

Topic 8: Query Processing and Optimization (Chapters 15, 16)

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)

Topic 8: Query Processing and Optimization

- Basic Steps in Query Processing
- □ Transformation of Relational Expressions
- Estimation of Query Processing Cost
- Join Strategies

Basic Steps in Query Processing

- 1. Parsing and translation
- 2. Optimization

Basic Steps in Query Processing (Cont.)

- Parsing and translation
 - translate the query into its internal form. This is then translated into relational algebra.
 - Parser checks syntax, verifies relations
- Evaluation
 - The query-execution engine takes a query-evaluation plan, executes that plan, and returns the answers to the query.

Basic Steps in Query Processing: Optimization

- A relational algebra expression may have many equivalent expressions
 - □ E.g., $\sigma_{salary<75000}(\Pi_{salary}(instructor))$ is equivalent to $\Pi_{salary}(\sigma_{salary<75000}(instructor))$
- Each relational algebra operation can be evaluated using one of several different algorithms
 - Correspondingly, a relational-algebra expression can be evaluated in many ways.
- Annotated expression specifying detailed evaluation strategy is called an execution plan or evaluation plan.
 - E.g., can use an index on salary to find instructors with salary < 75000,
 - or can perform complete relation scan and discard instructors with salary ≥ 75000

- Query Optimization: has two phases:
 - Phase 1: find an equivalent expression to the given query expression that is more efficient to execute
 - Phase 2: select a detailed strategy for processing the query; choose the one with the lowest cost
 - Cost is estimated using statistical information from the database catalog
 - e.g. number of tuples in each relation, size of tuples, etc.

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

□ An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

- Cost difference between evaluation plans for a query can be enormous
 - E.g. seconds vs. days in some cases
- Steps in cost-based query optimization
 - Generate logically equivalent expressions using equivalence rules
 - 2. Annotate resultant expressions to get alternative query plans
 - 3. Choose the cheapest plan based on estimated cost
- Estimation of plan cost based on:
 - Statistical information about relations. Examples:
 - number of tuples, number of distinct values for an attribute
 - Statistics estimation for intermediate results
 - to compute cost of complex expressions
 - Cost formulae for algorithms, computed using statistics

Generating Equivalent Expressions

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
 - Note: order of tuples is irrelevant
 - we do not care if they generate different results on databases that violate integrity constraints
- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa
- ☐ Goal: find an equivalent expression that gives fewer number of tuples to be accessed to produce a query answer

- □ a) Selection Operation:
 - Transformation Rule 1: Perform selection as early as possible
 - Example:
 - Customer (custname, street, customercity)
 - Deposit (branchname, accnumber, custname, balance)
 - Branch (branchname, assests, branchcity)
 - Query: find assets and name of all banks which have depositors living in Norman
 - Relational algebra expression:
 - An equivalent relational algebra expression:

- □ a) Selection operation (cont):
 - Transformation Rule 2:
 - Replace $\sigma_{\theta_1 \wedge \theta_2}(r) = \sigma_{\theta_1}(\sigma_{\theta_2}(r))$

- □ b) Projection Operation:
 - Transformation Rule 1: Perform projections early

$$\Pi_A(r \times s) = \Pi_A(r) \times \Pi_A(s)$$

c) Join Operation:

- Transformation Rule 1: Choose the one that produces fewer number of tuples in intermediate results
- \square For all relations r_1 , r_2 , and r_3 ,

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

(Join Associativity)

If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)

Consider the expression

$$\Pi_{name, \ title}(\sigma_{dept_name= \ 'Music''} \ (instructor) \bowtie \ teaches) \\ \bowtie \ \Pi_{course \ id. \ title} \ (course))))$$

□ Could compute *teaches* \bowtie $\Pi_{course_id, \ title}$ (*course*) first, and join result with

σ_{dept_name= 'Music''} (instructor)
but the result of the first join is likely to be a large relation.

