Technische Universität München

Dr. Michael Luttenberger – Jeremias Bohn – Julian Geheeb

Blatt 5 - Folgen, Grenzwerte, Reihen

Aufgaben

Folgengrenzwerte

Sie können ihr Ergebnis z.B. mittels Wolfram Alpha überprüfen.

Syntax z.B. limit $(3n+2(-1)^n)/n$ as n->infinity

Geben Sie zu jeder Teilaufgabe jeweils bestimmt divergente Folgen (a_n) , (b_n) an mit:

a)
$$\lim_{n\to\infty} (a_n - b_n) = 0$$

b)
$$\lim_{n\to\infty} (a_n - b_n) = +\infty$$

c)
$$\lim_{n\to\infty} (a_n - b_n) = -\infty$$

d)
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = 0$$

e)
$$\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = 1$$

Spielereien mit Geogebra - (1/2)5.3

Laden Sie sich diese Vorlage für GeoGebra/classic herunter. 1

Durch Umdefinieren von a(n,x) können Sie sich verschiedene Folgen für n=1 bis n=20anzeigen lassen; vordefiniert sind $f_1(n,x) = 2 - \frac{1}{n+1}$ und $f_2(n,x) = x + \frac{2-x^2}{4x}$

Durch Variieren von a_{\lim} und ϵ (Schieberegler) können Sie (den Kandidaten für) den Grenzwert samt dem ϵ -Schlauch anpassen.

Machen Sie sich hiermit klar, dass die Definition von $a = \lim_{n\to\infty} a_n$ gerade besagt, dass für jedes $\epsilon > 0$ fast alle ("alle bis auf endliche viele") Folgenglieder in dem ϵ -Schlauch um den Grenzwert liegen müssen. Für monoton wachsende bzw. fallende Folgen benötigt man natürlich nur eine Hälfte des ϵ -Schlauchs.

Definieren Sie auch noch die restlichen Folgen aus den Beispielen, um diese graphisch zu untersuchen.

¹Wenn Sie GeoGebra Classic 6 lokal installieren, sollte die Vorlage direkt geöffnet werden können; ansonsten ins geöffnete Browser-Fenster ziehen.

²Der zweite Parameter x wird bei rekursiv definierten Folgen für den vorhergehenden Wert benötigt.