МІНІСТЕРСТВО ОСВІТИ І НАУКИ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ «ЛЬВІВСЬКА ПОЛІТЕХНІКА»

Лабораторна робота №1 3 дисципліни «Математичні методи дослідження операцій»

Виконав: студент групи КН-210 Бурак Марко

Побудова математичної моделі задачі лінійного програмування

Для того, щоб скласти математичну модель практичної задачі, слід: 1) визначити керовані змінні і ввести їх позначення; 2) записати обмеження задачі у вигляді кількісних співвідношень (рівнянь та нерівностей), які залежать від керованих змінних; 3) в залежності від цілі задачі, побудувати функцію цілі як функцію керованих змінних. Побудувати математичні моделі наступних практичних задач.

Задача №16

Для виготовлення продукції двох видів Π_1 , Π_2 необхідно використовувати чотири види сировини S_1 , S_2 , S_3 , S_4 . Кількість одиниць сировини необхідних для виготовлення одиниці кожного із видів продукції, відома і задана в таблиці 1.11.

Необхідно скласти такий план випуску продукції Π_1 , Π_2 , при якому прибуток підприємства від реалізації всієї продукції був би максимальним.

Таблиця 1.11

Вид сировини	Запаси сировини	Вид продукції	
		П	П2
SI	19	2	3
S2	13	2	1
S3	15	0	3_
S4	18	3	0
Прибуток	*	7	5

Хід роботи

- 1.Спочатку потрібно визначити керовані змінні. Для цієї задачі параметрами являються:
 - Вид продукції
 - Різновид сировини
 - Запаси сировини, кожної з 4 видів
 - Прибуток від виду продукції
 - Об'єм випуску продукції

3 цих параметрів можна зробити висновки, що змінювати можна лише об'єм випуску продукції. Тому з цього випливає, що об'єм і є керованою змінною. Можна позначити х1, як кількість продукції П1, а х2 — кількість продукції П2.

2. Запишемо обмеження задачі у вигляді нерівностей.

Для цього скористуємось даною таблицею 1.11:

3 першої рядка можна побачити, що для виробнитства 2 П1 та 3 П2 знадобиться 19 запасів сировини S1, тому з цього можна зробити висновок, що: $2x_1+3x_2<=19$

Відповідно для кожної наступної сировини нерівність буде мати вигляд:

$$2x_1+x_2 <= 13$$

 $3x_2 <= 15$

 $3x_1 <= 18$

Також кількість вироблених товарів не може бути від'ємною, тому накладемо умову.

$$x_1 >= 0$$

$$x_2 > = 0$$

3 цих нерівностей отрмали систему обмежень:

$$2x_{1}+3x_{2}<=19$$

$$2x_{1}+x_{2}<=13$$

$$x_{2}<=5$$

$$x_{1}<=6$$

$$x_{1}>=0, x_{2}>=0$$

3. Тепер залишилось побудувати функцію цілі як функцію керованих змінних

За умовою потрібно отримати максимальний прибуток. Сумарний прибуток можна обчислити за допомогою умови задачі. В умові задачі позначено, що прибуток від одного товару $\Pi 1 = 7$ грошових одиниць, а товару $\Pi 2 = 5$ грошових одиниць, тому можна зробити висновок, що сумарний прибуток рівний: $7x_1+5x_2->max$

Де отримуємо добуток від ціни на товар та кількості.

Тепер можна змоделювати математичну модель цієї задачі:

$$2x_{1}+3x_{2}<=19$$

$$2x_{1}+x_{2}<=13$$

$$x_{2}<=5$$

$$x_{1}<=6$$

$$x_{1}>=0, x_{2}>=0$$

 $7x_1+5x_2->max$

Висновок: на цій лабораторній роботі, я навчився будувати математичні моделі для задач, знаходити функцію цілі, визначати керовані змінні та записувати обмеження задачі у вигляді нерівності.