Uncover Music Recommendation System for Spotify

A Machine Learning Approach to Song Recommendation, Clustering, and Popularity Prediction in the Streaming Era

Presenters: Team 6

Andrew Rafael James

Doris Liang

Hunter Guo

Monica Ko

Pang Leesuravanich

Spotify®

ADSP 31017 IP09 Machine Learning I

Agenda

Problem Statement	02
Data Source	03
Song Clustering	80
Song Popularity Prediction	09
Song Recommendation System	10
Conclusion & Business Values	12

2

Problem Statement

	Background	With the rise of music streaming, Spotify, with over 600M users, have reshaped how people discover music, making it crucial to understand what makes a song popular
<u>/\</u>	Challenge	For over 100M songs on Spotify, it's quite difficult to analyze which audio characteristics such as tempo, energy, and danceability influence popularity, and whether trends have shifted across eras
E	Goal	Develop a personalized song recommendation system based on the song features similarity, by using input from: (1) categorize songs with common characteristics (2) predict if a song will be popular

Data Source

Track

Music

bo...

Top 10000 Songs on Spotify 1950-Now

The best and biggest songs from ARIA & Billboard charts spanning 7 decades.

https://www.kaggle.com/datasets/joebeachcapital/top-10000-spotify-songs-1960-now/

Album

Track URI spotify:track:OnRVV/10EsG9ZDL0Nlb39Z		Name	Artist (WIKI)		Name(s	Album URI		Name Al		ate	Album image U	JRL			Number	(ms)	Explicit	Popularity	IDS	Added At
		Fader	spotify:artist4k	l8le27vjvonw	VyvonwaB2ePh8T The spotify:album:0F Temper Trap		potify:album:0FMS-gJMMygsvEm0AjYc6M0		spotify:artist4ki8le27vjvonwa82ePh8T		https://i.scdn.co/image/ab67616d0000b273f2538643000297d12034a204			1	227253	false	64	spotify:session:anonymous	2020-08- 16T09:58:	
ĺ	Danceab	ility	Energy	Key	Loudness	Mode	Speechiness	Acoustic	ss Instrumentalnes	is I	Liveness	Valence	Tempo	Time Signatu	ire	Label	(C <mark>opyrigh</mark> t	s lyrics	
0.532		0.691	0.691 11 -3	0.691 11	-3.03	1	0.038 Audio	0.000101 Char	o.069 cteristics		0.0752	0.158	134.974	4.0		Liberatio Records	L	B 2010 Liberation Music, P 2010	I'm in transition. Floating, stranded	
							7.3010											iberation		

Artist Genres

Song Clustering

Danceable & Vocal: 4251 Energetic & Electric: 3256 Acoustic & Quiet: 2169

Instrumental & Pure Music: 317

Danceable & Vocal: 7598 Energetic & Happy: 759 Acoustic & Quiet:1172

Instrumental & Electric: 464

Danceable & Vocal: 9150

Energetic & Instrumental: 85

Electric & Quiet: 9

Danceable & Happy: 18

Noise & Outliers: 731

K-Means Outperforms Than Other Two Based On Balanced Sizes, Well-Separated, Dense Clusters

Song Popularity Prediction

Spotify offers plenty of songs for users to enjoy. From a business perspective, it is crucial for Spotify to predict whether a song will become popular. We classify songs as popular or not based on audio features and external artist information with supervised models.

Popularity Threshold: We classified songs as popular (popularity score ≥ 50) or not popular (< 50)

Data Pre-processing

- Drop Duplication
- Extract Release Year
- Binary Popularity Scores
- Encoded Categorical

Variables

e.g. track characteristics

Feature Engineering

- StandardScaler
- SMOTE
- Created additional

binary indicators

e.g. Famous Artist (top 20), Genre
Encoding(12), Track Clustering

Supervised Models

- Logistic Regression
- Random Forest
- Gradient Boosting
- XGBoost
- LightGBM
- SVM

