$12a_{0508} \ (K12a_{0508})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{64} - u^{63} + \dots - 2u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 64 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{64} - u^{63} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u \\ u \\ 0 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{3} \\ -u^{3} + u \\ 0 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{8} + u^{6} - u^{4} + 1 \\ -u^{8} + 2u^{6} - 2u^{4} + 2u^{2} \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{13} - 2u^{11} + 3u^{9} - 2u^{7} - u \\ u^{13} - 2u^{11} + 5u^{9} - 6u^{7} + 4u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{18} - 3u^{16} + 6u^{14} - 7u^{12} + 5u^{10} - 3u^{8} - u^{2} + 1 \\ u^{18} - 4u^{16} + 9u^{14} - 14u^{12} + 15u^{10} - 14u^{8} + 10u^{6} - 6u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{19} - 4u^{17} + 10u^{15} - 16u^{13} + 19u^{11} - 18u^{9} + 14u^{7} - 10u^{5} + 5u^{3} - 2u \\ u^{21} - 3u^{19} + \dots - 3u^{3} + u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{36} + 7u^{34} + \dots + u^{2} + 1 \\ -u^{38} + 6u^{36} + \dots + 6u^{4} - u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{53} - 10u^{51} + \dots + 8u^{3} - 3u \\ u^{55} - 9u^{53} + \dots - 2u^{3} + u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{62} + 44u^{60} + \cdots 24u 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{64} + 23u^{63} + \dots + 20u^2 + 1$
c_2, c_6	$u^{64} - u^{63} + \dots - 2u - 1$
c_3, c_4, c_8	$u^{64} + u^{63} + \dots + 10u^2 - 25$
c_5, c_{11}	$u^{64} + u^{63} + \dots - 2u - 1$
c_9, c_{10}, c_{12}	$u^{64} + 17u^{63} + \dots - 20u^2 + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{64} + 37y^{63} + \dots + 40y + 1$
c_2, c_6	$y^{64} - 23y^{63} + \dots + 20y^2 + 1$
c_3, c_4, c_8	$y^{64} - 59y^{63} + \dots - 500y + 625$
c_5, c_{11}	$y^{64} + 17y^{63} + \dots - 20y^2 + 1$
c_9, c_{10}, c_{12}	$y^{64} + 61y^{63} + \dots - 40y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.734158 + 0.668101I	1.43109 - 1.27456I	-5.99922 + 4.38526I
u = -0.734158 - 0.668101I	1.43109 + 1.27456I	-5.99922 - 4.38526I
u = 0.577379 + 0.799136I	2.16758 + 9.15664I	-5.96705 - 5.25155I
u = 0.577379 - 0.799136I	2.16758 - 9.15664I	-5.96705 + 5.25155I
u = -0.583021 + 0.792165I	2.76820 - 3.03900I	-4.88415 + 0.40129I
u = -0.583021 - 0.792165I	2.76820 + 3.03900I	-4.88415 - 0.40129I
u = 0.548606 + 0.780128I	-4.67791 + 4.46553I	-11.24364 - 4.14724I
u = 0.548606 - 0.780128I	-4.67791 - 4.46553I	-11.24364 + 4.14724I
u = -0.880732 + 0.573012I	-1.06214 + 2.24840I	-14.4188 - 2.9053I
u = -0.880732 - 0.573012I	-1.06214 - 2.24840I	-14.4188 + 2.9053I
u = 0.908597 + 0.273784I	2.57323 - 5.53278I	-10.06397 + 6.98986I
u = 0.908597 - 0.273784I	2.57323 + 5.53278I	-10.06397 - 6.98986I
u = 0.814938 + 0.667976I	2.49514 - 2.06773I	0. + 3.71877I
u = 0.814938 - 0.667976I	2.49514 + 2.06773I	0 3.71877I
u = -0.887915 + 0.310649I	2.77545 - 0.35472I	-9.35777 - 1.48918I
u = -0.887915 - 0.310649I	2.77545 + 0.35472I	-9.35777 + 1.48918I
u = -0.551226 + 0.748282I	-1.69458 - 1.28164I	-5.29966 + 0.30789I
u = -0.551226 - 0.748282I	-1.69458 + 1.28164I	-5.29966 - 0.30789I
