

Introduction to lasers

Pr A. Desfarges-Berthelemot – Limoges University

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

Course outline

Chapter 1: Introduction, some examples of applications / main features of laser light

Chapter 2: Amplifier gain

Chapter 3: Laser Oscillator

Chapter 4: Features of laser emission

- ✓ Laser efficiency
- ✓ Spatial characteristics
- ✓ Spectral characteristics

Chapter 5: Laser operating regimes

- ✓ Continuous-wave regime
- ✓ Q-switch regime
- ✓ Mode-locked regime

Chapter 6: Some solid-state lasers

Chapter 1 - Introduction

□ Laser: acronym of Laser Amplification by Stimulated Emission of Radiation

□Scientific milestones

1917: Stimulated emission

A. Einstein

■ 1949: First optical pumping and first population inversion

A. Kastler

■ 1958: Confinement of the electromagnetic field in an open cavity: Fabry-Perot cavity

T

A. Shawlow and C. Townes

1960: First laser (Ruby laser)

T. Maiman

3 main elements

• Amplifying medium (stimulated emission)
Crystal, optical fiber, semiconductor, gas

2 Optical pumping system

Photon absorption, electrical discharge,
carrier injection (laser diode)

3 Resonant cavity: Fabry Perot, ring cavity

FP cavity

Laser: « transformer box for light »

CW = Continuous_wave

Module Fundamental of photonics - Chapter 1: Introduction, some examples of applications / main features of laser light

A few applications / laser light features

□ space concentration

Low divergence beam

LIDAR (Light detection and ranging): determination of the type or concentration of gas in the atmosphere, wind speed, distance measurement to a target....

wireless power transmission

Interstellar travel using laserpowered sails (20-30% of the speed of light)

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

□ Space concentration

Focusing

Material processing

Drilling in parallel

Cutting

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

☐ Time concentration

tattoo removal

Tissue Ablation and Micro & Nano Surgery

Femtosecond to nanosecond Pulses

Micro and nanostructuring: waveguide writing, microfluidic channeling, Silicon scribing

High harmonic generation (due to strong nonlinear interactions when a laser light is focused into a gas (usually at reduced pressure)
Instead of synchrotron radiation

E(rasmus) Mundus on Innovative Microwave Electronics and Optics

□Spectral concentration

- Capability to control the laser frequency with high accuracy $\Delta v/v \# 10^{-14}$
 - → frequency reference
 - → Atom manipulation, atom cooling (Atom optics)