1) Установка MySQL

Рассмотрим установку пакета программ для Windows, содержащего **MySQL server**, среду для разработки и администрирования **MySQL Workbench** и много других полезных компонентов. (Источник - http://www.mysql.com/downloads/installer/)

- 1. Для начала нужно установить Microsoft .NET 4.0 Framework, если его нет.
- 2. Установить Visual C++ Redistributable Packages for Visual Studio 2013.

Теперь можно устанавливать **MySQL Workbench** - mysql-installer-community-5.5.28.3.msi или более новую версию:

Ha 2 странице принимаем лицензию. На 3 странице не проверяем обновления (skip the check for updates).

Проверяются необходимые условия для установки:

Устанавливаем следующие продукты: (первый пункт – это сам сервер, второй пункт – среда разработчика)

Конфигурирование сервера:

Для администратора по имени **root** зададим пароль. Запомните **ero!** А также создадим пользователя по имени **user** с паролем. Тоже запомните **ero!** Можно сделать пароли, совпадающие с именем пользователя: **root** и **user**, хотя в смысле безопасности это плохой вариант, но для учебных целей годится.

На следующих страницах ничего не изменяем. Имя сервера по умолчанию MySQL55. Установка успешно завершена.

2) Создание EER-диаграммы

Среда mySQL Workbench предназначена для визуального проектирования баз данных и управления сервером mySQL.

Для построения моделей предназначена Data секция Modeling:

Выберем пункт Create new EER Model.

EER model расшифровывается как Extended Entity-Relationship Model и переводится как Расширенная модель сущностей-связей.

По умолчанию имя созданной модели турв. Щелкните правой кнопкой мыши по имени модели и выберите в появившемся меню пункт Edit schema. В появившемся окне можно изменить имя модели. Назовем ее, например, **kontora**. В именах таблиц и столбцов нельзя использовать русские буквы.

В этом окне также **нужно** настроить так называемую «кодовую страницу» для корректного отображения русских букв внутри таблиц. Для этого выберите «cp1251-ИЗ списка ПУНКТ ср1251 general ci». Окно свойств можно закрыть.

Диаграмму будем строить помощью визуальных средств. Щелкнем ПО ПУНКТУ Add diagram, загрузится пустое окно диаграммы:

Создать новую таблицу онжом помощью пиктограммы Нужно щелкнуть

потом щелкнуть в рабочей области диаграммы. На этом месте появится таблица с названием по умолчанию table1. Двойной щелчок по этой таблице открывает окно редактирования, в котором можно изменить имя таблицы и настроить её структуру.

Будем создавать таблицу Отделы со следующими столбцами: номер отдела, полное название отдела, короткое название отдела. Переименуем **table1** в **k_dept** и начнем создавать столбцы. Каждый столбец имеет:

- имя (не используйте русские буквы в имени!),
- тип данных. Самые распространенные типы данных:
 - INT целое число;
 - VARCHAR(размер) символьные данные переменной длины, в скобках указывается максимальный размер;
 - DECIMAL(размер, десятичные_знаки) десятичное число;
 - о DATE дата:
 - DATETIME дата и время.

Далее располагаются столбцы, в которых можно настроить дополнительные свойства поля, включив соответствующий флажок:

- PK (primary key) первичный ключ;
- NN (not null) ячейка не допускает пустые значения;
- UQ (unique) значение должно быть уникальным в пределах столбца;
- AI (auto incremental) это свойство полезно для простого первичного ключа, оно означает, что первичный ключ будет автоматически заполняться натуральными числами: 1, 2, 3, и т.п.;
- DEFAULT значение по умолчанию, т.е., значение, которое при добавлении новой строки в таблицу автоматически вставляется в ячейку сервером, если пользователь оставил ячейку пустой.

