

SÍLABO INTRODUCCIÓN A LA PROGRAMACIÓN

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

CICLO: II SEMESTRE ACADÉMICO: 2018-I

I. CÓDIGO DEL CURSO : 09111402050

II. CRÉDITOS : 05

III. REQUISITO : 09066801051 Matemática Discreta

IV. CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

Es de naturaleza formación básica, dirigido a que el alumno logre identificar, reconocer y aplicar las estructuras lógicas de secuencia, decisión, repetición y de datos, en el diseño y desarrollo de soluciones empleando pseudocódigos, diagramas de flujo y un lenguaje de programación.

Unidades: Conceptos básicos de algoritmos y Estructuras lógicas de secuencia - Estructuras lógicas de decisión - Estructuras lógicas de repetición.

VI. FUENTES DE CONSULTA

Bibliográficas

- Deitel, H.& Deitel, P. (2010). Java How to Program. Eighth Edition. Prentice Hall.
- Flores, J. & Bertolotti, C. (2008). Método de la 6'D. Modelamiento Algoritmo Programación (Enfoque orientado a las estructuras lógicas). 2da. Ed. Lima: Facultad de Ingeniería y Arquitectura. Universidad de San Martín de Porres.
- · Marcelo Villalobos, Ricardo (2014). Fundamentos de programación C#. 2da edición. Ed. Macro. Lima.
- Ceballos Sierra, Francisco Javier (2013). Enciclopedia de Microsoft Visual C#. 4ta edición. Ed. RA-MA. México D.F.
- Dorman, Scott (2013). C# 5.0 y Visual C# 2012. Ed. Anaya Multimedia. Madrid.
- Hugon, Jérôme (2014). C# 5.0: Desarrolle aplicaciones Windows con Visual Studio 2013.
 Ediciones ENI. Barcelona.

Electrónicas

Flores, J. & Bertolotti, C. (2008). Empaquetar aplicaciones Java utilizando Java Archives (JAR).
 InfoFIA, USMP Perú. (64). Recuperado en abril 2008 de
 http://www.usmp.edu.pe/publicaciones/boletin/fia/info64/empaquetarJAR.html

VI. UNIDADES DE APRENDIZAJE

UNIDAD I. CONCEPTOS BÁSICOS Y ESTRUCTURAS SECUENCIALES

OBJETIVOS DE APRENDIZAJE:

- Describir y explicar los conceptos básicos relacionados con el diseño lógico de algoritmos.
- Aplicar los conceptos básicos sobre el diseño lógico de algoritmos.
- Identificar y reconocer las estructuras lógicas de secuencia.
- Aplicar las estructuras lógicas de secuencia en el diseño y desarrollo de soluciones empleando pseudocódigos, diagramas de flujo y un lenguaje de programación.

PRIMERA SEMANA

Primera sesión

Introducción a los algoritmos computacionales conceptos sobre algoritmos.

Conceptos básicos sobre tipos de dato, identificadores, literales, variables y constantes.

Segunda sesión

Ejercicios de tipos de dato, identificadores, literales, variables y constantes.

Laboratorio

Manejo del IDE a emplear con el lenguaje de programación correspondiente.

SEGUNDA SEMANA

Primera sesión

Expresiones aritméticas: operadores aritméticos, reglas de jerarquía de operadores.

Funciones matemáticas: potencia, raíz cuadrada, mayor, menor, redondeo y generación de aleatorios.

Segunda sesión

Herramientas para el diseño de algoritmos: Diagramas de flujo y pseudocódigo.

Ejercicios con expresiones aritméticas y funciones matemáticas.

Laboratorio

Aplicación de los conceptos desarrollados en la segunda semana.

TERCERA SEMANA

Primera sesión

Estructuras lógicas de secuencia: diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de secuencia: diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia.

CUARTA SEMANA

Primera sesión

Estructuras lógicas de secuencia y funciones matemáticas: diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de secuencia y funciones matemáticas: diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia.

UNIDAD II. ESTRUCTURAS LÓGICAS DE DECISIÓN

OBJETIVOS DE APRENDIZAJE:

- Identificar y reconocer las estructuras lógicas de decisión.
- Aplicar las estructuras lógicas de decisión en el diseño y desarrollo de soluciones empleando pseudocódigos, diagramas de flujo y un lenguaje de programación.

QUINTA SEMANA

Primera sesión

Estructuras lógicas de decisión simple y doble: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de decisión simple y doble: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando las estructuras lógicas de decisión simple y doble.

SEXTA SEMANA

Primera sesión

Estructuras lógicas de decisión múltiple encadenada y cuando: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de decisión múltiple encadenada y cuando: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando las estructuras lógicas de decisión múltiple encadenada y cuando.

SÉPTIMA SEMANA

Primera sesión

Diseño de soluciones empleando estructuras lógicas de secuencia y decisión combinadas.

Segunda sesión

Diseño de soluciones empleando estructuras lógicas de secuencia y decisión combinadas.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia y decisión combinadas.

OCTAVA SEMANA

Examen Parcial.

UNIDAD III. ESTRUCTURAS LÓGICAS DE REPETICIÓN Y MANEJO DE CADENAS

OBJETIVOS DE APRENDIZAJE:

- Identificar y reconocer las estructuras lógicas de repetición.
- Aplicar las estructuras lógicas de repetición en el diseño y desarrollo de soluciones empleando pseudocódigos, diagramas de flujo y un lenguaje de programación.

