CENTRO DE ESTATÍSTICA APLICADA – CEA – USP RELATÓRIO DE CONSULTA

TÍTULO: "Efeito de tratamentos de limpeza e de contaminação por saliva do esmalte dentário na resistência adesiva de sistemas autocondicionantes."

PESQUISADORA: Ana Del Carmen Armas

ORIENTADOR: Maria Aparecida Alves de Cerqueira Luz

INSTITUIÇÃO: Faculdade de Odontologia da Universidade de São Paulo

FINALIDADE: Doutorado

PARTICIPANTES DA ENTREVISTA: Ana Del Carmen Armas

Maria Aparecida Alves de Cerqueira Luz

Julio da Mota Singer

Adriana Silva de Moura

Afonso Massao Yamaguchi

Augusto César G. Andrade

Grazielle Yumi Soldá

DATA: 31/08/2004

FINALIDADE DA CONSULTA: Assessoria no processo planejamento experimental.

RELATÓRIO ELABORADO POR: Adriana Silva de Moura

Afonso Massao Yamaguchi

1. Introdução

O desenvolvimento de novos materiais restauradores dentários deu origem a uma nova geração de sistemas adesivos conhecidos como autocondicionantes. Estes sistemas têm a vantagem de não exigir uma aplicação prévia de ácido condicionador e simplificam o procedimento odontológico. Acredita-se que uma limpeza prévia na superfície do dente seja importante para melhorar o desempenho desses adesivos, favorecendo a sua penetração. Neste contexto, realizar-se-á um estudo experimental para avaliar o efeito de combinações de processos de limpeza prévia e sistemas adesivos em dentes humanos.

O objetivo deste relatório é apresentar sugestões sobre o planejamento do experimento, principalmente o dimensionamento amostral e sobre a análise estatística dos dados.

2. Planejamento do Estudo

Os fatores estudados são: Sistema adesivo com três níveis (Clearfil SE Bond, Prompt L.pop e Scotchbond Multi purpose plus) e Processo de limpeza prévia com três níveis (pedra pomes + tergensol, bicarbonato de sódio e spray ar/água). A variável resposta do estudo é a resistência adesiva (MPa).

A unidade amostral do estudo será a área central de um dente humano retido totalmente formado, extraído por indicação terapêutica. Cada unidade amostral será submetida a uma combinação de processo de limpeza e sistema adesivo. Posteriormente, cada unidade amostral será cortada em palitos (com aproximadamente 8mm de comprimento e 0,8mm de lado) que serão submetidos a um dispositivo para medir sua resistência à tração (N). Cada medida assim obtida será convertida para um equivalente de resistência adesiva (dividindo-se a resistência à tração pela área do palito). A resistência adesiva da unidade amostral será a média da resistência adesiva

dos palitos. Como existem perdas de palitos durante os preparativos para a medição da resistência à tração, o número de palitos perdidos será registrado, assim como a causa de sua perda. As possíveis causas de perda são:

- Corte: processo para obtenção dos palitos;
- Medição: obtenção da área do palito;
- Colagem: colocação do palito no dispositivo de tração;
- Tração: inserção do dispositivo no aparelho de medição da tração.

Como se pretende avaliar combinações entre os níveis dos dois fatores, será usada a estrutura de fatores fixos e cruzados no delineamento do estudo.

A distribuição das unidades amostrais nas diferentes combinações dos dois fatores será realizada de forma aleatória, sorteando-se a ordem em que cada combinação dos níveis dos fatores, e posteriormente sorteando-se as unidades amostrais que receberão cada um dos tratamentos.

A informação referente à perda do palito será incorporada na análise por meio de um índice de perdas, definido como:

em que número de palitos perdidos é igual a soma dos palitos perdidos no corte, na medição, na colagem e na tração.

Um possível modelo para análise, considerando-se o delineamento acima é:

$$y_{ijl} = \mu + \alpha_i + \beta_j + \alpha\beta_{ij} + \delta P_{ijl} + \varepsilon_{ijl}, \ \ \text{i = 1,2,3, respectivamente Clearfil SE Bond,}$$

Prompt L.pop e Scotchbond Multi purpose plus; j = 1,2,3, respectivamente pedra pomes + tergensol, bicarbonato de sódio e spray ar/água, l =1,...,n, cada unidade amostral.

Com
$$\sum_{i=1}^{3} \alpha_i = \sum_{j=1}^{3} \beta_j = \sum_{i=1}^{3} \alpha \beta_{ij} = \sum_{j=1}^{3} \alpha \beta_{ij} = 0$$

em que y_{ijl} é a resistência adesiva para a l-ésima unidade amostral submetida ao ésimo nível do fator Sistema adesivo e ao j-ésimo nível do fator Processo de limpeza, μ : é o valor esperado da resistência adesiva, α_i : efeito do i-ésimo nível do fator Sistema adesivo na resistência adesiva; β_j : efeito do j-ésimo nível do fator Processo de limpeza na resistência adesiva; $\alpha\beta_{ij}$: efeito de interação entre o i-ésimo nível do fator

Sistema adesivo e o j-ésimo nível do fator Processo de limpeza na resistência adesiva; δ : efeito linear do Índice de perdas na Resistência adesiva; P_{ijl} : Índice de perdas para a l-ésima unidade amostral, submetida ao i-ésimo nível do fator Sistema adesivo e ao j-ésimo nível do fator Processo de limpeza.

