

SERVIÇO PÚBLICO FEDERAL UNIVERSIDADE FEDERAL DO SUL E SUDESTE DO PARÁ - UNIFESSPA INSTITUTO DE GEOCIÊNCIAS E ENGENHARIAS - IGE FACULDADE DE COMPUTAÇÃO E ENG. ELÉTRICA – FACEEL CURSO ENGENHARIA DE COMPUTAÇÃO

Microeletrônica

Prof. José Carlos Da Silva jcdsilv@hotmail.com jose-carlos.silva@unifesspa.edu.br whatsApp: 19-993960156

Setembro/2021

Conteúdo

- Introdução;
- Familiarizar-se com as características estruturais e operacionais de transistores de efeito de campo de junção (JFET) e transistores de efeito de campo metal-óxido-semicondutor (MOSFET).
- Ser capaz de esboçar as características de transferência a partir das curvas características de dreno dos transistores JFET e MOSFET.
- Compreender as informações principais fornecidas em uma folha de dados para cada tipo de FET.
- Conhecer as diferenças entre as análises CC dos vários tipos de FET.

Introdução

Vacuum Tube Op-Amps

- First op amps built in 1930's-1940's
 - Technically feedback amplifiers due to only having one useable input
- Used in WWII to help how to strike military targets
 - Buffers, summers, differentiators, inverters
- Took ±300V to ± 100V to power

Cross section of an npn BJT.

(Exemplos de AmpOp - 1964 - Op-Amp A702, Fairchild)

Referência: Notas de Aulas do Prof. Wilhelmus Van Noije

Transistor Efeito de Campo (FET)

- Principais diferenças entre BJT x FET:
 - BJT é um dispositivo controlado por corrente;
 - FET é um dispositivo controlado por tensão;
 - FET tem maior impedância de entrada que o BJT;
 - O ganho AC do BJT é maior que o ganho do FET;
 - O FET é mais estável em relação a temperatura e menores que o BJT, assim muito utilizados em aplicações de eletrônica digital.

Formação:

- Terminal Dreno (D) ou Drain (D);
- Terminal Fonte (S) ou Source (S);
- Terminal Porta (G) ou Gate (G);
- Camada formada pelos materiais tipo P e tipo N;
- Sendo denominados transistores De J-FET do tipo Canal N ou Canal P.

• $V_{GS} = 0V$, $V_{DS} = 0$

• $V_{GS} = 0V, V_{DS} > 0V$

- Variação dos potenciais reversos de polarização através da junção p-n de um JFET de canal n
- I_D versus V_{DS} para V_{GS}=0 V

Pinch-off (V_{GS}= 0V, V_{DS}=VP).

• Aplicação de uma tensão negativa no terminal de porta de um JFET V_{GS} < 0 V.

- Aplicação de uma tensão negativa no terminal de porta de um JFET V_{GS}<0V;
- O efeito da polarização negativa aplicada V_{GS} é estabelecer regiões de depleção semelhantes às obtidas com V_{GS} =0 V, mas com valores menores de V_{DS} . Com isso, o efeito da aplicação de uma polarização negativa V_{GS} é atingir a condição de saturação em valores menores de tensão V_{DS} ;
- O valor de V_{GS} que resulta em I_D = 0 mA é definido por V_{GS} =VP, sendo VP uma tensão negativa para dispositivos de canal n e uma tensão positiva para JFETs de canal p.

Transistor Efeito de Campo de Junção (J-FET) (Operação - Resistor Controlado por Tensão)

 A região à direita do lugar geométrico de "pinch-off" na Figura ao lado é aquela normalmente empregada em amplificadores lineares apresentam (que mínimo de distorção sinal aplicado) e costuma ser chamada de corrente constante, saturação região de amplificação linear.

Curvas características do JFET de canal $n \text{ com } I_{DSS} = 8 \text{ mA e } V_P = -4 \text{ V}.$

Transistor Efeito de Campo de Junção (J-FET) (Operação - Resistor Controlado por Tensão)

- A região à esquerda da linha de "pinch-off", na Figura ao lado é chamada de ôhmica ou região de resistência controlada por tensão;
- É regida pela equação abaixo:

$$r_d = \frac{r_o}{\left(1 - V_{GS}/V_P\right)^2}$$

Curvas características do JFET de canal $n \text{ com } I_{DSS} = 8 \text{ mA e } V_P = -4 \text{ V}.$

Transistor Efeito de Campo de Junção (J-FET) (Curva Característica de transferência)

• Para o transistor TBJ, a corrente de saída $I_{\rm C}$ e a corrente controladora de entrada $I_{\rm B}$ se relacionam por meio de beta, que foi considerado constante na análise feita. Em forma de equação:

 A relação linear do TBJ não existe entre as variáveis de saída e entrada de um JFET. A relação entre I_D e V_{GS} é definida pela equação de Shockley:

Transistor Efeito de Campo de Junção (J-FET) (Curva Característica de transferência)

 Para o transistor TBJ, a
 A relação linear do TBJ não corrente de saída I_c corrente controladora de entrada I_B se relacionam por meio de beta, que foi considerado constante na análise feita. Em forma de equação:

existe entre as variáveis de saída e entrada de um JFET. A relação entre I_D e V_{GS} é definida pela equação de Shockley:

Transistor Efeito de Campo de Junção (J-FET) (Curva Característica de transferência)

O termo quadrático da equação resulta em uma relação não linear entre I_D e V_{GS} , e isso resulta em uma curva que cresce exponencialmente com valores decrescentes de V_{GS} .

