Package 'swdft'

October 14, 2022

Title Sliding Window Discrete Fourier Transform (SWDFT)
Version 1.0.0
Description Implements the Sliding Window Discrete Fourier Transform (SWDFT). Also provides statistical methods based on the SWDFT, and graphical tools to display the outputs.
Depends R (>= $3.3.0$)
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Suggests testthat, fftwtools, fields, signal, nloptr, knitr, rmarkdown, devtools
RoxygenNote 6.1.1
Imports stats, graphics
VignetteBuilder knitr
NeedsCompilation no
Author Lee F. Richardson [aut, cre]
Maintainer Lee F. Richardson < leerichardson 2013@gmail.com>
Repository CRAN
Date/Publication 2019-04-17 04:22:46 UTC
2017 01 17 01.22.10 010
R topics documented:
coefficients.swdft_mod
complex_demod
cosine
cosine_taper
cosreg
cov_swdft_cnum
dirichlet
dirichlet_kernel
fitted swdft mod

	get_aphi	8
	get_freq_range	8
	get_loglik	9
	get_max_freq	9
	8 - I = - 8	10
	get_sigma	10
	get_sl	11
	$\mathcal{C} = 1$	11
	lcr_loglik	12
	local_cosreg	12
	local_signal	13
	matching_demod	13
	moving_average	14
	new_swdft	15
		15
	new_swdft3d	16
	new_swdft_cosreg	17
		17
	new_swdft_local_cosreg	18
		19
	plot.swdft	20
	plot.swdft_mod	21
	prou	22
	residuals.swdft_mod	22
	sine	23
	smooth_pgram	23
	smooth_swdft	24
		24
		25
		26
		26
	-	27
		27
		28
	-	28
	-	29
	– – i i	29
Index		30

coefficients.swdft_mod

Coefficients method for swdft_cosreg objects

Description

Coefficients method for swdft_cosreg objects

complex_demod 3

Usage

```
## S3 method for class 'swdft_mod'
coefficients(object, ...)
```

Arguments

object A swdft_cosreg object

... optional arguments to match generic function

complex_demod Complex Demodulation

Description

Complex Demodulation

Usage

```
complex_demod(x, f0, smooth = "butterworth", order = 5,
  passfreq = 0.1, match_swdft = FALSE, window_size = NULL)
```

Arguments

X	numeric vector
f0	numeric scalar. Frequency to demodulate
smooth	character. Type of smoothing to use, accepts either 'ma', 'double_ma', or 'butterworth' (the default)
order	moving average parameter if 'smooth' argument equals 'ma' or 'double_ma'. Defaults to 5
passfreq	numeric scalar. Pass frequency used in butterworth low-pass filter. Defaults to .1 which corresponds to a pass frequency of 2 * f0.
match_swdft	logical. Only used to demonstrate equivalence w/ SWDFT when a moving average filter is used. Otherwise, never used.
window size	defaults to NULL, only used when match swdft=TRUE, so can ignore.

Value

An S3 'swdft_demod' object. See ?new_swdft_matching_demod for details.

References

Chapter 7 of 'Fourier Analysis of Time-Series' by Peter Bloomfield and this blog post: https://dankelley.github.io/r/2014/02/1 for the idea of using a butterworth filter.

4 cosine_taper

cosine

Cosine signal with adjustable parameters

Description

Cosine signal with adjustable parameters

Usage

```
cosine(N, A = 1, Fr = 1, phase = 0)
```

Arguments

N signal length A Amplitude

Fr Frequency: Number of cycles in a length N period

phase phase

Value

numeric vector with cosine function of x

cosine_taper

Cosine bell data taper

Description

Cosine bell data taper

Usage

```
cosine_taper(n, p = 0.1)
```

Arguments

n length of time-series to taper p proportion of ends to taper

Value

length n cosine bell taper w/ proportion p

cosreg 5

cosreg

Cosine regression

Description

Cosine regression

Usage

```
cosreg(x, f)
```

Arguments

x numeric. Signal.

f numeric. scalar or vector of frequencies to fit.

Value

S3 object of class 'swdft_cosreg'. See ?new_swdft_cosreg for details.

