In the attempt to analyse in detail the features of the described ultraproduct, which I intend to use for philosophical purposes, I encountered difficulties that I list below in the form of proofs of contradiction so that it becomes clear that something went wrong even though what that in particular is, is still unclear to me.

I use "N", " \mathbb{R} ", " $\{1, 2, ...\}$ ", " \aleph_0 " as symbols of the metalanguage and always write respectively " $\omega^{\mathcal{M}}$ ", " $1^{\mathcal{M}}$ ", ... as their interpretation in a model \mathcal{M} . I don't write "· \mathcal{M} " when the symbols are preceded by " $\mathcal{M} \models$ ". I also write " \Rightarrow ", " \Leftrightarrow " as the metalinguistic logical consequence.

Let $\{s_i \in \mathcal{L}_{\epsilon} : i \in \mathbb{N}\}$ s.t., for a theory T of \mathcal{L}_{ϵ} :

(i): $\forall_{i < \mathbb{N}} (T \not\models s_i \land T \not\models \neg s_i)$

(ii): $\forall_{i,j\in\mathbb{N}}^- (i\neq j\Rightarrow T+s_i\models \neg s_j)$.

From (i) I derive that $\forall_{i \in \mathbb{N}} Con(T) \to Con(T+s_i)$, then choose a model of $T+s_i$ and call it \mathfrak{U}_i s.t.

(iii): for a function f, $\mathfrak{U}_i \models f : \{\emptyset\} \to \omega \land (f(\emptyset) = i \leftrightarrow s_i)$.

Then, for a non-principal ultrafilter \mathcal{U} on \mathbb{N} , define $\mathfrak{U} := \prod_{i \in \mathbb{N}} \mathfrak{U}_i / \mathcal{U}$, if not specified \mathcal{U} is a free variable, if bounded then write " $\mathfrak{U}_{\mathcal{U}}$ ".

For a proposition in the metalanguage φ and the ultraproduct \mathfrak{U} define $B_{\mathfrak{U}}(\varphi) := \{i \in \mathbb{N} : \mathfrak{U}_i \models \varphi\}$, note that this definition is independent from the ultrafilter \mathcal{U} .

Lemma (0). For
$$\varphi \in \mathcal{L}_{\epsilon}$$
, $(\mathfrak{U} \models \varphi) \Rightarrow (|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0)$

Proof. Let $\varphi \in \mathcal{L}_{\epsilon}$ and assume $\mathfrak{U} \models \varphi$, by Los Theorem derive that $\models \varphi \Rightarrow \{i \in \mathbb{N} : \mathfrak{U}_i \models \varphi\} \subset \mathcal{U}$ and since \mathcal{U} is non-principal derive $A \in \mathcal{U} \to |A| \geq \aleph_0$, hence $|\{i \in \mathbb{N} : \mathfrak{U}_i \models \varphi\}| \geq \aleph_0$.

Lemma (0'). For
$$\varphi \in \mathcal{L}_{\epsilon}$$
, $|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0 \Rightarrow \exists_{\mathcal{U}}(\mathfrak{U}_{\mathcal{U}} \models \varphi)$

Proof. Let $\varphi \in \mathcal{L}_{\epsilon}$ and assume $|B_{\mathfrak{U}}(\varphi)| \geq \aleph_0$ then one can generate a non-principal ultrafilter on \mathbb{N} from $B_{\mathfrak{U}}(\varphi)$, its existence proves the claim.

Theorem (I).
$$\mathfrak{U} \models \exists_{i \in \omega} (f(\emptyset) = i)$$

Proof. Note $B_{\mathfrak{U}}(\exists_{i\in\omega}(f(\emptyset)=i))=\{j\in\mathbb{N}:\mathfrak{U}_j\models\exists_{i\in\omega}(f(\emptyset)=i)\}=\mathbb{N}$, the last step follows from (iii) and construction of \mathfrak{U}_i . Since \mathcal{U} is an ultrafilter on \mathbb{N} then $\mathbb{N}\in\mathcal{U}$ hence, by Los Theorem, the claim follows.

Theorem (II).
$$\forall_{i \in \mathbb{N}} (\mathfrak{U} \models f(\emptyset) \neq i)$$

Proof. Let $i \in \mathbb{N}$, then note $|B_{\mathfrak{U}}(f(\emptyset) = i)| = 1 < \aleph_0$ by (ii), therefore, by 0, $\mathfrak{U} \not\models f(\emptyset) = i$ and by completeness of models derive the claim.

Lemma (II⁺). For
$$g: \mathbb{N} \to \omega^{\mathfrak{U}}$$
, $\forall_{i \in \mathbb{N}} (\mathfrak{U} \models f(\emptyset) \neq g(i))$

Proof. Let $g: \mathbb{N} \to \omega^{\mathfrak{U}}$ and let $i \in \mathbb{N}$ then note $|B_{\mathfrak{U}}(f(\emptyset) = g(i))| = 1 < \aleph_0$ by (ii), therefore, by 0, $\mathfrak{U} \not\models f(\emptyset) = g(i)$ and by completeness of models derive the claim.

Theorem $(\bot.1)$. \bot

Proof. From (I) define $\alpha^{\mathfrak{U}}$ s.t. $\mathfrak{U} \models f(\emptyset) = \alpha$. Let $g : \mathbb{N} \to \omega^{\mathfrak{U}}$, from (II⁺) derive $\alpha \in g(\mathbb{N}) \Rightarrow \bot$. Since the mapping of g is free, set $g : 1 \mapsto \alpha^{\mathfrak{U}}$, from $\alpha \in g(\mathbb{N})$ and $\alpha \in g(\mathbb{N}) \Rightarrow \bot$, derive the claim.

Theorem $(\perp .2)$. \perp

Proof. Let i be an ordinal and claim $\mathfrak{U} \models f(\emptyset) \neq i$. If $i \in \mathbb{N}$, from (II) derive $\mathfrak{U} \models f(\emptyset) \neq i$, assert also that $i \notin \mathbb{N} \Rightarrow \mathfrak{U} \models f(\emptyset) \neq i$. Assume $i \notin \mathbb{N}$, then from (iii) and construction of \mathfrak{U}_i derive $\{j \in \mathbb{N} : \mathfrak{U}_j \models f(\emptyset) = i\} = \{j \in \mathbb{N} : \mathfrak{U}_j \models f(\emptyset) = j\}$ and since $i \notin \mathbb{N}$, $\{j \in \mathbb{N} : \mathfrak{U}_j \models f(\emptyset) = i\} = \emptyset$, $|\emptyset| < \aleph_0$ hence, by $0, \mathfrak{U} \not\models f(\emptyset) = i$ and by completeness of models derive $\mathfrak{U} \models f(\emptyset) \neq i$. Conclude that for any ordinal $i, \mathfrak{U} \models f(\emptyset) \neq i$ and from (I) derive \bot .