微积分 I 期末试卷 2021.1.4

一、计算下列各题(6分×3=18分)

- 2. $\Re \lim_{x \to 0^+} x^{\frac{1}{\ln(e^x 1)}}$.
- 3. 求函数 $y = (x+3)e^{\frac{1}{x}}$ 的渐近线.

二、计算下列各题 (6分×3=18分)

1.
$$I_1 = \int \frac{\sin x \cos x}{\sin^4 x - \cos^4 x} dx.$$

2.
$$I_2 = \int \frac{x^3}{(1+x^2)^{\frac{3}{2}}} dx$$
.

3.
$$I_3 = \int_{-1}^1 \frac{x^4 + x^7 \cos^{10} x}{1 + x^2} dx$$
.

三、计算下列各题 (6分×2=12分)

- 1. 已知三个单位向量 a, b, c, 且 a+b+c=0, 求 $a \cdot b+b \cdot c+c \cdot a$.
- 2. 将直线的一般式方程 $\begin{cases} x y + z + 5 = 0, \\ 5x 8y + 4z + 36 = 0 \end{cases}$ 化为点向式方程.

四、(10分) 计算极限 $\lim_{x\to 0^+} \frac{(\sin x)^{\sin x} - x^{\sin x}}{\sin^2 x \arcsin x}$.

五、(10分) 设
$$f(x)$$
 在 R 上可导且 $f(0) = 0$, $f'(x) \ge 0$. 证明 $\left(\int_0^x f(t) dt\right)^2 \le 2 \int_0^x t f^2(t) dt$.

六、(10分) 求由曲线 $y = \ln x$ 在 (e,1) 处的切线与 $y = \ln x$ 以及 x 轴所围成的平面图形 D 的面积 S, D 分别绕 x 轴、y 轴旋转一周所得旋转体的体积 V_x, V_y .

七、(14分) 讨论函数 $y = x \arctan x$ 的定义域,单调区间,极值,凹凸区间,拐点,渐近线,并作出函数图像.

1

八、(8 分) 已知函数 f(x) 在闭区间 [a,b] 上具有连续的二阶导数,且 f'(a)=f'(b)=0.

求证:
$$\exists \xi \in (a,b),$$
 使得 $\int_a^b f(x) dx = (b-a) \frac{f(a) + f(b)}{2} + \frac{1}{6} (b-a)^3 f''(\xi).$

微积分 I 期末试卷 2022.1.4

- 一. 计算下列各题 $(6分 \times 3 = 18分)$
 - 1. 求极限 $\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$.

 - 3. 设f(x) 在a的一个邻域内二阶连续可导, $f'(a) = \sqrt{2}, f''(a) = 2$,求

$$\lim_{x \to a} \left(\frac{1}{f(x) - f(a)} - \frac{1}{(x - a)f'(x)} \right).$$

二、计算下列各题 $(6分 \times 3 = 18分)$

- 1. 计算积分 $\int \frac{1}{\sqrt{1+e^x}} \, \mathrm{d}x;$
- 2. 计算积分 $\int x^2 (\ln x)^2 dx$.
- 3. 计算积分 $\int_0^1 \ln(x + \sqrt{x^2 + 1}) dx$.

三、计算下列各题 $(6分 \times 3 = 18分)$

- 1. 求与直线 L_1 : $\frac{x-1}{-1} = \frac{y}{2} = \frac{z+1}{1}$ 及 L_2 : $\frac{x+2}{0} = \frac{y-1}{1} = \frac{z-2}{-2}$ 都平行且与它们等距的平面方程.
 - 2. 计算极限 $\lim_{n\to\infty} \sin\frac{\pi}{n} \sum_{k=1}^n \frac{1}{2+\cos\frac{k\pi}{n}}$.
 - 3. 求心脏线 $r = a(1 + \cos \theta)$ 所围图形面积 S.

四、(6分) 设函数 f(x) 在 [a,b] 上连续, f(x) > 0,求方程 $\int_a^x f(t) dt - \int_x^b \frac{1}{f(t)} dt = 0$ 在 (a,b) 内根的个数.

