

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A61K 37/02, 39/00, C07K 7/08 C07K 7/10, 13/00, 15/00 C07K 15/28	A1	(11) International Publication Number: WO 91/04745 (43) International Publication Date: 18 April 1991 (18.04.91)
(21) International Application Number: PCT/US90/05105 (22) International Filing Date: 13 September 1990 (13.09.90)		(74) Agents: BLECHER, Melvin et al.; 611 West Sixth Street, 34th Floor, Los Angeles, CA 90017 (US).
(30) Priority data: 413,332 27 September 1989 (27.09.89) US 571,267 23 August 1990 (23.08.90) US		(81) Designated States: AT (European patent), BE (European patent), CA, CH (European patent), DE (European patent)*, DK (European patent), ES (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).
(71) Applicant: ATHENA NEUROSCIENCES, INC. [US/US]; 800F Gateway Boulevard, South San Francisco, CA 94080 (US). (72) Inventors: RUBIN, Lee, L. ; 122 Funston Avenue, San Francisco, CA 94118 (US). LIAW, Chen, W. ; 80 Maria-na Court, Redwood City, CA 94062 (US). TOMASELLI, Kevin, J. ; 485 Vallejo Street, San Francisco, CA 94133 (US).		<p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>
(54) Title: COMPOSITIONS FOR CELL ADHESION INHIBITION AND METHODS OF USE		
(57) Abstract		
<p>Compositions that disrupt microvascular endothelial and epithelial cell tight junctions, and methods of use, are disclosed. Such compositions comprise agents that inhibit the binding to such cells of cell adhesion molecules. Such inhibitor agents include cell adhesion molecules, fragments of cell adhesion molecules that encompass a cell-binding domain such as HAV, and antibodies directed against cell adhesion molecules and fragments thereof. Also disclosed are drug delivery compositions comprising a therapeutic drug conjugated to an agent that disrupts cell tight junctions.</p>		

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	ES	Spain	MC	Monaco
AU	Australia	FI	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benin	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	LI	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
DE	Germany	LU	Luxembourg	TD	Chad
DK	Denmark			TC	Togo
				US	United States of America

**COMPOSITIONS FOR CELL ADHESION INHIBITION
AND METHODS OF USE**

This is a continuation-in-part of United States Serial No. 07/413,332, filed September 27, 1989.

5

Background of the Invention

Field of the Invention

This invention relates to compositions that transiently and reversibly dissociate the blood-brain barrier. More particularly, the invention relates to 10 compositions that dissociate tight junctions between brain capillary endothelial cells that constitute the physiological barrier between the general circulation and the brain.

15

The entry of drugs from the blood stream to the central nervous system (CNS), i.e., the brain and spinal cord, is restricted by the presence of high resistance tight junctions between brain capillary cells and by the apparently low rate of transport 20 across these endothelial cells (Betz, A.L., *et al.*, *Ann. Rev. Physiol.*, 48:241 (1986); Pardridge, W.M., *Ann. Rev. Pharmacol. Toxicol.*, 28:25 (1988)).

25

The tight junctions of the blood brain barrier (BBB) prevent diffusion of molecules and ions around the brain capillary endothelial cells. The only substances that can readily pass from the luminal core of the capillary to the abluminal tissues that surround the capillary are those molecules for which selective transport systems exist in the endothelial cells, as 30 well as those compounds that are lipophilic (i.e., hydrophobic). In contrast, drugs, peptides and other

molecules that are neither lipophilic nor transported by specific carrier proteins are barred from entry into the brain, or their rates of entry are too low to be useful, thereby imposing a severe limitation upon the 5 physician's ability to treat CNS disorders pharmacologically.

The carrier-mediated transcellular transport system mentioned above may have limited usefulness for therapeutic modalities under some circumstances.

10 Transcytotic transport, in general, involves, first, the binding of molecules to specific carrier proteins on the surface of endothelial cells, and, second, the delivery of such molecules across the endothelial cells. Limitations on the usefulness of such a system

15 for treatment of CNS disorders are based on the following considerations: (1) physiological carrier proteins may not function efficiently, or at all, with non-physiological drugs; (2) even where function occurs, the rate of transport of therapeutic agents

20 will be limited by the rate of transport of the carrier; (3) the overall capacity of cerebral capillary endothelial cells to transport any therapeutic macromolecules may be simply too low to achieve therapeutic levels of certain drugs in the brain; and

25 (4) once therapeutic macromolecules enter endothelial cells, depending on their nature, they might be delivered to any number of organelles, including lysosomes that contain a wide variety of hydrolytic enzymes. For these reasons, creating drug delivery

30 systems that do not rely upon transcytosis will clearly be advantageous.

As tight junctions between brain capillary endothelial cells constitute a major part of the BBB, the possibility of modifying these junctions has been 35 considered. It has been found that tight junctions,

including those of the BBB, can be disrupted by hyperosmotic solutions administered intra-arterially. For example, Polley et al., WO89/04663, published June 1, 1989, disclose the osmotic disruption of the 5 interendothelial structure of the BBB by the intra-arterial administration of hypertonic solutions of mannitol, arabinose or glycerol as a means of introducing into the brain genetic material. Similarly, hyperosmotic solutions of urea have also 10 been used to alter the BBB (Bowman, P.D. et al., Ped. Res., 16:335A (1982)).

Other chemical agents have been reported to disrupt endothelial or epithelial cell tight junctions when administered intravenously, including: 15 7-fluorouracil (MacDonell, L.A., et al., Cancer. Res., 38:2930 (1978)), degradation by membrane enzymes (Vincent, P.A., et al., Exp. Mol. Path., 48:403 (1988)); Diener, H.M., et al., J. Immunol., 135:537 (1985)), aluminum salts (Zigler, Z.Y., et al., IRCS Med. Sci., 20 12:1095 (1984)), histamine (Meyrick, B., et al., Exp. Lung Res., 6:11 (1984)), thrombin (Siflinger-Birnboim, A., et al., Microvasc. Res., 36:216 (1988)), phorbol esters (Shiba, K., et al., Exp. Cell Res., 178:233 (1988)), and neutralization of the luminal anionic 25 charge (Hart, M.M., J. Neuropathol. Exp. Neurol., 46:141 (1987)).

Although the above-listed modalities may disrupt tight junctions and thereby increase permeability of the BBB, problems attendant upon their use make them 30 less than desireable. For example, intra-arterial perfusion with hyperosmotic solutions involves surgery, and this cannot be repeated on a regular basis. Further, concentrated sugar solutions may not be innocuous, and might be expected to have undesirable 35 side effects. In addition, the aforementioned chemical

agents may not be useful for the treatment of chronic neurological disease, their effects on tight junctions are not always reversible, and, as they all are themselves powerful drugs, there is always the danger 5 that their use will compromise the patient's health generally. For example, 7-fluorouracil is a powerful inhibitor of pyrimidine synthesis, and thus nucleic acid biosynthesis, in animal cells.

Thus, an important need still exists for means 10 which transiently and reversibly disrupt tight junctions of the BBB in order that administered drugs can reach the brain from the general circulation, and which have no undesirable side effects of their own in the subject.

15 Attempts have been made to disrupt cell-cell adhesion by modifying the protein(s) responsible for such adhesion, collectively referred to as "cell adhesion molecules" (CAM). One class of CAM is termed "cadherin". "Cadherin" is the term applied to a family 20 of glycoproteins found in most kinds of mammalian tissues and thought to be responsible for Ca^{2+} -dependent cell-cell adhesion, (Takeichi, M., Development, 102:639 (1988)). Three subclasses of cadherin have been identified, namely, E-cadherin (from 25 epithelial tissues), P-cadherin (from placental tissues), and N-cadherin (from neural tissues) (Yoshida-Noro, C., et al. Dev. Biol., 101:19 (1984); Nose, A., et al., J. Cell Biol., 103:2649 (1986); Hatta, K., et al., Nature, 320:447 (1986)).

30 The different cadherins exhibit distinct tissue distribution patterns (Takeichi, U., (1988) above). E-cadherin, which was found to be distributed exclusively in epithelial cells of various tissues (Hatta, K., et al., Proc. Nat'l. Acad. Sci. (USA), 35 82:2789 (1985); Takeichi, 1988, above), appears to be

identical to uvomorulin (Hyafil, F., et al., Cell, 21:927 (1986)), chicken liver-cell adhesion molecule (L-CAM, Gallin, W.J., et al., Proc. Nat. Acad. Sci. (USA), 80:1038 (1983)), and cell-CAM 120/80 (Damsky, C.H., et al., Cell, 34:455 (1983)) in terms of biochemical properties (Cunningham, B.A., et al., Proc. Nat. Acad. Sci. (USA), 81:5787 (1984)) and tissue distributions (Thiery, J.-P., et al., Dev. Biol., 102:61 (1984)).

N-cadherin, which is expressed in various neural tissues including astrocytes (Hatta, K., et al., Devel. Biol., 120:215 (1987); Matsunaga, M., et al., Nature, 334:62 (1988); Tomaselli, K.J., Neuron, 1:33 (1988)), shows 92% amino acid sequence homology between mammalian and avian homologs, shows from 40 to 50% similarity to epithelial E-cadherin and to placental P-cadherin of the same species, but was immunologically not cross-reactive with other cadherins within the same animal (Miyatani, S., Science, 245:631 (1989)).

Placental P-cadherin has also been cloned, and the deduced amino acid sequence of this glycoprotein was found to exhibit about 58% homology with epithelial E-cadherin (Nose, A., et al., EMBO J., 12:3655 (1987)).

Subsequent to the September 27, 1989 filing of the parent application, Heimark, et al. (Heimark, R.L., et al., J. Cell Biol., 110:1745 (1990) reported on the identification of a Ca^{2+} -dependent cell-cell adhesion molecule in aortic endothelial cells.

Although each of the aforelisted cadherins displays unique immunological and tissue distribution specifications, all have features in common: (1) a requirement for Ca^{2+} for cell adhesion function; (2) protection by Ca^{2+} from proteolytic cleavage; (3) similar numbers of amino acids, i.e., from about 723 to about 822; (4) similar masses, i.e., about 124 kdal.

for the glycoprotein; (5) substantial interspecies (50%-60%) overall sequence homology with interspecies homologies increasing to about 56% to 99% in the cytoplasmic region of the protein, suggesting that they 5 constitute a gene family (Nose, A., 1987; Miysysni, D., et al., 1989); and (6) a common mechanism of action, namely, homophilic binding of cadherins on one cell to similar cadherins on the adjoining cell.

