

Focus for this lecture

Linear Models

Recap: The Machine Learning Framework

Output Prediction function Feature representation

Training: Given a training set, estimate the prediction function, f(), by minimizing the prediction error

Testing: Apply f() to unknown test sample x and predicted value(output) is y

Recap: The Machine Learning Framework

Output Prediction function Feature representation

Training: Given a training set, estimate the prediction function, f(), by minimizing the prediction error

Testing: Apply f(W, ...) to unseen test sample x and predicted value(output) is y

Parameter: Primary problem is to find the parameters, W

Recap: Sample and Representation

A sample is easy to visualize in 2D.

•
$$x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

- And sometime in 3D with some effort, $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$
- And we often need much larger dimensionality in practice.

Recap: Decision Boundary

• Decision boundary: Hyperplane $W \cdot x = 0$

• Class 1 lies on the positive side $W \cdot x \ge 0$

• Class 0 lies on the negative side $W \cdot x < 0$

Trailer: Support Vector Machines

- SVMs maximize the margin around the separating hyperplane.
 - A.k.a. large margin classifiers

 The decision boundary is fully specified by a subset of training samples, the support vectors.

The Problem

- Find \mathbf{w} , given examples: (x_i, y_i) , i = 1, 2, ..., n
- Supervised situation: output label y; is available for all training n samples
- Objective: predict y values for a novel input x that we have not seen before
 - Called generalization in Machine Learning
- How do we find w? Ans: Gradient descent!

Loss Function

• Error/Loss (L): A function of the difference between the actual value or label (y_i) and the predicted value ($f(w, x_i)$)

Total Loss:

$$J = \sum_{i=1}^{n} L(y_i, f(w, x_i))$$

the sum of loss over n labelled training samples: (x_i, y_i)

Strategy: Start with some initial values for w and bring the predicted values closer to the corresponding labels (or minimize J) by adjusting w.

Example: Loss Function

 Loss function could be the squared difference between predicted values and labels

$$J = \sum_{i=1}^{n} (y_i, f(w, x_i))^2$$

 Final objective is to minimize J, the sum of losses over each training sample

Questions?

Gradient Descent

Optimization Algorithm

Gradient Descent

- Minimum of the function lies in the opposite direction of gradient
- Start with a guess
- Take a step against gradient:
- $w' = w \eta \nabla J(w)$

Very Small Learning Rate

- Step size too small
- Gradient descent slow to converge

Very High Learning Rate

- Step size too large
- Gradient descent Oscillating

Gradient Descent: Importance of Learning rate

Gradient Descent - Learning rate

- Learning rate is critical
 - Start high to make rapid strides
 - Reduce for smoother convergence

High Learning rates

Low Learning rates

Gradient Descent - Initialization

- Effects of Initialization of weights
- Good initialization: Converge fast

Gradient Descent - Initialization

Gradient Descent - Initialization

Scale varied for better visibility

Fine Points

- When do we stop the iterations?
 - When the gradient value is too low ($< \varepsilon$)
 - When the change in loss function is too small
- How about the step size?
 - Ensure smooth convergence

Gradient Descent - Learning rate

http://cs231n.github.io/neural-networks-3/#baby

Batch Gradient Descent

Pseudo Code

```
model = initialization(...)
train data = load_training_data()
for i in 1...n:
  error = 0
  for X, y in train_data:
      prediction = predict(X, model)
      error += calculate error(y,prediction)
  gradient = differentiate(error)
  model = update_model(model, gradient)
```


Mini Batch Gradient Descent

```
Pseudo Code
model = initialization(...)
train data = load_training_data()
Tb<sub>1</sub>, Tb<sub>2</sub>, Tb<sub>3</sub>, .....,Tb<sub>m</sub> = split_training_batches(train_data)
for i in 1...n:
       error = 0
       for Tb in Tb<sub>1</sub>, Tb<sub>2</sub>, Tb<sub>3</sub>, .....,Tb<sub>n</sub>:
               for X, y in Tb:
                      predictions = predict(X, model)
                      error += calculate_error(y,predictions)
               gradient = differentiate(error)
               model = update_model(model, gradient)
```


Stochastic Gradient Descent

Pseudo Code

```
model = initialization(...)
train_data = load_training_data()
for i in 1...n:
  train_data = random_shuffle(train_data)
  error = 0
  for X, y in train_data:
      prediction = predict(X, model)
      error = calculate error(y,prediction)
      gradient = differentiate(error)
      model = update_model(model, gradient)
```

Trend

Use Stochastic Mini Batch Gradient Descent

Comments: Convex Objective

- Local minima = global minima
- Strong theoretical guarantees
- Only one optimal solution, easier in intuition
- Takes lesser time to converge to optima

Comments: Non - Convex Objective

- Multiple local minima
- Multiple local minima != Global minima
- It can take a lot of time to identify whether the problem has no solution or if the solution is global
- Takes longer to obtain global optima

Comments: Non - Convex Objective

 Typically viewed as highly nonconvex function but more recently it's believed to have smoother surfaces but with many saddle regions!

Visualization of loss function

Comments: Step Function

For binary classification,

$$y = f(w, x)$$

$$y = \begin{cases} 1 & if \ f(w, x) \ge 0 \\ 0 & if \ f(w, x) < 0 \end{cases}$$

This is not differentiable

Comments: Logistic Regression

- Also called as Sigmoid Function
- To make the loss "differentiable" (see next few slides)

$$y = f(w, x) = \frac{1}{1 + e^{-w \cdot x}}$$

 (Nice probabilistic interpretation; between 0 and 1)

Comments: Logistic Function

- The logistic function
 - Probability of an outcome

$$f(z) = \frac{1}{1 + e^z}$$

Has an interesting derivative form

$$f'(z) = f(z)(1 - f(z))$$

Connect with linear classifier:

$$f(w,x) = \frac{1}{1 + e^{-w \cdot x}}$$

$$z = w \cdot x$$

Summary

- Linear classifiers are simple to train
- Gradient descent is a powerful technique to optimize convex and non-convex objective functions

Questions?

Perceptron

Neuron Network Perspective

Linear Classifier

It has linear partition or decision boundaries.

A "Neural Network" Perspective

Simple "Neuron" and Single Layer Perceptron

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

Neural Networks

Biologically inspired networks

 Complex function approximation through composition of functions

Can learn arbitrary Nonlinear decision boundary

Learning in Neural Networks

$$Z = -0.06 \times 2.7 + 2.5 \times 8.6 + 1.4 \times 0.002 = 21.34$$

Learning = Finding the best or optimal weights

Single Layer Perceptron & Multi Layer Perceptron

Deep Neural Networks (Multi Layer Perceptron) NSE talent A print A pr

Summary

Thanks!!

Questions?