Transfer Learning: how to learn from little data

The biggest constraint in training a model is obtaining a sufficient amount of training data.

The deeper (greater number of layers) your model

- the more weights/parameters need to be estimated
- increases the quantity of training data

Recall our lecture on Interpreting the layers of a Neural Network

- layers close to the input seem to learn simple features
- layer l creates new features that are combinations of features of layer (l-1)

Is it possible that we can "re-use" feature transformations?

- Use the layers closest to input for a NN trained on a "source" Task
- But apply these layers (and their transformations on input) to a new "target" Task
 ?

Yes!

This is called *Transfer Learning*

Create a NN for the new Task by

- using some number of layers (closest to input) of a trained model for some source task
- appending new untrained layers for the target task
 - final "head": regression, classification

Quite often, the Source task's model

- has been trained on lots of data
- has been trained for large amounts of time
 - 2-3 weeks for image models
- has a very large number of parameters

The Transfer Learning approach imports the Source task's layer (with weights) at no cost!
The new layers added for the Target task might be able to benefit from the feature transformations created by the Source Task.

This means

- the Target task training modifies only the parameters of the new layers
 - freeze the weights of the imported Source layers
- By using a small number of parameters
 - Target task can be trained on a small amount of training data

How to choose the prefix of the Source task

Where do we truncate the Source task's model?

In other words: how deep should the prefix of the Source model's NN be?

Consider the features created at the final layer of the prefix:

- Very shallow
 - Features learned may be too simple
 - Target may be able to benefit from deeper prefix
- Too deep
 - Features learned may be too specialized to the Source task

In other words: experiment!

Limitations of Transfer Learning

There is no guarantee that the features learned by the Source task will be useful for the Target task

• greater chance if tasks/domains are similar

Training the Target task

Why do we freeze the weights of the imported Source prefix?

- the weights of the Target task's suffix are uninitialized
 - large gradients to start
- so early in traing: we don't to destroy the weights in the prefix

After the suffix is trained, we sometimes

- unfreeze the latter layers of the prefix
- train with a much lower learning rate than the suffix

In other words: we try to "fine-tune" the prefix.

The key is fine-tuning

- wait until Suffix has been trained enough to generate small gradients
- differential learning rates per layer
 - the Prefix has been trained on lots of examples
 - don't want to alter these weights based on the small number of Target training examples

Transfer learning in Keras

Pre-trained Models in Keras

Image

ImageNet pre-trained models (https://keras.io/applications/)

NLP

<u>Pre-trained word embeddings</u> (https://keras.io/examples/pretrained word embeddings/)

Model zoo

Open source, pre-trained models (https://modelzoo.co)

- Could probably have used above to split autotencoder into encoder section
- Image recognition
 - load pre-trained
 - cut off head
 - where:
 - too late: highly specialized
 - better to do earlier
 - earlier layers learn "generic features:

- replace head
 - train on *small* number of specialized examples

```
In [2]: print("Done")
```

Done