FILE 'CAPLUS' ENTERED AT 17:13:26 ON 11 JUL 2006 E EISENBERG RONIT/AU 25 2 S (E3) L1 E RAZ TAMAR/AU 25 15 S (E3) L2FILE 'MEDLINE, EMBASE, BIOSIS, CAPLUS' ENTERED AT 17:16:58 ON 11 JUL 2006 9242 S (MAST (A) CELL) (S) DEGRANULATION 10455 S (MAST (A) CELL) (S) DEGRANULAT? L3L4891 S L4 (S) PEPTIDE? L5 132 S L4 (S) PEPTIDE? (S) (PREVENT? OR INHIBIT? OR SUPPRESS?) L6 71 DUP REM L6 (61 DUPLICATES REMOVED) L7 71 SORT L7 PY A rs

Gapop 10.0 , Gapext 0.5

Searched: 2589679 seqs, 457216429 residues

Total number of hits satisfying chosen parameters: 859960

Minimum DB seq length: 0 Maximum DB seq length: 16

Post-processing: Minimum Match 0%

Maximum Match 100%

Listing first 100 summaries

Database : A_Geneseq_8:*

1: geneseqp1980s:*
2: geneseqp1990s:*
3: geneseqp2000s:*
4: geneseqp2001s:*
5: geneseqp2002s:*
6: geneseqp2003as:*
7: geneseqp2003bs:*
8: geneseqp2004s:*
9: geneseqp2005s:*
10: geneseqp2006s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

		8				
Result		Query				
No.	Score	Match	Length	DB	ID	Description
1	70	100.0	16	2	AAR87629	Aar87629 Signal pe
2	. 70	100.0	16	2	AAW37753	Aaw37753 Chimeric
3	70	100.0	16	2	AAW56394	Aaw56394 MEM polyp
4	70 ·		16	2	AAW48689	Aaw48689 Signal pe
5	70	100.0	16	2	AAW53769	Aaw53769 PKR pepti
6	70	100.0	16	2	AAY13506	Aay13506 Signal se
7	70	100.0	16	3	AAY67954	Aay67954 Karposi s
8	70	100.0	16	3	AAY55815	Aay55815 Fibroblas
9	70	100.0	16	4	AAE02979	Aae02979 Hydrophob
10	70	100.0	16	4	AAU97005	Aau97005 CCAAT enh
11	70	100.0	16	4	AAE11949	Aae11949 Membrane
12	70	100.0	16	4	AAU03154	Aau03154 Peptide K
13	70	100.0	16	4	AAY72476	Aay72476 Kaposi fi
14	70	100.0	16	5	ABG78989	Abg78989 Cell pene
15	70	100.0	16	5	AAU10399	Aau10399 Membrane
16	70	100.0	16	5	AAE15613	Aae15613 Kaposi's
17	70	100.0	16	5	AAU78349	Aau78349 Signal se
18	70	100.0	16	5	AAE26128	Aae26128 Kaposi fi
19	70	100.0	16	5	ABG75507	Abg75507 Signal-se
20	70	100.0	16	5	ABB81177	Abb81177 Signal se
21	70	100.0	16	5	AAE23686	Aae23686 Fluoresce
22	70	100.0	16	6	ABB82543	Abb82543 Signal se
23	70	100.0	16	6	ABR84444	Abr84444 K-FGF sig
24	70	100.0	16	6	AAE33897	Aae33897 Kaposi's
25	70	100.0	16	6	ABU09984	Abu09984 Kaposi's
26	70	100.0	- 16	7	ADC22454	Adc22454 Protein-d
27	70	100.0	16	7	ADF78064	Adf78064 Human mem
28	70	100.0	16	7	ADG28017	Adg28017 Kaposi FG
29	70	100.0	16	7	ADH76184	Adh76184 Transduct
30	70	100.0	16	7	ADK11581	Adk11581 Taxoid ca
31	70	100.0	16	7	ADL88653	Adl88653 MPS (Kapo
32	70	100.0	16	8	ADG73832	Adg73832 Peptide d
33	70	100.0	16	8	ADH58870	Adh58870 Glutathio
34	70	100.0	16	8	ADJ78875	Adj78875 N-termina
35	70	100.0	16	8	ADL14686	Adl14686 Cardiant
36	70	100.0	16	8	ADK15574	Adk15574 Membrane
37	70	100.0	16	8	ADO26466	Ado26466 Kaposi's

