Learning from Examples (Part A)

Contents

- Introduction
- Supervised Learning
- Learning Decision Trees
- Evaluating and Choosing the Best Hypothesis
- Regression and Classification with Linear Models
- Nonparametric Models
- Ensemble Learning

Introduction

- Learning is essential for unknown environments
 - i.e., when designer cannot anticipate all possible situations
- Learning is useful as a system construction method
 - i.e., expose the agent to reality rather than trying to write it down
 - No way to program to recognize the faces of family members other than using learning algorithms
- Learning modifies the agent's decision mechanisms to improve performance
- Supervised vs. unsupervised learning

Supervised Learning

- Learning task:
 - Given a training set of N example input-output pairs

$$(x_1, y_1), (x_2, y_2), \ldots, (x_N, y_N)$$

where each y_j is generated by an unknown function y = f(x), search for a hypothesis h such that $h \approx f$

- Learning problems:
 - We have to learn P(Y|x) when f is stochastic
 - Classification when y is one of a finite set of values
 - Regression when y is a number
- Unsupervised learning receives only inputs without any output

Supervised Learning

Example: curve fitting (regression)

- Construct/adjust h to agree with f on training set
 - ♦ h is consistent if it agrees with f on all examples
 - ♦ h generalizes well if it correctly predicts y for test set
- Ockham's razor: Prefer the simplest hypothesis consistent with data (maximize a combination of consistency and simplicity)

Supervised Learning

 \diamond Supervised learning chooses from the hypothesis space \mathcal{H} the hypothesis h^* that is most probable given the data:

$$h^* = \arg\max_{h \in \mathcal{H}} P(h \mid data)$$

By Bayes' rule this is equivalent to

$$h^* = \underset{h \in \mathcal{H}}{\operatorname{arg\,max}} P(data \mid h) P(h)$$

• P(h) is low for complex hypothesis

Bayes' rule:

$$P(a \mid b) = \frac{P(b \mid a)P(a)}{P(b)}$$

Learning Decision Trees

Examples are described by attribute values (Boolean, discrete, continuous, etc.)

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	<i>\$\$\$</i>	F	T	French	>60	F
X_6	F	T	F	T	Some	<i>\$\$</i>	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	<i>\$\$\$</i>	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

Classification of examples is positive (T) or negative (F)

Decision Tree Representation

One possible representation for hypotheses (e.g., "true" tree)

Expressiveness of Decision Trees

- Decision trees can express any function of the input attributes
 - For Boolean functions, truth table row ≡ path to leaf:

Α	В	С	A xor B xor C	A
F	F	F	F	F
F	F	Т	Т	
F	Т	F	Т	В
F	Т	Т	F	F T
T	F	F	Т	
T	F	Т	F	
Т	Т	F	F	F T F T T
Т	Т	Т	т	F T T F T F T

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f is nondeterministic in x)
 - It probably won't generalize to new examples
- Prefer to find more compact decision trees

Hypothesis Spaces

- How many distinct decision trees with n Boolean attributes??
 - = number of Boolean functions
 - = number of distinct truth tables with 2^n rows = 2^{2^n}
 - With 6 Boolean attributes, there are more than 1.8×10^{19} trees

- \diamond How many purely conjunctive hypotheses (e.g., $Hungry \land \neg Rain$)??
 - Each attribute can be in (positive), in (negative), or out
 - \rightarrow 3ⁿ distinct conjunctive hypotheses
- More expressive hypothesis space
 - Increases chance that target function can be expressed
 - Increases number of hypotheses consistent with training set
 - → may get worse predictions

Inducing Decision Trees from Examples

- Aim: find a small tree consistent with the training examples
- Idea: choose the most significant attribute as the root of a (sub)tree

```
function Decision-Tree-Learning(examples, attributes, parent examples)
returns a tree
 if examples is empty then return PLURALITY-VALUE(parent examples)
  else if all examples have the same classification then return the classification
  else if attributes is empty then return PLURALITY-VALUE(examples)
  else
    A \leftarrow \operatorname{arg\,max}_{a \in attributes} \operatorname{IMPORTANCE}(a, examples)
    tree \leftarrow a new decision tree with root test A
    for each value v_k of A do
       exs \leftarrow \{e \mid e \in examples \text{ and } e.A = v_k\}
       subtree \leftarrow Decision-Tree-Learning(exs, attributes - A, examples)
       add a branch to tree with label (A = v_k) and subtree subtree
    return tree
```

