Package 'methylDeConv'

June 19, 2021

Title Computational pipeline for deconvolution of methylation data.

version 0.1.	. 1														
Description	An int	egrated	computat	ional	pipeline	for	methyla	aion data	of	different	plat	forms	and	tis-	
	* . 1	• ,	C C .	1	.1	1	1	1	1	* . 1	1			c	

sues, with a variety of feature selection methods, deconvolution algorithms and extensions of reference library.

License `use_gpl3_license()`

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

biocViews

Imports caret, dplyr, doParallel, EpiDISH, ExperimentHub, foreach, FlowSorted.Blood.450k, Flow-Sorted.DLPFC.450k,

FlowSorted.Blood.EPIC, FlowSorted.CordBlood.450k, glmnet, GEOquery, GSVA, GSEABase, genefilter, limma, minfi, matrixStats,

MCMCpack, MASS, MKmisc, Metrics, plyr, pracma, parallel, quadprog, recipes, randomForest, robustbase, stats, varhandle

R topics documented:

betaSim_mixtureProfiles	2
betaSim_purifiedProfiles	3
build_reference_450k	3
build_reference_450k_neuron	4
build_reference_EPIC	4
build_reference_EPIC_neuron	5
CBS	5
enrichment_score	ϵ
GaussianSim_mixtureProfiles	6
gaussianSim_purifiedProfiles	7
Houseman_project	7
MethylDeconv_pipeline	8
MethylResolver	9
ref_compTable	9

betaSim_mixtureProfiles

Index		17
	up_probes_oneVsAllttest_celltype	16
	RPC	15
	ref_probe_selection_twoStage	14
	ref_probe_selection_pairwiseLimma	14
	ref_probe_selection_pairwiseGlmnet_cv	13
	ref_probe_selection_oneVsAllttest	12
	ref_probe_selection_oneVsAllLimma	12
	ref_probe_selection_multiclassRF_cv	11
	ref_probe_selection_multiclassGlmnet_cv	10
	ref_probe_selection_HighVar	10

betaSim_mixtureProfiles

Beta Mixture Simulation

Description

Beta Mixture Simulation to generate the mixture profiles with true/known proportions.

Usage

```
betaSim_mixtureProfiles(nonimmune_level = 1, purified_datasets_sim, n = 30)
```

Arguments

nonimmune_level

The levels are 1,2,3,4,5. Default value is 1. 1: No non-immune component; level 2: the non-immune proportion is 0.1-0.2; level 3: the non-immune proportion is 0.2-0.5; level 4: the non-immune proportion is 0.5-0.8; level 5: the non-immune proportion is 0.8-0.9.

purified_datasets_sim

The reference matrix ref_betamatrix.

n The number of simulated proportions. Default value: 30.

Value

The simulated mixture profiles.

betaSim_purifiedProfiles

Purified profiles sampling in Beta Mixture Simulation.

Description

Purified profiles sampling in Beta Mixture Simulation.

Usage

```
betaSim_purifiedProfiles(ref_betamatrix, ref_phenotype, n = 20)
```

Arguments

```
ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

n The number of simulated purfied cell profiles. Default value: 20.
```

Value

The simulated purified profiles.

```
build_reference_450k Build the reference library for 450k arrays
```

Description

Build the reference library for 450k to include "CD8T", "CD4T", "NK", "Bcell", "Mono", "Gran", And extend the reference library for 450k to include "Epithelial", "Fibroblast".

Usage

```
build_reference_450k(extend = TRUE)
```

Arguments

extend

If TRUE, generate the extended reference library; otherwise, generate the reference library of only 6 immune cell types. Default value is TRUE.

Value

A list of beta value reference matrix (ref_betamatrix) and reference cell types (ref_phenotype).

build_reference_450k_neuron

Build the reference library for 450k arrays of brain tissue

Description

Build the reference library for 450k arrays of brain tissues (DLPFC) to include "NeuN_neg", "NeuN_pos".

Usage

```
build_reference_450k_neuron()
```

Value

A list of beta value reference matrix (ref_betamatrix) and reference cell types (ref_phenotype).

build_reference_EPIC Build the reference library for EPIC arrays

Description

Build the reference library for EPIC arrays to include "CD8T", "CD4T", "NK", "Bcell", "Mono", "Neu", And extend the reference library for 450k to include "Epithelial" or "cfDNA".

Usage

```
build_reference_EPIC(extend = TRUE, include = "Epithelial")
```

Arguments

extend If TRUE, generate the extended reference library; otherwise, generate the refer-

ence library of only 6 immune cell types. Default value is TRUE.

include If include = "Epithelial", extend the reference library by only adding epithelial

cells; if include = "cfDNA", extend the reference library by only adding cell free DNAs; if include = "Epithelial and cfDNA", extend the reference library by add

both epithelial and cell free DNAs. Default value is "Epithelial".

