Nelson Dai - VODB15253 CSC 225 - Assignment 3 July 1st, 2016

[.a) Since the sequence; salready sorted, it would be split into two almose equal subsequences. Let T(n) be the worse case of size n. Then we have: $T(n) = Tn(\lfloor \frac{n}{2} \rfloor) + Tn(\lfloor \frac{n}{2} \rfloor) + Cn = 2Tn(\lfloor \frac{n}{2} \rfloor) + Cn$

Since we have n items and the sequence is havled k times such that $n \in \mathbb{Z}^k$, now we have a tree with hight Oclogn. Since we process each item of the sequence at most once at each level, the running time of this deterministic quick-sort algorithm of size n is $O(n \log n)$.

b) In this version we are setting the middle item as our Pivot. As we know the worse-case running time of quick-sort is O(n²) and to reach that situation we want the largest or smallest number as the Pivot every time, which means to reach O(n²) every time the middle item should be the largest or smallest in the squence.

3.	Preorder Next (Node V)
	if v. isInternal() then
	return V. leftchild
	else
	Node P = P. Parento
	if v.isleftchild (P) then
	seturn rightchild (P)
3	else
2	while not visleftchild (P) do
	V = P
	P= P. Parent
	return rightchild(P)

inorderNext (node v)	PostorderNext (node v)
if visInternal() then	if Vis Internal then
V = rightchild(v)	P = V. parent()
while not Vistxternal do	if V. is Rightchild (P) then
V= leftchild (V)	return P
return V	else
else	V= Right child (P)
Node P = V. Parento	while not vis External do
if visleftchild(p) then	V= leftchild(v)
return p	leturn V
else	e (5e
while not visleftchild (P) do	P = V. Parent()
V=D	if Visleftchild(p) then
P=P. Parent()	return rightchild (P)
return P	else
	return p

The worse-case running time for them are all o (logn) where n is the height of I

4. Prove by induction Base case: when n=0 then E(T) = I(T) = I(T) +zn =0 I'-H.: Assume no EN then E(T) = I(T) + Zn such that n=K+1 I. S. : Assume Tis full binary tree and T' be the tree after 2 external nodes have been removed from T. Pis an internal node of T. d is the depth of node T. (E(T) = E(T') - d(p) + 2d(L) $I(\tau) = I(T') + d(P)$ $E(T) = I(T') + 2n_0 - d(P) + 2d(L)$ = I(T)-d(P) +2no-d(P)+2d(L) = T(T) + 2no - 2n(P) + 2n(P) + 2 $-I(T) + 2(n_0+1)$ Conclusion: for all no EN E(T)=I(T)+zn 5. Every number in the squence 5 from EO, n3-17 can be represented by a three digit number in the base n $(n-1)(n^2+n+1)$ conversion of each item into basen is O(1) -> O(n) for the sequence Then we use radix-sort to sort in O(3n) which is O(n)