Exercices: suites généralités.

Exercice 1 : Pour chacune des suites (u_n) définies sur \mathbb{N} calculer u_0 , u_1 , u_2 , u_3 , u_4 et u_{10} .

a.
$$u_n = 4n + 5$$

b.
$$u_n = n^2$$

c.
$$u_n = (-2)$$

a.
$$u_n = 4n + 5$$
 b. $u_n = n^2$ c. $u_n = (-2)^n$ d. $u_n = \frac{n-1}{n+2}$

e.
$$u_n = \sin(n\frac{\pi}{2})$$
 f. $u_n = 2 + (-1)^n$

f.
$$u_n = 2 + (-1)^n$$

Exercice 2:

- 1. Soit la suite (v_n) définie sur \mathbb{N}^* par $v_n = \frac{1}{n}$. Représenter graphiquement dans le plan les 10 premiers termes de la suite.
- Représenter sur le même graphique les 10 premiers termes de la suite (w_n) définie par $w_n = \frac{(-1)^n}{n}$ pour $n \ge 1$.

Exercice 3:

- 1. Afficher sur votre calculatrice la liste des 20 premiers termes de la suite u définie sur Npar $u_n = \frac{2n}{n+1}$ et les représenter graphiquement.
- 2. Comparer ces termes à 2.
- Démontrer que pour tout $n \ge 0$, $u_n \le 2$.

Exercice 4: Dans chacun des cas suivants, exprimer u_{n+1} et u_{n-1} en fonction de n pour tout $n \ge 0$:

a.
$$u_n = 4n + 2$$

b.
$$u_n = n^2 + 4n$$
 c. $u_n = (-1)^n$ d. $u_n = 2^{n-1}$

d.
$$u_n = 2^{n-1}$$

Exercice 5 : Soit (v_n) la suite définie sur Npar $v_n = n^2 + 2n$.

Exprimer V_{n+1} , V_{2n} et V_{n+4} en fonction de n.

Exercice 6: Pour chacune des suites (u_n) définies sur \mathbb{N} calculer u_1 , u_2 , u_3 , u_4 et u_5 .

- a. $u_0 = 2$ et pour tout $n \ge 0$, $u_{n+1} = 4u_n 2$.
- b. $u_0 = 0$ et pour tout $n \ge 0$, $u_{n+1} = u_n^2 + \frac{3}{n+1}$.
- c. $u_0 = -1$ et pour tout $n \ge 1$, $u_n = 4u_{n-1} + 2n$
- d. $u_0 = 3$ et pour tout $n \ge 1$, $u_n = 2u_{n-1} 3$.

Exercice 7: La suite (u_n) est définie pour tout $n \ge 1$ par $u_n = 1 + \frac{10}{n}$.

- 1. En étudiant le signe de $u_{n+1} u_n$, montrer que la suite (u_n) est décroissante pour $n \ge 1$.
- 2. Retrouver ce résultat en étudiant les variations de la fonction f définie sur]0; $+\infty[$ par $f(x) = 1 + \frac{10}{x}$.

Exercice 8: Soit la suite (u_n) définie par $u_0=1$ et $u_{n+1}=u_n+n^2-\frac{15}{2}$.

En étudiant le signe de $u_{n+1} - u_n$, déterminer les variations de (u_n) .

Exercice 9 : Déterminer le sens de variation de la suite (u_n) , définie par :

- a. $u_0 = 0$ et pour tout $n \ge 0$, $u_{n+1} = u_n + 2n + 3$.
- b. $u_1 = 3$ et pour tout $n \ge 1$, $u_{n+1} = u_n n + 1$.

Exercice 10: La suite (u_n) est définie pour tout $n \ge 0$ par $u_n = \frac{n^2}{2^n}$.

- 1. Calculer u_0 , u_1 , u_2 et u_3 .
- 2. Montrer que $\frac{u_{n+1}}{u}$ < 1 à partir d'un certain rang à préciser.
- 3. En déduire les variations de (u_{\perp})

Exercice 11: La suite (u_n) est définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$ $u_{n+1} = \frac{5u_n}{n+1}$.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer que $\frac{u_{n+1}}{u} < 1$ à partir d'un certain rang à préciser.
- 3. En déduire les variations de (u_n) .

Exercice 12 : Donner le sens de variation des suites :

a.
$$(0.8^n)_{n\geq 0}$$
 b. $(1.2^n)_{n\geq 0}$ c. $(2^n)_{n\geq 0}$ d. $(\frac{1}{3^n})_{n\geq 0}$

c.
$$(2^n)_{n \ge n}$$

d.
$$\left(\frac{1}{3^n}\right)_{n\geqslant \infty}$$

Exercice 13 : Dans chaque cas, déterminer si la suite converge en précisant sa limite éventuelle.

- a. La suite (u_n) est définie sur \mathbb{N} par $u_n = 1 + \frac{1}{n+1}$.
- b. La suite (v_n) est définie sur \mathbb{N} par $v_n = (-1)^n \times n$.
- c. La suite (w_n) est définie sur \mathbb{N} par $w_n = n \frac{1}{n+1}$.

Exercice 14 : Dans un disque de rayon 1, on trace un premier secteur qui est un demi-disque. Le deuxième secteur est la moitié du premier, le troisième secteur est la moitié du deuxième, etc.

