Cours d'Analyse 1

Damerdji Bouharis A.

Université des Sciences et de la Technologie Mohamed Boudiaf Faculté des Mathématiques et Informatique.

1.5 La partie entière

Définition 1.5.1 La partie entière d'un nombre réel x; est le plus grand entier n inférieur ou égal à x. En d'autres termes, la partie entière de x est le seul entier $n \in Z$ tel que $n \le x < n + 1$. Elle est notée par [x] ou E(x).

Ainsi tout nombre réel x s'écrit de façon unique sous la forme

$$x = [x] + \alpha$$
; où $\alpha \in [0, 1]$.

Exemple 1.5.2 [5,70911] = 5, [-5,70911] = -6.

Propriétés 2 1. $[x] \in \mathbb{Z}, \forall x \in \mathbb{R}$.

- 2. $[x+m] = [x] + m, \forall x \in \mathbb{R}, \forall m \in \mathbb{Z}.$
- 3. $[x] \le x \le [x] + 1, \forall x \in \mathbb{R}$.
- 4. $[x] + [y] \le [x + y] \le [x] + [y] + 1, \forall x, y \in \mathbb{R}$.
- 5. $x \leq y \Rightarrow [x] \leq [y], \forall x, y \in \mathbb{R}$.

1.6 Caractérisation de la borne supérieure et de la borne inférieure

Etant donnée une partie A non vide, bornée de \mathbb{R} , soient $m,M\in\mathbb{R}$, on a la caractérisation suivante

1.
$$M = \sup A \Leftrightarrow \begin{cases} 1/ \ \forall x \in A; \ x \leq M \\ 2/ \ \forall \varepsilon > 0; \ \exists x \in A, \ M - \varepsilon < x \end{cases}$$

2.
$$m = \inf A \Leftrightarrow \begin{cases} 1/ \ \forall x \in A; \ m \le x \\ 2/ \ \forall \varepsilon > 0; \ \exists x \in A, \ x < m + \varepsilon \end{cases}$$

Preuve:

1. • Montrons tout d'abord que si $M = \sup A$, alors pour tout $\varepsilon > 0$, il existe $x \in A$ tel que $M - \varepsilon < x$.

On supposera par l'absurde que $\exists \varepsilon > 0, \forall x \in A; x \leq M - \varepsilon$, par conséquent $M - \varepsilon$ devient un majorant de A, or M étant la borne supérieure de A; c'est le plus petit des majorants de A donc :

 $M \leq M - \varepsilon \Leftrightarrow \varepsilon \leq 0$, qui est une contradiction.

• A présent montrons que si M est un majorant de A qui vérifie $\forall \varepsilon > 0$; $\exists x_0 \in A, M - \varepsilon < x_0$ alors M est le plus petit des majorants de A. Soit M' un autre majorant de A, d'où $x_0 \leq M'$, par conséquent;

$$\forall \varepsilon > 0; \ M - \varepsilon < x_0 \le M' \Rightarrow \forall \varepsilon > 0; \ M - M' < \varepsilon$$

d'où $M - M' < 0 \Leftrightarrow M < M'$.

2. On peut montrer la caractérisation de la borne inférieure de la même façon, (à faire en exercice).

Exercice 1.6.1 Etant donné l'ensemble $A = \left\{ \frac{n+2}{n-2} \ / \ n \in \mathbb{N}, \ n \geq 3 \right\}$.

- 1. Montrer que A est borné.
- 2. Montrer que sup A = 5, inf A = 1.
- 3. Déterminer max A et min A s'ils existent.

Solution.

1. On a : $\forall n \geq 3$:

$$1 \le n - 2 \le n + 2 \Rightarrow 1 \le \frac{n+2}{n-2}$$

d'où la partie A est minorée par 1. D'une autre part on a $\forall n \geq 3$:

$$4n \ge 12 \quad \Leftrightarrow 5n - 10 \ge n + 2$$

$$\Leftrightarrow 5(n - 2) \ge n + 2$$

$$\Leftrightarrow \frac{n+2}{n-2} \le 5$$

d'où la partie A est majorée par 5, donc A est bornée.

