Abstract Data Type – mathematical description and set of operations on the object / interface of a data structure Data Structure – set of algorithms which implement an ADT / way of storing and organizing data for an ADT

Queue ADT

- create|destroy|enqueue|dequeue|is_empty
- set order of data, breadth first search

Circular Array Queue

- enqueue|dequeue|is_empty|is_full
- · use modulo to stay within size

Linked List Queue

- enqueue|dequeue|is_empty|
- Node *temp = front; front = front->next; delete temp;

Stack ADT

- create|destroy|push|pop|top|is_empty
- LIFO
- can reverse order if needed, or randomize
- call stack, depth first search, balancing symbols

Array Stack

push|pop|top|is_empty|is_full

Linked List Stack

Deque ADT

push|pop|top|is_empty

- create|destroy|pushL|pushR|popL|popR
- · maintains a list of items (change front/back)

Types of Proof

Counterexample

 show an example which does not fit with the theorem, thus, theorem is false (show why)

Contradiction

- assume the opposite of a theorem
- derive a contradiction, thus theorem is true *Induction*
 - prove for the base case (smallest n)
 - assume for all n <= k and prove for the next value (n = k+1).

eg. Show that for $n \ge 5$, $4n \le 2^n$

Base case: n = 5, 4*5 = 20 <= 32 = 2^5

Inductive step, rule holds for k < n4n = 4 (n - 1) + 4, and $2^n = 2^{(n-1)} + 2^n$

By induction hypothesis, we know that

 $4(n-1) \le 2^{(n-1)}$, and since $n \ge 5$, $4 \le 2^{(n-1)}$

Add inequalities together

4(n-1) <= 2^(n-1) 4 <= 2^(n-1)

 $4(n-1) + 4 \le 2^n$, and thus we've proven it

Log Aside

 $\log_b x$ is the exponent b must be raised to to equal x.

- $\lg x \equiv \log_2 x$ (base 2 is common in CS)
- ▶ $\log x \equiv \log_{10} x$ (base 10 is common for 10 fingered mammals)
- ▶ $\ln x \equiv \log_e x$ (the natural log)

Note: $\Theta(\lg n) = \Theta(\log n) = \Theta(\ln n)$ because

$$\log_b n = \frac{\log_c n}{\log_c b}$$

the left at the bottom

Analysis of Algorithms

- measure as a function of input size n, and ignore constant factors
- Big O: $T(n) \in O(f(n))$ if there are positive constants c and n_0 such that $T(n) \le cf(n)$ for all $n \ge n_0$.
- **Big Omega:** $T(n) \in \Omega(f(n))$ if there are positive constants c and n_0 such that $T(n) \ge cf(n)$ for all $n \ge n_0$.
- Big Theta: $T(n) \in \Theta(f(n))$ if $T(n) \in O(f(n))$ and $T(n) \in \Omega(f(n))$.
- Proof by Big O:
 - o Proof: by definition of Big-O we must find positive constants c and n0 for all n>=n0, $T(n) \le c(f(n))$.
 - Consider example c = ____, n0 = ____
 - O Change an existing equality to T(n) <= c(f(n)), and thus proven Big-O
- Example Big O Proof:
 - o Prove $3n^2 + 2n \lg(n)$ is Big O of (n^2)
 - By definition of Big-O, we must find positive constants c and n0 such that for all $n \ge 0$, $3n^2 + 2n \lg(n) \le cn^2$
 - \circ Consider c = 5, n0 = 1.
 - o For all $n \ge 1$, $\lg(n) \le n$, and therefore $2 \lg(n) \le 2n$
 - O Since c = 5, then c 3 = 2, and $2 \lg(n) \le (c 3)n$
 - $2 \lg(n) \le cn 3n \text{ and } 2 \lg(n) + 3n \le cn$
 - $2n \lg(n) + 3n^2 \le cn^2$, and thus we have proven the Big O. QED.

