Ex4.1 Finite Morphism is Proper.

 $f: X \to Y$ を finite だとする. Cor4.8f と Ex3.4 より, X,Y が affine scheme である場合について調べれば十分である.

 $X=\operatorname{Spec} A,Y=\operatorname{Spec} B$ とすると,A:: finitely generated B-module. なので特に X:: Noetherian scheme. 任意の R:: valuation ring をとり, $K=\operatorname{Quot} R$ とする.今,以下の可換図式が成り立っているとする.

$$\operatorname{Spec} K \longrightarrow \operatorname{Spec} A$$

$$\downarrow \qquad \qquad \downarrow f$$

$$\operatorname{Spec} R \longrightarrow \operatorname{Spec} B$$

これに対応して、以下の環の可換図式が成り立つ。Prop2.3 より、二つの可換図式は一対一に対応している。

$$K \stackrel{\longleftarrow}{\longleftarrow} A$$

$$\downarrow \qquad \qquad \downarrow \phi$$

$$B \stackrel{v}{\longleftarrow} B$$

A:: integral / B から $v(B)\subseteq u(A)::$ integral ring extension が得られる $^{\dagger 1}.$ $v(B)\subseteq R$ と合わせて, $u(A)(\subseteq K)::$ initegral / R. R が付値環であることから,R は K 上整閉.よって $u(A)\subseteq R$.このことから $u:A\to R$ の存在が得られる.さらに, $R\to K$ が単射であることからこのような射はただひとつ.図式の一対一対応から, $Spec\ R\to Spec\ A$ の射がただひとつ存在することがわかった.

Ex4.2

U :: dense in X とし、以下の可換図式で f,g :: S-morphism は $f|_{U}=g|_{U}$ を満たすとする.

 $U \to X \to Y = Y \to Y \times_S Y$ とたどると、 $\Delta(f(U)) = h(U)$ が得られる. $f(U) \subseteq Y$ から $h(U) \subseteq \Delta(Y)$. さらに次の計算から $h(X) \subseteq \Delta(Y)$ が得られる.

$$h(X) = h(\operatorname{cl}_X(U)) \subseteq \operatorname{cl}_Y(h(U)) \subseteq \operatorname{cl}_Y(\Delta(Y)) = \Delta(Y).$$

最後の等号で Y :: separated / S を用いた. 可換図式にある $Y \times_S Y \to Y$ の射を $\mathrm{pr}_1,\mathrm{pr}_2$ とする. $h(X) \subseteq \Delta(Y)$ から以下が得られる.

$$\forall x \in X, \quad \exists y \in Y, \quad f(x) = \operatorname{pr}_1 \circ h(x) = \operatorname{pr}_1 \circ \Delta(y) = y = \operatorname{pr}_2 \circ \Delta(y) = \operatorname{pr}_2 \circ h(x) = g(x).$$

よって topological space の射として f = g.

さらに scheme の射として f = g であることを示す.

 $^{^{\}dagger 1}$ $a\in A$ をとると、 $a^n+\phi(b_{n-1})a^{n-1}+\cdots+\phi(b_0)=0$ となる n>0 と $b_i\in B$ が存在する。両辺を u で写すと、 $u\circ\phi=v$ より $u(a)^n+v(b_{n-1})u(a)^{n-1}+\cdots+v(b_0)=0$.

主張 **Ex4.2.1.** V :: open in Y を任意に取る. $\bar{V}=f^{-1}V\cap U=g^{-1}V\cap U(\neq\emptyset)$ とする. 任意の $s\in\mathcal{O}_Y(V)$ に対し $s|_{\bar{V}}=0$ ならば s=0.

 $f|_U=g|_U$ から $(f^\#(s)-g^\#(s))|_{\bar V}=0$ が直ちに得られる。なので、この主張が示されれば $f^\#(s)-g^\#(s)=0$ すなわち $f^\#=g^\#$ が得られる。

(証明). V :: affine の場合に調べれば十分なので $V=\operatorname{Spec} A$ とする. $\mathfrak{p}\in \bar{V}$ を任意に取ると, $s|_{\bar{V}}=0$ より $s_{\mathfrak{p}}=0$. これは s=0 in $A_{\mathfrak{p}}$ を意味する. したがって次が成り立つ.

$$\exists t \notin \mathfrak{p}, \quad st = 0 \in \mathfrak{p}.$$

よって $s\in\mathfrak{p}$, $\mathfrak{p}\in V(s)$ となる. $\mathfrak{p}\in\bar{V}$ は任意にとっていたので $\bar{V}\subseteq V(s)$. \bar{V} は $V=\operatorname{Spec} A$ で dense だから,両辺の閉包をとって V=V(s). すなわち s=0.

