

Search For Self-Interacting Dark Matter With Displaced Lepton Jets Lepton Jet Reconstruction Efficiency

Sam Bright-Thonney⁰, Xuan Chen⁰, Jose Monroy⁰, Julia Thom⁰, Valentina Dutta⁰, Kyungmin Park¹, Manfred Paulini¹, Bo Jayatilaka², Murtaza Safdari², Sunil Dogra³, Dongyub Lee³, Chang-Seong Moon³, Andre Frankenthal⁴, Gail Hanson⁵, Joaquin Siado Castaneda⁶, Daniel Claes⁶, Grace Haza⁶, Bryan Cardwell⁷, Maria Jose⁷, Reshma Menon R⁷, Chris Neu⁷, Carter Patten⁷. Allie Hall^{2,8}

December 23, 2024

Outline

- SIDM Model
- 2 Lepton Jets (LJs)
- 3 LJ Reconstruction Efficiency Definition
- 4 Lepton Collimation
- $f 9 \ e\gamma$ LJ Reconstruction Efficiency
- \bullet μ LJ Reconstruction Efficiency
- Conclusion

Self Interacting Dark Matter (SIDM) Model

- ① Light $Z_d o \mathsf{Boosted}\ Z_d$
- ② Small Z_d SM Coupling → Long-Lived Z_d
- 3 Displaced decays of boosted $Z_d
 ightarrow$ Displaced, collimated leptons (Displaced Lepton Jets (LJs))

Free Parameters:

- Bound state mass (m_B)
- ullet Dark photon mass (m_{Z_d})
- ullet Kinetic mixing between Z_d and SM, ϵ

Signal:

- \bullet m_B ϵ [100, 150, 200, 500, 800, 1000] GeV
- $m_{Z_d} \ \epsilon \ [0.25, \ 1.2, \ 5] \ {\sf GeV}$
- \bullet Z_d L_{xy} ϵ [0.3, 3, 30, 150, 300] cm

Final states : $2\mu 2e$ or 4μ

Lepton Jets (LJs)

Isolation

Loose

Loose

None

None

- Group of collimated leptons in a tight cone.
- We apply anti- k_T clustering ($\Delta R = 0.4$) to PF e, PF γ , PF μ and DSA μ .

 $\eta <$

2.4

Conditions to reconstruct an LJ:

•
$$|\eta| < 2.4$$

•
$$p_T > 30 \text{ GeV}$$

$$\sum_{\mu} Q_{\mu} = 0$$
 (to prevent b-quark cascade decays)

Events Categories:

Object Cuts

PF e

 $PF \gamma$

PF μ

DSA μ

Categories of LJs:

•
$$e\gamma$$
 $(N_{\mu}=0)$

•
$$\mu (N_{\mu} > = 1)$$

arches Garcyonesi

- 4μ : 2 μ -type LJs
- $2\mu 2e$: 1 $e\gamma$ -type LJ and 1 $\mu-$ type LJ

 $p_T >$

10 GeV

20 GeV

5 GeV

10 GeV

ID

Loose

Loose

Loose

DSA

Lepton Jet (LJ) Reconstruction Efficiency

What fraction of the Z_d decays can we reconstruct as Lepton Jets?

$$\mathsf{Efficiency} = \frac{\mathsf{Number\ of\ } Z_d \mathsf{s\ with\ } \Delta \mathsf{R}(Z_d,\ \mathsf{LJ}) < 0.4}{\mathsf{Total\ number\ of\ } Z_d \mathsf{s}}$$

- We study this w.r.t various parameters and cuts.
- We consider $Z_d \rightarrow ee$ $(e\gamma$ LJ) and $Z_d \rightarrow \mu\mu$ $(\mu$ LJ) separately, as they behave differently in the detector.
- In the figure, the numerator is $Z_d \rightarrow ee$ with $e\gamma$ LJ nearby, and the denominator is $Z_d \rightarrow ee$.

Parameters Considered

We are considering a wide range of L_{xy} , a wide range of lepton p_T , and a wide range of lepton collimation, including extremely collimated final states.

