Листок 3

Тема 3(1.3). Первообразные корни

Упражнения и задачи

- 1. Путь p простое, докажите, что $p|\binom{n}{k}$ для $1 \le k < p$.
- 2. Путь p > 2 простое, $l \ge 2$. Докажите, что $\forall a \in \mathbb{Z} \ (1 + ap)^{p^{l-2}} \equiv 1 + ap^{l-1} \ (p^l)$.
- 3. Пусть p > 2 простое, g первообразный корень $\operatorname{mod} p^n$. Докажите, что тогда g первообразный корень $\operatorname{mod} p$.
- 4. Пусть p простое, $p \equiv 1 \pmod 4$. Докажите что g первообразный корень $\pmod p$ $\Leftrightarrow -g$ первообразный корень $\pmod p$.
- 5. Пусть р простое, $p \equiv 3 \pmod 4$. Докажите что g первообразный корень $\pmod p$ $\Leftrightarrow -g$ имеет порядок (p-1)/2.
- 6. Докажите, что 3 первообразный корень простого числа вида $p = 2^n + 1$.
- 7. Пусть p > 2 простое. Докажите, что g первообразный корень $\mod p \Leftrightarrow a^{(p-1)/q} \not\equiv 1(p)$ для всех простых делителей $q \mid p-1$.
- 8. Докажите, что $\prod_{g}'g \equiv (-1)^{\varphi(p-1)}$ (p), где \prod' произведение по всем $0 \leqslant g \leqslant p-1$, g первообразный корень mod p.
- 9. Пусть g первообразный корень $\operatorname{mod} p, d | (p-1)$. Докажите, что $g^{(p-1)/d}$ имеет порядок d, а также что a является d-ой степенью $\Leftrightarrow a \equiv g^{kd}(p)$ для некоторого k.
- 10. Пусть G конечная циклическая группа порядка n, g образующая G. Докажите, что все образующие имеют вид $g^k, \, (k,n)=1.$
- 11. Пусть G конечная абелева группа, a, b элементы порядков m, n соответственно. Докажите, что если (m, n) = 1 то порядок элемента ab равен mn.

SageMath

- Исследуйте основные классы и функции SageMath релевантные материалу лекции:
 - Первообразные корни: primitive_root(), is_primitive_root();
 - Образующие группы единиц: unit_gens();
 - Порядок элемента в кольце вычетов: multiplicative_order();
 - Индекс и дискретный логарифм в кольце вычетов: log();
 - Абелевы группы AbelianGroup(), образующие и порядки gens(), gens_orders().
- Пусть a наименьшее положительное число являющееся первообразным корнем $\operatorname{mod} p$. Постройте частотную таблицу для a, что можно заметить?
- Пусть $a \neq -1$ и не является полным квадратом. Постройте примеры последовательностей простых, для которых a является первообразным корнем (согласно гипотезе Артина таких простых бесконечно много, также можно оценить плотность их распределения).

Темы для самостоятельного изучения

- Вспомните теоремы о гомоморфизмах из курса алгебры.
- Структура группы единиц $U(\mathbb{Z}/2^l\mathbb{Z})$ ([IR, глава 4], [Вин, глава 6]).
- Критерии разрешимости сравнения $x^n \equiv a \pmod{n}$ ([IR, глава 4]).