

#### **Data Dictionary**

| Variable | Definition                                 | Key                                            |
|----------|--------------------------------------------|------------------------------------------------|
| survival | Survival                                   | 0 = No, 1 = Yes                                |
| pclass   | Ticket class                               | 1 = 1st, 2 = 2nd, 3 = 3rd                      |
| sex      | Sex                                        |                                                |
| Age      | Age in years                               |                                                |
| sibsp    | # of siblings / spouses aboard the Titanic |                                                |
| parch    | # of parents / children aboard the Titanic |                                                |
| ticket   | Ticket number                              |                                                |
| fare     | Passenger fare                             |                                                |
| cabin    | Cabin number                               |                                                |
| embarked | Port of Embarkation                        | C = Cherbourg, Q = Queenstown, S = Southampton |

# Understanding the data...

```
data.isnull().sum()
Survived
Polass
Sex
                177
Age
S10SD
Parch
TICKEL
Eare.
Cabin
                687
Embarked
```

dtype: int64



#### Check the Missing Va

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | / N       |
|-----------------------------------------|-----------|
| data.isnull().s                         | C11 m ( ) |
|                                         | OWNER A   |

| Survived      | 0 |
|---------------|---|
| Polass        | 0 |
| Name          | 0 |
| Sex           | 0 |
| Age           | 0 |
| SibSp         | 0 |
| Parch         | 0 |
| Fare          | 0 |
| Embarked      | 0 |
| FamilySize    | 0 |
| IsAlone       | 0 |
| AgeBin        | 0 |
| Title         | 0 |
| FareBin       | 0 |
| Sex_Code      | 0 |
| Title_Code    | 0 |
| AgeBin_Code   | 0 |
| FareBin_Code  | 0 |
| Embarked_Code | 0 |
| dtype: int64  |   |

|     | Survived | Pclass | Name                                           | Sex    | Age  | SibSp | Parch | Fare    | Embarked | Family Size | IsAlone | AgeBin       | Title |
|-----|----------|--------|------------------------------------------------|--------|------|-------|-------|---------|----------|-------------|---------|--------------|-------|
| 0   | 0        | 3      | Braund Mr. Owen Harris                         | male   | 22.0 | 1     | 0     | 7.2500  | s        | 2           | 0       | (16.0, 32.0] | Mr    |
| 1   | 1        | 1      | Cumings, Mrs. John Bradley (Florence Briggs Th | female | 38.0 | 1     | 0     | 71.2833 | С        | 2           | 0       | (32.0, 48.0] | Mrs   |
| 2   | 1        | 3      | Heikkinen, Miss. Laina                         | female | 26.0 | 0     | 0     | 7.9250  | s        | 1           | 1       | (16.0, 32.0] | Miss  |
| 3   | 1        | 1      | Futrelle, Mrs. Jacques Heath (Lily May Peel)   | female | 35.0 | 1     | 0     | 53.1000 | S        | 2           | 0       | (32.0, 48.0] | Mrs   |
| 4   | 0        | 3      | Allen, Mr. William Henry                       | male   | 35.0 | 0     | 0     | 8.0500  | s        | 1           | 1       | (32.0, 48.0] | Mr    |
|     |          |        |                                                |        |      |       |       |         |          |             |         |              |       |
| 886 | 0        | 2      | Montvila, Rev. Juozas                          | male   | 27.0 | 0     | 0     | 13.0000 | S        | 1           | 1       | (16.0, 32.0] | Misc  |
| 887 | 1        | 1      | Graham, Miss. Margaret Edith                   | female | 19.0 | 0     | 0     | 30.0000 | s        | 1           | 1       | (16.0, 32.0] | Miss  |
| 888 | 0        | 3      | Johnston, Miss. Catherine Helen "Carrie"       | female | 28.0 | 1     | 2     | 23.4500 | s        | 4           | 0       | (16.0, 32.0] | Miss  |
| 889 | 1        | 1      | Behr, Mr. Karl Howell                          | male   | 26.0 | 0     | 0     | 30.0000 | С        | 1           | 1       | (16.0, 32.0] | Mr    |
| 890 | 0        | 3      | Dooley, Mr. Patrick                            | male   | 32.0 | 0     | 0     | 7.7500  | Q        | 1           | 1       | (16.0, 32.0] | Mr    |
|     |          |        |                                                |        |      |       |       |         |          |             |         |              |       |

