1 1 1

WHAT IS CLAIMED IS:

- 1. A method for making a tunnel valve head with a flux guide, comprising:
- 2 forming a tunnel valve at a first shield layer, the tunnel valve comprising a
- 3 free layer distal to the first shield layer;
- 4 depositing a first insulation layer over the first shield layer and around the
- 5 tunnel valve;
- 6 depositing a flux guide over the first insulation layer and coupling to the
- 7 tunnel valve at the free layer;
- 8 covering the flux guide with a second insulation layer; and
- 9 forming a second shield layer over the second insulation, wherein the flux
- 10 guide and the free layer are physically isolated by the first and second insulation
- 11 layers to prevent current shunts therefrom.
 - 1 2. The method of claim 1 wherein the depositing the first insulation layer
 - 2 over the first shield layer and around the tunnel valve is performed using a self-
 - 3 aligning process wherein regions of different thicknesses are formed with a single
- 4 masking step.
- 1 3. The method of claim 1 wherein the flux guide is physically connected
- 2 to the free layer of the tunnel valve.
- 1 4. The method of claim 1 wherein the covering the flux guide with a
- 2 second insulation layer is performed using a self-aligning process wherein regions of
- 3 different thicknesses are formed with a single masking step.

pinned and free layers.

1	5.	The method of claim 1 wherein the flux guide increases the amount of	
2	magnetic flux in the tunnel valve.		
1	6.	The method of claim 1 wherein the increase in the amount of magnetic	
2	flux in the tu	nnel valve enhances the outptu signal fo the tunnel valve.	
1	7.	The method of claim 1 wherein the forming a tunnel valve at a first	
2	shield layer further comprises:		
3	formi	ng an antiferromagnetic (AFM) layer of electrically insulating	
4	antiferromagnetic material;		
5	depos	siting a pinned layer of ferromagnetic material in contact with said AFM	
6	layer, said p	inned layer making electrical contact with said first shield;	
7	formi	ng a free layer of ferromagnetic material; and	
8	formi	ng a tunnel junction layer of electrically insulating material between said	

5

valve;

1	8. A tunnel valve sensor, comprising:
2	a tunnel valve disposed at a first shield layer, the tunnel valve comprising a
3	free layer distal to the first shield layer;
4	a first insulation layer formed over the first shield layer and around the tunnel

- a flux guide deposited over the first insulation layer, the flux guide being coupled to the tunnel valve at the free layer;
- a second insulation layer covering the flux guide; and
 a second shield layer deposited over the second insulation, wherein the flux
- guide and the free layer are physically isolated by the first and second insulation
 layers to prevent current shunts therefrom.
 - 1 9. The tunnel valve sensor of claim 8 wherein the flux guide is physically connected to the free layer of the tunnel valve.
 - 1 10. The tunnel valve sensor of claim 8 wherein the flux guide increases 2 the amount of magnetic flux in the tunnel valve.
 - 1 11. The tunnel valve sensor of claim 8 wherein the increase in the amount of magnetic flux in the tunnel valve enhances the outptu signal fo the tunnel valve.

1	12. The tunnel valve sensor of claim 7 wherein the tunnel valve further
2	comprises:
3	an antiferromagnetic (AFM) layer of electrically insulating antiferromagnetic
4	material;
5	a pinned layer of ferromagnetic material in contact with said AFM layer, said
6	pinned layer making electrical contact with said first shield;
7	a free layer of ferromagnetic material; and
8	a tunnel junction layer of electrically insulating material disposed between
9	said pinned and free layers.

ı	13. A magnetic storage system, comprising.		
2	a magnetic recording medium;		
3	a tunnel valve sensor disposed proximate the recording medium, the tunnel		
4	vavle sensor, comprising		
5	a tunnel valve disposed at a first shield layer, the tunnel valve		
6	comprising a free layer distal to the first shield layer;		
7	a first insulation layer formed over the first shield layer and around the		
8	tunnel valve;		
9	a flux guide deposited over the first insulation layer, the flux guide		
10	being coupled to the tunnel valve at the free layer;		
11	a second insulation layer covering the flux guide; and		
12	a second shield layer deposited over the second insulation, wherein		
13	the flux guide and the free layer are physically isolated by the first and second		
14	insulation layers to prevent current shunts therefrom; .		
15	an actuator for moving the tunnel valve sensor across the magnetic recording		
16	disk so the tunnel valve sensor may access different regions of magnetically		
17	recorded data on the magnetic recording medium; and		
18	a data channel coupled electrically to the tunnel valve sensor for detecting		
19	changes in resistance of the tunnel valve sensor caused by rotation of the		
20	magnetization axis of the free ferromagnetic layer relative to the fixed magnetization		
21	of the pinned layer in response to magnetic fields from the magnetically recorded		
22	data.		

- 1 14. The magnetic storage system of claim 13 wherein the flux guide is 2 physically connected to the free layer of the tunnel valve.
- 1 15. The magnetic storage system of claim 13 wherein the flux guide 2 increases the amount of magnetic flux in the tunnel valve.
- 1 16. The magnetic storage system of claim 13 wherein the increase in the 2 amount of magnetic flux in the tunnel valve enhances the outptu signal fo the tunnel 3 valve.
- 1 17. The magnetic storage system of claim 13 wherein the tunnel valve further comprises:
- an antiferromagnetic (AFM) layer of electrically insulating antiferromagnetic
 material;
- a pinned layer of ferromagnetic material in contact with said AFM layer, said pinned layer making electrical contact with said first shield;
- 7 a free layer of ferromagnetic material; and
- a tunnel junction layer of electrically insulating material disposed between
- 9 said pinned and free layers.