Criteris de correcció

Química

SÈRIE 2

L'alumne ha de respondre 5 preguntes. Obligatòriament ha de respondre la 1, 2 i 3, escull una entre la 4 i la 5 i escull una entre la 6 i la 7.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si una subpregunta necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Criteris de correcció

Química

Pregunta 1a

Reacció: $2 \text{ NO}_2(g) = 2 \text{ NO}(g) + O_2(g)$

Calculem les masses moleculars i els mols en equilibri de cada compost:

Massa molar $NO_2 = 14 + (2 \times 16) = 46 \text{ g/mol}$ Massa molar NO = 14 + 16 = 30 g/molMassa molar $O_2 = 2 \times 16 = 32 \text{ g/mol}$

Mols en equilibri NO_2 = 3,45 g NO_2 x (1 mol NO_2 / 46 g NO_2) = 0,075 Mols en equilibri NO = 0,60 g NO x (1 mol NO / 30 g NO) = 0,020 Mols en equilibri O_2 = 0,32 g O_2 x (1 mol O_2 / 32 g O_2) = 0,010

[0,1 p]

Calculem les concentracions en equilibri (en M) de cada compost (V=5,0 L):

$$\begin{split} [NO_2] &= 0,075 \ / \ 5,0 = \ 0,015 \ M \\ [NO] &= 0,020 \ / \ 5,0 = 0,004 \ M \\ [O_2] &= 0,010 \ / \ 5,0 = 0,002 \ M \end{split}$$

[0,2 p]

Constant d'equilibri en concentracions: $K_c = ([NO]^2 \times [O_2]) / [NO_2]^2$ [0,2 p]

Càlcul de la constant d'equilibri:

$$\mathbf{K_c} = (0.004^2 \,\mathrm{x} \,\, 0.002) \,\, / \, (0.015)^2$$

$$\mathbf{K_c} = \mathbf{1.42 \times 10^{-4}} \qquad \qquad [\mathbf{0.2 \, p}]$$

■ Es penalitzarà 0,1 p, si expressen la constant d'equilibri amb unitats.

Constant d'equilibri en pressions, K_p:

$$\mathbf{K}_{\mathbf{p}} = \mathbf{K}_{\mathbf{c}} (\mathbf{R} \mathbf{T})^{\Delta \mathbf{v}}$$
 [0,1 p]

On: $\Delta v = \text{mols productes (gasosos)} - \text{mols reactius (gasosos)}$

$$\Delta v = (2+1) - (2) = 1$$

$$T = 327 + 273 = 600 \text{ K}$$

$$K_p = 1,42 \times 10^{-4} (0,082 \times 600)^1$$

$$K_p = 7,0 \times 10^{-3}$$
[0,2 p]

• Es penalitzarà 0,1 p, si expressen la constant d'equilibri amb unitats.

Criteris de correcció

Química

Pregunta 1b

Un catalitzador modifica la cinètica de la reacció (velocitat) però no altera la constant d'equilibri de la reacció.

En afegir el catalitzador, les concentracions dels compostos (reactius i productes) no s'alteren.

⇒ Per tant no produiríem més monòxid de nitrogen (NO).

[0,5 p]

En augmentar el volum del recipient, disminueix la pressió en el seu interior. La reacció és desplaçarà cap a on hi ha més mols de gasos (coeficients estequiomètrics) per tornar a una nova situació d'equilibri.

```
Mols de gasos reactius = 2
Mols de gasos productes = 2 + 1
```

⇒ Per tant, <u>la reacció es desplaçarà cap a la dreta</u>, és a dir, **es fabricarà més** monòxid de nitrogen (NO).

[0,5 p]

Criteris de correcció

Química

Pregunta 2a

La força electromotriu (E°) es calcula com: $E^{\circ} = E^{\circ}_{CATODE} - E^{\circ}_{ANODE}$.

Perquè la pila construïda tingui la màxima força electromotriu cal que E^{0}_{CATODE} sigui el més gran possible i el E^{0}_{ANODE} el més petit possible.

Dels 3 parells redox de què disposem :

- el que té el potencial més alt és el Cu²⁺/Cu (+0,34 V)
- el que té el potencial més baix és el Fe²⁺/Fe (-0,44 V).

La pila amb la màxima força electromotriu serà la formada pels parells redox: Cu^{2+}/Cu i Fe^{2+}/Fe .

[0,6 p]

Calculem la força electromotriu d'aquesta pila:

$$E^{o} = E^{o}_{CATODE} - E^{o}_{ANODE} = E^{o}(Cu^{2+}/Cu) - E^{o}(Fe^{2+}/Fe)$$

 $E^{o} = (+0.34) - (-0.44) = +0.78 \text{ V}$

La força electromotriu és de 0,78 V

[0,4 p]

Si l'alumne calcula correctament la força electromotriu de totes les possibles piles (Cu/Ni 0,59 V, Cu/Fe 0,78 V i Ni/Fe 0,19 V), i conclou amb aquests valors calculats que la pila formada per Cu i Fe té la màxima força electromotriu, la subpregunta 2a té la màxima puntuació (1 p).

Criteris de correcció

Química

Pregunta 2b

Muntatge experimental de la pila, material i reactius:

- Agafem <u>dos vasos de precipitats</u>: en un hi posem la <u>solució de Ni²⁺ 1 M</u> i en l'altra la <u>solució de Fe²⁺ 1 M</u>. Hi col·loquem, respectivament, una <u>làmina de Ni</u> <u>i de Fe parcialment submergits</u> (elèctrodes). [0,3 p]
- <u>Es connecten les làmines entre elles amb un fil conductor</u> (opcionalment es pot col·locar un voltímetre). El circuit es tanca col·locant un <u>pont salí</u>, <u>tub que connecta els dos vasos i que conté la solució aquosa de KCl.</u> [0,3 p]
 - Si no indiquen que el pont salí és KCl(aq) es penalitza 0,2 p.