CAMs independent of Ca^{2+} are also known, for 10 example, the 125K glycoprotein of Urushihara et al. (Urushihara, H., et al., Cell, 20:363 (1980)); N-CAM (Rutishauser, U., Nature, Lond., 310:549 (1984)); Ng-CAM (Grunet, M. et al., Proc. Nat'l. Acad. Sci. (USA), 81:7989 (1984)); L1 (Rathjien, F.G. et al., J. Cell Biol., 3:1 (1984)); G4 (Rathjien, F.G. et al., J. Cell Biol., 104:343 (1987)); and platelet glycoprotein PECAM-1 (CD 31) (Newman, P.J., Science, 247:1219 (1990)). Ca^{2+} -independent CAMs are known to exhibit certain properties of the Ca^{2+} -dependent CAMs. Thus, 15 N-CAM and N-cadherin both promote retinal neurite outgrowth on astrocytes (Neugebauer, K.M., et al., J. Cell Biol., 107:1177 (1985)), and on Schwann cells (Bixby, J.L. et al., J. Cell Biol., 107:353 (1988)).

Monoclonal antibodies raised against epithelial 20 E-type cadherins such as uvomorulin are known to disrupt the adhesion of several cell types, including embryo cells, cultured teratocarcinoma cells, hepatocytes, and MDCK kidney epithelial cells (Ogou, S.-I., et al., J. Cell Biol., 97:944 (1983); Yoshida-Noro, et al., (1984), above; Shirayoshi, Y., et al., Cell Struct. Funct., 11:285 (1986); Gallin, et al., (1983), above; Vestweber, D., et al., EMBO J., 4:3393 (1985); Johnson, M.H., et al., J. Embrol. Exp. Morphol., 93:239 (1986); Gumbiner, B., et al., J. Cell Biol., 102:457 (1986)).

However, prior to the present discoveries disclosed in the parent applications cadherins had not been found in brain capillary or other endothelial cells (see, Takeichi, et al. (1988), above). Further, 5 the CAMs of microvascular endothelial cells had not yet been identified, nor had such molecules been localized specifically to brain capillary endothelial cells. Thus, until the present invention no means were known for transiently and reversibly disrupting tight 10 junctions between microvascular endothelial cells, including those of the BBB, based upon an attack upon the CAM's of such cells that are responsible for tight junction formation and maintenance.

It has been hypothesized that the cadherins 15 contain a common cell adhesion recognition (CAR) sequence. The CAR sequences of several cell and substratum adhesion molecules are known. Martin, G.R., et al., Ann. Rev. Cell Biol., 3:57 (1987); Ruoslahti, E., et al., Science, 238:491 (1987). In general, CAR 20 sequences are composed of at least three amino acid residues. The most rigorously investigated CAR sequence is RGD which is found in laminin, fibronectin and other basement membrane components that are responsible for the binding of cells to the substratum.

25 Blaschuk, et al., in a paper to be published subsequent to the filing of the present application (Blaschuk, O., et al., J. Mol. Biol., in press, (1990)), disclose the presence of three potential cadherin CAR sequences in the first extracellular 30 domains of liver CAM, E-, P-, and N-cadherin, namely, PPI, GAD and HAV. Blaschuk, et al. (Blaschuk, O., et al., Develop. Biol., 139:227 (1990)), also disclosed recently that synthetic peptides containing the HAV sequence inhibited two biological processes (compaction 35 of 8-cell-stage mouse embryos and rate of neurite

outgrowth on astrocytes) that are known to be mediated by cadherins. Effective peptides in these assays were LRAHAVDVNG and AHAVSE; PPI-containing peptides were without effect. However, Blaschuk *et al.* provide no 5 guidance for determining the regions flanking the HAV tripeptide that are critical for cell-cell adhesion. In the BBB disrupting peptides of the present invention detailed below, we have observed that the mere presence of the HAV sequence in a small cadherin-derived peptide 10 is not the sine qua non for a composition effective to prevent cell-cell adhesion. Indeed, it should be emphasized that neither Blaschuk *et al.* nor any other publication known to the present inventors suggest that cadherin sequences containing HAV or SHAVS sequences 15 would be effective in opening tight junctions and piercing blood brain barriers formed by E-cadherins in brain microvascular endothelial cells.

SUMMARY OF THE INVENTION

It has now been discovered that molecules 20 homologous to, and immunologically related to, cadherin cell adhesion molecules are present on brain and non-brain microvascular endothelial cells, such that

junctions between such endothelial cells can be reversibly opened so as to permit passage of therapeutic drugs by the use of polypeptide and antibody compositions that compete with such cell adhesion molecules for binding to such cells.

5 It is therefore an object of this invention to provide the identity of microvascular endothelial cell adhesion molecules.

Another object of this invention is to provide DNA 10 sequences of genes, and plasmids containing same, coding for the expression of all or a cell-binding portion of microvascular endothelial cell adhesion molecules.

Yet another object of this invention is to provide 15 means to identify those sequences of cell adhesion molecules responsible for the tight binding of adjoining endothelial cells.

A further object is to provide therapeutic 20 compositions comprising polypeptides derived from cell adhesion molecules that reversibly disrupt cell-cell adhesion.

Still another object of this invention is to provide therapeutic compositions comprising polyclonal or monoclonal antibodies or fragments thereof directed 25 against endothelial cell adhesion molecules, or against polypeptides representing cell binding regions thereof, that reversibly disrupt endothelial cell-cell adhesion.

Yet another object of this invention is to provide therapeutic formulations comprising therapeutic drugs 30 conjugated with blood-brain barrier-disrupting compositions of this invention, that are capable of entering the central nervous system following disruption of the blood-brain barrier.

These and other objects of this invention will 35 become clear by reference to the following description

of the invention and to the appended claims.

DESCRIPTION OF THE DRAWINGS

Figure 1 illustrates the partial cDNA sequence for bovine endothelial cell adhesion molecule homologous to 5 chicken N-cadherin.

Figure 2 illustrates the partial cDNA sequence for bovine endothelial cell adhesion molecule homologous to mouse P-cadherin.

Figure 3 illustrates the cDNA sequence for the 10 MDCK cell adhesion molecule homologous to mouse E-cadherin.

Figure 4 illustrates the restriction sites in the bovine endothelial cell N- (4-1 to 4-5) and P-cadherin 15 (4-6 to 4-8) cDNA sequences and in the MDCK E-cadherin (4-9 to 4-14) cDNA sequence.

Figure 5 shows the staining of a mouse brain thin section by an antibody raised against a fusion protein derived from amino acids 9-96 of MDCK E-cadherin containing an HAV region.

20 Figure 6 is a repeat of the experiment of Fig. 5, except that the antibody was raised against the entire E-cadherin molecule.

Figure 7 illustrates the effects of an 18-mer HAV- 25 containing polypeptide on the resistance of tight junction monolayers of MDCK epithelial cells.

Figure 8 illustrates the effects of 11-mer and 18-mer HAV-containing polypeptides on the resistance of tight junction monolayers MDCK epithelial cells.

30 Figure 9 illustrates the effects of 11-mer and 18-mer HAV-containing polypeptides on the resistance of tight-junction monolayers of brain microvascular endothelial cells.

DETAILED DESCRIPTION OF THE INVENTION

It has now been discovered that cell adhesion molecules with characteristics of cadherins are present on the surfaces of brain capillary endothelial cells and of microvascular endothelial cells of non-brain origins. The present invention is based on the discovery that a polypeptide composition comprising cell binding domains of endothelial cell adhesion molecules may compete against such molecules for binding to such cells, such that by this means the junctions between such cells could be reversibly opened, thereby permitting penetration by therapeutic agents. The present invention also discloses that polyclonal or monoclonal antibodies (or fragments thereof) raised against endothelial cell adhesion molecules or cell-binding domains thereof may also compete for endothelial cell surface binding sites, and, by this means, reversibly disrupt junctions between endothelial cells, thereby permitting entry into the central nervous system of therapeutic agents.

In order to obtain compositions useful for disrupting tight junctions between microvascular endothelial cells, the cell adhesion molecules responsible for such junctions were identified.

The endothelial cell cadherins disclosed herein exhibit one or more of several characteristics of E-, P- and N- cadherins, including: characteristics of a transmembrane integral protein, with cytoplasmic, hydrophobic plasma membrane, and extracellular regions; intraspecies DNA sequence homologies of greater than about 50% for the entire molecule; immunological cross-reactivity with antibodies raised against non-endothelial cell cadherins; and containing cell-binding domains. "Immunologically related to" means that these cadherin-like molecules cross-react with antibodies

raised against non-endothelial cell cadherins.

E-cadherin-like molecules were localized in brain by immunofluorescence. Cryostat sections of mouse brain were labeled with a rabbit antibody prepared 5 against E-cadherin, and then with fluorescein isothiocyanate-conjugated goat anti-rabbit immunoglobulin. There is clear labeling of a capillary in brain sections as shown by immunofluorescence microscopy. Endothelial cells in liver and kidney were 10 not stained by this procedure.

cDNAs coding for the expression of bovine microvascular endothelial cell (BMEC) cadherins were cloned and sequenced as described below, and the partial sequence of N-cadherin and P-cadherin are 15 disclosed herein in Figures 1 and 2, respectively. In addition, as MDCK dog kidney epithelial cells are known to employ E-cadherin to form high resistance tight junctions, and as the present invention discloses that brain capillary endothelial cell adhesion molecules 20 include E-type cadherin, the DNA of this cadherin was also cloned; its complete DNA sequence is disclosed herein (Fig. 3).

N-, P- and E-cadherin-type clones described herein were deposited in the American Type Culture Collection 25 on September 26, 1989, and were assigned the following accession numbers:

	<u>Clone Designation</u>	<u>Accession No.</u>
	N-cadherin-type clones	
	pUC19-bNCad 10A	40667
	pUC19-bNCad 39A	40669
5	P-cadherin-type clones	
	pUC18-bPCad 3B-10	40668
	pUC19-bPCad 9B	40670
	E-cadherin-type clones	
	pBluescript MDCKECad 45-30E	40671

10 The cloning of cadherins was accomplished by taking advantage of the fact that the cadherins characterized thus far are transmembrane glycoproteins, the cytoplasmic domains of which are highly conserved, that is, are highly homologous.

15 Two degenerate oligonucleotides flanking the 42-amino acid coding region in the cytoplasmic domain were selected to serve as primers for polymerase chain reaction (PCR) using either BMEC cDNA or MDCK cDNA as templates. The PCR reactions were carried out
 20 essentially according to Saiki, R. K. et al., Science, 239:487 (1988), which is incorporated herein by reference.