五、(12分) 讨论函数 $y=\frac{2}{x}+\frac{1}{x^2}$ 的定义域,单调区间,极值,凹向与拐点,渐近线,并作出草图。

六、(10分) 1. 证明
$$\int_0^{\pi} x f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$$
. 2. 计算 $\int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x} dx$.

七、(10分) 设 f(x) 在区间 [a,b] 上二次可微, 并且 f''(x) > 0. 设 L_t 为曲线 C: y = f(x) 在 点 (t,f(t)) 的切线, A(t) 为曲线 C 与直线 $L_t, x = a, x = b$ 所围图形的面积. 问 A(t) 在哪些 点取到最小值? 说明你的理由.

八、(8分) 设函数f(x) 在[-1,1] 上有三阶连续导数.

证明: 极限
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left| k(f(\frac{1}{k}) - f(-\frac{1}{k})) - 2f'(0) \right|$$
 存在.

微积分 I 期末试卷 2023.2.21

- 一. 计算下列各题 $(6分 \times 3 = 18分)$
 - 1. 求极限 $\lim_{x\to 0} \left(\frac{1-x^2}{1+x^2}\right)^{\frac{5}{x^2}}$.

 - 3. 设 $\lim_{x \to +\infty} \left(\frac{x+c}{x-c} \right)^x = \int_{-\infty}^c t e^{2t} dt$, 求 c 的值.
- 二、计算下列各题 $(6分 \times 3 = 18分)$

1. 计算
$$\int_{-1}^{1} \frac{1+x^3}{(1+x^2)^{\frac{5}{2}}} dx$$
; 2. 计算 $\int \frac{\arcsin x}{\sqrt{(1-x^2)^3}} dx$. 3. 计算 $\int \frac{x}{x^2+2x+3} dx$.

- 三、计算下列各题 $(6分 \times 3 = 18分)$
- 1. 设直线 L 的方程为 $\frac{x+1}{4}=\frac{y-2}{-1}=\frac{z-1}{5}$,平面 Π 的方程为 3x+y+2z+20=0,求直线 L 与平面 Π 的夹角 θ 与交点 M.
 - 2. 计算极限 $\lim_{n \to \infty} \frac{1}{n} \left(\sum_{i=0}^{n-1} \ln(n+i) \ln n \right)$.
 - 3. 计算由曲线 $y = \sin x, y = \cos x, x = \frac{\pi}{2}$ 所围的最小的平面图形的面积.

四、(10分) (1) 设 f(x), g(x) 在 [-a,a] 上连续, g(x) 是偶函数, $f(x) + f(-x) \equiv A(A$ 为常数), 证明:

$$\int_{-a}^{a} f(x)g(x)dx = A \int_{0}^{a} g(x)dx.$$

(2) 利用 (1) 的结论求 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \arctan(e^x) dx$.

五、(12分) 讨论函数 $y = (x-2)e^{-\frac{1}{x}}$ 的定义域, 单调区间, 极值, 凹向与拐点, 渐近线, 并作出草图.

六、(8分) 求曲线 $y = \ln x$ 的一条切线,使得这条切线与原曲线,以及直线 $x = 1, x = e^2$ 所 围成的图形面积最小.

七、(8分) 设函数 f(x) 在区间[0,1]上有连续的一阶导数,证明 $\forall x \in [0,1]$,有

$$|f(x)| \le \int_0^1 (|f(t)| + |f'(t)|) dt.$$

八、(8分) 设函数 f(x) 在 $(0, +\infty)$ 上有二阶连续导数,且 $\forall x \in (0, +\infty)$,都有 $f(x) \geq 0$, $f'(x) \leq 0$. 又存在正数 M 使得 $|f''(x)| \leq M$, $(x \in (0, +\infty))$. 已知 $\lim_{x \to +\infty} f'(x)$ 存在,证明 $\lim_{x \to +\infty} f'(x) = 0$.

