Logic, Reasoning, and Persuasion, Week 8-2 Handout

1 | Connectives

If *A* and *B* are statements, we can make more complicated statements out of them. There are a few standard ways to do this:

- 1. AND, written & or \wedge .
 - (a) Given statements A and B, you can write A&B for "A and B."
 - (b) A&B is a true statement if both A and B are true statements. It is false otherwise.
- 2. OR, written V.
 - (a) Given statements A and B, you can write $A \vee B$ for "Either A or B (or both)."
 - (b) $A \vee B$ is a true statement if *either* of A or B are true statements, or both are true. It is false otherwise.
- 3. NOT, written \neg or \sim .
 - (a) Given a statement A, you can write $\neg A$ for "it is not the case that A."
 - (b) $\neg A$ is true if A is false, and is false if A is true.

We can write down these conditions in tables, called "truth tables," for reference.

Here's how to use the truth tables: if we know A is true and B is false and want to know whether $A \vee B$ is true, we go to the truth table for $A \vee B$, and find the row where A is true and B is false:

$$\begin{array}{c|c|c|c} A & B & A \lor B \\ \hline T & T & T \\ \hline \to T & F & T \\ F & T & T \\ F & F & F \end{array}$$

In this row $A \vee B$ is true. So if A is true and B is false, then $A \vee B$ is true.

Exercise 1: Let A =Ananya is working and B =Bernard is working. Suppose that Ananya is working, but Bernard is not. For each of the following, is it true or false?

- 1. A
- 2. *B*
- 3. $A \vee B$
- 4. A&B
- 5. ¬*B*
- 6. ¬*A*

2 | Probabilities in Truth Tables

If you have just one statement A, and you're asking whether it's true or false, there are two possibilities: Either A is true or A is false (so $\neg A$ is true), and exactly one of them is true (since A and $\neg A$ can't both be true. If we have some level of confidence that A is true and some level of confidence that $\neg A$ is true, we can write this in a modified truth table. If there is a 0.4 probability that A is true, and 0.6 that A is false, then:

$$\begin{array}{c|cc}
A & Prob \\
\hline
T & Pr(A) & 0.4 \\
F & Pr(\neg A) & 0.6
\end{array}$$

The numbers in the second column will always add up to one. Why is this? Intuitively, it's because we are certain that either A is true or A is false, so by the second axiom, Pr(either A is true or A is false) = 1.

When we have two statements *A* and *B*, and we're asking whether they are true or false, there are four possibilities:

- 1. Both A and B are true
- 2. *A* is true, but *B* is not
- 3. *B* is true, but *A* is not
- 4. Neither *A* nor *B* are true

These four possibilities correspond to the four rows of the truth tables for *A* and *B*. So for example if we think all four options are equally likely, then:

\boldsymbol{A}	$\mid B \mid$		Prob
\overline{T}	T	Pr(A&B)	0.25
T	F	$Pr(A \& \neg B)$	0.25
F	$\mid T \mid$	$Pr(\neg A\&B)$	0.25
F	F	$Pr(\neg A \& \neg B)$	0.25

Notice again that the numbers in the column add up to 1. Again, this is intuitively because exactly one of these four possibilities is true, so we are certain that *one* of them will be true.

3 | CALCULATING PROBABILITIES WITH TRUTH TABLES

Suppose we have two propositions, A and B, and the following probabilities for the possibilities:

\boldsymbol{A}	$\mid B \mid$		Prob
T	T	Pr(A&B)	0.2
T	F	$Pr(A \& \neg B)$	0.3
F	T	$Pr(\neg A\&B)$	0.4
F	$\mid F \mid$	$Pr(\neg A \& \neg B)$	0.1

To get the probabilities of these four possibilities, we can just read off that single row. But suppose we want to know the probability that $A \lor B$ is true? That is not one of

the rows. Here's what we can do. We'll bring in the truth-table for $A \vee B$:

\boldsymbol{A}	B		$A \vee B$	Prob
T	T	Pr(A&B)	T	0.2
T	F	$Pr(A \& \neg B)$	T	0.3
F	$\mid T \mid$	$Pr(\neg A\&B)$	T	0.4
F	F	$Pr(\neg A \& \neg B)$	F	0.1

Then we'll add up the numbers in all the rows where $A \lor B$ has a T (bolded): 0.2 + 0.3 + 0.4 = 0.9. So $Pr(A \lor B) = 0.9$.

Exercise:

- 1. What is $Pr(\neg A)$ and $Pr(\neg B)$?
- 2. What is $Pr(\neg(A \lor B))$?

4 CALCULATING CONDITIONAL PROBABILITIES

What is the probability $Pr(A \mid B)$? There is no statement corresponding to $A \mid B$. Instead, we need a rule to calculate conditional probabilities:

Calculating Conditional Probability

Suppose you have the probability truth table for A and B and you want to know $Pr(B \mid A)$.

- 1. First, **suppose** that A is true: cross out the rows in which A is false, so only the ones in which A are *true* Add all the remaining rows: this is Pr(A).
- 2. Second, add all the remaining rows where B is true. This is Pr(B&A) (since in these rows, both A and B are true).
- 3. Finally, divide the number from part (2) by the number in part (1) to calculate $Pr(B \mid A)$:

$$Pr(B \mid A) = \frac{Pr(B\&A)}{Pr(A)}.$$

Example:

$$Pr(A) = 0.2 + 0.3 = 0.5$$
 $Pr(A \& B) = 0.2$ $Pr(B \mid A) = \frac{0.2}{0.5} = 0.4.$

Exercise: for the same table from the example, find $Pr(A \mid B)$.

For the probability truth table below, find $Pr(A \mid B)$ and $Pr(B \mid A)$.

\boldsymbol{A}	B		Prob
T	T	Pr(A&B)	0.5
T	F	$Pr(A \& \neg B)$	0.3
F	T	$Pr(\neg A\&B)$	0.1
F	F	$Pr(\neg A \& \neg B)$	0.1

Suppose we know the following about Ananya and Bernard:

- 1. There is a 10% chance that both will be in the office.
- 2. There is a 30% chance that only Ananya is in the office, and a 30% chance that only Bernard is in the office.
- 3. There is a 30% chance that neither of them are in the office.

Calculate $Pr(Bob is in \mid Ananya is in)$ and $Pr(Ananya is in \mid Bob is in)$.

5 BACK TO THE AXIOMS

Intuitively, when there are possibilities that never happen at the same time, it makes sense to add up the probabilities to figure out the probability that *one* of them happens or the other one happens. This can be formalized in the final axiom of probability:

Probability Axiom 3: Additivity

PA₃ If *A* and *B* are never true at the same time, then $Pr(A \lor B) = Pr(A) + Pr(B)$.

With this last axiom in hand, let's review the other axioms. I'll admit I simplified things a bit last time: time for the full truth.

The Three Probability Axioms

- PA1 Nonnegativity: For any statement A, $Pr(A) \ge 0$. Intuitively: your confidence in any possibility should never be negative.
- PA2 **Certainty**: For any statement A, if you're certain that A is true, then Pr(A) = 1 (and if you're certain that A is false, then Pr(A) = 0).
- PA₃ **Additivity** If *A* and *B* are never true at the same time, then $Pr(A \lor B) = Pr(A) + Pr(B)$.