A Composable View of Verifiable Homomorphic Encryption in Multi-Party Settings

Ganyuan Cao

École Polytechnique Fédérale de Lausanne, Switzerland

March 31, 2025

- On-the-Fly MPC [LTV12]

- On-the-Fly MPC [LTV12]
 - Dynamically joining parties.

- On-the-Fly MPC [LTV12]
 - Dynamically joining parties.
 - Computation outsourced to untrusted but powerful server.

- On-the-Fly MPC [LTV12]
 - Dynamically joining parties.
 - Computation outsourced to untrusted but powerful server.

- Homomorphic Encryption (HE) is a good candidate...

Figure: Use cases of HE [Int].

Goal

Goal

- Formalism

- Formalism
 - New game-based notions for (Multi-Key, Threshold, Multi-Group) HE in multi-party setting.

Formalism

- New game-based notions for (Multi-Key, Threshold, Multi-Group) HE in multi-party setting.
- UC functionality for HE in multi-party setting.

- Formalism
 - New game-based notions for (Multi-Key, Threshold, Multi-Group) HE in multi-party setting.
 - UC functionality for HE in multi-party setting.
- Construction

Formalism

- New game-based notions for (Multi-Key, Threshold, Multi-Group) HE in multi-party setting.
- UC functionality for HE in multi-party setting.

Construction

- UC-secure MPC via verifiable multi-group HE.

Multi-Group HE (MGHE) [KLSW24]

Hybrid approach between Threshold HE and Multi-Key HE

Multi-Group HE (MGHE)

- Hybrid approach between Threshold HE and Multi-Key HE
 - Fewer public keys \Rightarrow better scalability

Multi-Group HE (MGHE) [KLSW24]

- Hybrid approach between Threshold HE and Multi-Key HE
 - Fewer public keys \Rightarrow better scalability
 - Allow for dynamically joining parties ⇒ better flexibility

Multi-Group HE (MGHE) [KLSW24]

- Hybrid approach between Threshold HE and Multi-Key HE
 - Fewer public keys ⇒ better scalability
 - Allow for dynamically joining parties ⇒ better flexibility

Multi-Group HE

Confidentiality with Multi-Group HE

$$\mathcal{G}_{\mathsf{KRK}} \xrightarrow{\Pi_{\mathsf{MGHE}}} \mathcal{F}_{\mathsf{MGHE}}$$

$$if \, \mathsf{MGHE} \, \mathsf{satisfies}$$

$$\mathsf{IND}\text{-}\mathsf{CPAP^D}$$

$$\land \, \{\mathsf{IND},\mathsf{SIM}\}\text{-}\mathsf{CIRC}$$

$$\land \, \mathsf{SIM}\text{-}\mathsf{PDEC}$$

$$\land \, \mathsf{Decryption} \, \mathsf{Consistency} \, (\mathsf{DC})$$

IND-CPA For PKE

- Usually formalized using Simulation [IP07, Gen09, BdPMW16].

Usually formalized using Simulation [IP07, Gen09, BdPMW16].

$$\mathtt{Sim}_{circ}((\mathtt{jpk}_1,\ldots,\mathtt{jpk}_\ell),f(m_1,\ldots,m_\ell))$$
 $\stackrel{s}{pprox}$ $\hat{c} \leftarrow \mathsf{MGHE.Eval}(f,(\mathtt{jpk}_j,c_j)_{j\in[\ell]})$

Usually formalized using Simulation [IP07, Gen09, BdPMW16].

$$\begin{split} \mathtt{Sim}_{circ}((\mathtt{jpk}_1,\ldots,\mathtt{jpk}_\ell),f(m_1,\ldots,m_\ell)) \\ &\overset{s}{\approx} \\ \hat{c} \leftarrow \mathsf{MGHE}.\mathtt{Eval}(f,(\mathtt{jpk}_j,c_j)_{j\in[\ell]}) \end{split}$$

- Stronger security with statistical indistinguishability.

Not suitable for schemes with approximate evaluation like [CKKS17].

- Not suitable for schemes with approximate evaluation like [CKKS17].

$$\hat{m}=f(m_1,\ldots,m_\ell)$$

$$\hat{m} + \varepsilon \leftarrow \mathsf{MGHE.Dec}(\hat{c})$$

Variant of IND-CIRC security [KS23] in multi-group setting.