Таблица Отделы имеет следующий вид:

K_dept									
	[[[- c
Column Name	Datatype	PK	NN	UQ	BIN	UN	ZF	AI	Default
dept_num	ĮINT	\checkmark	V					V	
dept_full_name	VARCHAR(45)								
dept_short_name	VARCHAR(10)		\checkmark						

Далее создадим таблицу **Сотрудники** со следующими столбцами: номер_сотрудника, имя_сотрудника, должность, дата_начала_контракта, дата_окончания_контракта

/k_staff							
Column Name	Datatype	PK NN UQ BIN UN ZF AI Default					
🕴 staff_num	INT						
staf_name	VARCHAR(45)						
staff_post	VARCHAR(45)						
staff_hiredate	DATE						
staff_termdate	DATE						

На диаграмме созданные таблицы выглядят следующим образом:

Обратите внимание, что при создании первичного ключа автоматически создается **индекс** по этому первичному ключу. **Индекс** представляет собой вспомогательную структуру, которая служит, прежде всего, для ускорения поиска и быстрого доступа к данным.

Теперь свяжем эти таблицы. Сначала создадим связь «Работает» между Сотрудником (дочерняя таблица) и Отделом (родительская таблица), степень связи М:1. Для создания связей М:1 служит пиктограмма на панели инструментов (с пунктирной линией). С ее помощью создается так называемая «неидентифицирующая связь», т.е. обыкновенный внешний ключ, при этом первичный ключ родительской таблицы добавляется в список столбцов дочерней таблицы.

Итак, щелкнем на пиктограмме, затем щелкнем на дочерней таблице **Сотрудники**, затем на родительской таблице **Отделы**:

Обратите внимание, что при этом произошло. Между таблицами образовалась пунктирная линия; в сторону «к одному» она отмечена двумя черточками, в сторону «ко многим» - «куриной лапкой». Кроме того, в таблице Сотрудники образовался дополнительный столбец, которому автоматически присвоено имя $k_dept_dept_num$ (т.е., имя родительской таблицы плюс имя первичного ключа родительской таблицы). А в группе **Индексы** создан индекс по внешнему ключу.

Теперь добавим связь между этими же таблицами «Руководит» 1:1. Выберем пиктограмму 1:1, затем щелкнем по **Отделам**, затем по **Сотрудникам**.

Чтобы 2 связи на картинке не «завязывались узлом», мы их разместили друг под другом.

Обратите внимание, что в таблицу Отделы был автоматически добавлен столбец $k_staff_staff_num$, а также индекс по внешнему ключу.

Создадим таблицу Предприятия:

k_firm		
Column Name	Datatype	PK NN UQ BIN UN ZF AI Default
🕴 firm_num	INT	
firm_name	VARCHAR(45)	
firm_addr	VARCHAR(45)	
firm_phone	VARCHAR(20)	

Создадим таблицу Договоры. У столбца Тип_договора зададим следующий формат: это буква из списка 'A', 'B', 'C'.

Свяжем Договоры с Сотрудниками и Предприятиями связями М:1.

Затем создадим Счета и Платежи:

Поскольку сущность Платеж была «слабой», у нее нет полноценного первичного ключа, каждый платеж однозначно идентифицируетгруппой атрибутов (номер счета, номер платежа). Отметим качестве ключевого поля

раутепт_пит, а затем создадим **идентифицирующую** связь между **Счетом** и **Платежом**.

Идентифицирующая связь создается с помощью пиктограммы (со сплошной линией). При этом новый столбец $k_bill_bill_num$ становится не только внешним ключом в таблице **Платеж**, но и частью первичного ключа.

Далее создадим таблицу **Прайс-лист** со столбцами (номер_товара, название_товара, цена_товара и тип_товара).

Между объектами **Счет** и **Прайс-лист** имеется связь «многие - ко многим». Для создания этой связи нужно использовать пиктограмму . Следует щелкнуть мышью по этой пиктограмме, а затем последовательно щелкнуть по связываемым таблицам. Между ними появится новая таблица, обратите внимание на ее столбцы, первичный ключ и внешние ключи:

Для удобства переименуем эту таблицу в $k_protokol$ (ПротоколСчета), добавим столбцы kolvo и price sum.

Теперь EER-диаграмма имеет такой вид:

