

Overview

- I. Objective
- II. Dataset
- III. Original Model
- IV. Our Model
- V. Feature Engineering
- VI. Results and Improvements

Objective

- Predict fare amount (inclusive of tolls) for a taxi ride in NYC given the pickup and dropoff locations
- Linear model → XGBoost
 - A decision tree algorithm, rather than a simple linear model
 - Beat linear model RMSE: \$5.74
 - Model was, on average, off by \$5.74
 - Average fare price: \$11.33
- Application: Provide riders an accurate cost estimate for their ride
 - Key user feature of ride hailing apps

Objective

RMSE =
$$\sqrt{\frac{1}{n}} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

- Square root of the squared difference between prediction and actual values (residuals) averaged over all of the sample
- Relative to MAE, RMSE penalizes large errors
 - Errors are squared before they are averaged
- Advantage
 - Model prediction error are in the units of the response variable

Dataset

Separate CSV files for train &

test data

- Big data
 - 55M rows
- Read in 3M rows

NY_Train <- fread("train.csv", nrows = 3000000)

Features

- pickup_datetime timestamp value indicating when the taxi ride started.
- pickup_longitude float for longitude coordinate of where the taxi ride started.
- pickup_latitude float for latitude coordinate of where the taxi ride started.
- dropoff_longitude float for longitude coordinate of where the taxi ride ended.
- dropoff_latitude float for latitude coordinate of where the taxi ride ended.
- passenger_count integer indicating the number of passengers in the taxi ride.

Target

• fare_amount - float dollar amount of the cost of the taxi ride. This value is only in the training set; this is what you are predicting in the test set and it is required in your submission CSV.

NYC Taxi Stats

- NYC taxi <u>trend dashboard</u>
- Average 180 miles per shift
- Decline since launch of ride hailing apps in 2011

Original model

- Strengths:
 - o Trained on ~10,000,000 samples
 - o Simple
- Weakness:
 - Truth is very rarely linear
 - Large RMSE
 - Multicollinearity
 - Little feature engineering
 - Average lat and lon between pickup and dropoff
 - Data quality
 - Little data cleansing happened
 - Only NaNs removed from lat/lon columns
 - Garbage in \rightarrow Garbage out

Our Model: XGBoost

- Looked at some published notebooks and found that XBGBoost performed well with this data
 - Mitchell O'brien's notebook
- XGBoost advantages
 - Tree-based method which does not assume linearity
 - Slow and weak but effective learners
 - Include a validation stopping rule to avoid overfitting
 - More regularized model to control overfitting
 - Feature importance
- Disadvantage:
 - Computationally expensive

XGBoost Algorithm:

- 1. Set $\hat{f}(x) = 0$ and $r_i = y_i$ for all i in the training set.
- 2. For b = 1, 2, ..., B, repeat:
 - (a) Fit a tree \hat{f}^b with d splits (d+1) terminal nodes) to the training data (X, r).
 - (b) Update \hat{f} by adding in a shrunken version of the new tree:

$$\hat{f}(x) \leftarrow \hat{f}(x) + \lambda \hat{f}^b(x).$$
 (8.10)

(c) Update the residuals,

$$r_i \leftarrow r_i - \lambda \hat{f}^b(x_i). \tag{8.11}$$

3. Output the boosted model,

$$\hat{f}(x) = \sum_{b=1}^{B} \lambda \hat{f}^b(x).$$
 (8.12)

XGBoost Model: Added features

- Distance
 - Haversine distance
- Time Features
 - Year
 - Month
 - Day of the week
 - o Etc.
- Added distance from pickup location to popular destinations as features
 - Airports and major city landmarks
 - e.g. distance to JFK

Your most recent submission

Name Submitted Wait time Execution time Score team12_sub.csv just now 0 seconds 0 seconds 3.04896

Complete

XGBoost Results

- Learning Rate $0.05 \rightarrow 0.01$
- 8-leaf trees → 6-leaf trees
- $6,000 \text{ trees} \rightarrow 500 \text{ trees}$
- Took out certain unimportant features and reran model
- Trained until validation RMSE had not improved in 10 rounds
- RMSE: 3.04896
- Outperformed simple linear model RMSE by 2.69
- Unsurprisingly, distance is the most important feature

Future improvement

- Use entire training dataset
 - Used 5% of all training data
- More feature engineering
- Hyperparameter tuning
- Rerun model with principal components
- Try other models like Random Forest to see if they outperform XGBoost

Sources

- https://www.kaggle.com/obrienmitch94/nyc-taxi-fare-prediction
 - Used this code as a prototype for our model, but improved model by changing hyperparameters and eliminating unnecessary features