Problem Sheet 3

- 1. Describe in words the following queueing systems:
 - (a) M/M/5
 - (b) D/M/1/5/SIRO
 - (c) $G/G/\infty$
 - (d) $M^3/D/\infty/\infty/\mathsf{PS}$
 - (e) $M/E_2/1/\infty/\mathsf{FIFO}$
- 2. At a chicken shop the deep-fat-fryer can be described as a Markovian queue. Chicken pieces are put in the fryer at a rate of λ per time unit. There is room for only 3 pieces of chicken in the fryer, and no new chicken orders are taken when the fryer is full. When a piece of chicken if in the fryer alone it completes frying at a rate of μ . When there are two pieces of chicken in the fryer they cook at a rate of μ /3, and when there are three pieces of chicken in the fryer they cook at a rate of μ /4.

Find the steady-state probabilities in terms of λ and μ .

Find the expected number of pieces of chicken in the fryer when $\lambda = 5$ and $\mu = 9$.

- 3. Consider an M/M/1 queue with arrival rate $\lambda=10$ and $\mu=15$. Find ρ , P_0 , L, W, W_q , and L_q .
- 4. Consider an $M/M/\infty$ queue with arrival rate $\lambda=6$ and $\mu=8$. Find P_0 , L, W, W_q , and L_q .
- 5. For an $M/M/\infty$ queue with arrival rate λ and service rate μ , derive the fact that $L=^{\lambda}/_{\mu}$ without using Little's laws.
- 6. A blood diagnostic centre can be described as an M/M/1 queue. Blood samples arrive at a rate of λ per time unit. Once in the centre, whether being processed of waiting, the samples need to be kept cold, at a cost of C_h per time unit. An automated diagnostic machine can process the blood samples one at a time, at a rate of μ per time unit, which can be controlled. It costs μC_s per time unit to run the machine at a rate μ . What should the machine's service rate be set to in order to minimise the overall cost?