

Year 12 Methods
TEST 1
Friday 22 February 2019
TIME: 45 minutes working
One page Notes allowed
Calculator Assumed
39 marks 7 Questions

Name:	Marking	Tey	Teacher:					
Note: All part questions worth more than 2 marks require working to obtain full marks.								

Question 1

(4 marks)

х	f(x)	f'(x)	g(x)	g'(x)
1	3	-1	-2	-1
2	2	-1	1	0
3	1	-1	2	1

(a) Define
$$h(x) = \frac{f(x)}{g(x)}$$
, use the table to find the value for $h'(2)$.

(2 marks)

$$h' = \frac{gf' - fg'}{g^2} = \frac{1}{(-1)} - \frac{2}{(0)}$$

Volumes quotient sula
$$= -1$$
V subs correct values

(b) Define
$$I(x) = f(g(x))$$
, use the table to find the value for $I'(3)$.

(2 marks)

$$J' = f'g'$$

= $(-1)(i)$
= -1

Question 2

(3 marks)

Find the equation of the line tangent to the function $y = (3x^2 - 2)^3$ at the point (2, 2). Give your answer in the gradient-intercept form.

$$y' = 3(3x^2 - 2)^2(6x)$$

 $x = 2$ $y' = 3600$

$$y = 3600x + C$$
 $2 = 7200 + C$
 $C = -7198$

Question 3

(3 marks)

The time period T for a simple pendulum of length l is given by $T = 2\pi \sqrt{\frac{l}{g}}$ where g is a constant.

If the length changes by 3%, use the incremental formula to estimate the percentage change in the period.

 $=\frac{1}{2}(3\%)$

= 1.5%

$$\Delta T = \frac{dJ}{dl} \Delta l$$

$$= \frac{7}{\sqrt{g}} \Delta l$$

$$\Delta T = \frac{7}{\sqrt{g}} \Delta l$$

$$\Delta T = \frac{2}{\sqrt{g}} \Delta l$$

$$\Delta T = \frac{2}{\sqrt{g}} \Delta l$$

Question 4 (7 marks)

A company is purchasing a type of thin sheet metal required to make a closed cylindrical container with a capacity of 4000π cm³.

(a) Let the radius of the cylindrical base be r. Find the expression for the height h in terms of r.

$$4000\pi = \pi r^2 h$$
 $h = \frac{4000}{r^2}$ (1 mark)

(b) Hence, find the expression for the surface area of the cylinder in terms of r. (2 marks

$$S = 2\pi r^2 + 2\pi r$$

$$= 2\pi r^2 + 2\pi r \frac{4000}{r^2}$$

$$= 2\pi r^2 + 80007$$

(c) Therefore, find the least area of metal required to make a closed cylindrical container from thin sheet metal in order that it will have a capacity of 4000π cm³. (4 marks)

$$S = 2\pi r^{2} + 8000 \pi r^{-1}$$

$$\frac{dS}{dr} = 4\pi r - \frac{8000\pi}{r^{2}}$$

$$4\pi r - \frac{8000\pi}{r^{2}} = 0$$

$$r = \frac{2000}{r^{2}}$$

$$r = \frac{2000}{r^{2}}$$

$$r = \frac{3}{2000} \times 12.60 \text{ cm}$$

$$\sqrt{\frac{dS}{dr}} = 4\pi + \frac{16000\pi}{r^{3}} > 0$$

$$\sqrt{\frac{dS}{dr}} = 4\pi r$$

$$\sqrt{\frac{dS}{dr}} = 4\pi + \frac{16000\pi}{r^{3}} > 0$$

$$\sqrt{\frac{dS}{dr}} = 4\pi r$$

$$\sqrt{\frac{dS}{dr}} = 4\pi + \frac{16000\pi}{r^{3}} > 0$$

$$\sqrt{\frac{dS}{dr}} = 4\pi r$$

$$\sqrt{\frac{dS$$

S = 2992.2 ===2

Question 5

(8 marks)

The position of a train on a straight mono rail, x metres at time t seconds, is modelled by the following formula for the velocity, v in metres/second, $v = pt^2 - 12t + q$ where p & q are constants. The deceleration of the train is $8ms^{-2}$ when t=1, has a position $x=\frac{4}{3}$ when t=2 and is initially at the origin (x = 0).

a) Determine the values of the constants p & q.

(4 marks)

Solves for pusing

/ determines 9

$$a = 2pt - 12$$

$$-8 = 2p(1) - 12$$

$$p = 2$$

$$V = 2t^{2} - 12t + 9$$

$$x = 2t^{3} - 6t^{2} + 9t + 0$$

$$(= 0)$$

Integrates to find
$$x$$
.

I states constant = 0 for x

$$\frac{4}{3} = \frac{2}{3}(2)^3 - 6(2)^3 + 29$$

$$9 = 10$$

b) Determine the time(s) that the velocity is zero.

(2 marks)

 $V = 2t^2 - 12t + 10$ =(2+-2)(+-5)+=1 or 5

Voltains expression for Velocity V states both times

c) The distance travelled when the acceleration is $12ms^{-2}$. distance = 1/2 + 1/2 + 2/2 + (3/3 -12) Question 6 (8 marks)

The volume, V in cubic metres and radius R metres, of a spherical balloon are changing with time, t seconds. $V = \frac{4\pi R^3}{3}$. The radius of the balloon at any time is given by $R = 2t(t+3)^3$.

Determine the following:

a) The value of
$$\frac{dR}{dt}$$
 when $t = 1$.

$$\frac{dR}{dt} = 2+3(t+3)^{3} + 2(t+3)^{3}$$

$$= 6(4)^{2} + 2(4)^{3}$$

$$= 224$$

b) The value of
$$\frac{dV}{dt}$$
 when $t = 1$.

$$\frac{dV}{dt} = \frac{dV}{dR} \frac{dR}{dt}$$
= $4\pi R^2 (224)$
= $4\pi (128)^2 (224)$
= 46118781.72

$$R = 2(4)^3$$
 (3 marks)
= 128

Juses chain rule

Jobans Rat += 1

Jobans dv at += 1

Consider the volume of the balloon at t = 1.

c) Use the incremental formula to estimate the change in volume 0.1 seconds later (i.e t=1.1)

 $\Delta V = \frac{dV}{dt} \Delta t$ = 46118781.22 (0.1) = 4611878.122 (4611878 ± 0.2)

Luses incremental formula Lobtains approx change in volume. Question 7 (6 marks)

A share portfolio, initially worth \$26000, has a value of f dollars after t months, and begins with a negative rate of growth. The rate of growth remains negative until after 20 months (t = 20) when the value of the portfolio is momentarily stationary and then continues with negative growth for the life of the investment. The value of the portfolio, f(t) after t months can be modelled by the following model, $f(t) = -2t^3 + bt^2 + ct + d$, $0 \le t \le 37$ months where b, c & d are constants.

Determine the values of the constants.

$$f(6) = 26000$$

$$d = 26000$$

$$f(4) = -2t^{3} + bt^{2} + ct + d$$

$$f'(4) = -6t^{2} + 2bt + C$$

$$f''(4) = -12t + 2b$$

determines d Videntities houz inflection at +=> 0 / determines exp for f'(4) determines exp for f"(+) I solves for b 0 = f(20) = f''(20) Inflection pt (horiz) / solves for C.

$$0 = -12(20) + 26$$
 $b = 120$

$$0 = -6(20)^{2} + 240(20) + C$$

$$C = -2400$$