CSE211 Digital Design

Akdeniz University

Week09: Combinational Logic Part 1

Assoc.Prof.Dr. Taner Danışman tdanisman@akdeniz.edu.tr

Course program

Week 01	19-Sep-22	Introduction
Week 02	26-Sep-22	Digital Systems and Binary Numbers I
Week 03	03-Oct-22	Digital Systems and Binary Numbers II
Week 04	10-Oct-22	Boolean Algebra and Logic Gates I
Week 05	17-Oct-22	Boolean Algebra and Logic Gates II
Week 06	24-Oct-22	Boolean Algebra and Logic Gates III
Week 07	31-Oct-22	Gate Level Minimization
Week 08	07-Nov-22	Midterm 15:30 Amfi3-BB01
Week 09	14-Nov-22	Karnaugh Maps
Week 10	21-Nov-22	Combinational Logic
Week 11	28-Nov-22	Combinational Logic
Week 12	05-Dec-22	Combinational Logic
Week 13	12-Dec-22	Timing, delays and hazards
Week 14	19-Dec-22	Synchronous Sequential Logic
Week 15	26-Dec-22	Arduino Programming

Terms to know

Combinational Logic

- ► No memory unit
- Expressed by Boolean functions
- Outputs depends on only the present inputs

Sequential Logic

- Storage elements + logic gates
- The content of the storage elements define the state of the circuit
- Outputs are functions of both input and current state
- State is a function of previous inputs
- Outputs not only depend the present inputs but also the past inputs
- Time sequence of inputs and internal states

- n input bits \rightarrow 2ⁿ possible binary input combinations
- m output variable produced
 - For each possible input combination, there is one possible output value
 - truth table
 - Boolean functions (with n input variables)
- <u>Examples</u>: adders, subtractors, comparators, decoders, encoders, and multiplexers.

- Chapter #1 binary numbers and binary codes that represent discrete quantities of information.
- Chapter #2 Boolean algebra as a way to express logic functions algebraically
- Chapter #3 How to simplify Boolean functions to achieve economical (simpler) gate implementations.
- Chapter #4 to use the knowledge acquired in previous chapters to formulate systematic analysis and design procedures for combinational circuits
 - Analyze the behavior of a given logic circuit
 - synthesize a circuit that will have a given behavior
 - Write hardware description language (HDL) models

Analysis & Design of Combinational Logic

- Analysis: to find out the function that a given circuit implements
 - We are given a logic circuit and we are expected to find out
 - Boolean function(s)
 - 2. Truth table
 - 3. A possible explanation of the circuit operation (i.e. what it does)
 - Firstly, make sure that the given circuit is, indeed, combinational.

Analysis of Combinational Logic

- Verifying the circuit is combinational
 - Diagram has no memory elements
 - No feedback paths (connections)
 - A feedback path is a connection from the output of one gate to the input of a second gate whose output forms part of the input to the first gate
- Secondly, obtain a Boolean function for each output or the truth table
- Lastly, interpret the operation of the circuit from the derived Boolean functions or truth table
 - What is it the circuit doing?
 - Addition, subtraction, multiplication, etc.
- The analysis can be performed by using a computer program

Example: Obtaining Boolean Function

Example: Obtaining Boolean Function

- Boolean expressions for named wires
 - $T_1 = a + b + c$
 - $T_2 = abc$
 - ightharpoonup $F_2 = ab + ac + bc$
 - $T_3 = F'_2T_1 = (ab + ac + bc)' (a + b + c) c$
 - $ightharpoonup F_1 = T_2 + T_3$
 - = abc + (ab + ac + bc)' (a + b + c)
 - = abc + ((a' + b')(a' + c')(b' + c'))(a + b + c)
 - = abc + ((a' + a'c' + a'b' + b'c')(b' + c'))(a + b + c)
 - = abc + (a'b' + a'c' + a'b'c' + b'c') (a + b + c)

Example: Obtaining Boolean Function

Table 4.1 *Truth Table for the Logic Diagram of Fig. 4.2*

A	В	C	F ₂	F ' ₂	<i>T</i> ₁	T ₂	T ₃	<i>F</i> ₁
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	1	0	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	1	1	0	1	1
1	0	1	1	0	1	0	0	0
1	1	0	1	0	1	0	0	0
1	1	1	1	0	1	1	0	1

Copyright ©2012 Pearson Education, publishing as Prentice Hall

■ This is what we call full-adder (FA)

