Structures

Algèbre 1

algébriques

Question 1/90

Théorème de Lagrange pour l'ordre des groupes

Réponse 1/90

Si G est un groupe fini et H un sous-groupe de G $|H| \mid |G|$

Question 2/90

Associativité

Réponse 2/90

 \Rightarrow est associative si et seulement $si \forall (x, y, z) \in E^3, (x \Rightarrow y) \Rightarrow z = x \Rightarrow (y \Rightarrow z)$

Question 3/90

Distributivité

Réponse 3/90

La loi

de est distributive à gauche sur

de si et seulement

 $\operatorname{si}\forall(x,y,z)\in E^3,\ x*(y\diamond z)=(x*y)\diamond(x*z)$ La loi *\text{est distributive à droite sur \$\\diamond\$ si et

seulement

 $si \forall (x, y, z) \in E^3$, $(y \diamond z) \not\approx x = (y \not\approx x) \diamond (z \not\approx x)$ La loi $\not\approx$ est distributive sur \diamond si et seulement si elle est distributive à gauche et à droite

Question 4/90

Description par le bas du sous-groupe engendré par une partie

Réponse 4/90

$$\langle X \rangle = \{x_1 \cdots x_n, (x_1, \cdots, x_n) \in X^n\}$$

$$\cup \{x^{-1}, x \in X\}$$
e correspond au produit vide

Question 5/90

Si K est un corps de caractéristique finie pPropriété pour les éléments de K

Réponse 5/90

$$\forall x \in K, \ px = 0_K$$

Question 6/90

Idéal principal

Réponse 6/90

Idéal engendré par un unique élément a de la forme $I=aA=\{ay,\ y\in A\}$ I est souvent noté (a)

Question 7/90

Propriété de la caractéristique d'un corps

Réponse 7/90

Si K est un corps de caractéristique p non nulle, p est premier

Question 8/90

Passage au quotient de la loi dans le cas abélien Si G est un groupe abélien et H un sous-groupe de G

Réponse 8/90

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément
 $(ab)H = (aH) \cdot (bH)$
 $= \{x \cdot y, \ x \in aH, \ y \in bH\}$

La loi induite sur l'ensemble quotient munit celui-ci d'une structure de groupe abélien

Question 9/90

Si (G, \Leftrightarrow) est un groupe et $H \subset G$ Caractérisation(s) des sous-groupes

Réponse 9/90

$$H \neq \varnothing \quad \forall (x,y) \in H, \ x \Leftrightarrow y \in H$$
$$\forall x \in H, \ x^s \in H$$
$$H \neq \varnothing \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$
$$e_G \in H \quad \forall (x,y) \in H^2, \ x \Leftrightarrow y^s \in H$$

Question 10/90

Soient $e \in E$ un élément neutre pour la loi \Rightarrow et $x \in E$

y est un symétrique de x pour la loi \Rightarrow

Réponse 10/90

$$x \Leftrightarrow y = e = y \Leftrightarrow x$$

Question 11/90

Ensemble formé par les classes à gauche et à droite

Réponse 11/90

```
\{Ha, a \in G\} est une partition de G
\{aH, a \in G\} est une partition de G
```

Question 12/90

Sous-groupe engendrée par une partie X

Réponse 12/90

$$\langle X \rangle$$

C'est le plus petit sous-groupe contenant X

Question 13/90

Si K est un corps de caractéristique nulle Propriété pour les éléments de K

Réponse 13/90

$$\forall (n, x) \in \mathbb{Z} \times K$$
$$n \times x = 0_K \Leftrightarrow (x = 0_K \lor n = 0)$$

Question 14/90

Si K est un corps, d'élément neutre $1_K \neq 0_K$, $H = \{n \times 1_K, n \in \mathbb{Z}\}$ le sous-groupe monogène de (K, +) engendré par 1_K Caractéristique d'un corps

Réponse 14/90

Si H est infini, K est de caractéristique nulle Si H est fini de cardinal p, K est de caractéristique p

Question 15/90

Fibres de
$$f$$

Soit $x \in f^{-1}(\{y\})$

Réponse 15/90

$$f^{-1}(\{y\}) = x \times \ker(f)$$
$$= \{x \times z, \ z \in \ker(f)\} = \ker(f) \times x$$

Question 16/90

Soient
$$\left(K, +, \times\right)$$
 et $\left(L, +, \times\right)$ deux corps $f: K \to L$ est un homomorphisme de corps

Réponse 16/90

f est un homomorphisme des anneaux de K et

Question 17/90

Si $(A, +, \times)$ est un anneau commutatif Un sous-ensemble I de A est un sous-anneau idéal de A

