Chapter 5

Software Scheduling:

• Project planning Steps:

1) Establish project scope:

Understand the problem and the work that must be done.

2) Determine feasibility:

To determine whether it would be financially and technically feasible to develop the product.

3) Analyze risks:

What can go wrong? How can we avoid it? What can we do about it?

4) Define required resources

- a) Determine human resources required
- b) Define reusable software resources
- c) Identify environmental resources

5) Estimate cost and effort

- a) Decompose the problem
- b) Develop two or more estimates using different approaches

6) Develop a project schedule

- a) Establish a meaningful task set
- b) Define a task network
- c) Use scheduling tools to develop a timeline chart
- d) Define schedule tracking mechanism

Risk Analysis and Management:

Software risks:

- What can go wrong?
- What is the likelihood?
- What will be the damage?
- What can be done about it?

Risk analysis and management are a set of activities that help a software team to understand and manage uncertainty about a project.

Risk Management

The process by which a course of action is selected that balances the potential impact of a risk weighted by its probability of occurrence and the benefits of avoiding (or controlling) the risk

Risk management life cycle:

- a. Identify(risk identification)
- b. Analyze(risk analysis)
- c. Plan(contingency planning)
- d. Track(risk monitoring)
- e. Control(recovery management)

• Software Project Scheduling:

Software project scheduling distributes estimated effort across the planned project duration by allocating the effort to specific tasks.

Basic principles of project scheduling:

Compartmentalization

 The project must be compartmentalized into a number of manageable activities, actions, and tasks.

Interdependency

- The interdependency of each compartmentalized activity, action, or task must be determined
- Some tasks must occur in sequence while others can occur in parallel
- Some actions or activities cannot commence until the work product produced by another is available

Time allocation

- Each task to be scheduled must be allocated some number of work units
- In addition, each task must be assigned a start date and a completion date that are a function of the interdependencies.

Effort validation

- Every project has a defined number of people on the team

Defined responsibilities

Every task that is scheduled should be assigned to a specific team member

Defined outcomes

 Every taskthat is scheduled should have a defined outcome for software projects such as a work product or part of a work product

Defined milestones

 A milestone is accomplished when one or more work products has been reviewed for quality and has been approved

Activity	Predecessors	Estimated Duration		
A	None	5		
В	A	5		
С	Α	6		
D	B, C	13		
E	В	6		
F	D	4		
G	С	9		
Н	E, F, G	2		

- 1. Subtract activity times along each path as you move through the network (LF Dur = LS),
- 2. Carry back the LS time to the activity nodes immediately preceding the successor node. That LS becomes the LF of the next node, unless the preceding node is a burst point.
- 3. In the case of a burst point, the smallest succeeding LS become the LF for that node.

ES(Earliest Start)	Task Name	Earliest Finish(EF)

Critical path analysis:

A project-management technique that lays out all the activities needed to complete a task, the time it will take to complete each activity and the relationships between the activities. A task on the Critical Path has no (zero) slack.

Possible paths: A-B-E-H=5+5+6+2=18

A-B-D-F-H = 5+5+13+4+2=29

A-C-D-F-H = 5+6+13+4+2=30 /critical path

2. How is slack determined?

Slack for a particular task is calculated by:

- Subtracting the earliest time the task can start from the latest time the task can start (LS ES).
- 3. How do you determine the ES for an activity with two predecessors? How do you determine the LF for an activity with two successors?
 - The **ES** for an activity with two predecessors is equal to the *later* **EF** of the two predecessors since both predecessors must be completed for the task to begin.
 - The LF for an activity with two successors is equal to the *smaller* LS of the two successors.