Server Side: Circuit Privacy

Variant of IND-CIRC security [KS23] in multi-group setting.

Server Side: Circuit Privacy

Variant of IND-CIRC security [KS23] in multi-group setting.

- Challenge with (f_0, L_0, f_1, L_1) instead s.t.

$$f_0(\{m_j\}_{j\in L_0}) = f_1(\{m_j\}_{j\in L_1})$$

Server Side: Circuit Privacy

- Variant of IND-CIRC security [KS23] in multi-group setting.

- Challenge with (f_0, L_0, f_1, L_1) instead s.t.

$$f_0(\{m_j\}_{j\in L_0}) = f_1(\{m_j\}_{j\in L_1})$$

Threshold Security: SIM-PDEC Security

Simulatability of partial decryption

Threshold Security: SIM-PDEC Security

Simulatability of partial decryption

$$\begin{split} \mathtt{Sim}_{th}(c, m, \{\mathsf{sk}_i\}_{i \in I_{\mathcal{A}}}) \\ & \stackrel{s}{\approx} \\ d \leftarrow \mathsf{MGHE}.\mathtt{PDec}(\mathsf{sk}_j, c), j \not \in I_{\mathcal{A}} \end{split}$$

Threshold Security: SIM-PDEC Security

Simulatability of partial decryption

$$\begin{split} \mathtt{Sim}_{th}(c, m, \{\mathsf{sk}_i\}_{i \in I_{\mathcal{A}}}) \\ &\stackrel{\approx}{\approx} \\ d \leftarrow \mathsf{MGHE}.\mathtt{PDec}(\mathsf{sk}_j, c), j \not \in I_{\mathcal{A}} \end{split}$$

– Security of secret key sk_j of honest client i.e., $j \not \in I_{\mathcal{A}}$

- In a (t, n)-threshold structure, message is reconstructed correctly as long as sufficient partial decryptions have been obtained.

- In a (t, n)-threshold structure, message is reconstructed correctly as long as sufficient partial decryptions have been obtained.

- In a (t,n)-threshold structure, message is reconstructed correctly as long as sufficient partial decryptions have been obtained.

- In a (t, n)-threshold structure, message is reconstructed correctly as long as sufficient partial decryptions have been obtained.

-A wins if

$$m \neq \mathtt{Combine}(c, \{d_i\}_{i \in I \setminus I_{\mathcal{A}}} \cup \{d_i'\}_{i \in I \cap I_{\mathcal{A}}})$$

UC: Global Key Registry \mathcal{G}_{KRK}

- Global subroutine for key management taken from [BCNP04].

UC: Global Key Registry \mathcal{G}_{KRK}

- Global subroutine for key management taken from [BCNP04].
- "Virtual entity" \mathcal{P}_{grp} for a group $grp = \{cli_1, cli_2, \dots, cli_n\}$.

UC: Global Key Registry \mathcal{G}_{KRK}

- Global subroutine for key management taken from [BCNP04].
- "Virtual entity" \mathcal{P}_{grp} for a group $grp = \{cli_1, cli_2, \ldots, cli_n\}$.
- Key aggregation for groups (equivalent to \mathcal{F}_{MPC}).

Realization of $\mathcal{F}_{\mathsf{MGHF}}$

Theorem 1

 Π_{MGHE} UC-realizes $\mathcal{F}_{\text{MGHE}}$ against a semi-malicious adversary in presence of \mathcal{G}_{KRK} if MGHE is IND-CPA^{pD}, IND-CIRC (SIM-CIRC), and SIM-PDEC secure under the static corruption of clients in a group up to the threshold and possibly the server.

Realization of $\mathcal{F}_{\mathsf{MGHE}}$

Realization of $\mathcal{F}_{\mathsf{MGHE}}$

Integrity via Verifiability

MGHE ⇒ Security against *semi-malicious* adversary

Integrity via Verifiability

MGHE ⇒ Security against *semi-malicious* adversary

 $MGHE + zkSNARK \Rightarrow Security against (full) malicious adversary$

UC-secure zkSNARK

UC-secure zkSNARK

zkSNARK		[CF24]	[BFKT24]	[GKO ⁺ 23]
NIZK	[BS21]	[LR22]	 	[LR22]
	CRS	ROM	ROM-AGM	CRS-ROM

UC-secure zkSNARK

zkSNARK		[CF24]	[BFKT24]	[GKO ⁺ 23]
NIZK	[BS21]	[LR22]	 	[LR22]
	CRS	ROM	ROM-AGM	CRS-ROM

- Completeness: Valid arguments must be accepted.

