Euler Equation

Consider the household problem in endowment economy, $\max_{c_1,c_2} u(c_1) + \beta u(c_2)$ such that $c_1 + \frac{c_2}{1+r_2} = y_1 + \frac{y_2}{1+r_2}$

Then we have the MRS $\frac{u_c(c_1)}{u_c(c_2)} = \beta(1+r)$, which is the Euler equation (the intertemporal first order condition).

To get a closed form, consider some utility functions:

Constant Elasticity of Substitution

CS utility is $u(c) = \frac{c^{1-\gamma}-1}{1-\gamma}$ for $\gamma \in [0,\infty)$ coefficient of relative risk aversion.

Note $\gamma = 0$ is linear utility, $\gamma = 1$ is log utility, and $\gamma \to \infty$ is Leontief utility min (c_1, c_2) .

The elasticity of intertemporal substitution is then $\frac{1}{\gamma}$. These two constants are not directly related in every utility function, and their simple relation with CS is why we are using it here.

Since $u_c = c^{-\gamma}$, then the Euler equation is $\frac{c_2}{c_1} = (\beta(1+r))^{\frac{1}{\gamma}}$

Then the intertemporal allocation of consumption is controlled by three forces: patience / discounting β (low expedites consumption), return on savings r (high postpones consumption), and willingness to substitute across time $\frac{1}{\gamma}$ (high amplifies $\beta(1+r)$).

$$\log c_2 - \log c_1 = \frac{1}{2} (\log(1+r) + \log(\beta))$$

For small x, $\log(1+x) \approx x$, and let $\beta = \frac{1}{1+\rho}$ for discount rate $\rho \in [0,\infty)$, so $\Delta \log c_t \approx \frac{r-\rho}{\gamma}$

Imperfections in the Model

Borrowing Limits

In the setup for the endowment economy — $\max_{c_1,c_2} u(c_1) + \beta u(c_2)$ such that $c_1 + s = y_1$ and $c_2 = y_2 + (1+r)s$ — we assume we can borrow any amount of money. However, there are some borrowing limits.

The simplest is the ad-hoc limit $s \geq -b$.

The Inada conditions on utility, $U(0) = -\infty$, tell us we cannot borrow more than we can pay back, leading to the natural borrowing limit $s \ge \frac{-y_2}{1+r}$. This cannot be a binding constraint due to Inada conditions.

Suppose your house has value H then we can use the house as collateral $s \ge -\phi H$ where ϕ represents the rate at which the bank discounts the value of the house comapred to equivalent dollar value due to illiquidity.

- 1. Solve the relaxed problem without hte borrowing limit.
- 2. Check that the borrowing constraint is not binding.
- 3. If it is, solve the optimization problem with the constraint as an equality constraint.

Borrowing Asymmetry

Suppose there is a wedge between the borrowing rate and the saving rate $r^b > r^s$.

Then you get $c_2 = y_2 + (1 + r^s)s$ when $s \ge 0$.

But you only get $c_2 = y_2 + (1 + r^b)s$ when s < 0.

- 1. Intermediation Cost: For the bank $\Pi(s) = -r^s s + (r^b k)s$. In perfect competition $r^b = r^s + k$.
- 2. Compensation for Risk of Default: $\pi(S) = -r^s s + q r^b s$ then $r^b = \frac{r^s}{q} \ge r^s$

There is a kink in the budget constraint at the zero-savings point between the constraint for borrowing and the constraint for saving.

- 1. Guess s > 0 and solve with $r = r^s$. Solve and verify $\widetilde{c_1} < y_1$. If so, $c_1^* = \widetilde{c_1}$ (stop).
- 2. Guess s < 0 and solve with $r = r^b$. Solve and verify $\widetilde{c_1} > y_1$. If so, $c_1^* = \widetilde{c_1}$ (stop).
- 3. Otherwise, $c_1^* = y_1$ and $c_2^* = y_2$.