Model predictive control of large-scale urban networks via perimeter control and route guidance actuation

Işık İlber Sırmatel, Nikolas Geroliminis

Urban Transport Systems Laboratory, EPFL

CDC 2016, 14.12.2016

Motivation

Problem: Congestion

Center congested, network underused.

Solution: Control

Manipulate vehicle flows to use network efficiently.

Macroscopic fundamental diagram (MFD)¹

¹Nikolas Geroliminis and Carlos F Daganzo. *Transportation Research Part B: Methodological* 42.9 (2008), pp. 759–770.

Spatial partitioning²

²Yuxuan Ji and Nikolas Geroliminis. *Transportation Research Part B: Methodological* 46.10 (2012), pp. 1639–1656.

Actuators

1) Perimeter control³

2) Route guidance⁴

³Nikolas Geroliminis, Jack Haddad, and Mohsen Ramezani. *IEEE Transactions on Intelligent Transportation Systems* 14.1 (2013), pp. 348–359.

⁴Mohammad Hajiahmadi et al. *16th International IEEE Conference on Intelligent Transportation Systems-(ITSC)*. IEEE. 2013, pp. 1022–1028.

MFDs network model⁵

$$\dot{n}_{ij}(t) = \overbrace{q_{ij}(t)}^{ ext{inflow}} + \overbrace{\sum\limits_{h \in \mathcal{N}_i^j} M_{hij}(t)}^{ ext{inflow}} - \overbrace{\sum\limits_{h \in \mathcal{N}_i} M_{ihj}(t)}^{ ext{outflow}}$$

$$M_{ihj}(t) \triangleq \underbrace{u_{ih}(t)}_{\substack{\text{perimeter} \\ \text{control}}} \underbrace{\theta_{ihj}(t)}_{\substack{\text{route} \\ \text{guidance}}} \underbrace{n_{ij}(t)}_{\substack{trip}} \underbrace{G_i(n_i(t))}_{\substack{\text{trip} \\ \text{completion} \\ \text{flow}}}$$

⁵Mehmet Yildirimoglu, Mohsen Ramezani, and Nikolas Geroliminis. *Transportation Research Part C: Emerging Technologies* 59 (2015), pp. 404–420.

Model predictive control (MPC)

$$\begin{aligned} & \underset{u_{ih}(\cdot), \; \theta_{ihj}(\cdot)}{\text{minimize}} & \; \int_{t}^{t+T} \sum_{i \in \mathcal{R}} n_i(\tau) d\tau \\ & \text{subject to} & \; \forall i, j \in \mathcal{R} : \\ & \; n_{ij}(t) = \hat{n}_{ij}(t) \\ & \; \forall \tau \in [t, t+T] : \\ & \; \text{MFDs network model} \\ & 0 \leq n_{ij}(\tau), \; n_i(\tau) \leq n_{i,\text{jam}} \\ & \; u_{\text{min}} \leq u_{ih}(\tau) \leq u_{\text{max}}, \; \forall h \in \mathcal{N}_i \\ & 0 \leq \theta_{ihj}(\tau) \leq 1, \; \forall h \in \mathcal{N}_i \\ & \sum_{l \in \mathcal{N}} \theta_{ihj}(\tau) = 1 \end{aligned}$$

Actuation schemes

- 1. No control (NC)
 - $u_{ih}(t)$ fixed to u_{max} ; $\theta_{ihj}(t)$ via route choice
- 2. Perimeter control MPC (PC)
 - Control input: $u_{ih}(\cdot)$; $\theta_{ihj}(t)$ via route choice
- 3. Route guidance MPC (RG)
 - Control input: $\theta_{ihj}(\cdot)$; $u_{ih}(t)$ fixed to u_{max}
- 4. Perimeter control and route guidance MPC (PCRG)
 - Control input: $u_{ih}(\cdot)$ and $\theta_{ihj}(\cdot)$

Control structure/simulation setup

Congested scenario

time (s)

time (s)

Driver compliance analysis

low demand to region 4

Conclusion

Contribution:

▶ MPC with perimeter control and route guidance

Results:

- ► Improvement via route guidance
- Perimeter control to avoid severe congestion

Future work:

▶ How to realize $\theta_{ihj}(t)$? Assign drivers to paths

Isik Ilber Sirmatel isik.sirmatel@epfl.ch