

Power System Machine Learning Applications: From Physics-Informed Learning for Decision Support to Interface at the Edge for Control

Luigi Vanfretti, Tetiana Bogodorova, Sergio A. Dorado-Rojas

luigi.vanfretti@gmail.com, bogodt2@rpi.edu, sergio.dorado.rojas@gmail.com

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

Download the data and the code from:

https://github.com/ALSETLab/Tutorial_SGC_2020

Install Anaconda/Miniconda:

Download - https://www.anaconda.com/products/individual Installation - https://docs.anaconda.com/anaconda/install/

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

Data Visualization

In this part, we will:

• Load the generated data for training the ML modules

• Visualize the data and detect some problems that we need to deal with before feeding data to the ML methods

Scenario Sampling: Description

Case of Study: we use the IEEE 14 bus system for data generation

This system counts with:

- 5 generators
- 16 lines
- 4 transformers between buses

20 elements connect the system nodes

If the XFR/line impedance value of one of these element models is made large enough, we would have "applied" a contingency to the system

$$X_ipprox 10^{12}$$

By making the change of the impedance large, we do not alter the topology of the system (and do not change the number of states nor the **A** matrix)

Data Generation - Procedure

For dynamic simulation, we have employed OpenIPSL and Dymola (Modelica IDE)

OpenIPSL is an **open-source** Modelica library for power systems

- It contains a set of power system components for phasor time domain modeling and simulation
- Models have been validated against a number of reference tools (mainly PSS/E)

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

Data Generation - Results

Data Preparation - Labeling

Damping ratio computation can be hard-coded (hard-coded classifier) and the resulting vectorized function is used to label the eigenvalues in the following groups:

- Unstable $(\zeta < 0)$
- Stable but critical $(0 \le \zeta < 0.05)$
- Acceptable $(0.05 \le \zeta \le 0.1)$
- Good Operation $(0.1 \le \zeta < 1)$
- Satisfactory Operation $(\zeta \geq 1)$
- Irrelevant

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

Neural Network Design

- Setup and Installation
- Data Visualization
- Data Labeling and Preprocessing
- Development of NN-based Classifier
- Traditional Machine Learning Solutions

Traditional Machine Learning Techniques

Traditional Machine Learning techniques are trained and benchmarked against NN for eigenvalue classification

Selected techniques:

- Logistic Regression
- Softmax Regression
- Support Vector Machines
- *k*-Nearest Neighbors
- Decision Trees
- Naive Bayes

All of the algorithms were implemented and tested using scikit-learn

why not change the world?®