$$\forall (x,w) \in R, \; \Pr \left[\mathtt{Vfy}^{\mathcal{O}_{\mathsf{RO}}}(x,\pi) = 1 \; \middle| \; \begin{matrix} \mathcal{O}_{\mathsf{RO}} \leftarrow \mathcal{U}(\lambda) \\ \pi \leftarrow \mathtt{Prv}^{\mathcal{O}_{\mathsf{RO}}}(x,w) \end{matrix} \right] = 1.$$

Zero-Knowledge: Arguments do not disclose information about witness.

$$\left\{ \mathsf{out} \left| \begin{array}{l} \mathcal{O}_{\mathsf{RO}} \leftarrow \mathcal{U}(\lambda) \\ (x, w, \mathsf{aux}) \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{RO}}} \\ \pi \leftarrow \mathsf{Prv}^{\mathcal{O}_{\mathsf{RO}}}(x, w) \\ \mathsf{out} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{RO}}}(\mathsf{aux}, \pi) \end{array} \right\} \approx \left\{ \mathsf{out} \left| \begin{array}{l} \mathcal{O}_{\mathsf{RO}} \leftarrow \mathcal{U}(\lambda) \\ (x, w, \mathsf{aux}) \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{RO}}} \\ (\pi, \mathsf{pg}) \leftarrow \mathsf{Sim}^{\mathcal{O}_{\mathsf{RO}}}(x) \\ \mathsf{out} \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{RO}}[\mathsf{pg}]}(\mathsf{aux}, \pi) \end{array} \right\}$$

- Simulation Soundness: Non-malleability of arguments.

$$\Pr\begin{bmatrix} |x| \leq n \\ \land x \not\in \mathcal{L}(R) \\ \land \mathsf{Vfy}^{\mathcal{O}_{\mathsf{RO}}}(x,\pi) = 1 \end{bmatrix} \begin{vmatrix} \mathcal{O}_{\mathsf{RO}} \leftarrow \mathcal{U}(\lambda) \\ (x,\pi) \leftarrow \mathcal{A}^{\mathcal{O}_{\mathsf{RO}}}(\mathtt{Sim}) \end{bmatrix} \leq \mathsf{negl}.$$

- Succinctness: Argument is efficient.

$$|\pi| \ll |w|$$

Three-phase protocol

- Three-phase protocol
 - Data Uploading

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval
- Security

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval
- Security
 - against *malicious* adversary.

On-the-Fly MPC

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval
- Security
 - against *malicious* adversary.
 - under *non-adaptive* corruption of

On-the-Fly MPC

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval
- Security
 - against *malicious* adversary.
 - under *non-adaptive* corruption of
 - * the server

On-the-Fly MPC

- Three-phase protocol
 - Data Uploading
 - Circuit Evaluation
 - Result Retrieval
- Security
 - against *malicious* adversary.
 - under *non-adaptive* corruption of
 - * the server
 - * the clients in a group up to the threshold

$$R_{\mathsf{NY}} = \left\{ \begin{pmatrix} \left(\mathsf{jpk}_1, c_1, \\ \mathsf{jpk}_2, c_2 \end{pmatrix}, (m, \omega_1, \omega_2) \right) \middle| \begin{array}{l} c_1 = \mathsf{MGHE}.\mathsf{Enc}(\mathsf{jpk}_1, m; \omega_1) \\ \land \\ c_2 = \mathsf{MGHE}.\mathsf{Enc}(\mathsf{jpk}_2, m; \omega_2) \end{array} \right\}$$

CCA1-secure HE as in [LMSV12, BSW12, CRRV17].

- CCA1-secure HE as in [LMSV12, BSW12, CRRV17].
 - Tampering with c_1 or $c_1 \Rightarrow$ Verification fails.

- CCA1-secure HE as in [LMSV12, BSW12, CRRV17].
 - Tampering c_1 or $c_1 \Rightarrow$ Verification fails.
 - Must know m to generate valid ciphertext tuple.