Esquema de la pila (dibuix):

Polaritats dels elèctrodes (poden estar en el dibuix anterior)

[0,1 p]

Ni: té polaritat positiva (+) Fe: té polaritat negativa (-)

Criteris de correcció

Química

Pregunta 3a

Si fem les configuracions electròniques dels dos elements:

L'estronci (Sr) té un radi atòmic més gran que el beril·li (Be), com es pot visualitzar en el gràfic, ja que són dos elements del grup 2 amb l'electró més extern en el mateix tipus d'orbital (s), però l'estronci té aquest electró més extern en una capa més llunyana del nucli (n=5) que el beril·li (n=2). [0,2 p]

Si la justificació del radi es fa només sobre la base de la posició dels elements
 Be i Sr a la taula periòdica, es penalitzarà 0,1 p (sobre 0,2 p).

L'energia d'ionització és l'energia que cal subministrar a un element en estat gasós per arrencar un electró:

$$A(g) \rightarrow A^{+}(g) + 1 e^{-}$$
 (primera energia d'ionització) [0,2 p]

La força d'atracció de l'electró extern (càrrega negativa) amb el nucli (càrrega positiva) depèn de la distància que els separi (radi). Com més petita sigui aquesta distància, més força d'atracció (segons la llei de Coulomb) i més costarà d'arrencar l'electró.

• Es correcte, també, comentar l'efecte de l'apantallament (càrrega nuclear efectiva).

En ser el radi atòmic del beril·li més petit que el de l'estronci, costarà més arrencar un electró de l'orbital 2s (beril·li) que de l'orbital 5s de l'estronci. Per tant, el potencial d'ionització del beril·li serà més gran que el de l'estronci. [0,4 p]

 Si la justificació del potencial d'ionització es fa només sobre la base de la posició dels elements Be i Sr a la taula periòdica, es penalitzarà 0,2 p (sobre 0,4 p).

Criteris de correcció

Química

Pregunta 3b

Si fem el recompte de protons i electrons (obligatori) i les configuracions electròniques (opcional) del K i el seu catió K^+ , tenim:

K (19 protons, 19 electrons): 1s², 2s², 2p⁶, 3s², 3p⁶, 4s¹ K⁺ (19 protons, 18 electrons): 1s², 2s², 2p⁶, 3s², 3p⁶

Quan l'àtom de potassi (K) perd un electró de la capa més externa es forma l'ió positiu (K⁺) amb igual nombre de protons (19) però un electró menys (18).

[0,1 p]

Els electrons que queden estan més propers al nucli i per tant més atrets (llei de Coulomb). És per això que:

radi
$$K^+ < radi K$$
 [0,4 p]

• Si indiquen, sense cap altre raonament, que els cations d'un element tenen sempre el radi més petit que els àtoms de l'element neutre, es puntuarà 0,1 p (sobre 0,4 p) en aquest apartat.

Si fem el recompte de protons i electrons (obligatori) i les configuracions electròniques (opcional) del Cl i el seu anió Cl⁻:

Cl (17 protons, 17 electrons) 1s², 2s², 2p⁶, 3s², 3p⁵

Cl⁻ (17 protons, 18 electrons): $1s^2$, $2s^2$, $2p^6$, $3s^2$, $3p^6$

Quan l'àtom de clor (Cl) agafa un electró es forma l'ió negatiu (Cl⁻) amb igual nombre de protons (17) però un electró més (18).

[0,1 p]

En aquest anió la càrrega nuclear és constant, però la càrrega nuclear efectiva és més petita a causa de l'electró addicional. Per tant, la força d'atracció del nucli sobre els electrons és menor i les repulsions entre ells augmenten (llei de Coulomb). Això fa que els electrons se separin i la mida en l'ió Cl⁻ augmenti:

radi
$$Cl$$
 > radi Cl [0,4 p]

• Si indiquen, sense cap altre raonament, que els anions d'un element tenen sempre el radi més gran que els àtoms de l'element neutre, es puntuarà 0,1 p (sobre 0,4 p) en aquest apartat.

Criteris de correcció

Química

Pregunta 4a

Concentració inicial d'àcid acetilsalicílic = 3,32 g/L

Concentració inicial d'àcid acetilsalicílic = 3,32 g / L x (1 mol / 180 g) = 0,0184 M

[0,1 p]

$$C_8H_7O_2COOH + H_2O \leftrightarrows C_8H_7O_2COO^- + H_3O^+$$

Inicial 0,0184
Equilibri 0,0184 - x x x

$$pH = -\log [H_3O^+] \implies [H_3O^+] = 10^{-pH}$$

Si $pH = 2,65 \implies [H_3O^+] = 10^{-2,65} = 2,2387x10^{-3} M$ [0,3 p]

Per l'estequiometria de la reacció:

$$x = [H_3O^{+}] = [C_8H_7O_2COO^{-}] = 2,2387x10^{-3} M$$

$$[C_8H_7O_2COOH] = 0.0184 - x = 0.0184 - 2.2387x10^{-3} = 0.0162 M$$
 [0,2 p]

Constant d'acidesa (K_a):

$$K_a = ([H_3O^+][C_8H_7O_2COO^-]) / [C_8H_7O_2COOH]$$
 [0,2 p]

$$K_a = (2,2387 \cdot 10^{-3})^2 / (0,0162)$$

$$K_a = 3.1 \cdot 10^{-4}$$
 [0,2 p]

• Si expressen la K_a amb unitats es penalitzarà 0,1 p.