3

(注: 此题中的条件 $|f''(x)| \le M$ 与 $\lim_{x \to +\infty} f'(x)$ 存在,二者只需一个成立即可)

微积分I(第一层次)期末试卷参考答案 2021.1.4

一、 1.
$$e^{-\frac{45}{2}}$$
; 2. e; 3. $x = 0$ 是铅直渐近线, $y = x + 4$ 是斜渐近线.

$$\exists . \quad 1. \ I_1 = \frac{1}{4} \ln|\cos 2x| + C. \qquad 2. \ I_2 = \sqrt{1 + x^2} + \frac{1}{\sqrt{1 + x^2}} + C; \qquad 3. \ I_3 = \frac{\pi}{2} - \frac{4}{3}.$$

$$\equiv$$
, $1. -\frac{3}{2}$. $2. \frac{x}{4} = \frac{y-4}{1} = \frac{z+1}{-3}$. \square , $-\frac{1}{6}$

五、设
$$F(x) = \left(\int_0^x f(t)dt\right)^2 - 2\int_0^x tf^2(t)dt$$
, 则

$$F'(x) = 2\int_0^x f(t)dt \cdot f(x) - 2xf^2(x) = 2f(x) \cdot x \cdot f(\xi) - 2xf^2(x) = 2xf(x)(f(\xi) - f(x)),$$

其中 ξ 在0与x之间. 因为 $f'(x) \ge 0$, 所以f(x)单调增加.

当
$$x > 0$$
时, $f(x) \ge f(\xi) \ge f(0) = 0$, 故 $F'(x) \le 0$, $F(x)$ 单调减少, 因此 $F(x) \le F(0) = 0$;

当
$$x < 0$$
时, $f(x) \le f(\xi) \le f(0) = 0$,故 $F'(x) \ge 0$, $F(x)$ 单调增加,因此 $F(x) \le F(0) = 0$;

综上所述,
$$F(x) \le 0$$
, 即 $\left(\int_0^x f(t) dt\right)^2 \le 2 \int_0^x t f^2(t) dt$.

$$\Rightarrow$$
, $S = \int_0^1 (e^y - ey) dy = \left(e^y - \frac{ey^2}{2} \right) \Big|_0^1 = \frac{e}{2} - 1.$

$$V_x = \frac{1}{3}\pi e - \pi \int_1^e \ln^2 x dx = \frac{1}{3}\pi e - \pi (x \ln^2 x - 2x(\ln x - 1)) \Big|_1^e = 2\pi (1 - \frac{e}{3}).$$

$$V_y = \pi \int_0^1 (e^{2y} - e^2 y^2) dy = \pi \left(\frac{1}{2}e^{2y} - \frac{1}{3}e^2 y^3\right)\Big|_0^1 = \frac{\pi}{6}(e^2 - 3).$$

七、定义域 $(-\infty, +\infty)$; 偶函数; $y' = \arctan x + \frac{x}{1+x^2}$,

$$y' = \arctan x + \frac{x}{1 + x^2}$$

单调增区间 $(0,+\infty)$, 单调减区间 $(-\infty,0)$;

极小值
$$y(0) = 0$$
;
$$y'' = \frac{2}{(1+x_{-}^{2})^{2}} > 0$$
, 上凹区间 $(-\infty, +\infty)$; 无拐点;

渐近线
$$y = \frac{\pi}{2}x - 1, y = -\frac{\pi}{2}x - 1.$$

八、令
$$F(x) = \int_a^x f(t) dt$$
,则 $F'(x) = f(x)$, $F''(x) = f'(x)$, $F'''(x) = f''(x)$,且 $F(a) = 0$, $F''(a) = F''(b) = 0$.

函数 F(x) 在 x = a 处的 2 阶泰勒公式为

$$F(x) = F(a) + F'(a)(x-a) + \frac{1}{2!}F''(a)(x-a)^2 + \frac{1}{3!}F'''(\xi_1)(x-a)^3 = f(a)(x-a) + \frac{1}{6}f''(\xi_1)(x-a)^3$$

其中
$$a < \xi_1 < x$$
. 令 $x = b$, 得 $\int_a^b f(x) dx = f(a)(b-a) + \frac{1}{6}f''(\xi_2)(b-a)^3$, $(a < \xi_2 < b)$, (1)