Transistor Efeito de Campo de Junção (J-FET)

ESPECIFICAÇÕES MÁXIMAS

Símbolo	Parâmetro	Valor	Unidade
V _{DS}	Tensão dreno-fonte	25	V
V_{DG}	Tensão dreno-porta	25	V
V _{GS}	Tensão porta-fonte	-25	V
I_{GF}	Corrente direta de porta	10	mA
$T_{\rm j}, T_{\rm stg}$	Faixa de temperatura da junção para operação e armazenagem	-55 a +150	°C

nível e transistor de chaveamento que pode ser usado para aplicações de chaveamento analógico.

CARACTERÍSTICAS TÉRMICAS

Símbolo	Características	M	Unidade	
Simbolo	Caracteristicas	2N5457	*MMBF5457	Onidade
P_{D}	Dissipação total do dispositivo Degradação acima de 25°C	625 5,0	350 2,8	mW mW/°C
$R_{\theta JC}$	Resistência térmica, junção para encapsulamento	125		°C/W
$R_{\theta JA}$	Resistência térmica, junção para ambiente	357	556	°C/W

CARACTERÍSTICAS ELÉTRICAS (T_A = 25°C a menos que outro valor seja especificado).

Símbolo	Parâmetro	Condições de teste	Mín.	Típ.	Máx.	Unidade
---------	-----------	--------------------	------	------	------	---------

CARACTERÍSTICAS EM ESTADO DESLIGADO

$V_{(BR)GSS}$	Tensão de ruptura porta-fonte	$I_G = 10 \mu A, V_{DS} = 0$	-25			V
I_{GSS}	Corrente reversa de porta	$V_{GS} = -15 \text{ V}, V_{DS} = 0$			-1,0	nA
		$V_{GS} = -15 \text{ V}, V_{DS} = 0, T_A = 100 ^{\circ}\text{C}$			-200	nA
V _{GS(off)}	Tensão de corte porta-fonte	V _{DS} = 15 V, I _D = 10 nA 5457	-0,5		-6,0	V
V_{GS}	Tensão porta-fonte	$V_{DS} = 15 \text{ V}, I_{D} = 100 \mu\text{A}$ 5457		-2,5		V

Metal Oxido Semicondutor - Efeito de Campo de Junção (MOSFET)

Estrutura básica

MOSFET tipo depleção de canal n

MOSFET tipo intensificação de canal n

- Estrutura básica:
- Não há conexão elétrica direta entre o terminal de porta e o canal de um MOSFET;
- A camada isolante de SiO₂
 na construção do MOSFET
 é a responsável pela
 desejável alta impedância
 de entrada do dispositivo.

MOSFET tipo depleção de canal n

Operação básica e curvas características:

MOSFET tipo depleção de canal n com $V_{GS} = 0$ V e uma tensão V_{DD} aplicada.

Operação básica e curvas características:

Redução dos portadores livres no canal devido ao potencial negativo no terminal de porta.

Operação básica e curvas características:

Curvas características de dreno e curva de transferência para um MOSFET tipo depleção de canal n.

ESPECIFICAÇÕES MÁXIMAS

Especificações	Símbolo	Valor	Unidade
Tensão dreno-fonte 2N3797	V _{DS}	20	V _{cc}
Tensão porta-fonte	V _{GS}	±10	V_{cc}
Corrente de dreno	I _D	20	mAcc
Dissipação total do dispositivo @ $T_A = 25$ °C Fator de redução acima de 25 °C	P _D	200 1,14	mW mW/°C
Faixa de temperatura da junção	T _J	+175	*C
Faixa de temperatura do canal para armazenamento	T _{stg}	-65 a +200	°C

CARACTERÍSTICAS ELÉTRICAS (T_A = 25°C a menos que outro valor seja especificado)

Caracteristicas	Simbolo	Min.	Tip.	Max.	Unidade
CARACTERÍSTICAS EM ESTADO DESLIGADO					
Tensão de ruptura dreno-fonte $(V_{GS} = -7.0 \text{ V}, I_D = 5.0 \mu\text{A})$ 21	V _{(BR)DSX}	20	25	_	Vcc
Corrente reversa de porta (1) $(V_{GS} = -10 \text{ V}, V_{DS} = 0)$ $(V_{GS} = -10 \text{ V}, V_{DS} = 0, T_A = 150^{\circ}\text{C})$	I _{GSS}	_	<u>-</u>	1,0 200	pA cc
Tensão de corte porta-fonte $(I_D = 2.0 \ \mu\text{A}, V_{DS} = 10 \ \text{V})$	V _{GS(desligade}) _	-5,0	-7,0	Vcc
Corrente reversa dreno-porta (1) $(V_{DG} = 10 \text{ V}, I_S = 0)$	I_{DGO}	_	-	1,0	pAcc

CARACTERÍSTICAS EM ESTADO LIGADO

Corrente de dreno para tensão nula na porta		I _{DSS}				mAcc
$(V_{DS} = 10 \text{ V}, V_{GS} = 0)$	2N3797		2,0	2,9	6,0	
Corrente de dreno em estado ligado (V _{DS} = 10 V, V _{GS} = +3,5 V)		$I_{D(ligado)}$				mAcc
(1 _{DS} = 10 1, 1 _{OS} = 10,0 1)	2N3797		9,0	14	18	

Estrutura básica

MOSFET tipo intensificação de canal *n*.