Criteris de correcció

Química

Pregunta 4b

Formulació. Hidròxid de sodi: NaOH

[-0,5 p si no formulen bé]

Reacció de valoració: $C_8H_7O_2COOH + OH^- \rightarrow C_8H_7O_2COO^- + H_2O$

[0,3 p]

■ *També és correcte si escriuen:*

$$C_8H_7O_2COOH + NaOH \rightarrow C_8H_7O_2COONa + H_2O$$

A partir de la reacció igualada (estequiometria 1 a 1):

NaOH
$$V = 14.2 \text{ mL} = 0.0142 \text{ L}$$

(0,0142 L) x (0,0250 mol / L) = 0,000355 mol NaOH

mol de NaOH gastats = mol inicials de
$$C_8H_7O_2COOH$$

 $\Rightarrow 0,000355$ mol de $C_8H_7O_2COOH$

[0,3 p]

Transformem els mols d'àcid acetilsalicílic a grams:

$$0,000355 \text{ mol } C_8H_7O_2COOH \text{ x } (180 \text{ g } C_8H_7O_2COOH / 1 \text{ mol } C_8H_7O_2COOH) = 0,0639 \text{ g } C_8H_7O_2COOH$$
 [0,1 p]

Volum de solució d'àcid acetilsalicílic = 25 mL = 0,025 L

Concentració de $C_8H_7O_2COOH = (0.0639 \text{ g}) / (0.025 \text{ L})$

$$\Rightarrow$$
 Concentració d'àcid acetilsalicílic = 2,56 g L⁻¹ (o g/L) [0,3 p]

- És correcte si ho fan amb factors de conversió.
- És correcte si utilitzen la fórmula: $M \times V = M' \times V'$ (perquè l'estequiometria de la reacció és 1 a 1.
- Si no indiquen les unitats de la concentració d'àcid acetilsalicílic (o són incorrectes) es penalitzarà 0,1 p.

Criteris de correcció

Química

Pregunta 5a

Reacció:
$$C_6H_{12}O_6(s) \rightarrow 2 C_2H_5OH(l) + 2 CO_2(g)$$

$$\Delta H^{o}_{reacció} = (\Sigma n_{p} \Delta H^{o}_{f, productes}) - \Sigma n_{r} \Delta H^{o}_{f, reactius})$$
 [0,2 p]

$$\Delta H^{o}_{reacci\acute{o}} = [(2 \text{ x } \Delta H^{o}_{f, \text{ etanol}}) + (2 \text{ x } \Delta H^{o}_{f, \text{ diòxid de carboni}})] - (1 \text{ x } \Delta H^{o}_{f, \text{glucosa}})$$

$$\Delta H^{o}_{reacció} = [(2 \text{ x } (-277,0)) + (2 \text{ x } (-393,5))] - [1 \text{ x } (-1274,5)]$$
 [0,3 p]

$$\Delta H^{o}_{reacció} = -66.5 \text{ kJ}$$
 (6 -66.5 kJ/mol de glucosa) [0.3 p]

A pressió constant \Rightarrow $\mathbf{q_p} = \Delta \mathbf{H^0_{reacció}}$ (on $\mathbf{q_p}$ és la calor a pressió constant)

Un mol de glucosa proporciona a l'organisme 66,5 kJ d'energia en forma de calor. [0,2 p]

Química

Pregunta 5b

Si la reacció es realitza a volum constant $\Rightarrow \mathbf{q}_{\mathbf{v}} = \Delta \mathbf{E}$

[0,2 p]

on: q_v és la calor a volum constant

ΔE és la variació d'energia interna de la reacció

Relació entre l'entalpia i l'energia interna d'una reacció:

$$\Delta \mathbf{H} = \Delta \mathbf{E} + \Delta \mathbf{v} \mathbf{R} \mathbf{T}$$
 [0,3 p]

$$\Rightarrow \Delta E = \Delta H - \Delta v R T$$

$$\Rightarrow$$
 $q_v = q_p - \Delta v R T$

on $\Delta \nu$ és la diferència dels coeficients estequiomètrics dels productes i dels reactius gasosos

Reacció: $C_6H_{12}O_6(s) \rightarrow 2 CH_3CH_2OH(l) + 2 CO_2(g)$

$$\Delta v = (0+2) - (0) = 2$$
 (positiu!) [0,2 p]

Raonament per decidir si q_v és més gran o més petit que q_p

En l'equació: $q_v = q_p - \Delta v R T = q_p - 2 R T$

 \Rightarrow q_p < 0 (la reacció, a pressió constant, proporciona calor a l'organisme)

 \Rightarrow -2 R T < 0 (R i T sempre són positius)

Per tant: $q_v < q_p$

Però les dues calors $(q_p i q_v)$ són negatives (s'allibera calor) $\Rightarrow |q_v| > |q_p|$

La calor que proporciona la reacció de la glucosa per a formar etanol <u>és</u> superior a volum constant que a pressió constant. [0,3 p]

Criteris de correcció

Química

Pregunta 6a

L'equació de la velocitat de la reacció es pot escriure: $v = k [NO]^a \cdot [Cl_2]^b$ on "a" i "b" són els ordres de reacció parcials respecte al monòxid de nitrogen i el clor, respectivament.

En els dos primers experiments, en els quals la concentració de NO es manté constant, en **doblar** la concentració de Cl₂ també **es duplica** la velocitat.

$$\Rightarrow$$
 Per tant, la reacció serà d'ordre 1 respecte al Cl_2 (b=1) [0,3 p]

En els experiments primer i tercer, en els quals la concentració de Cl_2 es manté constant, en **doblar** la concentració de NO **es quadruplica** la velocitat de la reacció.

