Measuring and Explaining Political Sophistication Through Textual Complexity

Kenneth Benoit Kevin Munger Arthur Spirling

SSRC Anxieties of Democracy Conference Princeton October 28-29

Political sophistication in the public mind

The state of our union is ... dumber:

How the linguistic standard of the presidential address has declined

Using the Flesch-Kincaid readability test the Guardian has tracked the reading level of every State of the Union

Source: The Guardian, February 2013

Does this make sense?

Does this make sense?

• Since 1913, SOTU given aloud

Post-1913

Does this make sense?

- Since 1913, SOTU given aloud
- Audiences becoming more sophisticated, better-educated

Education

Camille L. Ryan and Julie Siebens - U.S. Census Bureau

Does this make sense?

- Since 1913, SOTU given aloud
- Audiences becoming more sophisticated, better-educated
- Political issues more numerous and complicated

Does this make sense?

- Since 1913, SOTU given aloud
- Audiences becoming more sophisticated, better-educated
- Political issues more numerous and complicated
- Is this a general trend?

Is this a general trend?

Is this a general trend?

Does this make sense?

- Since 1913, SOTU given aloud
- Audiences becoming more sophisticated, better-educated
- Political issues more numerous and complicated
- Is this a general trend?
- What exactly are we measuring?

Existing Measures

Name of Method	Author	Year	Citations
Flesch Reading Ease	Flesch	1948/49	3,793
SMOG	McLaughlin	1969	1,402
Dale-Chall	Dale and Chall	1948	1,389
Gunning Fog Index	Gunning	1952	1,232
Flesch-Kincaid Level	Kincaid et al	1975	1,093
Fry Graph	Fry	1968	1,007
Spache Formula	Spache	1953	355
Coleman-Liau	Coleman and Liau	1975	261

Commonly used 'reading ease' measures in order of citation via Google scholar at the time of writing.

Exploring a Measure: Flesch Reading Ease

- Flesch Reading Ease (FRE) Score
 - Developed to measure average grade level of students based on ability to answer multiple-choice questions after reading a text

Exploring a Measure: Flesch Reading Ease

- Flesch Reading Ease (FRE) Score
 - Developed to measure average grade level of students based on ability to answer multiple-choice questions after reading a text
 - In 1948

Exploring a Measure: Flesch Reading Ease

- Flesch Reading Ease (FRE) Score
 - Developed to measure average grade level of students based on ability to answer multiple-choice questions after reading a text
 - In 1948

$$206.835 - 1.015 \left(\frac{\# \text{ of words}}{\# \text{ of sentences}}\right) - 84.6 \left(\frac{\# \text{ of syllables}}{\# \text{ of words}}\right)$$

- Consider this sentence
 - Indeed, the shoemaker was frightened.

- Consider this sentence
 - Indeed, the shoemaker was frightened.
 - FRE = 16.23

- Consider this sentence
 - Indeed, the shoemaker was frightened.
 - FRE = 16.23
 - Forsooth, the cordwainer was afeared.

- Consider this sentence
 - Indeed, the shoemaker was frightened.
 - FRE = 16.23
 - Forsooth, the cordwainer was afeared.
 - FRE = 16.23

- Consider this sentence
 - Indeed, the shoemaker was frightened.
 - FRE = 16.23
 - Forsooth, the cordwainer was afeared.
 - FRE = 16.23
- No measure of the difficulty of the words (or any other grammatical challenges)

- Consider this sentence
 - Indeed, the shoemaker was frightened.
 - FRE = 16.23
 - Forsooth, the cordwainer was afeared.
 - FRE = 16.23
- No measure of the difficulty of the words (or any other grammatical challenges)
- Is this really the quantity we're interested in?

• Citizen comprehension of political speech

- Citizen comprehension of political speech
- Changes over time, differences between speakers:

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time
- Problems with existing measures of textual complexity

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time
- Problems with existing measures of textual complexity
- Preview of our solution:

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time
- Problems with existing measures of textual complexity
- Preview of our solution:
 - Crowdsource comparisons of relevant political text

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time
- Problems with existing measures of textual complexity
- Preview of our solution:
 - Crowdsource comparisons of relevant political text
 - Scale those texts and learn what features best predict easiness

- Citizen comprehension of political speech
- Changes over time, differences between speakers:
 - We need to collect judicial and (especially) legislative speech over time
- Problems with existing measures of textual complexity
- Preview of our solution:
 - Crowdsource comparisons of relevant political text
 - Scale those texts and learn what features best predict easiness
 - Fit a model that can be applied to other texts

We want to measure how well adult citizens are able to understand political texts. Previous measures were:

We want to measure how well adult citizens are able to understand political texts. Previous measures were:

• designed for educational research, not political texts;

We want to measure how well adult citizens are able to understand political texts. Previous measures were:

- designed for educational research, not political texts;
- validated on schoolchildren, not adults; and

We want to measure how well adult citizens are able to understand political texts. Previous measures were:

- designed for educational research, not political texts;
- validated on schoolchildren, not adults; and
- mostly designed in the 1940s and 50s, which is a long time ago.

