# ECON 6170 Section 1

TA: Patrick Ferguson

August 30, 2024

➤ Email: pcf44

➤ Office: Uris Hall 445

➤ Section classroom: Uris Hall 202

➤ Office hours:

Monday 4.15-5.15pm Thursday 5.30-6.30pm<sup>1</sup>

Other times available by appointment

## Introduction

Sections will primarily focus on reviewing difficult questions from the most recent problem set, and difficult topics from the most recent lectures. I will also include original "Section Exercises" that are similar in style to problem-set and exam questions. Where possible, these will include actual past exam questions.

**Exercise 7.** Let S and T be nonempty and bounded subsets of  $\mathbb{R}$ . TFU:

$$\sup(S \cup T) = \max\{\sup S, \sup T\}$$

**Solution.** True. WLOG, let  $\sup S \ge \sup T$ . Then for any  $s \in S$ , we have  $\sup S \ge s$ . Moreover, for any  $t \in T$ , we have  $\sup S \ge \sup T \ge t$ . Therefore, for any x in  $S \cup T$ , we have  $\sup S \ge x$ . Thus,  $\sup S$  is an upper bound for  $S \cup T$  and we need only show that it is the least such upper bound. Let u be an arbitrary upper bound for  $S \cup T$ . Then u must also be an upper bound for S. But then, by definition,  $\sup S \le u$ . Since u is an arbitrary upper bound of  $S \cup T$ , this means that  $\sup S$  is the least upper bound of  $S \cup T$ .

**Section Exercise 1.** Use proof by induction and Exercise 7 to show that if  $\{S_i \mid i = 1, 2, ..., N\}$ ,  $N \in \mathbb{N}$  is a collection of nonempty and bounded subsets of  $\mathbb{R}$ , then

$$\sup \left(\bigcup_{i=1}^{N} S_i\right) = \max\{\sup S_i \mid i = 1, \dots, N\}$$

<sup>&</sup>lt;sup>1</sup>Changed to avoid clash with Tak's OH.

## Solution.

This is trivially true for N = 1, and Exercise 7 proves it for N = 2. Suppose that it's also true for some natural number  $N - 1 \ge 2$ . That is,

$$\sup\left(\bigcup_{i=1}^{N-1} S_i\right) = \max\{\sup S_i \mid i = 1, \dots, N-1\}$$

$$\tag{1}$$

We want to show that it must then be true for *N*. Write

$$\sup \left(\bigcup_{i=1}^{N} S_i\right) = \sup \left(\bigcup_{i=1}^{N-1} S_i \cup S_N\right)$$

$$= \max \left\{\sup \left(\bigcup_{i=1}^{N-1} S_i\right), \sup S_N\right\}$$

$$= \max \left\{\max \left\{\sup S_i \mid i = 1, \dots, N-1\right\}, \sup S_N\right\}$$

$$= \max \left\{\sup S_i \mid i = 1, \dots, N\right\}$$

where the second equality uses Exercise 7, and the third equality uses our induction hypothesis (1).<sup>2</sup>

**Problem 1.** Let *A* and *B* be nonempty subsets of  $\mathbb{R}$ . Define  $A + B := \{a + b \mid a \in A \text{ and } b \in B\}$ , and define A - B similarly. Show the following:

- 1. sup(A + B) = sup(A) + sup(B)
- $2. \sup(A B) = \sup(A) \inf(B)$

### Solution.

1. Suppose  $x \in A + B$ . Then x = a + b for some  $a \in A, b \in B$ , implying  $a \le \sup A$  and  $b \le \sup B$ . Thus  $x \le \sup A + \sup B$ . This implies  $\sup A + \sup B$  is an upper bound of A + B, and so  $\sup(A + B) \le \sup A + \sup B$ .

Conversely, say  $\sup A + \sup B > \sup(A + B)$ .

First, assume that both A and B are bounded above. Then  $\sup A > \sup(A+B) - \sup B$  implying that there exists an  $a \in A$  such that  $a > \sup(A+B) - \sup B$ . Therefore,  $\sup B > \sup(A+B) - a$ . It follows that there must exist some  $b \in B$  such that  $b > \sup(A+B) - a$ . This implies that there exists  $a \in A$  and  $b \in B$  such that  $a + b > \sup(A+B)$ , contradicting the definition of  $\sup(A+B)$ .