38	70	100.0	16	8	ADM97016		Botulinum
39	70	100.0	16	8	ADO25265	Ado25265	Signal se
40	70	100.0	16	8	ADP08148	· Adp08148	Small int
41	70	100.0	16	8	ADP08145	Adp08145	Small int
42	70	100.0	16	8	ADQ60179	-	Human her
	70	100.0	16	8	ADR31972	-	Heat shoc
43							Membrane
44	70	100.0	16	8	ADR82252		
45	70	100.0	16	8	ADU15734		MUC1-PDZ
46	70	100.0	16	8	ADT61097		Novel int
47	70	100.0	16	8	ADU07192	Adu07192	Membrane
48	70	100.0	16	8	ADT61891	Adt61891	Human mem
49	70	100.0	16	8	ADT86673	Adt86673	Membrane
50	70	100.0	16	8	ADU67511	Adu67511	Membrane
51	70	100.0		8	ADU26590		Cell perm
							Novel gen
52	70	100.0	16	8	AEB19669		
53	70	100.0	16	9	ADW25982		Membrane
54	70	100.0	16	9	ADW81340		Intrabody
55	70	100.0	16	9	ADW88632	Adw88632	Membrane
56	70	100.0	16	9	ADY32269	Ady32269	Novel can
57	70	100.0	16	9	ADY38682	Ady38682	Novel pro
58	70	100.0	16	9	ADZ64558	Adz64558	Kaposi's
59	70	100.0	16	9	ADZ68062		Kaposi's
					ADZ69395		HSP20 tra
60	70	100.0	16	9			
61	70	100.0	16	9	AEA98089		Signal se
62	70	100.0	16	9	AEA33043		Kaposi fi
63	70	100.0	16	9	AEA36361	Aea36361	Basic dom
64	70	100.0	16	9	AEB17248	Aeb17248	Human mem
65	70	100.0	16	9	AEA43032	Aea43032	Membrane
66	70	100.0	16	9	AEB28494	Aeb28494	MPS (kapo
67	70	100.0	16	9	AEC78139		NRIF3 der
			16	9	AED02530		SN50 (NF-
68	70	100.0					Cell perm
69	70	100.0	16	9	AED51657		•
70	70	100.0	16	9	AED83101		Membrane
71	70	100.0	16	9	AEE39644		Signal se
72	70	100.0	16	10	AEE84512	Aee8451	2 Signal se
73	70	100.0	16	10	AEE91963	Aee9196	3 Kaposi FG
74	70	100.0	16	10	AEE48449	Aee4844	9 Signal se
75	70	100.0	16	10	AEF42977	Aef4297	7 Kaposi fi
76	70	100.0	16	10	AEF90254		4 Signal se
77	70	100.0	16	10	AEF99409		9 Hydrophob
	63	90.0	15	2	AAW56398		Preferred
78							
79	63	90.0	15	3	AAY55819	-	Signal se
80	63	90.0	15	5	AAU78913		Fibroblas
81	63	90.0	15	9	ADZ68060		Kaposi's
82	63	90.0	16	3	AAY67268	Aay67268	Fibroblas
83	58	82.9	15	6	AAO16667	Aao16667	Human cel
84	55.5	79.3	15	4	AAU03166	Aau03166	Kaposi fi
85	46	65.7	14	4	AAE12500	Aae12500	Membrane
86	46	65.7	14	9	AEB09938		Antiviral
			11	4	AAE12491		Membrane
87	. 39	55.7					
88	39	55.7	11	9	AEB09930		Antiviral
89	39	55.7	13	4	AAE12480		Membrane
90	39	55.7	13	4	AAE12497		Membrane
91	39	55.7	13	9	AEB09919	Aeb09919	Antiviral
92	39	55.7	16	4	AAE12498	Aae12498	Membrane
93	39	55.7	16	9	AEB09936	Aeb09936	Antiviral
94	37	52.9	14	4	AAE12504		Membrane
95	37	52.9	14	9	AEB09942		Antiviral
				6	ABR39106		Human pro
96	36	51.4	15				
97	34	48.6	10	6	AAE32592		West nile
98	34	48.6	10	6	AAE32518		West nile
99	33.5	47.9	13	5	ABG98327	-	Secreted
100	33	47.1	15	9	ADX24978	Adx24978	Human pro

