$\log n_v$ for N=80, λ_x = 0.6, λ_y =0.6, c_L =0.2, 200 runs, exponent -0.822142769741.

 $\log n_v \text{ for } N{=}80, \, \lambda_x{=}\ 1, \, \lambda_y{=}{-}1, \, c_L{=}0.2, \, 200 \text{ runs, exponent -}1.15803182124.$

 $\log n_v \text{ for } N{=}80, \ \lambda_x{=}\ 0.8, \ \lambda_y{=}\text{-}0.8, \ c_L{=}0.2, \ 200 \text{ runs, exponent -}1.15574018152.$

 $\log n_v \text{ for } N{=}80, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}{-}0.4, \ c_L{=}0.2, \ 200 \text{ runs, exponent -}1.05535261107.$

 $\log n_v \text{ for } N{=}80, \, \lambda_x{=}\ 0.4, \, \lambda_y{=}0.4, \, c_L{=}0.2, \, 200 \text{ runs, exponent -}0.917820013589.$

 $\log n_v \text{ for } N{=}80, \, \lambda_x{=}\ 0.2, \, \lambda_y{=}0.2, \, c_L{=}0.2, \, 280 \text{ runs, exponent -}1.02449145694.$

 $\log n_v$ for N=80, λ_x = 0.6, λ_y =-0.6, c_L =0.2, 200 runs, exponent -1.07077741659.

 $\log n_v$ for $N{=}80, \lambda_x{=}0, \lambda_y{=}0, c_L{=}0.2, 550$ runs, exponent -1.03300859812.

 $\log n_v$ for N=80, λ_x = 0.8, λ_y =0.8, c_L =0.2, 200 runs, exponent -0.75820997227.

 $\log n_v \text{ for } N{=}80, \; \lambda_x{=}\; 1, \; \lambda_y{=}1, \; c_L{=}0.2, \; 200 \text{ runs, exponent -}0.76303140709.$

 $\log n_v$ for $N=32, \lambda_x=0, \lambda_y=0, c_L=0, 450$ runs, exponent -0.779477794876.

 $\log n_v$ for $N=32, \lambda_x=0, \lambda_y=0, c_L=0.2, 700$ runs, exponent -1.06033970716.

 $\log n_v$ for $N{=}32, \lambda_x{=}0, \lambda_y{=}0, c_L{=}0.4, 500$ runs, exponent -1.23320731271.

 $\log n_v$ for $N=40, \lambda_x=0.6, \lambda_y=0.6, c_L=0.2, 300$ runs, exponent -0.843965904774.

 $\log n_v$ for $N{=}40, \lambda_x{=}1, \lambda_y{=}{-}1, c_L{=}0.2, 300$ runs, exponent -1.22855321051.

 $\log n_v \text{ for } N{=}40, \ \lambda_x{=}\ 0.8, \ \lambda_y{=}\text{-}0.8, \ c_L{=}0.2, \ 800 \ \text{runs, exponent -}1.14866515049.$

 $\log n_v$ for $N{=}40$, $\lambda_x{=}$ 0.4, $\lambda_y{=}{-}0.4$, $c_L{=}0.2$, 800 runs, exponent -1.05550783337.

 $\log n_v \text{ for } N{=}40, \, \lambda_x{=}\ 0.4, \, \lambda_y{=}0.4, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}0.928284662001.$

 $\log n_v \text{ for } N{=}40, \, \lambda_x{=}\ 0.2, \, \lambda_y{=}0.2, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}1.01593262191.$

 $\log n_v$ for N=40, $\lambda_x=0.6$, $\lambda_y=-0.6$, $c_L=0.2$, 800 runs, exponent -1.08413671635.

 $\log n_v$ for N=40, λ_x = 0, λ_y =0, c_L =0.2, 1100 runs, exponent -1.0555456675.

 $\log n_v$ for $N=40, \lambda_x=0.2, \lambda_y=-0.2, c_L=0.2, 1000$ runs, exponent -1.05307753965.

 $\log n_v$ for N=40, λ_x = 0.8, λ_y =0.8, c_L =0.2, 300 runs, exponent -0.816213061.

 $\log n_v$ for $N=40, \lambda_x=1, \lambda_y=1, c_L=0.2, 300 \text{ runs}$, exponent -0.810634141459.

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}\ 0.6, \, \lambda_y{=}0.6, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}0.815324000086.$

 $\log n_v \text{ for } N{=}48, \ \lambda_x{=}\ 1, \ \lambda_y{=}{-}1, \ c_L{=}0.2, \ 300 \ \text{runs, exponent -}1.20267548167.$

 $\log n_v$ for N=48, λ_x = 0.8, λ_y =-0.8, c_L =0.2, 400 runs, exponent -1.11755752251.

