Université de Grenoble Alpes (L3 MIASH, S2)

ÉCONOMÉTRIE

TRAVAUX

Travail 3

(Cette version: 3 février 2025)

MICHAL W. URDANIVIA 1

^{1.} Contact : michal.wong-urdanivia@univ-grenoble-alpes.fr, Université de Grenoble Alpes, Faculté d'Économie, GAEL.

Université de Grenoble Alpes	ÉCONOMÈTRIE: L3 MIASH, S2	M. W. Urdanivia
	Table des matières	
1. Une 1ère illustration de la méthode des VIs		2
2. Une application des VIs(partie 1) :Card (1993)		2
Références		3

ÉCONOMÈTRIE: L3 MIASH, S2

1. Une 1ère illustration de la méthode des VIs

Soit Y une mesure de l'état de santé des personnes(cette variable est croissante avec la qualité de la santé), et X une variable indicatrice du fait de fumer(i.e., X = 1 si la personne fume et 0 sinon). Nous voulons estimer le modèle,

$$Y = \beta_1 + \beta_2 X + U$$

où U est le terme d'erreur du modèle. Pour cela, on dispose de données sur Y et X, à savoir un échantillon i.i.d $\{(Y_i, X_i)\}_{i=1}^n$ relatives à une certaine ville. A notre grande surprise on trouve que dans nos données Y et X sont positivement corrélées. Quelques années auparavant une grande compagnie de tabac a retenu de manière aléatoire des personnes de la ville pour participer à une campagne publicitaire. La compagnie leur a offert 100 paquets de cigarettes gratuitement. Nous observons une indicatrice Z du fait d'avoir été retenu dans la campagne.

La taille totale de l'échantillon est n=70. Nous observons $n_{00}=30$ individus avec X=Z=0, et la moyenne de Y dans ce groupe est observée égale à $\overline{Y}_{00}=1$. Nous observons $n_{01}=10$ individus avec X=0 et Z=1, et la moyenne de Y dans ce groupe est observée égale à $\overline{Y}_{01}=0.8$. Nous observons $n_{10}=20$ individus avec X=1 et Z=0, et la moyenne de Y_i dans ce groupe est observée égale à $\overline{Y}_{10}=1.5$. Enfin, nous observons n_{11} individus avec X=Z=1, et la moyenne de Y dans ce groupe est observée égale à $\overline{Y}_{11}=1.2$.

- (1) Pensez vous que l'hypothèse $\mathbb{E}(U|X) = 0$ soit vraisemblable ?(Justifiez votre réponse)
- (2) Calculez l'estimateur de MCO de β_1 et de β_2 .
- (3) Pourquoi *X* peut être endogène au modèle?
- (4) Pensez vous que Z puisse être utilisée comme variable instrumentale de X?.
- (5) Calculez l'estimateur de VI des paramètres.

2. Une application des VIs(partie 1) :Card (1993)

Les questions suivantes on pour but que vous précisiez plusieurs points de l'article ci-dessus en vous appuyant notamment sur votre connaissance sur le modèle de régression linéaire vu en cours.

- (1) Résumez la problématique de l'article.
- (2) Dans la spécification la plus complète(correspondant à la colonne 5 du tableau 2) que contient le vecteur X_i dans le modèle,

$$Y_i = X_i^{\mathsf{T}} \alpha + S_i \beta + U_i, \quad \mathbb{E}[X_i U_i] = 0$$

où S_i est la mesure des études, Y_i celle du salaire, U_i un terme d'erreur.

- (3) Quelle hypothèse doit-on imposer pour que l'estimateur des MCO de β soit sans biais.
- (4) Dans l'article une équation pour S_i est spécifiée avec,

$$S_{i} = X_{i}^{\mathsf{T}} \gamma + V_{i}, \ \mathrm{E}[X_{i} V_{i}] = 0$$

où V_i est le terme d'erreur. Pourquoi il est indiqué que la corrélation entre U_i et V_i est source de biais pour l'estimateur de MCO?

- (5) Qu'est-ce que dans l'article l'"ability biais" (voir page 9)?
- (6) Quelle autre source de biais possible est indiqué?
- (7) Indiquez les données employées.

Références

ÉCONOMÈTRIE: L3 MIASH, S2

Card, David. 1993. "Using geographic variation in college proximity to estimate the return to schooling." Tech. rep., National Bureau of Economic Research. URL http://www.nber.org/papers/w4483.