 $\verb"cov_swdft_cnum"$

Covariance between two complex-numbered outputs

Description

Covariance between two complex-numbered outputs

Usage

```
cov_swdft_cnum(k, 1, delta, n, sigma)
```

Arguments

k frequency of first coefficient1 frequency of second coefficient

delta window position shift of second coefficient

n window size

sigma white noise standard error

Value

complex-valued number of the covariance

6 dirichlet

demod_swdft

Demodulate a Fourier Frequency with the SWDFT

Description

Demodulate a Fourier Frequency with the SWDFT

Usage

```
demod_swdft(a, k)
```

Arguments

a swdft

k frequency to demodulate

dirichlet

Dirichlet Kernel (Weight) for arbitrary summation indices

Description

Dirichlet Kernel (Weight) for arbitrary summation indices

Usage

```
dirichlet(x, phase = 0, a = 0, b = length(x) - 1)
```

Arguments

x numeric to evaluate

phase defaults to 0

a start of summation indexb end of summation index

Value

sum of a complex exponential sum

dirichlet_kernel 7

dirichlet_kernel

Dirichlet Kernel

Description

Dirichlet Kernel

Usage

```
dirichlet_kernel(x, n, dw = FALSE)
```

Arguments

x variable evaluated by dirichlet kernel

n size of Dirichlet kernel

dw logical whether to add the Dirichlet Weight (DW) factor

Value

```
evaluation of the Dirichlet Kernel (D_n(x))
```

 $fitted.swdft_mod$

Fitted values method for swdft_cosreg objects

Description

Fitted values method for swdft_cosreg objects

Usage

```
## S3 method for class 'swdft_mod'
fitted(object, ...)
```

Arguments

object A swdft_cosreg object

... optional arguments to match generic function

get_freq_range

 get_aphi

Extract amplitude and phase

Description

Extract amplitude and phase

Usage

```
get_aphi(x, S, L, f)
```

Arguments

x signal

S start parameter

L length pe

f frequency

get_freq_range

Get range of frequencies to search

Description

Get range of frequencies to search

Usage

```
get_freq_range(a, kwidth)
```

Arguments

a 2D complex-valued array. The SWDFT to search

kwidth integer. the width of frequencies to search

get_loglik 9

get_loglik

Compute the log likelihood

Description

Compute the log likelihood

Usage

```
get_loglik(x, fitted, sigma, N)
```

Arguments

x signal

fitted fitted values

sigma estimated standard deviation

N length of x

get_max_freq

Get the maximum DFT coefficient

Description

Get the maximum DFT coefficient

Usage

```
get_max_freq(x)
```

Arguments

Χ

numeric vector

Value

numeric of largest frequency. Will be between 0 and .5

10 get_sigma

get_p_range

Get range of P's to search

Description

Get range of P's to search

Usage

```
get_p_range(phat, n, N, pwidth, type = "around_max")
```

Arguments

phat integer. Window position with largest SWDFT coefficient

n integer. window size

N integer. Signal length

pwidth integer. the range of window positions to search for each window size

type character. either 'around max' or 'fullp'.

get_sigma

Extract estimator of sigma

Description

Extract estimator of sigma

Usage

```
get_sigma(x, fitted, N)
```

Arguments

x signal

fitted fitted values N length of x

get_sl 11

get_sl

Extract signal parameters

Description

Extract signal parameters

Usage

```
get_sl(n, p)
```

Arguments

n window size

p window position

get_taper

Create taper for the SWDFT

Description

Create taper for the SWDFT

Usage

```
get_taper(n, taper, p)
```

Arguments

n window size

taper type. Can be either 'none' (default) or 'cosine'

p proportion to taper on each end, if cosine taper is used

Value

length n taper

local_cosreg

lcr_loglik	Log Likelihood
------------	----------------

Description

Log Likelihood

Usage

```
lcr_loglik(f, x, S, L, ftype = "full")
```

Arguments

f	frequency
X	signal
S	start parameter
L	length pe
ftvpe	what to return

local	_cosreg
TOCAT.	_0031 05

Local cosine regression

Description

Local cosine regression

Usage

```
local_cosreg(x, lmin = 6, pwidth = 5, kwidth = 1, verbose = FALSE)
```

Arguments

lmin	mteger.	minimum	sigi	nai	iengin	(L par	ameter)	i ic	searc	n
111111	mieger.	111111111111111111111111111111111111111	5.5	141	ingui	(L pui	unio (Ci)		scare	

pwidth integer. the range of window positions to search for each window size

kwidth integer. the width of frequencies to search

verbose logical. whether or not to print intermediate results

Value

```
S3 object of class 'swdft_local_cosreg'
```

local_signal 13

		-
Incal	_signa	ı۱
TOCAL	_SIBIIC	1 T

Local Periodic Signal

Description

Local Periodic Signal

Usage

```
local\_signal(N, A = 1, Fr = 1, phase = 0, S = 0, L = N)
```

Arguments

N	signal length
A	Amplitude
Fr	Frequency: Number of cycles in a length N period
phase	phase
S	start of local signal
L	length of local signal

