	Name	Type
Group Number	Surname	٨
List Number	e-mail	\mathbf{A}
Student ID	Signature	1 1

ATTENTION: Each question has only one correct answer and is worth one point. Be sure to fill in completely the circle that corresponds to your answer on the answer sheet. Use a pencil (not a pen). Only the answers on your answer sheet will be taken into account.

For all questions take $\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \ N \, m^2/C^2$.

- **1.** Which of the following is a unit vector perpendicular to both $\vec{A} = 2\hat{i} + \hat{j}$ and $\vec{B} = 3\hat{i} 2\hat{k}$?

- (a) $\frac{3\hat{i}+2\hat{j}-3\hat{k}}{\sqrt{29^{i}}}$ (b) $\frac{-3\hat{i}+4\hat{j}-2\hat{k}}{\sqrt{29^{i}}}$ (c) $\frac{3\hat{i}+4\hat{j}-3\hat{k}}{\sqrt{34^{i}}}$ (d) $\frac{-3\hat{i}+4\hat{j}+3\hat{k}}{\sqrt{34^{i}}}$ (e) $\frac{-2\hat{i}+4\hat{j}-3\hat{k}}{\sqrt{29^{i}}}$

Questions 2-4

An object of mass m_1 and another object of mass m_2 are thrown at the same instant from the ground with the same initial speeds $v_1 = v_2 = 5 \ m/s$, as shown in the figure. $\theta = 53^{\circ}$ and take $g = 10 \ m/s^2$.

Take $g = 10 \ m/s^2$ and $\theta = 53^{\circ}$, $\sin 53^{\circ} = 4/5$.

- **2.** What is the acceleration vector of m_1 relative to m_2 ?

- (a) 0 (b) $\frac{1}{2}g\hat{j}$ (c) $-\frac{1}{2}g\hat{j}$ (d) $-g\hat{j}$ (e) $g\hat{j}$
- 3. What is the velocity of m_1 relative to m_2 when m_2 is at the heighest point of its trajectory in units of m/s?

- (a) $-2\hat{i} + \hat{j}$ (b) $3\hat{i} 2\hat{j}$ (c) $\hat{i} + \hat{j}$ (d) $\hat{i} \hat{j}$ (e) $-3\hat{i} + \hat{j}$

- (a) $\sqrt{2}$ m (b) 3/2 m (c) $\sqrt{10}/2$ m (d) $\sqrt{3}$ m (e) $\sqrt{7}/2$ m

A constant horizontal force F = 32 N is applied on M = 4 kg and the system is moving to the right, as shown in the figure. The small block m=2 kg is at rest relative to M during the motion. There is no friction between M and the ground, the coefficient of static friction between m and M is $\mu_s = 0.5$, and the angle of inclanation is $\theta = 53^{\circ}$. (Take $g = 10 \ m/s^2$ and $\sin 53 = 4/5$.)

- **5.** What is the acceleration of the system?

- (a) $16/3 \ m/s^2$ (b) $3 \ m/s^2$ (c) $4 \ m/s^2$ (d) $5 \ m/s^2$ (e) $14/3 \ m/s^2$
- **6.** What is the magnitude of the normal force applied on m by M?
- - (b) 308/15 N (c) 298/15 N (d) 17 N (e) 21 N

- 7. What is the magnitude of the friction force between m and M?
 - (a) 154/15 N
- (b) 157/15 N (c) 14 N (d) 48/5 N (e) 51/5 N

- 8. What is the minimum value of F which keeps m at rest relative to M during the motion of the system?
- (b) 25 N (c) 28 N (d) 19 N (e) 22 N

 $\ \ \ \vec{g}$

 \dot{x}

 $\downarrow \vec{g}$

Questions 9-12

A small remote-controlled car of mass m = 500 g is moving at a constant speed v = 6 m/s in a vertical circle of radius R = 1.5 m inside a hollow metal cylinder. The object is at point A at time t=0. (Take $g=10 \ m/s^2$.)

- **9.** What is the normal force exerted on the car by the walls of the cylinder at point *B*?
 - (a) 12 N
- (b) 11 N (c) 7 N (d) 5 N (e) 14 N

- **10.** What is the normal force exerted on the car by the walls of the cylinder at point C?
- (b) 12 N (c) 14 N (d) 5 N (e) 7 N

- 11. What is the average velocity of the car between t=0 and $t=\pi/4$ s in units of m/s?

- (a) $+\frac{10}{\pi}\hat{j}$ (b) $-\frac{12}{\pi}\hat{i}$ (c) $+\frac{12}{\pi}\hat{i}$ (d) $-\frac{12}{\pi}\hat{j}$ (e) $-\frac{10}{\pi}\hat{i}$
- 12. What is the average acceleration vector of the car between t=0 and $t=\pi/4$ s in units of m/s^2 ?
 - (a) $-\frac{44}{\pi}\hat{j}$ (b) $+\frac{44}{\pi}\hat{i}$ (c) $+\frac{48}{\pi}\hat{i}$ (d) $-\frac{48}{\pi}\hat{j}$ (e) $-\frac{48}{\pi}\hat{i}$

Questions 13-16

The system shown in the figure starts motion from rest. The coefficient of kinetic friction between $m_1 = 1$ kg and the table is $\mu_k = 0.2$. Assume that the cords and the pulleys are massless. The acceleration of m_1 is a_1 and that of $m_2 = 2 kg$ is a_2 .

- **13.** What is the relation between the accelerations of the blocks?
- (a) $a_1 = 3a_2$ (b) $3a_1 = a_2$ (c) $2a_1 = a_2$ (d) $a_1 = 2a_2$

- **14.** What is the tension in the rope tied to m_1 ?

- (a) 7 N (b) 22/3 N (c) 21/4 N (d) 21/5 N
- **15.** What is the work done by friction when m_2 falls a distance h = 50 cm?

- (a) -6 J (b) -5 J (c) -4 J (d) -2 J (e) -3 J
- **16.** What is the speed of m_2 when it falls a distance h = 50 cm?
 - (a) $\frac{3\sqrt{2}}{3} m/s$ (b) $\frac{5\sqrt{3}}{3} m/s$ (c) $\frac{4\sqrt{2}}{3} m/s$ (d) $\frac{2\sqrt{3}}{3} m/s$ (e) $\frac{2\sqrt{6}}{3} m/s$

Questions 17-20

A block of mass m with initial speed v_0 enters into a region of a rough surface at x=0, as shown in the figure. The coefficient of kinetic friction in this region is variable and of the form $\mu_k = bx$, where b is a constant.

- 17. What is the SI unit of the constant b?

- (b) m/s (c) m^{-1} (d) m^{-2} (e) $m \cdot s$

18. What is the magnitude of the acceleration of the block as a function of x?

- (a) 3bx
- (b) bgx
- (c) gx (d) 2bx

- (a) -bmgd (b) $-\frac{3}{2}bmgd^2$ (c) $-\frac{3}{2}bmgd$ (d) $-\frac{1}{2}bmgd$ (e) $-\frac{1}{2}bmgd^2$

 v_0

- **20.** At which point x the block comes to rest?

- (a) $\frac{3v_0}{\sqrt{g}}$ (b) $\frac{v_0}{\sqrt{bg}}$ (c) $\frac{2v_0}{\sqrt{g}}$ (d) $\frac{2v_0}{\sqrt{mg}}$ (e) $\frac{v_0}{\sqrt{b^2g}}$

