FPGAs, HLS Tools & Runtime Systems

(Super)Advisors: Frederic Desprez, Francois Broquedis, Olivier Muller

Georgios Christodoulis

CORSE-LIG

gchristodoulis @gmail.com

Overview

FPGAs structure

Look-Up Table

Basic Logic Element

Overview

Optimization Using HLS tools

Problem Description

Serial Version

Opt1: Inner Loop Unrolling

Pipeline

FPGAs Structure

LUT

- It is a table that ditermines what the output is for any given input
- A state-less interconnection of any number of gates (no feedback loops)
- Implemented multiplexing a combination of SRAM bits

Figure: 3 stages of 2x1 MUX

FPGAs Structure

LUT Example

$$y = (a+b) \cdot c$$

a b c	у
0 0 0	0
001	0
0 1 0	0
0 1 1	0
100	0
101	1
1 1 0	0
111	1

Figure: $y = (a + b) \cdot c$

FPGAs structure

Figure: Basic Logic Element

FPGAs structure

Overview

Figure: FPGAs Complete Overview

Problem Description

Matrix Multiplication

$$C = A * B$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

$$c_{11}$$
 ... c_{1n}
 \vdots c_{km} \vdots
 c_{n1} ... c_{nn}

No Directives

Opt1: Sum Mul Overlaping

In the scope of this paper it is considered that the clock cycle is adjusted to the execution depth of the multiplication.

Pipeline

Initiation Interval is called the number of cycles between two new iterations.

In this case it is indicated by the time that the addition register is occupied.