Table of Contents

```
IV. Save the identified models 3
% TUHH :: Institute for Control Systems :: Control Lab
% Experiment CSTD2: Magnetic Levitation Plant
% Copyright Herbert Werner and Hamburg University of Technology, 2014
% This file is to be completed by the student.
% The completed version is to be published using
  publish('cstd2_ident.m','pdf')
% and submitted as a pdf-file at least one week prior to the scheduled
date
% for the experiment
% if you want to find out more about a certain command, just type
% 'help command' into the matlab window
% use section evaluations (Ctrl+Enter) to run the code within a single
% section
% v.0.9 - 13-11-2014
% by Michael Heuer
% Last modified on 25-11-2014
% by Julian Theis
clear all; clc; close all
```

I. Setup some global Variables which will be needed later

t_s = 0.01; % Sampling Time of the datasets

II. Load the measurment data into an iddata object

The data are stored in the vector called 'data' The first row is the time, the second and third u_1 and u_2, and the fourth and fifth y_1 and y_2. Those are copied into a iddata object which can be used for the identification.

```
load d_steps.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_steps = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_chirp_1.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_chirp_1 = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_chirp_2.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_chirp_2 = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_prbs_1.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_prbs_1 = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_prbs_2.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_prbs_2 = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_noise_1.mat;
u 1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_noise_1 = iddata([y_1, y_2], [u_1, u_2], t_s);
load d_noise_2.mat;
u_1 = data(:,2); u_2 = data(:,3);
y_1 = data(:,4); y_2 = data(:,5);
d_noise_2 = iddata([y_1, y_2], [u_1, u_2], t_s);
```

III. Open the System Identification Toolbox and performe the identification

In this step the identification should be performed using the gui. Take a look at the lab document and performe the required steps.

Store the identified system in the pattern sys_* Where * is the dataset you used for the identification.

```
systemIdentification;
```

pause();

IV. Save the identified models

```
if (sys_steps.ts ~= 0) || (sys_chirp_1.ts ~= 0) || (sys_chirp_2.ts ~=
0) || ....
   (sys_prbs_1.ts ~= 0) || (sys_prbs_2.ts ~= 0) || (sys_noise_1.ts ~=
0) || (sys_noise_2.ts ~= 0)
        error('Please convert the systems to continuouse time');
end
save models.mat sys_steps sys_chirp_1 sys_chirp_2 sys_prbs_1 sys_noise_1 sys_prbs_
```

V. Compare the models

```
% Compare Bode Plots
figure(1);
b = bodeoptions();
b.XLim = {[1,250]};
b.YLim = {[-40 40]};
bodemag(sys_steps, sys_prbs_1, sys_noise_1, sys_prbs_2,
    sys_noise_2,b);
legend({'steps','prbs1','noise1','prbs2','noise2'},'Location','SouthWest');
% Compare Poles
figure(2);
iopzmap(sys_steps, sys_prbs_1, sys_noise_1, sys_prbs_2, sys_noise_2);
legend({'steps','prbs1','noise1','prbs2','noise2'},'Location','SouthWest');
```


Published with MATLAB® R2019b