University of Hawai'i

MATH-241 Calculus I Midterm 02						Cr	eated by Pierre-O. Parisé Fall 2021, 10/27/2021
Last name: First name:							
	Question:	1	2	3	4	Total	
	Points: Score:	10	10	20	10	50	
minutes, hand out your of No devises such as a You are not allowed to u	copy. smart phone se the lecture	, cell p	ohone, is also.	laptop,	or tab	let can l	ire. At the end of the 50 be used during the exam. cation worth no point.
Good luck!							Pierre-Olivier Parisé

Your Signature:

(10 pts)

Use implicit differention to find the expression of y' if y and x are defined implicitly by

$$x^3y + y^4 = 16.$$

Solution: By implicit differentiation, the left-hand side is

$$3x^2y + x^3y' + 4y^3y'$$

and the right-hand side is 0. So, we get

$$3x^2y + (x^3 + 4y^3)y' = 0$$

which gives $y' = \frac{-3x^2y}{x^3+4y^3}$.

(10 pts)

Suppose $y = \sqrt{2x+1}$ where x = x(t) and y = y(t) are functions of t.

(a) (5 points) If dx/dt = 3, find dy/dt when x = 4.

Solution: We have $dy/dt = \frac{dx/dt}{\sqrt{2x+1}}$. So, pluging in x=4 and dx/dt=3, we find dy/dt=1.

(b) (5 points) If dy/dt = 5, find dx/dt when x = 12.

Solution: From the previous formula, we get $dx/dt = (dy/dt)\sqrt{2x+1}$. Pluging in x = 12 and dy/dt = 5, we get dy/dt = 25.

The following table shows the signs of the derivative and the second derivative of the function $f(x) = \frac{1}{x^2 + 2x - 3}$. (You don't have to verify the signs, I did it for you!)

(a) (5 points) Find where the function is increasing and decreasing.

Solution: From the table, we see that f'(x) > 0 when x belongs to the intervals $(-\infty, -3)$ and (-3, -1). So f is increasing there.

Also form the table, we see that f'(x) < 0 when x belongs to the intervals (-1, 1) and $(1, \infty)$. So f is decreasing there.

(b) (5 points) Find where the function is concave upward and concave downward.

Solution: From the table, we see that f''(x) > 0 when x belongs to the intervals $(-\infty, -3)$ and $(1, \infty)$. So f is concave upward there.

Also from the table, we see that f''(x) < 0 when x belongs to the interval (-3, 1). So f is concave downward there.

(c) (5 points) Find the critical points of the function. Find the local extremum(s) of the function.

Solution: The critical points are where f'(x) = 0 or f'(x) doesn't exist. So from the table, this occurs when x = -3, x = -1, and x = 1. At the points x = -3 and x = 1, we get the values $+\infty$ and $-\infty$ respectively. So these can't be maximum values.

At x = -1, we see that f goes from increasing to decreasing. So f(-1) = -1/4 is a local maximum.

(d) (5 points) Find the Vertical asymptotes, the horizontal asymptotes and sketch the graph of the function.

Solution: The vertical asymptotes are x = -3 and x = 1 because $\lim_{x \to -3^{\pm}} f(x) = \pm \infty$ and $\lim_{x \to 1^{\pm}} f(x) = \mp \infty$.

The horizontal asymptote is y = 0. Because $\lim_{x \to \pm \infty} f(x) = 0$.

The graph of the function looks like this.

(10 pts)

A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.

Solution: Let x denote the length of the side of the squares cut from the cardboard. The height of the box is then x and the length of the sides is 3-2x. So the volume of the box is

$$V(x) = x(3 - 2x)^2.$$

Here, x is at most 3/2. So, the domain of V is [0, 3/2].

We take the derivative of V. We find $V'(x) = (3-2x)^2 - 4x(3-2x)$ which is, after simplification, equalled to $V'(x) = 9 - 24x + 12x^2$. We can rewrite V'(x) as V'(x) = 3(3-2x)(1-2x). From there, we see that V'(x) = 0 if x = 3/2 or x = 1/2.

We now analyse the sign of V'(x) around x = 1/2. We have that V'(x) > 0 if x < 1/2 and V'(x) < 0 if x > 1/2. Thus, V(1/2) is a local maximum.

Finally, we have V(0) = 0, V(1/2) = 2, and V(3/2) = 0. Thus, the largest volume of the box is 2 ft^2 .