Value

length N local periodic signal

matc	hing_d	lemod
------	--------	-------

Matching Demodulation

Description

Matching Demodulation

```
matching_demod(x, n, thresh = 0.05, max_cycles = 5,
  smooth = "butterworth", order = 5, passfreq = 0.1, debug = FALSE)
```

14 moving_average

Arguments

x numeric. Signal to demodulate

n integer. Window size for SWDFT

thresh numeric. Threshold to determine whether to continue demodulating

max_cycles maximum number of demodulation cycles

smooth character. Type of smoothing to use, accepts either 'ma', 'double_ma', or 'but-

terworth' (the default)

order moving average parameter if 'smooth' argument equals 'ma' or 'double_ma'.

Defaults to 5

passfreq numeric scalar. Pass frequency used in butterworth low-pass filter. defaults to .1

debug Logical. Whether to print out intermediate output.

Value

An S3 'swdft_matching_demod' object. See ?new_swdft_matching_demod for details.

moving_average Simple high pass filter

Description

Simple high pass filter

Usage

moving_average(x, order)

Arguments

x the vector or time-series

order the order of the filter

new_swdft

ass 'swdft'	ew_swdft

Description

Constructor function for class 'swdft'

Usage

```
new_swdft(a, x, n, type, pad, taper_type, taper, p, smooth, m, num_convs)
```

Arguments

a 2D complex array of SWDFT coefficients. If there is smoothing, then this rep-

resents the smoothed squared modulus coefficients.

x numeric input signal

n window size type 'fftw' or 'fft'

pad whether or not it was padded

taper_type type of taper

taper numeric values of the taper p of cosine taper (if used)

smooth type of smoother

m width of kernel for smoothing (optional)
num_convs number of kernel convolutions (optional)

Value

list w/ the same elements as the arguments, an S3 object of class 'swdft'

new_swdft2d Constructor function for class 'swdft2d'

Description

Constructor function for class 'swdft2d'

```
new_swdft2d(a, x, n0, n1, type)
```

new_swdft3d

Arguments

a	4D complex-valued array of 2D SWDFT coefficients
Х	2D real or complex valued signal
n0	window size in row direction
n1	window size in column direction
type	algorithm to implement. defaults to "fftw", other option 'fft' for R's base FFT function. R's base fft function is used if

Value

S3 object w/ the same elements as arguments to this constructor function

Description

Constructor function for class 'swdft3d'

Usage

```
new_swdft3d(a, x, n0, n1, n2, type)
```

Arguments

а	4D complex-valued array of 2D SWDFT coefficients
x	3D real or complex-valued array
n0	window size in dimension 0
n1	window size in dimension 1
n2	window size in dimension 2
type	defaults to 'base', which is the only option

Value

 $S3\ object\ w\!/$ the same elements as arguments to this constructor function

new_swdft_cosreg

	1.01	
new	swaft	cosreg

Constructor function for class swdft_mod

Description

Constructor function for class swdft_mod

Usage

```
new_swdft_cosreg(coefficients, fitted, residuals, data)
```

Arguments

coefficients matrix of coefficients for cosine regression model

fitted fitted values of cosine regression model residuals residuals of cosine regression model

data original signal used to fit cosine regression

Value

list with the following elements

- coefficients. A matrix of parameters, the three columns are: 1. amplitude 2. phase, and 3. frequency. There is only more that one row used when multiple frequencies are fit sequentially.
- fitted. fitted values of cosine regression model
- residuals. residuals of cosine regression model
- data. original signal used to fit cosine regression

new_swdft_demod

Constructor function for class 'swdft_demod'

Description

Constructor function for class 'swdft_demod'

```
new_swdft_demod(x, f0, A_t, Phi_t, fitted, y, y_smooth, smooth, order,
   passfreq)
```

Arguments

X	numeric vector
f0	numeric scalar. Frequency to demodulate
A_t	extracted amplitude from y_smooth
Phi_t	extracted phase from y_smooth
fitted	fitted values
У	non-smoothed demodulated signal
y_smooth	smoothed demodulated signal
smooth	character. Type of smoothing to use, accepts either 'ma', 'double_ma', or 'butterworth' (the default)
order	moving average parameter if 'smooth' argument equals 'ma' or 'double_ma'. Defaults to 5
passfreq	numeric frequency used as the passfreq in the low-pass filter

