Admissible Heuristics

Wednesday, January 13, 2021 2:57 PM

CSE 415 Computer Science and Engineering, University of Washington
Your Name: _______

Admissible Heuristics

The Eight Puzzle consists of eight tiles, numbered 1 through 8, placed into a 3-by-3 board. Pieces are initially out of order, and they must be moved into standard 1-8 order by sliding one tile at a time into the empty square on the board. Let's assume the goal state is as shown here in G:

J:

		1	2
G:	3	4	5
	6	7	8

provided by S. Tanimoto. 2021

Consider the following heuristics. For each one (except perhaps the Sum of Euclidean distances), compute its value $h_i(J)$ for the state J given above. (When computing sums over the tiles, do not include the blank space as if it were a tile.)

Determine whether the heuristic is admissible. Explain why or why not. Finally, if it is admissible, determine what other heuristics it dominates.

Heuristic	h _i (J)	Admissible?	Why or why not ?	Dominates
h ₀ (n) = Zero	0	Y	Can never overestimate true distance to G.	none
$h_1(n)$ = Hamming (number of tiles out of place)	7	Y	each tile out of place wents It works	h.
$h_2(n)$ = Manhattan distance of tile 1 alone.	2	Y	total moves wan 4 be > than 2	40
$h_3(n)$ = Sum of Manhattan distances for all 8 tiles.	11	Y	more more than	Ro, l, 1 h2
h ₄ (n) = Sum of only the horizontal components of the Manhattan distance for all 8 tiles.	7	Y	total needed muss?	ho, hz, hs
h ₅ (n) = Sum of only the vertical components of the Manhattan distance for all 8 tiles.	4	Y	total model >	lo, le
$h_6(n)$ = Sum of Euclidean distances for all 8 tiles.	9.2	~	total Proves >8	hipo, hules

PDF

Khoa_Tran...