```
30. Ang. Tutorial O. Miauchen. xczhu@nus.edu.sq. Q[.1.3.6.].
Q1. Is the set A={ae R : p(o)=1, [p(t)[\xi1. \text{$\pi}]}
                            where p(t) = a_1 + a_2 t + \cdots + a_k t^{k-1} convex?
                     by definition. Assume a. b ∈ A. l ∈ [0,1]. ( c = la+(1-e) b ∈ A?
                            P_{a}(o) = 1. P_{a}(t) = \alpha_{1} + \alpha_{2} + \cdots + \alpha_{k} + \cdots + \alpha_{k}
                             Y + ∈ [a. β]. | pa(+) | ∈ 1. | [Pb(+) | ∈ 1.
                 (°, Pc(0)=1. Pc(0)= C1 = lai+(1-1)b1 = l+1-l=)
              2°. [PcCt) = 1 for all te(0.B). c=la+c1-l)b.
                                    Pc(t) = C,+C2++ C3+2+ ... + (kt
                                                                 = (la,+(1-l)b,) + (laz+(1-l)b)++... + (lax+(1-l)bb)+
                                                                = la, +lazt +lazt2+ - + lakt +-1
                                                               + (1-l) b1+ (1-l) b>++ (1-l) b3+2+--++ & (-1) b6+
                                                         = l. Pact) + (1-l). Pb(t)
                             [Pc(t) = | 2. Pa(t) + (1-2). Pb(t)
                                                                           < | Paces | + 1 C1-1 | Pbcts | = 2 | Paces | + C1-2) | Pbcts |
                                                                           ≤ l+(1-l)=1. for t∈[a, β].
```

: CEA. =) A is oncex

Qa. Prove that $A = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : \begin{bmatrix} x_1 + x_2 & x_1 - 2x_3 \\ x_1 - 2x_3 & x_2 + 3x_3 \end{bmatrix} \not\equiv 0\}.$

positive semi definite

Lemma: f: V → W. a linear map of $\forall x.y. \in V$, $C \in \mathbb{R}$. f(x,y) = f(x) + f(y) $\int c f(cx) = c f(x).$

if SSW. Sisconver. for(s) is concex.

 $f: \mathbb{R}^3 \rightarrow \mathbb{S}^2: (x_1, x_2, t_3) \mapsto \begin{bmatrix} x_1+x_2, & x_1-2x_3 \\ x_1-2x_3 & x_2+3x_7 \end{bmatrix}$ linear map

A = $f^{-1}(S_{+}^{2})$ Convex.

A is convex.

O

(f) The set $A = \{x : x + s_2 \in S_1\}$. Where, $S_1 : S_2 \in \mathbb{R}^n$. $S_1 : x + s_2 \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $\{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\} = \{x : x + y \in S_1\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2\}$ $A = \{x : x + y \in S_1\}$ for all $y \in S_2$ for all $y \in$

 $|(x - x)|_{2} \leq R$ $|(x - x)|_{2} \leq R$

- (a) Express the closed convex set $\{x \in \mathbf{R}^2_+ \mid x_1 x_2 \ge 1\}$ as an intersection of halfspaces.
- (b) Let $C = \{x \in \mathbf{R}^n \mid ||x||_{\infty} \le 1\}$, the ℓ_{∞} -norm unit ball in \mathbf{R}^n , and let \hat{x} be a point in the boundary of C. Identify the supporting hyperplanes of C at \hat{x} explicitly.

 α . S.t. for all $x \in C$. $\alpha^T x \leq \alpha^T x_0$.

{x: aTx = aTxs} to be the supporting hyperplane. {x: aTx < aTx >} is a supporting hyperspace that contains C.

A consiex set (= intersection of supporting half spaces at all its boundary purhts

 $X_1X_2=1$.

bd point Xo=(t, \frac{1}{4}).

 $y=\dot{x}$. $y'=-\frac{1}{k^2}$. $\left(x_2=-\frac{1}{t^2}\cdot x_1+\frac{2}{t}\right)$

- +x,-x2 = - = (supporting hat hyperplane)

(=) {x: \frac{1}{2}x, \frac{1}{2} \rightarrow \frac{2}{2} \rightarrow \frac{2}{2}

(b) C = fxe R": [[xlles]]. xebd C [|XII = max { |X1. [x21. ... |Xn1 }.

& ∈ ba C => ||x̂|| == | () max {|x̂, 1, ⟨x̂,), ... |x̂, | } = |

a. s.t. for all $x \in C$. $a^Tx \in a^T\hat{x}$

for tx. aix, + azxz + ··· + aix; + ··· + anxn $\leq \alpha_1 \hat{x_1} + \alpha_2 \hat{x_2} + \cdots + \alpha_i \hat{x_i} + \cdots + \alpha_m \hat{x_m} \quad | \alpha_i \in 0 \text{ if } \hat{x_i} = -1$

(a: =) = 1 = 1 $a_i = 0$ if $f_i \in C-1,1$

 $\{x: \alpha^T x = \alpha^T x^2\}$

2.32 Find the <u>dual cone</u> of $\{Ax \mid x = 0\}$, where $A \in \mathbb{R}^{m \times n}$.

1 ≥ 0 => for all i=1.2....n. Vi>0

Kis cone. then the dual come K* = {y: xTy>0 for all xe K} > k= A.x x >0

K* = {y: kTy>0. for keK}. = {y: (Ax) Ty>0 for all x>0 }. = {y: xT(ATy)>0 fir all x20} K = {y: ATy>03.

1°. $k^{\dagger} \subseteq k^{\prime}$. $\Rightarrow (x^{\dagger} A^{\dagger} y \gg 0.) \forall x \gg 0.$ $A^{\dagger} y \gg 0 \Rightarrow y \in k^{\prime}$ assume $(A^{T}y)_{i} < 0$ $x = x_i = 1$. $x_i = 0$ for $j \neq i$

 2° , $K \subseteq K^{*}$: $A^{T}y > 0$, = (A'y); < 0, $K \subseteq K^{*}$: $K^{*} = K$ $x^{T}(A^{T}y) = (A^{T}y); <0.$