

# United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

| APPLICATION NO. | FILING DATE    | FIRST NAMED INVENTOR | ATTORNEY DOCKET NO.     | CONFIRMATION NO |
|-----------------|----------------|----------------------|-------------------------|-----------------|
| 10/624,909      | 07/21/2003     | Eileen Tozer         | 564462005300            | 7087            |
| 7:              | 590 07/19/2006 |                      | EXAM                    | INER            |
| Gregory P. Ei   |                |                      | BERTAGNA, A             | IGELA MARIE     |
| Morrison & Fo   | erster LLP     |                      | ART UNIT                | PAPER NUMBER    |
| 3811 Valley Ce  |                |                      | 1637                    | ·               |
| San Diego, CA   | 92130          |                      | DATE MAILED: 07/19/2006 | 5               |

Please find below and/or attached an Office communication concerning this application or proceeding.

| <del>-</del>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Application No.                                                                                                                                                      | Applicant(s)                                          |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10/624,909                                                                                                                                                           | TOZER ET AL.                                          |
|                                                      | Office Action Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Examiner                                                                                                                                                             | Art Unit                                              |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Angela Bertagna                                                                                                                                                      | 1637                                                  |
| Period fo                                            | The MAILING DATE of this communication app<br>or Reply                                                                                                                                                                                                                                                                                                                                                                                                                          | ears on the cover sheet with the c                                                                                                                                   | orrespondence address                                 |
| WHIC<br>- Exte<br>after<br>- If NC<br>- Failu<br>Any | ORTENED STATUTORY PERIOD FOR REPLY CHEVER IS LONGER, FROM THE MAILING DANSIONS of time may be available under the provisions of 37 CFR 1.13 SIX (6) MONTHS from the mailing date of this communication. Operiod for reply is specified above, the maximum statutory period we are to reply within the set or extended period for reply will, by statute, reply received by the Office later than three months after the mailing ed patent term adjustment. See 37 CFR 1.704(b). | ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim vill apply and will expire SIX (6) MONTHS from a cause the application to become ABANDONEI | L. nely filed the mailing date of this communication. |
| Status                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                       |
| 1)⊠                                                  | Responsive to communication(s) filed on 18 Ag                                                                                                                                                                                                                                                                                                                                                                                                                                   | oril 2006.                                                                                                                                                           |                                                       |
| 2a) <u></u>                                          | This action is <b>FINAL</b> . 2b)⊠ This                                                                                                                                                                                                                                                                                                                                                                                                                                         | action is non-final.                                                                                                                                                 |                                                       |
| 3)□                                                  | Since this application is in condition for allowar                                                                                                                                                                                                                                                                                                                                                                                                                              | nce except for formal matters, pro                                                                                                                                   | secution as to the merits is                          |
|                                                      | closed in accordance with the practice under E                                                                                                                                                                                                                                                                                                                                                                                                                                  | x parte Quayle, 1935 C.D. 11, 45                                                                                                                                     | 3 O.G. 213.                                           |
| Disposit                                             | ion of Claims                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                      |                                                       |
| 4)⊠                                                  | Claim(s) See Continuation Sheet is/are pending                                                                                                                                                                                                                                                                                                                                                                                                                                  | g in the application.                                                                                                                                                |                                                       |
|                                                      | 4a) Of the above claim(s) See Continuation She                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>eet</u> is/are withdrawn from conside                                                                                                                             | eration.                                              |
| 5)                                                   | Claim(s) is/are allowed.                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                       |
| 6)⊠                                                  | Claim(s) 1,14,15,29,33,35,40,43-45,48,49,87,1                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88,189,192-207,217-220 and 22                                                                                                                                        | <u>5-228</u> is/are rejected.                         |
| 7)🖂                                                  | Claim(s) 219 and 220 is/are objected to.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                      |                                                       |
| 8)□                                                  | Claim(s) are subject to restriction and/or                                                                                                                                                                                                                                                                                                                                                                                                                                      | r election requirement.                                                                                                                                              |                                                       |
| Applicat                                             | ion Papers                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                      |                                                       |
| 9)[                                                  | The specification is objected to by the Examine                                                                                                                                                                                                                                                                                                                                                                                                                                 | r.                                                                                                                                                                   |                                                       |
| 10)⊠                                                 | The drawing(s) filed on 18 April 2006 and 12 Ju                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>ıly 2003</i> is/are: a)⊠ accepted or                                                                                                                              | b)  objected to by the                                |
| Examine                                              | r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                      |                                                       |
|                                                      | Applicant may not request that any objection to the                                                                                                                                                                                                                                                                                                                                                                                                                             | drawing(s) be held in abeyance. See                                                                                                                                  | e 37 CFR 1.85(a).                                     |
|                                                      | Replacement drawing sheet(s) including the correct                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                |                                                       |
| 11)                                                  | The oath or declaration is objected to by the Ex                                                                                                                                                                                                                                                                                                                                                                                                                                | aminer. Note the attached Office                                                                                                                                     | Action or form PTO-152.                               |
| Priority (                                           | under 35 U.S.C. § 119                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      |                                                       |
| a)                                                   | Acknowledgment is made of a claim for foreign  All b) Some * c) None of:  1. Certified copies of the priority documents  2. Certified copies of the priority documents  3. Copies of the certified copies of the prior application from the International Bureausee the attached detailed Office action for a list                                                                                                                                                              | s have been received.<br>s have been received in Application<br>rity documents have been receive<br>u (PCT Rule 17.2(a)).                                            | on No ed in this National Stage                       |
| Attachmer                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                    |                                                       |
|                                                      | ce of References Cited (PTO-892) ce of Draftsperson's Patent Drawing Review (PTO-948)                                                                                                                                                                                                                                                                                                                                                                                           | 4) Interview Summary<br>Paper No(s)/Mail Da                                                                                                                          |                                                       |
| 3) N Infor                                           | ce of Draftsperson's Patent Drawing Review (P10-948) mation Disclosure Statement(s) (PTO-1449 or PTO/SB/08) er No(s)/Mail Date <u>¬{ιι(</u> 2∞ος   Ιο(2ο/2∞ο4; 2/8/2∞ο6)                                                                                                                                                                                                                                                                                                        | 5) Notice of Informal P                                                                                                                                              | atent Application (PTO-152)                           |

### Continuation Sheet (PTOL-326)

Continuation of Disposition of Claims: Claims pending in the application are 1,14,15,29,33,35,40,43-45,48,49,51,54,56,58,87,106,107,111,113,116,138,143,174,175,177,182,184,187-190 and 192-228. Continuation of Disposition of Claims: Claims withdrawn from consideration are 42,51,54,56,58,106,107,111,113,116,138,143,174,175,177,182,184,187,190,208-216 and 221-224.

#### **DETAILED ACTION**

#### Remarks

1. Claims 2-13, 16-28, 30-32, 34, 36-39, 41, 46-47, 50, 52-53, 55, 57, 59-86, 88-105, 108-110, 112, 114-115, 117-137, 139-142, 144-173, 176, 178-181, 183, 185-186, and 191 have been cancelled. Claims 1, 14-15, 29, 33, 35, 40, 42-45, 48-49, 51, 54, 56, 58, 87, 106-107, 111, 113, 116, 138, 143, 174-175, 177, 182, 184, 187-190, and 192-228 are pending. Claims 193-228 are new.

### Election/Restrictions

2. Applicant's election with traverse of Group I, claims 1, 14, 15, 29, 33, 35, 40, 43-45, 48-49, 87, 188, 189, and 192, and SEQ ID No: 29 in the reply filed on April 18, 2006 is acknowledged. The traversal is on the ground(s) that Groups III, IV, and XI should be examined with Group I, because these claims, drawn to transgenic nonhuman animals (Group III), transgenic plants and seeds (Group IV), and computer readable media (Group XI), all further comprise the elected SEQ ID No: 29, and therefore a search for SEQ ID No: 29 would necessarily encompass Groups III, IV, and XI. In other words, an undue burden would not be presented by examination of these additional groups with Group I. This is not found persuasive, because the search for a transgenic plant or animal comprising SEQ ID No: 29 requires much more than simply a search for the elected sequence – the only requirement for a search of Group I. The search for transgenic organisms further requires search and examination in the non-overlapping transgenic art, not only for SEQ ID No: 29, but also for evidence of its stable incorporation into an animal, plant or seed. This additional search requirement constitutes a significant examination burden. Also, Group XI, claims 101 and 105, cannot be rejoined with

Application/Control Number: 10/624,909 Page 3

**Art Unit: 1637** 

Group I, because these claims were canceled in the reply filed April 18, 2006. Claims 1, 14-15, 29, 33, 35, 40, 43-45, 48-49, 87, 188-189, 192-207, 217-220, and 225-228 will be examined.

The requirement is still deemed proper and is therefore made FINAL.

