Komplexní analýza

Mocninné řady

Zdeněk Mihula

Katedra matematiky FEL ČVUT v Praze mihulzde@fel.cvut.cz

Polynomy aproximují "pěkné" funkce

- · Polynomy jsou jednoduchý objekt, se kterým se dobře pracuje.
- · Složité funkce lze často aproximovat pomocí polynomů.
- · Z reálné analýzy známe tzv. Taylorův polynom.
- Například Taylorovy polynomy $T_n(x) = 1 + x + \frac{x^2}{2} + \cdots + \frac{x^n}{n!}$ "úspěšně" aproximují exponenciální funkci.

pro každé $x \in \mathbb{R}$:

$$e^{x} = \lim_{n \to \infty} T_{n}(x) = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Různé funkce, různá kvalita aproximace

• Teď zkusme aproximovat funkci $f(x) = \frac{1}{1+x^2}$, $x \in \mathbb{R}$, jejím Taylorovo polynomem $T_n(x) = 1 - x^2 + x^4 - \dots + (-1)^n x^{2n}$.

Vztah

$$\frac{1}{1+x^2} = \lim_{n \to \infty} T_n(x) = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

platí jen pro $x \in (-1, 1)$.

Otázka

Kde je problém? Čím se liší e^x a $\frac{1}{1+x^2}$?

Mocninné řady – základní definice

Definice

Řada tvaru

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n,$$

kde $z \in \mathbb{C}$ je komplexní proměnná, se nazývá **mocninná řada** se středem $z_0 \in \mathbb{C}$ a koeficienty $a_n \in \mathbb{C}$.

- · z₀... střed mocninné řady
- Čísla a_n , $n \in \mathbb{N}_0$, jsou koeficienty mocninné řady.

Poučení

Formálně je mocninná řada nekonečný polynom:

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n = a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + a_3 (z-z_0)^3 + \cdots$$

Po dosazení bodu $z \in \mathbb{C}$ dostaneme číselnou řadu.

Konvergence číselné řady

 Pojmy jako součet, (absolutní) konvergence, divergence atp. číselné řady jsou v komplexním oboru stejné jako v reálném.

Definice

- **1** Má-li posloupnost částečných součtů $(s_n)_{n=0}^{\infty} = (\sum_{k=0}^{n} c_k)_{n=0}^{\infty}$ (číselné) řady $\sum_{n=0}^{\infty} c_n$ limitu $s \in \mathbb{C}$, tak její hodnotu nazýváme součet řady $\sum_{n=0}^{\infty} c_n$.
- 2 Říkáme, že řada $\sum_{n=0}^{\infty} c_n$ konverguje, jestliže existuje její součet. V opačném případě říkáme, že řada diverguje.
- 3 Jestliže konverguje řada $\sum_{n=0}^{\infty} |c_n|$, potom říkáme, že řada $\sum_{n=0}^{\infty} c_n$ konverguje absolutně.
 - · Absolutní konvergence je "výrazně lepší" způsob konvergence.
 - · Jestliže řada konverguje absolutně, potom konverguje.
 - · Pokud řada konverguje, potom nutně $\lim_{n\to\infty} |c_n| = 0$.

Mocninné řady jako funkce

 Mocninná řada nám definuje komplexní funkci, která je definovaná pro ty z ∈ C, pro které vzniklá číselná řada konverguje (tj. má součet).

Definice

Jestliže mocninná řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ konverguje v každém bodě množiny $M\subseteq \mathbb{C}$, pak jejím **součtem na** M rozumíme funkci f(z) definovanou předpisem

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad z \in M.$$

- Připomeňme, že $z^0=1$ pro každé $z\in\mathbb{C}$. Speciálně $0^0=1$.
- Mocninná řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ tedy vždy konverguje ve svém středu $z=z_0$.

6

Obor konvergence mocninných řad

Otázka

Existuje nějaký řád a pořádek v tom, kde konverguje mocninná řada? Nebo je to zcela "náhodné"?

Příklad (Geometrická řada)

Je dána mocninná řada $\sum_{n=0}^{\infty} z^n$.

1 Pro každé $z\in\mathbb{C}$ splňující |z|<1 řada $\sum_{n=0}^{\infty}z^n$ konverguje absolutně a platí

$$\sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

- 2 Pro každé $z \in \mathbb{C}$ splňující $|z| \ge 1$ řada $\sum_{n=0}^{\infty} z^n$ diverguje.
 - Geometrická řada, což je mocninná řada se středem $z_0 = 0$, tedy konverguje absolutně uvnitř kruhu se středem $z_0 = 0$ (a poloměrem 1) a diverguje vně.

Poloměr konvergence a kruh konvergence

A to nebyla náhoda.

Věta (O poloměru konvergence mocninné řady)

Nechť $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ je mocninná řada. Existuje právě jedno $R \in [0, +\infty]$ takové, že současně platí:

- Řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ konverguje absolutně na $U(z_0,R)$;
- řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ diverguje na $\{z \in \mathbb{C} : |z-z_0| > R\}$.

Definice

Číslo R nazýváme **poloměr konvergence** mocninné řady $\sum_{n=0}^{\infty} a_n (z-z_0)^n$. Množinu $U(z_0,R)$ nazýváme **kruh konvergence** mocninné řady.

