Computer Vision and Image Processing

Prof. André Gustavo Hochuli

<u>gustavo.hochuli@pucpr.br</u> <u>aghochuli@ppgia.pucpr.br</u>

Topics

- Apresentação do Professor
- O que esperar da disciplina?
- Ferramentas do estado da arte
 - Google Colab
 - OpenCV
 - Tensorflow
 -
- Exercícios

Prof. André Gustavo Hochuli

- · Formação
 - · Ciência da Computação [2004, PUCPR]
 - · Mestre [2007, PPGIA/PUCPR]
 - Doutor [2018, PPGINF/UFPR]
- · Experiência Profissional
 - P&D em Visão Computacional [2008-2013]
 - · Professor Universitário [2014 Atual]
- · Linhas de Pesquisa
 - · Aprendizagem de Máquina e Reconhecimento de Padrões

Hobbies: Aviação Futebol Tecnologia

Convolution Neural Network (CNN)

Computer Vision - Prof. André Hochuli

Lecture 01

O que esperar da disciplina?

- · Processamento de Imagens
- · Aprendizagem de Máquina
- Resolução de problemas
- Desafios encontrados no cotidiano
- · Aulas teóricas e práticas
- Espaço para o estudante debater e trazer problemas/dúvidas
- · Conteúdo incremental
- Trabalhos práticos
- Provas práticas
- OBS: Material didático em língua inglesa.

Plano de Ensino (Resumo)

RA1: Compreender o problema
proposto e desenvolver uma
solução computacional
RA2: Identificar as ferramentas de visão computacional para o desenvolvimento da solução
RA3: Codificar programas utilizando
as construções fundamentais de
visão computacional
RA4: Treinar modelos de
aprendizagem de máquina capazes
de resolver o problema de maneira
automática
RA5: Identifica problemas e
propõe melhoria analisando o
resultado da solução

Resultado de Aprendizagem (RA)	PjBL 1 (Grupo - Somatiya) (Peso no RA)	Prova 1 – (Individual - Somativa) (Peso no RA)	PjBL 2 (Grupo - Somatiya) (Peso no RA)	Prova 1 – (Individual - Somativa) (Peso no RA)	Nota do RA (0 a 10)
RA1	2,5	2,5	2,5	2,5	Soma das notas obtidas nas avaliações somativas
RA2	2,5	2,5	2,5	2,5	Soma das notas obtidas nas avaliações somativas
RA3	5	-	5	-	Soma das notas obtidas nas avaliações somativas
RA4	5	-	5	-	Soma das notas obtidas nas avaliações somativas
RA5	2,5	2,5	2,5	2,5	Soma das notas obtidas nas avaliações somativas

Nota Final =
$$\frac{1}{5} \sum_{i=1}^{5} RA_i$$

- 01 RECUPERAÇÕES PARCIAL POR R.A AO FIM DO SEMESTRE (INDIVIDUALIZADA POR R.A)
- PLANO DE ENSINO COMPLETO DISPONIBILIZADO NO (CANVAS)

Plano de Ensino (Resumo)

Período	Datas	RAs	Atividades	CH (brs)
Agosto	29/07 - 26/08	1,2,3,4,5	Aquisição e Manipulação de Imagens Processamento de Imagens e Segmentação Extração de Características	20
	Até 26/08	1,2,3,4,5	Avaliação <u>Somativa</u> 1 (PjBL1/TDE1)	10 (TDE)
Setembro	02/09 - 30/09	1,2,3,4,5	Extração de Características Reconhecimento de Padrões Deep Learning - 1 (Classificação/Detecção)	20
	Até 30/09	1,2,5	Avaliação <u>Somativa</u> 2 (Individual)	-
Outubro	07/10 - 28/10	1,2,3,4,5	Deep Learning - 1 (Classificação/Detecção)	16
Outubio	Até 28/10	1,2,3,4,5	Avaliação <u>Somativa</u> (PjBL 2/TDE2)	6 (TDE)
	04/11 - 11/11	1,2,3,4,5	Deep Learning - 2 Generativo	8
Novembro	Até 11/11	1,2,5	Avaliação <u>Somativa</u> 2 (Individual)	-
	18/11	1,2,3,4,5	Recuperação RA's (Somativas)	-
	25/11	1,2,3,4,5	Exame Final	-
Dezembro	02/12	-	Encerramento e Publicação das Notas no Portal	-

^{*} Cronograma pode sofrer alterações de acordo com a necessidades e intercorrências durante o semestre.

What is Computer Vision (CV)?

Tools & Libraries

Defect Detection and Quality Assurance

Video Surveillance and Analytics

Assembly Verification

• ...and....

Jobs

- This is a field with several projects and open positions around the world.
 - Linkedin
 - Glassdoor

Image Processing

- Basic Definitions
 - Pixel, Resolution and Scale
- Color Systems
 - GrayScale, RGB | BGR, CYMK, HSV
 - Color Conversion
- Binarization and Image Filtering
- Exercises

Image and Pixel

- Image: Matrix NxM
- Pixel The smallest information of an image
- Range from 0 (black) to 255 (white)

157	153	174	168	150	152	129	151	172	161	155	166
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	•	10	33	48	106	159	161
206	109	6	124	191	131	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	67		201
172	105	207	233	233	214	220	239	228	98	74	206
188		179	209	185	215	211	158	139	76	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	176	228	43	95	294
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1		47			217	255	211
183	202	237	145	0	۰	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	:96	218

157	153	174	168	150	162	129	151	172	161	155	156
156	182	163	74	76	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	216	211	158	139	75	20	168
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	236	75	1	81	47	0	6	217	266	211
183	202	237	145	0		12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	216

Image Resolution

- Pixel per Inch (PPI) for digital devices
- Dots per Inch (DPI) for analog devices (printers)
- Range from 0 (black) to 255 (white)

10dpi

5dpi

20dpi

72dpi

300dpi

What is the problem?

Downscale and Upscale (Resize)

- Resolution loss
- Interpolation

ColorSpaces

• Binary (0-1) - 1 Channel

GrayScale (0-255) - 1 Channel

The Wife

123 123 123 123 123 123 100 110 120 123 123 123 123 120 35 30 100 110 120 123 123 123 123 120 35 30 100 110 123 123 123 123 110 110 100 35 35 225 20 110 110 110 110 110 110 110 30 220 40 20 110 30 120 120 29 123 211 225 40 30 121 30 30 30 30 30 28 125 125 221 123 150 30 30 30 30 111 111 111 123 123 150 150 150 123 123 123 150 150 151 143 123

Color RGB - 3 Channels
(Red, Green, Blue)Color

Others Color Spaces

Practice 01

Let's Code!!

https://github.com/andrehochuli/teaching/tree/main/ComputerVision

Lecture 01