Séries de Fourier - Calculs fondamentaux

I - Série de Fourier associée à une fonction f

La série de Fourier associée à une fonction f, périodique de période T, s'écrit :

$$S(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$

où la pulsation ω est reliée à la période T par la relation $\omega = \frac{2\pi}{T}$.

Déterminer la décomposition de la fonction f en série de Fourier revient à déterminer les coefficients a_0 (valeur moyenne de f), et pour $n \ge 1$, a_n et b_n , donnés par :

$$a_0 = \frac{1}{T} \int_{\alpha}^{\alpha+T} f(t) dt$$

$$a_n = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(t) \cos(n\omega T) dt$$

$$b_n = \frac{2}{T} \int_{\alpha}^{\alpha+T} f(t) \sin(n\omega T) dt$$

pour un réel α quelconque.

1) 1^{er} exemple complet

Soit la fonction f périodique de période 2π définie par

$$f(t) = \begin{cases} 1 & \text{si} \quad 0 \leqslant t < \pi \\ -1 & \text{si} \quad \pi \leqslant t < 2\pi \end{cases}$$

Représentation graphique de la fonction f

Calcul des coefficients de la série de Fourier : La période de f est $T=2\pi,$ soit une pulsation $\omega=\frac{2\pi}{T}=1.$

a) Valeur moyenne de f: coefficient a_0

La valeur moyenne de f est :

$$a_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{2\pi} \int_0^{2\pi} f(t) dt = \frac{1}{2\pi} I$$

Y. Morel - xymaths.free.fr

Comme la fonction est définie par morceaux sur $[0; 2\pi]$, on décompose aussi l'intégrale I en 2 morceaux (relation de Chasles pour les intégrales) :

$$I = \int_{0}^{\pi} f(t) dt + \int_{\pi}^{2\pi} f(t) dt$$

$$= \int_{0}^{\pi} 1 dt + \int_{\pi}^{2\pi} (-1) dt$$

$$= \int_{0}^{\pi} 1 dt - \int_{\pi}^{2\pi} 1 dt$$

$$= \left[t \right]_{0}^{\pi} - \left[t \right]_{\pi}^{2\pi}$$

$$= \left[\pi - 0 \right] - \left[2\pi - \pi \right] = \pi - \pi = 0$$

Ainsi,
$$a_0 = \frac{1}{2\pi} \times 0 = 0$$
.

Remarque: La fonction f étant impaire, on a directement $a_0 = 0$, résultat que l'on retrouve ici...

b) Coefficients a_n

Pour les autres coefficients :

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt = \frac{2}{2\pi} \int_0^{2\pi} f(t) \cos(nt) dt = \frac{1}{\pi} I_n$$

On procède de la même façon pour calculer I_n :

$$I_{n} = \int_{0}^{2\pi} f(t) \cos(nt) dt$$

$$= \int_{0}^{\pi} f(t) \cos(nt) dt + \int_{\pi}^{2\pi} f(t) \cos(nt) dt$$

$$= \int_{0}^{\pi} 1 \cos(nt) dt + \int_{\pi}^{2\pi} (-1) \cos(nt) dt$$

$$= \int_{0}^{\pi} \cos(nt) dt - \int_{\pi}^{2\pi} \cos(nt) dt$$

$$= \left[\frac{1}{n} \sin(nt) \right]_{0}^{\pi} - \left[\frac{1}{n} \sin(nt) \right]_{\pi}^{2\pi}$$

$$= \frac{1}{n} \left[\sin(n\pi) - \sin(0) \right] - \frac{1}{n} \left[\sin(2n\pi) - \sin(n\pi) \right]$$

or, pour tout entier $n \ge 1$, $\sin(n\pi) = \sin(2n\pi) = 0$, d'où, $I_n = 0$, et donc $a_n = \frac{1}{\pi}I_n = 0$

Remarque: La fonction f étant impaire, on a aussi directement $a_n = 0$, résultat que l'on retrouve aussi ici...