- Only a small fraction of the university's instructors are likely to be from the Music department
 - it is better to compute

```
\sigma_{dept\_name= \text{'Music''}} \text{ (instructor)} \bowtie \text{ teaches} first.
```


□ d) Other Operations:

- Transformation (equivalence) rules:
 - When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

• When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1}(\mathsf{E}_1)) \bowtie_{\theta} (\sigma_{\theta_2}(\mathsf{E}_2))$$

Read section 16.2.1 "Equivalence Rules" for other rules (see the next five slides)

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$S_{q_1 \dot{\cup} q_2}(E) = S_{q_1}(S_{q_2}(E))$$

2. Selection operations are commutative.

$$S_{q_1}(S_{q_2}(E)) = S_{q_2}(S_{q_1}(E))$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

4. Selections can be combined with Cartesian products and theta joins.

a.
$$\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$$

b.
$$\sigma_{\theta 1}(E_1 \bowtie_{\theta 2} E_2) = E_1 \bowtie_{\theta 1 \land \theta 2} E_2$$

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

6. (a) Natural join operations are associative:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta 1} E_2) \bowtie_{\theta 2 \land \theta 3} E_3 = E_1 \bowtie_{\theta 1 \land \theta 3} (E_2 \bowtie_{\theta 2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1}(\mathsf{E}_1)) \bowtie_{\theta} (\sigma_{\theta_2}(\mathsf{E}_2))$$

- 8. The projection operation distributes over the theta join operation as follows:
 - (a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = (\prod_{L_1} (E_1)) \bowtie_{\theta} (\prod_{L_2} (E_2))$$

- (b) Consider a join $E_1 \bowtie_{\theta} E_2$.
 - Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
 - Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
 - let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$.

$$\Pi_{L_1 \cup L_2}(E_1 \bowtie_{\theta} E_2) = \Pi_{L_1 \cup L_2}((\Pi_{L_1 \cup L_3}(E_1)) \bowtie_{\theta} (\Pi_{L_2 \cup L_4}(E_2)))$$

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 = E_2 \cup E_1$$

$$E_1 \cap E_2 = E_2 \cap E_1$$

- (set difference is not commutative).
- 10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

 $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$

11. The selection operation distributes over \cup , \cap and -.

$$\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta} (E_1) - \sigma_{\theta} (E_2)$$

and similarly for \cup and \cap in place of $-$

Also:
$$\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$$

and similarly for \cap in place of $-$, but not for \cup

12. The projection operation distributes over union

$$\Pi_{L}(E_{1} \cup E_{2}) = (\Pi_{L}(E_{1})) \cup (\Pi_{L}(E_{2}))$$

Pictorial Depiction of Equivalence Rules (Query (Parse) Tree)

Example with Multiple Transformations

- Query: Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses that they taught
 - $\Pi_{name, \ title}(\sigma_{dept_name= \text{`Music''} \land year = 2009} \ (instructor \bowtie (teaches \bowtie \Pi_{course \ id. \ title}(course))))$
- Transformation using join associatively (Rule 6a):
 - □ $\Pi_{name, \ title}(\sigma_{dept_name= \text{`Music"} \land year = 2009})$ ((instructor \bowtie teaches) \bowtie $\Pi_{course \ id. \ title}(course)))$
- Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression (using rule 7a)

```
\sigma_{dept\_name = \text{`Music''}} (instructor) \bowtie \sigma_{year = 2009} (teaches)
```


Query (Parse) Tree

(a) Initial expression tree

(b) Tree after multiple transformations

Estimation of Query Processing Cost

Statistical Information for Cost Estimation

- In order to be able to choose a query processing strategy, a DBMS may store the following statistics for each relation r:
 - n_r : number of tuples in a relation r.
 - \Box b_r : number of blocks containing tuples of r.
 - \Box I_r : size of a tuple of r.
 - $rac{r}{r}$ blocking factor of r i.e., the number of tuples of r that fit into one block.
 - □ V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\prod_A(r)$.
 - If tuples of r are stored together physically in a file, then:

$$b_{r} = \frac{\stackrel{\text{\'e}}{\text{\'e}} n_{r} \stackrel{\text{\'u}}{\text{\'e}}}{f_{r} \stackrel{\text{\'u}}{\text{\'u}}}$$