Value

list with the following elements

- coefficients. A matrix of parameters, the three columns are: 1. amplitude 2. phase, and 3. frequency. There is only more that one row used when multiple frequencies are fit sequentially.
- fitted. fitted values of cosine regression model
- residuals. residuals of cosine regression model
- data. original signal used to fit cosine regression
- list with the filter used ('smooth') and parameters ('order' for 'ma' or 'double_ma', 'passfreq' for butterworth)
- list w/ the demodulated signal, and smoothed demodulated signal

```
new_swdft_local_cosreg
```

Constructor function for class 'swdft_local_cosreg'

Description

Constructor function for class 'swdft_local_cosreg'

```
new_swdft_local_cosreg(coefficients, fitted, residuals, data,
    window_params)
```

Arguments

coefficients matrix of coefficients for cosine regression model

fitted fitted values of cosine regression model
residuals residuals of cosine regression model
data original signal used to fit cosine regression

window_params data frame of fitted coefficients for each window size

Value

list with the following elements

- coefficients. A matrix of parameters, the three columns are: 1. amplitude 2. phase, and 3. frequency. There is only more that one row used when multiple frequencies are fit sequentially.
- fitted. fitted values of cosine regression model
- · residuals. residuals of cosine regression model
- · data. original signal used to fit cosine regression
- window_params. data frame of fitted coefficients for each window size

new_swdft_matching_demod

Constructor function for class 'swdft_matching_demod'

Description

Constructor function for class 'swdft_matching_demod'

Usage

```
new_swdft_matching_demod(x, n, fitted, thresh, max_cycles, smooth, order,
  passfreqs, maxvals, freqs, khats, amps, phases, demods, cycle, resids,
  fits, return_rows)
```

Arguments

x numeric. Signal to demodulaten integer. Window size for SWDFT

fitted fitted values

thresh numeric. Threshold to determine whether to continue demodulating

max_cycles maximum number of demodulation cycles

smooth character. Type of smoothing to use, accepts either 'ma', 'double_ma', or 'but-

terworth' (the default)

order moving average parameter if 'smooth' argument equals 'ma' or 'double_ma'.

Defaults to 5

20 plot.swdft

passfreqs	pass frequency used in each iteration
maxvals	Maximum SWDFT coefficient for each iteration
freqs	Frequencies used in each iteration
khats	Integer version of frequency.
amps	Instantaneous amplitude for each iteration
phases	Instantaneous phase for each iteration
demods	List of demodulated signal and smoothed demodulated signal for each iteration
cycle	Number of cycles used
resids	Residuals for each iteration
fits	Fitted values for each iteration
return_rows	Logical vector indicating which iterations occurred. Used for subsetting.

Value

list with the following elements

- coefficients. coefficients from the R local signals with time-varying amplitude and phase model.
- fitted. fitted values of cosine regression model
- · residuals. residuals of cosine regression model
- data. original signal used to fit cosine regression
- smooth. list with the filter used ('smooth') and parameters ('order' for 'ma' or 'double_ma', 'passfreq' for butterworth)
- demod. list w/ the demodulated signal, and smoothed demodulated signal
- thresh. Threshold used.
- iterations. List of fits, residuals, and maximum values for each iteration

plot.swdft Plot method for 'swdft' object

Description

Plot method for 'swdft' object

```
## S3 method for class 'swdft'
plot(x, freq_type = "cycles", fs = NULL,
hertz_range = NULL, take_log = FALSE, log_thresh = 1e-05,
use_fields = TRUE, scale_shrink = 0.9, zlim = NULL,
xlab = "Window Position", ylab = "Frequency (Cycles/Window)",
title = "SWDFT", cex_main = 1, cex_lab = 1, cex_axis = 1,
xaxis_subset = NULL, custom_xaxis = NULL, custom_yaxis = NULL,
col = "grayscale", display = TRUE, ...)
```