 Idea: a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Patrons? is a better choice—gives more information about the classification

- Basic intuition behind the information theory:
 - Observing an unlikely event is more informative than observing a likely event
 - A guaranteed event should have no information content
 - Independent events have additive information
- The self-information of an event X = x is defined to be $-\log_2 P(X = x)$ bits (more uncertain event has more self-information)
- We can quantify the amount of uncertainty in an entire probability distribution $\langle P(x_1), \ldots, P(x_n) \rangle$ using the entropy:

$$H(\langle P_1,...,P_n\rangle) = \sum_{i=1}^n -P_i \lg P_i$$

 Entropy is the expected value of self information over the entire distribution

Example: Coin tossing

- The distribution of Head and Tail of an unbiased coin is ⟨½, ½⟩
 The self-information of each event is −lg ½ = 1 bit
 So the entropy becomes ½ · 1 + ½ · 1 = 1 bit
- The entropy of the distribution $\langle \sqrt[3]{4}, \sqrt[1]{4} \rangle$ of a biased coin: $\sqrt[3]{4} \cdot (-\lg \sqrt[3]{4}) + \sqrt[1]{4} \cdot (-\lg \sqrt[1]{4}) \approx 0.81 \text{ bit}$
- When an unbiased coin is tossed twice
 The distribution of HH, HT, TH, TT is \$\langle \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4} \rightarrow\$
 The self-information of each event is \$-1g \frac{1}{4} = 2\$ bit
 Therefore, the entropy is \$\frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 = 2\$ bit

Entropy can be deemed as a measure of impurity

$$H\left(\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle\right) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1$$

$$H\left(\left\langle \frac{1}{4}, \frac{3}{4} \right\rangle\right) = -\frac{1}{4}\log_2\frac{1}{4} - \frac{3}{4}\log_2\frac{3}{4} \approx 0.81$$

$$H(\langle 0,1\rangle) = 0$$

Calculation of information gain for attribute selection:

Entropy of the *i*-th child:

$$e_i = H\left(\left\langle \frac{p_i}{p_i + n_i}, \frac{n_i}{p_i + n_i} \right\rangle\right)$$

Average of child entropies:
$$e = \sum_{i=1}^{k} \frac{p_i + n_i}{p + n} e_i$$

Information gain = E - e

We choose the attribute that maximizes the information gain

Example: Information gain when Patrons? is selected

$$H\left(\left\langle \frac{1}{2}, \frac{1}{2} \right\rangle\right) = 1$$

$$\frac{2}{12} \cdot 0 + \frac{4}{12} \cdot 0 + \frac{6}{12} \cdot H\left(\left\langle \frac{1}{3}, \frac{2}{3} \right\rangle\right) = \frac{1}{2} \cdot \left(-\frac{1}{3} \lg \frac{1}{3} - \frac{2}{3} \lg \frac{2}{3}\right) \approx 0.459$$

Information gain = 1 - 0.459 = 0.541

Decision tree learned from the 12 examples:

Substantially simpler than "true" tree—a more complex hypothesis isn't justified by small amount of data

Performance Measurement

- ♦ How do we know that $h \approx f$?
 - Try h on a new test set of examples
 (use same distribution over example space as training set)
- Learning curve
 - = % correct on test set as a function of training set size

Performance Measurement

- Learning curve depends on
 - Realizable (can express target function) vs. non-realizable
 - Non-realizability can be due to missing attributes or restricted hypothesis class (e.g., linear function)
 - Redundant expressiveness (e.g., loads of irrelevant attributes)

Generalization and Overfitting

Pruning:

- Proceeds from the leaves and works back up:
 - Look at a test node with only leaf descendants
 - Eliminate irrelevant test and replace it with a leaf node
 - Repeat until relevant test is seen
- How do we detect irrelevant test?
 - An irrelevant test would split examples into subsets that each have roughly the same proportion of positive examples as the whole set, p/(p+n), and so the information gain will be close to zero

Generalization and Overfitting

- Statistical significance test:
 - Null hypothesis (assumes true irrelevance)

$$\hat{p}_k = \frac{p}{p+n} \times (p_k + n_k) \quad \hat{n}_k = \frac{n}{p+n} \times (p_k + n_k)$$

The total deviation

$$\Delta = \sum_{k=1}^{d} \frac{(p_k - \hat{p}_k)^2}{\hat{p}_k} + \frac{(n_k - \hat{n}_k)^2}{\hat{n}_k}$$

is distributed according to χ^2 (chi-squared) distribution with d-1 degrees of freedom

