Explain why you would or wouldn't agree with each of the following statements:

- (a) Cov(Y, X) and Cor(Y, X) can take values between $-\infty$ and $+\infty$.
- (b) If Cov(Y, X) = 0 or Cor(Y, X) = 0, one can conclude that there is no relationship between Y and X.
- (c) The least squares line fitted to the points in the scatter plot of Y versus \hat{Y} has a zero intercept and a unit slope.

2.

When fitting a simple linear regression model $Y = \beta_0 + \beta_1 X + \varepsilon$ to a set of data using the least squares method, suppose that $H_0: \beta_1 = 0$ was not

rejected. This implies that the model can be written simply as: $Y = \beta_0 + \varepsilon$. The least squares estimate of β_0 is $\hat{\beta}_0 = \bar{y}$. (Can you prove that?)

- (a) What are the ordinary least squares residuals in this case?
- (b) Show that the ordinary least squares residuals sum up to zero.

3.

Table 2.9 Regression Output for Computer Repair Data

Variable	Coefficient	s.e.	t-Test	<i>p</i> -value
Constant	4.162	3.355	1.24	0.2385
Units	15.509	0.505	30.71	< 0.0001

1)

Using the regression output in Table 2.9, test the following hypotheses using $\alpha = 0.1$:

- (a) $H_0: \beta_1 = 15 \text{ versus } H_1: \beta_1 \neq 15$
- (b) $H_0: \beta_1 = 15 \text{ versus } H_1: \beta_1 > 15$
- (c) $H_0: \beta_0 = 0 \text{ versus } H_1: \beta_0 \neq 0$
- (d) $H_0: \beta_0 = 5$ versus $H_1: \beta_0 \neq 5$

2)

Using the regression output in Table 2.9, construct the 99% confidence interval for β_0 .