Abstract Algebra Assignment 5 Solutions

Ayush Bansal Roll No. 160177

September 16, 2017

I Problem 1 Solution

We are given a curve C(x,y) = 0, $C(x,y) \in \mathbb{Q}[x,y]$ and it is parameterized by rational functions $f,g \in \mathbb{Q}(t)$ where $\mathbb{Q}(t)$ is a field and $\mathbb{Q}[x,y]$ is a ring.

Claim 1.1. There is a ring homomorphism from ring $\mathbb{Q}[x,y]$ to field $\mathbb{Q}(t)$, $A(x,y) \mapsto A(f(t),g(t))$

Proof. Assume a mapping $\phi : \mathbb{Q}[x,y] \mapsto \mathbb{Q}(t)$ such that $\phi(x) = f(t)$ and $\phi(y) = g(t)$.

Since x = f(t) and y = g(t) which is the result of the parametrization done on C(x, y) and f(t), g(t) are rational functions, so

$$ax + by = af(t) + bg(t)$$
(1.1)

$$ax^n = a(f(t))^n (1.2)$$

$$x^{m}y^{n} = (f(t))^{m}(g(t))^{n}$$
(1.3)

Since $A(x,y) \in \mathbb{Q}[x,y]$ is a polynomial in x,y we know that it will have combination of integral powers of x and y with constants, so by (1.1), (1.2), (1.3) and mapping of ϕ we have the following equations.

$$\phi(A(x,y)) = A(\phi(x),\phi(y)) \tag{1.4}$$

Since we know that sum or product of any polynomials in $\mathbb{Q}[x, y]$ will also be a polynomial as it is a ring and it has **closure** property.

$$\phi(A_1(x,y) + A_2(x,y)) = A_1(\phi(x),\phi(y)) + A_2(\phi(x),\phi(y))$$
(1.5)

$$\phi(A_1(x,y) + A_2(x,y)) = \phi(A_1) + \phi(A_2) \tag{1.6}$$

$$\phi(A_1(x,y) * A_2(x,y)) = A_1(\phi(x),\phi(y)) * A_2(\phi(x),\phi(y))$$
(1.7)

$$\phi(A_1(x,y) * A_2(x,y)) = \phi(A_1(x,y)) * \phi(A_2(x,y))$$
(1.8)

By above properties ring homomorphism is satisfied as $A(\phi(x), \phi(y)) = A(f(t), g(t))$, where A(f(t), g(t)) is a rational function in $\mathbb{Q}(t)$ as all the coefficients of polynomial A(x,y) are rational numbers and putting x = f(t), y = g(t) where f, g are rational functions, we will finally get a rational function A(f(t), g(t)).

Claim 1.2. Kernel(ϕ) contains ideal (C(x,y)) i.e. principal ideal of C(x,y).

Proof. Now, we will find the elements of the set **kernel**(ϕ), it is defined as.

$$kernel(\phi) = \{A(x, y) \mid A(x, y) \in \mathbb{Q}[x, y], \phi(A(x, y)) = 0\}$$
 (1.9)

$$\phi(A(x,y)) = A(f(t),g(t)) = 0 \tag{1.10}$$

By equation (1.10), we can see that the curve C(x, y) = 0 where x = f(t), y = g(t) belongs to $kernel(\phi)$. Also, $kernel(\phi)$ is an ideal we can verify that.

If A(f(t), g(t)) = 0 and B(f(t), g(t)) = 0, then (A + B)(f(t), g(t)) = 0 then $(A + B)(f(t), g(t)) \in kernel(\phi)$, also if A(f(t), g(t)) = 0 then A(f(t), g(t)) * B(x, y) = 0, $B(x, y) \in \mathbb{Q}[x, y]$ then $A(f(t), g(t)) * B(x, y) \in kernel(\phi)$.

Since $C(x,y) \in kernel(\phi)$ then $(C(x,y)) \in kernel(\phi)$ where (C(x,y)) is the principal ideal of C(x,y).

II Problem 2 Solution

We are given a ring homomorphism $\phi : \mathbb{Q}[x, y] \to \mathbb{Q}(t)$.

Claim 2.1. $Kernel(\phi)$ is a **prime ideal**.

Proof. By the definition of $kernel(\phi)$, we have

$$kernel(\phi) = \{A(x, y) \mid A(x, y) \in \mathbb{Q}[x, y], \phi(A(x, y)) = 0\}$$
 (2.1)

By proof of **Claim 1.2**, $kernel(\phi)$ is an **ideal**.

Assume polynomial $A(x,y)*B(x,y) \in kernel(\phi)$ where $A(x,y),B(x,y) \in \mathbb{Q}[x,y]$ then we have $\phi(A(x,y)*B(x,y)) = 0$, so we have $\phi(A(x,y))*\phi(B(x,y)) = 0$ which implies either $\phi(A(x,y)) = 0$ or $\phi(B(x,y)) = 0$ i.e. $A(x,y) \in kernel(\phi)$ or $B(x,y) \in kernel(\phi)$.