Poučení

Mocninná řada konverguje absolutně na kruhu $U(z_0, R)$, "něco" se děje na hraniční kružnici a diverguje vně.

- Je-li $R=+\infty$, mocninná řada absolutně konverguje všude na $\mathbb C$. Tedy "zelená je celá komplexní rovina".
- Je-li R=0, mocninná řada diverguje všude na $\mathbb{C}\setminus\{z_0\}$. Tedy "červené je vše kromě středu z_0 ".

Upozornění

Často jsou mocninné řady v "nekanonickém tvaru". Např.

$$\sum_{n=1}^{\infty} n^2 (z-5)^{2n} = (z-5)^2 + 4(z-5)^4 + 9(z-5)^6 + \cdots$$

Tato řada má (rozepsáný) kanonický tvar

$$0+0(z-5)+(z-5)^2+0(z-5)^3+4(z-5)^4+0(z-5)^5+9(z-5)^6+\cdots$$

Příklad

Mocninná řada $\sum_{n=0}^{\infty} \frac{(-1)^n (z+1)^{2n}}{3^n}$ má střed $z_0 = -1$ a poloměr konvergence $R = \sqrt{3}$.

Její součet
$$f(z) = \sum_{n=0}^{\infty} \frac{(-1)^n (z+1)^{2n}}{3^n}$$
 na kruhu konvergence je $f(z) = \frac{3}{3+(z+1)^2}$ pro $|z+1| < \sqrt{3}$.

Operace s mocninnými řadami

Otázka

Mocninné řady jsou na svém kruhu konvergence vlastně "nekonečné polynomy". Co vše s nimi můžeme dělat jako s polynomy?

- Mocninné řady můžeme sčítat a násobit jako polynomy. Poloměr konvergence se těmito operacemi nezmenšuje (může se ale zvětšit).
- U násobení je třeba dávat pozor na to, že vlastně "roznásobujeme nekonečné závorky". V "našich příkladech" ale násobit mocninné řady nebudeme.

Otázka

Mocninné řady jsou funkce. Nejsou holomorfní na svém kruhu konvergence?

Derivujeme a integrujeme člen po členu

Věta (Derivování člen po členu)

Nechť má řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ poloměr konvergence R>0.

- 1 Její součet f(z) je holomorfní funkce na $U(z_0, R)$ a platí $f'(z) = \sum_{n=1}^{\infty} n a_n (z z_0)^{n-1}$ na $U(z_0, R)$.
- $\sum_{n=1}^{\infty} n a_n (z-z_0)^{n-1}$ má opět poloměr konvergence R.
- 3 Koeficienty a_n splňují $a_n = \frac{f^{(n)}(z_0)}{n!}$ pro každé $n \in \mathbb{N}_0$.

Věta (Integrování člen po členu)

Nechť má řada $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ poloměr konvergence R>0 a f(z) je její součet na $U(z_0,R)$.

- 1 Funkce $F(z) = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$, $z \in U(z_0, R)$, je primitivní funkce k funkci f(z) na $U(z_0, R)$, tj. F'(z) = f(z).
- $\sum_{n=0}^{\infty} \frac{a_n}{n+1} (z-z_0)^{n+1}$ má opět poloměr konvergence R.

Příklad

- 1 Mocninná řada $\sum_{n=0}^{\infty} (n+1)z^n$ má součet $\frac{1}{(1-z)^2}$ pro |z| < 1.
- 2 Mocninná řada $\sum_{n=1}^{\infty} \frac{z^n}{n}$ má součet $-\ln(1-z)$ pro |z| < 1.

Poučení

Mocninné řady se derivují a integrují stejně jako polynomy člen po členu.

Rozvoj holomorfní funkce do mocninné řady

Věta (Existence rozvoje do mocninné řady)

Nechť $\Omega\subseteq\mathbb{C}$ je otevřená množina a f(z) je holomorfní funkce na Ω . Nechť $z_0\in\Omega$ a $R\in(0,+\infty]$ je takové, že $U(z_0,R)\subseteq\Omega$. Potom pro všechna $z\in U(z_0,R)$ platí

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n.$$

• Řada $\sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z-z_0)^n$ se nazývá **Taylorova řada** funkce f se středem z_0 .

Rozvoj racionální funkce do mocninné řady

Příklad

Hledejme rozvoj zadané funkce do mocninné řady se středem v z_0 .

1
$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}$$
 pro $|z| < 1$, zde $z_0 = 0$.

2
$$\frac{1}{(2+z)^2} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{5^{n+1}} n(z-3)^{n-1} \text{ pro } |z-3| < 5, \text{ zde } z_0 = 3.$$

Vybrané důležité rozvoje do mocninných řad

Příklad

- $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \text{ pro } |z| < 1.$
- $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}, z \in \mathbb{C}.$
- $\sin z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2^{n+1}}}{(2n+1)!}, z \in \mathbb{C}.$
- $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, z \in \mathbb{C}.$
- $\ln z = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (z-1)^n \text{ pro } |z-1| < 1.$

Závěrečná upozornění

Upozornění

Střed mocninné řady je důležitý. Různé středy, různé rozvoje.

Poučení

Je s výhodou pracovat s faktorem $(z - z_0)$ jako s "nedělitelnou jednotkou".

Upozornění

Mocninné řady jsou nekonečné polynomy vyjádřené v mocninnách $(z-z_0)$. Neobsahují tedy záporné mocniny $(z-z_0)$.