25 The cloned PCR products from each cell type were sequenced essentially according to the method of Sanger, F. et al., Proc. Nat'l. Acad. Sci. (USA), 74:5463 (1977), which is incorporated herein by reference.

30 It was discovered that BMEC cadherins are of two types - one homologous to chicken N-cadherin (neuronal type, see, e.g., Hatta, K., et al., J. Cell Biol., 106:873 (1988)) and the other homologous to mouse P-cadherin (placental type, see e.g., Nose, A., et al., (1987) above). It has also been found that there are two species of cadherins in MDCK cells - one homologous

to mouse E-cadherin (see, e.g., Nagafuchi, A., et al., Nature, 329:341 (1987)) and the other homologous to mouse P-cadherin (Nose, et al. (1987), above).

The PCR products were then used as probes to
5 isolate the BMEC and MDCK cadherin cDNA clones as follows. A cDNA library was constructed essentially according to Gubler et al. (Gubler, U. et al., Gene, 25:263 (1983), which is incorporated herein by reference), using poly (A)⁺RNA isolated from either
10 BMEC or MDCK cells. The cDNA was ligated via EcoRI adaptors into gt10 arms (BMEC) or ZAP^R (from Stratagene, Inc., La Jolla, CA) vector arms (MDCK). cDNA libraries containing 5×10^5 - 1.5×10^6 independent cDNA clones were screened using
15 radiolabeled PCR products (Benton, W.D. et al., Science, 196:180 (1987), which is incorporated herein by reference). Northern blot analysis (Maniatis, T. et al., "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.,
20 1982) may be used to determine whether each cDNA species cloned hybridizes to a single mRNA species, as well as the tissue distributions of each cDNA species.

cDNA clones for each cadherin were sequenced by the method of Sanger et al. (1977) above.

25 The partial restriction maps for each cDNA clone based on their sequences are shown in Fig. 4. Some of these restriction sites were confirmed by restriction enzyme digestions, including Hind III, Pst I, Kpn I, Bgl II for N-cadherin; Pvu II, Sac I and Pst I for
30 P-cadherin; Pst I, Pvu II, BamH I, and Sac I for E-cadherin.

In order to test whether the cloned E-cadherin cDNA contains all the information necessary for cadherin function, full-length E-cadherin cDNA joined
35 to a suitable promoter may be introduced into mouse

L-cells that have very little endogenous cadherin activity (Nagafuchi, et al. (1987), supra). To test for expression of E-cadherin in transfectants derived from the introduced cDNA, transfected L-cells may be
5 tested for Ca^{2+} -dependent aggregating activity. The extent of this aggregating activity should be closely correlated with the amount of E-cadherin expressed (Takeichi, M. (1988), supra). This same technique may be used for testing cDNAs encoding bovine endothelial
10 N- and P-cadherins, according to the method of Hatta, et al. (Hatta, K., et al. (1988), supra).

In order to identify cell binding domains in, for example, MDCK E-type cadherin, L-cells may be first transfected as above with a cDNA of a size sufficient
15 to cause Ca^{2+} -mediated aggregation of transfectants. A series of deletion mutants comprising truncated cDNA species missing different regions of the extracellular domain may be prepared by restriction enzyme digestion and proper end filling or exonuclease digestion to make
20 the deletions in the proper coding frames. These deletion mutants can then be tested for their ability to express in L-cells a protein causing Ca^{2+} -dependent aggregation. By correlating a loss of aggregation with deletion of particular fragments, the regions important
25 for cell binding may be determined. A variety of polypeptides corresponding to binding regions of cadherins, as deduced from the nucleotide sequences of deleted cDNA, may be synthesized chemically using an automated peptide synthesizer such as that of Applied
30 Biosystems, Inc., Foster City, CA, or expressed by recombinant DNA methods. Effective polypeptides may be of varying lengths, depending upon the natures of junctions being disrupted and the cell adhesion molecule present.

Nucleotide, and corresponding amino acid, sequences of cadherins may be analyzed to detect homologous regions. Applying this technique to bovine endothelial cell N- and P-cadherins and to epithelial cell E-cadherin, we have determined that, in the amino acid 80 region of each of these cadherins, there is conserved a triplet HAV (His-Ala-Val) region. We have deduced that this HAV region may be a common cell adhesions recognition (CAR) sequence.

We have chemically synthesized the following polypeptides, each of which containing the HAV sequence:

15	6-mer(78-83)	NH ₂ -SHAVSS-CONH ₂
	11-mer(76-86)	NH ₂ -LYSHAVSSNGN-CONH ₂
	17-mer(74-90)	NH ₂ -YILYSHAVSSNGNAVED-CONH ₂
	18 mer(69-86)	NH ₂ -EQIAKYILYSHAVSSNGN-CONH ₂
	20-mer(71-90)	NH ₂ -IAKYILYSHAVSSNGNAVED-CONH ₂

and have tested each for efficacy in opening brain endothelial cell tight junctions in the BBB model disclosed in copending United States application Serial No. 07/413,274, and also on kidney epithelial cell tight junctions..

Polyclonal antibodies raised in rabbits and monoclonal antibodies derived from hybridomas may be generated against each of the chemically-synthesized polypeptides by standard methods. (Harlow, E., *et al.*, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1988; Goding, J.W., "Monoclonal Antibodies: Principles and Practice", Academic Press, N.Y. 1986). In addition, recombinant antibodies may be prepared. Fragments of antibodies, e.g., Fc, Fab, F(ab)', may be prepared by standard methods.

We have cloned and sequenced fusion proteins derived from amino acids 9-96 of MDCK E-cadherin

containing the HAV region. A polyclonal antibody prepared against this fusion protein stained rat (Fig. 55) mouse brain sections as well as did an antibody raised against the entire E-cadherin (Fig. 6).

5 A polyclonal antibody raised against a fusion protein derived from amino acids 9-37 failed to stain brain sections. These results indicate that the key cell-binding domain of E-cadherin lies in the region of amino acids 37-96.

10 The ability of CAM-derived polypeptides containing cell-binding domains, and the corresponding polyclonal and monoclonal antibodies, of the invention to disrupt tight junctions may be tested in in vitro and in vivo models of high resistance tight junctions and in animal

15 models. Monolayers of MDCK dog kidney epithelial cells, that are known to contain high resistance tight junctions (Gumbiner, B., J. Cell Biol., 102:457 (1986)), can be used to test for the ability of the polypeptides and corresponding antibodies of the

20 present invention to disrupt such tight junctions.

Polyclonal antibodies prepared as described above may also be used in conjunction with Western blotting (Old, R.W., et al., Principles of Gene Manipulation, 3d ed., Blackwell, Oxford, 1985, p. 10) and a variety of

25 tissue extracts in order to identify cell adhesion glycoproteins in such extracts.

Another embodiment of the present invention is in drug delivery systems. Conjugates between therapeutic drugs and agents that affect cell adhesion molecule

30 function in brain capillary endothelial cells may be used to deliver therapeutic drugs to the CNS. For example, a polypeptide derived from a cell adhesion molecule that contains within its amino acid sequence a cell-binding domain, or antibodies thereto, may be

35 conjugated in biologically-active form to a therapeutic

modality. Such conjugates may have the dual effect of opening the BBB and delivering the therapeutic agent to the brain side of the BBB. Delivery of therapeutic drugs to the CNS, either alone or conjugated to agents
5 that disrupt cell-cell adhesion, may be accomplished by administering such drugs to a subject either simultaneously with or subsequent to the administration of the agents of this invention that disrupt the tight junctions of the BBB. Examples of therapeutic
10 modalities that may be delivered to the brain by the cell adhesion disruption compositions of this invention include Nerve Growth Factor, anti-Parkinsonian drugs, and brain enzymes known to be missing in sphingolipidoses, e.g., Tay-Sachs disease. Means of
15 chemically conjugating protein or polypeptide carriers to therapeutic agents such that the biological integrity of the therapeutic agent is not compromised and such that the therapeutic agent is readily cleaved from the carrier by enzymes present on or within
20 endothelial cells (e.g., amidases, esterases, disulfide-cleaving enzymes), are well known in the art. It is also apparent that these therapeutic conjugates may be delivered to endothelial cells in encapsulated form (e.g., in liposomes) or as microsuspensions
25 stabilized by pharmacological excipients.

It is known (Jain, R.K., J. Natn'l Cancer Inst., 81:570 (1989)) that many solid tumors develop internal barriers, including high pressure zones and collapsed blood vessels, that make it difficult for blood-borne
30 chemotherapeutic agents to reach the tumor's inner core. The barrier problem is particularly troublesome with therapeutic products drawn from the human immune system, such as monoclonal antibodies conjugated with chemotherapeutic agents, interleukin-2, interferon and
35 activated killer T-lymphocytes, because of their large

size. Thus, in another embodiment of this invention, compositions that disrupt the junctions between endothelial cells, particularly the relatively small peptides that contain one or more cell-binding regions of cell adhesion macromolecules, may be used to enhance drug delivery to tumors with depressed blood flow.

It has been theorized that cancer cells metastasize by secreting soluble cadherins variously to open tight junctions in cells that block their movement and to prevent their being bound to such cells. We consider it likely that antibodies raised against these cadherins, which are derived from extracellular domains of the cadherins disclosed in this invention, may provide a therapeutic modality that inhibits or prevents cancer cell metastases.

In another embodiment, the compositions of this invention may also be used to provide penetration for chemotherapeutic agents of other well-known blood-tissue barriers, such as blood-testis barriers and blood-retina barriers. The latter barrier is known to prevent the efficient transport of, for example, administered antibiotics to the retina from the general circulation. The cell adhesion disrupting compositions of this invention may, thus, be used in conjunction with the administration of antibiotics to treat retinal infections.

The following examples are illustrative of several embodiments of this invention, and should not be construed in any way as limiting the invention as recited in the claims.

EXAMPLE 1

EFFECTS OF HAV-CONTAINING POLYPEPTIDES
ON TIGHT JUNCTIONS OF MDCK EPITHELIAL
AND BOVINE ENDOTHELIAL CELLS

The BBB model of copending U.S. Serial No. 07/413,332 was used to examine the effects of polypeptides containing the HAV region on the tight junctions of monolayers of MDCK epithelial cells and 5 bovine capillary endothelial cells as determined by resistance measurements across the monolayers.

The polypeptide was added to the cells either from the apical side (top) or basolateral side (bottom), as shown in the following sketch.

