Last the: Mmarife H .. Lemma: X, Y & X(M), then there exist another vector field (X,Y) & X(M) defined by $(X,Y)_p(f) = X_p(Y(f)) - Y_p(X(f))$ for every fec * (M) and peM. (all (x, Y) the Lie bracket of X and Y. Exercise: prove lengra. For diede: (a) [X, Y] & Der (Coop), R) (the above defres it as in Hon (Coo(p), IR)) (b) the map (x, Y): M → TM P -> (P, (X, Y),) 15 Smooth, i.e., [X,Y] & DE(M). Prop: The Lie bracket satisfies the fllowing properties: (1) [x,Y] is linear in both X &Y. (2) [x,x] = - [x,y] $[3] [x't\lambda] = \chi(t) \chi + t[x'\lambda]$ ony fecom (M) (from (2)+13) (and/so deduce (fx, Y) = ---)

(4) (Jacobi identify): [x, (Y, Z)] + [Y, (z, x]] + [z, (x, Y]]=0. \(\times \times \t

(Rmb: it had a deflect associate X, Y as $\alpha(X,Y)$ vector field $\alpha(fX,Y) = \alpha(X,fY) = f\alpha(X,Y)$, we say

or is tensorial (not the for (-,-)) ~ x comes for a secte of the "tense headle"

T*MOT*M).

Distributions:

Idea: a nombre vanshing vector field X determs a "smoothy varying" collection of 1-d subspaces $Span(X_p) \subseteq T_pM$.

Integral cours of X give in particular mps 8: I > M ~/ $d8(T_{\xi}I) \subseteq (er = \text{if innessen}) \text{ span}(X_{\xi}H) \subseteq T_{\xi}HM.$ Distributions give a higher discovered subspace generalization of the above.

Def: Mª. Fix $1 \le c \le m$. A c-dimensional distribution \mathcal{D} on M^m is a diorice of c-dimensional subspace $\mathcal{D}_p \subseteq T_pM$ for each $p \in M$.

Sound is quartle if a larger and \overline{A} and \overline{A} and \overline{A} .

Say of is smooth if, at every p∈M, I whood U∋p and c (snorth) vector fields X1, --, Xc on U which span of over U.

(i.e., Span (X1), -, (Xc), = Da for every q∈U).

i.e. D= {D,} pen

· Say a vector field X is contained in D, worth XED if $X_p \in \mathcal{D}_p$ for every p.

Def: Fix & a smooth c-din't distribute, An integral swimmifile N° \le M''

of & is a submanifold where T, N C Dp \(\text{TpM for every peN.} \)

(=) dim N = n \(\le \text{distribute} \text{D} = c \)

Def: A is integrable if at every p, \exists a chart (U, ϕ) and local coordinates $x_1, -y \times m$ $(x_1^2 := x_1^2 \circ \phi)$ such that

 $D = Span\left(\frac{3}{3x_1}, -, \frac{3}{3x_2}\right)$ (near $D_2 = Span\left(\frac{3}{6x_1}\right)_1, -, \left(\frac{3}{3x_2}\right)_1$ for every $q = \frac{1}{2}$

< => near any p & functures fi, -> force smooth functions on a most dofp such that for any constants ki, - , kun-e, fu loci

{ fi= ki, -, forc= kund are integral submaifolds of D with (fi,-,fm-c): U → Run-c is a submesser.

We an specify distributes by: (i.e, at every point)

· Specifying < globally independent X, _, X & X (M) 2) 0 = Span (X1, -, xc)

· dually, by specifying a jobally independent O1, --, Oun-c & 521 (M) \approx) $\theta = \bigcap_{i=1}^{n} \ker(\theta_i)$

(note: each (Of): T,M -> R)

Ex: R3, w=dz esl'(R3).

Then D = ker w = Span (=x, =x).

The integral surfaces of D are of the for z= |const|

Dis anstegrable 2-plane field distribution.

Ex: R3, w= dz+ (xdy-ydx). Then

is not megable. (frot exaple of whits citled a contact destribution.)

(exercise).

Q: When is of integrable?

Case $\dim(\mathfrak{D})=1$. By ODE theory we know that if $X_{p}\neq 0$ then Spen(X) is (at least locally near p) integrable. (Contains a showed of $X_{p}\neq 0$ then $X=\frac{\partial}{\partial x_{1}}$ in some coords near p) $X=\frac{\partial}{\partial x_{2}}$ in some coords near p) $X=\frac{\partial}{\partial x_{3}}$ in some coords near p)

Def: Say $\mathcal{O} \subset TM$ (smooth c-din'l dist.) is <u>muslutive</u> if, whenever $X, Y \in \mathcal{O}$ then $[X,Y] \in \mathcal{O}$, (" \mathcal{O} -is dosed under (-,-)").

Thm: [Frobenius theorem]: Disintegrable if and only if Dis muolutive.

Start of proof sketch:

= Say of is integrable. Then at each p of coordinates near p s.t. do = Span (= x1, -, = x).

For p in these coordinates, and we can compute

exercise: $[X,Y] = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} (a_i \frac{\partial b_i}{\partial x_i} \frac{\partial}{\partial x_j} - b_j \frac{\partial a_i}{\partial x_j} \frac{\partial}{\partial x_i}) \in \mathcal{J}$

=) (x,Y) ed for any x,Y ed. 图

< next the (sketch).