MA572 Hatcher Notes

Carlos Salinas

April 5, 2016

1 Homology

A summary of Hatcher's homology section from his Algebraic Topology book.

1.1 Simplicial and Signular Homology

Skip all this nonsense. I need to catch up.

1.2 Computations and Applications

Degree

For a map $f: S^n \to S^n$ with n > 0, the induced map $f_*: H_n(S^n) \to H_n(S^n)$ is a homomorphism from an infinite cyclic group to itself and so must be of the form $f_*(\alpha) = df(\alpha)$ for some integer d depending only on f. This integer is called the *degree* of f and is denoted by $\deg f$. Here are some basic properties of the degree

- (1) $\operatorname{deg} \operatorname{id}_{S^n} = 1 \operatorname{since} (\operatorname{id}_{S^n})_* = \operatorname{id}_{H_n(S^n)}.$
- (2) deg f=0 if f is not injective. For if we choose a point $x_0 \in S^n \setminus f(S^n)$ then f can be factored as a composition $S^n \to S^n \setminus \{x_0\} \hookrightarrow S^n$ and $H_n(S^n \setminus \{x_0\}) = 0$ since $S^n \setminus \{x_0\}$ is contractible
- (3) If $f \simeq g$ then $\deg f = \deg g$ since $f_* = g_*$. The converse statement, that if $\deg f = \deg g$, is a fundamental theorem of Hopf from around 1925 which we prove in Corollary 4.25.
- (4) deg $fg = \deg f \deg g$, since $(f \circ g)_* = f_* \circ g_*$. As a consequence, deg $f = \pm 1$ if f is a homotopy equivalence since $f \circ g \simeq \operatorname{id}_{S^n}$ implies that deg $f \deg g = \operatorname{deg id}_{S^n} = 1$.
- (5) deg f=-1 if f is a reflection of S^n , fixing the points in some subsphere $S^{n-1} \subset S^n$ and interchanging the two complementary hemispheres. For we can give S^n a Δ -complex structure with these two hemispheres as its two n-simplices Δ_1^n and Δ_2^n , and the n-chain $\Delta_1^n \Delta_2^n$ represents a generator of $H_n(S^n)$ as we saw in Example 2.23, so the reflection interchanging Δ_1^n and Δ_2^n sends this generator to its negative.
- (6) The antipodal map $a: S^n \to S^n$, $x \mapsto -x$, has degree $(-1)^{n+1}$ since it is the composition of n+1 reflections, each changing the sign of one coordinate in \mathbb{R}^{n+1} .
- (7) If $f: S^n \to S^n$ has no fixed points then $\deg f = (-1)^{n+1}$. For if $f(x) \neq x$ for any $x \in S^n$, then the line segment from f(x) to -x, defined by $t \mapsto (1-t)f(x) tx$ for $0 \le t \le 1$, does not pass through the origin. Hence if f has no fixed points, the formula $f_t(x) := [(1-t)f(x) tx]/\|(1-t)f(x) tx\|$ defines a homotopy from f to the antipodal map. Note that the antipodal map has no fixed points, so the fact that maps without fixed points are homotopic to the antipodal point is sort of a converse statement.

Theorem 1 (2.8). S^n has a continuous field of nonzero tangent vectors if and only if n is odd.

Proof. lies: Suppose that $x\mathbf{v}(x)$ is a tangent vector field on S^n , assigning to a vector $x \in S^n$ the vector $\mathbf{v}(x)$ tangent to S^n at x. Regarding $\mathbf{v}(x)$ as a vector at the origin instead of at x, tangency just means that x and $\mathbf{v}(x)$ are orthogonal in \mathbf{R}^{n+1} .

⇐: