Session 6: Eigen values & Markov Chains

Optimization and Computational Linear Algebra for Data Science

Marylou Gabrié (based on material by Léo Miolane)

Contents

- 1. Eigenvalues & eigenvectors
 - 1.1 Definition
 - 1.2 Useful facts
 - 1.2 Eigenspaces
 - 1.3 Spectrum
- Markov chains
 - 2.1 Stochastic matrices and key equation
 - 2.2 Perron-Frobenius Theorem
 - 2.3 Application: PageRank
- 3. The spectral theorem

1. Eigenvalues & eigenvectors

Introduction

1. Eigenvalues & eigenvectors

												ı
												ı
												ı

2/39

1.1 Definition

Definition

Let $A\in\mathbb{R}^{n\times n}$. A **non-zero** vector $v\in\mathbb{R}^n$ is said to be an eigenvector of A is there exists $\lambda\in\mathbb{R}$ such that

$$Av = \lambda v$$
.

The scalar λ is called the eigenvalue (of A) associated to v.

Examples: I_d ? matrix A with $\ker(A) \neq \{0\}$?

Example: diagonal matrices

Matr	ix with	n no eigenval	ues/vectors

1. Eigenvalues & eigenvectors Definition

5/39

Example: o	orthogonal	projection

1. Eigenvalues & eigenvectors Definition

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #1

For all $\alpha \in \mathbb{R}$, $\alpha\lambda$ is an eigenvalue of the matrix αA and x is an associated eigenvector.

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #2

For all $\alpha \in \mathbb{R}$, $\lambda + \alpha$ is an eigenvalue of the matrix $A + \alpha \mathrm{Id}$ and x is an associated eigenvector.

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #3

For all $k \in \mathbb{N}$, λ^k is an eigenvalue of the matrix A^k and x is an associated eigenvector.

Let $A \in \mathbb{R}^{n \times n}$. Suppose that A has an eigenvalue $\lambda \in \mathbb{R}$ and let $x \in \mathbb{R}^n$ be an eigenvector associated to λ .

Fact #4

If A is invertible then $1/\lambda$ is an eigenvalue of the matrix inverse A^{-1} and x is an associated eigenvector.

1.3 Eigenspaces

Definition

If $\lambda \in \mathbb{R}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$, the set

$$E_{\lambda}(A) = \{ x \in \mathbb{R}^n \, | \, Ax = \lambda x \}$$

is called the eigenspace of A associated to λ . The dimension of $E_{\lambda}(A)$ is called the multiplicity of the eigenvalue λ .

Examples: Eigenvalue 1 for I_d ? Eigenvalue 0 for $\ker(A)$?

1.4 Spectrum

Definition

The set of all eigenvalues of A is called the *spectrum* of A and denoted by $\mathrm{Sp}(A)$.

Theorem

A $n \times n$ matrix A admits at most n different eigenvalues: $\#\mathrm{Sp}(A) \leq n$.

Proof that $\#\mathrm{Sp}(A) \leq n$

Proposition

Let v_1,\ldots,v_k be eigenvectors of A corresponding (respectively) to the eigenvalues $\lambda_1,\ldots,\lambda_k$. If the λ_i are all distinct $(\lambda_i \neq \lambda_j \text{ for all } i \neq j)$ then the vectors v_1,\ldots,v_k are linearly independent.

P	ro	0	f (of	t	h	e	pr	0	p	05	IE	Ì	on		

11/39

1. Eigenvalues & eigenvectors 1.4 Spectrum

P	ro	0	f (of	t	h	e	pr	0	p	05	IE	Ì	on		

11/39

1. Eigenvalues & eigenvectors 1.4 Spectrum

Even better!

Theorem

A $n \times n$ matrix A admits at most n different eigenvalues: $\#\mathrm{Sp}(A) \leq n$.

Theorem

Let $A \in \mathbb{R}^{n \times n}$. If $\lambda_1, \dots, \lambda_k$ are distinct eigenvalues of A of multiplicities m_1, \dots, m_k respectively, then

$$m_1 + \cdots + m_k \le n$$
.

Example

1. Eigenvalues & eigenvectors 1.4 Spectrum

		_											

13/39

2. Markov chains

2. Markov chains

An example

Consider a "cat" with 3 "states": 1. Eating 2. Sleeping 3. Playing

2. Markov chains

2.1 Stochastic matrices

Definition

A matrix $P \in \mathbb{R}^{n \times n}$ is said to be *stochastic* if:

- 1. $P_{i,j} \ge 0$ for all $1 \le i, j \le n$.
- 2. $\sum_{i=1}^{n} P_{i,j} = 1$, for all $1 \le j \le n$.

Probability vectors

2. Markov chains 2.1 Stochastic matrices and key equation

17/39

2.1 The key equation

Proposition

For all $t \geq 0$

$$x^{(t+1)} = Px^{(t)}$$
 and consequently, $x^{(t)} = P^t x^{(0)}$.

Long-term behavior

	-6			~'-		ш

2. Markov chains 2.1 Stochastic matrices and key equation

19/39

Invariant measure

Definition

A vector $\mu \in \Delta_n$ is called an invariant measure for the transition matrix P if

$$\mu = P\mu$$
,

i.e. if μ is an eigenvector of P associated with the eigenvalue 1.

2.2 Perron-Frobenius Theorem

Theorem

Let P be a stochastic matrix such that there exists $k \ge 1$ such that all the entries of P^k are strictly positive. Then the following holds:

- 1. 1 is an eigenvalue of P and there exists an eigenvector $\mu \in \Delta_n$ associated to 1.
- 2. The eigenvalue 1 has multiplicity 1: $Ker(P Id) = Span(\mu)$.
- 3. For all $x \in \Delta_n$, $P^t x \xrightarrow[t \to \infty]{} \mu$.