O tratamento estatístico dos dados envolve Análise de Covariância [Neter et al. (1996)].

Para a determinação do tamanho da amostra utilizamos dados correspondentes ao máximo, mínimo da resistência adesiva e o valor da menor diferença (Δ) que se pretende detectar. Para obter uma estimativa ingênua da variância da resistência adesiva utilizamos:

$$\hat{\sigma} = \frac{\max(y) - \min(y)}{6}$$

Com base nesses valores, obtivemos tamanhos de amostras para diferentes níveis de significância (α) e poder do teste (1- β) por intermédio da expressão:

$$N = (Z_{\alpha/2} + Z_{\beta})^{2} * \left(\frac{\widehat{\sigma}}{\Delta}\right)^{2},$$

em que $Z_{\alpha/2}$ e Z_{β} são, respectivamente, os valores dos percentis de ordens $\alpha/2$ e β da distribuição normal padrão. Os detalhes técnicos do procedimento de cálculo podem ser vistos em NIST/SEMATECH (2004).

Os tamanhos de amostras sugeridas estão dispostos na Tabela 1.

Tabela 1 – Tamanhos amostrais para diferentes valores da diferença mínima a ser detectada (Δ) , diferentes valores da variância, .

Δ	σ	Δ/σ	α	1 – β	Za/2	$Z(1-\beta)$	n	N
6	2	3,00	5%	90%	1,96	1,28	2	18
6	3	2,00	5%	90%	1,96	1,28	3	27
6	4	1,50	5%	90%	1,96	1,28	5	45
6	2	3,00	1%	90%	2,58	1,28	2	18
6	3	2,00	1%	90%	2,58	1,28	4	36
6	4	1,50	1%	90%	2,58	1,28	7	63
6	2	3,00	5%	95%	1,96	1,64	2	18
6	3	2,00	5%	95%	1,96	1,64	4	36
6	4	1,50	5%	95%	1,96	1,64	6	54
6	2	3,00	1%	95%	2,58	1,64	2	18
6	3	2,00	1%	95%	2,58	1,64	5	45
6	4	1,50	1%	95%	2,58	1,64	8	72
7	2	3,50	5%	90%	1,96	1,28	1	9
7	3	2,33	5%	90%	1,96	1,28	2	18
7	4	1,75	5%	90%	1,96	1,28	4	36
7	2	3,50	1%	90%	2,58	1,28	2	18
7	3	2,33	1%	90%	2,58	1,28	3	27
7	4	1,75	1%	90%	2,58	1,28	5	45
7	2	3,50	5%	95%	1,96	1,64	2	18
7	3	2,33	5%	95%	1,96	1,64	3	27
7	4	1,75	5%	95%	1,96	1,64	5	45
7	2	3,50	1%	95%	2,58	1,64	2	18
7	3	2,33	1%	95%	2,58	1,64	4	36
7	4	1,75	1%	95%	2,58	1,64	6	54
8	2	4,00	5%	90%	1,96	1,28	1	9
8	3	2,67	5%	90%	1,96	1,28	2	18
8	4	2,00	5%	90%	1,96	1,28	3	27
8	2	4,00	1%	90%	2,58	1,28	1	9
8	3	2,67	1%	90%	2,58	1,28	3	27
8	4	2,00	1%	90%	2,58	1,28	4	36
8	2	4,00	5%	95%	1,96	1,64	1	9
8	3	2,67	5%	95%	1,96	1,64	2	18
8	4	2,00	5%	95%	1,96	1,64	4	36
8	2	4,00	1%	95%	2,58	1,64	2	18
8	3	2,67	1%	95%	2,58	1,64	3	27
8	4	2,00	1%	95%	2,58	1,64	5	45

Nesta tabela, n é numero de unidades amostrais para cada combinação dos níveis dos fatores e N é o tamanho total da amostra. Ressaltamos que estes são

valores mínimos de amostra necessários para atingir a precisão desejada no experimento. Por exemplo, para Δ =7, σ = 4, α = 5% e 1- β = 90% termos n=4.

Apresentamos na Tabela 2, uma sugestão para o armazenamento dos dados.

Tabela 2 – Exemplo de tabela para armazenamento dos dados.

Processo de Limpoza	Sistema Adosivo	Nr de Palitos Medidos	Donto	Posistôncia Adosiva	Palitos pernidos no			
Frocesso de Limpeza	Sistema Adesivo	INI de Falilos Medidos	Dente	Nesistericia Auesiva	Corte	Medição	Colagem	Tração
1	2	4	1	22,01	2	1	1	2
3	1	7	2	15,37	2	1	1	0
2	3	9	3	32,19	1	0	0	0
2	2	3	4	19,86	0	2	2	3

Sugerimos que os dados experimentais sejam encaminhados para análise no CEA no primeiro semestre de 2005.

Bibliografia:

NETER, J., KUTNER, M.H., NACHTSHEIM, C.J. and WASSERMAN, W. (1996). **Applied Linear Statistical Models**, 4.ed. Boston: McGraw-Hill. 1010p.

LINDMAN, H.R. (1992). **Analysis of Variance in Experimental Design**, 1.ed. New York: Springer-Verlag. 475p.

NIST/SEMATECH (2004), **e-Handbook of Statistical Methods**, http://www.itl.nist.gov/div898/handbook/, 17/09/2004. webpage http://www.itl.nist.gov/div898/handbook/prc/section2/prc222.htm