COLLEGE of TECHNOLOGY

Modular R.O.V for Sub-Sea Operations

OLUYEMI FARAYIBI

JUAN GOMEZ

GUSTAV GUIJT

DAVID MARTINEZ

VICTOR ORTIZ

INTRODUCTORY PRESENTATION 09/28/2015

ROV Presentation Outline

- ▶ What is an ROV?
- ► A Brief History of ROVs
- ► The Problem in the Industry
- ▶ Project Goals
- **▶** The MATE Competition
- ▶ ROV Systems
- **▶** Basic Frame Designs
- Design Comparison and Selection Criteria

- ► CAD Designs
- **▶** Project Timeline
- **▶** Estimated Expenditures
- ▶ Goals for the next presentation
- Questions/Comments

COLLEGE of TECHNOLOGY

What is an ROV?

- ► [R] Remotely
- ► [O] Operated
- ▶ [V] Vehicle

- ▶ Used in:
 - ▶ National Defense.
 - ► Resource Extraction.
 - ► Science.
 - ► Telecommunications.
 - ► Search and Recovery.

- ► Construction, Inspection, and Maintenance.
- ► Archaeology
- ► Recreation and Entertainment.
- **▶** Education.

A Brief History of ROVs

- ► Existed in one form or another since 1860s.
- ▶ In 1953 the first tethered ROV was developed.
- During the 1960s the Navy funded advances in the Remotely Operated Vehicles.

- ▶ During the 1970s and 1980s, commercial firms started utilizing ROVs in subsea drilling operations.
- ► ROVs now operate at 10,000 feet to support drilling.
- Record depth of almost 35,791 feet reached by the Japanese Kaiko Ultra-Deep ROV in 1995

The Problem in the Industry

- ► ROVs can be Bulky to fit all the sensors and devices.
- ► Larger and heavier designs require stronger motors to overcome the weight and drag, leading to less maneuverability.

COLLEGE of TECHNOLOGY

Project Goals

2016 Mate ROV Competition

- ► MATE Center was founded in 2001.
 - ► Teach STEM and prepare students for technical careers.
- **▶** Competition Classes:
 - ► Scout- Beginner
 - ► Navigator- Intermediate
 - ► Ranger- Moderate
 - ► Explorer- Advance

COLLEGE of TECHNOLOGY

ROV Systems

- **▶** Frame
- ▶ Control Systems
 - ► Micro-controller, Camera, Lights
- ► Propulsion Systems
- ▶ Buoyancy (Ballast vs. Foam)
- ▶ Deployment
 - ► How to get in and out of water.
- ▶ Tether Management System
- **▶** Operational Components:
 - ▶ Pressure Transducer
 - ▶ Water-Current Flow Meter
 - Control Arm

COLLEGE of TECHNOLOGY

Basic Frame Types

Rectangular Prism

Pros:

Cons:

Pros:

Cons:

Octagonal

Cylindrical

Pros:

Cons:

Pros:

Cons:

Flat

COLLEGE of TECHNOLOGY

Design Comparison and Selection Criteria

	Maneuverab ility	Hydro- dynamics	Internal Space Utilization	Modular Optimization	Corrosion Resistance	Totals
Rectangular	1	1	2	3	5	12
Cylindrical	3	4	3	1	5	16
Octagonal	4	3	2	3	5	17
Flat	2	3	3	2	5	16

CAD Designs

Project Timeline

Estimated Expenditures

- ► Frame → \$70 to \$300
 - ► CPVC (~\$70), PVC (~\$250), Aluminum (~\$150)
- \rightarrow Baseboard \rightarrow \$50 to \$80
 - ► Plastic (~\$50), Aluminum (~\$80)
- ► Thrusters (Minimum 5, up to 8) \rightarrow \$600 to \$2400
- ► Ballast → \$100 to \$400
- ► Watertight Enclosures → \$50 to \$200
- ► Controllers and Cables → \$200 to \$600
- ► Camera/s → \$50 to \$500
- ▶ Pressure Sensors → \$20 to \$200
- ► Arms → \$800 to \$2400

Price Variation based on a number of criteria (aluminum vs. pvc)

Total: Estimated Between \$1840 and \$7080

Goals before Next Presentation

- 1. Stress Analysis of Designs.
- 2. CFD Analysis of Designs.
- 3. Search for Sponsors and Adviser.

Thank You for Listening!

Any Questions, Comments, or Concerns?