函数 F(x) 在 x = b 处的 2 阶泰勒公式为

$$F(x) = F(b) + F'(b)(x-b) + \frac{1}{2!}F''(b)(x-b)^2 + \frac{1}{3!}F'''(\eta_1)(x-b)^3 = \int_a^b f(x)dx + f(b)(x-b) + \frac{1}{6}f''(\eta_1)(x-b)^3$$

其中
$$x < \eta_1 < b$$
. 令 $x = a$, 得 $\int_a^b f(x) dx = f(b)(b-a) + \frac{1}{6}f''(\eta_2)(b-a)^3$, $(a < \eta_2 < b)$, (2)

(1)+(2)
$$\mathcal{F}$$

$$\int_a^b f(x) dx = \frac{1}{2} \Big(f(a) + f(b) \Big) (b-a) + \frac{1}{6} \Big(\frac{f''(\xi_2) + f''(\eta_2)}{2} \Big) (b-a)^3,$$

因为 f''(x) 在区间 $[\xi_2, \eta_2]$ (或 $[\eta_2, \xi_2]$) 上连续,由最值定理,f''(x) 在区间 $[\xi_2, \eta_2]$ (或 $[\eta_2, \xi_2]$) 上有最大值 M 与最小值 m,而 $m \leq \frac{f''(\xi_2) + f''(\eta_2)}{2} \leq M$,则由介值定理, $\exists \xi \in [\xi_2, \eta_2] \subset (a, b)$,使 得 $f''(\xi) = \frac{f''(\xi_2) + f''(\eta_2)}{2}$, 于是 $\int_0^b f(x) dx = \frac{1}{2} (f(a) + f(b))(b - a) + \frac{1}{6} f''(\xi)(b - a)^3$.

微积分I (第一层次) 期末试卷参考答案 2022.1.4

$$-1. e^{-1/2}$$
. 2. $(-1)^n \frac{n!}{6} \left(\frac{1}{(x-4)^{n+1}} - \frac{1}{(x+2)^{(n+1)}} \right)$. 3. $\frac{1}{2}$.

$$\equiv$$
, 1. $5x + 2y + z + 1 = 0$. 2. $\frac{\pi}{\sqrt{3}}$. 3. $\frac{3}{2}\pi a^2$.

四、方程
$$\int_a^x f(t)dt - \int_x^b \frac{1}{f(t)}dt = 0$$
 在 (a,b) 内有并且只有一个根.

五、定义域 $(-\infty,0)\cup(0,+\infty)$;

单调增区间(-1,0), 单调减区间 $(-\infty,-1)$, $(0,+\infty)$;

极小值f(-1) = -1, 没有极大值; 下凹区间 $(-\infty, -\frac{3}{2})$, 上凹区间 $(-\frac{3}{2}, 0)$, $(0, +\infty)$;

拐点
$$\left(-\frac{3}{2}, -\frac{8}{9}\right)$$
;

x = 0是铅直渐近线, y = 0是水平渐近线.

七、f''(x) > 0,曲线 C 是凹的,

八、证明:
$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f^{(3)}(\zeta)}{6}x^3$$
.
$$|k(f(\frac{1}{k}) - f(-\frac{1}{k})) - 2f'(0)| = |k(\frac{2f'(0)}{k} + \frac{f^{(3)}(\alpha_k)}{6k^3} + \frac{f^{(3)}(\beta_k)}{6k^3}) - 2f'(0)| \le \frac{M}{3k^2},$$
 其中 $M = \max_{-1 \le x \le 1} |f^{(3)}(x)|$. 设 $x_n = \sum_{i=1}^n |k(f(\frac{1}{k}) - f(-\frac{1}{k})) - 2f'(0)|$,显然 x_n 是单调增加数列,又

$$x_n \le \sum_{k=1}^n \frac{M}{3k^2} < \frac{M}{3} \left(1 + \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) \right) < M.$$

 x_n 单调增加有上界,因此收敛,即极限 $\lim_{n\to\infty}\sum_{k=1}^n |k(f(\frac{1}{k})-f(-\frac{1}{k}))-2f'(0)|$ 存在.