Ex4.3 X :: Separated over an Affine Scheme S.

S :: affine scheme, X :: separated scheme /S, U, V :: affine open subscheme of X とする. 以下が fiber product であれば、主張が示せる.

$$U \cap V \longrightarrow X$$

$$\downarrow \qquad \qquad \downarrow \Delta$$

$$U \times_S V \longrightarrow X \times_S X$$

実際, Δ :: closed immersion と Ex3.11a より $U \cap V \to U \times_S V$ は closed immersion. $U \times_S V$:: affine と Ex3.11b より $U \cap V$:: affine.

Ex4.4 "The Image of a Proper Scheme is Proper."

Ex4.5 Center of Valuation Ring of K/k.

X:: integral scheme of finite type over a field k, K:: function field of K とする. 定義から, $X = \bigcup_{i=1}^r \operatorname{Spec} A_i$ となる $\{A_i\}_{i=1}^r$:: integral finitely generated k-algebras が存在する. $U_i = \operatorname{Spec} A_i$ としておく.

K/k の valuation ring R が $x \in X$ を center に持つとは,R が $\mathcal{O}_{X,x}$ を dominate するということである.言い換えれば,injection $\mathcal{O}_{X,x} \hookrightarrow R$ が存在し,これが local ring homomorphism であるということである.

(a) If X :: separated/k then any valuation of K/k has at most one center.

R を K/k の任意の valuation ring とする. 以下の可換図式を考える.

f は与えられたもの、 $\operatorname{Spec} K \to X$ は $\operatorname{Spec} K$ (1 点空間)を X の 1 点 x へ写す埋め込み写像 (Ex2.7,Lemma4.4)、 $\operatorname{Spec} K \to \operatorname{Spec} R$ も埋め込み写像である $^{\dagger 2}$. X :: noetherian scheme だから、

 $^{^{\}dagger 2}$ 「埋め込み写像である」は、それぞれ包含関係 $k(x)\subseteq K, R\subseteq K$ から誘導されている、という意味で書いた.

この時、図式を可換にする $\operatorname{Spec} R \to X$ の射 i が高々一つある (Thm4.3). 加えて、i と同じ条件を満たす射と R の center は一対一に対応する (Lemma4.4). すなわち、R の center は高々一つ.

- (b) If X :: proper/k then any valuation of K/k has just one center. この場合,Thm4.7 より,i は丁度一つある.ほかは (a) と全く同じ.
- (c) The Converses of (a) and (b).

Ex2.7 と Lemma4.4 を使うのだとは思う.

(d) Generalization of ch I, 3.4a.

X:: proper/k かつ k:: algebraically closed とする. この時 $G := \Gamma(X, \mathcal{O}_X) = k$ であることを示す。 $a \in k \implies a \in G \ (k \subseteq G)$ は明らかなので, $a \not\in k \implies a \not\in G$ を示せば十分である.そのために, $a \not\in k$ かつ $a \in G$ となる元が存在すると仮定しよう.

 $k[a^{-1}] \subseteq R \subsetneq K$ なる valuation ring R すべての共通部分は、Thm4.11 より K における整閉包 $\overline{k[a^{-1}]}$ である。下で示すように、これは a を含まない。したがって $a^{-1} \in R, a \notin R$ であるような valuation ring R が存在する。 a^{-1} は R の単元でないから $a^{-1} \in \mathfrak{m}_R$ 。一方、 $a \in \Gamma(X, \mathcal{O}_X) \subseteq K$ から、任意の $x \in X$ について $a \in \mathcal{O}_{X,x}$ 。よって $(a \in) \mathcal{O}_{X,x} \subseteq R$ ならば $a \cdot a^{-1} = 1 \in \mathfrak{m}_R$ となり、不合理。したがって R はいかなる点も center に持たない。これは (b) に反する。

主張 Ex4.5.1.

$$a \not\in \overline{k[a^{-1}]}$$
.