- 2. Montrons que $\sup A = 5$ 5 est un majorant de A et $5 \in A$, pour n = 3 donc $\max A = 5 = \sup A$.
- 3. Montrons que inf A = 1

Soit $\varepsilon > 0$; cherchons $x \in A$, tel que $x < 1 + \varepsilon$, ceci revient à chercher $n \in \mathbb{N}, n \geq 3$ tel que

$$\frac{n+2}{n-2} < 1 + \varepsilon \Leftrightarrow \frac{4}{\varepsilon} + 2 < n,$$

alors il suffit de prendre $n = \left[\frac{4}{\varepsilon} + 2\right] + 1$.

On remarque que $1 \notin A$; sinon

$$\exists n \in \mathbb{N}, \ n \geq 3 \text{ tel que } \frac{n+2}{n-2} = 1 \Leftrightarrow 2 = -2; \text{ absurde.}$$

d'où $\min A$ n'existe pas.

Δ

Propriétés 3 1. Etant donnés A et B deux ensembles non vides, bornés de \mathbb{R} , tels que $A \subset B$, alors :

$$\inf B \le \inf A \le \sup A \le \sup B$$

En effet; on a

$$\inf A \le x \le \sup A; \forall x \in A \Rightarrow \inf A \le \sup A$$

d'une autre part on a

$$\forall x : x \in A \Rightarrow x \in B \Rightarrow \inf B \le x; \ \forall x \in A$$

d'où inf B est un minorant de A, or inf A est le plus grand des minorants de A, donc inf $B \le \inf A$.

et on a

 $\S 1.7$

$$\forall x : x \in A \Rightarrow x \in B \Rightarrow x \leq \sup B; \ \forall x \in A$$

d'où sup B est un majorant de A, or sup A est le plus petit des majorants de A, donc sup $A \le \sup B$.

- 2. Etant donnés C et D deux ensembles non vides, bornés de \mathbb{R} , alors :
 - (a) $\sup (C \cup D) = \max (\sup C, \sup D)$ $\inf (C \cup D) = \min (\inf C, \inf D)$
 - (b) $\sup (C \cap D) \le \min (\sup C, \sup D)$ $\inf (C \cap D) \ge \max (\inf C, \inf D)$
 - (c) $\sup (C + D) = \sup C + \sup D$ $\inf (C + D) = \inf C + \inf D$ $où C + D = \{x + y \mid x \in C, y \in D\}$
 - (d) $\sup (-C) = -\inf C$ $\inf (-C) = -\sup C$ $ou \cdot -C = \{-x \mid x \in C\}$

Exemple 1.6.2 Soit $A = \left\{ \frac{n}{n+1}, (-1)^n, n \in \mathbb{N} \right\}$, Montrer que $\sup A = 1$ et $\inf A = -1$. On remarque que $A = C \cup D$, où

$$C = \left\{ \frac{n}{n+1} , n \in \mathbb{N} \right\} \text{ et } D = \{ (-1)^n , n \in \mathbb{N} \} = \{ -1, 1 \}$$

On $a \ \forall n \in \mathbb{N}$:

$$n \le n + 1 \Leftrightarrow \frac{n}{n+1} \le 1,$$

d'où 1 est un majorant de C.

Soit $\varepsilon > 0$; cherchons $x \in C$, tel que $1 - \varepsilon < x$, ceci revient à chercher $n \in \mathbb{N}$, tel que

$$1 - \varepsilon < \frac{n}{n+1} \Leftrightarrow \frac{1}{\varepsilon} - 1 < n,$$

alors il suffit de prendre $n = \left[\left|\frac{1}{\varepsilon} - 1\right|\right] + 1$.

 $donc \sup C = 1.$

On $a \ \forall n \in \mathbb{N}$:

$$0 \le \frac{n}{n+1},$$

d'où 0 est un minorant de C, or $0 \in C$, pour n = 0 donc min $C = 0 = \inf C$.

Pour l'ensemble D, on $a \sup D = 1$, inf D = -1.

Par conséquent on a :

 $\sup A = \max\{1, 1\} = 1 \ et \inf A = \min\{-1, 0\} = -1.$

1.7 Principe d'Archimède

Le corps des réels R vérifie le principe d'Archimède; qui s'énonce comme suit

$$\forall x \in \mathbb{R}^+, \exists n \in \mathbb{N} : x < n.$$

c'est à dire que N n'est pas majoré.