 $\log n_v \text{ for } N{=}48, \; \lambda_x{=}\; 0.4, \; \lambda_y{=}{-}0.4, \; c_L{=}0.2, \; 300 \text{ runs, exponent -}1.08159082284.$

 $\log n_v \text{ for } N{=}48, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}0.4, \ c_L{=}0.2, \ 600 \ \text{runs, exponent -}0.921039507164.$

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}\ 0.2, \, \lambda_y{=}0.2, \, c_L{=}0.2, \, 500 \text{ runs, exponent -1.01450735356}.$

 $\log n_v \text{ for } N{=}48, \ \lambda_x{=}\ 0.6, \ \lambda_y{=}\text{-}0.6, \ c_L{=}0.2, \ 300 \ \text{runs, exponent -}1.10369317299.$

 $\log n_v$ for $N=48, \lambda_x=0, \lambda_y=0, c_L=0.2, 1300$ runs, exponent -1.03871646676.

 $\log n_v \text{ for } N{=}48, \ \lambda_x{=}\ 0.2, \ \lambda_y{=}{-}0.2, \ c_L{=}0.2, \ 500 \text{ runs, exponent -}1.04178981137.$

 $\log n_v \text{ for } N{=}48, \, \lambda_x{=}~0.8, \, \lambda_y{=}0.8, \, c_L{=}0.2, \, 300 \text{ runs, exponent -}0.786386857724.$

 $\log n_v$ for N=48, λ_x = 1, λ_y =1, c_L =0.2, 300 runs, exponent -0.74760896171.

 $\log n_v \text{ for } N = 104, \ \lambda_x = 0.6, \ \lambda_y = 0.6, \ c_L = 0.2, \ 125 \text{ runs, exponent -0.531120340411}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = \ 1, \ \lambda_y = -1, \ c_L = 0.2, \ 250 \ \text{runs, exponent -1.15954992889}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = \ 0.8, \ \lambda_y = -0.8, \ c_L = 0.2, \ 250 \text{ runs, exponent -1.14889075279}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = \ 0.4, \ \lambda_y = -0.4, \ c_L = 0.2, \ 250 \text{ runs, exponent } -0.980899762345.$

 $\log n_v \text{ for } N = 104, \; \lambda_x = 0.4, \; \lambda_y = 0.4, \; c_L = 0.2, \; 125 \text{ runs, exponent -0.75808671737}.$

 $\log n_v$ for $N=104, \lambda_x=0.2, \lambda_y=0.2, c_L=0.2, 125$ runs, exponent -0.922733115859.

 $\log n_v$ for $N=104, \lambda_x=0.6, \lambda_y=-0.6, c_L=0.2, 250$ runs, exponent -1.0370875468.

 $\log n_v \text{ for } N = 104, \; \lambda_x = 0, \; \lambda_y = 0, \; c_L = 0.2, \; 625 \text{ runs, exponent -0.956854914761}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = \ 0.2, \ \lambda_y = -0.2, \ c_L = 0.2, \ 425 \text{ runs, exponent -0.979686638506}.$

 $\log n_v \text{ for } N = 104, \ \lambda_x = 0.8, \ \lambda_y = 0.8, \ c_L = 0.2, \ 125 \text{ runs, exponent -0.542926420288}.$

 $\log n_v \text{ for } N = 104, \; \lambda_x = 1, \; \lambda_y = 1, \; c_L = 0.2, \; 125 \text{ runs, exponent -0.546662696991}.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = \ 0.6, \ \lambda_y = 0.6, \ c_L = 0.2, \ 750 \text{ runs, exponent -0.816156241876}.$

 $\log n_v$ for N=64, $\lambda_x=1$, $\lambda_y=-1$, $c_L=0.2$, 450 runs, exponent -1.18307993866.

 $\log n_v \text{ for } N = 64, \; \lambda_x = \; 0.8, \; \lambda_y = -0.8, \; c_L = 0.2, \; 400 \text{ runs, exponent -1.12483266935}.$

 $\log n_v \text{ for } N{=}64, \ \lambda_x{=}\ 0.4, \ \lambda_y{=}{-}0.4, \ c_L{=}0.2, \ 450 \text{ runs, exponent -}1.06298722328.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = \ 0.4, \ \lambda_y = 0.4, \ c_L = 0.2, \ 1500 \ \text{runs, exponent -0.901298816454}.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = 0.2, \ \lambda_y = 0.2, \ c_L = 0.2, \ 500 \text{ runs, exponent -1.01123769861}.$

 $\log n_v \text{ for } N = 64, \ \lambda_x = \ 0.6, \ \lambda_y = -0.6, \ c_L = 0.2, \ 400 \text{ runs, exponent -1.04342739512}.$

 $\log n_v$ for $N{=}64, \lambda_x{=}0, \lambda_y{=}0, c_L{=}0.2, 800$ runs, exponent -1.00147869711.

