Архитектура компьютеров

Системная шина персонального компьютера

Существующие шины

- □ ISA industrial serial architecture
 - EISA
- PCI Peripheral Component Interconnect
 - Mini-PCI
 - PCI-X
 - PCI-64
- □ PCI-E -PCI-Express
 - Mini-PCI-E
 - PCI-E x 1-16
- ☐ FSB front side bus
- □ AGP Accelerated graphics port
- □ VLB VESA local bus

Определение

- □ Системная шина это критический компонент компьютерной системы, способный соединять другие компоненты в количестве более двух
- Уменьшает сложность соединения различных компонентов
- □ Содержит «проводники» для данных, адресов и управления(разделения по времени)
- □ Использует особый протокол
- Обеспечивает совместимость компонентов и развитие
- Развиваются иерархически
- Бывают последовательными и параллельными
- Могут быть «шире» чем размер компьютерного слова

Термины

- □ Линия физический или логический проводник присутствующий в шине
- □ Транзакция цикл передачи данных по шине
- □ Высокий уровень сигнала 1
- □ Низкий уровень сигнала 0

Типы системных шин: по устройствам

- □ Шина процессор-память (северный мост)
 - Маленькая(физически), быстрая
 - По скорость оптимизирована под память
 - Оптимизирована для работы с кэшем процессора
- □ Объединительные шины
 - Соединяют устройства с материнской платой
 - Соединяют шины ввода-вывода с процессором и памятью
- Шины ввода-вывода(SCSI, PCI,USB, Firewire)
 - Сравнительно медленные
 - Поддерживают еще больший «зоопарк»
 - Подключаются к объединительной шине

Типы шин: по организации

- □ Выделенные
 - Разные физические линии для данных и адреса
- □ Мультиплексированные
 - Физические провода используются для того и для другого
 - Линия активации данных определяет, что в разделяемых линиях: адрес или данные
 - Преимущества
 - □ Меньше проводов
 - □ Больше скорость (?)
 - Недостатки
 - Более сложное управление
 - □ Меньшая скорость (???) → Большая скорость

Объединительные шины

Свойства системной шины

Bus Данные: Передаются в обе стороны Slave

- Линии данных и адреса
 - Данные, адреса, сложные команды
- Линии управления
 - Оповещения о событиях, подтверждения
 - Определение того, что находится в линиях данных и адреса
- □ Передача данных по шине
 - Master создает команду (и адрес) запрос
 - Slave получает(или отправляет) данные действие

Требования к системной шине

- Доступность
- Скорость
- Надежность
- Расширяемость
- Отсутствие узких мест
- Отсутствие электрического шума
- Гибкость
- Легкость подключения
- Потребляемая мощность
- Разделимость
- Протокол общения устройств
- Длина проводов

Компьютерная шина

Традиционная архитектура

Производительная архитектура

Рабочая станция

Серверная система

Селектор и Мультиплексор

Последовательный и параллельный В/В

Гирляндная архитектура

Шина FireWire

Архитектура шины USB: дерево

Свойства шины

- Тип работы по времени
 - Асинхронная
 - Синхронная
- □ Наличие выделенного DMA
 - Memory Read / Writes
 - I/O Read Writes
- □ Свободная коммуникация CPU и CPU
- Наличие подтверждений
- □ Проверка ошибок

Синхронные VS. асинхронные

- Синхронная шина (процессор-память)
 - В линиях управления есть таймер и протокол привязан к таймеру
 - +: просто и быстро
 - -:
 - Все устройства на шине работают с одной частотой.
 - □ Для стабильности физически мала
- Асинхронная шина(шины В/В)
 - Если не тактируются, то используют протокол согласования и доп. линии управления(ReadReq, Ack, DataRdy)
 - **-** +:
 - □ Подходят для любых устройств и скоростей
 - Могут быть весьма «большими»
 - -: Низкая скорость (Сравнительно)

Синхронная шина

Асинхронная шина

□ Вывод данных на устройство (чтение из памяти)

- □ Устройство B/B ставит высокий уровень ReadReq и выставляет addr на линиях данных
- 1. Контроллер памяти видит ReadReq, читает addr, поднимает Ack
- 2. Устройство B/B sees Ack and releases ReadReq и линии данных
- 3. Контроллер памяти видит ReadReq убран и убирает Ack
- 4. Когда контроллер памяти подготовит данные, он кладет их на линии данных и поднимает DataRdy
- 5. Устройство B/B видит DataRdy, читает данные с линий данных, и поднимает Ack
- 6. Контроллер памяти видит Ack, освобождает данные и убирает DataRdy
- 7. Устройство B/B видит DataRdy убран и убирает Ack

Асинхронная шина

□ Чтение

□ Запись

Bus Master

- Bus Master управляет шиной
 - Чтением
 - Записью
 - Прерываниями запрос/ подтверждение
 - Запрос управления запрос/ подтверждение
- □ Зачем нужны разные Bus Masters?
 - Когда в системе несколько процессоров один использует шину а другой работает с кэшем
 - Замен сломанного или устаревшего
 - В серверах часто устройства голосуют за Bus Master
 - Общение устройств друг с другом

Как Bus Master работает

- □ Нужно передать данные
 - Потенциальный Bus Master может запросить контроль шины
 - На подтверждение он принимает контроль над шиной
- □ Когда ничего не происходит
 - Потенциальный Bus Master, может запросить контроль шины (самое ненагруженное устройство)
 - Если текущий Bus Master отдает он становится новым Bus Master
- Если несколько запросов
 - Процесс арбитража

Необходимость арбитража

- Много устройств хотят использовать шину одновременно
- □ Схемы арбитража балансируют между:
 - Приоритетами Самое приоритетное устройство обслуживается первым
 - Честностью Даже самое низкоприоритетное устройство иногда получает шину
- Схемы арбитража:
 - Гирляндный арбитраж
 - Централизованный параллельный арбитраж
 - Распределённый арбитраж с самовыбором
 - □ Нужное устройство кладет на шину свой уникальный случайный код. У кого больше тот победил.
 - Распределённый арбитраж с определением коллизий
 - Устройство начинает использовать шину и если видит ошибку (коллизия) пробует еще раз через псевдослучайное время

Гирляндный арбитраж

- □ +: прострой
- _ -:
 - Не самый честный низкоприоритетные устройства могут «отвалиться»
 - Медленный скорость уменьшается с длиной цепи

Централизованный параллельный арбитраж

- +: гибкий, обеспечивает честность
- -: Более сложное оборудование
- □ Используется во всех современных шинах

DMA (direct memory access)

- DMA используется как альтернатива
 Bus Master для быстрой передачи
 данных
- □ Как работает DMA
 - Устройство (HDD controller) запрашивает блокировку страницы памяти.
 - При получении разрешения заливает данные временно отстраняя Bus Master.
 - Когда передача завершена устройство генерирует прерывание, сообщая о завершении операции.

Конфигурации DMA

