File: Feb. 22, 1988

Priority: Feb. 25, 1987

Disclos. : Sep. 22, '88
Examination: Not req.

Assign. : SIEMENS

10 Claims

Title:Optical Coupler and Manufacturing Method

Look at the Fig. 1, 2 and 3.

1: Microlens

2: support plate

3:dent

4: glass solder (melt by heating, then

solidify by cool down)

5: optical wave guide

6:I-R photo diode

7: Metal coating

Re: Europe patent disclosure 204221

特開昭63-228113(5)

7 … 会国コーティング

FIG 3

⑩ 日本国特許庁(JP)

① 特許出願公開

@ 公 開 特 許 公 報 (A)

昭63-228113

@Int Cl.4

識別記号

庁内整理番号

❸公開 昭和63年(1988)9月22日

G 02 B 6/42

8507-2H 8507-2H 審査請求 未請求 請求項の数 10 (全6頁)

光結合案子及びその製造方法 49発明の名称

> 願 昭63-39349 ②特

29HH 願 昭63(1988)2月22日

砂1987年2月25日90西ドイツ(DE)到P3706103.8 優先権主張

ウエルナー、シユペー

ウエルナー、クールマ

砂発 明 者 ドイツ連邦共和国ホルツキルヒエン、ブルクシユタラーシ Ь

ユトラーセ10

ドイツ連邦共和国レーゲンスブルク、プラシユベーク3 ⑫発 眀 者 ギユンター、ワイトル

ドイツ連邦共和国ミユンヘン90、アウルバツヒアーシユト

ラーセ8

ドイツ連邦共和国ベルリン及ミユンヘン(番地なし) シーメンス、アクチエ の出 願 人

ンゲゼルシヤフト

邳代 理 人 弁理士 宮 村

最終頁に続く

老

砂発 明

- 光結合需子及びその製造方法 1. 発明の名称
- 2. 特許請求の範囲
 - 1) 光結合媒体として光波導体及びマイクロシ ンズを備え、該光統合媒体が一つの支持板上 に共湿に発光半導体素子及び/又は受光半導 体素子と共に、或いは別の支持板上に発光半 海体素子及び/又は受洗半導体素子に対して 分離されて、相互に所定の空間的関係で配置 され固定されているような光緒合業子におい て、前記マイクロレンズ (1) の保持のため に前記支持板 (2) には V 字形または角錐台 形の袋穴又は貫通孔の形をした凹部(3)が 設けられ、核四部の寸法は前記マイクロレン ズの大きさ及びマイクロレンズ/支持板の接 触点により定め、前記マイクロレンズ(1) は前記凹部 (3) 内で接続材 (4) により前 記支持被(2)に直接固定されていることを 特徴とする光結合衆子。
 - 2) 前記接続材(4)はガラスろうであること

を特徴とする請求項1配級の光絡合業子。

- 3) 前記支持板(2)は、V字形または角進台 形の凹部(3)が異方性にエッチングされた ケイ素からなることを特徴とする請求項1又 は2記載の光結合素子。
- 4) 前記マイクロレンズ(1)はガラスレンズ、 尖晶石レンズ又はサファイアレンズであるこ とを特徴とする請求項しないしるの1つに記 戦の光結合素子。
- 5) 前記マイクロレンズ (1) は球レンズであ ることを特徴とする請求項1ないし4の1つ に記載の光結合素子。
- 6) 前記マイクロレンズ(1)の表面は光学的 にコーティングされていることを特徴とする 請求項1ないし5の1つに記載の光緒合業子。
- 7) 前記マイクロレンズ(1)を支持する半導 体支持版 (2) は裏面の少なくとも一部に金 翼コーティング (7) を備えていることを特 微とする請求項1ないし6の1つに記載の光 纳合宏子.

- 8) 半部体材料、特にケイ素からなる支持板(2)に角煙台状の凹部(3)を属方性に安穴または貫通孔としてエッチングし、核凹部(3)にサファイア、尖晶石又はガラスからなる群レンズの如きマイクロレンズ(1)を挿入し、ガラスろうの如き接続材(4)により支持体(2)に直接固定することを特徴とする結束項1ないしての1つに記載の光結合素子の製造方法。
- 9) 一つの支持板(2)上に同時に異方性のエッチングにより多数の角維台状の凹部(3) を形成し、支持板(2)を凹部(3)と共に接続材(4)としてのガラスろう層にて限い、マイクロレンズ(1)をそれぞれ凹部(3)に挿入して宿着させることを特徴とする請求項8記載の製造方法。
- 10) 板帯における特に球状のマイクロレンズ(1)の表面を支持板(2)上において光学的にコーティングすることを特徴とする請求項8又は9起数の製造方法。

