Kinematics Reference Guide

The Three Equations of Motion

First Equation of Motion

v = u + at

Where:

- v = final velocity (m/s)
- u = initial velocity (m/s)
- $a = acceleration (m/s^2)$
- t = time (s)

This equation relates velocity, acceleration, and time.

Second Equation of Motion

 $s = ut + \frac{1}{2}at^2$

Where:

- s = displacement (m)
- u = initial velocity (m/s)
- t = time (s)
- $a = acceleration (m/s^2)$

This equation gives displacement in terms of initial velocity, time, and acceleration.

Third Equation of Motion

 $v^2 = u^2 + 2as$

Where:

- v = final velocity (m/s)
- u = initial velocity (m/s)
- $a = acceleration (m/s^2)$
- s = displacement (m)

This equation relates velocities, acceleration, and displacement (time-independent).

Key Concepts

Displacement vs Distance

- **Displacement**: Vector quantity (direction matters)
- **Distance**: Scalar quantity (magnitude only)

Velocity vs Speed

- **Velocity**: Vector (includes direction)
- **Speed**: Scalar (magnitude of velocity)

Acceleration

Rate of change of velocity with time. Can be positive (speeding up) or negative (slowing down).

Problem-Solving Steps

- 1. Identify given values
- 2. Determine what to find
- 3. Choose appropriate equation
- 4. Substitute values
- 5. Solve and check units

Common Problem Types

Type 1: Finding Final Velocity

Given: u, a, t

Use: v = u + at

Type 2: Finding Displacement

Given: u, a, t

Use: $s = ut + \frac{1}{2}at^2$

Type 3: Time-Independent Problems

Given: u, v, a

Use: $v^2 = u^2 + 2as$

Sign Conventions

- Positive direction: Usually upward or rightward
- **Negative direction**: Usually downward or leftward
- **Gravity**: g = -9.8 m/s² (when upward is positive)

Example Problem

A car accelerates from rest at 2 m/s² for 5 seconds.

Given:

- u = 0 m/s (from rest)
- $a = 2 \text{ m/s}^2$
- t = 5 s

Find final velocity: v = u + at = 0 + (2)(5) = 10 m/s

Find displacement: $s = ut + \frac{1}{2}at^2 = 0(5) + \frac{1}{2}(2)(5)^2 = 25 \text{ m}$

Quick Reference Table

Given Variables	Use Equation	To Find
u, a, t	v = u + at	V
u, a, t	$s = ut + \frac{1}{2}at^2$	S
u, v, a	$v^2 = u^2 + 2as$	S
u, v, t	s = (u + v)t/2	S
•		

Units

- Displacement/Distance: meters (m)
- Velocity/Speed: meters per second (m/s)
- Acceleration: meters per second squared (m/s²)
- Time: seconds (s)

Tips for Success

- Always define your coordinate system
- Check if acceleration is constant
- Pay attention to signs (positive/negative)
- Verify units in final answer
- Sketch the motion when possible