

Martin Alejo

#75296665

October 28, 2022

Mini Project 2

University of British Columbia

Electrical and Computer Engineering

ELEC 301

Instructor: Nicolas Jaeger

Contents

1	Introduction]
	Part 1	1
	2.1 Part a)	
	2.2 Part b)	
	2.3 Part c)	4
3	References	6

List of Figures

2	I_b vs V_{be} I_c vs V_{ce} I_c vs V_{ce}																				2
List	of Tal	oles	}																		
1	Small Si	gnal '	Valı	ies f	ron	n D	ata	S	he	et											1

1 Introduction

In this lab, we will be using NI $Mulitsim^{TM}$ to simulate various transistors, measuring simulated values. We will also be calculating their respective theoretical values and comparing them with the simulated.

2 Part 1

2.1 Part a)

From the datasheet, we can see that the small signal parameters of the 2N3904 transistor for $V_{ce} = 10V$, $I_c = 1mA$, f = 1kHz, $T = 25^{\circ}C$ is as follows:

	Min	Max	Unit
h_{fe}	100	400	-
h_{ie}	1	10	$\mathrm{k}\Omega$
h_{oe}	1	40	μmho

Table 1: Small Signal Values from Data Sheet

For this lab however, we will be using the average of those values. Therefore:

$$h_{fe} = 250, h_{ie} = 5.5, h_{oe} = 20.5$$

2.2 Part b)

Figure 1, Figure 3 and Figure ?? below shows I_b vs V_{be} , I_c vs V_{ce} and I_c vs V_{be} respectively.

Figure 1: I_b vs V_{be}

The DC sweep of this simulation is about 0V to 2V in 0.01V increments.

Figure 2: I_c vs V_{ce}

Figure 3: I_c vs V_{ce}

2.3 Part c)

3 References

- $1.\ \, https://www.onsemi.com/pdf/datasheet/2n3903-d.pdf$
- 2. NI Multisim Manual