Réponse 17/90

$$I$$
 est un sous-groupe de $(A, +)$
 $\forall i \in I, \ \forall a \in A, \ ia \in I$

Question 18/90

Résolution de
$$x^n = e$$

Réponse 18/90

```
\{n \in \mathbb{N}^* \mid x^n = e\} est de la forme a\mathbb{Z}
x est d'ordre fini si et seulement si a \neq 0 (on a donc \operatorname{ord}(x) = a)
```

Question 19/90

Image directe et réciproque de sous-corps par un homomorphisme

Réponse 19/90

Si K et L sont deux corps, et $f: K \to L$ un morphisme de corps, K' et L' deux sous-corps respectivement de K et L f(K') est un sous-corps de L $f^{-1}(L')$ est un sous-corps de K

Question 20/90

Ordre d'un groupe Si G est un groupe

Réponse 20/90

$$\operatorname{ord}(G) = |G|$$

Question 21/90

Si
$$(K, +, \times)$$
 est un corps
Un sous-ensemble L de K est un sous-corps de K

Réponse 21/90

$$L$$
 est stable pour les lois $+$ et \times

$$1_K \in L$$
pis induites sur L définissent sur

Les lois induites sur L définissent sur L une structure de corps

Question 22/90

Soient (G, \Rightarrow) et (H, \diamond) deux groupes $f: G \to H$ est un homomorphisme de groupes

Réponse 22/90

$$\forall (x,y) \in G^2, \ f(x * y) = f(x) \diamond f(y)$$

L'ensemble des homomorphisme de G dans H
est noté $\operatorname{Hom}(G,H)$
Si $(G,*) = (H,\diamond), \ f$ est un endomorphisme
L'ensemble des automorphismes de G est noté $\operatorname{Aut}(G)$

Question 23/90

Soient E muni d'une loi \Leftrightarrow , $F \subset E$ F est stable par \Leftrightarrow

Réponse 23/90

$$\forall (x,y) \in F^2, \ x \not\approx y \in F$$

La loi de E se restreint en une loi $\not\approx_F$ appelée
loi induite sur F par $\not\approx$

Question 24/90

Soit
$$x \in E$$

 x est un élement absorbant pour \Rightarrow

Réponse 24/90

$$\forall y \in E, \ x \Rightarrow y = x = y \Rightarrow x$$

Question 25/90

Description par le haut du sous-groupe engendré par une partie

Réponse 25/90

Soient \mathcal{G} l'ensemble des sous-groupes de G et

$$\mathcal{H} = \{ H \in \mathcal{G} \mid X \subset H \}$$
$$\langle X \rangle = \bigcap_{H \in \mathcal{H}} (H)$$

Question 26/90

Sous-groupe monogène

Réponse 26/90

$$\langle x \rangle = \{x^n, \ n \in \mathbb{N}\}$$

Question 27/90

Magma

Réponse 27/90

Muni d'une loi de composition interne

Question 28/90

Factorisation de $a^n - b^n$ dans un anneau A

Réponse 28/90

$$(a,b) \in A^2 \text{ tel que } ab = ba$$

$$(a-b)\sum_{n=1}^{n-1} (a^{n-k-1}b^k)$$

k=0

Question 29/90

Description des groupes monogènes Si $G = \langle x \rangle$

Réponse 29/90

Si
$$\operatorname{ord}(x) = +\infty$$
, G est isomorphe à \mathbb{Z}
Si $\operatorname{ord}(x) = n \in \mathbb{N}^*$, G est isomorphe à $\mathbb{Z}/n\mathbb{Z}$

Question 30/90

```
Si G et H sont deux groupes et f \in \text{Hom}(G, H) f(e_G)
```

Réponse 30/90

$$f(e_H)$$

Question 31/90

Sous-groupe propre de G

Réponse 31/90

Sous-groupe de G distinct de G et $\{e_G\}$

Question 32/90

Soit E et F deux ensembles munis d'une structure de X, munis respectivement des lois de composition internes $(*, \dots, *)$ et $\left(\diamondsuit,\cdots,\diamondsuit\right)$, et externes $\left(\Box,\cdots,\Box\right)$ et

$$\begin{pmatrix} \triangle, \cdots, \triangle \\ 1 \end{pmatrix}$$
 sur K_1, \cdots, K_m
 $f: E \to F$ est un homomorphisme