ALIGNMENTS

```
ХX
     AAR87629;
AC
XX
     23-JUL-1996 (first entry)
DТ
XX
     Signal peptide of K-FGF.
DE
XX
     Signal peptide; K-FGF; kaposi fibroblast growth factor; FGF; inhibition;
     growth factor; nuclear localisation sequence; growth regulation; p50;
KW
     tumour cell; transcription factor; NF-kappaB; therapy.
KW
XX
     Synthetic.
OS
XX
     W09534295-A1.
PN
     21-DEC-1995.
PD
XX
                    95WO-US007539.
PF
     13-JUN-1995;
XX
     13-JUN-1994;
                   ·94US-00258852.
PŘ
XX
     (UYVA-) UNIV VANDERBILT.
PA
xx
PΙ
     Lin Y, Hawiger JJ;
XX
DR
     WPI; 1996-049396/05.
XX
     Importing biologically active molecules ex vivo or in vivo into cells -
PT
     useful in regulation of cell growth and inhibition of gene expression.
ХX
PS
     Claim 5; Page 35; 47pp; English.
XX
     This sequence represents the signal peptide of Kaposi fibroblast growth
CC
     factor (K-FGF). This sequence is an importation competent signal peptide
CC
     (SP), and is used in the methods of the invention. These methods are
CC
     designed to import a biologically active molecule (BAM) into a cell
CC
     (either ex vivo or in vivo). The methods comprise administering to the
CC
     cell a complex comprising the BAM linked to an importation competent SP
CC
CC
     (such as this sequence), and thereby importing the BAM into the cell. The
     BAM-SP complex is optionally linked to a nuclear localisation sequence
CC
     peptide (NLS), to achieve importation into the nucleus of a cell. This
     method can be used to regulate the growth of a cell, e.g. tumour cells.
CC
     Also, for inhibiting the expression of a gene. Genes regulated by a
     transcription factor such as NF-kappaB are inhibited by a complex
CC
     comprising an SP linked to an NLS of the active p50 subunit of NF-kappaB.
CC
CC
     This method imports BAM's into a cell using mechanisms naturally occuring
     in cells, therby avoiding damaging the target cells. It can also be used
CC
CC
     to import molecules into large numbers of cells, including organs
XX
     Sequence 16 AA;
                          100.0%; Score 70; DB 2; Length 16;
  Query Match
  Best Local Similarity 100.0%; Pred. No. 0.0008;
                                 0; Mismatches
                                                                 0: Gaps
                                                                             0:
                                                  0: Indels
           16; Conservative
            1 AAVALLPAVLLALLAP 16
Qу
              Db
            1 AAVALLPAVLLALLAP 16
RESULT 2
     AAW37753 standard; peptide; 16 AA.
TD
     AAW37753;
AC
XX
DT
     20-JUL-1998 (first entry)
XX
DE
     Chimeric peptide 1.
XX
     Chimeric peptide; signal peptide; ras gene product; mutation;
```

```
leukaemic cell; bone marrow cell; transduction.
ΚW
XX
os
     Synthetic.
XX
     US5736394-A.
PN
XX
     07-APR-1998.
PD
ХX
                    96US-00642493.
PF
     03-MAY-1996;
XX
                   96US-00642493.
PR
     03-MAY-1996;
XX
     (BOST-) BOSTON BIOMEDICAL RES INST.
PA
XX
    Coleman PS, Sheldon K;
ΡI
XX
    WPI; 1998-239216/21.
DR
xx
     Cellular uptake of specific modified peptide(s) - useful for covalent
РΤ
     bonding to, and inactivation of intracellular proteins.
PT
ХX
    Disclosure; Col 3; 11pp; English.
PS
XX
    This amino acid sequence is of a chimeric peptide comprising a known
CC
     signal peptide, and is used in the method of invention as a way of
CC
     introducing a peptide into a cell. They are also useful for specifically
CC
     covalently binding a peptide to a target protein in a cell and
    irreversibly block a binding site on the protein e.g. the peptide can be
CC
    used to inactivate the ras gene product which is mutated in leukaemic
CC
     cells and essential for survival, but not essential in normal bone marrow
CC
     cells. It can also be used to deduce the role of different proteins in
CC
