CLAIMS

What we claim is:

- 1 1. A device module comprising: 2 a board; 3 a plurality of devices mounted to the board; 4 a first set of contact points provided adjacent a first side of the board for 5 connecting to a first data bus; 6 a second set of contact points provided adjacent to a second side of the board for 7 connecting to a second data bus; 8 a plurality of signal paths provided on the board, each signal path extending 9 between a first contact point in the first set and a second contact point in the second set; 10 wherein each of the plurality of signal paths has substantially an identical length 11 and a same number of turns on the board.
- 1 2. The device module of claim 1, wherein each of the plurality of signal paths
- 2 includes a number of turns that is less than or equal to two.
- 1 3. The device module of claim 1, wherein the board includes a bottom edge that is
- 2 configured to be edge-mounted to a substrate, and wherein one of the first set of contact
- 3 points for at least some of the plurality of signal paths is provided adjacent to the bottom
- 4 edge and proximate to one of the lateral sides, and wherein for each of the contact points
- 5 provided adjacent to the bottom edge and proximate to one of the lateral sides, a
- 6 corresponding signal path has two turns on the board.
- 1 4. The device module of claim 1, wherein the board includes a bottom edge that is
- 2 configured to be edge-mounted to a substrate, and a pair of lateral sides that extend from
- 3 the bottom edge, and wherein each contact point in the first set of contact points is
- 4 provided on or adjacent to one of the lateral sides, and wherein for each contact point in

- 5 the first set, a corresponding signal path extends to a corresponding contact point in the
- 6 second set, and wherein said corresponding signal path has less than two turns on the
- 7 board.
- 1 5. The device module of claim 4, wherein for each contact point in the first set, the
- 2 corresponding signal path that extends to the corresponding contact point in the second
- 3 set has zero turns on the board.
- 1 6. The device module of claim 1, wherein at least some of the plurality of
- 2 components are memory devices.
- 1 7. A system for providing high-speed interconnectivity between a controller and a
- 2 plurality of memory devices, the system comprising:
- a set of one or more boards upon which the plurality of memory devices are
- 4 provided, wherein the set includes at least a first board on which at least some of the
- 5 plurality of memory devices are provided;
- a plurality signal paths provided on the first board, wherein each signal path in the
- 7 plurality of signal paths includes a first set of contact points that interconnect the first
- 8 board to the controller from a position that is proximate to a first lateral side of the first
- 9 board, and a second set of contact points that interconnect the board to another
- 10 component from another position that is proximate to a second lateral side of the first
- board, and wherein each of the plurality of signal paths has a substantially identical
- length and an identical number of turns between a contact point in the first set of contact
- points and a contact point in the second set of contact points; and
- a bus connected to the first set of contact points and communicatively coupled to
- 15 the controller.
- 1 8. The system of claim 7, wherein the bus is provided through a flex cable.

- 1 9. The system of claim 8, wherein an end of the flex cable is directly connected to
- 2 the controller.
- 1 10. The system of claim 7, wherein the first board is edge-mounted to a motherboard
- 2 on a bottom side, and wherein a contact point in the first set of contact points for at least
- 3 some of the plurality of signal paths is provided adjacent to a bottom edge, and wherein
- 4 for each contact point provided adjacent to the bottom edge, the signal path of that
- 5 contact point has two turns on the board.
- 1 11. The system of claim 7, wherein the first set of contact points and the second set of
- 2 contact points are positioned on the first board so that the signal path extending between a
- a contact point in the first set of contact points and a contact point in the second set of
- 4 contact points has less than two turns on the board.
- 1 12. The system of claim 7, wherein the first set of contact points and the second set of
- 2 contact points are positioned on the first board so that the signal path extending between a
- 3 contact point in the first set of contact points and a contact point in the second set of
- 4 contact points has zero turns on the board.
- 1 13. The system of claim 7, further comprising a motherboard upon which the
- 2 controller and the set of one or more boards are mounted, and wherein the bus is external
- 3 to the motherboard.
- 1 14. The system of claim 7, wherein the first board is connected to a second board in
- 2 the set via a second bus provided on a flex cable.
- 1 15. The system of claim 14, wherein the first board and the second board are each
- 2 mounted to a motherboard.

3

16.

1

2	comprising:
3	a first segment;
4	a second segment;
5	an opening formed between the first segment and the second segment, wherein the
6	opening is dimensioned to receive the substrate;
7	wherein at least one of the first segment and the second segment includes a
8	plurality of connector members, each of the at least one connector members being
9	positioned to extend electrical contact from a point on the substrate to a tip of that
10	connector member that extends into the opening;
11	wherein each of the at least one of the plurality of connector elements has a
12	majority of its length be substantially linear and is angled with respect to a plane of the
13	substrate.
1	17. The connector of claim 16, wherein a substantial portion of the at least one of the
2	plurality of connector elements is linear.
1	18. The connector of claim 16, wherein a substantial portion of the at least one of the
2	plurality of connector elements between 20 and 70 degrees with respect to the plane of
3	the substrate.
	, .
1	19. The connector of claim 16, wherein a substantial portion of the at least one of the
2	plurality of connector elements between 30 and 60 degrees with respect to the plane of
3	the substrate.
4	
5	20. The connector of claim 16, wherein a substantial portion of the at least one of the
6	plurality of connector elements between 45 degrees with respect to the plane of the
7	substrate.

A connector for edge-mounting a module device to a substrate, the connector

1	21. A system for providing high-speed interconnectivity between a controller and a
2	plurality of memory devices, the system comprising:
3	a board upon which the plurality of memory devices are provided;
4	a connector that couples the board to a substrate, wherein the connector
5	comprises:
6	a first segment;
7	a second segment;
8	an opening formed between the first segment and the second segment,
9	wherein the opening is dimensioned to receive the substrate;
10	wherein at least one of the first segment and the second segment includes
11	plurality of connector members, each of the at least one connector members beir
12	positioned to extend electrical contact from a point on the substrate to a tip of th
13	connector member that extends into the opening;
14	wherein each of the at least one of the plurality of connector elements ha
15	a majority of its length be substantially linear and is angled with respect to a plan
16	of the substrate;
17	and wherein the connector extends communications from the controller to the
18	board.
1	22. The connector of claim 21, wherein the connector includes a mechanism for
2	extending a bus embedded within a cable from the controller to the board.