

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

TAREA 6

Selección de modelos y regularización

Aguirre Armada Guillermo

Figueroa Torres Ivan Emiliano

Luna Gutiérrez Yanely

Ortiz Silva Ana Beatriz

PROFESOR DE ASIGNATURA: Guillermina Eslava

PROFESOR DE ADJUNTO: Sofía Guzman

 $18\,\,$ de $\,$ enero de 2021 $\,$ CIUDAD UNIVERSITARIA, CD. MX.

Ejercicio 1.

Usamos la base Boston de la paquetería MASS para ajustar modelos de regresión. La base contiene 506 observaciones de 14 variables, 13 del tipo numéricas y una variable, chas, de tipo factor. Tomamos a la varible crim como nuestra variable predictora.

Realizamos una selección de modelos usando la paquetería MASS y leaps, para ajustar métodos: aditivo, step k=2, step $k=\log(506)$ y regsubset exhaustive; cómo se muestra en la siguiente tabla 1.

Utiliando Boxcox encontramos que con una $\lambda=0.02$, la transformación óptima es la función log().Los modelos obtenidos fueron:

- Aditivo: = $\log(\text{crim}) \sim$.
- Step $k=2:=\log(\text{crim}) \sim \text{zn} + \text{indus} + \text{nox} + \text{age} + \text{rad} + \text{ptratio} + \text{black} + \text{lstat} + \text{medv}$.
- Step $k=\log(506)/\text{regsubset} := \log(\text{crim}) \sim \text{zn} + \text{nox} + \text{age} + \text{rad} + \text{black} + \text{lstat}.$

Al ajustar los modelos notamos que por el método step $k=\log(506)$ y por el regsubset exhaustive, llegabamos a la misma regresión con 6 variables explicativas.

	Aditivo	Step k=2	Step $k=log(n)/Regsubsets$
ECM Ap	0.58	0.58	0.596
ECM Val	0.623	0.599	0.607
p	13	9	6
\mathbb{R}^2	0.875	0.875	0.872
R^2Adj	0.872	0.873	0.871
AIC	1191.48	1184.10	1190.06
BIC	1254.88	1230.59	1223.87

Table 1: Estadísticas e información adicional de los modelos no regularizados. Vemos que las estadísticas de los modelos no difieren en gran tamaño unas de otras, a pesar de contar con diferentes números de variables

Haciendo una selección de modelos y aplicando métodos regularizados obtenemos el ajuste de 6 modelos distintos, para medir su alcance predictivo calculamos su tasa de error aparente y de prueba.

Modelos	Error aparente	Error prueba
R. Aditiva	58.1	62.3
Step $k=2$	58.2	59.9
Step k=log(n)/Regsubsets	59.6	60.7
Lasso	58.5	61.9
Ridge	60.4	63.2
Elasticnet	58.2	61.7

Table 2: Tasas error en porcentajes de modelos ajustados. Las primeras tres tasas pruebas fueron calculadas por training/ test con 300 repeticones, las últimas tres con cv k=10.

	TrnErr(Ap)	cv(k=10, B=1)	cvsd	betas(df)	lamda.min	lamda.lse
Lasso	0.587	0.608	0.033	10	0.021	0.124
Ridge	0.603	0.635	0.0347	14	0.184	0.425
Elasticnet	0.583	0.620	0.039	12	0.0183	0.206

Table 3: Estadísticas e información adicional de modelos regularizados. Vemos que las cvsd son similares para todos los modelos pero difieren en las lamdas, siendo la más pequeña minima para elasticnet y la más pequeña lse para Lasso.

Modelos	Inter	zn	indus	chas1	nox	rm	age	dis	rad	tax	ptratio	black	lstat	medv
R. Aditiva	-3.73	-0.01	0.02	-0.04	3.84	-0.04	0.00	-0.00	0.14	0.00	-0.04	-0.00	0.03	0.01
Step k=2	-4.10	-0.01	0.02		3.86		0.00		0.14		-0.04	-0.00	0.03	0.00
Step k=log(n)	-4.83	-0.01			4.71		0.01		0.14			0.00	0.03	
Lasso		-0.01	0.02		3.94		0.01	-0.02	0.14		-0.02	0.00	0.02	
Ridge		-0.01	0.01	0.02	3.46	-0.02	0.01	-0.04	0.10	0.00	-0.02	0.00	0.03	0.01
Elasticnet		-0.01	0.02		3.86	-0.01	0.01	-0.02	0.14		-0.03	0.00	0.03	0.00

Table 4: Valor de los coeficientes asociados a los siete modelos seleccionados, recordemos que $Step \ k=log(n)$ es el mismo modelo que Regsubsets.