Typical Asymptotic Relations

0

Tractable

- ► constant: Θ(1)
- ▶ logarithmic: $\Theta(\log n)$ ($\log_b n$, $\log n^2 \in \Theta(\log n)$)
- ▶ poly-log: $\Theta(\log^k n)$ (log^k $n \equiv (\log n)^k$)
- ▶ linear: $\Theta(n)$
- ▶ \log -linear: $\Theta(n \log n)$
- ▶ superlinear: $\Theta(n^{1+c})$ (c is a constant > 0)
- quadratic: Θ(n²)
- cubic: $\Theta(n^3)$
- ▶ polynomial: $\Theta(n^k)$ (k is a constant) Intractable
- exponential: $\Theta(c^n)$ (c is a constant > 1)

Eliminate lower order terms and coefficients Big O– upper bound Big Omega – lower bound

Tree Terminology

root - no incoming edges/arcs, or parent (top)
leaf - node with no children
child - node pointed to by "me" node

parent – node that points to "me" node (at most one parent)

sibling – nodes with the same parent ancestor – parent, or ancestor of a parent descendent – child, or descendent of a child subtree – node and its descendants

depth - # of edges on path from root to node height - # of edges on longest path from node to desendent (whole tree – root to leaf) degree - # of children of a node

branching factor – max degree of any nodes complete – max nodes possible for given height nearly complete – complete, plus some nodes on

binary – each node has degree at most 2 d-ary – degree at most d

ADT

- create|destroy|insert|deleteMin|is_empty
- higher priority elements dequeued first
- o good for anything "greedy"
- Unsorted list insert O(1), deleteMin ø(n)
- Sorted list insert ø(n), deleteMin O(1)

Analyzing Code o single or

- o single operations CONSTANT TIME
- $\circ \qquad \text{consecutive operations} \mathsf{SUM} \; \mathsf{TIMES}$
- conditionals CONDITIONAL + MAX BRANCH
- o loops SUM OF LOOP BODY TIMES
- o functions FUNCTION TIMES
- loop in a loop MULTIPLICATION OF LOOP TIMES

Tight Bound

- o Big Theta asymptotically tight
- No better reasonable bound which is different
- Run time of algorithm matches provable lower bound on any algorithm

Memoization – keep past recursive call values in a table, accessible by future calls – O(n)

Tree Rules

If a tree has height "h", the # of nodes in a complete binary tree is $n = 2^{h}(h+1) - 1$ If a nearly-complete tree has nodes "n", the height of the tree is h = floor(lg(n))The longest path in a tree:

- if can contain the root, path = 2 + height of 2 tallest children
- if cannot contain root, path = longest path in any child's subtree

Some Queue Thoughts

Applications

- ordering CPU jobs and simulating events | picking next search site
- o short jobs should go first
- o earliest events should go first
- most promising sites should be searched first

Priority Queue

Binary Heap Priority Q Data Structure

- $\circ \qquad \mathsf{deleteMin} \\ | swapDown/Up \\ | insert \\ | heapify$
- O(log n) Heapify: O(n) at most h steps
- heap-order property: parent's key <= children's keys (min at top)
- structure property: "nearly complete tree" – depth O(log n) – height above
- Store nodes in array
- o left_child(i) = 2i + 1|right_child(i) = 2i + 2
- o parent(i) = floor((i-1)/2) | root = 0
- o next free position = n | n = size
- 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 1

 2
 4
 5
 7
 6
 10
 8
 13
 9
 12
 14
 11
 1

for constants b, c > 1.

Recursion (trust the natural recursion! Break it down to see it simpler)

Proof:

in

- o base case
- inductive hypothesis works for smaller-sized inputs
- o inductive step breaks problem down
- proving loops using loop invariantsLoop Invariant Proof:
- base case (prove true before loop)
- inductive hypothesis true before part
- o inductive step true at end of part
- o prove loop eventually ends

recurrence relation – formula that relates each term to its predecessors

Recursion VS Iteration

- elegance
- iteration avoids fn calls on the stack
- similar efficiency

tail recursion – no overflow to iteration:

- change parameters passed in values (inc or dec) to simulate
- start executing at start of function (may use a while loop)
- · clean up code
- · check control flow