Naor-Yung + Simulation Soundness

 ${\sf Naor-Yung} + {\sf Simulation} \; {\sf Soundness}$

or

 ${\sf One\text{-}Pass} + {\sf Simulation} \ {\sf Extractability}$

 ${\sf Naor-Yung} + {\sf Simulation} \; {\sf Soundness}$

or

One-Pass + Simulation Extractability

$$R_{\mathsf{NY}} = \{(\mathsf{jpk}, c), (m, \omega)\} \ c = \mathsf{MGHE}.\mathsf{Enc}(\mathsf{jpk}, m; \omega)\}$$

$$R_{\mathsf{Eval}} = \left\{ \begin{pmatrix} \left(\hat{c}_1, (\mathsf{jpk}_{j,1}, c_{j,1})_{j \in [\ell]}, \\ \hat{c}_2, (\mathsf{jpk}_{j,2}, c_{j,2})_{j \in [\ell]} \right), (f, \sigma_1, \sigma_2) \end{pmatrix} \middle| \\ \\ \hat{c}_1 = \mathsf{MGHE}.\mathsf{Eval}(f, (\mathsf{jpk}_{j,1}, c_{j,1})_{j \in [\ell]}; \sigma_1) \\ \\ \\ \hat{c}_2 = \mathsf{MGHE}.\mathsf{Eval}(f, (\mathsf{jpk}_{j,2}, c_{j,2})_{j \in [\ell]}; \sigma_2) \end{pmatrix}. \right.$$

Phase 3: Result Retrieval - Partial Decryption **EPFL**

Phase 3: Result Retrieval - Partial Decryption **EPFL**

Phase 3: Result Retrieval - Partial Decryption

$$R_{\mathsf{Dec}} = \left\{ \begin{pmatrix} \mathsf{pp}_1, \mathsf{pk}_1, c_1, d_1, \\ \mathsf{pp}_2, \mathsf{pk}_2, c_2, d_2 \end{pmatrix}, \begin{pmatrix} \mathsf{sk}_1, \gamma_1, \eta_1 \\ \mathsf{sk}_2, \gamma_2, \eta_2 \end{pmatrix} \middle| \begin{array}{l} \forall u \in \{1, 2\} : \\ d_u = \mathsf{MGHE.PDec}(\mathsf{sk}_u, c_u; \eta_u) \\ \land \mathsf{pk}_u = \mathsf{PKGen}(\mathsf{pp}_u, \mathsf{sk}_u; \gamma_u) \end{array} \right\}.$$

Phase 3: Result Retrieval - Reconstruction

Phase 3: Result Retrieval - Reconstruction

Phase 3: Result Retrieval - Reconstruction

Realization of On-the-Fly MPC

Theorem 2

 $\Pi_{\text{OtF-MPC}}$ UC-realizes $\mathcal{F}_{\text{OtF-MPC}}$ in $[\mathcal{F}_{\text{MGHE}}, \mathcal{F}_{\text{zkSNARK}}, \mathcal{F}_{\text{Aut}}]$ -hybrid model in presence of \mathcal{G}_{KRK} and \mathcal{G}_{RO} .

Conclusion

Appendix: Completeness

- Valid arguments must be accepted.

Appendix: Zero-Knowledge

- Arguments does not disclose information about witness.

Appendix: sSIM-EXT

- Stronger version for *Knowledge Soundness*.
- Non-malleability for UC-security.

Appendix: Global Random Oracle \mathcal{G}_{RO}

 Global random oracle with restricted programming and observability [CDG⁺18].

Appendix: Functionality $\mathcal{F}_{zkSNARK}$ [CF24]

Appendix: $\mathcal{F}_{zkSNARK} + \mathcal{G}_{RO}$

Appendix: Realization of $\mathcal{F}_{zkSNARK}$

Theorem 3[?, TCC:ChiFen24

 $J\Pi_{NARG}$ securely realizes $\mathcal{F}_{zkSNARK}$ in \mathcal{G}_{RO} -hybrid model if NARG satisfies completeness, sSIM-EXT, and zero-knowledge.

Flavio Bergamaschi, Anamaria Costache, Dana Dachman-Soled, Hunter Kippen, Lucas LaBuff, and Rui Tang.

Revisiting the security of approximate FHE with noise-flooding countermeasures.