って、特に次の問題が生じる。

- (i) 能動半導体業子と光波導体との間に正確に定 められた位置へ 1 μ m 範囲の許容誤差でレンズ を保持すること。
- ② 最適な導入もしくは導出へのレンズの容易な
- (3) レンズ保持による、例えば機械的張力による 能動半導体チップの損傷を防ぐこと。
- (4) 業子の小型化(例えば100 m ~ 500 m)m)にもかかわらず、任意の大量個数の生意ができること。

光結合素子においては従来、次のレンズ固定方 法が用いられていた。

- (a) 光学レンズを直接に半導体チップ上に成長さ サスタは
- (b) 光学レンズを直接に半導体チップ上に接着する方法。
- (C) 半導体チップをレンズキャップを備えたケースに組み込む方法。

(発明が解決しようとする課題)

3. 発明の詳細な説明

(度業上の利用分野)

本発明は、光結合媒体として光波導体及びマイクロレンズを備え、該光結合媒体が一つの支持板上に共通に発光半導体素子及び/又は受光半導体素子と共に、或いは別の支持板上に発光半導体素子及び/又は受光半導体素子に対して分離されて、相互に所定の空間的関係で配置され固定されているような光結合素子及びその製造方法に関する。 (従来の特術)

この種の光結合素子及びその製造方法並びにその方法を実施するための装置は、ローロッパ特許 出職公開第204224号により公知である。この素子においてはレンズも単導体チップを介して 関機的に支持級上に固定されている。

光波源体ー発・受信システムでは、能動半導体 素子から発せられた光を、例えばガラスファイバ である光波導体へ導入したり、あるいは受信すべ き光を光波導体から導出するために、しばしば光 学レンズ、例えば弾レンズが使用される。したが

これらの方法の欠点は、主として、半導体チップと光学レンズとの間の定められた間隔が網整できないか、もしくは大きな根差を甘受しなければならないところにある。

本発明の目的は、この欠点を避け、結合媒体と して光波導体及びマイクロレンズを備えた次の如 き光結合案子、すなわち光波導体と能動(発光及 び/又は受光)半導体案子との間において正確に 定められた位置にマイクロレンズが保持される光 結合案子を提供することにある。

更に、本発明は、能動半導体素子と光波導体との間における最適な光結合へのマイクロレンズの容易な調整を可能にすることを目的とする。又、例えば張力による能動半導体チップの損傷を助止することを目的とする。そしてさらに別の目的は、 光結合素子を小型化にもかかわらず大量個数で任意に生産できるようにすることにある。

(課題を解決するための手段)

上記の課題は、本発明によれば、マイクロレン ズの保持のために支持板にV字形または角錐台形 の袋穴又は實過孔の形をした凹部を設け、接凹部 の寸法はマイクロレンズの大きさ及びマイクロレ ンズ/支持板の接触点により定め、マイクロレン ズを凹部内で接続材により支持板に直接固定する ことによって解決される。

(作用)

本発明により得られる利点は上記の欠点の除去のほかに、特に次の点にある。すなわち、特にガラスろう付けされた弾レンズを備えた多数の半導体チャブを一つのウェーハ上に同時に作ることができることである。その場合に、支持板のエッチングも、接続材としてガラスろうを用いる場合になりである。接続材としてガラスろうを使用する場合には、アングも行うことができる。接続材としてガラスろうを使用する場合には、アングも行うことができる。接続材としてガラスろうを使用する場合には、アングも行うことができる。接続材としてガラスろうを使用する場合には、アンズを使用する必要はできる。では、アンズ及びケイ素支持板を備えた実施設様では、この装置は例えば組立用ピンセットによって変しています。

最適に位置調整される。レンズ支持板の位置調整 及び固定は、質氮に述べたヨーロッパ特許出顧公 開第204221号に開示された光波革体装置と 同様に鉗子状に形成され且つ×、y、ェマニピュ レータに固定された2つの電極により行われる。 その場合に、マイクロレンズは本発明ではホトダ イオード、ガラスファイパ、マイクロレンズ付き ガラスファイバ、赤外線発光ダイオード(1RE D)、レーザダイオードの如き後続の光学装置に 対して最適な出力信号に調整することができる。 レンズ支持体の固定に必要なろうは、絶縁体(セ ラミック〉の倒方にあって熱抵抗増大のために腕 状に形成された帯状のろうから供給される。レン ズの位置調整は液状に溶融されたろうにおいて行 われる。レンズ支持体は調整過程終了時にろうの 冷却及び硬化によって固定される。

(実施例)

以下、図面の第1図乃至第3図に機略的に示された実施例を参照しながら本発明を更に詳細に説明する。本発明の理解にとって不可欠でない部分

に扱うことができる。

本発明の有利な実施旗様によれば、支持板が半準体材料、特にケイ素からなり、支持板にはレンズの大きさ及びレンズー支持体の接触点に依存した定められた大きさの穴がエッチングにて形成されている。穴にはレンズ、特にサファイアレンズ、尖晶石レンズ又はガラスレンズがガラスろうによって固定されている。レンズを光学的にコーティングすると有利である。更に、レンズ支持体は、その裏面に、ろう付け過程における絶縁部もしくは枠部への支持体の固定のために必要とされる金属コーティングを有することが好ましい。