c) Coefficients b_n

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(n\omega t) dt = \frac{2}{2\pi} \int_0^{2\pi} f(t) \sin(nt) dt = \frac{1}{\pi} J_n$$

On procède de la même façon pour calculer J_n :

$$J_{n} = \int_{0}^{2\pi} f(t) \sin(nt) dt$$

$$= \int_{0}^{\pi} f(t) \sin(nt) dt + \int_{\pi}^{2\pi} f(t) \sin(nt) dt$$

$$= \int_{0}^{\pi} 1 \sin(nt) dt + \int_{\pi}^{2\pi} (-1) \sin(nt) dt$$

$$= \int_{0}^{\pi} \sin(nt) dt - \int_{\pi}^{2\pi} \sin(nt) dt$$

$$= \left[-\frac{1}{n} \cos(nt) \right]_{0}^{\pi} - \left[-\frac{1}{n} \cos(nt) \right]_{\pi}^{2\pi}$$

$$= -\frac{1}{n} \left[\cos(n\pi) - \cos(0) \right] + \frac{1}{n} \left[\cos(2n\pi) - \cos(n\pi) \right]$$

or, pour tout entier $n \ge 1$, $\cos(2n\pi) = \cos(0) = 1$ d'où,

$$J_n = -\frac{1}{n} \left(\cos(n\pi) - 1 \right) + \frac{1}{n} \left(1 - \cos(n\pi) \right) = \frac{2}{n} \left(1 - \cos(n\pi) \right)$$

et donc
$$b_n = \frac{1}{\pi} J_n = \frac{2}{n\pi} \Big(1 - \cos(n\pi) \Big)$$

d) Série de Fourier de la fonction f

La série de Fourier associée à la fonction f s'écrit ainsi :

$$S(t) = a_0 + \sum_{n=1}^{+\infty} a_n \cos(n\omega t) + b_n \sin(n\omega t)$$
$$= 0 + \sum_{n=1}^{+\infty} 0 \times \cos(nt) + \frac{2}{n\pi} \left(1 - \cos(n\pi) \right) \sin(nt)$$
$$= \frac{2}{\pi} \sum_{n=1}^{+\infty} \frac{1}{n} \left(1 - \cos(n\pi) \right) \sin(nt)$$

e) Remarque sur la parité de la fonction et ses conséquences

- en remarquant dès le début que f est impaire, les calculs peuvent s'effectuer plus rapidement et simplement en employant les formules adaptées des coefficients a_0 et a_n (alors directement égaux à 0, sans calculs), et de b_n .
 - (voir le cours et l'expression des coefficients de Fourier pour une fonction paire ou impaire; attention, ces expressions ne sont pas dans le formulaire du BTS).
- on peut aller un peu plus loin en remarquant que pour tout entier $n \ge 1$, $\cos(n\pi) = (-1)^n$, et ainsi que les coefficients b_n de rang pair, n = 2p + 1, sont nuls et que ceux de rang impair valent plus simplement $b_{2p+1} = \frac{4}{n} = \frac{4}{2p+1}$.

La série de Fourier s'écrit alors :

$$S(t) = \frac{4}{\pi} \sum_{p=1}^{+\infty} \frac{1}{2p+1} \sin((2p+1)t)$$

II - Les calculs incontournables

Le calcul des coefficients de Fourier d'une fonction quelconque f se ramène généralement (du moins pour le programme du BTS) aux calculs suivants (à des coefficients multiplicatifs près) :

$$I_n = \int_a^b \cos(n\omega t) dt$$
 et, $J_n = \int_a^b \sin(n\omega t) dt$

et

$$U_n = \int_a^b t \cos(n\omega t) dt$$
 et, $V_n = \int_a^b t \sin(n\omega t) dt$

ainsi que (plus rarement, mais à savoir calculer néanmoins)

$$Y_n = \int_a^b t^2 \cos(n\omega t) dt$$
 et, $Z_n = \int_a^b t^2 \sin(n\omega t) dt$

Bien évidemment, ces calculs ne sont pas à connaître par cœur, par contre il faut savoir les effectuer sans hésiter!