| Pclass | SibSp | Parch | Age  | Fare    | Family Size | IsAlone | Sex_female | Sex_male | Embarked_C | Embarked_Q | Embarked_S | itle_Master | Title_Misc | Title_Miss | Title_Mr | Title |
|--------|-------|-------|------|---------|-------------|---------|------------|----------|------------|------------|------------|-------------|------------|------------|----------|-------|
| 3      | 1     | 0     | 22.0 | 7.2500  | 2           | 0       | 0          | 1        | 0          | 0          | 1          | 0           | 0          | 0          | 1        |       |
| 1      | 1     | 0     | 38.0 | 71.2833 | 2           | 0       | 1          | 0        | 1          | 0          | 0          | 0           | 0          | 0          | 0        |       |
| 3      | 0     | 0     | 26.0 | 7.9250  | 1           | 1       | 1          | 0        | 0          | 0          | 1          | 0           | 0          | 1          | 0        |       |
| 1      | 1     | 0     | 35.0 | 53.1000 | 2           | 0       | 1          | 0        | 0          | 0          | 1          | 0           | 0          | 0          | 0        |       |
| 3      | 0     | 0     | 35.0 | 8.0500  | 1           | 1       | 0          | 1        | 0          | 0          | 1          | 0           | 0          | 0          | 1        |       |
|        |       |       |      |         |             |         |            |          |            |            |            |             |            |            |          |       |

## Null Value??

- Age -> Median
- Fare -> Median
- Embarked -> Mode

With or Without Data Pre-processing

## Which Model is the BEST?

Let's try as much model as I can ~ p.s. sklearn is a good

# Linear Regression

|               | coef    | std err | t       | P> t  | [0.025 | 0.975] |
|---------------|---------|---------|---------|-------|--------|--------|
| Intercept     | 1.3435  | 0.074   | 18.268  | 0.000 | 1.199  | 1.488  |
| Sex[T.male]   | -0.5056 | 0.028   | -17.924 | 0.000 | -0.561 | -0.450 |
| Embarked[T.Q] | -0.0046 | 0.055   | -0.083  | 0.934 | -0.113 | 0.104  |
| Embarked[T.S] | -0.0632 | 0.034   | -1.836  | 0.067 | -0.131 | 0.004  |
| Pclass        | -0.1723 | 0.020   | -8.509  | 0.000 | -0.212 | -0.133 |
| Age           | -0.0058 | 0.001   | -5.376  | 0.000 | -0.008 | -0.004 |
| SibSp         | -0.0415 | 0.013   | -3.174  | 0.002 | -0.067 | -0.016 |
| Parch         | -0.0155 | 0.018   | -0.853  | 0.394 | -0.051 | 0.020  |
| Fare          | 0.0003  | 0.000   | 0.891   | 0.373 | -0.000 | 0.001  |

# Logistic Regression

```
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
X, y = p_data.loc[:, p_data.columns != "Survived" ].to_numpy(), p_data[["Survived"]].to_numpy().ravel()

clf = LogisticRegression(random_state=0).fit(X, y)
clf.predict(X[:2, :])

clf.predict_proba(X[:2, :])
```

0.7946127946127947

0.8338945005611672

## Naïve Bayes

$$P(y \mid x_1, \ldots, x_n) = rac{P(y) \prod_{i=1}^n P(x_i \mid y)}{P(x_1, \ldots, x_n)}$$

- Gaussian Naive Bayes
- Multinomial Naive Bayes
- Complement Naive Bayes
- Bernoulli Naive Bayes
- ... many types



Thomas Bayes 1702 - 1761

Good Afternoon

## Naïve Bayes (Before)

```
nb = GaussianNB()
y pred = nb.fit(X train, y train).predict(X test)
print("Number of mislabeled points out of a total %d points : %d"
     % (X_test.shape[0], (y_test.to_numpy().flatten() != y_pred).sum()))
nb = MultinomialNB()
y_pred = nb.fit(X_train, y_train).predict(X_test)
print("Number of mislabeled points out of a total %d points : %d"
     % (X_test.shape[0], (y_test.to_numpy().flatten() != y_pred).sum()))
nb = ComplementNB()
y_pred = nb.fit(X_train, y_train).predict(X_test)
print("Number of mislabeled points out of a total %d points : %d"
      % (X test.shape[0], (y test.to numpy().flatten() != y pred).sum()))
nb = BernoulliNB()
y_pred = nb.fit(X_train, y_train).predict(X_test)
print("Number of mislabeled points out of a total %d points : %d"
      % (X_test.shape[0], (y_test.to_numpy().flatten() != y_pred).sum()))
```

```
Number of mislabeled points out of a total 179 points: 50 Number of mislabeled points out of a total 179 points: 64 Number of mislabeled points out of a total 179 points: 65 Number of mislabeled points out of a total 179 points: 42
```

```
THE PROBABILITY OF "B"

BEING TRUE GIVEN THAT

"A" IS TRUE

P(B|A) P(A)

THE PROBABILITY

OF "A" BEING

TRUE

THE PROBABILITY

OF "B" BEING

TRUE

THE PROBABILITY

OF "B" BEING

TRUE

TRUE

TRUE
```

#### After some data preprocessing..

```
Number of mislabeled points out of a total 179 points: 36
Number of mislabeled points out of a total 179 points: 65
Number of mislabeled points out of a total 179 points: 65
Number of mislabeled points out of a total 179 points: 37
```

### Decision Tree

Overfit?



