- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	gnor	me)						(No	me)			(Nı	ımeı	ro di	trico	la)

	Ε	D	С	В	A
--	---	---	---	---	---

1	00000
2	
3	
4	
5	
6	
7	
8	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
9	
10	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$

1. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: N.A. B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{\pi/6, N.E., 5\pi/6, N.E.\}$ D: $\{0, 0, 2\pi, 2\pi\}$ E: $\{0, 0, \pi/6, N.E.\}$

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: monotona crescente B: iniettiva C: surgettiva D: derivabile ovunque E: N.A

3. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $\frac{1}{\cos(x)}$ B: N.A. C: $e^x - \sin(x)$ D: $\log(\tan(x/2))$ E: N.E

4. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ & x & \text{per } x \ge 0 \end{cases}$

A: è continua e derivabile. B: è derivabile, ma non continua. C: non è né continua né derivabile. D: N.A. E: è continua, ma non derivabile.

5. Modulo e argomento del numero complesso $z = (\sqrt{2}i)^{13}$ sono

A:
$$(64\sqrt{2}, -\pi/2)$$
 B: N.A. C: $(2^{13/2}, -\pi/2)$ D: $(64\sqrt{2}, \pi/2)$ E: $(2^{13}, \pi/2)$

6. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$1 + x + x^2$$
 B: N.A. C: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ D: $1 + 2x - \frac{\pi}{12}$ E: $1 + \sin(3x)(x - \pi/12)$

7. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A:
$$\log(3e)$$
 B: N.A. C: e^3 D: N.E. E: e^3

8. L'integrale

$$\int_{-1}^{1} |x| \, \mathrm{e}^x \, dx$$

vale

A:
$$\sqrt{e} + 1$$
 B: $2/e$ C: $\frac{2(e-1)}{e}$ D: N.A. E: 0

9. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: N.A. B: 0 C: 1 D:
$$+\infty$$
 E: N.E.

10. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A:
$$3 < \alpha < \pi$$
 B: $\alpha \ge 1$ C: $\alpha > 1$ D: N.A. E: $\alpha > 0$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

Α	В	С	D	Ε	
4.1	ב	\sim			

1	00000
2	00000
3	00000
4	
5	
6	00000
7	
8	00000
9	
10	0000

1. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a A: N.E. B: $\log(3e)$ C: e D: N.A. E: e^3

2. L'integrale

$$\int_{-1}^{1} |x| e^{x} dx$$

vale

A: N.A. B: 2/e C: 0 D: $\sqrt{e} + 1$ E: $\frac{2(e-1)}{e}$

3. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono A: $(2^{13/2},-\pi/2)$ B: $(64\sqrt{2},\pi/2)$ C: N.A. D: $(2^{13},\pi/2)$ E: $(64\sqrt{2},-\pi/2)$

4. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: 0 B: $+\infty$ C: N.A. D: 1 E: N.E.

5. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $e^x - \sin(x)$ B: $\frac{1}{\cos(x)}$ C: N.A. D: N.E. E: $\log(\tan(x/2))$

6. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: surgettiva B: derivabile ovunque C: iniettiva D: N.A. E: monotona crescente

7. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{0,0,\pi/6,N.E.\}$ B: N.A. C: $\{\pi/6,N.E.,5\pi/6,N.E.\}$ D: $\{-\infty,N.E.,+\infty,N.E.\}$ E: $\{0,0,2\pi,2\pi\}$

8. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $3 < \alpha < \pi$ B: N.A. C: $\alpha > 0$ D: $\alpha \ge 1$ E: $\alpha > 1$

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A: $1 + \sin(3x)(x - \pi/12)$ B: N.A. C: $1 + 2x - \frac{\pi}{12}$ D: $1 + x + x^2$ E: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

10. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ x & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: è continua e derivabile. C: è derivabile, ma non continua. D: è continua, ma non derivabile. E: N.A.

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

			(Co	ogno	me)							(No	me)			_		ume	i ma	tric	ola)

Α	В	С	D	Ε	
1.1		\sim	ב		

1	0000
2	00000
3	0000
4	00000
5	0000
6	00000
7	
8	
9	
10	0000

1. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $\alpha \ge 1$ B: $3 < \alpha < \pi$ C: $\alpha > 1$ D: $\alpha > 0$ E: N.A.

2. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: surgettiva B: iniettiva C: monotona crescente D: derivabile ovunque E: N.A.