Preuve:

Supposons par l'absurde que \mathbb{N} est majoré dans \mathbb{R} , alors il existe $S \in \mathbb{R}$; tel que $S = \sup \mathbb{N}$, d'où

$$n < S, \ \forall n \in \mathbb{N}.$$

On pose aussi $n_0 = [S] + 1$, où [S] désigne la partie entière de S, or S < [S] + 1, donc $\exists n_0 \in \mathbb{N}, S < n_0$; contradiction.

Remarque: Il existe une autre version du principe d'Archimède.

$$\forall x, y \in \mathbb{R}, \ x > 0, \ y \ge 0; \ \exists n \in \mathbb{N}^* : nx > y.$$

Preuve:

on va supposer par l'absurde que :

$$\exists x, y \in \mathbb{R}_+, \forall n \in \mathbb{N}^* : nx \le y,$$

alors l'ensemble $A=\{nx\ /\ n\in\mathbb{N}^*\}$ est une partie non vide, majorée par y dans \mathbb{R} donc sup A=M existe, d'où

$$\begin{array}{ll} nx \leq M; \forall n \in \mathbb{N}^* & \Rightarrow (n+1)\,x \leq M; \ \forall n \in \mathbb{N}^* \\ & \Leftrightarrow nx \leq M-x; \ \forall n \in \mathbb{N}^*, \end{array}$$

donc M-x est un majorant de A et M-x < M, car x > 0, ce qui est absurde car M est le plus petit des majorants de A.

1.8 La densité de $\mathbb Q$ dans $\mathbb R$

Théorème 1.8.1 Etant donnés deux nombres réels a et b distincts tels que a < b, alors l'intervalle]a,b[contient au moins un nombre rationnel $q \in \mathbb{Q}$. On dit que \mathbb{Q} est dense dans \mathbb{R} et on note $\overline{\mathbb{Q}} = \mathbb{R}$.

Preuve:

 $a < b \Leftrightarrow b - a > 0$, alors d'après le principe d'Archimède, il existe $n \in \mathbb{N}$, tel que

$$\frac{1}{b-a} < n,$$

d'où $\frac{1}{n} < b - a$, posons p = [an], alors

$$p \le an < p+1 \iff \frac{p}{n} \le a < \frac{p}{n} + \frac{1}{n} < a + (b-a)$$
$$\Rightarrow a < \frac{p+1}{n} < b,$$

et \mathbb{Q} , donc $\frac{p+1}{n} \in]a, b[\cap \mathbb{Q}$.

Exemple 1.8.2 Montrer que $A = \{r^3, r \in \mathbb{Q}\}$ est dense dans \mathbb{R} .

Soient a et b deux nombres réels tels que a < b, comme \mathbb{Q} est dense dans \mathbb{R} alors

$$\exists r \in \mathbb{Q}, \sqrt[3]{a} < r < \sqrt[3]{b},$$

d'où

$$a < r^3 < b$$

et donc A est dense dans \mathbb{R} .

1.9 La droite réelle achevée.

Définition 1.9.1 On appelle droite réelle achevée qu'on note par $\overline{\mathbb{R}}$; l'ensemble $\mathbb{R} \cup \{-\infty, +\infty\}$.

Propriétés 4 1. $\forall x \in \overline{\mathbb{R}}; -\infty \leq x \leq +\infty$.

- 2. $\forall x \in \mathbb{R}; \ x + (+\infty) = (+\infty) + x = +\infty; \ x + (-\infty) = (-\infty) + x = -\infty$ $(+\infty) + (+\infty) = (+\infty), (-\infty) + (-\infty) = (-\infty)$
- 3. $\forall x > 0; \ x. (+\infty) = (+\infty) \ ; \ x. (-\infty) = (-\infty)$
- 4. $\forall x < 0; \ x. (+\infty) = (-\infty); \ x. (-\infty) = (+\infty)$
- 5. $(+\infty) \cdot (+\infty) = (+\infty)$, $(-\infty) \cdot (-\infty) = (+\infty)$ $(+\infty) \cdot (-\infty) = (-\infty) \cdot (+\infty) = (-\infty)$
- 6. $\forall x \in \mathbb{R}; \frac{x}{+\infty} = \frac{x}{-\infty} = 0.$

Corollaire 1.9.2 Toute partie non vide de $\overline{\mathbb{R}}$, admet une borne supérieure et une borne inférieure dans $\overline{\mathbb{R}}$.