INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4013B flip-flops Dual D-type flip-flop

Product specification
File under Integrated Circuits, IC04

January 1995

Dual D-type flip-flop

HEF4013B flip-flops

DESCRIPTION

The HEF4013B is a dual D-type flip-flop which features independent set direct (S_D) , clear direct (C_D) , clock inputs (CP) and outputs (O, \overline{O}) . Data is accepted when CP is LOW and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_D) and set-direct (S_D) are independent and override the D or CP inputs. The outputs are buffered for best system performance. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

FUNCTION TABLES

	INP	UTS	OUTPUTS		
S _D	C _D	СР	D	0	ō
Н	L	Х	Х	Н	L
L	Н	Х	Х	L	Н
Н	Н	Χ	Х	Н	Н

	INP	UTS	OUTPUTS		
S _D	C _D	СР	D	O _n + 1	0 n + 1
L	L		L	L	н
L	L		Н	Н	L

Notes

1. H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

= positive-going transition

 $O_n + 1$ = state after clock positive transition

PINNING

D data inputs

CP clock input (L to H edge-triggered)

S_D asynchronous set-direct input (active HIGH)

C_D asynchronous clear-direct input (active HIGH)

O true output

O complement output

HEF4013BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4013BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4013BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FAMILY DATA, IDD LIMITS category FLIP-FLOPS

See Family Specifications

Dual D-type flip-flop

HEF4013B flip-flops

Philips Semiconductors Product specification

Dual D-type flip-flop

HEF4013B flip-flops

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$CP \rightarrow O, \overline{O}$	5			110	220	ns	83 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		45	90	ns	34 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			95	190	ns	68 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t_{PLH}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_D \rightarrow \overline{O}$	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t_{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$S_D \to O$	5			75	150	ns	48 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t_{PLH}		35	70	ns	24 ns + (0,23 ns/pF) C _L
	15			25	50	ns	17 ns + (0,16 ns/pF) C _L
$C_D \rightarrow O$	5			100	200	ns	73 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t_{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
$C_D \to \overline{O}$	5			60	120	ns	33 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t_{PLH}		30	60	ns	19 ns + (0,23 ns/pF) C _L
	15			20	40	ns	12 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t_THL		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t_TLH		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L

Philips Semiconductors Product specification

Dual D-type flip-flop

HEF4013B flip-flops

AC CHARACTERISTI CS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.	
Set-up time	5		40	20	ns	1
$D \rightarrow CP$	10	t _{su}	25	10	ns	
	15		15	5	ns	
Hold time	5		20	0	ns	
$D \rightarrow CP$	10	t _{hold}	20	0	ns	
	15		15	0	ns	
Minimum clock	5		60	30	ns	
pulse width; LOW	10	t _{WCPL}	30	15	ns	
	15		20	10	ns	
Minimum S _D pulse	5		50	25	ns	
width; HIGH	10	t _{WSDH}	24	12	ns	see also waveforms Figs 4 and 5
	15		20	10	ns	I igo i ana o
Minimum C _D pulse	5		50	25	ns	
width; HIGH	10	t _{WCDH}	24	12	ns	
	15		20	10	ns	
Recovery time	5		15	– 5	ns	
for S _D	10	t _{RSD}	15	0	ns	
	15		15	0	ns	
Recovery time	5		40	25	ns	
for C _D	10	t _{RCD}	25	10	ns	
	15		25	10	ns	
Maximum clock	5		7	14	MHz	
pulse frequency	10	f _{max}	14	28	MHz	
	15		20	40	MHz	

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	850 $f_i + \sum (f_oC_L) \times V_{DD}^2$	where
dissipation per	10	3 600 f _i + Σ (f _o C _L) \times V _{DD} ²	f _i = input freq. (MHz)
package (P)	15	9 000 f _i + Σ (f _o C _L) \times V _{DD} ²	f _o = output freq. (MHz)
			C _L = total load cap. (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Dual D-type flip-flop

HEF4013B flip-flops

Philips Semiconductors Product specification

Dual D-type flip-flop

HEF4013B flip-flops

APPLICATION INFORMATION

Some examples of applications for the HEF4013B are:

- · Counters/dividers
- Registers
- Toggle flip-flops