3. L'integrale

$$\int_{-1}^{1} |x| e^{x} dx$$

vale

A: 2/e B: N.A. C: $\sqrt{e} + 1$ D: 0 E: $\frac{2(e-1)}{e}$

4. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

A: 1 B: N.A. C: $+\infty$ D: N.E. E: 0

5. La funzione $f(x) = \begin{cases} \sin\left(\frac{\pi e^x}{2}\right) & \text{per } x < 0 \\ x & \text{per } x \ge 0 \end{cases}$

A: non è né continua né derivabile. B: N.A. C: è continua e derivabile. D: è continua, ma non derivabile. E: è derivabile, ma non continua.

6. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{-\infty, N.E., +\infty, N.E.\}$ B: $\{0, 0, \pi/6, N.E.\}$ C: $\{\pi/6, N.E., 5\pi/6, N.E.\}$ D: $\{0, 0, 2\pi, 2\pi\}$ E: N.A.

7. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A: N.A. B: N.E. C: $\log(3e)$ D: e E: e^3

8. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono

A:
$$(64\sqrt{2}, \pi/2)$$
 B: $(2^{13/2}, -\pi/2)$ C: $(2^{13}, \pi/2)$ D: N.A. E: $(64\sqrt{2}, -\pi/2)$

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$1 + 2x - \frac{\pi}{12}$$
 B: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$ C: N.A. D: $1 + \sin(3x)(x - \pi/12)$ E: $1 + x + x^2$

10. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: $\log(\tan(x/2))$ B: N.E. C: N.A. D: $e^x - \sin(x)$ E: $\frac{1}{\cos(x)}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

				ogno							(N	ome	e)				lum		ma	trice	ola)

	Ε	D	С	В	A
--	---	---	---	---	---

1	
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	0000

1. La funzione $f(x)=\begin{cases} \sin\left(\frac{\pi\,\mathrm{e}^x}{2}\right) & \text{per } x<0 \\ & x & \text{per } x\geq0 \end{cases}$

A: è continua, ma non derivabile. B: N.A. C: è derivabile, ma non continua. D: non è né continua né derivabile. E: è continua e derivabile.

2. Modulo e argomento del numero complesso $z=(\sqrt{2}i)^{13}$ sono

A: $(64\sqrt{2}, \pi/2)$ B: $(2^{13}, \pi/2)$ C: $(2^{13/2}, -\pi/2)$ D: N.A. E: $(64\sqrt{2}, -\pi/2)$

3. Data $f(x) = x^{e^x}$. Allora f'(1) è uguale a

A: N.A. B: $\log(3e)$ C: e^3 D: N.E. E: e^3

4. Una soluzione dell'equazione differenziale $y'(x) = \frac{1}{\sin(x)}$ è

A: N.A. B: N.E. C: $\frac{1}{\cos(x)}$ D: $\log(\tan(x/2))$ E: $e^x - \sin(x)$

5. La funzione $f: \mathbb{R} \to \mathbb{R}$ definita da $f(x) = |x|(x^2 + 1)$ è

A: derivabile ovunque B: surgettiva C: iniettiva D: monotona crescente E: N.A.

6. La serie a termini non-negativi

$$\sum_{n=1}^{\infty} \sqrt[n]{2^{\alpha} n}$$

converge per

A: $3 < \alpha < \pi$ B: N.A. C: $\alpha \ge 1$ D: $\alpha > 0$ E: $\alpha > 1$

7. Inf, min, sup e max dell'insieme

$$A = \{x \in [0, 2\pi] : \sin(x) < \frac{1}{2}\}$$

valgono

A: $\{0, 0, \pi/6, N.E.\}$ B: $\{-\infty, N.E., +\infty, N.E.\}$ C: $\{0, 0, 2\pi, 2\pi\}$ D: N.A. E: $\{\pi/6, N.E., 5\pi/6, N.E.\}$

8. Il limite

$$\lim_{x \to 0} \frac{\log(e^{x^2})}{\sin^2(x)}$$

vale

 $A: +\infty$ B: N.E. C: 0 D: N.A. E: 1

9. La retta tangente al grafico di $y(x) = \sin(3x)$ nel punto $x_0 = \pi/12$ vale

A:
$$1 + x + x^2$$
 B: $1 + 2x - \frac{\pi}{12}$ C: N.A. D: $1 + \sin(3x)(x - \pi/12)$ E: $\frac{3(x - \frac{\pi}{12})}{\sqrt{2}} + \frac{1}{\sqrt{2}}$

10. L'integrale

$$\int_{-1}^{1} |x| \, \mathrm{e}^x \, dx$$

vale

A: N.A. B: $\sqrt{e} + 1$ C: $\frac{2(e-1)}{e}$ D: 2/e E: 0

	(Cognome)													(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)			