Therefore, to get an idea about the LJ reconstruction efficiency in that whole space, we consider the following parameters:

- \bullet $Z_d p_T$
- \bullet Z_d L_{xy}
- $\Delta R(Leptons)$

These variables are highly correlated; we are trying to understand the efficiency while accounting for their correlation.

Lepton Collimation

- ullet Both m_B and m_{Z_d} affect the collimation of the leptons.
- ullet For fixed m_B , smallest m_{Z_d} has the highest collimation.

$$m_{z_d} = 0.25 \text{ GeV} \longrightarrow \text{More collimated.}$$
 $m_{z_d} = 5 \text{ GeV} \longrightarrow \text{Less collimated.}$

To learn more about kinematics, refer to the previous talk's slides here

$e\gamma$ Lepton Jet Reconstruction Efficiency

- We see a sharp turn-on at 30 GeV, the cut on p_T we applied on the LJs.
- For more collimated leptons, efficiency is more or less constant after $p_T > 30$ GeV.
- For less collimated leptons, as the p_T increases, the efficiency increases.
- Overall lower efficiency for the less collimated leptons.

$Z_d L_{xy}$

- Efficiency extends to the end of ECAL and is basically flat in the more collimated case.
- Efficiency in the somewhat displaced region drops as the collimation decreases (reason for overall low efficiency in the less collimated sample).
- Current electron ID limits the electron reconstruction to only few cms.
- ullet We are good at reconstructing the Z_d decays as photons if the decay happens in ECAL or electrons are more collimated. Other displaced decays are more likely to fail the electron/photon ID.

$$\Delta \mathsf{R}(e_0^{gen}, e_1^{gen})$$

- We see non-zero efficiency in the whole range of ΔR .
- ullet Efficiency is not changing much as a function of ΔR .
- ullet Overall lower efficiency for less collimated electrons as we saw earlier in the L_{xy} plot.

Note: The x ranges are different in these plots

$\Delta R(e_0^{gen}, e_1^{gen})$ and Z_d L_{xy}

- High efficiency at low ΔR , high L_{xy} Region.
- ullet If the L_{xy} is bigger than a few cms, we cannot reconstruct them as electrons. If the electrons are too far apart, we fail to identify them as photons.

We will try to improve this efficiency by changing the electron/photon ID!

μ Lepton Jet Reconstruction Efficiency

- We see a sharp turn-on at 30 GeV, the cut on p_T we applied on the LJs.
- After the turn-on, efficiency slightly decreases as the p_T increases for both cases.
- Overall lower efficiency at higher p_T for more collimated muons (we suspect it's due the correlation with collimation).

$Z_d L_{xy}$

- We have efficiency for a wide range of L_{xy} .
- ullet Efficiency extends to higher L_{xy} for the less collimated muons.
- There is a drop in the efficiency at the transition point of PF to DSA for the more collimated sample. We suspect it is due to failure in PF-DSA cross-cleaning/duplicate removal.

$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$

- We see non-zero efficiency in the entire range of ΔR .
- No strong dependence on ΔR , but interesting trend which we can explore more through 2D Efficiency.

Note: The x ranges are different in these plots

$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$ and $Z_d \; L_{xy}$

- Overall high efficiency for low L_{xy} region.
- At higher L_{xy} , the efficiency falls as ΔR increases (DSA muon region).
- ullet This is totally counterintuitive; we expect muon reconstruction to be easier at higher ΔR and thereby high efficiency.

We can look at this again with another variable Z_d p_T !

$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$ and $Z_d \ p_T$

- Overall high efficiency in low ΔR region.
- For a fixed p_T , low efficiency for higher ΔR region.

We need to study the higher ΔR region more!

Looking at PF-PF, PF-DSA, DSA-DSA Separately

$$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$$
 and $\mu_0^{gen} \; p_T$

PF-PF: No strong dependence on ΔR .

PF-DSA: Not strong dependence on ΔR .

DSA-DSA: For a given p_T , efficiency falls as ΔR increases.