1) Calculs de I_n et J_n

$$I_n = \int_a^b \cos(n\omega t) dt$$
 et, $J_n = \int_a^b \sin(n\omega t) dt$

Ces calculs ont déjà été effectués lors des calculs des coefficients de Fourier du 1^{er} exemple.

On connaît ici directement des primitives de $\cos(n\omega t)$ et $\sin(n\omega t)$:

$$I_n = \int_a^b \cos(n\omega t) dt = \left[\frac{1}{n\omega}\sin(n\omega t)\right]_a^b = \frac{1}{n\omega}\left[\sin(n\omega t)\right]_a^b = \frac{1}{n\omega}\left[\sin(n\omega t) - \sin(n\omega a)\right]$$

$$I_n = \int_a^b \sin(n\omega t) dt = \left[-\frac{1}{n\omega} \cos(n\omega t) \right]_0^{\pi} = -\frac{1}{n\omega} \left[\cos(n\omega t) \right]_a^b = -\frac{1}{n\omega} \left[\cos(n\omega t) - \cos(n\omega a) \right]$$

Exemple: Calculer, pour tout entier $n \ge 1$,

$$I_n = \int_0^{\frac{\pi}{2}} \cos(3nt) \ dt$$
 et $J_n = \int_0^{\frac{\pi}{2}} \sin(3nt) \ dt$.

<u>Correction</u>: Une primitive de $\cos(3nt)$ est $\frac{1}{3n}\sin(3nt)$, et donc

$$I_n = \left[\frac{1}{3n} \sin(3nt) \right]_0^{\frac{\pi}{2}} = \frac{1}{3n} \left[\sin(3nt) \right]_0^{\frac{\pi}{2}} = \frac{1}{3n} \left(\sin\left(3n\frac{\pi}{2}\right) - \sin(0) \right) = \frac{1}{3n} \sin\left(3n\frac{\pi}{2}\right) = \frac{1$$

 $car \sin(0) = 0.$

De même, une primitive de $\sin(3nt)$ est $\frac{-1}{3n}\cos(3nt)$, et donc

$$J_n = \left[\frac{-1}{3n} \cos(3nt) \right]_0^{\frac{\pi}{2}} = \frac{-1}{3n} \left[\cos(3nt) \right]_0^{\frac{\pi}{2}} = \frac{-1}{3n} \left(\cos\left(3n\frac{\pi}{2}\right) - \cos(0) \right) = \frac{-1}{3n} \left(\cos\left(3n\frac{\pi}{2}\right) - 1 \right)$$

car cos(0) = 1.

$$U_n = \int_a^b t \cos(n\omega t) dt$$
 et, $V_n = \int_a^b t \sin(n\omega t) dt$

On peut ici (et doit...) utiliser une intégration par parties, dont on rappelle la formule générale :

$$\int_a^b u \, v' = \left[u \, v \, \right]_a^b - \int_a^b u' \, v$$

L'idée est de dériver le "t" dans les intégrales U_n et V_n afin de se retrouver avec des intégrales plus simples du type de I_n et J_n .

a) Calcul de U_n

On intègre donc par parties $U_n: U_n = \int_a^b t \cos(n\omega t) dt = \int_a^b u v'$

avec
$$\begin{cases} u(t) = t \\ v'(t) = \cos(n\omega t) \end{cases} \text{ soit, } \begin{cases} u'(t) = 1 \\ v(t) = \frac{1}{n\omega}\sin(n\omega t) \end{cases}$$

et ainsi,

$$U_n = \int_a^b t \cos(n\omega t) dt = \int_a^b u v'$$

$$= \left[u v \right]_a^b - \int_a^b u' v$$

$$= \left[t \frac{1}{n\omega} \sin(n\omega t) \right]_a^b - \int_a^b 1 \frac{1}{n\omega} \sin(n\omega t) dt$$

$$= \frac{1}{n\omega} \left[t \sin(n\omega t) \right]_a^b - \frac{1}{n\omega} \int_a^b \sin(n\omega t) dt$$

et il n'y a plus qu'à calculer la dernière intégrale qui n'est autre que J_n dont le calcul est détaillé dans le paragraphe précédent.