Now, suppose that one of A or B has no upper bound. WLOG, say  $\sup A = \infty$ . Then, because  $B \neq \emptyset$ , we have  $\sup B > -\infty$ , and so  $\sup A + \sup B = \infty$ . Furthermore, if for all  $M \in \mathbb{R}$ , we can find an  $a \in A$  such that a > M, then, fixing some  $b \in B$ , we can find some  $a + b \in A + B$  such that a + b > M + b. Because M is arbitrary, this proves unboundedness of A + B above, so  $\sup A + B = \infty$ .

(Skip this in section.) 2. Define  $-B := \{-x \in \mathbb{R} \mid x \in B\}$ .

The fourth equality uses  $\max\{x_1, \dots, x_K\} = \max\{\max\{x_1, \dots, x_{K-1}\}, x_K\}$ . I consider this obvious enough not to warrant proof, but it can be proven by an induction argument using the definition of a maximum.

First, suppose that B is bounded below, or equivalently, -B is bounded above. This implies that A - B = A + (-B) and  $\sup(A - B) = \sup A + \sup(-B)$  by part 1. The supremum of -B is defined by  $\sup(-B) \ge -x$  for all  $x \in B$  and  $\sup(-B) \le m$ , for all upper bounds, m, of -B. Equivalently,  $-\sup(-B) \le x$  for all  $x \in B$  and  $-\sup(-B) \ge -m$ , for all lower bounds, -m, of B. But this is just the definition of the infimum of B, so  $\inf B = -\sup(-B)$ . Thus,  $\sup(A - B) = \sup A - \inf B$ .

Now, suppose B is unbounded below. Then  $\inf B = -\infty$ , so  $-\inf B = -(-\infty) = \infty$ . Therefore  $\sup A - \inf B = \infty$ . Because B is unbounded below, for any  $M \in \mathbb{R}$ , we can find some  $b \in B$  such that b < -M. Equivalently, -b > M. Then, fixing some  $a \in A$ , we can find an  $a - b \in A - B$  such that a - b > a + M. This proves unboundedness of A - B above, so  $\sup(A - B) = \infty$ .

**Remark 1.** Note that we can only say there exists  $a \in A$  satisfying  $\sup A - \epsilon < a < \sup A$  if  $\sup A$  is finite. If  $\sup A$  were infinite, we would be saying  $\infty < a < \infty$ , which doesn't make sense.

**Remark 2.** If *A* was empty and *B* unbounded above, we would have  $\sup A + \sup B = -\infty + \infty$ , which is undefined.<sup>3</sup> Hence, the nonemptiness restriction in the question.

**Section Exercise 2.** Let  $(a_n)$  and  $(b_n)$  be two sequences and define  $\sup x_n := \sup\{x_n \mid n \in \mathbb{N}\}$ . Prove that  $\sup(a_n + b_n) \le \sup a_n + \sup b_n$ , and give an example to show that the inequality may hold strictly. Compare with the previous problem.

Let  $x_k = a_k + b_k$  for some k. Then  $x_k \le \sup a_n + \sup b_n$ . This implies  $\sup a_n + \sup b_n$  is an upper bound of  $(x_n) = (a_n + b_n)$ , so  $\sup(a_n + b_n) \le \sup a_n + \sup b_n$ . The reverse inequality does not hold. Consider the sequences  $(a_n) = (-1, 1, -1, 1, -1, \dots)$  and  $(b_n) = (1, -1, 1, -1, 1, \dots)$ , which have

$$\sup(a_n + b_n) = \sup 0 = 0 < 2 = \sup a_n + \sup b_n$$

The key difference from the previous problem is that sequence addition is defined for corresponding entries, giving  $\sup(a_n + b_n) = \sup\{a_n + b_n \mid n \in \mathbb{N}\}$ . Whereas set addition<sup>4</sup> entails addition of each element of one set with every element of the other. If we added the sequences as sets of values, we would get  $\sup\{a_n + b_m \mid n, m \in \mathbb{N}\}$ , which is potentially larger than the previous expression.

**Problem 2.** Let *A* and *B* be nonempty sets, and let  $f : A \times B \to \mathbb{R}$  be some real valued function.

1. Show that

$$\sup_{a\in A}\inf_{b\in B}f(a,b)\leq\inf_{b\in B}\sup_{a\in A}f(a,b).$$

2. Give an  $f:[0,1]^2 \to \mathbb{R}$  for which the above inequality is strict.

Note: For a real valued function, f, on a nonempty set, S,  $\sup_{x \in S} f(x) \equiv \sup\{f(x) | x \in S\}$ .

