Nom:		DS1				
Prénom:	APP	ANA	REA	VAL	СОМ	RCO
Exercice 1 – Azote et engrais						
1. $1s^22s^22p^3$, cinq électrons de valence. L'azote appartient à la 15e famille.			••			
2. Polarisabilité plus élevée pour les grosses molécules en faveur des intera	1	•				
tions de London.						
H 						
3. $H - \overline{N} - H$ et $H - N - H$			••			
H H						
H H						
4. H et H 'M'H			••			
Ammoniac : polaire; ion ammonium : apolaire.						
5. L'électronégativité diminue quand on descend dans la famille : $\chi_{\rm N} > \chi_{\rm P}$	·.					•
6. OdG des énergies d'interaction et liaisons hydrogène.		••				•
7. NH ₃ susceptible de capter un proton, base faible.						••
8. K_a : associé à la réaction $NH_4^+ + H_2O = NH_3 + H_3O^+$.			•			•
$ \begin{array}{ccc} & & & & & & \downarrow & & \\ & & & & & & & \\ & & & & & & \\ & & & & $						
9. $NH_3 + H_2O = NH_4^+ + HO^-$, $K = K_e/K_a = 10^{-4.8} = 1.6 \times 10^{-5}$.			••			
10. $[NH_3] = 0.96 \times 10^{-2} \text{ mol} \cdot L^{-1}, [NH_4^+] = [HO^-] = 3.98 \times 10^{-4} \text{ mol} \cdot L^{-1}$	$^{-1}$,		••			
pH = 10,6.						
 11. NH₄NO₃(s) = NH₄⁺(aq) + NO₃⁻(aq). 12. Schéma du montage de titrage : soude dans la burette, ammonitrate da 	ng				•	
le bécher.	1115					
13. Réaction de titrage : totale, rapide et univoque.						•
14. $NH_4^+ + HO^- = NH_3 + H_2O$, $K' = 1/K = 10^{4.8} \gg 1$: réaction totale.	•		•			
15. Annnexe 1 : méthode des tangentes. Équivalence à (14 mL; 11,1).			•		•	
16. Comparaison des conductivités molaires ioniques : la conductivité dimin	iue •				•	
avant l'équivalence et augmente après $+$ représentation graphique.						
17. NH ₃ , Na ⁺ , NO ₃ ⁻ et traces de NH ₄ ⁺ et HO ⁻ .		•••				
$pH = pK_e + \frac{1}{2}\log\left(\frac{c^{\circ}cV_E}{K'(V_1 + V_E)}\right) = 11,1.$						
18. $n_0 = c \frac{V_E V_0}{V_1} = 7.0 \times 10^{-2} \text{mol.}$						
, 1			••			
19. $m_0 = 2n_0 M(N) = 1.96 \mathrm{g}$, soit une teneur massique de 32,7 % : cohérent.			•	•		
EXERCICE 2 – Acide citrique						
1. Annexe 2: attribution des courbes de distribution.	•	_			_	
2. $pK_{a,1} = 3.1$, $pK_{a,2} = 4.8$ et $pK_{a,3} = 6.4$.		•			•	
$ \xrightarrow{ \begin{array}{cccccccccccccccccccccccccccccccccc$						
3. Les espèces AH_2^- et AH^{2-} sont des amphotères.						•
4. Les espèces majoritaires sont : NH ₃ , A ³⁻ et HO ⁻ .	•					
5. $AH_3 + 3HO^- = A^{3-} + 3H_2O$, $K = \frac{K_{a,1}K_{a,2}K_{a,3}}{K_e^3} = 10^{27.7}$.			••			
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	СОМ	RCO
Nombre total de points	6	7	18	1	7	7
Nombre de points obtenus				0.4		

COMMENTAIRES:

%;