Value

A list of beta value reference matrix (ref_betamatrix) and reference cell types (ref_phenotype).

build_reference_EPIC_neuron

Build the reference library for EPIC arrays of brain tissue

Description

Build the reference library for EPIC arrays of brain tissues to include "NeuN_neg", "NeuN_pos".

Usage

```
build_reference_EPIC_neuron()
```

Value

A list of beta value reference matrix (ref_betamatrix) and reference cell types (ref_phenotype).

CBS

CBS algorithm

Description

CBS deconvolution algorithm

Usage

```
CBS(betamatrix, compTable, probes_select)
```

Arguments

betamatrix Beta value matrix of methylation array for mixture samples.

compTable Average reference profiles over each cell type.

probes_select Probes selected.

Value

The matrix of deconvolution results with rows as mixture samples and columns as cell types.

enrichment_score

Enrichment score-based algorithm

Description

CBS deconvolution algorithm

Usage

```
enrichment_score(
  betamatrix,
  ref_betamatrix,
  ref_phenotype,
  method = "MCP-counter",
  pv = 1e-08,
  MaxDMRs = 100
)
```

Arguments

betamatrix Beta value matrix of methylation array for mixture samples.

ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

method The enrichment score-based deconvolution algorithm such as "MCP-counter",

"ssGSEA" and "ESTIMATE", which are adapted from gene-expression based

algorithm. Default value: "MCP-counter".

pv The p-value threshold with default value as 1e-8

MaxDMRs The number of probes selected with default value as 100.

Value

The matrix of deconvolution results with rows as mixture samples and columns as cell types.

GaussianSim_mixtureProfiles

Gaussian Mixture Simulation

Description

Gaussian Mixture Simulation to generate the mixture profiles with true/known proportions.

```
GaussianSim_mixtureProfiles(nonimmune_level = 1, purified_datasets_sim, n = 30)
```

nonimmune_level

The levels are 1,2,3,4,5. Default value is 1. 1: No non-immune component; level 2: the non-immune proportion is 0.1-0.2; level 3: the non-immune proportion is 0.2-0.5; level 4: the non-immune proportion is 0.5-0.8; level 5: the non-immune proportion is 0.8-0.9.

purified_datasets_sim

The reference matrix ref_betamatrix.

n The number of simulated proportions. Default value: 30.

Value

The simulated mixture profiles.

```
gaussianSim_purifiedProfiles
```

Purified profiles sampling in Gaussian Mixture Simulation.

Description

Purified profiles sampling in Gaussian Mixture Simulation.

Usage

```
gaussianSim_purifiedProfiles(ref_betamatrix, ref_phenotype, n = 20)
```

Arguments

```
ref_betamatrix The reference matrix ref_betamatrix.
ref_phenotype The cell type information for the reference matrix.
```

n The number of simulated purfied cell profiles. Default value: 20.

Value

The simulated purified profiles.

Houseman_project

Houseman algorithm

Description

Houseman deconvolution algorithm

```
Houseman_project(betamatrix, compTable, probes_select)
```

betamatrix Beta value matrix of methylation array for mixture samples.

compTable Average reference profiles over each cell type.

probes_select Probes selected.

Value

The matrix of deconvolution results with rows as mixture samples and columns as cell types.

MethylDeconv_pipeline Deconvolution Pipeline

Description

Deconvolution Pipeline

Usage

```
MethylDeconv_pipeline(
  input_methyl,
  normalized = FALSE,
  array_type = "450k",
  feature_selection = "oneVsAllttest",
  deconv_algorithm = "Houseman",
  tissue = "general",
  extend_reference = TRUE,
  custom_probes = NULL
)
```

Arguments

input_methyl Methylation array for mixture samples. The rows correpsond to the probes/CpGs;

the columns correspond to the samples.

normalized If TRUE, the methylation array is the beta value matrix. Default value: FALSE.

array_type The array type can be 450k or EPIC. Default value: "450k".

feature_selection

Different feature selection methods such as "oneVsAllttest" (Default value), "oneVsAllLimma", "pairwiseLimma", "pairwiseGlmnet", "multiGlmnet", "glm-

netpreselect", "RFpreselect", "OptVariables".

deconv_algorithm

Different deconvolution algorithms such as "Houseman" (default value), "RPC", "CBS", "MethylResolver", "MCP-counter", "ssGSEA", "ESTIMATE".

