

VANDERBILT

Enhancing Melanoma Detection

Allan Zhang, David Huang, Aditya Shrey, Minseok Son CS 4262, Spring 2024

Overview: Melanoma Skin Cancer

Deadly if not detected early

Accounts for only 1% of skin cancer but causes majority of skin cancer deaths (American Cancer Society)

Lab Based Detection

Uncertainty from the individual

Overview: Melanoma Skin Cancer

Deadly if not detected early

Accounts for only 1% of skin cancer but causes majority of skin cancer deaths (American Cancer Society)

Lab Based Detection

Uncertainty from the individual

Apply Machine Learning methods to the Image Classification problem

Dataset

- Melanoma Skin Cancer Dataset from Kaggle
- 10605 images
 - 5500 benign, 5105 malignant

Methods

Data Exploration Convolutional Neural Networks Support Vector Machines Logistic Regression Transfer Learning

Data Exploration

- Images had minimal noise, facilitating precise feature extraction and were balanced.

- All images resized to a uniform resolution of 100 x 100 pixels; pixel values normalized to the [0, 1] range to ensure stable model training.

 Implemented random horizontal flips and rotations to mirror real-world variations, enhancing model robustness and generalization capabilities.

Dimensionality Reduction

- Applied PCA to manage high dimensionality of image data.
- Efficient Feature Reduction: Reduced from 9,605 features to 66, retaining 95% of original variance.
- Enhanced Model Efficiency: Significant dimensionality reduction speeds up training without losing critical information.

CNN

CNN Model Architecture

- Input (100x100x3)
- CNN Layer 1 (16 filters), ReLU, MaxPool (2x2)
- CNN Layer 2 (32 filters), ReLU, MaxPool (2x2)
- Flatten
- Fully connected layer (flatten dimension to 512)
- Fully connected layer (512 to 2)
- Output: max of the two outputs

Hyperparameter Optimization

- CNN Layers
 - **[16, 32]**, [16, 32, 64], [16, 32, 64, 128, 256]
- 3, 5, and **10** training epochs
- Tried all 9 combinations
- Could have optimized on more values
 - Linear layers, size of max pooling, etc.

SVM: Motivation

- Kernel functions
 - Better at handling higher dimensional data compared to other supervised learning models

- Advantages over deep learning
 - Has shown promises in situations where training samples availabilities are limited
 - Better interpretability
 - Computational efficiency

SVM: Training Process

- PCA
- Split full training set into training and validation
- RBF performed much better than linear kernel
- Grid search for hyperparameters
 - 10 values of C logarithmically spaced between 1E-2 and 1E10
 - 8 values of gamma logarithmically spaced between 1E-9 and 1E3, along with "auto" and "scale"
 - Used 5-fold cross-validation for evaluation
 - Best parameters: C=4.64, gamma: 'scale'

SVM: Plots

Logistic Regression

- A baseline model for us to compare to

- Also used PCA and grid search for consistency
 - C is logarithmically spaced between 1E-10 and 1E10
 - 5 fold CV

Logistic Regression

Transfer Learning: ResNet-18

- Residual Networks use the Residual Learning Block
 - Gets rid of the vanishing gradient descent problem
- Trained on the ImageNet data set
 - Trained for versatility in image processing

Transfer Learning: Details

Freeze Model Weights

Replace Fully Connected Layer is just 2 units

Results

Model	ACCURACY	PRECISION	RECALL	F1-Score
CNN	0.917	0.917	0.917	0.917
SVM	0.89	0.89	0.89	0.89
LOGISTIC REGRESSION	0.86	0.86	0.86	0.86
TRANSFER LEARNING (RESNET-18)	0.899	0.90	0.899	0.8986

References

- He et al. (2015). Deep Residual Learning for Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.48550/arXiv.1512.03385.
- Huang, Y., Wang, K., & Chen, D. (2005). Diagnosis of breast tumors with ultrasonic texture analysis using support vector machines. Neural Computing and Applications, 15(2), 164-169. https://doi.org/10.1007/s00521-005-0019-5.
- Javid, Muhammad Hasnain. (2022). Melanoma Skin Cancer Dataset of 10000 Images [Data set]. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/3376422.
- Kaul A, Raina S. Support vector machine versus convolutional neural network for hyperspectral image classification: A systematic review. Concurrency Computat Pract Exper. 2022; 34(15):e6945. doi:10.1002/cpe.6945.
- Ramzan et al. (2019). A Deep Learning Approach for Automated Diagnosis and Multi-Class Classification of Alzheimer's Disease Stages Using Resting-State fMRI and Residual Neural Networks. Journal of Medical Systems 44(2). DOI:10.1007/s10916-019-1475-2.
- Verma, Mayank. "CNN Model." Medium, 8 May 2022, https://medium.com/@mayankverma05032001/binary-classification-using-convolution-neural-network-cnn-model-6e35cdf5bdbb.
- Virmani, J. et al. (2013). Characterization of primary and secondary malignant liver lesions from b-mode ultrasound. Journal of Digital Imaging, 26(6), 1058-1070. https://doi.org/10.1007/s10278-013-9578-7.
- Zhuang et al. (2020). A Comprehensive Survey on Transfer Learning. Proceedings of IEEE. https://doi.org/10.48550/arXiv.1911.02685.
- Perez, L., & Wang, J. (2017). The Effectiveness of Data Augmentation in Image Classification using Deep Learning. arXiv preprint arXiv:1712.04621.

