_{1}|=1} \frac{g(|1+h\xi_{1}|^{2})}{\xi_{1}^{2}} d\xi_{1} \cdot \frac{1}{2\pi i} \oint_{|\xi_{2}|=1} \frac{g(|1+h\xi_{2}|^{2})}{\xi_{2}^{2}} d\xi_{2} = h^{2}$$
(6.16)