Réponse 32/90

f respecte les lois interne : soit $k \in [1, n]$ $\forall (x,y) \in E^2, \ f\left(x \underset{k}{\Rightarrow} y\right) = f(x) \underset{k}{\diamond} \bar{f}(y)$ f respecte les lois externes : soit $k \in [1, m]$ $\forall (\lambda, x) \in K_k \times E, \ f\left(\lambda \underset{\iota}{\Box} y\right) = \lambda \underset{\iota}{\triangle} f(x)$ f est compatible avec le neutre (si le neutre e_i

pour la loi $\stackrel{\cdot}{\approx}$ est imposé dans les axiomes, donc le neutre $\stackrel{\cdot}{e'_i}$ existe pour la loi $\stackrel{\diamond}{\diamond}$): $f(e_i) = e'_i$

Question 33/90

Propriété des groupes monogènes

Réponse 33/90

Un groupe monogène est abélien

Question 34/90

Cardinal des classes de congruence

Réponse 34/90

$$|Ha, a \in G| = |Ha, a \in G| = |H|$$

Question 35/90

Diviseurs de zéro dans un anneau A

Réponse 35/90

seulement s'il existe $b \in A$ tel que ab = 0 $a \in A$ est un diviseur de 0 à droite si et seulement s'il existe $b \in A$ tel que ba = 0 $a \in A$ est un diciseur de si et seulement si aest diviseur de 0 à gauche et à droite

 $a \in A$ est un diviseur de 0 à gauche si et

Question 36/90

Anneau

Réponse 36/90

```
Muni de deux lois de composition internes

(généralement notées + et \times)

(A, +) est un groupe abélien

(A, \times) est un monoïde
```

 \times est distributive sur +

Question 37/90

Réciproque d'isomorphisme

Réponse 37/90

Si $f: F \to F$ est un isomorphisme, alors f^{-1} est un isomorphisme

Question 38/90

Associativité externe E est muni d'une loi decomposition externe \diamond sur \mathbb{K} , muni d'une loi de composition interne \Leftrightarrow

Réponse 38/90

$$\forall (\lambda, \mu, x) \in \mathbb{K}^2 \times E, \ (\lambda * \mu) \diamond x = \lambda \diamond (\mu \diamond x)$$

Question 39/90

Intersection de sous-anneaux Si A est un groupe, et $(B_i)_{i\in I}$ une famille de sous-anneaux de A

Réponse 39/90

$$\bigcap_{i \in I} (B_i)$$
 est un sous-anneau de A

Question 40/90

Élément réguulier d'un anneau

Réponse 40/90

L'élément n'est pas diviseur de 0 La réciproque est vraie S'adapte à gauche et à droite

Question 41/90

Propriété des homomorphismes de corps

Réponse 41/90

Un homomorphisme de corps est injectif

Question 42/90

Si
$$\ker(f) = \{e_G\}$$

Réponse 42/90

f est injectif (la réciproque est vraie)

Question 43/90

Groupe abélien

Réponse 43/90

La loi \Rightarrow de G est commutative

Question 44/90

Monoïde

Réponse 44/90

Muni d'une loi de composition interne, de l'associativité et d'un élément neutre Un monoïde est un magma

Question 45/90

Groupe des inversibles d'un anneau

Réponse 45/90

 A^{\times}

 A^{\times} est un groupe multiplicatif

Question 46/90

Factorisation de $(a+b)^n$ dans un anneau A

Réponse 46/90

$$(a,b) \in A^2 \text{ tel que } ab = ba$$

$$\sum_{k=0}^{n} (\binom{n}{k} a^k b^{n-k})$$

Question 47/90

Anneau principal

Réponse 47/90

Un anneau intègre dont tous les idéaux sont principaux

Question 48/90

Intersection de sous-groupes Si G est un groupe, et $(H_i)_{i\in I}$ une famille de sous-groupes de G

Réponse 48/90

 $i \in I$

$$\bigcap (H_i)$$
 est un sous-groupe de G

Question 49/90

Si $f \in \text{Hom}(G, K)$ et H est un sous-groupe distingué

Réponse 49/90

f passe au quotient avec $\tilde{f}:G/H\to K$

Question 50/90

Passage au quotient de la loi dans le cas d'un sous-groupe distingué Si G est un groupe et H un sous-groupe

distingué de G

Réponse 50/90

$$\equiv_g = \equiv_d$$
 et on note la relation \equiv
La loi induite corrrespond au produit des
classes élément par élément
 $(ab)H = (aH) \cdot (bH)$
 $= \{x \cdot y, \ x \in aH, \ y \in bH\}$
La loi induite sur l'ensemble quotient munit
celui-ci d'une structure de groupe

