Report No.: 30862280.001 Draeger FCC.doc

Page 1 of 68

Electromagnetic Compatibility Test Report

Prepared in accordance with

FCC Part 15

On

802.11 b/g wireless adapter MS24895

Prepared for:

Draeger Medical Systems, Inc.

6 Tech Drive

Andover, MA 01810

Prepared by:

TUV Rheinland of North America, Inc.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 2 of 68 Draeger Medical Systems, Inc. Georgios Kokovidis Auftraggeber: 6 Tech Drive 978-379-8148 / 978-379-8338 Client: Andover, MA 01810 george.kokvidis@draeger.com **Bezeichnung:** Serien-Nr.: B7ZTH 802.11 b/g wireless adapter Identification: Serial No. Gegenstand der Prüfdatum: MS24895 November 21, 2008 Prüfung: Date tested: Test item: TUV Rheinland of North America **Prüfort:** 336 Initiative Drive Testing location: Rochester, NY 14624 U.S.A. Emissions: FCC Part 15.247 FCC Part 15.209(a) Prüfgrundlage: FCC Part 15.247(a)(2), FCC Part 15.247(b)(3) Test Immunity: RSS-210 Issue 7, specification: FCC Part 15.247(b)(4), FCC Part 15.247(c), FCC Part 15.247(e), FCC Part 15.247(c), FCC Part 15.31(m), FCC Part 15.203, FCC Part 15.247(j) Prüfergebnis: Der vorstehend beschriebene Prüfgegenstand wurde geprüft und entspricht oben genannter Prüfgrundlage. The above product was found to be Compliant to the above test standard(s) Test Result geprüft / tested by: Randall Masline 6 April 2009 Datum Unterschrift Name Date Name Signature **Sonstiges:** None Other Aspects: Abkürzungen: OK, Pass, Compliant, Complies = entspricht Prüfgrundlage Abbreviations OK, Pass, Compliant, Complies = passed Fail, Not Compliant, Does not Comply = entspricht nicht Fail, Not Compliant, Does Not Comply = failed Prüfgrundlage N/A = not applicableN/A = nicht anwendbar **Industry Canada BSMI**

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

200313-0

3466C-1

SL2-IN-E-050R

US90575

Report No.: 30862280.001 Draeger FCC.doc

Page 3 of 68

TABLE OF CONTENTS

1 G	ENERAL INFORMATION	5
1.1	SCOPE	
1.2 1.3	PURPOSE	
2 L	ABORATORY INFORMATION	
2.1	ACCREDITATIONS & ENDORSEMENTS	
2.2	MEASUREMENT UNCERTAINTY	
2.3	CALIBRATION TRACEABILITY	
2.4	MEASUREMENT EQUIPMENT USED	
3 Pl	RODUCT INFORMATION	12
3.1	PRODUCT DESCRIPTION	12
3.2	EQUIPMENT MODIFICATIONS	12
3.3	TEST PLAN	12
4 E	MISSIONS	15
4.1	RADIATED EMISSIONS	
4.2	6DB AND 99% BANDWIDTHS; §15.247(A)(1), RSS-210 §5.9.1	
4.3	OUTPUT POWER; FCC §§15.247(B), 15.31(E), RSS-210 §6.2.2(O)(B)	
4.4	PEAK POWER SPECTRAL DENSITY; FCC §15.247(E), RSS-210 §6.2.2(O)(B)	39
4.5	BAND-EDGE MEASUREMENT FCC §15.247(D), RSS-210 §6.2.2(O)(E1)	
4.6	SPURIOUS EMISSIONS; FCC §15.247(C), RSS-210 ANNEX 9	
4.7	CONDUCTED EMISSIONS	
4.8	FREQUENCY STABILITY FCC §15.215(C),	
4.9	RF Exposure Measurement (Portable Device) 15.247(i)	
APPE	NDIX A	64
5 T	EST PLAN	64
5.1	GENERAL INFORMATION	64
5.2	Model(s) Name	
5.3	Type of Product	64
5.4	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	
5.5	MODIFICATIONS	
5.6	PRODUCT ENVIRONMENT	
5.7	COUNTRIES.	
5.8 5.9	GENERAL PRODUCT INFORMATIONEUT ELECTRICAL POWERED INFORMATION	
5.10		
5.10	· ·	
5.12	· · · · · · · · · · · · · · · · · · ·	
5.13	EUT TEST PROGRAM	68

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

	Report No.:	30862280.001 Draeger FCC.doc	Page 4 of 68
5.14	MONITORING OF EUT DUE	RING TESTING	68

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 5 of 68

1 General Information

1.1 Scope

This report is intended to document the status of conformance with the requirements of the FCC Part 15, based on the results of testing performed on November 21, 2008 on the 802.11 b/g wireless adapter, Model No. MS24895, manufactured by Draeger Medical Systems, Inc.. This report only applies to the specific samples tested under the stated test conditions. It is the responsibility of the manufacturer to assure that additional production units of this model are manufactured with identical or EMI equivalent electrical and mechanical components. This report is further intended to document changes and modifications to the EUT throughout its life cycle. All documentation will be included as a supplement.

1.2 Purpose

Testing was performed to evaluate the EMC performance of the EUT (Equipment Under Test) in accordance with the applicable requirements, procedures, and criteria defined in the application of regulations and application of standards listed in this report.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 6 of 68

1.3	Sum	m	ary of Test Results							
Applicant Draeger M			ledical Systems, Inc.	Tel 978-379-8148		Contact	Georgios Kokovidis			
пррисши			MA 01810	Fax	978-379-8338	3	e-mail	george.kokvi m	dis@draeger.co	
Description		80	02.11 b/g wireless adapter	Model	Number	MS2	24895			
Serial Number		В	7ZTH	Test V	oltage/Freq.	Batte	ery Operate	d		
Test Date Comp	pleted:	N	ovember 21, 2008	Test E	ngineer	Ran	dall Masli	ne		
Standar	ds		Description	;	Severity Level	or Li	mit	Criteria	Test Result	
RSS-210 Issue	7		Industry Canada - Low-power License-exempt Radiocommunication Devices	See cal	lled out basic st	andaro	ds below	See Below	Complies	
FCC Part 15.247	7		Operation within the 2400 - 2483.5 MHz bands	See cal	lled out basic st	andaro	ds below	See Below	Complies	
FCC Part 15.209	P(a)		Radiated Emissions	Class B, 30 - 1000 MHz			Class B, 30 - 1000 MHz		Limit	Complies
FCC Part 15.207(c)			Conducted Emissions	Class B, 150kHz - 30MHz		Limit	Complies			
FCC Part 15.247(a)(2)			6dB Bandwidth	BW at least 500 kHz		Limit	Complies			
FCC Part 15.247	7(b)(3)		Output Power	15 dBm		Limit	Complies			
FCC Part 15.247	7(b)(4)		Antenna Gain	≤6dBi		Limit	Complies			
FCC Part 15.247	7(c)		Band Edge Measurement	-20dB				Limit	Complies	
FCC Part 15.247	7(e)		Peak Power Spectral Density	≤8dBm at 10kHz BW		Limit	Complies			
FCC Part 15.247(c)			Spurious Emissions	Table FCC Part 15.209			Limit	Complies		
FCC Part 15.31(m)			Tunable	Measurements on Low, Mid and Highest Frequencies		and	Limit	Complies		
FCC Part 15.203			Antenna Requirements				Limit	Complies		
FCC Part 15.247(j)			Maximum Permissable Exposure	See sec	etion 4.9			Limit	Complies	