Exemple: Calculer, pour tout entier $n \ge 1$, $U_n = \int_0^{\pi} t \cos(nt) dt$.

<u>Correction</u>: On intègre U_n par partie, en posant $\begin{cases} u(t) = t \\ v'(t) = \cos(nt) \end{cases}$ soit, $\begin{cases} u'(t) = 1 \\ v(t) = \frac{1}{n}\sin(nt) \end{cases}$

$$U_n = \int_0^{\pi} u \, v' = \left[u \, v \, \right]_0^{\pi} - \int_0^{\pi} u' \, v$$

$$= \left[t \frac{1}{n} \sin(nt) \, \right]_0^{\pi} - \int_0^{\pi} 1 \times \frac{1}{n} \sin(nt) \, dt$$

$$= \frac{1}{n} \left(\sin(n\pi) - \sin(0) \right) - \frac{1}{n} \int_0^{\pi} \sin(nt) \, dt$$

or, $\sin(n\pi) = \sin(0) = 0$, et une primitive de $\sin(nt)$ est $-\frac{1}{n}\cos(nt)$, d'où,

$$U_n = -\frac{1}{n} \int_0^{\pi} \sin(nt) \, dt = -\frac{1}{n} \left[-\frac{1}{n} \cos(nt) \right]_0^{\pi} = \frac{1}{n^2} \left(\cos(n\pi) - \cos(0) \right) = \frac{1}{n^2} \left(\cos(n\pi) - 1 \right)$$

Y. Morel - xymaths.free.fr

Séries de Fourier - Calculs fondamentaux - 5/11

car cos(0) = 1.

On pourrait aller un peu plus loin en remarquant que $\cos(n\pi) = 1$ si n est pair, et $\cos(n\pi) = -1$ si n est impair, et donc, en résumé, $\cos(n\pi) = (-1)^n$, d'où $U_n = \frac{1}{n^2} \Big((-1)^n - 1 \Big)$.

b) Calcul de V_n

De même pour V_n , on intègre donc par parties : $V_n = \int_a^b t \sin(n\omega t) dt = \int_a^b u v'$

avec
$$\begin{cases} u(t) = t \\ v'(t) = \sin(n\omega t) \end{cases}$$
 soit,
$$\begin{cases} u'(t) = 1 \\ v(t) = \frac{-1}{n\omega}\cos(n\omega t) \end{cases}$$
 et ainsi,

$$U_n = \int_a^b t \sin(n\omega t) dt = \int_a^b u v'$$

$$= \left[u v \right]_a^b - \int_a^b u' v$$

$$= \left[-t \frac{1}{n\omega} \cos(n\omega t) \right]_a^b - \int_a^b 1 \frac{-1}{n\omega} \cos(n\omega t) dt$$

$$= -\frac{1}{n\omega} \left[t \cos(n\omega t) \right]_a^b + \frac{1}{n\omega} \int_a^b \cos(n\omega t) dt$$

et il n'y a plus qu'à calculer la dernière intégrale qui n'est autre que I_n dont le calcul est détaillé dans le paragraphe précédent.

Exemple: Calculer, pour tout entier $n \ge 1$, $U_n = \int_0^{\pi} t \sin(nt) dt$.

