MathTools HW 8

- 1. The ergodic theorem for Markov chains. Consider an ergodic Markov chain over a finite state space S, with the stationary distribution π . Recall that for any $f: S \to \mathbb{R}$, the averages $\frac{1}{T} \sum_{t=1}^{T} f(X_i)$ converge in probability, f as $T \to \infty$, to the expectation $\mathbb{E}_{X \sim \pi}[f(X)]$.
 - (a) For a state $s \in S$, let T_s be the amount of time the chain spends in s along the first T time steps, in other words,

$$T_s = |\{1 \le t \le T : X_t = s\}|$$
.

 T_s is, of course, a random variable. Show that T_s the proportion of time spent in T_s , T_s

(b) Extend the ergodic theorem, in the following manner. Prove that for any $f: S \times S \to \mathbb{R}$,

$$\frac{1}{T} \sum_{t=1}^{T} f(X_t, X_{t+1}) \stackrel{T \to \infty}{\longrightarrow} \mathbb{E}[f(Y_1, Y_2)],$$

where Y_1 , Y_2 are random variables that have the joint distribution $\Pr(Y_1 = a, Y_2 = b) = \pi_a P_{ab}$ (that is, first sample Y_1 according to π , and then sample Y_2 according to the conditional distribution of the chain).

Hint: Construct an ergodic Markov chain whose state space, \mathcal{T} , is a subset of $\mathcal{S} \times \mathcal{S}$. Apply the ergodic theorem for that chain.

(c) For $a, b \in S$, let $T_{a,b}$ be the amount of time the chain spends on the edge (a, b), that is,

$$T_{a,b} = |\{1 \le t \le T : X_t = a \text{ and } X_{t+1} = b\}|.$$

Show that $T_{a,b}/T \stackrel{T \to \infty}{\longrightarrow} \pi_a P_{ab}$.

- 2. **Gambler's ruin.** Consider the following 2-player game. Player 1 starts with k coins, and player 2 starts with n-k coins. At each round, a fair coin is flipped; if the coin lands head, player 1 gains a coin and player 2 loses one; otherwise, player 1 loses a coin and player 2 gains one. The game ends once one of the players loses all his coins (and the other gains all n coins).
 - (a) Let X_t be the number of coins of player 1 at round t. Explain why the process X_1, X_2, \ldots constitutes a Markov chain (describe its transition matrix). Show that this chain is *not* irreducible.

Henceforth, denote the transition matrix of the chain by *P*.

(b) Let q be any starting distribution. Prove that

$$\lim_{t\to\infty} (\boldsymbol{q}^\top P^t)_k = 0 \quad \text{ for all } 1 \le k \le n-1.$$

¹We say that a sequence of random variables, Z_1, Z_2, \ldots converges in probability to a number $a \in \mathbb{R}$ if for *every* $\varepsilon > 0$, the probability $\Pr(|Z_n - a| \ge \varepsilon) \to 0$ as $n \to \infty$.

²Convergence here = convergence in probability.

(c) Denote by \mathbf{e}_k the probability take puts all its mass on k. Show that the stationary distributions of P are exactly the convex combinations of \mathbf{e}_0 and \mathbf{e}_h , that is, all the distributions of the form

$$\pi = \alpha \mathbf{e}_0 + (1 - \alpha) \mathbf{e}_n$$
, where $\alpha \in [0, 1]$.

Remark: π is a stationary distribution of P whenever $\pi^{\top}P = \pi^{\top}$.

(d) Compute $\lim_{t\to\infty} \mathbf{e}_k^{\top} P^t$ for all k.

Hint: Let p_k be the probability that, assuming player 1 starts with k coins, he eventually loses them all. In other words, it is the probability, given that the initial state is $X_1 = k$, that the chain eventually hits the state 0. Find a recursive formula for p_k ; guess a solution (or solve the equation systematically) - it should be very easy.

3. **Expander mixing lemma.** Let G be a d-regular graph on n vertices. Let A_G be the adjacency matrix of G, and denote its eigenvalues by $\lambda_1 \geq \ldots, \geq \lambda_n$. Recall that $\lambda_1 = d$, and denote $\lambda^* = \max\{|\lambda_2|, |\lambda_n|\}$. For sets $S, T \subset [n]$, denote by e(S, T) the number of edges the cross between S and T, where edges that start and end in $S \cap T$ are counted twice; that is,

$$e(S,T) = |\{(s,t) : s \in S, t \in T\}|$$

(the number of ordered pairs). Prove that

$$\left| e(S,T) - \frac{d}{n}|S||T| \right| \le \lambda^* \sqrt{|S||T|}.$$

Remark: Note that in a random graph $\mathcal{G}(n,d/n)$, with average degree d, one has $\mathbb{E}[e(S,T)] = \frac{d}{n}|S||T|$ (say when S,T are disjoint). This result says that expanders (in the sense of small λ^*) behave, in some sense, like random graphs.

4. **Max-Cut.** Let G be a graph on n vertices. A cut is a partition of its vertices in two parts (S, S^c) (where $S^c = [n] \setminus S$). The size of the cut is $e(S, S^c)$, the number of edges that cross the cut (see previous question). The maximum cut problem (Max-Cut) asks for the size of a maximum cut in G, denoted here by

$$c(G) = \max_{S \subset [n]} e(S, S^c).$$

As many of you probably know, the maximum cut problem is in general NP-complete.

Assume that *G* is *d*-regular. Prove the following bounds on the maximum cut of *G*:

(a) $c(G) \leq \frac{n(d-\lambda_n)}{4}$, where λ_n is the *smallest* eigenvalue of the adjacency matrix.

Hint: The bound of Q(3) is unfortunately a bit too loose to prove this. Letting $\mathbf{1}_S$ be the indicator for the set S, analyze $\mathbf{1}_S^{\top} A_G \mathbf{1}_{S^c}$, where also note that $\mathbf{1}_{S^c} = \mathbf{1} - \mathbf{1}_S$.

(b) $c(G) \geq \frac{nd}{4}$.

Hint: Use the *probabilistic method*. Choose *S* randomly, and compute $\mathbb{E}[e(S, S^c)]$.