Consequence

Corollary

Let P be a stochastic matrix such that there exists $k \ge 1$ such that all the entries of P^k are strictly positive.

Then there exists a unique invariant measure μ and for all initial condition $x^{(0)} \in \Delta_n$,

$$x^{(t)} = P^t x^{(0)} \xrightarrow[t \to \infty]{} \mu.$$

Pı	rc	0	f:	G	ie	0	m	e	tr	ic	al	lc	b	S	er	'V	at	ic	n	S	

23/39

2. Markov chains 2.2 Perron-Frobenius Theorem

Proof: contraction

We will prove the theorem in the case where $P_{i,j}>0$ for all i,j. Lemma

The mapping

$$\varphi: \Delta_n \to \Delta_n$$

$$x \mapsto Px$$

is a contraction mapping for the ℓ_1 -norm: there exists $c \in (0,1)$ such that for all $x,y \in \Delta_n$:

$$||Px - Py||_1 \le c||x - y||_1.$$

Geometric picture

2. Markov chains 2.2 Perron-Frobenius Theorem

												ı
												ı

25/39

Proof of Perron-Frobenius

26/39

2. Markov chains 2.2 Perron-Frobenius Theorem

Proof of Perron-Frobenius

26/39

2. Markov chains 2.2 Perron-Frobenius Theorem

2.3 PageRank: Ordering the Web															b			

2. Markov chains 2.3 PageRank

27/39

Naive attempt

First idea: rank the webpages according to their number of *incomming links*. (The more incomming links, the more the webpage is important).

The random surfer

29/39

2. Markov chains 2.3 PageRank

PageRank Algorithm

This defines a Markov chain of transition matrix:

$$P_{i,j} = \begin{cases} 1/\deg(j) & \text{if there is a link } j \to i \\ 0 & \text{otherwise}, \end{cases}$$

- After a long time, the surfer is more likely to be on an *important* webpage.
- If μ is the invariant measure of P (provided P verifies the hypotheses of Perron-Frobenius), we take

$$\mu_i =$$
 « importance of webpage i ».

2. Markov chains 2.3 PageRank

PageRank Algorithm

2. Markov chains 2.3 PageRank

<u> </u>																				

31/39

Application: ranking Tennis players

Goal: rank the following players:

Federer, Nadal, Djokovic, Murray, Del Potro, Roddick, Coria, Zverev, Ferrer, Soderling, Tsonga, Nishikori, Raonic, Nalbandian, Wawrinka, Berdych, Hewitt, Tsitsipas, Monfils, Gonzalez, Thiem, Ljubicic, Davydenko, Cilic, Pouille, Safin, Isner, Dimitrov, Medvedev, Ferrero, Goffin, Bautista Agut, Sock, Gasquet, Simon, Blake, Monaco, Coric, Stepanek, Khachanov, Almagro, Robredo, Verdasco, Anderson, Youzhny, Baghdatis, Dolgopolov, Kohlschreiber, Fognini, Melzer, Paire, Querrey, Tomic, Basilashvili.

Data: Head-to Head records (number of times that player x has defeated player y)

Ranking by % of victories

0	10)	20)	30	40	5	0	60)	70	80
F	'ederer											
N	ladal											
Γ)jokovi	3										
	Iurray											
)elPotr											
	Roddick											
	Coria											
Z	verev											
	errer											
S	oderlin	g										
П	songa											
N	Vishikor	i i										
	laonic											
	lalbanc											
V	Vawrin.	ka										
Е	Berdych											33/39

The random spectator

Imagine the following « random spectator »:

- At time t, the spectator believes that player j is the best: $X_t = j$.
- Then, he picks a game of player j uniformly at random:
 - if player j wins, then the spectator still believes that j is the best: $X_{t+1} = j$.
 - otherwise, the spectator changes his mind and now believes that player i who defeated j is the best: $X_{t+1} = i$.

The random spectator

Imagine the following « random spectator »:

- At time t, the spectator believes that player j is the best: $X_t = j$.
- Then, he picks a game of player j uniformly at random:
 - if player j wins, then the spectator still believes that j is the best: $X_{t+1} = j$.
 - otherwise, the spectator changes his mind and now believes that player i who defeated j is the best: $X_{t+1} = i$.

This defines a transition matrix P. We rank the players according to the stationary distribution μ of

$$M = \alpha P + \frac{1 - \alpha}{N} J$$

Naive ranking vs PageRank

3. The spectral theorem

3. The spectral theorem 36/39

The spectral theorem

Theorem

Let $A \in \mathbb{R}^{n \times n}$ be a **symmetric** matrix. Then there is a orthonormal basis of \mathbb{R}^n composed of eigenvectors of A.

That means that if A is symmetric, then there exists an orthonormal basis (v_1, \ldots, v_n) of \mathbb{R}^n and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$Av_i = \lambda_i v_i$$
 for all $i \in \{1, \dots, n\}$.

3. The spectral theorem 37/39

The spectral orthonormal basis

3. The spectral theorem 38/39

Matrix formulation

Theorem (Matrix formulation)

Let $A\in\mathbb{R}^{n\times n}$ be a **symmetric** matrix. Then there exists an orthogonal matrix P and a diagonal matrix D of sizes $n\times n$ such that

$$A = PDP^{\mathsf{T}}.$$

3. The spectral theorem 39/39

Questions?

Questions?