**Remark 3.** Note that  $\sup_{a \in A} f(a, b) = \sup\{f(a, b) \mid a \in A\}$  depends on b. However, if we plug in a specific b, it is unique. Therefore, we can think of  $\sup_{a \in A} f(a, b)$  as a function of b, call it  $g : B \to \mathbb{R}$ . Then  $\inf_b \sup_a f(a, b) = \inf_b g(b) = \inf\{g(b) \mid b \in B\}$ .

<sup>&</sup>lt;sup>3</sup>Intuitively, this means that the limit of the sum of two sequences, one diverging to  $\infty$  and the other diverging to  $-\infty$  could equal any number in  $\mathbb{R} \cup \{\infty, -\infty\}$  or may not even exist, depending on the particular sequences being added.

<sup>&</sup>lt;sup>4</sup>Formally, Minkowski addition.

## Solution to problem:

1. Suppose

$$\sup_{a \in A} \inf_{b \in B} f(a,b) > \inf_{b \in B} \sup_{a \in A} f(a,b)$$

Then there must exist  $\bar{a} \in A$  such that

$$\inf_{b \in B} f(\bar{a}, b) > \inf_{b \in B} \sup_{a \in A} f(a, b) \tag{2}$$

(For otherwise  $\sup_{a \in A} \inf_{b \in B} f(a, b)$  would not be the supremum of  $\{\inf_{b \in B} f(a, b) \mid a \in A\}$ ). But (2) is false as

$$f(\bar{a},b) \in \{f(a,b) \mid a \in A\}$$

SO

$$\sup_{a \in A} f(a, b) \ge f(\bar{a}, b) \text{ for all } b \in B$$

hence<sup>5</sup>

$$\inf_{b \in B} \sup_{a \in A} f(a, b) \ge \inf_{b \in B} f(\bar{a}, b)$$

This proves

$$\sup_{a \in A} \inf_{b \in B} f(a, b) \le \inf_{b \in B} \sup_{a \in A} f(a, b)$$

by contradiction.

2. There are many possible counterexamples.<sup>6</sup> For example, if  $f:[0,1]^2 \to \mathbb{R}$  is given by  $f(a,b)=(a-b)^2$  then

$$\sup_{a \in A} (a - b)^2 = \begin{cases} (1 - b)^2 & \text{if } b < \frac{1}{2} & (\text{set } a = 1) \\ b^2 & \text{if } b \ge \frac{1}{2} & (\text{set } a = 0) \end{cases}$$

This implies  $\inf_{b \in B} \sup_{a \in A} (a - b)^2 = (1/2)^2 = 1/4$ . On the other hand,

$$\inf_{b \in B} (a - b)^2 = 0 \text{ for all } a \in A \quad \text{ (set } b = a\text{)}$$

Therefore,

$$\sup_{a \in A} \inf_{b \in B} (a - b)^2 = 0 < 1/4 = \inf_{b \in B} \sup_{a \in A} (a - b)^2$$

<sup>5</sup>Lemma:  $g(x) \le h(x)$  for all  $x \in X$  implies  $\inf_{x \in X} g(x) \le \inf_{x \in X} h(x)$ . Proof: Suppose not. Then  $\inf_{x \in X} g(x) > \inf_{x \in X} h(x)$ , so there exists  $\overline{x}$  such that  $\inf_{x \in X} g(x) > h(\overline{x})$ . But then  $g(\overline{x}) > h(\overline{x})$ , a contradiction.

 $<sup>^{6}</sup>f(x,y) = \mathbf{1}\{x = y\}$  is a simple one.



From the remark,  $\sup_{a\in A} f(a,b)$  is a function of b, and  $\inf_{b\in B} f(a,b)$  is a function of a. We know that  $f(a,b)=(a-b)^2$  is minimised with respect to b by choosing b=a. Graphically, this is the  $45^\circ$  line through the origin on the contour plot. Whereas f(a,b) is maximised with respect to a by choosing  $a=1\{a<1/2\}$ . On the contour plot, this is a vertical line between (0,1) and  $(0,\frac{1}{2})$ , and a second vertical line between  $(1,\frac{1}{2})$  and (1,0).