Loss Function

Junkun Yuan Zhejiang University

yuanjk@zju.edu.cn

1. Introduction

A **loss function/**cost function/error function is a function that maps an event or values of one or more variables onto a real number intuitively representing "cost" associated with the event. In statistics, typically a loss function is used for parameter estimation, and the event is function of difference between estimated and true values of an instance of data.¹

We summarize **basic loss functions** with key phrases:

- L1/MAE: mean absolute error of regression.
- MSE: mean squared error of regression/classification.
- 0-1: error rate of binary classification, non-convex, discontinuous.
- Hinge: maximum-margin classification, SVMs.
- BCE: binary cross entropy of binary classification.
- CrossEntropy: cross entropy of classification.
- KL: Kullback-Leibler divergence of classification.

We summarize loss functions for image segmentation:

- BCE: binary classification of pixels, balanced classes.
- W-BCE: weighted binary cross entropy, skewed data, tune false negatives and false positives.
- **B-BCE:** balanced binary cross-entropy, skewed data.
- Focal: down-weights easy examples.
- Sensitivity Specificity: weighted sum of sensitivity and specificity, TP is important.
- Dice: overlap ratio.
- Tversky: add a weight to to FP and FN in Dice.

2. Basic Loss Functions

2.1. Regression

2.1.1 L1/MAE

L1/MAE loss function measures the mean absolute error of regression with prediction \hat{y} and target y.

$$\ell_{\text{L1/MAE}} = \frac{1}{N} \sum_{n=1}^{N} |\hat{y}_n - y_n| \tag{1}$$

2.1.2 MSE

MSE loss measures the mean squared error of regression/classification with prediction \hat{y} and target y.

$$\ell_{\text{MSE}} = \frac{1}{N} \sum_{n=1}^{N} (\hat{y}_n - y_n)^2$$
 (2)

2.2. Classification

2.2.1 0-1

0-1 loss function measures the error rate of binary classification with prediction \hat{y} and target y.

$$\ell_{0-1} = \frac{1}{N} \sum_{n=1}^{N} \begin{cases} 1, & y_n \neq \hat{y}_n \\ 0, & y_n = \hat{y}_n \end{cases}$$
 (3)

But it is non-convex and discontinuous.

2.2.2 Hinge

Hinge loss, notably for SVMs, is used for maximum-margin classification with prediction \hat{y} , label $y \in \{-1, 1\}$:

$$\ell_{\text{Hinge}} = \frac{1}{N} \sum_{i=1}^{N} \max(0, 1 - y\hat{y})$$
 (4)

 $^{^1\}mathrm{From}$ wikipedia on loss function: https://en.wikipedia.org/wiki/Loss_function.

2.2.3 BCE

BCE loss measures binary cross entropy of binary classification with prediction \hat{y} and target y.

$$\ell_{\text{BCE}} = \mathbb{E}_{P(y)} - \log P(\hat{y})$$

$$= -\frac{1}{N} \sum_{n=1}^{N} y_n \log \hat{y}_n + (1 - y_n) \log(1 - \hat{y}_n)$$
(5)

2.2.4 CrossEntropy

CrossEntropy loss computes the cross entropy of classification with prediction \hat{y} and target y.

$$\ell_{\text{CrossEntropy}} = \mathbb{E}_{P(y)} - \log P(\hat{y})$$

$$= \frac{1}{N} \sum_{n=1}^{N} \left[-\sum_{c=1}^{C} y_{n,c} \log \hat{y}_{n,c} \right]$$
(6)

 $y_{n,c}/\hat{y}_{n,c}$ represents the c-th class dimension of the prediction/target of the n-th example.

Discussion: Why do we often use CrossEntropy rather than MSE for classification? Assume that the prediction \hat{y} is calculated by $\hat{y} = \sigma(wx + b)$ with weight parameter w, bias parameter b, and activation function σ . With MSE loss, we update the parameters by calculating their gradients:

$$\frac{\partial \ell_{\text{MSE}}}{\partial w} = \frac{\partial \ell_{\text{MSE}}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} = 2(\hat{y} - y)\sigma'x$$

$$\frac{\partial \ell_{\text{MSE}}}{\partial b} = \frac{\partial \ell_{\text{MSE}}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = 2(\hat{y} - y)\sigma'$$
(7)

It could slow down parameter update and optimization convergence when the activation function σ is easily saturated with large input like Sigmoid. Similarly and simply, considering CrossEntropy loss with two classes:

$$\begin{split} \frac{\partial \ell_{\text{CrossEntropy}}}{\partial w} &= \frac{\partial \ell_{\text{CrossEntropy}}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w} \\ &= -\left(\frac{y}{\hat{y}} + \frac{y-1}{1-\hat{y}}\right) \sigma' x \\ &= \left(\frac{y(\hat{y}-1) - \hat{y}(y-1)}{\hat{y}(1-\hat{y})}\right) \underbrace{\hat{y}(1-\hat{y})}_{\text{Sigmoid gradient}} x \\ &= (\hat{y}-y)x \\ \frac{\partial \ell_{\text{CrossEntropy}}}{\partial b} &= \frac{\partial \ell_{\text{CrossEntropy}}}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial b} = (\hat{y}-y) \end{split}$$

The gradients are not relevant to activation function σ , but to the distance between the prediction \hat{y} and the target y. It speeds up the parameter update when the distance is large.