Cryptology ePrint Archive, Report 2024/424, 2024. URL: https://eprint.iacr.org/2024/424.

Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable protocols with relaxed set-up assumptions. pages 186–195, 2004.

doi:10.1109/FOCS.2004.71.

Florian Bourse, Rafaël del Pino, Michele Minelli, and Hoeteck Wee. FHE circuit privacy almost for free.

pages 62-89, 2016. doi:10.1007/978-3-662-53008-5_3.

Jan Bobolz, Pooya Farshim, Markulf Kohlweiss, and Akira Takahashi.

The brave new world of global generic groups and UC-secure zero-overhead SNARKs.

pages 90-124, 2024. doi:10.1007/978-3-031-78011-0_4.

Olivier Bernard, Marc Joye, Nigel P. Smart, and Michael Walter. Drifting towards better error probabilities in fully homomorphic encryption schemes.

Cryptology ePrint Archive, Paper 2024/1718, 2024. URL: https://eprint.iacr.org/2024/1718.

Karim Baghery and Mahdi Sedaghat.

Tiramisu: Black-box simulation extractable NIZKs in the updatable CRS model.

pages 531–551, 2021. doi:10.1007/978-3-030-92548-2 28.

Katharina Boudgoust and Peter Scholl.

Simple threshold (fully homomorphic) encrys

Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus.

```
pages 371-404, 2023.
```


Dan Boneh, Gil Segev, and Brent Waters.

Targeted malleability: homomorphic encryption for restricted computations.

pages 350–366, 2012.

doi:10.1145/2090236.2090264.

Jan Camenisch, Manu Drijvers, Tommaso Gagliardoni, Anja Lehmann, and Gregory Neven.

The wonderful world of global random oracles.

pages 280-312, 2018.

doi:10.1007/978-3-319-78381-9_11.

Alessandro Chiesa and Giacomo Fenzi.

zkSNARKs in the ROM with unconditional UC-security.

pages 67-89, 2024.

doi:10.1007/978-3-031-78011-0 3.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. Homomorphic encryption for arithmetic of approximate numbers. pages 409–437, 2017.

doi:10.1007/978-3-319-70694-8_15.

Ran Canetti, Srinivasan Raghuraman, Silas Richelson, and Vinod Vaikuntanathan.

Chosen-ciphertext secure fully homomorphic encryption.

pages 213-240, 2017.

doi:10.1007/978-3-662-54388-7_8.

Craig Gentry.

A fully homomorphic encryption scheme.

PhD thesis, Stanford University, 2009.

crypto.stanford.edu/craig.

Chaya Ganesh, Yashvanth Kondi, Claudio Orlandi, Mahak Pancholi, Akira Takahashi, and Daniel Tschudi.

Witness-succinct universally-composable SNARKs.

```
pages 315-346, 2023.
```


Intel® homomorphic encryption toolkit.

https://www.intel.com/content/www/us/en/developer/tools/homomorphic-encryption/overview.html.

Yuval Ishai and Anat Paskin.

Evaluating branching programs on encrypted data.

pages 575-594, 2007.

doi:10.1007/978-3-540-70936-7_31.

Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh.

A general framework of homomorphic encryption for multiple parties with non-interactive key-aggregation.

pages 403-430, 2024.

doi:10.1007/978-3-031-54773-7_16.

Kamil Kluczniak and Giacomo Santato.

On circuit private, multikey and threshold approximate homomorphic encryption.

Cryptology ePrint Archive, Report 2023/301, 2023. URL: https://eprint.iacr.org/2023/301.

Baiyu Li and Daniele Micciancio.

On the security of homomorphic encryption on approximate numbers. pages 648–677, 2021.

doi:10.1007/978-3-030-77870-5_23.

Jake Loftus, Alexander May, Nigel P. Smart, and Frederik Vercauteren. On CCA-secure somewhat homomorphic encryption.

pages 55-72, 2012. doi:10.1007/978-3-642-28496-0_4.

Anna Lysyanskaya and Leah Namisa Rosenbloom. Universally composable Σ -protocols in the global random-oracle model. pages 203–233, 2022.

doi:10.1007/978-3-031-22318-1_8.

Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan.

On-the-fly multiparty computation on the cloud via multikey fully homomorphic encryption.

pages 1219–1234, 2012.

doi:10.1145/2213977.2214086.