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 7 of 68

2 Laboratory Information

2.1 Accreditations & Endorsements

2.1.1 US Federal Communications Commission

TUV Rheinland of North America located at 336 Initiative Dr, Rochester NY is accredited by the commission for performing testing services for the general public on a fee basis. This laboratory test facilities have been fully described in reports submitted to and accepted by the FCC (Registration No US90575). The laboratory scope of accreditation includes: Title 47 CFR Part 15, and 18. The accreditation is updated every 3 years.

2.1.2 NIST / NVLAP

Program, which is administered under the auspices of the National Institute of Standards and Technology. The laboratory has been assessed and accredited in accordance with ISO Standard 17025:2005 (Lab code: 200313-0). The scope of laboratory accreditation includes emission and immunity testing. The accreditation is updated annually.

2.1.3 VCCI

VCCI Accredited test lab. Registration numbers R-1065, C-1120, C-1121

2.1.4 Industry Canada

Registration No.: 3466C-1. The OATS has been accepted by Industry Canada to perform testing to 3 and to 10m, based on the test procedures described in ANSI C63.4-2003.

2.1.5 **BSMI**

Registration No.: SL2-IN-E-050R. The BSMI accreditation was obtained by NIST MRA with the BSMI.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 8 of 68

2.2 Measurement Uncertainty

General

	The estimated combined standard uncertainty for ESD immunity measurements is \pm 0.43%.
	The estimated combined standard uncertainty for radiated immunity measurements is $\pm 2.0 dB$.
	The estimated combined standard uncertainty for EFT fast transient immunity measurements is \pm 6.0%.
	The estimated combined standard uncertainty for surge immunity measurements is \pm 5.0%.
	The estimated combined standard uncertainty for conducted immunity measurements is \pm 2.0 dB.
	The estimated combined standard uncertainty for power frequency magnetic field immunity measurements is $\pm 2.57\%$.
	The estimated combined standard uncertainty for voltage variation and interruption measurements is $\pm 4.89\%$.
\boxtimes	The estimated combined standard uncertainty for radiated emissions measurements is ± 4.6 dB.
	The estimated combined standard uncertainty for conducted emissions measurements is \pm 2.6 dB.
	The estimated combined standard uncertainty for harmonic current \pm 7.27% and flicker measurements is \pm 3.87%.

2.3 Calibration Traceability

All measurement instrumentation is traceable to the National Institute of Standards and Technology (NIST). Measurement method complies with ANSI/NCSL Z540-1-1994 and ISO Standard 17025:2005. Equipment calibration records are kept on file at the test facility.

Report No.: 30862280.001 Draeger FCC.doc

Page 9 of 68

2.4 Measurement Equipment Used

Equipment	Manufacturer	Model #	Re	f./Serial #	Last Cal dd/mm/yy	Next Cal dd/mm/yy	Test
BiLog	Chase	CBL6112A		2125	N/A	N/A	RI
BiLog	Chase	CBL6111		1169	29-June-07	29-June-09	RE
BiLog	Chase	CBL6111		1170	29-June-07	29-June-09	RE
Horn	EMCO	3115	C025	9512-4630	14-Jun-07	14-Jun-09	RE
Horn	EMCO	3115	C031	9812-5635	7-Feb-08	7-Feb-10	RE
LISN	Schwarzbeck	8121-200	C102	200	15-Jan-08	15-Jan-10	CE
LISN	Schwarzbeck	8121-131	C111	131	20-Dec-07	20-Dec-09	CE
LISN	Schwarzbeck	8121-128	C114	128	24-Jul-08	24-Jul-10	CE
ESD Gun	Schaffner	NSG 435	C200	1495	22-Jul-08	22-Jul-09	ESD
Precision Power Source	California Instruments	MDL 225500L/5	C210		N/A	N/A	HAR, FLI, VDSI
Power Analyzer	Voltech	PM3000A	C211	8992	6-May-08	6-May-09	FLI
Wideband (.01-230)	IFI	M75	C212	A295-0497	N/A	N/A	CI
Signal Generator	Marconi	2024	C213	112223122	19-Dec-07	19-Dec-08	RI
Signal Generator	HP	8657A	C214	312A04354	19-Dec-07	19-Dec-08	CI
Power Meter	HP	437B	C215	3125010240	19-Dec-07	19-Dec-08	CI
Power Supply & Control Module	IFI	PS 5000/28/40	C219	049-4146	N/A	N/A	RI
Wideband Amp (.01- 1000)	IFI	M5580	C220	0492-4146	N/A	N/A	RI
Coupling Decoupling 1 PH	FCC	FCC-801-M3-32	C221	106	07-Jan-08	07-Jan-09	CI
Attenuator 6dB (0- 1000MHz) 100W	JFW		C223		N/A	N/A	CI
Directional Coupler		62630	C224	5326	N/A	N/A	CI
CDN Adapter Kit	FCC	801-150-50 CDN	C225	752/753	04-Jan-08	04-Jan-09	CI
Calibration Fixture	FCC	801-2031-CF	C226	135	03-Jan-08	03-Jan-09	CI
EM Injection Clamp	FCC	F-2031	C227	259	03-Jan-08	03-Jan-09	CI
PS/Control Module	IFI	5000/28/40	C228	2245-1296	N/A	N/A	RI
Wideband Amp	IFI	CMX5001	C229	2244-1296	N/A	N/A	RI
Leveling PreAmplifier	IFI	LPA-5B	C230	2265-1296	N/A	N/A	RI

