Hacking Medical Devices for Fun and Insulin: Breaking the Human SCADA System

Analisi delle vulnerabilità del sistema CGM

Francesco Montelli

CeSeNa

2017

Analisi delle vulnerabilità del sistema CGM

- ► Ipotesi
- Analisi
- Esperimenti
- Considerazioni
- Conclusione

Ipotesi

- ► Crittografia?
- ► Tipo di comunicazione
- ▶ Di che cosa "si rende conto" il sensore?

Analisi

Read the manual

Transmitter/Reciver Frequency 402.142 MHz Bandwidth 300 KHz Modulation On-Off Key Data Rate 8192 bits/Sec Total Packt 76 bit

Transmit Duty Cycle 9.28 ms evry 5 minutes

Analisi

- ► FCC Recon Research
- Brevetti
- Smontare il CGM
 - ▶ Nome del chip visibile (AMIS 52100M)
 - Stesso chip usato in ambienti SCADA

Esperimenti - How to Listen

- Arduino
- Problemi
 - ► Tanti registri (80+)
 - ► Tante impostazioni
 - ► Chip fuori produzione -¿ nessun supporto del produttore
- Scoperte
 - ▶ Nessun controllo di consistenza ai valori assegnati ai registri

Esperimenti - CGM Signal Dissection

- Modulazione OOK
- ► Segnale = 1, Nessun sengale = 0
- ▶ 8192 bits/sec * 9ms = circa 76bit

Esperimenti - CGM Signal Dissection

- Modulazione OOK
- ► Segnale = 1, Nessun sengale = 0
- ▶ 8192 bits/sec * 9ms = circa 76bit
- Parametri richiesti per comunicare
 - Preambolo (non menzionato nel datasheet)
 - Sync Word: parola per autorizzare la comunicazione, impostata nel costruttore CRC
- Direct Mode
- Raccolta manuale dei pacchetti e realtiva decodifica

Considerazioni finali

- Troppe combinazioni di impostazioni, impossibile avere un controllo fine
- Nessuna documentazione utilizzabile
- Nessuna esprienza d'uso in questa modalità

Conclusioni - Rischi per la sicurezza

- Replay Attack
- DOS
- Ogni attacco ideato risulterebbe in una semplice interruzione di servizio, nulla di grave considerando che si può tranquillamente misurare con il sangue
- Necessità di trovarsi vicino al bersaglio considerando la natura della trasmissione