

The Problem

4/20/2020 1 check-in 1 photo Ordered pick up today via door dash.

Yelp, Tripadvisor, and **Amazon have customer** reviews with ratings.

A hot mess

0000

Airbnb does not.

Reviews		
Traveler rating		
Excellent		6,141
☐ Very Good		2,662
Average		950
Poor	1	345
Terrible	ı	346

The Solution

reviews with ratings to train a sentiment classifier.

Classify Airbnb reviews.

The Process

The Data

- Scraped 1.2 million
 Tripadvisor reviews
- Used chunk of data for modeling
 - Split into 64/16/20 train/validation/test

Model Validation Score Comparisons

Used 50k TF-IDF features (lemmatized)

<u>Multinomial</u> <u>Naive Bayes</u>

Accuracy: 79%

<u>Logistic</u> <u>Regression</u>

Best Model

Accuracy: 81%

Random Forest

Accuracy: 69%

<u>Gradient</u> <u>Boostina</u>

Accuracy: 63%

AdaBoost Classifier

Accuracy: 62%

Logistic Regression Validation Matrix

Top Negative Words:

Long Short-Term Memory (LSTM) Neural Networks

Initial Neural Network Architecture

0.1% of data, val accuracy~80%

Final Neural Network Architecture

- 0.1% of data, val accuracy
 ~85% (+5%)
- Added convolution and pooling layers for speed

Model: "sequential"			
Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	550, 128)	640000
dropout (Dropout)	(None,	550, 128)	0
conv1d (Conv1D)	(None,	546, 64)	41024
max_pooling1d (MaxPooling1D)	(None,	136, 64)	0
bidirectional (Bidirectional	(None,	136, 200)	132000
bidirectional_1 (Bidirection	(None,	136, 200)	240800
bidirectional_2 (Bidirection	(None,	200)	240800
dense (Dense)	(None,	128)	25728
dropout_1 (Dropout)	(None,	128)	0
dense_1 (Dense)	(None,	3)	387

Final Neural Network Architecture

- 0.1% of data, val accuracy
 ~85% (+5%)
- Added convolution and pooling layers for speed
- 2. Stacked 3 bidirectional LSTMs

Layer (type)	Output	Shap	e	Param #
embedding (Embedding)	(None,	550,	128)	640000
dropout (Dropout)	(None,	550,	128)	0
conv1d (Conv1D)	(None,	546,	64)	41024
max_pooling1d (MaxPooling1D)	(None,	136,	64)	0
bidirectional (Bidirectional	(None,	136,	200)	132000
bidirectional_1 (Bidirection	(None,	136,	200)	240800
bidirectional_2 (Bidirection	(None,	200)		240800
dense (Dense)	(None,	128)		25728
dropout_1 (Dropout)	(None,	128)		0
dense_1 (Dense)	(None,	3)		387
======================================				

Final Neural Network Architecture

- 0.1% of data, val accuracy
 ~85% (+5%)
- Added convolution and pooling layers for speed
- 2. Stacked 3 bidirectional LSTMs
- 3. Added dropout layersa. Prevent overfitting

Layer (type)	Output	Shape	е	Param #
embedding (Embedding)	(None,	550,	128)	640000
dropout (Dropout)	(None,	550,	128)	0
conv1d (Conv1D)	(None,	546,	64)	41024
max_pooling1d (MaxPooling1D)	(None,	136,	64)	0
bidirectional (Bidirectional	(None,	136,	200)	132000
bidirectional_1 (Bidirection	(None,	136,	200)	240800
bidirectional_2 (Bidirection	(None,	200)		240800
dense (Dense)	(None,	128)		25728
dropout_1 (Dropout)	(None,	128)		0
dense_1 (Dense)	(None,	3)		387
Total params: 1,320,739 Trainable params: 1,320,739 Non-trainable params: 0				

Final Model Test Matrix:

- 50% of data6/6 epochs
- Took ~5.5 hours to train
- Training Accuracy: 90%
- Validation Accuracy: 88%
- Test Accuracy: 88%

Flask Web App

Airbnb Review SentimentClassifier: https://tinyurl.com/

rating-predictor

Predict an Airbnb Rating

Enter an Airbnb review to predict its sentiment and rating.

Negative = 1-2 stars, neutral = 3 stars, positive = 4-5 stars.

Airbnb Review:

We just finished our stay at this location and overall it was an easy stay. Location is great and view from balcony was nice. Our main issues were the major lack of basic utensils, cleaning/big supplies, stained carpet and broken tiles between kitchen and bathroom. The place has much potential and I wouldn't necessarily say "no" to this place. Just be prepared to need your own basic airBnb essentials like cleaning, eating supplies and be warned about the ant issue

Submit

Airbnb Rating Prediction

Review: "Bathroom had an ant problem, overall cleanliness was poor, hotel needs and update."

Prediction: Negative (1-2 Stars)

81.60% Negative, 18.06% Neutral, 0.34% Positive

Airbnb Rating Prediction

Review: "This is a lovely space that is right on the main beach...couldn't ask for a better location! "

Prediction: Positive (4-5 Stars)

3.84% Negative, 12.67% Neutral, 83.49% Positive

Conclusion

- Neural networks take a lot of time and resources to train
 - But can reach impressive results
- Logistic regression with TF-IDF also performed well
 - Additional benefit of interpretability (word clouds)

Next Steps

- Learn to better build/train neural networks to save time and resources
 - Possibly try with a GPU
- Experiment more with natural language processing + neural networks, other models
- Improve web app to classify multiple reviews for a dashboard

Thank you!

Airbnb Review Sentiment Classifier: tinyurl.com/rating-predictor

GitHub Repo: aithub.com/chelseanbr/between-the-lines-hotels

Appendix

Project Summary

- 1. Scraped 1.2 million Tripadvisor hotel reviews
- 2. Split data into 64/16/20 train/validation/test
- 3. Experimented with natural language processing
- 4. Built and evaluated models on accuracy and confusion matrices
- 5. Deployed sentiment classifier as a Flask web app
- GitHub repo: <u>https://github.com/chelseanbr/between-the-lines-hotels</u>

Handling Class Imbalance

- Undersampled training data
- Used class weights

Logistic Regression

Top Positive Words

Top Neutral Words

Top Negative Words

Reviews to Arrays

"Hootel staff was rude."

Stemming, tokenization

[hootel, staff, was, rud]

Words to ints, vocab size = 5k

[<OOV>, 3, 7, 54]

Validation Matrices Logistic Regression

Neural Network

-0.8

0.6

-0.4

-0.2

0.015

0.14

0.91

positive