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 10 of 68

Field Monitor	Amplifier Research	FM5004		308114	N/A	N/A	RI
RF 900MHz Pulse Modulator	Schaffner	CPM9830	C240	1026	N/A	N/A	RI
Induction Coil (2.0m x 2.6m)	Haefely		C241		N/A	N/A	MF
Magnetic Field Test System	Haefely	MAG 100.1	C243	080-136-03	N/A	N/A	MF
Triaxial Field Meter	F.W.BELL	4080	C244		25-Apr-07	25-Apr-09	MF
Directional Coupler 0.8-4.2GHz	Amplifier Research	DC7144A	C251	307343	N/A	N/A	RI
Digitizing Oscilloscope 1GHz	Tektronix	TDS 784C	C254	B010847	17 Dec-07	17 Dec-08	SI, EFT VDSI
Field sensor	Amplifier Research	FP6001	C255	305319	6 Jun 08	6 Jun 09	RI
Power Sensor (100KHz- 4.2GHz)	Agilent	8482A	C256	MY41093835	18 Dec-07	18 Dec-08	CI
Power Meter	Gigatronics	8541B	C257	1828546	28-May-08	28-May-09	RI
Peak Power Sensor	Gigatronics	80350A	C258	1829770	16-May-08	16-May-09	RI
Coupling Decoupling 2 PH	FCC	FCC-801-M4 -32A	C260	07005	10-Jun-08	10-Jun-09	CI
Coupling Decoupling 1 PH	FCC	FCC-801-M3 -16A	C261	07021	10-Jun-08	10-Jun-09	CI
EMI Receiver	Rohde & Schwarz	ESVS 30	C310	826006/015	19-Dec-07	19-Dec-08	RE
Analyzer w RF Filter Section 85460A	НР	8546A	C311	3325A00127	23-Jul-08	23-Jul-09	RE, CE
Receiver (20Hz-40GHz)	Rohde & Schwarz	ESI 40	C320	839283/005	22-Jul-08	22-Jul-09	RE,CE
Receiver (20Hz-40GHz)	Rohde & Schwarz	ESIB 40	C321	100180	20-Jan-08	20-Jan-09	RE,CE
EMI Receiver	Rohde & Schwarz	ESHS 30	C323	831954/012	19-Dec-07	19-Dec-08	CE
Multimeter	Fluke	87	C405	49050672	5-May-08	5-May-09	All Tests
Clamp On Meter	Amprobe	RS-3	C410		17-Dec-07	17-Dec-08	MF
Temp./Humidity Chart Recorder	Honeywell		C418	637592	9-Jan-08	9-Jan-09	RE
Temp./Humidity Chart Recorder	Honeywell		C419	639971	8-Jan-08	8-Jan-09	Re
Passive HV Probe 100X	Fluke	80K-40	C434		24-Jul-08	24-Jul-09	ESD
Oscilloscope	Tektronics	2430	C435	8010532	23-Jul-08	23-Jul-09	EFT
Multimeter	Fluke	83	C437	48162892	24-Jul-08	24-Jul-09	RE
Amplifier (1-26.5 GHz.)	Agilent	8449B	C438	3008A01842	18-Dec-07	18-Dec-08	RE
Amplifier 1 - 18GHz	Rohde & Schwarz	TS-PR18	C439	122002/001	18-Jan-08	18-Jan-10	RE

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 11 of 68

Signal Generator (10M- 40GHz)	Rohde & Schwarz	SMR40	C440	100195	19-Dec-07	19-Dec-08	RI
Amplifier (18-26.5GHz)	Rohde & Schwarz	TS-PR18	C443	100005	22-Jul-08	22-Jul-08	RE
Digital Pressure/Temp/RH	Davis	Perception II	C444	40917	08-Jan-08	08-Jan-09	All tests
Multimeter	Fluke	87	C445	59890224	18-Dec-07	18-Dec-08	All tests
Power Analyzer	Voltech	PM6000	C446	100006700195	13-Dec-07	13-Dec-08	HAR, FLI, VDSI
Analyzer w RF Filter Section 85460A	НР	8546A	D004	3625A00356	23-Jul-08	23-Jul-08	RE, CE
ESD Gun	Schaffner	NSG 435	D005	1891	12 Dec-07	12 Dec-08	ESD
Fast Transient / Burst Generator	Schaffner	NSG2025	D007	109	18-Sep-07	18-Sep-08	EFT
Surge Immunity Test System	Schaffner	NSG2050	D008	199930- 007SC	18-Sep-07	18-Sep-08	SI
Pulse Coupling Network	Schaffner	CDN 133	D009	102	24-Sep-07	24-Sep-08	SI

Note: CE = Conducted Emissions, CI= Conducted Immunity, DP=Disturbance Power, EFT=Electrical Fast Transients, ESD = Electrostatic Discharge, FLI=Flicker, HAR=Harmonics, MF=Magnetic Field Immunity, RE=Radiated Emissions, RI=Radiated Immunity, SI=Surge Immunity, VDSI=Voltage Dips and Short Interruptions

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 12 of 68

3 Product Information

3.1 Product Description

See Section 6.4.

3.2 **Equipment Modifications**

No modifications were needed to bring product into compliance.

3.3 Test Plan

The EUT product information, test configuration, mode of operation, test types, test procedures, test levels, pass/failure criteria, in this report were carried out per the product test plan located in appendix A of this report.

The radio in this report was tested in two of Draeger Medical System, Inc. Products. The 2 products vary in size but the radio and antennae remained identical. The two models in which this radio was tested was M300 and the M540. The radio behaved identically in both models.

Report No.: 30862280.001 Draeger FCC.doc

Page 13 of 68

Figure 1 – External Photo of EUT

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 14 of 68

Figure 2 – Internal Photo of EUT

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 15 of 68

4 Emissions

4.1 Radiated Emissions

This test measures the electromagnetic levels of spurious signals generated by the EUT that radiated from the EUT and may affect the performance of other nearby electronic equipment.

Testing was performed in accordance with 47 CFR Part 15, ANSI C63.4:2005, RSS-210 Issue 7. These test methods are listed under the laboratory's NVLAP Scope of Accreditation. This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices

4.1.1 Over View of Test

Results	Complies (as tested	l per this	report)		Date	11/21/0	8	
Standard	FCC Part 15.209(a)							
Product Model	MS24895			Serial#	B7ZT	Н		
Configuration	See test plan for deta	ails						
Test Set-up	Tested on 10m O.A.	T.S. plac	ed on turn-t	able, see test	plans fo	or details		
EUT Powered By	Battery Operated	Temp	23°C	Humidity	54%	Pressure	1013mbar	
Frequency Range	30 - 1000 MHz @ 1	30 - 1000 MHz @ 10m						
Criteria	Class B. (Below Limit) Perf. Verification Readings Under Limit					imit		
Mod. to EUT	None	,	Test Perfe	ormed By	Randa	ll Masline		

4.1.2 Test Procedure

Radiated and FCC emissions tests were performed using the procedures of ANSI C63.4 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 30 - 1000 MHz was investigated for radiated emissions.

