Лабораторная работа №2

Определение электродвижущей силы и удельной термо-э.д.с термопары

ФИО, группа	
Дата выполнения	
Подпись	
Дата отчета	
Оценка	
Подпись	

<u>Цель работы:</u> Определение зависимости термоэлектродвижущей силы термопары от разности температур спаев.

Основные формулы:

Коэффициент в методе наименьших квадратов (когда точно известно, что прямая проходит через 0):

$$u = a(T - T_0)$$

$$a = \frac{\langle (T - T_0)U \rangle}{\langle (T - T_0)^2 \rangle}$$

Среднеквадратичные ошибки в методе наименьших квадратов:

$$S_{a} = \sqrt{\frac{\langle (U - a(T - T_{0}))^{2} \rangle}{(n - 1) \langle (T - T_{0})^{2} \rangle}}$$

Абсолютные ошибки среднего:

$$\Delta a = t_{\alpha n} S_{\alpha}$$

Удельная термо-э.д.с.:

$$\eta = \frac{\Delta U}{\Delta T} = a$$

Таблица 1 Результаты измерений

T_0 , K	20	$t_{0,95;16}$	2,1	
Температура	Напряжение <i>U</i>	Напряжение	Среднее	
$T - T_0$, K	(обратный	U (прямой	напряжение	$\left(U-a(T-T_0)\right)^2$
$I - I_0$, K	ход), В	ход), В	U, B	,
0	0,01	0,01	0,01	0,0001
5	0,28	0,28	0,28	0,0042
10	0,64	0,64	0,64	0,0024
15	0,95	0,95	0,95	0,0071
20	1,30	1,20	1,25	0,0166
25	1,64	1,57	1,61	0,0141
30	2,00	1,90	1,95	0,0140
35	2,35	2,26	2,31	0,0117
40	2,74	2,64	2,69	0,0046
45	3,10	3,00	3,05	0,0027
50	3,45	3,38	3,42	0,0010
55	3,82	3,74	3,78	0,0001
60	4,19	4,13	4,16	0,0005
65	4,58	4,51	4,55	0,0041
70	5,00	4,81	4,91	0,0062
75	5,31	5,33	5,32	0,0223

Таблица 2 Обработка результатов измерений

$<(T-T_0)^2>, K^2$	$< U(T - T_0) >$, B · K	η, Β/Κ	S_{η} , B/K	<i>Δη</i> , Β/Κ	$\Delta\eta/\eta$, %
1937,5	133,6	$6,89 \cdot 10^{-2}$	$4,90 \cdot 10^{-4}$	$1,03 \cdot 10^{-3}$	1,5

Рисунок 1 Зависимость термо-э.д.с. от температуры