<u>Correction</u>: On intègre U_n par partie, en posant $\begin{cases} u(t) = t \\ v'(t) = \sin(nt) \end{cases}$ soit, $\begin{cases} u'(t) = 1 \\ v(t) = -\frac{1}{n}\cos(nt) \end{cases}$

$$U_n = \int_0^{\pi} u \, v' = \left[u \, v \, \right]_0^{\pi} - \int_0^{\pi} u' \, v$$

$$= \left[t \frac{-1}{n} \cos(nt) \, \right]_0^{\pi} - \int_0^{\pi} 1 \times \frac{-1}{n} \cos(nt) \, dt$$

$$= -\frac{1}{n} \left(\cos(n\pi) - \cos(0) \right) + \frac{1}{n} \int_0^{\pi} \cos(nt) \, dt$$

or, cos(0) = 1, et une primitive de cos(nt) est $\frac{1}{n}sin(nt)$, d'où,

$$U_n = -\frac{1}{n} \Big(\cos(n\pi) - 1 \Big) + \frac{1}{n} \Big[\frac{1}{n} \sin(nt) \Big]_0^{\pi} = -\frac{1}{n} \Big(\cos(n\pi) - 1 \Big) + \frac{1}{n^2} \Big(\sin(n\pi) - \sin(0) \Big) = -\frac{1}{n} \Big(\cos(n\pi) - 1 \Big)$$
 car $\sin(n\pi) = \sin(0) = 0$.

3) Calculs de Y_n et Z_n

Pour le calcul de Y_n et Z_n ,

$$Y_n = \int_a^b t^2 \cos(n\omega t) dt$$
 et, $Z_n = \int_a^b t^2 \sin(n\omega t) dt$

Y. Morel - xymaths.free.fr Séries de Fourier - Calculs fondamentaux - 6/11

on utilise une double intégration par parties (c'est-à-dire deux intégrations par parties successives, l'une après l'autre) :

$$Y_n = \int_a^b t^2 \cos(n\omega t) dt = \int_a^b u v'$$
avec
$$\begin{cases} u(t) = t^2 \\ v'(t) = \cos(n\omega t) \end{cases} \text{ soit, } \begin{cases} u'(t) = 2t \\ v(t) = \frac{1}{n\omega} \sin(n\omega t) \end{cases}$$

et ainsi,

$$Y_n = \int_a^b t^2 \cos(n\omega t) dt = \int_a^b u v'$$

$$= \left[u v \right]_a^b - \int_a^b u' v$$

$$= \left[t^2 \frac{1}{n\omega} \sin(n\omega t) \right]_a^b - \int_a^b 2t \frac{1}{n\omega} \sin(n\omega t) dt$$

$$= \frac{1}{n\omega} \left[t^2 \sin(n\omega t) \right]_a^b - \frac{2}{n\omega} \int_a^b t \sin(n\omega t) dt$$

et il ne reste plus qu'à calculer la dernière intégrale qui n'est autre que V_n , calculée dans le paragraphe précédent.

III - 2^{ème} exemple complet

Soit la fonction f, périodique de période 2, définie par $f(t) = \begin{cases} t+1 & \text{si} & 0 \leq t < 1 \\ 2 & \text{si} & 1 \leq t < 2 \end{cases}$

Représentation graphique de la fonction f

a) Calcul de la valeur moyenne de f: coefficient a_0

La valeur moyenne de f est :

$$a_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{2} \int_0^2 f(t) dt = \frac{1}{2} I$$

avec,

$$I = \int_0^2 f(t) dt$$

$$= \int_0^1 (t+1) dt + \int_1^2 2 dt$$

$$= \left[\frac{1}{2} (t+1)^2 \right]_0^1 + \left[2t \right]_1^2$$

$$= \frac{1}{2} \left[2^2 - 1^2 \right] + 2 \left[2 - 1 \right]$$

$$= \frac{1}{2} \left[3 \right] + 2 \left[1 \right]$$

$$= \frac{7}{2}$$

ainsi, $a_0 = \frac{1}{2}I = \frac{7}{4}$.

b) Calcul des coefficients a_n

$$a_n = \frac{2}{T} \int_0^T f(t) \cos(n\omega t) dt$$

avec la période T=2 et donc la pulsation $\omega=\frac{2\pi}{T}=\pi$,

$$a_n = \frac{2}{2} \int_0^2 f(t) \cos(n\pi t) dt = \int_0^2 f(t) \cos(n\pi t) dt$$

