Computation for variable selection

David Rossell¹ and Omiros Papaspiliopoulos²

1: University of Warwick (UK)
2: ICREA and UPF

Recall

$$\mathbf{t} = \mathbf{X}\mathbf{w} + \boldsymbol{\epsilon}$$
, where $\boldsymbol{\epsilon} \sim N(\mathbf{0}, q\mathbf{I})$

- **X** is $n \times p$, **w** is $p \times 1$
- ▶ Models M_1, \ldots, M_K $(K = 2^p)$
- (X_k, w_k) subsets of (X, w) for variables included by M_k

Posterior model probabilities

$$p(M_k \mid \mathbf{t}) = \frac{p(\mathbf{t} \mid M_k)p(M_k)}{p(\mathbf{t})}$$

Issue: if p large we cannot enumerate all models

Outline

Projection-based methods

Heuristics

Markov Chain Monte Carlo

Shrinkage priors

Idea: transform $\mathbf{x}_i \in \mathbb{R}^p$ into $\mathbf{z}_i = g(\mathbf{x}_i) \in \mathbb{R}^{\tilde{p}}$ such that $\mathbf{Z}^T \mathbf{Z}$ is diagonal $(\tilde{p} \leq p)$

$$\mathbf{t} = \mathbf{Z}\mathbf{w} + \boldsymbol{\epsilon}, \; ext{where} \; \boldsymbol{\epsilon} \sim \mathit{N}(\mathbf{0}, q\mathbf{I})$$

Example: Principal components regression

Consider eigendecomposition $\mathbf{X}^T\mathbf{X} = \mathbf{E}\mathbf{\Lambda}\mathbf{E}^T$

- ▶ Columns in **E** are eigenvectors, $\mathbf{E}^T\mathbf{E} = \mathbf{I}$
- ▶ Λ is diagonal with eigenvalues ≥ 0

Define
$$\mathbf{Z} = \mathbf{XE}$$
 (projection of \mathbf{X} on \mathbf{E})

$$\mathbf{Z}^T \mathbf{Z} = \mathbf{E}^T \mathbf{X}^T \mathbf{X} \mathbf{E} = \mathbf{E}^T \mathbf{E} \mathbf{\Lambda} \mathbf{E}^T \mathbf{E} = \mathbf{\Lambda}$$

Simplifications under orthogonalization

Assume variance q is known and that $p(\mathbf{w}_k) = \prod_{j=1}^{d_k} p(w_{kj})$

$$\rho(\mathbf{t} \mid M_{k}, q) = \int \frac{1}{(2\pi q)^{\frac{n}{2}}} e^{-\frac{1}{2q}(\mathbf{t} - \mathbf{Z}_{k}^{\mathsf{T}} \mathbf{w}_{k})^{\mathsf{T}}(\mathbf{t} - \mathbf{Z}_{k}^{\mathsf{T}} \mathbf{w})} \rho(\mathbf{w}_{k}) d\mathbf{w}_{k} = \\
\frac{e^{-\frac{1}{2q}\mathbf{t}^{\mathsf{T}}\mathbf{t}}}{(2\pi q)^{\frac{n}{2}}} \prod_{j=1}^{d_{k}} e^{\frac{1}{2q} \frac{\hat{w}_{kj}^{2}}{\mathbf{z}_{kj}^{\mathsf{T}} \mathbf{z}_{kj}}} \int e^{-\frac{\mathbf{v}_{kj}}{2q} \left(\mathbf{w}_{kj} - \hat{w}_{kj}\right)^{2}} \rho(\mathbf{w}_{kj}) d\mathbf{w}_{kj} = \\
\frac{e^{-\frac{1}{2q}\mathbf{t}^{\mathsf{T}}\mathbf{t}}}{(2\pi q)^{\frac{n}{2}}} \prod_{i=1}^{d_{k}} m(\hat{w}_{kj}, \mathbf{v}_{kj})$$

where $\hat{w}_{kj} = \frac{\mathbf{z}_{kj}^T \mathbf{t}}{(\mathbf{z}_{kj}^T \mathbf{z}_{kj})}$ is the least squares estimate and $v_{kj} = 1/(\mathbf{z}_{kj}^T \mathbf{z}_{kj})$

Consequences

We can pre-compute $m(\hat{w}_j, v_j)$ for $j = 1, \dots, p$

Posterior model probabilities

$$p(M_k \mid \mathbf{t}, q) \propto p(M_k) \prod_{j \in M_k} m(\hat{w}_j, v_j)$$

▶ Marginal probabilities. If $p(w_1 \neq 0, ..., w_p \neq 0)$ is exchangeable

$$p(w_i \neq 0 \mid \mathbf{t}, q) = \frac{m(\hat{w}_j, v_j)r}{m(\hat{w}_j, v_j)r + e^{\frac{\hat{w}_j^2}{2qv_j}} e^{-\frac{v_j\hat{w}_j^2}{2q}}}$$

where
$$r = p(w_j \neq 0)/p(w_j = 0)$$

Consequences

- 1. Marginal probabilities computed with O(p) computations!
- 2. Highest $p(M_k \mid \mathbf{t})$ corresponds to including $p(w_i \neq 0 \mid \mathbf{t}) > \frac{1}{2}$

Remaining issues

Model prob require proportionality constant

$$p(M_k \mid \mathbf{t}, q) = \frac{p(M_k)p(\mathbf{t} \mid M_k, q)}{p(\mathbf{t} \mid q)} = \frac{p(M_k)p(\mathbf{t} \mid M_k, q)}{\sum_{k=1}^{K} p(\mathbf{t} \mid M_k, q)}$$

If K is large we cannot enumerate all models!

▶ In practice *q* is not known. We need

$$p(M_k \mid \mathbf{t}) = \int p(M_k \mid \mathbf{t}, q) p(q \mid M_k) dq$$

But then $p(M_k \mid \mathbf{t})$ doesn't factor anymore!

These are exciting research questions

Final thoughts on projections

PCA defines new uncorrelated $\mathbf{Z} = \mathbf{XE}$

- ► Linear in X
- Maximizing explained variance in X

Issues

Z are not defined to predict \mathbf{t} . Why not seek $ilde{z}_i \in \mathbb{R}^{ ilde{p}}$

$$\min \sum_{i=1}^{n} \left(t_i - \sum_{j=1}^{\tilde{p}} \tilde{w}_j^T \tilde{z}_{ij} \right)^2$$

Why not consider non-linear projections (projection pursuit)

$$\min \sum_{i=1}^n \left(t_i - \sum_{j=1}^{ ilde{p}} f_j(ilde{w}_j^T ilde{z}_{ij})
ight)^2$$

▶ Even if BMS selects only one z_i , this is a linear comb of all x_i 's

Outline

Projection-based methods

Heuristics

Markov Chain Monte Carlo

Shrinkage priors

Projection methods select \mathbf{z}_j 's, but we're often interested in \mathbf{x}_j 's.

Suppose we seek $M_{k^*} = \operatorname{argmax}_k p(M_k \mid \mathbf{t})$ (HPM). Equivalently let $\gamma_j = I(w_j \neq 0)$, $\gamma = (\gamma_1, \dots, \gamma_p)$, we seek

$$\gamma^* = \operatorname{argmax}_{\gamma} \log \left(p(\mathbf{t} \mid \gamma) \right) + \log p \left(\gamma \right) = \operatorname{argmax}_{\gamma} \mathcal{C}_{\gamma}$$

- ▶ This is an integer programming optimization problem
- Potentially many local modes
- ► Many algorithms out there, let's start with stepwise methods

Heuristic 1: Stepwise methods

Stepwise forward

- 1. Start with null model (no predictors)
- 2. Add single variable j^* providing best C_{γ}
- 3. Continue until $min\{p, n\}$ variables in the model

Stepwise backward

- 1. Start with full model (all predictors, assumes $p \le n$)
- 2. Drop variable j^* resulting in best C_{γ}
- 3. Continue until no variables in the model

Hybrid stepwise: consider forward & backward moves, choose the best of the two

Pros & Cons of Stepwise methods

	Pros	Cons		
Forward	Works for $p > n$	Doesn't consider full Corr(X)		
Backward	Considers full Corr(X)	Works for $p \leq n$		
Hybrid	Local optima less likely	Higher CPU cost		

Example

▶ t: Systolic Blood pressure

x₁: age

▶ **x**₂: gender

Issue: women are older than men. Correlated predictors!

True model: $\mathbf{t} = 50 + 0.5x_1 + 5x_2 + \epsilon$

Suppose we set uniform model prior probabilities $P(\gamma)$

	C_{γ}	$P(\gamma \mid \mathbf{t})$
Intercept	-281.4	1e-12
Age only	-284.1	7e-14
Gender only	-283.0	2.3e-13
Age & Gender	-253.9	1

- ▶ Stepwise forward: start from $\gamma = (0,0)$ including any variable decreases C_{γ} . Solution is $\gamma^* = (0,0)$
- Stepwise backward: solution is $\gamma^* = (1,1)$

Colon cancer data (p=172,n=262)

Plotting $-C_{\gamma}$ (looking for minimum)

Colon cancer data (p=172,n=262)

Assess leave-one-out cross-validated R^2 between (\hat{t}, t)

	р	R^2 (cross-val)
Least squares	172	0.374
Hybrid forw/back	13	0.577

Recall that with BMA we were getting $R^2 = 0.56$ (this required some numerical approx to be discussed later on)

- \blacktriangleright Most pairwise correlations \le 0.5, stepwise methods may suffer under stronger correlation
- ▶ If $\mathbf{x}_i^T \mathbf{x}_j = 0$ for all $i \neq j$ (orthogonal) and q known then stepwise methods find the global maximum

Stepwise methods find γ^* , not $p(\gamma^* \mid \mathbf{t})$. Hard to assess uncertainty

Heuristic 2: Restrict the model space

Idea: instead of considering 2^p models, use some fast algorithm to focus on "promising" ones (e.g. stepwise forward)

Example

- 1. Use LASSO to find sequence of models $\gamma^{(1)}, \ldots, \gamma^{\min\{n,p\}}$ with $0, 1, \ldots, \min\{p, n\}$ variables
- 2. Compute $p(\mathbf{t} \mid \gamma^{(k)})p(\gamma^{(k)})$ for each model to find HPM
- 3. Lower bound for $p(\gamma^* \mid \mathbf{t})$ given by

$$\frac{p(\mathbf{t} \mid \gamma^*)p(\gamma^*)}{\sum_k p(\mathbf{t} \mid \gamma^{(k)})p(\gamma^{(k)})}$$

Using the LASSO

Let $\lambda > 0$ be a penalization parameter, the goal is

$$\min_{\mathbf{w}}(\mathbf{t} - \mathbf{X}\mathbf{w})^T(\mathbf{t} - \mathbf{X}\mathbf{w}) + \lambda \sum_{j=1}^{p} |w_j|$$

Convex (sum of 2 convex functions) \Rightarrow unique minimum. Many optimization algorithms

- ▶ Optimize each w_j with other w_k fixed $(k \neq l)$. Quadratic in w_j
- Least Angle Regression (LAR) algorithm: find $\hat{\mathbf{w}}$ for all possible λ in $O(\min\{n, p\})$ steps
- **.**..

Colon cancer data. LASSO solution path: \hat{w}_i vs. λ

Refining the approximation

LASSO seeks small

$$(\mathbf{t} - \mathbf{X}\mathbf{w})^T (\mathbf{t} - \mathbf{X}\mathbf{w}) + \lambda \sum_{j=1}^p |w_j|$$

BMS seeks high $\log p(\mathbf{t} \mid M_k) + \log p(M_k) \approx$

$$-\frac{1}{2}(\mathbf{t} - \mathbf{X}_k \hat{\mathbf{w}}_k)^T (\mathbf{t} - \mathbf{X}_k \hat{\mathbf{w}}_k) - \frac{d_k}{2} \log |\mathbf{X}_k^T \mathbf{X}_k| + \log p(M_k)$$

$$\approx -\frac{1}{2}(\mathbf{t} - \mathbf{X}\hat{\mathbf{w}})^T (\mathbf{t} - \mathbf{X}\hat{\mathbf{w}}) - \frac{1}{2}h(d_k)$$

- $ightharpoonup \sum_{j=1}^p |w_j|$ is L_1 norm, $d_k = \sum_{j=1}^p I(w_j \neq 0)$ is L_0 norm
- ▶ Better approximations for L_0 norm possible (e.g. adaptive LASSO)

Again, pretty much open research...

Heuristic 3: pre-screening

- 1. Use a quick rule to select $\tilde{p} \ll p$ variables. $\mathbf{X} \to \tilde{\mathbf{X}}$
- 2. Run full BMS on $\tilde{\mathbf{X}}$

Example: univariate predictive effect followed by FDR

- 1. For $j = 1, \ldots, p$ fit $\mathbf{t} = w_j \mathbf{x}_j + \epsilon$
- 2. Obtain P-value for \hat{w}_j , or perhaps $P(w_j \neq 0 \mid \mathbf{t})$
- 3. Adjust so that FDR< α (e.g. Benjamini-Hochberg) or $E(\text{FDP} \mid \mathbf{t}) < \alpha$ (Bayesian FDR)
- 4. Let $\tilde{\mathbf{X}}$ contain all variables passing FDR criterion

Iterative screening methods also available (Sure Independence Screening, Iterative Sure Independence Screening...)

Outline

Projection-based methods

Heuristics

Markov Chain Monte Carlo

Shrinkage priors

Markov Chain Monte Carlo (MCMC)

Idea: $\gamma = (\gamma_1, \dots, \gamma_p)$ is a random variable with distribution $p(\gamma \mid \mathbf{t})$

- 1. Obtain a sample $\gamma^{(1)}, \ldots, \gamma^{(L)}$ from $p(\gamma \mid \mathbf{t})$
- 2. Estimate $\hat{p}(\gamma = \mathbf{g} \mid \mathbf{t}) = \frac{1}{L} \sum_{l=1}^{L} I(\gamma^{(l)} = \mathbf{g})$

MCMC: family of methods to sample from $p(\gamma \mid \mathbf{t})$

- Choose an arbitrary initial $\gamma^{(0)}$
- lacktriangle Transition from $\gamma^{(I)}
 ightarrow \gamma^{(I+1)}$ using Markov Chain
- ▶ Set $p(\gamma^{(l+1)} \mid \gamma^{(l)})$ so that $p(\gamma \mid \mathbf{t})$ is the stationary distribution

The larger $p(\gamma = \mathbf{g} \mid \mathbf{t})$ the more likely we visit \mathbf{g} . We cannot enumerate all models, so we focus on those with high $p(\gamma = \mathbf{g} \mid \mathbf{t})$

Gibbs sampling

Let γ_{-j} be γ after excluding γ_j . Set $\gamma^{(l)} = \gamma^{(l-1)}$, then

Set
$$\gamma_j^{(l)}=1$$
 with probability $p(\gamma_j=1\mid \boldsymbol{\gamma}_{-j}^{(l)},\mathbf{t})=rac{p(\gamma_j=1,\boldsymbol{\gamma}_{-j}^{(l)}|\mathbf{t})}{p(\boldsymbol{\gamma}_{-j}^{(l)}|\mathbf{t})}=$

$$\frac{p(\mathbf{t} \mid \gamma_j = 1, \gamma_{-j}^{(l)}) p(\gamma_j = 1, \gamma_{-j}^{(l)})}{p(\mathbf{t} \mid \gamma_j = 1, \gamma_{-j}^{(l)}) p(\gamma_j = 1, \gamma_{-j}^{(l)}) + p(\mathbf{t} \mid \gamma_j = 0, \gamma_{-j}^{(l)}) p(\gamma_j = 0, \gamma_{-j}^{(l)})}$$

else set $\gamma_j^{(I)}=0$. Repeat for $j=1,\ldots,p,\ I+1,\ldots,L$.

- Each update considers only 2 models
- ► Similar to stepwise methods with probabilistic updates

A bivariate example

Model	$p(M_k \mid \mathbf{t})$
$\gamma_1=0, \gamma_2=0$	0.005
$\gamma_1 \neq 0, \gamma_2 = 0$	0.49
$\gamma_1=0, \gamma_2 eq 0$	0.49
$\gamma_1 \neq 0, \gamma_2 \neq 0$	0.005

Run 10,000 iterations with

$$p(\gamma_1 = 1 \mid \gamma_2 = 0) = 0.49/0.495 = 0.989$$

 $p(\gamma_1 = 1 \mid \gamma_2 = 1) = 0.005/0.495 = 0.01$
 $p(\gamma_2 = 1 \mid \gamma_1 = 0) = 0.49/0.495 = 0.989$
 $p(\gamma_2 = 1 \mid \gamma_1 = 1) = 0.005/0.495 = 0.01$

$$\hat{\rho}(M_1 \mid \mathbf{y}) = 0.005, \hat{\rho}(M_2 \mid \mathbf{y}) = 0.498, \hat{\rho}(M_3 \mid \mathbf{y}) = 0.492, \hat{\rho}(M_4 \mid \mathbf{y}) = 0.004$$

Other MCMC methods

Many other algorithms available

- Scan variables in random order (random scan Gibbs)
- Update several variables at a time (block Gibbs)
- Consider multiple moves
- ▶ Jointly sample (γ, \mathbf{w})
- **.**..