Question 51/90

Commutativité généralisée

Réponse 51/90

Si ☆ est une loi commutative et associative sur

$$E, (x_1, \cdots, x_n) \in E^n \text{ et } \sigma \in \mathfrak{S}_n$$

 $x_1 \not \sim x_n = x_{\sigma(1)} \not \sim x_{\sigma(n)}$

Question 52/90

Si G et H sont deux groupes et $f \in \text{Hom}(g, h)$ un morphisme de groupes $\ker(f)$

Réponse 52/90

$$f^{-1}(e_H) = \{ y \in G \mid f(y) = e_H \}$$

Question 53/90

Si \Rightarrow est une loi associative sur E et $(x_1, \dots, x_n) \in E^n$

Réponse 53/90

 $x_1 \not \sim \cdots \not \sim x_n$ ne dépend pas du parenthésage admissible

Question 54/90

Si $(A, +, \times)$ est un groupe et $B \subset A$ Caractérisation des sous-anneaux

Réponse 54/90

$$1_A \in B \quad \forall (x,y) \in B, \ x - y \in B$$

$$\forall (x,y) \in B, \ xy \in B$$

Question 55/90

Soient
$$\left(A, +, \times \atop A, A\right)$$
 et $\left(B, +, \times \atop B, B\right)$ deux anneaux $f: A \to B$ est un homomorphisme d'anneaux

Réponse 55/90

$$\forall (x,y) \in A^2, \ f\left(x + y\right) = f(x) + f(y)$$

$$\forall (x,y) \in A^2, \ f\left(x \times y\right) = f(x) \times f(y)$$

$$f(1_A) = 1_B$$

Question 56/90

Soit
$$e \in E$$

 e est un élément neutre pour la loi \Rightarrow

Réponse 56/90

$$\forall x \in E, \ e \Rightarrow x = x = x \Rightarrow e$$

Question 57/90

Distributivité généralisée $\prod_{i=1}^{n} \left(\sum_{j \in J_i} (x_{i,j}) \right)$

Réponse 57/90

$$\sum_{(j_1,\dots,j_n)\in J_1\times\dots\times J_n} \left(\prod_{i=1}^n (x_{i,j_i})\right)$$

Question 58/90

Isomorphisme de X

Réponse 58/90

Homomorphisme de X bijectif

Question 59/90

x et y sont dans la même classe à gauche modulo H

Réponse 59/90

$$x \equiv_q y[H] \Leftrightarrow x^{-1}y \in H$$

Question 60/90

Commutativité

Réponse 60/90

 \Rightarrow est commutative si et seulement $si\forall (x,y) \in E^2, \ x \Rightarrow y = y \Rightarrow x$

Question 61/90

Symétrique de x * y

Réponse 61/90

$$y^s \Leftrightarrow x^s$$

Question 62/90

Corps

Réponse 62/90

Muni de deux lois de composition internes (généralement notées + et \times) $(K, +, \times)$ est un anneau commutatif (K^*, \times) est un groupe

Question 63/90

Si G est un gruope Structure de $(Aut(G), \circ)$

Réponse 63/90

 $(\operatorname{Aut}(G), \circ)$ est un groupe

Question 64/90

Si
$$G$$
 et H sont deux groupes et $f \in \text{Hom}(G, H)$ $f(x^{-1})$

Réponse 64/90

$$f(x)^{-1}$$

Question 65/90

Élément régulier ou simplifiable

Réponse 65/90

x est régulier à gauche si et seulement $\operatorname{si}\forall (y,z)\in E^2,\ x \Rightarrow y=x \Rightarrow z\Rightarrow y=z$ x est régulier à droite si et seulement $\operatorname{si}\forall (y,z)\in E^2,\ y \Leftrightarrow x=z \Leftrightarrow x\Rightarrow y=z$ x est régulier si et seulement s'il est régulier à gauche et à droite Si x admet un symétrique, alors il est régulier

Question 66/90

Si $(A, +, \times)$ est un anneau Un sous-ensemble B de A est un sous-anneau de A

Réponse 66/90

B est stable pour les lois + et \times $1_A \in B$ Les lois induites sur B définissent sur B une

structure d'anneau

Question 67/90

Soient E muni d'une structure de X et $F \subset E$ F est un sous-X de E

Réponse 67/90

F est stable par les lois de E F contient les neutres imposés par E Les lois induites sur F par les lois de E vérifient les axiomes de la structure de X

