Chapter 5: Oscillators

Phase Shift Oscillator (BJT) $f_0 = \frac{1}{2\pi RC} \frac{1}{\sqrt{6 + 4R_C/R}}$

Phase Shift Oscillator (MOSFET) $f_0 = \frac{1}{2\pi RC\sqrt{6}}$ A = 29

Phase Shift Oscillator (Op Amp) $f_0 = \frac{1}{2\pi RC\sqrt{6}}$ A = 29

Wien-Bridge Oscillator $\omega_0 = \frac{1}{\sqrt{R_1 R_2 C_1 C_2}}$

 $\begin{aligned} & \text{Colpitts Oscillator} \\ & \omega_0 = \sqrt{\frac{C_1 + C_2}{C_1 C_2 L}} \\ & \beta_f = \frac{C_2}{C_1} \end{aligned}$

Hartly Oscillator $\omega_0 = \frac{1}{\sqrt{(L_1 + L_2)C}}$ $\beta_f = \frac{L_1}{L_2}$

Chapter 6: Power Amplifiers

Class A	Class B	Class AB
$\mu \in [0.25 - 0.5]$	$\mu \le 0.785$	$\mu \le 0.6$
$P_L = \frac{V_o^2}{2R_L}$	$P_L = \frac{{V_o}^2}{2R_L}$	$i = I_s e^{V_{BB}/2V_T}$
$P_{L(\text{max})} = \frac{V_{CC}^2}{8R_L}$	$I_C = \frac{V_o}{\pi R_L}$	$i_n i_p = I_Q^2$
$P_{DC} = \frac{V_{CC}^2}{2R_L}$	$P_{DC} = \frac{2V_{CC}V_o}{\pi R_L}$	$P_D = V_{CC}I_Q$
$P_D = \frac{V_{CC}^2}{4R_L}$		

Chapter 7: Active Filters

$$\varepsilon = \sqrt{10^{\frac{A_{\text{max}}}{10}} - 1} \quad ; \quad N \ge \frac{\log\left(\frac{10^{A_{\text{min}}/10} - 1}{\varepsilon^2}\right)}{2\log\left(\frac{\omega_s}{\omega_p}\right)}$$

$$A_{\text{dB}} = 10\log\left(1 + \varepsilon^2\left(\frac{\omega}{\omega_p}\right)^{2N}\right)$$

$$p_0 = \omega_0 e^{j\left(\frac{\pi}{2N} + \frac{\pi}{2}\right)} \quad ; \quad p_{k+1} = p_k e^{j\frac{\pi}{N}} \quad ; \quad \omega_0 = \omega_p \varepsilon^{-\frac{1}{N}}$$

$$T(s) = \frac{K\omega_0^N}{\prod_{k=1}^N (s - p_k)}$$