Lec2 Note of Abstract Algebra

Xuxuayame

日期: 2023年3月15日

2 群的基本概念,例子

定义 2.1. 集合 M 以及 M 上的一个结合二元运算称为一个**半群 (Semigroup)**,简称 M 为一个半群。

例 2.1. A 为集合,令 $\Sigma(A) = \{f : A \to A \mid f$ 为集合映射 $\}$,则 $(\Sigma(A), \circ)$ 为半群。

设M为半群,若M中元素e满足

$$e \cdot a = a \cdot e = a$$
.

则称 e 为 M 中的 (一个) **幺元 (单位元)**,记作 e 或 1, 1_M 。

评论. 半群 M 中的幺元若存在则必唯一。设 e_1, e_2 为幺元、则

$$e_2 = e_1 \cdot e_2 = e_1.$$

例 2.2. 例 2.1 中,恒同映射 Id_A 为半群上的幺元。

称有幺元的半群为含幺半群。

设 M 为含幺半群, $g \in M$, 若存在 $h \in M$, 使得

$$gh = hg = 1$$
,

则称 h 为 g 的 (---) **逆元**。

同样的,含幺半群中元素 g 的逆元若存在,则必唯一。设 h_1, h_2 为 g 的逆元,则

$$h_1 = h_1 1 = h_1(gh_2) = (h_1g)h_2 = 1h_2 = h_2.$$

于是我们可以将 h 记作 g^{-1} 而不引起混淆。

称每个元素均可逆的含幺半群为群。

- **例 2.3.** (1) $\mathbb{C}, \mathbb{R}, \mathbb{Q}, \mathbb{Z}$ 对加法均构成群,幺元为 0。 $(\mathbb{N}, +)$ 为含幺半群。 (\mathbb{C}, \cdot) 为含幺半群,1 为幺元。
 - (2) 对 $n \in \mathbb{Z}^+$,考虑 $\mathbb{Z}/n\mathbb{Z}$,对加法构成群,幺元为 $\overline{0}$, \overline{a} 的逆元为 $\overline{-a}$ 。乘法可逆元 为 $\{\overline{a} \mid (a,n)=1\}$ 。
 - (3) 考虑矩阵 $M_n(\mathbb{C})$, $M_n(\mathbb{R})$, $M_n(\mathbb{Q})$, $M_n(\mathbb{Z})$, 对加法构成群,幺元为 0 矩阵,逆元为 0 矩阵。对乘法构成含幺半群,幺元为 I_n 。

- (4) 考虑 n 阶可逆方阵 $GL_n(\mathbb{C})$, $GL_n(\mathbb{R})$, $GL_n(\mathbb{Q})$, 对乘法构成群,称为一**般线性群**。 特别当 n=1 时, $\mathbb{C}^{\times}=\mathbb{C}\setminus\{0\}$, $\mathbb{R}^{\times}=\mathbb{R}\setminus\{0\}$, $\mathbb{Q}^{\times}=\mathbb{Q}\setminus\{0\}$, $\mathbb{Z}^{\times}=\{\pm 1\}$ 。
- (5) 记 $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$,则 (S^1, \cdot) 为群。记 $\mu_n = \{z \in \mathbb{C} \mid z^n = 1\}$,则 (μ_n, \cdot) 为群。
- (6) 例 2.1 中的 $(\Sigma(A), \circ)$ 为含幺半群,令 $S(A) = \{ f \in \Sigma(A) \mid f$ 可逆 $\}$,则 $(S(A), \circ)$ 形成群,称为 A 的**对称群**,S(A) 中的元素称为 A 的置换。
- (7) \mathbb{R}^2 上所有保持距离的运动 (这里指到自身的双射) 的全体形成一个群,称为**欧氏运动群**。
- **命题 2.1.** M 为含幺半群,则 $M^{\times} = \{a \in M \mid a$ 可逆} 为群。
- 证明. $1_M \in M^{\times}$: $\forall a \in M^{\times}$, $1_M a = a 1_M = a \Rightarrow 1_M = 1_{M^{\times}}$.
 - $a \in M^{\times}, b \in M^{\times} \Rightarrow ab \in M^{\times}$.
 - $a \in M^{\times} \Rightarrow a^{-1} \in M^{\times}$ 。 于是 M^{\times} 构成群。

定义 2.2. 设 G 为群,若 G 中元素个数 |G| 有限,则称 G **有限群 (Finite group)**,|G| 称 为 G 的**阶 (Order)**。否则,称为**无限群 (Infinite group)**, $|G| = \infty$,阶为无穷。

定义 2.3. 群 G 中乘法满足交换律 (Commutative law),即 ab = ba, $\forall a, b \in G$,则称群 G 为交换群 (Commutative group),或 Abel 群 (Abelian group)。

评论. Abel 群中的运算通常写为 +, 幺元记作 0。

评论. S_n 是 Abel 群 $\Leftrightarrow n = 1, 2$.

 $GL_n(M)$, $M=\mathbb{C},\mathbb{R},\mathbb{Q},\cdots$ 是 Abel 群 $\Leftrightarrow n=1$ 。