

Package 'dalycare'

October 17, 2023

Title Danish Lymphoid Cancer Research

Priority NA

Version 1.1.1

Date 2025-03-10

Depends R (>= 4.2.0), tidyverse, lubridate, haven, readxl, data.table, Survival, survminer, Publish, ggpubr, RSQLite, DBI, odbc, RPostgres, RPostgreSQL, docstring, insight.

Imports Codes_NPU

LazyData?

LazyDataCompression?

ByteCompile?

Description Contains definitions and grouping of Danish electronic health data from SDS, RKKP, and SP.

License?

URL NA

NeedsCompilation NA

Author Christian Brieghel [aut, cre], Casper Møller Frederiksen [ctb, trl], Mikkel Werling [cre, ctb, trl]

Maintainer Christian Brieghel

Repository: https://github.com/RH-CLL-LAB/dalycare_package

Date/Publication: 2025-02-24

Index

Package 'dalycare' is loaded from NGC in RStudio as: source('/ngc/projects2/dalyca_r/clean_r/load_dalycare_package.R')

Cleaners

clear_ram

Description

Clears Global environment and frees RAM from NGC/dalycare

Usage

clear_ram()

clean RKKP LYFO

Description

Cleans the dataset RKKP_LYFO. Works only for LYFO version 20 or higher, please see

rkkp-documentation

Usage

RKKP_LYFO_CLEAN = RKKP_LYFO %>% clean_RKKP_LYFO()

clean RKKP LYFO SNOMED

Description

Cleans SNOMED codes in RKKP_LYFO. Works only for LYFO version 20 or higher, please

see <u>rkkp-documentation</u>

Usage

RKKP_LYFO %>%

mutate(icd10 = clean_RKKP_LYFO_SNOMED(snomed = Reg_WHOHisto))

clean_RKKP_CLL

Description

Cleans the dataset RKKP_CLL. Works only for CLL registry version 15 or higher, please

see <u>rkkp-documentation</u>

Usage

RKKP_CLL_CLEAN = RKKP_CLL %>% clean_RKKP_CLL()

clean_RKKP_DAMYDA

Description

Cleans (or translates) the dataset RKKP_DAMYDA. Works only for DAMYDA version 18

or higher, please see rkkp-documentation

Usage

RKKP_DAMYDA_CLEAN = RKKP_DAMYDA %>% clean_ RKKP_DAMYDA()

clean RKKP DAMYDA SNOMED

Description

Cleans SNOMED (or translates) codes in RKKP_DAMYDA. Works only for DAMYDA

version 20 or higher, please see rkkp-documentation

RKKP_DAMYDA %>%

mutate(icd10 = clean_RKKP_DAMYDA_SNOMED(snomed = Reg_WHOHisto)

clean_abbreviations

Description

Replaces commonly used Danish abbreviations containing punctuation to allow for better separation of free text into complete sentences.

E.g. 'f.eks.' to 'f_eks_' pattern.

Caveat: time lapse with large datasets: subset data before use.

Usage

SP_Journalnotater_Del1 %>%
 mutate(notat_text = clean_abbreviations(notat_text))

clean lab values

Description

Cleans and converts common laboratory values with correct units based on NPU codes. E.g. B2M nmol/l converts to mg/l.

Usage

load_npu_common()
LAB_clean = load_biochemistry(NPU.GROUP.INFECTION) %>%
 clean_lab_values()

clean_SDS_t_mikro

Description

Cleans and aggregates pathology free-text descriptions from the t_mikro dataset. E.g. lines 1 "Biopsy examined", 2 "by immunohistochemistry", and 3 "shows follicular lymphoma" convert to "Biopsy examined by immunohistochemistry shows follicular lymphoma".

Usage

t_mikro_clean = SDS_t_mikro %>% clean_SDS_t_mikro()

clean_SKS_codes_B

Description

Left joins SKS B code text to SKS B codes.

Usage

t_sksube_clean = SDS_t_sksube_subset %>%
 clean_SKS_codes_B()

Loaders

load_dataset

Description

 $Loads\ data\ directly\ from\ the\ DALY-CARE\ database\ when\ specifying\ dataset (s).$

Dataset may be specified as a vector of datasets.

Returns a complete list of dataset options when *dataset* is NULL (default). Imports subset of dataset(s) when specifying *sample* as a vector of *patientid(s)*. Also imports subset of dataset on other existing variables specifying *filter* argument.

Usage

load_dataset() #Returns a list of available datasets
load_dataset(c('patient', 'RKKP_CLL_CLEAN')) # loads both

load_dataset('RKKP_DAMYDA', value = sample(PATIENT\$patientid, 100)) #only sample load_dataset('SP_OrdineretMedicin', value = c('J06BA02', 'J01CE01'), column = 'atc')

load datasets head

Description

Loads the head of all PERSIUNE, RKKP, SDS and SP datasets to get an overview of data

Specify nrows in the head argument (e.g. head = 20).

Usage

load_datasets_head() #Returns the header of all datasets to your global environment

load all variables

Description

Loads all variables of all DALY-CARE datasets: Please see Table S2 and Appendix3

Usage

load_all_variables() %>% print_data()

load all data

Description

Loads all key variables from key datasets on a subset of patients

Usage

ALL_DATA = load_all_data()

load_dalycare_icd10

Description

Loads definitions of DALY-CARE entities based on ICD10 diagnoses into vectors located in your Global Environment in R: Please see Table S7

Usage

load_dalycare_icd()

FL = t_dalycare_diagnoses %>% filter(diagnosis %in% ICD10.FL)

load_blood_culture_SP

Description

Loads blood cultures from SP_AlleProvesvar

Usage

BC = load_blood_culture_SP()

load SKS antineoplastic

Description

Loads a list of vectors containing antineoplastic SKS codes used to treat LC to the Global Environment. You may specify individual codes such as SKS.ibrutinib (ie. ibrutinib), which are grouped SKS.CLL_targeted (i.e. ibrutinib, zanubrutinib, venetoclax and idelalisisb; note missing code for acalabrutinib in SKS), and further grouped into SKS.CLL_treatment (i.e. chemo-, immuno-, and targeted-therapy). Similar logic exists for lymphomas and multiple myeloma. SKS treatment codes are found in the table CODES_B under *core – lookuptables* and downloaded from https://medinfo.dk/sks/dump.php

load_SKS_antineoplastic()
SKS.ibrutinib # returns BWHA427
SKS.CLL_targeted #returns BWHP114, BWHA427, BWHA428, BWHA438
Use SKS codes to load_dataset() subset
load_dataset('SDS_t_sksube', c(SKS.ibrutinib, SKS.venetoclax), 'c_opr')
SDS_t_sksube_subset\$c_opr %>% table()

load_dataset('SDS_procedurer_andre', SKS.MM_proteasome, 'procedurekode')
SDS_procedurer_andre\$procedurekode %>% table()

load_npu_common

Description

Loads a list of vectors containing common NPU codes to Global Environment. You may specify individual codes such as NPU.LYM (ie. lymphocytes) or groups of NPU codes such as GROUP.NPU.CBC (i.e. complete blood count) or NPU.GROUP.MYELOMA (i.e. standard myeloma blood test set).

Usage

load_npu_common()
NPU.HGB # returns NPU02319
Use NPUs to load_dataset() subset
load_dataset('SDS_lab_forsker', c(NPU.B2M, NPU.LYM), 'analysiscode')
SDS_lab_forsker_subset\$analysiscode %>% table()

load_biochemistry

Description

Loads dataset containing biochemistry from SDS_lab_forsker. 'labs' must contain NPU codes, e.g. from lists from load_npu_common()

Usage

LAB_df = load_biochemistry(c(NPU.B2M, NPU.LDH))
BSI_df = load_biochemistry(NPU.BSI) #Blood cultures

#assign data as SDS_lab_forsker_subset into Global Environment load_biochemistry(labs = NPU.GROUP.MSPIKE, assign = TRUE)

go live

Description

Loads SP (EPIC) go live dates for the three hospitals HGH, Herlev; Rigshospitalet; and SUH, Roskilde.

Usage

go_live()

CLL_clean = RKKP_CLL %>% clean_RKKP_CLL() %>% left_join(go_live) CLL_clean\$date_golive

Definers

filter first diagnosis

Description

Defines first DALY-CARE diagnosis from 't_dalycare_diagnoses' as the earliest occurrence and calculates KM years from table 'patient'. Note that filter_first_diagnosis comes with a caveat, because it uses all diagnoses regardless of origin to define the first occurring diagnosis. Thus, patients may in fact have been diagnosed years prior to 2002, and if they are then admitted with a LC diagnosis after 2002, this date admission diagnosis will define their first diagnosis.

Usage

load_ dataset('t_dalycare_diagnoses', 'patient') #loads all DALY-CARE diagnoses
PCD = t_dalycare_diagnoses %>%
 filter(tablename %in% c('t_pato', 'DaMyDa', 't_tumor')) %>%
 filter_first_diagnosis('DC90') #includes any DC90.x

CLL = t_dalycare_diagnoses %>%

filter(tablename %in% c('t_pato', 'RKKP_CLL', 't_tumor')) %>% # only diagnoses from filter_first_diagnosis('DC911', str_contains = FALSE)

MZL = t_dalycare_diagnoses %>%

filter(tablename %in% c('t_pato', 'RKKP_LYFO', 't_tumor')) %>% # filter_first_diagnosis(c('DC830C', 'DC830D', 'DC884A', 'DC884A', 'DC884B', 'DC884B'))

load_dalycare_icd10() # loads a list of vectors with ICD10 LC diagnoses MZL = t_dalycare_diagnoses %>%

filter(tablename %ip% c('t pate' 'PKKP LVEO' 't tumor')) %>% #

filter(tablename %in% c('t_pato', 'RKKP_LYFO', 't_tumor')) %>% # filter_first_diagnosis(ICD10.MZL, str_contains = FALSE) #all MZL diagnoses

 $SLL = t_dalycare_diagnoses \%>\%$

filter(tablename %in% c('t_pato', 'RKKP_LYFO', 't_tumor')) %>% # filter_first_diagnosis('DC830', str_contains = FALSE) #matches 'DC830'

RICHTER = t_dalycare_diagnoses %>%

filter(tablename %in% c('t_pato', 'RKKP_LYFO', 'RKKP_CLL', 't_tumor')) %>% # filter_first_diagnosis(c('DC833', 'DC911'), multiple = 'both') #matches both

right_truncation (aka truncate_time_to_event)

Description

Right truncates date of last follow-up as date_event_death_fu and calculates time_to_event and event_competing as 0 (cens), 1 (event), and 2 (comepeting). This should always be checked in time-to-event analyses to avoid immortality bias, especially when linking data.

Usage

 $load_dataset('t_dalycare_diagnoses', 'patient') \ \#loads \ all \ DALY-CARE \ diagnoses \ CLL = t_dalycare_diagnoses \ \%>\%$

filter_first_diagnosis('DC911', string_contains = FALSE) %>%

left_join(your_event_data %>% select(patientid, date_event), by = 'patientid') %>%
#expects your_event_data in wide format

right_truncation(date_event, #date of event. Expects NA for non-events date_start = date_diagnosis, # prediction date, e.g. date_diagnosis date_truncation = '2023-1-1') #last event as character

library(Publish) #for plotting competing risk analyses with no. at risk. aj = prodlim(Hist(time_to_event, event_competing)~1, data=CLL) plot(aj)

#"Error in plot.new()" may be rectified by: par(mar=c(1,1,1,1))

scr_low_48h

Description

Defines lowest serum creatinine (scr) within 48 hours using lab_forsker data. SDS_lab_forsker data should be filtered to contain creatinine only (NPU.KREA) to avoid time-lapse. Used to define acute kidney injury (AKI).

Usage

```
load_npu_common()
load_dataset('SDS_lab_forsker', c(NPU.KREA), 'analysiscode') #loads creatinine
DATA_scr_low_48h = SDS_labforsker_subset %>%
mutate(
cpr_enc = patientid,
date_time = as.numeric(seconds(as.POSIXct(paste(samplingdate, samplingtime)))),
i.scr_inhos = 0
) %>%
scr_low_48h()
```

scr_low_7d

Description

Defines lowest serum creatinine (scr) within 7 days using lab_forsker data. SDS_lab_forsker data should be filtered to contain creatinine only (NPU.KREA) to avoid time-lapse.

Usage

```
load_npu_common()
load_dataset('SDS_lab_forsker', c(NPU.KREA), 'analysiscode') #loads creatinine
DATA_scr_low_48h = SDS_labforsker_subset %>%
mutate(
cpr_enc = patientid,
date_time = as.numeric(seconds(as.POSIXct(paste(samplingdate, samplingtime)))),
i.scr_inhos = 0
) %>%
scr_low_7d()
```

scr_base_median

Description

Defines baseline serum creatinine (BL scr) a rolling median using lab_forsker data. SDS_lab_forsker data should be filtered to contain creatinine only (NPU.KREA) to avoid time-lapse.

load_npu_common()

load_dataset('SDS_lab_forsker', c(NPU.KREA), 'analysiscode') #loads creatinine DATA scr_low_48h = SDS_labforsker_subset %>%

mutate(

cpr_enc = patientid,

date_time = as.numeric(seconds(as.POSIXct(paste(samplingdate, samplingtime)))),

 $i.scr_inhos = 0$

) %>%

scr_base_median()

AE AKI

Description

Defines acute kidney injury based on a 1.5x increase from the baseline serum creatinine (scr_base_median) within 7 days (scr_low_7d) or an absolute scr increase of 26.5 μ mol/L within 48 hours (scr_low_48h) using lab_forsker data.

SDS_lab_forsker data should be filtered to contain creatinine only (NPU.KREA) to avoid time-lapse.

Usage

load_dataset('SDS_lab_forsker', c(NPU.KREA), 'analysiscode') #loads creatinine

CREATININE_clean = SDS_labforsker_subset %>% clean_lab_values()

AKI = CREATININE_clean %>% AE_AKI(value = value2)

Citation

Carrero JJ et al. Kidney Int. 2023 Jan; 103(1):53-69.

AE infection

Description

Defines infections based on duration of iv. antimicrobial therapy (AB_min_duration [days]: default 1.00 days) and days between AB separating 2 infectious events (days_between_separating_infections: default 7.00 days) from SP antimicrobial data using SP_AdministreretMedicin data after filtering AB only; first using ATC_AB().

Usage

load_dataset ('patient')

load_dataset('SP_AdministreretMedicin', sample(patient\$patientid, 1000))

SP_AB = SP_AdministreretMedicin_subset %>% ATC_AB()

SP_infections = SP_AB %>% AE_infection()

Citation

Brieghel C et al. Polypharmacy. 2025 (work in progress).

CTCAE_lab

Description

Defines CTC adverse events (AE) from biochemistry. Works only with lab_forsker data. SDS_lab_forsker data should be filtered to contain NPU of interest to avoid time-lapse. E.g. May calculate 'ANEMIA', 'THROMBOCYTOPENIA', 'DIC', and 'HEMOLYSIS'.

Usage

load_npu_common()
HGB = load_biochemistry(NPU.HGB) %>% clean_lab_values()
ANEMIA_AE = HGB %>%
 CTCAE_lab() %>%
 select(patientid, ANEMIA.GRADE, everything())

HEMOLYSIS = load_biochemistry(NPU.GROUP.HEMOLYSIS) %>%
 clean_lab_values()
expect time-lapse for large samples, consider down sampling
HEMOLYSIS_AE = HEMOLYSIS %>%
 CTCAE_lab() %>%
 select(patientid, HEM.GRADE, everything())

TX_group

Description

Groups treatment protocols into meaningful groups as class characters.

Usage

SP_Behandlingsplaner_del1 %>% TX_group() %>% pull(TX_group)

filter_virus

Description

Subsets RSV, SARS-CoV-2 (SARS) and seasonal influenza (FLU) into class character (type) and result.

Usage

SP_Bloddyrkning_del1 %>% filter_virus() %>% select(patientid, type, result)

Citation

Niemann et al. *Blood*. Aug 4 2022;140(5):445-450.

filter_sentence

Description

Subsets all free-text sentences (i.e. from \\. to \\.) containing pattern.

Caveat: Free text often contains punctuation such as abbreviation causing separation;

please see clean_abbreviations()

Usage

SP_Journalnotater_del1 %>% filter_sentence(notat_text, 'SAGM')

SDS_t_mikro_ny %>% filter_sentence(v_fritekst, 'EBER')

ATC_polypharmacy

Description

Calculates number of 1^{st} to 5^{th} level ATC codes per patient and defines polypharmacy as

≥5 drug classes.

Usage

SDS_epikur %>% ATC_polypharmacy(level = 3) %>% pull(Polypharmacy)

Citation

Brieghel et al. ASH annual meeting 2023. P5133

COD2

Description

Groups cause of death (COD) ICD10 codes into meaningful groups. Prioritizes infections.

SDS_t_dodsaarsag_2 %>% COD2()

Citation

Rotbain et al. Leukemia. 2021;35(9):2570-2580.

CCI

Description

Calculates Charlson comorbidity index (CCI) scores from ICD10 codes. exclude_CLL_score = FALSE (default) includes the DC911 score, if present. include_LC_score = FALSE (default) calculates the LC score only if present.

Usage

SDS_t_adm %>% CCI(icd10 = c_adiag) %>% select(patientid, CCI.score, CCI.2011.update) view_diagnoses_all %>% CCI() %>% select(patientid, CCI.score, CCI.2011.update)

Citation

Quan et al. Med Care. 2005;45:1130-9 as CCI.score

Quan et al. Am J Epidemiol. 2011;173:676-82 for CCI.2011.update

CLL_CI

Description

Calculates CLL comorbidity index (CLL-CI) scores from vascular, GI, and endocrinology defined SKS codes (LPR), ATC codes (EPIKUR), and ICD10 codes (diagnoses_all).

Usage

CLL_cohort = t_dalycare_diagnoses %>%

filter_first_diagnosis('DC911', str_contains = FALSE) #create CLL cohort

CLL_CI_cohort = CLL_cohort %>%

CCI_CI() # Input only requires variable with 'patientid'

Citation

Rotbain et al. Blood Adv. 2022;6(8):2701-6

NMI

Description

Calculates Nordic Multimorbidity Index (NMI) scores from ICD10 and ATC codes before date of diagnosis (as date_diagnosis).

Usage

your_cohort = t_dalycare_diagnoses %>%
filter_first_diagnosis(ICD10.CLL) %>%

NMI() %>%

select(patientid, NMI score)

Citation

Kristensen et al. CLEP. 2022;14:567-79

ATC AB

Description

Subsets and groups all antimicrobials.

Usage

SDS_epikur %>% ATC_AB()

SP_AdministreretMedicin %>% ATC_AB()

ATC hypertensives

Description

Subsets and groups all antihypertensive drugs.

Usage

SDS_epikur %>% ATC_hypertensives()

SP_Administreret_Medicin %>% ATC_hypertensives ()

ATC opioids

Description

Subsets and groups all opioids.

Usage

SDS_epikur %>% ATC_opioids()

SP_Administreret_Medicin %>% ATC_opioids()

qSOFA

Description

Calculates qSOFA scores from vital values assuming that AVPU less than alert (A)

replaces GCS < 15.

Usage

SP_VitaleVaerdier %>% qSOFA() %>% pull(qSOFA)

BMI

Description

Calculates body mass index (BMI) and body surface area (BSA) from vital values.

Usage

SP_VitaleVaerdier %>% BMI() %>%

select(patientid, BMI, BSA_DuBois, BSA_Mosteller)

BSA

Description

Calculates body mass index (BMI) and body surface area (BSA) from vital values.

Usage

SP_VitaleVaerdier %>% BSA() %>%

select(patientid, BMI, BSA_DuBois, BSA_Mosteller)

transform_2_ERIC

Description

Transforms DALY-CARE data to the standard format for submission of data to projects within European Research Initiative on CLL (ERIC) and the ERIC database. Data defined

from RKKP_CLL, RKKP_LYFO (for SLL cases), LAB_IGHVIMGT, patient, t_dalycare_diagnoses, diagnoses_all (comorbidity and second malignancy),

t_dalycare_diagnoses, diagnoses_all (comorbidity and second malignancy), SDS t doedsaarsag and CLL TREAT CLEAN (only if 2nd line treatment is missing from

RKKP).

write_xlsx = TRUE. Writes an Excel file with 2 sheets and appreciated by ERIC

pseudononymize = TRUE. Creates pseudononymized `Patient Lab id`.

NB! Always deselect the DALY-CARE patientid before sharing data with Thomas Chatzikonstantinou via secure warehouse: thomas.chatzikonstantinou@certh.gr

Usage

CLL_SLL_cohort = t_dalycare_diagnoses %>%

filter_first_diagnosis(c('DC911', 'DC833'), str_contains = FALSE) #create CLL/SLL

#cohort

ERIC_data = CLL_SLL_cohort %>%

transform_2_ERIC() # Input only requires variable with 'patientid'

ERIC_data = CLL_SLL_cohort %>%

transform_2_ERIC(write_xlsx= TRUE, pseudononymize = TRUE) # writes Excel file with

#pseudo IDs

Citation

Chatzidimitrou et al. *Hemasphere*. 2020;4(5):e425

write_utable

Description

Writes utables as publishable csv-files to your work directory

table_n = 1, Writes table "Table_1" etc.

Usage

getwd()

CLL_clean = RKKP_CLL %>% clean_RKKP_CLL() table1 = utable(sex ~ Q(age) + binet, CLL clean)

write_utable(table1)

CLL IPI

Description

Calculates CLL-IPI risk as class factor.

Usage

RKKP_CLL_CLEAN %>% CLL_IPI() %>% pull(CLL.IPI) %>% table()

Citation

da Cunha-Bang et al. *Blood*. 2016;128(17):2181-3.

CLL_WONT

Description

Calculates CLL-WONT risk as class factor. Needs ALC (NPU02636) and LDH (NPU19658; NPU19978; NPU19975) from e.g. SDS_lab_forsker. Consider skipping data preparation.

Usage

Data preparation

load_npu_common()

LAB = load_biochemistry (labs = c(NPU.LYM, NPU.LDH)) %>%

clean_lab_values()

ALC = LAB % > %

filter(NPU %in% NPU.LYM) %>%

transmute(patientid, date_ALC = samplingdate, ALC = value2)

LDH = LAB %>%

filter(NPU %in% NPU.LDH) %>%

transmute(patientid, date_LDH = samplingdate, LDH = value2)

Data preparation continued...

RKKP_CLL_WITH_ALC_AND_LDH = RKKP_CLL_CLEAN %>%

left_join(ALC, by = 'patientid') %>%

left_join(LDH, by = 'patientid') %>%

mutate(time_ALC = diff_days(Date_diagnosis, date_ALC),

time_LDH = diff_days(Date_diagnosis, date_LDH)) %>%

filter(time_ALC <= 0, time_ALC >= -90, time_LDH <= 0, time_LDH >= -90) %>%

group_by(patientid) %>%

arrange(patientid, desc(time_ALC), desc(time_LDH)) %>%

slice(1) %>%
ungroup()

CLLWONT calculation

RKKP_CLL_WITH_ALC_AND_LDH %>% CLL_WONT() %>%

pull(CLLWONT) %>% table()

Citation

Brieghel et al. *Eur J Haematol*. May 2022;108(5):369-378.

Brieghel et al. Blood Adv. 2024;8(16):4449-56.

NCCN IPI

Description

Calculates NCCN-IPI risk for DLBCL as class factor.

NB! Input is complex and not generalizable.

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>%

NCCN_IPI() %>% pull(NCCN_IPI) %>% table()

Citation

Zhou et al. Blood. Feb 6 2014;123(6):837-42.

Jelicic et al. BJC. 2023;13(1):157.

MIPI

Description

Calculates MIPI risk for Mantle cell lymphoma as class factor

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>%

MIPI() %>% pull(MIPI) %>% table()

Citation

Hoster et al. Blood. Jan 15 2008;111(2):558-65.

IPS

Description

Calculates IPS risk for Hodgkin lymphoma as class factor

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>%

IPS() %>% pull(IPS) %>% table()

Citation

Hasenclever et al. NEIM. 1998;339:1506-14.

IPSSWM

Description

Calculates IPSSWM risk for Waldenström macroglobulinemia (WM) and LPL as class

factor.

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>% IPSSWM() %>% pull(IPSSWM) %>% table()

Citation

Morel et al. *Blood*. 2009;113(18):4163-70.

rIPSSWM

Description

Calculates rIPSSWM risk for Waldenström macroglobulinemia (WM) and LPL as class

factor.

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>%

rIPSSWM() %>% pull(rIPSSWM) %>% table()

Citation

Kastritis et al. *Leukemia*. Nov 2019;33(11):2654-2661.

MALT IPI

Description

Calculates MALT-IPI risk for marginal zone lymphoma (MZL) including patients with

MALT.

Usage

RKKP_LYFO %>% clean_RKKP_LYFO() %>%

MALT_IPI() %>% pull(MALT_IPI) %>% table()

Citation

Kastritis et al. *Leukemia*. Nov 2019;33(11):2654-2661.

MAYO_20_20_20

Description

Calculates Mayo Institute 20-20-20 risk for progression of smoldering myeloma as class

factor.

Usage

RKKP_DAMYDA_CLEAN %>%

MAYO_20_20_20() %>% pull(MAYO_20_20_20) %>%

table()

Citation

Mateos et al. Blood cancer journal. Oct 16 2020;10(10):102

R ISS

Description

Calculates revised ISS (R-ISS) risk for multiple myeloma as class factor.

Usage

RKKP_DAMYDA_CLEAN %>% R_ISS() %>% pull(R_ISS) %>% table()

Citation

Palumbo et al. J Clin Oncol. Sep 10 2015;33(26):2863-9.

R2 ISS

Description

Calculates second revised ISS (R2-ISS) risk for multiple myeloma as class factor.

Usage

RKKP_DAMYDA_CLEAN %>% R2_ISS() %>% pull(R2_ISS) %>% table()

Citation

D'Agostino et al. *J Clin Oncol*. Oct 10 2022;40(29):3406-3418.

RW ISS

Description

Calculates revised-world ISS (RW-ISS) risk for multiple myeloma as class factor.

Usage

RKKP_DAMYDA_CLEAN %>% RW_ISS() %>% pull(RW_ISS) %>% table()

House keeping

is_odd

Description

Logical output from numeric values.

Usage

sample(1:10, 5) %>% is_odd()

diff days

Description

Calculates numeric date intervals in days.

Usage

diff_days(date_start, date_end)

diff_years

Description

Calculates numeric date intervals in years.

Usage

diff_years(date_start, date_end)

filter str detect

Description

Subsets data with strings containing vector of patterns.

Usage

CLL = t_dalycare_diagnoses %>%
 filter_first_diagnosis('DC911')

load_dataset('SP_Behandlingsplaner_del1', CLL\$patientid, 500)

SP_Behandlingsplaner_del1_subset %>%

filter_str_detect(protocol_navn, c('OBI', 'VEN'))

str_between

Description

Subsets string character between two patterns for text-mining purposes.

Usage

load_dataset('SP_Journalnotater_del1', patient\$patientid, 500)

SP_Journalnotater_del1_subset %>% filter(notat_type=='AOP') %>%

mutate(sex = str_between(notat_text, 'arig', c('henvist|møder|kendt|indlægges')))%>%


```
pull(sex)
[1] "mand "
[2] "mand "
[3] " mand "
[4] ""
[5] "kvinde "
[7] " kvinde "
[8] "kvinde "
[9] "kvinde "
[10] "kvinde "
```

censor med keep first

Description

Subsets dates x days apart. Useful for censoring medication in grace period.

Usage

censor_med_keep_first(date, days_karens = 14)

Citation

Packness et al. EHA annual meeting 2022. P1596

cut_year

Description

Cuts year-time into monthly intervals (e.g. 3-month intervals, by = 0.25) and outputs

class factor.

Usage

Data %>% censor_med_keep_first(year_cut = cut_year(time = Time, by = 0.25))

n patients

Description

Counts distinct patients in a dataset assuming that patients are found in 'patientid'.

Usage

patient %>% n_patients()

nrow_npatients

Description

Counts distinct patients and number of rows in a dataset assuming that patients are found in 'patientid'.

Usage

patient %>% nrow_npatients()

slice closest value

Description

Slices the absolute closest value to a baseline date (date_baseline) within time interval (interval_days, c(-90, 0) default). Useful when adding lab values to wide format data.

Usage

load_dataset('SP_AlleProvesvar', NPU.HGB, 'component')
load_dataset('patient')

slice_closest_value(date_baseline = date_diagnosis, date_value = date_lab)

Plotters

KM_plot

Description

Depends on library('ggplot') and library('survminer'). Plots survminer::ggsurvplot with really nice aesthetics.

Usage

CLL = t_dalycare_diagnoses %>% filter_first_diagnosis('DC911')

fit = survfit(Surv(time_dx_death, status) ~ sex, data = CLL)
KM_plot(fit)

tile_pairwise_survdiff

Description

Depends on library('ggplot') and library('survminer').

Tiles pairwise log-rank tests from survminer::pairwise_survdiff for visual purposes.

Usage

CLL = t_dalycare_diagnoses %>%
filter_first_diagnosis('DC911') %>%
left_join(RKKP_CLL_CLEAN, by = 'patientid')

pairwise_survdiff(Surv(time_dx_death, status) \sim CLL.IPI, data = CLL, p.adjust.method = 'none') %>% tile_pairwise_survdiff(position = 'LL', palette = c(1,2,3,4), labs = FALSE)