L'equació de velocitat de la reacció serà:
$$v = k [NO]^2 \cdot [Cl_2]$$
 [0,1 p]

Agafant la velocitat inicial de la reacció i les concentracions inicials de cada reactiu <u>en un experiment</u> (el primer, per exemple) tenim:

Experiment 1:

$$2,27 \cdot 10^{-5} = k \cdot (0,0125)^{2} \cdot 0,0255$$

$$k = 2,27 \cdot 10^{-5}/(3,984 \cdot 10^{-6})$$

$$k = 5,70 \text{ mol}^{-2} \text{ L}^{2} \text{ s}^{-1}$$
[0,3 p]

• Si no indiquen unitats (o són errònies) es penalitza 0,2 p.

Pregunta 6b

Model cinètic de col·lisions

[0,4 p]

Segons aquest model cinètic, la velocitat d'una reacció és proporcional al nombre de xocs entre les molècules de reactius per unitat de volum i temps. Perquè aquests xocs siguin eficaços cal que les molècules tinguin prou energia cinètica per aconseguir que es trenquin enllaços i/o que se'n formin de nous.

Efecte de la temperatura

[0,3 p]

Un augment de la temperatura implica que tindrem més molècules amb una energia cinètica mínima per fer xocs efectius (és a dir, més proporció de xocs efectius) i, per tant, augmentarà la velocitat de la reacció.

Efecte del volum [0,3 p]

En augmentar el volum la probabilitat de xocar les molècules disminueix i, per tant, disminueix la velocitat de la reacció.

Química

Pregunta 7a

El punt de fusió ens indica la temperatura on coexisteixen en equilibri la fase sòlida i líquida del brom, a pressió atmosfèrica (1 atm). [0,3 p]

El punt triple correspon a unes condicions de pressió i temperatura en què coexisteixen en equilibri les tres fases del brom: brom sòlid, brom líquid i brom gasós.

[0,3 p]

En un recipient tenim brom a 20 °C i 1 atm: el brom es troba en fase líquida. Si anem disminuint la pressió, mantenint la temperatura, arribarà un moment en què el brom líquid comença a transformar-se en brom gasós.

[0,2 p]

Justificació: [0,2 p]

Raonament 1:

L'equilibri "líquid - vapor" ve donat per la línia que uneix el punt triple i el punt crític. A 20 °C i 1 atm el brom està en estat líquid: ens trobem en un punt per sobre del punt triple i per sota del punt crític. En disminuir la pressió, mantenint la temperatura, arribarem al punt d'equilibri líquid – vapor, i el brom es transforma en vapor (gas).

Raonament 2

Es pot fer un dibuix esquemàtic del diagrama de fases, on es visualitzi el procés.

Criteris de correcció

Química

Pregunta 7b

La temperatura d'ebullició del brom correspon a la **temperatura d'equilibri** entre els estats líquid i vapor (gas) d'aquest compost.

$$Br_2(1) \leftrightarrows Br_2(g)$$

La variació d'energia lliure d'una reacció es pot posar en funció de l'entalpia i l'entropia:

$$\Delta G = \Delta H - T \Delta S$$
 [0,2 p]

Aquest procés estarà en equilibri si: $\Delta G = 0$.

[0,2 p]

Calculem la variació d'entropia:

$$\begin{split} \Delta S &= (\Sigma \; n_p \; S_p) - (\Sigma \; n_p \; S_p) \\ \Delta S &= (S_{brom \; gas}) - (S_{brom \; líquid}) = \\ \Delta S &= (245,4) - (152,2) = 93,2 \; J \; / \; K \end{split} \tag{\textbf{0,2 p}}$$

Homogeneïtzem les unitats de l'entalpia i l'entropia:

$$\Delta H = 30,91 \text{ kJ} = 30910 \text{ J}$$

 $\Delta S = 93,2 \text{ J} / \text{K}$

Substituïm l'entalpia i entropia del brom en l'equació del càlcul de l'energia lliure, i igualem a zero (condició d'equilibri):

Calculem la temperatura d'ebullició en graus centígrads:

$$T = 331,7 - 273 \implies T = 58,7 \, ^{\circ}C$$

- És correcte (més exacte) si per a calcular la temperatura en ${}^{o}C$ ho fa restant el valor de 273,15 a la temperatura en K ($T = 331,7 273,15 = 58,55 {}^{o}C$).
- Si no transformen les unitats de kJ a J (o a l'inrevés), es penalitzen 0,3 p.

Oficina d'Accés a la Universitat

Pàgina 15 de 29 PAU 2015

Criteris de correcció

Química

SÈRIE 4

L'alumne ha de respondre 5 preguntes. Obligatòriament ha de respondre la 1, 2 i 3 i escull una entre la 4 i la 5 i escull una entre la 6 i la 7.

Com a norma general, tingueu en compte que un error no s'ha de penalitzar dues vegades. Si una subpregunta necessita un resultat anterior, i aquest és erroni, cal valorar la resposta independentment del valor numèric, i tenir en compte el procediment de resolució (sempre que els valors emprats i/o els resultats no siguin absurds).

Criteris de correcció

Química

Pregunta 1a

Formulació. Àcid clorhídric: HCl

[-0,5 p si no formulen bé]

Reacció de valoració: NaOH + HCl → NaCl + H2O

[0,3 p]

■ *També és correcte si escriuen:*

$$OH^- + H^+ \rightarrow H_2O$$

(6 també: $OH^- + HCl \rightarrow H_2O + Cl^-$)

Càlcul de la concentració de NaOH.

