Task 3

Analyze and Compute the Spanning Tree for the extended LAN given below. For the following bridged LAN, assume that LANs 1, 3 and 5 are Gigabit Ethernets (Cost=4) and the rest are Fast Ethernets (Cost=19). Bridges are labelled with B1, B2, etc. Use the LAN costs to determine the least cost path.

- S1-S2
- S2-S3
- S3-S1

Assessment Rubrics

	00.00
Category	Marks
Aim & Theory	5
Manual Calculation	10
Environment Creation &	20
Block Diagram	20
Spanning Tree Results	10
Inference	5
Total	50

CC Lab/Winter 2022-23

Aim:

To implement the spanning tree algorithm in the given topology and find the least cost paths and block ports.

Tools Required:

Net Sim Software

Theory:

Spanning tree Algorithm is a widely used algorithm to overcome the looping problem because of repeated cyclic updation of the forwarding table. This algorithm is mainly used in networks where some of its switches has a backup switch to ensure low down-time in routing. This algorithm basically finds the least cost path from a node to another node. It then block the other possible paths leading to high cost. So when packet transferring from one node to another, it only gets a path with low cost, hence overcoming the looping problem.

Tabulation of Port Address (Bridges)

Bridge #	Port	Priority	MAC Address	Port ID (Priority + MAC)	Switch /Bridge ID (Lowest in Port ID)
S1	LAN G	1	9954	19954	
(NOT REQ)	LAN H	1	8580	18580	18580
S2	LAN H	5	660F	5660F	
	LAN E	5	9227	59227	5424D
	LANF	5	424D	5424D	
S3	LAN E	5	184C	5184C	
	LAN A	5	0F8B	50F8B	50F8B
	LAN D	5	EE3C	5EE3C	
S4	LAN B	5	8BCA	58BCA	
	LAN A	5	F074	5F074	58BCA
S5	LAN B	5	86F6	586F6	
	LAN C	5	FD34	5FD34	5A0BD
	LAN D	5	A0BD	5A0BD	

CC Lab/Winter 2022-23

S6	LAN G	5	F45D	5F45D	
	LAN F	5	7B31	57B31	50EBA
	LAN C	5	0EBA	50EBA	

Tabulation of Port Address (LANs)

LAN#	Port #	Priority	MAC Address	Port ID (Priority + MAC)
LAN A	S4	7	4412	74412
	S3	7	2684	72684
LAN B	S4	7	1E15	71E15
	S5	7	8343	78343
LAN C	S5	7	D983	9D983
1	S6	7	20B6	720B6
LAN D	S5	1	DD74	1DD74
	S3	1	F0D2	1F0D2
LAN E	S2	7	64E1	764E1
	S3	7	7E60	77E60
LAN F	S6	1	B304	1B304
	S2	1	5671	15671
LAN G	S 6	7	056B	7056B
	S1	7	0727	70727
LAN H	S1	7	D5DF	7D5DF
	S2	7	4169	74169
	S2	7	4169	74169

CC Lab/Winter 2022-23 Page 3

Manual Computation of Spanning Tree

```
Root bridge
2) Root Port
  Sa > through Lant
   S3 -> thorough Lan E
   Sy > thorough Lam A
    Ss > though Lan G
3) Designated Port & Bridge
   Lan A > thorough S3
    Land -> through 85
     Lanc > thorough SL
      Can D - through S5
      Lam E > thorough Sa
       Lan F > thorough S2
      Cambo -> Horough S,
        Land -> Horough SI
```

CC Lab/Winter 2022-23

Spanning Tree Diagram

(Simulated Using NetSim)

CC Lab/Winter 2022-23 Page 5

Inference

Application Id	Application Name	Packet transmitted	Packet received	Throughput (Mbps)
1	APP1_CBR	499	499	0.582832
2	APP2_CBR	499	499	0.582832
3	APP3_CBR	499	499	0.582832
4	APP4_CBR	499	499	0.582832

We can clearly see from the above table that all the packets are received by the destination node, the looping problem is elimated with the use of spanning tree algorithm. They were some ports which are block to maintain the flow without looping. These blockings were made with the help of port id and the speed of LANs.

CC Lab/Winter 2022-23 Page 6