We need to study the DSA-DSA μ -type LJs more!

$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$ and μ_1^{gen} p_T

Looking at only DSA-DSA μ LJs

 $Z_d~p_T>$ 30 GeV, $Z_d~L_{xy}<$ 400 cm $Z_d\to \mu\mu, m_{Z_d}=$ 5 GeV, $m_B=$ 200 GeV, $Z_d< L_{xy}>=$ 300 cm

- Low efficiency is concentrated in the low sub-leading muon pT region.
- High ΔR corresponds to low sub-leading p_T .

 We check whether it is true for a fixed leading μ p_T .

Applying Cut On Leading μ p_T

 $\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$ and μ_1^{gen} p_T

Looking at DSA-DSA μ LJ

$$Z_d \; p_T >$$
 30 GeV, $Z_d \; L_{xy} <$ 150 cm, 50 <= $\mu_0^{gen} \; p_T <$ = 60 GeV $Z_d o \mu\mu$, $m_{Z_d} =$ 5 GeV, $m_B =$ 200 GeV, $Z_d < L_{xy} >$ = 300 cm

• We observe that the high ΔR corresponds to low sub-leading p_T . And the lower p_T muons don't pass our 10GeV cut.

Conclusion

We see good efficiency in a large range of the parameter space we are considering.

For $Z_d \to ee$ ($e\gamma$ LJ):

- \bullet No serious dependence on p_T for both more collimated and less collimated electrons
- We see behaviours which depend on the collimation of the electrons.
 In the most collimated case, we are really good at reconstructing at all displacements. We see low efficiency in the somewhat displaced region (decay in the tracker) when the electrons are less collimated.
- We are actively investigating how to improve the electron/photon ID to recover efficiency.

For $Z_d \to \mu\mu$ (μ LJ):

- Efficiency extends out to very high displacements, even for extremely collimated muon pairs.
- We see a drop in efficiency in the higher ΔR regions, as the higher ΔR regions corresponds to the low sub-leading μ p_T and they fail to pass the cuts applied.

THANK YOU

BACK UP

Separating the $e\gamma$ LJs

 $Z_d L_{xy}$

$\Delta \mathsf{R}(e_0^{gen}, e_1^{gen})$ and $Z_d \; p_T$

• Efficiency doesn't have a huge change in the range shown.

$Z_d L_{xy}$ and $Z_d p_T$

- High Efficiency at high p_T and high L_{xy} region.
- ullet Very low efficiency for low L_{xy} and low p_T .
- The correlation between L_{xy} and p_T is something we already saw before.

Separating the μ LJs

 $Z_d L_{xy}$

LJ Reconstruction Efficiency w.r.t

$Z_d \ L_{xy}$ and $Z_d \ p_T$

- High Efficiency for low L_{xy} regions.
- For a fixed p_T , low L_{xy} region show high efficiency.
- For a fixed L_{xy} , p_T is not varying that much.

$\Delta \mathsf{R}(\mu_0^{gen}, \mu_1^{gen})$ and μ_0^{gen}/μ_1^{gen} p_T

$Z_d \; p_T \; \mathsf{and} \; \Delta \mathsf{R}(e_0^{gen}, \; e_1^{gen})$

$Z_d p_T > 30$ GeV, $Z_d L_{xy} < 150$ cm

 $Z_d
ightarrow \mu \mu$, $m_{Z_d} = 1.2~{
m GeV}$, $m_B = 200~{
m GeV}$, $Z_d < L_{xy} > = 300~{
m cm}$ 2Mu2E 1000GeV 5GeV 40mm 2Mu2E_1000GeV_5GeV_40mm 2500 2500 0.20 0.20 2000 2000 0.15 0.15 0.15 1500 0.10 0.10 0.10 1000 1000 0.05 0.05 0.05

den: $Z_d \rightarrow \mu \mu$

Z_d p_T

num: $Z_d \rightarrow \mu \mu$ with μ LJ nearby

Efficiency

600 70 Z_d p_T