10

APICAL

EPITHELIAL CELLS
Gut Side

ENDOTHELIAL CELLS
Blood Side

Blood Side

Brain Side

BASOLATERAL

15 Figure 7 illustrates the effects of various concentrations of the aforementioned 18-mer polypeptide on resistance of MDCK epithelial cells. At the lowest concentration tested, 0.5 mg/ml, resistance was markedly decreased. The polypeptide was more effective 20 when added from the basolateral side, but at high concentrations was quite effective even when added from the apical side. These data indicate that the 18-mer is effective in making tight junctions permeable. The 20-mer was similarly effective, and a 17-mer less 25 effective.

Figure 8 illustrates the effects of the aforementioned 11-mer and 18-mer on MDCK cell resistance when added from either the apical or basolateral side of the monolayers. The concentration 30 of polypeptide was about 1 mg/ml. The 11-mer (as well

as the 6-mer data not shown) was virtually without effect. With the 18-mer, resistance was almost totally abolished by about 6 hours, indicating disruption of tight junctions. That the effect of the 18-mer is reversible is indicated by the "wash-out" experiment. When the 18-mer was washed out of the MDCK cells at 6 hours, resistance recovered to a substantial extent over the next 21 hours. This recovery was particularly pronounced when the 18-mer had originally been added from the basolateral side of the monolayers. The 20-mer produced results similar to those of the 18-mer, and the 17-mer was effective, but somewhat less so.

Figure 9 illustrates the effect of 1 mg/ml of the 11-mer and 18-mer on high resistance monolayer cultures 15 of brain endothelial cells (see copending United States Serial No. 07/413,332 for method of preparation). As with MDCK cells, the 11-mer (and the 6-mer) failed to reduce resistance values over a 48-hour period of observation. In contrast, the 18-mer (as well as the 20-mer) decreased resistance values markedly when added from either the basolateral or apical side, but the effect of the polypeptide was more rapid and more pronounced when it was added from the basolateral side; the 17-mer was less effective.

25 The conclusion of these experiments is that a particular set of peptides (but not all peptides) centered around the HAV region of E-cadherin are effective in opening tight junctions of brain endothelial cell blood-brain barriers, and also of 30 epithelial cells that form such junctions ("gut barrier"). Both the length and composition of the amino acid region flanking the HAV triplet thus appear to play a role in the efficacy of such compositions.

While the aforementioned embodiments represent the 35 preferred embodiments of the invention, those skilled

in the art may, without undue experimentation, devise other executions of the compositions and methods of use of this invention without departing from the concept and spirit inherent therein.

What is claimed is:

1. A composition for opening tight junctions between microvascular endothelial cells of a subject, whereby means are provided for a drug to cross the permeability barrier imposed by such junctions,

5 comprising an agent capable of reacting with at least one type of cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is disrupted.

2. A composition of claim 1, wherein said cell adhesion molecule exhibits at least about 50% sequence homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.

3. A composition of claim 1, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.

4. A composition of claim 1, wherein the microvascular endothelial cells are brain capillary endothelial cells.

5. A composition of claim 2, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.

6. A composition of claim 3, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.

7. A composition of claim 5, wherein said inhibitor agent comprises a fragment of said cell adhesion molecule.

8. A composition of claim 7, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.

9. A composition of claim 8, wherein said cell-binding domain contains an HAV amino acid sequence.

10. A composition of claim 9, wherein said amino acid sequence is

11. A composition of claim 9, wherein said amino acid sequence is

12. A composition of claim 9, wherein said amino acid sequence is

13. A composition of claim 9, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

14. A composition of claim 5, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.

15. A composition of claim 5, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against a fragment of said cell adhesion molecule.

16. A composition of claim 15, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.

17. A composition of claim 16, wherein said cell-binding domain contains an HAV amino acid sequence.

18. A composition of claim 17, wherein said amino acid sequence is

19. A composition of claim 17, wherein said amino acid sequence is

20. A composition of claim 17, wherein said amino acid sequence is

21. A composition of claim 17, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

22. A composition of claim 5 or 6 in a pharmaceutically-acceptable vehicle.

23. A method for opening tight junctions between microvascular endothelial cells of a subject, comprising the step of administering to the subject an agent, in an effective amount and in a

5 pharmaceutically-acceptable vehicle, capable of reacting with at least one type of cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is disrupted and
10 whereby means are provided for a drug to cross permeability barriers imposed by such tight junctions.

24. A method of claim 23, wherein said cell adhesion molecule exhibits at least about 50% homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.

25. A method of claim 23, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.

26. A method of claim 23, wherein the microvascular endothelial cells are brain capillary endothelial cells.

27. A method of anyone of claims 23-25, inclusive, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.

28. A method of claim 27, wherein said inhibitor agent comprises a fragment of said cell adhesion molecule.

29. A method of claim 28, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.

30. A method of claim 29, wherein said cell-binding domain contains an HAV amino acid sequence.

31. A method of claim 30 wherein said amino acid sequence is

32. A method of claim 30, wherein said amino acid sequence is

33. A method of claim 30, wherein said amino acid sequence is

34. A method of claim 30, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

35. A method of claim 27, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.

36. A method of claim 28, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said fragment of said cell adhesion molecule.

37. A method of claim 36, wherein said cell adhesion fragment includes within its amino acid sequence a cell-binding domain.

38. A method of claim 37 wherein said cell-binding domain contains an HAV amino acid sequence.

39. A method of claim 38, wherein said amino acid sequence is

40. A method of claim 38, wherein said amino acid sequence is

41. A method of claim 38, wherein said amino acid sequence is

42. A method of claim 38, wherein said amino acid sequence comprises amino acids 9-96 of E- β -catenin.

43. A drug delivery composition comprising a conjugate between a therapeutic drug and an agent capable of reacting with at least one type of a cell-bound cell adhesion molecule that would otherwise mediate tight junction formation between microvascular endothelial cells, so that cell-cell adhesion is

disrupted by said agent, whereby means are provided for said drug to cross permeability barriers imposed by such tight junctions, in a pharmaceutically-acceptable vehicle.

44. A drug delivery composition of claim 43, wherein said cell adhesion molecule exhibits at least about 50% homology with a cadherin selected from the group consisting of E-cadherin, N-cadherin and P-cadherin.

45. A drug delivery composition of claim 43, wherein said cell adhesion molecule is immunologically related to at least one of the group consisting of E-cadherin, N-cadherin and P-cadherin.

46. A drug delivery composition of claim 43, wherein the microvascular endothelial cells are brain capillary endothelial cells.

47. A drug delivery composition of any one of claims 43-45, inclusive, wherein said agent comprises an inhibitor of the binding to cells of said cell adhesion molecule.

48. A drug delivery composition of claim 47, wherein said agent comprises a fragment of said cell adhesion molecule.

49. A drug delivery composition of claim 48, wherein said cell adhesion molecule fragment includes within its amino acid sequence a cell-binding domain.

50. A drug delivery composition of claim 49, wherein said cell-binding domain contains an HAV amino acid sequence.

51. A drug delivery composition of claim 50, wherein said amino acid sequence is

52. A drug delivery composition of claim 50, wherein said amino acid sequence is

53. A drug delivery composition of claim 50, wherein said amino acid sequence is

54. A drug delivery composition of claim 50, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

55. A drug delivery composition of claim 43, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against said cell adhesion molecule.

56. A drug delivery composition of claim 43, wherein said inhibitor agent comprises a polyclonal or monoclonal antibody directed against a fragment of said cell adhesion molecule.

57. A drug delivery composition of claim 56, wherein said cell adhesion molecule fragment contains within its amino acid sequence a cell-binding domain.

58. A drug delivery composition of claim 56, wherein said cell-binding domain encompasses an HAV amino acid sequence.

59. A drug delivery composition of claim 58, wherein said amino acid sequence is

60. A drug delivery composition of claim 58, wherein said amino acid sequence is

NH₂-EQIAKYILYSHAVSSNGN-COHN₂ .

61. A drug delivery composition of claim 58, wherein said amino acid sequence is

NH₂-IAKYILYSHAVSSNGNAVED-CONH₂ .

62. A drug delivery composition of claim 58, wherein said amino acid sequence comprises amino acids 9-96 of E-cadherin.

63. A drug delivery composition of claim 43, wherein said conjugate comprises a physiologically-cleavable covalent bond.

64. A drug delivery composition of claim 43, wherein said conjugate is encapsulated within a physiologically-compatible particle.

65. A drug delivery composition of claim 64, wherein said particle comprises a liposome.

FIG. Ia.

Partial cDNA sequence for the bovine endothelial N-cadherin

GAATTCGAAC	CCCTTCGTTT	CATTATGCAA	GA	CTGGATT	CCTGAAGATG	TGTACAGTGC	60
AGTCTTGTC	CGGGATGTC	TGAAAGGACA	GCCCCTCTC	AATGTGAA	TTAGCAA	ACTG	120
CAATGGAAA	AGAAAAGTAC	AGTATGAG	CAGCGAGCCA	GCAGATT	TTA	AGGTGGATGA	180
AGATGGCATG	GTGTATGCCG	TGAGAAGCTT	CCCCCTCTCA	TCTGAACACT	CGAAGTT	CCT	240
GATATACGCT	CAAGACAAAG	AGACTCAGGA	AAAGTGGCAA	GTAGCAGTAA	AACTGAGCCT		300
CAAACCAGCC	CTACCTGAGG	ATTCA	GTGAA	GGAATCACCGA	GAAATAGAAG	AAATA	GTGTT
TCCAAGACAA	GTGACTAAGC	ACAATGGCTA	CCTGCAGAGG	CAGAAGAGAG	ACTGGGT	TAT	360
CCCTCCCATC	AACTTGCCAG	AAAACTCCAG	AGGGCCTTT	CCTCAAGAGC	TCGT	CAGGAT	420
CAGATCCGAT	AGAGATAAAA	ACCTTTCTCT	GGGTACAGC	GTAAC	GGC	CAGGAGCTGA	480
CCAGCCTCCA	ACTGGTATCT	TCATTATCAA	CCCCATCTCA	GGTCAGCTGT	CAGTA	ACCAA	540
GCCTCTGGAT	CGTGAGGCTGA	TAGCCCCGGTT	TCATTGAGG	GCACATGCAG	TGGAT	TAA	600
TGGAAACCAA	GTGGAGAAC	CCATCGACAT	TGTCAAC	GTTATTGACA	TGAAT	GATAA	660
CAGACCTGAG	TTCTTACACC	AGGTTGGAA	TGGGACAGTT	CCTGAGGGAT	CAAAGCCGGG		720
AACATATGTG	ATGACGGTCA	CTGGCGATTGA	TGCTGACGAT	CCAAATGCC	TCAATGGGAT		780
							840