On décompose l'intégrale en utilisant la définition par morceaux de f:

$$a_n = \int_0^1 f(t) \cos(n\pi t) dt + \int_1^2 f(t) \cos(n\pi t) dt$$

$$= \int_0^1 (t+1) \cos(n\pi t) dt + \int_1^2 2 \cos(n\pi t) dt$$

$$= \int_0^1 (t+1) \cos(n\pi t) dt + 2 \int_1^2 \cos(n\pi t) dt$$

$$= A_n + 2 B_n$$

L'intégrale A_n se calcule en utilisant une intégration par parties (cf. calcul de l'intégrale U_n), tandis que B_n s'intègre directement en utilisant une primitive de $\cos(n\pi t)$ (cf. calcul de l'intégrale I_n):

$$A_{n} = \left[(t+1) \frac{1}{n\pi} \sin(n\pi t) \right]_{0}^{1} - \int_{0}^{1} \frac{1}{n\pi} \sin(n\pi t) dt$$

$$= \frac{1}{n\pi} \left[(t+1) \sin(n\pi t) \right]_{0}^{1} - \frac{1}{n\pi} \int_{0}^{1} \sin(n\pi t) dt$$

$$= \frac{1}{n\pi} \left[2 \sin(n\pi) - \sin(0) \right] - \frac{1}{n\pi} \left[\frac{-1}{n\pi} \cos(n\pi t) \right]_{0}^{1}$$

$$= \frac{1}{n\pi} \left[0 - 0 \right] + \frac{1}{n^{2}\pi^{2}} \left[\cos(n\pi) - \cos(0) \right]$$

or, pour tout entier n, $\cos(n\pi) = (-1)^n$, d'où $A_n = \frac{(-1)^n - 1}{n^2\pi^2}$.

$$B_n = \int_1^2 \cos(n\pi t) dt = \left[\frac{1}{n\pi} \sin(n\pi t)\right]_1^2 = \frac{1}{n\pi} \left[\sin(2n\pi) - \sin(n\pi)\right] = 0$$

car, pour tout entier n, $\sin(2n\pi) = \sin(n\pi) = 0$.

Au final,

$$a_n = A_n + 2B_n = \frac{(-1)^n - 1}{n^2 \pi^2}$$

c) Calcul des coefficients b_n

De même que pour les coefficients a_n ,

$$b_n = \frac{2}{2} \int_0^2 f(t) \sin(n\pi t) dt = \int_0^2 f(t) \sin(n\pi t) dt$$

On décompose l'intégrale en utilisant la définition par morceaux de f:

$$b_n = \int_0^1 f(t) \sin(n\pi t) dt + \int_1^2 f(t) \sin(n\pi t) dt$$

$$= \int_0^1 (t+1) \sin(n\pi t) dt + \int_1^2 2 \sin(n\pi t) dt$$

$$= \int_0^1 (t+1) \sin(n\pi t) dt + 2 \int_1^2 \sin(n\pi t) dt$$

$$= C_n + 2 D_n$$

L'intégrale C_n se calcule en utilisant une intégration par parties (cf. calcul de l'intégrale V_n), tandis que D_n s'intègre directement en utilisant une primitive de $\sin(n\pi t)$ (cf. calcul de l'intégrale J_n):

$$C_{n} = \left[(t+1) \frac{-1}{n\pi} \cos(n\pi t) \right]_{0}^{1} - \int_{0}^{1} \frac{-1}{n\pi} \cos(n\pi t) dt$$

$$= \frac{-1}{n\pi} \left[(t+1) \cos(n\pi t) \right]_{0}^{1} + \frac{1}{n\pi} \int_{0}^{1} \cos(n\pi t) dt$$

$$= \frac{-1}{n\pi} \left[2 \cos(n\pi) - \cos(0) \right] + \frac{1}{n\pi} \left[\frac{1}{n\pi} \sin(n\pi t) \right]_{0}^{1}$$

$$= \frac{-1}{n\pi} \left[2 \cos(n\pi) - 1 \right] + \frac{1}{n^{2}\pi^{2}} \left[\sin(n\pi) - \sin(0) \right]$$

or, pour tout entier n, $\sin(n\pi) = \sin(0) = 0$, d'où $C_n = \frac{-1}{n^2\pi^2} (2\cos(n\pi) - 1) = \frac{1 - 2(-1)^n}{n^2\pi^2}$.

