

Group 9

Geometry Algorithm

Table of contents

01

Overview

1. Overview

Q: What are some example's of geometric problem in our daily life?

1. Overview

Applications:

- VLSI design.
- Computer vision.
- Mathematical models

- Models of physical world
- Astronomical simulation
- Geographic information systems

11/11

1. Overview

Do you know: Most geometry algorithm are only 50-years-old!

For clarity:

Graham's Scan, Jarvis March (Gift Wrapping), Quick Hull, and Divide and
 Conquer-based approaches have been around since the 1970s and 1980s.

Divide and Conquer-based approaches for Closest Pair of Points were developed in 1970s.

Geometric Primitives

 \square Points: Exact location in space. Determined by x and y on a 2-D plane.

```
class Point():
    def __init__(self, x, y):
        self.x = x
    self.y = y
```

☐ Line: a one-dimensional figure defined by points satisfying a linear equation:

$$ax + by + c = 0$$

```
class Line():
    def __init__(self, p1, p2):
        self.a = p1.y - p2.y
        self.b = p2.x - p1.x
        self.c = -(self.a * p1.x + self.b * p1.y)
```


Line Segment: Bounded by finite points
 along an infinite straight line that has
 two endpoints.

```
class LineSegment():
    def __init__(self, p1, p2):
        self.p1 = p1
        self.p2 = p

    def length(self):
        return hypot(self.p1.x - self.p2.x,
            self.p1.y - self.p2.y) # Euclidean

A = Point(0, 0)
B = Point(2, 1)
line_segment = LineSegment(A, B)
```

```
class Circle():
    def __init__(self, a, b, r):
        self.a = a
        self.b = b
        self.r = r
        self.c = a**2 + b**2 + r**2
```

 \Box Circle: The set of all points (x, y) such that

$$(x-a)^2 + (y-b)^2 = r^2$$
 with (a,b) being the

center and *r* being the radius

- ☐ Triangle: A polygon with 3 vertices and 3 edges. There are four main types:
 - 1. Equilateral: Three equal-length edges and three 60 degrees interior angle.
 - 2. Isoscele: Two equal-length edges and two equal interior angle.
 - 3. Scalene: All edges have different length
 - 4. Right: One 90 degrees angle (right angle).

11/11

Initialize a Triangle:

```
class Polygon():
  def __init__(self):
    self.points = []
Triangle = Polygon() # Define a Triangle
Triangle.points.append(Point(0,0))
Triangle.points.append(Point(3,0))
Triangle.points.append(Point(1,2))
Triangle.points.append(Triangle.points[0])
```


Quadrilaterals: A polygon with 4 sides, 4 vertices and 4 angles. Some other special quadrilaterals:

 Rhombus: all four sides of equal length, but the angles are not necessarily right angles.

Parallelogram: opposite sides that are parallel and equal in length, and opposite angles that are equal.

Trapezoid: at least one pair of parallel sides. The other two sides may or may not be equal in length.

Geometry Function

□ Distance from Point to Point:

1. Euclid Distance:
$$\sqrt{(x_Q - x_P)^2 + (y_Q - y_P)^2}$$

2. Manhattan Distance:
$$|x_Q - x_P| + |y_Q - y_P|$$

■ Distance from Point to Line

$$d = \frac{\left|ax_1 + by_1 + c\right|}{\sqrt{a^2 + b^2}}$$

```
def PointToLine():
    A, B = line.p2.y - line.p1.y, line.p1.x - line.p2.x
    C = (line.p2.x * line.p1.y) - (line.p1.x * line.p2.y)
    numer = abs(A * point.x + B * point.y + C)
    denom = sqrt(A**2 + B**2)
    return numer / denom
```


- □ Line intersection
- □ Counter-Clockwise
 - Given three points a, b and c, is it in CCW turn?

11/1/

- Polygon Presentation: Enumerate the vertices of the polygon in either clockwise or counter-clockwise.
- Perimeter of Polygon: The sum of distances between ordered vertices

```
def PolygonPerimeter(polygon):
    result = 0.0
    for i in range(len(polygon) - 1):
        result += LineSegment(polygon[i], polygon[i + 1])
    return result
```

11/1/

☐ Area of Polygon: Compute the determinant of the matrix

```
def PolygonArea(polygon):
    result = 0
    for i in range(len(polygon) - 1):
        x1 = polygon[i].x
        y1 = polygon[i].y
        x2 = polygon[i + 1].x
        y2 = polygon[i + 1].y
        result += (x1 * y2 - x2 * y1)
    return abs(result) / 2.0
```


□ Convex Polygon condition:

Any line segment drawn inside the Polygon does not intersect any edge of Polygon

Otherwise, it is called Concave

```
def isConvex(polygon):
    size = len(polygon)
    if size <= 3:
        return False
    isLeft = CCW(polygon[0], polygon.y,polygon[2])

for i in range(1, size - 1):
        if CCW(polygon[i], polygon[i + 1],
            polygon[(1 if i+2 == size else i+2)]) != isLeft:
        return False

return True</pre>
```

11/1/

04

Sweep Line

☐ Algorithm's strategy:

- ✓ Represent an instance of the problem as a set of events that correspond to points in the plane.
- ✓ Don't need to keep track of the sweep line at all possible positions only at the "critical" positions
- ✓ The events are processed in increasing order according to their **x** or **y** coordinates.

□ Complexity:

The running time is O(n log n), because sorting the events takes O(n log n) time and the rest of the algorithm takes O(n) time.

