Chapter 1 Set Theory

What is probability?

- **Probability** is a number between 0 and 1 (inclusive) that describes how likely it is that something will occur.
- As an area of mathematics, probability is the study of randomness, a particular form of uncertainty.
 - the possible outcomes are known; however
 - they are unpredictable, but
 - there is a well-defined rule for choosing among them.
- Probability theory uses the language of sets, hence we begin a brief review of concepts from set theory.

Chapter 1 2 / 26

Sample space

Definition 1.1 The set S, of all possible outcomes of a random process is called the <u>sample space</u>. It is also known as the <u>outcome set</u>.

Random process	Sample space
Toss a coin once	$S = \{H; T\}$
Toss a coin twice	$S = \{(H, H); (H, T); (T, H); (T, T)\}$

Chapter 1 3 / 26

For each of the following "experiments", describe the sample space.

• A local TV station advertises two newscasting positions. If two women (W_1, W_2) and two men (M_1, M_2) apply, list all the possible teams of two co-anchors that can be formed?

Chapter 1 4 / 26

For each of the following "experiments", describe the sample space.

• A local TV station is seeking to hire a sports announcer and a weather forecaster. If two women (W_1, W_2) and two men (M_1, M_2) apply, list all the possible teams that can be formed?

Chapter 1 5 / 26

For each of the following "experiments", describe the sample space.

Toss a coin repeatedly until the first head shows.

Chapter 1 6 / 26

For each of the following "experiments", describe the sample space.

• Let S be the set of right triangles with a 5" hypotenuse and whose height and length are a and b, respectively. Characterize the outcomes in S.

Chapter 1 7 / 26

Event

Definition 1.2 An event E is a collection of outcomes in S. That is, E is a subset of S, which is written in short hand as $E \subseteq S$.

Experiment	Sample space	Event
Toss two dice	$S = \left\{ \begin{array}{cccc} (1,1) & (1,2) & \cdots & (1,6) \\ (2,1) & (2,2) & \cdots & (2,6) \\ \vdots & \vdots & \ddots & \vdots \\ (6,1) & (6,2) & \cdots & (6,6) \end{array} \right\}$	$E: Sum of numbers is 3 \ \{(1,2),(2,1)\}$

Chapter 1 8 / 26

Consider the experiment of choosing coefficients for the quadratic equation

$$ax^2 + bx + c = 0.$$

Characterize the values of a, b, c associated with the event E: Equation has complex roots.

Chapter 1 9 / 26

Given any two events A and B we have the following operations:

UNION: The union of A and B, written $A \cup B$ is the set of elements that belong to either A or B or both:

$$A \cup B = \{x : x \in A \text{ or } x \in B\}.$$

The symbol \in means "in" or "a member of". Similarly \notin means "not in" or "not a member of".

Chapter 1 10 / 26

Given any two events A and B we have the following operations:

INTERSECTION: The intersection of A and B, written $A \cap B$ is the set of elements that belong to both A and B:

$$A \cap B = \{x : x \in A \text{ and } x \in B\}.$$

Chapter 1 11 / 26

Definition 1.3 Two events A and B are <u>disjoint</u> (or mutually exclusive) if $A \cap B = \emptyset$ where \emptyset denotes the void or <u>empty</u> set (consisting of no elements).

Chapter 1 12 / 26

A coin is tossed four times and the resulting sequence of heads and/or tails is recorded. Define the events:

E: exactly two heads appear

F: heads and tails alternate

G: first two tosses are heads

Which events, if any, are mutually exclusive?

Chapter 1 13 / 26

Given any two events A and B we have the following operations:

COMPLEMENTATION: The complement of A, written A^c is the set of elements that are in S but not in A:

$$A^c = \{x \in S : x \notin A\}.$$

Chapter 1 14 / 26

Given any two events A and B we have the following operations:

SET DIFFERENCE: The set difference of B and A, denoted by $B \setminus A$ (or B - A) is

$$B \setminus A = \{x \in S : x \in B \text{ and } x \notin A\},$$

= $B \cap A^c$.

Chapter 1 15 / 26

• The following figure shows the Venn diagrams for a set union, intersection, complement and set difference.

