Homework 5 Solution

1)
$$f(x) = (\frac{1}{2})^{x}$$
 (x = 1,2,3...)

$$E(X) = \sum_{x=1}^{\infty} x \left(\frac{1}{2}\right)^{x}$$

$$= \frac{1}{2} + 2\left(\frac{1}{4}\right) + 3\left(\frac{1}{8}\right) + 4\left(\frac{1}{16}\right) + 5\left(\frac{1}{32}\right) + \dots$$

We have:

$$\frac{E(X)}{2} = \frac{\frac{1}{2} + 2(\frac{1}{2}) + 3(\frac{1}{8}) + 4(\frac{1}{16}) + 5(\frac{1}{32}) + \dots}{2}$$

$$= \frac{1}{4} + \frac{1}{4} + \frac{3}{16} + \frac{4}{32} + \frac{5}{64} + \cdots$$

$$= \frac{1}{4} + 2\left(\frac{1}{8}\right) + 3\left(\frac{1}{16}\right) + 4\left(\frac{1}{32}\right) + 5\left(\frac{1}{64}\right)...$$

$$E(X) - \frac{1}{2}E(X) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1/2}{1-1/2} = 1$$

$$=$$
 $\frac{1}{2}E(X)=1$

$$=\rangle$$
 $E(X)=2$

2)
$$\times |1 0$$
 $y | 2 - 3$ $3/4 1/4$

a)
$$E(X) = 1 \times \frac{1}{3} + 0 \times \frac{2}{3} = \frac{1}{3}$$

 $E(Y) = 2 \times \frac{3}{4} + (-3) \times \frac{1}{4} = \frac{3}{4}$

$$E(3X+2Y) = 3E(X) + 2E(Y)$$

$$= 3 \times \frac{1}{3} + 2 \times \frac{3}{4} = \boxed{\frac{5}{2}}$$

b)
$$E(X^2) = \frac{1}{3}$$
 $E(Y^2) = \frac{21}{4}$
 $E(2X^2 - Y^2) = 2 E(X^2) - E(Y^2)$
 $= 2 \times \frac{1}{3} - \frac{21}{4} = \frac{-55}{12}$

c)
$$E(XY) = E(X) \cdot E(Y) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$

since $X \& Y$ are independent

a)
$$E(X^2Y) = E(X^2) \cdot E(Y) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$$

3)
$$x \mid 1 \quad 2 \quad -1$$
 $f(n) \mid 1/2 \quad 1/3 \quad 1/6$
 $E(X_1) = E(X_2) = \dots = E(X_m) = 1 \times \frac{1}{2} + 2 \times \frac{1}{3} + (-1)\frac{1}{6}$
 $= 1$

a) $E(X_1 + X_2 + \dots + X_n)$
 $= E(X_1) + E(X_2) + \dots = E(X_m)$
 $= 1 + 1 + \dots + 1$
 $= 1$

b) $E(X_1^2) = \dots = E(X_n^2) = 1^2 \times \frac{1}{2} + 4 \times \frac{1}{3} + 1 \times \frac{1}{6}$
 $= 2$
 $E(X_1^2 + X_2^2 + \dots + X_n^2)$
 $= E(X_1^2) + E(X_2^2) + \dots + E(X_n^2)$
 $= 2 + 2 + \dots + 2$

4)
$$x \mid -2$$
 3 1
 $S(x) \mid -2/3$ 1/2 1/6
 $E(X) = (-2) \times \frac{1}{3} + 3 \times \frac{1}{2} + 1 \times \frac{1}{6}$
 $= 1$
 $Van(X) = E[(X-M)^2] = 9 \times \frac{1}{3} + 4 \times \frac{1}{2} + 0 \times \frac{1}{6}$
 $S = Vvan(X) = VS$
5) $E[(X-1)^2] = 10$
 $= \sum E(X^2) - 2E(X) + 1 = 10$
 $= \sum E(X^2) - 2E(X) = 9$ (1)
 $= \sum E(X^2) - 4E(X) = 2$ (2)
From (1) & 2, we have $\{E(X^2) = 16\}$
 $= \sum E(X^2) = 3.5$

a)
$$E(X) = 3.5$$

b) $Var(X) = E(X^2) - (E(X))^2$
 $= 16 - (3.5)^2$
 $= 3.75$
c) $6x = \sqrt{3.75}$
6) $x \mid 1 = 2 = 3 = 4 = 5 = 6$
 $f(x) \mid 1/6 = 1/6 = 1/6 = 1/6$
 $E(X_1) = E(X_2) = E(X_3) = \frac{21}{6}$
a) $E(X_1 + X_2 + X_3)$
 $= E(X_1) + E(X_2) + E(X_3)$
 $= 21 \times 3 = \frac{21}{2}$
b) $Var(X_1 + X_2 + X_3)$
 $= Var(X_1) + Var(X_2) + Var(X_3)$
 $Var(X_1) = Var(X_2) = Var(X_3)$

Var(X1) = 1.712

 $=) \quad Var(X_1 + X_2 + X_3) = 3 \times 1.71^2$ = [7.772]

7) Applying Chebysher's inequality:

a) $P(1\times-31>/2)<\frac{1}{2}$

l) P(1X-31 /11) < 2 (useless)