(2019) 设函数
$$f(u)$$
 可导, $z = f(\sin y - \sin x) + xy$,则 $\frac{1}{\cos x} \cdot \frac{\partial z}{\partial x} + \frac{1}{\cos y} \cdot \frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$

(2017) 设函数 f(u,v) 具有 2 阶连续偏导数, $y = f(e^x,\cos x)$,求 $\frac{dy}{dx}\Big|_{x=0}$, $\frac{d^2y}{dx^2}\Big|_{x=0}$ 。

(2019) f(u,v)具有 2 阶连续偏导数,且 g(x,y)=xy-f(x+y,x-y),

(2011) 设函数
$$F(x,y) = \int_0^{xy} \frac{\sin t}{1+t^2} dt$$
,则 $\frac{\partial^2 F}{\partial x^2}\Big|_{\substack{x=0\\y=2}} = \underline{\qquad}$.

《课后练习》

「答案: $yf(\frac{y^2}{x})$

(2013) 设函数
$$z = \frac{y}{x} f(xy)$$
, 其中函数 f 可微, 则 $\frac{x}{y} \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} =$

(A)
$$2yf'(xy)$$
 (B) $-2yf'(xy)$ (C) $\frac{2}{x}f(xy)$ (D) $-\frac{2}{x}f(xy)$

答案: A

(2012) 设
$$z = f\left(\ln x + \frac{1}{y}\right)$$
, 其中函数 $f(x)$ 可微,则 $x\frac{\partial z}{\partial x} + y^2\frac{\partial z}{\partial y} = \underline{\hspace{1cm}}$.

[答案: O]

(2009) 设函数
$$f(u,v)$$
 具有二阶连续偏导数, $z = f(x,xy)$, 则 $\frac{\partial^2 z}{\partial x \partial y} =$ ______.

[答案: $xf''_{vv} + f'_{v} + xyf''_{vv}$]

(2009) 设
$$z = f(x+y, x-y, xy)$$
, 其中 f 具有 2 阶连续偏导数, 求 dz 与 $\frac{\partial^2 z}{\partial x \partial y}$.

[答案:
$$dz = (f'_u + f'_v + yf'_w)dx + (f'_u - f'_v + xf'_w)dy$$

$$\frac{\partial^2 z}{\partial x \partial y} = z''_{xy} = f'_w + f''_{uu} - f''_{vv} + xyf''_{ww} + (x+y)f''_{uw} + (x-y)f''_{vw}$$