MATH3075/3975 Financial Derivatives

Tutorial 2: Solutions

Exercise 1 It suffices to sketch the graphs of functions representing the portfolio payoff as a function of the terminal price S_T , which may take any nonnegative value.

(a) $X_1 = f_1(S_T) = S_T + (K - S_T)^+$ (the initial value should be strictly positive)

(b) $X_2 = f_2(S_T) = -S_T + (S_T - K)^+$ (the initial value should be strictly negative)

(c) $X_3 = f_3(S_T) = (K_1 - S_T)^+ - (S_T - K_2)^+$ (the sign of the initial value is undetermined)

(d) $X_4 = f_4(S_T) = (K_2 - S_T)^+ + (S_T - K_1)^+$ (the initial value should be strictly positive)

(e) $X_5 = f_5(S_T) = (S_T - K_1)^+ - (S_T - K_2)^+$ (the initial value should be strictly positive)

Exercise 2 (a) We note that the portfolio's payoff at time T equals

$$X = S_T - C_T(K_1) + C_T(K_2) = S_T - (S_T - K_1)^+ + (S_T - K_2)^+$$
(1)

where $0 < K_1 < K_2$. Hence the payoff X at time T is strictly positive for every value of $S_T > 0$. Therefore, the price $\pi_0 = S_0 - C_0(K_1) + C_0(K_2)$ paid for the portfolio at time 0 should be strictly positive (but less than S_0 since $X \le S_T$ for $S_T \ge 0$) and the profits/losses at time T satisfy

$$P\&L = S_T - (S_T - K_1)^+ + (S_T - K_2)^+ - \pi_0.$$
(2)

- (b) the maximum loss occurs when $S_T = 0$ and equals $-\pi_0$. The maximum profit equals $+\infty$ when $S_T \to +\infty$, that is, the profit is unlimited. The unique break even point is $S_T = \pi_0$.
- (c) We assume that S_T may take any nonnegative value. Then profits and losses occur at time T whenever the following inequality holds $\pi_0 = S_0 C_0(K_1) + C_0(K_2) > 0$, that is, if $S_0 > C_0(K_1) C_0(K_2)$. Since $K_1 < K_2$, we also expect that $C_0(K_1) > C_0(K_2)$ since $C_T(K_1) \ge C_T(K_2)$ and $C_T(K_1) > C_T(K_2)$ for $S_T > K_1$. Hence, assuming that S_0 is known, we obtain the following conditions $0 < C_0(K_1) C_0(K_2) < S_0$.
- (d) The view of the investor is bullish.
- (e) One can perform an analysis similar to (a)-(d), by noting that we now have

$$X = S_T - 2C_T(K_1) + C_T(K_2) = S_T - 2(S_T - K_1)^+ + (S_T - K_2)^+.$$
(3)

Exercise 3 We consider the portfolio with the payoff

$$X = -C_T(K_1) - 2C_T(K_2) = -(S_T - K_1)^+ - 2(S_T - K_2)^+$$
(4)

with the strictly positive price $\pi_0 = C_0(K_1) + 2C_0(K_2) > 0$ received at time 0, which becomes $(1+r)\pi_0$ at time T. Hence the profits/losses at time T are given by

$$P\&L = (1+r)\pi_0 - C_T(K_1) - 2C_T(K_2) = (1+r)\pi_0 - (S_T - K_1)^+ - 2(S_T - K_2)^+.$$
 (5)

(a) Suppose that at time 0 we buy/short α shares of stock S (notice that $\alpha > 0$ means that we buy shares and $\alpha < 0$ means that we sell short shares). Then the initial and terminal values of the combined portfolio become $-\alpha S_0 + C_0(K_1) + 2C_0(K_2)$ and $\alpha S_T - C_T(K_1) - 2C_T(K_2)$, respectively. If an investor wishes to make profits when S_T is in the interval (K_1, K_2) then he/she should take $\alpha = 1$, that is, buy one share of the stock S.

(b) If we buy one share of the stock S at time 0, then the maximum profit at time T will be $K_1 + (1+r)\pi_0 - (1+r)S_0$ when $S_T \in (K_1, K_2)$. The loss in unlimited when S_T tends to infinity. Break even points are $S_T = (1+r)(S_0 - \pi_0)$ and $S_T = 0.5(K_1 + 2K_2 + (1+r)(\pi_0 - S_0))$.

(c) Since the maximum profit equals $K_1 + (1+r)\pi_0 - (1+r)S_0$, it is strictly positive whenever $S_0 < \pi_0 + (1+r)^{-1}K_1$.

Exercise 4 Recall that 0 < L < K are arbitrary real numbers. It is easy to sketch the graph of the payoffs $X = \min(|S_T - K|, L)$ and $Y = \max(|S_T - K|, L)$ as a function of the stock price S_T .

(a) The decomposition of X in terms of long/short positions in standard call options combined with a constant payoff L is

$$X = L - C_T(K - L) + 2C_T(K) - C_T(K + L).$$

Notice that other decompositions of the payoff X are possible (for instance, if we include in our portfolio long/short positions in the put option $P_T(K)$ and the stock S_T).

(b) From the law of one price, we deduce that the price of X at time $t \in [0,T]$ satisfies

$$\pi_t(X) = LB(t,T) - C_t(K-L) + 2C_t(K) - C_t(K+L).$$

(c) The method is analogous to the case of the payoff X. The decomposition of Y in terms of long/short positions in standard call and put options reads

$$Y = P_T(K) + C_T(K - L) - C_T(K) + C_T(K + L)$$

so that the price of Y at time $t \in [0, T]$ satisfies

$$\pi_t(Y) = P_t(K) + C_t(K - L) - C_t(K) + C_t(K + L).$$

Exercise 5 (a) It suffices to generalise the approach used in Exercise 4 by first mimicking the payoff function on the interval $[K_0, K_1] = [0, K_1]$. Then the 'initial portfolio' should be adjusted by a suitable number of long/short positions of call options with strikes $K_1, K_2, \ldots, K_{n-1}$ to match the slope of the payoff on each interval $[K_i, K_{i+1}]$ for $i = 1, 2, \ldots, n-1$. As soon as the portfolio in the first step is chosen, the solution to the second step (that is, when we consider the interval $[K_1, \infty)$) is unique.

- (b) It suffices to apply the law of one price to your solution to part (a).
- (c) Since the payoff X is already known at time T, its price at time $t \in [T, U]$ equals $\pi_t(X) = B(t, U)g(S_T)$. Hence before time T, the price satisfies, for every $t \in [0, T]$,

$$\pi_t(X) = \pi_t(B(T, U)g(S_T)) = B(T, U)\pi_t(g(S_T))$$

where the second equality holds only under the assumption that B(T,U) is deterministic (for instance, $B(T,U) = e^{-r(U-T)}$ if the continuously compounded short-term rate is constant). Notice that our approach hinges on the 'backward induction' argument.

Basic Options Strategies

Bullish Strategies

Neutral Strategies

Bearish Strategies