- 1. Quelle portion du disque représente :
 - a. L'aire du n-ième disque ?
 - b. L'aire totale des n premiers secteurs ?
- 2. Combien de secteurs faut-il tracer pour recouvrir au moins 90% du disque ? 95% ? 99% ?
- 3. Quelles limites conjecture-t-on pour la suite des aires des secteurs ? Des aires totales des secteurs ?

Exercice 15 : Un nénuphar géant couvre 10m^2 d'un étang et croît de 8% chaque jour. On désigne par a_n l'aire de ce nénuphar n jours plus tard.

Exprimer a_n en fonction de n et déterminer au bout de combien de temps le nénuphar recouvrera-t-il l'étang si celui-ci a une superficie de 10000m^2 ; de 100000m^2 ; de 100000m^2 .

Exercice 16:

- 1. On lance trois dés bien équilibrés. Quelle est la probabilité d'obtenir 421 ?
- 2. On répète n fois ce lancer $(n \in \mathbb{N}^*)$.
 - a. Quelle est la probabilité p_n d'obtenir au moins une fois 421 ?
 - b. Pour quelles valeurs de n a-t-on $p_n \ge 0.99$?

Exercise 17: Soit $u_0 = 1$ et $u_{n+1} = u_n + n + 1$ pour tout $n \ge 0$.

- 1. a. Calculer ses cinq premiers termes.
 - b. Cette suite est-elle arithmétique ? Géométrique ?
- 2. On définit la suite (v_n) par $v_n = u_{n+1} u_n$.
 - a. Calculer les 4 premiers termes de (v_n) .
 - b. Montrer que (v_n) est une suite géométrique.
- 3. a. Calculer $v_0 + v_1 + ... + v_{n-1}$ en fonction de n.
 - b. Exprimer $v_0 + v_1 + ... + v_{n-1}$ en fonction de u_n et en déduire l'expression de u_n en fonction de n.

Exercice 18: On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par :

$$\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{2u_n + v_n}{3} \end{cases} \text{ et } \begin{cases} v_0 = 2 \\ v_{n+1} = \frac{u_n + 2v_n}{3} \end{cases}.$$

- 1. Calculer u_1 , u_2 et v_1 , v_2 .
- 2. On considère la suite (d_n) définie pour tout entier naturel n par $d_n = v_n u_n$.
 - a. Monter que (d_n) est une suite géométrique.
 - b. Donner l'expression de d_n en fonction de n.
- 3. Soit $s_n = u_n + v_n$ pour tout $n \ge 0$.
 - a. Calculer S_0 , S_1 et S_2 .
 - b. Montrer que $S_{n+1} = S_n$. Qu'en déduit-on?

- 4. En déduire u_n et v_n en fonction de n.
- 5. Déterminer $U_n = u_0 + u_1 + ... + u_n$ et $V_n = v_0 + v_1 + ... + v_n$.

Exercice 19: On considère la suite (u_n) définie par $u_0=0$ et pour tout n>0, $u_n=n-u_{n-1}$.

- 1. a. Faire afficher sur une calculatrice la liste des 30 premiers termes de cette suite et les représenter graphiquement.
 - b. Que constate-t-on?
 - c. Émettre une conjecture sur l'expression de u_n en fonction de n pour $n \ge 0$ (on distinguera deux cas).
- 2. On note, pour tout $n \ge 0$, $v_n = u_{2n}$.
 - a. Donner les quatre premiers termes de la suite (v_n) .
 - b. Quelle semble être la nature de la suite (v_n) ? Le démontrer.
 - c. En déduire l'expression de V_n en fonction de n.
- 3. Démontrer les conjectures émises en 1c.

Exercice 20 : De nombreux produits radioactifs sont utilisés en médecine.

- 1. L'iode 131
 - On étudie l'évolution au cours du temps d'une population de noyaux d'iode 131 comportant $u_0 = 10^7$ noyaux à t = 0 (début de l'observation). On note u_n le nombre d'atomes au bout
 - de n jours. Statistiquement le nombre de noyaux diminue chaque jour d'environ 8,3%.
 - a. Déterminer la nature de la suite (u_n) .
 - b. Quel est son sens de variation?
 - c. Au bout de combien de jours la population de noyaux a-t-elle diminué de moitié (au moins) ? Cette durée s'appelle la demi-vie de l'iode 131.
- 2. Un algorithme.
 - On utilise aussi d'autres éléments radioactifs en médecine. On suppose qu'ils se désintègrent en moyenne de t chaque jour.
 - a. Écrire un algorithme qui demande la valeur de t et affiche la demi vie de l'élément radioactif.
 - b. Le programmer et donner la demi-vie de :
 - l'iridium 192 pour lequel t%=0,933%.
 - le cobalt 60 pour lequel t%=0,036%.

Exercice 21: Soit la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{2}x + 3$ et la suite (u_n) définie par

$$u_0 = -5$$
 et $u_{n+1} = f(u_n)$ pour tout $n \ge 0$.

- 1. Représenter graphiquement les premiers termes de la suite (u_n) sur l'axe des abscisses et conjecturer le comportement de la suite (u_n) .
- 2. Déterminer le réel α tel que $f(\alpha) = \alpha$.
- 3. Soit $v_n = u_n \alpha$ pour tout n.
 - a. Déterminer la nature de la suite (v_n) .
 - b. En déduire V_n puis U_n en fonction de n.
 - c. Déterminer le sens de variation de la suite (u_n) .