

TECNOLÓGICO NACIONAL DE MÉXICO INSTITUTO TECNOLÓGICO DE TLAXIACO

MATEMATICAS DISCRETAS

PRESENTA (ESTUDIANTES) ANGEL JAEL APARICIO GARCIA C24620342

CARRERA:
INGENIERÍA EN SISTEMAS COMPUTACIONALES

UNIDAD 1

PRODUCTO: PRACTICA ACTIVIDAD 3

DOCENTE:ROMAN CRUZ JOSE ALFREDO

TLAXIACO, OAX., A SEPTIEMBRE DE 2025.

"EDUCACIÓN, CIENCIA Y TECNOLOGÍA, PROGRESOS DÍA"

INDICE

INTRODUCCIÓN
OBJETIVO
MATERIALES
PROCEDIMIENTO
LISTA DE FIGURAS
SUMA EN BINARIO
RESTA EN BINARIO
MULTIPLICACION EN BINARIO
DIVISION EN BINARIO
SUMA EN OCTAL
RESTA EN OCTAL
MULTIPLICACION EN OCTAL
DIVISION EN OCTAL
SUMA EN HEXADECIMAL
RESTA EN HEXADECIMAL
MULTIPLICACION EN HEXDECIMAL
DIVISION EN HEXADECIMAL
RESULTADOS
CONCLUSIÓN

INTRODUCCIÓN

Los sistemas numéricos son distintas formas de representar los números, como el decimal, binario, octal y hexadecimal. Cada sistema tiene sus propias reglas, pero en todos se pueden realizar operaciones básicas como suma, resta, multiplicación y división. Conocer estas operaciones nos ayuda a entender mejor cómo funcionan las computadoras y otros dispositivos electrónicos, y facilita trabajar con diferentes tipos de datos de manera más clara y eficiente.

OBJETIVO

Aprender a realizar las operaciones básicas —suma, resta, multiplicación y división— en distintos sistemas numéricos, para comprender cómo se representan y manipulan los números en la informática y en los dispositivos electrónicos, y desarrollar habilidades que faciliten el trabajo con datos en diferentes bases numéricas.

MATERIALES

- computadora
- · Lápiz, borrador, lapiceros
- libreta
- Calculadora (científica)

• SUMA EN BINARIO

Sc	ma	En	Binario	
7	11	10		
1	20	01		

Regla

0+0=0

0+1=1

1+0=1

Asemos las operaciones guiándonos de la regla primero

0 + 1 = 1,

1+1=10,

1+1=10+0=0,

1+1=10+1=11

• Y nos da el resultado que se ve en la imagen

RESTA EN BINARIO

La resta en binario se comienza de abajo hacia arriba comenzando de 1-0 pero al 1 no se le puede restar cero así que le pide prestado al de alado y se convierte en 10 pero 10=2 en binario lo que sucede es que a 2-1=1, seguimos con el de alado como a 1 se le pidió prestado pues queda como 0 y otra vez le pide prestado al de alado convirtiéndose en 10 nuevamente 10=2-1=1. Y así seguimos con el de alado que nuevamente se convierte en 10 porque era 0 y le pide prestado al de alado 10=2-1=1 y al último se volvió 0 y 0-0=0, dando como resultado 01111

MULTIPLICACION EN BINARIO

Solo seguimos los procedimientos que se ven en la imagen y luego de obtener el resultado de la multiplicación, se suman todos los resultados y se obtiene un nuevo resultado

• **DIVISION EN BINARIO**

Ejemplo: $1010_2 \div 10_2$

- $1010_2 = 10$ en decimal
- $10_2 = 2$ en decimal

Queremos dividir 10 ÷ 2, pero en binario.

