Interview Questions And Answers

by

Love Kumar DEPARTEMENT OF COMPUTER SCIENCE

DECLARATION

I, Love Kumar, hereby declare that, this report entitled "Interview Questions And Answers" submitted towards partial requirement of Bachelor of Technology in Computer Science is an original work carried out by me and has not formed the basis for the award of any degree or diploma, I have sincerely tried to uphold the academic ethics and honesty.

Kottayam-686635

Love Kumar

November 2020

Contents

List of Figures				
1	python			
	1.1	Differe	ence Between Iterator VS Generator	2
	1.2	Lists		3
	1.3	SETS		3
	1.4	Dictio	naries	3
	1.5	Tuples	3	4
2	Ma	chine l	earning	5
	2.1	Machi	ne Learning Core Interview Question	6
		2.1.1	Q1. What are the different types of Machine Learning?	6
		2.1.2	Q2. How does Deep Learning differ from Machine	
			Learning?	7
		2.1.3	Q3	7
		2.1.4	Q3. When Will You Use Classification over Regression?	7
		2.1.5	Q4. Explain Classification and Regression	9

List of Figures

Chapter 1

python

1.1 Difference Between Iterator VS Genera-

\mathbf{tor}

Iterator	Generator		
Iterators are used mostly to iterate or con-	Generators are mostly used in loops to generate		
vert other objects to an iterator using iter()	an iterator by returning all the values in the		
function.	loop without affecting the iteration of the loop		
Iterator uses iter() and next() functions	Generator uses yield keyword		
Every iterator is not a generator	Every generator is an iterator		
<pre>iter_list = iter(['Geeks', 'For',</pre>	def sq_numbers(n):		
'Geeks'])	for i in range $(1, n+1)$:		
<pre>print(next(iter_list))</pre>	yield i*i		
<pre>print(next(iter_list))</pre>	$a = sq_numbers(3)$		
<pre>print(next(iter_list))</pre>	print("The_square_of_1,2,3_are_:_")		
	print(next(a))		
#output	print(next(a))		
Geeks 2	print(next(a))		
For	output-> The square of 1,2,3 are :		
Geeks	1		
	4		
	9		

1.2 Lists

A list is a data structure in Python that is a mutable, or changeable, ordered sequence of elements. Each element or value that is inside of a list is called an item. Just as strings are defined as characters between quotes, lists are defined by having values between square brackets [].

```
lst.append(["Hello","World"])
lst.pop()
```

1.3 SETS

A Set is an unordered collection data type that is iterable, mutable, and has no duplicate elements. Python's set class represents the mathematical notion of a set. This is based on a data structure known as a hash table

```
set_var = set()

set_var = \{1, 2, 3, 4, 3\}
```

1.4 Dictionaries

A dictionary is a collection which is unordered, changeable and indexed. In Python dictionaries are written with curly brackets, and they have keys and values.

```
dic={}
```

```
my_dict={"Car1": "Audi", "Car2":"BMW", "Car3":"Mercidies_Benz"}
for x in my_dict:
    print(x)
Car1
Car2
```

1.5 Tuples

Tuples are used to store multiple items in a single variable. A tuple is a collection which is ordered and unchangeable.

```
my_tuple=tuple()
my_tuple=("Krish","Ankur","John")
```

Chapter 2

Machine learning

2.1 Machine Learning Core Interview Question

2.1.1 Q1. What are the different types of Machine Learning?

	supervised	Unsupervised	Reinforcement	
Definition	The machine learns by	The machine is	An agent interacts	
	using labelled data	trained on labelled	with its environment	
		data without any	by producing actions	
		guidance	& discovers errors or	
			rewards	
Types of Prob-	Regression or Classifi-	Association or Classi-	Reward Based	
lems	cation	fication		
Types of Data	Labelled Data	Unlabelled Data	No pre-defined data	
Training	External Supervision	No Supervision	No Supervision	
Approach	Map Labelled input to	Understand pattern	Follow hit & trail and	
	known output	and discover output	error method	

		supervised		Unsupervised		Reinforcement	
Popular	Algo-	Linear	regression,	K-means,	C-means,	Q-Learning,	SARSA,
rithms		Logistic	regression,	etc		etc	
		SVM, KNN, etc					

2.1.2 Q2. How does Deep Learning differ from Machine Learning?

Deep Learning	Machine Learning
Deep Learning is a form of machine learning	Machine Learning is all about algorithms
that is inspired by the structure of the human	that parse data, learn from that data, and
brain and is particularly effective in feature	then apply what they've learned to make in-
detection.	formed decisions.

2.1.3 Q3

2.1.4 Q3. When Will You Use Classification over Regression?

Classification is used when your target is categorical, while regression is used when your target variable is continuous. Both classification and regression belong to the category of supervised machine learning algorithms.

2.1.5 Q4. Explain Classification and Regression

Classification	Regression
The task of the classification algorithm is to	The task of the Regression algorithm is to
find the mapping function to map the in-	find the mapping function to map the input
put(x) to the discrete output(y).	variable(x) to the continuous output vari-
	able(y).
Example: The best example to understand	Example: Suppose we want to do weather
the Classification problem is Email Spam De-	forecasting, so for this, we will use the Re-
tection. The model is trained on the basis	gression algorithm. In weather prediction,
of millions of emails on different parameters,	the model is trained on the past data, and
and whenever it receives a new email, it iden-	once the training is completed, it can easily
tifies whether the email is spam or not. If the	predict the weather for future days.
email is spam, then it is moved to the Spam	
folder.	
Classification algorithms are used to predic-	Regression algorithms are used to predict the
t/Classify the discrete values such as Male or	continuous values such as price, salary, age,
Female, True or False, Spam or Not Spam,	etc.
etc.	
Types of ML Classification Algorithms:	Types of Regression Algorithm:
Logistic Regression	Simple Linear Regression
K-Nearest Neighbours	Multiple Linear Regression
Support Vector Machines	Polynomial Regression
Kernel SVM	Support Vector Regression
Naïve Bayes	Decision Tree Regression
Decision Tree Classification	Random Forest Regression
Random Forest Classification	