

Niccori^ Survey Team

Problem

In their odyssey to investigate all the smiles in the world, Rin and Ren have arrived to Ecatepec. Ecatepec can be seen as a graph with N vertices, numbered from 0 to N-1, connected by some bidirectional edges. However, since it is largely uncharted territory, the team does not know about its edges. If Ecatepec turns out to be not connected¹, Rin and Ren will not be able to carry out their mission properly, so they enlist the help of the great scientist Miku. Miku gives our adventurers a curious device that answers questions as follows given a parameter K that Miku has set beforehand:

Given two distinct vertices of the Ecatepec graph, the device answers whether they are at a distance² less than K, exactly K, or greater than K.

Since the device is still a prototype, Miku warns the team that they can ask at most $\frac{2N^2}{K}$ questions. Rin and Ren failed math in high school, so they enlist your help to determine if Ecatepec is connected.

Implementation Details

You must implement the function $Equipo_sonrisas()$. This function receives an integer N (the size of the graph) and an integer K (the device's parameter). This function should return a pair of integers: if the graph is connected, it should return the pair (-1, -1). If the graph is not connected, it should return a pair of vertices in different components. During your program, you can call the function $Dispositivo_Miku()$. This function receives 2 integers a, b and returns -1 if dist(a, b) < K, 0 if dist(a, b) = K, and 1 if dist(a, b) > K. To call this function, you must include the library "Sonrisas.h" with the command #include "Sonrisas.h". An example program would look like this:

```
#include "Sonrisas.h"
#include <bits/stdc++.h>
using namespace std;

pair<int, int> Equipo_sonrisas(int N, int K) {
    // Implement this function.
}
```

The grader will call this function **multiple** times for each testcase.

¹We say that a graph is connected if for every pair of vertices, there is a path (a sequence of vertices such that each pair of adjacent vertices is connected by an edge) that starts at one and ends at the other.

²The distance between two vertices is defined as the path with the fewest edges connecting them, expressed as dist(a, b).

Example

■ The grader calls the function

 $Equipo_sonrisas(5, 2)$

The hidden graph is as follows:

• the following is a distance table of the graph:

dist(a,b)	0	1	2	3	4
0	0	1	1	2	∞
1	1	0	2	1	∞
2	1	2	0	1	∞
3	2	1	1	0	∞
4	∞	∞	∞	∞	0

• Here is an example interaction:

Function called	return value	
$Dispositivo_Miku(0, 1)$	-1	
$Dispositivo_Miku(0, 2)$	-1	
$Dispositivo_Miku(0, 3)$	0	
$Dispositivo_Miku(0, 4)$	1	
$Dispositivo_Miku(1, 2)$	0	
$Dispositivo_Miku(1, 3)$	-1	
$Dispositivo_Miku(1, 4)$	1	
$Dispositivo_Miku(2, 3)$	-1	
$Dispositivo_Miku(2, 4)$	1	
$Dispositivo_Miku(3, 4)$	1	

■ If the return value of the function called by the grader is (-1, -1), the veredict would be wrong answer. Otherwise, if the return value is, for example, (1, 4), the veredict would be accepted.

Constraints

- $1 \le K < N \le 1000$.
- In all cases, the number of times you call the function $Dispositivo_Miku()$ must be less than $\frac{2N^2}{K}$. Otherwise, you will receive a wrong answer veredict.
- If the function returns (-1, -1) and the graph is not connected, or if it returns a pair of connected nodes, you will receive a wrong answer veredict.
- Let S_N be the sum of the values of N for each call made by the grader in a testcase. It is guaranteed that $S_N \leq 1000$.

Subtasks

- (5 points) K = N 1.
- (10 points) $K \leq 4$.
- (33 points) $K = \frac{N}{2}$.
- (22 points) The graph is a forest (there are no cycles, that is, there is no paths that don't repeat edges and start and end at the same vertex).
- (30 points) No additional constraints.