České vysoké učení technické v Praze Fakulta strojní Ústav přístrojové a řídící techniky

Prostředky automatického řízení Semestrální práce

Návrh pneumatického řídicího systému Technická zpráva

Cvičící: Ing. Marie Martinásková, Ph.D

Vypracoval: Ordokov Eldiiar

Obsah

Zadaní referátu	3
Analýza zadaní	3
Řešení	5
Výsledek	6

Zadaní referátu

Navrhnout systém pneumatického ovládání pro zadanou sekvenci pohybů s následujícími požadavky:

sekvence č. 7: B- A+P B+ A-R TAU8 B- A+P B+ A-R TAU16 C- C+

- celá sekvence je odstartována startovacím tlačítkem START
- přepínačem R/A je možno zvolit ruční nebo automatický režim
- přepínačem J/T je možné zvolit režim "jednotlivě" (jedna sekvence pro jeden kus) nebo "trvale" (jedna dávka o zadaném počtu kusů)
- tlačítkem NOTSTOP se systém dostane do stavu uživatelem definovaného nouzového stopu
- po provedení jedné sekvence se nastaví kontrolka č.1, indikace skončí po zahájení další sekvence
- po ukončení jedné dávky se nastaví kontrolka č. 2, indikace je ukončena po odstartování další dávky.
- sekvenci ověřit v simulačním systému Fluidsim

Analýza zadaní

Zadanou sekvenci řešíme pomoci dvou metod – Quickstepper a paměťové jednotky

Tabulka 1 Označení signálů od senzorů a od obsluhy

Signál	Označení	
a0	pneumotor A v zajeté poloze	
a1	pneumotor A ve vyjeté poloze	
b0	pneumotor B v zajeté poloze	
bl	pneumotor B ve vyjeté poloze	
c0	pneumotor A v zajeté poloze	
c1	pneumotor A ve vyjeté poloze	
TAUn	prodleva o délce n sekund	
Start	startovací signál	

Tabulka 2 Označení signálů pro rozvaděče motorů

Signál	Označení	
A+R	rychlé vyjetí pneumotoru A (rychleji, než je nominální rychlost)	
A-P	pomalé zajetí pneumotoru A (pomaleji, než je nominální rychlost)	
B+	vyjetí pneumotoru B	
B-	zajetí pneumotoru B	
C+	vyjetí pneumotoru C	
C-	zajetí pneumotoru C	

Tabulka 3 Příčina/následek pro metodu Quickstepper

Krok	Příčina	Následek
1	Start + c1	B-
2	b0	A+P
3	a1	B+
4	b1	A-R
5	a0	TAU8
6	konec TAU8	B-
7	b0	A+P
8	al	B+
9	b1	A-R
10	a0	TAU16
11	konec TAU16	C-
12	c0	C+

Tabulka 4 Rozdělení na fáze a příčina/následek pro metodu paměťové jednotky

B- A+P B+ A-R	TAU8 B- A+P B+ A-R TAU16	6 C- C+
f1 f2	2 f3 f4	f5 f6
al	konec TAU8 a1 konec T	AU16 c0
Krok nebo změna fáze	Příčina	Následek
$f6 \rightarrow f1$	Start + c1	fl
1	fl	B-
2	f1 + b0	A+P
$f1 \rightarrow f2$	a1	f2
3	f2	B+
4	f2 + b1	A-R
5	f2 + a0	TAU8
$f2 \rightarrow f3$	konec TAU8	f3
6	f3	B-
7	f3 + b0	A+P
$f3 \rightarrow f4$	a1	f4
8	f4	B+
9	f4 + b1	A-R
10	f4 + a0	TAU16
$f4 \rightarrow f5$	konec TAU16	f5
11	f5	C-
$f5 \rightarrow f6$	c 0	f6
12	f6	C+

Obrázek 1: Krokový diagram sekvence

Řešení

Obrázek 2: Realizace sekvence ve FluidSIM – Quickstepper (Tabulka 3)

Obrázek 3:Realizace sekvence ve FluidSIM – paměťové bloky (Tabulka 4)

Závěr:

V dane semestrální práci byla zadaná sekvence pohybů, pro kterou byl navržen systém pneumatického ovládání s využitím Quickstepperu a paměťových bloků (TAA, TAB). V obou metodách dvojice rozvaděč 4/2 – pneumotor (+koncové senzory) se zůstávali stejné, jenom se měnila logika pneumatického ovládaní rozvaděčů.

Obvod s Quickstepperem je jednoduší a přehlednější, protože vyžaduje méně realizaci. Každý vystup Ai (krok sekvence) je přesně definován signálem na vstupu Xi a signálemz předchozího výstupu Ai-1.

Princip práce Quicksteppru: stisknout sepnutí tlačítka "Hlavní spínač " zatím stisknout přepínač "AUTO" a Man/P a nakonec stisknout tlačítko "START".

Paměťového blok se skládá z paměťové jednotky (3/2-cestný impulsní ventil), součásti AND a OR, viditelného hlášení a pomocného ručního ovládání, takže k zajištění pohybů musíme správně propojit fáze a signály koncových senzorů pomoci logických ventilů.

Princip práce u paměťových bloků: stisknout sepnutí tlačítka "Hlavní spínač" zatím stisknout tlačítko "Start".

Z porovnání paměťového bloku a Quicksteppru, tak Quckstepper je vhodný pro úlohy od 8 fází, takže je levnější než aplikace paměťových bloků.