

ALGORITHMS PHILOSOPHY

Many engineers develop their algorithms detached from context.

If you are engaged with physical systems, follow this..

A POINT

It may be

Car Plane Bird

• • •

A point on a path

A POINT

Properties
Position
Velocity
Acceleration

A point on a path

UPDATE FROM SENSORS

DIFFERENT ALGORITHMS

POINT'S POINT OF VIEW

POINT'S POINT OF VIEW

data_point.update(my_algo, new_data)

Binds the algorithm with the physical effect!

So..

DO EVERYTHING FROM ONE PLACE!

So..

DO EVERYTHING FROM ONE PLACE

Whatever your algorithm is, always look from the object's point of view.

This is Algorithm Context!

Want to work with cool algorithm framework?

Download <u>now</u> C4dynamics and run freefall.py

Follow the instructions there:

https://github.com/C4dynamics/C4dynamics/blob/main/examples/freefall.py

C4dynamics

A cutting-edge, high-standard algorithms development framework

Gavriel Weinberger