Model Evaluation

- Accuracy
- Precision
- Recall
- F1 Score
- ROC-AUC

Song Popularity Prediction - Model Evaluation

Model	Accuracy	F1 Score	Precision	Recall	ROC-AUC
LightGBM	0.58	0.56	0.43	0.82	0.67
Gradient Boosting	0.53	0.55	0.41	0.88	0.66
XGBoost	0.56	0.55	0.42	0.82	0.66
SVM	0.57	0.54	0.42	0.76	0.64
Logistic Regression	0.58	0.42	0.39	0.45	0.59
Random Forest	0.67	0.29	0.50	0.21	0.66

- **LightGBM, Gradient Boosting**, and **XGBoost** achieve high recall (~0.82–0.88), identifying some popular songs but misclassifying some non-popular ones.
- Random Forest has the highest precision (0.50) but suffers from low recall (0.21), meaning it fails to capture a significant number of actual popular songs.
- **LightGBM, XGBoost, and Gradient Boosting** provide a better balance between precision and recall, making them more suitable overall.

LightGBM is the suitable choice, but low precision suggests the need for additional features like user behavior, demographic data, and real-time streaming trends.

Song Recommendation System - Methodology

Content-based filtering algorithm using cosine similarity based on the following three components:

Audio features, popularity score, and sentiment

lyrics

Artist information

Final Similarity Score = 0.1 * Artist Info Score + 0.25 * Lyrics Score + 0.65 Audio Score

Audio Similarity Score

Features:

- Audio features including Danceability, Energy, Loudness, Speechiness, Acousticness, Instrumentalness, Liveness, Valence, Tempo, Key, Mode, and Time Signature.
- 2. Popularity score
- 3. Clustering Label
- 4. Sentiment of lyrics using **TextBlob** library

Data preprocessing:

- Standardized numeric features using StandardScaler (mean = 0, std = 1)
- 2. Computed cosine similarity to measure song relationships
- 3. Normalized similarity scores to scale values between 0 and 1

Song Recommendation System - Methodology

Lyrics Similarity Score

1. Data Preprocessing

- Keywords extraction using RAKE library
- Removed unnecessary characters, such as ? or /
- 2. Transform Lyrics data using 3 word-embedding approaches
 - TF-IDF
 - Word2Vec
 - BERT
- 3. Compute cosine similarity from the song vectors and chose BERT as it produces a more balanced distribution of similarity score and captures semantic meaning of sentences of lyrics

Songs with lyrics similarity of "Sad" by "Maroon 5" are about heartbreak, regret, and emotional pain

Artist Info Similarity Score

- 1. Data Preprocessing
 - Combine artist name and artist genres
 - Remove stopwords
- 2. Transform artist info text data using **CountVectorizer**
- 3. Compute cosine similarity

Song Recommendation System - Output

Input: "When I Was Your Man " by "Bruno Mars"

	Recommended Songs	Artist Name(s)	Artist Genres	Artist Similarity	Lyrics Similarity	Audio Similarity	Final Similarity
0	Count on Me	Bruno Mars	dance pop,pop	1.000000	0.740722	0.956688	0.907028
1	I'm Not a Girl, Not Yet a Woman	Britney Spears	dance pop,pop	0.666667	0.748794	0.946925	0.869366
2	Frozen	Madonna	dance pop,pop	0.666667	0.772427	0.925558	0.861386
3	Everytime	Britney Spears	dance pop,pop	0.666667	0.807453	0.896579	0.851306
4	Too Good At Goodbyes	Sam Smith	pop,uk pop	0.333333	0.814065	0.943483	0.850114
5	Dancing On My Own	Calum Scott	рор	0.408248	0.741483	0.959656	0.849972
6	Nothing Like Us	Justin Bieber	canadian pop,pop	0.333333	0.827766	0.937113	0.849398
7	Happier	Ed Sheeran	pop,singer-songwriter pop,uk pop	0.258199	0.794072	0.958930	0.847643

- 1. The first recommended song is **Count on Me** by Bruno Mars, driven by similarity of genre, **pop/soul style** with that of When I Was Your Man.
- 2. Additionally, both songs explore themes of romantic relationships
- 1. The majority of other songs share similar artist genres, namely **rock** and country
- Song recommendations were released in the 1980s and 1990s, during which Fast Car was also released in 1982