HCl gastat
$$V = 41.5 \text{ mL} = 0.0415 \text{ L}$$

$$(0,0415 \text{ L HCl}) \times (0,902 \text{ mol HCl} / \text{L HCl}) = 0,037433 \text{ mol HCl}$$

A partir de la reacció igualada (estequiometria 1 a 1):

mol de HCl gastats = mol inicials de NaOH

[0,3 p]

Transformem els mols de NaOH a grams:

Massa molar NaOH = 24 + 16 + 1 = 40 g/mol

Volum que hem valorat de desembussador comercial = 5 mL = 0,005 L

Concentració de NaOH = (1,49732 g) / (0,005 L)

[0,4 p]

- És correcte si ho fan amb factors de conversió.
- És correcte si utilitzen la fórmula: $M \times V = M' \times V'$, perquè l'estequiometria de la reacció és 1 a 1.

Química

Pregunta 1b

Material i reactius per a dur a terme la valoració:

[0,4 p]

(a part de la mostra –desembussador- i la solució d'HCl 0,902 M).

- ✓ Bureta, amb un peu i pinça per subjectar-la.
- ✓ Pipeta aforada de 5 mL, amb pera d'aspiració.
- ✓ Erlenmeyer (o vas de precipitats).
- ✓ Indicador àcid base.
 - Es penalitzarà 0,1 p per cada un dels ítems que no hagin posat.

Procediment per a dur a terme la valoració.

[0,6 p]

- ✓ S'omple la bureta amb la solució de HCl 0,902 M, evitant que es formin bombolles d'aire dins de la bureta.
- ✓ S'enrasa el volum de HCl de la bureta (a zero o a un altre volum).
- ✓ Amb la pipeta aforada (i la pera) agafem 5,0 mL del desembussador comercial i els transvasem a l'erlenmeyer (o vas de precipitats). Es pot afegir una mica d'aigua destil·lada per rentar les parets de l'erlenmeyer.
- ✓ Afegim 2-3 gotes de l'indicador àcid-base a l'erlenmeyer.
- ✓ Obrim la clau de la bureta i anem afegint HCl, tot agitant contínuament l'erlenmeyer, fins observar un canvi de color de la solució.
- ✓ Tanquem la clau de la bureta i anotem el volum consumit de HCl gastat.
 - Es penalitzarà 0,1 p per cada un dels ítems que no hagin posat.

Criteris de correcció

Química

Pregunta 2a

Reacció:

$$4 C_3H_5N_3O_9(1) \rightarrow 6 N_2(g) + 12 CO_2(g) + O_2(g) + 10 H_2O(1) \Delta H^0(298 K) = -6165.6 kJ$$

Dades.

Massa de
$$C_3H_5N_3O_9 = 0,60 \text{ mg} = 6,0 \text{x} \cdot 10^{-4} \text{ g}$$

Variació d'entalpia de la reacció (tal com està igualada) = -6165,6 kJ

Càlcul del volum d'oxigen

Massa molar de
$$C_3H_5N_3O_9 = (12x3) + (1x5) + (14x3) + (16x9) = 227$$
 g/mol

Calculem els mol d'oxigen:

$$6.0 \times 10^{-4} \text{ g C}_3 \text{H}_5 \text{N}_3 \text{O}_9 \text{ x } (1 \text{ mol C}_3 \text{H}_5 \text{N}_3 \text{O}_9 / 227 \text{ g C}_3 \text{H}_5 \text{N}_3 \text{O}_9) \text{ x}$$

 $\times (1 \text{ mol O}_2 / 4 \text{ mol C}_3 \text{H}_5 \text{N}_3 \text{O}_9) = 6.607 \times 10^{-7} \text{ mol O}_2$ [0,2 p]

Apliquem l'equació dels gasos ideals per calcular el volum d'oxigen:

$$p V = n R T \implies V = (n R T) / p$$

Dades:

$$p = 1,0 \text{ bar}$$

$$R = 8.3 \text{ x} 10^{-2} \text{ bar L / K mol}$$

$$T = 298 \text{ K}$$

$$n(O_2) = 6,607 \times 10^{-7} \text{ mol}$$

$$V = (6,607x10^{-7} x 8,3x10^{-2} x 298) / 1,0$$

$$\Rightarrow$$
 V = 1,63x10⁻⁵ L d'oxigen

[0,3 p]

Càlcul de la calor alliberada:

$$\Delta H^{o} = q_{p}$$
 (on q_{p} és la calor de la reacció a pressió contant)

[0,2 p]

$$6.0x10^{-4}$$
 g $C_3H_5N_3O_9$ x (1 mol $C_3H_5N_3O_9$ / 227 g $C_3H_5N_3O_9$) x x (-6165.6 kJ / 4 mol $C_3H_5N_3O_9$)= $-4.03x10^{-3}$ kJ (64.03 J)

$$\Rightarrow$$
 Calor alliberada = 4,03x10⁻³ kJ

[0,3 p]

• Es correcte si el resultat l'expressen com $-4.03x10^{-3}$ kJ (o -4.03 J)

Criteris de correcció

Química

Pregunta 2b

Reacció:

$$4 \ C_3 H_5 N_3 O_9(l) \rightarrow 6 \ N_2(g) + 12 \ CO_2(g) + O_2(g) + 10 \ H_2 O(l) \quad \Delta \textit{H}^0(298 \ K) = -6165,6 \ kJ.$$

