Árvores Rubro Negras Remoção

Prof. Gedson Faria

gedson.faria@ufms.br

Árvores Rubro-Negras Remoção

A remoção em árvores rubro-negras pode ser realizada também com um número logarítmico de operações.

O procedimento de remoção é composto por uma etapa de remoção em árvore binária de busca seguida de uma etapa de balanceamento caso as propriedades rubro-negras tenham sido destruídas durante a operação.

Árvores Rubro-Negras Remoção de nó rubro

Se o nó removido for rubro a árvore continua rubronegra, pois todas as condições da definição ficam válidas:

- 1. Os nós resultantes tem cor rubro ou negro;
- 2. A raiz, que era negra, não foi removida;
- Nenhum nó negro foi removido, portanto, todos os caminhos da raiz até uma folha tem um número igual de nós negros;
- 4. Os filhos de todos os nós rubros não removidos não foram alterados e, portanto, ficam negros.

Árvores Rubro-Negras Remoção **efetiva** de nó rubro

Remoção de folhas
 vermelhas 11,77 ou
 87 não
 desestabilizariam a
 árvore;

 Obs.: Não há nó rubro com somente um filho.

Árvores Rubro-Negras Remoção de nós com dois filhos

- Remoção de nós com dois filhos não é uma remoção efetiva, é uma substituição.
 - A cor original do nó permanece, muda somente o valor;
 - O antecessor ou sucessor é que será efetivamente removido.

Árvores Rubro-Negras Remoção efetiva de nó negro

- Se o nó removido for negro, o número de nós de pelo menos um caminho foi decrementado e consequentemente uma das propriedades da ARN ficou inválida.
- Seja Y o nó que foi removido, e Y é negro, todos os caminhos da raiz até uma folha passando por esse nó Y tem um nó negro a menos.
- Seja X o nó que passou a ocupar a posição de Y na árvore.
 - Obs.: X pode ser um nó nulo (NEGRO).
- O problema da remoção efetiva é resolvido atribuindo negro a cor de X. Assim permanece igual a altura negra de todos os caminhos contendo X, antes e depois da inserção.

Árvores Rubro-Negras Remoção de nó negro

- Na remoção o 20, o nó 11 que é rubro toma o seu lugar.
 Assim, basta tornar o 11 negro.
- E se o nó substituto já for negro?
 - Exemplo: Folhasnegras 25, 47, 77, 87

Árvores Rubro-Negras Remoção de nó negro

- E se o nó substituto já for negro?
 - O nó torna-se duplo negro.
 - Rubro+Rubro=Rubro
 - Rubro+Negro=Negro
 - Negro+Negro=Duplo Negro

Remover o 25Negro pelo seu nó nulo Negro resulta em um nó nulo duplo negro a direita do 21.

Árvores Rubro-Negras Remoção de nós — caso geral

Nó	Substituto	Resultado
11 Rubro	Nulo Negro	Nulo Negro
20 Negro	11 Rubro	11 Negro
25 Negro	Nulo Negro	Nulo DN
47 Negro	Nulo Negro	Nulo DN
77 Negro	Nulo Negro	Nulo DN
82 Negro	84 Rubro	84 Negro
84 Rubro	Nulo Negro	Nulo Negro
87 Negro	Nulo Negro	Nulo DN
90 Negro	92 Rubro	92 Negro
92 Rubro	Nulo Negro	Nulo Negro

DN = Duplo Negro

Árvores Rubro-Negras Remoção (Duplo Negro)

- Seja X duplamente negro
 - Se X é raiz então basta torná-lo simplesmente negro. Isso não altera a quantidade de nós negros nos caminhos da árvore;
 - Se X não é a raiz, então seja V seu pai, e W seu irmão.

Observação: A seguir é considerado o caso de X ser o filho esquerdo, o outro caso simétrico é omitido.

Árvores Rubro-Negras Remoção (Caso 1 - Duplo Negro)

- □ Caso 1: W é rubro
 - Nesta situação, é realizada uma rotação simples a esquerda em V.
 - V fica rubro e W fica negro.
 - O resultado desta modificação é que x permanece duplamente negro.
 Porém, o seu irmão agora também é negro, e o tratamento de um dos casos apresentados a seguir deve ser aplicado.

Árvores Rubro-Negras Remoção (Caso 1 - Duplo Negro)

- □ Remoção do 70
 - causa um DN nulo na posição do 04 (irmão W rubro)

Árvores Rubro-Negras Remoção (Caso 2 - Duplo Negro)

- Caso 2: W é negro e tem ambos os filhos negros.
 - V pode ser Rubro ou Negro...
 - Este remanejamento consiste em subir para V um ponto negro dos nós X e W, que passam a ser negro e rubro respectivamente. F
 - Se V era anteriormente rubro, ele torna-se negro. Se não tornase duplamente negro, e um novo remanejamento é necessário no nível superior.

Árvores Rubro-Negras Remoção (Caso 2 - Duplo Negro)

Árvores Rubro-Negras Remoção (Caso 3 - Duplo Negro)

- □ Caso 3: W é negro e seu filho direito Z é rubro.
 - Deve-se fazer uma rotação simples a esquerda em V;
 - Atribuir aos nós V e Z a cor negra, e a W a cor que era a de V.

Árvores Rubro-Negras Remoção (Caso 4 - Duplo Negro)

- Caso 4: W é negro e seu filho esquerdo Z é rubro.
 - Realiza-se uma rotação simples a direita em W;
 - W torna-se rubro e Z torna-se negro;
- X continuará duplamente negro, mas será resolvido pelo caso 3.

Árvores Rubro-Negras Algoritmo de Remoção

```
Remove(valor)
2.
      Node x = busca(valor)
3.
     se(x.info==nulo) retorne falso;
     se(x tem 2 filhos){
4.
5.
         subst = antecessor(x);
         x.info = subst.info;
6.
7.
         x = subst;
     } //senão remoção efetiva
     subst = (x.dir = nulo)? x.esq : x.dir;
     copiar info, dir e esq de subst para x;
     se (x.cor==RUBRO ou subst.cor==RUBRO)
12.
        x.cor = NEGRO;
```

```
13. senão { //duplo negro
      enquanto(x != raiz){
15.
        v=x.pai;
        se (v.esq == x){ // w dir
16.
17.
          w = v.dir;
18.
           se(w.cor == RUBRO) 
              casol; *
19.
20.
           }senão{
21.
               se(filhos de w são negros)
22.
                  caso2; *
23.
               senão se(w.dir.cor == RUBRO)
24.
                  caso3; (fim)
25.
               senão
26.
                  caso4; *
27.
          }
28. } senão
29.
       ... Caso simétrico de w a esquerda
30. }
```