SUBSTITUTE SHEET

GTTGAGGTAC AGAATCCTGT CCCAGGGCC AAGCACCCCT TCGCCCAACA TGTTTACAAT 900 FIG. lb.
 CAAACAATGAG ACTGGGGACA TTATCACGGT GGCAGCTGGA CTGACAGAG AAAAGTACA 960
 ACAGTATAACG TTAATAATTG AAGCTACAGA CATGGAAGGC AATCCCACAT ATGCCCTTTC 1020
 CAACACAGCC ACGGCTGTCA TCACGGTGAC AGATGTCAAC GACAATCCTC CGGAGTCTTAC 1080
 TGCCATGACG TTCTATGGTG AAGTCCCTGA AAACAGGGTA GATGTCATCG TCGCTAATCT 1140
 AACAGTGAACA GATAAGGATC AGCCCCACAC ACCGGCCTGG AACGCCATCT ACAGAACATCAG 1200
 CGGTGGAGAC CCCGGGGCC GCTTGGCCAT TCAAACGTGAC CCCAACAGCA ACGACGGTTT 1260
 AGTCACCGTA GTAAAACCAA TCGACTTTGA AACAAATAGG ATGTATGTCC TTACTGTCGC 1320
 TGCAGAAAAT CAAGTGCCAT TAGCCAAGGG TATTCAAGCAT CCACCTCACT CAACTGGAC 1380
 TGTGTCTGTC ACAGTTATCG ATGTGAATGA AAATCCTTAT TTGCCCCAA ATCCAAGAT 1440
 CATTGCGCAA GAAGAAGGCC TTCACGCCGG TACCGTGTAA ACAACGTTA CTGCTCAGGA 1500
 CCCAGATCGA TATATGCAGC AAAATATCAG ATACACCAA TTATCCGATC CTGCAAACGTG 1560
 GCTAAAAATA GACTCTGTGA ATGGGCAGAT AACTACCATT GCTGTTTGG ACAGAGAATC 1620
 ACCGAATGTC AAAGCCAATA TATACAATGCA TACTTTCCCTT GCTTCTGACA ATGGAATCCC 1680
 TCCTATGAGT GGAAACGGGAA CACTGCAGAT CTATTTACTT GATATTAAATG ACAATGCC 1740

TCAAGTGTAA CCTCAAGAGG CAGAGATTG TGAAACTCCG GACCCCAATT CAATTAACAT 1800 FIG. Ic.
 CACAGCACTT GATTATGACA TTGATCCAAA TGCTGGACCA TTTGCTTTTG ATCTTCCTTT 1860
 GTCTCCAGTG ACTATTAAGA GAAATTGGAC CATCACTCGG CTTAATGGTG ATTGCTCA 1920
 GCTTAACCTA AAGATAAAAT TTCTTGAGGC CGGGATCTAC GAAGTCCAA TCATAATCAC 1980
 AGATTGGGT AATCCTCCC AATCGAATAT CTCCATCCTT CGGCTGAAGG TTTGCCAGTG 2040
 TGATTCCAAC GGGGACTGCA CAGATGTGGA TCGAATTGTTG GGAGCAGGGC TGGGCACCGG 2100
 CGCCATCATC GCCATCCTGC TTTGCATCAT CATCCTGCTC ATTCTCCTTC TGATGTTCTGT 2160
 GGTATGGATG AACGCCGG ATAAGAACG CCAGGCCAA CAACTTTAA TTGATCCAGA 2220
 AGATGATGTA AGAGATAATA TTGATGAAATA TGATGAAAGA GGTGGAGGAG AAGAAGACCA 2280
 GGACTACGAT TTGAGGCCAG TCCAGGCC TGATACGGTA GAGCCAGATG CCATCAAAGCC 2340
 AGTTGGAATC CGACGGTTGG ATGAGAGGCC CATCCATGCG GAGCCCCAGT ACCCGGTTTCG 2400
 ATCTGCAGCC CCACACCCAG GGGACATCGG GGACTTCATT AATGAGGGCC TTAAAGCTGC 2460
 TGACAACGAT CCCACCGCTC CGCCCTACGA CTCCCTCTTA GTCTTCTGACT ATGAAGGCAG 2520
 TGGCTCCACG GCGGGGTCCCT TGAGGCTCCCT TAATTCTCC ACTAGTGGAG GTGAGCAGGA 2580
 CTATGACTAT CTGAACGACT GGGGGCCCG CTTCAAGAAA CTCGCTGACA TGTACGGTGG 2640

AGGTGATGAC TGAACTCAG GGTGAACTTCAG GTTTGGAC AAGTACAAAC ATTGCAAAC 2700 FIG. Id.
 GATATTCCA AAAAGCATTG AGAAGCTAGG CTTTAACCTT GTAGTCTACT AGCACAGTGC 2760
 TTGCTGGAGG CTTGGCAGA GGCTGCCAAC CAATTGGCC TCAGAGGAA TATCGGTTGAT 2820
 CCAATACTGT TTGAAAACA CTGAGCTCAG TTACACTTGA ATTTACAGT ACAGAAGGCAC 2880
 TGGGATTTTA TGTGCCCTTT TGTACCTTT TCAGATTGGA ATTAGTTA TGTTAAGGC 2940
 TTAATGTA CTGATTTCTG AAATGATAAG TAAAGACAA AATATTTGT GGTGGGAGCA 3000
 GTAAGTAAA CCATGATATG CTTGGACACCG CTTTGTAC ATCGCATTTG CTTTTATTAA 3060
 AAATATGAA TTAAACAGAC AAACCAACCA CTCATGGAGC AATTTTATTA CCTTGGGGC 3120
 TGAGACCATG AGATTGGAAA ATGTACATTA TTTCTAGTT TAGACTTTAG TTTCTTGT 3180
 TGTTTTTT TTCCACTAAA ATCTAAAC TTACGGCAGCT GGTTGCAAAT AAAGGGAGTT 3240
 TTCATATCAC CAATTGTAG CAAATTGAA TTTTTCTATA AACTAGAATG TTAGACACAT 3300
 TTGGTCTTA ATCCATGTAC ACTTTTAT TTACTGTATT TTTCCACTT CACTGTAAA 3360
 ATGGTATGTG TACATAATGT TTATTGGCA TAGTCTATGG AGAAGTGCAG AAACTTCAGA 3420
 ACATGTCTAT GTATTATTG GACTATGGAT TCAGGTTTT TGCATGTTA TATCTTCGT 3480
 TATGGATAAA GTATTACAA AACAAAGTGA CATTGATTC ATTGTTGAG CTGTAGTTAG 3540
 ATAATCAAT TTGTTAATT TTAAATTTTT TTATTTTA TTGTTCTTT TTGTTGGGG 3600

AGGGAGAAA GTTCTTAGCA CAAATGTTT ACATAATTG TACCAAAAA AAACAAAAA 3660
 AAAGGAAGA CAAGAAATGA AAGGGGTGAC CTGACACTGG TGGTACTACT GCAGTGTGTG 3720
 TTTTTAAAAA AAAATGAAA AAAAAAGCT TTTAAACTGG AGAGACTTCT GACAACAGCT 3780
 TTGCCTCTGT ATTGTGTACC AGAATATAAA TGATACACT CTGACCCAG CGTTCTGAAT 3840
 AAAATGCTAA TTTTGGAAA AAAAAAGAA AAAAA 3875

FIG. 1e.

FIG. 2a.
 partial cDNA sequence for the bovine endothelial P-cadherin
 GAATTCCAAC CCCTTCGCTG AGAACACAGT GAGCCACGGAG GTGCAGAGGC TGACAGTGAC 60
 TGATCTGGAC GCCCCTTAAC TACCAAGCATG GCGTGCCACC TACCGCATCG TGGGAGGTGA 120
 CAACGGGAC CATTTCACCA TCACACTGA CCCCGAGAGC AACCAGGGTA TCCTGACCAC 180
 CCAGAAGGGC TTGGATTITG AGGCCAAAC CCAGCACACC CTGTACCGTCG AAGTGATCAA 240
 CGAGGTTCCC TTGTTGGTGA AACTCCCGAC CTCCACAGCC ACCGTAGTGG TCCTCGTGG 300
 GGATGTGAAT GAGCCACCCG TGTGTGTCCC CCCGTCMAA GTCATCGAAA TCCAGGAGGG 360
 CATCTCCACT GGGGAGGCCTA TTTGTGCCTA CACTGCACGG GACCCAGACA AGGGGAGTCA 420

GAAGATCAGT TACCATCC TGAGAGACCC AGCAGGGTGG CTAGCGATGG ACCCAGACAG 480
TGGACAAGTC ACTGCCGCAG GGGTCTTGGA CCGTGAGGAT GAGCAGTGT TGAGAAACAA 540 FIG.2b.
CATCTACGAA GTCATGGTCT TGGCACAGA TGATGGGAGC CCTCCCCACCA CTGGCACAGG 600
GACCCTCCTG CTAACACTGA TGGACATCAA TGACCACGGT CCCGTTCCCCG AGCCCCGGTCA 660
GATCACCATC TGCAACCAA GCCCTGTGCC CCAGGTGCTA AACATCACAG ACAAGGACTT 720
GTCCCCCCAC ACTGCCCTT TCCAGGCCCA ACTCACACAT GACTCGGACG TCTATTGGAC 780
AGCAGAAAGTC AACGAGAAAG GAGACGGCAGT AGCCCTTGTCC CTGAAGAAAGT TCCTAAAGCA 840
AGGCGAATAAC GATGTGCACC TTTCCTGTTC CGACCACGGC ACAAGGAAC AGCTGACAGT 900
GATCAGAGCC ACCGTGTGTG ACTGCCACGG CAACATGGTG ACCTGCCGGG ACCCCTGGAC 960
GTGGGTTTC CTCCTCCCCA TCCTGGTGC TGCCCTGGCT CTGCTGCTCC TTCTGCTGGT 1020
GCTCCTATTTC TTGGTGAGAA AGAACCGAA GATCAAGGAA CCCCTCTCC TCCCAGAAGA 1080
TGATACCGT GACAACGTCT TCTACTACGG CGAAGAGGGG GGTGGCGAGG AGGACCCAGGA 1140
CTATGACATC ACCCAGCTCC ACCGGGTCT GGAGGGGG CCTGAGGTGG TTCTCCGCAA 1200
CGATGTGGCA CCATCCTTCA TCCCCACACC CATGTACCGT CCTCGGCCAG CCAACCCAGA 1260
TGAAATCGGC AACTTCATCA TTGAGAACCT GAAGGCAGCC AACACAGACC CCACGGCCCC 1320

