Homework 4

To submit via e-mail by h 14:00, May 31

Suppose we wish to test m > 1 hypotheses H_1, \ldots, H_m . In this problem, we are interested in procedures which operates in two steps:

Step 1: Select a set $S \subseteq \{1, ..., m\}$ of "promising" hypotheses

Step 2: Apply a multiple testing procedure to test those hypotheses in S, namely, $\{H_i, i \in S\}$

Consider the following selection rule:

$$S = \{i \in \{1, \dots, m\} : p_i \le \alpha\}$$

for some pre-specified $\alpha \in (0,1)$.

- (a) Suppose you apply the Bonferroni method at level α to the selected set of hypotheses $\{H_i, i \in \mathcal{S}\}$, i.e. reject the hypotheses with p-value smaller than $\alpha/|\mathcal{S}|$, where $|\mathcal{S}|$ denotes the cardinality of the set \mathcal{S} . Calculate the FWER of Bonferroni by assuming that all m hypotheses are true and p_1, \ldots, p_m are i.i.d. Uniform (0,1).
- (b) Similarly, suppose you apply the Benjamini-Hochberg method at level α to the selected set of hypotheses $\{H_i, i \in \mathcal{S}\}$. Calculate the FDR of BH by assuming that all m hypotheses are true and p_1, \ldots, p_m are i.i.d. Uniform(0,1).