Partie 3 : Les contraintes fréquentielles

- Comment appliquer les infos numériques sur les signaux physiques qui vont se propager sur un canal de réponse fréquentielle limitée, comment les traiter ?
- Est-ce possible de transmettre les bits sans erreur ? Y a-t-il des limites à respecter ?

Chaîne de transmission : rôle du récepteur

But : trouver à l'instant $t_j = jT + \tau$ la valeur de a_j (bande de base) ou de c_j (modulation) ! τ : délai de transmission + délai pour choisir au mieux t_j (ex : au milieu du symbole)

Réception : démodulation synchrone en réception

- Réalisation simple
- Faisable sur les signaux I et Q , avec les porteuses en phase et en quadrature
- Nécessite de synchroniser la fréquence et la phase de la porteuse (à l'aide de PLLs ...)

Expression des signaux temporels le long de la chaîne : cas de la bande de base

$$S_e(t) = \sum_k a_k f_e(t - kT)$$

$$S_r(t) = S_e(t)$$
 grâce au filtre d'émission

$$y(t) = s_e(t) * h_r(t) = \sum_k a_k (f_e * h_r)(t - kT)$$

$$y(t) = \sum_{k} a_k l(t-kT)$$
 Signal reçu, différent du signal émis !

Signal reçu équivalent d'un signal de type PAM avec une impulsion l(t)

avec
$$l(t) = (g * h_e * h_r)(t)$$

Exemple: IES aux instants d'échantillonnage

Exemple: IES aux instants d'échantillonnage

Exemple: pas d'IES aux instants d'échantillonnage

Influence du filtrage : interférence entre symboles

À l'instant d'échantillonnage $t_j = jT + \tau$:

$$y(t_j) = a_j l(\tau) + \sum_{k \neq j} a_k l(\tau + (j - k)T)$$

=> 2 termes : l'information + l'IES

Limitation de bande fréquentielle => élargissement temporel des signaux émis et donc possibilité d'IES

Suppression possible de l'IES à l'instant d'échantillonnage

critère de Nyquist :
$$\begin{cases} l(\tau + kT) = 0 \\ \forall k \neq 0 \end{cases}$$

Traduction dans le domaine fréquentiel :

$$\sum_{n=-\infty}^{+\infty} L\left(f - \frac{n}{T}\right) = c^{ste}$$

Nyquist (1889-1976)

Critère de Nyquist : traduction dans le domaine fréquentiel

Si bande occupée trop restreinte => Pas fonction constante => Il y a de l'IES!

Critère de Nyquist : traduction dans le domaine fréquentiel

Condition respectée avec fonction constante sur B=D_s/2

<u>Généralisation</u>: nécessité d'avoir $B_{occ} \ge D_s/2$

Fonction en cosinus surélevé : solution de filtrage vérifiant le critère de Nyquist

$$CS_{\alpha}(f) = 1 \quad \text{pour} \quad |f| < \frac{1}{2T}(1-\alpha)$$

$$CS_{\alpha}(f) = \frac{1}{2} - \frac{1}{2} \sin\left[\frac{\pi}{\alpha}(|f|T - 0.5)\right]$$

$$\text{pour} \frac{1}{2T}(1-\alpha) \le |f| \le \frac{1}{2T}(1+\alpha)$$

$$CS_{\alpha}(f) = 0 \quad \text{pour} \quad |f| > \frac{1}{2T}(1+\alpha)$$

 α : 'coefficient d'arrondi du filtre', compris entre 0 et 1

Si L(f)=TF(I(t))=CS_α(f), il n'y a pas d'IES!

(voir forme de l'impulsion temporelle sur diapo précédente)

• Bande occupée = $B_{occ} = (D_S/2) \times (1+\alpha)$

Impulsion associée au filtrage de Nyquist

Avec cette forme particulière d'impulsion l(t) :

A l'instant d'échantillonnage, pas de contribution des symboles voisins, car l(t+kT)=0 pour tout k différent de 0.

=> IES est toujours nulle : le critère de Nyquist bien respecté!

Récapitulatif : signaux dans la chaîne de transmission

Question

Quel débit binaire fait-on passer avec un code en ligne utilisant 128 niveaux, qui occupe une bande fréquentielle de 3,5 MHz de bande passante, en utilisant un filtrage global de Nyquist à coefficient d'arrondi 0,4 ?

- A) 17,5 Mbit/s
- B) 24,5 Mbit/s
- C) 35 Mbit/s
- D) 320 Mbit/s

Construction d'un diagramme de l'œil : ex transmission binaire NRZ

Un outil très utile!

Facile à mesurer

Visualisation sur le diagramme de l'oeil

• influence du filtrage de Nyquist sur le signal y(t) dans le cas d'une transmission sans bruit :

Avec ou sans filtrage?

Avec ou sans filtrage?

Critère de Nyquist : lien bande du canal/débit symboles

Bande de base

<u>Propriété du canal</u>:

Il est possible de ne pas avoir d'IES si l'on fait un filtrage de Nyquist.

Il faut :
$$B \ge B_{occ} = (D_S/2) \times (1+\alpha)$$

$$B_{min} = D_S/2$$
 ou $D_{Smax} = 2B$

Transmission avec modulation

Propriété du canal:

Il est possible de ne pas avoir d'IES si l'on fait un filtrage de Nyquist.

Il faut :
$$B \ge B_{occ} = D_S (1+\alpha)$$

$$B_{min} = D_S \text{ ou } D_{Smax} = B$$

=> Si M↑: + de débit binaire dans la même bande ou moins d'occupation spectrale à débit binaire fixe

Bilan 3

Canal: de bande B limitée pour la transmission

- ⇒ Possibilité de limiter le spectre par filtrage de Nyquist sans perdre d'informations (nature discrète de l'information numérique)
- \Rightarrow connaître lien D_S et bande occupée, débit binaire plus grand si M augmente

Suite: prise en compte du bruit

Canal à bande limitée

À l'instant d'échantillonnage :
$$y(t_j) = a_j l(\tau) + \sum_{k \neq j} a_k l(\tau + (j-k)T) + b(jT + \tau)$$

- => 2 termes perturbateurs : **l'IES + le bruit**
 - 1) Suppression possible de l'IES en respectant le critère de Nyquist
 - 2) Bruit: le supprimer? minimiser son influence?