Claims 42, 51, 54, 56, 58, 106-107, 111, 113, 116, 138, 143, 174-175, 177, 182, 184, 187, 190, 208-216, and 221-224 and are withdrawn from further consideration pursuant to 37 CFR 1.142(b), as being drawn to a nonelected invention, there being no allowable generic or linking claim. Applicant timely traversed the restriction (election) requirement in the reply filed on April 18, 2006.

Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).

### Claim Interpretation

Page 4

3. Claims 1, 14-15, 29, 33, 35, 40, 43-45, 48-49, 87, 188-189, 192-207, 217-220, and 225-228 recite the phrases "a nucleic acid sequence having" and "a sequence comprising". This language has been interpreted to mean any sequence (dinucleotide or larger) contained in the instant SEQ ID No. 29, and this interpretation is reflected in the application of the prior art below.

### Claim Objections

4. Claims 219 and 220 are objected to because of the following informalities: These claims recite non-elected SEQ ID Nos. Appropriate correction is required.

### Claim Rejections - 35 USC § 112

5. The following is a quotation of the first paragraph of 35 U.S.C. 112:

The specification shall contain a written description of the invention, and of the manner and process of making and using it, in such full, clear, concise, and exact terms as to enable any person skilled in the art to which it pertains, or with which it is most nearly connected, to make and use the same and shall set forth the best mode contemplated by the inventor of carrying out his invention.

Claims 1, 14-15, 35, 40, 43-45, 48-49, 87, 188, 193-207, 217-220, and 226-228 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter that was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

MPEP notes, "An applicant shows possession of the claimed invention by describing the claimed invention with all of its limitations using such descriptive means as words, structures,

Art Unit: 1637

figures, diagrams, and formulas that fully set forth the claimed invention. Lockwood v. American Airlines, Inc., 107 F.3d 1565, 1572, 41 USPQ2d 1961, 1966 (Fed. Cir. 1997)."

In the instant case, the independent claim 1 recites "an isolated, synthetic, or recombinant nucleic acid comprising a nucleic acid sequence having at least 50% sequence identity to SEQ ID No: 29 over a region of at least about 100 residues." SEQ ID No: 29 is 687 nucleotides in length. For a nucleotide sequence of even 6 nucleotides, approximately  $27^{20}$  possible sequences exist with 50% identity. Therefore, for the instant SEQ ID No: 29 with 687 nucleotides, the genus of claim 1 (50% identity over 100 nucleotides) includes an enormous number of sequences, with hundreds of thousands of different molecules. This is a very large genus whose members inherently possess different structural and functional properties.

Regarding genus claims, MPEP notes, "For each claim drawn to a genus:

The written description requirement for a claimed genus may be satisfied through sufficient description of a representative number of species by actual reduction to practice, reduction to drawings, or by disclosure of relevant, identifying characteristics, i.e., structure or other physical and/or chemical properties, by functional characteristics coupled with a known or disclosed correlation between function and structure, or by a combination of such identifying characteristics, sufficient to show the applicant was in possession of the claimed genus. See Eli Lilly, 119 F.3d at 1568, 43 USPQ2d at 1406.

"A "representative number of species" means that the species which are adequately described are representative of the entire genus. Thus, when there is substantial variation within the genus, one must describe a sufficient variety of species to reflect the variation within the

genus. The disclosure of only one species encompassed within a genus adequately describes a claim directed to that genus only if the disclosure "indicates that the patentee has invented species sufficient to constitute the gen[us]." See Enzo Biochem, 323 F.3d at 966, 63 USPQ2d at 1615; Noelle v. Lederman, 355 F.3d 1343, 1350, 69 USPQ2d 1508, 1514 (Fed. Cir. 2004) (Fed. Cir. 2004) ("[A] patentee of a biotechnological invention cannot necessarily claim a genus after only describing a limited number of species because there may be unpredictability in the results obtained from species other than those specifically enumerated."). "A patentee will not be deemed to have invented invention of any species other than the one disclosed." In re Curtis, 354 F.3d 1347, 1358, 69 USPQ2d 1274, 1282 (Fed. Cir. 2004)"

Applicant discloses SEQ ID No: 29, which encodes a green fluorescent protein.

Applicant further discloses related nucleic acid sequences (for example, SEQ ID Nos: 1-197 (odd SEQ ID Nos: only), but these sequences share a high level of identity (greater than 90%), and therefore do not constitute a representative number of species in the very broad genus outlined above. Furthermore, even within this narrow subgenus, applicant does not demonstrate that all of the members of this subgenus share a common function. The examples on pages 155-159 teach exemplary methods, and the drawings only depict the fluorescence properties of two proteins. Therefore, since applicant only teaches nucleic acid sequences with a very high level of identity to the instant SEQ ID No: 29, with little to no teaching as to their functional properties, and presents no discussion in terms of structural or functional characteristics of sequences with only 50% identity to SEQ ID No: 29, it must be concluded that the requirement to disclose a representative number of species of the broad genus of claim 1 has not been met (see above), and therefore, at the time of filing, applicant did not have possession of the claimed invention.

Application/Control Number: 10/624,909 Page 7

Art Unit: 1637

## Claim Rejections - 35 USC § 102

6. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (a) the invention was known or used by others in this country, or patented or described in a printed publication in this or a foreign country, before the invention thereof by the applicant for a patent.
- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 7. Claims 1, 14, 29, 33, 35, 188-189, and 192-201 are rejected under 35 U.S.C. 102(a) as being anticipated by GenBank Accession No AF401282 (submitted by Lesser et al. August 5, 2001).

Regarding claim 1, GenBank Accession No. AF401282 teaches an isolated nucleic acid sequence comprising at least 50% identity over a region of at least 100 residues to the instant SEQ ID No: 29. See the sequence alignment below, where the instant SEQ ID No: 29 has 70.1% identity to GenBank Accession No. AF401282 over 683 residues.

```
ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) 4:11-17 seq_29 687 nt vs. gi_15081471_gb_AF401282.1_AF401282 Montastraea fa 683 nt scoring matrix: DNA, gap penalties: -16/-4 70.1% identity; Global alignment score: 1488
```

|              | 10             | 20         | 30                                      | 40         | 50         | 60     |
|--------------|----------------|------------|-----------------------------------------|------------|------------|--------|
| seq_29       | ATGAAGGGGGTGAA | GGAAGTAATG | AAGATCAGTC                              | TGGAGATGGA | CTGCACTGT1 | AACGGC |
|              | :::: : : : ::  | :: :::     | ::::::::::::::::::::::::::::::::::::::: | :: :::::   | :: ::::    | :::::  |
| gi_15081471_ | ATGAGTGTGATAAA | ACCAGACATG | AAGATCAAGC                              | TGCGTATGGA | AGGCGCTGTA | AACGGG |
|              | 10             | 20         | 30                                      | 40         | 50         | 60     |
|              |                |            |                                         |            |            |        |
|              | 70             | 80         | 90                                      | 100        | 110        | 120    |

