

(19)

JAPANESE PATENT OFFICE

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000008909 A

(43) Date of publication of application: 11.01.00

(51) Int. Cl

F02D 41/04

B01D 53/87

F01N 3/08

F01N 3/20

F01N 3/24

F01N 3/28

F02D 41/14

(21) Application number: 10171503

(71) Applicant: YANMAR DIESEL ENGINE CO LTD

(22) Date of filing: 18.06.98

(72) Inventor: NAKAZONO TORU
OKABE TAKESHI

(54) CONTROLLING METHOD FOR INTERNAL COMBUSTION ENGINE

(57) Abstract:

PROBLEM TO BE SOLVED: To remove nitrate and sulfate adsorbed to a nitrogen oxide storage reduction catalyst by returning an excess air rate to an original rate after operated at a certain time, setting the excess air rate to a specific value.

SOLUTION: When an excess air rate is in a lean burn state, an oxygen ion O₂⁻ or O₃⁻ and NO_x are reacted to generate a nitrate ion NO₃⁻, the nitrate ion NO₃⁻ is adsorbed to a surface of a catalyst 1 thereby forming a nitrate. The nitrate on the catalyst 1 is in a saturated state, the excess air rate is made slightly smaller than $\lambda=1.0$, and an internal combustion engine is operated in a rich state for five to six minutes whereby the nitrate is reacted with an unburned HC and CO contained in an exhaust gas. Accordingly, the nitrate on the catalyst 1 is decomposed into an N₂, CO₂ and H₂O and reduced thereby to be removed. After conduction of rich spike, the excess air ratio is set again to be in the lean state ($\lambda=1.5$). Accordingly, NO_x in the

exhaust gas is reduced by the nitrogen oxide storage reduction catalyst to reduce the amount of NO_x discharged to the atmosphere.

COPYRIGHT: (C)2000,JPO