We want to measure how well adult citizens are able to understand political texts. Previous measures were:

- designed for educational research, not political texts;
- validated on schoolchildren, not adults; and
- mostly designed in the 1940s and 50s, which is a long time ago.

These problems are straightforward to fix.

A modern solution: crowdsourcing binary comparisons

Crowdflower specifics

• Created pairwise comparisons between 2,000 randomly sampled snippets from the SOTU corpus, with coarse matching on snippet length and FRE score

Crowdflower specifics

- Created pairwise comparisons between 2,000 randomly sampled snippets from the SOTU corpus, with coarse matching on snippet length and FRE score
- 2 Coded these comparisons three separate times, so 6,000 total data points

Extant measures have undesirable statistical properties.

No way of evaluating "model fit" for measures applied to a new context

- No way of evaluating "model fit" for measures applied to a new context
 - No way of comparing different measures in a given context

- No way of evaluating "model fit" for measures applied to a new context
 - No way of comparing different measures in a given context
- No natural interpretation of fine-grained differences in document scores

- No way of evaluating "model fit" for measures applied to a new context
 - No way of comparing different measures in a given context
- No natural interpretation of fine-grained differences in document scores
 - eg FRE of 75 vs 70 vs 80

Extant measures have undesirable statistical properties.

- No way of evaluating "model fit" for measures applied to a new context
 - No way of comparing different measures in a given context
- No natural interpretation of fine-grained differences in document scores
 - eg FRE of 75 vs 70 vs 80

We can model this!

Our approach: Bradley-Terry Regression

• Consider determining which of two texts, i and j, is "easier"

Our approach: Bradley-Terry Regression

- Consider determining which of two texts, i and j, is "easier"
- ② Defining $\lambda_i = \log \alpha_i$, the regression model can be rewritten:

$$logit[Pr(i easier than j)] = \lambda_i - \lambda_j$$

Our approach: Bradley-Terry Regression

- Consider determining which of two texts, i and j, is "easier"
- **2** Defining $\lambda_i = \log \alpha_i$, the regression model can be rewritten:

$$logit[Pr(i easier than j)] = \lambda_i - \lambda_j$$

ullet Using only the labels from crowdsourcing, we fit an unstructured Bradley Terry model to scale the snippets and generate a rank ordering and λ score for each

Variable selection

• We begin with all constituent variables of the traditional models, add in some new ones

Variable selection

- We begin with all constituent variables of the traditional models, add in some new ones
- 29 possible variables

Variable selection

- We begin with all constituent variables of the traditional models, add in some new ones
- 29 possible variables
- Use a machine learning technique called random forests to select the variables that best fit the snippets scaled through unstructured Bradley-Terry regression

Word Rarity: Google nGram

A collection of word counts in the Google books corpus

Word Rarity: Google nGram

- A collection of word counts in the Google books corpus
- Word frequency by year, smoothing by decade

Word Rarity: Google nGram

- A collection of word counts in the Google books corpus
- Word frequency by year, smoothing by decade
- Word frequency in the 2000s—the closest decade to the present—to measure the presence of words that are rare from the perspective of our coders

Structured Bradley-Terry Model

We have our covariates

Structured Bradley-Terry Model

- We have our covariates
- We can model λ_i as a function of the covariates r that we selected using a structured Bradley-Terry model:

$$\lambda_i = \sum_{r=1}^p \beta_r x_{ir}$$

Results

	Simple Model
Characters per sentence	-0.01^{*}
	(0.00)
Proportion of 3-syllable words	-1.31^{*}
	(0.28)
Proportion of adpositions	-1.11^{*}
such as to, with, from, under	(0.46)
Mean word frequency (/'the')	-1.68^{*}
	(0.35)
Percent Correctly Predicted	0.662

Standard errors in parentheses. * indicates significance at p < 0.05

Evaluating traditional measures

We can check the predictive ability of extant measures on our ranked snippets

	% Correct
FRE	0.602
Dale-Chall	0.603
FOG	0.638
SMOG	0.574
Spache	0.635
Coleman-Liau	0.552

Structured Bradley-Terry Model

- We have our covariates
- We can model λ_i as a function of the covariates r that we selected using a structured Bradley-Terry model:

$$\lambda_i = \sum_{r=1}^p \beta_r x_{ir}$$

• We have estimated the relevant $\hat{\beta}_r$'s and can then "plug in" covariates to evaluate other texts

Speeches in 2016 Campaign Debates

SOTU Re-evaluated

Conclusions

• Political discourse may well be getting dumber

Conclusions

 Political discourse may well be getting dumber but now we're aware of the difficulty in saying so

Conclusions

- Political discourse may well be getting dumber but now we're aware of the difficulty in saying so
- General lesson is not to draw strong conclusions from measures applied out of domain

R package