☐ For example:

- Kory and Aphe own a company that has n employees, and we know for each employee their arrival and leaving times on a certain day.
- Our task is to calculate the maximum number of employees that were in the office at the same time.

11/11

person	arrival time	leaving time
John	10	15
Maria	6	12
Peter	14	16
Lisa	5	13

corresponds to the following events:

John	-
Maria	•
Peter	•——
Lisa	

For the following steps:

- 1. Set a counter from left to right
- 2. Increase the counter by 1 if a person arrives
- 3. Decrease the counter by 1 if a person leaves
- 4. Answer is the maximum value of the counter

□ Intersection points

number of intersection points.

For example:

Idea: Process the endpoints of the line segments from left to right

- > Focus on three types of events:
 - 1. Horizontal segment begins (1)
 - 2. Horizontal segment ends (2)
 - 3. Vertical segment (3)
- Go from left to right:
 - At (1): Add y coordinate to the set
 - At (2): Remove **y** coordinate from the set
 - At (3): Check if there's a y coordinate between y1 and y2 (of the vertical line)

✓ Easy to solve in O(N²)

Go through all possible pairs of line segments

and check if they intersect

✓ Can solve in **O(n log n)** using Line Sweep

□ Closest Pair of Points

Task: Find the closest Pair of Point in a set of *n* points

- Brute Force
- Divide and Conquer

Application:

- > In aviation, find the closest pair of aircraft to each other that are likely to have a collision.
- > In the postal service, find the 2 post offices closest together to close either.
- In machine learning, used in cluster analysis in statistics (Hierarchical Clustering).

Divide and Conquer:

Q: There are multiple points in 2D plane. Find the closet distance between two points?

Approach: Divide into sub-planes and find closet pair in each side recursively

What if the correct answer is the distance between two points in different sub-plane?

11/11

- > Call the left side is A, the right side is B
- \succ Assuming the minimum distance of points between left is $\delta_{\scriptscriptstyle A}$ and right sides is $\delta_{\scriptscriptstyle B}$
- \rightarrow Let $\delta = \min(\delta_A, \delta_B)$

- \triangleright Observe points lie within δ of line L
- Sort points in strip by their y coordinate
- Check distances of those within the sorted list

- What is the running time of this?
- How many point do we need to check for each Pi?
- > Scanning the strip:

```
For i=1 to r:

For j=i+1 to min(i+11,r):

Check pair si, sj
```


• • •

- > Claim:
 - If $|i j| \le 6$, then the distance between **si** and **sj** is at least δ
- > Proof:
 - No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
 - Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$

4. Sweep Line

```
Closest-Pair(p1, ..., pn) {
       Compute separation line L # half the points are on one side and half on the other
        \delta 1 = \text{Closest-Pair(left half)}
        \delta 2 = \text{Closest-Pair}(\text{right half})
        \delta = \min(\delta 1, \delta 2)
        Delete all points further than \delta from separation line L
        Sort remaining points by y-coordinate.
        Scan points in y-order and compare distance between
        each point and next 11 neighbors.
        If any of these distances is less than \delta, update \delta.
        return \delta.
```

O(n log n)

2T(n / 2)

O(n)

O(n log n)

O(n)

11111

> Running time:

$$T(n) \le 2T(\frac{n}{2}) + O(n\log n)$$
$$\Rightarrow T(n) = O(n\log^2 n)$$

 $\Rightarrow O(n)$

- > Q: Can we improve the running time?
 - Sort all points by y at the beginning
 - Divide preserves the y-order of points

Finally, it becomes
$$T(n) = O(n \log n)$$

Radial Sweep involves a ray that rotates around a Central Point (like a Radar screen)

✓ In this case, we sort points / events by their bearing instead of by their **x**- and **y**-coordinates.

Besides that, the mechanics are the same as those of normal line sweep.

11111

Convex Hull

5. Convex Hull

Task: Find the Convex Hull of the set of points.

- ☐ The convex hull is defined as a smallest convex polygon containing this entire set of points
- ☐ Two main ways to solve:
 - Brute Force
 - Graham Scan

11111

5. Convex Hull

■ **Brute Force:** Given that a Line segment belongs to a Convex Hull if and only if all the remaining points are on the same side of the Line segment

- Line segment equation: ax + by c = 0
- The equation divide into 2 sides:

$$ax + by - c > 0$$
$$ax + by - c < 0$$

If all other points are lying on one side, that
 Line segment is an edge of Convex Hull

5. Convex Hull

□ Brute Force

- 1. List all possible pair of points (n/2 pairs)
- 2. For each pair (p1, p2), check if all other points lie to one side. If yes, add the pair to Convex Hull
- 3. Repeat for all pairs, then remove the duplicate edges
- 4. Connect the edges in order to form Convex Hull

5. Convex Hull

□ Graham Scan:

- 1. Define Point O which belong to convex hull as an anchor (usually bottom left point)
- 2. Call the current Convex Hull set H
- 3. Start from **O**, iterate through points with each point called **P**
- 4. If the line segment created by **P** and the last point in **H** is Clockwise, remove **P**, return to the last point in **H** and choose another point
- 5. If it is Counter Clockwise, move to the next point. Repeat until back to O

5. Convex Hull

11111

5. Convex Hull

```
let points be the list of points
let stack = empty_stack()
find the lowest y-coordinate and leftmost point, called P
sort points by polar angle with P, if several points have the same polar angle then only
keep the farthest
for point in points:
  # pop the last point from the stack if we turn clockwise to reach this point
  while count stack > 1 and ccw(next_to_top(stack), top(stack), point) <= 0:
    pop stack
  push point to stack
end
```

THANKS FOR LISTENING

7////