Работа 2.3.1(A) Получение вакуума

Ултургашев Матвей Евгеньевич Б01-302

17 мая 2024 г.

1. Теоритические сведения

- 1. Предельное остаточное давление (предельный вакуум) $P_{\rm пp}$ наименьшее давление газа, которое формируется в процессе откачки в рассматриваемом сечении вакуумпровода (рассматриваемой точке вакуумной системы). Обычно выделяют предельное давление в камере или на входе в насос.
- 2. Наибольшее выпускное давление максимально допустимое давление газа на входе насоса.
- 3. **Быстрота откачивающего действия** (скорость откачки) вакуумной системы S объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S = \frac{dV}{dT}$$

Следовательно быстродействие насоса $S_{\rm H}$ определяется как:

$$S_{\scriptscriptstyle \mathrm{H}} = rac{dV_{\scriptscriptstyle \mathrm{H}}}{dt}$$

А эффективная скорость откачки камеры S_0 :

$$S_0 = \frac{dV_0}{dt}$$

4. Падение давления вдоль вакуумпровода $\Delta P = P_1 - P_2$ определяется его **пропускной способностью** (проводимостью) U:

$$U = \frac{Q}{P_1 - P_2}$$

где Q - **поток газа** через вакуумпровод с соответствующими давлениями на концах.

5. Величина Z, обратная проводимости, называется импедансом вакуумпровода:

$$Z = \frac{1}{U}$$

В общем случае указанные величины $S,\,U,\,Q,\,Z$ как и сами давления P_1 и P_2 зависят от времени. Но в конце процесса откачки устанавливается квазистационарный режим, при котором поток газа становится практически постоянным и равным количеству поступающего в систему газа в единицу времени вследствие наличия течей, т.е. нарушения герметичности (в основном в местах механического соединения отдельных узлов вакуумной системы). Для стационарного режима можно записать условие непрерывности потока откачиваемого газа:

$$P_1S_0 = PS = P_2S_H = Q$$

6. Основное уравнение вакуумной техники

$$\frac{1}{S_0} = \frac{1}{S_{\mathrm{H}}} + \frac{1}{U}$$

Проводимость длинного трубопровода

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = P \frac{\pi R^4}{8\nu L} \sim \frac{R^4}{L} \frac{P}{\sqrt{Tm}}$$

$$U_{\rm Tp} = \frac{Q}{P_2 - P_1} = \frac{4}{3} \frac{R^3}{L} \sqrt{\frac{2\pi kT}{m}} \sim \frac{R^3}{L} \sqrt{\frac{T}{m}}$$

Время откачки

Положим, что за промежуток dt давление в откачиваемом объеме V_0 снижается на dP_1 . Тогда за промежуток времени dt количество газа, поступающего в трубу равно S_0P_1dt , а эта же убыль газа в объеме равна V_0dP_1 , следовательно

$$S_0 P_1 dt = -V_0 dP_1$$

$$dt = -\frac{V_0}{S_0} \frac{dP_1}{P_1}$$

$$dt = -V_0 \left(\frac{1}{S_{\text{H}}} + \frac{1}{U}\right) \frac{dP_1}{P_1}$$

$$P(t) = P_1 \exp\left(-\frac{S_0}{V_0}t\right)$$

2. Экспериментальная установка

Рис. 1: Схема экпериментальной установки

3.Ход работы

Определение откачиваемого объёма и измерение скорости откачки форвакуумным насосом

- 1. Выключаем турбомолекулярный насос.
- 2. Откачиваем установку форвакуумным насосом.
- 3. Присоединяем к установке сильфон с воздухом при атмосферном давлении. ($V_{\text{сильфона}} = V_0 = 265ml$).
- 4. Выравниваем давление в сильфоне и вакуумной камере экспериментального стенда.
- 5. Выравниваем давление в вакуумной камере К и форвакуумной магистрали установки.
- 6. Напустим воздух в установку до атмосферного давления.
- 7. Готовим установку к повтору предыдущих пунктов. Повторяем их еще 1 раз.
- 8. По данным, полученным с установки считаем все объемы. $P_{\text{для камеры}} = 220 mbar$, $P_{\text{для всей установки}} = 170 mbar \Rightarrow V_{\text{камеры}} = \frac{P_{\text{атм}}V_0}{P_1} V_0 \approx (0, 84 \pm 0, 05)$ л, Vвсей установки $= \frac{P_{\text{атм}}V_0}{P_2} \approx (1, 26 \pm 0, 05)$ л, \Rightarrow Vфорвакуумной магистрали $= (0, 5 \pm 0, 05)$ л
- 9. считаем эффективную скорость форвакуумной откачки, для этого мы в на графике ln(P) от t ищем наклон графика на интервале 10-100 мбар. Потом считаем $\tau = -\frac{t}{ln(P)} = (16,06\pm0,02)$ с. А далее, зная объем камеры расчитываем эффективную скорость откачки $S_0 = V$ всей установки t=00, t=0
- 10. Зная S_0 и $S_{\rm H}$ мы находим U по формуле

$$U = \frac{S_{\scriptscriptstyle \rm H} - S_0}{S_{\scriptscriptstyle \rm H} \cdot S_0} \approx 0, 2m^3/c$$

1			2			
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$	
2	700,0	0,1	2	1000,0	0,1	
4	560,0	0,1	4	480,0	0,1	
6	400,0	0,1	6	340,0	0,1	
8	320,0	0,1	8	220,0	0,1	
10	300,0	0,1	10	160,0	0,1	
12	300,0	0,1	12	120,0	0,1	
14	300,0	0,1	14	90,0	0,1	
16	300,0	0,1	16	68,0	0,1	
18	300,0	0,1	18	58,0	0,1	
20	230,0	0,1	20	44,0	0,1	
22	180,0	0,1	22	37,0	0,1	
24	150,0	0,1	24	31,0	0,1	
26	120,0	0,1	26	26,0	0,1	
28	98,0	0,1	28	20,0	0,1	
30	83,0	0,1	30	18,0	0,1	
32	69,0	0,1	32	15,0	0,1	
34	62,0	0,1	34	13,0	0,1	
36	55,0	0,1	36	11,0	0,1	
38	46,0	0,1	38	9,5	0,1	
40	38,0	0,1	40	8,5	0,1	
42	35,0	0,1	42	7,5	0,1	
44	32,0	0,1	44	6,8	0,1	
46	29,0	0,1	46	6,4	0,1	
48	25,0	0,1	48	6,1	0,1	
50	21,0	0,1	50	5,7	0,1	
52	18,0	0,1	52	5,4	0,1	
54	17,0	0,1	54	5,1	0,1	
56	16,0	0,1	56	4,9	0,1	
58	14,0	0,1	58	4,6	0,1	
60	13,0	0,1	60	4,4	0,1	
62	11,0	0,1	62	4,1	0,1	
64	10,0	0,1	64	3,9	0,1	
66	9,3	0,1	66	3,9	0,1	
68	8,7	0,1	68	3,8	0,1	
70	8,1	0,1	70	3,7	0,1	
72	7,7	0,1	72	3,6	0,1	
74	7,1	0,1	74	3,6	0,1	

1			2			
t, c	P, mbar	$\sigma_P, mbar$	t, c	P, mbar	$\sigma_P, mbar$	
76	6,8	0,1	76	3,5	0,1	
78	6,5	0,1	78	3,5	0,1	
80	6,3	0,1	80	3,4	0,1	
82	6,1	0,1	82	3,4	0,1	
84	5,9	0,1	84	3,3	0,1	
86	5,7	0,1	86	3,3	0,1	
88	5,5	0,1	88	3,3	0,1	
90	5,4	0,1	90	3,2	0,1	
92	5,2	0,1	92	3,2	0,1	
94	5,0	0,1	94	3,2	0,1	
96	4,9	0,1	96	3,1	0,1	
98	4,8	0,1	98	3,1	0,1	
100	4,6	0,1	100	3,1	0,1	
102	4,5	0,1	102	3,1	0,1	
104	4,4	0,1	104	3,1	0,1	
106	4,2	0,1	106	3,0	0,1	
108	4,1	0,1	108	3,0	0,1	
110	4,1	0,1	110	3,0	0,1	
112	3,9	0,1	112	3,0	0,1	
114	3,9	0,1	114	3,0	0,1	
116	3,9	0,1	116	2,9	0,1	
118	3,8	0,1				
120	3,8	0,1				
122	3,8	0,1				
124	3,7	0,1				
126	3,7	0,1				
128	3,7	0,1				
130	3,7	0,1				
132	3,6	0,1				
134	3,6	0,1				
136	3,6	0,1				
138	3,6	0,1	-			
140	3,6	0,1	-			
142	3,5	0,1	_			
144	3,5	0,1	-			
146	3,5	0,1	-			
148	3,5	0,1	-			
150	3,5	0,1	-			
152	3,5	0,1				

Рис. 2: График зависимости ln(P) от t для форвакуумного насоса

Измерение скорости откачки турбомолекулярным насосом и определение предельного вакуума

- (а) Откачиваем установку форвакуумным насосом.
- (b) Откачиваем объем турбомолекулярным насосом.
- (c) считаем скорость откачки воздуха $\tau \approx 0,049c,\, S_0 \approx 49l/c$

+ c	P, mbar		
t,c	,	t, c	P, mbar
2	2,800000	54	0,000120
4	1,800000	56	0,000110
6	0,630000	58	0,000100
8	0,015000	60	0,000095
10	0,003800	$\frac{60}{62}$	0,000091
12	0,002400	64	0,000031
14	0,001500	66	0,000083
16	0,001100		,
18	0,001000	68	0,000080
20	0,001000	70	0,000076
22	0,001000	72	0,000073
24	0,000870	74	0,000069
26	0,000660	76	0,000067
28	0,000580	78	0,000065
30	0,000500	80	0,000064
32	0,000390	82	0,000062
34	0,000350	84	0,000061
36	,	86	0,000059
	0,000310	88	0,000058
38	0,000280	90	0,000057
40	0,000240	92	0,000055
42	0,000190	94	0,000054
44	0,000180	96	0,000053
46	0,000170	98	0,000052
48	0,000150	100	0,000051
50	0,000140	102	0,000051
52	0,000130	102	0,000000

(d) Определяем уровень течей по ухудшению вакуума. Считаем $Q_{\mbox{\tiny H}}=V \frac{dP}{dt} \approx 1, 4l/c$

Рис. 3: График зависимости ln(P) от t для турбомолекулярного насоса