Art Unit: 1637

| seq_29                                               | GACAAATTTAAGA                                                                                                                 | TCACTGGGGAT                                                                                      | GGAACAGGAGA                                                                                                  | ACCTTACGA                                              | AGGAACACA                                                                                               | GACTTTA                                       |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| gi_15081471_                                         | CACAAGTTCGTGA<br>70                                                                                                           | TTGAAGGAGACO<br>80                                                                               | GGAAAGGGCAA<br>90                                                                                            | GCCTTTCGA<br>100                                       | GGGAACACA<br>110                                                                                        | GAGCATG<br>120                                |
|                                                      | 130                                                                                                                           | 140                                                                                              | 150                                                                                                          | 160                                                    | 170                                                                                                     | 180                                           |
| seq_29                                               | CATCTTACAGAGA                                                                                                                 | AGGAAGGCAAG(                                                                                     | CCTCTGACGTT                                                                                                  | TTCTTTCGA                                              | TGTATTGAC                                                                                               | ACCAGCA                                       |
| gi_15081471_                                         | GACCTTACAGTCA                                                                                                                 | AAGAAGGCGCGC                                                                                     | CTCTGCCTTT                                                                                                   | TGCTTACGA                                              | TATCTTGAC                                                                                               | AACAGTA                                       |
|                                                      | 130                                                                                                                           | 140                                                                                              | 150                                                                                                          | 160                                                    | 170                                                                                                     | 180                                           |
| 20                                                   | 190                                                                                                                           | 200                                                                                              | 210                                                                                                          | 220                                                    | 230                                                                                                     | 240                                           |
| seq_29                                               | TTTCAGTATGGAA                                                                                                                 | ACCGTACATTCA                                                                                     | ACCAAATACCC                                                                                                  | AGGCAATAT                                              | ACCAGACTT                                                                                               | TTTCAAG                                       |
| gi_15081471_                                         | TTCGATTACGGCA                                                                                                                 | ······································                                                           | CCAAATACCC                                                                                                   | : ::::<br>ACAACATAT                                    | ACCACACTA                                                                                               | TTTCAAC                                       |
| g1_10001411_                                         | 190                                                                                                                           | 200                                                                                              | 210                                                                                                          | 220                                                    | 230                                                                                                     | 240                                           |
|                                                      | 250                                                                                                                           | 260                                                                                              | 270                                                                                                          | 280                                                    | 290                                                                                                     | 300                                           |
| seq_29                                               | CAGACCGTTTCTG                                                                                                                 | GTGGCGGGTATA                                                                                     | CCTGGGAGCG                                                                                                   | AAAAATGAC                                              | TTATGAGGA                                                                                               | CGGGGGC                                       |
| . 15001.481                                          |                                                                                                                               | : :: :::::                                                                                       | :::::::::::::::::::::::::::::::::::::::                                                                      | :: :::::                                               | ::: :: ::                                                                                               | : ::::                                        |
| gi_15081471_                                         | CAGAC-GTTTCCT                                                                                                                 | GAGGGGTATT<br>260                                                                                | CCTGGGAACG                                                                                                   | AAGCATGAC<br>280                                       |                                                                                                         | CCAGGGC                                       |
|                                                      | 200                                                                                                                           | 200                                                                                              | 210                                                                                                          | 280                                                    | 290                                                                                                     |                                               |
|                                                      | 310                                                                                                                           | 320                                                                                              | 330                                                                                                          |                                                        | 340                                                                                                     | 350                                           |
| seq_29                                               | ATAAGTAACGTCC                                                                                                                 | GAAGCGACAT                                                                                       | -CAGTG-TGAA                                                                                                  | AGG                                                    | TGACTCTTT                                                                                               | CTACTAT                                       |
|                                                      | :: :: ::                                                                                                                      | :: ::::::                                                                                        | :: :: ::::                                                                                                   | :::                                                    | :::::                                                                                                   | ::::                                          |
| gi_15081471_                                         | ATTTCCCTCCCA                                                                                                                  | Ϲልልልሮፎልሮልፕልል                                                                                     | CACTGATGAA                                                                                                   | AGGCGTCGA'                                             | TGACTGTTT'                                                                                              | <b>IGTCTAT</b>                                |
|                                                      |                                                                                                                               |                                                                                                  |                                                                                                              |                                                        |                                                                                                         |                                               |
|                                                      | 300 310                                                                                                                       | 320                                                                                              | 330                                                                                                          | 340                                                    | 350                                                                                                     |                                               |
|                                                      | 300 310                                                                                                                       | 320                                                                                              |                                                                                                              | 340                                                    | 350                                                                                                     |                                               |
| seq_29                                               |                                                                                                                               | 320<br>370                                                                                       | 380                                                                                                          | 340<br>390                                             |                                                                                                         |                                               |
| seq_29                                               | 360                                                                                                                           | 320<br>370                                                                                       | 380                                                                                                          | 340<br>390                                             | 350<br>400                                                                                              |                                               |
| seq_29<br>gi_15081471_                               | 360  AAGATTCACTTCAC  :::::::::::::::::::::::::::                                                                              | 320<br>370<br>CTGGCGAGT<br>::::::::::::::::::::::::::::::::::::                                  | 380 TTCCTCCTCA ::::::::::::::::::::::::::::                                                                  | 340<br>390<br>TGGTCCAGT                                | 350<br>400<br>GATGCAGAG<br>::::::                                                                       | AAAGACA                                       |
| -                                                    | 360  AAGATTCACTTCAC :: :::: ::                                                                                                | 320<br>370<br>CTGGCGAGT<br>::::::::                                                              | 380<br>TTCCTCCTCA                                                                                            | 340<br>390<br>TGGTCCAGT                                | 350<br>400<br>GATGCAGAG<br>::::::                                                                       | AAAGACA                                       |
| -                                                    | 360  AAGATTCACTTCAC :::::::::::  AAAATTCGATTTGA 360  370                                                                      | 320<br>370<br>CTGGCGAGT<br>::::::::<br>ATGGTGTAAACT<br>380                                       | 380 TTCCTCCTCA ::::::::::::::::::::::::::::                                                                  | 340<br>390<br>TGGTCCAGT<br>:::::::<br>TGGTCCAGT<br>400 | 350<br>400<br>GATGCAGAGA<br>::::: :<br>TATGCAAAAA                                                       | AAAGACA                                       |
| -                                                    | 360  AAGATTCACTTCAC  :::::::::::::::::::::::::::                                                                              | 320<br>370<br>CTGGCGAGT<br>::: : :<br>ATGGTGTAAACT<br>380<br>430                                 | 380 TTCCTCCTCA  TTCCTGCCAA  390  440 TAATGTATGT                                                              | 340 390 TGGTCCAGT ::::::: TGGTCCAGT 400 450            | 350<br>400<br>GATGCAGAGA<br>::::: :<br>TATGCAAAAA<br>410<br>460                                         | AAAGACA<br>:::::<br>GAAGACG                   |
| gi_15081471_<br>seq_29                               | 360  AAGATTCACTTCAC :::::::::::  AAAATTCGATTTGA 360 370  410 420 GTAAAATGGGAGCC ::::::::::::                                  | 320 370 CTGGCGAGT :::::::: ATGGTGTAAACT 380  430 CATCCACTGAAG                                    | 380 TTCCTCCTCA  TTCCTGCCAA  390  440 TAATGTATGT                                                              | 340 390 TGGTCCAGT TGGTCCAGT 400 450 TGACGACAA          | 400 GATGCAGAG, :::::: TATGCAAAAA 410 460 GAGTGACGG' ::::::::                                            | AAAGACA ::::: GAAGACG  TGTGCTG ::::::         |
| gi_15081471_                                         | 360  AAGATTCACTTCAC ::::::::::::::::::::::::::::                                                                              | 320 370 CTGGCGAGT :::::::: ATGGTGTAAACT 380  430 CATCCACTGAAG                                    | 380 TTCCTCCTCA  TTCCTGCCAA  390  440 TAATGTATGT                                                              | 340 390 TGGTCCAGT TGGTCCAGT 400 450 TGACGACAA          | 350<br>400<br>GATGCAGAGA<br>::::: :<br>TATGCAAAAA<br>410<br>460                                         | AAAGACA ::::: GAAGACG  TGTGCTG ::::::         |
| gi_15081471_<br>seq_29                               | 360  AAGATTCACTTCAC ::::::::::::::::::::::::::::                                                                              | 320 370 CTGGCGAGT ::::::::: ATGGTGTAAACT 380 430 CATCCACTGAAG ::::::::::                         | 380 TTCCTCCTCA  TTCCTGCCAA  390  440 TAATGTATGT  AAATGTATGT                                                  | 340 390 TGGTCCAGT TGGTCCAGT 400 450 TGACGACAA          | 400 GATGCAGAGA  ::::::: TATGCAAAAA  410  460 GAGTGACGG  :::::::: GCGTGATGGA                             | AAAGACA ::::: GAAGACG  TGTGCTG ::::::         |
| gi_15081471_<br>seq_29<br>gi_15081471_               | 360  AAGATTCACTTCAC ::::::::::::  AAAATTCGATTTGA 360 370  410 420 GTAAAATGGGAGCC :::::::::::  CTGAAATGGGAGCC 420 430  470 480 | 320 370 CTGGCGAGT :::::::::: ATGGTGTAAACT 380  430 CATCCACTGAAG :::::::::: CATCCACTGAGA 440  490 | 380 TTCCTCCTCA ::::::::::::::::::::::::::::                                                                  | 340 390 TGGTCCAGT ::::::: TGGTCCAGT 400 450 TGACGACAA  | 350  400  GATGCAGAG,  ::::::::  TATGCAAAAA  410  460  GAGTGACGG'  :::::::::  GCGTGATGGA  460  520       | AAAGACA ::::: GAAGACG  IGTGCTG :::::: AGTGCTG |
| gi_15081471_<br>seq_29                               | 360  AAGATTCACTTCAC :::::::::::  AAAATTCGATTTGA 360 370  410 420  GTAAAATGGGAGCC :::::::::::  CTGAAATGGGAGCC 420 430          | 320 370 CTGGCGAGT :::::::::: ATGGTGTAAACT 380  430 CATCCACTGAAG :::::::::: CATCCACTGAGA 440  490 | 380 TTCCTCCTCA ::::::::::::::::::::::::::::                                                                  | 340 390 TGGTCCAGT 100 450 TGACGACAA                    | 350  400  GATGCAGAG,  ::::::::  TATGCAAAAA  410  460  GAGTGACGG'  :::::::::  GCGTGATGGA  460  520       | AAAGACA ::::: GAAGACG  IGTGCTG :::::: AGTGCTG |
| gi_15081471_ seq_29 gi_15081471_ seq_29              | 360  AAGATTCACTTCAC ::::::::::::::::::::::::::::                                                                              | 320 370 CTGGCGAGT ::::::::::::::::::::::::::::::::::::                                           | 380 TTCCTCCTCA ::::::::::: TTCCTGCCAA 390  440 TAATGTATGT :::::::: AAATGTATGT 450  500 TGCTTAAAGA :::::::::: | 340 390 TGGTCCAGT :::::::: TGGTCCAGT 400 450 TGACGACAA | 350 400 GATGCAGAG, :::::: TATGCAAAAA 410 460 GAGTGACGG' :::::::: GCGTGATGGA 460 520 TTTGAGAGT' :::::::: | AAAGACA ::::: GAAGACG  GTGCTG :::::: AGTGCTG  |
| gi_15081471_ seq_29 gi_15081471_ seq_29 gi_15081471_ | 360  AAGATTCACTTCAC ::::::::::::  AAAATTCGATTTGA 360 370  410 420 GTAAAATGGGAGCC :::::::::::  CTGAAATGGGAGCC 420 430  470 480 | 320 370 CTGGCGAGT ::::::::::::::::::::::::::::::::::::                                           | 380 TTCCTCCTCA ::::::::::: TTCCTGCCAA 390  440 TAATGTATGT :::::::: AAATGTATGT 450  500 TGCTTAAAGA :::::::::: | 340 390 TGGTCCAGT :::::::: TGGTCCAGT 400 450 TGACGACAA | 350 400 GATGCAGAG, :::::: TATGCAAAAA 410 460 GAGTGACGG' :::::::: GCGTGATGGA 460 520 TTTGAGAGT' :::::::: | AAAGACA ::::: GAAGACG  GTGCTG :::::: AGTGCTG  |

