

A BAYESIAN APPROACH TO SPATIAL FILTERING AND DIFFUSE POWER ESTIMATION FOR JOINT DEREVERBERATION AND NOISE REDUCTION

Soumitro Chakrabarty, Oliver Thiergart, Emanuel. A. P. Habets

International Audio Laboratories Erlangen

E-Mail: soumitro.chakrabarty@audiolabs-erlangen.de

1. Introduction

Motivation

- Spatial filters require information regarding the direction-of-arrival (DOA) of the sound source(s).
- In [1], a spatial filter was proposed based on instantaneous DOA estimates to capture L sound sources with arbitrary spatial response.
- Difficult to get reliable DOA estimates in noisy and reverberant conditions.

Proposed Method

- We reformulate the approach in [1] and propose a Bayesian approach, to account for uncertainities in the estimated DOAs.
- The resulting Bayesian filter is a weighted sum of spatial filters pointed at a discrete set of DOAs.
- A probabilistic approach to diffuse sound power estimation is presented that gives a sufficiently accurate estimate to achieve joint dereverberation and noise reduction.

2. Problem Formulation

- Aim: Capture the directional sounds from a specific spatial region with a specific gain while attenuating the diffuse sound and microphone self-noise.
- Consider a uniform linear array (ULA) of M microphones located at $\mathbf{d}_{1...M}$. The microphone signals in STFT domain

direct sound diffuse sound microphone noise Assuming signal components are mutually

uncorrelated $\mathbf{\Phi}_{\mathbf{y}}(n,k) = \mathbf{\Phi}_{\mathbf{x}}(n,k) + \mathbf{\Phi}_{\mathrm{d}}(n,k) + \mathbf{\Phi}_{\mathrm{n}}(n,k)$

Desired signal

Definitions

- Microphone signal of I-th plane
- $\mathbf{x}_l(n,k) = [X_l(n,k,\mathbf{d}_1) \dots X_l(n,k,\mathbf{d}_M)]^T$
- Sound pressure of I-th plane wave $\mathbf{x}_l(n,k) = \mathbf{a}(\theta_l,k)X_l(n,k,\mathbf{d}_1)$
- m-th element of steering vector $a_m(\theta_l, k) = \exp\{-j\kappa r_m \cos \theta_l(n, k)\}$
- Power spectral density (PSD) matrix $\mathbf{\Phi}_{\mathbf{y}}(n,k) = \mathrm{E}\{\mathbf{y}(n,k)\mathbf{y}^{\mathrm{H}}(n,k)\}$
- Undesired PSD matrix
- $\mathbf{\Phi}_{\mathrm{d}}(n,k) = \phi_{\mathrm{d}}(n,k) \; \mathbf{\Gamma}_{\mathrm{d}}(k),$
- $\mathbf{\Phi}_{\mathrm{n}}(n,k) = \phi_{\mathrm{n}}(n,k) \mathbf{I}$
- $ullet G(heta_l,k)$ is a real-valued arbitrary directivity function which can be designed based on the target applicati-

3. Proposed Method

Bayesian spatial filter • DOA is modelled as a discrete random variable with a prior over the candidate set $\Theta = \{\theta_1, \theta_2, \dots, \theta_I\}$, with $I \gg L$. Approximation of the desired signal → posterior probabilities $\tilde{Z}(n,k) = \sum_{i=1}^{I} p(\theta_i|\mathbf{y}(n,k))\hat{Z}(\theta_i,n,k)$ desired signal estimate from direction $\theta_i \in \Theta$ Conditional estimate of the desired signal $\hat{Z}(\theta_i, n, k) = \mathrm{E}\{Z(n, k) | \theta_i\} = \mathbf{w}^{\mathrm{H}}(\theta_i, n, k)\mathbf{y}(n, k)$

Diffuse sound power estimation

 $\times \exp\left(-\mathbf{y}(n,k)^{\mathrm{H}}\mathbf{\Phi}_{\mathbf{y}}^{-1}(\theta_i)\mathbf{y}(n,k)\right).$

 $\phi_{\mathrm{d}}(n,k) = \frac{\mathbf{w}_{\mathrm{d}}^{\mathrm{H}} \mathbf{\Phi}_{\mathbf{y}} \mathbf{w}_{\mathrm{d}} - \phi_{\mathrm{n}}(n,k) \mathbf{w}_{\mathrm{d}}^{\mathrm{H}} \mathbf{w}_{\mathrm{d}}}{\mathbf{w}_{\mathrm{d}}^{\mathrm{H}} \mathbf{\Gamma}_{\mathrm{d}}(k) \mathbf{w}_{\mathrm{d}}}$

Diffuse sound power

4. Results

Diffuse power estimation performance

- Evaluated only for Scenario II.
- Figure shows estimation error in terms of log-spectral distance (LSD) across frequencies averaged over time.

Bayesian spatial filter performance

Scenario	Scenario II)	II				
	SIR [dB]	SRR [dB]	SSNR [dB]	PESQ	mLSD		SIR [dB]	SRR
Unprocessed	0	-6.0	27	1.88	_	Unprocessed	0	_9
\mathbf{w}_{iLCMV1}	22	2.0	26	2.60	2.55	W _i LCMV1	18	<u> </u>
$\mathbf{w}_{\text{iLCMV2}}$	18	0.0	24	2.53	1.22	\mathbf{w}_{iLCMV2}	16	_:
$\mathbf{w}_{ ext{MPl}}$	21	1.0	26	2.42	3.30	$\mathbf{w}_{ ext{MPl}}$	18	_:
W _{MP2}	12	-1.7	22	2.40	2.10	$\mathbf{w}_{\mathrm{MP2}}$	10	
W Bayesian	22	1.5	27	2.75	2.10	W Bayesian	20	-:
	·							

	Scenario	o II				
mLSD		SIR [dB]	SRR [dB]	SSNR [dB]	PESQ	mLSD
	Unprocessed	0	-9.0	17	1.78	_
2.55	W _i LCMV1	18	-1.6	16	2.30	2.83
1.22	\mathbf{w}_{iLCMV2}	16	-3.4	14	2.25	1.56
3.30	$\mathbf{w}_{ ext{MPl}}$	18	-2.3	16	2.20	3.50
2.10	W _{MP2}	10	-4.3	13	2.20	2.36
2.10	W Bayesian	20	-1.9	19	2.44	2.16

5. Conclusion

- Proposed Bayesian spatial filter provides an overall better performance, especially for the more challenging Secnario II.
- Probabilistic approach to diffuse power estimation has lower eestimation error than the method proposed in [1].
- Proposed filter introduces small amount of distortion to the desired signal.

References:

[1] O. Thiergart and E.AP. Habets, "An informed lcmv filter based on multile instantaneous direction-of-arrival estimates," in Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), May 2013, pp. 659–663.