Podemos observar que a pesar de ajustar distintos modelos, con diferentes números de variables, gracias a la transformación log(), el poder predictivo de los modelos es similar en los 6 modelos, al igual que las estadísticas.

Si bien es con el modelo aditivo donde tenemos una tasa de error aparente menor (58.1), su tasa prueba es una de las más altas (62.3); caso contrario con el ajuste Step k=2 (59.9)que se mantiene baja en comparación de los demás modelos y cambia sólo un 0.7 por cierto.

Nosotros consideramos que el modelo que seleccionaríamos con respecto a su poder predictivo, ya que contempla a 9 de las 13 variables predictoras, tiene unas R^2 ś que están por encima de las otras, aunque no sea muy significativo el cambio (0.001), es la que tiene menor AIC y la segunda que tiene menor BIC, incluyendo lo antes mencionado con respecto a las tasas de error.

Ejercicio 2.

En este ejercicio usamos la información de la base riboflavin del paquete hdi, la cual contiene 73 observaciones de 4088 variables predictoras (x) y una variable respuesta (y). Todas las variables son numéricas. Ajustamos tres modelos regularizados usando la función glmnet() del paquete glmnet.

- ridge (alpha = 0)
- lasso (alpha = 1)
- elastic net (alpha = 0.5)

Para elegir el valor de λ óptimo utilizamos la función cv.glmnet() con k=10, la cual usa validación cruzada sobre 100 modelos con distintos valores de λ . Encontramos que el valor de λ que minimiza el error cuadrático medio para cada modelo, el cual se encuentra en la Tabla , así como el numero de coeficientes distintos de cero para dicho valor de λ . En la Tabla se muestran los valores del error cuadrático medio aparente y validadas para cada modelo. Podemos observar que el ECM incrementa en promedio solo 0.20 en cada modelo y se mantiene bastante estable entre una y 100 repeticiones.

	ridge	lasso	elastic net
ECM aparente	0.028	0.042	0.037
ECM cv(k=10, B=1)	0.262	0.200	0.216
ECM cv(k=10, B=100)	0.262	0.210	0.220
λ_{minECM}	5.934	0.042	0.069

Table 5: Tasas de error de los modelos regularizados y su correspondiente valor de λ_{min} . Usamos 10 folds en validación cruzada, con una repetición y con 100 repeticiones.

Para los modelos que seleccionamos usando el criterio de λ_{min} calculamos el número de coeficientes que en valor absoluto son mayores 0.025:

ridge: 6		lasso: 29		elastic net: 42	
xLYSC_at	-0.033	xYOAB_at	-0.784	xYOAB_at	-0.563
xYEBC_at	-0.032	$xYEBC_at$	-0.531	$xYEBC_at$	-0.497
xYFIT_at	0.032	xLYSC_at	-0.270	xLYSC_at	-0.396
xSPOVAA_at	0.028	xSPOVAA_at	0.247	xSPOVAA_at	0.283
xYBFI_at	0.027	$xYQJU_at$	0.213	$xYQJU_at$	0.198
xHUTP_at	-0.027	xYXLD_at	0.197	$xYBFI_at$	0.173

Table 6: Coeficientes con mayor valor absoluto para cada uno de los modelos y su variable asociada.

	ridge	lasso	elastic net
λ_{minECM}	5.93	0.042	0.069
Num. betas (λ_{minECM})	4089	38	57
λ_{1se}	30.22	0.080	0.161
Num. betas (λ_{1se})	4089	29	42
λ_{maxdf}	-	0.006	0.012
Num. betas (λ_{maxdf})	-	72	90

Table 7: Información adicional de los modelos. Valores de λ que cumplen tres criterios (lambda.min, lambda.1se, dfmax) y su correspondiente número de coeficientes que son distintos de cero.