Radiated emission testing was first performed at a distance of 3 meters in the semi-anechoic chamber in order to identify the specific frequencies for which these measurements will be made on the 10 m OATS.

4.1.3 Deviations

There were no deviations from the test methodology listed in the test plan for the radiated emission test.

4.1.4 Final Test

All final radiated emissions measurements were below (in compliance) the limits.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 16 of 68

4.1.5 Final Graphs

Radiated E	missions	Measure	ements						
Standard:	EN 55022:	1998 Class	B/FCC Pa	rt 15.209(a	Finals	Date:	11/21/2008		
Device Tested	: Draeger Me	edical			3m	File .xls:	:	9	8
2	M	L easured Le	l vel						*
Meas#	Freq (MHz)	Quasi- Peak	Quasi- Peak Limit	Quasi- Peak Δ	Result	Antenna Polarization	Angle (degrees)	Antenna Height (meters)	Comment
1	60.2820	22.00	30.00	-8.00	Complied	Vertical	0	1.00	Maximum Emission
2	87.1920	19.20	30.00	-10.80	Complied	Vertical	0	1.00	22
3	242.2710	21.60	37.00	-15.40	Complied	Vertical	0	1.00	
4	352.4430	25.90	37.00	-11.10	Complied	Vertical	0	1.00	
5	160.6540	20.00	30.00	-10.00	Complied	Horizontal	0	1.00	
6	253.7400	23.20	37.00	-13.80	Complied	Horizontal	0	1.00	

Report No.: 30862280.001 Draeger FCC.doc

Page 17 of 68

4.1.6 Photos

Figure 3 - Radiated Emissions Test Setup

Report No.: 30862280.001 Draeger FCC.doc

Page 18 of 68

4.2 6dB and 99% Bandwidths; §15.247(a)(1), RSS-210 §5.9.1

The bandwidths are measured with a spectrum analyzer connected directly to the antenna termination, while the EUT is operating in transmission mode at the appropriate center frequency. Since the bin width is less than 0.5 RBW and the analyzer has 500 measurement points in the spectrum display, the sample detector was selected.

RBW = 100 kHz VBW = 100 kHz Span = 20 MHz Sweep = Auto			
Spectrum Analyzer	RF O	utput connecti	on
	Measurement Test set up		

802.11b								
Channel	Center Frequency (GHz)	6dB Bandwidth (MHz)	99% Power Bandwidth (MHz)					
1	2.412	10.39	14.28					
6	2.437	10.42	14.16					
11	2.462	10.51	14.16					

802.11g								
Channel	Center Frequency (GHz)	6dB Bandwidth (MHz)	99% Power Bandwidth (MHz)					
1	2.412	16.56	17.93					
6	2.437	16.56	18.05					
11	2.462	16.56	18.16					

Table 1 – Table of Results

Figure 4 - Plot of 802.11b Ch 1- 6dB bandwidth at 2.412 GHz Center Frequency

Figure 5 - Plot of 802.11b Ch 6 - 6dB bandwidth at 2.437 GHz Center Frequency

30862280.001 Draeger FCC.doc Report No.: Delta 1 [T1] RBW 100 kHz RF Att 50 dB Ref Lvl -0.03 dB 100 kHz VBW 16.2 dBm 10.51257425 MHz 14.5 ms dBm SWT Unit -3.8 dB Offset lacksquare1 [T1] .32 dBr 10 2.45680085 GHz [T1] .03 dB 0.51257425 MHz -D1 -5.2 dBm--D2 -12.25 IN1 1MA 1VIEW -20 -30 -50 -60 -80 Center 2.462 GHz 5.701928858 MHz/ Span 57.01928858 MHz Date: 28.OCT.2008 08:21:55

Figure 6 - Plot of 802.11b Ch 11- 6dB bandwidth at 2.462 GHz Center Frequency

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Page 21 of 68

30862280.001 Draeger FCC.doc Report No.: Delta 1 [T1] RBW 100 kHz RF Att 50 dB Ref Lvl 1.33 dB 100 kHz VBW 16.2 dBm 16.56873115 MHz dBm SWT 14.5 ms Unit -3.8 dB Offset lacksquare1 [T1] .19 dBr 10 2.40371 GHz [T1] .33 dB 6.56873115 MHz -D1 -6.2 dBm al Mayala -D2 -12.25 IN1 1MA 1VIEW -20 -30 Manhondhumanum hellman harmon har all all -50 -60 -80 Center 2.412 GHz 5.701928858 MHz/ Span 57.01928858 MHz Date: 28.OCT.2008 08:28:51

Figure 7 - Plot of 802.11g Ch 1 - 6dB bandwidth at 2.412 GHz Center Frequency

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Page 22 of 68

30862280.001 Draeger FCC.doc Report No.: Delta 1 [T1] RBW 100 kHz RF Att Ref Lvl 0.77 dB VBW 100 kHz 16.2 dBm 16.56873115 MHz SWT 14.5 ms Unit dBm -3.8 dB Offse lacksquare1 [T1] .91 dBn 10 2.4287 GH₂ .77 dB [T1] 5687 2 dBm -D1 -6. International Control -D2 -12.25IN1 1VIEW 1MA -20 -30 manny work was been been when the same of -80 Center 2.437 GHz 5.701928858 MHz/ Span 57.01928858 MHz 28.OCT.2008 08:27:08 Date:

Figure 8 - Plot of 802.11g Ch 6 - 6dB bandwidth at 2.437 GHz Center Frequency

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Page 23 of 68

Report No.:

IC: 5895B-MS24895

30862280.001 Draeger FCC.doc Delta 1 [T1] RBW 100 kHz RF Att 50 dB Ref Lvl 0.93 dB 100 kHz VBW 16.2 dBm 16.56873115 MHz dBm SWT 14.5 ms Unit -3.8 dB Offset lacksquare1 [T1] .86 dBr 10 2.45371 GHz [T1] .93 dB 6.56873115 MHz -D1 -6.2 dBm Muhhhhhhh -12.25 IN1 1MA 1VIEW -20 -30 Manufacture Manufacture of the second of the May May make a manual m -50 -60 -80 Center 2.462 GHz 5.701928858 MHz/ Span 57.01928858 MHz Date: 28.OCT.2008 08:25:07