 $\log n_v \text{ for } N = 64, \; \lambda_x = \; 0.2, \; \lambda_y = -0.2, \; c_L = 0.2, \; 500 \text{ runs, exponent -1.03566485444}.$

 $\log n_v \text{ for } N{=}64, \, \lambda_x{=}\ 0.8, \, \lambda_y{=}0.8, \, c_L{=}0.2, \, 350 \text{ runs, exponent -}0.749997025944.$

 $\log n_v$ for $N=64, \lambda_x=1, \lambda_y=1, c_L=0.2, 300 \text{ runs}$, exponent -0.758044066822.

 $\log n_v \text{ for } N = 128, \, \lambda_x = 0.6, \, \lambda_y = 0.6, \, c_L = 0.2, \, 170 \text{ runs, exponent -0.562672945281}.$

 $\log n_v$ for $N=128, \lambda_x=1, \lambda_y=-1, c_L=0.2, 200$ runs, exponent -1.16846895324.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.8, \ \lambda_y = -0.8, \ c_L = 0.2, \ 230 \text{ runs, exponent -1.15284772157}.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.4, \ \lambda_y = -0.4, \ c_L = 0.2, \ 190 \text{ runs, exponent } -0.951750903131.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.4, \ \lambda_y = 0.4, \ c_L = 0.2, \ 300 \ \text{runs, exponent -0.806862400831}.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = 0.4, \ \lambda_y = 0.4, \ c_L = 0.4, \ 100 \text{ runs, exponent -1.01559240812}.$

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.2, \ \lambda_y = 0.2, \ c_L = 0.4, \ 100 \text{ runs, exponent -1.13772872587}.$

 $\log n_v$ for $N=128, \lambda_x=0.2, \lambda_y=0.2, c_L=0.2, 375$ runs, exponent -0.919855838339.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.6, \ \lambda_y = -0.6, \ c_L = 0.2, \ 220 \text{ runs, exponent -0.983935860729}.$

 $\log n_v \text{ for } N = 128, \; \lambda_x = 0, \; \lambda_y = 0, \; c_L = 0.2, \; 450 \text{ runs, exponent -0.995271579897}.$

 $\log n_v$ for N=128, $\lambda_x=0$, $\lambda_y=0$, $c_L=0.4$, 200 runs, exponent -1.07510823897.

 $\log n_v \text{ for } N = 128, \ \lambda_x = \ 0.2, \ \lambda_y = -0.2, \ c_L = 0.2, \ 250 \text{ runs, exponent } -0.97079956057.$

 $\log n_v \text{ for } N = 128, \, \lambda_x = 0.8, \, \lambda_y = 0.8, \, c_L = 0.2, \, 140 \text{ runs, exponent -0.509268934531}.$

 $\log n_v$ for $N=128, \lambda_x=1, \lambda_y=1, c_L=0.2, 160$ runs, exponent -0.523938941411.

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0.6, \ \lambda_y{=}0.6, \ c_L{=}0.2, \ 160 \text{ runs, exponent -}0.709815856904.$

 $\log n_v \text{ for } N{=}72, \, \lambda_x{=}\ 1, \, \lambda_y{=}{-}1, \, c_L{=}0.2, \, 200 \text{ runs, exponent -}1.11745984942.$

 $\log n_v$ for $N=72, \lambda_x=0.8, \lambda_y=-0.8, c_L=0.2, 260$ runs, exponent -1.10102882536.

 $\log n_v$ for $N=72, \lambda_x=0.4, \lambda_y=-0.4, c_L=0.2, 400$ runs, exponent -1.04831806189.

 $\log n_v$ for $N=72, \lambda_x=0.4, \lambda_y=0.4, c_L=0.2, 200$ runs, exponent -0.884744029286.

 $\log n_v \text{ for } N = 72, \ \lambda_x = \ 0.2, \ \lambda_y = 0.2, \ c_L = 0.2, \ 260 \text{ runs, exponent -0.967707944188}.$

 $\log n_v$ for N=72, λ_x = 0.6, λ_y =-0.6, c_L =0.2, 250 runs, exponent -1.08531618405.

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0, \ \lambda_y{=}0, \ c_L{=}0.2, \ 800 \ \text{runs, exponent -}1.00593685612.$

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0.2, \ \lambda_y{=}{-}0.2, \ c_L{=}0.2, \ 400 \text{ runs, exponent -}1.01689597025.$

 $\log n_v \text{ for } N{=}72, \ \lambda_x{=}\ 0.8, \ \lambda_y{=}0.8, \ c_L{=}0.2, \ 200 \ \text{runs, exponent -}0.773718127934.$

 $\log n_v$ for $N=72, \lambda_x=1, \lambda_y=1, c_L=0.2, 200$ runs, exponent -0.726712775674.