plot.swdft_mod 21

Arguments

X	Object of class 'swdft'. If x\$a is complex-valued, it is converted to the squared modulus. If x\$a is real-valued, then we assume that it represents the squared
freq_type	Specify how to display the frequency axis. Either 'cycles' (default), 'fraction', or 'hertz'
fs	sample rate. Used if freq_type='hertz'
hertz_range	integer vector, given by (low, high). Specifies the range of hertz to display and is only used when freq_type='hertz'
take_log	logical. Whether to take the log before plotting
log_thresh	numeric. Threshold for smallest possible value. Defaults to .000001, and is used to keep plots from displaying of \sim -40.
use_fields	logical. Determines whether we use image.plot from the fields package, or 'image' from the graphics package. The advantage of image.plot is that we get a color scale, so the default is TRUE
scale_shrink	Proportion between 0 and 1 to shrink the scale
zlim	Custom z range
xlab	Custom x-label
ylab	Custom y-label
title	Custom title
cex_main	how large to make the title
cex_lab	how large to make the labels
cex_axis	how large to make the axis labels
xaxis_subset	subset of x-axis (time / window position) for plotting
custom_xaxis	Defaults to NULL. Otherwise, used to change the x-axis
custom_yaxis	Defaults to NULL. Otherwise, used to change the y-axis
col	defaults to grayscale, can also be 'tim.colors' from fields package
display	logical. Defaults to TRUE, only used for testing purposes, so it should always be TRUE.
	optional arguments to match the plot generic function

	plot.swdft_mod	Plot method for swdft_mod object	
--	----------------	----------------------------------	--

Description

Plot method for swdft_mod object

```
## S3 method for class 'swdft_mod'
plot(x, y = NULL, ...)
```

22 residuals.swdft_mod

Arguments

x A swdft_cosreg object

y not used, but required by plot generic function

... optional arguments to match the plot generic function

prou

The principal nth root of unity

Description

The principal nth root of unity

Usage

prou(n)

Arguments

n integer root

Value

complex number

 $residuals.swdft_mod$

Residuals method for swdft_cosreg objects

Description

Residuals method for swdft_cosreg objects

Usage

```
## S3 method for class 'swdft_mod'
residuals(object, ...)
```

Arguments

object A swdft_cosreg object

... optional arguments to match generic function

sine 23

sine

Sine signal with adjustable parameters

Description

Sine signal with adjustable parameters

Usage

```
sine(N, A = 1, Fr = 1, phase = 0)
```

Arguments

N length signal A Amplitude

Fr Frequency: Number of cycles in a length N period

phase phase

Value

numeric vector with sine

smooth_pgram

Smooth SWDFT coefficients with a convolution

Description

Smooth SWDFT coefficients with a convolution

Usage

```
smooth_pgram(a, fft_weight = NULL)
```

Arguments

a real-valued length n periodogram

fft_weight optionally specify the pre-computed FFT of the weights

Value

smoothed coefficients

24 swdft

smootl	۱ ۵۰	46+
SIIIOO LI	n sv	NOT L

Smooth the SWDFT coefficients

Description

Smooth the SWDFT coefficients

Usage

```
smooth_swdft(a, ktype = "daniell", m = 2, num_convs = 1)
```

Arguments

a real or complex-valued swdft. If real-valued, then we assume it's the squared

modules already. If it's complex valued, we convert to the squared modulus.

ktype either 'daniell' or 'modified.daniell'
m kernel width from stats::kernel
num_convs num_convs from stats::kernel

Value

Smooth squared modulues SWDFT coefficients

swdft

Sliding Window Discrete Fourier Transform

Description

Sliding Window Discrete Fourier Transform

Usage

```
swdft(x, n, type = "fftw", pad = TRUE, taper_type = "none",
    p = 0.1, smooth = "none", m = 2, num_convs = 1)
```

Arguments

Х	real or complex vector
n	integer window size.

type algorithm to implement. defaults to "fftw", other option 'fft' for R's base FFT

function. R's base fft function is used if

pad optionally zero-pad the array to that the output array has the same dimension as

the original time-series

taper_type type of taper for each window position. defaults to 'none', can also be 'cosine'.

swdft2d 25

p Proportion to be tapered at each end of the series. Argument copied from	the
--	-----

spec.taper function in the default stats package. Defaults to .1.

smooth Type of smoother. Defaults to 'none', can also be 'daniell' or 'modified daniell'.

If smooth is 'none', then the SWDFT returns the smoothed squared modulus

coefficients, not the complex numbers

m width of kernel. Defaults to 2

num_convs Number of times to convolve the kernel. Defaults to 1

Value

An S3 'swdft' object. See ?new_swdft for details.

