Bagging Method

"Random Forest" classifier # "Random forest" Regressor

Dataset - 1000 Rows	class
6 coloums 500RX3C M1	
X1 X2 X3 X4 X5 Y	0
500R X 3 C M2 D7	
5 10 R x 3 C M 3	0
500RX3C Mn	
DT	0
classification works on voting	based
output	
and a pulsaral	

entire Dataset - D subset Dataset - d'

D > d'

Since we are using ensemble technique. Trade of fire Biased and variance would be

DT low Biased overfitting high variance

RF S low Bias

Best fit

high Variance

Pros
O Random Forest Use

Drandom Forest used to make robust model over a decision tree overfitting issue

2 Random Forest widely used in Regression problem due to its capabilities of handle non-linear dataset.

- 3 outlier | noise not affected
- 4) Can handle high dimensional data.
- 3) RF closs not required feature scelling.

Equation of RF

T = Num. of DT in Forest

Y+(x) = Prediction of the +th DT For input x.

Yt = final Random Forest prediction for input x.

$$\hat{y}(x) = \frac{1}{T} \sum_{t=1}^{T} \hat{y}_t(x)$$

we calculate overage of all DT.
and it will be our final output.

For hypereparameter tuning, mostly
Randomsearch CV prefer due
to computationd constraint.

Grid search
$$CV = U$$

Grid search $CV = U$

Random Search $CV = U$
 $CY = U$