半導体チップ上での支持板とマイクロレンズとの位置調整及び固定は、特に次のようにして行われる。熱伝導性の良くない材料からなるいわゆるリードフレームに固定されている構造化された金属コーティング機様体がチップ支持体として役立つ。半導体チップはx、y方向において発光半導体素子もしくは受光半導体素子またはこれに付属した光波導体(例えばガラスファイバ)に対して

は符号を付していないか、又は図示を省略されて いる。

第1図に示された光結合素子は、主として、シ リコン支持板2からなり、これには角錐台状の穴 の形をした凹部3が異方性にエッチングされてい る。四部3にはマイクロレンズ1、例えば約30 Oμmの直径を持つサファイア球が挿入されてい る。四部3にマイクロレンズ(を固定するために、 約8μmの耳みのガラスろう雇4が設けられてお り、これは四部3内にまで達しており、支持板2 を少なくとも凹部3の範囲にわたり覆っている。 マイクロレンズ1は凹部3内でガラスろうにより 支持版2に固定されている。支持版2は、その裏 面の少なくとも縁部領域に、図示されていない金 鷹コーティングされた絶縁体(セラミック)支持 部とろう付けするための金属コーティング(例え ばチタン・白金・金からなる金属コーティング) ?を備えている。

発光または受光能動半導体素子 6、 例えば送信 チップとして 1.3 μ m の放長及び例えば 2 0 μ m

の直径の発光点を有する赤外線発光ダイオード(IRBD)が、マイクロレンズ(類)1の下に10ヶmの間隔で別の支持板2上にあり、また図示されていない例えばガラスファイバの知き光波導体がマイクロレンズ1の上に若干大きな間隔をおいて設けられている。

(発明の効果)

以上のように、本発明によれば、マイクロレンズの保持のために支持板にV字形または角鍵台形の投入又は貫通孔の形をした凹部を設け、接凹部の寸法はマイクロレンズの大。さ及びマイクロレンズ/支持板の接触点により定め、マイクロレン

ズ (環) 1の前方または後方に設けられる。支持 板 (シリコンチップ)上に発光もしくは受光チップ及び光波導体 (例えばガラスファイバ)を直接 組み込むことも可能である。

第1回による実施例も第2回による実施例も、 例えば多数の発光器及び/又は受光器が同時に導 入もしくは導出結合される場合には、マイクロい は一つの支持板上における速結体として作ること ができる。このような結合は、切り離し可能なス ができる。ことができる。例えばガラスと まくれてある光被事体の位置調整及び固定のようなな に、マイクロレンズの前方もしくは後方にみぞま な、マイクロレンズの前方もしくは次方にみぞま 生のようなよい。第3回にはこのような実 施例が示されている。

第3 図に示されている光結合素子では、特にシ リコン板である支持板 2 に、互いに関隔を置いて 並んでいる多数の凹部 3 が、角雄台状の袋穴の形 でエッチングされている。光波塚体 5 の収容のた めのみぞ 8 のエッチングを関時に行うことが好ま

ズを凹部内で接続材により支持板に直接固定することによって、半導体チップと光学レンズとの間の定められた間隔が調整できないか、もしくは大きな誤差を甘受しなければならないという従来技術の欠点を除去することができ、又、特にガラスろう付けされた球レンズを備えた多数の半導体チップを一つのウェーハ上に同時に作ることができ

4. 図面の簡単な説明

第1 図は本発明による光結合素子の実施例の切断斜視図、第2 図は本発明による光結合素子の他の実施例の切断斜視図、第3 図は一つの支持板に多数の光結合素子を配置した実施例を示す斜視図である。

- 1…マイクロレンズ
- 2 …支持板
- 3 -- 四部
- 4 …ガラスろう暦
- 5 …光被導体
- 8···能動半導体素子(赤外線発光ダイオード)

特開昭63-228113(5)

7…金郎コーティング

FIG 3

特開昭63-228113(6)

第1頁の続き

⑫発 明 者 ハンスルードウイツ ドイツ連邦共和国ラツペルスドルフ、ハインリツヒハイネ

ヒ、アルトハウス シユトラーセ11

⑫発 明 者 ロルフ、ビルクマン ドイツ連邦共和国ラーバー、ゾンネンベーク15

79発 明 者 ワルトラウト、クロス ドイツ**連邦共和国**レーゲンスブルク、ミヒアエルブルガウ

シユトラーセ13

砂発 明 者 アクセル、シユーベル ドイツ連邦共和国ミユンヘン90、ゾンマーシユトラーセ25

۲