

University of Michigan – Shanghai Jiao Tong University Joint Institute (UM-SJTU JI)

Ampere's Law

Solenoid

28.25 (a) A toroidal solenoid. For clarity, only a few turns of the winding are shown. (b) Integration paths (black circles) used to compute the magnetic field \vec{B} set up by the current (shown as dots and crosses).

The magnetic field is confined almost entirely to the space enclosed by the windings (in blue). Figure 28.25a shows a doughnut-shaped toroidal solenoid, tightly wound with N turns of wire carrying a current I. (In a practical solenoid the turns would be much more closely spaced than they are in the figure.) Find the magnetic field at all points.

Induction

Direction

- Flux is positive ($\Phi_B > 0$) ...
- ... and becoming more positive $(d\Phi_R/dt > 0)$.
- Induced emf is negative ($\mathcal{E} < 0$).

- Flux is negative ($\Phi_B < 0$) ...
- ... and becoming more negative $(d\Phi_B/dt < 0)$.
- Induced emf is positive ($\mathcal{E} > 0$).

- Flux is positive ($\Phi_B > 0$) ...
- ... and becoming less positive $(d\Phi_R/dt < 0)$.
- Induced emf is positive ($\mathcal{E} > 0$).

- Flux is negative ($\Phi_B < 0$) ...
- ... and becoming less negative $(d\Phi_B/dt > 0)$.
- Induced emf is negative ($\mathcal{E} < 0$).

Lenz's Law

The direction of any magnetic induction effect is such as to oppose the cause of the effect.

Faraday's disk

Example

A 500-loop circular wire coil with radius 4.00 cm is placed between the poles of a large electromagnet. The magnetic field is uniform and makes an angle of 60° with the plane of the coil; it decreases at 0.200 T/s. What are the magnitude and direction of the induced emf?

Displacement Current

Maxwell's Equations

Gauss's law for \vec{E} :

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{\text{encl}}}{\epsilon_0}$$
 Charge enclosed by surface Electric constant

(29.18)

Gauss's law for \vec{B} :

Flux of magnetic field through any closed surface ...

$$\oint \vec{B} \cdot d\vec{A} = 0 \quad \dots \text{ equals zero.}$$
 (29.19)

Faraday's law for a stationary integration path:

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$
Negative of the time rate of change of magnetic flux through path (29.20)

Maxwell's Equations

Example

29.65 • CALC The long, straight wire shown in Fig. P29.65a carries constant current I. A metal bar with length L is moving at constant velocity \vec{v} , as shown in the figure. Point a is a distance d from the wire. (a) Calculate the emf induced in the bar. (b) Which point, a or b, is at higher potential? (c) If the bar is replaced by a rectangular wire loop of resistance R (Fig. P29.65b), what is the magnitude of the current induced in the loop?

Figure **P29.65**

