Homework 11 — PHYS373 2021

Douglas Domingues

Due May 6, 2021

Linear Spaces

- 1. Suppose we have an inner product space, and two vectors in that space $|u\rangle$ and $|v\rangle$.
 - (a) Suppose $\langle u \mid v \rangle = 0$, and let $|u+v\rangle = |u\rangle + |v\rangle$. Prove that $\langle u+v \mid u+v\rangle = \langle u \mid u\rangle + \langle v \mid v\rangle$. This is the *Pythagorean theorem*.

Solution: Using linearity of inner products, we get

Since $|u\rangle$ and $|v\rangle$ are orthogonal, we have

Since $|\mu\rangle = |u\rangle - \mu |v\rangle$, $\langle\mu| = \langle u| - \mu^* \langle v|$

$$= \langle \; u \mid u \; \rangle + 0 + 0 + \langle \; v \mid v \; \rangle = \langle \; u \mid u \; \rangle + \langle \; v \mid v \; \rangle$$

(b) Let the vector $|\mu\rangle = |u\rangle - \mu |v\rangle$ for two generic vectors $|u\rangle$ and $|v\rangle$ (not necessarily orthogonal) and any complex number μ . Since $\langle \mu | \mu \rangle$ is the inner product of a vector with itself, it is at least 0; $\langle \mu | \mu \rangle \geq 0$. Show that this implies $\langle u | u \rangle - \mu \langle u | v \rangle - \mu^* \langle v | u \rangle + |\mu|^2 \langle v | v \rangle \geq 0$ for any μ at all whatsoever.

Solution:

$$\langle \mu \mid \mu \rangle \geq 0 \text{ for any } \mu, \text{ so}$$

$$(\langle u \mid -\mu^* \langle v \mid) (\mid u \rangle - \mu \mid v \rangle)$$

$$= \langle u \mid u \rangle - \mu \langle u \mid v \rangle - \mu^* \langle v \mid u \rangle + \mu^* \mu \langle v \mid v \rangle$$

$$= \langle u \mid u \rangle - \mu \langle u \mid v \rangle - \mu^* \langle v \mid u \rangle + |\mu|^2 \langle v \mid v \rangle \geq 0$$

(c) By a tricky choice of $\mu = \langle v \mid u \rangle / \langle v \mid v \rangle$ (which is *some* number as long as $\langle v \mid v \rangle \neq 0$!) show that one finds $0 \leq |\langle u \mid v \rangle|^2 \leq \langle u \mid u \rangle \langle v \mid v \rangle$. This is called *Schwarz's Inequality*.

Solution: From the last part,

$$\langle u \mid u \rangle - \mu \langle u \mid v \rangle - \mu^* \langle v \mid u \rangle + |\mu|^2 \langle v \mid v \rangle \ge 0$$

Using
$$\mu = \langle v \mid u \rangle / \langle v \mid v \rangle$$
,
$$\langle u \mid u \rangle - \frac{\langle v \mid u \rangle}{\langle v \mid v \rangle} \langle u \mid v \rangle - \frac{\langle v \mid u \rangle^*}{\langle v \mid v \rangle} \langle v \mid u \rangle + \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle^2} \langle v \mid v \rangle \ge 0$$
 Also, since $\langle v \mid u \rangle \langle v \mid u \rangle^* = \langle v \mid u \rangle^* \langle v \mid u \rangle = |\langle v \mid u \rangle|^2$, and $\langle u \mid v \rangle = \langle v \mid u \rangle^*$,
$$\langle u \mid u \rangle - \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle} - \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle} + \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle} \ge 0$$

$$\langle u \mid u \rangle - \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle} \ge 0$$

$$\langle u \mid u \rangle \ge \frac{|\langle v \mid u \rangle|^2}{\langle v \mid v \rangle}$$

$$\langle u \mid u \rangle \langle v \mid v \rangle \ge |\langle v \mid u \rangle|^2$$

If you want to think in terms of familiar geometric language, $|\langle u | v \rangle|^2$ is like the (magnitude) square of the dot product of two vectors. That's got to be at least zero. Since $\vec{a} \cdot \vec{b} = ab \cos \theta$ where θ is the angle between them, the dot product is at most ab (when $\theta = 0$ —the vectors are parallel).

