Number Theory 2, 2017: Squares in the Fibonacci sequence.

We define the Fibonacci sequence (u_m) to be the following sequence: $u_1 = u_2 = 1$, and $u_m = u_{m-1} + u_{m-2}$ for $m \geq 3$. We can also define u_m for $m \leq 0$ so that the formula $u_m = u_{m-1} + u_{m-2}$ remains true. The way I remember the standard normalisation for the Fibonacci sequence is that $u_5 = 5$ and $u_{12} = 12^2 = 144$. Note in particular that u_{12} is a square Fibonacci number. But it's the last square Fibonacci number:

Theorem. 1 and 144 are the only squares in the Fibonacci sequence.

Before we embark on a proof, we need two preliminaries about squares modulo a prime number, one of which I will not prove.

- 1) Prove that if p is a prime number which is $3 \mod 4$, then p does not divide any integer of the form $n^2 + 1$ (hint on my number theory 1 sheet).
- 2) Believe me when I tell you, if p is a prime number which is 5 or 7 mod 8, then p does not divide any integer of the form $n^2 + 2$. [I do know an elementary proof of this for $p \equiv 5 \mod 8$, but for $p \equiv 7 \mod 8$ the only proofs I know at the time of writing use university-level mathematics].

We also need some basics about the Fibonacci sequence, and a related sequence, the Lucas sequence. Define the Lucas sequence (v_m) by $v_1 = 1$, $v_2 = 3$ and $v_m = v_{m-1} + v_{m-2}$ for $m \ge 3$ (and also for $m \le 0$). Let $\alpha > \beta$ be the two real roots of $x^2 - x - 1 = 0$.

- 3) Prove that $u_m = (\alpha^m \beta^m)/\sqrt{5}$ and that $v_m = \alpha^m + \beta^m$.
- 4) Prove that if m is an integer then $v_m = 2u_m + u_{m-3}$. If (x, y) denotes the highest common factor of the integers x and y, prove that $(u_m, u_{m-1}) = 1$. Deduce that $(u_m, v_m) = (2u_{m-2}, u_{m-3})$ is either 1 or 2.
- 5) Let m now be a positive integer. Prove that v_m is odd if m is not a multiple of 3. Prove that v_m is not a multiple of 3 if 4 divides m. Prove that $v_m \equiv 7 \mod 8$ if $m \equiv 4 \mod 12$ or $m \equiv 8 \mod 12$. Deduce that if $m \equiv 4 \mod 12$ or $m \equiv 8 \mod 12$ then v_m has a prime factor p > 3 which is 3 mod 4, and also that v_m has a prime factor which is either 5 or 7 mod 8.
- 6) Prove that if m, n are integers then $2u_{m+n} = u_m v_n + u_n v_m$ and $v_{4n} = v_{2n}^2 2$. Deduce that $u_{2m} = u_m v_m$. Deduce also that v_{2n} divides $2(u_{m+4n} + u_m)$. Deduce that if n is not a multiple of 3 then $u_{m+4n} \equiv -u_m \mod v_{2n}$.

Now we embark on the proof proper, which is a delicate mixture of easy congruence arguments and more global results about squares modulo primes.

- 7) By looking at the Fibonacci sequence mod 16, prove that if u_m is a square then m is congruent to one of $-1, 0, 1, 2 \mod 12$.
- 8) Now say m = 4t + q with $q \in \{-1, 1, 2\}$ and t > 0. Write $t = 2^r s$ with s odd and $r \ge 0$. Set $n = 2^r$, so m = 4ns + q. Prove that $u_m \equiv -u_q \equiv -1 \mod v_{2n}$. Prove that there exists a prime $p \equiv 3 \mod 4$ such that $u_m \equiv -1 \mod p$. Deduce that u_m is not a square.
 - 9) Deduce that if m > 2 and u_m is a square, then m is a multiple of 12.

The most delicate part of the argument is eliminating u_m with m a multiple of 12 and m > 12. This is where we use the fact that I have not proved, namely that if $p \equiv 5$ or 7 mod 8 then -2 is not a square mod p. In fact we prove a little more in this case: we prove that if m > 12 is a multiple of 12 then u_m is neither a square nor twice a square.

- 10) Say m=8t+12 with t>0. Write $t=2^rs$ with s odd and $r\geq 0$. Set $n=2^{r+1}$, so m=4ns+12. Prove that $u_m\equiv -u_{12}\equiv -144$ mod v_{2n} . Deduce that there is a prime number $p\equiv 3 \mod 4$ with p>3 such that $u_m\equiv -144 \mod p$. Deduce that u_m is not a square. Deduce furthermore that there is a prime number $p\equiv 5$ or p=7 mod p=7 such that p=7 such th
- 11) Conclude that if m = 12j with j odd and j > 1 then neither u_m nor $2u_m$ is a square.

We are nearly there—we only have to deal with u_m for m a multiple of 24 now. Here is the last clever trick: let S be the set of integers t > 1 such that u_{12t} is either a square or twice a square. We want to prove that S is empty and we do this by checking that it has no least element.

12) Assume S is non-empty. Let M be the smallest element of S. Prove that M=2N is even. One checks that $u_{24}=u_{12}v_{12}=144\times322$ is not a square, and hence $M\geq4$. Now $u_M=u_{2N}=u_Nv_N$. Check that this implies $N\in S$. But N< M. Contradiction!

Done. This proof is due to J. H. E. Cohn, in 1963.

Kevin Buzzard, Department of Mathematics, Imperial College, London SW7 2AZ. buzzard@imperial.ac.uk