# Plan du cours

| I. Rappels sur la proportionnalité |     |                          |   |  |
|------------------------------------|-----|--------------------------|---|--|
| 11.                                | Fon | nctions linéaires        | 2 |  |
|                                    | 1.  | Définition               | 2 |  |
|                                    | 2.  | Propriétés               | 4 |  |
|                                    | 3.  | Représentation graphique | 4 |  |

#### Activité d'introduction

PARTIE 1: la loi d'Ohm

U est la tension, en volts (V), aux bornes d'un conducteur ohmique de résistance R, en Ohms ( $\omega$ ), traversé par un courant d'intensité I, en ampères. On a effectué quelques mesures, réunies dans le tableau ci-dessous :

|   | 0,2 | 0,5  | 1  | 1,5  | 1,8 | 2,4 |
|---|-----|------|----|------|-----|-----|
| U | 5   | 12,5 | 25 | 37,5 | 45  | 60  |

- 1. Ce tableau est-il un tableau de proportionnalité?
- 2. Quel est le coefficient de proportionnalité?
- 3. Soit f la fonction linéaire qui représente la tension en fonction de l'intensité. Donner l'expression de cette fonction en fonction de x.
  - 4. Placer les points du tableau dans un repère. Retrouve-t-on le fait que ce tableau est de proportionnalité?

#### PARTIE 2 : Pourcentage et fonction linéaire

Le magasin d'informatique INFOWORLD décide une baisse de 5 % sur toutes ses imprimantes. Notons x le prix d'un article avant la réduction et y le prix après diminution.

1. Compléter le tableau suivant :

| x en euros | 200 | 400 | 600 | 800 | 1 000 | 1 200 |
|------------|-----|-----|-----|-----|-------|-------|
| y en euros |     |     |     |     |       |       |

- 2. Dans un repère, marquer les points dont les coordonnées x et y sont indiquées dans le tableau précédent. (unités : 1 cm correspond à 100 euros sur les deux axes)
- 3. Comment passe-t-on d'un ancien prix x à un nouveau prix y? Exprimer la fonction qui représente le nouveau prix en fonction de x.
  - 4. La fonction qui fait passer d'un ancien prix x à un nouveau prix y est-elle linéaire? Justifier votre réponse.
- 5) Une imprimante coûte, avant réduction, 1280 euros. Lire sur le graphique son prix réduit. Lire sur le graphique l'ancien prix d'une imprimante qui coûte actuellement 700 euros.

# I. Rappels sur la proportionnalité

## Définition

On dit que deux grandeurs sont **proportionnelles** lorsque l'on peut passer des valeurs de l'une aux valeurs de l'autre en multipliant par une même constante.

Cette constante est alors appelée coefficient de proportionnalité.

### Exemple:

| Nombre de chocolats | 2    | 6    | 8    | 10   |
|---------------------|------|------|------|------|
| Prix (en €)         | 0,24 | 0,72 | 0,96 | 1,20 |

Le tableau ci-dessus est un tableau de proportionnalité, le coefficient de proportionnalité est 0,12.

#### Remarques:

- (1). On passe de la première la deuxième colonne en multipliant les valeurs par 3.
- (2). La troisième colonne est la somme des deux précédentes.

## II. Fonctions linéaires

### 1. Définition

### Définition

On dit qu'une fonction f est **linéaire** s'il existe un nombre a tel que  $f: x \longmapsto ax$ .

Le nombre a est appelé coefficient directeur ou coefficient de linéarité de la fonction f.

#### Exemples:

|                           | Linéaire ? | Coefficient? |
|---------------------------|------------|--------------|
| $f: x \longmapsto 2x$     |            |              |
| $g: x \longmapsto x/2$    |            |              |
| $h: x \longmapsto 3x + 2$ |            |              |
| $i: x \longmapsto x$      |            |              |
| $j: x \longmapsto x^2$    |            |              |

| Exe | rcice d'application 1                                                                                                        |
|-----|------------------------------------------------------------------------------------------------------------------------------|
|     | Calculer des images connaissant les antécédents.                                                                             |
|     | On donne $f: x \longmapsto -2x$ ; $g: x \longmapsto \frac{x}{7}$ ; $h: x \longmapsto x$ . Calculer $f(0), g(21)$ et $h(5)$ . |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
| Exe | rcice d'application 2                                                                                                        |
|     | Déterminer des antécédents connaissant les images.                                                                           |
|     | 1. On donne la fonction $f: x \longmapsto 8x$ . Déterminer les antécédents de 24 et de 4.                                    |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     | 2. On donne la fonction $f: x \longmapsto \frac{2}{3}x$ . Déterminer les antécédents de 11 et de 100.                        |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
| Exe | rcice d'application 3                                                                                                        |
|     | Déterminer une fonction linéaire l'aide d'un nombre et de son image.                                                         |
|     | 1. Déterminer la fonction linéaire $f$ telle que $f(2) = 7$ .                                                                |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     | 2. Déterminer la fonction linéaire $g$ telle que $g(-3)=6$ .                                                                 |
|     |                                                                                                                              |
|     |                                                                                                                              |
|     |                                                                                                                              |
| - 1 |                                                                                                                              |

## 2. Propriétés

## Propriété

Soient f une fonction linéaire telle que f(x) = ax et k un nombre.

Pour tous nombres  $x_1$  et  $x_2$  on a :

$$f(x_1 + x_2) = f(x_1) + f(x_2)$$

$$f(k \times x_1) = k \times f(x_1)$$

**Exemple :** Soit h une fonction linéaire telle que h(0,5)=6 et h(2,5)=30. Calculer h(3) et h(5).

Exercice d'application 4

La fonction linéaire g est telle que g(4)=9 et g(6)=13,5. Calculer  $g(10),\,g(12)$  et g(18) sans calculer le coefficient de g.

.....

# 3. Représentation graphique

Soient f, g, h et i les fonctions linéaires dont les représentations graphiques sont données ci-dessous :



Compléter :

- L'image de 4 par la fonction linéaire h est . . .
- L'image de 2 par la fonction g est . . .

- L'antécédent de -6 par la fonction g est . . .

$$-i(...) = -2$$
 ;  $i(0) = ...$  ;  $f(-2) = ...$  ;  $h(16) = ...$  ;  $h(...) = 4$ 

| Х    | -8 | 0 | 4 | 12 |
|------|----|---|---|----|
| h(x) |    |   |   |    |

## Propriété

La représentation graphique d'une fonction linéaire est une droite passant par l'origine du repère.

#### Méthode:

Pour représenter graphiquement une fonction linéaire dans un repère, il suffit donc de connaître l'image d'un nombre  $x_0 \neq 0$ . On place ensuite sur le repère le point de coordonnées  $(x_0; f(x_0))$  et on trace la droite passant par l'origine et par ce point.

**Exemple**: Tracer la représentation graphique de la fonction k telle que  $k: x \mapsto 1,5x$ 



## Exercice d'application 5

Tracer les représentations graphiques des fonctions suivantes :

$$f: x \longmapsto 4x$$

$$g: x \longmapsto \frac{x}{3}$$
  $h: x \longmapsto -x$ 

$$h: x \longmapsto -x$$

| X     |  |
|-------|--|
| f(x)= |  |

| Х              |  |
|----------------|--|
| $g(x) = \dots$ |  |

| Х     |  |
|-------|--|
| h(x)= |  |

