

Monitorização Wireless de Pessoas em Ambiente Doméstico

Márcio Luís Mendonça de Vasconcelos de Nóbrega

Dissertação para obtenção do Grau de Mestre em **Engenharia Electrotécnica e de Computadores**

	Júri
Presidente:	
Orientador:	Doutor Renato Jorge Caldeira Nunes
Co-Orientador: Vogais:	Doutor António Manuel Raminhos Cordeiro Grilo
· ·	

"Uma citação engraçada ou algo do género, se queres incluir uma. Caso não, comenta esta parte"

Agradecimentos

Obrigado ao Pedro Tomás, o autor original do template para LATEX (versão inglesa).

Resumo

O resumo.

Palavras Chave

Até seis, palavras, chave.

Abstract

Your abstract goes here.

Keywords

Up to, six, keywords.

1	Intro	odução	1
	1.1	Motivação	2
	1.2	Objectivos	3
	1.3	Principais Contribuições	3
	1.4	Organização da Dissertação	3
2	Esta	ado da Arte	5
	2.1	IEEE 802.15.4 e ZigBee	6
	2.2	Sensores Wireless	6
	2.3	Hardware Domótico Existente	6
	2.4	Algoritmo de Localização	6
3	Plat	aforma de Simulação	7
	3.1	Escolha da Framework	8
	3.2	Sensores Wireless	8
	3.3	Propagação e Decisão	8
	3.4	Obstáculos	8
4	Arq	uitectura do Sistema	9
	4.1	Pressupostos e Estrutura	10
	4.2	Ficheiros XML de Configuração	10
	4.3	Network Layer	10
	4.4	Application Layer	10
5	Res	ultados	11
	5.1	Potência Recebida	12
	5.2	Criaçao dos RadioMaps e RadioMapClusters	12
	5.3	Localização	12
	5.4	Throuput	12
	5.5	Escalabilidade	12
6	Con	nclusões	13

_			-		,		
С	^	n	•	Δ		~	\sim
u	u	ш	ш	c	u	u	u

Α

Lista de Figuras

1 1	Análise e	nrevisão	da população	em Portugal	entre	1950-2050	[1]				2
1.1	Allalise	pievisau	ua populacao	Cili i Urtugai	CHILLE	1330-2030.	111		 		_

Lista de Tabelas

Lista de Acrónimos

Introdução

1.1	Motivação
1.2	Objectivos
1.3	Principais Contribuições
1.4	Organização da Dissertação

Resumo do capítulo.

1.1 Motivação

O aumento da esperança de vida provoca actualmente um envelhecimento generalizado da população mundial o que coloca diversos desafios ao desenvolvimento nacional, à sustentabilidade das famílias e à capacidade dos sistemas de saúde. Durante anos recentes o número de pessoas no mundo acima dos 60 anos aumentou de 200 milhões em 1950 para 670 milhões, sector etário que representa já 20% da população total nos países desenvolvidos. [1]. Com a deslocalização das populações para os grandes centros, a baixa natalidade, a negligência familiar, aumenta cada vez mais o número de idosos que vivem sozinhos em suas casas. Esta situação cria ansiedade em todos os envolvidos, resultando muitas vezes em internamentos precoces em lares, com um custo elevado e vagas limitadas.

Figura 1.1: Análise e previsão da população em Portugal entre 1950-2050. [1]

Pessoas com deficiências físicas ou mentais apresentam também uma idêntica necessidade de acompanhamento. Por exemplo, pessoas com deficiência mental média, normalmente têm capacidades sociais e funcionais para serem minimamente independentes, ainda que necessitem de alguma supervisão e assistência. Normalmente têm problemas tão básicos como, por exemplo, decidir quando se levantar ou deitar na cama, ou tomar medicamentos à hora certa.

A monitorização de ambos os casos descritos permitiria libertar mão-de-obra especializada para situações de maior dependência, reduzindo custos e aumentando a eficiência, notificando médicos ou hospitais da mudança de sinais vitais que precedam situações de risco ou interagindo com ambientes inteligentes.

A evolução tecnológica dos sensores wireless tem vindo a introduzir no mercado sensores, rádios e processadores de baixa potência e baixo custo. Estes dispositivos, com o seu reduzido tamanho, têm um enorme potencial para o desenvolvimento de aplicações centradas no utilizador. Com um vasto tipo de sensores, as aplicações ubíquas¹ podem por isso surgir como

¹Aplicação que tem como objectivo tornar a interacção entre pessoa e máquina invisível, integrando a informática com acções e comportamentos naturais das pessoas.

alternativa de baixo custo e enorme valor acrescentado para monitorização de pessoas num ambiente doméstico, criando uma simbiose entre pessoa e máquina que permita usufruir do direito de viver de forma independente, com privacidade, dignidade e total controlo da própria vida.