The above statement implies that $kernel(\phi)$ is a **prime ideal**.

Claim 2.2. An algebraic set V is irreducible if I(V) is a prime ideal.

Proof. I will prove the above claim by **contradiction**. Consider $V = V_1 \cup V_2$ is reducible. Then, $V_i \subseteq V$ implies $I(V_i) \supseteq I(V)$ for each i.

Let $F_i \in I(V_i) \setminus I(V)$, then $F_i \notin I(V)$ for each i, but $F_1 F_2 \in I(V)$ since for all $P \in V$, either $F_1(P) = 0$ or $F_2(P) = 0$. Thus, I(V) is not prime which is a **contradiction**.

Claim 2.3. Kernel(ϕ) is principal ideal i.e. kernel(ϕ) = $(C(x, y)), C(x, y) \in \mathbb{Q}[x, y]$.

Proof. I have already proved that $kernel(\phi)$ is a **prime ideal**, also by the proof of **Claim 1.2**, we can see that ideal $kernel(\phi)$ contains principal ideal (C(x,y)) and also since the ideal $kernel(\phi)$ is **prime ideal**, $\exists A(x,y) \in \mathbb{Q}[x,y]$ such that A(x,y) is an **irreducible curve** by **Claim 2.2** and C(x,y) is either equal to A(x,y) or it is a multiple of A(x,y).

 $A(x,y) \in \mathbb{Q}[x,y]$ is an irreducible curve as $kernel(\phi)$ is a **prime ideal** and it will map to an algebraic set V which is the algebraic set of $A(x,y) \in \mathbb{Q}[x,y]$.

So, by above arguments we can say that $kernel(\phi) = (A(x,y)), A(x,y) \in \mathbb{Q}[x,y]$ as the ideal $kernel(\phi)$ will be the ideal which will be an ideal of algebraic set which will be irreducible.

III Problem 3 Solution

We are given a map $\phi(x) = \frac{2t}{t^2+1}$ and $\phi(y) = \frac{t^2-1}{t^2+1}$ and a field of fractions $F = \mathbb{Q}[x,y]/(x^2+y^2-1)$ and field $\mathbb{Q}(t)$.

Claim 3.1. ϕ is an **isomorphism** from F to $\mathbb{Q}(t)$.

Proof. We are given a map $\phi(x) = \frac{2t}{t^2+1}$ and $\phi(y) = \frac{t^2-1}{t^2+1}$, rearranging this we have.

$$t = \frac{2(1 + \phi(y))}{\phi(x)} \tag{3.1}$$

From the proof of **Claim 1.1**, we have.

$$\phi\left(\frac{A(x,y)}{B(x,y)}\right) = \frac{\phi(A(x,y))}{\phi(B(x,y))} = \frac{A(\phi(x),\phi(y))}{B(\phi(x),\phi(y))}$$
(3.2)

Calculating the value of $\phi(x^2 + y^2 - 1)$.

$$\phi(x^2 + y^2 - 1) = (\phi(x))^2 + (\phi(y))^2 - 1 \tag{3.3}$$

$$\left(\frac{2t}{t^2+1}\right)^2 + \left(\frac{t^2-1}{t^2+1}\right)^2 - 1 = 0 \tag{3.4}$$

So $\forall C(x,y) \in I, \phi(C(x,y)) = 0$, as every polynomial in I will just be a multiple of $x^2 + y^2 - 1$ as it is a principal ideal, and applying the homomorphism to field F.

$$\phi\left(\frac{A(x,y)+I}{B(x,y)+I}\right) = \frac{\phi(A(x,y))}{\phi(B(x,y))} = \frac{A(\phi(x),\phi(y))}{B(\phi(x),\phi(y))}$$
(3.5)

Considering equation (3.1), there is a value $(x,y) \forall t$ by the mapping $\phi(x) = \frac{2t}{t^2+1}$ and $\phi(y) = \frac{t^2-1}{t^2+1}$, thus homomorphism is **onto** as every t is mapped to $(\phi(x), \phi(y))$ and thus every possible function in the field $\mathbb{Q}(t)$ is mapped to a function in field F.

We know that a field has only 2 ideals which are $\{0\}$ and (1) i.e. **zero ideal** and **F-\{0\}**, and since $kernel(\phi) = \{0\}$.

If we assume $A \neq B$ where $A,B \in F$ but $\phi(A) = \phi(B)$, also if we have $\phi(X) = 0$, then X = 0 as $kernel(\phi) = \{0\}$.

$$\phi(A - B) = \phi(A) - \phi(B) = 0 \tag{3.6}$$

$$A - B = 0 \Rightarrow A = B \tag{3.7}$$

The above statement is a contradiction to our assumption, thus we have a unique mapping, also by equation (3.1), we can see that homomorphism of field F to $\mathbb{Q}(t)$ is **1-1**.

Now as we have shown the homomorphism is 1-1 and onto, the homomorphism is an isomorphism.