Example: Metropolized-Gibbs

Suppose $\gamma_j^{(I)} = g_j$. Set $\gamma_j^{(I+1)} = 1 - g_j$ with probability min $\{1, u\}$,

$$u = \frac{p(\mathbf{t} \mid \gamma_j = 1 - g_j, \gamma_{-j}^{(l)}) p(\gamma_j = 1 - g_j, \gamma_{-j}^{(l)})}{p(\mathbf{t} \mid \gamma_j = g_j, \gamma_{-j}^{(l)}) p(\gamma_j = g_j, \gamma_{-j}^{(l)})}$$

Increases chance of moving from g_i to $1-g_i$ (lower $Cor(\gamma^{(l)}, \gamma^{(l+1)})$)

MCMC convergence

For large enough I we sample from $p(\gamma \mid \mathbf{t})$. Ideally, large means that the chain has converged

Def. Let $p'(\gamma^{(l)} \mid \gamma^{(0)})$ be the distribution of $\gamma^{(l)}$. If

$$p'(\gamma = \mathbf{g} \mid \gamma^{(0)}) = p(\gamma = \mathbf{g} \mid \mathbf{t})$$
 (1)

for any \mathbf{g} (in a set of probability one) we say the chain has converged

We cannot check convergence from (1) (rhs not available)

- ▶ Monitor characteristics of $\gamma^{(I)}$, check they "stabilized"
- ▶ Run multiple independent chains and compare results

Example in R (p=50,n=100)

Simulate data

```
library(mvtnorm)
w \leftarrow c(rep(0,40), rep(.5,5), rep(1,5))
sigma <- diag(length(w))</pre>
sigma[upper.tri(sigma)] <- 0.75</pre>
sigma[lower.tri(sigma)] <- 0.75
x <- rmvnorm(100, sigma=sigma)
y <- x %*% matrix(w,ncol=1) + rnorm(nrow(x))
Run Bayesian model selection
library(mombf)
fit1 <- modelSelection(y=y,x=x,niter=10^4,
  priorCoef=zellnerprior(tau=nrow(x)),
  priorDelta=modelbbprior(),burnin=0)
```

Monitor model size $\sum_{j=1}^{p} \gamma_j^{(l)}$

The chain started at $\gamma_1^{(0)}=\ldots=\gamma_p^{(0)}=0$

Monitor $p(\mathbf{t} \mid \gamma^{(l)})p(\gamma^{(l)})$

We can also monitor largest $p(\mathbf{t} \mid \gamma^{(I)})p(\gamma^{(I)})$ so far

Monitor $\hat{p}(\gamma_j = 1 \mid \mathbf{t})$

What do results look like?

Marginal inclusion probabilities $\hat{p}(\gamma_j = 1 \mid \mathbf{t})$

What do results look like?

BMA $\hat{E}(w_j \mid \mathbf{t})$

Root mean square error $E^{\frac{1}{2}}\left(\sum_{j=1}^{p}(E(w_j\mid \mathbf{t})-w_j)^2\right)pprox 1.17$

What do results look like?

Least-squares estimate \hat{w}_i

Root mean square error
$$E^{\frac{1}{2}}\left(\sum_{j=1}^p(\hat{w}_j-w_j)^2\right)pprox 2.02$$

Digression: computer implementation

MCMC may revisit previous γ

- Convenient to store $C_{\gamma} = \log p(\mathbf{t} \mid \gamma) + \log p(\gamma)$
- ▶ If $p(\gamma \in A \mid \mathbf{t}) \approx 1$ for a small set A, upon convergence MCMC spends most time revisiting models.
- $ightharpoonup \gamma = (0, 1, 0, \dots, 0)$ is the binary code for integer

$$i(\gamma) = 0 \times 2^0 + 1 \times 2^1 + 0 \times 2^2 + \ldots + 0 \times 2^p - 1$$

We can store C_{γ} in a quickly accessible vector

Parallel computing for multiple chains / moves

Computing $p(\mathbf{t} \mid \gamma^{(l+1)})$ starting from $p(\mathbf{t} \mid \gamma^{(l)})$ (e.g. matrix inversion)

Outline

Projection-based methods

Heuristics

Markov Chain Monte Carlo

Shrinkage priors

Shrinkage priors

Idea: Instead of considering 2^p models, focus on single model with p variables and encourage that $E(w_j \mid \mathbf{t})$ is shrunk to 0

