Esercizi per la Sesta Settimana

Esercizio 6.1 Calcolare le matrici inverse delle due matrici $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix},$

$$\left[\begin{array}{ccc} 3 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{array}\right]$$

Esercizio 6.2 Stabilire per quali valori di h la matrice $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & 1 \\ -1 & 0 & h \end{bmatrix}$ è invertibile e per tali valori calcolarne l'inversa.

Esercizio 6.3 Sia $A=\begin{bmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{bmatrix}$ e supponiamo che λ_1 e λ_2 siano gli autovalori (reali) dell'applicazione $T:\mathbf{R}^2\to\mathbf{R}^2$ definita da T(X)=AX, con $X=\begin{pmatrix}x\\y\end{pmatrix}$. Mostrare allora che

$$\lambda_1 + \lambda_2 = (a_{11} + a_{22})$$

e che

$$\lambda_1 \lambda_2 = det A$$

Esercizio 6.4 Supponiamo che le seguenti condizioni siano verificate per un'applicazione lineare $T: \mathcal{V} \to \mathcal{V}$. Il vettore \underline{v} è un autovettore per T con autovalore λ_1 , il vettore \underline{w} è un autovalore per T con autovalore λ_2 ed il vettor $\underline{v} + \underline{w}$ è un un autovalore per T con autovalore λ_1 . Che cosa si può dedurre su λ_1 e λ_2 ?

Esercizio 6.5 Stabilire se esiste una base di autovettori per un'applicazione $T: \mathcal{V} \to \mathcal{V}$ che, rispetto ad un a base ortonormale fissata, ha come matrice

associata
$$\begin{bmatrix} 7 & -11 & -5 \\ 2 & -3 & -2 \\ 4 & -7 & -2 \end{bmatrix}$$

Esercizio 6.6 Stabilire se esiste una base di autovettori per un'applicazione $T: \mathcal{V} \to \mathcal{V}$ che, rispetto ad una base ortonormale fissata, ha come matrice

associata
$$\begin{bmatrix} 5 & -8 & -4 \\ 2 & -3 & -2 \\ 2 & -4 & -1 \end{bmatrix}$$

Esercizio 6.7 Trovare la soluzione approssimata col metodo dei minimi quadrati del sistema

$$\begin{cases} x = 2 \\ 3x = 0 \\ x = 1 \end{cases}$$

Esercizio 6.8 Trovare la soluzione approssimata col metodo dei minimi quadrati del sistema

$$\begin{cases} 2x = 1\\ 5x = 2\\ x = -1 \end{cases}$$

Esercizio 6.9 Trovare per quali valori di kla soluzione approssimata col metodo dei minimi quadrati del sistema

$$\begin{cases} kx = 1\\ 2x = 1\\ x = 1 \end{cases}$$

è x = 5/9.

Esercizio 6.10 Trovare i valori di h per i quali la soluzione x che approssima col metodo dei minimi quadrati il sistema

$$\begin{cases} 4x = h \\ x = 1 \\ 2x = 1 \end{cases}$$

è tale che x < 0.

 $\bf Esercizio~6.11$ Trovare la soluzione approssimata col metodo dei minimi quadrati del sistema

$$\begin{cases} 2x + 3y = 0 \\ x + 2y = 0 \\ x + 2y = 1 \end{cases}$$

Esercizio 6.12 Trovare la soluzione approssimata, col metodo dei minimi quadrati, del sistema

$$\begin{cases} x+3y = -1\\ 5x+3y = 2\\ 4x+3y = -1 \end{cases}$$

Esercizio 6.13 Trovare (x_0, y_0) soluzione approssimata, col metodo dei minimi quadrati, del sistema

$$\begin{cases} hx + y = 1\\ x - 2y = 1\\ 2x + y = 1 \end{cases}$$

e determinare i valori di h per i quali $x_0 < 0$ e $y_0 < 0$.

Esercizio 6.14 Mostrare che se (x_0,y_0) è soluzione approssimata, col metodo dei minimi quadrati, del sistema

$$\begin{cases} kx + 2y = 2\\ x + 2y = -1\\ x + 2y = k \end{cases}$$

allora non esiste alcun valore di k per il quale $x_0 = y_0 = 0$.

Esercizio 6.15 Trovare la retta di interpolazione lineare dei tre punti

$$P_1 = (1, -1), P_2 = (2, 1), P_3 = (1, 3)$$

Esercizio 6.16 Trovare la retta di interpolazione lineare dei tre punti

$$P_1 = (2,0), P_2 = (1,1), P_3 = (2,3)$$

Esercizio 6.17 Trovare la retta interpolazione di lineare dei tre punti

$$P_1 = (1,3), P_2 = (h,-1), P_3 = (3,-1)$$

e mostrare che tale retta incontra sempre l'asse y in punti con ordinata positiva.