Different tissue types such as "general" (default value) which correspond to blood tissue and general epithelial tissue; "brain" correpsonds to brain tissues.

extend_reference

Default: TRUE. If TRUE, extend the reference library.

custom_probes Default: NULL. The user-defined probe lists.

MethylResolver 9

Value

The deconvolution results (cell type proportions) with rows as the samples and the columns as cell types.

MethylResolver

MethylResolver algorithm

Description

MethylResolver deconvolution algorithm

Usage

```
MethylResolver(
  methylMix,
  methylSig,
  probes_select,
  alpha = seq(0.5, 0.9, by = 0.05)
)
```

Arguments

methylMix Beta value matrix of methylation array for mixture samples.

methylSig Average reference profiles over each cell type.

probes_select Probes selected.

alpha Tuning parameters. Default range 0.5–0.9, which corresponds to fitting a trimmed

least square regression to 50–90%, of the cpgs. Get the best alpha value based on RMSE between original and reconstructed mixture, and select best alpha for

each mixture sample separately

Value

The matrix of deconvolution results with rows as mixture samples and columns as cell types.

ref_compTable

Average reference profiles over each cell type

Description

Compute the average reference profiles for each cell type, using the reference matrix of purified samples from different cell types (phenotype).

```
ref_compTable(ref_betamatrix, ref_phenotype)
```

```
ref_betamatrix The reference matrix ref_betamatrix.
ref_phenotype The cell type information for the reference matrix.
```

Value

The data maxtirx of average reference profiles (each column corresponds to each cell type), except for the first column (Fstat) and the last three columns (low, high, range) which are the summary statistics.

```
ref_probe_selection_HighVar
```

Feature selection based on variability

Description

Select the most variable probes across all samples in the reference matrix

Usage

```
ref_probe_selection_HighVar(ref_betamatrix, ranks = 601:1200)
```

Arguments

```
ref_betamatrix The reference matrix ref_betamatrix.
```

ranks

The top number of most variable probes. Default value is 601:1200, which corresponds the second 600 highest variable probes.

Value

A vector of the selected probes.

```
ref_probe_selection_multiclassGlmnet_cv
```

 ${\it Multi-class\ elastic\ net\ modeling\ feature\ selection}$

Description

Select the non-zero features from the multi-class elastic net modeling on the reference matrix.

```
ref_probe_selection_multiclassGlmnet_cv(
  ref_betamatrix,
  ref_phenotype,
  nCores = 4,
  reps.resamp = 5,
  reps.repeats = 3
)
```

```
ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

nCores Number of parallel cores. Default value is 4.

reps.resamp The number of folds in k-fold cross-validation. Default value is 5.

reps.repeats The number of complete sets of folds to compute. Default value is 3.
```

Value

A vector of the selected probes.

```
ref_probe_selection_multiclassRF_cv

Multi-class RF modeling feature selection
```

Description

Select features based on multi-class Random Forest modeling on the reference matrix of all probes.

Usage

```
ref_probe_selection_multiclassRF_cv(
  ref_betamatrix,
  ref_phenotype,
  nCores = 4,
  reps.resamp = 5,
  reps.repeats = 3,
  tune_grid = 1:30
)
```

Arguments

```
ref_betamatrix The reference matrix ref_betamatrix.
ref_phenotype The cell type information for the reference matrix.
```

Value

A vector of the selected probes.

```
ref_probe_selection_oneVsAllLimma
```

One-vs-All moderated t test feature selection

Description

The moderated One-vs-All t test feature selection based on the reference matrix.

Usage

```
ref_probe_selection_oneVsAllLimma(
  ref_betamatrix,
  ref_phenotype,
  probeSelect = "both",
  FDR = 1e-06,
  MaxDMRs = 100
)
```

Arguments

ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

probeSelect The selection can be "any" or "both". If "any", the function selects top probes

regardless of up-regulation or down-regulation. If "both", half of top probes are picked up from the up-regulated probes while the other half of the top probes

are picked up from the down-regulated probes. Default value is "both".

FDR The fdr threshold with default value as 1e-6

MaxDMRs The number of probes selected with default value as 100.

Value

A vector of the selected probes.

```
ref\_probe\_selection\_one VsAllt test\\ One-vs-All\ t\ test\ feature\ selection
```

Description

The One-vs-All t test feature selection based on the reference matrix.

```
ref_probe_selection_oneVsAllttest(
  ref_betamatrix,
  ref_phenotype,
  probeSelect = "both",
  pv = 1e-08,
  MaxDMRs = 100
)
```

ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

probeSelect The selection can be "any" or "both". If "any", the function selects top probes

regardless of up-regulation or down-regulation. If "both", half of top probes are picked up from the up-regulated probes while the other half of the top probes

are picked up from the down-regulated probes. Default value is "both".

pv The p-value threshold with default value as 1e-8

MaxDMRs The number of probes selected with default value as 100.

