Ejercicios básicos

- 1 Calcular $\iint_{\mathcal{D}} f$ en los siguientes casos:
 - (a) $f(x,y) = \frac{1}{(x+y)^2}$, $R = [3,4] \times [1,2]$,
 - (b) $f(x,y) = \frac{x^2}{1+y^2}$, $R = [0,1] \times [0,1]$,
- 2 Calcular la integral $\iint_T e^x dx dy$ siendo T la región acotada por el paralelogramo de vértices (2,0), (2,4),(-2,0) y (-2,-4).
- 3 Calcular el área de la región D del primer cuadrante limitada por las curvas xy = 2, xy = 4, y = x, y = 3x.
- 4 Calcular el área encerrada por las gráfica de las funciones y = x, $y = (2 x)^2$ y x = 0.
- $\boxed{\mathbf{5}}$ Calcular el área de la región del plano acotada por la curva $x=y^3$ y su recta tangente en el punto (1,1).
- 6 Calcular la integral doble $\iint_R (3x + 4y^2) dx dy$ siendo R la parte de la corona circular que se encuentra en el semiplano $y \ge 0$ y está limitada por las circunferencias $x^2 + y^2 = 1$ y $x^2 + y^2 = 4$.
- Talcular $\iint_{\mathbb{R}} e^{x^2+y^2} dx dy$ siendo A la parte de la bola cerrada de centro (0,0) y radio 1 tal que $y \ge |x|$.
- 8 Calcular la integral sobre $D = [-1,1] \times [0,2] \times [1,2]$ de la función f(x,y,z) = xyz.
- 9 Un sólido Ω está limitado, en el primer octante, por el semicono $z=\sqrt{x^2+y^2}$ y los planos $z=1,\,x=0,\,y=0.$ Calcular la integral $\iiint_{\Omega} \sqrt{x^2+y^2} \;\mathrm{d}x\;\mathrm{d}y\;\mathrm{d}z.$
- Calcular la integral triple de la función f(x,y,z)=xyz sobre la región de S que se encuentra en el primer octante de \mathbb{R}^3 ($x\geq 0,\,y\geq 0,\,z\geq 0$) y está limitada inferiormente por el paraboloide $z=x^2+y^2$, y superiormente por el cono $z=\sqrt{x^2+y^2}$.
- $\boxed{\textbf{11}} \ \mathsf{Calcular} \ \iiint\limits_{\Omega} (x+2z) \ \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z \ \mathsf{siendo} \ \Omega = \{(x,y,z); \ 1 \leq x^2 + y^2 + z^2 \leq 9, \ z \geq 0\}.$
- $\boxed{\textbf{12}} \ \mathsf{Calcular} \ \iiint\limits_{D} z^2 \ \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z \ \mathsf{donde} \ D \ \mathsf{es} \ \mathsf{la} \ \mathsf{parte} \ \mathsf{com\'un} \ \mathsf{de} \ \mathsf{las} \ \mathsf{bolas} \ x^2 + y^2 + z^2 \leq 1 \ \mathsf{y} \ x^2 + y^2 + z^2 \leq 2z.$

Ejercicios complementarios

$$\boxed{\textbf{13}} \operatorname{Calcular} \iint\limits_R f \text{ siendo } f(x,y) = y \operatorname{e}^{xy} \mathbf{e} \ R = [0,1] \times [0,1].$$

14 Calcular
$$\iint\limits_D (1+x^2+y^2)^{3/2}\mathrm{d}x\;\mathrm{d}y\;\mathrm{con}\;D=\bar{\mathcal{B}}((0,0);1).$$

$$\boxed{\textbf{15}} \text{ Calcular la integral } \iiint\limits_V (2zx^2 + 2zy^2) \,\,\mathrm{d}x \,\,\mathrm{d}y \,\,\mathrm{d}z \text{ siendo } V \text{ el volumen exterior a la hoja superior del cono} \\ z^2 = x^2 + y^2 \text{ e interior al cilindro } x^2 + y^2 = 1, \text{ con } z \geq 0.$$