1. MLE of the Laplace Distribution

Let X have a Laplace distribution with density

$$p(x; \mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

Suppose that n samples x_1, \ldots, x_n are drawn independently according to $p(x; \mu, b)$.

- (a) Find the maximum likelihood estimate of μ .
- (b) Find the maximum likelihood estimate of b.
- (c) Assume that μ is given. Show that b_{MLE} is an unbiased estimator (to show that the estimator is unbiased, show that $\text{E}\left[b_{\text{MLE}}-b\right]=0$).

2. Transforming a Standard Normal Multivariate Gaussian

We are given a 2 dimensional multivariate Gaussian random variable Z, with mean 0 and covariance I. We want to transform this into something cooler. Find the covariance matrix of a multivariate Gaussian such that the axes x_1 and x_2 of the isocontours of the density are elliptically shaped with major/minor axis lengths in a 4:3 ratio, and the axes are rotated 45 degrees counterclockwise.

3. Multivariate Gaussian

- a) True or False
 - (i) If X_1 and X_2 are both normally distributed and independent, then (X_1, X_2) must have multivariate normal distribution.
 - (ii) If (X_1, X_2) has multivariate normal distribution, then X_1 and X_2 are independent.
- b) Affine transformation

 $X = \begin{bmatrix} X_1 & X_2 & \cdots & X_n \end{bmatrix}^{\mathrm{T}}$ is a *n*-dimensional random vector which has multivariate normal distribution. If $X \sim \mathcal{N}(\mu, \Sigma)$ and Y = BX + c is an affine transformation of X, where c is a constant $m \times 1$ vector and B is a constant $m \times n$ matrix, what is the expectation and variance of Y?

4. [Extra for Experts] Linear Algebra

a) Let A be a square matrix. Show that we can write A as the sum of a symmetric matrix A_+ and an antisymmetric matrix A_- :

$$A = A_+ + A_-$$

where $A_{+} = A_{+}^{T}$ and $A_{-} = -A_{-}^{T}$.

- b) Show that if A_{-} is antisymmetric, then $x^{T}A_{-}x = 0$ for all nonzero x.
- c) Show that the inverse of a positive definite matrix is positive definite.
- d) Any multivariate Gaussian distribution can be defined by two parameters, μ and Σ . It is common to assume that Σ is a positive definite matrix. Explain how we can find a Gaussian distribution corresponding to any square matrix Λ , which satisfies only $z^{T}\Lambda z > 0 \ \forall z \neq 0$, but is not necessarily symmetric, and therefore not PD. Hint: make use of parts a), b), and c).