Design of Combinational Logic

- We start with the <u>verbal specification</u> about what the resulting circuit will do for us (i.e. which function it will implement)
 - Specifications are often verbal, and very likely incomplete and ambiguous (if not faulty)
 - Wrong interpretations can result in incorrect circuit
- We are expected to find
 - 1. Boolean function(s) (or truth table) to realize the desired functionality
 - 2. Logic circuit implementing the Boolean function(s) (or the truth table)

Design Constraints

- From the truth table, we can obtain a variety of simplified expressions
- Question: which one to choose?
- The design constraints may help in the selection process
- **Constraints:**
 - number of gates
 - propagation time of the signal all the way from the inputs to the outputs
 - number of inputs to a gate
 - number of interconnections
 - power consumption
 - driving capability of each gate

Code Conversion Example

- To convert from binary code A to binary code B
- A combinational circuit performs this transformation by means of logic gates

Table 4.2 *Truth Table for Code Conversion Example*

Input BCD			Output Excess-3 Code				
A	В	C	D	W	X	y	Z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

Find the boolean functions for w, x, y, and z A

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Logic diagram for BCD-to-excess-3 code converter

Binary Adder and Subtractor

- (Arithmetic) Addition of two binary digits
 - \rightarrow 0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 10
 - The result has two components
 - the sum (S)
 - the carry (C)
- A combinational circuit that performs the addition of two bits is called a **half adder**
- One that performs the addition of three bits (two significant bits and a previous carry) is a full adder
- Two half adders can be employed to implement a full adder.

- The result has two components Table 4.3
 - the sum (S)
 - the carry (C)

Table 4.3 *Half Adder*

X	y	C	S		
0	0	0	0		
0	1	0	1		
1	0	0	1		
1	1	1	0		
Copyright ©2012 Pearson Education, publishing as Prentice Hall					

Half Adder (Cont.)

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Full Adder

- A circuit that performs the arithmetic sum of three bits
 - Three inputs
 - the range of output is [0, 3]
 - Two binary outputs

Table 4.4 *Full Adder*

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

K-Map for Full Adder

Copyright ©2013 Pearson Education, publishing as Prentice Hall

Implementation of full adder in sum-ofproducts form

Implementation of full adder with two half adders and an OR gate

Binary Adders

- The design methodology we used to build carry-ripple adder is what is referred as hierarchical design.
- To add two 4-bit numbers, in classical design, we have:
 - \triangleright 9 inputs including C_0 .
 - 5 outputs
 - Truth tables with $2^9 = 512$ entries
 - We have to optimize five Boolean functions with 9 variables each.
- In Hierarchical design
 - we divide our design into smaller functional blocks
 - connect functional units to produce the big functionality

Binary adders

A digital circuit that produces the arithmetic sum of two binary numbers

Design of this

circuit by the

method would

classical

$$\rightarrow$$
 A = $(a_{n-1}, a_{n-2}, ..., a_1, a_0)$

$$\blacksquare$$
 B = (b_{n-1}, b_{n-2}, ..., b₁, b₀)

A simple case: 4-bit binary adder

Binary Adders

Consider the two binary numbers A = 1011, and B = 0011. Their sum
 S = 1110 is formed with the four-bit adder as follows

Subscript <i>i</i> :	3	2	1	0	
Input carry Augend Addend	0 1 0	1 0 0	1 1 1	0 1 1	$egin{array}{c} C_i \ A_i \ B_i \end{array}$
Sum Output carry	1 0	1 0	1 1	0 1	S_i C_{i+1}

Carry Propogation

- The addition of two binary numbers in parallel implies that all the bits of the **augend** and **addend** are available for computation at the same time
- Sum output will be in its steady-state final value only after the input carry to that stage has been propagated
- The outputs will not be correct unless the signals are given enough time to propagate through the gates connected from the inputs to the outputs
- Solution is to use carry lookahead logic

Carry Propogation

- G_i is called a carry generate
- P_i is called a **carry propagate**

Carry Lookahead Generator

- C₃ does not have to wait for C₂ and C₁ to propagate
- This gain in speed of operation is achieved at the expense of additional complexity (hardware).

$$C_0 = \text{input carry}$$

$$C_1 = G_0 + P_0 C_0$$

$$P_i = A_i \oplus B_i$$
$$G_i = A_i B_i$$

$$S_i = P_i \oplus C_i$$
$$C_{i+1} = G_i + P_i C_i$$

$$C_2 = G_1 + P_1 C_1 = G_1 + P_1 (G_0 + P_0 C_0) = G_1 + P_1 G_0 + P_1 P_0 C_0$$

 $C_3 = G_2 + P_2 C_2 = G_2 + P_2 G_1 + P_2 P_1 G_0 + P_2 P_1 P_0 C_0$

Logic diagram of carry lookahead generator

30

Four-bit adder with carry look ahead

31