Paso 1: Configuramos la división

Paso 2: Tomamos los primeros dígitos del dividendo

- Primer dígito: $1 \rightarrow$ menor que $10 \rightarrow$ no se puede dividir \rightarrow ponemos 0 arriba
- Tomamos los dos primeros dígitos: $10 \rightarrow 10 \div 10 = 1$

Restamos: 10 - 10 = 0

Bajamos el siguiente dígito del dividendo: 1 → ahora tenemos 1

Paso 3: Siguiente división

- $1 \div 10 \to 0$ (porque 1 < 10)
- Bajamos el siguiente dígito: $0 \rightarrow$ ahora tenemos 10

Paso 4: Última división

- $10 \div 10 = 1$
- Restamos: $10 10 = 0 \rightarrow \text{no quedan más dígitos}$

Resultado final

- **Cociente:** 101₂
- **Resto:** 0₂
- En decimal: $10 \div 2 = 5 \rightarrow 5$ en binario = 101_2 , coincide perfectamente.

SUMA EN OCTAL

Cómo se hace:

- 1. Unidades: 7 + 6 = 13 en decimal \rightarrow en octal, $13_{10} = 15_8 \rightarrow$ escribimos 5 y llevamos 1
- 2. Decenas: 5 + 2 + 1 (que llevamos) = $8_{10} \rightarrow$ en octal, $8_{10} = 10_8 \rightarrow$ escribimos 0 y llevamos 1
- 3. Centenas: solo el 1 que llevamos \rightarrow escribimos 1

Resultado: 1058

RESTA EN OCTAL

Cómo se hace:

- 1. Unidades: $4-5 \rightarrow$ no se puede, pedimos 1 de las decenas (equivale a 8 en decimal) \rightarrow 4 + 8 -5 = 7
- 2. Decenas: 6 (después de pedir prestado) -3 = 3

Resultado: 378

MULTIPLICACION EN OCTAL

DIVISION EN OCTAL

División en octal

Ejemplo: 144₈ ÷ 12₈

• Convertimos a decimal para comprobar: $144_8 = 100_{10}$, $12_8 = 10_{10}$

• División decimal: $100 \div 10 = 10 \rightarrow \text{convertimos a octal} \rightarrow 10_{10} = 12_8$

Resultado: Cociente = 12_8 , resto = 0_8

SUMA EN HEXADECIMAL

Soma en Hexadec mal

7 Aze + 3 Cze

Convertimos cada disgito a decimal cara entender

10 30ma;

Az 20 -> 2Az 2×26 + 20 = 42zo

30z 3×26 + 22 = 60zo

* Somamos en decimal = 42 + 60 = 702zo

* Convertimos a hexadecimal = 702 + 20 resto 0-> 60zo

Nesultado = 66zo

RESTA EN HEXADECIMAL

• MULTIPLICACION EN HEXDECIMAL

Moltiplieación en Hexadeamal	
A26 x S26	
2. Convertimos a decimal	
· A= 70, 9=5	
7- Molfiplicamos: 70 xs = 5020	
3. Convertimos a hepadeamal : 30 d. 2023 vesto 7->	33
nesulfado: 3216	
División en Hexadeamal	

• DIVISION EN HEXADECIMAL

3 C20	= 626								
7. Conve	rtimos	o dec	imal						
.30	~ 3×1	0 + IZ =	6020						
. 6	- 620								
2. Divid	dimos:	601.6	= 7020	,					
3. Con	vertimo	os a he	xa deci	mal:	10,	0	17	P	
		Coeien							
						20,			

RESULTADOS

Se espera que, al trabajar con las operaciones en los sistemas numéricos, se pueda realizar correctamente la suma, resta, multiplicación y división en binario, octal, decimal y hexadecimal. Además, se busca comprender cómo cada sistema representa los números y las reglas específicas para operar en cada uno. Se pretende aplicar estos conocimientos en informática y en el manejo de datos digitales, mejorando la capacidad para interpretar, calcular y resolver problemas relacionados con diferentes bases numéricas. Finalmente, se espera que esta práctica fortalezca la comprensión general de los cálculos matemáticos en contextos tecnológicos y cotidianos.

CONCLUSION

El estudio de las operaciones en los sistemas numéricos permite apreciar cómo los números pueden representarse y manipularse de distintas maneras según la base utilizada. Conocer las reglas de suma, resta, multiplicación y división en binario, octal, decimal y hexadecimal facilita la comprensión de los cálculos y su aplicación en contextos prácticos, como la informática y el manejo de información digital. Esto demuestra la importancia de los sistemas numéricos para organizar, procesar y utilizar datos de manera eficiente.