Cartesian Product Size Estimation

\square rxs

- n_r and n_s allow accurate estimation of the size of a cartesian product
- □ has $n_r * n_s$ tuples, each tuple is of $(I_r + I_s)$ bytes

Selection Size Estimation

- \Box $\sigma_{A=v}(r)$
 - Assume each distinct value of A appears in a column with equal probability (uniform distribution)
 - $n_r / V(A,r)$: number of records that will satisfy the selection

Estimation of the Size of Joins

- The cartesian product $r \times s$ contains $n_r . n_s$ tuples; each tuple occupies $l_r + l_s$ bytes.
- If $R \cap S = \emptyset$, then size of $r \bowtie s$ is the same as size of $r \times s$.
- If $R \cap S = K_1$ a key for R, then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s: size of $r \bowtie s$ <= size of s
- If $R \cap S = K_2$ a key for S, then a tuple of r will join with at most one tuple from s: size of $r \bowtie s$ <= size of r

Estimation of the Size of Joins (Cont.)

- □ If $R \cap S = \{A\}$ not a key for R or S.
 - Assume uniform distribution of distinct values of A
 - One tuple in r will join with $(n_s / V(A, s))$ tuples in s
 - All tuples in r will join with $\frac{n_r * n_s}{V(A, s)}$ tuples in s
 - \square This means the estimated size of $r \bowtie s$ is

$$\frac{n_r * n_s}{V(A,s)}$$

 \square Similarly, the estimated size of $s \bowtie r$ is

$$\frac{n_r * n_s}{V(A,r)}$$

Choose the lower of these two estimates

Join Strategies

Read Section 12.3 (Chapter 12) "Magnetic Disk".

Join Operation

- Several different algorithms to implement join operations:
 - Nested-loop join
 - Block nested-loop join
 - Merge-join
 - etc.
- Choice based on cost estimate
- Cost estimate = number of disk block transfers + number of disk seeks +
- Examples use the following information:
 - Number of records of student: 5,000 takes: 10,000
 - Number of blocks of student: 100 takes: 400
 - Assume all records in each relation are physically stored together on disk

Nested-Loop Join

- To compute the theta join $r \bowtie_{\theta} s$ for each tuple t_r in r do begin for each tuple t_s in s do begin test pair (t_r, t_s) to see if they satisfy the join condition θ if they do, add $t_r \cdot t_s$ to the result. end end
- \square r is called the **outer relation** and s the **inner relation** of the join.
- Requires no indices and can be used with any kind of join condition.
- Expensive since it examines every pair of tuples in the two relations.

Nested-Loop Join (Cont.)

In the worst case, if there is enough memory only to hold one block of each relation, the estimated cost is

$$n_r * b_s + b_r$$
 block transfers, plus $n_r + b_r$ disk seeks

- If the smaller relation fits entirely in memory, use that as the inner relation.
 - Reduces cost to $b_r + b_s$ block transfers and 2 seeks
- Assuming worst case memory availability, cost estimate is
 - with student as outer relation:
 - ▶ 5,000 * 400 + 100 = 2,000,100 block transfers and
 - \rightarrow 5,000 + 100 = 5100 seeks
 - with takes as the outer relation
 - ▶ 10,000 * 100 + 400 = 1,000,400 block transfers and 10,400 seeks
- If smaller relation (student) fits entirely in memory, the cost estimate will be 500 block transfers.
- Block nested-loops algorithm (next slide) is preferable.