Figure 9 - Plot of 802.11g CH 11- 6dB bandwidth at 2.462 GHz Center Frequency

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Page 24 of 68

Figure 10 - Plot of 802.11b Ch 1 99% bandwidth at 2.412 GHz Center Frequency

Figure 11 - Plot of 802.11b Ch 6 99% bandwidth at 2.437 GHz Center Frequency

Figure 12 - Plot of 802.11b Ch 11 99% bandwidth at 2.462 GHz Center Frequency

Figure 13 - Plot of 802.11bg Ch 1 99% bandwidth at 2.412 GHz Center Frequency

Figure 14 - Plot of 802.11g Ch 6 99% bandwidth at 2.437 GHz Center Frequency

Figure 15 - Plot of 802.11g Ch 11 99% bandwidth at 2.462 GHz Center Frequency

Report No.: 30862280.001 Draeger FCC.doc

Page 31 of 68

4.3 Output Power; FCC §§15.247(b), 15.31(e), RSS-210 §6.2.2(o)(b)

The transmitter output was connected to the input of a spectrum analyzer. The measurement is made while the EUT is operating in a continuous transmission mode at the appropriate center frequency. Since the bin width is less than 0.5 RBW and the analyzer has 500 measurement points in the spectrum display, the sample detector was selected.

4.3.1 Test Procedure

In accordance with The Measurement of Digital Transmission System Operating under Section 15.247 released March 23, 2005 the following method was used for Power Output Measurements.

Power Output Option 1 - Method #1 - Span to encompass the entire emission bandwidth (EBW) of the signal. The spectrum analyzer's built-in Channel Power function was used to measure peak power for the -26dB emission bandwidth.

Test Setup:

Spectrum Analyzer

RF Output connection

4.3.1.1 Results

802.11g			
	Center	-26dB	
Channel	Frequency	Bandwidth	Peak Power
	(GHz)	(MHz)	(dBm)
1	2.412	25	12.75
6	2.437	25	12.76
11	2.462	25	12.76
802.11b			
	Center	-26dB	
Channel	Frequency	Bandwidth	Peak Power
	(GHz)	(MHz)	(dBm)
1	2.412	18.5	10.15
6	2.437	18.5	10.50
11	2.462	18.5	10.95

Table 2 – Peak Output Power

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 32 of 68

Figure 16 - Peak Power Output for 802.11g Ch 1

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 33 of 68

Figure 17 - Peak Power Output for 802.11g Ch 6

Report No.: 30862280.001 Draeger FCC.doc

Page 34 of 68

Figure 18 - Peak Power Output for 802.11g Ch 11

Figure 19 - Peak Power Output for 802.11b Ch 1

Figure 20 - Peak Power Output for 802.11b Ch 6

Date: 28.OCT.2008 11:03:21

Figure 21 - Peak Power Output for 802.11b Ch 11

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 38 of 68

4.3.2 Peak Power Antenna Gain

The transmitting antennas do not have gains greater than 6dBi. Therefore per FCC §15.247(b)(4), the intentional radiator's power output need not be reduced, and the maximum peak output power of the intentional radiator will remain at 30dBm. The following antenna data was provided by the applicant:

The antennas are supplied by a third party, with the following maximum gains:

2.4GHz Band: 2.4dBi

The antenna structure utilizes a dipole-like structure for each band and is thus ground independent. The dual antennas allow switched diversity, however antenna combining and/or active beam-forming is not possible (only one antenna may transmit at a time for each band).

Power Limit References

§15.247(b) The maximum peak output power of the intentional radiator shall not exceed the following:

§15.247(b)(3) For systems using digital modulation in the 902-928MHz, 2400-2483.5MHz and 5725-5850MHz bands: 1 Watt (30dBm)

§15.247(b)(4) Except as shown in paragraphs (b)(3)(i), (ii), and (iii) of this section, if transmitting antennas of directional gain greater than 6dBi are used the peak output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1) or (b)(2) of this section, as appropriate by the amount in dB that the directional gain of the antenna exceeds 6dBi.

§6.2.2(o)(b) For the band 2400-2483.5 MHz, the transmitter output power shall not exceed 1.0 watt.

Report No.: 30862280.001 Draeger FCC.doc

Page 39 of 68

4.4 Peak Power Spectral Density; FCC §15.247(e), RSS-210 §6.2.2(o)(b)

4.4.1 Test Procedure

The transmitter output is connected to a spectrum analyzer. The sample detector and power averaging (not video averaging) mode was used. The analyzer was set with; RBW= 3 kHz and VBW > 3 kHz. The PPSD is the highest level found across the emission in any 3-kHz band after 100 sweeps of averaging. This method is permitted only if the transmission pulse or sequence of pulses remains at maximum transmit power throughout each of the 100 sweeps of averaging and that the interval between pulses is not included in any of the sweeps (e.g., 100 sweeps should occur during one transmission, or each sweep gated to occur during a transmission). The Peak Power Spectral Density measurements were performed using the sample detector and power averaging mode.

Measurement Test set up

Table 3 – Table of PPSD Results

	802.11b			
Center Frequency (GHz)	Peak Frequency (GHz)	Peak Power Spectral Density (dBm)		
2.412 - low	2.4137	-18.82		
2.426 - mid	2.4387	-18.43		
2.467 - high	2.4637	-18.53		

	802.11g	
Center	Peak Frequency	Peak Power
Frequency	(GHz)	Spectral Density
(GHz)	(GHZ)	(dBm)
2.412 - low	2.4195	-21.57
2.426 - mid	2.4313	-23.37
2.467 - high	2.4638	-22.72

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 40 of 68

Figure 22 – 802.11b Ch 1Peak Power Spectral Density

Figure 23 – 802.11b Ch 6 Peak Power Spectral Density

Figure 24 – 802.11b Ch 11 Peak Power Spectral Density

Figure 25 – 802.11g Ch 1 Peak Power Spectral Density

Figure 26 – 802.11g Ch 6 Peak Power Spectral Density

28.OCT.2008 13:39:57

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Date:

Figure 27 – 802.11g Ch 11 Peak Power Spectral Density

Report No.: 30862280.001 Draeger FCC.doc

Page 46 of 68

4.5 Band-Edge Measurement FCC §15.247(d), RSS-210 §6.2.2(o)(e1)

4.5.1 Test Procedure

The conducted measurement method was used where the band-edge is measured at 20dB below the highest inband density measured, while the EUT is operating in continuous transmissions mode at the appropriate center frequencies.

