Language used: MATLAB

Source vode: 1 problem_2b.m

@ deriv.m

3 rx4.m

at T=5, for 6 different values of At, 2(verlet)(T) and a (TK4) (T) in computed using the Vorlet and Runge - Kutta 4th order methods. The values are reported below:

Δt	2 (verut)	2(TKA)(T)
0.2	-0.9733	-0.9586
0.7	-0.9595	-0.4589
0.05	-0.9591	-09589
0.0T	- 0.9589	- 0.9589
0.002	- 0·95 <i>8</i> 9	-0-9589
0-001	-0.9589	- 0· 9589

produced plot: problem_26. png

In the log-log plot, the difference between sin(T) computed a(T) is captured again Δt .

Simputed
$$\alpha(T)$$
 is captured $\alpha(T)$.

Here, $g_1(\Delta t) = |\sin(T) - \alpha^{\text{red}}(T)|$

and, $g_2(\Delta t) = |\sin(T) - \alpha^{\text{red}}(T)|$

As we can see in (Table-1), for even $\Delta t = 0.1$ $\chi(X4) = -0.9589$, whereas $\chi(Verlet)$ saturates at -0.9589 for $\Delta t = 0.01$ and smaller. Therefore, it's evident that this values will show non-identical differences with $\sin(T)$ at various Δt .

for. $\Delta t = 0.5$, curves g_1 and g_2 show maximum difference; with decreasing Δt , g_1 starts to drop dramatically. The drop of g_1 in linear upto $\Delta t = 0.1$.

After that, as Δt decreases, the difference between g_1 and g_2 starts to drop more rapidly. And from g_1 and g_2 starts to drop more rapidly. And from $\Delta t = 0.01$, 0.005, 0.001 there is no difference observed for g_1 and g_2 .