DESIGN OF STEEL STRUCTURES 2019 – 2020 Fall Semester

Term Project – Design of a Rack System

Due Date: 27 December 2019 Friday before 11:00

Group members will be paired later. Only one report needs to be submitted by each group.

- 1. <u>Objective:</u> A structural steel of a 4-story rack system is to be constructed in İstanbul. Typical plans and sections are given below.
 - Material grade is S275 Steel (St 44).
 - Bolt grade is 8.8.
 - Use European norms (EN1991-1-1, EN1991-1-3, EN1991-1-4, EN1998-1) to calculate loads.
 - Use AISC 360-16 for steel design.
 - Design all members using European rolled shapes or built-up sections.
 - Prepare an engineering report showing your calculations
- **2.** <u>Loading:</u> At least, self-weight, cover, live, snow, and wind loads need to be considered. Types of the loads and their properties are as follows.
 - <u>Live load</u>: Live loads on the floors may be taken as 2.50 kPa.
 - Cover load: Cover load on the roof may be taken as 0.15 kPa.
 - Snow load:
 - i. For this project C_e and C_t values may be taken as 1.0
 - ii. Characteristic value of snow on the ground, $S_k = 2.00 \text{ kPa}$
 - Wind load:
 - i. Terrain category may be taken as "III"
 - ii. Orography factor is taken as 1.0 ($C_0(z)=1$)
 - iii. Basic wind velocity, V_b = 28 m/sec.
 - iv. Air density, ρ=1.25kg/m³
 - v. Mean wind velocity, $V_{m(z)} = C_{r(z)} \cdot C_{o(z)} \cdot V_b$
 - vi. Wind pressure, $W_e = q_p(z_e)$. C_{pe}
 - Seismic load:
 - i. Use Spectrum Type 1 (agR = 0.4g)
 - ii. Take importance factor as 1.0 (v_i =1.0)
 - iii. Ground Type B
 - iv. Ductility class: DCH (High)
- **3.** Report: You are expected to write a brief report on the complete design of the steel rack assigned to you. In preparing your report, please be sure that you include the following topics
 - Give brief information about your structure.
 - Show your load cases and load combinations.
 - Show your load calculations, e.g. wind load and snow load etc.
 - Give a sketch of your computer model, e.g. 3-D view, loading, member sections etc.
 - Show design calculation details for beams, columns and braces (provide hand calculation for each different structural member, rest can be taken from software program as summary).
 - Show 3 typical connection details. (For example, beam to column, brace-to-beam, purlin-to-truss, base plate, etc.)
 - Indicate the total steel used and steel used per m².
- **4. Drawing:** You are expected to draw general arrangement of whole structural system.

PLAN +5.00

SECTION VIEW B-B