Art Unit: 1637

|              | 530      | 540        | 550       | 560         | 570          | 580          |
|--------------|----------|------------|-----------|-------------|--------------|--------------|
| seq_29       | AACACTTC | TTACATACCC | AAGAAGAA  | GGTCGAGAAT  | ATGCCTGACTAC | CATTTTATAGAC |
|              | :: ::: : | :::: : :   | :::::     | ::: ::      | :::: :::::   | :: ::: : ::: |
| gi_15081471_ | AAAACTAC | ATACAAAGCT | `AAGAAGTT | TGTCCAGT    | -TGCCAGACTAT | CACTTTGTGGAC |
|              | 530      | 540        | 550       | 560         | 570          | 580          |
|              |          |            |           |             |              |              |
|              | 590      | 600        | 610       | 620         | 630          | 640          |
| seq_29       | CACCGCAT | TGAGATTCTG | GGCAACCC  | AGAAGAC     | AAGCCGGTCAAG | CTGTACGAGTGT |
|              | :: ::::: | ::::::: :: | :: ::     | :::: :      | :: ::: :::   | ::::: ::: :  |
| gi_15081471_ | CATCGCAT | TGAGATTTTG | AGCCACGA  | CAAAGATTAC  | AACAAGGTTAAG | CTGTATGAGCAT |
|              | 590      | 600        | 610       | 620         | 630          | 640          |
|              | 650      | 660        | 670       | 680         |              |              |
| sea 29       | •••      |            |           | TGAGAAGAAC  | AAGTAG       |              |
| Seq_23       | OCIGIAGO |            |           | ····        | AAGIAG       |              |
| 15001471     | 00001100 | TO APPROX  |           |             |              |              |
| gi_15081471_ | GCCGAAGC | ICATTCI    | GGGC LCCC | GAGGCAGGCC. | AAGTA-       |              |

Regarding claim 14, the nucleic acid sequence taught by GenBank Accession No. AF401282 encodes a green fluorescent protein (see definition).

Regarding claim 29, GenBank Accession No. AF401282 comprises a sequence that is completely complementary to a sequence shown in SEQ ID No: 29 (see for example, the first three nucleotides of the GenBank sequence "ATG" which are completely complementary to nucleotides 126-128 "TAC" of SEQ ID No: 29 (see above alignment). Note that the phrase "a sequence" has been interpreted to include dinucleotides and larger sequences, and therefore, the GenBank sequence anticipates the instant claim.

Regarding claims 33 and 35, GenBank Accession No. AF401282 teaches a probe comprising at least 10 consecutive bases of a sequence as set forth in SEQ ID No: 29 (see for example, nucleotides 22-31 (ATGAAGATCA) of GenBank Accession No. AF401282 in the above alignment). This was determined by visual inspection.

Art Unit: 1637

Regarding claims 188 and 189, GenBank Accession No. AF401282 teaches an isolated nucleic acid sequence encoding a fluorescent protein (see definition) and having at least about 50% identity to SEQ ID No: 29 (see alignment above, where the sequences are 70% identical over 683 nucleotides). As discussed above "a sequence" encompasses dinucleotides or larger, and therefore, GenBank Accession No. AF384683 comprises a sequence as set forth in SEQ ID NO. 29 (for example, the first three nucleotides "ATG").

Page 10

Regarding claim 192, the sequence recited in GenBank Accession No. AF401282 encodes a fluorescent protein (see definition) and also has a sequence comprising a combination of segments whose overhangs as described in Figure 15 can anneal to each other. Specifically, the GenBank sequence comprises segments with overhangs that can anneal to each other such as GGA which is the "start" overhang in the segment defined by nucleotides 42-44 and the "stop" overhang in the segment defined by nucleotides 98-100 "CCT" (see alignment above).

Regarding claims 193-197, the alignment above between GenBank Accession No. AF401282 and the instant SEQ ID No: 29 displays 70% identity over 683 nucleotides.

Regarding claims 198-201, the alignment between GenBank Accession No. AF401282 and the instant SEQ ID No: 29 displays 70% identity over 683 nucleotides (see alignment above).

8. Claims 1, 15, 29, 33, 35, 40, 43-45, 48-49, 87, 188-189, 192-200, and 225-228 are rejected under 35 U.S.C. 102(b) as being anticipated by Lukyanov et al. (WO 01/27150 A2; cited in IDS).

ALIGN calculates a global alignment of two sequences

Art Unit: 1637

Regarding claim 1, Lukyanov teaches an isolated nucleic acid sequence (SEQ ID No: 9) comprising at least 50% identity over a region of at least 100 residues to the instant SEQ ID No: 29. See the sequence alignment below, where the instant SEQ ID No: 29 has 60% identity to SEQ ID No: 9 of Lukyanov over 600 nucleotides.

version 2. OuPlease cite: Myers and Miller, CABIOS (1989) 4:11-17 wipo\_seq\_9 600 nt vs. seq\_29 610 nt scoring matrix: DNA, gap penalties: -16/-4 60.0% identity; Global alignment score: 747 10 20 30 40 50 TCAAGGAAGAAATGTTGATCGATCTTCATCTGGAAGGAACGTTCAATGGGCACTACTTTG wipo\_seq\_9 seq\_29 TGAAGGAAGTAATGAAGATCAGTCTGGAGATGGACTGCACTGTTAACGGCGACAAATTTA 10 20 30 40 50 60 70 80 90 100 110 wipo\_seq\_9 AAATAAAAGGCAAAGGAAAAGGGAAGCCTAATGAAGGCACCAATACCGT-CACGCTCGAG seq\_29 AGATCACTGGGGATGGAACAGGAGAACCTTACGAAGGAACACAGACTTTACATCTTACAG 70 80 90 100 110 120 120 130 140 150 160 170 wipo\_seq\_9 GTTACCAAGGGTGGACCTCTGCCATTTGGTTGGCATATTTTGTGCCCACAATTTCAGTAT : :::::: ::: :: :: : ::: ::: :::::::::: seq\_29 AGAAGGAAGGCAAG-CCTCTGACGTTTTCTTTCGATGTATTGACACCAGCATTTCAGTAT 130 140 150 160 170 180 190 200 210 220 230 GGAAACAAGGCATTTGTCCACCACCCTGACGACATACCTGATTATCTAAAGCTGTCA-TT wipo\_seq\_9 :::::: :::: seq\_29 GGAAACCGTACATTCACCAAATACCCAGGCAATATACCAGACTTTTTCAAGCAGACCGTT 180 190 200 210 220 230 240 250 260 270 280 290 TCCGGAAG-GGATATACATGGGAACGGTCCATGCACTTTGAAGACGGTGGCTTGTTGTTGT wipo\_seq\_9 :: :: : :: ::::: ::::: :: ::: : ::: ::::: ::: :: seq\_29 TCTGGTGGCGGGTATACCTGGGAGCGAAAAATGACTTATGAGGACGGGGGCATAAGTAAC

