[2]

Enrollment No.....

Faculty of Science End Sem (Even) Examination May-2019 BC3CO08 Physics-II

Programme: B.Sc. (CS) Branch/Specialisation: Computer

Science

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (1	MCQs)	should be writ	ten in full inste	ead of only a, b,	, c or d.	
Q.1	i.	The device which coverts h (a) Motor		neat into mechanical work is: (b) Generator		1
		(c) Energy co	nvertor	(d) Heat engine		
	ii.	In isochoric process:				1
		(a) $dQ = dW$	(b) $dW = dU$	(c) dQ=dU	(d) $dW = -dU$	
	iii.	In reversible adiabatic process, change in entropy is:			1	
		(a) Zero	(b) Negative	(c) Positive	(d) Unpredictable	
	iv.	The zero point energy is:			1	
		(a) hv	(b) Zero	$(c)\frac{1}{2}hv$	(d) infinite	
	v.	Which is the correct relationship:				1
		(a) $G = H + PV$		(b) $G = U + PV - TS$		
		(c) G= U+PV		(d) $G=U-TS$		
	vi.	Helmholtz free energy of a system is available for wok in reversible:			1	
		(a) Adiabatic process (b) Isochoric process				
		(c) Isobaric process (d) Isothe		(d) Isotherma	nal process	
	vii.	In a canonical ensemble, each system has the same:		1		
		(a) Temperatu	ture, volume and number of particles.			
		(b) Energy, vo	olume and num	nber of particles		
	(c) Energy, volume and chemical potential.					
		(d) Pressure, volume and number of particles.				
	viii.	If a box has four coloured balls (say black, red, green and yellow), If one ball is suddenly picked. The probability of ball to be black will be:				
		(a) 1/2	(b) 1/4	(c) 1/8	(d) 1/16	
	ix.	The statistics obeyed by electrons inside a metal is:			netal is:	1
		(a) Maxwell –Boltzmann (b) Fermi-Dirac				
		(c) Bose-Eins	tein	(d) None of the	nese	
					ъ. г.	\circ

	х.	The black body radiation curve is well explained by:	1			
		(a) Stefan's law (b) Wien's law				
		(c) Rayleigh-Jean's law (d) Plank's law				
Q.2	i.	Give an example of each, reversible and irreversible process.	2			
	ii.	The efficiency of Carnot engine is 0.4. If the temperature of source is 227°C, find the temperature of sink.				
	iii.	Explain the working of Carnot's ideal engine on P-V diagram and 5 derive an expression for its efficiency.				
OR	iv.	Derive the work done in isothermal process.	5			
Q.3	i.	Draw the T-S diagram of Carnot's cycle.	2			
	ii.	Write both the statements of second law of thermodynamics.				
	iii.	Calculate the change in entropy of perfect gas in reversible isobaric process. Find the change in entropy when 100 g of steam at 100°C changes into water at the same temperature. Take latent heat of steam=540 kilo -cal/kg.	5			
OR	iv.	Explain the principle of increase of entropy. Discuss the change in entropy of universe in reversible process.	5			
Q.4	i.	Derive Clausius- Clapeyron Latent Heat Equation.	3			
	ii.	Define and explain the physical significance of Enthalpy and also derive Maxwell's thermodynamic relation from the Enthalpy.				
OR	iii.	Derive Gibbs-Helmholtz Equations.	7			
Q.5	i.	What is phase space? State the postulates of statistical mechanics.	4			
	ii.	Explain the principle of equal a priori probability with example of four distinguishable particles a, b, c, d distributed in two identical	6			
OR	iii.	boxes A and B. Write the possible macro states and microstates. Derive the Boltzmann's Entropy - probability relation S=k log _e W and explain second law of thermodynamics statistically.	6			
Q.6		Attempt any two:				
	i.	State and prove Boltzmann's canonical distribution law.	5			
	ii.	Draw the spectral distribution curve of Black-body radiation and explain it.	5			
	iii.	Compare Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics.	5			

P.T.O.

Marking Scheme BC3CO08 Physics-II

Q.1	i.	The device which coverts heat into mechanical work is:				
	ii.	(d) Heat engine In isochoric process:		1		
	11.	(c) dQ=dU		1		
	iii.	In reversible adiabatic process, change in en	atropy is:	1		
		(a) Zero	••			
	iv.	The zero point energy is:				
		(c) $\frac{1}{2}$ h v				
	v.	Which is the correct relationship:				
		(b) G= U+PV-TS				
	vi.	Helmholtz free energy of a system is available	nergy of a system is available for wok in reversible:			
		(d) Isothermal process				
	vii.	In a canonical ensemble, each system has the		1		
		(a) Temperature, volume and number of particles.				
	viii.	If a box has four coloured balls (say black, red, green and yellow), If one				
		ball is suddenly picked. The probability of ball to be black will be: (b) 1/4				
	ix.	The statistics obeyed by electrons inside a metal is:				
	(b) Fermi-Dirac					
	х.	The black body radiation curve is well explained by:				
		(d) Plank's law	•			
Q.2	i.	Example of reversible	1 mark	2		
		Example of irreversible process.	1 mark			
	ii.	Find the temperature of sink.		3		
		Formula :efficiency= 1 - $\frac{T2}{T1}$	1 mark			
		Where, T_2 is temperature of sink and T_1 is temperature of source				
		0.4=1-T ₂ /500 Hance T. = 200K=27°C	2 marks			
		Hence, $T_2 = 300 \text{K} = 27^{\circ}\text{C}$	2 marks			
	iii.	Explanation of working	1 mark	5		
		P-V diagram	1 mark			
		Derivation for its efficiency. 3 marks				
OR	iv.	Derivation of the work done in isothermal p	rocess.	5		
Q.3	i.	T-S diagram of Carnot's cycle.		2		
	ii.	Kelvin Plank statement	1.5 marks	3		

	iii.	Clausius statement Derivation of change in entropy Formula : change in entropy = $\frac{Q}{T} = \frac{mL}{T}$ Where m=100g=0.1kg, T=100°C =373K, L=540 kilo -cal/kg	1.5 marks 3 marks 1 mark	5		
		change in entropy $=\frac{0.1x540}{373} = 0.145 \text{ kilo-ca}$				
0.0			1 mark	5		
OR	iv.	Principle of increase of entropy 2 marks Change in entropy of universe in reversible process.:				
		Derivation	3 marks			
Q.4	i.	Derivation Clausius- Clapeyron Latent Heat Equation.				
	ii.	Definition of Enthalpy	1 mark	7		
		Physical significance	1 mark			
		Derivation of Maxwell's relation	5 marks			
OR	iii.	Derive Gibbs-Helmholtz Equations.		7		
		Derivation of first equation	3.5 marks			
		Derivation of second equation	3.5 marks			
Q.5	i.	Definition of Phase areas	2 marks	4		
Q.5	1.	Definition of Phase space Postulates of statistical mechanics.	2 marks	4		
	::			6		
	ii.	Principle Possible macro states	3 marks 1.5 marks	0		
		Possible micro states	1.5 marks			
OR	iii.	Derivation of relation	4 marks	6		
OK	111.	Explanation second law statistically	2 marks	U		
		ı				
Q.6		Attempt any two:				
	i.	Boltzmann's canonical distribution law.				
		Statement	1 mark			
		Proof	4 marks			
	ii.	Spectral distribution curve of Black-body radiation				
		·	2 marks			
		Conclusion	3 marks			
	iii.	Compare Maxwell-Boltzmann, Bose-Einstein, Fermi-Dirac statistics				
		1 mark for each point	(1 mark * 5)			