2.2.5 KL

KL loss measures Kullback-Leibler divergence of classification with prediction \hat{y} and target y.

$$\ell_{KL} = \mathbb{E}_{P(y)} \log \frac{P(y)}{P(\hat{y})}$$

$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{c=1}^{C} y_{n,c} \log \frac{y_{n,c}}{\hat{y}_{n,c}}$$
(9)

Note that $\ell_{\text{KL}} = \ell_{\text{CrossEntropy}} - \ell_{\text{Entropy}}$, where ℓ_{Entropy} is the entropy of the target y.

3. Loss Functions for Image Segmentation

Image segmentation can be seen as a classification task on image pixels. We introduce the popular loss functions for image segmentation by following [3].

3.1. Distribution-Based Loss Functions

3.1.1 BCE

It applies Eq. (5) to pixels of image segmentation. It is suitable for image segmentation with balanced classes.

3.1.2 W-BCE

W-BCE is weighted binary cross entropy where positive examples are weighted, suited for skewed data.

$$\ell_{\text{W-RCE}} = -(\beta y \log \hat{y} + (1 - y) \log(1 - \hat{y})) \tag{10}$$

The hyper-parameter β tunes false negatives and false positives. Set $\beta > 1$ may reduce false negatives, and vice versa.

3.1.3 B-BCE

B-BCE is balanced binary cross-entropy with $\beta = 1 - \frac{y}{HW}$.

$$\ell_{\text{W-BCE}} = -(\beta y \log \hat{y} + (1 - \beta)(1 - y) \log(1 - \hat{y})) \tag{11}$$

3.1.4 Focal

Focal loss [4] down-weights easy examples and focus on hard negatives using a focusing parameter $\gamma >= 0$ and a balance parameter α . Its original form [4] with label y is:

$$\ell_{\text{Focal}} = -\alpha_t (1 - p_t)^{\gamma} \log(p_t), \tag{12}$$

where
$$p_t = \begin{cases} p, & \text{if } y = 1\\ 1 - p, & \text{otherwise} \end{cases}$$
 (13)

p is the prediction used as \hat{y} by us. We rewrite Eq. (12):

$$\ell_{\text{Focal}} = -\left(\alpha (1 - \hat{y})^{\gamma} y \log \hat{y} + (1 - \alpha) \hat{y}^{\gamma} (1 - y) \log(1 - \hat{y})\right) \tag{14}$$

3.2. Region-Based Loss Functions

3.2.1 Sensitivity Specificity

Sensitivity specificity loss [2] is the weighted sum of sensitivity and specificity with weight w.

$$\ell_{\text{SensitivitySpecificity}} = w * \text{sensitivity} + (1 - w) * \text{specificity}$$
(15)

where sensitivity =
$$\frac{TP}{TP + FN}$$
 specificity = $\frac{TN}{TN + FP}$ (16)

It is suitable to apply it to the cases where TP is important.

3.2.2 Dice

Dice loss [5] measures overlap ratio of segmentation images with the prediction \hat{y} and label y:

$$\ell_{Dice} = 1 - \frac{2|Y \cap \hat{Y}|}{|Y| + |\hat{Y}|}$$

$$= 1 - \frac{2y\hat{y} + \epsilon}{y + \hat{y} + \epsilon}$$
(17)

3.2.3 Tversky

Tversky loss adds a weight β to FP and FN in Dice loss:

$$\ell_{\text{Tversky}} = 1 - \frac{y\hat{y} + \epsilon}{y\hat{y} + \beta(1 - y)\hat{y} + (1 - \beta)y(1 - \hat{y}) + \epsilon}$$
(18)

3.2.4 Focal Tversky

Focal Tversky loss [1] also learns hard examples more:

$$\ell_{FocalTversky} = \sum_{c} (1 - TI_c)^{\gamma}$$
 (19)

References

- [1] Nabila Abraham and Naimul Mefraz Khan. A novel focal tversky loss function with improved attention u-net for lesion segmentation. In 2019 IEEE 16th international symposium on biomedical imaging (ISBI 2019), pages 683–687. IEEE, 2019.
- [2] Seyed Raein Hashemi, Seyed Sadegh Mohseni Salehi, Deniz Erdogmus, Sanjay P Prabhu, Simon K Warfield, and Ali Gholipour. Asymmetric loss functions and deep denselyconnected networks for highly-imbalanced medical image segmentation: Application to multiple sclerosis lesion detection. *IEEE Access*, 7:1721–1735, 2018. 3
- [3] Shruti Jadon. A survey of loss functions for semantic segmentation. In 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pages 1–7. IEEE, 2020. 2

- [4] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In *Proceedings of the IEEE international conference on computer vision*, pages 2980–2988, 2017. 2
- [5] Carole H Sudre, Wenqi Li, Tom Vercauteren, Sebastien Ourselin, and M Jorge Cardoso. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In *Deep learning in medical image analysis and multimodal learning for clinical decision support*, pages 240–248. Springer, 2017. 3