3.6.1 Спектральный анализ электрических сигналов.

Александр Романов Б01-107

1 Введение

1.1 Цель работы

Изучить спектральный состав периодических электриче ских сигналов.

1.2 В работе используются

Анализатор спектра, генератор прямоугольных импульсов и сигналов специальной формы, осциллограф.

1.3 Идеи

1.3.1 Разложение сложных сигналов в ряд Фурье

При изучении линейных систем возникает необходимость представления произвольного сигнла f(t) в виде ряда Фурье:

$$f(t) = \sum_{n} c_n e^{i\omega_n t}$$

Получим коэффициенты разложения в ряд Фурье для периодического колебательного процесса общего вида f(t)=f(t+T), где T - период процесса. Покажем, что этом случае функция f(t) может быть представленна бесконечной суммой гармонических колебаний с кратными частотами:

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{in\omega_0 t} \tag{1}$$

Нетрудно видеть, что все слогаемые в этой сумме – периодические функции с периодом, кратным T и они полностью исчерпывают набор гармонических функций, удовлетворяющих f(t)=f(t+T). Таким образом периодическая функция имеет дискретный спектр с кратными частотами. Спектр – то есть набор коэффициентов $\{c_n\}$ – можно найти следующим образом: домножим обе части равенста (1) на $e^{-im\omega_0 t}$ и проинтегрируем по времени t за период (Например, от 0 до T). Получим

$$\int_0^T f(t)e^{-im\omega_0 t}dt \sum_n c_n \int_0^T e^{i(n-m)\omega_0 t}dt$$

Вычислим интеграл в правой части:

$$\int_0^T e^{i(n-m)\omega_0 t} dt = \begin{cases} 0 & \text{if } n \neq m \\ T & \text{if } n = m \end{cases}$$

Таким образом получаем

$$c_n = \frac{1}{T} \int_0^T f(t)e^{-in\omega_0 t} dt.$$
 (2)

1.3.2 Периодическая последовательность прямоугольных импульсов

Рис. 1: Периодическая последовательность прямоугольных импульсов и её спектр(Для $au=\frac{T}{3}$).

Рассмотрим сигнал на рис 1 и найдём его спектр. Используя (2) на интегрвале интегрирования $-T/2 \le t \le T/2$, с учётом того, что функция f(t) отлична от нуля только лишь в области $|t| < \tau/2$ находим

$$c_n = \frac{1}{T} \int_{-\tau/2}^{\tau/2} e^{-in\omega_0 t} dt = \frac{\tau}{T} \cdot \frac{\sin(n\omega_0 \tau/2)}{n\omega_0 \tau/2} = \frac{\sin(\pi n\tau/T)}{\pi n}$$
(3)

Пунктиром изображена огибающая кривая

$$C(\omega) = \frac{\tau}{T} \cdot \frac{\sin \omega \tau / 2}{\omega \tau / 2}$$

Полуширина $\Delta \omega$ главного максимума этой функции определяется условием $\sin \omega \tau/2=0$:

$$\Delta\omega\cdot\tau=2\pi$$

1.3.3 Периодическая последовательность цугов гармонических колебаний

Рис. 2: Периодическая последовательность синусоидальных цугов и её спектр. (Здесь $T/\tau=4$)

Рассмотрим сигнал на рис 2. Это - цуги колебания $V_0 \sin \omega_0 t$. Из (2) найдём c_n и для них:

$$c_n = \frac{2}{T} \int_{-\tau/2}^{\tau/2} V_0 \cos(\omega_0 t) \cdot \cos(n\Omega_1 t) dt =$$

$$= V_0 \frac{\tau}{T} \left(\frac{\sin\left[(\omega_0 - n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 - n\Omega_1) \frac{\tau}{2}} + \frac{\sin\left[(\omega_0 + n\Omega_1) \frac{\tau}{2} \right]}{(\omega_0 + n\Omega_1) \frac{\tau}{2}} \right)$$
(4)

Тогда Спектры последовательности идентичны прямоугольным импульсам, но сдвинуты на ω_0 .

1.3.4 Амплитудно-модулированные колебания

Рис. 3: Амплитудно-модулированный сигнал и его спектр.

Рассмотрим рис. 3 гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой $\Omega \ll \omega$.

$$s(t) = A_0 \left[1 + m \cos \Omega t \right] \cos \omega_0 t$$

Коэффициент m называется глубиной модуляции. При m < 1 амплитуда меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представленна в виде

$$m = \frac{A_{max} - Amin}{A_{max} + A_{min}}.$$

Легко переписать уравнение сигнала как:

$$f(t) = A_0 \cos \omega_0 t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t + \frac{A_0 m}{2} \cos (\omega_0 + \Omega) t.$$
 (5)

Спектр таких колебаний содержит 3 составляющие. Основная компонента представляет собой исходное немодулированное с несущей частотой ω_0 и амплитудой $A_{cen}=A_0$ – первое слагаемое в (5); Боковые компоненты спектра соответствуют гармоническим колебания с частотами ($\omega_0+\Omega$) и ($\omega_0-\Omega$) – второе и третье слагаемые (5). Амплитуды этих колебаний одинаковы и составляют m/2 от амплитуды немодулированного колебания $A_{side}=A_0m/2$

1.3.5 Соотношения неопределённости

Рис. 4: Связь характерных масштабов спектра с характерными временами сигнала.