Chapter 1 16 / 26

Shade the events corresponding to the following descriptions. Then write them in terms of set operations.

Precisely one of two events happen

At most one of two events happen

Chapter 1 17 / 26

Let events A, B and sample space S be defined as the following intervals:

$$S = \{x : 0 \le x < 7\}$$

$$A = \{x : 0 < x < 5\}$$

$$B = \{x : 3 \le x < 7\}$$

Characterize the following events:

- A^c
- \bullet $A \cap B$
- \bullet $A \cup B$
- \bullet $A \cap B^c$
- \bullet $A^c \cup B$

Chapter 1 18 / 26

• Unions and intersections can be defined for arbitrary collections of sets. For example, if A_1, A_2, A_3, \ldots is a collection of sets, all defined on a sample space S, then

$$\bigcup_{i=1}^{\infty} A_i = \{x \in S : x \in A_i, \text{ some } i\},$$

$$\bigcap_{i=1}^{\infty} A_i = \{x \in S : x \in A_i, \text{ for all } i\}$$

Chapter 1 19 / 26

Let
$$S=(0,1]$$
 and $A_k=(1/k,1]$. What is $\bigcup\limits_{k=1}^{\infty}A_k$? (Note: A_k are nested and increasing in the sense that $A_1\subset A_2\subset A_3\ldots$)

Chapter 1 20 / 26

Properties of set operations

Theorem 1.1 For any three events E, F, and G defined on a sample space S, we have the following identities:

- 1. Commutative laws
- $E \cup F = F \cup E$
- $-E \cap F = F \cap E$
- 2. Associative laws
- $-E \cup (F \cup G) = (E \cup F) \cup G$
- $-E\cap (F\cap G)=(E\cap F)\cap G$
- 3. Distributive laws
- $-E\cap (F\cup G)=(E\cap F)\cup (E\cap G)$
- $-E\cup (F\cap G)=(E\cup F)\cap (E\cup G)$

Chapter 1 21 / 26

Properties of set operations

Theorem 1.1 For any three events E, F, and G defined on a sample space S, we have the following identities:

- 4. Identity laws
- $-E \cap S = E$
- $E \cup \phi = E$
- 5. Complement laws
- $E \cup E^c = S$
- $E \cap E^c = \phi$

Chapter 1 22 / 26

Properties of set operations

Theorem 1.2 (DeMorgan's Laws) For any two events E and F defined on a sample space S:

$$-(E \cup F)^c = E^c \cap F^c$$

$$-(E\cap F)^c=E^c\cup F^c$$

Chapter 1 23 / 26

Proof of DeMorgan's first law

First we show $(E \cup F)^c \subseteq E^c \cap F^c$. Consider an element $x \in (E \cup F)^c$.

$$x \in (E \cup F)^{c} \implies x \notin (E \cup F),$$

$$\Rightarrow x \notin E \text{ AND } x \notin F$$

$$\Rightarrow x \in E^{c} \text{ AND } x \in F^{c}$$

$$\Rightarrow x \in (E^{c} \cap F^{c}).$$

Since this holds for any arbitrary element x in $(E \cup F)^c$, we can say

$$(E \cup F)^c \subseteq E^c \cap F^c$$
.

Chapter 1 24 / 26

Proof of Demorgan's first law

Next we show $E^c \cap F^c \subseteq (E \cup F)^c$. Consider an element $y \in E^c \cap F^c$.

$$y \in E^c \cap F^c \Rightarrow x \in E^c \ AND \ x \in F^c,$$

 $\Rightarrow x \notin E \ AND \ x \notin F,$
 $\Rightarrow x \notin (E \cup F),$
 $\Rightarrow x \in (E \cup F)^c.$

Again, since y is any arbitrary element of $E^c \cap F^c$, we have the result

$$E^c \cap F^c \subseteq (E \cup F)^c$$

and hence

$$(E \cup F)^c = E^c \cap F^c$$

Chapter 1 25 / 26

 De Morgan's laws commonly apply to text searching using Boolean operators AND, OR, and NOT.

The queries

- Search A: NOT (cars OR trucks)
- Search B: (NOT cars) AND (NOT trucks)

return the same results

Chapter 1 26 / 26