$\mathbf{A}\mathbf{n}\mathbf{e}\mathbf{x}\mathbf{o}$

Ejercicio 1

```
Call: Modelo aditivo
lm(formula = log(crim) ~ ., data = Boston)
```

Residuals:

```
Min 1Q Median 3Q Max -2.570 -0.555 -0.037 0.502 2.627
```

Coefficients:

```
-0.048092
                   0.141711
                            -0.34 0.73448
chas1
          nox
          -0.048985
                   0.073588 -0.67 0.50594
rm
          0.005988
                             2.78 0.00561 **
                    0.002152
age
dis
          -0.005438
                    0.033840
                            -0.16 0.87241
                    0.010573 13.51 < 2e-16 ***
rad
          0.142856
          -0.000132
                    0.000619 -0.21 0.83110
tax
ptratio
          -0.041137
                    0.022389
                             -1.84 0.06675 .
          -0.001502
                   0.000441
                            -3.40 0.00072 ***
black
lstat
           0.031705
                    0.009093
                            3.49 0.00053 ***
medv
           0.010469
                    0.007267
                              1.44 0.15030
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Residual standard error: 0.773 on 492 degrees of freedom
Multiple R-squared: 0.875, Adjusted R-squared: 0.872
F-statistic: 266 on 13 and 492 DF, p-value: <2e-16
   Call: Step k=2
lm(formula = log(crim) \sim zn + indus + nox + age + rad + ptratio +
   black + lstat + medv, data = Boston)
Residuals:
   Min
           1Q Median
                        3Q
                              Max
-2.5680 -0.5614 -0.0362 0.5004 2.6822
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.100828  0.642667  -6.38  4.0e-10 ***
          indus
           0.019619 0.008676
                              2.26 0.02417 *
nox
          3.866694 0.596785 6.48 2.2e-10 ***
          age
           0.140597 0.006007
                             23.41 < 2e-16 ***
rad
          -0.040579 0.022274 -1.82 0.06908 .
ptratio
          black
          lstat
           0.008872 0.006169 1.44 0.15099
medv
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 0.771 on 496 degrees of freedom
Multiple R-squared: 0.875, Adjusted R-squared: 0.873
F-statistic: 387 on 9 and 496 DF, p-value: <2e-16
   Call: Step k=log(n) o Regsubsets
lm(formula = log(crim) ~ zn + nox + age + rad + black + lstat,
```

data = Boston)

Residuals:

Min 1Q Median 3Q Max -2.6807 -0.5935 -0.0218 0.4972 2.6319

Coefficients:

Estimate Std. Error t value Pr(>|t|) 0.302201 -15.99 < 2e-16 *** (Intercept) -4.833234 -0.011106 0.001839 -6.04 3e-09 *** zn 4.714298 0.507822 9.28 < 2e-16 *** nox 0.006579 0.001989 3.31 0.00101 ** age 0.137756 0.005312 25.93 < 2e-16 *** rad -0.001456 0.000433 -3.36 0.00084 *** black lstat 0.025020 0.006542 3.82 0.00015 ***

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1

Residual standard error: 0.777 on 499 degrees of freedom Multiple R-squared: 0.872, Adjusted R-squared: 0.871 F-statistic: 568 on 6 and 499 DF, p-value: <2e-16

Figure 1: Modelo Regsubset, method Exhautive.

Figure 2: Modelo lasso.

Figure 3: Modelo ridge.

Figure 4: Modelo elastic net con alpha = 0.5

Ejercicio 2 Para los modelos que seleccionamos usando el criterio de λ_{min} calculamos el número de coeficientes que en valor absoluto son mayores 0.025:

ridge: 6		lasso: 29		elastic net: 42	
xLYSC_at	-0.033	xYOAB_at	-0.784	xYOAB_at	-0.563
xYEBC_at	-0.032	$xYEBC_at$	-0.531	$xYEBC_at$	-0.497
xYFIT_at	0.032	xLYSC_at	-0.270	xLYSC_at	-0.396
xSPOVAA_at	0.028	xSPOVAA_at	0.247	xSPOVAA_at	0.283
xYBFI_at	0.027	$xYQJU_at$	0.213	$xYQJU_at$	0.198
xHUTP_at	-0.027	xYXLD_at	0.197	$xYBFI_at$	0.173

Table 8: Coeficientes con mayor valor absoluto para cada uno de los modelos y su variable asociada.

	ridge	lasso	elastic net
λ_{minECM}	5.93	0.042	0.069
Num. betas (λ_{minECM})	4089	38	57
λ_{1se}	30.22	0.080	0.161
Num. betas (λ_{1se})	4089	29	42
λ_{maxdf}	_	0.006	0.012
Num. betas (λ_{maxdf})	-	72	90

Table 9: Información adicional de los modelos. Valores de λ que cumplen tres criterios (lambda.min, lambda.1se, dfmax) y su correspondiente número de coeficientes que son distintos de cero.

Para los 3 modelos es posible notar que el valor de λ que minimiza el error cuadrático medio no restringe demasiado a las β siendo en el primero en el que tienen más libertad.

Figure 5: Modelo ridge.

Figure 6: Modelo lasso.

Figure 7: Modelo elastic net con alpha = 0.5