Due 2pm on 9/8/2022

Exercise 1. If X is a random variable with mean m and variance s^2 show (X-m)/s has mean 0 and variance 1.

Solution

$$E[(X - m)/s] = (E[X] - m)/s = 0$$
 since $E[X] = m$.

$$Var((X - m)/s) = Var((X - m))/s^2 = Var(X)/s^2 = 1.$$

Recall the *cumulant* of a random variable X is $\kappa^X(s) = \log E[e^{sX}]$.

Exercise 2. Let F be any positive random variable where $\log F$ has finite mean and variance. Show $F = f e^{-\kappa^X(s) + sX}$ where f = E[F], $s^2 = \operatorname{Var}(\log F)$, and X has mean 0 and variance 1.

Hint: $\log F = m + sX$ where X has mean 0 and variance 1.

Solution

$$Var(\log F) = s^2 Var(X) = s^2.$$

$$f = E[F] = E[e^{m+sX}] = e^m e^{\kappa(s)}$$
 so $e^m = fe^{-\kappa(s)}$.

Exercise 3. If $F = fe^{-\kappa(s)+sX}$ show $F \le k$ if and only if $X \le (\log k/f + \kappa(s))/s$.

Hint: Assume s > 0.

Solution

$$F \le k$$

$$fe^{-\kappa(s)+sX} \le k$$

$$-\kappa(s) + sX \le \log k/f$$

$$sX \le \log(k/f) + \kappa(s)$$

$$X \le (\log(k/f) + \kappa(s))/s$$

We call the functions $x(k; f, s) = (\log k/f + \kappa(s))/s$ the moneyness at k.

The Fischer Black model assumes X is normal and $s = \sigma \sqrt{t}$.

Exercise 4. Find the formula for moneyness in the Black model.

Recall if N is a normally distributed random variable then $E[e^N] = e^{E[N] + \text{Var}(N)/2}$.

Solution

$$\kappa(s) = \log E[e^{sX}] = \log e^{s^2/2} = s^2/2.$$

$$(\log k/f + \kappa(s))/s = (\log(k/f) + \sigma^2 t/2)/\sigma \sqrt{t} (\log(k/f)/\sigma \sqrt{t} + \sigma^2 \sqrt{t}/2).$$