Ch 10 Study Guide / Your Name:	/ Your Class:
Calculus III - Math 2630 - Spring	2013 Instructor: Steven Clontz
Draw a box around your answer. Sho	w your work. Calculators not allowed.

- 1. Find the cosine of the angle between the vectors $\mathbf{u} = \langle 4, -3, 0 \rangle$ and $\mathbf{v} = \langle 2, 6, -3 \rangle$.
 - (a) Invoke correct formula $\mathbf{u}\cdot\mathbf{v}=|\mathbf{u}||\mathbf{v}|\cos\theta$ (3 points)
 - (b) Compute each of $|\mathbf{u}|,\,|\mathbf{v}|,\,\mathbf{u}\cdot\mathbf{v}$ correctly (1 point each, 3 total)
 - (c) Compute $\cos \theta$ correctly (4 points)

- 2. Find the vector which is the projection of the vector $\mathbf{u} = \mathbf{i} 2\mathbf{j} + 2\mathbf{k}$ onto the vector $\mathbf{v} = -3\mathbf{i} + 4\mathbf{k}$.
 - (a) Apply correct formula $\text{proj}_{\mathbf{v}}(\mathbf{u}) = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|^2}\right) \mathbf{v}$ (3 points)
 - (b) Compute each of $\mathbf{u}\cdot\mathbf{v},\,|\mathbf{v}|$ correctly (2 points each, 4 total)
 - (c) Compute $proj_{\mathbf{v}}(\mathbf{u})$ correctly (3 points)

- 3. Circle one for each: Given the below images, does the vector $\mathbf{u} \times \mathbf{v}$ extend OUT of the paper or INTO the paper for each?
 - (a) Get all correct (10 points)
 - (b) Get all incorrect (5 points)
 - (c) Mix of correct and incorrect (0 points)

4. Find a nonzero vector which is normal to both of the vectors $(1, 3, -4)$ and $(2, 0, 1)$.	
(a) Claim cross-product is normal (2 points)	
(b) Set up the cross-product correctly (2 points)	
(c) Compute cross-product correctly (6 points)	
(a) a complete and the ansate control (a promise)	

- 5. Find the vector equation and parametric equations for the line passing through (1,2,3) and parallel to the line given by $\mathbf{r}(t) = \langle 4-t, 3-2t, 2+t \rangle$.
 - (a) Identify a point on the line (1 point)
 - (b) Identify a vector parallel to the line (2 points)
 - (c) Write a correct vector equation (4 points)
 - (d) Write correct parametric equations (3 points)

									,						
6.	Find	the ed	quation	for	$^{ m the}$	plane	passing	through	(1, 4)	-1) and	normal	to	the	line

$$x = -3t, y = t + 2, z = 2t - 1$$

- (a) Identify a point on the plane (2 point)
- (b) Identify a vector normal to the plane (3 points)
- (c) Write a correct plane equation (5 points)

7.	Find the distan	ce from the p	oint $(2, 7, -3)$) to the plane	given by the e	equation $2x + 6y -$	-3z = 6.
	I III a one anotan	co mom one p	O1110 (=, 1,	, co circ praire	S11011 D., 0110 C	quality = a 09	o~ ○.

- (a) Use the correct formula for distance from a point to a plane $d = \frac{|\mathbf{PS} \cdot \mathbf{n}|}{|\mathbf{n}|}$ (3 points)
- (b) Identify a correct \mathbf{PS} (2 points)
- (c) Identify a correct **n** (2 points)
- (d) Compute the correct distance (3 points)

8.	Find the distance from the	point $(2, 7, -3)$) to the line given	by the equation r	$\mathbf{r}(t) = \mathbf{r}(t)$	$\langle 2t, 6t \rangle$	$, -3t\rangle$	١.
•	I III G CIIC GIOCGIICO II CIII CIIC	P (, · , ·)	/ 00 0110 11110 01 011	o,,	()	\ - 0,00	, ,	/

- (a) Use the correct formula for distance from a point to a line $d = \frac{|\mathbf{PS} \times \mathbf{v}|}{|\mathbf{v}|}$ (3 points)
- (b) Identify a correct **PS** (2 points)
- (c) Identify a correct \mathbf{v} (2 points)
- (d) Compute the correct distance (3 points)

9.	Give the name of the surface in 3D space given by the equation $x = \sin z$. Sketch any relevant planar cross-sections and sketch the graph in 3D space.
	(a) Identify the surface as a cylinder (2 points)
	(b) Sketch a cross-section of the surface in a coordinate plane (3 points)
	(c) Sketch the surface in xyz space (5 points)

- 10. Give the name of the surface in 3D space given by the equation $x^2 z^2 = 4y^2 + 16$. Sketch any relevant planar cross-sections and sketch the graph in 3D space.
 - (a) Sketch cross-sections of the surface in each coordinate plane (2 point each, 6 total)
 - (b) Sketch the surface in xyz space (2 points)
 - (c) Identify the quadric surface as a [hyperboloid of two sheets] (2 points)

Include extra scratch work below:

Include extra scratch work below: