Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» Кафедра информационных компьютерных технологий

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 5

Суханова Евгения Валерьевна

KC-30

Выполнил студент группы

Ссылка на репозиторий:
https://github.com/MUCTR-IKT-CPP/EVSuhanova_30/blob/main/Algoritms/laba5.cpp

Приняли:
Пысин Максим Дмитриевич
Краснов Дмитрий Олегович

Оглавление

Описание задачи.
Описание метода/модели.
Выполнение задачи.
Заключение.

Описание задачи.

- 1. Создайте взвешенный граф, состоящий из [10, 20, 50, 100] вершин.
- Каждая вершина графа связана со случайным количеством вершин, минимум с [3, 4, 10, 20].
- Веса ребер задаются случайным значением от 1 до 20.
- Каждая вершина графа должна быть доступна, т.е. до каждой вершины графа должен обязательно существовать путь до каждой вершины, не обязательно прямой.
- 2. Выведите получившийся граф в виде матрицы смежности. Пример вывода данных: Матрица смежности
- 3. Для каждого графа требуется провести серию из 5 10 тестов, в зависимости от времени затраченного на выполнение одного теста, необходимо найти кратчайшие пути между всеми вершинами графа и их длину с помощью алгоритма Флойда Уоршелла.
- 4. В рамках каждого теста, необходимо замерить потребовавшееся время на выполнение задания из пункта 3 для каждого набора вершин. По окончанию всех тестов необходимо построить график используя полученные замеры времени, где на ось абсцисс (X) нанести N количество вершин, а на ось ординат(Y) значения затраченного времени.

Описание метода/модели.

Алгоритм Флойда-Уоршелла предназначен для получения кратчайших путей между всеми парами вершин существующих в графе (ориентированном или неориентированном).

Результатом работы этого алгоритма является матрица N x N, где N количество вершин. Особенностью которую нужно учитывать, является то, что в матрицах смежности для взвешенного графа нельзя использовать 0 для указания несуществующего пути, лучше использовать максимальное значение.

Поиск всех кратчайших путей Флойда (Матрица смежности)

- 1. Инициируем 3 счетчика, 2 счетчика для матрицы и 1 для номера промежуточной вершины.
- 2. Итерируем по счетчику промежуточных вершин до тех пор пока не кончатся вершины
- 3. Итерируем по первому счетчику вершин, до тех пор пока не кончатся вершины
- 4. Итерируем по второму счетчику вершин, до тех пор пока не кончатся вершины
- 5. Считаем длину пути используя промежуточную вершину как узловую точку, т.е. от вершины по первому счетчику до узловой плюс от узловой до вершины по второму счетчику.
- 6. Проверяем будет ли новый путь меньше предыдущего уже найденного через другую вершину, и записываем новое значение если оно подходит.

Асимптотическая сложность равно $O(n^3)$, что равно n вызову алгоритмов Дейкстры.

Алгоритм можно использовать для определения существования путей между двумя точками на графе.

Выполнение задачи.

- 1. Для начала нам необходимо задать условия для генерации графа
 - Минимальное количество ребер зависит от количества вершин и минимального количества связей у одной вершины; Int₊(ver / 2) * min bind
 - Максимальное количество ребер зависит от количества ребер; ver * (ver 1) / 2

```
int ver[] = { 10, 20, 50, 100 };
int min_bind[] = { 3, 4, 10, 20 };
int max_reb, min_reb;
bool oriented;
```

```
gr.ver = ver[i]; // Вершины
cout << "Вершин: " << gr.ver << endl;
min_reb = ceil(_x: (double)gr.ver / 2) * min_bind[i];
max_reb = gr.ver * (gr.ver - 1) / 2;
gr.reb = min_reb + rand() % (max_reb - min_reb + 1); // Ребра
oriented = rand() % 2; // Ориентированность
```

- 2. Далее на основе заданных условий мы генерируем граф (аналогично лабораторной №4)
 - А именно мы генерируем матрицу смежности
 - При ориентированном графе мы расставляем направления ребер
- 3. После чего, мы расставляем веса на ребра, что делает из обычного графа взвешенный
 - В случае, если связи между вершинами нет, то мы не можем поставить туда 0, так как это значение предполагает путь из вершину в саму себя. Поэтому в таких случаях мы ставит максимальное значение веса плюс один (INF).

• Таким образом, мы получили матрицу смежности для неориентированного графа:

```
Вершин: 6
Ребер: 7
Минимальное количество связей: 2
Ориентированный: 0
Матрица смежности
                         Ε
                C
       0
          20 INF INF
                        15 INF
  В
      20
           0
               13 INF INF INF
    INF
                0 INF
          13
    INF INF INF
                        10
                            14
                    0
      15 INF
                   10
                         0 INF
    INF
         INF
                   14 INF
```


4. Далее с помощью поиска в глубину реализованного в прошлой лабораторной работе, мы проверяем граф на связность. При отсутствии связности мы выбираем по две вершины от каждого куска графа и соединяем их, сохраняя заданное количество ребер.

```
ivoid connected(int* nodes, Grapth gr) {
    int not_bind_1 = 0, with_bind_1 = 0, not_bind_2 = 0, with_bind_2 = 0;

    for (int i = 0; i < gr.ver; i++) {
        if (nodes[i] == 0) not_bind_1 = i;
        else with_bind_1 = i;
    }

    for (int i = 0; i < gr.ver; i++) {
        if (gr.matrix_smezh[not_bind_1][i] == 1) not_bind_2 = i;
        if (gr.matrix_smezh[with_bind_1][i] == 1) with_bind_2 = i;

    }

    if (gr.oriented) {
        gr.matrix_smezh[with_bind_1][with_bind_2] = 0;
        gr.matrix_smezh[with_bind_1][not_bind_1] = genWeight();
        gr.matrix_smezh[not_bind_2][with_bind_2] = 0;
        gr.matrix_smezh[not_bind_2][with_bind_2] = genWeight();
}

else {
        gr.matrix_smezh[with_bind_1][with_bind_2] = gr.matrix_smezh[with_bind_2][with_bind_1] = 0;
        gr.matrix_smezh[with_bind_1][not_bind_1] = gr.matrix_smezh[not_bind_1][with_bind_1] = 0;
        gr.matrix_smezh[not_bind_1][not_bind_2] = gr.matrix_smezh[not_bind_2][not_bind_1] = 0;
        gr.matrix_smezh[not_bind_2][with_bind_2] = gr.matrix_smezh[with_bind_2][not_bind_2] = genWeight();
}
</pre>
```

- 5. После выполнения условия связности графа, программа переходит к алгоритму Флойда-Уоршелла.
 - Берутся вершин по порядку
 - Находим значение пути через узловые вершины
 - Находим новое значение ребра равное минимальному между старым ребром и суммой ребер

6. После выполнения алгоритма выводим новую матрицу смежности (новый граф)

Матрица смежности									
	A	В	C	D	Ε	F			
Α	0	20	16	INF	15	INF			
В	20	0	13	INF	14	19			
C	16	13	0	11	1	6			
D	INF	INF	11	0	10	14			
E	15	14	1	10	0	7			
F	INF	19	6	14	7	0			
	-								

Тестирование алгоритма

Было проведено по 10 тестов на графы с различным количеством вершин (10, 20, 50, 100) и различным минимальным количеством связей у одной вершины (3, 4, 10, 20).

Для каждого теста было замерено время работы алгоритма Флойда-Уоршелла в миллисекундах. Результаты были записаны в файл для удобства использования.

Таким образом, мы получили следующие результаты:

	Время (миллисекунды)						
	10	20	50	100			
1	0,0095	0,0686	1,3421	13,3881			
2	0,0096	0,0683	1,4634	12,5283			
3	0,0096	0,0701	1,7743	11,4138			
4	0,0099	0,0825	1,6616	13,8895			
5	0,0083	0,0709	1,326	13,0791			
6	0,009	0,0694	1,1674	20,1516			
7	0,0096	0,1067	1,1364	8,8312			
8	0,0089	0,071	1,217	14,6491			
9	0,0093	0,0785	1,1297	10,2279			
10	0,0096	0,0712	2,8399	11,1414			
Асимптота	0,05	0,4	6,25	50			
Худший	0,0099	0,1067	2,8399	20,1516			
Лучший	0,0083	0,0683	1,1297	8,8312			
Средний	0,00933	0,07572	1,50578	12,93			
C =	0,00005						

Таким образом, мы получили зависимость времени работы программы от количества вершин у графа.

Также был построен график лучшего, среднего и худшего случаев в зависимости от количества вершин графа:

На основе графика худшего случая можно построить график асимптотической сложности:

Заключение.

В заключении, можно заметить, что скорость выполнения алгоритма Флойда-Уоршелла зависит от количества вершин у генерируемого графа. А именно асимптотическая сложность данного алгоритма равна с * g(N^3). Данный алгоритм позволяет нам определить кратчайшие пути из одной вершины в другую. Таким образом, в результате мы имеем оптимальный путь из выбранной вершины до другой вершины, заранее просчитав кратчайший путь от одной к другой и записав результат в матрицу смежности.