Suppose we seek the posterior mode

$$(\mathbf{w}, q) = \operatorname{argmax}_{(\mathbf{w}, q)} \log (p(\mathbf{w}, q \mid \mathbf{t})) =$$

$$\propto -\frac{n}{2} \log(q) - \frac{1}{2q} \sum_{i=1}^{n} (\mathbf{y}_i - \mathbf{x}_i' \mathbf{w})^2 + \log(p(\mathbf{w}, q))$$

- ▶ Terms 1-2 are the likelihood function
- ▶ $log(p(\mathbf{w}, q))$ reinforces certain param values (i.e. penalty)

Posterior mode equivalent to maximizing penalized likelihood!

Double exponential (Laplace) distribution

Consider prior $p(w_j \mid q) = \frac{\lambda}{2q} \exp(-\frac{\lambda}{q}|w_j|)$

Bayesian LASSO

Then maximizing $\log(p(\mathbf{w}, q \mid \mathbf{t})) \propto$

$$-\frac{n}{2}\log p(q) - \frac{1}{2q}\sum_{i=1}^{n}(\mathbf{y}_{i} - \mathbf{x}_{i}'\mathbf{w})^{2} - \lambda \frac{1}{q}\sum_{j=1}^{p}|w_{j}| + \log p(q)$$

with respect to \mathbf{w} is equivalent to minimizing

$$\frac{1}{2}\sum_{i=1}^{n}(\mathbf{y}_{i}-\mathbf{x}_{i}'\mathbf{w})^{2}+\lambda\sum_{j=1}^{p}|w_{j}|$$

The posterior mode is equivalent to the LASSO solution

Shrinkage priors

Stronger shrinkage than LASSO is possible

- lacktriangle Double-exponential places higher prior prob on $w_j pprox 0$ than Normal
- ▶ One can assign even larger prior prob, e.g. $\lim_{w_j \to 0} p(w_j) = \infty$
- \blacktriangleright We can shrink further by introducing prior dependence across w_j 's

Properties of shrinkage priors

- ▶ Posterior mode may be sparse, but $E(\mathbf{w} \mid \mathbf{t})$ is not
- ▶ It doesn't make sense to compute $P(w_j \neq 0 \mid \mathbf{t})$. Hard to assess uncertainty in the selected model
- Relative to regular LASSO, Bayesian LASSO gives posterior credibility intervals (uncertainty in the parameter estimates)
- Obtaining more than just the mode can be computationally demanding

TGFB study (n = 262)

Predict TGFB from

- ightharpoonup p = 172 promising genes
- ▶ p = 10,172 genes

Compare

- ► BMS: MOM, Hyper-g, Benchmark prior + Beta-Binomial(1,1)
- Bayesian LASSO
- Penalized likelihood: LASSO, adaptive LASSO, SCAD

Evaluate

- Mean number of predictors
- ▶ R^2 between (y_i, \hat{y}_i) (leave-one-out cross-validation)
- CPU time (Mac laptop, single core)

TGFB study (n = 262)

	p = 172		p = 10,172		
	Ē	R^2	Ē	R^2	CPU time
MOM (10 ⁷ updates)	4.3	0.566	6.5	0.617	1m 52s
Hyper-g (10 ⁷ updates)	11.3	0.562	26.4	0.522	11m 49s
BenchP (10 ⁷ updates)	4.2	0.562	3.0	0.586	1m 23s
BLASSO (2.5 · 10 ⁵ iter)	104*	0.580	100*	0.598	3.6h
SCAD (10-fold CV)	28	0.560	81	0.535	17s
LASSO (10-fold CV)	42	0.586	159	0.570	24s
AdaLASSO (10-fold CV)	24	0.569	10	0.536	2m 49s

^{*:} $|E(\theta_j | Y)| > 0.01$

R package mombf (MOM,iMOM, BenchP), hyper-g (BAS), BLASSO (BLR), LASSO, SCAD (ncvreg), AdaLASSO (parcor)

Final thoughts

Extending BMS to truly high-dimensions is an open challenge

- ▶ Can we characterize when it leads to better estimates?
- When can we expect to recover the "true model"
- Can we address computational bottlenecks?

Some (many?) leading experts state BMS computationally unfeasible and propose alternatives, but

An approximate answer to the right question is worth a great deal more than a precise answer to the wrong question

John W. Tukey

