Fluorescenza X II (Fisica Ambientale)

Ilaria Brivio (1014190) brivio.ilaria@tiscali.it Matteo Abis (584206) webmaster@latinblog.org

15 novembre 2010

1 Obiettivi dell'esperimento

- Verifica della legge di attenuazione della radiazione elettromagnetica attraverso un materiale

$$I = I_0 e^{-\mu x}$$

e stima del coefficiente di attenuazione μ nel caso dell'assorbimento in alluminio delle emissioni di una sorgente di $^{241}\mathrm{Am}$

- Verifica della legge di Mooseley che lega il numero atomico del materiale all'energia delle sue emissioni X

$$E = k(Z - 1)^2$$

attraverso l'analisi dello spettro di emissione di sei campioni mono-elementali

 Analisi della composizione di un campione di particolato atmosferico e di altri campioni multi-elementali

2 Apparato strumentale

Descrizione dell'apparato

L'apparato sperimentale è costituito da un contenitore al cui interno sono montati:

- un generatore di raggi X a cristallo piroelettrico COOL X
- un rivelatore al silicio XR100-CR
- un portacampioni estraibile che permette il corretto posizionamento dei target.

Il rivelatore è connesso a un PC, da cui è possibile gestire l'acquisizione degli spettri mediante un apposito software.

Calibrazione dell'apparato e analisi dello spettro di $^{241}\mathrm{Am}$

Per la calibrazione in energia del sistema di acquisizione è stata posizionata una sorgente di 241 Amdinanzi al rivelatore ed è stato acquisito uno spettro di prova per un tempo di 314.28 s. Sono stati identificati su questo spettro tre righe di riferimento: quelle delle transizioni X nel 237 Np, di energia 13.95 e 17.74 keV, e quella del decadimento γ del 241 Am, di energia 59.54 keV. Sono stati stimati centroide x, ampiezza a mezza altezza σ ed integrale N di ciascun picco:

A partire da questi valori sono stati deteminati i parametri $a=0.0685\,\mathrm{keV/can}$. e $b=0.2944\,\mathrm{can}$. per la formula di calibrazione

$$E = ax + b (2.1)$$

.

E (keV)	x (canale)	$\sigma(\text{can.})$	N
13.95	199.95	0.261	3097
17.74	255.39	0.293	2370
59.54	863.50	0.378	269

Tabella 1: Centroide, ampiezza a mezza altezza e integrale dei tre picchi di riferimento per la calibrazione del sistema con una sorgente di $^{241}\mathrm{Am}$.

3 Verifica della legge di assorbimento e stima di μ

Sono state prese in considerazione le radiazioni di energia 13.95 e $17.74\,\mathrm{keV}$ emesse dalla sorgente di $^{241}\mathrm{Am}$. Sono stati acquisiti sei diversi spettri, frapponendo tra sorgente e rivelatore un numero crescente di fogli di alluminio.

Per stimare lo spessore d di un singolo foglio è stato pesato un campione di $S=25\,\mathrm{cm}^2$. Nota la densità $\rho=2.7\,\mathrm{g/cm}^3$:

$$d = \frac{\rho}{m} \frac{1}{S} = \frac{2.7 \,\text{g/cm}^3}{1.55 \,\text{g}} \frac{1}{25 \,\text{cm}^2} = 0.23 \,\text{mm}$$
 (3.2)

spessore Al (mm)	tempo (s)	$N_{13.95}$	$N_{17.74}$
0	326.06	3151	2367
0.23	341.95	1845	1974
0.46	589.05	1972	2466
0.69	1088.86	2026	3535
0.92	2013.59	2021	4750
1.15	2027.53	1317	3732

Tabella 2: Tempi di acquisizione e integrali dei due picchi di interesse per i sei spettri acquisiti con spessori crescenti di Al.

4 Verifica della legge di Mooseley

Per la verifica della legge di Mooseley sono stati analizzati dodici campioni mono-elementali, fissati su un apposito supporto in alluminio. Per ciascuno di essi sono stati individuati i picchi corrispondenti alle emissioni K_{α} , K_{β} , L_{α} , L_{β} del materiale considerato.

5 Analisi di campioni multi-elementali

Particolato atmosferico

Il campione di particolato atmosferico è stato ottenuto con un sistema che preleva l'aria mediante una pompa facendola passare attraverso un filtro antipolvere.

Sono stati analizzati due diversi campioni:

Altri campioni

6 Conclusioni