Question 68/90

Si H est un sous-groupe distingué de G

Réponse 68/90

$$\forall a \in G, \ aH = Ha$$

$$\Leftrightarrow \forall a \in G, \ \forall h \in H, \ aha^{-1} \in H$$

Question 69/90

Élément absorbant dans un anneau $(A, +, \times)$

Réponse 69/90

 \mathbb{C}

Question 70/90

Image directe et réciproque de sous-anneaux par un homomorphisme

Réponse 70/90

Si A et B sont deux anneaux, et $f: A \to B$ un morphisme d'anneaux, A' et B' deux sous-anneaux respectivement de A et B f(A') est un sous-anneau de B $f^{-1}(B')$ est un sous-anneau de A

Question 71/90

Si
$$f \in \text{Hom}(G, K)$$
 et H est un sous-groupe distingué et $H \subset \ker(f)$

Réponse 71/90

$$f = \tilde{f} \circ \pi$$
 La réciproque est vraie

Question 72/90

Premier théorème d'isomorphisme

Réponse 72/90

Si
$$f \in \text{Hom}(G, H)$$

 $\ker(f)$ est un sous-groupe distingué de G, et f passe au quotient, définissant un morphisme de groupes $\tilde{f}:G/\ker(f)\to H$ \tilde{f} est injectif et sa corestriction à son image est

t sa corestriction à son image est un isomorphisme

Question 73/90

Propriétés d'un groupe (G, \Rightarrow)

Réponse 73/90

$$G$$
 admet un uique élément neutre pour \Rightarrow $\forall x \in G, \; \exists! x^s \in G$

Question 74/90

Si $(K, +, \times)$ est un groupe et $L \subset K$ Caractérisation des sous-corps

Réponse 74/90

$$1_K \in L \quad \forall (x,y) \in L, \ x-y \in L$$

 $\forall (x,y) \in L, \ y \neq 0 \Rightarrow xy^{-1} \in L$

Question 75/90

Les classes à droite modulo H

Réponse 75/90

$$\{Ha, a \in G\}$$

Question 76/90

x et y sont dans la même classe à droite modulo H

Réponse 76/90

$$x \equiv_d y [H] \Leftrightarrow xy^{-1} \in H$$

Question 77/90

Image directe et réciproque de sous-groupes par un homomorphisme

Réponse 77/90

Si G et H sont deux groupes, et $f \in \text{Hom}(G, H)$ un morphisme de groupes, G'et H' deux sous-groupes respectivement de Get Hf(G') est un sous-groupe de H $f^{-1}(H')$ est un sous-groupe de G

Question 78/90

Si A est un anneau commutatif et I un idéal de A Anneau quotient

Réponse 78/90

A/I peut être muni d'une multiplication avec pour tout $(a,b) \in A$, $\overline{ab} = \overline{a}\overline{b}$ A/I est muni d'une structure d'anneau

Question 79/90

Anneau intègre

Réponse 79/90

Anneau commutatif non réduit à $\{0\}$ et sans diviseurs de 0

Question 80/90

Anneau commutatif

Réponse 80/90

Anneau dont la loi \times est commutative

Question 81/90

Endomorphisme de X

Réponse 81/90

Homomorphisme de X de E dans lui-même (muni des mêmes lois)

Question 82/90

Si (G, *) est un groupe Un sous-ensemble H de G est un sous-groupe de G

Réponse 82/90

H est stable pour la loi de G et la loi induite définit sur H une structure de groupe

Question 83/90

Les classes à gauche modulo ${\cal H}$

Réponse 83/90

```
\{aH, a \in G\}
```

Question 84/90

Automorphisme de X

Réponse 84/90

Endomorphisme et isomorphisme de X

Question 85/90

Théorème de Lagrange pour l'ordre des éléments d'un groupe

Réponse 85/90

Si G est un groupe fini et $x \in G$ ord $(x) \mid |G|$

Question 86/90

Ordre d'un élément d'un groupe

Réponse 86/90

$$\operatorname{ord}(x) = \min(\{n \in \mathbb{N}^* \mid x^n = e\})$$

Question 87/90

Propriété sur 1 et 0 si l'anneau A a plus d'un élément

Réponse 87/90

$$1 \neq 0$$

Question 88/90

Groupe

Réponse 88/90

Muni d'une loi de composition interne, de l'associativité, d'un élément neutre et de symétriques
Un groupe est un monoïde

Question 89/90

Groupe cyclique

Réponse 89/90

Groupe monogène fini

Question 90/90

Propriété de
$$\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$$

Réponse 90/90

 \mathbb{F}_p est un corps si et seulement si p est premier