Input: "Fast Car" by "Tracy Chapman"

	Recommended Songs	Artist Name(s)	Artist Genres	Artist Similarity	Lyrics Similarity	Audio Similarity
0	I Can't Make You Love Me	Bonnie Raitt	country rock,electric blues,folk,folk rock,mellow gold,singer-songwriter,soft rock	0.377964	0.692354	0.927467
1	Do You Really Want To Hurt Me	Culture Club	new romantic, new wave, new wave pop, soft rock, synthpop	0.000000	0.735582	0.967086
2	50 Ways to Leave Your Lover	Paul Simon	classic rock,folk,folk rock,mellow gold,permanent wave,rock,singer- songwriter,soft rock	0.358569	0.774192	0.889007
3	Fire and Rain - 2019 Remaster	James Taylor	classic rock,folk,folk rock,mellow gold,singer-songwriter,soft rock	0.400892	0.762920	0.884904
4	Bloodstream	Ed Sheeran	pop,singer-songwriter pop,uk pop	0.169031	0.725135	0.930705
5	Carolina in My Mind	James Taylor	classic rock,folk,folk rock,mellow gold,singer-songwriter,soft rock	0.400892	0.736410	0.888739
6	Baby Can I Hold You	Tracy Chapman	folk,lilith,singer-songwriter,women's music	1.000000	0.608349	0.833887
7	Walk On the Wild Side	Lou Reed	classic rock,glam rock,permanent wave,rock,singer-songwriter	0.285714	0.786005	0.868282

Song Recommendation System - Model Evaluation

Model-based evaluation

- Balanced similarity distribution centered around 0.5.
- No concentration near 0, reducing irrelevant recommendations.
- No over-concentration near 1, ensuring song differences are captured.

User-based evaluation

- A/B testing with real users can be conducted after deployment.
- Metrics like Skip Rate will assess recommendation effectiveness.

Conclusion

Our Clustering Puts 10,000 Songs into 4 Categories

Our Model Correctly Predicts 58% Popular Songs

Our System Offers Recommendation to 100M Users

Business Value

Song Popularity Prediction

- 1. Predicted potential popular songs to do specific marketing strategy
- 2. Improved user satisfaction and retention
- 3. Increased ad revenue and higher streaming engagement.

Song Recommendation System

- Personalized experience to increase user satisfaction
- Increased user engagement and longer listening sessions
- 3. Helps new artists gain visibility

Thank you! Q&A

Data Source

Top 10000 Songs on Spotify 1950-Now

The best and biggest songs from ARIA & Billboard charts spanning 7 decades.

Track URI	Trac Nam		Arti	st URI(s)	Artist Name(s)			Album URI	Album Name		Albui	m Artist UR	RI(s) A	lbum Artist me(s)	Album Release Date
spotify:track:0vNPJrUrBnMFdCs8b2MTNG	Fade	er spotify:artist	:4W48hZAnAHVOC2c8	WH8pcq	The Temper Trap	spotify:albu	ım:0V59MMtgc	oruvEqMv18KAOH	Conditions (Tour Edition)	spotify:artist:4\	N48hZAnAHV	'OC2c8WH8		The mper Trap	2009
Album Image URL https://i.scdn.co/image/ab67616d0000b273f86ae8	Disc Number N	Track Duration (ms) 6 192373	Track Preview	np3	10 850		SRC 014 spotify:user:b	20.		Artist Genres dietronica,modern rock,shimmer pop	Danceability 0.532	Energy Key		Mode 0.0	Speechiness 0.0353
		Acousticness	Instrumentalness	Liveness	Valence	Tempo	Time Signature	Label	Copyright	ts lyrics					
	-	0.000101	0.690000	0.0752	0.158	134.974	4.0	Liberation Records	C 201 Liberatio Music, P 201 Liberatio Musi	n Floating, o stranded					

Song Popularity Prediction - Feature Importance Spotify®

