MLOPS_Final_Project_Group15

1. Installing Required Libraries

 $! \verb|pip| install| neptune-client| dataprep| seaborn| matplotlib|\\$

Show hidden output

2. Importing DataPrep and other functions

3. Listing DataPrep Datasets

4. Loading 'titanic' Dataset and Creating EDA Report

```
df = load_dataset("titanic")
create_report(df)

Show hidden output
```

5. Saving the Created Report

6. Downloading the Created Report

7. Plotting 'Age' Variable to study plot() function

Stats

Negatives (%)

•	$\overline{}$	_

Overview	
Approximate Distinct Count	88
Approximate Unique (%)	12.3%
Missing	177
Missing (%)	19.9%
Infinite	0
Infinite (%)	0.0%
Memory Size	11424
Mean	29.6991
Minimum	0.42
Maximum	80
Zeros	0
Zeros (%)	0.0%
Negatives	0

KDE Plot

0.0%

Normal Q-Q Plot

Histogram

Descriptive Statistics

Box Plot

Value Table

Mean	29.6991		
Standard Deviation	14.5265		
Variance	211.0191		
Sum	21205.17		
Skewness	0.3883		
Kurtosis	0.1686		
Coefficient of Variation	0.4891		

Quantile Statistics

Minimum	0.42 4 20.125		
5-th Percentile			
Q1			
Median	28		
Q3	38		
95-th Percentile	56		
Maximum	80		
Range	79.58		
IQR	17.875		

∨ 8. Initializing Neptune.ai Run

```
run = neptune.init_run(
    project='sbonga4/MLOPS-Final-Project-Group15',
    api_token='eyJhcGlfYWRkcmVzcyI6Imh0dHBz0i8vYXBwLm5lcHR1bmUuYWkiLCJhcGlfdXJsIjoiaHR0cHM6Ly9hcHAubmVwdHVuZS5haSIsImFwaV9rZXkiC)
```

 \rightarrow

Show hidden output

9. Importing Matplotlib and Seaborn for Custom Visualizations

```
import seaborn as sea
import matplotlib.pyplot as mat
```

10. Plots using Matplotlib and Seaborn

```
mat.figure(figsize=(10, 6))
sea.histplot(df['Age'].dropna(), bins=30, kde=True)
mat.title('Distribution of Ages on the Titanic')
mat.xlabel('Age')
mat.ylabel('Frequency')
mat.savefig('titanic_age_distribution.png')
mat.show()
```

Distribution of Ages on the Titanic


```
#df_filtered = df[(df['Age'] >= 25) & (df['Age'] <= 45)]
\#df_filtered = df[(df['Age'] >= 15) & (df['Age'] <= 40) & (df['Sex'] == 'female')]
df_filtered = df[(df['Age'] >= 20) & (df['Age'] <= 30) & (df['Sex'] == 'male')]
#mat.figure(figsize=(10, 6))
#sea.histplot(df_filtered['Age'].dropna(), bins=30, kde=True)
#mat.title('Distribution of Ages (25 to 45) on the Titanic')
#mat.xlabel('Age)')
#mat.ylabel('Frequency')
#mat.savefig('titanic_age_distribution_25_to_45.png')
#mat.show()
#mat.figure(figsize=(10, 6))
#sea.histplot(df_filtered['Age'].dropna(), bins=30, kde=True)
#mat.title('Distribution of Females Aged (15 to 40) on the Titanic')
#mat.xlabel('Age)')
#mat.ylabel('Frequency')
#mat.savefig('titanic_female_age_distribution_15_to_40.png')
#mat.show()
mat.figure(figsize=(10, 6))
sea.histplot(df_filtered['Age'].dropna(), bins=30, kde=True)
mat.title('Distribution of Males Aged (20 to 30) on the Titanic')
mat.xlabel('Age)')
mat.ylabel('Frequency')
mat.savefig('titanic_male_age_distribution_20_to_30.png')
mat.show()
\overline{z}
     Show hidden output
```

11. Uploading the Visualizations to Neptune and Stopping the Run