При рассмотрении примеров мы получили соотношение, связывающее между собой длительность Δt сигнала с шириной $\Delta \omega$ его спектра:

$$\Delta\omega \cdot \Delta t \sim 2\pi \tag{6}$$

Оказывается, это соотношение имеет весьма универсальный характер. Оно остаётся справедливым по порядку величины для произвольного сигнала f(t). Например, рассмотрим ограниченную последовательность периодических импульсов с полной длительностью t_0 , периодом $T \ll t0$ и длительностью каждого импульса $\tau \ll T$. Сигнал и его спектр представлены на рис. 4 На спектре видно три характерных масштаба частоты: масштаб $\Delta \omega \tau = 2\pi/\tau$ – это характерная ширина спектра, масштаб $\Delta \omega T = 2\pi \tau$ – расстояние между соседними спектральными пиками, и наконец наименьший масштаб частоты, соответствующий наибольшему характерному времени t_0 , определяет ширину каждого пика $\Delta \omega_0 = 2\pi/t_0$.

2 Работа

2.1 А. Исследование спектра периодической последовательности прямоугольных импульсов

Устанавливаем на генераторе прямоугольные импульсы с $\nu_{rep}=1kHz$ и длительностью импульса $\tau=100uS$. Получаем на экране спектр сигнала и, изменяя поочереди τ и ν_{rep} будем наблюдать как изменяется спектр.

Рис. 5: Спектр при $\nu_{rep}=1kHz, \tau=100uS$

Рис. 6: Спектр при $\nu_{rep}=1kHz, \tau=200uS$

Рис. 7: Спектр при $\nu_{rep}=2kHz, \tau=100uS$

Проведём изерения зависимости ширины спектра от длительности импульса при частоте повторения $\nu_{rep}=1kHz$

τ , uS	$\Delta \nu$, kHz		
40	25		
60	16		
80	13		
100	10		
120	8		
140	7		
160	6		
180	5.5		
200	5		

Получим отсюда таблицу $\Delta \nu(1/ au)$:

$1/\tau$, kHz	$\Delta \nu$, kHz	
25	25	
16.67	16	
12.5	13	
10	10	
8.33	8	
7.14	7	
6.25	6	
5.56	5.50	
5	5	

Построим график получившейся зависимости:

Рис. 8: График $\Delta\nu(1/\tau)$ для прямоугольных импульсов с $\nu_{rep}=1kHz$

Зависимость:

$$\Delta\nu = k \cdot \frac{1}{\tau} + b$$

$$k = (0.998 \pm 0.016)$$

$$b = (0.094 \pm 0.098)kHz$$

Мы видим, что действительно выполняется соотношение определённости:

$$\Delta\nu\cdot\tau\simeq 1$$

2.2 В. Исследование спктра периодической последовательности цугов гармонических колебаний

Установим частоту несущей $\nu_0=25kHz$ и получим на экране осциллографа устойчивую картину цугов.

Будем наблюдать, как изменяется вид спектра:

Рис. 9: Спектр при $\nu_{rep}=1kHz, \nu_0=25kHz, \tau=100uS$

Рис. 10: Спектр при $\nu_{rep} = 1kHz, \nu_0 = 25kHz, \tau = 200uS$

Рис. 11: Спектр при $\nu_{rep} = 1kHz, \nu_0 = 10kHz, \tau = 100uS$

Рис. 12: Спектр при $\nu_{rep}=1kHz, \nu_0=40kHz, \tau=100uS$

Рис. 13: Спектр при $\nu_{rep}=2kHz, \nu_0=30kHz, \tau=100uS$

Исследуем зависимость $\delta\nu(\nu_{rep})$ при $\tau=100$ u
S и $\nu_0=25$ kHz:

$\delta \nu$, kHz	ν_{rep} , kHz		
0.5	0.5		
1	1		
2	2		
4	4		
5	5		

Рис. 14: График $\delta\nu(\nu_{rep})$ для прямоугольных импульсов с $\nu_0=25~\mathrm{kHz}$ и $\tau=100~\mathrm{uS}$

Завивисимость:

$$\delta\nu = k \cdot \nu_{rep} + b$$

$$k = (1.0 \pm 0.1)$$

$$b = (0.0 \pm 0.1)kHz$$

Отсюда видно, что в данном случае тоже выполняется соотношение неопределённости

$$\delta\nu\cdot T\simeq 1$$

2.3 C. Исследование спектра гармонических сигналов, модулированных по амплитуде

Установим частоту несущей $\nu_0=25$ kHz, частоту модуляции $\nu_{mod}=1$ kHz. Получим спектр исследуемого сигнала.

Рис. 15: Спектр модулированного сигнала при m=1.

Будем изучать зависимость отношения амплитуд $k=A_s/A_m$ боковой и основной частоты от параметра $m=\left(A_{max}-A_{min}\right)/(A_{max}+A_{min}).$

A_m , mV	A_s , mV	m	k
322	16	0.1	0.050
322	47	0.3	0.146
322	75	0.5	0.233
322	107	0.7	0.332
322	139	0.9	0.431
322	153	1.0	0.475

Рис. 16: График k(m)для модулированного сигнала с $\nu_0=25~\mathrm{kHz},\,\nu_{mod}=1~\mathrm{kHz}$

Полученная зависимость:

$$k = a \cdot m + b$$

$$a = (0.474 \pm 0.004)$$

$$b = (0.001 \pm 0.001)$$

Получаем, что

$$\frac{k}{m} = 0.474 \pm 0.004$$

Что сходится с теоретическим значением 0.5

3 Выводы