NOVENA SEMANA

Primera sesión

Estructuras lógicas de repetición mientras y hacer-mientras: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de repetición mientras y hacer-mientras: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando la estructura lógica de repetición mientras y hacer-mientras.

DÉCIMA SEMANA

Primera sesión

Estructuras lógicas de repetición mientras y hacer-mientras: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Estructuras lógicas de repetición mientras y hacer-mientras: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones empleando la estructura lógica de repetición mientras y hacer-mientras.

UNDÉCIMA SEMANA

Primera sesión

Estructura lógica de repetición para: diseño de soluciones empleando pseudocódigo y diagrama de fluio.

Segunda sesión

Estructura lógica de repetición para: diseño de soluciones empleando pseudocódigo y diagrama de flujo.

Laboratorio

Desarrollo de soluciones básicas empleando la estructura lógica de repetición para.

DUODÉCIMA SEMANA

Primera sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Segunda sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

DECIMOTERCERA SEMANA

Primera sesión

Manejo de cadenas de caracteres. Diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Segunda sesión

Manejo de cadenas de caracteres. Diseño de soluciones básicas empleando pseudocódigo y diagrama de flujo.

Laboratorio

Programación de soluciones básicas empleando manejo de cadenas de caracteres.

DECIMOCUARTA SEMANA

Primera sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Segunda sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

DECIMOQUINTA SEMANA

Primera sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Segunda sesión

Diseño de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

Laboratorio

Desarrollo de soluciones empleando estructuras lógicas de secuencia, decisión y repetición combinadas.

DECIMOSEXTA SEMANA

Examen final.

DECIMOSÉPTIMA SEMANA

Entrega de promedios finales y acta del curso.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

- a. Matemática y Ciencias Básicas 0
- b. Tópicos de Ingeniería
- c. Educación General 0

IX. PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- Método de Discusión Guiada. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- Método de Demostración Ejecución. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- **Equipos**: Computadora, ecran y proyector multimedia.
- **Materiales**: Manual Universitario, material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).
- Lenguaje de Programación: Java (Ing. Computación y Sistemas) y C# (Ing. Industrial)
- Software: NetBeans IDE 8.2 (Ing. Computación y Sistemas) y Visual Studio 2013 (Ing. Industrial)

XI. EVALUACIÓN

El promedio final (PF) de la asignatura se obtiene con la siguiente fórmula:

PF = (2*PE+EP+EF)/4

Donde:

EP = Examen Parcial

EF = Examen Final

PE = Promedio de Evaluaciones

El promedio de evaluaciones (PE) se obtiene de la siguiente manera:

PE = ((P1+P2)/2+W1+PL)/3

Donde:

P1...P2 = Evaluaciones de teoría

W1 = Trabajo

PL = Promedio de laboratorio

El promedio de laboratorio (PL) se obtiene de la siguiente manera:

PL = (Lb1+Lb2+Lb3+Lb4+Lb5-MN)/4

Donde:

Lb1...Lb5 = Evaluaciones de Laboratorio

MN = Menor nota

XII. APORTE DEL CURSO AL LOGRO DE LOS RESULTADOS DEL ESTUDIANTE

El aporte del curso al logro de los Resultados del Estudiante (*Student Outcomes*) en la formación del graduado en Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.	R
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.	R
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.	
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.	
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.	
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.	
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.	
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	К
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.	

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería Industrial se establece en la tabla siguiente:

K	= clave	R = relacionado	Recuadro vacio = no aplica	
(a)	Habilidad	para aplicar conocimier	ntos de matemática, ciencia e ingeniería.	R

(b)	Habilidad para diseñar y conducir experimentos, así como analizar e interpretar los datos obtenidos.			
(c)	Habilidad para diseñar sistemas, componentes o procesos que satisfagan las necesidades requeridas.			
(d)	Habilidad para trabajar adecuadamente en un equipo multidisciplinario.			
(e)	Habilidad para identificar, formular y resolver problemas de ingeniería.			
(f)	Comprensión de lo que es la responsabilidad ética y profesional.			
(g)	Habilidad para comunicarse con efectividad.			
(h)	Una educación amplia necesaria para entender el impacto que tienen las soluciones de la ingeniería dentro de un contexto social y global.			
(i)	Reconocer la necesidad y tener la habilidad de seguir aprendiendo y capacitándose a lo largo de su vida.			
(j)	Conocimiento de los principales temas contemporáneos.			
(k)	Habilidad de usar técnicas, destrezas y herramientas modernas necesarias en la práctica de la ingeniería.	K		

XIII. HORAS, SESIONES, DURACIÓN

a)	Horas de clase:	Teoría	Práctica	Laboratorio
,		3	1	3

b) Sesiones por semana: Tres sesiones.

c) Duración: 7 horas académicas de 45 minutos

XIV. DOCENTES DEL CURSO

Ing. Carmen Bertolotti Zuñiga

Ing. Manuel Balta Rospigliosi

Ing. Juan Puerta Arce

Ing. Sara Paredes Paredes

XV. FECHA

La Molina, marzo de 2018.