$$D_n = \int_1^2 \sin(n\pi t) dt = \left[\frac{-1}{n\pi} \cos(n\pi t) \right]_1^2 = \frac{-1}{n\pi} \left[\cos(2n\pi) - \cos(n\pi) \right] = \frac{(-1)^n - 1}{n\pi}$$

Au final,

$$b_n = C_n + 2D_n = \frac{1 - 2(-1)^n}{n^2 \pi^2} - 2\frac{1 - (-1)^n}{n\pi}$$

IV - Exercice

Soit la fonction f, π -périodique, définie par $f(t) = \begin{cases} t & \text{si } 0 \leqslant t \leqslant \frac{\pi}{2} \\ \frac{\pi}{2} & \text{si } \frac{\pi}{2} < t < \pi \end{cases}$

- 1. Donner la représentation graphique de f sur l'intervalle $[-2\pi; 2\pi]$.
- 2. Détermination de la décomposition en série de Fourier de f :
 - a. Calculer la valeur moyenne a_0 de f.
 - b. Calculer les coefficients $a_n, n \ge 1$.
 - c. Calculer les coefficients b_n , $n \ge 1$.
- 3. Calculer la valeur efficace de f.

Correction:

1. On représente d'abord f sur $[0; \pi]$ à l'aide de la définition par morceaux de f, puis on complète par périodicité sur $[-2\pi; 0]$ et sur $[\pi; 2\pi]$:

Représentation graphique de la fonction f

2. La période de f est $T=\pi,$ et sa pulsation $\omega=\frac{2\pi}{T}=2.$

a.

$$a_0 = \frac{1}{T} \int_0^T f(t) dt = \frac{1}{\pi} \int_0^{\pi} f(t) dt = \frac{1}{\pi} I$$

avec

$$I = \int_0^{\pi} f(t) dt = \int_0^{\frac{\pi}{2}} t dt + \int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} dt$$
$$= \left[\frac{t^2}{2} \right]_0^{\frac{\pi}{2}} + \frac{\pi}{2} \left[t \right]_{\frac{\pi}{2}}^{\pi}$$
$$= \left(\frac{\pi^2}{8} - 0 \right) + \frac{\pi}{2} \left(\pi - \frac{\pi}{2} \right) = \frac{3\pi^2}{8}$$

Ainsi,
$$a_0 = \frac{1}{\pi}I$$
, soit $a_0 = \frac{3\pi}{8}$.

b. Pour tout entier $n \ge 1$,

$$a_n = \frac{1}{T} \int_0^T f(t) \cos(n\omega t) dt = \frac{1}{\pi} \int_0^{\pi} f(t) \cos(2nt) dt = \frac{1}{\pi} J$$

avec,

$$J = \int_0^{\pi} f(t) \cos(2nt) dt = \int_0^{\frac{\pi}{2}} t \cos(2nt) dt + \int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} \cos(2nt) dt$$