(d) The zero vector is the vector whose length is zero. It gets a lot of special treatment. For example, a lot of times we don't write it as a ket, we just write 0, so $|u\rangle = |u\rangle + 0$. Rarely, you might find texts that write just $|\rangle$ (with nothing inside), 'the null ket'. When we say its length is zero we mean $\langle | \rangle = 0$.

Use the inequality proved in part (c) to show that the inner product of the zero vector with any vector is zero. Note that you cannot let $|v\rangle$ be the null ket because $\langle v|v\rangle$ is in the denominator for μ —you've got to let $|u\rangle$ be the null ket.

Solution:

Let $|u\rangle = |\rangle$ and $|v\rangle$ is an arbitrary vector. By the Schwarz inequality,

$$\langle u \mid u \rangle \langle v \mid v \rangle \ge |\langle v \mid u \rangle|^2 \ge 0$$

 $\langle \mid \rangle \langle v \mid v \rangle \ge |\langle v \mid \rangle|^2 \ge 0$

Clearly $\langle \mid \rangle = 0$, thus

$$0 \ge |\langle v \mid \rangle|^2 \ge 0$$

\Rightarrow |\langle v | \rangle|^2 = 0 \Rightarrow \langle v | \rangle = 0

This is what *justifies* writing the null ket as just 0 (without the | funny brackets \rangle) in the first place! Otherwise, we'd be adding a vector to a number which...?

2. Consider a four-dimensional inner product space with orthonormal kets $|1\rangle$, $|2\rangle$, $|3\rangle$, and $|4\rangle$ which satisfy

$$\langle m \mid n \rangle = \delta_{mn}$$
 (that's 16 equations, one for each combination of $m, n \in \{1, 2, 3, 4\}$) (1)

¹But! We do not usually write the zero vector as $|0\rangle$. In quantum mechanics, for example, we often write $|0\rangle$ for the ground state—which is a state just like any other generic state, in that its norm isn't zero

Suppose we have two vectors $|f\rangle$ and $|g\rangle$ given in that basis in terms of their (complex) components f_i and g_i ,

$$|f\rangle = \sum_{i=1}^{4} f_i |i\rangle \qquad |g\rangle = \sum_{i=1}^{4} g_i |i\rangle \qquad (2)$$

(a) Show that $\langle f \mid g \rangle = \sum_{i=1}^{4} f_i^* g_i$

Solution: Given
$$|f\rangle$$
, $\langle f| = \sum_{i=1}^4 f_i^* \langle i|$

$$\langle f|g\rangle = \sum_{i=1}^4 f_i^* \langle i|\sum_{j=1}^4 g_j|j\rangle$$

$$= \sum_{i=1}^4 \sum_{j=1}^4 f_i^* \langle i|g_j|j\rangle$$

$$= \sum_{i=1}^4 \sum_{j=1}^4 f_i^* g_j \langle i|j\rangle$$

$$= \sum_{i=1}^4 \sum_{j=1}^4 f_i^* g_j \delta_{ij}$$

$$= \sum_{i=1}^4 f_i^* g_i$$

(b) Suppose we restricted ourselves to the space of vectors where the third and fourth components were always equal. In other words, vectors of the form $|g\rangle = g_1 |1\rangle + g_2 |2\rangle + g_3 (|3\rangle + |4\rangle)$. This subspace is 3-dimensional, in the sense that you've only got to specify 3 numbers (components) to determine any vector in it. However, they don't have the 'usual' inner product! Show that for these vectors the inner product can be written $\langle f | g \rangle = \sum_{i=1}^4 f_i^* g_i = \sum_{i=1}^3 f_i^* g_i w_i$ where $w_1 = 1$, $w_2 = 1$, and $w_3 = 2$.

Solution: $f_3^* = f_4^*$, so $f_3^* + f_4^* = 2f_3^*$, and the same is valid for g, so $\langle f \mid g \rangle = f_1^* g_1 + f_2^* g_2 + f_3^* g_3 + f_4^* g_4$ $= f_1^* g_1 + f_2^* g_2 + 2f_3^* g_3 = \sum_{i=1}^3 f_i^* g_i w_i$

where $w_1 = 1$, $w_2 = 1$, and $w_3 = 2$.