Art Unit: 1637

|                   | 240                   | 250                         | 260                     | 270                             | 280                       | 290                                                    |
|-------------------|-----------------------|-----------------------------|-------------------------|---------------------------------|---------------------------|--------------------------------------------------------|
| wipo_seq_9 seq_29 | :: :                  | :: ::::                     | :: ::: ::               | : ::: :::                       | : :::: :                  | 350 ATCAAGTTCACTGGC ::::::::::: ATTCACTTCACTGGC 350    |
| wipo_seq_9 seq_29 | : :                   | ::::::                      | :::: :: :               | : ::::::                        | ::::::                    | 410 GGCTGGGAACCGAGC ::::: : : AAATGGGAGCCATCC 410      |
| wipo_seq_9 seq_29 | :::::<br>ACTGAAG      |                             | :<br>TTGACGACA          | ::::::<br>AGAGTGACGG            | ::: ::: ::<br>TGTGCTGAAGO | 460<br>GGAGACATCCATCAT<br>:::::::::::::::::::::::::::: |
| wipo_seq_9        | 420<br>470<br>GCTCTCA | 430<br>480<br>CAGTGGAAGG    | 440<br>490<br>GAAGGTGGT | 450<br>500<br>TCATTACG'<br>:::: |                           | 470 520 AA-ACTGTTTACAG :: ::: ::::                     |
| seq_29            | GCTCT<br>480          | GTTGCTT                     | AAAGATGGC               | CGCCATTTGAG                     | GAGTTGACTTT               | AACACTTCTTACAT                                         |
| wipo_seq_9        | 530<br>GGCCAAG        | 540<br>AAGCCCGTA/<br>::: :: | AAGATG                  | CCAGGGTATC                      | ACTATGTTGAC               | 570 580<br>CACCAAACTGGTTAT                             |
| seq_29            | ACCCAAGA              | AAGAAGGTC                   | GAGAATATG               |                                 |                           | : : ::<br>CCACCGCATTGAGAT<br>80 590                    |
| wipo_seq_9        | 590<br>AAGGAGC        | AACGACAAA                   | GA                      |                                 |                           |                                                        |
| seq_29            | TCTGGGC/<br>600       | AACCCAGAA(<br>) 61          |                         |                                 |                           |                                                        |

Regarding claim 15, the nucleic acid sequence taught by Lukyanov encodes a cyan fluorescent protein (see Table 1, page 29, where the emission maximum of SEQ ID No: 9

Art Unit: 1637

(dsFP483 is reported to be 483 nm. This value is within the emission range for cyan fluorescent proteins).

Regarding claim 29, Lukyanov teaches a sequence that is hybridizes to a sequence completely complementary to a sequence shown in SEQ ID No: 29 (see, for example, nucleotides 3-9 (AAGGAAG) of SEQ ID No: 9 which hybridize to a sequence completely complementary to nucleotides 3-9 (AAGGAAG) fill in of SEQ ID No: 29). Note that the phrase "a sequence" has been interpreted to include dinucleotides and larger sequences, and therefore, the Lukyanov sequence anticipates the instant claim.

Regarding claims 33 and 35, Lukyanov teaches a probe comprising at least 10 consecutive bases of a sequence as set forth in SEQ ID No: 29 (see for example, nucleotides 170-179 in the above alignment: ATTTCAGTAT). This was determined by visual inspection.

Regarding claim 40, Lukyanov teaches an amplification primer pair (see page 12, line 32-page 13, line 4) for amplifying a nucleic acid sequence encoding a polypeptide with fluorescent activity (SEQ ID No: 9 of Lukyanov), where the primer pair is capable of amplifying a nucleic acid comprising a sequence with at least 50% identity to the instant SEQ ID No: 29 (the alignment between SEQ ID No: 9 of Lukaynov & the instant SEQ ID No: 29 is presented above).

Regarding claim 43, Lukaynov teaches an expression cassette comprising the nucleic acid of claim 1 (page 10, lines 12-13).

Regarding claim 44, Lukaynov teaches a vector comprising the nucleic acid of claim 1 (page 10, lines 12-17).

Regarding claim 45, Lukaynov teaches that the vector may be a plasmid, phage, or cosmid (page 2, lines 35-36). Lukaynov also teaches the use of viral vectors, phagemids,

Art Unit: 1637

fosmids, bacteriophages, and artificial chromosomes (see page 11, and the cited references therein).

Regarding claims 48 and 49, Lukaynov teaches a transformed cell comprising a vector where the vector comprises a nucleic acid of claim 1 (page 10, line 12 – page 11, line 36).

Regarding claim 87, Lukaynov teaches an array comprising the immobilized nucleic acid of claim 1 (page 13, lines 5-14).

Regarding claims 188 and 189, Lukaynov teaches an isolated nucleic acid sequence encoding a fluorescent protein (see above) and having at least about 50% identity to SEQ ID No: 29 (see alignment below, where the sequences are 52% identical over the full-length SEQ ID No: 29). Also, as discussed above "a sequence" encompasses dinucleotides or larger, and therefore, SEQ ID No: 9 of Lukaynov comprises a sequence as set forth in SEQ ID NO. 29.

```
ALIGN calculates a global alignment of two sequences version 2. OuPlease cite: Myers and Miller, CABIOS (1989) 4:11-17 seq_29 687 nt vs. wipo_seq_9 803 nt scoring matrix: DNA, gap penalties: -16/-4 52.1% identity; Global alignment score: 263
```

|            |        |            |            |           |             |           | 10     |
|------------|--------|------------|------------|-----------|-------------|-----------|--------|
| seq_29     | ATG    |            |            |           |             | A         | AGGGGG |
| •          | : :    |            |            |           |             | :         | :: : : |
| wipo_seq_9 | ACGGTC | AGGGACACGG | TGACCCACTI | TGGTATTCT | AACAAAATGA( | GTTGGTCCA | AGAGTG |
|            |        | 10         | 20         | 30        | 40          | 50        | 60     |
|            |        | 20         | 30         | 40        | 50          | 60        |        |
| seq_29     | TGA    | AGGAAGTAAT | GAAGATCAGT | CTGGAGATG | GACTGCACTG1 | TAACGGCG  | ACAAAT |
|            | :::    | ::::::     | : :::: :   | :: : :::  | :: ::: :    | :: ::     | :: : : |
| wipo_seq_9 | TGATCA | AGGAAGAAAT | GTTGATCGA1 | CTTCATCTG | GAAGGAACGTT | CAATGGGC  | ACTACT |
|            |        | 70         | 80         | 90        | 100         | 110       | 120    |
|            | 70     | 80         | 90         | 100       | 110         | 120       |        |

| seq_29     | TTAAGA'                 | CACTGGGG/             | ATGGAACAGG/        | AGAACCTTACO        | GAAGGAACACA                    | GACTTTACATCT                    | TA.      |
|------------|-------------------------|-----------------------|--------------------|--------------------|--------------------------------|---------------------------------|----------|
| wipo_seq_9 | TTGAAA                  | <br>ΓΑΑΑΑGGCA/<br>130 | AAGGAAAAGG(<br>140 | GAAGCCTAATO<br>150 | GAAGGCACCAA<br>160             | TACCGT-CACGC                    | TC       |
| seq_29     | 130<br>CAGAGA<br>::     | 140<br>AGGAAGGCAA     | 150<br>AG-CCTCTGAC | 160<br>CGTTTTCTTTC | 170<br>CGATGTATTGA<br>:: : ::: | 180<br>CACCAGCATTTC             | AG<br>:: |
| wipo_seq_9 | GAGGTTA<br>180          | ACCAAGGGT(<br>190     | GGACCTCTGCC<br>200 | CATTTGGTTGG<br>210 | CATATTTTGT<br>220              | GCCCACAATTTC<br>230             | AG       |
| seq_29     | 190<br>TATGGA/          | 200<br>AACCGTACA1     | 210<br>TTCACCAAATA | 220<br>ACCCAGGCAAT | 230 TATACCAGACT                | 240<br>TTTTCAAGCAGA<br>::::::   | :<br>:   |
| wipo_seq_9 | TATGGAA<br>240          | AACAAGGCAT<br>250     | TTTGTCCACCA<br>260 | ACCCTGACGAC<br>270 | CATACCTGATT<br>280             | ATCTAAAGCTGT<br>290             | CA       |
| seq_29     | 250<br>GTTTCT(          | 260<br>GGTGGCGGG1     | 270 TATACCTGGGA    | 280<br>AGCGAAAAATG |                                | 300<br>ACGGGGGCATAA             | GT       |
| wipo_seq_9 | -TTTCC0                 | GGAAG-GGAT<br>310     | TATACATGGGA<br>320 | ACGGTCCATG<br>330  | GCACTTTGAAG<br>340             | ACGGTGGCTTGT<br>350             | GT       |
| seq_29     | 310<br>AACGTCC          | 320<br>CGAAGCGACA     | 330<br>ATCAGTGTGAA | 340<br>AGGTGACTCT  | 350<br>TTCTACTATA              | 360<br>AGATTCACTTCA             | .CT      |
| wipo_seq_9 |                         | ACCAATGATA<br>370     |                    | AGGCAACTGT<br>390  |                                | ACATCAAGTTCA<br>410             | CT       |
| seq_29     | 370<br>GGCGAG-          | 38<br>TTTCCTC         |                    |                    | AGAAAGACAG                     | O 420<br>TAAAATGGGAGC           | CA<br>:  |
| wipo_seq_9 | GGCTTG/<br>420          | ACTTTCCTC 430         | CAAATGGACO<br>440  | CGTTGTGCAG<br>450  | AAGAAGACAA<br>460              | CTGGCTGGGAAC<br>470             | CG       |
| seq_29     | 430<br>TCCACTO<br>::::: | GAAGTAATGI            | ATGTTGACGA         |                    | GGTGTGCTGA                     | ) 480<br>AGGGAGATGTCA<br>:::::: |          |
| wipo_seq_9 |                         | GAGCGTTTGT<br>490     |                    |                    |                                | TAGGAGACATCC<br>520             |          |
| seq_29     | 490<br>ATGGCT0<br>::::  | TGTTG                 |                    |                    | 520<br>GAGAGTTGAC              | 530<br>FTTAACACTTCT             | TA       |
| wipo_seq_9 |                         |                       |                    |                    | CGTATGTGACA<br>570             | ATTAA-ACTGTT<br>580             | TA       |

Art Unit: 1637



Regarding claim 192, the SEQ ID No: 9 of Lukaynov encodes a fluorescent protein (see above) and also has a sequence comprising a combination of segments whose overhangs as described in Figure 15 can anneal to each other. Specifically, SEQ ID No: 9 of Lukaynov comprises segments with overhangs that can anneal to each other such as GGA which is the "start" overhang in the segment defined by nucleotides 32-34 and the "stop" overhang in the segment defined by nucleotides 135-137 "CCT" (see first alignment above with 60% identity).