(証明). $a \in K$ が $k[a^{-1}]$ 上整ならば、以下のような零でない多項式 f が存在する.

$$f \in k[a^{-1}][X]$$
, $\deg f = d > 0$, $f(a) = a^d + c_{d-1}a^{d-1} + \dots + c_0 = 0$.

最後の等式の両辺に $a^{-d} \in k[a^{-1}]$ をかける.

$$a^{-d}f(a) = 1 + c_{d-1}a^{-1} + \dots + c_0a^{-d} = 0.$$

 $c_i \in k[a^{-1}]$ だから,この等式は $f'(a^{-1}) = 0$ を満たす零でない多項式 $f' \in k[X]$ が存在すること,すなわち a^{-1} が k 上代数的であることを意味する(等式において, a^{-1} についての最高次係数は k の元であることに注意). しかし $a \notin k = \bar{k}$ だからこれはありえない.

Ex4.6 f :: proper morphism of affine varieties/k. Then f :: finite.

 $f: X \to Y$ を考える。X,Y:: affine variety / k より,X,Y は A,B:: affine domain / k を用いて $X = \operatorname{Spec} A, Y = \operatorname{Spec} B$ と書ける。f から誘導される環準同型を $\phi: B \to A$ とする。A,B:: affine domain / k から特に X,Y は Noetherian である。また,f:: finite type より A:: finitely generated B-algebra。よって,f:: finite であるためには $\phi::$ integral すなわち A:: integral / $\phi(B)$ を示せば十分である。

 $K = \operatorname{Quot}(\phi(B))$ とし、R を $\phi(B) \subseteq R \subset K$ であるような任意の valuation ring とする. Thm4.7

から以下の可換図式が得られる.

 $A \to R \to K = A \to K$ かつ右辺が埋め込みであることから $A \to R$ は埋め込みである. すなわち $(\phi(B) \subseteq) A \subseteq R$. R のとり方と Thm4.11 より, $A \subseteq \overline{\phi(B)}$. よって A :: integral / $\phi(B)$.

- Ex4.7 Schemes Over \mathbb{R}
- Ex4.8 Let \wp :: Property of Morphisms of Schemes
- Ex4.9 Composition of Projective Morphisms is Projective
- Ex4.10 Chow's Lemma.
- Ex4.11 Descrite Valuative Criteria of Separatedness and Properness.
- Ex4.12 Examples of Valuation Rings.
- (a) If K/k:: function field of dim= 1, then every valuation ring of K/k is discrete.

K に対応する nonsingular projective curve を $\tilde{C}(\text{cf. ch I, Cor6.12})$ とし, $C=t(\tilde{C})$ を C に対応する scheme とする (Prop 2.6). これは projective integral scheme/k,特に proper & integral scheme of finite type /k (Prop4.10). C 上の irreducible closed subset は C と closed point しか無いから,C の点は ζ :: generic point と closed point しかない.

主張 Ex4.12.1 (claim 1). $K = \mathcal{O}_{C,\zeta} = K(\tilde{C})$.

(証明). Prop2.6 の証明を見ると、 \mathcal{O}_C は sheaf of regular functions on \tilde{C} である. なので $K(\tilde{C}), \mathcal{O}_{C,\zeta}$ の定義から両者は一致する.

主張 Ex4.12.2 (claim 2). $x \in C$:: closed point について $\mathcal{O}_{C,x}$:: DVR.

(証明). \mathcal{O}_C :: sheaf of regular functions on \tilde{C} から, $\mathcal{O}_{C,x} = \mathcal{O}_{\tilde{C},x}$. これが DVR であることは ch I, Prop6.7 の証明中程にもあるし,ch I, Thm6.2 と Dedekind domain の定義の下の文からも分かる.

K/k の(K ではない)任意の valuation ring R を考える。C :: proper & integral scheme of finite type /k, Ex4.5b と claim 1 より,R が $\mathcal{O}_{C,x}$ を dominate するような点 $x \in C$ が一つあることが言える。 $\mathcal{O}_{C,x} \subseteq R \neq K$ から,x :: closed point.さらに claim 2 から,R は少なくとも一つの DVR を dominate すると言える.valuation ring の極大性から $\mathcal{O}_{C,x} = R$:: DVR.

4