日本国特許庁 PATENT OFFICE JAPANESE GOVERNMENT

1c542 U.S. PTO 09/453525

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

1998年12月 4日

出 顧 番 号 Application Number:

平成10年特許願第345185号/

出 願 人 Applicant (s):

パイオニア株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

1999年 8月26日

44亿山建 灣門

【書類名】 特許願

【整理番号】 53P40177

【提出日】 平成10年12月 4日

【あて先】 特許庁長官 殿

【国際特許分類】 H03F 3/20

H03F 3/26

【発明の名称】 BTL増幅装置

【請求項の数】 8

【発明者】

【住所又は居所】 埼玉県川越市大字山田字西町25番地1 パイオニア株

式会社 川越工場内

【氏名】 長谷川 達三

【発明者】

【住所又は居所】 埼玉県川越市大字山田字西町25番地1 パイオニア株

式会社 川越工場内

【氏名】 猪鼻 治行

【発明者】

【住所又は居所】 埼玉県川越市大字山田字西町25番地1 パイオニア株

式会社 川越工場内

【氏名】 小沢 昭夫

【特許出願人】

【識別番号】 000005016

【氏名又は名称】 パイオニア株式会社

【代理人】

【識別番号】 100060690

【弁理士】

【氏名又は名称】 瀧野 秀雄

【電話番号】 03-5421-2331

【手数料の表示】

【予納台帳番号】 012450

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 図面 1

【物件名】 要約書 1

【包括委任状番号】 9102134

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】

BTL増幅装置

【特許請求の範囲】

【請求項1】 スピーカを駆動するBTL構成の2個の電力増幅器を有するBTL増幅装置において、

前記2個の電力増幅器出力の差電圧を検出する検出手段と、

前記差電圧検出手段で検出された差電圧が所定値より大か否かを判定する判定 手段と、

を備える直流オフセット検出装置を有し、

前記直流オフセット検出装置は、前記電力増幅器に信号が入力されない期間に 検出動作を行うようにしたことを特徴とするBTL増幅装置。

【請求項2】 請求項1に記載のBTL増幅装置において、

前段に接続される装置にレベルを調整するボリュームを備え、

前記直流オフセット検出装置は、所定期間前記ボリュームにより前記電力増幅器に入力される入力信号をミュートにして前記電力増幅器に信号が入力されない期間を得るようにしたことを特徴とするBTL増幅装置。

【請求項3】 請求項1に記載のBTL増幅装置において、

前記直流オフセット検出装置は、電源スイッチがオンまたは信号ソースの切換が生じたときに検出動作を行うようにしたことを特徴とするBTL増幅装置。

【請求項4】 請求項2に記載のBTL増幅装置において、

前記ボリュームは電子ボリュームにより構成したことを特徴とするBTL増幅 装置。

【請求項5】 請求項1に記載のBTL増幅装置において、

前記電力増幅器を活性化または不活性化せしめる活性・不活性化手段を備え、 前記判定手段により差電力が所定値より大であると判定されたときに前記活性 ・不活性化手段により前記電力増幅器を不活性化せしめることを特徴とするBT L増幅装置。

【請求項6】 請求項1に記載のBTL増幅装置において、

前記電力増幅器の出力と前記スピーカとの間に接続されたスイッチを備え、

前記判定手段により差電圧が所定値より大であると判定されたときに前記スイッチをオフにして前記電力増幅器よりの出力信号がスピーカに供給されないようにしたことを特徴とするBTL増幅装置。

【請求項7】 請求項1に記載のBTL増幅装置において、

前記判定手段により差電圧が所定値より大であると判定されたときに警告を与える警告手段を備えたことを特徴とするBTL増幅装置。

【請求項8】 請求項5に記載のBTL増幅装置において、

前記電力増幅器に供給する信号の信号レベルを調整するボリュームと、

前記ボリュームを通して電力増幅器に入力される入力信号をミュートするミュート手段とを備え、

前記ボリュームが前記信号をミュートすると共に、前記ミュート手段が前記入力信号をミュートしている状態において、前記活性・不活性化手段が電力増幅器を活性化すると、所定期間経過後に前記ミュート手段が解除されて前記直流オフセット検出装置により検出動作が行われることを特徴とするBTL増幅装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明はスピーカを駆動するBTL (Balanced Transformer Less) 増幅装置に関する。

[0002]

【従来の技術】

BTL増幅器は、①低電源電圧で高出力が得られる、②偶数次の歪がキャンセルされる、③電源のリップルリジェクション量が多い等の利点を有しており、車両用のオーディオ系に広く使用されている。

図9は従来のBTL増幅器の一例を示しており、1はBTL増幅器が形成された集積回路であり、入力信号を反転する反転増幅器11、反転増幅の利得と同じ利得を有する増幅器、電力増幅器13および14で構成されている。

2は電子ボリューム、3はカップリング用のコンデンサ、4はスピーカである

[0003]

【発明が解決しようとする課題】

今日ではBTL増幅器1および電子ボリューム2は半導体集積回路で構成され 、低周波域および高周波域の特性を良好に保つためにコンデンサやコイルを除去 して直流的に結合した回路によって構成されている。

[0004]

このため、電子ボリューム2の出力とBTL増幅器1の入力との間に直流的な電位差がある。この電位差がある状態で直接電子ボリューム2とBTL増幅器1を接続すると互いの回路は正常に動作しなくなる。したがって、電子ボリューム2の出力とBTL増幅器1との間にはカップリング用のコンデンサ3を介して接続している。

[0005]

しかし、コンデンサ3が劣化してリークが発生したり、またBTL増幅器1が 劣化した場合は、スピーカ4のボイスコイルに直流電流が流れ、歪を発生したり 損傷させることもある。

本発明はスピーカのボイスコイルを損傷させないように改良したBTL増幅装置を提供することを課題とする。

[0006]

【課題を解決するための手段】

前述の課題を解決するために、請求項1の発明においては、スピーカを駆動するBTL構成の2個の電力増幅器を有するBTL増幅装置において、

前記2個の電力増幅器出力の差電圧を検出する検出手段と、

前記差電圧検出手段で検出された差電圧が所定値より大か否かを判定する判定 手段と、

を備える直流オフセット検出装置を有し、

前記直流オフセット検出装置は、前記電力増幅器に信号が入力されない期間に 検出動作を行うようにしたことを特徴とする。

[0007]

請求項2においては、請求項1に記載のBTL増幅装置において、

前段に接続される装置にレベルを調整するボリュームを備え、

前記直流オフセット検出装置は、所定期間前記ボリュームにより前記電力増幅器に入力される入力信号をミュートにして前記電力増幅器に信号が入力されない期間を得るようにしたことを特徴とする。

[0008]

請求項3においては、請求項1に記載のBTL増幅装置において、

前記直流オフセット検出装置は、電源スイッチがオンまたは信号ソースの切換が生じたときに検出動作を行うようにしたことを特徴とする。

[0009]

請求項4においては、請求項2に記載のBTL増幅装置において、

前記ボリュームは電子ボリュームにより構成したことを特徴とする。

[0010]

請求項5においては、請求項1に記載のBTL増幅装置において、

前記電力増幅器を活性化または不活性化せしめる活性・不活性化手段を備え、

前記判定手段により差電力が所定値より大であると判定されたときに前記活性

・不活性化手段により前記電力増幅器を不活性化せしめることを特徴とする。

[0011]

請求項6においては、請求項1に記載のBTL増幅装置において、

前記電力増幅器の出力と前記スピーカとの間に接続されたスイッチを備え、

前記判定手段により差電圧が所定値より大であると判定されたときに前記スイッチをオフにして前記電力増幅器よりの出力信号がスピーカに供給されないようにしたことを特徴とする。

[0012]

請求項7においては、請求項1に記載のBTL増幅装置において、

前記判定手段により差電圧が所定値より大であると判定されたときに警告を与 える警告手段を備えたことを特徴とする。

[0013]

請求項8においては、請求項5に記載のBTL増幅装置において、

前記電力増幅器に供給する信号の信号レベルを調整するボリュームと、

前記ボリュームを通して電力増幅器に入力される入力信号をミュートするミュート手段とを備え、

前記ボリュームが前記信号をミュートすると共に、前記ミュート手段が前記入力信号をミュートしている状態において、前記活性・不活性化手段が電力増幅器を活性化すると、所定期間経過後に前記ミュート手段が解除されて前記直流オフセット検出装置により検出動作が行われることを特徴とする。

[0014]

【発明の実施の形態】

本発明の一実施の形態を図1~図3を参照して説明する。図1は本発明の実施 例の構成図、図2は第1の実施例の動作フローチャート、図3は第2の実施例の 動作フローチャートである。

図1において、集積回路1、電子ボリューム2、コンデンサ3、スピーカ4、および反転増幅器11、増幅器12、電力増幅器13および14は、従来例の図5で説明した通りである。

[0015]

また、5は制御部、6は表示部であり、集積回路1内には、電力増幅器13および14と出力端子間にスイッチ15が設けられ、また電力増幅器13および14より出力される電圧の差電圧を検出する差電圧検出部16が設けられる。

[0016]

つぎに、図2を参照して、本発明の第1の実施例の動作を説明する。

動作の開始は電源スイッチがオンとなったとき、またソースが切換えられたとき、また必要に応じて指令が発せられたとき動作が開始する。

ステップS1では、制御部5は、電子ボリューム2にミュートを指令し、電子ボリューム2より出力される信号を0にする。

[0017]

ステップS2では、制御部5は、差電圧検出部16より検出される差電圧を読 込む。

差電圧は、電子ボリューム2からはオーディオ信号が入力されないため、電力 増幅器13および14より出力される直流電圧の差、すなわち直流オフセットが 出力される。

ステップS3では、制御部5は、ステップS2で読込んだ差電圧が所定値より 大か否かを判定し、判定結果がYESの場合はステップS4に、NOの場合はス テップS6に移る。

[0018]

ステップS4では、制御部5は、差電圧が所定値より大で判定するとスイッチ 15をオフにする指令を送出し、電力増幅器13および14の出力と接続端子間 をオフにする。

ステップS5では、制御部5は、表示部6に警告を表示させ、ステップS2に 移り、ステップS2~S5が繰返される。

[0019]

ステップS6では、制御部5は、スイッチ15に指令してスイッチをオンにさせ、電力増幅13および14の出力をスピーカ4に接続し、ステップS7に移って電子ボリューム2に指令してミュートをオフにさせ、動作を終了する。

[0020]

つぎに、図3を参照して、第2の実施例の動作を説明する。

図3において、ステップ $S1\sim S3$ および $S5\sim S7$ は図2で説明した通りである。

第2の実施例では、第1の実施例のステップS4が削除され、ステップS1'が挿入される。

[0021]

ステップS1'では、制御部5は、電源スイッチがオンとなったとき、または リース切換が発生したときはスイッチ15に指令してスイッチ15をオフにする

このように、先ずスイッチ15をオフにすることにより、電源スイッチがオンとなり電力増幅器13および14に電力が供給されたとき、何らかの要因により両電力増幅器の出力に過大な電圧差が発生してもスピーカ4のボイスコイルの損傷を防止することができる。

[0022]

つぎに、図4に示す第3の実施例の動作を説明する。電力増幅器13および14には、該電力増幅器を活性化および不活性化せしめるための活性化・不活性化回路18および19を備えている。この活性化・不活性化回路は、例えば電力増幅器内における信号系をオン・オフするスイッチにより構成したり、電力増幅器13,14に対する電源電圧の供給を制御するように構成する。

[0023]

このような実施例において、差電圧が所定値より大であると判定されたときには、活性化・不活性化回路18,19により電力増幅器13,14を不活性化してスピーカ4に信号が供給されないようにする。

[0024]

図5は第4の実施例を示し、図4の第3実施例において、電子ボリューム2に 代えて通常の機械式ボリューム20 a と、このボリューム20 a の出力に接続さ れたスイッチ20 b により構成したものである。

直流オフセットを判定する場合には、前記ステップS1に代えて制御部5よりスイッチ20bをオンさせてボリューム20aよりの信号をミュートし、以下、前述の実施例のような動作により判定する。なお、このような機械式ボリューム20aとスイッチ20bは図1の実施例に適用してもよい。

[0025]

また、上記各実施例では制御部5を集積回路1より外に設けているが、集積回路1内に設けるようにしてもよい。また、制御部5の前記ステップS3の判定を分離して集積回路1内に設けるようにしてもよい。

[0026]

図6、図7は本発明の第5の実施例を示し、図1、図4、図5と同等部分は同一符号を付記している。また、図8はそのタイミングチャートを示す。

図6において、集積回路1にはスタンバイ(STBY)入力、ミュート制御入力および判定出力用の端子が設けられ、差電圧検出部16よりの出力は判定部20とOR回路21および出力回路22によりスイッチ23を駆動する。H発生源24はスイッチ23を介して判定出力端子に出力され、この判定出力端子の電圧が抵抗R1,R2により分圧されて制御部5に入力される。ミュート回路25は

電力増幅器 13,14に供給される入力信号をミュートするものであり、図7にその具体例を示す。比較器 26はミュート制御入力に印加される電圧を基準電圧27と比較するものであり、その結果によって前述の検出動作を実行させる。スイッチ 28、ダイオード D1、抵抗 R3、コンデンサ C1はミュート制御入力に印加する電圧を設定する。

[0027]

以上の構成において、その動作を図8のタイミングチャートと共に説明する。 制御部5は電子ボリューム2に対してミュートを指令すると共に、ミュート制 御入力端子が「L」レベルの電圧(0V)となるように、スイッチ28をオフに し、0VをダイオードD1に与える。これにより集積回路1のミュート回路25 もミュート状態となる。

[0028]

この状態で、制御部5よりスタンバイ(STBY)入力端子に「H」レベルの電圧が印加されると、このスタンバイ入力端子が「L」レベルから「H」レベルとなり、集積回路1の待機状態が解除される。この解除によって出力回路22の出力によりスイッチ23がオンし、H発生源24よりの「H」レベル電圧が判定出力端子に出力され、抵抗R1,R2で分圧されて制御部5に入力される。

[0029]

制御部5はスタンバイ入力端子が「H」となってから所定時間経過後にスイッチ28に対してオン信号を出力してスイッチ28を所定期間オン状態せしめる(このとき、ダイオードD1には引き続き0Vが印加されている。)スイッチ28の一端には電源電圧8Vが印加されているので、この電源電圧がスイッチ28を通して、抵抗R3とコンデンサC1よりなる時定数回路に供給され、その時定数でミュート制御入力端子が8Vまで立ち上がる。

[0030]

ミュート回路25は、ミュート制御入力端子にミュート制御電圧(2.5V)以上の電圧が印加されるとミュート解除となる。また、比較器26はミュート制御入力端子の電圧と所定の閾値電圧27(ミュート制御電圧<閾値電圧27<電源電圧に設定し、例えば6.5Vとする)とを比較し、前者の電圧の方が大きい

ときに差電圧検出部16や判定部20などに対して検出動作を実行せしめるための実行指令信号を出力する。そこで、ミュート制御入力端子に8Vが所定期間印加されると、ミュート回路25はミュート動作を解除すると共に、この所定期間比較器26より実行指令信号が出力されてDCオフセット電圧の検出動作を行う。この検出期間中においても電子ボリューム2は依然としてミュート状態を維持しており、したがって電力増幅器13,14には信号が入力されていない。

[0031]

かかる検出動作は前述の実施例で説明した動作と同様に、判定部20により検出された差電圧が所定値より大であるかを判定して、そうであればOR回路21に判定出力を入力する。OR回路21には図示しない図6と同様に構成される他のチャンネルに対するBTL増幅装置の判定部20よりの出力が入力され、マルチチャンネル構成のBTL増幅装置において、その中の少なくとも1チャンネルについてDCオフセットが検出されるとOR回路21を通して判定部20よりの出力を出力回路22に供給する。出力回路22はこの判定出力が印加されるとスイッチ23をオフにし、H発生源24と判定出力端子とを切り離し、判定出力端子に「L」レベルの電圧が発生するようにする。

[0032]

そこで、制御部5は前述のオフセット検出期間中の所定タイミングで判定出力端子に発生している電圧を取り込み、「H」であれば、オフセットは生じていないと判別し、「L」であればオフセットが生じていると判別する。

[0033]

オフセットの検出期間が終了すると、制御部5よりはスイッチ28をオフにし、ダイオードD1に5Vの電圧を印加し、ミュート制御入力端子にミュート解除電圧を印加してミュート回路25がミュート解除を維持せしめる。そして、制御部5は電子ボリューム2に対してミュート解除指令を出して電子ボリューム2のミュート状態を解除することにより、この電子ボリューム2でレベル調整された入力信号が電力増幅器13,14に供給される。

[0034]

なお、オフセットの発生を検出した場合には、前述のように、電子ボリューム

2をミュート状態を引き続き維持させたり、表示部 6 に警告表示したりする。あるいはミュート制御入力端子を O Vにしてミュート回路 2 5 をミュート状態とする。

[0035]

図7はミュート回路25の具体例を示し、スイッチ30により増幅器12と増幅器29に対して電源電圧+Bが選択的に供給されると共に、増幅器12の出力または増幅器29の出力はスイッチ31により電力増幅器14の入力に接続される。スイッチ30と31はミュート制御入力端子に印加される電圧によって連動して切り替わる。また、電力増幅器13,14から反転増幅器11と増幅器12に対して抵抗R5~R7により帰還がかけられており、増幅器12には直流バイアスの基準電位として+B/2が印加されており、出力信号はこの+B/2を基準電位として正負に現れる。反転増幅器11と増幅器29の非反転入力は集積回路1のAC接地端子(AC GND)に接続されている。

[0036]

以上の構成において、入力信号を増幅器12と反転増幅器11を通して電力増幅器13,14に供給するときには、ミュート制御入力端子に2.5 V以上の電圧を印加することにより、スイッチ30と31がそれぞれ図のPlay側に切り替わり、電源電圧+B(14V)が増幅器12に供給されると共に、この増幅器12の出力が電力増幅器14の入力に接続される。これによりBTL増幅動作となってスピーカ4が駆動される。

[0037]

このとき、入力信号が集積回路1に供給されていない状態においても、コンデンサ3の一端には+B/2が印加されており、このコンデンサ3の両端には直流電圧が加わっている。このため、コンデンサ3にこの直流電圧によるリーク電流Irが流れたとき、リーク電流Irは、図示のように+B/2→抵抗R4→コンデンサ3の経路で流れる。+B/2は直流的にAC接地端子(AC GND)と同電位であるから、増幅器12にはR4×Ir分の電圧降下が発生し、これが電力増幅器14の利得倍されて出力側に直流オフセットとして現れる。

[0038]

一方、ミュート制御入力端子が O V のときは、スイッチ 3 0, 3 1 が図のM u t e 側に切り替わり、電源電圧 + B が増幅器 2 9 に供給されると共に、この増幅器 2 9 の出力が電力増幅器 1 3 の入力に接続される。増幅器 2 9 と増幅器 1 2 の非反転入力に印加される基準電位は共に A C 接地端子 (A C G N D) であるので、直流オフセット電圧は発生しない。また、コンデンサ 3 に前述のリーク電流が流れても、コンデンサ 3 は増幅器 1 2 と電力増幅器 1 4 に結合されていないので、電力増幅器 1 3, 1 4 の出力にオフセット電圧は発生しない。

[0039]

【発明の効果】

以上のように、本発明によれば、電力増幅器に信号が入力されていない期間に 2個の電力増幅器の出力電圧差を検出して直流オフセットを検出するようにした ので、この検出結果を利用してスピーカのボイスコイルの損傷を防止できる。

[0040]

また、直流オフセットの検出を必要とするときに電力増幅器に信号が入力されていない期間を設定でき、電源スイッチまたはソース信号の切換が発生したときにミュートさせて検出動作を行うようにしたので、聴取者に不快感を与えることがない。

【図面の簡単な説明】

【図1】

本発明の実施例の構成図である。

【図2】

第1の実施例の動作フローチャートである。

【図3】

第2の実施例の動作フローチャートである。

【図4】

本発明の第3の実施例の構成図である。

【図5】

本発明の第4の実施例の構成図である。

【図6】

本発明の第5の実施例の構成図である。

【図7】

本発明のミュート回路の実施例を示す図である。

【図8】

第5の実施例におけるタイミングチャートを示す図である。

【図9】

2 9

従来例の説明図である。

【符号の説明】

1		集積回路
2		電子ボリューム
3		コンデンサ
4		スピーカ
5		制御部
6		表示部
1 1		反転增幅器
1 2		增幅器
13,	1 4	電力増幅器
1 5		スイッチ
1 6		差電圧検出部
18,	1 9	活性化・不活性化回路
2 0		判定部
2 1		OR回路
2 2		出力回路
2 3		スイッチ
2 4		H発生源
2 6		比較回路
2 7		閾値電圧
2 8		スイッチ

増幅器

3 0	スイッチ
3 1	スイッチ

【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【図5】

【図6】

【図7】

【図8】

【図9】

【書類名】 要約書

【要約】

【課題】 スピーカを損傷しないように改良したBTL増幅装置を提供する。

【解決手段】 スピーカを駆動するBTL構成の2個の電力増幅器を有するBT L増幅装置において、前記2個の電力増幅器出力の差電圧を検出する検出手段と 、前記差電圧検出手段で検出された差電圧が所定値より大か否かを判定する判定 手段と、を備える直流オフセット検出装置を有し、前記直流オフセット検出装置 は、前記電力増幅器に信号が入力されない期間に検出動作を行う。

【選択図】 図1

【書類名】

職権訂正データ

【訂正書類】

特許願

<認定情報・付加情報>

【特許出願人】

【識別番号】

000005016

【住所又は居所】

東京都目黒区目黒1丁目4番1号

【氏名又は名称】

パイオニア株式会社

【代理人】

申請人

【識別番号】

100060690

【住所又は居所】

東京都渋谷区恵比寿二丁目36番13号 広尾SK

ビル4階 瀧野国際特許事務所

【氏名又は名称】

瀧野 秀雄

出願人履歴情報

識別番号

[000005016]

1. 変更年月日

1990年 8月31日

[変更理由]

新規登録

住 所

東京都目黒区目黒1丁目4番1号

氏 名

パイオニア株式会社