Regarding claims 193-197, the alignment above between SEQ ID No: 9 of Lukaynov and the instant SEQ ID No: 29 displays 70% identity over 600 nucleotides (see first alignment presented after claim 1).

Art Unit: 1637

Regarding claims 198-200, the alignment below between SEQ ID No: 9 of Lukaynov and the instant SEQ ID No: 29 displays 69% identity over 100 residues (see alignment below). Since the independent claim 1 only requires the identity to be present over a minimum of 100 residues, this alignment meets the instant limitations of claims 198-200.

```
ALIGN calculates a global alignment of two sequences
version 2. OuPlease cite: Myers and Miller, CABIOS (1989) 4:11-17
seq_29_100_res_320-420
                                         104 nt vs.
wipo_seq_9_100_res_370-470
                                         107 nt
scoring matrix: DNA, gap penalties: -16/-4
69.2% identity;
                     Global alignment score: 226
                 10
                         20
                                 30
                                         40
                                                 50
seq_29_100_r GACATCAGTGTGAAAGGTGACTCTTTCTACTATAAGATTCACTTCACTGGCGAG---TTT
           wipo_seq_9_1 GATATCAGTTTGACAGGCAACTGTTTCAACTACGACATCAAGTTCACTGGCTTGAACTTT
                 10
                         20
                                 30
                                         40
                                                 50
                                                         60
           60
                   70
                           80
                                   90
                                          100
seq_29_100_r CCTCCTCATGGTCCAGTGATGCAGAGAAAGACAGTAAAATGGGAGCC
```

Regarding claims 225 and 226, Lukaynov teaches a recombinant nucleic acid encoding a fluorescent protein codon-optimized for expression in a host cell where the nucleic acid comprises a sequence set forth in claim 1 (SEQ ID No: 9 of Lukaynov comprises a sequence set forth in claim 1, as discussed above; see page 14, lines 3-5 and also page 36, lines 1-5 for discussion of codon-optimized forms).

Regarding claim 227, Lukaynov further teaches inclusion of a tag or reporter sequence (page 4, lines 10-12) and also the inclusion of epitope tags (page 9, lines 26-34).

Regarding claim 228, Lukaynov teaches labeled probes (page 12, lines 26-28), and further teaches that nucleic acids may be labeled with epitope tags (page 9, lines 26-34).

Art Unit: 1637

9. Claims 1, 14-15, 29, 35, 40, 43-45, 48-49, 188-189, 192, and 198 are rejected under 35 U.S.C. 102(b) as being anticipated by Tsien et al. (USPN 6,140,132).

Regarding claim 1, Tsien teaches an isolated nucleic acid sequence (SEQ ID Nos: 3 and 7) comprising at least 50% identity over a region of at least 100 residues to the instant SEQ ID No: 29. See the sequence alignments below, where the instant SEQ ID No: 29 has 51% identity and 57% identity to SEQ ID Nos: 3 & 7, respectively, of Tsien over 100 nucleotides.

```
ALIGN calculates a global alignment of two sequences
version 2. OuPlease cite: Myers and Miller, CABIOS (1989) 4:11-17
seq_29
                                                    107 nt vs.
                                                     86 nt
tsien_seq_3_egfp
scoring matrix: DNA, gap penalties: -16/-4
51.4% identity;
                           Global alignment score: -15
                                20
                      10
                                          30
                                                     40
                                                                  50
              GCCTGACTACCATTTTATAGACCACCGCATTGAGATTCTGGGCAA---CCCAGAAGACAA
seq_29
                                                               ::: :::::
              ::: ::: :::: :
                               : :: :::: :: :
                                                   ::: ::::
tsien_seq_3_ GCCCGACAACCACTACCT-GAGCACC-CAGTCCGCC-CTGAGCAAAGACCCCAACGAGAA
                                            30
                                                                 50
                      10
                                 20
                                                       40
                          70
                                    80
                                                       100
                60
                                              90
seq_29
              GC-CGGTCAAGCTGTACGAGTGTGCTGTAGCTCGCTATTCTCTGCTGCCTG
              :: :: :::
                           :::
                                    ::::: :: :::
tsien_seq_3_ GCGCGATCACATGGTCC----TGCTGGAGTTCG-
ALIGN calculates a global alignment of two sequences
 version 2. OuPlease cite: Myers and Miller, CABIOS (1989) 4:11-17
seq_29
                                                    107 nt vs.
tsien_cfp_seq_7
                                                    115 nt
scoring matrix: DNA, gap penalties: -16/-4
57.1% identity;
                           Global alignment score: 28
                      10
                                20
                                          30
                                                     40
                                                                  50
seq_29
              GCCTGACTACCATTTTATAGACCACCGCATTGAGATTCTGGGCAA---CCCAGAAGACAA
              ::: ::: :::: :
                               : :: :::: :: :
                                                   ::: ::::
tsien_cfp_se GCCCGACAACCACTACCT-GAGCACC-CAGTCCGCC-CTGAGCAAAGACCCCAACGAGAA
```

Art Unit: 1637

|              | 10        | 0         | 20        | 30                | 40          | 50           |
|--------------|-----------|-----------|-----------|-------------------|-------------|--------------|
|              | 60        | 70        |           | 80                | 90          | 100          |
| seq_29       | GC-CGGTCA | AGCTGTAC- | GAGT      | GTG-CTGTA         | GCTCGCTATT  | CTCTGCTGCCTG |
|              | :: :: ::: | :: :      | ::::      | ::: : :           | <b>:: :</b> | :::: : :: :: |
| tsien_cfp_se | GCGCGATCA | CATGGTCCT | rgctggagt | <b>CCTGACCGCC</b> | CGCCGGGATCA | CTCT-CGGCATG |
|              | 60        | 70        | 80        | 90                | 100         | 110          |

Regarding claim 14, SEQ ID No: 3 of Tsien encodes a green fluorescent protein (see Table 1, column 5).

Regarding claim 15, SEQ ID No: 7 of Tsien encodes a cyan fluorescent protein (see Table 5, column 5).

Regarding claim 29, Tsien teaches a sequence that is hybridizes under stringent conditions to a sequence completely complementary to a sequence shown in SEQ ID No: 29 (see for example, the first three nucleotides (GCC) of SEQ ID No: 3 of Tsien (in the first alignment above) or the first three nucleotides (GCC) of SEQ ID No: 7 of Tsien (the second alignment above). These sequences hybridize to a sequence completely complementary to nucleotides 1-3 (GCC) of SEQ ID No: 29). Note that the phrase "a sequence" has been interpreted to include dinucleotides and larger sequences, and therefore, the Tsien sequence anticipates the instant claim.

Regarding claim 35, Tsien teaches a probe for identifying a nucleic acid encoding a fluorescent polypeptide, where the probe comprises a sequence of claim 1 (see the above alignments of SEQ ID Nos: 3 & 7 of Tsien). These sequences are inherently probes for a nucleic acid encoding fluorescent polypeptide. This was determined by visual inspection.

Application/Control Number: 10/624,909 Page 20

Art Unit: 1637

Regarding claim 40, Tsien teaches an amplification primer pair for amplifying a nucleic acid encoding a polypeptide with fluorescent activity, where the primer pair is capable of amplifying a nucleic acid comprising a sequence of claim 1 (see column 11, lines 41-46).

Regarding claim 43, Tsien teaches an expression cassette comprising the nucleic acid of claim 1 (column 11, line 57 – column 12, line 40).

Regarding claim 44, Tsien teaches a vector comprising the nucleic acid of claim 1 (column 11, line 66 – column 12, line 40).

Regarding claim 45, Tsien teaches that the vector may be a plasmid, phage, cosmid viral vectors, bacteriophages, and artificial chromosomes (column 13, lines 45-63).

Regarding claims 48 and 49, Tsien teaches a transformed cell comprising a vector where the vector comprises a nucleic acid of claim 1 (column 13, lines 45-63).

Regarding claims 188 and 189, Tsien teaches an isolated nucleic acid sequence encoding a fluorescent protein (see above) and having at least about 50% identity to SEQ ID No: 29 (see alignments below, where SEQ ID Nos: 3 & 7 of Tsien are 49% (about 50%) identical over the full-length SEQ ID No: 29). Also, as discussed above "a sequence" encompasses dinucleotides or larger, and therefore, SEQ ID Nos: 3 & 7 of Tsien comprises a sequence as set forth in SEQ ID NO. 29.

```
ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) 4:11-17 seq_29 687 nt vs. tsien_seq_3_egfp 720 nt scoring matrix: DNA, gap penalties: -16/-4 49.4% identity; Global alignment score: -7
```

Art Unit: 1637

| tsien_seq_3_ | ATGGTGAGCAAGGG            |                    | TCACCGGGGT<br>30               | GGTGCCCATCO<br>40            | CTGGTCGAGCTGGAC<br>50 60                               |
|--------------|---------------------------|--------------------|--------------------------------|------------------------------|--------------------------------------------------------|
| seq_29       | = -                       | : ::: :: :         | AGATCACTGG                     | GGATGGAACAG                  | 100 GGAGAACCTTACGAA :::::::::::::::::::::::::::::::::: |
| caren_acq_o_ | 70                        | 80                 | 90                             | 100                          | 110 120                                                |
| seq_29       | 110 12<br>GGAACACAGACTTT  |                    |                                |                              | 160<br>ACGTTTTCTTTCGAT                                 |
| tsien_seq_3_ | GGCAAGCTGACCCT<br>130     |                    | GCACCACCGG                     |                              |                                                        |
| seq_29       | 170 18<br>GTATTGACACCAGO  |                    | GAAACCGTAC                     |                              | 220 TACCCAGGCAATAT-                                    |
| tsien_seq_3_ | CCCTCGTGACCACC            |                    |                                | CTTCAGCCGCT<br>220           | TACCCCGACCACATG<br>230                                 |
| seq_29       |                           |                    | 250<br>CCGTTTCTGG              |                              | 270<br>ACCTGGGAGCGAAAA                                 |
| tsien_seq_3_ | AAGCAGCACGACTT<br>240 250 |                    | :: : : :<br>CCATGCCCGA/<br>270 | ::: ::<br>AGGCTAC(<br>28(    |                                                        |
| 2            | 280 290                   | 300                | 310                            | 320                          | 330                                                    |
| seq_29       | ATGACTTATGAGGA            |                    | GTAACGTCCG/                    | AAGCGACATCA                  | AGTGTGAAAGGTGAC                                        |
| tsien_seq_3_ | ATCTTCTTCAAGGA<br>300 3   |                    | ACAAGACCCG                     |                              |                                                        |
| seq_29       |                           |                    |                                |                              | 390<br>TGGTCCAGTG                                      |
| tsien_seq_3_ | : :: :<br>ACCCTGGT<br>360 | GAACCGCATCGA       | ::: ::<br>AGCTGAAGGG(<br>380   | :: :::<br>CATCGACTTCA<br>390 | :: : :<br>AGGAGGACGGCAAC<br>400                        |
|              | 400                       | 410                | 420                            | 430                          | 440                                                    |
| seq_29       | ATGCAGAGAAAGAC            | AGTAAA.            |                                | CCACTGAAG1                   | AATGTATGTTGAC-                                         |
| tsien_seq_3_ | ATCCTGGGGCACAA            |                    |                                |                              |                                                        |
| seq_29       | 450 460<br>GACAAGAGTGACGG | 470<br>TGTGCTGAAGG | 480<br>GAGATGTCAAC             | 490<br>CATGGCTCTGT           | 500<br>TGCTTAAAGATGGC                                  |



ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) 4:11-17 seq\_29 687 nt vs. tsien\_cfp\_seq\_7 720 nt scoring matrix: DNA, gap penalties: -16/-4 49.0% identity; Global alignment score: -11

10 20 30 40 seq\_29 ATG----AAGGGGGTGAAG-----GAAGTAATGAAGATCAGTCTGGAGATGGAC ::: ::::: : :: : :: :: :::  ${\tt tsien\_cfp\_se} \quad {\tt ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGAC}$ 10 20 30 40 50 50 60 70 80 90 100

| seq_29                                                      | TGCACT(                                                              | GTTAACGGC                                                                                    | GACAAATTTAA                                                                                                                    | GATCACTGG                                                                                                           | GGATGGAACAG                                                                                | GAGAACCTTACGAA                                                                                 | ı |
|-------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---|
| tsien_cfp_se                                                |                                                                      | GTAAACGGC<br>70                                                                              | CACAGGTTCAG<br>80                                                                                                              | CGTGTCCGG(                                                                                                          | CGAGGGCGAGG<br>100                                                                         | GCGATGCCACCTAC                                                                                 |   |
| seq_29                                                      | 110<br>GGAACAG                                                       | 120<br>CAGACTTTA<br>: ::: :                                                                  |                                                                                                                                |                                                                                                                     | 150<br>CAAGCCTCTGA                                                                         | 160<br>CGTTTTCTTTCGAT                                                                          | ı |
| tsien_cfp_se                                                | GGCAAGG                                                              | CTGACCCTG<br>130                                                                             | AAGTTCATCTG<br>140                                                                                                             | CACCACCGG(<br>150                                                                                                   | CAAGCTGCC                                                                                  | CGTGCCCTGGCCCA<br>170                                                                          |   |
| seq_29                                                      | 170<br>GTATTGA<br>: :                                                | 180<br>ACACCAGCA                                                                             |                                                                                                                                |                                                                                                                     | 210<br>ATTCACCAAATA                                                                        | 220<br>ACCCAGGCAATAT-                                                                          |   |
| tsien_cfp_se                                                | CCCTCG7                                                              | TGACCACCC<br>190                                                                             | TGACCTGGGGC<br>200                                                                                                             | GTGCAGTGC-<br>210                                                                                                   | TTCAGCCGCT<br>220                                                                          | ACCCCGACCACATG<br>230                                                                          |   |
| seq_29                                                      | -ACCAG-                                                              | 230<br>ACTTT<br>::::                                                                         | 240<br>TTCAAGCAGAC                                                                                                             |                                                                                                                     | 260<br>TGGCGGGTATAG                                                                        | 270<br>CCTGGGAGCGAAAA<br>: :::::::                                                             |   |
| tsien_cfp_se                                                | AAGCAGO<br>240                                                       | CACGACTTC<br>250                                                                             | TTCAAGTCCGC<br>260                                                                                                             | CATGCCCGAA<br>270                                                                                                   | AGGCTACG7<br>280                                                                           | CCAGGAGCGCACC<br>290                                                                           |   |
|                                                             |                                                                      |                                                                                              |                                                                                                                                |                                                                                                                     |                                                                                            |                                                                                                |   |
| seq_29                                                      |                                                                      |                                                                                              |                                                                                                                                |                                                                                                                     |                                                                                            | 330<br>GTGTGAAAGGTGAC                                                                          |   |
| seq_29                                                      | ATGACTT                                                              | TATGAGGAC                                                                                    | GGGGGCATAAG<br>: ::::<br>GACGGCAACTA                                                                                           | TAACGTCCGA                                                                                                          | AGCGACATCAC<br>:::::::<br>AGCCGAGGTGA                                                      |                                                                                                |   |
| seq_29                                                      | ATGACTT :: : ATCTTCT 300                                             | TATGAGGAC : ::::: TTCAAGGAC 31 350 TACTATAAG                                                 | GGGGGCATAAG : :::: GACGGCAACTA 0 320 360 ATTCACTTCA                                                                            | TAACGTCCGA :: ::: CAAGACCCGC 330  370 -CTGGCGAGT                                                                    | AGCGACATCAC  ::: :: CGCCGAGGTGAA  340  380  TTCCTCCTCAT                                    | GTGTGAAAGGTGAC : : : : : :: AGTTCGAGGGCGAC 350  390 CGGTCCAGTGATGC                             |   |
| seq_29 tsien_cfp_se seq_29                                  | ATGACTT :: :: ATCTTCT 300  340 TCTTTCT : ::                          | TATGAGGAC : ::::: TTCAAGGAC 31  350 TACTATAAG : : : TGGT                                     | GGGGGCATAAG : :::: GACGGCAACTA 0 320  360 ATTCACTTCA—                                                                          | TAACGTCCGA :: ::: CAAGACCCGC 330  370 -CTGGCGAGT ::: ::                                                             | AGCGACATCAC :::::::: CGCCGAGGTGAA 340 380 TTCCTCCTCAT ::::::                               | CTGTGAAAGGTGAC : : : : : : : : : : : : : : : : : : :                                           |   |
| seq_29 tsien_cfp_se seq_29                                  | ATGACTT :: :: 300  340  TCTTTCT : :: :: ACCCT                        | TATGAGGAC : ::::: TTCAAGGAC 31  350 TACTATAAG : : : TGGTG 60  410 AGACAGTAA                  | GGGGGCATAAG : :::: GACGGCAACTA 0 320  360 ATTCACTTCA— : : :: AACCGCATCGA 370  420 AATGGGAGCCA                                  | TAACGTCCGA :: ::: CAAGACCCGC 330  370 -CTGGCGAGT ::: :: GCTGAAGGGC 380  430 ICCACTGAAG                              | AGCGACATCAC  ::: :: CGCCGAGGTGAA  380  TTCCTCCTCAT  :: ::: ATCGACTTCAA  390  440  TAATGTAT | CTGTGAAAGGTGAC  : : : : : : : : : : : : : : : : : : :                                          |   |
| seq_29 tsien_cfp_se seq_29 tsien_cfp_se seq_29 tsien_cfp_se | ATGACTT :: : : ATCTTCT 300  840 TCTTTCT : :: ACCCT 36  400 AGAGAAA : | TATGAGGAC  : ::::: TTCAAGGAC  310  350  TACTATAAG  : : : TGGTG  GO  410  AGACAGTAA  : : : :: | GGGGGCATAAG : :::: GACGGCAACTA 0 320  360 ATTCACTTCA— : : : :: AACCGCATCGA 370  420 AATGGGAGCCA : : : ::                       | TAACGTCCGA :: ::: CAAGACCCGC 330  370  -CTGGCGAGT ::: :: GCTGAAGGGC 380  430  TCCACTGAAG ::: ::                     | 380 TTCCTCCTCAT :::::::::::::::::::::::::::                                                | GTGTGAAAGGTGAC : : : : : :: AGTTCGAGGGCGAC 350  390 CGGTCCAGTGATGC :: : : : AGGAGGACGGCAAC 400 |   |
| seq_29 tsien_cfp_se seq_29 tsien_cfp_se seq_29 tsien_cfp_se | ATGACTT :: :: 300  340  TCTTTCT : :: 36  400  AGAGAAA : ATCCTGG 410  | 350 TACTATAAG  : :::::  TGGTG  GGACAGTAA  : : ::  GGGCAC-AAG  420                            | GGGGGCATAAG : :::: GACGGCAACTA 0 320  360 ATTCACTTCA— : : : :: AACCGCATCGAC 370  420 AATGGGAGCCA' ::: :: GCTGGAGTACAA 430  470 | TAACGTCCGA :: ::: CAAGACCCGC 330  370  -CTGGCGAGT ::: :: GCTGAAGGGC 380  430  FCCACTGAAG ::: :: ACTACATCAG 440  480 | 380 380 TTCCTCCTCAT :: ::: ATCGACTTCAA 390 440 TAATGTAT :: :::: CCACAACGTCT 450            | CTGTGAAAGGTGAC  : : : : : : : : : : : : : : : : : : :                                          |   |