     signal transduction pathways by systematically inactivating them and
CC
     seeing the resultant effects
CC
XX
SO
    Sequence 16 AA;
                         100.0%; Score 70; DB 2; Length 16;
  Query Match
 Best Local Similarity 100.0%; Pred. No. 0.0008;
  Matches 16; Conservative
                                0; Mismatches
                                                  0; Indels
                                                                 0; Gaps
                                                                             0;
            1 AAVALLPAVLLALLAP 16
              Db
            1 AAVALLPAVLLALLAP 16
RESULT 3
AAW56394
ID
    AAW56394 standard; peptide; 16 AA.
ХX
АÇ
    AAW56394;
XX
    05-AUG-1998 (first entry)
DТ
XX
    MEM polypeptide used to inhibit kappa-Ig light chain expression.
DE
XX
     SV40MEM polypeptide; signal peptide; fibroblast growth factor;
KW
     SV40 large antigen; nuclear localisation signal; NLS;
KW
     immunosuppressive activity; inhibition; nuclear translocation inhibitor;
     kappa immunoglobulin light chain expression; S. typhosa LPS;
KW
     nuclear translocation; treatment; immune disorder; autoimmune disease;
KW
     hypersensitivity; sepsis; prevention; septic shock; antiviral agent;
ĸw
     tumour growth suppressor; MEM.
KW
XX
os
     Synthetic.
XX
     WO9811907-A1.
PN
XX
PD
     26-MAR-1998.
XX
PF
     15-SEP-1997;
                  97WO-US016217.
XX
```

```
20-SEP-1996;
                    96US-0026978P.
     12-SEP-1997;
                    97US-00928958.
PR
XX
     (BRIM ) BRISTOL-MYERS SQUIBB CO.
PΑ
     Nadler SG, Cleaveland JS, Blake J, Haffar OK;
PΙ
XX
     WPI: 1998-217028/19.
DR
XX
     Nuclear translocation inhibitor polypeptides - comprising signal sequence
PT
     for delivery through the cytoplasmic membrane and at least 2 nuclear
PT
     localisation sequences.
ХX
     Example 3; Page 31; 69pp; English.
PS
XX
     The present sequence represents the MEM polypeptide, which contains the
CC
     signal sequence of fibroblast growth factor. The immunosuppressive
CC
     activity of this peptide was compared with that of the {
m SV40MEM}
CC
     polypeptide (see AAW56391). The SV40MEM polypeptide causes approximately
CC
     75-80% inhibition of kappa immunoglobulin (Ig) light chain expression in
CC
     response to S. typhosa LPS. L- and D-forms of the SV40MEM peptide are
     equally effective. The SV40MEM polypeptide exemplifies the nuclear
CC
     translocation inhibitor polypeptide of the invention. Nuclear
     translocation inhibitor polypeptides comprise a signal sequence peptide
CC
     capable of delivering the polypeptide through the cytoplasmic membrane
CC
     into a cell, and at least 2 nuclear localisation sequences (NLSs). The
CC
     polypeptides can be used to inhibit nuclear translocation of a cellular
CC
     protein. In addition, since the nuclear translocation of certain cellular
CC
     peptides is required for the host organism to mount an immune response,
CC
     the polypeptide inhibitors are useful as immunosuppression agents. The
     polypeptides can therefore be used for the treatment of immune disorders
CC
     including autoimmune diseases. The polypeptides can also be used for
CC
     treating physical symptoms manifested by responses to allergens which can
CC
     initiate a state of hypersensitivity, for the treatment of sepsis and in
CC
CC
     the prevention of septic shock, antiviral agents, tumour growth
     suppressors, and for transcriptionally modulating the expression of
CC
CC
     cellular genes
XX
     Sequence 16 AA;
SO
  Query Match 100.0%; Score 70; DB 2; Length 16; Best Local Similarity 100.0%; Pred. No. 0.0008;
                                 0; Mismatches
                                                                      Gaps
                                                                              0:
           16; Conservative
  Matches
            1 AAVALLPAVLLALLAP 16
Οv
              1 AAVALLPAVLLALLAP 16
Db
```