La première intégrale se calcule en utilisant une intégration par parties :

$$\int_0^{\frac{\pi}{2}} t \cos(2nt) dt = \left[t \frac{1}{2n} \sin(2nt) \right]_0^{\frac{\pi}{2}} - \int_0^{\frac{\pi}{2}} \frac{1}{2n} \sin(2nt) dt$$

$$= \frac{1}{2n} \left[\frac{\pi}{2} \sin\left(2n\frac{\pi}{2}\right) - 0 \right] - \frac{1}{2n} \left[\frac{-1}{2n} \cos(2nt) \right]_{\frac{\pi}{2}}^{\pi}$$

$$= \frac{\pi}{4n} \sin(n\pi) + \frac{1}{4n^2} \left[\cos(2n\pi) - \cos(n\pi) \right]$$

or, pour tout entier n, $\sin(n\pi) = 0$, et $\cos(2n\pi) = 1$,

et ainsi,
$$\int_0^{\frac{\pi}{2}} t \cos(2nt) dt = \frac{1}{4n^2} (1 - \cos(n\pi))$$

Par ailleurs,

$$\int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} \cos(2nt) dt = \frac{\pi}{2} \left[\frac{1}{2n} \sin(2nt) \right]_{\frac{\pi}{2}}^{\pi} = \frac{\pi}{4n} \left[\sin(2n\pi) - \sin(n\pi) \right] = 0$$

car, pour tout entier n, $\sin(2n\pi) = \sin(n\pi) = 0$

Au final,
$$a_n = \frac{1}{\pi}J = \frac{1}{\pi}\frac{1}{4n^2}(1-\cos(n\pi))$$
, soit $a_n = \frac{1}{4\pi n^2}(1-\cos(n\pi))$.

c. De même que précédemment,

$$b_n = \frac{1}{T} \int_0^T f(t) \sin(n\omega t) dt = \frac{1}{\pi} \int_0^{\pi} f(t) \sin(2nt) dt$$

avec,

$$\int_{0}^{\pi} f(t) \sin(2nt) dt = \int_{0}^{\frac{\pi}{2}} t \sin(2nt) dt + \int_{\frac{\pi}{2}}^{\pi} \frac{\pi}{2} \sin(2nt) dt$$

$$= \left[t \frac{-1}{2n} \cos(2nt) \right]_{0}^{\frac{\pi}{2}} - \int_{0}^{\frac{\pi}{2}} \frac{-1}{2n} \cos(2nt) dt + \frac{\pi}{2} \left[\frac{-1}{2n} \cos(2nt) \right]_{\frac{pi}{2}}^{\pi}$$

$$= \left[\frac{-\pi}{4n} \cos(n\pi) - 0 \right] + \frac{1}{2n} \left[\frac{1}{2n} \sin(2nt) \right]_{0}^{\frac{\pi}{2}} - \frac{\pi}{4n} \left[\cos(2n\pi) - \cos(n\pi) \right]$$

$$= \frac{-\pi}{4n} \cos(n\pi) + 0 - \frac{\pi}{4n} (1 - \cos(n\pi)) = -\frac{\pi}{4n}$$

 $car, \sin(n\pi) = \sin(0) = 0, et \cos(2n\pi) = 1.$

Au final,
$$b_n = \frac{1}{\pi} \frac{-\pi}{4n}$$
, soit $b_n = -\frac{1}{4n}$.

3. La valeur efficace μ est donnée par :

$$\mu^{2} = \frac{1}{T} \int_{0}^{T} (f(t))^{2} dt = \frac{1}{\pi} \left(\int_{0}^{\frac{\pi}{2}} t^{2} dt + \int_{\frac{\pi}{2}}^{\pi} \left(\frac{\pi}{2} \right)^{2} dt \right)$$

$$= \frac{1}{\pi} \left(\left[\frac{t^{3}}{3} \right]_{0}^{\frac{\pi}{2}} + \frac{\pi^{2}}{4} \left[t \right]_{\frac{\pi}{2}}^{\pi} \right)$$

$$= \frac{1}{\pi} \left(\left[\frac{\pi^{3}}{24} - 0 \right] + \frac{\pi^{2}}{4} \left[\pi - \frac{\pi}{2} \right] \right) = \frac{\pi^{2}}{24}$$

Ainsi, la valeur efficace de f est $\mu = \sqrt{\frac{\pi^2}{24}} = \frac{\pi}{2\sqrt{6}}$