Art Unit: 1637

| 5            | 10 520         | 530            | 540          | 550        | 560          |
|--------------|----------------|----------------|--------------|------------|--------------|
| seq_29       | CCATTTGAGAGTTG | GACTTTAACACTT  | CTTACATACCCA | A-GAAGAAGG | TCGAGAATAT   |
|              | : : :          | ::: ::         | ::: ::::     | : :: ::    | : :: :       |
| tsien_cfp_se | CGTGCAGCTCGCCC | GACCACTACCAGC  | AGAACACCCCA  | TCGGCGACGG | CCCCGTGCTGCT |
|              | 530 540        | 550            | 560          | 570        | 580          |
|              |                |                |              |            |              |
|              | 570 580        | 590            | 600          | 610        | 620          |
| seq_29       | GCCTGACTACCATT | TTTATAGACCACC( | GCATTGAGATTC | TGGGCAA    | CCCAGAAGACAA |
|              | ::: :::: ::::: | : ::::::       | :: : :       | :: ::::    | ::: ::::::   |
| tsien_cfp_se | GCCCGACAACCACT | FACCT-GAGCACC- | -CAGTCCGCC-C | TGAGCAAAGA | CCCCAACGAGAA |
|              | 590 600        | 610            | 620          | 630        | 640          |
|              |                |                |              |            |              |
|              | 630            | 640            | 650          | 660        | 670          |
| seq_29       | GC-CGGTCAAGCTC | GTACGAGT-      | GTG-CTGTAG   | CTCGCTAT   | -TCTCTGC-TGC |
|              | :: :: ::: :    | ::::           | ::: : : :    | : :: ::    | :::: ::      |
| tsien_cfp_se | GCGCGATCACATGC | GTCCTGCTGGAGT  | CCTGACCGCCG  | C-CGGGATCA | CTCTCGGCATGG |
|              | . 650 6        | 670            | 680          | 690        | 700          |
|              |                |                |              |            |              |
|              | 680            |                |              |            |              |
| seq_29       | CTGAGAAGAACAAC | GTAG           |              |            |              |
|              | ::: : :::::    | :::            |              |            |              |
| tsien_cfp_se | ACGAGCTGTACAAG | GTAA           |              |            |              |

Regarding claim 192, SEQ ID Nos: 3 and 7 of Tsien encode fluorescent proteins (see above) and also have a sequence comprising a combination of segments whose overhangs as described in Figure 15 can anneal to each other. Specifically, SEQ ID Nos: 3 & 7 of Tsien comprises segments with overhangs that can anneal to each other such as GGA which is the "start" overhang in the segment defined by nucleotides 18-20 and the "stop" overhang in the segment defined by nucleotides 116-118 "CCT" (see the alignments above with 49% identity).

Regarding claim 198, the alignment between SEQ ID No: 7 of Tsien and the instant SEQ ID No: 29 displays 57% identity over 100 residues (see alignment appearing after claim 1).

Since the independent claim 1 only requires the identity to be present over a minimum of 100 residues, this alignment meets the instant limitations of claim 198.

Application/Control Number: 10/624,909 Page 25

Art Unit: 1637

### Claim Rejections - 35 USC § 103

10. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

11. Claims 217 and 218 are rejected under 35 U.S.C. 103(a) as being unpatentable over Lukaynov et al. (WO 01/27150; cited above) in view of Short (WO 00/77262 A1; published December 21, 2000).

Lukaynov teaches a nucleic acid sequence (SEQ ID No: 9) of claim 1, as discussed in greater detail above.

Lukaynov teaches that the nucleic acid may be obtained using non-stochastic sitedirected mutagenesis methods (page 13, line 15 – page 14, line 2), but does not teach generation of the recombinant nucleic acid by synthetic ligation reassembly.

Regarding claim 218, Lukaynov teaches expression of recombinant proteins (page 13, line 15 – page 14, line 2).

Short teaches a directed evolution method for evolving nucleic acids encoding novel or improved proteins (see abstract).

Regarding claim 217, Short teaches that standard non-stochastic mutagenesis methods are limited, because only a small number of new, variant products are generated with each application of the method and the types of mutations possible are also limited (see page 4, lines 15-20). Short teaches that synthetic ligation reassembly represents an improvement over these standard non-stochastic site-directed mutagenesis methods, because: (1) it generates a larger number of products with predetermined (non-random) structures with each application; (2) it readily generates more types of mutant polynucleotides, thereby generating a resulting group of mutant products with greater diversity; (3) background resulting from undesired products is decreased; (4) saturation or exhaustive mutagenesis is possible; and (5) the products are produced in a systematic, predetermined fashion (see page 5, lines 1-10).

It would have been prima facie obvious for one of ordinary skill in the art at the time of invention to utilize the synthetic ligation reassembly method taught by Short to generate recombinant versions of the nucleic acids of Lukaynov. Lukaynov expressly taught production of recombinant polynucleotides using site-directed mutagenesis techniques in order to obtain polynucleotides enoding proteins with improved properties (see page 13, lines 13-31). Since Short taught that synthetic ligation reassembly offered distinct advantages over the conventional methods suggested by Lukaynov, namely the ability to more efficiently and accurately generate a larger number of different, more diverse product sequences (see above), the ordinary practitioner

Art Unit: 1637

Page 27

would have been motivated to utilize this method in order to obtain a faster, simpler method of generating a large variety of mutant polynucleotides.

#### Conclusion

No claims are currently allowable. Claims 202-207, 219, and 220 are free of the art, but have been rejected for other reasons, as noted above.

The prior art made of record and not relied upon is considered pertinent to applicant's disclosure. GenBank Accession No. AF384683 (submitted by Lesser et al., Aug. 27, 2001) teaches a sequence highly homologous to the applied GenBank Accession No. AF401282.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Angela Bertagna whose telephone number is (571) 272-8291. The examiner can normally be reached on M-F 7:30-5 pm EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Gary Benzion can be reached on (571) 272-0782. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Angela Bertagna Patent Examiner Art Unit 1637

amb

JEFFREY FREDMAN
PRIMARY EXAMINER

7/14/04