

Faculty of Science and Engineering Department of Mathematics & Statistics

END OF SEMESTER ASSESSMENT PAPER

MODULE CODE: MA4016 SEMESTER: Spring 2009

MODULE TITLE: Engineering Mathematics 6 DURATION OF EXAMINATION: 2 1/2 hours

LECTURER: Dr. M. Burke PERCENTAGE OF TOTAL MARKS: 80 %

EXTERNAL EXAMINER: Prof. J. Flavin

INSTRUCTIONS TO CANDIDATES: Full marks for correct answers to 5 questions.

2

8

4

4

1. An iterative procedure uses a test at the end of each iteration to determine whether it should finish (F) or which of 2 possible sub-processes (A or B) to do next. The transition probabilities are independent of the number of iterations so far and are as shown in the following table:

		current			
	\downarrow	A	F		
n					
e	Α	0.2	0.3	0.0	
X	В	0.2	0.7	0.0	
t	F	0.6	0.0	1.0	

Let $p_A(k)$ and $p_B(k)$ represent the probabilities that sub-processes A and B are performed on the k-th iteration respectively, and $p_F(k)$ the probability that the procedure finishes on or before the k-th iteration.

- (a) Find a system of three recurrence equations which shows how the probabilities change from one iteration to the next.
- (b) Solve this recurrence if the system performs sub-process B initially.
- (c) Let T be the random variable that measures the iteration on which the algorithm ends. Find an expression for Prob(T = k), the probability that the procedure ends on the k-th iteration.
- (d) What is the expected number of iterations till the procedure ends? $\frac{3}{5}$
- 2. (a) Use the Master theorem to find the asymptotic solutions of the following *divide and conquer* recurrences:

(i)
$$T(n) = 4T\left(\frac{n}{2}\right) + n\log n$$

(ii)
$$T(n) = 4T\left(\frac{n}{3}\right) + n^2$$

(b) Describe *Strassen*'s algorithm for multiplying two $n \times n$ matrices of real numbers.

Write down a *divide and conquer* recurrence relation for the number of scalar additions required by the algorithm, and find its asymptotic solution using the Master theorem.

4

4

4

4

2

4

2

5

3

- 3. State the Chinese Postman problem for a connected weighted graph.
 - (a) For such a graph with 2 vertices of odd degree, how is the Chinese Postman problem solved.

Hence find the length of the shortest circuit starting and ending at vertex A that visits each edge of the following graph:

	Α	В	C	D	E	F	G
A	-	3	-	4	5	-	2
В	3	-	6	2	3	-	-
C	-	6	-	7	-	4	2
D	4	2	7	-	-	-	4
E	5	3	_	-	-	6	3
F	-	-	4	-	6	-	7
G	3 - 4 5 - 2	-	2	4	3	7	-

What edges are traversed more than once in the circuit chosen?

- (b) For a connected weighted graph with 4 vertices of odd degree, describe how the Chinese Postman problem may be solved.
- 4. (a) What is a tree? Define what is meant by a spanning tree of a connected graph.
 - (b) Describe *Prim*'s algorithm for finding the minimal spanning tree of a weighted connected graph.
 - (c) How can the algorithm be modified to take account of a specified subtree that must be included in the spanning tree?
 - (d) The table below gives the projected costs (in tens of millions of euro) of constructing a cable network between seven urban centres. Absence of an entry indicates that it is not feasible to construct such a link. Find the cheapest network that will link the seven centres.

Assuming that it is necessary that A must be directly linked to F and G, find the cheapest network that will link the seven centres.

	Α	В	C	D	E	F	G
A	-	-	7	4	-	8	6
В	-	-	-	7	9	-	3
C	7	-	-	-	5	7	-
D	4	7	-	-	4	-	8
E	-	9	5	4	-	5	-
F	- - 7 4 - 8 6	-	7	_	5	-	9
G	6	3	-	8	_	9	-

4

6

(a) Prove or disprove that, for any statements p and q,

$$[p \to q] \Leftrightarrow [\overline{p} \land q]$$

(b) Write the following argument is symbolic form, and hence prove or disprove its validity:

"If Seán studies, he will pass his exam. If Seán passes his exam, he will progress. Hence Seán won't progress unless he studies."

(c) The connective *NOR* is defined by $(p \downarrow q) \Leftrightarrow \overline{p \lor q}$ for any statements p and q. Express the programming construction " If p then q else r" in terms of the statements p, q, r and NOR.

6

- 6. The language $A \subset \{0, 1\}^*$ is defined by: In each string of A there are twice as many 1's as 0's.
 - (a) Find a phrase-structure grammar $G = (\Sigma, T, S, P)$ that generates A, and classify the grammar using Chomsky's classification.

10

(b) Construct a finite state machine which recognises all occurrences of 101101 in strings from the language A.

6

(a) Describe the main features of a Turing Machine.

4

(b) Construct a "×3" Machine, i.e. a Turing Machine which takes as tape input a string of symbols representing an integer n and produces as tape output the string of symbols representing $3 \times n$.

8

(c) Illustrate the operation of the "×3" Machine on the input string representing the number two.

4

The Master theorem

Let $a \ge 1$ and b > 1 be constants. Let f(n) be an asymptotically positive function, and let T(n) be defined on the nonnegative integers by the recurrence relation:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where n/b stands for either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$.

There are 3 cases

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and if $af(n/b) \leq cf(n)$ for some constant c < 1 and n large enough, then $T(n) = \Theta(f(n))$

Strassen Algorithm

The basis of the *Strassen* algorithm (SA) for matrix multiplication is as follows: To multiply the (square block) 2×2 matrices

$$\begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \ = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}, \text{say}$$

compute

$$p_{1} = (x_{11} + x_{22})(y_{11} + y_{22})$$

$$p_{2} = (x_{21} + x_{22})y_{11}$$

$$p_{3} = x_{11}(y_{12} - y_{22})$$

$$p_{4} = (-x_{11} + x_{21})(y_{11} + y_{12})$$

$$p_{5} = (x_{11} + x_{12})y_{22}$$

$$p_{6} = x_{22}(-y_{11} + y_{21})$$

$$p_7 = (x_{12} - x_{22})(y_{21} + y_{22})$$

then

$$z_{11} = p_1 + p_6 - p_5 + p_7$$

$$z_{12} = p_3 + p_5$$

$$z_{21} = p_2 + p_6$$

$$z_{22} = p_1 - p_2 + p_3 + p_4$$

Classification of Grammars

Let $G = (\Sigma, T, S, P)$ be a phrase structure grammar, where each production is of the form

$$w_1 \longmapsto w_2 \text{ or } S \longmapsto \lambda$$

The nonterminal symbols are $N = \Sigma \setminus T$.

A grammar is classified according to the restrictions on its $w_1 \longmapsto w_2$ productions as follows

Type	Name	Restriction
3	(Regular)	$w_1 \in \mathbb{N} \text{ and } w_2 \in \mathbb{T} \text{ or } w_2 \in \mathbb{TN}$
2	(Context Free)	$w_1 \in N$
1	(Context Sensitive)	$ w_1 \le w_2 $
0		No restrictions

Some Geometric Series Identities

For
$$|x| < 1$$
,

$$\sum_{k=0}^{\infty} x^k = (1-x)^{-1}$$

$$\sum_{k=0}^{\infty} x^k = (1-x)^{-1}$$
$$\sum_{k=0}^{\infty} kx^{k-1} = (1-x)^{-2}$$