- \diamond χ^2 pruning: Look up χ^2 table, e.g., with 3 degrees of freedom (d=4)
 - $\Delta \ge 7.82 \rightarrow$ reject the null hypothesis at the 5% level (i.e., test is relevant, so do not prune)
 - $\Delta \ge 11.35 \rightarrow \text{reject at the } 1\% \text{ level (harder to be relevant)}$

Generalization and Overfitting

Example: χ^2 pruning with 2 degrees of freedom

- $\Delta \ge 4.60 \rightarrow \text{reject at the } 10\% \text{ level}$
- $\Delta \ge 5.99 \rightarrow \text{reject at the } 5\% \text{ level}$

$$\hat{p}_1 = \hat{p}_3 = \frac{4}{14} \cdot 6 = \frac{12}{7} \qquad \hat{n}_1 = \hat{n}_3 = \frac{10}{14} \cdot 6 = \frac{30}{7}$$

$$\hat{p}_2 = \frac{4}{14} \cdot 2 = \frac{4}{7} \qquad \hat{n}_2 = \frac{10}{14} \cdot 2 = \frac{10}{7}$$

$$(1p, 5n)$$

$$(1p, 5n)$$

$$\Delta = 2 \cdot \left[\frac{\left(1 - \frac{12}{7}\right)^2}{\frac{12}{7}} + \frac{\left(5 - \frac{30}{7}\right)^2}{\frac{30}{7}} \right] + \left[\frac{\left(2 - \frac{4}{7}\right)^2}{\frac{4}{7}} + \frac{\left(0 - \frac{10}{7}\right)^2}{\frac{10}{7}} \right] \approx 5.83$$

We prune at 5% level, but not at 10% level

Missing Data

- When the absence of a value is of some significance:
 - Treat as another possible value in its own right
- Otherwise (at the time of test):
 - Split the instance into pieces and send part of it down each branch in proportion to the number of training instances going down that branch
 - The decision at the leaf nodes must be recombined using the weights that have percolated to the leaves
- At the time of training:
 - Split into pieces and send down each branch in the same proportion as the known instances go down the various branches

Missing Data

Example: Classification of an example with some data missing

Multivalued Attributes

- Information gain measure can be misleading
 - An attribute such as StudentID has a different value for every example
 - → highest information gain
- Use gain ratio instead

gain ratio = (information gain) / (split information)

When an attribute *A* splits a set of examples *S* into *n* subsets

$$SplitInfo(S, A) = -\sum_{k=1}^{n} \frac{|S_k|}{|S|} \lg \frac{|S_k|}{|S|}$$

Splitinfo gets larger as n gets larger

Numeric Input Attributes

Restaurant data with a numeric attribute:

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	40	F	T	French	0–10	T
X_2	T	F	F	T	Full	9	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	8	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	12	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	45	F	T	French	>60	F
X_6	F	T	F	T	Some	25	T	T	Italian	0–10	T
X_7	F	T	F	F	None	8	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	20	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	10	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	35	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	9	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	10	F	F	Burger	30–60	T

Numeric Input Attributes

Restricted to binary splits

Calculate information gain for splitting at 30

info([5,4],[1,2]) =
$$\frac{9}{12}H\left(\left\langle \frac{5}{9}, \frac{4}{9} \right\rangle\right) + \frac{3}{12}H\left(\left\langle \frac{1}{3}, \frac{2}{3} \right\rangle\right) = 0.973 \text{ bits}$$

Test all the possible split points and then split at the point with the lowest entropy

Numeric Input Attributes

- Numeric attributes can be tested many times (successive splits) on a path from the root to the leaf
 - Tests on a single numeric attribute are not located together but can be scattered along the path
 - Trees can be messy and difficult to understand
 - For a more readable tree, allow a multiway test by prediscretizing the numeric attributes

Numeric Output Attributes

Model tree:

- Each leaf has a linear function of some subset of numerical attributes
- The learning algorithm must decide when to stop splitting and begin applying linear regression over the attributes

Evaluating and Choosing the Best Hypothesis

- To learn h that fits future data best
 - Assume stationarity (future = present): examples are i.i.d
 - Measure error rate on a set of data not seen yet
- Be careful about peeking
 - Do not use test-set performance to both choose a hypothesis and evaluate it
- Holdout cross-validation (separate training and test sets)
 - Large test set → poor hypothesis
 - Large training set → poor estimate of error rate