u = -0.770088 + 0.744037I	8.45315 - 3.75871I	0. + 2.83567I
u = -0.770088 - 0.744037I	8.45315 + 3.75871I	0 2.83567I
u = 0.781202 + 0.741537I	8.62407 - 2.42872I	0
u = 0.781202 - 0.741537I	8.62407 + 2.42872I	0
u = 0.512976 + 0.755043I	-4.91649 - 1.59221I	-11.90786 + 3.54404I
u = 0.512976 - 0.755043I	-4.91649 + 1.59221I	-11.90786 - 3.54404I
u = 0.886320 + 0.663470I	2.27623 - 3.08946I	0
u = 0.886320 - 0.663470I	2.27623 + 3.08946I	0
u = 1.11340	-7.26377	-11.6170
u = 1.117230 + 0.039150I	-3.19336 - 1.95587I	-8.00000 + 0.I
u = 1.117230 - 0.039150I	-3.19336 + 1.95587I	-8.00000 + 0.I
u = 0.869584 + 0.106333I	-3.24427 - 2.18605I	-17.0727 + 6.0888I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.869584 - 0.106333I	-3.24427 + 2.18605I	-17.0727 - 6.0888I
u = -1.125770 + 0.039610I	-3.84567 + 8.00446I	0
u = -1.125770 - 0.039610I	-3.84567 - 8.00446I	0
u = -1.128630 + 0.012921I	-10.47200 + 3.12169I	0
u = -1.128630 - 0.012921I	-10.47200 - 3.12169I	0
u = 0.461327 + 0.727213I	1.44734 - 6.27170I	-6.61668 + 5.37317I
u = 0.461327 - 0.727213I	1.44734 + 6.27170I	-6.61668 - 5.37317I
u = -0.936943 + 0.658530I	0.82334 + 6.42603I	0
u = -0.936943 - 0.658530I	0.82334 - 6.42603I	0
u = -0.465307 + 0.705263I	2.01780 + 0.29717I	-5.58354 - 0.33676I
u = -0.465307 - 0.705263I	2.01780 - 0.29717I	-5.58354 + 0.33676I
u = 0.925319 + 0.713366I	8.18783 - 3.10258I	0
u = 0.925319 - 0.713366I	8.18783 + 3.10258I	0
u = -0.933860 + 0.711939I	7.95805 + 9.29310I	0
u = -0.933860 - 0.711939I	7.95805 - 9.29310I	0
u = -1.038150 + 0.620576I	0.43349 + 4.75751I	0
u = -1.038150 - 0.620576I	0.43349 - 4.75751I	0
u = 1.047470 + 0.619918I	-0.204610 + 1.166380I	0
u = 1.047470 - 0.619918I	-0.204610 - 1.166380I	0
u = -1.041800 + 0.654112I	-3.12169 + 6.62412I	0
u = -1.041800 - 0.654112I	-3.12169 - 6.62412I	0
u = 1.051460 + 0.642911I	-6.47434 - 3.70666I	0
u = 1.051460 - 0.642911I	-6.47434 + 3.70666I	0
u = 1.052550 + 0.660953I	-6.16225 - 9.90913I	0
u = 1.052550 - 0.660953I	-6.16225 + 9.90913I	0
u = -1.046730 + 0.676138I	1.38825 + 8.57764I	0
u = -1.046730 - 0.676138I	1.38825 - 8.57764I	0
u = 1.050950 + 0.676533I	0.7567 - 14.7133I	0
u = 1.050950 - 0.676533I	0.7567 + 14.7133I	0
u = -0.684394	-1.02359	-9.41090

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.017794 + 0.518720I	5.24287 + 3.00974I	-2.07163 - 2.91236I
u = -0.017794 - 0.518720I	5.24287 - 3.00974I	-2.07163 + 2.91236I
u = -0.178281 + 0.318594I	-0.382136 + 0.981633I	-6.53805 - 6.72584I
u = -0.178281 - 0.318594I	-0.382136 - 0.981633I	-6.53805 + 6.72584I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{64} + 23u^{63} + \dots + 20u^2 + 1$
c_2, c_6	$u^{64} - u^{63} + \dots - 2u - 1$
c_3, c_4, c_8	$u^{64} + u^{63} + \dots + 10u^2 - 25$
c_5, c_{11}	$u^{64} + u^{63} + \dots - 2u - 1$
c_9, c_{10}, c_{12}	$u^{64} + 17u^{63} + \dots - 20u^2 + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{64} + 37y^{63} + \dots + 40y + 1$
c_2,c_6	$y^{64} - 23y^{63} + \dots + 20y^2 + 1$
c_3, c_4, c_8	$y^{64} - 59y^{63} + \dots - 500y + 625$
c_5, c_{11}	$y^{64} + 17y^{63} + \dots - 20y^2 + 1$
c_9, c_{10}, c_{12}	$y^{64} + 61y^{63} + \dots - 40y + 1$