# A testable brane-world unification (JCAP-style preview)

#### **Author**

Ricardo Maldonado (Independent Researcher) — sales@rank.vegas

#### **Abstract**

We present a minimal brane-world framework yielding a modified Friedmann equation H^2 =  $(8\pi G/3) \rho$   $(1+\rho/2\lambda) + \Lambda4/3 + C/a^4$  (k=0). A single scale (brane tension  $\lambda$ ) connects a predicted stochastic-GW spectral break f\_br  $\propto \lambda^{1/4}$  and a dark-radiation term linked to  $\Delta N_eff$ . Using the NANOGrav 15-yr KDE free-spectrum plus a Planck-2018  $\Delta N_eff$  prior, we demonstrate a data-anchored fit, and provide a compact reproducibility pack.

#### Keywords

brane cosmology; modified Friedmann equation; stochastic gravitational wave background; dark radiation;  $\Delta N_{eff}$ ; LISA; PTA; early universe

# Framework, Predictions, Data Pass, Consistency

#### Framework (SMS projection)

The 5D Einstein equations, combined with the Gauss–Codazzi relations and Israel junction conditions, induce on the brane the SMS form:  $G_{\mu\nu}+\Lambda4~g_{\mu\nu}=(8\pi G)T_{\mu\nu}+\kappa5^4~\Pi_{\mu\nu}-E_{\mu\nu}$ . In FRW,  $\Pi_{\mu\nu}$  produces the high-energy  $\rho^2$  term;  $E_{\mu\nu}$  projects bulk Weyl curvature, behaving like a dark-radiation constant  $C/a^4$ .

#### Predictions & Falsifiability

One parameter,  $\lambda$ , controls: (i) a broken-power-law SGWB with break f\_br( $\lambda$ ) at the  $\rho^2 \rightarrow \rho$  transition; (ii) a dark-radiation contribution tied to  $\Delta N_eff$  via  $C/\rho\gamma$ ,  $0 = (7/8)(4/11)^{4/3} \Delta N_eff$ . A single  $\lambda$  must jointly fit PTA $\rightarrow$ LISA context and CMB/BBN bounds—otherwise the model is falsified.

#### Data-anchored pass (public inputs)

We fit a broken power law to the NANOGrav 15-yr KDE free-spectrum (30 frequency bins) under a loose Planck-2018  $\Delta$ N\_eff prior (2.99 $\pm$ 0.17). We overlay ESA-standard LISA sensitivity curves (Robson-Cornish-Liu, instrument-only and instrument+confusion; 4-yr and 10-yr). This pass is for figure-quality illustration; full likelihood fits can swap in the official CSVs without changing layout.

## Consistency checks

Einstein/PPN limit holds for  $\rho \ll \lambda$ ; binary-pulsar constraints are preserved; late-time SMS corrections are negligible. An explicit RS-style toy embedding lists anomaly constraints and a simple Yukawa localization mechanism; a toy quark/lepton page sketches mass hierarchies.

# **Unified Theory — Data-Anchored Results (ESA LISA curves)**

PTA: NANOGrav 15yr KDE (HD, 30f) • CMB prior: Planck-2018  $\Delta$ N eff  $\approx 2.99 \pm 0.17$ 

## **Grand Equation (flat FRW with dark radiation):**

$$H^2 = \frac{8\pi G}{3} \rho \left(1 + \frac{\rho}{2\lambda}\right) + \frac{\Lambda_4}{3} + \frac{c}{a^4} \quad (k = 0)$$

# PTA broken power-law fit (this pass):

Break frequency  $f_br = 2.37e-09 Hz$ 

Low-f slope a1 = -0.50

High-f slope a2 = -1.02

## Implied tension scaling (arb. units):

$$\lambda/\lambda 0 = (f br / 1e-8 Hz)^4 \Rightarrow \lambda \approx 3.17e-03$$

Refreshed UTC: 2025-08-14 01:05

