Avaliando previsões de default em empréstimos

João Pedro Abreu de Souza¹

¹Instituto de Computação – Universidade Federal Fluminense (UFF)

jp_abreu@id.uff.br

Abstract. This paper model a decision's tree on the problem of determine default on loans, the fundamental problem on any credit institution.

Resumo. Este artigo modela uma árvore de decisão no problema de determinação de default em empréstimos, o problema fundamental em qualquer instituição fornecedora de crédito.

1. Introdução

Dentro do mercado de crédito, protagonizado por Bancos, cooperativas de crédito e demais instituições financeiras, a determinação do risco de inadimplência (i.e. *default*) é crucial pois desse risco advém toda a decisão de conceder crédito, e caso conceda, a qual custo deve ser fornecido, de forma que as pessoas ou instituições adimplentes suportem a perda das pessoas ou instituições inadimplentes. O custo minimo, dado um cohort especifico, que deve ser acrescido ao custo dos adimplentes, é dado, segundo [1], EAD x PD x LGD = Expected Loss. Este artigo relata a utilização de um conjunto de 22999 registros de empréstimos disponível publicamente em [2] para treinar uma arvore de decisão usando [3], [4] e [5] para tratamento dos dados. Os dados para reprodução do artigo encontram-se em [7]

2. Limpeza dos dados

O dataset escolhido por esse artigo[6] necessitou de uma fase de limpeza bem curta, removendo do csv uma primeira linha de header que estava logicamente duplicada. Como é possivel constatar [2], essa linha possuia a mesma informação do header seguinte, porém com colunas chamadas X1, X2, etc. De posse do dicionario de dados que a pagina fornece, é possivel interpreta-lo, mas foi mais simples apenas não usa-lo em prol de legibilidade. Originalmente foram considerados para esse artigo outros 4 datasets, porém descartados na fase de limpeza, pois possuiam caracteristicas discriminatórias, como local de moradia, ou possuiam multiplas colunas nulas, a fim de contemplar os multiplos pagamentos ou a falta deles. Além disso os datasets descartados, que permanecem nos documentos fornecidos junto ao presente artigo, possuiam uma cardinalidade muito menor que o escolhido. Como o modelo deve ser capaz de ser explicado para quem tiver seu crédito negado, além de atender a restrições legais e éticas, o dataset atual foi finalmente escolhido. A divisão entre as classes é de 17826 casos de default e 5173 casos de adimplência.

3. Divisão treinamento

A divisão dos dados originais em treinamento e teste ficou dividido em 30% para testes e 70% para treino. A divisão entre teste e treino obedece a divisão padrão do scikit, que é por padrão de 25%, mas considerando um conjunto maior em comparação aos datasets descartados, foi fornecido um pouco mais aos testes, para aproveitar o tamanho.

4. Avaliação de performance

Classe	Precisão	Revocação	F1-Score	Suporte
0	0.83	0.80	0.81	5375
1	0.37	0.41	0.39	1525
Precisão Média	0.60			
Revocação Média	0.60			
F1-Score Médio	0.60			
Acurácia	0.71			
Suporte Total	6900			

Tabela 1. Relatório de classificação para o arquivo Loan-data-sem-primeira-linhachange-dependent-variable.csv

5. Conclusão

Arvore de decisão é uma escolha apropriada para estimar problemas que precisem de explicação concreta e não abstrata, porém mesmo com um dataset com pouco desbalanço comparado a um dataset maior, ainda oferece uma performance relativamente ruim com os parâmetros utilizados. A avaliação foi extremamente rapida, então o trade-off entre performance e baixo custo de operação, seja energético ou ambiental, deve ser levado em conta.

Referências

- [1] Investopedia. What Is Exposure at Default (EAD)? Meaning and How To Calculate. Acesso em: 20 de junho de 2024. Disponível em: https://www.investopedia.com/terms/e/exposure_at_default.asp
- [2] kaggle. Loan Data. Acesso em: 20 de junho de 2024. Disponível em: https://www.kaggle.com/datasets/jakeshbohaju/loan-data
- [3] scikit-learn. scikit-learn. Acesso em: 20 de junho de 2024. Disponível em: https://scikit-learn.org/stable/
- [4] pandas. pandas. Acesso em: 20 de junho de 2024. Disponível em: https://pandas.pydata.org/
- [5] numpy. numpy. Acesso em: 20 de junho de 2024. Disponível em: https://numpy.org/
- [6] dataset. Acesso em: 20 de junho de 2024. Disponível em: https://www.kaggle.com/datasets/jakeshbohaju/loan-data
- [7] repositorio. repositorio. Acesso em: 26 de junho de 2024. Disponível em: https://github.com/petrolifero/trabalhoML