1 Fundamental Theorem of Galois Theory I

Theorem 1.1 (Fundamental Theorem of Galois Theory, Part 1). Let L:K be a Galois extension with $G = \operatorname{Gal}(L:K)$. Define $\mathcal{I}(K,L)$ and $\mathcal{S}(G)$ as the set of all intermediate fields of L:K and the set of all subgroups of G, respectively. For all $P \in \mathcal{I}(K,L)$, we have $P = L^{G_P}$ where $G_P = \operatorname{Aut}_P(L)$ Then

$$\forall P \in \mathcal{I}(K, L), \quad L^{G_P} = P,$$

 $\forall H \in \mathcal{S}(G), \quad G_{L^H} = H,$

Also,
$$P_1 \subseteq P_2 \iff G_{P_1} \geqslant G_{P_2}$$
 and $H_1 \leqslant H_2 \iff L^{H_1} \supseteq L^{H_2}$.