GCCCTACGAC	TCCCTGGTGG	TGTTCGACTA	TGAGGGCAGT	GGCTCCGATG	CCGCCCTCTCT	1380
GAGCTCGCTC	ACCTCCTCAA	CCTCTGACCA	GGACCAAGAC	TACAACATAC	TGAATGAGTG	1440
GGGCAGCCGC	TTCAAGAACG	TGGGGACAT	GTACGGCGGG	GGCCAGGACG	ACTAGGACTC	1500
CCTAAACGCC	GGGCTGCAGC	AGCGTCTCCA	AGGGTCAGT	ATCCCCACGT	TGGCCAAGGA	1560
CTTTCAGGCT	TGTTGAGAAT	TGGCCTTAGC	AACTTGGAGG	GAAGAGGCT	CGAAACTGAC	1620
CTCAAAGGG	CAGGTCTCTA	TGCCTTTCAG	AACGGAGAA	CGTGGGCAGT	T'TGATTCTCAA	1680
CAGTGACAC	CTCTTAGCCT	AAGCCAGGGC	TGCTCAATT	CTGGGAGTCT	CCTCGCTACC	1740
ATAAAATGCT	CAGGGCTGG	TCCTGGTTT	TGACTGACTC	TGACTTCCC	ATGATGGCTT	1800
TTGCTCTGGA	ATGGACCCCT	CTCCTTAGTA	ACAGGGCTCT	TACCAACATC	TTCGTTTTTT	1860
TTTTTTAAT	GCTGTTTCA	AAAAGTGAGA	GGCAGGTCCT	CAACCACCCC	CTGGAGCGCT	1920
CCAGAAGCCC	AGGCCTGCC	TCATGCATT	CTCTGTGGTC	TCTTGGCCCC	CAGACCTCCT	1980
GTttGATTGG	ATAACTGCAT	TTTTATACTG	AGCACGTCATA	AGTGGTCCTT	TATTTTTAT	2040
TTTCCCTATC	GAGTGGTGT	GATGAAGAGT	GATGACAATC	CTGTAAATGT	ACTAGAACTT	2100
TTTTTAA	GGAACTTTT	CCCCAAAAAA	AAAAAA	AAAAAA	AAAAAC	2156

FIG. 3a.

cDNA sequence for MDCK E-cadherin

CGGGCACCTG	TGATTGGGG	AAGTCCGCC	GCCTCCGCC	GCCTCGGCC	CGGCTCTCGA	60
CCCCCGCCG	CCATGGCCC	TCGGTACGGC	GGCCCCCG	CGCTCCTGCT	CCGGCTGCTG	120
CTGCTGCTGC	AGGTCTCATC	GGGCTCTGC	CAAGAGCCG	AGCCCTGCCG	CCCTGGCTTT	180
GGCGCTGACA	GCTACACGTT	CACCGTGCC	CGGGACACT	TGGAGAGGG	CCGGTGTCCCTG	240
GGCAGGGTGA	GTTTTGAAGG	ATGCACCGGT	CTACCTAGGA	CAGCCTATGTT	TTCTGATGAC	300
ACCCGATCA	AAGTGGGCAC	AGATGGTGTG	ATTACAGTCA	AGCGGCCCTCT	ACAACTTCAT	360
AAACAGAGA	TAAGTTTCT	TGTCCATGCC	TGGGAETCCA	GCCGCAGGAA	GCTCTCCACC	420
AGAGTTAGGC	TGAAGGCAGC	GACGCCAAC	CACCACCC	ATCATGATGC	TCCCTCTAAA	480
ACCCAGACAG	AGGTGCTCAC	ATTTCGGCAGT	TCCCAGCATG	GACTCAGAAG	ACAGAAGAGA	540
GAATGGTTA	TCCCTCTAT	CAGCTGCCG	GAAAACGAGA	AAGGCCATT	TCCTAAAAAC	600
CTGGTTCAAGTCTAA	CAGGGACAAA	GAATCAAGG	TTTTCTACAG	CATCACTGGC	660	
CAAAGGAGCTG	ACGCACCTCC	TGTTGGTGTG	TTTATTATG	AAAGAGAAC	AGGATGGCTG	720
AAAGGTGACTG	AGCCTCTGGA	TAGAGAACAA	ATTGCTAAGT	ACATTCTTA	CTCTCATGCC	780
GTATCTTCTA	ATGGGAATGC	GGTTGAAGAC	CCATGGAGA	TCGTGATCAC	GGTGACAGAT	840

CAGAATGACA ACAAGCCCGA GTTCACCCAG GCAGTCTCC AAGGATCTGT CACGGAGGT 900 FIG. 3b.
 GCCCTTCAG GCACCTCTGT GATGCAGGTG ACAGCCACAG ATGGGGATGA TGATGTGAAT 960
 ACCTACAACG CTGCCATCGC TTACAGGCATC CTCACACAAG ACCCCCTCCT GCCTAGCAGC 1020
 ATGATGTTCA CTATCAACAA GGACACAGGA GTCATCAGCG TGCTCACAC TGGCTGGAC 1080
 CGAGAGGGTG TCCCCATGTA CACCTTGGTG GTTCAGGGCTG CTGACCTGCA AGGGCAAGGC 1140
 TTAACTACAA CTGCAACACAGC TGTGATCACA GTCACTGACA TCAATGATAA CCCCCCATC 1200
 TTCACCCAA CCACGTACCA GGGACGGGTG CCTGAGAACCA AGGCTAACGT CGAAATCGCT 1260
 GTACTCAAAG TGACGGATGC TGATGTCCCC GATAACCCCCG CCTGGAGGGC TGTGTACACC 1320
 ATATTGAACA ATAACAAATGA TCAATTGTT GTCACCCACAG ACCCAGTAAC TAACGACGGC 1380
 ATTGAAAA CAACTAAGGG CTTGGATTG GAGGACAAGC AGCAGTATGT CTTGTACGTG 1440
 ACTGTGGTGA ACGTGACCCC GTTGCAGGTC ATCCCTCTCCA CCTCCACAGC CACTGTCACT 1500
 GTGGACGTGG AAGATGTGAA TGAAGCCCCC ATCTTCATCC CTGCCCCAA GGTAGTGTCA 1560
 ATCCCTGAAG ACTTTGGTGT GGGCCAGGAA ATCACATCCT ACACCGCGA GGATCCAGAT 1620
 ACATATATGG AACAGAGGAT AACGTATCGG ATTGGAGGG ATGCTGCCG TTGGCTGGAG 1680
 GTTAATCCAG AATCTGGTGC CATTTCACCT CGGGCTGAGC TGGACAGAGA GGATTGGAG 1740

CACGTGAAAG ATAGCACCGTA TGAAGCCCTC ATTATAGCCA TTGACTTCGG TTCTCCAGTT 1800
 GCTACTGGAA CGGGAACCTCT TCTACTGGTC CTCTCTGATG TGAATGACAA TGCCCCATT 1860 FIG. 3C.
 CCAGAACCTC GAAATATGGA CTTCTGCCAG AAAAACCCAC AGCCTCATGT CATCAACATC 1920
 ATTGATCCAG ATCTTCCCCC CAACACATCT CCCTTCACAG CAGAACTAAC ACACGGGCA 1980
 AGTGTCAACT GGACCATCGA GTACAATGAC CCAGCTCGTG AATCTCTAAT TTGAAAGCCA 2040
 AAGAAAACCT TAGAGTTGG TGACTACAAA ATAATCTCA AGCTCACAGA TAACCAGAAC 2100
 AAGGACCAGG TGACCCACCT ATATGTGTTT GTGTGGACT GCGAAGGTGT CGTCAAACAGC 2160
 TGCAGAGGA CGGGGCCCTTA CGCGGAAGCA GGCTTGCAGG TTCCCTGCCAT CTTGGCATT 2220
 CTCGGAGGA TCCTCGCTCT ACTAATCCTG ATTCTGCTGC TTCTGCTATT TGTTCGGAGG 2280
 AGAAGGGTGG TCAAAGAGCC CTTACTTCCC CCAGAAGATG ACACCCGGGA CAATGTTTAT 2340
 TACTATGATG AAGAAGGAGG TGGAGAGGAG GATCAGGACT TTGACTTGAG CCAGTTGCAC 2400
 AGGGGCCTGG ATGCTGGCC TGAAGTGAAT CGCAATGATG TGGCCCCAAC CCTCCTGAGT 2460
 GTGCCCACT ATCGCCCCCG CCCTGCCAAT CCTGATGAAA TTGGAAACTT TATTGATGAA 2520
 AACCTGAAGG CAGGGACAC TGACCCCTACT GCTCCTCCCT ATGACTCTCT GCTCGTGTTC 2580
 GACTATGAAG GAAGGGTTC TGAAGGCTGCT AGTCTGAGCT CCTTGAACCT CTCAGAGTCA 2640
 GACCAAGACC AGGACTATGA CTACCTGAAT GAATGGGCA ATCGCTTCAA GAAGCTGGCG 2700

GACATGTATG GAGGTGGCGA GGACGACTAG GGGACTTGAG ACAAAATGAAG ATGAGTCCTT 2760 FIG. 3d.
 ATACCATGTG GTAGAAAATG CGGAGGTGAC TGTTCAGC TCCCTTCATC TGAGAGGAAT 2820
 TTCTGGAGAA GAGAAAATGC ACAGTGATAT ATAGTTAGGA TAGTTAGGAT TTCTACTTTA 2880
 TAGATCTAAT CTGTGTGTT GTTAGAACGA TTTTGACCTA TTCTTGAAAG CTTTTTTTC 2940
 TTTCTTCAT CATTCTTAA ATGGTGATGC TGTCCAAAAG ACCCCCCACA TGTTTATATT 3000
 TCAAAAGAAT AGCTAAAGCC TCCAGAAGGT TCTGCTAGCA ATTTCGAGAT TGCCTTATTG 3060
 ACTTGTCTCA TTTTTTAAA GGAAGGTAGG GCTAAACTAC CCTATTGTGT TTGTGTGTGT 3120
 GTGTGTAT GTGTATTAT TTTTAATTG TGTTCCTTT TCTCCTATCA CTGCCACTGGT 3180
 GTCCCGTGT CTAATAACCA CTCTTAACCTC CTTCTGAACCT TACATTGCCT CAGACAGGAG 3240
 TCTCTGCTG CAGAAATTAT TGGGCCCTT CAGGATAAGA GACTTGGTCT TAGTTGTATG 3300
 GTAGTGTGAC TGGTATTAT GGACTCGTAA GGACTTTAGT GGTTCCTTCTT TTTTATTTCC 3360
 TAAGTACATA AATTGAAATT CATATCCATC CACTGACTTG TTCTGCATTA AGTGTGTTG 3420
 TCATGTGGAC GTCATTATGT GGCTACTTIG GTTCTGAACA AGGAGCATTG ACCAGAAAAG 3480
 GtGGTGAATT TTCAGGTGCC ACTCAAACCTC TAATGTTCAC TTATCACTCA AACAGAAGAG 3540
 TGATCTATTC TGACGTTAG CGTAGTGGCCT GCAGTGTGCTGC AGCCAAGAT TGAAGGGGA 3600