CODICE = 514511

Α	В	С	D	Ε	
		_			

1	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
2	$\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc\bigcirc$
3	
4	
5	
6	
7	
8	
9	
10	

	(Cognome)												(No	me)			(Nı	umei	ro di	trico	la)				

Α	В	\mathbf{C}	D	\mathbf{E}	
		\sim			

1	\bigcirc
2	
3	
4	
5	
6	
7	
8	
9	
10	

	(Cognome)												(No	me)			(Nı	umei	ro di	trico	la)				

CODICE = 717572

Α	В	\mathbf{C}	D	\mathbf{E}	
		\sim			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

	(Cognome)													(No	me)			(N ₁	ımeı	ro di	i ma	trico	la)			

CODICE = 441542

Α	В	\mathbf{C}	D	Ε	
	_	_	_		

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

2 luglio 2009

PARTE B

1. Studiare il numero di soluzioni, al variare di $\lambda \in \mathbb{R}$ della equazione

$$\lambda = x^3 - 2x^2 + x - 1, \qquad x \ge 0.$$

2. Risolvere il problema di Cauchy

$$\begin{cases} y''(t) - y'(t) = t + \cos(t) \\ y(0) = 0 \\ y'(0) = 0. \end{cases}$$

3. Studiare la convergenza ed eventualmente calcolare l'integrale generalizzato

$$\int_{-\infty}^{0} x^2 e^{x^3} dx.$$

4. Mostrare che per ogni $p \ge 1$ esiste una costante c(p) tale che

$$(1+x)^p \le c(p)(1+x^p) \qquad \forall \, x \ge 0$$

e calcolare quanto vale.

Traccia di soluzione

1) Studiando la funzione

$$f(x) = x^3 - 2x^2 + x - 1, \qquad x \ge 0$$

si ricava subito che la derivata prima $f'(x) = 3x^2 - 4x + 1$ è strettamente maggiore di zero per $0 \le <1/3$ e per x > 1 e strettamente minore di zero per 1/3 < x < 1. Pertanto in $x_0 = 1/3$ (con $f(x_0) = -23/27$) si ha un massimo locale, mentre in $x_1 = 1$ ($f(x_1) = -1$) si ha un minimo locale (questo è il grafico approssimativo

visto che $\lim_{x\to +\infty} f(x) = +\infty$). Dallo studio si ricava che non ci sono soluzioni se $\lambda < -1$; Poi 2 soluzioni se $\lambda = -1$ e $\lambda = -23/27$, 3 soluzioni se $-1 < \lambda < -23/27$ e una soluzione se $\lambda > -23/27$

2) L'equazione caratteristica ha come soluzioni $\lambda=0,1$ e quindi l'equazione omogenea ha come soluzione

$$y_0(t) = c_1 + c_2 e^t.$$

Le soluzioni del problema non omogeneo vanno cercate della forma $y_{f_1} = t(at + b)$ e $y_{f_2} = c\cos(t) + d\sin(t)$ Svolgendo i calcoli e imponendo le condizioni iniziali si trova che la soluzione è

$$y(t) = \frac{1}{2} \left(-t^2 - 2t + 3e^t - \cos(t) - \sin(t) - 2 \right).$$

3) La funzione i questione è integrabile in senso generalizzato, perchè

$$\lim_{x \to -\infty} \frac{x^2 e^{x^3}}{x^{\alpha}} = 0 \qquad \forall \, \alpha > 0$$

Svolgendo i conti si trova facilmente (integrazione per sostiruzione)

$$\int_{-\infty}^{0} x^2 e^{x^3} dx = \frac{1}{3}.$$

4) La diseguaglianza è soddisfatta se si trova un numero c(p) tale che

$$\frac{(1+x)^p}{(1+x^p)} \le c(p) \qquad \forall \, x \ge 0.$$

osserviamo che per ogni $p\geq 1$ fissato , se $F(x)=\frac{(1+x)^p}{(1+x^p)}$ si ha

$$F(0) = 1 \qquad \lim_{x \to +\infty} F(x) = 1$$

e inoltre visto che

$$F'(x) = \frac{p(x+1)^{p-1}(1-x^{p-1})}{(1+x^p)^2}$$

la funzione F(x) assume massimo assoluto in x=1 e questo ancora per ogni fissato $p\geq 1$ (da considerarsi come un parametro). Pertanto

$$F(x) = \frac{(1+x)^p}{(1+x^p)} \le F(1) = 2^{p-1},$$

che è il valore cercato per c(p).