van der Waerden's theorem Reid Barton June 21, 2005

Theorem 1 (van der Waerden) Let n and k be positive integers. Then there exists a positive integer N such that if the numbers $1, 2, \ldots, N$ are colored in k colors, one color always contains an arithmetic progression of length n.

We will denote the smallest such integer N by W(k, n).

Problem 1 Prove van der Waerden's theorem as follows:

- 1. Show that W(k, 2) = k + 1 for all k.
- 2. Find a bound for W(k,3) in terms of W(k',2), where k' is some function of k.
- 3. In general, find a bound for W(k,n) in terms of W(k',n-1) for some function k' of k and n.

Problem 2 Show that each of the following statements is equivalent to van der Waerden's theorem:

- 1. If k is a positive integer, and the set of all positive integers is colored in k colors, one color always contains arbitrarily long arithmetic progressions.
- 2. If a_0, a_1, \ldots is an infinite sequence of integers satisfying $0 < a_{k+1} a_k < r$ for some fixed r, then the sequence contains arbitrarily long arithmetic progressions.

The best bound currently known for W(k, n) is

$$W(k,n) \le 2^{2^{k^{2^{2^{n+9}}}}};$$

a proof along the lines of Problem 1 will yield a much worse bound.

van der Waerden's theorem also follows from this harder theorem:

Theorem 2 (Szemerédi) Let n be an integer and let $\delta > 0$. Then there exists a positive integer N such that if S is a subset of $\{1, 2, ..., N\}$ with at least δN elements, S always contains an arithmetic progression of length n.

Finally, here is a hard olympiad problem whose proof requires van der Waerden's theorem.

Problem 3 (Iran 2004) For every real number x, define $\langle x \rangle = \min(\{x\}, \{1-x\})$, where $\{x\}$ denotes the fractional part of x. Prove that for every irrational number α and every positive real number ϵ there exists a positive integer n such that $\langle n^2 \alpha \rangle < \epsilon$.