12/42

TTGTCAAAGC	CAAGGCCAAC	ATGAAAAATG	GACTTGGAGG	TGGCAGGCCG	GATGGGTCA	3660
TGAGCCTGGC	GTTTAGCAA	ACTGATGCTG	AGGATAACTG	AGGTGGCTCT	ACCTCTAGTC	3720
CTGAAATTTC	TGAAGAATGG	AAGAATCCCC	ACAAGTGTGT	CCTATCGCGA	TCCTTAGGTC	3780
ACAGTTTGTA	CCTGAGGCCA	AGAATCCCCA	GGTGCCTGCT	TTTGTAAATG	TCTACCGAAA	3840
ATGCAGGCTG	ATCTGGACTC	AGGTGCCCA	ATTCTAAGTG	TGCATAGAAA	ACTGACAATA	3900
TTAGAAATT	CTTTTCCCC	CCTTAGGAGC	AGGAAGAAAA	TATGACCC	AAGGGTTTTG	3960
GCAAAGGAA	GTTGGGAGA	GCTTTGACTT	GGATTTTTTT	TAAATTGAAA	TGTGAACCTTC	4020
AGGAACTTT	TGACACCAT	GGGAAATAAT	TTTATCTAA	ATGCTTAC	TGTCTGTCA	4080
CTGTTTCA	AAGAAAAAA	AAATCATCCC	TGCAATCACT	TCTTGGATT	GTCTTGATT	4140
TTCAGCAATT	TAAACTCTAA	TTTACTCCTG	TATAGAGAAT	GTTAATGTA	TTTTGAGTGT	4200
ATATGTTGTT	GGGTACGGAT	AATTGTGAT	TTTCTTGTAG	TCTGGAAAAG	GAAACAAATT	4260
TAAGCTGCGA	AAATTCTTAA	ATATTCAATT	TTATAAATT	TATTAAGAA	TTTTGTAAA	4320
	AAAAAAA	AAA				4333

FIG. 3e.

13/42

N-cadherin restriction map

FIG. 4a.

SUBSTITUTE SHEET

FIG. 4b.

14/42

SUBSTITUTE SHEET

15/42

FIG. 4C.

GCCTCTGGATCGT GAGCTGATA GCCCCGGTT CATTGAGGCACATGCAGTGGATATTAA 660
 Tth111I
 |
 TGGAACCAAGTGGAGAACCCCATCGACATTGTCATCAACGTTATTGACATGAATGATAA 720
 SauI
 Eco81I
 Bsu36I
 AlwNI
 |||
 CAGACCTGAGT TCTTACACCAGGT TGGAAATGGACAGT TCCCTGAGGGATCAAAGCCGGG 780
 NdeI
 |
 AACATATGTTGATGACGGT CACTGGGATTGATGCTGACGATCCAATGCCCTCAATGGAT 840
 HaeII
 Bbel
 Nari
 BanI
 EcoNI AhaII
 |||
 GTTGAGGGTACAGAAT CCTGTCGGCAGGCCAACATGTTACAAT 900
 PvuII
 |
 CAACAATGAGACTGGGACAT TATCACGGTGGCAGGCTGGACTTGACAGAGAAAAGTACA 960

SUBSTITUTE SHEET

16/42

FIG. 4d.

SUBSTITUTE SHEET

17/42

FIG. 4e.

SUBSTITUTE SHEET

18/42

FIG. 4f

Pf1MI

CACAGGCACTTGTATTGACATTGATCCAAATGGACCATTGCTGGACCTTGTCTTGATCTTCCTTT 1860

CellI

XbaII

GCTCTCAGTGAATTAAAGAGAAATTGGACCATCACTCGGGCTTAATGGTGAATTGCTCA 1920

Cfr10I

Bsp1286

BanI

HaeII

BbeI

NarI

AhaII

TGATTCCAAACGGGGACTGCACAGATGTGGATCGAAATTGTGGAGCAGGGCTGGCACCCGG 2100

SUBSTITUTE SHEET

19/42

FIG. 4g.

SUBSTITUTE SHEET

20/42

FIG. 4h.

SUBSTITUTE SHEET

FIG. 4i.

21/42

FIG. 4j.

22/42

SUBSTITUTE SHEET

P-cadherin restriction map

FIG. 4K.

23/42

BstBI
 AsuII
 EcoRI XmnI
 | |
 GAATTCTGAAACCCCTTCGCTTGAGAACACAGTGA
 AhaIII
 |
 TGATCTGGACGCCCTAACCTCACCAGCATGGCGTGC
 AvaI
 |
 CAACGGGGACCATTTACCATCACTACTGACCCCCGAG
 BclI
 |
 CCACGAAAGGCTTGGATTGTGAGGCCAAAACCCAGC
 BstXI
 |
 CGAGGTTCCCTTGTGGTGAAACTCCGACCTCCACGG
 EcoNI
 |
 GGATGTGAATGAGCCACCCCGTGTCCCCCGTCAA
 Eco0109
 |
 CATCTCCACCTGGGAGCCTATTGTGCCTACACTGC
 DraII
 |
 CACGGGACACAAGGGAGGTCA

SUBSTITUTE SHEET

FIG. 41

24/42

DNA sequence diagram showing restriction enzyme cleavage sites and their positions:

- NheI**: Position 100
- BstXI**: Position 150
- Pf1MI**: Position 180
- GAAGATCAGTTACCACATCCTGAGAGACCCAGCAGGGTGGCTAGCGATGGACCCAGACAG**: Positions 100-480
- TGGACAAGTCACTGCCAGGGTCTTGGACCCGTGAGGTGAGCAAA**: Positions 480-540
- Bsp1286**: Position 250
- BanII**: Position 300
- BalI**: Position 350
- CATCTACGAAGTCATGGTCTTGGCCACAGATGATGGAGCCCTCCCACCCACTGGCACAGG**: Positions 250-600
- Eco0109**: Position 450
- DraII**: Position 500
- GACCCTCTGCTAACACTGATGGACATCAATGACCACGGTCCGGCCGAGCCCCGTCA**: Positions 450-660
- Bsp1286**: Position 550
- AvaI**: Position 600
- Bsp1286**: Position 650
- BanII**: Position 680
- AatII**: Position 720
- EaeI**: Position 750
- HincII**: Position 800
- GATCACCATCTGCAACCAAAGCCCTGTGCCAACGCTAAACATCACAGACAAGGACTT**: Positions 720-780
- GTCCCCCACACTGCCCTTCCAGGCCAACATCACATGACTCGGACCGTCTATTGGAC**: Positions 750-780
- XmnI**: Position 850
- AGCAGAAGTCACCGAGAAAGGAGACGGCAGTAGGCCTTGTCCTGAAGAAGTTCCTAAAGCA**: Positions 800-850

SUBSTITUTE SHEET

25/42

FIG. 4m.

SUBSTITUTE SHEET

FIG. 4n.

26/42

27/42

FIG. 40.

28/42

FIG. 4p.

SUBSTITUTE SHEET

FIG. 4q.

29/42

HaeII AfI III
 |
 GCGCCTGACAGCTACACGTTCACCGTGGCCGACACTGGAGAGGGCGTGTCCCTG 240

StyI

AccI
 Cfr10I AvrII
 | |
 GCGAGGGTGAAGGTGGATGCAACGGTCTACGGACAGCCTATGTTCTGATGAC 300

ACCCGATTCAAAGTGGGCACAGATGGTGTGATTACAGTCAAGGGCCCTACAACCTCAT 360

AAACCAGAGATAAAGTTTCTTGTCCATGCCCTGGGACTCCAGCCGAGGAAGCTCTCCACC 420

BspHI
 |
 AGAGTTAGGCTGAAGGCAGCGACGCCACCCACCATCATGATGCTCCCTCTAAA 480

HgiAI
 |
 ACCCAGACAGGGTGGCTCACATTCCAGTTCCAGCATGGACTCAGAACAGAACAGAGA 540

PvuII EaeI
 |
 GACTGGTTATCCCTCCTATCAGCTGCCGGAAACGAGAACGGCCATTTCCTAAAAAC 600

BalI
 |
 CTGGTTCAAGTCTAACAGGGACAAAGAAATCAAGGTTTCTACAGCATCACTGGC 660

SUBSTITUTE SHEET

FIG. 4r.

30/42

SUBSTITUTE SHEET

FIG. 4S.

31/42

TTA ACT AAC GTG CAA AC AG CT GAT CA CGT CACT GAC AT CA AT GATA ACC CCCC CATC
 BcI1 |
 PvU1 |
 Alw1NI |
 Ban1 |
 Bg1I |
 BcI1 |
 Alw1NI |
 Cfr10I |

SUBSTITUTE SHEET

FIG. 4†

ACATATGGAAACAGGATAACCGTATCGGATTGGAGGGATGCCGGTTGGCTGGAG 1680

BanI |
PflMI |
AlwNI |
|
GTTAATCCAGAATCTGGCATTTCACTCGGGCTGAGCTGGACAGAGGGATTGGAG 1740

HgiAI |
|
CACGTGAAGAATAGCACCGTATGAAGCCCTCATTTAGCCATTGACTTCGGTTCTCCAGTT 1800

GCTACTGGAACCGGAACCTCTTACTGGCTCTCTGATGTGAATGACAATGGCCCCATT 1860

CCAGAACCTCGAAATAATGGACTTCTGCCAGAAAAACCCACAGCCTCATGTCAACATC 1920

XbaII |
BglIII |
|
ATTGATCCAGATCTCCCCAACACATCTCCCTCACAGCAGAACTAACACACGGCGCA 1980

HincII |
|
AGTGTCAACTGGACCATTGGAGTACAATGACCCAGCTCGTGAATCTCTAAATTGAAAGCCA 2040

AAGAAAACTTAGAGTTGGGTGACTACAAATAATCTCAAGCTCACAGATAACCAAGAAC 2100

PvuII |
HincII |
|
AAGGACCAAGGTGACCCCTATATGTTGTTGCTGGACTGGCAAGGTGTCGTCAAACAGC 2160

FIG. 4u.