Recurrence Relations

Algorithm Binary Search	$\frac{\text{Recurrence}}{\text{T(n)} = \text{T(n/2)} + \text{O}}$	<u>Big O</u> (1) O (log n)	1. find recurrence relation		
Sequential Search	T(n) = T(n-1) + O		2. extrapolate		
Tree Traversal	2 T(n/2) + O(1)	O(n)	3. figure out pattern		
Selection Sort	T(n-1) + O(n)	O(n^2)	4. simplify		
Mergesort	2 T(n/2) + O(n)	O(n log n)	5. find B	ig O	
nt max(A, n) if(n == 1) return A[0] return larger of A[n-1] and	max(A, n-1),C is	Mergesort algorithm: Split list in half, sort first Recurrence relation:	half, sort secor	nd half, merge to	ogethe
ecursion almost always yields a lec	$T(1) \le b$ $T(n) \le 2T(n/2) + (cn)$ if $n > 1$				
$T(1) \le b$ $T(n) \le C + T(n - 1)$	1) if $n > 1$	Solving recurrence: T(n) < 2T(n/2) + cr	,		
olving recurrence:)	$ (n) \leq 2 (n/2) + cn $ $ \leq 2(2T(n/4) + cn) $		(substitution)	
$T(n) \leq c + c + T(n-2)$	(substitution)	=4T(n/4)+2c		,	
$\leq c+c+c+T(n-3)$, ,	$\leq 4(2T(n/8) +$	cn/4) + 2cn	(substitution)	
$\leq kc + T(n-k)$	(extrapolating $k > 0$)	=8T(n/8)+3a			
, , , , , ,	(for k=n-1)	$\leq 2^k T(n/2^k) +$	kcn	(extrapolating A	(0 < 2
$\leq (n-1)c+b$		$= nT(1) + cn \lg r$	g n	(for $2^k = n$)	K=1a
$f(n) \in \mathcal{O}(n)$		$T(n) \in \bigcap (n \log n)$			-

Sorting (stable = identical keys same order / potential memory usage)

<u>Name</u>	Best Case	Worst Case	Stability	Memory		
Insertion Sort	Θ(n)	Θ(n^2)	can be stable	in-place - 1		
Heap Sort	Θ(n lg n)	Θ(n lg n)	stable w/ index	in-place - 1		
Merge Sort	Θ(n lg n)	Θ(n lg n)	can be stable	Ω(n) extra		
Quick Sort	Θ(n lg n)	Θ(n^2)	can be stable	in-place – log n		
Hashing						

Basic Hashing Concepts

- choose a fast, low-collision hash function: hash(x) = x mod m, where m is a prime number
- universal hash function— if probability of a collision is at most 1/(sizeofarray)
- General Form
- 1. map key to a sequence of bytes
- 2. map bytes to an integer x
- 3. map x to a table index using x mod m
- pigeonhole principle if more than m pigeons fly into m pigeonholes then some pigeonhole contains at least 2 pigeons

if n pigeons fly into m holes, at least
one hole contains at least
k = celing(n/m) pigeons

- corollary if we hash n>m keys into m slots, keys will collide
- birthday paradox if we randomly hash sqrt(2m) keys into m slots, we get a collision with probability > ½
- tombstone after deletion insert treats as empty, find treats as full

linear probing

 $h(k,i) = (hash(k) + i) \mod m)$ suffers from primary clustering (long chain consecutive filled slots) performance degrades for LF > $\frac{1}{2}$ **Dealing with Collisions**

separate chaining – each entry is a linked-list-style implementation (store multiple items in each entry)

- can hash more than m items into a size m table
- performance depends on length of chains
- load factor = (# of hashed items)/ (table size)
- new memory on each add. insert **open addressing** only allows one item in each slot keep trying
- cannot hash more than size
- memory allocated once
- probe sequence sequence we examine when insert/find
- h(k,i) maps k and i to result of h
 k = key and i = # of tries

rehashing – when LF gets too large takes Θ(n) time, amortized O(1) if doubling table size (flexibility) spreads keys out, clears tombstone

quadratic probing

 $h(k,i) = (hash(k) + i^2) \mod m$ first celing(m/2) probes distinct suffers from secondary clustering (initial slot follows same probe sequence)

<u>double hashing</u> $h(k,i) = (hash(k) + i*hash2(k)) \mod m$ hash2(k) should be quick, differ from hash(k), and never be 0 (mod m) no clustering – one extra hash calculation

AVL Trees

binary tree - max 2 children/node
search tree - left < key, right > key
balanced - |bal(node)| <=1 for all
height = O(log n)
If |bal| <=1, height <= c lg n (c<2)
O(log n) for find, insert, delete
rotateLeft(a) Node* b = a->right
a->right = b->left
b->left = a
updateHeight(both)

b=a rotateRlght(a) reverse left/right in rotateLeft(a), and a = b instead

rotateRight(a->right) rotateLeft(a)

doubleRotateLeft(a) reverse
left/right in doubleRotateRight(a)
Insert Algorithm

- find place for new key & add
- search for imbalance

doubleRotateLeft(a)

Delete Algorithm

- BST delete and fix imbalances

Trees

Bal(x) = height(left)-height(right)