### Tree

- Decision Tree: 76.659%
- Random Forest: 80.002%
- Extra Tree: 79.572%

```
from sklearn.model_selection import cross_val_score
from sklearn.datasets import make blobs
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.tree import DecisionTreeClassifier
X, y = p_data.loc[:, p_data.columns != "Survived" ], p_data[["Survived"]]
clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
    random state=0)
scores = cross_val_score(clf, X, y, cv=5)
print("Decision Tree:",scores.mean())
clf = RandomForestClassifier(n_estimators=10, max_dept)
    min samples split=2, random state=0)
scores = cross_val_score(clf, X, y, cv=5)
print("Random Forest:",scores.mean())
clf = ExtraTreesClassifier(n estimators=10, max d
    min_samples_split=2, random_state=0)
scores = cross_val_score(clf, X, y, cv=5)
print("Extra Tree:",scores.mean())
Decision Tree: 0.7665934341849224
Random Forest: 0.8002385286548239
Extra Tree: 0.7957253154227606
```

### Tree-based feature selection

```
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.datasets import load_iris
from sklearn.feature selection import SelectFromModel
X, y = p data.loc[:, p data.columns != "Survived"], p data[["Survived"]]
print(X.shape)
print(X.columns)
clf = ExtraTreesClassifier(n_estimators=50)
clf = clf.fit(X, y)
print(clf.feature_importances_ )
model = SelectFromModel(clf, prefit=True)
X_{new} = model.transform(X)
X new.shape
(891, 10)
Index(['Pclass', 'Sex', 'Age', 'SibSp', 'Parch' 'Fare', D, 'C', 'Q', 'S'], dtype='object')
[0.10485449 0.28681426 0.23173835 0.04673315 0.05187046 0.24686542
            0.01446903 0.00610297 0.010551851
```

### Error:(

CalledProcessError: Command '['dot', '-Tpdf', '-O', 'iris']' returned non-zero exit status 1. [stderr: b'Form at: "pdf" not recognized. Use one of:\r\n']

## Support Vector Machine (SVM)



SVM

```
from sklearn import svm

X, y = p_data.loc[:, p_data.c

kf = KFold(n_splits=5)
clf = svm.SVC()
for train_indices, test_indic
    clf.fit(X[train_indices],
    print("Score:",clf.score()
```

Score: 0.6201117318435754 Score: 0.6910112359550562 Score: 0.6741573033707865 Score: 0.6685393258426966 Score: 0.7078651685393258 Nearest Neighbours

```
0.657051282051282
 13 : 0.6826923076923077
 15: 0.6858974358974359
 17 : 0.6875
 21 : 0.6794871794871795
 23 : 0.6698717948717948
25 : 0.6778846153846154
27 : 0.6826923076923077
 29 : 0.6778846153846154
31 : 0.6778846153846154
33 : 0.6730769230769231
35 : 0.6634615384615384
37 : 0.6810897435897436
39 : 0.6778846153846154
41 : 0.6650641025641025
43 : 0.6762820512820513
45 : 0.6698717948717948
47 : 0.6746794871794872
49 : 0.6634615384615384
```

```
2:0.6923076923076923
4 : 0.6730769230769231
6:0.6858974358974359
  : 0.6939102564102564
10:0.6971153846153846
12 : 0.7035256410256411
14: 0.7067307692307693
16: 0.7051282051282052
20 : 0.6923076923076923
22 : 0.6971153846153846
24 : 0.6987179487179487
26: 0.6939102564102564
28 : 0.6907051282051282
30: 0.6842948717948718
32:0.6875
34 : 0.6939102564102564
36: 0.6858974358974359
38: 0.6858974358974359
40 : 0.6842948717948718
42 : 0.6875
44: 0.6858974358974359
46: 0.6923076923076923
48: 0.6875
```

### MLP

```
from sklearn.model_selection import KFold
from sklearn.neural_network import MLPClassifier
X, y = p_data.loc[:, p_data.columns != "Survived" ].to_numpy(), p_data[["Survived"]].to_numpy().ravel()
kf = KFold(n splits=5)
clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden layer sizes=(3, 3), random state=1)
for train_indices, test_indices in kf.split(X):
    clf.fit(X[train_indices], y[train_indices])
    print("Score:",clf.score(X[test_indices], y[test_indices]))
```

Score: 0.7653631284916201 Score: 0.8033707865168539 Score: 0.7640449438202247 Score: 0.8258426966292135 Score: 0.8033707865168539

```
: from sklearn.neural_network import MLPClassifier
  clf = MLPClassifier(solver='lbfgs', alpha=1e-5,
                      hidden_layer_sizes=(7,7,5), random_state=1)
  clf.fit(X, y)
  cross_val_score(clf, X, y, cv=5)
  y_pred_train = clf.predict(X_train)
  print("Train Accuracy: ", accuracy_score(y_train, y_pred_train))
  y_pred_test = clf.predict(X_test)
  print("Valid Accuracy: ". accuracy score(y test. y pred test))
```

Train Accuracy: 0.8342696629213483 Valid Accuracy: 0.8156424581005587



(X)

## Best Model for this problem:)

- Logistic Regression
- Multiple Layer Perceptron