- (c) The general construction $\langle f | g \rangle = \sum_i f_i^* g_i w_i$ is called a weighted inner product; w_i is called the weight of component i. Show that if all the weights are real and positive, this inner product satisfies
 - 1. $\langle f | g \rangle = \langle g | f \rangle^*$ (complex conjugation property)
 - 2. $\langle f \mid f \rangle \geq 0$ (positive-semidefiniteness)
 - 3. $\langle f | f \rangle = 0$ if and only if all the components of f are 0 (uniqueness of the zero vector).
 - 4. $\langle f \mid g+h \rangle = \langle f \mid g \rangle + \langle f \mid h \rangle$ (linearity; $|g+h \rangle$ means $|g \rangle + |h \rangle$)
 - 5. $\langle f \mid \alpha g \rangle = \alpha \langle f \mid g \rangle$ (linearity; $\mid \alpha g \rangle$ means $\alpha \mid g \rangle$)

(Notice that linearity in the bra, $\langle f + g \mid h \rangle = \langle f \mid h \rangle + \langle g \mid h \rangle$ and $\langle \alpha f \mid g \rangle = \alpha^* \langle f \mid g \rangle$ follow from combining the complex conjugation property with the linearity properties you showed for the ket.)

Solution:

1. $\langle g \mid f \rangle = \sum_i g_i^* f_i w_i$, so $\langle g \mid f \rangle^* = \sum_i g_i f_i^* w_i^*$ But since w_i is real, $w_i = w_i^*$ and

$$\langle g \mid f \rangle^* = \sum_i g_i f_i^* w_i^* = \sum_i g_i f_i^* w_i = \langle f \mid g \rangle$$

2.

$$\langle f \mid f \rangle = \sum_{i} f_i^* f_i w_i = \sum_{i} |f_i| w_i \ge 0$$

since w_i is positive, this is a sum of all positive terms.

3. If f = 0, $\langle f | f \rangle = 0$ is clear per 1(d). (multiplying zeros by weights wouldn't change anything)

Now suppose $\langle f \mid f \rangle = 0$, thus

$$\langle f \mid f \rangle = \sum_{i} |f_i| w_i = 0$$

Since $w_i > 0$, $|f_i| = 0$, for all i. Therefore f = 0.

4.

$$\langle f \mid g+h \rangle = \sum_{i} f_{i}^{*}(g_{i}+h_{i})w_{i} = \sum_{i} f_{i}^{*}g_{i}w_{i} + \sum_{i} f_{i}^{*}h_{i}w_{i} = \langle f \mid g \rangle + \langle f \mid h \rangle$$

5.

$$\langle f \mid \alpha g \rangle = \sum_{i} f_{i}^{*} \alpha g_{i} w_{i} = \alpha \sum_{i} f_{i}^{*} g_{i} w_{i} = \alpha \langle f \mid g \rangle$$

(d) Which property/properties in part (c) wouldn't be true if the weights w were allowed to be complex?

Solution: 1, since we use the fact that $w_i = w_i^*$.

(e) Which property/properties in part (c) wouldn't be true if the weights w were allowed to be negative?

Solution: Considering non-zero negatives, 2, since we use that $w_i > 0$ to ensure it's a sum of positive terms.

(f) Which property/properties in part (c) wouldn't be true if the weights were all real but some of the weights were allowed to be zero?

Solution: 3. If a weight is zero, it can 'kill' a non-zero term of a vector. A vector with a non-zero term isn't the null vector, but this way it could have a 0 product.

(g) You don't have to write anything, but convince yourself that for functions, the weighted inner product $\langle f | g \rangle = \int f^*(x)g(x) \ w(x) \ dx$ for some finite or infinite interval of x has all the nice part-(c)-properties as long as the weight function w(x) is a real, positive function.

- 3. Suppose you have a complete orthogonal (but not orthonormal) basis of kets $\{|i\rangle\}$, $\langle i|j\rangle = n_i^2 \delta_{ij}$ for all i and j, where n_i is the normalization if $|i\rangle$; n_i is a positive, real number. Since it's a complete basis we can write any vector $|f\rangle = \sum_i f_i |i\rangle$ in that basis.
 - (a) Show that $f_j = \langle j | f \rangle / \langle j | j \rangle$.

