

JUNE 2002

GCE Advanced Level

MARK SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT:9702/6

PHYSICS (OPTIONS (A2))

Page 1	Mark Scheme	Sylläbus	Paper
1 490 1	A Level Examinations – June 2002	9702	6

Categorisation of marks

The marking scheme categorises marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answer.

M marks: These are <u>method</u> marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answer. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows he/she knew the equation, then the C-mark is awarded.

A marks: These are accuracy or <u>answer</u> marks which either depend on an M-mark, or allow a C-mark to be scored.

Conventions within the marking scheme

BRACKETS

Where brackets are shown in the marking scheme, the candidate is not required to give the bracket information in order to earn the available marks.

UNDERLINING

In the marking scheme, underlining indicates information that is essential for marks to be awarded.

Page 2	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9702	- 6

Option A

1	(a)		$1.50 \times 10^{11} \mathrm{m}$ (accept $1.49 \times 10^{11} \mathrm{m}$)	B 1	[1]
	(b)	(i) (ii)	distance at which 1 AU subtends an angle of 1 second of arc arc = $r\theta$	M1 A1 C1 C1 A1	[5]
2	(a) (b)		sketch: straight line through origin	B1	[1]
	ţ		(so) at one time, must have been close together OR max. speed close to c, so finite time	B 1	[2]
	(c)		on sufficiently large scale, Universe is homogeneous OR mentions 'Cosmological Principle' so, no matter where positioned, galaxies are moving away	B1 B1	[2]
	(d)	(i) (ii)	$H_0 = v/d$ this is the gradient of the graph (d/v) is the time for galaxies to separate i.e.) 1/gradient (allow $1/H_0$ if H_0 stated to be the gradient)		[3]
3	(a) (b) (c)		allow 10^2 s $- 10^4$ s	B1 B1 B1	[1] [1] [1]
4			e.m. radiation received is very faint radiation is absorbed by atmosphere so use detection systems in Earth orbit		[3]

Page 3	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9702	6

Option F

5		(i) (ii)	reasonable position	Bi Bi	[2]
	(b)		restoring couple increases ship is more stable so ship less likely to move with the waves or more likely to act as rigid wall against waves any two, 1 each max 2 (1) (1)	B2	[2]
6	(a) (i (ii		A_1v_1	B1 B1	[2]
	(b) (i		$E_{k} = \frac{1}{2}mv^{2}$ $\frac{1}{2}\rho A_{2}v_{2}^{3} - \frac{1}{2}\rho A_{1}v_{1}^{3}$ work done = $\rho\Delta V$	C1 A1 C1	
	ζ.,	•,	$p_1A_1v_1 - p_2A_2v_2$		[4]
	(c) (i	i)	$p_{1}A_{1}v_{1} - p_{2}A_{2}v_{2} = \frac{1}{2}\rho A_{2}v_{2}^{3} - \frac{1}{2}\rho A_{1}v_{1}^{3}$ $\text{now } A_{1}v_{1} = A_{2}v_{2}$ $p_{1} - p_{2} = \frac{1}{2}\rho v_{2}^{2} - \frac{1}{2}\rho v_{1}^{2}$	Bi Bi	
	(ii	i)	assumption: horizontal flow/streamfine/non-viscous		[3]
7	(a)		graph: curve from origin		[2]
	(b)		weight, upthrust and drag act on sphere accelerating force = (apparent) weight - drag OR = weight - upthrust - drag as speed increases, drag increases so acceleration decreases reaches a constant/terminal speed	B1 . B1 . M1	[5]
					1-1

Page 4	Mark Scheme	Syllabus	Paper
	A Level Examinations – June 2002	9702	6

Option M

8	(a)		pulse of ultrasound	Bl	
	` '		· · · · · · · · · · · · · · · · · · ·	Bl	
			(4.1 2 1 1 1 1 1 1	B 1	
			time delay gives depth	Bl	
			strength of echo indicates nature of boundary	BI	[5]
	(b)	(i) 1.	(high μ means) low penetration (do not allow 'absorbed')	Bl	
	()	`	also much reflection (at muscle/bone interface)		
		2.	ultrasound absorbed in bone	B1	
			causes a heating effect	Bl	[4]
		(ii)	$(I/I_0)_{\text{muscle}} = e^{-23x}$		
		(**)	$(I/I_0)_{\text{bone}} = e^{-130x} \qquad \dots$	Cl	
			substitution of value for x or use of indices		
			ratio = 2.9		[3]
9	(a)		short sight / myopia	B1	[1]
	(b)		power = $-1/0.75 + 1/\infty$	Cl	
	(2)		= - [.33 D		[2]
	(a)		there is greater magnification	R1	
	(c)		because able to focus when closer to eye		[2]
					[-]
16) (a)	1	$I.L. = 10 \lg(I/I_0)$ with I_0 explained	Bl	[1]
	(b)	1	loss of sensitivity at about 3 kHz	В1	
	(5)		loss of hearing at higher frequencies (- cut-off should be about 15 kHz)		[2]
					r-1
O	ptio	n P			
1	l (a))	e.g. energy from tidal flow / stores excess electrical energy	B2	
	()	•	dependent on time of tides / available to meet peak demands		[4]
	(h)	(i)	$77 \text{ m}^3 \text{ s}^{-1} = 77 \times 10^3 \text{ kg s}^{-1}$	CI	
	(0)	, ,,9	energy = mgh	. C1	
			$power = 77 \times 10^3 \times 9.8 \times 180$	1	
			= 140 MW	A 1	

Down E	Mark Cabana	Cullabus	Bassa
Page 5	Mark Scheme	Syllabus	Paper
·	A Level Examinations – June 2002	9702	6

11	(b) (ii)	Answer in (i) must be greater than 100 MW because water falling has k.e. (or other valid point) (calculation of efficiency as 74% - allow 1/2)		[5]
12	(a)	mass of air per unit time = $\pi r^2 \rho v$ kinetic energy = $\frac{1}{2}mv^2$ $E = \frac{1}{2}\pi r^2 \rho v \cdot v^2$ = $\frac{1}{2}\pi r^2 \rho v^3$	B1 B1 M1 A0	[3]
ı	(b)	$E = 0.55 \times \frac{1}{2} \times \pi \times 12^{2} \times 1.2 \times 4.5^{3}$ = 13.6 kW	Cl Al	[2]
((c)	high speeds cause large stresses (in blades etc) blades are 'feathered'		[2]
13	(a)	not true - visual pollution - pollution during building (allow any two valid points – give credit for justifying 'no pollution' claim	B 1	[2]
	(b)	Many generators required over a large area other valid point e.g. weather dependence etc	B1 B1	[2]
Opt	tion T			
14	(a)	amplitude modulated	Bl	[1]
		10 waves in 200 μ s $f = 50 \text{ kHz}$ frequency = 5 kHz	A1	[3]
	(c)	graph: three vertical lines carrier longer than equal sidebands frequencies shown correctly	.Bt	[3]

.

-

Page 6	Mark Scheme	Syllabus	Рарег
	A Level Examinations – June 2002	9702	6

15	(a)	number of dB = $10 \lg(P_1/P_2)$ $25 = 10 \lg(P/(7.3 \times 10^{-5}))$ P = 0.023 W	Mi	[2]
	(b)	change in signal power = 10 lg(5.8/0.023) = 24 dB length = 24 / 4.8 = 5.0 km	Cl	[3]
	(c)	e.g. less interference greater uninterrupted length no cross-talk etc (any valid points, I each)	B2	[2]
16	(a)	e.g. weather forecasting prospecting etc (any two valid points, 1 each)	B2	[2]
	(b)	e.g. weather monitoring telephone communication (any two valid points, 1 each)	B2	[2]
	(c) (i) (ii)	allow 1 cm → 20 cm	B1 B1	[2]