Conducted emissions band-edge measurements were made at the 2390 and 2483.5MHz restricted band edges in accordance with the requirements of §15.205 using the limits in 15.209.

Test Setup:

Table 4 — Band-Edge Results

	802.11g - Restricted band edge:											
Center Frequency (MHz)	Band Edge (MHz)	Amplitude at restricted band (dBµV)Pk	Amplitude at restricted band (dBµV)Av	Peak Limit at restricted band (dBµV)	Average Limit at restricted band (dBµV)	Margin to Peak Limit (dBµV)	Margin to Av. Limit (dBµV)					
2412	2390	54.48	46.54	74	54	-19.52	-7.46					
2462	2483.5	55.61	43.56	74	54	-18.39	-10.44					

	802.11b - Restricted band edge:											
Center Frequency (MHz)	Band Edge (MHz)	Amplitude at restricted band (dBµV)Pk	Amplitude at restricted band (dBµV)Av	Peak Limit at restricted band (dBµV)	Average Limit at restricted band (dBµV)	Margin to Peak Limit (dBµV)	Margin to Av. Limit (dBµV)					
2412	2390	53.83	41.94	74	54	-20.17	-12.06					
2462	2483.5	50.17	36.80	74	54	-23.83	-17.2					

Note: The restricted band edge measurement was performed using the provision of FCC§15.35(b), the peak and average limits were used for this test. The peak limit is calculated to be 20dB higher than the average limit. The average limit at the restricted band is $54dB\mu V$.

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 47 of 68

4.6 Spurious Emissions; FCC §15.247(c), RSS-210 Annex 9

4.6.1 Test Procedure

4.6.1.1 Preliminary Test

A test program that controls instrumentation and data logging was used to automate the preliminary RF emission test procedure. The frequency range of interest was divided into sub-ranges to yield a frequency resolution of approximately 300 kHz and provide a reading at each frequency for each 6° of turntable rotation. For each frequency sub-range the turntable was rotated 360° while peak emission data was recorded and plotted over the frequency range of interest in horizontal and vertical antenna polarization's.

Preliminary emission profile testing was performed inside the anechoic chamber. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the floor. The EUT was positioned as shown in the setup photographs. The receiving antenna was placed at a distance of 3m at a fixed height of 1m. Measurement equipment was located outside of the chamber. A video camera was placed inside the chamber to view the EUT.

4.6.1.2 Final Test

For each frequency measured, the peak emission was maximized by manipulating the receiving antenna from 1 to 4 meters above the ground plane and placing it at the position that produced the maximum signal strength reading. The turntable was then rotated through 360° while observing the peak signal and placing the EUT at the position that produced maximum radiation.

Final testing was performed on an NSA compliant test site. The EUT was placed on a 1.0m x 1.5m non-conductive table 80cm above the ground plane. The placement of EUT and cables were the same as for preliminary testing and is shown in the setup photographs.

The Quasi-Peak (QP) detector was used for frequencies at or less than 1000 MHz.

Above 1000 MHz, the Average (Av) detector was used, and per part 15.35(b), the Peak limit is 20dB above the average limit.

4.6.1.3 Deviations

There were no deviations from this test methodology.

4.6.2 Test Results

All harmonic emissions are more than 20dB below the fundamental frequencies

All emissions including emissions in all restricted bands, other than the fundamental frequencies and their harmonics, are below the 15.209 limits. As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 48 of 68

4.6.3 Finals for Radiated Emissions from 30-1000 MHz

Radiated E	missions	Measure	ements						
Standard:	EN 55022:	1998 Class	B/FCC Pa	rt 15.209(a	Finals	Date:	11/21/2008		
Device Tested	I: Draeger Me	Draeger Medical		3m	File .xls:				
3:	M	L easured Le	l vel		100				
Meas#	Freq (MHz)	Quasi- Peak	Quasi- Peak Limit	Quasi- Peak Δ	Result	Antenna Polarization	Angle (degrees)	Antenna Height (meters)	Comment
1	60.2820	22.00	30.00	-8.00	Complied	Vertical	0	1.00	Maximum Emission
2	87.1920	19.20	30.00	-10.80	Complied	Vertical	0	1.00	3
3	242.2710	21.60	37.00	-15.40	Complied	Vertical	0	1.00	
4	352.4430	25.90	37.00	-11.10	Complied	Vertical	0	1.00	
5	160.6540	20.00	30.00	-10.00	Complied	Horizontal	0	1.00	
6	253.7400	23.20	37.00	-13.80	Complied	Horizontal	0	1.00	2

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Report No.: 30862280.001 Draeger FCC.doc

Page 49 of 68

4.6.4 Finals for Spurious Emissions from 1 – 26.5 GHz

A spectrum analyzer/EMI Test receiver is connected to the output of the transmitter via a suitable attenuator while the EUT was operating in transmit mode using the assigned frequency.

Measurements were made using the conducted method. The EUT Transmit in both 802.11 b & g modes

It was found that 802.11g produces a higher emission and therefore all measurements were made while transmitting in 802.11g mode.

Spurious Emission measurements were made up to 26.5 GHz, nothing was found after the highest emissions listed below

Analyzer settings: For spurious emission not in restricted bands.

Detector: Max hold RBW: 100 kHz VBW: ≥ RBW

Sweep Time: Coupled Detector Function: Peak

Analyzer settings: For spurious emission in restricted bands.

Detector: Max hold RBW: 1 MHz

 $VBW: \ge RBW$

Sweep Time: Coupled Detector Function: Peak

Table 5 – Spurious Emissions

	802.	11g						
Channel	Restricted Band (X)	Measured Frequency (MHz)	Level PK (dBµV)	Level AV (dBµV)	Limit PK (dBµV)	Limit AV (dBµV)	PK Delta (dB)	AV Delta (dB)
1	X	4824	58.60	48.32	74	54	-15.4	-5.68
1		6993	48.08	32.93	74	54	-25.92	-21.07
1	X	12062	52.13	28.40	74	54	-21.87	-25.6
6	X	4869	58.35	47.61	74	54	-15.65	-6.39
6		6615	49.01	28.9	74	54	-24.99	-25.1
6	X	12185	55.11	33.5	74	54	-18.89	-20.5
11	X	4920	58.50	47.63	74	54	-15.5	-6.37
11		6615	48.18	35.49	74	54	-25.82	-18.51
11	X	12304	59.0	43.74	74	54	-15	-10.26

Report No.: 30862280.001 Draeger FCC.doc

Page 50 of 68

4.6.4.1 Radiated Emissions outside the Frequency Band

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power, based on radiated measurements.

The EUT was scanned up to 40 GHz for Spurious Emissions. No emissions were found beyond 26.5 GHz

Figure 28 – 802.11g Ch 1

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Rev 1.0

Report No.: 30862280.001 Draeger FCC.doc

Page 51 of 68

Date: 4.NOV.2008 15:36:40

Figure 29 – 802.11g Ch 6

IC: 5895B-MS24895

Report No.:	3086228	30862280.001 Draeger FCC.doc						
Ref Lvl		RBW	1 MHz	RF Att	10 dB			
107 db y V	2.464929	986 GHz SWT	760 ms	Unit	db y v			
0.0			▼1 [T1]	107.	.68 db y V			
			▲1 [T1]	-60	.18 dB			
90				2.40432	JOO GIIZ			
30								
1VIEW					1			
50								
50	1				1			
10 VVV	househour	mulhamana	mentenden	wwww	monde			
30								
20								
-0								

Figure 30 – 802.11g Ch 11

4.NOV.2008 15:12:57

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 53 of 68

Figure 31 – 802.11g Ch 11, 5GHz – 12.5 GHz

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 54 of 68

Figure 32 – 802.11g Ch 11, 12.5GHz – 20 GHz

Report No.:

30862280.001 Draeger FCC.doc

IC: 5895B-MS24895

report ito	0000220	0.00 i Di	acger i	00.000			r ago c	~
Ref Lvl	Marker 1 [T1]	11 dBm				RF Att	10 dB	
	26.174348					Unit	dB	m
-3.8 dB Offse	t I			▼ 1	[T1]	-77	.11 dBı	m
.0						26.17434	870 GH:	Z
2.0								1
30								
1VIEW								
0								
50								_
70								4
							1	
O WHATHAIR WALLOW	mundy	~~~~~	www	the state of the s	Why make	white the same of	<u> </u>	J
0 0								1
00								
Start 20 GHz		650 M	MHz/			Stop 2	26.5 GH2	z

Figure 33 – 802.11g Ch 11, 20 GHz – 26.5 GHz

29.OCT.2008 13:11:56

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Page 55 of 68

Date:

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 56 of 68

4.7 Conducted Emissions

This test measures the electromagnet levels of spurious signals generated by the EUT on the AC power line that may affect the performance of other near by electronic equipment.

4.7.1 Over View of Test

Results	Complies (as tes	sted per th	is report)		Date	11/21/08	3		
Standard	FCC Part 15.209(FCC Part 15.209(a)							
Product Model	MS24895			Serial#	B7ZTH				
Configuration	See test plan for d	See test plan for details							
Test Set-up	Tested in shielded	l room	EU	JT placed on t	placed on table see test plans for details				
EUT Powered By	Battery Operated	Temp	23° C	Humidity	54%	Pressure	1013mbar		
Frequency Range	150kHz - 30MHz	Z							
Criteria	Class B (Below Limit) Perf. Veri		erification	Readings Under Limit for L1 and L2					
Mod. to EUT	None		Test Pe	rformed By	Randal	l Masline			

4.7.2 Test Procedure

Conducted and FCC emissions tests were performed using the procedures of ANSI C63.4 including methods for signal maximizations and EUT configuration. The photos included with the report show the EUT in its maximized configuration.

The frequency range from 150kHz - 30MHz was investigated for conducted emissions.

Conducted Emissions measurements were performed in the shielded room using procedures specified in the test plan and standard.

4.7.3 Deviations

There were no deviations from the test methodology listed in the test plan for the conducted emission test.

4.7.4 Final Test

All final conducted emissions measurements were below (in compliance) the limits.

Report No.: 30862280.001 Draeger FCC.doc

Page 57 of 68

4.7.5 Final Graphs

NOTES:

Conducted Emissions @ 120V/60Hz

Line / Neutral

Frequency	Peak	QP	Delta QP-QP Limit	Avg	Delta Avg-Avg Limit	Transducer Correction	Cable Correction
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB
0.156	39.1	32.1	-33.5	20.5	-35.2	0.1	0.0
1.201	35.4	30.0	-26.0	20.8	-25.2	0.1	0.3
1.401	36.2	30.1	-25.9	20.3	-25.7	0.1	0.3
1.645	36.3	30.4	-25.6	20.9	-25.1	0.1	0.3
1.832	36.2	29.5	-26.5	19.6	-26.4	0.1	0.3
2.226	34.3	27.2	-28.8	18.2	-27.8	0.1	0.3

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Report No.: 30862280.001 Draeger FCC.doc

Page 58 of 68

NOTES:

Conducted Emissions @ 120V/60Hz

Line / Neutral

Neutral - 120VAC/50Hz

 $11/21/2008\ 2:12:54\ PM$ (Start = 0.15, Stop = 30.00) MHz

Frequency	Peak	QP	Delta QP-QP Limit	Avg	Delta Avg-Avg Limit	Transducer Correction	Cable Correction
MHz	dBuV	dBuV	dB	dBuV	dB	dB	dB
0.150	42.2	36.5	-29.5	20.0	-35.9	0.1	0.0
0.807	32.7	26.2	-29.8	16.5	-29.5	0.1	0.2
1.273	34.7	27.4	-28.6	17.5	-28.5	0.1	0.3
1.505	33.6	26.8	-29.2	18.0	-28.0	0.1	0.3
1.706	33.5	27.4	-28.6	18.4	-27.6	0.1	0.3
1.923	32.9	26.6	-29.4	17.9	-28.1	0.1	0.3

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

Report No.: 30862280.001 Draeger FCC.doc

Page 59 of 68

4.7.6 Photos

Figure 34 –Conducted Emissions Test Setup (front)

Report No.: 30862280.001 Draeger FCC.doc

Page 60 of 68

4.8 Frequency Stability FCC §15.215(c),

4.8.1 Test procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

4.8.2 Voltage Variation

The ac supply voltage was varied between 85% and 115% of the nominal rated supply voltage. No change in fundamental frequency was observed during the variation. The equipment was found to be compliant.

4.8.3 Temperature Testing

The EUT was placed in a temperature chamber that was increased in 10° steps from the extremes of equipment operation from 0°C to +30°C (For equipment intended for use indoors). No change in fundamental frequency or bandwidth was observed during this period. The equipment complied with the specification.

Temperature (°C)	Channel	Frequency (GHz)	Frequency Range (GHz)	e.i.r.p (dBm)	e.i.r.p Limit -20dBm
0°C	1	2.412	2.4 - 2.4835	15.15	-4.85
0°C	6	2.437	2.4 - 2.4835	15.16	-4.84
0°C	11	2.462	2.4 - 2.4835	15.16	-4.84
+10 & +20°C	1	2.412	2.4 - 2.4835	15.15	-4.85
+10 & +20°C	6	2.437	2.4 - 2.4835	15.16	-4.84
+10 & +20°C	11	2.462	2.4 – 2.4835	15.16	-4.84
+35°C	1	2.412	2.4 – 2.4835	15.15	-4.85
+35°C	6	2.437	2.4 – 2.4835	15.16	-4.84
+35°C	11	2.462	2.4 - 2.4835	15.16	-4.84

Table 6 – Temperature Table for equipment intended for indoor use only

Transmit using highest emissions at 802.11g

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®
Precisely Right.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 61 of 68

4.8.4 Photos

Figure 35 – Temperature Test Setup

Report No.: 30862280.001 Draeger FCC.doc

Page 62 of 68

4.9 RF Exposure Measurement (Portable Device) 15.247(i)

4.9.1 Test Methodology

In this document, we try to prove the safety of radiation harmfulness to the human body for our product. The limit for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 is followed. The Gain of the antenna used in this product is measured in a Semi-Anechoic Chamber, and also the maximum total power input to the antenna is measured. Through the Friis transmission formula (see section 4.9.6) and the maximum gain of the antenna, we can calculate the distance, away from the product, where the limit of MPE is reached.

Although the Friis transmission formula is a far field assumption, the calculated result of that is an over-prediction for near field power density. We will take that as the worst case to specify the safety range.

4.9.2 RF Exposure Limit

According to FCC 1.1310 table 1: The criteria listed in the following table shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ₂)	Average Time (minutes)				
(A)Limits For Occupational / Control Exposures								
300-1500			F/300	6				
1500-100,000			5	6				
(B)Limits For General Population / Uncontrolled Exposure								
300-1500			F/1500	6				
1500-100,000			1.0	30				

F = Frequency in MHz

Report No.: 30862280.001 Draeger FCC.doc

Page 63 of 68

4.9.3 EUT Operating condition

The software provided by Manufacturer enabled the EUT to transmit data at lowest, middle and highest channel individually.

4.9.4 Classification

The antenna of the product, under normal use condition, may be located within 20cm from the body of the user. So, this device is classified as a **Portable Device**.

4.9.5 Test Results

4.9.5.1 Antenna Gain

The maximum Gain measured in Semi-Anechoic Chamber is 2.4 dBi or 1.73 (numeric).

4.9.5.2 Output Power into Antenna & RF Exposure value at distance 20cm:

Calculations for this report are based on highest power measurement and the highest gain of the antenna. Limit for MPE (from FCC part 1.1310 table 1) is 1.0 mW/cm²

Highest Pout is 12.76mW, highest antenna gain (in linear scale) is 1.73, and R is 20cm.

Pd = $(12.76*1.73) / (4* \pi* 400) = 0.00439 \text{ mW/cm}^2$, which is 0.99561 mW/cm² below to the limit.

As originally tested, the EUT was found to be compliant to the requirements of the test standard(s).

4.9.6 Sample Calculation

The Friis transmission formula: $Pd = (Pout*G) / (4*\pi*R^2)$

Where;

Pd = power density in mW/cm² Pout = output power to antenna in mW G = gain of antenna in linear scale $\pi \approx 3.1416$

R = distance between observation point and center of the radiator in cm

If we know the maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the MPE value at distance r.

Ref.: David K. Cheng, Field and Wave Electromagnetics, Second Edition, Page 640, Eq. (11-133).

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 64 of 68

Appendix A

5 Test Plan

This test report is intended to follow this test plan outlined here in unless other wise stated in this here report. The following test plan will give details on product information, standards to be used, test set ups and refer to TUV test procedures. The test procedures will give the steps to be taken when performing the stated test. The product information below came via client, product manual, product itself and or the internet.

5.1 General Information

Client	Draeger Medical Systems, Inc.
Address	6 Tech Drive
Address	Andover, MA 01810
Contact Person	Georgios Kokovidis
Telephone	978-379-8148
Fax	978-379-8338
e-mail	george.kokvidis@draeger.com

5.2 Model(s) Name

MS24895

5.3 Type of Product

802.11 b/g wireless adapter

IC: 5895B-MS24895

30862280.001 Draeger FCC.doc Report No.: Page 65 of 68

5.4 Equipment Under Test (EUT) Description

The EUT is an 802.11b/g wireless adapter.

Modifications 5.5

No modifications were needed for Compliance with respective standards.

5.6 Product Environment

Residential	\boxtimes	Hospital
Light Industrial	\boxtimes	Small Clinic
Industrial	\boxtimes	Doctor's office
Other		

^{*}Check all that apply

5.7 **Countries**

\boxtimes	USA
	Taiwan
	Japan
	Europe

^{*}Check all that apply

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 66 of 68

5.8 General Product Information

Size	Н	0.5cm	W	1.2cm	L	1.8cm
Weight	<1kg	5	Fork-	Lift Needed	No	
Notes						

5.9 EUT Electrical Powered Information

5.9.1 Electrical Power Type

AC DC Batteries Host -

5.9.2 Electrical Power Information

Name		Type	Voltage		Frequency	Current	Notes
			min	max			
Charger		AC	100	240	50/60		
Notes	Notes The EUT operated by battery only but can be placed in a battery charger that operated on AC						ed on AC

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc Page 67 of 68

5.10 Electrical Support Equipment

Туре	Manufacture	Model	Connected To
PC			EUT via USB cable for testing only

5.11 Non - Electrical Support Equipment

Item	Notes
Gas	N/A
Water	N/A

5.12 EUT Equipment/Cabling Information

EVE D	G IT		Cable Type			
EUT Port	Connected To	Connected To Location		Shielded	Bead	
N/A						

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.

TÜVRheinland®

IC: 5895B-MS24895

Report No.: 30862280.001 Draeger FCC.doc

Page 68 of 68

5.13 EUT Test Program

The EUT was connected via USB to a PC for testing only, the testing software is PCTI_Text.exe Version 1.3.0 Build ID-34659 made by connectBlue, Malmo, Sweden.

5.14 Monitoring of EUT during Testing

The EUT via front panel display and while in chamber cameras were used to ensure operation.

5.15 Block Diagram

The test results contained in this report refer exclusively to the product(s) presented for testing. No liability may be assumed for models or products not referred to herein. This test report may not be published or duplicated in part without permission of the testing body. This test report by itself does not constitute authorization for the use of any TUV Rheinland test mark. This report must not be used by the applicant to claim product endorsement by TUV Rheinland, NVLAP or any agency of the United States Government.