Solution:

$$\frac{\langle j \mid f \rangle}{\langle j \mid j \rangle} = \frac{\langle j \mid \sum_{i} f_{i} \mid i \rangle}{n_{j}^{2}} = \sum_{i} f_{i} \frac{\langle j \mid i \rangle}{n_{j}^{2}} = \sum_{i} f_{i} \frac{n_{j}^{2} \delta j i}{n_{j}^{2}} = \sum_{i} f_{i} \delta j i = f_{j}$$

(b) Suppose you have another vector $|g\rangle$ (defined like $|f\rangle$, but with components g_i in the basis we're discussing). Show that $\langle f|g\rangle = \sum_i f_i^* g_i w_i$ where $w_i = n_i^2$. In other words, a weighted inner product comes up in a basis where the kets aren't necessarily normalized to 1.

Solution:

$$\langle f \mid g \rangle = \sum_{i} f_{i}^{*} \langle i \mid \sum_{j} g_{j} \mid j \rangle$$

$$= \sum_{i} \sum_{j} f_{i}^{*} \langle i \mid g_{j} \mid j \rangle$$

$$= \sum_{i} \sum_{j} f_{i}^{*} g_{j} \langle i \mid j \rangle$$

$$= \sum_{i} \sum_{j} f_{i}^{*} g_{j} n_{i}^{2} \delta_{ij} = \sum_{i} f_{i}^{*} g_{i} n_{i}^{2}$$

Operators

4. In HW07Q9 and HW09Q1 we discussed the translation operator. We said $T(\Delta)f(x) = f(x-\Delta)$. Suppose that $|f\rangle = \int_{-\infty}^{+\infty} dx f(x) |x\rangle$. Consider the operator

$$T(\Delta) = \int_{-\infty}^{+\infty} dx | x + \Delta \rangle \langle x |$$
 (3)

which replaces any $|x\rangle$ with the ket $|x+\Delta\rangle$ instead. Show that when we apply the operator $T(\Delta)$ to $|f\rangle$ we get

$$T(\Delta) \mid f \rangle = \int_{-\infty}^{+\infty} f(x - \Delta) \mid x \rangle. \tag{4}$$

Solution:

5. The differentiation operator D is the 2 limit,

$$D = \lim_{\epsilon \to 0} \frac{T(0) - T(\epsilon)}{\epsilon}; \tag{5}$$

where what we mean is: first apply the operator T(0) and $T(\epsilon)$, then take the limit $\epsilon \to 0$. Show that when applied to $|f\rangle = \int dx f(x) |x\rangle$,

$$D \mid f \rangle = \int \, \mathrm{d}x f'(x) \mid x \rangle \tag{6}$$

which we can call $|f'\rangle$. (Use the result from the previous question!; you can assume the limit commutes with any integration and the necessary limits exist)

Solution:

6. Consider the space of complex-valued functions on $x = (-\infty, +\infty)$. The Laplacian L is a linear operator given by

$$L = D^2 (7)$$

where D is the differentiation operator from the previous question. (D^2 means: first apply D and then apply D again.)

(a) Suppose we have a vector $|f\rangle = \int dx f(x) |x\rangle$. Show that $L|f\rangle = |f''\rangle = \int dx f''(x) |x\rangle$. (Use the result from the previous problem!)

Solution:

(b) Recall that the Fourier basis is given by the vectors

$$|k\rangle = \int dx \, e^{ikx} |x\rangle \qquad \langle p | k\rangle = 2\pi \delta(p-k)$$
 (8)

for all $k \in \mathbb{R}$. Show that $L \mid k \rangle = -k^2 \mid k \rangle$. (Hint: use the result from the previous part!) (In other words, the *Fourier basis* is made up of eigenstates of the Laplacian; the eigenvalue corresponding to $\mid k \rangle$ is $-k^2$. Since all the eigenvalues are real, the Laplacian is a Hermitian operator.)

²You could take a symmetrical definition $\lim_{\epsilon \to 0} [T(-\epsilon) - T(+\epsilon)]/2\epsilon$ or some other sensible definition instead; they all agree in the $\epsilon \to 0$ limit.