33/42

HaeII
 BbeI
 Nari
 AhaII
 BanI
 BspMI
 BsmI
 TGCAAGAGGACGGGCCCTAACGCCGAAGCAGGGCTTGCAGGGCTCCTGCCATCTGGGCATT 2220
 CTCGGAGGAATCCTCACTAAATCCTGATTCTGCTGCTTCTGCTATTGTTGGAGGG 2280

SmaI
 XmaI
 Avai
 BanII
 AGAAGGGGTCAAAGAGCCCTTACTTCCCCAGAAGATGACACCCGGGACAATGTTAT 2340
 TACTATGATGAAGGAGGGTGGAGAGGGATCAGGACTTGACTTGAGCCAGTTGCAC 2400

Eco0109
 EaeI
 DraII
 AGGGGCCTGGATGCTGGCCTGAAGTGAECTCGCAATGATGTCGCCAACCCCTCCTGAGT 2460
 GTGCCCCAGTATCGGGCCCTGCCAATCCTGATGAAATTGGAAACTTATTGATGAA 2520
 AACCTGAAGGCAGGGACACTGACCCTACTGCTCCCTATGACTCTGCTGGTT 2580

SUBSTITUTE SHEET

34/42

FIG. 4v.

SUBSTITUTE SHEET

FIG.4W.

35/42

DraI
AhaIII

ACTTGTCTCATTTTAAAGGAAGGTAGGGCTAAACCTACCCCTATGTGTTGTGTTGTTG 3120

GTGTGTATAATTATTTTATTGTGTTCTTTCTCCTATCACTGCACACTGGT 3180

EcoNI

GTCCCGGTCTTAACCACTCTTAACCTACATGACTCAGACAGGAG 3240

BanII

ApAI

EcoO109

DraII

PstI

EaeI

Tth111I

TCTCTGCTGCAGAAATTATGGCCCTTCAGGATAAGAGACTGGTCTTAGTTGATG 3300

GTAGTGTGACTGGTATTATGGACTCGTAAGGGACTTTAGTGGTTCTCCTTTTATTTCC 3360

TAAGTACATAATTGAAATTCATCCACTGACTTGTCTGCATTAAGTGTGTTG 3420

AatII

AhaII

TCATGTGGACGTCATTATTGGCTACTTTGGTTCTGAACAAAGGAGCATTGACCAGAAAAG 3480

BanI

GTGGTGAATTTCAGGTGCCACTCAACTTCTAATGTTCACTTACACTCAAACAGAAGAG 3540

SUBSTITUTE SHEET

36/42

FIG. 4x.

37/42

GCAAAGGGAAAGGTGGGGAGGCTTTGACTTGGATTTTAAATTGAAACTTC 4020
 DraI
 AhaIII
 |
 AGGAACCTTTGACAACCATGGAAATAATTATCTAAATTGCTTACTGTCTGTCAG 4080
 StyI
 NcoI
 |
 CTGTTTTCAAAAGAAAAAATCATCCCTGCAATCACTTCTTGGAAATTGCTTGATT 4140
 Pvull
 |
 TTCAGCAATTAAACTCTAATTAGTCCTGTATAGAGAATGTTAATGTTGAGTGT 4200
 ATATGTGTGTGGGTACGGATAATTGGTATTCTTAGGGCTGGAAAAGGAAACAAATT 4260
 SspI
 |
 TAAGCTGCAGAAATTCTAAATTCATTCTTATAATTAAAGAATTGTTGTTAAA 4320
 AAAAAAA

SUBSTITUTE SHEET

FIG. 4y.

38/42

FIG. 5.

39/42

FIG. 6.

SUBSTITUTE SHEET

40/42

FIG. 7.

41/42

FIG. 8.

SUBSTITUITE SHEET

42/42

Effect of 11-mer and 18-mer on brain endothelial cells

FIG. 9.

INTERNATIONAL SEARCH REPORT

International Application No PCT/US90/05105

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all)

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC(5): A61K 37/02, 39/00; C07K 7/08, 7/10, 13/00, 15/00, 15/28

U.S.CI.: 530/324, 326, 350, 389, 390, 391, 402, 409, 345, 387; 514/12, 13; 424/85.8, 85.91

II. FIELDS SEARCHED

Classification System	Minimum Documentation Searched *	Classification Symbols
	530/324, 326, 350, 389, 390, 391, 402, 409, 345, 387	
	514/12, 13	
<u>U.S. Cl.</u>	424/85.8, 85.91	

Documentation Searched other than Minimum Documentation
to the Extent that such Documents are Included in the Fields Searched :

Data bases: Dialog (Files; Medline, Biosis, Chemical Abstracts, World Patents Index) Automated Patent Searching (1975-1990)

III. DOCUMENTS CONSIDERED TO BE RELEVANT **

Category *	Citation of Document, i.e. with indication, where appropriate, of the relevant passages **	Relevant to Claim No. ***
X Y	The EMBO Journal, Volume 4, No. 13A, issued December 1985, Vestweber et al., "Identification of a Putative Cell Adhesion Domain of Uvomorulin," pp. 3393-3398. See the Abstract and Discussion.	1-6, 14-21, 23-27 & 35-42
Y	Development, Volume 102, issued April 1988, M. Takeichi, "The Cadherins: Cell-cell Adhesion Molecules controlling Animal Morphogenesis," pp. 639-655 see the Summary and pages 643, 645 and 651.	1-65
X Y	The Journal of Cell Biology, Volume 107, issued October 1988, B. Gumbiner et al., "The Role of the Cell Adhesion Molecule Uvomorulin in the Formation and Maintenance of the Epithelial Junctional Complex," pp. 1575-1587 see the Abstract.	1-6, 14-21, 23-27, 35-42
		1-6, 14-27, 35-47, 55-65

* Special categories of cited documents: is

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search :

21 November 1990
International Searching Authority :

ISA/US

Date of Mailing of this International Search Report :

04 FEB 1991

Signature of Authorized Officer to

R. Keith Baker

R. Keith Baker, Ph.D.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)

Category *	Citation of Document, ** with indication, where appropriate, of the relevant passages ***	Relevant to Claim No. ****
Y	The EMBO Journal, Volume 6, No. 12, issued 1987, M. Ringwald et al., "The Structure of Cell Adhesion Molecule Cytomulin Insights into the Molecular Mechanism of Ca ⁺⁺ -dependent Cell Adhesion," pp3347-3353, see pages 3647-3648.	1-13, 22-34, 43-54 and 63-65
Y	US, A, 4,671,958 (Rodwell et al.) 09 June 1987, see the Abstract and Column 7.	43-47 and 55-65
Y, P	Development Biology, Volume 139, No. 1, issued May 1990, O.W. Blaschuk et al., "Identification of a Cadherin Cell Adhesion Recognition Sequence," pp227-229, see the entire Document.	1-65

FURTHER INFORMATION CONTINUED FROM THE SECOND SHEET**V. OBSERVATIONS WHERE CERTAIN CLAIMS WERE FOUND UNSEARCHABLE¹**

This international search report has not been established in respect of certain claims under Article 17(2) (a) for the following reasons:

1. Claim numbers _____, because they relate to subject matter not required to be searched by this Authority, namely:

2. Claim numbers _____, because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out¹, specifically:

3. Claim numbers _____, because they are dependent claims not drafted in accordance with the second and third sentences of PCT Rule 6.4(a).

VI. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING²

This International Searching Authority found multiple inventions in this international application as follows:

See Attachment

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims of the international application. Telephone Practice

2. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims of the international application for which fees were paid, specifically claims:

3. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claim numbers:

4. As all searchable claims could be searched without effort justifying an additional fee, the International Searching Authority did not invite payment of any additional fee.

Remark on Protest

The additional search fees were accompanied by applicant's protest.
 No protest accompanied the payment of additional search fees.

Attachment To PCT/ISA/210

Observations Where Unity of Invention Is Lacking

Group I, claims 1-13 and 22-34, drawn to a composition for opening tight junctions and a method of use, classified in classes 530 and 514, subclasses 324, 326, 350 and 12 and 13, respectively.

Group II, claims 14-21 - 35-42, drawn to antibodies for opening tight junctions and methods of use, classified in classes 530 and 424, subclasses 387 and 85.8, respectively.

Group III, claims 43-54 and 63-65, drawn to a conjugates of a drug and a cell adhesion inhibitor, classified in class 530, subclasses 402, 409, and 345.

Group IV, claims 55-62, drawn to a conjugate of a drug and an antibody, classified in classes 530 and 424, subclasses 389, 390, 391 and 85.91, respectively.

Attachment To PCT/ISA/210

Detailed Reasons For Holding Lack Of Unity Of Invention:

PCT Rule 13.2 permits claims to "a" (one) product, "a" (one) method of making and "a" (one) method of using said product. The invention as set forth in Group I constitutes a combination of a product and a method of use. Groups II, III and IV one drawn to products that are distinct from that of Group I. Each of the products have a different structure and are distinct compositions as evidenced by their separate classification.

1/1 - (C) PAJ / JPO
PN - JP4013631 - 920117
AP - JP900113456 900427
PA - TONEN CORP; others: 02
IN - UMEZAWA KAZUO; others: 02
I - A61K35/78; C07G17/00
SI - C12N9/99
TI - SUBSTANCE ORGINATED FROM ANACARDIUM OCCIDENTALE
AB - NEW MATERIAL:A substance obtained from Anacardium occidentale and having physical characteristics; thin layer chromatography: Rf=0.46 (carrier silica gel, developing solvent; chloroform : methanol : concentrated ammonia water = 10 : 2 : 0.05); UV spectrum: lambdamax300nm (solvent: methanol); <1>H-NMR spectrum (solvent: heavy chloroform); deltappm: 0.9, 1.0-1.7, 2.0, 2.75, 5.0, 5.3, 5.8, 6.5, 6.95, 7.5; solubility: soluble in hexane, chloroform, ethyl acetate, methanol and dimethylsulfoxide and insoluble in water, and having a tyrosine kinase-inhibiting activity and a beta-glucosidase-inhibiting activity.

Continue: Y / N

? Y

- USE:An antitumor agent capable of simultaneously inhibiting or depressing the evolution and metastasis of cancers.
- PREPARATION:The pericarps of Anacardium occidentale or seeds containing the pericarps are extracted with a solvent and the extract is purified with liquid chromatography.

GR - C0931
ABV - 016164
ABD - 920421
XPN - J04013631
XPR - 90JP-113456