Operação básica e curvas características

Formação do canal no MOSFET tipo intensificação de canal *n*.

Operação básica e curvas características

Alterações no canal e na região de depleção com o aumento de V_{DS} para um valor fixo de V_{GS} .

- Operação básica e curvas características:
- Se V_{GS} for mantido em um valor fixo, como 8 V, e V_{DS} for aumentado de 2 V para 5 V, a tensão V_{DG} , de acordo com a Equação abaixo aumentará de 6 V para –3 V, e a porta se tornará cada vez menos positiva com relação ao dreno.

$$V_{DG} = V_{DS} - V_{GS}$$

Alterações no canal e na região de depleção com o aumento de V_{DS} para um valor fixo de V_{GS} .

Operação básica e curvas características:

Curvas características de dreno de um MOSFET tipo intensificação de canal n com $V_T = 2 \text{ V e } k = 0.278 \times 10^{-3} \text{ A/V}^2$.

Operação básica e curvas características:

Curvas características de dreno de um MOSFET tipo intensificação de canal n com $V_T = 2 \text{ V e } k = 0.278 \times 10^{-3} \text{ A/V}^2$.

- Operação básica e curvas características:
- Para valores de V_{GS} menores do que o nível de limiar, a corrente de dreno de um MOSFET tipo intensificação é 0 mA;

•
$$V_{GS} > V_{T}$$

$$I_D = k(V_{GS} - V_T)^2$$

Constante K

$$k = \frac{I_{D(\text{ligado})}}{(V_{GS(\text{ligado})} - V_T)^2}$$

ESPECIFICAÇÕES MÁXIMAS

Bot Bell Terry o Bo Milliania			
Especificações	Símbolo	Valor	Unidade
Tensão dreno-fonte	V_{DS}	25	V_{cc}
Tensão dreno-porta	V_{DG}	30	V_{cc}
Tensão porta-fonte*	V_{GS}	30	V_{cc}
Corrente de dreno	I_{D}	30	mA _{CC}
Dissipação total do dispositivo @ T _A = 25°C Fator de redução acima de 25°C	P_D	300 1,7	mW mW/°C
Faixa de temperatura da junção	T _J	175	°C
Faixa de temperatura do canal para armazenamento	T_{stg}	-65 a +175	°C

²N4351
MOSFET
de chaveamento

3 Dreno

2 Porta

4 Encapsulamento

1 Fonte

Canal n — Intensificação

CARACTERÍSTICAS ELÉTRICAS

 $(T_A = 25^{\circ}C \text{ a menos que outro valor seja especificado})$

Características	Símbolo	Mín.	Máx.	Unidade
CARACTERÍSTICAS EM ESTADO DESLIGADO				
Tensão de ruptura dreno-fonte $(I_D = 10 \ \mu A, V_{GS} = 0)$	V _{(BR)DSX}	25	-	Vcc
Corrente de dreno para tensão nula na porta $(V_{DS} = 10 \text{ V}, V_{GS} = 0) \text{ T}_A = 25^{\circ}\text{C}$ $T_A = 150^{\circ}\text{C}$	I _{DSS}	_	10 10	nAcc μAcc
Corrente reversa de porta $(V_{GS} = \pm 15 \text{ V}_{CC}, V_{DS} = 0)$	I_{GSS}		± 10	pAcc

CARACTERÍSTICAS EM ESTADO LIGADO

Tensão de limiar da porta $(V_{DS} = 10 \text{ V}, I_D = 10 \mu\text{A})$	V _{GS(Th)}	1,0	5	Vcc
Tensão de estado ligado dreno-fonte $(I_D = 2.0 \text{ mA}, V_{GS} = 10 \text{V})$	$V_{DS(ligado)}$	_	1,0	V
Corrente de dreno no estado ligado $(V_{GS} = 10 \text{ V}, V_{DS} = 10 \text{ V})$	$\mathbf{I}_{\mathrm{D(ligado)}}$	3,0	-	mA _{CC}

^{*} Potenciais transitórios de ±75 V não causam falha na função porta-óxido.

FET (ATIVIDADES)

1- Esboçar e simular as curvas características dos transistores FET´s (J-FET e MOSFET´s).

Referencias

- Boylestad e Nashelsky. "Dispositivos Eletrônicos e teoria de circuitos", Prentice Hall, 11 Edição, 784p, 2013;
- Sedra e Smith, "Microeletrônica", Pearson Prentice Hall, 5 Edição, 948p, 2007.