Block Nested-Loop Join

Variant of nested-loop join in which every block of inner relation is paired with every block of outer relation.

```
for each block B_r of r do begin

for each block B_s of s do begin

for each tuple t_r in B_r do begin

for each tuple t_s in B_s do begin

Check if (t_r, t_s) satisfy the join condition

if they do, add t_r \cdot t_s to the result.

end

end

end
```


Block Nested-Loop Join (Cont.)

- Worst case estimate: the main memory can hold only one block for each relation:
 - Each block in the inner relation s is read once for each block in the outer relation
 - □ Estimated Cost = $b_r * b_s + b_r$ block transfers + 2 * b_r seeks
- Best case: the main memory can hold two entire relations simultaneously
 - Each scan of the inner relation s requires 1 seek
 - □ The scan of the outer relation r requires 1 seek
 - □ Estimated Cost = $b_r + b_s$ block transfers + 2 seeks.

Merge-Join

- Assumption: each relation is sorted on the join attribute
- Can be used only for equi-joins and natural joins
- □ Example: r(R), s(S), $R \cap S = \{a1\}$ and a1 is sorted
- Merge the sorted relations r and s to join them
 - Detailed algorithm in book

Merge-Join (Cont.)

- Each block needs to be read only once (assuming all tuples for any given value of the join attributes fit in memory)
- \square Assuming b_b buffer blocks (in the main memory) are allocated for each relation
- The estimated cost of merge join is: $b_r + b_s$ block transfers $+ \sqrt{b_r} / b_b / + \sqrt{b_s} / b_b /$ seeks
 - + the cost of sorting if relations are unsorted.

End of Topic 8

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)

Additional Slides from Chapter 12: Physical Storage Systems

Database System Concepts

©Silberschatz, Korth and Sudarshan (Modified for CS 4513)

Storage Hierarchy

Storage Hierarchy (Cont.)

- primary storage: Fastest media but volatile (cache, main memory).
- secondary storage: next level in hierarchy, non-volatile, moderately fast access time
 - also called on-line storage
 - E.g. flash memory, magnetic disks
- tertiary storage: lowest level in hierarchy, non-volatile, slow access time
 - also called off-line storage
 - E.g. magnetic tape, optical storage
 - Magnetic tape
 - Sequential access, 1 to 12 TB capacity
 - A few drives with many tapes
 - Juke boxes with petabytes (1000's of TB) of storage

Magnetic Hard Disk Mechanism

NOTE: Diagram is schematic, and simplifies the structure of actual disk drives

Magnetic Disks

Read-write head

- Positioned very close to the platter surface (almost touching it)
- Reads or writes magnetically encoded information.
- Surface of platter divided into circular tracks
 - Over 50K-100K tracks per platter on typical hard disks
- Each track is divided into sectors.
 - A sector is the smallest unit of data that can be read or written.
 - Sector size typically 512 bytes
 - Typical sectors per track: 500 to 1000 (on inner tracks) to 1000 to 2000 (on outer tracks)
- To read/write a sector
 - disk arm swings to position head on right track
 - platter spins continually; data is read/written as sector passes under head
- Head-disk assemblies
 - multiple disk platters on a single spindle (1 to 5 usually)
 - one head per platter, mounted on a common arm.
- ☐ **Cylinder** *i* consists of *i*th track of all the platters

Magnetic Disks (Cont.)

- ☐ Earlier generation disks were susceptible to head-crashes
 - Surface of earlier generation disks had metal-oxide coatings which would disintegrate on head crash and damage all data on disk
 - Current generation disks are less susceptible to such disastrous failures, although individual sectors may get corrupted
- □ **Disk controller** interfaces between the computer system and the disk drive hardware.
 - accepts high-level commands to read or write a sector
 - initiates actions such as moving the disk arm to the right track and actually reading or writing the data
 - Computes and attaches checksums to each sector to verify that data is read back correctly
 - If data is corrupted, with very high probability stored checksum won't match recomputed checksum
 - Ensures successful writing by reading back sector after writing it
 - Performs remapping of bad sectors