Pandas 시작하기

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
```

Pandas 란 데이터 정재, 분석도구

https://pandas.pydata.org/

Pandas 란 특징이해하기

쉽고 직관적인 관계형 또는 분류된 데이터로 작업 할 수 있도록 설계 빠르고 유연하며 표현이 풍부한 데이터 구조를 제공

Pandas 데이터 구조

1차원, 2차원

Series			Series			DataFrame		
	apples			oranges			apples	oranges
0	3	+	0	0	=	0	3	0
1	2		1	3		1	2	3
2	0		2	7		2	0	7
3	1		3	2		3	1	2

Pandas 데이터 구조

1차원, 2차원

```
In [2]: import pandas as pd
In [3]: fruits = pd.DataFrame([[30, 21],[20,14],[12,23]], columns=
['Apples', 'Ba
   ...: nanas'])
                                                                         데이터프레임 (DataFrame)
                                          시리즈 (Series)
In [4]: fruits
Out [4]:
   Apples Bananas
                  21
        30
        20
                  14
                  23
                                      Series 는 1차원 배열의 형태를 갖는다.
                                                                       DataFrame 은 2차원 배열의 형태를 갖는다.
                                       인덱스(노란색)라는 한 가지 기준에
                                                                       인덱스(노란색)와 컬럼(파란색)이라는 두 가지
                                                                       기준에 의하여 표 형태처럼 데이터가 저장된다.
```

의하여 데이터가 저장된다.

Pandas 사용하기

자료읽기

```
In [1]: import pandas as pd
In [2]: try:
              df = pd.read_csv('400_20200411221745769.csv')
         except OSError as err:
              print("OS error: {0}".format(err))
         df.head()
Out[2]:
                       hour value location:63_108 Start : 20190401
            format: day
                                                       8.1
                        0.0
                    1 100.0
                                                       8.8
          2
                    1 200.0
                                                       8.3
          3
                    1 300.0
                                                       9.8
                    1 400.0
                                                       9.5
```

Pandas 사용하기 자료쓰기

```
In [9]: file_name ="new_temperature.csv"
    df.to_csv(file_name, encoding='utf-8')
```

new_temperature

	format: day	hour	temp
0	1	0	8.1
1	1	100	8.8
2	1	200	8.3
3	1	300	9.8
4	1	400	9.5
5	1	500	8.4
6	1	600	8.8
7	1	700	8.3
8	1	800	7.2
9	1	900	4.9
10	1	1000	2.6
11	1	1100	1
12	1	1200	-0.5

Pandas 사용하기

데이터 선택하기

```
In [7]: df_temp = df['temp']
        df_temp.describe()
Out[7]: count
                 8784.000000
                   12.549966
        mean
                   10.702835
        std
        min
                  -50.000000
        25%
                    3.800000
        50%
                   12.900000
        75%
                   21.500000
                   36.700001
        max
        Name: temp, dtype: float64
In [8]: df_temp.shape
Out[8]: (8795,)
```

df.A 또는 df['A']

		A	В	С	D
	2013-01-01	0.469112	-0.282863	-1.509059	-1.135632
	2013-01-02	1.212112	-0.173215		-1.044236
ı	2013-01-03	-0.861849	-2.104569	-0.494929	1.071804
	2013-01-04	0.721555	-0.706771	-1.039575	0.271860
	2013-01-05	-0.424972	0.567020		-1.087401
	2013-01-06	-0.673690	0.113648	-1.478427	0.524988