Solution:

(c) Check that in the Fourier basis we may write

$$L = \int \frac{\mathrm{d}k}{2\pi} |k\rangle (-k^2) \langle k|$$
 (9)

by applying this operator to $\mid p \rangle$ (a vector in the Fourier basis) to get $L \mid p \rangle = -p^2 \mid p \rangle$. (Hint: it will be easier to stay in the Fourier basis and use the orthogonality relation $\langle k \mid p \rangle = 2\pi\delta(p-k)$.)

Solution:

Prep Work for Spherical Coordinates

7. Consider 3-dimensional space with coordinates x, y, and z. We can describe any point by its 3 cartesian coordinates (x, y, z), but can also describe any point by its spherical coordinates (r, θ, ϕ) , as shown in the figure below. (Another figure is available in Boas 5.4 by equation 4.5.) While x, y, and z can take any value $(-\infty, +\infty)$, and each point has only one set of coordinates in that basis, we have to be more careful with the r, θ , and ϕ coordinates. First of all, ϕ is 2π -periodic—if you increase ϕ by 2π you get back to the same point. So ϕ can go from 0 to 2π (or from $-\pi$ to $+\pi$, or any other convenient choice—functions are always 2π -periodic in ϕ).

Next, θ can go from 0 to π ; you can describe a point which has a θ that's more than π by increasing ϕ by π and using a θ that's less than π . In other words, a point $(r, \theta > \pi, \phi)$ can also be described by $(r, 2\pi - \theta, \phi + \pi)$. Finally, r can go from 0 to ∞ ; a point with coordinates $(-r, \theta, \phi)$ can be described by $(+r, \pi - \theta, \phi + \pi)$ instead.

(You can either do part a using geometry and then part b via algebra, or part b using geometry and then part a via algebra, whichever you find easier! Maybe do both from geometry. Up to you!)

(a) Use the normal rules of euclidean geometry to show

$$r^2 = x^2 + y^2 + z^2 \qquad \tan \phi = \frac{y}{x} \qquad \cos \theta = \frac{z}{r}$$
 (10)

Solution:

(b) Show that these relationships may also be solved for x, y, and z to give

$$x = r \sin \theta \cos \phi$$
 $y = r \sin \theta \sin \phi$ $z = r \cos \theta$ (11)

Solution:

(c) When we compute integrals over space using cartesian coordinates it's easy; $\int dV = \int dx dy dz$. But if we integrate over space it's not just $\int dV \neq \int dr d\theta d\phi$. For one thing, the units are wrong! dV is supposed to have dimensions of length³ but since θ and ϕ are angles they don't have dimension (or, if you like, their dimensions are radians; certainly not length, anyway!). So, what went wrong? We need to include the *Jacobian*.

The Jacobian is given by

$$J = \det \begin{pmatrix} \partial_r x & \partial_r y & \partial_r z \\ \partial_\theta x & \partial_\theta y & \partial_\theta z \\ \partial_\phi x & \partial_\phi y & \partial_\phi z \end{pmatrix}$$
(12)

Show that $J = r^2 \sin \theta$. (See Boas 5.4 eq (4.14) for help.)

Solution:

Therefore, if we integrate some function f over some region of space $\int dV f$ we can either day the integral is $\int dx dy dz f(x, y, z)$ or $\int r^2 dr \sin\theta d\theta d\phi f(r, \theta, \phi)$ over the same region of space (but written in different coordinates). We usually say $f(r, \theta, \phi)$ doesn't mean plug in r where you see x, θ for y, and ϕ for z—instead it means you should plug in x, y, and z in terms of the r, θ , and ϕ variables, given by (11).

(d) Sometimes it's convenient to think in terms of $u = \cos \theta$. What is du in terms of θ and $d\theta$? If θ goes from 0 to π , what values does u take? Rewrite $\int_0^{\pi} d\theta \sin \theta f(\cos \theta)$ as an integral over u.

Solution:

As Always

8. How long did this problem set take you?

Optional Practice

- 9. Boas 3.10.7 and 3.10.8
- 10. Boas 3.10.10 (the triangle inequality; the notation ||f|| means $\sqrt{\langle |f||f| \rangle}$, see 3.10 eqn 10.2.)
- 11. Find the Jacobian for *cylindrical coordinates*, $(r, \phi, z) = (\sqrt{x^2 + y^2}, \arctan y/x, z)$.