微积分I(第一层次)期末试卷参考答案 2023.2.21

-. 1.
$$e^{-10}$$
; 2. $90 \times 7!$; 3. $c = \frac{5}{2}$.

$$\equiv$$
, 1. $\frac{5\sqrt{2}}{6}$; 2. $\frac{x \arcsin x}{\sqrt{1-x^2}} + \ln \sqrt{1-x^2} + C$; 3. $\frac{1}{2}\ln(x^2+2x+3) - \frac{1}{\sqrt{2}}\arctan \frac{x+1}{\sqrt{2}} + C$.

三、 1.
$$\theta = \frac{\pi}{3}$$
, $M(-5,3,-4)$. 2. 原式 = $\int_0^1 \ln(1+x) dx = 2 \ln 2 - 1$. 3. $\sqrt{2} - 1$.

四、(2)
$$\cos x$$
 是偶函数, $\arctan e^x + \arctan e^{-x} = \frac{\pi}{2}$,所以原式 $= \frac{\pi}{2} \int_0^{\frac{\pi}{2}} \cos x dx = \frac{\pi}{2}$.

五、定义域 $(-\infty,0)\cup(0,+\infty)$;

单调增区间 $(-\infty, -2), (1, +\infty),$

单调减区间(-2,0),(0,1);

极大值
$$f(-2) = -4\sqrt{e}$$
, 极小值 $f(1) = -\frac{1}{e}$;

下凹区间
$$(-\infty,0),(0,\frac{2}{5})$$
, 上凹区间 $(\frac{2}{5},+\infty)$;

拐点
$$\left(\frac{2}{5}, -\frac{8}{5}e^{-\frac{5}{2}}\right);$$

x = 0是铅直渐近线, y = x - 3是斜渐近线.

六、所求切线方程为
$$y = \frac{2}{e^2 + 1}x + \ln \frac{e^2 + 1}{2} - 1.$$

七、方法一: f(t) 连续,则 |f(t)| 也连续,由积分中值定理,存在 $\zeta \in (0,1)$,使得 $\int_0^1 |f(t)| \mathrm{d}t = |f(\zeta)|$.

又
$$f(x) = f(\zeta) + \int_{\zeta}^{x} f'(t) dt$$
, 所以 $|f(x)| \le |f(\zeta)| + \int_{0}^{1} |f'(t)| dt = \int_{0}^{1} (|f(t)| + |f'(t)|) dt$.

八、方法一: 因为 $\lim_{x\to +\infty} f'(x)$ 存在,设 $\lim_{x\to +\infty} f'(x)=A$; 又 $f'(x)\leq 0$ 且 $f(x)\geq 0$, 所以 f(x) 单调减少有下界,故 $\lim_{x\to +\infty} f(x)$ 存在,设 $\lim_{x\to +\infty} f(x)=B$. 由微分中值定理,存在 $\xi\in (x,x+1)$,使得 $f(x+1)-f(x)=f'(\xi)$, 上式两边令 $x\to +\infty$ 取极限可得 B-B=A,所以 A=0.

方法二: 由 $f'(x) \le 0$ 且 $f(x) \ge 0$, 可知 f(x) 单调减少有下界, 故极限存在, 设 $\lim_{x \to +\infty} f(x) = A$.

对于任意给定的常数 $\delta > 0$,有 $\lim_{x \to +\infty} \frac{f(x+\delta) - f(x)}{\delta} = \frac{A-A}{\delta} = 0$,即 $\forall \varepsilon > 0$,当G > 0,当G > 0,当G > 0,以 G >

G时,总有 $\left| \frac{f(x+\delta) - f(x)}{\delta} \right| < \frac{\varepsilon}{2} \quad (\forall \delta > 0).$ 由泰勒公式, $f(x+\delta) = f(x) + f'(x)\delta + \frac{1}{2}f''(\xi)\delta^2$,则 $\frac{f(x+\delta) - f(x)}{\delta} = f'(x) + \frac{1}{2}f''(\xi)\delta \Longrightarrow |f'(x)| \le \left| \frac{f(x+\delta) - f(x)}{\delta} \right| + \frac{1}{2}\delta M$,