B+ Trees

m-ary tree – max M children/node search tree – max M-1 search keys nodes have ceil(M/2) < # children < L leaves hold ceil(L/2) < # KV pairs < L height, find,insert,delete = O(logM n) all leaves are at the same depth values stored in leaves and internal nodes are search keys (root can both) nodes&leaves has pointers to siblings

Insert Algorithm

- Insert key, value pair in its leaf
- If overflow, split (copy[leaf] or move[node] smallest key in new (middle)up to parent)

Delete Algorithm

- Remove key value pair from leaf
- If underflow, take from sibling if possible and update parent key OR merge with sibling and delete[leaf] or pull down[node] parent's key

aversal

In-order: 2 5 6 9 10 15 17 20 3 | in(L), root, in(R)

Pre-order: 10 5 2 9 7 15 20 17 30 | root, pre(L), pre(R)

Post-order: 2 7 9 5 17 30 20 15 10 | post(L), post(R), root

Parallelism(improve performance by using many processors) fork|join|reduce divide n-sized array into k pieces (threads) FORALL x in A - do every

divide n-sized array into k pieces (threads) solve pieces in parallel, time is Θ (n/k) combine and sum results, time is Θ (k) total time is Θ (n/k) + Θ (k), best k is sqrt(n) Switch to sequential if tasks is more work OR (divide and conquer)

recursively divide array into CUTOFF-sized pieces, time is Θ (log n)

solve these pieces in parallel, time, $\Theta(CUTOFF)$ combine by summing results, time, Θ (log n) total time is Θ (loa n)

iteration in parallel

DAG - models parallelism

node - constant seq. work

Let $T_P(n)$ be the run time of a parallel program with P processors on input size n. $T_1(n) = \mathbf{work}$, the number of nodes $|T_{infinity}(n)| = \mathbf{span}$, # nodes on the longest path $T_P(n) = T_1(n)$, otherwise we didn't do all the work, AND $T_P(n) >= T_{inf}(n)$ as P < inf $T_P(n) \in \Theta(T_1(n)/P + T_{\infty}(n))$. $T_P(n) \in \Theta(n/P + \log n)$

Amdahl's Law – the overall speedup with P processors is $\frac{T_1(n)}{T_P(n)} \leq \frac{1}{s} \cdot \frac{T_1(n)}{n} \leq \frac{1}{s + (1-s)/P}$ Graphs: create|insert|iterate|edge?

 $\label{eq:continuous} \textbf{Topological Sort} - \text{total order of vertices in a graph G} = (V,E) \text{ such that if } (u,v) \text{ is an edge of G, then } u \text{ appears before } v \text{ in that order (time is O(\#nodes+\#edges))}$

- 1. Find each vertex's in-degree(# of in-edges) and make queue for 0 in-degrees
- 2. If there are vertices in queue, dequeue and output. Then reduce the indegrees of all vertices it has an edge to, and enqueue all vertices with in-d 0

Adjacency Matrix Iterate vertices $\Theta(n)$ 0 0 0 0 0 0 0 Iterate edges $\Theta(n^2)$, exist? $\Theta(1)$ Iterate vertices adj. to vertex $\Theta(n)$ Memory $\Theta(n^2)$

Adjacency List Iterate vertices $\Theta(n)$ Iterate edges $\Theta(m)$, exist? (u,v) $\Theta(OutD\ u)$ Iterate vertices adj. to u $\Theta(OutD\ u)$ Memory $\Theta(n+m)$

handshaking theorem - undirected graph $\sum_{d \in g(v)} = 2|E|$ \searrow Converted been an indirected graph $\sum_{d \in g(v)} d \in g(v) = 2|E|$ \searrow Converted been an indirected graph $\sum_{d \in g(v)} d \in g(v) = 2|E|$ \searrow Converted been an indirected graph $\sum_{d \in g(v)} d \in g(v) = 2|E|$ \searrow Converted been an indirected graph \searrow Converted by Converted been an indirected graph \searrow Converted by Converted by Converted graph \searrow Converted by Converted by Converted graph \searrow Converted by Converted graph \searrow Converted by Converted graph \searrow Converted gr

Runtime: $O((|V|+|E|) \log (|V|)) - V$ times find/deleteMin, E times changeKey **Spanning tree** – tree subset from a connected graph that touches all vertices **Kruskal's Algorithm** – find spanning tree with lowest total edge dist. Start empty tree, add min weight edge to T unless cycle forms: $O(|E|\log|E|)$