Relació entre l'entalpia de la reacció i les entalpies de formació de reactius i productes:

$$\begin{split} \Delta \textit{H}^{o}_{reacci6} &= (\Sigma \; n_{p} \; \Delta \textit{H}^{o}_{\;f, \; productes}) \; \text{-} \; \Sigma \; n_{r} \; \Delta \textit{H}^{o}_{\;f, \; reactius}) \\ \Delta \textit{H}^{o}_{reacci6} &= \left[(6 \; \Delta \textit{H}^{o}_{\;f}(N_{2})) + (12 \; \Delta \textit{H}^{o}_{\;f}(CO_{2})) + (1 \; \Delta \textit{H}^{o}_{\;f}(O_{2})) + (10 \; \Delta \textit{H}^{o}_{\;f}(H_{2}O)) \right] - \\ & - \left[4 \; \Delta \textit{H}^{o}_{\;f}(C_{3}H_{5}N_{3}O_{9}) \right] \end{split}$$

Les entalpies de formació estàndard del nitrogen i de l'oxigen són zero.

$$-6165,6 = [(12 \times (-393,5)) + (10 \times (-285,8))] - [4 \times \Delta H^{\circ}_{f}(C_{3}H_{5}N_{3}O_{9})]$$

$$\Rightarrow \Delta H^{\circ}_{f}(C_{3}H_{5}N_{3}O_{9})] = -353,6 \text{ kJ/mol}$$
[0,7 p]

• Si no indiquen les unitats de la entalpia de reacció (o són incorrectes) es penalitzarà 0,2 p. Cal indicar que l'entalpia de formació s'expressa sempre per mol (J/mol ó kJ/mol).

Química

Pregunta 3a

Procés:
$$Xe(g) \rightarrow Xe^{+}(g) + 1e^{-}$$

Radiació per arrancar un electró de l'àtom de Xe: $\lambda = 1,020 \times 10^{-6}$ m

Càlcul de la freqüència de la radiació:

$$\mathbf{v} = \mathbf{c} / \lambda$$
 [0,1 p]

$$v = 3.0x10^8 / 1.020x10^{-6}$$

$$\Rightarrow \mathbf{v} = 2.94 \times 10^{14} \text{ s}^{-1} \quad (6 \ 2.94 \times 10^{14} \text{ Hz})$$
 [0,2 p]

La primers energia d'ionització d'un àtom és l'energia per arrencar un electró a l'àtom en estat gasós.

Equació de Planck:
$$E = h v$$
 on v és la frequència [0,1 p]

$$E = 6.63 \times 10^{-34} \times 2.94 \times 10^{14}$$

$$E = 1,949 \times 10^{-19}$$
 J/àtom Xe [0,2 p]

Cal passar aquesta energia de J / àtom Xe a kJ / mol Xe:

$$(1,949x10^{-19} \text{ J/atom Xe}) \text{ x } (1 \text{ kJ/} 1000 \text{ J}) \text{ x } (6,02 \cdot 10^{23} \text{ atom Xe} / 1 \text{ mol Xe}) = 117,3 \text{ kJ/mol Xe}$$

$$\Rightarrow$$
 Primera energia d'ionització del Xe = 117,3 kJ / mol [0,4 p]

Criteris de correcció

Química

Pregunta 3b

Dades: Z(Cs) = 55Z(Xe) = 54

Configuracions electròniques dels dos elements:

[0,2 p]

Comparació dels radis

Segons la configuració electrònica dels dos elements, l'electró més extern del cesi està en un orbital amb n=6 mentre que el xenó està en un orbital amb n=5. El radi d'un orbital augmenta sempre amb el valor del nombre quàntic principal n.

El cesi (Cs) té un radi atòmic més gran que xenó (Xe)

Radi (Cs)
$$>$$
 radi (Xe) [0,4 p]

- Si la justificació del radi es fa només en base a la posició dels elements Cs i Xe a la taula periòdica, es penalitzarà 0,2 p (sobre 0,4 p)
- Si no fan cap justificació, o és totalment incorrecte, es penalitzen 0,4 p.

L'energia d'ionització és l'energia que cal subministrar a un element en estat gasós per arrencar un electró:

Opcional:
$$A(g) \rightarrow A^{+}(g) + 1e^{-}$$
 (primera energia d'ionització)

La força d'atracció de l'electró extern (càrrega negativa) amb el nucli (càrrega positiva) depèn de la distància que els separi (radi). Com més petita sigui aquesta distància, més força d'atracció (segons la llei de Coulomb) i més costarà d'arrencar l'electró.

En ser el radi atòmic del xenó més petit que el de cesi, costarà més arrencar un electró de l'orbital 5p del xenó que de l'orbital 6s del cesi.

⇒ Per tant, la energia d'ionització del xenó serà més gran que la del cesi.

Energia ionització (Xe) > Energia ionització (Cs)

[0,4 p]

Si la justificació de la energia d'ionització es fa només en base a la posició dels elements Cs i Xe a la taula periòdic es penalitzarà 0,2 p (sobre 0,4 p)

Química

Pregunta 4a

Reacció:
$$2 \text{ NO (g)} + O_2 (g) \leftrightarrows 2 \text{ NO}_2 (g)$$
 $K_p (a 430 \text{ °C}) = 1,5 \times 10^5$

Dades de les pressions parcials:

 $p_{(NO)} = 2.1 \times 10^{-3} \text{ bar}$

 $p_{(O2)} = 1.1 \times 10^{-2} \text{ bar}$ $p_{(NO2)} = 1.40 \times 10^{-1} \text{ bar}$

<u>Calculem el valor de Q_p amb les dades que ens donen de les pressions parcials:</u>

$$Q_{p} = [(p(_{NO2})^{2}] / [(p(_{NO})^{2} (p(_{O2}))]$$
 [0,2 p]

$$Q_p = [(1,40x10^{-1})^2] / [(2,1x10^{-3})^2 (1,10x10^{-2})]$$

$$Q_p = 4.0 \times 10^5$$
 [0,2 p]

Comparem Q_p i K_p:

$$Q_p \neq K_p \implies \text{La reacci\'o no est\`a en equilibri}$$
 [0,2 p]

Desplaçament de l'equilibri:

Si comparem la Q_p amb la K_p veiem que: $Q_p > K_p$

⇒ La reacció s'ha de desplaçar cap a la formació de reactius (esquerra).

