Cookbook

Chao Xu

Last update: December 1, 2011

Contents

1	Algebraic Algorithms		2
	1.1	Exponentiation by squaring	
	1.2	Linear homogeneous recurrence relations with constant coefficients	
2	Con	nbinatorial Algorithms	2
		Integer Partitions	4
	2.2	Find the primitive word in a free monoid	4
	2.3	Period of a eventually periodic sequence	

Chapter 1

Algebraic Algorithms

1.1 Exponentiation by squaring

Problem 1.1.1. yy

Input

Given the operator \cdot , element a and positive integer n. Where a is an element of a semigroup under \cdot .

```
Output Find a^n, where a^n = a \cdot a^{n-1}.
```

The general method to solve the problem is exponentiation by squaring. It is originally used for integer exponentiation, but any associate operator can be used in it's place. Here is a theorem stated in algebraic flavor

Theorem 1.1.1. For any semigroup (S, \cdot) , $x \in S$ and $n \in \mathbb{N}$, x^n can be computed with $O(\log n)$ applications of \cdot .

Proof. Express n as binary $c_k c_{k-1} \dots c_0$, where $c_i \in \{0,1\}$. We make sure $0 \cdot a$ is the treated as the identity, and $1 \cdot a = a$ for all a. The following observations are crucial.

$$a^{n} = c_{0}a^{2^{0}} \cdot c_{1}a^{2^{1}} \cdot \dots \cdot c_{k}a^{2^{k}}$$
$$a^{2^{i+1}} = a^{2^{i}} \cdot a^{2^{i}}$$

The code that compute a^n from the above two equalities.

```
import Data. Digits 
exponentiation By Squaring:: Integral a \Rightarrow (b \rightarrow b \rightarrow b) \rightarrow b \rightarrow a \rightarrow b 
exponentiation By Squaring op a n = foldr1 op \{y \mid (x,y) \leftarrow (zip\ binary\ twoPow), x \not\equiv 0\} 
where twoPow = a: zip\ With\ op\ twoPow\ twoPow 
binary = digitsRev\ 2\ n
```

One can analyze the number of times the operator is used. The twoPow is the infinite list $[a, a^2, \ldots, a^{2^i}, \ldots]$. It takes k operations to generate the first k+1 elements. At most k additional operations are required to combine the result with the operator. Therefore the operator is used $O(\log n)$ times.

This result can of course be extended to monoid and groups, so it work for all non-negative and integer exponents, respectively.

1.2 Linear homogeneous recurrence relations with constant coefficients

Definition 1.2.1 (Linear homogeneous recurrence relations with constant coefficients). A linear homogeneous recurrence relations in ring R with constant coefficients of order k is a sequence with the following recursive relation

$$a_n = \sum_{i=1}^k c_i a_{n-i}$$

, where c_i are constants.

We use linear recurrence relation to abbreviate.

The most common example is the Fibonacci sequence. $F_0 = 0, F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ in the ring \mathbb{Z} . The Fibonacci sequence have a simple implementation. fibs = 0:1: zipWith (+) fibs (tail fibs). We want to generalize it.

1.2.1 Lazy sequence

Problem 1.2.1.

Input

- 1. A list of coefficients $[c_1, c_2, \ldots, c_n]$ of a linear recurrence relation.
- 2. A list of base cases $[a_0, a_1, \ldots, a_{n-1}]$ of a linear recurrence relation.

Output

The sequence of values of the linear recurrence relation as a infinite list $[a_0, a_1, \ldots]$

Here is a specific implementation where we are working in the ring \mathbb{Z} .

```
import Data.List linearRecurrence :: Integral a \Rightarrow [a] \rightarrow [a] \rightarrow [a] linearRecurrence coef base = a where a = base + map (sum \circ (zipWith (*) coef)) (map (take n) (tails a)) <math>n = (length coef)
```

One can generalize it easily to any ring.

Having a infinite list allows simple manipulations. However, finding the nth element in the sequence cost O(nk) time. It becomes unreasonable if a person only need to know the *n*th element.

1.2.2 Determine nth element in the index

If n is very large, a more common technique would be solve for a_n using matrix multiplication.

1.2.3 Linear Recurrence in Finite Ring

Linear recurrence is perodic in finite rings. Therefore one might want to produce only the periodic part of the ring. [INSERT MORE ON THIS SUBJECT]

Chapter 2

Combinatorial Algorithms

2.1 Integer Partitions

To find all possible partition of a integer, we proceed with a simple recursive formula.

Let p(n, k) be the list of ways to partition integer n using integers less or equal to k. p(n, n) is the solution to our problem. It is implemented as part in the code.

```
integerPartitions :: Integral a \Rightarrow a \rightarrow [a]
integerPartitions n = part \ n \ n
where part \ 0 = [[]]
part \ n \ k = [(i:is) \mid i \leftarrow [1..min \ k \ n], is \leftarrow part \ (n-i) \ i]
```

2.2 Find the primitive word in a free monoid

Problem 2.2.1.

Input

A word w in a free monid.

Output

A primitive word p, such that $p^n = w$ for some integer n.

A word p is primitive if $p = w^k$ implies k = 1. This will use the algorithm in [1].

2.3 Period of a eventually periodic sequence

Problem 2.3.1.

Input

- 1. A infinite list that represent a eventually periodic sequence.
- 2. A integer of the upper bound of the period.

Output

A pair of the initial sequence and the periodic part.

Bibliography

[1] Artur Czumaj and Leszek Gasieniec. On the complexity of determining the period of a string, 2000.