Экзамен «Планиметрия. Окружности»

Летняя многопрофильная школа при МЦНМО, кафедра математики, 2011

На экзамене нужно знать определение окружности и уметь решать следующие задачи.

- 1. По определению, касательная к окружности это прямая, имеющая с окружностью ровно одну общую точку. Докажите, что если прямая a пересекает окружность ω с центром в O в точке A и a перпендикулярна OA, то a касается ω . Обратно, докажите, что если a касается ω в точке A, то a перпендикулярна OA.
- **2.** Докажите, что $3 < \pi < 4$.
- 3. Докажите, что угол, вписанный в окружность, равен половине соответствующего центрального угла.
- **4.** Найдите множество точек M на плоскости, из которых данный отрезок AB виден под данным углом α .
- 5. На плоскости даны окружность ω и точка, не лежащая на окружности. Через точку C проходят прямые a и b, пересекающие ω в точках A_1 , A_2 и B_1 , B_2 соответственно, причем на окружности A_1 лежит между A_2 и B_1 . Найдите угол A_1CB_1 , если известны угловые меры дуг A_1B_1 и A_2B_2 .
- **6.** В обозначениях предыдущей задачи докажите, что $CA_1 \cdot CA_2 = CB_1 \cdot CB_2$.
- 7. Четырехугольник является вписанным тогда и только тогда, когда сумма его противоположных углов равна 180°.
- **8.** Если в четырехугольник ABCD вписана окружность, то AB + CD = AC + BD.
- 9. Вершина A остроугольного треугольника ABC соединена отрезком с центром Oописанной окружности. Из вершины A проведена высота AH. Докажите, что $\angle BAH =$ $\angle OAC$.
- 10. Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.