Value

A vector of the selected probes.

```
ref_probe_selection_pairwiseGlmnet_cv
```

Pairwise elastic net modeling feature selection

Description

Select the non-zero features from the pairwise elastic net modeling on the reference matrix.

Usage

```
ref_probe_selection_pairwiseGlmnet_cv(
  ref_betamatrix,
  ref_phenotype,
  nCores = 4,
  reps.resamp = 5,
  reps.repeats = 3
)
```

Arguments

ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

nCores Number of parallel cores. Default value is 4.

reps.resamp The number of folds in k-fold cross-validation. Default value is 5.

reps.repeats The number of complete sets of folds to compute. Default value is 3.

Value

A vector of the selected probes.

```
ref_probe_selection_pairwiseLimma
```

Pairwise moderated t test feature selection

Description

The pairwise moderated t test feature selection based on the reference matrix.

Usage

```
ref_probe_selection_pairwiseLimma(
  ref_betamatrix,
  ref_phenotype,
  FDR = 0.01,
  deltaBeta = 0.2,
  MaxDMRs = 100
)
```

Arguments

ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

FDR The fdr threshold with default value as 0.01

deltaBeta The threshold for the absolute mean difference. Default value is 0.2.

MaxDMRs The number of probes selected with default value as 100.

Value

A vector of the selected probes.

```
ref_probe_selection_twoStage
```

Two-stage feature selection

Description

Select features in two stages: firstly, select top features from one-vs-all t test; secondly, select the features with machine learning modeling.

```
ref_probe_selection_twoStage(
  ref_betamatrix,
  ref_phenotype,
  preselect = 300,
  ml_model = "elastic net"
)
```

RPC 15

Arguments

ref_betamatrix The reference matrix ref_betamatrix.

The cell type information for the reference matrix. ref_phenotype

The number of top features per cell type selected from one-vs-all t tests. The preselect

default value is 300.

 ml_model The machine learning model for feature selection in the second stage. The de-

> fault value is "elastic net", which correpsonds to selecting the non-zero features from multi-class elastic net modeling on the reference matrix. Otherwise, if the parameter value is "RF", the model selection is based on the important variables learnt from multi-class Random forest modeling; if the parameter value is "rfe", it selects features based on recursive feature elimination algorithm and a

Random Forest algorithm is used on each iteration to evaluate the model.

Value

Model class.

RPC RPC algorithm

Description

RPC deconvolution algorithm

Usage

RPC(betamatrix, compTable, probes_select)

Arguments

betamatrix Beta value matrix of methylation array for mixture samples.

compTable Average reference profiles over each cell type.

probes_select Probes selected.

Value

The matrix of deconvolution results with rows as mixture samples and columns as cell types.

```
\begin{tabular}{ll} up\_probes\_oneVsAllttest\_celltype \\ One-vs-All\ t\ test\ feature\ selection\ (up-regulated) \end{tabular}
```

Description

The One-vs-All t test feature selection (up-regulated) based on the reference matrix.

Usage

```
up_probes_oneVsAllttest_celltype(
  ref_betamatrix,
  ref_phenotype,
  pv = 1e-08,
  MaxDMRs = 100
)
```

Arguments

```
ref_betamatrix The reference matrix ref_betamatrix.

ref_phenotype The cell type information for the reference matrix.

pv The p-value threshold with default value as 1e-8

MaxDMRs The number of probes selected with default value as 100.
```

Value

A vector of the selected probes.

Index

```
betaSim_mixtureProfiles, 2
betaSim_purifiedProfiles, 3
\verb|build_reference_450k|, 3
build_reference_450k_neuron, 4
build_reference_EPIC, 4
build_reference_EPIC_neuron, 5
CBS, 5
enrichment_score, 6
GaussianSim_mixtureProfiles, 6
gaussianSim_purifiedProfiles, 7
Houseman_project, 7
MethylDeconv_pipeline, 8
MethylResolver, 9
ref_compTable, 9
ref_probe_selection_HighVar, 10
ref\_probe\_selection\_multiclassGlmnet\_cv,
ref_probe_selection_multiclassRF_cv,
ref_probe_selection_oneVsAllLimma, 12
ref_probe_selection_oneVsAllttest, 12
ref_probe_selection_pairwiseGlmnet_cv,
ref_probe_selection_pairwiseLimma, 14
{\tt ref\_probe\_selection\_twoStage}, 14
RPC, 15
up_probes_oneVsAllttest_celltype, 16
```