Evaluating and Choosing the Best Hypothesis

- k-fold cross-validation:
 - Partition the data into k equal folds (optionally with stratification)
 - Each fold in turn is used for testing, and the remainder for training
 - The k error rates are averaged
 (better estimate than a single score)
- - At a cost of 5 to 10 times longer computation time
- \diamond Leave-one-out cross-validation (LOOCV): k = # examples

Training

Evaluating and Choosing the Best Hypothesis

To avoid peeking in doing model selection

(e.g., choosing the degree of the polynomial)

- Lock away the test set
- Divide the available data (without the test set) into a training set and a validation set to measure performance on unseen data as a way of selecting a good hypothesis

Model Selection: Complexity vs. Goodness of Fit

 Find a right-sized hypothesis that gives the lowest validation set error

Model Selection: Complexity vs. Goodness of Fit

function CROSS-VALIDATION-WRAPPER(Learner, k, examples) **returns** a hypothesis **local variables**: errT, an array, indexed by size, storing training-set error rates errV, an array, indexed by size, storing validation-set error rates **for** size = 1 **to** ∞ **do** $errT[size], errV[size] \leftarrow \text{CROSS-VALIDATION}(Learner, size, k, examples)$ **if** errT has converged **then do** $best_size \leftarrow$ the value of size with minimum errV[size] **return** $Learner(best_size, examples)$

- Cross-validation finds the best size with the lowest error
- Then, a hypothesis of that size is generated using all the data (without holding out any of it)
- The returned hypothesis should be evaluated on a separate test set

From Error Rates to Loss

Loss function:

• Expresses utilities lost by predicting $h(x) = \hat{y}$ when the correct answer is f(x) = y:

$$L(x, y, \hat{y}) = Utility(\text{result of using } y \text{ given an input } x)$$

- $Utility(\text{result of using } \hat{y} \text{ given an input } x)$

• A simplified version $L(y, \hat{y})$ independent of x is often used

Absolute value loss: $L_1(y, \hat{y}) = |y - \hat{y}|$

Squared error loss: $L_2(y, \hat{y}) = (y - \hat{y})^2$

0/1 loss: $L_{0/1}(y, \hat{y}) = 0 \text{ if } y = \hat{y}, \text{ else } 1$

Note: 0/1 loss cannot account for the following case

L(spam, nospam) = 1, L(nospam, spam) = 10

From Error Rates to Loss

The expected generalization loss for a hypothesis h:

(\mathcal{E} : set of all possible input-output examples)

$$GenLoss_L(h) = \sum_{(x,y)\in\mathcal{E}} L(y,h(x))P(x,y)$$

and the best hypothesis, h^* , is the one with minimum GenLoss

$$h^* = \underset{h \in H}{\operatorname{arg\,min}\, GenLoss}_L(h)$$

 \diamond Since P(x, y) is unknown, we can only estimate by empirical loss on a set E of N examples,

$$EmpLoss_{L,E}(h) = \frac{1}{N} \sum_{(x,y)\in E} L(y,h(x))$$

The estimated best hypothesis is

$$\hat{h}^* = \underset{h \in H}{\operatorname{arg \, min}} \, EmpLoss_{L,E}(h)$$

From Error Rates to Loss

- Sources of loss:
 - Unrealizability (Bias):
 - $f \notin \mathcal{H}$
 - Variance:
 - Different hypotheses from different training sets (variance $\to 0$ as $|E| \to \infty$, if $f \in \mathcal{H}$)
 - Noise:
 - Often the observed labels y are the result of unknown attributes
 - Computational complexity:
 - Intractable to search the whole \(\mathcal{H} \) when \(\mathcal{H} \) is huge
 (especially for large-scale learning with millions of examples)

Regularization

Explicit penalization of complex hypotheses on a training set

$$Cost(h) = EmpLoss(h) + \lambda Complexity(h)$$

$$\hat{h}^* = \arg\min_{h \in \mathcal{H}} Cost(h)$$
regularization function

- Often used for linear regression, where a good regularization function is the sum of the squares of the coefficients
- We need cross-validation search with different λ rather than size
- MDL (minimum description length) approach: <a>=
 - Both the empirical loss and the complexity are measured in bits (without λ): $h^* = \arg \max P(data \mid h)P(h)$

Bits for encoding hypothesis + Bits for encoding error
$$(-\lg P(h))$$
 $(-\lg P(\operatorname{data} \mid h))$

• Feature selection (e.g., χ^2 pruning) can also simplify models