Examples

```
x <- rnorm(n = 20)
a <- swdft(x, n = 2^3)
```

swdft2d

2D Sliding Window Discrete Fourier Transform

Description

2D Sliding Window Discrete Fourier Transform

Usage

```
swdft2d(x, n0, n1, type = "fftw")
```

Arguments

X 2D Iliput Signa	Χ	2D input signa
-------------------	---	----------------

n0 window size in row directionn1 window size in column direction

type algorithm to implement. defaults to "fftw", other option 'fft' for R's base FFT

function. R's base fft function is used if 'fftwtools' library is not installed.

Value

An S3 'swdft2d' object. See ?new_swdft for details.

26 swdft2d_fftw

 $swdft2d_fft\\$

2D Sliding Window Discrete Fourier Transform using base R

Description

2D Sliding Window Discrete Fourier Transform using base R

Usage

```
swdft2d_fft(x, n0, n1)
```

Arguments

x 2D input signal

n0 window size in row direction

n1 window size in column direction

swdft2d_fftw

2D Sliding Window Discrete Fourier Transform using fftw

Description

2D Sliding Window Discrete Fourier Transform using fftw

Usage

```
swdft2d_fftw(x, n0, n1)
```

Arguments

X	2D	in	put	signal
---	----	----	-----	--------

n0 window size in row direction

n1 window size in column direction

swdft3d 27

3D Sliding Window Discrete Fourier Transform

Description

3D Sliding Window Discrete Fourier Transform

Usage

```
swdft3d(x, n0, n1, n2, type = "base")
```

Arguments

X	3D real or complex-valued array
n0	window size in dimension 0
n1	window size in dimension 1
n2	window size in dimension 2
type	defaults to 'base', which is the only option

Value

An S3 'swdft3d' object. See ?new_swdft for details.

```
swdft_base_3d
3D SWDFT using base R
```

Description

3D SWDFT using base R

Usage

```
swdft_base_3d(x, n0, n1, n2)
```

Arguments

X	3D real or complex-valued array
n0	window size in dimension 0
n1	window size in dimension 1
n2	window size in dimension 2

28 swdft_fftw

 $swdft_fft$

Sliding Window Discrete Fourier Transform with base R

Description

Sliding Window Discrete Fourier Transform with base R

Usage

```
swdft_fft(x, n, taper)
```

Arguments

x real or complex vector n integer window size.

taper length n vector to multiply against the input data for each window position

Value

```
n \times P \text{ array, where } P = length(x) - n + 1
```

 $swdft_fftw$

Sliding Window Discrete Fourier Transform using fftw

Description

Sliding Window Discrete Fourier Transform using fftw

Usage

```
swdft_fftw(x, n, taper)
```

Arguments

x real or complex vector n integer window size.

taper length n vector to multiply against the input data for each window position

Value

```
n \times P \text{ array, where } P = length(x) - n + 1
```

swdft_to_props 29

 $swdft_to_props$

Convert the SWDFT to proportions of frequency

Description

Convert the SWDFT to proportions of frequency

Usage

```
swdft_to_props(a)
```

Arguments

а

swdft

unwrap_phase

Phase unwrapping

Description

Phase unwrapping

Usage

unwrap_phase(p)

Arguments

р

vector of phases fit by demodulation

Index

```
coefficients.swdft\_mod, 2
                                                residuals.swdft_mod, 22
complex_demod, 3
                                                sine, 23
cosine, 4
                                                smooth_pgram, 23
cosine_taper, 4
                                                smooth\_swdft, 24
cosreg, 5
                                                swdft, 24
cov_swdft_cnum, 5
                                                swdft2d, 25
                                                swdft2d_fft, 26
demod_swdft, 6
                                                 swdft2d_fftw, 26
dirichlet, 6
                                                swdft3d, 27
dirichlet_kernel, 7
                                                swdft_base_3d, 27
                                                swdft_fft, 28
fitted.swdft_mod, 7
                                                 swdft_fftw, 28
                                                swdft_to_props, 29
get_aphi, 8
get_freq_range, 8
                                                unwrap_phase, 29
get_loglik, 9
get_max_freq, 9
get_p_range, 10
get_sigma, 10
get_s1, 11
get_taper, 11
lcr_loglik, 12
local_cosreg, 12
local_signal, 13
matching_demod, 13
moving_average, 14
new_swdft, 15
new_swdft2d, 15
new_swdft3d, 16
new_swdft_cosreg, 17
new_swdft_demod, 17
new_swdft_local_cosreg, 18
new_swdft_matching_demod, 19
plot.swdft, 20
plot.swdft_mod, 21
prou, 22
```