D'aquesta manera la pressió parcial dels reactius (NO i O2) augmentaran i la del producte (NO₂) disminuirà, aconseguint que la Q_p disminueixi fins a tenir el valor de K_p i arribant a un nou equilibri.

⇒ Quan la reacció assoleix l'equilibri, la pressió parcial del NO₂ serà més baixa. [0,4 p]

Criteris de correcció

Química

Pregunta 4b

Reacció exotèrmica o endotèrmica?

[0,5 p]

Una reacció és exotèrmica quan desprèn calor en la reacció de formació dels productes, i és endotèrmica quan n'absorbeix.

Analitzant les dades de la taula, observem que a mesura que la temperatura augmenta (subministrem més calor) la constant d'equilibri, K_p , disminueix; això ens indica que la reacció a temperatura altes està menys desplaçada cap a la formació de productes (o més desplaçada cap als reactius).

Això vol dir que <u>en subministrar calor la reacció s'està desplaçant cap a la formació de reactius</u> (esquerra).

⇒ Reacció exotèrmica

És millor fer l'experiment en un reactor de 10 L o de 100 L?

[0,5 p]

Si el volum augmenta (de 10 L a 100 L) estem disminuïm la pressió. <u>Una disminució de pressió del sistema desplaça l'equilibri cap a la on hi ha més mols de gasos (coeficients estequiomètrics).</u>

Mol de gasos:

Reactius = 2 + 1

Productes = 2

⇒ La reacció es desplaça cap als reactius

Per afavorir l'oxidació del NO a NO₂ (desplaçar la reacció cap als productes) és millor fer l'experiment en un recipient de menor volum (per augmentar la pressió)

⇒ Millor un recipient de 10 L

Criteris de correcció

Química

Pregunta 5a

Elèctrodes (semireaccions en la pila)

[0,3 p]

Semireacció al càtode: $CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$ Semireacció a l'ànode: $LiC_6 \rightarrow 6 C + Li^+ + e^-$

Justificació:

En el <u>càtode</u> sempre té lloc la semireacció de <u>reducció</u>, és a dir, es <u>guanyen electrons</u>; en l'<u>ànode</u> té lloc la semireacció d'<u>oxidació</u>, és a dir, es <u>perden electrons</u>.

• Si no fan cap justificació, o és totalment incorrecte, es penalitzen 0,3 p.

Reacció global de la pila

Sumem les dues semireaccions (simplifiquem e i Li⁺)

$$CoO_2 + LiC_6 \rightarrow LiCoO_2 + 6 C$$
 [0,2 p]

Força electromotriu de la pila

Relació entre la variació d'energia lliure i la força electromotriu d'una pila:

$$\Rightarrow \Delta G = -n F E$$
 [0,2 p]

Dades: $\Delta G = -357 \text{ kJ} = -357000 \text{ J}$ n = 1 (un electró) $F = 9.65 \times 10^4 \text{ C} / \text{mol}$

$$E = -\Delta G / n F = -(-357000) / (1 \times 9,65 \times 10^4)$$

 $E = 3,7 \text{ V}$

⇒ La força electromotriu de la pila és 3,7 V

[0,3 p]

• Si no indiquen les unitats de la força electromotriu, o són errònies, es penalitza 0,1 p.

Criteris de correcció

Química

Pregunta 5b

Procés electrolític (càrrega de la bateria)

Reacció en el càtode: $6 C + Li^+ + e^- \rightarrow LiC_6$

Dades. I = 0.50 A = 0.50 C / s

 $F = 9.64 \times 10^4 \text{ C} / \text{mol}$

 $M (LiC_6) = (6.9) + (6 \times 12.0) = 78.9 \text{ g/mol}$

Transformació de les unitats de temps i càlcul de la massa molecular:

t = 2,5 h x (60 min / 1 h) x (60 s / 1 min) = 9000 s

 $M (LiC_6) = (6,9) + (6 \times 12,0) = 78,9 \text{ g/mol}$

[0,1 p]

Càlcul de la massa de LiC₆:

9000 s x (0,50 C /s) x (1 mol d'e - / 9,64x10 4 C) x (1 mol LiC $_6$ / 1 mol d'e -) x x (78,9 g LiC $_6$ / 1 mol LiC $_6$) = 3,68 g LiC $_6$

\Rightarrow Massa que es formarà de LiC₆ = 3,68 g

[0,9 p]

- La puntuació per passos seria:
 - ✓ Càlcul de la càrrega (en C): 0,2 p
 - ✓ Càlcul dels mol d'electrons: 0,2 p
 - ✓ Càlcul dels mol de LiC₆: 0,2 p
 - ✓ Càlcul dels g de LiC_6 : 0,3 p

Criteris de correcció

Química

Pregunta 6a

Reacció global

Sumem les reaccions de les dues etapes:

$$2 \text{ NO}_2 + \text{F}_2 \rightarrow 2 \text{ NO}_2\text{F}$$

[0,2 p]

Ordre de reacció de l'etapa 1

Etapa 1 (lenta): $NO_2 + F_2 \rightarrow NO_2F + F$

Equació de velocitat: $v = k [NO_2]^m [F_2]^n$

on k és la constant de velocitat

i m i n són els ordres de reacció respecte el NO₂ i el F₂, respectivament

Justificació:

