A Multivariate Extension of Sign Test

Sahil Saini Shamriddha De Sonia Mehra

Department of Mathematics & Statistics Indian Institute of Technology Kanpur

April 17, 2021

Outline

- Univariate Sign Test
- Multivariate Extension
 - Test Statistic
 - Asymptotic Null Distribution
- 3 Conclusions

Univariate Sign Test

Let us consider a population with distribution function F which is continuous and symmetric about its location parameter θ .

The testing problem can be stated as

$$H_0: \theta = \theta_0$$
 against $H_1: \theta \neq \theta_0$,

which can be equivalently framed as

$$H_0: \theta = 0$$
 against $H_1: \theta \neq 0$,

without any loss of generality.

Univariate Sign Test

Let $X_1, X_2, ..., X_n$ be a random sample from F. Define the indicator functions

$$I_i = \begin{cases} 0, & \text{if } X_i < 0 \\ 1, & \text{if } X_i > 0 \end{cases}, \quad i = 1, 2, ..., n.$$

The test statistic is formulated as

$$S_n = \sum_{i=1}^n I_i.$$

Under H_0 , S_n should be close to n/2. H_0 is rejected if S_n is too larger or too smaller that n/2.

Moreover, S_n follows a Binomial distribution.

Multivariate Extension

Let us consider a multivariate population (of dimension p) with F_p as the distribution function.

Assumption: F_p is continuous and symmetric about its location parameter vector $\boldsymbol{\theta}$.

Testing problem:

$$H_0: \theta = \theta_0$$
 against $H_1: \theta \neq \theta_0$,

or equivalently,

$$H_0: \theta = 0$$
 against $H_1: \theta \neq 0$,

without loss of generality.

Test Statistic

Let $X_1, X_2, ..., X_n$ be a random sample from F_p .

Let us consider $I_i = (I_{i1}, ..., I_{ip})^T$ (i = 1, 2, ..., n), where

$$I_{ij} = \begin{cases} -1, & \text{if } X_{ij} < 0 \\ 1, & \text{if } X_{ij} > 0 \end{cases}, \quad i = 1, 2, ..., n, \quad j = 1, 2, ..., p.$$

We define

$$S_n = \sum_{i=1}^n I_i$$
.

Test Statistic

Plausible test statistic:

$$T_n = \|\mathbf{S}_n\|^2 = \sum_{j=1}^p S_{nj}^2.$$

To reject H_0 at level of significance α if $t_n > (T_n)_{\alpha}$, where t_n is the observed value of T_n and $(T_n)_{\alpha}$ is the upper $100\alpha\%$ point of the distribution of T_n .

Asymptotic Distribution (under H_0)

Notes:

- Ii's are i.i.d random vectors
- The components of I_i 's are bounded random variables
- Under H_0 , $E(I_1) = 0$

Using Multivariate Central Limit Theorem,

$$\frac{1}{\sqrt{n}}\mathbf{S}_n \stackrel{d}{ o} \mathbf{Z} \sim \mathcal{N}_p(0, \Sigma),$$

where Σ is the covariance matrix of I_1 .

(Σ need not be an identity matrix!)

Asymptotic Distribution (under H_0)

Continuous Mapping Theorem yields

$$\|\frac{1}{\sqrt{n}}\boldsymbol{S}_n\|^2 \stackrel{d}{\to} \|\boldsymbol{Z}\|^2,$$

or equivalently,

$$\frac{1}{n}T_n \stackrel{d}{\to} \|\boldsymbol{Z}\|^2$$

where $\|\mathbf{Z}\|^2$ follows a Generalized Chi-Square distribution.

What's Next

- The exact distribution of the test statistic
- Finding explicit expressions for the parameters of the distributions while deducing asymptotic distribution
- Comparative analysis of the proposed test with some other prevailing tests.

Thank You!