1.2 Objectivos

Nesta dissertação é proposto o desenvolvimento de uma solução onde uma ou mais pessoas, portadoras de um nó wireless, se movimentam num ambiente onde existem outros nós wireless. Deverá ser possível localizar cada pessoa e estabelecer uma comunicação bidireccional entre esta e um servidor central.

Assim definem-se os seguintes objectivos:

- Identificar necessidades num ambiente doméstico e propor para estas soluções de hardware existentes no mercado;
- Definir a arquitectura do sistema e os papeis de cada interveniente;
- Identificar uma plataforma de simulação existente que permita, de uma forma realista, simular o comportamento do sistema;
- Implementar a simulação de um algoritmo de encaminhamento;
- Implementar a simulação de um algoritmo de localização;
- Analisar a simulação com métricas que permitam conhecer o erro de localização, bem como os limites e valores óptimos do sistema;

1.3 Principais Contribuições

(a escrever no fim)

1.4 Organização da Dissertação

(a escrever no fim)

2

Estado da Arte

2.1	IEEE 802.15.4 e ZigBee	6
2.2	Sensores Wireless	6
2.3	Hardware Domótico Existente	6
2.4	Algoritmo de Localização	6

Pequena introdução.

2.1 IEEE 802.15.4 e ZigBee

Tecnologia ZigBee 802.15.4 e protocolo de encaminhamento AODV;

2.2 Sensores Wireless

Sensores ZigBee disponíveis no mercado para o cumprimento dos objectivos;

2.3 Hardware Domótico Existente

Soluções de hardware domótico existente

2.4 Algoritmo de Localização

Diversas opções disponíveis. Vantagens e desvantagens; Tabela comparativa; Descrição matemática do HORUS; O esquema que eu vou usar difere na medida em que o cálculo é feito na base station e não no mobile node

3

Plataforma de Simulação

3.1	Escolha da Framework
3.2	Sensores Wireless
3.3	Propagação e Decisão
3.4	Obstáculos

3. Plataforma de Simulação

Pequena introdução.

3.1 Escolha da Framework

Diversas opções disponíveis; Vantagens e desvantagens de cada; Fundamentação da escolha

3.2 Sensores Wireless

Explicação das soluções existentes na simulação e a forma como se aplicam à realidade;

3.3 Propagação e Decisão

Explicação dos diversos modelos existentes e do escolhido

3.4 Obstáculos

Explicação da solução implementada e valores a utilizar

Arquitectura do Sistema

4.1	Pressupostos e Estrutura
4.2	Ficheiros XML de Configuração
4.3	Network Layer
4.4	Application Layer

Pequena introdução.

4.1 Pressupostos e Estrutura

Limitações da framework que vão diferir da realidade; Explicação de todos os intervenientes no sistema: nós móveis, estáticos e de base; A forma como estão interligados; A forma como é feita a escalabilidade e distinção entre redes de andares diferentes; O tipo de nós presentes no sistema.

4.2 Ficheiros XML de Configuração

RadioMap; RadioMapClusters; Normal standard; Esquema com os diversos ficheiros;

4.3 Network Layer

Tipos de mensagens da camada Netw e fluxogramas como a forma como essas mensagens são tratadas por cada tipo de nó; Estruturas que fazem parte da camada Netw utilizadas; Exemplo com imagens do AODV a funcionar; NetwToApplicationInfo para transportar informação acerca da potência do sinal;

4.4 Application Layer

Explicação da mensagem HoHuT e a forma como é usada para transportar informação; Explicação do comportamento, por fluxograma, de cada um dos app layers da camada App;

5

Resultados

5.1	Potência Recebida
5.2	Criação dos RadioMaps e RadioMapClusters
5.3	Localização
5.4	Throuput
5.5	Escalabilidade

Pequena introdução.

5.1 Potência Recebida

Histogramas das potências recebidas para situacao parada, em movimento e com obstaculos; Correlação entre amostras

5.2 Criação dos RadioMaps e RadioMapClusters

Demonstração do caminho escolhido para construir os radiomaps e mobilidade utilizada

5.3 Localização

Analise dos erros de posicao; Analise do boost de performance por causa do uso de clusters; Análise do efeito do centro de massa e do time avg;

5.4 Throuput

Analise do throuput nos diversos casos de estudo Analise de pacotes perdidos

5.5 Escalabilidade

Analise do ponto em que e necessario adicionar mais uma baseStation Analise do sistema com mais que uma base station

Conclusões

_	-	,	
1,0	nte	1110	

Pequena intrudução

6.1 Trabalho Futuro

Aquilo que se deveria ter feito mas não se fez por alguma razão. Eventuais evoluções ou melhorias ao trabalho feito. Possibilidade do sistema auto-construir o radioMap com base em nos estaticos que conhecem a sua posicao.

Bibliografia

[1] D. of Economic and S. A. P. Division, <u>World Population Aging 1950-2050</u>, United Nations Std., 2001. [Online]. Available: http://www.un.org/esa/population/publications/worldageing19502050/

Apêndice 1