La reacció de l'etapa 1 és una <u>reacció elemental</u> i això ens indica que <u>els ordres</u> d'aquesta reacció coincideixen amb els coeficients estequiomètrics. [0,2 p]

- \Rightarrow Ordre de reacció respecte el NO₂ = 1 (m=1)
- \Rightarrow Ordre de reacció respecte el $F_2 = 1$ (n=1)

[0,2 p]

Equació de velocitat de l'etapa 1

De l'equació de velocitat: $v = k [NO_2]^m [F_2]^n$, i els ordres de reacció deduïts:

$$\Rightarrow \mathbf{v} = \mathbf{k} [\mathbf{NO}_2] [\mathbf{F}_2]$$
 [0,2 p]

Unitats de la velocitat d'una reacció

$$\Rightarrow$$
 Unitats de la velocitat són: mol L⁻¹ s⁻¹ [0,2 p]

- També és correcte si ho expressen com: mol/Ls, M/s o M s⁻¹.
- Es correcte si utilitzen qualsevol altra unitat de concentració i temps (per exemple g L⁻¹ min⁻¹).

Criteris de correcció

Química

Pregunta 6b

Concepte d'energia d'activació

[0,5 p]

Cal explicar el concepte escollint només un dels dos models.

Segons el model de col·lisions:

L'energia d'activació és l'energia cinètica mínima que ha de tenir una molècula per reaccionar quan xoca amb un altra.

Segons el model de l'estat de transició o complex activat:

L'energia d'activació és la diferència d'energia entre l'estat de transició i els reactius. La reacció només té lloc si les molècules adquireixen prou energia per formar l'estat de transició i travessar la barrera energètica.

Influència de la temperatura en la velocitat d'una reacció

Un augment de temperatura de la reacció fa augmentar la velocitat de la reacció.

[0,1 p]

Raonaments: només cal que en proposin un

[0,4 p]

Segons el model de col·lisions:

Un augment de temperatura provoca que hi hagi més molècules amb una energia cinètica mínima per xocar i reaccionar.

Segons el model de l'estat de transició o complex activat:

Un augment de temperatura fa que les molècules tinguin més energia per superar la barrera energètica que suposa l'energia d'activació (diferència d'energia entre reactius i estat de transició).

Criteris de correcció

Química

[0,3 p]

Pregunta 7a

Reacció d'equilibri de solubilitat:

$$AlPO_4(s) \Rightarrow Al^{3+}(aq) + PO_4^{3-}$$
 (aq) [0,3 p]

■ Ho considerem correcte si no posen el subíndex "aq" (aquós), però és imprescindible que hi hagi el subíndex "s"en el fosfat d'alumini indicant que es troba en estat sòlid.

$$AlPO_4(s) = Al^{3+} + PO_4^{3-}$$

Càlcul de la solubilitat

Inicial

 $AlPO_4(s) \iff Al^{3+}(aq) + PO_4^{3-}(aq)$ Equilibri a - ss on s = solubilitat (mols/L)

Expressió de la constant de solubilitat:

$$K_{ps} = [Al^{3+}] [PO_4^{3-}]$$
 [0,2 p]

Introduïm la solubilitat a l'expressió anterior:

im la solubilitat a l'expressió anterior:

$$K_{ps} = (s) \cdot (s) = s^2$$
 [0,2 p]
 $s = (K_{ps})^{1/2}$
 $s = (1,3x10^{-20})^{1/2}$
 $\Rightarrow s \text{ (solubilitat)} = 1,14 \cdot 10^{-10} \text{ mol/L}$ [0,3 p]

Si no indiquen les unitats, o són errònies, es penalitzen 0,2 p.

Criteris de correcció

Química

Pregunta 7b

Expressió de la constant de solubilitat: $K_{ps} = [Al^{3+}][PO_4^{3-}]$

Dades: $[A1^{3+}] = 2,6x10^{-15} M$ $Kps (AlPO_4) = 1,3x10^{-20}$

Calculem la concentració de PO_4^{3-} perquè amb la concentració en equilibri es compleixi la K_{ps} (tenim la solució saturada, en equilibri amb el precipitat):

$$K_{ps} = \left[Al^{3+}\right] \left[PO_4^{3^-}\right] \quad \Longrightarrow \ \left[PO_4^{3^-}\right] = K_{ps} \, / \, \left[Al^{3+}\right]$$

$$\Rightarrow [PO_4^{3-}] = (1.3 \times 10^{-20}) / (2.6 \times 10^{-15})$$

$$\Rightarrow [PO_4^{3-}] = 5.0 \times 10^{-6} M$$
 [0.5 p]

Transformem aquesta concentració a mg / L: Massa molecular del PO_4^{3-} =(31,0) + (16,0 x 4) = 95 g / mol

$$5.0 \times 10^{-6} \text{ mol PO}_4^{3-} / \text{L solució } \text{x } (95 \text{ g PO}_4^{3-} / 1 \text{ mol PO}_4^{3-}) \text{ x}$$

 $\text{x } (1000 \text{ g PO}_4^{3-} / 1 \text{ g PO}_4^{3-}) = \textbf{0,475 mg} / \text{L de PO}_4^{3-}$ [0,2 p]

Comparem aquest valor amb el valor del límit legal: $[PO_4^{3-}]_{limit\ legal} = 0,20\ mg\ /\ L$

$$\Rightarrow$$
 0,475 mg/L > [PO₄³⁻]_{limit legal}

 \Rightarrow L'aigua residual tractada <u>no compleix</u> les exigències legals per abocar-la a l'aqüífer.

[0,3 p]